

SUBJECT INDEX

A

Abiotic stress
 see Red spruce decline and abiotic stress
Acetosyringone, 465, 476, 469
N-Acetyl galactosamine, 449
N-Acetyl lactosamine
 fimbriae, 232-33
Achlya, 175
 meiosis, 157
Acid rain
 red spruce decline, 349, 358-61
Acidovorax
 taxonomy, 95
Acremonium coenophialum
 nematode control, 261
Adaptation
 environmental
 bacterial taxonomy, 74-75
Adeleges piceae Ratz.
 red spruce decline, 351, 355
Adherence
 see Bacterial attachment
Adhesins
 bacterial, 229-38
Afenestrata, 280, 282
Aggressiveness
 Phytophthora
 variation, 165
 see also Pathogenicity and virulence nomenclature
Agrobacterium, 227
cellulose, 237
chr mutants, 237-38
host range and attachment, 235
radiobacter, 90
rhizogenes, 90
 adhesins, 235
 sensory transduction, 464
transfer mutants, 235-36
rubi, 90
taxonomy, 90-91
tumefaciens, 90
 adhesins, 234-36
 chv, 55, 28
fimbria, 231
T-DNA, 55
pathogenicity, 54-55
sensory transduction, 464
Ti-plasmids, 234, 237
transposon mutants, 235-36
tumor formation, 230
vir loci, 54-55

VirA-VirG system
 see Bacterial sensory transduction
vitis, 90
Agrobacterium-mediated transformation
lettuce, 500
rice tungro bacilliform virus, 513
Air pollution
 role leaf wetness, 553
 see also Red spruce decline and abiotic stress
All Union Institute for Oil Crops Research
sunflower breeding, 532, 536-38
Allozymes
 P. infestans, 110-11
Alternaria helianthi
sunflower resistance breeding, 539-40
Aluminum toxicity
 red spruce decline, 349, 362
Amanita rubescens, 31
American Association for the Advancement of Science, 23
American Microscopical Society, 23
American Phytopathological Society, 40, 63-63
 Caribbean Division, 44
American Society for Microscopy, 23
American Type Culture Collection, 71
Amino acid sequences
 C. fulvum transposons, 142
 N. crassa, 204-5, 209
 tospoviruses, 323-24
Aminomethylphosphonic acid, 581
Ammonia soil amendment
 nematode control, 256
Anagnostakis, S., 10
Annals of Applied Biology, 31
Annual Review of Phytopathology, 63
Antagonists
 see Biological control in the phyllosphere
Antagonists for nematode control, 245-70
 additional tools, 262-63
 agroclimatic, 262-63

computer modeling, 262
conclusions, 263
introduction, 246-47
definitions, 246
management: an alternative to biocontrol, 247
management: concepts
nematode antagonists, 246-47
conclusions, 263
managing specific antagonists, 247-62
bacterial, 252-53
bacterial: cultural practices, 253
bacterial: multiple cropping, 253
bacterial: nematicides, 253
bacterial: rotation with cultivars, 252
fungal endoparasites, 260-61
fungal endoparasites: organic matter, 260
fungal endoparasites: root stocks, cultivars, 260
fungal endoparasites: transplants, 260-61
fungal endophytes, 261-62
fungal on eggs, 255-61
fungal on eggs: agrochemicals, 258
fungal on eggs: cultural practices, 258
fungal on eggs: green manure, mulches, inhibitory plants, 257-58
fungal on eggs: organic matter, 256-57
fungal on eggs: rhizosphere competence, 258
fungus on eggs: transplant inoculation, 258
fungal parasites of females, 261
mycorrhizal fungi, 253-55
mycorrhizal fungi: biological therapy, 255
mycorrhizal fungi: organic amendments, 254
mycorrhizal fungi: rotation, host species, cultivar, 254
mycorrhizal fungi: transplants, 254-55
predacious fungi, 259-60

- predacious fungi:
 entomopathogenic nematodes, 260
 predacious fungi: organic matter, 259
 predacious fungi: rhizosphere competence, 259–60
 rhizobacteria, 247–52
 rhizobacteria: agrochemicals, 251–52
 rhizobacteria: biological therapy, 251
 rhizobacteria: communities, 249–50
 rhizobacteria: cultivar, 249
 rhizobacteria: lectins, 250–51
Anthraquinone, 3
Antibiotics
 biocontrol, 615
 see also Phenolic compounds and resistance
Aphids
 leaf nutrient indicators, 607–8
 transmission
 groundnut rosette virus, 420–21, 429–30
 luteoviruses, 305
Appalachian forests
 see Red spruce decline and abiotic stress
Apple scab, 21
 see also *Venturia inaequalis*
Approved Lists of Bacterial Names, 68, 70, 75, 88, 91, 97
Arabidopsis thaliana
 map-based cloning, 405
 model system, 6–7
 resistance genes, 397
Arabis mosaic virus
 satRNA, 432–33
Arceuthobium pusillum, 353
Anthrobacter
 ilicis, 88
 pathovars, 84
 taxonomy, 88–89
Arthrobacter
 irregularis
 nematode control, 259
 oligospora
 nematode control, 259
Ascobolus
 immersus, 141
 stercorarius, 203
Ascomycetes
 see Mating type incompatibility in Ascomycetes
Asian crops
 see Rice breeding for pest resistance
- Aspergillus**
 genetic diversity, 215
 heterothallicus, 203
 nidulans, 212
 het loci, 213
Athelia bombacina
 as biocontrol agent, 618, 627
Attachment
 see Bacterial attachment
Attenuation
 satRNA, 427–28
Auxin
 bacterial production, 236
Avenalumines, 381
Avirulence, 2
 bacterial taxonomy, 76–77
 genes, 4–5
 avr, 4, 56, 61, 63, 493, 495–99
 isolation, 7
 see also Fungal avirulence genes; *Pseudomonas solanacearum* pathogenicity
loci
 B. lactucae, 495–97
Phytophthora
 infestans, 109, 114–15
 megasperma, 167
 satRNAs, 444
 terminology, 444
 see also Pathogenicity and virulence nomenclature
Azorhizobium caulinodans, 464
 nitrogen fixation, 472
- B**
- Bacillus**
 pathovars, 84
 subtilis, 144
 thuringiensis, 5
 as biocontrol agent, 621, 623–24
 genes confer resistance, 517–18
Backcrossing
 resistance genes, 407
 rice, 516
Bacteria
 molecular genetics
 see *Pseudomonas solanacearum* pathogenicity
 taxonomic
 see Taxonomy of plant pathogenic bacteria
Bacteria-plant interactions
 see host-pathogen interactions
Bacterial attachment, 225–43
 epiphytic colonization, 226–29
- introduction, 225–26
 to plant surfaces, 229–38
 adhesins of *Agrobacterium* and *Rhizobium*, 234–36
Agrobacterium, 235–236
 bacterial cellulose, 237
 cell-cell interactions, 229
 conclusions, 238–39
 cyclic β -1,2-glucan, 237–38
Enterobacteria, 232–33
 fimbriae and pili, 230–32
 host and site-specificity, 229–30
Pseudomonas solanacearum, 234
Pseudomonas syringae, 233–34
Rhizobium, 236–37
 structures, 230–38
Xanthomonas campestris, 234
Bacterial blight
 rice resistance, 512–13
Bacterial sensory transduction, 463–84
Agrobacterium, 465–70
 genetic analysis: *virA*, *virG*, 470
 VirA protein, 466–67
 VirG protein, 467–70
 introduction, 463–65
 nonrhizobiaceae, 474–77
 Erwinia amylovora, 476
 Pseudomonas solanacearum, 476
 Pseudomonas syringae, 475–76
 Xanthomonas, 476–77
Rhizobium, 470–74
 dicarboxylic acid transport, 473–74
 nitrogen fixation, 471–73
 summary, 477–78
Bacterial wilt
 see *Pseudomonas solanacearum* pathogenicity
Bacteriology
 see Burrill, Thomas J.
Bacteroid metabolism, 470–71, 478
Banana
 nematode control, 262
Barnacles
 population biology, 612–13
Bean stomata
 bacterial attachment, 230
Beauveria bassiana
 role biocontrol, 618
Beet necrotic yellow vein virus, 291–313

- conclusions, 309–10
genetic variation, 294–95
genome, 293–94
introduction, 291–92
proteins and their functions,
295–309
cis-essential sequences,
296–99
cis-essential sequences, 3'
proximal, 296–98
cis-essential sequences, 5'
proximal, 298–99
P75 and vector transmission,
303–5
RNA 1 and replication, 291
RNA 2, 299–301
RNA 2 : coat and read-through protein, 299–300
RNA 2: P14, 300–301
RNA 2 protein function, 301
RNA 2: Triple Block, 300
RNAs 3,4,5, 305–9
RNAs 3,4,5: fungus transmission, 306–7
RNAs 3,4,5: leaf symptoms, 305–6
RNAs 3,4,5,: root symptoms, 307–9
virus assembly, 301–2
virus assembly and P75, 302–3
rhizomania, 292
vector, 292–93
- Beet necrotic yellow vein virus RNAs, 420, 430
Beet western yellows virus ST9-associated RNA, 420, 434
Bellodera, 282
Beneficial microorganisms phyllosphere
see Biological control in the phyllosphere with herbicides, 580–81, 588, 596
- Benson, Ezra, 42
Bentazon, 583
Benzoin acids infection responses, 370
- Beta vulgaris* see Beet necrotic yellow vein virus
- Biological control against nematodes
see Antagonists for nematode control
- bacterial antagonists, 522
effect herbicides, 583, 594
hypovirulence, 216
role satRNAs, 434–37
- weeds see Weed biocontrol with fungal pathogens
see also Garrett, Stephen Dennis, Pioneer
- Biological control in the phyllosphere, 603–35
commercial reality, 621–24
opportunities, constraints, 621–24
ecological theory, 611–13
introduction, 603
overview, conclusions, 627–28
- phyllosphere versus rhizosphere, 604–11
colonization, 608–10
leaf and root surface features, 604–6
microclimate, 606
nutrients, 606–8
overview, 610–11
- principles from case histories, 613–15
agent matched to environment, 614
antagonist action and penetration, 615
foreign antagonists, 614–15
preemptive colonization, 613
- production, formulation, delivery, 617–21
delivery, 620–21
formulation, 619
production, 618–18
screening, 615–17
strategies, 624–27
biocontrol in leaf litter, 627
endophytes, 626–27
improved strains, 625–26
- Biological therapy nematode control, 251, 255
- Biotechnology see genetic engineering; Plant pathology and biotechnology
- Birmingham University, 1–2
- Bitter rot, 21
- Black sigatoka banana leaf wetness, 564
- Black stem see *Phoma macdonaldi*
- Blast see Rice breeding for pest resistance
- Boron deficiency sunflower, 545
- BOTCAST, 563–4
- Botryosphaeria obtusa* spore germination
role wetness, 554–55
- Botrytis cinerea* biocontrol, 621
broad bean response, 382
heterokaryons, 216
role moisture, 555
- squamosa* forecasting, 563–64
- Bradyrhizobium japonicum*, 464 nitrogen fixation, 472–73
- Brazilian Institute of Coffee, 43
- Breeding for resistance lettuce
see Lettuce downy mildew genetics
- rice see Rice breeding for pest resistance
- sunflower see Sunflower resistance breeding
- see also Fungal avirulence genes; Plant pathology and biotechnology
- Bremia lactucae* genes
avirulence, 398–99
resistance, 395
somatic hybrids, 164
virulence loci, 167
see also Lettuce downy mildew genetics
- Brian, Percy, 31
- Brome mosaic virus, 299
- Brooming red spruce, 353
- Broomrape see *Orobanche cumana*
- Brooks, F.T., 28
- Brown, William, 28, 30–31, 36
- Brown stem see *Phomopsis helianthi*
- Bud necrosis virus, 299
- Bunyaviridae see *Tospoviruses*
- Burkholder, 69
- Burrill, Thomas J., 17–24
conclusions, 23–24
early life, education, 17–19
introduction, 17
plant pathology contributions, 20–23
University of Illinois, 19–20
- C
- Cactodera betulae*, 283
cacti characters, 281
- Cactoderaby*, 280

- Caenorhabditis elegans*
transposons, 143
- Caffeoyl glucose, 375
- Caffeoyl-CoA, 373
- Calcium
deficiency
bacterial attachment, 236
red spruce decline, 362–
63
- California
lettuce resistance breeding,
488, 490
- Calonectria crotalariae*
herbicide interaction, 584
- Cambridge Botany School,
29
- Cambridge University, 28
- Canada
Environment Canada, 566
herbicides, 580, 590
sunflower resistance breeding,
530, 533–34, 536–38,
544
- Candida albicans*
chromosomes, 135–37
- stellatoidea*, 136
- Canopy
models
see Epidemiology and leaf
wetness models
- wetness
role in infection, 557–58
- Cell
barriers
thrips transmission tospovir-
uses, 335
- wall
ascomycete reproduction,
212–13
- Cellulose
bacterial attachment, 237
- Centro de Investigação das Fer-
ruginos do Cafeiro
see D'Oliveira, Branquinho,
Portuguese plant patholo-
gist
- Cercospora*
ageratinae
weed biocontrol, 638–39,
648
- nicotianae*
host PR proteins, 521–22
- Cercospora* leaf spot of peanut,
566
leaf wetness, 564
- Chaetomium globosum*
control apple scab, 614–15,
624
- Chalcone synthase, 5
- Charcoal rot
see *Macromomina phaseolina*
- Chemotaxonomic studies
bacterial taxonomy, 69, 71,
79, 89, 93
- Chesnut Experimental Station,
487
- Chestnut blight pathogen
see *Cryphonectria parasitica*
- Chimeras
satRNA, 420, 423, 425
- Chitinases, 521
- Chitosan, 373
- Chlorogenic acid, 376
P. infestans, 376, 378
- Chloronrob
induces selfing *Phytophthora*,
160
- Chlorotic symptoms
BNYVV, 305–6
see also SatRNA and viral
symptoms; tobacco;
tomato
- Chlorothal dimethyl, 586
- Chondrostereum purpureum*,
650
- Chromocrea spinulosa*, 210
- Chromosome walking
avirulence genes, 398, 405,
499
- Chromosomes, 465
B chromosomes, 137–38
- Phytophthora*, 161
variation
see Fungal genetic change
virulence loci, 55
- Cis*-essential sequences
RNA viruses, 296–99
- Citrus canker, 168
- Cladistic analysis, 82
- Cladosporium fulvum*
avirulence genes, 401–3
avr9, 401–3, 408
cf resistance genes, 401–2,
405
CT-1, 142
transposons, 142
- Classification
Phytophthora, 176–77
see also Taxonomy of plant
pathogenic bacteria
- Clavibacter*, 226
michiganensis, 89
pathovars, 84, 89
taxonomy, 89
xylili, 89
produces BT toxin, 626
- Climate
Clover mosaic virus, 296
montane forests, 351
nematode control, 262–63
red spruce decline, 353
- Climatic selection
Phytophthora, 179
- Clinton, G.P., 19
- Clones
B. lactucae, 501
- P. solanacearum* genes, 452
- rice resistance genes, 517
- rice tungro bacilliform virus,
513
see also cDNA; Fungal aviru-
lence genes
- Cloudwater
red spruce decline, 351, 361,
363
- Cluster analysis
Phytophthora, 155, 183
- CoA ligase, 375–76
- Coat proteins
BNYVV, 299–305
helper virus, 433
resistance to viruses, 520–
21
rice tungro disease, 521
- satRNAs, 420
see also tobacco mosaic virus
- Cochliobolus*
carbonum, 53, 374
effect herbicides, 585
heterostrophus, 374–75
rye system, 510
sativus
effect herbicides, 585
see also Mating type in-
compatibility in Ascomy-
cetes
- Cocoa
P. megakarya, 184
- Cocoa black pod, 156
- Code of Nomenclature of Bac-
teria
see International Code of
Nomenclature of Bacteria
- Coffee Research Station of
Ruiru, Kenya, 43
- Coffee rusts
see D'Oliveira, Branquinho,
Portuguese plant patholo-
gist
- Cold tolerance
see Red spruce decline and
abiotic stress
- Collaboration in research, 485–
86, 596
- Collego, 642–43, 648–49
- Colletotrichum*
acutatum, 555
dispersal, 646–47
gloesporioides
genetic change, 147
taxonomy, 652
gloesporioides
f. sp. *aeschynomene*
weed biocontrol, 642–43,
647, 650

- gloesporioides*
f. sp. *malvae*
weed biocontrol, 643
- lindemuthianum*
with herbicides, 583-84
- orbiculare*
weed biocontrol agent, 643
- taxonony, 652-53
- weed biocontrol, 638, 651-52
- xanthi*
renamed, 643
- Colonization
phyllosphere, 608-15
- Compatibility
gene-for-gene interactions, 393-95
- Compatibility substances
Phytophthora, 158
- Compatibility type frequency
Phytophthora, 168-70
- Competition, 228
- Compost
nematode control, 254, 256, 259-60
- Computers
analysis *tospoviruses*, 322
databases, 71
models
nematode control, 262
satRNAs, 425, 428
nematode phylogenetic analysis, 283
- Concentric ring symptoms
BNYVV, 305
- Conidia, 202
- Conifer swift moth, 354
- Connecticut Agricultural Experiment Station, 10
- Coprinus cinereus*
genetic analysis, 9-10
- Corynebacterium*
taxonomy, 88
- Coumarin
phytoalexins, 373-74
- 4-Coumaroyl-CoA, 373
- Cowgill, William H., 42
- Cowpea mosaic virus, 296
- Crane, Morley, 2
- Crops
lettuce
see Lettuce downy mildew
genetics
- loss
tospoviruses, 316-17
- management
see Antagonists for nematode control
- protection
see Biological control in the phyllosphere; Herbicide-fungal interactions
- rice
see Rice breeding for pest resistance
- rotation
nematode control, 250, 254
- sunflower
see Sunflower resistance breeding
- weed control
see Herbicide-fungal interactions, Weed biocontrol with fungal pathogens
- Crown gall
see *Agrobacterium tumefaciens*
- Crown symptoms
red spruce decline, 350, 353-55, 362
- Cryphodera*, 279
- Cryptocneetria parasitica*, 11
- dsRNAs, 143
het loci, 214
- hypovirulent strains, 215-16
- Cucumber mosaic virus
see SatRNA and viral symptoms
- Cultivars
lettuce
see Lettuce downy mildew genetics
- nematode control, 249, 254, 260
- rice
see Rice breeding for pest resistance
- sunflower
see Sunflower resistance breeding
- Culture collections, 71-72
P. infestans, 118-19
- Curio bacterium*
flaccumaciens, 89
pathovars, 84
taxonomy, 89
- Cuscuta*
effect herbicides, 583
- Cutin, 605
- Cylindrocarpion*
herbicide interaction, 593
- Cymbidium* ringspot virus
satRNA, 420, 433
- Cyproconazole, 587
- Cyst nematodes
see *Globodera*; *Heterodera*
- Cysteine rich proteins
BNYVV, 300-301
- Cytofluorimetry
P. infestans, 162
- Cytokinins, 444
- Cytology
P. infestans, 162
- Cytoplasmic incompatibility
N. crassa, 212
- inheritance
Phytophthora, 164
- male sterility
sunflowers, 530, 537-38
- Cytosori
P. betae, 293
- D
- Daidzein, 383
- Davenport, Eugene, 20
- Decline
see Red spruce decline and abiotic stress
- Defective interfering RNAs
see RNA
- Defective interfering viruses, 340-41
- Defense response
bacterial attachment, 228, 238
see also Fungal avirulence genes; Phenolic compounds and resistance
- Definitions
see Pathogenicity and virulence nomenclature
- Degradation
glyphosate, 581
- Degree days, 648
- Delivery
biocontrol agents, 620-21
- Dendrochronology studies
red spruce, 353
- Dendroctonus rufipennis*
red spruce decline, 354
- Density thresholds, 610, 645
- DeVine, 641-42
- Dew, 606
effect weed pathogens, 648
see also Epidemiology and leaf wetness models
- Diaminobutyric acid, 89
- Diaminopimelic acid, 88
- Dicarboxylate transport
Rhizobium nitrogen fixation, 471, 473-74
- Dickinson, Colin, 490
- Diploidy
Phytophthora, 154-57, 170-71
- Disease
management
P. infestans, 108
resistance
see host resistance
- Disease specific genes
P. solanacearum, 453
- Dispersal
fungal weed biocontrol, 646-47

- wind tunnel testing, 647
- Dm* loci
see Lettuce downy mildew genetics
- DNA
Agrobacterium vir genes, 465
fingerprints, 112
 C. fulvum, 462
 P. infestans, 112–115,
 119–21
fungal genetics, 139–40, 142
homology
 see homology
hybridization, 217
 bacterial taxonomy, 71–72,
 74, 80–81, 87, 89,
 91–96
methylation, 140–41
probes
 N. crassa, 210
 RG57, 111–113, 115, 121
random amplified polymorphic DNA, 516
role bacterial taxonomy, 68
sedimentation rates
 Phytophthora and *Pythium*,
 174
sequences, 477
 N. crassa mating type mutants, 205
 P. solanacearum genes, 448, 450, 452–54
 P. syringae pv. *phaseolicola*, 475
- cDNA
library
 C. fulvum-tomato, 402
probes
 B. lactucae, 501
 tospoviruses, 319, 338
satRNAs, 428, 433
viral, 294
- mtDNA, 187
Neurospora, 144–46
Phytophthora, 174, 177
 infestans, 109, 111
- nDNA
 P. infestans, 109
T-DNA, 55, 405, 465
D'Oliveira, Branquinho, Portuguese plant pathologist, 39–45
- D'Oliveira, Maria de Lourdes, 40
- DOWNCAST
Downey mildew forecasting, 563
- Downey mildew
 see *Bremia lactucae*; *Plasmopara halstedii*
- Dowson, W.J., 31
- Drainage, 558
- Drought
correlation
 sunflower *Macrophomina phaseolina*, 544–45
 sunflower *Phomopsis*, 543–44
red spruce decline, 362
Dual phenomenon, 132
Duggar, B.M., 19
- Dutch elm disease
 hypovirulent strains, 216
 pathogenic feedback, 166
- E
- Ecosystems
see Biological control in the phyllosphere; Antagonists for nematode control; Weed biocontrol with fungal pathogens
- Ekphymatodera*, 283
- Electron microscopy, 293
tospoviruses, 318
see also Scanning electron microscopy, transmission electron microscopy
- ELISAs
see enzyme-linked immunosorbent assays
- Embryo culture, 2
- Endoglucanase
 P. solanacearum pathogenicity, 447–48
- Endomycorrhizal fungi
nematode control, 253
- Endophyte antagonists
see Biological control in the phyllosphere
- Endopolygalacturonase, 4
inhibiting protein, 4
- England
lettuce breeding
 see Lettuce downy mildew genetics
- English usage
see Pathogenicity and virulence nomenclature
- 5-Enopyruvylshikimate-3-phosphate synthase, 582
- Enterobacter agglomerans*, 91
fimbriae, 233
- Enterobacteria
adherence, 232
- Enterobacteriaceae
pathovars, 85
taxonomic, 72–73
- Entyloma compositarum*
weed biocontrol, 638–39
- Environment
effect
 B. lactucae virulence, 497
- weed pathogens, 648
- Phytophthora* survival strategies, 179
see also Biological control in the phyllosphere;
Epidemiology and leaf wetness models; Rice breeding for pest resistance; stress
- Environment Canada, 566
- Environmental adaption
 bacterial taxonomy, 74–75
- signals
see Bacterial sensory transduction
- Enzyme-linked immunosorbent assays
herbicide-disease interactions, 595
tospoviruses, 318–19, 327,
 334, 337
- Enzymes
extracellular
 P. solanacearum
 pathogenicity, 446–49
- Epicoccum purpurascens*
against *S. sclerotiorum*, 614
- Epidemiology
tospoviruses, 331–32, 339
weed biocontrol systems, 649
see also *Phytophthora infestans* population genetics
- Epidemiology and leaf wetness models, 553–77
conclusions, 571–73
definition, assessment, and simulation, 561–63
characterization variables, 561–62
duration, 561–62
other indicators, 562
physical variables, 561
simulation, 563
influence on fungal diseases, 554–57
colonization, 556
continuous wetness, 556–57
infection, 554–56
interrupted wet periods, 556–57
processes affected, 554–56
sporulation, 555
wetness requirements, 556–57
- introduction, 553–54
mechanisms, 557–61
 dew formation, 559–60
 evaporation, 560–61
water inception by canopies, 557–58

- moisture duration assessment:
predictive, 563–66
based on wetness, relative
humidity, 563–64
empirical methods, 564–
66
- physical models: LWD, 567–
71
canopy after rainfall, 569
dew duration inside
canopy, 569–70
fruiting body duration,
568–69
leaf dew duration, 567–68
moisture sources: interaction,
570–71
multilayer models, 569–71
single layer energy balance,
567–69
water drop scale, 567
- Epiphyte antagonists
see Biological control in the
phyllosphere
- Epiphytic colonization
see Bacterial attachment
- Erwinia*, 227
- amylovora*, 91, 228
 - hrp* genes, 454, 476
 - see also Burrill, Thomas J.
- cacticida*, 70, 92
 - carnegieana*, 92
 - carotovora*, 91, 232
 - carotovora* pv. *carotovora*,
232
 - chrysanthemi*, 77, 232
 - pathovars, 92
 - herbicola*, 90, 92, 228
 - colonization, 609
 - fimbriae, 233
 - pathovars, 85
 - polygalacturonases, 457
 - rhapontici*
 - adherence, 232–33
 - taxonomy, 69, 73, 87, 91–
92
- Escherichia coli*
- endoglucanase, 447–48
 - polygalacturonase, 448
 - production, 618
 - sugar-binding protein, 467
 - phob*, 468
- Ethylene generators, 255
- Evolutionary biology
see Heterodermia evolution;
Phytophthora evolutionary
biology
- Evolutionary mechanisms
see *Phytophthora infestans*
population genetics
- Exopolysaccharides
P. solanacearum pathogenicity, 446, 449–53
- F
- Fermentation production biocontrol agents, 618–19
- Fertility
see reproduction
- Fertilizer
nematode control, 251–52,
258
- Ferulic acid
host resistance, 370, 372–73,
376
- Field studies
Phytophthora infestans populations, 112–14, 125–26
soilborne pathogens, 32
- Fimbriae
see Bacterial attachment
- Fireblight
biocontrol, 614
- see Burrill, Thomas J.
- Fitness, 180
- bacterial attachment, 239
 - characters
 - variation in *Phytophthora*,
164–66 - nomenclature, 50, 52, 54, 60,
121
 - parasitic, 61
 - reproductive, 60, 62
- Phytophthora infestans* populations, 121, 124
- Fletcher, John, 490
- Flor, Harold, 9
- Floral morphology
genes, 6
- Florida
- P. infestans*, 113
- Fluorescence analysis, 371
- Foliar diseases
see Biological control in the
phyllosphere; Epidemiology
and leaf wetness
models; leaf
- Forecasting systems
see BOTCAST; DOWN-
CAST; TOMCAST
- Forest pathology
B. thuringiensis, 603
- see also Red spruce decline
and abiotic stress
- Frankliniella occidentalis*
see *Tospoviruses*
- Freezing injury
see Red spruce decline and
abiotic stress
- Frost control, 227
- Fulvia fulva*, 2–3
- avr9*, 4
- Fungal
antagonists
- see Antagonists for nemato-
tode control; Biologi-
cal control in the phyl-
losphere
- ecology, 31, 35
- genetics
see *Phytophthora* evolution-
ary biology; *Phytophthora infestans* popula-
tion genetics
- nomenclature
pathogenicity, 50–54
virulence, 50–54
- pathogens
see Epidemiology and leaf
wetness models; Gar-
rett, Stephen Denis,
Pioneer; Herbicide-
fungal interactions;
Weed biocontrol with
fungal pathogens
- reproduction
see Mating type in-
compatibility in
Ascomycetes
- role red spruce decline, 354
- vectors
see Beet necrotic yellow
vein virus
- Fungal avirulence genes, 391–
418
- cloning disease resistance
genes, 404–7
- conclusions, prospects, 410–
11
- disease-resistant crop plants
engineered, 408–10
- two-component sensor sys-
tem, 409–10
- gene-for-gene systems and
cloning avirulence genes,
396–403
- Bremia lactucae*, 398–99
- Cladosporesium fulvum*, 401–
3
- cloning *avr9*, 401–3
- Magnaporthe grisea*, 399–
400
- Melampsora lini*, 397–98
- Rhynchosporium secalis*,
400–1
- introduction, 391–92
- occurrence in related
pathogens, nonpathogens,
403–4
- races and differentials, 392–
93
- genetic analysis: gene-for-
gene relationships, 393–
96
- basic compatibility, 393–
95

- dominant and recessive, 394–95
 resistance and avirulence controlled by two genes, 395
 resistance controlled by many genes, 395–96
 resistance gene occurrence in different species, 407–8
Fungal genetic change, 131–52
 alteration of repeated DNA, 140–41
 changeable chromosome complements, 133–36
 altered phenotype, 136
 polymorphisms, 133–35
 polymorphisms, mitotic or meiotic processes, 135–36
 conclusions, 146–48
 cytoplasmic genetic elements, 143–46
 circular mitochondrial plasmids, 145–46
 circular plasmids not encoding reverse transcriptase, 146
 invertrons, 144–45
 invertrons in plant pathogenic fungi, 145
 kalilo and maranhar, 144–45
 plasmids as transposons in *Neurospora*, 145
 RNAs, 143–45
 introduction, 131–32
 nonessential chromosomes, 137–40
 genetic transformation, 138–40
 genomic stress, 138–40
 heat shock, 138
 meiosis, 137–38
 pathogenicity genes, 138
 transposons, 141–43
Cf-1, 142–43
Tad1, 141–42
- Fungicides**
 forecast systems, 564–65
 with herbicides, 590, 584, 587, 589
 Furanoconoumarin, 374
Furoviruses
 see Beet necrotic yellow vein virus
- Fusarium**
 genetic change, 132
 herbicide interactions, 583, 588, 592–93
cultorum
 herbicide interactions, 588
- oxysporum*
- chromosome variation, 134
 herbicide interactions, 582, 584
 heterokaryons, 212
 invertrons, 145
 pathogenicity nomenclature, 52
 transposable elements, 143, 147
oxysporum f. sp. *apii*, 215
oxysporum f. sp. *lycopersici*
 herbicide interactions, 584, 592
oxysporum f. sp. *pisi*, 217
oxysporum f. sp. *melonis*, 215
 chromosome variation, 134
oxysporum f. sp. *niveum*
 chromosome variation, 134
solanum
 chromosome variation, 134
solanum f. sp. *phaseoli*, 251
 nematode control, 261
Fusarium wilt
 tomato, 372
- Fusicladium*, 40
- G**
- Garrett, Jane, 29–30
 Garrett, Stephen Denis, 45
 Garrett, Stephen Denis, Pioneer, 27–36
 life, career, personal attributes, 28–31
 postscript, 35–36
 research, 31–34
 writings, 34–35
- Gaeumannomyces*
graminis, 31
graminis var *tritici*
 herbicide interactions, 585, 588–89
- Gas chromatography
 glyphosate detection, 581
- Gel electrophoresis, 319
- Gelasinospora*, 210
- Gene
- flow, 179, 187
 function
 see Beet necrotic yellow vein virus; *Pseudomonas solanacearum*
 pathogenicity products
 see Beet necrotic yellow vein virus
- regulation
 see Bacterial sensory transduction transfer
 bacterial taxonomy, 75
- Gene-for-gene interactions, 131, 396
B. lacucae and lettuce, 486, 491–92, 497
 plants and nematodes
Phytophthora, 188
infestans and host, 109–10
 see also Fungal avirulence genes
- Genetic change**
 see Fungal genetic change distance
- Phytophthora*, 188
- diversity
- A. flavus*, 215
 fungal, 201
 see also *Phytophthora infestans* population genetics
 red spruce, 351
- drift
P. infestans populations, 123–24
- flux
A. flavus, 215
- markers
P. infestans, 108–12
- Genetic engineering**
 biocontrol agents, 624–26, 628
 weed, 650–53
- rice resistance, 518–22
 see also clones; cDNA; clones; mutants: Fungal avirulence genes
- Germany
P. infestans populations, 120
- Germplasm
- sunflower resistance, 532
 see also wild germplasm
- Gibberella fujikuroi*
hei loci, 214
 heterokaryons, 211
- Giesy, Robert, 9
- Glasshouse Crops Research Institute, 487, 489
- Gliocladium*
 fermentation production, 618
- roseum*, 621
- Globodera*
 antagonists
 cultivar, 249
 characters, 280
 evolution, 280
 females, 277
- pallida*, 286
 genetic diversity, 58
 phylogeny, 286
- rostochiensis*, 286
 avirulence, 59
 genetic diversity, 58

- Glomerella cingulata*, 210
Glomus
 eunicatum, 255
 fasciculatum, 255
 herbicide interactions, 585
 β -glucans, 174
 bacterial attachment, 237–38
 1,3- β -glucanase, 396
 Glucuronidase gene fusions (GUS), 5
 Glucosephosphate isomerase-I locus
P. infestans, 110, 113, 116, 119, 121
 Glycolellin, 382–83, 583
 Glycoproteins, 327
 virus membrane, 336
 Glyphosate
 see Herbicide-fungal interactions
 Green leafhopper
 rice tungro disease, 513–14
 Greenhouse diseases
 see *Tospoviruses*
 Groundnut rosette assistor virus, 421, 429–30
 Groundnut rosette virus
 satellite-like RNAs 420–21, 429–30
 Groundnut rust
 moisture and temperature, 556
 Growth
P. syringae, 164
 reduction
 red spruce, 353, 356
- H
- Halo blight disease of beans, 233
Halophytophthora
 affinity *Phytophthora*, 175–76
 Hawaii
 weed biocontrol, 639
 Head rot
 see *Sclerotinia sclerotiorum*
 Heat shock
 role chromosome loss, 138
 Heat shock protein gene
B. lactucae, 591
Helianthus
 see Sunflower resistance breeding
Helicosbasidion purpureum, 31, 34
Helminthosporium
 carbonum, 53
 maize resistance genes, 8, 405–6
 HC toxin, 405–6
victoriae, 53
- Helper virus
 see SatRNA and viral symbiomes
Hemileia vastatrix, 42
 Herbicide
 concentrations
 rainfall, 558
 residues, 581, 595
 see also Weed biocontrol with fungal pathogens
 Herbicide-fungal interactions.
 579–602
 conclusion, 595–96
 effects on root diseases, 582–89
 crop predisposition, 582–83
 herbicide-fungicide interactions, 586–87
 inoculum density and crop damage, 587–89
 protection, 583–84
 soil microorganisms, 584–86
 sublethal doses, 583
 exploiting interactions, 593–95
 glyphosate characteristics, 580–82
 introduction, 579–80
 soil microflora and glyphosate, 589–93
 fungal colonization of treated plants, 592–93
 soil microorganisms, 589
 soil/site and efficacy, 590–92
- Het loci*, 211, 218
N. crassa, 213–14
- Heterodera*
 avenae
 fungal antagonists, 257, 261
glycines, 285
 glycocalin I, 382
 PHPH, 248
oryzae, 284
schachtii, 281, 285
 fungal antagonists, 257–59, 261
- Heteroderinae evolution, 271–90
 approaches, 272–74
 concluding remarks, 287
 introduction, 271–72
 relationship to other Tylenchiida, 274–79
 relationships of genera within heteroderinae, 279–83
 relationships within genera of heteroderinae, 284–87
- Heterokaryons
 ascomycete reproduction, 203, 211–12, 218
het loci, 211, 213–14, 218
 isolation in field, 216
- Heterokont algae, 174
 Heterothallism, 202
 Ascomycetes, 209–11
B. lactucae, 495
 see also *Phytophthora* evolutionary biology
 High performance liquid chromatography phenols, 370, 377
- Histidine
 protein kinases
 bacterial sensors, 463, 471
 residue, 466
- Histochemistry
 phenols, 376–77
- Histocompatibility complex, 411
- History
 see Burrill, Thomas J.
- Holiday, Robin, 10
- Homology, 397
 bacterial response regulators, 464, 467, 472, 477
- DNA
 bacterial taxonomy, 73–74, 80, 89, 91, 96
P. solanacearum, 452–56
- DNA-DNA
 acidovorans group, 94–95
- RNA
 BNYVV RNA species, 293, 295–97
- Homoplas
- Heteroderinae, 281
 Homothallism, 495
 Ascomycetes, 209–11
- Honey bees
 fireflight, 23
- Hoplolaimus concaudajuvencus*, 275
- Hormones
 see sex hormones
- Horsfall, J.G., 10
- Horticulture Research International, 487, 492
- Host pathogen interactions, 555
 bacteria
 taxonomy, 76
 see also Bacterial sensory transduction
- Biocontrol
 see Biological control in the phyllosphere
- coevolution, 178
- Fungal
 see Fungal avirulence genes; Lettuce downy mildew genetics nomenclature, 51

- viral
see SatRNA and viral symptoms
see also Phenolic compounds and resistance; Weed biocontrol with fungal pathogens
- Host range
nomenclature, 60
P. solanacearum, 445–46
- Host resistance
genes, 7–9, 56, 74
R genes, 56, 114, 124
see also Fungal avirulence genes
- lettuce
see Lettuce downy mildew genetics
- nomenclature
see Pathogenicity and virulence nomenclature
- rice
see Rice breeding for pest resistance
- sunflower
see Sunflower resistance breeding
- Tospoviruses*, 340
- see also Phenolic compounds and resistance; Plant pathology and biotechnology; race-specific resistance; resistance
- Host responses
Heteroderae, 278, 282
see also Phenolic compounds and resistance
- Host specificity, 179
effects glyphosate, 593
- Hrp* genes
bacterial regulation, 464, 474
P. syringae, 475–76
see also *Pseudomonas solanacearum* pathogenicity
- Humidity
leaf wetness modeling, 553–54, 564
- Humphrey, H.B., 40
- Hymenomyc B, 139
- Hydroxycinnamic acids, 370, 373, 375
- Hylonema*, 283
- Hypersensitive response, 370, 372
avirulence genes, 394–95, 398, 404, 406, 408
avr9, 403
avr9-Cf9, 410
effect on bacterial attachment, 228
elicitors, 4–5
signification, 379
- P. solanacearum*, 445, 449, 453–54, 456
resistance genes, 407, 409, 411
terminology, 444
TMV N gene, 8
- Hyphal fusion, 202, 216, 218
- Hypovirulence, 216
- Hypsosperine*, 278
- I
- Ice nucleation, 227
P. syringae preemptive colonization, 613
- Ice storm damage
red spruce decline, 355, 361–62
- Illinois Normal University, 18
- Illinois State Horticultural Society, 23
- Idiromorphs
C. heterostrophus, 204, 208
N. crassa, 203–4, 210
P. anserina, 204
- Impatiens necrotic spot virus
see *Tospoviruses*
- Imperial College, London, 28
- Incompatibility
B. lactucae, 496, 498–99
see also Mating type incompatibility in Ascomycetes
- Infection
cycle
tospoviruses/thrips, 331
process
see Bacterial attachment scale
fungal, 51
- Infectivity
virus nomenclature, 57
- Inhibitor genes, 395
- Inhibitor II proteins, 522
- Inhibitors
B. lactucae, 496
- Inoculum
delivery in biocontrol, 617–21
weed, 640, 642, 647–48
density, 587–89
fireblight, 22
fungal
role wetness, 555
PHPF, 249–50
seedborne
V. dahliae, 535
- Inoculation
bacterial, 227
P. solanacearum, 448, 450
taxonomy, 76
- mycorrhizae, 255
- sunflowers
P. halstedii, 537
S. sclerotiorum, 540
- viral, 305, 307–8
CMV, 427, 435
preinoculation satRNAs, 436–37
- tospoviruses*, 318, 332, 337, 339
- Insect vectors
see aphids; green leafhopper; mosquito; thrips
- Insecticides
against green leafhopper, 514
- Institute for Horticultural Plant Breeding, Wageningen, 489
- Institute of Plant Sciences Research
Cambridge laboratory, 11
- Integrated crop protection
see Antagonists for nematode control
- Interamerican Institute for Agricultural Sciences, 43
- International Code of Nomenclature of Bacteria, 68, 70–71, 75
- International Collection of Phytopathogenic Bacteria, 69
- International Committee on Systematic Bacteriology, 90
- International Committee on Virus taxonomy, 291
- International Conference on Plant Pathogenic Bacteria, 48
- International Congress of Botany, 43
- International Congress of Plant Pathology, 29, 41
- International Organization for Biological Control, 596
- International Rice Research Institute, 514–15
- International Society for Plant Pathology, 62, 75
- Invasiveness
nomenclature, 52
- Invertibrates
fungal genetics, 144–45
kalilo, 144–45
maranhari, 144
- Ireland
P. infestans, 116
- Irrigation
rice, 508
- Isozyme analysis
Phytophthora capsici, 183
meadii, 184
- Israel
P. infestans, 119

J**Japan**

P. infestans populations, 117–20, 169

John Innes Horticultural Institution, 1–2, 9–10

Johnson, Guy, 491

K

Kalilo, 144–45, 147–48

Karyogamy, 206

C. heterostrophus, 208

Keyworth, Graham, 491

Klebsiella

adherence, 230

pneumoniae

fimbriae, 233

nitrogen fixation, 471

pulD, 455

terrigena

fimbriae, 233

L

Laboratory equipment, 32–33

LaCrosse virus

pH, 334

Latent heat flux density

dew duration, 567–68

Leaf

bacterial attachment, 229–38

expansion

rice diseases, 515

exudates, 607

moisture

see Epidemiology and leaf wetness models

surface features, 604–6

symptoms

BNYVV RNA, 305–6

washing

bacterial attachment, 226–27

see also Biological control in the phyllosphere

Leaf blast

rice, 511, 516, 522

Lectins

nematode antagonists, 250

Lettuce downy mildew genetics, 485–506

cloning genes for resistance

and avirulence, 499–500

B. lactucae linkages:

RFLP, avirulence loci,

500–1

B. lactucae transformation,

501

lettuce linkages: RFLP,

RAPD, resistance loci,

499–500

lettuce transformation, 500

concluding remarks, 501–2

host cultivar pathogen iso-

late interaction, 490–92

host-pathogen incompatibility,

498–99

introduction, philosophy,

485–86

individual and team effort,

486

objectives, 485–86

research continuum, 486

resistance breeding history,

487–90

cultivars: outdoor, 487–88

cultivars: protected, 488–90

resistance genetics, 492–94

virulence genetics, 494–98

avirulence loci, 495–97

pathogen population genet-

ics, 497–98

sexual reproduction, 494–

97

Leucocystospora kunzei

het loci, 214

Lewis, Dan, 3, 9

Lignin

see Phenolic compounds and

resistance

Lignin-like polymers, 370, 373

Lip patterns

Heteroderina evolution, 276,

279, 284, 286

Literature, 148

Localization

disease development

see Phenolic compounds

and resistance

Luteolinidin, 381–82

Luteoviruses, 305

Lycopersicon, 2

peruvianum, 2

M

Macrophomina phaseolina

sunflower resistance breeding,

544–46

Magnaporthe

avirulence genes, 399–400,

404, 407

genetic change, 147

grisea, 400

pathogenetic variation,

132

griseus

genes, 7

Maize

caffeoyle esters, 375

mutants, 7–8

response *C. heterostrophus*,

374–75

Manganese -limited conditions

bacterial attachment, 236

Map-based cloning

avirulence genes, 398, 405

B. lactucae, 499

Mapping

B. lactucae genome, 498, 500

L. sativa, 499

rice genome, 515

sunflower diseases, 530

see also Beet necrotic yellow vein virus

Maranhão, 144

Mating-type

see *Phytophthora* evolutionary biology; *Phytophthora infestans* population genetics

Mating type, incompatibility in

Ascomycetes, 201–224

concluding remarks, 217–18

introductions, 201–2

sexual reproduction, 202–11

Cochliobolus hetero-

trous, 208–9

Heterothallic and

homothallic, 209–11

Neurospora crassa, 203–6

Podospora anserina, 206–7

vegetative incompatibility,

211–17

cellular and biochemical

consequences, 211–13

genetic systems, 213–14

population aspects, 215–17

Medicarpin, 138

Mediterranean Phytopathological Union, 41

Meiosis

C. heterostrophus, 208

N. crassa, 206

Phytophthora, 154

P. anserina, 207

see also Fungal genetic

change

Melampsora

euphorbia, 640

lini, 6

avirulence genes, 397

flax resistance genetics,

379, 392, 397, 405,

648

genetic analysis, 12^a

mutants, 397

pathogenicity, 51

Melampsoridium betulinum, 41

Melanconis alni

herbicide interactions, 593–

94

Melanin, 131

Meloidodera, 279, 281–82

plasmids, 287, 281

- Meloidogyne*, 259
arenaria antagonists
 castor beans, 257
P. penetrans, 252
 rotations with cultivars, 252
belli, 286-87
charis, 281, 286-87
 comparison with Heteroderinae, 273-74, 276-78
eurytyla, 287
floridensis, 281
 characters, 287
incognita
 fungal antagonists, 257
 PHPR, 248
 Mendelian analysis, 391
 non-Mendelian genetic change
 see Fungal genetic change
 pathogenicity *M. lini*, 51-52
Phytophthora, 156
Meria coniospora
 nematode control, 260
 Metalaxyl, 112-113, 124, 586
 Methods, 32-34
 Metribuzin, 587
 Mexico
P. infestans migration, 169
 see also *Phytophthora infestans* population genetics
 Microclimate
 phyllosphere, 606
 see also Epidemiology and leaf wetness models
 Migration
 see *Phytophthora infestans* population genetics
 Mildew resistance genes, 394-95
 Mitochondrial plasmids, 145-46
 Mitotic cell division, 135
 Mitotic recombination
P. infestans, 123
 Models
 weed biocontrol systems, 649-50
 see also Epidemiology and leaf wetness models
 Moisture
 mycoherbicides, 648
 role
 leaf nutrients, 608
Phytophthora evolution, 179
 see also Epidemiology and leaf wetness models
 Molecular
 clocks, 189
 markers
 rice resistance, 512, 514-17
- systematics
 see Heteroderinae evolution
Monilia fructicola, 555
 role wetness duration, 556
 Monoclonal antibodies, 174
 against *avr9* peptide, 406
 Montana forests
 see Red spruce decline and abiotic stress
 Morphology
 Heteroderinae, 286
tospoviruses, 320
 Mosquito vectors, 334
 Mountain Cloud Chemistry Project, 351
 Mustard
 for nematode control, 257
 Mutants
 maize, 7-8
Mutator, 405-6
N. crassa mating-type, 205-6
P. anserina mating type, 207
P. infestans, 123
 satRNA, 426
 self-compatible
 x-ray, 3
 spontaneous deletion
BNYVV, 303
 see also *Pseudomonas solanacearum* pathogenicity
 Mycoherbicides
 see Weed biocontrol with fungal pathogens
 Mycorrhizal fungi
 herbicide interactions, 585
 nematode control, 253-55
Mycosphaerella graminicola
 genetic change, 147
 karyotype analysis, 133
 meiosis, 134
- N
- National Acid Precipitation Assessment Program, 358
 National Vegetable Research Station, Wellesbourne, 491-92
 Necrogenic satRNAs, 423-25, 435
 Necrosis
 role phenols, 371, 375
 see also hypersensitive response: tomato
 Necrotic yellow vein virus
 see Beet necrotic yellow vein virus
Nectria haematococca
 genetic change, 137, 139, 140
 chromosomal variation, 134-35
- karyotype variation, 133-34
 virulence, 132, 138
 Needle symptoms
 red spruce decline, 353, 355
 Nematicides
 see Antagonists for nematode control
 Nematode control
 see Antagonists for nematode control
 eggs
 fungal antagonists, 255-61
 Heteroderinae
 see Heteroderinae evolution
 host compatibility, 58
 hypersensitive responses, 58
 nomenclature
 pathogenicity, 58-59
 virulence, 58-59
 rice pests, 509
 Nematode-trapping fungi, 259-60
Nematophthora gynophila
 nematode control, 261
 Nepoviruses
 large satRNAs, 432-33
 small satRNAs, 432
 Netherlands
 lettuce breeding, 489
P. infestans, 112-113, 116-117, 119, 122
 Netherlands Journal of Plant Pathology, 392
Neurospora crassa
 herbicide interactions, 584
 maranhar, 144
Tad1, 141-42
 see also Mating type incompatibility in Ascomycetes
 genetic change, 147
 chromosomal variation, 135
 plasmids, 145-46, 148
 repeated DNA, 140-41
 senescence, 144
 intermedia
 kalilo, 144-45
 plasmids, 146
 Nitrate nonutilizing auxotrophs, 212
 Nitrogen
 leaf nutrients, 608
 nematode control, 251-52
 Nitrogen fixation, 21
Rhizobium regulatory systems, 470-73
Nocardia
 taxonomy, 89
vaccinii, 89

- Nomenclature
 bacterial attachment, 231
 nematode antagonists, 246
 races, 393
 see also Pathogenicity and virulence nomenclature;
 Taxonomy of plant pathogenic bacteria
- Nonhost interactions, 370
- Nonhost resistance, 5, 369
 fungal infection, 379
 towards bacteria, 404
- Non-Mendelian genetic change
 see Fungal genetic change
- Nonpathogenic nomenclature, 51, 62
- Nuclear fusion
 ascospore reproduction, 202
- Nucleic acid analysis
 bacterial taxonomy, 69
- Nucleic acid sequences
 oomycetes, 174
- Nutrients
 competitors
 biocontrol, 615
 leakage, 455–56
 phyllosphere, 606–8
 stress
 ascogonia formation, 202
 nematode-trapping fungi, 259
- O**
- Ohio State University, 9–10
- Oilseed crops
 see Sunflower resistance breeding
- Oleic acid, 160
- Oligogalacturonides, 4
- Onion
 flower blight, 555
- Oomycetes
 see *Phytophthora* evolutionary biology
- Oospores
B. lactucae, 494–95
- Open reading frames
 see ORFs
- Ophiostoma ulmi*
 hypovirulent strains, 216
- ORFs, 448, 450
avr9, 403
 BNYVV RNAs, 294–95,
 300–1, 305
C. fulvum transposons, 142–
 43
- N. crassa*
 idiomorphs, 203–4
- P. solanacearum* *hrp* gene,
 455–56
- satRNAs, 425, 428
tospoviruses, 321–23
- Organic Amendments
 nematode control, 254, 256,
 259–60
 rice blast control, 514
- Ornamental diseases
 see *Tospoviruses*
- Ornithine, 89
- Orobanche*
cumana
 sunflower resistance, 530–
 33
 herbicide interactions, 583
- Oryza sativa*
 see Rice breeding for pest re-
 sistance
- Ozone stress
 red spruce decline, 349, 358–
 560
- P**
- Panagrellus redivivus*, 260
- Panama disease of bananas, 28–
 29
- Panicule blast
 rises resistance, 511, 516,
 519
- Panicum* mosaic virus, 420,
 433
- Pantoea agglomerans*, 91
- Papua New Guinea
P. cinnamomi, 169
- Parasquat, 582, 588–89, 591,
 595
- Parsimony
 algorithm, 283
Heteroderinae evolution, 276,
 282
- Patentability, 622
- Pathogen-inducible promoters,
 404
- Pathogenesis-related proteins,
 396, 400, 408
 induced resistance, 521–22
- Pathogenic feedback, 166
- Pathogenicity
 bacterial taxonomy, 69–70,
 74–78, 90
 compatibility, 393–96
 fungal, 131–32
 glyphosate, 593
 weed biocontrol agents,
 644–48
- nonhost resistance, 5
- N. haematoxilina*
Mak1, 138
Pda6, 138
- Orobanche*, 532
- P. infestans*, 125
- terminology, 444
- variation
 fungal, 131–32
Phytophthora, 165
 see also *hrp* genes; *Pseu-*
monas solanacearum
 pathogenicity
- Pathogenicity and virulence
 nomenclature, 47–66
 applied to fungi, 50–54
 aggressiveness, 53–54
 fitness, 54
 Flor's definitions, 51–53
 toxins, 53
 usages, 50–54
 applied to nematodes, 58–59
 applied to prokaryotes, 54–
 56
 avirulence genes, 56
 pathogenicity, 54–55
 virulence, 55–56
 applied to viruses, 56–58
 aggressiveness, 57–58
 pathogenicity, 56
 virulence, 56–57
 conclusions, recommenda-
 tions, 59–63
 composites, 59–60
 other recommendations,
 62–63
 suggested usages, 60–62
 introduction, 47–49
 medical and scientific dictio-
 naries, 49
 plant pathology literature, 49–
 50
 standard English usage, 49
- Pathovars
 nomenclature, 75–79
- Paxillus involutus*
 herbicide interaction, 585
- Pea root pathogen
 see *Nectria haematococca*
- Peanut bud necrosis, 316
- Peanut yellow spot, 316, 330
- Peanut stunt virus
 satRNAs, 428
 symptom-modulation on
 tobacco, 428
- Peptidase-1 locus
P. infestans, 110–11, 113,
 116–17, 119, 121
- Peronophythora*
 affinities *Phytophthora*, 175–
 76
lycii, 176
- Peronosporaceae
 relationship *Phytophthora*,
 174–75
- Peru
P. infestans, 117
- Pesticides
 alternatives, 621, 624

- effect
herbicides, 581
mycorrhizae, 255
tospoviruses epidemics, 339
- Pests
see Rice breeding for pest resistance
- pH
cloudwater, 352
glyphosate concentration, 581
effect VirG, 468
LaCross virus, 334-5
- Phaseolin, 583
- Phasmid ampulla
Heteroderinae, 276
- Phenolic compounds, 465, 469-70
role glyphosate, 582-83
- Phenolic compounds and resistance, 369-89
concluding remarks, 383
host response: initial events, 370-76
introduction, 369-70
lignin and polymeric compounds, 376-80
phytoalexins accumulation, 380-83
- Phenotype change
see Fungal genetic change
- Phenylalanine, 372
inhibitors, 379
- Phenylamide resistance
B. lactucae, 490
- Pheromones
ascomycete reproduction, 202-3, 205-6
- Philippines
PI, 119
- Phleboviruses*
affinity *tospoviruses*, 321, 324-27
- Phoma*
macleodii
sunflower resistance breeding, 542
oleracea var. *helianthi-tuberosi*, 542
- Phomopsis helianthi*
sunflower resistance breeding, 543
leptostromiformis, 595
longicolla
forecasting system, 564
- Phosphate, 255, 584
deficiency, 252
effect VirG, 468
- Phosphorylation
bacterial sensory systems, 464, 467-70
- Phyllosphere
see Bacterial attachment;
Biological control in the phyllosphere
- Phylogenetics
see Heteroderinae evolution;
Phytophthora evolutionary biology; Taxonomy of plant pathogenic bacteria; *Tospoviruses*
- Phymatotrichum omnivorum*
glyphosate, 589
- Physiological manipulation
nematode control, 251
- Phytoalexins
detoxification, 131
effect herbicides, 585
resistance, 396
see also Phenolic compounds and resistance
- Phytophthora*
bryosora
population structure, 184-85
- cactorium*, 555
dispersal, 188
distribution, 179
genetics, 154, 156, 164
herbicide interactions, 585
population structure, 187-88
- capsici*
genetics, 154, 156, 165
interspecific hybridization, 181
population structure, 183-84
- cinnamomi*, 258
genetics, 153, 160, 164, 169
herbicide interactions, 586
host range strategy, 179
reproductive isolation, 180
population structure, 186
- citrinola*
dispersal, 188
population structure, 187-88
- citrophthora*
interspecific hybridization, 181
population structure, 182-83
renamed, 641-42
- cryptogea*
population structure, 185-86
- drechsleri*
genetics, 156, 161
population structure, 185-86
virus like particles, 182
- fragariae*
population structure, 187
speciation, 178
- genetic transformation, 399
- gonopodyides*
population structure, 185-86
- heveae*, 184
genetics, 162
heterothallism, 157-58
- infestans*, 183
gene-for-gene systems, 395
genetic transformation, 399
pathogenicity nomenclature, 53
role phenols, 371, 374, 376, 378
see also *Phytophthora* evolutionary biology; *Phytophthora infestans*
population genetics
- meadii*,
genetics, 168-69, 181
population structure, 184-85
- megakarya*
genetics, 153, 162, 168, 170
population structure, 184
reproductive isolation, 180
- megasperma*,
avirulence, 166-67
DNA content, 162
genetics, 156, 164
host range strategy, 179
polyploidy, 162-63
population structure, 186-88
rapid speciation, 182
virulence, 166-67
- megasperma f. sp. glycinea*, 371
glucan elicitor, 383
phytoalexins, 382
Pmg elicitor, 372
with herbicides, 583
- mirabilis*
population structure, 185
- nicotianae*, 161-62, 181
virulence, 167
- nicotianae* var. *parasitica*, 642
- palmivora*
dew formation model, 568
genetics, 153, 157, 162-63, 168, 170
heterothallism, 157-58
interspecific hybridization, 181
population structure, 184
weed biocontrol, 638, 641-42
- parasitica*, 184

- genetics, 156, 160, 162, 164, 168
pathogenicity, 165
reproductive isolation, 180
- phaseoli*
population structure, 185
porri
population structure, 187
- Phytophthora* evolutionary biology: genetics, 153–72
genetic system, 154–64
chromosome number, polyplidy, genome size, 162–63
cytoplasmic inheritance, 164
diploidy, 154–57
heterothallism, 157–60
heterothallism, self-fertility
genetic control, 160–62
self-fertility in heterothallics, 160
vegetative compatibility, 163–64
introduction, 153–54
natural variation, 164–70
compatibility type, 168–70
fitness, 164–66
genetic system role, 170–71
isozymes, molecular variation, 167–68
virulence loci, 166–67
- Phytophthora* evolutionary biology: phylogeny, speciation, 173–200
conclusions, 188–90
Oomycete affinities, 173–76
Halophytophthora, *Peronophythora*, 175–76
Pythium, Peronosporaceae, 174–75
origins of species, 177–82
interspecific hybridization, 181
rapid speciation under
epidemic selection, 181–82
reproductive isolation, 179–81
selective influences, 178–79
speciation, 178–81
phylectic relationships, 176–77
population structure and
speciation, 182–88
homothallic species, 186–88
nonpapillate heterothallic
species, 185–86
papillate heterothallic species, 182–85
- P. cactorum*, *citrincola*, 187–88
P. capsici, 183–84
P. cinnamomi, 186
P. citrophthora, 182–83
P. cryptogea, *drechsleri*,
gonopodyoides, 185–86
P. fragariae, 187
P. infestans, *mirabilis*,
phaseoli, 185
P. meadii, *botryosa*, 184–85
P. megakarya, 184
P. megasperma, 186–87
P. palmivora, *parasitica*, 184
P. porri, 187
- Phytophthora infestans* population genetics, 107–129
concluding remarks, 125–26
evolutionary divergence, 126
fitness variation, 126
population structure, 125–26
regional diversity, 125
sexual reproduction, 126
within-field diversity, 125
evolutionary mechanisms, 121–25
genetic drift, 123–24
migration, 122
mutation/mitotic recombination, 123
selection, 124–25
sexual reproduction, 122–23
genetics/markers, 108–12
advances, 108–9
allozyme, 110–11
mating type, 110
mitochondrial and nuclear
DNA RFLPs, 111–12
virulence/avirulence, 109–10
introduction, 107–8
structure geographically separated populations, 112–21
allozyme and RFLP markers, 115–18
continental diversity, 118–21
intercontinental relationships, 119–21
intracontinental diversity, 118–19
regional diversity, 114–18
virulence/avirulence, 114–15
within fields, 112–14
- Picea rubens* Sarg.
see Red spruce decline and abiotic stress
- Pili
see Bacterial attachment
- Pisatin, 138, 380
- Plant Breeding Institute, Cambridge, England, 11–12
- Plant-fungus interactions
see host pathogen interactions
- Plant-growth promoting rhizobacteria
nematode antagonists, 247–49
- Plant-health promoting rhizobacteria
nematode antagonists, 248–51, 255
- Plant pathogen interactions
see host pathogen interactions
- Plant pathology and biotechnology, 1–13
background, 1–6
introduction, 1
isolating resistance genes, 7–9
model systems, 6–7
other systems, 9–11
Plant Breeding Institute, 11–12
- Plasmids
fungal genetics
circular mitochondrial, 145–46
self-replicating, 138–39
- Plasmodia
P. betaie, 292–93
- Plasmodiophorales
vectors
see Beet necrotic yellow vein virus
- Plasmopara halstedii*
sunflower resistance breeding, 536–39
helianthi, 537
- Plastic mulching
nematode control, 258
- Ploidy
see *Phytophthora* evolutionary biology
- Plum pox virus, 296
- Podospora anserina*, 141
see also Mating type incompatibility in Ascomycetes
- Poland
P. infestans, 117–119
- Polioivirus, 299
- Pollen, 607–8
red spruce, 351
- Pollution
see Red spruce decline and abiotic stress

- Polyclonal antibodies, 338
 Polymerase chain reaction, 319
Polymyxa
 betae
 see Beet necrotic yellow vein virus
graminis, 304
 Polyphasic tests
 bacterial taxonomy, 71
Polyplody
 see *Phytophthora* evolutionary biology
 Population dynamics
B. lactucae, 497–98
 pathogens for weed biocontrol, 644–50
 phyllosphere, 612–14
 vegetative incompatibility studies, 215–17
 Population genetics
 see *Phytophthora infestans*
 population genetics
 Population structure
 see *Phytophthora* evolutionary biology
 Portuguese plant pathology
 see D'Oliveira, Branquinho, Portuguese plant pathologist
Potato
 response to
P. infestans, 371–72
V. dahliae, 372
 Potato cyst nematode
 see *Globodera*
 Potato late blight forecasting, 573
 role rain, 557
 see also *P. infestans*
 Powell, Major John, 19
 Powdery mildew gene-for-gene systems, 396
 Premieiotic deletion, 140–41
 Prokaryotes nomenclature avirulence, 56
 pathogenicity, 55–56
 virulence, 54–55
 Protoplast infection experiments RNA viruses, 295
 Proteinase inhibitors, 522
 Proteins BNYVV, 295–99
Pseudocercospora herpotrichoides with herbicides, 587
Pseudomonas acidovorans group, 94
avenae taxonomy, 87, 95–96
fluorescens *hrp* cluster, 475
 taxonomy, 82, 87, 93
fluorescens group as biocontrol agents, 614, 624
 herbicide interactions, 588
 taxonomy, 93
marginalis, 93
plantarum, 94
putida, 452
ruberubalbicans, 94
solanacearum attachment, 234
dsp cluster, 476
hrp cluster, 476
 taxonomy, 77, 94
 see also *Pseudomonas solanacearum* taxonomy
syringae attachment, 229, 231, 233–34
 avirulence, 408
 epiphytic colonization, 226–27
hrp genes, 453–54, 475–77
 growth rate, 164
 ice nucleation, 227–28
 pathovars, 93–94
 sensory transduction, 464
 taxonomy, 93–94
syringae pv. *glycinea*, 229
avrA gene, 404
hrp genes, 475
syringae pv. *lachrymans*, 229
syringae pv. *maculicola* *avrRpm1*, 405, 408
syringae pv. *phaseolicola*, 233
 adherence, 228, 230
hrp genes, 456, 475
syringae pv. *savastanoi*, 79
syringae pv. *syringae* adherence, 228
 syringomycin, 476
 taxonomy, 93–94
 var *glycinea* Avirulence gene cloning, 4
syringae pv. *tomato*, 79
avr, 403, 408
 taxonomy, 72–73, 85–87, 92–95
Pseudomonas solanacearum pathogenicity, 443–61
 aggressiveness: genetic control, 447–56
 endoglucanase, 447–48
 exopolysaccharides, 449–51
 extracellular enzymes, 447–49
hrp gene clusters, 453–54
hrp gene functions, 455–56
hrp genes: other bacteria polygalacturonases, 448–49
 regulatory genes with pleiotropic effect, 451–53
 regulatory genes: *epsR*, 452–53
 regulatory genes: *phcA* gene, 451–52
 uncharacterized biochemical functions: genes, 453–56
 concluding remarks, 456–57
 host specificity: genetic control, 445–47
 pathogenicity, 446
 positive functions, 447
 role avirulence genes, 445
 introduction, 443–44
Puccinia
anomala Rost, 40
canaliculata with herbicides, 583–84
 weed biocontrol, 641, 647
carduurum weed biocontrol, 640–41
chondrillina weed biocontrol, 640–41
graminis lignins, 379
graminis avenae pathogenicity, 51
 virulence, 53–54
graminis tritici virulence, 53
hellianthi sunflower resistance breeding, 533–35
jaceae weed biocontrol, 641
sorgho host resistance genes, 7, 405
Mutator, 405
striiformis fecundity, 54
 wheat resistance, 391, 394
vincae, 41
 Pulsed field gel electrophoresis fungal genetics, 133, 139
Phytophthora, 162
Punctocera, 280
 Pustovoit, V.S., 531
Pyrenopeziza brassicae role moisture, 555
Pyrenopora *teres*, 556
tritici-repentis, 555
Pyricularia *grisea*, 653
 bacterial antagonists, 522
 rice resistance breeding, 508–11, 515

oryzae
renamed, 653

Pyruvate, 454

Pythium

- arrhenomanes*
with herbicides, 582
- debaryanum*, 154
- herbicide interactions, 582,
586, 588-89, 593
- similarities *Phytophthora*,
174-75, 177, 190
- sylvaticum*
with herbicides, 593
- ultimo*, 626
with herbicides, 593
- undulata*
transferred to *Phytophthora*,
174

Q

Quantitative trait loci
crops, 515-16

Quarantine

- P. infestans*, 109
- role pathovar nomenclature,
78

R

R genes

- P. infestans*, 109-10, 114,
124

Race-cultivar specificity, 491

Race-specific elicitors, 396,
398, 402-2, 405-9

Race-specific resistance

- B. lactucae*, 491
genes, 3-5, 7, 54, 56, 60-61
see also Fungal avirulence
genes

to rice blast, 511

Radiation

dew formation, 559-60

Radopholus

host resistance

see Fungal avirulence genes

Rain

- effect
bacterial growth, 227
- mycoherbicides, 648
- nutrient loss, 607
- leaf wetness modeling, 553,
557-58

Raper, John, 9

rcg genes, 62

Readthrough protein

BNYVV, 299-300, 303-5

Red spruce decline and abiotic
stress, 349-367

airborne chemicals and cold
tolerance, 358-61

causes in Appalachians, 361
characteristics: red spruce,
montane forests, 350-52

condition: Appalachians,
354-55

condition: Northern forests,
352-54

introduction, 349-454

summary, 362-63
winter injury: Northeast, 355-
58

Release

biocontrol against, 620

Remote sensing

crop wetness, 573

Repeat-induced point mutation,
140-41

Reproduction

fungal

C. gloeosporioides, 652-53

see also Mating type in-
compatibility in
Ascomycetes; *Phytophthora*
evolutionary
biology; *Phytophthora*
infestans population
genetics

Heteroderae, 283-84

Resistance

genes

see Fungal avirulence
genes; race-specific re-
sistance genes

horizontal, 395-96, 407

to downy mildew, 491

to *S. sclerotinia*, 541

vertical, 396

see also host resistance

Restriction fragment length
polymorphism (RFLP), 8, 133,
137, 164

avirulence genes, 398

bacterial taxonomy, 73-74,
94

B. lactucae, 498

P. infestans, 111-12, 115-18,
121, 123

resistance genes, 406

rice genome, 515-17

weed biocontrol agents, 651-
53

Rhicadhesin, 236-37

Rhizobacteria, 620

see also Antagonists for
nematode control

Rhizobium

adhesins, 234-36

gene regulation

see Bacterial sensory
transduction

leguminosarum

fimbria, 231

nitrogen fixation, 472

meliloti, 464

nitrogen fixation, 471-73

sym-plasmid, 234, 237

trifoli

herbicide interactions, 585

Rhizoctonia

cerealis, 584

herbicide interactions, 586-
87

PR proteins, 521

solani

nonhost resistance, 5

Rhizomania, 420

see also Beet necrotic yellow
vein virus

Rhizomonas suberifaciens

taxonomy, 95

Rhizosphere

biological control, 604-11

see also Bacterial attachment;
Herbicide-fungal in-
teractions

Rhodococcus

taxonomy, 89

Rhynchosporium secalis

necrosis inducing peptides,
400-1

resistance genes, 400

Rrs1, 400

Riboprobes

tospoviruses, 319

Rice

M. grisea, 399-400

X. oryzae

lignin, 377, 379-80

Rice blast

forecasting system, 564

Rice breeding for pest resis-
tance, 507-28

conclusions, 522-23

introduction, 507-8

research issues, 510-22

insufficient resistance

durability, 510-14

insufficient resistance

sources, 519-22

major gene resistance, 517-
19

quantitative resistance,

514-16

sources: genetic engineer-
ing, 520-22

sources: wild rice, 520

rice environments, 508-9

deepwater and tidal wet-

lands, 509-10

irrigated, 508

rained lowland, 509

upland, 509

Rice tungro bacilliform virus

host resistance, 513, 519

- Rice tungro disease
host resistance, 513–14, 520–21
genetic engineering, 521
Rice tungro spherical virus, 513
Rick, Charles, 2
Risk analysis
weed biocontrol, 650–51
RNA
defective-interfering, 419–20
DI-like, 430
double-stranded
see dsRNA
fungal genetics, 143
genome
see *Tospoviruses*
homology
see homology
role bacterial taxonomy, 68
sequences
satRNA, 422
species
see Beet necrotic yellow vein virus
dsRNA
fungal viruses, 10
hypovirulence, 216
PAL, 372
mRNA
B. luctucae genome, 501
idiomorphs, 203
rRNA, 145
bacterial phylogenetics, 82–83
SatRNA and viral symptoms, 419–42
applications: viral plant disease control, 434–37
concluding remarks, 437
introduction, 419–21
research update, 421–34
CMV: brilliant yellowing, tobacco, 425–26
CMV: chlorosis induction, tomato, tobacco, 426–27
CMV: necrogenic domain, 432–25
CMV: overview, 421–23
cucumber mosaic virus (CMV), 421–28
disease attenuation, 427–28
groundnut rosette virus, 429–30
nepoviruses, 432–33
nepoviruses: large satRNAs, 432–33
nepoviruses: small satRNAs, 432
peanut stunt virus, 428
satellite viruses, 433–34
ST9 and beet western yellow virus, 434
tombusviruses, 433
turnip crinkle virus, 430–32
ssRNA
tospoviruses, 320
tRNA, 145–46
VSRNA, 143–44
RNA-dependent polymerase, 146, 295, 420, 469
RNA/RNA hybridization, 371
Robertson, N., 28
Rockefeller Foundation, 521
Root
bacterial colonization, 226
attachment, 229–38
pathogens
biocontrol, 604–11
see also Garrett, Stephen Denis, Pioneer, Herbicide-fungal interactions stocks
nematode control, 260
symptoms
BNYVV, 307–9
red spruce decline, 354
topology, 605–6
see also rhizosphere
Rothamsted Experimental Station, 28
Rotylenchulus, 276
matadorensis, 277
reniformis, 276, 278
Roundup, 580–81, 583
Royal Society, 27
Russia
sunflower breeding, 529–32
Rust
cereal, 40–41
coffee
see D'Oliveira, Branquinho, Portuguese plant pathologist
host resistance
gene-for-gene systems, 396
genes, 394–95
wheat, 391
infection nomenclature, 51
wheat resistance, 391
see also *Puccinia*
Rutgers, 12
- S
- Saccharomyces cerevisiae*
homothallism, 209–10
mating type, 204–5, 209, 217, 652
Salazar, 39–40
Salmonella thphimurium, 450, 455
Samuel, Geoffrey, 28
saprolegnia, 157
- Satellite RNA
see SatRNA and viral symptoms
Scanning electron microscopy, 228
Heteroderina evolution, 275–76, 279–80, 282, 286
Schizosaccharomyces pombe
homothallism, 209–10
mating type, 205, 209, 217
Sclerotinia
minor
biocontrol, 627
sclerotiorum
biocontrol, 627
controlled with *E. purpureascens*, 614
role rain on rape, 558
role wetness on sunflower, 569
sunflower resistance breeding, 540–42
trifoliorum
mating type, 210
- Seed
companies, 569
PHPR treatment, 248–49
- Self-fertility
Ascomycetes, 210–11
Phytophthora, 160–62
- Selfing
Phytophthora
fitness characters, 164
- Sensors
wetness, 557, 558
leaf duration, 559, 562, 566
- Sensory transduction
see Bacterial sensory transduction *Septoria nodorum*
role leaf wetness, 556
- Sex wall, J.A., 18
- Sex hormones
Phytophthora, 158–59, 171
- Sexual reproduction
B. luctucae, 494–97
see also Mating type incompatibility in Ascomycetes; reproduction
- Seymour, A.B., 19
- Sheath blight, 520
- Shikimic acid pathway
glyphosate target, 582, 584
- Signals, 5
coumarin synthesis, 373
PR proteins, 407
see also Bacterial sensory transduction
- Silver mottle
see watermelon silver mottle

- Sindbis-like viruses
replication, 295
- Smut fungi
resistance genes, 394-95
- Society of American Bacteriologists, 23
- Soil
CA/Al ratio
red spruce decline, 362-63
conditions, 606
containers, 32-33
ecosystems
see Herbicide-fungal interactions
erosion from rainfall, 558
- Nematode antagonists
see Antagonists for nematode control
- role genetic variation fungi, 165-66
- solarization
nematode control, 253, 258
- types and glyphosate, 592
- Soil-borne pathogens
see Beet necrotic yellow vein virus; Garrett, Stephen Denis, Pioneer
- Somatic fusions
Phytophthora, 163, 171
- Sordaria*, 141
- Sorghum
phytoalexin accumulation, 381-82
- Sousa da Câmara, Manual, 39
- Southern blot analysis
C. fulvum DNA, 402
- Soybean
glyceollin I, 382
- Soybean cyst nematodes
bacterial resistance genes, 406
see also *H. glycines*
- Speciation
see *Phytophthora* evolutionary biology
- Species concept, 177-78
bacterial taxonomy
see Taxonomy of plant pathogenic bacteria
- Spores
leaf wetness, 554-55
- Sporidesmium sclerotiorum*
biocontrol agent, 627
- Spotted wilt
see *Tospoviruses*
- Stalk rot/wilt
see *Sclerotinia sclerotiorum*
- Stem canker of soybean
role wetness, 555-56
- Stem rot
rice resistance, 520
- Stress
nutrient lack
- fungal reproduction, 202
- wind
montane forests, 351, 353
see also heat shock; Red spruce decline and abiotic stress
- Stylet
Heteroderinae, 273
- Sudden death
coffee, 43
- Sugar beet
see Beet necrotic yellow vein virus
- Sugar beet cyst nematode
see *Heterodera*
- Sulfuric acid
cloudwater, 351
- Sunflower resistance breeding, 529-51
- broomrape, 531-33
- charcoal rot, 544-46
- discussion, 546-47
- downy mildew, 536-39
- introduction, 529-31
- leaf spots, 539-40
- mineral deficiency, 545
- Phoma* black stem, 542
- Phomopsis* brown stem, 543-44
- rust, 533-35
- Sclerotinia wilt and head rot, 540-42
- Verticillium* wilt, 535-36
- Suppressive soils, 246, 262
- Survivability
nomenclature, 52
- Synapomorphies
Heteroderinae, 273, 276, 282-83
- Syringomycin, 476
- T
- Tad1*, 141-42
- Taiwan
P. cinnamomi, 169
watermelon silver mottle virus, 324
- Taxonomy
C. colletotrichum, 663
furoviruses, 292
see also *Heteroderinae* evolution
- Taxonomy of plant pathogenic bacteria, 67-105
- epilogue, 97
- introduction, 67-68
- part 1, 68-87
approaches, 68-70
bacterial species, 72-75
classification, present practice, 70-72
- gene transfer, 75
- genomic species, 72-74
- historical, 68-70
- pathogenic speciation,
adaptation 74-75
- pathovars, 75-79
- phenetic classification, 79-80
- phylogenetic classification, 80-83
- suprageneric classification, 83-87
- part II
- Agrobacterium*, 90-91
- Arhrobacter*, 88-89
- Clavibacter*, 89
- Curtobacterium*, 89
- Erwinia*, 91-92
- genera containing plant pathogens, 88-97
- gram-positive genera, 88-89
- Nocardia* and *Rhodococcus*, 89
- Pseudomonas*, 92-95
- Pseudomonas*, acidovorans group, 94-95
- Pseudomonas*, fluorescens group, 93
- Pseudomonas*, solanacearum group, 94
- Pseudomonas* solanacearum, 94
- Pseudomonas syringae*, 93-94
- Rhizomonas*, 95
- Xanthomonas*, 95
- Xanthomonas campestris*, 95-96
- Xylophilus*, 96
- Xylella*, 96-97
- Teaching, 33
- Temperature
role
leaf wetness modeling, 553, 556, 561-62, 564-66, 570
satRNAs on tobacco, 427
vir gene induction, 467
- winter
see Red spruce decline and abiotic stress
- Terminology
see Pathogenicity and virulence nomenclature
- Thecavermiculatus andinus*, 282
- Thinning shock
red spruce decline, 362
- Thrips*
palmi, 338
tabaci, 337

- Thrips-virus interactions
see *Tospoviruses*
- Tobacco
chlorotic symptoms
CMV, 421-22, 425-27
- Tobacco mosaic virus
coat protein, 8
hypersensitive reaction, 8, 57
resistance mechanism, 8
satellite virus, 433-34
virulence, 57
- Tobacco necrosis virus, 420
- Tobacco ringspot virus
satRNA, 432, 436
- Tomato
chlorotic symptoms, 421-22, 425-27
necrosis
CMV satRNA, 421-22, 424-25, 434, 435
resistance breeding
see Plant pathology and biotechnology
resistance to *C. fulvum*, 401
c19 gene, 406
white leaf, 421-22, 427
- Tomato aspermy virus, 428, 436
- Tomato bushy stunt virus
satRNA, 433
- Tomato late blight
see *P. infestans*
- Tomato spotted wilt virus
see *Tospoviruses*
- Tombus viruses
satRNAs, 433
- TOMCAST, 565
- Tospoviruses*, 315-48
detection and diagnosis, 317-19
epidemiology: thrips vectors, variants, 331
future management prospects, 340-41
infection cycle: thrips development, epidemiology, 331-32
introduction, 315-17
molecular biology, 320-24
genomic organization, 320-21
structure, 320
nomenclature and phylogenetics, 324-31
Bunyaviridae, 324
serological relationships, 326
serologically distinct *Tospoviruses*, 236-31
Tospovirus genus, 324-26
Tospovirus species, 326
thrips acquisition, 332-36
cellular events, 334-36
- feeding and host, 332-34
thrips transmission, 336-40
feeding and host, 339
vector species and virus variants, 336-38
virus replication in thrips, 338
- Toxins
B. thuringiensis, 517-19
C. heterostrophus, 208
Tox1, 136
lignin, 379
nomenclature
pathogenicity, 53
virulence, 53
- Transactions of the British Mycological Society*, 29
- Transduction
see Bacterial sensory transduction
- Transgenic plants, 5
disease resistant
see Fungal avirulence genes
lettuce, 499-501
satRNA, 427, 436
tomatoes, 436
- Transmission electron microscopy
F. occidentalis, 329
- Heteroderinae evolution, 275-76, 280-82, 286
- Impatiens necrotic spot virus, 328
- tomato spotted wilt virus, 329, 333, 335
- Transplanting
nematode control, 253-54, 258, 260
- Transposon tagging, 7
insertion, 448, 452
mutants, 449
- Transposons, 405
see also Fungal genetic change
- Tranzschelia pruni-spinosae*, 41
- Tree-ring studies
red spruce decline, 353, 355, 362
- Trichoderma*, 170, 258
harzianum
formulation, 620
induce selfing in *Phytophthora*, 161-62
viride
effects herbicide, 585
- Trichomes, 605
- Trifluralin, 582, 585
- Triple Block
BNYVV, 300-1, 309
- Trypsin inhibitor gene, 522
- Turner, Jonathan Baldwin, 18
- Turnip crinkle virus
satRNAs, 420-21, 430-33
- Tylenchus*
antagonists, 259
- U
- Ultraviolet fluorescence microscopy
lignins, 377
- United Nations Food and Agriculture Organization, 43-44
- United States Environmental Protection Agency, 48
- University of Cambridge, 27, 42
- University of Lisbon, 39-40
- University of Illinois
see Burill, Thomas J.
- University of Newcastle Upon Tyne, 490
- University of Wisconsin, 3
- Urnula necator*, 620
- Urea
leaf treatment, 251
- Uredales, 40
- Uromyces pisi*, 41
- Ustilago*
genetic changes, 138
heat shock, 138
hordei
host range, 132
wheat resistance genetics, 392
maydis
genetics, 6, 10, 133-34
- Uukuviruses*, 324-26
- V
- Variation
Phytophthora, 164-71
- Vasey, G.W., 18
- Vectors
insect
see aphid; green leafhopper; mosquito; thrips
see also Bean necrotic yellow vein virus; *Tospoviruses*
- Vegetative compatibility
Phytophthora, 163-64
- Vegetative incompatibility
see Mating type incompatibility in Ascomycetes
- Velvet tobacco mottle virus, 428
- Venturia*
inaequalis, 8
controlled by *A. bombaciina*, 627
controlled by *C. globosum*, 614-15, 624
- genetic analysis, 9

- role wetness, 556
virulence, 215
- Verticillium*
albo-atrum, 535
balanoides, 260
chlamydosporium
nematode control, 257-58
dahliae, 211-12
sunflower resistance breeding, 535-36
- Verutus*
evolution, 275-76, 281-82
females, 277
- Vesicular-arbuscular mycorrhizae
nematode control, 253-55
- Victorin, 53
- Vir*, 56, 61, 63
gene regulation
see Bacterial sensory transduction
- VirA-VirG* proteins
see Bacterial sensory transduction
- Viral specific nucleic acids, 319
- Viroplasm, 338
- Virulence, 76, 109, 538
B. lactucae, 495-98
gene induction
see Bacterial sensory transduction
- groups
broomrape, 532-33
loci
Phytophthora, 106-7
P. infestans diversity, 109-10, 114-15, 121, 123-24
P. solanacearum, 447
- satRNAs, 431
terminology, 444
see also Pathogenicity and virulence nomenclature
- see also Plant pathology and biotechnology
- Viruses**
accumulation in roots
BNYVV, 306, 308
biocontrol
role satRNAs, 434-37
resistance, 8-9
replication, 293, 295-96
satRNAs, 423, 427-28
tospoviruses, 317, 338
nomenclature
aggressiveness, 57-58
pathogenicity, 56
virulence, 56-57
propagation, 293-94, 296
satellite, 433-34
*RNA*s, 420
see also Beet necrotic yellows virus
- satRNA
see SatRNA and viral symptoms
- symptoms
see SatRNA and viral symptoms
- vectors
see Beet necrotic yellow vein virus; *Tospoviruses*
- Virus-like particles, 142, 293
Phytophthora, 164
- Virus-host interactions
see host pathogen interactions
- Vulval slit
Heteroderinae, 284
- W**
- Waite, W.M., 19
- Waite Agricultural Research Institute, 28
- Wales
P. infestans, 117, 120
- Walsh, B.D., 18
- Ward, Marshall, 42
- Water
infection
see Epidemiology and leaf wetness models
- microbial colonization, 610
- Water potential
phylllosphere microbes, 606
- Watermelon silver mottle, 316, 329, 338
- Wax
in leaves, 605
- Weather
see climate; Epidemiology and leaf wetness models;
Red spruce decline and abiotic stress
- Weed biocontrol with fungal pathogens, 637-57
- classical strategy, 638-40
- Enyoloma compositarum*, 638-39
- Puccinia chondrillina*, 639-40
- concluding remarks, 653
- epidemiology, 644-50
environment, 648
- host, 648-49
- modeling and impact assessment, 649-50
- pathogen, 644-48
- genetic interrelationships, 651-53
- genetic manipulation of pathogens, 650-51
- introduction, 637-38
- other classical, 640-41
- mycoherbicide strategy, 641-43
Collego, 642-43
DeVine, 641-42
- potential mycoherbicides, 643-44
- strategies, 638
- Weed control
see Herbicide-fungal interactions
- Wellman, Frederick L., 42
- Western blots, 327
- Western flower thrips
see *Tospoviruses*
- Wetness
see Epidemiology and leaf wetness models
- Wheat blotch pathogen
see *Mycosphaerella graminicola*
- Wheat mosaic virus, 291
- Wheat mottle virus, 291-92
- White clover mosaic potexvirus, 301
- Whiteside, Lettice, 1
- Wild germplasm
rice, 520
- Wild species
lettuce, 488
sunflower resistance breeding, 536, 544, 546
- Wind stress
montane forests, 351, 353
- Winter injury
see Red spruce decline and abiotic stress
- Wounding
role phenols, 374
- Writing, 34-35
see also Pathogenicity and virulence nomenclature
- Wyerone, 381
- Wyerone acid, 381-82
- X**
- Xanthomonas*
campestris
adherence, 232, 234-35
avirulence genes, 408
DNA-DNA homology, 95-96
extracellular enzymes, 456-57
fatty acid profiles, 96
hrp genes, 454, 476-77
pathovars, 95
taxonomy, 95-96
campestris pv. *campestris*, 454
hrp genes, 454

- campestris* pv. *citri*
hrp genes, 454
- campestris* pv. *hyacinthi*
adherence, 230, 234
- campestris* pv. *malvacearum*
cotton research, 383
- campestris* pv. *vesicatoria*
avirulence genes, 408
fimbriae, 234
hrp genes, 5, 477
- ice nucleation, 227
- taxonomy, 70, 72-74, 85-87,
95
- maltophilia*, 95
- oryzae*
phenols, 377, 379-80
taxonom, 95
- oryzae* pv. *oryzae*
see Rice breeding for pest
resistance
- Xiphinema*
comparison with *Heteroder-*
inae, 273
- Xylella fastidiosa*
taxonom, 96
- Xylophilus*
ampelinus, 96
taxonom, 87, 96
- Y**
- Years artificial chromosome, 398
- Yellow local lesions
BNYVV, 305, 309
- Yellow stemborer
rice resistance, 518-19
- Yield trials, 2
- Yugoslavia
sunflower breeding, 518-19
- Z**
- Zoospores
P. betae, 293

