博资考复习

DW

2019年10月1日

目录 2

目录

1	力学																		3
	1.1	质点运	动学	ż .															3
		1.1.1	质点	和	参考	系													3
		1.1.2	速度	き和力	加速	度													3
		1.1.3	直角	自坐村	示系	中	运动	力的	描	述									3
		1.1.4	自然	《坐村	示系	中	运动	力的	描	述									3
		1.1.5	平面	面极 。	坐标	系	中的	り运	动	描	述								4
	1.2	质点运	动学	ż .															4
		1.2.1	牛顿	页运z	动定	律													4
		1.2.2	常见	己的に	力														5
	1.3	非惯性	参考	系															6
		1.3.1	非惯	贯性氢	参考	系	与点	逮拟	力										6

1 力学

1.1 质点运动学

1.1.1 质点和参考系

质点突出了"物体具有质量"、"物体占有位置"。

1.1.2 速度和加速度

速度:

$$\vec{v}(t) = \lim_{\Delta_t \to 0} \frac{\vec{r}(t + \Delta t) - \vec{r}(t)}{\Delta t} = \frac{d\vec{r}}{dt}$$
 (1)

加速度:

$$\vec{a}(t) = \lim_{\Delta_t \to 0} \frac{\vec{v}(t + \Delta t) - \vec{v}(t)}{\Delta t} = \frac{d\vec{v}}{dt} = \frac{d^2 \vec{r}}{dt^2}$$
 (2)

1.1.3 直角坐标系中运动的描述

把位置矢量按照直角坐标分解为x, y和z方向。

1.1.4 自然坐标系中运动的描述

• 切向加速度和法向加速度

$$a_t = \vec{a} \cdot \hat{v} = \frac{\mathrm{d}v(t)}{\mathrm{d}t} \tag{3}$$

$$a_n = \vec{a} \cdot \hat{n} = \frac{v^2(t)}{\vec{R}(t)} \tag{4}$$

$$a(t) = \sqrt{\left(\frac{\mathrm{d}^2 s}{\mathrm{d}t^2}\right)^2 + \left(\frac{1}{R}\left(\frac{\mathrm{d}s}{\mathrm{d}t}\right)^2\right)^2} \tag{5}$$

假设轨迹一小段为圆弧, ρ 为曲率半径。其中 a_t 表示了质点速率随时间的变化率, a_n 则反映了质点运动方向变化的快慢。

轨迹上任意一点的曲率半径:

$$R(t) = \frac{v^3(t)}{|\vec{a}(t) \times \vec{v}(t)|} \tag{6}$$

• 自然坐标系 加入第三个轴 $\hat{e}_3 = \vec{v} \times \vec{n}$

• 圆周运动

$$a_t = \vec{a} \cdot \hat{v} = \frac{\mathrm{d}v(t)}{\mathrm{d}t} \tag{7}$$

$$a_n = \vec{a} \cdot \hat{n} = \frac{v^2(t)}{\vec{R}(t)} \tag{8}$$

如果是匀速圆周运动第一项 a_t 等于0。

定义角速度矢量 $\vec{\omega}$,大小为 $\frac{d\theta}{dt}$

$$\vec{v} = \vec{\omega} \times \vec{r} \tag{9}$$

$$\vec{a} = \frac{\mathrm{d}\omega}{\mathrm{d}t} \times \vec{r} + \omega \times (\omega \times \vec{r}) \tag{10}$$

1.1.5 平面极坐标系中的运动描述

$$\vec{v}_r = \dot{r}\hat{r} \tag{11}$$

$$\vec{v_r} = \dot{r}\hat{r} \tag{12}$$

$$\vec{v}_{\theta} = r\dot{\theta}\hat{\theta} \tag{13}$$

利用

$$\frac{\mathrm{d}\hat{r}}{\mathrm{d}\theta} = \hat{\theta} \tag{14}$$

$$\frac{\mathrm{d}\hat{\theta}}{\mathrm{d}\theta} = \hat{r} \tag{15}$$

可以得到

$$\vec{a}_r = (\ddot{r} - r\dot{\theta}^2)\hat{r} \tag{16}$$

$$\vec{a}_{\theta} = (2\dot{r}\theta + r\ddot{\theta})\hat{\theta} \tag{17}$$

1.2 质点运动学

1.2.1 牛顿运动定律

• 牛顿第一定律(惯性定律)

每个物体都保持精致火匀速直线运动的状态,除非有外力作用于他迫使它改变那个状态。

• 牛顿第二定律

运动的变化正比于外力,变化的方向沿外力作用的直线方向。

$$\vec{F} = m\vec{a} \Rightarrow m = \vec{F}/\vec{a} \tag{18}$$

◆ 牛顿第三定律(作用力与反作用力定律)每一种作用都有一个相等的反作用;或者两个物体间的相互作用总是相等的。在同一条直线上,而且方向相反。

只有第三个不需要惯性系的限制。

1.2.2 常见的力

• 弹性力

$$\vec{F} = -k\vec{x} \tag{19}$$

- 摩擦力
 - 1. 干摩擦

对于动摩擦

$$f_k = \mu_k N \tag{20}$$

对于静摩擦

$$f_s \le \mu_s N \tag{21}$$

2. 湿摩擦

相对运动不大

$$\vec{F} = \eta \vec{v} \tag{22}$$

相对运动大

$$F = \eta v^2 \tag{23}$$

重力

$$F = mg (24)$$

• 万有引力

$$F = G \frac{m_1 m_2}{r^2} \tag{25}$$

• 库仑力

$$F = k \frac{q_1 q_2}{r^2} \tag{26}$$

- *分子力
- *核力
- 洛伦兹力

$$\vec{F} = q\vec{v} \times \vec{B} \tag{27}$$

1.3 非惯性参考系

1.3.1 非惯性参考系与虚拟力

• 平动参考系

$$\vec{F}_{eff} = m\vec{a}' \tag{28}$$

• 转动参考系

$$\frac{\mathbf{D}\vec{r'}}{\mathbf{D}t} = \frac{\mathbf{d}\vec{r'}}{\mathbf{d}t} + \vec{\omega} \times \vec{r'}$$
 (29)

$$\frac{\mathbf{D}\vec{v}'}{\mathbf{D}t} = \frac{\mathbf{d}\vec{v}'}{\mathbf{d}t} + \vec{\omega} \times \vec{v}' \tag{30}$$

若两个系原点相对静止,可得惯性离心力

$$\vec{f_i} = -m\vec{\omega} \times (\vec{\omega} \times \vec{r'}) \tag{31}$$

若相对于转动参考系还做匀速运动,物体还受科里奥利力(方程30)

$$\vec{f}_{cor} = -2m\vec{\omega} \times \vec{v}' \tag{32}$$