### NUMERICKÉ METÓDY LINEÁRNEJ ALGEBRY

09. Základné algoritmy pre výpočet vlastných čísiel a vektorov, 10. Spôsoby prepodmienenia pri riešní sústav lineárnych rovníc.

Ing. Marek Macák, PhD.

Konzultácie: podľa potreby/dohody

22. Apríl 2024

# Opakovanie?

• Nech  $A \in \mathbb{C}^{n \times n}$ . Potom  $\lambda$  je vlastné číslo matice A, ak existuje nenulový vektor x taký, že platí

$$Ax = \lambda x \leftrightarrow (A - \lambda I)x = 0. \tag{1}$$

- Množina vlastných čísiel sa nazýva spektrum matice A.
- Vektor x ≠0 sa nazýva (pravý) vlastný vektor matice A prislúchajúci k vlastnému číslu λ.
- Vektor  $y \neq 0$ , ktorý vyhovuje rovnici  $y^T A = \lambda y^T$  sa nazýva ľavý vlastný vektor matice A prislúchajúci k vlastnému číslu  $\lambda$ .
- Homogénny systém rovníc  $(A \lambda I)x = 0$  má nenulové riešenie práve vtedy, ak  $det(A \lambda I) = 0$ .

# Opakovanie?

• Polynóm premennej  $\lambda$  definovaný ako

$$P_{\lambda} = \det(A - \lambda I) \tag{2}$$

má stupeň n a nazýva sa charakteristický polynóm matice A. Takže vlastné čísla matice A sú korene jej charakteristického polynómu.

- Regulárna matica A má nenulové vlastné čísla. Ak  $(\lambda,x)$  je vlastný pár regulárnej matice A, potom  $(1/\lambda,x)$  je korešpondujúci vlastný pár matice  $A^{-1}$ .  $(\lambda-\sigma,x)$  je vlastný pár matice A a  $(\lambda^k,x)$  je vlastný pár matice  $A^k$ .
- Vlastné čísla trojuholníkovej matice sú jej diagonálne prvky.
- Nech T je regulárna matica. Potom matice A a  $TAT^{-1}$  majú rovnaké vlastné čísla (matica  $TAT^{-1}$  je podobná matici A).

# Opakovanie??

- Z Abel-Ruffiniho vety plyne, že nie je možne zostrojiť priamu metódu pre výpočet kompletného spektra matice pro n ≥ 5.
- Všetky metódy výpočtu spektier matíc sú preto iteračné.
- Potrebné je poznať nejaký odhad chyby, aby bolo možné určiť vhodné kritérium zastavenia pri výpočte iterácií.
- Nech  $A \in \mathbb{C}^{n \times n}$  je hermitovská matica a nech  $\tilde{\lambda}$  a  $\tilde{x} \neq 0$  sú pripísané aproximácie vlastnej hodnoty a vlastného čísla  $\lambda$  vektora x. Pre rezíduum

$$r = A\tilde{x} - \tilde{\lambda}\tilde{x}$$

potom

$$min_{\lambda_i \in \rho(A)} |\tilde{\lambda} - \lambda_i| \le \frac{||r||}{||x||}$$

(4)

(3)

# Úvod



Modelovanie a analýza vibrácii.

# Úvod



Modelovanie a analýza vibracii - Tacoma bridge.

Tacoma bridge

#### Lokalizacia

- V niektorých aplikáciách (napr. stabilita dynamických systémov, konvergencia iteračných metód a pod.) nie sú dôležité hodnoty vlastných čísiel, ale ich lokalizácia v komplexnej rovine ( $Re(\lambda) < 0, |\lambda| < 1$ ).
- Geršgorin (1931): Nech  $A \in \mathbb{R}^{n \times n}$ . Položme

$$r_i = \sum_{i=j, j \neq i}^{n} |a_{ij}|, i = 1, 2, ..., n.$$
 (5)

Potom každé vlastné číslo  $\lambda$  splna aspoň jednu z nasledujúcich nerovností:

$$|\lambda - a_{ij}| \le r_i, i = 1, 2, ..., n.$$
 (6)

t.j. spektrum matice A leží v zjednotení n Geršgorinových diskov  $z \in \mathbb{C}: |\lambda - a_{ii}| \le r_i, i = 1, 2, ..., n$ .

#### Lokalizacia

- Nech r Geršgorinových diskov je disjunktných vzhľadom na zostávajúcich n-r diskov (r < n). Potom zjednotenie týchto r diskov obsahuje presne r vlastných čísiel matice A.
- Príklad:

$$A = \begin{pmatrix} 1 & 0.2 & 0.1 \\ 0.2 & 4 & 0.3 \\ 0.4 & 0.5 & 8 \end{pmatrix} \tag{7}$$

- Riesenie ....
- Všetky 3 disky sú navzájom disjunktné, takže každý z nich obsahuje práve jedno vlastné číslo ( $\lambda_1=0.9834, \lambda_2=3.9671, \lambda_3=8.0495$ ).

# Ako na to?



Príklad:

$$A = \begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix} \tag{8}$$

. . . . . . .

- Ak by A nebolo diagonálna ale všeobecná výpočet by  $A^k$  by bol náročný
- Výpočet k-tej mocniny môžeme nahradiť

$$x^{(k+1)} = Ax^{(k)}$$

čo možno prepísať

$$x^{(k)} = A^k x^{(0)}$$

(9)

(10)

- Videli sme že je doležíte aby hlavná zložka vektora bola nenulová, to znamená  $x^{(0)}$  musí mat nenulový priemet do smeru najväčšieho vlastného čísla.
- Delením  $3^k$  sme urobili tak, že výsledný postupnosť  $x^{(k)}$  konverguje. Inak by sme dostali postupnosť vektora, ktorá síce konvergujú do smeru najväčšieho vlastného vektora, ale by rástli do nekonečna.
- Vo všeobecnosti môžeme deliť najväčšou zložku výsledného vektora. Potom dostaneme tzv. mocninovu metódu

- Nech A má VC :  $|\lambda_1| > |\lambda_2| \le |\lambda_3| \le |\lambda_n|$  a nech  $v_1$  je VV prislúchajúci k  $\lambda_1$ . Nech je A diagonalizovatelná.
- Tato metóda konštruuje postupnosť

$$y^{(k+1)} = Ax^{(k)} (11)$$

$$\alpha_k = \max(x^{(k+1)}) \tag{12}$$

$$x^{(k+1)} = y^{(k+1)}/\alpha_k (13)$$

za vhodnych predpokladov  $x^{(k)}$  konverguje k najväčšiemu vlastnému vektoru a  $\alpha_k$  k najväčšiemu číslo.

• Nech je A diagonalizovatelná

Zvol 
$$x^{(0)} \neq 0$$
,  $tol$ ,  $k = 0$   
**Do**  $k = k + 1$   
 $\tilde{x}^{(k)} = Ax^{(k-1)}$ .  
 $\lambda_m = \max(\tilde{x}^{(k)})$ .  
 $x^{(k)} = \frac{1}{\lambda_m} \tilde{x}^{(k)}$ .  
 $r^{(k)} = Ax^{(k)} - \lambda_m x^{(k)}$ .  
**until**  $k \geq \max$  or  $||r^{(k)}|| \geq |tol$ .



• Príklad 1:

$$A = \begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix}, \quad x^{(0)} = (1,1)^T$$
 (14)

potom

| k | $y^{(k+1)}$                                  | $\alpha_k$ | $x^{(k+1)}$             |
|---|----------------------------------------------|------------|-------------------------|
| 0 | $(3,2)^T$                                    | 3          | $(1,\frac{2}{3})^T$     |
| 1 | $(3,\frac{4}{3})^T$                          | 3          | $(1,\frac{3}{9})^T$     |
| 2 | $(3, \frac{4}{3})^T$<br>$(3, \frac{8}{9})^T$ | 3          | $(1,\frac{8}{27})^T$    |
|   |                                              |            |                         |
|   |                                              |            |                         |
|   |                                              |            |                         |
| i | $\left(3,\frac{2^{i+1}}{3^i}\right)^T$       | 3          | $(1,(\frac23)^{i+1})^T$ |



• Príklad 2:

$$A = \begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix}, \quad x^{(0)} = (0,1)^{T}$$
 (15)

potom

| k | $y^{(k+1)}$ | $\alpha_k$ | $x^{(k+1)}$ |
|---|-------------|------------|-------------|
| 0 | $(0,2)^{T}$ | 2          | $(0,1)^T$   |
| 1 | $(0,2)^T$   | 2          | $(0,1)^T$   |
| 2 | $(0,2)^T$   | 2          | $(0,1)^T$   |
|   |             |            |             |
|   |             |            |             |
|   |             |            |             |
| i | $(0,2)^T$   | 2          | $(0,1)^T$   |



• Príklad 3:

$$A = \begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix}, \quad x^{(0)} = (\epsilon, 1)^T \tag{16}$$

potom

| k   | $y^{(k+1)}$                                        | $\alpha_k$                    | $x^{(k+1)}$                                               |
|-----|----------------------------------------------------|-------------------------------|-----------------------------------------------------------|
| 0   | $(3\epsilon,2)^T$                                  | 2                             | $(\frac{3}{2}\epsilon,1)^T$                               |
| 1   | $(\frac{9}{2}\epsilon,2)^T$                        | 2                             | $(rac{3}{2}\epsilon,1)^{T} \ (rac{9}{4}\epsilon,1)^{T}$ |
|     |                                                    |                               |                                                           |
| i-1 | $(\frac{3^i}{2^{i-1}}\epsilon,2)^T$                | 2                             | $(\frac{3^i}{2^i}\epsilon,1)^T$                           |
| i   | $(\frac{\bar{3}^{i+1}}{2^i}\epsilon,2)^T$          | $\frac{3^{i+1}}{2^i}\epsilon$ | $(1, \frac{2^i}{3^{i+1}}\epsilon)^T$                      |
| i+1 | $\left(3,\frac{2^{i+1}}{3^{i+1}}\epsilon\right)^T$ | 3                             | $(1, \frac{2^{i+1}}{3^{i+2}}\epsilon)^T$                  |
|     |                                                    |                               |                                                           |



- Ak chceme nájsť najmenšie vlastné číslo v absolútnej hodnote matice A, môžeme použiť mocninovú metódu na maticu  $A^{-1}$ .
- Najmenšia hodnota vlastného čísla potom bude  $1/\lambda$  .
- Krok  $y^{(k+1)} = A^{-1}x^{(k)}$  potom riešime ako  $Ay^{(k+1)} = x^{(k)}$ Týmto trikom sa zbavíte výpočtu inverzie matice a používa v numerike používa veľmi často.

- Pokial budeme  $x^{(0)}$  voliť náhodne, potom je nulová pravdepodobnosť trafiť vektor s nulovým priemetom do najväčšieho vlastného vektora.
- V praxi je u reálnych ulož zaistene že zaokrúhľovacie chyby vnesú do výpočtu potrebne  $\epsilon$ .
- Rýchlosť konvergencie metódy je daná podielom  $|\lambda_2|/|\lambda_1|$



- Deflácia je metóda na výpočet subdominantného vlastného čísla (VC) a vlastného vektora (VV):  $|\lambda_1| > |\lambda_2| > |\lambda_3| \ge ... \ge |\lambda_n|$ . Pritom sa predpokladá, že k dispozícii je kvalitný odhad dominantného páru  $(\lambda_1, x_1)$ .
- Householderova matica H (elementárna reflexia): Nech  $e_1 = (1, 0, ..., 0)^T$  a nech  $x = (x_1, x_2, ...x_n)^T \neq \alpha e_1$ . potom existuje vektor u

$$u = x + sgn(x_1)||x||_2 e_1$$
 (17)

Taký že

$$H = I - 2\frac{uu^T}{u^Tu}, \quad Hx = -sgn(x_1)||x||_2e_1.$$
 (18)

je symetrická, ortogonálna.

• Nech  $(\lambda_1, x_1)$  je dominantný vlastný pár matice A a nech H je taká HM, že  $Hv_1 = \lambda e_1$ . Potom

$$A_1 = H^{-1}AH = \begin{pmatrix} \lambda_1 & c^T \\ 0 & A_2 \end{pmatrix}$$
 (19)

kde  $A_2$  je rádu n-1 a má tie isté vlastné čísla ako A okrem  $\lambda_1$ . Matica H je maticou prechodu medzi bazami.

- Dokaz ...
- Ak teda  $|\lambda_1| > |\lambda_2| > |\lambda_3| \ge ... \ge |\lambda_n|$ , potom po deflačnom kroku  $A_1 = HAH$  je  $\lambda_2$  dominantné VC matice  $A_2$ .

Tvar H je taký že stĺpce tvoria bázické vektory

$$H = \begin{pmatrix} x_1 & & 0 \\ x_2 & 1 & & \\ \vdots & & \ddots & \\ x_n & 0 & & 1 \end{pmatrix}$$
 (20)

• Inverznú maticu dostaneme tak že prvý stĺpce podelíme  $x_1$ 

$$H^{-1} = \begin{pmatrix} \frac{1}{x_1} & & 0\\ -\frac{x_2}{x_1} & 1 & & \\ \vdots & & \ddots & \\ -\frac{x_n}{x_1} & 0 & & 1 \end{pmatrix}$$

(21)

Roznásobením dostaneme maticu A<sub>2</sub>

$$A_{2} = \begin{pmatrix} a_{22} - \frac{x_{2}}{x_{1}} a_{12} & a_{23} - \frac{x_{2}}{x_{1}} a_{13} & \cdots & a_{2n} - \frac{x_{2}}{x_{1}} a_{1n} \\ a_{32} - \frac{x_{3}}{x_{1}} a_{12} & a_{33} - \frac{x_{3}}{x_{1}} a_{13} & \cdots & a_{3n} - \frac{x_{3}}{x_{1}} a_{1n} \\ \vdots & & \ddots & \vdots \\ a_{n2} - \frac{x_{n}}{x_{1}} a_{12} & a_{n3} - \frac{x_{n}}{x_{1}} a_{13} & \cdots & a_{nn} - \frac{x_{n}}{x_{1}} a_{1n} \end{pmatrix}$$

$$(22)$$

Podobne ide napisat

$$c^T = \frac{1}{x_1}(a_{12}, a_{13}, ..., a_{1n})$$

• Teraz vieme pre maticu  $A_2$  nájsť vlastne číslo  $\lambda_2$  a vlastný vektor napr.  $\vec{z} = (z_2, ... z_n)^T$ .

(23)

- Ako dopočítať odpovedajúci vlastný vektor matice A?
- Logicky ako lineárna kombinácia bázového vektora daného stĺpcami matice H. Na to však potrebujeme vypočítať zložku z1.
- Musí byť platiť

$$\begin{pmatrix} \lambda_1 & c^T \\ 0 & A_2 \end{pmatrix} \begin{pmatrix} z_1 \\ \vec{z} \end{pmatrix} = \begin{pmatrix} \lambda_1 z_1 + c^T \vec{z} \\ A_2 \vec{z} \end{pmatrix} = \begin{pmatrix} \lambda_1 z_1 + c^T \vec{z} \\ \lambda_2 \vec{z} \end{pmatrix} = \begin{pmatrix} \lambda_2 z_1 \\ \lambda_2 \vec{z} \end{pmatrix}$$
(24)

odtiaľ dostávame

$$\lambda_1 z_1 + c^T = \lambda_2 z_1 \to z_1 = \frac{c^T \vec{z}}{\lambda_2 - \lambda_1}$$
 (25)

• Teraz vieme pre maticu  $A_2$  nájsť vlastne číslo  $\lambda_2$  a vlastný vektor napr.  $\vec{z} = (z_2, ... z_n)^T$ .

- Výpočet počtu najväčších, resp. najmenších vlastných čísel. matice A, sa používa nasledujúca kombinácia MM, MII a deflace:
  - $\circ$  1) Použi mocninou metódu aplikovanú na A (resp. mocninou metódu aplikovanú na  $A^{-1}$ ) na výpočet dobrej aproximácie v absolútnej hodnote najväčšieho (resp. najmenšieho) VC a príslušného VV.
  - 2) Aplikuj metódu inverzných iterácií s aproximovaným VC (zostáva nemenné) a s aproximovaným VV z kroku 1 ako počiatočným vektorom. Takto sa získa spravidla veľmi spresnený odhad VV
  - o 3) Aplikuj defláciu na výpočet ďalšieho vlastného páru
  - 4) Opakuj kroky 1-3 pre požadovaný počet vlastných párov

# Metóda inverzných iterácií (MII)

- Ak je k dispozícii kvalitná aproximácia  $\sigma$  dominantného VC  $\lambda_1$ , potom MII efektívne počíta prislúchajúci VV.
- Kvalitná aproximácia:  $|\lambda_1 \sigma| << |\lambda_i \sigma|, i = 2, ...n.$
- Presnosť počítača: konštanta  $\epsilon$ ; pri dvojitej presnosti je  $\epsilon \approx 1.11 \times 10^{-16}$ .

Zvol 
$$x^{(0)} \neq 0, \sigma, k = 0$$
  
**Do**  $k = k + 1$   
Najdi  $x^{(k)}$  riesenim  $(A - \sigma I)\tilde{x}^{(k)} = x^{(k-1)}$ .  
 $\lambda_m = \max(\tilde{x}^{(k)})$ .  
 $x^{(k)} = \frac{1}{\lambda_m}\tilde{x}^{(k)}$ .  
 $x^{(k)} = x^{(k)}/||x^{(k)}||$ .  
 $r^{(k)} = Ax^{(k)} - \sigma x^{(k)}$ .  
**until**  $k \geq \max it$  or  $||r^{(k)}|| \geq ||A||\epsilon$ .



# Metóda inverzných iterácií (MII)

- MII je vlastne mocninová metóda aplikovaná na maticu  $(A \sigma I)^{-1}$ , pričom je k dispozícii kvalitná aproximácia  $\sigma$  VC  $\lambda_1$ , ktorá sa počas iterácií nemení.
- Kombinácia MM a MII, kde MII slúži na spresnenie odhadu VV. Obvykle totiž MM dáva omnoho presnejší odhad VC než korešpondujúceho VV.
- Ak máme k dispozícii kvalitný odhad  $\sigma$  ľubovoľného VC  $\lambda_j$  potom MII spravidla veľmi rýchlo konverguje k VV prislúchajúcemu k  $\lambda_j$ .

# NUMERICKÉ METÓDY LINEÁRNEJ ALGEBRY

09. Základné algoritmy pre výpočet vlastných čísiel a vektorov, 10. Spôsoby prepodmienenia pri riešní sústav lineárnych rovníc.

Ing. Marek Macák, PhD.

Konzultácie: podľa potreby/dohody

22. Apríl 2024

#### Prečo?

- Nedostatočná robustnosť je všeobecne uznávanou slabinou iteratívnych metod v porovnaní s priamym metódami.
- Tento nedostatok bráni prijatiu iteračných metód napriek ich vhodnosti pre veľmi veľké lineárne systémy.
- Obidve stránky účinnosť aj robustnosť iteračných techník možno zlepšiť použitím predpodmienenia.
- Predpodmienenie je jednoducho prostriedok na transformáciu pôvodného lineárneho systému na systém, ktorý má rovnaké riešenie, ale ktorý sa bude pravdepodobne ľahšie riešiť iteračnou metódou.
- Vo všeobecnosti je spoľahlivosť iteračných techník pri riešení rôznych aplikácií veľmi závislá viac na kvalite predpodmienenia ako na použitých konkrétnych akcelerátoroch Krylovovho podpriestoru.

#### Ako?

- Prvým krokom pri predpodmienení je nájsť maticu predpodmienenia (preconditioning matrix) M.
- Matica M môže byť definovaná rôznymi spôsobmi, ale musí spĺňať niekoľko minimálnych požiadaviek:
  - $\circ$  Z praktického hľadiska je najväčšou požiadavkou na M to, aby bola nenáročná na riešenie lineárnych systémov Mx = b.
  - $\circ$  Taktiež M by mala byť v určitom zmysle blízka A a mala by byť jednoznačne nesingulárna.
- Keď je k dispozícii matica predpodmienenia M, sú známe tri spôsoby použitia predpodmienenia.

#### Ako?

• Predpodmienenie sa môže aplikovať zľava, čo vedie k predpodmienenému systému:

$$M^{-1}Ax = M^{-1}b. (26)$$

• Prípadne sa môže použiť aj vpravo:

$$AM^{-1}u = b, \quad u = Mx, \quad x = M^{-1}u.$$
 (27)

• Nakoniec, keď je prepodmienenie k dispozícii vo faktorovanej forme  $M = M_L M_U$  kde  $M_L$  a  $M_U$  sú trojuholníkové matice, predpodmienie môžeme napísať ako:

$$M_L^{-1}AM_U^{-1}u = M_L^{-1}b, \quad x = M_U^{-1}u, \text{ alebo } u = M_Ux.$$
 (28)

# Ako dostanem maticu M?



### Jacobi Preconditioning

Najjednoduchší predpodmienovač je zostavený len z diagonály matice:

$$m_{i,j} = \begin{cases} a_{i,j} & \text{if } i = j \\ 0 & \text{inak} \end{cases}$$
 (29)

 Je možné použiť bez použitia akéhokoľvek ďalšieho úložiska nad rámec samotnej matice.

### Gauss-Seidel a SOR Preconditioning

• Gauss-Seidel predpodmienenie je zostavene len z prvkov matice:

$$M_{GS} = (D - L)D^{-1}(D - U).$$
 (30)

• SOR predpodmienenie je zostavene len z prvkov matice:

$$M_{\omega} = \frac{1}{2 - \omega} (\frac{1}{\omega} D - L) (\frac{1}{\omega} D^{-1}) (\frac{1}{\omega} D - U). \tag{31}$$

• Optimálna hodnota parametra  $\omega$ , podobne ako parameter v metóde SOR, zníži počet iterácií.

# Cholesky Preconditioning

• Zalozene na Choleskyho faktorizácii matice A:

for 
$$k=0,1,...,n-1$$
  
for  $i=0,1,...,k-1$   
 $h_{ki}=\left(a_{ki}-\sum_{j=0}^{i-1}h_{ij}*h_{kj}\right)/h_{ii}$   
end  
 $h_{kk}=\sqrt{a_{kk}-\sum_{j=0}^{k-1}h_{kj}^2}$   
end

V tomto algoritme  $\sum_{i=0}^{-1}()=0$  a  $h^{00}=\sqrt{a_{00}}$ .



### LU Preconditioning

• Zalozene na LU rozklade matice A:

```
for k = 2, ..., n

for k = 1, ..., i - 1

a_{ik} = a_{ik}/a_{kk}

for j = k + 1, ..., n

a_{ij} = a_{ij} - a_{ik} * a_{k,j}

end

end

end
```



#### Incomplete LU Preconditioning

• Zalozene na LU rozklade riedkej matice A:

```
for k = 2, ..., n

for k = 1, ..., i - 1 a if(i, k) \in nnz(A)

a_{ik} = a_{ik}/a_{kk}

for j = k + 1, ..., n a if(i, k) \in nnz(A)

a_{ij} = a_{ij} - a_{ik} * a_{k,j}

end

end

end
```



Metóda združených gradientov. Conjugate Gradient method.



• Pôvodná verzia algoritmu CG ktorá funguje pre SPD maticu A

$$p^{(0)} = r^{(0)} = b - Ax^{(0)} (32)$$

pre i = 1, 2, .... platia nasledujúce vzťahy

$$\alpha_{i-1} = \frac{(r^{(i-1)}, r^{(i-1)})}{(Ap^{(i-1)}, p^{(i-1)})}, \tag{33}$$

$$x^{(i)} = x^{(i-1)} + \alpha_{i-1}p^{(i-1)},$$
 (34)

$$r^{(i)} = r^{(i-1)} - \alpha_{i-1} A p^{(i-1)},$$
 (35)

$$\beta_{i-1} = \frac{(r^{(i)}, r^{(i)})}{(r^{(i-1)}, r^{(i-1)})}, \tag{36}$$

$$p^{(i)} = r^{(i)} + \beta_{i-1}p^{(i-1)}, \tag{37}$$

• Ak je M k dispozícii vo forme napr. Choleského faktorizácie

$$M = LL^{T} (38)$$

potom jednoduchým spôsobom, ako zachovať symetriu, je použiť
 "rozdelenie" predkontácie (3), čím získame symetrickú pozitívne definitnú maticu,

$$L^{-1}AL^{-T}u = L^{-1}b, \quad x = L^{-T}u.$$
 (39)

• Nie je však potrebné, pre SDP maticu, rozdeliť predmienienie týmto spôsobom, aby sa zachovala symetria. Pre M-skalárny súčin je  $M^{-1}A$  je samoadjungovaný

$$(x,y)_M = (Mx,y) = (x, My)$$
 (40)  
 $(M^{-1}Ax, y)_M = (Ax, y) = (x, Ay) = (x, M(M^{-1}A)y) = (x, M^{-1}Ay)_M$  (41)

 Preto je možné nahradiť euklidovský skalárny súčin za konjugovaný M skalárny súčinom.

• CG prepíše pre tento nový skalarny súčin. Pre jednoduchosť zápisu označíme pôvodné rezíduum  $r^{(j)}=b-Ax^{(j)}$  a predpormienené reziduum  $z^{(j)}=M^{-1}r^{(j)}$  získame nasledujúcu postupnosť operácií

$$\alpha_{i-1} = \frac{(z^{(i-1)}, z^{(i-1)})_M}{(M^{-1}Ap^{(i-1)}, p^{(i-1)})_M}, \tag{42}$$

$$x^{(i)} = x^{(i-1)} + \alpha_{i-1}p^{(i-1)},$$
 (43)

$$r^{(i)} = r^{(i-1)} - \alpha_{i-1} A p^{(i-1)}, \ z^{(j)} = M^{-1} r^{(j)},$$
 (44)

$$\beta_{i-1} = \frac{(z^{(i)}, z^{(i)})_M}{(z^{(i-1)}, z^{(i-1)})_M}, \tag{45}$$

$$p^{(i)} = z^{(i)} + \beta_{i-1}p^{(i-1)}, \tag{46}$$

Predpodmienenu verziu CG môžeme potom zapísať

$$r^{(0)} = b - Ax^{(0)}, \ z^{(0)} = M^{-1}r^{(0)}, \ p^{(0)} = z^{(0)}$$
 (47)

pre  $i = 1, 2, \dots$  platia nasledujúce vzťahy

$$\alpha_{i-1} = \frac{(r^{(i-1)}, z^{(i-1)})}{(Ap^{(i-1)}, p^{(i-1)})}, \tag{48}$$

$$x^{(i)} = x^{(i-1)} + \alpha_{i-1}p^{(i-1)},$$
 (49)

$$r^{(i)} = r^{(i-1)} - \alpha_{i-1} A p^{(i-1)},$$
 (50)

$$z^{(i)} = M^{-1}r^{(i)}, (51)$$

$$\beta_{i-1} = \frac{(r^{(i)}, z^{(i)})}{(r^{(i-1)}, z^{(i-1)})}, \tag{52}$$

$$p^{(i)} = z^{(i)} + \beta_{i-1}p^{(i-1)}, (53)$$

V pripade praveho predpodmienenia AM<sup>-1</sup> prepíšeme CG podľa (2)

$$\alpha_{i-1} = \frac{(r^{(i-1)}, r^{(i-1)})_{M^{-1}}}{(AM^{-1}p^{(i-1)}, p^{(i-1)})_{M^{-1}}}, \tag{54}$$

$$u^{(i)} = u^{(i-1)} + \alpha_{i-1}p^{(i-1)}, \tag{55}$$

$$r^{(i)} = r^{(i-1)} - \alpha_{i-1} A p^{(i-1)},$$
 (56)

$$\beta_{i-1} = \frac{(r^{(i)}, r^{(i)})_{M^{-1}}}{(r^{(i-1)}, r^{(i-1)})_{M^{-1}}}, \tag{57}$$

$$p^{(i)} = r^{(i)} + \beta_{i-1}p^{(i-1)}, (58)$$

 $kde x = M^{-1}u$ .

- Vektor u ale nie je nikde potrebný preto vieme prepísať  $x^{(i)} = x^{(i-1)} + \alpha_{i-1} M^{-1} p^{(i-1)}$ .
- Nahradime  $q^{(i)} = M^{-1}p^{(i)}$  a  $z^{(i)} = M^{-1}r^{(i)}$ .

44 / x

$$\alpha_{i-1} = \frac{(z^{(i-1)}, r^{(i-1)})}{(Aa^{(i-1)}, a^{(i-1)})}, \tag{59}$$

$$x^{(i)} = x^{(i-1)} + \alpha_{i-1}q^{(i-1)}, \tag{60}$$

$$r^{(i)} = r^{(i-1)} - \alpha_{i-1}Aq^{(i-1)}, z^{(i)} = M^{-1}r^{(i)},$$
 (61)

$$\beta_{i-1} = \frac{(z^{(i)}, r^{(i)})}{(z^{(i-1)}, r^{(i-1)})}, \tag{62}$$

$$q^{(i)} = z^{(i)} + \beta_{i-1}q^{(i-1)}, \tag{63}$$

• L'avo predpodmienený CG algoritmus s M-skalárnym súčinom je matematicky ekvivalentný v pravo predpodmienemu algoritmu CG s  $M^{-1}$ -skalárnym súčinom.

V prípade rozdeleného predpodmienenia môžeme napísať

$$\hat{p}^{(i)} = L^T p^{(i)}, \tag{64}$$

$$u^{(i)} = L^T x^{(i)},$$
 (65)

$$\hat{r}^{(i)} = L^T z^{(i)} = L^{-1} r^{(i)}, \tag{66}$$

$$\hat{A} = L^{-1}AL^{-T}.\tag{67}$$

• Kroky CG algoritmu, ktoré riešia  $\hat{A}u = L^{-1}b$ , vieme pre nove premenne napísať

$$\alpha_{i-1} = \frac{(\hat{r}^{(i-1)}, \hat{r}^{(i-1)})}{(\hat{A}\hat{p}^{(i-1)}, \hat{p}^{(i-1)})}, \tag{68}$$

$$u^{(i)} = u^{(i-1)} + \alpha_{i-1}\hat{p}^{(i-1)}, \tag{69}$$

$$\hat{r}^{(i)} = \hat{r}^{(i-1)} - \alpha_{i-1} \hat{A} \hat{\rho}^{(i-1)}, \tag{70}$$

$$\beta_{i-1} = \frac{(\hat{r}^{(i)}, \hat{r}^{(i)})}{(\hat{r}^{(i-1)}, \hat{r}^{(i-1)})}, \tag{71}$$

$$\hat{\rho}^{(i)} = \hat{r}^{(i)} + \beta_{i-1}\hat{\rho}^{(i-1)}, \tag{72}$$

kde  $u = L^T x$ .

Rozdelene predpodmienenu verziu CG môžeme potom zapísať

$$r^{(0)} = b - Ax^{(0)}, \ \hat{r}^{(0)} = L^{-1}r^{(0)}, \ p^{(0)} = L^{-T}\hat{r}^{(0)}$$
(73)

pre i = 1, 2, .... platia nasledujúce vzťahy

$$\alpha_{i-1} = \frac{(\hat{r}^{(i-1)}, \hat{r}^{(i-1)})}{(Ap^{(i-1)}, p^{(i-1)})}, \tag{74}$$

$$x^{(i)} = x^{(i-1)} + \alpha_{i-1}p^{(i-1)},$$
 (75)

$$\hat{r}^{(i)} = \hat{r}^{(i-1)} - \alpha_{i-1} L^{-1} A p^{(i-1)}, \tag{76}$$

$$\beta_{i-1} = \frac{(\hat{r}^{(i)}, \hat{r}^{(i)})}{(\hat{r}^{(i-1)}, \hat{r}^{(i-1)})}, \tag{77}$$

$$p^{(i)} = L^{-T} \hat{r}^{(i)} + \beta_{i-1} p^{(i-1)}, \tag{78}$$