International Finance

Daeyoung Lim

September 20, 2017

1 Interest Rate

$$i_t^* = \bar{i} + \pi_{t-1}\alpha + g_{t-1}\beta$$

$$i_t = \rho i_{t-1} + (1 - \rho)i_t^* + e_t$$
(1.1)

where i_t^{\star} is the optimal interest rate, π_{t-1} is the inflation rate of the previous term, and g_{t-1} is the growth rate of the previous term. If we assume normal distribution for the error term,

$$i_t \mid \Theta, F_{t-1} \sim N\left(\rho i_{t-1} + (1-\rho)\bar{i} + (1-\rho)\pi_{t-1}\alpha + (1-\rho)g_{t-1}\beta, \sigma^2\right)$$
 (1.2)

where $\Theta = (\bar{i}, \alpha, \beta, \sigma^2, \rho)$. There are several theoretical constraints to this model.

- The interest rate should rise if the inflation rate is too large; hence, α should be positive.
- The interest rate should rise if the growth rate is too large (the economy is overheated); hence, β should be positive as well.
- ρ should be $0 < \rho < 1$.

References