LAB003 - Python em PDS:

Calculando a DTFT usando Python:

Na DTFT o tempo é discreto e a frequência é continua com os valores de $\omega \in [-\pi,\pi]$. No computador temos que calcular a DTFT de um sinal finito (se o sinal não for finito temos que colocá-lo em uma "janela" de valores). Para representar a DTFT no domínio de frequência em um computador temos que amostrá-la para que a frequência seja discreta. Como anteriormente vamos utilizar a função fft (Fast Fourier Transform).

A função X=fft(x):

- Onde x é um vetor com os valores de x[n], n = 0,...,L-1
 - o L é o número de elementos de x[n]
- X recebe X[k], k = 0,..., L-1
 - É a DTFT $X(e^{j\omega})$ com freq. discretas $[\omega_k = 2\pi k/L]$

Os valores de $\{k\}$ correspondem a frequências discretizadas que vão de 0 a $2\pi(L-1)/L$ (perto de 2π para grandes valores de L). É uma discretização de frequência com $\omega \in [0, 2\pi]$

Para transformar para DTFT com $\omega \in [-\pi, \pi]$ temos que subtrair por π de $\omega_k = 2\pi k/L$ para conseguir a banda da frequência correta.

$$\widetilde{\omega}_{k} = \omega_{k} - \pi = \pi \frac{2k - L}{L}, k = 0, \dots, L - 1 \quad ou \quad -\pi \leq \widetilde{\omega}_{k} \leq \pi$$

Por exemplo, o código:

$$L = len(x)$$

$$X = fft(x)$$

$$wp = np.arange(0,2*pi,2*pi/L)$$

$$w = wp-pi$$

Ou podemos mostrar o eixo de freq. normalizado por π com:

$$w=(wp - \pi)/\pi$$

O Python fornece outra função a fftfreq(), assim o código fica:

Como no DTFT o domínio da frequência é contínua vamos utilizar o comando **plot()** em vez do comando **stem()**, para esboçar a magnitude e a fase da representação do sinal na frequência.

Exemplo: 1 - Pulso retangular:

Exemplo: 2 - Um sinal cossenoidal "Janelado"

Exemplo: 3 - Um sinal chirpado

Quando calcularmos a DTFT de um sinal amostrado de um sinal contínuo é importante mostrar o eixo de frequência em rad/s ou em Hz. Podemos converter frequência discreta ω (rad) para uma frequência de um sinal de tempo continuo Ω (rad/s) fazendo $\omega = \Omega T_s$, onde T_s é o período de amostragem usado.

$$\Omega = \frac{\omega}{T_{\rm s}}$$

Então $\Omega \in [-\pi/T_s]$ ou $[-\Omega_s/2]$, $\Omega_s/2$, onde $\Omega_s/2 \ge \Omega_{m\acute{a}x}$, onde Ω_s é a freq. de amostragem e $\Omega_{m\acute{a}x}$ é freq. máxima do sinal amostrado.

Exemplo: $4 - \text{Sinal } x(t) = 5^{-2t}u(t) \text{ com } T_s = 0.01 \text{ [s] por amostra e a freq. em [Rad/s]}$

Exemplo: $5 - Sinal x(t) = cos(2\pi*20t)u(t) com Ts = 0.01 [s] por amostra e a freq. em [Hz]$

Exercício 1) Esboce x[n] e a magnitude e fase da DTFT de

$$a)x[n] = 0.5^n u(n)$$

b)
$$x[n] = 2(0.8^{(n+2)})u(n-2)$$

$$c)x[n] = 5 * (-0.9)^n cos (0.1\pi n)u(n)$$

$$d)x[n] = \left(0.9e^{j\pi/3}\right)^n u(n)$$

Escolha com cuidado os intervalos de tempo e frequência. Plote na frequência em unidades de pi.

Exercício 2) Sendo x(t) o sinal analógico

$$x(t) = 100\cos(2\pi \cdot 100 \cdot t)e^{-100t}u(n)$$

- a) Foi amostrado na frequência de Fs = 5000 amostras/segundo para obter $x_1[n]$. Determine e plote $X_1(e^{j\omega})$
- b) Foi amostrado na frequência de Fs = 1000 amostras/segundo para obter x2[n]. Determine e plote $X_2(e^{j\omega})$

Escolha com cuidado o intervalo e plote a frequência em [Hz]