Mel-Frequency Ceptral Coeffienents (MFCC) feature extraction for Sound Classification

For sound classification like the Cornell Birdcall Identification (https://www.kaggle.com/c/birdsongrecognition/overview) is usually using the MFCC feature.

It takes few hours for Cornell Birdcall Identification datasets. I will share extracted feature as dataset after the execution in colab.

In this notebook, I just use 3 mp3 files for each bird class. (check the LIMIT variable)

Please enjoy it and don't forget to vote it.

Feel free to give an advice.

Mel-Frequency Cepstral Coefficients (MFCCs)

The log-spectrum already takes into account perceptual sensitivity on the magnitude axis, by expressing magnitudes on the logarithmic-axis. The other dimension is then the frequency axis.

There exists a multitude of different criteria with which to quantify accuracy on the frequency scale and there are, correspondingly, a multitude of perceptually motivated frequency scales including the equivalent rectangular bandwidth (ERB) scale, the Bark scale, and the mel-scale. Probably through an abritrary choice mainly due to tradition, in this context we will focus on the mel-scale. This scale describes the perceptual distance between pitches of different frequencies.

Though the argumentation for the MFCCs is not without problems, it has become the most used feature in speech and audio recognition applications. It is used because it works and because it has relatively low complexity and it is straightforward to implement. Simply stated,

if you're unsure which inputs to give to a speech and audio recognition engine, try first the MFCCs.

The beneficial properties of the MFCCs include:

9/23/21, 4:17 PM notebook

Quantifies the gross-shape of the spectrum (the spectral envelope), which is important in, for example, identification of vowels. At the same time, it removes fine spectral structure (micro-level structure), which is often less important. It thus focuses on that part of the signal which is typically most informative. Straightforward and computationally reasonably efficient calculation. Their performance is well-tested and -understood. Some of the issues with the MFCC include:

The choice of perceptual scale is not well-motivated. Scales such as the ERB or gamma-tone filterbanks might be better suited. However, these alternative filterbanks have not demonstrated consistent benefit, whereby the mel-scale has persisted. MFCCs are not robust to noise. That is, the performance of MFCCs in presence of additive noise, in comparison to other features, has not always been good. The choice of triangular weighting filters wk,h is arbitrary and not based on well-grounded motivations. Alternatives have been presented, but they have not gained popularity, probably due to minor effect on outcome. The MFCCs work well in analysis but for synthesis, they are problematic. Namely, it is difficult to find an inverse transform (from MFCCs to power spectra) which is simultaneously unbiased (=accurate) and congruent with its physical representation (=power spectrum must be positive).

ref: https://wiki.aalto.fi/display/ITSP/Cepstrum+and+MFCC (https://wiki.aalto.fi/display/ITSP/Cepstrum+and+MFCC)

```
In [1]:
```

```
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import os
import glob
import librosa
import librosa.display
from tgdm import tgdm_notebook as tgdm
from keras.models import Model
from keras.utils import np_utils
import warnings
warnings.filterwarnings('ignore')
%matplotlib inline
import matplotlib.pyplot as plt
```

Using TensorFlow backend.

```
In [2]:
```

```
LIMIT = 3
```

notebook

In [3]:

!ls ../input/birdsong-recognition

example_test_audio sample_submission.csv train_audio example_test_audio_metadata.csv test.csv example_test_audio_summary.csv train.csv

```
In [4]:
df_train = pd.read_csv('../input/birdsong-recognition/train.csv')
df_train
```

__notebook__

Out[4]:

	rating	playback_used	ebird_code	channels	date	pitch	duration	filename
0	3.5	no	aldfly	1 (mono)	2013- 05-25	Not specified	25	XC1348
1	4.0	no	aldfly	2 (stereo)	2013- 05-27	both	36	XC1354
2	4.0	no	aldfly	2 (stereo)	2013- 05-27	both	39	XC1354
3	3.5	no	aldfly	2 (stereo)	2013- 05-27	both	33	XC1354
4	4.0	no	aldfly	2 (stereo)	2013- 05-27	both	36	XC1354
21370	4.5	no	yetvir	1 (mono)	2019- 05-15	both	28	XC4776
21371	3.5	no	yetvir	1 (mono)	2017- 05-14	Not specified	52	XC5003
21372	5.0	no	yetvir	1 (mono)	2017- 06-10	Not specified	96	XC5012
21373	3.5	no	yetvir	2 (stereo)	2009- 05-06	level	35	XC5482
21374	3.5	no	yetvir	2 (stereo)	2010- 06-09	level	103	XC5576
4								>

21375 rows × 35 columns

notebook

In [5]:

```
!ls ../input/birdsong-recognition/train_audio
train_dir = '../input/birdsong-recognition/train_audio'
test_idr = '../input/birdsong-recognition/test_audio'
```

_	bktspa	canwre	easkin	hergul	magwar	pinsis	sa
vspa we							
	blkpho	carwre	easmea	herthr	mallar3	pinwar	sa
ypho we							
	blugrb1	casfin	easpho	hoomer	marwre	plsvir	SC
atan we							
	blujay	caster1	eastow	hoowar	merlin	prawar	SC
oori we							
	bnhcow	casvir	eawpew	horgre	moublu	purfin	se
mplo wh							
	boboli	cedwax	eucdov	horlar	mouchi	pygnut	se
msan wh							
	bongul	chispa	eursta	houfin	moudov	rebmer	sh
eowl wh							
	brdowl	chiswi	evegro	houspa	norcar	rebnut	sh
shaw wh							
	brebla	chswar	fiespa	houwre	norfli	rebsap	sn
obun wh							
	brespa	chukar	fiscro	indbun	norhar2	rebwoo	sn
ogoo wi	-						
	brncre	clanut	foxspa	juntit1	normoc	redcro	SO
lsan wi							
	brnthr	cliswa	gadwal	killde	norpar	redhea	SO
nspa wi							
	brthum	comgol	gcrfin	labwoo	norpin	reevir1	SO
ra wi							
	brwhaw	comgra	gnttow	larspa	norsho	renpha	sp
osan wl							
	btbwar	comloo	gnwtea	lazbun	norwat	reshaw	sp
otow wo							
	btnwar	commer	gockin	leabit	nrwswa	rethaw	st
ejay wo	_						
	btywar	comnig	gocspa	leafly	nutwoo	rewbla	SW
ahaw wo							
	buffle	comrav	goleag	leasan	olsfly	ribgul	SW
aspa y0							
	buggna	comred	grbher3	lecthr	orcwar	rinduc	SW
athr ye	-						
	buhvir	comter	grcfly	lesgol	osprey	robgro	tr
eswa ye				_	_		
	bulori	comyel	greegr	lesnig	ovenbi1	rocpig	tr
uswa ye				_			
	bushti -	coohaw	greroa	lesyel	palwar	rocwre	tu
ftit ye	lwar						

9/23/21, 4:17 P	M				notebook			
bewwre	e buwtea	coshum	greyel	lewwoo	pasfly	rthhum	tu	
nswa	yerwar							
bkbcud	buwwar	cowscj1	grhowl	linspa	pecsan	ruckin	ve	
ery yetvir								
bkbmaq	g1 cacwre	daejun	grnher	lobcur	perfal	rudduc	ve	
sspa								
bkbwa	calgul	doccor	grtgra	lobdow	phaino	rufgro	Vi	
gswa								
bkcch:	i calqua	dowwoo	grycat	logshr	pibgre	rufhum	wa	
rvir								
bkchur	n camwar	dusfly	gryfly	lotduc	pilwoo	rusbla	we	
sblu								
bkhgro	cangoo	eargre	haiwoo	louwat	pingro	sagspa1	we	
sgre								
bkpwai	canwar	easblu	hamfly	macwar	pinjay	sagthr	we	
skin								

Extract Feature using MFCC()

```
In [6]:
def mfcc_extract(filename):
        y, sr = librosa.load(filename, sr = 44100)
        mfcc = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=13, n_fft=int(0.02*sr), ho
p_length=int(0.01*sr))
        return mfcc
    except:
        return
```

In [7]: def parse_audio_files(parent_dir, sub_dirs, limit): labels = [] features = [] for label, sub_dir in enumerate(tqdm(sub_dirs)): i = 0for fn in glob.glob(os.path.join(parent_dir,sub_dir,"*.mp3")): if i >= limit: break features.append(mfcc_extract(fn)) labels.append(label) i+=1return features, labels

In [8]:

```
%%time
train_cat_dirs = glob.glob(train_dir+'/*')
train_cat = []
for cat_dir in train_cat_dirs:
    tmp = cat_dir.split('/')[-1]
   train_cat.append(tmp)
print('the number of kinds:', len(train_cat))
class_num = len(train_cat)
features, labels = parse_audio_files(train_dir, train_cat, LIMIT)
```

the number of kinds: 264

264/264 [19:57<00:00, 4.53s/it] 100%

CPU times: user 19min 34s, sys: 2min 3s, total: 21min 38s Wall time: 19min 57s

```
In [9]:
```

```
print(len(features))
print(features[0].shape)
```

```
792
(13, 8164)
```

```
In [10]:
```

```
# plot few features
fig = plt.figure(figsize=(28,24))
for i,mfcc in enumerate(tqdm(features[:100])):
    if i%40 < 3 :
        sub = plt.subplot(10,3,i\%40+3*(i/40)+1)
        librosa.display.specshow(mfcc, vmin=-700, vmax=300)
        if ((i\%40+3*(i/40)+1)\%3==0):
            plt.colorbar()
        sub.set_title(train_cat[labels[i]])
plt.show()
```

100%

100/100 [00:00<00:00, 302.42it/s]


```
In [11]:
```

```
df_submission = pd.read_csv('../input/birdsong-recognition/sample_submission.cs
df_submission.to_csv('submission.csv', index = None)
```