Systemy komputerowe

Lista zadań nr 3 Na ćwiczenia 23. i 24. marca 2022

Każde zadanie warte jest 1 punkt.

Zadanie 1. Dla poniższego programu narysuj graf przepływu sterowania. Następnie, dla każdej instrukcji l, podaj zbiory definicji osiągających tę instrukcję (ang. Reaching Definition sets), a dokładniej zbiory $RD_{\cdot}(l)$ oraz $RD_{\cdot}(l)$.

$$[x := 0]^{1}$$

$$[y := 1]^{2}$$

$$[i := 1]^{3}$$
while $[i < z]^{4}$ do
$$[t := x + y]^{5}$$

$$[x := y]^{6}$$

$$[y := t]^{7}$$

$$[i := i + 1]^{8}$$
od
$$[y := x]^{9}$$

Wskazówka: Zbiory w tym zadaniu wylicz ręcznie, tak jak na slajdach 19-24 z pliku slides1.pdf.

Zadanie 2. Dla programu z poprzedniego zadania ułóż równania dla zbiorów $RD_{\circ}(l)$ oraz $RD_{\bullet}(l)$, dla $l \in \{1,...,9\}$. Następnie sprawdź, że zbiory wyliczone w poprzednim zadaniu spełniają te równania.

Wskazówka: Slajdy 27-31 z pliku slides1.pdf.

Zadanie 3. Rozwiąż równania z poprzedniego zadania posługując się algorytmem stałopunktowym. Porównaj otrzymane rozwiązanie z tym otrzymanym w zadaniu 1.

Wskazówka: Slajdy 32-33 z pliku slides1.pdf.

Zadanie 4.

- 1. W równaniach opisujących zbiory $RD_{\circ}(l)$ oraz $RD_{\bullet}(l)$ z poprzednich zadań wskaż wystąpienia funkcji $kill_{RD}(.)$ oraz $gen_{RD}(.)$.
- 2. Do języka wprowadzamy instrukcję read(x) przypisującą do zmiennej x wartość przeczytaną z wejścia. Jak należy zdefiniować $kill_{pp}(read(x))$ oraz $gen_{pp}(read(x))$?
- 3. Załóżmy, że kompilator otrzymuje na wejściu programy w postaci grafu przepływu sterowania i potrzebuje obliczyć zbiory $RD_{\circ}(l)$ oraz $RD_{\bullet}(l)$. W jaki sposób można to zautomatyzować?

Wskazówka: Slajdy 17-19 z pliku slides2.pdf.

Zadanie 5. Rozważmy poniższy program. Dla każdej instrukcji $l \in \{1,...,5\}$, ułóż równania dla zbiorów $RD_{\circ}(l)$ oraz $RD_{\bullet}(l)$. Wylicz ich rozwiązanie za pomocą algorytmu stałopunktowego. Porównaj otrzymane rozwiązanie z wartościami zbiorów $RD_{\circ}(l)$ oraz $RD_{\bullet}(l)$ które mogą pojawić się w faktycznym wykonaniu tego programu i wyciągnij wnioski.

$$[x := 1]^{1}$$
 $if [x > 0]^{2} then$
 $[y := 1]^{3}$
 $else$
 $[y := -1]^{4}$
 end
 $[z := y]^{5}$

Wskazówka: Slajdy 16, 24-26 z pliku slides1.pdf.

Zadanie 6. Zdefiniuj analizę zmiennych żywych (ang. *live variable analysis*). Dla programu z zadania 1. przeprowadź tę analizę w sposób formalny, tzn. zdefiniuj układ równań na zbiorach i rozwiąż go.

Wskazówka: Slajdy 32-37 z pliku slides2.pdf oraz r. 2.1.4 z "Principles of Program Analysis". W definicji funkcji kill/gen napis FV(a) zbiór wszystkich zmiennych występujących w wyrażeniu a.

Zadanie 7. Zdefiniuj analizę łańcuchów użycie-definicja (ang. use-definition chains). Wylicz wynik tej analizy dla programu

Wskazówka: Slajdy 38-42 z pliku slides2.pdf.

Zadanie 8. Zdefiniuj analizę dostępnych wyrażeń (ang. available expressions analysis). Dla programu z zadania 1. zdefiniuj równania opisujące tę analizę. Spróbuj rozwiązać te równania dokładnie takim samym algorytmem stałopunktowym, co w poprzednich zadaniach. Dlaczego otrzymane rozwiązanie jest nieprawidłowe?

Wskazówka: Slajdy 10-16 z pliku slides2.pdf.