1999 级线性代数试题

- 一、判断题: (共24分)
- 1 若 A, B 均为 n 阶方阵,则必有:
- $(1) AB = BA \qquad ()$
- $(2) |AB| = |BA| \qquad ()$
- (3) |A+B| = |A| + |B| ()
- $(4) \quad (AB)^T = A^T B^T \tag{}$
- (5) $(A+B)^2 = A^2 + 2AB + B^2$ ()
- (6) R (AB) = R (BA) ()
- (7) 若 A²=0,则A=0 ()
- (8) 若ATA=0,则A=0 ()
- 2 (8分) 若 A 是 m×n 矩阵, 且 m≠n, 则
- (1) 当 A 的列向量组线性无关时, A 的行向量组也线性无关 ()
- (2) 当 R(A)=n 时, 齐次线性方程组 AX=0 只有零解())
- (3) 当 R(A)=n 时,非齐次线性方程组 AX=b,有唯一解 ()
- (4) 当 R(A)=m 时,非齐次线性方程组 AX=b,有无穷多解 ()
- 3(8分)若A是实对称矩阵,则
- (1) A 的特征值全为实数 ()
- (2) A 为正定矩阵的充要条件是 A 的特征值全为正 ()
- (3) 若|A|>0,则A为正定的 ()
- (4) 在二次型 $f=X^TAX$ 中,若经实满秩线性变换 X=CY,可将 f 化为

标准形 $f = k_1 y_1^2 + k_2 y_2^2 + \dots + k_n y_n^2$ 则 k_1, k_2, \dots, k_n 全为 A 的

二、填空题(19分)

特征值()

1 (4分) 设
$$A = \begin{pmatrix} x & 0 \\ 7 & y \end{pmatrix}$$
, $B = \begin{pmatrix} u & v \\ y & 2 \end{pmatrix}$, $C = \begin{pmatrix} 3 & -4 \\ x & v \end{pmatrix}$ 且A

+2B=C,则x=____, y=____, u=____, v=____

2 (6分) 若 A 为四阶方阵,且|A|=3,A*为 A 的伴随矩阵,则

3 (3分) 方阵
$$A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 3 & 0 \\ 2 & 0 & 4 \end{bmatrix}$$
 的特征值为_____,____,___

4 (4分)已知四元非线性方程组的系数矩阵 A 的秩为 3, η_1, η_2, η_3 是它的三个解向量,且

 $\eta_1 = (1,2,3,4)^T, \quad \eta_2 + \eta_3 = (2,3,4,5)^T, \quad 则对应齐次方程组$ $AX = 0 的基础解系是_____ , \quad AX = b 的通解是_____$

5 二次型 $f = x_1^2 + 2x_2^2 + x_3^2 + 2x_1x_2 - 2x_1x_3 - 2x_2x_3$ 所对应的 矩阵是____

$$2 \cdot 吕知A = \begin{bmatrix} 3 & 4 & 0 & 0 \\ 4 & -3 & 0 & 0 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & -1 \end{bmatrix} 求 A^{-1} 及 |A|^{8}$$

四、
$$(10 分)$$
 设 $A = \begin{bmatrix} 2 & 2 & 3 \\ 1 & 1 & 0 \\ -1 & 1 & 3 \end{bmatrix}$, 且 $AB = A + B$, 求 B

五、(15分)验证二次型

$$f = 5x_1^2 + 5x_2^2 + 3x_3^2 - 2x_1x_2 + 6x_1x_3 - 6x_2x_3$$
的特征值为

4,9,0,求一个正交变换,将此二次型化为标准形(要求写出正交变换矩阵及f的标准形)

试问当 a, b 满足什么条件时,

(1) β 可由 $\alpha_1,\alpha_2,\alpha_3$ 线性表示,且表示式唯一;

- (2) β 不可由 $\alpha_1,\alpha_2,\alpha_3$ 线性表示
- (3) β 可由 $\alpha_1,\alpha_2,\alpha_3$ 线性表示,但表示式不唯一写出一般表达式

七、(10分)证明题

- 1 若 A, B 均为 n 阶正交矩阵, 试证明 AB 也是正交矩阵。
 - 2 若ξ₁和ξ₂是齐次线性方程组 AX=0 的基础解系,

 $\eta_1 = \xi_1 + \xi_2, \ \eta_2 = \xi_1 - \xi_2,$ 试证明 $\eta_1, \ \eta_2$ 也是 AX=0 的基础解系。

1999 级线性代数参考答案

- -, 1, $\times \checkmark \times \times \times \times \checkmark$
 - $2, \times \sqrt{\times} \sqrt{\times}$
 - 3, √√XX
- __, 1, -5, -6, 4, -2
 - $2, 48, \frac{1}{3}, 27$
 - 3, 3, 0, 5

$$4, \quad \eta = \begin{pmatrix} 0 \\ 1 \\ 2 \\ 3 \end{pmatrix}, \quad k\eta + \eta_1$$

$$5, \begin{pmatrix} 1 & 1 & -1 \\ 1 & 2 & -1 \\ -1 & -1 & 1 \end{pmatrix}$$

三、解: 1、

$$\begin{vmatrix} 0 & 1 & 2 & 3 \\ 3 & 0 & 1 & 2 \\ 2 & 3 & 0 & 1 \\ 1 & 2 & 3 & 0 \end{vmatrix} = \begin{vmatrix} 6 & 6 & 6 & 6 \\ 3 & 0 & 1 & 2 \\ 2 & 3 & 0 & 1 \\ 1 & 2 & 3 & 0 \end{vmatrix} = 6 \begin{vmatrix} 1 & 1 & 1 & 1 \\ 3 & 0 & 1 & 2 \\ 2 & 3 & 0 & 1 \\ 1 & 2 & 3 & 0 \end{vmatrix} = 6 \begin{vmatrix} 1 & 1 & 1 & 1 \\ 0 & -3 & -2 \\ 0 & 1 & -2 \\ 0 & 1 & 2 \end{vmatrix}$$

$$= 6\begin{vmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & -2 & -1 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & -4 \end{vmatrix} = -96$$

2.
$$\exists B = \begin{pmatrix} 3 & 4 \\ 4 & -3 \end{pmatrix}$$
. $C = \begin{pmatrix} 1 & 4 \\ 0 & -1 \end{pmatrix}$ $\exists B : B^{-1} = \frac{1}{25} \begin{pmatrix} 3 & 4 \\ 4 & -3 \end{pmatrix}$.

$$C^{-1} = \begin{pmatrix} 1 & 4 \\ 0 & -1 \end{pmatrix}, |B| = 25, |C| = -1$$

$$|A|^8 = (|B||C|)^8 = 25^8$$

四、解: 由 AB = A + B可得: $B = (A - E)^{-1}A = \begin{pmatrix} 1 & 1 & 0 \\ 2 & -4 & -3 \\ -1 & 3 & 3 \end{pmatrix}$

五、解:该二次型的矩阵为:
$$A = \begin{pmatrix} 5 & -1 & 3 \\ -1 & 5 & -3 \\ 3 & -3 & 3 \end{pmatrix}$$

由特征方程

$$|A - \lambda E| = \begin{vmatrix} 5 - \lambda & -1 & 3 \\ -1 & 5 - \lambda & -3 \\ 3 & -3 & 3 - \lambda \end{vmatrix} = (4 - \lambda)\lambda(\lambda - 9) = 0$$

得特征值 $\lambda_1 = 4, \lambda_2 = 9, \lambda_3 = 0$

当 $\lambda_1 = 4$,解齐次方程(A-4E)x = 0

$$A - 4E = \begin{bmatrix} 1 & -1 & 3 \\ -1 & 1 & -3 \\ 3 & -3 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & -4 \end{bmatrix}$$

基础解系 $\xi_1 = \begin{pmatrix} 1 & 1 & 0 \end{pmatrix}^T$

单位化:
$$p_1 = \frac{1}{\|\xi_1\|} \xi_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$

当 λ ,=9,解齐次方程(A-9E)x=0

$$A-9E = \begin{bmatrix} -4 & -1 & 3 \\ -1 & -4 & -3 \\ 3 & -3 & -6 \end{bmatrix} \rightarrow \begin{bmatrix} -1 & -4 & -3 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

基础解系 $\xi_2 = \begin{pmatrix} 1 & -1 & 1 \end{pmatrix}^T$

单位化:
$$p_2 = \frac{1}{\|\xi_2\|} \xi_2 = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$$

当 $\lambda_3 = 0$,解齐次方程Ax = 0

$$A = \begin{bmatrix} 5 & -1 & 3 \\ -1 & 5 & -3 \\ 3 & -3 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} -1 & 5 & -3 \\ 0 & 2 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$

基础解系 $\xi_3 = (-1 \ 1 \ 2)^T$

显然,该向量组两两正交,单位化得:

$$p_3 = \frac{1}{\|\xi_3\|} \xi_3 = \frac{1}{\sqrt{6}} \begin{pmatrix} -1\\1\\2 \end{pmatrix}$$

$$id P = (p_1, p_2, p_3) = \begin{bmatrix}
1/\sqrt{2} & 1/\sqrt{3} & -1/\sqrt{6} \\
1/\sqrt{2} & 1/\sqrt{3} & 1/\sqrt{6} \\
1/\sqrt{2} & 1/\sqrt{3} & 1/\sqrt{6} \\
0 & 1/\sqrt{3} & 1/\sqrt{6}
\end{bmatrix},$$

于是正交变换为: X = PY , 且有 $f = 4y_1^2 + 9y_2^2$

六、解:
$$(\alpha_1 \quad \alpha_2 \quad \alpha_3 \quad \beta) = \begin{bmatrix} -1 & -2 & a & 1 \\ 1 & 1 & 2 & 0 \\ 4 & 5 & 10 & b \end{bmatrix}$$

所以: 当 $a \neq -4$ 时, β 可由 α_1 α_2 α_3 线性表示,且表达式唯一;

当 $a=-4,b\neq-1$ 时, β 不可由 α_1 α_2 α_3 线性表示;

当a=-4,b=-1时, β 可由 α_1 α_2 α_3 线性表示,且表达式不唯一。

当 a = -4, b = -1 时,由 $\beta = k_1\alpha_1 + k_2\alpha_2 + k_3\alpha_3$ 得通解为:

$$\begin{pmatrix} k_1 \\ k_2 \\ k_3 \end{pmatrix} = \begin{pmatrix} 1 \\ -2k - 1 \\ k \end{pmatrix}, \ k \in \mathbb{R}$$

故: 一般表达式为: $\beta = \alpha_1 + (2k-1)\alpha_2 + k\alpha_3$

七、证明:

1、由于
$$AA^{T} = E$$
、 $BB^{T} = E$, 所以
$$(AB)(AB)^{T} = ABB^{T}A^{T} = AA^{T} = E$$

- : AB也是正交矩阵。
- 2、由于 η_1 , η_2 可由 ξ_1 , ξ_2 线性表示,并且

$$\xi_1 = \frac{\eta_1 + \eta_2}{2}, \quad \xi_2 = \frac{\eta_1 - \eta_2}{2}$$

- \therefore ξ_1,ξ_2 也可由 η_1,η_2 线性表示
- \therefore 向量组 ξ_1,ξ_2 与向量组 η_1,η_2 等价
- $\therefore \eta_1, \eta_2$ 也是 AX = 0 的基础解系

2000 级线性代数试卷

- 一、判断题(每小题2分,共14分)
 - 1. 设方阵 A 满足 AA=A,则必有 A=0 或 A=E

- 2. 设 A, B 是不可逆的同阶方阵,则A = B
- 3. 向量组 $\alpha_1^T = (2,6), \alpha_2^T = (1,5), \alpha_3^T = (3,1)$ 是线性相关的向量组
- 4. 齐次线性方程组 AX = 0 若有两个不同的解,它就有 无穷多个解
- 5. 方阵 A 可逆的充分必要条件是 A 的特征值不全为零
- 6. 对称矩阵 A 正定的充分必要条件是|A|>0
- 7. 若方阵 A 与 B 相似,则 A''' 与 B''' 也相似,其中 m 为 正整数.
- 二、填空题(每小题2分,共24分)

- 2. |A| ≠ 0,且 AB=C,则 B = ____;又若 C=0,则 B = ____
- 3. 齐次线性方程组 $A_{m \times n} X_{n \times 1} = 0$ 有非零解的充分必要 条件是
- 4. 若方阵 A 满足 $A^T A = E$,则称 A 为 _____; 此时

5. 若 $B_{n \times n} = P^{-1}A_{n \times n}P$,B 的特征值是 1, 2, 3, 则 A 的特征值是

6. 设
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & a \end{pmatrix}$$
与设 $\Lambda = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$ 相似,则其中

三、设 向 量 组
$$\alpha_1^T = (1,1,1,-1), \alpha_2^T = (1,3,-1,1), \alpha_3^T = (1,-1,k,1), \alpha_4^T = (1,1,1,3)$$
,对参数 k 的所有值求出向量组的秩及一个最大无关组 $(12\ \mathcal{H})$

四、已知
$$A$$
 $\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$,求矩阵 A (10 分)

五、a, b 取何值时,方程组 $\begin{cases} x_1 + 3x_2 + 2x_3 = 1\\ x_1 + 4x_2 + 3x_3 = 2 有唯一解,\\ 2x_1 + ax_2 + 3x_3 = b \end{cases}$

无解,有无穷多个解;并在有无穷多个解时求其通解(14分)

六、设
$$A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

- 1. 求正交阵 P, 使得 $P^{-1}AP = \Lambda$ 为对角阵;
- 2. 设 $f(x) = x^3 + 2x^2 + 3$, 利用 A 与 Λ 相似, 求出矩阵 $f(A) = A^3 + 2A^2 + 3E$;
- 3. 求矩阵 $f(A) = A^3 + 2A^2 + 3E$ 的特征值 (共 16 分) 七、证明题 (10 分)
 - 1. 设向量组 $\alpha_1,\alpha_2,\alpha_3$ 线性无关,且

$$\beta_1 = 4\alpha_1 - 4\alpha_2, \beta_2 = \alpha_1 - 2\alpha_2 + \alpha_3, \beta_3 = \alpha_2 - \alpha_3$$

证明: $\beta_1, \beta_2, \beta_3$ 线性相关

2. 若 A, B 均为 n 阶方矩, 且 A 可逆, 证明: BA 与 AB 相似

2000 级线性代数参考答案

一、 判断题

1. 错。例如二阶方阵 $A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $A \neq O \perp A \neq E$, 但

AA = A

- 2. 正确。因为方阵可逆的充分必要条件是它的行列式不等于零,那么不可逆的充分必要条件是其行列式等于零,而 A, B 都是不可逆方阵,故它们的行列式相等且都等于零
- 3. 正确。根据关于向量组相关性的其中一条结论,即任 意 n+1 个 n 维向量组都线性相关
- 4. 正确。齐次线性方程组一定有零解,故如果有两个不

同解的话,此齐次线性方程组就一定有非零解,又知 非零解乘上任意实数都还是该齐次线性方程组的解, 从而得出其解无穷的结论

- 5. 错。例如若 $A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$,其特征值 $\lambda_1 = 1, \lambda_2 = 0$ 不全为零,但它不可逆
- 6. 错。参照线代课本关于对称阵正定的定理结论
- 7. 对。这是因为存在可逆阵 P 使得 $A = P^{-1}BP$,则 $A^{t} = AA \cdots A = \left((P^{-1}BP)(P^{-1}BP) \cdots (P^{-1}BP) \right) = P^{-1}B^{t}P$, (k 为正整数) 命题正确。

二、填空题

1.
$$A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 2 & 0 \\ 3 & 0 & 0 \end{pmatrix}$$
, $|A| = -\begin{vmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{vmatrix} = -1 \times 2 \times 3 = \underline{-6}$;

$$A^{-1} = \begin{pmatrix} & 1/3 \\ & 1/2 \\ 1 & \end{pmatrix}$$

2. 因 $A \neq 0$,故A可逆,则由AB=C知 $A^{-1}(AB) = A^{-1}C$,即

$$(A^{-1}A)B = A^{-1}C$$
,故 $B = A^{-1}C$;
若 $C=0$,则 $B=0$

- 4. 若方阵 A 满足 $\overline{A}'A = E$,则称 A 为正交矩阵,此时 $|A| = \pm 1$

(由 $A^{T}A = E$ 推出 $|A|^{2} = |A^{T}A| = |E| = 1$, 从而 $|A| = \pm 1$)

- 5. A 的特征值是 1, 2, 3。(因为相似矩阵具有相同的特征多项式,从而有相同的特征值,由条件知 A 和 B 相似,且 B 的特征值是 1, 2, 3)
- 6. 三阶矩阵 $A = \Lambda A d (A)$,它们有相同的特征多项式,设特征值是 $\lambda_1, \lambda_2, \lambda_3$,则由根与系数关系知,

 $|A| = |\Lambda| = \lambda_1 \lambda_2 \lambda_3, \quad 1 + 0 + a = 1 + 1 + (-1) = \lambda_1 + \lambda_2 + \lambda_3,$ 所以 $a = \underline{0}$

故
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$
的二次型 $f(x_1, x_2, x_3) = \underbrace{x_1^2 + 2x_2x_3}_{1}$,它

经过正交变换 X=PY 化为标准型是 $f = y_1^2 + y_2^2 - y_3^2$; 二

次型不是正定的

$$(\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4}) = A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 3 & -1 & 1 \\ 1 & -1 & k & 1 \\ -1 & 1 & 1 & 3 \end{bmatrix} \xrightarrow{r_{2}-r_{1}} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 2 & -2 & 0 \\ 0 & -2 & k-1 & 0 \\ 0 & 2 & 2 & 4 \end{bmatrix} - \quad \square, \quad \cancel{R}: \quad \cancel{U}B = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}, C = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \quad \cancel{U}AB = C. \quad \cancel{E}B = C.$$

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 2 & -2 & 0 \\ 0 & 0 & k-3 & 0 \\ 0 & 0 & 4 & 4 \end{bmatrix} \xrightarrow{r^{2/2}} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & k-3 & 0 \end{bmatrix} \xrightarrow{r^{3/4}} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & k-3 & 0 \end{bmatrix} \xrightarrow{r^{3/4}} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & -1 \end{bmatrix} \xrightarrow{r^{3/4}} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & -1 \end{bmatrix} \xrightarrow{r^{3/4}} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix} \xrightarrow{r^{3/4}} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix} \xrightarrow{r^{3/4}} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix} \xrightarrow{r^{3/4}} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix} \xrightarrow{r^{3/4}} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix} \xrightarrow{r^{3/4}} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix} \xrightarrow{r^{3/4}} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$$

1) $\stackrel{\text{d}}{=} -(k-3) \neq 0 \ \square \ k \neq 3 \ \square \ R(\alpha_1, \alpha_2, \alpha_3, \alpha_4) = R(B) = 4$,

 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 就是最大无关组;

2) $\stackrel{\text{def}}{=} -(k-3) = 0 \, \text{II} \, k = 3 \, \text{IV} \, R(\alpha_1, \alpha_2, \alpha_3, \alpha_4) = R(B) = 3$

这时

$$(\alpha_1, \alpha_2, \alpha_3, \alpha_4) \rightarrow \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

 $\alpha_1,\alpha_2,\alpha_3$ 为一个最大无关组

四、解: 设
$$B = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$
, $C = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$ 则 AB=C。 若 B 可

逆,则
$$A = A(BB^{-1}) = (AB)B^{-1} = CB^{-1} = \begin{bmatrix} 0 & 2 & 1 \\ 3 & 2 & 1 \end{bmatrix}$$

$$A = A(BB^{-1}) = (AB)B^{-1} = CB^{-1}$$
计算出结果。

法二: 若
$$B$$
 可逆, 则 $\begin{pmatrix} B \\ C \end{pmatrix}$ $B^{-1} = \begin{pmatrix} BB^{-1} \\ CB^{-1} \end{pmatrix} = \begin{pmatrix} E \\ CB^{-1} \end{pmatrix}$, 即对分块

矩阵
$$\binom{B}{C}$$
 只进行初等列变换,可以求得 A 的结果;

五、解: 该方程的增广矩阵为:
$$B = (A:\beta) = \begin{bmatrix} 1 & 3 & 2 & 1 \\ 1 & 4 & 3 & 2 \\ 2 & a & 3 & b \end{bmatrix} \xrightarrow{r_{2}-r_{1}} \begin{bmatrix} 1 & 3 & 2 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & a-6 & -1 & b-2 \end{bmatrix} \xrightarrow{r_{3}-(a-\epsilon)} B = (A:\beta) = \begin{bmatrix} 1 & 3 & 2 & 1 \\ 1 & 4 & 3 & 2 \\ 2 & 5 & 3 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 3 & 2 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 3 & 2 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 5-a & 4-a+b \end{bmatrix}$$

1) 当 $5-a \neq 0$,即 $a \neq 5$,b 任意取值时,R(A) = R(B) = 3,

方程组有唯一解;

2)
$$\stackrel{\mathcal{L}}{=} \begin{cases} 5 - a = 0 \\ 4 - a + b \neq 0 \end{cases}$$
 $\bowtie R(A) = 2 \neq 3 = R(B), \quad \bowtie a = 5, b \neq 1$

时,

方程组无解;

3)
$$\stackrel{\text{def}}{=} \begin{cases} 5 - a = 0 \\ 4 - a + b = 0 \end{cases}$$
 $\forall R(A) = R(B) = 2 < 3, \quad \exists a = 5, b = 1$

肘,

方程组有无穷多解

当
$$a=5,b=1$$
时,代入得

$$B = (A:\beta) = \begin{bmatrix} 1 & 3 & 2 & 1 \\ 1 & 4 & 3 & 2 \\ 2 & 5 & 3 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 3 & 2 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\xrightarrow{r_{1}-3r_{2}} \begin{bmatrix} 1 & 0 & -1 & -2 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix},$$

同解方程组为
$$\begin{cases} x_1 - x_3 = -2 \\ x_2 + x_3 = 1 \end{cases}$$
, 通解为

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = c \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} + \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix}$$
 (其中 c 为任意常数)

六、解:1) 由特征方程

$$\lambda_1 = \lambda_2 = -1, \lambda_3 = 2$$

当
$$\lambda = \lambda = -1$$
,解齐次方程 $(A + E)x = 0$

$$A + E = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix},$$

$$\widetilde{\mathbb{H}}\mathbf{H}: \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} -c_2 - c_3 \\ c_2 \\ c_3 \end{pmatrix} = c_2 \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} + c_3 \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$

基础解系: $\xi_1 = \begin{pmatrix} -1 & 1 & 0 \end{pmatrix}^T$, $\xi_2 = \begin{pmatrix} -1 & 0 & 1 \end{pmatrix}^T$

正交化: $\alpha_1 = \xi_1$,

$$\alpha_{2} = \xi_{2} - \frac{\left[\xi_{2}, \alpha_{1}\right]}{\left[\alpha_{1}, \alpha_{1}\right]} \alpha_{1} = \begin{pmatrix} -1\\0\\1 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} -1\\1\\0 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} -1\\-1\\2 \end{pmatrix}$$

规范化:
$$p_1 = \frac{1}{\|\xi_1\|} \xi_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}, p_2 = \frac{1}{\|\xi_2\|} \xi_2 = \frac{1}{\sqrt{6}} \begin{pmatrix} -1 \\ -1 \\ 2 \end{pmatrix}$$

当 $\lambda_3 = 2$,解齐次方程(A-2E)x = 0

$$A - 2E = \begin{bmatrix} -2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix},$$

通解
$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} c \\ c \\ c \end{pmatrix} = c \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, 基础解系 $\xi_3 = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix}^T$

只需单位化,
$$p_3 = \frac{1}{\|\xi_3\|} \xi_3 = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

$$i \c P = (p_1, p_2, p_3) = \begin{bmatrix} -1/& -1/& 1/\\ /\sqrt{2} & /\sqrt{6} & /\sqrt{3}\\ 1/& -1/& 1/\\ \sqrt{2} & /\sqrt{6} & /\sqrt{3}\\ 0 & 2/\sqrt{6} & /\sqrt{3} \end{bmatrix}, \ P 即为所求$$

的正交阵,使 $P^{1}AP = \Lambda$,其中 $\Lambda = \begin{bmatrix} -1 \\ -1 \\ 2 \end{bmatrix}$

2) 由 $P^{-1}AP = \Lambda$ 知 $A = P\Lambda P^{-1}$,且当 k 为正整数时

$$A^{k} = AA \cdots A = (P\Lambda P^{-1}) (P\Lambda P^{-1}) \cdots (P\Lambda P^{-1}) = P\Lambda^{k} P^{-1}$$
以由已知条件知道:

$$f(A) = A^{3} + 2A^{2} + 3E = P\Lambda^{3}P^{-1} + 2P\Lambda^{2}P^{-1} + 3PP^{-1}$$
$$= P(\Lambda^{3} + 2\Lambda^{2} + 3E)P^{-1}$$

其中
$$\Lambda^3 = \begin{pmatrix} -1 & & \\ & -1 & \\ & & 2 \end{pmatrix}^3 = \begin{bmatrix} (-1)^3 & & \\ & (-1)^3 & \\ & & 2^3 \end{bmatrix}$$

$$2\Lambda^{2} = 2 \begin{pmatrix} -1 & & \\ & -1 & \\ & & 2 \end{pmatrix}^{2} = \begin{bmatrix} 2(-1)^{2} & & \\ & & 2(-1)^{2} & \\ & & & 2 \times 2^{2} \end{bmatrix}$$

从而

$$\Lambda^{3} + 2\Lambda^{2} + 3E = \begin{bmatrix} f(-1) & & \\ & f(-1) & \\ & & f(2) \end{bmatrix} = \begin{bmatrix} 4 & & \\ & 4 & \\ & & 19 \end{bmatrix}$$

故
$$f(A) = P(\Lambda^3 + 2\Lambda^2 + 3E)P^1 = P\begin{bmatrix} 4 & & \\ & 4 & \\ & & 19 \end{bmatrix} P^T$$
,其中

$$P = (p_1, p_2, p_3) = \begin{bmatrix} -1/& -1/& 1/\\ \sqrt{2} & \sqrt{6} & \sqrt{3}\\ 1/& -1/& 1/\\ \sqrt{2} & \sqrt{6} & \sqrt{3}\\ 0 & 2/\sqrt{6} & \sqrt{3} \end{bmatrix}$$

由上小题结论可以知道, f(A)与 $f(\Lambda)$ 相似, 故 $f(\Lambda)$ 的

对角元 4, 4, 19 就是 f(A)的全部特征值(根据"相似矩阵具有相同的特征多项式"的结论)

七、证明

1. 证明:

法一:因

$$(\beta_{1},\beta_{2},\beta_{3}) = (4\alpha_{1} - 4\alpha_{2},\alpha_{1} - 2\alpha_{2} + \alpha_{3},\alpha_{2} - \alpha_{3}) \xrightarrow{C1+C2} (\alpha_{1} - \alpha_{2},\alpha_{1} - \alpha_{2},\alpha_{2} - \alpha_{3}) \xrightarrow{C1+C2} (\alpha_{1},\alpha_{2},\alpha_{2} - \alpha_{3}) \xrightarrow{A} (\alpha_{1},\alpha_{2},\alpha_{2} - \alpha_{3}) \xrightarrow{A} (\alpha_{1},\alpha_{2},\alpha_{2},\alpha_{2} - \alpha_{3}) \xrightarrow{A} (\alpha_{1}$$

所以 β_1,β_2,β_3 线性相关

法二: 因

$$(\beta_{1}, \beta_{2}, \beta_{3}) = (4\alpha_{1} - 4\alpha_{2}, \alpha_{1} - 2\alpha_{2} + \alpha_{3}, \alpha_{2} - \alpha_{3}) = (\alpha_{1}, \alpha_{2}, \alpha_{3}) \begin{pmatrix} 4 & 1 & 0 \\ -4 & -2 & 1 \\ 0 & 1 & -4 \end{pmatrix}$$

$$=(\alpha_1,\alpha_2,\alpha_3)A$$

而
$$|A| = \begin{vmatrix} 4 & 1 & 0 \\ -4 & -2 & 1 \\ 0 & 1 & -1 \end{vmatrix} = 0$$
,所以 $R(A) < 3$,从而

 $R(\beta_1, \beta_2, \beta_3) \le R(A) < 3$

所以 β_1 , β_2 , β_3 线性相关

法三: (基本方法) 设 $x_1\beta_1 + x_2\beta_2 + x_3\beta_3 = 0$

(1)

只要证明有不全为零的数 x,x,x,使(1)式成立即可。

式(1)整理得到:

$$(4x_1 + x_2)\alpha_1 + (-4x_1 - 2x_2 + x_3)\alpha_2 + (x_2 - x_3)\alpha_3 = 0$$
 (2)

由已知条件,向量组 $\alpha_1,\alpha_2,\alpha_3$ 线性无关,推出

$$\begin{cases} 4x_1 + x_2 = 0 \\ -4x_1 - 2x_2 + x_3 = 0 \\ x_2 - x_3 = 0 \end{cases}$$

(3)

易知 R(A) < 3, 所以(3)有非零解。

即有不全为零的数 x,x,x,t,使(1)式成立。

所以 β_1,β_2,β_3 线性相关

2. 证明: 因为 A 可逆, 即 A^{-1} 存在, 又

 $A(BA)A^{-1} = (AB)(AA^{-1}) = AB$,由相似矩阵定义可得: AB = BA相似。

2001 级线性代数试题

- 一、判断题(判断下列各命题是否正确,每小题 3 分,共 12 分)
- 1、设A*为n阶方阵 $(n \ge 2)$ A的伴随矩阵,若A为满秩方阵,则A*也是满秩方阵.
- 2、n阶矩阵 A可逆的充要条件是: 当 $X \neq 0$ 时, $AX \neq 0$, 其中 $X = (x_1, x_2, \dots, x_n)^T$.

- 3、已知向量组 $\alpha_1, \dots, \alpha_m$ 的秩为r(r < m),则该向量组中任意r个向量线性无关.
- 4、设A、B为n阶方阵,若A、B等价,则A、B相似.
- 二、填空(将正确答案填在题中横线上,每空4分,共24分)
- 1、设A、B为n阶方阵,若 $|A| \neq 0$ 且AB = 0,则 $B = ____$.

2、 设
$$AB = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
, 且 $B = \begin{pmatrix} 1 & 0 & 3 \\ 2 & 1 & -1 \\ 1 & -2 & 1 \end{pmatrix}$,则

$$A^{-1} =$$
____.

- 3、设向量组 α_1 , α_2 , α_3 线性相关,而向量组 α_2 , α_3 , α_4 线性无关,则向量组 α_1 , α_2 , α_3 的最大线性无关组是_____.
- 4、设A为5阶方阵,且|A|=-3,则|A⁻¹|=___; |A*|=___; |2A|=__
- 5、设A、B为n阶可逆方阵,且满足AB = A + 2B,则B可用 A表示为 B =

6、 若方程组
$$\begin{cases} x_1 + 2x_2 - x_3 = 4 \\ (\lambda - 3)x_2 + 2x_3 = 2 \end{cases}$$
 有唯一解,则
$$(\lambda - 1)(\lambda - 2)x_3 = (\lambda - 3)(\lambda - 4)$$

 $\lambda_{__}$.

7、设四元非齐次线性方程组 AX=b 的系数矩阵秩为 2, 已知 $\eta_1, \eta_2, \eta_3, \eta_4$ 为它的四个解向量,且

$$\eta_1 = (1,1,0,1)^T, \eta_1 + \eta_2 = (1,2,3,4)^T, \eta_4 = (1,0,1,1)^T$$
,则其通解为 .

三、求向量组 α_1 = (1,0,0,2,5), α_2 = (0,1,0,3,4), α_3 = (0,0,1,4,7), α_4 = (2,-3,4,11,12)的最大线性无关组(10 分).

四、当
$$k$$
 取何值时,方程
$$\begin{cases} 3x_1 + 2x_2 + 4x_3 = 3 \\ x_1 + x_2 + x_3 = k \end{cases}$$
 有无穷多解,
$$5x_1 + 4x_2 + 6x_3 = 15$$

并求出此时的一般解(15分).

五、设
$$A = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$
,求正交矩阵 P,使 $P^T A P$ 为对角阵,

并写出对角阵(15分).

六、写出二次型 $f(x_1,x_2,x_3) = 2x_1^2 + x_2^2 - 4x_1x_2 - 4x_2x_3$ 在正交 变换下所化成的标准形, 并指出 f是否为正定的 $(8\, 分)$.

七、若A,B都是n阶可逆矩阵,证明:AB也是n阶可逆矩阵, 且 $(AB)^{-1} = B^{-1}A^{-1}$ (7分).

八、设A是n阶方阵, $AA^T = E$,且|A| = -1,求|A + E| (6 分).

2001 级线性代数试题参考答案

一、 判断题

1 , (

A満秩 ⇒ $\left|A\right| \neq 0$,又 $AA^* = \left|A\right|E \Rightarrow \left|A\right|\left|A^*\right| \neq 0 \Rightarrow \left|A^*\right| \neq 0$ 即 A^* 满秩

2、× (不是充分条件)

- 3、× (是存在不是任意)
- 4、×(由定义可证)
- 二、填空题

1,
$$\underline{0}$$
 2, $\begin{pmatrix} 1 & -1 & 3 \\ 2 & -1 & -1 \\ 1 & -3 & 1 \end{pmatrix}$ 3, $\underline{\alpha_2, \alpha_3}$ 4, $-\frac{1}{3}, 81, -96$

$$5, \quad \underline{(A-2E)^{-1}A} \qquad 6, \quad \underline{\lambda \neq 1, 2, 3}$$

$$7. \frac{\begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \end{pmatrix} = c_{1} \begin{pmatrix} -1 \\ 0 \\ 3 \\ 2 \end{pmatrix} + c_{2} \begin{pmatrix} 0 \\ -1 \\ 3 \\ 2 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \end{pmatrix}, c_{1}, c_{2} \in \mathbb{R}$$

三、解

$$A = \begin{pmatrix} \alpha_1^T & \alpha_2^T & \alpha_3^T & \alpha_4^T \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & -3 \\ 0 & 0 & 1 & 4 \\ 2 & 3 & 4 & 11 \\ 5 & 4 & 7 & 12 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

故R(A) = 4,所以向量组的最大无关组为 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$

四、解:方程组增广矩阵为

$$(A \quad b) = \begin{pmatrix} 3 & 2 & 4 & 3 \\ 1 & 1 & 1 & k \\ 5 & 4 & 6 & 15 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 2 & 3 - 2k \\ 0 & 1 & -1 & 3k - 3 \\ 0 & 0 & 0 & k - 6 \end{pmatrix}$$

方程组有无穷多解,则R(A) = R(A,b) = 2,所以k = 6

代入方程组得该方程组的通解为: $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = c \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix} + \begin{pmatrix} -9 \\ 15 \\ 0 \end{pmatrix}$, c

五、解:
$$|A-\lambda E| = \begin{vmatrix} 2-\lambda & 1 & 0 \\ 1 & 2-\lambda & 0 \\ 0 & 0 & 3-\lambda \end{vmatrix} = -(\lambda-1)(\lambda-3)^2$$

A的特征值为 $\lambda_1 = 1, \lambda_2 = \lambda_3 = 3$

当
$$\lambda_1 = 1$$
时, $A - E = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$, 对应的特征向量为 $p_1 = \begin{pmatrix} -1 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$

对应的特征向量为
$$p_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, p_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

向量组刚好两两正交,单位化可得正交阵

$$P = \begin{pmatrix} \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ 0 & 1 & 0 \end{pmatrix}$$

$$\mathbb{H} P^{T} A P = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

六、解:

$$A = \begin{pmatrix} 2 & -2 & 0 \\ -2 & 1 & -2 \\ 0 & -2 & 0 \end{pmatrix}, |\lambda E - A| = \begin{vmatrix} \lambda - 2 & 2 & 0 \\ 2 & \lambda - 1 & 2 \\ 0 & 2 & \lambda \end{vmatrix} = (\lambda + 2)(\lambda - 1)$$

$$A = \begin{pmatrix} 2 & -2 & 0 \\ -2 & 1 & -2 \\ 0 & -2 & 0 \end{pmatrix}, |\lambda E - A| = \begin{vmatrix} \lambda - 2 & 2 & 0 \\ 2 & \lambda - 1 & 2 \\ 0 & 2 & \lambda \end{vmatrix} = (\lambda + 2)(\lambda - 1)$$

$$A = \begin{pmatrix} -2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4 \end{pmatrix}, \text{ #EEE.}$$

$$A = \begin{pmatrix} -2 & 0 & 0 \\ 0 & 3 & 1 & 0 \\ 4 & 0 & 0 & 2 \end{pmatrix}$$

$$A = \begin{pmatrix} -2 & 0 & 0 \\ 0 & 3 & 1 & 0 \\ 4 & 0 & 0 & 2 \end{pmatrix}$$

二次型f在该正交变换下的标准形为 $f=-2y_1^2+y_2^2+4y_3^2$

七、证明:

$$A, B$$
可逆 $\Rightarrow |A| \neq 0, |B| \neq 0 \Rightarrow |AB| = |A||B| \neq 0 \Rightarrow AB$ 可逆
$$\mathbb{X}(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = E \mathbb{Y}(AB)^{-1} = B^{-1}A^{-1}$$

八、证明:

$$|A + E| = |A + AA^{T}| = |A(E + A^{T})| = |A||A^{T} + E| = -|A^{T} + E|$$

$$= -|(A + E)^{T}| = -|A + E| \Rightarrow 2|A + E| = 0 \Rightarrow |A + E| = 0$$

2002 级线性代数试题

- 2. 设A是5阶方阵,且|A|=1,则|-2A|=____
- 设A是px5阶矩阵,B是mx4阶矩阵,AB是7xq 阶矩阵,则p,q,m的值分别是,,,,,,
- 4. 设 $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$,则A的伴随矩阵是_____
- 5. $\alpha_1^T = (1, t+1, 0), \alpha_2^T = (1, 2, 0), \alpha_3^T = (0, 0, t^2 + 1)$ 线性相 关,则实数 t= ____
- 征值的特征向量,则 3 阶方阵 $B = (\beta_1, \beta_2, 3\beta_2)$ 的秩

$$R(B) = \underline{\hspace{1cm}}, \quad \beta_1^T \beta_2 = \underline{\hspace{1cm}}$$

7. 实对称矩阵
$$A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 2 \\ 0 & 2 & t \end{bmatrix}$$
 正定,则 t 的取值范围是

7. 实对称矩阵
$$A = \begin{vmatrix} 2 & 0 & 0 \\ 0 & 2 & 2 \\ 0 & 2 & t \end{vmatrix}$$
 正定,则 t 的取值范围是 二、 计算行列式 $D = \begin{vmatrix} 1+a_1 & a_2 & a_3 & a_4 \\ a_1 & 1+a_2 & a_3 & a_4 \\ a_1 & a_2 & 1+a_3 & a_4 \\ a_1 & a_2 & a_3 & 1+a_4 \end{vmatrix}$ (6分)

8. 若 n 阶方阵 A 满足
$$A^2 - A = E \text{则} (A - E)^{-1} =$$

三、 设
$$AX-A=3X$$
,且 $A=\begin{pmatrix} 1 & -1 & 1 \\ 2 & 3 & -1 \\ -1 & 0 & 4 \end{pmatrix}$,求矩阵 $X(10)$

10. 设AX = 0为 n 元齐次线性方程组,R(A) = r < n,

四、设向

$$\left|2C^{-1}(A^TB^{-1})^2C\right|=\underline{\qquad}$$

$$\alpha_1^T = (1, -1, 2, 4), \alpha_2^T = (0, 3, 1, 2), \alpha_3^T = (3, 0, 7, 14), \alpha_4^T = (2, 1, 5, 6)$$

求向量组的秩及一个最大无关组,并将其余向量由该 最大无关组线性表示(10分)

11. 向

回
$$=$$
 组 $\alpha_1^T = (1,2,3,4), \alpha_2^T = (2,3,4,5), \alpha_3^T = (3,4,5,6), \alpha_4^T = (4,5,6,7)$ 五、 λ 取何值时,方程组
$$\begin{cases} \lambda x_1 + x_2 + x_3 = 1 \\ x_1 + \lambda x_2 + x_3 = \lambda \end{cases}$$
 有唯一解,无

的秩是

解,有无穷多个解;并在有无穷多个解时求其通解(14 分)

12. 设 $\begin{cases} x_2 + x_3 + x_4 = 0 \\ -x_1 + x_2 + x_3 = 0 \end{cases}$,则它的一个基础解系是

六、 用正交变换法化二次型为标准形,并写出正交变换 (14分)

$$f = 4x_1^2 + 3x_2^2 + 3x_3^2 + 2x_2x_3$$

七 证明题 (10分)

- 1. 若向量组 $\alpha_1,\alpha_2,\alpha_3$ 线性无关,证明 $\alpha_1, \alpha_1 + 2\alpha_2, \alpha_3 + 3\alpha_3$ 也线性无关
- 2. 设 A 为 n 阶方阵,若有正整数 k,使 $A^k = 0$,则 A 称为幂零矩阵,证明幂零矩阵的特征值只能是

2002 级线性代数参考答案

一、填空

- 1) 8 2) -32 3) 7 5 4

$$\begin{pmatrix} 4 & -2 \\ -3 & 1 \end{pmatrix}$$

- 5) 1
- 6) 2 0 7) t>2
 - 8) A

- 9) 2
- 10) *n-r* 11) 2
- 12)

$$\begin{pmatrix}
0 \\
-1 \\
1 \\
0 \\
0
\end{pmatrix}$$

$$D = \begin{pmatrix} 1 + a_1 + a_2 + a_3 + a_4 \\ 1 + a_2 + a_3 + a_4 \end{pmatrix} \begin{pmatrix} 1 & a_2 & a_3 & a_4 \\ 1 & 1 + a_2 & a_3 & a_4 \\ 1 & a_2 & 1 + a_3 & a_4 \\ 1 & a_2 & a_3 & 1 + a_4 \end{pmatrix}$$

$$= (1 + a_1 + a_2 + a_3 + a_4) \begin{vmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{vmatrix} = 1 + a_1 + a_2 + a_3 + a_4$$

$$AX - A = 3X \Rightarrow (A - 3E)X = A \Rightarrow X = (A - 3E)^{-1}A$$

又
$$A-3E = \begin{pmatrix} -2 & -1 & 1 \\ 2 & 0 & -1 \\ -1 & 0 & 1 \end{pmatrix}$$
 , 所以

$$(A-3E)^{-1} = \begin{pmatrix} 0 & 1 & 1 \\ -1 & -1 & 0 \\ 0 & 1 & 2 \end{pmatrix}$$

于

$$X = \begin{pmatrix} 0 & 1 & 1 \\ -1 & -1 & 0 \\ 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & -1 & 1 \\ 2 & 3 & -1 \\ -1 & 0 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 3 & 3 \\ -3 & -2 & 0 \\ 0 & 3 & 7 \end{pmatrix}$$

四、解:

$$(\alpha_1, \alpha_2, \alpha_3, \alpha_4) = \begin{pmatrix} 1 & 0 & 3 & 2 \\ -1 & 3 & 0 & 1 \\ 2 & 1 & 7 & 5 \\ 4 & 2 & 14 & 6 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 3 & 2 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & -1 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix}
1 & 0 & 3 & 2 \\
0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 0 & 3 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

所以, $R(\alpha_1^T, \alpha_2^T, \alpha_3^T, \alpha_4^T) = 3$, $\alpha_1^T, \alpha_2^T, \alpha_4^T$ 为一个最

大无关组,且 $\alpha_3^T = 3\alpha_1^T + \alpha_2^T$

五、解: 该方程组的增广矩阵为:

$$B = \begin{pmatrix} \lambda & 1 & 1 & 1 \\ 1 & \lambda & 1 & \lambda \\ 1 & 1 & \lambda & \lambda^2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & \lambda & \lambda^2 \\ 1 & \lambda & 1 & \lambda \\ \lambda & 1 & 1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & \lambda \\ 0 & \lambda - 1 & 1 - \lambda \\ 0 & 1 - \lambda & 1 - \lambda^2 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 1 & \lambda & \lambda^2 \\ 0 & \lambda - 1 & 1 - \lambda & \lambda(1 - \lambda) \\ 0 & 0 & (1 - \lambda)(\lambda + 2) & (1 - \lambda)(1 + \lambda)^2 \end{pmatrix}$$

- 1) 当λ≠1,-2时,方程组有唯一解
- 2) 当λ = -2时, 方程组无解
- 3) 当 λ = 1 时,方程组有无穷多解

当
$$\lambda = 1$$
时, $B \rightarrow \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$

所以,
$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = k_1 \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} + k_2 \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} (k_1, k_2 \in R)$$

六、解:该二次型的矩阵为:

$$A = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 3 & 1 \\ 0 & 1 & 3 \end{pmatrix}$$

$$\pm |A - \lambda E| = \begin{vmatrix} 4 - \lambda & 0 & 0 \\ 0 & 3 - \lambda & 1 \\ 0 & 1 & 3 - \lambda \end{vmatrix} = (4 - \lambda)^2 (2 - \lambda)$$

得特征值为: $\lambda_1 = \lambda_2 = 4$, $\lambda_3 = 2$

1)
$$\stackrel{\text{deg}}{=} \lambda_1 = \lambda_2 = 4$$
 $\stackrel{\text{deg}}{=} (A - 4E)X = O$,

$$A-4E = \begin{pmatrix} 0 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 1 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
, 得基础解系:

$$\xi_{1} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \quad \xi_{2} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$
。 单位化,得: $p_{1} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \quad p_{2} = \begin{pmatrix} 0 \\ \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} \qquad \qquad X = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} Y$,使 $f = 4y_{1}^{2} + 4y_{2}^{2} + 2y_{3}^{2}$

2) 当 $\lambda_3 = 2$ 时,由(A-2E)X = 0,

$$\xi_3 = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$$

单位化,得:
$$p_3 = \begin{pmatrix} 0 \\ \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix}$$

故有正交变换:

$$X = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} Y, \quad \text{if } f = 4y_1^2 + 4y_2^2 + 2y_1^2$$

七、证明:

$$k_1\alpha_1 + k_2(\alpha_1 + 2\alpha_2) + k_3(\alpha_2 + 3\alpha_3) = 0$$

整理, 得:
$$(k_1 + k_2)\alpha_1 + (2k_2 + k_3)\alpha_2 + 3k_3\alpha_3 = 0$$

1、设存在数 k_1,k_2,k_3

又 α_1 , α_2 , α_3 线性无关

所以
$$\begin{cases} k_1 + k_2 = 0 \\ 2k_2 + k_3 = 0, & 所以, k_1 = k_2 = k_3 = 0 \\ 3k_3 = 0 \end{cases}$$

所以, α_1 , $\alpha_1 + 2\alpha_2$, $\alpha_2 + 3\alpha_3$ 线性无关。

2、设 λ 为 A 的特征值, α 为 A 的对应于特征值 λ 的特征 向量。则: $A\alpha = \lambda\alpha$

$$\Rightarrow A^k \alpha = \lambda^k \alpha \Rightarrow \lambda^k \alpha = 0 \Rightarrow \lambda^k = 0 \Rightarrow \lambda = 0$$

2003 级线性代数试题

- 一. 填空题 (每空2分,共16分)
- 1) 设A为 3×3 矩阵,B为 4×4 矩阵,且A = 1,B = -2,

2) 设A为 3 阶方阵且|A|=2,则 $|2A^{-1}|=$ ___. $|A^*|=$ ___.

3)
$$\exists \mathbb{H} A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & \frac{3}{2} \\ 0 & 1 & \frac{5}{2} \end{pmatrix}, \quad \mathbb{M} A^{-1} = \underline{\qquad}.$$

4) 设 $\eta_1, \eta_2, \dots, \eta_s$ 是 方 程 AX = b 的 解 , 若 $k_1 \eta_1 + k_2 \eta_2 + \dots + k_s \eta_s$ 也 是 AX = b 的 解 , 则 $k_1 + k_2 + \dots + k_s = \underline{\hspace{1cm}}$.

- 5)三阶矩阵 A的三个特征值为 1, 2, 3,则 $|A| = _____$, A^{-1} 的特征值为_____.
- 6) 二次型 $f(x,y,z)=5x^2+6y^2+4z^2$ 是正定还是负定:___.
- 二. 单项选择题(每小题2分,共16分).
 - 1) 设A,B是 $n(n \ge 2)$ 阶方阵,则必有().
 - (a) |A + B| = |A| + |B|; (b) |A|B| = |B|A|;
 - (c) |AB| = |BA|; (d) |A B| = |B A|.
 - 2) 设A是n阶方阵,则A=0的必要条件是().

- (a) 两行(列)元素对应成比例;
- (b) 必有一行为其余行的线性组合:
- (c) A中有一行元素全为零;
- (d) 任一行为其余行的线性组合.
- 3) 设A,B是n 阶方阵, $A \neq 0$ 且AB = 0, 则().
- (a) |B| = 0 $\equiv 0$; (b) B = 0;
- (c) BA = 0; (d) $(A + B)^2 = A^2 + B^2$.
- 4) 设A为n阶可逆矩阵,则().
- (a) 若 AB = CB, 则 A = C;
- (b) 对矩阵 $(A \mid E)$ 施行若干次初等变换, 当A变为E

时,相应地 E变为 A^{-1} ;

- (c) A总可以经过初等变换化为单位矩阵 E:
- (d) 以上都不对.
- 5) 设 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 是一组n维向量,则下列正确的是 ().
- (b) 如果存在s个不全为零的数 k_1,k_2,\cdots,k_s 使

 $k_1\alpha_1 + k_2\alpha_2 + \cdots + k_s\alpha_s = 0$,则 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 线性无 关;

(c) 若向量组 $\alpha_1, \alpha_2, \dots, \alpha_n$ 线性相关,则 α_1 可由

 $\alpha_{2}, \dots, \alpha_{s}$

线性表示:

- (d) 向量组 $\alpha_1,\alpha_2,\dots,\alpha_s$ 线性无关的充要条件是 α_1 不能 由其余s-1 个向量线性表示.
- 6) 矩阵 A() 时可能改变其秩.
 - (a) 转置;
- (b) 初等变换;
- (c) 乘以奇异矩阵; (d) 乘以非奇异矩阵.
- 7) 设A为可逆矩阵, $k \neq 0$, 则下述结论不正确的是 ().
 - (a) $(A^T)^{-1} = (A^{-1})^T$; (b) $(A^{-1})^{-1} = A$;

 - (c) $(kA)^{-1} = kA^{-1}$; (d) $(kA)^{-1} = k^{-1}A^{-1}$.
- 8) 若方阵 A与 B相似,则有().
- (a) $A \lambda E = B \lambda E$; (b) |A| = |B|;
- (c)对于相同的特征值 λ ,矩阵A与B有相同的特征向 量;

(d) A与B均与同一个对角矩阵相似.

三.
$$(8 分)$$
 计算 $D = \begin{vmatrix} 2 & 1 & 1 & 1 \\ 1 & 2 & 1 & 1 \\ 1 & 1 & 2 & 1 \\ 1 & 1 & 1 & 2 \end{vmatrix}$.

四. (12分)设

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 2 & 1 \\ 3 & 4 & 3 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & 1 \\ 5 & 3 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 3 \\ 2 & 0 \\ 3 & 1 \end{pmatrix},$$

求矩阵 X 使满足 AXB = C.

五. (12 分) 设矩阵
$$A = \begin{pmatrix} 2 & -1 & -1 & 1 & 2 \\ 1 & 1 & -2 & 1 & 4 \\ 3 & 6 & -9 & 7 & 9 \end{pmatrix}$$
, 求矩阵 A 的

列向量组的一个最大无关组,并把不属最大无关组的列向量用最大无关组线性表示.

六. (15 分). A取何值时, 非齐次方程组

$$\begin{cases} \lambda x_1 + x_2 + x_3 = 1, \\ x_1 + \lambda x_2 - x_3 = \lambda, \\ x_1 + x_2 + \lambda x_3 = \lambda. \end{cases}$$

(1) 有唯一解; (2) 无解; (3) 有无穷多个解, 并求解. 七.(15 分) 求一个正交变换 *X* = *PY*,将二次型 $f = 2x_1^2 + 4x_1x_3 + 6x_2^2 + 2x_3^2$ 化为标准形(要求: 写出正交变换和标准形).

八. $(6 \, f)$ 设 $A \to n$ 阶可逆矩阵, $\lambda \in A$ 的一个特征值,证明 A 的伴随矩阵 A^* 的特征值之一是 $\lambda^{-1}|A|$.

2003 级线性代数参考答案

一、 填空题

- 4、 $\underline{1}$ 5、 $\underline{6}$, $1,\frac{1}{2},\frac{1}{3}$ 6、正定
- 二、 单项选择题 CBACACCB
- 三、解:

$$D = \begin{vmatrix} 5 & 5 & 5 & 5 \\ 1 & 2 & 1 & 1 \\ 1 & 1 & 2 & 1 \\ 1 & 1 & 1 & 2 \end{vmatrix} = 5 \begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 1 & 1 \\ 1 & 1 & 2 & 1 \\ 1 & 1 & 1 & 2 \end{vmatrix} = 5 \begin{vmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix} = 5$$

四、解:
$$A^{-1} = \begin{pmatrix} 1 & 3 & -2 \\ -\frac{3}{2} & -3 & \frac{5}{2} \\ 1 & 1 & -1 \end{pmatrix}, B^{-1} = \begin{pmatrix} 3 & -1 \\ -5 & 2 \end{pmatrix}$$

$$X = A^{-1}CB^{-1} = \begin{pmatrix} 1 & 3 & -2 \\ -\frac{3}{2} & -3 & \frac{5}{2} \\ 1 & 1 & -1 \end{pmatrix} \begin{pmatrix} 1 & 3 \\ 2 & 0 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} 3 & -1 \\ -5 & 2 \end{pmatrix} = \begin{pmatrix} -2 \\ 10 \\ -10 \end{pmatrix}$$

五、解: 设 $A = (a_1, a_2, a_3, a_4, a_5)$,则

$$A \to \begin{pmatrix} 1 & 0 & -1 & 0 & 4 \\ 0 & 1 & -1 & 0 & 3 \\ 0 & 0 & 0 & 1 & -3 \end{pmatrix}$$

最大无关组为 a_1,a_2,a_4

$$a_3 = -a_1 - a_2$$
, $a_5 = 4a_1 + 3a_2 - 3a_4$

- (1) 当λ≠1,λ≠0且λ≠-1时有唯一解
- (2) 当λ=0时无解
- (3) 当 $\lambda = -1$ 和 $\lambda = 1$ 时有无穷多解

$$\lambda = -1$$
 时,通解为 $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix} + c_1 \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix};$

$$\lambda = 1$$
 时,通解为 $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + c_2 \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$,

 $c_1, c_2 \in R$

(通解表达形式不唯一)

七、解:二次型 f 的矩阵为
$$A = \begin{pmatrix} 2 & 0 & 2 \\ 0 & 6 & 0 \\ 2 & 0 & 2 \end{pmatrix}$$

由
$$|A - \lambda E|$$
 = $\begin{vmatrix} 2 - \lambda & 0 & 2 \\ 0 & 6 - \lambda & 0 \\ 2 & 0 & 2 - \lambda \end{vmatrix}$ = 0可得

特征值分别为λ=0, 4, 6

当
$$\lambda_1 = 0$$
时, $A \to \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$,特征向量为 $P_1 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$

当
$$\lambda_2 = 4$$
时, A-4E $\rightarrow \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, 特征向量为 $P_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$
当 $\lambda_3 = 6$ 时, A-6E $\rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$ 特征向量为 $P_3 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$

 P_1, P_2, P_3 两两正交,单位化可得所求正交变换为:

且标准形为: $f = 4y_2^2 + 6y_3^2$

七、证明:设 α 为A的对应于 λ 的特征向量,则

$$A\alpha = \lambda\alpha$$
 •

由于4可逆, 所以λ≠0

$$\mathring{A} A \alpha = \lambda A^* \alpha = |A| \alpha \Rightarrow A^* \alpha = \frac{|A|}{\lambda} \alpha$$

即沿州为者的一个特征值。