INDIAN INSTITUTE OF TECHNOLOGY INDORE

MA 203: Complex Analysis and Differential Equations-II Autumn Semester 2023 Tutorial -3 (Complex Analysis)

1. The following functions are defined in the punctured plane $\mathbb{C} - \{0\}$. Is it possible to suitably define a value to the function at z = 0, so that they become continuous?

(a)
$$f(z) = \frac{|z|^2}{z}$$
 yellows (b) $f(z) = \frac{\overline{z}}{z}$

(b)
$$f(z) = \frac{\overline{z}}{z}$$

(c)
$$f(z) = \frac{\text{Re } z}{z}$$
 \bigcap

(d)
$$f(z) = \frac{z}{|z|}$$
 \bigvee 0

(e)
$$f(z) = \frac{z \operatorname{Re} z}{|z|}$$

- 2. Prove that the function $f(z) = \overline{z}$ is not differentiable anywhere.
- 3. Prove that the function $f(z) = z \operatorname{Re}(z)$ is differentiable only at z = 0. Compute f'(0).
- 4. Prove that the function $f(z) = |z|^2$ is differentiable only at z = 0.
- 5. Determine the points where the function $f(z) = x^2 + iy^2$ is differentiable. Find the value of Ans. Points z = x + ix, f'(x + ix) = 2xf'(z).
- 6. Derivation of C-R equations.
- 7. Using $x = r \cos \theta$, $y = r \sin \theta$ and using chain rule, prove that C-R equations are equivalent

$$u_r = \frac{1}{r}v_\theta, v_r = -\frac{1}{r}u_\theta.$$

The above pair of equations are the C-R equations in polar form.

—— × —