Homework for section#5A (approximate due date Sept 14th, 2020)

1-Arithmetic in extended Galois field with $\textbf{\textit{GF}}_{2^8}$; $\textbf{\textit{P}}_{(x)}$ = x^8 + x^4 + x^3 + x + 1

Compute the following elements:

1/21; 1/9f; 1/ab; 1/cd

1/21 = 6e

1/9f = 9a

1/ab = 4a

1/cd = fc

2-Arithmetic in extended Galois Field with \textit{GF}_{2^3} ; $\textit{P}_{(x)}$ = x^3 + x + 1

Represented by polynomials: $\boldsymbol{A}_{(x)} = \boldsymbol{a}_2 x^2 + \boldsymbol{a}_1 x + \boldsymbol{a}_0$

Elements: (0, 1, x, x + 1, x^2 , $x^2 + 1$, $x^2 + x$, $x^2 + x + 1$)

Find the 8 inverses:

Multiplication Table

	000 (0)	001 (1)	010 (x)	011 (x+1)	100 (x ²)	101 (x ² +1)	110 (x ² +x)	111 (x^2+x+1)
000 (0)	0	0	0	0	0	0	0	0
001 (1)	0	1	x	x + 1	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
010 (x)	0	х	<i>x</i> ²	$x^2 + x$	<i>x</i> + 1	1	$x^2 + x + 1$	$x^2 + x$
011 (x+1)	0	x + 1	$x^2 + x$	$x^2 + 1$	$x^2 + x + 1$	χ^2	1	x
100 (x ²)	0	χ^2	<i>x</i> + 1	$x^2 + x + 1$	$x^2 + x$	х	$x^2 + x$	1
101 (x ² +1)	0	$x^2 + 1$	1	<i>x</i> ²	х	$x^2 + x + 1$	x + 1	$x^2 + x$
110 (x^2+x)	0	$x^2 + x$	$x^2 + x + 1$	1	$x^2 + 1$	x + 1	х	x^2
111 (x^2+x+1)	0	$x^2 + x + 1$	$x^2 + 1$	x	1	$x^2 + x$	χ^2	x + 1

Inverse Table

$A_{(x)}$	$A^{-1}(x)$
1	1
х	x ² +1
x+1	x^2+x
x^2	$x^2 + x + 1$
x ² +1	x
x^2+x	x+1
x^2+x+1	x^2

Compute the following:

$$x^2+1 \oplus x^2+x=?$$

=
$$(x^2+1)*(x+1)$$
 [Inverse of x^2+x is $x+1$]

$$= x^3 + x^2 + x + 1$$

Now,
$$x^3 + x^2 + x + 1 \mod (x^3 + x + 1)$$

$$x^3 + x^2 + x + 1 = (x^3 + x + 1) * 1 + x^2$$

Remainder = x^2

$$x^3 + x^2 + x + 1 \equiv x^2 \mod (x^3 + x + 1)$$

$$x^2+1 \oplus x^2+x = 101 \oplus 110 = 100$$

$$x^2 + x \oplus x^2 + 1 = ?$$

$$(x^2+x)*(x)$$
 [Inverse of x^2+1 is x]

$$= x^3 + x^2$$

Now,
$$x^3 + x^2 \mod (x^3 + x + 1)$$

$$x^3 + x^2 = (x^3 + x + 1) * 1 + (x^2 - x - 1)$$

Remainder ($x^2 - x - 1$)

$$x^3 + x^2 \equiv (x^2 - x - 1) \mod (x^3 + x + 1)$$

$$\equiv$$
 (x² + x + 1) mod (x³ + x+1)

$$x^2 + x \oplus x^2 + 1 = 110 \oplus 101 = 001$$