12.498

AI25BTECH11004-B.JASWANTH

Question

If
$$\mathbf{A} = \begin{pmatrix} 1 & 5 \\ 6 & 2 \end{pmatrix}$$
 and $\mathbf{B} = \begin{pmatrix} 3 & 7 \\ 8 & 4 \end{pmatrix}$, then $\mathbf{A}\mathbf{B}^{\mathsf{T}}$ is equal to

(a)
$$\begin{pmatrix} 38 & 28 \\ 32 & 56 \end{pmatrix}$$

(b)
$$\begin{pmatrix} 3 & 40 \\ 42 & 8 \end{pmatrix}$$

(a)
$$\begin{pmatrix} 38 & 28 \\ 32 & 56 \end{pmatrix}$$
 (b) $\begin{pmatrix} 3 & 40 \\ 42 & 8 \end{pmatrix}$ (c) $\begin{pmatrix} 43 & 27 \\ 34 & 50 \end{pmatrix}$ (d) $\begin{pmatrix} 38 & 32 \\ 28 & 56 \end{pmatrix}$

(d)
$$\begin{pmatrix} 38 & 32 \\ 28 & 56 \end{pmatrix}$$

Solution:

Given,

$$\mathbf{A} = \begin{pmatrix} 1 & 5 \\ 6 & 2 \end{pmatrix} \tag{4.1}$$

$$\mathbf{B} = \begin{pmatrix} 3 & 7 \\ 8 & 4 \end{pmatrix} \tag{4.2}$$

$$\mathbf{B}^{\mathbf{T}} = \begin{pmatrix} 3 & 8 \\ 7 & 4 \end{pmatrix} \tag{4.3}$$

$$\mathbf{A}\mathbf{B}^{\mathsf{T}} = \begin{pmatrix} 1 & 5 \\ 6 & 2 \end{pmatrix} \begin{pmatrix} 3 & 8 \\ 7 & 4 \end{pmatrix} = \begin{pmatrix} 38 & 28 \\ 32 & 56 \end{pmatrix} \tag{4.4}$$

$$\implies \mathbf{A}\mathbf{B}^{\mathrm{T}} = \begin{pmatrix} 38 & 28 \\ 32 & 56 \end{pmatrix} \tag{4.5}$$

1