Algebra: Chapter 0 Exercises Chapter 1, Section 4

David Melendez

February 10, 2017

Problem 4.1. Composition is defined for *two* morphisms. If more than two morphisms are given, e.g.:

$$A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} D \xrightarrow{i} E$$

then one may compose them in several ways, for example:

so that at every step one is only composing two morphisms. Prove that the result of any such nested composition is independent of the placement of the parentheses.

Solution. Let $Z_m \in \mathrm{Obj}(C)$ and $f_m \in \mathrm{Hom}(Z_{m+1}, Z_m)$ for every $m \in \mathbb{N}$. Let n be the number of morphisms we're composing. We will use induction on n.

Base case: Suppose n = 3. Then, since C is a category, we have $f_1(f_2f_3) = (f_1f_2)f_3$.

Induction: Suppose that all parenthesizations of f_1, \ldots, f_{j-1} under composition are equivalent for all $1 \leq j < n$. Then, for some $1 < k \leq n$, let α be some parenthesization of f_1, \ldots, f_{k-1} , and let β be some parenthesization of f_k, \ldots, f_n . Any parenthesization of f_1, \ldots, f_n will then be of the form $\alpha\beta$. By associativity and our inductive hypothesis, we have $\alpha = ((f_k \ldots f_{n-1})f_n)$, and so

$$\alpha\beta = (f_1 \dots f_{k-1}) ((f_k \dots f_{n-1}) f_n)$$

= $((f_1 \dots f_{k-1}) (f_k \dots f_{n-1})) f_n$
= $((\dots ((f_1 f_2) f_3) \dots) f_n$

as desired.

Problem 4.2. In Example 3.3 we have seen how to construct a category from a set endowed with a relation, provided this latter is reflexive and transitive. For what types of relations is the corresponding category a groupoid?

Solution. Recall that a groupoid is a category in which every morphism is an isomorphism. Let C be a category as defined in Example 3.3, and let (S, \sim) be the category's designated set and relation. C is a groupoid if \sim is symmetric.

Proof. Let (a,b) be a morphism from a to b in C. By our definition of C, we have $a \sim b$. Since \sim is symmetric, we then have $b \sim a$, and so (b,a) is also a morphism in C (from b to a). Composing these, we have $(a,b)(b,a) = (b,b) = \mathrm{id}_b$. Similarly, we also have $(b,a)(a,b) = (a,a) = \mathrm{id}_a$, making (a,b) an isomorphism as desired.

Problem 4.3. Let A, B be objects of a category C, and $f \in \text{Hom}_C(A, B)$ a morphism.

1. If f has a right-inverse, then f is an epimorphism.

Proof. Let $f \in \text{Hom}_C(A, B)$ be a morphism, $g \in \text{Hom}_C(B, A)$ its right-inverse, and $\alpha_1, \alpha_2 \in \text{Hom}_C(A, Z)$ morphisms for some $Z \in \text{Obj}(C)$ with $\alpha_1 f = \alpha_2 f$. We then have

$$\alpha_1 = \alpha_1(fg)$$

$$= (\alpha_1 f)g$$

$$= (\alpha_2 f)g$$

$$= \alpha_2(fg)$$

$$= \alpha_2$$

making f an epimorphism.