Each part of each problem is worth 8 points (96 points total). Please show all of your work and justify all your answers.

1. (a) Show that for any $x \in \mathbb{C}^m$, $||x||_{\infty} \leq ||x||_1$.

$$||x||_{\infty} = \max_{i} |x_i| \le \sum_{i} |x_i| = ||x||_1.$$

(b) Show that for any $x \in \mathbb{C}^m$, $||x||_1 \leq m||x||_{\infty}$. If x_i is the element of x with maximum modulus then

$$||x||_1 = \sum_i |x_i| \le m|x_j| = m||x||_{\infty}.$$

(c) Show that bounds of the form

$$c_1 ||A||_1 \le ||A||_{\infty} \le c_2 ||A||_1$$

hold for any matrix $A \in \mathbb{C}^{m \times n}$, where the constants c_1 and c_2 depend only on m and n (not on the particular matrix). Determine these constants (the best possible, using the bounds from parts (a) and (b)). Hint: Tackle each inequality separately.

$$||A||_1 = \max_{x \neq 0} \frac{||Ax||_1}{||x||_1} = \frac{||Ay||_1}{||y||_1} \le \frac{m||Ay||_{\infty}}{||y||_{\infty}} \le m||A||_{\infty}$$

where y is the vector that maximizes the ratio. So $c_1 = 1/m$.

$$||A||_{\infty} = \max_{x \neq 0} \frac{||Ax||_{\infty}}{||x||_{\infty}} = \frac{||Ay||_{\infty}}{||y||_{\infty}} \le \frac{n||Ay||_{1}}{||y||_{1}} \le n||A||_{1}$$

where $y \in \mathbb{C}^n$ is the vector that maximizes the ratio. So $c_2 = n$. This uses

$$||y||_1 \le n||y||_{\infty} \implies \frac{1}{||y||_{\infty}} \le \frac{n}{||y||_1}$$

since $y \in \mathbb{C}^n$.

2. Let

$$A = \left[\begin{array}{rrr} 1 & 3 \\ 1 & -3 \\ 1 & 3 \\ 1 & -3 \end{array} \right].$$

(a) Determine the reduced QR factorization of the matrix A. Normalizing the first column of A gives

$$q_1 = a_1/||a_1|| = \frac{1}{2} \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}.$$

Since $a_1^T a_2 = 0$ the columns are already orthogonal so we only need to normalize the second column to get q_2 by dividing by $||a_2|| = 6$.

We find that

$$Q = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ 1 & 1 \\ 1 & -1 \end{bmatrix}, \qquad R = \begin{bmatrix} 2 & 0 \\ 0 & 6 \end{bmatrix}.$$

(b) Using any method you wish, solve the least squares problem Ax = b for

$$b = \left[\begin{array}{c} 1 \\ 1 \\ 1 \\ 0 \end{array} \right].$$

You can form the normal equations $A^TAx = A^Tb$ or solve the system $Rx = Q^Tb$. Either way you need only solve a diagonal system of two equations for

$$x = \left[\begin{array}{c} 3/4 \\ 1/12 \end{array} \right].$$

- 3. For this problem, let $P \in \mathbb{C}^{m \times m}$ be a nonzero projector, and let $Q \in \mathbb{C}^{m \times n}$ with n < m and $Q^*Q = I_{n \times n}$.
 - (a) Is Q unitary? (Justify your answer.) No, only a square matrix can be unitary. $Q^*Q = I$ but $QQ^* \neq I$.
 - (b) Show that $||Q||_2 = 1$. For any x, $||Qx||^2 = x^*Q^*Qx = x^*x = ||x||^2$ and hence

$$\frac{\|Qx\|}{\|x\|} = 1$$

for all x and so the norm is 1.

orthogonal basis for the range of P.

(c) Show that $||P||_2 \ge 1$.

Any projector satisfies $P^2 = P$. Choose x so that $y = Px \neq 0$. Then $P(Px) = P^2x = Px$ and hence Py = y and ||Py||/||y|| = 1. The matrix norm is the maximum of this ratio and must be at least this large.

Note the problem stated that P is a *nonzero* projector. The zero matrix is a projector but has norm 0. The proof above would fail since there is no x for which $Px \neq 0$ in this case.

(d) Suppose P is an orthogonal projector (recall that this means $P = P^*$, not $P^*P = I$). Show that $||P||_2 = 1$. Hint: Write P in terms of a matrix with the properties of Q. Any orthogonal projector can be written as $P = QQ^*$ where the columns of Q are an

So $||P|| \le ||Q|| \, ||Q^*||$. We know $||Q|| \le 1$ and also $||A^*|| = ||A||$ in the 2-norm for any A, so we also have $||Q^*|| = 1$.

2

Note that in other norms it is not always true that $||A^*|| = ||A||$, since, for example $||A^*||_1 = ||A||_{\infty}$. For the 2-norm you can verify that from the fact that

$$A = U\Sigma V^* \implies A^* = V\Sigma U^*,$$

so both matrices have the same $\sigma_1 = ||A||_2$.

For an orthogonal projector, you could also note that $P = QIQ^*$ is the SVD of P and so $\sigma_1 = 1$.

- 4. Let $A = e_1 e_2^* + 2e_2 e_3^* = e_1 e_2^T + 2e_2 e_3^T \in \mathbb{R}^{3 \times 3}$, where e_1 , e_2 , and e_3 are the unit vectors in \mathbb{R}^3 , i.e. the three columns of the 3×3 identity matrix.
 - (a) What is the rank of A?

The rank is 2. There are several ways to justify this. For example by noting that the singular values are 2, 1, 0 and only 2 are nonzero.

(b) Determine the full SVD of the matrix A. Hint: U and V will be permutation matrices. Another hint: What are the three singular values of A?

Write $A = 2e_2e_3^* + e_1e_2^* + 0e_3e_1^*$ to see that

$$A = \left[\begin{array}{ccc} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{array} \right] \left[\begin{array}{ccc} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array} \right] \left[\begin{array}{ccc} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{array} \right]$$

Remember that the proper SVD form requires the σ_i in decreasing order.

(c) Determine the projection matrix P that orthogonally projects any vector in \mathbb{R}^3 onto the range of A.

 $P = \hat{U}\hat{U}^*$ where \hat{U} is the reduced U with only the columns corresponding to nonzero singular values. These columns form an orthogonal basis for the range of A.

$$\hat{U} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 0 & 0 \end{bmatrix} \implies P = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

You could also deduce this from the original form of A given: Ax is a linear combination of e_1 and e_2 for any x, so P must project onto the x_1 - x_2 plane.

Note that if you use the full U instead of \hat{U} you would get P = I, which can't be right since it has rank 3 instead of 2. Since U is unitary its columns span all of \mathbb{R}^3 .