PRACA KONTROLNA nr 3

grudzień 1999r

1. Nie korzystając z metod rachunku różniczkowego wyznaczyć dziedzinę i zbiór wartości funkcji

$$y = \sqrt{2 + \sqrt{x} - x}.$$

- 2. Jednym z wierzchołków rombu o polu 20 cm² jest A(6,3), a jedna z przekątnych zawiera się w prostej o równaniu 2x+y=5. Wyznaczyć równania prostych, w których zawierają się boki \overline{AB} i \overline{AD} .
- 3. Stosując zasadę indukcji matematycznej udowodnić prawdziwość wzoru

$$3(1^5 + 2^5 + \dots + n^5) + (1^3 + 2^3 + \dots + n^3) = \frac{n^3(n+1)^3}{2}.$$

- 4. Ostrosłup prawidłowy trójkątny ma pole powierzchni całkowitej $P=12\sqrt{3}{\rm cm}^2$, a kąt nachylenia ściany bocznej do płaszczyzny podstawy $\alpha=60^{0}$. Obliczyć objętość tego ostrosłupa.
- 5. Wśród trójkątów równoramiennych wpisanych w koło o promieniu R znaleźć ten, który ma największe pole.
- 6. Przeprowadzić badanie przebiegu funkcji $y = \frac{1}{2}x^2\sqrt{5-2x}$ i wykonać jej staranny wykres.
- 7. W trapezie równoramiennym dane są ramię r, kąt ostry przy podstawie α oraz suma długości przekątnej i dłuższej podstawy wynosząca d. Obliczyć pole trapezu oraz promień okręgu opisanego na tym trapezie. Ustalić warunki istnienia rozwiązania. Następnie podstawić $\alpha=30^{0},\ r=\sqrt{3}$ cm i d=6 cm.
- 8. Rozwiązać nierówność

$$|\cos x + \sqrt{3}\sin x| \leqslant \sqrt{2}, \quad x \in [0, 3\pi].$$