```
# .define.fonts <- function () {</pre>
    quartzFonts(avenir = c('Avenir Book', 'Avenir Black', 'Avenir Book Oblique', 'Avenir Black')
#
                  helvetica = c('Helvetica New Light', 'Helvetica New Bold', 'Helvetica New Light'
                  cmodern = c('CMU Serif', 'CMU Serif Extra','CMU Classical Serif','CMU Serif Ext
#
# }
# .define.fonts()
library(extrafont)
## Registering fonts with R
loadfonts()
## .Keyboard already registered with pdfFonts().
## Andale Mono already registered with pdfFonts().
## More than one version of regular/bold/italic found for Apple Braille. Skipping
setup for this font.
## AppleMyungjo already registered with pdfFonts().
## Arial Black already registered with pdfFonts().
## Arial already registered with pdfFonts().
## Arial Narrow already registered with pdfFonts().
## Arial Rounded MT Bold already registered with pdfFonts().
## Arial Unicode MS already registered with pdfFonts().
## Bodoni Ornaments already registered with pdfFonts().
## Bodoni 72 Smallcaps already registered with pdfFonts().
## No regular (non-bold, non-italic) version of . Skipping setup for this font.
## No regular (non-bold, non-italic) version of Brush Script MT. Skipping setup for
this font.
```

```
## Comic Sans MS already registered with pdfFonts().
## Courier New already registered with pdfFonts().
## No regular (non-bold, non-italic) version of DIN Alternate. Skipping setup for
this font.
## No regular (non-bold, non-italic) version of DIN Condensed. Skipping setup for
## Georgia already registered with pdfFonts().
## Impact already registered with pdfFonts().
## Khmer Sangam MN already registered with pdfFonts().
## Lao Sangam MN already registered with pdfFonts().
## Luminari already registered with pdfFonts().
## Microsoft Sans Serif already registered with pdfFonts().
## Tahoma already registered with pdfFonts().
## Times New Roman already registered with pdfFonts().
## Trattatello already registered with pdfFonts().
## Trebuchet MS already registered with pdfFonts().
## Verdana already registered with pdfFonts().
## Webdings already registered with pdfFonts().
## Wingdings already registered with pdfFonts().
## Wingdings 2 already registered with pdfFonts().
```

```
## Wingdings 3 already registered with pdfFonts().
## More than one version of regular/bold/italic found for CMU Bright. Skipping setup
for this font.
## No regular (non-bold, non-italic) version of CMU Classical Serif. Skipping setup
for this font.
## CMU Concrete already registered with pdfFonts().
## CMU Sans Serif already registered with pdfFonts().
## CMU Sans Serif Demi Condensed already registered with pdfFonts().
## CMU Serif already registered with pdfFonts().
## No regular (non-bold, non-italic) version of CMU Serif Extra. Skipping setup
for this font.
## No regular (non-bold, non-italic) version of CMU Serif Upright Italic. Skipping
setup for this font.
## More than one version of regular/bold/italic found for CMU Typewriter Text. Skipping
setup for this font.
## CMU Typewriter Text Variable Width already registered with pdfFonts().
```

## 1 Get the data

### 2 Plots



Figure 1: Compare distributions of the various transformations of RT against random samples from normal distributions with the same mean and sd to see which transformations best approximate normal distributions



Figure 2: font example



Figure 3: Show how transformations of RT affect distribution of times, and how they affect which times are outliers.

# How mean times for individual subjects and items vary with respect to the grand mean Log RT



Figure 4: Show how mean times for individual subjects and items vary with respect to the grand mean Log RT.



Figure 5: Plot main effects on several transformations



Figure 6: Just the main effects



Figure 7: Main effects over item ratios



Figure 8: 2-way interactions over items



Figure 9: Plot vagueness by number interaction over items



Figure 10: 3 way interactions



Figure 11: Plot vagueness by number by quantity over items.



Figure 12: 4 way interaction



Figure 13: 4 way interaction split over items



Figure 14: 4 way interaction split over items showing ratio of item dots.

# Discriminability of each item, expressed as ratios between array magnitudes



Figure 15: Show compression of item ratios

## 3 Lmer model

#### load("data\_processed.Rda")

```
v5 <- lmerTest::lmer(data=dd,
RT_log ~
c_Vag + c_Num + c_Qty + c_Ord +
c_Num:c_Vag:c_Qty +
item_mean_ratio +
s_Trl +
RTprev_log +
nchar_instr +
(1+c_Vag + c_Num + c_Qty + c_Ord|Subject))
v5b <- lme4::lmer(data=dd,
RT_log ~
c_Vag + c_Num + c_Qty + c_Ord +
c_Num:c_Vag:c_Qty +
item_mean_ratio +
s_Trl +
RTprev_log +
nchar_instr +
(1+c_Vag + c_Num + c_Qty + c_Ord|Subject))
```

```
summary(v5)
## Linear mixed model fit by REML t-tests use Satterthwaite approximations
## to degrees of freedom [lmerMod]
## Formula: RT_log ~ c_Vag + c_Num + c_Qty + c_Ord + c_Num:c_Vag:c_Qty +
  item_mean_ratio + s_Trl + RTprev_log + nchar_instr + (1 +
##
     c_Vag + c_Num + c_Qty + c_Ord | Subject)
##
   Data: dd
##
## REML criterion at convergence: 11474.8
## Scaled residuals:
## Min 1Q Median
                         3Q
## -4.5470 -0.6351 -0.0955 0.5372 5.0914
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## Subject (Intercept) 0.153949 0.39236
         ##
##
          ##
                    0.001559 0.03949 -0.13 0.02 -0.39 -0.52
##
            0.249734 0.49973
## Residual
```

```
## Number of obs: 7677, groups: Subject, 30
## Fixed effects:
##
                     Estimate Std. Error df t value Pr(>|t|)
## (Intercept)
                   6.400e+00 1.252e-01 2.600e+02 51.112 < 2e-16 ***
## c_Vag
                   6.094e-02 1.387e-02 3.300e+01 4.393 0.000112 ***
                  -4.336e-01 7.515e-02 2.900e+01 -5.770 2.97e-06 ***
## c_Num
                  -6.907e-02 2.005e-02 2.900e+01 -3.445 0.001743 **
## c_Qty
## c_Ord
                    1.796e-02 1.350e-02 5.100e+01
                                                    1.331 0.189164
                  7.714e-01 4.927e-02 7.551e+03 15.658 < 2e-16 ***
## item_mean_ratio
                   -1.070e-01 5.807e-03 7.558e+03 -18.421 < 2e-16 ***
## s_Trl
## RTprev_log 6.047e-02 9.692e-03 7.594e+03 6.239 4.63e-10 ***
## nchar_instr 6.086e-03 1.944e-03 7.551e+03 3.131 0.001749 **
## c_Vag:c_Num:c_Qty 1.049e-01 4.607e-02 7.551e+03 2.278 0.022742 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Correlation of Fixed Effects:
##
    (Intr) c_Vag c_Num c_Qty c_Ord itm_m_ s_Trl RTprv_ nchr_n
## c_Vag
             0.083
            -0.360 -0.337
## c_Num
## c_Qty
             0.067 0.117 -0.278
## c_Ord -0.051 0.007 -0.206 -0.228
## item_men_rt -0.257 -0.004 0.001 0.000 -0.001
## s_Trl -0.104 0.003 -0.001 -0.002 0.006 -0.017
## RTprev_log -0.587 0.006 -0.004 -0.003 0.019 -0.015 0.185
## nchar_instr -0.505  0.237 -0.034  0.018  0.000 -0.017  0.000  0.006
## c_Vg:c_N:_Q 0.070 -0.033 0.005 -0.003 0.000 0.002 -0.001 -0.002 -0.138
```

#### print(xtable(coef(summary(v5b))))

|                     | Estimate | Std. Error | t value |
|---------------------|----------|------------|---------|
| (Intercept)         | 6.40     | 0.13       | 51.11   |
| $c_{-}Vag$          | 0.06     | 0.01       | 4.39    |
| $c_{-}Num$          | -0.43    | 0.08       | -5.77   |
| $c_{-}Qty$          | -0.07    | 0.02       | -3.45   |
| $c_{-}Ord$          | 0.02     | 0.01       | 1.33    |
| $item\_mean\_ratio$ | 0.77     | 0.05       | 15.66   |
| $s_{-}Trl$          | -0.11    | 0.01       | -18.42  |
| $RTprev_log$        | 0.06     | 0.01       | 6.24    |
| $nchar\_instr$      | 0.01     | 0.00       | 3.13    |
| $c_Vag:c_Num:c_Qty$ | 0.10     | 0.05       | 2.28    |

```
cat("R^2")
## R^2
```

```
cor(fitted(v5), dd$RT_RecSqt)^2
## [1] 0.5095834
```

```
par(mfrow=c(3,4), family='cmodern')
plotLMER.fnc(v5)

## effect size (range) for c_Vag is 0.03470056

## effect size (range) for c_Num is 0.4073765

## effect size (range) for c_Qty is 0.09530422

## effect size (range) for c_Ord is 0.0179595

## effect size (range) for item_mean_ratio is 0.2346348

## effect size (range) for s_Trl is 0.369093

## effect size (range) for RTprev_log is 0.2759498

## effect size (range) for nchar_instr is 0.05477539

## Error in plot.new(): figure margins too large
```

Plot model coefficients and ci's

```
e=data.frame(coef=summary(v5)$coef[-1,1]) # estimates, without intercept
q=as.data.frame(confint(v5, method='Wald')[18:26,1:2])
eq=cbind(e,q)
y=eq[rev(rownames(eq)),]
par(mar=c(4,10,1,1))
plot(y=1:nrow(y), x=y$coef, xlim=range(y$"2.5 %", y$"97.5 %"), type='n', axes=F, xlab="", ylab="", segments(y0=1:nrow(y), y1=1:nrow(y), x0=y$"2.5 %", x1=y$"97.5 %", lwd=.55)
points(y=1:nrow(y), x=y$coef, pch=20, cex=.75)
abline(v=0, lty=3, col='grey')
axis(2, labels=row.names(y), at=1:nrow(y), las=1)
axis(1, las=1)
mtext("estimate", side=1, line=2.5, cex.lab=1, las=1)
box(col='grey')
```

#### Model criticism baayen plots

```
# Baayen 4-plot model criticism
par(mfrow=c(1,4), pty='s')
# create scaled residuals
dd$rstand = as.vector(scale(resid(v5)))
# plot scaled residuals density
plot(density(dd$rstand))
# plot sample quantiles versus theoretical quantiles
qqnorm(dd$rstand, cex=.5)
qqline(dd$rstand)
# plot standardised residuals versus fitted values
plot(dd$rstand ~ fitted(v5), pch='.')
# absolute standardised residuals greater than 2.5 are candidates for being outliers, the abline
abline(h=c(-2.5,2.5))
```



Figure 16: Estimates plot



Figure 17: caption