# 3050571 Practical Clin Data Sci

**Session 1: Course introduction** 

January 30, 2024



#### Sira Sriswasdi, PhD

- Research Affairs
- Center of Excellence in Computational Molecular Biology (CMB)
- Center for Artificial Intelligence in Medicine (CU-AIM)

# **Self introduction**



#### Computational Molecular Biology Group



Sira Sriswasdi

(สีระ ศรีสวัสดิ์) [sira.sr at chula.ac.th]

Research Affairs, Faculty of Medicine

Postdoctoral Researcher, the University of Tokyo (2013-2017)

Ph.D., Genomics and Computational Biology, University of Pennsylvania (2013)



Ekapol Chuangsuwanich

(เอกพล ช่วงสุวนิช) [ekapolc at cp.eng.chula.ac.th]

Department of Computer Engineering, Faculty of Engineering

Ph.D., Electrical Engineering and Computer Science, MIT (2016)



Juthamas Chaiwanon

(จุฑามาศ ชัยวนนท์) [juthamas.c at chula.ac.th]

Department of Botany, Faculty of Sciences

Ph.D., Biology, Stanford University (2015)



Naruemon Pratanwanich

(นฤมล ประทานวณิช) [naruemon.p at chula.ac.th]

Department of Mathematics and Computer Science, Faculty of Science

Ph.D., Computer Science, University of Cambridge (2017)

- Combine basic knowledge in mathematics, computer sciences, biology, and bioinformatics to solve problems
- □ 2 Postdoc, 4 MEng, 8 graduate students



George Genchev



Aijaz Ahmad Malik



## Center for Artificial Intelligence in Medicine

#### **Explainable CXR AI**



# Remote Monitoring for COVID-19 Isolation



With WeSAFE and Burapha Univ.

#### **Digital Pathology**



With Institute of Pathology













- Powered by NVIDIA DGX-A100 and HPC
- Provide computing resources and consultation

#### **About this course**

6-week elective for 5<sup>th</sup> year medical student with interest in data

#### Key topics

- Computational thinking
- Problem solving with computer programming (Python)
- Data analysis, visualization, and storytelling
- Machine learning and deep learning

#### Learning styles

- Assigned online videos, readings, and Python practices
- In-class recitation, discussion, and Python workshops
- Internship with KCMH data team

#### **Objectives**

- This course is designed for you:
  - Introduce you to key foundations in data science and machine learning
  - Give you tools to handle the data
- You should understand:
  - The assumption and motivation behind a technique
  - How to use the Python library
- Get you to ask a lot of questions, both at me and at the data

#### Internship with KCMH data team

#### Learning style

- Learn about data-driven projects at KCMH
- Observe how the data team approach the problems
- Identify where you can contribute

#### Expectations

- Pick one project to work on personally or as a team
- Develop a proposal on how to approach the project
- Identify available data to evaluate your proposal
  - I will help supervise on the technical aspects

## Weekly contents

| Week | Topics                                                                | Practices                                                                    |
|------|-----------------------------------------------------------------------|------------------------------------------------------------------------------|
| 1    | Computational thinking                                                | Basic Python programming                                                     |
| 2    | Data exploration, visualization, and storytelling                     | Extract knowledge and tell story from data                                   |
| 3    | Unsupervised machine learning - Dimensionality reduction - Clustering | Identify patterns and patient subpopulations from various datasets           |
| 4    | Supervised machine learning - Linear models - Tree models             | Predict hospital admission using linear and tree models                      |
| 5    | Introduction to deep learning and AI                                  | Build a small artificial neural network Predict future pneumonia in COVID-19 |
| 6    | Explainability and AI project design                                  | Full machine learning project pipeline                                       |

## A typical weekly schedule

| Week 1: Introduction and Python programming |      |                |              |                |       |  |  |  |  |  |
|---------------------------------------------|------|----------------|--------------|----------------|-------|--|--|--|--|--|
|                                             | 9-10 | 10-11          | 11-12        | 13-14          | 15-16 |  |  |  |  |  |
| Monday                                      |      |                |              |                |       |  |  |  |  |  |
| Tuesday                                     |      |                |              | Lec            |       |  |  |  |  |  |
| Wednesday                                   |      |                |              | Internship wit |       |  |  |  |  |  |
| Thursday                                    |      | Internship wit | :h KCMH data | Lecture        |       |  |  |  |  |  |
| Friday                                      |      |                |              | Python v       |       |  |  |  |  |  |

#### **Grading criteria**

- Assignments [60%]
  - Can ask for guidance
  - Can work with each other
  - Can use AI to help, but report how you used it
- Internship [40%]
  - Performance evaluation [20%]
    - Participation
    - Effort
  - Final presentation [20%]



#### Week 1 - Computational Thinking

#### **Key learning points**



Keep these learning points in mind as you study the contents

- What is computational thinking and how do you apply it to solve problem?
- How to systematically approach a problem?

#### Assigned study



- Computational Thinking video and reading
- A perspective on programming vs coding first 3 min
- Three (3) things to do when starting out in Data Science
- Optimization problem from MIT 6.0002 Lecture 1 and Lecture 2

#### Assigned practice



Assignments WILL take time. Get started early.

- Python code editors
- Kaggle Intro to programming and Python lessons

These videos cover more than what I expect you to learn, but they are all beneficial for you in the long term

## **Example of assigned task**

There may be only one primary goal, but there are many stories and hypotheses that can be told

#### **Titanic - Machine Learning from Disaster**

Overview Data Code Models Discussion Leaderboard Rules

#### The Challenge

The sinking of the Titanic is one of the most infamous shipwrecks in history.

On April 15, 1912, during her maiden voyage, the widely considered "unsinkable" RMS Titanic sank after colliding with an iceberg. Unfortunately, there weren't enough lifeboats for everyone onboard, resulting in the death of 1502 out of 2224 passengers and crew.

While there was some element of luck involved in surviving, it seems some groups of people were more likely to survive than others.

In this challenge, we ask you to build a predictive model that answers the question: "what sorts of people were more likely to survive?" using passenger data (ie name, age, gender, socio-economic class, etc).

## Kaggle





#### **<u>⊪</u>** Explore Courses



#### Intro to Programming

Get started with Python, if you have no coding experience.



#### Python

Learn the most important language for data science.



#### Intro to Machine Learning

Learn the core ideas in machine learning, and build your first models.



#### **Pandas**

Solve short hands-on challenges to perfect your data manipulation skills.



#### Intermediate Machine Learning

Handle missing values, non-numeric values, data leakage, and more.



#### **Data Visualization**

Make great data visualizations. A great way to see the power of coding!

#### **Companion resources**

- MIT 6.0002 Computational thinking
- MIT 6.S191 Deep learning
- MIT 6.S897 Machine learning for healthcare
- **StatQuest** YouTube Explanations of statistical and machine learning concepts
- Machine learning and deep learning courses from University of Tubingen and Stanford University on YouTube

# Computational thinking?

#### The Trinity of a great data scientist



## **Knowledge enables communication**



## What is computational thinking?

Breaking down a complex problem into smaller components and relationships



Simplifying the variables to focus on the most important factors

Identifying similarities or patterns in the data to utilize and learn from them

Formulating a welldefined step-by-step process to solve the problem

https://www.nextgurukul.in/thenextworld/

# Statistics and hypothesis testing

#### Same topics but different perspectives

- Revisit the motivation and assumption behind standard techniques
  - How were the p-values calculated?
  - Maximum likelihood principle
- Develop your own tests that fit your data and your hypothesis
  - Permutation test
- Integrate statistics with data exploration and visualization on the fly
- Transform statistical knowledge into machine learning knowledge

# Data exploration, visualization, and storyelling

## From raw data to informative graphs

| Gene ID            | P61_2_C  | P62_2_C  | P63_2_C  | P64_2_C  | P68_2_C  |
|--------------------|----------|----------|----------|----------|----------|
| ENSG00000000003.14 | 4.637576 | 6.183992 | 5.237635 | 2.372719 | 5.665966 |
| ENSG0000000005.5   | 0        | 0        | 0        | 0        | 0        |
| ENSG00000000419.12 | 11.22781 | 4.813792 | 2.99782  | 10.99452 | 10.7482  |
| ENSG00000000457.13 | 7.656414 | 5.082675 | 7.710682 | 9.014404 | 8.488388 |
| ENSG00000000460.16 | 3.172546 | 2.245954 | 5.974815 | 3.501081 | 4.162024 |
| ENSG00000000938.12 | 0        | 0        | 0        | 0.042488 | 0        |
| ENSG00000000971.15 | 6.626259 | 8.19511  | 5.904925 | 11.7748  | 2.050394 |
| ENSG00000001036.13 | 1.790445 | 0.76823  | 3.670635 | 0.68115  | 1.894823 |
| ENSG00000001084.11 | 19.53907 | 25.08378 | 11.04872 | 5.815902 | 20.23763 |
| ENSG00000001167.14 | 15.34717 | 20.00867 | 17.10001 | 25.31168 | 27.41216 |
| ENSG00000001460.17 | 0.889852 | 3.090642 | 0.744581 | 3.439525 | 2.417934 |
| ENSG00000001461.16 | 3.771195 | 3.12468  | 1.385353 | 2.767444 | 2.973217 |
| ENSG00000001497.16 | 16.75059 | 9.662455 | 15.4965  | 14.34071 | 10.62035 |
| ENSG00000001617.11 | 2.998366 | 3.712208 | 3.885852 | 17.50663 | 3.019686 |



Akhmedov, M. et al. NAR Genom and Bioinfor, 2(1):lqz019 (2019)





#### **Everyone struggles with open-endedness**

- What to analyze? What to visualize?
- How to interpret the numbers and graphs?
- How to best present to other people?
- How to strengthen your conclusion?
  - Could the association occur by chance?
  - Was there a confounding factor?
  - Is your results specific to the technique used?

# Unsupervised learning

## Dimensionality reduction and clustering





#### **Dimensionality reduction**



https://www.sc-best-practices.org/preprocessing\_visualization/dimensionality\_reduction.html

- Reduce dimension (number of features) while maintaining information
- Patient with <u>similar symptoms</u> also exhibit <u>similar lab tests</u> or have <u>similar</u> <u>demographics</u> or <u>similar medical history</u>

## **DBSCAN** on patient data



# Supervised learning

#### The cores of supervised learning



#### **Objective / Loss Function**

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y_i})^2 \qquad MAPE = \frac{1}{n} \sum_{i=1}^{n} \frac{|y_i - \hat{y_i}|}{y_i} \times 100$$

$$Crossentropy = -\frac{1}{n} \sum_{i=1}^{n} y_i \ln(\hat{y_i}) + (1 - y_i) \ln(1 - \hat{y_i})$$

#### **Optimization Algorithm**



https://towardsdatascience.com/top-machine-learning-algorithms-for-classification-2197870ff501

## Supervised learning is all about control



https://en.wikipedia.org/wiki/Bull riding



# Deep learning and Al

#### Artificial neural network



Network of simple computation nodes: out =  $f(w_1in_1 + w_2in_2 + ... + w_nin_n)$ 

#### Limitation of classical (non-deep) learning





Classical machine learning requires the input to be formatted and pre-

processed by human

#### End-to-end / representation learning



- Deep learning, via artificial neural network models, can learn to extract useful information from raw input directly
- The catch is a lot of data and supervision is needed

## Naïve representations

|          | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|----------|---|---|---|---|---|---|---|---|---|
| man      | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| woman    | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| boy      | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| girl     | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| prince   | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| princess | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| queen    | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| king     | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
| monarch  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |



#### Meaningful word embeddings



# Explainability and AI project design

## AI (silently) makes mistakes and biases



#### But can you spot them?

Alkaissi, H. et al. Cureus 15:e35179 (2023)



Late onset Pompe disease (LOPD) is a rare genetic disorder characterized by the deficiency of acid alpha-glucosidase (GAA), an enzyme responsible for the breakdown of glycogen in lysosomes. The accumulation of glycogen in various tissues leads to progressive muscle weakness, primarily affecting the skeletal and respiratory muscles. However, recent studies have also reported liver involvement in LOPD, which is thought to occur as a result of the accumulation of glycogen in liver cells.



₩

- There was no prior publication about liver involvement with LOPD
- However, the authors of this paper have an unpublished manuscript showing a link between liver disease and LOPD
  - Did ChatGPT just synthesized new knowledge? Or simply hallucinated?

#### Huge gap between development and actual use

Healthcare, Law, Regulation, and Policy, Machine Learning

# "Flying in the Dark": Hospital Al Tools Aren't Well Documented

|                                  | EPIC MODEL BRIEFS              |             |     |                                          |                                                                      |                                        |                                   |               |      |                           |                                                                      |                                    |
|----------------------------------|--------------------------------|-------------|-----|------------------------------------------|----------------------------------------------------------------------|----------------------------------------|-----------------------------------|---------------|------|---------------------------|----------------------------------------------------------------------|------------------------------------|
| MODEL<br>REPORTING<br>GUIDELINES | Deter<br>iorati<br>on<br>Index | of<br>Sepsi |     | Risk<br>of<br>Patie<br>nt<br>No-<br>Show | Pediatri<br>c Risk<br>of<br>Hospital<br>Admissi<br>on or<br>ED Visit | Hospit<br>al<br>Admiss<br>ion or<br>ED | Inpatie<br>nt Risk<br>of<br>Falls | cted<br>Block | ning | Admiss<br>ion of<br>Heart | Risk of<br>Hospital<br>Admissi<br>on or<br>ED Visit<br>for<br>Asthma | Risk<br>of<br>Hyper<br>tensio<br>n |
| TRIPOD                           | 63%                            | 63%         | 61% | 48%                                      | 42%                                                                  | 61%                                    | 47%                               | 36%           | 55%  | 48%                       | 44%                                                                  | 51%                                |
| CONSORT-AI                       | 63%                            | 43%         | 63% | 60%                                      | 33%                                                                  | 67%                                    | 53%                               | 47%           | 47%  | 49%                       | 42%                                                                  | 51%                                |
| SPIRIT-AI                        | 61%                            | 55%         | 54% | 54%                                      | 38%                                                                  | 61%                                    | 44%                               | 49%           | 51%  | 41%                       | 39%                                                                  | 46%                                |
| Trust and Value                  | 46%                            | 33%         | 39% | 50%                                      | 29%                                                                  | 42%                                    | 38%                               | 46%           | 46%  | 25%                       | 33%                                                                  | 46%                                |
| ML Test Score                    | 27%                            | 15%         | 33% | 24%                                      | 9%                                                                   | 33%                                    | 15%                               | 6%            | 18%  | 12%                       | 9%                                                                   | 15%                                |

#### **Evaluation of sepsis diagnosis Al**

Results We identified 27697 patients who had 38455 hospitalizations (21904 women [57%]; median age, 56 years [interquartile range, 35-69 years]) meeting inclusion criteria, of whom sepsis occurred in 2552 (7%). The ESM had a hospitalization-level area under the receiver operating characteristic curve of 0.63 (95% CI, 0.62-0.64). The ESM identified 183 of 2552 patients with sepsis (7%) who did not receive timely administration of antibiotics, highlighting the low sensitivity of the ESM in comparison with contemporary clinical practice. The ESM also did not identify 1709 patients with sepsis (67%) despite generating alerts for an ESM score of 6 or higher for 6971 of all 38455 hospitalized patients (18%), thus creating a large burden of alert fatigue.

- AUC of 0.63 in practice
- Missed 67% of sepsis

## Correct prediction is not enough



- Two models with the same classification performance
- Both images were correctly classified
- But the **explanations** complete differ

#### **Explainability**

Does the predicted confidence match your expectation?





## Sources of unexpected behaviors



## Summary

- This course gives you the foundation to advance yourself
- Communicate with me and TA
- Make the most out of this course and internship experience
- Have fun!

## Any questions?

See you on February 1st