Business Process Intelligence (BPI) course

Heuristic Miner and Region-Based Mining

Nina Graves

BPI-Instruction 5

Causal Net Question 1

Consider the C-net in the figure on the right to work on the following tasks and questions.

a) Provide a valid binding sequence for the following trace:

$$\sigma = \langle start, A, B, C, D, F, E, E, G, end \rangle$$

b) Is it possible to construct a valid binding sequence using the following binding:

$$(activity, inputB, outputB) = (B, \{A\}, \{E, C\})$$

Explain your answer.

Causal Net Solution Q1 a)

 $\sigma = \langle start, A, B, C, D, F, E, E, G, end \rangle$

State / Pending Ohl

	State / Pending Obi.	Output Billuling	Activity	input biliding
	$\{(start, A)\}$	<i>{A}</i>	start	Ø
	$\{(A,B)\}$	{B}	A	{start}
E	$\{(B,E),(B,D),(B,C)\}$	$\{E,D,C\}$	В	<i>{A}</i>
	$\{(B,E),(B,D),(C,F)\}$	{ <i>F</i> }	С	{B}
	$\{(B,E),(D,F),(C,F)\}$	{ <i>F</i> }	D	{B}
	$\{(B,E),(F,G)\}$	{ <i>G</i> }	F	$\{C,D\}$
	$\{(E,E),(F,G)\}$	{ <i>E</i> }	E	{B}
,	$\{(E,end),(F,G)\}$	{end}	E	{ <i>E</i> }
	$\{(E, end), (G, end)\}$	{end}	G	{F}
ocess cience		Ø	end	$\{E,G\}$

Causal Net

Solution Q1 a)

 $\sigma = \langle start, A, B, C, D, F, E, E, G, end \rangle$

Resulting in the following binding sequence:

```
(start, \emptyset, \{A\}), (A, \{start\}, \{B\}), (B, \{A\}, \{E, D, C\}), (C, \{B\}, \{F\}), (D, \{B\}, \{F\}), (F, \{C, D\}, \{G\}), (E, \{B\}, \{E\}), (E, \{E\}, \{end\}), (G, \{F\}, \{end\}), (end, \{E, G\}, \emptyset)
```

Valid?

- Begins with start
- Ends with end
- All other bindings refer to an activity in A which is neither the start nor the end
- No pending obligations (last colomn) at the end
- At any point in the sequence only pending obligations were fulfilled.

Causal Net Solution Q1 b)

b) Is it possible to construct a valid binding sequence using the following binding:

 $(activity, inputB, outputB) = (B, \{A\}, \{E, C\})$

Explain your answer.

- 1. Any valid sequence requires activity F.
- 2. Fonly has one input binding, containing both D and C.
- 3. As *D* is not part of the given output binding of *B*, *D* has to be enabled by *C*.
- 4. But C can only enable either D or F, not both.
- 5. No valid binding sequence can contain the output binding {E,C} for activity B.

Causal Net Question 2

Consider the C-net in the figure on the right and answer the following questions:

- a) Does the C-net accept any activity sequence including both *g* and *h*?
- b) Does the C-net accept any activity sequence where activity e occurs without *d* occurring first? If yes, give an example; if no, explain why not.
- c) Give an activity sequence including activity *f* that is accepted by this C-net and starts with the occurrence of *a* with output binding {*c*,*d*}.

Causal Net Solution Q2 a)

a) Does the C-net accept any activity sequence including both *g* and *h*?

There is no sequence including both *g* and *h*, because the choice between them is exclusive (and there is no loop to go back afterwards).

Causal Net Solution Q2 b)

b) Does the C-net accept any activity sequence where *e* occurs without *d* occurring first? If yes, give an example; if no, explain why not.

Activity *e is* possible only if proceeded by either (*b* and *d*) or (*c* and *d*) before. Therefore, there will always be an occurrence of *d* before *e*.

Causal Net Solution Q2 c)

c) Give an activity sequence including activity *f* that is accepted by this C-net and starts with the occurrence of *a* with output binding {*c*,*d*}.

A possible example is $\langle a, c, d, e, f, d, c, e, g, z \rangle$.

Question 3

$$L_1 = \left[\langle a, b, e \rangle^{10}, \langle a, c, e \rangle^{12}, \langle d, b, f \rangle^8, \langle d, c, f \rangle^{15} \right]$$

- a) Compute the dependency measures matrix.
- b) Construct the dependency graph with the following thresholds: At least 10 direct successions and a dependency of at least 0.9.
- c) Construct the C-net based on the dependency graph. Use a window size of 2.
- d) Give an activity sequence that is possible in the C-net, but is not included in the event log.

Question 3

$$L_1 = [\langle a, b, e \rangle^{10}, \langle a, c, e \rangle^{12}, \langle d, b, f \rangle^8, \langle d, c, f \rangle^{15}]$$

$$\rightarrow [\langle \mathbf{S}, a, b, e, \mathbf{E} \rangle^{10}, \langle \mathbf{S}, a, c, e, \mathbf{E} \rangle^{12}, \langle \mathbf{S}, d, b, f, \mathbf{E} \rangle^8, \langle \mathbf{S}, d, c, f, \mathbf{E} \rangle^{15}]$$

Non-unique starting and ending activities → add artificial start and end.

Solution Q3 a)

$$L_1 = [\langle \mathbf{S}, a, b, e, \mathbf{E} \rangle^{10}, \langle \mathbf{S}, a, c, e, \mathbf{E} \rangle^{12}, \langle \mathbf{S}, d, b, f, \mathbf{E} \rangle^{8}, \langle \mathbf{S}, d, c, f, \mathbf{E} \rangle^{15}]$$

a) Compute the dependency measures matrix.

Step 1: Count direct successions

> _L	S	а	b	С	d	е	f	Е
S	0	22	0	0	23	0	0	0
а	0	0	10	12	0	0	0	0
b	0	0	0	0	0	10	8	0
С	0	0	0	0	0	12	15	0
d	0	0	8	15	0	0	0	0
е	0	0	0	0	0	0	0	22
f	0	0	0	0	0	0	0	23
Е	0	0	0	0	0	0	0	0

Step 2: Calculate dependencies

$$|a \Rightarrow_{L} b|$$

$$= \begin{cases} \frac{|a >_{L} b| - |b >_{L} a|}{|a >_{L} b| + |b >_{L} a| + 1} & \text{if } a \neq b \\ \frac{|a >_{L} a|}{|a >_{L} a| + 1} & \text{if } a = b \end{cases}$$

Negative dependencies are discarded.

Solution Q3 a)

© Chair for Process and Data Science RWTH Aachen University (use only with permission & acknowledgements)

$$L_1 = [\langle \mathbf{S}, a, b, e, \mathbf{E} \rangle^{10}, \langle \mathbf{S}, a, c, e, \mathbf{E} \rangle^{12}, \langle \mathbf{S}, d, b, f, \mathbf{E} \rangle^{8}, \langle \mathbf{S}, d, c, f, \mathbf{E} \rangle^{15}]$$

a) Compute the dependency measures matrix.

Step 1: Count direct successions

Step 2: Calculate dependencies

> _L	S	а	b	С	d	е	f	Е	⇒ _L	S	а	b	С	d	е	f	Е
S	0	22	0	0	23	0	0	0	S	0	0.96	0	0	0.96	0	0	0
а	0	0	10	12	0	0	0	0	а	0	0	0.91	0.92	0	0	0	0
b	0	0	0	0	0	10	8	0	b	0	0	0	0	0	0.91	0.89	0
С	0	0	0	0	0	12	15	0	С	0	0	0	0	0	0.92	0.94	0
d	0	0	8	15	0	0	0	0	d	0	0	0.89	0.94	0	0	0	0
е	0	0	0	0	0	0	0	22	е	0	0	0	0	0	0	0	0.96
f	0	0	0	0	0	0	0	23	f	0	0	0	0	0	0	0	0.96
Е	0	0	0	0	0	0	0	0	Е	0	0	0	0	0	0	0	0

Solution Q3 b)

$$L_1 = [\langle \mathbf{S}, a, b, e, \mathbf{E} \rangle^{10}, \langle \mathbf{S}, a, c, e, \mathbf{E} \rangle^{12}, \langle \mathbf{S}, d, b, f, \mathbf{E} \rangle^{8}, \langle \mathbf{S}, d, c, f, \mathbf{E} \rangle^{15}]$$

b) Construct the dependency graph with the following thresholds: At least **10** direct successions and a dependency of at least **0.9**.

> _L	S	а	b	C	а	е	f	Е	⇒ _L	S	а	b	С	d	е	f	Е
S	0	22	0	0	23	0	0	0	S	0	0.96	0	0	0.96	0	0	0
а	0	0	10	12	0	0	0	0	а	0	0	0.91	0.92	0	0	0	0
b	0	0	0	0	0	10	8	0	b	0	0	0	0	0	0.91	0.89	0
С	0	0	0	0	0	12	15	0	С	0	0	0	0	0	0.92	0.94	0
d	0	0	8	15	0	0	0	0	d	0	0	0.89	0.94	0	0	0	0
е	0	0	0	0	0	0	0	22	е	0	0	0	0	0	0	0	0.96
f	0	0	0	0	0	0	0	23	f	0	0	0	0	0	0	0	0.96
Е	0	0	0	0	0	0	0	0	Е	0	0	0	0	0	0	0	0

Solution Q3 b)

$$L_1 = [\langle \mathbf{S}, a, b, e, \mathbf{E} \rangle^{10}, \langle \mathbf{S}, a, c, e, \mathbf{E} \rangle^{12}, \langle \mathbf{S}, d, b, f, \mathbf{E} \rangle^{8}, \langle \mathbf{S}, d, c, f, \mathbf{E} \rangle^{15}]$$

b) Construct the dependency graph with the following thresholds: At least 10 direct successions and a dependency of at least 0.9.

Solution Q3 c)

$$L_1 = [\langle \mathbf{S}, a, b, e, \mathbf{E} \rangle^{10}, \langle \mathbf{S}, a, c, e, \mathbf{E} \rangle^{12}, \langle \mathbf{S}, d, b, f, \mathbf{E} \rangle^{8}, \langle \mathbf{S}, d, c, f, \mathbf{E} \rangle^{15}]$$

c) Construct the C-net based on the dependency graph. Use a window size of 2.

Solution Q3 d)

$$L_1 = [\langle \mathbf{S}, a, b, e, \mathbf{E} \rangle^{10}, \langle \mathbf{S}, a, c, e, \mathbf{E} \rangle^{12}, \langle \mathbf{S}, d, b, f, \mathbf{E} \rangle^{8}, \langle \mathbf{S}, d, c, f, \mathbf{E} \rangle^{15}]$$

d) Give an activity sequence that is possible in the C-net, but is not included in the event log. (S, a, c, f, E)

Question 4

$$L_2 = [\langle a, c, d \rangle^{45}, \langle b, c, d \rangle^{42}, \langle a, c, e \rangle^{38}, \langle b, c, e \rangle^{22}]$$

- a) Compute the dependency measures matrix.
- b) Construct the dependency graph with the following thresholds: At least 30 direct successions and a dependency of at least 0.8.
- c) Construct the C-net based on the dependency graph. Use a window size of 2.

Solution Q4

$$L_2 = [\langle a, c, d \rangle^{45}, \langle b, c, d \rangle^{42}, \langle a, c, e \rangle^{38}, \langle b, c, e \rangle^{22}]$$

$$\rightarrow [\langle \mathbf{S}, a, c, d, \mathbf{E} \rangle^{45}, \langle \mathbf{S}, b, c, d, \mathbf{E} \rangle^{42}, \langle \mathbf{S}, a, c, e, \mathbf{E} \rangle^{38}, \langle \mathbf{S}, b, c, e, \mathbf{E} \rangle^{22}]$$

Non-unique starting and ending activities → add artificial start and end.

Solution Q4 a)

$$L_2 = [\langle \mathbf{S}, a, c, d, \mathbf{E} \rangle^{45}, \langle \mathbf{S}, b, c, d, \mathbf{E} \rangle^{42}, \langle \mathbf{S}, a, c, e, \mathbf{E} \rangle^{38}, \langle \mathbf{S}, b, c, e, \mathbf{E} \rangle^{22}]$$

a) Compute the dependency measures matrix.

Step 1: Count direct successions

Step 2: Calculate dependencies

> <u> </u>	S	а	b	С	d	е	Е
S	0	83	64	0	0	0	0
а	0	0	0	83	0	0	0
b	0	0	0	64	0	0	0
С	0	0	0	0	87	60	0
d	0	0	0	0	0	0	87
е	0	0	0	0	0	0	60
Е	0	0	0	0	0	0	0

⇒ _L	S	а	b	С	d	е	Е
S	0	0.99	0.98	0	0	0	0
а	0	0	0	0.99	0	0	0
b	0	0	0	0.98	0	0	0
С	0	0	0	0	0.99	0.98	0
d	0	0	0	0	0	0	0.99
е	0	0	0	0	0	0	0.98
Е	0	0	0	0	0	0	0

Solution Q4 b)

$$L_2 = [\langle \mathbf{S}, a, c, d, \mathbf{E} \rangle^{45}, \langle \mathbf{S}, b, c, d, \mathbf{E} \rangle^{42}, \langle \mathbf{S}, a, c, e, \mathbf{E} \rangle^{38}, \langle \mathbf{S}, b, c, e, \mathbf{E} \rangle^{22}]$$

b) Construct the dependency graph with the following thresholds: At least 30 direct successions and a dependency of at least 0.8.

> _L	S	а	b	С	d	е	Е
S	0	83	64	0	0	0	0
а	0	0	0	83	0	0	0
b	0	0	0	64	0	0	0
С	0	0	0	0	87	60	0
d	0	0	0	0	0	0	87
е	0	0	0	0	0	0	60
Е	0	0	0	0	0	0	0

	L	S	а	b	С	d	е	Е
S		0	0.99	0.98	0	0	0	0
а		0	0	0	0.99	0	0	0
b		0	0	0	0.98	0	0	0
С		0	0	0	0	0.99	0.98	0
d		0	0	0	0	0	0	0.99
е		0	0	0	0	0	0	0.98
E		0	0	0	0	0	0	0

Solution Q4 b)

$$L_2 = [\langle \mathbf{S}, a, c, d, \mathbf{E} \rangle^{45}, \langle \mathbf{S}, b, c, d, \mathbf{E} \rangle^{42}, \langle \mathbf{S}, a, c, e, \mathbf{E} \rangle^{38}, \langle \mathbf{S}, b, c, e, \mathbf{E} \rangle^{22}]$$

b) Construct the dependency graph with the following thresholds: At least 30 direct successions and a dependency of at least 0.8.

Solution Q4 c)

$$L_2 = [\langle \mathbf{S}, a, c, d, \mathbf{E} \rangle^{45}, \langle \mathbf{S}, b, c, d, \mathbf{E} \rangle^{42}, \langle \mathbf{S}, a, c, e, \mathbf{E} \rangle^{38}, \langle \mathbf{S}, b, c, e, \mathbf{E} \rangle^{22}]$$

c) Construct the C-net based on the dependency graph. Use a window size of 2.

Question 5

$$L_{3} = [\langle a, b, e, f \rangle^{2}, \langle a, b, e, c, d, b, f \rangle^{3}, \langle a, b, c, e, d, b, f \rangle^{2}, \langle a, b, c, d, e, b, f \rangle^{4}, \langle a, e, b, c, d, b, f \rangle^{3}]$$

- a) Compute the dependency measures matrix.
- b) Construct the dependency graph with the follwoing thresholds: At least 10 direct successions and a dependency of at least 0.8.
- c) Construct the C-net based on the dependency graph. Use a window size of 2.
- d) Give an activity sequence that is possible in the C-net but is not included in the event log.

Solution Q5

$$L_{3} = [\langle a, b, e, f \rangle^{2}, \langle a, b, e, c, d, b, f \rangle^{3}, \langle a, b, c, e, d, b, f \rangle^{2}, \langle a, b, c, d, e, b, f \rangle^{4}, \langle a, e, b, c, d, b, f \rangle^{3}]$$

Unique start activity *a* and unique end activity *f* already there.

- a) Compute the dependency measures matrix.
- b) Construct the dependency graph with the following thresholds: At least 10 direct successions and a dependency of at least 0.8.
- c) Construct the C-net based on the dependency graph. Use a window size of 2.
- d) Give an activity sequence that is possible in the C-net but is not included in the event log.

Solution Q5 a)

$$L_{3} = \left[\langle a, b, e, f \rangle^{2}, \langle a, b, e, c, d, b, f \rangle^{3}, \langle a, b, c, e, d, b, f \rangle^{2}, \langle a, b, c, d, e, b, f \rangle^{4}, \langle a, e, b, c, d, b, f \rangle^{3} \right]$$

a) Compute the dependency measures matrix.

Step 1: Count direct successions

	Otop 1. Obdit direct successions												
> _L	а	b	С	d	е	f							
a	0	11	0	0	3	0							
b	0	0	9	0	5	12							
С	0	0	0	10	2	0							
d	0	8	0	0	4	0							
е	0	7	3	2	0	2							
f	0	0	0	0	0	0							

Step 2: Calculate dependencies

$$|a \Rightarrow_{L} b|$$

$$= \begin{cases} \frac{|a >_{L} b| - |b >_{L} a|}{|a >_{L} b| + |b >_{L} a| + 1} & \text{if } a \neq b \\ \frac{|a >_{L} a|}{|a >_{L} a| + 1} & \text{if } a = b \end{cases}$$

Negative dependencies are discarded.

Solution Q5 a)

$$L_{3} = [\langle a, b, e, f \rangle^{2}, \langle a, b, e, c, d, b, f \rangle^{3}, \langle a, b, c, e, d, b, f \rangle^{2}, \langle a, b, c, d, e, b, f \rangle^{4}, \langle a, e, b, c, d, b, f \rangle^{3}]$$

a) Compute the dependency measures matrix.

Step 1: Count direct successions

d h **|>**| 11 0а 5 h 9 **12** 002 10 0 d 3 O

Step 2: Calculate dependencies

1	Step 2. Calculate dependencies												
	\Rightarrow L	а	b	С	d	е	f						
	а	0	0.92	0	0	0.75	0						
	b	0	0	0.9	0	0	0.92						
	С	0	0	0	0.91	0	0						
	d	0	0.89	0	0	0.29	0						
	е	0	0.15	0.17	0	0	0.67						
	f	0	0	0	0	0	0						

Negative dependencies are discarded.

Heuristic Miner Solution Q5 b)

b) Construct the dependency graph with the following thresholds: At least 10 direct successions and a dependency of at least 0.8.

> _L	а	Ь	С	đ	Φ	f
а	0	11	0	0	3	0
b	0	0	9	0	5	12
С	0	0	0	10	2	0
d	0	8	0	0	4	0
е	0	7	3	2	0	2
f	0	0	0	0	0	0

⇒ _L	а	b	С	d	е	f
а	0	0.92	0	0	0.75	0
р	0	0	0.9	0	0	0.92
C	0	0	0	0.91	0	0
d	0	0.89	0	0	0.29	0
Ф	0	0.15	0.17	0	0	0.67
f	0	0	0	0	0	0

Solution Q5 b)

$$L_{3} = [\langle a, b, e, f \rangle^{2}, \langle a, b, e, c, d, b, f \rangle^{3}, \langle a, b, c, e, d, b, f \rangle^{2}, \langle a, b, c, d, e, b, f \rangle^{4}, \langle a, e, b, c, d, b, f \rangle^{3}]$$

b) Construct the dependency graph with the follwoing thresholds: At least 10 direct successions and a dependency of at least 0.8.

Solution Q5 c)

$$L_3 = [\langle a, b, e, f \rangle^2, \langle a, b, e, c, d, b, f \rangle^3, \langle a, b, c, e, d, b, f \rangle^2, \langle a, b, c, d, e, b, f \rangle^4, \langle a, e, b, c, d, b, f \rangle^3]$$

 Construct the C-net based on the dependency graph. Use a window size of 2.

C-nets need a unique start and unique end activity!

→ Refinements of Heuristic Miner can fix this

Solution Q5 c)

$$L_3 = [\langle a, b, e, f \rangle^2, \langle a, b, e, c, d, b, f \rangle^3, \langle a, b, c, e, d, b, f \rangle^2, \langle a, b, c, d, e, b, f \rangle^4, \langle a, e, b, c, d, b, f \rangle^3]$$

d) Give an activity sequence that is possible in the C-net but is not included in the event log.

Question 6 a)

Consider the partial traces and the fragment of a dependency graph shown below. Add the input and output bindings for activity *a* based on the partial traces. Use window size of 5 and no thresholds.

```
<...c,l,b,k,c,l,m,a,e,f,l,l,k,n,m...>
<...d,m,l,m,d,k,k,a,f,e,l,l,l,k,m...>
<...a,b,l,c,m,d,l,a,f,k,l,m,n,m,l...>
<...d,k,b,c,l,k,m,a,f,l,l,m,k,l,k...>
<...k,l,b,c,d,l,k,a,e,k,l,m,n,m,f...>
```


Solution 6 a)

Consider the partial traces and the fragment of a dependency graph shown below. Add the input and output bindings for activity *a* based on the partial traces. Use window size of 5 and no thresholds.

```
<...c,l,b,k,c,l,m,a,e,f,l,l,k,n,m...>
<...d,m,l,m,d,k,k,a,f,e,l,l,l,k,m...>
<...a,b,l,c,m,d,l,a,f,k,l,m,n,m,l...>
<...d,k,b,c,l,k,m,a,f,l,l,m,k,l,k...>
<...k,l,b,c,d,l,k,a,e,k,l,m,n,m,f...>
```


Question 6 b)

Consider the partial traces below and assume a window size of 5 and no thesholds. Which input and output bindings of the activity **a** in the (partial) C-Net below are incorrect and why?

```
<...c,l,b,k,c,l,m,a,e,f,l,l,k,n,m...>
```

- <...d,m,l,m,d,k,k,a,f,e,l,l,l,k,m...>
- <...a,b,l,c,m,d,l,a,f,k,l,m,n,m,l...>
- <...d,k,b,c,l,k,m,a,f,l,l,m,k,l,k...>
- <...k,l,b,c,d,l,k,a,e,k,l,m,n,m,f...>

Solution 6 b)

Consider the partial traces below and assume a window size of 5 and no thesholds. Which input and output bindings of the activity *a* in the (partial) C-Net below are **incorrect** and why?

```
<...c,l,b,k,c,l,m,a,e,f,l,l,k,n,m...>
<...d,m,l,m,d,k,k,a,f,e,l,l,l,k,m...>
<...a,b,l,c,m,d,l,a,f,k,l,m,n,m,l...>
<...d,k,b,c,l,k,m,a,f,l,l,m,k,l,k...>
<...k,l,b,c,d,l,k,a,e,k,l,m,n,m,f...>
```


Activity *a* cannot happen after just activity *c* in the traces, but it can in the c-net.

Question 1

$$L_2 = [\langle a, c, d \rangle, \langle b, c, d \rangle, \langle a, c, e \rangle, \langle b, c, e \rangle]$$

Given the event log above, create a transitions system using the following abstractions:

- a) past with sequence abstraction
- b) past with multiset abstraction
- c) only last event abstraction
- d) future with sequence abstraction

Solution Q1 a)

$$L_2 = [\langle a, c, d \rangle, \langle b, c, d \rangle, \langle a, c, e \rangle, \langle b, c, e \rangle]$$

a) past with sequence abstraction

Solution Q1 b)

$$L_2 = [\langle a, c, d \rangle, \langle b, c, d \rangle, \langle a, c, e \rangle, \langle b, c, e \rangle]$$

b) past with multiset abstraction

Solution Q1 c)

$$L_2 = [\langle a, c, d \rangle, \langle b, c, d \rangle, \langle a, c, e \rangle, \langle b, c, e \rangle]$$

c) only last event abstraction

Solution Q1 d)

$$L_2 = [\langle a, c, d \rangle, \langle b, c, d \rangle, \langle a, c, e \rangle, \langle b, c, e \rangle]$$

d) future with sequence abstraction

Question 2

$$\mathbf{L_5} = [\langle a, c, d, f \rangle, \langle a, d, c, f \rangle, \langle b, c, e, f \rangle, \langle b, e, c, f \rangle]$$

Given the event log above, create a transitions system using the following abstractions:

- a) past with set abstraction
- b) past with multiset abstraction
- c) only last event abstraction
- d) future with sequence abstraction

Solution Q2 a)

$$L_5 = [\langle a, c, d, f \rangle, \langle a, d, c, f \rangle, \langle b, c, e, f \rangle, \langle b, e, c, f \rangle]$$

a) past with set abstraction

Solution Q2 b)

$$L_5 = [\langle a, c, d, f \rangle, \langle a, d, c, f \rangle, \langle b, c, e, f \rangle, \langle b, e, c, f \rangle]$$

b) past with multiset abstraction

Solution Q2 c)

$$L_5 = [\langle a, c, d, f \rangle, \langle a, d, c, f \rangle, \langle b, c, e, f \rangle, \langle b, e, c, f \rangle]$$

c) only last event abstraction

Solution Q2 d)

$$L_5 = [\langle a, c, d, f \rangle, \langle a, d, c, f \rangle, \langle b, c, e, f \rangle, \langle b, e, c, f \rangle]$$

d) future with sequence abstraction

Regions Question 3

$$L_2 = [\langle a, c, d \rangle, \langle b, c, d \rangle, \langle a, c, e \rangle, \langle b, c, e \rangle]$$

- a) Create a transition system and detect **all** its regions using the past with sequence abstraction.
- b) Create a transition system and detect its non-trivial minimal regions using the only last event abstraction.

$$L_2 = [\langle a, c, d \rangle, \langle b, c, d \rangle, \langle a, c, e \rangle, \langle b, c, e \rangle]$$

a) past with sequence abstraction (see Q1a)

$$L_2 = [\langle a, c, d \rangle, \langle b, c, d \rangle, \langle a, c, e \rangle, \langle b, c, e \rangle]$$

a) past with sequence abstraction (see Q1a)

minimal regions

$$L_2 = [\langle a, c, d \rangle, \langle b, c, d \rangle, \langle a, c, e \rangle, \langle b, c, e \rangle]$$

a) past with sequence abstraction (other example regions)

$$L_2 = [\langle a, c, d \rangle, \langle b, c, d \rangle, \langle a, c, e \rangle, \langle b, c, e \rangle]$$

a) past with sequence abstraction: complete list of regions

Removing a subregion from a region yields another region.

 $\{s_5, s_6, s_7, s_8\}, \{s_3, s_4, s_6, s_7\}, \{s_3, s_4, s_5, s_8\}, \{s_1, s_2, s_6, s_7\}, \{s_1, s_2, s_5, s_8\}, \{s_1, s_2, s_3, s_4\}, \{s_0, s_6, s_7\}, \{s_0, s_5, s_8\}, \{s_0, s_3, s_4\}, \{s_0, s_1, s_2\}$

$$L_2 = [\langle a, c, d \rangle, \langle b, c, d \rangle, \langle a, c, e \rangle, \langle b, c, e \rangle]$$

b) past with only last event abstraction: minimal regions marked

Regions Question 4

$$L_6 = [\langle a, c, d, f \rangle, \langle a, d, c, f \rangle, \langle b, c, e, f \rangle, \langle b, e, c, f \rangle]$$

Consider the following two transition systems, their non-trivial, minimal regions, and the log above. For each of them, name the applied abstraction function and provide the resulting Petri net.

$$L_6 = [\langle a, c, d, f \rangle, \langle a, d, c, f \rangle, \langle b, c, e, f \rangle, \langle b, e, c, f \rangle]$$

a) future with sequence abstraction

To mine state-based Regions we require a single initial state.

$$L_6 = [\langle a, c, d, f \rangle, \langle a, d, c, f \rangle, \langle b, c, e, f \rangle, \langle b, e, c, f \rangle]$$

b) past with set abstraction

Petri net

Question 5

For the event log below, create the transition system using past with sequence abstraction. Find the non-trivial minimal regions and construct the corresponding Petri net.

$$L_2 = [\langle a, c, d \rangle, \langle b, c, d \rangle, \langle a, c, e \rangle, \langle b, c, e \rangle]$$

Petri net

Solution Q5

$$L_2 = [\langle a, c, d \rangle, \langle b, c, d \rangle, \langle a, c, e \rangle, \langle b, c, e \rangle]$$

Same transitions system and minimal regions as in 'Regions Q3'.

