Introducción a los espacios de Hilbert

Pregunta 1 (2,5 puntos)

Sea \mathcal{H} un espacio prehilbertiano de dimensión infinita. Justifique que la bola cerrada unidad

$$B = \{x \in \mathcal{H} \colon ||x|| \le 1\}$$

no es compacta.

Solución: Si \mathcal{H} un espacio prehilbertiano de dimensión infinita, sabemos que existe una sucesión $\{x_n\}_{n=1}^{\infty}$ que forma un sistema ortonormal de \mathcal{H} . Para $n \neq m$ se cumple:

$$||x_n - x_m||^2 = ||x_n||^2 + ||x_m||^2 - 2\operatorname{Re}\langle x_n, x_m \rangle = 2$$

Consideramos para cada $x \in B$, la bola $B_x = \{y \in \mathcal{H} \mid ||y - x|| < 1/2\}$. Obtenemos así el recubrimiento abierto, $\{B_x \mid x \in B\}$ de B que no admite subrecubrimiento finito. En efecto, si $n \neq m$, x_n y x_m no pueden pertenecer a un misma bola B_x pues si $x_n, x_m \in B_x$ entonces $||x_n - x_m|| \le ||u_n - x|| + ||u_m - x|| \le 1$, en contradicción con $||x_n - x_m||^2 = 2$. Luego cualquier subrecubrimiento contiene al menos una bola por cada elemento x_n .

Pregunta 2 (3 puntos)

En el espacio $\mathcal{C}[-1,1]$ de las funciones $f:[-1,1]\longrightarrow\mathbb{C}$ continuas, con el producto interno definido por

$$\langle f, g \rangle = \int_{-1}^{1} f(t) \overline{g(t)} dt$$

sean los subespacios

$$F = \{ f \in \mathcal{C}[-1, 1] \colon f(t) = 0 \text{ para todo } t \in [-1, 0] \}$$

у

$$G = \{ f \in \mathcal{C}[-1,1] \colon f(0) = 0 \}.$$

- a) Determine F^{\perp} .
- b) Determine G^{\perp} y determine si es cierta la igualdad $\mathcal{C}[-1,1] = G \oplus G^{\perp}$.

Solución: a) Veamos que $F^{\perp} = \{g \in \mathcal{C}[-1,1] : g(t) = 0 \text{ para todo } t \in [0,1] \}$. En efecto si $g \in \mathcal{C}[-1,1]$ es tal que g(t) = 0 para todo $t \in [0,1]$ entonces $\langle g,f \rangle = 0$ para todo $f \in F$ pues $g(t)\overline{f(t)} = 0$ para todo $t \in [-1,1]$ y en consecuencia $\int_{-1}^{1} g(t)\overline{f(t)}dt = 0$. Inversamente si $g \in \mathcal{C}[-1,1]$ es tal que no es cierto que g(t) = 0 para todo $t \in [0,1]$, de la continuidad de g se deduce la existencia de un intervalo $[a,b] \subset [0,1]$ tal que g(t) > 0 para todo $t \in [a,b]$ o g(t) < 0 para todo $t \in [a,b]$. Sea una función f continua en [-1,1] que se anula fuera de [a,b] y tal que f(t) > 0 para todo $t \in [a,b]$. Por ejemplo,

$$f(t) = \begin{cases} 0 & \text{si } t < a \\ t - a & \text{si } a \le t \le (a+b)/2 \\ \frac{-t+b}{\varepsilon'} & \text{si } (a+b)/2 \le t < b \\ 0 & \text{si } t > b \end{cases}$$

Claramente $f \in F$ y $\int_{-1}^{1} g(t)\overline{f(t)}dt = \int_{a}^{b} g(t)f(t)dt \neq 0$ pues g(t)f(t) > 0 para todo $t \in [a,b]$ o g(t)f(t) < 0 para todo $t \in [a,b]$.

Hemos supuesto g real pues si $g(t) \neq 0$ para algún $t \in [0,1]$, entonces $\text{Re}(g(t)) \neq 0$ o $\text{Im}(g(t)) \neq 0$ y el razonamiento sería válido para Re(g) o Im(g).

b) Veamos que $G^{\perp} = \{0\}$. En efecto, sea $g \in G^{\perp}$ tal que $g \neq 0$.

Si g es tal que g(0)=0 entonces $g\in G^{\perp}\cap G=\{0\}$, que contradice la hipótesis de $g\neq 0$.

Por tanto se cumple que $g(0) \neq 0$. Por la continuidad de g, existe ε , son $0 < \varepsilon < 1$, tal que $g(t) \neq 0$ para todo t tal que $|t| < \varepsilon$. Tomando

$$f(t) = \begin{cases} \frac{|t|g(t)}{\varepsilon} & \text{si } |t| < \varepsilon \\ g(t) & \text{si } |t| \ge \varepsilon \end{cases}$$

Como f(0) = 0 y f es continua en [-1, 1], resulta que $f \in G$. Sin embargo,

$$\langle g, f \rangle = \int_{-1}^{1} f(t) \overline{g(t)} dt \ge \frac{1}{\varepsilon} \int_{|t| < \varepsilon} |t| |g(t)|^2 dt > 0$$

que contradice la hipótesis de $g \in G^{\perp}$.

La igualdad $\mathcal{C}[-1,1] = G \oplus G^{\perp}$ no es verdadera. Basta observar que $G \oplus G^{\perp} = G$ y $G \neq \mathcal{C}[-1,1]$ pues cualquier función $f \in \mathcal{C}[-1,1]$ tal que $f(0) \neq 0$ no pertenece a G.

Pregunta 3 (2,5 puntos)

Sean \mathcal{H} un espacio de Hilbert y $T \colon \mathcal{H} \longrightarrow \mathcal{H}$ una aplicación lineal tal que $\langle T(x), T(y) \rangle = \langle x, y \rangle$ para todo $x, y \in \mathcal{H}$. Demuestre que $T^*T = I_{\mathcal{H}}$ y que $\operatorname{Im}(T) = \ker(I_{\mathcal{H}} - TT^*)$.

Solución: De $\langle T(x), T(y) \rangle = \langle x, y \rangle$ para todo $x, y \in \mathcal{H}$ se deduce que

$$\langle T(x), T(y) \rangle = \langle T^*(T(x)), y \rangle = \langle x, y \rangle$$

para todo $x, y \in \mathcal{H}$. Por tanto, $T^*T = I_{\mathcal{H}}$.

Por otro lado, para todo $y \in \text{Im}(T)$, existe al menos un elemento $x \in \mathcal{H}$ tal que y = T(x). Se tiene

$$TT^*(y) = TT^*(T(x)) = T(T^*(T(x))) = T(T^*T(x)) = T(x)$$

= y

En consecuencia, $(I_{\mathcal{H}} - TT^*)(y) = 0$ y por tanto $\operatorname{Im}(T) \subset \ker(I_{\mathcal{H}} - TT^*)$.

La inclusión inversa se obtiene teniendo en cuenta que si $y \in \ker(I_{\mathcal{H}} - TT^*)$ entonces $y = TT^*(y) = T(T^*(y))$ y por tanto, $y \in \operatorname{Im}(T)$.

Pregunta 4 (2 puntos)

Sabiendo que la transformada de Fourier de la función

$$f(t) = e^{-at^2}, t \in \mathbb{R} \text{ es } \widehat{f}(w) = \frac{1}{\sqrt{2a}} e^{-\frac{w^2}{4a}}, w \in \mathbb{R}.$$

calcule la siguiente convolución:

$$\frac{1}{a\sqrt{2\pi}}e^{-\frac{t^2}{2a^2}} * \frac{1}{b\sqrt{2\pi}}e^{-\frac{t^2}{2b^2}}.$$

Solución: Sabemos que $f(t) = e^{-at^2} \xrightarrow{\mathcal{F}} \frac{1}{\sqrt{2a}} e^{-w^2/(4a)}$, por tanto $f(t) = e^{-t^2/(2a^2)} \xrightarrow{\mathcal{F}} ae^{-a^2w^2/2}$.

Si $g(u) := \left(e^{-t^2/(2a^2)} * e^{-t^2/(2b^2)}\right)(u)$ su transformada de Fourier será $\widehat{g}(w) = \sqrt{2\pi} \, ab \, e^{-\frac{a^2+b^2}{2}w^2}$. Por tanto,

$$g(u) = \sqrt{2\pi} ab \frac{1}{\sqrt{a^2 + b^2}} e^{-u^2/2(a^2 + b^2)}, u \in \mathbb{R}.$$

Concluyendo,

$$\left(\frac{1}{a\sqrt{2\pi}}e^{-t^2/2a^2} * \frac{1}{b\sqrt{2\pi}}e^{-t^2/2b^2}\right)(u) = \frac{1}{c\sqrt{2\pi}}e^{-u^2/2c^2}, \quad u \in \mathbb{R} \quad (c = \sqrt{a^2 + b^2}).$$