Areal Data Overview

Areal Data

Defining features: random observation measured at well defined subsets, such as a city or state.

Figure 1: source: https://www.politico.com/election-results/2018/montana/

How can spatial information be incorporated with this data structure?

Areal Data Model Overview Data, typically averages or totals, are captured for geographic units or blocks

One way to characterize the transition from geostatistical, or point-referenced, data to areal data is that of going from a continuous spatial process to a discrete spatial process.

Spatial correlation is incorporated with a *neighbor* structure.

Autoregressive models on the neighbor structure capture spatial similarities.

Model based approaches will incorporate covariates and introduce spatial structure with random effects.

Areal Data Inferential Questions Is there a spatial pattern?

In presenting a map of expected responses, should the raw values or a smoothed response be presented?

What values would be expected for new set of areal units?

urbnmapr::states

```
## # A tibble: 83,933 x 9
              lat order hole piece group state_fips state_abbv state_name
##
      <dbl> <dbl> <int> <lgl> <fct> <fct> <chr>
##
                                                     <chr>
                                                                <chr>
##
   1 -88.5 31.9
                      1 FALSE 1
                                    01.1 01
                                                     ΑL
                                                                Alabama
##
   2 -88.5 31.9
                      2 FALSE 1
                                    01.1 01
                                                     AL
                                                                Alabama
   3 -88.5 31.9
##
                     3 FALSE 1
                                    01.1
                                         01
                                                     AL
                                                                Alabama
   4 -88.5 32.0
                     4 FALSE 1
                                    01.1
                                         01
                                                     AL
                                                                Alabama
##
##
   5 -88.5 32.0
                     5 FALSE 1
                                    01.1
                                          01
                                                     ΑL
                                                                Alabama
##
   6 -88.5 32.1
                     6 FALSE 1
                                    01.1 01
                                                     AL
                                                                Alabama
##
  7 -88.4 32.2
                     7 FALSE 1
                                    01.1 01
                                                     AL
                                                                Alabama
  8 -88.4 32.2
                                    01.1 01
##
                     8 FALSE 1
                                                     AL
                                                                Alabama
## 9 -88.4 32.2
                     9 FALSE 1
                                    01.1 01
                                                     AL
                                                                Alabama
## 10 -88.4 32.3
                     10 FALSE 1
                                    01.1 01
                                                     AL
                                                                Alabama
## # ... with 83,923 more rows
```

urbnmapr::counties

```
## # A tibble: 208,874 x 12
##
       long
              lat order hole piece group
                                             county_fips state_abbv state_fips
      <dbl> <dbl> <int> <lgl> <fct> <fct>
                                             <chr>
                                                         <chr>
                                                                    <chr>
##
##
   1 -86.9 32.7
                      1 FALSE 1
                                    01001.1 01001
                                                         AL
                                                                    01
   2 -86.8 32.7
                      2 FALSE 1
                                    01001.1 01001
                                                                    01
##
                                                         ΑL
##
   3 -86.7
             32.7
                      3 FALSE 1
                                    01001.1 01001
                                                         AL
                                                                    01
                                    01001.1 01001
##
   4 -86.7 32.7
                      4 FALSE 1
                                                                    01
                                                         AL
   5 -86.4 32.7
                      5 FALSE 1
                                    01001.1 01001
                                                         AL
                                                                    01
   6 -86.4 32.4
                                    01001.1 01001
                                                                    01
##
                      6 FALSE 1
                                                         AL
##
   7 -86.4 32.4
                      7 FALSE 1
                                    01001.1 01001
                                                         AL
                                                                    01
                                    01001.1 01001
                                                                    01
##
  8 -86.5 32.4
                      8 FALSE 1
                                                         ΑL
  9 -86.5 32.4
                      9 FALSE 1
                                    01001.1 01001
                                                         AL
                                                                    01
## 10 -86.5 32.4
                     10 FALSE 1
                                    01001.1 01001
                                                         AL
                                                                    01
## # ... with 208,864 more rows, and 3 more variables: county_name <chr>,
       fips class <chr>, state name <chr>
```

What is urbnmapr::countydata?

urbnmapr::countydata

```
## # A tibble: 3,142 x 5
##
      year county_fips hhpop horate medhhincome
     <int> <chr>
##
                       <dbl> <dbl>
                                          <int>
## 1 2015 01001
                      20237. 0.746
                                         52200
## 2 2015 01003
                      72269 0.733
                                         53600
## 3 2015 01005
                      10287. 0.587
                                         32400
## 4 2015 01007
                       8198. 0.687
                                         26000
## 5 2015 01009
                      21094. 0.832
                                         53000
## 6 2015 01011
                       4104. 0.587
                                         32400
## 7 2015 01013
                       7859. 0.686
                                         37900
## 8 2015 01015
                      44323 0.696
                                         42880
## 9 2015 01017
                      12987. 0.728
                                          37300
## 10 2015 01019
                      10181. 0.713
                                         37800
## # ... with 3,132 more rows
```

```
household_data <- left_join(urbnmapr::countydata, urbnmapr::counties, by = "county_fips")
```


Additional choropleth resources

- Poverty in Nepal with ggplot
- Plotly
- Crime in Philly
- State and County Population
- Leaflet tutorial for creating choropleths.

Proximity Matrix Similar to the distance matrix with point-reference data, a proximity matrix W is used to model areal data.

Given measurements Y_i, \ldots, Y_n associated with areal units $1, \ldots, n$, the elements of W, w_{ij} connect units i and j

Common values for w_{ij} are

$$w_{ij} = \begin{cases} 1 & \text{if i and j are adjacent} \\ 0 & \text{otherwise (or if i=j)} \end{cases}$$

Grid Example Create an adjacency matrix with diagonal neigbors

Create an adjacency matrix without diagonal neigbors

Spatial Association

There are two common statistics used for assessing spatial association: Moran's I and Geary's C.

Moran's I

$$I = \frac{n \sum_{i} \sum_{j} w_{ij} (Y_i - \bar{Y}) (Y_j - \bar{Y})}{(\sum_{i \neq j} w_{ij}) \sum_{i} (Y_i - \bar{Y})^2}$$

Moran's I is analogous to correlation, where values close to 1 exhibit spatial clustering and values near -1 show spatial regularity (checkerboard effect).

Geary's C

$$C = \frac{(n-1)\sum_{i}\sum_{j}w_{ij}(Y_{i} - Y_{j})^{2}}{2(\sum_{i \neq j}w_{ij})\sum_{i}(Y_{i} - \bar{Y})^{2}}$$

Geary's C is more similar to a variogram (has a connection to Durbin-Watson in 1-D). The statistics ranges from 0 to 2; values close to 2 exhibit regularity and values close to 1 show clustering.