Star Network

```
def star_network(n):
    # return number of edges
    return n-1
}
print star_network(5)
```

Subsets

	Subsets				
X	7	XcY	Ycx	8074	Nc; ther
Star	tree	•	0	0	0
planar graphs	trees	0	©	0	0
trees	rings	0	6	0	8
rings	chains	0	0	0	•
chains	trees	©	0	0	٥
hypercubes	rings	0	0	0	6
grids	chains	0	o	0	0
planar graphs	hyper cubes	0	0	Ø	6

Function Comparison

Function Comparision

$$4n^2 + (\log n)^7 + 9n(\log n)^2 + n^{\frac{2}{3}}$$
 is

- $\Theta(n^2)$
- \Box $\Theta((\log n)^7)$
- \Box $\Theta(n^{\frac{2}{3}})$
- \square O(n)
- $O(n^2)$
- \bigcirc $O(n^3)$

Planar Graphs

Planar Graphs

Draw yourself a planar graph with 8 nodes and 15 edges.

How many regions does the graph have? 9

Combination Lock

A "combination lock" graph on n nodes consists of the edges in a chain and the edges in a star, with the left end of the chain as the center of the star. Here's the five node version:

Make a Combination Lock

```
10 - def create_combo_lock(nodes):
11
        G = \{\}
        # your code here
12
13
        make_link(G, nodes[0], nodes[1])
14 -
        for a in range(2,len(nodes)):
            make_link(G, nodes[a-1], nodes[a])
15
16
            make_link(G, 0, nodes[a])
17
        return G
18
```

Erdos-Renyi Graph

Imagine generating an Erdos-Renyi graph with n = 256 and p = 0.25. On average, how many edges will it have? $_{8160}$