

Ing. Telec., CC.OO.:Dispositivos pasivos Tema que se va a presentar

BLOQUE	TÍTULO
Tema 0	Introducción a las Comunicaciones Ópticas
BLOQUE I	La transmisión de información por enlaces básicos de comunicación por fibra óptica
I.1	Generación de la portadora: fuentes de luz
I.2	Modulación de la portadora óptica con la información
I.3	Multiplexación de varias fuentes de información
I.4	Transmisión de información por la fibra óptica
I.5	La detección de la información: receptores ópticos
<i>I.6.</i> -	Componentes activos y pasivos

Ing. Telec., CC.OO.:Dispositivos pasivos Tema que se va a presentar

BLOQUE	I.6 Componentes activos y pasivos. Sistemas coherentes
Objetivos	 Se pretende que el alumno sea capaz de: Conocer los diferentes componentes activos y pasivos utilizados en sistemas de comunicaciones ópticas aun no vistos: Acopladores, filtros, WDMs., moduladores, separadores de polarización, aisladores Describir sistemas coherentes por fibra óptica que utilizan los dispositivos anteriormente mencionados.
Duración	2 horas
Programa	Repaso: Acopladores ópticos, filtros, WDMs, aisladores Acopladores Hibridos, Moduladores DPSK Aplicación: Sistemas coherentes Resumen y Conclusiones

- 1. Repaso: Acopladores, Multiplexores y filtros WDM, Moduladores, Aisladores y Circuladores
- 2. Otros dispositivos pasivos
- 3. Aplicación: Sistemas coherentes
- 4. Resumen y conclusiones

Ing. Telec., CC.OO.:Dispositivos pasivos

Acopladores

Símbolo del acoplador

Directional Coupler Symbol

Parámetro

Fórmula V. Típico

Relación de acoplo
$$R = \frac{P_3}{P_3 + P_4}$$
 50%

Pérdidas de inserción
$$10 \times \log \left(\frac{P_1}{P_m} \right)$$
 3,5 dB

Exceso de pérdidas
$$10 \times \log \left(\frac{P_1}{P_3 + P_4} \right)$$
 0,5 dB

Directividad
$$10 x log \left(\frac{P_2}{P_1}\right)$$
 -50 dB

Uniformidad
$$U = \frac{P_3 - P_4}{P_3}$$
 3%

Acoplador direccional

Acoplador con transiciones Y

Acoplador de interferencia de modos (MMI)

Filtros y mux/demux

AWG de 256 canales

1615

		GAUSSIAN	WIDE-BAND
	Number of channels	8 - 80	8 - 80
	Channel spacing	50GHz	50GHz
	Clear window (specification passband)	12.5GHz	12.5GHz
	Insertion loss (at ITU grid) ¹	2.5dB	4.5dB
	Insertion loss (across clear window passband)1	4.0dB	5.0dB
	Insertion loss uniformity (40 channel)	1.5dB	1.0dB
	Insertion loss uniformity (80 channel)	2.0dB	1.5dB
	-1dB passband	0.1nm	0.18nm
	Passband uniformity	1.5dB	0.4dB
	Polarization dependent loss (at ITU grid)	0.2dB	0.2dB
	Polarization dependent loss (across clear window)	0.5dB	0.3dB
	Chromatic dispersion	<10ps/nm	<10ps/nm
	Differential group delay	0.5ps	0.5ps
	Adjacent channel crosstalk	-25dB	- 25d B
	Non-adjacent channel crosstalk	-30dB	-30dB
	Maximum integrated crosstalk	-22dB	-22dB
	Optical return loss	-40dB	-40dB
	Dimensions for 40 channel package ² (L x W x H)	130 x 65 x 14mm	130 x 65 x 14mm

Multiplexor "add and drop"

Modulador EO de intensidad y fase

$$E_{out} = \sqrt{2}E_{in}\cos\left(\frac{\Delta\varphi_1}{2}\right)e^{j\left(\frac{\Delta\varphi_1}{2}\right)} = \sqrt{2}E_{in}\cos\left(\frac{\pi}{2V_{\pi}}V(t)\right)e^{j\left(\frac{\pi}{2V_{\pi}}V(t)\right)}$$

$$P_{out} = E_{out} \cdot E_{out}^* = 2P_{in} \cos^2 \left(\frac{\pi}{2V_{\pi}} V(t)\right)$$
$$\frac{d\phi}{dt} = v(t) = \frac{\pi}{2V_{\pi}} \frac{dV(t)}{dt}$$

Ing. Telec., CC.OO.:Dispositivos pasivos Moduladores Mach-Zender para sistemas QPSK/QAM

Aislador óptico

- 1. Repaso: Acopladores, Multiplexores y filtros WDM, Moduladores, Aisladores y Circuladores
- 2. Otros dispositivos pasivos
- 3. Aplicación: Sistemas coherentes
- 4. Resumen y conclusiones

Divisores de polarización (polarization splitters, PBS)

Controladores o rotadores de polarización

Controladores de polarización: Manual(a) y automático (b)

- 1. Repaso: Acopladores, Multiplexores y filtros WDM, Moduladores, Aisladores y Circuladores
- 2. Otros dispositivos pasivos
- 3. Aplicación: Sistemas coherentes
- 4. Resumen y conclusiones

Ing. Telec., CC.OO.:Dispositivos pasivos Sistemas coherentes

Evolución de los sistemas de alta velocidad

Ing. Telec., CC.OO.:Dispositivos pasivos Tipos: Detección coherente

Local oscillator

$$P(t)=P_s+P_{
m LO}+2\sqrt{P_sP_{
m LO}}\cos(\omega_{
m IF}t+\phi_s-\phi_{
m LO}),$$
 con $P_s=KA_s^2,~~P_{
m LO}=KA_{
m LO}^2,~~\omega_{
m IF}=\omega_0-\omega_{
m LO}.$

- La detección coherente permite aumentar el nivel de la señal detectada ⇒ receptor con más sensibilidad
- Pero los receptores coherentes son complejos: ajuste de frecuencia/fase/polarización entre señal y oscilador local
- La llegada de la amplificación óptica (EDFA) restó inicialmente interés a los sistemas coherentes, aunque en la actualidad se emplean para sistemas de alta velocidad.

El problema de la variación de polarización:

Solución : Detección con diversidad de polarización

Ing. Telec., CC.OO.:Dispositivos pasivos **Híbrido 90°**

Diversidad de fase+ Diversidad de polarización

Ing. Telec., CC.OO.:Dispositivos pasivos Futuro: Modulación de Polarización y de fase

Figure 5: Schematic of 100Gb/s, single carrier, PM-QPSK transmitter, and the resulting phase constellations on each polarization state

Ing. Telec., CC.OO.:Dispositivos pasivos Receptor PM-QPSK

PBS: Polarization beam splitter

PD: Photodetector

TIA: Trans impedence amplifier

DSP: Digital signal processor

A/D: Analog to Digital Converter

- 1. Repaso: Acopladores, Multiplexores y filtros WDM, Moduladores, Aisladores y Circuladores
- 2. Otros dispositivos pasivos
- 3. Aplicación: Sistemas coherentes
- 4. Resumen y conclusiones