Language Operations and a Structure Theory of $\omega\textsc{-}\textsc{Languages}$

Albert Zeyer

June 19, 2012

Contents

$3 * \rightarrow \omega$ $3.1 \text{language operators}$ $3.2 \mathcal{L}^*(reg)$ 3.3Questions $4 \textbf{General results}$ 4.1general $4.2 \text{non suffix sensitive}$ $4.3 \text{BC ext} \subseteq \text{BC lim}$ $4.4 \text{ext} \subset \overline{\lim}$ $4.5 \text{union, intersection}$ $4.6 op \cup \overline{op} \subsetneq \text{BC op}$ $4.7 \text{BC ext} = \lim \cap \overline{\lim}$ $4.8 \text{Kleene-star} = \text{BC lim}$ $4.9 \mathcal{L}(R) \text{ for a relation } R \subseteq \Sigma^* \times \Sigma^*$ $4.10 \mathcal{L}_E^\omega(A_R) = \text{ext } \mathcal{L}(R)$ $4.11 \mathcal{L}_{\text{Büchi}}^\omega(A_R) = \lim \mathcal{L}(R)$ $4.12 \mathcal{L}_{\text{Muller}}^\omega(A_R) = \text{BC lim } \mathcal{L}(R)$ $4.13 \mathcal{L}_{\text{Wuller}}^\omega(A_R) = \text{BC lim } \mathcal{L}(R)$ $4.14 \text{BC lim } \mathcal{L}(R) \cap \text{ext } \mathcal{L}(reg) = \text{ext } \mathcal{L}(R)$ $4.15 \text{BC lim } \mathcal{L}(R) \cap \text{lim } \mathcal{L}(reg) = \text{lim } \mathcal{L}(R)$ $4.16 \text{lim } \mathcal{L}(R) \cap \text{lim } \mathcal{L}(reg) = \text{lim } \mathcal{L}(R)$ $4.16 \text{lim } \mathcal{L}(R) \cap \text{lim } \mathcal{L}(R) = \text{BC ext } \mathcal{L}(R)$ $5 *-\text{language classes}$ 5.1Overview $5.2 \text{FO}[<] / \text{ starfree}$ $5.3 \text{FO}[+1]$	1	1 Introduction							
$3.1 \text{language operators} \\ 3.2 \mathcal{L}^*(reg) \\ 3.3 \text{Questions} \\ \\ \textbf{4 General results} \\ \textbf{4.1 } \text{general} \\ \textbf{4.2 } \text{non suffix sensitive} \\ \textbf{4.3 } \text{BC ext} \subseteq \text{BC lim} \\ \textbf{4.4 } \text{ext} \subset \overline{\lim} \\ \textbf{4.5 } \text{union, intersection} \\ \textbf{4.6 } op \cup \overline{op} \subsetneq \text{BC } op \\ \textbf{4.7 } \text{BC ext} = \lim \cap \overline{\lim} \\ \textbf{4.8 } \text{Kleene-star} = \text{BC lim} \\ \textbf{4.9 } \mathcal{L}(R) \text{ for a relation } R \subseteq \Sigma^* \times \Sigma^* \\ \textbf{4.10 } \mathcal{L}_E^\omega(A_R) = \text{ext} \mathcal{L}(R) \\ \textbf{4.11 } \mathcal{L}_{\text{Büchl}}^\omega(A_R) = \lim \mathcal{L}(R) \\ \textbf{4.11 } \mathcal{L}_{\text{Muller}}^\omega(A_R) = \text{BC lim} \mathcal{L}(R) \\ \textbf{4.13 } \mathcal{L}_{\text{Muller}}^\omega(A_R) = \text{BC ext} \mathcal{L}(R) \\ \textbf{4.14 } \text{BC lim} \mathcal{L}(R) \cap \text{ext} \mathcal{L}(reg) = \text{ext} \mathcal{L}(R) \\ \textbf{4.15 } \text{BC lim} \mathcal{L}(R) \cap \text{lim} \mathcal{L}(reg) = \lim \mathcal{L}(R) \\ \textbf{4.16 } \text{lim} \mathcal{L}(R) \cap \overline{\text{lim}} \mathcal{L}(R) = \text{BC ext} \mathcal{L}(R) \\ \textbf{5 *-language classes} \\ \textbf{5.1 } \text{Overview} \\ \textbf{5.2 } \text{FO}[<] / \text{ starfree} \\ \textbf{5.3 } \text{FO}[+1] \\ \textbf{10} \\ \textbf{11} \\ \textbf{12} \\ \textbf{13} \\ \textbf{14} \\ \textbf{15} \\ 15$	2	regular ω -languages							
$3.2 \mathcal{L}^*(reg)$ 3.3Questions $4 \textbf{General results}$ 4.1general $4.2 \text{non suffix sensitive}$ $4.3 \text{BC ext } \subseteq \text{BC lim}$ $4.4 \text{ext } \subset \overline{\lim}$ $4.5 \text{union, intersection}$ $4.6 op \cup \overline{op} \subseteq \text{BC op}$ $4.7 \text{BC ext } = \lim n \overline{\lim}$ $4.8 \text{Kleene-star} = \text{BC lim}$ $4.9 \mathcal{L}(R) \text{ for a relation } R \subseteq \Sigma^* \times \Sigma^*$ $4.10 \mathcal{L}_{\mathcal{L}}^{\omega}(A_R) = \text{ext } \mathcal{L}(R)$ $4.11 \mathcal{L}_{\text{Büchi}}^{\omega}(A_R) = \lim \mathcal{L}(R)$ $4.12 \mathcal{L}_{\text{Muller}}^{\omega}(A_R) = \text{BC lim } \mathcal{L}(R)$ $4.13 \mathcal{L}^{\omega}(R^{\omega}) = \text{BC ext } \mathcal{L}(R)$ $4.14 \text{BC lim } \mathcal{L}(R) \cap \text{ext } \mathcal{L}(reg) = \text{ext } \mathcal{L}(R)$ $4.15 \text{BC lim } \mathcal{L}(R) \cap \text{ext } \mathcal{L}(reg) = \text{lim } \mathcal{L}(R)$ $4.16 \text{lim } \mathcal{L}(R) \cap \overline{\lim} \mathcal{L}(R) = \text{BC ext } \mathcal{L}(R)$ $5 *-\text{language classes}$ 5.1Overview $5.2 \text{FO}[<] / \text{starfree}$ $5.3 \text{FO}[+1]$	3	$* o \omega$	$\epsilon ightarrow \omega$						
$3.2 \mathcal{L}^*(reg)$ 3.3Questions $4 \textbf{General results}$ 4.1general $4.2 \text{non suffix sensitive}$ $4.3 \text{BC ext } \subseteq \text{BC lim}$ $4.4 \text{ext } \subset \overline{\lim}$ $4.5 \text{union, intersection}$ $4.6 op \cup \overline{op} \subseteq \text{BC op}$ $4.7 \text{BC ext } = \lim n \overline{\lim}$ $4.8 \text{Kleene-star} = \text{BC lim}$ $4.9 \mathcal{L}(R) \text{ for a relation } R \subseteq \Sigma^* \times \Sigma^*$ $4.10 \mathcal{L}_{\mathcal{L}}^{\omega}(A_R) = \text{ext } \mathcal{L}(R)$ $4.11 \mathcal{L}_{\text{Büchi}}^{\omega}(A_R) = \lim \mathcal{L}(R)$ $4.12 \mathcal{L}_{\text{Muller}}^{\omega}(A_R) = \text{BC lim } \mathcal{L}(R)$ $4.13 \mathcal{L}^{\omega}(R^{\omega}) = \text{BC ext } \mathcal{L}(R)$ $4.14 \text{BC lim } \mathcal{L}(R) \cap \text{ext } \mathcal{L}(reg) = \text{ext } \mathcal{L}(R)$ $4.15 \text{BC lim } \mathcal{L}(R) \cap \text{ext } \mathcal{L}(reg) = \text{lim } \mathcal{L}(R)$ $4.16 \text{lim } \mathcal{L}(R) \cap \overline{\lim} \mathcal{L}(R) = \text{BC ext } \mathcal{L}(R)$ $5 *-\text{language classes}$ 5.1Overview $5.2 \text{FO}[<] / \text{starfree}$ $5.3 \text{FO}[+1]$		3.1 langu	age operators		6				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			U 1						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$4.2 \text{non suffix sensitive}$ $4.3 \underbrace{BC \operatorname{ext} \subseteq \operatorname{BC} \operatorname{lim}}_{4.4} \underbrace{\operatorname{ext} \subset \overline{\operatorname{lim}}}_{1} .$ $4.5 \operatorname{union, intersection}_{4.6} op \cup \overline{op} \subsetneq \operatorname{BC} op .$ $4.7 \operatorname{BC} \operatorname{ext} = \lim \cap \overline{\lim}_{1} .$ $4.8 \operatorname{Kleene-star} = \operatorname{BC} \operatorname{lim}_{1} .$ $4.9 \mathcal{L}(R) \text{for a relation } R \subseteq \Sigma^{*} \times \Sigma^{*}_{1} .$ $4.10 \mathcal{L}_{E}^{\omega}(\mathcal{A}_{R}) = \operatorname{ext} \mathcal{L}(R) .$ $4.11 \mathcal{L}_{\operatorname{Bichi}}^{\omega}(\mathcal{A}_{R}) = \lim \mathcal{L}(R) .$ $4.12 \mathcal{L}_{\operatorname{Muller}}^{\omega}(\mathcal{A}_{R}) = \operatorname{BC} \operatorname{lim} \mathcal{L}(R) .$ $4.13 \mathcal{L}^{\omega}(R^{\omega}) = \operatorname{BC} \operatorname{ext} \mathcal{L}(R) .$ $4.14 \operatorname{BC} \operatorname{lim} \mathcal{L}(R) \cap \operatorname{ext} \mathcal{L}(reg) = \operatorname{ext} \mathcal{L}(R) .$ $4.15 \operatorname{BC} \operatorname{lim} \mathcal{L}(R) \cap \operatorname{lim} \mathcal{L}(reg) = \operatorname{lim} \mathcal{L}(R) .$ $4.16 \operatorname{lim} \mathcal{L}(R) \cap \overline{\operatorname{lim}} \mathcal{L}(reg) = \operatorname{BC} \operatorname{ext} \mathcal{L}(R) .$ $4.16 \operatorname{lim} \mathcal{L}(R) \cap \overline{\operatorname{lim}} \mathcal{L}(R) = \operatorname{BC} \operatorname{ext} \mathcal{L}(R) .$ $5 *-\operatorname{language classes} .$ $5.1 \operatorname{Overview} .$ $5.2 \operatorname{FO}[<] / \operatorname{starfree} .$ $5.3 \operatorname{FO}[+1] .$	4	General r	esults		8				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		4.1 gener	al		8				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		4.2 non s	uffix sensitive		9				
$4.4 \overline{\text{ext}} \subset \overline{\text{lim}}$ $4.5 \text{union, intersection}$ $4.6 op \cup \overline{op} \subsetneq \text{BC } op$ $4.7 \text{BC ext} = \lim \cap \overline{\lim}$ $4.8 \text{Kleene-star} = \text{BC lim}$ $4.9 \mathcal{L}(R) \text{ for a relation } R \subseteq \Sigma^* \times \Sigma^*$ $4.10 \mathcal{L}_E^\omega(\mathcal{A}_R) = \text{ext } \mathcal{L}(R)$ $4.11 \mathcal{L}_{\text{Büchi}}^\omega(\mathcal{A}_R) = \lim \mathcal{L}(R)$ $4.12 \mathcal{L}_{\text{Muller}}^\omega(\mathcal{A}_R) = \text{BC lim } \mathcal{L}(R)$ $4.13 \mathcal{L}^\omega(R^\omega) = \text{BC ext } \mathcal{L}(R)$ $4.14 \text{BC lim } \mathcal{L}(R) \cap \text{ext } \mathcal{L}(reg) = \text{ext } \mathcal{L}(R)$ $4.15 \text{BC lim } \mathcal{L}(R) \cap \text{lim } \mathcal{L}(reg) = \text{lim } \mathcal{L}(R)$ $4.16 \text{lim } \mathcal{L}(R) \cap \overline{\text{lim }} \mathcal{L}(R) = \text{BC ext } \mathcal{L}(R)$ $5 *-\text{language classes}$ 5.1Overview $5.2 \text{FO}[<] / \text{ starfree}$ $5.3 \text{FO}[+1]$									
$4.6 op \cup \overline{op} \subsetneq \operatorname{BC} op$ $4.7 \operatorname{BC} \operatorname{ext} = \lim \cap \overline{\lim}$ $4.8 \operatorname{Kleene-star} = \operatorname{BC} \operatorname{lim}$ $4.9 \mathcal{L}(R) \text{ for a relation } R \subseteq \Sigma^* \times \Sigma^*$ $4.10 \mathcal{L}_{\mathcal{L}}^{\omega}(A_R) = \operatorname{ext} \mathcal{L}(R)$ $4.11 \mathcal{L}_{\operatorname{Büchi}}^{\omega}(A_R) = \lim \mathcal{L}(R)$ $4.12 \mathcal{L}_{\operatorname{Muller}}^{\omega}(A_R) = \operatorname{BC} \operatorname{lim} \mathcal{L}(R)$ $4.13 \mathcal{L}^{\omega}(R^{\omega}) = \operatorname{BC} \operatorname{ext} \mathcal{L}(R)$ $4.14 \operatorname{BC} \operatorname{lim} \mathcal{L}(R) \cap \operatorname{ext} \mathcal{L}(reg) = \operatorname{ext} \mathcal{L}(R)$ $4.15 \operatorname{BC} \operatorname{lim} \mathcal{L}(R) \cap \operatorname{ext} \mathcal{L}(reg) = \operatorname{lim} \mathcal{L}(R)$ $4.16 \operatorname{lim} \mathcal{L}(R) \cap \overline{\operatorname{lim}} \mathcal{L}(R) = \operatorname{BC} \operatorname{ext} \mathcal{L}(R)$ $5 *-\operatorname{language classes}$ $5.1 \operatorname{Overview}$ $5.2 \operatorname{FO}[<] / \operatorname{starfree}$ $5.3 \operatorname{FO}[+1]$ 1									
$4.6 op \cup \overline{op} \subsetneq \operatorname{BC} op \dots$ $4.7 \operatorname{BC} \operatorname{ext} = \lim \cap \overline{\lim} \dots$ $4.8 \operatorname{Kleene-star} = \operatorname{BC} \lim \dots$ $4.9 \mathcal{L}(R) \text{ for a relation } R \subseteq \Sigma^* \times \Sigma^* $ $4.10 \mathcal{L}_E^{\omega}(A_R) = \operatorname{ext} \mathcal{L}(R) $ $4.11 \mathcal{L}_{\operatorname{B\"{u\'ehi}}}^{\omega}(A_R) = \lim \mathcal{L}(R) $ $4.12 \mathcal{L}_{\operatorname{Muller}}^{\omega}(A_R) = \operatorname{BC} \lim \mathcal{L}(R) $ $4.13 \mathcal{L}^{\omega}(R^{\omega}) = \operatorname{BC} \operatorname{ext} \mathcal{L}(R) $ $4.14 \operatorname{BC} \lim \mathcal{L}(R) \cap \operatorname{ext} \mathcal{L}(reg) = \operatorname{ext} \mathcal{L}(R) $ $4.15 \operatorname{BC} \lim \mathcal{L}(R) \cap \operatorname{ext} \mathcal{L}(reg) = \lim \mathcal{L}(R) $ $4.16 \lim \mathcal{L}(R) \cap \overline{\lim} \mathcal{L}(R) = \operatorname{BC} \operatorname{ext} \mathcal{L}(R) $ $5 *-\operatorname{language classes} $ $5.1 \operatorname{Overview} \dots$ $5.2 \operatorname{FO}[<] / \operatorname{starfree} $ $5.3 \operatorname{FO}[+1] \dots$		4.5 union	, intersection		9				
$4.7 \operatorname{BC}\operatorname{ext} = \lim \cap \overline{\lim} \qquad \qquad$									
$4.8 \text{Kleene-star} = \text{BC lim} \qquad \qquad$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$ 4.10 \ \mathcal{L}_{\Xi}^{\omega}(\mathcal{A}_{R}) = \operatorname{ext} \mathcal{L}(R) $ $ 4.11 \ \mathcal{L}_{\operatorname{Biichi}}^{\omega}(\mathcal{A}_{R}) = \lim \mathcal{L}(R) $ $ 4.12 \ \mathcal{L}_{\operatorname{Muller}}^{\omega}(\mathcal{A}_{R}) = \operatorname{BC} \lim \mathcal{L}(R) $ $ 4.13 \ \mathcal{L}^{\omega}(R^{\omega}) = \operatorname{BC} \operatorname{ext} \mathcal{L}(R) $ $ 4.14 \ \operatorname{BC} \lim \mathcal{L}(R) \cap \operatorname{ext} \mathcal{L}(reg) = \operatorname{ext} \mathcal{L}(R) $ $ 4.15 \ \operatorname{BC} \lim \mathcal{L}(R) \cap \lim \mathcal{L}(reg) = \lim \mathcal{L}(R) $ $ 4.16 \ \lim \mathcal{L}(R) \cap \overline{\lim} \mathcal{L}(R) = \operatorname{BC} \operatorname{ext} \mathcal{L}(R) $ $ 5 \ *-\operatorname{language classes} $ $ 5.1 \ \operatorname{Overview} $ $ 5.2 \ \operatorname{FO}[<] \ / \ \operatorname{starfree} $ $ 5.3 \ \operatorname{FO}[+1] $									
$\begin{array}{llll} 4.11 \ \mathcal{L}_{\text{B\"{u}chi}}^{\omega}(\mathcal{A}_{R}) = \lim \mathcal{L}(R) & & & & & & & & \\ 4.12 \ \mathcal{L}_{\text{Muller}}^{\omega}(\mathcal{A}_{R}) = \operatorname{BC} \lim \mathcal{L}(R) & & & & & & \\ 4.13 \ \mathcal{L}^{\omega}(R^{\omega}) = \operatorname{BC} \operatorname{ext} \mathcal{L}(R) & & & & & \\ 4.14 \ \operatorname{BC} \lim \mathcal{L}(R) \cap \operatorname{ext} \mathcal{L}(reg) = \operatorname{ext} \mathcal{L}(R) & & & & \\ 4.15 \ \operatorname{BC} \lim \mathcal{L}(R) \cap \lim \mathcal{L}(reg) = \lim \mathcal{L}(R) & & & & \\ 4.16 \ \lim \mathcal{L}(R) \cap \overline{\lim} \mathcal{L}(R) = \operatorname{BC} \operatorname{ext} \mathcal{L}(R) & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$									
$4.12 \ \mathcal{L}_{\mathrm{Muller}}^{\omega}(\mathcal{A}_{R}) = \mathrm{BC} \lim \mathcal{L}(R) \qquad \qquad 1$ $4.13 \ \mathcal{L}^{\omega}(R^{\omega}) = \mathrm{BC} \operatorname{ext} \mathcal{L}(R) \qquad \qquad 1$ $4.14 \ \mathrm{BC} \lim \mathcal{L}(R) \cap \operatorname{ext} \mathcal{L}(reg) = \operatorname{ext} \mathcal{L}(R) \qquad \qquad 1$ $4.15 \ \mathrm{BC} \lim \mathcal{L}(R) \cap \lim \mathcal{L}(reg) = \lim \mathcal{L}(R) \qquad \qquad 1$ $4.16 \ \lim \mathcal{L}(R) \cap \overline{\lim} \mathcal{L}(R) = \mathrm{BC} \operatorname{ext} \mathcal{L}(R) \qquad \qquad 1$ $5 \ *-language \ classes \qquad \qquad 1$ $5.1 \ \mathrm{Overview} \qquad \qquad \qquad 1$ $5.2 \ \mathrm{FO}[<] \ / \ \operatorname{starfree} \qquad \qquad \qquad 1$ $5.3 \ \mathrm{FO}[+1] \qquad \qquad \qquad 1$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$4.14 \ \operatorname{BC} \lim \mathcal{L}(R) \cap \operatorname{ext} \mathcal{L}(reg) = \operatorname{ext} \mathcal{L}(R) \qquad \qquad 1$ $4.15 \ \operatorname{BC} \lim \mathcal{L}(R) \cap \lim \mathcal{L}(reg) = \lim \mathcal{L}(R) \qquad \qquad 1$ $4.16 \ \lim \mathcal{L}(R) \cap \overline{\lim} \mathcal{L}(R) = \operatorname{BC} \operatorname{ext} \mathcal{L}(R) \qquad \qquad 1$ $5 \ *-\text{language classes} \qquad \qquad 1$ $5.1 \ \operatorname{Overview} \qquad \qquad \qquad 1$ $5.2 \ \operatorname{FO}[<] / \operatorname{starfree} \qquad \qquad \qquad 1$ $5.3 \ \operatorname{FO}[+1] \qquad \qquad \qquad 1$		$4.13 \mathcal{L}^{\omega}(R)$	$\frac{\partial}{\partial t} = \operatorname{BC} \operatorname{ext} \mathcal{L}(R)$		15				
$4.15 \ \operatorname{BC} \lim \mathcal{L}(R) \cap \lim \mathcal{L}(reg) = \lim \mathcal{L}(R) \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $									
$4.16 \lim \mathcal{L}(R) \cap \overline{\lim} \mathcal{L}(R) = \operatorname{BC} \operatorname{ext} \mathcal{L}(R)$									
5.1 Overview 1 5.2 FO[<] / starfree									
5.1 Overview 1 5.2 FO[<] / starfree	5	*-ไลท์ตูเเลด	e classes		16				
5.2 FO[<] / starfree	•								
5.3 FO[+1]									
5.4 FO[]									
u u									

	5.7	locally testable	LS
	5.8	endwise testable	16
	5.9	local	2(
	5.10	finite / co-finite	2(
	5.11	dot-depth- n	2(
	5.12	L-trivial	2(
	5.13	R-trivial	2(
	5.14	locally modulo testable	2(
	5.15	context free	2(
6	Len	nmas 2	21
	6.1	pos-PT and PT	21

1 Introduction

Language theory is strongly connected to the theory of automata. With some interpretation of run-acceptance in an automaton, we canonically get a language.

We call languages over infinite words the *-languages and often use \mathcal{L}^* or some variant for such language class. Likewise, ω -languages (\mathcal{L}^{ω}) are over infinite words. The acceptance-condition in automata for *-languages is straight-forward. If we look at ω -languages, several different types of automata and their acceptance have been thought of. For the class of regular languages, we see that many of them are equivalent.

For all types, we can also argue with equivalent language-theoretical operators which operate on a *-language. We will study the equivalences in more detail.

Depending on the $*\to\omega$ language operator (or the ω -automaton acceptance condition), we get different ω -language classes. This was studied earlier already in detail for the class of regular *-languages.

When we look at other *-language classes, we might get different results. This study is the main topic of this thesis.

2 regular ω -languages

The class of regular ω -languages can be defined in many different ways. We will use one common definition and show some equivalent descriptions.

$$\mathcal{L}^{\omega}(reg) := \{ \cup_i \ U_i \cdot V_i^{\omega} \mid U_i, V_i \in \mathcal{L}^*(reg) \}$$

A different, very common description is in terms of automata.

An automaton $\mathcal{A} = (Q, \Sigma, E, I, F)$ **Büchi-accepts** a word $\alpha = (a_0, a_1, a_2, ...) \in \Sigma^{\omega}$ iff there is an infinite run $q_0 \to^{a_0} q_1 \to^{a_1} q_2 \to^{a_2} q_3...$ with $q_0 \in I$ and $\{q_i | q_i \in F\}$ infinite, i.e. which reaches a state in F infinitely often.

The language $L^{\omega}(\mathcal{A})$ is defined as the set of all infinite words which are Büchi-accepted by \mathcal{A} .

An automaton \mathcal{A} is a Büchi automaton iff we use the Büchi-acceptence.

The set of all languages accepted by a non-deterministic Büchi automaton is exactly $\mathcal{L}^{\omega}(reg)$. (S218,R101) Deterministic Büchi automata are less powerful, e.g. they cannot recognise $(a+b)^*b^{\omega}$.

There are some different forms of ω -automata, e.g. the Rabin automata and the Muller automata. We see that the class of languages accepted by non-deterministic Büchi automata is equal to deterministic Rabin automata and deterministic Muller automata. (S407)

We also see that this is equal to boolean combinations of languages accepted by deterministic Büchi automata. Under this regard, an operator of interest is $\lim(L) := \{\alpha \in \Sigma^{\omega} \mid \exists^{\omega} n \colon \alpha[0, n] \in L\}$. We see that $\lim(\mathcal{L}^{\omega})$ is equal to the languages accepted by deterministic Büchi automata. (S407) Thus:

BC
$$\lim \mathcal{L}^*(reg) = \mathcal{L}^{\omega}(reg)$$

Some other descriptions: $\mathcal{L}^{\omega}(reg) = \{ \cup_i U_i \cdot \lim V_i \mid U_i, V_i \in \mathcal{L}^*(reg) \}$ (S218,S411,R107) $\mathcal{L}^{\omega}(reg) = \{ A \subset \Sigma^{\omega} \mid A \text{definable in} L_2(\Sigma) \}$

We will formulate some properties of interest in a general form for a *-language class \mathcal{L} which all hold for $\mathcal{L}^*(reg)$. We get some general results based on these properties in chapter 4.

Let $L, A, B \in \mathcal{L}$.

- E1: $L \cdot \Sigma^* \in \mathcal{L}$ (not suffix sensitive)
- E2a: $A \cup B \in \mathcal{L}$
- E2b: $A \cap B \in \mathcal{L}$
- E3: $-L \in \mathcal{L}$ (closed under complementation) (S303.E3, S218, R101)
- In some proofs, e.g. in 4.7 or 4.8, we have an automaton based on some language of the language class and we do some modifications on it, e.g. we modify the final state set. If we stay in the language class, we call this the E4 property. Formally:

E4: \forall deterministic automaton $\mathcal{A} = (Q, q_0, \Delta, F), L^*(\mathcal{A}) = L$: $\forall F' \subseteq Q : L^*((Q, q_0, \Delta, F')) \in \mathcal{L}$

For $\mathcal{L}^*(reg)$, this property holds obviously.

For $\mathcal{L}^*(FO[<])$, it does not hold:

This is a deterministic automaton for the language $\{a\} \in \mathcal{L}^*(FO[<])$. If you make B also a final state, we get the language $a + b(bb)^* \notin \mathcal{L}^*(FO[<])$. So, E4 seems too restricted. $3 * \rightarrow \omega$

3.1 language operators

We already introduced lim. We can define a family of language operators, partly also derived from the study of $\mathcal{L}^{\omega}(reg)$. Some of these operators operate on a single language and not on the class. Let \mathcal{L} be a *-language class. Let $\mathcal{L} \in \mathcal{L}$.

- 1. $\operatorname{ext}(L) := \{ \alpha \in \Sigma^{\omega} \mid \exists n \colon \alpha[0, n] \in L \} = L \cdot \Sigma^{\omega}$
- 2. $\overline{\operatorname{ext}}(L) := \{ \alpha \in \Sigma^{\omega} \mid \forall n \colon \alpha[0, n] \in L \} = L \cdot \Sigma^{\omega}$
- 3. BC ext
- 4. $\lim(L) := \{ \alpha \in \Sigma^{\omega} \mid \forall N : \exists n > N : \alpha[0, n] \in L \} = \{ \alpha \in \Sigma^{\omega} \mid \exists^{\omega} n : \alpha[0, n] \in L \}$
- 5. $\overline{\lim}(L) := \{ \alpha \in \Sigma^{\omega} \mid \exists N \colon \forall n > N \colon \alpha[0, n] \in L \}$
- 6. BC lim
- 7. Kleene-Closure of \mathcal{L} : Kleene(\mathcal{L}) := $\{\bigcup_{i=1}^n U_i \cdot V_i^{\omega} \mid U_i, V_i \in \mathcal{L}\}$
- 8. $\{\bigcup_{i=1}^n U_i \cdot \lim V_i \mid U_i, V_i \in \mathcal{L}\}$

From language operators, we get language class operators in a canonical way, e.g. $\lim(\mathcal{L}) := \{\lim L \mid L \in \mathcal{L}\}.$

3.2 $\mathcal{L}^*(req)$

Considering $\mathcal{L} := \mathcal{L}^*(reg)$, we get a language diagram like:

where all inclusions are strict. In more detail:

• P1: $\operatorname{ext} \mathcal{L} \cap \overline{\operatorname{ext}} \mathcal{L} \neq \emptyset$ Proof: $\tilde{L}_1 := a\Sigma^{\omega} \in \operatorname{ext} \cap \overline{\operatorname{ext}} \mathcal{L}$ with $\tilde{L}_1 = \operatorname{ext}(a)$ and $\tilde{L}_1 = \overline{\operatorname{ext}}(a\Sigma^*)$. (R101, prop, p.38)

- P2a: $\operatorname{ext} \mathcal{L} \cap \overline{\operatorname{ext}} \mathcal{L} \subsetneqq \operatorname{ext} \mathcal{L}$
 - Proof: $\tilde{L}_{2a} := \exp(a^*b) = a^*b\Sigma^{\omega} \in \operatorname{ext} \mathcal{L}$. Assume some A-automaton \mathcal{A} with n states accepts \tilde{L}_{2a} . \mathcal{A} would also accept a^nb^{ω} . I.e. the (n+1)th state after the run of a^n would also accept a, i.e. \mathcal{A} would accept a^{n+1} . By inclusion, \mathcal{A} would accept a^{ω} . That is a contradiction. Thus, there is no such A-automat. Thus, $\tilde{L}_{2a} \notin \overline{\operatorname{ext}} \mathcal{L}$.
- P2b: $\operatorname{ext} \mathcal{L} \cap \overline{\operatorname{ext}} \mathcal{L} \subsetneq \overline{\operatorname{ext}} \mathcal{L}$ Proof: $\tilde{L}_{2b} := -\tilde{L}_{2a} \in \overline{\operatorname{ext}} \mathcal{L}$, $\tilde{L}_{2b} \notin \operatorname{ext} \mathcal{L}$.
- P3: ext L ≠ ext L
 Proof: Follows directly from P2a and P2b.
- P4: $\operatorname{ext} \mathcal{L} \cup \overline{\operatorname{ext}} \mathcal{L} \subsetneq \operatorname{BC} \operatorname{ext} \mathcal{L}$ Proof: $\tilde{L}_4 := \Sigma^* a \Sigma^\omega \cap -(\Sigma^* b \Sigma^\omega), \ \Sigma = \{a, b, c\}.$ Then we have $\tilde{L}_4 \notin \operatorname{ext} \cup \overline{\operatorname{ext}} \mathcal{L},$ $\tilde{L}_4 \in \operatorname{BC} \operatorname{ext} \mathcal{L}.$ (R101, p.38)
- P5: BC ext $\mathcal{L} = \lim \mathcal{L} \cap \overline{\lim} \mathcal{L}$ Proof: 4.7 (Staiger-Wagner-recognizable)
- P6a: $\lim \mathcal{L} \cap \overline{\lim} \mathcal{L} \subsetneq \lim \mathcal{L}$ Proof: $\tilde{L}_{6a} := \lim(\tilde{\Sigma}^* a) = (\tilde{\Sigma}^* a)^{\omega}$. Assume there is $L \subseteq \Sigma^*$ with $\lim(L) = -\tilde{L}_{6a}$. Let $(w_0, w_1, w_2, \dots) \in (\tilde{\Sigma}^*)^{\mathbb{N}}$ so that $w_0 \in L, w_0 a w_1 \in L, \dots, w_0 \prod_{i=0}^n a w_i \in L \ \forall n \in \mathbb{N}$. Thus, $\alpha := w_0 \prod_{i \in \mathbb{N}} a w_i \in \lim L$. But $\alpha \notin -\tilde{L}_{6a}$. That is a contradiction. Thus, $-\tilde{L}_{6a} \notin \lim \mathcal{L}$. With E3, we get $\tilde{L}_{6a} \notin \overline{\lim} \mathcal{L}$.
- P6b: $\lim \mathcal{L} \cap \overline{\lim} \mathcal{L} \subsetneq \overline{\lim} \mathcal{L}$ Proof: Analog to P6a with $\tilde{L}_{6b} := -\tilde{L}_{6a}$.
- P7: lim L ≠ lim L
 Proof: Follows directly from P6a and P6b.
- P8: $\lim \mathcal{L} \cup \overline{\lim} \mathcal{L} \subsetneq \operatorname{BC} \lim \mathcal{L}$ Proof: $\tilde{L}_8 := (\Sigma^* a)^{\omega} \cap -(\Sigma * b)^{\omega}$. Then $\tilde{L}_8 \notin \lim \cup \overline{\lim} \mathcal{L}$ but $\tilde{L}_8 \in \operatorname{BC} \lim \mathcal{L}$. (R101, prop, p.38)
- P9: BC $\lim \mathcal{L} = \{\bigcup_{i=1}^n U_i \cdot V_i^{\omega} \mid U_i, V_i \in \mathcal{L}\}$ Proof: This is explained already in chapter 2.
- P10: BC lim $\mathcal{L} = \{\bigcup_{i=1}^n U_i \cdot \lim V_i \mid U_i, V_i \in \mathcal{L}\}$ Proof: This is explained already in chapter 2.
- P11: BC lim $\mathcal{L} = \{L_{\mathrm{B"uchi}}^{\omega}(\mathcal{A}) \mid \mathcal{A} \text{ automaton so that } L^*(\mathcal{A}) \in \mathcal{L}\}$ Proof: (R101,Th.12,p.9) says $\{L_{\mathrm{B"uchi}}^{\omega}(\mathcal{A}) \mid \ldots\} = \{\bigcup_{i=1}^{n} U_i \cdot V_i^{\omega} \mid U_i, V_i \in \mathcal{L}\}$. The rest follows with P9.

3.3 Questions

This was studied in detail for $\mathcal{L}^*(reg)$. We are now studing relations of resulting ω -language classes for different *-language classes.

Esp.:

• BC ext $\mathcal{L} \stackrel{?}{=}$ BC lim \mathcal{L}

4 General results

Let \mathcal{L} be a *-language class.

4.1 general

Let $L, A, B \in \mathcal{L}$.

- 1. $\operatorname{ext} L = L \cdot \Sigma^{\omega}$
- 2. $\operatorname{ext} L = \lim_{L \to \Sigma^*} L \cdot \Sigma^*$
- 3. $\operatorname{ext} L = \overline{\lim} L \cdot \Sigma^*$
- 4. $-\lim(-L) = \overline{\lim} L$
- 5. $\overline{\lim} L \subseteq \lim L$
- 6. $\lim A \cup \lim B = \lim A \cup B$ Proof:

$$\begin{split} &\alpha\in \lim A\cup \lim B\\ \Leftrightarrow &\,\exists^\omega n\colon \alpha[0,n]\in A\,\,\vee\,\,\exists^\omega n\colon \alpha[0,n]\in B\\ \Leftrightarrow &\,\exists^\omega n\colon \alpha[0,n]\in A\cup B\\ \Leftrightarrow &\,\alpha\in \lim A\cup B \end{split}$$

7. $\overline{\lim} A \cup \overline{\lim} B \subseteq \overline{\lim} A \cup B$ Proof:

$$\begin{split} &\alpha \in \overline{\lim}\, A \cup \overline{\lim}\, B \\ \Leftrightarrow & \exists N \colon \forall n \geq N \colon \alpha[0,n] \in A \ \lor \ \exists N \colon \forall n \geq N \colon \alpha[0,n] \in B \\ \Rightarrow & \exists N \colon \forall n \geq N \colon \alpha[0,n] \in A \cup B \end{split}$$

There is no equality in general: $A = (00)^*$, $B = (00)^*0$.

Lemma 4.1. The ω -language-class accepted by deterministic E-automata is equal to non-deterministic E-automata. I.e., for every non-deterministic E-automaton, we can construct an equivalent deterministic E-automaton.

Proof. Let \mathcal{A}^N be any non-deterministic automaton and \mathcal{A}^D an (*-)equivalent deterministic automaton. Then:

$$\alpha \in L^{E\omega}(\mathcal{A}^N)$$

$$\Leftrightarrow \exists n \colon \alpha[0, n] \in L(\mathcal{A}^N)$$

$$\Leftrightarrow \exists n \colon \alpha[0, n] \in L(\mathcal{A}^D)$$

$$\Leftrightarrow \alpha \in L^{E\omega}(\mathcal{A}^D)$$

where $L^{E\omega}(\mathcal{A})$ denotes the set of ω -words which are E-accepted by \mathcal{A} . \mathcal{A}^N can be interpreted as an arbitary E-automata and we have shown that we get an equivalent deterministic E-automata.

We are interested in relations like BC ext $\mathcal{L} \subsetneq \mathbb{C}$ BC lim \mathcal{L} or ext $\mathcal{L} \subsetneq \mathbb{C}$ lim \mathcal{L} . With $\mathcal{L} = \{\{a\}\}$, we realize that even ext $\mathcal{L} \subseteq \lim \mathcal{L}$ is not true in general (ext $\{\{a\}\} = \{a\Sigma^{\omega}\} \neq \emptyset = \lim \{\{a\}\}$). In 4.2, we see a sufficient condition for this property, though.

4.2 non suffix sensitive

If E1 ($\forall L \in \mathcal{L}: L \cdot \Sigma^* \in \mathcal{L}$, i.e. \mathcal{L} is non suffix sensitive) holds for \mathcal{L} : For $L \in \mathcal{L}$, we have $\operatorname{ext} L = \lim L\Sigma^* = \overline{\lim} L\Sigma^*$ and thus

$$\operatorname{ext} \mathcal{L} \subseteq \lim \mathcal{L} \cup \overline{\lim} \, \mathcal{L}.$$

4.3 BC ext \subseteq BC lim

From ext $\mathcal{L} \subseteq \lim \mathcal{L}$, it directly follows $\{-\operatorname{ext} L \mid L \in \mathcal{L}\} \subseteq \{-\lim L \mid L \in \mathcal{L}\}$. Thus, it also follows

 $BC \operatorname{ext} \mathcal{L} \subseteq BC \lim \mathcal{L}$.

4.4 $\overline{\text{ext}} \subset \overline{\lim}$

From $\operatorname{ext} \mathcal{L} \subseteq \lim \mathcal{L}$, we need E3 (\mathcal{L} closed under negation) to get $\operatorname{\overline{ext}} \mathcal{L} \subseteq \operatorname{\overline{\lim}} \mathcal{L}$. This is in contrast to 4.3, where it directly follows. We have to be careful about the difference $-\operatorname{ext} \mathcal{L} \neq \operatorname{\overline{ext}} \mathcal{L}$ (in general, if E3 does not hold).

4.5 union, intersection

- E2a (closed under union) $\Rightarrow \bigcup \operatorname{ext} \mathcal{L} \subseteq \operatorname{ext} \mathcal{L}$.
- E2b (closed under intersection) $\Rightarrow \bigcap \text{ext } \mathcal{L} \subseteq \text{ext } \mathcal{L}$.

4.6 $op \cup \overline{op} \subsetneq BC op$

If there is $L_{\Sigma} \in \mathcal{L}_{\Sigma}$ with $L_{\Sigma} \in \text{ext } \mathcal{L}_{\Sigma}, L_{\Sigma} \notin \overline{\text{ext }} \mathcal{L}_{\Sigma}$ and E3 (closed under negation) holds for \mathcal{L} :

- $\Rightarrow -L_{\Sigma} \in \overline{\operatorname{ext}} \, \mathcal{L}_{\Sigma}, -L_{\Sigma} \not\in \operatorname{ext} \mathcal{L}_{\Sigma}$
- $\Rightarrow \begin{array}{l} L_{\Sigma_1} \cup -L_{\Sigma_2} \in \operatorname{BC} \operatorname{ext} \mathcal{L}_{\Sigma_1 \dot{\cup} \Sigma_2} \\ L_{\Sigma_1} \cup -L_{\Sigma_2} \not\in \operatorname{ext} \cup \operatorname{\overline{ext}} \mathcal{L}_{\Sigma_1 \dot{\cup} \Sigma_2} \end{array}$

Thus,

$$\operatorname{ext} \cup \operatorname{\overline{ext}} \mathcal{L} \subsetneq \operatorname{BC} \operatorname{ext} \mathcal{L}.$$

Similarly, if there is $L_{\Sigma} \in \lim \mathcal{L}_{\Sigma}, L_{\Sigma} \notin \overline{\lim} \mathcal{L}_{\Sigma}$ and E3 holds for \mathcal{L} :

$$\Rightarrow -L_{\Sigma} \in \overline{\lim} \, \mathcal{L}_{\Sigma}, -L_{\Sigma} \not\in \lim \mathcal{L}_{\Sigma}$$

$$\Rightarrow L_{\Sigma_1} \cup -L_{\Sigma_2} \in \operatorname{BC} \lim_{\Sigma_1 \cup \Sigma_2} L_{\Sigma_1} \cup -L_{\Sigma_2} \notin \lim_{\Sigma_1 \cup \Sigma_2} L_{\Sigma_1 \cup \Sigma_2}$$

Thus,

 $\lim \cup \overline{\lim} \, \mathcal{L} \subsetneq \operatorname{BC} \lim \mathcal{L}.$

4.7 BC ext = $\lim \cap \overline{\lim}$

A Staiger-Wagner automaton (weak Muller automaton) is of the same form $\mathcal{A} = (Q, \Sigma, q_0, \delta, \mathcal{F})$ as a Muller automaton with the acceptance condition that a run ρ is accepting if and only if $\text{Occ}(\rho) := \{q \in Q : \text{q occurs in } p\} \in \mathcal{F}$. (R101,Def.61,p.43)

We see (R101,Th.63+64,p.44) that the class of Staigner-Wagner-recognized languages is exactly the class BC ext $\mathcal{L}^*(reg)$ and also $\lim \cap \overline{\lim} \mathcal{L}^*(reg)$.

We are now formulating a more general and direct proof for the BC ext $\mathcal{L} = \lim \cap \overline{\lim} \mathcal{L}$ equality without Staiger-Wagner-automata (where some of the ideas are loosely based on (R101,Th.63+64,p.44)).

First, we show $\lim \cap \overline{\lim} \mathcal{L} \subseteq BC \operatorname{ext} \mathcal{L}$.

Let $\tilde{L} \in \lim \cap \overline{\lim} \mathcal{L}$, i.e. there are deterministic automaton \mathcal{A} and $\overline{\mathcal{A}}$ so that $L_{\text{B\"{u}chi}}^{\omega}(\mathcal{A}) = L_{\text{co-B\"{u}chi}}^{\omega}(\overline{\mathcal{A}}) = \tilde{L}$. Let Q, \overline{Q} be the states of $\mathcal{A}, \overline{\mathcal{A}}$. Now look at the product automaton $\mathcal{A} \times \overline{\mathcal{A}} =: \overset{\times}{\mathcal{A}}$ with states $Q \times \overline{Q}$ and final states $F \times \overline{F} \subseteq Q \times \overline{Q}$. $\overset{\times}{\mathcal{A}}$ is also deterministic.

In $\hat{\mathcal{A}}$, we have

$$\alpha \in \tilde{L}$$

$$\Leftrightarrow \forall N \colon \exists n \ge N \colon \overset{\times}{\rho}(\alpha)[n] \in F \times \overline{Q}$$

$$\Leftrightarrow \exists N \colon \forall n \ge N \colon \overset{\times}{\rho}(\alpha)[n] \in Q \times \overline{F}$$

Look at strongly connected component (SCC) S in $\stackrel{\times}{\mathcal{A}}$. We have $S \cap F \times \overline{Q} \neq \emptyset$, iff S accepts. It follows that all states in S are finite states in $\overline{\mathcal{A}}$, i.e. $S \cap Q \times \overline{F} = S$.

Single $\overset{\times}{q} \in \overset{\times}{Q}$ which are not part of a SCC can be ignored. For the acceptance of infinte words, only SCCs are relevant. For S, define $S_+ := \left\{ \overset{\times}{q} \in \overset{\times}{Q} - S \,\middle|\, \overset{\times}{q} \text{ can be visited after } S \right\}$.

Then we have

$$\tilde{L} = \bigcup_{\text{SCC } S} S \text{ will be visited } \land$$
 all states of S will be visited forever after some step \land S_+ will not be visited.

S will be visited: Let S exactly be the finite states. This interpreted as an E-automaton \mathcal{A}_{S}^{E} is exactly the condition.

Only the allowed states will be visited but nothing followed after S: Mark S and all states on all paths to S as finite states. This as an A-automaton \mathcal{A}_S^A is exactly the condition.

A similar negated condition might be simpler: Let S_+ be exactly the finite states. Interpret this as an E-automaton $\mathcal{A}_{S_+}^E$.

Then we have

$$\begin{split} \tilde{L} &= \bigcup_{\mathbf{SCC} \ S} L_E^{\omega}(\mathcal{A}_S^E) \cap L_A^{\omega}(\mathcal{A}_S^A) \\ &= \bigcup_{\mathbf{SCC} \ S} L_E^{\omega}(\mathcal{A}_S^E) \cap -L_E^{\omega}(\mathcal{A}_{S_+}^E). \end{split}$$

Thus,

 $\tilde{L} \in \mathrm{BC} \operatorname{ext} \mathcal{L}^*(reg).$

Open question at this point: Is $L^*(\mathcal{A}_S^E), L^*(\mathcal{A}_{S_+}^E) \in \mathcal{L}$? With E4, this is obviously the case. However, E4 is too strong.

Now let us show BC ext $\mathcal{L} \subseteq \lim \mathcal{L}$.

With E1, we get $\operatorname{ext} \mathcal{L} \subseteq \lim \mathcal{L}$ and $\operatorname{ext} \mathcal{L} \subseteq \overline{\lim} \mathcal{L}$. I.e. $\operatorname{ext} \mathcal{L} \subseteq \lim \cap \overline{\lim} \mathcal{L}$. Let us show that $\lim \cap \overline{\lim} \mathcal{L}$ is closed under BC.

Let $\tilde{L}_a, L_b \in \lim \cap \overline{\lim} \mathcal{L}$, i.e. $\exists L_{a1}, L_{a2}, L_{b1}, L_{b2} \in \mathcal{L} : \tilde{L}_a = \lim L_{a1} = \overline{\lim} L_{a2}, \tilde{L}_b = \lim L_{b1} = \overline{\lim} L_{b2}$. Let us show 1. $-\tilde{L}_a \in \lim \cap \overline{\lim} \mathcal{L}$, 2. $\tilde{L}_a \cup \tilde{L}_b \in \lim \cap \overline{\lim} \mathcal{L}$.

1. $-\tilde{L}_a = -\lim L_{a1} = \overline{\lim} -L_{a1}$, $-\tilde{L}_b = -\overline{\lim} L_{a2} = \lim -L_{a2}$. With E3 (closed under negation), we get

$$-\tilde{L}_a \in \lim \cap \overline{\lim} \mathcal{L}.$$

2. $\tilde{L}_a \cup \tilde{L}_b = \lim L_{a1} \cup \lim L_{b1} = \lim L_{a1} \cup L_{b1}$ (4.1). Thus, with E2a, we have

$$\tilde{L}_a \cup \tilde{L}_b \in \lim \mathcal{L}$$
.

The $\overline{\lim} \mathcal{L}$ case is harder. Let \mathcal{A}_a , \mathcal{A}_b be deterministic automaton, so that $L^{\omega}_{\mathrm{B\"{u}chi}}(\mathcal{A}_a) = L^{\omega}_{\mathrm{co-B\"{u}chi}}(\mathcal{A}_a) = \tilde{L}_a$, $L^{\omega}_{\mathrm{B\"{u}chi}}(\mathcal{A}_b) = L^{\omega}_{\mathrm{co-B\"{u}chi}}(\mathcal{A}_b) = \tilde{L}_b$. Look at the product automaton $\mathcal{A}_a \times \mathcal{A}_b =: \overset{\times}{\mathcal{A}}$. Then we have $L^{\omega}_{\mathrm{B\"{u}chi}}(\overset{\times}{\mathcal{A}}) = L^{\omega}_{\mathrm{co-B\"{u}chi}}(\overset{\times}{\mathcal{A}}) = \tilde{L}_a \cup \tilde{L}_b$.

$$\tilde{L}_a \cup \tilde{L}_b \in \overline{\lim} \, \mathcal{L}^*(reg).$$

Open question: Is $L^*(\overset{\times}{\mathcal{A}}) \in \mathcal{L}$?

4.8 Kleene-star = $BC \lim$

Let $U, V \in \mathcal{L}$. Look at the non-deterministic automaton \mathcal{A} defined as:

$$\longrightarrow U \xrightarrow{\epsilon} V \odot$$

Then we have $L^{\omega}_{\mathrm{B\ddot{u}chi}}(\mathcal{A}) = U \cdot V^{\omega}$.

Let us construct deterministic automata for \mathcal{A} so that we can formulate 'V will be visited and not be left anymore' and 'finite states of the V-related automaton will be visited infinitely often' (or ' UV^* will be visited infinitely often').

In a constructed automaton, we must be able to tell wether we are in U or we deterministically have been in U the previous state. In a state power set construction, we can tell wether we are deterministically in U or not. If we are non-deterministic and we may be in both U or V and we get an input symbol which determines that we have been in U, we might not be able to tell from the following power set. Example:

Let $U = (a+b)^*$, $V = \{b\}$. I.e. $UV^{\omega} = \{\alpha \in \{a,b\}^{\omega} \mid \text{at one point in } \alpha, \text{ there are only } bs\}$. The non-deterministic automaton is:

Powerset construction: The initial state is $\{1,2\}$. Then we have:

- $\bullet \ \{1,2\} \stackrel{a}{\rightarrow} \{1,2\}$
- $\bullet \ \{1,2\} \stackrel{b}{\rightarrow} \{1,2\}$

This gives the *-language $\{a,b\}^*$ and we cannot formulate UV^{ω} in any way from there.

In the construction, when we got the a from $\{1,2\}$, we knew that we have been deterministically in 1, i.e. in U. We loose this information. To keep it, we introduce another state flag which exactly says wether we have determined that we have been in U. Thus, we construct an automaton with the states $\mathcal{P}(Q) \times \mathbb{B}_{\text{det. been in } U}$, where Q are the states from \mathcal{A} .

For the example, we get the initial state $(\{1,2\},1)$. Then we have:

- $(\{1,2\},1) \stackrel{a}{\to} (\{1,2\},1)$
- $(\{1,2\},1) \xrightarrow{b} (\{1,2\},0)$
- $(\{1,2\},0) \stackrel{a}{\to} (\{1,2\},1)$
- $\bullet \ \left(\left\{ 1,2\right\} ,0\right) \overset{b}{\rightarrow} \left(\left\{ 1,2\right\} ,0\right)$

This is the automaton

When we mark all states from V and where we have not been deterministically in U as final, this as a co-Büchi automaton gives exactly the condition 'V will be visited and not be left anymore'. Let L_E be the *-language of this automata. Note that $L_E \neq UV^*$ in general and esp. in the example.

When we mark the final states as in the original non-deterministic automata, no matter about $\mathbb{B}_{\text{det. been in }U}$, with Büchi-acceptance, we get the condition ' UV^* will be visited infinitely often'. This is just $\lim UV^*$.

Together, we get UV^{ω} , i.e.:

$$\lim UV^* \cap \overline{\lim} L_E = UV^{\omega}$$

If we have $L_E \in \mathcal{L}$, it follows

$$\left\{ \bigcup_{i=1}^{n} U_{i} \cdot V_{i}^{\omega} \middle| U_{i}, V_{i} \in \mathcal{L} \right\} = \text{Kleene } \mathcal{L} \subseteq \text{BC} \lim \mathcal{L}.$$

Open question: Is $L_E \in \mathcal{L}$?

We also need to show $BC \lim \mathcal{L} \subseteq Kleene \mathcal{L}$.

Show: $\lim \mathcal{L} \subseteq \text{Kleene } \mathcal{L}$.

Proof: Let \mathcal{A} be a deterministic Büchi automaton for some language $\tilde{L} = L_{\text{Büchi}}^{\omega}(\mathcal{A}) \in \mathcal{L}$ with final states F.

For all finite states $q \in F$: If q is not part of a strongly connected component (SCC), we can ignore it. Let S be the SCC where $q \in S$. Then the set of all $\alpha \in \Sigma^{\omega}$ which are infinitely often in q can be described as $U_q \cdot V_q^{\omega}$, where U_q is the set of words so that we arrive in q and V_q is the set of words so that we get from q to q. Both sets are regular.

Thus,

$$\tilde{L} = L_{\mathrm{Büchi}}^{\omega}(\mathcal{A}) = \bigcup_{q \in F} U_q V_q^{\omega}.$$

Obviously, the Kleene-Closure is closed under union.

TODO: Show that Kleene-Closure is closed under negation. (S306.5) (Follows with nondet Büchi complementation but a more generic proof might be useful.)

4.9 $\mathcal{L}(R)$ for a relation $R \subseteq \Sigma^* \times \Sigma^*$

If a language class $\mathcal{L}(R)$ is defined as finite union of equivalation classes of a relation $R \subseteq \Sigma^* \times \Sigma^*$ and

- the set of equivalent classes of R is finite,
- $(v, w) \in R \Leftrightarrow (va, wa) \in R \ \forall a \in \Sigma$

(this is the case for LT, LTT, PT), then we can construct a canonical deterministic automaton \mathcal{A}_R which has $S_R := \Sigma^*/R$ as states, $\langle \epsilon \rangle_R$ is the initial state and the transitions are according to concatenation. Call this an R-automaton.

The set of all such R-automata, varying in the final state set, is isomprophic to $\mathcal{L}(R)$. We have

$$\mathcal{L}(R) = \{ L(\mathcal{A}_R(F)) \mid F \subseteq S_R \} =: \mathcal{L}^*(\mathcal{A}_R).$$

Analogously for ω , we get the set of R-E-automata with the ω -language-class

$$\mathcal{L}_{E}^{\omega}(\mathcal{A}_{R}) := \left\{ L^{\omega}(\mathcal{A}_{R}^{E}(F)) \mid F \subseteq S_{R} \right\},\,$$

R-Büchi-automata and

$$\mathcal{L}^{\omega}_{\mathrm{B\"{i}ichi}}(\mathcal{A}_R) := \left\{ L^{\omega}(\mathcal{A}_R^{\mathrm{B\"{u}chi}}(F)) \mid F \subseteq S_R \right\},\,$$

R-Muller-automata and

$$\mathcal{L}_{\mathrm{Muller}}^{\omega}(\mathcal{A}_R) := \left\{ L^{\omega}(\mathcal{A}_R^{\mathrm{Muller}}(\mathcal{F})) \,\middle|\, \mathcal{F} \subseteq 2^{S_R} \right\}.$$

For a relation R on Σ^* , there are various ways to construct a relation on Σ^{ω} . For now, we mainly study $R^{\omega} := \overline{\text{ext}} R$, i.e.

$$(\alpha, \beta) \in R^{\omega} : \Leftrightarrow \forall n : (\alpha[0, n], \beta[0, n]) \in R.$$

Analogously to $\mathcal{L}(R)$, define the ω -language-class

$$\mathcal{L}^{\omega}(R^{\omega}) := \{ L^{\omega} \mid L^{\omega} \text{ is finite union of } R^{\omega} \text{-equivalence-classes} \}.$$

With this preparation, we show for some R the equalities:

- $\mathcal{L}_E^{\omega}(\mathcal{A}_R) = \operatorname{ext} \mathcal{L}(R)$ (4.10)
- $\mathcal{L}^{\omega}_{\text{Biichi}}(\mathcal{A}_R) = \lim \mathcal{L}(R)$ (4.11)
- $\mathcal{L}_{\text{Muller}}^{\omega}(\mathcal{A}_R) = \operatorname{BC} \lim \mathcal{L}(R)$ (4.12)
- $\mathcal{L}^{\omega}(R^{\omega}) = \mathrm{BC} \operatorname{ext} \mathcal{L}(R)$
- BC $\lim \mathcal{L}(R) \cap \operatorname{ext} \mathcal{L}(reg) = \operatorname{ext} \mathcal{L}(R)$
- BC $\lim \mathcal{L}(R) \cap \lim \mathcal{L}(reg) = \lim \mathcal{L}(R)$
- $\lim \mathcal{L}(R) \cap \overline{\lim} \mathcal{L}(R) = \operatorname{BC} \operatorname{ext} \mathcal{L}(R)$

We will see that all those equations hold for $\mathcal{L}(LT)$, $\mathcal{L}(LTT)$ and $\mathcal{L}(PT)$.

4.10
$$\mathcal{L}_E^{\omega}(\mathcal{A}_R) = \operatorname{ext} \mathcal{L}(R)$$

Let $L = \bigcup_i \langle w_i \rangle_R$, $L \in \mathcal{L}(R)$. Then

$$L^{\omega} = \operatorname{ext} L$$

$$\Leftrightarrow L^{\omega} = \left\{ \alpha \in \Sigma^{\omega} \middle| \exists n : \alpha[0, n] \in \bigcup_{i} \langle w_{i} \rangle_{R} \right\}$$

$$\Leftrightarrow L^{\omega} = \left\{ \alpha \in \Sigma^{\omega} \middle| \exists n : \delta_{\mathcal{A}_{R}}(\alpha[0, n]) \in \left\{ \langle w_{i} \rangle_{R} \subseteq S_{R} \middle| i \right\} \right\}$$

$$\Leftrightarrow L^{\omega} = L^{\omega}(\mathcal{A}_{R}^{E}(\left\{ \langle w_{i} \rangle_{R} \subseteq S_{R} \middle| i \right\}))$$

4.11 $\mathcal{L}_{\mathbf{B\ddot{u}chi}}^{\omega}(\mathcal{A}_{R}) = \lim \mathcal{L}(R)$

Let
$$L = \bigcup_i \langle w_i \rangle_R$$
, $L \in \mathcal{L}(R)$. Then

$$L^{\omega} = \lim L$$

$$\Leftrightarrow L^{\omega} = \left\{ \alpha \in \Sigma^{\omega} \,\middle|\, \exists^{\infty} n \colon \alpha[0, n] \in \bigcup_{i} \langle w_{i} \rangle_{R} \right\}$$

$$\Leftrightarrow L^{\omega} = \left\{ \alpha \in \Sigma^{\omega} \,\middle|\, \exists^{\infty} n \colon \delta_{\mathcal{A}_{R}}(\alpha[0, n]) \in \left\{ \langle w_{i} \rangle_{R} \subseteq S_{R} \,\middle|\, i \right\} \right\}$$

$$\Leftrightarrow L^{\omega} = L^{\omega}(\mathcal{A}_{R}^{\text{B\"{u}chi}}(\left\{ \langle w_{i} \rangle_{R} \subseteq S_{R} \,\middle|\, i \right\}))$$

4.12 $\mathcal{L}_{\mathbf{Muller}}^{\omega}(\mathcal{A}_R) = \mathrm{BC} \lim \mathcal{L}(R)$

Any $L^{\omega} \in \mathrm{BC} \lim \mathcal{L}(R)$ can be described by $\mathrm{BC} \, 2^{S_R}$. $2^{2^{S_R}}$ is also finite. Thus, any $A \in \mathrm{BC} \, 2^{S_R}$ can be represented in $2^{2^{S_R}}$. This is exactly an acceptance condition in Muller.

- 4.13 $\mathcal{L}^{\omega}(R^{\omega}) = \operatorname{BC} \operatorname{ext} \mathcal{L}(R)$
- **4.14** BC lim $\mathcal{L}(R) \cap \text{ext } \mathcal{L}(reg) = \text{ext } \mathcal{L}(R)$

We have $\operatorname{ext} \mathcal{L}(R) \subseteq \mathcal{L}(reg)$ and $\operatorname{ext} \mathcal{L}(R) \subseteq \operatorname{BC} \lim \mathcal{L}(R)$. Thus, " \supseteq " is shown.

Now, we show " \subseteq ". Let $L^{\omega} \in \operatorname{BC} \lim \mathcal{L}(R) \cap \operatorname{ext} \mathcal{L}(reg)$. Because $L^{\omega} \in \operatorname{ext} \mathcal{L}(reg)$, there is an E-automaton \mathcal{A}^E which accepts L^{ω} . We can assume that \mathcal{A}^E is deterministic (with 4.1).

We must find an R-E-automaton which accepts L^{ω} . We will call it the $\overline{\mathcal{A}}^{M}$ E-automaton and will construct it in the following.

Let \mathcal{A}^M be the deterministic R-Muller-automaton for L^ω (according to 4.9 and 4.12). Without restriction, there are no final state sets in \mathcal{A}^M which are not loops. Then, $\overline{\mathcal{A}}^M$ has the same states and transitions as \mathcal{A}^M .

Look at a final state q^E of \mathcal{A}^E . Without restriction, we can assume that there is no path that we can reach multiple final states at once. Let L_{q^E} be all words which reach q^E exactly once at the end.

Let $w \in L_{q^E}$. Let q be the state in \mathcal{A}^M which is reached after w. Let S be the set of states in \mathcal{A}^M which can be reached from q.

Then, \mathcal{A}^M accepts all words in $L_q \cdot L_{q,S}^{\omega}$, where L_q is the set of words to q and $L_{q,S}^{\omega}$ is the set of words of possible infinite postfixes after q in S so that they are accepted. Any word with a prefix in L_q , which is not in $L_q \cdot L_{q,S}^{\omega}$, will not be accepted by \mathcal{A}^M because \mathcal{A}^M is deterministic. Also, because $L_{q^E} \cap L_q \neq \emptyset$ and $L_{q^E} \cdot \Sigma^{\omega} \subseteq L^{\omega}$ and $L_q \cdot L_{q,S}^{\omega} \subseteq L^{\omega}$, we get $L_{q,S}^{\omega} \neq \emptyset$.

Assuming $L_{q,S}^{\omega} \neq \Sigma^{\omega}$. Then we would have $L^{\omega} \notin \text{ext} \mathcal{L}(reg)$, which is a contradiction. I.e. $L_{q,S}^{\omega} = \Sigma^{\omega}$.

Thus, \mathcal{A}^M accepts all words in $L_q \cdot \Sigma^{\omega}$. Mark q as a final state in $\overline{\mathcal{A}}^M$. Thus, $\overline{\mathcal{A}}^M$ E-accepts all words in $L_q \cdot \Sigma^{\omega} \subseteq L^{\omega}$.

Because we did this for all final states in \mathcal{A}^E , there is no $\alpha \in L^{\omega}$ which is not accepted by $\overline{\mathcal{A}}^M$. I.e., the R-E-automata $\overline{\mathcal{A}}^M$ accepts exactly L^{ω} . I.e. $L^{\omega} \in \text{ext } \mathcal{L}(R)$.

- **4.15** BC $\lim \mathcal{L}(R) \cap \lim \mathcal{L}(reg) = \lim \mathcal{L}(R)$
- **4.16** $\lim \mathcal{L}(R) \cap \overline{\lim} \mathcal{L}(R) = \operatorname{BC} \operatorname{ext} \mathcal{L}(R)$

5 *-language classes

5.1 Overview

We already showed many results for $\mathcal{L}^*(reg)$.

5.2 FO[<] / starfree

Theorem 5.1.

$$\mathcal{L}^{\omega}(FO[<]) = BC \lim \mathcal{L}^*(FO[<])$$

Proof. Let $\varphi \in FO[<]$. By the [Tho81, Normal Form Theorem (4.4)] there are bounded formulas $\varphi_1(y), \dots, \varphi_r(y), \psi_1(y), \dots, \psi_r(y)$ such that for all $\alpha \in \Sigma^{\omega}$:

$$\alpha \models \varphi \Leftrightarrow \alpha \models \bigvee_{i=1}^{r} (\forall x \exists y > x \colon \varphi_i(y)) \land \neg (\forall x \exists y > x \colon \psi_i(y))$$

Thus:

$$\alpha \models \varphi \Leftrightarrow \bigvee_{i=1}^{r} \underbrace{(\alpha \models \forall x \exists y > x \colon \varphi_{i}(y))}_{\Leftrightarrow \forall x \exists y > x \colon \alpha[0, n] \models \varphi_{i}(\omega)} \land \neg (\alpha \models \forall x \exists y > x \colon \psi_{i}(y))$$

$$\Leftrightarrow \exists^{\omega} n \colon \alpha[0, n] \models \varphi_{i}(\omega)$$

$$\Leftrightarrow \alpha \in \lim L^{*}(\varphi_{i}(\omega))$$

where $\varphi_i(\omega)$ stands for φ_i with all bounds removed. I.e. we have

$$L^{\omega}(\varphi) = \bigcup_{i=1}^{r} \lim(L^{*}(\varphi_{i}(\omega)) \cap \neg \lim(L^{*}(\psi_{i}(\omega))),$$

and thus

$$L^{\omega}(\varphi) \in \mathrm{BC} \lim \mathcal{L}^*(\mathrm{FO}[<]).$$

We have prooved the \subseteq -direction. For \supseteq :

$$\begin{split} \alpha &\in \lim(L^*(\varphi)) \\ \Leftrightarrow \exists^\omega n \colon \alpha[0,n] \models \varphi \\ \Leftrightarrow \alpha &\models \forall x \exists y > x \colon \varphi(y) \\ \Leftrightarrow \alpha &\in L^\omega(\forall \exists y > x \colon \varphi(y)) \end{split}$$

where $\varphi(y)$ stands for φ with all variables bounded by y. I.e.

$$\lim \mathcal{L}^*(FO[<]) \subseteq \mathcal{L}^{\omega}(FO[<]),$$

and thus also

$$BC \lim \mathcal{L}^*(FO[<]) \subseteq \mathcal{L}^{\omega}(FO[<]).$$

Thus we have prooved the equality.

Theorem 5.2.

$$BC \operatorname{ext} \mathcal{L}^*(FO[<]) \subsetneq BC \lim \mathcal{L}^*(FO[<])$$

Proof.
$$\subseteq: L \subset \Sigma^{\omega} \text{ starfree } \Rightarrow L\Sigma^{\omega} \in \lim(\mathcal{L}^*(FO[<]))$$

Proof. \neq :

$$\begin{split} L &:= (\Sigma^* a)^\omega \\ \Rightarrow L &= \lim ((\Sigma^* a)^*) \\ \Rightarrow L &= L^\omega (\exists^\omega x : Q_a x) \end{split}$$

And we have $L \notin BC \operatorname{ext} \mathcal{L}^*(FO[<])$.

With 4.2, we get $\text{ext } \mathcal{L} \subseteq \lim \mathcal{L}$.

 $\tilde{L} := \lim(\Sigma^* a) = (\Sigma^* a)^{\omega} \in \lim \mathcal{L} \text{ but } \tilde{L} \notin \operatorname{ext} \mathcal{L} \text{ as shown in chapter } 3.2.$

- P1: $\{a\} \in \mathcal{L}$. $a\Sigma^* \in \mathcal{L}$, thus $a\Sigma^\omega = \text{ext}(\{a\}) = \overline{\text{ext}} a\Sigma^*$.
- P2a: $\tilde{L}_{2a} := \text{ext}(a^*b) = a^*b\Sigma^{\omega}, \ a^*b \in \mathcal{L}$. Then $\tilde{L}_{2a} \notin \text{ext} \mathcal{L}^*(reg) \supseteq \mathcal{L}^*(FO[<])$.
- P2b: $-\tilde{L}_{2a} := \overline{\text{ext}}(-a^*b), -a^*b \in \mathcal{L}$. Then $-\tilde{L}_{2a} \notin \text{ext } \mathcal{L}$.
- P3: Follows directly from P2a and P2b.
- P4: $\tilde{L}_4 := \operatorname{ext}(\Sigma^* a) \cap \overline{\operatorname{ext}}(-\Sigma^* b) = \Sigma^* a \Sigma^\omega \cap -(\Sigma^* b \Sigma^\omega)$, whereby $\Sigma^* a \in \mathcal{L}, -\Sigma^* b \in \mathcal{L}$. $\tilde{L}_4 \notin \operatorname{ext} \cup \overline{\operatorname{ext}} \mathcal{L}^* (reg) \supseteq \mathcal{L}^* (\operatorname{FO}[<])$ but $\tilde{L}_4 \in \operatorname{BC} \operatorname{ext} \mathcal{L}$.
- P5: TODO
- P6a/P6b/P7/P8: $\Sigma^*a \in \mathcal{L}$. We can use the same arguments as for $\mathcal{L}^*(reg)$.
- P9: TODO
- P10: TODO

5.3 FO[+1]

Theorem 5.3.

$$\mathcal{L}^{\omega}(FO[+1]) = BC \operatorname{ext} \mathcal{L}^{*}(FO[+1])$$

Proof. From [Tho96, Theorem 4.8], we know that each formular in FO[+1] is equivalent (for both finite and infinite words) to a boolean combination of statements "sphere $\sigma \in \Sigma^+$ occurs $\geq n$ times". That statement can be expressed by a sentence of the form

$$\psi := \exists \overline{x_1} \cdots \exists \overline{x_n} \varphi(\overline{x_1}, \cdots, \overline{x_n})$$

where each $\overline{x_i}$ is a $|\sigma|$ -tuple of variables and the formula φ states:

$$\bigwedge_{\substack{i,j \in \underline{n}, \\ i \neq j, \\ k, l \in |\underline{\sigma}|}} x_{i,k} \neq x_{j,l} \wedge \bigwedge_{\substack{i \in \underline{n}, \\ k \in |\underline{\sigma}| - 1}} x_{i,k+1} = x_{i,k} + 1 \wedge \bigwedge_{\substack{i \in \underline{n}, \\ k \in |\underline{\sigma}|}} Q_{\sigma_k} x_{i,k}$$

For ψ , we have:

$$\alpha \models \psi \Leftrightarrow \exists n : \alpha[0, n] \models \psi \text{ for all } \alpha \in \Sigma^{\omega},$$

i.e.

$$L^{\omega}(\psi) = \operatorname{ext} L^{*}(\psi).$$

Any formular in FO[+1] can be expressed as a boolean combination of ψ -like formular. With

$$L^{\omega}(\neg \psi) = \neg L^{\omega}(\psi)$$

$$L^{\omega}(\psi_1 \wedge \psi_2) = L^{\omega}(\psi_1) \cap L^{\omega}(\psi_2)$$

$$L^{\omega}(\psi_1 \vee \psi_2) = L^{\omega}(\psi_1) \cup L^{\omega}(\psi_2)$$

we get:

$$\mathcal{L}^{\omega}(FO[+1]) = BC \operatorname{ext} \mathcal{L}^{*}(FO[+1]).$$

5.4 FO[]

5.5 piece-wise testable

Theorem 5.4.

 $BC \operatorname{ext} \mathcal{L}^*(\operatorname{piece-wise testable}) = BC \lim \mathcal{L}^*(\operatorname{piece-wise testable})$

Proof. L piece-wise testable $\Leftrightarrow L$ is a boolean algebra of $\Sigma^* a_1 \Sigma^* a_2 \cdots a_n \Sigma^*$

 \subseteq : It is sufficient to show $\operatorname{ext}(\mathcal{L}^*(\text{piece-wise testable})) \subseteq \operatorname{BC} \lim \mathcal{L}^*(\text{piece-wise testable})$. By complete induction:

$$\operatorname{ext}(\Sigma^* a_1 \Sigma^* a_2 \cdots a_n \Sigma^*) = \Sigma^* a_1 \Sigma^* a_2 \cdots a_n \Sigma^{\omega} = \lim(\Sigma^* a_1 \Sigma^* a_2 \cdots a_n \Sigma^*)$$

$$\operatorname{ext}(\neg(\Sigma^* a_1 \Sigma^* a_2 \cdots a_n \Sigma^*)) = \Sigma^{\omega} = \lim(\Sigma^*)$$

$$\operatorname{ext}(\emptyset) = \emptyset = \lim(\emptyset)$$

It is sufficient to show negation only for such ground terms because we can always push the negation down.

$$ext(A \cup B) = ext(A) \cup ext(B)$$

 $ext(A \cap B) = ext(A) \cap ext(B)$

This makes the induction complete.

 \supseteq : It is sufficient to show $\lim(\mathcal{L}^*(\text{piece-wise testable})) \subseteq BC \text{ ext } \mathcal{L}^*(\text{piece-wise testable})$.

$$\lim(\emptyset) = \operatorname{ext}(\emptyset), \ \lim(\Sigma^* a_1 \Sigma^* a_2 \cdots a_n \Sigma^*) = \operatorname{ext}(\Sigma^* a_1 \Sigma^* a_2 \cdots a_n \Sigma^*) \ (\text{see above})$$

$$\lim(\neg(\Sigma^* a_1 \Sigma^* a_2 \cdots a_n \Sigma^*)) = \{\alpha \in \Sigma^\omega \mid \exists^\omega n \colon \alpha[0, n] \notin \Sigma^* a_1 \Sigma^* a_2 \cdots a_n \Sigma^*\}$$

$$= \{\alpha \in \Sigma^\omega \mid \forall n \colon \alpha[0, n] \notin \Sigma^* a_1 \Sigma^* a_2 \cdots a_n \Sigma^*\}$$

$$= \neg \operatorname{ext}(\Sigma^* a_1 \Sigma^* a_2 \cdots a_n \Sigma^*)$$

$$\lim(A \cup B) = \{\alpha \in \Sigma^\omega \mid \exists^\omega n \colon \alpha[0, n] \in A \cup B\} = \lim(A) \cup \lim(B)$$

$$\lim(A \cap B) = \{\alpha \in \Sigma^\omega \mid \exists^\omega n \colon \alpha[0, n] \in A \cap B\}$$

and because A, B are piece-wise testable

$$= \{ \alpha \in \Sigma^{\omega} \mid \exists n : \forall m > n : \alpha[0, m] \in A \cap B \} = \lim(A) \cap \lim(B)$$

5.6 positive piece-wise testable

Theorem 5.5.

$$BC \operatorname{ext} \mathcal{L}^*(\operatorname{pos-PT}) = BC \lim \mathcal{L}^*(\operatorname{pos-PT})$$

Proof. \subseteq : Exactly like the proof for PT except that we leave out the negated part. \supseteq : Also like the proof for PT.

5.7 locally testable

Theorem 5.6.

 $BC \operatorname{ext} \mathcal{L}^*(\operatorname{locally testable}) \subseteq BC \lim \mathcal{L}^*(\operatorname{locally testable})$

Proof. Let $w \in \Sigma^+$.

$$\operatorname{ext}(w\Sigma^*) = \lim(w\Sigma^*)$$

$$\operatorname{ext}(\Sigma^*w) = \Sigma^*w\Sigma^{\omega} = \lim(\Sigma^*w\Sigma^*)$$

$$\operatorname{ext}(\Sigma^*w\Sigma^*) = \Sigma^*w\Sigma^{\omega} = \lim(\Sigma^*w\Sigma^*)$$

Thus we have

 $BC \operatorname{ext} \mathcal{L}^*(\operatorname{locally testable}) \subseteq BC \lim \mathcal{L}^*(\operatorname{locally testable}).$

But we also have

$$\lim(\Sigma^*) = (\Sigma^* w)^{\omega} \notin BC \operatorname{ext} \mathcal{L}^*(\text{locally testable}).$$

5.8 endwise testable

- BC ext $\mathcal{L}^*(endwise) \neq$ BC lim $\mathcal{L}^*(endwise)$ because $\Sigma^*a \in \mathcal{L}^*(endwise)$.
- $\operatorname{ext}(a\Sigma^*a) = a\Sigma^*a\Sigma^\omega \notin \operatorname{BC}\lim \mathcal{L}^*(endwise)$

19

5.9 local

5.10 finite / co-finite

- $\lim \mathcal{L}^*(finite) = \{\emptyset\}$
- $\operatorname{ext} \mathcal{L}^*(finite) = \mathcal{L}^*(finite) \cdot \Sigma^{\omega}$
- $\lim \mathcal{L}^*(co-finite) = \{\Sigma^{\omega}\}$
- $\operatorname{ext} \mathcal{L}^*(co-finite) = \{\Sigma^{\omega}\}$

5.11 dot-depth-n

- 5.12 L-trivial
- 5.13 R-trivial
- 5.14 locally modulo testable
- 5.15 context free

6 Lemmas

6.1 pos-PT and PT

Theorem 6.1.

$$BC \operatorname{ext} \mathcal{L}^*(\operatorname{pos-PT}) = BC \operatorname{ext} \mathcal{L}^*(\operatorname{PT})$$

Proof. In the proof of $\lim \mathcal{L}^*(PT) \subseteq BC \operatorname{ext} \mathcal{L}^*(PT)$ we actually proved $BC \lim \mathcal{L}^*(PT) \subseteq BC \operatorname{ext} \mathcal{L}^*(\operatorname{pos-PT})$. Similiarly we also proved $BC \operatorname{ext} \mathcal{L}^*(PT) \subseteq BC \lim \mathcal{L}^*(\operatorname{pos-PT})$. With 5.6 and 5.5 we get the claimed equality.

References

- [Tho81] Wolfgang Thomas. A combinatorial approach to the theory of omega-automata. Information and Control, $48(3):261-283,\ 1981.$
- [Tho96] Wolfgang Thomas. Languages, automata, and logic. In *Handbook of Formal Languages*, pages 389–455. Springer, 1996.