

Design of an Intelligent **Energy Management** System for a Hybrid Microgrid with Renewables and Battery Storage

Ntokozo Radebe (supervised by A/Prof Sunetra Chowdhury)

Content

- 1. Initial Situation
- 2. Load Data
- 3. System Components
- 4. Algorithm
- 5. Results
- 6. Conclusion

Initial situation:

Situation

Context

- Global energy shift is creating a rising demand for sustainable, decentralized power systems.
- Hybrid microgrids are a solution to this demand, combining renewable energy sources and traditional energy sources, able to operate both grid-connected and standalone.
- Intermittency of renewable generators (solar PV) create supply-demand imbalances
- Need for intelligent energy management systems to ensure stability and cost efficiency arises

Design requirements

- Minimize cost of energy draw from the utility grid during grid-connected
- Optimum use of solar PV and BESS as renewable energy sources
- Ensure energy security during standalone mode
- Ensure power quality at the load terminals in both operating modes

Literature Review

Algorithms reviewed

Algorithms used in the models studied:

- Classical algorithms
- Metaheuristic algorithms
- Intelligent algorithms
 - ☐ Fuzzy logic
 - □ Artificial Neural Network
 - Deep Learning

Algorithms and their functions

Roles and priorities of the algorithms were:

- Prioritize price
- Prioritize sizing of microgrid
- Ensure voltage control
- Perform
 - Peak shaving
 - Curtailment

Load Data:

Data

Load Characteristics:

Load Characteristic	Energy (KWh)
Total	4326
Average	180
Maximum	206.4
Minimum	153

Load Profiles

Original sized load

Increased load (additional constant load)

System components:

Solar Photovoltaic Panels (PV)

Key considerations

- Use of NASA Power Data to obtain weather data
- + Radiance data and temperature data to calculate power losses (STC concept)
- + Area is 2000m², efficiency of panels is 18%
- + IEC 62548
- + Total size is 472,43 kW

$$P_{pv}$$
 [W] = $N_{pv} \times G \times A \times \eta \times [1 + \alpha(T_c - T_r)]$

Utility grid

Key considerations

- + Use of utility grid based on low TOU tariff periods.
- + Sized to export maximum of 500 MW, with voltage of integration of 400 V.
- + IEEE1547

Battery Energy Storage System

Minimum dis/charge time	10 hours
Maximum power	300 kW
Maximum SOC	90%
Minimum SOC	30%
Dis/charging efficiency	95%
Battery inverter efficiency	96%

- + Storage capacity is 3000kWh, terminal voltage 400V.
- + Min and Max SOC of 30% to 90% extend battery life
- + FLC IEMS integrated with the BESS to schedule charging and discharging commands.
- + Sized to be able to absorb all PV surplus power.

The Algorithm:

High level Flow Diagram

Fuzzy Logic

Negative

High

6 rules

Mamdani FLC for BESS control

Controls the charging and discharging pattern

Sugeno FLC for mode and load control

Controls mode of operation and load connection

Integration:

Microgrid with FLC IEMS

Results:

Simulation - Observations

Case 3 grid power, TOU tariff and grid cost of energy

Case 4 grid power, TOU tariff and grid cost of energy

Simulation - Standard sized conditions

Simulation - Increased load

Results - Total Load Demand

Renewable Factor (RF)

Results - Total Cost of Energy

- Highest cost of energy from the utility grid was R4437.00, due to no FLC IEMS and BESS integration.
- + Best case of **R1312.00** was achieved for the CoE due to implemented FLC IEMS with BESS.

Conclusion:

Key takeaways, the FLC IEMS was...

- + Relevant since the power systems had more than 1 resource
- Necessary with hybrid renewable energy systems
- Used for cost reduction and satisfying demand by ensuring optimum use of DERs
- + Different strategies for controls functions
- Ensure the power quality at the load terminals by ensuring minimal frequency fluctuations and voltage fluctuations doing DER power flow

THANK YOU!