Задача 3. Битове

Дадено е множеството **B** от **N** стринга с еднаква дължина **M**, съдържащи единствено единици и нули в тях. Към всеки стринг **B[i]** от множеството е зададен и един бит **b[i]**. Търси се подмножество **S** на множеството $\{0, 1, ..., M-1\}$ с максимална големина **K**, такова че за всеки стринг **B[i]** от **B**, ако **X** е резултатът от прилагане на операцията 'изключващо или' (**xor**) на елементите с индекси съответстващи на елементите от **S**, то **X** да бъде равно на **b[i]**.

Нека имаме множество $B = \{'1010'\}$, единственият елемент в което е B[0] = '1010' и b[0] = 1. Възможен избор на подмножество $S \in S = \{0, 1\}$. Тогава ксорът на $B[0][S[0]]^B[0][S[1]] = B[0][0]^B[0][1] = 1$, което е равно и на b[0]. Друг възможен избор може да е $S = \{0, 3\}$ ($B[0][S[0]]^B[0][S[1]] = B[0][0]^B[0][3] = 1 = b[0]$).

По дадени числата N, K, множеството от стрингове B и множеството от битове b, намерете подмножеството S с големина най-много K, което да удовлетворява условието.

Вход:

От първия ред от входния файл **bits.in** се въвеждат две числа **N** и **K**. Следват **N** реда, всеки от които съдържа стринг **B[i]** и съответният му бит **b[i]**.

Изход:

На първия ред от изходния файл **bits.out** програмата трябва да изведе едно число, отговарящо за големината на **S**. Ако такова множество не съществува, изведеното число трябва да бъде **-1**. Но ако съществува, то на втория ред трябва да се изведат елементите на **S**, разделени с интервал.

Ограничения:

1 <= **N** <= 64

1 <= **M** <= 50

0 <= **K** <= 10

K <= M

Ограничението за време на изпълнение на програмата е 15 секунди.

Пример:

bits.in	bits.out
3 1	1
010 0	2
111 1	
001 1	