Package 'CTRing'

September 10, 2024

Type Package
Title Density Profiles of Wood from CT Scan Images
Version 0.1.0
Maintainer Robert Schneider < robert_schneider@uqar.ca>
Description Computerized tomography (CT) can be used to assess certain wood properties when wood disks or logs are scanned. Wood density profiles (i.e. variations of wood density from pith to bark) can yield important information used for studies in forest resource assessment, wood quality and dendrochronology studies. The first step consists in transforming grey values from the scan images to density values. The packages then proposes a unique method to automatically locate the pith by combining an adapted Hough Transform method and a one-dimensional edge detector. Tree ring profiles (average ring density, early wood and latewood density, ring width and percent latewood for each ring) are then obtained.
License GPL-3
Encoding UTF-8
RoxygenNote 7.3.2
Suggests knitr, rmarkdown
VignetteBuilder knitr
Depends xRing, functional, oro.dicom
NeedsCompilation no
Author Dipak Mahatara [aut], Robert Schneider [cre, aut]
Repository CRAN
Date/Publication 2024-09-10 09:40:07 UTC
Contents
addRingFromImage

2 addRingFromImage

	deleteRingFromImage	7
	deleteRingFromProfile	8
	densityDataFrame	9
	detect_pith	10
	extractProfile	11
	getEwLw	12
	getImageInfo	13
	grayToDensity	14
	imageToMatrix	14
	locatePathEnd	15
	pithCoordinates	16
	plotImageProfile	16
	plotProfile	17
	relToPixel	18
	removeLastYear	19
	verifyPith	20
	xBitTo8Bit	20
Index		22
muca		

Add ring to pith to bark profile from CT scan image

Description

addRingFromImage

Add ring to pith to bark profile from CT scan image

Usage

```
addRingFromImage(n = 1, densProfile, im)
```

Arguments

n Number of rings to adddensProfile Density profileim Density matrix

Value

Corrected density profile with new ring(s) added and blue bar in plot of added ring

addRingFromProfile 3

Examples

```
library(oro.dicom)
file_path <- system.file("extdata", "disk.dcm", package = "CTRing")</pre>
dcm <- readDICOM(file_path)</pre>
hdr_df <- dcm$hdr[[1]]</pre>
image_info <- getImageInfo(hdr = hdr_df)</pre>
im <- imageToMatrix(dcm$img)</pre>
im_8bit <- xBitTo8Bit(im, image_info$grayScale)</pre>
image_info <- getImageInfo(hdr = hdr_df)</pre>
im_dens <- grayToDensity(im_8bit)</pre>
pith_coord <- detect_pith(im_dens,</pre>
                             n_segments = 12,
                             pixel = TRUE,
                             toPlot = FALSE)
endPath <- c(472, 284)
densPath <- extractProfile(im_dens,</pre>
                              image_info,
                              pith_coord,
                              endPath,
                              k = 2, r = 5,
                              threshold = 0.002)
newPath2 <- addRingFromImage(n = 1, densPath, im_dens)</pre>
```

addRingFromProfile

Add ring to pith to bark profile from profile plot

Description

Add ring to pith to bark profile from profile plot

Usage

```
addRingFromProfile(n = 1, densProfile)
```

Arguments

n Number of rings to add densProfile Density profile

Value

Corrected density profile with new ring(s) added and blue bar in plot of added ring

4 add Years

Examples

```
library(oro.dicom)
file_path <- system.file("extdata", "disk.dcm", package = "CTRing")
dcm <- readDICOM(file_path)
hdr_df <- dcm$hdr[[1]]
image_info <- getImageInfo(hdr = hdr_df)

im <- imageToMatrix(dcm$img)
im_8bit <- xBitTo8Bit(im, image_info$grayScale)
im_dens <- grayToDensity(im_8bit)

pith_coord <- detect_pith(im_dens, n_segments = 12, pixel = TRUE, toPlot = FALSE)
endPath <- c(472, 284) # manual
# not run - endPath <- locatePathEnd(im_dens, pith_coord) # using the image

path <- extractProfile(im_dens, image_info, pith_coord, endPath, k = 2, r = 5, threshold = 0.002)
plotProfile(path)
newPath <- addRingFromProfile(n = 1, path)</pre>
```

addYears

Add years to series

Description

Add years to series

Usage

```
addYears(lastYear, densProfile)
```

Arguments

lastYear Last year of series densProfile Density profile

Value

Density profile with years

```
library(oro.dicom)
file_path <- system.file("extdata", "disk.dcm", package = "CTRing")
dcm <- readDICOM(file_path)
hdr_df <- dcm$hdr[[1]]
image_info <- getImageInfo(hdr = hdr_df)</pre>
```

calcAvgDens 5

```
im <- imageToMatrix(dcm$img)
im_8bit <- xBitTo8Bit(im, image_info$grayScale)
im_dens <- grayToDensity(im_8bit)

pith_coord <- detect_pith(im_dens, n_segments = 12, pixel = TRUE, toPlot = FALSE)

endPath <- c(472, 284) # manual
# not run - endPath <- locatePathEnd(im_dens, pith_coord) # using the image

path <- extractProfile(im_dens, image_info, pith_coord, endPath, k = 2, r = 5, threshold = 0.002)

path <- addYears(2021, path)

Calculate average wood, earlywood and latewood density for every ring</pre>
```

Description

Calculate average wood, earlywood and latewood density for every ring

Usage

```
calcAvgDens(densProfile)
```

Arguments

densProfile Density profile

Value

List with several vectors

```
library(oro.dicom)
file_path <- system.file("extdata", "disk.dcm", package = "CTRing")
dcm <- readDICOM(file_path)
hdr_df <- dcm$hdr[[1]]
image_info <- getImageInfo(hdr = hdr_df)

im <- imageToMatrix(dcm$img)
im_8bit <- xBitTo8Bit(im, image_info$grayScale)
im_dens <- grayToDensity(im_8bit)

pith_coord <- detect_pith(im_dens, n_segments = 12, pixel = TRUE, toPlot = FALSE)
endPath <- c(472, 284) # manual
# not run - endPath <- locatePathEnd(im_dens, pith_coord) # using the image</pre>
```

6 checkProfile

```
path <- extractProfile(im_dens, image_info, pith_coord, endPath, k = 2, r = 5, threshold = 0.002)

pathEwLw <- getEwLw(path)
plotProfile(pathEwLw)
path_avgDens <- calcAvgDens(pathEwLw)
names(path_avgDens)</pre>
```

checkProfile

Verify position of ring transitions of a density profile

Description

Verify position of ring transitions of a density profile

Usage

```
checkProfile(profile_with_borders, totRings)
```

Arguments

Value

xRing profile with corrected ring location

deleteRingFromImage 7

deleteRingFromImage

Add ring to pith to bark profile from CT scan image

Description

Add ring to pith to bark profile from CT scan image

Usage

```
deleteRingFromImage(n = 1, densProfile, im)
```

Arguments

n Number of rings to remove

densProfile Density profile im Density matrix

Value

Corrected density profile with ring(s) removed and red bar in plot of deleted ring

```
library(oro.dicom)
file_path <- system.file("extdata", "disk.dcm", package = "CTRing")
dcm <- readDICOM(file_path)
hdr_df <- dcm$hdr[[1]]
image_info <- getImageInfo(hdr = hdr_df)

im <- imageToMatrix(dcm$img)
im_8bit <- xBitTo8Bit(im, image_info$grayScale)
im_dens <- grayToDensity(im_8bit)

pith_coord <- detect_pith(im_dens, n_segments = 12, pixel = TRUE, toPlot = FALSE)
endPath <- c(472, 284) # manual
densPath <- extractProfile(im_dens, image_info, pith_coord,</pre>
```

deleteRingFromProfile

deleteRingFromProfile Delete ring from a pith to bark profile

Description

Delete ring from a pith to bark profile

Usage

```
deleteRingFromProfile(n = 1, densProfile)
```

Arguments

```
n Number of rings to remove densProfile Density profile
```

Value

Corrected density profile with ring(s) removed and red bar in plot of deleted ring

```
library(oro.dicom)
file_path <- system.file("extdata", "disk.dcm", package = "CTRing")</pre>
dcm <- readDICOM(file_path)</pre>
hdr_df <- dcm$hdr[[1]]
image_info <- getImageInfo(hdr = hdr_df)</pre>
im <- imageToMatrix(dcm$img)</pre>
im_8bit <- xBitTo8Bit(im, image_info$grayScale)</pre>
im_dens <- grayToDensity(im_8bit)</pre>
pith_coord <- detect_pith(im_dens, n_segments = 12, pixel = TRUE, toPlot = FALSE)</pre>
endPath <- c(472, 284) # manual
# not run - endPath <- locatePathEnd(im_dens, pith_coord) # using the image</pre>
densPath <- extractProfile(im_dens,</pre>
                              image_info,
                              pith_coord,
                              endPath,
                              k = 2, r = 5,
```

densityDataFrame 9

```
threshold = 0.002)
```

```
plotProfile(densPath)
newPath <- addRingFromProfile(n = 1, densPath)
oldPath <- deleteRingFromProfile(n = 1, newPath)</pre>
```

densityDataFrame

Convert to dataframe

Description

Convert to dataframe

Usage

```
densityDataFrame(densProfile, sampleID = "NoID", addTransitionType = FALSE)
```

Arguments

```
densProfile Density profile
sampleID Sample ID
addTransitionType
add transition type to dataframe
```

Value

Dataframe with cambial age, density, years, transition type

```
library(oro.dicom)
file_path <- system.file("extdata", "disk.dcm", package = "CTRing")
dcm <- readDICOM(file_path)
hdr_df <- dcm$hdr[[1]]
image_info <- getImageInfo(hdr = hdr_df)

im <- imageToMatrix(dcm$img)
im_8bit <- xBitTo8Bit(im, image_info$grayScale)
im_dens <- grayToDensity(im_8bit)

pith_coord <- detect_pith(im_dens, n_segments = 12, pixel = TRUE, toPlot = FALSE)
endPath <- c(472, 284) # manual
# not run - endPath <- locatePathEnd(im_dens, pith_coord) # using the image

path <- extractProfile(im_dens, image_info, pith_coord, endPath, k = 2, r = 5, threshold = 0.002)
pathEwLw <- getEwLw(path)
plotProfile(pathEwLw)</pre>
```

10 detect_pith

```
path_avgDens <- calcAvgDens(pathEwLw)
densityDf <- densityDataFrame(pathEwLw)</pre>
```

 ${\tt detect_pith}$

Automatically detect pith in a CT scan image

Description

Automatically detect pith in a CT scan image

Usage

```
detect_pith(
  im,
  toPlot = TRUE,
  n_segments = 25,
  flag = TRUE,
  x_0 = 0.5,
  y_0 = 0.5,
  n_run_max = 15,
  threshold = 0.1,
  pixel = TRUE
)
```

Arguments

im	Matrix of the CT scan image
toPlot	Boolean to plot the location of the pith on the image
n_segments	Number of segements used to locate pith
flag	FALSE if pith location is known
x_0	Estimate of pith location in x
y_0	Estimate of pith location in y
n_run_max	Maximum number of iterations
threshold	Thershold value for identifying ring transition points
pixel	If TRUE, returns x,y coordinates in pixel numbers, else FALSE returns x,y coordinates in relative values of x and y

Value

x,y pith coordinates

extractProfile 11

Examples

```
library(oro.dicom)
file_path <- system.file("extdata", "disk.dcm", package = "CTRing")
dcm <- readDICOM(file_path)
hdr_df <- dcm$hdr[[1]]
image_info <- getImageInfo(hdr = hdr_df)

im <- imageToMatrix(dcm$img)
im_8bit <- xBitTo8Bit(im, image_info$grayScale)
im_dens <- grayToDensity(im_8bit)

pith_coord <- detect_pith(im_dens, n_segments = 12, pixel = TRUE, toPlot = FALSE)</pre>
```

extractProfile

Get profile between two points of the CTScan image matrix

Description

Get profile between two points of the CTScan image matrix

Usage

```
extractProfile(
  im,
  imHeader,
  beginPath,
  endPath,
  r = 10,
  k = 2,
  threshold = 0.01
)
```

Arguments

im Density matrix imHeader image header

beginPath X,Y coordinates of the start point of the path endPath X,Y coordinates of the start point of the path

r Profile width

k Rolling window width, integer

threshold Threshold value between maximum and minimum density to establish change

of ring

Value

Density profile

12 getEwLw

Examples

```
library(oro.dicom)
file_path <- system.file("extdata", "disk.dcm", package = "CTRing")
dcm <- readDICOM(file_path)
hdr_df <- dcm$hdr[[1]]
image_info <- getImageInfo(hdr = hdr_df)

im <- imageToMatrix(dcm$img)
im_8bit <- xBitTo8Bit(im, image_info$grayScale)
im_dens <- grayToDensity(im_8bit)

pith_coord <- detect_pith(im_dens, n_segments = 12, pixel = TRUE, toPlot = FALSE)
endPath <- c(472, 284) # manual
# not run - endPath <- locatePathEnd(im_dens, pith_coord) # using the image

path <- extractProfile(im_dens, image_info, pith_coord, endPath, k = 2, r = 5, threshold = 0.002)</pre>
```

getEwLw

Establish the transition point from earlywood to latewood for a series of rings

Description

Establish the transition point from earlywood to latewood for a series of rings

Usage

```
getEwLw(densProfile)
```

Arguments

densProfile Density profile

Value

xRingList with EW to LW transition points with transition type added (1: low number of points in ring; 2: inflexion point estimated by polynomial; 3: min or max are out of range; 4: inflexion point close to min or max; 5: convex-concave)

```
library(oro.dicom)
file_path <- system.file("extdata", "disk.dcm", package = "CTRing")
dcm <- readDICOM(file_path)
hdr_df <- dcm$hdr[[1]]
image_info <- getImageInfo(hdr = hdr_df)</pre>
```

getImageInfo 13

```
im <- imageToMatrix(dcm$img)
im_8bit <- xBitTo8Bit(im, image_info$grayScale)
im_dens <- grayToDensity(im_8bit)

pith_coord <- detect_pith(im_dens, n_segments = 12, pixel = TRUE, toPlot = FALSE)

endPath <- c(472, 284) # manual
# not run - endPath <- locatePathEnd(im_dens, pith_coord) # using the image

path <- extractProfile(im_dens, image_info, pith_coord, endPath, k = 2, r = 5, threshold = 0.002)

pathEwLw <- getEwLw(path)

densityDf <- densityDataFrame(path)</pre>
```

getImageInfo

Extract from header of CT scan image grayscale number of bits and pixel size

Description

Extract from header of CT scan image grayscale number of bits and pixel size

Usage

```
getImageInfo(hdr)
```

Arguments

hdr

Header dataframe

Value

List with grayscale values, and pixel size

```
library(oro.dicom)
file_path <- system.file("extdata", "disk.dcm", package = "CTRing")
dcm <- readDICOM(file_path)
hdr_df <- dcm$hdr[[1]]
getImageInfo(hdr = hdr_df)</pre>
```

14 imageToMatrix

grayToDensity

Convert from 8bit gray scale to density

Description

Convert from 8bit gray scale to density

Usage

```
grayToDensity(im, a = -0.1321, b = 0.01834)
```

Arguments

im Matrix of CT scan image in 8bit gray scalea Intercept of the calibration curveb Slope of the calibration curve

Value

Matrix of density values

Examples

```
library(oro.dicom)
file_path <- system.file("extdata", "disk.dcm", package = "CTRing")
dcm <- readDICOM(file_path)
hdr_df <- dcm$hdr[[1]]
image_info <- getImageInfo(hdr = hdr_df)

im <- imageToMatrix(dcm$img)
im_8bit <- xBitTo8Bit(im, image_info$grayScale)
range(im_8bit)

im_dens <- grayToDensity(im_8bit)
range(im_dens)</pre>
```

imageToMatrix

Convert dicom image to matrix

Description

Convert dicom image to matrix

Usage

```
imageToMatrix(img)
```

locatePathEnd 15

Arguments

img Dicom image

Value

Matrix of image

Examples

```
library(oro.dicom)
file_path <- system.file("extdata", "disk.dcm", package = "CTRing")
dcm <- readDICOM(file_path)
hdr_df <- dcm$hdr[[1]]
image_info <- getImageInfo(hdr = hdr_df)

im <- imageToMatrix(dcm$img)
dim(im)
image(im)</pre>
```

locatePathEnd

Get coordinates of the end of the path on a CT scan image

Description

Get coordinates of the end of the path on a CT scan image

Usage

```
locatePathEnd(im, pithCoord)
```

Arguments

im CT scan image

pithCoord X,Y coordinates of the pith

Value

Coordinates of the end of the path

```
library(oro.dicom)
file_path <- system.file("extdata", "disk.dcm", package = "CTRing")
dcm <- readDICOM(file_path)
hdr_df <- dcm$hdr[[1]]
image_info <- getImageInfo(hdr = hdr_df)
im <- imageToMatrix(dcm$img)</pre>
```

16 plotImageProfile

```
im_8bit <- xBitTo8Bit(im, image_info$grayScale)
im_dens <- grayToDensity(im_8bit)

pith_coord <- detect_pith(im_dens, n_segments = 12, pixel = TRUE, toPlot = FALSE)
endPath <- c(472, 284) # manual
# not run - endPath <- locatePathEnd(im_dens, pith_coord) # using the image</pre>
```

pithCoordinates

convert pith coordinates from pixels to length units

Description

convert pith coordinates from pixels to length units

Usage

```
pithCoordinates(pith_coord, pixel_size_x, pixel_size_y)
```

Arguments

```
pith_coord Pith coordinates in pixels
pixel_size_x Pixel size in x
pixel_size_y Pixel size in y
```

Value

Pixel coordinates in length units

plotImageProfile

Plot scan image, profile path and ring limits

Description

Plot scan image, profile path and ring limits

Usage

```
plotImageProfile(densProfile, im)
```

Arguments

densProfile Density profile im Density matrix

plotProfile 17

Value

Plot

Examples

```
library(oro.dicom)
file_path <- system.file("extdata", "disk.dcm", package = "CTRing")
dcm <- readDICOM(file_path)
hdr_df <- dcm$hdr[[1]]
image_info <- getImageInfo(hdr = hdr_df)

im <- imageToMatrix(dcm$img)
im_8bit <- xBitTo8Bit(im, image_info$grayScale)
im_dens <- grayToDensity(im_8bit)

pith_coord <- detect_pith(im_dens, n_segments = 12, pixel = TRUE, toPlot = FALSE)
endPath <- c(472, 284) # manual

path <- extractProfile(im_dens, image_info, pith_coord, endPath, k = 2, r = 5, threshold = 0.002)
plotProfile(path)
plotImageProfile(path, im_dens)</pre>
```

plotProfile

Plot density profile

Description

Plot density profile

Usage

```
plotProfile(densProfile)
```

Arguments

```
densProfile Density profile
```

Value

Figure

18 relToPixel

Examples

```
library(oro.dicom)
file_path <- system.file("extdata", "disk.dcm", package = "CTRing")
dcm <- readDICOM(file_path)
hdr_df <- dcm$hdr[[1]]
image_info <- getImageInfo(hdr = hdr_df)

im <- imageToMatrix(dcm$img)
im_8bit <- xBitTo8Bit(im, image_info$grayScale)
im_dens <- grayToDensity(im_8bit)

pith_coord <- detect_pith(im_dens, n_segments = 12, pixel = TRUE, toPlot = FALSE)
endPath <- c(472, 284) # manual
# not run - endPath <- locatePathEnd(im_dens, pith_coord) # using the image

path <- extractProfile(im_dens, image_info, pith_coord, endPath, k = 2, r = 5, threshold = 0.002)
plotProfile(path)</pre>
```

relToPixel

Change from relative to fixed pixel coordinate system

Description

Change from relative to fixed pixel coordinate system

Usage

```
relToPixel(pith_coord, im)
```

Arguments

 $\begin{array}{ll} \text{pith_coord} & \text{Pith coordinates in relative space } (x,\,y) \\ \\ \text{im} & \text{Density matrix} \end{array}$

Value

Pixel coordinates in number of pixels (x, y)

removeLastYear 19

removeLastYear

Remove the last year of a profile

Description

Remove the last year of a profile

Usage

```
removeLastYear(densProfile)
```

Arguments

```
densProfile Density profile
```

Value

Density profile with the last year removed

```
library(oro.dicom)
file_path <- system.file("extdata", "disk.dcm", package = "CTRing")
dcm <- readDICOM(file_path)
hdr_df <- dcm$hdr[[1]]
image_info <- getImageInfo(hdr = hdr_df)

im <- imageToMatrix(dcm$img)
im_8bit <- xBitTo8Bit(im, image_info$grayScale)
im_dens <- grayToDensity(im_8bit)

pith_coord <- detect_pith(im_dens, n_segments = 12, pixel = TRUE, toPlot = FALSE)
endPath <- c(472, 284) # manual
# not run - endPath <- locatePathEnd(im_dens, pith_coord) # using the image

path <- extractProfile(im_dens, image_info, pith_coord, endPath, k = 2, r = 5, threshold = 0.002)
path_last_year_2021 <- addYears(2021, path)
path_last_year_2020 <- removeLastYear(path_last_year_2021)</pre>
```

20 xBitTo8Bit

verifyPith

Check if pith location is correct

Description

Check if pith location is correct

Usage

```
verifyPith(im, pith_coord)
```

Arguments

im Density matrix of image

pith_coord Pith coordinates

Value

Corrected pith coordinates

Examples

```
library(oro.dicom)
file_path <- system.file("extdata", "disk.dcm", package = "CTRing")
dcm <- readDICOM(file_path)
hdr_df <- dcm$hdr[[1]]
image_info <- getImageInfo(hdr = hdr_df)

im <- imageToMatrix(dcm$img)
im_8bit <- xBitTo8Bit(im, image_info$grayScale)
im_dens <- grayToDensity(im_8bit)

pith_coord <- detect_pith(im_dens, n_segments = 12, pixel = TRUE, toPlot = FALSE)
pith_coord_checked <- verifyPith(im_dens, pith_coord)</pre>
```

xBitTo8Bit

Convert gray scale from measured bits to 8bit

Description

Convert gray scale from measured bits to 8bit

Usage

```
xBitTo8Bit(im, bits)
```

xBitTo8Bit 21

Arguments

im Matrix of values in x bits

bits Number of bits of the original gray scale

Value

Matrix of gray scale values in 8bits

```
library(oro.dicom)
file_path <- system.file("extdata", "disk.dcm", package = "CTRing")
dcm <- readDICOM(file_path)
hdr_df <- dcm$hdr[[1]]
image_info <- getImageInfo(hdr = hdr_df)

im <- imageToMatrix(dcm$img)
range(im)

im_8bit <- xBitTo8Bit(im, image_info$grayScale)
range(im_8bit)</pre>
```

Index

```
{\it addRingFromImage}, \\ 2
addRingFromProfile, 3
addYears, 4
calcAvgDens, 5
checkProfile, 6
deleteRingFromImage, 7
deleteRingFromProfile, 8
densityDataFrame, 9
detect\_pith, 10
extractProfile, 11
getEwLw, 12
getImageInfo, 13
grayToDensity, 14
imageToMatrix, 14
{\tt locatePathEnd}, {\tt 15}
pithCoordinates, 16
\verb|plotImageProfile|, 16|
plotProfile, 17
relToPixel, 18
removeLastYear, 19
\textit{verifyPith}, \textcolor{red}{20}
xBitTo8Bit, 20
```