

# Predicting HDB Resale Prices

Russell, Simon, Clifton, Kathy







## Problem Introduction

#### Problem Introduction

Singapore HDBs are resold at various prices The resale price is affected by:

- floor area
- lease year
- flat type
- and many more!





#### Two Goals





## Dataset Description

#### Dataset Description

Government resale flat
data from data.gov.sg
managed by Housing
Development Board
(HDB)

4410 resale
transactions taken
from Jan - Feb
2023



### Dataset Description

#### 11 variables:

- 1. month
- 2. town
- 3. flat\_type
- 4. block
- 5. street\_name
- 6. storey\_range

- 7. floor\_area\_sqm
- 8. flat\_model
- 9. lease\_commence\_date
- 10. remaining\_lease
- 11. resale\_price (response)







Noticeable upward trend!



Higher storey -> higher price?





Better flat type -> higher price?



Resale Price Distribution by Town



Various distributions -> feature engineering?





## Feature Engineering

## Feature Engineering

Nearest, Distance to Nearest, and Total Nearby

- 1. MRTs
- 2. Bus Stops
- 3. Schools
- 4. Primary Schools
- 5. Malls

Data from data.busrouter.sg and data.gov.sg
Latitude Longitude data (including HDBs) from OneMap SG API



## Feature Engineering

Split into 80% train 20% test

After splitting, we added 3 more variables:

- 1. total resales in town
- 2. total resales in block
- 3. total resales in street

Then, we did one-hot encoding for categorical variables Lastly, we standardized the predictors to mean 0 and variance 1 Result: 4181 variables (including response variable)



## HDB Resale Prices by Location







## Dimensionality Reduction

## Dimensionality Reduction



We don't want to do factor-based or projection-based dimensionality reduction as it makes our models less interpretable for inference

#### Feature Selection

- Filter Method
- Wrapper Method
- **Embedded Method**

#### Filter Method

Variance Threshold (Remove variance 0)

233 predictors removed



## Ensemble of 6 Feature Selections

#### Wrapper Method

#### **Forward Selection**

Generate 100 selected variables

#### Recursive Feature Elimination (100 selected variables)

- Ridge Regression
- Gradient Boosting Regressor

Note: RFE is similar to Backward Selection

#### **Embedded Method**

#### Best Subset Selection (100 selected variables)

- **F** Regression
- Mutual Info Regression
- F Regression uses F statistics to see a linear relationship
- Mutual Info Regression captures the complex, non-linear relationship of each predictor vs response

#### Lasso (select 100 nonzero variables)

## Majority Rule Voting-Based

Select variables that are selected by >= 3 methods Total: 74 final predictors

Top 5 variables (selected by all 6 methods):

- 1. floor\_area\_sqm
- 2. total\_resales\_in\_town
- 3. nearest\_mrt\_dist
- 4. remaining\_lease
- 5. town\_BUKIT MERAH



#### Models

#### Models

- Price
- Price/sqm

#### Note:

- 1. All models (except Linear Regression and Neural Network) are finetuned using GridSearchCV
- 2. Linear Regression uses non-scaled data while other models use scaled data
- 3. For Price/sqm models we are not using floor\_area\_sqm as predictor

#### Models

- Linear Regression
- ElasticNet (Combination of L1 and L2 Penalties)
- Neural Network (3 Hidden Layers w/ ReLu)
- Random Forest Regression
- Gradient Boosted Regression
- XGBoost





- 1. All metrics reported are using the best parameters after GridSearchCV (except Linear Regressionand Neural Network)
- 2. Metrics for Price/sqm model are calculated after converting back to price



| Metrics | Model     | LinReg | ElasticNet | NN     | RF     | GBR    | XGBoost |
|---------|-----------|--------|------------|--------|--------|--------|---------|
| RMSE    | Price     | 54316  | 52786      | 43526  | 46939  | 50644  | 38256   |
| KIVISE  | Price/sqm | 49426  | 49330      | 44579  | 42254  | 35003  | 34987   |
| MAPE    | Price     | 7.81%  | 7.53%      | 5.3%   | 5.53%  | 6.19%  | 4.53%   |
| IVIAFE  | Price/sqm | 6.62%  | 6.65%      | 5.71%  | 5.09%  | 4.34%  | 4.40%   |
| Adj R2  | Price     | 87.51% | 89.77%     | 92.42% | 91.91% | 87.38% | 94.14%  |
| Adj KZ  | Price/sqm | 89.40% | 91.07%     | 92.06% | 93.45% | 94.75% | 95.00%  |



| Metrics | Model     | LinReg | ElasticNet | NN     | RF     | GBR    | XGBoost |
|---------|-----------|--------|------------|--------|--------|--------|---------|
| RMSE    | Price     | 54316  | 52786      | 43526  | 46939  | 50644  | 38256   |
| KIVISE  | Price/sqm | 49426  | 49330      | 44579  | 42254  | 35003  | 34987   |
| MAPE    | Price     | 7.81%  | 7.53%      | 5.3%   | 5.53%  | 6.19%  | 4.53%   |
| IVIAPE  | Price/sqm | 6.62%  | 6.65%      | 5.71%  | 5.09%  | 4.34%  | 4.40%   |
| Adi P2  | Price     | 87.51% | 89.77%     | 92.42% | 91.91% | 87.38% | 94.14%  |
| Adj R2  | Price/sqm | 89.40% | 91.07%     | 92.06% | 93.45% | 94.75% | 95.00%  |



|  | Metrics | Model     | LinReg | ElasticNet | NN     | RF     | GBR    | XGBoost |
|--|---------|-----------|--------|------------|--------|--------|--------|---------|
|  | RMSE    | Price     | 54316  | 52786      | 43526  | 46939  | 50644  | 38256   |
|  |         | Price/sqm | 49426  | 49330      | 44579  | 42254  | 35003  | 34987   |
|  | MAPE    | Price     | 7.81%  | 7.53%      | 5.3%   | 5.53%  | 6.19%  | 4.53%   |
|  | IVIAFE  | Price/sqm | 6.62%  | 6.65%      | 5.71%  | 5.09%  | 4.34%  | 4.40%   |
|  | Adj R2  | Price     | 87.51% | 89.77%     | 92.42% | 91.91% | 87.38% | 94.14%  |
|  |         | Price/sqm | 89.40% | 91.07%     | 92.06% | 93.45% | 94.75% | 95.00%  |



## Learnings

## Linear Regression Top 5 Features (Price/sqm)



| Feature               | Coefficient |  |  |
|-----------------------|-------------|--|--|
| Intercept             | 4246.0972   |  |  |
| Total resales in town | -5.1221     |  |  |
| Remaining lease       | 64.8747     |  |  |
| Nearest mall distance | -159.0245   |  |  |
| Total nearby MRTs     | 87.7080     |  |  |
| Nearest MRT distance  | -392.0953   |  |  |

## Feature Importance Top 3 Models: RF, GBR, XGBoost (Price/sqm)



#### Random Forest Regressor

#### Random Forest Regressor Feature Importance



#### **Gradient Boosting Regressor**



#### **XGBoost**

#### XGBoost Feature Importance 4024.0 nearest mrt dist 3021.0 remaining lease 2019.0 nearest mall dist 1029.0 total resales in block 943.0 total resales in town 1500 2000 1000 2500 3000 3500 4000 F score

#### **Features** from **Feature** Top **Selection:**

floor\_area\_sqm, total\_resales\_in\_town nearest\_mrt\_dist, remaining\_lease town\_BUKIT MERAH

## Shapley Values (XGBoost)



remaining lease total\_resales\_in\_town nearest mrt dist storey\_range\_01 TO 03 storey\_range\_04 TO 06 total\_nearby\_mrt total resales in street flat\_model\_Model A flat\_model\_Improved flat\_type\_3 ROOM nearest\_mall\_dist town TAMPINES storey\_range\_07 TO 09 flat\_model\_New Generation flat\_type\_4 ROOM flat\_type\_2 ROOM town\_SEMBAWANG town BUKIT BATOK town\_BUKIT PANJANG town CHOA CHU KANG



Red dots on RIGHT: value of predictor is DIRECTLY proportional to resale pricee price

Feature value

Red dots on LEFT:
value of predictor is
INVERSELY proportional
to resale price

## Shapley Values (XGBoost)





Higher remaining lease -> higher price

Lower total resales in town -> higher price

Nearer MRT -> higher price

HDBs located at storey 1 to 3, 4 to 6, 7 to 9 tend to have lower price

#### **Predictors Effects**

#### Add to overall price

Remaining lease

Total nearby MRTs

Floor number > 20



#### **Subtract from overall price**

Nearest MRT distance

Nearest mall distance

Total resales in town

