RIEMSER ~

Akynzeo® 300 mg/0,5 mg Hartkapseln

Dieses Arzneimittel unterliegt einer zusätzlichen Überwachung. Dies ermöglicht eine schnelle Identifizierung neuer Erkenntnisse über die Sicherheit. Angehörige von Gesundheitsberufen sind aufgefordert, jeden Verdachtsfall einer Nebenwirkung zu melden. Hinweise zur Meldung von Nebenwirkungen siehe Abschnitt 4.8.

1. BEZEICHNUNG DES ARZNEIMITTELS

Akynzeo® 300 mg/0,5 mg Hartkapseln

2. QUALITATIVE UND QUANTITATIVE ZUSAMMENSETZUNG

Jede Kapsel enthält 300 mg Netupitant sowie Palonosetronhydrochlorid entsprechend 0,5 mg Palonosetron.

Sonstige(r) Bestandteil(e) mit bekannter Wirkung:

Jede Kapsel enthält 7 mg Sorbitol und 20 mg Sucrose.

Vollständige Auflistung der sonstigen Bestandteile siehe Abschnitt 6.1.

3. DARREICHUNGSFORM

Hartkapsel.

Opake Gelatinekapsel der Größe "0" (Länge 21,7 mm) bestehend aus einem weißen Unterteil und einem karamellfarbenen Oberteil, mit dem Aufdruck "HE1" auf dem Unterteil. Die Hartkapsel ist mit drei Tabletten und einer Weichkapsel gefüllt.

4. KLINISCHE ANGABEN

4.1 Anwendungsgebiete

Akynzeo wird angewendet bei Erwachsenen zur:

- Prävention von akuter und verzögert auftretender Übelkeit und Erbrechen bei stark emetogener Chemotherapie auf Cisplatin-Basis aufgrund einer Krebserkrankung.
- Prävention von akuter und verzögert auftretender Übelkeit und Erbrechen bei mäßig emetogener Chemotherapie aufgrund einer Krebserkrankung.

4.2 Dosierung und Art der Anwendung

Dosierung

Erwachsene

Eine Kapsel zu 300 mg/0,5 mg ist etwa eine Stunde vor Beginn jedes Chemotherapiezyklus einzunehmen.

Die empfohlene orale Dexamethason-Dosis ist bei gleichzeitiger Anwendung von Akynzeo um etwa 50 % zu reduzieren (siehe Abschnitt 4.5 und Behandlungsschema der klinischen Studien in Abschnitt 5.1).

Ältere Patienten

Bei älteren Patienten ist keine Dosierungsanpassung erforderlich. Wegen der langen Halbwertszeit der Wirkstoffe und der bei Patienten über 75 Jahren begrenzten Erfahrungen ist bei Anwendung dieses Arzneimittels in dieser Patientengruppe Vorsicht geboten.

Kinder und Jugendliche

Die Sicherheit und Wirksamkeit von Akynzeo bei Kindern und Jugendlichen ist nicht erwiesen. Es liegen keine Daten vor.

Einschränkung der Nierenfunktion

Bei Patienten mit leichter bis starker Einschränkung der Nierenfunktion wird eine Dosierungsanpassung nicht als erforderlich erachtet. Die renale Ausscheidung ist bei Netupitant vernachlässigbar. Eine leichte bis mäßige Einschränkung der Nierenfunktion hat keinen nennenswerten Einfluss auf die pharmakokinetischen Parameter von Palonosetron. Bei stark eingeschränkter Nierenfunktion erhöhte sich die systemische Gesamtexposition gegenüber intravenös angewendetem Palonosetron im Vergleich zu nierengesunden Probanden um etwa 28%. Bei hämodialysepflichtigen Patienten mit terminaler Niereninsuffizienz wurde die Pharmakokinetik von Palonosetron oder Netupitant nicht untersucht, und es liegen keine Daten zur Wirksamkeit oder Sicherheit von Akynzeo bei diesen Patienten vor. Daher sollte die Anwendung bei diesen Patienten vermieden werden.

Eingeschränkte Leberfunktion

Bei Patienten mit leicht oder mäßig eingeschränkter Leberfunktion (Child-Pugh-Score 5 – 8) ist keine Dosierungsanpassung erforderlich. Begrenzte Daten liegen bei Patienten mit stark eingeschränkter Leberfunktion (Child-Pugh-Score ≥ 9) vor. Da die Anwendung bei Patienten mit stark eingeschränkter Leberfunktion mit einer erhöhten Exposition gegenüber Netupitant verbunden sein kann, sollte Akynzeo bei diesen Patienten mit Vorsicht angewendet werden (siehe Abschnitte 4.4 und 5.2).

Art der Anwendung

Zum Einnehmen.

Die Hartkapsel ist im Ganzen zu schlucken. Sie kann zu einer Mahlzeit oder unabhängig davon eingenommen werden.

4.3 Gegenanzeigen

Überempfindlichkeit gegen die Wirkstoffe oder einen der in Abschnitt 6.1 genannten sonstigen Bestandteile.

Schwangerschaft (siehe Abschnitt 4.6).

4.4 Besondere Warnhinweise und Vorsichtsmaßnahmen für die Anwendung

Obstipation

Da Palonosetron die Dickdarmpassage verlängern kann, sollten Patienten mit anamnestisch bekannter Obstipation oder Anzeichen eines subakuten Ileus nach der Gabe überwacht werden. Über Fälle von Obstipation mit Stuhlimpaktion, die eine stationäre Behandlung erforderlich machte, wurde im Zusammenhang mit der Gabe von Palonosetron 0,75 mg berichtet.

Serotonin-Syndrom

Unter der Anwendung von 5-HT₃-Antagonisten allein oder in Kombination mit anderen serotonergen Arzneimitteln (darunter selektive Serotonin-Wiederaufnahme-Hemmer (SSRI) und Serotonin-Noradrenalin-Wiederaufnahme-Hemmer (SNRI)) liegen Meldungen über ein Serotonin-Syndrom vor. Es empfiehlt sich eine entsprechende

Beobachtung der Patienten auf Serotonin-Syndrom-ähnliche Symptome.

Verlängerung des QT-Intervalls

Eine Studie mit EKG-Befundung wurde an gesunden erwachsenen männlichen und weiblichen freiwilligen Probanden durchgeführt, die oral angewendetes Netupitant in einer Dosierung von 200 oder 600 mg in Kombination mit oral angewendetem Palonosetron in einer Dosierung von 0,5 bzw. 1,5 mg erhielten. Die Studie zeigte keine klinisch bedeutsamen Wirkungen auf EKG-Parameter: der größte Punktschätzer des Placebo- und Baseline-korrigierten QTc-Intervalls betrug 7,0 ms (einseitige obere 95%-Konfidenzgrenze 8,8 ms) und wurde 16 Stunden nach Gabe supratherapeutischer Dosen (600 mg Netupitant und 1,5 mg Palonosetron) beobachtet. Die obere 95%-Konfidenzgrenze der Punktschätzer des Placebo- und Baseline-korrigierten QTc-Intervalls lag über einen Zeitraum von 2 Tagen nach Gabe des Prüfpräparats zu allen Zeitpunkten durchweg innerhalb von 10 ms.

Da Akynzeo jedoch einen 5-HT₃-Rezeptor-Antagonisten enthält, ist Vorsicht geboten bei gleichzeitiger Anwendung von Arzneimitteln, welche das QT-Intervall verlängern, bzw. bei Patienten, bei denen das QT-Intervall verlängert ist oder die zur Entwicklung einer Verlängerung des QT-Intervalls neigen. Hiermit ist unter anderem zu rechnen bei Patienten mit eigen- oder familienanamnestisch bekannter Verlängerung des QT-Intervalls, Elektrolytstörungen, dekompensierter (kongestiver) Herzinsuffizienz. Bradyarrhythmien, Überleitungsstörungen sowie bei Patienten, die Antiarrhythmika oder andere Arzneimittel einnehmen, welche zu einer Verlängerung des QT-Intervalls oder zu Elektrolytstörungen führen. Eine Hypokaliämie und Hypomagnesiämie sollten vor der Anwendung korrigiert werden.

Außer im Zusammenhang mit einer weiteren Chemotherapeutika-Gabe soll dieses Arzneimittel in den Tagen nach der Chemotherapie nicht zur Vorbeugung von Übelkeit und Erbrechen eingesetzt werden.

Es soll nicht zur Behandlung von Übelkeit und Erbrechen nach einer Chemotherapie eingesetzt werden.

Vorsicht ist geboten bei Patienten mit stark eingeschränkter Leberfunktion, da bei diesen Patienten nur begrenzte Daten vorliegen.

Bei Patienten, die gleichzeitig oral mit Wirkstoffen behandelt werden, die vorwiegend durch CYP3A4 metabolisiert werden und eine geringe therapeutische Breite aufweisen, wie z.B. Ciclosporin, Tacrolimus, Sirolimus, Everolimus, Alfentanil, Diergotamin, Ergotamin, Fentanyl und Chinidin, sollte dieses Arzneimittel mit Vorsicht angewendet werden (siehe Abschnitt 4.5).

Chemotherapeutika, die CYP3A4-Substrate sind

Netupitant ist ein mäßiger CYP3A4-Inhibitor und kann die Exposition gegenüber Chemotherapeutika erhöhen, die CYP3A4-Substrate sind, wie z.B. Docetaxel (siehe Abschnitt 4.5). Daher sollten die Patienten

RIEMSER '

daraufhin überwacht werden, ob es unter Chemotherapeutika, die CYP3A4-Substrate sind, wie z.B. Irinotecan, vermehrt zu toxischen Wirkungen kommt. Zudem kann Netupitant auch die Wirksamkeit von Chemotherapeutika beeinträchtigen, zu deren Aktivierung eine Metabolisierung durch CYP3A4 erforderlich ist.

Sonstige Bestandteile

Akynzeo enthält Sorbitol und Sucrose. Patienten mit der seltenen hereditären Fructose-Intoleranz, Glucose-Galactose-Malabsorption oder Saccharase-Isomaltase-Mangel sollten dieses Arzneimittel nicht einnehmen.

Es kann ferner Spuren von Lecithin aus Soja enthalten. Daher sollten Patienten mit bekannter Überempfindlichkeit gegenüber Erdnüssen oder Soja engmaschig auf Anzeichen einer allergischen Reaktion überwacht werden.

4.5 Wechselwirkungen mit anderen Arzneimitteln und sonstige Wechselwirkungen

Wenn Akynzeo gleichzeitig mit einem anderen CYP3A4-Inhibitor angewendet wird, könnten erhöhte Netupitant-Plasmakonzentrationen vorliegen. Wenn Akynzeo gleichzeitig mit Arzneimitteln angewendet wird, welche die CYP3A4-Aktivität induzieren, könnten die Netupitant-Plasmakonzentrationen erniedrigt werden und dies kann zu einer verminderten Wirksamkeit führen. Dieses Arzneimittel kann die Plasmakonzentrationen von gleichzeitig angewendeten Arzneimitteln erhöhen, die über CYP3A4 metabolisiert werden.

Beim Menschen wird Netupitant in erster Linie durch hepatische Metabolisierung eliminiert, welche durch CYP3A4 vermittelt wird, wobei nur eine marginale renale Ausscheidung erfolgt. In einer Dosierung von 300 mg ist Netupitant beim Menschen ein Substrat und mäßiger Inhibitor von CYP3A4. Palonosetron wird sowohl durch renale Ausscheidung als auch über Stoffwechselwege aus dem Körper eliminiert, wobei letztere über mehrere CYP-Enzyme vermittelt werden. Palonosetron hauptsächlich durch CYP2D6 metabolisiert, während die Isoenzyme CYP3A4 und CYP1A2 nur geringfügig an der Metabolisierung beteiligt sind. Basierend auf Invitro-Studien werden Cytochrom P450-Isoenzyme von Palonosetron in klinisch relevanten Konzentrationen weder gehemmt noch induziert.

Wechselwirkung zwischen oral angewendetem Netupitant und oral angewendetem Palonosetron:

Zwischen oral angewendetem Netupitant und oral angewendetem Palonosetron wurden keine klinisch relevanten pharmakokinetischen Wechselwirkungen beobachtet.

Wechselwirkung mit CYP3A4-Substraten:

Dexamethason

Die gleichzeitige Gabe einer Einzeldosis von 300 mg Netupitant zusammen mit einem Dexamethason-Schema (20 mg an Tag 1, anschließend 8 mg zweimal täglich von Tag 2 bis Tag 4) erhöhte die Exposition gegenüber Dexamethason zeit- und dosisabhängig in signifikantem Umfang. Bei

gleichzeitiger Gabe von 300 mg Netupitant vergrößerten sich die AUC $_{0-24}$ (Tag 1), die AUC $_{24-36}$ (Tag 2) sowie die AUC $_{84-108}$ und die AUC $_{84-\infty}$ (Tag 4) von Dexamethason um den Faktor 2,4. Das pharmakokinetische Profil von Netupitant war bei kombinierter Anwendung mit Dexamethason unverändert. Daher sollte die orale Dexamethason-Dosis bei gleichzeitiger Anwendung von Akynzeo um etwa 50 % reduziert werden (siehe Abschnitt 4.2).

Chemotherapeutika (Docetaxel, Etoposid, Cyclophosphamid)

Bei gleichzeitiger Anwendung von Akynzeo war die Exposition gegenüber Docetaxel und Etoposid um 37 % bzw. 21 % erhöht. Für Cyclophosphamid wurde nach gleichzeitiger Gabe von Netupitant keine konsistente Beeinflussung beobachtet.

Orale Kontrazeptiva

Bei Anwendung zusammen mit einer oralen Einmalgabe von 60 μg Ethinylestradiol und 300 μg Levonorgestrel hatte Akynzeo keinen nennenswerten Einfluss auf die AUC von Ethinylestradiol und vergrößerte die AUC von Levonorgestrel um den Faktor 1,4; klinische Auswirkungen auf die Wirksamkeit der hormonalen Kontrazeption sind unwahrscheinlich. Relevante Veränderungen der Netupitant- und Palonosetron-Pharmakokinetik wurden nicht beobachtet.

Erythromycin und Midazolam

Die Exposition gegenüber Erythromycin bzw. Midazolam war bei gleichzeitiger Anwendung der jeweiligen Substanz und Netupitant auf das etwa 1,3- bzw. 2,4-Fache erhöht. Diese Wirkungen wurden nicht als klinisch bedeutsam erachtet. Das pharmakokinetische Profil von Netupitant war von der gleichzeitigen Anwendung von Midazolam bzw. Erythromycin unbeeinflusst. Die möglichen Auswirkungen erhöhter Plasmakonzentrationen von Midazolam oder anderen über CYP3A4 metabolisierten Benzodiazepinen (Alprazolam, Triazolam) sollten berücksichtigt werden, wenn diese Wirkstoffe und Akynzeo gleichzeitig angewendet werden.

Serotonerge Arzneimittel (z.B. SSRI und SNRI)

Nach gleichzeitiger Anwendung von 5-HT₃-Antagonisten und anderen serotonergen Arzneimitteln (darunter SSRI und SNRI) liegen Meldungen über ein Serotonin-Syndrom vor (siehe Abschnitt 4.4).

Einfluss anderer Arzneimittel auf die Pharmakokinetik von Akynzeo

Netupitant wird in erster Linie durch CYP3A4 metabolisiert; daher kann die gleichzeitige Anwendung von Arzneimitteln, welche die CYP3A4-Aktivität hemmen oder induzieren, die Plasmakonzentrationen von Netupitant beeinflussen. Bei gleichzeitiger Anwendung starker CYP3A4-Inhibitoren (z.B. Ketoconazol) ist daher Vorsicht geboten, und die gleichzeitige Anwendung starker CYP3A4-Induktoren (z.B. Rifampicin) ist zu vermeiden.

Einfluss von Ketoconazol und Rifampicin

Bei Anwendung des CYP3A4-Inhibitors Ketoconazol zusammen mit Akynzeo nahm die AUC von Netupitant um den Faktor 1,8 und die C_{max} um den Faktor 1,3 im Ver-

gleich zur alleinigen Gabe von Akynzeo zu. Die gleichzeitige Anwendung von Ketoconazol hatte keinen Einfluss auf die Pharmakokinetik von Palonosetron.

Bei Anwendung des CYP3A4-Induktors Rifampicin zusammen mit Akynzeo nahm die AUC von Netupitant um den Faktor 5,2 und die C_{max} um den Faktor 2,6 ab. Die gleichzeitige Anwendung von Rifampicin hatte keinen Einfluss auf die Pharmakokinetik von Palonosetron. Bei gleichzeitiger Anwendung starker CYP3A4-Inhibitoren (z.B. Ketoconazol) ist daher Vorsicht geboten, und die gleichzeitige Anwendung starker CYP3A4-Induktoren (z.B. Rifampicin) ist zu vermeiden.

Weitere Wechselwirkungen

Es ist unwahrscheinlich, dass Akynzeo mit Arzneimitteln, die P-gp-Substrate sind, in Wechselwirkung tritt. Netupitant ist kein Substrat für P-gp. Nach Gabe von Netupitant an Tag 8 einer 12-tägigen Behandlung mit Digoxin wurden keine Veränderungen der Digoxin-Pharmakokinetik beobachtet. Eine Hemmung des Effluxtransporters BCRP und des Glucuronidierungsisoenzyms UGT2B7 durch Netupitant und dessen Metaboliten ist unwahrscheinlich und ist, wenn es dazu kommen sollte, von geringer klinischer Relevanz.

In-vitro-Daten zeigen, dass Netupitant UGT2B7 hemmt; das Ausmaß einer solchen Wirkung unter klinischen Bedingungen ist nicht bekannt. Es wird zur Vorsicht geraten, wenn Netupitant zusammen mit einem oralen Substrat dieses Enzyms (z. B. Zidovudin, Valproinsäure, Morphin) angewendet wird.

In-vitro-Daten lassen darauf schließen, dass Netupitant den Effluxtransporter BCRP hemmt. Die klinische Relevanz dieser Wirkung ist nicht bekannt.

In-vitro-Daten zeigen, dass Netupitant ein P-gp-Inhibitor ist. In einer an gesunden freiwilligen Probanden durchgeführten Studie hat Netupitant keinen Einfluss auf die Exposition gegenüber dem P-gp-Substrat Digoxin gezeigt, erhöhte aber dessen C_{max} um den Faktor 1,09 [90%-KI 0,9-1,31]. Es wird nicht ausgeschlossen, dass dieser Effekt bei Krebspatienten ausgeprägter und dann klinisch relevant sein kann, insbesondere bei Vorliegen von Nierenfunktionsstörungen. Daher wird zur Vorsicht geraten, wenn Netupitant mit Digoxin oder mit anderen P-gp-Substraten wie Dabigatran oder Colchicin kombiniert wird.

4.6 Fertilität, Schwangerschaft und Stillzeit

Frauen im gebärfähigen Alter/Kontrazeption bei Frauen

Frauen im gebärfähigen Alter dürfen unter der Behandlung mit Akynzeo nicht schwanger sein und auch nicht schwanger werden. Bei allen prämenopausalen Frauen ist vor der Behandlung ein Schwangerschaftstest durchzuführen. Frauen im gebärfähigen Alter müssen während und bis zu einem Monat nach der Behandlung mit diesem Arzneimittel eine zuverlässige Verhütungsmethode anwenden.

2 020734-17750

RIEMSER ~

Akynzeo® 300 mg/0,5 mg Hartkapseln

Schwangerschaft

Netupitant

Es liegen keine Daten zur Anwendung von Netupitant bei Schwangeren vor. Tierexperimentelle Studien haben eine Reproduktionstoxizität, unter anderem teratogene Wirkungen am Kaninchen ohne Sicherheitsabstand, gezeigt (siehe Abschnitt 5.3).

Palonosetron

Es liegen keine Daten zur Anwendung von Palonosetron bei Schwangeren vor. Tierexperimentelle Daten ergaben keine Hinweise auf direkte oder indirekte gesundheitsschädliche Wirkungen von Palonosetron in Bezug auf eine Reproduktionstoxizität (siehe Abschnitt 5.3).

Akynzeo ist während der Schwangerschaft kontraindiziert.

Stillzeit

Es ist nicht bekannt, ob Palonosetron oder Netupitant in die Muttermilch ausgeschieden werden. Ein Risiko für das gestillte Kind kann nicht ausgeschlossen werden. Akynzeo soll während der Stillzeit nicht angewendet werden. Das Stillen soll während der Behandlung mit Akynzeo und für 1 Monat nach der letzten Dosis unterbrochen werden.

Fertilität

Netupitant

In tierexperimentellen Studien wurden keine Auswirkungen auf die Fertilität beobachtet.

Palonosetron

In einer Studie an Ratten wurde eine Degeneration des Epithels der Samenkanälchen beobachtet (siehe Abschnitt 5.3).

4.7 Auswirkungen auf die Verkehrstüchtigkeit und die Fähigkeit zum Bedienen von Maschinen

Akynzeo hat mäßigen Einfluss auf die Verkehrstüchtigkeit und die Fähigkeit zum Bedienen von Maschinen. Da es unter der Behandlung zu Benommenheit, Somnolenz oder Ermüdung kommen kann, sollten die Patienten angewiesen werden, keine Fahrzeuge zu führen und keine Maschinen zu bedienen, wenn solche Symptome auftreten

4.8 Nebenwirkungen

Zusammenfassung des Sicherheitsprofils

Unter Akynzeo häufig berichtete Nebenwirkungen waren Kopfschmerzen (3,6%), Obstipation (3,0%) und Ermüdung (1,2%). Keines dieser Ereignisse war schwerwiegend.

Tabellarische Auflistung der Nebenwirkungen

Das Sicherheitsprofil von Akynzeo wurde an 1.169 Krebspatienten erhoben, die im Rahmen von drei doppelblinden, verumkontrollierten Studien mindestens einen Zyklus einer stark oder mäßig emetogenen Chemotherapie aufgrund einer Krebserkrankung erhielten. Nebenwirkungen, die unter Akynzeo mit einer höheren Inzidenz als unter oral angewendetem Palonosetron 0,5 mg allein berichtet wurden, sind nach-

stehend nach MedDRA-Körpersystemorganklasse und Häufigkeit aufgelistet.

Die Häufigkeitsangaben basieren auf folgender Konvention:

Sehr häufig (≥ 1/10)

Häufig (≥ 1/100, < 1/10)

Gelegentlich (≥ 1/1.000, < 1/100)

Selten (≥ 1/10.000, < 1/1.000)

Sehr selten (< 1/10.000)

Nicht bekannt (Häufigkeit auf Grundlage der verfügbaren Daten nicht abschätzbar)

Siehe Tabelle 1 auf Seite 4

Beschreibung ausgewählter Nebenwirkungen

Netupitant, der neuen Komponente der Fixkombination, sind keine häufig auftretenden Nebenwirkungen zuzuschreiben, da ihre Häufigkeit mit der unter alleiniger Gabe von oral angewendetem Palonosetron vergleichbar war. Darüber hinaus wurde unter oral angewendetem Palonosetron noch über Augenschwellung, Dyspnoe und Myalgie als Nebenwirkungen berichtet, während der Entwicklung von Akynzeo wurden diese Erscheinungen jedoch nicht beobachtet. Alle diese Nebenwirkungen traten gelegentlich auf.

Aus der Anwendung von intravenös appliziertem Palonosetron nach dem Inverkehrbringen liegen sehr seltene Fälle von Anaphylaxie, anaphylaktische/anaphylaktoide Reaktionen und Schock vor.

Meldung des Verdachts auf Nebenwirkungen

Die Meldung des Verdachts auf Nebenwirkungen nach der Zulassung ist von großer Wichtigkeit. Sie ermöglicht eine kontinuierliche Überwachung des Nutzen-Risiko-Verhältnisses des Arzneimittels. Angehörige von Gesundheitsberufen sind aufgefordert, jeden Verdachtsfall einer Nebenwirkung dem

Bundesinstitut für Arzneimittel und Medizinprodukte Abt. Pharmakovigilanz Kurt-Georg-Kiesinger Allee 3 D-53175 Bonn Website: www.bfarm.de

anzuzeigen.

4.9 Überdosierung

Spezifische Angaben zur Behandlung einer Überdosierung mit Akynzeo liegen nicht vor. Netupitant-Dosen bis zu 600 mg und Palonosetron-Dosen bis zu 6 mg wurden in klinischen Studien ohne Sicherheitsbedenken angewendet. Im Falle einer Überdosierung ist das Arzneimittel abzusetzen, und der Patient ist allgemein unterstützend zu behandeln und zu überwachen. Wegen der antiemetischen Aktivität von Netupitant und Palonosetron ist unter Umständen mit Arzneimitteln keine effektive Emesis auslösbar. Es wurden keine Dialvse-Studien durchgeführt. Aufgrund des großen Verteilungsvolumens von Palonosetron und Netupitant ist eine Dialvse iedoch vermutlich keine effektive Therapie bei einer Überdosierung.

5. PHARMAKOLOGISCHE EIGEN-SCHAFTEN

5.1 Pharmakodynamische Eigenschaften

Pharmakotherapeutische Gruppe: Antiemetika und Mittel gegen Übelkeit, Serotonin-5HT₃-Antagonisten; ATC-Code: A04AA55

Wirkmechanismus

Netupitant ist ein selektiver Antagonist an humanen Substanz P/Neurokinin 1 (NK $_1$)-Rezeptoren.

Palonosetron ist ein 5-HT₃-Rezeptor-Antagonist mit hoher Bindungsaffinität zu diesem Rezeptor und geringer oder fehlender Affinität zu anderen Rezeptoren. Chemotherapeutika rufen durch Stimulation der Freisetzung von Serotonin aus den enterochromaffinen Zellen des Dünndarms Übelkeit und Erbrechen hervor. Serotonin aktiviert anschließend 5-HT₃-Rezeptoren auf vagalen Afferenzen, wodurch der Brechreflex ausgelöst wird.

Eine verzögert auftretende Emesis wurde mit der Aktivierung der (im zentralen und peripheren Nervensystem weit verbreiteten) Tachykinin-Familie-Neurokinin 1 (NK₁)-Rezeptoren durch Substanz P in Zusammenhang gebracht. Wie in Studien *in vitro* und *in vivo* gezeigt wurde, hemmt Netupitant durch Substanz P vermittelte Reaktionen.

Es wurde gezeigt, dass Netupitant die Blut-Hirn-Schranke mit einer striatalen NK₁-Rezeptorbelegung von 92,5 %, 86,5 %, 85,0 %, 78,0 % und 76,0 % zu den Zeitpunkten 6, 24, 48, 72 bzw. 96 Stunden nach Gabe von 300 mg Netupitant überwindet.

Klinische Wirksamkeit und Sicherheit

In zwei separaten zulassungsrelevanten Studien wurde gezeigt, dass die orale Gabe von Akynzeo in Kombination mit Dexamethason die akute und verzögert auftretende Übelkeit und Erbrechen bei stark und mäßig emetogener Chemotherapie aufgrund einer Krebserkrankung verhindert.

Studie bei stark emetogener Chemotherapie (Highly Emetogenic Chemotherapy, HEC)

In einer multizentrischen, randomisierten. doppelblinden, kontrollierten klinischen Parallelgruppenstudie an 694 Patienten wurden die Wirksamkeit und Sicherheit von Einmalgaben von oral angewendetem Netupitant in Kombination mit oral angewendetem Palonosetron bei Krebspatienten, die ein Chemotherapieschema unter Einschluss von Cisplatin (mediane Dosis = 75 mg/m²) erhielten, mit einer oralen Einmalgabe von Palonosetron verglichen. Die Beurteilung der Wirksamkeit erfolgte bei 135 Patienten, die eine orale Einmalgabe von Akynzeo (Netupitant 300 mg und Palonosetron 0,5 mg) erhielten, im Vergleich zu 136 Patienten, die oral angewendetes Palonosetron 0,5 mg allein erhielten.

Die Behandlungsschemata für den Akynzeo-Arm und den Arm mit Palonosetron 0,5 mg sind in Tabelle 2 auf Seite 5 dargestellt.

Primärer Wirksamkeitsendpunkt war die Rate mit komplettem Ansprechen (complete response, CR) (definiert als keine

Tabelle 1: Nebenwirkungen nach Systemorganklassen

Systemorganklasse	Häufige Nebenwirkungen	Gelegentliche Nebenwirkungen	Seltene Nebenwirkungen
Infektionen und parasitäre Erkrankungen			Zystitis
Erkrankungen des Blutes und des Lymphsystems		Neutropenie	Leukopenie
		Leukozytose	Lymphozytose
Stoffwechsel- und Ernährungsstörungen		Appetit vermindert	Hypokaliämie
Psychiatrische Erkrankungen		Schlaflosigkeit	Akute Psychose
			Stimmungsänderung
			Schlafstörung
Erkrankungen des Nervensystems	Kopfschmerzen	Benommenheit/ Schwindelgefühl	Hypästhesie
Augenerkrankungen			Konjunktivitis
			Verschwommenes Sehen
Erkrankungen des Ohrs und des Labyrinths		Vertigo	
Herzerkrankungen		Atrioventrikulärer Block ersten Grades	Arrhythmie
		Kardiomyopathie	Atrioventrikulärer Block zweiten Grades
		Überleitungsstörung	Schenkelblock
			Mitralklappeninsuffizienz
			Myokardischämie
			Ventrikuläre Extrasystolen
Gefäßerkrankungen		Hypertonie	Hypotonie
Erkrankungen der Atemwege, des Brustraums und Mediastinums		Schluckauf	
Erkrankungen des	Obstipation	Bauchschmerzen	Dysphagie
Gastrointestinaltrakts		Diarrhoe	Zunge belegt
		Dyspepsie	
		Flatulenz	
		Übelkeit	
Erkrankungen der Haut und		Alopezie	
des Unterhautzellgewebes		Urtikaria	
Skelettmuskulatur-, Bindegewebs- und Knochenerkrankungen			Rückenschmerzen
Allgemeine Erkrankungen	Ermüdung	Asthenie	Wärmegefühl
und Beschwerden am Verabreichungsort			Thoraxschmerz nicht kardialen Ursprungs
			Anomaler Geschmack des Arzneimittels
Untersuchungen		Lebertransaminasen erhöht	Bilirubin im Blut erhöht
		Alkalische Phosphatase im Blut erhöht	Kreatinphosphokinase vom Muscle-Brain-Typ im Blut erhöht
		Kreatinin im Blut erhöht	Elektrokardiogramm ST-Strecken- senkung
		Elektrokardiogramm QT verlängert	Elektrokardiogramm ST-T-Strecke abnormal
			Troponin erhöht

Tabelle 2: Orales antiemetisches Behandlungsschema - HEC-Studie

Behandlungsschema	Tag 1	Tage 2 bis 4
Akynzeo	Akynzeo (Netupitant 300 mg + Palonosetron 0,5 mg) Dexamethason 12 mg	Dexamethason 8 mg einmal täglich
Palonosetron	Palonosetron 0,5 mg Dexamethason 20 mg	Dexamethason 8 mg zweimal täglich

Tabelle 3: Prozentualer Anteil ansprechender Patienten nach Behandlungsgruppe und Phase unter einer Chemotherapie auf Cisplatin-Basis

	Akynzeo $N = 135$ %	Palonosetron 0,5 mg N = 136 %	p-Wert
Primärer Endpunkt			
Komplettes Ansprechen			
Gesamtphase§	89,6	76,5	0,004
Wichtigste sekundäre Endpunkte			
Komplettes Ansprechen			
Akutphase [‡]	98,5	89,7	0,007
Verzögerte Phase [†]	90,4	80,1	0,018
Keine Emesis			
Akutphase	98,5	89,7	0,007
Verzögerte Phase	91,9	80,1	0,006
Gesamtphase	91,1	76,5	0,001
Keine nennenswerte Übelkeit			
Akutphase	98,5	93,4	0,050
Verzögerte Phase	90,4	80,9	0,004
Gesamtphase	89,6	79,4	0,021

- [‡] Akutphase: 0 bis 24 Stunden nach Cisplatin-Gabe.
- [†] Verzögerte Phase: 25 bis 120 Stunden nach Cisplatin-Gabe.
- § Gesamtphase: 0 bis 120 Stunden nach Cisplatin-Gabe.

Tabelle 4: Orales antiemetisches Behandlungsschema - MEC-Studie

Behandlungsschema	Tag 1	Tage 2 bis 3
Akynzeo	Akynzeo (Netupitant 300 mg Palonosetron 0,5 mg) Dexamethason 12 mg	Keine antiemetische Behandlung
Palonosetron	Palonosetron 0,5 mg Dexamethason 20 mg	Keine antiemetische Behandlung

Emesis-Episoden, keine Notfallmedikation) innerhalb von 120 Stunden (Gesamtphase) nach Beginn der Gabe der stark emetogenen Chemotherapie.

Eine Zusammenfassung der wichtigsten Ergebnisse aus dieser Studie ist in Tabelle 3 dargestellt.

Studie bei mäßig emetogener Chemotherapie (MEC)

In einer multizentrischen, randomisierten, doppelblinden, verumkontrollierten Parallelgruppenstudie zum Nachweis der Überlegenheit wurden die Wirksamkeit und Sicherheit einer oralen Einmalgabe von Akynzeo mit einer oralen Einmalgabe von Palonosetron 0,5 mg bei Krebspatienten verglichen, bei denen zur Behandlung eines soliden malignen Tumors der erste Zykluseines Anthracyclin- und Cyclophosphamidhaltigen Chemotherapieschemas vorgesehen war. Zur Zeit der Studiendurchführung galten Anthracyclin-/Cyclophosphamidhaltige Chemotherapieschemata als mäßig emetogen. In jüngsten Leitlinien wurden die-

se zu stark emetogenen Schemata hoch-

Alle Patienten erhielten eine orale Einmalgabe Dexamethason.

Siehe Tabelle 4

Nach Abschluss von Zyklus 1 hatten die Patienten die Möglichkeit, an einer mehrzyklischen Verlängerung mit derselben Behandlung teilzunehmen, die ihnen in Zyklus 1 zugewiesen worden war. Es gab keine vorab festgelegte Obergrenze für die bei einem bestimmten Patienten mögliche Anzahl aufeinander folgender Wiederholungszyklen. Insgesamt 1.450 Patienten (Akynzeo n = 725; Palonosetron n = 725) erhielten eine Studienmedikation. Von diesen führten 1.438 Patienten (98,8%) Zyklus 1 zu Ende, und 1.286 Patienten (88,4%) setzten die Behandlung im Rahmen der mehrzyklischen Verlängerung fort. Insgesamt 907 Patienten (62,3%) schlossen die mehrzyklische Verlängerung mit bis zu maximal acht Behandlungszyklen ab.

Insgesamt 724 Patienten (99,9%) wurden mit Cyclophosphamid behandelt. Alle Patienten wurden zusätzlich entweder mit Doxorubicin (68,0%) oder mit Epirubicin (32,0%) behandelt.

Primärer Wirksamkeitsendpunkt war die CR-Rate in der verzögerten Phase, d.h. 25-120 Stunden nach Beginn der Gabe der Chemotherapie.

Eine Zusammenfassung der wichtigsten Ergebnisse aus dieser Studie ist in Tabelle 5 auf Seite 6 dargestellt.

Patienten setzten die Behandlung im Rahmen der mehrzyklischen Verlängerung über bis zu 7 weitere Chemotherapiezyklen fort. Die antiemetische Aktivität von Akynzeo blieb bei denjenigen Patienten, die in jedem von mehreren Zyklen weiterbehandelt wurden, in allen Wiederholungszyklen erhalten.

Der Einfluss von Übelkeit und Erbrechen auf den Alltag der Patienten wurde mithilfe des Fragebogens "Functional Living Index-Emesis" (FLIE) erhoben. Der prozentuale Anteil von Patienten, die insgesamt keinen Einfluss auf den Alltag angaben, war in der Akynzeo-Gruppe (78,5%) um 6,3% höher (p-Wert = 0,005) als in der Palonosetron-Gruppe (72,1%).

Mehrzyklische Sicherheitsstudie an Patienten, die entweder eine stark emetogene Chemotherapie oder eine mäßig emetogene Chemotherapie erhielten

In einer separaten Studie wurden insgesamt 413 Patienten, die initiale und Wiederholungszyklen einer Chemotherapie (einschließlich Schemata auf Carboplatin-, Cisplatin-, Oxaliplatin- und Doxorubicin-Basis) erhielten, randomisiert und erhielten entweder Akynzeo (n = 309) oder Aprepitant und Palonosetron (n = 104). Die Sicherheit und Wirksamkeit blieben in allen Zyklen erhalten.

Kinder und Jugendliche

Die Europäische Arzneimittel-Agentur hat für Akynzeo eine Freistellung von der Verpflichtung zur Vorlage von Ergebnissen zu Studien in allen pädiatrischen Altersklassen zur Prävention von akuter und verzögert auftretender Übelkeit und Erbrechen bei stark emetogener Chemotherapie auf Cisplatin-Basis und mäßig emetogener Chemotherapie aufgrund einer Krebserkrankung gewährt (siehe Abschnitt 4.2 bzgl. Informationen zur Anwendung bei Kindern und Jugendlichen).

5.2 Pharmakokinetische Eigenschaften

Resorption

Netupitant

Daten zur absoluten Bioverfügbarkeit von Netupitant beim Menschen liegen nicht vor; auf der Grundlage von Daten aus zwei Studien mit intravenös angewendetem Netupitant wird die Bioverfügbarkeit beim Menschen auf über 60 % geschätzt.

In Studien mit oraler Einmalgabe war Netupitant zwischen 15 Minuten und 3 Stunden nach der Einnahme im Plasma messbar. Die Plasmakonzentrationen folgten einer Resorptionskinetik erster Ordnung und erreichten den C_{max}-Wert nach etwa 5 Stun-

Tabelle 5: Prozentualer Anteil ansprechender Patienten nach Behandlungsgruppe und Phase unter einer Anthracyclin- und Cyclophosphamid-haltigen Chemotherapie – Zyklus 1

	Akynzeo $N = 724$ %	Palonosetron 0,5 mg N = 725 %	p-Wert*
Primärer Endpunkt			
Komplettes Ansprechen			
Verzögerte Phase [†]	76,9	69,5	0,001
Wichtigste sekundäre Endpunkte			
Komplettes Ansprechen			
Akutphase [‡]	88,4	85,0	0,047
Gesamtphase§	74,3	66,6	0,001
Keine Emesis			
Akutphase	90,9	87,3	0,025
Verzögerte Phase	81,8	75,6	0,004
Gesamtphase	79,8	72,1	< 0,001
Keine nennenswerte Übelkeit			
Akutphase	87,3	87,9	n.s.
Verzögerte Phase	76,9	71,3	0,014
Gesamtphase	74,6	69,1	0,020

- * p-Wert aus dem Cochran-Mantel-Haenszel-Test, stratifiziert nach Altersklasse und Region.
- [‡] Akutphase: 0 bis 24 Stunden nach dem Anthracyclin- und Cyclophosphamid-haltigen Schema
- † Verzögerte Phase: 25 bis 120 Stunden nach dem Anthracyclin- und Cyclophosphamidhaltigen Schema
- § Gesamtphase: 0 bis 120 Stunden nach dem Anthracyclin- und Cyclophosphamid-haltigen Schema

den. Für Dosen zwischen 10 mg und 300 mg fand sich ein überproportionaler Anstieg der $C_{\rm max}$ und AUC-Parameter.

Bei 82 gesunden Probanden, die eine orale Einmalgabe Netupitant 300 mg erhielten, betrug die maximale Netupitant-Plasmakonzentration (C_{max}) 486 ± 268 ng/ml (Mittelwert ± SD), die mediane Zeit bis zur maximalen Plasmakonzentration (T_{max}) 5,25 Stunden und die AUC 15.032 ± 6.858 h.ng/ml. In einer gepoolten Auswertung zeigten Frauen im Vergleich zu Männern eine größere Exposition gegenüber Netupitant; es fand sich ein 1,31-facher Anstieg der C_{max} , eine 1,02-fache Vergrößerung der AUC und eine 1,36-fache Verlängerung der Halbwertszeit.

Die $AUC_{0-\infty}$ und die C_{max} von Netupitant stiegen nach einer fettreichen Mahlzeit um den Faktor 1,1 bzw. 1,2 an.

Palonosetron

Nach oraler Gabe wird Palonosetron gut resorbiert, wobei seine absolute Bioverfügbarkeit 97 % erreicht. Nach oraler Einmalgabe einer gepufferten Lösung waren die mittleren maximalen Palonosetron-Konzentrationen (C_{max}) und die Fläche unter der Konzentrations-Zeit-Kurve ($AUC_{0-\infty}$) im Dosisbereich von 3,0 bis 80 μ g/kg bei gesunden Probanden dosisproportional.

Bei 36 gesunden männlichen und weiblichen Probanden, die eine orale Einmalgabe von 0,5 mg Palonosetron erhielten, betrug die maximale Plasmakonzentration (C_{max}) 0,81 ± 1,66 ng/ml (Mittelwert ± SD) und die Zeit bis zur maximalen Plasmakon-

zentration (T_{max}) 5,1 ± 1,7 Stunden. Bei weiblichen Probanden (n = 18) war die mittlere AUC um 35 % größer und die mittlere C_{max} um 26 % höher als bei männlichen Probanden (n = 18). Bei 12 Krebspatienten, die eine Stunde vor der Chemotherapie eine orale Einmalgabe von 0,5 mg Palonosetron erhielten, betrug die C_{max} 0,93 ± 0,34 ng/ml und die T_{max} 5,1 ± 5,9 Stunden. Die AUC war bei Krebspatienten um 30 % größer als bei gesunden Probanden. Eine fettreiche Mahlzeit hatte auf die C_{max} und AUC von oral angewendetem Palonosetron keinen Einfluss.

Verteilung

Netupitant

Nach oraler Einmalgabe von 300 mg war die Verteilungskinetik von Netupitant bei Krebspatienten charakterisiert durch ein Zwei-Kompartiment-Modell mit einer geschätzten medianen systemischen Clearance von 20,5 l/h und einem großen Verteilungsvolumen im zentralen Kompartiment (486 l). Bei Konzentrationen von 10 bis 1.500 ng/ml beträgt die Plasmaproteinbindung von Netupitant und seinen zwei Hauptmetaboliten M1 und M3 beim Menschen > 99 %. Der dritte Hauptmetabolit M2 liegt zu > 97 % an Plasmaproteine gebunden vor.

Palonosetron

Palonosetron besitzt ein Verteilungsvolumen von etwa 8.3 ± 2.5 l/kg. Palonosetron liegt zu etwa $62\,\%$ an Plasmaproteine gebunden vor.

Biotransformation

Netupitant

Bei oralen Netupitant-Dosen ab 30 mg wurden im menschlichen Plasma drei Metaboliten nachgewiesen (das Desmethyl-Derivat M1, das N-Oxid-Derivat M2 und das OH-Methyl-Derivat M3). In-vitro-Untersuchungen zur Metabolisierung lassen darauf schließen, dass CYP3A4 und in geringerem Umfang auch CYP2D6 und CYP2C9 an der Metabolisierung von Netupitant beteiligt sind. Über 96 h nach oraler Einmalgabe von 300 mg Netupitant lagen die mittleren Plasma-Netupitant/Plasma-Radioaktivitäts-Quotienten zwischen 0,13 und 0,49. Die Quotienten waren zeitabhängig, wobei die Werte ab 24 h nach der Einnahme graduell abnahmen, was auf eine rasche Metabolisierung von Netupitant hinweist. Die mittlere C_{max} von M1, M2 und M3 betrug etwa 11 %, 47 % bzw. 16 % der C_{max} der Muttersubstanz; M2 wies im Vergleich zur Muttersubstanz die kleinste AUC auf (14%), während die AUC von M1 und M3 etwa 29 % bzw. 33 % der AUC der Muttersubstanz betrug. Die Metaboliten M1, M2 und M3 erwiesen sich in einem pharmakodynamischen Tiermodell alle als pharmakologisch aktiv, wobei M3 der wirkstärkste und M2 der Metabolit mit der geringsten Aktivität war.

Palonosetron

Palonosetron wird über verschiedene Wege eliminiert, wobei etwa 50 % zu zwei primären Metaboliten metabolisiert werden: N-Oxid-Palonosetron und 6-S-Hydroxypa-Ionosetron. Diese Metaboliten besitzen jeweils weniger als 1 % der 5-HT₃-Rezeptorantagonisierenden Aktivität von Palonosetron. In-vitro-Untersuchungen zur Metabolisierung lassen darauf schließen, dass CYP2D6 und in geringerem Umfang auch CYP3A4 und CYP1A2 an der Metabolisierung von Palonosetron beteiligt sind. Die klinisch-pharmakokinetischen Parameter differieren jedoch zwischen langsamen (poor) und schnellen (extensive) Metabolisierern von CYP2D6-Substraten nicht signifikant.

Elimination

Netupitant

Nach Einmalgabe von Akynzeo erfolgt die Elimination von Netupitant aus dem Körper multiexponentiell, mit einer scheinbaren mittleren Eliminationshalbwertszeit von 88 Stunden bei Krebspatienten.

Die renale Clearance ist kein bedeutsamer Eliminationsweg für Netupitant bzw. seine Metaboliten. Der mittlere Anteil einer oralen Netupitant-Dosis, der unverändert mit dem Urin ausgeschieden wird, beträgt weniger als 1 %; insgesamt wurden 3,95 % der radioaktiven Dosis im Urin und 70,7 % in den Fäzes wiedergefunden.

Etwa die Hälfte der als [14C]-Netupitant oral applizierten Radioaktivität wurde innerhalb von 120 h nach der Applikation im Urin und in den Fäzes wiedergefunden. Die Hochrechnung ergab, dass die Elimination über beide Ausscheidungswege bis zum Tag 29–30 nach der Applikation abgeschlossen ist.

020734-17750

Palonosetron

Nach oraler Einmalgabe von 0,75 mg [14C]-Palonosetron an sechs gesunde Probanden wurden 85 % bis 93 % der gesamten Radioaktivität mit dem Urin und 5 % bis 8% mit den Fäzes ausgeschieden. Die Menge an unverändertem Palonosetron, die mit dem Urin ausgeschieden wurde, betrug etwa 40% der gegebenen Dosis. Bei gesunden Probanden, denen Palonosetron-Kapseln zu 0,5 mg gegeben wurden, betrug die terminale Eliminationshalbwertszeit ($t_{1/2}$) von Palonosetron 37 ± 12 Stunden (Mittelwert ± SD), und bei Krebspatienten lag die t_{1/2} bei 48 ± 19 Stunden. Nach intravenöser Einmalgabe von etwa 0,75 mg Palonosetron betrug die Gesamtkörperclearance von Palonosetron bei gesunden Probanden 160 ± 35 ml/h/kg (Mittelwert ± SD) und die renale Clearance $66,5 \pm 18,2 \text{ ml/h/kg}$.

Spezielle Patientengruppen

Eingeschränkte Leberfunktion

Netupitant

Die maximalen Konzentrationen und die Gesamtexposition von Netupitant waren bei Patienten mit leicht (n = 8), mäßig (n = 8) und stark (n = 2) eingeschränkter Leberfunktion im Vergleich zu entsprechenden lebergesunden Probanden erhöht; allerdings bestand sowohl bei den Patienten mit eingeschränkter Leberfunktion als auch bei den lebergesunden Probanden eine ausgeprägte individuelle Variabilität. Die Exposition gegenüber Netupitant (C_{max}, AUC_{0-t} und $AUC_{0-\infty}$) war im Vergleich zu den entsprechenden lebergesunden Probanden bei den Patienten mit leicht eingeschränkter Leberfunktion um 11%, 28% bzw. 19 % und bei den Patienten mit mäßig eingeschränkter Leberfunktion um 70%, 88 % bzw. 143 % höher. Somit ist bei Patienten mit leicht bis mäßig eingeschränkter Leberfunktion keine Dosisanpassung erforderlich. Begrenzte Daten liegen bei Patienten mit stark eingeschränkter Leberfunktion (Child-Pugh-Score \geq 9) vor.

Palonosetron

Eine Einschränkung der Leberfunktion hat keinen nennenswerten Einfluss auf die Gesamtkörperclearance von Palonosetron im Vergleich zu gesunden Probanden. Zwar ist die terminale Eliminationshalbwertszeit von Palonosetron bei den Patienten mit stark eingeschränkter Leberfunktion verlängert und die mittlere systemische Exposition gegenüber Palonosetron erhöht, doch begründet dies keine Dosisreduktion.

Eingeschränkte Nierenfunktion

Netupitant

Spezielle Studien zur Untersuchung von Netupitant bei Patienten mit eingeschränkter Nierenfunktion wurden nicht durchgeführt. In der ADME-Studie (Untersuchung der Resorption, Verteilung, Biotransformation und Elimination) wurden weniger als 5 % von Netupitant und allen seinen Metaboliten mit dem Urin ausgeschieden, und weniger als 1 % der Netupitant-Dosis wurde unverändert mit dem Urin eliminiert. Nach Einmalgabe ist daher davon auszugehen, dass eine allfällige Kumulation von Netupitant oder seinen Metaboliten ver-

nachlässigbar ist. Zudem ergab die populationspharmakokinetische Studie keine Korrelation zwischen PK-Parametern von Netupitant und Markern einer Nierenfunktionsstörung.

Palonosetron

Eine leichte bis mäßige Einschränkung der Nierenfunktion hat keinen nennenswerten Einfluss auf die pharmakokinetischen Parameter von Palonosetron. Bei Patienten mit stark eingeschränkter Nierenfunktion erhöhte sich die systemische Gesamtexposition gegenüber intravenös angewendetem Palonosetron im Vergleich zu nierengesunden Probanden um etwa 28 %. In einer populationspharmakokinetischen wiesen Patienten mit einer verminderten Kreatinin-Clearance (CL_{CR}) auch eine verminderte Palonosetron-Clearance auf; es ist jedoch davon auszugehen, dass diese Reduktion die Palonosetron-Exposition nicht nennenswert verändert.

Daher kann Akynzeo bei Patienten mit eingeschränkter Nierenfunktion ohne Dosierungsanpassung angewendet werden.

Weder Netupitant noch Palonosetron wurden bei Patienten mit terminaler Niereninsuffizienz untersucht.

5.3 Präklinische Daten zur Sicherheit

Palonosetron

Präklinische Effekte wurden nur nach Expositionen beobachtet, die ausreichend über der maximalen humantherapeutischen Exposition lagen. Die Relevanz für den Menschen wird als gering bewertet. Aus präklinischen Studien ergaben sich Hinweise darauf, dass Palonosetron nur in sehr hohen Konzentrationen die an der ventrikulären De- und Repolarisation beteiligten Ionenkanäle blockieren und die Aktionspotentialdauer verlängern kann. In einer Toxizitätsstudie an Ratten stand Palonosetron nach einmonatiger wiederholter oraler Verabreichung in Zusammenhang mit einer Degeneration des Epithels der Samenkanälchen. Tierexperimentelle Studien lassen nicht auf direkte oder indirekte schädliche Auswirkungen auf Schwangerschaft, embryonale/fetale Entwicklung, Geburt oder postnatale Entwicklung schließen. Hinsichtlich des Durchtritts durch die Plazentaschranke liegen nur begrenzte Daten aus tierexperimentellen Studien vor (siehe Abschnitt 4.6). Palonosetron ist nicht mutagen. Hohe Dosen Palonosetron (jede Dosis führte mindestens zur 15-fachen therapeutischen Exposition beim Menschen), die täglich über zwei Jahre gegeben wurden, führten vermehrt zu Lebertumoren, endokrinen Neoplasien (in Schilddrüse, Hypophyse. Pankreas. Nebennierenmark) und Hauttumoren bei Ratten, jedoch nicht bei Mäusen. Die zugrunde liegenden Mechanismen sind nicht vollständig bekannt, aber aufgrund der verwendeten hohen Dosierungen und da das Arzneimittel beim Menschen zur einmaligen Anwendung vorgesehen ist, werden diese Ergebnisse als für den Menschen nicht relevant bewertet.

Netupitant und dessen Kombination mit Palonosetron

Präklinische Effekte basierend auf Untersuchungen zur Sicherheitspharmakologie

und Toxizität bei einmaliger und wiederholter Gabe wurden nur nach Expositionen beobachtet, die über der maximalen humantherapeutischen Exposition lagen. Die Relevanz für den Menschen wird als gering bewertet. Nach wiederholter Gabe von Netupitant wurde bei Ratten und Hunden Phospholipidose (schaumige Makrophagen) beobachtet. Nach der Erholungsphase waren die Effekte reversibel oder teilweise reversibel. Die Bedeutung dieser Befunde für den Menschen ist nicht bekannt.

Aus präklinischen Studien ergaben sich Hinweise darauf, dass Netupitant und seine Metaboliten sowie die Kombination mit Palonosetron nur in sehr hohen Konzentrationen die an der ventrikulären De- und Repolarisation beteiligten lonenkanäle blockieren und die Aktionspotentialdauer verlängern können. Tierexperimentelle Reproduktionsstudien mit Netupitant lassen nicht auf direkte oder indirekte schädliche Auswirkungen auf Fertilität. Geburt oder postnatale Entwicklung schließen. Nach täglicher Gabe von Netupitant in einer Dosierung von 10 mg/kg/Tag und höher während der Organogenesephase wurden bei Kaninchen vermehrt fetale Stellungsanomalien der Gliedmaßen und Pfoten, fusionierte Sternebrae und Agenesie des akzessorischen Lungenlappens beobachtet. In einer Dosisfindungs-Pilotstudie an Kaninchen wurden bei vier Feten aus einem Wurf in der Gruppe, die 30 mg/kg/Tag erhielt, Gaumenspalten, Mikrophthalmie und Aphakie beobachtet. Die Relevanz dieser Befunde für den Menschen ist nicht bekannt. Zum Durchtritt durch die Plazentaschranke und zur Laktation liegen aus tierexperimentellen Studien mit Netupitant keine Daten vor. Netupitant ist nicht mutagen.

6. PHARMAZEUTISCHE ANGABEN

6.1 Liste der sonstigen Bestandteile

Hartkapselinhalt:

Netupitant-Tabletten

Mikrokristalline Cellulose (E460)

Sucrose-Dodecansäure-Ester

Povidon (K-30)

Croscarmellose-Natrium

Hochdisperses Siliciumdioxid

Natriumstearylfumarat

Magnesiumstearat

Palonosetron-Weichkapsel Kapselinhalt

Glycerolmonocaprylocaprat (Typ I)

Glycerol

Polyglycerol-x-oleat

Gereinigtes Wasser

Butylhydroxyanisol (E320)

Kapselhülle

Gelatine

Glycerol

Sorbitol

Sorbitan

Titandioxid (E171)

Hartkapselhülle:

Gelatine

Titandioxid (E171)

Eisen(III)-hydroxid-oxid \times H₂O (E 172)

Eisen(III)-oxid (E 172)

RIEMSER ~

Druckfarbe

Schellack-Glasur (teilweise verestert) Eisen(II,III)-oxid (E172) Propylenglycol (E1520)

6.2 Inkompatibilitäten

Nicht zutreffend.

6.3 Dauer der Haltbarkeit

3 Jahre.

6.4 Besondere Vorsichtsmaßnahmen für die Aufbewahrung

Für dieses Arzneimittel sind keine besonderen Lagerungsbedingungen erforderlich.

6.5 Art und Inhalt des Behältnisses

Aluminium/Aluminium-Blisterpackung mit einer Hartkapsel.

Packungsgröße: eine Kapsel.

6.6 Besondere Vorsichtsmaßnahmen für die Beseitigung

Nicht verwendetes Arzneimittel oder Abfallmaterial ist entsprechend den nationalen Anforderungen zu beseitigen.

7. INHABER DER ZULASSUNG

Helsinn Birex Pharmaceuticals Ltd Damastown Mulhuddart Dublin 15 Irland

8. ZULASSUNGSNUMMER(N)

EU/1/15/1001/001

9. DATUM DER ERTEILUNG DER ZULASSUNG/VERLÄNGERUNG DER ZULASSUNG

Datum der Erteilung der Zulassung: 27. Mai 2015

10. STAND DER INFORMATION

November 2015

11. VERKAUFSABGRENZUNG

Verschreibungspflichtig

Ausführliche Informationen zu diesem Arzneimittel sind auf den Internetseiten der Europäischen Arzneimittel-Agentur http://www.ema.europa.eu/ verfügbar.

Zentrale Anforderung an:

Rote Liste Service GmbH

Fachinfo-Service

Mainzer Landstraße 55 60329 Frankfurt