1 Product

Definition 1.1 (Product). Let C a category and $A, B \in C$, $(A \times B, \pi_0, \pi_1)$ forms a product of A and B where $A \times B \in C$, $\pi_0 : A \times B \to A$ and $\pi_1 : A \times B \to B$, if for any $X \in C$ with $\pi'_0 : X \to A$ and $\pi'_1 : X \to B$, there is a unique arrow $u : X \to A \times B$ such that the following diagram commutes:

Furthermore, a product of A and B is a limit of diagram:

One may trying to show that $0 \times X \simeq 0$ by:

However, the red triangle needs not to commutes, that is, the arrow π_0 from $(0 \times X, \pi_0, \pi_1)$ to $(0, 1_0, !)$ may not exist.

Definition 1.2 (Product of Arrow). Suppose $(A \times B, \pi_0, \pi_1)$ and $(C \times D, \pi_2, \pi_3)$ are two product, and $f : A \to C$, $g : B \to D$. The product of arrow $f \times g$ is a

unique arrow from $A \times B$ to $C \times D$ such that the following diagram commutes:

2 Exponential

Definition 2.1. Let C a category. For any $B, C \in C$, (C^B, ev) forms an exponential where $C^B \in C$ and $ev : C^B \times B \to C$, if for any object $A \in C$ and $f : A \times B \to C$, there is a unique $u : A \to C^B$ such that $f = ev \circ (u \times 1_B)$. In other words, the follow diagram commutes.

3 Pullback

Theorem 3.1. Suppose we have two joined commuting squares like:

Then:

1. The outer rectangle is a pullback square if two inner squares are pullback squares.

2. The inner-left square is a pullback square if the ouer rectangle and the inner-right square are pullback squares.

Proof.

1. For any (A, a, b) such that $j \circ h \circ a = n \circ b$, then there is a unique $u : A \to M$ such that $h \circ a = m \circ u$ and $b = g \circ u$. Then there is a unique $v : A \to L$ such that $l \circ a = v$ and $f \circ v = u$, which makes (A, a, b) against to the outer rectangle commutes.

2. For any (A, a, b) such that $h \circ a = m \circ b$, consider the inner-right pullback, then we have a unique $u : A \to M$ such that the diagram commutes:

However, if we replace u with b, we have $g \circ b = g \circ b$ and $h \circ a = m \circ b$, that means b can do u's job, but we know u is unique, so b = u. Now consider the outer pullback, we have a unique $v : A \to L$ such that the

diagram commutes:

That is, $l \circ v = a$ and $g \circ f \circ v = g \circ b$, we claim that v is the unique factorization from (A, a, u = b) to (L, l, f). It is obvious that $l \circ v = a$, we need to show $f \circ v = u = b$. We may use the trick we just used, we can see that $g \circ f \circ v = g \circ u$ and $m \circ f \circ v = h \circ l \circ v = h \circ a$. So $f \circ v$ can do b's job, so $f \circ v = b$.

For any arrow $w: A \to L$ such that $l \circ a = w$ and $f \circ w = b$, then we have also $g \circ f \circ w = g \circ b$, which implies w is the unique arrow from $A \to L$ such that the outer diagram commutes, so w = v.

Theorem 3.2. A pullback square for the corner $D_1 \to V \leftarrow D_2$ is a product of $D_1 \to V$ and $V \leftarrow D_2$ in the slice category \mathcal{C}/V .

Proof. Suppose (L, f, g) is the pullback of such corner, then we first need to show that there is an arrow $l: L \to V$ such that $s \circ f = l$ (therefore a morphism from (L, l) to (D_1, s)) and $t \circ g = l$ (a morphism from (L, l) to (D_2, t)).

Since (L, f, g) makes the pullback square commutes, we know $s \circ f = t \circ g$, therefore we let $l = s \circ f$ (or equivalently $t \circ g$).

We need to show that ((L, l), f, g) forms a product of (D_1, s) and (D_2, t) , consider any ((A, a), b, c) where $a : A \to V$ such that $s \circ b = a$ and $t \circ c = a$. Just like l for L, a is redundant, so we may omit it. Now, the diagram looks

like:

Since (L, f, g) is a pullback, we know there is a unique $u : A \to L$ such that two triangle commutes. However, we must first show that u is an arrow from (A, a) to (L, l), that is, $l \circ u = a$. It is easy to see that $l \circ u = s \circ f \circ u = s \circ b = a$.

Theorem 3.3. if a category has all binary products and all equalizers for every pair of parallel arrows, then it has a pullback for any corners.

Proof. Suppose $X \to Z \leftarrow Y$ a corner, then consider the product $X \times Y$:

$$\begin{array}{ccc}
X \times Y & \xrightarrow{\pi_1} & Y \\
\downarrow^{\pi_0} & & \downarrow^{t} \\
X & \xrightarrow{s} & Z
\end{array}$$

Now, consider the equalizer for the parallel arrows $t \circ \pi_1$ and $s \circ \pi_0$:

$$E \xrightarrow{e} X \times Y \xrightarrow{s \circ \pi_0} Z$$

We claim $(E, \pi_0 \circ e, \pi_1 \circ e)$ is a pullback of such corner. For any (F, f, g) such that the outer diagram commutes:

it is easy to see that there is a unique arrow $u: F \to X \times Y$ such that $\pi_0 \circ u = a$ and $\pi_1 \circ u = b$ since $X \times Y$ is a product. Then there is another unique arrow $v: F \to E$ such that $e \circ v = u$ since E is a equalizer.

Obviously, (commute) $\pi_0 \circ e \circ v = \pi_0 \circ u = a$ and $\pi_1 \circ e \circ v = \pi_1 \circ u = b$. (unique) If an arrow $w: F \to E$ can do the job, then $e \circ w: F \to X \times Y$ is another factorization from F to the product $X \times Y$, so $e \circ w = u$, but that means w is also a factorization from F to the equalizer E, which means v = w.

So
$$(E, \pi_0 \circ e, \pi_1 \circ e)$$
 is a pullback of such corner.

Theorem 3.4. If a category has a terminal object and has a pullback for every corner, then it has all binary product.

Theorem 3.5. If a category has a terminal object and has a pullback for every corner, then it has a equalizer for every parallel arrwos.

Proof. Suppose $s, t: X \to Y$ are parallel arrows, then the following diagram commutes:

Note that we have $Y \times Y$ since this category has all binary products. Then consider this corner:

$$X \xrightarrow{\langle 1_Y, 1_Y \rangle} X \xrightarrow{\langle s, t \rangle} Y \times Y$$

We have an object $E, e: E \to X$ and $f: E \to Y$ such that the square commutes:

$$E \xrightarrow{f} Y$$

$$\downarrow e \qquad \langle 1_{Y}, 1_{Y} \rangle \downarrow$$

$$X \xrightarrow{\langle s, t \rangle} Y \times Y$$

(Proof comes from textbook until here)

We can see that $\pi_0 \circ \langle s, t \rangle \circ e = s \circ e$ while $\pi_0 \circ \langle 1_Y, 1_Y \rangle \circ f = 1_Y \circ f = f$, therefore $s \circ e = f$, similarly $t \circ e = f$, so $s \circ e = t \circ e$. We claim E is the equalizer for the parallel arrows $s, t : X \to Y$. For any (F, e') such that $s \circ e' = t \circ e'$, then we have a unique arrow $u : F \to E$ such that this diagram

commutes:

where $e \circ u = e'$. Suppose $v : F \to E$ where $e \circ v = e'$, then $f \circ v = s \circ e \circ v = s \circ e'$.

$$\left|-|x-z|_X+|y-z|_X\right|_{\approx \infty} \ge \epsilon$$

4 Functors

Definition 4.1 (Full). A functor $F : \mathcal{C} \to \mathcal{D}$ is called full, if for any $a, b \in \mathcal{C}$, the mapping on morphism $F : \mathcal{C}(a,b) \to \mathcal{D}(Fa,Fb)$ is surjective.

Definition 4.2 (Faithful). A functor $F: \mathcal{C} \to \mathcal{D}$ is called faithful, if for any $a, b \in \mathcal{C}$, the mapping on morphism $F: \mathcal{C}(a, b) \to \mathcal{D}(Fa, Fb)$ is injective.

Definition 4.3 (Essentially Full). A functor $F: \mathcal{C} \to \mathcal{D}$ is called Essentially full, if for any $a \in \mathcal{C}$, the mapping on object $F: \mathcal{C} \to \mathcal{D}$ is surjective.

Theorem 4.1. Suppose $F: \mathcal{C} \to \mathcal{D}$ a functor, and $f: a \to b$ a morphism in \mathcal{C} . Then f is an isomorphism iff Ff is an isomorphism.

Proof. (\Rightarrow) We claim $F(f^{-1}): Fb \to Fa$ is an inverse, we can see that $F(f^{-1} \circ f) = F(id_a) = id_{Fa}$ and $F(f \circ f^{-1}) = F(id_b) = id_{Fb}$.

 (\Leftarrow) Suppose Fg is the inverse of Ff, and we can retrieve g from Fg cause F is full faithful. Then $F(g \circ f) = Fg \circ Ff = id_{Fa} = F(id_a)$ therefore $g \circ f = id_a$ since F is full faithful, similar to $F(f \circ g)$, so f is indeed an isomorphism.

Corollary 4.1. Suppose $F: \mathcal{C} \to \mathcal{D}$ is full and faithful, show that F is injective on object.

Proof. Trivial by previous theorem.

5 Yoneda

This chapter combines arguments from some books:

- The Dao of FP
- The Joy of Abstraction

Definition 5.1. $H_x = \mathcal{C}(-,x)$ and $H^x = \mathcal{C}(x,-)$.

Take H^x as an example, it sends \mathcal{C} to **Set**, the interesting part is the mapping on morphism. For any morphism $f: a \to b$ of \mathcal{C} , H^f must be a mapping $\mathcal{C}(x,a) \to \mathcal{C}(x,b)$, we can see that $g \mapsto f \circ g$ would be a choice.

We have to show that it satisfies the functoriality:

- $H^{id_a}(g) = id_a \circ g = g$
- $H^{f \circ g}(h) = (f \circ g) \circ h = f \circ (g \circ h) = H^f(g \circ h) = H^f(H^g(h)) = (H^f \circ H^g)(h).$

Similar to H_x , the only difference is that H_x is a contrafunctor.

Suppose $f: a \to b$ an isomorphism, we can see that H^x gives an isomorphism between two hom-sets: C(x, a) and C(x, b).

Furthermore, we can no more fix x, that is, make H_{\bullet} (or H^{\bullet}) a functor from \mathcal{C} to $[\mathcal{C}^{op}, \mathbf{Set}]$, a functor to a functor!

The problem we need to solve is that what should H_{\bullet} do on a morphism $f: a \to b$. Since H_{\bullet} produce a functor, H_f must produce a natural transformation between H_a and H_b . Suppose $x, y \in \mathcal{C}$ and $g: x \to y$, note that H_a and H_b are contrafunctor, so we need to reverse the arrows!

and we can unfold the definitions

and suppose $s \in \mathcal{C}(y, a)$, we know the top-right corner would be $s \circ g$ since $\mathcal{C}(g, a) = -\circ g$ (same to $\mathcal{C}(g, b)$). In order to construct an arrow in $\mathcal{C}(y, b)$, we can pre-compose the arrow $f : a \to b$. Then the bottom-left corner would be $f \circ s$, and the bottom-right corner would be $(f \circ s) \circ g$ (by left-bottom path) and $f \circ (s \circ g)$ (by top-right path), which is exactly the same!

Note that the condition here $(f \circ -) \circ (- \circ g) = (- \circ g) \circ (f \circ -)$ is the naturality condition which is mentioned in *The Dao of FP*. A bijection between two hom-sets $\alpha_x = \mathcal{C}(x,a) \to \mathcal{C}(x,b)$ that satisfies the naturality condition $\alpha_y \circ (- \circ g) = (- \circ g) \circ \alpha_x$ can retrieve the isomorphism between a and b. This will be unsurprised if we notice that such bijection with naturality condition forms a natural transformation, then we can retrieve the morphism (not isomorphism yet) from it. The morphism becomes iso- when we know H_{\bullet} is full and faithful (see below and chapter functor),

Definition 5.2. H_{\bullet} is called Yoneda embedding.

Theorem 5.1. Shows H_{\bullet} is an embedding by showing it is full and faithful.

Proof. (Full) For any $a, b \in \mathcal{C}$, suppose $\alpha : [\mathcal{C}^{op}, \mathbf{Set}](H_a, H_b)$ a morphism (natural transformation). Use the Yoneda trick, we have $\alpha_a : \mathcal{C}(a, a) \to \mathcal{C}(a, b)$ and then $\alpha_a(id_a) : \mathcal{C}(a, b)$. As we see the definition of H_{\bullet} on morphism,

we should expect that α has form $f \circ -$ for some $f : a \to b$. But how coincident, we have a morphism $\alpha_a(id_a): \mathcal{C}(a,b)$. So we claim $H_{\alpha_a(id_a)} = \alpha$. (In the other hand, if α has form $f \circ -$, then $\alpha_a(id_a) = f \circ id_a = f$). For any $x \in \mathcal{C}$, we need to show $(H_{\alpha_a(id_a)})_x = \alpha_x : \mathcal{C}(x,a) \to \mathcal{C}(x,b)$. So we suppose $g \in \mathcal{C}(x,a)$, then the following diagram commutes since α is natural:

Then

is a proof of
$$H_{\alpha_a(id_a)}(g) = \alpha_a(id_a) \circ g = \alpha_x(g)$$
.
(Faithful) Suppose $f \circ -H_f = H_g = g \circ -$, then $f = f \circ id_a = H_f(id_a) = H_g(od_a) = g \circ id_a = g$.

As we see in the proof of H_{\bullet} is a full functor, the natural transformation α at some x (therefore any $x \in \mathcal{C}$) is completely determined by the value $\alpha_a(id_a)$, cause for any g, we have $\alpha_a(id_a) \circ g = \alpha_x(g)$.

We may rename H_b with F, then

It seems that H_b can be replaced with any functor in $[\mathcal{C}^{op}, \mathbf{Set}]$, furthermore, the natural transformation is still determined by $\alpha_a(id_a)$ (and $\alpha_a(id_a)$ is determined by α , trivial though, but it implies that there is a precisely corresponding).

Theorem 5.2 (Yoneda Lemma). Show that the natural transformation between H_a and any functor $F \in [C^{op}, Set]$ correspond precisely to the elements of Fa. In other words,

$$[\mathcal{C}^{op}, \mathbf{Set}](H_a, F) \cong Fa$$

Proof. The arrow $f: [\mathcal{C}^{op}, \mathbf{Set}](H_a, F) \to Fa$ is obvious by the Yoneda trick.

$$\alpha \mapsto \alpha_a(id_a) : [\mathcal{C}^{op}, \mathbf{Set}](H_a, F) \to Fa$$

For any $x \in Fa$, as we see before, we may expect there is a natural transformation α such that $\alpha_a(id_a) = x$, then the action on other objects is completely determined by $\alpha_a(id_a)$ as we see before.

$$x, g \mapsto (Fg)(x) : Fa \to [\mathcal{C}^{op}, \mathbf{Set}](H_a, F)$$

Note that $(F(id_a))(x) = id_{Fa}(x) = x$.

We need to show that they are inverse to each other. For any natural transformation α :

$$[\mathcal{C}^{op}, \mathbf{Set}](H_a, F) \xrightarrow{f} Fa \xrightarrow{f^{-1}} [\mathcal{C}^{op}, \mathbf{Set}](H_a, F)$$

$$\alpha \longmapsto^{-a(id_a)} \alpha_a(id_a) \longmapsto^{(F-)(-)} (F-)(\alpha_a(id_a))$$

And we can see $(Fg)(\alpha_a(id_a)) = \alpha_x(g)$ for any $x \in \mathcal{C}$ and $g \in \mathcal{C}(x,a)$ by the same way as the proof which shows H_{\bullet} is a full functor.

In another direction, we get:

$$Fa \xrightarrow{f^{-1}} [\mathcal{C}^{op}, \mathbf{Set}](H_a, F) \xrightarrow{f} Fa$$

$$x \longmapsto^{(F-)(-)} (F-)(x) \longmapsto^{-a(id_a)} F(id_a)(x)$$

It is obvious that $F(id_a)x = id_{Fa}x = x$.

6 Adjoint

Theorem 6.1. Show that the hom-functor preserves limit, that is:

$$Limit(\mathcal{C}(Y, \mathcal{J}_{\bullet})) \cong \mathcal{C}(Y, Limit)$$