Solve the following system (when consistent) and write the solution in parametric form under Z_3

$$\begin{bmatrix} 2 & 2 & 1 & 2 & 0 & | 1 \\ 1 & 1 & 0 & 2 & 1 & | 0 \\ 2 & 1 & 0 & 1 & 2 & | 2 \end{bmatrix}$$

Problem Solving - What are the terms/strategies I may need? What do I know?

- Definition for a matrix in RREF:
 - a) All leading entries are 1
 - b) Leading entries go down and to the right
 - c) all zero rows are at the bottom
 - d) All entries above and below a leading 1 are 0.
- Strategy for getting to RREF to solve a system:
 - 1) Choose a leading non-zero row to be your pivot (easiest number possible)
 - 2) Switch this to the first available row without a pivot.
 - 3) Row reduce below the pivot so that all entries are zero below
 - 4) Continue steps 1-3 until you cannot choose any more leading non-zero entries.
 - 5) Start with the last pivot and eliminate all entries above the pivot so they are zero.
 - 6) Repeat step 5 for all pivots
 - 7) Divide all rows so that the leading pivots are 1.
 - 8) Once in RREF, write out the equation in parametric form (solve for each variable) by identifying free variables.
 - 9) Once you have parametric form, you can store the solution in a vector by considering $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$

Z_p operations:

 $a + b = (a + b) \mod p$ (that is the remainder when dividing (a+b) by p ab = (ab) mod p (that is the remainder when dividing (ab) by p

Solve the following system (when consistent) and write the solution in parametric form under Z_3

$$\begin{bmatrix} 2 & 2 & 1 & 2 & 0 & | 1 \\ 1 & 1 & 0 & 2 & 1 & | 0 \\ 2 & 1 & 0 & 1 & 2 & | 2 \end{bmatrix}$$

Steps & Process – Try to answer the question writing in many steps to avoid small errors.

$$\begin{bmatrix} 2 & 2 & 1 & 2 & 0 & | & 1 \\ 1 & 1 & 0 & 2 & 1 & | & 0 \\ 2 & 1 & 0 & 1 & 2 & | & 2 \end{bmatrix} R_2 \leftrightarrow R_1 \qquad \begin{bmatrix} 1 & 1 & 0 & 2 & 1 & | & 0 \\ 2 & 2 & 1 & 2 & 0 & | & 1 \\ 2 & 2 & 1 & 2 & 0 & | & 1 \\ 2 & 1 & 0 & 1 & 2 & | & 2 \end{bmatrix} R_2 \to R_2 - 2R_1 \qquad \begin{bmatrix} 1 & 1 & 0 & 2 & 1 & | & 0 \\ 0 & 0 & 1 & 1 & 1 & | & 1 \\ 0 & 2 & 0 & 0 & 0 & | & 2 \end{bmatrix} R_2 \leftrightarrow R_3$$

$$\begin{bmatrix} 1 & 1 & 0 & 2 & 1 & | & 0 \\ 0 & 2 & 0 & 0 & 0 & | & 2 \\ 0 & 0 & 1 & 1 & 1 & | & 1 \end{bmatrix} R_2 \times 2 \qquad \begin{bmatrix} 1 & 1 & 0 & 2 & 1 & | & 0 \\ 0 & 1 & 0 & 0 & 0 & | & 1 \\ 0 & 0 & 1 & 1 & 1 & | & 1 \end{bmatrix} R_1 \to R_1 - R_2 \qquad \begin{bmatrix} 1 & 0 & 0 & 2 & 1 & | & 2 \\ 0 & 1 & 0 & 0 & 0 & 0 & | & 1 \\ 0 & 0 & 1 & 1 & 1 & | & 1 \end{bmatrix}$$

Here we should see that x_4 and x_5 do not have pivots, thus they are free variables. Let $x_4 = s$ and $x_5 = t$ and we get:

$$x_1 = 2 - 2s - t$$

 $x_2 = 1$
 $x_3 = 1 - s - t$
 $x_4 = s$

Where $s, t \in \mathbb{Z}_3$

 $x_5 = t$

Solve the following system (when consistent) and write the solution in parametric form under Z_3

$$\begin{bmatrix} 2 & 2 & 1 & 2 & 0 & | 1 \\ 1 & 1 & 0 & 2 & 1 & | 0 \\ 2 & 1 & 0 & 1 & 2 & | 2 \end{bmatrix}$$

Solidify Understanding – Explain why the steps makes sense by connecting to math you know.

- How do you get a matrix to RREF?
- Why is having a matrix in RREF so helpful?
- Why are free variables easy to identify when the matrix is in RREF?
- Why do we avoid division when dealing with Mod operations?
- How many different solutions are there for this question?

For Video Please click the link below:

<u>Video</u>