Homework Assignment 4 – Transient Response

Problem 1 (25 pts) – Transient Response I

At t < 0, the circuit shown in figure below is at steady state. The switch is changed at t = 0. Assuming that the values are $V_{S1} = V_{S2} = 13$ V, L = 170 mH, $R_1 = 2.7$ k Ω , $R_2 = 4.3$ k Ω , $R_3 = 29$ k Ω , do the following:

- Draw the **transient response** of inductor current i_L (15 pts)
- Find the **time constant** of the circuit for t > 0 (10 pts)

<u>Problem 2 (25 pts) – Transient Response II</u>

At t < 0, the circuit shown in figure below is at steady state. The switch is pressed at t = 0. Assuming that the values are $V_S = 12$ V, C = 150 μ F, $R_1 = 400$ Ω , $R_2 = 2$ k Ω , do the following:

- 1. Write the differential equation for capacitor voltage v_C (15 pts)
- 2. Find the **time constant** of the circuit (5 pts)
- 3. Draw the **transient response** of capacitor voltage v_C (5 pts)

Problem 3 (25 pts) – Frequency Response

Determine the **frequency response** $v_{\text{out}}(j\omega)/v_{\text{in}}(j\omega)$ for the circuit shown below.

<u>Problem 4 (25 pts) – Band-Pass Filters</u>

In the band-pass filter example from Tutorial 10, determine the following quantities:

- The frequency at which the **phase shift** introduced by the filter is equal to -10° (12.5 pts)
- The frequency at which the output of the filter is **attenuated by 10 percent** (that is, $V_0=0.9V_i$). (12.5 pts)