- Fascicule d'exercices — - Calcul matriciel — L2- FaSEST -

Tables des matières

Généralités sur les matrices, Opérations matricielles	2
Matrices inversibles et rang d'une matrice	6
Systèmes linéaires	8
Application au calcul de l'inverse d'une matrice	9
Déterminant	10
Diagonalisation	13

SeGilliard

Généralités sur les matrices, opérations matricielles

Exercice 1

Ecrire en extension la matrice $A = (a_{ij})_{1 \le i,j \le 4}$ définie par $a_{ij} = \begin{cases} i & \text{si } i = j \\ 1 & \text{si } i > j \\ 0 & \text{si } i < j \end{cases}$

Exercice 2

Ecrire en extension la matrice A = $(2^{(j-1)(k-1)})_{1 \le j,k \le n}$ lorsque n = 3.

Exercice 3

Donner la taille des matrices suivantes et indiquer celles qui sont échelonnées, échelonnées réduites.

Exercice 4

Dans chacun des cas suivants calculer A+B, AB et BA. Quelle remarque (faite en cours) retrouvez-vous?

1)
$$A = \begin{pmatrix} 2 & 3 \\ -1 & 0 \end{pmatrix}$$
 et $B = \begin{pmatrix} -2 & 4 \\ 3 & 1 \end{pmatrix}$

2)
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$$
 et $B = \begin{pmatrix} 0 & 1 \\ 0 & 2 \end{pmatrix}$

3)
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
 et $B = \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}$

On pose A =
$$\begin{pmatrix} 1 & 3 \\ 2 & 5 \end{pmatrix}$$
 B = $\begin{pmatrix} 2 & 5 & 7 \\ 3 & 9 & 2 \end{pmatrix}$ C = $\begin{pmatrix} 1 & 2 \\ 0 & 1 \\ -2 & 1 \end{pmatrix}$

- 1) Calculer si c'est possible, les produits AB et BA.
- 2) Calculer de deux manières différentes ^t(BC). Que dire sur la matrice ^tBB?

Un fleuriste fabrique 3 types de bouquets :

- Le Rosy : avec 10 roses blanches, 10 roses rouges, 3 lys et 7 œillets, vendu
 23€
- Le Neige : avec 8 roses blanches,10 lys et 5 œillets, vendu 19€
- Le Sang : avec 5 roses blanches, 5 roses rouges et 10 œillets, vendu 15€

Un comité d'entreprise commande 51 Rosy, 48 Neige et 37 Sang. Répondre, à l'aide d'un calcul matriciel, aux questions suivantes :

- 1) Combien le fleuriste a besoin de fleurs de chaque type pour répondre à cette commande ?
- 2) Quel est le prix de cette commande ?

Exercice 7

Vérifier l'associativité du produit matriciel avec les matrices suivantes

$$A = \begin{pmatrix} 0 & 2 & -1 \\ -2 & -1 & 2 \end{pmatrix} B = \begin{pmatrix} 1 & 0 & 1 \\ -1 & 1 & -2 \\ 0 & 2 & 1 \end{pmatrix} \text{ et } C = \begin{pmatrix} -2 & 1 \\ 1 & 0 \\ 0 & 2 \end{pmatrix}$$

Exercice 8

Déterminer toutes les matrices X de l'ensemble $M_2(IR)$ vérifiant

1)
$$\begin{pmatrix} 0 & 1 \\ 0 & 2 \end{pmatrix} X = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

2) $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} X = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

Exercice 9

Résoudre dans
$$M_2(IR)$$
 le système
$$\begin{cases} X+Y=\begin{pmatrix} -3 & 1 \\ -1 & 3 \end{pmatrix} \\ X+2Y=\begin{pmatrix} 6 & 4 \\ 5 & 3 \end{pmatrix} \end{cases}$$

Exercice 10

On considère les matrices A =
$$\begin{pmatrix} 1 & 1 & 1 \\ -1 & 1 & -3 \\ 0 & -1 & 0 \end{pmatrix}$$
 et B = $\begin{pmatrix} -1 & -1 & 1 \\ -1 & 0 & -1 \\ 3 & 1 & -2 \end{pmatrix}$

1) Calculer AB, BA, (A+B)² et A²+2AB+B². Que remarquez-vous ?

3

2) Calculer ${}^{t}(AB)$ et $({}^{t}A)({}^{t}B)$

On considère la matrice A = $\begin{pmatrix} 0 & 1 & -1 & 1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$. Déterminer A^n pour tout $n \in IN^*$.

La matrice est dite nilpotente.

De manière générale, une matrice strictement diagonale supérieure ou strictement diagonale inférieure est nilpotente.

Exercice 12

On considère la matrice A = $\begin{pmatrix} 2 & 2 & 3 \\ 1 & 3 & 3 \\ -1 & -2 & -2 \end{pmatrix}$

- 1) Calculer A2.
- 2) Déterminer la matrice B telle que A² = A+ B
- 3) a) Démontrer que AB = B
 - b) En déduire que : $\forall n \in IN^*$ on a $A^n = A + (n-1)B$

Exercice 13

Soit A =
$$\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$

- 1) Calculer A², A³, A⁴.
- 2) Montrer par récurrence que, pour tout $n \in IN^*$, $A^n = \begin{pmatrix} 2^{n-1} & 2^{n-1} \\ 2^{n-1} & 2^{n-1} \end{pmatrix}$

Exercice 14

On considère la matrice A = $\begin{pmatrix} 2 & 2 & 2 \\ -1 & -1 & -1 \\ 1 & 1 & 1 \end{pmatrix}$.

- 1) Calculer A² puis A³. Que remarquez-vous?
- 2) Pour tout entier $n \in IN^*$, conjecturer l'expression de A^n en fonction de A. Vérifier cette conjecture grâce à un raisonnement par récurrence.

4

Soit A =
$$\begin{pmatrix} 4 & 3 \\ -3 & -2 \end{pmatrix}$$

- 1) Déterminer B telle que A = I + B.
- 2) Calculer B2.

3) Calculer Aⁿ en utilisant le binôme de Newton.

Exercice 16

On considère la matrice $A = \begin{pmatrix} \alpha & 1 & 0 \\ 0 & \alpha & 1 \\ 0 & 0 & \alpha \end{pmatrix}$, α étant un paramètre réel.

- 1) Calculer A² puis A³.
- 2) a) Trouver la matrice B telle que A = αI_3 + B
 - b) Calculer B² puis B³. En déduire que $B^k = 0_3$ pour tout $k \ge 3$.
- 3) En déduire l'expression de Aⁿ en fonction de n.

Exercice 17

On considère la matrice A = $\begin{pmatrix} 1 & 1 & a \\ 1 & 1 & b \\ -1/2 & -1/2 & c \end{pmatrix}$.

- 1) Déterminer a, b, c tels que $A^2 = 0_3$ 2) On considère la matrice $M = \begin{pmatrix} 2 & 1 & 4 \\ 1 & 2 & 4 \\ -1/2 & -1/2 & -1 \end{pmatrix}$. On veut calculer M^n pour tout $n \in IN^*$.
- a) Trouver P telle que $M = P + I_3$.
- b) Exprimer M^2 et M^3 en fonction de P et I_3 . Démontrer que, pour tout $n \in IN^*$, $M^n = I_3 + nP$
- c) Retrouver ce résultat par la formule du binôme de Newton.
- 3) On pose $S_n = M + M^2 + \cdots + M^n$ avec $n \in IN^*$. Exprimer S_n en fonction de n.

Exercice 18

On considère la matrice $M(a,b) = \begin{pmatrix} a+b & b \\ -b & a-b \end{pmatrix}$ où a et b sont des nombres réels.

- 1) Calculer M² (a,b).
- 2) On veut calculer $M^n(a, b)$ pour tout $n \in IN^*$.
 - a) Déterminer la matrice B $\in M_2(IR)$ telle que M = a I_2 + bB
 - b) Calculer B². En déduire B^k , $\forall k \geq 2$.
 - c) Après avoir justifié l'utilisation de la formule du binôme, déterminer $M^n(a,b)$ pour tout $n \in IN^*$.
 - d) On suppose $a \neq 0$, la formule obtenue est-elle encore valable pour n = 0?
- 3) On considère les suites (U_n) et (V_n) défiinies par $\begin{cases} U_{n+1} = 3U_n + 2V_n \\ V_{n+1} = -2U_n V_n \end{cases}$ où U_0 et V_0 sont des nombres réels donnés.

- a) Pour tout $n \in IN$, on pose $X_n = \binom{U_n}{V_n}$. Trouver une matrce M telle que $X_{n+1}=MX_n$. Déterminer a et b pour que M = M(a,b). b) Démontrer que $\forall n \in IN, X_n=M^nX_0$.

En utilisant le résultat de la question 2, exprimer U_n et V_n en fonction de n, U_0 et V_0 .

Matrices inversibles et rang d'une matrice

Exercice 19

Calculer le rang des matrices suivantes

$$A = \begin{pmatrix} 1 & 3 & 1 & -2 & -3 \\ 1 & 4 & 3 & -1 & -4 \\ 2 & 3 & -4 & -7 & -3 \\ 3 & 8 & 1 & -7 & -8 \end{pmatrix} \quad B = \begin{pmatrix} 1 & 2 & -3 \\ 2 & 1 & 0 \\ -2 & -1 & 3 \\ -1 & 4 & -2 \end{pmatrix} \quad C = \begin{pmatrix} 1 & 3 \\ 0 & -2 \\ 5 & -1 \\ -2 & 3 \end{pmatrix}$$

Exercice 20

Donner pour chaque matrice la forme échelonnée réduite, puis préciser son rang.

$$A = \begin{pmatrix} 2 & 6 & 1 & 5 & -1 \\ 2 & 6 & 2 & 6 & 1 \\ 1 & 3 & 0 & 2 & 1 \end{pmatrix} \quad B = \begin{pmatrix} 1 & 1 & 3 & 4 \\ 7 & 7 & 2 & 4 \\ 4 & 4 & 2 & 1 \\ -2 & -2 & 2 & 5 \end{pmatrix}$$

$$C = \begin{pmatrix} 1 & 1 & 1 & -1 \\ -1 & -1 & 0 & 1 \\ 1 & 0 & 2 & -1 \end{pmatrix} \quad D = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 2 \\ -1 & 1 & 0 & -1 \\ 1 & 0 & 0 & 1 \end{pmatrix}$$

Exercice 21

Soit M =
$$\begin{pmatrix} 1 & 3 & 4 & 2 \\ 7 & 2 & 4 & 8 \\ 0 & 0 & 0 & 0 \\ -2 & -2 & 5 & 9 \end{pmatrix}$$

Répondre sans calcul à la question suivante : « parmi les matrices suivantes laquelle est susceptible d'être la matrice échelonnée réduite équivalente à M ? » Justifier brièvement.

7

$$\mathsf{A} = \begin{pmatrix} 1 & 0 & 0 & 16 \\ 0 & 1 & 0 & 22 \\ 0 & 0 & 1 & 199 \\ 0 & 0 & 0 & 0 \end{pmatrix} \quad \mathsf{B} = \begin{pmatrix} 1 & 0 & 2 & 16 \\ 0 & 1 & 0 & 22 \\ 0 & 0 & 1 & 199 \\ 0 & 0 & 0 & 0 \end{pmatrix} \quad \mathsf{C} = \begin{pmatrix} 1 & 0 & 0 & 16 \\ 0 & 2 & 0 & 22 \\ 0 & 0 & 1 & 199 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$D = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Soit A et B deux matrices carrées $n \times n$ telles que $AB = A + I_n$. Montrer que A est inversible et déterminer son inverse en fonction de B.

Exercice 23

Soit A =
$$\begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

- 1) Calculer A^2 et montrer que $A^2 = A + 2I_3$.
- 2) Déduire que A est inversible et calculer son inverse.

Exercice 24

Soit A =
$$\begin{pmatrix} 1 & 2 & 0 \\ 3 & -1 & 1 \\ 0 & 1 & 2 \end{pmatrix}$$

- 1) Calculer A^2 puis A^3 puis A^3 $2A^2$ 8A.
- 2) Déduire que A est inversible et calculer son inverse.

Exercice 25

Calculer, à l'aide de la méthode Jordan-Gauss, l'inverse des matrices suivantes

$$A = \begin{pmatrix} 1 & 0 & 2 \\ 2 & -1 & 3 \\ 4 & 1 & 8 \end{pmatrix} \qquad B = \begin{pmatrix} 2 & 4 & 1 \\ 2 & 5 & 1 \\ 1 & 2 & 1 \end{pmatrix}$$

Systèmes linéaires

Exercice 26

Résoudre les systèmes suivants

(S1)
$$\begin{cases} x + 3y + 5z = 22 \\ -x + 2y + 3z = 12 \\ -12x + y - z = -13 \end{cases}$$
 (S2)
$$\begin{cases} x + y + z = 3 \\ 2y + z = 4 \\ x - 2y = -1 \end{cases}$$
 (S2)
$$\begin{cases} y + 3z + t = 1 \\ x + 2y + z + t = 2 \\ y - 4z = 0 \end{cases}$$

Exercice 27

Dans une entreprise de 60 personnes, le salaire mensuel des employés est de 1500€, celui des techniciens est de 2600€ et celui des cadres de 4200€. La masse salariale mensuelle de cette entreprise est 114 000€. Si on augmente de 6.4% le salaire des employés et de 4.5% celui des cadres et des techniciens alors la masse salariale augmente de 5.6%.

Quel est le nombre d'employés, de cadres et de techniciens ?

Exercice 28

On considère le système (S) $\begin{cases} ax + y + z = 1 \\ x + ay + z = a \\ x + y + az = a^2 \end{cases}$ où a est un paramètre réel.

9

Résoudre le système en discutant selon les valeurs du paramètre a.

Exercice 29

Résoudre les systèmes n×m suivants

(S1)
$$\begin{cases} x + 2y + 2z = 2\\ 3x - 2y - z = 5\\ 2x - 5y + 3z = -4\\ x + 4y + 6z = 0 \end{cases}$$
 (S2)
$$\begin{cases} x + 2y - z + 3w = 3\\ 2x + 4y + 4z + 3w = 9\\ 3x + 6y - z + 8w = 10 \end{cases}$$
 (S3)
$$\begin{cases} x + y + 2z + 2t + w = 1\\ 2x + 2y + 4z + 4t + 3w = 1\\ 2x + 2y + 4z + 4t + 2w = 2\\ 3x + 5y + 8z + 6t + 5w = 3 \end{cases}$$

(S3)
$$\begin{cases} x + y + 2z + 2t + w = 1\\ 2x + 2y + 4z + 4t + 3w = 1\\ 2x + 2y + 4z + 4t + 2w = 2\\ 3x + 5y + 8z + 6t + 5w = 3 \end{cases}$$

Systèmes et inverse d'une matrice

Exercice 30

On considère la matrice B = $\begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & -3 \end{pmatrix}$

- 1) Calculer B². En déduire que la matrice B est inversible et préciser B^{-1} .
- 2) Résoudre dans IR le système (S) $\begin{cases} x + 2y 2z = 1\\ 2x + y 2z = 3\\ 2x + 2y 3z = 4 \end{cases}$

Exercice 31

On considère le système (S) $\begin{cases} x + 2y - 4z = a \\ -x - y + 5z = b \text{ où a, b, c sont des réels.} \\ 2x + 7y - 3z = c \end{cases}$

On pose $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ et $Y = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$

- 1) Résoudre (S).
- 2) On pose A = $\begin{pmatrix} 1 & 2 & -4 \\ -1 & -1 & 5 \\ 2 & 7 & -3 \end{pmatrix}$. En utilisant 1) justifier que A est inversible et calculer A^{-1} .

10

Exercice 32

Déterminer la matrice inverse des matrices suivantes (après avoir justifié son existence)

1)
$$A = \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix}$$
 où a, b, c sont réels.

2)
$$A = \begin{pmatrix} 1 & -a & 0 & 0 \\ 0 & 1 & -a & 0 \\ 0 & 0 & 1 & -a \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
 où a est un réel.

Déterminant

Exercice 33

Sans aucun calcul, donner le déterminant des matrices suivantes :

$$I_{3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, M_{1} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, M_{2} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, 2I_{3},$$

$$N_{1} = \begin{pmatrix} 9 & 4 & 0 \\ 1 & 3 & 0 \\ 6 & 2 & 0 \end{pmatrix}, N_{2} = \begin{pmatrix} 9 & 4 & 9 \\ 1 & 3 & 1 \\ 6 & 2 & 6 \end{pmatrix} \text{ et } N_{3} = \begin{pmatrix} 9 & 4 & 18 \\ 1 & 3 & 2 \\ 6 & 2 & 12 \end{pmatrix}$$

Exercice 34

En utilisant les formules de développement, calculer le déterminant des matrices suivantes

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & -1 & -9 & 13 \\ 0 & 0 & 0 & 2 \\ 0 & 0 & -1 & 0 \end{pmatrix} \text{ et } B = \begin{pmatrix} 1 & -2 & 3 \\ 2 & 4 & -1 \\ 1 & 5 & -2 \end{pmatrix}.$$

Exercice 35

En utilisant les opérations sur les lignes et les colonnes, calculer le déterminant des matrices suivantes.

$$A = \begin{pmatrix} \frac{1}{2} & -1 & -\frac{1}{3} \\ \frac{3}{4} & \frac{1}{2} & -1 \\ 1 & -4 & 1 \end{pmatrix}, B = \begin{pmatrix} 2 & 1 & -3 \\ 1 & 0 & 2 \\ -1 & 1 & 1 \end{pmatrix} \text{ et } C = \begin{pmatrix} -2 & 4 & -8 \\ 2 & 1 & 3 \\ 1 & 1 & 1 \end{pmatrix}.$$

Exercice 36

Calculer les déterminants suivants : (a, b, c et d désignent des nombres réels donnés)

$$\Delta_1 = \begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & 1 \\ 1 & 1 & -1 & 1 \\ 1 & 1 & 1 & -1 \end{vmatrix} \quad \Delta_2 = \begin{vmatrix} a & 3 & 0 & 5 \\ 0 & b & 0 & 2 \\ 1 & 2 & c & 3 \\ 0 & 0 & 0 & d \end{vmatrix} \quad \Delta_3 = \begin{vmatrix} a & a & a & a \\ a & b & b & b \\ a & b & c & c \\ a & b & c & d \end{vmatrix}$$

On considère la matrice $A = \begin{pmatrix} a & 1 & 1 & 1 \\ 1 & a & 1 & 1 \\ 1 & 1 & a & 1 \\ 1 & 1 & 1 & a \end{pmatrix}$ où a désigne un paramètre réel.

1. Montrer que le déterminant de la matrice A est égal à

$$(a+3)(a-1)^3$$
.

2. Pour quelles valeurs du paramètre *a* la matrice A est-elle inversible?

Exercice 38

1. La lettre n désigne un nombre entier naturel impair supérieur à 2 et A est une matrice de $\mathcal{M}_n(\mathbb{R})$.

Démontrer que si on a : ${}^{t}A = -A$ alors det(A) = 0.

- 2. Vérifier le résultat précédent sur la matrice $A = \begin{pmatrix} 0 & 1 & -4 \\ -1 & 0 & 3 \\ 4 & -3 & 0 \end{pmatrix}$.
- 3. Le résultat démontré à la question 1 est-il encore valable lorsque *n* est un entier naturel pair non nul? Justifier la réponse.

Exercice 39

On considère la matrice $A = \begin{pmatrix} 0 & 1 & -1 \\ 4 & -3 & 4 \\ 3 & -3 & \lambda \end{pmatrix}$ où λ est un paramètre réel.

- 1. Exprimer le déterminant de la matrice A, en fonction de λ . En déduire les valeurs de λ pour lesquelles la matrice A est inversible.
- 2. (a) Calculer A².
 - (b) Pour quelle valeur de λ a-t-on : $A^2 = I_3$? Que peut-on en déduire pour la matrice A?
- 3. Par un calcul direct déterminer A⁻¹ et vérifier le résultat de la question 2.b.

Exercice 40

Les matrices suivantes sont-elles inversibles?

Dans l'affirmative, déterminer la matrice inverse, en utilisant la formule de la comatrice.

$$A = \begin{pmatrix} 2 & 1 \\ -3 & 5 \end{pmatrix}, B = \begin{pmatrix} a & b \\ 0 & c \end{pmatrix}, C = \begin{pmatrix} 3 & 8 & -3 \\ -1 & -2 & 1 \\ -2 & -4 & 2 \end{pmatrix} \text{ et } D = \begin{pmatrix} 1 & 1 & 1 & 2 \\ 0 & 3 & 1 & 4 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

1. Pour quelle valeur de *m* le système suivant est-il de Cramer?

$$\begin{cases} x + y + (1 - m)z &= m \\ (1 + m)x - y + 2z &= m \\ 2x - my + 3z &= 0 \end{cases}$$

- 2. Résoudre ce système dans le cas où m = 1
- 3. Résoudre ce système dans le cas où m = 0

Soit
$$m \in \mathbb{R}$$
. On considère le système (S):
$$\begin{cases} x+y+mz=m \\ x+my-z=1 \\ x+y-z=1 \end{cases}$$
 d'inconnues x,y,z

- 1. Pour quelles valeurs de m le système S est-il de Cramer?
- 2. On suppose $m \neq -1$ et $m \neq 1$. Résoudre S en utilisant les formules de Cramer.
- 3. Étudier le cas m = -1 puis le cas m = 1.

Diagonalisation

Exercice 43

Pour chacune des matrices suivantes, déterminer les valeurs propres ainsi que les vecteurs propres correspondants :

$$A = \begin{pmatrix} 4 & 4 \\ 1 & 4 \end{pmatrix} , B = \begin{pmatrix} 2 & 5 \\ 4 & 3 \end{pmatrix} , C = \begin{pmatrix} 3 & 2 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Exercice 44

- 1. Diagonaliser la matrice $A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$.
- 2. On considère la matrice $B = \begin{pmatrix} -5 & 9 \\ -4 & 7 \end{pmatrix}$. Montrer que la matrice B n'est pas diagonalisable.
- 3. Diagonaliser la matrice $C = \begin{pmatrix} 3 & 0 & 0 \\ -4 & 3 & 4 \\ -4 & 0 & 7 \end{pmatrix}$.

Exercice 45

On considère la matrice A = $\begin{pmatrix} 2a+3 & -2(a+1) \\ a+1 & -a \end{pmatrix}$.

- 1. Déterminer les valeurs propres de A.
- 2. On suppose $a \neq -1$.
 - (a) Justifier que A est diagonalisable.
 - (b) Déterminer une matrice inversible S telle que $S^{-1}AS = \begin{pmatrix} a+2 & 0 \\ 0 & 1 \end{pmatrix}$
- 3. Que dire quand a = -1?

Exercice 46

On considère les matrices

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & -1 \\ -2 & -2 & -1 \end{pmatrix}, B = \begin{pmatrix} 2 & 1 & 1 \\ -3 & -2 & -1 \\ 1 & 1 & 0 \end{pmatrix} \text{ et } D = \begin{pmatrix} 0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

- 1. Vérifier que $A \cdot B = B \cdot A$.
- 2. Déterminer les valeurs propres de A et les vecteurs propres associés.

- 3. Déterminer une matrice inversible S, de deuxième ligne $(-1\ 1\ 1)$ telle que telle que $A = SDS^{-1}$.
- 4. Calculer S^{-1} puis $B' = S^{-1} \cdot B \cdot S$. Vérifier que B' est diagonale.

On considère la matrice $A = \begin{pmatrix} 0 & 3 & 2 \\ -2 & 5 & 2 \\ 2 & -3 & 0 \end{pmatrix}$ et on appelle P le polynôme caractéristique de la matrice A.

- 1. Démontrer que : $P(X) = (2 X)^2 (1 X)$. Comment peut-on en déduire le déterminant de A?
- 2. (a) Déterminer les valeurs propres de la matrice A ainsi que les vecteurs associés.
 - (b) Diagonaliser la matrice A.
 - (c) Soit $n \in \mathbb{N}^*$. Écrire alors A^n sous la forme d'un produit de trois matrices.

Exercice 48

On considère la matrice

$$A = \left(\begin{array}{rrr} 3 & -1 & -1 \\ -3 & 1 & 3 \\ 2 & 2 & 0 \end{array} \right).$$

- 1. (a) Montrer que le polynôme caractéristique de la matrice A est : $P(\lambda) = (\lambda + 2)(\lambda 4)(2 \lambda)$.
 - (b) En déduire que A est diagonalisable et trouver une matrice S inversible telle que S⁻¹⋅A⋅S soit une matrice diagonale D que l'on précisera.
- 2. Montrer que $\forall n \ge 1$,

$$A^{n} = 2^{n-1} \begin{pmatrix} 1+2^{n} & 1-2^{n} & 1-2^{n} \\ -2^{n}+(-1)^{n} & 2^{n}+(-1)^{n} & 2^{n}-(-1)^{n} \\ 1-(-1)^{n} & 1-(-1)^{n} & 1+(-1)^{n} \end{pmatrix}$$

- 3. (a) Justifier que D et inversible et calculer la matrice D⁻¹. En déduire que A est inversible.
 - (b) Montrer que $A^{-1} = S \cdot D^{-1} \cdot S^{-1}$.
 - (c) Calculer alors la valeur de la matrice A^{-1} .

Exercice 49

On considère la matrice A =
$$\begin{pmatrix} 1 & 1 & 0 \\ 1/2 & 3/2 & -1/2 \\ -1/2 & 1/2 & 3/2 \end{pmatrix}$$

1. Déterminer les valeurs propres de A ainsi que les vecteurs propres associés.

15

Justifier que A n'est pas diagonalisable.

3. Soit P la matrice
$$P = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$
.

- (a) Justifier que P est inversible et calculer P^{-1} .
- (b) Calculer $T = P^{-1}AP$ puis T^n , pour tout $n \in \mathbb{N}$.
- (c) En déduire A^n , pour tout $n \in \mathbb{N}$.

On considère la matrice P.

$$P = \begin{pmatrix} 1 & -1 & 0 \\ 1 & a & -1 \\ a & 0 & 2 \end{pmatrix}$$

- 1. (a) Pour quelle valeur de *a* cette matrice est-elle inversible?
 - (b) Déterminer l'inverse de P lorsque c'est possible.
- 2. On pose

$$A = \begin{pmatrix} 2 & -2 & -1 \\ 3 & -3 & -1 \\ -4 & 4 & 1 \end{pmatrix}$$

- (a) Montrer que A est diagonalisable.
- (b) Soit n un entier naturel. Déterminer A^n en fonction de n.
- 3. On pose

$$B = \begin{pmatrix} -2 & 3 & 1 \\ -3 & 4 & 1 \\ 2 & -2 & 0 \end{pmatrix}$$

- (a) La matrice B est-elle diagonalisable?
- (b) On pose $Q = \begin{pmatrix} 1 & -1 & 0 \\ 1 & -1 & -1 \\ -1 & 0 & 2 \end{pmatrix}$ et $T = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$. Vérifier que $Q^{-1} \cdot B \cdot Q = T$.
- (c) Calculer T⁵ et en déduire B⁵.

Exercice 51

On considère les suites
$$(u_n)$$
, (v_n) et (w_n) définies par :
$$\begin{cases} u_{n+1} = -v_n + w_n \\ v_{n+1} = u_n + 2v_n - w_n \\ w_{n+1} = -u_n - v_n + 2w_n \\ u_0 = v_0 = w_0 = 1 \end{cases}$$
.

On pose A =
$$\begin{pmatrix} 0 & -1 & 1 \\ 1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}$$
.

- 1. (a) Déterminer les valeurs propres de A ainsi que les vecteurs propres associés. (On choisira des vecteurs dont la première composante est égale à 1).
 - (b) Justifier que A est diagonalisable et la diagonaliser.
 - (c) Exprimer A^n , pour tout $n \in \mathbb{N}$.
- 2. Exprimer u_n , v_n et w_n en fonction de n.