Engineering Statics - 01 Math Review Handout

2) Solve $V = \frac{4}{3}\pi r^3$ for r.

4) Solve
$$b^2 = a^2 + c^2 - 2ac \cos B$$
 for B.

$$Q = \frac{CD^{2.63} \left(\frac{h_L}{L}\right)^{0.54}}{279000}$$

5) Solve the equation for h_L , then evaluate h_L using the values $Q=135,\,C=120,\,D=202.7$ and L=1200

6) Use the Pythagorean Theorem to determine the lengths of CE and CB

		_			_	_	_		_		_		_		_		_							
7) U	Jse t	he t	ange	ent f	unct	ion t	to ca	alcul	ate	$\angle CE$	EF													
) U	Jse z	$\angle CE$	F jı	ıst fo	ounc	d and	d the	e sin	e ru	le to	ver	ify t	he le	engtl	n of	CE	four	nd in	1) :	abov	æ.			
ori	zont	al.																						
0)	Use	the	tang	gent	func	ction	to v	verif	y th	e pre	evio	ıs re	sult	•										

ABCD is a rigid (i.e., it does not deform) plate, pinned at C. When horizontal force P is applied at A, ABCD rotates $550\,\mathrm{mm}$ about ${\cal C}$ and ${\cal A}$ deflects 2.45 mm horizontally rightwards. Assume that BF remains horizontal and that DEremains vertical. $360\,\mathrm{mm}$ 16) Determine δ_{BF} , the change in length of BF. 17) Determine δ_{DE} , the change in length of DE. $290\,\mathrm{mm}$ 18) Show that right triangles $\triangle ABC$, $\triangle ABD$ and $\triangle ACD$ all have the \boldsymbol{B} same angles (i.e. they are all similar). \boldsymbol{D} 19) Given that AC = 100 mm and AD = 65 mm, determine $\angle ACD$ and $\angle ABD$.

24) and 25) Find the values of x and y

$$F_{BC} \sin 15^{\circ} + F_{AC} \cos 35^{\circ} + 1030.1 = 0$$

 $F_{BC} \cos 15^{\circ} + F_{AC} \sin 35^{\circ} = 0$

26) and 27) Determine ${\cal F}_{AC}$ and ${\cal F}_{BC}$

