Assignment 7

Shweta Verma

Abstract—This document explains the concept of Vector Space and its properties.

Download all python codes from

https://github.com/Shweta-SV/Assignment-7

Download latex-tikz codes from

https://github.com/Shweta-SV/Assignment-7

1 Problem

Which of the following sets of functions from \mathfrak{R} to \mathfrak{R} is a vector space over \mathfrak{R} ?

$$S_1 = \{ f | \lim_{x \to 3} f(x) = 0 \}$$
 (1.0.1)

$$S_2 = \{g | \lim_{x \to 3} g(x) = 1\}$$
 (1.0.2)

$$S_3 = \{h | \lim_{x \to 3} h(x) \ exists\}$$
 (1.0.3)

is

- 1) Only S_1
- 2) Only S_2
- 3) S_1 and S_3 but not S_2
- 4) All the three are vector spaces

2 Theory

Let S be a set of functions. Let $f_1, f_2 \in S$ and $\alpha, \beta \in \Re$

For a set of functions to be considered as a vector space:

1) The linear combination of f_1 and f_2 should be in S.

i.e.
$$\alpha f_1(x) + \beta f_2(x) \in S$$

2) The **0** should belong to S i.e. $\mathbf{0} \in S$

3 Solution

Case 1: Test for S_1

1) Let $f_1, f_2 \in S_1$ and $\alpha, \beta \in \mathfrak{R}$

$$\lim_{x \to 3} f_1(x) = 0$$

$$\lim_{x \to 3} f_2(x) = 0$$
(3.0.1)

Then Using (3.0.1)

$$\lim_{x \to 3} (\alpha f_1(x) + \beta f_2(x))$$

$$= \alpha \left(\lim_{x \to 3} f_1(x) \right) + \beta \left(\lim_{x \to 3} f_2(x) \right)$$

$$= \alpha \times 0 + \beta \times 0$$

$$\therefore \alpha f_1(x) + \beta f_2(x) \in S_1$$

2) Let f(x) = 0 then

$$\lim_{x \to 3} f(x) = 0$$
$$\therefore \mathbf{0} \in S_1$$

Hence, S_1 is a vector space.

Case2: Test for S_2

1) Let $g_1, g_2 \in S_2$ and $\alpha, \beta \in \mathfrak{R}$

$$\lim_{x \to 3} g_1(x) = 1$$

$$\lim_{x \to 3} g_2(x) = 1$$
(3.0.2)

Then Using (3.0.2)

$$\lim_{x \to 3} (\alpha g_1(x) + \beta g_2(x))$$

$$= \alpha \left(\lim_{x \to 3} g_1(x) \right) + \beta \left(\lim_{x \to 3} g_2(x) \right)$$

$$= \alpha \times 1 + \beta \times 1$$

$$= \alpha + \beta$$

$$\therefore \alpha g_1(x) + \beta g_2(x) \in S_1 \quad if \quad \alpha + \beta = 1$$

2) Let g(x) = 0 then

$$\lim_{x \to 3} g(x) = 1$$
$$\therefore \mathbf{0} \notin S_1$$

Hence, S_2 is not a vector space.

Case3: Test for S_3

1) Let
$$h_1, h_2 \in S_3$$
 and $\alpha, \beta \in \Re$

$$\lim_{x \to 3} h_1(x) \text{ exists}$$

$$\lim_{x \to 3} h_2(x) \text{ exists}$$
(3.0.3)

Then Using (3.0.3)

$$\lim_{x \to 3} (\alpha h_1(x) + \beta h_2(x)) \ exists$$
$$\therefore \alpha h_1(x) + \beta h_2(x) \in S_3$$

2) Let h(x) = 0 then

$$\lim_{x \to 3^{-}} h(x) = 0 = \lim_{x \to 3^{+}} h(x)$$
$$\therefore \mathbf{0} \in S_{1}$$

Hence, S_3 is a vector space.

Therefore, Option (3) is correct.