3. Quadratic Equation and Inequations (Inequalities)

ai24btech11020 - Rishika Kotha

24.	The equation $e^{\sin x} - e^{-\sin x} - 4 = 0$ has:	[2012]	29. Let α and	β be the r	roots of equation
	(a) infinite number of real roots				If p,q,r are in A.P.
	(b) no real roots		and $\frac{1}{\alpha} + \frac{1}{\beta} = 4$,	then the valu	e of $ \alpha - \beta $ is:[6pt] [JEE M 2014]
	(c) exactly one real root		$\sqrt{34}$		$a > 2\sqrt{13}$
	(d) exactly four roots		(a) $\frac{\sqrt{34}}{9}$		(b) $\frac{2\sqrt{13}}{9}$

- 25. The real number k for which the equation, $2x^3 + 3x + 4 = 0$ has two distinct real roots in [JEE M 2013] [0,1]
 - (a) lies between 1 and 2
 - (b) lies between 2 and 3
 - (c) lies between -1 and 0
 - (d) does not exist.
- 26. The number of values of k, for which the system of equations: [JEE M 2013]

$$(k+1)x+8y=4k$$

$$kx+(k+3)y=3k-1$$

has no solution, is

- (a) infinite
- (b) 1

(c) 2

- (d) 3
- 27. If the equations $x^2 + 2x + 3 = 0$ and $ax^2 + bx + c = 0$, a,b,c $\in \mathbb{R}$, have a common root, then a:b:c is [JEE M 2013]
 - (a) 1:2:3
- (b) 3:2:1
- (c) 1:3:2
- (d) 3:1:2
- 28. If $a \in R$ and the equation $-3(x \lceil x \rceil)^2 + 2(x \lceil x \rceil)^2$ [x]) + a^2 = 0 (where [x] denotes the greatest integer $\leq x$) has no integral solution, then all possible values of a lie in the interval:

[JEE M 2014]

- (a) (-2,-1)
- (b) $(-\infty, 2) \cup (2, \infty)$
- (c) $(-1,0) \cup (0,1)$
- (d) (1,2)

30. Let α and β be the roots of the equation $x^2 - 6x - 2 = 0$. If $a_n = \alpha^n - \beta^n$, for $n \ge 1$, then the value of $\frac{a_{10}-2a_8}{2a_9}$ is equal to:

[JEE M 2015]

(a) 3

(b)-3

(c) 6

- (d)-6
- 31. The sum of all real values of x satisfying the equation $(x^2 - 5x + 5)^{x^2+4x+60} = 1$ is :

[JEE M 2016]

(a) 6

(b)5

(c) 3

- (d)-4
- 32. If $\alpha, \beta \in C$ are the distinct roots, of the equation $x^2 - x + 1 = 0$, then $\alpha^{101} + \beta^{107}$ is equal to: [JEE M 2018]
 - (a) 0

(b) 1

(c) 2

- (d) -1
- 33. Let p,q \in R. If $2 \sqrt{3}$ is a root of the quadratic equation, $x^2 + px + q = 0$, then:

[JEE M 2019- 9 April(M)]

- (a) $p^2 4q + 12 = 0$ (b) $q^2 4p 16 = 0$
- (c) $q^2 + 4p + 14 = 0$ (d) $p^2 4q 12 = 0$