

Revisão - Lógica Proposicional e de Predicados

Sugestão de respostas

1. Mostre se as proposições abaixo são tautologias ou contradições ou contingências, usando a tabela-verdade.

(a) $[\neg p \land (p \lor q)] \to q$

p	q	¬р	$p \lor q$	$\neg p \land (p \lor q)$	$ [\neg p \land (p \lor q)] \to q $
V	V	F	V	F	V
V	F	F	V	F	V
F	V	V	V	V	V
F	F	V	F	F	V

É uma tautologia

(b) $[p \land (p \rightarrow q)] \rightarrow q$

p	q	$p \rightarrow q$	$p \wedge (p \to q)$	$[p \land (p \to q)] \to q$
V	V	V	V	V
V	F	F	F	V
F	V	V	F	V
F	F	V	F	V

É uma tautologia

(c) $p \to (q \to r) \leftrightarrow (p \to q) \to r$

p	q	r	$\mathbf{q} \to \mathbf{r}$	$p \to (q \to r)$	$(p \to q)$	$(p \to q) \to r$	$p \to (q \to r) \leftrightarrow (p \to q) \to r$
V	V	V	V	V	V	V	V
V	V	F	F	F	V	F	V
V	F	V	V	V	F	V	V
V	F	F	V	V	F	V	V
F	V	V	V	V	V	V	V
F	V	F	F	V	V	F	F
F	F	V	V	V	V	V	V
F	F	F	V	V	V	F	F

 $\acute{\rm E}$ uma contingência.

(d) $(p \lor q) \land (\neg p \land \neg q)$

p	q	$p \lor q$	$\neg p$	$\neg q$	$\neg p \land \neg q$	$(p \lor q) \land (\neg p \land \neg q)$
V	V	V	F	F	F	F
V	F	V	F	V	F	F
F	V	V	V	F	F	F
F	F	F	V	V	V	F

É uma contradição

2. Transcreva cada uma das proposições em expressões lógicas usando predicados, quantificadores e conectivos lógicos.

Seja P(x): x é perfeito e F(x): x é seu amigo, onde o universo de discurso são todas as pessoas.

- (a) Ninguém é perfeito. $\forall x \neg P(x)$ ou $\neg \exists x P(x)$
- (b) Nem todos são perfeitos $\neg \forall x P(x)$ ou $\exists x \neg P(x)$
- (c) Todos os seus amigos são perfeitos. $\forall x(F(x) \to P(x))$
- (d) Pelo menos um de seus amigos é perfeito. $\exists x (F(x) \land P(x))$
- (e) Todos são seus amigos e são perfeitos. $\forall x(F(x) \land P(x))$
- (f) Nem todos são seus amigos ou alguém não é perfeito. $(\neg \forall x F(x)) \lor (\exists x \neg P(x))$
- 3. Determine o valor verdade de cada umas das seguintes sentenças no domínio dos números reais (\mathbb{R}) :
 - (a) $\exists n(n^2=2)$ Verdadeiro, nos \mathbb{R} temos que $n=\pm\sqrt{2}$.
 - (b) $\exists n(n^2 = -1)$ Falso, o quadrado de um número real não pode ser negativo.
 - (c) $\forall n(n^2+2\geq 1)$ Verdadeiro, pois qualquer número real ao quadrado é não- negativo, ou seja, $n^2 \ge -1$.
 - (d) $\forall n(n^2 \neq n)$ Falso, contraexemplos: x = 0 ou x = 1.
- 4. Reescreva cada uma das proposições de forma que não haja nenhuma negação a esquerda de um quantificador ou de um conectivo lógico.
 - $\forall y \forall x \neg P(x,y)$ (a) $\neg \exists y \exists x P(x,y)$
 - (b) $\neg \forall x \exists y P(x, y)$ $\exists x \forall y \neg P(x,y)$
 - $\begin{array}{ll} (c) & \neg \exists y (Q(y) \land \forall x \neg R(x,y)) & \forall y (\neg Q(y) \lor \neg \forall x \neg R(x,y)) \Rightarrow \forall y (\neg Q(y) \lor \exists x R(x,y)) \\ (d) & \neg \exists y (\exists x R(x,y) \lor \forall x S(x,y)) & \forall y (\neg \exists x (R(x,y) \lor \forall x S(x,y)) \Rightarrow \forall y (\forall x \neg R(x,y) \land \exists x \neg S(x,y)) \\ \end{array}$

Dica: Revisar as tabelas-verdade dos operadores lógicos e as propriedades de equivalências lógicas Tabelas 6, 7 e 8 da Seção 1.2 do livro Rosen (2009)