

EPREUVE DE MATHEMATIQUES Durée : 1h30

Questions Obligatoires

- 1. Soit f la fonction numérique définie sur $\mathbb{R} \setminus \{-1\}$ par $f(x) = \frac{x+3}{x+1}$, alors :
 - (A) f est continue sur $]-\infty,-1[$
 - (B) Pour tout $x \in \mathbb{R} \setminus \{-1\}$ $f'(x) = \frac{2}{(x+1)^2}$
 - (C) $\lim_{x \to -\infty} f(x) = 1$
 - (D) f est décroissante sur $]-1,+\infty[$
 - (E) L'équation f(x) = 0 admet une unique solution dans $\mathbb{R} \setminus \{-1\}$
- 2. Soit f et g les fonctions définies sur IR par $f(x) = 1 \frac{4e^x}{e^{2x} + 1}$ et $g(x) = e^{2x} 1$, alors :
 - (A) Pour tout $x \in]-\infty, 0], g(x) \le 0$
 - (B) Pour tout $x \in [0, +\infty[, f'(x) \ge 0]$
 - (C) f est décroissante sur $]-\infty,0]$
 - (D) $\lim_{x \to -\infty} f(x) = 1$
 - (E) $\lim_{x \to +\infty} f(x) = \lim_{x \to -\infty} f(x)$
- 3. Soit pour tout x de \mathbb{R} , $f(x)=1-\cos(2x)$ $g(x)=\sin^2(x)$ alors:
 - (A) $f\left(\frac{\pi}{2}\right) = 2$
 - (B) Pour tout x de \mathbb{R} , $f'(x) = \sin(2x)$
 - (C) Pour tout x de \mathbb{R} , f'(x) = 2g'(x)
 - (D) $\lim_{x \to 0} \frac{g(x)}{x^2} = 1$
 - (E) $\lim_{x \to 0} \frac{f(x)}{x^2} = 2$

30 avril 2016

- 4. Soit f la fonction numérique définie sur $[1,+\infty[$ par $f(x) = \ln(2x) + 1 x$, alors :
 - $(A) \quad f(1) > 0$
 - (B) Pour tout $x \in [1, +\infty[$ $f'(x) = \frac{1-x}{x}$
 - (C) f est strictement décroissante sur $[1,+\infty[$
 - (D) $\lim_{x\to +\infty} f(x) = -\infty$
 - (E) Il existe un unique $a \in [1, +\infty[$, $a = \ln(2a) + 1$
- 5. Soit f une fonction deux fois dérivable sur [-2,3] telle que f(0)=1 et dont la **dérivée** f' a pour tableau de variations :

Alors:

- (A) f est croissante sur [-1,0]
- (B) f est croissante sur [1,3]
- (C) Pour tout $x \in [0,3]$, $f(x) \ge 1$
- (D) Pour tout x et x' tels que -2 < x < x' < 0, f(x') < f(x)
- (E) $f(-2) \ge 1$
- 6. Soit a, b, c et d quatre entiers naturels non nuls. On a :
 - (A) $\frac{a}{bc} = \frac{\frac{a}{b}}{c}$
 - (B) $\frac{ac}{bd} = \frac{\frac{a}{b}}{\frac{c}{d}}$
 - (C) $\frac{a+b}{d+b} = \frac{a}{d}$
 - (D) $\frac{ab}{c} = \frac{a}{\underline{b}}$
 - (E) $\frac{a}{b} + \frac{c}{d} = \frac{a+c}{b+d}$

Questions à choisir

7. Soit
$$D =]0,1[\bigcup]1,+\infty[$$
 et $f:D \to \mathbb{R}$ définie par $f(x) = \frac{1}{x\ln(x)}$.

Alors:

- (A) f est continue sur]0,1[
- (B) $\lim_{\substack{x \to 0 \\ x > 0}} f(x) = +\infty$
- (C) Sur]1,+ ∞ [, une primitive F de f est : $F(x) = -\frac{1}{\ln^2(x)}$
- (D) f admet une primitive sur]0,1[
- (E) $\int_{2}^{4} f(x) dx = \ln(2)$
- 8. Soit f la fonction définie sur $\left[-\pi,\pi\right]$ par :

$$f(x) = \frac{\pi + x}{2}$$
 si $x \in [-\pi, 0[$ $f(x) = \frac{\pi - x}{2}$ si $x \in [0, \pi]$.

Alors:

- (A) f est continue sur $[-\pi, \pi]$
- (B) f est dérivable sur $[-\pi, \pi]$
- (C) La valeur moyenne de f sur $\left[-\pi, \pi\right]$ est $\frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx$
- (D) $\int_{-\pi}^{0} f(x) dx = \int_{0}^{\pi} f(x) dx$
- (E) La valeur moyenne de f sur $\left[-\pi, \pi\right]$ est $\frac{\pi}{4}$
- 9. Soit $f(t) = \frac{t+2}{t+1}$ et $I = \int_0^1 f(t) dt$ on a :
 - (A) $I \ge 1$
 - (B) $I = \int_0^1 \left(1 + \frac{1}{t+1}\right) dt$
 - (C) $I 1 + \ln 2$
 - (D) Pour tout $n \in \mathbb{N}^*$ et $k \in \{0, 1, 2, ..., n-1\}$ $\frac{1}{n} f\left(\frac{k+1}{n}\right) \le \int_{k/n}^{(k+1)/n} f(t) dt \le \frac{1}{n} f\left(\frac{k}{n}\right)$
 - (E) $\left(\frac{1}{n}f\left(\frac{1}{n}\right) + \frac{1}{n}f\left(\frac{2}{n}\right) + \frac{1}{n}f\left(\frac{3}{n}\right) + \frac{1}{n}f\left(\frac{4}{n}\right) + \dots + \frac{1}{n}f\left(\frac{n}{n}\right)\right) \le I$

30 avril 2016

- 10. Soit z et z' les deux nombres complexes $z = \sqrt{3} i$ et z' = (1+i)z
 - (A) $z' = (\sqrt{3} + 1) + i(\sqrt{3} 1)$
 - $(B) z = 2e^{i\frac{5\pi}{6}}$
 - $(C) \quad |z'| = \sqrt{2} |z|$
 - (D) $z' = 2\sqrt{2} \left(\cos \left(\frac{\pi}{12} \right) + i \sin \left(\frac{\pi}{12} \right) \right)$
 - (E) $\cos\left(\frac{\pi}{12}\right) = \frac{\sqrt{3}+1}{2\sqrt{2}}$
- 11. Dans l'espace muni d'un repère orthonormé $(O, \vec{i}, \vec{j}, \vec{k})$, on considère les points P(3;-1;5) Q(-2;2;3) R(-1;-2;4) et S(5;8;4).
 - (A) \overrightarrow{PQ} et \overrightarrow{PR} sont colinéaires
 - (B) Les points P, Q et R sont alignés
 - (C) Le triangle PQR est isocèle en R
 - (D) Les plans (PQR) et (PQS) sont confondus
 - (E) $\overrightarrow{PS} = -3\overrightarrow{PR} + 2\overrightarrow{PO}$
- 12. Soit f la fonction définie sur [0,3] par $f(x) = \frac{1}{9}x + \frac{1}{6}$. On note X la variable aléatoire sur [0,3] dont la loi de probabilité a pour densité f.
 - $(A) \quad \int_0^3 f(x) dx = 1$
 - (B) $P(X \ge 2) = \frac{7}{36}$
 - (C) $P(X \le 2) = 1 \int_0^2 f(x) dx$
 - (D) $P(1 \le X \le 2) \le P(X \ge 2)$
 - (E) $P(X \ge 1) \le P(X \ge 2)$

- 13. Dans un restaurant sans réservation, on modélise le temps d'attente en minutes pour obtenir une table par une variable aléatoire X. X suit une loi exponentielle de paramètre λ . Une étude statistique a montré que le temps moyen d'attente est de 10 mn.
 - (A) $\lambda = 10$
 - (B) $\frac{1}{\lambda} = 10$
 - (C) La probabilité qu'un client attende entre 10 et 20 mn est $\int_{10}^{20} \frac{1}{10} e^{-\frac{x}{10}} dx$
 - (D) La probabilité qu'un client attende plus de 20 mn est $1 \int_{0}^{20} 10e^{-10x} dx$
 - Un client attend depuis 10mn. La probabilité qu'il doive attendre encore au (E) moins 20mn est égale à la probabilité qu'il attende plus de 20mn
- 14. On considère l'algorithme suivant dans lequel rand (1,7) donne un nombre entier aléatoire entre 1 et 7.

Variables

i, j, k entiers naturels

Initialisation
$$i \leftarrow 1, k \leftarrow 0$$

Traitement

Tant que i < 6

$$j \leftarrow rand(1,7)$$

Si
$$i > 4$$
 alors

$$k \leftarrow k+1$$

Fin Si

$$i \leftarrow i + 1$$

Fin Tant que Afficher k

Sortie

- (A) k est affiché lorsque j a été affecté 6 fois
- (B) La valeur affichée de k est un entier inférieur à 4
- La probabilité que k = 0 est égale à $\frac{4}{7}$
- (D) La probabilité que k = 3 est égale à $4\left(\frac{4}{7}\right)\left(\frac{3}{7}\right)^4$
- (E) La probabilité que k = 4 est égale à $\left(\frac{3}{7}\right)^3$

CORRIGÉ DU SUJET OFFICIEL

DE l'ÉPREUVE DE MATHÉMATIQUES

	Α	В	C	D	E
1	V	F	V	>	V
2	V	V	V	V	V
3	V	F	V	V	V
4	V	V	V	V	V
5	F	V	V	V	V
6	V	F	F	F	F
7	V	F	F	V	V
8	V	F	V	V	V
9	V	V	V	V	V
10	V	F	V	V	V
11	F	F	V	V	V
12	V	F	F	V	F
13	F	V	V	F	V
14	F	F	F	F	F