СОДЕРЖАТЕЛЬНАЯ И МАТЕМАТИЧЕСКАЯ ПОСТАНОВКА ЗАДАЧИ

СОДЕРЖАТЕЛЬНАЯ ПОСТАНОВКА

В распоряжении работодателя имеется п работ и п исполнителей.

Стоимость выполнения і-й работы j-ым исполнителем составляет $c_{ij} \ge 0$ единиц.

Требуется распределить все работы между исполнителями так, чтобы:

- 1. Каждый исполнитель выполнил ровно 1 работу.
- 2. Общая стоимость выполнения всех работ была минимальна.

МАТЕМАТИЧЕСКАЯ ПОСТАНОВКА

Введём управляемые переменные:

$$x_{ij} = egin{cases} 1$$
, если i — ю работу выполнит j — й исполнитель 0 , иначе $(i,j=\overline{1,n})$

Стоимости c_{ij} , $i,j=\overline{1,n}$ запишем в матрицу: $C=(c_{ij})$, $i,j=\overline{1,n}$, которую будем называть **матрицей стоимостей.**

Переменные x_{ij} , $i,j=\overline{1,n}$ запишем в матрицу: $X=(x_{ij})$, $i,j=\overline{1,n}$, которую будем называть **матрицей назначений.**

Тогда:

1) Общая стоимость выполнения всех работ:

$$\sum_{i=1}^n \sum_{j=1}^n c_{ij} x_{ij} .$$

2) Условие того, что і-ю работу выполняет ровно 1 исполнитель:

$$\sum_{j=1}^{n} x_{ij} = 1, \qquad i = \overline{1, n}.$$

3) Условие того, ј-й исполнитель выполняет ровно 1 работу:

$$\sum_{i=1}^{n} x_{ij} = 1, \qquad j = \overline{1, n}.$$

Таким образом, математическая постановка задачи о назначениях приобретает следующий вид:

$$\begin{cases} f = \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij} \to min \\ \sum_{i=1}^{n} x_{ij} = 1, & i = \overline{1, n} \\ \sum_{i=1}^{n} x_{ij} = 1, & j = \overline{1, n} \\ x_{ij} \in \{0, 1\}, & i, j = \overline{1, n} \end{cases}$$

Замечание:

Иногда величины интерпретируют как прибыль, получаемую при назначении на і-ю работу ј-ого работника.

В этом случае задача о назначениях является задачей максимизации:

$$\begin{cases} f = \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij} \to max \\ \sum_{i=1}^{n} x_{ij} = 1, & i = \overline{1, n} \\ \sum_{i=1}^{n} x_{ij} = 1, & j = \overline{1, n} \\ x_{ij} \in \{0, 1\}, & i, j = \overline{1, n} \end{cases}$$

Задачу максимизации можно свести к эквивалентной задаче минимизации.

Если задача о назначениях является задачей максимизации, т.е. имеет вид (1):

$$\begin{cases} f = \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij} \to max \\ \sum_{j=1}^{n} x_{ij} = 1, & i = \overline{1, n} \\ \sum_{i=1}^{n} x_{ij} = 1, & j = \overline{1, n} \\ x_{ij} \in \{0, 1\}, & i, j = \overline{1, n} \end{cases}$$

то рассмотрим эквивалентную задачу минимизации (2):

$$\begin{cases} f_1 = -f = \sum_{i=1}^{n} \sum_{j=1}^{n} (-c_{ij}) x_{ij} \to min \\ \sum_{j=1}^{n} x_{ij} = 1, & i = \overline{1, n} \\ \sum_{i=1}^{n} x_{ij} = 1, & j = \overline{1, n} \\ x_{ij} \in \{0, 1\}, & i, j = \overline{1, n} \end{cases}$$

которая НЕ является задачей о назначениях.

Выберем $M = \frac{max}{i, j = \frac{1}{1, n}} \{c_{ij}\}$ и добавим его к каждому столбцу матрицы C.

Получим задачу о назначениях, эквивалентную задаче (2) и, следовательно, эквивалентную задаче (1):

$$\begin{cases} f_2 = \sum_{i=1}^n \sum_{j=1}^n (M-c_{ij}) x_{ij} \to min, & \text{где } M-c_{ij} \geq 0 \\ \\ \sum_{j=1}^n x_{ij} = 1, & i = \overline{1,n} \\ \\ \sum_{i=1}^n x_{ij} = 1, & j = \overline{1,n} \\ \\ x_{ij} \in \{0,1\}, & i,j = \overline{1,n} \end{cases}$$

Данная задача уже является задачей о назначениях и её можно решать Венгерским методом.

ДОПОЛНИТЕЛЬНЫЕ ГЛАВЫ

НЕКОТОРЫЕ СООБРАЖЕНИЯ О МЕТОДАХ РЕШЕНИЯ ЗАДАЧИ О НАЗНАЧЕНИЯХ

І. ПЕРЕБОР ВСЕХ ДОПУСТИМЫХ ЗНАЧЕНИЙ

Если в задаче указаны п работ и п исполнителей, то она имеет n! допустимых решений (корректных распределений работ по исполнителям).

Распределение работ по исполнителям можно задать с помощью перестановки длины n:

$$(x_1,\ldots,x_n)$$
,

где $x_i \in \{1, ..., n\}$ – номер работника, выполняющего і-ю работу

Число перестановок длины п равно n!

Мы заведомо отказываемся от этого подхода ввиду его вычислительной сложности.

II. <u>ЭКВИВАЛЕНТНЫЕ ПРЕОБРАЗОВАНИЯ МАТРИЦЫ</u> СТОИМОСТЕЙ

Рассмотрим следующие преобразования матрицы стоимостей С:

1. Ко всем элементам і-й строки матрицы С добавить число

$$\alpha_i \in \mathbb{R}, i = \overline{1, n}$$

2. Ко всем элементам ј-го столбца матрицы С добавить число

4

$$\beta_j \in \mathbb{R}, j = \overline{1, n}$$

Элементы полученной матрицы обозначим: $\widetilde{c_{ij}}$

Тогда:
$$\widetilde{c_{ij}} = c_{ij} + \alpha_i + \beta_j$$

Т.е.
$$\mathcal{C} = \left(c_{ij}\right) \xrightarrow{\text{преобразования (1) и (2)}} \widetilde{\mathcal{C}} = \left(\widetilde{c_{ij}}\right)$$

Как связаны между собой целевые функции задач о назначениях с матрицами C и \tilde{C} , т.е. $f_C(x)$ и $f_{\tilde{C}}(x)$?

$$f_{\tilde{C}}(x) = \sum_{i=1}^n \sum_{j=1}^n \widetilde{c_{ij}} x_{ij} = \sum_{i=1}^n \sum_{j=1}^n \left(c_{ij} + \alpha_i + \beta_j \right) x_{ij} =$$

$$= \sum_{i=1}^n \sum_{j=1}^n c_{ij} x_{ij} + \sum_{i=1}^n \sum_{j=1}^n \alpha_i x_{ij} + \sum_{i=1}^n \sum_{j=1}^n \beta_j x_{ij} =$$

$$= f_C(x) + \sum_{i=1}^n \alpha_i \sum_{j=1}^n x_{ij} + \sum_{j=1}^n \beta_j \sum_{i=1}^n x_{ij} =$$

$$= f_C(x) + \sum_{i=1}^n \alpha_i * 1 + \sum_{j=1}^n \beta_j * 1 =$$

$$= f_C(x) + \gamma, \qquad \text{где } \gamma = \sum_{i=1}^n \alpha_i + \sum_{j=1}^n \beta_j \text{ (при этом } \gamma \text{ не зависит от } x_{ij} \text{)}$$

Таким образом, в результате преобразований (1) и (2) получаем матрицу \tilde{C} , для которой:

$$f_{\tilde{C}}(x) \equiv f_{C}(x) + const$$

Можно сделать вывод, что opt-значения функций f_C и $f_{\tilde{C}}$ достигаются на одной и той же матрице. Это означает, что задачи о назначениях с матрицами C и \tilde{C} эквивалентны.

Замечание:

Именно по причине эквивалентности соответствующих задач описанные выше преобразования называются эквивалентными.

III. СИСТЕМА НЕЗАВИСИМЫХ НУЛЕЙ

Системой независимых нулей (СНН) будем называть такой набор нулей матрицы стоимостей, <u>никакие два</u> нуля из которого не располагаются ни в общей для них строке, ни в общем для них столбце.

Если в матрице стоимостей зафиксирована СНН, содержащая п элементов, то opt-решение задачи о назначениях можно записать по правилу:

$$x_{ij} = egin{cases} 1$$
, если в позиции (i,j) матрицы стоимостей стоит 0^* 0 , иначе

В самом деле, т.к. $c_{ij} \ge 0, x_{ij} \ge 0$, то:

$$f = \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij} \ge 0.$$

При этом $f(x_{opt}) = 0$, т.е. это минимально возможное значение f.

Таким образом, x_{opt} — действительно opt-решение задачи о назначениях.

IV. <u>ПРИМЕРНАЯ СХЕМА РЕШЕНИЯ ЗАДАЧИ О НАЗНАЧЕНИЯХ</u>

Пункты II и III данного раздела наталкивают на следующий подход к решению задачи о назначениях:

- 1. В каждом столбце матрицы стоимостей выбирают наименьший элемент и вычитают его из соответствующего столбца.
- 2. В каждой строке матрицы стоимостей выбирают наименьший элемент и вычитают его из соответствующей строки.

В результате получаем матрицу, каждая строка и каждый столбец которой содержат хотя бы 1 нуль.

3. Строят начальную СНН:

Просматривают столбцы текущей матрицы стоимостей (СВЕРХУ ВНИЗ, СЛЕВА НАПРАВО) в поисках ПЕРВОГО нуля (в каждом столбце), в одной строке с которым нет 0^* .

Если такой нуль найден, то его отмечают *.

4. Если в построенной СНН п нулей, то записывают орт-решение (см. пункт III этого раздела).

Иначе текущую СНН нужно улучшать.

Способ улучшения СНН основан на следующей идее: некоторые нули со * исключаем из СНН, чтобы иметь возможность включить в СНН большее число нулей.

- 1. Отметим столбцы, содержащие 0^* , символом "+" и будем их называть выделенными.
- 2. Если среди невыделенных элементов есть 0, то попробуем его включить в СНН и отметим его 0' (иначе нужно выполнить дополнительные преобразования матрицы рассмотрим ниже). Если в одной строке с этим 0' есть 0*, то этот 0* нужно исключить из СНН и всем нулям из строки с текущим 0' запретить участвовать в СНН.

Раз 0^* будет исключён из текущей СНН, то другие нули из столбца с этим 0^* могут потенциально попасть в СНН.

3. Снимаем выделение со столбца с 0^* и выделяем строку с 0'. Если среди невыделенных элементов снова есть 0, то его нужно отметить 0'. Если в одной строке с ним нет 0^* , то строим так называемую L-цепочку:

текущий
$$0' \xrightarrow{\text{по столбцу}} 0^* \xrightarrow{\text{по строке}} 0' \xrightarrow{\text{по столбцу}} ... \xrightarrow{\text{по строке}} 0'$$

Можно показать, что:

а. L-цепочка всегда заканчивается 0'.

- b. Для данного 0', в одной строке с котором нет 0^* , L-цепочка единственная.
- 4. Далее в пределах L-цепочки выполняются преобразования:
 - a. $0^* \mapsto 0$.
 - b. $0' \mapsto 0^*$.
 - с. Снимаем все выделения, кроме 0*.
- 5. Если в построенной СНН n нулей, то записывают орt-решение (см. пункт III этого раздела).

Иначе текущую СНН продолжаем улучшать.

Если же среди невыделенных элементов 0 отсутствует, то необходимо преобразовать матрицу:

- 1. Найдём среди невыделенных элементов наименьший элемент h > 0.
- 2. Вычтем h из **невыделенных столбцов**.
- 3. Чтобы убрать появившиеся отрицательные элементы, добавим h к выделенным строкам.

После преобразования матрицы необходимо вернуться к пункту 2, описанному в рамках *способа улучшения СНН*.

ВЕНГЕРСКИЙ МЕТОД РЕШЕНИЯ ЗАДАЧИ О НАЗНАЧЕНИЯХ (блок-схема)

