

PowerNorm: Rethinking Batch Normalization for Transformers

Sheng Shen, Zhewei Yao, Amir Gholami, Michael Mahoney, Kurt Keutzer
University of California, Berkeley

Executive Summary

- We perform a systematic study of why Batch Normalization results in poor performance in Transformers
 - Variance in forward pass
 - Variance n backward pass
- We propose (PN), a novel normalization that achieves state-of-the art result in Machine Translation, Language Modeling
 - Improve BLEU score on IWSLT by 0.4 and WMT14 by 0.6
 - Decrease the PPL on PTB by 5.87 and WikiText-103 by 2.78
- **PN** achieves this by resolving the following problems:
 - Mean estimation (recentering) in BN is better to be removed
 - Better to include running statistics during training
 - The backpropagation needs to be adjusted accordingly

Motivation

- Normalization is a building block of current neural networks.
- There is a lack of interests in NLP for studying normalization, especially for transformer model (where the training is costly).
 - Layer Normalization. (ICLR' 17)
 - Root Mean Square Layer Normalization (NeurIPS' 19)
 - Understanding and improving layer normalization (NeurIPS' 19)
 - o Improving Deep Transformer with Depth-Scaled Initialization and Merged Attention (EMNLP' 19)
 - On Layer Normalization in the Transformer Architecture (ICML' 20)
- Implementing Batch Normalization directly on NLP does not work.
 - O Why does not it work?
 - O How can we make it work on NLP?
 - What can we learn from that?

Content

- How Normalization is performed in NLP (vs. CV)?
- Rethinking the variance of Batch Normalization for NLP (Transformers):
 - The variance in forward pass
 - The variance in backward pass
- Our New Normalization PN and its performance in different NLP tasks.

Weight Normalization.

$$h' = \frac{w^T h}{\|w\|_2}$$

Activation Normalization.

$$\hat{h}_{ncij} = \gamma \frac{h_{ncij} - \sum_{k \in \Omega} w_k \mu_k}{\sqrt{\sum_{k \in \Omega} w_k' \sigma_k^2 + \epsilon}} + \beta,$$

IN:
$$\mu_{\rm in} = \frac{1}{HW} \sum_{i,j}^{H,W} h_{ncij}, \quad \sigma_{\rm in}^2 = \frac{1}{HW} \sum_{i,j}^{H,W} (h_{ncij} - \mu_{\rm in})^2,$$

LN:
$$\mu_{\text{ln}} = \frac{1}{C} \sum_{c=1}^{C} \mu_{\text{in}}, \quad \sigma_{\text{ln}}^2 = \frac{1}{C} \sum_{c=1}^{C} (\sigma_{\text{in}}^2 + \mu_{\text{in}}^2) - \mu_{\text{ln}}^2,$$

$$\mathsf{BN:} \quad \mu_{\rm bn} \ = \ \frac{1}{N} \sum_{n=1}^N \mu_{\rm in}, \quad \ \sigma_{\rm bn}^2 = \frac{1}{N} \sum_{n=1}^N (\sigma_{\rm in}^2 + \mu_{\rm in}^2) - \mu_{\rm bn}^2,$$

Instance Normalization

Layer Normalization

Batch Normalization

Normalization in Computer Vision

H*W (image size), C (channel/feature dim), B (batch size)

Layer Normalization

≥

±

→

- LN: reduce (C, H*W) => 2*B statistics
- BN: reduce (B, H*W) => 2*C statistics
- IN: reduce (H*W) => 2*B*C statistics

Normalization in NLP

suppose:

L/H*W (sentence length), C (feature dim), B (batch size)

Layer Normalization

- LN: reduce (C, H*W) => 2*B statistics
- BN: reduce (B, H*W) => 2*C statistics
- IN: reduce (H*W) => 2*B*C statistics

Normalization in NLP

L/H*W (sentence length), C (feature dim), B (batch size)

- LN: reduce (C, H*W) => 2*B*L statistics
- BN: reduce (B, L) => 2*C statistics (padding will destroy the statistics)
- **GN:** reduce (C/g) => 2*B*L*g statistics

Transformer Architecture

- Encoder: self-attention + point-wise feed-forward
 - 1 + 2 * N layer norm before/after each block.

- Decoder: self-attention + enc-decoder attention + point-wise
 feed-forward
 - 1 + 3 * N layer norm before/after each block.

Difference btw BN's usage in CNN and Transformer (CV, NLP)

 Train/Test Statistical Discrepancy: the mismatch of running batch-statistics and real batch-statistics for NLP.

(b) $\|\sigma^2 - \sigma_B^2\|^2$ at bn.1 for CIFAR10 vs IWSLT (training)

Difference btw BN's usage in CNN and Transformer (CV, NLP)

 Train/Test Statistical Discrepancy: the mismatch of running batch-statistics and real batch-statistics for NLP.

(a) $\|\mu - \mu_B\|^2$ at bn.1 for **CIFAR10** vs **IWSLT** (training)

(b) $\|\sigma^2 - \sigma_B^2\|^2$ at bn.1 for CIFAR10 vs IWSLT (training)

Difference btw BN's usage in CNN and Transformer (CV, NLP)

 Train/Test Statistical Discrepancy: the mismatch of running batch-statistics and real batch-statistics for NLP.

(b) $\|\sigma^2 - \sigma_B^2\|^2$ at bn.1 for CIFAR10 vs IWSLT (training)

Content

- How Normalization is performed in NLP (vs. CV)?
- Rethinking the variance of Batch Normalization for NLP (Transformers):
 - The variance in forward pass
 - The variance in backward pass
- Our New Normalization PN and its performance in different NLP tasks.

• The variance in the Forward Pass:

The variance btw the real mean/variance and running mean/variance.

• The variance in the Forward Pass:

The variance btw the real mean/variance and running mean/variance.

- The variance in the Backward Pass:
 - The variance of gradient w.r.t different portion of the data.
 - g_{mean} and g_{var} depend on the statistics of the current mini-batch, which will introduce variance.

$$\mu = \frac{1}{B} \sum_{i=1}^{N} x_i$$

$$\sigma^2 = \frac{1}{B} \sum_{i=1}^{N} (x_i - \mu)^2$$

$$\frac{\partial L}{\partial x_i} = \frac{1}{B\sqrt{\sigma^2 + \epsilon}} \left(B \frac{\partial L}{\partial \hat{x}_i} - \sum_{j=1}^{N} \frac{\partial L}{\partial \hat{x}_j} \right) \hat{x}_i \sum_{j=1}^{N} \frac{\partial L}{\partial \hat{x}_j} \cdot \hat{x}_j$$

$$y_i = \gamma \hat{x}_i + \beta$$
(2) Backward Pass of BN

(1) Forward Pass of BN

- The variance in the Backward Pass:
 - The variance of gradient w.r.t different portion of the data.
 - g_{mean} and g_{var} depend on the statistics of the current mini-batch, which will introduce variance.

$$\frac{\partial L}{\partial x_i} = \frac{1}{B\sqrt{\sigma^2 + \epsilon}} \left(B \frac{\partial L}{\partial \hat{x}_i} - \sum_{j=1}^N \frac{\partial L}{\partial \hat{x}_j} - \hat{x}_i \sum_{j=1}^N \frac{\partial L}{\partial \hat{x}_j} \cdot \hat{x}_j \right)$$

$$\mathbf{g}_{\text{mean}}$$

$$\mathbf{g}_{\text{var}}$$

Backward Pass of BN

(a) The variance of \mathbf{g}_{mean} w.r.t different **IWSLT** batches

(b) The variance of \mathbf{g}_{var} w.r.t different **IWSLT** batches

- The variance in the Backward Pass:
 - The variance of gradient w.r.t different portion of the data.
 - g_{mean} and g_{var} depend on the statistics of the current mini-batch, which will introduce variance.

$$\frac{\partial L}{\partial x_i} = \frac{1}{B\sqrt{\sigma^2 + \epsilon}} \left(B \frac{\partial L}{\partial \hat{x}_i} - \sum_{j=1}^N \frac{\partial L}{\partial \hat{x}_j} - \hat{x}_i \sum_{j=1}^N \frac{\partial L}{\partial \hat{x}_j} \cdot \hat{x}_j \right)$$

$$\mathbf{g}_{\text{mean}}$$

$$\mathbf{g}_{\text{var}}$$

Backward Pass of BN

(a) The variance of \mathbf{g}_{mean} w.r.t different **IWSLT** batches

(b) The variance of g_{var} w.r.t different **IWSLT** batches

- The variance in the Backward Pass:
 - The variance of gradient w.r.t different portion of the data.

O CV vs. NLP.

$$\frac{\partial L}{\partial x_i} = \frac{1}{B\sqrt{\sigma^2 + \epsilon}} \Big(B \frac{\partial L}{\partial \hat{x}_i} - \sum_{j=1}^N \frac{\partial L}{\partial \hat{x}_j} - \hat{x}_i \sum_{j=1}^N \frac{\partial L}{\partial \hat{x}_j} \cdot \hat{x}_j \Big)$$

$$\mathbf{g}_{\mathsf{mean}}$$

Backward Pass of BN

(a) The variance of g_{mean} w.r.t different CIFAR10 vs IWSLT batches

• The variance in the Backward Pass:

- The variance of gradient w.r.t different portion of the data.
 - O CV vs. NLP.

$$\frac{\partial L}{\partial x_i} = \frac{1}{B\sqrt{\sigma^2 + \epsilon}} \Big(B \frac{\partial L}{\partial \hat{x}_i} - \sum_{j=1}^N \frac{\partial L}{\partial \hat{x}_j} - \hat{x}_i \sum_{j=1}^N \frac{\partial L}{\partial \hat{x}_j} \cdot \hat{x}_j \Big)$$

Backward Pass of BN

(b) The variance of g_{var} w.r.t different CIFAR10 vs IWSLT batches

Content

- How Normalization is performed in NLP (vs. CV)?
- Rethinking Batch Normalization for NLP (Transformers):
 - The variance in forward pass
 - The variance in backward pass
- Our New Normalization PN and its performance in different NLP tasks.

1. Forward Pass: PN-V (Variance-reduced Batch Normalization)

- 1.1 Remove the recentering $(x \mu_B)$ in the batch normalization.
- 1.2 Replace the running variance $(x \mu_B)^2$ with more accurate running $(x)^2$ while training.

2. Backward Pass: PN

- 2.1 Replace real $(x_B)^2$ with running $(x)^2$ while training
- 2.2 Stabilizing the backward pass with accumulating gradient by Exponential Moving Average approximation.

1. Forward Pass: PN-V (Variance-reduced Batch Normalization)

- 1.1 Remove the recentering $(x \mu_B)$ in the batch normalization.
- 1.2 Replace the running variance $(x \mu_B)^2$ with more accurate running $(x)^2$ while training.

$$\psi_B^2 = \frac{1}{B} \sum_{i=1}^B x_i^2 \qquad \qquad \mu = \frac{1}{B} \sum_{i=1}^N x_i$$

$$\hat{x}_i = \frac{x_i}{\psi_B} \qquad \qquad \sigma^2 = \frac{1}{B} \sum_{i=1}^N (x_i - \mu)^2$$

$$y_i = \gamma \hat{x}_i + \beta \qquad \qquad \hat{x}_i = \frac{x_i - \mu}{\sqrt{\sigma^2 + \epsilon}}$$

$$y' = \psi_B^2 + \alpha(\psi_B^2 - \psi^2)$$
// update moving averages
(1.1) Forward Pass of PN-V (1.2) Forward Pass of BN

1. Forward Pass: PN-V (Variance-reduced Batch Normalization)

- 1.1 Remove the recentering $(x \mu_B)$ in the batch normalization.
- 1.2 Replace the running variance $(x \mu_B)^2$ with more accurate running $(x)^2$ while training.

$$\begin{split} \frac{\partial \mathcal{L}}{\partial x_i} &= \frac{\partial \mathcal{L}}{\partial \hat{\mathbf{x}}_i} \frac{\partial \hat{\mathbf{x}}_i}{\partial x_i} + \sum_{j \in B} \frac{\partial \mathcal{L}}{\partial \hat{\mathbf{x}}_j} \frac{\partial \hat{\mathbf{x}}_j}{\partial \psi_B^2} \frac{\partial \psi_B^2}{\partial x_i} \\ &= \frac{\partial \mathcal{L}}{\partial \hat{\mathbf{x}}_i} \frac{\partial \hat{\mathbf{x}}_i}{\partial x_i} + \sum_{j \in B} \frac{\partial \mathcal{L}}{\partial \hat{\mathbf{x}}_j} (-\frac{1}{2} \frac{x_j}{\psi_B^3}) \frac{2x_i}{B} \\ &= \frac{1}{\psi_B} \frac{\partial \mathcal{L}}{\partial \hat{\mathbf{x}}_i} - \frac{1}{B\psi_B} \sum_{j \in B} \frac{\partial \mathcal{L}}{\partial \hat{\mathbf{x}}_j} \hat{\mathbf{x}}_j \hat{\mathbf{x}}_i. \end{split}$$

(2.1) Backward Pass of PN-V

$$\frac{\partial L}{\partial x_i} = \frac{1}{B\sqrt{\sigma^2 + \epsilon}} \left(B \frac{\partial L}{\partial \hat{x}_i} + \sum_{j=1}^{N} \frac{\partial \mathbf{L}}{\partial \hat{x}_j} + \hat{x}_i \sum_{j=1}^{N} \frac{\partial L}{\partial \hat{x}_j} \cdot \hat{x}_j \right)$$

$$\mathbf{g}_{\text{mean}}$$

$$\mathbf{g}_{\text{var}}$$

(b) The variance of g_{var} vs g_{phi} w.r.t different **IWSLT** batches

1. Forward Pass: PN-V (Variance-reduced Batch Normalization)

1.2 Replace the running variance $(x - \mu_B)^2$ with more accurate running $(x)^2$ while training.

$$\psi_B^2 = \frac{1}{B} \sum_{i=1}^B x_i^2$$

$$\psi^2 = \psi^2 + \alpha(\psi_B^2 - \psi^2)$$
// update moving averages
(1) Running Statistics of PN-V
$$\mu_B = \frac{1}{B} \sum_{i=1}^B x_i$$

$$\sigma_B^2 = \frac{1}{B} \sum_{i=1}^B (x_i - \mu)^2$$

$$\mu = \mu + \alpha(\mu_B - \mu) \text{ update moving averages}$$

$$\sigma = \sigma + \alpha(\sigma_B - \sigma) \text{ update moving averages}$$
(2) Running Statistics of BN

• The EMA (Exponential Moving Average) estimation of variance is not a desirable estimation. And it is hard to make it correct^[1];

$$\sigma_t^2 = \alpha \sigma_{t-1}^2 + (1 - \alpha)(x_t - \mu_t)(x_t - \mu_{t-1})$$

$$= (1 - \alpha)(\sigma_{t-1}^2 + \alpha(x_t - \mu_{t-1})^2)$$

2. Further correct the forward and backward: PN

- 2.1 Replace real $(x_B)^2$ with running $(x)^2$ while training (forward pass)
- 2.2 Stabilizing the backward pass with accumulating gradient by Exponential Moving Average approximation.

2. Further correct the forward and backward: PN

- 2.1 Replace real $(x_B)^2$ with running $(x)^2$ while training (forward pass)
- 2.2 Stabilizing the backward pass with accumulating gradient by Exponential Moving Average approximation.

$$\begin{split} \psi_B^2 &= \frac{1}{B} \sum_{i=1}^B x_i^2 \\ \hat{x}_i &= \boxed{\frac{x_i}{\psi}} \\ y_i &= \gamma \hat{x}_i + \beta \\ \psi^2 &= \psi_B^2 + \alpha (\psi_B^2 - \psi^2) \\ \text{// update moving averages} \end{split} \qquad \begin{aligned} &\frac{\partial \mathcal{L}}{\partial x_i} &= \frac{1}{\psi_B} \frac{\partial \mathcal{L}}{\partial \hat{x}_i} - \boxed{\frac{1}{B\psi_B}} \sum_{j \in B} \frac{\partial \mathcal{L}}{\partial \hat{x}_j} \hat{x}_j \hat{x}_i. \\ &\tilde{x}_B' \\ &\tilde{x}_B' \\ &\tilde{x}_B' \\ &\tilde{x}_B' \end{aligned}$$

(2) Backward Pass of PN

PN (Power Normalization) for MT

• IWSLT14 De-En (0.16M translation pairs) Training Curve. (PN vs. LN)

PN (Power Normalization) for MT

IWSLT14 De-En (0.16M translation pairs)

Small (36.7M Param) L6+L6 D512 H4	BLEU
Layer Norm	35.5
Batch Norm	34.4
PN-V (Ours)	35.4
PN (Ours)	<u>35.9</u>

• WMT14 En-De (4.5M translation pairs)

Big (68.2M Param) L6+L6 D1024 H16	BLEU
Layer Norm	29.5
Batch Norm	28.1
PN-V (Ours)	28.5
PN (Ours)	<u>30.1</u>

PN (Power Normalization) for LM

- PennTree Bank (0.09M tokens)
 - Training Curve. (PN vs. LN)

PN (Power Normalization) for LM

• PennTree Bank (0.09M tokens)

BDP-1Core (12.0M Param)	PPL (Lower is better)
Layer Norm	53.19
Batch Norm	64.72
PN (Ours)	<u>47.32</u>

• Wikitext-103 (103M tokens)

BDP-1Core (85.3M Param)	PPL (Lower is better)
Layer Norm	20.90
Batch Norm	27.01
PN (Ours)	18.12

Analysis (various batch sizes)

• PN is the most robust in various batch-size setting.

32

Analysis (embedding layer)

• PN leads to a more well-conditioned embedding layer v.s. LN.

Conclusion

- The variance between batch statistics/running statistics results in the poor performance of Batch Normalization in Transformers
- Reduce the variance through PN can achieves significantly better result in Machine Translation, Language Modelling
 - Improve BLEU score on IWSLT by 0.4 and WMT14 by 0.6
 - Decrease the PPL on PTB by 5.87 and Wiki-Text by 2.78

Reference

Thank you for you attention

Paper available at https://arxiv.org/abs/2003.07845.

Code available at https://github.com/slncerass/powernorm/

E²N (effective and efficient normalization)

1. Forward Pass: E²N-V (Variance-reduced Batch Normalization)

- 1.1 Remove the recentering $(x \mu_B)$ in the batch normalization.
- 1.2 Replace the running variance $(x \mu_B)^2$ with more accurate running $(x)^2$ while training.

$$\psi_{B}^{2} = \frac{1}{B} \sum_{i=1}^{B} x_{i}^{2} \qquad \mu = \frac{1}{B} \sum_{i=1}^{N} x_{i} \qquad \frac{\partial \mathcal{L}}{\partial x_{i}} = \frac{\partial \mathcal{L}}{\partial \hat{x}_{i}} \frac{\partial \hat{x}_{i}}{\partial x_{i}} + \sum_{j \in B} \frac{\partial \mathcal{L}}{\partial \hat{x}_{j}} \frac{\partial \hat{x}_{j}}{\partial \psi_{B}^{2}} \frac{\partial \psi_{B}^{2}}{\partial x_{i}}$$

$$\hat{x}_{i} = \frac{x_{i}}{\psi_{B}} \qquad \sigma^{2} = \frac{1}{B} \sum_{i=1}^{N} (x_{i} - \mu)^{2} \qquad = \frac{\partial \mathcal{L}}{\partial \hat{x}_{i}} \frac{\partial \hat{x}_{i}}{\partial x_{i}} + \sum_{j \in B} \frac{\partial \mathcal{L}}{\partial \hat{x}_{j}} (-\frac{1}{2} \frac{x_{j}}{\psi_{B}^{3}}) \frac{2x_{i}}{B}$$

$$y_{i} = \gamma \hat{x}_{i} + \beta$$

$$y_{i} = \psi_{B}^{2} + \alpha(\psi_{B}^{2} - \psi^{2})$$
// update moving averages
$$\hat{x}_{i} = \frac{x_{i} - \mu}{\sqrt{\sigma^{2} + \epsilon}} \qquad = \frac{1}{\psi_{B}} \frac{\partial \mathcal{L}}{\partial \hat{x}_{i}} - \left(\frac{1}{B\psi_{B}} \sum_{j \in B} \frac{\partial \mathcal{L}}{\partial \hat{x}_{j}} \hat{x}_{j} \hat{x}_{i}\right)$$

$$y_{i} = \gamma \hat{x}_{i} + \beta$$
(4) Second Parage Parage

(1) Forward Pass of PN-V (1) Forward Pass of BN

(2) Backward Pass of PN-V

1. Forward Pass: E²N-V (Variance-reduced Batch Normalization)

- 1.1 Remove the recentering $(x \mu_B)$ in the batch normalization.
- 1.2 Replace the running variance $(x \mu_B)^2$ with more accurate running $(x)^2$ while training.

$$\psi_B^2 = rac{1}{B} \sum_{i=1}^B x_i^2$$
 $\hat{x}_i = rac{x_i}{\psi_B}$
 $y_i = \gamma \hat{x}_i + \beta$
 $\psi^2 = \psi_B^2 + \alpha(\psi_B^2 - \psi^2)$
// update moving averages

(1) Forward Pass of E^N-V

$$\begin{split} \frac{\partial \mathcal{L}}{\partial x_i} &= \frac{\partial \mathcal{L}}{\partial \hat{\mathbf{x}}_i} \frac{\partial \hat{\mathbf{x}}_i}{\partial x_i} + \sum_{j \in B} \frac{\partial \mathcal{L}}{\partial \hat{\mathbf{x}}_j} \frac{\partial \hat{\mathbf{x}}_j}{\partial \psi_B^2} \frac{\partial \psi_B^2}{\partial x_i} & \frac{\frac{1}{N_B}}{\frac{N_B}{N_B}} \frac{\frac{1}{N_B}}{\frac{N_B}{N_B}} \\ &= \frac{\partial \mathcal{L}}{\partial \hat{\mathbf{x}}_i} \frac{\partial \hat{\mathbf{x}}_i}{\partial x_i} + \sum_{j \in B} \frac{\partial \mathcal{L}}{\partial \hat{\mathbf{x}}_j} (-\frac{1}{2} \frac{x_j}{\psi_B^3}) \frac{2x_i}{B} & \frac{1}{N_B} \\ &= \frac{1}{\psi_B} \frac{\partial \mathcal{L}}{\partial \hat{\mathbf{x}}_i} - \frac{1}{B\psi_B} \sum_{j \in B} \frac{\partial \mathcal{L}}{\partial \hat{\mathbf{x}}_j} \hat{\mathbf{x}}_j \hat{\mathbf{x}}_i \\ &= \frac{g_{\text{phi}}}{\frac{N_B}{N_B}} \frac{g_{\text{phi}}}{\frac{N_B}{N_B}} & \frac{g_{\text{phi}$$

hatchec

1. Forward Pass: E²N-V (Variance-reduced Batch Normalization)

- 1.1 Remove the recentering $(x \mu_B)$ in the batch normalization.
- 1.2 Replace the running variance $(x \mu_B)^2$ with more accurate running $(x)^2$ while training.

$$\sigma_B^2 = \frac{1}{B} \sum_{i=1}^{B} (x_i - \mu_B)^2$$

(1) Forward Pass of BN

$$\psi_B^2 = \frac{1}{B} \sum_{i=1}^B x_i^2$$

(2) Forward Pass of E²N-V

(a)
$$\|\sigma^2 - \sigma_B^2\|^2$$
 vs. $\|\phi^2 - \phi_B^2\|^2$ at bn.1 w.r.t **IWSLT** (training)

(b) The variance of \mathbf{g}_{var} vs \mathbf{g}_{phi} w.r.t different **IWSLT** batches

2. Further correct the forward and backward: E²N

- 2.1 Replace real $(x_B)^2$ with running $(x)^2$ while training (forward pass)
- 2.2 Stabilizing the backward pass with accumulating gradient by Exponential Moving

Average approximation.

$$\begin{split} \psi_B^2 &= \frac{1}{B} \sum_{i=1}^B x_i^2 \\ \hat{x}_i &= \boxed{\frac{x_i}{\psi}} \\ y_i &= \gamma \hat{x}_i + \beta \\ \psi^2 &= \psi_B^2 + \alpha (\psi_B^2 - \psi^2) \\ // \text{ update moving averages} \\ (1) \text{ Forward Pass of E}^2 \mathbf{N} \end{split} \qquad \begin{split} \frac{\partial \mathcal{L}}{\partial x_i} &= \frac{1}{\psi_B} \frac{\partial \mathcal{L}}{\partial \hat{\mathbf{x}}_i} - \boxed{\frac{1}{B\psi_B} \sum_{j \in B} \frac{\partial \mathcal{L}}{\partial \hat{\mathbf{x}}_j} \hat{\mathbf{x}}_j \hat{\mathbf{x}}_i.} \\ \hat{x}_B' &= \frac{\hat{x}_B'}{\psi^2} - \frac{\hat{x}_B'}{\psi^2} \hat{\mathbf{x}}_B - \hat{x}_B' \hat{\mathbf{x}}_B - \hat{x}_B' \hat{\mathbf{x}}_B \hat{\mathbf{x}}_B' \hat{\mathbf{x}}_B \hat{\mathbf{x}}_B' \hat{\mathbf{x}}_B \hat{\mathbf{x}}_B' \hat{\mathbf{x}}_B \hat{\mathbf{x}}_B' \hat{\mathbf{x}}_B \hat{\mathbf{x}}_B' \hat$$

Forward Pass: E²N-V (Variance-reduced Batch Normalization)

- 1.1 Remove the recentering $(x \mu_B)$ in the batch normalization.
- 1.2 Replace the running variance $(x \mu_B)^2$ with more accurate running $(x)^2$ while training.

$$\psi_B^2=rac{1}{B}\sum_{i=1}^B x_i^2$$
 $\hat{x}_i=rac{x_i}{\psi_B}$
 $y_i=\gamma\hat{x}_i+eta$
 $\psi^2=\psi_B^2+lpha(\psi_B^2-\psi^2)$
// update moving averages
(1) Forward Pass of E^2N-V

$$\begin{split} \frac{\partial \mathcal{L}}{\partial x_i} &= \frac{\partial \mathcal{L}}{\partial \hat{\mathbf{x}}_i} \frac{\partial \hat{\mathbf{x}}_i}{\partial x_i} + \sum_{j \in B} \frac{\partial \mathcal{L}}{\partial \hat{\mathbf{x}}_j} \frac{\partial \hat{\mathbf{x}}_j}{\partial \psi_B^2} \frac{\partial \psi_B^2}{\partial x_i} \\ &= \frac{\partial \mathcal{L}}{\partial \hat{\mathbf{x}}_i} \frac{\partial \hat{\mathbf{x}}_i}{\partial x_i} + \sum_{j \in B} \frac{\partial \mathcal{L}}{\partial \hat{\mathbf{x}}_j} (-\frac{1}{2} \frac{x_j}{\psi_B^3}) \frac{2x_i}{B} \\ &= \frac{1}{\psi_B} \frac{\partial \mathcal{L}}{\partial \hat{\mathbf{x}}_i} - \left(\frac{1}{B\psi_B} \sum_{j \in B} \frac{\partial \mathcal{L}}{\partial \hat{\mathbf{x}}_j} \hat{\mathbf{x}}_j \hat{\mathbf{x}}_i\right] \\ &= \frac{g_{\text{phi}}}{g_{\text{phi}}} \end{split}$$

$$(2) \text{ Backward Pass of E^2N-V}$$

(2) Backward Pass of E²N-V

(b) The variance of g_{phi} w.r.t different **IWSLT**

Rethinking the variance of Batch Normalization for NLP

• The variance in the Forward Pass:

• The variance btw the real mean/variance and running mean/variance.

$$\circ \|\mu - \mu_B\|^2 \quad \mathsf{and} \|\sigma^2 - \sigma_B^2\|^2$$

Input: Values of
$$x$$
 over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$;

Parameters to be learned: γ , β

Output: $\{y_i = \mathrm{BN}_{\gamma,\beta}(x_i)\}$

$$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i \qquad // \text{mini-batch mean}$$

$$\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2 \qquad // \text{mini-batch variance}$$

$$\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} \qquad // \text{normalize}$$

$$y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathrm{BN}_{\gamma,\beta}(x_i) \qquad // \text{scale and shift}$$

$$\mu := \mu + \alpha(\mu_{\mathcal{B}} - \mu)$$
 // Update moving averages $\sigma := \sigma + \alpha(\sigma_{\mathcal{B}} - \sigma)$

(a) $\|\mu - \mu_B\|^2$ at bn.1 for **IWSLT** (training)

How Normalization is performed in NLP

Difference btw CNN and Transformer (CV, NLP)

 Train/Test Statistical Discrepancy: the mismatch of running statistics and real statistics in different mini-batches.

(a.1) $\|\mu - \mu_B\|^2$ at bn.1 for CIFAR10 (training)

(b.1) $\|\sigma^2 - \sigma_B^2\|^2$ at bn.1 for CIFAR10 (training)

(a.2) $\|\mu - \mu_B\|^2$ at bn.1 for **IWSLT** (training)

(b.2) $\|\sigma^2 - \sigma_B^2\|^2$ at bn.1 for **IWSLT** (training)

Rethinking the variance of Batch Normalization for NLP

The variance in the Backward Pass:

The variance of gradient w.r.t different portion of the data.

The variance of qu at different iterations for BN (iwslt)

(a.2) The variance of \mathbf{g}_{mean} w.r.t different IWSLT

(b.1) The variance of g_{var} w.r.t different CIFAR10 batches (b.2) The variance of g_{var} w.r.t different IWSLT batches

1. Forward Pass: E²N-V (Variance-reduced Batch Normalization)

- 1.1 Remove the recentering $(x \mu_B)$ in the batch normalization.
- 1.2 Replace the running variance $(x \mu_B)^2$ with more accurate running $(x)^2$ while training.

$$\sigma_B^2 = \frac{1}{B} \sum_{i=1}^B (x_i - \mu_B)^2$$

(1) Forward Pass of BN

$$\psi_B^2 = \frac{1}{B} \sum_{i=1}^B x_i^2$$

(2) Forward Pass of E²N-V

(a.1) $\|\sigma^2 - \sigma_B^2\|^2$ at bn.1 for **IWSLT** (training)

(b.1) The variance of g_{var} w.r.t different IWSLT

(a.2) $\|\phi^2 - \phi_B^2\|^2$ at bn.1 for **IWSLT** (training)

(b.2) The variance of g_{phi} w.r.t different **IWSLT** batches

Batch Normalization

Layer Normalization

Instance Normalization

Group Normalization

- IWSLT14 De-En (0.16M translation pairs)
 - Computation Overhead. (E²N vs. LN) on one RTX 2080.

Small (36.7M Param) L6+L6 D512 H4	Inference Speed (wps, word per second)	FLOPs
Layer Norm	3586.843	-
E ² N (Ours)	3697.686	-

GLEU Results

• IWSLT14 De-En (0.16M translation pairs)

Small (36.7M Param) L6+L6 D512 H4	BLEU
Layer Norm + Deep init ²	35.63
Layer Norm	34.95
Group Norm	35.27
Batch Norm	diverge
Mask Batch Norm	34.51 (w/ rm) ¹ 33.79
Mask Instance Norm	diverge

	Base (68.2M Param) L12+L6 D512 H4	BLEU
	Layer Norm	35.77
(Group Norm	36.05
	Batch Norm	 diverge
	Mask Batch Norm	35.48 (w/ rm) 34.38
	Mask Instance Norm	diverge

^[1] w/ rm: using the running mean and running variance while doing the inference.

• IWSLT14 De-En (0.16M translation pairs)

- Why GN?
 - 1. Real matrix multiplication in head-level.

(a) BERT Encoder [Transformer]

(b) Multi-head self-attention (head number: h)

MultiHead(X, X, X) = Concat(head₁, ..., head_h) W^O where head_i = Attention($XW^{Q}_{i}, XW^{K}_{i}, XW^{V}_{i}$)

512x64

(c) Single-head self-attention (hidden size: d_k)

$$Attention(Q, K, V) = softmax(\frac{QK^T}{\sqrt{d_k}})V$$

IWSLT14 De-En (0.16M translation pairs)

- Why GN?
- 2. "Different" Gaussian for each head dim. assume each feature dim x_i is a Gaussian $\sim N(0, 1)$, average $\{x_1, ..., x_i\}$ will be N(0, 1))

Embedding Value of WMT14 Validation Set (Layer Norm)

Averaged embedding value of BERT-base for each head

IWSLT14 De-En (0.16M translation pairs)

	nall (36.7M Param) +L6 D512 H4	BLEU
La	yer Norm + Deep init ²	35.63
La	yer Norm	34.95
Gr	oup Norm	35.27
′ Ba	tch Norm	diverge
Ma	sk Batch Norm	34.51 (w/ rm) ¹ 33.79
Ма	sk Instance Norm	33.89

Base (68.2M Param) L12+L6 D512 H4	BLEU
Layer Norm	35.77
Group Norm	36.05
Batch Norm	diverge
Mask Batch Norm	35.48
\	(w/ rm) 34.38
Mask Instance Norm	34,51

^[1] w/ rm: using the running mean and running variance while doing the inference.

^[2] Biao Zhang, Ivan Titov, Rico Sennrich, Improving Deep Transformer with Depth-Scaled Initialization and Merged Attention, ACL'19

• IWSLT14 De-En (0.16M translation pairs)

- Why not vanilla BN?
 - Padding directly destroys the statistics.
 (10% of tokens per batch)

"the artist sold the painting." (5 tokens)

"Zhewei is cool." (3 token + 2 pad)

Average Activation Value after certain layer (Layer Norm model)

IWSLT14 De-En (0.16M translation pairs)

Small (36.7M Param) L6+L6 D512 H4	BLEU
Layer Norm + Deep init ²	35.63
Layer Norm	34.95
Group Norm	35.27
Batch Norm	diverge
Mask Batch Norm	34.51 (w/ rm) ¹ 33.79
Mask Instance Norm	(w/o grad clip) nan 33.89

Base (68.2M Param) L12+L6 D512 H4	BLEU
Layer Norm	35.77
Group Norm	36.05
Batch Norm	diverge
Mask Batch Norm	35.48
, – – – – – – –	– – (w/ m) 34.3 8
Mask Instance Norm	(w/o grad clip) nan 34.51

^[1] w/ rm: using the running mean and running variance while doing the inference.

IWSLT14 De-En (0.16M translation pairs)

- Why not IN?
- 1. Fail to control the scale of softmax. => gradient exploding.

• IWSLT14 De-En (0.16M translation pairs)

- Why not BN?
 - 1. Do we go deep enough.

Deep (99.7M Param) L18+L6 D512 H4	BLEU	Val loss
Layer Norm	32.89	4.10
Mask Batch Norm	34.3	3.93

- IWSLT14 De-En (0.16M translation pairs)
- Why not BN?
 - 1. Dropout (0.3) destroys the variance during inference.
 - 2 * (a)-like structure in pre-norm transformer.

Skip Math: for each neuron x_i , assume $E[x_i] = c$, Var[x] = v, dropout keep ratio p.

$$Var_{test}(x) / Var_{train}(x) = p * v / ((c^2 + v) - p*c^2)$$

Base (68.2M Param) L12+L6 D512 H4	BLEU	diff
Layer Norm	35.77	
Mask Batch Norm	35.48	-0.29
	(w/ rm) 33.75	-2.02
Layer Norm (w/o dp)	33.78	
Mask Batch Norm (w/o	33.5	-0.28
dp)	(w/ rm) 32.35	-1.43

• IWSLT14 De-En (0.16M translation pairs)

- Why not BN? => 1. Fix Dropout
 - 1.1 Residual-like dropout:

Train:
$$x = x + x * dp$$
, $dp \sim U(-b, b)$, Test: x

Skip Math: for each neuron x_i , assume $E[x_i] = c$, Var[x] = v, dropout keep ratio p.

 $Var_{test}(x) / Var_{train}(x) \approx 3 / (3 + b^2)$

Base (68.2M Param) L12+L6 D512 H4	BLEU
Layer Norm	35.77
Mask Batch Norm	35.48
Middle Date History	(w/ rm) 33.75
Mask Batch Norm	(w/rm) 3/1 31
	(w/ rm) 34.31

• IWSLT14 De-En (0.16M translation pairs)

- Why not BN? => 1. Fix Dropout
 - 1.2 Consistently correct the statistics while training.

```
r = estimate_real_std / running_std,
d = (estimate_real_mean - running_mean) /
running_std
X = (X - real_mean) / real_std * r + d
```

We use estimate_real_std instead of real_std for better correction.

Base (68.2M Param) L12+L6 D512 H4	BLEU
Layer Norm	35.77
Mask Batch Norm	35.48 (w/ rm) 33.75
Batch re-Norm	(w/ rm) 35.74

• IWSLT14 De-En (0.16M translation pairs)

- Why not BN? => 1. Fix Dropout
 - 1.3 Fuse the dropout and correct the running mean/variance directly.

Base (68.2M Param) L12+L6 D512 H4	BLEU
Layer Norm	35.77
Mask Batch Norm	35.48
Wack Batori Horm	(w/ rm) 35.53

- IWSLT14 De-En (0.16M translation pairs)
- Why not BN?
 - 2. Maybe not Gaussian for input. (suppose each feature dim x_i is a N(0, 1), Average $\{x_1, ..., x_i\}$ will be N(0, 1))

- IWSLT14 De-En (0.16M translation pairs)
- Why not BN?
 - Maybe not Gaussian for input.
 (infrequent words will end up close in terms of distribution after optimization.[1])

Infrequent words: (3% of the whole vocab) Eg: granny, witches, algebra, linux, ...

- IWSLT14 De-En (0.16M translation pairs)
- Why not BN?
 - 2. Maybe not Gaussian for input. (En & De)

Base (68.2M Param) L12+L6 D512 H4	BLEU
Layer Norm	35.77
Mask Batch Norm	35.48 (w/ rm) 33.75
Multi-mode Batch Norm (2-mode)	35.58 (w/ rm) 34.38

• IWSLT14 De-En (0.16M translation pairs)

Base (68.2M Param) L12+L6 D512 H4	BLEU	Val loss
Layer Norm + Deep init ¹	35.63	_
Layer Norm	35.77	3.85
Group Norm	36.05	3.83
Mask Batch Norm	35.48 (w/ rm) 33.75	3.88
Multi-mode Batch Norm	35.58 (w/ rm) 34.38	3.87
Batch re-Norm	(w/ rm) 35.74	3.89
Instance-Layer Norm	35.68	3.87

WMT14 En-De (4.5M translation pairs)

Big (68.2M Param) L6+L6 D1024 H16	BLEU
Layer Norm	28.92
Group Norm	29.12

Base (36.7M Param) L6+L6 D512 H8	BLEU
Layer Norm + Deep init ¹	27.56
Scale-norm ²	27.57
Layer Norm	27.86
Group Norm	28.33
Mask Batch Norm	26.53 (w/ rm) 24.93
Multi-mode Batch Norm	-
Batch re-Norm	28.0
Instance-Layer Norm	27.9

Normalization Results on ROBERTA

• Wiki + Book Corpus (213M sentences)

Small (6.6M Param) L12 D128 H4 / Val loss bsz: 2k	Layer Norm	Group Norm	Mask Batch Norm (w/o running mean)	Multi-mode Batch Norm (w/o running mean)
10k	4.60	4.67	4.51	4.48
20k	4.21	4.29	4.17	4.14
40k	4.04	4.09	4.01	3.99
60k	3.96	3.99	3.93	3.92
80k	3.90	3.92	3.86	3.84
100k	3.85	3.87	3.82	3.81

Normalization Results on ROBERTA

• Wiki + Book Corpus (213M sentences)

Base (110M Param) L12 D768 H12 / Val loss bsz: 2k	Layer Norm	Group Norm	Mask Batch Norm (w/o running mean)	Multi-mode Batch Norm (w/o running mean)
10k	3.01	3.03	-	-
30k	2.55	2.52	-	-
50k	2.39	2.37	-	-
70k	2.29	2.28	-	-
90k	2.22	2.20	-	-
100k	2.18	2.17	-	-

Normalization Results on ROBERTA

• Wiki + Book Corpus (213M sentences)

Base (110M Param) L12 D768 H12 / Val loss bsz: 2k	MNLI (393k)	QNLI (105k)	QQP (364k)	SST-2 (67k)	RTE* (2.5k)	MRPC* (3.7k)	mean*
BERT-LN	0.843	0.893	0.895	0.917	0.713	0.886	0.8578333333
RoBERTA-LN	0.876	0.928	0.919	0.948	0.787	0.902	0.8933333333
Our-LN-base	0.849984	0.914466	0.91072	0.896205	0.725	0.896635	0.870896
Our-GN-base	0.852968	0.91659	0.91198	0.929888	0.73	0.894231	0.8726095

Content

• How Normalization is performed in NLP (vs. CV)?

Normalization results for different NLP tasks.

• Other updates: scalability of ROBERTA training on summit.

Scalability Test of ROBERTA training

• Roberta-base: (12 sentence per GPU. Averaged based on 30min runs.)

Conclusion

- Group Normalization performs well for MT.
- Exploring multi-mode batch normalization for Language Model-like tasks.