Hoja 8

Valores y vectores propios

Problema 8.1 Consideremos la transformación lineal $T^{X,\theta}$ que consiste en rotar \mathbb{R}^3 en sentido antihorario, con respecto al eje X, un ángulo θ .

- a) Hallar los valores propios de la matriz asociada.
- b) Hallar los correspondientes valores propios para $\theta=\pi$. ¿Cuáles son las multiplicidades algebraicas y geométricas en este caso?
- c) Hallar una base de \mathbb{R}^3 en la que se encuentren tantos vectores propios de $\mathsf{T}^{\mathsf{X},\pi}$ como sea posible.

Problema 8.2 Elegir la última fila de

$$A = \left(\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ a & b & c \end{array}\right)$$

para que A tenga autovalores 1, 2 y 3.

Problema 8.3 Consideremos la matriz

$$A = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right) ,$$

donde a+b=c+d. Demostrar que $(1,1)^t$ es un vector propio y hallar ambos valores propios.

Problema 8.4 Dada una matriz A de dimensión $n \times n$, con autovalores $\lambda_1, \ldots, \lambda_n$, no necesariamente diferentes, probar que

$$det(A) = \prod_{i=1}^{n} \lambda_i.$$

Problema 8.5 Consideremos la siguiente matriz:

$$A = \left(\begin{array}{cccc} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array}\right).$$

- 1. Hallar los valores propios de A y de A² y sus multiplicidades algebraicas.
- 2. Usar los valores propios del apartado (a) para calcular los determinantes de A y A².

Problema 8.6 Determinar si las siguientes matrices son diagonalizables, encontrar tantos vectores propios linealmente independientes como sea posible y calcular su determinante.

a)
$$A_1 = \begin{pmatrix} 4 & 0 & 1 \\ -1 & -6 & -2 \\ 5 & 0 & 0 \end{pmatrix}$$
.

b)
$$A_2 = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$
.

c)
$$A_3 = \begin{pmatrix} 6 & 3 & -8 \\ 0 & -2 & 0 \\ 1 & 0 & -3 \end{pmatrix}$$
.

d)
$$A_4 = \begin{pmatrix} 4 & 0 & -1 \\ 0 & 3 & 0 \\ 1 & 0 & 2 \end{pmatrix}$$
.

Problema 8.7 Calcular los valores y vectores propios de la matriz

$$A = \left(\begin{array}{ccc} 0 & -2 & -1 \\ 2 & 0 & -2 \\ 1 & 2 & 0 \end{array}\right).$$

Problema 8.8 Sea la matriz

$$A = \begin{pmatrix} 3 & -1 \\ 2 & 1 \end{pmatrix}$$

y sea el polinomio $p(x)=x^3-6x^2+x-3$. Utilizar el teorema de Caley-Hamilton para hallar A^2 y para evaluar p en A.

Problema 8.9 Sea la transformación lineal $T: \mathbb{P}_2 \to \mathbb{P}_2$ dada por

$$T(p) = x p'(x).$$

Calcular los valores propios de T y una colección de tantos vectores propios linealmente independientes como sea posible.

Problema 8.10 Sea la transformación lineal $T:\mathbb{P}_2\to\mathbb{P}_2$ dada por

$$T(p) = p(x) + p'(x).$$

Calcular los valores propios de T y decidir si T es diagonalizable.

Problema 8.11 Sea la transformación lineal $T:\mathbb{P}_2\to\mathbb{P}_2$ dada por

$$T(p) = p(2x+1).$$

Encontrar una base con respecto a la cual la representación de T es diagonal.

Problema 8.12 Decidir si la matriz

$$A = \left(\begin{array}{cccc} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{array}\right)$$

es diagonalizable. En tal caso, encontrar P (invertible) y D (diagonal) tales que $A = PDP^{-1}$.