INDIAN STATISTICAL INSTITUTE

MTech(CS) I year 2020-2021

Subject: Computing Laboratory

Lab Test 3 (5 March, 2021)

Total: 60 marks Duration: 3 hours

INSTRUCTIONS

- 1. You may consult or use slides / programs provided to you as course material, or programs that you have written yourself as part of classwork / homework for this course, but please **do not** consult or use material from other Internet sources, your classmates, or anyone else.
- 2. You may write your programs in C/C++ or Python.
- 3. Please make sure that your programs adhere strictly to the specified input and output format. You may lose marks if your program violates the input and output requirements.
- 4. The files https://www.dropbox.com/s/441dlkf4g9k84cg/cs20XX-labtest3.py?dl=1 and https://www.dropbox.com/s/stl8yjsyasy1vhl/cs20XX-labtest3.c?dl=1 contain a skeleton for the program that you have to write. Download the appropriate file, rename it by replacing XX with your 2-digit roll number, and modify the contents as required. You may define any additional variables/functions that you need in your program.

PLEASE DO NOT CHANGE THE FILE NAME IN ANY OTHER WAY.

- 5. Please upload your program to https://www.dropbox.com/request/Nkhcdbb7YiqIBnRMXXEU.
- Q1. Recall that the equation of any straight line L in the X-Y plane can be written as ax + by + c = 0. Write a function whichSideOfLine() to determine whether a given point P = (p,q) lies to the left or right of (or on) a given line L that is not parallel to the X-axis. Your function should take a, b, c, p, q as arguments, and return -1, 0, or +1 depending on whether P lies to the left of, on, or to the right of L, respectively.
- Q2. Consider a pair of non-intersecting (within y = 0 and y = 1) straight line segments L_1 and L_2 , which are not parallel to the X-axis. Each of the segments L_1 and L_2 connects a point on the X-axis ($(a_1, 0)$ and $(a_2, 0)$ respectively) to a point on the line L given by y = 1 ($(b_1, 1)$ and $(b_2, 1)$ respectively). Let R denote the trapezium enclosed by L, L_1, L_2 , and the X axis. The figure below shows an example of L_1, L_2 and R.

Given a point P = (p, q) lying in the region between y = 0 and y = 1, you have to determine whether P lies to the left of, within, or to the right of region R. Write a function whichSideOfRegion() that takes a_1, b_1, a_2, b_2, p, q as arguments and returns -1, 0, or +1 depending on whether P lies to the left of, within, or to the right of R, respectively. You may assume that the given point P will **not** lie on the boundary of R.

Q3. Now consider a set of n non-intersecting (within y = 0 and y = 1) straight line segments L_1, L_2, \ldots, L_n , which are not parallel to the X-axis. The line segment L_i connects a point $(a_i, 0)$ on the X axis to a point $(b_i, 1)$ on the line L given by y = 1. The region between the X axis and L is partitioned by these line segments into n + 1 regions. Let $R_1, R_2, \ldots, R_{n+1}$ denote these regions.

Figure 1 shows an example with 5 line segments. Each region R_i ($2 \le i \le 5$) may be specified by (the indices of) its left and right bounding segments, i.e., if region R_i is bounded on the left and right by line segments L_l and L_r respectively, then we may denote R_i by the tuple representation (l, r).

Figure 1: A scenario highlighted in Q3.

For example, the regions R_2, \ldots, R_5 (shaded alternately in white and blue) may be represented as $R_2 = (3,5)$, $R_3 = (5,1)$, $R_4 = (1,2)$, and $R_5 = (2,4)$. The first and the last regions (R_1 and R_{n+1} , respectively) are unbounded on one side. For the example in Figure 1, we represent them as $R_1 = (-1,3)$ and $R_6 = (4,-1)$ respectively.

Note that the line segments are **not necessarily** numbered in increasing or decreasing order from left to right, but the regions **are** numbered (starting from 1) in ascending order from left to right.

- (a) Write a function findAndPrintRegions() that takes the list $a_1, b_1, a_2, b_2, \ldots, a_n, b_n$ as arguments, and returns a list of the regions $R_1, R_2, \ldots, R_{n+1}$ from left to right denoted using the tuple notation mentioned above. [15]
- (b) Write a function buildBST() that builds and returns a binary search tree in which each node corresponds to a region R_i , and R_i is regarded as less than R_j iff R_i occurs to the left of R_j . Your tree should have the middle region R_m (where $m = \lfloor (n+1)/2 \rfloor$ or $\lceil (n+1)/2 \rceil$) as its root.

(c) Given a point P = (p, q) lying in the region between y = 0 and y = 1, but not on any of the input line segments L_i , use the tree built above to find and print the region R_k to which P belongs.

Input Format

Input will be provided via standard input. The input will consist of a single line comprising one positive integer n, followed by 2n+2 floating point numbers, corresponding to $a_1, b_1, a_2, b_2, \ldots, a_n, b_n$ and p and q (the coordinates of point P) respectively.

Output Format

Output is to be printed on standard output. The findAndPrintRegions() function should print the list of regions in the form of tuples (l, r) and delimited by spaces in a single line. The main function (corresponding to question Q3.c) should print the region number as output in the next line. The buildBST() function should not print anything.

Sample Input 0

5 4 3 5 6 -3 -4 8 7 0 -3 0 0.5

Sample Output 0

Sample Input 1

3 4 3 0 -3 -3 -4 -2.5 0.1

Sample Output 1

Sample Input 2

2 -2 -2 2 2 0.5 0.5

Sample Output 2