Student Name: Luke Nguyen

Student ID: **D5850A** 



# Statistical Methods and Data Analysis (EN.625.603)

Midterm Exam

## Question 1

Suppose that a telephone number is 534-0826. If the first 3 digits of this number are written down in random order and then the last 4 digits of this number are written down in random order in an attempt to obtain the correct telephone number, what is the probability of each of the following events?

- (a) All 7 digits are correctly placed.
- (b) The first 3 digits are correctly placed and only 2 of the remaining digits are incorrectly placed.

## Solution

(a) Probability the first 3 digits are correctly placed is

$$\frac{1}{3!} = \frac{1}{6}$$

Probability the last 4 digits are correctly placed is

$$\frac{1}{4!} = \frac{1}{24}$$

We observed that the order of the first 3 digits and the last 4 digits are independent. Thus the probability of all 7 digits are correctly placed is

$$\frac{1}{6} \times \frac{1}{24} = \frac{1}{144}$$

(b) The number of ways for 2 digits to be incorrectly placed is

$$\binom{4}{2} = 6$$

The probability of 2 digits out of the last 4 digits are incorrectly placed is

$$\frac{6}{4!} = \frac{1}{4}$$

The probability of the first 3 digits are correctly placed and only 2 of the remaining digits are incorrectly placed is

$$\frac{1}{6} \times \frac{1}{4} = \frac{\mathbf{1}}{\mathbf{24}}$$

### Question 2

Given a collection of seven people, in which three are Data Science majors and four are ACM majors. If a committee of three people is picked at random, what is the probability that the committee contains one Data Science major and two ACM majors?

#### Solution

The number of ways to pick a committee of three people from seven people where one of them is data sience major and two of them are ACM majors is

$$\begin{pmatrix} 3 \\ 1 \end{pmatrix} \times \begin{pmatrix} 4 \\ 2 \end{pmatrix} = 3 \times 6 = 18$$

The number of ways to pick a committe of three people from seven people is

$$\binom{7}{3} = 35$$

The probability that the committee contains one Data Science major and two ACM majors is

$$\frac{18}{35} = \frac{18}{35}$$

### Question 3

Ninety percent of the disk drives manufactured by the COMDISK Company are known to function properly. For a collection of 18 disk drives, find the probability that at least 15 function properly.

### Solution

Let X be the number of disk drives that function properly. X is a binomial random variable with n = 18 and p = 0.9. The probability that at least 15 function properly is

$$P(X \ge 15) = \sum_{k=15}^{18} {18 \choose k} (0.9)^k (0.1)^{18-k}$$

$$= {18 \choose 15} (0.9)^{15} (0.1)^3 + {18 \choose 16} (0.9)^{16} (0.1)^2 + {18 \choose 17} (0.9)^{17} (0.1)^1 + {18 \choose 18} (0.9)^{18} (0.1)^0$$

$$= 0.168 + 0.284 + 0.300 + 0.150$$

$$= 0.902$$

#### Question 4

A certain construction company buys 20%, 30%, and 50% of their nails from hardware suppliers A, B, and C, respectively. Suppose it is known that 0.5%, .02%, and .01% of the nails from A, B, and C respectively are defective. If a nail purchased by the construction company is defective, what is the probability that it came from supplier C?

#### Solution

Probability that a nail purchased by the construction company is defective is

$$P(\text{defective}) = P(\text{defective}|A)P(A) + P(\text{defective}|B)P(B) + P(\text{defective}|C)P(C)$$
  
= 0.5% × 20% + 0.02% × 30% + 0.01% × 50%  
= 0.00111

Applying Bayes' theorem, the probability that a nail purchased by the construction company is from supplier C given that it is defective is

$$P(C|\text{defective}) = \frac{P(\text{defective}|C)P(C)}{P(\text{defective})}$$
$$= \frac{0.005\%}{0.00111}$$
$$= 0.045$$

## Question 5

Given a coin for which the probability of head on any toss is 3/5. The coin is tossed three times. Determine the probability function (i.e., the random variables' values and associated probabilities) for:

- (a) X, where X stands for the number of heads.
- (b) Y, where Y stands for the absolute value of the number of heads minus the number of tails.

#### Solution

(a) The probability function for X is

$$P(X = 0) = {3 \choose 0} {\left(\frac{3}{5}\right)^0} {\left(\frac{2}{5}\right)^3} = \mathbf{0.064}$$

$$P(X = 1) = {3 \choose 1} {\left(\frac{3}{5}\right)^1} {\left(\frac{2}{5}\right)^2} = \mathbf{0.288}$$

$$P(X = 2) = {3 \choose 2} {\left(\frac{3}{5}\right)^2} {\left(\frac{2}{5}\right)^1} = \mathbf{0.432}$$

$$P(X = 3) = {3 \choose 3} {\left(\frac{3}{5}\right)^3} {\left(\frac{2}{5}\right)^0} = \mathbf{0.216}$$

(b) The probability function for Y is

$$P(Y = 0) = P(X = 0) + P(X = 3)$$

$$= 0.064 + 0.216$$

$$= 0.280$$

$$P(Y = 1) = P(X = 1) + P(X = 2)$$

$$= 0.288 + 0.432$$

$$= 0.720$$

## Question 6

A coin is flipped, and a die is tossed simultaneously. Let X be the face of the coin (H = 0, T = 1). Let Y be the face of the die (1, 2, 3, 4, 5, 6).

- (a) Calculate the joint probability distribution and show the values in a table.
- (b) Let Z = X XY + 2Y represent the payoff associated with each outcome. Find the pdf for Z.

### Solution

# (a) The joint probability distribution is

$$P(X = 0, Y = 1) = \frac{1}{2} \times \frac{1}{6} = \frac{1}{12}$$

$$P(X = 0, Y = 2) = \frac{1}{2} \times \frac{1}{6} = \frac{1}{12}$$

$$P(X = 0, Y = 3) = \frac{1}{2} \times \frac{1}{6} = \frac{1}{12}$$

$$P(X = 0, Y = 4) = \frac{1}{2} \times \frac{1}{6} = \frac{1}{12}$$

$$P(X = 0, Y = 5) = \frac{1}{2} \times \frac{1}{6} = \frac{1}{12}$$

$$P(X = 0, Y = 6) = \frac{1}{2} \times \frac{1}{6} = \frac{1}{12}$$

$$P(X = 1, Y = 1) = \frac{1}{2} \times \frac{1}{6} = \frac{1}{12}$$

$$P(X = 1, Y = 2) = \frac{1}{2} \times \frac{1}{6} = \frac{1}{12}$$

$$P(X = 1, Y = 3) = \frac{1}{2} \times \frac{1}{6} = \frac{1}{12}$$

$$P(X = 1, Y = 4) = \frac{1}{2} \times \frac{1}{6} = \frac{1}{12}$$

$$P(X = 1, Y = 5) = \frac{1}{2} \times \frac{1}{6} = \frac{1}{12}$$

$$P(X = 1, Y = 6) = \frac{1}{2} \times \frac{1}{6} = \frac{1}{12}$$

The table is

|       | Y= 1           | Y=2            | Y=3            | Y=4            | Y=5            | Y=6            |
|-------|----------------|----------------|----------------|----------------|----------------|----------------|
| X = 0 | $\frac{1}{12}$ | $\frac{1}{12}$ | $\frac{1}{12}$ | $\frac{1}{12}$ | $\frac{1}{12}$ | $\frac{1}{12}$ |
| X = 1 | $\frac{1}{12}$ | $\frac{1}{12}$ | $\frac{1}{12}$ | $\frac{1}{12}$ | $\frac{1}{12}$ | $\frac{1}{12}$ |

(b)

$$X = 0, Y = 1 \implies Z = 0 - 0 + 2 = 2$$
  
 $X = 0, Y = 2 \implies Z = 0 - 0 + 4 = 4$   
 $X = 0, Y = 3 \implies Z = 0 - 0 + 6 = 6$   
 $X = 0, Y = 4 \implies Z = 0 - 0 + 8 = 8$   
 $X = 0, Y = 5 \implies Z = 0 - 0 + 10 = 10$   
 $X = 0, Y = 6 \implies Z = 0 - 0 + 12 = 12$   
 $X = 1, Y = 1 \implies Z = 1 - 1 + 2 = 2$   
 $X = 1, Y = 2 \implies Z = 1 - 2 + 4 = 3$   
 $X = 1, Y = 3 \implies Z = 1 - 3 + 6 = 4$   
 $X = 1, Y = 4 \implies Z = 1 - 4 + 8 = 5$   
 $X = 1, Y = 5 \implies Z = 1 - 5 + 10 = 6$   
 $X = 1, Y = 6 \implies Z = 1 - 6 + 12 = 7$ 

The probability function for Z is

$$P(Z = 2) = P(X = 0, Y = 1) + P(X = 1, Y = 1) = \frac{1}{6}$$

$$P(Z = 3) = P(X = 1, Y = 2) = \frac{1}{12}$$

$$P(Z = 4) = P(X = 0, Y = 3) + P(X = 1, Y = 3) = \frac{1}{6}$$

$$P(Z = 5) = P(X = 1, Y = 4) = \frac{1}{12}$$

$$P(Z = 6) = P(X = 0, Y = 5) + P(X = 1, Y = 5) = \frac{1}{6}$$

$$P(Z = 7) = P(X = 1, Y = 6) = \frac{1}{12}$$

$$P(Z = 8) = P(X = 0, Y = 4) = \frac{1}{12}$$

$$P(Z = 10) = P(X = 0, Y = 5) = \frac{1}{12}$$

$$P(Z = 12) = P(X = 0, Y = 6) = \frac{1}{12}$$

# Question 7

Given the joint pdf of X and Y given by  $f(x,y) = (\frac{1}{2})x^2y + (\frac{1}{3})y$  for 0 < x < 2; 0 < y < 1 and f(x,y) = 0, elsewhere. Determine the possibility  $P(Y \le X)$ .

## Solution

The area of  $P(Y \le X)$  is (image was created by using Miroboard)



We calculate  $P(Y \leq X)$  as follows

$$P(Y \le X) = \int_{0}^{1} \int_{y}^{2} f(x, y) \, dx dy$$

$$= \int_{0}^{1} \int_{y}^{2} \left(\frac{1}{2}\right) x^{2} y + \left(\frac{1}{3}\right) y \, dx dy$$

$$= \int_{0}^{1} \left(\frac{1}{6}\right) x^{3} y + \left(\frac{1}{3}\right) x y \Big|_{y}^{2} \, dy$$

$$= \int_{0}^{1} \left(\frac{4}{3}\right) y + \left(\frac{2}{3}\right) y - \left(\frac{1}{6}\right) y^{4} - \frac{1}{3} y^{2} \, dy$$

$$= \left(\frac{2}{3}\right) y^{2} + \left(\frac{1}{3}\right) y^{2} - \left(\frac{1}{30}\right) y^{5} - \left(\frac{1}{9}\right) y^{3} \Big|_{0}^{1} \, dy$$

$$= \left(\frac{2}{3}\right) + \left(\frac{1}{3}\right) - \left(\frac{1}{30}\right) - \left(\frac{1}{9}\right)$$

$$= \frac{77}{90}$$

## Question 8

A box contains two red, three green, and five blue chips. Two chips are selected from the box. Let  $X_1$  and  $X_2$  denote the number of red and green chips obtained.

- (a) Find the probabilities associated with all possible pairs of values  $(x_1, x_2)$ .
- (b) Determine the marginal probabilities associated with  $X_1, X_2$ .
- (c) Determine the  $f_{X_2}(x_2 = 1 | x_1 = 0)$ .

## Solution

(a) The probabilties associate with a pair of  $(x_1, x_2)$  can be calculated as follows

$$P(X_1 = x_1, X_2 = x_2) = \frac{\binom{2}{x_1}\binom{3}{x_2}\binom{5}{5-x_1-x_2}}{\binom{10}{2}}$$

The probabilities associated with all possible pairs of values  $(x_1, x_2)$  are

|           | $X_1 = 0$       | $X_1 = 1$       | $X_1 = 2$      |
|-----------|-----------------|-----------------|----------------|
| $X_2 = 0$ | $\frac{10}{45}$ | $\frac{10}{45}$ | $\frac{1}{45}$ |
| $X_2 = 1$ | $\frac{15}{45}$ | $\frac{6}{45}$  | 0              |
| $X_2 = 2$ | $\frac{3}{45}$  | 0               | 0              |

(b) The marginal probabilities associated with  $X_1$  and  $X_2$  are

$$P(X_1 = 0) = \frac{10}{45} + \frac{15}{45} + \frac{3}{45} = \frac{28}{45}$$

$$P(X_1 = 1) = \frac{10}{45} + \frac{6}{45} = \frac{16}{45}$$

$$P(X_1 = 2) = \frac{1}{45}$$

$$P(X_2 = 0) = \frac{10}{45} + \frac{10}{45} + \frac{1}{45} = \frac{21}{45}$$

$$P(X_2 = 1) = \frac{15}{45} + \frac{6}{45} = \frac{21}{45}$$

$$P(X_2 = 2) = \frac{3}{45}$$

(c) The conditional probability  $f_{X_2}(x_2 = 1 | x_1 = 0)$  is calculated as follows

$$f_{X_2}(x_2 = 1 | x_1 = 0) = \frac{P(X_1 = 0, X_2 = 1)}{P(X_1 = 0)}$$
$$= \frac{\frac{15}{45}}{\frac{28}{45}}$$
$$= \frac{15}{28}$$

# Question 9

In a gambling game, five fair coins are tossed. For a bet of \$5, a gambler will win \$10 if three heads occur. Otherwise, the gambler loses the \$5 bet. What is the expected gain for a typical bet of \$5.

#### Solution

Probability of winning \$10 is

$$P(\text{win}) = {5 \choose 3} \left(\frac{1}{2}\right)^3 \left(\frac{1}{2}\right)^2$$
$$= \frac{5}{16}$$

Probability of losing \$5 is

$$P(lose) = 1 - P(win)$$
$$= 1 - \frac{5}{16}$$
$$= \frac{11}{16}$$

The expected gain for a typical bet of \$5 is

$$E(gain) = 10 \times P(win) - 5 \times P(lose)$$
$$= 10 \times \frac{5}{16} - 5 \times \frac{11}{16}$$
$$= -\frac{5}{16}$$

## Question 10

In a certain country the heights for adult males are normally distributed with a mean of 68 inches and a standard deviation of 4 inches. Let X symbolize the height.

- (a) Determine the probability P(66 < X < 73).
- (b) Determine the height which represents the 90<sup>th</sup> percentile.

## Solution

(a) The probability P(66 < X < 73) is

$$P(66 < X < 73) = P(\infty < X \le 73) - P(\infty < X \le 66)$$

$$= \Phi\left(\frac{73 - 68}{4}\right) - \Phi\left(\frac{66 - 68}{4}\right)$$

$$= \Phi(1.25) - \Phi(-0.5)$$

$$= 0.8944 - 0.3085$$

$$= 0.5859$$

(b) The height which represents the 90<sup>th</sup> percentile is

$$\Phi(z) = 0.9$$
$$z = 1.28$$

The height which represents the  $90^{th}$  percentile is

$$x = 1.28 \times 4 + 68$$
  
= **73.12**

# Question 11

Given that  $f(x) = ke^{-x/3}$  for x > 0, and f(x) = 0 elsewhere.

- (a) Determine k.
- (b) Determine the CDF of X.

## Solution

(a) The value of k is determined by

$$\int_0^\infty f(x) dx = 1$$

$$\int_0^\infty k e^{-x/3} dx = 1$$

$$k \int_0^\infty e^{-x/3} dx = 1$$

$$k \left( -3e^{-x/3} \right) \Big|_0^\infty = 1$$

$$k \left( -3e^{-\infty/3} + 3e^{-0/3} \right) = 1$$

$$k \left( -3 \times 0 + 3 \times 1 \right) = 1$$

$$k = \frac{1}{3}$$

(b) The CDF of X is

$$F(x) = \int_0^x f(x) dx$$

$$= \int_0^x \frac{1}{3} e^{-x/3} dx$$

$$= \frac{1}{3} \int_0^x e^{-x/3} dx$$

$$= \frac{1}{3} \left( -3e^{-x/3} \right) \Big|_0^x$$

$$= \frac{1}{3} \left( -3e^{-x/3} + 3e^{-0/3} \right)$$

$$= 1 - e^{-x/3}$$

# **Bonus Question**

Derive Bayes Theorem given in Theorem 2.4.2 on page 45.

$$P(A_{j}|B) = \frac{P(B|A_{j})P(A_{j})}{\sum_{i=1}^{n} P(B|A_{i})P(A_{i})}$$

## Solution

Refer to the Definition 2.4.1 of conditional probability, we have the following

$$P(A_j|B) = \frac{P(A_j \cap B)}{P(B)}$$
$$= \frac{P(B|A_j)P(A_j)}{P(B)} \tag{1}$$

Refer to the Theorem 2.4.1 of the law of total probability, we have the following

$$P(B) = \sum_{i=1}^{n} P(B|A_i)P(A_i)$$
 (2)

From (1), (2), we derive Bayes Theorem in Theorem 2.4.2 as follows

$$P(A_{j}|B) = \frac{P(B|A_{j})P(A_{j})}{\sum_{i=1}^{n} P(B|A_{i})P(A_{i})}$$