සියලු ම හිමිකම් ඇවිරෑම් / மුගුට් பதிப்புரிமையுடையது / All Rights Reserved I

(නව නිර්දේශය/பුதிய பாடத்திட்டம்/New Syllabus)

මේත්තුව ලී ලෙකා විතාශ දෙපාර්**තුල්ලෙකරු විහාරිකාලද පැවරියල් කිරීමාව** විතාශ දෙපාර්තමේන්තුව ලී ලෙකා විතාශ දෙපාර්තමේන්තුව තිහානාස්කභාව මුවෙන්නෙසට පාදී කිරීම තිහානාකරණාව මුවෙන්නට පාර්.කෑලී තිහානාස්කභාව මුවෙන්නෙසට පාර්යාලේ නිහානාස්කභාව ions, Sri Lanka Department **මුවෙන්නෙසට හැරිමුවේ මුවෙන්නට පාර්යාල්ල** නිහානාස්කභාව නිහාන දෙපාර්තමේන්තුව ලී ලෙකා විතාශ දෙපාර්තමේන්තුව ලේකා විතාශ දෙපාර්තමේන් විතාශ දෙපාර්තමේන්තුව ලේකා විතාශ දෙපාර්තමේන්තුව ලේකා විතාශ දෙපාර ලේකා වෙන්න වෙන්න වෙන්න වෙන්න වෙන්න වෙන්න වෙන්න වෙන්න

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2019 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2019 ஓகஸ்ற் General Certificate of Education (Adv. Level) Examination, August 2019

රසායන විදනව இரசாயனவியல் I Chemistry

2019 08 16 / 0830 - 1030

පැය දෙකයි

இரண்டு மணித்தியாலம் Two hours

උපදෙස්:

- * ආවර්තිතා වගුවක් සපයා ඇත.
- * මෙම පුශ්න පතුය පිටු 09 කින් යුක්ත වේ.
- * සියලු ම පුශ්තවලට පිළිතුරු සපයන්න.
- * ගණක යන්තු භාවිතයට ඉඩ දෙනු නොලැබේ.
- * උත්තර පතුයේ නියමිත ස්ථානයේ ඔබේ විභාග අංකය ලියන්න.
- 🔻 උත්තර පතුයේ පිටුපස දී ඇති අනෙක් උපදෙස් සැලකිලිමත් ව කියවන්න.
- * 1 සිට ${f 50}$ තෙක් එක් එක් පුශ්නයට (1),(2),(3),(4),(5) යන පිළිතුරුවලින් **නිවැරදි හෝ ඉතාමත් ගැළපෙන** හෝ පිළිතුර තෝරා ගෙන, එය **උත්තර පතුගේ පිටුපස දැක්වෙන උපදෙස් පරිදි කතිරයක්** (X) **යොද දක්වන්න**.

සාර්වතු වායු නියතය $R = 8.314 \,\mathrm{J \, K^{-1} \, mol^{-1}}$ ඇවගාඩ්රෝ නියතය $N_A = 6.022 \times 10^{23} \, \mathrm{mol}^{-1}$ ප්ලෑන්ක්ගේ නියතය $h = 6.626 \times 10^{-34} \, \mathrm{J s}$ ආලෝකයේ පුවේගය $c = 3 \times 10^8 \,\mathrm{m \ s^{-1}}$

- පහත දැක්වෙන I සහ II පුකාශ සලකන්න.
 - පරමාණු මගින් අවශෝෂණය කරන හෝ විමෝචනය කරන ශක්තිය ක්වොන්ටම්කරණය වී ඇත.
 - II. කුඩා අංශු සුදුසු තත්ත්ව යටතේ දී තරංග ලක්ෂණ පෙන්නුම් කරයි. මෙම I සහ II පුකාශවලින් දෙනු ලබන වාද ඉදිරිපත් කළ විදාාඥයන් දෙදෙනා පිළිවෙළින්,
 - (1) ලුවී ඩි බුෝග්ලි සහ ඇල්බට් අයින්ස්ටයින්
 - (2) මැක්ස් ප්ලාන්ක් සහ ලුවී ඩි බෝග්ලි
 - (3) මැක්ස් ප්ලාන්ක් සහ අර්නස්ට් රදර්ෆ'ඩ
 - (4) නීල්ස් බෝර් සහ ලුවී ඩි බෝග්ලි
 - (5) ලුවී ඩි බුෝග්ලි සහ මැක්ස් ප්ලාන්ක්
- ${f 2.}$ පරමාණුවක පුධාන ක්වොන්ටම් අංකය n=3 හා ආශිුත උපරිම **ඉලෙක්ටෝන යුගල්** සංඛාාව වනුයේ,

- 3. ඔක්සලේට් අයනය $\left[{\rm C_2O_4^{2-}} / {\rm (O_2C-CO_2)^{2-}} \right]$ \odot ඇඳිය හැකි ස්ථායි සම්පුයුක්ත වනුහ ගණන වනුයේ,

- (4) 5 (5) 6
- 4. පහත දක්වා ඇති සංයෝගයේ IUPAC නාමය කුමක් ද?

HOCH,CH,CH,CCH,NH,

(1) 5-hydroxy-2-oxo-1-pentanamine

(2) 1-amino-5-hydroxy-2-oxopentane

(3) 1-amino-5-hydroxy-2-pentanone

(4) 5-hydroxy-1-amino-2-pentanone

- (5) 5-amino-4-oxo-1-pentanol
- විදාුත් සෘණතාවේ වැඩිම වෙනසක් ඇති මූලදුවා යුගලය හඳුනාගන්න.

 - (1) B සහ Al (2) Be සහ Al (3) B සහ Si (4) B සහ C (5) Al සහ C

 $\mathbf{6.}$ $\mathbf{H_{\gamma}NNO}$ අණුවේ (සැකිල්ල : $\mathbf{H-N^1-N^2-O}$) නයිටුජන් පරමාණු දෙක අවට ($\mathbf{N^1}$ සහ $\mathbf{N^2}$ ලෙස ලේබල් කර ඇත.) ඉලෙක්ටුෝන යුගල් ජාාමිතිය සහ හැඩය පිළිවෙළින් වනුයේ,

	N^1		N ²						
(1)	චතුස්තලීය	පිරමිඩාකාර	තලීය තිකෝණාකාර	කෝණිය					
(2)	පිරමිඩාකාර	තලීය තිකෝණාකාර	තලීය තිකෝණාකාර	කෝණිය					
(3)	තලීය තිුකෝණාකාර	පිරම්ඩාකාර	තලීය තිකෝණාකාර	තලීය තිුකෝණාකාර					
(4)	වතුස්තලීය	පිරමිඩාකාර	කෝණි ය	තලීය නිුකෝණාකාර					
(5)	චතුස්තලී ය	න ෝණීය	තලීය තිුකෝණාකාර	තලීය ති්කෝණාකාර					

7. පහත දැක්වෙන පුකාශ අතුරෙන් බෙන්සීන් පිළිබඳව වැරදී පුකාශය කුමක් ද?

(1) බෙන්සීන්හි සම්පුයුක්ත මුහුම පහත දී ඇති ආකාරයට පෙන්වනු ලැබේ.

(2) බෙන්සීන්හි කාබන් පරමාණු හයම sp² මුහුම්කරණය වී ඇත.

(3) බෙන්සීන්හි ඕනෑම කාබන් පරමාණු දෙකක් අතර බන්ධන දිග එකම අගයක් ගනී.

(4) බෙන්සීන්හි සියළු C—C—C හා C—C—H බන්ධන කෝණවලට එකම අගයක් ඇත.

(5) බෙන්සීන්හි හයිඩුජන් පරමාණු සියල්ල ම එකම තලයක පිහිටයි.

 $oldsymbol{8.}$ ඉහළ උෂ්ණත්වවල දී $\mathrm{TiCl}_{A}(g)$ දුව මැග්නීසියම් ලෝහය ($\mathrm{Mg}(I)$) සමග පුතිකිුයා කර $\mathrm{Ti}(s)$ ලෝහය සහ $\mathrm{MgCl}_{A}(I)$ ලබා දේ. $\mathrm{TiCl}_4(\mathrm{g})~0.95~\mathrm{kg}$ හා $\mathrm{Mg}(\mathit{l})~97.2~\mathrm{g}$ පුතිකිුයා කිරීමට සැලසූ විට, සම්පූර්ණයෙන් වැයවන පුතිකිුයකය (මෙය සීමාකාරී පුතිකියකය ලෙස සාමානායෙන් හැඳින්වේ) සහ Ti(s) ලෝහය සැදෙන පුමාණ පිළිවෙළින් වනුයේ, (මවුලික ස්කන්ධය: $TiCl_4 = 190 \text{ g mol}^{-1}$; $Mg = 24.3 \text{ g mol}^{-1}$; $Ti = 48 \text{ g mol}^{-1}$)

(1) TiCl₄ සහ 96 g

(2) Mg සහ 96 g

(3) Mg am 48 g

(4) TiCl₄ සහ 192 g

(5) Mg සහ 192 g

9. පරිපූර්ණ වායු සමීකරණය, $P=
ho rac{RT}{M}$ ආකාරයෙන් දැක්විය හැක. මෙහි ho යනු වායුවෙහි ඝනත්වය ද, M යනු වායුවේ මවුලික ස්කන්ධය (g mol^{-1}) ද, P යනු පීඩනය (Pa) හා T යනු උෂ්ණත්වය (K) ද වේ. R හි ඒකක $\mathrm{J} \; \mathrm{mol}^{-1} \; \mathrm{K}^{-1}$ ුනම්, සමීකරණයෙහි ho හි ඒකක විය යුතු වන්නේ,

(1) kg m

(2) $g m^{-3}$

(3) $g \text{ cm}^{-3}$

(4) $g dm^{-3}$

(5) kg cm⁻³

 $oldsymbol{10}$. පහත සඳහන් ජලීය දුාවණයන්හි $oldsymbol{\mathrm{H_{2}O}}$ ද ඇතුලු ව සන්නායකතාව **අඩුවන** පිළිවෙළ වනුයේ, $0.01\,\mathrm{M\,KCl},\ 0.1\,\mathrm{M\,KCl},\ 0.1\,\mathrm{M\,HAC};\ ($ ෙමහි $\mathrm{HAC}=$ ඇසිටික් අම්ලය; $\mathrm{M}=\mathrm{mol\ dm}^{-3}$)

(1) H₂O

> 0.1 M HAC > 0.1 M KCl > 0.01 M KCl

(2) 0.01 M KCl > 0.1 M HAC > 0.1 M KCl $> H_2O$

(3) 0.01 M KCl > 0.1 M KCl > 0.1 M HAC $> H_2O$

(4) 0.1 M KCl > 0.01 M KCl > 0.1 M HAC $> H_2O$

(5) $0.1 \text{ M HAC} > \text{H}_2\text{O}$

> 0.01 M KCl > 0.1 M KCl

 $11. \ \mathrm{SO_2, SO_3, SO_3^{2-}}, \ \mathrm{SO_4^{2-}}$ සහ $\mathrm{SCl_3}$ යන රසායනික විශේෂ, සල්ෆර් පරමාණුවේ (S) විදාුුත් සෘණතාව **වැඩිවන** පිළිවෙළට සැකසුවිට නිවැරදි පිළිතුර වනුයේ,

(1) $SCl_2 < SO_3^{2-} < SO_2 < SO_3 < SO_4^{2-}$ (2) $SO_3 < SO_4^{2-} < SO_2 < SO_3^{2-} < SCl_2$

(3) $SO_3^{2-} < SO_4^{2-} < SCl_2 < SO_3 < SO_2$ (4) $SCl_2 < SO_3^{2-} < SO_4^{2-} < SO_2 < SO_3$

(5) $SCl_2 < SO_4^{2-} < SO_3^{2-} < SO_2 < SO_3$

- 12. පහත සඳහන් කුමන පිළිතුර, $25\,^{\circ}\mathrm{C}$ හි ඇති $1.775\,\mathrm{mol}\;\mathrm{dm}^{-3}\;\mathrm{MgCl}_{2}$ ජලීය දුාවණයක පැවැතිය හැකි උපරිම හයිඩොක්සයිඩ් සාන්දුණය ලබා දෙයි ද? මෙම උෂ්ණත්වයේ 7 $Mg(OH)_{2}$ හි දාවාතා ගුණිතය $7.1 \times 10^{-12} \text{ mol}^3 \text{ dm}^{-9}$ වේ.
 - (1) $4.0 \times 10^{-6} \text{ mol dm}^{-3}$
- (2) $2.0 \times 10^{-6} \text{ mol dm}^{-3}$
- (3) $1.775 \times 10^{-12} \,\mathrm{mol \, dm}^{-3}$

- (4) $\sqrt{7.1} \times 10^{-6} \text{ mol dm}^{-3}$
- (5) $1.0 \times 10^{-6} \text{ mol dm}^{-3}$
- 13. පහත දක්වා ඇති පුතිකිුයාවේ පුධාන එලය කුමක් ද?

- (1)

- 14. පහත දැක්වෙන ඒවායින් නිවැරදි පුකාශය හඳුනාගන්න.
 - (1) NF_3 වල බන්ධන කෝණය NH_3 වල බන්ධන කෝණයට වඩා විශාල වේ.
 - (2) 17 වන කාණ්ඩයේ (හෝ 7A) මූලදුවා, ඔක්සිකරණ අවස්ථා –1 සිට +7 දක්වා පෙන්නුම් කරයි.
 - (3) කාමර උෂ්ණත්වයේ දී සල්ෆර්වල වඩාත් ම ස්ථායි බහුරූපී ආකාරය ඒකානති සල්ෆර් වේ.
 - (4) මිනිරන්වල ඝනත්වය දියමන්තිවල ඝනත්වයට වඩා වැඩි ය.
 - (5) වායුමය අවස්ථාවේ දී ඇලුම්නියම් ක්ලෝරයිඩ් අෂ්ටක නියමය තෘප්ත කරයි.
- 15. $Mn(s) \left| Mn^{2+}(aq) \right| \left| Br^{-}(aq) \right| Br_{2}(g) \left| Pt(s) \right| D$ දුපුත්රසායනික කෝෂයෙහි සම්මත විදසුත්ගාමක බලය $2.27\,\mathrm{V}$ වේ.

 $\mathrm{Br}_2(\mathrm{g}) \Big| \mathrm{Br}^-(\mathrm{aq})$ හි සම්මත ඔක්සිහරණ විභවය $1.09~\mathrm{V}$ වේ. $\mathrm{Mn}^{2+}(\mathrm{aq}) \Big| \mathrm{Mn}(\mathrm{s})$ හි සම්මත ඔක්සිහරණ විභවය වනුයේ,

- (1) -3.36 V
- (2) -1.18 V (3) 0.59 V (4) 1.18 V
- (5) 3.36 V
- 16. දුවයක වෘෂ්පීකරුණයේ එන්තැල්පි වෙනස හා වෘෂ්පීකරණයේ එන්ටොපි වෙනස පිළිවෙළින් $45.00~{
 m kJ}~{
 m mol}^{-1}$ හා $90.0~{
 m JK}^{-1}~{
 m mol}^{-1}$ වේ. දුවයෙහි තාපාංකය වනුයේ,
 - (1) 45.0 °C
- (2) 62.7 °C

- (3) 100.0 °C (4) 135.0 °C (5) 227.0 °C
- 17. CၙHၙŃ≡NCl පිළිබඳව **වැරදි** පුකාශය කුමක් ද?
 - (1) ඇනිලීන්, $\text{HNO}_2\left(\text{NaNO}_2/\text{HCl}\right)$ සමග $0-5\,^{\circ}\text{C}$ දී පුතිකිුයා කරවීමෙන් $\text{C}_6\text{H}_5\overset{+}{\text{N}}\equiv\text{NCl}^{\top}$ ලබා ගත හැක.
 - (2) $C_6^{}H_5^{}$ \dot{n} \equiv NCl \dot{n} , KI සමග පුතිකිුයා කර අයඩොබෙන්සීන් ලබා දෙයි.
 - (3) $C_z H_z \stackrel{\text{\tiny N}}{=} N$ අයනයට ඉලෙක්ටුෝෆයිලයක් ලෙස කිුයා කළ හැකි ය.
 - (4) $C_z H_z \stackrel{\cdot}{N} \equiv NCl^-$ හි ජලීය දුාවණයක් රත් කළ විට එය වියෝජනය වී බෙන්සීන් ලබා දෙයි.
 - (5) $C_2H_2N\equiv NCI$ හාස්මික මාධායේ දී ෆීනෝල සමග පුතිකිුයා කර වර්ණවත් සංයෝග සාදයි.
- 18. $H_{\gamma}S(g),\ O_{\gamma}(g)$ සමග පුතිකිුයා කර ඵල ලෙස ජලවාෂ්ප $(H_{\gamma}O(g))$ සහ $SO_{\gamma}(g)$ පමණක් ලබා දේ. නියත පීඩනයක දී සහ $250~^{\circ}$ C හි දී $H_{\gamma}S(g)~4~dm^3$ හා $O_{\gamma}(g)~10~dm^3$ ක් පුතිකියා කළ විට මිශුණයේ අවසාන පරිමාව වනුයේ,
 - (1) 6 dm³
- $(2) 8 dm^3$
- $(3) 10 \text{ dm}^3$
- $(4) 12 \text{ dm}^3$

19.	රේචනය කරන	ලද දෘඪ	බඳුනක් :	තුළට 🗚	Å(g) හා	D(g) ⊗	මිශුණයක්	උෂ්ණත්වය	T & ξ	ඇතුල් 2	කරන	ලදී.	මෙම
	උෂ්ණත්වයේ දී .	A(g) හා	D(g) යෘ	න ලෙක	ම පහත	දී ඇති ම)ලික පතිති	යා අනව වි	යෝජන	ය වේ.			

$$2A(g) \rightarrow B(g) + 3C(g)$$
; ශීඝුතා නියතය k_1
 $D(g) \rightarrow B(g) + 2C(g)$

බඳුනෙහි ආරම්භක පීඩනය P, පුතිකිුයක දෙක සම්පූර්ණයෙන් ම වියෝජනය වූ පසු $2.7\,P$ දක්වා වෙනස් විය. මෙම උෂ්ණාත්වයේ දී A(g) හි වියෝජනයේ ආරම්භක ශීඝුතාවය වනුයේ, (R යනු සාර්වතු වායු නියතය වේ)

(1) $1.7k_1\left(\frac{P}{RT}\right)$

- $(2) \quad 2.7k_1\left(\frac{P}{RT}\right)$
- (3) $0.09k_1\left(\frac{P}{RT}\right)^2$

- $(4) \quad 2.89k_1 \left(\frac{P}{RT}\right)^2$
- $(5) \quad 7.29k_1 \left(\frac{P}{RT}\right)^2$
- $oldsymbol{20}$. එක්තරා කාබනික සංයෝගයක් ($oldsymbol{X}$) බෝමීන් ජලය ($\mathrm{Br}_{s}/\mathrm{H}_{s}\mathrm{O}$) විවර්ණ කරයි. $oldsymbol{X}$, ඇමෝනීය CuCl සමග අවක්ෂේපයක් ලබා නොදෙයි. \mathbf{X} , ආම්ලික $\mathrm{K_2Cr_2O}_7$ දාවණයක් සම්ග පිරියම් කළ විට කොළ පැහැති දාවණයක් ලැබේ. X විය හැක්කේ,
- OH OH OH OH | CH_2CHCH_2C=C-H (2) | CH_3CCH_2C=C-CH $_3$ (3) | CH_3CHCH_2CH=CHCH $_3$ CH $_3$
- CH₃ OH $(4) \text{ HOCH}_2\text{CHC} \equiv \text{C} \text{H}$ $(5) \text{ CH}_3\text{CHCH}_2\text{CH}_2\text{CH}_2\text{CH}_3$
- $oldsymbol{21.}\ 0.10\ ext{mol}\ ext{dm}^{-3}$ ඒකහාස්මික දුබල අම්ල දාවණයක හා $0.10\ ext{mol}\ ext{dm}^{-3}$ වූ එම අම්ලයෙහි සෝඩියම් ලවණයෙහි දුාවණයක සම පරිමා මිශු කිරීමෙන් pH=5.0වූ ස්වාරක්ෂක දුාවණයක් සාදා ඇත. මෙම ස්වාරක්ෂක දුාවණයෙන් $20.00~{
 m cm}^3$ හා $0.10~{
 m mol}~{
 m dm}^{-3}$ දුබල අම්ල දුාවිණයෙන් $90.00~{
 m cm}^3$ මිශු කළ විට සැදෙන දුාවණයෙහි pH අගය වනුයේ,
 - (1) 3.0
- (2) 4.0
- (3) 4.5
- (4) 5.5
- (5) 6.0

- 22. පහත සඳහන් ජලීය දුාවණ තුන සලකන්න.
 - P දුබල අම්ලයක්
 - Q දුබල අම්ලයෙහි හා එහි සෝඩියම් ලවණයෙහි සමමවූලික මිශුණයක්
 - ${f R}$ දුබල අම්ලයේ හා පුබල භස්මයක අනුමාපනයේ සමකතා ලක්ෂායේ දී ලැබෙන අනුමාපන මිශුණය එක් එක් දුාවණය තියත උෂ්ණත්වයේ දී එකම පුමාණයෙන් තනුක කිරීමේ දී ${f P},~{f Q}$ හා ${f R}$ හි ${f p}{f H}$ අගයත් පිළිවෙළින්,
 - (1) අඩු වේ, වැඩි වේ, වෙනස් නොවේ.
- (2) වැඩි වේ, වෙනස් නොවේ, අඩු වේ.
- (3) වැඩි වේ, වෙනස් නොවේ, වෙනස් නොවේ. (4) වැඩි වේ, වෙනස් නොවේ, වැඩි වේ.
- (5) වැඩි වේ, වැඩි වේ, වැඩි වේ.
- 23. ක්ලෝරීන්හි ඔක්සොඅම්ල වන HOCl , HClO_2 , HClO_3 හා HClO_4 පිළිබඳ **වැරදි** වගන්තිය වනුයේ,
 - (1) HClO₂, HClO₃ හා HClO₄ හි ක්ලෝරීන් වටා හැඩයන් පිළිවෙළින් කෝණික, පිරමිඩීය හා චතුස්තලීය වේ.
 - (2) HOCl , HClO_2 , HClO_3 හා HClO_4 හි ක්ලෝරීන්වල ඔක්සිකරණ අවස්ථා පිළිවෙළින් +1, +3, +5 හා +7 වේ.
 - (3) ඔක්සොඅම්ලවල අම්ල පුබලතාව $HOCl < HClO_2 < HClO_3 < HClO_4$ ලෙස වෙනස් වේ.
 - (4) මෙම ඔක්සොඅම්ල සියල්ලෙහි ම අඩු තරමින් එක් ද්විත්ව බන්ධනයක්වත් අඩංගු වේ.
 - (5) මෙම ඔක්සොඅම්ල සියල්ලෙහි ම අඩු තරමින් එක් OH කාණ්ඩයක්වත් අඩංගු වේ.
- **24.** ආම්ලික ජලීය දුාවණයක $25~^{\circ}\mathrm{C}$ හි දී ඝනත්වය $1.0~\mathrm{kg}~\mathrm{dm}^{-3}$ වේ. මෙම දුාවණයෙහි pH අගය $1.0~\mathrm{e}$ ව් නම් එහි $extbf{H}^{ au}$ සාන්දුණය ppm වලින් වනුයේ,
 - (1) 0.1
- (2) 1
- (3) 100
- (4) 1000
- (5) 10,000

- **25.** ඕසෝන් $({
 m O_3})$ අඩංගු දූෂිත වායු සාම්පලයක $25.0~{
 m g}$, වැඩිපුර ${
 m KI}$ අඩංගු ආම්ලික දුාවණයක් සමග පිරියම් කරන ලදී. මෙම පුතිකිුයාවේ දී ඕසෝන්, ${
 m O_2}$ හා ${
 m H_2O}$ බවට පරිවර්තනය වේ. මුක්ත වූ අයඩීන්, $0.002~{
 m mol~dm}^{-3}$ ${
 m Na_2S_2O_3}$ දාචණයක් සමග අනුමාපනය කරන ලදී. අවශා වූ ${
 m Na_2S_2O_3}$ පරිමාව $25.0~{
 m cm}^3$ විය. වායු සාම්පලයේ ඇති O_3 හි ස්කන්ධ පුතිශතය වනුයේ, (O=16)(2) 6.4×10^{-3} (3) 9.6×10^{-3} (4) 1.0×10^{-2} (5) 3.2×10^{-2}
 - (1) 4.8×10^{-3}

- **26.** NaCl(s) උත්පාදනයට අදාළ බෝන්-හේබර් චකුයෙහි අඩංගු **නොවන්නේ** පහත සඳහන් කුමන පුතිකිුයා පියවර ද?
 - (1) $Na^{+}(aq) + Cl^{-}(aq) \longrightarrow NaCl(aq)$ (2) $Na(s) \longrightarrow Na(g)$
- (3) $Cl_2(g) \longrightarrow 2Cl(g)$

- (4) $Cl(g) + e \longrightarrow Cl(g)$
- (5) $Na^+(g) + Cl^-(g) \longrightarrow NaCl(s)$
- ${f 27.}$ ${f A}({f g})+{f B}({f g})\longrightarrow {f C}({f g})$ යන මූලික පුතිකිුයාවෙහි සකිුයන ශක්තිය ${\it Ea}$ වේ. ${f M}$ ලෝහය මගින් මෙම පුතිකිුයාව උත්පේරණය වේ. උත්පේරිත පුතිකියාවෙහි ශක්ති සටහන පහත දැක්වේ.

මෙම පුතිකිුිිියාව සම්බන්ධයෙන් පහත දී ඇති කුමක් හැමවිට ම සතා වේ ද?

- (1) $Ea < E_1$
- (2) $Ea = E_1 + E_2 + E_3 \Delta H_1$ (3) $Ea < E_1, Ea < E_2 \iff Ea < E_3$
- (4) $Ea > E_1 + E_2$ (5) $Ea > \Delta H_1 + E_2$
- 28. දුබල අම්ලයක් සඳහා, F = අම්ලයෙහි විඝටනය වූ පුමාණය ලෙස දැක්විය හැක. Log F (ලඝු F) හා pH

අගය අතර සම්බන්ධය දැක්වෙනුයේ පහත සඳහන් කුමන පුස්තාරයෙන් ද?

- 29. බහුඅවයවක පිළිබඳව පහත සඳහන් පුකාශවලින් නිවැරදි වන්නේ කුමක් ද?
 - (1) නයිලෝන් ආකලන බහුඅවයවකයකි.
 - (2) ටෙෆ්ලෝන් සංඝනන බහුඅවයවකයකි.
 - (3) බේක්ලයිට් රේඛීය බහුඅවයවකයකි.
 - (4) ස්වභාවික රබර්වල පුනරාවර්තන ඒකකයේ කාබන් පරමාණු 4ක් ඇත.
 - (5) ඒකඅවයවක සම්බන්ධ වී සංඝනන බහුඅවයවක සැදීමේ දී කුඩා සහසංයුජ අණු ඉවත් වේ.
- 30. එකිනෙක හා පුතිකිුයා නොකරන පරිපූර්ණ වායූත් දෙකක් කපාටයක් මගින් වෙන් කර දෘඪ බඳුනක් තුළ තබා ඇත. මෙම පද්ධතිය නියත උෂ්ණත්වයක හා පීඩනයක පවත්වා ගනී. කපාටය විවෘත කළ පසු පද්ධතියෙහි ගිබ්ස් ශක්තිය, එන්තැල්පිය හා එන්ටොපියෙහි වෙනස්වීම පිළිවෙළින් පහත කුමක් මගින් නිවැරදිව විස්තර වේ ද?
 - (1) අඩුවේ, අඩුවේ, අඩුවේ.
- (2) අඩුවේ, අඩුවේ, වැඩිවේ.
- (3) අඩුවේ, වෙනස් නොවේ, වැඩිවේ. (4) අඩුවේ, වැඩිවේ, වැඩිවේ.
- (5) වැඩිවේ, වැඩිවේ, වැඩිවේ.

- අංක 31 සිට 40 තෙක් එක් පුශ්නය සඳහා දී ඇති (a), (b), (c) සහ (d) යන පුතිචාර හතර අතුරෙන්, එකක් හෝ වැඩි සංඛ $\mathfrak B$ වාවක් හෝ නිවැරදි ය. නිවැරදි පුතිචාරය/පුතිචාර කවරේ දැ'යි තෝරා ගන්න.
 - (a) සහ (b) පමණක් නිවැරදි නම් (1) මත ද
 - (b) සහ (c) පමණක් නිවැරදි නම් (2) මත ද
 - (c) සහ (d) පමණක් නිවැරදි නම් (3) මත ද
 - (d) සහ (a) පමණක් නිවැරදි නම් (4) මත ද

වෙනත් පුතිචාර සංඛාාවක් හෝ සංයෝජනයක් හෝ නිවැරදි නම් (5) මත ද

උත්තර පතුයෙහි දැක්වෙන උපදෙස් පරිදි ලකුණු කරන්න.

ඉහත උපදෙස් සම්පිණ්ඩනය

(1)	(2)	(3)	(4)	(5)
(a) සහ (b)	(<i>b</i>) සහ (<i>c</i>)	(<i>c</i>) සහ (<i>d</i>)	(d) සහ (a)	වෙනත් පුතිචාර
පමණක්	පමණක්	පමණක්	පමණක්	සංඛතාවක් හෝ
නිවැරදියි	නිවැරදියි	නිවැරදියි	නිවැරදියි	සංයෝජනයක් හෝ නිවැරදියි

- 31. ඔක්සිජන් සහ සල්ෆර් පරමාණු අඩංගු සරල සහසංයුජ අණු පිළිබඳව පහත දැක්වෙන කුමන පුකාශය/පුකාශ නිවැරදි වේ ද?
 - (a) $H_{\gamma}O$ උභයගුණි ලක්ෂණ පෙන්නුම් කරයි.
 - (b) $H_2^{\bullet}O_2$ වල තාපාංකය $H_2^{\bullet}O$ හි තාපාංකයට වඩා ඉහළ ය.
 - (c) ආම්ලික මාධාායකදී පමණක් $\mathrm{H_2O_2}$ වලට ඔක්සිකාරකයක් ලෙස කිුයා කළ හැක.
 - (d) H_2S සහ SO_2 යන දෙකට ම හැකියාව ඇත්තේ ඔක්සිහාරක ලෙස කිුිිිියා කිරීමට පමණි.
- 32. හයිඩොකාබන පිළිබඳව පහත දක්වා ඇති කුමන පුකාශය/පුකාශ නිවැරදි වේ ද?
 - (a) සියලු ම හයිඩොකාබන වැඩිපුර \mathcal{O}_2 සමග සම්පූර්ණයෙන් පුතිකියා කළ විට \mathcal{CO}_2 හා $\mathcal{H}_2\mathcal{O}$ ලබා දෙයි.
 - (b) සියලු ම ඇල්කයින ගිුනාඩ පුතිකාරක සමග පුතිකිුයා කර ඇල්කයිනයිල්මැග්නීසියම් හේලයිඩ ලබා දෙයි.
 - (c) අතු බෙදුනු ඇල්කේනයක තාපාංකය එම සාපේක්ෂ අණුක ස්කන්ධය ම ඇති අතු නොබෙදුනු ඇල්කේනයක තාපාංකයට වඩා වැඩිය.
 - (d) කිසිදු හයිඩුොකාබනයක් ජලීය NaOH සමග පුතිකිුයා නොකරයි.
- 33. තාපඅවශෝෂක පුතිකිුයාවක් නියත උෂ්ණත්වයේ දී හා පීඩනයේ දී ස්වයංසිද්ධව සිදු වේ නම් එවිට,
 - (a) පද්ධතියෙහි එන්තැල්පිය අඩු වේ.

(b) පද්ධතියෙහි එන්ටොපිය වැඩි වේ.

(c) පද්ධතියෙහි එන්තැල්පිය වැඩි වේ.

- (d) පද්ධතියෙහි එන්ටොපිය වෙනස් නොවේ.
- ${f 34.}$ ලෝහ අයන, ඒවායේ ජලීය දුාවණවලට ${f H}_2 S(g)$ යැවීමෙන් අවක්ෂේප කිරීම සම්බන්ධයෙන් පහත සඳහන් කුමන පුකාශය/පුකාශ නිවැරදි වේ ද?
 - (a) $H_{\gamma}S(g)$ හි පීඩනය අඩු කරන විට සල්ෆයිඩ් අයන සාන්දුණය වැඩි වේ.
 - (b) උෂ්ණක්වය වැඩි කරන විට සල්ෆයිඩ් අයන සාන්දුණය අඩු වේ.
 - (c) දාවණයට $\mathrm{Na_{3}S(s)}$ එකතු කිරීම, දුවණය වූ $\mathrm{H_{3}S(aq)}$ හි විඝටනය අඩු කරයි.
 - (d) දුාවණයෙහි pH අගය වැඩි කිරීම, සල්ෆයිඩ් අයන සාන්දුණය අඩු කරයි.
- 35. පහත දැක්වෙන ඒවායින් නියුක්ලියොෆිලික ආදේශ පුතිකිුයාවක්/පුතිකිුයා වන්නේ කුමක් ද?/කුමන ඒවා ද?

(a)
$$CH_3C-H + HCN \longrightarrow CH_3CHCN$$

(b)
$$CH_3CH_2OH + PCI_3 \longrightarrow CH_3CH_2CI_3$$

(c)
$$CH_3$$
CHCl + NaOH \longrightarrow CH_3 CHOH CH_3

(d)
$$CH_3CHCH_3 + Cl_2 \xrightarrow{hv} CH_3CCH_3 CH_3$$

- ${f 36.}$ වායුගෝලයේ කාබන්ඩයොක්සයිඩ් මට්ටම ඉහළයාම සම්බන්ධයෙන් පහත දැක්වෙන කුමන පුකාශය/පුකාශ නිවැරදි වේ ද?
 - (a) එය මුහුදු ජලයේ ආම්ලිකතාව ඉහළයාමට දායක වේ.
 - (b) එය ජල පද්ධතිවල කඨිනත්වය අඩු කරයි.
 - (c) එය සූර්යාගෙන් පැමිණෙන ${\sf UV}$ කි්රණ පුබලව අවශෝෂණය කරයි.
 - (d) එය අම්ල වැසිවලට දායක නොවේ.
- ${f 37.}$ 3d-ගොනුවේ මූලදුවාෳයන් සම්බන්ධයෙන් පහත දැක්වෙන කුමන පුකාශය/පුකාශ නිවැරදි වේ ද?
 - (a) 3d-ගොනුවේ මූලදුවා අතුරෙන් ඉහළම පළමු අයනීකරණ ශක්තිය ${
 m Zn}$ වලට ඇත.
 - (b) පුධාන කාණ්ඩයේ (s හා p-ගොනු) බොහෝ මූලදුවාවල අයන මෙන් නොව 3d-ගොනුවේ ලෝහ අයන උච්ච වායු විතාහසය ලබා ගන්නේ කලාතුරකිනි.
 - (c) 3d-ගොනුවේ මූලදුවාවල විදයුත් සෘණතාවයන් අනුරුප s-ගොනුවේ මූලදුවාවල විදයුත් සෘණතාවයන්ට වඩා වැඩි නමුත්, ඒවායේ පරමාණුක අරයන් අනුරූප 、s-ගොනුවේ මූලදුවාවල පරමාණුක අරයන්ට වඩා අඩු වේ.
 - (d) අවර්ණ සංයෝග සාදන 3d-ගොනුවේ මූලදුවා වන්නේ ${
 m Ti}$ සහ ${
 m Zn}$ ය.
- ${f 38.}$ සංකෘප්ත වාෂ්ප පීඩන $P_{
 m A}^{
 m o}$ හා $P_{
 m B}^{
 m o}$ වන $\left(P_{
 m A}^{
 m o}
 eq P_{
 m B}^{
 m o}
 ight){f A}$ සහ ${f B}$ වාෂ්පශීලි දුව පරිපූර්ණ දුාවණයක් සාදයි. සංවෘත බඳුනක් තුළ ${f A}$ සහ ${f B}$ දුවයන්හි මිශුණයක් ඒවායේ වාෂ්ප කලාපය සමග සමතුලිතව ඇත. බඳුනෙහි පරිමාව වැඩි කර එම උෂ්ණක්වයේ දී ම සමතුලිතතාවය නැවත ස්ථාපිත වූ පසු පහත සඳහන් කුමන පුකාශය/පුකාශ නිවැරදි
 - (a) ${f A}$ හා ${f B}$ යම් පුමාණයක් වාෂ්ප කලාපයට යන අතර දුව කලාපයෙහි සංයුතිය නොවෙනස්ව පවතී.
 - (b) ${f A}$ හා ${f B}$ යම් පුමාණයක් වාෂ්ප කලාපයට යන අතර වාෂ්ප කලාපයෙහි සංයුතිය නොවෙනස්ව පවතී.
 - (c) ${f A}$ හා ${f B}$ යම් පුමාණයක් වාෂ්ප කලාපයට යන අතර දුව කලාපයෙහි සංයුතිය වෙනස් වේ.
 - (d) \mathbf{A} හා \mathbf{B} යම් පුමාණයක් වාෂ්ප කලාපයට යන අතර වාෂ්ප කලාපයෙහි සංයුතිය වෙනස් වේ.
- 39. දුබල අම්ලයක ජලීය දාවණයක් සම්බන්ධයෙන් පහත සඳහන් කුමන පුකාශය/පුකාශ නිවැරදි වේ ද?
 - (a) දුබල අම්ලයේ සාන්දුණය අඩුවන විට දුාවණයෙහි සන්නායකතාව වැඩි වේ.
 - (b) උෂ්ණක්වය වැඩිවන විට දුාවණයෙහි සන්නායකතාව වැඩි වේ.
 - (c) දාවණයට වැඩිපුර ජලය එකතු කිරීමේ දී දාවණයෙහි සන්නායකතාව අඩුවන නමුත් දුබල අම්ලයෙහි විඝටනය වූ භාගය වැඩි වේ.
 - (d) දුබල අම්ල දුාවණයෙහි $\operatorname{NaCl}(s)$ දුවණය කළ විට, සන්නායකතාව අඩු වේ.
- $oldsymbol{40.}$ $oldsymbol{A}$ සංයෝගය සම්බන්ධයෙන් පහත දැක්වෙන කුමන පුකාශය/පුකාශ නිවැරදි වේ ද?

$$CH_{3}CH=C$$

$$CH_{2}COCH_{3}$$

$$CH_{2}CHOHCH_{3}$$

- (a) A ජාාමිතික සමාවයවිකතාවය පෙන්වයි.
- (b) A පුකාශ සමාවයවිකතාවය නොපෙන්වයි.
- (c) $\mathbf A$ පිරිඩීනියම් ක්ලෝරොකුෝමේට් (PCC) සමග පුතිකිුයා කිරීමෙන් ලැබෙන එලය පුකාශ සමාවයවිකතාවය පෙන්වයි.
- (d) f A පිරිඩීනියම් ක්ලෝරොකුෝමේට් සමග පුතිකිුිිිිිිිිිිිිිි සමාවයවිකතාවය නොපෙන්වයි.

• අංක 41 සිට 50 තෙක් එක් එක් පුශ්නය සඳහා පුකාශ දෙක බැගින් ඉදිරිපත් කර ඇත. එම පුකාශ යුගලයට හොඳින් ම ගැළපෙනුයේ පහත වගුවෙහි දැක්වෙන පරිදි (1),(2),(3),(4) සහ (5) යන පුතිචාරවලින් කවර පුතිචාරය දැ'යි තෝරා උත්තර පතුයෙහි උචිත ලෙස ලකුණු කරන්න.

පුතිවාරය	පළමුවැනි පුකාශය	දෙවැනි පුකාශය									
(1)	සතා වේ.	සතා වන අතර, පළමුවැනි පුකාශය නිවැරදි ව පහදා දෙයි.									
(2)	සතා වේ.	සතා වන නමුත් පළමුවැනි පුකාශය නිවැරදි ව පහදා නොදෙගී .									
(3)	සතා වේ.	අසතා වේ.									
(4)	අසතා වේ.	සතා වේ.									
(5)	අසතා වේ.	අසතා වේ.									

	පළමුවැනි පුකාශය	දෙවැනි පුකාශය
41.	හැලජන අතුරෙන්, ${ m I}_2$ ඝනයක් වන අතර ${ m Br}_2$ දුවයකි.	අණුක පෘෂ්ඨික වර්ගඵලය වැඩිවීමත් සමග ලන්ඩන් බල වඩා පුබල වේ.
42.	දෙන ලද පීඩනයක දී, උෂ්ණත්වය වැඩිවීමත් සමග, N ₂ සහ H ₂ පුතිකිුයා කර NH ₃ සැදෙන පුතිකිුයාවේ ස්වයංසිද්ධතාව පහළ බසී.	NH ₃ ලබාදෙන N ₂ සහ H ₂ අතර පුතිකිුයාවේ එන්ටොපි වෙනස සෘණ වේ.
43.	සගන්ධ තෙල්, ශාකමය දුවාවලින් සාමානායෙන් නිස්සාරණය කරන්නේ හුමාල ආසවනය මගින් ය.	සගන්ධ තෙල්වලට ජලයේ ඉහළ දුාවෳතාවයක් ඇත.
44.	ස්වයංසිද්ධ පුතිකිුයාවක් සඳහා තත්ත්වයන් කුමක් වුවත් සැමවිටම සෑණ ගිබ්ස් ශක්ති වෙනසක් ඇත.	පුතිකියාවක් සිදුවන දිශාව පුරෝකථනය කිරීම සඳහා ගිබ්ස් ශක්ති වෙනස භාවිත කළ හැකි වත්තේ නියත උෂ්ණත්ව හා නියත පීඩන තත්ත්ව යටතේ දී පමණි.
45.	1-බියුටනෝල්හි ජලයේ දුාවාතාවය මෙකනෝල්හි ජලයේ දුාවාතාවයට වඩා අඩු ය.	ධැවීය OH කාණ්ඩයට සාපේක්ෂව නිර්ධැවීය ඇල්කයිල් කාණ්ඩයේ විශාලත්වය වැඩි වීමත් සමග මධාසාරවල ජලයේ දුාවාතාවය අඩු වේ.
46.	CH_3 - CH = CH_2 \xrightarrow{HBr} CH_3 - CH - CH_3 Br	ද්විතීයික කාබොකැටායනයක් පුතිකියා අතරමැදියක් ලෙස පහත දැක්වෙන පුතිකියාවේදී සෑදේ.
	පුතිකිුයාව, නියුක්ලියෝෆිලික ආකලන පුතිකිුයාවකි.	$CH_3-CH=CH_2 \xrightarrow{HBr} CH_3-CH-CH_3$ Br
47.	කාර්මික කිුිිියාවලි කිහිපයකම කෝක් (Coke) භාවිත වේ.	කාර්මිකව කෝක් (Coke) භාවිත වන්නේ ඉන්ධනයක් ලෙස පමණි.
48.	කීටෝනයක කාබනයිල් කාබන් පරමාණුව සහ එයට බන්ධනය වූ අනෙකුත් පරමාණු එකම තලයක පිහිටයි.	කීටෝනයක කාබනයිල් කාබන් පරමාණුව sp^2 මුහුමකරණය වී ඇත.
49.	එකම උෂ්ණත්වයේදී ඕනෑම පරිපූර්ණ වායූන් දෙකකට එකම මධානා වාලක ශක්තීන් ඇත.	දෙන ලද උෂ්ණත්වයක දී වායු අණුවල මධානා වේගය ඒවායේ ස්කන්ධය අනුව සැකසේ.
50.	CFC ඕසෝන් වියන හායනයට දායක වූවත් HFC වල දායකත්වය නොගිණිය හැකි තරම් කුඩා ය.	ඉහළ වායුගෝලයට ළඟාවීමට පෙර HFC සම්පූර්ණයෙන් ම වියෝජනය වෙයි.

ආවර්තිතා වගුව

	1																	2
1	H																	He
	3	4											5	6	7	8	9	10
2	Li	Be											В	C	N	O	F	Ne
	11	12											13	14	15	16	17	18
3	Na	Mg											Al	Si	P	S	CI	Ar
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
5	Rb	Sr	Y	Zr	Nb	Mo	Te	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
	55	56	La-	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
6	Cs	Ba	Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
	87	88	Ac-	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
7	Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Mc	Lv	Ts	Og

57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr