

FIG. 1

Summary of the current purification protocol

FIG. 2A

Chart showing the major contributing factors in the progression of Coronary Heart

Disease (CHD) and how the activity of cocoa procyanidins contributes to the

prevention of the progression of the disease state

FIG. 2B

The cocoa procyanidins induce the activity of NOS and therefore the resulting production NO, thereby enhancing the health benefits mediated by the activity of nitric oxide (NO).

oinhibits platelet aggregation, monocyte adhesion, chemotaxis and vascular smooth muscle proliferation thereby causing vascular relaxation and preventing the disease progression of CHD.

By lowering blood pressure via the following mechanism:

vascular endothelial cells release eNOS

- result in production of NO
- NO relaxes vascular smooth muscles, increasing vascular lumen diameter
- lowers blood pressure -
- induces hypotension

HYPERTENSION RESPONSIBLE FOR **CARDIOVASCULAR DISEASES:**

including: stroke heart attack heart failure kidney failure

- Macropages have a different NOS (iNOS)
- INOS gene transcription is controlled by cytokines
- iNOS activity results in macrophage NO production at sufficient concentrations to inhibit ribonuclease reductase
- -causes inhibition of DNA systhesis
- potential mechanism of action in anti-tumor and anti-microbial function

FIG. 2C

The cocoa procyanidins inhibit the production of cyclo-oxygenase, thereby

blocking the arachidonic acid pathway, which is responsible for the inflammatory response and the vasoconstrictive and platelet aggregating responses which contribute to the disease progression of CHD.

FIG. 7

FIG. 8A

EFFECT OF COCOA PROCYANIDIN FRACTION A ON BLOOD PRESSURE

10cm Hg
1 A616
10mg/kg
3 min BP decreased by 21.43% within 1min BP back to normal value after 1.5 min

FIG. 8B

EFFECT OF COCOA PROCYANIDIN FRACTION C ON BLOOD PRESSURE

BP decreased by 50.5% within 1 min BP back to normal value after 5 min

FIG. 9

EFFECT OF COCOA PROCYANIDIN FRACTIONS ON ARTERIAL BLOOD PRESSURE IN ANESTHESIZED GUINEA PIGS

FIG. 10

EFFECT OF L-NMMA ON THE ALTERATIONS OF ARTERIAL BLOOD PRESSURE IN ANESTHESIZED GUINEA PIGS INDUCED BY COCOA PROCYANIDIN FRACTION C

FIG. 11

EFFECT OF BRADYKININ ON NO PRODUCTION BY HUVEC

FIG. 12

EFFECT OF COCOA PROCYANIDIN FRACTIONS ON NO PRODUCTION BY HUVEC

(means of 3 assays)

FIG. 13

FIG. 14

FIG. 15A

IC50- $0.599 \mu M(KIT 1) KIT 1 ---$

IC50- 0.642 μM(KIT 2) KIT 2 ---

FIG. 15B

IC50-1 μ M(KIT 4)

KIT 4 ---

IC50- 13.5 μ M(KIT 5)

KIT 5 --⊶

FIG. 16A

DEGREE OF POLYMERIZATION (SAMPLE #)

(*) WITH THE EXCEPTION OF SAMPLE S11 EXPRESSED AS mg/ml

FIG. 16B

DEGREE OF POLYMERIZATION (SAMPLE #)
(*) WITH THE EXCEPTION OF SAMPLE S11 EXPRESSED AS mg/ml

FIG. 17

(*) WITH THE EXEPTION OF SAMPLE SII

FIG. 18A

FIG. 18B

FIG. 18C

LOG [CONCENTRATION (M)]

FIG. 18D

FIG. 18E

FIG. 18F

FIG. 18G

LOG [CONCENTRATION (M)]

FIG. 18H

FIG. 181

LOG [CONCENTRATION (M)]

FIG. 18J

LOG [CONCENTRATION (M)]

FIG. 18K

LOG [CONCENTRATION (M)]

FIG. 18L

FIG. 18M

LOG [CONCENTRATION (M)]

FIG. 18N

FIG. 180

LOG [CONCENTRATION (M)]

FIG. 18P

FIG. 18Q

LOG [CONCENTRATION (M)]

FIG. 18R

LOG [CONCENTRATION (M)]

FIG. 18S

LOG [CONCENTRATION (M)]

FIG. 18T

LOG [CONCENTRATION (M)]

FIG. 18U

LOG [CONCENTRATION (mg/ml)]

FIG. 18V

FIG. 19A

FIG. 19B

FIG. 19C

FIG. 19D

FIG. 20B

FIG. 20A

