CHEMISTRY CLASS 12 BATCH

CHEMICAL KINETICS

DPP-01

1. For a gaseous reaction, the rate of reaction may be expressed in the units

(A) atm

- (B) atm s
- (C) atm/s
- (D) atm/s²

2. Which of the following will react at the highest rate?

- (A) 1 mol. of A & 1 mol. of B in a 1 L vessel
 - (B) 2 mol. of A & 2 mol. of B in a 2 L vessel
 - (C) 3 mol. of A & 3 mol. of B in a 3 L vessel
 - (D) All would react at the same rate

3. Which of the following does not affect the rate of reaction?

- (A) Amount of the reactant taken
- (B) Physical state of the reactant
- (C) ΔH of reaction
- (D) Size of vessel

4. The unit of rate constant and rate of reaction are same for

- (A) First order
- (B) Zero order
- (C) Second order
- (D) Third order

5. A gaseous reaction, $A_2(g) \rightarrow B(g) + 12C(g)$, shows increase in pressure from 100 mm to 120 mm in 5 minutes. The rate of disappearance of A_2 is

- (A) 4 mm min⁻¹
- (B) 8 mm min⁻¹
- (C) 16 mm min⁻¹
- (D) 2 mm min⁻¹

6. In a reaction, $2X + Y \rightarrow X_2Y$, the X disappears at

- (A) Half the rate as that of disappearance of Y
- (B) The same rate as that of disappearance of Y
- (C) The same rate as that of appearance of X_2Y
- (D) Twice the rate as that of appearance of X₂Y

7. For the reaction $N_2 + 3H_2 \rightarrow 2NH_3$, the rate of change of concentration for hydrogen is $-0.3 \times 10^{-4}~Ms^{-1}$. The rate of change of concentration of ammonia is

- $(A) -0.2 \times 10^4$
- (B) 0.2×10^{-4}
- (C) 0.1×10^{-4}
- (D) 0.3×10^{-4}

8. The graph plotted between concentration versus time

(A) It gives rate of disappearance of reactant

(B)
$$-\frac{d[C_2-C_1]}{t_2-t_1}$$

- (C) Both (A) & (B)
- (D) It predicts the order of reaction

9. The rate constant for the forward and backward reactions of hydrolysis of ester are 1.1×10^{-2} and 1.5×10^{-3} min⁻¹ respectively. The equilibrium constant of the reaction is

(A) 7.33

(B) 0.733

(C) 73.3

(D) 733

10. For the given reaction:

 $N_2 + 3H_2 \rightarrow 2NH_3$

Rate of formation of ammonia is 2×10^{-4} mol. L⁻¹ s ⁻¹ then find rate of disappearance of hydrogen?

- (A) 3×10^{-4} mol. L-1 s⁻¹
- (B) 2×10^{-4} mol. L-1 s $^{-1}$
- (C) 4×10^{-4} mol. L-1 s $^{-1}$
- (D) 6×10^{-4} mol. L-1 s⁻¹

11. In the reaction: BrO_3^- (aq) + $5Br^-$ (aq) + $6H+ \rightarrow 3Br_2(I)$ + $3H_2O(I)$ The rate of appearance of bromine (Br_2) is related to rate of disappearance of bromide ions as following

(A)
$$\frac{d(Br_2)}{dt} = -\frac{5}{3} \frac{d(Br^-)}{dt}$$

(B)
$$\frac{d(Br_2)}{dt} = \frac{5}{3} \frac{d(Br^-)}{dt}$$

(C)
$$\frac{d(Br_2)}{dt} = \frac{3}{5} \frac{d(Br^-)}{dt}$$

(D)
$$\frac{d(Br_2)}{dt} = -\frac{3}{5} \frac{d(Br^-)}{dt}$$

- 12. For the reaction $A + B \rightarrow Products$, it is observed that
 - A) On doubling the initial concentration of A only, the rate of reaction is also doubled and
 - B) On doubling the initial concentration of both A and
 - B, there is a change by a factor of 8 in the rate of the reaction.

The rate of this reaction is given by

- (A) Rate = $k [A] [B]^2$
- (B) Rate = $k [A]^2 [B]^2$
- (C) Rate = k[A][B]
- (D) Rate = $k [A]^2 [B]$
- 13. For the following reaction

 $C_6H_{12}O_6(aq) + H_2(g) \rightleftharpoons C_6H_{14}O_6(aq).$

Which one of the following is not affected by the addition of catalyst?

- (A) Rate of forward reaction
- (B) Rate of backward reaction
- (C) Time required to reach the equilibrium
- (D) Spontaneity
- 14. The rate of a reaction is expressed as

$$+\frac{1}{2}\frac{\Delta[C]}{\Delta t} = \frac{1}{3}\frac{\Delta[D]}{\Delta t} = \frac{1}{4}\left(-\frac{\Delta[A]}{\Delta t}\right) = \left(-\frac{\Delta[B]}{\Delta t}\right)$$

Then reaction is

- (A) $4A + B \rightarrow 2C + 3D$
- (B) B + 3D \rightarrow 4A + 2C
- (C) $A + B \rightarrow C + D$
- (D) $B + D \rightarrow A + C$