Pre-informe

1) Encuentre el equivalente Thévenin para el circuito de la figura, visto desde les terminales A-B. Registre los resultados en la tabla.

- 2) Mediente simulación encuentre el equivalente Thévenin del circuito, visto desde les terminales A-B. Registre los resultados en la tabla.
- 3) Encuentre los velores de VI e II en el circuito de la figura, para valores de la resistencia de carga RI=500 [181 y 1[K18]. Registro los resultados en la tabla.

*
$$\frac{V_3 - V_2}{250} + \frac{V_3}{R_3} = 0$$

 $-\frac{1}{250}V_2 + \frac{(250 + R_3)}{250 R_3}V_3 = 0$

$$R_3 = 500 [0.8]$$
 $V_2 = 55.3846 [v]$ $V_3 = 36.9237 [v]$

$$I_{L} = \frac{V_{3}}{500} = \frac{0.07385 [A]}{}$$

- 4) Mediente simulación, encuentre los velores de Vi e II en el circuito de la figura, pera valores de la resistencia de carga Ri 500 [50] y 1[xxx]. Registro los resultados en la tabla.
- 5) Mediante simulación, encuentra los valores de Vi e Iz en el circuito de la figura, para valores de la resistencia de carga RL= 500 [06] y 1[606]; emplee los valores de VTH y RTH obtenidos en la pragunta Z. Registra los resultados en la tabla.

PRÁCTICA 4	RT ES	15 : 02	3E Grupo	30 104 124 Fecha	5/24 Gestión	
CABALLERO BUR	GOA	CARLOS		ARD O		VoBo Docente Laboratorio

	V ₁	Rasson	Rions	R _{1K0}	RL	V.	l _c	V _{TH}	R _{TH}
				1000 Ω	500 Ω	36.923	0.074	80	583.33
TEÓRICO	120 V	250 Ω	500 Ω		1000 Ω	50.526	0.05		
					500 Ω	36.9	0.0738	Vm.	502 27
SIMULACIÓN	CIÓN 120 V	250 Ω 500 Ω	1000 Ω	1000 Ω	50.5	0.05 05	80	583,33	

Tabla 4.1.

	R ₂₅₀₀	R _{suc}	R _{ika}	V ₁	RL	V _L	L
	248 521	521	1042	120	528 500	37.4	70.9
-		321		120	10411k	48.5	52.6

Tabla 4.3.

El voltaje de Thévenin es el voltaje de circuito abierto (V∞) visto desde las terminales A-B	V _{TH} =	80.1
Sustituyendo la fuente de voltaje por un corto circuito la resistencia de Thévenin es la resistencia vista desde A-B	R _{TH} =	597

Tabla 4.4.

	RL	V _L	l _L
LABORATORIO	521 ⁵⁰⁰	38.7	73.2
LABORATORIO	1042 1k	49.9	53.9

Tabla 4.5.