硬件体系结构

——关注硬件分类,性能

何登成

微博:@何_登成

硬件体系结构及性能

Outline

- CPU
- 内存
- HDD/SSD
- 网卡
- RAID卡
- 虚拟化

CPU-Architecture

CPU-组件与性能指标

• CPU

- 主频: CPU的时钟频率,内核工作的时钟频率

- 外频: 系统总线的工作频率

- 倍频: CPU外频与主频相差的倍数 - 前端总线: 将CPU连接到北桥芯片的总线 - 总线频率: 与外频相同或者是外频的倍数

- 总线数据带宽: (总线频率*数据位宽)/8

• L1,L2,L3 cache (缓存数据与指令)

L1,L2: core独占; 带宽: 20-80GB/S; 延时: 1-5nsL3: core之间共享; 带宽: 10-20GB/S; 延时: 10ns

Cache line size: 64 Bytes

Interface

- QPI
 - Intel中,连接一个CPU中的多个处理器(processors),直接互联
 - QPI带宽: ~20GB/s

CPU-程序设计优化

Cache-conscious

- 目的:提高L1/L2/L3 cache命中率,降低访问内存的概率,降低系统响应时间
- 手段:
 - 降低Cache冲突概率
 - 提高Cache利用率——数据结构重整

False-sharing

- 多线程程序,当不同的线程同时读写同一cache line上的不同数据时发生;
- 危害: False-sharing会导致L1/L2 cache miss,增加系统延时
- 例如: int threadArray[2];

• 系统监控

- 对程序做性能测试时,善用系统性能监控命令,定位瓶颈
- 例如: top

Memory

Memory

Cpu与外部沟通的桥梁,计算机所有程序在内存中运行。其作用是用于暂时存放cpu中的运算数据,以及与硬盘等外部存储器交换的数据.(From 百度百科)

CPU Cache

Memory-种类

随机存取存储器 RAM: 静态随机存储器 – SRAM:

动态随机存储器 – DRAM:

– SDRAM:

同步动态随机存储器 与谁同步?——理论上速度可达到与CPU同步

– DDR SDRAM: 双倍数据传输率SDRAM DDR DDR2 DDR3

Memory特性

随机定位; 易失存储; 容量有限(单块容量小, 插槽少)

Memory-性能指标

- Memory-性能指标
 - 核心频率(F1): 内存的工作频率
 - 倍增系数: (预读位宽/2)*2(上升下降沿均可传输)
 - 时钟频率(F2):核心频率通过倍频技术得到(倍频,既为预读位宽,基准为2 bits)
 - DDR: F2 = F1; DDR2: F2 = 2F1; DDR3: F2 = 4F1
 - F2 = F1 * 倍增系数 / 2
 - 数据传输频率(F3): 传输数据的频率
 - DDR: F3 = 2F1: DDR2: F3 = 4F1: DDR3: F3 = 8F1
 - F3 = F1 * 倍增系数
 - Throughput
 - Throughput = F1 * (内存总线位数/8) * 倍增系数 = F3 * (内存总线位数/8)
 - Latency
 - 30 100 ns
- DDR400 DDR3-800 (single channel, 64-bit)
 - 400 800?
 - 400,800数字,指的是数据传输频率F3;对应的F1为200,100
 - 帯宽
 - DDR400: 200 * 64/8 * 2 = 400 * 64/8 = 3.2GB/s
 - DDR3-800: 100 * 64/8 * 8 = 800 * 64/8 = 6.4GB/s
 - 双通道
 - 带宽*2

Memory-性能指标(续)

	Read	Write	Сору	Latency				
Memory	5174 MB/s	3968 MB/s	3983 MB/s	88.4 ns				
L1 Cache	51041 MB/s	50910 MB/s	101816 MB/s	0.9 ns				
L2 Cache	21581 MB/s	13098 MB/s	21221 MB/s	6.0 ns				
L3 Cache								
CPU Type	DualCore Intel Pe	ntium (Wolfdale-2)	M 1GA775)					
CPU Clock	DualCore Intel Pentium (Wolfdale-2M, LGA775) 3192.0 MHz (original: 3200 MHz)							
CPU FSB	199.5 MHz (original: 200 MHz)							
CPU Multiplier	16x		CPU Stepping	R0				
Memory Bus	399.0 MHz		DRAM:FSB Ratio	12:6				
	Single Channel DDR3-800 SDRAM (6-6-6-15 CR1)							
Memory Type	Intel Eaglelake G41							
Memory Type Chipset	Intel Eaglelake G4	4.5						

Memory-定位

- 虚拟地址(Virtual Address)
 - 为了区分不同进程的存储空间,每个进程的虚拟地址空间是连续的,但对应的物理地址空间不一定连续
 - 32位系统: 32位指针 = 4G Bytes
 - 64位系统: 64位指针 = 16E Bytes
- 页表(Page Table)
 - 虚拟地址到物理地址的映射表
- TLB(Translation lookaside buffer)
 - 缓存Virtual address 到Physical address 的映射关系,加快查找
- 大页(Huge pages)
 - 降低页表空间消耗
 - 固定内存空间,防止swap

Memory-编程指导

- Memory conscious
 - 所有提供L1/L2/L3 cache命中率的方法,在memory中同样适用(Memory Latency << HDD)
 - 经常访问数据,常驻内存

服务器体系结构

- SMP/UMA Symmetric Multi Processing/Uniform Memory Architecture
 - 服务器中多CPU对称工作,无主次关系。各CPU共享相同的物理内存,访问内存任何地址所需时间相同。程序设计简单。
 - 缺点: Scale-up,难以扩展;内存访问冲突
- NUMA-Non-Uniform Memory Access
 - 多CPU模块,每个CPU模块具有独立的本地内存(快),但可访问其他CPU内存(慢),共享存储。代表: HP Superdome,IBM P690
 - 缺点:全局内存访问性能不一致;程序设计需要特殊考虑。
- MPP-Massive Parallel Processing
 - 由多个SMP服务器通过节点互联网络连接而成,每个节点访问本地资源(内存、存储等),完全无共享 (Share-Nothing)。最易扩展,软件层面即可实现。代表: 网易DDB
 - 缺点:数据重分布:程序设计复杂:

服务器体系结构(cont.)

numactl ==hardware
available: 2 nodes (0-1)
node 0 size: 32276 MB
node 0 free: 26856 MB
node 1 size: 32320 MB
node 1 free: 26897 MB
node distances:
node 0 1
0: 10 21
1: 21 10

HDD/SSD-HDD概述

- 硬盘接口
 - ATA
 - IDE(PATA, parallel ATA), SATA(Serial ATA)
 - SCSI
 - SCSI(parallel), SAS(serial)
 - FC(Fibre Channel)
 - FC-SCSI (serial)
- 基本参数
 - 容量
 - 转速
 - 平均访问时间
 - 传输速率
 - 内部传输率(data transfer rate)
 - 外部传输率(sustained transfer rate)

HDD/SSD-SSD概述

- 原理
 - 电学存储介质,对浮动栅极的充电状态标识0或1
- 存储技术
 - NAND, NOR
 - SLC, MLC
 - 电压分区粒度
 - 下图,横坐标为电压,纵坐标为值

- 接口类型
 - SATA, SAS, FC, PCle(高速接口)
- SSD特性
 - 粒度划分: page 4K; block n*pages (256K)
 - Read/Write, page
 - Erase, block
 - 更新 = read + erase + write

HDD-性能指标

- HDD-SAS 15K RPM
 - 基本性能指标

• 平均寻道时间(E):

• 旋转延时(L):

• 内部传输时间(X):

• 吞吐率(Throughput):

~4ms

2ms

0.8ms

Read 140MB/s

Write 140MB/s

- 磁盘服务时间

• Rs = E+L+X = 6.8ms

IOPS

• 147 iops

.

- IO响应延时

• R = Rs / (1 - U); I/O利用率越高,响应延时越大

• U: I/O利用率

- HDD分析
 - 顺序读写快,随机读写慢
 - 随机读写,性能稳定
 - 高容量,价格便宜

HDD-性能指标(续)

RPM Rotations Per Minute	Rotations Per Second	Rotations Per Mili-second	Full Rotation	Rotational Latency (Half Rotation)	Average Seek Time	IO Time	IOPS
(x)	(x/60)	(x/60,000)	(1/ [x/60000])	(1/ [x/60000])/2			
				Y	Z	(Y+Z)	(1/[Y+Z])*1000
15,000	15,000/60	15,000/ 60,000	4ms	2ms	4ms	6ms	167
10,000	10,000/60	10,000/ 60,000	6ms	3ms	5.15ms	8.15ms	122
			10ms	5ms	9ms	14ms	71
7,200	7200/60	7,200/ 60,000	8.4ms	4.2ms	9.9ms	14.1ms veibo.c	dbollen@

SSD-性能指标

- SSD性能指标
 - IOPS

• 随机读: 35000(intel x25-e); 120000(Fusion-io ioDrive)

• 随机写: 3300(intel x25-e); 90000(Fusion-io)

Throughput

• 连续读: 250MB/s(x25-e); 750MB/s(Fusion-io)

• 连续写: 170MB/s(x25-e); 500MB/s(Fusion-io)

Latency

• read: 75us(x25-e); 26us(Fusion-io)

• write: 200us(Fusion-io)

erase: ~2ms

- SSD分析
 - 高IOPS,低IO延时
 - 体积小,省电

SSD-Erase

- Erase影响
 - 更新 = read + erase(block) + write = 写放大
 - erase代价高,latency = 2ms
 - erase影响write性能
 - ssd随机写性能较差
 - erase次数有限(wear-out)
 - SLC: 10万次erase; MLC: 1万次erase
- SSD层面优化
 - FTL(Flash Translation Layer): 物理逻辑地址映射
 - Reclamation: 异步擦除策略,降低延时
 - Wear Leveling:均衡写磨损,提升寿命
 - Spare Area: 预留空间,减少写放大

HDD/SSD-编程指导

- HDD
 - 高延迟
 - 热点常驻内存
 - 随机写 ——>连续写: 消除 寻道+旋转 延时
- SSD
 - 随机写慢
 - 随机写转换为连续写:
 - 数据库: write data ---> write log
 - Fractal Tree: 无随机写,转换为顺序写+随机读
 - 缓存,合并写操作:
 - 内存cache,定期回刷,合并期间写操作
 - 写放大
 - 控制每次写入大小
- 性能监控
 - 程序完成,做性能测试过程中,用监控命令定位系统瓶颈
 - 例如: iostat

Raid/Raid卡

- Raid定义
 - 独立磁盘冗余数组(Redundant Array of Independent Disks)
 - 使用廉价磁盘提供快速、可靠的存储。
- Raid功能
 - 增强数据集成度
 - 增强容错功能
 - 增加处理量或容量
- Raid分类(常用)
 - RaidO(条带); raid1(镜像); raid10; raid5; raid6; raidz;
 - 120块 15K转速的HDD盘,在raid10,raid5下分别能够提供多少iops?
- Raid支持
 - 软件raid
 - 硬件raid: raid卡

Raid/Raid卡(cont.)

• Raid卡

– 有自己的cpu,cache memory,通过集成或借用主板上的scsi控制器管理硬盘,输出到主机的称之为逻辑单元(logical units)

Raid卡基本参数

- 连接主机 host bus adapter(HBA, HBA卡)
- 后端接口(Back-end interface): IDE, SATA, SCSI, FC, SAS
- 前端接口(Front-end interface): SATA, SCSI, FC, ISCSI...

Cache Memory

- 预读: read ahead; pre-fetch回写: write-back; write-through
- BBU(Battery Backed Unit)
 - 电池保护的write cache。保护cache memory在断电时数据不丢失。
 - Write-through **vs** write-back + BBU?

网络/网卡

- OSI七层模型
 - 自下而上: 物理层; 数据链路层; 网络层; 传输层; 会话层; 表示层; 应用层
- 网络(企业级)
 - 10GbE
 - 10 Gigabit Ethernet
 - Infiniband
 - Infiniband SDR(1X, 4X); Infiniband DDR(1X, 4X);
 - RDMA Remote direct memory access
 - Fibre Channel
- 延时/带宽/传输距离
 - 10GbE
 - ~15 usec / 10Gbit/s /
 - Infiniband(QDR 4X)
 - ~1-2 usec / 32Gbit/s / 17m(双绞铜线);数公里(光缆)
 - Fibre Channel
- 网络延时远远小于HDD延时(也小于SSD延时),使得RAC,Exadata等设计成为可能

网络/网卡

- 网卡
 - 功能
 - 发送:数据封装为帧;接收:接收帧,并将帧重新组合数据。
 - 种类
 - NIC (Network Interface Controller): Ethernet
 - HBA (Host Bus Adapter) : Fibre Channel
 - HCA (Host Channel Adapter): Infiniband
- 交换机(switch)
 - 以太网交换机;光纤交换机;Infiniband交换机
- 关键技术
 - 多路径
 - 增加系统的性能,提供网络层面高可用(HA)
 - Zoning(交换机) vs LUN masking(网卡)
 - 网络区域隔离,增加系统的稳定性以及安全性
 - MTU
 - 最大传送单位 (Maximum Transmission Unit)。默认:1500 bytes

网络编程

- AIO
 - 目的:
 - 方法:
 - Select
 - Poll
 - Epoll

网络补充-大融合

- 融合
 - 所有的网络传输协议,都可以运行在其他网络硬件层面之上。
 - 有效融合各网络优势
 - 减少硬件投入成本

分类

- Ethernet
 - iSCSI(scsi over ethernet); FCOE(Fibre Channel over Ethernet); FCIP; IFCP;...
- Fibre Channel
 - IPFC(Internet Protocol over Fibre Channel);...
- Infiniband
 - iSER(iSCSI Extensions for RDMA); FCoIB(Fibre Channel over InfiniBand)...

存储

- 盘柜
 - JBOD(Just a Bunch Of Disks)
 - 代表: Dell M1000
- 盘阵
 - 中低端: emc cx series;
 - 高端: emc dmx series; IBM DS series; IBM XIV; HP 3PAR;
 - 区别: 更大的缓存; 更高的处理性能
- 存储划分
 - 条带化(打散数据,降低单一磁盘冲突,发挥所有磁盘的性能)
 - 条带深度:条带大小,条带单元(单块磁盘)
 - 条带宽度: 一个条带集中的驱动数 (多块磁盘)
 - OLTP: 条带宽度 >= IO请求大小/条带深度 (保证一个IO,一块磁盘只服务一次)
- 软硬件一体机
 - Oracle exadata

网络存储

- DAS(Direct Attached Storage)
 - 直接附加存储,将存储通过SCSI接口或光钎通道直接连接到计算机
- NAS(Network Attached Storage)
 - 网络接入存储,采用TCP/IP等技术,网络交换机连接存储系统和主机
- SAN(Storage Area Network)
 - 存储区域网络,采用光钎通道技术,通过光钎交换机连接存储阵列和主机

今天的存储解决方案

存储的发展

Q & A

谢谢大家!