西南交通大学 2020-2021 学年第 1 学期考试试卷

课程代码 MATH001912 课程名称 复变函数与积分变换考试时间 120 分钟

一、判断题(每小题2分,共8分)

1. 1 的傅里叶变换是
$$\delta(t)$$
 。 ($imes$)

4. 存在以
$$x^2 + y^2$$
为虚部的解析函数。 (×)

二、选择题(每小题 4 分, 5 小题, 共 20 分)

5. 下列函数中,解析的函数是(A)

A.
$$w = ix^2 - iy^2 - 2xy$$
 B. $w = x^3 + xyi$

$$B. \ w = x^3 + xyt$$

C.
$$w = ix^2 - iy^2 + 2xy$$
 D. $w = x^2 + iy^2$

$$D. \ w = x^2 + iy^2$$

6. 调和函数 $v(x,y) = e^{-y} \sin x$ 为虚部的解析函数 f(z) 是(D)

A.
$$-e^z$$
 B. e^z C. $-e^{iz}$ D. e^{iz}

B.
$$e^z$$

$$C. -e^{iz}$$

D.
$$e^{iz}$$

7. 设 $f(z) = \frac{\sin z}{(z-1)(z-2)}$ 的泰勒级数为 $\sum_{n=0}^{\infty} c_n (z-i)^n$,则该级数的收敛半径(D

$$C_{3}\sqrt{5}$$

A. 1 B. 2 C.
$$\sqrt{5}$$
 D. $\sqrt{2}$

8.
$$z = 0$$
是 $\frac{z - \sin z}{z^7}$ 的(C)级极点

9. 函设 $f(t) = e^{-|t|}$,则 f(t)的傅的里叶变换为(B)

A.
$$\frac{2\omega}{1+\omega^2}$$

B.
$$\frac{2}{1+\omega}$$

C.
$$\frac{2\omega}{1-\omega^2}$$

1

A.
$$\frac{2\omega}{1+\omega^2}$$
 B. $\frac{2}{1+\omega^2}$ C. $\frac{2\omega}{1-\omega^2}$ D. $\frac{2}{1-\omega^2}$

三、填空题(每小题 4分, 共 16分)

- 10. 函数 $f(z) = \bar{z} \cdot z^2$ 可导点的导数为_____。
- 11. t 傅里叶变换为_____2 $\pi j\sigma'(\omega)$ _____。
- 13. 函数 $f(z) = \frac{\cos 5z}{\sin 5z}$ 在 π 处的留数为___0.2_____。

四、解答题(16题15分,17题12分,18题12分,19题17分,共56分)

14. 计算积分(1)
$$I = \oint_{|z|=2} \frac{1}{\sin(z+1)} dz$$
; (2) $J = \oint_{|z|=2} \sin(\frac{1}{z+1}) dz$; (3) $K = \oint_{|z|=2} \frac{\left[\sin(z+1)\right]^4}{\left(z+1\right)^4} dz$ 。

解: (1)

$$I = \oint_{|z|=2} \frac{1}{\sin(z+1)} dz = 2\pi i \text{Res}\left[\frac{1}{\sin(z+1)}, -1\right]$$
 2 \(\frac{\frac{1}}{\sin(z+1)}}\)

$$= 2\pi i \lim_{z \to -1} (z+1) \frac{1}{\sin(z+1)} = 2\pi i$$
 3 \(\frac{\frac{1}}{2}\)

(2)
$$\sin(\frac{1}{z+1}) = \sum_{n=0}^{\infty} (-1)^n \frac{(z+1)^{-2n-1}}{(2n+1)!}, c_{-1} = 1$$

$$J = \oint_{|z|=2} \sin(\frac{1}{z+1}) dz = 2\pi i \operatorname{Res}[\sin(\frac{1}{z+1}), -1]$$

$$= 2\pi i$$
3 \(\frac{1}{z}\)

(3) 因
$$-1$$
是 $f(z) = \frac{[\sin(z+1)]^4}{(z+1)^4}$ 可去奇点, $\text{Res}[f(z),-1] = 0$

$$K = \oint_{|z|=2} \frac{\left[\sin(z+1)\right]^4}{(z+1)^4} dz = 0 \quad .$$

15. (1) 将函数
$$f(z) = \frac{1}{(z+1)(z-2)^3}$$
在 $3 < |z-2| < \infty$ 展成洛朗级数;

(2) 计算积分
$$I = \oint_{|z-2|=4} \frac{1}{(z+1)(z-2)^3} dz$$
。

解: (1) 在
$$3 < |z-2| < \infty$$
内,有 $\left| \frac{3}{z-2} \right| < 1$

$$f(z) = \frac{1}{(z+1)(z-2)^3} = \frac{1}{(z-2)^3(z-2+3)}$$
$$= \frac{1}{(z-2)^4(1+\frac{3}{z-2})}$$

4分

$$=\sum_{n=0}^{\infty} (-3)^n (z-2)^{-n-4}$$

3分

(2) 在 (1) 中 $c_{-1} = 0$, $I = \oint_{|z-2|=4} \frac{1}{(z+1)(z-2)^3} dz = 2\pi i c_{-1} = 0$ (也可用其它方法计算)。

5分

16. 利用留数计算积分 $I = \int_{-\infty}^{+\infty} (\frac{1}{x^4 + 1} + \frac{x \sin x}{x^2 + 9}) dx$ 。

解:
$$I = \int_{-\infty}^{+\infty} \frac{1}{x^4 + 1} dx + \int_{-\infty}^{+\infty} \frac{x \sin x}{x^2 + 9} dx = K + M$$

$$K = \int_{-\infty}^{+\infty} \frac{1}{x^4 + 1} \mathrm{d}x$$

$$n = 0$$
 , $m = 4$, $m - n = 4 \ge 2$

1分

因为 z^4+1 的零点为 $e^{\frac{\pi}{4}i}, e^{\frac{3}{4}\pi i}, e^{\frac{5}{4}\pi i}, e^{\frac{7}{4}\pi i}$, 所以 $\frac{1}{z^4+1}$ 在上半平面的奇点是

$$e^{\frac{\pi}{4}i}, e^{\frac{3}{4}\pi i}$$
且都为一级极点。

2分

$$K = \int_{-\infty}^{+\infty} \frac{1}{x^4 + 1} dx = 2\pi i \left[\text{Re } s(\frac{1}{z^4 + 1}, e^{\frac{\pi}{4}i}) + \text{Re } s(\frac{1}{z^4 + 1}, e^{\frac{3\pi}{4}i}) \right]$$

$$=2\pi i \left(\frac{1}{4a_0^{\frac{3}{4}\pi i}} + \frac{1}{4a_0^{\frac{9}{4}\pi i}}\right) = \frac{\pi}{\sqrt{2}}$$

3分

$$M = \int_{-\infty}^{+\infty} \frac{x \sin x}{x^2 + 9} \mathrm{d}x$$

$$n = 0$$
 , $m = 2$, $m - n = 2 \ge 1$

1分

$$\int_{-\infty}^{+\infty} \frac{xe^{ix}}{x^2 + 9} dx = 2\pi i \text{Res}\left[\frac{ze^{iz}}{z^2 + 9}, 3i\right] = \frac{\pi}{e^3} i$$

3分

$$M = I_m (\int_{-\infty}^{+\infty} \frac{xe^{ix}}{x^2 + a^2} dx) = \frac{\pi}{e^3}$$

$$I = \frac{\pi}{\sqrt{2}} + \frac{\pi}{e^3} = \pi(\frac{\sqrt{2}}{2} + e^{-3})$$

- 17. (1) 求函数 $f(t) = [1 + \delta(t+1)]\cos 2t$ 的傅里叶变换;
 - (2) 用傅里叶变换的方法求下面微积分方程的解:

$$x'(t) + 2 \int_{-\infty}^{+\infty} x(s) \delta(t-s) ds = e^{-3t} u(t), (-\infty < t < \infty), \quad \sharp \psi u(t) = \begin{cases} 0, & t < 0 \\ 1, & t \ge 0 \end{cases}$$

解:(1)
$$F(\omega) = F[f(t)] = \int_{-\infty}^{+\infty} [1 + \delta(t+1)] \cos 2t e^{-j\omega t} dt$$

$$= \int_{-\infty}^{+\infty} \cos 2t e^{-j\omega t} dt + \int_{-\infty}^{+\infty} \delta(t+1) \cos 2t e^{-j\omega t} dt$$

$$= \frac{1}{2} \int_{-\infty}^{+\infty} (e^{2jt} + e^{-2jt}) e^{-j\omega t} dt + \cos(-2) e^{j\omega}$$

$$= \frac{1}{2} \int_{-\infty}^{+\infty} \left[e^{-j(\omega - 2)t} + e^{-j(\omega + 2)t} \right] dt + \cos 2 e^{j\omega}$$
4 \(\frac{\psi}{2}\)

$$= \pi \delta(\omega - 2) + \pi \delta(\omega + 2) + \cos 2e^{j\omega}$$
 2 \(\frac{\psi}{2}\)

(2)设 $F[x(t)] = X(\omega)$.

$$j\omega X(\omega) + 2X(\omega) = \frac{1}{3+j\omega},$$

$$X(\omega) = \frac{1}{(2+j\omega)(3+j\omega)}$$

$$X(\omega) = \frac{1}{2 + j\omega} - \frac{1}{3 + j\omega}$$
$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(\omega) e^{j\omega t} d\omega$$
$$x(t) = (e^{-2t|} - e^{-3t})u(t)$$

4分

5分