

Serverless Machine Learning on Modern Hardware

IBM Research

#Res6SAIS

Serverless Computing

- No need to setup/manage a cluster
- Automatic, dynamic and finegrained scaling
- Sub-second billing
- AWS Lambda, Google Cloud Functions, Azure Functions, Databricks Serverless

Challenge: Performance

Example: Sorting 100GB

Challenge: Performance Example: Serverless cluster Sorting 100GB with autoscaling min workers: 1 64 worker max workers: 8 cores standard cluster no autoscaling 300 8 workers 250 200 spark cluster 150 **HPC** cluster n-premise 100 100Gb/s network 50 **RDMA** AWS Lambda Spark Serverless Spark Cloud Spark Cluster Spark HPC Increasing flexibility

Increasing performance

Challenge: Performance (2)

- Scheduler: when to best add/remove resources?
- Container startup: may have to dynamically spin up containers per function
- **Storage:** input data needs to be fetched from remote storage (e.g., S3)
 - As opposed to compute-local storage, e.g., HDFS
- Data sharing: intermediate needs to be temporarily stored on remote storage (S3, Redis)
 - Affects operations like shuffle, broadcast, etc.,

Challenge: Performance (2)

- Scheduler: when to best add/remove resources?
- Container startup: may have to dynamically spin up containers per function
- Storage: input data needs to be fetched from remote storage (e.g., S3)
 - As opposed to compute-local storage, e.g., HDFS
- Data sharing: intermediate needs to be temporarily stored on remote storage (S3, Redis)
 - Affects operations like shuffle, broadcast, etc.,

Example: MapReduce (Cluster)

Serverless MapReduce

data is

I/O Overhead

Example: Sorting 100GB

Example: SQL, Query 77 / TPC-DS benchmark

Example: SQL, Query 77 / TPC-DS benchmark

Example: Iterative ML (e.g., linear regression) could be co-located with worker nodes PS W W *) fetch model params *) compute *) update model *) fetch model params *) compute *) update model

Example: Iterative ML (e.g., linear regression) could be co-located with worker nodes PS W W *) read training data *) fetch model params *) compute *) update model *) use cached data *) fetch model params *) compute *) update model

Can we...

- ..use Spark to run such workloads in a serverless fashion?
 - Dynamic scaling of compute nodes as jobs are running
 - No cluster configuration
 - No startup time
- ..reduce the performance overheads to a minimum?

Scheduling:

- Use serverless framework to schedule executors
- Use serverless framework to schedule tasks
- Enable Spark to dynamically scale up and down executors

Intermediate data:

- Executors cooperate with scheduler to flush data remotely
- Consequently store all intermediate state remotely

Scheduling:

High startup Latency!

- Use serverless framework to schedule executors
- Use serverless framework to schedule tasks
- Enable Spark to dynamically scale up and down executors

Intermediate data:

- Executors cooperate with scheduler to flush data remotely
- Consequently store all intermediate state remotely

Scheduling:

- Use serverless framework to schedule executors
- Use serverless framework to schedule tasks
- Enable Spark to dynamically scale up and down executors

Intermediate data:

- Executors cooperate with scheduler to flush data remotely
- Consequently store all intermediate state remotely

Scheduling:

- Use serverless framework to schedule executors
- Use serverless framework to schedule tasks
- Enable Spark to dynamically scale up and down executors

Intermediate data:

- Executors cooperate with scheduler to flush data remotely
- Consequently store all intermediate state remotely

Scheduling:

- Use serverless framework to schedule executors
- Use serverless framework to schedule tasks
- Enable Spark to dynamically scale up and down executors

Intermediate data:

Complex!

- Executors cooperate with scheduler to flush data remotely
- Consequently store all intermediate state remotely

Scheduling:

Use serverless framework to schedule executors

Use serverless framework to schedule tasks

- Enable Spark to dynamically scale up and down executors

• Intermediate data:

Complex!

- Executors cooperate with scheduler to flush data remotely
- Consequently store all intermediate state remotely

High startup Latency!

Example using ML and SQL

What about Performance?

Workloads:

- Deep learning (digit recognition) using Spark/Tensorflow, MNIST data set
- SQL: TPC-DS

Clusters:

- 8 node cluster, 10Gb/s Ethernet
- 8 node cluster, 100Gb/s RoCE

Software

Spark2.3, Tensorflow 1.2

Conclusion

- Offering serverless to a wide range of workloads is challenging
 - Requires maintenance of state
 - Requires efficient decoupling of storage and compute
- Efficient scheduling and fast remote storage enable Spark to run in a serverless fashion

_

Backup

Workloads and Frameworks

	Microservices	Workflows	MapReduce	SQL	ML
AWS λ, Google CF, Azure F					
AWS λ + AWS StepFunction					
PyWren					
Databricks Serverless					

Serverless frameworks not designed to run arbitrary workloads

