An Introduction to Quantum Computing

Lecture 04
Cats, No-Cloning, and Quantum Teleportation

Paolo Zuliani

Outline

- Half-dead cats?
- The No-cloning Theorem
- Quantum Teleportation

Half-dead Cats

- Or: quantum mechanics cannot be (easily) applied to macroscopic objects
- Entangled states are (one of the) sources of the problem

Schrödinger's Cat

Is the cat dead or alive?

Schrödinger's Cat

- The radioactive source emits particles described by a qubit
- The cat's state is a qubit, with basis states 'alive' ([0)) and 'dead' (|1))

The state of the system at this point is:

$$\frac{1}{\sqrt{2}}(|0\otimes alive\rangle + |1\otimes dead\rangle)$$

A quantum state cannot be perfectly copied (cloned)

[Wooters and Zurek, 1982; Dieks, 1982]

A putative copy operation/transformation *CP* is something like:

CP takes a 'source' variable in input and copies its contents to the 'destination' variable, leaving the source untouched.

Formally, we write

$$\exists y \ \forall x \ CP(x,y) = (x,x)$$

"there exists a y such that for all x CP(x,y) = (x,x)"

In a quantum world, a putative copy CP should satisfy

$$\exists y \ \forall x \ CP(x \otimes y) = (x \otimes x)$$

However, this doesn't work! Proof by contradiction.

$$\exists y \ \forall x \ CP(x \otimes y) = (x \otimes x)$$
 thus, since *CP* should work on superposed states, too $\exists y \ \forall x, a \ CP((x+a) \otimes y) = (x+a) \otimes (x+a)$

 $\exists y \ \forall x, a \ CP(x \otimes y + a \otimes y) = (x + a) \otimes (x + a)$ thus, since *CP* must be unitary hence linear

$$\exists y \ \forall x, a \ CP(x \otimes y) + CP(a \otimes y) = (x + a) \otimes (x + a)$$
 thus, since *CP* copies its input

$$\forall x, a \quad (x \otimes x) + (a \otimes a) = (x + a) \otimes (x + a)$$

$$\forall x, a \quad (x \otimes x) + (a \otimes a) = (x \otimes x) + (x \otimes a) + (a \otimes x) + (a \otimes a)$$

FALSE (try for example $x = |0\rangle$ $a = |1\rangle$)

Summing Up

- While we cannot clone perfectly, it has been shown that *imperfect cloning* (*i.e.*, with high probability) is possible!
 - The quantum internet is being built!
- Quantum mechanics cannot be straightforwardly applied to 'big' (macroscopic) objects
 - Physicists are very busy working out a *quantum theory of gravity*!
- Next: We can teleport a quantum state perfectly!

[Bennett, Brassard, Crépeau, Jozsa, Peres, Wootters. 1993]

- Two parties, Alice and Bob, are separated by a large distance
- Alice has a qubit she would like to send to Bob
- Teleportation achieve this by using two qubits and two classical bits

Quantum Teleportation Circuit

Hence, to teleport one qubit Alice needs to send one qubit and two classical bits

Quantum Teleportation Circuit

Using a "programming" notation:

$$q_1, q_2, q_3 = |\psi\rangle \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

 $q_1, q_2 = CNOT(q_1, q_2)$
 $q_1 = H(q_1)$
 $b_1, b_2 = Measure(q_1, q_2)$
 $b_2, q_3 = CNOT(b_2, q_3)$
 $b_1, q_3 = CZ(b_1, q_3)$

// this means
$$|\psi\rangle\otimes|\frac{1}{\sqrt{2}}(|0\otimes0\rangle+|1\otimes1\rangle)$$

// if
$$b_2$$
 then $q_3 = NOT(q_3)$
// if b_1 then $q_3 = \sigma_z(q_3)$

$$|\psi\rangle\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) = (\alpha|0\rangle + \beta|1\rangle)\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$
$$= 1/\sqrt{2} \left[\alpha|0\rangle(|00\rangle + |11\rangle) + \beta|1\rangle(|00\rangle + |11\rangle)\right]$$

$$q_{1}, q_{2}, q_{3} = |\psi\rangle_{\frac{1}{\sqrt{2}}}(|00\rangle + |11\rangle)$$

$$q_{1}, q_{2} = CNOT(q_{1}, q_{2})$$

$$q_{1} = H(q_{1})$$

$$b_{1}, b_{2} = Measure(q_{1}, q_{2})$$

$$b_{2}, q_{3} = CNOT(b_{2}, q_{3})$$

$$b_{1}, q_{3} = CZ(b_{1}, q_{3})$$

Apply
$$q_1, q_2 = CNOT(q_1, q_2)$$

$$=1/\sqrt{2}[\alpha|0\rangle(|00\rangle+|11\rangle)+\beta|1\rangle(|10\rangle+|01\rangle)]$$

Apply
$$q_1 = H(q_1)$$

$$= 1/2[\alpha(|0\rangle + |1\rangle)(|00\rangle + |11\rangle) + \beta(|0\rangle - |1\rangle)(|10\rangle + |01\rangle)]$$

$$= 1/2[\alpha(|000\rangle + |011\rangle + |100\rangle + |111\rangle) + \beta(|010\rangle + |001\rangle - |110\rangle - |101\rangle)]$$

$$q_{1}, q_{2}, q_{3} = |\psi\rangle\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$
 $q_{1}, q_{2} = CNOT(q_{1}, q_{2})$
 $q_{1} = H(q_{1})$
 $b_{1}, b_{2} = Measure(q_{1}, q_{2})$
 $b_{2}, q_{3} = CNOT(b_{2}, q_{3})$
 $b_{1}, q_{3} = CZ(b_{1}, q_{3})$

$$1/2[\alpha(|000\rangle + |011\rangle + |100\rangle + |111\rangle) + \beta(|010\rangle + |001\rangle - |110\rangle - |101\rangle)]$$

$$= 1/2[|00\rangle(\alpha|0\rangle + \beta|1\rangle) + |01\rangle(\alpha|1\rangle + \beta|0\rangle) + |10\rangle(\alpha|0\rangle - \beta|1\rangle) + |11\rangle(\alpha|1\rangle - \beta|0\rangle)]$$

Apply
$$b_1, b_2 = Measure(q_1, q_2)$$

From the above state, we have four possible outcomes:

Alice's measured qubits Bob's qubit (which has NOT been measured)

00>	$(\alpha 0\rangle + \beta 1\rangle)$
01>	$(\alpha 1\rangle + \beta 0\rangle)$
10⟩	$(\alpha 0\rangle - \beta 1\rangle)$
01>	$(\alpha 1\rangle - \beta 0\rangle)$

 $q_{1}, q_{2}, q_{3} = |\psi\rangle_{\frac{1}{\sqrt{2}}}(|00\rangle + |11\rangle)$ $q_{1}, q_{2} = CNOT(q_{1}, q_{2})$ $q_{1} = H(q_{1})$ $b_{1}, b_{2} = Measure(q_{1}, q_{2})$ $b_{2}, q_{3} = CNOT(b_{2}, q_{3})$ $b_{1}, q_{3} = CZ(b_{1}, q_{3})$

Alice's measured qubits Bob's qubit (which has NOT been measured)

00>	$(\alpha 0\rangle + \beta 1\rangle)$
01 >	$(\alpha 1\rangle + \beta 0\rangle)$
10⟩	$(\alpha 0\rangle - \beta 1\rangle)$
01>	$(\alpha 1\rangle - \beta 0\rangle)$

Alice sends two classical bits (the output of her measurements) to Bob, who will then retrieve the original state $\alpha|0\rangle + \beta|1\rangle$!

Alice sends	Bob
00	Nothing to do
01	Applies NOT to qubit
10	Applies Z to qubit
11	Applies NOT, then Z to qubit

 Note that Alice's qubit is "destroyed" by her measurement (recall the no-cloning theorem!)

Bob only has to apply unitary gates at his end

 Quantum teleportation is used in quantum errorcorrecting codes and in quantum chips

