министерство науки и высшего образования российской федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского»

Радиофизический факультет Кафедра электродинамики

Направление (специальность) «Информационная безопасность телекоммуникационных систем»

ОТЧЕТ ПО УЧЕБНОЙ ПРАКТИКЕ (Практика по получению первичных профессиональных умений, в том числе первичных умений и навыков научно-исследовательской деятельности)

на тему: "Роботизированный кукольный театр"

Руководитель практики, доцент Умнов А.Л.

Студент 3-го курса Кокеева Н.С.

СОДЕРЖАНИЕ

Введение

- 1. Социальная робототехника
- 1.1. Понятие социального робота (история)
- 1.2. Социальные роботы в современном мире
- 2. Роботизированный кукольный театр
- 2.1. Концепция роботизированного театра кукол
- 2.2. Социальная значимость роботизированного театра

Описание работы

- 1. Постановка задачи
- 1.1. Обоснование выбора театра кукол в качестве социального робота
- 1.2. Состав макета (описание макета, блок-схема)
- 1.3. Описание платформы
- 1.4. Светодиоды (4 блока, схемы, ШИМ)
- 1.5. Проигрыватель (в доработке)
- 1.6. Приложение
- 2. Реализация роботизированного театра

Заключение

Список источников

ВВЕДЕНИЕ

- 1. Социальная робототехника
- 1.1. Понятие и история создания социального робота.

Данная работа посвящена изучению роли роботов в современном обществе и их возможностей в сфере развлечения людей.

Робототехника в настоящее время стала одним из важных направлений научно-технического прогресса, в котором проблемы механики соприкасаются с проблемами управления и искусственного интеллекта. Являясь интегральной дисциплиной, робототехника требует от разработчиков знаний и умений в таких направлениях как: механика, электроника, программирование. Вследствие чего робототехник отличается от узкого специалиста широким кругозором и системным мышлением.

Само слово **robot** (*чеш. robota - тяжелая работа, физический труд*) впервые упомянул чешский писатель и драматург Карел Чапек в произведении "Россумские универсальные роботы". А благодаря рассказам Айзека Азимова это слово вошло в словарные запасы людей и стало общим научным термином.

Большинство людей, если спросить, могут охарактеризовать робота так: внешне напоминает человека; умеет двигаться; умеет думать; умеет общаться.

Похожие определения дают все толковые словари:

"Робот - это автомат, осуществляющий действия, подобные действиям человека." (Толковый словарь Ожегова С.И.)

В профессиональном же сообществе содержание термина "робот" менялось настолько быстро, что его не успевали фиксировать в словарях. Один инженер ясно описал ситуацию: "Я не могу дать определение роботу, но когда я вижу робота - я знаю, что это он".

Первыми роботами можно считать заводные механизмы, которые были похожи на человека или животное и могли выполнять некоторые их функции. С появлением электричества стали изобретать более человекоподобных роботов. Они стали более интерактивными, но функций у них было мало.

Первые социальные роботы с элементами искусственного интеллекта появились в конце XX века. И сейчас их разработкой продолжают заниматься во многих развитых странах.

Изначально была цель создать аналог коллективных (общественных) насекомых, которым удается выполнять сложные совместные действия без планирования, контроля и прямой связи друг с другом. О взаимодействии робота с человеком не говорилось. Со временем функционал стал расширяться, а задачи становиться более глобальными.

На 1980-1990е пришёл расцвет социальной робототехники. Роботов стали делать для помощи человеку.

В связи с этим к характеристикам социальных роботов стали относиться:

- выражение/восприятие эмоций;
- ведение диалога на высоком уровне;
- запоминание поведения;
- установка/поддержка социальных отношений;
- использование естественных сигналов (жесты, язык и т.д.);
- демонстрация характера;
- тренировка/улучшение профессиональных качеств.

1.2. Социальные роботы в современном мире

Сегодня социальные роботы только начинают покорять рынок робототехники. Их можно разделить на несколько групп, исходя из задачи, поставленной перед машиной: роботы-няни, в чьи обязанности входит несложная работа по дому, роботы для реабилитации, чья задача заключается в помощи людям с ограниченными возможностями, и роботы-компаньоны. Рассмотрим конкретные примеры последних.

Компания Sony выпустила первого робота-собаку AIBO. Такая собака умеет ходить, воспринимать окружающую обстановку при помощи инфракрасных радаров и видеокамеры, распознавать лица хозяев и реагировать на их команды. Владелец может выбрать для своего питомца один из двух режимов - «щенок» или «взрослая собака», и это позволяет задать роботу настройки поведения. AIBO способен развиваться и учитывать предпочтения своего хозяина, адаптируясь к его образу жизни.

Робот-собака АІВО

Собака-робот - скорее развлечение. Но существуют роботы-компаньоны, способные превратиться в друга и даже в полноценного члена семьи. Именно на подобные модели возлагают надежды разработчики социальных роботов. Так называемые роботы-сиделки умеют создавать необходимый одиноким людям «эффект присутствия» через имитацию общения и человеческой речи. К ним можно отнести американских роботов Nexi и Jibo. Они способны реагировать на настроение хозяина, синхронизироваться с различными гаджетами и устройствами и совершать видеозвонки.

Nexi - робот, способный выражать эмоции

Jibo - личный робот-помощник

В компании Toyota был изобретён робот Kirobo Mini, создающий иллюзию наличия пассажира в автомобиле. Задача Kirobo Mini - не позволить водителю заснуть

за рулем. Робот может различать эмоции водителя и предлагать ему послушать музыку под настроение. Также он сопровождает свою речь несложными жестами.

Kirobo Mini - робот, создающий иллюзию наличия пассажира в автомобиле

Компания Honda начала заниматься разработкой человекоподобного робота ещё в конце 80-х. При создании Asimo, производители, прежде всего, ориентировались на технологичность его роботизированного тела и искусственного интеллекта. Но, тем не менее, он может носить звание социальный робот. Asimo умеет взаимодействовать с людьми, прекрасно ориентируется в пространстве, распознаёт голосовые команды и жесты. А также это лучший роботизированный помощник в быту: он может открывать двери, включать свет и носить разные вещи.

Asimo - лучший роботизированный помощник в быту

Японский робот Реррег – настоящее чудо среди социальных роботов-гумадоидов. По мимике, голосу и жестам он понимает эмоции собеседника. Он может не просто давать ответы на вопросы и задавать собственные, но и выполнять определённые действия по вашей просьбе. Он может прибираться, помогать в готовке, выполнять роль сиделки и друга для ребёнка. Умеет определять эмоциональное состояние человека. Общаясь с людьми, Реррег изучает и запоминает их поведение. С помощью этого он постоянно пополняет опыт системы искусственного интеллекта. Полученные знания отправляются в облако, откуда другие его собратья также черпают необходимую информацию.

Японский социальный робот Реррег

Подобные роботы в настоящее время уже ухаживают за постояльцами в некоторых домах престарелых, становятся домашними питомцами и помощниками по хозяйству в сотнях семей (особенно часто это происходит в Японии и Западной Европе). Лучше всего изучены взаимоотношения искусственных компаньонов с пожилыми людьми. В целом, эти исследования показывают, что социальные роботы хорошо влияют на человека: улучшают общее самочувствие и уменьшают чувство одиночества. Опросы людей, которые живут не в домах престарелых, а в собственной квартире, тоже демонстрируют положительный результат.

Утверждается, что в будущем мы увидим больше социальных роботов, которых можно настроить в соответствии с персональными предпочтениями человека. И однажды такие роботы будут так же доступны и разнообразны, как сегодня телефоны.

2. Роботизированный кукольный театр

2.1. Концепция роботизированного театра кукол

Материалы по социальной робототехнике освещают ряд важных проблем. К их числу относят уход за стариками, реабилитацию и оказание психологической помощи больным, организацию времяпрепровождения одиноких людей. Наименее раскрытым оказался вопрос занятости пациентов в хосписах. Поэтому было решено остановиться на нём подробнее.

С помощью создания социального робота, который умеет развлекать, помогает отвлечься и следит за эмоциональным состоянием человека, данная задача решается. Таким образом идеей данного проекта является конструирование роботизированного кукольного театра. Он способен синхронизироваться с разными устройствами, управляется из разных мест, распознаёт эмоции, реагирует на движения и управляется с помощью голосового управления. А также из-за того, что с помощью него можно ставить как детские спектакли, так и взрослые - благодаря возможности загрузки сценариев, роботизированный театр напрямую связан с образованием и культурой.

Как видим, роботизированный театр выполняет сразу несколько социальных функций: не только досуговую, но и релаксационную и духовную.

2.2. Социальная значимость роботизированного театра

В 21 веке умные роботы уже перестали быть для людей чем-то сверхъестественным и встречаются повсеместно. Различные автоматические устройства, созданные по принципам живых организмов, запрограммированные на те или иные действия, во многом облегчают жизнь человеку. Так роботы и нашли себе широкое применение в современном мире. Роботы часто обладают возможностями гораздо выше человеческих способностей, могут работать в экстремальных условиях, умеют выполнять массу задач, тяжелых или вовсе невыполнимых для человека. Компьютерным алгоритмам поручается разнообразный спектр задач: их можно использовать в быту, для обучения, в медицине, в промышленности, банковском обслуживании, даже для развлечения. Это сейчас основные области применения

роботов, однако, искусственный интеллект с каждым годом развивается и наделяется новыми качествами взаимодействия с человеком, в том числе и социальными функциями.

При изучении материалов по робототехнике было выявлено три основных роли, предназначенных созданиям человека, — это раб, воин и, условно говоря, друг. Роботы-рабы – это устройства, на которых можно переложить механическую работу: они строят, метут улицу, обрабатывают документы. Воины — те же рабочие, но исполняющие механическую работу военного назначения. Ударные разведывательные дроны, роботы-саперы и роботы-бойцы — в основном они пока работают в полуавтоматическом режиме. Третья роль — друг. Это существо, созданное для отношений там, где другого объекта нет или не может быть. Например, девочка Снегурочка, заменившая старикам дочку в русской народной сказке. Это искусственные родители, любовники, друзья — создания, которые разделят с человеком его стремления и жизнь, станут ее частью.

Такие умные машины называют социальными роботами. Они взаимодействуют с людьми автономно, без помощи хозяина-манипулятора. Социальный робот умеет воспринимать речь и мимику, принимать решения, отвечать вербально или действием. Такие роботы могут быть официантами в кафе, дворецкими, учителями, сиделками и просто компаньонами для одиноких людей.

Далеко не все люди выбирают одинокий образ жизни добровольно и самостоятельно. Поэтому существуют такие важные проблемы, как отсутствие компании и помощи у пожилых людей, а также у людей с инвалидностью. Не всегда возможно быть окруженным живыми людьми и вовремя получать необходимую помощь и поддержку, поэтому социальный робот в некоторых случаях будет, возможно, единственным решением, так как он доступен 24/7, он не разозлится и не устанет.

ОПИСАНИЕ РАБОТЫ

1. Постановка задачи

1.1. Обоснование выбора театра кукол в качестве социального робота

Людей, которые нуждаются в помощи, становится всё больше, и всё чаще о них некому позаботиться. Во многих заведениях, куда их отправляют, персонала для ухода за постояльцами не хватает. И тогда на помощь приходят роботы, которые берут на себя заботу о них. Такие роботы терпеливо покажут движения ежедневной гимнастики, сделают массаж и поощрят пациентов к движению. Они всегда готовы к взаимодействию и у них нет плохого настроения. Кроме необходимого набора задач, также важный вопрос - занятость этих людей. С помощью создания социального робота, который будет развлекать, помогать отвлечься и следить за эмоциональным состоянием, можно будет временами решать данную проблему. Повышение качества жизни является основной и, пожалуй, единственно выполнимой задачей оказания помощи для тяжелой категории пациентов, находящихся в хосписе. Для решения всех проблем пациента, как физических, так и психологических, используется целостный междисциплинарный подход, при котором врачи, медсестры и другие медицинские и немедицинские специалисты координируют все аспекты помощи Повышением качества жизни постояльца хосписа, невзирая на продолжительность жизни, призвана так называемая паллиативная помощь. Главный принцип — от какого бы заболевания пациент не страдал, какие средства не были бы использованы для его лечения, всегда можно найти способ повысить качество жизни больного в оставшиеся дни. Одними из таких способов становятся волонтерские акции, выступления различных артистов и творческих коллективов, желающих облегчать жизнь, радовать, помогать тем, чем могут.

Наличие роботизированного кукольного театра в подобном учреждении смогло бы также оказать некоторую психологическую поддержку, подарить впечатления, снять напряжение и приободрить людей в любое время, что и является идеей данного проекта. Конечно, роботы никогда не заменят людей, они не живые, а созданные человеком устройства для помощи и развлечения. Однако, это будет лучшим вариантом, если рядом не окажется никого, кто смог бы лично оказать такое воздействие.

1.2. Состав макета (описание макета, блок-схема)

Роботизированный кукольный театр: 1 - каркас, 2 - светодиодное освещение, 3 - кукла, 4 - двигатель, 5 - рельсовая составляющая для передвижения куклы.

Модель состоит из нескольких связанных элементов: платформа, которая двигается с помощью мотора, светодиодное освещение, состоящее из 4 отдельных

блоков, модуль mp3 с динамиком. Вся система работает от блока питания на платформе Arduino. Рассмотрим более подробно все элементы.

1.3. Описание платформы

Платформа роботизированного кукольного театра

Агduino очень слаба для прямого управления двигателями. Для этого нужен посредник. В данной работе используются биполярный транзисторы, работающие в режиме ключа, но можно использовать и полевые. Подаем на базу транзистора слабый сигнал от Arduino через резистор, вследствие чего транзистор открывает мощный канал, по которому ток проходит через двигатель от плюса к минусу. По сути мы получили примитивный драйвер двигателя. С помощью одного транзистора мы можем включать и выключать двигатель постоянного тока в одном направлении. Но нужно, чтобы передвигался и в противоположном.

Для этого, составив транзисторы по схеме, мы получим устройство для управления вращением двигателя в обе стороны - **H-мост.** В случае Arduino, на них необходимо подавать либо 0 (земля) либо +5В. VCC — это питание двигателей, оно может быть во много раз выше напряжения управляющего сигнала. GND — это земля, общая для Ардуино и H-моста. В зависимости от того, на какой из входов мы подаем положительный сигнал, двигатель будет крутиться в одну или в другу сторону. В данной работе используется H-мост (Troyka-модуль).

Также схема H-моста позволяет изменять скорость вращения электродвигателя. Для этого на один из двух ключей подаются импульсы от широтно-импульсного модулятора (ШИМ).

1.4. Светодиоды (4 блока, схема, ШИМ)

Освещение в модели разделено на 2 линии, которые, в свою очередь, разделены пополам. Итого 4 отдельно работающих блока. Настройка их работы отлаживается в программе для Arduino.

Схема включения светодиода для мигания

В построении системы управления яркостью светодиодов использовали возможности ШИМ (Широтно-импульсная модуляция). Благодаря низкой инерционности, светодиод успевает переключаться (вспыхивать и гаснуть) на частоте в несколько десятков кГц. Его работа в импульсном режиме воспринимается человеческим глазом как постоянное свечение. В свою очередь яркость зависит от длительности импульса (открытого состояния светодиода) в течение одного периода.

Если время импульса равно времени паузы, то есть коэффициент заполнения – 50%, то яркость светодиода будет составлять половину от номинальной величины.

Микроконтроллер Ардуино функционирует в режиме ШИМ контроллера, с помощью функции AnalogWrite() с указанием в скобках значения от 0 до 255. Ноль соответствует 0В, а 255 – 5В. Промежуточные значения рассчитываются пропорционально.

1.5. Проигрыватель

В качестве проигрывателя взят модуль mp3 со встроенным усилителем. Этот модуль также подключается к платформе Arduino. С помощью этой миниатюрной платы организовано звуковое сопровождение проекта. Звук выводится с помощью динамика.

Схема подключения модуля mp3 и динамика к Arduino

1.6. Приложение

В будущем роботизированный кукольный театр планируется подключить к программно-аппаратному комплексу ECOIMPACI-PLE. Его особенностью является наличие большого набора инструментов, позволяющих работать с реальными "умными вещами", выполняя лабораторные и проектные работы. Приложение может работать автономно или в режиме синхронизации с сервером баз знаний системы.

ECOIMPACI-PLE также позволяет пользователю взаимодействовать с локальным сервером интернета вещей или с умной вещью, подключенной непосредственно к компьютеру, на котором она установлена. Пользователь получает от них данные и осуществляет управление с помощью виртуальной приборной панели.

Панель управления, которой можно пользоваться как в рамках образовательной среды, так и отдельно при переводе созданной системы в эксплуатационный режим, может получить любой создаваемый в ходе проекта объект, например, техническая система.

Таким образом с помощью подключения к приложению ECOIMPACI-PLE, будет осуществляться управление всеми элементами театра.

2. Реализация роботизированного театра Конструкция:

Освещение:

Двигатель:

В проекте успешно реализована инженерная работа и запрограммированы элементы.

ЗАКЛЮЧЕНИЕ

В начале исследования были поставлены цель и задачи, ориентированные на поиск и анализ существующих алгоритмов в области искусственного интеллекта и возможности их применения на роботах. В ходе выполнения поставленных задач проведена работа с необходимой литературой в области программирования, механики, электроники и автоматического управления. Также были изучены материалы специальной и учебной литературы по программированию и социальной робототехнике.

Это послужило информационной базой для написания теоретической части курсовой работы: разобраны вопросы об особенностях социальной робототехники; проведенный анализ современного состояния проблемы показывает, что современные прикладные методы и технологии искусственного интеллекта можно использовать для роботов; проанализированы статистические данные, рассмотрены сферы применения социальных роботов, затронуты темы о важности полноценной жизни любого человека, было выявлено положительное влияние театральной постановки на эмоциональное состояние.

Полученные теоретические данные этого исследования могут быть полезными для школьников, студентов и других групп людей, которые уже работают в данной сфере, так как подобная информация является фундаментом для дальнейших практических занятий и помогает в поиске собственных решений в создании полезных роботов, а также в вопросах социальных проблем.

Анализ теоретической части послужил выполнению практической - созданию модели роботизированного кукольного театра. Была проделана большая инженерная работа: подготовлен макет кукольного театра, запрограммированы отдельные элементы, соединены все элементы в одно целое, обеспечен интерфейс для его управления.

В результате проделанной работы имеем каркас с запрограммированными элементами, который в будущем можно совершенствовать и добавлять функции уже только в плане программы и эффективности.

Список источников

https://cyberleninka.ru/article/v/sotsialnyy-robot-podhody-k-opredeleniyu-ponyatiya

https://tainyvselennoi.ru/blog/43428017661/SOTSIALNYIE-ROBOTYI-ILI-ROBOTYI-K

OMPANONYI

https://topor.info/tops/socialnyjj-robot

https://newtonew.com/science/sociable-robots-and-human-loneliness

https://arduinomaster.ru/uroki-arduino/shema-raboty-n-mosta-dlya-upravleniya-dvigatelyam

i/

https://ecoimpact-ple.com/