

Decision Trees

CSCI 111

Restaurant Waiting

Example	mple Input Attributes					Output					
2	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Туре	Est	WillWait
\mathbf{x}_1	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0-10	$y_1 = Yes$
\mathbf{x}_2	Yes	No	No	Yes	Full	\$	No	No	Thai	30-60	$y_2 = No$
\mathbf{x}_3	No	Yes	No	No	Some	\$	No	No	Burger	0 - 10	$y_3 = Yes$
\mathbf{x}_4	Yes	No	Yes	Yes	Full	\$	Yes	No	Thai	10-30	$y_4 = Yes$
X 5	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	>60	$y_5 = No$
x ₆	No	Yes	No	Yes	Some	\$\$	Yes	Yes	Italian	0 - 10	$y_6 = Yes$
X 7	No	Yes	No	No	None	\$	Yes	No	Burger	0 - 10	$y_7 = No$
\mathbf{x}_8	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0 - 10	$y_8 = Yes$
X 9	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60	$y_9 = No$
\mathbf{x}_{10}	Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	Italian	10-30	$y_{10} = No$
\mathbf{x}_{11}	No	No	No	No	None	\$	No	No	Thai	0 - 10	$y_{11} = No$
\mathbf{x}_{12}	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30-60	$y_{12} = Yes$

Examples for the restaurant domain.

Restaurant Waiting

Given a set of factors (features), will we wait for a table?

- Blue: Yes (they waited)

- Red: No (they did not wait)

Examples of scenarios and corresponding decisions

Restaurant Waiting

Goal:

Given a new scenario (set of features), predict whether they'll wait or not using a classification model

 Review: a classifier learns a function from a labeled dataset

 A decision tree classifier encodes this function as a sequence of decisions or tests TRAINED

CLASSIFICATION MODEL $y = f(X_1, X_2, X_3, ... X_m)$

TRAINING SET:

Scenarios and corresponding decisions to wait or not

TRAINING SET:

Scenarios and corresponding decisions to wait or not

New scenarios

Predicted decisions to wait or not

New scenarios

Predicted decisions to wait or not

What's a tree (in graph theory)

- Hierarchical structure
 - made up of nodes
 - linked by parent-child (branch) relationships
- Terms:
 - Root: first node
 - Branch
 - Leaf: terminal node

What's a decision tree

- A sequence of tests (decisions) induced from a dataset
- Each test is based on a single feature
- Eventually leads to a predicted label

What's a decision tree

- Features as decision nodes
- Feature values as branches
 - a split based on result of decision
- Leaf/terminal nodes as labels or classes

NEW DATA

Hungry	Patron	 Туре
Yes	Full	Italian

NEW DATA

Hungry	Patron	 Туре
Yes	Full	Italian

NEW DATA

Hungry	Patron	 Туре
Yes	Full	Italian

NEW DATA

Hungry	Patron	 Туре
Yes	Full	Italian

NEW DATA

Hungry	Patron	 Туре
Yes	Full	Italian

REACHED TERMINAL NODE

LABEL: NO

Starts with the entire dataset

 Instances are split into nodes according to feature values

 A split represents a decision node in the tree

Instances "trickle down" until:

- homogeneity is achieved,
- all features have been used, or
- instances in a node are lower than a threshold

Greedy algorithm:

• To make a tree: determine the best attribute to split at every level

Greedy algorithm:

To make a tree: <u>determine the best attribute to split</u> at every level

"Best Split"

- Attributes that <u>separate the data best</u> are more important
- Homogenous examples are preferred

"Best Split"

 Score how well an attribute splits examples, then select attribute with the best score

When inducing/making a decision tree, we consider:

- Splitting: How to branch out an attribute
 - Nominal
 - Ordinal
 - Numeric
- Scoring splits: Which feature/attribute to split

Splitting by Attribute

Splitting

- There are multiple ways to split a feature/attribute
 - Especially for numeric values

Splitting Based on Attribute Type

- Nominal
 - no specific order or numerical value (e.g. gender, color)
- Ordinal
 - with a natural order or ranking (e.g. education levels)
- Continuous/numeric
 - numerical data that can take any value (e.g. temperature)

Splitting Nominal Attributes

- Nominal
 - Categories with no specific order or numerical value (e.g. gender, color)
- Possible Splits:
 - Multi-way split
 - Binary split

Splitting Nominal Attributes

Multi-way split

 Use as many partitions as distinct values

Example: Car Type

- Family
- Sport
- Luxury

Splitting Nominal Attributes

Binary split

- Divides values into two subsets
- Requires finding the optimal partitioning

Splitting Nominal Attributes

Binary split

- Divides values into two subsets
- Requires finding the optimal partitioning

- Ordinal
 - Categories with a natural order or ranking (e.g. education level, patrons)
- Possible Splits:
 - Multi-way split
 - Binary split

Multi-way split

 Use as many partitions as distinct values

Example: Size

- Small
- Medium
- Large

Binary split

- Divides values into two subsets
- Requires finding the optimal partitioning

Binary split

- Divides values into two subsets
- Requires finding the optimal partitioning

Binary split

- Divides values into two subsets
- Requires finding the optimal partitioning

Does this make sense?

Splitting Continuous Attributes

- Continuous/Numeric
 - Numerical data that can take any value (e.g. height, temperature)
- Possible Splits:
 - Discretization
 - Binary Decision

Splitting Continuous Attributes

Discretization (Multi-way)

- Form an ordinal categorical attribute
- Bucketing, percentiles, clustering

Splitting Continuous Attributes

Binary Decision

- Consider all possible splits and find best cut
- Can be more compute intensive

Best Split via Scoring

Sometimes use a scoring method to determine best binary split or thresholds

Binary Split	Score
{Sports} and {Luxury, Family}	
{Luxury} and {Sports, Family}	
{Family} and {Sports, Luxury}	

Best Split via Scoring

Sometimes use a scoring method to determine best binary split or thresholds

Threshold	Score
10k	
20k	
30k	

Scoring Splits

Decision Tree

The decision tree induced from the 12-example training set.

Choosing the Feature

Why did we start with the Patrons feature for branching instead of other features?

Choosing the Feature

And how will we choose which feature to branch/split next?

Decision Tree

Which feature do we split?

The feature that can best distinguish examples by their labels

Same number of "Yes" and "No" per group: bad

Scoring splits

Best split:

- Nodes with homogeneous class distributions are preferred
 - Homogeneous: when examples in a node tend to be in one class/label

Finding best split by <u>measuring node impurity</u>

Node Impurity

Labels/Classes:

(Yes: 4, No: 0) Homogeneous: Pure

(Yes: 1, No: 4) Non-homogeneous: Low impurity

(Yes: 2, No: 2) Non-homogeneous: High impurity

Node Impurity

Different measures for node impurity

- Gini index
- Entropy
- Misclassification error

All these measures help determine most important attributes that:

- Separate examples best
- Provide the most homogeneity for the tree

GINI Index

Measure of Impurity: GINI

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^2$$

t: node (e.g. the category like none/some/full for Patrons)

j : class (e.g. the label like Yes/No for Will Wait)

p(j|t): relative frequency of the class in the group

DECISION TREE

GINI INDEX FOR A FEATURE

PICK A FEATURE AND SPLIT

COMPUTE GINI INDEX FOR EACH NODE

GET THE WEIGHTED AVERAGE

DECISION TREE

BRANCHING

FEATURE	GINI SCORE
Hungry	0.37
Patrons	0.28
Туре	0.50
Friday	0.49

FIND FEATURE WITH THE SMALLEST GINI SCORE

SPLIT/BRANCH ACCORDING
TO THAT FEATURE

Summary

 A decision tree classifier encodes a function for the dataset as a sequence of decisions or tests

Each test is based on a single feature

Eventually leads to a predicted label

TRAINED
CLASSIFICATION MODEL $y = f(X_1, X_2, X_3, ..., X_m)$

TRAINING SET:

Scenarios and corresponding decisions to wait or not

New scenarios

Predicted decisions to wait or not

Restaurant Waiting

Given a new scenario (set of features), predict whether they'll wait or not using a decision tree

Decision Tree Induction

To make a tree: <u>determine the best feature to split</u> at every level based on <u>node homogeneity/purity</u>

Decision Tree: Advantages

- Easy to understand/interpret
- Minimal data preparation
 - Normalization not needed
 - Can handle numeric and categorical data
 - Easier to handle missing data

Decision Tree: Advantages

- Relatively fast for both induction and application
 - Induction: making a decision tree from a dataset
 - Application: using a decision tree to arrive at a predicted label

Decision Tree

- Hierarchical structure: Tree
 - Nodes → features
 - Branches → feature values
 - Leaf → labels/classes
- Inducing Tree:
 - Selecting attributes of highest importance (homogeneity/purity)
 - Splitting attribute on type
- Flexible, fast, and interpretable