Deep Learning

UFRN 2018.1

Prof. Helton Maia

Plano de Estudos

- **Semana 1**: What is Deep Learning?
- Semana 2: Fundamentos de Machine Learning
 - Introdução
 - Aprendizagem Supervisionada
 - o CNN Layers: Convolutional, Activation, Pooling, Flattening, Fully-connected
- **Semana 3**: Processamento de Imagens em Python
 - Instalação de pacotes e preparação do ambiente
 - Manipulando imagens com OpenCV
- **Semanas 4-5**: Construíndo o Primeiro Classificador
 - Conheçendo o Keras
 - Repetindo exemplos conhecidos
 - Projeto: Desenho e implementação de um novo experimento
- **Semanas 6-7**: Otimizando o Classificador
 - Analisando resultados e testando parâmetros
 - Apresentação de resultados

Semana 2

What is Deep Learning?

"A machine learning technique that learns **features and tasks** directly from data". Data can be images, text, sound ...

source: https://beamandrew.github.io/deeplearning/2017/02/23/deep_learning_101_part1.html

Métodos de Aprendizagem

Aplicando Machine Learning

- 1 Defina seu problema: motivação, descrição, problemas similares, benefícios da solução;
- 2 Prepare seus dados: como preparar (seleção)?, pré-processamento, features selection;
- 3 Escolha a abordagem "algoritmo": performance/accuracy, classificação/regressão/clusterização;
- 4 Obtendo bons resultados e como melhorá-los (Algorithm Tuning);
- 5 Como apresentar seus resultados?

source: https://machinelearningmastery.com/start-here/

CNN

A Beginner's Guide To Understanding Convolutional Neural Networks

source: https://adeshpande3.github.io/adeshpande3.github.io/A-Beginner's-Guide-To-Understanding-Convolutional-Neural-Networks/

Convolution Layer

0	0	0	0	0	0	0										
0	1	0	0	0	1	0		0	0	1		0	1	0	0	0
0	0	0	0	0	0	0						0	1	1	1	0
0	0	0	1	0	0	0	(X)	1	0	0	=	1	0	1	2	1
0	1	0	0	0	1	0	O					1	4	2	1	0
0	0	1	1	1	0	0		0	1	1		0	0	1	2	1
0	0	0	0	0	0	0										
Input Image								Featu Detec	Feature Map							

Convolution Layer

^{*} Diferentes filtros detectam diferentes características.

Convolution Layer + ReLU (Rectifield Linear Unit)

Convolution Layer + ReLU (Rectifield Linear Unit)

Max/Average/Sum Pooling (downsampling)

- Mantém a informação para diferentes "posições" da imagem
- Reduz o tamanho do mapa de características
- Prevenção contra overfitting

Max Pooling (subsampling or downsampling)

Efeito do Max Pooling

Flattening

Flattening

Full Connection

Softmax & Cross-Entropy?

Próxima semana:

- **Semana 3**: Processamento de Imagens em Python
 - Instalação de pacotes e preparação do ambiente
 - Manipulando imagens com OpenCV