

Introduction to Deep Learning (I2DL)

Exercise 6: Hyperparameter Tuning

I2DL: Prof. Niessner, Dr. Dai

Recap: Pillars of Deep Learning

Goal of exercise 6

- Use existing implementations
 - Reworked implementations of previous exercises
 - We will provide you with additional implementations of all required tools to run sample methods proposed in the lecture

 ONE DOES NOT SIMPLY
- Learn about neural network debugging strategies and hyperparameter search

Previously: Dataset

```
class ImageFolderDataset(Dataset):
    """CTFAR-10 dataset class"""
    def init (self, transform=None, mode='train',
        limit files=None,
        split={'train': 0.6, 'val': 0.2, 'test': 0.2},
        *args, **kwargs): ....
   @staticmethod
   def find classes(directory): ...
   def select split(self, images, labels, mode): ...
    def make dataset(self, directory, class to idx, mode): ••
   def len (self): ...
   @staticmethod
   def load image as numpy(image path): •••
    def getitem (self, index): •••
```

```
# Create a train, validation and test dataset.
datasets = {}
for mode in ['train', 'val', 'test']:
    crt_dataset = ImageFolderDataset(
        mode=mode,
        root=cifar_root,
        download_url=download_url,
        transform=compose_transform,
        split={'train': 0.6, 'val': 0.2, 'test': 0.2}
)
    datasets[mode] = crt_dataset
```

Previously: Data Loader

```
class DataLoader:
   Dataloader Class
   Defines an iterable batch-sampler over a given dataset
   def init (self,
       dataset,
       batch size=1,
       shuffle=False,
       drop last=False): ....
   def iter (self): ....
   def len (self): ...
```

```
# Create a dataloader for each split.
dataloaders = {}
for mode in ['train', 'val', 'test']:
    crt_dataloader = DataLoader(
        dataset=datasets[mode],
        batch_size=256,
        shuffle=True,
        drop_last=True,
)
    dataloaders[mode] = crt_dataloader
```

Previously: Solver

```
class Solver(object):
   A Solver encapsulates all the logic necessary for training classification
   or regression models.
   The Solver performs gradient descent using the given learning rate.
   def init (self, model, train dataloader, val dataloader,
        loss func=CrossEntropyFromLogits(), learning rate=le-3,
       optimizer=Adam, verbose=True, print every=1,
       lr decay = 1.0, **kwarqs): ...
   def reset(self): •••
   def step(self, X, y, validation=False): ...
   def train(self, epochs=100, patience = None): ...
   def get dataset accuracy(self, loader): ...
   def update best loss(self, val loss, train loss): ...
```

```
solver = Solver(model.
                dataloaders['train'].
                dataloaders['val'],
                learning rate=0.001,
                loss func=MSE(),
                optimizer=SGD)
solver.train(epochs=epochs)
```

Previously: Classification Network

```
class ClassificationNet(Network):
   A fully-connected classification neural network with configurable
    activation function, number of layers, number of classes, hidden size and
    regularization strength.
   def init (self,
        activation=Sigmoid(), num layer=2,
        input size=3 * 32 * 32, hidden size=100,
        std=le-3, num classes=10, reg=0, **kwargs): ...
   def forward(self, X): ...
   def backward(self, dy): •••
   def save model(self): •••
   def get dataset prediction(self, loader): ...
```

Submission Goal: Cifar10 Classification

Previously: Binary Crossentropy

$$BCE(\hat{y}, y) = \frac{1}{N} \sum_{i=1}^{N} \left[-y_i \log(\hat{y}_i) - (1 - y_i) \log(1 - \hat{y}_i) \right]$$

Where

- N is the number of samples
- \hat{y}_i is the network's prediction for sample i
- y_i is the ground truth label (0 or 1)

New: Multiclass Crossentropy

$$BCE(\hat{y}, y) = \frac{1}{N} \sum_{i=1}^{N} \sum_{k=1}^{C} [-y_{ik} \log(\hat{y}_{ik})]$$

Where.

We implemented this for you! More on this topic in the next lecture. • N is the number of samples

- \hat{y}_{ik} is the network's predicted probability for the kth class when given the sample
- y_{ik} is the ground truth label which is either 1 if the ith sample is of class k or zero otherwise

Basic Recipe for Machine Learning

Split your data

Basic Recipe for Machine Learning

Split your data

Basic Recipe for Machine Learning

Credits: A. Ng

How to Start

- Start with single training sample
 - Check if output correct
 - Overfit → train accuracy should be 100% because input just memorized

Increase to handful of samples

- Move from overfitting to more samples
 - At some point, you should see generalization

How to Start

 Overfit a single training sample

Then a few samples

Hyperparameters

- Network architecture (e.g., num layers, #weights)
- Number of iterations
- Learning rate(s) (i.e., solver parameters, decay, etc.)
- Regularization (more later next lecture)
- Batch size

• ...

Hyperparameter Tuning

Source: https://images.deepai.org/glossary-terms/05c646fe1676490aa0b8cab0732a02b2/hyperparams.png

How to find good Hyperparameters?

- Manual Search (trial and error
- Automated Search:
 - Grid Search
 - Random Search

```
from exercise_code.hyperparameter_tuning import grid_search
best_model, results = grid_search(
   dataloaders['train_small'], dataloaders['val_500files'],
   grid_search_spaces = {
     "learning_rate": [1e-2, 1e-3, 1e-4, 1e-5, 1e-6],
     "reg": [1e-4, 1e-5, 1e-6]
   },
   epochs=10, patience=5,
   model_class=ClassificationNet)
```

- Think about how different hyper parameters affect the model
 - E.g. Overfitting? -> Increase Regularization Strength, decrease model Capacity

Optional: Activation Functions

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Leaky ReLU max(0.1x, x)

tanh

tanh(x)

ReLU

 $\max(0, x)$

Maxout

$$\max(w_1^T x + b_1, w_2^T x + b_2)$$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

Submission

- Submission Start: May 28, 2020 12.00
- Submission Deadline: June 03, 2020 23.59
- Your model's accuracy is all that counts!
 - At least 48% to pass the submission
 - There will be a leaderboard of all students!

Leaderboard: Submission 6

Rank	User	Score	Pass
#1	s0270	51.65	V
#2	s0262	42.98	×
#3	s0265	10.35	×

Exercise plan: Recap and Outlook

Exercise 03: Dataset and Dataloader

Exercise 04: Solver and Linear Regression

Exercise 05: Neural Networks

Exercise 06: Hyperparameter Tuning

Numpy (Reinvent the wheel)

Exercise 07: Introduction to Pytorch

Exercise 08: Cifar10 with Pytorch

Pytorch/Tensorboard

Exercise 09: Convolutional Neural Networks

Exercise 10: Semantic Segmentation

Exercise 11: Recurrent Neural Networks

Applications (Hands-off)

Good luck & see you next week