SARS-CoV-2 vs otros coronavirus y variantes del SARS-CoV-2

Agustín García Doñate, Cristian Morillo Losada, Pedro Sánchez García & Rubén Entenza Pereira.

Fundamentos de Bioinformática.

MUBICS | Universidade da Coruña.

INTRODUCCIÓN

Pandemia del coronavirus (COVID-19):

290 millones de casos.

5 millones de muertes.

- Género: Betacoronavirus.
- Familia: Coronaviridae.
- Mayoría de síntomas de la gripe y fiebre, ocasionando el síndrome respiratorio agudo severo y problemas derivados en otros órganos.

INTRODUCCIÓN

Organización del genoma en SARS-CoV-2 (aproximadamente 29.903 nucleótidos)

INTRODUCCIÓN

- Los virus de ARN emplean mecanismos de variación genética para perfeccionar y asegurar su expansión.
- Las principales variantes del SARS-CoV-2 están caracterizadas por un conjunto de mutaciones que incrementan su fitness:

ANÁLISIS DE DATOS DE SECUENCIACIÓN.

ALINEAMIENTO DE SECUENCIAS Y CLUSTALW.

SARS-CoV-2 Genome Sequencing using Illumina and Oxford Nanopore Technologies

- Secuencias disponibles en GISAID.
- Genoma de referencia:

SARS-CoV-2/Wuhan.

hCoV-19/Wuhan/WIV04/2019 EPI_ISL_402124 2019-12-30 hCoV-19/USA/WA-AG-B.1.1.7/2021 EPI_ISL_1164753 2021-02-27	CTTGTTCTTACCTTTCTTTTCCAATGTTACTTGGTTCCATGCTATACATGTCTCTGGGAC CTTGTTCTTACCTTTTTCCAATGTTACTTGGTTCCATGCTATCTCTGGGAC **********************************	21780 21733
hCoV-19/Wuhan/WIV04/2019 EPI_ISL_402124 2019-12-30 hCoV-19/USA/WA-AG-B.1.1.7/2021 EPI_ISL_1164753 2021-02-27	CTAAATGGTATATTAGAGTAGGAGCTAGAAAATCAGCACCTTTAATTGAATTGTGCGTGG CTAAATGGTATATTAGAGTAGGAGCTATAAAATCAGCACCTTTAAATTGTGCGTGG *****************************	28080 28026
hCoV-19/Wuhan/WIV04/2019 EPI_ISL_402124 2019-12-30 hCoV-19/USA/WA-AG-B.1.1.7/2021 EPI_ISL_1164753 2021-02-27	TCAATTTTGTAATGATCCATTTTTGGGTGTTTTATTACCACAAAAACAACAAAAGTTGGAT TCAATTTTGTAATGATCCATTTTTGGGTGTTTACCACAAAAACAACAAAAGTTGGAT ****************************	22020 21970

Gaps de 3-6 nucleótidos en regiones que codifican para las proteínas S y N.

hCoV-19/Wuhan/WIV04/2019 EPI_ISL_402124 2019-12-30 hCoV-19/Germany/un-FLI-B.1.351/2021 EPI_ISL_2695882 2021-02-01	TAGTTTGTCTGGTTTTAAGCTAAAAGACTGTGTTATGTATG	11340 11321
hCoV-19/Wuhan/WIV04/2019 EPI_ISL_402124 2019-12-30 hCoV-19/Germany/un-FLI-B.1.351/2021 EPI_ISL_2695882 2021-02-01	TAACATCACTAGGTTTCAAACTTTACTTGCTTTACATAGAAGTTATTTGACTCCTGGTGA TAACATCACTAGGTTTCAAACTTTACATAGAAGTTATTTGACTCCTGGTGA *********************************	22320 22292

Gaps de 9 nucleótidos en ORFIa y región que codifica para la proteína S.

hCoV-19/Wuhan/WIV04/2019 EPI_ISL_402124 2019-12-30 hCoV-19/France/14_Gamma/2021 EPI_ISL_4536760 2021-03-21	TAGTTTGTCTGGTTTTAAGCTAAAAGACTGTGTTATGTATG	11340 11277
hCoV-19/Wuhan/WIV04/2019 EPI_ISL_402124 2019-12-30 hCoV-19/France/14_Gamma/2021 EPI_ISL_4536760 2021-03-21	CGAACAAACTAAAATGTCTGATAATGGACCCCAAAATCAGCGAAATGCACCCCGCA CGAACAAACAAACTAAAATGTCTGATAATGGACCCCAAAATCAGCGAAATGCACCCCGCA ** **********************************	28316 28257

> Gap of 9 nucleótidos en ORFIa e inserción de 4 nucleótidos en región que codifica para la proteína N.

hCoV-19/Wuhan/WIV04/2019 EPI_ISL_402124 2019-12-30 hCoV-19/Switzerland/ZH-ETHZ-722plus/2020 EPI_ISL_483669 2020-04-12	TGAGTTTAAATTGGCTTCACATATGTATTGTTCTTTCTACCCTCCAGATGAGGATGAAGA TGAGTTTAAATTGGCTTCACATATGTATTGTTCTTTTTTACCCTCCAGATGAGGATGAAGA ************************	3060 3030
hCoV-19/Wuhan/WIV04/2019 EPI_ISL_402124 2019-12-30 hCoV-19/Switzerland/ZH-ETHZ-722plus/2020 EPI_ISL_483669 2020-04-12	ATACAAGCCTCACTCCCTTTCGGATGGCTTATTGTTGGCGTTGCACTTCTTGCTGTTTTT ATACAAGCCTCATTCCCTTTCGGATGGCTTATTGTTGGCGTTGCACTTCTTGCTGTTTTT ************************	25560 25530
hCoV-19/Wuhan/WIV04/2019 EPI_ISL_402124 2019-12-30 hCoV-19/Switzerland/ZH-ETHZ-722plus/2020 EPI_ISL_483669 2020-04-12	TAACTTTAGCTTGTTTTTGTGCTTGCTGCTGTTTACAGAATAAATTGGATCACCGGTGGAA TAACTTTAGCTTGTTTTTGTGCTTGCCGCTGTTTTACAGAATAAATTGGATCACCGGTGGAA ********************************	26760 26730

Mutaciones en regiones que codifican para las proteínas E y M.

hCoV-19/Wuhan/WIV04/2019|EPI_ISL_402124|2019-12-30 22080 GGAAAGTGAGTTCAGAGTTTATTCTAGTGCGAATAATTGCACTTTTGAATATGTCTCTCA hCoV-19/Belgium/AZDelta-2149-16981/2021|EPI ISL 7723671|2021-12-09 22049 GGAAAGTG----GAGTTTATTCTAGTGCGAATAATTGCACTTTTGAATATGTCTCTCA ****** **************** hCoV-19/Wuhan/WIV04/2019|EPI_ISL_402124|2019-12-30 28260 CGTTCTATGAAGACTTTTTAGAGTATCATGACGTTCGTGTTTTTAGATTTCATCTAAA hCoV-19/Belgium/AZDelta-2149-16981/2021|EPI ISL 7723671|2021-12-09 28223 CGTTCTATGAGACTTTTTAGAGTATCATGACGTTCGTGTTTTTA----ATCTAAA ***************** *****

> Gaps de 6 y 7 nucleótidos en las regiones que codifican para las proteínas S y N.

hCoV-19/Wuhan/WIV04/2019 EPI_ISL_402124 2019-12-30 OM095411.1	AGGAGACATTATACTTAAACCAGCAAATAATAGTTTAAAAATTACAGAAGAGGTTGGCCA AGGAGACATTATACTTAAACCAGCAAATAATATAAAAATTACAGAAGAGGTTGGCCA **********************************	6540 6501
hCoV-19/Wuhan/WIV04/2019 EPI_ISL_402124 2019-12-30 OM095411.1	TAGTTTGTCTGGTTTTAAGCTAAAAGACTGTGTTATGTATG	11340 11292
hCoV-19/Wuhan/WIV04/2019 EPI_ISL_402124 2019-12-30 OM095411.1	TCAATTTTGTAATGATCCATTTTTGGGTGTTTATTACCACAAAAACAACAACAAAGTTGGAT TCAATTTTGTAATGATCCATTTTTGGACCACAAAAACAACAACAAAGTTGGAT *****************************	22020 21957

> Gaps en ORFIa y ORFIb

B.1.1.529 (Omicron)

Numerosas mutaciones clave en región que codifica para proteína S.

> "Frankenstein" de coronavirus.

hCoV-19/Wuhan/WIV04/2019 EPI_ISL_402124 2019-12-30 0M095411.1	TAATATTACAAACTTGTGCCCTTTTGGTGAAGTTTTTAACGCCACCAGATTTGCATCTGT TAATATTACAAACTTGTGCCCTTTTG <mark>A</mark> TGAAGTTTTTAACGCCACC <mark>AA</mark> ATTTGCATCTGT **********************************	22611 22554
hCoV-19/Wuhan/WIV04/2019 EPI_ISL_402124 2019-12-30 OM095411.1	TTATGCTTGGAACAGGAAGAGAATCAGCAACTGTGTTGCTGATTATTCTGTCCTATATAA TTATGCTTGGAACAGGAAGAGAATCAGCAACTGTGTTGCTGATTATTCTGTCCTATATAA *****************************	22671 22614
hCoV-19/Wuhan/WIV04/2019 EPI_ISL_402124 2019-12-30 0M095411.1	TTCCGCATCATTTTCCACTTTTAAGTGTTATGGAGTGTCTCCTACTAAATTAAATGATCT TCTCGCACCATTTTTCACTTTTAAGTGTTATGGAGTGTCTCCTACTAAATTAAATGATCT * **** ****** **********************	22731 22674
hCoV-19/Wuhan/WIV04/2019 EPI_ISL_402124 2019-12-30 0M095411.1	CTGCTTTACTAATGTCTATGCAGATTCATTTGTAATTAGAGGTGATGAAGTCAGACAAAT CTGCTTTACTAATGTCTATGCAGATTCATTTGTAATTAGAGGTGATGAAGTCAGACAAAT *********************************	22791 22734
hCoV-19/Wuhan/WIV04/2019 EPI_ISL_402124 2019-12-30 OM095411.1	CGCTCCAGGGCAAACTGGAAAGATTGCTGATTATAATTATAAATTACCAGATGATTTTAC CGCTCCAGGGCAAACTGGAAA <mark>T</mark> ATTGCTGATTATAATTATAAATTACCAGATGATTTTAC ********************************	22851 22794
hCoV-19/Wuhan/WIV04/2019 EPI_ISL_402124 2019-12-30 0M095411.1	AGGCTGCGTTATAGCTTGGAATTCTAACAATCTTGATTCTAAGGTTGGTGGTAATTATAA AGGCTGCGTTATAGCTTGGAATTCTAACAA <mark>GC</mark> TTGATTCTAAGGTT <mark>A</mark> GTGGTAATTATAA **************************	22911 22854
hCoV-19/Wuhan/WIV04/2019 EPI_ISL_402124 2019-12-30 0M095411.1	TTACCTGTATAGATTGTTTAGGAAGTCTAATCTCAAACCTTTTGAGAGAGA	22971 22914
hCoV-19/Wuhan/WIV04/2019 EPI_ISL_402124 2019-12-30 OM095411.1	TGAAATCTATCAGGCCGGTAGCACACCTTGTAATGGTGTTGAAGGTTTTAATTGTTACTT TGAAATCTATCAGGCCGGT <mark>AAC</mark> AAACCTTGTAATGGTGTTG <mark>C</mark> AGGTTTTAATTGTTACTT *********************************	23031 22974
hCoV-19/Wuhan/WIV04/2019 EPI_ISL_402124 2019-12-30 0M095411.1	TCCTTTACAATCATATGGTTTCCAACCCACTAATGGTGTTGGTTACCAACCA	23091 23034
hCoV-19/Wuhan/WIV04/2019 EPI_ISL_402124 2019-12-30 OM095411.1	AGTAGTACTTTCTTTTGAACTTCTACATGCACCAGCAACTGTTTGTGGACCTAAAAAGTC AGTAGTACTTTCTTTTGAACTTCTACATGCACCAGCAACTGTTTGTGGACCTAAAAAGTC ************************************	23151 23094
hCoV-19/Wuhan/WIV04/2019 EPI_ISL_402124 2019-12-30 0M095411.1	TACTAATTTGGTTAAAAACAAATGTGTCAATTTCAACTTCAATGGTTTAACAGGCACAGG TACTAATTTGGTTAAAAACAAATGTGTCAATTTCAACTTCAATGGTTTAA <mark>A</mark> AGGCACAGG ******************************	23211 23154

CLUSTALW

Results for job clustalo-I20220104-103916-0215-92048241-p1m


```
# Phylogenetic tree
import Bio
from Bio import Phylo

tree = Phylo.read("arbol.dnd", "newick")
tree.rooted = True
Phylo.draw(tree)
```


¿QUÉ SUCEDE?

NicolaDeMaio

14 / May '20

Issues with SARS-CoV-2 sequencing data

Nicola De Maio^{1*}, Conor Walker¹, Rui Borges², Lukas Weilguny¹, Greg Slodkowicz³, Nick Goldman¹

¹European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridgeshire, United Kingdom.

²Institut für Populationsgenetik, Vetmeduni Vienna, Veterinärplatz 1, Wien 1210, Austria.

³MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, United Kingdom.

*demaio@ebi.ac.uk

- Cobertura de la plataforma de secuenciación.
- Secuencias altamente homólogas que conducen a ruído en los análisis filogenéticos.

Alineamiento de pares de secuencias (módulo Bio.Align)

```
# PAIRWISE ALIGNER
import Bio
from Bio import Align
from Bio import SegIO
def porcentaje_alineamiento_genoma(fasta1, fasta2='Wuhan.fasta'):
    '''Función planteada con las líneas de comando y parámetros del módulo Bio.Align.
   Se obtiene una puntuación proporcionada por el algoritmo para los alineamientos.
   La función requiere 2 archivos FASTA como parámetros, donde el primero contiene la secuencia de la variante
    , mientras que el segundo es elarchivo FASTA con el genoma de referencia del SARS-CoV-2 original de Wuhan.
   Como resultado, la función nos devuelve una puntuación global y la puntuación en porcentaje de similitud en alineamiento'''
   secuencia variante = SegIO.read(fasta1, 'fasta')
   secuencia origen = SegIO.read(fasta2, 'fasta')
   aligner = Align.PairwiseAligner()
   aligner.match_score = 1
   aligner.mismatch_score = 0
   aligner.gap_score = -2.5
   len_secuencia_origen = len(secuencia_origen.seg)
   score = aligner.score(secuencia_variante.seq, secuencia_origen.seq)
   scoreporc = score * 100 / len_secuencia_origen
   return score, round(scoreporc, 2)
```


seq2	seq I	score	score (%)
	: B.1.1.7 (Alpha)	29.480.5	98.63
	: B.1.351 (Beta)	29.536.0	99.09
Reference genome:	: P.1 (Gamma)	29.174.0	97.51
SARS-CoV-2/Wuhan	: B.1.617 (Delta Plus)	29.704.0	99.37
	₩ B.1.617.2 (Delta)	29.618.5	98.81
	** B.1.1.529 (Omicron)	29435.5	98.48

ANÁLISIS PROTEICO

PAIRWISE SEQUENCE ALIGNMENT & MEGAX.

SPIKE GLYCOPROTEIN (PROTEIN S)

- Proteína S forma un trímero y es responsable de la entrada del virus a las células (unión y fusión).
- Mutaciones en esta proteína varían la forma en la que el virus infecta a la célula

Los archivos FASTA con la secuencia proteica de la proteína S de las variantes alfa, beta, gamma, delta y omicron fueron obtenidos en PDB

S protein alignment (Bio.Align module)

PAIRWISE PROTEIN ALIGNER import Bio from Bio import Alian from Bio import SegIO def porcentaje_alineamiento_proteinas(fasta1, fasta2='S_original.fasta'): '''Función planteada con las líneas de comando y parámetros del módulo Bio.Align. Se obtiene una puntuación proporcionada por el algoritmo para los alineamientos de las proteínas. La función requiere 2 archivos FASTA como parámetros, donde el primero contiene la secuencia de la proteína S de la variante, mientras que el segundo es el archivo FASTA con la proteína S de referencia del SARS-CoV-2 original de Wuhan. Como resultado, la función nos devuelve una puntuación global y la puntuación en porcentaje de similitud en alineamiento''' secuencia_variante = SeqIO.read(fasta1, 'fasta') secuencia_origen = SeqIO.read(fasta2, 'fasta') aligner = Align.PairwiseAligner() aligner.match score = 1 aligner.mismatch_score = 0 aligner.gap_score = -2.5len_secuencia_origen = len(secuencia_origen.seg) score = aligner.score(secuencia_variante.seq, secuencia_origen.seq) scoreporc = score * 100 / len secuencia origen return score,round(scoreporc, 2)

seq2	seql	score	score (%)
	: B.1.1.7 (Alpha)	1118	87.82
	: B.1.351 (Beta)	1175	92.30
Reference genome: SARS-CoV-2/Wuhan	P.1 (Gamma)	974	76.51
-	₩ B.1.617.2 (Delta)	1170	91.95
	**B.1.1.529 (Omicron)	1164	91.44

[x]

La familia Coronaviridae que afecta a humanos

- HCoV-229E
- HCoV-OC43
- HCoV-NL63
- HCoV-HKUI
- SARS-CoV
- SARS-CoV-2
- MERS-CoV

Proteínas de interés

- Envelope small membrane protein (E)
- Membrane protein (M)
- Nucleoprotein (N)

Fuente figura: Maguiña Vargas, Ciro, Gastelo Acosta, Rosy, & Tequen Bernilla, Arly. (2020). El nuevo Coronavirus y la pandemia del Covid-19. *Revista Medica Herediana*, 31 (2), 125-131. https://dx.doi.org/10.20453/rmh.v31i2.3776

OTROS CORONAVIRUS

ALINEAMIENTO DE SECUENCIAS Y CLUSTALW.

Coronavirus que no causan SARS

seq2	seq I		score	score (%)
	229E Human coronavirus	229E	9.047,0	30,27
	OC43 Human coronavirus	OC43	12539.5	41.95
	HKUI Human coronavirus	HKUI	13525.5	45.25
	NL63 Human coronavirus	NL63	9870.0	33.02
Reference genome:	Middle East respiratory syndrome- related coronavirus	MERS-HCoV	13808.0	46.19
SARS-CoV- 2/Wuhan	Porcine epidemic diarrhea virus	PEDV	10.509,0	35,16
	Transmissible gastroenteritis virus	TGEV	11.139,5	37,27
	Bovine coronavirus	BCoV	12.069,5	40,38
	Murine hepatitis virus	MHV	11.715,0	39,19
	Avian infectious bronchitis virus	IBV	9.237,5	30,90

Coronavirus que causan SARS

- Causantes del síndrome respiratorio agudo severo
- Descubierto en 2002 en Foshan la provincia de Guangdong en China

seq2	seql		score	score (%)
	🔆 ARS coronavirus BJ01	BJ01	23.098,0	77,27
	ARS coronavirus BJ02	BJ02	23 157,0	77,47
	🔆 ARS coronavirus BJ03	ВЈ03	23 143,5	77,43
	ARS coronavirus BJ04	BJ04	23116,5	77,34
	∰ RS coronavirus CUHK-Su10	CUHKS	23.121,5	77,35
	[★] (RS coronavirus CUHKW)	CUHKW	23 125,5	77,37
	**;ARS coronavirus GZ0 I	GZ0 I	23.165,0	77,5
Reference genome:	**ARS coronavirus HKU-39849	HKUN	23.151,5	77,45
SARS-CoV-	ARS coronavirus Sin2500	Sin2500	23.052,0	77,12
2/Wuhan	ARS coronavirus Sin2677	S in2677	23 043,0	77,09
	ARS coronavirus Sin2679	Sin2679	23 055,0	77,13
	ARS coronavirus Sin2748	Sin2748	23 043,5	77,09
	ARS coronavirus Sin2774	Sin2774	23 051,0	77,12
	**ARS coronavirus Tor2	Tor2	23.169,0	77,5 I
	**ARS coronavirus TWI	TW01	23.112,0	77,32
	ARS coronavirus Urbani	Urbani	23.105,0	77,3
	ARS coronavirus ZJ01	ZJ01	23.011,0	76,98

MEGA Captio	on Expert: Find Be	st-Fit Substitution	Model (ML)									-		×
File Edit Vie	ew Help													
*** 🖶 💷 🗀														
Results														
				ucleotide sub										_î
	Parameters	BIC	AICc	InL	(+/)	(+G)	R	f(A)	<i>f</i> (T)	f(C)	f(G)	,	r(AC)	-111
GTR+G+I	63			-243236.356										-
TN93+G+I	60			-243600.283										- 111
GTR+G	62	488042.050	487339.127	-243607.557	n/a	1.09	1.26	0.277	0.330	0.183	0.210	0.072	0.057	
HKY+G+I	59	488044.750	487375.839	-243628.914	0.11	2.71	1.08	0.277	0.330	0.183	0.210	0.077	0.043	
T92+G+I	57	488563.980	487917.744	-243901.867	0.11	2.79	1.08	0.303	0.303	0.197	0.197	0.071	0.046	
TN93+G	59	488913.392	488244.481	-244063.235	n/a	1.17	1.05	0.277	0.330	0.183	0.210	0.078	0.043	
HKY+G	58	489021.076	488363.502	-244123.746	n/a	1.18	1.02	0.277	0.330	0.183	0.210	0.079	0.044	
GTR+I	62	489489.942	488787.019	-244331.503	0.14	n/a	1.07	0.277	0.330	0.183	0.210	0.084	0.054	
T92+G	56	489556.699	488921.800	-244404.895	n/a	1.20	1.03	0.303	0.303	0.197	0.197	0.073	0.047	
TN93+I	59	489977.183	489308.272	-244595.130	0.14	n/a	1.02	0.277	0.330	0.183	0.210	0.079	0.044	
HKY+I	58	490037.404	489379.831	-244631.910	0.14	n/a	1.00	0.277	0.330	0.183	0.210	0.080	0.045	
T92+I	56	490448.894	489813.995	-244850.992	0.14	n/a	1.00	0.303	0.303	0.197	0.197	0.074	0.048	
K2+G+I	56	493994.891	493359.992	-246623.991	0.11	3.17	1.13	0.250	0.250	0.250	0.250	0.059	0.059	
K2+G	55	494943.543	494319.982	-247104.986	n/a	1.29	1.10	0.250	0.250	0.250	0.250	0.060	0.060	
K2+I	55	495359.559	494735.998	-247312.994	0.14	n/a	1.05	0.250	0.250	0.250	0.250	0.061	0.061	
GTR	61	497851.793	497160.208	-248519.098	n/a	n/a	0.99	0.277	0.330	0.183	0.210	0.087	0.056	
JC+G+I	55	498031.601	497408.039	-248649.015	0.11	4.09	0.50	0.250	0.250	0.250	0.250	0.083	0.083	
TN93	58			-248798.500		n/a				0.183				
111/2/		400440 044	407000 075	240042.022	/-	/-	0.00	0.27	0.000	0.400	0.210	0.000	0.040	-
4)	,

CONCLUSIONES

CONCLUSIONES

- El análisis comparativo del coronavirus original de Wuhan con las variantes generadas indica, a nivel de genoma, una relación estrecha en el caso de las variantes omicron y delta. En cambio, a nivel de la proteína S, se aprecia un cambio de tendencia en las relaciones filogenéticas.
- □ El análisis comparativo a nivel de proteína S muestra diferencias entre las diferentes variantes con respecto al coronavirus original lo que explica las diferencias en la forma de infectar.
- □ A nivel nucleotídico, los coronavirus antiguos que causan SARS tienen una mayor similitud con el actual coronavirus de Wuhan que los coronavirus que no causan SARS.
- □ No obstante, a nivel proteico los coronavirus que no causan SARS y que afectan a humanos estarían más emparentados con el de Wuhan que los que provocan SARS.

GRACIAS POR VUESTRA ATENCIÓN

Agustín García Doñate, Cristian Morillo Losada, Pedro Sánchez García & Rubén Entenza Pereira.

Fundamentos de Bioinformática.

MUBICS | Universidade da Coruña.

BIBLIOGRAFÍA

- Chen, Z., Boon, S.S., Wang, M.H., Chan, W.Y., & Chan, K.S. (2021). Genomic and evolutionary comparison between SARS-CoV-2 and other human coronaviruses. *Journal of Virological Methods*, 289(3), 114032.
- De Maio, N., Walker, C., Weilguny, B.R., & Goldman, S.G. (2020). Issues with SARS-CoV-2 sequencing data. https://virological.org/t/issues-with-sars-cov-2-sequencing-data/473. Consulted 27/12/2021.
- J. Castresana (2000). Selection of Conserved Blocks from Multiple Alignments for Their Use in Phylogenetic Analysis, Molecular Biology and Evolution, 17 (540–552). https://doi.org/10.1093/oxfordjournals.molbev.a026334
- Kandeel, M., Mohamed, M.E., Abd El-Lateef, H.M., Venugopala, K.N., & El-Beltagi, H.S. (2021). Omicron variant genome evolution and phylogenetics. Journal of Medical Virology, 11(12), 1-6.
- Kannan, S.R., Spratt, A.N., Cohen, A.R., Naqvi, S.H., Chand, H.S., Quinn, T.P., Lorson, C.L., Byrareddy, S.N., & Singh, K. (2021). Evolutionary analysis of the Delta and Delta Plus variants of the SARS-CoV-2 viruses. *Journal of Autoinmunity*, 124(8), 102715.
- Maguiña Vargas, Ciro, Gastelo Acosta, Rosy, & Tequen Bernilla, Arly. (2020). El nuevo Coronavirus y la pandemia del Covid-19. Revista Medica Herediana, 31(2), 125-131. https://dx.doi.org/10.20453/rmh.v31i2.3776
- Mohammadi, M., Shayestehpour, M., & Mirzaei, H. (2021). The impact of spike mutated variants of SARS-CoV2 [Alpha, Beta, Gamma, Delta, and Lambda] on the efficacy of subunit recombinant vaccines. *Brazilian Journal of Infectious Diseases*, 25(4), 101606.