

Department of Mathematics

VECTOR CALCULUS LAPLACE TRANSFORM AND NUMERICAL METHODS (MA221TA)

Practice Problems

UNIT-I

VECTOR CALCULUS

Q.No.	Objective type Questions
1	The unit normal to the surface $\Phi(x, y, z) = yx^2z + 4xz^2$ at the point $(1, -2, -1)$ is
2	The directional derivative of $\Phi(x, y, z) = x^2yz^3$ at $(2, 1, -1)$ is maximum along direction.
3	If the vector $\vec{F} = (2x^2y^2 + z^2)\hat{\imath} + (3xy^3 - x^2z)\hat{\jmath} + (\gamma xy^2z + xy)\hat{k}$ is incompressible, then the value of the constant ' γ ' is
4	Find the value 'a' if the vector $\vec{F} = (axy - z^2)\hat{\imath} + (x^2 + 2yz)\hat{\jmath} + (y^2 - axz)\hat{k}$ is irrotational.
5	$\operatorname{div}\left(\frac{\vec{r}}{r}\right) = \underline{\hspace{1cm}}.$
6	If $\Phi(x, y, z) = 2xz - y^2$ find grad Φ at the point $(1, 3, 2)$
7	Find the directional derivative of the function $\Phi = x^2 - y^2 + 2z^2$ at the point P(1, 2, 3) in the direction of the line PQ where Q = (5, 0, 4).
8	The minimum directional derivative is given by
9	$\Delta\Phi(r) =$
10	In $\nabla^2 r^n = n(n+1)r^{n-2}$, where n is a non-zero constant and r^n is harmonic if and only if $n = \frac{1}{n}$. Where $n \neq 0$.
	Essay type Questions
1	If $\vec{F} = (2xy^2 + yz)\hat{i} + (2x^2y + xz + 2yz^2)\hat{j} + (2zy^2 + xy)\hat{k}$ is the velocity vector of a fluid, show that the velocity vector field is irrotational and determine a scalar potential function $\phi(x, y, z)$ such that $\vec{F} = \nabla \phi$
2	The temperature at a point (x, y, z) in space is $T(x, y, z) = x^2 + y^2 - z$, A mosquito located at the point $(4, 4, 2)$ desires to fly in such a direction that it gets cooled faster. Find the direction in which it should fly.

3	Find the angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 - 3$ at the point $(2, -1, 2)$.
4	Find the directional derivative of $\phi = x^2y^2 + z^2y^2 + x^2z^2$ at $(1, 1, -2)$ in the direction of tangent to the curve $x = e^{-t}$, $y = 2sint + 1$, $z = t - cost$ at $t = 0$.
5	Compute the curl and divergence of $\vec{A} = (2r + k\cos\phi)\hat{e_r} - k\sin\theta\hat{e_\theta} + r\cos\theta\hat{e_\phi}$, where k is a constant in spherical coordinates.
6	Find the values of constant γ and μ so that the surfaces $\gamma x^2 - \mu yz = (\gamma + 2)x$ and $4x^2y + z^3 = 4$ intersect orthogonally at the point $(1, -1, 2)$.
7	Compute the values of a and b so that the vector field $\vec{F} = (y^2 \cos x + z^3)\hat{\imath} + (ay\sin x - 4)\hat{\jmath} + bxz^2\hat{k}$ is a conservative field, hence find the scalar potential function ϕ such that $\vec{F} = \nabla \phi$.
8	Show that $r^2\vec{r}$ is an irrotational vector for any value of α , but is solenoidal if $\alpha + 3 = 0$ Where $\vec{r} = x \hat{\imath} + y\hat{\jmath} + z\hat{k}$ and $ \vec{r} = r$.
9	If $\Phi = x^2yz + xyz + 4xz^2$, find div(grad Φ).
10	Find the values of the constants a, b and c so that the directional derivative of If $\Phi = ay^2x + byz + cx^3z^2$ at $(1, 2, -1)$ has maximum of magnitude 64 in a direction parallel to the z-axis.

UNIT-II

VECTOR INTEGRATION

	Objective type Questions	
1	The work done by the force $\vec{F} = 5xy\hat{\imath} + 2y\hat{\jmath}$, in displacing a particle from $x = 1$ to $x = 2$ along $y = t^3$, $x = t$ is	
2	The line integral $\frac{1}{2}\int_C (Mdx + Ndy)$ represents the area of region bounded by C if $M = \underline{\hspace{1cm}}$ and $N = \underline{\hspace{1cm}}$.	
3	If \vec{F} represents the velocity of a fluid in a region and on a smooth surface S then, $\int_{S} \vec{F} \cdot \hat{n} dS$ physically represents	
4	If \vec{F} represents a conservative force field over a closed path C , then $\int_C \vec{F} \cdot d\vec{r} =$	
5	The Stokes' theorem converts surface integral over an orientable surface S bounded by closed curve C to integral.	
	Essay type Questions	
1	If $\vec{F} = (5xy - 6x^2)\hat{i} + (2y - 4x)\hat{j}$, evaluate $\int_C \vec{F} \cdot d\vec{r}$ where <i>C</i> is the curve $y = x^3$ from (1,1) to (2,8).	
2	Find the work done by the force $\vec{F} = (3x^2 + 6y)\hat{\imath} - 14yz\hat{\jmath} + 20xz^2\hat{k}$, displacing the particle from $(0,0,0)$ to $(1,1,1)$ along the path given by $C: x = t, y = t^2, z = t^3$	
3	Evaluate $\int_{S} \vec{F} \cdot \hat{n} dS$, where <i>S</i> is the part of the surface of the sphere $x^2 + y^2 + z^2 = a^2$ in the first octant, and $\vec{F} = yz\hat{\imath} + zx\hat{\jmath} + xy\hat{k}$.	

4	Evaluate $\int_S \vec{F} \cdot \hat{n} dS$, where S is the part of the surface of the plane $2x + y + 2z = 6$ which lies in the positive octant, and $\vec{F} = 4x\hat{\imath} + y\hat{\jmath} + z\hat{k}$.
5	Verify Green's theorem for $\int_C (xy + y^2)dx + x^2dy$, where C is the path bounded by the line $y = x$ and the parabola $y = x^2$
6	Evaluate $\int_C (3x^2 - 8y^2)dx + (4y - 6xy)dy$, where <i>C</i> is the boundary of the region enclosed by the lines $x = 0$, $y = 0$, $x + y = 1$
7	Verify Stokes' theorem for the line integral of $\vec{f} = (x^2 + y^2)\hat{\imath} - 2xy\hat{\jmath}$, taken around the rectangle bounded by the lines $x = \pm a, y = 0, y = b$.
8	Evaluate $\int_C \vec{F} \cdot d\vec{r}$ using Stokes' theorem where $\vec{F} = y\hat{\imath} + z\hat{\jmath} + x\hat{k}$, where C is the rim for the upper part of the sphere $x^2 + y^2 + z^2 = a^2$
9	Verify divergence theorem for $\vec{F} = (2x - z)\hat{\imath} + x^2y\hat{\jmath} - xz^2\hat{k}$ for the region bounded by the planes $x = 0, x = 1, y = 0, y = 1, z = 0, z = 1$.
10	Evaluate $\int_S \vec{F} \cdot \hat{n} dS$, where <i>S</i> is the part of the surface of the cylindrical region bounded by $x^2 + y^2 = 9$, $z = 0$ and $z = 2$, $\vec{F} = y\hat{i} + x\hat{j} + z^2\hat{k}$.

. **UNIT-3**

LAPLACE TRANSFORM

Objective type Questions		
1		
	$L[\sqrt{t}] = \underline{\hspace{1cm}}$	
2	Given $L\left[\frac{\sin t}{t}\right] = \cot^{-1} s$, then $L\left[\frac{\sin 3t}{t}\right] = \underline{\qquad}$.	
3.	Laplace transform of the signal $e^{-\frac{t}{2}}\cos 3t$ is	
4	Given L[t cos t] = $\frac{s^2-1}{(s^2+1)^2}$, then $\int_0^\infty te^{-3t} \cos t dt =$	
5	Sketch the graph of the wave form periodically defined by	
	$f(t) = \begin{cases} 5, & 0 < t < a \\ -5, & a < t < 2a \end{cases}, \qquad f(t + 2a) = f(t)$	
6	$L[sintu(t-\pi)] = \underline{\hspace{1cm}}$	
7	$L[t^2\delta(t-2)] = \underline{\hspace{1cm}}.$	
8	$L[2^{-t} + t \sin 2t] = \underline{\qquad}.$	
	Essay type Questions	
1	Find the Laplace transform the following functions: cos 3t sin² t b) cos h²3 t cos5t cos 2t	

2	Obtain the Laplace transform of the signal $e^{-4t} \int_0^t t \sin 5t dt + \frac{\cos 2t - \cos 3t}{t}$
3	Determine the Laplace transform of the following periodic function:
	$f(t) = \begin{cases} t, & 0 \le t \le 4 \\ 8 - t, 4 \le t \le 8, \end{cases}$ $f(t + 8) = f(t)$. Also sketch the graph of the function. Express the following function in terms of Heaviside unit step function and hence evaluate its Laplace
4	Express the following function in terms of Heaviside unit step function and hence evaluate its Laplace transform.
	$f(t) = \begin{cases} \cos t, & 0 < t < \pi \\ \sin t, & t > \pi \end{cases}$
	$\int \int \sin t, \qquad t > \pi$
5	Evaluate $\int_0^\infty \frac{e^{-2t} \sin 3t}{t} dt$.
6	Find the Laplace transform of the full wave rectifier $f(t) = E \sin \omega t$, $0 < t < \omega$ having the period $\frac{\pi}{\omega}$.
7	Express the following function in terms of Heaviside unit step function and hence evaluate its Laplace transform.
	(1, 0 < t < 1,
	$f(t) = \begin{cases} 1, 0 < t < 1, \\ t, 1 < t \le 2 \\ t^2 t > 2 \end{cases}$
	() () ()
8	Find the Laplace transform of the following:
	$(t^2 - 6t + 9)^2 e^{-(t-3)} u(t-3)$ b) $e^{-t} \frac{\delta(t-3)}{t}$
9	Find the Laplace transform of the function: $t^2e^{-2t}\sin 2t + \sin(3t - 1)$.
10	Express the following function in terms of Heaviside unit step function and hence evaluate its Laplace transform.
	$f(t) = \begin{cases} \cos t, 0 < t < \pi, \\ \cos 2t, \pi < t \le 2\pi \end{cases}$
	$\cos 2t, \pi < t \le 2\pi$ $\cos 3t, t > 2\pi.$
L	(0000) 07 1

UNIT-4

INVERSE LAPLACE TRANSFORM

	Objective type Questions	
1	Find the inverse Laplace transforms of the following:	
	(i) $\frac{1}{2s-5}$ (ii) $\frac{s+b}{s^2+a^2}$ (iii) $\frac{2s-5}{4s^2+25} + \frac{4s-9}{9-s^2}$	
2	Find inverse Laplace transform of $\frac{3}{S(S^2 + a^2)}$.	
3	$L^{-1} \left[\frac{3S + 5\sqrt{2}}{S^2 + 8} \right] = \underline{\hspace{1cm}}.$	
4	$L^{-1}\left[\frac{1}{(3s-1)^3}\right] = \underline{\hspace{1cm}}$	
5	$L^{-1}\left[\frac{1}{s^2 + 5s + 7}\right] = \underline{\hspace{1cm}}$	

	Essay type Questions	
1	Find $L^{-1}\left\{\frac{4s+5}{(s+1)^2(s+2)}\right\}$ Find $L^{-1}\left(\frac{s}{(2s-1)(s+2)(s+3)}\right)$	
2	Find $L^{-1}\left(\frac{s}{(2s-1)(s+2)(s+3)}\right)$	
3	Find $L^{-1}\left\{s\log\left(\frac{s+1}{s-1}\right)+2\right\}$.	
4	Using inverse Laplace transform convert the frequency domain signal $\tan^{-1}\left(\frac{2}{s}\right)$ in time domain.	
5	Find $L^{-1}\left(\frac{1}{(s+1)(s^2+1)}\right)$ using Convolution Theorem. Find $L^{-1}\left(\frac{s^2}{(s^2+a^2)(s^2+b^2)}\right)$, $a \neq b$ using Convolution Theorem.	
6	Find $L^{-1}\left(\frac{s^2}{(s^2+a^2)(s^2+b^2)}\right)$, $a \neq b$ using Convolution Theorem.	
7	Find $L^{-1}\left(\frac{1}{(s^2+a^2)^2}\right)$ using Convolution Theorem	
8	Find $L^{-1}\left(\frac{1}{s^2(s+1)^2}\right)$ using Convolution Theorem	
9	Find $L^{-1}\left(\frac{s}{(s^2+4)^2}\right)$ using Convolution Theorem	
10	Find inverse Laplace transform of $\frac{Se^{-\frac{S}{2}+\pi e^{-S}}}{S^2+\pi^2}$ in terms of unit step function	
11	Solve using Laplace transform method $y''(t) + y(t) = H(t-1)$, given that $y(0) = 0 & y'(0) = 1$.	
12	Employ Laplace Transform method to solve	
	$y'' - 5y' + 6y = 5e^{2t}$ given $y(0) = 2$, $y'(0) = 1$.	
13	Solve by the method of Laplace transform, the equation $(D^3 + 2D^2 - D - 2)y = 0$, given $y(0) =$	
	y'(0) = 0 and y''(0) = 6.	

UNIT-5

NUMERICAL METHODS

	Objective type Questions	
1	A real root of the equation $2^x - x = 3$ lies in the interval	
2	Given $e^{-x} - \sin(x) = 0$, $f(0) = 1 \& f(1) = -0.4736$ first approximate value of x by the method of chord is	
3	First approximate to the root of the equation $x = 3\cos(x - \frac{\pi}{4})$ by Newton – Raphson method near $x = 1$ is	

4	dy 4 0 1 1 (0) 0
	The value of y" for the initial value problem $\frac{dy}{dx} = 1 - 2xy$ given that $y(0) = 0$.
5	Given $\frac{dy}{dy} = y + y$ given that $y = 1.2$ when $y = 1$, $y = 0.2$, $y = 0.2$, $y = 0.24$, $y = 0.2$, $y $
	Given $\frac{dy}{dx} = x + y$ given that $y = 1.2$ when $x = 1$ h = 0.2, $k_1 = 0.2$, $k_2 = 0.24$, $k_3 = 0.244$ the second of $k_1 = 0.2$, $k_2 = 0.24$, $k_3 = 0.244$ the second of $k_1 = 0.2$, $k_2 = 0.24$, $k_3 = 0.244$ the second of $k_1 = 0.2$, $k_2 = 0.24$, $k_3 = 0.244$ the second of $k_1 = 0.2$, $k_2 = 0.24$, $k_3 = 0.244$ the second of $k_1 = 0.2$, $k_2 = 0.24$, $k_3 = 0.244$ the second of $k_1 = 0.2$, $k_2 = 0.24$, $k_3 = 0.244$ the second of $k_1 = 0.2$, $k_2 = 0.24$, $k_3 = 0.244$ the second of $k_1 = 0.2$, $k_2 = 0.24$, $k_3 = 0.244$ the second of $k_1 = 0.2$, $k_2 = 0.24$, $k_3 = 0.244$ the second of $k_1 = 0.2$, $k_2 = 0.24$, $k_3 = 0.244$ the second of $k_1 = 0.2$, $k_2 = 0.24$, $k_3 = 0.244$ the second of $k_1 = 0.2$, $k_2 = 0.24$, $k_3 = 0.244$ the second of $k_1 = 0.24$ the second of $k_1 = 0.24$ the second of $k_1 = 0.24$ the second of $k_2 = 0.24$ the second of $k_1 = 0.24$ the second of $k_2 = 0.24$ the second of $k_1 = 0.24$ the second of $k_2 = 0.24$ the second of $k_1 = 0.24$ the second of $k_2 = 0.24$ the second of $k_1 = 0.24$ the second of $k_2 = 0.24$ the second of $k_1 = 0.24$ the second of $k_2 = 0.24$ the second of $k_1 = 0.24$ the second of $k_2 = 0.24$ the second of $k_1 = 0.24$ the second of $k_2 = 0.24$ the second of $k_1 = 0.24$ the second of $k_2 = 0.24$ the second of $k_1 = 0.24$ the second of $k_2 = 0.24$ the second of $k_1 = 0.24$ the second of $k_2 = 0.24$ the second of $k_1 = 0.24$ the second of $k_1 = 0.24$ the second of $k_2 = 0.24$ the second of $k_1 = 0.24$ the second of $k_2 = 0.24$ the second of $k_1 = 0.24$ the second of $k_2 = 0.24$ the second of $k_1 = 0.24$ the second of $k_1 = 0.24$ the second of $k_2 = 0.24$ the second of $k_1 = 0.24$ the second of $k_2 = 0.24$ the second of $k_1 = 0.24$ the second of $k_1 = 0.24$ the second of $k_2 = 0.24$ the second of $k_1 = 0.24$ the second of $k_2 = 0.24$ the second of $k_1 = 0.24$ the second of $k_2 = 0.24$ the second of $k_1 = 0.24$ the second of $k_2 = 0.24$ the second of $k_1 = 0.24$ the second of $k_1 = 0.24$ the se
6	0.244 then $k_4 = 3.122 \& k = $ $\& y_1 = $ using Runge- Kutta fourth order method
0	Given $\frac{dy}{dx} = 3x + y^2$ given that $y = 1.2$ when $x = 1$, $h = 0.2$, $k_1 = 0.244$, $k_2 = 0.244$
	0.2798 , $k_3 = 0.2845$ & $k_4 = $ and $k = $ using Runge- Kutta fourth order method.
_	
7	J., 2 2
	Given $\frac{dy}{dx} = \frac{y^2 - x^2}{v^2 + x^2}$ given that $y(0) = 1$
	$h = 0.2$, $k_1 = 0.2$, $k_2 = 0.1967$, $k_3 = 0.196 \& k_4 = using Runge- Kutta method.$
8	
	The Runge-Kutta method for solution of $y' = \frac{y^2 - x^2}{y^2 + x^2}$, $y(0) = 1$ at $x = 0.2$, $h = 0.2$ yields
	$k_1 = 0.2$, $k_2 = 0.19672$, then values of $k_3 = $ and $k_4 = $
9	The Milne's predicted solution for the differential equation $xy' = 2y, x \neq 0$ at the point $x = 2$
	given that $y(1) = 2$, $y(1.25) = 3.13$, $y(1.5) = 4.5$, $y(1.75) = 6.13$ is
10	Given differential equation $\frac{dy}{dx} = x^2(1+y)$ and $y(1) = 1, y(1.1) = 1.233, y(1.2) = 1.233$
	$1.548, y(1.3) = 1.979, y_4^{(p)} = 2.5738$ by Milne's method at $x = 1.4, y_4^{(c)} = $
	Essay type Questions
1	Find a positive real root of the equation $x\log_{10}(x) = 1.2$ in [2.6, 3] by the method of false
	position up to four places of decimals. Perform four iterations.
	Compute the real root of equation $x^2 - \ln(x) = 12$ which lies between (3,4) correct to four
	decimal places using Regula- falsi method.
2	Find approximate root of the equation $x = 3\cos(x - \frac{\pi}{4})$ by Newton – Raphson method near
	x = 1
3	Apply iteration method of Newton – Raphson to find the approximate root of the equation
	$x \sin(x) = -\cos(x)$ which is near $x_0 = \pi$ correct to five decimal places.
4	Employ Taylor,s series method to find an approximate value of y when $x = 0.1$ for the
	differential equation $y' = xy^2$ given that $y = 1$ when $x = 0$ up to third degree.
5	Obtain a numerical solution of the differential equation $\frac{dy}{dx} = 3(1+x) - y$ using the Taylor
	series method, given the initial conditions that $x = 1$ when $y = 4$. Compute y (1.2) and y (1.4).
6	Apply Runge- Kutta fourth order method to find an approximate value of y when $x = 1.1$
	given that $\frac{dy}{dx} = 3x + y^2$ given that $y = 1.2$ when $x = 1$.
7	Employ Runge- Kutta 4 th order method to find an approximate value of $y = 0.1$ for the
	initial value problem $\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2}$ given that $y(0) = 1$, $h = 0.2$.
8	Apply Milne's to find the solution of initial value problem $y' + y^2 = x$ at $x = 0.8$, 1.0 given
	y(0) = 0, y(0.2) = 0.020, y(0.4) = 0.0795 and $y(0.6) = 0.1762$.
9	Apply Milne's to find the solution of initial value problem $f(x,y) = x^2(1+y)$, $y(1) =$
	1, y(1.1) = 1.233, y(1.2) = 1.548, y(1.3) = 1.979 at x = 1.4 & 1.5.

