Ragionamento automatico, AA 2012-13

Prova intermedia – Soluzione

26 novembre 2012

Problema 1 (20 punti)

Si trasformino le formule seguenti in forma clausale:

- 1. $\neg((\forall x P(x)) \Rightarrow (\exists y \forall z Q(y, z)))$
- 2. $\neg((\forall x P(x)) \Rightarrow (\exists y P(y)))$

Soluzione

- 1. $\neg((\forall x \ P(x)) \Rightarrow (\exists y \ \forall z \ Q(y,z)))$ $\neg(\neg(\forall x \ P(x)) \lor (\exists y \ \forall z \ Q(y,z)))$ $(\forall x \ P(x)) \land (\forall y \ \exists z \ \neg Q(y,z)))$ $\{P(x), \ \neg Q(y,f(y))\}$
- 2. $\neg((\forall x \ P(x)) \Rightarrow (\exists y \ P(y)))$ $\neg(\neg(\forall x \ P(x)) \lor (\exists y \ P(y)))$ $(\forall x \ P(x)) \land (\forall y \ \neg P(y))$ $\{P(x), \ \neg P(y)\}$

Problema 2 (20 punti)

Dato l'insieme di clausole

$$S = \{P(x, a, g(x, b)), \neg P(f(y), z, g(f(a), b))\}\$$

dove a, b sono simboli di costante, x, y, z sono simboli di variabile:

- 1. Si diano i primi due insiemi, H_0 e H_1 , della serie che si definisce per generare l'universo di Herbrand.
- 2. Si trovino tutte le istanze ground di S su H_0 .
- 3. Si trovino tutte le istanze ground di S su H_1 .
- 4. Si trovi un insieme insoddisfacibile S' di istanze ground di clausole di S.

Soluzione

1.
$$H_0 = \{a, b\}$$

 $H_1 = H_0 \cup \{f(a), f(b), g(a, a), g(a, b), g(b, a), g(b, b)\}$

2.
$$S_0 = \{P(x, a, g(x, b))\sigma \mid \sigma = \{x \leftarrow t\}, t \in H_0\} \cup \{\neg P(f(y), z, g(f(a), b))\tau \mid \tau = \{y \leftarrow s, z \leftarrow r\}, s, r \in H_0\}$$

3.
$$S_1 = \{P(x, a, g(x, b))\sigma \mid \sigma = \{x \leftarrow t\}, t \in H_1\} \cup \{\neg P(f(y), z, g(f(a), b))\tau \mid \tau = \{y \leftarrow s, z \leftarrow r\}, s, r \in H_1\}$$

4.
$$S' = \{P(f(a), a, g(f(a), b)), \neg P(f(a), a, g(f(a), b))\}$$

Problema 3 (25 punti)

Si considerino le clausole

 $\neg x_1 \lor x_2$

 $\neg x_3 \lor \neg x_4$

 $\neg x_5 \lor \neg x_6$

 $x_5 \vee \neg x_1 \vee x_3$

 $\neg x_2 \lor x_4$

 $\neg x_5 \lor x_1$

 $x_6 \vee x_1$ dove $x_1, x_2, x_3, x_4, x_5, x_6$ ono variabili proposizionali. Si applichi DPLL a decidere se è soddisfacibile o meno. In caso di soddisfacibilità si dia un modello.

Soluzione

L'insieme non contiene nè clausole unitarie nè letterali puri. Quindi bisogna effettuare una decisione su una variabile. Si osserva che la variabile x_1 appare quattro volte, la x_5 tre volte, e tutte le altre due volte. Quindi selezioniamo la x_1 e le assegnamo vero, ottenendo l'insieme seguente:

 x_2

 $\neg x_3 \lor \neg x_4$

 $\neg x_5 \lor \neg x_6$

 $x_5 \vee x_3$

 $\neg x_2 \lor x_4$

Ora x_2 è una clausola unitaria e quindi assegnamo vero alla variabile x_2 , ottenendo l'insieme seguente:

 $\neg x_3 \lor \neg x_4$

 $\neg x_5 \lor \neg x_6$

 $x_5 \vee x_3$

 x_4

Ora x_4 è una clausola unitaria e quindi assegnamo vero alla variabile x_4 , ottenendo l'insieme seguente:

 $\neg x_3$

 $\neg x_5 \lor \neg x_6$

```
x_5 \vee x_3
```

Ora $\neg x_3$ è una clausola unitaria e quindi assegnamo falso alla variabile x_3 , ottenendo l'insieme seguente:

$$\neg x_5 \lor \neg x_6$$

 x_5

Ora x_5 è una clausola unitaria e quindi assegnamo vero alla variabile x_5 , ottenendo l'insieme seguente:

```
\neg x_6
```

Ora $\neg x_6$ è una clausola unitaria e quindi assegnamo falso alla variabile x_6 , ottenendo l'insieme vuoto

Dunque l'insieme iniziale è soddisfacibile con modello

$$\{x_1 \leftarrow vero, \ x_2 \leftarrow vero, \ x_4 \leftarrow vero, \ x_3 \leftarrow falso, \ x_5 \leftarrow vero, \ x_6 \leftarrow falso\}$$

Problema 4 (25 punti)

Si considerino le clausole

$$C_1 = P(x, f(x)) \vee R(x)$$

$$C_2 = Q(x) \vee P(x, y)$$

$$C_3 = \neg R(f(x)) \lor Q(f(x))$$

$$C_4 = \neg Q(y) \lor \neg R(y)$$

$$C_5 = \neg P(x, f(x))$$

Si determini se l'insieme è insoddisfacibile usando risoluzione e sussunzione.

Soluzione

Adottando la preferenza per clausole unitarie, selezioniamo C_5 che è la sola clausola unitaria:

 C_5 e C_1 generano la risolvente $C_6 = R(x)$ che sussume C_1 ;

 C_5 e C_2 generano la risolvente $C_7 = Q(x)$ che sussume C_2 e C_3 .

Quindi ora l'insieme contiene le clausole C_4 , C_5 , C_6 e C_7 , con C_5 già selezionata, e C_6 e C_7 clausole unitarie. Tra queste due selezioniamo C_6 in quanto generata prima (indice più piccolo):

 C_6 e C_4 generano la risolvente $C_8 = \neg Q(y)$ che sussume C_4 .

Quindi ora l'insieme contiene le clausole C_5 , C_6 , C_7 e C_8 , tutte unitarie, e con C_5 e C_6 già selezionate. Quindi selezioniamo C_7 che genera la clausola vuota con C_8 .