Chapter 1 Perceptrons

Minlie Huang

aihuang@tsinghua.edu.cn

Dept. of Computer Science and Technology
Tsinghua University

http://coai.cs.tsinghua.edu.cn/hml/

Collect electrical signals

Dendrites Cell body Integrates incoming signals and generates outgoing signal to axon

Passes electrical signals to dendrites of another cell or to an effector cell

Figure 45-2b Biological Science, 2/e © 2005 Pearson Prentice Hall, Inc.

Introduction

- Proposed by McCulloch and Pitts, and Hebb, Rosenblatt in 1957
- The simplest form of a neural network used for linearly separable problems
- Perceptron convergence theorem
- One neuron for two-class problems, multiple neurons for multi-class problems (multi-layer perceptron)
- Theoretically, multilayer perceptron can be used to solve any classification and regression problem with BP learning algorithm

Overview

- Single layer Perceptron
- Multilayer Perceptron
 - BP Learning algorithm
 - Others

Simple layer Perceptron

Perceptron Unit

Single Layer

A model of neuron

- Inputs x_i , the m elements of x(i) originate at different points in input space.
- Synaptic weights w_i,
- Weighted sum on inputs

$$u = w_0 x_0 + w_2 x_2 + ... + w_m x_m = \langle w, x \rangle$$

 The problem is how to design a multiple input — single output model of the unknown dynamical system by building it around a single linear or nonlinear neuron control the adjustment of the weights.

Classifier

$$y_i = f(\sum w_{ij} x_j + b)$$

$$f(u_j) = \begin{cases} 1 & u_j \ge 0 \\ -1 & u_j < 0 \end{cases}$$

Supervised learning

- Teacher gives samples of inputs x(n) and corresponding desired outputs t(n)
- Goal is to find weights which imitate the behavior of the teacher

Learning Rule

$$w_i(n+1) = w_i(n) + \eta(t(n) - y(n))x_i(n)$$

 $i = 1, 2, ..., m$

- If the n-th input x(n) is correctly classified,
 i.e., t(n)=y(n)
 - Nothing happens

- Otherwise, t(n)!=y(n)
 - Update weights (two cases)

Adjust the Weights

- Adjust the weights
 - Start from randomly initialized weights
 - Update weights according to the rule
 - Stops when convergence or other condition is met

Perceptron convergence theorem

 For linearly separable problems, the algorithm converges at finite steps

See proof (another pdf)

Linear and nonlinear data

Linear function can separate the data without any error

XOR Problem

- Some classifications are impossible
- A famous example: XOR problem
 - Class 1: (0, 0) and (1, 1)
 - Class 2: (1, 0) and (0, 1)
 - The classes are not linearly separable, i.e. there is no hyperplane (line in this case) separating the classes.

To be continued