AirBnB Berlin

Price Optimisation of listings for Hosts

AirBnB Terms

Hosts

Owner of the property

AirBnB Terms

Listing

Eg. Apartments, single rooms, houseboats, castle etc

listings_summary.csv

reviews.csv

listings.csv

calendar_summary.csv

reviews_summary.csv

neighbourhoods.csv

Business Case

Price optimisation of listings for Hosts

Why optimise?

22,252

Listings in Berlin

10,700

HDB Blocks

GeoDataWith Geopandas

Average prices per grid space

- 1. Made Berlin into a grid
- 2. Grouped listings in those grid spaces
- 3. Took the mean of their prices

econ.

EDA

EDA

Sentiment Analysis

LangDetect
Natural Language Toolkit (NLTK)
Vader Sentiment Analysis

Natural Language ToolKit (NLTK)

Tokenize Words

Remove STOP words

POS Tagging (Part of Speech)

Lemmatize Words

Breaks the whole review up into **individual words**.

Words are analysed individually, without context of other words.

STOP Words are unimportant, commonly used words with no meaning

Eg. The, A, Might, Various

Reduces noise during analysis, allows us to focus on impactful words Words are tagged by grammatical group.

Simply put, they are tagged as nouns, verbs, adjectives etc.

Reduces words to their base form.

Running = Run Feet = Foot Hotel = trivago

Vader Sentiment Analysis

Vader

Returns sentiment scores as ratios

- Positive
- Negative
- Neutral

Eg. Pos: 0.48, Neu: 0.52

	comments_clean	pos
76596	good good clean clean clean thx	1.000
8390	great location perfectly clean great value	0.946
83132	warm friendly welcome would definitely recomme	0.943
41263	truly excellent apartment great welcoming helpful	0.943
148657	great cozy wonderful relax definitely recommen	0.941
	comments_clean	neg
191318	comments_clean bad organize rude aggressive host	neg 0.802
191318 134922		
	bad organize rude aggressive host	0.802
134922	bad organize rude aggressive host staff eve unfriendly rude bad attitude	0.802 0.750

Data Cleaning

120

columns

35 columns

Response Variable(Price)

Convert it from string to numeric

- Remove \$ sign
- Remove comma(eg: 5,000)

Remove illogical data and some outliers

- Price = O(Free stay XD??)
- Price > 1000

Predictor Variables

Numeric and Object

Numeric Predictors

Modify Illogical Data

- Square Feet = 0
- Replaced with NaN

Missing Data

accommodates	22507 non-null	float64
bathrooms	22475 non-null	float64
bedrooms	22489 non-null	float64
beds	22467 non-null	float64
square_feet	323 non-null	float64
availability_30	22507 non-null	float64
availability_60	22507 non-null	float64
availability_90	22507 non-null	float64
availability_365	22507 non-null	float64
number_of_reviews	22507 non-null	float64
review_scores_rating	18141 non-null	float64
review_scores_accuracy	18116 non-null	float64
review_scores_cleanliness	18119 non-null	float64
review_scores_checkin	18098 non-null	float64
review_scores_communication	18112 non-null	float64
review_scores_location	18099 non-null	float64
review_scores_value	18095 non-null	float64
minimum_nights	22507 non-null	float64
reviews_per_month	18614 non-null	float64
calculated_host_listings_count	22507 non-null	float64
mean_review_score	17582 non-null	float64
distance_from_central	22462 non-null	float64

	bathrooms	22507 non-nul	float64
	bedrooms	22507 non-nul	float64
	beds	22507 non-nul	float64
	square_feet	22507 non-nul	float64
	availability_30	22507 non-nul	float64
	availability_60	22507 non-nul	l float64
	availability 90	22507 non-nul	l float64
	availability_365	22507 non-nul	float64
	number of reviews	22507 non-nul	l float64
	review_scores_rating	22507 non-nul	float64
	review_scores_accuracy	22507 non-nul	l float64
	review_scores_cleanliness	22507 non-nul	
	review_scores_checkin	22507 non-nul	float64 rests iteratively
J	review_scores_communication	22507 non-nul	float64
	review_scores_location	22507 non-nul	float64
	review_scores_value	22507 non-nul	float64
	minimum_nights	22507 non-nul	l float64
	reviews_per_month	22507 non-nul	float64
	calculated_host_listings_count	22507 non-nul	float64
	mean_review_score	22507 non-nul	float64
	distance_from_central	22507 non-nul	float64

22507 non-null float64

Impute missing

accommodates

Curse of Dimensionality

Principal Component Analysis (PCA)

linear dimensionality reduction technique

First Cluster(House Attributes)

Second Cluster(Availability)

Third Cluster(Review Score)

>0.8 Explained Variance

reviewl, review2

22 → 10

columns

Object Predictors

Convert to Numeric

Host Since and Last Review

- Time difference between reference period and given dates
- Reference period: 2021-01-01

host_since	last_review	reference_period	host_since_period	last_review_period
2008-08-18	2018-10-28	2021-01-01	4519	796
2008-09-16	2018-10-01	2021-01-01	4490	823
2008-10-19	2017-03-20	2021-01-01	4457	1383
2008-11-07	2018-08- <mark>1</mark> 6	2021-01-01	4438	869
2009-05-16	2018-11-04	2021-01-01	4248	789

Convert to Numeric

Remaining object Data

- Unordered data
- One Hot Encode
- Categorise lower-count-unique -data as 'Other'

host_neighbourhood

0	minimum nights	22507 non-null float64	
1	reviews per month	22507 non-null float64	
2	calculated host listings count	22507 non-null float64	
3	mean review score	22507 non-null float64	
4	distance from central	22507 non-null float64	
5	host since period	22507 non-null float64	
6	last review period	22507 non-null float64	
7	attribute 1	22507 non-null float64	
8	attribute_2	22507 non-null float64	
9	availability_1	22507 non-null float64	
10	review_1	22507 non-null float64	
11	review_2	22507 non-null float64	
12	host_neighbourhood_@harlottenburg	22507 non-null float64	
13	host_neighbourhood_Friedrichshain	22507 non-null float64	
14	host_neighbourhood_Kreuzberg	22507 non-null float64	
15	host_neighbourhood_Mitte	22507 non-null float6	
16	host_neighbourhood_Moabit	22507 non-null	
17	host_neighbourhood_Neukölln	22507 non-	•
18	host_neighbourhood_Other	22503	١,
19	host_neighbourhood_Pankow		١
20	host_neighbourhood_Prenzlauer Berg		F
21	host_neighbourhood_Schöneberg		V
22	host_neighbourhood_Tempelhof		v
23	host_neighbourhood_Wedding		
24	host_neighbourhood_Wilmersdorf		
25	neighbourhood_Alexanderplatz		
26	neighbourhood_Brunnenstr. Süd	110at64	
27	neighbourhood_Frankfurter Allee Nord	mull float64	
28	neighbourhood_Frankfurter Allee Süd FK	non-null float64	
29	neighbourhood_Neuköllner Mitte/Zentrum	22507 non-null float64	
30	neighbourhood_Other	22507 non-null float64	
31	neighbourhood_Prenzlauer Berg Nordwest	22507 non-null float64	
32	neighbourhood_Prenzlauer Berg Südwest	22507 non-null float64	
33	neighbourhood_Reuterstraße	22507 non-null float64	
34	neighbourhood_Rixdorf	22507 non-null float64	

```
35 neighbourhood Schillerpromenade
                                                    22507 non-null float64
36 neighbourhood Tempelhofer Vorstadt
                                                    22507 non-null float64
37 neighbourhood_südliche Luisenstadt
                                                    22507 non-null float64
38 neighbourhood group Charlottenburg-Wilm.
                                                    22507 non-null float64
   neighbourhood group
                                 hain-Kreuzberg
                                                    22507 non-null float64
   neighbourhood
                                                    22507 non-null float64
41 neighbor
                                  ellersdorf
                                                    22507 non-null float64
                                                    22507 non-null float64
                                   Schöneberg
                                                    22507 non-null float64
                           tow - Köpenick
                                                    22507 non-null float64
                                                    22507 non-null float64
                e Condominium
                                                    22507 non-null float64
          ty_type_Hostel
                                                    22507 non-null float64
     roperty type House
                                                    22507 non-null float64
   property_type_Loft
                                                    22507 non-null float64
55 property type Other
                                                    22507 non-null float64
56 property type Serviced apartment
                                                    22507 non-null float64
57 room type Entire home/apt
                                                    22507 non-null float64
58 room type Private room
                                                    22507 non-null float64
59 room type Shared room
                                                    22507 non-null float64
60 cancellation_policy_flexible
                                                    22507 non-null float64
61 cancellation_policy_moderate
                                                    22507 non-null float64
62 cancellation policy strict 14 with grace period
                                                   22507 non-null float64
63 cancellation policy super strict 30
                                                    22507 non-null float64
64 cancellation policy super strict 60
                                                    22507 non-null float64
```

Random Forest Modelling

With sklearn

Choosing the model

Model used: Random Forest Regressor

Finding the best combination of numbers for each parameter

'n estimators': [100,200,300,400]}

Create a based model

rf = RandomForestRegressor()

Instantiate the grid search model

```
param_grid = {
    'bootstrap': [True],
    'max_depth': [30,40,50],
    'max_features': [20,30,40],
    'min_samples_leaf': [1,2,3],
    'min_samples_split': [2,3,4],
```

cv = 3, n = -1, verbose = 2)

grid_search = GridSearchCV(estimator = rf, param_grid = param_grid,

GridSearch Result

```
{'bootstrap': True,
 'max_depth': 30,
 'max_features': 20,
 'min_samples_leaf': 1,
 'min_samples_split': 2,
 'n_estimators': 400}
```

Random Forest Result

```
# Get train score
best_grid = grid_search.best_estimator_
best_grid.fit(X_train,y_train.values.ravel())
best_grid.score(X_train,y_train.values.ravel())

RandomForestRegressor(max_depth=30, max_features=20, n_estimators=400)
0.9370627222376413

# Get test score
best_grid.fit(X_test,y_test.values.ravel())
best_grid.score(X_test,y_test.values.ravel())
RandomForestRegressor(max_depth=30, max_features=20, n_estimators=400)
0.9341594748568888
```


Combining Results

Predictions vs Actual

price	predicted	difference	percentage
60.0	69.722500	-9.722500	-16.204167
17.0	32.148333	-15.148333	-89.107843
90.0	85.312500	4.687500	5.208333
26.0	33.627170	-7.627170	-29.335268
42.0	42.037154	-0.037154	-0.088461

Danger of Overfitting

Overfitting

Overfitting occurs when we have fit our model's parameters too closely to the training data.

Hence, when we overfit, we tend to assume that everything we see in the training data exactly how it'll appear in the real world.

Ways to prevent Overfitting

What we've done to prevent overfitting

- 1. Inspect the training data
- 2. Collect Data thoughtfully
- 3. Augment training data
- 4. Restricting the feature set
- 5. Reflection

Inspect Training Data

We inspect training data to look for trends. Trends that we believe are strong within the dataset. If our machine model misses some of these trends, we know we might have gone wrong somewhere.

Some general trends that we visually identified

The larger the listing, the higher the listing price (EDA + Data Cleaning)

The closer you are to central The higher the review score, Berlin, the higher the listing the higher the listing price price (Geo Analysis)

(Sentiment Analysis)

The more occupants a house can host, the higher the listing price (EDA)

RF on Training Data

Our machine model recognised all of these general, more obvious trends. By the feature importance plot, it showed that Attribute 1 (which consists of Square Feet, No of Bedrooms, No of Bathrooms) was the most important factor. Also, distance from centre and mean review score were among the top 10 most important features.

Some general trends that we visually identified

The larger the liming, the higher the sting central Berlin, the price

The closer you are to higher the listing price (Geo Analys)

The higher the **r**iew score, the higher the listing price

The more occupants a house can hos the higher the ling price

Collect Data Thoughtfully

We need to collect data from all groups to ensure that we have an accurate perspective of the population. Some neighbourhoods/areas might be undersampled, or have significantly less data points, so the model will fit to the oversampled population

What we have done:

All of the original data represented all the listings in Berlin. We took the whole population.

However, to reduce the amount of undersampled neighbourhoods, we have reduced our population, to listings within 10km of the city centre.

22132

rows

21170

rows

962 rows

Difference of 4%

Reflection

Machine learning algorithms always introduce a bias as a function of programs that are trying to make assumptions and rules by looking at data.

What we have done:

We have acknowledged that our model has a bias towards the centre of Berlin, with majority of the listings within 6km of the city centre. We have not compensated for this by reducing the radius to 6km because our business model is to optimise the prices for existing listings, which means we would want to cater to the entirety of Berlin.

Regardless, removing the outskirts was important, because as we see, it affects our model slightly.

GridSearch CV Parameters

Original Data

```
{'bootstrap': True,
 'max_depth': 30,
 'max_features': 20,
 'min_samples_leaf': 1,
 'min_samples_split': 2,
 'n_estimators': 400}
```

Outskirts Removed

```
{'bootstrap': True,
  'max_depth': 40,
  'max_features': 20,
  'min_samples_leaf': 2,
  'min_samples_split': 3,
  'n_estimators': 400}
```

Train & Test Score

Original Data

```
# Get train score
best_grid = grid_search.best_estimator_
best_grid.fit(X_train,y_train.values.ravel())
best_grid.score(X_train,y_train.values.ravel())
```

RandomForestRegressor(max_depth=30, max_features=20, n_estimators=400)

0.9370627222376413

```
# Get test score
best_grid.fit(X_test,y_test.values.ravel())
best_grid.score(X_test,y_test.values.ravel())
```

RandomForestRegressor(max_depth=30, max_features=20, n_estimators=400)

0.9341594748568888

Outskirts Removed

```
# Get train score
best_grid = grid_search.best_estimator_
best_grid.fit(X_train,y_train.values.ravel())
best_grid.score(X_train,y_train.values.ravel())
```

0.8860685420290422

```
# Get test score
best_grid.fit(X_test,y_test.values.ravel())
best_grid.score(X_test,y_test.values.ravel())
```

0.878624029526128

Train/Test Score Analysis

Original Data

```
# Get train score
best_grid = grid_search.best_estimator_
best_grid.fit(X_train,y_train.values.ravel())
best_grid.score(X_train,y_train.values.ravel())
RandomForestRegressor(max_depth=30, max_features=20, n_estimators=400)
0.9370627222376413
# Get test score
best_grid.fit(X_test,y_test.values.ravel())
best_grid.score(X_test,y_test.values.ravel())
RandomForestRegressor(max_depth=30, max_features=20, n_estimators=400)
0.9341594748568888
```

Outskirts Removed

best grid.fit(X test,y test.values.ravel())

0.878624029526128

For both **Original Data** and **Outskirts Removed**, we can see that our train and test scores are relatively high. We can also see that for both, our train and test scores are very close to each other, which indicates that we have avoided overfitting.

While this is a good indication that we have not overfit the model, it is not sufficient to guarantee it. Hence, given more time, we would run it though cross-validation libraries and use other models to confirm our model is appropriate and our results are reasonable and justifiable.

Variable Importance

Original Data

Outskirts Removed

```
attribute 1
                     Importance: 0.2
room_type_Entire home/apt Importance: 0.13
room_type_Private room Importance: 0.09
attribute 2
                     Importance: 0.06
availability_1
                     Importance: 0.06
host since period
                     Importance: 0.05
reviews per month
                     Importance: 0.04
distance_from_central Importance: 0.04
last review period
                     Importance: 0.04
                     Importance: 0.04
review 1
```

```
attribute 1
                     Importance: 0.22
room_type_Entire home/apt Importance: 0.15
room_type_Private room Importance: 0.08
availability 1
                     Importance: 0.06
host_since_period
                     Importance: 0.05
attribute 2
                     Importance: 0.05
reviews_per_month
                     Importance: 0.04
last_review_period
                     Importance: 0.04
review 1
                     Importance: 0.04
minimum_nights
                     Importance: 0.03
```

Variable Importance Analysis

Original Data

```
attribute 1
                     Importance: 0.2
room_type_Entire home/apt Importance: 0.13
room type Private room Importance: 0.09
attribute 2
                     Importance: 0.06
availability 1
                     Importance: 0.06
host since period
                     Importance: 0.05
                     Importance: 0.04
reviews per month
distance_from_central Importance: 0.04
last_review period
                     Importance: 0.04
review_1
                     Importance: 0.04
```

Outskirts Removed

```
attribute 1
                     Importance: 0.22
room_type_Entire home/apt Importance: 0.15
room_type_Private room Importance: 0.08
availability 1
                     Importance: 0.06
host since period
                     Importance: 0.05
attribute 2
                     Importance: 0.05
reviews per month
                     Importance: 0.04
                     Importance: 0.04
last review period
review 1
                     Importance: 0.04
minimum nights
                     Importance: 0.03
```

As we see, even though the order shifts around, it does not affect the values significantly.

The biggest difference is the lack of distance from central variable. In the Outskirts Removed dataframe, it is in 12th place, with a numerical importance of 0.03. Not a significant change, but one to take note of.

Visualisations

Original Data

Outskirts Removed

Visualisation Analysis

Original Data

Outskirts Removed

In the original map, we had 342 grid points. In the outskirts removed map, we have 330 grid points. And while they look the same visually, we notice a slight change in the hue of the grid points.

We notice that the listings on the edge of outskirts removed are slightly more undervalued (compared to the original map) and hence, accounts for a smaller centre as well.

Hence, by removing outskirts, we see that it shows us a greater distinction between central Berlin and the outer neighbourhoods.

This is not necessarily a good thing because our predicted prices are not as accurate in the Outskirts removed model, compared to the Original Data model. While the visualisation is helpful, it represents a weaker representation of what listing prices should be.

What does this mean for our business case?

Original Data

Outskirts Removed

For our business case, we find that the Outskirts Removed model gave us a weaker train/test score, but it also showed us a greater distinction between listings in central Berlin and the greater neighbourhoods.

The weaker test score gave rise to higher percentages across our dataframe and while it shows the distinction, it is not as helpful as the original data, which better reflects the predicted price.

Given more time and data from other German cities, and other megacities in Europe, we believe that we can build a stronger and more cohesive model that better predicts predicted price, which is our ultimate goal at hand.

With an accurate and justifiable predicted price, we are confident that our feature will help existing hosts adjust their price to better reflect the value of their property, and thus increase their profit in the long run.

Business Case

Price optimisation of listings for Hosts

