

COPENHAGEN BUSINESS ACADEMY

Basic statistics and machine learning

Jens Egholm Pedersen <jeep@cphbusiness.dk>

Learning how to learn

- A word on metacognition
 - What does that mean?
- Dunning-Kruger effect
 - Stupid people think they are smart
 - Why is that a bad thing?
- Continuous feedback
 - Where would you like to be when this course ends?
 - Keep evaluating yourself
 - ... and be honest!

See also: Dunning-Kruger effect, Metacognition improves your grade!

About these lectures 1/2

- Lectures: Practical part
 - Giving you hands-on experience
 - Resolving immediate problems
 - You need your computer for the practical part
- Lectures: Theoretical part
 - Answering the 'why' question
 - Putting things in context (do not underestimate this)
 - You have 1 (one) job
 - You learn best by writing things down. By hand!
 - You do not need your computer for the theoretical part (!)

About these lectures 2/2

- Exploit what we prepared for you
 - Bloom's Taxonomy
 - Lecture = Comprehending
 - Lecture + Preparation = Analyzing
 - Please read the literature. Please?
 - Lecture + Preparation + Exercises = Evaluating
- When studying for the exam use 'see also'
 - Not part of the curriculum!

See also: Something to read, Bloom's taxonomy

Goal of this block

- Have a basic understanding and knowledge of various terms, models and tests in statistics.
- Compute basic statistics on data using the Python's scientific stack and the Sklearn library.
- Develop an informed guess of when to choose a certain model to answer a concrete type of question and apply technology appropriately.

See also: BI plan

Goal for today

- Introduction to Scikit learn (sklearn)
- Introduction to statistics
 - Populations
 - Normal distributions
 - Standard deviations
- Introduction to machine learning
 - Prediction
 - Training versus testing
- Linear regression

See also: BI plan

Pandas and sklearn

- http://pandas.pydata.org/
- http://scikit-learn.org/stable/

Statistics

What is statistics to you?

 "Statistics is a branch of mathematics dealing with the collection, analysis, interpretation, presentation, and organization of data." - Wikipedia

- For us, statistics means inference
 - Reasoning new knowledge from existing evidence

See also: Statistics

Why statistics?

- Statistics can help us answer questions from data
 - Can I make money on this?
 - Should I smoke this cigarette?
 - Should I buy this house?

- Data is growing. Fast
 - By 2050 there will be around 5200 GB per person

See also: Data is the new oil of the Digital Economy

Introducing statistics

- Descriptive statistics
 - Summarizing the information of a population
- Inferential statistics
 - Predict behaviour based on a population

See also: Free book on statistics (pdf)

Populations, example 1

Populations, example 2

Populations, example 3

Defining populations

Sample = subset of population

- Complete sample
 - Entire population
- Representative sample
 - Represents your population
- You have been hired to find out who will win the municipality election in Copenhagen
 - Who will you ask?

Representative samples

- Example: The Literary Digest mailed out millions of mock ballots for the 1936 presidential campaign
 - The results that poured in during the months leading up to the [1936 presidential] election showed a landslide victory for Republican Alf Landon. In more than two million ballots it had received, the incumbent, Roosevelt, had polled only about 40 percent of the votes.
 - Within a week it was apparent that both their results and their methods were erroneous. Roosevelt was re-elected by an even greater margin than in 1932.
- The mailing lists the editors used were from directories of automobile owners and telephone subscribers.
- People prosperous enough to own cars have always tended to be somewhat more Republican than those who do not, and this was particularly true in [the] heart of the Depression.
 - The Digest's experience conclusively proved that no matter how massive the sample, it will produce unreliable results if the methodology is flawed.
- Never ever ever (ever) forget this

Source: Unrepresentative samples

Representative samples

- Generally
 - If X% of a sample of people have Y
 - It does NOT mean that X% of people have Y

- To conclude on your results, always consider whether your data is representative
- Never ever ever (ever) forget this

How do you measure "representativity"

Measuring variation

- To obtain a representative sample:
 - Same variation in the sample as in the population
 - Example: 0.01% thinks rape is ok in population
 - Not representative: 50% thinks rape is ok in sample
 - Representative: 0.01% thinks rape is ok

- How do you measure variation?
 - Mean
 - Deviation from mean / variability

Python tools

- http://pandas.pydata.org/
- http://scikit-learn.org/stable/

Practice: Sampling

```
https://github.com/datsoftlyngby/sof
t2017fall-business-intelligence-
teaching-material/
```


Unknown population

- Let's assume you don't know the full population
 - You only know what is the maximum and minimum values

What would you think is the mean of the population?

 What would you think is the mean of a sample of that population?

What is the probability that the mean == center?

Central limit theorem

- The sum of many random variables will approximate a bell curve
 - For instance the mean of many random populations

Why is this important?

Central limit theorem

- The sum of many random variables will approximate a bell curve
 - For instance the mean of many random populations

Your sample will probably be centered around the mean.

Practice: Mean error

```
https://github.com/datsoftlyngby/sof
t2017fall-business-intelligence-
teaching-material/
```

Central limit theorem

- The sum of many random variables will approximate a bell curve
 - For instance the mean of many random populations

Your sample will probably be centered around the mean.

Measuring variation

- How do you measure variation?
 - Mean
 - Deviation from mean / variability
- Standard deviation

$$s = \sqrt{\frac{\sum of squared deviations}{samplesize - 1}}$$

$$s = \sqrt{\frac{\sum (y_i - \bar{y})^2}{n}} = \sigma$$

Probability distribution

 What is the "variation" between the population and the sample?

The probability that your sample == population

What is that probability?

Also called a 'probability density function'. Why?

See also: Probability distribution

Probability distribution

 We are looking for the probability that our sample is equal to the population

Probability distribution

 We are looking for the probability that our sample is equal to the population

 A probability distribution over a sample provides a likelihood that a value would equal that sample

Example: Commuting

- How long does it take to commute to work?
 - Let's plot it

Normal distribution

See also: Normal distributionNormal distribution

Recap

- Population != sample
 - Very. Very. (!) important
- What is the difference between the population and the sample?
 - Mean
 - Standard deviation (square root of variability)
- Probability distributions tells us how likely it is that our sample == population
- Descriptive statistics

Machine learning

 "The science (and art) of programming computers so they can learn from data"

- If your machine downloads an article from Wikipedia, is it smarter?
 - No. That is not machine learning

See also: Géron: Hands-on machine learning (book)

Machine learning

 "The science (and art) of programming computers so they can learn from data"

Why?

- Humans cannot process the vast amounts of data
- Machines can test ideas (such as sample deviation) fast!
- Machines can become much better than humans
- Example: >98% precision for handwriting recognition

See also: Géron: Hands-on machine learning (book)

Types of machine learning

- Is it trained by a human
 - Supervised / unsupervised
- Can they learn on the fly?
 - Online learning / offline (batch) learning
- Do they include new data?
 - Instance-based / model-based
- Today: supervised, offline model-learning

See also: Géron: Hands-on machine learning (book)

Linear regression

- Inferential statistics
 - We want to predict something from data
- Supervised learning
 - We have data already
- Offline learning
 - We train it once then use it
- Model based
 - We use a model
 - y = ax + b

Scikit learn

Python statistics + machine learning library

We will use this extensively

See also: Python SKlearn library

Building models

- Supervised learning
 - We instruct the model with data

- model.fit()
 - Trains the model to the data we feed it

- model.predict()
 - Predicts the outcome of the model

Linear regression

Predicting y values based on x values

Example: Murder rates based on income

Linear regression

What is the problem with this?

- Error between data and line
 - Error = distance between points to line
- We are actually not interested in y = ax + b
- We are interested in E(y) = ax + b
 - We want to make many models of y = ax + b and find the best

Errors in the model

Typical error metrics

- Three metrics:
 - Mean Average Error (MAE)
 - Root Mean Square Error (RMSE)
 - Pearson's r

What is an error?

A good model: expected = actual

$$y_i - \hat{y} = 0$$

A bad model: expected != actual

$$y_i - \hat{y} = very large number$$

$$|y_i - \hat{y}| = very \ large \ number$$

What is an error?

For each point, how much error do we add?

• Simplest error metric: Absolute error

$$AE = \sum |y - \hat{y}|$$

What is the problem with this metric?

Mean Absolute Error (MAE)

- For each point, how much error do we add?
 - Controlled for the sample size!

$$MAE = \sum \frac{|y - \hat{y}|}{n}$$

• Sklearn:

from sklearn.metrics import mean_absolute_error
mean_absolute_error(y_true, y_pred)

(Root) Mean Squared Error

- For each point, how much error do we add?
 - Again, controlled for sample size

$$MSE = \sum \frac{(y - \hat{y})^2}{n}$$

$$RMSE = \sqrt{\sum \frac{(y - \hat{y})^2}{n}}$$

• Sklearn:

from sklearn.metrics import mean_squared_error
mean_squared_error(y_true, y_pred)

Pearson's r

For each point, how much error do we add?

- All in all: we have two variables: x and y
 - So we can have two errors in our prediction:
 - Errors without x: $y \overline{y}$
 - Errors with x: $y \hat{y}$
- What are the differences?
 - Errors without x measures the errors without using the linear model

Pearson's r

- For each point, how much error do we add?
- Pearson's r: The coefficient of determination
 - In other words: The reduction in error from using the linear prediction equation instead of simple y values

$$r^{2} \approx \frac{error_{linear}}{error_{y}}$$

$$r^{2} = 1 - \frac{\sum (y - \hat{y})^{2}}{\sum (y - \bar{y})^{2}}$$

Pearson's r

For each point, how much error do we add?

$$r^{2} = 1 - \frac{\sum (y - \hat{y})^{2}}{\sum (y - \bar{y})^{2}}$$

- Sklearn:
 - model.score(X, y)
 - Example: Murder rates

Regression function

- We are interested in E(y) = ax + b
 - We want to make many models of y = ax + b and find the best
- This is a regression function
 - A regression function describes how the mean of the prediction changes according to input
 - Or: it helps us to understand how the typical value of the dependent variable changes when the input variable changes
- We want to find the relationship between the input and the output
 - We have to try many different functions so we can find the best values for y = ax + b

Practice: Prediction

```
https://github.com/datsoftlyngby/sof
t2017fall-business-intelligence-
teaching-material/
```


Training versus testing

Machine learning models are trained – then tested

- Data for testing cannot be used for training
 - Why?

- For the next assignment:
 - 80% training20% testing

See also: Introduction to Numpy

Recap

- Population != sample
 - Very. Very. (!) important
- What is the difference between the population and the sample?
 - Mean
 - Standard deviation (square root of variability)
- Probability distributions tells us how likely it is that our sample == population
- Machine learning
 - Training/testing split (80%/20%)

Next hand-in: Assignment 5

- Deadline: 13th of November 23:59:59
- The hand-in (on Moodle) should be a link to a GitHub release containing a single file with the code and written text for the assignment parts

- This can either be a .ipynb, .py, .pdf or .md file
- The file must be clearly identifiable. Please name it accordingly. (for instance report.pdf or assignment5.ipynb)