数学問題

(120分)

【必答問題】 数学B受験者はB1, B2, B3, B4 を全問解答せよ。

- **B1** 関数 $f(x) = x^2 x + a$ (a は定数) がある。
 - (1) y = f(x) のグラフの頂点の座標を求めよ。また、y = f(x) のグラフとx 軸が異なる 2 点で交わるような a の値の範囲を求めよ。
 - (2) y=f(x) のグラフとx軸の -2< x<3 の部分が異なる2点で交わるようなaの値の範囲を求めよ。
- **B2** 関数 $y = 2\sin\theta\cos\theta + \sqrt{3}\cos2\theta$ がある。
 - (1) $\theta=0$ のとき, yの値を求めよ。また, $\theta=\frac{\pi}{4}$ のとき, yの値を求めよ。
 - (2) yを $r\sin(2\theta + \alpha)$ (r>0, $0 \le \alpha < 2\pi)$ の形で表せ。また, $0 \le \theta < \pi$ のとき, $y = -\sqrt{3}$ を満たす θ の値を求めよ。 (配点 20)
- ${f B3}$ 袋の中に ${f A}$, ${f I}$,
 - ・ \mathbf{A} が含まれるとき、もう一方のカードに書かれた数の 2 倍を X とする。
 - Aが含まれないとき、2枚のカードに書かれた数の和をXとする。
 - (1) X=8 となる確率を求めよ。
 - (2) X=6 となる確率を求めよ。また、X=5 となる確率を求めよ。
 - (3) $X \leq 4$ となる確率を求めよ。また、 $X \leq 4$ のとき、取り出したカードに A が含まれている条件付き確率を求めよ。 (配点 40)

- **B4** 座標平面上に円 $C: x^2+y^2-2kx-4ky+5k^2-9=0$ がある。ただし、k は k>2 を満たす実数とする。
- -(1) 円 Cの中心の座標と半径を求めよ。
- (2) 円 C が点 (4,5) を通るときの円を K_1 とする。円 K_1 の中心の座標を求めよ。また,直線 $\ell: x-y+2=0$ に関して円 K_1 と対称な円を K_2 とするとき,円 K_2 の方程式を求めよ。
- (3) 円 C E(2)で求めた円 K_2 が共有点をもつような E の最大値を求めよ。また、このときの 円 E の中心を E とする。点 E が円 E の周上を動くとき、線分 E E 3:1 に外分する点 E の軌跡の方程式を求めよ。

【選択問題】 数学 B 受験者は,次の B B B のうちから B 2題を選んで解答せよ。

- **B5** $a_2=1$, $a_{n+1}-a_n=2$ $(n=1, 2, 3, \dots)$ を満たす数列 $\{a_n\}$ がある。
 - (1) a1を求めよ。また,数列 {an} の一般項 anを n を用いて表せ。
 - (2) $b_1=0$, $b_{n+1}-b_n=a_n$ (n=1, 2, 3, ……) を満たす数列 $\{b_n\}$ がある。数列 $\{b_n\}$ の一般項 b_n を n を用いて表せ。
 - (3) (2)の数列 $\{b_n\}$ に対して, $S_n = \sum_{k=1}^n b_k$ とする。 S_n を n を用いて表せ。また, $\sum_{k=2}^{20} \frac{2k-7}{S_k}$ の値を求めよ。
- B6 正方形 ABCD を底面とする四角錐 OABCD があり、 $\overrightarrow{OA} = \overrightarrow{a}$, $\overrightarrow{OB} = \overrightarrow{b}$, $\overrightarrow{OC} = \overrightarrow{c}$ とする。また、辺 OA を 2:3 に内分する点を P, 辺 OC 上の $\overrightarrow{OQ} = k\overrightarrow{OC}$ ($0 \le k \le 1$) と なる点を Q とする。

- (1) \overrightarrow{OP} を \overrightarrow{a} を用いて表せ。また, \overrightarrow{PQ} を k, \overrightarrow{a} , \overrightarrow{c} を用いて表せ。
- (2) $|\overrightarrow{OA}| = |\overrightarrow{OC}| = 1$, $\cos \angle AOC = \frac{1}{4}$ とする。内積 $\overrightarrow{a} \cdot \overrightarrow{c}$ の値を求めよ。また, $\overrightarrow{OA} \cdot \overrightarrow{OQ} = \frac{1}{5}$ のとき,k の値を求めよ。
- (3) \overrightarrow{OD} \overrightarrow{ea} , \overrightarrow{b} , \overrightarrow{c} を用いて表せ。また,(2)のとき,平面 PQD と直線 OB の交点を H と する。 \overrightarrow{OH} を \overrightarrow{b} を用いて表せ。 (配点 40)

- **B7** 関数 $f(x) = x^3 2ax^2 + 3a$ (a は定数) があり、f'(2) = 4 である。また、曲線 y = f(x) を C とし、点 A(2, f(2)) における曲線 C の接線を ℓ とする。
 - (1) aの値を求めよ。また, f(2)の値を求めよ。
 - (2) 接線 ℓ の方程式を求めよ。また、ℓ と曲線 C の A 以外の共有点を B とする。点 B の座標を求めよ。
 - (3) (2)のとき、曲線 C上に点 P(t, f(t)) があり、P は点 A から点 B まで動くものとする。 $\triangle ABP$ の面積を Sとするとき、Sを t を用いて表せ。また、Sが最大となるような t の 値を求めよ。

- **B8** 関数 $y=9^x+2a\cdot 3^{x+1}+9a+6$ (a は定数) がある。また、 $t=3^x$ とおく。
 - (1) 9^x , 3^{x+1} をそれぞれ t を用いて表せ。
 - (2) $a=-\frac{4}{9}$ とする。yを t を用いて表せ。また,y>3 を満たすxの値の範囲を求めよ。
 - (3) yの最小値が-4となるようなaの値を求めよ。また、このとき最小値をとるxの値を求めよ。 (配点 40)