Sprawozdanie zadanie 3 – Techniki inteligentnej analizy danych.

Jan Śladowski 247806 Dominik Gałkowski 247659

1. Wyniki przeprowadzonych doświadczeń

W poniższych tabelach przedstawiono wartości miar klasyfikacji dla 4 różnych modeli (Inception, ResNet, Mobile Net, CNN – zaimplementowana sieć na podstawie biblioteki tensorflow) dla różnych podziałów zbiorów testowego i treningowego. W tabeli uwzględniono accuracy (dokładność), która określa jaka część obiektów, ze wszystkich zaklasyfikowanych, została zaklasyfikowana poprawnie. Dokładność jest obliczana dla wszystkich klas jednocześnie. *Precision* (precyzja), dzięki niej dowiadujemy się, ile wśród obiektów sklasyfikowanych do danej klasy jest rzeczywiście tej klasy. *Recall* (czułość) opisuje jaki jest udział poprawnie sklasyfikowanych obiektów wśród wszystkich obiektów danej klasy. *F1-Score* to średnia arytmetyczna pomiędzy precyzją a czułością, pozwalająca ocenić równowagę między nimi. W tabeli miary oznaczone jako "K", dotyczą miar dla obiektów oznaczonych jako koty oraz "P", które dotyczą psów.

1.1 Podział 80 – 20

Poniższa tabela przedstawia wynik dla podziału 80% zbiór treningowy, 20% zbiór testowy.

	Inception	ResNet	MobileNet	CNN
Accuracy	0.9426	0.6839	0.9600	0.7945
Precision _K	0.9417	0.6469	0.9752	0.8090
Recallκ	0.9436	0.8099	0.9440	0.7711
F1-Score _k	0.9426	0.7193	0.9593	0.7896
Precision _P	0.9435	0.7459	0.9457	0.7813
Recall₽	0.9416	0.5578	0.9760	0.8179
F1-Score _P	0.9425	0.6383	0.9606	0.7992
Czas	559	1194	441	429
trenownania[s]				
Czas predykcji[s]	28	49	19	8

cat

dog

Przewidywana klasa

cat

Przewidywana klasa

dog

1.2 Podział 60 – 40

Poniższa tabela przedstawia wynik dla podziału 60% zbiór treningowy, 40% zbiór testowy.

	Inception	ResNet	MobileNet	CNN
Accuracy	0.9399	0.6947	0.9625	0.7808
Precision _K	0.9185	0.6965	0.9462	0.7906
Recall _k	0.9654	0.6903	0.9808	0.7638
F1-Score _k	0.9414	0.6934	0.9632	0.7770
Precision _P	0.9635	0.6930	0.9801	0.7715
Recall₽	0.9144	0.6991	0.9442	0.7978
F1-Score _P	0.9383	0.6961	0.9618	0.7844
Czas trenownania[s]	591	1297	472	357
Czas predykcji[s]	49	98	38	15

1.3 Podział 40 – 60

Poniższa tabela przedstawia wynik dla podziału 40% zbiór treningowy, 60% zbiór testowy.

	Inception	ResNet	MobileNet	CNN
Accuracy	0.9415	0.6831	0.9645	0.7616
Precision _K	0.9457	0.7078	0.9655	0.7424
Recallκ	0.9368	0.6235	0.9633	0.8013
F1-Score _K	0.9412	0.6630	0.9644	0.7707
Precision _P	0.9374	0.6636	0.9634	0.7842
Recall _P	0.9463	0.7426	0.9656	0.7220
F1-Score _P	0.9418	0.7009	0.9645	0.7518
Czas	585	1250	470	290
trenownania[s]				
Czas predykcji[s]	75	150	56	22

1.4 Podział 20 – 80

Poniższa tabela przedstawia wynik dla podziału 20% zbiór treningowy, 80% zbiór testowy.

	Inception	ResNet	MobileNet	CNN
Accuracy	0.9049	0.6653	0.9607	0.7134
Precision _K	0.8509	0.6980	0.9606	0.7327
Recall _k	0.9820	0.5826	0.9608	0.6719
F1-Score _k	0.9117	0.6351	0.9607	0.7010
Precision _P	0.9787	0.6418	0.9608	0.6970
Recall₽	0.8279	0.7480	0.9606	0.7549
F1-Score _P	0.8970	0.6908	0.9607	0.7248
Czas trenownania[s]	561	1213	487	244
Czas predykcji[s]	91	200	82	30

2. Podsumowanie

W przeprowadzonym eksperymencie porównano cztery sieci neuronowe - Inception, ResNet, MobileNet i autorską sieć CNN – w zadaniu binarnej klasyfikacji obrazów kotów i psów, dla różnych podziałów zbioru danych (80:20, 60:40, 40:60 i 20:80). Spośród testowanych architektur najlepszą dokładność i stabilność dla wszystkich podziałów danych uzyskał MobileNet, który w zależności od proporcji zbioru treningowego i testowego osiągał dokładność w przedziale 0,960–0,964 i cechował się bardzo wysokimi wartościami wskaźników precyzji, recall i F1 dla obu klas. MobileNet wyróżniał się również najkrótszym czasem trenowania i predykcji spośród modeli zbudowanych w Tensorflow, co czyni go najlepszym kompromisem między szybkością a jakością klasyfikacji. Model Inception, mimo nieco dłuższego czasu obliczeń, charakteryzował się porównywalną dokładnością w podziałach z większą ilością danych treningowych i nieco słabszą dla mniejszych podzbiorów. Autorska sieć CNN osiągnęła gorsze wyniki w porównaniu z modelami MobileNet i Inception, jednak jej czasy trenowania i predykcji były najkrótsze. Najsłabszą dokładność i najbardziej zróżnicowane wskaźniki precyzji i recall uzyskano dla modelu ResNet, który dodatkowo wyróżniał się zdecydowanie najdłuższym czasem trenowania i predykcji. Podsumowując, w rozpatrywanym zadaniu MobileNet okazał się najlepszym wyborem pod kątem jakości klasyfikacji i wydajności obliczeniowej, Inception stanowił solidną alternatywę dla większych podziałów danych, a pozostałe modele ustępowały pod względem dokładności i szybkości.

Poniższa tabela przedstawia wyniki miary Accuracy dla danego modelu i podziału zbiorów.

