3.5 Безбедност

- Секоја мрежа е потенцијална цел на напад од страна на злонамерни, или љубопитни "хакери"
- Кој се' може да ја нападне мрежата и зошто?
 - Вработените во претпријатието
 - Традиционални "хакери"
 - Конкуренти или незадоволни клиенти
 - Криминалци
 - Индиректен напад компјутерски вирус преку e-mail порака
- Кои компоненти можат да бидат цел на напади?
 - Мрежни елементи router, switch, access point ...
 - Оперативни системи Unix, Windows
 - Web, E-mail, SQL и др. сервери, како и апликации кои се инсталирани на нив

3.5.1 Безбедносни решенија

- На кое ниво од OSI моделот треба да бидат имплементирани безбедносните техники?
 - Апликациски слој
 - Тајност (confidentiality) криптирање на податоците
 - Интегритет (integrity) електронски потписи на пораките
 - Идентификација (authentication) корисничко име и шифра
 - Расположливост (availability) апликацијата е ставена на располагање од повеќе сервери на различни сајтови
 - Инспекција, следење (audit) записи за корисниците кои се поврзуваат на даден host и за нивните активности

3.5.1 Безбедносни решенија

- Мрежен слој
 - Виртуелни приватни мрежи (VPN)
 - Перманентни виртуелни кола (PVC)
 - Затворени кориснички групи (Closed User Groups)
 - Идентификација на повикувачот
 - Firewall
 - Во наједноставна форма, станува збор за рутер кој е конфигуриран со листа за пристап (access list) која овозможува низ него да поминува само сообраќајот од претходно дефинирани локации
 - Во пософистицирана форма (во повисоките слоеви од OSI моделот) firewall-от може да обезбеди повеќе функции:
 - Криптирање
 - Менаџмент на сесии со верификација на кориснички шифри
 - Преведување на адреси (NAT)
 - Proxy агент

- Слој на податочна врска
 - PPP протоколот вклучува и безбедносни механизми кои се користат при dial-up поврзување
 - Во рамки на процесот на воспоставување на врска, повикувачката страна испраќа шифра која, потоа, се проверува на приемната страна
 - CHAP (Challenge Handshake Authentication Protocol)
 - PAP (Password Authentication Protocol)

3.5.2 Безбедносни технологии

- Криптирање (Encryption)
- Инфраструктура на јавни клучеви (Public Key Infrastructure)
- Firewall

- Основна улога на криптирањето да обезбеди приватност на податоците кога поминуваат преку јавни мрежи
 - Идеален случај податоците треба да се криптираат уште во end-системите
 - Компромисно решение податоците се криптираат кога поминуваат низ рутери за таа намена или низ друг независен хардвер за криптирање (пр. Firewall)
 - Повеќето независни системи за криптирање се дизајнирани за работа на point-to-point синхрони податочни врски
 - Се' поголем е бројот на системи за пакетно-ориентирани мрежи
 - 'Payload' encryptors ги криптираат само корисничките податоци, оставајќи ги заглавијата неизменети, така што пакетите можат непречено да бидат упатувани низ мрежата

3.5.2.1 Криптирање

- Типови на криптирање
 - Симетрично криптирање безбедноста на криптирањето зависи од некоја заедничка тајна (shared secret) која ја знаат само двете страни инволвирани во комуникацијата
 - Бидејќи истиот клуч се користи и за криптирање и за декриптирање, ваквите системи оперираат над блокови од податоци, применувајќи бит-пермутации и други логички операции кои зависат од клучната вредност – благодаредние на големата брзина, можат да бидат и чисто хардверски имплементирани
 - Асиметрично криптирање корисникот поседува пар од клучеви – еден приватен (private) и еден јавен (public)
 - Порака која е криптирана со јавниот клуч, може да биде декриптирана само со приватниот (и обратно)
 - На овој начин, можат да се примаат пораки од секој што го знае јавниот клуч (таквите пораки ќе се декриптираат со приватниот клуч), а можат и да се испраќаат криптирани пораки на секого чиј јавен клуч е познат

- **IPsec** (IP Security) стандард чија цел е да обезбеди безбедно, криптирано тунелирање преку Интернет и/или безбедно комуницирање во LAN
- Основна задача на IPSec е да обезбеди:
 - Заштита на податоците во ІР пакетите
 - Заштита од мрежни напади преку филтрирање на пакетите и обезбедување на доверлива комуникација.

Целите се постигнуваат преку користење на безбедносни сервиси базирани на криптографија, безбедносни протоколи, и динамичко менаџирање на клучеви.

IPSec успешно се имплементира во следниве сценарија:

- Local area network (LAN) Client/server и peer-topeer LANs
- Wide area network (WAN) Router-to-router и gateway-to-gateway WANs
- Далечински пристап(Remote access) Internet пристап до приватни мрежи

■ Транспортен (Transport mode) — се користи кога е потребна безбедност помеѓу крајните системи кои не смеат да комуницираат преку NAT.

IPSec mode

Тунелирање (Tunnel mode) — се користи за siteto-site комуникација која се одвива преку Интернет (или други јавни мрежи).

