

LOW NOISE 150mA LDO REGULATOR

R1112N SERIES

NO. EA-059-0204

OUTLINE

The R1112N Series are CMOS-based voltage regulator ICs with high output voltage accuracy, extremely low supply current, low ON-resistance, and high ripple rejection. Each of these voltage regulator ICs consists of a voltage reference unit, an error amplifier, resistors, a current limit circuit, and a chip enable circuit.

These ICs perform with low dropout voltage and a chip enable function. The line transient response and load transient response of the R1112N Series are excellent, thus these ICs are very suitable for the power supply for hand-held communication equipment.

The output voltage of these ICs is fixed with high accuracy. Since the package for these ICs is SOT-23-5 (Minimold) package, high density mounting of the ICs on boards is possible.

FEATURES

Ultra-Low Supply Current	. Typ. 100μA
Standby Mode Current	. Typ. 0.1μA
Low Dropout Voltage	. Typ. 0.19V (Iout=100mA 3.0V Output type)
High Ripple Rejection	Typ. 80dB(f=1kHz)
• Low Temperature-Drift Coefficient of Output Voltage Typ	p. ±100ppm/°C
Excellent Line Regulation	. Typ. 0.05%/V
High Output Voltage Accuracy	. ±2.0%
• Excellent Dynamic Response	
Small Package	SOT-23-5 (Mini-mold)
Output Voltage	Stepwise setting with a step of 0.1V in the range of 1.5V to
	5.0V is possible
• Built-in chip enable circuit (2 types; A: active low, B: active	ive high)
• Pin-out	Similar to the LP2980/LP2985
Built-in fold-back protection circuit	Typ. 30mA (Current at short mode)
• Ceramic capacitors recommended to be used with this IC	

APPLICATIONS

- Power source for cellular phones such as GSM, CDMA and various kind of PCSs.
- Power source for electrical appliances such as cameras, VCRs and camcorders.
- Power source for battery-powered equipment.

BLOCK DIAGRAM

SELECTION GUIDE

The output voltage, the active type, the packing type, and the taping type for the ICs can be selected at the user's request. The selection can be made by designating the part number as shown below:

R1112x
$$\underline{xx}$$
1x-xx \leftarrow Part Number
 $\uparrow \uparrow \uparrow \uparrow$
 $a b c d$

Code	Contents			
a	Designation of Package Type: N: SOT-23-5 (Mini-mold)			
b	Setting Output Voltage (Vout): Stepwise setting with a step of 0.1V in the range of 1.5V to 5.0V is possible.			
С	Designation of Active Type: A: active low type B: active high type			
d	Designation of Taping Type: Ex. TR, TL (refer to Taping Specifications; TR type is the standard direction.)			

PIN CONFIGURATION

PIN DESCRIPTION

Pin No.	Symbol	Description	
1	$V_{ m DD}$	Input Pin	
2	GND	Ground Pin	
3	CE or CE	Chip Enable Pin	
4	NC	No Connection	
5	Vout	Output pin	

ABSOLUTE MAXIMUM RATINGS

Symbol	Item	Rating	Unit
$V_{ m IN}$	Input Voltage	7.0	V
Vce	Input Voltage(CE or CE Pin)	$-0.3 \sim V_{\rm IN} + 0.3$	V
Vout	Output Voltage	$-0.3 \sim V_{\rm IN} + 0.3$	V
Iout	Output Current	200	mA
PD	Power Dissipation	250	mW
Topt	Operating Temperature Range	-40 ~ 85	°C
Tstg	Storage Temperature Range	-55 ~ 125	°C

ELECTRICAL CHARACTERISTICS

• R1112Nxx1A Topt=25°C

Symbol	Item	Conditions	Min.	Тур.	Max.	Unit
Vout	Output Voltage	$V_{\rm IN} = { m Set} \ V_{\rm OUT} + 1V$ $1 { m mA} \le { m Iout} \le 30 { m mA}$	V _{OUT} ×0.98		V _{OUT} ×1.02	V
Iout	Output Current	V_{IN} - $V_{\text{OUT}} = 1.0V$	150			mA
ΔV out/ ΔI out	Load Regulation	$V_{IN} = Set\ V_{OUT} + 1V$ $1mA \le I_{OUT} \le 80mA$		12	40	mV
$V_{ m DIF}$	Dropout Voltage	Refer to the ELECTRICAL CHARACTERISTICS by OUTPUT VOLTAGE				
Iss	Supply Current	$V_{IN} = Set V_{OUT} + 1V$		100	170	μА
Istandby	Supply Current (Standby)	$V_{IN} = V_{CE} = Set V_{OUT} + 1V$		0.1	1.0	μA
$\Delta V_{ m OUT}/\Delta V_{ m IN}$	Line Regulation	Set $V_{OUT} + 0.5V \le V_{IN} \le 6V$ $I_{OUT} = 30 \text{mA}$		0.05	0.20	%/V
RR	Ripple Rejection	f = 1kHz, Ripple 0.5Vp-p $V_{IN} = Set\ V_{OUT} + 1V$		80		dB
$V_{\rm IN}$	Input Voltage		2.0		6.0	V
ΔV out/ ΔT	Output Voltage Temperature Coefficient	$I_{OUT} = 30 \text{mA}$ $-40^{\circ}\text{C} \le \text{Topt} \le 85^{\circ}\text{C}$		±100		ppm /°C
Ilim	Short Current Limit	$V_{OUT} = 0V$		30		mA
Rpu	CE Pull-up Resistance		2.5	5.0	10.0	ΜΩ
VCEH	CE Input Voltage "H"		1.5		$V_{\rm IN}$	V
VCEL	CE Input Voltage "L"		0.00		0.25	V
en	Output Noise	BW=10Hz to 100kHz		30		μVrms

• **R1112Nxx1B** Topt=25°C

Symbol	Item	Conditions	Min.	Тур.	Max.	Unit
Vout	Output Voltage	$V_{IN} = Set\ V_{OUT} + 1V$ $1mA \le I_{OUT} \le 30mA$	V _{OUT} ×0.98		V _{OUT} ×1.02	V
Iout	Output Current	V_{IN} - $V_{OUT} = 1.0V$	150			mA
$\Delta ext{V}$ out/ $\Delta ext{I}$ out	Load Regulation	$V_{IN} = \text{Set Vout} + 1V$ $1\text{mA} \le \text{Iout} \le 80\text{mA}$		12	40	mV
$V_{ m DIF}$	Dropout Voltage	Refer to the ELECTRICAL CHARACTERISTICS by OUTPUT VOLTAGE				
Iss	Supply Current	V _{IN} = Set V _{OUT} +1V		100	170	μΑ
Istandby	Supply Current (Standby)	V _{IN} = Set V _{OUT} +1V V _{CE} =GND		0.1	1.0	μΑ
$\Delta V_{ m OUT}/\Delta V_{ m IN}$	Line Regulation	$Set \ V_{OUT} + 0.5V \le V_{IN} \le 6V$ $I_{OUT} = 30mA$		0.05	0.20	%/V
RR	Ripple Rejection	f = 1kHz, Ripple 0.5Vp-p $V_{IN} = Set\ V_{OUT} + 1V$		80		dB
V_{IN}	Input Voltage		2.0		6.0	V
ΔV out/ ΔT	Output Voltage Temperature Coefficient	$I_{\rm OUT} = 30 mA$ $-40^{\circ} C \le Top \ t \le 85^{\circ} C$		±100		ppm /°C
Ilim	Short Current Limit	Vout = 0V		30		mA
Rpd	CE Pull-down Resistance		2.5	5.0	10.0	ΜΩ
Vсен	CE Input Voltage "H"		1.5		V_{IN}	V
VCEL	CE Input Voltage "L"		0.00		0.25	V
en	Output Noise	BW=10Hz to 100kHz		30		μVrms

• ELECTRICAL CHARACTERISTICS by OUTPUT VOLTAGE

 $Topt = 25^{\circ}C$

	Dropout Voltage V _{DIF} (V)				
Output Voltage Vουτ (V)					
	Condition	Тур.	Max.		
$1.5 \le V_{\rm OUT} \le 1.6$	Iout = 100mA	0.32	0.55		
$1.7 \le V_{\text{OUT}} \le 1.8$		0.28	0.47		
$1.9 \le V_{\text{OUT}} \le 2.3$		0.25	0.35		
$2.4 \le V_{\text{OUT}} \le 2.7$		0.20	0.29		
$2.8 \le V_{\text{OUT}} \le 5.0$		0.19	0.26		

OPERATION

In these ICs, fluctuation of the output voltage, Vout is detected by feed-back registers R1, R2, and the result is compared with a reference voltage by the error amplifier, so that a constant voltage is output. A current limit circuit for protection in short mode and a chip enable circuit, are included.

TECHNICAL NOTES

When using these ICs, consider the following points:

Phase Compensation

In these ICs, phase compensation is made for securing stable operation even if the load current is varied. For this purpose, be sure to use a capacitor Cout with good frequency characteristics and ESR (Equivalent Series Resistance). We use Ceramic Capacitors for evaluation of these ICs.

Recommended Capacitors; GRM40X5R225K6.3 (Murata)

GRM40-034X5R335K6.3 (Murata)

GRM40-034X5R475K6.3 (Murata)

(Note: When the additional ceramic capacitors are connected to the Output Pin with Output capacitor for phase compensation, the operation might be unstable. Because of this, test these ICs with as same external components as ones to be used on the PCB.)

PCB Layout

Make V_{DD} and GND lines sufficient. If their impedance is high, picking up the noise or unstable operation may result. Connect a capacitor with a capacitance value of 2.2µF or more between V_{DD} and GND pin as close as possible.

Set external components, especially output capacitor as close as possible to the ICs and make wiring as short as possible.

TEST CIRCUITS

Fig.1 Standard test Circuit

Fig.2 Supply Current Test Circuit

Fig.3 Ripple Rejection, Line Transient Response
Test Circuit

Fig.4 Load Transient Response Test Circuit

TYPICAL APPLICATION

(External Components)

Output Capacitor; Ceramic 2.2µF (Set Output Voltage in the range from 2.5 to 5.0V)

Ceramic $4.7\mu F$ (Set Output Voltage in the range from 1.5 to 2.5V)

Input Capacitor; Ceramic 2.2µF

TYPICAL CHARACTERISTICS

1) Output Voltage vs. Output Current

2) Output Voltage vs. Input Voltage

3) Dropout Voltage vs. Output Current

R1112N

4) Output Voltage vs. Temperature

Vin=3.0V Cin=1µF Cout=2.2µF lout=30mA 2.08 2.06 2.04 2.02 2.09 2.00 1.98 1.96 1.94 1.92 1.90 -50 -25 0 25 50 75 100 Temperature Topt (°C)

R11x2N201B

5) Supply Current vs. Input Voltage

R1112N

6) Supply Current vs. Temperature

-50

0

-50

-25

-25

25

Temperature Topt (°C)

50

75

100

100

R11x2N201A/B $V_{IN}=3.0V$ $C_{IN}=1\mu F$ Cout= 2.2μ F 200 Supply Current Iss (µA) 150 100 50 0 -50 -25 0 25 50 75 100 Temperature Topt (°C)

V_{IN}=4.0V C_{IN}=1μF C_{OUT}=2.2μF

R11x2N301A/B

R11x2N501A/B

25

Temperature Topt (°C)

50

75

0

Ripple Rejection vs. Frequency

R11x2N301A/B

R11x2N401A/B

10

Frequency Freq (kHz)

100

0.00

0.1

R11x2N501A/B

8) Ripple Rejection vs. Input Voltage (DC bias)

R11x2N301B Cout=Ceramic 2.2μF IOUT=50mA 90.00 Ripple Rejection RR (dB) 80.00 70.00 60.00 50.00 40.00 30.00 f=400Hz 20.00 -- f=1kHz 10.00 ----- f=10kHz 0.00 3.10 3.20 3.30 3.40 3.50 Input Voltage VIN (V)

9) Input Transient Response

R11x2N151B

Topt=25°C

 V_{IN} =2.5V \leftrightarrow 3.5V I_{OUT} =30mA C_{IN} =none C_{OUT} =2.2 μ F tr/tf=5 μ s

R11x2N201B

Topt=25°C

 $V_{IN}=3.0V \leftrightarrow 4.0V$ $I_{OUT}=30 \text{mA}$ $C_{IN}=\text{none}$ $C_{OUT}=2.2 \mu \text{F}$ $tr/tf=5 \mu \text{s}$

R11x2N301B

Topt=25°C

 V_{IN} =4.0V \leftrightarrow 5.0V I_{OUT} =30mA C_{IN} =none C_{OUT} =2.2 μ F tr/tf=5 μ s

R11x2N401B

Topt=25°C

 V_{IN} =5.0V \leftrightarrow 6.0V I_{OUT} =30mA C_{IN} =none C_{OUT} =2.2 μ F tr/tf=5 μ s

R11x2N501B

Topt=25°C

 $V_{IN}=6.0V \leftrightarrow 7.0V$ $I_{OUT}=30 mA$ $C_{IN}=none$ $C_{OUT}=2.2 \mu F$ $tr/tf=5 \mu s$

10) Load Transient Response

R11x2N151B

Topt=25°C

 $I_{\text{OUT}} = 50 \text{mA} \leftrightarrow 100 \text{mA}$ $V_{\text{IN}} = 2.5 \text{V}$ $C_{\text{IN}} = 2.2 \mu \text{F}$ $C_{\text{OUT}} = 2.2 \mu \text{F}$ $tr/tf = 5 \mu \text{s}$

R11x2N201B

Topt=25°C

 $I_{OUT}=50mA \leftrightarrow 100mA$ $V_{IN}=3.0V$ $C_{IN}=2.2\mu F$ $C_{OUT}=2.2\mu F$ $tr/tf=5\mu s$

R11x2N301B

Topt=25°C

 $I_{OUT}{=}50mA{\leftrightarrow}100mA$ $V_{IN}{=}4.0V$ $C_{IN}{=}2.2\mu F$ $C_{OUT}{=}2.2\mu F$ $tr/tf{=}5\mu s$

R11x2N401B

Topt=25°C

$$\begin{split} &\text{Iout}{=}50\text{mA}{\leftrightarrow}100\text{mA} \\ &\text{V}_{\text{IN}}{=}5.0\text{V} \\ &\text{C}_{\text{IN}}{=}2.2\mu\text{F} \\ &\text{Cout}{=}2.2\mu\text{F} \\ &\text{tr/tf}{=}5\mu\text{s} \end{split}$$

R11x2N501B

 $Topt{=}25^{\circ}C$

 $\begin{tabular}{ll} Iout=50mA &\rightarrow 100mA \\ V_{IN}=6.0V \\ C_{IN}=2.2\mu F \\ C_{OUT}=2.2\mu F \\ tr/tf=5\mu s \end{tabular}$

TECHNICAL NOTES

When using these ICs, consider the following points:

In these ICs, phase compensation is made for securing stable operation even if the load current is varied. For this purpose, be sure to use a capacitor Cout with good frequency characteristics and ESR (Equivalent Series Resistance) of which is in the range described as follows:

Measuring Circuit for white noise; R1112Nxx1B

The relationship between Iout (the output current) and ESR of the output capacitor is shown in the graphs below. The conditions when the white noise level is under $40\mu V$ (Avg.) are indicated by the hatched area in the graph. (Note: When additional ceramic capacitors are connected to the output pin with the output capacitor for phase compensation, operation might be unstable. Because of this, test these ICs with the same external components as the ones to be used on the PCB.)

<Measuring Conditions>

(1) $V_{IN}=V_{OUT}+1V$

(2) Frequency band: 10Hz to 1MHz

(3) Temperature: 25°C

