Problem 1

After inserting 20:

After inserting 33:

After inserting 13:

After inserting 14:

Problem 2

1

- (a) Non-blocking, because it can output tuples as it processes inputs, and just won't output them again if it has encountered the same tuple before.
- (b) Non-blocking. If column X is sorted, once it finds a different value of X it can output all tuples of the previous value because they make up an entire group.

- (c) Blocking, because it needs to find all elements in a specific group before it can start outputing them.
- (d) Blocking, because it needs to process all tuples in R before it can output the sorted list of tuples.
- (e) Non-blocking. Since the leaves of the B-tree are already sorted it can just output them in order as it reads them in.
- (f) Blocking, because it must first sort R and S, and then merge join them.
- (g) Non-blocking, it can output the resulting tuples as it reads in the input.

$\mathbf{2}$

- (a) Can be done in one pass assuming the distinct tuples of R fit in 199 buffers.
- (b) Can be done in one pass as long as the biggest group can fit in 199 buffers.
- (c) Can be done in one pass as long as R can fit in 199 buffers.
- (d) Cannot be done in one pass. A two-pass external sort reads M blocks at a time, sorts them, and writes them to the disk as the first run, then merges the runs to produce a sorted output. The I/O cost will be $2 \times B(R)$ for the first pass and B(R) for the second pass, for a total of $3B(R) = 3 \times 1000 = 3000$ I/Os.
- (e) Can be done in one pass, as long as all the blocks of the B-tree necessary for reading the index can fit in memory, since the leaf nodes are already sorted.
- (f) Cannot be done in one pass. Phase one can sort R and S, while phase two merges and joins the sorted relations R and S. The I/O cost is $2 \times B(R) + 2 \times B(S)$ for phase one sorting, plus B(R) + B(S) for the merge and join phase two, for a total cost of 3(B(R) + B(S)).
- (g) Can be done in one pass as long as R or S (whichever is smaller) can fit in memory.

Problem 3