ME 498: Computational Modeling and Optimization Projects 2+3

Akhilesh Sanjay Somani (somani4) Paxton William Wiersema (pww2) Seung Hyun Kim (skim449)

Overview

- → Project 2: Slithering Snake
 - Problem Statement
 - Method
 - ☐ Implementation
 - Validation: Solid Mechanics
 - Validation: Wall Force
 - CMA Result
 - ☐ Visualization: Moving Snake

- ☐ Project 3:
 - □ Problem Statement
 - External Force/Couple
 - □ Result

Problem Statement

- Optimize the velocity of the slithering snake.
- ☐ Goal
 - Design and implement numerical simulation of Cosserat rod
 - Apply internal muscular activity of the snake
 - Apply contact force and friction
 - Use CMA-ES algorithm to find parameters to maximize the speed
- Purpose
 - ☐ Investigate numerical snake movement
 - ☐ Compare with biological snake to learn dynamics

Method

- Snake: Cosserat rod model
 - 50 population
 - ☐ Iterate 100k steps
 - Compute average speed
- Optimization: CMA-ES
 - ☐ 50 generation
 - Optimize beta/lambda
 - □ beta: Strength at different location
 - □ lambda: Torque phase offset

Implementation

- Modules are designed to handle different initialization.
 - Problem initialization is separately defined in 'setup <>.py' file
- Cosserat stepper function takes arguments:
 - dt: time step
 - force: instantaneous force
 - □ couple: instantaneous couple
- Friction and wall force is implemented separately.

Validation: Solid Mechanics

- The Cosserat time-stepper module is validated with three basic cases.
 - 1. Linear Strain: Verify linear velocity/acceleration
 - 2. Prestressed Beam: Verify angular velocity/acceleration
 - ☐ 3. Timoshenko Beam: Verify linear and angular coupled calculation
- Main criteria for validation was:
 - ☐ Convergence of the numerical result against physical (true) solid-mechanic model
 - Stability of the numerical scheme
- Validation process helped to understand abnormal numerical behaviors.

Case 1: Linear Strain

- Single Element
- Equivalent to spring-force system
- Expected to observe sinusoidal position and the velocity
- Oscillates about the actual extension value

Case 1: Linear Strain (Damped)

Damping term is added

$$F^t = -c_v v^t + F_o$$

- Viscosity term is added to the total force with constant coefficient.
- Expected to observe steady state after oscillation decays
- Damping has shown to improve the convergence and stability

Case 2: Prestressed Beam

- Multiple Element (N=8)
- ☐ A prestressed rod (initial deformation)
 - ☐ Undeformed length of all elements are equal.
- Expected to observe sinusoidal motion
- Observed how curvature induces the internal torque

Case 3: Timoshenko Beam

Figure 1: Validation—Deformation of a cantilever beam
*: Image borrowed from project description

- ☐ Multiple Element (N=50)
- Damping term is added like Case 1.
 - ☐ Without damping, similar oscillation was observed.
 - Observed significant global error accumulation with long iteration without dampening.

z (k-direction)

Validation: Wall Force

- Several validation test are designed to check wall force implementation.
- □ Cases showcase the behavior and variations of wall force and total force acting at the centre of a single element rod (length = 1m)
- Cases also validate the predicted behavior of velocity and position of one of the nodes (any one would be okay since both nodes behave identically)

Case 1: Penetration

Condition

- A rod lying on ground with initial penetration equal to radius (25mm)
- No gravity acts

Behavior (Wall Force)

- Instantaneous force pushing the rod upwards (top figure); wall force decreases as penetration decreases and rod moves upwards
- ☐ When rod leaves contact, no force acts (fig-2)

Case 1: Penetration

- Behavior (Velocity of Rod)
 - When the rod leaves contact, velocity remains constant because no net force acts, hence y-position keeps increasing linearly
 - This behavior should be fixed once the gravity is acting in y-direction.

Case 2: Penetration w/ Gravity

- Condition
 - A rod lying on ground with initial penetration equal to radius (25mm)
 - Gravity acts
- Behavior (Wall Force)
 - Instantaneous force pushes the rod upwards
 - When rod leaves the surface, only gravity acts and rod starts moving downwards
 - Wall force acts again

Case 2: Penetration w/ Gravity

- Behavior (Velocity of Rod)
 - Initially, the rod travels upwards due to wall force
 - As it breaks contact, gravity pulls it back (y-position starts dec.)
 - ☐ It again penetrates the ground, and repeat
- □ Note
 - Increasing wall_stiffness would reduce penetration distance

Case 3: Normal Force

- Condition
 - No initial penetration
 - Gravity acts
- Behavior
 - Constant normal force induced by the ground
 - Zero net force on y-direction
 - No change in y-position and no velocity (rod remains stationary forever)

Case 4: Drop

- Condition
 - ☐ Initial height of r (0.025 m)
 - Gravity acts
- Behavior (Wall Force)
 - Zero wall force at first until contact.
 - Wall force spike and gradually increase
 - Wall force decrease as the body is pushed back

Case 4: Drop

- Behavior (Velocity of Rod)
 - Increase in downward velocity
 - Deceleration once rod hits the ground
 - ☐ Then wall force pushes rod upwards
 - ☐ Same cycle repeats

CMA-ES: Optimization

- ☐ Fitness function
 - Use CMA-ES algorithm to optimize body speed
 - Body speed: Average speed of all snake elements
 - ☐ Snake is optimized to travel in any direction
- → Note
 - Wall friction coefficients were scaled up by 10⁴ times
 - ☐ Faster convergence
 - Reduces simulation period

CMA-ES: Result

Maximizing the body speed

- A puzzling behavior observed is that in the first iteration, the fitness value is low, however, with subsequent iterations, the value increases (which is counter-intuitive to the working of CMA as seen from project 1)
- ☐ CMA does take the best fitness values in the first iteration but while iterating moves to a worse solution in the initial steps. One reason why this would be the case is: large value of sigma (~10). Due to lack of time, variation with different sigma values could not be studied

Visualization: Moving Snake (POV-Ray)

Project 3: Modeling and Simulation of a Brush's Bristle using cosserat rod theory

- ☐ Hair stylists and dressers can efficiently model and simulate hair for studying various patterns using cosserat rod theory
- ☐ This made us wonder if a similar concept can be applied to the bristles of a hair comb
- ☐ This led us to the bristles of a toothbrush as these bristles can be modeled using soft rods
- ☐ Trying to simulate and observe the behavior of something so common in our everyday life is what had attracted us to this problem

Problem Statement

- Bristle moving at a constant velocity
 - One end of the bristle is constrained to a constant velocity
- Fixed distance from a wall
 - Non-constrained end of the bristle begins in contact with the wall
- ☐ Goal is to view behavior of the rod and force on the wall at steady state
- Very little previous work has been completed on modelling toothbrush bristles
- General material properties found for current bristles in use:
 - ☐ Tensile modulus: 3.5GPa, Density: 1100 kg/m³, Diameter: 0.18mm
 - These properties were modified in the simulation to produce a feasible result

Problem Setup

- ☐ 4 node / 3 element cosserat rod
 - Initialized with a 90 degree bend
- ☐ Elements begin unstrained axially
- Initialized with bending stress as the resting orientation is a straight line
- Nodes 1 and 2 move at a constant 3m/s
- Wall is at z-position of nodes 3 and 4

Result

- Steady state orientation shown
- Bend in the rod has opposite concavity as expected
- Wall stiffness was increased to 1e7 to create a reasonable behavior
 - ☐ This causes the large forces and velocities that are shown

