

Ketma-ketlik

Sehrli APIO podshohligida Alisa nomli yosh va g'aroyib talaba istiqomat qiladi. Alisada o'zining matematik bilimlarini sinovchi ajoyib masalalarni yechishga qoniqtirib bo'lmaydigan qiziqishi bor. Bir kuni u kelib chiqishi no'malum bo'lgan uzunligi N ga teng sonlar ketma-ketligiga duch keldi(aniqrog'i $A[0], A[1], \cdots, A[N-1]$), hamda Alisa ketma-ketlik sirlarini o'rganish xohishiga qarshi tura olmadi.

Endi, Alisa o'zinig bir nechta tadqiqotlarini siz bilan ulashmoqchi. Ammo bundan oldin, keling ba'zi bir narsalarni aniqlashtirib olaylik:

- W(l,r,x) ni $\sum\limits_{i=l}^r \mathbb{I}[A[i]=x]$ ga teng deb e'lon qilaylik. Ya'ni W(l,r,x) $A[l]\cdots A[r]$ ketmaketligi ichida x ning uchrashlari soni(x nechta qatnashganligi).
- Bo'sh bo'lmagan butun sonlar ketma-ketligi B[0] B[1] \cdots B[k-1] ning **medianalari** to'plami deb $S(\{B[0],B[1]\cdots B[k-1]\})$ ni e'lon qilaylik. Hamda Alisa buni qadammaqadam hisoblashni quyidagicha amalga oshiradi:
 - o Birinchi navbatda, $B[0], B[1], \ldots, B[k-1]$ elementlarini o'sish tartibida saralab $C[0], C[1], \ldots, C[k-1]$ ketma-ketlikni hosil qiling.
 - $\circ \ \ \text{So'ngra, } S(\{B[0],B[1]\cdots B[k-1]\}) = \{C[\lfloor \frac{k-1}{2}\rfloor],C[\lceil \frac{k-1}{2}\rceil]\} \text{ deb qabul qiling.}$
 - o Hisoblash jarayoni aniqroq tushunishingiz bir nechta misollarni ko'rib chiqamiz:
 - $S(\{6,3,5,4,6,2,3\}) = \{4\}.$
 - $S(\{4,2,3,1\}) = \{2,3\}.$
 - $S(\{5,4,2,4\}) = \{4\}.$

Alisa $\max_{x \in S(l,r)} W(l,r,x)$ ning eng katta qiymatini topishni istaydi, bu yerda $0 \le l \le r \le N-1$. S(l,r) yozuvi $A[l] \cdots A[r]$ ketma-ketligining medianalari to'plamini anglatadi (sal oldinroq tushuntirilgan qoidalar bilan buni $S(\{A[l],\cdots,A[r]\})$ deb qabul qilsa bo'ladi). Garchi, Alisa masalaga javobni topib bo'lgan bo'lsada, uning natijasini tasdiqlash uchun yordam qidiryapti. Shuning uchun Alisa sizdan javobni to'g'ri hisoblovchi dastur yaratishingizni so'rayapti.

Kod yozish detallari

Quyidagi funksiyani e'lon qilishingiz kerak bo'ladi:

int sequence(int N, std::vector<int> A);

- N: A ketma-ketlik uzunligi.
- A: A ketma-ketlikni ifodalovchi uzunligi N ga teng massiv, array of length N.

- ullet Bu funksiya bitta butun son barcha (l,r) juftliklar orasidan so'ralgan qyimatning eng kattasini qaytarishi kerak.
- Bu funksiya 1 martagina chaqiriladi.

Namunalar

Namuna 1

Quyidagicha funksiya chaqiruvini ko'rib chiqaylik:

```
sequence(7, {1, 2, 3, 1, 2, 1, 3});
```

Bu funksiya 3 qaytarishi kerak.

Ushbu holatda, $S(0,5) = \{1,2\}$, W(0,5,1) = 3, W(0,5,2) = 2. Demak, (0,5) ning qiymati 3.

Barcha juftliklar orasida (0,5) eng katta qiymatga ega ekanligini tekshirish qiyin emas.

Namuna 2

Quyidagicha funksiya chaqiruvini ko'rib chiqaylik:

```
sequence(9, {1, 1, 2, 3, 4, 3, 2, 1, 1});
```

Bu funksiya 2 qaytarishi kerak.

Namuna 3

Quyidagicha funksiya chaqiruvini ko'rib chiqaylik:

```
sequence(14, {2, 6, 2, 5, 3, 4, 2, 1, 4, 3, 5, 6, 3, 2});
```

Bu funksiya 3 qaytarishi kerak.

Chegaralar

- $1 \le N \le 5 \times 10^5$
- $1 \le A[i] \le N$

Qism masalalar

```
1.(11 points): N \leq 100.
```

2.(17 points): $N \leq 2 \times 10^3$.

3.(7 points): Quyidagi shartlarni qanoatlantiruvchi x mavjudligi kafolatlanadi: $\forall 0 \leq i < x, A[i] \leq A[i+1]$ va $\forall x < i < N, A[i] \leq A[i-1]$.

4.(12 points): $A[i] \leq 3$.

5.(13 points): $W(0,N-1,A[i]) \leq 2$ ($0 \leq i \leq N-1$ bo'lgan barcha i lar uchun)

6.(22 points): $N \leq 8 imes 10^4$.

7.(18 points): Qo'shimcha cheklanishlarsiz.

Namunaviy greyder

Namunaviy greyder ma'lumotlarni quyidagi formatda o'qiydi:

 ${\rm Qator}\ 1{:}\ N$

Qator 2: A[0] A[1] \cdots A[N-1].

Namunaviy greyder natijani quyidagi formatda chiqaradi:

Qator 1: sequence () funksiyasi qaytargan natija.