5.6. Пусть A — ограниченное множество на числовой прямой и $a \in \mathbb{R}$. Доказать, что множество $A+a=\{x+a,x\in A\}$ измеримо и $\mu(A+a)=\mu(A)$.

Тема 3. ИЗМЕРИМЫЕ ФУНКЦИИ

Пусть задано пространство с мерой (X, Σ, μ) .

Определение 7. Действительная функция $f: X \to \overline{\mathbb{R}}$ называется измеримой, если для любого $c \in \mathbb{R}$ множество $A_c = \{x : f(x) < c\}$ измеримо (здесь $\overline{\mathbb{R}}$ – расширенная числовая прямая). Комплекснозначная функция g + ih измерима, если измеримы ее действительная и мнимая части.

Лемма 1. Числовая функция $f: X \to \overline{\mathbb{R}}$ измерима тогда и только тогда, когда для любого $c \in \mathbb{R}$ измеримо одно из множеств $\{x: f(x) \leq c\}, \, \{x: f(x) > c\}, \, \{x: f(x) \geqslant c\}.$

Теорема 5. Пусть $f: X \to \overline{\mathbb{R}}$ – измеримая функция. Тогда для любой измеримой функции $g: \overline{\mathbb{R}} \to \overline{\mathbb{R}}$ их композиция $h = g \circ f$ также измерима на X.

Будем говорить, что две определенные на множестве X функции эквивалентны, если они равны между собой почти всюду, т. е. равны между собой для всех $x \in X$ за исключением, быть может, точек, принадлежащих множеству нулевой меры.

Лемма 2. Функция f(x), определенная на множестве X и эквивалентная на нем измеримой функции g(x), так же измерима.

Теорема 6. Пусть (X,Σ,μ) – пространство с мерой $u f, g : X \to \mathbb{R}$ – измеримые функции. Тогда функции $\alpha f, f^2, f \pm g, f \cdot g, f/g$ (при условии, что $g(x) \neq 0$ на X), $\alpha \in \mathbb{R}$, измеримы.

1. Равномерная сходимость.

Последовательность измеримых функций f_n сходится к функции f равномерно, если для любого $\varepsilon>0$ существует номер n_ε такой, что для всех $n>n_\varepsilon$ выполнено

$$\sup_{x \in X} |f_n(x) - f(x)| < \varepsilon.$$

Равномерная сходимость обозначается так: $f_n \rightrightarrows f$.

2. Точечная сходимость.

Последовательность f_n сходится к функции f точечно, если для любого $x \in X$ $f_n(x) \to f(x)$ при $n \to \infty$.

3. Сходимость почти всюду.

Последовательность f_n сходится к f *почти всюду* $(f_n \xrightarrow[n \to \infty]{\text{п.в.}} f)$, если $f_n(x) \to f(x)$ при $n \to \infty$ для всех точек x за исключением, быть может, тех x, которые принадлежат множеству меры нуль.

4. Сходимость по мере.

 $Cxo\partial u mocm b$ по мере последовательности измеримых функций f_n к измеримой функции f обозначается $f_n \xrightarrow[n \to \infty]{\mu} f$ и означает, что для любого $\varepsilon > 0$ мера множества

$$A_n(\varepsilon) = \{x \colon |f_n(x) - f(x)| \geqslant \varepsilon\}$$

стремится к нулю при $n \to \infty$.

Теорема 7. Пусть X, Σ, μ – пространство с мерой и $(f_n)_{n=1}^{\infty}$ – последовательность измеримых функций. Если f_n сходится в кажедой точке $x \in X$ к функции f, то функция f измерима.

Следствие 3. Если последовательность измеримых функций $(f_n)_{n=1}^{\infty}$ сходится к f равномерно, то f измерима.

Следствие 4. Если последовательность измеримых функций $(f_n)_{n=1}^{\infty}$ сходится к f почти всюду, то предельная функция измерима.

 $Cnedcmeue\ 5.$ Существует разрывная на отрезке [a,b] функция, которая не является пределом почти всюду сходящейся последовательности непрерывных функций.

Теорема 8 (Лебег). Пусть (X, Σ, μ) – пространство с полной конечной σ -аддитивной мерой и пусть последовательность $(f_n)_{n=1}^{\infty}$ измеримых функций сходится κ функции f почти всюду. Тогда она сходится κ той же самой предельной функции и по мере.

Теорема 9 (Рисс). Пусть (X, Σ, μ) – пространство с полной σ -аддитивной мерой и пусть последовательность $(f_n)_{n=1}^{\infty}$ измеримых функций сходится по мере к измеримой функции f. Тогда из этой последовательности можно выделить подпоследовательность $(f_{n_k})_{k=1}^{\infty} \subset (f_n)$, сходящуюся к f почти всюду.

Теорема 10 (Егоров). Пусть дана последовательность $(f_n)_{n=1}^{\infty}$ измеримых функций, сходящаяся на измеримом множестве X с конечной мерой к функции f. Тогда для любого $\delta > 0$ найдется такое измеримое множество $X_{\delta} \subset X$, что:

- 1) $\mu(X \setminus X_{\delta}) < \delta$;
- 2) на множестве X_{δ} последовательность $f_n(x)$ сходится κ f(x) равномерно.

Теорема 11 (Лузин). Пусть задана измеримая функция f(x) на измеримом множестве X, расположенном на [a,b]. Каково бы ни было число $\varepsilon > 0$ из X можно изъять такую часть, которую можно покрыть системой интервалов c суммой длин c, что на оставшемся множестве функция f(x) будет непрерывной.

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

 $\Pi p u M e p$ 7. На числовой прямой \mathbb{R} с мерой Лебега любая непрерывная функция измерима.

Решение. Действительно, множество $A_c = \{x \colon f(x) < c\}$ является прообразом открытого множества $f^{-1}(-\infty,c)$, которое измеримо как борелевское множество.

 $\prod p \, u \, M \, e \, p \, 8$. Пусть $(f_n(x))_{n=1}^{\infty}$ — последовательность измеримых на X функций. Тогда функции $\sup_n f_n(x)$, $\inf_n f_n(x)$ также измеримы на X.

Решение. Обозначим через $h(x) = \sup_n f_n(x)$. Измеримость h(x) означает, что для любого $c \in \mathbb{R}$ измеримы множества $A_c = \{x | h(x) > c\}$. Покажем, что $= \{x | h(x) > c\} = \bigcup_n \{x | f_n(x) > c\}$, это и будет означать измеримость h.

Пусть $x \in A_c$, т. е. h(x) > c. Тогда $h(x) > c + \varepsilon$ при достаточно малом $\varepsilon > 0$. По определению точной верхней границы найдется такой номер n_0 , что $f_{n_0}(x) > h(x) - \varepsilon$. Отсюда $f_{n_0}(x) > (c + \varepsilon) - \varepsilon = c$ и потому $x \in \{x | f_{n_0}(x) > c\}$, а тем более, $x \in \bigcup \{x | f_n(x) > c\}$.

С другой стороны, пусть $x \in \bigcup_n \{x \in X | f_n(x) > c\}$. Это значит, что найдется такой номер n_0 , что $f_{n_0}(x) > c$. Но тогда $h(x) \geqslant f_{n_0}(x) > c$, т. е. $x \in A_c$. Равенство доказано.