

KAN: Kolmogorov-Arnold Networks

Ziming Liu¹ **Yixuan Wang**² Sachin Vaidya¹ Fabian Ruehle³ Jim Halverson³ Marin Soljacic¹ Thomas Y. Hou² Max Tegmark¹ ¹MIT ²Caltech ³Northeastern ICLR April 24-28, 2025

Kolmogorov-Arnold Representation Theorem

For a continuous $f:[0,1]^n \to \mathbb{R}$

$$f(\mathbf{x}) = f(x_1, \dots, x_n) = \sum_{q=0}^{2n} \Phi_q(\sum_{p=1}^n \phi_{q,p}(x_p)). \tag{1}$$

where $\phi_{q,p}:[0,1]\to\mathbb{R}$ and $\Phi_q:\mathbb{R}\to\mathbb{R}$ are continuous.

- Summing and composition of univariate functions. Potentially address the curse of dimensionality (COD).
- Φ_q and $\phi_{q,p}$ not necessarily smooth. In practice we may need more than two layers.

Kolmogorov-Arnold Networks (KANs)

Model	Multi-Layer Perceptron (MLP)	Kolmogorov-Arnold Network (KAN)	
Theorem	Universal Approximation Theorem	Kolmogorov-Arnold Representation Theorem	
Formula (Shallow)	$f(\mathbf{x}) \approx \sum_{i=1}^{N(\epsilon)} a_i \sigma(\mathbf{w}_i \cdot \mathbf{x} + b_i)$	$f(\mathbf{x}) = \sum_{q=0}^{2n} \Phi_q \left(\sum_{p=1}^n \phi_{q,p}(x_p) \right)$	
Model (Shallow)	fixed activation functions on nodes learnable weights on edges	learnable activation functions on edges sum operation on nodes	
Formula (Deep)	$MLP(\mathbf{x}) = (\mathbf{W}_3 \circ \sigma_2 \circ \mathbf{W}_2 \circ \sigma_1 \circ \mathbf{W}_1)(\mathbf{x})$	$KAN(\mathbf{x}) = (\mathbf{\Phi}_3 \circ \mathbf{\Phi}_2 \circ \mathbf{\Phi}_1)(\mathbf{x})$	
Model (Deep)	(c)	(d) Φ_{3} Φ_{2} $monlinear, trainable$	

We parametrize the learnable activation functions by B-splines.

Approximation Theory

Suppose that a function $f(\mathbf{x})$ admits a smooth representation

$$f = (\mathbf{\Phi}_{L-1} \circ \mathbf{\Phi}_{L-2} \circ \cdots \circ \mathbf{\Phi}_1 \circ \mathbf{\Phi}_0) \mathbf{x}, \qquad (2)$$

where $\Phi_{l,i,j}$ are smooth with derivatives uniformly bounded up to k+1-th order. Then using k-th order B-splines with G+1 grid points as activation functions, there exist $\Phi_{l,i,j}^G$ such that for any $0 \le m \le k$, we have the bound

$$||f - (\mathbf{\Phi}_{L-1}^G \circ \mathbf{\Phi}_{L-2}^G \circ \cdots \circ \mathbf{\Phi}_1^G \circ \mathbf{\Phi}_0^G) \mathbf{x}||_{C^m} \le CG^{-k-1+m}.$$
 (3)

In particular for L^2 or RMSE, we have the scaling law k+1. Informally, such functions are dense in the class of continuous functions, by [1].

Leveraging the 1D structure to get better scaling laws

KAN for Interpretability: Symbolic Training [2]

Function Fitting

Figure 1. KANs almost saturate the fastest scaling law by theory $(\alpha = 4)$, while MLPs scale slowly and plateau.

Image Fitting

Figure 2. KANs outperform MLP with frequency encoding tricks, due to the ability to capture high frequency [4].

Scaling up KANs

Problem	Model	PSNR / L2 ² Error	Training Time (s)
Image Fitting	KAN [2,128,128,128,128,1], G=[100,10,10,10,10]	45.76	1809
Image Fitting	MLP [2,404,404,404,1]	22.09	182
Image Fitting	SIREN 1 [2,128,128,128,1]	27.34	254
Image Fitting	SIREN 2 [2,404,404,404,1]	30.79	407
Image Fitting	MLP_RFF [2,404,404,404,1]	26.26	195
Allen-Cahn	KAN [2,5,5,1], G=5	3.4×10^{-3}	2801
Allen-Cahn	MLP [2,128,128,128,1]	1.5×10^{-1}	478
Allen-Cahn	MLP [2,128,128,128,1] (10x training)	3.9×10^{-4}	4766
Darcy Flow	KAN [2,10,1], G=20	3.9×10^{-4}	66
Darcy Flow	KAN [2,100,1], G=10	4.3×10^{-6}	107
Darcy Flow	KAN [2,10,10,10,10,1], G=5	8.5×10^{-5}	123
Darcy Flow	MLP [2,128,128,128,1]	3.0×10^{-5}	30
Darcy Flow	MLP [2,128,128,128,1] (10x training)	4.5×10^{-6}	277
Darcy Flow	MLP_RFF [2,128,128,128,1]	5.9×10^{-6}	31

Figure 3. KANs can scale up on GPUs and are fast. Examples of image fitting and PDE solving using Adam.

References

- [1] Ming-Jun Lai and Zhaiming Shen.
- The kolmogorov superposition theorem can break the curse of dimensionality when approximating high dimensional functions.
- arXiv preprint arXiv:2112.09963, 2021.
- [2] Ziming Liu, Pingchuan Ma, Yixuan Wang, Wojciech Matusik, and Max Tegmark. Kan 2.0: Kolmogorov-arnold networks meet science. arXiv preprint arXiv:2408.10205, 2024.
- [3] Ziming Liu, Yixuan Wang, Sachin Vaidya, Fabian Ruehle, James Halverson, Marin Soljačić, Thomas Y Hou, and Max Tegmark.
 Kan: Kolmogorov-arnold networks.
 arXiv preprint arXiv:2404.19756, ICLR 2025 oral, 2024.
- [4] Yixuan Wang, Jonathan W Siegel, Ziming Liu, and Thomas Y Hou. On the expressiveness and spectral bias of kans. arXiv preprint arXiv:2410.01803, ICLR 2025, 2024.

https://roywangyx.github.io/ roywang@caltech.edu