(9) BUNDESREPUBLIK
DEUTSCHLAND

① Offenlegungsschrift② DE 195 17 789 A 1

⑤ Int. Cl.⁶: G 01 N 33/543

② Aktenzeichen:② Anmeldetag:

195 17 789.4 15. 5. 95

(3) Offenlegungstag:

21. 11. 96

E 19517789 A

(7) Anmelder:

Institut für Chemo- und Biosensorik Münster e.V., 48149 Münster, DE

(4) Vertreter:

PFENNING MEINIG & PARTNER, 80336 München

② Erfinder:

Renneberg, Reinhard, Prof. Dr., 13187 Berlin, DE

66 Entgegenhaltungen:

US 43 14 821 US 39 04 367 EP 06 43 307 A1 EP 04 46 993 A1 EP 02 93 947 A1 WO 89 09 938

G.G. GUILBAULT und J.H.T. LUONG in: G. WAGNER und G.G. GUILBAULT, »Food Biosensor Analysis«, Marcel Dekker Inc., New York, 1994, S. 151-172;

Prüfungsantrag gem. § 44 PatG ist gestellt

- (54) Verfahren zum Nachweis von Antigenen mit einem Affinitätssensor
- Die Erfindung betrifft ein Verfahren zum Nachweis von Antigenen mit einem Affinitätssensor für die Messung, bei dem die Sensoroberfläche mit einem komplementären Affinitätspartner in Form eines Komplexes mit einem kolioidalen Metall und anschließend mit einer fotografischen Entwicklerlösung und einer Metallösung behandelt wird. Der Affinitätssensor soll auch niedermolekulare Antigene, wie z. B. Pestizide, Antibiotika, Hermone, Vitamine oder Toxine, nachweisen können.

Mit dem erfindungsgemäßen Verfahren wird mit einem sensitiven Element auf der Oberfläche des Affinitätssensors das Antigen immobilisiert und denn mit seinem komplementären Affinitätspartner und der unbekannten Menge des Antigens behandelt und zur Verstärkung des Signals der komplementäre Affinitätspartner in Form eines Komplexes mit einem kolloidalen Metall eingesetzt und die Oberfläche des Sensors nachfolgend mit einer fotografischen Entwicklerlösung und einer Metallösung behandelt.

Beschreibung

Die Erfindung betrifft ein Verfahren zum Nachweis von Antigenen mit einem Affinitätssensor für die Messung, bei dem die Sensoroberfläche mit einem komplementären Affinitätspartner in Form eines Komplexes mit einem kolloidalen Metall und anschließend mit einer fotografischen Entwicklerlösung und einer Metallösung behandelt wird.

Affinitätssensoren und Verfahren zu deren Herstel- 10 lung sind bekannt. Ein Überblick über Affinitätssensoren ist z. B. aus der Literaturstelle Scheller u. Schubert, Biosensoren, Basel, Birkhäuser Verlag, 1989, zu entnehmen. Insbesondere die piezoelektrischen Sensoren werden bisher zum Nachweis von Mikroorganismen, Antibiotika, Pestiziden, Hormonen, Vitaminen und Toxinen eingesetzt. Bei diesen sogenannten Immunosensoren wird dabei so vorgegangen, daß eine Komponente an die sensitive Fläche des Sensors (z. B. an einen Schwingkristall) gebunden wird, und daß dann durch Anlagerung 20 (Bindung) des anderen Partners eine Masseänderung erzeugt wird. Durch die erzeugte Masseänderung tritt im Falle des piezoelektrischen Sensors auch eine Anderung der Frequenz ein, so daß dann eine Detektion erfolgt (Guilbault, G.G. and Luong, J.H.T. in: Wagner, G. 25 (1994) and Guilbault, G.G.Food biosensor analysis, Marcel Dekker, Inc. New York S. 151-172).

Bei hochmolekularen Substanzen und Zellen gibt es dabei keine Nachweisprobleme. Ein derartiger Piezoimmunosensor ist in der US 4,314,821 beschrieben, der 30 hochmolekulare Antikörper nachweist.

Niedermolekulare Substanzen (besonders Pestizide) sind jedoch aufgrund der geringen Masseänderung (Molekulargewichte unter 1.000 Dalton) direkt kaum nachweisbar. In der US 3,904,367 wird versucht, dieses 35 Problem dadurch zu lösen, daß an das an der Oberfläche gebundene Antigen verschiedene Antikörper (AK1 bis AK3) angekoppelt werden. Es wird dabei so vorgegangen, daß ein gegen das Antigen (Ag) gerichteter Antikörper AK1 zugegeben wird, der an Ag bindet. Im folgenden werden dann gegen den AK1 gerichtete Antikörper AK2 eingesetzt, die an verschiedenen Epitopen von AK1 binden, so daß pro AK1-Moleküle mehrere AK2-Moleküle gebunden sind. Weiterhin kann dann ein dritter Antikörper (AK3) zugesetzt werden, der gegen 45 AK2 gerichtet ist.

Dieses Verfahren hat jedoch den Nachteil, daß auch dadurch nur eine geringe Verstärkung (bis 10x) erreichbar ist und die Bindungszeiten der einzelnen Antikörper sich summieren und dadurch lange Inkubations- 50 zeiten erreicht werden.

Ausgehend hiervon ist es Aufgabe der vorliegenden Erfindung, ein Verfahren zum Nachweis von Antigenen mit einem Affinitätssensor vorzuschlagen, mit dem es möglich wird, auch niedermolekulare Antigene, wie z. B. 55 Pestizide, Antibiotika, Hormone, Vitamine oder Toxine, nachzuweisen.

Die Aufgabe wird durch die kennzeichgenden Merkmale des Anspruches 1 gelöst. Die Unteransprüche zeigen vorteilhafte Weiterbildungen auf.

Erfindungsgemäß wird somit vorgeschlagen, die aus der Fotochemie bekannte Reaktion mit einer Entwicklerlösung mit der Affinitätsreaktion zu koppeln. Diese Reaktion nutzt die Wechselwirkung kolloidbildender Metalle mit einem Entwickler und einer Metallösung 65 (Sviridov, V.V., Kondratlev, V.A. (1978) Fotografische Prozesse mit silberfreier physikalischer Entwicklung [in russ.) Uspeci nautchnoi fotografii 1, S. 43-64). Überra-

schenderweise hat es sich gezeigt, daß sich um ein Atom des kolloidalen Metalles mehrere tausend Atome des Metalles aus der Metallösung lagern. Dadurch entsteht eine Massezunahme, die gegenüber der normalen Massezunahme, die durch die Affinitätsreaktion erreicht wird, um mehrere Größenordnungen größer ist.

Im einzelnen wird nun so vorgegangen, daß in einem ersten Schritt ein Antigen oder eine Antigen-Modifikation auf die Oberfläche eines sensitiven Elementes, z. B. einem Schwingkristall, immobilisiert wird. Im folgenden wird dann auf die Oberfläche die zu bestimmende Lösung des Antigens und gleichzeitig eine Lösung mit einer konstanten Konzentration des komplementären Affinitätspartners in Form eines Komplexes mit einem kolloidalen Metall aufgegeben. Das zu bestimmende, freie Antigen konkurriert nun mit dem resonatorgebundenen um die Bindung mit den komplementären Affinitätspartner. Je mehr freies Antigen in der Lösung enthalten ist, desto weniger komplementäre Affinitätspartner binden am resonatorgebundenen Antigen und desto geringer ist dadurch auch die Anbindung an den komplementären Affinitätspartner am Resonator und desto geringer die Verstärkungsreaktion. Es wird also eine umgekehrte prozentuale Abhängigkeit des Sensorsignals von der Analytkonzentration (Antigen) gefunden (Konkurrenzprinzip). Wesentlich beim erfindungsgemä-Ben Verfahren ist nun, daß die Konkurrenzreaktion mit einem komplexierten komplementären Affinitätspartner durchgeführt wird, wodurch sich ein Affinitätskomplex an der Kristalloberfläche ausbildet. Als Metalle kommen hierbei grundsätzlich alle kolloidbildenden Metalle, insbesondere Gold, Silber, Kupfer oder Nickel, in Frage. Die Masseänderung, die dadurch erreicht wird, ist schon größer als die, die durch das bloße Anbinden des Affinitätspartners erreicht wird. Es hat sich jedoch gezeigt, daß diese Massezunahme allein noch nicht ausreicht, um ein hinreichend großes Meßsignal zu erzeu-

Erfindungsgemäß wird nun so vorgegangen, daß der vorstehend beschriebene Affinitätskomplex mit einer Entwicklerlösung, wie sie an und für sich aus der Fotochemie bekannt ist, und einer ein Metallsalz enthaltenden Lösung behandelt wird. Überraschenderweise hat es sich gezeigt, daß durch die Zugabe des Entwicklers und des Metallsalzes eine regelrechte Wolke um das kolloidale Metall gebildet wird, wobei eine Massezunahme resultiert, die um mehrere Größenordnungen (100- bis 1000fach) größer ist als die Massezunahme. die durch das bloße Anbinden des komplementären Affinitätspartners erreicht wird. Die Fig. 1 zeigt hierbei, stellvertretend für einen Affinitätskomplex, schematisch den Zustand, wie er nach Behandlung mit der Entwicklerlösung mit der Metallösung vorliegt. Hierin bedeutet m die Metallwolke, die aus der Metallsalzlösung ent-

steht

Me das kolloidale Metall,

A den komplementären Affinitätspartner, und B das Antigen.

Als Entwicklerlösung können dabei alle an und für 60 sich aus dem Stand der Technik bekannten Entwicklerlösungen aus der Fotographie eingesetzt werden. Ein Überblick über derartige Entwicklerlösungen ist z. B. im RÖMPP Chemielexikon, Band 9, 1993, S. 309, enthalten. Als Metallösungen können ebenfalls alle metallsalzhaltigen Lösungen, insbesondere Silber-, Nickel- und Cu-Salzlösungen, z. B. Nitrate, eingesetzt werden. Bevorzugt werden für den Fall, daß Au als kolloidales Metall eingesetzt wird, Ag-Salze verwendet. Generell muß das

50

Metall aus der Metallsalzlösung unedler als das kolloidale Metall sein.

In Abwandlung des vorstehend beschriebenen Verfahrens ist es auch möglich, dem Komplexierungsschritt vorgelagert, zuerst an das resonatorgebundene Antigen einen entsprechenden, komplementären Antikörper anzukoppeln und dann nachfolgend die vorstehend beschriebene Reaktion mit dem kolloidalen Metall komplexierten komplementären zweiten Affinitätspartner durchzuführen. Diese Ausführungsvariante bringt eine kleinere nochmalige Steigerung der Massezunahme. Die Erfindung schließt jedoch grundsätzlich auch Verfahrensvarianten mit ein, bei denen nicht nur ein weiterer Antikörper an das resonatorgebundene Antigen angekoppelt ist, sondern auch Ausführungsformen, bei de- 15 nen mehrere Antikörper aneinander gebunden sind. Wesentlich beim erfindungsgemäßen Verfahren ist jeweils, daß ein komplementärer Affinitätspartner mit dem kolloidalen komplexierten Metall jeweils als letzter Schritt zugesetzt wird und daß dann eine Entwicklerlösung, wie vorstehend beschrieben, hinzugefügt wird.

Bevorzugt wird das Verfahren so durchgeführt, daß nach Anbindung des komplementären Affinitätspartners mit dem kolloidalen Metall die Entwicklerlösung und die metallsalzenthaltende Lösung in einem separa- 25 ten Schritt zuerst gemischt werden und dann auf die Oberfläche des sensitiven Elementes aufgetragen werden. Zu beachten ist hierbei, daß die Mischung dieser beiden Partner kurzfristig vor der Aufgabe auf die sensitive Oberfläche erfolgt, damit unerwünschte Nebenre- 30 aktionen vermieden werden. Die Erfindung schließt aber ausdrücklich auch alle anderen Verfahrensvarianten, nämlich die getrennte Zugabe dieser beiden Lösungen, mit ein.

Das erfindungsgemäße Verfahren ist besonders ge- 35 eignet, wenn als sensitives Element des Affinitätssensors ein gravimetrischer piezoelektrischer Resonator eingesetzt wird. Die Erfindung ist dabei grundsätzlich auf alle Affinitätskomponenten anwendbar, wie z. B. auf Protein A und G, Antikörper und deren Fragmente oder Lecti- 40

Die Erfindung wird nachfolgend anhand zweier Figuren und eines Ausführungsbeispiels näher erläutert. Hierbei zeigen:

Fig. 1 schematisch den Zustand für einen Attnitäts- 45 komplex, wie er erfindungsgemäß erreicht wird, und

Fig. 2 die Abhängigkeit der Frequenzänderung des herbicidbeschichteten Schwingkristalls von der Herbicidkonzentration in der Lösung.

Ausführungsbeispiel

Das Beispiel betrifft die Ausführungsform, bei der zuerst ein zusätzlicher Antikörper als Zwischenglied zum metalikomplexierten Affinitätspartner an das im- 55 mobilisierte Antigen gekoppelt wird.

Ein Resonator (Schwingkristall), auf dessen Oberfläche als Antigen das Herbicid MCPB (4-(4-Chlor-2-methylphenoxy)buttersäure) gebunden (immobilisiert) wurde, wird in Pufferlösung (5 mmol/l TRIS, 0.5% 60 Schweine-Albumin, pH 7.4, 0.025% Tween 20) mit verschiedenen MCPB-Konzentrationen 30 min. in Kontakt gebracht und gleichzeitig einer konstanten Konzentration ausgesetzt.

Kontrollproben enthalten kein MCPB. Das freie 65 MCPB konkurriert mit dem resonatorgebundenen um die Bindung an den Anti-MCPB-Antikörpern. Je mehr freies MCPB in der Lösung enthalten ist, desto weniger

Antikörper bindet am resonatorgebundenen MCPB, desto geringer ist auch die Protein-A-Anbindung an den Antikörper am Resonator, und desto geringer ist auch die Verstärkungsreaktion. Es wird also eine umgekehrte proportionale Abhängigkeit des Sensorsignals von der Analytkonzentration gefunden (Konkurrenzprinzip).

Nach Waschung mit PBS (pH 7.4)-Tween-Lösung (0.0025%) und Wegspülen ungebundener Antikörper wird der Resonator, an den nun Antikörper gebunden sind, mit dem Komplex Protein-A-Colloidal-Gold (20 nm) (Sigma) in einer Verdünnung von 1:50 20 min. lang inkubiert. Unmittelbar vor dem Verstärkungsprozeß wurde der Verstärker (Entwickler) wie folgt berei-

Lösung A: 2 g Metol (Fluka), 10 g Citronensäure (Fluka) in 100 ml aqua dest.

Lösung B: 1 g Silbernitrat (AgNO₃) (Sigma) in 100 ml aqua dest.

Lösung A und B werden im Verhältnis 9:1 gemischt 20 (Lösung C).

Die Oberfläche des Resonators wird mit PBS-Tween 29 und danach mit Wasser gewaschen. Der Resonator wird mit Lösung C in 10facher Verdünnung 3 bis 10 min. kontaktiert. Danach wird der Resonator gewaschen und getrocknet und die Frequenz des Schwingkristalls wird gemessen.

Eine verstärkte Messung benutzt das gleiche Vorgehen, verzichtet aber auf den Zusatz der Lösung C.

Fig. 2 zeigt, daß ohne die Verstärkungsreaktion (untere Kurve) keine Messung möglich ist, die verstärkte Messung dagegen hochempfindlich ist.

Patentansprüche

- 1. Verfahren zum Nachweis von Antigenen mit einem Affinitätssensor, bei dem auf der Oberfläche des sensitiven Elementes des Sensors das Antigen oder eine Antigen-Modifikation immobilisiert und dann mit seinem komplementären Affinitätspartner und der unbekannten Menge des Antigens behandelt wird, dadurch gekennzeichnet, daß zur Verstärkung des Signals der komplementäre Affinitätspartner in Form eines Komplexes mit einem kolloidalen Metall eingesetzt wird und daß die Oberfläche des Sensors nachfolgend mit einer fotografischen Entwicklerlösung und einer Metallösung behandelt wird.
- 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß als sensitives Element ein gravimetrischer piezoelektrischer Resonator dient.
- 3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die fotografische Entwicklerlösung und die Metallösung vermischt und dann die Mischung auf die Oberfläche des sensitiven Elementes aufgegeben wird.
- Verfahren nach mindestens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß als kolloidales Metall Gold, Silber, Kupfer oder Nickel eingesetzt
- Verfahren nach mindestens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Entwicklerlösung reduzierende Verbindungen, insbesondere Aminophenole, enthält.
- 6. Verfahren nach mindestens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß als Metallösung eine Lösung eingesetzt wird, die insbesondere Silber, Nickel- oder Cu-Salze enthält.
- 7. Verfahren nach mindestens einem der Ansprüche

6

1 bis 6, dadurch gekennzeichnet, daß als komplementärer Affinitätspartner Antibiotika, Pestizide, Hormone, Vitamine oder Toxine eingesetzt werden

8. Verfahren nach mindestens einem der Ansprüche
1 bis 7, dadurch gekennzeichnet, daß vor der Zugabe des komplementären Affinitätspartners mit dem komplexierten kolloidalen Metall mindestens ein Antikörper an das resonatorgebundene Antigen angekoppelt wird.

10

Hierzu 2 Seite(n) Zeichnungen

15

20

25

30

35

40

45

50

55

60

65

ZEICHNUNGEN SEITE 1

Nummer: Int. Ci.⁶: DE 195 17 789 A1 G 01 N 33/543

Offenlegungstag:

21. November 1996

Higur 1

- Kristalloberfläche

602 047/112

Nummer: Int. Cl.⁶: DE 195 17 789 A1 G 01 N 33/543 21. November 1996

Offenlegungstag:

mentegungstag: 21. Novemi

Figur 2

Frequenz (Hertz)

Konzentration des Antigens
(MCPB) (molar)