WHAT IS CLAIMED IS:

1	1. In a packet communication system having a plurality of independently
2	operating nodes, including a local node, which have limited available communication time
3	and which are capable of monitoring busy time and idle time in cyclical epochs, a method for
4	determining a load on the communication time of the local node in communication with a
5	plurality of other nodes comprising:
6	synchronizing periods of load measurement among nodes to a communication
7	epoch; and
8	factoring out the load attributed by the local node to the global load.
1	2. In a packet communication system having a plurality of independently
2	operating nodes, including a first node and a second node, which have limited available
13	communication time and which are capable of monitoring busy time and idle time in cyclical
	epochs, a method for determining a load on the communication time of the first node with
15	said second node comprising:
6	broadcasting from the first node a first heartbeat and thereupon resetting a
神	global counter at the first node at a first epoch;
	receiving at the second node said first heartbeat and resetting a second node
9	counter for the first node;
10	transferring traffic of the first node with the second node and accumulating
	total traffic duration in the global counter at the first node;
12	receiving traffic from the first node at the second node and accumulating
13	second node traffic duration in a first node counter at the second node;
14	broadcasting a second heartbeat from the first node at the beginning of the
15	next epoch, including value of the global counter, and resetting the global counter for a
16	second epoch;
17	receiving the second heartbeat and the global counter value at the second
18	node; and
19	determining a net loading for the first node as viewed by the second node by
20	factoring out contribution to the global counter value during the first epoch.
1	3. The method according to claim 2 further including:
2	averaging the net loading over several epochs.

4. The method according to claim 2 further including: using the net loading in selecting a best path for traffic of the second node.