Universidad de la República - Facultad de Ingeniería - IMERL: Matemática Discreta 2

Primer parcial - 27 de abril de 2017. Duración: 3 horas

N° de parcial	Cédula	Apellido y nombre	Horario muestra

Ejercicio 1. Encontrar todos los $a, b \in \mathbb{N}$ tales que a + b = 407 y mcm(a, b) = 210 mcd(a, b).

Ejercicio 2. Sean $a, b, c \in \mathbb{Z}$ con $(a, b) \neq (0, 0)$. Probar que la ecuación diofántica

$$ax + by = c$$

tiene solución si y solo si $mcd(a, b) \mid c$.

Ejercicio 3.

 \mathbf{a} . Hallar el menor x natural que verifica

$$\left\{ \begin{array}{ll} x & \equiv & 6 \pmod{13} \\ x & \equiv & 62 \pmod{103} \end{array} \right.$$

- **b.** Si (n, e) = (1339, 311) calcular E(11), donde E es la función de cifrado del criptosistema RSA con clave pública (n, e).
- c. Sabiendo que $1339 = 13 \cdot 103$ calcular la función de descifrado D del criptosistema RSA para la clave pública (n, e) de la parte anterior.
- **d.** Sean $n = p \cdot q$, con p, q primos, y $0 < e < \varphi(n)$ con $\operatorname{mcd}(e, \varphi(n)) = 1$. Dadas las funciones de cifrado E y descifrado D del criptosistema RSA para (n, e), probar que $D(E(x)) \equiv x \pmod{n}$ cuando $\operatorname{mcd}(x, n) = 1$.

Ejercicio 4. Demostrar la siguiente versión del teorema chino del resto. Sean m_1 , m_2 enteros coprimos y a_1 , $a_2 \in \mathbb{Z}$, entonces el sistema

$$\left\{ \begin{array}{ll} x & \equiv & a_1 \pmod{m_1} \\ x & \equiv & a_2 \pmod{m_2} \end{array}, x \in \mathbb{Z}, \right.$$

tiene solución y es única módulo m_1m_2 .