

CSE 4205 Digital Logic Design

Gate Level Minimization

Course Teacher: Md. Hamjajul Ashmafee

Lecturer, CSE, IUT

Email: ashmafee@iut-dhaka.edu

The Map Method

- Complexity of the <u>digital logic gates</u> depends on the complexity of <u>algebraic expression</u>.
- Simplification truth table can be used but no specific rules
- Cut-and-try method manual but error prone
- Veitch / Karnaugh Map simple straightforward procedure
- Made of squares represent minterms

2 or 3 Variables Map

- There are 4 minterms for 2 variables and 8 minterms for 3 variables where variables are appeared in primed or not-primed form.
- Minterms are in binary sequence but appeared in a sequence similar to the reflected code in k-map
- Only one bit changes in value from one adjacent column to the next
 - Any two adjacent squares in the map differ by only one variable
- Any expression in standard form can visualized with K-map $x + y = x'y + xy' + xy = m_1 + m_2 + m_3$

Implicants

- Implicant is the group (adjacent) of minterms having 2ⁿ 1s of corresponding minterms in that group
- A prime implicant is a product term obtained by combining the maximum possible number of adjacent squares in the map. (number = 2ⁿ)
- Essential prime implicant, is that <u>prime implicant</u> that has at least one minterm which is not covered by any other prime implicants.

2 or 3 Variables Map

Two variables K-map

Three variables K-map

2 or 3 Variables Map...

$$F = x'yz + x'yz' + xy'z' + xy'z$$
$$F(x, y, z) = \Sigma(2, 3, 4, 5)$$

2 or 3 Variables Map...

$$F(x, y, z) = \Sigma(0, 2, 4, 5, 6)$$

Solve these?

$$F = x'yz + x'yz' + xy'z' + xy'z$$

$$F = A'C + A'B + AB'C + BC$$

4 Variables Map

m_0	m_1	m_3	m_2
m_4	m_5	m_7	m_6
m_{12}	m_{13}	m_{15}	m_{14}
m_8	m_9	m_{11}	m_{10}

(a)

\	\ yz			y						
wx		00	01	11	10					
			m_1	m_3	m_2					
	00	w'x'y'z'	w'x'y'z	w'x'yz	w'x'yz'					
		m_4	m_5	m_7	m_6					
	01	m_4 $w'xy'z'$	w'xy'z	w'xyz	w'xyz'					
						$ _x$				
ĺ		m_{12}	m_{13}	m_{15}	m_{14}	[^				
	11	wxy'z'	wxy'z	wxyz	wxyz'					
", J						IJ				
w		m_8	m_9	m_{11}	m_{10}					
	10	m_8 $wx'y'z'$	wx'y'z	wx'yz	wx'yz'					
Į										
				7						
			(b)							

Remember:

1 square = 4 literals term

2 squares = 3 literals term

4 squares = 2 literals term

8 squares = 1 literal term

16 squares = 1

4 Variable Map

$$F(w, x, y, z) = \Sigma(0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)$$

Solve this:

$$F = A'B'C' + B'CD' + A'BCD' + AB'C'$$

5 or 6 Variables Map

5- variable Karnaugh map (Gray code)

POS & SOP Simplification

Last Class

NAND & NOR implementation

NAND and NOR are easier to implement

NAND implementation

Home Task

NOR Implementation

Home Task

Don't Care Condition

$$F(w, x, y, z) = \Sigma(1, 3, 7, 11, 15)$$
$$d(w, x, y, z) = \Sigma(0, 2, 5)$$

The Tabular Method / Quine-McCluskey Method

$$F = \Sigma(0, 1, 2, 8, 10, 11, 14, 15)$$

(a)	(b)	(c)			
wxyz	wx yz	wx yz			
0 0000 /	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,8 -0 0 0 \	10, 11, 14, 15			
8 1000 √	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
10 1 0 1 0 🗸	10, 11 1 0 1 - 🗸				
11 1 0 1 1 \/ 14 1 1 1 0 \/	10, 14 1 - 1 - \(\square \)				
15 1 1 1 1 🗸	11, 15 1 - 1 1 \langle 14, 15 1 1 1 - \langle				

$$F = w'x'y' + x'z' + wy$$

The Tabular Method (Alternative Way)

TABLE 3-6
Determination of Prime Implicants of Example 3-13 with Decimal Notation

(a)	(b)	(c)			
0 🗸	0, 1 (1)	0, 2, 8, 10 (2, 8)			
	0, 2 (2) √	0, 2, 8, 10 (2, 8)			
1 🗸	0,8 (8) √				
2 /	-	10, 11, 14, 15 (1, 4)			
8 🗸	2, 10 (8) √	10, 11, 14, 15 (1, 4)			
	8, 10 (2) $\sqrt{}$				
10 √					
11 /	10, 11 (1)				
14 🗸					
15 🗸	11, 15 (4)				

The Tabular Method

Verification using K-map:

Prime Implicants Determination

Another Example:

$$F(w, x, y, z) = \Sigma(1, 4, 6, 7, 8, 9, 10, 11, 15)$$

Determination of Prime Implicants for Example 3-14

(a)				(b)	(c)
0001	1	√	1, 9	(8)	8, 9, 10, 11 (1, 2)
0100	4	✓	4, 6	(2)	8, 9, 10, 11 (1, 2)
1000	8	/	8, 9	(1) /	
			8, 10	(2) \(
0110	6	✓		-	
1001	9	\checkmark	6, 7	(1)	
1010	10	✓	9, 11	(2) \	
			10, 11	(1) /	
0111	7	✓			
1011	11	✓	7, 15	(8)	
			11, 15	(4)	
1111	15	✓			

Prime Implicants Selections

Danisa					
Decimal	w	X	У	Z	Term
1, 9 (8)	_	0	0	1	x'y'2
4, 6 (2)	0	1	_	Ô	w'xz
6, 7 (1)	0	1	1	_	w'xy
7, 15 (8)	_	1	1	1	
11, 15 (4)	1	_	1	1	xyz
8, 9, 10, 11 (1, 2)	1	0	_	_	wyz wx′

Prime Implicant Table for Example 3-15

		1	4	6	7	8	9	10	11	15
$\sqrt{x'y'z}$	1, 9	X					X			
$\sqrt{w'xz'}$	4, 6		X	X			21			
w'xy	6, 7			X	X					
xyz	7, 15				X					X
wyz	11, 15					*			X	X
√ wx′	8, 9, 10, 11		<u>.</u>			X	X	X	X	А
		\checkmark	✓	√		√	_/	✓		_

The Tabular Method

Verification using K-map:

$$F = x'y'z + w'xz' + wx' + xyz$$

Prime Implicants Selections

