

# **Representing Fractional Numbers**

• A binary number with fractional part

$$B = b_{n-1} b_{n-2} \dots b_1 b_0 \cdot b_{-1} b_{-2} \dots b_{-m}$$

corresponds to the decimal number

$$D = \sum_{i = -m}^{n-1} b_i 2^i$$

If the radix point is allowed to move, we call it a floating-point representation.

• Also called *fixed-point numbers*.

• The position of the radix point is fixed.

#### **Some Examples**

1011.1 
$$\rightarrow$$
 1x2<sup>3</sup> + 0x2<sup>2</sup> + 1x2<sup>1</sup> + 1x2<sup>0</sup> + 1x2<sup>-1</sup> = 11.5  
101.11  $\rightarrow$  1x2<sup>2</sup> + 0x2<sup>1</sup> + 1x2<sup>0</sup> + 1x2<sup>-1</sup> + 1x2<sup>-2</sup> = 5.75  
10.111  $\rightarrow$  1x2<sup>1</sup> + 0x2<sup>0</sup> + 1x2<sup>-1</sup> + 1x2<sup>-2</sup> + 1x2<sup>-3</sup> = 2.875

#### **Some Observations:**

- Shift right by 1 bit means divide by 2
- Shift left by 1 bit means multiply by 2
- Numbers of the form 0.1111111...<sub>2</sub> has a value less than 1.0 (one).

#### **Limitations of Representation**

- In the fractional part, we can only represent numbers of the form  $x/2^k$  exactly.
  - Other numbers have repeating bit representations (i.e. never converge).
- Examples:

```
3/4 = 0.11

7/8 = 0.111

5/8 = 0.101

1/3 = 0.10101010101 [01] ....

1/5 = 0.001100110011 [0011] ....

1/10 = 0.0001100110011 [0011] ....
```

- More the number of bits, more accurate is the representation.
- We sometimes see:  $(1/3)*3 \neq 1$ .

### Floating-point Number Representation (IEEE-754)

- For representing numbers with fractional parts, we can assume that the fractional point is somewhere in between the number (say, n bits in integer part, m bits in fraction part). → Fixed-point representation
  - Lacks flexibility.
  - Cannot be used to represent very small or very large numbers (for example:  $2.53 \times 10^{-26}$ ,  $1.7562 \times 10^{+35}$ , etc.).
- **Solution** :: use *floating-point number representation*.
  - A number F is represented as a triplet <s, M, E> such that
     F = (-1)<sup>s</sup> M x 2<sup>E</sup>

#### $F = (-1)^s M \times 2^E$

- s is the *sign bit* indicating whether the number is negative (=1) or positive (=0).
- M is called the *mantissa*, and is normally a fraction in the range [1.0,2.0].
- E is called the *exponent*, which weights the number by power of 2.

#### **Encoding**:

• Single-precision numbers: total 32 bits, E 8 bits, M 23 bits

• Double-precision numbers: total 64 bits, E 11 bits, M 52 bits



#### **Points to Note**

- The number of *significant digits* depends on the number of bits in *M*.
  - 7 significant digits for 24-bit mantissa (23 bits + 1 implied bit).
- The *range* of the number depends on the number of bits in *E*.
  - $10^{38}$  to  $10^{-38}$  for 8-bit exponent.

#### **How many significant digits?**

$$2^{24} = 10^{x}$$
  
 $24 \log_{10} 2 = x \log_{10} 10$ 

 $x = 7.2 \rightarrow 7$  significant decimal places

#### **Range of exponent?**

$$2^{127} = 10^{y}$$
  
 $127 \log_{10} 2 = y \log_{10} 10$   
 $y = 38.1 \rightarrow \text{maximum exponent value}$   
 $38 \text{ (in decimal)}$ 

### "Normalized" Representation

- We shall now see how *E* and *M* are actually encoded.
- Assume that the actual exponent of the number is EXP (i.e. number is  $M \times 2^{EXP}$ ).
- Permissible range of  $E: 1 \le E \le 254$  (the all-0 and all-1 patterns are not allowed).
- Encoding of the exponent E:

```
The exponent is encoded as a biased value: E = EXP + BIAS where BIAS = 127 (2<sup>8-1</sup> – 1) for single-precision, and BIAS = 1023 (2<sup>11-1</sup> – 1) for double-precision.
```

#### • Encoding of the mantissa M:

• The mantissa is coded with an implied leading 1 (i.e. in 24 bits).

```
M = 1.xxxx...x
```

- Here, xxxx...x denotes the bits that are actually stored for the mantissa. We get the extra leading bit for *free*.
- When xxxx...x = 0000...0, *M* is minimum (= 1.0).
- When xxxx...x = 1111...1, *M* is maximum (=  $2.0 \varepsilon$ ).

# **An Encoding Example**

• Consider the number F = 15335

```
15335_{10} = 11101111100111_2 = 1.11011111100111 \times 2^{13}
```

- Here, EXP = 13, BIAS = 127.  $\rightarrow$  E = 13 + 127 = 140 = 10001100<sub>2</sub>

0 10001100 11011111001110000000000

466F9C00 in hex

# **Another Encoding Example**

• Consider the number F = -3.75

$$-3.75_{10} = -11.11_2 = -1.111 \times 2^1$$

- Here, EXP = 1, BIAS = 127.  $\rightarrow$  E = 1 + 127 = 128 = 10000000<sub>2</sub>

1 10000000 111000000000000000000 40700000 in hex

### **Special Values**

• When E = 000...0

- M = 000...0 represents the value 0.
- M ≠ 000...0 represents numbers very close to 0.
- When E = 111...1
  - M = 000...0 represents the value  $\infty$  (infinity).
  - M ≠ 000...0 represents *Not-a-Number* (NaN).

Zero is represented by the *all-zero string*.

Also referred to as *de-normalized* numbers.

NaN represents cases when no numeric value can be determined, like uninitialized values, ∞\*0, ∞-∞, square root of a negative number, etc.

# **Summary of Number Encodings**



Denormal numbers have very small magnitudes (close to 0) such that trying to normalize them will lead to an exponent that is below the minimum possible value.

- Mantissa with leading 0's and exponent field equal to zero.
- Number of significant digits gets reduced in the process.

# **Rounding**

- Suppose we are adding two numbers (say, in single-precision).
  - We add the mantissa values after shifting one of them right for exponent alignment.
  - We take the first 23 bits of the sum, and discard the residue *R* (remaining bits).
- IEEE-754 format supports four rounding modes:
  - a) Truncation
  - b) Round to +∞ (similar to ceiling function)
  - c) Round to -∞ (similar to floor function)
  - d) Round to nearest

- To implement rounding, two temporary bits are maintained:
  - Round Bit (r): This is equal to the MSB of the residue R.
  - Sticky Bit (s): This the logical OR of the rest of the bits of the residue R.
- Decisions regarding rounding can be taken based on these bits:

```
a) R > 0: if r + s = 1
```

b) R = 0.5: if r.s' = 1

c) R > 0.5: if r.s = 1 // '+' is logical OR, '.' is logical AND

- Renormalization after Rounding:
  - If the process of rounding generates a result that is not in normalized form, then we need to renormalize the result.

#### **Some Exercises**

Decode the following single-precision floating-point numbers.



# **Floating Point Addition/Subtraction**

- Two numbers:  $M1 \times 2^{E1}$  and  $M2 \times 2^{E2}$ , where E1 > E2 (say).
- Basic steps:
  - Select the number with the smaller exponent (i.e. E2) and shift its mantissa right by (E1-E2) positions.
  - Set the exponent of the result equal to the larger exponent (i.e. *E*1).
  - Carry out  $M1 \pm M2$ , and determine the sign of the result.
  - Normalize the resulting value, if necessary.

# **Addition Example**

• Suppose we want to add F1 = 270.75 and F2 = 2.375

$$F1 = (270.75)_{10} = (100001110.11)_2 = 1.0000111011 \times 2^8$$

$$F2 = (2.375)_{10} = (10.011)_2 = 1.0011 \times 2^1$$

• Shift the mantissa of F2 right by 8 - 1 = 7 positions, and add:

1000 0111 0110 0000 0000 0000

1 0011 0000 0000 0000 0000 000

1000 1000 1001 0000 0000 0000 0000 000

• Result: 1.00010001001 x 28

Residue

## **Subtraction Example**

• Suppose we want to subtract F2 = 224 from F1 = 270.75

F1 = 
$$(270.75)_{10}$$
 =  $(100001110.11)_2$  =  $1.0000111011 \times 2^8$   
F2 =  $(224)_{10}$  =  $(11100000)_2$  =  $1.111 \times 2^7$ 

• Shift the mantissa of F2 right by 8 - 7 = 1 position, and subtract:

1000 0111 0110 0000 0000 0000 111 0000 0000 0000 0000 0000 000 0001 0111 0110 0000 0000 0000 000

- For normalization, shift mantissa left 3 positions, and decrement E by 3.
- **Result**: 1.01110110 x 2<sup>5</sup>



# **Floating-point Multiplication**

- Two numbers:  $M1 \times 2^{E1}$  and  $M2 \times 2^{E2}$
- Basic steps:
  - Add the exponents *E*1 and *E*2 and subtract the *BIAS*.
  - Multiply M1 and M2 and determine the sign of the result.
  - Normalize the resulting value, if necessary.

# **Multiplication Example**

• Suppose we want to multiply F1 = 270.75 and F2 = -2.375

F1 = 
$$(270.75)_{10}$$
 =  $(100001110.11)_2$  =  $1.0000111011 \times 2^8$   
F2 =  $(-2.375)_{10}$  =  $(-10.011)_2$  =  $-1.0011 \times 2^1$ 

- Add the exponents: 8 + 1 = 9
- Multiply the mantissas: 1.01000001100001
- Result: 1.01000001100001 x 29



# **Floating-point Division**

- Two numbers:  $M1 \times 2^{E1}$  and  $M2 \times 2^{E2}$
- Basic steps:
  - Subtract the exponents *E*1 and *E*2 and add the *BIAS*.
  - Divide M1 by M2 and determine the sign of the result.
  - Normalize the resulting value, if necessary.

# **Division Example**

• Suppose we want to divide F1 = 270.75 by F2 = -2.375

F1 = 
$$(270.75)_{10}$$
 =  $(100001110.11)_2$  =  $1.0000111011 \times 2^8$   
F2 =  $(-2.375)_{10}$  =  $(-10.011)_2$  =  $-1.0011 \times 2^1$ 

- Subtract the exponents: 8 1 = 7
- Divide the mantissas: 0.1110010
- **Result**:  $-0.1110010 \times 2^7$
- After normalization: 1.110010 x 2<sup>6</sup>





- The MIPS32 architecture defines the following floating-point registers (FPRs).
  - 32 32-bit floating-point registers *F0* to *F31*, each of which is capable of storing a single-precision floating-point number.
  - Double-precision floating-point numbers can be stored in even-odd pairs of FPRs (e.g., (F0,F1), (F10,F11), etc.).
- In addition, there are five *special-purpose FPU control registers*.



# **Typical Floating Point Instructions in MIPS32**

- Load and Store instructions
  - Load Word from memory
  - Load Double-word from memory
  - Store Word to memory
  - Store Double-word to memory
- Data Movement instructions
  - Move data between integer registers and floating-point registers
  - Move data between integer registers and floating-point control registers

#### • Arithmetic instructions

- Floating-point absolute value
- Floating-point compare
- Floating-point negate
- Floating-point add
- Floating-point subtract
- Floating-point multiply
- Floating-point divide
- Floating-point square root
- Floating-point multiply add
- Floating-point multiply subtract

#### • Rounding instructions:

- Floating-point truncate
- Floating-point ceiling
- Floating-point floor
- Floating-point round

#### • Format conversions:

- Single-precision to double-precision
- Double-precision to single-precision

# **Example: Add a scalar s to a vector A**

```
for (i=1000; i>0; i--)
A[i]= A[i] + s;
```

```
Loop: L.D F0,0(R1)

ADD.D F4,F0,F2

S.D F4,0(R1)

ADDI R1,R1,-8

BNE R1,R2,Loop
```

```
R1: initially qoints to A[1000]
```

(F2,F3): contains the scalar s

R2: initialized such that 8(R2) is the address of A[1]

We assume double precision (64 bits):

• Numbers stored in (*F0,F1*), (*F2,F3*), and (*F4,F5*).