





# AGRI-AI E AGRICULTURE MANAGEMENT SYSTEM

# MODERNIZING AGRICULTURE AND EMPOWERING FARMERS THROUGH TECHNOLOGY

**Prepared By: Vivekananda Giri** 

**Admission No: 222122114** 

**Guided By: Dr. Jyoti Ranjan Mohanty** 

Centre For Post Graduate Studies,
Odisha University of Agriculture and Technology, Bhubaneswar

#### Introduction

The global population is growing, putting immense pressure on food production systems. Farmers face numerous challenges in meeting this demand, including:

- Limited access to expertise: Many farmers lack access to agricultural specialists who can diagnose plant problems, recommend optimal growing practices, and advise on efficient resource use.
- Lack of real-time data: Farmers often struggle to make informed decisions due to limited access to real-time weather data and soil data and historical agricultural information.

Our project, **Agri AI**, is designed to leverage AI to provide personalized soil health analysis and crop recommendations. This innovative system offers comprehensive soil testing, real-time status tracking, and intelligent crop selection, and a comprehensive E- Commerce Project aimed at enhancing productivity and sustainability in agriculture.





#### Aim of the Project

- ☐ To implement a robust ML model to give a correct and accurate real-time prediction of crop in a given state for the particular soil type and climatic conditions.
- ☐ To provide Fertilizer Suggestion for best suitable crops in the area so that farmers do not incur any loss.
- ☐ To Provide an E-commerce platform to buy their necessary agricultural goods and Tools.







#### Modules

- □ Farmers Module/User Module: Get Crop Recommendation, Fertilizer Suggestion and E commerce, Soil test
- □Admin Module: Manages admin has complete settings of the website and can manage all kinds of records.







# Technologies Used









- ☐ **Programming Language:** (Python)
- ☐ Database: (My SQL)
- ☐ Frameworks: (Django)
- ☐ Machine learning Model: (Random Forest, Logistic Regression, Decision Trees etc.)
- ☐ Data science libraries: (Pandas, NumPy, ScikKit-learn, Seaborn, Joblib etc.)

**OTP Sender Tool: Twillio** 











#### Data Flow Diagram(Level-0)







#### Data Flow Diagram(Level-1)







# Data Flow Diagram(Level-2)





# Data Flow Diagram(Level-2)





# Use Case Diagram





#### Database Schema





# Dataset Used For Crop Recommendation

| 1  | N  | Р  | K  | temperature | humidity    | ph          | rainfall    | label |
|----|----|----|----|-------------|-------------|-------------|-------------|-------|
| 2  | 90 | 42 | 43 | 20.87974371 | 82.00274423 | 6.502985292 | 202.9355362 | rice  |
| 3  | 85 | 58 | 41 | 21.77046169 | 80.31964408 | 7.038096361 | 226.6555374 | rice  |
| 4  | 60 | 55 | 44 | 23.00445915 | 82.3207629  | 7.840207144 | 263.9642476 | rice  |
| 5  | 74 | 35 | 40 | 26.49109635 | 80.15836264 | 6.980400905 | 242.8640342 | rice  |
| 6  | 78 | 42 | 42 | 20.13017482 | 81.60487287 | 7.628472891 | 262.7173405 | rice  |
| 7  | 69 | 37 | 42 | 23.05804872 | 83.37011772 | 7.073453503 | 251.0549998 | rice  |
| 8  | 69 | 55 | 38 | 22.70883798 | 82.63941394 | 5.70080568  | 271.3248604 | rice  |
| 9  | 94 | 53 | 40 | 20.27774362 | 82.89408619 | 5.718627178 | 241.9741949 | rice  |
| 10 | 89 | 54 | 38 | 24.51588066 | 83.5352163  | 6.685346424 | 230.4462359 | rice  |
| 11 | 68 | 58 | 38 | 23.22397386 | 83.03322691 | 6.336253525 | 221.2091958 | rice  |
| 12 | 91 | 53 | 40 | 26.52723513 | 81.41753846 | 5.386167788 | 264.6148697 | rice  |
| 13 | 90 | 46 | 42 | 23.97898217 | 81.45061596 | 7.50283396  | 250.0832336 | rice  |
| 14 | 78 | 58 | 44 | 26.80079604 | 80.88684822 | 5.108681786 | 284.4364567 | rice  |
| 15 | 93 | 56 | 36 | 24.01497622 | 82.05687182 | 6.98435366  | 185.2773389 | rice  |
| 16 | 94 | 50 | 37 | 25.66585205 | 80.66385045 | 6.94801983  | 209.5869708 | rice  |
| 17 | 60 | 48 | 39 | 24.28209415 | 80.30025587 | 7.042299069 | 231.0863347 | rice  |



# Algorithm Comparison





#### Random Forest Visualisation





















#### Future Scope

1.Advanced AI and Machine Learning

**Predictive Analytics:** 

**Enhanced Personalization:** 

2. IoT Integration

**Real-Time Monitoring:** 

**Automated Irrigation Systems:** 

**4.** User Experience Enhancements

**Mobile Application:** 

**Multilingual Support**:

**5. Community and Social Features** 

**Expert Consultations:** 

6. Data Analytics and Reporting

**Advanced Analytics Dashboard**:



# THANK YOU

Centre For Post Graduate Studies,
Odisha University of Agriculture and Technology, Bhubaneswar

