Universidad del Valle de Guatemala

Departamento de Matemática Licenciatura en Matemática Aplicada

Estudiante: Rudik Roberto Rompich

Correo: rom19857@uvg.edu.gt

Carné: 19857

MM2035 - Álgebra Moderna - Catedrático: Ricardo Barrientos 1 de diciembre de 2022

Tarea 24

Problemas 1, 2, 3, 4, 5, 6, 8, 12 y 17, sección 5.6

Problema 1 (Problema 1). If K is a field and S a set of automorphisms of K, prove that the fixed field of S and that of \bar{S} (the subgroup of the group of all automorphisms of K generated by S) are identical.

Demostración. Sea el campo fijado de S definido como $K_1 = \{k \in K : \sigma(k) = k, \forall \sigma \in S\}$ y el campo fijado de \overline{S} definido como $K_2 = \{k \in K : \sigma(k) = k, \forall \sigma \in \overline{S}\}$. A probar: $K_1 = K_2$. Entonces,

- (⊇) Sea $z \in K_2 \implies \sigma(z) = z, \forall z \in \overline{S} \implies \text{como } \overline{S} \text{ es el subgrupo de todos los automorfismos de } K \text{ generados por } S \implies \sigma(z) = z, \forall \sigma \in S \implies z \in K_1. \text{ Por lo tanto, } K_1 \supseteq K_2.$
- (\subseteq) Sea $z \in K_1 \implies \sigma(z) = z, \forall z \in S$. Por otra parte, como \overline{S} está generado por S, un elemento de \overline{S} puede ser escrito como la multiplicación de elementos de S, sea $\delta \in \overline{S} \implies \delta = \sigma_1 \sigma_2 \sigma_3 \cdots \sigma_n$, evaluando en $z, \delta(z) = \sigma_1 \sigma_2 \sigma_3 \cdots \sigma_n(z) = z$ debido a que ya sabíamos que $\sigma(z) = z, \forall \sigma \in S \implies z \in K_2$. Por lo tanto, $K_1 \subseteq K_2$.

Por lo tanto, $K_1 = K_2$.

Problema 2 (Problema 2). Prove Lemma 5.6.2.

El lema 5.6.2 es el lema 5.8 demostrado en clase, el cual dice:

Si F es un campo y K es una extensión de F, entonces, G(K,F) es un subgrupo de $\mathbb{A}(K)$.

Demostración. Si $\sigma_1, \sigma_2 \in G(K, F) \implies \text{si } \alpha \in F, \sigma_1\sigma_2(\alpha) = \sigma_2(\sigma_1(\alpha)) \underset{\sigma_1 \in G(K, F)}{=} = \sigma_2(\alpha) \underset{\sigma_2 \in G(K, F)}{=} \alpha \implies \sigma_1\sigma_2 \in G(K, F).$ Si $\sigma \in G(K, F)$ y $\alpha \in F \implies \sigma(\alpha) = \alpha, \forall \alpha \in F \implies \sigma^{-1}(\alpha) = \sigma^{-1}(\sigma(\alpha)) = \sigma\sigma^{-1}(\alpha) = I_k(\alpha) = \alpha \implies \sigma^{-1} \in G(K, F).$ Por el lema 2.3, G(K, F) es subgrupo de $\mathbb{A}(K)$.

Problema 3 (Problema 3). Using the Eisenstein criterion, prove that $x^4 + x^3 + x^2 + x + 1$ is irreducible over the field of rational numbers.

Demostración. A probar: $f(x) = x^4 + x^3 + x^2 + x + 1$ es irreducible sobre los racionales. En una tarea previa, se había demostrado que f(x) es irreducible si y solo si f(x+1) también es irreducible. Entonces,

$$f(x+1) = (x+1)^4 + (x+1)^3 + (x+1)^2 + (x+1) + 1$$

$$= (x+1)^2(x+1)^2 + (x+1)^2(x+1) + (x+1)^2 + (x+1) + 1$$

$$= (x+1)^2((x+1)^2 + (x+1) + 1) + (x+1) + 1$$

$$= (x^2 + 2x + 1)(x^2 + 2x + 1 + x + 1 + 1) + (x+1) + 1$$

$$= (x^2 + 2x + 1)(x^2 + 3x + 3) + (x+1) + 1$$

$$= x^4 + 3x^3 + 3x^2 + 2x^3 + 6x^2 + 6x + x^2 + 3x + 3 + (x+1) + 1$$

$$= x^4 + 5x^3 + 10x^2 + 10x + 5$$

Entonces, aplicando el criterio de Eisenstein para el primo p = 5, $p \not| 1$ pero sí es divisor de los demás coeficientes, entonces se cumple que f(x) es irreducible.

Problema 4 (Problema 4). In Example 5.6.3, prove that each mapping σ_i defined is an automorphism of $\mathbb{Q}(\omega)$.

Demostración. Este ejemplo se resolvió en clase, en donde el propósito era encontrar $G(\mathbb{Q}(e^{2\pi i/5}), \mathbb{Q})$. Se tiene que $\omega = e^{2\pi i/5}$ son raíces de $f(x) = x^4 + x^3 + x^2 + x + 1$ y que es irreducible por el **Problema 3** en $\mathbb{Q} \implies [\mathbb{Q}(\omega) : \mathbb{Q}] = 4 \implies \mathbb{Q}(\omega) = \{\alpha_0 + \alpha_1 \omega + \alpha_3 \omega^2 + \alpha_3 \omega^2 \quad \alpha_0, \alpha_1, \alpha_3, \alpha_3 \in \mathbb{Q}\}$. Si $\sigma \in G(\mathbb{Q}(\omega), \mathbb{Q}) \Rightarrow \sigma(\omega) \neq 1$ y $1 = \sigma(1) = \sigma(\omega^5) = \sigma(\omega)^5$. Sean $\sigma_2(\omega) = \omega^2, \sigma_3(\omega) = \omega^3, \sigma_4(\omega) = \omega^4$, entonces:

$$\sigma_{i} \left(\alpha_{0} + \alpha_{1}\omega + \alpha_{2}\omega^{2} + \alpha_{3}\omega^{3} \right) = \sigma_{i} \left(\alpha_{0} \right) + \sigma_{i} \left(\alpha_{1} \right) \sigma_{i}(\omega) + \sigma_{i} \left(\alpha_{2} \right) \sigma_{i} \left(\omega^{2} \right) + \sigma_{i} \left(\alpha_{3} \right) \sigma_{i} \left(\omega^{3} \right)$$

$$= \alpha_{0} + \alpha_{1}\omega^{2} + \alpha_{2} \left(\sigma_{i}(\omega) \right)^{2} + \alpha_{3} \left(\sigma_{i}(\omega) \right)^{3}$$

$$= \alpha_{0} + \alpha_{1}\omega^{i} + \alpha_{2}(\omega^{i})^{2} + \alpha_{3}(\omega^{i})^{3}$$

De esto, se obtenía lo siguiente:

• i = 1:

$$\sigma_1 \left(\alpha_0 + \alpha_1 \omega + \alpha_2 \omega^2 + \alpha_3 \omega^3 \right) = \alpha_0 + \alpha_1 \omega^1 + \alpha_2 (\omega)^2 + \alpha_3 (\omega)^3$$

Entonces σ_1 es un automorfismo de $\mathbb{Q}(\omega)$.

i = 2:

$$\sigma_2 \left(\alpha_0 + \alpha_1 \omega + \alpha_2 \omega^2 + \alpha_3 \omega^3 \right) = \alpha_0 + \alpha_3 \omega + \alpha_1 \omega^2 + \alpha_2 \omega^4$$

$$= \alpha_0 + \alpha_3 \omega + \alpha_1 \omega^2 + \alpha_2 (-\omega^3 - \omega^2 - \omega - 1)$$

$$= (\alpha_0 - \alpha_2) + (\alpha_3 - \alpha_2) \omega + (\alpha_1 - \alpha_2) \omega^2 - \alpha_2 \omega^3$$

En el problema 4, se concluye que $\alpha_1 = \alpha_2 = \alpha_3 = 0$, lo que nos permite concluir:

$$= \alpha_0 + \alpha_1 \omega + \alpha_2 \omega^2 + \alpha_3 \omega^3$$

Entonces σ_1 es un automorfismo de $\mathbb{Q}(\omega)$.

i = 3:

$$\sigma_3 \left(\alpha_0 + \alpha_1 \omega + \alpha_2 \omega^2 + \alpha_3 \omega^3 \right) = \alpha_0 + \alpha_1 \omega^3 + \alpha_2 \omega + \alpha_3 (-\omega^3 - \omega^2 - \omega - 1)$$
$$= (\alpha_0 - \alpha_3) + (\alpha_2 - \alpha_3)\omega - \alpha_3 \omega^2 + (\alpha_1 - \alpha_3)\omega^3$$

En el problema 4, se concluye que $\alpha_1 = \alpha_2 = \alpha_3 = 0$, lo que nos permite concluir:

$$= \alpha_0 + \alpha_1 \omega + \alpha_2 \omega^2 + \alpha_3 \omega^3$$

Entonces σ_1 es un automorfismo de $\mathbb{Q}(\omega)$.

i = 4:

$$\sigma_4 \left(\alpha_0 + \alpha_1 \omega + \alpha_2 \omega^2 + \alpha_3 \omega^3 \right) = \alpha_0 + \alpha_1 (-\omega^3 - \omega^2 - \omega - 1) + \alpha_2 \omega^3 + \alpha_3 \omega^2$$
$$= (\alpha_2 - \alpha_1) - \alpha_1 \omega + (\alpha_3 - \alpha_1) \omega^2 + (\alpha_2 - \alpha_1) \omega^3$$

En el problema 4, se concluye que $\alpha_1 = \alpha_2 = \alpha_3 = 0$, lo que nos permite concluir:

$$= \alpha_0 + \alpha_1 \omega + \alpha_2 \omega^2 + \alpha_3 \omega^3$$

Entonces σ_1 es un automorfismo de $\mathbb{Q}(\omega)$.

Problema 5 (Problema 5). In Example 5.6.3, prove that the fixed field of $\mathbb{Q}(\omega)$ under $\sigma_1, \sigma_2, \sigma_3, \sigma_4$ is precisely \mathbb{Q} .

Demostración. Continuando con la deducción del Problema 4, se tiene:

$$\begin{split} \sigma_2^2(\omega) &= \sigma_2(\sigma_2(\omega)) = \sigma_2(\omega^2) = \omega^4 = \sigma_4(\omega) \implies \sigma_2^2 = \sigma_4 \\ \sigma_2^3(\omega) &= \sigma_2(\sigma_2^2(\omega)) = \sigma_2(\sigma_4(\omega)) = \sigma_2(\omega^4) = \omega^3 = \omega^2 = \sigma_3(\omega) \implies \sigma_2^3 = \sigma_3 \\ \sigma_2^4(\omega) &= \sigma_2^2(\sigma_2^2(\omega)) = \sigma_4(\sigma_4(\omega)) = \sigma_3(\omega^4) = \omega^1 6 = \omega = \sigma_1(\omega) \implies \sigma_2^4 = \sigma_1 \end{split}$$

Entonces, $G(\mathbb{Q}(\omega), \mathbb{Q}) = (\sigma_2)$ y $o(G(\mathbb{Q}(\omega), \mathbb{Q})) = 4$. Si $\alpha_0 + \alpha_1 \omega + \alpha_2 \omega^2 + \alpha_3 \omega^3$ pertenece al subcampo de \mathbb{Q} fijado por $G(\mathbb{Q}(\omega), \mathbb{Q}) \implies \alpha_0 + \alpha_1 \omega + \alpha_2 \omega^2 + \alpha_3 \omega^3 = (\alpha_0 - \alpha_3) + (\alpha_2 - \alpha_3)\omega = \alpha_3\omega^2 + (\alpha_1 - \alpha_2)\omega^3 = (\omega_0 - \omega_1) - \alpha_1\omega + (\alpha_3 - \alpha_1)\omega^2 + (\alpha_2 - \alpha_1)\omega^3$. Entonces,

$$\alpha_{0} = \alpha_{0} - \alpha_{1} = \alpha_{0} - \alpha_{3} = \alpha_{0} - \alpha_{1}$$

$$\alpha_{1} = \alpha_{3} - \alpha_{2} = \alpha_{2} - \alpha_{3} = -\alpha_{1}$$

$$\alpha_{2} = \alpha_{1} - \alpha_{2} = -\alpha_{3} = \alpha_{3} - \alpha_{1}$$

$$\alpha_{3} = -\alpha_{2} = \alpha_{1} - \alpha_{3} = \alpha_{2} - \alpha_{1}$$

Entonces $\alpha_1 = \alpha_2 = \alpha_3 = 0$. Por lo tanto, el subcampo de $\mathbb{Q}(w)$ fijado por $G(\mathbb{Q}(\omega), \mathbb{Q}) = \mathbb{Q}$

Problema 6 (Problema 6). Prove directly that any automorphism of K must leave every rational number fixed.

Demostración. Sea σ un automorfismo cualquiera de K, en donde debemos demostrar que $\sigma: K \to K \ni \sigma(z) = z, \forall z \in \mathbb{Q}$. Entonces, sea $p \in \mathbb{Z}$ y $q \in \mathbb{Z} - \{0\}$, tal que:

$$\begin{split} \sigma\left(\frac{p}{q}\right) &= \sigma(p) \cdot \sigma\left(\frac{1}{q}\right) \\ &= \frac{\sigma(p) \cdot \sigma(1)}{\sigma(q)} \\ &= \frac{p \cdot 1}{q} \\ &= \frac{p}{q} \in \mathbb{Q} \end{split}$$

Problema 7 (Problema 8). Express the following as polynomials in the elementary symmetric functions in x_1, x_2, x_3 :

Para n = 3, las funciones elementales simétricas son:

$$e_1(x_1, x_2, x_3) = x_1 + x_2 + x_3$$

$$\bullet e_2(x_1, x_2, x_3) = x_1 x_2 + x_1 x_3 + x_2 x_3$$

$$e_3(x_1, x_2, x_3) = x_1 x_2 x_3$$

1.
$$x_1^2 + x_2^2 + x_3^2$$
.

Solución. Ya que cada una de las variables está al cuadrado, elevar al cuadrado e_1 sería la única opción para obtener las variables al cuadrado:

$$(e_1)^2 = (x_1 + x_2 + x_3)^2$$

$$= x_1^2 + 2x_2x_1 + 2x_3x_1 + x_2^2 + x_3^2 + 2x_2x_3$$

$$= x_1^2 + x_2^2 + x_3^2 + 2(x_2x_1 + x_3x_1 + x_2x_3)$$

$$= x_1^2 + x_2^2 + x_3^2 + 2(e_2)$$

Por lo tanto, al despejar

$$x_1^2 + x_2^2 + x_3^2 = (e_1)^2 - 2(e_2)$$

2. $x_1^3 + x_2^3 + x_3^3$.

Solución. Mismo procedimiento que el inciso anterior,

$$(e_{1})^{3} = (x_{1} + x_{2} + x_{3})^{3}$$

$$= (x_{1} + x_{2} + x_{3})(x_{1} + x_{2} + x_{3})^{2}$$

$$= (x_{1} + x_{2} + x_{3})(x_{1}^{2} + 2x_{2}x_{1} + 2x_{3}x_{1} + x_{2}^{2} + x_{3}^{2} + 2x_{2}x_{3})$$

$$= x_{1}^{3} + x_{2}^{3} + x_{3}^{3} + 3x_{2}x_{1}^{2} + 3x_{3}x_{1}^{2} + 3x_{2}^{2}x_{1} + 3x_{2}^{2}x_{1} + 3x_{2}x_{3}^{2} + 3x_{2}^{2}x_{3} + 6x_{2}x_{3}x_{1} + 3x_{2}x_{3}x_{1} - 3x_{2}x_{3}x_{1}$$

$$= x_{1}^{3} + x_{2}^{3} + x_{3}^{3} + 3(x_{2}x_{1}^{2} + x_{3}x_{1}^{2} + x_{2}^{2}x_{1} + x_{3}^{2}x_{1} + x_{2}x_{3}^{2} + x_{2}^{2}x_{3} + x_{2}x_{3}x_{1} + x_{2}x_{3}x_{1} + x_{2}x_{3}x_{1} - 3x_{2}x_{3}x_{1}$$

$$= x_{1}^{3} + x_{2}^{3} + x_{3}^{3} + 3(x_{1}(x_{2}x_{1} + x_{3}x_{1} + x_{2}x_{3}) + x_{2}(x_{2}x_{1} + x_{3}x_{1} + x_{2}x_{3}) + x_{3}(x_{2}x_{1} + x_{3}x_{1} + x_{2}x_{3}) - 3x_{2}x_{3}x_{1}$$

$$= x_{1}^{3} + x_{2}^{3} + x_{3}^{3} + 3(x_{1} + x_{2} + x_{3})(x_{2}x_{1} + x_{3}x_{1} + x_{2}x_{3}) - 3x_{2}x_{3}x_{1}$$

$$= x_{1}^{3} + x_{2}^{3} + x_{3}^{3} + 3(x_{1} + x_{2} + x_{3})(x_{2}x_{1} + x_{3}x_{1} + x_{2}x_{3}) - 3x_{2}x_{3}x_{1}$$

$$= x_{1}^{3} + x_{2}^{3} + x_{3}^{3} + 3(x_{1} + x_{2} + x_{3})(x_{2}x_{1} + x_{3}x_{1} + x_{2}x_{3}) - 3x_{2}x_{3}x_{1}$$

$$= x_{1}^{3} + x_{2}^{3} + x_{3}^{3} + 3(e_{1})(e_{2}) - 3e_{3}$$

Por lo tanto, al despejar,

$$x_1^3 + x_2^3 + x_3^3 = e_1^3 + 3e_3 - 3e_1e_2$$

Problema 8 (Problema 12). If $p(x) = x^n - 1$ prove that the Galois group of p(x) over the field of rational numbers is abelian.

Solución. Si F es un campo que contiene todas las raíces n-ésimas de la unidad, $n \in \mathbb{Z}^+, 1 \in F - \{0\}, K$ el campo de descomposición de $x^n - 1 \in F[x]$, entonces por la parte (ii) del **lema 5.12** usando a = 1, el grupo de Galois de p(x) sobre \mathbb{Q} es abeliano. \square