НЕЙРОННЫЕ СЕТИ В МАШИННОМ ОБУЧЕНИИ

Лекция №5 Глубинные нейронные сети

Евгений Ляпустин

Содержание

- 1. Оптимизации обучения
 - а. Инициализация
 - b. Регуляризация
 - с. Нормализация
- 2. Методы
 - a. LeNet
 - b. AlexNet
 - c. VGG
 - d. ResNet и модификации

Оптимизации обучения

Инициализация Xavier / Glorot

Рассмотрим нечетную функцию с единичной производной в нуле в качестве активации (напр. tanh)

Хотим начать из линейного региона,
 чтобы избежать затухающих градиентов

$$z^{i+1} = f(\underbrace{z^i W^i}_{s^i})$$

$$\mathbb{D}[z^i] = \mathbb{D}[x] \prod_{k=0}^{i-1} n_k \mathbb{D}[W^k]$$

$$\mathbb{D}\left[\frac{\partial L}{\partial s^{i}}\right] = \mathbb{D}\left[\frac{\partial L}{\partial s^{d}}\right] \prod_{k=i}^{d} n_{k+1} \mathbb{D}[W^{k}]$$

Где n_i — размерность i-го слоя

Инициализация Xavier / Glorot

Хорошая инициализация:

$$\forall (i,j) \left\{ \begin{array}{l} \mathbb{D}[z^i] = \mathbb{D}[z^j] \\ \mathbb{D}[\frac{\partial L}{\partial s^i}] = \mathbb{D}[\frac{\partial L}{\partial s^j}] \end{array} \right.$$

Это эквивалентно следующему:

$$\forall i \left\{ \begin{array}{l} n_i \mathbb{D}[W^i] = 1 \\ n_{i+1} \mathbb{D}[W^i] = 1 \end{array} \right.$$

Компромисс:

$$\mathbb{D}[W^i] = \frac{2}{n_i + n_{i+1}}$$

$$W^i \sim U[-\frac{\sqrt{6}}{\sqrt{n_i + n_{i+1}}}, \frac{\sqrt{6}}{\sqrt{n_i + n_{i+1}}}]$$

Инициализация Не

Рассмотрим ReLU в качестве активации:

- Функция не симметрична
- Не дифференцируема в нуле

$$\mathbb{D}[z^i] = \mathbb{D}[x](\prod_{k=0}^{i-1} \frac{1}{2} n_k \mathbb{D}[W^k]) \Rightarrow \mathbb{D}[W^k] = \frac{2}{n_k}$$

$$\mathbb{D}\left[\frac{\partial L}{\partial s^i}\right] = \mathbb{D}\left[\frac{\partial L}{\partial s^d}\right] \left(\prod_{k=i}^d \frac{1}{2} n_{k+1} \mathbb{D}[W^k]\right) \Rightarrow \mathbb{D}[W^k] = \frac{2}{n_{k+1}}$$

$$\mathbb{D}\left[\frac{\partial L}{\partial s^i}\right] = \mathbb{D}\left[\frac{\partial L}{\partial s^d}\right] \prod_{k=1}^d \frac{1}{2} n_{k+1} \mathbb{D}[W^k] = \frac{n_2}{n_d} \mathbb{D}\left[\frac{\partial L}{\partial s^d}\right]$$

$$W^i \sim N(0,rac{2}{n_i})$$
 or $W^i \sim N(0,rac{2}{n_{i+1}})$

Инициализация Не

Dropout

- С вероятностью р занулим выход нейрона (например, р = 0.5)
- В test-time домножаем веса на вероятность сохранения
- Не стоит выкидывать нейроны последнего слоя

Dropout

- Борьба с коадаптацией нейроны больше не могут рассчитывать на наличие соседей
- Биология: не все гены родителей будут присутсвовать у потомков
- Усреднение большого (2n) числа моделей

Dropconnect

Зануляем не выходы нейронов, а каждый вес по отдельности

Batch Norm

- Covariate shift: изменение распределения входов во время обучения
- Цель уменьшить covariate shift скрытых слоев
- Нормализуем значения по батчу
- Для инференса накапливаем статистику экспоненциальным средним

$$E_{i+1} = (1 - \alpha)E_i + \alpha E_{\mathcal{B}}$$

$$\hat{x} = \frac{x - \mathbb{E}[x]}{\sqrt{\mathbb{D}[x] + \epsilon}}$$
$$y = \gamma \cdot \hat{x} + \beta$$

$$y = \frac{\gamma}{\sqrt{\mathbb{D}[x] + \epsilon}} \cdot x + (\beta - \frac{\gamma \mathbb{E}[x]}{\sqrt{\mathbb{D}[x] + \epsilon}})$$

Нормализация

	Weight matrix	Weight matrix	Weight vector	Dataset	Dataset	Single training case
	re-scaling	re-centering	re-scaling	re-scaling	re-centering	re-scaling
Batch norm	Invariant	No	Invariant	Invariant	Invariant	No
Weight norm	Invariant	No	Invariant	No	No	No
Layer norm	Invariant	Invariant	No	Invariant	No	Invariant

Архитектуры CNN

Датасет ImageNet

- 1000 классов
- Около 1000 изображений в каждом классе
- Около 1 000 000 изображений всего
- Несколько номинаций: таких как распознавание и детектирование/локализация

Примеры предсказаний на ImageNet

Прогресс на ImageNet

LeNet (1989)

Использованные подходы:

- Сверточные слои
- Активация sigmoid
- Max pooling

16

AlexNet (2012)

AlexNet (2012)

AlexNet

Source: Stanford CS231n lecture 6

- 5 сверточных и 3 полносвязных слоя
- 60М параметров
- Распараллеливание на 2 GPU
- Свёртки 11х11, 5х5, 3х3
- ReLU, т.к. не надо вычислять ехр
- Dropout
- Затухание learning rate
- Аугментации: случайный 224х224 кроп, горизонтальное отражение, шум

Прогресс на ImageNet: AlexNet

VGG (2014)

VGG (2014)

- VGG-19 (Е): 144М параметров
- Только свертки 3х3
- Больше слоев (Deep Neural Network)
- Выходы промежуточных слоев можно использовать как "семантику" изображения:
 - в качестве функции потерь https://arxiv.org/abs/1603.08155
 - для переноса стиля
 https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/
 Gatys Image Style Transfer CVPR 2016 paper.pdf
 - для оценки качества https://arxiv.org/abs/1801.03924

FC 4096 Pool 3x3 conv, 512 Pool Pool Pool Input VGG16

FC 1000

FC 4096

FC 1000 FC 4096 FC 4096 Pool Pool Pool Pool Pool Input VGG19

Softmax

Source: Stanford CS231n lecture 6

Прогресс на ImageNet: VGG

GoogLeNet / Inception (2014)

Прогресс на ImageNet: GoogLeNet

Скачок глубины нейронных сетей

AlexNet, 8 layers VGG, 19 layers ResNet, 152 layers (ILSVRC 2012) (ILSVRC 2014) (ILSVRC 2015)

ResNet (2015)

- Результат на 56 слоях хуже. Проблема не в переобучении
- Решение заведомо существует: 20 слоев, затем F(x) = x
- Выучить F(x) = x тяжело, а F(x) = 0 просто
- Residual block решает эту проблему

ResNet (2015)

Figure 1: The loss surfaces of ResNet-56 with/without skip connections. The proposed filter normalization scheme is used to enable comparisons of sharpness/flatness between the two figures.

32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.

Kaiming He et al.: Deep Residual Learning for Image Recognition, 2015 https://arxiv.org/pdf/1512.03385v1.pdf
https://arxiv.org/pdf/1712.09913.pdf

Прогресс на ImageNet: ResNet

Модификации моделей

Существует множество модификаций ResNet:

- ResNet in ResNet
- DenseNet
- ResNeXt
- WideResNets

DenseNet

Figure 1: A 5-layer dense block with a growth rate of k=4. Each layer takes all preceding feature-maps as input.

ResNeXt

Figure 1. **Left**: A block of ResNet [14]. **Right**: A block of ResNeXt with cardinality = 32, with roughly the same complexity. A layer is shown as (# in channels, filter size, # out channels).

Сравнение моделей

Inception-v3 ResNet-101 VGG-19 ResNet-50 VGG-16 75 ResNet-34 Top-1 accuracy [%] GoogLeNet BN-NIN BN-AlexNet 55 AlexNet 10 35 Operations [G-Ops]

Figure 1: **Top1** vs. **network.** Single-crop top-1 validation accuracies for top scoring single-model architectures. We introduce with this chart our choice of colour scheme, which will be used throughout this publication to distinguish effectively different architectures and their correspondent authors. Notice that network of the same group share colour, for example ResNet are all variations of pink.

Figure 2: **Top1** vs. operations, size \propto parameters. Top-1 one-crop accuracy versus amount of operations required for a single forward pass. The size of the blobs is proportional to the number of network parameters; a legend is reported in the bottom right corner, spanning from 5×10^6 to 155×10^6 params.

MobileNet

Figure 3. Left: Standard convolutional layer with batchnorm and ReLU. Right: Depthwise Separable convolutions with Depthwise and Pointwise layers followed by batchnorm and ReLU.

EfficientNet

Спасибо!

