APPS@UCU

Linux course

Bootloaders. Partition tables

Morhunenko Mykola

| File | Green | Gr

APPLIED SCIENCES

Introduction

- Next two topics are interconnected, and they also are important for understading how to manage the operating system
- Important terms:
 - CMOS Complementary Metal Oxide Semiconductor . Chip stores the settings like date and time, fan speed, booting sequence
 - BIOS Basic Input/Output System . Firmware to boot the computer
 - UEFI Unified Extensible Firmware Interface . Bootloader
 - GRUB GRand Unified Bootloader . Bootloader
 - ESP EFI System Partition
 - GUID Globally Unique Identifier (or UUID)
 - MBR Master Boot Record . Partition table
 - GPT GUID Partition Table . Partition table

Contents

General knowlage

2 Bootloaders

3 Partition tables

4 Sources

Boot procedure

- It will be a very high-level overview of the boot process. For more precise, see
 Operating systems course.
- User pressing the button, completing the electronic curcuit and providing the power to all.
- The CPU starts up, but needs some instructions to work on (remember, the CPU always needs to do something). Since the main memory is empty at this stage, CPU defers to load instructions from the firmware chip on the motherboard and begins executing instructions
- The firmware code does a Power On Self Test (POST), initializes the remaining hardware, detects the connected peripherals (mouse, keyboard, pendrive etc.) and checks if all connected devices are healthy. You might remember it as a 'beep' that desktops used to make after POST is successful.
- Finally, the firmware code cycles through all storage devices and looks for a boot-loader (usually located in first sector of a disk). If the boot-loader is found, then the firmware hands over control of the computer to it.

Boot procedure

- So now that the boot-loader is loaded, its job is to load the rest of the operating system. GRUB is one such boot-loader that is capable of loading unix-like operating systems and is also able to chain-load Windows OS. Boot-loader is only available in the first sector of a disk, which is 512 bytes. Given the complexity of modern operating systems, some of these boot-loaders tend to do multi-stage loading, where the main boot-loader loads the second-stage-boot-loader in an environment which is not restricted to 512 bytes.
- The boot-loader then loads the kernel into memory. Unix-like operating systems then run the init process (the master process, from which other processes are forked/executed) and finally initialize the run-levels.
- After all this, and after some other drivers are initialized, the Graphical User Inferface (GUI) is loaded and you are presented with the login screen.

CMOS Setup Utility - Copyright (C) 1984-2011 Award Software ► MB Intelligent Tweaker(M.I.T.) Load Fail-Safe Defaults ▶ Standard CMOS Features Load Optimized Defaults ▶ Advanced BIOS Features Set Supervisor Password ▶ Integrated Peripherals Set User Password ▶ Power Management Setup Save & Exit Setup ▶ PC Health Status Exit Without Saving Esc : Quit F8 : Q-Flash 71++: Select Item F11 : Save CMOS to BIOS F10 : Save & Exit Setup F12 : Load CMOS from BIOS Change CPU's Clock & Voltage

Sources

Sources

- UCU Linux Club resources
- Boot procedure