Обучение с экспертами для выборки со многими доменами

Н. А. Линдеманн, А. В. Грабовой

lindemann.na@phystech.edu; andriy.graboviy@mail.ru

Рассматривается задача аппроксимации multi-domain выборки единой мультимоделью — смесью экспертов. Каждый домен аппроксимируется локальной моделью. В работе рассматривается двухэтапная задача оптимизации на основе ЕМ-алгоритма. В качестве данных используется выборка отзывов сайта Amazon для разных типов товара, которая содержит в себе несколько доменов. В качестве локальной модели используется линейная модель, а в качестве признакового описания отзывов используются tf-idf вектора внутри каждого домена.

Ключевые слова: Смесь экспертов, локальная модель, обучение с экспертом, классификация текстов.

1 Введение

- На текущий момент в машинном обучении появляется все больше задач связанных с данными, которые взяты с разных источников. Часто появляются выборки, которые со- стоят из большого количества доменов. Под доменом понимается подмножество объектов выборки, которые обладают некоторыми одинаковыми признаками. На текущий момент
- не существует полного теоретического обоснования построения смесей локальных моделей
- 7 для аппроксимации такого рода выборок.
- В работе рассматривается задача аппроксимации multi-domain выборки единой мультимоделью – смесью экспертов, и предлагается алгоритм бинарной классификации текстов, использующий дополнительную информацию о доменах. Использование этой информации позволяет использовать более простые и интерпретируемые модели.
- Метод решения задачи состоит в построении мультимодели, являющейся смесью локальных моделей. Каждый домен аппроксимируется локальной линейной моделью, смесь которых является итоговым алгоритмом классификации. Задача обучения модели сводится к двухэтапной задаче оптимизации на основе ЕМ-алгоритма. Схема работы алгоритма представлена на рис. 1.

17

18

19

20

21

22

24

25

26

33

34

35

36

37

Рис. 1 Схема работы мультимодели.

В качестве данных используется выборка отзывов сайта Amazon для разных типов товара, которая содержит в себе несколько доменов. Каждый объект имеет экспертно-зависимое описание, которое определяется его пренадлежностью к тому или иному домену. В качестве признакового описания отзывов используется tf-idf вектора внутри каждого домена.

$$x_{m_k}$$
 x_1 x_n x_{n+1}

23 2 Постановка задачи

2.1 Постановка задачи обучнения одного эксперта

Задача бинарной классификации является задачей апроксимации целевой функции

$$\mathbf{f}: \mathbb{R}^n \to \{-1, +1\},$$

где \mathbb{R}^n — пространство признакового описания объектов, а $\{-1,+1\}$ — метка класса объекта. Задачей локальной модели является апроксимация функции \mathbf{f} на некотором домене. На основе общих признаков (x_1,\ldots,x_n) эксперт генерирует экспертно-зависимые признаки (x_{n+1},\ldots,x_{m_k}) , количество которых зависит от конкретного домена, и с помощью признаков $(x_1,\ldots,x_nx_{n+1},\ldots,x_{m_k})$ локальная модель делает предсказание о принадлежности объекта к одному из двух классов.

В качестве локальной модели будем использовать логистическую регрессию, которая будет предсказывать вероятность того, что объект с признаковым описанием x_i принадлежит классу y_i :

$$p(y = y_i \mid \boldsymbol{x_i}, \mathbf{w}) = \sigma(y_i \mathbf{w} \cdot \boldsymbol{x_i}).$$

Рассмотрим правдоподобие выборки, а именно, вероятность наблюдать данный вектор y у домена C (выборка размера N). В предположении, что объекты выборки внутри

одного домена независимы и из одного распределения, получим:

$$p(\boldsymbol{y} \mid \mathbf{C}, \mathbf{w}) = \prod_{i=1}^{N} p(y = y_i \mid \boldsymbol{x_i}, \mathbf{w}).$$

41 Далее рассмотрим логарифм правдоподобия:

40

45

50

64

67

$$\log p\left(\boldsymbol{y} \mid \mathbf{C}, \mathbf{w}\right) = \log \prod_{i=1}^{N} \sigma(y_{i}\mathbf{w} \cdot \boldsymbol{x_{i}}) = \sum_{i=1}^{N} \log \frac{1}{1 + e^{-y_{i}\mathbf{w} \cdot \boldsymbol{x_{i}}}} = -\sum_{i=1}^{N} \log(1 + e^{-y_{i}\mathbf{w} \cdot \boldsymbol{x_{i}}}).$$

43 Значит, в даном случае принцип максимального правдоподобия приводит к минимизации 44 логистической функции потерь по всем объектам из данного домена:

$$\mathcal{L}(\mathbf{C}, \boldsymbol{y}, \mathbf{w}) = \sum_{i=1}^{N} \log(1 + e^{-y_i \mathbf{w} \cdot \boldsymbol{x_i}}) \to \min_{\mathbf{w}}.$$

ь 2.2 Постановка задачи построения смеси экспертов

Обобщим подход аппроксимации одного домена на случай, когда в данных присутствует ет несколько доменов. Пусть всего имеется K доменов в выборке, тогда всю выборку \mathbf{C} можно представить в виде:

$$\mathbf{C} = \bigsqcup_{k=1}^K \mathbf{C}_k',$$

где \mathbf{C}_k' множество объектов, принадлежащих k-му домену. Множеству объектов из домена $\mathbf{C}_k' \subset \mathbf{C}$ соответствует задача линейной регрессии для выборки $\mathbf{X}_k' \subset \mathbf{X}, \mathbf{y}_k' \subset \mathbf{y}$. Модель \mathbf{g}_k аппроксимирующая выборку $\mathbf{X}_k', \mathbf{y}_k'$ является локальной моделью для выборки \mathbf{X}_k . \mathbf{v} .

55 **Определение 1.** Модель ${f g}$ называется локальной моделью для выборки ${f U}$, если ${f g}$ ап56 проксимирует некоторое не пустое подмножество ${f U}'\subset {f U}$.

определение 2. Мультимодель **f** называется смесью экспертов, если:

$$\mathbf{f} = \sum_{k=1}^{K} \pi_k \mathbf{g}_k(\mathbf{w}_k), \qquad \pi_k(\mathbf{x}, \mathbf{V}) : \mathbb{R}^{n \times |\mathbf{V}|} \to [0, 1], \qquad \sum_{k=1}^{K} \pi_k(\mathbf{x}, \mathbf{V}) = 1,$$

где \mathbf{g}_k является k-й локальной моделью, π_k — шлюзовая функция, вектор \mathbf{w}_k является параметрами k-й локальной моделью, а \mathbf{V} — параметры шлюзовой функции.

Пусть \mathbf{w}_k является случайным вектором, который задается плотностью распределения $p^k(\mathbf{w}_k)$. Получим совместное распределения параметров локальных моделей и вектора ответов:

$$p(\mathbf{y}, \mathbf{W} | \mathbf{X}, \mathbf{V}) = \prod_{i=1}^{N} \left(\sum_{k=1}^{K} \pi_k p_k (y_i | \mathbf{w}_k, \mathbf{x}_i) \right),$$

где $\mathbf{W} = \{\mathbf{w}_1, \mathbf{w}_2, \cdots, \mathbf{w}_K\}$. Оптимальные параметры находятся при помощи максимизации правдоподобия:

$$\hat{\mathbf{V}}, \hat{\mathbf{W}} = \arg \max_{\mathbf{V}, \mathbf{W}} p(\mathbf{y}, \mathbf{W} | \mathbf{X}, \mathbf{V}).$$

69

73

74

75

76

77

79

80

81

83

3 Вычислительный эксперимент

3.1 Анализ данных

70 Для проведения первого вычислительного эксперимента из всех отзывов с сайта Amazon были выбраны пять разных доменов: music, baby, kitchen_&_housewares, software, books. Выбор именно этих доменов был обусловлен тем, что получившаяся разнородная подвыборка содержала 9815 и была гиперсбалансирована:

Рис. 2 Распределение подвыборки по классам.

Рис. 3 Распределение подвыборки по доменам.

Далее полученная выборка была разделена на тестовую и обучающую в пропорции 30: 70. После этого тексты отзывов были преобразованы к формату tf-idf размерности 25770.

Основными метриками, по которым мы будем оценивать качество работы модели, будут

$$Accuracy = \frac{tp+tn}{tp+tn+fp+fn}, \quad Precision = \frac{tp}{tp+fp}, \quad Recall = \frac{tp}{tp+fn}.$$

3.2 Эксперимент с одной моделью

После подготовки данных была обучена одна модель. Эта модель представляла собой логистическую регрессию с логистической функцией потерь. Результаты обучения модели представлены на рисунках

accuracy 0.80		accuracy			0.80		
0 1	0.81 0.79	0.77 0.83	0.79 0.81	0 1	0.81 0.79	0.77 0.83	0.79 0.81
	precision	recall	f1-score		precision	recall	f1-score

Рис. 4 Метрики обученной модели на тестовых данных.

Рис. 5 Метрики обученной модели на обучающих данных.

3.3 Эксперимент с мультимоделью

Литература

[1] J. Jiang. A Literature Survey on Domain Adaptation of Statistical Classifiers // ?????, 2007

- 87 [2] A.B. Грабовой, B.B. Стрижов. Анализ выбора априорного распределения для смеси экспертов // ?????, 2018
- [3] G. Wilson, D.J. Cook. A Survey of Unsupervised Deep Domain Adaptation // ACM Transactions on Intelligent Systems and Technology, 2020
- 91 [4] M. Wang, W. Deng. Deep Visual Domain Adaptation: A Survey // Manuscript accepted by 92 Neurocomputing, 2018
- J. Guo, D.J. Shah, R. Barzilay. Multi-Source Domain Adaptation with Mixture of Experts //
 Conference on Empirical Methods in Natural Language Processing, 2018