

Listing of Claims

1. (presently amended) A compound of formula I or a racemate, a diastereoisomer or an optical isomer thereof:

wherein Q is CH₂ or N-Y wherein Y is H or C₁₋₆ alkyl;

a) when Q is CH₂, a is 0, b is 0, and B is an amide derivative of formula R_{11a}N(R_{11b})-C(O)- wherein R_{11a} is H; C₁₋₁₀ alkyl; C₆ aryl; C₇₋₁₀ alkylaryl; C₃₋₇ cycloalkyl or C₄₋₈ (alkylcycloalkyl) optionally substituted with carboxyl; or heterocycle-C₁₋₆ alkyl;

and R_{11b} is C₁₋₆ alkyl substituted with carboxyl, (C₁₋₆ alkoxy)carbonyl or phenylmethoxycarbonyl; or C₇₋₁₆ aralkyl substituted on the aromatic portion with carboxyl, (C₁₋₆ alkoxy)carbonyl or phenylmethoxycarbonyl; or R_{11a} and R_{11b} are joined to form a 3 to 7-membered nitrogen-containing ring optionally substituted with carboxyl or (C₁₋₆ alkoxy) carbonyl;

or

b) when Q is N-Y, a is 0 or 1, b is 0 or 1, and

B is an acyl derivative of formula R₁₁-C(O)- or a sulfonyl of formula R₁₁-SO₂ wherein

- R₁₁ is (i) C₁₋₁₀ alkyl optionally substituted with carboxyl or C₁₋₆ alkanoyloxy; C₁₋₆ alkoxy; or carboxyl substituted with 1 to 3 C₁₋₆ alkyl substituents;
- (ii) C₃₋₇ cycloalkyl or C₄₋₁₀ alkylcycloalkyl, both optionally substituted with carboxyl, (C₁₋₆ alkoxy)carbonyl or phenylmethoxycarbonyl;
- (iii) C₆ or C₁₀ aryl or C₇₋₁₆ aralkyl optionally substituted with C₁₋₆ alkyl, hydroxy, or amino optionally substituted with C₁₋₆ alkyl; or
- (iv) Het optionally substituted with C₁₋₆ alkyl, hydroxy, amino optionally substituted with C₁₋₆ alkyl, or amido optionally substituted with C₁₋₆ alkyl,

R₆, when present, is C₁₋₆ alkyl substituted with carboxyl;

R₅, when present, is C₁₋₆ alkyl optionally substituted with carboxyl;

and

c) when Q is either CH₂ or N-Y, then

R₄ is C₁₋₁₀ alkyl, C₃₋₇ cycloalkyl or C₄₋₁₀ (alkylcycloalkyl);

z is oxo or thioxo;

R₃ is C₁₋₁₀ alkyl optionally substituted with carboxyl, C₃₋₇ cycloalkyl or C₄₋₁₀ (alkylcycloalkyl);

W is a group of formula II:

wherein R₂ is C₁₋₁₀ alkyl or C₃₋₁₀ cycloalkyl optionally substituted with carboxyl or an ester or amide thereof; C₆ or C₁₀ aryl or C₇₋₁₆ aralkyl; or

W is a group of formula IIa:

wherein X is CH or N; and

R_{2a} is a divalent C₃₋₄ alkylene which together with X and the carbon atom to which X and R_{2a} are attached form a 5- or 6-membered ring, said ring optionally substituted with OH; SH; NH₂; carboxyl; R₁₂; CH₂-R₁₂, OR₁₂, C(O)OR₁₂, SR₁₂, NHR₁₂ or NR₁₂R_{12a};

wherein R₁₂ and R_{12a} are independently a saturated or unsaturated C₃₋₇ cycloalkyl or C₄₋₁₀ (alkyl cycloalkyl) being optionally mono-, di- or tri-substituted with R₁₅, or each of R₁₂ and R_{12a} is a C₆ or C₁₀ aryl or C₇₋₁₆ aralkyl optionally mono-, di- or tri-substituted with R₁₅, or each of R₁₂ and R_{12a} is Het or (lower alkyl)-Het

optionally mono-, di- or tri-substituted with R₁₅,

wherein each R₁₅ is independently C₁₋₆ alkyl; C₁₋₆ alkoxy; amino optionally mono- or di-substituted with C₁₋₆ alkyl; sulfonyl; NO₂; OH; SH; halo; haloalkyl; amido optionally mono-substituted with C₁₋₆ alkyl, C₆ or C₁₀ aryl, C₇₋₁₆ aralkyl, Het or (lower alkyl)-Het; carboxyl; carboxy(lower alkyl); C₆ or C₁₀ aryl, C₇₋₁₆ aralkyl or Het, said aryl, aralkyl or Het being optionally substituted with R₁₆;

wherein R₁₆ is C₁₋₆ alkyl; C₁₋₆ alkoxy; amino optionally mono- or di-substituted with C₁₋₆ alkyl; sulfonyl; NO₂; OH; SH; halo; haloalkyl; carboxyl; amide; or (lower alkyl)amide;

or X is CH or N; and R_{2a} is a divalent C₃₋₄ alkylene which together with X and the carbon atom to which X and R_{2a} are attached form a 5- or 6-membered ring which in turn is fused with a second 5-, 6- or 7-membered ring to form a bicyclic system wherein the second ring is substituted with OR_{12a}, wherein R_{12a} is C₇₋₁₆ aralkyl;

R_{1a} is hydrogen, and R₁ is the side chain of an amino acid selected from the group consisting of cysteine (Cys), aminobutyric acid (Abu), norvaline (Nva) and allylglycine (AlGly); or

R_{1a} and R₁ together form a 3- to 6-membered ring optionally substituted with R₁₄ wherein R₁₄ is C₁₋₆ alkyl, C₃₋₅ cycloalkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₆ aryl or C₇₋₁₀ aralkyl all optionally substituted with halo; and

A is hydroxy; or C₁₋₆ alkylamino, di(C₁₋₆ alkyl)amino or phenyl-C₁₋₆ alkylamino; wherein Het is a five-, six-, or seven-membered saturated or unsaturated, including aromatic or non-aromatic, heterocycle containing from one to four heteroatoms selected from nitrogen, oxygen and sulfur, which heterocycle is optionally fused to a benzene ring;

or a non-toxic salt or ester thereof.

2. (previously amended) The compound of formula I according to claim 1, wherein B is an acyl derivative of formula R₁₁C(O)- wherein R₁₁ is C₁₋₆ alkyl optionally

substituted with carboxyl, C₁₋₆ alkanoyloxy or C₁₋₆ alkoxy;
C₃₋₇ cycloalkyl optionally substituted with carboxyl, MeOC(O), EtOC(O) or BnOC(O);
3-carboxypropionyl (DAD); 4-carboxybutyryl (DAE); or

3. (Original) The compound of formula I according to claim 2, wherein B is acetyl,
3-carboxypropionyl (DAD), 4-carboxybutyryl (DAE),

4. (previously amended) The compound of formula I according to claim 3, wherein
B is acetyl, DAD, DAE,

5. (Original) The compound of formula I according to claim 4, wherein B is acetyl.
6. (Original) The compound of formula I according to claim 1, wherein R₆, when present, is the side chain of Asp or Glu.
7. (Original) The compound of formula I according to claim 6, wherein R₆, when present, is the side chain of Asp.
8. (Original) The compound of formula I according to claim 7, wherein a is 0 and then R₆ is absent.
9. (presently amended) The compound of formula I according to claim 1, wherein R₅, when present, is the side chain of an amino acid selected from the group consisting of: D-Asp, L-Asp, D-Glu, L-Glu, D-Val, L-Val, D-tert-butylglycine (Tbg), and L-Tbg aspartic acid, glutamic acid, valine and tert-butylglycine, and wherein the carbon bearing R₅ is in the D or L configuration.
10. (presently amended) The compound of formula I according to claim 9, wherein R₅, when present, is the side chain of D-Asp, D-Val, or D-Gluaspartic acid, valine or glutamic acid, and wherein the carbon bearing R₅ is in the D configuration.
11. (presently amended) The compound of formula I according to claim 10, wherein R₅, when present, is the side chain of D-Glu glutamic acid wherein the carbon bearing R₅ is in the D configuration.
12. (Original) The compound of formula I according to claim 1, wherein a is 0 and b is 0, and then both R₆ and R₅ are absent.
13. (Original) The compound of formula I according to claim 1, wherein R₄ is isopropyl, cyclohexyl, 1-methylpropyl, 2-methylpropyl or tert-butyl.

14. (Original) The compound of formula I according to claim 13, wherein R₄ is cyclohexyl or 1-methylpropyl.
15. (Original) The compound of formula I according to claim 14, wherein R₄ is cyclohexyl.
16. (Original) The compound of formula I according to claim 1, wherein z is oxo.
17. (Original) The compound of formula I according to claim 1, wherein R₃ is the side chain of an amino acid selected from the group consisting of: Ile, allo-Ile, Chg, cyclohexylalanine (Cha), Val, Tbg or Glu.
18. (Original) The compound of formula I according to claim 17, wherein R₃ is the side chain of Val, Tbg or Chg.
19. (Original) The compound of formula I according to claim 18, wherein R₃ is the side chain of Val.
20. (Original) The compound of formula I according to claim 1, wherein W is a group of formula II:

wherein R₂ is C₁₋₈ alkyl; C₁₋₈ alkyl substituted with carboxyl, C₁₋₆ alkoxy carbonyl, benzyloxycarbonyl or benzylaminocarbonyl; C₃₋₇ cycloalkyl or benzyl.

21. (Original) The compound of formula I according to claim 20, wherein R₂ is the side chain of aminobutyric acid (Abu), Leu, Phe, Cha, Val, Ala, Asp, Glu, Glu(OBn), or Glu(NHBn).

22. (Original) The compound of formula I according to claim 21, wherein R₂ is the side chain of Asp, Abu or Val.

23. (previously amended) The compound of formula I according to claim 1, wherein W is a group of formula IIa:

wherein X is CH or N, and R_{2a} is a C₃ or C₄ alkylene that joins X to form a 5- or 6-membered ring of formula III:

R_{2a} being optionally substituted at any position with R₁₃, wherein X is CH or N; n is 1 or 2, and R₁₃ is S-R₁₂ or O-R₁₂ wherein R₁₂ is a C₆ or C₁₀ aryl, C₇₋₁₆ aralkyl, Het or -CH₂-Het, all optionally mono-, di- or tri-substituted with R₁₅,

wherein R₁₅ is C₁₋₆ alkyl; C₁₋₆ alkoxy; amino; mono- or di-(lower alkyl)amino; amido optionally mono-substituted with C₁₋₆ alkyl, C₆ or C₁₀ aryl, C₇₋₁₆ aralkyl, Het or (lower alkyl)-Het; NO₂; OH; halo; trifluoromethyl; carboxyl; C₆ or C₁₀ aryl, C₇₋₁₆ aralkyl, or Het, said aryl, aralkyl or Het being optionally substituted with R₁₆, and

wherein R₁₆ is C₁₋₆ alkyl; C₁₋₆ alkoxy; amino; mono- or di-(lower alkyl)amino; (lower alkyl)amide; NO₂; OH; halo; trifluoromethyl; or carboxyl.

24. (Original) The compound of formula I according to claim 23, wherein R_{2a} is

propyl joined to X wherein X is nitrogen to form a proline substituted with R₁₃ as defined in claim 23.

25. (Original) The compound of formula I according to claim 24, wherein R_{2a} is the side chain of proline substituted at the 3-, 4-, or 5-position with R₁₃, wherein R₁₃ is as defined in claim 24.

26. (previously amended) The compound of formula I according to claim 25, wherein R_{2a} is the side chain of proline substituted with R₁₃ at the 4-position with the stereochemistry shown in formula IIIa:

wherein R₁₃ is S-R₁₂ or O-R₁₂ wherein R₁₂ is a C₆ or C₁₀ aryl, C₇₋₁₆ aralkyl, Het or -CH₂-Het, all optionally mono-, di- or tri-substituted with R₁₅,

wherein R₁₅ is C₁₋₆ alkyl; C₁₋₆ alkoxy; amino; di(lower alkyl)amino; (lower alkyl)amide; C₆ or C₁₀ aryl, or Het, said aryl or Het being optionally substituted with R₁₆, and

R₁₆ is C₁₋₆ alkoxy; amino; di(lower alkyl)amino; (lower alkyl)amide; halo; or trifluoromethyl.

27. (previously amended) A compound of formula I :

wherein Q is CH₂ or N-Y wherein Y is H or C₁₋₆ alkyl;

a) when Q is CH₂, a is 0, b is 0, and B is an amide derivative of formula R_{11a}N(R_{11b})-C(O)- wherein R_{11a} is H; C₁₋₁₀ alkyl; C₆ aryl; C₇₋₁₀ alkylaryl; C₃₋₇ cycloalkyl or C₄₋₈ (alkylcycloalkyl) optionally substituted with carboxyl; or heterocycle-C₁₋₆ alkyl;

and R_{11b} is C₁₋₆ alkyl substituted with carboxyl, (C₁₋₆ alkoxy)carbonyl or phenylmethoxycarbonyl; or C₇₋₁₆ aralkyl substituted on the aromatic portion with carboxyl, (C₁₋₆ alkoxy)carbonyl or phenylmethoxycarbonyl;

or R_{11a} and R_{11b} are joined to form a 3 to 7-membered nitrogen-containing ring optionally substituted with carboxyl or (C₁₋₆ alkoxy) carbonyl;

or

b) when Q is N-Y, a is 0 or 1, b is 0 or 1, and

B is an acyl derivative of formula R₁₁-C(O)- or a sulfonyl of formula R₁₁-SO₂ wherein

- R₁₁ is (i) C₁₋₁₀ alkyl optionally substituted with carboxyl or C₁₋₆ alkanoyloxy; C₁₋₆ alkoxy; or carboxyl substituted with 1 to 3 C₁₋₆ alkyl substituents;
- (ii) C₃₋₇ cycloalkyl or C₄₋₁₀ alkylcycloalkyl, both optionally substituted with carboxyl, (C₁₋₆ alkoxy)carbonyl or phenylmethoxycarbonyl;
- (iii) C₆ or C₁₀ aryl or C₇₋₁₆ aralkyl optionally substituted with C₁₋₆ alkyl, hydroxy, or amino optionally substituted with C₁₋₆ alkyl; or
- (iv) Het optionally substituted with C₁₋₆ alkyl, hydroxy, amino optionally substituted with C₁₋₆ alkyl, or amido optionally substituted with C₁₋₆ alkyl,

R₆, when present, is C₁₋₆ alkyl substituted with carboxyl;

R₅, when present, is C₁₋₆ alkyl optionally substituted with carboxyl;
and

c) when Q is either CH₂ or N-Y, then

R₄ is C₁₋₁₀ alkyl, C₃₋₇ cycloalkyl or C₄₋₁₀ (alkylcycloalkyl);

z is oxo or thioxo;

R₃ is C₁₋₁₀ alkyl optionally substituted with carboxyl, C₃₋₇ cycloalkyl or C₄₋₁₀ (alkylcycloalkyl);

W is a group of formula IIIa:

wherein R₁₃ is o-tolylmethoxy; m-tolylmethoxy; p-tolylmethoxy; (4-tert-butyl)methoxy; (3I-Ph)CH₂O; (4Br-Ph)O; (2Br-Ph)O; (3Br-Ph)O; (4I-Ph)O; (3Br-Ph)CH₂O; (3,5-Br₂-Ph)CH₂O; or R₁₃ is OR₁₂ or SR₁₂ wherein R₁₂ is C₆ or C₁₀ aryl, C₇₋₁₆ aralkyl or Het, all optionally substituted with C₁₋₆ alkyl, C₃₋₇ cycloalkyl, C₁₋₆ alkoxy, acetylamido, nitro, CF₃, NH₂, OH, SH, halo, carboxyl, carboxy(lower)alkyl or a second aryl or aralkyl;

R_{1a} is hydrogen, and R₁ is the side chain of an amino acid selected from the group consisting of cysteine (Cys), aminobutyric acid (Abu), norvaline (Nva) and allylglycine (AlGly); or

R_{1a} and R₁ together form a 3- to 6-membered ring optionally substituted with R₁₄ wherein R₁₄ is C₁₋₆ alkyl, C₃₋₅ cycloalkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₆ aryl or C₇₋₁₀ aralkyl all optionally substituted with halo; and

A is hydroxy; or C₁₋₆ alkylamino, di(C₁₋₆ alkyl)amino or phenyl-C₁₋₆ alkylamino; wherein Het is a five-, six-, or seven-membered saturated or unsaturated, including aromatic, heterocycle containing from one to four heteroatoms selected from nitrogen,

oxygen and sulfur, which heterocycle is optionally fused to a benzene ring; or a non-toxic salt or ester thereof.

28. (Original) The compound of formula I according to claim 27, wherein R₁₃ is 1-naphthoxy; 2-naphthoxy; 1-naphthylmethoxy; 2-naphthylmethoxy;

Claim 29. (cancelled)

30. (previously amended) The compound of formula I according to claim 1, wherein R_{1a} is hydrogen and R₁ is the side chain of the amino acid selected from the group consisting of: cysteine (Cys), aminobutyric acid (Abu), norvaline (Nva), and allylglycine (AlGly).

31. (Original) The compound of formula I according to claim 30, wherein R_{1a} is H and R₁ is propyl.

32. (previously amended) The compound of formula I according to claim 1, wherein R_{1a} and R₁ together form a 3- to 6-membered ring, said ring being optionally substituted with R₁₄, wherein R₁₄ is methyl, ethyl, propyl, vinyl, allyl, benzyl, phenylethyl or phenylpropyl, each of which is optionally substituted with halo.

33. (previously amended) The compound of formula I according to claim 32, wherein R_{1a} and R₁ together form a cyclopropyl optionally substituted with R₁₄ as defined in claim 32.

34. (Original) The compound of formula I according to claim 33, wherein R₁₄ is ethyl, propyl, vinyl, bromovinyl or allyl.

35. (Original) The compound of formula I according to claim 34, wherein R₁₄ is ethyl, vinyl or bromovinyl.

Claim 36 (cancelled)

37. (previously amended) The compound of formula I according to claim 1, wherein A is hydroxy, or N(R_{17a})R_{17b} wherein R_{17a} and R_{17b} are independently H, aryl or C₁₋₆ alkyl optionally substituted with hydroxy or aryl.

38. (Original) The compound of formula I according to claim 37, wherein A is OH, NH-benzyl or NH-CH(Me)Ph.

39. (Original) The compound of formula I according to claim 38, wherein A is OH or NH-CH(Me)-phenyl.

40. (previously amended) A compound of formula (IA) or a racemate, a diastereoisomer or an optical isomer thereof:

wherein Y is H or C₁₋₆ alkyl;

a is 0 or 1;

b is 0 or 1;

B is as defined in claim 1, paragraph b);

R₆, R₅, R₄, z, R₃, W, R₁, R_{1a} and A are as defined in claim 1.

41. (previously amended) The compound of formula IA according to claim 40, wherein

B is an acyl derivative of formula $R_{11}C(O)-$ wherein R_{11} is C₁₋₆ alkyl optionally substituted with carboxyl, C₁₋₆ alkanoyloxy or C₁₋₆ alkoxy; C₃₋₇ cycloalkyl optionally substituted with carboxyl, MeOC(O), EtOC(O) or BnOC(O); 3-carboxypropionyl (DAD); 4-carboxybutyryl (DAE); or

42. (Original) The compound of formula IA according to claim 41, wherein B is acetyl, 3-carboxypropionyl (DAD), 4-carboxybutyryl (DAE),

43. (Original) The compound of formula IA according to claim 42, wherein B is acetyl, DAD, DAE,

44. (Original) The compound of formula IA according to claim 43, wherein B is acetyl.

45. (presently amended) A compound of formula IB, or a ~~diastereoisomer, an optical isomer, a racemic mixture of diastereoisomers or a racemic mixture of optical isomers or a racemate, a diastereoisomer or an optical isomer thereof~~:

wherein

B, a, b, R₆, R₅, Y, R₄, Z, R₃, and A are as defined in claim 1,

R₁₃ is R₁₂, OR₁₂, C(O)OR₁₂, SR₁₂, NHR₁₂ or NR₁₂R_{12a} wherein R₁₂ and R_{12a} are as defined in claim 1; and

R₁₄ is C₁₋₆ alkyl, C₂₋₆ alkenyl optionally substituted with halogen; C₆₋₁₀ aryl or C₇₋₁₀ aralkyl optionally substituted with halogen; or a non-toxic salt or ester thereof.

46. (Original) The compound of formula IB according to claim 45, wherein B is R₁₁-SO₂ wherein R₁₁ is C₆ or C₁₀ aryl, a C₇₋₁₆ aralkyl or Het all optionally substituted with C₁₋₆ alkyl.

47. (previously amended) A compound of formula IB :

wherein B is an acyl derivative of formula $R_{11}C(O)-$ wherein R_{11} is C_{1-6} alkyl; C_{1-6} alkoxy; C_{3-7} cycloalkyl optionally substituted with hydroxy; amido optionally substituted with C_{1-6} alkyl or Het; C_6 or C_{10} aryl, C_{7-16} aralkyl or Het all optionally substituted with C_{1-6} alkyl or hydroxy;

a, b, R_6 , R_5 , Y, R_4 , Z, R_3 , and A are as defined in claim 1,

R_{13} is R_{12} , OR_{12} , $C(O)OR_{12}$, SR_{12} , NHR_{12} or $NR_{12}R_{12a}$ wherein R_{12} and R_{12a} are as defined in claim 1; and

R_{14} is C_{1-6} alkyl, C_{2-6} alkenyl optionally substituted with halogen; C_{6-10} aryl or C_{7-10} aralkyl optionally substituted with halogen; or a non-toxic salt or ester thereof.

48. (previously amended) The compound of formula IB according to claim 47, wherein B is $R_{11}C(O)-$ wherein R_{11} is C_{1-6} alkyl,

49. (previously amended) The compound of formula IB according to claim 48, wherein

50. (Original) The compound of formula IB according to claim 45, wherein R₁₃ is o-tolylmethoxy; m-tolylmethoxy; p-tolylmethoxy; (4-tert-butyl)methoxy; (3I-Ph)CH₂O; (4Br-Ph)O; (2Br-Ph)O; (3Br-Ph)O; (4I-Ph)O; (3Br-Ph)CH₂O; (3,5-Br₂-Ph)CH₂O; or R₁₃ is OR₁₂ or SR₁₂ wherein R₁₂ is C₆ or C₁₀ aryl, C₇₋₁₆ aralkyl or Het, all optionally substituted with C₁₋₆ alkyl, C₃₋₇ cycloalkyl, C₁₋₆ alkoxy, acetyl amido, nitro, CF₃, NH₂, OH, SH, halo, carboxyl, carboxy(lower)alkyl or a second aryl or aralkyl.

51. (Original) The compound of formula IB according to claim 50, wherein R₁₃ is 1-naphthoxy; 2-naphthoxy; 1-naphthylmethoxy; 2-naphthylmethoxy; 2-, 3-, 4-, or 6-quinolinoxy, all optionally substituted.

52. (Original) The compound of formula IB according to claim 51, wherein R₁₃ is 1-naphthoxy; 2-naphthoxy; 1-naphthylmethoxy; 2-naphthylmethoxy; or substituted 4-quinolinoxy.

53. (Original) The compound of formula IB according to claim 52, wherein R₁₃ is 1-naphthylmethoxy; 2-naphthylmethoxy; benzyloxy, 1-naphthoxy; 2-naphthoxy; or quinolinoxy unsubstituted, mono- or di-substituted with R₁₅ wherein R₁₅ is C₁₋₆ alkyl; C₁₋₆ alkoxy; amino; mono- or di-(lower alkyl)amino; amido optionally mono-substituted with C₁₋₆ alkyl, C₆ or C₁₀ aryl, C₇₋₁₆ aralkyl, Het or (lower alkyl)-Het; NO₂; OH; halo; trifluoromethyl; carboxyl; C₆ or C₁₀ aryl, C₇₋₁₆ aralkyl, or Het, said aryl, aralkyl or Het being optionally substituted with R₁₆, wherein R₁₆ is C₁₋₆ alkyl; C₁₋₆ alkoxy; amino; mono- or di-(lower alkyl)amino; (lower alkyl)amide; NO₂; OH; halo; trifluoromethyl; or carboxyl.

54. (previously amended) The compound of formula IB according to claim 53, wherein R₁₃ is 1-naphthylmethoxy; or quinolinoxy unsubstituted, mono- or di-substituted

with R₁₅ as defined in claim 53.

55. (Original) The compound of formula IB according to claim 54, wherein R₁₃ is :

wherein R_{15A} is amido optionally mono-substituted with C₁₋₆ alkyl, C₆ or C₁₀ aryl, C₇₋₁₆ aralkyl or Het; or C₆ or C₁₀ aryl or Het optionally substituted with R₁₆, R_{15B} is C₁₋₆ alkyl; C₁₋₆ alkoxy; amino; di(lower alkyl)amino; (lower alkyl)amide; NO₂; OH; halo; trifluoromethyl; or carboxyl, and R₁₆ is amino; di(lower alkyl)amino; or (lower alkyl)amide.

56. (Original) The compound of formula IB according to claim 55, wherein R_{15A} is C₆ or C₁₀ aryl or Het, all optionally substituted with R₁₆, R_{15B} is C₁₋₆ alkoxy; or di(lower alkyl)amino, and R₁₆ is as defined in claim 55.

57. (Original) The compound of formula IB according to claim 56, wherein R_{15A} is C₆ or C₁₀ aryl or Het, all unsubstituted, R_{15B} is methoxy, and R₁₆ is amino; dimethylamino; or acetamido.

58. (previously amended) The compound of formula IB according to claim 45, wherein P1 is a cyclopropyl ring system of formula:

wherein R₁₄ is as defined in claim 45.

59. (presently amended) The compound of formula IB according to claim 58, wherein P1 exists as a racemic mixture of diastereoisomers two stereoisomers wherein R₁₄ at position 2 is orientated *syn* to the carbonyl at position 1, represented by the radical:

60. (presently amended) The compound of formula IB according to claim 58, wherein P1 exists as a racemic mixture of diastereoisomers two stereoisomers wherein R₁₄ at position 2 is orientated *anti* to the carbonyl at position 1, represented by the radical:

61. (previously amended) The compound of formula IB according to claim 58, wherein the C₁ carbon atom has the *R* configuration:

62. (Original) The compound of formula IB according to claim 61, wherein said R₁₄ substituent and said carbonyl are in *syn* orientation in the following absolute configuration:

63. (previously amended) The compound of formula IB according to claim 61, wherein said R₁₄ is methyl, ethyl, propyl, vinyl, allyl, benzyl, phenylethyl or phenylpropyl, each of which is optionally substituted with halo.

64. (Original) The compound of formula IB according to claim 61, wherein R₁₄ is ethyl, propyl, vinyl, bromovinyl or allyl.

65. (previously amended) The compound of formula IB according to claim 64, wherein R₁₄ is ethyl, vinyl or bromovinyl.

66. (Original) The compound of formula IB according to claim 61, wherein P1 is

67. (previously amended) A compound of formula IC or a racemate, a diastereoisomer or an optical isomer thereof:

wherein B is as defined in claim 1, paragraph a);

R₄, R₃, W, R_{1a}, R₁, and A are as defined in claim 1.

68. (previously amended) A compound of formula IC :

wherein B is an amide of formula $R_{11a}N(R_{11b})C(O)-$ wherein R_{11a} is C_{1-6} alkyl; C_{3-6} cycloalkyl; C_{3-7} (alkylcycloalkyl) optionally substituted with carboxy; C_{1-3} carboxyalkyl; C_6 aryl; C_{7-10} arylalkyl; 2-tetrahydrofuranylmethyl; or 2-thiazolidylmethyl; and R_{11b} is C_{1-4} alkyl substituted with carboxyl;

R_4 , R_3 , W , R_{1a} , R_1 , and A are as defined in claim 1.

69. (Original) The compound of formula (IC) according to claim 68, wherein R_{11a} is cyclopropylmethyl, isopropyl, carboxyethyl, benzylmethyl, benzyl, or 2-tetrahydrofuranylmethyl.

70. (Original) The compound of formula (IC) according to claim 69, wherein R_{11b} is C_{1-4} alkyl substituted with carboxyl.

71. (Original) The compound of formula (IC) according to claim 70, wherein R_{11b} is ethyl carboxyl.

72. (previously amended) A compound of formula (I):

wherein B, P6, P5, P4, P3, W and P1 are as defined below, said compound selected from the group consisting of:

Comp	B	P6	P5	P4	P3	W	P1	SEQ ID NO.
101	Ac	Asp	Asp	Ile	Val	Pro	Cys;	8
102	Ac	Glu	Asp	Ile	Val	Pro	Cys;	9
103	DAD	---	Asp	Ile	Val	Pro	Cys;	10
104	Ac	Asp	D-Asp	Ile	Val	Pro	Cys;	-
105	Ac	Asp	D-Glu	Ile	Val	Pro	Cys;	-
106	Ac	Asp	Glu	Ile	Val	Pro	Cys;	11
107	Ac	Asp	Val	Ile	Val	Pro	Cys;	12
108	Ac	Asp	Tbg	Ile	Val	Pro	Cys;	13
109	Ac	Asp	Asp	Val	Val	Pro	Cys;	14
110	Ac	Asp	Asp	Chg	Val	Pro	Cys;	15
111	Ac	Asp	Asp	Tbg	Val	Pro	Cys;	16
112	Ac	Asp	Asp	Leu	Val	Pro	Cys;	17
113	Ac	Asp	Asp	Ile	Ile	Pro	Cys;	18
114	Ac	Asp	Asp	Ile	Chg	Pro	Cys;	19
115	Ac	Asp	Asp	Ile	Val	Abu	Cys;	20
116	Ac	Asp	Asp	Ile	Val	Leu	Cys;	21
117	Ac	Asp	Asp	Ile	Val	Phe	Cys;	22
118	Ac	Asp	Asp	Ile	Val	Val	Cys;	23
119	Ac	Asp	Asp	Ile	Val	Ile	Cys;	24
120	Ac	Asp	Asp	Ile	Val	Ala	Cys;	25

Comp	B	P6	P5	P4	P3	W	P1	SEQ ID NO.
121	Ac	Asp	Asp	Ile	Val	Hyp(4-Bn)	Cys;	26
122	Ac	Asp	Asp	Ile	Val	Pro	Abu;	27
123	Ac	Asp	Asp	Ile	Val	Pro	Nva;	28
124	Ac	Asp	Asp	Ile	Val	Pro	AlGly;	29
125	Ac	Asp	Asp	Ile	Val	Pro	Acpe;	30
126	Ac	Asp	Asp	Ile	Val	Pro	Acca;	31
127	Ac	Asp	Asp	Ile	Val	Pip	Nva;	32
128	Ac	Asp	D-Glu	Ile	Val	Pro	Nva;	-
129	Ac	Asp	Tbg	Ile	Val	Pro	Nva;	33
130	DAD	---	Asp	Ile	Val	Pro	Nva;	34
131	Ac	Asp	Glu	Chg	Glu	Glu	Cys;	35
132	Ac	Asp	D-Glu	Chg	Glu	Glu	Acca;	-
and								36
133	Ac	Asp	Glu	Chg	Val	Glu(OBn)	Acca.	

73. (previously amended) A compound of formula (I):

wherein B, P6, P5, P4, P3, R₁₃ and P1 are as defined below, said compound selected from the group consisting of:

Comp.	B	P6	P5	P4	P3	R ₁₃	P1	SEQ ID NO.
201	Ac	Asp	Asp	Ile	Val	O-Bn	Nva;	37
202	Ac	Asp	D-Val	Ile	Val	O-Bn	Nva;	-
203	Ac	Asp	D-Glu	Ile	Val	O-Bn	Nva;	-
204	Ac	Asp	Asp	Ile	Val	o-tolyl-methoxy	Nva;	38
205	Ac	Asp	Asp	Ile	Val	m-tolyl-methoxy	Nva;	39
206	Ac	Asp	Asp	Ile	Val	p-tolyl-methoxy	Nva;	40
207	Ac	Asp	Asp	Ile	Val	1-NpCH ₂ O	Nva;	41
208	Ac	Asp	Asp	Ile	Val	2-NpCH ₂ O	Nva;	42
209	Ac	Asp	Asp	Ile	Val	4-tert-butyl-phenyl)-methoxy	Nva;	43
210	Ac	Asp	D-Glu	Chg	Val	O-Bn	Cys;	-
211	Ac	Asp	D-Glu	Chg	Val	O-Bn	Nva;	-
212	Ac	Asp	D-Glu	Ile	Val	O-Bn	Acca;	-
213	Ac	Asp	D-Glu	Ile	Val	2-NpCH ₂ O	Nva;	-
214	Ac	Asp	D-Glu	Chg	Val	2-NpCH ₂ O	Nva;	-
215	Ac	Asp	D-Glu	Chg	Val	1-NpCH ₂ O	Acca;	-
216	Ac	Asp	Asp	Ile	Val	Bn	Nva;	44
217	Ac	Asp	Asp	Ile	Val	Ph(CH ₂) ₃	Nva;	45
218	Ac	Asp	D-Glu	Ile	Val	O-Bn	Nva;	-
219	Ac	---	Asp	Ile	Val	1-NpCH ₂ O	Nva;	46
220	DAD	---	---	N(Me)Ile	Val	1-NpCH ₂ O	Nva;	-
221	DAD	---	---	Ile	Val	1-NpCH ₂ O	Nva;	-
222	DAE	---	---	Ile	Val	1-NpCH ₂ O	Nva;	-
223		---	---	Ile	Val	1-NpCH ₂ O	Nva;	-

Comp.	B	P6	P5	P4	P3	R ₁₃	P1	SEQ ID NO.
224		---	---	Ile	Val	1-NpCH ₂ O	Nva;	-
225	Ac	---	---	Ile	Val	1-NpCH ₂ O	Nva;	-
226	DAE	---	---	Chg	Val	1-NpCH ₂ O	Acca;	-
227	Ac	---	---	Chg	Val	1-NpCH ₂ O	Acca;	-
228	Ac	---	---	Chg	Val	O-Bn		-
230	Ac	Asp	Asp	Ile	Val	Ph(CH ₂) ₃	Nva;	47
231	Ac	---	---	Chg	Chg	1-NpCH ₂ O	Acca;	-
232	AcOCH ₂ -C(O)	---	---	Chg	Chg	1-NpCH ₂ O	Acca;	-
233	Ac	Asp	Glu	Ile	Val	(3I-Ph) CH ₂ O	Acca;	48
234	Ac	---	---	Chg	Chg	O-Bn	Acca;	-
235	Boc	---	---	Chg	Chg	1-NpCH ₂ O	Acca;	-
236	Ac	---	Gly	thioxo-Ile	Val	1-NpCH ₂ O	Nva;	-
237	DAE	---	---	Ile	Val	1-NpCH ₂ O	Acca;	-
238	Ac	---	---	Chg	Val	(4Br-Ph)O	Acca;	-
239	Ac	---	---	Chg	Val	(2Br-Ph)O	Acca;	-
240	Ac	---	---	Chg	Val	(3Br-Ph)O	Acca;	-
241	Ac	---	---	Chg	Val		Acca;	-
242	Ac	---	---	Chg	Val	(4Br-Ph)S	Acca;	-
243	Ac	---	---	Chg	Val		Acca;	-

Comp.	B	P6	P5	P4	P3	R ₁₃	P1	SEQ ID NO.
244	Ac	---	---	Chg	Val		Acca;	-
245	Ac	---	---	Chg	Val		Acca;	-
246	Ac	---	---	Chg	Val		Acca;	-
247	Ac	Asp	Asp	Ile	Val	Ph(CH ₂) ₂	Nva;	49
248	Ac	---	---	Chg	Chg		Acca;	-
249	Ac	---	---	Chg	Val	(4I-Ph)O	Acca;	-
250	Ac	---	---	Chg	Val		Acca;	-
251	Ac	---	---	Chg	Val		Acca;	-
252	Ac	---	---	Chg	Val	1-NpCH ₂ O	Nva;	-
253	Ac	---	---	Chg	Val		Acca;	-
254	Ac	---	---	Chg	Val		Acca;	-
255	Ac	---	---	Chg	Val		Acca;	-

Comp.	B	P6	P5	P4	P3	R ₁₃	P1	SEQ ID NO.
256	Ac	---	---	Chg	Val		Acca;	-
257	Ac	---	---	Chg	Val		Acca;	-
258	Ac	---	---	Chg	Val		Acca;	-
259	Ac	---	---	Chg	Val		Acca;	-
260	Ac	Asp	D-Glu	Ile	Val	O-Bn	Cys;	-
261	Ac	---	---	Chg	Val	O-Bn	Cys;	-
262	Ac	---	---	Ile	Val	1-NpCH ₂ O	Acca;	-
263		---	---	Ile	Val	1-NpCH ₂ O	Acca;	-
264		---	---	Ile	Val	1-NpCH ₂ O	Acca;	-
265		---	---	Ile	Val	1-NpCH ₂ O	Acca;	-
266		---	---	Ile	Val	1-NpCH ₂ O	Acca;	-
267		---	---	Ile	Val	1-NpCH ₂ O	Acca;	-
268	Ac	---	---	Chg	Val	(3Br-Ph)CH ₂ O	Acca;	-
269		---	---	Chg	Val	1-NpCH ₂ O	Acca;	-

Comp.	B	P6	P5	P4	P3	R ₁₃	P1	SEQ ID NO.
270		---	---	Chg	Val	1-NpCH ₂ O	Acca;	-
271		---	---	Chg	Val	1-NpCH ₂ O	Acca;	-
272	Ac	---	---	Chg	Val	(3,5-Br ₂ -Ph)CH ₂ O	Acca;	-
273	Ac	Asp	Asp	Ile	Val	H	Nva;	50
274	Ac	Asp	D-Val	Ile	Val	H	Cys;	-
and 275	Ac	---	---	Chg	Val		Acca.	-

74. (previously amended) A compound of formula (I):

wherein B, P6, P5, P4, P3, W and P1 are as defined below, said compound selected from the group consisting of:

Comp	B	P6	P5	P4	P3	W	P1	SEQ ID NO.
301	Ac	Asp	Asp	Ile	Val		Nva;	51
302	Ac	Asp	Asp	Ile	Val		Nva;	52
303	Ac	Asp	Asp	Ile	Val		Nva;	53
and								
304	Ac	---	---	Chg	Val		Acca.	

75. (presently amended) A compound of formula (I):

(I)

(II)

wherein B, R₄ P3, R₁₃, and P1 are as defined below, said compound selected from the group consisting of:

Comp.	B	R ⁴	P3	R ₁₃	P1
401		cyclohexyl	Val	1-NpCH ₂ O	Acca;
402		cyclohexyl	Val	1-NpCH ₂ O	Acca;
403		cyclohexyl	Val	1-NpCH ₂ O	Acca;

404		cyclohexyl Val	1-NpCH ₂ O Acca;
405	HOOC- CH ₂ CH ₂ - N(Me)C(O)-	cyclohexyl Val	1-NpCH ₂ O Acca;
406	MeOOC-CH ₂ - CH ₂ - N(Me)c(O)-	cyclohexyl Val	1-NpCH ₂ O Acca;
407	HOOC- CH ₂ CH ₂ - N(Me) ₂ -C(O)-	cyclohexyl Val	1-NpCH ₂ O Acca;
408	MeOOC-(CH ₂) ₂ - N(Me) ₂ -C(O)-	cyclohexyl Val	1-NpCH ₂ O Acca;
409	HOOC-CH ₂ - N(Me) ₂ -C(O)-	cyclohexyl Val	1-NpCH ₂ O Acca;
410	EtOOC-CH ₂ - N(Me) ₂ -C(O)-	cyclohexyl Val	1-NpCH ₂ O Acca;
411	[HOOC- (CH ₂) ₂]-NH- CH ₂ -	cyclohexyl Val	1-NpCH ₂ O Acca;
412	[HOOC-CH ₂] ₂ - NC(O)-	cyclohexyl Val	1-NpCH ₂ O Acca;
413	[HOOC- (CH ₂) ₂]-NC(O)-	cyclohexyl Val	1-NpCH ₂ O Acca;

414		cyclohexyl Val	1-NpCH ₂ O Acca;
415		cyclohexyl Val	1-NpCH ₂ O Acca;
416		cyclohexyl Val	1-NpCH ₂ O Acca;
417		cyclohexyl Val	1-NpCH ₂ O Acca;
418		cyclohexyl Val	1-NpCH ₂ O Acca;
419		cyclohexyl Val	1-NpCH ₂ O Acca;
420		cyclohexyl Val	1-NpCH ₂ O Acca;
and 421		cyclohexyl Val	1-NpCH ₂ O Acca.

76. (previously amended) A compound of formula (I):

wherein B, P6, P5, P4, P3, R₁₃, R₁₄ and P1 are as defined below, said compound selected from the group consisting of:

Tab 5 Cpd	B	P6	P5	P4	P3	R ₁₃	R ₁₄	P1 C ₁ – C ₂
501	Ac	---	---	Chg	Val	OBn	Et	1 <i>R</i> , 2 <i>R</i>
502	Ac	---	---	Chg	Val	OBn	Et	1 <i>R</i> , 2?
503	Ac	---	---	Chg	Chg	1-NpCH ₂ O	Et	1 <i>R</i> , 2?
504	Ac	---	---	Chg	Chg	1-NpCH ₂ O	Et	1 <i>R</i> , 2?
505	Ac	---	---	Chg	Chg	1-NpCH ₂ O	Et	1 <i>R</i> , 2 <i>R</i>
506	Ac	---	---	Chg	Chg	1-NpCH ₂ O	Et	1 <i>S</i> , 2 <i>S</i>
507	Ac	---	---	Chg	Val	1-NpCH ₂ O	Me	1 <i>R</i> , 2?
508	Ac	---	---	Chg	Val	1-NpCH ₂ O	CHMe ₂	1 <i>R</i> , 2?
509	Ac	Asp	D-Glu	Chg	Chg	1-NpCH ₂ O	Et	1 <i>R</i> , 2 <i>R</i>
510	Ac	---	---	Chg	Val	1-NpCH ₂ O	CH ₂ O CH ₂ Ph	1 <i>R</i> , 2?
511	Ac	---	---	Chg	Val	1-NpCH ₂ O	CH ₂ O CH ₂ Ph	1 <i>R</i> , 2?
512	Ac	---	---	Chg	Val	1-NpCH ₂ O	(CH ₂) ₂ Ph	1 <i>R</i> , 2?
513	Ac	---	---	Chg	Val	1-NpCH ₂ O	Et	1 <i>R</i> , 2 <i>R</i>

Tab 5 Cpd	B	P6	P5	P4	P3	R₁₃	R₁₄	P1 C₁ – C₂
514	Ac	---	---	Chg	Val	1-NpCH ₂ O	Et	<i>1S,2S</i>
515	Ac	---	---	Chg	Val	1-NpCH ₂ O	Bz	<i>1R, 2?</i>
516	Ac	---	---	Chg	Val	1-NpCH ₂ O	Bz	<i>1R, 2?</i>
517	Ac	Asp	D-Glu	Ile	Val	OBn	Et	<i>1R,2R</i>
518	Ac	Asp	D-Glu	Chg	Val	1-NpCH ₂ O	Et	<i>1R,2R</i>
519	Ac	---	---	Chg	Val	1-NpCH ₂ O	Pr	<i>1R, 2?</i>
520	Ac	---	---	Chg	Val	1-NpCH ₂ O	Pr	<i>1R, 2?</i>
521	Ac	Asp	D-Val	Chg	Val	1-NpCH ₂ O	Et	<i>1R,2R</i>
522	Ac	---	---	Chg	Val		vinyl	<i>1S,2R</i>
523	Ac	---	---	Chg	Val		ethyl	<i>1R,2S</i>
524	Ac	---	---	Chg	Val		propyl	<i>1R, 2R</i>

77. (Original) A compound of formula (I):

wherein P6, P5, P4, P3, R₁₃, and R₁₄ are as defined below, said compound selected from

the group consisting of:

Tab 6 Cpd#	P6	P5	P4	P3	R ₁₃	R ₁
601	---	---	Chg	Val	OBn	CH=CH ₂
602	---	---	Chg	Chg	1-NpCH ₂ O	CH=CH ₂
603	---	---	Chg	Val	1-NpCH ₂ O	CH=CH ₂
604	---	---	Chg	Val	OBn	CH=CHBr*
605	---	---	Chg	Val		CH=CH ₂
606	---	---	Chg	Val		CH=CH ₂
607	---	---	Chg	Tbg		CH=CH ₂
608	---	---	Chg	Val		CH=CH ₂
609	---	---	Chg	Val		CH=CH ₂
610	---	---	Chg	Val		CH=CH ₂
611	---	---	Chg	Val		CH=CH ₂

Tab 6 Cpd#	P6	P5	P4	P3	R₁₃	R₁
612	Asp	D-Glu	Chg	Val		CH=CH ₂
613	---	---	Chg	Val		CH=CH ₂
614	---	---	Chg	Val		ethyl
615	---	---	Val	Chg		CH=CH ₂
616	---	---	Chg	Val		CH=CH ₂
617	---	---	Chg	Val		CH=CH ₂
618	---	---	Chg	Val		CH=CH ₂
619	---	---	Chg	Val		CH=CH ₂

Tab 6 Cpd#	P6	P5	P4	P3	R₁₃	R₁
620	---	---	Chg	Val		CH=CH ₂
621	---	---	Chg	Val		CH=CH ₂
622	Asp	D-Glu	Chg	Tbg		CH=CH ₂
623	---	---	Chg	Val		CH=CH ₂
624	---	---	Chg	Tbg		CH=CH ₂
625	---	---	Chg	Val		CH=CH ₂
626	---	---	Chg	Val		CH=CH ₂

Tab 6 Cpd#	P6	P5	P4	P3	R₁₃	R₁
627	---	---	Chg	Val		CH=CH ₂
628	---	---	Chg	Tbg		CH=CH ₂
629	---	---	Chg	Val		CH=CH ₂
630	---	---	Chg	Val		CH=CH ₂
631	---	---	Chg	Tbg		CH=CH ₂
632	---	---	Chg	Tbg		CH=CH ₂
633	---	---	Chg	Tbg		CH=CH ₂
634	---	---	Chg	Tbg		CH=CH ₂

Tab 6 Cpd#	P6	P5	P4	P3	R ₁₃	R ₁
635	---	---	Chg	Val		vinyl
636	Asp	D-Glu	Ile	Val	O-Bn	vinyl
637	---	---	Chg	Val		vinyl
638	Asp	D-Glu	Chg	Tbg		vinyl

* Br isomer ratio 5.5:2

78. (presently amended) A compound of formula (I):

wherein B, P6, P5, P4, P3, R₁₃, and R₁₄ are as defined below, said compound selected from the group consisting of:

Tab 7 Cpd#	B	P6	P5	P4	P3	R ₁₃	R ₁₄	W
701	Ac	Asp	D-Glu	Ile	Val	OBN	Et	NH-(S)-CHMePh

Tab 7 Cpd#	B	P6	P5	P4	P3	R ₁₃	R ₁₄	W
and 702	Dnl	Asp	D-Glu	Chg	Tbg		viny1	OH

79. (presently amended) A compound of formula (I):

wherein B, Y, P4, P3, R₁₃, and R₁₄ are as defined below, ~~said compound selected from the group consisting of:~~

Tab 8 Cpd#	B	Y	P4	P3	R ₁₃	R ₁₄
801	Ac	Me	Chg	Tbg		viny1

80. (presently amended) A compound of formula (I):

wherein B, and R₁₃ are as defined below, said compound selected from the group consisting of:

Tab 9 cpd#	B	R ₁₃
901		
902		
903		
904		
905		
906	H	
907		

Tab 9 cpd#	B	R ₁₃
908		
909	H	
910		
911	Dmt	

81. (Original) A compound of formula (I):

wherein B, P6, P5, P4, P3, R₁₃, R₁₄, P1 and A are as defined below, said compound selected from the group consisting of:

Tab. 10 Comp.	B	P6	P5	P4	P3	R ₁₃	R ₁₄	P1	A
1001	Ac	Asp	D-Glu	Ile	Val	OBn	Et	1 <i>S</i> ,2 <i>S</i>	NH-(<i>S</i>)-

Tab. 10 Comp.	B	P6	P5	P4	P3	R₁₃	R₁₄	P1 C₁ – C₂	A
									CHMePh
1002	Ac	Asp	D-Glu	Ile	Val	OBn	Et	<i>IS,2S</i>	NH-(<i>R</i>)- CHMePh

82. (Original) A hexapeptide of formula I according to claim 76, selected from the group consisting of compound #: 508; 516; 517; and 520.

83. (Original) A hexapeptide of formula I according to claim 77, selected from the group consisting of compound #: 612; 622; 636; and 638.

84. (Original) A hexapeptide of formula I according to claim 78, selected from the group consisting of compound #: 701 and 702.

85. (Original) A tetrapeptide of formula I according to claim 76 selected from the group consisting of compound #: 522; and 523.

86. (previously amended) A tetrapeptide of formula I according to claim 77, selected from the group consisting of compound #: 602; 603; 605; 606; 607; 608; 609; 610; 611; 614; 615; 616; 618; 619; 620; 621; 623; 624; 625; 626; 628; 629; 630; 631; 632; 633; 634 and 635.

87. (previously amended) A tetrapeptide of formula I according to claim 79, selected from the group consisting of compound #: 801.

88. (previously amended) A tetrapeptide of formula I according to claim 80, selected

from the group consisting of compound #: 901; 902; 903; 904; 905; 906; 907; 908; 909; 910; and 911.

Claims 89 – 95 (cancelled)

96. (previously amended) A composition comprising an anti-hepatitis C virally effective amount of a compound of formula I according to claim 1, or a non-toxic salt or ester thereof, in admixture with a non-toxic carrier medium or auxiliary agent.

Claims 97 – 98 (cancelled)

99. (previously amended) A combination comprising a compound of formula I according to claim 1, or a non-toxic salt or ester thereof, and an interferon in admixture with a non-toxic carrier medium or auxiliary agent.

100. (previously added) The compound of formula I according to claim 1, wherein

101. (previously added) The compound of formula I according to claim 1, wherein R₁₁ is AcOCH₂- or *tert*-butyloxy.

102. (previously added) The compound of formula I according to claim 1, wherein R₁₁ is

103. (presently amended) A process for the preparation of a peptide compound of formula (I) according to claim 1, wherein P1 is a substituted aminocyclopropyl carboxylic acid residue, comprising the steps of:

(1) coupling a peptide of the formula: APG-P6-P5-P4-P3-P2-OH with a P1 intermediate of formula:

wherein R_{14} is C_{1-6} alkyl or C_{2-6} alkenyl optionally substituted with halogen, APG is an amino protecting group, CPG is a carboxyl protecting group and P6 to P2 are as defined below:

wherein W, R_3 , R_4 , Z, Q, R_5 , R_6 , a and b are as defined in Claim 1, to obtain a compound of the following formula:

(2) cleaving the APG in the compound obtained in step (1) and reacting the

resulting unprotected product with a compound of the formula B-Cl wherein B is as defined in claim 1 to obtain a compound of the following formula:

| (3) cleaving the CPG in the compound obtained in step (2) to obtain and isolating a compound of formula (I) according to claim 1 having the following formula:

and wherein one or more of the side-chain functionalities in groups P2, P3, P4, P5 and P6 may be protected and deprotected as is necessary during the process.

104. (presently amended) A process for the preparation of a peptide compound of formula (I) according to claim 1, wherein P1 is a substituted aminocyclopropyl carboxylic acid residue, comprising the steps of:

(1) coupling a peptide of the formula: APG-P6-P5-P4-P3-P2-OH with a P1 intermediate of formula:

wherein R₁₄ is ethyl, vinyl or bromovinyl, APG is an amino protecting group, CPG is a

carboxyl protecting group and P6 to P2 are as defined below:

wherein W, R₃, R₄, Z, Q, R₅, R₆, a and b are as defined in Claim 1, to obtain a compound of the following formula:

(2) cleaving the APG in the compound obtained in step (1) and reacting the resulting unprotected product with a compound of the formula B-Cl wherein B is as defined in claim 1 to obtain a compound of the following formula:

| (3) cleaving the CPG in the compound obtained in step (2) to obtain and isolating a compound of formula (I) according to claim 1 having the following formula:

and wherein one or more of the side-chain functionalities in groups P2, P3, P4, P5 and P6 may be protected and deprotected as is necessary during the process.

105. (presently amended) A process for the preparation of a peptide compound of formula (I) according to claim 1, wherein P1 is a substituted aminocyclopropyl carboxylic acid residue, comprising the steps of:

(1) coupling a peptide of the formula: APG-P6-P5-P4-P3-P2-OH with a P1 intermediate of formula:

wherein APG is an amino protecting group, CPG is a carboxyl protecting group and P6 to P2 are as defined below:

wherein W, R₃, R₄, Z, Q, R₅, R₆, a and b are as defined in Claim 1, to obtain a compound

of the following formula:

(2) cleaving the APG in the compound obtained in step (1) and reacting the resulting unprotected product with a compound of the formula B-Cl wherein B is as defined in claim 1 to obtain a compound of the following formula:

(3) cleaving the CPG in the compound obtained in step (2) to obtain and isolating a compound of formula (I) according to claim 1 having the following formula:

and wherein one or more of the side-chain functionalities in groups P2, P3, P4, P5 and P6 may be protected and deprotected as is necessary during the process.

106. (presently amended) The process according to any one of claims 103 to 105 wherein said carboxyl protecting group (CPG) is selected from the group consisting of: alkyl-esters, aralkyl-esters, and esters-groups being cleavable by mild base treatment or mild reductive means.

107. (previously added) A method inhibiting hepatitis C nonstructural protein-3 protease (HCV NS3 protease) comprising contacting HCV NS3 protease with a

compound of claim 1 for a time and under conditions effective to inhibit HCV NS3 protease.

108. (previously added) A method of inhibiting hepatitis C nonstructural protein-3 protease (HCV NS3 protease) in a cell comprising contacting a cell containing HCV NS3 protease with a compound of claim 1 for a time and under conditions effective to inhibit HCV NS3 protease.

109. (previously added) A method of inhibiting hepatitis C nonstructural protein-3 protease (HCV NS3 protease) in a mammal infected with hepatitis C virus comprising administering a compound of claim 1 to said mammal for a time and under conditions effective to inhibit HCV NS3 protease.

110. (previously added) A method of inhibiting hepatitis C nonstructural protein-3 (HCV NS3 protease) in a human infected with hepatitis C virus comprising administering a compound of claim 1 to said human for a time and under conditions effective to inhibit HCV NS3 protease.

111. (previously added) A method of inhibiting replication of hepatitis C virus comprising contacting hepatitis C virus with a compound of claim 1 for a time and under conditions effective to inhibit hepatitis C nonstructural protein-3 (HCV NS3) protease.

112. (previously added) A method of inhibiting replication of hepatitis C virus in a mammal infected with hepatitis C virus comprising administering a compound of claim 1 to said mammal for a time and under conditions effective to inhibit hepatitis C nonstructural protein-3 (HCV NS3) protease.

113. (previously added) A method of inhibiting replication of hepatitis C virus in a human infected with hepatitis C virus comprising administering a compound of claim 1 to said human for a time and under conditions effective to inhibit hepatitis C nonstructural

protein-3 (HCV NS3) protease.

114. (presently amended) A combination according to claim 99, further comprising ribavirin (1- β -D-ribofuranosyl-1*H*-1,2,4-triazole-3-carboxamide).

115. (previously added) A combination comprising a compound of formula I according to claim 1, or a non-toxic salt or ester thereof, and ribavirin in admixture with a non-toxic carrier medium or auxiliary agent.