

Information Lattice picture for the Fisher-Information indicators

Sagnik Ghosh

1. Introduction

2. Information Lattice

Building on the works in [Bardarson2022TimeEvolutionSciPostPhys] The Information Lattice as a concept to systematically analyze the information content and entanglement structure of a quantum many-body state was first introduced by Artiaco et. al. in [1], and further developed as a tool for dynamics, charecterisation of loclisation, rate of information scrambling, criticality of the localisation-scrambling transition, and quench dynamics respectively in [1–4]. Here for the sake of completeness, we quote the construction of information lattice and some properties possibily useful to us from the aforementioned works.

3. Insigts from Information Lattice calculations

References

- ¹C. Artiaco, C. Fleckenstein, D. Aceituno Chávez, T. K. Kvorning, and J. H. Bardarson, "Efficient large-scale many-body quantum dynamics via local-information time evolution", PRX Quantum 5, 020352 (2024) 10.1103/PRXQuantum.5.020352, arXiv:2312.00141 [quant-ph].
- ²D. Aceituno Chávez, C. Artiaco, T. Klein Kvorning, L. Herviou, and J. H. Bardarson, "Ultraslow growth of number entropy in an ℓ-bit model of many-body localization", Phys. Rev. Lett. **133**, 126502 (2024) 10.1103/PhysRevLett.133.126502, arXiv:2403.02418 [cond-mat.dis-nn].
- ³C. Artiaco, T. Klein Kvorning, D. Aceituno Chávez, L. Herviou, and J. H. Bardarson, "Universal characterization of quantum many-body states through local information", Phys. Rev. Lett. **134**, 190401 (2025) 10.1103/PhysRevLett.134.190401, arXiv:2501.09090 [cond-mat.str-el].
- ⁴N. P. Bauer, B. Trauzettel, T. Klein Kvorning, J. H. Bardarson, and C. Artiaco, "Local information flow in quantum quench dynamics", Phys. Rev. A **112**, 022221 (2025) 10.1103/PhysRevA.112.022221, arXiv:2502.14572 [quant-ph].

Physikalisches Institut der Universität Bonn, Nussallee 12, 53115 Bonn, Germany