

Tratamiento de Señales

Version 2022-I

Introducción

[Capítulo 1]

Dr. José Ramón Iglesias

DSP-ASIC BUILDER GROUP Director Semillero TRIAC Ingenieria Electronica Universidad Popular del Cesar

Definiciones

Uso de algoritmos computacionales que toman una imagen como entrada y entregan una imagen como salida.

[INPUT] [OUTPUT]

[INPUT]

[INPUT]

[INPUT]

[INPUT]

Análisis de Imágenes:

Uso de algoritmos computacionales que toman una imagen como entrada y entregan una medición, una interpretación o una decisión.

Reconocimiento de Patrones:

Métodos que hacen inferencia a partir de datos. Usualmente, se mide un objeto para asignarlo a una clase

Computación Gráfica:

Uso de algoritmos computacionales para generar imágenes a partir de modelos (objetos 3D, textura, color, iluminación, etc.)

Computación Gráfica:

Uso de algoritmos computacionales para generar imágenes a partir de modelos (objetos 3D, textura, color, iluminación, etc.)

La visión por computador es la ciencia que le proporciona a los computadores la capacidad de "ver". [Faugeras]

La visión por computador es la ciencia que le proporciona a los computadores la capacidad de "ver". [Faugeras]

La visión por computador es un campo que incluye métodos para adquirir, procesar, analizar y comprender imágenes y, en general, datos de alta dimensión del mundo real para producir información numérica o simbólica, por ejemplo, en forma de decisiones.

[Wikipedia]

Objeto **Procesamiento Análisis** Adquisición de De Imágenes Imágenes • Extracción de Fotografía Filtros Rayos X Segmentación características Restauración • Selección de Termografía características etc, • Aprendizaje de máquina Clasificación Detección Medición Interpretación

Ejemplo Simple

Ejemplo: A partir de una imagen de un arroz:

- 1) segmentar el grano de arroz
- 2) calcular su área en pixeles
- 3) calcular su tono de gris promedio

Escoger pixeles > 170

Área: contar cuántos pixeles hay mayores que 170 (pixeles blancos en la segmentación). Área = 8720 pixeles.

Tono gris promedio: promediar en el input los pixeles mayores que 170.

Tono de gris promedio = 230.2049, o bien 230.20/255 x 100 = 90.28%

Adquisición de Imágenes

Sistema de adquisición de imágenes

CCD: Charged-Coupled Device Sensor de la imagen en una cámara

© Wikipedia

Sistema de adquisición de imágenes

CCD: Charged-Coupled Device Sensor de la imagen en una cámara

© Wikipedia

16 x 16

16 x 16

32 x 32

64 x 64

256 tonos de gris

256 tonos de gris	
128	
64	
32	
16	
8	
4	
2	

256 tonos de gris

128 tonos de gris

64 tonos de gris

32 tonos de gris

16 tonos de gris

8 tonos de gris

4 tonos de gris

2 tonos de gris

Conceptos Básicos

Conceptos Básicos

Conceptos Básicos

Sea f(x,y) una función de imagen continua de dos variables (x,y) por muestreo y cuantización se convierte en una imagen digital (arreglo) de M x N.

Imagen graficada como una superficie

Imagen graficada como un arreglo visual de intensidad

Imagen graficada como un arreglo visual de intensidad

Origi	n		
4000	0000	.0000	0 0 0
0 0 0	0 0 0	0 0 0	0 0 0
0.00	0 0	0.0	0 0 0
0 0 0	0 :	0	0 0 0
0 0 0			0 0 0
0 0 0			0 0 0
	.5 .		
	. 1	1 1 1	
	1	1 1	
0 0 0		1 .	0 0 0
0 0 0		:	0 0 0
0 0 0	0	0	0 0 0
0 0 0	0 0	0.0	0 0 0
0 0 0	0 0 0	0 0 0	0 0 0
0 0 0	0000	.0000	0 0 0

Imagen mostrada como un arreglo 2-D numérico

$$f(x,y) = \left[egin{array}{cccc} f(0,0) & f(0,1) & \cdots & f(0,N-1) \ f(1,0) & f(1,1) & \cdots & f(1,N-1) \ dots & dots & dots \ f(M-1,0) & f(M-1,1) & \cdots & f(M-1,N-1) \ \end{array}
ight]$$

$$\mathbf{A} = \left[egin{array}{cccc} a_{0,0} & a_{0,1} & \cdots & a_{0,N-1} \ a_{1,0} & a_{1,1} & \cdots & a_{1,N-1} \ dots & dots & dots \ a_{M-1,0} & a_{M-1,1} & \cdots & a_{M-1,N-1} \ \end{array}
ight]$$

Los sensores de mosaico recogen 25% R y B, y 50% G

Después de una combinación e interpolación

Descomposición RGB

Descomposición RGB

- > Color → blanco & negro
- > Mejoramiento de contraste

