5.3.1

So cache block size is
$$\frac{32}{4} = 8$$
 [words]

cadhe

	_						
	J	TAG	DATA				
William Street, Street		1		29-5+1	25 =	32	[entries]

7

Address

decimal	binary						replace?
0	0000 0000	2 0000	0000	0,000	0000 000		
4	0000 000	0 0000	0000	0000			N
16	0000 000				00000		2
132					0-0001	0000	7
132	0000 0000			0000	0000 1000	0100	14
232	0000 0000	0000	0000	0000	COOC 1110	1000	2
160	COCC 0000	0000	0000	0000	0000 1010		1 2
1024	0000 0000	0000	0000	0000	0100 0000		Y
30	0000 0000	0000	0000	0000	0000 0001	1110	Y
140	0000 0000	Occo	0000	0000	COCO 1000	1100	7
3100	0000 000	107	cac	0001	1000 0011	1100	Υ
(80	our our	occo	ccco	cucc	ccco 1011	0100	N
2180	c ecc CCC	cuo	ccco	0400	100 1000	0100	Y

4 blooks are replaced

Address

decimal	binary		Hit or hiss
0	0000 0000 000	0 0000 0000 0000 0000 0000	M
4	0000 0000 000		\vdash
16	C000 C000 C00		14
132	0000 0000 00	00 0000 0000 0000 1000 0100	\sim
232	0000 0000 000	00 0000 0000 0000 1110 1000	M
160	0000 0000 000	0 0000 0000 0000 1010 0000	M
1024	0000 0000 0000	0000 0000 0100 0000 0000	M
30	ccco ccco ooc	0 0000 0000 0000 0001 1110	M
140	0000 0000 000	0 0000 0000 0000 1000 1100	Ч
3100	0000 0000 000	0 0000 0001 1000 0011 1100	M
180	0000 0000 000	0 6000 0000 0000 1011 0100	H
2180	0000 0000 000	0 0000 0000 1000 1000 0100	М
		1	

5.5.1

1	II. b	
address	block	Hit
0	0	M
2	0	Ч
2 4	0	4
6	٥	Н
6 8 10	0	14
10	0	н
12	O	ы
14	0	1-1
16	Ó	H
18	O	1-1
20	0	H
22	0	H
24	0	H
26	0	14
28	0	14
	0	L
32	1	M
i		1

$$(Miss Rate) = \frac{1}{16} \times 100 = 6.25 [4]$$

Miss rate is independent of the size of the cache and the working set.

The misses this walload is expariencing are compulsory misses.

5.5.2

16 bytes:
$$\frac{1}{8}$$
 106 = 12.5 [40]

64 bytes:
$$\frac{1}{32} \cdot 100 = 3.125 \, \text{[40]}$$

128 bytes:
$$\frac{1}{64} \cdot (00 = 1.5625)$$

This workload is exploiting spatial locality.

$$AMATPI = 0.66 + 0.08 \cdot 70$$

$$= 0.66 + 5.6$$

$$= 6.26 \text{ cnsj}$$

AMATR =
$$0.90 + 0.06 \cdot 70$$

= $0.90 + 4.2$
= $5.70 \quad \text{ThsJ}$

5.6.4

AMAT
$$P_{100}$$
 = 0.66 + 0.08 (5.62 + 0.95 - 70)
= 0.66 + 0.08 (5.62 + 66.5)
= 0.66 + 0.08 .72.12
= 0.66 + 5.7696
= 6.4296 [ns]

AMATPINOU, SO AMAT is

$$AMAT = \frac{(1 + 0.1(10 + 0.2 \cdot 80)) + 0.3(1 + 0.3(10 + 0.2 \cdot 80))}{1.3}$$

$$= \frac{(1 + 0.1 \cdot 26) + 0.3(1 + 0.3 \cdot 26)}{1.3}$$

$$= \frac{3.6 + 0.3 \cdot 8.8}{1.3}$$

$$= 4.8 \quad \text{tcycles}$$

5.6

TCPI = BCPI + MCPI

BCPI = (peck CPI) +
$$\Sigma$$
 (hazard rate) (hazard cost)

• 1.0 + (control hazard rate) · (control hazard cost)

+ (data hazard rate) · (data hazard cost)

= 1.0 + (0.3 · 0.5) · 1 + (0.2 · 0.6) · 1

= 1.0 + 0.15 · 1 + 0.12

= 1.0 + 0.15 · c.12

= 1.27

MCPI = (I # M) + (D # M)

= 1 · 0.1 (10 + 0.2 · 80) + 0.2 · 0.3 (10 + 0.2 · 80)

= 0.1 · 26 + 0.06 · 26

= 0.16 · 26

= 4.16

: TCPI = 1.77 + 4.16 = 5.43

300 000 instructions
300 000 branch instructions
50 000 procedure oalls
50 000 return calls

Total # of instructions is 900000

- branch instructions: 200000

5.6

Let × be instruction cache miss rate ET OLD 2 ET NEW

= not taken : 150 000

| I COLD - TCPI CLD ET TOLD Z ICNEW-TCPI NEW CT | - load instructions : 200 000

(3) ICOLD · TCPI ap Z IC NEW · TCPI NEW (: CTNEW = CTOLD = 2 109)

(Peak CPI) OLD + (control hazard Pate) OLD - (control hazard cost) OLD
+ (data hazard Rate) ap (data hazard cost) OLD
+ (I#M) OLD + (D#M) OLD) · IC OLD

2 ((Deak CPI) NEW + (control hazard rate) NEW · (control hazard cost) NEW
+ (data hazard Rate) NEW · (data hazard cost) NEW

+ (I \$M) NEW + (D \$M) NEW). IC NEW

 $(1.0 + (0.3 \cdot 0.5) \cdot 1 + (0.2 \cdot 0.6) \cdot 1 + (0.1 (10 + c.2 \cdot 80) + c.2 \cdot c.3 (10 + c.2 \cdot 80))$ $= (1.0 + (\frac{2}{9} + \frac{1}{4}) \cdot 1 + (\frac{2}{9} \cdot 0.6) \cdot 1 + (1.8 + (10 + c.2 \cdot 80) + \frac{2}{9} \cdot 0.3 (10 + 0.2 \cdot 80))$

19 4.43. ICOLD 2 (10 + 75 + 26x) - IC NEW

(a) 4.43. 10 2 16+ 26x

(a) $26 \times 5 + 4.43 \cdot \frac{10}{9} - \frac{1}{18} - \frac{2}{15} - \frac{26}{15}$

 $4 \times \frac{1}{26} \left[4.43 \cdot \frac{10}{9} - \frac{1}{18} - \frac{2}{15} - \frac{26}{15} \right]$

= 0.11538 ...

Instruction miss rate must be < 11.54%

1.1