Homework #1

Eric Tao Math 237: Homework #1

February 10, 2024

Question 2. Let E be a normed vector space over \mathbb{R} . We call a subspace $H \subseteq E$ a hyperplane if the quotient space E/H has dimension 1.

- 2.1) Show that the closure of any subspace of E is also a subspace of E. Conclude that a hyperplane H is either closed or dense in E.
- 2.2) Let u be a linear functional on E. Prove that u is discontinuous if and only if there exists a sequence $\{x_n\}$ in E that converges to 0 such that $u(x_n) = 1$ for all n.
- 2.3) Let $x_0 \in E$ be a unit norm vector, and define H as the complement of the span of x_0 . Show that every $x \in E$ can be uniquely decomposed as $x = t(x)x_0 + y(x)$ where $t : E \to \mathbb{R}$, and $y : E \to H$, linear. Further, prove that t, y are continuous if and only if H is closed.
- 2.4) Let u be a linear functional on E. Prove that u is continuous if and only if the kernel of u, H, is closed.

Solution. 2.1)

Let $S \subset E$ be a vector subspace, and denote \overline{S} as its closure. Of course, if S is closed, then $\overline{S} = S$, and therefore, the closure is a vector space.

Now, suppose $S \neq \overline{S}$. Then, we may describe \overline{S} as the union of S and the limit points of S in E. Since $0 \in S \subset \overline{S}$, we need only show that \overline{S} is closed under addition and scalar multiplication.

To check addition, we may discard the case where $x,y \in S$, as S is already a vector space. Thus, suppose x is a limit point of S, and $y \in S$. Since x is a limit point, there exists a sequence $\{x_n\} \subset S$ such that $\lim_{n\to\infty} x_n = x$. Then, consider the sequence $\{x_n+y\}$. Clearly, since $x_n\to x$, we have that $\lim_{n\to\infty} x_n+y=x+y$. Since $x\notin S$, being a limit point, x+y cannot be in S, and hence, is a limit point of S. Hence, $x+y\in \overline{S}$. Without too much trouble, we see that the same argument holds when y is a limit point, where we leverage the sequences $\{x_n\},\{y_n\}$ and consider their sum $\{x_n+y_n\}$.

Similarly, we can just check $x \notin S$ for scalar multiplication; if x is a limit point, $\{x_n\} \to x$, then of course $\{ax_n\} \to ax$ for $a \in \mathbb{R}$, and therefore, if $x \in S$, $ax \in S$. Thus, we have that \overline{S} is closed under addition and scalar multiplication, and contains 0. Therefore, \overline{S} is a vector subspace of E.

Now, let H be an arbitrary hyperplane. Of course, if H is closed, $\overline{H} = H$. So suppose H is not closed, and therefore $H \subset \overline{H}$ is a proper subset. Looking at E/H, since this has dimension 1, fixing some $z \in E \setminus H$, we may identify E/H as the span of z + H. Since \overline{H} is a proper superset of H, there exists a $z' \in \overline{H}$ that does not belong to H. Under the projection into E/H, $\pi(z') = \alpha z + H$ for some $\alpha \in \mathbb{R} \setminus 0$, as otherwise, $z' \in H$, hence there exists a $h \in H$ such that $\alpha z + h = z'$ in E. Rearranging, this implies that $z = \frac{1}{\alpha}(z' - h)$. But, since $\alpha \in \mathbb{R}$, z', $h \in \overline{H}$, this implies that $z \in \overline{H}$. Hence, we have that $\overline{H} = E$. Since the closure of H in E is E, we have that H is dense in E, and we are done.

2.2)

First, we prove the forward direction. Suppose u is discontinuous. In particular then, it is discontinuous at the identity, since u is continuous if and only if it is continuous at the origin. Then, there exists some fixed $\epsilon > 0$, such that we may find a x_n with that $||x_n - 0|| < 1/n$ and with $|u(x_n) - u(0)| = u(x_n) > \epsilon$. Now, consider the modified sequence $\{\frac{x_n}{u(x_n)}\}$. We notice that since $u(x_n) > \epsilon$, that term by term, this sequence is smaller in norm than $\{\frac{x_n}{\epsilon}\}$. Furthermore, since $x_n \to 0$, $\frac{x_n}{\epsilon} \to 0$, since $\|\frac{x_n}{\epsilon}\| = \frac{1}{\epsilon} \|x_n\| < \frac{1}{\epsilon} \frac{1}{n}$, which goes to

0 as $n \to \infty$ for a fixed ϵ . Thus, $\frac{x_n}{\epsilon} \to 0$ and therefore, $\left\{\frac{x_n}{u(x_n)}\right\} \to 0$. On the other hand though, since u is linear, $u\left(\frac{x_n}{u(x_n)}\right) = \frac{1}{u(x_n)}u(x_n) = 1$, as desired.

On the other hand, the backwards direction follows fairly easily. Since we have a sequence $\{x_n\} \to 0$ with $u(x_n) = 1$ for all n, of course, u is discontinuous at 0, because for $\epsilon = 1/2$, for any $\delta > 0$, we can find an x_n such that $||x_n|| < \delta$, but by definition, $u(x_n) = 1 > \epsilon$. Hence, u is discontinuous at some point, and thus discontinuous.

2.3)

By the description of H, we can identify E/H as spanned by x_0 . Then, for any $x \in E$, we can consider its image under the projection $\pi: E \to E/H$, $\pi(x) = t(x)x_0 + H$, for some map $t: E \to \mathbb{R}$; moreover, since π is linear, so must be t. Then, we may identify $y(x) = x - t(x)x_0$. We notice that $\pi(y(x)) = \pi(x - t(x)x_0) = \pi(x) - t(x)\pi(x_0) = t(x)x_0 + H - t(x)x_0 + H = 0 + H$, hence $y(x) \in H$.

We see this decomposition as unique, as x maps to exactly one coset of E/H due to the injectivity of left addition, so t is distinct. The uniqueness of y follows from the uniqueness of t. We also notice in what follows, that t, y are either both continuous or both discontinuous due to the definition of y.

Now, suppose t, y are continuous. Then, we can identify H as the inverse image $t^{-1}(0)$. Since t is continuous, $t^{-1}(0)$ is closed, hence $H = t^{-1}(0)$ is closed.

On the other hand, suppose t, y discontinuous. Then, by 2.2, there exists a sequence $\{x_n\} \subset E$ such that $t(x_n) = 1$, and $x_n \to 0$. By the previous work, we can reexpress this sequence via our decomposition as:

$$x_n = t(x_n)x_0 + y(x_n) = x_0 + y(x_n)$$

But, since $x_n \to 0$, this implies that $y(x_n) \to -x_0$. Then, $-x_0 \in \overline{H}$, and hence from the work in 2.1, since \overline{H} is a vector subspace, H is dense, i.e. not closed. Therefore, by the contrapositive, H being closed implies that t and thus y is continuous.

2.4)

Let u be a linear functional on E.

If u is trivial, then the result is trivial, as then the kernel of u is E, always closed, and the trivial map is continuous, because then the preimage of 0 is all of E.

Now, suppose u is not trivial. Then, because the kernel has codimension 1, looking at E/H, we may find a representative z+H such that E/H is the span of z+H. Then, via 2.3, we may decompose any $x \in E$ as x = t(x)z + y(x).

Then, u acting on any x has the action of u(x) = u(t(x)z + y(x)) = t(x)u(z). Since u(z) is a constant, the continuity of u(x) is equivalent to the continuity of t. But, by 2.3, the continuity of t is equivalent to the closure of H. Thus, we have that:

u continuous $\iff t$ continuous $\iff H$ closed

exactly our desired result.

Question 5. Let E be a Banach space.

- 5.1) Suppose $T \in L(E, E)$, with ||I T|| < 1. Prove that T is invertible, and that the series $\sum_{n=0}^{\infty} (I T)^n$ converges in L(E, E) to T^{-1} .
- 5.2) Suppose $T \in L(E, E)$ is invertible and $||S T|| < ||T^{-1}||^{-1}$. Prove that S is invertible. Conclude that the set of invertible operators in L(E, E) is open.

Solution. 5.1)

Firstly, we use the fact that since E is complete, so is L(E,E) from Folland 5.4. We notice, that by the definition of the norm, that $\sup\{\|(I-T)x\|:\|x\|=1\}<1$; denote it as c. Considering (I-T)(I-T)(x), for $\|x\|=1$, call (I-T)x=y. Clearly, $\|y\|\leq c$. Looking at $(I-T)(y)=\|y\|(I-T)\left(\frac{y}{\|y\|}\right)$, due to the

operator norm again, we see that $\|(I-T)(\frac{y}{\|y\|}\| \le c$. Hence, for all $\|x\| = 1$, we have that $\|(I-T)^2(x)\| \le c^2$. Then, $\sup\{\|(I-T)(I-T)x\| : \|x\| = 1\} \le c^2$. Proceeding inductively, by considering $(I-T)^n(x) = (I-T)(I-T)^{n-1}(x)$, and using the same argument on $(I-T)^{n-1}(x)$ as having norm at most c^{n-1} in the same way, we see that $\|(I-T)^n\| \le c^n$.

Now, we consider the sum $\sum_{n=0}^{\infty} \|(I-T)^n\|$. By the observations above, we have that $\|(I-T)^n\| \le \|I-T\|^n$. So, we have a sum:

$$\sum_{n=0}^{\infty} \|(I-T)^n\| \le \sum_{n=0}^{\infty} \|(I-T)\|^n = \sum_{n=0}^{\infty} c^n = \frac{1}{1-c}$$

where we've additionally used the fact that ||I|| = 1, which is clear, and identified this as an infinite geometric series with ratio less than 1. Then, since this is an absolutely convergent sum, and L(E, E) is complete, $\sum_{n=0}^{\infty} (I-T)^n$ converges.

Now, we wish to show that $T\sum_{n=0}^{\infty}(I-T)^n$ acts as the identity, where we note that because T commutes with its powers, and T commutes with I, that we can write it on the left or right without ambiguity.

First, we look at the partial sums. We claim that $\sum_{n=0}^{k} T(I-T)^n = -(I-T)^{k+1} + I$.

The base case is easy. For k = 1, we see that this sum is exactly:

$$TI + T(I - T) = T + T - T^{2} = 2T - T^{2} = -(I - T)^{2} + I$$

Now, suppose this is true for up to k = m. Then, we have that:

$$\sum_{n=0}^{m+1} T(I-T)^n = \sum_{n=0}^m T(I-T)^n + T(I-T)^{m+1} = -(I-T)^{m+1} + I + T(I-T)^{m+1} = (I-T)^{m+1}(-I+T) + I = -(I-T)^{m+2} + I$$

as desired. Then, to compute $T\sum_{n=0}^{\infty}(I-T)^n$, we can take the following limit:

$$\lim_{m \to \infty} T \sum_{n=0}^{m} (I - T)^n = \lim_{m \to \infty} -(I - T)^{m+2} + I$$

and because of the the work done with the norm, since $\|-(I-T)^{m+2}\| \le \|I-T\|^{m+2}$, this goes to the 0 map as $m \to \infty$. Hence:

$$\lim_{m \to \infty} T \sum_{n=0}^{m} (I - T)^n = I$$

and hence, T is bijective with $\sum_{n=0}^{\infty} (I-T)^n$ as a left and right inverse, with the sum bounded. 5.2)

We consider the related operator $T^{-1}(S-T)=T^{-1}S-I$. By adapting the argument in the first part of 5.1, we see that $||T^{-1}(S-T)|| \leq ||T^{-1}|| ||S-T||$, where we do the same trick on considering $T^{-1}[(S-T)(x)]/||(S-T)(x)||$. So, we have that:

$$\|T^{-1}S - I\| = \|T^{-1}(S - T)\| < \|T^{-1}\| \|S - T\| < \|T^{-1}\| \|T^{-1}\|^{-1} = 1$$

Thus, by 5.1 then, $T^{-1}S$ is invertible. But T is already invertible, and the composition of invertible bounded linear operators is invertible (as composition of bijective is bijective, composition of bounded is still bounded pretty easily: $||f \circ g(x)|| \le c_f ||g(x)|| \le c_f c_g ||x||$, and invertibility comes from, for $f \circ g$, considering $g^{-1} \circ f^{-1}$). Hence, $T \circ T^{-1}S = S$ is invertible.

Thus, we have shown that there exists open ball around any invertible operator T in B(E, E) composed of invertible operators. Hence, by the local criterion for an open set, the set of invertible operators in B(E, E) is open.

Question 8. Suppose that \mathcal{H} is a Hilbert space, $T \in L(\mathcal{H}, \mathcal{H})$.

8.1) Show that there exists a unique element that we denote $T^* \in L(\mathcal{H}, \mathcal{H})$ such that $\langle Tx, y \rangle = \langle x, T^*y \rangle$ for all $x, y \in \mathcal{H}$. Call T^* the adjoint of T.

- 8.2) Prove that $T^* = V^{-1}T^{\dagger}V$ where V is the conjugate linear isomorphism from $\mathcal{H} \to \mathcal{H}^*$ defined as $(Vy)(x) = \langle x, y \rangle$.
 - 8.3) Prove that $||T^*|| = ||T||$, $||TT^*|| = ||T||^2$, $(aS + bT)^* = \overline{a}S^* + \overline{b}T^*$, $(ST)^* = T^*S^*$, and $T^{**} = T$.
- 8.4) Let R(T), N(T) denote the range and nullspace of T, respectively. Prove that $R(T)^{\perp} = N(T^*)$ and $N(T)^{\perp} = \overline{R(T^*)}$.
 - 8.5) Show that T is unitary if and only if T is invertible, with $T^{-1} = T^*$.

Solution. 8.1)

Suppose there exists another $T' \in L(\mathcal{H}, \mathcal{H})$ such that $\langle x, T'y \rangle = \langle Tx, y \rangle = \langle x, T^*y \rangle$.

Then, we consider $\langle x, T'y \rangle - \langle x, T^*y \rangle = 0$. By conjugate symmetry, we have that:

$$\overline{\langle T'y,x\rangle} - \overline{\langle T^*y,x\rangle} = 0$$

But, the complex conjugate distributes over addition, so:

$$\overline{\langle T'y, x \rangle - \langle T^*y, x \rangle} = 0$$

Now, using linearity of the first term, we have that:

$$\overline{\langle T'y - T^*y, x \rangle} = 0$$

Since x is arbitrary, we may choose x as $T'y - T^*y$. Since the inner product is real in this case, and as a Hilbert space, extends to a norm, we have that

$$\langle T'y - T^*y, T'y - T^*y \rangle = 0 \implies ||T'y - T^*y||^2 = 0 \implies ||T'y - T^*y|| = 0$$

Hence, by the properties of the norm, we have that $T'y - T^*y = 0 \implies T^*y = T'y$. Since y was arbitrary, this implies that $T' = T^*$ on all of \mathcal{H} .

8.2)

We consider the action of $V^{-1}T^{\dagger}V$ on a test vector y. By definition, $V(y) = f_y \in \mathcal{H}^*$, which acts via $f_y(x) = \langle x, y \rangle$. Then, again by definition, T^{\dagger} acts on $f_y(x)$, sending it to the functional that acts via $\tilde{f}_y(x) = \langle T(x), y \rangle$. Lastly, V^{-1} takes \tilde{f}_y and sends it back to \mathcal{H} to z, such that z is the unique element in \mathcal{H} such that $\langle x, z \rangle = \langle T(x), y \rangle$, due to the definition of \tilde{f}_y . But, letting x, y range over \mathcal{H} , this is exactly the action of T^* . Since T^* is unique, this is an equality of operators.

8.3)

First, we prove that $(T^*)^* = T$. Let x, y be arbitrary elements of \mathcal{H} , and consider the equation $\langle T^*x, y \rangle = \langle x, (T^*)^*(y) \rangle$. We have that following string of equalities:

$$\overline{\langle Ty,x\rangle}=\overline{\langle y,T^*x\rangle}=\langle T^*x,y\rangle=\langle x,(T^*)^*y\rangle=\overline{\langle (T^*)^*y,x\rangle}$$

which implies then that $\langle Ty, x \rangle = \langle (T^*)^*y, x \rangle \Longrightarrow \langle [T - (T^*)^*](y), x \rangle = 0$ for all x, y. Then, yet again, with the same trick of choosing $x = [T - (T^*)^*](y)$, we see that $T - (T^*)^* = 0$ as operators, and thus $T = (T^*)^*$.

Next, we prove a statement on $V: \mathcal{H} \to \mathcal{H}^*$ that sends $x \mapsto f_x(y) = \langle y, x \rangle$. First, let y be any unit norm vector, and we will consider the norm of f_y . Let x be yet another unit norm vector. Then, by the Cauchy-Schwarz inequality, we have that:

$$||f_y(x)|| = |\langle x, y \rangle| \le ||x|| ||y|| \le 1$$

where we have used the fact that ||x||, ||y|| = 1. Furthermore, by choosing x = y, we see that this attains 1. Thus, we have that $||f_y|| = 1$. Since this is true for all y, we may conclude that ||V|| = 1. Considering the fact that $V^{-1} \circ V$ acts on identity on \mathcal{H} (or, equivalently, $V \circ V^{-1}$ on \mathcal{H}), we can conclude that $||V^{-1}|| = 1$.

Finally, we look at $||T^{\dagger}||$. Letting f be a unit norm vector in \mathcal{H}^* . Via the isomorphism that identifies $y \in \mathcal{H}$ with $f_y(x) = \langle x, y \rangle$, it is clear that $||y|| = 1 \iff ||f_y|| = 1$ due to Cauchy-Schwarz. Suppose $||f_y|| = 1$. Then, for $x \in \mathcal{H}$ with unit norm, we have that:

$$|f_y(x)| \le ||x|| ||y|| \le \left\| \frac{y}{||y||} \right\| ||y|| = ||y||$$

where Cauchy-Schwarz guarantees that we achieve equality at $\frac{y}{f}||y||$. Then, since this inequality holds for all x, and is independent of x, we see that $||f_y|| = ||y||$.

In any case, looking at the action of T^{\dagger} on f_{y} , let x be a unit norm vector in \mathcal{H} , then we see that

$$||T^{\dagger}f_{y}(x)|| = ||f_{y}(T(x))|| = |\langle T(x), y \rangle| \le ||T(x)|| ||y|| \le ||T||$$

where we use the fact that x, y have unit norm. Thus, we may conclude that $||T^{\dagger}|| \leq ||T||$.

Then, using the same argument as used in 5.1 for showing that the operator norm is submultiplicative, we see that:

$$||T^*|| = ||V^{-1}T^{\dagger}V|| < ||V^{-1}|| ||T^{\dagger}|| ||V|| = ||T^{\dagger}|| < ||T||$$

However, we already have that $T = (T^*)^*$, so we may run this same argument with $||T|| = ||(T^*)^*|| = ||(V')^{-1}(T^*)^{\dagger}V'|| \le ||T^*||$ with V' as the isomorphism from $\mathcal{H}^* \to \mathcal{H}$ in the same way. Thus, we have that $||T|| = ||T^*||$.

Now, let x have unit norm. Then, we look at the following string of inequalities:

$$||Tx||^2 = \langle Tx, Tx \rangle = \langle x, T^*Tx \rangle \le ||x|| ||T^*Tx|| \le ||x|| ||T^*T|| ||x|| = ||T^*T||$$

where we notice since $\langle Tx, Tx \rangle = \langle x, T^*Tx \rangle$, the right side is positive and real, and thus is equal to its absolute value, where we use Cauchy-Schwarz.

Since this is true for all x with unit norm, this implies $||T||^2 \le ||T^*T||$. But by submultiplicativity, we have that $||T^*T|| \le ||T^*|| ||T|| = ||T||^2$ from $||T^*|| = ||T||$. Hence, $||T^*T|| = ||T||^2$. We will see later that since $(T^*T)^* = T^*T$, and $||T|| = ||T^*||$ will show this to be equivalent to the problem statement.

To see $(aS+bT)^* = \overline{a}S^* + \overline{b}T^*$ is easy via the conjugate linearity of V, as clearly, V^{-1} must be conjugate linear itself since if we consider $kf_y(x) = k\langle x, y \rangle = \langle x, \overline{k}y \rangle$, evidently, $V(\overline{k}y) = kf_y$, and so $V^{-1}(kf_y) = \overline{k}f_y$. We see that:

$$(aS + bT)^*(y) = V^{-1}(aS + bT)^{\dagger}V(y) = V^{-1}(aS + bT)^{\dagger}f_y = V^{-1}(f_y \circ (aS + bT)) = V^{-1}[a(f_y \circ S) + b(f_y \circ T)] = \overline{a}V^{-1}f_y \circ S + \overline{b}V^{-1}f_y \circ T = \overline{a}S^* + \overline{b}T^*(y)$$

since this is true for arbitrary $y \in \mathcal{H}$, this is an equality of operators. Similarly:

$$(ST)^*(y) = V^{-1}(ST)^{\dagger}V(y) = V^{-1}(ST)^{\dagger}f_y$$

Considering an arbitrary $x \in \mathcal{H}$, we see that:

$$(ST)^{\dagger} f_y(x) = f_y(ST(x)) = S^{\dagger} f_y(T(x)) = T^{\dagger} \circ S^{\dagger} \circ f_y(x)$$

Since this is true for all x, y, we have that:

$$(ST)^* = V^{-1} \circ T^{\dagger} \circ S^{\dagger} \circ V$$

On the other hand, by definition, we have that:

$$T^*S^* = (V^{-1} \circ T^\dagger \circ V) \circ (V^{-1} \circ S^\dagger \circ V) = V^{-1} \circ T^\dagger \circ I \circ S^\dagger \circ V = V^{-1} \circ T^\dagger \circ S^\dagger \circ V$$

completing our proof.

8.4)

Recall that the definition of $R(T)^{\perp} = \{x \in \mathcal{H} : \langle x, y \rangle = 0 \forall y \in R(T)\}.$

First, suppose $y \in R(T)^{\perp}$. Then, by definition, we have that $\langle y, Tx \rangle = \langle Tx, y \rangle = 0$ for all $x \in \mathcal{H}$. Then, we have that $\langle x, T^*y \rangle = 0$. Specifically, this must be true for $x = T^*y$, which implies that $T^*y = 0$. Thus, $R(T)^{\perp} \subseteq N(T^*)$.

Next, suppose $y \in N(T^*)$. Then, we have that $\langle x, T^*(y) \rangle = 0$ for all x, which we can see by the Schwarz inequality, and how $||T^*y|| = 0$. Then, we have that $\langle T(x), y \rangle = 0$ for all $x \in \mathcal{H}$, which implies that $\langle y, T(x) \rangle = 0$, and thus by definition again, $y \in R(T)^{\perp}$.

Now, from the first part, we have that:

$$N(T)^{\perp} = N(T^{**})^{\perp} = (R(T^{*})^{\perp})^{\perp}$$

It should be clear that for X a subset, that $X \subset (X^{\perp})^{\perp}$, as for any $x \in X$, we have that:

$$\langle y, x \rangle = 0 = \overline{\langle x, y \rangle} = \langle x, y \rangle$$

for any $y \in X^{\perp}$. However, we see that the last expression is exactly the defining statement of $(X^{\perp})^{\perp}$. Hence, $X \subset (X^{\perp})^{\perp}$. So, we have that $R(T^*) \subseteq N(T)^{\perp}$. In particular, from problem 56, this implies that $N(T)^{\perp}$ is the smallest closed subspace that contains $R(T^*)$. But from problem 2.1, since $R(T^*)$ is a subspace, hence the smallest closed subspace, hence equal to $N(T)^{\perp}$.

Folland #56:

Let E be a subset of \mathcal{H} . Then $(E^{\perp})^{\perp}$ is the smallest closed subspace containing E.

We have already shown that $E \subset (E^{\perp})^{\perp}$. From Proposition 5.21 in Folland, we know that any subset E^{\perp} is closed. Moreover, from the linearity of the inner product in the first argument, of course this is a vector subspace of \mathcal{H} . Thus, we need only prove that it is the smallest such closed subspace.

Suppose we have another closed subspace of \mathcal{H} , call it F such that $E \subseteq F$. Then, of course, $F^{\perp} \subseteq E^{\perp}$, since if we're orthogonal to all of F, and F contains E, then we're orthogonal to E. Evidently then, $(E^{\perp})^{\perp} \subseteq (F^{\perp})^{\perp}$, substituting E^{\perp} for F, and F^{\perp} for E above.

Suppose we fix some element $x \in (F^{\perp})^{\perp}$. By theorem 5.24 in Folland, since F is a closed subspace, then we can rewrite $\mathcal{H} = F \oplus F^{\perp}$, and hence, x = f + f' for $f \in F, f' \in F^{\perp}$. But, of course, $0 = \langle x, f' \rangle = \langle f + f', f' \rangle = \langle f, f' \rangle + \langle f', f' \rangle = \langle f', f' \rangle$, which implies that f' = 0. Hence, x = f. Since we can do this for all $x \in (F^{\perp})^{\perp}$, this implies that $(F^{\perp})^{\perp} \subseteq F$. Hence, $(E^{\perp})^{\perp} \subseteq F$, and therefore, must be the smallest such closed subspace.

8.5)

The backward direction is easy. We have that:

$$\langle x, y \rangle = \langle T^{-1}Tx, y \rangle = \langle T^*Tx, y \rangle = \langle Tx, T^{**}y \rangle = \langle Tx, Ty \rangle$$

for all $x, y \in \mathcal{H}$.

On the other hand, suppose T is unitary. Then, we have that:

$$\langle x, y \rangle = \langle Tx, Ty \rangle = \langle T^*T(x), y \rangle$$

Since T is invertible, we can in particular, choose $x = T^{-1}(z)$. Then, we have that:

$$\langle T^{-1}z, y \rangle = \langle T^*TT^{-1}(z), y \rangle = \langle T^*z, y \rangle$$

Since z ranges over all of \mathcal{H} as T is invertible, we can conclude that $T^{-1} - T^* = 0 \implies T^{-1} = T^*$ everywhere.

Question 12. Let M be a closed subspace of $L^2([0,1])$, contained in C([0,1]).

- 12.1) Prove that there exists C > 0 such that $||f||_u \le C||f||_2$ for all $f \in M$.
- 12.2) For each $x \in [0,1]$, prove that there exists $g_x \in M$ such that $f(x) = \langle f, g_x \rangle$ for all $f \in M$ and that $||g_x||_2 \leq C$.
- 12.3) Show that the dimension of M is at most C^2 , by proving that if $\{f_k\}$ is any orthogonal sequence in M, then $\sum_k |f_k(x)|^2 \leq C^2$ for all $x \in [0,1]$.

Solution. 12.1)

Consider the inclusion as vector spaces $i: M \to C([0,1])$. Evidently, this map is linear, as the addition and scalar multiplication in L^2 and C([0,1]) act in the same way. Then, we wish to show it as closed.

Let $\{f_n\} \to f$ be a convergent sequence of functions in M, such that $\{i(f_n)\} \to g \in C([0,1])$. Suppose $i(f) = f \neq g$. Then, there must exist some x_0 such that $|f(x_0) - g(x_0)| > 0$. By continuity then, since f - g is continuous as well, there exists a $\epsilon > 0$ such that for all $|x - x_0| < \delta$, $|f(x) - g(x)| > \epsilon$. Note that in the case $x_0 - \delta < 0$ or $x_0 + \delta > 1$, we adjust δ to be the smaller of δ and the distance to the endpoint. Thus, we have then that:

$$||f - g||_2 = \sqrt{\int_{[0,1]} |f(x) - g(x)|^2 dx} \ge \sqrt{\int_{[x_0 - \delta, x_0 + \delta]} |f(x) - g(x)|^2 dx} \ge \sqrt{2\delta\epsilon^2}$$

On the other hand, we have that:

$$||f - g||_2 = ||f - f_n||_2 + ||f_n - g||_2$$

Since $f \to f_n$ in the L^2 norm, we may choose N_1 such that for all $n > N_1$, $||f - f_n||_2 < \epsilon \sqrt{2\delta}/2$.

Looking at $||f_n - g||_2 = \sqrt{\int_{[0,1]} |f_n - g|^2} \le \sqrt{\int_{[0,1]} ||f_n - g||_u^2}$, since $f_n \to g$ in the uniform norm, we may choose N_2 such that for all $n > N_2$, $||f_n - g||_u < \epsilon \sqrt{2\delta}/2$.

Then, choosing $n > \max(N_1, N_2)$, we see that:

$$||f - g||_2 = ||f - f_n||_2 + ||f_n - g||_2 < \epsilon \sqrt{2\delta}/2 + \sqrt{\left(\epsilon \sqrt{2\delta}/2\right)^2} = \epsilon \sqrt{2\delta}$$

Thus, $\epsilon\sqrt{2\delta} < \epsilon\sqrt{2\delta}$, a contradiction. Hence, f = g. Therefore, the inclusion is a closed map. Moreover, C([0,1]) is a Banach space under $\|\cdot\|_u$. Moreover, since M is a closed subspace of a Banach space, it is itself a Banach space with the same norm. Hence, by the closed graph theorem (5.12, Folland), we have that because the inclusion is a closed linear map, then it is bounded.

By the definition of a bounded linear map then, we have that there exists a C > 0 such that $||i(f)||_u = ||f||_u \le C||f||_2$.

12.2)

First, we note that since M is a closed subspace of a Hilbert space, it too is a Hilbert space with the same inner product as L^2 , restricted to M.

Consider the map that takes a function in M and evaluates it at a point $x \in [0, 1]$. Denote this map as $T_x : M \to F$, for F our base field.

Clearly, this map is linear, since $T_x(af+bg)=(af+bg)(x)=af(x)+bg(x)$, due to how addition and scalar multiplication of functions is defined pointwise. Moreover, of course, $|T_x(f)|=|f(x)|\leq |f|_u$, as the uniform norm is the supremum over all $x\in[0,1]$. But, by 12.1, this is at most $C||f||_2$. Hence, T_x is bounded. Since T_x is a bounded linear functional, it belongs to M^* . But then, by Theorem 5.25 (Folland), there exists a unique $g_x\in M$ such that $f(x)=T_x(f)=\langle f,g_x\rangle$, for all $f\in M$.

In particular, we have that:

$$||g_x||_2^2 = \langle g_x, g_x \rangle = T_x(g_x) = g_x(x) \le ||g_x||_u \le C||g_x||_2$$

Assuming first that $||g_x||_2^2 \neq 0$, this implies after dividing both sides by $||g_x||_2$, that:

$$||g_x||_2 \leq C$$

and we notice that if $g_x = 0$, then this inequality is still satisfied. 12.3)

Let $\{f_k\}$ be an orthogonal sequence in M. We may replace this with an orthonormal sequence by replacing f_k with $f_k/\|f_k\|_2$. Further, restrict to a finite sequence, restricting to a subsequence if need be - say that $\{f_k\}_{k=1}^N$ is our orthonormal subsequence. Fix an $x \in [0,1]$. By 12.2, there exists g_x such that $f(x) = \langle f, g_x \rangle$ for all $f \in M$. Thus, we have that:

$$\sum_{k=1}^{N} |f_n(x)|^2 = \sum_{k=1}^{N} |\langle f_n, g_x \rangle|^2$$

Now, by Bessel's Inequality, after using the fact that $|\langle f_n, g_x \rangle|^2 = |\langle g_x, f_n \rangle|^2$, since the modulus of the transpose is equal to the original modulus:

$$\sum_{k=1}^{N} |\langle g_x, f_k \rangle|^2 \le ||g_x||_2^2$$

and by 12.2, we have that this quantity is at most C^2 . Hence, we have that:

$$\sum_{k=1}^{N} |f_k(x)|^2 \le C^2$$

for all $x \in [0, 1]$.

Then, we have that:

$$\sum_{k=1}^{N} \|f_k\|_2^2 = \sum_{k=1}^{N} \int_{[0,1]} |f_k|^2 dx = \int_{[0,1]} \sum_{k=1}^{N} \sum_{k=1}^{N} |f_k|^2 \le \int_{[0,1]} C^2 = C^2$$

On the other hand, using the normality, we have that:

$$\sum_{k=1}^{N} \|f_k\|_2^2 = N$$

Hence, we have that $N \leq C^2$, and any finite sequence of orthonormal vectors has at most C^2 vectors. Since any orthogonal sequence must give rise to a orthonormal sequence, by dividing out by a norm, and we may always look at finite subsequences of infinite sequence, this must be true for arbitrary orthogonal sequences of $\{f_k\}$. Thus, the maximal number of distinct elements in an orthogonal sequence is C^2 , hence the dimensionality of M is at most C^2 as a vector space.

Question 20. Recall that L^p denotes the space of real-valued functions such that their p-th power is integrable. Suppose that $||f_0||_{L_p} = ||f_1||_{L_p} = 1$. Define

$$f_t = (1 - t)f_0 + tf_1$$

Of course, $||f_t||_{L_p} < 1$ for all $t \in (0,1)$ unless $f_0 = f_1$.

20.1)

Let $f \in L^p$, $g \in L^q$, with 1/p + 1/q = 1, $||f||_{L^p} = 1$, $||g||_{L^q} = 1$. Show that if

$$\int fgd\mu = 1$$

then $f(x) = sign(g(x))|g(x)|^{q-1}$.

20.2)

Suppose that $||f_{t'}||_{L^p} = 1$ for some 0 < t' < 1. Find $g \in L^q$ with $||g||_{L^q} = 1$, such that:

$$\int f_{t'}gd\mu = 1$$

and denote $F(t) = \int f_t g d\mu$. Prove that F(t) = 1 for all $t \in [0,1]$, and conclude that $f_t = f_0$ for all $t \in [0,1]$.

20.3)

Show that this fails when $p = 1, p = \infty$. What can we say in these cases?

Solution. 20.1)

Clearly, we have the following string of inequalities:

$$\int fgd\mu \le \int |fg|d\mu \le ||f||_p ||g||_q$$

where we identify $|fg| = ||fg||_1$ when f, g are real-valued, and apply Hölder's inequality.

However, by hypothesis, $\int fgd\mu=1$, and $||f||_p=1=||g||_q$. Hence, this implies that $\int |fg|d\mu=1=||f||_p||g||_q$.

Then, from 6.2 in Folland, we recall that equality in Hölder's inequality holds if and only if $|f|^p = c|g|^q$ almost everywhere for some non-0 constant c.

With some algebraic manipulation, we can see that since 1/p+1/q=1, that $q/p+1=q\implies q/p=q-1$.

$$|f| = (c|g|^q)^{1/p} = c^{1/p}|g|^{q/p} = c^{1/p}|g|^{q-1}$$

From the fact that $\int fg d\mu = 1 = \int |fg| d\mu$, we may conclude that fg = |fg| a.e. Furthermore, we see that:

$$||f||_p^p = \int |f|^p d\mu = \int c|g|^q d\mu = c \int |g|^q d\mu = c||g||_q^q$$

which implies that c = 1.

Therefore, we can conclude that $f(x) = h(x)g(x)^{q-1}$ a.e., for $h(x) = \pm 1$. But again, since fg = |fg|, f, g must carry the same sign. Thus, we can safely replace h(x) = sign(g(x)), as desired.

20.2)

From 20.1), we take $g = \operatorname{sign}(f_{t'}(x))|f_{t'}(x)|^{p-1}$. Evidently:

$$\int |g|^q d\mu = \int |f_{t'}|^{qp-q} d\mu = \int |f_{t'}|^p d\mu = ||f_{t'}||_p^p = 1$$

that is $||g||_q^q = 1 \implies ||g||_q^q = 1$.

Furthermore, we may evaluate $\int f_{t'}gd\mu$:

$$\int f_{t'}gd\mu = \int f_{t'}\operatorname{sign}(f_{t'}(x))|f_{t'}(x)|^{p-1}d\mu = \int |f_{t'}|^p d\mu = ||f_{t'}||_p^p = 1$$

where we use the fact that $f_{t'} * \operatorname{sign}(f_{t'}) = |f_{t'}|$.

Now, looking at F(t), we can expand to find that:

$$F(t) = \int f_t g d\mu = \int (1 - t) f_0 g + t f_1 g d\mu = (1 - t) \int f_0 g d\mu + t \int f_1 g d\mu$$

In particular, we see that with respect to t, $\int f_0 g d\mu$ and $\int f_1 g d\mu$ are constants, hence F is linear with respect to t.

Moreover, again from Hölder's inequality, we see that:

$$F(t) = \int f_t g d\mu \le \int |f_t g| d\mu \le ||f_t||_p ||g||_q = ||(1-t)f_0 + tf_1||_p \le (1-t)||f_0||_p + t||f_1||_p = 1$$

And, of course, at t', F(t') = 1. F(t) then is a linear function that attains an extrema within the interior of its (connected) domain, [0,1] and hence is constant; i.e. F(t) = 1.

Now, since F(t) = 1 for all $0 \le t \le 1$, we can conclude from 20.1 that $f_t = \text{sign}(g(x))|g(x)|^{q-1} = f_0$, for all t.

20.3)

Suppose p = 1, and take our set to be [0,1]. Then, we can consider the functions $f_0 = 1, f_1 = 2x$. Of course, these both have unit norm. Looking at the integral, we see that:

$$||f_t||_1 = \int |f_t| dx = \int (1-t) + 2tx dx = tx^2 + (1-t)x|_0^1 = t + (1-t) = 1$$

and hence, strict convexity fails.

Similarly, take $p = \infty$, and take our set to be any measurable set E. Let $A \subset E$ be a proper measurable subset, and take $f_0 = \chi_A$, $f_1 = 1$, where χ_A takes on 1 on A and 0 on $E \setminus A$. Again, $||f_0||_{\infty} = 1 = ||f_1||_{\infty}$, clearly. Looking at any points $x \in A$, clearly, for any t, $|(1-t)f_0(x) + tf_1(x)| = |(1-t) + t| = 1$, and hence $||f_t||_{\infty} = 1$ for all $t \in (0,1)$, and strict convexity fails.

Thus, in such a case, we can only expect to have convexity, where convexity still follows from Minkowski's inequality.