Anàlisi Complexa - Laboratori 2

Christian José Soler

6 de marzo de 2016

1. a) Sigui $\Omega \in \mathbb{C}$ un domini. Diem que una funció $u : \Omega \to \mathbb{R}$ és armònica si el seu laplacià és 0, és a dir:

$$\Delta u(x,y) = \frac{\partial^2 u}{\partial x^2}(x,y) + \frac{\partial^2 u}{\partial y^2}(x,y) = 0$$

Proveu que si f és una funció holomorfa en Ω , aleshores les funcions u:=Re(f) i v:=Im(f) són funcions armòniques.

Per les equacions de Cauchy-Riemann tenim que:

$$\begin{cases} \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \\ \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \end{cases}$$

On u(x,y) = Re(f) i v(x,y) = Im(f) Derivem la primera equació respecte x i la segona respecte y per obtenir:

$$\begin{cases} \frac{\partial u}{\partial x^2} = \frac{\partial v}{\partial y \partial x} \\ \frac{\partial u}{\partial y^2} = -\frac{\partial v}{\partial x \partial y} \end{cases}$$

D'aqui treïem que $\frac{\partial u}{\partial x^2} + \frac{\partial u}{\partial y^2} = \frac{\partial v}{\partial y \partial x} - \frac{\partial v}{\partial x \partial y} = 0$ com volíem veure amb Re(f).

Podem veure anàlogament Im(f) derivant la primera equació respecte y i la segona respecte x. Al final arribem a: $\frac{\partial v}{\partial x^2} + \frac{\partial v}{\partial y^2} = \frac{\partial u}{\partial x \partial y} - \frac{\partial u}{\partial y \partial x} = 0$ com volíem veure amb Im(f).

b) Justifiqueu si $2xy+x^2+5y^2+3$ pot ser la part real d'una funció entera f. I $x^4-6x^2y^2+y^4$? En cas afirmatiu, trobeu les corresponents funcions f.

Mirem si compleixen que el seu laplacià sigui 0:

- 1) $u(x,y) = 2xy + x^2 + 5y^2 + 3 \Rightarrow \frac{\partial u}{\partial x^2} + \frac{\partial u}{\partial y^2} = 2 + 10 = 12 \neq 0$ $\forall x,y \in \mathbb{R}$. Aquest no pot ser part real d'una funció entera. 2) $u(x,y) = x^4 - 6x^2y^2 + y^4 \Rightarrow \frac{\partial u}{\partial x^2} + \frac{\partial u}{\partial y^2} = 12x^2 - 12y^2 + \frac{\partial u}{\partial x^2} + \frac{\partial u}{\partial y^2} = 12x^2 - 12y^2 + \frac{\partial u}{\partial x^2} + \frac{\partial u}{\partial y^2} = 12x^2 - 12y^2 + \frac{\partial u}{\partial x^2} + \frac{\partial u}{\partial y^2} = 12x^2 - 12y^2 + \frac{\partial u}{\partial x^2} + \frac{\partial u}{\partial y^2} = 12x^2 - 12y^2 + \frac{\partial u}{\partial x^2} + \frac{\partial u}{\partial y^2} = 12x^2 - 12y^2 + \frac{\partial u}{\partial x^2} + \frac{\partial u}{\partial y^2} = 12x^2 - 12y^2 + \frac{\partial u}{\partial x^2} + \frac{\partial u}{\partial y^2} = 12x^2 - 12y^2 + \frac{\partial u}{\partial x^2} + \frac{\partial u}{\partial y^2} = 12x^2 - 12y^2 + \frac{\partial u}{\partial y^2} = 12$
- 2) $u(x,y) = x^4 6x^2y^2 + y^4 \Rightarrow \frac{\partial u}{\partial x^2} + \frac{\partial u}{\partial y^2} = 12x^2 12y^2 + 12y^2 12x^2 = 0 \ \forall x,y \in \mathbb{R}$. Aquest pot ser part real d'una funció entera. Anem a trobar la part imaginària d'aquesta funció f:

Per les equacions de Cauchy Riemann tenim que:

$$\begin{cases} \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \\ \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \end{cases} \Rightarrow \begin{cases} \frac{\partial v}{\partial y} = 4x^3 - 12y^2x \\ \frac{\partial v}{\partial x} = -(4y^3 - 12x^2y) \end{cases}$$

Si integrem en les dues equacions i ajuntem les constants d'integració ens surt que $v(x,y)=4x^3y-4y^3x+K$ per $K\in\mathbb{R}.$

c) Trobeu els valors de $\gamma \in \mathbb{R}$ per tal que la funció $u_{\gamma}(x,y) = 3x^2 + 4xy + \gamma y^2$ sigui la part real d'una funció entera f_{γ} . Per aquests valors de γ trobeu la part imaginària de f_{γ} .

Mirem que compleixi que el seu laplacià sigui 0:

$$\frac{\partial u_{\gamma}}{\partial x^2} + \frac{\partial u_{\gamma}}{\partial y^2} = 6 + 2\gamma = 0 \Rightarrow \gamma = -3$$

Ara que tenim γ , trobem la part imaginària de f: Per les equacions de Cauchy Riemann tenim que:

$$\begin{cases} \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \\ \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \end{cases} \Rightarrow \begin{cases} \frac{\partial v}{\partial y} = 6x + 4y \\ \frac{\partial v}{\partial x} = 6y - 4x \end{cases}$$

Si integrem en les dues equacions i ajuntem les constants d'integració ens surt que $v(x,y)=6xy-2x^2+2y^2+K,\,K\in\mathbb{R}.$

2. a) Estudieu la convergència de la sèrie

$$T(\omega) = \sum_{n>0} \frac{(n+1)(n+2)}{2^{n+1}} \omega^n$$

i calculeu-ne la suma.

Calculem el radi de convergència de $T(\omega)$, R:

$$\frac{1}{R} = \limsup_{n \to \infty} \sqrt[n]{\frac{(n+1)(n+2)}{2^{n+1}}} = \frac{1}{2} \Rightarrow R = 2$$

Concluïm que la sèrie convergeix a la bola centrat a 0 i amb radi 2, divergeix a la resta de l'espai (la frontera de la bola encara no sabem estudiar-la).

Ara anem a sumar la sèrie. Observem que si integrem dos cops els termes de la sèrie, obtenim una sèrie geomètrica que sabem sumar directament. Els teoremes vists a classe ens asseguren que el radi de convergència no canvia si seguim aquest procediment, llavors podem fer-ho sense problemes:

$$T(\omega) = \sum_{n>0} \frac{(n+1)(n+2)}{2^{n+1}} \omega^n$$

$$\int T(\omega)d\omega = \sum_{n>0} (n+2) \left(\frac{\omega}{2}\right)^{n+1}$$

$$\int \int T(\omega)d\omega = \sum_{n \ge 0} 2\left(\frac{\omega}{2}\right)^{n+2} = \frac{2\left(\frac{\omega}{2}\right)^2}{1 - \left(\frac{\omega}{2}\right)}$$

Per tal de trobar $T(\omega)$ derivem dos cops respecte ω la funció resultant que ens dóna $T(\omega)=\frac{8}{(2-\omega)^3}$

b) Trobeu els valors de $\omega \in \mathbb{C}$ per tal que $T(\omega) = \frac{8}{1+i}$.

Com tenim la suma $T(\omega)$ calculada simplement l'igualem a $\frac{8}{1+i}$ i aïllem $\omega.$

$$\frac{8}{(2-\omega)^3} = \frac{8}{1+i} \Leftrightarrow (2-\omega)^3 = 1+i$$

Per aïllar ω trobem les arrels cúbiques de 1+i.

$$\sqrt[3]{1+i} = \sqrt[3]{\sqrt{2}(\cos(45) + i\sin(45))} =$$

$$= \sqrt[3]{\sqrt{2}(\cos(45+120k)+i\sin(45+120k))}, k = 0, 1, 2$$

1)
$$k = 0 \Rightarrow \omega = 2 - \sqrt[6]{2}(\cos(45) + i\sin(45)) = 2 - \sqrt[6]{2}\left(\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}\right)$$

2)
$$k = 1 \Rightarrow \omega = 2 - \sqrt[6]{2}(\cos(165) + i\sin(165)) = 2 - \sqrt[6]{2}(-\cos(15) + i\sin(15)) = 2 - \sqrt[6]{2}(-\frac{\sqrt{6} + \sqrt{2}}{4} + i\frac{\sqrt{6} - \sqrt{2}}{4})$$

3)
$$k = 2 \Rightarrow \omega = 2 - \sqrt[6]{2}(\cos(-15) + i\sin(-15)) = 2 - \sqrt[6]{2}(\cos(15) - i\sin(15)) = 2 - \sqrt[6]{2}(\frac{\sqrt{6} + \sqrt{2}}{4} - i\frac{\sqrt{6} - \sqrt{2}}{4})$$

c) Sigui $G=\{z\in\mathbb{C};Re(z)\geq 0\}.$ Per tot $z\in G,$ estudieu la convergència i calculeu la suma de la sèrie

$$\sum_{n=0}^{\infty} \left(\frac{1-z}{1+z} \right)^n \frac{(n+1)(n+2)}{2^{n+1}}$$

Si fem el canvi $\omega=\frac{1-z}{1+z}$ sabem que hi ha convergència si $|\omega|<2$. Veïem quines $z\in G$ compleixen que $\left|\frac{1-z}{1+z}\right|<2$

$$\left|\frac{1-z}{1+z}\right| < 2 \Leftrightarrow \left|\frac{1-z}{1+z}\right|^2 < 4 \Leftrightarrow |1-z|^2 < 4|1+z|^2$$

Ara prenem z = a + bi i calculem les normes directament:

$$(1-a)^2 + b^2 < 4((1+a)^2 + b^2) \Leftrightarrow 1^2 - 2a + a^2 + b^2 - 4 - 8a - 4b^2 < 0 \Leftrightarrow$$

$$3b^2 + 3a^2 + 10a + 3 > 0$$

Notem que $3b^2>0 \ \forall b\in\mathbb{R}$. Ara anem a examinar l'expressió $3a^2+10a+3$. Si calculem les seves arrels ens dóna a=-3 i $a=-\frac{1}{3}$ i com el coeficient de a^2 és positiu, podem dir que si $a>-\frac{1}{3}$ llavors $3a^2+10a+3>0$. Com $z\in G,\ a>0$, hem trobat que tots els elements de $z\in G$ compleixen que $\left|\frac{1-z}{1+z}\right|<2$, llavors la convergència es té per tots els elements de G.

Per trobar la suma de la sèrie, simplement sustituïm a l'expressió que hem trobat a a):

$$T(z) = \frac{8}{\left(2 - \frac{1 - z}{1 + z}\right)^3}$$

3. Sigui $R<\infty$ el radi de convergència de la sèrie $\sum_{n\geq 0}c_nz^n$. Per tot $k\in\mathbb{N},$ calculeu el radi de convergència de:

$$\sum_{n\geq 0} c_n z^{kn}$$

Definim la successió $d_m=c_m$ si m és múltiple de k i $d_m=0$ altrament. Ara ja podem calcular el radi de convergència de la sèrie:

$$\frac{1}{R_a} = \limsup_{n \to \infty} \sqrt[n]{|d_n|} = \limsup_{n \to \infty} \sqrt[kn]{|c_n|} = \frac{1}{\sqrt[k]{R}} \Rightarrow R_a = \sqrt[k]{R}$$

$$\sum_{n\geq 0} c_n z^{k+n}$$

Com z^k no depèn de n, el podem treure fora del sumatori:

$$z^k \sum_{n \ge 0} c_n z^n$$

Com z^k és finit, no ens afecta en l'estudi de convergència de la sèrie, llavors té el mateix radi de convergència que la sèrie original. $R_b=R$.

$$\sum_{n>0} c_n^n z^{n^2}$$

Definim la successió $d_m=c_m^m$ si m és quadrat i $d_m=0$ altrament. Ara ja podem calcular el radi de convergència de la sèrie:

$$\frac{1}{R_c} = \limsup_{n \to \infty} \sqrt[n]{|d_n|} = \limsup_{n \to \infty} \sqrt[n^2]{|c_n|} = \limsup_{n \to \infty} \sqrt[n]{|c_n|} = \frac{1}{R}$$

$$\Rightarrow R_c = R$$