

Национальный исследовательский университет ИТМО (Университет ИТМО)

Факультет систем управления и робототехники

Дисциплина: Электроника и схемотехника Отчет по лабораторной работе №3. «Исследование характеристик полевого транзистора» Вариант 3

> Студенты: Евстигнеев Дмитрий Кулижников Евгений Группа: R33423 Преподаватель: Николаев Н.А.

Цель.

- Снятие вольт-амперной характеристики полевого транзистора
- Получение передаточной характеристики, зависимости сопротивления канала полевого транзистора от напряжения затвор-исток и семейства выходных характеристик полевого транзистора;
- Расчёт схемы автоматического смещения полевого транзистора

Данные.

Получение передаточной характеристики полевого транзистора в схеме с общим истоком

- 1.1 По результатам начальной работы по построению, у нас получилась данная схема (puc.1)
- 1.2 Согласно графику (рис.2)
- U = 2.54 B

$$1.4 \times = 4.80V \quad y = 0.657KA \quad x = 6.66V \quad y = 1.272KA$$

Nº	$\mathbf{I}_{\mathbf{c}}$	\mathbf{U}_{3H}
1	657 A	4.8 B
2	1272 A	6.6 B

Рисунок 1. Модель для симуляции DC Sweep с пределом от 0 до 15[B] и шагом 0.01

$$1.5 S = \frac{(1272 - 657)}{(6.6 - 4.8)} = 341.6 \frac{A}{V}$$

Крутизна передаточной характеристики

$$b = \frac{341.6\frac{A}{V}}{\left(\frac{4.8 + 6.6}{2} - 2.54\right)V} = 108.1\frac{A}{V^2}$$

Рисунок 2. График симуляции передаточной хар-ти

Удельная крутизна

Bыводы: полученная передаточная характеристика имеет удельную крутизну $108.1\,\frac{A}{V^2}$ и крутизну $341.6\,\frac{A}{V}$

<u>Получение семейства выходных характеристик полевого транзистора в схеме с общем истоком</u>

2.1 По результатам начальной работы по построению, у нас получилась данный график (рис.3)

2.2; 2.3; 2.4 (puc 3-4)

2.5

Ток стока(А)	Напряжение затвор- исток(V)	Значение крутизны(S)	
318	4	67.3	
200	3.7	43.05	
101.4	3.3	20.5	
34	3	6.42	
2.6	2.7	0.96	

Выводы: Анализируя полученные результаты, можно сделать вывод о том, что значение крутизны линейно возрастает с повышением напряжения затвор-исток.

Рисунок 3. Семейство ВАХ выходных характеристик

Рисунок 4. Семейство ВАХ с указанным током стока

Расчёт усилительного каскада на полевом транзисторе

3.1 В варианте нам было дано значение $U_{Hm} = 4 \ V$ и $R_H = 220 \ \Omega$

Расчет параметров схемы:

$$I_{Hm} = 18 \ mA$$

$$P_{\text{\tiny BBIX}} = 36 \, mW$$

$$R_c = 44 \Omega$$

$$I_{Cm}=10.9\,A$$

$$I_{C0} = 0.13 A$$

$$U_{3Mmin} = 2.54 V$$

$$U_{\rm CM0} = 7.34 \, V$$

$$U_{\Pi} = 13.06 V$$

$$U_{3H0} = 3 V$$

$$R_1 = 4.4 \text{ M}\Omega$$

$$R_2 = 1.3 \text{ M}\Omega$$

0.1s 0.2s 0.3s 0.4s 0.5s 0.6s 0.7s 0.8s

$U_{ m pac}$	$U_{\scriptscriptstyle{ ext{MOД}}}$	a, %	$I_{ m pac}$	$I_{\scriptscriptstyle{\mathrm{MOД}}}$	a, %
<i>U</i> _{зи} = 3 V	3 V	0	<i>I</i> _c =0.13 A	0.123 A	5
<i>U</i> _H =4 ∨	4.1 V	2.5	I _н =18 mA	17,63 mA	2
<i>U</i> _c =7.34 V	7,41 V	1			

-30mA--60mA--90mA-120mA-150mA-

Значения имеют небольшое отклонения от расчетных (макс $\alpha = 5\%$), что говорит о том, что допустимо использовать предложенный нам метод расчета схемы.

Коэффициент усиления по напряжению:

$$k = \frac{\Delta U_{\text{вых}}}{\Delta U_{\text{вх}}} = \frac{6.3}{1.05} = 1.05$$

Выводы: В ходе выполнения данной лабораторной работы мы познакомились с принципами работы полевого транзистора, получили передаточную характеристику и семейство выходных характеристик полевого транзистора в схеме с общим истоком, а также рассчитали усилительный каскад с заданием исходной рабочей точки транзистора.

