Review

SOFTMAX

Softmax: A Visual Perspective

Compute Error

Loss Function

Actual labels are one-hot-encoded.
$$\rightarrow y = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$
, $\hat{y} = \begin{bmatrix} 0.3 \\ 0.2 \\ 0.1 \\ 0.4 \end{bmatrix}$

$$Loss(y, \hat{y}) = -\sum_{j=1}^{C} y_j log \hat{y}_j$$

$$Loss(y, \hat{y}) = -(0.\log \hat{y}_1 + 1.\log \hat{y}_2 + 0.\log \hat{y}_3 + 0.\log \hat{y}_4)$$
$$Loss(y, \hat{y}) = -(1.\log \hat{y}_2) = -\log \hat{y}_2$$

$$J(y,\hat{y}) = \frac{1}{m} \sum_{i=1}^{m} Loss(y,\hat{y})$$

Use gradient descent to adjust weights once you have cost.

One Hot Encoding (aka categorical encoding)

x_1	x_2	y
5	9	0
6	8	0
1	2	1
11	12	2

y One Hot Encoded
[1, 0, 0]
[1, 0, 0]
[0, 1, 0]
[0, 0, 1]

ŷ After Softmax
[0.9, 0.1, 0]
[0.8, 0.2, 0]
[0.1, 0.75, 0.15]
[0, 0.05, 0.95]

$$Loss(y, \hat{y}) = -\sum_{j=1}^{C} y_j log \hat{y}_j$$

$$J(y,\hat{y}) = \frac{1}{m} \sum_{i=1}^{m} Loss(y,\hat{y})$$

Project

☐ Idea Discussion!

- Dataset Creation
- Model Training
- Model Evaluation
 - Kaggle

Perceptron

References

- □ Akshay L Chandra medium.com
 - McCulloch-Pitts Neuron Mankind's First Mathematical Model Of A Biological Neuron: https://towardsdatascience.com/mcculloch-pitts-model-5fdf65ac5dd1
 - Perceptron: The Artificial Neuron (An Essential Upgrade To The McCulloch-Pitts Neuron): https://towardsdatascience.com/perceptron-the-artificial-neuron-4d8c70d5cc8d
 - Perceptron Learning Algorithm: A Graphical Explanation Of Why It Works: https://towardsdatascience.com/perceptron-learning-algorithm-d5db0deab975
- Prof. Mitesh M. Khapra (https://mptel.ac.in/) on NPTEL's (http://nptel.ac.in/) Deep Learning course (https://onlinecourses.nptel.ac.in/noc18 cs41/preview)
- Machine Learning for Intelligent Systems, Kilian Weinberger, Cornell, Lectures 3-6, https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote03
- https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote03
- Perceptrons. An Introduction to Computational Geometry. Marvin Minsky and Seymour Papert. M.I.T. Press, Cambridge, Mass., 1969. https://science.sciencemag.org/content/165/3895/780

McCulloch-Pitts Neuron

- ☐ The fundamental unit of ANNs An Artificial Neuron
- □1943 by McCulloch and Pitts: Mimicking the functionality of a biological neuron

Dendrites receive signals from other neurons **Soma** processes the information **Axons** transmit the output **Synapses** are the connections to other neurons

- □ About 86 billion of these in our brains on average!
- ☐ Each neuron gets activated/fired when its firing criteria is met
 - Based on the aggregation of signals from the inputs

McCulloch-Pitts Neuron

☐ The first computational model of a neuron was proposed by Warren MuCulloch (neuroscientist) and Walter Pitts (logician) in 1943.

$$g(x_1, x_2, ..., x_n) = g(X) = \sum_{i=1}^{n} x_i$$

$$y = f(g(X)) = 1$$
 if $g(X) \ge \theta$
= 0 if $g(X) < \theta$

- $m{g}$ aggregates inputs, $m{f}$ makes decisions based on $m{ heta}$
- θ is a hand-coded threshold
- All x_i are binary inputs and y_i is a binary output

Boolean Functions

■AND Function

 $AND\ function$

$$x_1 + x_2 = \sum_{i=1}^{2} x_i \ge 2$$

Boolean Functions

■OR Function

 $OR\ function$

$$x_1 + x_2 = \sum_{i=1}^{2} x_i \ge 1$$

Boolean Functions

OR function

$$x_1 + x_2 + x_3 = \sum_{i=1}^{3} x_i \ge 1$$

The decision boundary would be a plane!

Limitations of M-P Neuron

- ☐ Limited to Boolean inputs
- ☐ Hand-coded thresholds
- ☐ All inputs are equally important
 - Are all inputs born equal?
 - Is number of legs as important for a human vs cat classifier as number of ears?

■ What about functions that are not linearly separable? E.g., the XOR function?

- ☐ In 1958, Fran Rosenblatt, an American Psychologist, proposed the perceptron model
 - Added weights and thresholds that could be learned.
 - Allowed real-numbered inputs.

Perceptron Model (Minsky-Papert in 1969)

- ■Numerical weights associated with inputs
- ■No longer limited to Boolean inputs
- □A learning mechanism to train the weights and threshold.

$$y = 1 \quad if \sum_{i=1}^{n} w_i * x_i \ge \theta$$
$$= 0 \quad if \sum_{i=1}^{n} w_i * x_i < \theta$$

Rewriting the above,

$$y = 1 \quad if \sum_{i=1}^{n} w_i * x_i - \theta \ge 0$$
$$= 0 \quad if \sum_{i=1}^{n} w_i * x_i - \theta < 0$$

A more accepted convention,

$$y = 1 \quad if \sum_{i=0}^{n} w_i * x_i \ge 0$$
$$= 0 \quad if \sum_{i=0}^{n} w_i * x_i < 0$$

where,
$$x_0 = 1$$
 and $w_0 = -\theta$

- \square If we set $\theta = 0$, then the decision is simply: $h(x_i) = \operatorname{sgn}(w^T x_i + \theta)$
- \square After absorbing θ , this becomes: $h(x_i) = \operatorname{sgn}(w^T x_i)$

☐ This also simplifies defining correct/incorrect classification:

$$y_i(w^Tx_i) > 0 \Leftrightarrow x_i$$
 is classified correctly $y_i > 0$ and $(w^Tx_i) > 0$ OR $y_i < 0$ and $(w^Tx_i) < 0$

Connecting the dots

- ☐ The perceptron employs very harsh thresholds!
- □ E.g., if the threshold is 0.5, input = 0.49 to the thresholding function would yield a negative and input=0.51 would yield a positive output

$$y = 1 \quad if \sum_{i=0}^{n} w_i * x_i \ge 0$$
$$= 0 \quad if \sum_{i=0}^{n} w_i * x_i < 0$$

Connecting the dots – Using other activation functions

■We can use a smoother function like sigmoid!

$$y = \frac{1}{1 + e^{-(w_0 + \sum_{i=1}^n w_i x_i)}}$$
 \Rightarrow $z = \sum_{i=1}^n w_i x_i$

- ☐ The output is no longer binary but a real value between 0 and 1, which can be interpreted as a probability
- ■So instead of yes/no decision, we get the probability of yes.
- ☐ The output is **smooth**, **continuous**, and **differentiable**.

- □A perceptron separates the input space into two halves, positive and negative.
- □All the inputs that produce *true* lie on one side (positive half) and all the inputs that produce *false* lie on the other side (negative half space)
- A single Perceptron can only be used to implement linearly separable functions
 - Just like M-P Neuron
- ☐ How Perceptron is different than M-P Neuron?
 - The inputs can be assigned different importance
 - The weights and the thresholds can be learned.
 - The inputs can be real values

How to make linearly separable decision boundary? What should be changed in Perceptron?

One way: Adding Dimensions to Achieve Linear Separability

Second Way: Use Hidden Layers

Book Reading

- ☐ Jurafsky Chapter 7
- ☐ Tom Mitchel Chapter 4