TikZ tricks

Stop wasting your time on tex.stackexchange.com

1 Basic circuits

1.1 Voltage source and lamp

2 Filters

2.1 RLC - Out on RL

2.2 RC high-pass

2.3 RC high-pass with generator

Générateur


```
\begin{circuitikz} \draw
(0,0) node[ground]{}

to[sinusoidal voltage source, v=$V{in}$] (0,3)

to[R, 1=$R_G$] (2,3)

to[C, 1=$10nF$] (5,3)

(5,0) to[R, 1=$10k\Omega$, v=$V{out}$] (5,3)

(5,0)--(0,0)
(0,4.5) node[] {Générateur};

\draw[dotted](-2,-1)--(-2,4)--(2,4)--(2,-1)--(-2,-1);

\end{circuitikz}
```

2.4 RLC - Out on C

2.5 RLC with generator - Out on C

Générateur

3 Transistors

3.1 Alone


```
\begin{circuitikz} \draw
                                    (2.25, 1) node[nfet] (mos) {}
                                    ({\tt mos.D}) \ -- \ (2.25,\ 2) \ {\tt to} \ \ [{\tt short},\ -{\tt o}] (3.25,\ 2) \ \ {\tt node} [{\tt anchor=west}] \ \{\}
                                    (mos.S) \ -- \ (2.25, \ 0) \ to \ [short, \ -o](3.25, \ 0) \ node[anchor=west] \ \{ \ \}
                                    (mos.B) -- (mos.S)
                                    (2.25,0) to [short, -o](0,0) node[anchor=east] {} \mbox{\em \scalebox{\footnotemark}{\scalebox{\footnotemark}{\scalebox{\footnotemark}{\scalebox{\footnotemark}{\scalebox{\footnotemark}{\scalebox{\footnotemark}{\scalebox{\footnotemark}{\scalebox{\footnotemark}{\scalebox{\footnotemark}{\scalebox{\footnotemark}{\scalebox{\footnotemark}{\scalebox{\footnotemark}{\scalebox{\footnotemark}{\scalebox{\footnotemark}{\scalebox{\footnotemark}{\scalebox{\footnotemark}{\scalebox{\footnotemark}{\scalebox{\footnotemark}{\scalebox{\footnotemark}{\scalebox{\footnotemark}{\scalebox{\footnotemark}{\scalebox{\footnotemark}{\scalebox{\footnotemark}{\scalebox{\footnotemark}{\scalebox{\footnotemark}{\scalebox{\footnotemark}{\scalebox{\footnotemark}{\scalebox{\footnotemark}{\scalebox{\footnotemark}{\scalebox{\footnotemark}{\scalebox{\footnotemark}{\scalebox{\footnotemark}{\scalebox{\footnotemark}{\scalebox{\footnotemark}{\scalebox{\footnotemark}{\scalebox{\footnotemark}{\scalebox{\footnotemark}{\scalebox{\footnotemark}{\scalebox{\footnotemark}{\scalebox{\footnotemark}{\scalebox{\footnotemark}{\scalebox{\footnotemark}{\scalebox{\footnotemark}{\scalebox{\footnotemark}{\scalebox{\footnotemark}{\scalebox{\footnotemark}{\scalebox{\footnotemark}{\scalebox{\footnotemark}{\scalebox{\footnotemark}{\scalebox{\footnotemark}{\scalebox{\footnotemark}{\scalebox{\footnotemark}{\scalebox{\footnotemark}{\scalebox{\footnotemark}{\scalebox{\footnotemark}{\scalebox{\footnotemark}{\scalebox{\footnotemark}{\scalebox{\footnotemark}{\scalebox{\footnotemark}{\scalebox{\footnotemark}{\scalebox{\footnotemark}{\scalebox{\footnotemark}{\scalebox{\footnotemark}{\scalebox{\footnotemark}{\scalebox{\footnotemark}{\scalebox{\footnotemark}{\scalebox{\footnotemark}{\scalebox{\footnotemark}{\scalebox{\footnotemark}{\scalebox{\footnotemark}{\scalebox{\footnotemark}{\scalebox{\footnotemark}{\scalebox{\footnotemark}{\scalebox{\footnotemark}{\scalebox{\footnotemark}{\scalebox{\footnotemark}{\scalebox{\footnotemark}{\scalebox{\footnotemark}{\scalebox{\footnotemark}{\scalebox
                                    (0,2) node[anchor=east]{}[short, o-] to (1,2) \%
                                    (1,2) -- (1,1) -- (mos.G)
\end{circuitikz}\hspace*{1cm}
\begin{circuitikz}\draw
                                    (0,0) node[anchor=east] {} %g
                                   to [short, o-] (1,0)
to [open, v<={^}}] (1,-2)
                                    to [short, -o] (4,-2)
                                   to [short, -o] (0,-2) node[anchor=east] {} \slash\!\!/ s (3,0) to [cI, i={^*}] (3,-2)
                                    (3,-2) to [short, -o] (4,-2) node[anchor=west] {} \mbox{\em $\%$} s
                                    (3,0) to [short, -o] (4,0)
```

3.2 Alone with voltage and current


```
\begin{circuitikz} \draw
                      (2.25, 1) node[nfet] (mos) {}
                      \label{eq:mos.D} \mbox{(mos.D) -- (2.25, 2) to [short, -o, i<=\$I_D\$](3.25, 2) node[anchor=west] $\{D\}$} \mbox{(mos.D) -- (2.25, 2) to [short, -o, i<=\$I_D\$](3.25, 2) } \mbox{(mos.D) -- (2.25, 2) to [short, -o, i<=\$I_D\$](3.25, 2) } \mbox{(mos.D) -- (2.25, 2) to [short, -o, i<=\$I_D\$](3.25, 2) } \mbox{(mos.D) -- (2.25, 2) to [short, -o, i<=\$I_D\$](3.25, 2) } \mbox{(mos.D) -- (2.25, 2) to [short, -o, i<=\$I_D\$](3.25, 2) } \mbox{(mos.D) -- (2.25, 2) to [short, -o, i<=\$I_D\$](3.25, 2) } \mbox{(mos.D) -- (2.25, 2) to [short, -o, i<=\$I_D\$](3.25, 2) } \mbox{(mos.D) -- (2.25, 2) to [short, -o, i<=\$I_D\$](3.25, 2) } \mbox{(mos.D) -- (2.25, 2) to [short, -o, i<=\$I_D\$](3.25, 2) } \mbox{(mos.D) -- (2.25, 2) } \mbox{(mos.
                      (mos.S) -- (2.25, 0) to [short, -o](3.25, 0) node[anchor=west] {S}
                      \hookrightarrow %S
                      (mos.B) -- (mos.S)
                      (2.25,0) to [short, -o](0,0) node[anchor=east] {S} %S
                      (0,2) node[anchor=east]\{G\}[short, o-] to (1,2) \%
                      (1,2) -- (1,1) -- (mos.G)
                      (0,0) [open,v^>=\$V_{GS}] to (0,2)
                      (3.25,0) [open,v>=V_{DS}] to (3.25,2)
;\end{circuitikz}\hspace*{1cm}
\begin{circuitikz}\draw
                      (0,0) node[anchor=east] {g} %g
                      to [short, o-] (1,0)
                      to [open, v \le v_{gs}] (1,-2)
                      to [short, -o] (4,-2)
                      to [short, -o] (0,-2) node[anchor=east] \{s\} %s
                      (3,0) to [cI, i_=\rotatebox{90}{g_m\cdot v_{gs}}] (3,-2)
                      (3,-2) to [short, -o] (4,-2) node[anchor=west] {s} \mbox{\ensuremath{\it \#S}}
                     (3,0) to [short, -o] (4,0) to node[anchor=west] {d} (4,0) %d
                      (4.0,-2) [open, v \ge v_{ds}] to (4.0,0)
;\end{circuitikz}
\begin{circuitikz}\draw
                      (0,0) node[anchor=east] {g}
                      to [short, o-] (1,0)
                      to [open, v \le v_{gs}] (1,-2)
                      to [short, -o] (0,-2)
                      to (0,-2) node[anchor=east] {s}
                      (3,0) to [cI=$g \cdot v_{gs}$] (3,-2)
                      (3,-2) to [short, -o] (4,-2) node[anchor=west] \{s\}
                      (3,0) to [short, -o] (4,0)
                      to node[anchor=west] {d} (4,0)
                      (1,-2) -- (3,-2)
;\end{circuitikz}
```

3.3 Full common source


```
\begin{circuitikz}[scale=1]\draw
(0,1) to [short,o-] (9,1)
(4,6) to [short] (9,6)
(0,3) node[anchor=east] {In} to [short,o-] (1,3)
(0,3) node [anchor=south] {} to [open, v_{=}V_{in} (0,1)
(1,3) to [C=\$C_{in}\} ](1.5,3)
(1.5,3) to [short,-*] (2,3) node [anchor=south west]{}
(2,6) node [anchor=south ] (alim) \{$+V_{DC}\}
(1.6,6) -- (2.4,6) %bar under the label
(2,3) to [R, 1_=$R_{B1}$](2,6)
(2,3) to [R=\$R_{B2}\$](2,1)
(4,3) node[nfet] (mos) {}
(mos.G) to [short] (2,3)
(mos.D) to (4,4) to [R, 1_=R_D (4, 6)
(mos.D) to [short,-*](4,3.5) to [short] (4.25,3.5)
(mos.S) to [short] (4,1)% to [short, -o](2,0) node[anchor=west] {S}
({\tt mos.S}) \ {\tt --} \ ({\tt mos.B}) \ {\tt \%source} \ to \ bulk \ connection
(4.25,3.5) node[anchor=south]{} to [C, 1^=$C{out}$] (6,3.5) to
\hookrightarrow [short](6,3.5)node[anchor=south]{} to [short,-o](6.5,3.5)node [anchor=south] \hookrightarrow {Out}
(6,3.5) to [generic, l_=$R_{ch}$] (6,1)
(6.5,3.5) to [open, v^{=$V_{out}}] (6.5,1)
(9,6) to [battery, l_=$E$](9,1)
(4,1) node[circ]{}
(4,1) node[ground]{}
;\end{circuitikz}
```

3.4 Common source - Direct polarisation


```
\begin{circuitikz}[scale=1]\draw
        (0,1) to [short,o-] (9,1)
        (4,6) to [short] (9,6)
        (0,3) node[anchor=east] \{In\} to [short,o-] (1,3)
        (0,3) to [open, v_{=}V_{in} (0,1)
        (1,3) to [C=\$C_{in}\} ](1.5,3)
        (1.5,3) to [short,-*] (2,3)
        (2,6) node [anchor=south ] (alim) \{\$+V_{DC}\}
        (1.6,6) -- (2.4,6) %bar under the label
        (2,3) to [R, 1_=$R_{B1}$](2,6)
        (4,3) node[nfet] (mos) {}
        (mos.G) to [short] (2,3)
        (mos.D) to (4,4) to [R, 1_=$R_D$] (4, 6)
        (mos.D) to [short, -*](4,3.5) to [short](4.25,3.5)
        (mos.S) to [short] (4,1) % to [short, -o](2,0) node[anchor=west] {S}
        (mos.S) -- (mos.B) %source to bulk connection
         (4.25,3.5) to \ [C, \ 1^=\$C\{out\}\$] \ (6,3.5) to \ \ [short](6,3.5) to \ \ [short,-o](6.5,3.5) node 
        \hookrightarrow [anchor=south] {Out}
        (6,3.5) to [generic, l_=$Z_{ch}$] (6,1)
        (6.5,3.5) to [open,v^<=$V_{out}$] (6.5,1)
        (9,6) to [battery, l=$E$](9,1)
;\end{circuitikz}
```

3.5 Common source - small signal


```
(8.5,0) to [R,l_=$R_D$] (8.5,3)

(10,3) to [generic, l=$R_{ch}$] (10,0)

(6,3) to [short,-o] (11,3) node [anchor=west] {Out}

(11,3) to [open, v^<=$V_{out}$](11,0)

;\end{circuitikz}
```

3.6 Common source simple


```
\verb|\ctikzset{tripoles/mos style/arrows}| \\
\begin{circuitikz}[scale=0.8]\draw
        (0,0) to [V=\$e(t)\$] (0,2)
        (0,2) to [short] (1,2)
        (0,0) to (1,0)
        (1,2) to [open, v^<=$V_{GS}$](1,0)
(1,0) to [short, o-] (2,0)
        (3,2) node[nigfete ] (mos) {}
        (3,0) to [short] (mos.S)
        (1,2) to [short] (mos.G)
        (2,0) to (3,0)
        (mos.D) to [short, i \le I_D (3,3)
        (3,3) to [R,1=\$R_D\$] (3,5)
        (3,5) to (4,5)
        (2,0) -- (5,0)
        (5,5) -- (3,5)
        (5,5) to [battery, l=$12V$] (5,0)
        (3,0) node[ground] {}
;\end{circuitikz}
```

3.7 Common source simple with v_{out}


```
\begin{circuitikz}[scale=0.8] \draw (0,0) to [sV=$e(t)$] (0,2)
```

```
(0,2) to [short] (1,2)
        (0,0) to (1,0)
        (1,2) to [open, v^{=}v_{in}(1,0)
        (1,0) to [short, o-] (2,0)
        (3,2) node[nigfete ] (mos) {}
        (mos.S) to [short] (3,0)
        (1,2) to [short] (mos.G)
        (2,0) to (3,0)
        (mos.D) to [short](3,3) %, i <= I_D $
        (3,3) to [R, 1=$330\ohm$] (3,5)
        (3,3) to [short, -o](4,3)
        (4,3) node[anchor=west] {$v_{out}$}
        (3,5) node[rground, yscale=-1] (alim) {}
        (3,5.7) node \{+12V\}
        (3,0) node[ground] {}
;\end{circuitikz}
```

4 Operational amplifiers

4.1 Inverter with voltage and buffered offset


```
\begin{circuitikz} [scale=1.2]\draw
        (0,0) node[op amp] (opamp) {}
        (opamp.down) ++ (0,-0.5) node[ground]{} -- (opamp.down)
        (opamp.up) ++ (0,.5) node[above] \{12V\} -- (opamp.up)
        (opamp.-) - | (-1.5,2) to [R, 1=$R2$] (1.5,2) | - (opamp.out)
        (opamp.+) -| (-1.5,-0.4) to [european voltage source, 1_=$V_{C},-*] (-1.5,-2)
        \hookrightarrow node[ground] {}
        (-4,-2) node[ground] {} to [sV,*-*] (-4,0.4) |- ++(0.5,0) to [C,1=\$C1\$]
        \rightarrow ++(0.25,0) to [R,1=$R1$] (opamp.-)
        (-4,-2) node[anchor=west] {$0V$}
        (-1.5,-2) node[anchor=west] {$0V$}
        (-2.9,0.4) node[circ]{}
        (-2.9,0.4) node[anchor=south]{\rotatebox{90}{$6.3V+v_{in}}}
        (-1.5,0.4) node[circ]{}
        (-1.5,0.4) node [anchor=south west] {\rotatebox{42}{$6.3V$}}
        (-1.5,-0.4) node[circ]{}
        (-1.5, -0.4) node [anchor=east] {$6.3V$}
        (1.5,0) node[circ]{}
        (1.5,0) node [anchor=south west] \{\$6.3V-10v_{in}\}
        (opamp.out) to (2.5,0)
        (2.5,-2) node[ground] {} to [open, v>=$V_{out}$] (2.5,0)
        (-4.5,-2) to [open, v^>=$v_{in}$] (-4.5,0.5)
        (-4,0.4) node[anchor=east] {$v_{in}$}
;\end{circuitikz}
```


5 Diodes

5.1 Alone


```
\begin{circuitikz}\draw
(0,0) node[anchor=east] {A} to [short,i>^=$I$] (1.5,0)
(0,0) to [Do, v<=$V$] (2.5,0) node [anchor=west]{K}
;\end{circuitikz}
```

5.2 Pulsed LED


```
\label{lem:circuitikz} $$ \operatorname{circuitikz} draw $$ (0,0) to [square voltage source, l=$E1$] (0,2) to [R, l=$R$] (2,2) to [led, $$ \hookrightarrow l_=$D$](2,0) --(0,0) $$; $$ \end{circuitikz}
```

5.3 LED

5.4 Load


```
\begin{circuitikz}\draw
(0,0) to [sV, 1=$V_{ac}$] (0,3)
to [Do] (3,3)
to [european resistor,1_=$Z_{Charge}$] (3,0) to (0,0)
(3.5,3) to [open, v^<=$V_{charge}$] (3.5,0)
;\end{circuitikz}
```

5.5 Load and C in parallel


```
\begin{circuitikz}\draw
(0,0) to [sV, l=$V_{ac}$] (0,3)
to [Do] (5,3)
to [european resistor,l=$R_{Ch}$] (5,0) to (0,0)
(4,3) to [eC,l_=$C$, *-*] (4,0)
(6,3) to [open, v^<=$V_{charge}$] (6,0)
;\end{circuitikz}
```

5.6 Full-wave rectifier with C and load

5.7 Zener alone


```
\begin{circuitikz}\draw
(0,0) node[anchor=east] {A} to [short,i>^=$I$] (1.5,0)
(0,0) to [zDo, v<=$V$] (2.5,0) node [anchor=west]{K}
;\end{circuitikz}
```

5.8 Zener - DC source

5.9 Zener - DC source and load

6 Logic

6.1 Gates


```
\begin{circuitikz} \draw
        (0,0) node [american nand port]{}
        (-0.7,-0.8) node \{NAND\}
        (2,0) node [american nor port] {}
        (2-0.7, -0.8) node \{NOR\}
        (4,0) node [american xnor port] {}
        (4-0.7,-0.8) node \{XNOR\}
        (0,2) node [american and port] {}
        (-0.7, 2-0.8) node \{AND\}
        (2,2) node [american or port] \{\}
        (2-0.7,2-0.8) node {OR}
        (4,2) node [american xor port] \{\}
        (4-0.7,2-0.8) node \{XOR\}
        (6,1) node [american not port] {}
        (6.7-0.7,1-0.8) node {NOT}
;\end{circuitikz}
```

6.2 Circuit 1

6.3 Voter


```
\begin{circuitikz} \draw
         (0,0) node [american and port] (and1) {}
         (and 1.in \ 2) \ -- \ ++(-0.5,0) \ |- \ node \ [circ] \ \{\} \ ++(-0.5,2.56) \ node \ [ocirc] \ (B) \ \{\}
         \hookrightarrow node [anchor=east] {B}
         (0,2) node [american or port] (or){}
         (or.in 1) -- ++(-0.5,0) |- (B)
         (or.in 2) \mid - node [circ] \{\} ++(-1,-0.4) node [ocirc] (C) \{\} node [anchor=east]
         \hookrightarrow {C}
         (and1.in 1) |- (C)
         (2,3) node [american and port] (and2) {}
         (or.out) - | (and2.in 2)
         (and 2.in 1) -- ++(-3,0) node [ocirc] (A) {} node [anchor=east] {A}
         (or.out) - | (and2.in 2)
         (3.5,1) node [american or port] (and3){}
         (and2.out) - | (and3.in 1)
         (and1.out) - | (and3.in 2)
         (and 3.out) \ -- \ ++(1,0) \ node \ [ocirc] \ \{\} \ node \ [anchor=west] \ \{Y\}
;\end{circuitikz}
```

6.4 Circuit 2


```
\begin{circuitikz} \draw
(0,0.72) node [american and port] (and1) {}
(-3,1) node [american not port, scale=0.8] (not){}
(and1.in 1) -| (not.out)
(not.in) |- ++(-0.5,0) node [ocirc] (A) {} node [anchor=east] {A}
(and1.in 2) |- ++(-2.66,0) node [ocirc] (B) {} node [anchor=east] {B}
(and1.out) -- ++(1,0) node [ocirc] (Y) {} node [anchor=west] {Y}
;\end{circuitikz}
```

6.5 Bistable


```
\begin{circuitikz} \draw
       (0,0) node [american not port] (not3) {}
       (2,0) node [american not port] (not4) {}
       (not3.out) -- (not4.in)
       (not4.out) -- ++(0.5,0) |- ++(-4,-1) |- (not3.in)
       (8,1) node [american not port] (not1) {}
       (8,-1) node [american not port] (not2) \{\}
       (not1.out) ++(0.5,-0.5) coordinate (a-a) %coords of the crossing wire
       (not2.in) ++(-1,0.5) coordinate (a-b)
       (not1.in)++(-1.27,-0.5) node (in) {} % end of the wire with kinky bump
       (not2.out)-| ++(0.5,0.5) to [kinky cross=(a-a)--(a-b), kinky crosses=left] (in)
       (not1.in) - | ++(-1.14, -0.55)
       (not2.out) -- ++(1,0) node [circ] () {} node [anchor=south] {}(verline{Q})
       (not1.out) - + (0.5, -0.5) - + (-3.043, -1) - (not2.in)
       (not1.out) -- ++(1,0) node [circ] () {} node [anchor=south] {$Q$}
;\end{circuitikz}
```

6.6 Enable


```
\begin{circuitikz} \draw
(0,0) node [american not port] (not1) {}
(not1)+(0,.25) |- ++(-1.7,1) node [ocirc] () {} node [anchor=south] {$B$}
(not1.in) -- ++(-1,0) node [ocirc] () {} node [anchor=south] {$A$}
(not1.out) -- ++(1,0) node [ocirc] () {} node [anchor=south] {$Q$}
;\end{circuitikz}
```

6.7 Bistable with enable


```
\begin{circuitikz} \draw
        (0,0) node [american not port] (not3) {}
        (not3)+(0,.25) \mid - ++(-0.7,1) \text{ node [ocirc] () {} node [anchor=south] {} $B1$}
        (2,0) node [american not port] (not4) {}
        (not 4)+(0,.25) \mid - ++(-0.7,1) \text{ node [ocirc] () } \{ node [anchor=south] \} 
        (not3.out) -- (not4.in)
        (not4.out) -- ++(0.5,0) |- ++(-4,-1) |- (not3.in)
        (not 3. out) \mid - ++(0.25,0) \text{ node [circ] () } \{\} \text{ node [anchor=south] } \{\$ \setminus \{0.25,0\}\} \}
        (not4.out) \mid - ++(0.25,0) \text{ node [circ] () {} node [anchor=south] {$Q$}}
        (8,1) node [american not port] (not1) \{\}
        (not1)+(0,0.25) |- ++(-0.7,1) node [ocirc] () {} node [anchor=south] {$B2$}
        (8,-1) node [american not port] (not2) {}
        (not2)+(0,-0.25) \mid - ++(-0.7,-1) \text{ node [ocirc] () {} node [anchor=north] {} B1$}
        (not2.in) ++(-1,0.5) coordinate (a-b)
        (not1.in)++(-1.27,-0.5) node (in) {} \mbox{\ensuremath{\%}} end of the wire with kinky bump
        (not2.out)-| ++(0.5,0.5) to [kinky cross=(a-a)--(a-b), kinky crosses=left] (in)
        (not1.in)-| ++(-1.14,-0.55)
        (not2.out) -- ++(1,0) node [ocirc] () {} node [anchor=south] {}(overline{Q})
        (not1.out) - + (0.5, -0.5) - + (-3.043, -1) - (not2.in)
        (not1.out) -- ++(1,0) node [ocirc] () {} node [anchor=south] {$Q$}
;\end{circuitikz}
```

6.8 NOR


```
\begin{circuitikz} \draw
(0,0) node [american nor port] (nor) {}
(nor.in 1) -- ++(-1,0) node [ocirc] () {} node [anchor=east] {$A$}
(nor.in 2) -- ++(-1,0) node [ocirc] () {} node [anchor=east] {$B$}
(nor.out) -- ++(1,0) node [ocirc] () {} node [anchor=west] {$Q$}
;\end{circuitikz}
```

6.9 SR using NOR


```
\begin{circuitikz} \draw
        (0,1) node [american nor port] (nor1) {}
        (0,-1.5) node [american nor port] (nor2) {}
        (nor1.out) ++(0.5,-0.5) coordinate (a-a) %coords of the crossing wire
        (nor2.in 2) ++(-1.5,0.5) coordinate (a-b)
        (nor1.in 2)++(-1.135,-0.225) node (in) {} \% end of the wire with kinky bump
        (nor2.out)-| ++(0.5,0.5) to [kinky cross=(a-a)--(a-b), kinky crosses=left] (in)
        (nor1.in 2)-| ++(-1,-0.3)
        (nor1.out) -- ++(1.5,0) node [ocirc] () {} node [anchor=west] {\ \( overline {Q}$})
        (nor1.out) - | ++(0.5,-0.5) -- ++(-3.043,-1.5) | - (nor2.in 1)
        (nor2.out) -- ++(1.5,0) node [ocirc] () {} node [anchor=west] {\Q}
        (nor1.out) \mid - ++(0.25,0)
        (nor1.in 1) -- ++(-2,0) node [ocirc] () {} node [anchor=east] \{\$S\$\}
        (nor2.in 2) -- ++(-2,0) node [ocirc] () {} node [anchor=east] {$R$}
;\draw [dashed](-2.75,-2.25) rectangle (1,1.75);
\end{circuitikz}
```

6.10 SR using NAND


```
;
\draw [dashed](-2.75,-2.25) rectangle (1,1.75);
\end{circuitikz}
```

6.11 SR with NAND and enable


```
\begin{circuitikz} \draw
       (0,1.28) node [american nand port] (nand1) {}
       (0,-1.5-0.28) node [american nand port] (nand2) {}
       (nand1.in 1) -- ++(-1.5,0) \ node \ [ocirc] \ () \ \{\} \ node \ [anchor=east] \ \{\$S\$\}
       (nand2.in 2) -- ++(-1.5,0) node [ocirc] () {} node [anchor=east] {$R$}
       (nand1.in 2) \mid - ++(-1.5,-1.28) coordinate (dot) node [ocirc] () {} node [anchor=east] {$E$}
       (nand2.in 1) |- (dot)
       (3,1) node [american nand port] (nor1) {}
       (3,-1.5) node [american nand port] (nor2) \{\}
       (nor2.in 2) ++(-1.5,0.5) coordinate (a-b)
       (nor1.in 2)++(-1.135,-0.225) node (in) \{\} % end of the wire with kinky bump
       (nor2.out)-| ++(0.5,0.5) to [kinky cross=(a-a)--(a-b), kinky crosses=left] (in)
       (nor1.in 2)-| ++(-1,-0.3)
       (nor1.out) -- ++(1.5,0) node [ocirc] () {} node [anchor=west] {\P}
       (nor1.out) - | ++(0.5,-0.5) -- ++(-3.043,-1.5) |- (nor2.in 1)
       (nor2.out) -- ++(1.5,0) \ node \ [ocirc] \ () \ \{\} \ node \ [anchor=west] \ \{\$ \setminus \{\} \} \}
       (nor1.out) |- ++(0.25,0)
       (nor1.in 1) -| (nand1.out)
       (nor2.in 2) -| (nand2.out)
;\end{circuitikz}
```

6.12 D latch


```
\begin{circuitikz} \draw
        (0,1.28) node [american nand port] (nand1) {}
        (0,-1.5-0.28) node [american nand port] (nand2) {}
        (nand1.in 1) -- ++(-2.5,0) node [ocirc] (D) {} node [anchor=east] {$D$}
        (-2.25, -2.07) node [american not port] (not) {}
        (D) -| (not.in)
        (not.out) --
                              (nand2.in 2)
        (D)++(0.94,0) coordinate (Dvert) "pour avoir seulement le segment vertical pour calculer
        (nand1.in 2) \mid - ++(-1.25, -1.28) coordinate (dot)
        (dot) to [kinky cross=(Dvert)--(not.in), kinky crosses=left] ++(-1.25,0)node [ocirc] () {} node
        \hookrightarrow \quad \texttt{[anchor=east] } \texttt{\$E\$} \}
        (nand2.in 1) |- (dot)
        (3,1) node [american nand port] (nor1) \{\}
        (3,-1.5) node [american nand port] (nor2) {}
        (nor1.out) ++(0.5,-0.5) coordinate (a-a) \% coords of the crossing wire (nor2.in 2) ++(-1.5,0.5) coordinate (a-b)
        (nor1.in 2)++(-1.135,-0.225) node (in) {} \mbox{\ensuremath{\%}} end of the wire with kinky bump
        (nor2.out)-| ++(0.5,0.5) to [kinky cross=(a-a)--(a-b), kinky crosses=left] (in)
        (nor1.in 2)-| ++(-1,-0.3)
        (nor1.out) -- ++(1.5,0) node [ocirc] () {} node [anchor=west] {$Q$}
        (nor1.out) - | ++(0.5,-0.5) -- ++(-3.043,-1.5) | - (nor2.in 1)
        (nor2.out) -- ++(1.5,0) \ node \ [ocirc] \ () \ \{\} \ node \ [anchor=west] \ \{\$ \setminus Q\} \}
        (nor1.out) \mid - ++(0.25,0)
        (nor1.in 1) -| (nand1.out)
        (nor2.in 2) -| (nand2.out)
;\draw [dashed](-3.5,-3.25) rectangle (4.25,2.75);
\end{circuitikz}
```

7 Graphs

7.1 Logarithmic axis


```
\begin{tikzpicture}
  \begin{loglogaxis}[
    xmin=1e-1, xmax=1e5,
    ymin=1e-1, ymax=1e5,
    yticklabels={,,},
    xticklabels={,,},
    grid=both,
    width=17cm,
    height=17cm,
    major grid style={black!50}
  ]
  \end{loglogaxis}
  \end{tikzpicture}
```

7.2 Semi-logarithmic axis


```
\begin{tikzpicture}
  \begin{axis}[
      xmode=log,
      xmin=le-1, xmax=le5,
      ymin=1, ymax=9,
      yticklabels={,,},
      xticklabels={,,},
      grid=both,
      width=17cm,
      height=9cm,
      major grid style={black!50}
    ]
  \end{axis}
  \end{tikzpicture}
```

$\textbf{7.3} \quad I_z(V_z)$


```
\begin{tikzpicture}
\begin{axis}[ %title ={4Hz Sine Wave},
```

```
% width=7cm,
    % height=5cm,
    axis lines=middle,
    % ymin = -10,
    ymax=4,
    xlabel = {V_z$},
    xticklabels={},
    yticklabels={},
    % ytick={-10,-8,-6,-5,-4,-3,-2,-1,1,2,3,4,5,6,8,10}
    ylabel = {I_z$},
% grid=both,
% grid style={line width=.1pt, draw=black!60},
% major grid style={line width=.2pt,draw=black},
% ultra thick,
% minor tick num=5,
% enlargelimits={abs=0.5},
% axis line style={latex-latex},
yticklabel style={font=\normalsize,fill=white},
xlabel style={at={(ticklabel* cs:1)}, anchor=north west},
% ylabel style={at={(ticklabel* cs:1)}, anchor=south west},
    \addplot[%
    domain=1:3,
    thick,
    samples=100
    \{0.9*(x-1)^2\};
    % \addlegendentry{$V_{in}$}
    \addplot[%
    domain=0:1,
    thick,
    samples=100
    {0};
    \addplot[%
    red,
    domain=0:3,
    thick,
    samples=100
    {-x+3};
    \addplot[%
    red,
    domain=0:2,
    thick.
    samples=100
    \{-1.5*x+3\};
    \addplot[%
    red,
    domain=0:1.
    thick,
    samples=100
    \{-3*x+3\};
    \addplot[%
    red,
    domain=0:0.5,
    thick.
    samples=100
    \{-6*x+3\};
    \end{axis}
    % \draw[dashed] (4.55,0) -- (4.55,5);
    \draw[decorate, decoration={brace, amplitude=5pt}] ([yshift=-0.2cm]2.5,0)--
    \,\hookrightarrow\,\,\text{node[below=0.25\,cm, text width=2\,cm, align=center]}
    {$V_2 < V_{BR}}$}([yshift=-0.2cm]0,0); % Pour avoir une accolade avec la pointe
     → vers le bas, d'abord donner la coordonnee de droite.
    \label{lem:condition} $$ \operatorname{decoration}=\{\operatorname{brace},\ \operatorname{amplitude}=5\operatorname{pt}\}\ ([y shift=-0.2\operatorname{cm}]6.85,0)=-10\operatorname{m}]6.85,0)=-10\operatorname{m}
    \ \hookrightarrow \ \ node[below=0.25\,cm,\ text\ width=4cm,\ align=center]
```

```
{$V_2 > V_{BR}$}([yshift=-0.2cm]2.5,0); % Pour avoir une accolade avec la pointe

→ vers le bas, d'abord donner la coordonnee de droite.

\draw [<-] (0,4.5) to [out=10,in=170] node[above]{$R_{ch}} \searrow$} (6.85,4.5);

% Note that I had to replace the - by "to". Notice how the angles work:

% ●

% When the curves goes "out" of (0,0), you put a needle with one extremity

% on the starting point and the other one facing right and you turn it coun-

% terclockwise until it is tangent to the curve. The angle by which you have

% to turn the needle gives you the "out" angle.

% ●

% When the curves goes "in" at (2,1.5), you put a needle with one extremity

% on the arrival point and the other one facing right and you turn it coun-

% terclockwise until it is tangent to the curve. The angle by which you have

% to turn the needle gives you the "in" angle.

% https://cremeronline.com/LaTeI/minimaltikz.pdf

% A very minimal introduction to TikZ, by Jacques Cremer

\end{tikzpicture}
```

7.4 $V_{out}(I_{out})$


```
\begin{tikzpicture}
        \begin{axis}[ \( \tautile = \left\{ \text{Hz Sine Wave} \right\},
        % width=7cm.
        % height=5cm,
        axis lines=middle,
        % ymin = -10,
        ymax=1.5,
        xlabel ={$I_{out}$},
        xticklabels={},
        yticklabels={},
        % ytick={-10,-8,-6,-5,-4,-3,-2,-1,1,2,3,4,5,6,8,10}
        ylabel ={$V_{out}$},
    % grid=both,
    % grid style={line width=.1pt, draw=black!60},
    % major grid style={line width=.2pt,draw=black},
    % ultra thick.
    % minor tick num=5,
    % enlargelimits={abs=0.5},
    % axis line style={latex-latex},
```

```
yticklabel style={font=\normalsize,fill=white},
    xlabel style={at={(ticklabel* cs:1)},anchor=north west},
    % ylabel style={at={(ticklabel* cs:1)}, anchor=south west},
        \addplot[%
        domain=0:2,
        thick,
        samples=100
        {1}:
        % \addlegendentry{$V_{in}$}
        \addplot[%
        domain=2:3.
        thick,
        samples=100
        {-x+3};
        \end{axis}
        \draw[dashed] (4.55,0) -- (4.55,5);
        \draw[decorate, decoration={brace, amplitude=5pt}] ([yshift=-0.2cm]4.55,0)--
        \,\,\hookrightarrow\,\,\,\texttt{node[below=0.25\,cm,\ text\ width=4cm]}
        {Grosse charge, $I_{out}} est donc faible et la Zener est en avalanche. La
        \hookrightarrow charge est régulée.}([yshift=-0.2cm]0,0); % Pour avoir une accolade avec la
        \hookrightarrow pointe vers le bas, d'abord donner la coordonnee de droite.
        \draw[decorate, decoration={brace, amplitude=5pt}] ([yshift=-0.2cm]6.85,0)--
        \hookrightarrow node[below=0.25cm, text width=2cm]
        {Diviseur résistif, la Zener est bloquante.}([yshift=-0.2cm]4.55,0); // Pour
         → avoir une accolade avec la pointe vers le bas, d'abord donner la coordonnee

    de droite.

   % Note that I had to replace the - by "to". Notice how the angles work:
% .
% When the curves goes "out" of (0,0), you put a needle with one extremity
\mbox{\%} on the starting point and the other one facing right and you turn it coun-
% terclockwise until it is tangent to the curve. The angle by which you have
% to turn the needle gives you the "out" angle.
% When the curves goes "in" at (2,1.5), you put a needle with one extremity
% on the arrival point and the other one facing right and you turn it coun-
% terclockwise until it is tangent to the curve. The angle by which you have
% to turn the needle gives you the "in" angle.
% https://cremeronline.com/LaTeX/minimaltikz.pdf
% A very minimal introduction to TikZ, by Jacques Cremer
\end{tikzpicture}
```

7.5 Time graph 1


```
\usetikzlibrary{calc} {
```

```
\draw [->] (0,0) -- (0,1);
        \node [anchor=east] at (0,1) {A};
        \draw [->]( 0,0) -- (10.5,0);
        \node [anchor=west] at (10.5,0) {t};
        \foreach \x in \{1,2,...,10\} \draw (\x,-0.1) -- (\x,0.1);
        \foreach \x in \{1,2,...,10\} \draw (\x,-0.1-2) -- (\x,0.1-2);
        \foreach \x in \{1,2,...,10\} \draw (\x,-0.1-4) -- (\x,0.1-4);
        \node [anchor=north, inner sep=0pt, outer sep=0pt] at (1,0.25) {10ns};
        \node [anchor=north, inner sep=0pt, outer sep=0pt] at (2,0.25) {20ns};
        draw [->] (0,-2) -- (0,1-2);
        \node [anchor=east] at (0,1-2) {B};
        draw [->] (0,-2) -- (10.5,-2);
        \node [anchor=west] at (10.5,-2) {t};
        draw [->] (0,-4) -- (0,1-4);
        \node [anchor=east] at (0,1-4) {Y};
        draw [->] (0,-4) -- (10.5,-4);
        \node [anchor=west] at (10.5,-4) {t};
        \draw [line width=2pt] (0,0) -|(3,1) -| (10,1); %A
        \draw [line width=2pt] (0,0-2) -|(1,1-2) -| (5,0-2) -- (10,0-2); %B
        \draw [line width=2pt] (0,-4) -| (3,1-4) -| (6,0-4)--(10,0-4); %\forall \text{$\text{$\node N$}$}
\end{tikzpicture}
```

8 Miscellaneous

8.1 74HC00


```
(out2) |- (nand2.out)
      (1+2.8,5-1.5) node [american nand port,scale=0.8] (nand3) {}
      (1+1,5) node (in31) {}
      (2+1,5) node (in32) {}
      (3+1,5) node (out3) {}
      (in31) \mid - (nand3.in 2)
      (in32) \mid - ++(-0.6, -0.75) \mid - (nand3.in 1)
      (out3) |- (nand3.out)
      (1+2.8+3,5-1.5) node [american nand port,scale=0.8] (nand4) {}
      (2+3,5) node (in41) {}
      (3+3,5) node (in42) {}
      (4+3,5) node (out4) {}
      (in41) |- (nand4.in 2)
      (in42) \mid - ++(-0.6, -0.75) \mid - (nand4.in 1)
      (out4) |- (nand4.out)
      (7,0-0.25) node [anchor=north](gnd) {GND}
      (1,5+0.35) node [anchor=south](vcc) {VCC}
;\draw (0,0)rectangle (8,5);
\hookrightarrow \{ \x \};
\draw (0,2) arc[start angle=-90, end angle=90, radius=0.5];
\end{circuitikz}
```

8.2 74HC32


```
\begin{circuitikz}[scale=0.8] \draw
        (4,2.5) node [anchor=center] \{\$74HC32, 4\cdot 0R\$\}
        (2.8,1.5) node [american or port,scale=0.8] (or1) {}
        (1,0) node (in11) {}
        (2,0) node (in12) {}
        (3,0) node (out1) {}
        (in11) |- (or1.in 1)
        (in12) \mid - ++(-0.6, 0.75) \mid - (or1.in 2)
        (out1) |- (or1.out)
        (2.8+3,1.5) node [american or port,scale=0.8] (or2) {}
        (1+3,0) node (in21) {}
        (2+3,0) node (in22) {}
        (3+3,0) node (out2) {}
        (in21) |- (or2.in 1)
        (in22) \mid - ++(-0.6,0.75) \mid - (or2.in 2)
        (out2) |- (or2.out)
```

```
(1+2.8,5-1.5) node [american or port,scale=0.8] (or3) {}
       (1+1,5) node (in31) {}
       (2+1,5) node (in32) {}
       (3+1,5) node (out3) {}
       (in31) |- (or3.in 2)
       (in32) \mid - ++(-0.6, -0.75) \mid - (or3.in 1)
       (out3) |- (or3.out)
       (1+2.8+3,5-1.5) node [american or port, scale=0.8] (or4) {}
       (2+3,5) node (in41) {}
       (3+3,5) node (in42) {}
       (4+3,5) node (out4) {}
       (in41) |- (or4.in 2)
       (in42) \mid - ++(-0.6, -0.75) \mid - (or4.in 1)
       (out4) |- (or4.out)
       (7,0-0.25) node [anchor=north](gnd) {GND}
       (1,5+0.35) node [anchor=south](vcc) {VCC}
\draw (0,0)rectangle (8,5);
\foreach \x in {1,2,...,7} \filldraw [fill=white] (\x-0.25,-0.15) rectangle (\x+0.25,0.35) (\x,0.1) node
\hookrightarrow {\x};
\foreach \x in {1,2,...,7} \filldraw [fill=white] (\x-0.25,5-0.15) rectangle (\x+0.25,5+0.35);
\draw (0,2) arc[start angle=-90, end angle=90, radius=0.5];
\end{circuitikz}
```

8.3 74HC04


```
\begin{circuitikz}[scale=0.8] \draw
        (4,2.5) node [anchor=center] \{\$74HC04, 6\cdot NOT\$\}
        (1.5,1) node [american not port,scale=0.55] (not1) {}
        (1,0) node (in11) {}
        (2,0) node (out1) {}
        (in11) |- (not1.in)
        (out1) |- (not1.out)
        (1.5+2,1) node [american not port,scale=0.55] (not2) {}
        (1+2,0) node (in21) {}
        (2+2,0) node (out2) {}
        (in21) |- (not2.in)
        (out2) |- (not2.out)
        (1.5+4,1) node [american not port,scale=0.55] (not5) \{\}
        (1+4,0) node (in51) {}
        (2+4,0) node (out5) {}
        (in51) |- (not5.in)
        (out5) |- (not5.out)
```

```
(1+1.5,5-1) node [american not port,scale=0.55] (not3) \{\}
      (1+1,5) node (in31) {}
      (2+1,5) node (out3) {}
      (in31) |- (not3.in)
(out3) |- (not3.out)
      (1+1.5+2,5-1) node [american not port,scale=0.55] (not4) \{\}
      (2+2,5) node (in41) {}
      (3+2,5) node (out4) {}
      (in41) |- (not4.in)
      (out4) |- (not4.out)
      (1+1.5+4,5-1) node [american not port,scale=0.55] (not6) {}
      (2+4,5) node (in61) {}
      (3+4,5) node (out6) {}
      (in61) |- (not6.in)
      (out6) |- (not6.out)
      (7,0-0.25) node [anchor=north](gnd) {GND}
      (1,5+0.35) node [anchor=south](vcc) \{VCC\}
;\draw (0,0)rectangle (8,5);
\hookrightarrow {\x};
\draw (0,2) arc[start angle=-90, end angle=90, radius=0.5];
\end{circuitikz}
```

Table des matières

1	Basi	c circuits																	1
	1.1	Voltage source and lamp			•	•	•			٠				٠	•	٠		•	1
2	Filters											1							
	2.1	RLC - Out on RL																	1
	2.2	RC high-pass																	1
	2.3	RC high-pass with generator																	2
	2.4	RLC - Out on C																	2
	2.5	RLC with generator - Out on C $\ . \ . \ .$																	3
3	Transistors										3								
	3.1	Alone																	3
	3.2	Alone with voltage and current																	4
	3.3	Full common source																	5
	3.4	Common source - Direct polarisation .																	6
	3.5	Common source - small signal																	6
	3.6	Common source simple																	7
	3.7	Common source simple with $v_{out} \ \ . \ \ .$												٠	•	٠			7
4	Operational amplifiers 8										8								
	4.1^{-}	Inverter with voltage and buffered offse	t							•	•			•					8
5	Diodes											9							
	5.1	Alone																	9
	5.2	Pulsed LED																	9
	5.3	LED																	10
	5.4	Load																	10
	5.5	Load and C in parallel																	10
	5.6	Full-wave rectifier with C and load																	11
	5.7	Zener alone											 ٠						11
	5.8	Zener - DC source																	11
	5.9	Zener - DC source and load $\ \ldots \ \ldots$																	12
6	Logic 1												12						
	6.1	Gates																	12
	6.2	Circuit 1																	13
	6.3	Voter																	13
	6.4	Circuit 2																	14
	6.5	Bistable																	14
	6.6	Enable																	14
	6.7	Bistable with enable																	15
	6.8	NOR																	15
	6.9	SR using NOR																	16
	6.10	SR using NAND																	16
	6.11	SR with NAND and enable																	17

	6.12	D latch	18								
7	Graphs										
	7.1	Logarithmic axis	19								
	7.2	Semi-logarithmic axis	20								
	7.3	$I_z(V_z)$	20								
	7.4	$V_{out}(I_{out})$	22								
	7.5	Time graph 1	23								
8	Mis	cellaneous	24								
	8.1	74HC00	24								
	8.2	74HC32	25								
	8.3	74HC04	26								