BAN 210 – FINAL ASSESSMENT ANALYSIS ON THE AUTO MPG DATASET

BY-

STUDENT NAME: Rohan Sharma

STUDENT ID: 135812212

INTRODUCTION:

In order to estimate the class of the target variable in the Auto MPG data for the final project of BAN 210, I utilised predictive modelling in the research to forecast the values of Target variable and also used linear regression and neural network models in the evaluation below. I also conducted a study to determine which model will produce the most accurate forecast.

OBJECTIVE OF THE ANALYSIS:

My analysis's purpose is to answer the following questions:

- Predict the value of our target variable.
- Determine which model performs better and by how much accuracy.

METHODOLOGY AND INFERENCES:

Below are the steps I followed using SAS Miner to analyze the dataset:

Step 1: File Import

In the first step, the dataset is imported and read on the user system using the "File Import" node. The file may be read by providing the path link on the "Import File" option in the node's Properties. Set Role as the "Target" for the Class variable in the Properties section by clicking the "Variable" button. The other attributes are known as "Input" variables since they are independent variables.

Step 2: Stat Explore

The StatExplore node is a versatile tool for examining variable distributions and statistics in our data sets. The outcome of the StatExplore node is shown in the screenshot below.

Step 3: Graph Explore

The Graph Explore node is a powerful visualization tool that allows us to graphically explore enormous quantities of data to identify patterns and trends and to highlight extreme values in the database, and the output that we obtained is seen below.

Step 4: Data Partition

To avoid overfitting and underfitting, divide the data into 20% Validation and 80% Train datasets.

The population distribution is depicted in the snapshot of the results window below.

. Property	Value
General	
Node ID	Part
Imported Data	
Exported Data	
Notes	
Train	
Variables	
Output Type	Data
Partitioning Method	Default
Random Seed	12345
Data Set Allocations	
-Training -	80.0
-Validation	20.0
- Test	0.0
Report	
Interval Targets	Yes
Class Targets	Yes
Status	
Create Time	6/15/22 9:10 PM
Run ID	1b 16a686-5b72-4848-b8
Last Error	
Last Status	Complete
Last Run Time	8/11/22 12:04 AM
Run Duration	0 Hr. 0 Min. 5.76 Sec.
Grid Host	
User-Added Node	No

ummary Statis ata=DATA 'ariable mpg ata=TRAIN	stics for Int Maximum 46.6	Mean 23.514572864	Minimum 9	Number of Observations 398	Missing O	Standard Deviation 7.8159843126	Label
ata=DATA ariable	Maximum	Mean		Observations	-	Deviation	Label
ata=DATA ariable	Maximum	Mean		Observations	-	Deviation	Label
ariable mpg				Observations	-	Deviation	Label
ariable mpg				Observations	-	Deviation	Label
mpg				Observations	-	Deviation	Label
mpg				Observations	-	Deviation	Label
mpg					-		Label
	46.6	23.514572864	9	398	0	7.8159843126	
	46.6	23.514572864	9	398	0	7.8159843126	
ata=TRAIN							
ata=TRAIN							
ata=IRAIN							
				Number of		Standard	
ariable	Maximum	Mean	Minimum	Observations	Missing	Deviation	Label
arrabic	Haximum	nean	HIHILIIGI	ODSELVACIONS	nissing	Deviacion	nanei
mpg	46.6	23.523899371	10	318	0	7.7904370653	
mpg	40.0	20.020055571	10	510	Ü	7.7504570000	
ata=VALIDATE							
				Number of		Standard	
ariable	Maximum	Mean	Minimum	Observations	Missing	Deviation	Label
mpg	44.6	23.4775	9	80	0	7.966241669	
							•

Step 5: Data Transformation

I utilised transformation nodes in this stage since they are important when we want to increase the fit of a model to the data. The output is as follows:

Step 6: Imputation

In this phase, I utilised the Impute node, which is used to replace missing values in data sets used for data mining. The output is as follows:

Step 7: Regression Model

Because we are predicting on a categorization variable, we have utilised the Linear Regression model. Logit has been selected under Properties after connecting the Regression node to the data Transformation node.

The Regression output yielded the following results:

Step 8: Variable Selection

The Variable Selection node helps us reduce the amount of inputs by marking input variables that are unrelated to the objective as rejected. The output is as follows:

Step 9: Neural Network

In addition to training, the Neural Network node allows us to score the training, validation, test, and score data sets. The following are the outcomes:

Step 10: Model Comparison

We may compare the performance of competing models using various benchmarking criteria by utilising the Model Comparison node. The following are the outcomes:

Step 11: Final Diagram

I received the following final diagram:

CONCLUSION:

I compared the two models by calculating the Mean Squared Error (MSE). Because the MSE Score of the Linear Regression model is lower than that of the Neural Network model, it outperforms the Neural Network model.

GITHUB LINK:

Please find below the GitHub:

DECLARATION:

I, **Rohan Sharma**, declare that the attached assignment is my own work in accordance with the Seneca Academic Policy. I have not copied any part of this assignment, manually or electronically, from any other source including web sites, unless specified as references. I have not distributed my work to other students.