

Instalaciones Industriales ICAI – Máster en Ingeniería Industrial

Tema 2: Redes Eléctricas en Baja Tensión – Parte 1

María Inmaculada Blázquez Jesús Chapado Alberto Jáñez Ma Teresa Sánchez Álvaro Ortega Manjavacas

Redes Eléctricas en BT Índice

2.1 Principios generales

- 2.2 Cálculo de líneas en corriente continua
- 2.3 Cálculo de líneas en corriente alterna
- 2.4 Cálculo sección mínima de los conductores
- 2.5 Sistemas de conexión del neutro
- 2.6 Conductores de neutro y de protección
- 2.7 Redes de distribución públicas

2.1 – Principios Generales

- CARACTERÍSTICAS DE UNA INSTALACIÓN

Parámetros

- Tensión
- Frecuencia
- N° de fases

Receptores

• Como al principio no tendremos todos los datos, debemos hacer estimaciones basadas en la experiencia.

Funcionamiento

- Seguro
- Fiable Mantenimiento y continuidad del servicio

2.1 – Principios Generales

TIPOS DE CORRIENTE

- Continua (CC/DC)
 - Los electrones se mueven siempre en el mismo sentido, del polo (-) al polo (+)
 - Las tensiones que proporcionan son constantes en el tiempo, con valores típicamente pequeños (1.5V, 4.5V, 9V)

comillas

Redes Eléctricas en BT

2.1 – Principios Generales

TIPOS DE CORRIENTE

Continua (CC/DC)

- Los electrones se mueven siempre en el mismo sentido, del polo (-) al polo (+)
- Las tensiones que proporcionan son constantes en el tiempo, con valores típicamente pequeños (1.5V, 4.5V, 9V)

Alterna (CA/AC)

- Los electrones cambian continuamente su sentido de movimiento y su valor de tensión no se mantiene constante en el tiempo
- Es necesario el uso de alternadores para generarla
- Vivienda estándar: V = 230V; f = 50Hz

2.1 – Principios Generales

- CAÍDA DE TENSIÓN

- o Se define como la **diferencia de potencial** que existe entre los extremos de cualquier conductor
- o Se mide en voltios, pero **se expresa en (%)** de la tensión nominal

CALENTAMIENTO

- o El calentamiento de los conductores varía según la intensidad que atraviesa estos.
- o Producido por el efecto Joule
- Este calor generado provocará un aumento de la temperatura del conductor y aumentará la resistencia.
- o **Temperatura máxima** de conductores:
 - PVC: $T_{max} = 70$ °C; XLPE o EPR: $T_{max} = 90$ °C

2.1 – Principios Generales

VENTAJAS CA vs. CC:

- o El valor de tensión se puede modificar mediante el uso de transformadores
- o Permite el transporte de electricidad a grandes distancias sin sobrecalentamientos

2.2 - Cálculo de Líneas en CC

ICAI ICADE CIH

Ley de Ohm:

o Potencia proporcional a la corriente y a la tensión

$$P = V \cdot I$$

Caída de Tensión

$$\Delta V = \frac{100}{V_N} \cdot 2 \cdot I \cdot R = \frac{100}{V_N} \cdot 2 \cdot I \cdot \left(\rho \cdot \frac{L}{A}\right)$$

Resistividad

	RESISTIV	IDAD											
	ρ ₂₀ ρ ₇₀ ρ ₉₀												
Cu	0,018	0,021	0,023										
Al	0,029	0,034	0,037										

¡¡VARIA CON LA TEMPERATURA DEL CONDUCTOR!!

V = tensión (V)

 $V_N = \text{tensión nominal (V)}$

 $\Delta V = \text{ca\'ida de tensi\'on (\%)}$

P =potencia activa que fluye por el conductor (W)

I = corriente a través del conductor (A)

 $R = \text{resistencia eléctrica del conductor } (\Omega)$

 $\rho = \text{resistividad del conductor } (\Omega \text{ mm}^2/\text{m})$

 $\ell = longitud del conductor (m)$

A = sección transversal del conductor (mm²)

2.2 - Cálculo de Líneas en CC

ICAI ICADE CIHS

Ejemplo 1:

- Tenemos que alimentar con corriente continua unas barreras infrarrojas de seguridad que se encuentran a 100 metros de la fuente de alimentación. Desde la fuente de alimentación partimos con 12V. El consumo de las barreras es de 6 W y hemos previsto que sea alimentado mediante una sección de 1 mm2. Acorde a la ficha técnica del producto la alimentación mínima será mínimo 10,5 V.
- ¿Es necesario aumentar la sección?
- ¿Qué otra opción de diseño tendríamos?

2.2 - Cálculo de Líneas en CC

CAI ICA

CIHS

Solución:

1. Aplicamos la ley de Ohm para el cálculo de la intensidad y obtenemos

$$I = 0.5 A.$$

2. Aplicamos la fórmula de la caída de tensión (tomamos valor correspondiente a 20°C)

$$\Delta V = 2 \cdot R \cdot I = 2 \cdot I \cdot \rho \cdot \frac{L}{S} = 2 \cdot 0.5 \cdot 0.0178 \cdot \frac{100}{1} = 1.72 \text{ V}$$

Por tanto, de los 12 V con los que salimos de la fuente nos llegarán a la barrera $10,28V \Rightarrow \underline{Insuficiente}$ para funcionar

3. Aumentamos la sección:

$$\Delta V = 2 \cdot R \cdot I = 2 \cdot I \cdot \rho \cdot \frac{L}{S} = 2 \cdot 0.5 \cdot 0.0172 \cdot \frac{100}{2.5} = 0.69 V$$

Por tanto, de los 12 V con los que salimos de la fuente nos llegarán a la barrera 11,31V.

La mejor solución es tratar de acercar lo máximo las fuentes de alimentación a los receptores.

2.3 – Cálculo de Líneas en CA

2.3 – Cálculo de Líneas en CA

- OBJETIVO: determinar la <u>sección mínima</u> normalizada de un conductor que cumple simultáneamente una serie de criterios:
 - Térmico (a.k.a. de Calentamiento, de Capacidad de Carga, de Densidad de Corriente)
 - 2. Caída de Tensión
 - 3. Corriente de Cortocircuito
 - 4. Mecánico
 - 5. Económico
- Compromiso entre seguridad (por <u>reglamento</u>) y costes

2.3 – Cálculo de Líneas en CA

A Tener en Cuenta:

Efecto Pelicular o Skin

- La resistencia efectiva o de corriente alterna es mayor que la resistencia óhmica de corriente continua.
- Variación de la resistencia eléctrica de un conductor debido a la variación de la frecuencia de la corriente eléctrica que circula por éste

o Efecto de Inducción

 Dificultad al paso de la corriente de un conductor debido a las variaciones del campo magnético → reactancia de autoinducción

Efecto Capacitivo

• Los conductores de una línea, aislados entre sí y aislados de tierra, son desde el punto de vista eléctrico, equivalentes a las armaduras de un condensador y, cuando están a potenciales distintos, toman una carga eléctrica dependiente de los valores de dichos potenciales entre sí y respecto de tierra.

2.3 - Cálculo de Líneas en CA - Criterio Térmico

- Problema de Transferencia de Energía → Calor
- Conductor a 10°C por encima de máxima admisible → reducción de vida útil a la mitad
- Calor debido a:
 - Pérdidas
 - Efecto Joule $\rightarrow P_{loss} \propto I^2 R$
 - Corrientes parásitas en armaduras (cables aislados)
 - Proximidad a otros conductores
 - Radiación Solar

2.3 – Cálculo de Líneas en CA – Criterio Térmico

■ Ley de Ohm térmica:

$$\dot{Q} = \frac{\Delta\theta}{R_{\theta}}$$

 $\dot{Q}=$ energía calorífica total por unidad de tiempo (W)

 θ_i = temperatura del medio (°C)

 $R_{\theta,i}$ =resistencia térmica del medio (°C/W)

2.3 - Cálculo de Líneas en CA - Criterio Térmico

ICAI

ICADE

CIHS

• Ley de Ohm térmica:

$$\dot{Q} = \frac{\Delta \theta}{R_{\theta}} = \frac{\theta_c - \theta_1}{R_{\theta,1}} = \frac{\theta_1 - \theta_2}{R_{\theta,2}} = \dots = \frac{\theta_n - \theta_a}{R_{\theta,a}}$$

 $\dot{Q}=$ energía calorífica total por unidad de tiempo (W)

 θ_i = temperatura del medio (°C)

 $R_{\theta,i}$ =resistencia térmica del medio (°C/W)

2.3 - Cálculo de Líneas en CA - Criterio Térmico

ICAI

ICADE

CIHS

Ley de Ohm térmica:

$$\dot{Q} = \frac{\Delta\theta}{R_{\theta}} = \frac{\theta_c - \theta_1}{R_{\theta,1}} = \frac{\theta_1 - \theta_2}{R_{\theta,2}} = \dots = \frac{\theta_n - \theta_a}{R_{\theta,a}}$$

$$\Delta\theta = \theta_c - \theta_a = \dot{Q}\left(\sum_{i=1}^n R_{\theta,i} + R_{\theta,a}\right) = \dot{Q}R_{\theta}^{\text{tot}}$$

 $\dot{Q}=$ energía calorífica total por unidad de tiempo (W)

 θ_i = temperatura del medio (°C)

 $R_{\theta,i}$ =resistencia térmica del medio (°C/W)

2.3 – Cálculo de Líneas en CA – Criterio Térmico

CAI ICA

CIHS

• Ley de Ohm térmica:

$$\dot{Q} = \frac{\Delta\theta}{R_{\theta}} = \frac{\theta_c - \theta_1}{R_{\theta,1}} = \frac{\theta_1 - \theta_2}{R_{\theta,2}} = \dots = \frac{\theta_n - \theta_a}{R_{\theta,a}}$$

$$\Delta\theta = \theta_c - \theta_a = \dot{Q}\left(\sum_{i=1}^n R_{\theta,i} + R_{\theta,a}\right) = \dot{Q}R_{\theta}^{\text{tot}}$$

• Efecto Joule:

$$\dot{Q} = R_e I^2 \to \Delta \theta = R_\theta^{\rm tot} R_e I^2$$

 $\dot{Q}=$ energía calorífica total por unidad de tiempo (W)

 θ_i = temperatura del medio (°C)

 $R_{\theta,i}$ =resistencia térmica del medio (°C/W)

 R_e = resistencia eléctrica del conductor (Ω)

I = corriente circulando por el conductor (A)

2.3 - Cálculo de Líneas en CA - Criterio Térmico

CAI ICA

CIHS

• Ley de Ohm térmica:

$$\dot{Q} = \frac{\Delta\theta}{R_{\theta}} = \frac{\theta_c - \theta_1}{R_{\theta,1}} = \frac{\theta_1 - \theta_2}{R_{\theta,2}} = \dots = \frac{\theta_n - \theta_a}{R_{\theta,a}}$$

$$\Delta\theta = \theta_c - \theta_a = \dot{Q}\left(\sum_{i=1}^n R_{\theta,i} + R_{\theta,a}\right) = \dot{Q}R_{\theta}^{\text{tot}}$$

• Efecto Joule:

$$\dot{Q} = R_e I^2 \to \Delta \theta = R_\theta^{\text{tot}} R_e I^2 = R_\theta^{\text{tot}} \left(\rho \frac{\ell}{A_\theta} \right) I^2$$

 $\dot{Q}=$ energía calorífica total por unidad de tiempo (W)

 θ_i = temperatura del medio (°C)

 $R_{\theta,i}$ =resistencia térmica del medio (°C/W)

 R_e = resistencia eléctrica del conductor (Ω)

I = corriente circulando por el conductor (A)

 $\rho = \text{resistividad del conductor } (\Omega \text{ mm}^2/\text{m})$

 $\ell = longitud del conductor (m)$

 A_{θ} = sección transversal del conductor (mm²)

2.3 – Cálculo de Líneas en CA – Criterio Térmico

Ley de Ohm térmica:

$$\dot{Q} = \frac{\Delta\theta}{R_{\theta}} = \frac{\theta_c - \theta_1}{R_{\theta,1}} = \frac{\theta_1 - \theta_2}{R_{\theta,2}} = \dots = \frac{\theta_n - \theta_a}{R_{\theta,a}}$$

$$\Delta\theta = \theta_c - \theta_a = \dot{Q}\left(\sum_{i=1}^n R_{\theta,i} + R_{\theta,a}\right) = \dot{Q}R_{\theta}^{\text{tot}}$$

• Efecto Joule:

Efecto Joule:
$$\dot{Q} = R_e I^2 \to \Delta \theta = R_\theta^{\rm tot} R_e I^2 = R_\theta^{\rm tot} \left(\rho \frac{\ell}{A_\theta} \right) I^2 \to I = \sqrt{\frac{\Delta \theta A_\theta}{\rho \ell R_\theta^{\rm tot}}}$$

energía calorífica total por unidad de tiempo (W)

 θ_i = temperatura del medio (°C)

 $R_{\theta,i}$ =resistencia térmica del medio (°C/W)

 R_{e} = resistencia eléctrica del conductor (Ω)

corriente circulando por el conductor (A)

resistividad del conductor (Ω mm²/m)

longitud del conductor (m)

 A_{θ} = sección transversal del conductor (mm²)

2.3 - Cálculo de Líneas en CA - Criterio Térmico

- Normativa vigente proporciona <u>expresiones más complejas</u> para calcular la corriente máxima admisible que consideran, por ejemplo:
 - o Resistencia térmica del conductor (efecto Joule)
 - o Corrientes parásitas (cables aislados)
 - o Transferencias de calor por conducción, convección y radiación
- El reglamento proporciona <u>tablas</u> que relacionan las corrientes máximas admisibles para varios tipos de conductores en función de la sección transversal, tipo de instalación y aislamiento, número de conductores, etc.
- Si la sección determinada no coincide con ningún valor comercial → sección comercial inmediatamente superior

2.3 – Cálculo de Líneas en CA – Criterio Térmico

ICAI

ICADE

CIHS

TABLA B.52-1 (UNE-HD 60364-5-52: 2014) Métodos de instalación de referencia

UNE 60.364-5-52

				Tabla y	columna	
			Intensida	d admisible p	ara los circuit	os simples
			Aislaı	niento	Aislaı	niento
			P	VC	XLPE	o EPR
Instala	ción de referencia			Número de	conductores	
			2	3	2	3
Local	Conductores aislados en un conducto en una pared térmicamente aislante	A1	Tabla C.52-1 bis columna 4	Tabla C.52-1 bis columna 3	Tabla C.52-1 bis columna 7b	Tabla C.52-1 bis columna 6b
Local	Cable multiconductor en un conducto en una pared térmicamente aislante	A2	Tabla C.52-1 bis columna 3	Tabla C.52-1 bis columna 2	Tabla C.52-1 bis columna 6b	Tabla C.52-1 bis columna 5b
	Conductores aislados en un conducto sobre una pared de madera o mampostería	В1	Tabla C.52-1 bis columna 6a	Tabla C.52-1 bis columna 5a	Tabla C.52-1 bis columna 10b	Tabla C.52-1 bis columna 8b
	Cable multiconductor en un conducto sobre una pared de madera o mampostería	В2	Tabla C.52-1 bis columna 5a	Tabla C.52-1 bis columna 4	Tabla C.52-1 bis columna 8b	Tabla C.52-1 bis columna 7b
3 ⊙	Cables unipolares o multipolares sobre una pared de madera o mampostería	С	Tabla C.52-1 bis columna 8a	Tabla C.52-1 bis columna 6a	Tabla C.52-1 bis columna 11	Tabla C.52-1 bis columna 9b
6	Cable multiconductor en conductos enterrados	D1	Tabla	Tabla	Tabla	Tabla
88	Cables con cubierta unipolares o multipolares directamente en el suelo	D2	C.52-2 bis columna 3	C.52-2 bis columna 4	C.52-2 bis columna 5	C.52-2 bis columna 6

TABLA B.52-1 (UNE-HD 60364-5-52: 2014) Métodos de instalación de referencia

				Tabla y	columna	
			Intensida	d admisible p	ara los circui	tos simples
			Aislaı	miento	Aisla	miento
			P	VC	XLPE	o EPR
Instala	ación de referencia			Número de	conductores	
			2	3	2	3
·	Cable multiconductor al aire libre Distancia al muro no inferior a 0,3 veces el diámetro del cable	E	Tabla C.52-1 bis columna 9a	Tabla C.52-1 bis columna 7 a	Tabla C.52-1 bis columna 12	Tabla C.52-1 bis columna 10b
00 000 000	Cables unipolares en contacto al aire libre Distancia al muro no inferior al diámetro del cable	F	Tabla C.52-1 bis columna 10a	Tabla C.52-1 bis columna 8a	Tabla C.52-1 bis columna 13	Tabla C.52-1 bis columna 11
0 0 0	Cables unipolares espaciados al aire libre Distancia entre ellos como mínimo el diámetro del cable	G			NE-HD 1-5-52	

XLPE: Polletlleno reticulado (90°C) EPR: Etileno-propileno (90°C) PVC: Pollcioruro de vinilo (70°C)

Cobre: $\rho_{20} = 1/56 \ \Omega \text{mm}^2/\text{m}$; Aluminio: $\rho_{20} = 1/35 \ \Omega \text{mm}^2/\text{m}$

Para el cobre y el aluminio: θ = 70°C \rightarrow K $_{\theta}$ = 1,20; θ = 90°C \rightarrow K $_{\theta}$ = 1,28

POTENCIAS NORMALIZADAS DE TRANSFORMADORES (EN kVA):

5, 10, 15, 20, 30, 50, 75, 100, 125, 160, 200, 250, 315, 400, 500, 630, 800, 1000, 1250, 1600, 2000

FACTORES DE MAYORACIÓN Ko: 1,25 para motores y 1,8 para lámparas de descarga

2.3 – Cálculo de Líneas en CA – Criterio Térmico

UNE 60.364-5-52

	- 4	NTE	NS	DA		AX	MA	AD	MIS	IBL	E D	EL	os	CO	ND	JCT	OR	ES	
	étodo stala		N	úme	ero	de d	con	duc	tore	es c	arg	ado	s y	tipo	de	ais	lam	ien	to
,	A1		3PVC	2PVC				3XLPE		2XLPE									
,	A2	3PVC	2PVC			3XLPE		2XLPE											
ı	B1				3PVC		2PVC					3XLPE				2XLPE			
- 1	B2			3PVC	2PVC					3XLPE		2XLPE							
	С						3PVC				2PVC			3XLPE			2XLPE		
	Е								3PVC				2PVC			3XLPE		2XLPE	
	F							7			3PVC				2PVC		3XLPE		2XLPE
Se	cción mm²	2	3	4	5a	5b	6a	6b	7a	7b	8a	8b	9a	9b	10a	10b	11	12	13
	1,5	11	11,5	12,5	13,5	14	14,5	15,5	16	16,5	17	17,5	19	20	20	20	21	23	_
	2,5	15	15,5	17	18	19	20	20	21	22	23	24	26	27	26	28	30	32	-
	4	20	20	22	24	25	26	28	29	30	31	32	34	36	36	38	40	44	-
	6	25	26	29	31	32	34	36	37	39	40	41	44	46	46	49	52	57	-
obe	10	33 45	36 48	40 53	43 59	45 61	46 63	49 66	52 69	54 72	54 73	57 77	60 81	63 85	65 87	68 91	72 97	78 104	_
enterrado)	25	59	63	69	77	80	82	86	87	91	95	100	103	108	110	115	122	135	146
	35	-	-	-	95	100	101	106	109	114	119	124	127	133	137	143	153	168	182
°N)	50	_	_	_	116	121	122	128	133	139	145	151	155	162	167	174	188	204	220
Cobre	70	_	_	_	148	155	155	162	170	178	185	193	199	208	214	223	243	262	282
ပိ	95	-	-	-	180	188	187	196	207	216	224	234	241	252	259	271	298	320	343
	120	_	_	_	207	217	216	226	240	251	260	272	280	293	301	314	350	373	397
	150	_	-	-	-	-	247	259	276	289	299	313	322	337	343	359	401	430	458
	185	-	-	-	-	-	281	294	314	329	341	356	368	385	391	409	460	493	523
	240	_	-	-	_	_	330	345	368	385	401	419	435	455	468	489	545	583	617

	- 11	NTE	NSI	DA	D M	ÁΧΙ	MA	AD	MIS	IBL	E D	ΕL	os	CO	NDI	JCT	OR	ES	
	étodo stala		N	úme	ero	de d	con	duc	tore	es c	arg	ado	s y	tipo	de	ais	lam	ien	to
	A1		3PVC	2PVC				3XLPE		2XLPE									
,	A2	3PVC	2PVC			3XLPE		2XLPE											
	B1				3PVC		2PVC					3XLPE				2XLPE			
	B2			3PVC	2PVC					3XLPE		2XLPE							
	С						3PVC				2PVC			3XLPE			2XLPE		
	E								3PVC				2PVC			3XLPE		2XLPE	
	F									1	3PVC				2PVC		3XLPE		2XLPE
Se	cción mm²	2	3	4	5a	5b	6a	6b	7a	7b	8a	8b	9a	9b	10a	10b	11	12	13
	2,5	11,5	12	13	14	15	16	16,5	17	17,5	18	19	20	20	20	21	23	25	-
	4	15	16	17	19	20	21	22	22	23	24	25	26	28	27	29	31	34	-
	6	20	20	22	24	25	27	29	28	30	31	32	33	35	36	38	40	44	_
9	10	26	27	31	33	35	38	40	40	41	42	44	46	49	50	52	56	60	-
ız	16	35	37	41	46	48	50	52	53	55	57	60	63	66	66	70	76	82	_
(No enterrado)	25	46	49	54	60	63	63	66	67	70	72	75	78	81	84	88	91	98	110
0	35	_	_	_	74	78	78	81	83	87	89	93	97	101	104	109	114	122	136
Z	50	-	-	-	90	94	95	100	101	106	108	113	118	123	127	132	140	149	167
Alumino	70	_	_	_	115	121	121	127	130	136	139	145	151	158	162	170	180	192	215
틸	95	-	-	-	140	146	147	154	159	166	169	177	183	192	197	206	219	233	262
A	120	-	_	_	161	169	171	179	184	192	196	205	213	222	228	239	254	273	306
	150	-	-	-	-	-	196	205	213	222	227	237	246	257	264	276	294	314	353
	185	_	_	_	_	_	222	232	243	254	259	271	281	293	301	315	337	361	406
	240	_	-	-	_	_	261	273	287	300	306	320	332	347	355	372	399	427	482

2.3 – Cálculo de Líneas en CA – Criterio Térmico

UNE 60.364-5-52

Ejemplo:

- Instalación Tipo C
- Cobre
- Trifásica
- Aislamiento PVC
- -35 mm^2

	Ш	NTE	NS	DA	D M	ĺΑΧΙ	MA	AD	MIS	IBL	E D	EL	os	CO	NDI	JCT	OR	ES	
-	étodo stala		N	úme	ero	de d	con	duc	tore	es c	arg	ado	s y	tipo	de	ais	lam	ien	to
	A1		3PVC	2PVC				3XLPE		2XLPE									
	A2	3PVC	2PVC			3XLPE		2XLPE											
	B1				3PVC		2PVC					3XLPE				2XLPE			
	B2			3PVC	2PVC					3XLPE		2XLPE							
	С						3PVC				2PVC			3XLPE			2XLPE		
	E								3PVC				2PVC			3XLPE		2XLPE	
	F							7			3PVC				2PVC		3XLPE		2XLPE
Se	cción mm²	2	3	4	5a	5b	6a	6b	7a	7b	8a	8b	9a	9b	10a	10b	11	12	13
	1,5	11	11,5	12,5	13,5	14	14,5	15,5	16	16,5	17	17,5	19	20	20	20	21	23	-
	2,5	15	15,5	17	18	19	20	20	21	22	23	24	26	27	26	28	30	32	-
	4	20	20	22	24	25	26	28	29	30	31	32	34	36	36	38	40	44	_
	6	25	26	29	31	32	34	36	37	39	40	41	44	46	46	49	52	57	-
(op	10	33	36	40	43	45	46	49	52	54	54	57	60	63	65	68	72	78	_
enterrado	16	45	48	53	59	61	63	66	69	72	73	77	81	85	87	91	97	104	-
ent	25 35	59	63	69	77 95	80 100	82 101	86 106	87 109	91	95 119	100	103	108	110 137	115 143	122 153	135 168	146
8 8	50	_	_	_	116	121	122	128	133	139	145	151	155	162	167	174	188	204	220
e e	70	_	_	_	148	155	155	162	170	178	185	193	199	208	214	223	243	262	282
Cobre	95	_	_	_	180	188	187	196	207	216	224	234	241	252	259	271	298	320	343
	120	_	_	_	207	217	216	226	240	251	260	272	280	293	301	314	350	373	397
	150	-	-	-	-	-	247	259	276	289	299	313	322	337	343	359	401	430	458
	185	-	-	-	-	-	281	294	314	329	341	356	368	385	391	409	460	493	523
	240	_	-	-	_	_	330	345	368	385	401	419	435	455	468	489	545	583	617

	étodo stalac		N	úm	ero	de d	con	duc	tore	es c	arg	ado	s y	tipo	de	ais	lam	ien	to
- /	۸1		3PVC	2PVC				3XLPE		2XLPE									
1	\2	3PVC	2PVC			3XLPE		2XLPE											
E	31				3PVC		2PVC					3XLPE				2XLPE			
E	32			3PVC	2PVC)	3XLPE		2XLPE							
	С						3PVC				2PVC			3XLPE			2XLPE		
	E								3PVC				2PVC			3XLPE		2XLPE	
	F									1/	3PVC				2PVC		3XLPE		2XL
Se	cción mm²	2	3	4	5a	5b	6a	6b	7a	7b	8a	8b	9a	9b	10a	10b	11	12	13
	2,5	11,5	12	13	14	15	16	16,5	17	17,5	18	19	20	20	20	21	23	25	-
	4	15	16	17	19	20	21	22	22	23	24	25	26	28	27	29	31	34	-
	6	20	20	22	24	25	27	29	28	30	31	32	33	35	36	38	40	44	-
0	10	26	27	31	33	35	38	40	40	41	42	44	46	49	50	52	56	60	-
rae	16	35	37	41	46	48	50	52	53	55	57	60	63	66	66	70	76	82	-
enterrado	25	46	49	54	60	63	63	66	67	70	72	75	78	81	84	88	91	98	11
	35	_	_	_	74	78	78	81	83	87	89	93	97	101	104	109	114	122	13
% (N	50	-	-	-	90	94	95	100	101	106	108	113	118	123	127	132	140	149	16
2	70	_	_	_	115	121	121	127	130	136	139	145	151	158	162	170	180	192	21
Alumino	95	-	-	-	140	146	147	154	159	166	169	177	183	192	197	206	219	233	26
₹	120	_	_	_	161	169	171	179	184	192	196	205	213	222	228	239	254	273	30
	150	-	-	-	-	_	196	205	213	222	227	237	246	257	264	276	294	314	35
	185	_	_	_	_	_	222	232	243	254	259	271	281	293	301	315	337	361	40
	240	_	_	_		_	261	273	287	300	306	320	332	347	355	372	399	427	48

2.3 – Cálculo de Líneas en CA – Criterio Térmico

UNE 60.364-5-52

Ejemplo:

- Instalación Tipo C
- Cobre
- Trifásica
- Aislamiento PVC
- -35 mm^2

	<u>I</u> l	NTE	NSI	DA	D M	ÁΧΙ	MΑ	AD	MIS	IBL	E D	EL	os	CO	NDI	JCT	OR	ES	
	étodo stala		N	úme	ero	de d	on	duc	tore	es c	arg	ado	s y	tipo	de	ais	lam	ien	to
	A1		3PVC	2PVC				3XLPE		2XLPE									
	A2	3PVC	2PVC			3XLPE		2XLPE											
	B1				3PVC		2PVC					3XLPE				2XLPE			
				00110	anua					041.05		0W DE							
	С						3PVC				2PVC			3XLPE			2XLPE		
	E		=						3PVC				2PVC			3XLPE		2XLPE	
	F										3PVC				2PVC		3XLPE		2XLPE
Se	cción mm²	2	3	4	5a	5b	6a	6b	7a	7b	8a	8b	9a	9b	10a	10b	11	12	13
	1,5	11	11,5	12,5	13,5	14	14,5	15,5	16	16,5	17	17,5	19	20	20	20	21	23	
	2,5	15	15,5	17	18	19	20	20	21	22	23	24	26	27	26	28	30	32	_
	4	20	20	22	24	25	26	28	29	30	31	32	34	36	36	38	40	44	_
	6	25	26	29	31	32	34	36	37	39	40	41	44	46	46	49	52	57	_
유	10	33	36	40	43	45	46	49	52	54	54	57	60	63	65	68	72	78	_
(No enterrado)	16	45	48	53	59	61	63	66	69	72	73	77_	81	85	87	91	97	104	-
nte	25	59	63	69	77	80	82	86	87	91	95	100	103	108	110	115	122	135	146
0	35	-	-	-	95	100	101	106	109	114	119	124	127	133	137	143	153	168	182
	50	-	-	-	116	121	122	128	133	139	145	151	155	162	167	174	188	204	220
Cobre	70	-	-	-	148	155	155	162	170	178	185	193	199	208	214	223	243	262	282
ပိ	95	-	-	-	180	188	187	196	207	216	224	234	241	252	259	271	298	320	343
	120	-	-	-	207	217	216	226	240	251	260	272	280	293	301	314	350	373	397
	150	-	-	-	-	-	247	259	276	289	299	313	322	337	343	359	401	430	458
	185	-	-	-	-	-	281	294	314	329	341	356	368	385	391	409	460	493	523
	240	_	-	-	_	_	330	345	368	385	401	419	435	455	468	489	545	583	617

	- 11	NTE	NSI	DA	D M	ÁΧΙ	MΑ	AD	MIS	IBL	E D	ΕL	os	CO	NDI	JCT	OR	ES	
-	étodo stalao		N	úme	ero	de d	on	duc	tore	es c	arg	ado	s y	tipo	de	ais	lam	ien	to
,	A1		3PVC	2PVC				3XLPE		2XLPE									
	A2	3PVC	2PVC			3XLPE		2XLPE											
	B1				3PVC		2PVC					3XLPE				2XLPE			
	B2			3PVC	2PVC)	3XLPE		2XLPE							
	С						3PVC				2PVC			3XLPE			2XLPE		
	Е								3PVC				2PVC			3XLPE		2XLPE	
	F									7/	3PVC				2PVC		3XLPE		2XLPE
Se	cción mm²	2	3	4	5a	5b	6a	6b	7a	7b	8a	8b	9a	9b	10a	10b	11	12	13
	2,5	11,5	12	13	14	15	16	16,5	17	17,5	18	19	20	20	20	21	23	25	-
	4	15	16	17	19	20	21	22	22	23	24	25	26	28	27	29	31	34	_
	6	20	20	22	24	25	27	29	28	30	31	32	33	35	36	38	40	44	_
0	10	26	27	31	33	35	38	40	40	41	42	44	46	49	50	52	56	60	_
(No enterrado)	16	35	37	41	46	48	50	52	53	55	57	60	63	66	66	70	76	82	_
ıter	25	46	49	54	60	63	63	66	67	70	72	75	78	81	84	88	91	98	110
e e	35	_	-	_	74	78	78	81	83	87	89	93	97	101	104	109	114	122	136
	50	-	-	-	90	94	95	100	101	106	108	113	118	123	127	132	140	149	167
ino	70	_	-	_	115	121	121	127	130	136	139	145	151	158	162	170	180	192	215
Alumino	95	-	-	-	140	146	147	154	159	166	169	177	183	192	197	206	219	233	262
A	120	_	_	_	161	169	171	179	184	192	196	205	213	222	228	239	254	273	306
	150	-	_	_	_	_	196	205	213	222	227	237	246	257	264	276	294	314	353
	185	_	_	_	_	_	222	232	243	254	259	271	281	293	301	315	337	361	406
	240	-	-	-	-	-	261	273	287	300	306	320	332	347	355	372	399	427	482

2.3 – Cálculo de Líneas en CA – Criterio Térmico

UNE 60.364-5-52

Ejemplo:

- Instalación Tipo C
- Cobre
- Trifásica
- Aislamiento PVC
- -35 mm^2

	Ш	NTE	NSI	DA	D M	ÁΧ	IMA	AD	MIS	IBL	E D	EL	os	CO	NDI	JCT	OR	ES	
	létodo stala		N	úme	ero	de	con	duc	tore	es c	arg	ado	s y	tipo	de	ais	lam	ien	to
	A1		3PVC	2PVC				3XLPE		2XLPE									
	A2	3PVC	2PVC			3XLPE		2XLPE											
	B1				3PVC		2PVC					3XLPE				2XLPE			
				20110	20110							0W DE							
	С						3PVC				2PVC			3XLPE			2XLPE		
	E								3PVC				2PVC			3XLPE		2XLPE	
	F										3PVC				2PVC		3XLPE		2XLPE
Se	cción mm²	2	3	4	5a	5b	6a	b	7a	7b	8a	8b	9a	9b	10a	10b	11	12	13
	1,5	11	11,5	12,5	13,5	14	14,5	5,5	16	16,5	17	17,5	19	20	20	20	21	23	-
	2,5	15	15,5	17	18	19	20	20	21	22	23	24	26	27	26	28	30	32	_
	4	20	20	22	24	25	26	28	29	30	31	32	34	36	36	38	40	44	_
	6	25	26	29	31	32	34	36	37	39	40	41	44	46	46	49	52	57	-
유 유	10	33	36	40	43	45	46	49	52	54	54	57	60	63	65	68	72	78	_
in in	16	45	48	53	59	61	63	66	69	72	73	77_	81	85	87	91	97	104	-
enterrado	25	59	63	69	77	80	82	86	87	91	95	100	103	108	110	115	122	135	146
(No e	35	-	-	-	95	100	101	106	109	114	119	124	127	133	137	143	153	168	182
e (50	-	-	-	116	121	122	128	133	139	145	151	155	162	167	174	188	204	220
Cobre	70	-	-	-	148	15	155	162	170	178	185	193	199	208	214	223	243	262	282
O	95	-	-	-	180	188	187	196	207	216	224	234	241	252	259	271	298	320	343
	120	-	-	-	207	211	216	226	240	251	260	272	280	293	301	314	350	373	397
	150	-	-	-	_	-	247	259	276 314	289	299	313	322	337	343	359	401	430	458
	185 240	_	-	_	_	_	330	294 345	368	329 385	341 401	356 419	368 435	385 455	391 468	409	460 545	493 583	523 617
	240		_	_	_		330	845	308	385	401	419	430	455	408	489	040	283	017

	- 11	NTE	NSI	DAI	D M	ÁΧΙ	MA	AD	MIS	IBL	E D	EL	os	CO	NDI	JCT	OR	ES	
	étodo stalac		N	úme	ero	de d	con	duc	tore	es c	arg	ado	s y	tipo	de	ais	lam	ien	to
- 1	A1		3PVC	2PVC				3XLPE		2XLPE									
- 1	۹2	3PVC	2PVC			3XLPE		2XLPE											
E	31				3PVC		2PVC					3XLPE				2XLPE			
E	32			3PVC	2PVC			2		3XLPE		2XLPE							
	С						3PVC				2PVC			3XLPE			2XLPE		
	E								3PVC				2PVC			3XLPE		2XLPE	
	F									1/	3PVC				2PVC		3XLPE		2XLPE
Se	cción mm²	2	3	4	5a	5b	6a	6b	7a	7b	8a	8b	9a	9b	10a	10b	11	12	13
	2,5	11,5	12	13	14	15	16	16,5	17	17,5	18	19	20	20	20	21	23	25	_
	4	15	16	17	19	20	21	22	22	23	24	25	26	28	27	29	31	34	-
	6	20	20	22	24	25	27	29	28	30	31	32	33	35	36	38	40	44	_
(0)	10	26	27	31	33	35	38	40	40	41	42	44	46	49	50	52	56	60	_
rac	16	35	37	41	46	48	50	52	53	55	57	60	63	66	66	70	76	82	_
(No enterrado)	25	46	49	54	60	63	63	66	67	70	72	75	78	81	84	88	91	98	110
e o	35	_	_	_	74	78	78	81	83	87	89	93	97	101	104	109	114	122	136
	50	-	-	-	90	94	95	100	101	106	108	113	118	123	127	132	140	149	167
ino	70	_	_	_	115	121	121	127	130	136	139	145	151	158	162	170	180	192	215
Alumino	95	-	-	-	140	146	147	154	159	166	169	177	183	192	197	206	219	233	262
A	120	_	_	_	161	169	171	179	184	192	196	205	213	222	228	239	254	273	306
	150	-	-	-	-	-	196	205	213	222	227	237	246	257	264	276	294	314	353
	185	_			_	_	222	232	243	254	259	271	281	293	301	315	337	361	406
	240	-	-	-	-	-	261	273	287	300	306	320	332	347	355	372	399	427	482

2.3 – Cálculo de Líneas en CA – Criterio Térmico

UNE 60.364-5-52

Ejemplo:

- Instalación Tipo C
- Cobre
- Trifásica
- Aislamiento PVC
- -35 mm^2

		11	NTE	NSI	DA	D M	ÁX	IMA	AD	MIS	IBL	E D	EL	os	CO	NDI	JCT	OR	ES	
		étodo stalac		N	úme	ero	de	con	duc	tore	es c	arg	ado	s y	tipo	de	ais	lam	ien	to
	P	\1		3PVC	2PVC				3XLPE		2XLPE									
	A	2	3PVC	2PVC			3XLPE		2XLPE											
Г	E	31				3PVC		2PVC					3XLPE				2XLPE			
	4	2			onvo	opyo					ow.nc		0W-DE							
	(С						3PVC				2PVC			3XLPE			2XLPE		
Т		=								3PVC				2PVC			3XLPE		2XLPE	
		F										3PVC				2PVC		3XLPE		2XLPE
	Sec	ción mm²	2	3	4	5a	5b	6a	b	7a	7b	8a	8b	9a	9b	10a	10b	11	12	13
		1,5	11	11,5	12,5	13,5	14	14,5	5,5	16	16,5	17	17,5	19	20	20	20	21	23	-
		2,5	15	15,5	17	18	19	20	20	21	22	23	24	26	27	26	28	30	32	-
		4	20	20	22	24	25	26	28	29	30	31	32	34	36	36	38	40	44	_
		6	25	26	29	31	32	34	36	37	39	40	41	44	46	46	49	52	57	-
	rrado)	10	33	36	40	43	45	46	49	52	54	54	57	60	63	65	68	72	78	_
	erra	16	45	48	53	59	61	63	66	69	72	73	77	81	85	87	91	97	104	-
	en	25	50	-00	-00	- ' '	00	02	00	01	01	00	100	100	100	110	110	122	100	140
	9	35	_	-	-	95	100	101	106	109	114	119	124	127	133	137	143	153	168	182
	ē	70				148	159	155	162	170	178	185	193	199	208	214	223	243	262	282
	Cobre	95	_	_	_	180	188	187	96	207	216	224	234	241	252	259	271	298	320	343
'	٠	120	_	_	_	207	21	216	226	240	251	260	272	280	293	301	314	350	373	397
		150		_	_	_	_	247	259	276	289	299	313	322	337	343	359	401	430	458
		185	_	_	_	_	_	281	294	314	329	341	356	368	385	391	409	460	493	523
		240	_	-	_	_	-	330	345	368	385	401	419	435	455	468	489	545	583	617

INTENSIDAD MÁXIMA ADMISIBLE DE LOS CONDUCTORES																			
Método de instalación Número de conductores cargados y tipo de									ais	lam	ien	to							
A1			3PVC	2PVC				3XLPE		2XLPE									
A2		3PVC	2PVC			3XLPE		2XLPE											
B1					3PVC		2PVC					3XLPE				2XLPE			
B2				3PVC	2PVC					3XLPE		2XLPE							
С							3PVC				2PVC			3XLPE			2XLPE		
E									3PVC				2PVC			3XLPE		2XLPE	
F										1	3PVC				2PVC		3XLPE		2XLPE
Sección mm²		2	3	4	5a	5b	6a	6b	7a	7b	8a	8b	9a	9b	10a	10b	11	12	13
	2,5	11,5	12	13	14	15	16	16,5	17	17,5	18	19	20	20	20	21	23	25	-
	4	15	16	17	19	20	21	22	22	23	24	25	26	28	27	29	31	34	-
	6	20	20	22	24	25	27	29	28	30	31	32	33	35	36	38	40	44	_
0	10	26	27	31	33	35	38	40	40	41	42	44	46	49	50	52	56	60	_
Alumino (No enterrado)	16	35	37	41	46	48	50	52	53	55	57	60	63	66	66	70	76	82	-
	25	46	49	54	60	63	63	66	67	70	72	75	78	81	84	88	91	98	110
	35	_	_	_	74	78	78	81	83	87	89	93	97	101	104	109	114	122	136
	50	-	-	-	90	94	95	100	101	106	108	113	118	123	127	132	140	149	167
	70	_	_	_	115	121	121	127	130	136	139	145	151	158	162	170	180	192	215
	95	-	-	-	140	146	147	154	159	166	169	177	183	192	197	206	219	233	262
	120	_	_	-	161	169	171	179	184	192	196	205	213	222	228	239	254	273	306
	150	-	-	-	-	-	196	205	213	222	227	237	246	257	264	276	294	314	353
	185	_	_	_	_		222	232	243	254	259	271	281	293	301	315	337	361	406
	240	-	-	-	-	_	261	273	287	300	306	320	332	347	355	372	399	427	482

2.3 – Cálculo de Líneas en CA – Criterio Térmico

UNE 60.364-5-52

INTENSIDAD MÁXIMA ADMISIBLE										
Número de conductores cargados y tipo de aislamiento										
	Método de instalación	Sección	2PVC	3PVC	2XLPE	3XLPE				
		1,5 mm ²	20	17	24	21				
		2,5 mm ²	27	22	32	27				
		4 mm ²	36	29	42	35				
		6 mm ²	44	37	53	44				
		10 mm ²	59	49	70	58				
		16 mm ²	76	63	91	75				
		25 mm ²	98	81	116	96				
D1/D2	Cobre (Enterrado)	35 mm ²	118	97	140	117				
01/02	Cobie (Litterrado)	50 mm ²	140	115	166	138				
		70 mm ²	173	143	204	170				
		95 mm ²	205	170	241	202				
		120 mm ²	233	192	275	230				
		150 mm²	264	218	311	260				
		185 mm²	296	245	348	291				
		240 mm ²	342	282	402	336				
		300 mm ²	387	319	455	380				

INTENSIDAD MÁXIMA ADMISIBLE										
Número de conductores cargados y tipo de aislamiento										
	Método de instalación	Sección	2PVC	3PVC	2XLPE	3XLPE				
		2,5 mm ²	20	17,5	24	21				
		4 mm ²	27	22	32	27				
		6 mm ²	34	28	40	34				
		10 mm ²	45	38	53	45				
		16 mm ²	58	49	70	58				
		25 mm ²	76	62	89	74				
	Alumino (Enterrado)	35 mm ²	91	76	107	90				
D1/D2		50 mm ²	107	89	126	107				
		70 mm ²	133	111	156	132				
		95 mm²	157	131	185	157				
		120 mm ²	179	149	211	178				
		150 mm²	202	169	239	201				
		185 mm ²	228	190	267	226				
		240 mm ²	263	218	309	261				
		300 mm ²	297	247	349	295				

2.3 – Cálculo de Líneas en CA – Criterio de ΔV

- Límites máximos de la caída de tensión entre la generación y el consumidor <u>regulada por</u> <u>normativa</u>
- Cumplimiento <u>simultáneo</u> de los criterios térmico y de caída de tensión → se aplica la sección regulada inmediatamente superior a la mayor de las secciones resultantes
 - o Líneas cortas: $A_{\theta} > A_V$
 - o Líneas largas: $A_V > A_{\theta}$

2.3 – Cálculo de Líneas en CA – Criterio de ΔV

- Proceso de diseño para distribuidor (líneas de sección constante):
 - 1. Estimación de reactancia unitaria de la línea (p.ej. 0.4 Ω /km en líneas aéreas)
 - 2. Cálculo de reactancia acumulada del distribuidor por tramos
 - Expresar la resistencia acumulada del distribuidor en función de la sección transversal y la resistividad del conductor por tramos
 - 4. Cálculo de la sección del conductor en función de la máxima caída de tensión admisible
 - 5. Elección de sección normalizada inmediatamente superior a la calculada
- Típicamente, en redes de baja tensión, y en media tensión de sección pequeña (<120mm²) y de cables aislados $\rightarrow R_e \gg X \Rightarrow X \approx 0$

2.3 – Cálculo de Líneas en CA – Criterio de ΔV

ICAI ICADE CIHS

<u>Caída de Tensión Total en Alimentador Radial con Múltiples</u> <u>Cargas:</u>

 $\Delta V = \text{caída de tensión (%)}$

 V_N = tensión nominal del distribuidor (V)

n = número de derivaciones del distribuidor

 $R_{e,i}$ =resistencia eléctrica acumulada por fase desde suministro hasta la carga i (Ω)

 X_i = reactancia acumulada por fase desde suministro hasta la carga i (Ω)

 P_i = potencia activa consumida en cada derivación (W)

 Q_i = potencia reactiva consumida en cada derivación (VAr)

 $I_i = \text{corriente a través de la derivación } i$ (A)

 φ_i = factor de potencia de la carga i (-)

 $\rho = \text{resistividad del conductor } (\Omega \text{ mm}^2/\text{m})$

 ℓ_i = distancia desde suministro hasta carga i (m)

 A_V = sección transversal del conductor calculada (mm²)

2.3 – Cálculo de Líneas en CA – Criterio de ΔV

ICAI

ICADE

CIHS

Caída de Tensión Total en Alimentador Radial con Múltiples
 Cargas:

Monofásico

$$\Delta V[\%] = \frac{2 \cdot 100}{V_N^2} \sum_{i=1}^n \left(R_{e,i} P_i + X_i Q_i \right) = \frac{2 \cdot 100}{V_N} \sum_{i=1}^n \left(\rho \frac{\ell_i}{A_V} I_i \cos \varphi_i + X_i I_i \sin \varphi_i \right)$$

 $\Delta V = \text{caída de tensión (%)}$

 V_N = tensión nominal del distribuidor (V)

n = número de derivaciones del distribuidor

 $R_{e,i}$ =resistencia eléctrica acumulada por fase desde suministro hasta la carga i (Ω)

 X_i = reactancia acumulada por fase desde suministro hasta la carga i (Ω)

 P_i = potencia activa consumida en cada derivación (W)

 Q_i = potencia reactiva consumida en cada derivación (VAr)

 $I_i = \text{corriente a través de la derivación } i$ (A)

 $\varphi_i = \text{factor de potencia de la carga } i$ (-)

 $\rho = \text{resistividad del conductor } (\Omega \text{ mm}^2/\text{m})$

 ℓ_i = distancia desde suministro hasta carga i (m)

 A_V = sección transversal del conductor calculada (mm²)

2.3 – Cálculo de Líneas en CA – Criterio de ΔV

ICAI

ICADE

CIHS

<u>Caída de Tensión Total en Alimentador Radial con Múltiples</u>
 <u>Cargas:</u>

Monofásico

$$\Delta V[\%] = \frac{2 \cdot 100}{V_N^2} \sum_{i=1}^n \left(R_{e,i} P_i + X_i Q_i \right) = \frac{2 \cdot 100}{V_N} \sum_{i=1}^n \left(\rho \frac{\ell_i}{A_V} I_i \cos \varphi_i + X_i I_i \sin \varphi_i \right)$$

Trifásico

$$\Delta V[\%] = \frac{100}{V_N^2} \sum_{i=1}^n \left(R_{e,i} P_i + X_i Q_i \right) = \frac{100\sqrt{3}}{V_N} \sum_{i=1}^n \left(\rho \frac{\ell_i}{A_V} I_i \cos \varphi_i + X_i I_i \sin \varphi_i \right)$$

comillas.edu

 $\Delta V = \text{caída de tensión (%)}$

 V_N = tensión nominal del distribuidor (V)

n = número de derivaciones del distribuidor

 $R_{e,i}$ =resistencia eléctrica acumulada por fase desde suministro hasta la carga i (Ω)

 X_i = reactancia acumulada por fase desde suministro hasta la carga i (Ω)

 P_i = potencia activa consumida en cada derivación (W)

 Q_i = potencia reactiva consumida en cada derivación (VAr)

 $I_i = \text{corriente a través de la derivación } i$ (A)

 φ_i = factor de potencia de la carga i (-)

 $\rho = \text{resistividad del conductor } (\Omega \text{ mm}^2/\text{m})$

 ℓ_i = distancia desde suministro hasta carga i (m)

 A_V = sección transversal del conductor calculada (mm²)

2.3 – Cálculo de Líneas en CA – Criterio de ΔV

CAI IC

ICADE

CIHS

Resistencia vs. Resistividad:

$$\Delta\theta = R_{\theta}^{\text{tot}} R_{e} I^{2} = R_{\theta}^{\text{tot}} \left(\rho \frac{\ell}{A} \right) I^{2}$$

$$\Delta \theta^{\max} = R_{\theta}^{\text{tot}} R_{\theta} (I^{\max})^2 = R_{\theta}^{\text{tot}} \left(\rho \frac{\ell}{A} \right) (I^{\max})^2$$

 $\theta =$ Temp. del conductor (°C)

 $\theta_a = \text{Temp. ambiente (°C)}$ 40°C al aire / 25°C enterrado

 θ^{max} = Temp. máxima admisible del conductor (°C) PVC: 70°C / 90°C XLPE o EPR

 $R_{\theta}^{\text{tot}} = \text{resistencia térmica del conductor (°C/W)}$

 R_e = resistencia eléctrica del conductor (Ω)

 $\ell =$ longitud del conductor (m)

 $A_{\theta} =$ sección transversal del conductor (mm²)

I = corriente circulando por el conductor (A)

 $I^{\text{max}} = \text{corriente máxima admisible por el conductor (A)}$

 $\rho = \text{resistividad del conductor } (\Omega \text{ mm}^2/\text{m})$

2.3 – Cálculo de Líneas en CA – Criterio de ΔV

CAI ICA

CIHS

Resistencia vs. Resistividad:

$$\Delta\theta = R_{\theta}^{\text{tot}} R_{e} I^{2} = R_{\theta}^{\text{tot}} \left(\rho \frac{\ell}{A} \right) I^{2}$$

$$\Delta\theta^{\text{max}} = R_{\theta}^{\text{tot}} R_{e} (I^{\text{max}})^{2} = R_{\theta}^{\text{tot}} \left(\rho \frac{\ell}{A} \right) (I^{\text{max}})^{2}$$

$$\frac{\Delta\theta}{\Delta\theta^{\text{max}}} = \frac{\theta - \theta_{a}}{\theta^{\text{max}} - \theta_{a}} = \left(\frac{I}{I^{\text{max}}} \right)^{2}$$

 $\theta =$ Temp. del conductor (°C)

 θ_a = Temp. ambiente (°C) 40°C al aire / 25°C enterrado

 θ^{max} = Temp. máxima admisible del conductor (°C) PVC: 70°C / 90°C XLPE o EPR

 $R_{\theta}^{\text{tot}} = \text{resistencia térmica del conductor (°C/W)}$

 $R_e = \text{resistencia eléctrica del conductor } (\Omega)$

 $\ell = longitud del conductor (m)$

 $A_{\theta} =$ sección transversal del conductor (mm²)

I = corriente circulando por el conductor (A)

 $I^{\text{max}} = \text{corriente máxima admisible por el conductor (A)}$

 $\rho = \text{resistividad del conductor } (\Omega \text{ mm}^2/\text{m})$

2.3 – Cálculo de Líneas en CA – Criterio de ΔV

ICAI I

ICADE

CIHS

Resistencia vs. Resistividad:

$$\Delta\theta = R_{\theta}^{\text{tot}} R_{e} I^{2} = R_{\theta}^{\text{tot}} \left(\rho \frac{\ell}{A}\right) I^{2}$$

$$\Delta\theta^{\text{max}} = R_{\theta}^{\text{tot}} R_{e} (I^{\text{max}})^{2} = R_{\theta}^{\text{tot}} \left(\rho \frac{\ell}{A}\right) (I^{\text{max}})^{2}$$

$$\frac{\Delta\theta}{\Delta\theta^{\text{max}}} = \frac{\theta - \theta_{a}}{\theta^{\text{max}} - \theta_{a}} = \left(\frac{I}{I^{\text{max}}}\right)^{2}$$

$$\downarrow$$

$$\theta = \theta_a + (\theta^{\text{max}} - \theta_a) \left(\frac{I}{I^{\text{max}}}\right)^2$$
$$\rho = \rho_{20} (1 + \alpha(\theta - 20))$$

comillas.edu

 $\theta =$ Temp. del conductor (°C)

 $\theta_a = \text{Temp. ambiente (°C)}$ 40°C al aire / 25°C enterrado

 θ^{max} = Temp. máxima admisible del conductor (°C) PVC: 70°C / 90°C XLPE o EPR

 $R_{\theta}^{\text{tot}} = \text{resistencia térmica del conductor (°C/W)}$

 $R_e = \text{resistencia eléctrica del conductor } (\Omega)$

 $\ell =$ longitud del conductor (m)

 $A_{\theta} =$ sección transversal del conductor (mm²)

I = corriente circulando por el conductor (A)

 $I^{\text{max}} = \text{corriente máxima admisible por el conductor (A)}$

 $\rho = \text{resistividad del conductor } (\Omega \text{ mm}^2/\text{m})$

 $\rho_{20}={
m resistividad\ del\ conductor\ a\ 20^{\circ}C\ (\Omega\ mm^2/m)}$

 $\rho_{20,Cu} = 1/58 / \rho_{20,Al} = 1/35.71$

 $\alpha = \text{coef. de variación de resistencia con la T}^{\alpha}$ (°C-1)

 $\alpha_{Cu} = 0.00393 / \alpha_{Al} = 0.00407$

2.3 – Cálculo de Líneas en CA – Criterio de ΔV

Parte de la instalación	Para alimentar a :	Caída de tensión máxima en % de la tensión de suministro.	e=ΔU _{III}	e=ΔU _I
LGA:	Suministros de un único usuario	No existe LGA		
(Línea General de	Contadores totalmente concentrados	0,5%	2 V	
Alimentación)	Centralizaciones parciales de contadores	1,0%	4 V	
DI	Suministros de un único usuario	1,5%	6 V	3,45 V
(Derivación	Contadores totalmente concentrados	1,0%	4 V	2,3 V
Individual)	Centralizaciones parciales de contadores	0,5%	2 V	1,15 V
	Circuitos interiores en viviendas	3%	12 V	6,9 V
Circuitos interiores	Circuitos de alumbrado que no sean viviendas	3%	12 V	6,9 V
	Circuitos de fuerza que no sean viviendas	5%	20 V	11,5 V

Tabla 6. Límites de caídas de tensión reglamentarios. Nota: la LGA es siempre trifásica.

CAI ICADE

CIHS

Norma ITC-BT-19

Redes Eléctricas en BT

2.3 – Cálculo de Líneas en CA – Criterio de ΔV

Esquema para un único usuario

Esquema para una única centralización de contadores:

Esquema cuando existen varias centralizaciones de contadores:

ESQUEMA GENERAL PARA INDUSTRIA

Esquema de una instalación industrial que se alimenta directamente en alta tensión mediante un transformador de distribución propio.

2.3 – Cálculo de Líneas en CA – Criterio de I_{cc}

ICAI

ICADE

CIHS

Sección del conductor ante cortocircuitos:

$$\dot{Q}(t) = A_{cc} \ell c \frac{d\theta}{dt} = \rho \frac{\ell}{A_{cc}} i_{cc}^2(t)$$

 A_{cc} = sección transversal del conductor (m²)

c = calor específico volumétrico del conductor (J m 3 /K)

 i_{cc} = corriente instantánea de cortocircuito (A)

 I_{cc} = corriente eficaz de cortocircuito (A)

2.3 – Cálculo de Líneas en CA – Criterio de I_{cc}

ICAI

ICADE

CIHS

Sección del conductor ante cortocircuitos:

$$\dot{Q}(t) = A_{cc} \ell c \frac{d\theta}{dt} = \rho \frac{\ell}{A_{cc}} i_{cc}^2(t) \quad \rightarrow \quad i_{cc}^2(t) dt = \frac{A_{cc}^2 c d\theta}{\rho}$$

 A_{cc} = sección transversal del conductor (m²)

c = calor específico volumétrico del conductor (J m 3 /K)

 i_{cc} = corriente instantánea de cortocircuito (A)

 I_{cc} = corriente eficaz de cortocircuito (A)

2.3 – Cálculo de Líneas en CA – Criterio de I_{cc}

ICAI

ICADE

CIHS

Sección del conductor ante cortocircuitos:

$$\dot{Q}(t) = A_{cc} \ell c \frac{d\theta}{dt} = \rho \frac{\ell}{A_{cc}} i_{cc}^2(t) \quad \rightarrow \quad i_{cc}^2(t) dt = \frac{A_{cc}^2 c d\theta}{\rho}$$

Integral de Joule

$$\rho = \rho_{20} \big(1 + \alpha (\theta - 20) \big)$$

$$\int_{t_i}^{t_f} i_{cc}^2(t) dt = \frac{A_{cc}^2 c}{\rho_{20} \alpha} \ln \left[\frac{1 + \alpha (\theta_f - 20)}{1 + \alpha (\theta_i - 20)} \right]$$

 A_{cc} = sección transversal del conductor (m²)

c = calor específico volumétrico del conductor (J m 3 /K)

 i_{cc} = corriente instantánea de cortocircuito (A)

 I_{cc} = corriente eficaz de cortocircuito (A)

 θ_i = temperatura del conductor al comienzo del cortocircuito (°C)

 $\theta_f =$ temperatura del conductor al final del cortocircuito (°C)

2.3 – Cálculo de Líneas en CA – Criterio de I_{cc}

ICAI

ICADE

CIHS

Sección del conductor ante cortocircuitos:

$$\dot{Q}(t) = A_{cc} \ell c \frac{d\theta}{dt} = \rho \frac{\ell}{A_{cc}} i_{cc}^2(t) \quad \rightarrow \quad i_{cc}^2(t) dt = \frac{A_{cc}^2 c d\theta}{\rho}$$

Integral de Joule

$$\rho = \rho_{20} \big(1 + \alpha (\theta - 20) \big)$$

$$\int_{t_i}^{t_f} i_{cc}^2(t) dt = \frac{A_{cc}^2 c}{\rho_{20} \alpha} \ln \left[\frac{1 + \alpha (\theta_f - 20)}{1 + \alpha (\theta_i - 20)} \right]$$

Si la corriente de CC es constante:

$$I_{cc}^2 \cdot t_{cc} = K^2 \cdot A_{cc}^2 \cdot \ln \left(\frac{\beta + \theta_f}{\beta + \theta_i} \right)$$

$$A_{cc}$$
 = sección transversal del conductor (m²)

$$c =$$
 calor específico volumétrico del conductor (J m 3 /K)

$$i_{cc}$$
 = corriente instantánea de cortocircuito (A)

$$I_{cc}$$
 = corriente eficaz de cortocircuito (A)

$$\theta_i$$
 = temperatura del conductor al comienzo del cortocircuito (°C)

$$\theta_f$$
 = temperatura del conductor al final del cortocircuito (°C)

$$t_{cc} = duración del cortocircuito (s)$$

$$K_{\text{Cu}} = 226 / K_{\text{Al}} = 148$$

$$\beta = 1/\alpha - 20 \, (^{\circ}\text{C})$$
 $\beta_{\text{CH}} = 234.5 \, / \, \beta_{\text{Al}} = 225.7$

2.3 – Cálculo de Líneas en CA – Definición del Conductor

Monofásicos:

○ Si $A < 16 \text{ mm}^2 \Rightarrow 2 \text{ x (...)} \text{mm}^2 + (...) \text{mm}^2 \text{TT}$

○ Si $A > 16 \text{ mm}^2 \Rightarrow (...) \text{mm}^2 + (...) \text{mm}^2 + (...) \text{mm}^2 \text{TT}$

• Trifásicos:

○ Si $A < 16 \text{ mm}^2 \Rightarrow 4 \text{ x (...)} \text{mm}^2 + (...) \text{mm}^2 \text{TT}$

○ Si $A > 16 \text{ mm}^2 \Rightarrow 3x(...)\text{mm}^2 + (...)\text{mm}^2 + (...)\text{mm}^2\text{TT}$

2.3 – Cálculo de Líneas en CA – Definición del Conductor

Afumex 1000 V (AS) RZ1-K 0,6/1 kV (multipolar)

- 1. Conductor de cobre flexible
- Aislamiento de XLPE (colores)
- 3. Cubierta Afumex (Z1) con franja de color según sección

Afumex 1000 V (AS) RZ1-K 0,6/1 kV (unipolar)

- 1. Conductor de cobre flexible
- 2. Aislamiento de XLPE (negro)
- 3. **Cubierta** Afumex (Z1) con franja de color según sección

2.3 – Cálculo de Líneas en CA – Coeficientes de Corrección

- Coef. de Minoración de Intensidad Máxima Admisible del Conductor (aplicar según el caso):
 - o ITC BT-06 Redes Aéreas de BT
 - o ITC BT-07 Redes Subterráneas de BT
 - o ITC BT-19 Prescripciones Generales
 - o ITC BT-29 Locales con Riesgo de Incendio o Explosión
- Coef. que Varían la Corriente Calculada (aplicar según el caso):
 - o ITC BT-44 Receptores para Alumbrado
 - o ITC BT-47 Motores

2.4 – Cálculo Sección Mínima de Conductores

Proceso de Resolución

2.4 – Cálculo Sección Mínima de Conductores

Enunciado

- Calcular la sección de los conductores de una industria formada por líneas trifásicas de 400 voltios, 50 Hz, factor de potencia 0,9, que está formada por una línea general de alimentación que parte desde un CT de abonado, con una caída de tensión del 3%, que alimenta a un cuadro general que distribuye hacia una instalación que consume 113,95 A, una enfriadora de 92,59 kVA y un motor eléctrico que consume 67,5 kW, todos los elementos disponen de arrancadores suaves. Las caídas de tensión en los elementos finales no deben superar el 6,5%. El cuadro general tiene un coeficiente de simultaneidad de 0,85.
- Los conductores son de cobre, unipolares, aislados con XLPE, 0,6 / 1 kV. La longitud de las líneas es:
 - Línea general de alimentación: 105 metros.
 - Derivación a instalación: 80 metros.
 - Derivación a enfriadora: 40 metros.
 - Derivación a motor eléctrico: 65 metros.
- comillas.edu

- La conductividad del cobre a 20°C es 58.
- El trazado de las líneas se define de la siguiente manera:
 - 1. El cuadro eléctrico general es alimentado a través de una línea enterrada bajo tubo (ITC BT 19) a una profundidad de 1,25 metros.
 - 2. La instalación es alimentada a través de canaleta empotrada en el suelo.
 - 3. La enfriadora es alimentada a través de unas bandejas sin tapa que discurren desprotegidas por el exterior. (ITC BT 19 MONTAJE F)
 - 4. El motor eléctrico se alimenta a través de una bandeja (ITC BT 19 MONTAJE F). El conductor que discurre por la bandeja en todo su trazado discurre por una sala blanca donde la temperatura ambiente es siempre de 20°C.

El cuadro general se encuentra adosado a la pared de la sala blanca, por lo que el trazado de esta línea siempre será a través de dicha sala.

2.4 – Cálculo Sección Mínima de Conductores

ICAI ICADE

CIHS

1. Planteamiento del Problema

comillas.edu

Redes Eléctricas en BT

2.5 – Sistemas de Conexión del Neutro

Distribución en Baja Tensión – ITC-BT-08

- o El esquema de régimen de neutro se elige en función de la reglamentación vigente, de las necesidades propias de la explotación y de la naturaleza de los receptores
- o El tipo de régimen de neutro escogido → Determina el tipo de protección (TT, TN o IT)

ESQUEMA	ÁMBITO	
TT o TN	REDES DE SUMINITRO Y SUS CONEXIONES USOS DOMÉSTICOS SECTOR TERCIARIO INDUSTRIA	SUPERMARKET SUPERMARKET
ΙΤ	ZONAS HOSPITALARIAS (QUIRÓFANOS, UVI) CIRCUITOS DE SEGURIDAD MAQUINAS AMBIENTES ESPECIALES	
IT o TN	MINAS O CANTERAS	

2.6 - Conductores de Neutro y Protección

Conductor de Protección

- Los conductores de protección sirven para unir eléctricamente las masas de una instalación con el fin de asegurar la protección contra contactos indirectos
- SECCIÓN MÍNIMA DEL CONDUCTOR DE PROTECCIÓN NO ENTERRADO (ITC BT-18)

Sección de los conductores de fase de la instalación S (mm²)	Sección mínima de los conductores de protección S _p (mm²)
S ≤ 16	$S_p = S$
16 < S ≤ 35	$S_{p} = 16$
S > 35	$S_p = S/2$

Sección mínima del Neutro

- a) Igual a la de los conductores de fase
- b) Mínimo 10 mm² para Cu, y 16 mm² para Al
- c) Mitad de la sección de los conductores de fase

Tabla 1 - ITC-BT-14 REBT

¡¡PRECAUCIÓN ARMÓNICOS!! ITC-BT-19

2.7 – Redes de Distribución Públicas

> Tipos de instalaciones de Enlace en Función de

- Tipo de Red Pública
 - o Aérea
 - a) Con conducciones situadas sobre fachada
 - b) Con conducciones tensadas
 - Subterránea
 - a) De derivación
 - b) De bucle, entrada y salida
 - Mixta
 - a) Aérea y subterránea

Número de Abonados

- o Individual
- De 2 abonados
- Pluriabonados

La situación

- Las individuales o para 2 abonados pueden ser
 - a) Interiores
 - b) Exteriores
- o Las de pluriabonados
 - a) Interiores o bajo tejado

2.7 – Redes de Distribución Públicas

Acometidas Aéreas

- Se utilizan conductores aislados de 0,6/1 kV (individual o trenzado)
- Es aconsejable evitar la accesibilidad a los conductores mediante la instalación en conductos cerrados o canaletas.

Acometidas Sobre Poste

- Se utilizan conductores aislados de 0,6/1 kV (individual o trenzado)
- Sitado sobre los postes y tensados

2.7 – Redes de Distribución Públicas

Componentes de una Instalación de BT

- 1. CGP. Es el elemento de la instalación donde se alojan los elementos de protección de las líneas generales de alimentación (ITC BT-13)
- 2. LGA. Es la línea que enlaza la CGP con la CC (ITC BT-14)
- 3. Centralización de Contadores. Son los cuadros ubicados en módulos, paneles o armarios donde se encuentran los contadores u otros elementos para la medida de la energía eléctrica (ITC BT 16)
- 4. Derivaciones individuales. Es una parte de la instalación que parte desde la LGA y suministra energía eléctrica a cada usuario (ITC BT-15)
- 5. CGPM. Se encuentra ubicados en la entrada de la DI en el local o vivienda. En algunos casos se encuentra el ICP y los dispositivos generales de mando y protección (ITC BT-17)

2.7 – Redes de Distribución Públicas

Acometidas Redes Subterráneas

- o La conexión de la red es al CGP
- o Para abonados individuales o para 2 abonados, la CGP y medida puede ser un mismo elemento

Cajas de Protección y Medida

- Para pluriabonados, la CGP se colocará lo más cerca posible de la centralización de contadores y de fácil accesibilidad
- o Debe colocarse la caja general de protección con accesibilidad desde el exterior
- o La caja general de protección puede ser del tipo
 - a) Empotrable en muro o al aire
 - b) Sobre cimiento de hormigón u obra

2.7 – Redes de Distribución Públicas

Esquemas (ITC-BT-12)

Figura 1. Esquema 2.1. Para un solo usuario

Leyenda

- Red de distribución.
- Acometida.
- 3 Caja general de protección.
- 4 Línea general de alimentación.
- 5 Interruptor general de maniobra.
- 6 Caja de derivación.
- 7 Emplazamiento de contadores.
- 8 Derivación individual.
- 9 Fusible de seguridad.
- 10 Contador.
- 11 Caja para interruptor de control de potencia.
- 12 Dispositivos generales de mando y protección.
- 13 Instalación interior.

2.7 – Redes de Distribución Públicas

Acometidas Mixtas

 Son las que disponen de una parte aérea y una parte subterránea. Cada una de las partes debe cumplir sus propias prescripciones.

