E-COMMERCE: QUERY RECOMMENDATION (AND EXPANSION)

Claudio Silvestri

Intro to the problem

Query Suggestions (related to query expansion)

Algo 1

- □ Idea:
 - Expand a query by adding similar terms
 - Could be done by counting co-occurrences
- □ Nice idea:
 - Compare postings-lists to compute term similarity

- \square A term t_i is modeled as a vector:
 - $\mathbf{I}_{i} = (d_{i1}, d_{i2}, ..., d_{in})$
 - Where d_{ik} signifies the importance of document k for term i

$$d_{ik} = \frac{\left(0.5 + 0.5 \frac{\text{ff}(d_k, t_i)}{\text{maxff}(t_i)}\right) \cdot \text{iif}(d_k)}{\sqrt{\sum_j (d_{ij})^2}}$$

- \square maxff(d_i,t_i) = max of $ff(d_k,t_i)$ for every d_k
- \square iff(d_k) = log (# terms / # of distinct terms in d_k)

Similarity between two terms is defined as:

$$SIM(t_i, t_j) = t_i \cdot t_j = \sum_k d_{ik} \cdot d_{jk}$$

- □ Wrap up:
 - A term is a set of meanings (= documents)
 - Each meaning (=document) has different weight
 - Two terms are similar if they are represented by the same documents/meaning/concepts

- What about the query ??
- □ A query q is modeled as a vector:
 - $\Box q = (q_1, q_2, ..., q_m)$
 - \square where q_i is the importance of term i for the query q
 - \square could be 1/m, or idf, or explicit, or others ...
- Move into the document space:

$$\mathsf{SIM-QT}(q,t) = \frac{\sum_{t_i \in q} q_i \cdot \mathsf{SIM}(t_i,t)}{\sum q_j}$$

- □ This allows to compute a score for every term t
- Get the r top-ranked terms
- Create a new expanded query in the document space

Results on three corpora:

Collection	MED	CACM	NPL
avg. precision of original queries	0.5446	0.2718	0.1818
Number of addi- tional terms	80	100	800
avg. precision of expanded queries	0.6443	0.3339	0.2349
Improvement	+ 18.31 %	+ 22.85 %	+ 29.21 %

How to apply this to Query Suggestion

- We have seen an algorithm for query expansion
- □ It provides a ranked list of relevant terms $t_1, ..., t_n$
- □ Given a query q, we can suggest new queries like:
 - $\square q + t_1$
 - $\square q + t_2$
 - **-** ...
 - $\square q + t_n$

Algo 2

- □ Two main assumptions:
 - Terms that co-occur frequently and close to each other are likely to be related
 - Every term can be tagged as being:
 - N: Noun, J: Adjective, R: Adverb, V: Verb, I: Cardinal number, A: Article, others...

□ Goal:

- Provide query suggestions according to a given template or phrase rule:
 - [AN] or {NNN, JNN, JJN, NN, JN, N}
- NB: query suggestions was originally used to run an expanded query

- A document is a set of paragraphs
- A paragraph is a set of sentences
- □ A sentence is a set of phrases
- A phrase is a set of consecutive terms,
 according to the given phrase rule

- □ Goal:
 - Find terms that co-occur frequently in phrases

- Given a text collection, for each phrase and term in a paragraph generate an association:
 - <term_id, phrase_id>
- Count occurrences over the whole collection to compute triples:
 - <term_id, phrase_id, frequency>
- All the triples regarding a given phrase_id are gathered to form pseudo-document:
 - term_id¹ (frequency¹), ..., term_id^N (frequency^N).

- The pseudo-documents are indexed by some information retrieval system
- A query q is submitted to such system,
 which will return a set of pseudo-documents
 - Each pseudo-document corresponds to a phrase
 - The top ranked phrases are returned to the user

Results:

```
Query:115.1: Impact of the 1986 Immigration Law - will report specific consequence consequences of the U.S.'s Immigration Reform and Control Act of 1986.
```

```
0.511462
                illegal immigration
0.501936
                illegals
                undocumented aliens
0.499120
0.498964
                amnesty program
0.498054
                immigration reform law
0.492453
                editorial-page article
                naturalization service
0.490993
                civil fines
0.489448
0.488754
                new immigration law
                legal immigration
0.487762
0.487187
                employer sanctions
                simpson-mazzoli immigration reform
0.483245
```

Alg 3

Query-flow graph

- □ A few consecutive queries:
 - "Brake pads"
 - "Auto repair"
 - "Auto body shop"
 - "Batteries"
 - "Car batteries"
 - "Buy car batteries online"
- Observation:
 - Users tend to rephrase queries until their information need is satisfied.
 - These "query-chains" can be used for query suggestion

What is a query log

- □ A query log L is a set of records:
 - $\square < q_i, u_i, t_i, V_i, C_i >$
 - Respectively: query, anonymized user identifier,
 timestamp, returned documents and clicked documents
- Users interact in sessions S:
 - A session is a (maximal) set of queries with inter-arrival time smaller that a given threshold (e.g. 30 mins)
- A super session is composed by all the sessions of a given user

What is the Query-flow graph

- □ G=(V,E,W)
 - V is the set of nodes, every node corresponds to a query in the query log, plus a "fake" starting point s and ending point t.
 - **E** is a set of directed edges between the nodes.
 - w is a weighting function, that assigns an importance to an edge between to nodes.
- Building the Query-flow graph means to build find the weight of each edge in the graph.

Finding the weights

- □ Task 1:
 - \blacksquare Are two queries q_1 and q_2 in the same chain ??
- □ Task 2:
 - How many times a query q_1 is reformulated with a query q_2 ??

Same-chain discovery

- When are two queries in the same chain ??
 - Def: if they satisfy the same information need.
 - Heuristic: if they are "similar".
- When are two queries similar?
 - □ TEXT: common terms, common trigrams, edit distance
 - SESSION: how many times they occur in the same session
 - □ TIME: distance in time

Same-chain discovery

- \square Take a small number of consecutive queries q_1 , q_2
 - Manually label whether they are in the same chain
 - Use the some data mining (or genetic) algorithm to learn the impact of the various features: time distance, text similarity, etc.
 - The output is a classifier (function) with the following output:
 - q_1, q_2 are <u>not</u> in the same chain
 - $\blacksquare q_1, q_2$ are in the same chain
 - Use the classifier is used to set/remove edges.

Reformulation probability

□ For every "survived" edge assign weight:

$$w(q_1, q_2) = f(q_1, q_2) / f(q_1)$$

- where $f(q_1, q_2)$ is the number of times q_1 occurs immediately after q_2 , and $f(q_1)$ is the number of occurrences of q_1
- ... a conditional probability

Query-flow graph

□ Result

barcelona fo website

How to build recommendations

- □ Three methods:
 - Maximum Weight
 - Random Walk
 - Random Walk with History

Maximum Weight

□ Given a query q_1 , return the query q_* with maximum $w(q_1,q_*)$

□ Problem:

Promotes queries that are frequent anyway

```
Max. weight
```

t
apple ipod
apple store
apple trailers
amazon
apple mac
itunes
pc world
argos
currys

```
jeep cherokee
jeep grand ...
jeep wrangler
land rover
landrover
ebay
chrysler
bmw
nissan
```

Random Walk

- Since the Query-flow graph looks like the Web graph:
 - use PageRank
 - \blacksquare change the personalization vector such that the walk always restarts from the input query q_1

Random Walk Results

Max. weight	s_q	\hat{s}_q	$ar{s}_q$
t apple ipod apple store apple trailers amazon apple mac itunes	t apple apple ipod apple store apple trailers google amazon	apple apple fruit apple ipod apple belgium eating apple apple.nl apple monitor	apple apple ipod apple trailers apple store apple mac apple fruit apple usa
pc world argos currys	argos itunes pc world	apple usa apple jobs apple movie	apple ipod nano apple.com/ipod
jeep cherokee jeep grand jeep wrangler land rover landrover ebay chrysler bmw nissan	t jeep jeep cherokee jeep grand bmw jeep wrangler land rover landrover chrysler google	jeep jeep trails jeep kinderk jeep compass jeep cherokee swain and jon jeep bag country living buy range rov craviotto snare	jeep jeep cherokee jeep trails jeep compass jeep kinderkled jeep grand jeep wrangler chryslar jeepcj7 buses to Knowl

Random Walk with History

- \square Given the recent queries $q_1, q_2, ..., q_k$
 - Change the personalization vector to allow restarts from any query in the recent history, such that the probability of older queries is larger

music	$\begin{array}{l} \texttt{facebook} \rightarrow \texttt{gabriella} \\ \rightarrow \texttt{music} \end{array}$
music	music
yahoo music	gabriella
music videos	yahoo music
music downloads	music videos
free music	music downloads
yahoo music videos	free music
music yahoo	gabriella sweet like me
free music videos	lighting bug rotherham
yahoo music launch	ccp npa ndf
free music downloads	gabriela lighting