Vá com Calma

Por Paulo Oliva * 🔯 Brasil

Timelimit: 2

O prefeito de uma cidade pretende introduzir um novo sistema de transporte para simplificar a vida de seus habitantes. Isso será feito através da utilização de um cartão de débito, que o prefeito nomeou "GoEasy". Há dois meios de transporte na cidade: trens e ônibus. O sistema de trem é "baseado em zonas", enquanto o sistema de ônibus é "baseado em jornadas". A tarifa para a viagem é calculada como segue:

- Primeiramente há uma taxa de duas unidades monetárias para entrar no sistema de transporte, independentemente do meio inicial de transporte.
- Quando viajar de trem um cliente paga quatro unidades monetárias para cada mudança de zona.
- Ao viajar de ônibus a cliente paga uma unidade monetária a cada vez que ele/ela embarca num ônibus.

Um mapa do sistema de transporte irá proporcionar informações sobre as estações pertencentes a cada zona, e a seqüência de estações para cada itinerário de ônibus e trem. Ônibus e trens se movem em ambas as direções em cada itinerário, e nenhum trem ou ônibus passa pela mesma estação duas vezes durante uma única viagem através de um itinerário. É sempre possível ir de qualquer estação a qualquer outra estação usando trens e/ou ônibus. As regras para as tarifas de computação são rígidas: se durante uma viagem de trem um cliente entra em uma determinada zona duas vezes, ele/ela é cobrado(a) duas vezes, da mesma forma, se durante uma viagem de ônibus o cliente utiliza duas vezes o ônibus para o mesmo itinerário, ele/ela é cobrado(a) duas vezes.

No mapa do transporte acima um cliente pode viajar da estação 2 para a estação 4 pagando apenas duas unidades monetárias, usando a linha T1, uma vez que elas estão na mesma zona. Mas se o cliente precisa ir da estação 2 à 5, então o melhor é tomar o ônibus B3 para a estação 10 e, em seguida, tomar o ônibus B2 para a estação 5, pagando um total de quatro unidades monetárias. Ao invés de rastrear toda a viagem de cada passageiro, a idéia do prefeito é que máquinas sejam colocadas em todas as estações, e os viajantes devem passar seu cartão pessoal GoEasy apenas no começo e término de toda a viagem. Uma vez que todas as máquinas são interligadas em rede, com base na saída e entrada do sistema de estações, pode-se

calcular o custo mínimo possível para a viagem, e qual o valor será cobrado do cartão de débito do viajante. Tudo o que falta é um sistema de computador para fazer os cálculos para a tarifa a ser deduzida. Assim, dado o mapa do sistema de transporte na cidade, você deve escrever um programa para calcular a tarifa mínima que o cliente deve pagar para viajar entre duas paradas/estações dadas.

Entrada

A entrada contém vários casos de teste. A primeira linha de um caso de teste contém dois inteiros \mathbf{Z} e \mathbf{S} , que indicam, respectivamente, o número de zonas ($1 \le \mathbf{Z} \le 30$) e o número de estações de trem/ônibus na cidade ($1 \le \mathbf{S} \le 100$). Cada estação tem um único número de identificação variando de 1 a \mathbf{S} , e cada estação pertence exatamente a uma zona. Cada uma das seguintes \mathbf{Z} linhas descreve as centrais pertencentes a uma zona. A descrição de uma zona começa com um \mathbf{K} inteiro que indica o número de estações ($1 \le \mathbf{K} \le \mathbf{S}$) na zona, seguido de \mathbf{K} inteiros representando as estações na zona. Depois disso vem uma linha com dois números inteiros \mathbf{T} e \mathbf{B} , representando, respectivamente, o número de itinerários de trem ($1 \le \mathbf{T} \le 50$) e o número de itinerários de ônibus ($1 \le \mathbf{B} \le 50$). Em seguida, vem \mathbf{T} linhas descrevendo itinerários de trem, seguido por \mathbf{B} linhas descrevendo itinerários de ônibus. A descrição de cada itinerário é composto de uma linha contendo \mathbf{L} um inteiro que indica o número de estações ($2 \le \mathbf{L} \le \mathbf{S}$) no itinerário, seguido por \mathbf{L} inteiros especificando a seqüência de estações no itinerário. Finalmente, vem uma linha com dois inteiros \mathbf{X} e \mathbf{Y} ($1 \le \mathbf{X} \le \mathbf{S}$, $1 \le \mathbf{Y} \le \mathbf{S}$ e $\mathbf{X} \ne \mathbf{Y}$), especificando que o cliente viajou da estação \mathbf{X} para a estação \mathbf{Y} . O final da entrada é indicado por $\mathbf{Z} = \mathbf{S} = 0$.

Saída

Para cada caso de teste seu programa deve imprimir uma linha, contendo um inteiro representando o valor a ser deduzido do cartão GoEasy do viajante.

Exemplo de Entrada	Exemplo de Saída
3 15	2
2 8 9	4
7 2 3 4 7 12 13 14	
6 1 5 6 10 11 15	
3 3	
5 1 2 3 4 5	
3 1 6 11	
4 4 8 12 11	
6 2 7 12 13 14 15	
3 5 10 15	
6 1 2 3 8 9 10	
11 6	
3 15	
2 8 9	
7 2 3 4 7 12 13 14	
6 1 5 6 10 11 15	
3 3	
5 1 2 3 4 5	
3 1 6 11	
4 4 8 12 11	
6 2 7 12 13 14 15	
3 5 10 15	
6 1 2 3 8 9 10	
11 5	
0 0	

Exemplo de Entrada	Exemplo de Saída

Maratona de Programação da SBC 2004.