Name	Formula	Additional Notes
Sample Mean	$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$	x_i : observation, n : sample size
Relative Frequency	$f_i = (F_i)/n = (\text{Abs. Freq. of } x_i)/n$	f_i : relative frequency of x_i
Weighted Mean	$\bar{x}_w = \frac{\sum_{i=1}^n w_i x_i}{\sum_{i=1}^n w_i} \text{ and if } w_i = f_i; \ \bar{x}_w = \sum_{i=1}^n f_i x_i$ $s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2$	w_i : weight, f_i : relative frequency
Sample Variance	$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$	(with Bessel's Correction)
Weighted Variance	$s_w^2 = \frac{1}{n-1} \sum_{i=1}^{n} f_i (x_i - \bar{x})^2$	f_i : weight as relative freq. (w/ Bessel's Corr.)
Std. Deviation	$s = \sqrt{s^2}$	
Range	$Range = x_{max} - x_{min}$	
Quartiles	$Q_1 = X_{\left(\frac{n+1}{4}\right)}, Q_2 = \text{Median}, Q_3 = X_{\left(\frac{3(n+1)}{4}\right)}$	For even n , average adjacent ranks (i.e., $Q_j = [X_{(k)} + X_{(k+1)}]/2$)
Interquartile Range	$IQR = Q_3 - Q_1$	
Median	$\tilde{x} = \begin{cases} X_{\left(\frac{n+1}{2}\right)}, & \text{odd } n \\ [X_{\left(\frac{n}{2}\right)} + X_{\left(\frac{n}{2}+1\right)}]/2, & \text{even } n \end{cases}$	Where $X_{(k)}$ represents the k -th ranked obs.
Outlier	Values outside $[Q_1 - 1.5 \cdot IQR, Q_3 + 1.5 \cdot IQR]$	
Coeff. of Variation	$CV = s/\bar{x}$	
Bin Size (Histogram)	Bin Width = Range/ K	K: number of bins
Mutually Exclusive	$E_1 \cap E_2 = \varnothing$	Also def. as: "Disjoint Events."
Classical Probability	P(E) = E / S . $ E $: total elements in E , $ S $: total outcomes.	Applies when each outcome is equally likely. S is the sample space, E is an event.
Joint Probability	$P(A \cap B) = A \cap B / S $	Probability that both A and B occur
Conditional Probability	$P(A \mid B) = P(A \cap B)/P(B)$	
Independence	$P(A \mid B) = P(A) \text{ or } P(B \mid A) = P(B)$	
Multiplication Rule	$P(A \cap B) = P(A \mid B) \cdot P(B) = P(B \mid A) \cdot P(A)$	If A, B are indep. then, $P(A \cap B) = P(A)P(B)$.
Addition Rule	$P(A \cup B) = P(A) + P(B) - P(A \cap B)$	If A, B are disjoint then, $P(A \cap B) = 0$
Complement	$P(A^c) = 1 - P(A)$	Derived from $P(S) = P(A \cup A^c) = 1$
Law of Total Probability	$P(A) = \sum_{i} P(A \cap B_i) = \sum_{i} P(A \mid B_i) P(B_i)$	$\{B_i\}$ is a partition of S , i.e. $B_1 \cup B_2 \cup \cdots \cup B_K = S$, and for any $i, j \colon B_j \cup B_i = \emptyset$.
Bayes' Theorem	$P(B \mid A) = [P(A \mid B) P(B)]/P(A)$	You can replace $P(A)$ using the law of total prob.
PMF (Discrete)	$P(X=x)$ \rightarrow Probabilty of $X=x$.	Note: $P(X = x) = \{s \in S \mid X(s) = x\} / S $, if $\forall s \in S, P(s) = 1/ S $
CDF (Discrete)	$F(x) = CDF(x) = P(X \le x) = \sum_{t \le x} P(X = t)$	Note, $P(a < X \le b) = CDF(b) - CDF(a)$. P(X > c) = 1 - CDF(c).
Expectation (Discrete)	$E(X) = \sum x P(X = x)$	Note, $E(aX + bY + c) = aE(X) + bE(Y) + c$
Variance (Discrete)	$V(X) = \sum_{x} (x - E(X))^2 P(X = x)$	Note, $SD(X) = \sqrt{V(X)}$. If X, Y are indep.; $V(aX + bY + c) = a^2V(X) + b^2V(Y)$
Uniform (Discrete)	P(X=x) = 1/n	$x \in \{1, 2, \dots, n\}.$ $E(X) = \frac{n+1}{2}, V(X) = \frac{n^2 - 1}{12}$
Bernoulli	$P(X = x) = p^{x}(1-p)^{1-x}$	$x \in \{0,1\}.$ $E(X) = p, V(X) = p(1-p)$
Binomial	$P(X=x) = \binom{n}{x} p^x (1-p)^{n-x}$ $f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$	$x \in \{1, 2, \dots, n\}.$ $E(X) = np, V(X) = np(1-p)$
Normal PDF	$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$	$E(X) = \mu$, $V(X) = \sigma^2$. Std. normal: $\mu = 0$, $\sigma = 1$
Z-score	$Z = (X - \mu)/\sigma$	Note that, given $Z_{x^*,\bar{x},s}$, we can find $x^* = \bar{x} + s \cdot Z$.
Normal Probability	$P(X \le x) = P(Z \le (X - \mu)/\sigma)$	Use standard normal CDF tables