varianceExplainTheory

December 28, 2017

A linear mixed model in model organism association mapping is typically expressed as y =x + Zu + e where y is an n \times 1 vector of observed phenotypes, and x is an n \times q matrix of fixed effects including mean, SNPs, and other confounding variables. is a q Œ 1 vector representing coefficients of the fixed effects. Z is an n Œ t incidence matrix mapping each observed phenotype to one of t inbred strains. And in general Z is None, and will be ignored at some positons in the fellowing document. u is the random effect of the mixed model with $Var(u) = \frac{2}{g}K$, where K is the t \times t kinship matrix, and e is an n \times n matrix of residual effect such that $Var(e) = \frac{2}{e}$. The overall phenotypic variance–covariance matrix can be represented as $V = {}_{g}^{2}K + {}_{e}^{2}I$ This part, in italic font, explains likelihood distribition and the symbols have no relationship with context. For liner model y = x. The distribution of $y N(X,^2 I)$ So the likelihood $L(y;,^2) = \frac{1}{(2^2)^{\frac{n}{2}}} e^{-\frac{(y-x)(y-x)}{2^2}}$

For the linear mixed model: $y N(x, g^2K + e^2I) = N(x, g^2H) H = e^{-2}V = K + I$ (there is a typo in the emma paper) $=\frac{\frac{2}{g}}{\frac{2}{g}}$ likelihood $(y;,g,)=\frac{1}{(2\frac{2}{g}H)^{\frac{n}{2}}}e^{-\frac{(y-x)H^{-1}(y-x)}{\frac{2}{g}}}$ ML (maximum likelihood): $l_F(y;,g,) = \frac{1}{2}(-nlog(2g^2) - log|H| - \frac{1}{2}(y-x)H^{-\frac{5}{2}}(y-x))$ REML: $l_R(y;g,) = l_F(y;g,) + l_F(y;g,)$ $\frac{1}{2}(qlog(2_g^2) + log|xx| - log|xH^{-1}x|)$ Gradient of the LMM log likelihood w.r.t. $l_R(y;g,) =$ $\frac{d - \frac{1}{2_g^2}(y - x)^T(K + I)^{-1}(y - x)}{d} = \frac{1}{g}(-x^T(k + I)^{-1}y + x^T(k + I)^{-1}x) \text{ set gradient to zero: } x^TH^{-1}x = x^TH^{-1}y$ could be estimated as $\hat{}=(xH^{-1}x)^{-1}xH^{-1}y$

Note that this solution is analogous to the ML solution of the linear regression $(x^t x)^{-1} x^T y$ For ML: $\frac{2}{g} = \frac{R}{n}$ Then: $l_F(y; \hat{q}, \hat{g}, \hat{g}) = \frac{1}{2}(-nlog\frac{2R}{n} - log|H| - n)$ For REML: $\frac{2}{g} = \frac{R}{n-q}R = (y-x)H^{-1}(y-x)H = K + I = U_F(i+,...,n+)U_F$

For REML:
$$\frac{2}{g} = \frac{R}{n-g} R = (y-x)H^{-1}(y-x) H = K + I = U_F(i+,...,n+)U_F$$

 $K = U_F U_F$ with eigen decomposition so $log|H| = \sum_{i=1}^n log(i+1)$ And $R = (y-x)H^{-1}(y-x) = y(I-x(xH^{-1}x)^{-1}xH^{-1})H^{-1}(I-x(xH^{-1}x)^{-1}xH^{-1})y = yPH^{-1}Py$ P is defined as $P = I_F U_F$ $I - x(xH^{-1}x)^{-1}xH^{-1}$ \$S = I $X(XX)^{1}X$ \$ SHS = S(K+I)S do eigen decomposition And $(SHS)(PH^{-1}P)(SHS) = SHS(PH^{-1}P)(SHS)(PH^{-1}P) = (PH^{-1}P)PS = P$ (there is a typo in the emma paper) and $SP = S SHS = [U_R, W_R] diag(1 + , ..., n-q + , 0, ..., 0)[U_R, W_R]$ $= U_R diag(1 + , ..., n-a, 0, ..., 0)U_R$

 U_R is an n \times (n q) eigenvector matrix corresponding to the nonzero eigenvalues. W_R is an n Œ q eigenvector matrix corresponding to zero eigenvalues. Here the eigen decomposition of H and SHS do not dependent on any unknow parameter and could be done directly

so $PH^{-1}P = (SHS)^+ = U_R diag((s +)^{-1})U_R$ here (.) + denotes the pseudo-inverse of a matrix Let $U_R y = [1, 2, ..., nq]$ and $R = yPH^{-1}Py = (U_R y)diag((s +)^{-1})(U_R y) = \sum_{s=1}^{n-q} \frac{2}{s+1}$ Then for ML: $l_F(y; \hat{g}, \hat{g}) = \frac{1}{2} n log \frac{n}{2} - n - n log \sum_{s=1}^{n-q} \frac{2}{s} - \sum_{i=1}^{n} log(i+1)$

 $(SHS)(SHS)^+ = (SHS)(PH^{-1}P) = SHPH^{-1}P = SP = S \text{ On the other hand } (SHS)(SHS)^+ = (U_R diag(s+)U_R)(U_R diag((s+)^{-1})U_R) = U_R U_R \text{ so } U_R U_R = S = I \text{ taking account } \frac{2}{g} = \frac{R}{n-q} \text{ Then for REML: } l_R(y;\hat{s},\hat{s}) = \frac{1}{2}(n-q)log\frac{n-q}{2} - (n-q) - (n-q)log\sum_{s=1}^{n-q}\frac{2}{s} - \sum_{s=1}^{n-q}log(s+) \text{ The derivatives of these functions: ML: } f_F = \frac{n}{2}\frac{\sum_{s}\frac{2}{(s+)^2}}{\frac{2}{s}} - \frac{1}{2}\sum_{i}\frac{1}{i+} \text{ REML: } f_F = \frac{n-q}{2}\frac{\sum_{s}\frac{2}{(s+)^2}}{\frac{2}{s}} - \frac{1}{2}\sum_{i}\frac{1}{i+} \text{ if we could find B such that } BB = H = \frac{V}{2} = K + I \text{ we can substitete } y^* = B^{-1}y, x^* = B^{-1}x \text{ and } t^* = B^{-1}(Zu+) \text{ (now * includes both random effects and errors) to get } y^* = x^* + Var(*) = Var(B^{-1}(Zu+)) = B^{-1}V(B^{-1}) = \frac{2}{g}B^{-1}H(B^{-1}) = \frac{2}{g}B^{-1}BB(B^{-1}) = \frac{2}{g}I \text{ The value of the residual sum of squares (RSS) from solving the transformed equation } y^* = X^*\beta + \epsilon^* \text{ is the Mahalanobis RSS for the original equation } y = x\beta + Zu + \epsilon.$

Taking advantage of the eigen decomposition of H performed in the EMMA algorithm, the computation of a valid B^{-1} can be simplified to $B^{-1} = diag(1/\sqrt{\xi_1 + \delta},...,1/\sqrt{\xi_n + \delta})U_F'$ B^{-1} is H_sqrt_inv in the code

could be estimate by solving $y^* = x^* + x^*$

The F test here is performed on y^* and x^* In the code h0_rss is the Residual sum of squares without the effecte of fixed variable under testing (H0) mahalanobis_rss is the Residual sum of squares with the effecte of fixed variable under testing (H1)

If here x is the intercept and all the significant genotypic variants, after being calculated Then residuals = y - x Variance explained by significant genotypic variants is (var(y)-residuals. T * residuals) / var(y)