Seja V o espaço vetorial de todas as funções em t sobre \mathbb{R} , mostre que $\sin t$ e $\cos t$ são linearmente independentes.

Demonstração:

Basta mostrar que, se $a(\sin t) + b(\cos t) = 0$ (I), então a = b = 0.

Integrando (I) de 0 a π :

$$a \int_0^\pi \sin t \ dt + b \int_0^\pi \cos t \ dt = 0 \ \Rightarrow \ 2a = 0 \ \Rightarrow \ a = 0 \ \left(\text{II} \right)$$

Substituindo (II) em (I): b = 0.

 $Quod\ Erat\ Demonstrandum.$

Documento compilado em Wednesday $12^{\rm th}$ March, 2025, 23:47, tempo no servidor.

Sugestões, comunicar erros: "a.vandre.g@gmail.com".

Licença de uso: 🐧 💲 🧔 Atribuição-NãoComercial-CompartilhaIgual (CC BY-NC-SA).