ECE 595: Homework 1

Yi Qiao, Class ID (Spring 2019)

Exercise 2

(a) For a guassian distribution:

$$E[x] = \int_{-\infty}^{\infty} x \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx$$

$$= \int_{-\infty}^{\infty} (x+\mu) \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{x^2}{2\sigma^2}} dx$$

$$= \int_{-\infty}^{\infty} x \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{x^2}{2\sigma^2}} dx + \int_{-\infty}^{\infty} \mu \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{x^2}{2\sigma^2}} dx$$

$$= 0 + \mu \frac{1}{\sqrt{2\pi\sigma^2}} \times \sigma \sqrt{2\pi}$$

$$= \mu$$
(1)

$$Var[x] = \int_{-\infty}^{\infty} (x - \mu)^2 \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x - \mu)^2}{2\sigma^2}} dx$$

$$= \frac{1}{\sqrt{2\pi\sigma^2}} \int_{-\infty}^{\infty} x^2 e^{-\frac{x^2}{2\sigma^2}} dx$$

$$let \ y = \frac{x}{\sigma}, \ then \ dy = \frac{1}{\sigma} dx$$

$$= \frac{\sigma^3}{\sqrt{2\pi\sigma^2}} \int_{-\infty}^{\infty} y^2 e^{-\frac{y^2}{2}} dy$$

$$= \sigma^2$$
(2)

(b) Data generated and plotted as follows.

Figure 1: Gussian random data.

(c) (i)..(iv) plots shown below

(v) TODO: fill this

Problem 2

Type your second problem here.

Problem 3

Type your third problem here.