Introduction to frequentist inference

Lecture 10a (STAT 24400 F24)

1/12

Example: calibrating the X-ray

We have an X-ray beam whose output follows a Poisson(λ) distribution.

The intensity parameter λ can be set to 100, 110, 120, or 130. (Since λ is unknown, we should assume we cannot see the setting.)

If $\lambda = \dots$	then likely X	values are
100	84-117	
110	93–128	\leftarrow each range contains 90% probability
120	102-138	
130	112-149	

If we observe X=108, we might say $\lambda=100,110,120$ are plausible (and $\lambda=130$ is not)

Q: Which value should we pick? How do we quantify our errors?

Framework for frequentist inference

Setup

• We are interested in learning about a parameter θ (e.g. $\lambda, \alpha, \beta, \mu, \sigma^2, \cdots$). which is a fixed, but unknown, constant.

(Compare to Bayesian stats: θ is random, with a prior distribution)

• We observe data X whose distribution is parametrized by θ .

Based on the observed X, we might ask:

• Parameter estimation Which value of θ is the most plausible in light of the data?

• Confidence intervals Which values of θ are plausible in light of the data?

• Hypothesis testing For a particular value of θ , is this value plausible in light of the data?

(Bayesian stats: instead work with the posterior distribution)

2/12

3/12

Example: calibrating the X-ray (testing a hypothesis)

Suppose person A claims that the X-ray is set at $\lambda=100$, and person B wants to test if this claim is true.

Here is person B's reasoning:

- If the X-ray scanner were really set to $\lambda=100$, then the likely values for X are 84–117 (with a 90% chance)
- So if we run the scanner and measure a value X outside this range, we can conclude that $\lambda \neq 100$, because $\lambda = 100$ is *not* plausible

Our error rate (for this hypothesis test) is 10%: if $\lambda=100$, we have a 10% chance of concluding $\lambda\neq100$

5/12

Caution: incorrect interpretations

Caution An incorrect interpretation:

"If we observe X outside the range, then there's only a 10% chance that $\lambda=100$ actually is true"

- ullet We aren't in a Bayesian framework $\mathbb{1}_{\lambda=100}$ isn't random
- And even in a Bayesian framework, $\mathbb{P}(A \mid B) \neq \mathbb{P}(B \mid A)$ so our calculation is likely wrong

 $\mathbb{P}(X ext{ outside range} \mid \lambda = 100)$ $\mathbb{P}(\lambda = 100 \mid X ext{ outside range})$

Intro to confidence intervals

- We are interested in learning about a parameter θ , which is a fixed, but unknown, constant.
- We observe data X whose distribution is parametrized by θ

Goal of confidence interval:

Find a range for plausible values of θ , after observing data.

After observing X, we return a range

[lowerbound(X) , upperbound(X)]

such that for θ ,

the unknown true parameter giving the distribution of the data

$$\mathbb{P}\big(\mathsf{lowerbound}(X) \leq \theta \leq \mathsf{upperbound}(X)\big) \geq 1 - \alpha$$
 probability over $X \sim (\mathsf{distrib.} \ \mathsf{with} \ \mathsf{parameter} \ \theta)$ tolerate error $\leq \alpha$

Note: This doesn't contradict our framework where θ is not random, because the endpoints of the inequality are random (depend on X).

because the endpoints of the inequality are random (depend on $^{7/12}$

8 / 12

From data to confidence intervals (example to illustrate the idea)

For the X-ray scanner, if we observe X, we would build a range around X, e.g.,

[lowerbound(X), upperbound(X)] = [X - 20, X + 20]

We think it's plausible that the true value of λ is in this interval.

X, the random variable, has high probability to occur near the true λ :

- If $\lambda = 100$, $\mathbb{P}(X 20 \le \lambda \le X + 20) = \mathbb{P}(|\lambda X| \le 20) = 0.960$
- If $\lambda = 110$, $\mathbb{P}(X 20 \le \lambda \le X + 20) = \mathbb{P}(|\lambda X| \le 20) = 0.950$
- If $\lambda = 120$, $\mathbb{P}(X 20 \le \lambda \le X + 20) = \mathbb{P}(|\lambda X| \le 20) = 0.939$
- If $\lambda = 130$, $\mathbb{P}(X 20 \le \lambda \le X + 20) = \mathbb{P}(|\lambda X| \le 20) = 0.928$

So, if 100, 110, 120, 130 are the only possible values of λ , then this (random) interval [X-20, X+20] is a 92.8% confidence interval for λ , it has a 92.8% coverage.

9/12

Intro to hypothesis testing

- We are interested in learning about a parameter θ , which is a fixed, but unknown, constant
- We observe data X whose distribution is parametrized by θ

Goal of hypothesis testing:

We are interested in testing a *null hypothesis* $\theta = \theta_0$, versus an *alternative hypothesis* (e.g., $\theta = \theta_1$ or $\theta \neq \theta_0$ or $\theta > \theta_0$)

Generally, our goal is to disprove the null.

e.g., null = "vaccine has zero effect on risk of catching the disease", alt. = "vaccine reduces risk"

We construct a range of likely X values, assuming $\theta = \theta_0$ is true, such that

$$\mathbb{P}\big(X \in \big(\text{the range of values}\big)\big) \geq 1 - \alpha$$

probability over $X \sim (\text{distrib. with parameter } \theta_0)$

Questions in confidence intervals

Further questions:

• How should we construct the range [lowerbound(X), upperbound(X)]?

That is how do we choose the lowerbound(X) and upperbound(X), functions of data, such that the confidence interval constructed is

- not too wide
 - so that the range is still informative and practically useful
- not too narrow
 - so the range still has good coverage to contain the true parameter
- How does this method relate to Bayesian inference?

10 / 12

From data to hypothesis testing (decision and error rate)

After observing X, we return a decision:

If X falls into the plausible range, we do not reject the null.

If X falls outside the plausible range, we reject the null (& conclude $\theta \neq \theta_0$)

Then we have a $\leq \alpha$ chance of incorrectly rejecting a true null.

Further questions:

- What's our chance of *failing* to reject, if the alternative is true?
- How should we construct the range of X values?
- How does hypothesis testing relate to p-values (coming soon)?
- How does hypothesis testing relate to confidence intervals?
- What is the problem of *multiple testing*?