Smart Waste Management System

Minkai Yang Yuhan Guo

Motivation and Objectives

- Objectives:
 - Develop an embedded system for real-time waste classification (compost, landfill, and recycle).
- Who Cares?
 - Addresses global waste management challenges (reduce pollution).
 - Educates and assists in proper waste disposal.
- Goals and Deliverables:
 - Efficient, low-cost waste sorting system.
 - High-accuracy classification using deep learning.

Waste Management

The average American tosses out at least **4.4 pounds of trash every day**

63,000 garbage trucks dumping a full load into a landfill

...that's 728,000 tons/day if multiplied to the total population of USA

Technical Approach and Novelty

- Current Practices and Limits:
 - Manual sorting in recycling facilities.
 - Prone to errors and high costs.
 - Some companies have deep learning classification in recycling facilities. (high production cost)
- New Approach:
 - o Low-cost, public-use system.
 - Real-time waste classification.
- Novelty:
 - Personal/public use orientation.
 - Custom feedback for effective recycling.

Methods

- Deep learning with MobileNetV3.
- Dataset:
 - Kaggle: Garbage Classification (12 classes).
 - Waste Classification data.
- Platform:
 - Raspberry Pi 4, Pi Camera V2, iPhone interface.

Evaluation and Metrics

- Metrics for Success:
 - Accuracy target: ~90%.
 - User-friendly interface and experience.
 - Power consumption for extended operation.

Current Status and Next Steps

- Current Status:
 - Successfully integrated the camera module
 - Implemented pretrained MobileNetV3 to classify objects with high FPS
- Next Steps:
 - Finetune the model on the waste dataset
 - Install other peripherals like Iphone interface, and audio devices for feedback
 - Real-world testing and adjustments