Maulana Azad National Institute of Technology Bhopal

DEPARTMENT OF PHYSICS

PHYSICS LABORATORY OBSERVATION BOOK

Name of the Studen	nt:
Scholar Number	•
Roll Number	•
Year & Semester	:
Section	:
Subject & Code	: Physics Laboratory (PHY-24122)

INDEX

Name of the Experiment	Page No	Date of the Experiment	Signature of the Faculty

EXPERIMENT: NEWTON'S RINGS

Aim: To determine the radius of curvature of a lens by Newton's Ring method

Apparatus Required: Newton's Ring apparatus; which consist of a plano-convex lens of large radius of curvature and a plane glass plate, traveling microscope, and Light reflecting unit, Reading lens and Sodium vapor lamp.

Formula:

The radius of curvature of a lens is calculated from the formula,

$$R = \frac{D_{n+p}^2 - D_n^2}{4 p \lambda} \quad \text{(in cm)}$$

Here,

 D_n is diameter of n^{th} bright fringe.

 D_{n+p} is diameter of $(n+p)^{th}$ bright fringe.

R the radius of the curvature of the lens.

p is an integer numbers of the ring.

 λ is the wavelength of Sodium vapor lamp (5893 A^o).

Fig: Newton's ring experimental setup

Observation Table: Determination of $[D_{n+p}^2 - D_n^2]$

Least count of the travelling microscope = 0.001cm

Ring Num ber	Microscope reading from Left-hand side of the center (cm) (a)			Microscope reading from Right-hand side of the center (cm) (b)		Diameter D_n $(a \sim b)$	D_n^2 (cm^2)	$D_{n+p}^2 - D_n^2$ (cm^2)	
	Main Scale	Vernier Scale	Total (cm)	Main Scale	Vernier Scale	Total (cm)	(cm)	(cm)	
20			, ,			, ,			
18									
16									
14									
12									
10									
8									
6									
4									

~ .	 	
Cal	latio	n•
	 4	

Result:

EXPERIMENT: MELDE'S EXPERIMENT

Aim: To determine the frequency of electrically maintained tuning fork

Apparatus Required: Electrically Maintained Tuning Fork, Battery Eliminator, Meter Scale, Pulley, Weight Box, Thread.

Formula:

1) The frequency in transverse arrangement

$$f = \frac{1}{2 l} \sqrt{\frac{T}{m}} \quad (\text{in Hz})$$

Here

f= Frequency of tuning fork

l=Distance between two nodes

T=Tension Applied

m= Mass per unit length of thread

2) The frequency in longitudinal arrangement

$$f = \frac{1}{l} \sqrt{\frac{T}{m}}$$
 (in Hz) With same meaning of symbols.

- 1) Mass of the pan= gm.
- 2) Mass of thread per unit length $m = 0.004215 \ gm/cm$
- 3) Acceleration due to gravity $g = 980 \text{ cm/sec}^2$

Table 1 For Transverse arrangement

S.No	Mass of Pan + Weight suspended M(gm.)	Tension T=Mg (dynes)	No. of Loops n	Length of Vibrating Thread L (cm)	Length of one Loop $l = \frac{L}{n}$ (cm)	$f = \frac{1}{2 l} \sqrt{\frac{T}{m}}$ (Hz)
1						
2						
3						
4						
5						

 $Mean f_{Transverse} = Hz$

Table 2 For Longitudinal arrangement

S.No	Mass of Pan + Weight suspended M(gm.)	Tension $T = Mg$ (dynes)	No. of Loops n	Length of Vibrating Thread L (cm)	Length of one Loop $l = \frac{L}{n}$ (cm)	$f = \frac{1}{l} \sqrt{\frac{T}{m}}$ (Hz)
1						
2						
3						
4						
5						

Mean $f_{Longitudinal} = Hz$

Calculations:

Frequency of tuning fork $f = \frac{f_{Transverse} + f_{Longitudinal}}{2}$

Result:

The frequency of fork is found to be $f = \dots Hz$.

EXPERIMENT: FREQUENCY OF A.C MAINS

Aim: To determine the frequency of A.C mains using electrical vibrator.

Apparatus Required: Electrical vibrator, Lamp, Meter Scale, Pulley, Weight Box, Thread.

Formula:

The frequency of A.C mains

$$f = \frac{1}{2 l} \sqrt{\frac{T}{m}} \text{ (in Hz)}$$

Here f= Frequency of rod (ac mains)

l=Distance between two nodes

T=Tension Applied

m= Mass per unit length of thread

Fig: A.C Mains Transverse arrangement

α	4 •		
Obser	vation	Tab	le:

- 1) Mass of the pan = gm.
- 2) Mass of thread per unit length $m = 0.004215 \ gm/cm$
- 3) Acceleration due to gravity $g = 980 \text{ cm/sec}^2$

Transverse arrangement:

S.No	Mass of Pan + Weight suspended M(gm.)	Tension T=Mg (dynes)	No. of Loops n	Length of Vibrating Thread L (cm)	Length of one Loop $l = L/n$ (cm)	$f = \frac{1}{2l} \sqrt{\frac{T}{m}}$ (Hz)
1						
2						
3						
4						
5						

 $Mean f_{Transverse} = Hz$

Calculations:

Result:

The frequency A.C main is found to be $f = \dots Hz$.

EXPERIMENT: NODAL SLIDE ASSEMBLY

Aim: To verify the formula for the combination of lenses and to determine the cardinal points of the combination using Nodal Slide assembly.

Apparatus Required: Nodal slide assembly, Light source and convex lenses.

Formula:

The focal length of the combination of lenses

$$\frac{1}{F} = \frac{1}{f_1} + \frac{1}{f_2} - \frac{x}{f_1 f_2}$$

Here

F is the focal length of the combination of lenses (in cm)

 f_1 is the focal length of the lens 1

 f_2 is the focal length of the lens 2

x is the distance between two lenses in combination.

Fig: Nodal slide assembly

α	4 •		
()hce	rvation	lah	P.

Table 1 Finding focal length of the individual lens

Set	Light falls on	Position of cross slit R ₁ (cm)	Position of lens on the Nodal slide assembly R_2 (cm)	Focal length of the lens $f = R_2 - R_1$ (cm)	Mean focal length (cm)
Lens-1	One Face				f -
Lens-1	Other Face				$f_1 =$
Long 2	One Face				£ _
Lens-2	Other Face				$f_2 =$

Table 2 Finding focal length of the combination of lens

Set	Light falls on	Position of cross slit A (cm)	Position of axis of Nodal slide assembly B (cm)	Focal length of the combination of lenses $F = B - A$ (cm)	Experimental Mean focal length F (cm)
Combination	One Face				F =
of lenses	Other Face				r —

Calculations:

Results:

- 1) Focal length of lens 1 $f_1 = \dots$ cm
- 2) Focal length of lens 2 $f_2 = \dots$ cm
- 3) Experimental value of focal length of combination $F = \dots$ cm
- 4) Calculated value of focal length of combination F = cm
- 5) Percentage error between calculated and experimental value of

combination of lenses =

EXPERIMENT: TWO SLIT DIFFRACTION

Aim: To determine the grating element of the two slit using He-Ne laser.

Apparatus Required: He-Ne Laser, Optical bench with suitable accessories, two slit unit.

Formula:

The grating element of slit

$$d = \frac{n \lambda L}{x} \text{ (in mm)}$$

Here

n is the order of diffraction (n = 1)

L distance between slit and screen

x distance between two consecutive lines (Fringe width)

 λ is the wavelength of the He-Ne Laser (6328 A^{o})

Fig 1. Laser Diffraction Experiment

Fig: 2 Diffraction patterns from slits

Fig. 3 Experimental setup for grating element

Least count of the screw gauge main scale = 0.5 mm Least count of the screw gauge circular scale = 0.01mm Wavelength of the He-Ne laser $\lambda = 6328 \, A^o$

Table for measuring the fringe width x

Distance		Posi	tion of Fringes		
and screen		Main scale (mm)	Circular Scale (mm)	Total (mm)	Fringe width x (mm)
300 mm	1			A=	$A \sim B =$
300 11111	mm 2			B=	$A \sim B =$
250	1			A=	4 D
350 mm	2			B=	$A \sim B =$
400	1			A=	$A \sim B =$
400 mm	2			B=	$A \sim D \equiv$

Calculations:

Result:

The grating element of given slit is mm.

EXPERIMENT: HALL EFFECT

Aim: To determine the Hall voltage and Hall Coefficient of Germanium crystal.

Apparatus Required: Hall Probe (Ge Crystal); Hall Effect Set-up, Electromagnet, Constant Current Power Supply, Digital Gaussmeter.

Formula:

Hall Coefficient of Germanium crystal (R)

$$R = \frac{V_h}{I_\chi} \frac{z}{H} (\text{in V cm A}^{-1} \text{ G}^{-1})$$

Here,

 V_h is the measured Hall voltage

 I_x is the applied Hall current

z Thickness of the Germanium crystal

H is the applied magnetic field

R is the Hall Coefficient of Germanium crystal

For calculation we need to find the slope from graph. Slope = $\frac{\Delta V_h}{\Delta I_x}$

Diagram:

Model Graph:

Fig 3: Expected I-V curve

Thickness of the Germanium Crystal $z = 5 \times 10^{-2}$ cm

Table for measuring Hall voltage V_h

Н	SET-1 SET-2 Electromagnet power supply $H_1 = 1000 \text{ Gauss}$ $(I_{EM} = \dots A)$ $(I_{EM} = \dots A)$		Electromagnet power supply $H_1 = 1000 \text{ Gauss}$		Electromagnet power supply $H_2 = 1300 \text{ Gauss}$			SET-3 romagnet power $H_3 = 1600 \text{ G}$ $(I_{EM} = \dots $	Gauss
S.No	I_{χ} (mA)	V_h (mV)	S.No	I_{χ} (mA)	V_h (mV)	S.No	I_{χ} (mA)	V_h (mV)	
1			1			1			
2			2			2			
3			3			3			
4			4			4			
5			5			5			
6			6			6			

Calculations:

Plot V_h vs I_x graph and compute slope $(\frac{\Delta V_h}{\Delta I_x})$ for all the three sets. Calculate R for each set.

Here
$$R = slope \times \frac{z}{H}$$

Result:

The Hall Coefficient of Germanium crystal (R) = V cm A⁻¹ G⁻¹

EXPERIMENT: MICHELSON INTERFEROMETER

Aim: To determine the wavelength of He-Ne laser with the help of Michelson interferometer

Apparatus Required: Michelson interferometer, laser source, screen etc

Formula:

The wavelength of the given source

$$\lambda = \frac{2 d}{N} (\text{in } A^o)$$

Here

d is the distance measured with a micrometre screw

N is the number of fringes collapsing

 λ wavelength of the source

Fig. 2 Optical arrangement and light path in Michelson interferometer

Fig. 3 Circular fringes (equal inclination) seen in Michelson interferometer

Least count of interferometer Main scale = 1 mm Least count of the circular scale $V_1 = 0.01$ mm Least count of vernier scale $V_2 = 0.0001$ mm

Table for measuring separation d for N fringes

No of the fringes collapsed	Main scale (mm)	Circular scale V_1 (mm)	Vernier scale V ₂ (mm)	Total (mm)	Separation d for N = 25 (mm)
0					
25					
50					
75					
100					
125					
150					
			TD1	1 0	

The mean value of $\mathbf{d} = \mathbf{mm}$

Calculations:

Result:

The wavelength of the given He-Ne laser is $\dots A^o$

EXPERIMENT: PHOTOCONDUCTIVITY

Aim: To measure the I-V characteristic of CdS as a function of irradiance and applied voltage, respectively

Apparatus Required: light source (yellow light bulb), lamp housing, adjustable slit, polarizer, analyser, voltage source 1) 2-12V 2) 0-16 V, focusing lens, optical bench.

Diagram:

Fig. Experimental setup for recording the current-voltage characteristics of a CdS photoresistor.

Here

Mount the lamp housing (H), adjustable slit self-centering (A), polarizer (P1), analyzer (P2), lens (L1), and photo-resistor (R) on the optical bench as shown in Fig.

Model Graph:

Current-Voltage characteristics of the CdS photoresistor

Current-irradiance characteristics of the CdS photoresistor

Observation Table1

S.No	Irradiance (α)	$Cos^2\alpha$	Photocurrent for varying voltage I_{ph} (mA)			
			2 V	6 V	12 V	
1	90°					
2	60°					
3	45°					
4	30°					
5	15°					
6	0°					

Table 2

<u> </u>									
S.No		DC Voltage applied to the CdS	Photocurrent for varying irradiance I_{ph} (mA)						
	Crystal (V)	90°	60°	30°	0°				
	1	2 V							
	2	4 V							
	3	6 V							
	4	8 V							
	5	10 V							
	6	12 V							

Result:

The photoconductive CdS Photoresistor behaves like an ohmic resistance that depends on the irradiance.

EXPERIMENT: LUMMER-BRODHUN PHOTOMETER

Aim: To determine the percentage of light transmission for a semi-transparent film using a Lummer-Brodhun photometer.

Apparatus Required: Two given light sources, Lummer-Brodhum Photometer, Semitransparent film, and optical bench.

Formula:

The percentage of light transmission for a semi-transparent film

$$t = \frac{r_1^2}{r_2^2} \times 100 \ (\%)$$

Here,

 r_1 is the distance between source 2 to the LB Photometer without transparent film r_2 is the distance between source 2 and the LB Photometer with transparent film

S.No	Position of Fixed Source P ₁ (cm)	Position of LB Photometer a (cm)	Position of Sec P_2 (cm) Without Plate b_1		$r_1 = b_1 \sim a$ (cm)	$r_2 = b_2 \sim a$ (cm)	Transmittance percentage $t = \frac{r_1^2}{r_2^2} \times 100$
			(cm)	(cm)			
1							
2							
3							
4							
5							

~		
Calon	lations:	
• MILLION		

Result:

The percentage of transmittance of a given semi-transparent film is%

EXPERIMENT: CHARACTERISTICS CURVE OF A TRANSISTOR

Aim: To study and plot the transistor input and output characteristics for common emitter configuration.

Apparatus Required: A prepared kit of transistor with connecting wires.

Formula:

The current gain in the common-emitter circuit

$$\beta = \frac{\Delta I_C}{\Delta I_B}$$

The resistance gain of the common emitter

$$R = \frac{R_{out}}{R_{in}}$$

Here,

I_C collector current (output current)

 I_B base current (input current).

$$R_{in} = \frac{V_{BE}}{I_B}$$
 Resistance(input)

$$R_{out} = \frac{V_{CE}}{I_C}$$
 Resistance(output)

Circuit Diagram:

Model Graph:

Input Characteristics

Output Characteristics

Observation Table:

Table for Input Characteristics:

	$V_{CE} = \dots V$			$V_{CE} = \dots V$			
V _{BE} (V)	Ι _Β (μ Α)	$R_{in} = \frac{V_{BE}}{I_B} \Omega$	$V_{BE}(V)$	Ι _Β (μ Α)	$R_{in} = \frac{V_{BE}}{I_B} \Omega$		

Table for Output Characteristics:

	$V_{BE} = \dots V$			$V_{BE} = \dots V$			
V _{CE} (V)	I _C (mA)	$R_{out} = \frac{V_{CE}}{I_C} \Omega$	V _{CE} (V)	$I_{\mathbb{C}}(mA)$	$R_{out} = \frac{V_{CE}}{I_C} \ \Omega$		

$V_{BE} = \dots V$							
I_{C} (m A)	$R_{out} = \frac{V_{CE}}{I_C} \ \Omega$						

Result:

The characteristics curves for the common emitter mode of given PNP/NPN transistor, are shown in the graphs.

EXPERIMENT: STUDY OF DIODE

Aim: To study forward and reverse characteristics of Si and Ge junction diode.

Apparatus Required: A prepared kit of PN junction diode with connecting wires.

Circuit Diagram:

(i) FORWARD BIAS:

(ii) REVERSE BIAS:

Model Graph:

Observation Table:		
Least Count of Ammeters =mA	&	μA.
Least Count of Voltmeters =V		

Table for Forward & Reverse Bias Characteristics:

Forward Bias			Reverse Bias			
S.No	$V_{F}(V)$	I _F (mA)	S.No	$V_{R}(V)$	$I_R(\mu A)$	
1						
2						
3						
4						
5						
6						
7						
8						
9						
10						
11						
12						

Result:

The I-V characteristics curves for the Forward and Reverse bias of the PN junction Diode are studied.

i) The measured breakdown Voltage (Reverse Bias) is	i)) The measured b	oreakdown	Voltage	(Reverse)	Bias)) is	V
---	----	------------------	-----------	---------	-----------	-------	------	---

ii) The measured Cut-in Voltage (Forward Bias) isV

EXPERIMENT: REFRACTIVE INDEX

Aim: To determine the refractive index of the material of prism using a spectrometer.

Apparatus Required: Prism, Source of mercury light, Spirit level, and Spectrometer.

Formula:

The Refractive index of the material of the prism is

$$\mu = \frac{Sin\left(\frac{A+\delta_m}{2}\right)}{Sin\left(\frac{A}{2}\right)}$$

Here,

A is the angle of a prism μ is the refractive index of the material of the prism δ_m is the minimum angle of deviation.

Diagram:

Angle of Prism

The angle of minimum deviation

Least Count of the main scale = 0.5° (degree) Least Count of vernier scale = 1' (minute)

Table for Angle of Prism:

Window	Reflect	ion on l	Left face (L)	Reflection	on on Ri	ght face (R)	Difference 2A	Mean	Angle of
Vernier	MSR	VSR	Total	MSR	VSR	Total	$ \begin{array}{c} (V_{1L} \sim V_{1R}) \\ (V_{2L} \sim V_{2R}) \end{array} $	2A	Prism A
V_1			V_{1L}			V_{1R}			
V_2			V_{2L}			V_{2R}			

Table for Minimum deviation of angle:

Table R	71 1711111111	uiii ucvi	iation	or angre.					
	Window		Dispers	ed angle	Direc	ct Angle	e	Difference 2A	The angle of
$\begin{array}{c c} & V_1 \\ \hline \\ Red & V_2 \\ \hline \\ Yellow & \end{array}$	Vernier	MSR	VSR	Total	MSR	VSR	Total	$(V_1 \sim V_{1D}) $ $(V_2 \sim V_{2D})$	minimum deviation δ_m
D 1	V_1			V_1				δ_r	
Red	V_2			V_2				δ_r	
Vallow	V_1			V_1	V _{1D}			δ_y	
Tellow	V_2			V_2				δ_y	
Violet	V_1			V_1	V_{2D}			δ_v	
Violet	V_2			V_2				δ_v	

Calculation:

For Red

For Yellow

For Violet

$$\mu_r = \frac{Sin\left(\frac{A+\delta_r}{2}\right)}{Sin\left(\frac{A}{2}\right)} \qquad \mu_y = \frac{Sin\left(\frac{A+\delta_y}{2}\right)}{Sin\left(\frac{A}{2}\right)}$$

$$\mu_v = \frac{Sin\left(\frac{A+\delta_v}{2}\right)}{Sin\left(\frac{A}{2}\right)}$$

	Page No:
Result: i) Angle of Prism	
ii) Refractive index of different colors	
1) Red $\mu_r = \dots$	

3) Violet $\mu_v = \dots$

EXPERIMENT: DISPERSIVE POWER OF MATERIAL OF PRISM

Aim: To determine the dispersive power of the material of the prism using a spectrometer.

Apparatus Required: Prism, Source of mercury light, Spirit level, and Spectrometer.

Formula:

The Refractive index of the material of the prism is

$$\mu = \frac{Sin\left(\frac{A+\delta_m}{2}\right)}{Sin\left(\frac{A}{2}\right)}$$

The dispersive power of the prism is

$$\omega = \frac{\delta_v - \delta_r}{\delta_v} = \frac{\mu_v - \mu_r}{\mu_v - 1}$$

Here,

A is the angle of a prism

 μ is the refractive index of the material of the prism

 δ_m is the minimum angle of deviation.

 $\delta_r, \delta_v, \delta_v$ is the minimum angle of deviation of red, yellow, and violet.

 ω is the dispersive power of the prism.

Diagram:

The angle of minimum deviation

Angle of prism = 60°

Least Count of the main scale = 0.5° (degree)

Least Count of vernier scale = 1' (minute)

Table for Minimum deviation of angle:

	Window		Dispers	ed angle	Direc	ct Angle	e	Difference 2A	The angle of
$ \begin{array}{c c} Colors & Window \\ Vernier & \\ \hline & V_1 \\ \hline & V_2 \\ \hline & V_1 \\ \hline & V_2 \\ \hline & V_1 \\ \hline & V_2 \\ \hline & V_2 \\ \hline & V_1 \\ \hline & V_1 \\ \hline & V_2 \\ \hline & V_1 \\ \hline & V_2 \\ \hline \\ \hline & V_1 \\ \hline \\ \hline & V_2 \\ \hline \\ \hline & V_1 \\ \hline \\ $	MSR	VSR	Total	MSR	VSR	Total	$(V_1 \sim V_{1D}) $ $(V_2 \sim V_{2D})$	minimum deviation δ_m	
D 1	V_1			V_1				δ_r	
Red	V_2			V_2				δ_r	
Vallow	V_1			V_1	V_{1D}			δ_y	
Tenow	V_2			V_2				δ_y	
Violet	V_1			V_1	$V_{ m 2D}$			δ_v	
Violet	V_2			V_2				δ_v	

Calculation:

For Red

For Yellow

For Violet

$$\mu_r = \frac{Sin\left(\frac{A+\delta_r}{2}\right)}{Sin\left(\frac{A}{2}\right)} \qquad \mu_y = \frac{Sin\left(\frac{A+\delta_y}{2}\right)}{Sin\left(\frac{A}{2}\right)} \qquad \mu_v = \frac{Sin\left(\frac{A+\delta_v}{2}\right)}{Sin\left(\frac{A}{2}\right)}$$

$$u_{y} = \frac{Sin\left(\frac{A+\delta_{y}}{2}\right)}{Sin\left(\frac{A}{2}\right)}$$

$$\mu_v = \frac{Sin\left(\frac{A+\delta_v}{2}\right)}{Sin\left(\frac{A}{2}\right)}$$

		Page No:
Result:		
i) Refractive index of different colors		
	$\mu_r = \dots$	
2) Yell	low $\mu_y = \dots$	
3) Vio	let $\mu_v = \dots$	
ii) Dispersive power of material $\omega = \dots$		

EXPERIMENT: PLANE TRANSMISSION GRATING

Aim: To determine wavelength of different colors of mercury light using a plane transmission grating.

Apparatus Required: Plane transmission grating, Source of mercury light, Spirit level, and Spectrometer.

Formula:

The wavelength of given colour by grating diffraction is

$$\lambda = \frac{(e+d)}{n} \sin \theta \quad (in A^o)$$

Here,

(e+d) is the grating element

 λ is the wavelength of colour of mercury spectral lines

 θ is the angle of the given colour of light.

n is the order of diffraction.

Fig 1: Diffraction pattern from grating

Lines per inch on grating = 15000

Grating element $(e + d) = \frac{2.54}{15000}$ cm/lines

Least Count of the main scale = 0.5° (degree)

Least Count of vernier scale = 0.5' (minute)

Table for diffraction angle:

200.02	c ioi aiii		W							
Colour	Window	Spec	trum left image (of direct L)	Spectrum	right of d (R)	irect image	Difference $2~ heta$	Mean	Diffraction Angle
Loioui	Vernier	MSR	VSR	Total	MSR	VSR	Total	$ \begin{array}{c} (V_{1L}{\sim}V_{1R}) \\ (V_{2L}{\sim}V_{2R}) \end{array} $	2 θ	θ
Violet	V_1									
violet	V_2									
C # 0 0 # 0	V_1									
Green	V_2									
4 - 11	V_1									
rellow	V_2									

Calculation:

For Violet

For Green

For Yellow

$$\lambda_v = \frac{(e+d)}{n} \sin \theta_v$$

$$\lambda_g = \frac{(e+d)}{n} \sin \theta_g$$

$$\lambda_{y} = \frac{(e+d)}{n} \sin \theta_{y}$$

	Page No:
Result:	
The wavelength of different colours of the mercury spectrum	
1) Violet $\lambda_{v} = \dots A^{o}$	
2) Green $\lambda_g = \dots A^o$	
3) Yellow $\lambda_y = \dots A^o$	

Instructions

- ii) After verifying your results in the Observation book, enter these readings in your Record notebook.
- iii) The Record notebook must contain all these observations with the Theory of the experiment, Procedure, and Source of Errors & Precautions.
- iv) The Blanck page of the Record notebook must contain a Diagram/Circuit diagram, Model graph diagram, Observation tables, and Calculations.
- v) The Ruled page may contain all other writings including the Theory of experiment, Procedure, and Source of Errors & Precautions.
- vi) Record Notebook must be submitted to get a signature every week before starting the next allotted experiment.

													Ħ		Ħ	
															ш	
													H		H	
															ш	
	Н					H			н				H		₩	H
																Ħ
															ш	
																H
															4	

						ı		-							
										Ш					
				=====						ш		ш			
										ш		ш			
Ш	Ш									Ш					

