Ensemble Time Series Forecasting with Applications in Renewable Energy

Candidate: Ren Ye Supervisor: A/P P. N. Suganthan

ERI@N Joint Industry Programme (JIP)
EDB Energy Innovation Programme Office (EIPO) PhD Scholarship

March 21, 2016

Outline

Introduction

Motivation

Background

Ensemble Time Series Forecasting

Competitive Ensemble Methods

Cooperative Ensemble Methods

Empirical Mode Decomposition

EMD-ANN/SVR with Input Vector Reconstruction

Ensemble EMD

Ensemble EMD-ANN/SVR for Wind/Solar Forecasting

Random Vector Functional Link Network

Variations on Structure

RVFL for Wind/Solar Forecasting

RVFL for Wind Power Ramp Forecasting

Conclusion & Future Work

Conclusion

Future Work

Outline

Introduction

Introduction

Motivation

Background

Ensemble Time Series Forecasting

Competitive Ensemble Method

Cooperative Ensemble Methods

Empirical Mode Decomposition

EMD-ANN/SVR with Input Vector Reconstruction

Ensemble EMD

Ensemble EMD-ANN/SVR for Wind/Solar Forecasting

Random Vector Functional Link Network

Variations on Structure

RVFL for Wind/Solar Forecasting

RVFL for Wind Power Ramp Forecasting

Conclusion & Future Work

Conclusion

Future Work

Renewable Energy

Why Renewable Energy? ⇒ Advantages

- Abundant
- Sustainable
- Environmental Friendly

Why NOT Renewable Energy? ⇒ Challenges

- Unstable
- ► Time/Weather Dependent
- ► High Initial Cost

Forecasting

Benefit of Forecasting

- Reduce Reserve
- Reduce Risk of Overloading
- Precaution on Extreme Weather Conditions

Application of Forecasting

- Very Short Term: active generator control
- ► Short Term: power grid scheduling
- ▶ Mid & Long Term: maintenance scheduling

Development of Forecasting

Intuition observation; empirical experiences

Statistics exponential smoothing; autoregressive moving average

Physics, Meteorology & Geography numeric weather prediction

Computational Intelligence neural networks; fuzzy systems, etc.

Wind Energy¹

$$P = \frac{1}{2}\rho_a A_t C_p(\lambda, \beta) v^3$$

where ρ_a : air density, A_t : area of the turbine, $C_p(\lambda, \beta)$: efficiency, λ : tip speed ratio, β : blade pitch, v: up-wind speed.

Wind Power vs Wind Speed Curve

Soman et al. 2010.

Wind and Solar Energy Basics

Solar Energy¹

 $G = \alpha G_0 (1+0.033\cos\frac{360d}{365})\sin\theta_s$ $\sin\theta_s = \cos h\cos\delta\cos\phi + \sin\delta\sin\phi$ where θ_s : solar elevation angle, h: solar hour angle, δ : sun declination, ϕ : local latitude, d: date sequence of a year, α : cloud/haze cover index,

 $G_0 = 1367W/m^2$: solar irradiance

Solar PV Current-Voltage and Power

constant.

Wang et al. 2012.

Time Series Basics

Probability Density Function (PDF) distribution. likelihood of value

Stationary

statistical characteristics are independent of the time when it is observed.

Weakly stationary

- 1. the mean of the TS is constant and does not depend on time
- 2. the autocorrelation function (ACF) depends on s and t only through their difference |s-t|.

Time Series Basics

Autocorrelation Function

$$\begin{split} \gamma(s,t) &= \mathrm{E}[(X_s - \mu_s)(X_t - \mu_t)] \\ \rho(s,t) &= \frac{\gamma(s,t)}{\sqrt{\gamma(s,s)\gamma(t,t)}} = \frac{\gamma(s,t)}{|\sigma_s \sigma_t|} \end{split}$$

where μ : sample mean, σ : sample standard deviation, γ : auto covariance, ρ : auto correlation

Trend additive term, slowly varying

Seasonality repeated pattern, additive and/or multiplicative

Outline

Introduction

Motivation

Background

Ensemble Time Series Forecasting

Competitive Ensemble Methods

Cooperative Ensemble Methods

Empirical Mode Decomposition

EMD-ANN/SVR with Input Vector Reconstruction

Ensemble EMD

Ensemble EMD-ANN/SVR for Wind/Solar Forecasting

Random Vector Functional Link Network

Variations on Structure

RVFL for Wind/Solar Forecasting

RVFL for Wind Power Ramp Forecasting

Conclusion & Future Work

Conclusion

Future Work

- ► Uses multiple predictors to obtain an aggregated decision which is better than any of the base predictors²
- Three fundamental reasons for the success of ensemble methods: statistical, computational and representational³
- ▶ Bias-variance-covariance decomposition
- Divide and conquer

Opitz and Maclin 1999.

³Dietterich2000ensemble .

Ren, Suganthan, and Srikanth 2015b; Ren, Zhang, and Suganthan 2016.

Bias-variance-covariance decomposition

$$E[\overline{f} - t]^2 = bias^2 + \frac{1}{M}var + (1 - \frac{1}{M})covar$$

$$bias = \frac{1}{M} \sum_{i=1}^{M} (E[f_i] - t)$$

$$var = \frac{1}{M} \sum_{i=1}^{M} E[f_i - E[f_i]]^2$$

$$covar = \frac{1}{M(M-1)} \sum_{i} \sum_{i \neq i} E[f_i - E[f_i]](f_j - E[f_j])$$

where t: target, M: ensemble size, $E(\cdot)$: expectation function, f_i : output from each single model.

Competitive Ensemble Methods

Diversity

Data Diversity

Bagging, boosting, random subspace, spatial correlation

Parameter Diversity

Negative correlation learning, multiple kernel learning, multi-objective optimization

Structural Diversity

Heterogeneous ensemble

Cooperative Ensemble Methods

Preprocessing

Wavelet decomposition

Wavelet-ANN

Empirical mode decomposition

EMD-ANN/SVR

Complex Value

Complex value ANN

Linear-residual analysis ARIMA-GARCH

Linear-nonlinear ARIMA-ANN/SVR, RVFL

Converted from ensemble classification SVR-SVC, extreme randomized discretization

Outline

Introduction

Motivation

Background

Ensemble Time Series Forecasting

Competitive Ensemble Methods

Cooperative Ensemble Methods

Empirical Mode Decomposition

EMD-ANN/SVR with Input Vector Reconstruction

Ensemble EMD

Ensemble EMD-ANN/SVR for Wind/Solar Forecasting

Random Vector Functional Link Network

Variations on Structure

RVFL for Wind/Solar Forecasting

RVFL for Wind Power Ramp Forecasting

Conclusion & Future Work

Conclusion

Future Work

Flowchart

Example⁵

Kim and Oh 2009.

Example⁵

⁵ Kim and Oh 2009.

Example⁵

⁵ Kim and Oh 2009.

$$x(t) = \sum_{i=1}^{N} c_i(t) + r_N(t)$$

- Decompose complex time series into simpler time series
- Narrow band, symmetric
- Reveal hidden features/correlations of the original time series

Advantages

- Adaptive
- Local
- Orthogonal
- Completeness

Disadvantages

- Mode mixing
- Uncertain iteration

N. Huang et al. 1998.

EMD-ANN/SVR

Multiple predictors approach

$$\hat{x}(t+h) = \sum_{i=1}^{N} f_i(c_i(t), \dots, c_i(t-p_i+1), \theta_{c_i}) + f(R_N(t), \dots, R_N(t-l_i+1), \theta_R)$$

 $\hat{x}(t+h)$: h-step ahead predicted value, $c_i(t)$: ith decomposed IMF, $R_N(t)$: residue, p_i : ith lag

- $\triangleright N+1$ predictor needed
- Additive error

EMD-ANN/SVR

Single predictor approach⁷

Ensemble TS

$$\hat{x}(t+h) = f(c_i(t), R_N(t), \theta), i \in \{1, \dots, N\}$$

 $\hat{x}(t+h)$: h-step ahead predicted value, $c_i(t)$: ith decomposed IMF, $R_N(t)$: residue, p_i : ith lag

- Reduce computation time
- Sacrifice accuracy
- Issue on feature selection

Han and Zhu 2011.

Main Algorithm⁸

- 1. Decomposes $\mathbf{x}(t)$ by EMD into a collection of IMFs: $c_i(t)$ $i \in \{1, \ldots, N\}$, and a Residue r_N ,
- 2. Combines the IMFs up-to an optimal lag l based on a feature selection module ⇒ input vector
- 3. Forecast the output from the input vector by ANN/SVR

Advantages

- 1. Does not require more than one predictor to model the decomposed time series ⇒ low computational power
- 2. Retains the importance of autocorrelation of time series

Ren. Suganthan, and Srikanth 2014.

Feature selection

- ▶ PACF selection
- mRMR selection
- 2-days' historical data (FULL)

PACF selection

mRMR selection

- minimum Redundancy Maximum Relevance
- select the top 50% sailent features

$$I(x,y) = -0.5 \ln(1 - \rho(x,y)^2)$$

where x: input feature, y: output data, I: mutual information, ρ : correlation coefficient (usually Pearson's or Spearman's correlation coefficient)

$$x_i = \underset{x_i \in X}{\operatorname{argmax}} I(x_i, y)$$

Repeatedly select:

$$x_j = \underset{x_j \in X}{\operatorname{argmax}} I(x_j, y) - \frac{1}{|S|} \sum_{x_i \in S} I(x_j, x_i)$$

Experiment Setup

- ▶ NDBC sites 41004, 44009, 46077, year 2011.
- ▶ Monthly, 70% for training, 30% for testing.
- ▶ 1 12 hour ahead forecasting
- Error metric: nRMSE, nMAE, MASE

$$\begin{aligned} & \text{nRMSE} = \frac{1}{x_{max} - x_{min}} \sqrt{\text{E}[(\hat{x} - x)^2]} \\ & \text{nMAE} = \frac{1}{x_{max} - x_{min}} \sqrt{\text{E}|\hat{x} - x|} \\ & \text{MASE} = \frac{\sum_{t=1}^{n} |\hat{x} - x|}{\frac{n}{n-1} \sum_{i=2}^{n} |x_i - x_{i-1}|} \\ & \text{sMAPE} = \frac{1}{n} \sum_{i=1}^{n} \frac{|x - \hat{x}|}{(|x| + |\hat{x}|)/2} \times 100\% \end{aligned}$$

where \hat{x} : predicted data, x: desired data, n: number of data points in the time series.

EMD-ANN/SVR with Input Vector Reconstruction

Results and Discussion

Improvement Contributed by EMD to ANN, Wilcoxon Signed Rank Test

Results and Discussion

Improvement Contributed by EMD to SVR, Wilcoxon Signed Rank Test

Results and Discussion

Feature Selection Comparison (PACF vs FULL and mRMR), Nemenyi Test

Results and Discussion

Comparison with Benchmark Methods (vs Single⁸ and HL⁹), Nemenyi Test

⁸ Han and Zhu 2011.

⁹ Ye and Liu 2011.

Concluding Remarks

- ▶ Improvement of EMD on SVR is significant
- ► PACF reduces the input space complexity without degrading the performance
- Outperformed two benchmark methods and comparable with multiple predictor based EMD-SVR

Noise assisted ensemble EMD (EEMD)¹⁰

Noise assisting

- Uncorrelated Gaussian noise
- Multiple Trials
- ▶ Noise may cancel each other after aggregation

Side effect

- Completeness violated
- Large number of trials

Wu and Norden E. Huang 2009.

Noise assisted ensemble EMD (EEMD) 10

- 1. Create a collection of noise added original time series: $x^{i}(t) = x(t) + \varepsilon^{i}(t), i \in \{1, \dots, I\}, \text{ where } \varepsilon(t) \text{ are }$ independent Gaussian white noise.
- 2. For each $x^{i}(t)$, apply EMD to obtain the decomposed IMFs and residue: $x^i(t) = \sum_{i=1}^N c_i^i + r_N^i$.
- 3. In order to reconstruct back the original time series, one just needs to average on all trials:

$$x(t) = \frac{1}{I} (\sum_{i=1}^{I} \sum_{j=1}^{N} c_j^i + r_N^i) + \varepsilon_I$$

where $\varepsilon_I = \frac{\varepsilon}{\sqrt{I}}$ is the aggregated error.

Wu and Norden E. Huang 2009.

Complementary ensemble EMD (CEEMD)¹¹

Improvement

- Correlated Gaussian noise
- ▶ Noise can 100% cancel each other after aggregation

$$\varepsilon^{i}(t) \in \{\varepsilon_{+}^{i/2}(t), \varepsilon_{-}^{i/2}(t)\}$$

where
$$\varepsilon_{+}^{i/2}(t) + \varepsilon_{-}^{i/2}(t) = 0$$
, $i \in \{1, ..., I\}$.

Side effect

Double the trials

Yeh, Shieh, and N. E. Huang 2010.

Complete ensemble EMD with adaptive noise (CEEMDAN)¹²

Improvement

- Controlled noise generation
- Reduce number of iteration
- Completeness

Side effect

- Sequential, cannot use parallel computing
- Question on noise s.d. selection

Ensemble EMD

Complete ensemble EMD with adaptive noise (CEEMDAN)¹²

¹² Torres et al. 2011.

EEMD vs EMD on Wind Speed Forecasting

Wilcoxon Signed Rank Test among the SVR based Methods

EEMD vs EMD on Wind Speed Forecasting

CPU Time

Ensemble EMD-ANN/SVR for Wind/Solar Forecasting

EEMD vs EMD on Solar Irradiance Forecasting¹³

Wilcoxon Signed Rank Test between the Persistent model and the SVR based Methods

Horizon(h)	SVR	EMD-SVR	EEMD-SVR	CEEMD-SVR	CEEMDAN-SVR
24	0.006	0.999	0.000	0.001	0.001
48	0.017	0.992	0.000	0.006	0.001

Ren, Suganthan, and Srikanth 2015a.

EEMD vs EMD on Solar Irradiance Forecasting¹³

Wilcoxon Signed Rank Test among the SVR based Methods

			CV/D	EMD SVD	•	rformance	CEEMDAN-SVR
			SVK	EIVID-3VK	EEMID-3VK	CEEIVID-3VK	CEEIVIDAIN-3VK
	ъ	SVR	-	0.000	0.993	0.935	0.978
	ahead	EMD-SVR	1	-	1	1	0.999
Ce	ah	EEMD-SVR	0.008	0.000	_	0.0319	0.017
ar	4	CEEMD-SVR	0.075	0.000	0.973	_	0.688
Outperformance	24	CEEMDAN-SVR	0.026	0.001	0.986	0.338	_
per	~	SVR	_	0.001	0.997	0.830	0.986
) In	ahead	EMD-SVR	0.999	_	0.999	0.999	0.999
_		EEMD-SVR	0.003	0.001	_	0.008	0.000
	3	CEEMD-SVR	0.190	0.001	0.993	_	0.604
	48	CEEMDAN-SVR	0.017	0.001	0.999	0.425	_

Ren, Suganthan, and Srikanth 2015a.

Concluding Remarks

Wind Speed Forecasting

- Noise assisted Ensemble EMD-SVR outperform EMD-SVR
- CEEMDAN-SVR has the best performance (accuracy and time)

Solar Irradiance Forecasting

- EMD-SVR underperform SVR and persistent method (mode mixing)
- Noise-assisted ensemble EMD versions have attenuated the mode mixing problem and the performance has been elevated significantly
- ► EEMD-SVR has the best performance

Outline

Introduction

Motivation

Background

Ensemble Time Series Forecasting

Competitive Ensemble Method

Cooperative Ensemble Methods

Empirical Mode Decomposition

EMD-ANN/SVR with Input Vector Reconstruction

Ensemble EMD

Ensemble EMD-ANN/SVR for Wind/Solar Forecasting

Random Vector Functional Link Network

Variations on Structure

RVFL for Wind/Solar Forecasting

RVFL for Wind Power Ramp Forecasting

Conclusion & Future Work

Conclusion

Future Work

Schematic Diagram

Dashed red arrows: direct connections between the input neurons and the output neurons, Dashed black arrows: connections from a bias neuron, $f(\cdot)$: logsig activation function. N: number of samples, M: number of input neurons, K: number of hidden neurons. $w_{m,k}$: weights between the input and hidden layer neurons, $w_{k,l}$: weights between the hidden and output layer neurons and $b_{i,k}$ and $b_{h,i}$: input layer and hidden layer biases.

Feature

Compare with ANN¹⁴

- ▶ No Need backpropagation to train the network
- ightharpoonup Random weights for $w_{m,k}$
- lacktriangle Least square estimation to obtain $w_{k,l}$ and $w_{m,l}$

Variations¹⁷

Method	Input Layer I Bias	Hidden Laye Bias	r Input-Output Connection	Formula
M1	\checkmark	\checkmark	\checkmark	$\begin{array}{l} h_k = f(\sum_{m=1}^{M} w_{m,k} i_m + b_{i,k}) \\ o_l = \sum_{k=1}^{K} w_{k,l} h_k + b_{h,l} + \sum_{m=1}^{M} w_{m,l} i_m + b_{i,l} \end{array}$
M2 15	\checkmark	\checkmark	×	$\begin{array}{l} h_k = f(\sum_{m=1}^{K=M} w_{m,k} i_m + b_{i,k}) \\ o_l = \sum_{k=1}^{K} w_{k,l} h_k + b_{l,l} \\ h_k = f(\sum_{m=1}^{M} w_{m,k} i_m + b_{i,k}) \end{array}$
M3 16	\checkmark	×	\checkmark	$\begin{array}{l} h_k = f(\sum_{m=1}^{M} w_{m,k} i_m + b_{i,k}) \\ o_l = \sum_{k=1}^{K} w_{k,l} h_k + \sum_{m=1}^{M} w_{m,l} i_m + b_{i,l} \end{array}$
M4	\checkmark	×		$h_k = f(\sum_{m=1}^{M} w_{m,k} i_m + b_{i,k})$
M5	×	\checkmark	\checkmark	$o_{l} = \sum_{k=1}^{K} w_{k,l} h_{k}$ $h_{k} = f(\sum_{m=1}^{M} w_{m,k} i_{m})$ $o_{l} = \sum_{k=1}^{K} w_{k,l} h_{k} + b_{k,l} + \sum_{m=1}^{M} w_{m,l} i_{m}$
M6	×	\checkmark	×	$\begin{array}{l} o_{l} = \sum_{k=1}^{K} w_{k,l} h_{k} + b_{h,l} + \sum_{m=1}^{M} w_{m,l} i_{m} \\ h_{k} = f(\sum_{m=1}^{M} w_{m,k} i_{m}) \\ o_{l} = \sum_{k=1}^{K} w_{k} + b_{h,l} \end{array}$
M7	×	×	\checkmark	$\begin{array}{l} h_{k} = \sum_{k=1}^{K} w_{k,l} h_{k} + b_{h,l} \\ h_{k} = f(\sum_{m=1}^{M} w_{m,k} i_{m}) \\ o_{l} = \sum_{k=1}^{K} w_{l} h_{k} + \sum_{m=1}^{M} w_{m,l} i_{m} \end{array}$
M8	×	×	×	$\begin{array}{l} o_{l} = \sum_{k=1}^{K} w_{k,l} h_{k} + \sum_{m=1}^{M} w_{m,l} i_{m} \\ h_{k} = f(\sum_{m=1}^{M} w_{m,k} i_{m}) \\ o_{l} = \sum_{k=1}^{K} w_{k,l} h_{k}, \forall k \in \{1,\ldots,K\}, \ \forall l \in \{1,\ldots,L\} \end{array}$

¹⁵ Schmidt, Kraaijveld, and Duin 1992.

Pao, Park, and Sobajic 1994.

¹⁷ Ren, Suganthan, Srikanth, and Amaratunga 2016.

Influence of Input Layer Bias

Wind Speed Forecasting, Wilcoxon Signed Rank Test

Comparison	Horizon (h)				
	1	4	8	12	
M1 v.s. M5	0.081	0.013	0.011	0.115	
M2 v.s. M6	0.101	0.229	0.008	0.001	
M3 v.s. M7	0.408	0.007	0.002	0.057	
M4 v.s. M8	0.377	0.121	0.012	0.001	

Solar Irradiance Forecasting, Wilcoxon Signed Rank Test

Comparison	Horizo	on (h)
	24	48
M1 v.s. M5	0.694	0.952
M2 v.s. M6	0.910	0.608
M3 v.s. M7	0.435	0.333
M4 v.s. M8	0.805	0.201

Influence of Hidden Layer Bias

Wind Speed Forecasting, Wilcoxon Signed Rank Test

Comparison	Horizon (h)					
	1	4	8	12		
M1 v.s. M3	0.121	0.281	0.313	0.637		
M2 v.s. M4	0.144	0.964	0.242	0.187		
M5 v.s. M7	0.387	0.387	0.006	0.096		
M6 v.s. M8	0.906	0.281	0.523	0.160		

Solar Irradiance Forecasting, Wilcoxon Signed Rank Test

Comparison	Horizo	on (h)
	24	48
M1 v.s. M3	0.026	0.777
M2 v.s. M4	0.847	0.744
M5 v.s. M7	0.675	0.157
M6 v.s. M8	0.142	0.221

Influence of Direct Input-Output Connections

Wind Speed Forecasting, Wilcoxon Signed Rank Test

Comparison	Horizon (h)						
	1	4	8	12			
M1 v.s. M2	0.290	0.002	7.0e-07	3.5e-05			
M3 v.s. M4	0.550	1.8e-04	5.2e-07	1.6e-05			
M5 v.s. M6	0.560	0.002	8.4e-07	1.3e-05			
M7 v.s. M8	0.632	0.002	3.7e-06	2.5e-05			

Solar Irradiance Forecasting, Wilcoxon Signed Rank Test

Comparison	Horizo	on (h)
	24	48
M1 v.s. M2	0.029	0.004
M3 v.s. M4	0.010	0.005
M5 v.s. M6	0.029	0.017
M7 v.s. M8	0.004	0.006

Compare with Benchmark Methods

Wilcoxon Signed Rank Test

	RVFL vs hier	<u>rarchical ensembl</u>	<u>e methods</u>
	Horizon (h)	ARIMA-ANN	ARIMA-SVR
	1	9.09e-13	1.00
딮	4	9.09e-13	0.99
RVFL	8	9.09e-13	0.89
	12	1.18e-13	0.64

RVFL vs other machine learning methods

	Horizon	(h) AN	N S	SVR	RF
	1	0.0	0 60	.125	0.500
긒	4	0.00	0 90	.187	0.437
RVFL	8	0.00	0 60	.437	0.312
_	12	0.0	06 0	.312	0.312

Concluding Remarks

- ▶ Hidden layer bias: no significant improvement
- Input layer bias: improve for wind forecasting only
- Direct input-output connections: significant improvement
- RVFL better than two stage hierarchical ensemble methods (ARIMA-ANN)

Wind Power Ramp¹⁸

$$\Gamma_{ext} = max(P(t, \dots, t + \Delta t)) - min(P(t, \dots, t + \Delta t)) > \Gamma_{val}$$

$$\Gamma_{end} = |P(t + \Delta t) - P(t)| > \Gamma_{val}$$

where P(t): wind power generated at time t, Δt : time interval, Γ_{val} : threshold

Bossavy, Girard, and Kariniotakis 2013.

RVFL for Wind Power Ramp Forecasting

Wind Power Ramp¹⁸

¹⁸ Bossavy, Girard, and Kariniotakis 2013.

Dataset Processing¹⁹

Imbalance

- Upsample minority class training data
- Keep test data untouched
- Use F Score instead of accuracy

$$\begin{array}{c|cccc} & \hat{x} = +1 & \hat{x} = -1 \\ \hline x = +1 & TP & FN \\ \hline x = -1 & FP & TN \\ \end{array}$$

$$\begin{aligned} \operatorname{Recall} &= \frac{TP}{TP + FN} \\ \operatorname{Precision} &= \frac{TP}{TP + FP} \\ F\operatorname{Score} &= 2\frac{\operatorname{Precision} \cdot \operatorname{Recall}}{\operatorname{Precision} + \operatorname{Recall}} \end{aligned}$$

where TP stands for true positive. FNstands for false negative, FP stands for false positive and TN stands for true negative.

Ren. Qiu. et al. 2015.

Classification Performance

Friedman Test

Γ_{ext}				Γ_{end}					
Measur	e 6 H	6 Hour		12 Hour		6 Hour		12 Hour	
	χ^2	p	χ^2	p	χ^2	p	χ^2	p	
	e 4.92								
Precisio	n 1.08	0.781	12.12	0.0069	1.1739	0.759	7.8	0.050	
Recall	8.1875	0.0423	9.72	0.021	7.6957	0.053	4.4667	0.215	

Nemenyi Test

		Γ_{ext}	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					
	ANN	RF	SVM	ANN	RF	SVM		
F Score Precision Recall	0.203 0.068 0.122	0.961 0.995 0.611	0.017 0.122 0.017	0.20 0.32 0.53	0.99 0.99 0.69	0.12 0.20 0.20		

RVFL for Wind Power Ramp Forecasting

CPU Time (s)

Dataset		6 Hour							12 Hour								
	RF		SVM		ANN		RVFL		RF		SVM		ANN		RVFL		
	Train	Test	Train	Test	Train	Test	Train	Test	Train	Test	Train	Test	Train	Test	Train	Test	
Γ_{ext}																	
D1	1.2	1.13	85.85	0.24	205.42	7.55	1.72	0.09	0.81	0.78	64.36	0.22	151.3	3.95	1.37	0.08	
D2	0.88	0.9	75.56	0.2	176.92	4.52	1.7	0.09	0.7	0.67	50.3	0.17	118.95	3.62	1.27	0.06	
D3	1.17	1.22	88.48	0.22	181.02	6.27	1.67	0.88	0.67	0.7	57.47	0.16	113.88	4.57	1.22	0.06	
D4	0.78	0.81	72.88	0.21	157.63	4.48	1.89	0.08	0.62	0.63	51.01	0.15	122.21	3.71	1.26	0.06	
D5	0.98	1.01	92.18	0.33	187.18	5.04	1.73	0.1	0.89	0.85	64.46	0.2	141.37	3.32	1.39	0.08	
Ave	1	1	82.99	0.24	181.63	5.57	1.74	0.25	0.74	0.73	57.52	0.18	129.54	3.83	1.30	0.07	
Sd	0.182	0.166	8.37	0.05	17.29	1.32	0.09	0.35	0.11	0.09	6.88	0.03	16.00	0.47	0.07	0.01	
Γ_{end}																	
D1	1.06	1.07	86.03	0.25	214.61	5.55	1.72	0.09	0.98	8.0	70.18	0.21	154.19	4.42	1.55	0.08	
D2	0.92	1.12	78.76	0.12	173.92	5.48	1.75	0.08	0.66	0.63	46.34	0.13	115.34	4.64	1.22	0.09	
D3	1.14	1.17	89.94	0.25	183.11	5.3	1.76	0.09	0.78	0.98	64.57	0.2	139.76	4.15	1.61	0.05	
D4	1	0.78	71.74	0.21	157.38	4.07	1.81	0.08	0.64	0.61	51.28	0.16	124.77	3.2	1.26	0.05	
D5	1	1.14	93.96	0.3	176.78	4.92	1.73	0.09	0.85	1.09	71	0.21	146.03	3.52	1.48	0.08	
Ave	1.03	1.06	84.09	0.23	181.16	5.06	1.75	0.09	0.78	0.82	60.67	0.18	136.02	3.99	1.42	0.07	
Sd	0.08	0.16	8.89	0.07	20.97	0.61	0.04	0.01	0.14	0.31	11.25	0.04	15.80	0.61	0.17	0.02	

Concluding Remarks

- ▶ RVFL has better performance than SVM for 12 h ahead forecasting; comparable as ANN and RF
- ► RVFL has fast training time as RF but has the fastest testing time

Outline

Introduction

Motivation

Background

Ensemble Time Series Forecasting

Competitive Ensemble Methods

Cooperative Ensemble Methods

Empirical Mode Decomposition

EMD-ANN/SVR with Input Vector Reconstruction

Ensemble EMD

Ensemble EMD-ANN/SVR for Wind/Solar Forecasting

Random Vector Functional Link Network

Variations on Structure

RVFL for Wind/Solar Forecasting

RVFL for Wind Power Ramp Forecasting

Conclusion & Future Work

Conclusion

Future Work

Conclusion I

- Introduction of time series characteristics
- Review of ensemble forecasting methods

EMD based method

- ► EMD-ANN/SVR with input vector reconstruction
- Significant improvement over SVR
- Outperformed two benchmark methods
- Noise assisted ensemble EMD improved the performance of SVR for wind speed forecasting, best method is CEEMDAN-SVR
- ▶ EEMD-SVR is the best for solar irradiance forecasting

Conclusion II

RVFL network

- Direct input output connections have significantly improved the performance
- No evidence of hidden layer bias
- Advantageous over hierarchical forecasting method
- Outperformed ANN, comparable performance as SVR and RF
- Short computational time
- For higher accuracy: ensemble EMD, e.g. CEEMDAN-SVR
- Rapid updating, fast training: RVFL network
- ▶ IoT applications: RVFL network

Future Work

- ▶ Multivariate datasets, multiple renewable energy sources
- ▶ 2-dimensional EMD
- ► Ensemble of RVFI network
- Resource constrained RVFL network

Bibliography I

C. L. Philip Chen. "A rapid supervised learning neural network for function interpolation and approximation". In: *IEEE Trans. Neural Netw.* 7.5 (Sept. 1996), pp. 1220–1230.

Thomas G. Dietterich. "Proc. Multiple Classifier Systems (MCS'00)". In: Berlin, Heidelberg, 2000. Chap. Ensemble Methods in Machine Learning, pp. 1–15.

Harris Drucker. "Improving regressors using boosting techniques". In: Proc. International Conference on Machine Learning (ICML1997). Vol. 97. 1997, pp. 107–115.

N.E. Huang et al. "The empirical mode decomposition and Hilbert spectrum for nonlinear and nonstationary time series analysis". In: *Proc. Royal Society London A* 454 (1998), pp. 903–995.

Zhonghe Han and Xiaoxun Zhu. "Training Set of Support Vector Regression Extracted by Empirical Mode Decomposition". In: *Proc. Asia-Pacific Power and Energy Engineering Conference (APPEC'11)*. Wuhan. China. 25-28 03 2011. pp. 1–4.

Donghoh Kim and Hee-Seok Oh. "EMD: A package for empirical mode decomposition and Hilbert spectrum". In: *The R Journal* 1.1 (2009), pp. 40–46.

D. Opitz and R. Maclin. "Popular ensemble methods: An empirical study". In: *Journal of Artificial Intelligence Research* 11 (1999), pp. 169–196.

Yoh-Han Pao, Gwang-Hoon Park, and Dejan J Sobajic. "Learning and generalization characteristics of the random vector functional-link net". In: *Neurocomputing* 6.2 (1994), pp. 163–180.

Bibliography II

Ye Ren, Xueheng Qiu, et al. "Detecting Wind Power Ramp with Random Vector Functional Link (RVFL) Network". In: Proc. IEEE Symposium on Computational Intelligence and Ensemble Learning (CIEL2015). Cape Town, South Africa, Dec. 2015.

Ye Ren, P. N. Suganthan, N. Srikanth, and G. Amaratunga. "Single Hidden Layer Neural Networks with Random Weights for Short-term Electricity Load Demand Forecasting". In: *Information Sciences* (2016). DOI: 10.1016/j.ins.2015.11.039.

Ye Ren, P. N. Suganthan, and N. Srikanth. "A Novel Empirical Mode Decomposition With Support Vector Regression for Wind Speed Forecasting". In: *IEEE Trans. Neural Netw. Learn. Syst.* PP (Sept. 2014). DOI: 10.1109/TNNLS.2014.2351391.

Ye Ren, P. N. Suganthan, and N. Srikanth. "A comparative study of empirical mode decomposition-based short-term wind speed forecasting methods". In: *IEEE Trans. Sustain. Energy* 6.1 (Jan. 2015), pp. 236–244.

Ye Ren, P. N. Suganthan, and N. Srikanth. "Ensemble methods for wind and solar power forecasting: a state-of-the-art review". In: Renewable and Sustainable Energy Reviews 50 (Oct. 2015), pp. 82–91.

Ye Ren, Le Zhang, and P. N. Suganthan. "Ensemble Classification and Regression –Recent Developments, Applications and Future Directions". In: *IEEE Comput. Intell. Mag.* (2016). DOI: 10.1109/MCI.2015.2471235.

Wouter F Schmidt, Martin A Kraaijveld, and Robert PW Duin. "Feedforward neural networks with random weights". In: Proc. IEEE International Conference on Pattern Recognition Conference B: Pattern Recognition Methodology and Systems. 1992, pp. 1–4.

S.S. Soman et al. "A review of wind power and wind speed forecasting methods with different time horizons". In: *Proc. North American Power Symposium (NAPS'10)*. Sept. 2010, pp. 1–8.

Bibliography III

Fei Wang et al. "Short-term solar irradiance forecasting model based on artificial neural network using statistical feature parameters". In: Energies 5 (2012), pp. 1355–1370.

Zhaohua Wu and Norden E. Huang. "Ensemble empirical mode decomposition: a noise-assisted data ananysis method". In: Advances in Adaptive Data Analysis 1.1 (2009). pp. 1–41.

Lin Ye and Peng Liu. "Combined Model Based on EMD-SVM for Short-term Wind Power Prediction". In: Proc. Chin. Soc. Elec. Eng. Vol. 31, 31, May 2011, pp. 102–108.

J.-R. Yeh, J.-S. Shieh, and N. E. Huang. "Complimentary ensemble empirical mode decomposition: a novel noise enhanced data analysis method". In: *Advances in Adaptive Data Analysis* 2.2 (2010), pp. 135–156.

List of Publications I

Y. Ren, P. N. Suganthan, "Empirical comparison of bagging-based ensemble classifiers," in: *Proc. International Conference on Information Fusion (Fusion'12)*, Singapore, Jul. 2012, pp. 917–924.

Y. Ren, P. N. Suganthan, "A kernel-ensemble bagging support vector machine," in: *Proc. International Conference on Intelligent Systems Design and Applications (ISDA'12)*, Brunei, Oct. 2012.

Y. Ren, P. N. Suganthan, N. Srikanth, "Wind speed forecasting: a comparison between statistical approach and learning-based approach," in: Smart Microgrids, New Advances, Challenges and Opportunities in the Actual Power Systems, US:NOVA, 2013.

Y. Ren, L. Zhang, P. N. Suganthan, "K-nearest neighbor based bagging SVM pruning," in: *Proc. IEEE Symposium on Computational Intelligence and Ensemble Learning (CIEL'13)*, Singapore, Apr. 2013.

L. Zhang, Y. Ren, P. N. Suganthan, "Instance based random forest with rotated feature space," in: Proc. IEEE Symposium on Computational Intelligence and Ensemble Learning (CIEL'13), Singapore, Apr. 2013.

Y. Ren, P. N. Suganthan, N. Srikanth, "A hybrid ARIMA-DENFIS method for wind speed forecasting," in: Proc. IEEE International Conference on Fuzzy Systems (Fuzz'13), India, Jul. 2013.

Y. Ren, P. N. Suganthan, and N. Srikanth, "A comparative study of empirical modedecomposition-based short-term wind speed forecasting methods," *IEEE Trans. Sustain. Energy*, vol. 6, no. 1, pp. 236–244, Jan. 2015.

Y. Ren and P. N. Suganthan, "EMD-kNN models for wind speed forecasting," *Journal of Power and Energy Engineering*, vol. 2, no. 4, pp. 176185, 2014.

Y. Ren, P. N. Suganthan, and N. Srikanth, "A novel empirical mode decomposition with support vector regression for windspeed forecasting," *IEEE Trans. Neural Netw. Learn. Syst.*, vol. PP, 2015, doi: 10.1109/TNNLS.2014.2351391.

List of Publications II

Y. Ren, X. Qiu, and P. N. Suganthan, "EMD based adaboost-BPNN method for windspeed forecasting," in Proc. IEEE Symposium on Computational Intelligence and En-semble Learning (CIEL'14), Orlando, US, Dec. 2014.

D. Laha, Y. Ren and P. N. Suganthan, "Modeling of Steelmaking Process with Effective Machine Learning Techniques," *Expert Systems With Applications*, vol. 42, pp. 4687-4696, 2015.

Y. Ren, P. N. Suganthan, N. Srikanth, "Ensemble methods for wind and solar power forecasting – a state-of-the-art review," *Renewable and Sustainable Energy Reviews, Elsevier*, vol.50, pp. 82-91, 2015.

Y. Ren, X. H. Qiu, P. N. Suganthan, N. Srikanth and G. Amaratunga, "Detecting Wind Power Ramp with Random Vector Functional Link (RVFL) Network," in: *Proc. IEEE Symposium on Computational Intelligence and Ensemble Learning (CIEL'15)*, Cape Town, South Africa, Dec. 2015.

Y. Ren, L. Zhang, and P. N. Suganthan, "Ensemble Classification and Regression – Recent Developments, Applications and Future Directions," *IEEE Comput. Intell. Mag.*, 2016, doi: 10.1109/MCI.2015.2471235.

Y. Ren, P. N. Suganthan, N. Srikanth and G. Amaratunga, "Single Hidden Layer Neural Networks with Random Weights for Short-term Electricity Load Demand Forecasting," *Information Sciences, Elsevier*, 2015, doi: 10.1016/j.ins.2015.11.039.

The End

Thank you!

Wind speed time series plot

Plot of wind speed time series

Histogram of wind speed time series

Wind speed time series plot

Plot of wind power time series

Histogram of wind power time series

Wind speed time series plot

Plot of solar irradiance time series

Daily maximum of solar irradiance time series

Reason for good ensembles

Exponential Smoothing

$$\hat{x}(t+1) = \alpha x(t) + \alpha (1-\alpha)x(t-1)$$

 $\alpha \! :$ exponentially decreasing weight over time

ARIMA

$$\nabla^d x(t) = \underbrace{\sum_{i=1}^p \phi_i \nabla^d x(t-i)}_{\text{AR Term}} + w_t + \underbrace{\sum_{j=1}^q \theta_j w(t-j)}_{\text{MA Term}}$$

$$\nabla^d x = [x(t) - x(t-1)] - [x(t-1) - x(t-2)] - \dots - [x(t-d+1) - x(t-d)]$$

ARIMA Order

		PACF		
		Decay	Cut-off at Lag p	
ACF	Decay	_	ARMA(p,d,0)	
	Cut-off at Lag q	ARIMA(0,d,q)	ARIMA (p,d,q)	

AIC and BIC

AIC =
$$\log \frac{\sum_{t=k}^{n} (x(t) - \bar{x})^2}{n} + \frac{n+2k}{n}$$

BIC = $\log \frac{\sum_{t=k}^{n} (x(t) - \bar{x})^2}{n} + \frac{k \log n}{n}$

SVR

SVR

$$\min \frac{1}{2}||w||^2 + C\sum_{i}(\xi_i + \xi_i^*)$$

subject to:

$$y_i - w^T x_i - b \le \epsilon + \xi_i$$

$$w^T x_i + b - y_i \le \epsilon + \xi_i^*$$

$$\xi_i^{(*)} \ge 0$$

where C is the cost factor for trade-off between flatness and tolerance. $\xi_i^{(*)}$ is the slack variable.

SVR

Polynomial Kernel: $K(x_i,x_j)=(\gamma x_i^T x_j)^d$ RBF Kernel: $K(x_i,x_j)=e^{\gamma|x_i-x_j|^2}$ Sigmoid Kernel: $K(x_i,x_j)=\tanh(\gamma x_i^T x_j)$

Neural Network

Neural Network

$$h_{1,k_1} = f(\sum_{m=0}^{M} w_{m,k_1} i_m), \forall k_1 \in \{1, \dots, K_1\}$$

$$h_{n,k_n} = f(\sum_{k_{n-1}=0}^{K_{n-1}} w_{k_{n-1},k_n} h_{n-1,k_{n-1}}), \forall k_n \in \{2, \dots, K_n\}$$

$$o_l = \sum_{k_N=0}^{K_N} w_{k_N,l} h_{N,k_N}, \forall l \in \{1, \dots, L\}$$

$$(1)$$

Neural Network

$$logsig(x) = \frac{1}{1 + e^{-x}}$$
$$tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

AdaBoost²⁰ EMD

```
\{x\} := m \times n: training data
y: corresponding future value
I_m: maximum number of iterations
f(\cdot): base learning algorithm
\mathbf{w} := m \times 1: weight vector
\mathbf{w}^1 = \{w_i^1 | 1/m, 1 \le i \le m\}
FOR t=1 to I_m & \overline{L}<0.5
       Sample with replacement from x with distribution \mathbf{w} \Rightarrow \mathbf{x}^t
       Obtain a trained model h_t = f(\mathbf{x}^t)
       Calculate maximum loss L_m = \max |y_i - h_t(x_i)|
       Calculate individual loss L_i = \frac{|y_i - h_t(x_i)|}{I_{\cdot \cdot \cdot \cdot}}
       Calculate weighted loss \overline{L} = \sum_{i=1}^{m} L_i^m w_i^t
       Update weight vector w_i^{t+1} = \frac{w_i^t \beta_t^{(1-L_i)}}{Z_t} ,
      where \beta_t = \frac{\overline{L}}{1-\overline{L}} and Z_t is a normalization factor.
END
RETURN \hat{y}^* = \text{median}(h_t(x^*) * \ln \frac{1}{\beta_t}), t = 1 \cdots I_m.
where x^* is a testing data and \hat{u}^* is the predicted output.
```

²⁰ Drucker 1997.

AdaBoost²⁰ EMD

AdaBoost Example

²⁰ Drucker 1997.

AdaBoost²⁰ EMD

AdaBoost Characteristics

- Weak learners
- Diversity
- Sequential
- Apply AdaBoost to each decomposed series

²⁰ Drucker 1997.

AdaBoost-EMD-ANN Performance²¹

Nemenyi Test

Nemenyi Test of AdaBoost-EMD-ANN vs Benchmarks

Horizon (h) Persistent AdaBoost-RT ANN AdaBoost-ANN EMD-ANN ABEMD-RT									
1	5.5e-08	0.36529	0.17533	7.5e-05	0.11252	0.79266			
3	3.0e-07	0.48706	0.03479	0.00856	0.00052	1.00000			
5	4.7e-05	0.61549	0.00028	0.14133	7.0e-06	1.00000			

Concluding Remarks

AdaBoost framework improved EMD-ANN's performance

²¹ Ren. Qiu. et al. 2015.

ELIA power ramp data

	6 Hour				12 Hour			
	Training		Testing		Training		Testing	
	+1	-1	+1	-1	+1	-1	+1	-1
Γ_{ext}								
D1	64	387	32	184	153	292	71	145
D2	332	136	55	168	252	210	111	112
D3	103	365	54	169	220	242	120	103
D4	77	340	58	144	152	259	75	127
D5	78	389	58	165	164	297	107	116
Γ_{end}	l				'			
D1	62	389	26	190	124	321	54	162
D2	130	228	45	178	237	225	85	138
D3	93	375	60	163	167	295	115	108
D4	82	335	78	124	150	261	62	140
D5	84	383	59	164	144	317	117	106