

Identification and performance of stock-recruitment functions in state space assessment models Working Paper 1

Greg Britten, Liz Brooks, Tim Miller

Background

Introduction

- State Space Research Track Working Group (SSRTWG) is investigating performance of the Woods Hole Assessment Model (WHAM)
- Simulation studies with data generated from operating models (OMs), then fit with a series of estimation models (EMs)
- This framework allows us to evaluate how the EM fits compare to the known OM "true values", evaluate model selection, bias, precision, etc.

Terms of Reference (TORs) Addressed

- TOR 2: Investigate the efficacy of estimating stock-recruit functions within state-space models and their utility in generating scientific advice.
- TOR 3: Develop guidelines for including ecosystem and environmental effects in assessment models and how to treat them for generating biological reference points and scientific advice.

Outline

- 'Stock' parameters, fishery and index parameters
- OM factors and simulated data examples
- EM models
- Beta standardization
- Analysis & Results
- Conclusions
- Future Work

Inputs

Stock parameters for generic gadid

- Natural mortality = 0.2 at all ages
- Maturity, weight, natural mortality are time-invariant

Fishery and index parameters

- two fishery independent indices were also generated, taking place at 0.25, 0.75 yr
- catchability for both indices was 0.3; selectivity was same as fishery

OM

OM factors and simulated data examples

Fhistory	R_sigma	R_cor	Ecov_effect	Ecov_cor	Obs_error
H-MSY	0.1	0.2	0.1	0.2	L
MSY	1	8.0	1	8.0	Н

- These levels were combined factorially with 4 stock recruit models (all Beverton-Holt) for 256 different OM
- ullet Factors that did not vary were the observation and process error of the Ecov (bot fixed at 0.1)

Beverton-Holt functional (1 with no Ecov effect, 3 with effect)

Beta standardization

Some Example OM Simulated Data (100 data sets for each OM)

• still need to make this

EM

- All OMs used Beverton-Holt stock recruit relationship (SRR)
- For the EMs, we also fit a mean SRR with random effects
- There were 6 total EMs fit to each simulated data set (100) for all 256 OMs
- 153,600 fitted models X 2 for β unstandardized and β standardized cases

EM	SRR	Ecov_how	Ecov	EM_mod
1	Mean	0	None	Mean_0
2	Mean	1	Controlling	$Mean_1$
3	ВН	0	None	BH_0
4	ВН	1	Controlling	BH _ 1
5	BH	2	Limiting	BH_2
6	ВН	4	Masking	BH_4

Analysis & Results

Analyses

- 1. Convergence of the estimating models
- 2. Model identifiability of an underlying stock recruitment model and/or an underlying relationship between environmental covariate
- 3. \triangle AIC and model probability
- 4. Assessment error (recruitment, spawning stock biomass, and Fbar)
- 5. Bias of estimated parameters
- 6. Mohn's ρ
- 7. Projection performance relative to assumptions about the environmental covariate

Convergence

Model Identifiability

\triangle AIC and model probability

Assessment error (recruitment, spawning stock biomass, and Fbar)

Bias of estimated parameters

Mohn's ρ

Projection performance relative to assumptions about the environmental covariate

Conclusions

Take-aways

• These are the take-aways (copy from WP)

Future Work

List of what's next

- This is what we suggest for follow-up
- Note that WP1-Appendix looked at σ_R =0.5 and found no difference from results in WP1

Acknowledgements

- This work could not have been completed without the use of Azure computing (NOAA) and MIT (... greg to fill in)
- We thank other members of the SSRTWG for thoughtful comments during earlier discussions and presentations of this work

