#### May Institute 2017

Computation and statistics for mass spectrometry and proteomics

# Introduction to non-targeted metabolomics





#### Oliver Kohlbacher

University of Tübingen and MPI for Developmental Biology KohlbacherLab.org | @okohlbacher





# **Today's Schedule**

| Tuesday 5/2/2017 |                                                                                        |
|------------------|----------------------------------------------------------------------------------------|
| 8:00 AM          | Bring your own data or Skyjam                                                          |
| 9:00 AM          | Lecture: Label-free quantitative proteomics.                                           |
| 10:30 AM         | Refreshments                                                                           |
| 11:00 AM         | Hands-on: Label-free quantification workflows                                          |
| 12:30 PM         | Lunch Break                                                                            |
| 1:30 PM          | Lecture: Introduction to non-targeted metabolomics.                                    |
| 2:30 PM          | Hands-on: Metabolite profiling workflow.                                               |
| 3:00 PM          | Refreshments                                                                           |
| 3:30 PM          | Hands-on: Differential quantification of metabolites, visualization, report generation |
| 5:00 PM          | Questions and practice with own data                                                   |
| 6:00 PM          | Adjourn                                                                                |

#### Metabolome vs. Proteome

- Size and complexity of the metabolome still largely unknown
- Similar to protein sequence databases, there are also metabolite databases listing all known metabolites (usually contains tens of thousands of metabolites)
- Differences between proteome and metabolome
  - Metabolites belong to wider ranger of chemical compound classes (lipids, sugars, amino acids)
  - Proteins have a more homogenous chemistry (20 proteinogenic amino acids)
  - Metabolites can have complex structures that require a structural formula for a comprehensive description
  - Proteins have a simple, linear structure that can be represented by a sequence
  - Metabolites are light: average metabolite mass a 100-300 Da
  - Proteins are heavy: median protein length around 300-500 aa, about 40,000
     Da molecular weight

#### **Metabolites**

- Metabolites comprise a heterogeneous set of biomolecules: all small molecules in a system excepting salts and macromolecules (proteins, long peptides, RNA, DNA)
- Lipids and sugars are metabolites as well
- There are separate fields dealing with lipids and sugars (lipidomics, glycomics), techniques are very similar

#### **Examples:**

| Metabolite                | $\mathrm{mol}\;\mathrm{I}^{-1}$ | Metabolite           | $\mathrm{mol}\;\mathrm{I}^{-1}$ | Metabolite              | $$ mol $$ I $^{-1}$                    |  |
|---------------------------|---------------------------------|----------------------|---------------------------------|-------------------------|----------------------------------------|--|
| Glutamate                 | $9.6 \times 10^{-2}$            | UDP-glucuronate (51) | $5.7 \times 10^{-4}$            | N-Acetyl-ornithine (79) | e ( <b>79</b> ) 4.3 × 10 <sup>-5</sup> |  |
| Glutathione               | $1.7 \times 10^{-2}$            | ADP                  | $5.6 \times 10^{-4}$            | Gluconate (80)          | $4.2 \times 10^{-5}$                   |  |
| Fructose-1,6-bisphosphate | $1.5 \times 10^{-2}$            | Asparagine (52)      | $5.1 \times 10^{-4}$            | Malonyl-CoA (81)        | $3.5 \times 10^{-5}$                   |  |
| ATP                       | $9.6 \times 10^{-3}$            | α-Ketoglutarate      | $4.4 \times 10^{-4}$            | Cyclic AMP (82)         | $3.5 \times 10^{-5}$                   |  |

Extracted from Bennett et al.: some of the most abundant small molecules in E. coli

#### **Metabolomics Techniques**

- Fundamentally two types of approaches
  - Targeted metabolomics
    - Identify only a well-defined subset of metabolites, but those with higher accuracy (hundreds?)
    - All of these metabolites can then be identified
  - Non-targeted metabolomics (metabolic profiling)
    - Try to see as much of the metabolome as possible (thousands and more)
    - Majority of metabolites can be seen
    - Only a small fraction will be identified
- Similarly, there is also targeted and non-targeted proteomics
- In proteomics, the identification problem is less difficult, though, which is why this distinction is more relevant in metabolomics (where identification is much harder)

#### **Metabolite Quantification**

- Label-free proteomics is similar to non-targeted metabolomics
- Overall workflow is identical
  - Feature finding
  - Map alignment
  - Feature linking
- Feature-finding approaches are algorithmically similar to those used in proteomics
  - Mass traces usually at the heart of the algorithm
  - Assembly into features can be done similarly
- However, there are some differences
  - Isotopic patterns differ from proteomics (no averagine!)
  - Mass range and charge states are different

## Feature Finding – Terms



1. Find features in all maps



- 1. Find features in all maps
- 2. Align maps



- 1. Find features in all maps
- 2. Align maps
- 3. Link corresponding features



- 1. Find features in all maps
- 2. Align maps
- 3. Link corresponding features
- 4. Identify features



- 1. Find features in all maps
- 2. Align maps
- 3. Link corresponding features
- 4. Identify features
- 5. Quantify



#### Feature Finding in MTX – Issues

- Proteomics feature finding algorithms make extensive use of the averagine hypothesis: peptides have a well-defined average composition
- Metabolites are chemically much more diverse than peptides
- Feature finding algorithms are often very sensitive to the choice of parameters
- Tuning these parameters can be a challenge
- Sensitivity is often an issue in feature finding: distinguishing signal from noise can be a challenge
- Lack of sensitivity is often a problem for large-scale studies missing values

XCMS is a Bioconductor package, written in R

## Key ideas

- Extract mass traces by binning peaks w.r.t. m/z
- Treat mass bins as distinct mass traces
- Detect peaks in these mass traces using standard methods from signal processing
- Align detected mass traces in the RT dimension across maps using nonlinear de-warping





- XCMS has become the quasi standard for LC-MS metabolomics data analysis
- Recent versions include more advanced methods, including wavelet peak detection
- For many tasks (e.g., biomarker detection), the identification of differential mass traces is sufficient (lower complexity of metabolomics data sets)
- Other software packages also assemble mass traces back to features (e.g., OpenMS FeatureFinderMetabo)
- Advantages here:
  - Profit from additional information, increase specificity
  - Reduced number of signals (multiple mass traces per feature)

## **OpenMS - Metabolite Feature Finding**



## **Algorithmic Overview**



#### **Mass Trace Detection**



 $\sigma_{\rm pp}^2 \approx 0.0000037 \, \text{dr}$  param

A mass spectrometric peak p is given by

$$p = (t, m, i)$$

t: retention time, m: mass-to-charge ratio, i: intensity

A mass trace T is a list of peaks:

$$T = (p_1, p_2, ..., p_k, p_l, ..., p_n)$$
  $t_k < t_l \forall k < l$ 

- m/z error model is adaptive
- Online Gaussian density estimation

$$\mu_{n+1} = \frac{w_n \cdot \mu_n + i_{n+1} \cdot m_{n+1}}{w_n + i_{n+1}} \qquad \sigma_{n+1}^2 = \frac{w_n \cdot \sigma_n^2 + i_{n+1} \cdot (m_{n+1} - \mu_{n+1})^2}{w_n + i_{n+1}}$$
centroid m/z
$$m/z = \frac{v_n \cdot \mu_n + i_{n+1} \cdot m_{n+1}}{w_n + i_{n+1}}$$

$$m/z = \frac{v_n \cdot \sigma_n^2 + i_{n+1} \cdot (m_{n+1} - \mu_{n+1})^2}{w_n + i_{n+1}}$$

$$w_n = \sum_{k=1}^{n} i_k$$

$$\mu_n - 3 \cdot \sigma_n \le m_{n+1} \le \mu_n + 3 \cdot \sigma_n$$
weight
$$m/z \text{ constraint}$$

 $T = (p_0)p_1, p_2, p_3, p_4, p_2, p_0, p_1, p_2, \dots, p_{11})$ 

## **Peak Separation**

Split chromatographic peaks overlapping in retention time



Kenar et al., Mol. Cell. Prot., 2014, 13(1):348-59. doi: 10.1074/mcp.M113.031278

## **Feature Assembly**

- Identify mass traces belonging to the same feature
- Multiple explanations are possible
- Create all potential hypotheses and score them



# Feature Scoring - m/z



• m/z distances  $T_0$  and  $T_j$ :

$$\Delta m(j) = \left| \overline{m}_0 - \overline{m}_j \right|$$

Theoretical m/z distances:

$$\mu(j) = 1.0033 \, \text{Da} \cdot \frac{j}{z}$$

• Mass errors for  $T_0$  and  $T_j$ :

$$\sigma^2(j) = \sigma_0^2 + \sigma_j^2$$

Pairwise scoring function:

$$S_{\Delta m}(j) = \begin{cases} e^{-\frac{(\Delta m(j) - \mu(j))^2}{2\sigma^2(j)}}, & \text{if } \mu(j) - 3 \cdot \sigma(j) \le \Delta m(j) \le \mu(j) + 3 \cdot \sigma(j) \\ 0 & \text{else.} \end{cases}$$

## Feature Scoring – RT



RT shifts between T<sub>0</sub> and T<sub>j</sub>:

$$\Delta t(j) = \left| \overline{t_0} - \overline{t_j} \right|$$

Gaussian error model with

$$\mu_{\Delta RT} = 0 \qquad \sigma_{\Delta RT}^2 = \left(\frac{\Delta t_{0.5}}{2\sqrt{2\ln 2}}\right)^2$$

• Pairwise scoring function:

$$S_{\Delta RT}(j) = \begin{cases} e^{-\frac{(\Delta t(j))^2}{2\sigma_{\Delta t}^2}}, & \text{if } -3 \cdot \sigma_{\Delta t} \leq \Delta t(j) \leq 3 \cdot \sigma_{\Delta t} \\ 0 & \text{else.} \end{cases}$$

#### Feature Scoring – Intensity

- Problem: There is no 'averagine' for metabolites
- Idea
  - Enumerate metabolite compositions and learn intensities
  - 'Golden rules' describe likely chemistry (Kind & Fiehn, BMC Bioinfo, 2007)
  - Generate all compositions, remove unlikely ones based on heuristics





## Feature Scoring – Intensity



Intensity ratio of T<sub>0</sub> and T<sub>i</sub>:

$$r(j) = \frac{i_j}{i_0}$$

Assess if valid isotope ratios:



Yes, it is a legal isotope pattern, **keep it**Or
No, it is not a legal isotope pattern, **discard it** 

## **Quantification Linearity – Spike-In**



## **Sensitivity – Human Plasma**



## **Specificity – Synthetic Data**

#### Benchmarking feature detection algorithms is HARD

- Multiple metrics are required: linearity, sensitivity, specificity
- Sensitivity needs to be balanced with specificity
- Experimental data does not come with a well-defined ground truth

#### Idea

- Simulated LC-MS data with known composition
- Take a well-defined experimental dataset (identification lists from a metabolomics study, plant metabolites)
- OpenMS LC-MS simulator was expanded to generate metabolite data

| Method      | Recall | Precision   | F-score |
|-------------|--------|-------------|---------|
| OpenMS      | 96%    | <b>97</b> % | 0.97    |
| XCMS/Camera | 88%    | 37%         | 0.52    |

# NON-TARGETD METABOLOMICS WITH OPENMS

- Workflows for non-targeted metabolomics
- Metabolomics workflows with OpenMS in KNIME
- Integration into Compound Discoverer



#### **Metabolomics – Biomarker ID**



- Complex workflow analyzing a diabetes-related metabolomics biomarker study
  - Data preprocessing (yellow)
  - Quantification (purple)
  - Identification based on accurate mass/HMDB (gray)
  - Detection of distinctive features, statistics (green/gray)
  - Reporting of differential features and their structures (orange)

#### **Metabolite Quantitation**



## **Data Table Magic**



| 0 10       |             |             |            | 0 1 14     | 0           |            |             |
|------------|-------------|-------------|------------|------------|-------------|------------|-------------|
| Row ID     | centroid.rt | centroid.mz | <br>charge | Control_1  | Control_2   | Sample_2   | Sample_2    |
| FEATURE 1  | 267.2673    | 163.0753568 | <br>1      | 5288099840 | 50020923440 | 5288099840 | 50020923440 |
| FEATURE 2  | 318.71268   | 163.0753568 | <br>1      | 18835900   | 17835200    | 18835900   | 17835200    |
| FEATURE 3  | 336.29508   | 163.0753568 | <br>1      | 7285210    | 6285210     | 7285210    | 6285210     |
| FEATURE 4  | 419.17302   | 179.0702718 | <br>1      | 175022000  | 105022000   | 175022000  | 105022000   |
| FEATURE 5  | 274.60434   | 179.0702718 | <br>1      | 44317400   | 33317400    | 44317400   | 33317400    |
| FEATURE 6  | 325.94712   | 179.0702718 | <br>1      | 11875200   | 12879200    | 11875200   | 12879200    |
| FEATURE 7  | 550.42272   | 179.0702718 | <br>1      | 4871360    | 5071360     | 4871360    | 5071360     |
| FEATURE 8  | 351.40896   | 179.0702718 | <br>1      | 2919350    | 1019350     | 2919350    | 1019350     |
| FEATURE 9  | 460.4874    | 179.0702718 | <br>1      | 2021340    | 3221340     | 2021340    | 3221340     |
| FEATURE 10 | 571.89324   | 179.0702718 | <br>2      | 1546820    | 1446820     | 1546820    | 1446820     |
| FEATURE 11 | 380.23242   | 179.0702718 | <br>2      | 1993120    | 1893120     | 1993120    | 1893120     |
| FEATURE 12 | 264.16152   | 195.0651868 | <br>2      | 269592992  | 279592532   | 269592992  | 279592532   |
| FEATURE 13 | 403.72314   | 195.0651868 | <br>2      | 21862600   | 20342600    | 21862600   | 20342600    |
| FEATURE    |             |             | <br>       |            |             |            |             |

## **Multiple Hypothesis Testing**



#### **Metabolite ID**



#### Multiple ID strategies

- Accurate mass
- Retention time database
- Retention time prediction
- Spectral matching

#### **KNIME** provides

- Online access to structure databases
- Structure visualization
- Cheminformatics
  - Metabolization
  - Substructure search



#### References

#### XCMS

• C.A. Smith, E.J. Want, G.C. Tong, R. Abagyan, and G. Siuzdak. XCMS: Processing Mass Spectrometry Data for Metabolite Profiling Using Nonlinear Peak Alignment, Matching, and Identification. Anal. Chem., 2006,

#### FeatureFinderMetabo

Kenar, E, Franken, H, Forcisi, S, Wörmann, K, Häring, H, Lehmann, R, Schmitt-Kopplin, P, Zell, A, and Kohlbacher, O (2014). Automated Label-Free Quantification of Metabolites from LC-MS Data. Mol. Cell. Prot., 13(1):348-59. <a href="http://dx.doi.org/10.1074/mcp.M113.031278">http://dx.doi.org/10.1074/mcp.M113.031278</a>