BRAC University

Department of Computer Science and Engineering

Final Exam
Full Marks: 15 x 3 = 45
Time: 1 hour 40 minutes
Date: 2nd May 2023

Semester: **Spring 2023**Course Code: **CSE460**Course Title: **VLSI Design**

Set A

Student ID:	Name:	Section:
· 1		

[Answer any **THREE** questions out of **FOUR**. Each question carries equal marks.]

[After the exam, the question paper should be turned in along with the answer script.]

2. (CO3) Consider the following circuit:

The circuit has the following specifications:

- **nMOS specifications**: $W_n = 1 \mu m$, $L_n = 0.18 \mu m$, $\mu_n C_{ox} = 50 \mu A/V^2$, $V_{tn} = 0.4V$ **pMOS specifications**: $W_p = 2 \mu m$, $L_p = 0.18 \mu m$, $\mu_p C_{ox} = 100 \mu A/V^2$, $V_{tp} = -0.4V$
- Other specifications: $I_2 = 1mA$, $I_3 = 0.5mA$, $R_2 = 0.5k\Omega$, $R_3 = 2.5k\Omega$, $V_{dd} = 3V$ $V_{ss} = 0V$

(a)	Calculate the current constants (β_p, β_n) for both of the transistors.	[3]
(b)	Find the voltage across the R_3 resistance.	
(c)	Determine the operating mode of the nMOS transistor.	[5]
(d)	Identify the value of R_1 in order to keep the pMOS transistor in the "linear"	[4]
	operating mode.	

Observe the figure and the truth table and answer the following questions. Assume the effective rise and fall resistances of all the components are equal to that of a unit inverter (R) in the worst case.

Figure: Two-input CMOS gate 'X' is driving another 'X' gate and an inverter.

Truth Table for node N В A \mathbf{N}

(a)	Identify gate 'X'.	
(b) Calculate the capacitances of nodes A, B, and M with the necessary figures.		[6]
(c)	Calculate 'propagation delay rise (t _{pdr})' at node M.	[4]
	'N and O nodes have identical outputs but the N node is faster' - do you agree	[3]
	with the statement? Explain qualitatively.	

