ASR2-Système : systèmes de fichiers

Semestre 2, année 2009-2019

Département d'informatique IUT Bordeaux 1

Mai 2009

Système de fichiers = structure de données

représentation de fichiers et répertoires sous forme de 0 et de 1

stockés en mémoire secondaire

pour l'utilisateur : arborescence

fichiers/répertoires accessibles par leur nom (chemin d'accès)

Un fichier a un contenu des méta-données

Méta-données d'un fichier

Informations

- taille
- propriétaire
- droits d'accès
- date de création
- date de dernier accès
- . . .

Système de Gestion de Fichiers : fonctions

- Manipulation des fichiers : créer/détruire des fichiers, ...
- Allocation de la place sur mémoires secondaires
- Localisation des fichiers : accès au contenu
- Sécurité et contrôle des fichiers
- Fiabilité en cas de panne
- ...

ici : quelques idées sur la représentation

1 - Catalogue de fichiers

Catalogue de fichiers

VTOC = Volume Table of Contents (IBM)

- pas de répertoires,
- fichiers contigus

Catalogue de fichiers

Table des fichiers

nom du	position du	
fichier	premier bloc	taille
CLIENTS	10	50
PRODUITS	60	500
FACTURES	560	2000

située au début du disque.

Dans le catalogue : liste des espaces libres

Reste du disque : blocs de données (contenu des fichiers)

VTOC: occupation du disque

Gestion de l'espace

- Espaces contigus
- Réservation d'espace à la création d'un fichier
- Restitution quand le fichier est supprimé
- Extension des fichiers?

Avantages/Inconvénients

Avantages

- simplicité
- performances

Avantages/Inconvénients

Inconvénients

Perte de place causée par

- réservations non utilisées.
- espaces contigus de taille variable

Solutions

■ 1 fichier = plusieurs zones, allouées au besoin (dynamiquement)

Exemple

Réservation d'un fichier de 20 Ko + 5 extensions de 10 Ko

utilitaire de réorganisation du disque

2 - Table d'allocation

fichiers non contigus : allocation plus facile à gérer

table supplémentaire : index du bloc suivant

Catalogue de fichiers

Table des fichiers

nom du	position du	
fichier	premier bloc	taille
CLIENTS	10	50
PRODUITS	12	500
FACTURES	15	2000

■ et table de chaînage des blocs

indice	 10	11	12	13	
suivant	 11	20	13	14	

blocs de données

FAT: occupation du disque

Autre représentation

Table des blocs intégrée dans le catalogue

nom	taille	B1	B2	B3	B4	 B16
CLIENTS	3	10	11	22	-	-
PRODUITS	4	20	11	42	-	-
FACTURES	20	101	102	103	104	 116
FACTURES	-	117	118	119	120	 -

(utilisation de "lignes de continuation")

■ Technique de représentation utilisée dans CP/M

- des attribut (taille, propriétaire, droits...)
- les adresses de ses premiers blocs de données

- des attribut (taille, propriétaire, droits...)
- les adresses de ses premiers blocs de données
- l'adresse d'un bloc d'indirection simple qui contient d'autres adresses de blocs de données.

- des attribut (taille, propriétaire, droits...)
- les adresses de ses premiers blocs de données
- l'adresse d'un bloc d'indirection simple qui contient d'autres adresses de blocs de données.
- l'adresse d'un bloc d'indirection double

- des attribut (taille, propriétaire, droits...)
- les adresses de ses premiers blocs de données
- l'adresse d'un bloc d'indirection simple qui contient d'autres adresses de blocs de données.
- l'adresse d'un bloc d'indirection double qui contient d'autres adresses de blocs d'indirection simple

- des attribut (taille, propriétaire, droits...)
- les adresses de ses premiers blocs de données
- l'adresse d'un bloc d'indirection simple qui contient d'autres adresses de blocs de données.
- l'adresse d'un bloc d'indirection double qui contient d'autres adresses de blocs d'indirection simple qui contiennent d'autres adresses de blocs de données.
- l'adresse d'un bloc d'indirection triple

- des attribut (taille, propriétaire, droits...)
- les adresses de ses premiers blocs de données
- l'adresse d'un bloc d'indirection simple qui contient d'autres adresses de blocs de données.
- l'adresse d'un bloc d'indirection double qui contient d'autres adresses de blocs d'indirection simple qui contiennent d'autres adresses de blocs de données.
- l'adresse d'un bloc d'indirection triple qui contient d'autres adresses de blocs d'indirection double

- des attribut (taille, propriétaire, droits...)
- les adresses de ses premiers blocs de données
- l'adresse d'un bloc d'indirection simple qui contient d'autres adresses de blocs de données.
- l'adresse d'un bloc d'indirection double qui contient d'autres adresses de blocs d'indirection simple qui contiennent d'autres adresses de blocs de données.
- l'adresse d'un bloc d'indirection triple qui contient d'autres adresses de blocs d'indirection double qui contiennent d'autres adresses de blocs d'indirection simple

- des attribut (taille, propriétaire, droits...)
- les adresses de ses premiers blocs de données
- l'adresse d'un bloc d'indirection simple qui contient d'autres adresses de blocs de données.
- l'adresse d'un bloc d'indirection double qui contient d'autres adresses de blocs d'indirection simple qui contiennent d'autres adresses de blocs de données.
- l'adresse d'un bloc d'indirection triple qui contient d'autres adresses de blocs d'indirection double qui contiennent d'autres adresses de blocs d'indirection simple qui contiennent d'autres adresses de blocs de données.

I-nodes et blocs d'indirection

Supposons:

- des blocs de 4 Ko (2¹²)
- des adresses sur 32 bits

Capacité maximale du disque?

Supposons:

- des blocs de 4 Ko (2^{12})
- des adresses sur 32 bits

Capacité maximale du disque? En théorie, le disque peut contenir

2³²blocs

Supposons:

- des blocs de 4 Ko (2¹²)
- des adresses sur 32 bits

Capacité maximale du disque?

En théorie, le disque peut contenir

$$2^{32}$$
blocs

soit

$$2^{32}\times 2^{12}=2^{44} \text{octets}=16 \text{Tera octets}$$

Supposons:

- des blocs de 4 Ko (2¹²)
- des adresses sur 32 bits

Capacité maximale du disque?

En théorie, le disque peut contenir

soit

$$2^{32} \times 2^{12} = 2^{44}$$
 octets = 16Tera octets

Question: taille maximum d'un fichier?

- une adresse = 32 bits = 4 octets
- un bloc = 4 Ko:

- une adresse = 32 bits = 4 octets
- un bloc = 4 Ko :peut contenir 4096 = 1024 adresses.

- une adresse = 32 bits = 4 octets
- un bloc = 4 Ko :peut contenir 4096 = 1024 adresses.

Donc

un bloc d'indirection simple conduit à 1024 blocs de données

- une adresse = 32 bits = 4 octets
- un bloc = 4 Ko :peut contenir 4096 = 1024 adresses.

Donc

 un bloc d'indirection simple conduit à 1024 blocs de données soit 1024 × 4Ko soit 4 Mo de données

- une adresse = 32 bits = 4 octets
- un bloc = 4 Ko :peut contenir 4096 = 1024 adresses.

Donc

- un bloc d'indirection simple conduit à 1024 blocs de données soit 1024 × 4Ko soit 4 Mo de données
- un Bl doubles conduit à 1024 Bl simple (4 Go)
- un Bl triple conduit à 1024 Bl double (4 To)

Pour la plupart des accès, une indirection suffit

Bilan

- Fichiers contigus :
 - temps d'accès : très bonne performances
 - problème de gestion des espaces libres
 - convient très bien à des supports en lecture seulement (CD, DVD)
- table des blocs, blocs chainés, i-nodes
 - gestion souple et efficace de l'espace
 - problèmes de performance si les données sont dispersées

Représentation des répertoires

Représenter les arborescences?

Catalogue arborescent

ASR2-Système : systèmes de fichiers

Représentation des répertoires

Comme des catalogues de fichiers

Catalogues de fichiers

- Répertoires matérialisés dans le catalogue par des lignes spéciales qui renvoient vers d'autres lignes
- ne permet pas d'avoir des liens, seulement des raccourcis
- Solution adoptée par CP/M, MS/DOS, Windows...

Types de lignes :

71	
types de ligne	information
fichier	taille, blocs
vide	
répertoire	numéro de ligne
raccourci	chemin destination

Comme des fichiers de données

Représentation des répertoires comme des fichiers de données

SGF Unix

Un système de fichiers contient

- une table d'i-nodes (noeuds d'information)
- des blocs de données liés à ces i-nodes

Un fichier/répertoire... est identifié par son numéro d'i-node

Différents types d'i-nodes

types	donnée
fichiers	Blocs = contenu du fichier
répertoires	Blocs = table de noms et numéros d'i-node
liens symboliques	chemin d'accès
périphériques	type, majeur, mineur

Représentation des répertoires

Exemple

Exemple d'arborescence

table des inodes

CR = compteur de références

Compteur de référence

Dans un i-node, indique combien de fois l'objet est référencé Quand le CR est à 0, on peut récupérer l'espace qu'il occupe.

table des inodes

Après ln /B /C/G

· · · · · · · · · · · · · · · · · · ·			
N°	type	CR	contenu des blocs
1	d	4	=1, .=1, 1=2, B=3, C=4
2	d	2	=1,.=2, D= 5, E=6
3	f	2	"coucou"
4	d	2	:1, .=4, F=7, G=3

Gestion des blocs libres?

Blocs libres

Le système possède

- une liste des blocs libres
- un tableau de marquage des blocs occupés

Vérification du système de fichiers

Utilitaire fsck, descente de l'arborescence :

- 1 vérification des i-noeuds, des blocs et des tailles
- vérification de la structure des répertoires
- 3 vérification de la connectivité des répertoires
- 4 vérification des compteurs de référence
- 5 vérification de l'information du sommaire de groupe

C'est long parfois

vérification des i-noeuds, des blocs et des tailles

- i-noeuds non-détruits ⇒ blocs alloués.
- blocs alloués ⇒ i-noeud.

vérification de la structure des répertoires

■ numéro d'i-noeud cité dans un répertoire ⇒ i-noeud existant

vérification de la connectivité des répertoires

■ i-noeuds actifs ⇔ accessibles depuis la racine

vérification des compteurs de référence

Nombre de références recalculé = nombre de références indiqué dans l'i-noeud

[└]Vérification du système de fichiers

vermeation du système de nemers

vérification de l'information du sommaire de groupe

└ Journalisation

Autres caractéristiques : la journalisation

Journalisation

Lournalisation

Les systèmes de fichiers journalisés Journal :

- garde une trace des opérations d'écriture non terminées
- permet de les reprendre en cas d'arrêt brutal

Avantages

- pas de pertes d'informations
- reprise sur incidents plus rapide (évite le fsck)

Snapshots (clichés)

Pendant la durée d'une sauvegarde,

- on ne veut pas que le système de fichiers soit modifié
- on ne veut pas arrêter l'exploitation

Cliché : copie de l'état du système de fichiers à un moment donné On ne copie que *ce qui a changé* à partir du moment du cliché.