Predicting Used Car Sales Price using Applied ML

DSCI 631 Group 7: John Johnson, Jacob Linder, Katy Matulay

Dataset

- Source: <u>Kaggle</u>
- 3 million US used cars
- Data source: Cargurus, Sept 2020
- 10 gb dataset, sub-sampled to 730k rows
- 66 columns high dimensionality
- Pre-processing required to extract numeric features

Column Name	Datatype	fueltankvolume	String	model_name	String
vin	String	fuel_type	String	owner_count	Float
back_legroom	String	has_accidents	Boolean	power	String
bed	String	height	String	price	Float
bed_height	String	highway_fuel_economy	Float	salvage	Boolean
bed_length	String	horsepower	Float	savings_amount	Integer
body_type	String	interior_color	String	seller_rating	Float
cabin	String	isCab	Boolean	sp_id	Float
city	String	is_certified	Boolean	1.00	String
city_fuel_economy	Float	is_cpo	Boolean	sp_name	-
combine_fuel_economy	Float	is_new	Boolean	theft_title	Boolean
daysonmarket	Integer	is_oemcpo	Boolean	torque	String
dealer_zip	String	latitude	Float	transmission	String
description	String	length	String	transmission display	String
engine_cylinders	String	listed_date	String	trimId	String
engine_displacement	Float	listing_color	String	trim_name	String
engine_type	String	listing_id	Integer	vehicle_damage_category	Float
exterior_color	String	longitude	Float	wheel_system	String
fleet	Boolean	main_picture_url	String	wheel_system_display	String
frame_damaged	Boolean	major_options	String	wheelbase	String
franchise_dealer	Boolean	make_name	String	width	String
franchise_make	String	maximum_seating	String	year	Integer
front_legroom	String	mileage	Float	yeur	integer

Project Goals

- Identify reduced feature subset
- Create a pre-processing pipeline for data cleaning, OHE, and standardization
- Apply ML Models to predict "Price":
 - Linear Regression
 - XGBoost
 - SVM Regression
- Tune hyper parameters
- Compare performance

Dataset

		vin	back_legr	oom	bed h	ed_height	bed_le	ngth l	body_type	cabin	city	city_fue	l_economy	combine_f	uel_econom	y daysonma:	rket de
0	ZACNJABB	5KPJ92081	35	.1 in	NaN	NaN		NaN	SUV / Crossover	NaN	Bayamon		NaN		Na	N	522
1	SALCJ2FX	1LH858117	38	.1 in	NaN	NaN		NaN	SUV / Crossover	NaN	San Juan		NaN		Na	N	207
2	JF1VA2M6	7G9829723	35	.4 in	NaN	NaN		NaN	Sedan	NaN	Guaynabo		17.0		Na	N	1233
de	aler_zip	descrip	tion engi	ne_c	ylinde	rs engine	_displac	cement	engine_t	уре ех	terior_col	or fleet	frame_dam	naged fram	nchise_dea	ler franchi	se_make
	00960	[!@@Addii Info@@!]En 2.4L I4 Z	igine:			14		1300.0		14	Solar Yell	ow NaN	ı	NaN		rue .	Jeep
	00922	[!@@Addir Info@@!]Ke Entry,E	yless			14		2000.0		14	Narvik Bla	ack NaN	Ľ.	NaN	× ,	Frue La	and Rover
	00969		NaN		1	H4		2500.0		H4	No	one False		False	٠.	True .	FIAT
mak	e_name m	aximum_sea	ting mile	age	model_	name owner	_count	power	price	salvage	savings_	amount s	eller_ratin	g sp_id	sp_name	theft_title	torque
	Jeep	5 :	seats	7.0	Rene	egade	NaN	177 hp @ 5,750 RPM	23141.0	NaN	ı	0	2	8 370599.0	Flagship Chrysler	NaN	200 lb- ft @ 1,750 RPM
Lan	nd Rover	7 :	seats	8.0		overy Sport	NaN	246 hp @ 5,500 RPM	46500.0	NaN	ı	0	3	0 389227.0	Land Rover San Juan	NaN	269 lb- ft @ 1,400 RPM
	Subaru	5 :	seats	NaN	WR:	X STI	3.0	305 hp @ 6,000 RPM	46995.0	False)	0	Na	N 370467.0	FIAT de San Juan	False	290 lb- ft @ 4,000 RPM

EDA Overview

- Univariate and multivariate analysis
 - O Categorical, Numeric, Boolean
 - o 66 columns
- High dimensionality features
 - color, transmission description, model
 - Options" = 110k
 - 'Ext Color' = 14k

EDA

	price	daysonmarket	year	mileage	owner_count	city_fuel_economy	highway_fuel_economy	horsepower
price	1.000000	0.099929	0.455618	-0.485089	-0.415682	-0.168770	-0.243671	0.588620
daysonmarket	0.099929	1.000000	0.084086	-0.130885	-0.145635	0.017604	0.005218	-0.012847
year	0.455618	0.084086	1.000000	-0.842173	-0.763823	0.169868	0.150757	0.028753
mileage	-0.485089	-0.130885	-0.842173	1.000000	0.736786	-0.158930	-0.136023	-0.029965
owner_count	-0.415682	-0.145635	-0.763823	0.736786	1.000000	-0.142355	-0.100897	0.001338
city_fuel_economy	-0.168770	0.017604	0.169868	-0.158930	-0.142355	1.000000	0.934032	-0.660811
highway_fuel_economy	-0.243671	0.005218	0.150757	-0.136023	-0.100897	0.934032	1.000000	-0.684933
horsepower	0.588620	-0.012847	0.028753	-0.029965	0.001338	-0.660811	-0.684933	1.000000

New feature: average fuel economy

EDA- Correlation Matrix

POS

- -Horsepower
- -Is new
- -Fuel tank volume
- -Length
- -Franchise dealer
- -Engine displacement

NEG

- -Mileage
- -Owner count
- -Frame damaged

EDA- Multivariate Visualizations

EDA- Visualizations

Data Pre-Processing

- Convert strings → integers
- Null handling
 - Mileage
 - Drop cols with >50% nulls
- Feature engineering/Dimensionality reduction
 - New cols: age, avg fuel economy
- Exported cleaned dataset as parquet
- Test/Train 80/20 split
- OHE and data scaling/standardization using SKlearn pipeline

Linear Regression Model

- Baseline: HuberRegressor, alpha = 0.01,
 epsilon = 1
 - Huber robust to outliers
 - Train CV MAE = 70.95
 - Test CV MAE = 71.75
- Price ranges from \$349 to \$2,698,500
 - Train RMSE = 11204
 - Test RMSE = 10441

Feature Importance

High F-values

- Mileage
- Horsepower
- Is new
- Engine displacement
- Age

Feature Selection

- SelectFromModel + LR Model
- threshold = 0.75*mean
 - Identified 10 features:
 - Age
 - Avg fuel economy
 - **■** Engine displacement
 - Front legroom
 - Fuel tank volume
 - Horsepower
 - Mileage
 - Owner count
 - Savings amount
 - wheelbase

- Reduced feature model performance scores slightly lower:
 - Train CV MAE = 75.16
 - Test CV MAE = 76.45
- Training time improved

XGBoost Model

- Model 1: L2 regularization (reg_lambda = 0.5)
 - Train Scores
 - RMSE= 4664, MAE = 2559
 - CV MAE = 51.06
 - Test Scores
 - RMSE = 5414, MAE = 2608
 - CV MAE = 51.02
- Model 2: L1 regularization (reg_alpha = 0.5)
 - Train Scores
 - RMSE = 4681, MAE = 2544
 - CV MAE =51.17
 - Test Scores
 - RMSE = 5444, MAE =2589
 - CV MAE = 51.2

```
#1st model for XGBoost
params = {
    'n_jobs':-1,
    'n_estimators':100,
    'max_depth':5,
    'learning_rate':0.3,
    'reg_lambda':0.5 #L2 regularization
}
xgb_reg = XGBRegressor(**params)
xgb_reg.fit(x_train,y_train)
```

XGBoost Feature Importance

- Model 1 / Model 2 Highest
 - Plckup Truck body type
 - Horsepower
 - Mileage
 - Flex fuel
 - o AWD
 - o FWD

SVM Regression Model

- Model 1: Epsilon 0.1
 - Train MAE = 15604.16
 - Test MAE = 15581.77
- RMSE
 - Train RMSE = 26703.70
 - Test RMSE = 25973.58
- Model generalizes well, but overall performance is disappointing.

SVM Regression + Feature Selection

- SelectFromModel +SVM Model
- threshold = 0.75*mean
 - Identified 23 features:
 - 'body_type_Hatchback',
 - 'body_type_Minivan',
 - 'body_type_Pickup Truck',
 - 'body_type_SUV / Crossover',
 - 'body_type_Wagon',
 - 'fuel type Diesel'.
 - 'fuel type Flex Fuel Vehicle',
 - 'fuel type Gasoline'.
 - 'transmission_CVT',
 - 'transmission M',
 - 'wheel_system_4WD',
 - 'wheel_system_4X2',
 - 'wheel_system_AWD',
 - 'wheel_system_FWD',
 - 'wheel_system_RWD',
 - 'age',
 - 'frame_damaged',
 - 'franchise dealer',
 - 'fuel_tank_volume',
 - is new'.
 - 'maximum_seating',
 - owner count',
 - 'seller_rating'

- Improved model performance on reduced feature set:
 - Train RMSE = 13684
 - Test RMSE = 13105
 - Train MAE = 6473.59
 - Test MAE = 6503.14
- Training time improved
- Model continues to generalize well and performance vastly improved.
- CV not performed due to long training time and failure to converge with default iterations

Comparison

- 1. XGBoost Model 1 had the best all around scores, but longest training time
- 2. Features of importance across models were also the most correlated to price
 - a. Horsepower (0.59)
 - b. Mileage (-0.49)
 - c. Age/Year (0.46)
 - d. Pickup Truck (0.20)

Model	Best MAE
Linear Regression	71.75
XGBoost	51.02
SVM Regression w/ feature selection	6503*

Conclusion & Future Works

- Removal of price outliers: focus on "newer typical" used car market improved performance and MAE
- Increase dataset size
- Advanced feature selection, PCA, dimensionality reduction

	price									
	mean	min	max	count						
age										
1	20976.354839	495.0	599000.0	682						
2	8973.505638	349.0	3195000.0	37962						
3	14860.983726	1699.0	1299950.0	83570						
4	31880.541226	4990.0	2698500.0	608007						

Workload Distribution

- EDA and Pre-Processing: all members
- Linear model- Katy
- XGBoost- Jacob
- SVR John