

=====

Sequence Listing was accepted with existing errors.
See attached Validation Report.

If you need help call the Patent Electronic Business Center at (866)
217-9197 (toll free).

Reviewer: Anne Corrigan

Timestamp: Wed Jun 27 16:25:43 EDT 2007

=====

Application No: 10517695 Version No: 1.1

Input Set:

Output Set:

Started: 2007-06-27 16:25:17.730
Finished: 2007-06-27 16:25:17.867
Elapsed: 0 hr(s) 0 min(s) 0 sec(s) 137 ms
Total Warnings: 0
Total Errors: 0
No. of SeqIDs Defined: 8
Actual SeqID Count: 8

SEQUENCE LISTING

<110> EVANS, MARK J.

HARNISH, DOUGLAS C.

<120> INHIBITORS OF INFLAMMATORY GENE ACTIVITY AND
CHOLESTEROL BIOSYNTHESIS

<130> 36119.159US4

<140> 10/517,695

<141> 2004-12-13

<150> PCT/US03/18651

<151> 2003-06-13

<150> 60/387,915

<151> 2002-06-13

<150> 60/470,188

<151> 2003-05-14

<160> 8

<170> PatentIn Ver. 3.3

<210> 1

<211> 1168

<212> DNA

<213> Homo sapiens

<400> 1

gagctggaaatgagagcaga tccctaaccatgaggcaccagg ccaaccagggg gcctgcggcat 60
gccaggggagc tgcaagccgc cccgccccatttcttacgcact tcttagctcc agcctcaagg 120
ctgtcccccc accccgttagc cgctgccttat gttaggcagca cccggcccggtc cagctatgtg 180
cacctcatcg cacctgcgg gaggcccttgatgttctggca caagacagtgc gccttcctca 240
ggAACCTGCC atccttctgg cagctgcctc cccaggacca gcggcggtc ctgcaggggtt 300
gctggggccc cctcttcctg cttgggttgg cccaagatgc tgtgaccttt gaggtggctg 360
aggccccgggt gcccagcata ctcaagaaga ttctgctggaa ggagcccgac agcagtggag 420
gcagtgccca actgccagac agaccccgac cttccctggc tgcgggtcag tggcttcaat 480
gctgtctggatgccttgc agcctggggatgc tttagcccaa ggaatatgcc tgcctgaaag 540
ggaccatccttcttcaacccttcatgtgtccag gcctccaaagc cgccctccac attggggcacc 600
tgcagcagga ggctcaactggatgtgtgc aagtccctggaa accctgggtc ccagcagccc 660
aaggccgcctt gaccctgttc ctctcacgg cttccaccctt caagtccatt ccgaccagcc 720
tgcttggggatgccttgc cttccatca ttggagatgt tgacatgcgtt ggccttcttg 780
gggacatgttttgccttgcggatgtgtgc cttccatca ttggagatgt tgacatgcgtt ggccttcttg 840
ctggcagtgc tgattcagcc tggccatccc cagaggtgac ccaatgcctcc tggaggggca 900
agcctgtata gacagcactt ggctcccttag gaacagctct tcactcagcc acacccacaca 960
ttggacttcc ttgggttggaa cacagtgcctc cagctgcctg ggaggctttt ggtggcccc 1020
acagcctctg ggccaagact cttgtccctt cttggatgtaa gaatgaaagc tttaggtgtt 1080
tattggacca gaagtccatcgacttata cagaactgaa ttaagttatt gatTTTGTAA 1140
ataaaaaggtatgaaacactaaaaaaa 1168

<210> 2

<211> 257

<212> PRT

<213> Homo sapiens

<400> 2

Met Ser Thr Ser Gln Pro Gly Ala Cys Pro Cys Gln Gly Ala Ala Ser
1 5 10 15

Arg Pro Ala Ile Leu Tyr Ala Leu Leu Ser Ser Ser Leu Lys Ala Val
20 25 30

Pro Arg Pro Arg Ser Arg Cys Leu Cys Arg Gln His Arg Pro Val Gln
35 40 45

Leu Cys Ala Pro His Arg Thr Cys Arg Glu Ala Leu Asp Val Leu Ala
50 55 60

Lys Thr Val Ala Phe Leu Arg Asn Leu Pro Ser Phe Trp Gln Leu Pro
65 70 75 80

Pro Gln Asp Gln Arg Arg Leu Leu Gln Gly Cys Trp Gly Pro Leu Phe
85 90 95

Leu Leu Gly Leu Ala Gln Asp Ala Val Thr Phe Glu Val Ala Glu Ala
100 105 110

Pro Val Pro Ser Ile Leu Lys Lys Ile Leu Leu Glu Glu Pro Ser Ser
115 120 125

Ser Gly Gly Ser Gly Gln Leu Pro Asp Arg Pro Gln Pro Ser Leu Ala
130 135 140

Ala Val Gln Trp Leu Gln Cys Cys Leu Glu Ser Phe Trp Ser Leu Glu
145 150 155 160

Leu Ser Pro Lys Glu Tyr Ala Cys Leu Lys Gly Thr Ile Leu Phe Asn
165 170 175

Pro Asp Val Pro Gly Leu Gln Ala Ala Ser His Ile Gly His Leu Gln
180 185 190

Gln Glu Ala His Trp Val Leu Cys Glu Val Leu Glu Pro Trp Cys Pro
195 200 205

Ala Ala Gln Gly Arg Leu Thr Arg Val Leu Leu Thr Ala Ser Thr Leu
210 215 220

Lys Ser Ile Pro Thr Ser Leu Leu Gly Asp Leu Phe Phe Arg Pro Ile
225 230 235 240

Ile Gly Asp Val Asp Ile Ala Gly Leu Leu Gly Asp Met Leu Leu Leu
245 250 255

Arg

<210> 3

<211> 2218

<212> DNA

<213> Homo sapiens

<400> 3

acgagactct ctcctcatt gtctcccgaa cttatcctaa tgcgaaattt 60
gattctgagc attttagca aaatcgctgg gatctggaga ggaagactca gtccagaatc 120
ctccccaggcc ctgtaaagtc catctctgac ccaaaaacaat ccaaggaggt agaagacatc 180
gtagaaggag tgaaagaaga aaagaagact tagaaacata gctcaaagtg aacactgctt 240
ctcttagttt cctggatttc ttctggacat ttctcaaga tgaaacttca gacacttgg 300
agtttttttta gaagaccacc ataaagaaag tgcattcaa ttgaaaaatt tggatggat 360
caaaaatgaa tctcattgaa cattccatt tacctaccac agatgaattt tcttttctg 420
aaaatttttta tggtgttttta acagaacaag tggcaggctt tctgggacag aacctggaag 480
tggaaccata ctcgcaatac agcaatgttc agttccca agttcaacca cagatttct 540
cgtcatccta ttattccaac ctgggtttct acccccagca gcctgaagag tggtaactctc 600
ctggaatata tgaactcagg cgtatgccag ctgagactctt acccaggaa gaaactgagg 660
tagcagagat gcctgtaca aagaagcccc gcatggcgc gcagcaggagg aggatcaaag 720
gggatgagct gtgtgttgg tttggagaca gaggctctgg ataccactat aatgcactga 780
cctgtgagggt gtgtaaagggt ttcttcagga gaagcattac caaaaacgct gtgtacaagt 840
gtaaaaacgg gggcaactgt gtgtatggata tgtacatgca aagaaagtgtt caagagtgtc 900
gactaaggaa atgcaaaagag atggaaatgt tggctgaatg cttgttaact gaaattcagt 960
gtaaatctaa gcgactgaga aaaaatgtga agcagcatgc agatcagacc gtgaatgaag 1020
acagtgaagg tcgtgacttg cgacaagtga cctcgacaac aaagtcatgc agggagaaaa 1080
ctgaactcac cccagatcaa cagactctt tacattttat tatggattca tataacaaac 1140
agaggatgcc tcaggaaata acaaataaaaa tttaaaaga agaattcagt gcagaagaaa 1200
attttctcat tttgacggaa atggcaacca atcatgtaca ggttcttgc taattcaca 1260
aaaagctacc aggatttcag actttggacc atgaagacca gattgttttgc ctgaaagggt 1320
ctgcgggttgc agctatgttc cttcggttcag ctgagattt caataagaaa ctccgtctc 1380
ggcattctga cctattggaa gaaagaattt gaaatagtgg tatctctgat gaatatataa 1440
cacctatgtt tagttttat aaaagtattt gggactgaa aatgactcaa gaggagtatg 1500
ctctgcttac agcaattgtt atcctgtctc cagatagaca atacataaaag gatagagagg 1560
cagtagagaa gcttcaggag ccacttcttgc atgtgtaca aaagttgtgt aagattcacc 1620
agcctgaaaaa tcctcaacac tttgcgttc tcttgggtcg cctgactgaa ttacggacat 1680
tcaatcatca ccacgctgag atgctgtatg catggagagt aaacgaccac aagtttaccc 1740
cacttctctg tgaaatctgg gacgtgcagt gatggggatt acaggggagg ggtctagctc 1800
cttttctctt ctcatattaa tctgtatgtt aactttctt tatttcaactt gtacccagtt 1860
tcactcaaga aatctgtatg aatattttatg ttgttaattac atgtgtact tccacaactg 1920
taaatattgg gctagataga acaactttctt ctacatgtt tttaaaagg ctccaggaa 1980
tcctgcattt taattggcaa gccctgtttt cctaattttt ttgattgttta cttcaattct 2040
atctgttgc aaaggaaaaa tctcattttgc tctcatcttac catattgtat atattttattt 2100
aaagagttgtt attcaatctt ggcaataaaag caaacataat ggcaacagaa aaaaaaaaaa 2160
aaaaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 2218

<210> 4

<211> 472

<212> PRT

<213> Homo sapiens

<400> 4

Met Gly Ser Lys Met Asn Leu Ile Glu His Ser His Leu Pro Thr Thr

1 5 10 15

Asp Glu Phe Ser Phe Ser Glu Asn Leu Phe Gly Val Leu Thr Glu Gln

20 25 30

Val Ala Gly Pro Leu Gly Gln Asn Leu Glu Val Glu Pro Tyr Ser Gln

35 40 45

Tyr Ser Asn Val Gln Phe Pro Gln Val Gln Pro Gln Ile Ser Ser Ser
50 55 60

Ser Tyr Tyr Ser Asn Leu Gly Phe Tyr Pro Gln Gln Pro Glu Glu Trp
65 70 75 80

Tyr Ser Pro Gly Ile Tyr Glu Leu Arg Arg Met Pro Ala Glu Thr Leu
85 90 95

Tyr Gln Gly Glu Thr Glu Val Ala Glu Met Pro Val Thr Lys Lys Pro
100 105 110

Arg Met Gly Ala Ser Ala Gly Arg Ile Lys Gly Asp Glu Leu Cys Val
115 120 125

Val Cys Gly Asp Arg Ala Ser Gly Tyr His Tyr Asn Ala Leu Thr Cys
130 135 140

Glu Gly Cys Lys Gly Phe Phe Arg Arg Ser Ile Thr Lys Asn Ala Val
145 150 155 160

Tyr Lys Cys Lys Asn Gly Gly Asn Cys Val Met Asp Met Tyr Met Arg
165 170 175

Arg Lys Cys Gln Glu Cys Arg Leu Arg Lys Cys Lys Glu Met Gly Met
180 185 190

Leu Ala Glu Cys Leu Leu Thr Glu Ile Gln Cys Lys Ser Lys Arg Leu
195 200 205

Arg Lys Asn Val Lys Gln His Ala Asp Gln Thr Val Asn Glu Asp Ser
210 215 220

Glu Gly Arg Asp Leu Arg Gln Val Thr Ser Thr Thr Lys Ser Cys Arg
225 230 235 240

Glu Lys Thr Glu Leu Thr Pro Asp Gln Gln Thr Leu Leu His Phe Ile
245 250 255

Met Asp Ser Tyr Asn Lys Gln Arg Met Pro Gln Glu Ile Thr Asn Lys
260 265 270

Ile Leu Lys Glu Glu Phe Ser Ala Glu Glu Asn Phe Leu Ile Leu Thr
275 280 285

Glu Met Ala Thr Asn His Val Gln Val Leu Val Glu Phe Thr Lys Lys
290 295 300

Leu Pro Gly Phe Gln Thr Leu Asp His Glu Asp Gln Ile Ala Leu Leu
305 310 315 320

Lys Gly Ser Ala Val Glu Ala Met Phe Leu Arg Ser Ala Glu Ile Phe
325 330 335

Asn Lys Lys Leu Pro Ser Gly His Ser Asp Leu Leu Glu Glu Arg Ile
340 345 350

Arg Asn Ser Gly Ile Ser Asp Glu Tyr Ile Thr Pro Met Phe Ser Phe
355 360 365

Tyr Lys Ser Ile Gly Glu Leu Lys Met Thr Gln Glu Glu Tyr Ala Leu
370 375 380

Leu Thr Ala Ile Val Ile Leu Ser Pro Asp Arg Gln Tyr Ile Lys Asp
385 390 395 400

Arg Glu Ala Val Glu Lys Leu Gln Glu Pro Leu Leu Asp Val Leu Gln
405 410 415

Lys Leu Cys Lys Ile His Gln Pro Glu Asn Pro Gln His Phe Ala Cys
420 425 430

Leu Leu Gly Arg Leu Thr Glu Leu Arg Thr Phe Asn His His His Ala
435 440 445

Glu Met Leu Met Ser Trp Arg Val Asn Asp His Lys Phe Thr Pro Leu
450 455 460

Leu Cys Glu Ile Trp Asp Val Gln
465 470

<210> 5

<211> 738

<212> DNA

<213> Homo sapiens

<400> 5

tctagaggat gcacttatgt agaatactct cttgaggatg ttaggtgagt aacatgttac 60
tatatgttgtt aaaatatcta tgattttata aaagcactga aacatgaagc agcagaaatg 120
tttttcccaag ttctctttcc tctgaacttg atcaccgtct ctctggcaaa gcacctaataat 180
taattcttctt taaaagtta acaagaccaa attataagct tgatgaataa ctcattctta 240
tctttcttta aatgattata gtttatgtat ttattagcta tgcccatctt aaacaggttt 300
atttgttctt ttacacata ccaaactctt aatattagct gttgtccccca ggtccgaaatg 360
ttaagtcaac atatatttga gagaacttca acttatacaag tattgcaggt ctctgattgc 420
tttggAACCA cttctgatac ctgtggactt agttcaaggc cagttactac cactttttt 480
tttctaatag aatgaacaaa tggctaattt gttgtttgtt caaccaagct caagttaatg 540
gatctggata ctatgtatat aaaaagccta gcttgagtct cttttcagtg gcattccttcc 600
ctttctaatc agagattttc ttccctcagag atttggcct agatttgc aaatgtgacc 660
acatcttga ttgggggat tgctatagca gcatgctgtt gtctatggct tattcttgg 720
attaggagaa ggtaagta 738

<210> 6

<211> 839

<212> DNA

<213> Homo sapiens

<400> 6

ccaattcgcc ctggaggta ggaggcagaca tgacttcaac aaggctatgc ccccttggca 60
agcatctttg agaccagaga ggaagacaga ctagggaaag aatgaggaga taagcacggg 120
ctgctgttagt gtccaggggaa gcaaggaaag gtaagagaaa aggcttttagg atactaacta 180
acatatatgg agcactagca tgagccaggc actattctaa gtgctttca ggtgttatct 240

ctttttgcct cacggacagc acctacaagg cactgttaatt atccctactt cacagatgag 300
ggagtggagc cacagtgagg ttaacttact tgaccaaggg gccaagtag gaatggaggc 360
atttgtttag tcttcataag atgaggaaag agtggaaatg agattttta agtgcttgat 420
tcatttctac caactgaact ggcaaataaa taaaagcatg agtaaatggg ggtataaata 480
gtctgtcagc tatgggggtg ggagtgggct caaggcaggc tttagagagaa ggtgcaagag 540
ctgtctgaaa aggtcagagc aaagcatgaa gctggtgagc agctgtgacc atagctggaa 600
gcttcctctc gagcttctc ctggttaccc ctcctcccc tacgtgacca gtcagccaag 660
tgttaagtcc agggaaat tttgctgctt ccaagtaactg tctcaactgt gttatggcc 720
ataacttgcg gccacaggc aaggccagg tgctcagacc tttacatcct ggactttcca 780
aggcctccca aagctctctg gcacccaggc aacagtgtgc gtgtcgagag agggccggg 839

<210> 7
<211> 815
<212> DNA
<213> Homo sapiens

<400> 7
ggaggtagga gcagacatga cttcaacaag gtcatacccc cttggcaagc atctttgaga 60
ccagagagga agacagacta gggaaagaat gaggagataa gcacgggctg ctgtgaggc 120
caggggagca ggcaaaggta agagaaaagg cttagata ctaactaaca tataatggagc 180
actagcatga gccaggcact attctaagtg ctttcaaggt gttatctttt ttgcctcac 240
ggacagcacc tacaaggcac tctaattatc cctacttcac agatgaggga gtggagccac 300
agtgggtta acttacttga ccaagggggc caagtaggaa tggaggcatt tggtagtct 360
tctaaagatg agggaaagagt ggaagtgaga tttttaagt gtttgattca ttctaccaa 420
ctgaactggc aaataaataa aagcatgagt aaatgggggt ataaatagtc tgcagctat 480
gggggtggga gtggctcaa ggcaggctt gagagaaggt gcaagagctg tctgaaaagg 540
tcagagcaaa gcatgaagct ggtgagcagc tgtgaccata gctggaaagct tctctctgag 600
cttctcctg gttacctctt cctccctac gtgaccagtc agccaagtgt taagtccagg 660
ggaacatttt gctgcttcca agtactgtct cactagtgtt atttgccata acttgccggcc 720
acagggcaag gtccaggtgc tcagaccctt acatccctgga ctttccaagg cctccaaag 780
ctctctggca cccagggaaac agtgtgcgtg tcgag 815

<210> 8
<211> 1399
<212> DNA
<213> Homo sapiens

<400> 8
cacaagctct gagaatctca ggctctggc gtgcaattgg gccagtgggt ccagggaaac 60
aaacaaggac ttggagtca ggcaagatct gggcttgc ttccctgggt gatgacccctt 120
ggcaagtccat tttagctttt tttagtctcat aaagtaagaa tctagccctt ggaagaggct 180
gcaatatttta gagtggaaag tgcctgacac ataataagtg cttagagaat ggcaaccata 240
tatatacata tataatatata tataatgtatg tatgtatgtg tataatata tacacatata 300
catataaataa tacatataca tatacatata catatacata tataattttt tgagacagga 360
tcttgctctg ttgcccaggc tggagagcagc tggcatgatc tcagctact gtaacctctg 420
cctcccaaggc tcgagtgatt ctggcttccctt agcctctaga gtagctgggca ctacaggcac 480
atgccaccat gcccggctaa tttttgtatt tttagtagag acgggatttt gccatgttgg 540
ccaggctggc cttgaactcc tgacccctt tgatccccctt tcctcagccct cccaaagtgc 600
tgggattaca ggcatgagcc accgtgcccc gctggcaact atcttttattt ataaattctgt 660
gagttcttctt cagcagaccc tgccttccat gagggttgg aatcaggctg gggataagga 720
ttctgaagga ctttccctt gcaaggggcc cagaactgga atcagaggag gaggccctt 780
agattggaca gtggccaaag tcttccccc ccccagggtc ctggctccct tccctgttagc 840
ctgcttctgg ctgacaacag aagcaggccc ccaaggtagt gcaaacaagc tagtgataag 900
gcacttccag gttggccctt gcatcaagg cccaccaggc tctggggctg gcttcctggc 960
ttagcaaaag cccttagtctt ttgtgcacac aagagccggc accaatgggg acacctgctg 1020

attgtgcacc tggggccttg gtgccctggt acagcctgag ttaatgacct tgtttatcca 1080
ctttagtcat ctgataaggg gcagctgagt gagcggcagg tggccctgtg ccctgcaccc 1140
gccacttcat tgactgaggt gatatcagtg ccacgtgggg ttcccaatgc cccctcccc 1200
accacttccc caccattcct gccaggggca atgtctgtgt gttttttca atgaacatga 1260
cttctggagt caaggttgtt gggccattcc ccccggttcca ctcaactggga atataaata 1320
cacccacagc gcagaacaca gagccagaga gctggaagtg agagcagatc cctaaccatg 1380
agcaccagcc aaccagggg 1399