AutoML - raport nr 1

Aleksandra Buchowicz, Filip Pazio

1 Wstęp

Celem projektu było przeanalizowanie tunowalności hiperparametrów trzech algorytmów uczenia maszynowego - Random Forest, Xgboost oraz GradientBoosting. Modele zaimplementowano w języku Python przy pomocy bibliotek scikit-learn i xgboost. Do oceny jakości dopasowania modelu wykorzystano miarę AUC.

Wybór i siatkę hiperparametrów przedstawiono w Tabeli 7. W porównaniu do literatury [1, 5], z powodu ograniczeń sprzętowych, ograniczono ilość optymalizowanych hiperparametrów. Do tunowania hiperparametrów wykorzystano dwie różne techniki losowania punktów, oparte kolejno na wyborze punktów z rozkładu jednostajnego (Randomized Search) oraz na technice bayesowskiej. Techniki zaimplementowano odpowiednio przy pomocy pakietów sklearn.model_selection i scikit-optimize. Dla obu metod wykonano 50 iteracji.

1.1 Zbiory danych

Do przeprowadzenia eksperymentów wykorzystano następujące zbiory danych do klasyfikacji binarnej z serwisu OpenML:

- 1. adult (ID: 45068)
- 2. blood-transfusion-service-center (ID: 1464)
- 3. diabetes (ID: 37)
- 4. phoneme (ID: 1489)

Wybrane zbiory danych nie zawierały braków danych i nie wymagały obróbki. W niektórych przypadkach wykorzystano LabelEncoder z biblioteki sklearn.preprocessing do kodowania etykiet.

2 Wyniki

W tej sekcji opisano wyniki eksperymentu dla poszczególnych algorytmów. Podsumowanie wyników w formie wykresów pudełkowych można znaleźć na Rysunku 2.

2.1 RandomForest

Model został zaimplementowany przy pomocy sklearn.ensemble.RandomForestClassifier.

	Zbiór 1	Zbiór 2	Zbiór 3	Zbiór 4
RandomizedSearchCV	0.914	0.767	0.821	0.9997
BayesSearchCV	0.916	0.765	0.823	0.9998

Tabela 1: Maksymalne wartości AUC dla RandomForestClassifier osiągnięte na poszczególnych zbiorach przy wybranej metodzie tunowania.

Estymator, który osiągnął najwyższe średnie AUC pomiędzy czterema zbiorami, podczas poszukiwań z użyciem metody RandomSearchCV przedstawiono w Tabeli 2.

bootsrap	$\max_{}$ features	min_sampes_split	n_{-} estimators	mean AUC
True	0.934	0.08	706	0.835

Tabela 2: Hiperparametry modelu RandomForestClassifier, dla których pozyskano najlepsze średnie AUC obliczone na czterech zbiorach przy pomocy RandomSearchCV oraz średnia wartość tej miary.

2.2 XGBoost

Model został zaimpementowany przy pomocy xgboost.XGBClassifier.

	Zbiór 1	Zbiór 2	Zbiór 3	Zbiór 4
RandomizedSearchCV	0.928	0.711	0.793	0.949
BayesSearchCV	0.930	0.736	0.799	0.956

Tabela 3: Maksymalne wartości AUC dla XGBClassifier osiągnięte na poszczególnych zbiorach przy wybranej metodzie tunowania.

Estymator, który osiągnął najwyższe średnie AUC pomiędzy czterema zbiorami, podczas poszukiwań z użyciem metody RandomSearchCV przedstawiono w Tabeli 4.

${\tt n_estimators}$	$learning_rate$	$\mathtt{max_depth}$	${\tt min_child_weight}$	mean AUC
427	0.387	5	0.601	0.830

Tabela 4: Hiperparametry modelu XGBClassifier, dla których pozyskano najlepsze średnie AUC obliczone na czterech zbiorach oraz średnia wartość tej miary.

2.3 Gradientboosting

Model został zaimpementowany przy pomocy sklearn.ensemble.HistGradientBoostingClassifier.

	Zbiór 1	Zbiór 2	Zbiór 3	Zbiór 4
RandomizedSearchCV	0.929	0.749	0.830	0.955
BayesSearchCV	0.928	0.753	0.840	0.955

Tabela 5: Maksymalne wartości AUC dla HistGradientBoostingClassifier osiągnięte na poszczególnych zbiorach przy wybranej metodzie tunowania.

Estymator, który osiągnął najwyższe średnie AUC pomiędzy czterema zbiorami, podczas poszukiwań z użyciem metody RandomSearchCV przedstawiono w Tabeli 5.

$\mathtt{max_iter}$	$learning_rate$	max_leaf_ndoes	${\tt min_samples_leaf}$	$\mathtt{max_depth}$	mean AUC
42	0.081	22	30	5	0.856

Tabela 6: Hiperparametry modelu HistGradientBoostingClassifier, dla których pozyskano najlepsze średnie AUC obliczone na czterech zbiorach oraz średnia wartość tej miary.

3 Zbieżność metod tunowania parametrów

Na Rysunku 1 zwizualizowaliśmy proces znajdowania optymalnego rozwiązania przez rozważane przez nas techniki. Krzywe na wykresach przedstawiają najwyższe AUC spośród wszystkich znalezionych kombinacji hiperparametrów w zależności od liczby iteracji wykonanych przez technikę.

Rysunek 1: Liczba iteracji potrzebna na osiągnięcie optymalnego rozwiązania dla poszczególnych algorytmów i metod tunowania.

4 Wnioski

- 1. XGBClassifier charakteryzował się największą AUC dla poszczególnych zbiorów oraz szybkim ustabilizowaniem się zarówno metody RandomizedSearchCV jak i BayesSearchCV.
- 2. Metoda BayesSearchCV z reguły daje lepsze wyniki, jednak potrzebuje większej liczby iteracji na ustabilizowanie.
- 3. Istotny wpływ na czas wymagany do wytunowania parametrów ma wielkość zbioru danych, na którym trenowany jest model.

Literatura

- [1] Probst, Philipp, Anne-Laure Boulesteix, and Bernd Bischl. "Tunability: Importance of hyper-parameters of machine learning algorithms." The Journal of Machine Learning Research 20.1 (2019): 1934-1965.
- [2] https://xgboost.readthedocs.io/en/latest/parameter.html#general-parameters
- [3] https://xgboost.readthedocs.io/en/stable/python/python_api.html
- [4] https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.HistGradientBoostingClassifier.html#sklearn.ensemble.HistGradientBoostingClassifier
- [5] https://inria.github.io/scikit-learn-mooc/python_scripts/ensemble_hyperparameters.html
- [6] https://machinelearningmastery.com/histogram-based-gradient-boosting-ensembles/

Tabele i wykresy

	parametr	typ	kres dolny	kres górny
random forest	bootstrap	logical	-	-
	$max_features$	numeric	0.01	1
	$min_samples_split$	numeric	0.01	1
	${\tt n_estimators}$	integer	1	2000
xgboost	n_estimators	integer	1	5000
	$learning_rate$	numeric	0	10
	$\mathtt{max_depth}$	integer	1	15
	${\tt min_child_weight}$	numeric	0	7
gradient boosting	max_iter	integer	1	500
	$learning_rate$	numeric	0.01	1
	max_leaf_nodes	integer	2	50
	min_samples_leaf	integer	1	50
	max_depth	integer	1	15

Tabela 7: Zakresy parametrów dla poszczególnych metod.

	parametr	Zbiór 1	Zbiór 2	Zbiór 3	Zbiór 4
RandomizedSearchCV	bootstrap	True	True	False	True
	$max_features$	0.743	0.934	0.411	0.743
	min_samples_split	0.012	0.08	0.241	0.012
	${\tt n_estimators}$	1894	706	1377	1894
BayesSearchCV	bootstrap	True	True	True	False
	$max_features$	0.47	0.823	0.258	0.117
	min_samples_split	0.01	0.458	0.041	0.01
	$n_{\tt -}estimators$	2000	2000	1046	694

 ${\bf Tabela~8:~Optymalne~parametry~dla~RandomForestClassifier.}$

	parametr	Zbiór 1	Zbiór 2	Zbiór 3	Zbiór 4
RandomizedSearchCV	n_estimators	537	1469	1005	427
	$learning_rate$	1.463	3.286	2.483	0.387
	$\mathtt{max_depth}$	1	5	11	5
	min_child_weight	0.853	5.639	0.002	0.601
BayesSearchCV	n_{-} estimators	3623	4	2329	4670
	$learning_rate$	0.806	1.132	0.873	1.009
	$\mathtt{max_depth}$	1	1	15	14
	min_child_weight	0.186	7.000	0.000	0.000

Tabela 9: Optymalne parametry dla XGBClassifier.

Rysunek 2: Wykresy pudełkowe, przedstawiające zmienność AUC dla poszczególnych modeli, metod tunowania i zbiorów danych.

	parametr	Zbiór 1	Zbiór 2	Zbiór 3	Zbiór 4
RandomizedSearchCV	$\mathtt{max_iter}$	438	191	42	386
	learning_rate	0.087	0.043	0.081	0.555
	max_leaf_nodes	16	21	22	45
	min_samples_leaf	18	36	30	6
	$\mathtt{max_depth}$	5	1	5	12
BayesSearchCV	max_iter	377	500	183	179
	$learning_rate$	0.097	0.010	0.097	0.423
	max_leaf_nodes	34	50	2	39
	min_samples_leaf	50	19	2	23
	$\mathtt{max_depth}$	9	1	1	15

 $Tabela\ 10:\ Optymalne\ parametry\ dla\ {\tt HistGradientBoostingClassifier}.$