Eigenvalues of Tree Graph

Yixiao Feng Zhiyuan College, Shanghai Jiao Tong University, Shanghai, P.R.China

January 11, 2024

1 Introduction

Tree Graph of a directed graph G emerges from proof of Markov chain tree theorem. The construction of the tree graph $\mathcal{T}G$ is recalled in section 2. Properties of $\mathcal{T}G$ have drawn many interests. In particular, eigenvalues of $\mathcal{T}G$ is a focal point. In this essay, we rearrange the proof of eigenvalues of $\mathcal{T}G$ and make conjectures of the Jordan canonical form of $\mathcal{T}K_n$, in which K_n is the directed complete graph on n vertices.

The Laplacian of G is defined as Q = D - M, where D is the diagonal matrix of outdegrees of vertices and M is the adjacency matrix of G.

An l-walk, or l-path, in a directed graph G=(V,E) means a directed l-walk, that is a sequence $(u_0,e_1,u_1,\cdots,e_l,u_l)$ of vertices and edges of G such that for each $1 \leq i \leq l$, edge e_i has initial vertex u_{i-1} and terminal vertex u_i . The walk is closed if $u_0 = u_l$.

If S is a nonempty subset of V, we denote by G_S the induced subgraph of G on the vertex set S, that is the directed graph obtained from G by only keeping vertices in S and edges with both endpoints in S.

2 tree graph

In this section we recall some basic concepts and introduce a few previous results.

2.1 Spanning trees and forests

Let G = (E, V) be a finite directed graph. For each edge we denote s(e) its source and t(e) its target. A (rooted) spanning tree of G is a subgraph of G containing all vertices with no cycle. There is one vertex r, called the root, having outdegree 0 and the other vertices have outdegree 1. By the nature of tree, the spanning tree of G has |V| - 1 edges.

Generally, if $W \subset V$ is a nonempty subset, a forest of G rooted in W is defined as the following subgraph: it contains all vertices, with no cycle, and the vertices in W have outdegree 0 while the other vertices have outdegree 1.

2.2 Tree graph TG

The tree graph of G, denoted $\mathcal{T}G$, is the directed graph whose vertices are the spanning trees of G and whose edges are obtained by the following construction:

Let **a** be a spanning tree of G with root r. For an edge $e \in E$ with s(e) = r, let **b** be the subgraph of G obtained by adding edge e to **a** then deleting the edge coming out of t(e) in **a**.

Figure 1: definition of $\mathcal{T}G$

It's easy to check that **b** is a spanning tree of G, with root t(e).

In the following we will denote $\mathcal{T}V$ the set of vertices of $\mathcal{T}G$, i.e., the set of spanning trees of G.

There is a natural map p from $\mathcal{T}G$ to G. p maps each vertex of $\mathcal{T}G$ to its root, and maps each edge of $\mathcal{T}G$ to the edge e of G for its construction.

Now we give here some elementary properties of the tree graph. See previous papers [2] for proofs.

- TG is simple and has no loop.
- The graph $\mathcal{T}G$ is strongly connected if G is.
- The graph $\mathcal{T}G$ is a covering graph ¹ of G.
- The set of edges of $\mathcal{T}G$ can be partitioned into edge-disjoint simple cycles, which project onto simple cycles of G. If C is a simple cycle of G, with vertex set W, then the number of simple cycles of $\mathcal{T}G$ lying above C is equal to the number of forests rooted in W.
- The graph $\mathcal{T}G$ is Eulerian: The number of outgoing or incoming edges of a vertex **a** are both equal to the number of outgoing edges of the root of **a** in G.

If $W \subset V$, The matrix-tree theorem gives the generating function of spanning forests of G rooted in W. Moreover, it's easy to know the total number of those spanning forests: Denote Q^W as the matrix obtained from the Laplacian matrix Q of G by deleting rows and columns indexed by elements of W, then the number of spanning forests of G rooted in W is given by $\det(Q^W)$.

In particular, let $W = \{r\}$, then the number of spanning trees of G rooted in r is given by $\det(Q^r)$. For convenience in the following we use the notation $Q_W = Q^{V \setminus W}$ to denote the matrix extracted from the Laplacian matrix Q of G by keeping only rows and columns indexed by elements of W.

It is important to notice that the matrix-tree theorem is valid for both directed and undirected graphs.

By the matrix-tree theorem, we can easily derive all spanning trees of G, then construct the tree graph $\mathcal{T}G$.

 $^{^{1}} https://en.wikipedia.org/wiki/Covering_graph$

3 Eigenvalues of Tree Graph

Though astonishing, eigenvalues of the adjacency matrix of the tree graph $\mathcal{T}G$ can be computed explicitly. This can be expected from the following fact: the (i,j) entry of the matrix M, where M is the adjacency matrix of G, equals the number of l-walks in G which start at v_i and end at v_j . Thus, the number of closed l-walks in $\mathcal{T}G$, which we will denote by $w(\mathcal{T}G, l)$, equals the trace of M^l and hence the sum of the lth powers of the eigenvalues of M.

C. Athanasiadis proved the following theorem about eigenvalues of $\mathcal{M}^{[1]}$, i.e., the adjacency matrix of $\mathcal{T}G$.²

Theorem 3.1. The nonzero eigenvalues of \mathcal{M} are eigenvalues of M_X ; $X \subseteq V$ where M is the adjacency matrix of G. For an eigenvalue γ , let $m_X(\gamma)$ denotes its multiplicity in M_X , then its multiplicity in \mathcal{M} is

$$\sum_{X \subseteq V} m_X(\gamma) \det(Q_{V \setminus X} - I)$$

Here we make the convention that $det(Q_{\emptyset} - I) = 1$.

The original proof from Athanasiadis is a little confusing, so we make it more clear here. First we need to calculate $w(\mathcal{T}G, l)$.

Theorem 3.2. For a directed graph G on the vertex set V we have

$$w(\mathcal{T}G, l) = \sum_{S \subset V} w(G_S, l) \det(Q_{V \setminus S} - I).$$

Proof. A closed *l*-walk in $\mathcal{T}G$ is determined by a spanning tree T_0 on G with root r, and a closed l-walk $W = (u_0, e_1, u_1, \dots, e_l, u_l)$ in G with $u_0 = u_l = r$. Let $a = (u_0, u_1, \dots, u_l)$. The sequence a determines the roots of the trees $T_0, T_1, \dots, T_l = T_0$ to be visited during the walk in $\mathcal{T}G$.

Fix a closed l-walk W in G together with the sequence a. Following Athanasiadis's argument (Theorem 2.2) the number of trees T_0 which will yield a closed l-walk in $\mathcal{T}G$ is the number $\tau(G,U)$ of spanning forests on G with root set $U=\{u_0,u_1,\cdots,u_l\}$. Finally, the number of closed l-walks in $\mathcal{T}G$ is

$$w(\mathcal{T}G, l) = \sum_{U \subset V} g(G_U, l)\tau(G, U), \tag{1}$$

where g(G, l) stands for the number of closed l-walks in a graph G visiting all of its vertices.

We may explain (1) more explicitly. Notice that a closed l-walk in G can have repeated vertices, so if G_U has a closed l-walk visiting all of its vertices, then |U| can be divided by l. Also, G_U can have more than one closed l-walk. The inclusion-exclusion principle gives

$$g(G_U, l) = \sum_{S \subset U} (-1)^{|U - S|} w(G_S, l).$$
(2)

Hence, after using (2) to compute $g(G_U, l)$ and changing the order of summation, (1) becomes

$$w(\mathcal{T}G,l) = \sum_{S \subseteq V} w(G_S,l) \sum_{S \subseteq U \subseteq V} (-1)^{|U-S|} \tau(G,U). \tag{3}$$

²In Biane and Chapuy's paper^[2], they wrote the theorem wrongly (Proposition 3.1)

Recall that by the matrix-tree theorem, $\tau(G, U) = \det(Q_{V \setminus U})$, thus

$$w(\mathcal{T}G,l) = \sum_{S \subseteq V} w(G_S,l) \sum_{S \subseteq U \subseteq V} (-1)^{|U-S|} \det(Q_{V \setminus U}) = \sum_{S \subseteq V} w(G_S,l) \det(Q_{V \setminus S} - I).$$

Now that we have the number of closed l-walks in $\mathcal{T}G$, we can compute the trace of \mathcal{M}^l and M^l . We need the following lemma to complete the proof.

Lemma 3.3. Suppose that for some nonzero complex numbers a_i , b_j , where $1 \le i \le r$ and $1 \le j \le s$ we have

$$\sum_{i=1}^{r} a_i^l = \sum_{j=1}^{s} b_j^l \tag{4}$$

for all positive integers l. Then r = s and the a_i are a permutation of the b_i .

The proof can be found in Athanasiadis's paper^[1].

From theorem 3.2 and Lemma 3.3 we immediately get theorem 3.1.

4 Example of Complete Graph

The complete directed graph K_n is the graph on the vertex set $V = [n] = \{1, 2, \dots, n\}$ with exactly one directed edge from i to j for each $i \neq j$.

4.1 Eigenvalues of $\mathcal{T}K_n$

Proposition 4.1. With $G = K_n$, $n \ge 2$, \mathcal{M} has eigenvalues $-1, 1, \dots, n-1$. The multiplicity of i is

$$m_{\mathcal{M}}(i) = \begin{cases} i\binom{n}{i+1}(n-1)^{n-i-2}, & 1 \leq i \leq n-1\\ n^{n-1} - (n-1)^{n-1}, & i = -1. \end{cases}$$

Proof. First we calculate the eigenvalues of K_n . Note that $(1, \dots, 1)^{\mathsf{T}}$ is an eigenvector of M with eigenvalue n-1. Besides, J_n , the $n \times n$ matrix with all entries equal to 1, has a kernel of dimension n-1. Thus the eigenvalues of K_n are n-1 with multiplicity 1 and -1 with multiplicity n-1. Hence, by theorem 3.1, the eigenvalues of \mathcal{M} are $-1, 1, \dots, n-1$. Moreover the eigenvalue $m-1, 2 \leq m \leq n$ has multiplicity

$$\binom{n}{m}\det(Q_{V\backslash[m]}-I)=\binom{n}{m}(m-1)(n-1)^{n-m-1}.$$

which is easy to obtain by consider eigenvalues of $Q_{V\setminus[m]}-I$.

-1 has multiplicity

$$\sum_{m=2}^{n} \binom{n}{m} (m-1) \det(Q_{V \setminus [m]} - I)$$

$$= \sum_{m=1}^{n} (m-1)^{2} \binom{n}{m} (n-1)^{n-m-1} = n^{n-1} - (n-1)^{n-1}.$$

The multiplicities we have so far add up to n^{n-1} , so 0 is not an eigenvalue of \mathcal{M} and the proposition follows.

4.2 Properties of $\mathcal{T}K_n$

Properties of K_n have always been interesting. We have a lot more to say about $\mathcal{T}K_n$. First, since $\mathcal{T}K_n$ is a covering graph of K_n , we have the following proposition.

Proposition 4.2. $\mathcal{T}K_n$ is a regular graph where each vertex has outdegree and indegree n-1.

However, we remind readers that while every vertex in $\mathcal{T}K_n$ has outdegree n-1 is obvious from the construction of edges in $\mathcal{T}K_n$, the constant indegree of each vertex is not trivial at all. Given a spanning tree T_0 of K_n , writing down all T_1, \dots, T_{n-1} that $T_i \to T_0$ in $\mathcal{T}K_n$ is not that easy. The difficulty lies in irreversibility of the construction of edges in $\mathcal{T}K_n$. Actually, we can get the following proposition.

Proposition 4.3. Let T_1 is a spanning tree of K_n with root r_1 , T_2 is a spanning tree of K_n with root r_2 . There is an edge $T_1 o T_2$ in $\mathcal{T}K_n$. Then there is an edge $T_2 o T_1$ in $\mathcal{T}K_n$ if and only if $r_2 o r_1$ in T_1 . Also, by definition, we have $r_1 o r_2$ in T_2 . In the remaining we will say that there is a bi-edge between T_1 and T_2 .

Proof. Suppose $r_2 \to r_1$ in T_1 . Then in T_2 , we have $r_1 \to r_2$, and r_1 has no other outgoing edges. Thus, if we add $r_2 \to r_1$ in T_2 and delete $r_1 \to r_2$ in T_2 , we get exactly T_1 . Hence, $T_2 \to T_1$ in $\mathcal{T}K_n$. Conversely, suppose $T_2 \to T_1$ in $\mathcal{T}K_n$. By definition, $r_2 \to r_1$ in T_1 .

From the above proposition, we know that given T_0 , the number of T such that T_0 and T has a bi-edge equals the indegree of r_0 in T_0 , where r_0 is the root of T_0 .

For any m, we now consider number of rooted trees with m bi-edges. There is a helpful simple decomposition of rooted trees: Let T be a rooted tree. If we remove all edges incident with the root, we get the root together with a set of trees. Number of trees equals indegree of the root.

Proposition 4.4. With $G = K_n$, number of trees with m bi-edges is

$$nm\binom{n-1}{m}(n-1)^{n-2-m}$$

Proof. First, there are n choices of root, denoted as r_0 . Second, by the above discussion, there are $\binom{n-1}{m}$ choices of roots after the decomposition, denoted as r_1, \dots, r_m . Finally, excluding r_0 , number of forests rooted in r_1, \dots, r_m equals to $\det(n-1)I_{n-1-m} - J_{n-1-m}$, which is $m(n-1)^{n-2-m}$. By multiplicity principle, we get the proposition.

Proposition 4.5. With $G = K_n$, if $T_0 \to T_1$, $T_1 \to T_2$ in TG, then $T_0 \to T_2$.

Proof. Denote roots of T_0 , T_1 , T_2 as r_0 , r_1 , r_2 and they are distinct. From Figure 2 we see that if $T_0 \to T_1$ and $T_1 \to T_2$, then $r_0 \to r_1 \to r_2$. Thus, if we add an edge from r_0 to r_2 , the spanning tree we get is different from T_2 .

4.3 Three Conjectures

Properties of $\mathcal{T}K_n$ are much more than we have discussed. In particular, while eigenvalues of $\mathcal{T}K_n$ have been computed, the Jordan canonical form of $\mathcal{T}K_n$ has not been obtained. By calculating n = 3, 4, 5, 6 cases, we make three conjectures closely related to Jordan canonical form of $\mathcal{T}K_n$ here.

Conjecture 4.6. For eigenvalues $\lambda = 1, 2, \dots, n-1$ of $\mathcal{T}K_n$, the Jordan blocks are all of size 1.

Figure 2: path in $\mathcal{T}K_n$

Conjecture 4.7. For eigenvalue $\lambda = -1$, the Jordan blocks are of size $1, 2, \dots, n-1$. Moreover, there are exactly n-1 Jordan blocks of size n-1.

Conjecture 4.8. For eigenvalue $\lambda = -1$, $\operatorname{rank}((\mathcal{M} + I)^{n-1}) = \operatorname{rank}((\mathcal{M} + I)^n) = \operatorname{rank}((\mathcal{M} + I)^{n+1}) = \cdots = (n-1)^{n-1}$

Table 1: Jordan blocks of $\mathcal{T}K_n, n = 3, 4, 5, 6$

	$\lambda = -1$	$\lambda = 1$	$\lambda = 2$	$\lambda = 3$	$\lambda = 4$	$\lambda = 5$
$\mathcal{T}K_3$	$\begin{array}{c} 1\times 1 \\ 2\times 2 \end{array}$	3×1	1 × 1	\	\	\
$\mathcal{T}K_4$	4×1 12×2 3×3	18 × 1	8 × 1	1 × 1	\	\
$\mathcal{T}K_5$	30×1 100×2 41×3 4×4	160 × 1	80 × 1	15 × 1	1 × 1	\
$\mathcal{T}K_6$	336×1 1096×2 578×3 91×4 5×5	1875×1	1000 × 1	225×1	24 × 1	1 × 1

We hope to prove or falsify these three conjectures later.

4.4 classification of vertices of $\mathcal{T}K_n$

In Biane and Chapuy's paper^[2], they obtain the number of spanning trees of $\mathcal{T}K_n$, namely the number of vertices of graph \mathcal{T}^2K_n :

$$n^{n-2} \prod_{k=1}^{n-1} ((n-k)n^{k-1})^{(k-1)(n-1)^{n-k-1} \binom{n}{k}}$$

If we want to calculate eigenvalues of \mathcal{T}^2K_n , we need first classify vertices of $\mathcal{T}K_n$. By relabeling this reduces to the problem of classifying unlabeled rooted trees with n vertices. Namely, we only consider number of equivalence classes under graph isomorphism.

There is no simple formula for counting unlabeled trees. ³ Denote r(x) be the generating function for number of unlabeled rooted trees, i.e., $r(x) = \sum_{n=1}^{\infty} r_n x^n$ where r_n is the number of unlabeled rooted trees with n vertices. Then we have the following theorem.

Theorem 4.9. The generating function r(x) for unlabeled rooted trees satisfies

$$r(x) = xh[r(x)] = x \exp\left(\sum_{k=1}^{\infty} \frac{r(x^k)}{k}\right).$$
 (5)

Please refer to Gessel's paper^[3] for definition for h(A(x)) and proof of this theorem. We find that

$$\begin{split} r(x) &= x + x^2 + 2x^3 + 4x^4 + 9x^5 + 20x^6 + 48x^7 + 115x^8 + 286x^9 \\ &\quad + 719x^{10} + 1842x^{11} + 4766x^{12} + 12486x^{13} + 32973x^{14} \\ &\quad + 87811x^{15} + 235381x^{16} + 634847x^{17} + 1721159x^{18} \\ &\quad + 4688676x^{19} + 1282622x^{20} + 35221832x^{21} + \cdots \end{split}$$

These numbers of sequence A000081 in the Online Encyclopedia of Integer Sequences (OEIS)^[4].

References

- [1] C. A. Athanasiadis, Spectral of Some Interesting Combinatorial Matrices Related to Oriented Spanning Trees on a Directed Graph, J. Algebr. Comb 5 (1996), no.1, p. 5-11.
- [2] P. Biane and G. Chapuy, Laplacian matrices and spanning trees of tree graphs, Annales de la faculté des sciences de Toulouse XXVI (2017), p. 235-261.
- [3] I. M. Gessel, Good Will Hunting's Problem: Counting Homeomorphically Irreducible Trees, arXiv: 2305.03157v1 (2023).
- [4] OEIS Foundation Inc., The On-Line Encyclopedia of Integer Sequences, http://oeis.org (2021).

³There is a complicated explicit formula, as a sum over partitions, for counting unlabeled rooted trees