Symbol	Description	value	Onne
	Module Dimensions	10 x 8 x 5	cm ³
L_1	Main arm length	29.8	cm
L_2	Load arm length	15.6	cm
_	Distance between joint to middle of load arm		
d_{12}	Arm Anchor Point 1	21.0	cm
d_{12}	Arm Anchor Point 2	23.5	cm
d_{12}	Arm Anchor Point 3	26.0	cm
	Module body mass	0.3	kg
m_1	Main arm mass	0.064	kg
m_2	Load arm mass	0.03	kg
K_{enc}	Encoder resolution (in quadrature mode)	4096	Counts/Rev
K_1	Spring #1 stiffness	187	N/m
K_2	Spring #2 stiffness	313	N/m
K_3	Spring #3 stiffness	565	N/m

Symbol	Description	Value	Variation
nom	Motor nominal input voltage	6.0 V	1.400/
Rm	Motor armature resistance	2.6 Ω	± 12%
Lm	Motor armature inductance	0.18 mH	100/
k _t	Motor current-torque constant	$7.68 \times 10^{-3} \text{ N-m/A}$	± 12%
k_m	Motor back-emf constant	$7.68 \times 10^{-3} \text{ V/(rad/s)}$	± 12%
K_q	High-gear total gear ratio	70	
Ng	Low-gear total gear ratio	14	. E0/
	Motor efficiency	0.69	± 5%
η_m	Gearbox efficiency	0.90	± 10%
η_g	Rotor moment of inertia	$3.90 \times 10^{-7} \text{ kg-m}^2$	± 10%
$J_{m,rotor}$	Tachometer moment of inertia	$7.06 \times 10^{-8} \text{ kg-m}^2$	± 10%
J_{eq}	High-gear equivalent moment of inertia	$2.087 \times 10^{-3} \text{ kg-m}^2$	
	Low-gear equivalent moment of inertia	$9.7585 \times 10^{-5} \text{ kg-m}^2$	
B_{eq}	High-gear Equivalent viscous damping	0.015 N-m/(rad/s)	
	Low-Gear Equivalent viscous damping coefficient	1.50×10 ⁻⁴ N-m/(rad/s)	
	Mass of bar load	0.038 kg	
m_b	Length of bar load	0.1525 m	
L_b	Mass of disc load	0.04 kg	
m_d	Radius of disc load	0.05 m	
r_d	Maximum load mass	5 kg	Part of the same
mmax	Maximum input voltage frequency	50 Hz	
fmax	Maximum input current	1 A	
Imax	Maximum motor speed	628.3 rad/s	

Symbol	Description	Value
K_{gi}	Internal gearbox ratio	14
$K_{ge,low}$	Internal gearbox (atio (low-gear)	1
$K_{ge,high}$	Internal gearbox ratio (high-gear)	5
m_{24}	Mass of 24-tooth gear	0.005 kg
m_{72}	Mass of 72-tooth gear	0.030 kg
m_{120}	Mass of 120-tooth gear	0.083 kg
r_{24}	Radius of 24-tooth gear	$6.35 \times 10^{-3} \text{ m}$
r_{72}	Radius of 72-tooth gear	0.019 m
r_{120}	Radius of 120-tooth gear	0.032 m

Table 3.2: SRV02 Gearhead Specifications

Symbol	Description		
		Value	Variation
K_{pot}	Potentiometer sensitivity	35.2 deg/V	±2%
K_{enc}	Encoder sensitivity	4096 counts/rev	12 /0
K_{tach}	THE PART OF THE PARTY OF THE PA		
tacn	Tachometer sensitivity	1.50 V/k _{RPM}	±2%

$$\frac{\partial^2 L}{\partial t \partial \dot{q}_i} - \frac{\chi L}{\partial \dot{q}_i} = 0; \qquad q_i = \begin{bmatrix} 6 \\ 6 \end{bmatrix}$$

$$L=T-V \qquad \qquad Q_{1}=T-B_{0}\dot{\theta}$$

$$T=\frac{n_{9}K_{9}n_{m}K_{4}}{R_{m}}(V_{m}-K_{5}K_{m}\dot{\theta})$$

$$T = \frac{1}{2} J \omega^{2} = \frac{1}{2} J_{ey} \dot{\theta}^{2} + \frac{1}{2} J_{L} (\dot{\theta} + \dot{\chi})^{2}$$

$$V = \frac{1}{2} K_{S} \dot{\chi}^{2}$$

$$V = \frac{1}{2} K_{S} \dot{\chi}^{2}$$

$$m_2$$
 m_2
 m_1
 m_1
 m_2

$$J_{L} = J_{1} + J_{2} = \frac{m_{1}L_{1}^{2}}{3} + \frac{m_{2}L_{3}^{2}}{12} + m_{2}d_{12}^{2}$$

$$\int_{L} \left(T - \operatorname{Reg} \theta + \operatorname{R_{i}} \dot{\alpha} + \operatorname{K_{5}} \dot{\alpha} \right) + \operatorname{J_{i}} \dot{\alpha} + \operatorname{B_{i}} \dot{\alpha} + \operatorname{K_{5}} \dot{\alpha} = 0$$

$$\dot{\alpha} = \left[- \frac{1}{2} + \frac{1}{2} \left(\frac{\operatorname{J_{Eg}} + \operatorname{J_{i}}}{\operatorname{J_{i}}} \right) \operatorname{J_{i}} \dot{\alpha} + \frac{1}{2} \operatorname{Reg} \dot{\theta} - \frac{1}{2} \right]$$

$$3e_{5}\theta + 8_{1}\alpha + K_{5}\alpha) + J_{L}\alpha + B_{L}\alpha + K_{5}\alpha = \delta$$

$$0 = \left[-\frac{1}{2a} \tau - \left(\frac{J_{E_{3}} + J_{L}}{J_{L}} \right) B_{L}\alpha + \frac{1}{2a} B_{E_{3}}\beta - \left(\frac{J_{E_{3}} + J_{L}}{I_{C}} \right) K_{5}\alpha \right]$$

To find the stiffness we need to find the natural frequency of the flexible joint. This is the frequency where the link attached to the flexible joint begins to oscillate the most. To find this frequency, we use a Sine Sweep signal. The Sine Sweep is a sine wave that goes through a range of frequencies, i.e., from low to high. We can then generate a power spectrum from the measured signal and identify the frequency with the largest amplitude - the natural

$$J(l) = \begin{cases} 3.28 \times 10^{-3} & \text{arm load 1, } d_{12} = 0.210 \\ 3.62 \times 10^{-3} & \text{arm load 2, } d_{12} = 0.235 \\ 3.99 \times 10^{-3} & \text{arm load 3, } d_{12} = 0.260 \end{cases}$$

To get the measured stiffness, substitute the calculated inertia and the measured frequency, which was found in Ans.2.13, into Equation 2.21

$$K_{\circ} = 0.00328(19.9)^2 = 1.3 \text{ N m/rad}.$$

This result was found for arm load position 1. Results will vary depend

data: date

$$\begin{array}{lll}
x_1 = 0 & dt & \dot{x}_1 = 0 = x_2 \\
x_2 = 0 & dt & \dot{x}_1 = 0 \\
x_2 = 0 & \dot{x}_2 = \dot{\alpha} = x_4 \\
x_4 = \dot{\alpha} & \dot{x}_4 = \dot{\alpha}
\end{array}$$