Открытые множества и язык пучков

4 декабря 2023 года

Открытые множества как спектры

Пусть A — кольцо. Мы знаем, что **замкнутым** подмножествам Spec A соответствуют идеалы в A: $V(I) = \{J \in \operatorname{Spec} A : I \subset J\}$. Кольцо функций V(I) — это просто A/I. Пусть теперь $U = \operatorname{Spec} A \setminus V(I)$ — **открытое** подмножество. Это **спектр какого кольца?**

Открытые множества как спектры

Пусть A — кольцо. Мы знаем, что **замкнутым** подмножествам Spec A соответствуют идеалы в A: $V(I) = \{J \in \operatorname{Spec} A : I \subset J\}$. Кольцо функций V(I) — это просто A/I. Пусть теперь $U = \operatorname{Spec} A \setminus V(I)$ — **открытое** подмножество. Это **спектр какого кольца?**

Вообще говоря, никакого.

ЛЕММА: (Хартогс) Пусть A = k[x,y], I = (x,y), V(I) — начало координат. Тогда все рациональные функции на Spec A, **регулярные на** U, **регулярны и в нуле.**

Открытые множества как спектры

Пусть A — кольцо. Мы знаем, что **замкнутым** подмножествам Spec A соответствуют идеалы в A: $V(I) = \{J \in \operatorname{Spec} A : I \subset J\}$. Кольцо функций V(I) — это просто A/I. Пусть теперь $U = \operatorname{Spec} A \setminus V(I)$ — **открытое** подмножество. Это **спектр какого кольца?**

Вообще говоря, никакого.

ЛЕММА: (Хартогс) Пусть A = k[x,y], I = (x,y), V(I) — начало координат. Тогда все рациональные функции на Spec A, **регулярные на** U, **регулярны и в нуле.**

ПРЕДЛОЖЕНИЕ: Пусть A — целостное кольцо, и $f \in A$ не делитель нуля. Тогда простые идеалы в A_f взаимно-однозначно соответствуют идеалам A, не содержащим f.

Иначе говоря, если Spec A — неприводимое аффинное многообразие, и f — функция на нем, то Spec $A\setminus V(f)=\operatorname{Spec} A_f$.

Базовые открытые множества

ОПРЕДЕЛЕНИЕ: Открытое множество в Spec A называется базовым, если его дополнение имеет вид V(f) для какого-то $f \in A$.

Может так получиться, что $U \subset \operatorname{Spec} A$ — открытое подмножество, изоморфное спектру какого-то кольца A', но **не базовое.** В таком случае A' **не обязано** получаться из A локализацией.

Базовые открытые множества

ОПРЕДЕЛЕНИЕ: Открытое множество в Spec A называется базовым, если его дополнение имеет вид V(f) для какого-то $f \in A$.

Может так получиться, что $U \subset \operatorname{Spec} A$ — открытое подмножество, изоморфное спектру какого-то кольца A', но **не базовое.** В таком случае A' **не обязано** получаться из A локализацией.

ПРИМЕР: Пусть $A=k[x,y]/(y^2-p(x))$ — кольцо функций эллиптической кривой $E=V(y^2-p(x))$, и α — точка E, не являющаяся элементом кручения. Тогда кривая $U=E\setminus\{\alpha\}$ аффинна, но ее кольцо функций A' не получается локализацией из A. В самом деле, если $A'=S^{-1}A$ для $S\subset A$, то функции из S могут обращаться в нуль только в точках α и бесконечно удаленной. Если $s\in S$ имеет в α нуль порядка n, то $n[\alpha]=0_E$ относительно группового закона. Тогда n=0, $s(\alpha)\neq 0$, $s^{-1}\in A$ и $A'=S^{-1}A=A$ — противоречие.

В таком случае кольцо A' будет получаться лишь как **подкольцо** $A' \subset S^{-1}$ в какой-то локализации A по функциям с нулями в α — оно определено теми условиями, что его элементы должны быть регулярны во всех других точках, где обнуляются функции из S, кроме α .

Пучки

ОПРЕДЕЛЕНИЕ: Пусть X — топологическое пространство. Предпучком колец $\mathcal F$ на X называется сопоставление каждому открытому множеству $U\subset X$ кольца $\Gamma(U,\mathcal F)$, а каждой паре открытых множеств $U\subset U'$ гомоморфизма $\mathrm{res}_U^{U'}\colon \Gamma(U')\to \Gamma(U)$ такое, что для всякой тройки $U\subset U'\subset U''$ имеет место равенство $\mathrm{res}_U^{U'}\circ\mathrm{res}_{U'}^{U''}=\mathrm{res}_U^{U''}$.

ОПРЕДЕЛЕНИЕ: Предпучок колец называется пучком, если для всякого набора открытых множеств $\{U_k\}$, $U=\bigcup_k U_k$ и набора сечений $s_k\in \Gamma(U_k)$ таких, что для всякой пары i,j имеет место $\mathrm{res}_{U_i\cap U_j}^{U_i}(s_i)=\mathrm{res}_{U_i\cap U_j}^{U_j}(s_j)$, существует и единственно сечение $s\in \Gamma(U)$ такое, что $\forall k\,\mathrm{res}_{U_k}^U(s)=s_k$.

ОПРЕДЕЛЕНИЕ: Окольцованным пространством называется топологическое пространство с пучком колец.

Структурный пучок

Если Spec A — аффинная схема, на ней можно определить **предпучок** \mathfrak{O} следующим образом: $\Gamma(U,\mathfrak{O})$ — рациональные функции $a/b \in \operatorname{Frac}(A)$, регулярные во всех точках U. С таким определением, однако, трудно работать в общем случае (например когда A не целостно).

ОПРЕДЕЛЕНИЕ: Структурный пучок на Spec A определяется на базовых открытых множествах $U_f = \operatorname{Spec} A \setminus V(f)$ как A_f , а на всех остальных — как минимальное кольцо, удовлетворяющее аксиоме пучка.

Иначе говоря, назовем системой элементов открытое покрытие $\bigcup_k U_{f_k} = U$ и набор $s_k \in A_{f_k}$. Будем говорить, что она согласована, если для любых i,j имеем $s_i/1 = s_j/1 \in A_{f_i,f_j}$. Две согласованных системы элементов $\{(U_k,s_k)\},\{(U_i's_k')\}$ называются эквивалентными, если их объединение снова согласовано. Тогда элементами $s \in \Gamma(U,0)$ мы будем называть классы эквивалентности согласованных систем элементов. Гомоморфизмы ограничения на множества покрытия мы будем вводить как $\operatorname{res}_{U_k}^U(s) = s_k$. Если $U_F \supset U$, то гомоморфизм $\operatorname{res}_U^{U_F}$ можно определить как $s \mapsto \{U_{f_k}, s/1 \in A_{F,f_k}\}$.

Еще раз о лемме Хартогса

ПРИМЕР: Рассмотрим покрытие $A^2 \setminus \{(0;0)\}$ двумя множествами $A^2 \setminus Ox = \operatorname{Spec} k[x,y,y^{-1}]$ и $A^2 \setminus Oy = \operatorname{Spec} k[x,y,x^{-1}]$. Их пересечение есть $\operatorname{Spec} k[x,y,x^{-1},y^{-1}]$. Согласованные системы элементов для этого покрытия — это элементы максимального кольца R, делающего диаграмму коммутативной:

$$\begin{array}{ccc} R & \longrightarrow & k[x,y]_{x^{-1}} \\ \downarrow & & \downarrow \\ k[x,y]_{y^{-1}} & \longrightarrow & k[x,y]_{x^{-1},y^{-1}} \end{array}$$

Поскольку нижняя и правая стрелка — вложения, имеем

$$R = k[x, y]_{x^{-1}} \cap k[x, y]_{y^{-1}} \subset k[x, y]_{x^{-1}, y^{-1}}.$$

Иначе говоря, R = k[x, y].

Схемы

Итак, простейшее открытое множество в A^2 не является спектром кольца. Это значит, что даже в аффинной геометрии нельзя не использовать более общего понятия.

ОПРЕДЕЛЕНИЕ: Схема — это окольцованное пространство, локально изоморфное аффинной схеме (спектру кольца с его структурным пучком).

Вместо обычных понятий коммутативной алгебры (таких как модуль над кольцом), теория схем рассматривает пучки 0-модулей — их сечения над U образуют модуль над кольцом $\Gamma(U,0)$.

ПРИМЕР: Пусть $M = \bigoplus_p \mathbb{F}_p$ — сумма всех конечных полей как \mathbb{Z} -модуль. Все его локализации **нетеровы,** а сам он **ненетеров.**

Р. Д.

ПРИМЕР: Пусть $M = \bigoplus_p \mathbb{F}_p$ — сумма всех конечных полей как \mathbb{Z} -модуль. Все его локализации **нетеровы,** а сам он **ненетеров.**

ПРЕДЛОЖЕНИЕ: Пусть $A \subset B$ расширение колец, и $b \in B$ — элемент. Допустим, что для **всякого максимального** идеала $\mathfrak{m} \subset A$ элемент $\frac{b}{1} \in (A \setminus \mathfrak{m})^{-1}B$ цел над локальным кольцом $A_{\mathfrak{m}}$. Тогда b цел над A.

ПРИМЕР: Пусть $M = \bigoplus_p \mathbb{F}_p$ — сумма всех конечных полей как \mathbb{Z} -модуль. Все его локализации **нетеровы,** а сам он **ненетеров.**

ПРЕДЛОЖЕНИЕ: Пусть $A \subset B$ расширение колец, и $b \in B$ — элемент. Допустим, что для **всякого максимального** идеала $\mathfrak{m} \subset A$ элемент $\frac{b}{1} \in (A \setminus \mathfrak{m})^{-1}B$ цел над локальным кольцом $A_{\mathfrak{m}}$. Тогда b цел над A. ДОКАЗАТЕЛЬСТВО: ШАГ 1. Уравнение на b над $A_{\mathfrak{m}}$ выглядит как $b^{n+1} = \frac{p_0}{q_0} + \frac{p_1}{q_1}b + \cdots + \frac{p_n}{q_n}b^n$, что равносильно $\left(\prod_{i=0}^n q_i\right)b^{n+1} = p_0 + p_1b + \cdots + p_nb^n$. Пусть $U_{\mathfrak{m}} \subset \operatorname{Spec}(A)$ — открытое множество, дополнение до нулей $Q_{\mathfrak{m}} = \prod_{i=0}^n q_i$. Значит, b цел над $k[U_{\mathfrak{m}}]$, настоящим открытым множеством.

ПРИМЕР: Пусть $M = \bigoplus_p \mathbb{F}_p$ — сумма всех конечных полей как \mathbb{Z} -модуль. Все его локализации **нетеровы,** а сам он **ненетеров.**

ПРЕДЛОЖЕНИЕ: Пусть $A \subset B$ расширение колец, и $b \in B$ — элемент. Допустим, что для **всякого максимального** идеала $\mathfrak{m} \subset A$ элемент $\frac{b}{1} \in (A \setminus \mathfrak{m})^{-1}B$ цел над локальным кольцом $A_{\mathfrak{m}}$. Тогда b цел над A. ДОКАЗАТЕЛЬСТВО: ШАГ 1. Уравнение на b над $A_{\mathfrak{m}}$ выглядит как $b^{n+1} = \frac{p_0}{q_0} + \frac{p_1}{q_1}b + \cdots + \frac{p_n}{q_n}b^n$, что равносильно $\left(\prod_{i=0}^n q_i\right)b^{n+1} = p_0 + p_1b + \cdots + p_nb^n$. Пусть $U_{\mathfrak{m}} \subset \operatorname{Spec}(A)$ — открытое множество, дополнение до нулей $Q_{\mathfrak{m}} = \prod_{i=0}^n q_i$. Значит, b цел над $k[U_{\mathfrak{m}}]$, настоящим открытым множеством.

ШАГ 2. Система $\{U(\mathfrak{m})\}$ покрывает Spec A. Выберем конечное подпокрытие $\{U_k\}_{i=1}^N$. Можем написать: $Q_k b^{n+1} = \sum_{i=0}^n p_{i,k} b^i$. Функции $\{Q_k\}_{k=1}^N$ обнуляются лишь в дополнениях до U_k , а коль скоро они покрывают все, совместные нули идеала $(Q_1, \ldots Q_N)$ — пустое множество. Значит, $(Q_1, \ldots Q_N) \ni 1 = \sum a_k Q_k$, и имеет место разложение

$$b^{n+1} = \sum_{i=0}^{n} \left(\sum_{k=1}^{N} a_k p_{i,k} \right) b^i. \blacksquare$$