Linear Regression Assumptions

DATA SCIENCE BOOTCAMP

First, some notes about Covariance

Covariance

• It's a measure of how two random variables change together.

Covariance

- It's a measure of how two random variables change together.
- The sign (+/-) shows the tendency of the linear relationship between X and Y
- The magnitude is harder to interpret.

Covariance (math)

Let's say X and Y are two random variables, where:

$$E(X) = \mu_X$$
 and $E(Y) = \mu_Y$

The <u>covariance</u> between X and Y is:

Cov(X, Y) = E[(X -
$$\mu_X$$
)(Y - μ_Y)]
= E(XY) - $\mu_X\mu_Y$
= σ_{XY}

Covariance, normalized

Pearson's correlation coefficient

$$\rho_{X,Y} = \frac{\text{cov}(X, Y)}{\sigma_X \sigma_Y}$$

- Here, magnitude shows strength of the linear relationship.
- $-1 \le \rho_{X,Y} \le 1$

Covariance (more math facts)

- Cov(X, X) = Var(X)
- Cov(X, Y) = Cov(Y, X)
- Cov(X, aY) = aCov(X, Y); a is any constant number
 - Var(aX) = Cov(aX, aX)= $a^2Var(X)$

Covariance

- If random variables X and Y are independent,
 Then Cov(X, Y) = 0
- BUT if Cov(X, Y) = 0, it *does not necessarily* mean that X and Y are independent!

$$y_{\beta}(x) = \beta_0 + \beta_1 x + \varepsilon$$

$$\beta_0 = 80$$
 million $\beta_1 = 0.5$

$$\beta_0 = 0$$

$$\beta_0 = 0$$
 $\beta_0 = 120$ million
 $\beta_1 = 1.5$
 $\beta_1 = 0.1$

$$\beta_0 = 30$$
 million $\beta_1 = 2$

- 1. Linear in parameters
- Identifiability / No exact pairwise collinearity
 / No exact multicollinearity
- 3. Either: the covariates $(X_i's)$ are fixed, OR, if $X_i's$ are random variables, then $X_i's$ are independent of ϵ i.e.: $Cov(X_1, \epsilon) = Cov(X_2, \epsilon) = ... = Cov(X_p, \epsilon) = 0$
- 4. Number of observations > number of β parameters
- 5. Sufficient variation in the values of the X variables
- 6. Errors ε are normally distributed
- 7. Mean of the errors ε is 0 i.e.: $E(\varepsilon) = 0$
- 8. Homoskedasticity. $Var(\varepsilon_i) = x^2$ for all i observations
- 9. No autocorrelation / no serial correlation i.e.: $Cov(\varepsilon_i, \varepsilon_j) = 0$ for any $i \neq j$
- 10. The model is correctly specified.

- 1. Linear in parameters
- Identifiability / No exact pairwise collinearity
 / No exact multicollinearity
- 3. Either: the covariates $(X_i's)$ are fixed, OR, if $X_i's$ are random variables, then $X_i's$ are independent of ϵ i.e.: $Cov(X_1, \epsilon) = Cov(X_2, \epsilon) = ... = Cov(X_p, \epsilon) = 0$
- 4. Number of observations > number of β parameters
- 5. Sufficient variation in the values of the X variables
- 6. Errors ε are normally distributed
- 7. Mean of the errors ε is 0 i.e.: $E(\varepsilon) = 0$
- 8. Homoskedasticity. $Var(\varepsilon_i) = x^2$ for all i observations
- 9. No autocorrelation / no serial correlation i.e.: $Cov(\varepsilon_i, \varepsilon_i) = 0$ for any $i \neq j$
- 10. The model is correctly specified.

If those assumptions highlighted in blue are true, then the OLS estimators $\hat{\beta}_0$, $\hat{\beta}_0$, ..., $\hat{\beta}_p$ are the

Best:

Linear

Unbiased:

Estimators

If those assumptions highlighted in blue are true, then the OLS estimators $\hat{\beta}_0$, $\hat{\beta}_0$, ..., $\hat{\beta}_p$ are the

Best: smallest variances among all linear

unbiased estimators (efficient)

Linear

Unbiased:

Estimators

If those assumptions highlighted in blue are true, then the OLS estimators $\hat{\beta}_0$, $\hat{\beta}_0$, ..., $\hat{\beta}_p$ are the

Best: smallest variances among all linear

unbiased estimators (efficient)

Linear

Unbiased: $E(\hat{\beta}_i) = \beta_i = \text{ for i from 1, 2, ..., p}$

Estimators

Note: an unbiased estimator with the least variance is known as an *efficient* estimator.

Note: an unbiased estimator with the least variance is known as an *efficient* estimator.

i.e.: if you have an *efficient* estimator, you require the least amount of data to get an estimate $\hat{\beta}_i$ with reasonable variance.

Note: an unbiased estimator with the least variance is known as an *efficient* estimator.

i.e.: if you have an *efficient* estimator, you require the least amount of data to get an estimate $\hat{\beta}_i$ with reasonable variance.

If an estimate is *not efficient* (but still unbiased), you're still generally OK if you use enough data, i.e.: your estimate will be asymptotically correct.

Examples:

• (good): $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_2^2 + \epsilon$

Examples:

- (good): $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_2^2 + \epsilon$
- (bad) Y: ranks of films, or categorical variable
 - Here, the underlying models are nonlinear
- (bad): $Y = \beta_0 + e^{\beta_1} X^{\beta_2} + \epsilon$

Examples:

- (good): $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_2^2 + \epsilon$
- (bad) Y: ranks of films, or categorical variable
 - Here, the underlying models are nonlinear
- (bad): $Y = \beta_0 + e^{\beta_1} X^{\beta_2} + \epsilon$

Test:

- Ask yourself: is Y numerical? Are you sure Y is not a rank?
- Try partial regressions and plots: Y ~ X_i, see if there's a linear relationship
- If all your standard errors are really big, might suspect nonlinearity
- (Assumption #8) residuals vs fitted plot: nonlinear

- Estimates for $\hat{\beta}_0$ and their standard errors will be wrong, so predictions Y will be wrong.
- Whole model will be wrong.

Consequences:

- Estimates for $\hat{\beta}_0$ and their standard errors will be wrong, so predictions Y will be wrong.
- Whole model will be wrong.

Remedies:

Give up (try a nonlinear model)

a.k.a. No exact pairwise collinearity,
No exact multicollinearity

a.k.a. No exact pairwise collinearity, No exact multicollinearity

Examples:

Exact multicollinearity:

```
X_1 = production budget
```

 X_2 = announced budget (= 2 × production budget)

a.k.a. No exact pairwise collinearity, No exact multicollinearity

Examples:

Exact multicollinearity:

```
X_1 = production budget
```

 X_2 = announced budget (= 2 × production budget)

Near collinearity:

```
X_1 = production budget
```

 X_2 = # opening theatres

a.k.a. No exact pairwise collinearity,
No exact multicollinearity

Examples:

Exact multicollinearity:

 X_1 = production budget

 X_2 = announced budget (= 2 × production budget)

Near collinearity:

 X_1 = production budget

 X_2 = # opening theatres

Test:

- Check 1 versus 1 scatterplots of suspect pairs of X_i's
- High R² and significant F-statistic but mostly insignificant t-statistics

a.k.a. No exact pairwise collinearity, No exact multicollinearity

- $\hat{\beta}$ and \hat{Y} estimates are still BLUE:
 - Still unbiased (best point estimates)
 - Still minimum possible variances

a.k.a. No exact pairwise collinearity, No exact multicollinearity

- β and Υ estimates are still BLUE:
 - Still unbiased (best point estimates)
 - Still minimum possible variances
- BUT:
 - Large variances (large standard errors)

a.k.a. No exact pairwise collinearity, No exact multicollinearity

- $\hat{\beta}$ and \hat{Y} estimates are still BLUE:
 - Still unbiased (best point estimates)
 - Still minimum possible variances
- BUT:
 - Large variances (large standard errors)
 - In perfect collinearity, standard errors would be infinite
 - Wide confidence intervals

a.k.a. No exact pairwise collinearity, No exact multicollinearity

Consequences (continued):

- t-tests tend to fail to reject the null (statistically insignificant covariates)
 - Thus you would be incorrectly concluding that covariates aren't related to Y, when in actuality, they are.
- Tiny changes in data \rightarrow large differences in $\hat{\beta}$ and \hat{Y}

a.k.a. No exact pairwise collinearity, No exact multicollinearity

Remedies:

- Feature selection; then see if standard errors get smaller
 - Regularize (Ridge/Lasso) this gets rid of some of the overlapping
- Be careful: sometimes it's better to have near-collinearity than a loss in signal.

Examples:

- (good) Store offering % discounts. Experimenting with sales revenue.
 - % discount levels (10%, 20%, 25%, etc.) are fixed.

Examples:

- (good) Store offering % discounts. Experimenting with sales revenue.
 - % discount levels (10%, 20%, 25%, etc.) are fixed.
- (non-experimental) treat movie budget as a random variable; then movie budget must not be correlated with ϵ

Examples:

- (good) Store offering % discounts. Experimenting with sales revenue.
 - % discount levels (10%, 20%, 25%, etc.) are fixed.
- (non-experimental) treat movie budget as a random variable;
 then movie budget must not be correlated with ε

Test:

• Mostly you can assume the former. Else: don't worry about it.

Consequences:

Model may be mis-specified (see Assumption #10)

Remedies:

- Mostly you can assume X is fixed.
- Specify the model as best you can.
- Most importantly: be aware, but don't worry too much.

4. Number of Observations > Number of β Parameters

4. Number of Observations > Number of β Parameters

Examples:

- $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + ... + \beta_p X_p + \varepsilon$
 - Number of data points > (p + 1)
- (bad) Fitting all possible X_i's, their interactions
 (1000 covariates), but only having 100 movies in your dataset

4. Number of Observations > Number of β Parameters

Examples:

- $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + ... + \beta_p X_p + \varepsilon$
 - Number of data points > (p + 1)
- (bad) Fitting all possible X_i's, their interactions
 (1000 covariates), but only having 100 movies in your dataset

Test:

Count.

Consequences:

Overfit

Remedies:

- Feature selection / Regularization
- Get more data

5. Sufficient variation in your covariates (X_i's)

5. Sufficient variation in your covariates (X_i's)

Examples:

- (bad) revenue = $\beta_0 + \beta_1$ budget; but all the budget values in your dataset are \$100 million
 - Then you try to predict revenues of films with \$50,000 budget

5. Sufficient variation in your covariates (X_i's)

Examples:

- (bad) revenue = β_0 + β_1 budget; but all the budget values in your dataset are \$100 million
 - Then you try to predict revenues of films with \$50,000 budget

Test:

• Look. (Be smart).

Consequences:

Wrong about anything outside of your covariate (X_i) range.

Remedies:

• Don't.

- 1. Linear in parameters
- Identifiability / No exact pairwise collinearity
 / No exact multicollinearity
- 3. Either: the covariates $(X_i's)$ are fixed, OR, if $X_i's$ are random variables, then $X_i's$ are independent of ϵ i.e.: $Cov(X_1, \epsilon) = Cov(X_2, \epsilon) = ... = Cov(X_p, \epsilon) = 0$
- 4. Number of observations > number of β parameters
- 5. Sufficient variation in the values of the X variables
- 6. Errors ε are normally distributed
- 7. Mean of the errors ε is 0 i.e.: $E(\varepsilon) = 0$
- 8. Homoskedasticity. $Var(\varepsilon_i) = x^2$ for all i observations
- 9. No autocorrelation / no serial correlation i.e.: $Cov(\varepsilon_i, \varepsilon_i) = 0$ for any $i \neq j$
- 10. The model is correctly specified.

- 1. Linear in parameters
- Identifiability / No exact pairwise collinearity
 / No exact multicollinearity
- 3. Either: the covariates $(X_i's)$ are fixed, OR, if $X_i's$ are random variables, then $X_i's$ are independent of ϵ i.e.: $Cov(X_1, \epsilon) = Cov(X_2, \epsilon) = ... = Cov(X_p, \epsilon) = 0$
- 4. Number of observations > number of β parameters
- 5. Sufficient variation in the values of the X variables
- 6. Errors ε are normally distributed
- 7. Mean of the errors ε is 0 i.e.: $E(\varepsilon) = 0$
- 8. Homoskedasticity. $Var(\varepsilon_i) = x^2$ for all i observations
- 9. No autocorrelation / no serial correlation i.e.: $Cov(\varepsilon_i, \varepsilon_i) = 0$ for any $i \neq j$
- 10. The model is correctly specified.