Factorial Design Introduction II

Peter Yeh

12/20/2022

Post ANOVA Analysis

Multiple Comparisons With No Interactions

Factor level means can be compared to draw conclusions on their effects on response.

$$Var(\bar{y}_{i..}) = \frac{\sigma^2}{nb} Var(\bar{y}_{.j.}) = \frac{\sigma^2}{na}$$

For A/rows: $Var(\bar{y}_{i..} - \bar{y}_{i'..}) = \frac{2\sigma^2}{nb}$

For B/columns: $Var(\bar{y}_{.j.} - \bar{y}_{.j'.}) = \frac{2\sigma^2}{na}$

Tukey's Method

For Rows: $CD = \frac{q_{\alpha}(a,ab(n-1))}{\sqrt{2}} \sqrt{MSE \frac{2}{nb}}$

For Columns: $CD = \frac{q_{\alpha}(b,ab(n-1))}{\sqrt{2}} \sqrt{MSE \frac{2}{na}}$

Bonferroni Method

 $CD = t_{\alpha/2m,ab(n-1)}S.E.$ where S.E. depends on whether for rows/columns

Multiple Comparisons With Interactions

 $\mu_{ij} = \mu + \tau_i + \beta_j + (\tau \beta)_{ij}$ vs. $\mu_{i'j'} = \mu + \tau_{i'} + \beta_{j'} + (\tau \beta)_{i'j'}$

 $\hat{\mu}_{ij} = \bar{y}_{ij.}$ and $\hat{\mu}_{i'j'} = \bar{y}_{i'j'.}$

 $Var(\bar{y}_{ij.} - \bar{y}_{i'j'.}) = \frac{2\sigma^2}{n}$

There are ab treatment means and $m_0 = \frac{ab(ab-1)}{2}$ pairs

Tukey's method: $CD = \frac{q_{\alpha}(ab,ab(n-1))}{\sqrt{2}} \sqrt{MSE_n^2}$

Bonferroni method: $CD = t_{\alpha/2m,ab(n-1)} \sqrt{MSE_n^2}$

Quantitative vs. Qualitative

Fit response curves if need to interpret quantitatively

General Factorial Design and Model

Introduction

Includes all possible level combinations. Has a levels for Factor A, b levels for Factor B, etc. Is a straightforward ANOVA if all fixed effects. Need n > 1 replications to test for all possible interactions.

Three Factor Model

Has nabc observations

Statistical Model

$$y_{ijkl} = \mu + \tau_i + \beta_j + \gamma_k + (\tau\beta)_{ij} + (\beta\gamma)_{jk} + \tau\gamma_{ik} + (\tau\beta\gamma)_{ijk} + \epsilon_{ijkl},$$

 $i = 1, 2, ..., a, j = 1, 2, ..., b, k = 1, 2, ..., c, l = 1, 2, ..., n,$

Sum of Squares

$$\begin{split} SS_A &= \frac{1}{bcn} \sum_{i=1}^a y_{i...}^2 - \frac{y^2}{abcn} \\ SS_B &= \frac{1}{acn} \sum_{j=1}^b y_{.j.}^2 - \frac{y^2}{abcn} \\ SS_C &= \frac{1}{abn} \sum_{k=1}^c y_{..k.}^2 - \frac{y^2}{abcn} \\ SS_{AB} &= \frac{1}{cn} \sum_{i=1}^a \sum_{j=1}^b y_{ij..}^2 - \frac{y^2}{abcn} - SS_A - SS_B = SS_{Subtotals}(AB) - SS_A - SS_B \\ SS_{AC} &= \frac{1}{bn} \sum_{i=1}^a \sum_{k=1}^c y_{i.k.}^2 - \frac{y^2}{abcn} - SS_A - SS_C = SS_{Subtotals}(AC) - SS_A - SS_C \\ SS_{BC} &= \frac{1}{an} \sum_{j=1}^b \sum_{k=1}^c y_{.jk.}^2 - \frac{y^2}{abcn} - SS_B - SS_C = SS_{Subtotals}(BC) - SS_B - SS_C \\ SS_{ABC} &= \frac{1}{n} \sum \sum \sum y_{ijk.}^2 - \frac{y^2}{abcn} - SS_A - SS_B - SS_C - SS_{AB} - SS_{AC} - SS_{BC} \\ &= SS_{Subtotals}(ABC) - SS_A - SS_B - SS_C - SS_{AB} - SS_{AC} - SS_{BC} \\ SS_E &= SS_T - SS_{Subtotals}(ABC) \\ SS_T &= \sum \sum \sum y_{ijk.}^2 - \frac{y^2}{abcn} \\ &= \sum \sum \sum \sum y_{ijk.}^2 - \frac{y^2}{abcn} \\ &= \sum \sum y_{ijk.}^2 - \frac{y^2}{abcn} \\ &= \sum$$

Additional Notes

Check usual assumptions and diagnostics.

• Normality, homogeneous variance, additivity

For multiple comparisons, extends off of the two-factor case.

Higher order interactions are negligible.

Pooled together with error (increase df_E).

■ TABLE 5.12 The Analysis of Variance Table for the Three-Factor Fixed Effects Model

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	Expected Mean Square	F_0
A	SS_A	a – 1	MS_A	$\sigma^2 + rac{bcn\sum au_i^2}{a-1}$	$F_0 = \frac{MS_A}{MS_E}$
В	SS_B	b-1	MS_B	$\sigma^2 + rac{acn\sumeta_j^2}{b-1}$	$F_0 = \frac{MS_B}{MS_E}$
С	SS_C	c-1	MS_C	$\sigma^2 + rac{abn\sum \gamma_k^2}{c-1}$	$F_0 = \frac{MS_C}{MS_E}$
AB	SS_{AB}	(a-1)(b-1)	MS_{AB}	$\sigma^2 + \frac{cn\sum\sum(\tau\beta)_{ij}^2}{(a-1)(b-1)}$	$F_0 = \frac{MS_{AB}}{MS_E}$
AC	SS_{AC}	(a-1)(c-1)	MS_{AC}	$\sigma^2 + \frac{bn\sum\sum(\tau\gamma)_{ik}^2}{(a-1)(c-1)}$	$F_0 = \frac{MS_{AC}}{MS_E}$
BC	SS_{BC}	(b-1)(c-1)	MS_{BC}	$\sigma^2 + \frac{an\sum\sum(\beta\gamma)_{jk}^2}{(b-1)(c-1)}$	$F_0 = \frac{MS_{BC}}{MS_E}$
ABC	SS_{ABC}	(a-1)(b-1)(c-1)	MS_{ABC}	$\sigma^2 + \frac{n\sum\sum\sum\sum(\tau\beta\gamma)_{ijk}^2}{(a-1)(b-1)(c-1)}$	$F_0 = \frac{MS_{ABC}}{MS_E}$
Error	SS_E	abc(n-1)	MS_E	σ^2	
Total	SS_T	abcn-1			

Figure 1: Three-Factor Table

ANOVA Table

Blocked Factorial Experiment

Also known as complete block factorial design. Interactions between blocks and treatment effects are assumed to be negligible.

Model

 $y_{ijk} = \mu + \tau_i + \beta_j + (\tau \beta)_{ij} + \delta_k + \epsilon_{ijk}$, i = 1, 2, ..., a, j = 1, 2, ..., b, and k = 1, 2, ..., n where δ_k is the effect of the kth block.

■ TABLE 5.20 Analysis of Variance for a Two-Factor Factorial in a Randomized Complete Block

Source of Variation	Sum of Squares	Degrees of Freedom	Expected Mean Square	F_0
Blocks	$\frac{1}{ab}\sum_{k}y_{k}^{2}-\frac{y_{}^{2}}{abn}$	n-1	$\sigma^2 + ab\sigma_\delta^2$	
A	$\frac{1}{bn}\sum_{i}y_{i}^{2}-\frac{y_{}^{2}}{abn}$	a – 1	$\sigma^2 + \frac{bn\sum \tau_i^2}{a-1}$	$\frac{MS_A}{MS_E}$
В	$\frac{1}{an}\sum_{j}y_{jl.}^{2}-\frac{y_{}^{2}}{abn}$	<i>b</i> – 1	$\sigma^2 + \frac{an\sum \beta_j^2}{b-1}$	$\frac{MS_B}{MS_E}$
AB	$\frac{1}{n}\sum_{i}\sum_{j}y_{ij.}^{2}-\frac{y_{}^{2}}{abn}-SS_{A}-SS_{B}$	(a-1)(b-1)	$\sigma^2 + \frac{n\sum\sum(\tau\beta)_{ij}^2}{(a-1)(b-1)}$	$\frac{MS_{AB}}{MS_E}$
Error	Subtraction	(ab-1)(n-1)	σ^2	
Total	$\sum_{i} \sum_{j} \sum_{k} y_{ijk}^{2} - \frac{y_{}^{2}}{abn}$	abn-1		

Figure 2: Two-Factor Block Table

Notes:

 $(\text{new})SS_E = (\text{old})SS_E - SS_{Blocks}$

ANOVA estimate for the variance of the blocks: $\sigma_{\delta}^2 = \frac{MS_{Blocks} - MS_E}{ab}$