Unsupervised learning

Supervised learning

Predict target value ("y") given features ("x")

Unsupervised learning

- Understand patterns of data (just "x")
- Useful for many reasons
 - Data mining ("explain")
 - Missing data values ("impute")
 - Representation (feature generation or selection)
 - Density estimation (outlier detection)

One example: clustering

Describe data by discrete "groups" with some characteristics

Clustering News by Search Engines

Q Search for topics, locations & sources

- Top stories
- 🔓 For you
- ☆ Following
- Q Saved searches

- U.S.
- World
- Your local news
- Business
- Technology
- Entertainment
- Sports
- Science
- 🐪 Health

COVID-19

Latest

Local

International

Top news

England takes a big step toward normality with indoor dining, museum openings and some travel.

The New York Times · 5 hours ago

Larry Madowo is live in Nairobi, Kenya, as a global vaccine-sharing initiative falls short

CNN · 2 hours ago

Texas reports zero COVID deaths 2 months after Biden slammed 'Neanderthal thinking'

Fox News · 49 minutes ago 💷

Clustering

Clustering describes data by "groups"

The meaning of "groups" may vary by data!

Examples

Clustering & Data Compression

Clustering is related to vector quantization

- Dictionary of vectors (the cluster centers)
- Each original value represented using a dictionary index
- Each center "claims" a nearby region (Voronoi region)

Machine Learning

Clustering

K-Means Clustering

Agglomerative Clustering

Gaussian Mixtures and EM

A simple clustering algorithm

Iterate between

- Updating the assignment of data to clusters
- Updating the cluster's summarization

Notation:

Data example i has features x_i

Assume K clusters, e.g. K=3

Each cluster c "described" by a center μ_c

Each cluster will "claim" a set of nearby points

A simple clustering algorithm

Iterate between

- Updating the assignment of data to clusters (z-step)
- Updating the cluster's summarization (μ -step)

Notation:

- Data example i has features x_i
- Assume K clusters
- Each cluster c "described" by a center μ_c
- Each cluster will "claim" a set of nearby points
- "Assignment" of ith example: z_i ε 1..Κ

Iterate until convergence:

(A) For each datum, find the closest cluster

$$z_i = \arg\min_c \|x_i - \mu_c\|^2 \qquad \forall i$$

• (B) Set each cluster to the mean of all assigned data:

$$\forall c, \qquad \mu_c = \frac{1}{m_c} \sum_{i \in S_c} x_i$$

$$S_c = \{i : z_i = c\}, \ m_c = |S_c|$$

Optimizing the cost function:

$$C(\underline{z},\underline{\mu}) = \sum_{i} \|x_i - \mu_{z_i}\|^2$$

Coordinate descent:

Over the cluster assignments (fixed μ):

Only one term in sum depends on $z_{\rm i}$ Minimized by selecting closest μ_c

Q: does this procedure converge?
hint: monotonicity and boundedness...
A: Yes!:

- 1. the cost function is bounded by 0
- 2. every update lowers the cost

Over the cluster centers (fixed z):

Cluster c only depends on x_i with z_i =c Minimized by selecting the mean

Sensitivity to Initialization

Multiple local optima, depending on initialization

Try different (randomized) initializations

Can use cost C to decide which we prefer

Initialization methods

Random

- Usually, choose random data index
- Ensures centers are near some data
- Issue: may choose nearby points

Initialization methods

Random

- Usually, choose random data index
- Ensures centers are near some data
- Issue: may choose nearby points

Distance-based

- Start with one random data point
- Find the point farthest from the clusters chosen so far
- Issue: may choose outliers

Initialization methods

Random

- Usually, choose random data index
- Ensures centers are near some data
- Issue: may choose nearby points

Distance-based

- Start with one random data point
- Find the point farthest from the clusters chosen so far ___
- Issue: may choose outliers

Random + distance ("k-means++")

- Choose next points "far but randomly"
- $p(x) \propto \text{squared distance from } x \text{ to current centers}$
- Likely to put a cluster far away, in a region with lots of data

Out-of-sample points

Often want to use clustering on new data

Easy for k-means: choose nearest cluster center

```
# perform clustering
Z , mu , score = kmeans(X, K);

# cluster id = nearest center
L = knnClassify(mu, range(K), 1);

# assign in- or out-of-sample points
Z = L.predict(X);
```


Choosing Number of Clusters

With cost function

$$C(\underline{z},\underline{\mu}) = \sum_{i} \|x_i - \mu_{z_i}\|^2$$

what is the optimal value of k?

Cost always decreases with k!

A model complexity issue...

Choosing Number of Clusters

With cost function
$$C(\underline{z},\underline{\mu}) = \sum_i \|x_i - \mu_{z_i}\|^2$$

what is the optimal value of k?

Cost always decreases with k!

A model complexity issue...

One solution is to penalize for complexity

- Add penalty: Total = Error + Complexity
- Now more clusters can increase cost, if they don't help "enough"

More precise version: see e.g. "X-means" (Pelleg & Moore 2000)

Summary

K-Means clustering

Clusters described as locations ("centers") in feature space

Procedure

- Initialize cluster centers
- Iterate: assign each data point to its closest cluster center
- : move cluster centers to minimize mean squared error

Properties

- Coordinate descent on MSE criterion
- Prone to local optima; initialization important
- Out-of-sample data

Choosing the # of clusters, K

Model selection problem; penalize for complexity (BIC, etc.)

Machine Learning

Clustering

K-Means Clustering

Agglomerative Clustering

Gaussian Mixtures and EM

Hierarchical Clustering Example

Hierarchical Agglomerative Clustering

Initially, every datum is a cluster

Data:

- A simple clustering algorithm
- Define a distance (or dissimilarity) between clusters (we'll return to this)
- Initialize: every example is a cluster
- Iterate:
 - Compute distances between all clusters (store for efficiency)
 - Merge two closest clusters
- Save both clustering and sequence of cluster operations
- "Dendrogram"

Algorithmic Complexity: O(m² log m) +

Iteration 1

Builds up a sequence of clusters ("hierarchical")

Data:

Dendrogram:

Height of the join indicates dissimilarity

Algorithmic Complexity: $O(m^2 \log m) + O(m \log m) +$

Iteration 2

Builds up a sequence of clusters ("hierarchical")

Data:

Dendrogram:

Algorithmic Complexity: $O(m^2 \log m) + 2*O(m \log m) +$

Iteration 3

Builds up a sequence of clusters ("hierarchical")

Data:

Dendrogram:

Height of the join indicates dissimilarity

Algorithmic Complexity: $O(m^2 \log m) + 3*O(m \log m) +$

Iteration m-3

Builds up a sequence of clusters ("hierarchical")

Data:

Dendrogram:

In mltools: "agglomerative"

Algorithmic Complexity: $O(m^2 \log m) + (m-3)*O(m \log m) +$

Iteration m-2

Builds up a sequence of clusters ("hierarchical")

Data:

In mltools: "agglomerative"

Algorithmic Complexity: $O(m^2 \log m) + (m-2)*O(m \log m) +$

Iteration m-1

Builds up a sequence of clusters ("hierarchical")

Data:

In mltools: "agglomerative"

Algorithmic Complexity: $O(m^2 \log m) + (m-1)*O(m \log m) = O(m^2 \log m)$

From dendrogram to clusters

Given the sequence, can select a number of clusters or a dissimilarity threshold:

Algorithmic Complexity: $O(m^2 \log m) + (m-1)*O(m \log m) = O(m^2 \log m)$

Cluster distances

$$D_{\min}(C_i, C_j) = \min_{x \in C_i, \ y \in C_j} ||x - y||^2$$

$$D_{\max}(C_i, C_j) = \max_{x \in C_i, y \in C_j} ||x - y||^2$$

$$D_{\text{avg}}(C_i, C_j) = \frac{1}{|C_i||C_j|} \sum_{x \in C_i, y \in C_j} ||x - y||^2$$

$$D_{\text{means}}(C_i, C_j) = \|\mu_i - \mu_j\|^2$$

Constant time (WHY?): $D(A,C) \rightarrow D(A+B,C)$

produces minimal spanning tree.

avoids elongated clusters.

Cluster distances

Example: microarray expression

Measure gene expression

Various experimental conditions

- Disease v. normal
- Time
- Patient identities

Explore similarities

- Which genes are similar to which?
- Which patients are similar?

Cluster on both genes and conditions

Summary

Agglomerative clustering

- Choose a cluster distance / dissimilarity scoring method
- Successively merge closest pair of clusters
- "Dendrogram" shows sequence of merges & distances
- Complexity: O(m² log m)

Agglomerative clusters depend critically on dissimilarity

Choice determines characteristics of "found" clusters

"Clustergram" for understanding data matrix

- Build clusters on rows (data) and columns (features)
- Reorder data & features to expose behavior across groups