Анализ выходных данных для автономной системы

Кирилл Андреев

25 Октября 2011 г.

Наиболее распространенные заблуждения

- Использование единственного прогона модели при анализе систем
- ▶ Предположение о независимости случайных величин, получаемых в ходе одного прогона модели

Наиболее распространенные заблуждения

- Использование единственного прогона модели при анализе систем
- ▶ Предположение о независимости случайных величин, получаемых в ходе одного прогона модели

Процесс моделирования

Пусть Y_1, \dots, Y_m — стохастический процесс, реализуемый при прогонах модели.

Строки матрицы соответствуют наблюдаемым величинам при различных прогонах модели с использованием различных последовательностей входных случайных чисел.

- Внутри строки величины не независимы
- Внутри столбца величины независимы

Наличие начальных условий

- $ightharpoonup Y_1, Y_2, \ldots$ выходной стохастический процесс
- Функция распределения наблюдаемой $F_i(y|I) = P(Y_i \leq y|I)$ зависит от начальных условий I.
- ▶ $P(Y_l \le y)$ вероятность того, что произойдет событие $\{Y_i \le y\}$
- $F_i(y|I)$ переходное распределение выходного процесса в момент времени i при начальных условиях I
 - Функции различны при различных начальных условиях
 - Функции различны в различные моменты времени
- ▶ Предполагаем, что существует такое $i \to \infty$, при котором зависимость от начальных условий *практически* исчезает
- Установившееся состояние распределение наблюдаемой величины перестает зависеть от времени.
- Скорость выхода на установившееся состояние зависит от начальных условий

Выход на стационарное состояние

Рис. 9.1. Функции плотности переходного и установившегося распределений для определенного стохастического процесса Y_1, Y_2, \dots и начальных условий I

Скорость схождения к стационарному состоянию

Рис. 9.2. $E(D_i)$ в качестве функции i и число требований в системе s на момент времени 0 для системы массового обслуживания M/M/1 с p = 0.9

Типы имитационного моделирования

- Переходный режим имитационного моделирования наличие терминирующего события. Важен тщательный выбор начальных условий.
- Имитационное моделирование для непереходного режима

 невозможность определения терминирующего события,
 потенциально бесконечное время моделирования.

Переходный режим имитационного моделирования

- Моделирование системы с конечным временем работы (рабочий день в банке)
- Моделирование боевых действий наличие терминирующего события (победа/поражение)
- ▶ Моделирование различных производственных циклов

Непереходный режим имитационного моделирования

- Критерий оценки имитационной модели установившиеся параметры (если существуют) выходного распределения.
 Характеристики модели при этом считаются неизменными.
- Возможно наличие циклических установившихся параметров: пусть дан стохастический процесс Y_1, Y_2, \ldots непрекращающегося процесса моделирования, в котором нет установившегося состояния. Y_i^C случайная величина, определенная в i—м цикле. Если случайные процессы в каждом цикле сопоставимы, и характеристики этих процессов сходятся, то их называют циклическими установившимися параметрами.
- Если параметры модели изменяются со временем, то возможно свести процесс к переходному.

Типы имитационного моделирования

Оценка средних значений по результатам n прогонов: предположения

- ightharpoonup Выполняется n независимых прогонов
- Существует одна оценка искомая оценка критерия (одна величина на один прогон), например среднее ожидание в очереди в банке за день.
- ightharpoonup Существует n независимых одинаково распределенных X_j , являющихся искомой оценкой

Оценка средних значений по результатам n прогонов

Процедура с фиксированным объемом выборки: получение приближенного доверительного интервала

Оценка среднего $\mu=E(X)$, где X — оцениваемая случайная величина. Тогда за n прогонов имеем X_1,\ldots,X_n — независимые одинаково распределенные случайные величины. $\overline{X}(n)$ — несмещенная оценка, а $100-\alpha$ -процентный доверительный интервал тогда составит $\overline{X}(n)\pm t_{n-1,1-\frac{\alpha}{2}}\sqrt{\frac{S^2(n)}{n}}$, где $S^2(n)$ — выборочная дисперсия.

Предположения в процедуре с фиксированным объемом выборки

- 1. Оцениваемые величины одинаково распределены
- 2. Оцениваемые величины имеют гауссово распределение

Механизмы получения заданной точности

Сколько необходимо независимых прогонов модели для того, чтобы точно контролировать половину длины доверительного интервала?

- ightharpoonup Получение необходимого числа прогонов в предположении "несущественного изменения" выборочной дисперсии $S^2(n)$
- Последовательная процедура получения заданной точности

В дальнейшем зависимость \overline{X} от n исчезает, так как n – случайная величина

Получение числа прогонов при условии несущественного изменения дисперсии

Пусть β – абсолютная погрешность \overline{X} , то есть $|\overline{X} - \mu| = \beta$. Тогда доверительный интервал определен как:

$$1-lphapprox P(\overline{X}$$
 — половина длины $\leq\mu\leq\overline{X}$ + половина длины)

То есть с вероятностью α % среднее значение наблюдаемой будет лежать внутри доверительного интервала $\pm \beta$. Приближенное необходимое число прогонов составит:

$$n_{\alpha}^{\star}(\beta) = \min\left\{i \geq n : t_{i-1,1-\frac{\alpha}{2}}\sqrt{\frac{S^{2}(n)}{i}} \leq \beta\right\}$$

По результатам n первых прогонов оцениваем общее необходимое их число и выполняем еще $n-n_{lpha}^{\star}$ прогонов.

Получение числа прогонов при условии несущественного изменения дисперсии

Пусть необходимо зафиксировать абсолютную погрешность γ , то аналогичным образом можно получить:

$$n_r^\star(\gamma) = min\Big\{i \geq n: rac{t_{i-1,1-rac{lpha}{2}}\sqrt{rac{S^2(n)}{i}}}{|\overline{X}(n)|} \leq rac{\gamma}{1+\gamma}\Big\}$$

Недостатки метода: $\overline{X}(n)$ и $S^2(n)$ не могут быть точными оценками соответствующих параметров генеральной совокупности.

Последовательная процедура получения заданной точности

Необходимо получить оценку μ с заданной относительной точностью $\gamma\in(0,1)$. Пусть изначально выполнено $n_0\geq 2$ независимых прогонов модели. Обозначим

$$\delta(n,\alpha) = t_{n-1,1-\frac{\alpha}{2}} \sqrt{\frac{S^2(n)}{n}}$$

- 1. Выполняем n_0 повторных прогонов модели и задаем $n=n_0$.
- 2. Вычисляем $\overline{X}(n)$ и $\delta(n,\alpha)$ по X_1,X_2,\ldots,X_n
- 3. Если $\delta(n,\alpha) \leq \overline{X}(n) \cdot \frac{\gamma}{1+\gamma}$, то используем $\overline{X}(n)$ как точечную оценку для μ и останавливаемся или повторяем процедуру иначе, выполняя n+1-й прогон модели.

Последовательная процедура получения заданной точности

В результате $\alpha\%$ доверительный интервал с относительной точностью γ составит:

$$I(\alpha, \gamma) = [\overline{X}(n) - \delta(n, \alpha), \overline{X}(n) + \delta(n, \alpha)]$$

Выводы

- Второй способ, как правило, дает существенно большее необходимое число независимых прогонов модели, т.к. на основании малого количества начальных прогонов получаются неточные оценки.
- ▶ Обычно следует использовать $n_0 \ge 10, \gamma \le 0.15$

Общие выводы

- Процедура с фиксированным объемом выборки хороша, когда точность не имеет принципиального значения. Если распределения существенно отличны от нормального, доверительный интервал может оказаться на самом шире, что нежелательно.
- Приблизительная оценка общего количества экспериментов хороша при ограниченных ресурсах на проведение эксперимента.
- ▶ Для получения точных оценок лучше пользоваться последовательной процедурой с $n_0 \ge 10, \gamma \le 0.15$.

Общие выводы

- Никогда не полагаться на результаты, полученные на основании менее пяти прогонов модели.
- Тщательно выбирать оцениваемые параметры. Например ожидаемая средняя задержка и ожидаемое количество клиентов по времени для одной или нескольких очередей.
- Тщательно подбирать начальные условия. Например работа банка после обеденного перерыва. Рекомендация: отдельно моделировать процесс выбора начальных данных.

Статистический анализ установившихся параметров: проблема запуска

- ▶ Пусть Y_1, Y_2, \ldots стохастический процесс, полученный в результате прогона модели в непереходном режиме.
- Предположим, что имеется установившееся состояние: $P(Y_i \le y) = F_i() \to F(y) = P(Y \le y)$, где Y установившаяся случайная величина с функцией распределения F.
- ϕ установившаяся характеристика Y (например, среднее значение)
- Эта оценка отлична от действительной, т.к. мы не можем выбрать "правильные" начальные условия, то есть оценки смещены.

Проблема начального переходного процесса

Пусть необходимо оценить установившееся среднее $\nu = E(Y)$

$$\nu = \lim_{i \to \infty} E(Y_i)$$

Удаление начальных данных, снижающее смещение оценки:

$$\overline{Y}(m,l) = \frac{\sum_{i=l+1}^{m} Y_i}{m-l}$$

Данные, близкие к началу моделирования, могут оказаться нехарактерными для рассматриваемой системы.

Проблема начального переходного процесса в выборе I и m таких, чтобы получить необходимое качество получаемой оценки.

Описание метода Велча

- 1. Выполнение *п* прогонов модели (более 5!), *достаточно* длительных.
- 2. Получение на основании нескольких прогонов средних показателей работы системы.
- 3. Фильтрация высокочастотных колебаний методом оконной фильтрации:

$$\overline{Y}_i(w) = \left\{ egin{array}{ll} rac{\sum_{s=-w}^{w} \overline{Y}_{i+s}}{2w+1} & ext{если } i=w+1,\ldots,m-w \ rac{\sum_{s=-(i+1)}^{i-1} \overline{Y}_{i+s}}{2i-1} & ext{если } i=1,\ldots,w \end{array}
ight.$$

4. Строим график полученного скользящего среднего.

Описание метода Велча

Рис. 9.8. Усредненный процесс и скользящее среднее с w = 1, полученные на основании n повторных прогонов имитационной модели продолжительностью m

Общие рекомендации по применению метода

- Выбрать 5 или 10 прогонов, выбрать настолько большое
 т, насколько это целесообразно в практическом смысле. т
 должно быть существенно больше ожидаемого значения I.
- ▶ Построить график $\overline{Y}_i(w)$ для нескольких значений окна w и выбрать наименьшее значение, при котором соответствующий график будет "достаточно ровным" Больший размер окна больше сглаживает получаемый график \Rightarrow слишком большое окно брать не стоит.
- Если не подходит ни одно выбранное значение окна, то стоит выполнить дополнительные прогоны и повторить процедуру.

Общие рекомендации по применению метода

- Существуют более сложные оконные функции для получения результатов (Фильтры Калмана)
- Использование случайной инициализации позволяет попытаться "угадать" стационарные начальные условия, что увеличивает скорость сходимости.
- Использование данных предыдущих прогонов для инициализации последующих.

Метод репликации и удаления

Пусть Y_{ij} — наблюдаемая на j-м независимом прогоне модели в момент времени i. Пусть X_j определяется следующим образом (среднее по "устойчивым состояниям"):

$$X_j = \frac{\sum_{i=l+1}^{m'} Y_{ji}}{m' - I}$$

 X_j — независимые одинаково распределенные случайные величины, α % доверительный интервал примет вид:

$$\overline{X}(n') \pm t_{n'-1,1-\frac{\alpha}{2}} \sqrt{\frac{S^2(n')}{n}}$$

Метод репликации и удаления

Суть процедуры

- 1. Выполняется n пробных прогонов модели, по которым определяется длительность переходного периода l.
- 2. Выполняется еще n' рабочих прогонов, в ходе обработки которых используются m'-I наблюдений.

Рекомендации

- ▶ Если в ходе предварительных прогонов модели $I \ll m$, тогда их можно включить в обработку результатов. Неточность метода Велча компенсируется большим объемом данных в "установившемся" состоянии
- Использование двух наборов прогонов модели лучше: не нарушается независимость X_i

Другие методы получения оценки средних

В основном выделяют две стратегии:

- Процедуры с фиксированным объемом выборки: выполняется один прогон имитационной модели с произвольной фиксированной длиной, затем по нему производится оценка.
- Последовательные процедуры: длина одного прогона имитационной модели последовательно увеличивается.

Методы с фиксированным объемом выборки

- Метод репликации и удаления
- Метод общих средних: Выбор размера групп для получения общих средних
- Авторегрессионный метод: Как выбрать авторегрессионную модель?
- Спектрального анализа: Как выбрать ковариационные интервалы?
- Регенеративный: что делать, если циклы имеют малую среднюю длину?
- ▶ Нормированного временного ряда: выбор размера групп к.

Множественные оценки показателей работы

Пусть I_s — это $100(1-\alpha)\%$ -й интервал для показателей работы μ_s , где $s=1,2,\ldots,k$. Тогда

$$P(\mu_{s} \in \mathit{I}_{s} \; \texttt{для всех} \; s = 1, 2, \ldots, k) \geq 1 - \sum_{s=1}^{k} \alpha_{k}$$

90%-е доверительные интервалы для 10 показателей работы не скажут о нашей системе ничего! Для получения настоящего доверительного интервала нужно использовать 99-процентные интервалы для каждого из показателей работы.