Technische Universität Berlin

Fakultät II – Institut für Mathematik Bärwolff, Förster, Scherfner, Tröltzsch SS 2003 13. Oktober 2003

Oktober – Klausur (Verständnisteil) Analysis II für Ingenieure

Name:	Vorname: .					
MatrNr.:	Studiengan	g:				
	1	1	r.1.6	. 1	,	
Neben einem handbeschriebenen A4 Blatt mit No	otizen sind	keine H	lilfsmitt	tel zuge	elassen.	
Die Lösungen sind in Reinschrift auf A4 Blättern können nicht gewertet werden.	abzugeber	n. Mit E	Bleistift	geschri	ebene ŀ	Clausuren
Dieser Teil der Klausur umfasst die Verständnisa mit den Kenntnissen aus der Vorlesung lösbar s immer eine kurze Begründung an.	,			_		
Die Bearbeitungszeit beträgt eine Stunde.						
Die Gesamtklausur ist mit 32 von 80 Punkten Klausur mindestens 10 von 40 Punkten erreicht w		wenn	in jeder	m der	beiden	Teile der
Korrektur						
	1	2	3	4	5	Σ

1. Aufgabe 12 Punkte

In der folgenden Tabelle sind verschiedene Mengen gegeben. Kennzeichnen Sie jeweils, ob die angegebene Eigenschaft zutrifft (mit +) oder nicht zutrifft (mit \circ). Es soll in jedes Feld ein Zeichen geschrieben werden.

(Jedes richtige Zeichen ergibt einen Punkt, jedes falsche Zeichen einen Punkt Abzug. Leergelassene Felder werden nicht bewertet. Minimale Punktzahl der Aufgabe ist 0 Punkte.)

Menge	offen	beschränkt	konvex
$\{(x,y) \in \mathbb{R}^2 \mid 0 < x^2 + y^2 < 10\}$			
$\{(x,y,z) \in \mathbb{R}^3 \mid 1 \le x^2 + y^2 + z^2 \le 10\}$			
$\{(x,y) \in \mathbb{R}^2 \mid \sin x \cdot \cos y \neq 0\}$			
$\{(x,y) \in \mathbb{R}^2 \mid -x^2 - 1 \le y \le x^2 + 1, x \le 1\}$			

2. Aufgabe 6 Punkte

Gegeben sei die Funktion $f: \mathbb{R}^2 \to \mathbb{R}, \ x \neq 0$ mit $f(x,y) = \sqrt{\frac{y}{x}}$. In welche Richtung hat die Funktion f im Punkt (1,1) einen Anstieg von $\frac{1}{\sqrt{2}}$?

3. Aufgabe 6 Punkte

Gegeben seien das Skalarenfeld $\phi: \mathbb{R}^3 \to \mathbb{R}$ und das Vektorfeld $\vec{v}: \mathbb{R}^3 \to \mathbb{R}^3$. Beweisen Sie die allgemeine Gültigkeit der Gleichung:

$$rot \ (\phi \cdot \vec{v}) = (grad \ \phi) \times \vec{v} + \phi \cdot rot \ \vec{v}.$$

4. Aufgabe 8 Punkte

Für das Vektorfeld $\vec{v}: D \to \mathbb{R}^3$ mit

$$\vec{v}(x,y,z) = \frac{1}{x^2 + y^2} \begin{pmatrix} -y \\ x \\ 0 \end{pmatrix}, \qquad D = \{(x,y,z) \in \mathbb{R}^3 \mid (x,y) \neq (0,0) \}$$

ist $rot \ \vec{v} = \vec{0} \text{ auf } D.$

- a) Zeigen Sie mit Hilfe einer geschlossenen Kurve, dass \vec{v} kein Potentialfeld ist.
- b) Es ist $rot \ \vec{v} = \vec{0}$ auf D. Wann existiert dann eine Stammfunktion von v? Wogegen wird hier verstoßen und welche Eigenschaft ist hier erfüllt?

5. Aufgabe 8 Punkte

- a) Geben Sie eine Parametrisierung der Südhälfte der Erde an. Die Erde darf dabei als Kugel mit dem Radius $r=6378~{\rm km}$ angesehen werden.
- b) Geben Sie eine Parametrisierung des Volumens an, das sowohl außerhalb des Kegels $K = \left\{ (x,y,z) \in \mathbb{R}^3 \;\middle|\; x^2 + y^2 = z^2 \right\} \; \text{als auch innerhalb des Zylinders}$

$$Z = \left\{ (x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 = 4, z \le -1 \right\} \text{ liegt.}$$

Geben Sie dabei an, in welcher Höhe sich der Kegel und der Zylinder schneiden.