

Pay Attention to the cough

Early Diagnosis of COVID-19 using Interpretable Symptoms Embeddings with Cough Sound Signal Processing

Ankit Pal (Aaditya Ura) Research Engineer, Saama AI Research Lab ankit.pal@saama.com Malaikannan Sankarasubbu VP, Saama AI Research Lab malaikannan.sankarasubbu@saama.com

About Me

- Research Engineer @ Saama Al Research Lab
- Research interests involve
 Representation Learning on Graphs and Manifolds
- Interpretable Natural Language Processing, and their applications in Healthcare data
- Respiratory, Neurophysiological (EEG, ECG, EMG etc.)
 based Signal Processing

Email : ankit.pal@saama.com

Website: aadityaura.github.io

twitter : @aadityaura

COVID-19

The novel coronavirus (COVID-19) disease has affected over 113 million lives, claiming more than 2.5 million fatalities globally, representing an epoch-making global crisis in health care.

Outline

- Introduction
- Problem Statement
- Motivation
- COVID-19 Data
 - Data Collection, Statistics & Preprocessing
- Feature Extraction
 - Cough Features
- Model Architecture
 - Symptoms & Cough Embeddings, Final Model & loss
- Experiments
 - Results
- Interpretability
- In depth Analysis
- Scope & Future work

The Problem statement

The current diagnosis of COVID-19 is done by

- Thermometer
 - It does not give an accurate estimation of deep body temperature
- Reverse-Transcription Polymer Chain Reaction (RT-PCR)
 - Time-consuming, expensive, and not easily available in straitened regions

Motivation

- Lack of a fast and reliable testing method challenge
- A low-cost, rapid, easily accessible testing solution is required to increase diagnostic capability and devise a treatment plan
- It is an essential tool in the fight to slow and reduce the virus's spread and impact

Motivation

At the beginning of March 2020, we thought about a simple idea:

"Is it possible to do mass testing with current technology?"

COVID-19 Symptoms

The main symptoms of COVID-19 given by WHO and CDC official report are

- Fever
- Shortness of breathing
- COVID-19 Dry cough

Data collection

- Data in this study were obtained from Dr. Ram Manohar Lohia Hospital, New Delhi, India
- Out of 100 were confirmed positive from COVID-19 RT-PCR results
- Bronchitis and Asthma cough samples were also collected from different online & offline sources
- Additional data
 - Breathing sounds
 - counting 1 to 10 (natural voice samples)
 - o sustained phonation of 'a,' 'e,' 'o' vowel

Data Statistics

Symptoms count

Age distribution

Healthy Cough

Random Sample of a Healthy Cough from collected dataset

COVID-19 Cough

Random Sample of a COVID-19 Cough from collected dataset

Data Preprocessing

- Each cough recording was downsampled to 16 kHz
- Normalization was applied to the cough signal level with a target amplitude of -28.0 dBFS
- Normalized features were split based on the silence threshold
- A High Pass Filter(HPF) was applied to reduce the noise
- Divided into sub-segments of non-overlapping Hamming-windowed frames

An example of Non-Overlapping windows [1]

Feature Extraction

After Preprocessing, Two types of features were extracted :

- The cough Features
- Symptoms & Demographic features

For each Hamming-windowed frames, the following features were extracted

- Mel Frequency Cepstral coefficients (MFCCs)
 - The hearing mechanism of human beings inspires MFCC

Skewness

Measures the symmetry in a probability distribution

For each Hamming-windowed frames, the following features were extracted

Zero crossing rate(ZCR)

ZCR is used to calculate the number of times a signal crosses the zero axis

Entropy

Capture the difference between signal energy distributions

For each Hamming-windowed frames, the following features were extracted

• Formant frequencies

Formant frequencies capture the vocal tract resonance characteristics

Kurtosis

 Measures the peakiness or heaviness associated with the cough sub-segment probability distribution

For each Hamming-windowed frames, the following features were extracted

- Fundamental frequency(F0)
 - F0 is the frequency at which vocal cords vibrate in voiced sounds

Model Architecture

The model architecture consists of two subnetworks components

• Symptoms Embeddings

• Cough Embeddings

Symptoms Embeddings

- Symptoms Embeddings capture the hidden features of patient characteristics, diagnosis, symptoms
- We utilized the transformer-based tabular model called "TabNet," which uses a sequential attention mechanism to generate the Symptoms embeddings
- It consists of four main components :
 - Gated Linear Unit
 - Feature Transformer
 - Attentive Transformer
 - Decision Step

Symptoms Embeddings

• Gated Linear Unit (GLU)

 GLU functions like a filter; it regulates which parts of the signal should be allowed into the unit

Feature Transformer (FT)

 Feature Transformer process the filtered features by looking at all the symptoms features assessed and deciding which ones indicate which class

Symptoms Embeddings

Attentive Transformer (AT)

 Utilizes sparse intense wise features selection based on learned symptoms dataset and focusing on specific symptoms features only

Decision Step (DS)

 Decision steps are composed of a Feature Transformer(FT), Attentive Transformer(AT), and feature masking

Cough Embeddings

- Cough Embeddings learn and capture more in-depth features in temporal acoustic characteristics of cough sounds
- We used Deep Neural Network (DNN) to learn the embeddings from cough features extracted in the previous feature engineering part

Final Model

Concatenating Symptoms Embeddings with Cough Embeddings followed by a Fully-Connected(FC) layer

$$\hat{y} = \underbrace{\left[S_e, C_e\right]}_{\text{Concatenate}} \cdot FC$$

Final Model

Total Loss

After this, the Total loss was calculated as follows

$$Loss_{total} = \underbrace{(1 - \alpha) \ Loss_{ce}}_{\text{Cough}} + \underbrace{\alpha \ Loss_{se}}_{\text{Symptoms}}$$

$$\underline{\text{Embeddings Loss}}_{\text{Embeddings Loss}}$$

Where α is a small constant value to balance the contribution of the different losses.

Experiments

Based on the collected dataset, the model was trained on the following combination of features

- Task 1, Using cough data only
- Task 2, Using Demographic & Symptoms Data Only
- Task 3, Using Both
- Task 4, Using Both with different Cough Types

Results (Binary Classification : Task 1)

		F1-score	Precision	Sensitivity	Specificity	Accuracy
Cough data	Covid-19 Positive	$90.6 \pm 0.2\%$	$89.1 \pm 0.4\%$	$86.2 \pm 0.3\%$	$92.4 \pm 0.2\%$	89.3 ± 0.1%
	Covid-19 Negative	$90.6 \pm 0.1\%$	$91.7 \pm 0.1\%$	$94.3\pm0.3\%$	$89.3\pm0.1\%$	$92.4\pm0.1\%$
	Overall	$90.6 \pm 0.3\%$	$90.4 \pm 0.5\%$	$90.1 \pm 0.6\%$	$90.3 \pm 0.3\%$	$90.8 \pm 0.2\%$
Symptoms data	Covid-19 Positive	$91.5 \pm 0.2\%$	$86.9 \pm 0.5\%$	$87.8 \pm 0.2\%$	$86.0 \pm 0.3\%$	$94.1 \pm 0.6\%$
	Covid-19 Negative	$91.5 \pm 0.1\%$	$93.7\pm0.3\%$	$93.3\pm0.2\%$	$94.1\pm0.1\%$	$86.0\pm0.2\%$
	Overall	$91.5 \pm 0.3\%$	$90.3 \pm 0.8\%$	$90.5 \pm 0.4\%$	$90.8 \pm 0.3\%$	$91.1 \pm 0.8\%$
Both	Covid-19 Positive	$96.8 \pm 0.4\%$	$95.1 \pm 0.1\%$	$94.6 \pm 0.3\%$	$95.6 \pm 0.1\%$	$97.3 \pm 0.2\%$
	Covid-19 Negative	$96.8 \pm 0.1\%$	$97.6\pm0.3\%$	$97.8\pm0.4\%$	$97.3\pm0.2\%$	$95.6\pm0.3\%$
	Overall	96.8 ± 0.5%	$96.3 \pm 0.4\%$	$96.2 \pm 0.7\%$	$96.5 \pm 0.3\%$	$96.5 \pm 0.5\%$

Model performance metrics across different models on Task 1 Using cough data only

Results (Binary Classification: Task 2)

		F1-score	Precision	Sensitivity	Specificity	Accuracy
Cough data	Covid-19 Positive	90.6 ± 0.2%	$89.1 \pm 0.4\%$	$86.2 \pm 0.3\%$	$92.4 \pm 0.2\%$	89.3 ± 0.1%
	Covid-19 Negative	$90.6 \pm 0.1\%$	$91.7\pm0.1\%$	$94.3\pm0.3\%$	$89.3\pm0.1\%$	$92.4\pm0.1\%$
	Overall	$90.6 \pm 0.3\%$	$90.4\pm0.5\%$	$90.1\pm0.6\%$	$90.3\pm0.3\%$	$90.8\pm0.2\%$
Symptoms data	Covid-19 Positive	$91.5 \pm 0.2\%$	86.9 ± 0.5%	$87.8 \pm 0.2\%$	$86.0 \pm 0.3\%$	$94.1 \pm 0.6\%$
	Covid-19 Negative	$91.5 \pm 0.1\%$	$93.7 \pm 0.3\%$	$93.3\pm0.2\%$	$94.1\pm0.1\%$	$86.0\pm0.2\%$
	Overall	$\textbf{91.5} \pm \textbf{0.3}\%$	$90.3\pm0.8\%$	$90.5\pm0.4\%$	$90.8\pm0.3\%$	$91.1\pm0.8\%$
Both	Covid-19 Positive	$96.8 \pm 0.4\%$	$95.1\pm0.1\%$	$94.6 \pm 0.3\%$	$95.6\pm0.1\%$	$97.3 \pm 0.2\%$
	Covid-19 Negative	$96.8 \pm 0.1\%$	$97.6\pm0.3\%$	$97.8 \pm 0.4\%$	$97.3 \pm 0.2\%$	$95.6\pm0.3\%$
	Overall	96.8 ± 0.5%	$96.3 \pm 0.4\%$	$96.2 \pm 0.7\%$	$96.5 \pm 0.3\%$	$96.5 \pm 0.5\%$

Model performance metrics across different models on Task 2 Using Demographic & Symptoms Data Only

Results (Binary Classification : Task 3)

		F1-score	Precision	Sensitivity	Specificity	Accuracy
Cough data	Covid-19 Positive	$90.6 \pm 0.2\%$	$89.1 \pm 0.4\%$	$86.2 \pm 0.3\%$	$92.4 \pm 0.2\%$	$89.3 \pm 0.1\%$
	Covid-19 Negative	$90.6 \pm 0.1\%$	$91.7 \pm 0.1\%$	$94.3\pm0.3\%$	$89.3\pm0.1\%$	$92.4\pm0.1\%$
	Overall	$90.6 \pm 0.3\%$	$90.4\pm0.5\%$	$90.1\pm0.6\%$	$90.3\pm0.3\%$	$90.8\pm0.2\%$
Symptoms data	Covid-19 Positive	$91.5 \pm 0.2\%$	$86.9 \pm 0.5\%$	$87.8 \pm 0.2\%$	$86.0 \pm 0.3\%$	$94.1 \pm 0.6\%$
	Covid-19 Negative	$91.5 \pm 0.1\%$	$93.7\pm0.3\%$	$93.3\pm0.2\%$	$94.1\pm0.1\%$	$86.0\pm0.2\%$
	Overall	$91.5 \pm 0.3\%$	$90.3\pm0.8\%$	$90.5\pm0.4\%$	$90.8\pm0.3\%$	$91.1\pm0.8\%$
Both	Covid-19 Positive	$96.8 \pm 0.4\%$	$95.1\pm0.1\%$	$94.6\pm0.3\%$	$95.6\pm0.1\%$	$97.3 \pm 0.2\%$
	Covid-19 Negative	$96.8 \pm 0.1\%$	$97.6\pm0.3\%$	$97.8\pm0.4\%$	$97.3\pm0.2\%$	$95.6\pm0.3\%$
	Overall	$\textbf{96.8} \pm \textbf{0.5}\%$	$96.3 \pm 0.4\%$	$96.2 \pm 0.7\%$	$96.5 \pm 0.3\%$	$96.5 \pm 0.5\%$

Model performance metrics across different models on Task 3 Using Using Both

Results (Multi-Class Classification: Task 4)

	F1-score	Precision	Sensitivity	Specificity	Accuracy
Covid-19 Positive	86.38 ± 0.03%	$81.88 \pm 0.01\%$	$91.39 \pm 0.04\%$	$97.49 \pm 0.03\%$	$96.81 \pm 0.05\%$
Covid-19 Negative	$92.16 \pm 0.01\%$	$95.09 \pm 0.02\%$	$89.41 \pm 0.08\%$	$98.64 \pm 0.05\%$	$96.55 \pm 0.11\%$
Bronchitis	$92.85 \pm 0.04\%$	$97.70 \pm 0.05\%$	$88.45 \pm 0.05\%$	$98.08 \pm 0.12\%$	$93.46 \pm 0.02\%$
Asthma	$83.88 \pm 0.13\%$	$75.46 \pm 0.03\%$	$94.41 \pm 0.04\%$	$93.10 \pm 0.01\%$	$93.34 \pm 0.05\%$
Overall	$90.09 \pm 0.17\%$	$90.92 \pm 0.09\%$	$90.41 \pm 0.14\%$	$96.83 \pm 0.06\%$	$95.04 \pm 0.18\%$

Model performance metrics across four different diseases

Interpretability

The Clinical selection of an algorithm depends on two main factors,

- its clinical usefulness, and
- trustworthiness.

When the prediction does not directly explain a particular clinical question, its use is limited

Interpretability

Attention distribution over the Symptoms of a random Healthy(COVID-19 Negative) person. The color depth expresses the seriousness of a symptom.

Interpretability

Attention distribution over the Symptoms of a random COVID-19 infected person, The color depth expresses the seriousness of a symptom.

In-Depth Analysis (Different Types of cough)

Figure 1: Healthy Cough

Figure 2: Asthma Cough

Healthy & Asthma Cough with their original sound, FFT output, and 1D image representation

In-Depth Analysis (Different Types of cough)

Figure 3: Bronchitis Cough

Figure 4: COVID-19 Cough

Bronchitis & COVID-19 Cough with their original sound, FFT output, and 1D image representation

In-Depth Analysis (Peak Analysis)

Figure 1: Peaks in Healthy Cough

Figure 2: Peaks in Ashtma Cough

Peaks analysis in Healthy & Asthma cough. Where y-axis represents Normalized Energy envelope E(t), obtained from applying band-pass filter followed by second-order Butterworth low pass filter, and the x-axis represents the time in seconds.

In-Depth Analysis (Peak Analysis)

Figure 3: Peaks in Bronchitis Cough

Figure 4: Peaks in COVID-19 Cough

Peaks analysis in Bronchitis & COVID-19 cough. Where y-axis represents Normalized Energy envelope E(t), obtained from applying band-pass filter followed by second-order Butterworth low pass filter, and the x-axis represents the time in seconds.

In-Depth Analysis (t-SNE visualization)

Scope & Future work

- Low cost, rapid and interpretable Al-based diagnostic tool
- Large-scale COVID-19 disease screening and areas where healthcare facilities are not easily accessible
- Experiments will be carried out in the future by incorporating additional voice data features such as breathing sound, counting sound (natural voice samples), and sustained vowel phonation

Take-Home Messages

- It isn't a replacement or a medically approved diagnostic tool; instead, it is a first-level diagnosis method for anyone, anywhere, anytime
- Cough detection and classification is fast, affordable, and accurate using AI-based methods
- We utilized different types of patient information; The results prove to be transparent,
 interpretable, and multi-model learning in cough classification research
- Additional clinical data such as case trajectory, patient characteristics, diagnosis, symptoms, comorbidities, and outcomes & EHR data could be utilized to capture better symptoms & cough features to build a rapid, accurate, and easy-to-access mobile diagnosis tool for different diseases

Edge deployment of models (on device and close-to-endpoint server)

Using Tiny ML, Intel's Neural Compute Stick

TinyML is a type of machine learning that shrinks deep learning networks to fit on tiny hardware.

- Trained edge level machine learning models using Intel's Neural Compute Stick
- Utilized the TinyML to train models on raspberry pi and deployed internally

Questions?

Thanks!

ankit.pal@saama.com

aadityaura.github.io twitter: @aadityaura