Seguridad y Auditoría Informática

Auditoría de Redes

Factibilidad de Administración de Redes

- Enfoque típico
 - Realizar un escaneo, obtener un reporte de 1000 páginas y que el entorno de red permanezca sin cambios
- La organización y la gestión de las mitigaciones es clave
- Realizar una Evaluación de Riesgos para priorizar los componentes de red
 - Hacer la auditoría por partes

Metodología General

- 1. Determinar áreas de responsabilidad
- 2. Investigar riesgos y vulnerabilidades
- 3. Asegurar el perímetro
- 4. Asegurar la DMZ y sistemas críticos
- 5. Eliminar vulnerabilidades accesibles externamente
- 6. Eliminar vulnerabilidades accesibles internamente
- 7. Buscar malware

Personalización de la Metodología

- Identificar sistemas/dispositivos clave
 - Pueden haber sistemas adicionales que necesiten ser auditados antes en el proceso de auditoría de redes
- ¿Dónde están las joyas de la corona en la red?
- Mantener una lista organizada de qué componentes de red existen y cuándo será auditado cada uno
 - Auditar redes por funciones
 - Muchos dispositivos cumplen hoy múltiples funciones

Routers

Preparación de la Auditoría

- Definir el Alcance
- Realizar la Investigación
 - ¿Qué está siendo protegido?
 - ¿Qué riesgos existen?
 - ¿Cómo está configurado el router?
 - ¿Cuál es la arquitectura?
 - ¿Qué procesos existen?

Fuentes para Investigación

- Entrevistas
 - Equipo de Auditoría
 - Administradores de Sistemas
 - Administradores de Red
 - Equipo de Políticas
 - Seguridad de la Información
- Documentación del Router
 - Definición funcional del Router
 - Diagramas de Red

- Fuentes Externas
 - Alertas y boletines del fabricante del Sistema
 - Alertas de Vulnerabilidades de SANS
 - Grupos de usuarios/grupos de discusión
 - Fuentes de "Mejores
 Prácticas"

Arquitectura

- La Arquitectura de los Routers debe soportar el flujo de información
 - ¿Qué información está siendo protegida?
- ¿Qué Sistema Operativo y nivel de parches está siendo usado?
- ¿Cuál es el rol del Router?
 - Router de Borde
 - Opciones de Arquitectura:
 - Router como única línea de defensa
 - Router trabajando con un firewall
 - Router Interior
 - Router Backbone

Procesos de Prueba

- Procesos
 - Control de Cambios
 - Copias de Seguridad
 - Administración de Usuarios
 - Política de Contraseñas
 - Actualizaciones de Parches
 - o Construcciones seguras y estandarizadas para plataformas de Routers
- Conducir entrevistas
- Revisar documentación
- Realizar Simulacros

Verificación del Proceso de Simulacros

- Mostrar una alerta reciente
- Entender el procedimiento utilizado actualmente por los Administradores para abordar las alertas
- Obtener evidencia de auditoría de que el proceso está en funcionamiento
 - Entrevista
 - Observación
- Sugerir mejoras al proceso

¿Por qué Routers Cisco?

- Tiene la mayor cuota de mercado de Routers de Internet
- Los conceptos pueden ser aplicados a cualquier Router
- Al ser basados en línea de comandos, pueden ser más difícil de administrar y aprender a auditarlos posibilitará aplicar este conocimiento a routers de otros vendedores

Archivos de Configuración

- Startup-Config
 - Cargado al inicio
 - Router# show startup-config
- Running-Config
 - Configuración real siendo utilizada
 - Los cambios en vivo son hechos a running-config
 - Router# show running-config
- Almacenar la configuración actual como configuración de inicio
 - Router# copy running-config startup-config

Filtrado Estático de Paquetes

- Es el Control de Tráfico implementado en la mayoría de los routers
- Funciona dividiendo y midiendo
 - Si le decimos al router "permit traffic to 220.10.5.0/24"

El router evalúa:

- ¿El byte 16 en el encabezado IP contiene 220?
- ¿El byte 17 en el encabezado IP contiene 10?
- ¿El byte 18 en el encabezado IP contiene 5?
- De ser así, permitir que el tráfico pase
- De no ser así, procesar la siguiente regla

Filtrado Con Estado

- La mayoría de las conexiones de red están basadas en estímulos de respuesta
 - Esto significa que tenemos que permitir que las respuestas entren a nuestra red.
- Problema: los paquetes pueden ser manipulados para parecer respuestas inofensivas
- El Filtrado Con Estado "recuerda" el tráfico saliente entonces solo las respuestas legítimas son permitidas para ingresar.

Cuando usar Estático o Con Estado

- Usar Estático para decisiones absolutas
 - Bloquear tráfico originado desde una dirección IP privada
 - Bloquear todo el tráfico direccionado a los puertos SNMP
 - Bloquear todos los echo-requests (Ping) entrantes
- Usar **Con Estado** para decisiones condicionales
 - Nada o... para todo lo demás
 - El despliegue del Router es dependiente en la configuración del perímetro

Listas de Control de Acceso (ACLs)

- Las ACLs controlan el tráfico hacia y a través del router
- Cisco tiene múltiples tipos de ACLs
 - o ACLs Estándar: 1-99 o 1300-1999. Dirección IP Origen.
 - o ACLs Extendidas: 100-199 o 2000-2699. Encabezado del paquete.
 - ACLs Reflexivas: Usan tablas de estados. Son dinámicas.
 - ACLs Nombradas: se asignan nombres descriptivos en lugar de números.
- Las ACLs pueden ser Estáticas o Con Estado dependiendo del fabricante y de las capacidades del router

Creando el Filtrado de Paquetes

- Para usar una ACL, el Router necesita saber donde debería ser aplicada
 - ¿Qué interfaz debería usar la ACL?
 - ¿En qué dirección? (Entrante/Saliente)

Revisando las ACLs

- Revisar cantidades para cada regla
 - ¿Están siendo usadas las reglas?
 - Sino, ¿por qué no?
 - El tráfico no ha sido visto
 - Generar el patrón y probar nuevamente
 - El orden de las reglas es incorrecto
 - Sugerir remediación basada en reglas
 - Comparar contra una base de reglas
 - ¿Están las reglas que coinciden con más frecuencia al principio?
 - Sino, sugerir optimizar el orden de las reglas

Accediendo a los Routers

- Métodos de Administración y Configuración
 - Local
 - Es el mejor, pero no siempre es realista
 - Remoto
 - Telnet, SSH, HTTP, SNMP, TFTP
- Acceso Seguro
 - Red de Administración
 - Comunicación Cifrada
 - SSH, IPSec

Auditando Métodos de Acceso

- Deshabilitar acceso administrativo que no es necesario
 - El acceso remoto (directo) debería ser deshabilitado si no es necesario
- Acceso cifrado (por ejemplo, SSH, IPSec) es preferido sobre telnet para acceso remoto
 - Controlar el acceso remoto al router a través de ACLs.
- Usar timeouts para inactividad de la sesión

Autenticación

- Usar cuentas individuales por Administrador para control de accesos
- Administrar Autenticación, Autorización y Responsabilidad (Accountability)
- Las cuentas centralizadas pueden ser usadas a través de RADIUS, TACACS, etc.

SNMP

- Es recomendable deshabilitar SNMP completamente
- Prohibir las "community strings" de lectura-escritura
- Prohibir las "community strings" por defecto
 - Públicas
 - Privadas
- Acotar el acceso a direcciones autorizadas con ACLs

Deshabilitar los Servicios de Administración Innecesarios

- Finger
 - o Provee información de un usuario en un sistema
- Identd
 - Identifica el propietario de una conexión entre un cliente y un servidor
- HTTP
 - Servidor web

Cifrado de Contraseñas

- Verificar como están almacenadas las contraseñas
 - ¿Qué algoritmos de cifrado/hash están siendo utilizados?
- Verificar quién tiene acceso a los hashes
- Verificar cómo es realizada la autenticación a lo largo de la red

AAA (Autenticación, Autorización y Responsabilidad)

- Asegurar que la actividad de los usuarios está siendo auditada
- ¿Qué debería ser auditado?
 - Revisar la política
 - Como mínimo:
 - Acceso al sistema Exitoso y Fallido
 - Actividad administrativa
 - Auditar las fallas
 - Auditar los cambios a la configuración

Firewalls

Asegurando el Perímetro ¿Dónde está el fin del Perímetro?

- Hay una gran cantidad de potenciales puntos de acceso hacia nuestras redes:
 - VPNs / Modems (B2B)
 - Wireless
 - Router de Borde
 - Firewall de Perímetro

Defensa en Profundidad (DiD)

- Las "Capas" deben ser incorporadas en la seguridad
 - Firewalls de Perímetro
 - Firewalls internos
 - Sistemas de Detección de Intrusiones (IDS)
 - Routers de Borde
 - Routers Internos
 - Políticas y Procedimientos
 - Auditorías
- Múltiples controles deben estar presentes y ser evaluados

¿Por qué realizar Auditoría de Perímetro?

- Reglas de Filtrado Complejas
- Muchos cocineros echan a perder la sopa
- Errores en el código del fabricante
 - La Auditoría es una capa de Defensa en Profundidad

Filtros de Firewall vs Filtros de Router

- Los conceptos son los mismos
 - Difieren en base a las expectativas de la política
- Deben complementarse entre ellos
 - No necesariamente tener reglas iguales
- Aprovechar las fortalezas de cada uno
- Múltiples filtros en servicios críticos
- Prueba de Salud
 - ¿Tienen sentido las reglas para el entorno?

Conceptos Claves de Auditoría de Firewall

- Política de Seguridad
 - Debería ser un documento escrito
- Permitido por Defecto vs Rechazado por Defecto
- Grupos
 - Equipos, redes o servicios similares
- Zonas de Seguridad
 - Grupos de equipos y/o redes
 - Criticidad similar y requerimientos de acceso

Temas Fundacionales de Firewall (1/2)

- Filtrado de Paquetes
 - Rápido, baja seguridad
- Inspección Con Estado
 - Rendimiento medio, Seguridad media
- Proxy o Gateway de Aplicaciones
 - Lento, Seguridad más alta
- Inspección Profunda de Paquetes
 - Combina la Inspección Con Estado y la tecnología IDS o el Protocolo de Detección de Anomalías

Temas Fundacionales de Firewall (2/2)

- NAT (Network Address Translation)
 - Permite el uso de direcciones privadas en la Intranet (RFC1918)
 - Variaciones
 - Reenvío o Redirección de Puertos
 - Muchos a Uno (NAT oculto)
 - Uno a Uno (NAT estático)
 - Pool de Direcciones NAT

Preparación de la Auditoría

Política

- Antes de comenzar la Auditoría, debe definirse el propósito del firewall
 - ¿Qué se espera que haga el firewall?
 - o Debe estar basado en la Política de Seguridad
- Si no hay Política de Seguridad, debe iniciarse una conversación con la Dirección
 - Un gran comienzo puede ser comenzar a escribir las reglas en el lenguaje del firewall

Cuestiones a Definir

- ¿Qué Información está protegiendo el Firewall?
- ¿Cuáles son las expectativas del Firewall?
- ¿Qué riesgos está dispuesta a aceptar la organización?
- ¿Qué acciones son autorizadas?

Procedimientos

- Control de Cambios
- Copias de Seguridad
- Administración de Usuarios
- Política de Contraseñas
- Actualizaciones de Parches
- Construcciones seguras y estandarizadas de plataformas de Firewall

Arquitectura de Firewall

Arquitectura de Firewall

- Revisar la Arquitectura de Firewall
 - ¿La Política de Seguridad es soportada por la arquitectura?
 - O ¿Hubs?
 - Switches?
- Definir cómo la información debería fluir
 - ¿Qué flujo de datos está y no está autorizado?
- Diseñadores de Firewall y Perímetro tienden a usar diagramas físicos
 - El auditor deber ser capaz de deducir el flujo de información y posiblemente un diagrama lógico desde un diagrama físico

Diagrama Lógico

- El propósito de un Diagrama Lógico es mostrar el flujo de información
 - Permite definir qué información puede fluir hacia donde
 - La Política de Seguridad define qué y qué no está autorizado
- El propósito del firewall es controlar el flujo de información
- Ejemplo: Arquitectura de un Sitio de E-commerce
 - Necesita una red dedicada separada para el comercio B2B
 - Sin embargo, el sitio de E-commerce debe ser capaz de comunicarse con lo corporativo (bases de datos)

Preguntas de Arquitectura

- ¿El Firewall segmenta la información correctamente?
 - ¿Agregar o quitar un firewall?
 - ¿Agregar o quitar una interfaz de red?
 - ¿Se están siguiendo los procedimientos de arquitectura?
- La Arquitectura debe soportar la Política de Seguridad
 - Si la arquitectura del firewall está mal hecha, es poco lo que la base de reglas del firewall podrá hacer

Firewall de Aplicaciones Web (WAF)

- Diseñado para proteger los sitios web de ataques
- Aplican un conjunto de reglas a una conversación HTTP
- Controlan la ejecución de la información, no solo el flujo de datos
- Sitio Principal de WAFs de OWASP
- Criterio de Evaluación de WAFs de OWASP

Arquitectura y Entornos B2B

- Se confía también en los controles del otro negocio
- Se debe mantener la documentación adecuada
- Ver su Política de Seguridad
- Se debe firmar un Acuerdo
- Política de Acceso y Controles de Autenticación
- Aplicaciones Propietarias: Métodos y Requerimientos de Seguridad,
 Controles de Autorización, Cifrado, Logging.
- Planes de Respuesta ante Incidentes
- Arquitectura
- Cifrado punto a punto

Probando el Firewall

Plataforma - ¿Dispositivo (Appliance) o Sistema Operativo?

- Dispositivo (Appliance)
 - Ventajas
 - Normalmente viene completamente asegurada
 - Diseñadas desde cero como dispositivos firewall
 - Desventajas
 - Muchas son cerradas y propietarias
 - Se debe confiar la seguridad al vendedor

- Sistema Operativo
 - Ventajas
 - Mayor control sobre el aseguramiento del sistema
 - Muchos proveen el código fuente
 - Desventajas
 - Se debe tener mayor control sobre el aseguramiento del sistema
 - Grandes oportunidades de cometer errores

Específico de la Plataforma de Firewall

- Considerar el Firewall específico que se está auditando
 - ¿Hay opciones de configuración que se desvían de la base de reglas?
 - ¿Hay características de seguridad que son específicas a la plataforma que se está auditando?
- Recursos
 - Revisar la documentación del fabricante

Probando la Base de Reglas del Firewall

Validación Manual de la Base de Reglas

- Comenzar revisando la base de reglas manualmente.
 - Eliminar cualquier regla innecesaria
 - Armar equipo con el Gerente de Seguridad, Administrador de Firewall y Arquitecto de Redes
 - Combinar las repetitivas
 - Identificar cualquier regla no autorizada
 - Finalizar con la menor cantidad de reglas posible

Consejos sobre la Base de Reglas

- El ordenamiento de las reglas debe ser mantenido tan simple como sea posible
- Verificar reglas pasadas por alto o implícitas
- Verificar qué reglas tienen el logging habilitado
 - Sólo debe loguearse lo que es necesario
- Todas las reglas deberían estar documentadas
 - Para qué existe, quién la autorizó y cuando fue cambiada

Auditar Reglas de Filtrado

- ¿Cumplen las reglas de filtrado la política y/o mejores prácticas?
- ¿Están autorizadas y optimizadas?
- Recomendar cambios como sea necesario
 - Siempre explicar:
 - Razón para el cambio
 - Beneficio del cambio

Recomendaciones de Reglas de Base de Firewall

- Debería existir una política de "Rechazado por Defecto"
- Las reglas:
 - Deberían ser específicas
 - No deben superponerse o duplicarse entre sí
 - No deberían contradecir a otras reglas
 - Deberían ser utilizadas (aplicadas)
- Los servicios deberían estar configurados de manera segura
- El Logging debería ocurrir para las reglas donde sea necesario
- Todas las reglas deberían tener una justificación de negocio

Validación Técnica de la Base de Reglas

- Validar la base de reglas del firewall desde el nivel de red a través del escaneo
 - Escanear a través del firewall
 - Determinar que paquetes el firewall permite que pasen
- Escanear cada red desde cada interfaz
 - Una laptop puede reemplazar sistemas en la red de servicio y escanear la red interna para simular un compromiso

¿Qué herramientas utilizar?

- Cualquier conjunto de herramientas debería, como mínimo, proveer las siguientes tres capacidades:
 - Herramientas de Mapeo de Red
 - Hping, nemesis, nmap
 - Análisis de Vulnerabilidades Pasivo
 - Wireshark, tcpdump, windump
 - Análisis de Vulnerabilidades Activo
 - Nessus, OpenVAS

Permiso de Ejecución

- La diferencia entre un hacker malicioso y un analista de seguridad es el Permiso de Ejecución
 - ¡Siempre se necesita!
 - ¡Por escrito!
 - De individuos autorizados

Alertas y Logging

Revisión de Logs

- Durante la ejecución de la Auditoría, se produjo mucho "ruido" ¿Fue detectado?
 - ¿Fueron detectadas estas exploraciones?
 - ¿Fue alertada la gente apropiada?
 - ¿Se está registrando información adecuada?
 - ¿Se están perdiendo entradas en los logs?
 - ¿Se revisan con frecuencia las entradas en los logs?
- Estudiar y aprender las firmas (signatures) en los logs

NAC, Detección de Intrusiones y Prevención de Intrusiones

Sobre NAC (Network Access Control)

- Controla los endpoints
 - o Toma decisiones antes de permitir a los sistemas conectarse a la red
 - Las políticas controlan el acceso
- Centraliza la administración de tecnologías como antivirus, prevención de intrusiones de equipos, autenticación, etc.
- El objetivo de NAC es:
 - Controlar los ataques "Zero-day"
 - Permitir a los administradores la definición de políticas
 - Autenticar identidades de usuario

Pasos de Verificación de Detección/Prevención de Intrusiones (NIDS/NIPS)

- Usar nmap para verificar la detección de escaneo de puertos
 - Probar múltiples velocidades
- Usar un Analizador de Vulnerabilidades como Nessus para verificar la detección de Payloads
- Usar fragrouter para probar la fragmentación de paquetes
- Combinar con un Sniffer para verificar precisión

Auditoría de IDS/IPS

- ¿Cuál es la Arquitectura?
 - Basados en Red versus basados en Host
- ¿Detectó el IDS/IPS la mayoría de los ataques?
 - ¿Está la base de firmas actualizada?
- ¿Es utilizable el sistema de alertas?
 - ¿Envía mensajes o agrega registros a un archivo que nadie lee?
- ¿Tiene sentido su ubicación en la red?
 - ¿Está conectado al puerto de un switch?

¿Preguntas?

¡Muchas Gracias!