Pendolo semplice

Lorenzo Cavuoti Alice Longhena

25 maggio 2017

1 Scopo dell'esperienza

/Users/Alicelongh/Documents/LAB/Pendolofisico/Fig_6_7.jpg

Figura 1: pendolo fisico

Utilizzeremo i dati raccolti della precedente esperienza sul pendolo fisico, ovvero le misure dei periodi di oscillazione (nell'approssimazione di piccole oscillazioni) in funzione della distanza dal centro di massa, e vi applicheremo i metodi di fit studiati.

Dati raccolti T(d)			
distanza dal centro di massa (m)		periodo (s)	
47.50	± 0.15	1.635	± 0.005
37.52	± 0.16	1.568	± 0.002
27.54	± 0.16	1.561	± 0.004
17.55	± 0.17	1.680	± 0.001
7.57	± 0.17	2.285	± 0.003

2 Materiali a disposizione

- Dati raccolti del pendolo fisico
- Calcolatore con ambiente di programmazione python

3 Analisi dei dati

Come prima cosa abbiamo realizzato tre curve corrispondenti al modello:

$$T\left(d\right) = 2\pi\sqrt{\frac{\frac{l^{2}}{12} + d^{2}}{gd}}\tag{1}$$

Riferite al valore stimato della lunghezza dell'asta \hat{l} , a $\hat{l} + \sigma_l$ e $\hat{l} - \sigma_l$; nello stesso grafico (figura ??) sono inseriti i dati relativi a tempi e distanze rilevati sperimentalmente. Al fine di visualizzare la posizione dei punti rispetto alla

/Users/Alicelongh/Documents/LAB/EsercitazionesuiFit/figure_1-1.

banda riportiamo gli ingrandimenti relativi a ciascun punto.

Solo il quarto punto strettamente compreso entro la banda, l'ultimo e il

/Users/Alicelongh/Documents/LAB/EsercitazionesuiFit/zoom1.pdf
/Users/Alicelongh/Documents/LAB/EsercitazionesuiFit/zoom2.pdf

/Users/Alicelongh/Documents/LAB/EsercitazionesuiFit/zoom3.pdf

/Users/Alicelongh/Documents/LAB/EsercitazionesuiFit/zoom4.pdf

/Users/Alicelongh/Documents/LAB/EsercitazionesuiFit/zoom5.pdf

terzo distano meno di 3 sigma dal modello calcolato nel valore centrale, mente il primo e il secondo distano pi di 4 sigma dalla media. Non risulta quindi un buon accordo tra i dati sperimentali ed il modello.

3.1 Fit seguendo il modello

Prima di tutto abbiamo verificato l'applicabilit del fit, ovvero la condizione:

$$\left|\frac{dT}{dd}(d_i)\right|\sigma_{d_i} \ll \sigma_{T_i} \tag{2}$$

per fare ci abbiamo ricavato la derivata analiticamente e calcolato il primo membro della disuguaglianza per ogni dato, dal confronto col secondo membro la condizione risulta verificata per il secondo e il terzo punto, ma non per gli altri

Trascurando questo inconveniente abbiamo comunque eseguito il fit lasciando l
 come parametro libero: l risulta 1.049[m], con un errore dell'ordine di 10^{-6} ,
 il risultato è quindi compatibile con la misura effettuata con metro a nastro di 1.050 ± 0.002 m; il χ^2 risulta 39.2, molto distante dal valore aspettato di 4.0 ± 2.8 ; infine il p-value risulta 6.4×10^{-8}

Alternativamente abbiamo calcolato le incertezze efficaci $\sigma_{T_i} \to \sqrt{\sigma_{T_i}^2 + \left|\frac{dT}{dd}(d_i)\right|^2} \sigma_{d_i}^2$ per i punti che non verificano la condizione (??), il χ^2 risulta 19.78, migliore del precedente ma comunque fuori dal valore aspettato, mentre il p-value risulta 5.5×10^{-3} .

La soluzione migliore risulta eseguire il fit eliminando il secondo punto, in quanto distante pi di 5σ dal modello; cos facendo il χ^2 risulta 3.9 e rientra nel nuovo valore aspettato di 3.0 ± 2.4 .

/Users/Alicelongh/Documents/LAB/EsercitazionesuiFit/t_opt-1.pd

Figura 2: grafico del modello con valore di best fit del parametro l

/Users/Alicelongh/Documents/LAB/EsercitazionesuiFit/redidui_t_

Figura 3: grafico dei residui rispetto al modello di best fit

4 Conclusioni

Le misure ricavate sperimentalmente non verificano un buon accordo con i dati, come si pu notare dal primo grafico nel quale solo un punto è contentuto entro la banda definita dal modello calcolato in $l+\sigma$, $l-\sigma$. Tuttavia basta eliminare il secondo punto per ottenere un buon fit ed un parametro di fit in accordo con le misure sperimentali; quindi con alcuni accorgimenti il modello risulta in accordo con i dati sperimentali.