

Simulation studies for $e^+e^- \rightarrow ZH$ production with $Z \rightarrow qq$ and $H \rightarrow \mu^+\mu^-$

October, 2019

Motivation

- H $\rightarrow \mu \mu$ is important for probing the Higgs Yukawa couplings. Also, offers the best opportunity to measure the couplings to the second generation fermions.
- With electron-positron colliders, we can gain much higher significance due to extremely clean background.

Previous Measuerments [05301] gave counted significance at [124,

125] GeV: 10.8σ

next step:

Develop new selection criterial by keeping most signals and suppressing background.

samples

```
• CEPC :\sqrt{\text{s}=240\text{GeV}}, luminosity:5.6ab<sup>-1</sup>,3.5 Tes1a magnetic field
• Sample:
   -signal :qqh e2e2, ~100M
   - background :
        • 2 fermions, ~28 M
        • 4 fermions
           —Single W. ^{\sim}18M
           —Single Z, ^{8} M
           -WW, ^{\sim}46 M
           -ZZ, ^{\circ}6 M
           -Z or W: ^{\sim}20 M
• Data set: for qqh e2e2, we generate by ourselves.
              for others, we use dst files in
              path :/cefs/data/DstData/CEPC240/CEPC v4/.
```

Event selction

Cut	qqh_e2e2 (Yield)	eff (zz_sl0mu_down (Yield)	eff	ww_sl0muq (Yield)	eff
Initial	148.849	1	680700	1	1.21172e+07	1
N_mum > 0, N_mup > 0	147.917	0.99374	328010	0.4818	623044	0.0514183
105 < M_mumu < 130 GeV	122.165	0.82073	7106.62	0.0104	4285.14	0.0003536
25 < N_particle < 115	121.532	0.81648	7032.29	0.0103	4230.69	0.0003491
55 < M_qq < 125 GeV	120.583	0.8101	6766.7	0.00994	2880.19	0.0002376
P_qqmumu < 32 GeV, 195 < E_qqmumu < 265 GeV	119.935	0.80575	6672.55	0.00980	1947.52	0.00016072
35 < E_mum < 100 GeV, 35 < E_mup < 100 GeV	119.508	0.80288	6186.95	0.00908	823.761	6.79831e-05
16 < p_mumu < 72 GeV	118.721	0.79759	6080.91	0.00893	803.959	6.63489e-05
N_em < 6, N_ep < 6, N_e < 9						
E_em < 10 GeV, E_ep < 10 GeV, E_ee < 19 GeV						

Compare two PID methods

- method1: int pID=recPart->getType();
- Then we classify them by if(pID ==11 or -11) statements.
- Nevertheless, we get a non-consistent result in lepton number, we decided to check the reason.

- method2: int pID=abs(recPart->getType()); Double_t charge =
 recPart->getCharge();
- After a long time, we find out another method. Then we classify them by if(charge) statements. below are comparision.

· for our signal, two methods is consistent.

- for our zz bkg, two methods is different.
- method1:

• we conclude that method1 miss the charge identify of electrons and we shuld choose mtehod2. this is the reason why we found e+ and e- behavior bad.

• for our ww bkg, two methods is different.

method1:

• method2:

• we conclude that method1 miss the charge identify of electrons and we shuld choose mtehod2. this is the reason why we found e+ and e- behavior bad.

• for our zz bkg(9395).

	method1	method2
n_eM	74531	39232
n_eP	4400	39699/4400 miss charge35299/88.9%

• for our ww bkg(832).

	method1	method2
n_eM	4566	2425
n_eP	347	2488/347 miss charge 2141/86.0%

n_e (qqh_e2e2, zz, ww)

• Next, we met another a very hard problem, why signal and background behave differently.

· So, we start to do truth match.

qqh_e2e2(neve=79759)

	reconstruction		truth	diff	match eff
n_eM	43106	truth_n_eM	31691	11415	73.5%
n_eP	43801	truth_n_eP	30962	12839	70.7%

zz(neve=9395)

	reconstruction		truth	diff	match eff
n_eM	39232	truth_n_eM	1599	37633	4.07%
n_eP	39699	truth_n_eP	3207	36492	8.07%

ID

- not macth particles ID(signal, zzbkg).
- mainly for K ,pi,mu,p.

*	Row	*	Instance	*	VecPx ep	*	VecPdgid *
***			********				********
*	0		0	*	-0.865943		321 *
*	0		1	*			-211 *
*	3		0	*	-0.326160		-13 *
*	3		1	*	0.5050494		-211 *
*	4		0	*	-0.197183		-211 *
*	4		1	*			211 *
*	9		V	*	0.6127303		13 *
*	9		1	*			-13 *
*	10		U	*	0.3955472		-13 *
*	10		-	*			13 *
*	14		U	*	-1.761609		-13 *
*	14			*			13 *
*	15		U	*	1.8791396		-211 *
*	15			*	0.3676467		211 *
*	15		_	*	0.5738330		211 *
*	19		U	*	-0.283491		-211 *
*	19			*			-211 *
*	22		•	*	-6.551384		13 *
*	22			*			-11 *
*	25		U	*	1.2851487		211 *
*	25			*	0.2109682		-211 *
*	26		0	*	0.2689844		-321 *
*	26			*			211 *
*	29		U	*	-1.363713		211 *
*	29	*	1	*	-0.114861	*	-211 *

*	Row	*	Instance	*	VecPx_ep	*	VecPdgid	*	
***	******	*	*******	* *:	*******	***	*******	**	
*	0		Θ		-0.723916		-211	*	
*	0		1		-0.453402		-2212		
*	0		2		0.0484974	*	-321		
*	1		0		1.1677911		-13		
*	1		1				13		
*	2		0		24.040988	*	-13		
*	2		1		12.252845	*	-211		
*	3		0		0.1755324	*	13		
*	3		1				-13		
*	4		0		16.621028	*	211		
*	4		1		14.450826	*	-211		
*	5		0		-8.581726	*	13		
*	5		1		1.4854545	*	-13		
*	5		2		3.9532139	*	-211		
*	6		Θ		-21.36803	*	211		
*	6		1				13		
*	7		ō		1.5704516	*	13		
*	7		ī				-13		
*	8		ō		-2.231853	*	-211		
*	8		ĭ		-0.411626		-13		
*	9		ō		38.72929		-13		
*	9		ĭ		30172323		13		
*	10		ō		4.7652446	* (13		
*	10		1		5.0943036		321		
*	10		2		1.4507381		-211		
	10	_			T. 430/301		-211		

ww(neve=832)

	reconstruction		truth	diff	match eff
n_eM	2425	truth_n_eM	71	2354	2.927%
n_eP	2488	truth_n_eP	228	2260	9.164%

back_up

• we see the truth momentum and angle informatation in our signal and zz backgroud as an example.

signal (e- MC four-momentum)

signal (e+ MC four-momentum)

signal (e- and e+ MC CosTheta info)

ZZ-bkg (e- MC four-momentum)

ZZ-bkg (e+ MC four-momentum)

ZZ-bkg (e- and e+ MC CosTheta info)

