Dynamic Programming

- Dynamic Programming is a general algorithm design technique.
- Invented to solve optimization problems in 1950s by American mathematician Richard Bellman
- "Programming" <=> "Planning"

Key Features

- Construct table of all subproblem results
 - Initialized entries of smallest subproblem
 - Remainder filled in following a precise order
 - Corresponding to increasing subproblem size
 - Use only entries that have already been computed
- Each entry is calculated exactly once
- Final value computed is solution to the initial problem
- Use iteration (and extra space for saved results)
- avoid recursion if possible

Principle of Optimality

An optimal solution to an instance of an optimization problem is composed of optimal solution to its subinstances

Memory Function

- Dynamic Programming: problems whose solution satisfy a recurrence relation with overlapping subproblems
- Top-down solves common subproblems more than once -> very inefficient exponential!
- Dynamic Programming fills table with all subproblems but calculates each one only once
 - o Top-down does not solve unnecessary subproblems
- Combine both use memory function
- Fill table with nulls to indicate value not calculated and then proceed top down

Top Down v Button Up

- Top-down approach: This is the direct fall-out of the recursive formulation of any problem. If the solution to any problem can be formulated recursively using the solution to its sub-problems, and if its sub-problems are overlapping, then one can easily memoize or store the solutions to the sub-problems in a table. Whenever we attempt to solve a new sub-problem, we first check the table to see if it is already solved. If a solution has been recorded, we can use it directly, otherwise we solve the sub-problem and add its solution to the table.
- Bottom-up approach: Once we formulate the solution to a problem recursively as in terms of its sub-problems, we can try reformulating the problem in a bottom-up fashion: try solving the subproblems first and use their solutions to build-on and arrive at solutions to bigger sub-problems.
 This is also usually done in a tabular form by iteratively generating solutions to bigger and bigger

sub-problems by using the solutions to small sub-problems. For example, if we already know the values of F41 and F40, we can directly calculate the value of F42.

Summary

- Dynamic Programing is typically applied to a recurrence relation
- Break a problem down into smaller, more easily solved subproblems. To avoid solving these subproblems several times, their results are computed and recorded in a table
- Dynamic Programming can only be applied with the principle of optimality holds: the optimal solutions of subproblems can lead to the optimal solution of the overall problem
- Biggest limitation of Dynamic Programming is the number of partial solutions we must keep track of
 - o If the objects are not ordered we have an exponential number of possible partial solutions
 - Dynamic Programming is effective on well-ordered problems
- The memory function tries to combine the strengths of top-down and bottom-up by doing only those subproblems that are needed and only doing them once

Greedy Algorithms

- Repeatedly tries to maximize the return based on examining local conditions, with the hope that the outcome will lead to a desired outcome for the global problem
 - In some cases such a strategy is guaranteed to offer optimal solutions in some other cases it may provide a compromise that produces acceptable approximations
- Optimization problems are solved through a sequence of choices that are:
 - 1. Feasible satisfy problem constraints
 - 2. Locally optimal best choice among all feasible options for that step
 - 3. Irrevocable no backing out
- Greedy grab of the best alternative, hoping that a sequence of locally optimal steps will lead to a globally optimal solution
- Even if not optimal, sometimes an approximation is acceptable
- Not all optimization problems can be approached in this manner
- Strengths
 - o Intuitively simple and appealing
- Weaknesses
 - o Only applicable to optimization problems
 - Doesn't always produce an optimal solution

Examples

Fibonacci Numbers

Fibonacci Recursive function can be written as F(n) = F(n-1) + F(n-2), and if we complete it wth F(6) it will look as follows:

But Fibonacci with Dynamic Programming looks as follows:

This saves so much computation time, as you are no longer working out every single iteration of the fibonacci sequence, but rather simply summing the last two terms.

Binomial Coefficient

The coefficient of the x^k term in the polynomial expansion of the binomial power $(1+x)^n$

$$\binom{N}{K} = \frac{n!}{k!(n-k)!}$$
 for $n \ge k \ge 0$

$$\binom{N}{K}$$
 if $k < \emptyset$ or $k > n$

$$\binom{N}{K} = \begin{cases} \binom{n-1}{k-1} + \binom{n-1}{k} & \text{for } n > k > 0\\ 1 & \text{when } k = 0 \text{ or } k = n \end{cases}$$

By substituting the values 33 and 3 into the above equation it would look as follow, and have the resultant general form:

$$\binom{33}{3} = \frac{33!}{3!(30)!} = \frac{33.32.21.(30)!}{3!(30)!} = \frac{n(n-1)(n-2)...n-k+1}{k!}$$

Write a function that takes two parameters n and k and returns the value of the binomial coefficient C(n,k). E.g.: given n=4, and k=2, the function should return 6 as 4!/(2!(4-2)!)=6

Programmatically, the value of C(n,k) can be recursively calculated using the following standard formula for Binomial Coefficients:

```
• C(n,k) = C(n-1,k-1) + C(n-1,k)
```

This will stop once we reach the base condition:

```
• C(n,0) = C(n,n) = 1
```

In code this looks as follows:

```
int binomialCoeff(int n, int k){
   if(k == 0 || k == n){
      return 1;
   }
   return binomialCoeff(n-1,k-1) + binomialCoeff(n-1,k);
}
```

There are numerous overlapping subproblems, thus we should use Dynamic Programming.

```
int binomialCoeff(int n, int k){
    int[][] values = new int[n+1][k+1];
    for(int i = 0; i<n+1; i++){
        for(int j = 0; j<=Math.min(i,k);j++){
            if(j==0 || j== i){
                values[i][j] = 1;
            }else{
                values[i][j] = values[i-1][j-1] + values[i-1][j];
            }
        }
    }
    return values[n][k];
}</pre>
```

You can compare the two different implementations in the example file

Optimal Static Binary Search Tree

- Static
 - Only search operations
 - No insertions or deletions
- Optimal
 - Minimizes the expected search time for a given probability distribution
- Straight forward approach
 - Construct all possible binary trees containing all n keys
 - Compute the average number of comparisons in each tree
 - Select the tree with the minimum number of comparisons
- Need to construct optimal BST likely things near top, unlikely things near bottom
- Bruteforce method would be to construct all possible trees, but with DP we can follow a better method:

- Have probabilities attached to each node
- o Construct all n-1 key trees before can construct n key tree

Transitive Closure: Warshall's Algorithm

- Adjacency Matrix
 - The adjacency of a graph with n vertices is an n-by-n Boolean matrix with a row and a column for each of the graphs vertices, where the element in the ith row and jth column is 1 is there is an edge from the ith vertex to the jth vertex and a 0 if there is no edge
- Transitive Closure
 - A directed graph with n vertices is the n-by-n boolean matrix where element in the ith row and jth column is 1 if there is a directed path from the ith vertex to the jth vertex
- Warshall's
 - Computes the transitive closure of a relation
 - o or all paths in a directed graph

Here is the algorithm:

$$R^{(0)} \leftarrow$$
 adjacency matrix for $k \leftarrow 1$ to n do for $i \leftarrow 1$ to n do for $j \leftarrow 1$ to n do $R^{(k)}[i,j] \leftarrow R^{(k-1)}[i,j] \lor (R^{(k-1)}[i,k] \& R^{(k-1)}[k,j])$

return $R^{(n)}$

All Pairs Shortest Path: Floyd's Algorithm

- Tabulate distances between pairs of points on the map, roughly the same idea as Warshall's algorithm
- In a weighted graph, find shortest paths between every pair of vertices
- Construct solution through series of matrices D(0), D(1).. using an initial subset of vertices as intermediaries
- Finds shortest/cheapest path between every pair of vertices in a weighted directed graph

W

 $D^{(4)}$

Algorithm

$$\mathbf{D} \leftarrow \mathbf{W}$$

for $k \leftarrow 1$ to n do

for
$$i \leftarrow 1$$
 to n do

for $j \leftarrow 1$ to n do

 $D[i,j] \leftarrow min(D[i,j], D[i,k] + D[k,j])$

return D

Warshall vs Floyd

- Warshall tells us if path exists or not (1 or 0 in the table)
- Floyd tells us the values of shortest costs/paths (infinity or integer)

Knapsack Problem

We have a knapsack with capacity W, and a set of items S. Each item has a weight wi and value vi. We must maximise the value in the bag while minimising the weight

This can be done as follows: max(taking element N, not taking element N)

```
knapsack(i,j):
    if(V[i,j]<0)
        if j < weights[i]:
            value = knapsack(i-1,j)
        else:
            value = max(knapsack(i-1),j),values[i]+knapsack(i-1,j-weights[i])
        v[i,j] = value
return V[i,j]</pre>
```

Knapsack Memory Function Solution

Change Making

Problem: give change for a specific amount n, with the least number of coins of the denominations. d1, d2 ... dm

- Greedy algorithm
- Each step choose the biggest coin which is smaller than the remaining total, repeat
- Optimal efficiency for reasonable sets of coins, but if there are unusual denominations the algorithm can fail

Text Compression

- Text Compression
 - Variable-length encoding
 - Compress text by mapping each character to a code
 - The length of a code depends on the probability of its character occurring
 - o Prefix-free code system
 - There is no code in the system which is a prefix (substring from first character) of any other code in the system
 - Unambiguous
- Huffman Coding Greedy algorithm
 - Uses both variable length and prefix free
 - Builds a huffman tree that assigns shorter strings to higher frequency characters