En los ejercicios 1 a 8, calcula las cantidades indicadas >19. usando los siguientes vectores:

$$\mathbf{u} = \begin{pmatrix} -1\\2 \end{pmatrix}, \ \mathbf{v} = \begin{pmatrix} 4\\6 \end{pmatrix}, \ \mathbf{w} = \begin{pmatrix} 3\\-1\\-5 \end{pmatrix}, \ \mathbf{x} = \begin{pmatrix} 6\\-2\\3 \end{pmatrix}$$

1.
$$\mathbf{u} \cdot \mathbf{u}$$
, $\mathbf{v} \cdot \mathbf{u}$ y $\frac{\mathbf{v} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}}$. 2. $\frac{1}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u}$.

3.
$$\mathbf{w} \cdot \mathbf{w}$$
, $\mathbf{x} \cdot \mathbf{w}$ y $\frac{\mathbf{x} \cdot \mathbf{w}}{\mathbf{w} \cdot \mathbf{w}}$. 4. $\frac{1}{\mathbf{w} \cdot \mathbf{w}} \mathbf{w}$

▶5.
$$\left(\frac{\mathbf{x} \cdot \mathbf{w}}{\mathbf{x} \cdot \mathbf{x}}\right) \mathbf{x}$$
. ▶6. $\left(\frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}}\right) \mathbf{v}$.

En los ejercicios 9 a 12, halla un vector unitario en la dirección del vector dado:

9.
$$\binom{-30}{40}$$
. $\blacktriangleright 10. \binom{-6}{4}{-3}$

▶11.
$$\binom{7/4}{1/2}$$
. 12. $\binom{8/3}{2}$

▶13. Calcula la distancia entre los vectores

$$\mathbf{x} = \begin{pmatrix} 10 \\ 3 \end{pmatrix}$$
 , $\mathbf{y} = \begin{pmatrix} -1 \\ -5 \end{pmatrix}$.

▶14. Calcula la distancia entre los vectores

$$\mathbf{u} = \begin{pmatrix} 0 \\ -5 \\ 2 \end{pmatrix}, \quad \mathbf{z} = \begin{pmatrix} -4 \\ -1 \\ 8 \end{pmatrix}$$

En los ejercicios 15 a 18 averigua si los dos vectores dados son ortogonales:

▶15.
$$\mathbf{a} = \begin{pmatrix} 8 \\ -5 \end{pmatrix}$$
, $\mathbf{b} = \begin{pmatrix} -2 \\ -3 \end{pmatrix}$

▶16.
$$\mathbf{u} = \begin{pmatrix} 12 \\ 3 \\ -5 \end{pmatrix}$$
, $\mathbf{v} = \begin{pmatrix} 2 \\ -3 \\ 3 \end{pmatrix}$.

17.
$$\mathbf{a} = \begin{pmatrix} 3 \\ 2 \\ -5 \\ 0 \end{pmatrix}, \mathbf{b} = \begin{pmatrix} -4 \\ 1 \\ -2 \\ 6 \end{pmatrix}.$$

18.
$$\mathbf{u} = \begin{pmatrix} -3\\7\\4\\0 \end{pmatrix}, \mathbf{v} = \begin{pmatrix} 1\\-8\\15\\-7 \end{pmatrix}$$

En los ejercicios 19 y 20 todos los vectores son de \mathbb{R}^n . Indica para cada afirmación si es verdadera o falsa, justificando tus respuestas.

- (a) $\mathbf{v} \cdot \mathbf{v} = \|\mathbf{v}\|^2$.
- (b) Para cualquier escalar c, se cumple $\mathbf{u} \cdot (c\mathbf{v}) =$ $c(\mathbf{u} \cdot \mathbf{v}).$
- (c) Si la distancia de ${\bf u}$ a ${\bf v}$ es igual a la distancia de ${\bf u}$ $\mathbf{a} - \mathbf{v}$ entonces \mathbf{u} y \mathbf{v} son ortogonales.
- (d) Para cualquier matriz cuadrada A, los vectores de $\operatorname{Col} A$ son ortogonales a los de $\operatorname{Nul} A$.
- (e) Si los vectores $\mathbf{v}_1, \dots, \mathbf{v}_p$ generan un subespacio W y si x es ortogonal a cada \mathbf{v}_i para $j = 1, \dots, p$ entonces **x** pertenece a W^{\perp} .

▶20.

- (a) $\mathbf{u} \cdot \mathbf{v} \mathbf{v} \cdot \mathbf{u} = 0$.
- (b) Para cualquier escalar c, se cumple $||c\mathbf{v}|| = c||\mathbf{v}||$.
- (c) Si x es ortogonal a cada vector de un subespacio W, entonces **x** pertenece a W^{\perp} .
- (d) Si $\|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 = \|\mathbf{u} + \mathbf{v}\|^2$ entonces $\mathbf{u} \ \mathbf{v} \ \mathbf{v}$ son ortogonales.
- (e) Para cualquier matriz $m \times n$ A, los vectores del espacio nulo de A son ortogonales a los vectores del espacio fila de A.
- ▶21. Sea $\mathbf{u}=(u_1,u_2,u_3)$. Explica por qué $\mathbf{u}\cdot\mathbf{u}\geq 0$. ¿En qué caso se cumpliría $\mathbf{u} \cdot \mathbf{u} = 0$?

▶22. Sean
$$\mathbf{u} = \begin{pmatrix} 2 \\ -5 \\ -1 \end{pmatrix}$$
 y $\mathbf{v} = \begin{pmatrix} -7 \\ -4 \\ 6 \end{pmatrix}$. Calcula $\|\mathbf{u}\|^2$, $\|\mathbf{v}\|^2$, $\|\mathbf{u} + \mathbf{v}\|^2$ y $\mathbf{u} \cdot \mathbf{v}$. Explica los resultados.

▶23. Demuestra la ley del paralelogramo para vectores u y v de \mathbb{R}^n :

$$\|\mathbf{u} + \mathbf{v}\|^2 + \|\mathbf{u} - \mathbf{v}\|^2 = 2\|\mathbf{u}\|^2 + 2\|\mathbf{v}\|^2.$$

24. Describe geométricamente el conjunto H de los vectores $\begin{pmatrix} x \\ y \end{pmatrix}$ que son perpendiculares a un vector dado $\mathbf{v} = \begin{pmatrix} a \\ b \end{pmatrix}$ en \mathbb{R}^2 . Considera separadamente los casos $\mathbf{v} = \mathbf{0}$ y $\mathbf{v} \neq \mathbf{0}$.

▶25. Sea
$$\mathbf{u} = \begin{pmatrix} 5 \\ -6 \\ 7 \end{pmatrix}$$
 y sea W el conjunto de todos los

vectores \mathbf{x} de \mathbf{R}^3 tales que $\mathbf{u} \cdot \mathbf{x} = 0$. Describe W geométricamente. ¿Cuál es la matriz de la que W es el espacio nulo?

- ▶26. Supongamos que y es un vector ortogonal a u y a v. Demuestra que y es ortogonal a u + v.
- ightharpoonup27. Supongamos que \mathbf{y} es un vector ortogonal a \mathbf{u} y a v. Demuestra que y es ortogonal a todo vector w de $Gen\{u,v\}.$
- 28. Supongamos que x es un vector ortogonal a cada uno de los vectores $\mathbf{v}_1, \dots, \mathbf{v}_p$. Demuestra que \mathbf{x} es ortogonal a todo vector \mathbf{w} de $W = \text{Gen}\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$.

- ▶29. Sea W un subespacio de \mathbb{R}^n y sea W^{\perp} su complemento ortogonal (conjunto de todos los vectores ortogonales a W). Sigue los siguientes pasos para demostrar que W^{\perp} es un subespacio de \mathbb{R}^n :
 - (a) Sea z ∈ W[⊥] y sea u un vector cualquiera de W. Entonces z • u = 0. Si c es un escalar, demuestra que cz es ortogonal a u. (Puesto que u es arbitrario, esto demuestra que cz pertenece a W[⊥].)
- (b) Sean $\mathbf{z_1}$, $\mathbf{z_2} \in W^{\perp}$ y sea \mathbf{u} un vector cualquiera de W. Demuestra que $\mathbf{z_1} + \mathbf{z_2}$ es ortogonal a \mathbf{u} . (¿Qué se deduce de esto acerca de $\mathbf{z_1} + \mathbf{z_2}$.)
- (c) Completa la demostración de que W^{\perp} es un subespacio de \mathbf{R}^{n} .
- ▶30. Demuestra que si x pertenece a W y a W^{\perp} , entonces x = 0.

Pistas y soluciones de ejercicios seleccionados de la sección 7.1

6.
$$\binom{8/13}{12/13}$$
.

8.
$$\|\mathbf{x}\| = 7$$
.

11.
$$\begin{pmatrix} 7/\sqrt{69} \\ 2/\sqrt{69} \\ 4/\sqrt{69} \end{pmatrix}$$
.

13. $\sqrt{185}$.

16. Lo son porque $\mathbf{u} \cdot \mathbf{v} = 0$.

20. (a) Recuérdese la propiedad de simetría del producto escalar, (b) Sólo si c no es negativo. Debía decir $\|c\mathbf{v}\| = |c|\|\mathbf{v}\|$, (c) Recuérdese la definición del espacio ortogonal a W, (d) Piénsese en el recíproco del teorema

de Pitágoras, (e) $A\mathbf{x} = \mathbf{0}$ implica que cada fila de A es ortogonal a \mathbf{x} .

22. $\|\mathbf{u}\|^2 = 30$, $\|\mathbf{v}\|^2 = 101$, $\|\mathbf{u} + \mathbf{v}\|^2 = 131$ y $\mathbf{u} \cdot \mathbf{v} = 0$. Los resultados cumplen 30 + 101 = 131. La explicación es el teorema de Pitágoras: Como $\mathbf{u} \cdot \mathbf{v} = 0$, \mathbf{u} y \mathbf{v} son ortogonales y se cumple $\|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 = \|\mathbf{u} + \mathbf{v}\|^2$.

25. Es el plano que pasa por el origen y es perpendicular a la recta de los múltiplos de \mathbf{u} . W es el espacio nulo de la matriz de una fila \mathbf{u}^T .

27.
$$\mathbf{w} = x_1 \mathbf{u} + x_2 \mathbf{v}, \ \mathbf{y} \cdot \mathbf{w} = \mathbf{y} \cdot (x_1 \mathbf{u} + x_2 \mathbf{v}) = x_1 \mathbf{y} \cdot \mathbf{u} + x_2 \mathbf{y} \cdot \mathbf{v} = 0 + 0 = 0.$$

30. $\mathbf{x} \cdot \mathbf{x} = 0$ por se el producto escalar de un vector de W por un vector de W^{\perp} .