Projektioner af vektorer

Projektioner

Har vi to vektorer \overrightarrow{a} og \overrightarrow{b} , så kan vi være interesserede i at bestemme den vektor $\overrightarrow{a_b}$, der peger i samme retning som \overrightarrow{b} og som i en forstand er så tæt på \overrightarrow{a} som muligt. Vi kalder i et sådant tilfælde vektoren $\overrightarrow{a_b}$ for projektionen af \overrightarrow{a} på \overrightarrow{b} . Vi skriver også

$$\operatorname{proj}_{\vec{b}}(\vec{a}) = \vec{a}_{\vec{b}}.$$

Figur 1: Projektion af vektor på vektor.

Vi starter med at vise, hvordan vi finder projektionen af en vektor på en anden vektor.

Sætning 1.1 (Projektionssætningen). For to vektorer \vec{a} og \vec{b} er projektionen af \vec{a} på \vec{b} , som vi betegner

$$\operatorname{proj}_{\overrightarrow{b}}(\overrightarrow{a}) = \overrightarrow{a}_{\overrightarrow{b}},$$

givet ved

$$\operatorname{proj}_{\overrightarrow{b}}(\overrightarrow{a}) = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{b}|^2} \overrightarrow{b}.$$

Længden af $\overrightarrow{a}_{\overrightarrow{b}}$ er givet ved

$$|\vec{a}_{\vec{b}}| = \frac{|\vec{a} \cdot \vec{b}|}{|\vec{b}|}$$

Bevis for projektionssætningen

Vi skal gennem en række små opgaver bevise projektionssætningen.

- i) Tegn en skitse af Figur 1.
- ii) Tegn en normalvektor \vec{n} til \vec{b} , der går langs den stiplede linje på Figur 1 op til \vec{a} .

Vi skal bruge tre kendsgerninger, som I skal overbevise jer selv om sandheden af.

iii) Overbevis jer selv om, at

$$\overrightarrow{a_h} + \overrightarrow{n} = \overrightarrow{a}. \tag{1.1}$$

iv) Overbevis jer selv om, at

$$\overrightarrow{a_k} = k \overrightarrow{b} \tag{1.2}$$

for et tal k.

v) Overbevis jer selv om, at

$$\vec{n} \cdot \vec{b} = 0. \tag{1.3}$$

- vi) Isolér \overrightarrow{n} i (1.1).
- vii) Indsæt dette udtryk for \vec{n} i (1.3) (vink: husk parentes).
- viii) Prik \overrightarrow{b} ind i parentesen (Hæv parentesen).
 - ix) Indsæt udtrykket for $\overrightarrow{a_b}$ fra (1.2) i udtrykket.
 - x) Isolér k i udtrykket.
 - xi) Udnyt, at $\overrightarrow{b} \cdot \overrightarrow{b} = \left| \overrightarrow{b} \right|^2$ til at omskrive udtrykket.
- xii) Indsæt dette udtryk for k i (1.2).
- xiii) Sammenlign med projektionssætningen.

Ekstraudfordring: Bestem længden af projektionsvektoren og bevis anden del af projektionssætningen.