Complex Numbers: $z\overline{z} \in \mathbb{R}$, $z\overline{z} = a^2 + b^2 \ge 0$, $z\overline{z} = 0 \iff z = 0$ Standard Inner Product on $\mathbb{C}^n : \forall u, v \in \mathbb{C}^n$ $(u, v) = \overline{u}^T v$ CT Complex conjugate: $\mathbf{z} = \mathbf{a} + \mathbf{b} \mathbf{i} \Rightarrow \mathbf{\bar{z}} = \mathbf{a} - \mathbf{b} \mathbf{i}, \ \mathbf{z} = \mathbf{\bar{z}} \Longleftrightarrow \mathbf{z} \in \mathbf{R}$ Standard Norm: $\|\mathbf{u}\| = \sqrt{\langle u, u \rangle} = \sqrt{\overline{u}^T u}$ Orthogonal Projection on a Subspace: Vector Norms: $\begin{aligned} & \text{Properties: } \|x\| > 0 \ \|\lambda x\| = |\lambda| \|x\| \ \|x+y\| \leq \|x\| + \|y\| \\ & \text{I}_{\textbf{p}}\text{-norm:} \\ & \text{+ friends } \|x\|_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p} \|x\|_1 = \sum_{i=1}^n |x_i| \ \|x\|_2 = \sqrt{\sum_{i=1}^n x_i^2} \\ & \|x\|_\infty = \max_{1 \leq i \leq n} |x_i| \end{aligned}$ Equivalence: for r, s > 0, the I_s and I_b norms are equivalent iff: $\forall x \in \mathbb{R}^n, r\|x\|_a \leq \|x\|_b \leq s\|x\|_a \ \forall x \in \mathbb{R}^n, (1) \ \|x\|_\infty \leq \|x\|_2 \leq \|x\| \end{aligned}$ $\pi_U : \mathbb{R}^m \to \mathbb{R}^m$ For $A \in \mathbb{R}^{m \times n}$ all vectors $b \in \mathbb{R}^{m}$, there exists a unique $b_i \in im(A)$, and a unique $b_k \in \ker(A^T)$ such that $b = b_i + b_k$. (2) $||x||_2 < \sqrt{n}||x||_{\infty}$ (3) $\|x\|_1 \le \sqrt{n} \|x\|_2$ Properties: same as above + $\|\dot{AB}\| \le \|A\|\|B\|$ (sub-multiplicative) **Norms:** largest of abs sum of cols largest singular value of \mathbf{A} $\|\mathbf{A}\|_1 = \max_j \|a_j\|_1$ $\|\mathbf{A}\|_2 = \sigma_1(\mathbf{A})$ largest of abs sum of rows $\|\boldsymbol{A}\|_{\infty} = \max \|a^i\|_1$ Matrix norm ||.|| on $R^{m \times n}$ is consistent with the vector norms $|| . ||_a$ on \mathbb{R}^n and $|| . ||_b$ on \mathbb{R}^m if $\forall A \in \mathbb{R}^{m \times n}$, $x \in \mathbb{R}^n$: $\| m{A} m{x} \|_b \leq \| m{A} \| \| m{x} \|_a$ if a = b, || . || compatible with || . || a $\begin{array}{l} \text{Subordinate Matrix Norm:} \\ \forall \boldsymbol{A} \in \mathbb{R}^{m \times n}, \|\boldsymbol{A}\| = \max\{\|\boldsymbol{A}\boldsymbol{x}\| : \boldsymbol{x} \in \mathbb{R}^n, \|\boldsymbol{x}\| = 1\} \\ \forall \boldsymbol{A} \in \mathbb{R}^{m \times n}, \|\boldsymbol{A}\| = \max\{\|\boldsymbol{A}\boldsymbol{x}\| : \boldsymbol{x} \in \mathbb{R}^n, \|\boldsymbol{x}\| = 1\} \end{array}$ $= \max\{\frac{\|Ax\|}{\|x\|} : x \in \mathbb{R}^n, x \neq 0\}$ Frobenius Norm ||x|| $\sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} |a_{ij}|^2}$ $= \max\{\|Ax\| : x \in \mathbb{R}^n, \|x\| \le 1\}$ $\|A\|_F =$

Least Square Method + Linear Regression:

If $\mathbf{A}\mathbf{x} = \mathbf{b}$ has no solution we attempt to minimise $||Ax - b||_2^2$.

 $v \mapsto \pi_U(v) = U(U^T U)^{-1} U^T v$

 $im(\mathbf{A}) \perp ker(\mathbf{A}^T)$

Normal Equation: ATAx = ATb gives solution to the least square problem. Finding $s_0 \in R$ and $s \in R^n$ minimising the sum of errors between the model predictions $\mathbf{s_0} + \mathbf{s} \cdot \mathbf{a_i}$ and observations y_i , can be done by finding the $z = [s_0 ...$ s_n]^T minimising $||Az - y||_2^2$, i.e. by solving the normal equation $A^TAz = A^Ty$. $||Ax - b||_2$ is minimised

$$\Leftrightarrow \|Ax - b\|_2 \text{ is minimised}$$
 $\Leftrightarrow \|Ax - b\|_2 = 0 \iff Ax = b\|_2$
 $\Leftrightarrow A^T A x = A^T b$

Singular Value Decomposition: $A = USV^T$

For p = 1, 2, ∞ , matrix norm $| | . | |_p$ is

1. Find eigenvalues of AAT (these form matrix S which has the same dimensions as A and descending sqrt of eigenvalues in the diagonal) 2. Find orthonormal set of vectors of ATA (these are the columns of V - remember the final product uses VT!!)

subordinate and compatible with vector norm $||.||_p$

3. Find columns of **U** using formula $oldsymbol{u}_i = rac{1}{\sigma_i} oldsymbol{A} oldsymbol{v}_i$ for $1 \le i \le \text{rank}(\mathbf{A})$ – remember the \mathbf{V}_i come from \mathbf{V} not $\mathbf{V}^{\mathsf{T}}!!$ To extend \mathbf{U} to enough cols pick $\mathbf{v}_{\mathbf{i}}$ which are perp to lin comb of existing v_i and G-S Mat Dims: A: $n \times m$, U: $n \times n$, S: $n \times m$, V^T : $m \times m$

 $oldsymbol{A} = \sigma_1 oldsymbol{u}_1 oldsymbol{v}_1^T + \sigma_2 oldsymbol{u}_2 oldsymbol{v}_2^T + \cdots + \sigma_r oldsymbol{u}_r oldsymbol{v}_r^T$ rank(A) = no. +ve singular values in S $\|A\|_2 = \sigma_1$, the largest singular value of AThe positive singular values of **A** are the square roots of the eigenvalues of AAT or ATA Orthonormal Basis for im(A): span of the first rank(A) columns of U

Orthonormal Basis for ker(A): span of remaining columns of V after taking out first rank(A) cols

Generalised Eigenvalues:

Given square $A \in \mathbb{R}^{n \times n}$ a non-zero vector $\mathbf{v} \in \mathbb{C}^n$ is a generalised eigenvector of rank m associated with eigenvalue $\lambda \in C$ for A if:

 $(\boldsymbol{A} - \lambda \boldsymbol{I})^m \boldsymbol{v} = \boldsymbol{0}$ and $(\boldsymbol{A} - \lambda \boldsymbol{I})^{m-1} \boldsymbol{v} \neq \boldsymbol{0}$ Thus, any eigenvector associated with λ is itself a generalised eigenvector of rank 1.

- The image of a vector of the eigenspace - Associated to λ through A – λI is 0.
- of rank 1 (if there are some) through A -λI is in the eigenspace associated to λ .
- of rank 2 (if there are some) through A-λI is in the vector space generated by the generalised eigenvector of rank 1.
- and so forth...

Generalised EVs Associated with λ:

 $A \in \mathbb{R}^{n \times n}$ with eigenvalue $\lambda \in \mathbb{C}$ of algebraic multiplicity k, there are k linearly independent generalised eigenvectors v ∈ Cⁿ associated with λ . It includes the eigenvectors associated with λ as they are generalised eigenvectors Number of Generalised Eigenvectors:

A ∈ R^{n x n} has n linearly independent generalised eigenvectors. There exist a basis of Cn of generalised eigenvectors of **A**. $\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$

Example: 0 1 0 For matrix **A** defined as: 0 0 1 we have $det(A - \lambda I) = (1 - \lambda)^3$ which gives $\lambda_1 = 1$ and 2 linearly independent EVs $v_1 = (0, 1, -1)^T$, $v_2 = (1, 0, 0)^T$ but since λ_1 has algebraic multiplicity of 3 we find v_3 using $(A - \lambda_1 I)v_3 = v_2$ which gives $v_3 = (0, 0, 1)^T$. We use v_2 here as it is in the row space (a multiple of it is a row of A)

so v₃ will be linearly independent.

Principal Component Analysis:

 $A \in \mathbb{R}^{m \times n} = m$ samples of n dimensional data $A = USV^T$ - principal axes of A =columns of V- principal components of A = columns of US Both over $1 \le i \le rank(A)$ First principal axis: $oldsymbol{w}_{(1)} = rg \max oldsymbol{w}^T oldsymbol{A}^T oldsymbol{A} oldsymbol{w}$ Given $A=\sigma_1u_1v_1^T+\ldots+\sigma_ru_rv_r^T$ with $\sigma_1\geq\ldots\geq\sigma_r>0$

we see the relation between **A** and the principal components and axes. If $\sigma_1 >> \sigma_2$, the data in **A** can be compressed by projecting in the direction of the principal component: If $\sigma_1\gg\sigma_2, \ {
m then}\ {m A}pprox\sigma_1{m u}_1{m v}_1^T$

This is sometimes used in data compression, PCA, and dimensionality reduction algorithms

Jordan Normal Form:

$$\begin{bmatrix} {\bf Jordan \, Normal \, Form:} \\ {\bf J}_{k_1}(\lambda_1) & 0 \\ {\bf J}_{k_2}(\lambda_2) & \\ & \ddots & \\ 0 & {\bf J}_{k_n}(\lambda_n) \end{bmatrix} {\bf J}_{k_i}(\lambda_i) = \begin{bmatrix} \lambda_i & 1 & 0 & \dots & 0 & 0 \\ 0 & \lambda_i & 1 & \ddots & 0 & 0 \\ 0 & 0 & \lambda_i & \ddots & 0 & \vdots \\ \vdots & \ddots & \ddots & \ddots & 1 & 0 \\ 0 & 0 & 0 & 0 & \lambda_i & 1 \\ 0 & 0 & \dots & 0 & 0 & \lambda_i \end{bmatrix}$$

Note: The *algebraic* multiplicity of an eigenvalue λ is the sum of the sizes of blocks with λ on the diagonal. The geometric multiplicity of λ is the number of blocks with λ on the diagonal.

1. Find eigenvalues of **A** (note the \mathbf{a}_i of each λ) 2. Find eigenspaces for each (note \mathbf{g}_i of each $\mathbf{E}_{\lambda i}$)

3. If $\mathbf{g_i} < \mathbf{a_i}$ find missing $\mathbf{a_i} - \mathbf{g_i}$ generalised eigenvectors 4. Put eigenvectors in order into matrix (change of basis matrix B) 5. J = B⁻¹AB

QR Algorithm:

Used to find eigenvalues of matrices, works for most matrices. Consider sequence A_k defined below:

For $k \in N$ apply the QR decomposition to

 $A_k: A_k = Q_{k+1}R_{k+1}$

Stop after sufficient iterations

Properties: (note Q~ is Q with ~ on top denoting orthogonality of Q)

For $k \in \mathbb{N}$, A_k is similar to A. $A_k = Q_k^T A Q_k^T$ so A_k and Ahave the same eigenvalues and \mathbf{v} is an eigenvector of A_k iff Q_k^*v is an eigenvector of A. The sequence A_k converges to an upper triangular matrix under certain conditions. The eigenvalues of an upper triangular matrix are the diagonal elements.

Symmetric A: All A_k are symmetric. For large enough k, the columns of $\mathbf{Q}_{\mathbf{k}}^{\mathbf{A}}$ are in effect the eigenvectors of \mathbf{A} .

Fixed Point Equations:

For non-empty set S and f: $S \rightarrow S$, $p \in S$ is called a fixed point if f(p) = p. E.g. for $f(x) = x^2$, f(p) = p for p = 0, 1: $f(p) = p \iff p^2 = p \iff p^2 - p = 0 \iff p(p-1) = 0$ Contraction:

For metric space (S, d) and $f: S \rightarrow S$, f is called a contraction of S (or a contracting map) if there exists $0 \le \alpha < 1$ called the contraction constant such that: $\forall x,y \in S, \ d(f(x),f(y)) \leq \alpha d(x,y)$

Fixed Point Theorem:

Let (\mathbf{S}, \mathbf{d}) be a complete metric space and \mathbf{f} a contraction of S. Then f has a unique fixed point. Applications: Newton's Method and Initial Value Problem for differential equations.

Orthogonal Matrix: Symmetric Matrices: $Q \in \mathbb{R}^{n \times n}$ iff $Q^{-1} = Q^T$ $\mathbf{Q} \in \mathbf{K}^{-1} \quad \mathbf{H} \quad \mathbf{Q} \quad -\mathbf{Q}$ $\mathbf{A} = \frac{\sqrt{2}}{3} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \quad \mathbf{B} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 0 & 0 \end{bmatrix}$

A is symmetric if $A^T = A$, and if $A \in R^{n \times n}$ all eigenvalues λ , of A are real. All A. have algebraic multiplicity = geometric multiplicity. All eigenvectors for distinct eigenvalues are orthogonal.

Spectral Theorem:

For symmetric $A \in \mathbb{R}^{n \times n}$, A can be diagonalised as $A = ODO^T = ODO^{-1}$ where Ois orthogonal and **D** is a diagonal matrix where the diagonal elements are A's eigenvalues.

1. Roots of **det** (A – λ I) (eigenvalues $(\lambda_i)_{1 \le i}$) 2. For each λ_i find the corresponding eigenspace (sub into $\mathbf{A} - \lambda \mathbf{I}$ and solve = 0) 3. Make orthonormal (magnitude 1, and may need gram-schmidt)

4. Combine bases to form Q

5. Write associated eigenvalues for cols of **Q** in order to form **D**

Positive (Semi-)Definite Matrices:

3) $\vec{u}_3 = \vec{v}_3 - \frac{\langle \vec{v}_3, \vec{u}_1 \rangle}{|\vec{u}_1|^2} \vec{u}_1 - \frac{\langle \vec{v}_3, \vec{u}_2 \rangle}{|\vec{u}_2|^2} \vec{u}_2$

 $=\sum_{i} \overline{u_i}v_i$

Orthogonal transformations preserve the

magnitude of the angle between any two

 $orall oldsymbol{u}, oldsymbol{v} \in \mathbb{R}^n, \ \widehat{oldsymbol{Qu} \, oldsymbol{Qv}} = \widehat{oldsymbol{u} \, oldsymbol{v}}$

original $\vec{\mathbf{v}}_{1}, \vec{\mathbf{v}}_{2}, \dots \vec{\mathbf{v}}_{n} \longrightarrow \frac{\text{orthogonal}}{\text{basis}} \vec{\mathbf{u}}_{1}, \vec{\mathbf{u}}_{2}, \dots \vec{\mathbf{u}}_{n}$

2) $\vec{\mathbf{u}}_{_2} = \vec{\mathbf{v}}_{_2} - \frac{\langle \vec{\mathbf{v}}_{_2}, \vec{\mathbf{u}}_{_1} \rangle}{|\vec{\mathbf{u}}_{_1}|^2} \vec{\mathbf{u}}_{_1} \quad \operatorname{proj}_{u}(v) \stackrel{\text{def}}{=} \frac{u \cdot v}{u \cdot u} u$

<v, u> = v . u (see above for complex version)

Euclidian length of any vector, and the

vectors: $orall oldsymbol{u} \in \mathbb{R}^n, \; \|oldsymbol{Q}oldsymbol{u}\|_2 = \|oldsymbol{u}\|_2$

det Q = 1 or -1, for all eigvals λ_i , $|\lambda_i| = 1$

Gram-Schmidt Bullshit:

1) ü, = v.

Definite iff $\forall x \in \mathbb{R}^n - \{0\}, \ x^T A x > 0$ - all eigenvalues strictly positive

- all diagonal elements strictly positive

- $\max(A_{ii}, A_{jj}) > |A_{ij}|$ Semi iff $\forall \boldsymbol{x} \in \mathbb{R}^n, \ \boldsymbol{x}^T \boldsymbol{A} \boldsymbol{x} \geq 0$

- all eigenvalues are non-negative - all diagonal elements non-negative

 $-\max(A_{ii}, A_{jj}) \ge |A_{ij}|$

Largest coefficient of A on diagonal for both definite and semi-definite Negative equivalents with flipped signs For matrix **A**, **A**^T**A** and **AA**^T are both symmetric and positive semi-definite

Upper triangular iff $\forall i > j$, $A_{ij} = 0$

Cholesky Decomposition <3: $A = LL^T$

A must be positive (semi-)definite and symmetric

there exists a matrix
$$L \in \mathbb{R}^{n \times n}$$
 such that:
 $\iff \begin{cases} L \text{ is lower-triangular} \\ A = LL^T \end{cases}$

A is positive definite

positive definite symmetric matrix there exists a unique matrix $L \in \mathbb{R}^{n \times n}$ such that: $\iff \begin{cases} L \text{ is lower-triangular} \\ A = LL^T \\ \text{the diagonal elements of } L \text{ are positive} \end{cases}$ $\begin{bmatrix} l_{11} & 0 & 0 \end{bmatrix}$ Solve $\mathbf{A} = \mathbf{L} \mathbf{L}^{\mathsf{T}}$

 l_{21} $l_{22} = 0$ l_{31} l_{32} l_{33} $l_{11}l_{21}$

with unit normal $u \in \mathbb{R}^m$, i.e.,

- H_u is involutory: $H_u = H_u^{-1}$

- $\mathbf{H}_{\mathbf{u}}$ is orthogonal: $\mathbf{H}_{\mathbf{u}}^{\mathsf{T}} = \mathbf{H}_{\mathbf{u}}^{\mathsf{-1}}$

vectors: $||H_{ij}(x)|| = ||x||$

Householder Map:

reflection wrt P

Properties:

 $l_{11}l_{31}$ $oldsymbol{L}oldsymbol{L}^T = oldsymbol{ar{l}}_{11} oldsymbol{ar{l}}_{21}$ $\begin{array}{ccc} l_{11}^{21} & l_{21}^{21} + l_{22}^{2} & l_{21}l_{31} + l_{22}l_{32} \\ l_{21}l_{31} + l_{22}l_{32} & l_{31}^{2} + l_{32}^{2} + l_{33}^{2} \end{array}$ $l_{11}l_{31}$

For hyper-plane P going through the origin

 $P = \{x \in R \text{ m} : u \cdot x = 0\}$ the Householder

matrix defined by $\mathbf{H}_{\mathbf{u}} = \mathbf{I} - \mathbf{2uu}^{\mathsf{T}}$ induces

QR Decomposition (Gram-Shit):

A = OR

 $A = [a_1, ..., a_n]$, assuming $a_1, ..., a_n$ are linearly independent

1. Use Gram-Schmidt to construct an orthonormal basis $(e_1, ..., e_n)$ s.t.

span {e₁, ..., e_n} = span {a₁, ..., a_n} 2. $\mathbf{Q} = [\mathbf{e}_1, ..., \mathbf{e}_n]$. Note \mathbf{Q} is semi-orthogonal:

$$egin{aligned} oldsymbol{Q}^T oldsymbol{Q} &= egin{bmatrix} oldsymbol{e}_1^T \ dots \ oldsymbol{e}_n^T \end{bmatrix} egin{bmatrix} oldsymbol{e}_1 & \dots & oldsymbol{e}_n \end{bmatrix} &= oldsymbol{I}_{n imes n} \ oldsymbol{e}_n & \dots & oldsymbol{e}_n & \dots & oldsymbol{e}_n & oldsymbol{e}_n \end{bmatrix} &= oldsymbol{I}_{n imes n} & oldsymbol{e}_n & \dots & oldsymbol{e}_n & old$$

3. Choose
$$\boldsymbol{R} = \begin{pmatrix} (e_1 \cdot a_1) & (e_1 \cdot a_2) & \cdots & (e_1 \cdot a_m) \\ 0 & (e_2 \cdot a_2) & \cdots & (e_2 \cdot a_m) \\ \vdots & 0 & \ddots & \vdots \\ 0 & \cdots & 0 & (e_m \cdot a_m) \end{pmatrix}$$

Convergence of QR in A = LU Case:

Non-singular matrix A can be factorised as

- $\mathbf{H}_{\mathbf{u}}$ preserves angles between vectors - All rotations and reflections are orthogonal operations - Orthogonal projection Q on the hyperplane **P** is given by: $\mathbf{Q} = \mathbf{I} - \mathbf{u}\mathbf{u}^{\mathsf{T}}$ with $Q^2 = Q$ and $Q = Q^T$

- Hu preserves the Euclidian length of

A = LU where L is lower triangular and U upper, iff A can be reduced to REF without swapping any rows. Transform A into REF to get U, then we know $L^{-1}A = U$ so can find L. Uniqueness: A = LU is only unique iff A is non singular and the diagonal elements of L are

 $A^n = Q_1 \dots Q_n R_1 \dots R_n$

Convergence: Let $A \in \mathbb{R}^{n \times n}$ be a symmetric positive definite matrix with distinct eigenvalues $\lambda_1 > \lambda_2 > ... > \lambda_n > 0$ with eigendecomposition $A = Q \Lambda Q^T$. Suppose $Q^T = LU$ with unit lower triangular L and the diagonal elements of U are positive. Then $A_{\nu} \rightarrow \Lambda$

Convergence:

Convergence of real numbers:

 $\lim_{\mathbf{n}\to\infty}\mathbf{a}_{\mathbf{n}}=\mathrm{I}\,\mathrm{iff}\,\,\forall\epsilon>0,\,\,\exists N\in\mathbb{N}\,\,\mathrm{such\,\,that}\,\,\forall n>N,\,\,|a_n-l|<\epsilon$

- 1. Find limit I 2. Take $\varepsilon > 0$

3. Put $|a_n - I| < \epsilon$, find expression for n > ... and set N = roof of what n is >Cauchy Sequence: $\forall \epsilon > 0, \ \exists N \in \mathbb{N} \text{ such that } \forall n,m>N, \ |a_n-a_m|<\epsilon$ (terms get gradually closer). a_n is only convergent if it is Cauchy.

Metric Spaces:

A tuple (S, d) where S is a non-empty set and d is a metric over S (d: S x S \rightarrow R). Prove the below properties hold to show we have a metric space: 1. $\forall x, y \in S, \ d(x, y) \ge 0$ Convergence in a Metric Space:

- $2. \ \forall x,y \in S, \ d(x,y) = 0 \iff x = y$
- $3. \ \forall x,y \in S, \ d(x,y) = d(y,x)$
- a_n converges to I iff: $\forall \epsilon > 0, \ \exists N \in \mathbb{N} \text{ such that }$ $\forall n > N, \ d(a_n, l) < \epsilon$

4. $\forall x, y, z \in S$, $d(x, y) \leq d(x, z) + d(z, y)$ If $\mathbf{a_n}$ converges it's limit is unique.

Space = (S, d), sequence = a_n , limit = $I \in S$

Cauchy Seq. (Metric Spaces): $\forall \epsilon > 0, \ \exists N \in \mathbb{N} \text{ such that } \forall n, m > N, \ d(a_n, a_m) < \epsilon$ For (S, d) and a_n a sequence in S, a_n is only convergent if it is Cauchy. Complete Spaces:

Metric space (S, d) is a complete space iff every Cauchy sequence in S is also converging in **S.** For any k > 0, R_k equipped with any of the three metrics induced by I_1 , I_2 or I_{∞} norms is complete.

Condition Number:

Measure of sensibility of a problem to small fluctuations in input. Stability of the System: how the system responds to noise in input Sensibility of Solution: how small changes in parameters affect the solution of a parametric equation

Let P = problem of interest, d = input, $\epsilon = \text{perturbation in input}$, s(d)= desired output, $s(d + \varepsilon)$ = perturbed output.

$$\kappa(P) = \max_{\epsilon} \frac{\|s(d) - s(d + \epsilon)\|}{\|\epsilon\|}$$

Relative Condition Number:

$$\kappa(P) = \max_{\epsilon} \frac{\|s(d) - s(d+\epsilon)\|}{\|\epsilon\|} \frac{\|d\|}{\|s(d)\|}$$
 Value depends on the norms being used. Can also be defined in

terms of relative difference.

Unstable system/Ill-conditioned problem: large condition number (cannot always assume ill-conditioned for matrices though!!) Stable system/Well-conditioned problem: small condition number Condition Number for Square Non-Singular Matrices:

$$\kappa(A) = ||A^{-1}|| ||A||$$

Gives a bound on the relative change on A-1 given by perturbation on **A.** $\kappa(A) \ge 1$ and $\kappa(\gamma A) = \kappa(A)$

Pseudo-Inverse and Condition Number:

Not all matrices can be inverted hence k(A) cannot be calculated. We can instead use the pseudo-inverse and define a generalisation of the above formula for k(A):

$$\kappa(A) = ||A^{\dagger}|| ||A|| \quad A^{\dagger} = (A^T A)^{-1} A^T$$

$$\mathbf{A}^{\mathsf{T}} \mathbf{A} \text{ is square, then } \mathbf{A} \mathbf{x} = \mathbf{b} \rightarrow \mathbf{A}^{\mathsf{T}} \mathbf{A} \mathbf{x} = \mathbf{A}^{\mathsf{T}} \mathbf{b} \rightarrow \mathbf{x} = (\mathbf{A}^{\mathsf{T}} \mathbf{A})^{-1} \mathbf{A}^{\mathsf{T}} \mathbf{b}$$

Iterative Solutions of Linear Equations:

Jacobi: each stage uses the previous stage's results Gauss-Seidel: each stage uses most recent values

G-S Convergence: For Ax = b, converges if

G-S Convergence: For
$$\mathbf{A}\mathbf{x} = \mathbf{b}$$
, converges if
$$\begin{vmatrix} a_{i,i} \end{vmatrix} > \sum_{j=1}^n |a_{i,j}|$$
 Simultaneous equations
$$\mathbf{u}(\mathbf{x_1}, \mathbf{x_2}) \text{ and } \mathbf{v}(\mathbf{x_1}, \mathbf{x_2}) \text{ converge if:} \qquad j \neq i$$

$$\left| \frac{\partial u}{\partial x_1} \right| + \left| \frac{\partial u}{\partial x_2} \right| < 1 \quad \text{and} \quad \left| \frac{\partial v}{\partial x_1} \right| + \left| \frac{\partial v}{\partial x_2} \right| < 1$$
 Prove G-S convergence using 2x2 general \mathbf{A} and \mathbf{b} Splitting – General Method:

$$\left|\frac{\partial u}{\partial x_1}\right| + \left|\frac{\partial u}{\partial x_2}\right| < 1$$
 and $\left|\frac{\partial v}{\partial x_1}\right| + \left|\frac{\partial v}{\partial x_2}\right| < 1$

Splitting – General Method:

A = G + R, then solve $x_{k+1} = Mx_k + c$. For consistent norm ||.|| on $R^{n \times n}$ if ||M|| < 1 the sequence converges for any starting point x_0 . Rate of convergence $\mathbf{r} \propto -\log_{10} ||\mathbf{M}||$

Note about non-diagonal matrices:

For a matrix like $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ with all diagonal elements 0, we cannot split it so we use a change of basis $C = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$ (**C = C⁻¹**):

$$Ax = b \Leftrightarrow C^{-1}Ax = C^{-1}b \Leftrightarrow (C^{-1}AC)C^{-1}x = C^{-1}b$$

By denoting $C^{-1}AC = B$, $C^{-1}x = y$, and $C^{-1}b = c$ we solve By = c and can retrieve x through x = Cy.

Jacobi Method:

A = D + R where R = L + U (D = diags, L = lower tri, U = upper tri)

 $M = -D^{-1}R$ and $c = D^{-1}b$ Gauss-Seidel Method:

 $A = (D + L) + U, M = -(D + L)^{-1}U, c = (D + L)^{-1}b$

Condition Number and Convergence:

For Ax = b if the condition number of A is large J and G-S converge more slowly/not at all

If A is weakly row diagonally dominant and irreducible, J and G-S both converge (G-S faster)

Diagonally Dominant Matrix:

 $A \in \mathbb{R}^{n \times n}$ is strictly row diagonally dominant if:

A is non-singular.
$$\forall i, \left|a_{i,i}\right| > \sum_{j \neq i} \left|a_{i,j}\right|$$

 $\begin{array}{l} \forall i, |a_{i,l}| > \displaystyle \sum_{j \neq l} |a_{i,j}| \\ \textbf{A} \text{ is non-singular.} \\ \text{Let } \textbf{A} \in \mathbf{R}^{n \times n} \text{ and } \rho(\textbf{A}) = \max_{\boldsymbol{\lambda} \in \operatorname{Sp}(\textbf{A})} |\boldsymbol{\lambda}| \text{ be the spectral radius of } \textbf{A}. \end{array}$ For $\epsilon > 0$, there exists an induced norm such that $||A|| < \rho(A) + \epsilon$.

Irreducible Matrix:

 $\label{eq:continuous} \begin{array}{l} \textbf{Irreducible Matrix:} \\ \textbf{If A (an n x n matrix) cannot take the form } \\ P^TAP = \begin{bmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{bmatrix} \\ \textbf{through symmetric permutation of its rows and columns, where } \mathbf{A_{11}} \\ \end{array}$ etc are square block matrices and P is a permutation matrix.

Permutation Matrix: Square matrix with all elements 0 except exactly one 1 in each row/column. $P^TP = PP^T = I$.

Checking Irreducibility with Graph:

If \mathbf{a}_{ij} where $\mathbf{j} \neq \mathbf{j}$, draw an arrow from point \mathbf{i} to $\mathbf{j} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ Irreducible iff from any point you can go to any other point by following arrows. Given graph is for a 4x4 reducible matrix.

Gradient Based Optimisation:

Quadratic Form:
$$Q(x_1, x_2) = x_1^2 + 2x_1x_2 - 3x_2x_1 + 5x_2^2$$

 $Q(x_1, x_2) = \begin{bmatrix} x_1 & x_2 \end{bmatrix}^T \begin{bmatrix} 1 & 2 \\ -3 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} Q(x_1, x_2) = \begin{bmatrix} x_1 & x_2 \end{bmatrix}^T \begin{bmatrix} 1 & -0.5 \\ -0.5 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$

Gradient:
$$\vec{x}^{(\kappa+1)} = \vec{x}^{(\kappa)} - \alpha \nabla f(\vec{x}^{(\kappa)})$$
 where α is a fixed step size Find α : $x^{(1)} = x^{(0)} + hg^{(0)} = \begin{bmatrix} 2 \\ 1 \end{bmatrix} + h \begin{bmatrix} 4 \\ 4 \end{bmatrix} = \begin{bmatrix} 2+4h \\ 1+4h \end{bmatrix}$ Alt: choose const, diminishing step size

For symmetric A: $f(x_1,x_2) = x^TAx - 2x^Tb$ Gradient/Steepest Descent: Finds local minimum Gradient: $\vec{x}^{(k+1)} = \vec{x}^{(k)} - \alpha \nabla f(\vec{x}^{(k)})$ where α is a fixed step size Find α : $x^{(1)} = x^{(0)} + hg^{(0)} = {2 \brack 1} + h{4 \brack 4} = {2 + 4h \brack 1 + 4h}$ Alt: choose const, diminishing step size Sub \mathbf{x}_1 into $f(\mathbf{x})$ and solve $d/d\mathbf{n} = 0$ to get optimal $\mathbf{h} = \alpha \mathbf{n}$ ($\mathbf{x}^{(k)} = \alpha \nabla f(\vec{x}^{(k)})$). For quadratic function $f(\mathbf{x}) = \frac{1}{2}x^TQx - b^Tx$, $\alpha_k = \frac{(g^{(k)})^T(g^{(k)})}{(g^{(k)})^T)Hg^{(k)}}$ where $g^{(k)} = \nabla f(\mathbf{x})$ and $H = Q = \nabla^2 f(\mathbf{x})$

Remember works in orthogonal steps, so $(x^2 - x^1) \cdot (x^3 - x^2) = 0$

Gradient Ascent: Finds local maximum

Conditioning of a Problem:

T-Digit Arithmetic:

Rule of thumb: for condition number k(A) you lose about c = log₁₀ k(A) significant figures in accuracy **Error Bounds and Iterative Refinement:**

When solving Ax = b, with approximate solution x^{-} , using the residual vector $||r|| = ||b| = Ax^{\sim}||$ or other geometric measures may not always be good ways to measure how good an estimate x~ is. The norms of A and A-1 may provide useful information on error bounds through the following theorem: Suppose that x~ is an approximation to the solution of Ax = b, and A is a non-singular matrix and r is the residual vector of \mathbf{x}^{-} . Then for any natural norm $\|x-\tilde{x}\| \leq \|r\| \|A^{-1}\|$ and if $\mathbf{x} \neq \mathbf{0}$ and $\mathbf{b} \neq \mathbf{0}$,

$$\frac{\|x - \tilde{x}\|}{\|x\|} \le \|A\| \|A^{-1}\| \frac{\|r\|}{\|b\|} = \kappa(A) \frac{\|r\|}{\|b\|}$$

E.g. for **A** we have $\|\mathbf{A}\|_{\infty} = 3.0001$, $\|\mathbf{A}^{-1}\|_{\infty} =$ 20000, and $k(A) = ||A||_{\infty} ||A^{-1}||_{\infty} = 60002$ – the size of the condition number should keep us away from making hasty decisions on accuracy.

Iterative Techniques for Eigenvalues and Eigenvectors Power Method/Power Iteration:

Take initial vector $\mathbf{x_0} = [\mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1}]^T$. Converges to the

lake initial vector
$$\mathbf{x}_0 = [\mathbf{1}, \mathbf{1}, \mathbf{1}]^n$$
. Converges to eigenvalue with largest modulus.
$$x_{k+1} = \frac{Ax_k}{\|Ax_k\|} \text{ and } x_0 \in \mathbb{R}^n \backslash \{0\}$$

$$x_k \underset{k \to \infty}{\longrightarrow} v \text{ and } \|Ax_k\| \underset{k \to \infty}{\longrightarrow} |\lambda|$$
 Limitations: If not all eigenvalues have distinct

modulus, will return linear combination of the corresponding EVs. Convergence slow if dominant eigenvector not very dominant.

Inverse Power Iteration: Do the above on A-1 to get $1/\lambda$ where λ is the EV with smallest modulus of **A**. Shifts: A – sl

 $\lambda \in R$ is an eigenvalue of matrix A iff $(\lambda - s)$ is an eigenvalue of matrix A - sI. If $\{\lambda, v\}$ is an eigenpair of Aand $s \neq \lambda$ then $\{1/(\lambda - s), v\}$ is an eigenpair of $(A - sI)^{-1}$. Allows us to focus on other eigenvalues.

Method: choose **s** such that $\mu_1 = 1/(\lambda_i - s)$ is the dominant eigenvalue of (A - sI)-1. The eigenvalue of interest for A is given by : $\lambda_i = 1/\mu_1 + s$. If the eigenvector oscillates, $1/\mu_1$ should be negative. Ravleigh Quotient:

While using an iterative technique, can use Rayleigh Quotient to monitor convergence to eigenvalue detection to initial content to the general to eigenvalue directly, not it's modulus: $R(A,x) = \frac{x^T A x}{x^T x}$ Find second dominant eigenvalue by deflating **A** to $\mathbf{B} \in \mathbf{R}^{(n-1) \times (n-1)}$ which has all eigenvalues of **A** except

Steps: find $u=x_1+\|x_1\|_2e_1$, do $H=I-\frac{2uu^T}{u^Tu}$, then $HAH^{-1}=\begin{bmatrix} \lambda_1 & b^T \\ 0 & B \end{bmatrix}$ (remember $\mathbf{H}^{-1}=\mathbf{H}$) Then can use \mathbf{B} to get $\pmb{\lambda}_2$

Linear Programming: Graphical Method:

Draw lines, shade exclusion zones, rearrange objective function for v. move line until maximised, sub for P. Simplex Method: (stop when no more -ve in z row)

- 1. Most negative value in z row (highlight col)
- 2. Ratios (sol / col), highlight lowest ratio's row 3. Replace row var (basic) with highlighted col var (nonbasic)
- 4. Make pivot = 1 (divide highlighted row by cross highlighted value
- 5. Gaussian elimination to clear rest of highlighted col

Conjugate Gradient Method:

Ax = b, for $A \in \mathbb{R}^{n \times n}$ converge in n steps Larger condition number = slower convergence Check convergence by size of norm of residual Iteration k > 1:

Iteration 1: Use $\mathbf{r}_0 = \mathbf{b} - \mathbf{A}\mathbf{x}_0$ as \mathbf{d}_1 $\alpha_1 = (\mathbf{r_0}^\mathsf{T} \mathbf{r_0}) / (\mathbf{d_1}^\mathsf{T} \mathbf{A} \mathbf{d_1})$

 $\mathbf{x}_1 = \mathbf{x}_0 + \alpha_1 \mathbf{d}_1$ $\mathbf{r}_1 = \mathbf{r}_0 - \alpha_1 \mathbf{Ad}_1$ $\beta_k = -(\mathbf{r}_{k-1}^\mathsf{T} \mathbf{r}_{k-1}) / (\mathbf{r}_{k-2}^\mathsf{T} \mathbf{r}_{k-2})$ $\mathbf{d}_k = \mathbf{r}_{k-1} - \beta_k \mathbf{d}_{k-1}$ $\alpha_{k} = (\mathbf{r}_{k-1}^{\mathsf{T}} \mathbf{r}_{k-1}) / (\mathbf{d}_{k}^{\mathsf{T}} \mathbf{A} \mathbf{d}_{k})$ $\mathbf{x}_{\mathbf{k}} = \mathbf{x}_{\mathbf{k}-1} + \alpha_{\mathbf{k}} \mathbf{d}_{\mathbf{k}}$ $r_k = r_{k-1} - \alpha_k Ad_k$

Common Stopping Criteria:

Gradient close enough to 0 $\| \nabla f \| < \epsilon$ Gradient close enough to $0 \|vf\| < \varepsilon$ Improvements in function value are saturating $|f(x_{k+1}) - f(x_k)| < \varepsilon$ Movement between iterates small enough $||x_{k+1} - x_k|| < \varepsilon$ Relative measure (no dependence on scale of f) $\frac{|f(x_{k+1}) - f(x_k)|}{\max(1,|f(x_k)|)} < \varepsilon$

 $\max(1,|f(x_k)|)$ Another relative measure $\frac{\|x_{k+1} - x_k\|}{\|x_k - x_k\|} < \epsilon$ $\max(1,||x_k||)$

Algorithm for Solving System of Linear Equations: r = b - Ax

r = b - Axrepeat in the loop $\alpha = \frac{r^T r}{r^T A r}$ $x = x + \alpha r$ exit if ||r|| is sufficiently small end repeat loop

return x as the result

Note that $x = x + \alpha r$ r (residual) = b - Ax $= b - A(x + \alpha r) = r - \alpha A r$ Slow convergence hence not widely used for linear equs used for non-linear equs tho

Iterative Refinement:

Solving Ax = b numerically you get x^{-} , with the residual vector defined as $r = b - Ax^{\sim}$ being a reliable indicator of accuracy iff A is well-conditioned. Iterative refinement aims to reduce round-off Approx sol: $\left[\widetilde{x_1} \ \widetilde{x_2} \ \widetilde{x_3}\right]$ errors. Suppose we are solving:

$$\begin{array}{l} a_{11}x_1+a_{12}x_2+a_{13}x_3=b_1\\ a_{21}x_1+a_{22}x_2+a_{23}x_3=b_2\\ a_{31}x_1+a_{32}x_2+a_{33}x_3=b_3\\ \end{array} \begin{array}{l} \text{Correction factors:} \quad \left[\Delta x_1,\Delta x_2,\Delta x_3\right]\\ \text{Where:} \ x_1=\overline{x_1}+\Delta x_1\\ x_2=\overline{x_2}+\Delta x_2\\ x_3=\overline{x_3}+\Delta x_3\\ \text{into the above, then subtract the subbing} \end{array}$$

in of x~ as the solution to obtain: $\begin{array}{ll} a_{11}\Delta x_1+a_{12}\Delta x_2+a_{13}\Delta x_3=b_1-\widetilde{b_1}=r_1\\ a_{21}\Delta x_1+a_{22}\Delta x_2+a_{23}\Delta x_3=b_2-\widetilde{b_2}=r_2\\ a_{31}\Delta x_1+a_{32}\Delta x_2+a_{33}\Delta x_3=b_3-\widetilde{b_3}=r_3 \end{array} \end{array} \label{eq:alpha} \text{We solve to obtain new correction factors to improve the solution of } x_{\mathbf{i}}.$

With t-digit arithmetic and Gaussian Elimination, one can expect with regist arithmetic and Godshan Emillion, such that the approximation to the condition number is: $\kappa(A) \approx \frac{\|x-\bar{x}\|}{\|\bar{x}\|} 10^t$

Functions of Several Variables: $(f_x)_x = f_{xx} = f_{11} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial x^2}$ Clairaut's Theorem:

 $f_{xy}(a, b) = f_{yx}(a, b) \qquad (f_x)_y = f_{xy} = f_{12} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial y \partial x}$ Directional Derivatives: Directional Derivatives:
If f is a differentiable function of $(f_y)_x = f_{yx} = f_{21} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial x \partial y}$

x and v then f has a directional **x** and **y** then **f** has a directional derivative in the direction of unit $(f_y)_y = f_{yy} = f_{22} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial y^2} = \frac{\partial^2 z}{\partial y^2}$ vector $\mathbf{u} = \langle \mathbf{a}, \mathbf{b} \rangle$: $\mathbf{D}_{\mathbf{u}} \mathbf{f}(\mathbf{x}, \mathbf{y}) = \mathbf{f}_{\mathbf{x}}(\mathbf{x}, \mathbf{y}) \mathbf{a} + \mathbf{f}_{\mathbf{y}}(\mathbf{x}, \mathbf{y}) \mathbf{b}$. For unit vector at

angle θ use $\langle a, b \rangle = \langle \cos \theta, \sin \theta \rangle$ (maximised at $\theta = 0$). D., represents the rate of change of z in the direction of u. Can also be $D_{\mathbf{u}}f(x,y) = \langle f_x(x,y), f_y(x,y) \rangle \cdot \mathbf{u} , \nabla f(x,y) = \langle f_x(x,y), f_y(x,y) \rangle = \frac{\partial f}{\partial x} \mathbf{i} + \frac{\partial f}{\partial y} \mathbf{j}$

Directional derivative = scalar proj of gradient vec onto u (make u a

Tangent Plane and Normal Line to Level Surface:

If $\nabla F(x_0, y_0, z_0) \neq 0$, it is natural to define the tangent plane to the level surface F(x, y, z) = k at $P(x_0, y_0, z_0)$ as the plane that passes through **P** and has normal vector $\nabla F(x_0, y_0, z_0)$. $\nabla F(x_0, y_0, z_0)$ gives the direction of fastest increase of f.

Maxima and Minima:

Local max: at (a, b) if $f(x, y) \le f(a, b)$ for all points (x, y) in some disk with centre (a, b). Similar for local min and global max/min if inequalities hold for all (x, y). $f_x(a, b) = 0$ and $f_y(a, b) = 0$ $(\nabla f(a, b) =$ Critical point if prev condition or one does not exist. Second Derivatives Test:

 $D = D(a,b) = f_{xx}(a,b)f_{yy}(a,b) - [f_{xy}(a,b)]^{2}$

a. If D>0 and $f_{xx}(a,b)>0$, then f(a,b) is a local minimum

b. If D > 0 and $f_{xx}(a, b) < 0$, then f(a, b) is a local maximum c. If D < 0, then f(a, b) is not an extrema but a saddle point

d. If D=0, then the test is inconclusive and f(a,b) could be a local maxima, minima or a saddle point.

maxima, minima or a saddle point. Hessian Matrix:
$$D = \begin{vmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{vmatrix} = f_{xx}f_{yy} - (f_{xy})^2$$
 where $f_{xy} = f_{yx}$ 2nd derivative test generalizes to test based on eigenvalues of

2nd derivative test generalizes to test based on eigenvalues of **D** (+ve = min, -ve = max, mix = saddle, singular **D** = inconclusive).

Find the maximum of $z = 5x_1 + 4x_2 + 6x_3$ subject to constraints $4x_1 + x_2 + x_3 \le 19 \\ 3x_1 + 4x_2 + 6x_3 \le 30 \\ 2x_1 + 4x_2 + 6x_3 \le 30 \\ 2x_1 + 4x_2 + 2x_3 \le 25 \\ x_1 + x_2 + 2x_3 \le 15 \\ x_1 + x_2 + 2x_3 \le 15 \\ x_1 + x_2 + x_3 \ge 15 \\ x_1 + x_2 + x_3 = x_3 =$

Solution: $x_1 = 4$, $x_2 = 0$, $x_3 = 3$, z = 38When x_n not in z col, $x_n = 0$.

Dual LP Problem:

Every minimisation/maximisation has a dual problem which aims to max/min based on the same constraints. When both are optimised they are equal. Sometimes the dual is easier to solve than the primal.

Primal problem Minimise: $Z = 12x_1 + 16x_2$	Dual problem Maximise: $Z = 40y_1 + 30y$
Subject to the constraints:	Subject to the constraints:
$x_1 + 2x_2 \ge 40$	$y_1 + y_2 \le 12$
$x_1 + x_2 \ge 30$	$2y_1 + y_2 \le 16$
$x_1 \ge 0; \ x_2 \ge 0$	$y_1 \ge 0; \ y_2 \ge 0$

Then solve maximisation problem and get the same result :)

rigiriari	matrix (minimis	actorij	Панаро	se matrix (maxi	msacioni
1	2	40	1	1	12
1	1	30	2	1	16
12	16	0	40	30	0