Proof by Induction (MIEIC-TCOM-2020-21)

* This form will record your name, please fill your name.	
1. When proving a statement S(n) by induction, or n=1 (1 Point)	the base step (basis) always consider n=0
○ TRUE	
○ FALSE	
2. In proof by induction, the proof for the base (1 Point)TRUE	case(s) is not optional.
FALSE	
3. In proof by induction, we always need to pro (1 Point)	ve a large number of specific cases
○ TRUE	
○ FALSE	

2	4. A proof by induction only allows us to prove theorems with equalities. (1 Point)
	○ TRUE
	○ FALSE
5	5. When proving by induction a statement $S(n)$ that holds for every natural number $n > 0$ (1 Point)
	It is correct to consider for basis $n=0$ and then prove $S(k+1)$ considering the statement $S(k)$ true
	It is correct to consider for basis $n=1$ and then prove $S(k+1)$ considering the statement $S(k)$ true
6	5. There are statements with more than one induction variable (e.g., two or more natural numbers) that can be prooved by induction (1 Point)
	○ TRUE
	○ FALSE
7	7. When proving by induction a statement $S(n)$, true for every natural number $n>=0$, one can use as basis a large natural number and then prove $S(k-1)$ assuming $S(k)$ is true. (1 Point)
	○ TRUE
	○ FALSE

8	Can we prove by induction that $2^n >= n+5$ for $n>=3$? (1 Point)
	○ YES
	○ NO
9	. Can we prove by induction the statement: if $x >= 4$, then $2^x >= x^2$? (1 Point)
	○ NO
	○ YES
	Opends if x represents natural numbers or real numbers
10	In a complete binary tree of height h (not considering the leaves), the number of internal nodes (sum of all nodes in the tree except for the leaves) of that tree equals 2h 1.
	Consider we want to prove the truthfulness of the above statement. Which of the following options applies? (1 Point)
	To prove the statement we need to use the "inventor's paradox".
	We can prove the statement to be true with an induction proof, using $h=0$ as the base case, assuming the hypothesis valid for h, and proving for $h+1$.
	We cannot prove the statement to be true (of false).
	We cannot prove the statement to be true using an induction proof, as as such we can state that it is false.

This content is neither created nor endorsed by Microsoft. The data you submit will be sent to the form owner.

Microsoft Forms