NASA Pocket Statistics

(NASA-TM-103432) NASA POCKET STATISTICS (NASA) 164 P N91-71142

00/99

Unclas 0003818

Pocket Statistics

Distribution To NASA Installations

Following is a list of individuals who control the distribution of the NASA POCKET STATISTICS at their respective NASA Installations. Requests for additional copies should be made through the controlling office shown below.

NASA HEADQUARTERS
Ms. Juanita M. Carlton
Executive Support Office, Code DA

AMES RESEARCH CENTER
Mr. Jack D. Stanley, Staff Assistant
to the Associate Director

AMES DRYDEN FLIGHT RESEARCH FACILITY ATTN: Research Librarian, Room 2151

GODDARD INSTITUTE FOR SPACE STUDIES Dr. James E. Hansen

GODDARD SPACE FLIGHT CENTER
Ms. Kay Seidenspinner
Code 200

JET PROPULSION LABORATORY
Ms. Justine Weiher
Document Review Group

JOHNSON SPACE CENTER Mr. H. M. Porter Printing Management Branch, Code JM8

JSC WHITE SANDS TEST FACILITY
Mr. Rob. R. Tillett, Manager

KENNEDY SPACE CENTER
Ms. Lisa Fowler
Public Information Branch

KSC RESIDENT OFFICE (Vandenberg AFB) Mr. Ted L. Oglesby, Manager

LANGLEY RESEARCH CENTER Ms. Margaret W. Hunt Mail Stop 115

LEWIS RESEARCH CENTER Mr. Americo F. Forestieri, Director External Affairs, MS 3-16 MARSHALL SPACE FLIGHT CENTER
Ms. Betty Fowler CN22
Management Operations Office

MICHOUD ASSEMBLY FACILITY Mr. John Demarest, Manager

NASA RESIDENT OFFICE -- JPL Mr. Fred W. Bowen, Manager

JOHN C. STENNIS SPACE CENTER Mr. Roy S. Estess, Director

SLIDELL COMPUTER COMPLEX Mr. Bobby L. German, Jr., Manager

WALLOPS FLIGHT FACILITY Mr. F. Moore, Director Management and Operations

Foreword

POCKET STATISTICS is published for the use of NASA managers and their staff. Included is Administrative and Organizational information, summaries of Space Flight Activity including the NASA Major Launch Record, and NASA Procurement, Financial and Manpower data.

The NASA Major Launch Record includes all launches of Scout class and larger vehicles. Vehicle and spacecraft development flights are also included in the Major Launch Record. Shuttle missions are counted as one launch and one payload, where free flying payloads are not involved. Satellites deployed from the cargo bay of the Shuttle and placed in a separate orbit or trajectory are counted as an additional payload.

Restriction/classification Cancelled
ution. Requests for copies of this document should be sent to
nash meacquarters, unice or meacquarters operations (Code DA). Changes or deletions to the distribution list
may be made by phone to (202) 453-1039.

Published and Distributed by NATIONAL AERONAUTICS AND SPACE ADMINISTRATION OFFICE OF HEADQUARTERS OPERATIONS, CODE DA Washington, DC 20546

Contents

Section A - Administration and Organizatio	n	Section C - Procurement, Funding and Manpow	er .
NASA Organization	A-2	Distribution of NASA Prime Contract Awards	C-3
NASA Administrators	A-3	Contract Awards by State	C-4
National Aeronautics and Space Act	A-4	Procurement Activity	C-5
U.S. National Space Policy	A-6	Distribution of NASA Procurements	C-6
NASA Installations	A-9	Principal Contractors	C-7
The Year in Review.	A-14	Educational and Nonprofit Institutions	C-10
		NASA's Budget Authority in 1991 Dollars	C-14
Section B - Space Flight Activity	ľ	Financial Summary	C-15
order b opass right rearry		R&D Funding	C-16
Current Worldwide Launch Vehicles	B-2	SFC&DC Funding	C-20
Summary of Announced Launches	B-4	C of F Funding	C-22
NASA Launches by Vehicle	B-6	R&PM Funding	C-24
Launch History	B-9	Personnel Summary	C-26
Summary of Announced Payloads	B-10	Employment Summary	C-28
Summary of US Payloads	B-12	Total NASA Civil Service Workforce	C-29
Soviet Spacecraft Designations	B-15	Minority Employees	C-30
Unofficial Tabulation of USSR Payloads	B-16	Women Employees	C-31
NASA Astronauts	B-18		
Shuttle Approach and Landing Tests	B-23		
United States Manned Space Flight	B-24		
Shuttle Payloads and Experiments	B-26	•	
The Planets	B-42		
USA Planetary Space Flights	B-48		
USSR Planetary Space Flights	B-51		
USA Lunar Space Flights	B-55		
USSR Lunar Space Flights NASA Major Launch Record	B-58 B-62		

Section A

Administration and Organization

NASA Organization Chart

OF POOR QUALITY

NASA Administrators

Excerpts From The National Aeronautics And Space Act Of 1958, As Amended

AN ACT To provide for research into problems of flight within and outside the Earth's atmosphere, and for other purposes.

DECLARATION OF POLICY AND PURPOSE

- Sec. 102 (a) The Congress hereby declares that it is the policy of the United
 States that activities in space should be devoted to peaceful
 purposes for the benefit of all mankind.
 - (b) The Congress declares that the general welfare and security of the United States require that adequate provision be made for aeronautical and space activities. The Congress further declares that such activities shall be the responsibility of, and shall be directed by, a civilian agency exercising control over aeronautical and space activities sponsored by the United -States, except that activities peculiar to or primarily associated with the development of weapons systems, military operations, or the defense of the United States (including the research and development necessary to make effective provision for the defense of the United States) shall be the responsibility of, and shall be directed by, the Department of Defense; and that determination as to which such agency has responsibility for and direction of any such activity shall be made by the President in conformity with section 201(e).
 - (c) The Congress declares that the general welfare of the United States requires that the National Aeronautics and Space Administration (as established by title II of this act) seek and encourage to the maximum extent possible the fullest commercial use of space.

- (d) The aeronautical and space activities of the United States shall be conducted so as to contribute materially to one or more of the following objectives:
 - The expansion of human knowledge of phenomena in the atmosphere and space;
 - (2) The improvement of the usefulness, performance, speed, safety, and efficiency of aeronautical and space vehicles;
 - (3) The development and operation of vehicles capable of carrying instruments, equipment, supplies, and living organisms through space;
 - (4) The establishment of long-range studies of the potential benefits to be gained from, the opportunities for, and the problems involved in the utilization of aeronautical and space activities for peaceful and scientific purposes;
 - (5) The preservation of the role of the United States as a leader in aeronautical and space science and technology and in the application thereof to the conduct of peaceful activities within and outside the atmosphere;
 - (6) The making available to agencies directly concerned with national defense of discoveries that have military value or significance, and the furnishing by such agencies, to the civilian agency established to direct and control nonmilitary aeronautical and space activities, of information as to discoveries which have value or significance to that agency;
 - (7) Cooperation by the United States with other nations and groups of nations in work done pursuant to this Act and in the peaceful application of the results thereof; and

Excerpts From The National Aeronautics And Space Act Of 1958, As Amended

DECLARATION OF POLICY AND PURPOSE (Continued)

- (8) The most effective utilization of the scientific and engineering resources of the United States, with close cooperation among all interested agencies of the United States in order to avoid unnecessary duplication of effort, facilities, and equipment.
- (e) The Congress declares that the general welfare of the United States requires that the unique competence in scientific and engineering systems of the National Aeronautics and Space Administration also be directed toward ground propulsion systems research and development.
- (f) The Congress declares that the general welfare of the United States requires that the unique competence in scientific and engineering systems of the National Aeronautics and Space Administration also be directed toward the development of advanced automobile propulsion systems.
- (g) The Congress declares that the general welfare of the United States requires that the unique competence in scientific and engineering systems of the National Aeronautics and Space Administration also be directed to assisting in bioengineering research, development, and demonstration programs designed to alleviate and minimize the effects of disability.

FUNCTIONS OF THE ADMINISTRATION

- Sec. 203 (a) The Administration, in order to carry out the purpose of this Act, shall --
 - (1) plan, direct, and conduct aeronautical and space activities;
 - (2) arrange for participation by the scientific community in planning scientific measurements and observations to be made through use of aeronautical and space vehicles, and conduct or arrange for the conduct of such measurements and observations; and
 - (3) provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof.
 - (b) (1) The Administration shall, to the extent of appropriated funds, initiate, support, and carry out such research, development, demonstration, and other related activities in ground propulsion technologies.
 - (2) The Administration shall initiate, support, and carry out such research, development, demonstration, and other related activities in solar heating and cooling technologies (to the extent that funds are appropriated therefor).

U. S. National Space Policy

On November 2, 1989, the President approved a national space policy that updated and reaffirmed U.S. goals and activities in space. Areas affected include civil and commercial remote sensing, space transportation, space debris, federal subsidies of commercial space activities, and Space Station Freedom.

Overall, the President's newly-issued national space policy revalidates the ongoing direction of U.S. space efforts and provides a broad policy framework to guide future United States space activities.

The policy reaffirms the Nation's commitment to the exploration and use of space in support of our national well being. United States leadership in space continues to be a fundamental objective guiding U.S. space activities. The policy recognizes that leadership requires United States preeminence in key areas of space activity critical to achieving our national security, scientific, technical, economic, and foreign policy goals. The policy also retains the long-term goal of expanding human presence and activity beyond Earth orbit into the Solar System. This goal provides the overall policy framework for the President's human space exploration initiative, announced July 20, 1989, in which the President called for completing Space Station Freedom, returning permanently to the Moon, and exploration of the planet Mars.

United States space activities are conducted by three separate and distinct sectors: two strongly interacting governmental sectors (civil and national security) and a separate, non-governmental commercial sector. Close coordination, cooperation, and technology and information exchange will be maintained among these sectors to avoid unnecessary duplication and promote attainment of United States space goals.

GOALS AND PRINCIPLES

A fundamental objective guiding United States space activities has been, and

continues to be, space leadership. Leadership in an increasingly competitive international environment does not require United States preeminence in all areas and disciplines of space enterprise. It does require United States preeminence in key areas of space activity critical to achieving our national security, scientific, technical, economic, and foreign policy goals.

- The overall goals of United States space activities are: (1) to strengthen the security of the United States; (2) to obtain scientific, technological, and economic benefits for the general population and to improve the quality of life on Earth through space-related activities; (3) to encourage continuing United States private-sector investment in space and related activities; (4) to promote international cooperative activities taking into account United States National security, foreign policy, scientific, and economic interests; (5) to cooperate with other nations in maintaining the freedom of space for all activities that enhance the security and welfare of mankind; and, as a long-range goal, (6) to expand human presence and activity beyond Earth orbit into the solar system.
- United States space activities shall be conducted in accordance with the following principles:
 - The United States is committed to the exploration and use of outer space by all nations for peaceful purposes and for the benefit of all mankind. "Peaceful purposes" allow for activities in pursuit of National security goals.
 - The United States will pursue activities in space in support of its inherent right of self-defense and its defense commitments to its allies.
- The United States rejects any claims to sovereignty by any nation over outer space or celestial bodies, or any portion thereof, and rejects any limitations on the fundamental right of sovereign nations to acquire data from space.

U.S. Space Policy

- The United States considers the space systems of any nation to be national property with the right of passage through and operations in space without interference. Purposeful interference with space systems shall be viewed as an intringement on sovereign rights.
- The United States shall encourage and not preclude the commercial use and exploitation of space technologies and systems for national economic benefit. These commercial activities must be consistent with national security interests, and international and domestic legal obligations.
- The United States will, as a matter of policy, pursue its commercial space objectives without the use of direct Federal subsidies.
- The United States shall encourage other countries to engage in free and fair trade in commercial space goods and services.
- The United States will conduct international cooperative space-related activities that are expected to achieve sufficient scientific, political, economic, or national security benefits for the nation. The United States will seek mutually beneficial international participation in its space and space-related programs.

CIVIL SPACE POLICY

- * The United States civil space sector activities shall contribute significantly to enhancing the Nation's science, technology, economy, pride, sense of well-being and direction, as well as United States world prestige and leadership. Civil sector activities shall comprise a balanced strategy of research, development, operations, and technology for science, exploration, and appropriate applications.
- * The objective of the United States civil space activities shall be; (1) to expand knowledge of the Earth, its environment, the solar system,

and the universe; (2) to create new opportunities for use of the space environment through the conduct of appropriate research experimentation in advanced technology and systems; (3) to develop space technology for civil applications and, wherever appropriate, make such technology available to the commercial sector; (4) to preserve the United States preeminence in critical aspects of space science, applications, technology, and manned space flight; (5) to establish a permanently manned presence in space; and (6) to engage in international cooperative efforts that further United States space goals.

COMMERCIAL SPACE POLICY

The United States government shall not preclude or deter the continuing development of a separate, non-governmental commercial cpace sector. Expanding private sector investment in space by the market-driven commercial sector generates economic benefits for the Nation and supports governmental Space Sectors with an increasing range of space goods and services. Governmental Space Sectors shall purchase commercially available space goods and services to the fullest extent feasible and shall not conduct activities with potential commercial applications that preclude or deter commercial sector space activities except for national security or public safety reasons. Commercial Sector space activities shall be supervised or regulated only to the extent required by law, national security, international oblications, and public

NATIONAL SECURITY SPACE POLICY

safety.

The United States will conduct those activities in space that are necessary to national defense. Space activities will contribute to national security objectives by (1) deterring, or if necessary, defending against enemy attack; (2) assuring that forces of hostile nations cannot prevent our own use of space; (3) negating, if necessary, hostile space systems; and (4) enhancing operations of United States and allied forces. Consistent with treaty obligations, the national security space

U.S. Space Policy

program shall support such functions as command and control, communications, navigation, environmental monitoring, warning, surveillance and force application (including research and development programs which support these functions).

INTER-SECTOR POLICIES

This section contains policies applicable to, and binding on, the national security and civil space sectors:

- The United States Government will maintain and coordinate separate national security and civil operational space systems where differing needs of the sectors dictate.
- Survivability and endurance of national security space systems, including all necessary system elements, will be pursued commensurate with the planned use in crisis and conflict, with the threat, and with the availability of other assets to perform the mission.
- Government sectors shall encourage, to the maximum extent feasible, the development and use of United States private sector space capabilities.
- A continuing capability to remotely sense the Earth from space is important to the achievement of United States space goals. To ensure that the necessary capability exists, the United States government will: (a) ensure the continuity of LANDSAT-type remote sensing data; (b) discuss remote sensing issues and activities with foreign governments operating or regulating the private operation of remote sensing systems; (c) continue government research and development for future advanced remote sensing technologies and systems; and (d) encourage the development of commercial systems, which image the Earth from space, competitive with, or superior to foreign operated or commercial systems.

- Assured access to space, sufficient to achieve all United States space goals, is a key element of national space policy. United States space transportation systems must provide a balanced, robust, and flexible capability with sufficient resiliency to allow continued operations despite failures in any single system. The United States Government will continue research and development on component technologies in support of future transportation systems. The goals of United States space transportation policy are: (1) to achieve and maintain safe and reliable access to, transportation in, and return from, space; (2) to exploit the unique attributes of manned and unmanned launch and recovery systems; (3) to encourage to the maximum extent feasible, the development and use of United States private sector space transportation capabilities; and (4) to reduce the costs of space transportation and related services.
- Communications advancements are critical to all United States space sectors.
 To ensure necessary capabilities exist, the United States Government will continue research and development efforts for future advanced space communications technologies.
- The United States will consider and, as appropriate, formulate policy positions on arms control measures governing activities in space, and will conclude agreements on such measures only if they are equitable, effectively verifiable, and enhance the security of the United States and its allies.
- All space sectors will seek to minimize the creation of space debris. Design
 and operations of space tests, experiments and systems will strive to minimize
 or reduce accumulation of space debris consistent with mission requirements
 and cost effectiveness. The United States will encourage other space-faring
 nations to adopt policies and practices aimed at debris minimization.

NASA HEADQUARTERS Washington, DC 20546

NASA Headquarters exercises management over the space flight centers, research centers, and other installations that constitute the National Aeronautics and Space Administration.

Responsibilities of Headquarters cover the determination of programs and projects; establishment of management policies; procedures and performance criteria; evaluation of progress; and the review and analysis of all phases of the aerospace program.

Planning, direction, and management of NASA's research and development programs are the responsibility of the program offices which report to and receive overall guidance and direction from an associate or assistant administrator.

AMES RESEARCH CENTER Moffett Field, CA 94035

Ames Research Center was founded in 1940 as an aircraft research laboratory by the National Advisory Committee for Aeronautics (NACA) and named for Dr. Joseph S. Ames, Chairman of NACA from 1927 to 1939. In 1958, Ames became part of NASA, along with other NACA installations and certain Department of Defense facilities. In 1981, NASA merged Ames with the Dryden Flight Research Facility.

Ames specializes in scientific research, exploration and applications aimed toward creating new technology for the nation.

The center's major program responsibilities are concentrated in computer science and applications, computational and experimental aerodynamics, flight simulation, flight research, hypersonic aircraft, rotorcraft and powered-lift technology, aeronautical and space sciences, solar system exploration, airborne science and applications, and infrared astronomy.

HUGH L. DRYDEN FLIGHT RESEARCH FACILITY Edwards, CA 93523

Since 1947, Ames-Dryden has developed a unique and highly specialized capability for conducting flight research programs. Its test organization, consisting of pilots, scientists, engineers, technicians and mechanics, is unmatched anywhere in the world. This versatile organization has demonstrated its capability, not only with high-speed research aircraft, but also with such unusual flight vehicles as the Lunar Landing Research Vehicle and the wingless lifting bodies.

Its primary research tools are research aircraft, ranging from a B-52 carrier aircraft and high performance jet fighters to the X-29 forward swept wing aircraft. Ground-based facilities include a high temperature loads calibration laboratory that allows ground-based testing of complete aircraft and structural components under the combined effects of loads and heat; a highly developed aircraft flight instrumentation capability; a flight systems laboratory with a diversified capability for avionics system fabrication, development and operations; a flow visualization facility that allows basic flow mechanics to be seen of models or small components; a data analysis facility for processing of flight research data; a remotely piloted research vehicles facility and a test range communications and data transmission capability that links NASA's Western Aeronautical Test Range facilities at Ames-Moffett, Crows Landing and Ames-Dryden.

GODDARD SPACE FLIGHT CENTER Greenbelt, MD 20771

This NASA field center has put together a multitalented spaceflight team -engineers, scientists, technicians, project managers and support personnel -which is extending the horizons of human knowledge not only about the solar
system and the universe but also about our Earth and its environment.

The Goddard mission is being accomplished through scientific research centered in six space and Earth science laboratories and in the management, development and operation of several near-Earth space systems.

After being launched into space, satellites fall under the 24-hour-a-day surveillance of a worldwide ground and spaceborne communications network, the nerve center of which is located at Goddard. One of the key elements of that network is the Tracking and Data Relay Satellite System (TDRSS) with its orbiting Tracking and Data Relay Satellite and associated ground tracking stations.

JET PROPULSION LABORATORY Pasadena, CA 91109

NASA's Jet Propulsion Laboratory (JPL) is a government-owned facility staffed by the California Institute of Technology. JPL operates under a NASA contract administered by the NASA Pasadena Office. In addition to the Pasadena site, JPL operates the Deep Space Communications Complex, a station of the worldwide Deep Space Network (DSN).

The laboratory is engaged in activities associated with deep space automated scientific missions — engineering subsystem and instrument development, and data reduction and analysis required by deep space flight.

The laboratory also designs and tests flight systems, including complete spacecraft, and provides technical direction to contractor organizations.

LYNDON B. JOHNSON SPACE CENTER Houston, TX 77058

Johnson Space Center was established in September 1961 as NASA's primary center for design, development and testing of spacecraft and associated systems for manned flight; selection and training of astronauts; planning and conducting manned missions; and extensive participation in the medical engineering and scientific experiments carried aboard space flights.

Johnson has program management responsibility for the Space Shuttle program, the nation's current manned space flight program. Johnson also has a major responsibility for the development of the Space Station, a permanently manned, Earth-orbiting facility to be constructed in space and operable within a decade. The center will be responsible for the interfaces between the Space Station and the Space Shuttle.

JOHN F. KENNEDY SPACE CENTER Kennedy Space Center, FL 32899

Kennedy Space Center (KSC) was created in the early 1960's to serve as the launch site for the Apollo hunar landing missions. After the Apollo program ended in 1972, Kennedy's Complex 39 was used for the launch of the Skylab spacecraft, and later, the Apollo spacecraft for the Apollo Soyuz Test Project.

Kennedy Space Center serves as the primary center within NASA for the test, checkout and launch of space vehicles. This presently includes launch of manned and unmanned vehicles at Kennedy, the adjacent Cape Canaveral Air Force Station, and at Vandenbero Air Force Base in California.

The center is responsible for the assembly, checkout and launch of Space Shuttle vehicles and their payloads, landing operations and the turn-around of Space Shuttle orbiters between missions, as well as preparation and launch of unmanned vehicles.

LANGLEY RESEARCH CENTER Hampton, VA 23665-5225

Langley's primary mission is the research and development of advanced concepts and technology for future aircraft and spacecraft systems, with particular emphasis on environmental effects, performance, range, safety and economy. Examples of this research are projects involving flight simulation, composite structural materials and automatic flight control systems.

Work continues in the development of technology for avionic systems for reliable operation in terminal areas of the future. Efforts continue to improve supersonic flight capabilities for both transport and military aircraft. The center works with the general aviation industry to help solve problems concerning aircraft design and load requirements and to improve flight operations.

Langley's newest major project is developing technology for the National Aero-Space Plane (NASP).

LEWIS RESEARCH CENTER Cleveland, OH 44135

Lewis Research Center was established in 1941 by the National Advisory Committee for Aeronautics (NACA). Named for George W. Lewis, NACA's Director of Research from 1924 to 1947, the center developed an international reputation for its research on jet propulsion systems.

Lewis is NASA's lead center for research, technology and development in aircraft propulsion, space propulsion, space power and satellite communication.

Aircraft propulsion activities in the early days of the jet age were to develop aircraft which would fly higher, faster and farther. Today's goals are fuel conservation, quieter flight and cleaner exhaust.

Lewis has responsibility for developing the largest space power system ever designed to provide the electrical power necessary to accommodate the life support systems and research experiments to be conducted aboard the Space Station. In addition, the center will support the Station in other major areas such as auxiliary propulsion systems and communications.

Lewis was selected by the Office of Management and Budget (OMB) as a Quality Improvement Prototype, which is one of the highest honors a federal governmen facility can achieve for quality and productivity. The award is part of the President's Productivity Improvement Program, which is administered by OMB.

MARSHALL SPACE FLIGHT CENTER Marshall Space Flight Center, AL 35812

George C. Marshall Space Flight Center (MSFC) was formed on July 1, 1960, by the transfer to NASA of buildings and personnel comprising part of the U.S. Army Ballistic Missile Agency. Named for the famous soldier and statesman, General of the Army George C. Marshall, it was officially dedicated by President Dwioth D. Eisenhower on September 8, 1960.

Marshall is a multiproject management, scientific and engineering establishment, with much emphasis on projects involving scientific investigation and application of space technology to the solution of problems on Earth.

In helping to reach the nation's goals in space, the center is working on many projects. Marshall had a significant role in the development of the Space Shuttle. It provides the orbiter's engines, the external tank that carries liquid hydrogen and liquid oxygen for those engines, and the solid rocket boosters that assist in lifting the Shuttle orbiter from the launch pad.

The center also plays a key role in the development of payloads to be flown aboard the Shuttle. One such payload is Spacelab, a reusable, modular scientific research facility carried in the Shuttle's cargo bay.

Marshall also is committed to the investigation of materials processing in space, which, in a gravity-free environment, promises to provide opportunities for understanding and improving Earth-based processes and for the formulation of space-unique materials. Exciting new techniques in materials processing have already been demonstrated in past Spacelab missions, such as the formation of alloys from normally immiscible products, and the growth of near-perfect large crystals impossible to grow on Earth.

MICHOUD ASSEMBLY FACILITY New Orleans, LA 70189

The primary mission of the Michoud Assembly Facility is the systems engineering, engineering design, manufacture, fabrication, assembly and related work for the Space Shuttle external tank. Marshall Space Flight Center exercises overall management control of the facility.

JOHN C. STENNIS SPACE CENTER Stennis Space Center, MS 39529

The John C. Stennis Space Center (SSC) scientific community is actively engaged in several research and development programs involving space, oceans and Earth. The complex includes industrial, laboratory and specialized engineering facilities to support the testing of large rocket propulsion systems.

The main mission of SSC is support of Space Shuttle main engine and main orbiter propulsion system testing. Shuttle main engine testing has been under way at SSC since 1975.

WALLOPS FLIGHT FACILITY Wallops Island, VA 23337

Established in 1945, Wallops Flight Facility, a part of the Goddard Space Flight Center, is one of the oldest launch sites in the world. Wallops manages and implements NASA's sounding rocket projects which use suborbital rocket vehicles to accommodate approximately 50 scientific missions each year. Wallops manages and coordinates NASA's Scientific Balloon Projects using thin film, helium filled balloons to provide approximately 45 scientific missions each year.

NASA's accomplishments for the year 1990, despite several setbacks, were many and varied; ranging from the launch of Hubble Space Telescope to the retrieval of the SEEDS experiment housed on the LDEF to Magellan's intriguing radar images of Earth's sister planet, Venus.

SPACE SCIENCE AND APPLICATIONS

Hubble Space Telescope (HST) was launched aboard the Space Shuttle Discovery (STS-31) in April to begin gathering data on the origin of the universe. HSTs initial optical-engineering test returned a valuable science observation, resolving the star cluster 30 Doradus three to four times better than the best ground-based observation. The discovery in June of a spherical aberration, a misshaping of the primary mirror that prevents the telescope from focusing light to a single, precise point will be repaired during the HST Servicing Mission planned for 1992. Replacement of the Wide Field Planetary Camera (WFPC) with the WFPC-2 will compensate for the current aberration.

Some highlights of HST's mission thus far include the capability of observing objects in visible light much more clearly than ground-based telescopes and extraordinary observations in the ultraviolet wavelengths. The WFPC observed a jet of material streaming away from the Orion Nebula with unprecedented clarity, offering insights into this region of young stars, and the Faint Object Camera has returned the clearest image yet of Pluto, and its moon, Charon. Most dramatically, the WFPC took several hundred pictures as the white spots on Saturn grew into an immense storm that spread around the planet's equator.

The Cosmic Background Explorer (COBE) completed its survey of the entire sky in infrared and microwave radiation and made unprecedented measurements of background radiation that support the Big Bang theory of the origin of the Universe.

In December the Space Shuttle Columbia carried the ASTRO-1 payload, consisting of three ultraviolet telescopes and the Broad-Band X-Ray Telescope, to study the high-energy universe. Astronomers made 394 observations of 135 objects, including Jupiter and its moon to, a comet, exploding stars, galaxies and quasars. ASTRO-1 also marked the return to flight of the Spacelab payload systems, which last flew in 1985.

The Magellan spacecraft returned radar images of Venus showing geological features unlike anything seen on Earth. Among the images sent back were what scientists called crater farms as well as checkered patterned fault lines running at right angles. Most intriguing were indications that Venus may still be geologically active, though much less so than Earth.

The Ulysses spacecraft, a joint NASA/ESA mission to study the poles of the Sun and interplanetary space above and below the poles, was launched in October by the Space Shuttle Discovery (STS-41).

In February, Galileo flew by Venus, conducting the first infrared imagery and spectroscopy below the planet's cloud deck. In December, Galileo used the Earth's gravity to pick up speed on it's way to its ultimate rendezvous with Jupiter in 1995.

Six of the nine planets were photographed by Voyager 1, the first time such a perspective had ever been seen. Ploneer 11 left the solar system for interstellar space, while Pioneer 10 set a distance record by passing the 50 astronomical-unit milestone, 4.6 billion miles from Earth.

The Combined Release and Radiation Effects Satellite (CRRES), which uses chemical releases to study the Earth's magnetic fields and the plasmas, or ionized gases, that travel through them, was launched in July. Releases from a similar mission, PEGSAT, were seen in the spring over parts of Northern Canada.

NASA received approval from Congress to begin the Earth Observing System (EOS), a series of satellites that will use the perspective from space to observe the Earth as a global environmental system.

NASA scientists analyzed global temperatures from the 1980s to offer insights

into potential global warming. Though no net trend could be seen within the tast decade, observations indicated the 1980s were warmer than the 1970s. NASA's ongoing ozone depletion studies showed the 1990 ozone hole over Antarctica opened as rapidly and covered as wide an area as the record 1987 hole. A co-sponsored airborne expedition also showed local areas of ozone depletion over the Arctic. In October, the Space Shuttle Discovery flew the Shuttle Solar Backscatter Ultraviolet instrument used to calibrate other ozonedetection instruments. To continue global ozone monitoring through the end of the decade, NASA agreed with the Soviet Union to place a Total Ozone

U.S.-Soviet Cooperation extended into the life sciences as the two nations exchanged biomedical data from space flights in 1989 at a September meeting. In addition, specialists from both countries began to analyze data obtained from short- and long-duration missions dealing with bone, muscle and cardiovascular physiology. The Physiological Systems Experiment was flown on STS-41 in October to investigate whether microgravity-induced conditions mimic medical problems on Earth.

Mapping Spectrometer aboard a Soviet Meteor satellite in 1991.

Space Science research extended into other areas as well. Space Shuttle middeck payloads included experiments to investigate how protein crystals and how flames spread in the absence of the Earth's gravity. NASA aircraft took measurements that ultimately will be used to build instruments to study global winds and tropical rainfall and studied the chemistry of the lower atmosphere over Canada. Balloon flights observed atmospheric processes and tested balloon designs. In all, NASA conducted approximately 30 suporbital rocket flights and 25 balloon flights in support of space science.

SPACE FLIGHT

In what will become standard biennial selections, 23 new astronauts candidates were named in 1990, including the first woman to be named as a pilot candidate and the first Hispanic woman to be chosen. The candidates reported for training at Johnson Space Center in July.

The Space Shuttle made significant accomplishments in 1990 with six successful missions being flown, despite a stand-down of 5 months due to hydrogen leaks. Current capabilities of the Shuttle system were expanded during the year with two extended duration missions flown by Shuttle Columbia on missions STS-32 in January and STS-35 in December. The STS-32 mission set a new record as the longest Shuttle mission ever flown with 261 hours logged. The Shuttle Discovery carried two payloads into orbit on missions STS-31 in April which deployed the Hubble Space Telescope and STS-41 in October which deployed the Ulysses spacecraft. Atlantis also made two flights during the year for the Department of Defense on missions STS-36 in February and STS-38 in November.

Some Space Flight Highlights Include:

Heliospheric Observatory mission.

Jan. 9: Space Shuttle Columbia (STS-32) successfully launched SYNCOM IV-5

Feb. 28: Space Shuttle Atlantis flew a successful mission for DoD.

March 27: An agreement was signed with General Dynamics to provide Atlas IIAS launch services for the 1995 joint NASA/ESA Solar and

April 5: A Pegasus rocket was dropped from the wing of a B-52 aircraft.

launching the PEGSAT satellite.

April 24: Space Shuttle Discovery (STS-31) successfully deployed the Hubble Space Telescope.

May 9: Scout/Multiple Access Communication Satellite was launched for DoD.

May 11: Contract awarded for design, development, test and evaluation of the Space Shuttle Advanced Solid Rocket Motor (ASRM). A companion contract was awarded on May 25 for the design and construction of ASRM facilities.

June 1: Delta II launched the joint NASA/Germany Roentgen (ROSAT) Satellite

June 7: NASA announced termination of its Orbital Maneuvering Vehicle program.

June 13: The Board of Governors of INTELSAT approved a Space Shuttle rescue mission for the stranded INTELSAT VI satellite.

July 3: Umbrella agreement signed in support of the Pegasus and Taurus commercial launch vehicle programs.

July 25: Atlas I (Atlas/Centaur-69) launched the Combined Release and Radiation Effects (CRRES) Satellite.

Aug. 22: A government/industry board selected the type of rocket engine which will be designed to power the NASA/USAF Advanced Launch System.

Opt. 6: Space Shuttle Discovery (STS-41) successfully deployed Lilyeses

Oct. 6: Space Shuttle Discovery (STS-41) successfully deployed Ulysses spacecraft.

Nov. 15: Space Shuttle Atlantis (STS-38) flew a successful mission for DoD.

Dec. 2: Space Shuttle Columbia (STS-35) /Astro-1 mission.

SPACE STATION FREEDOM

Congressional mandate to significantly reduce out-year spending, prompted NASA to begin a 3-month assessment of the Space Station Freedom program. Ground rules given to the program to aid in this assessment were developed from Congressional language in NASA's FY 1991 Appropriations Bill.

A 1991 fiscal year budget shortfall of more than \$550 million, along with a

While the restructuring will have an impact on the design, program officials expect to use the results of the integrated systems preliminary design review as a baseline for design changes.

COMMERCIAL PROGRAMS

commercial payload flight requirements.

sponsoring "Technology 2000," the first industrial exposition and conference to showcase the transfer of NASA technology to the private sector.

The Office of Commercial Programs also sponsored the development of the Commercial Experiment Transporter (COMET), a system for launching and recovering commercial spaceborne experiments, to support its increasing

NASA initiated a new method of outreach to American business by

Commercial space flight activity in 1990 included six middeck experiments carried on the Space Shuttle, as well as the launch of Consort 3 aboard a Starfire sounding rocket from White Sands Missile Range, New Mexico.

Commercial experiments flown aboard the Shuttle in 1990 include:

Protein Crystal Growth (PCG) and Fluids Experiment Apparatus (FEA) -STS-32 in January

The Protein Crystal Growth (PCG) was flown again on STS-31 in April along with the Investigations into Polymer Membrane Processing (IPMP).

The Polymer Membrane Processing (IPMP) was flown again on STS-41 in October along with the Physiological Systems Experiment.

EXPLORATION

NASA made significant advances this year in organizing and developing an approach to carry out President Bush's Space Exploration initiative (SEI) to return to the Moon permanently and send humans to explore Mars. NASA was named in a new policy issued by the White House, as the principal implementing agency of SEI, with the Departments of Defense and Energy playing major roles in technology development and implementation strategy.

A second policy dealt with an exploratory dialogue on international participation in SEI. This dialogue, with Europe, Japan, Canada, the Soviet Union and others, is expected to occur in 1991.

In May, President Bush announced a goal to land humans on Mars no later than 2019. Shortly thereafter, NASA launched an SEI Outreach effort to collect new and innovative concepts and technologies from across the nation to carry out SEI.

AERONAUTICS AND SPACE TECHNOLOGY

NASA conducted a broad range of fundamental and applied aeronautics research programs in 1990. High-speed civil transport studies commissioned by NASA have led to a focused High-Speed Research Program that emphasizes the environmental compatibility of a next-generation supersonic transport. The preliminary results of emissions research show promise that acceptable emission levels can be achieved. Similarly, research indicates that compliance with noise reduction standards is possible.

NASA's Langley Research Center, Hampton, Virginia, flight tested a "hybrid" laminar air flow control system on a Boeing 757 airliner from March through August. A porous experimental section was mounted on the leading edge of the left wing, followed by a run of natural laminar airflow. The results -- laminar flow was achieved over the forward 65 percent of the wing surface -- could lead to significantly reduced fuel consumption and lower operating costs for future U.S. subsonic transports.

Ames-Dryden Flight Research Center, Edwards, California, completed military utility evaluations of the X-29 research aircraft in high angle-of-attack flight at speeds up to 0.6 times the speed of sound. Researchers discovered that small variations in key aerodynamic parameters can yield significant variations in total aircraft characteristics at high flight-angles-of-attack. The result was that the X-29 had better flying qualities than expected, allowing the design of flight control system software overlays to improve roll performance. Predictions show that roll performance near maximum lift may be much better than current fighter aircraft.

In a joint program with the U.S. Air Force, the Ames-Dryden facility successfully demonstrated a self-repairing flight control system concept using NASA's F-15 Highly Integrated Digital Electronic Control aircraft. The system concept included real-time reconfiguration of flight control surfaces, fault

detection and isolation, positive pilot alert and maintenance diagnostics to facilitate repairs. If fully developed, the system could greatly increase the ability of aircraft to survive battle damage and enhance safety during training missions.

The X-30 National Aero-Space Plane (NASP) program, a joint NASA/Department of Defense effort, reached a milestone in May when the five primary NASP contractors merged into a single national contractor team. Combining the technical expertise and top ideas of the contracts has produced a strong team that now uses all the best ideas from industry. NASA unveiled a new configuration for the X-30 NASP flight research vehicle at the end of October. The latest concept, a twin-tailed lifting-body shape, is a design concept from the contractor team.

Langley Research Center conducted flight tests of an automated landing system in October and November. NASA's Boeing 737 research aircraft made 36 landings using an integrated differential navigation system linked to the Global Positioning System constellation of Earth-orbiting satellites. The test data will be useful in designing auto-landing equipment for future spacecraft and will help researchers assess how to reduce risk in automated touchdowns.

After nearly 6 years in Earth orbit, the Long Duration Exposure Facility (LDEF) was retrieved by the crew of STS-32 in January. LDEF's 57 science and technology experiments are providing information about the effects of long-term exposure to the harsh environment of space.

Two prototype planetary robots made their debut during the year. "Ambler" is a six-legged, 12-foot-tall testbed to test technology for robots that may literally walk through rough terrain on the Moon and Mars. "Robby" is a more conventional six-wheeled articulated vehicle. Both robots are equipped with experimental computerized navigation systems that let them travel autonomously according to preprogrammed general instructions.

In April, the Human Performance Research Laboratory (HPRL) at Ames Research Center, Mountain View, Cailiornia, was dedicated to study the role of people in advanced aviation situations and long-duration space travel. The lab also will study relationships between humans and computers in its Automation Sciences Research Facility, now under construction. NASA announced in November that it has joined the Concurrent Supercomputing Consortium, a group of research organizations that will tackle some of the most demanding computational challenges. As a benefit of membership, NASA will have access to the world's fastest supercomputer, the Touchstone DELTA system, when it becomes operational next spring.

INTERNATIONAL RELATIONS

NASA's international cooperative activities in 1990 included the launch of three international missions: Ulysses and the Hubble Space Telescope, cooperative missions with ESA, and ROSAT, a cooperative mission with Germany. NASA invited Japan, Canada and Europe to provide two mission specialist astronaut candidates to join the July 1992 astronaut training class. Cooperation with the Soviet Union continued to progress under the U.S./USSR Joint Working Group (JWG) on space biology and medicine; solar system exploration; space astronomy and astrophysics; solar-terrestrial physics and Earth sciences.

NASA and its Soviet counterpart signed an agreement in July to fly NASA's Total Ozone Mapping Spectrometer on a Soviet Meteor-3 spacecraft in 1991. In March, NASA agreed to participate in the Soviet Academy of Sciences' radio telescope project, RADIOASTRON, which will explore fundamental astrophysical phenomena. U.S./USSR officials continued discussions on flying the U.S. X-ray All Sky Monitor and an X-ray Polarimeter on the Soviet Spectrum-X-Gamma high energy astrophysics mission in 1993/1994.

The Atmospheric Boundary Layer Experiment-3, part of NASA's Global Tropospheric Experiment, is a major scientific initiative established to study the underlying science of man's impact on the chemistry and dynamics of the global troposphere.

SPACE OPERATIONS

The Office of Space Operations provided tracking, communications and data acquisition for three major science missions: the Magellan on its mission to map the surface of Venus; Ulysses, a mission to the Sun, and the Hubble Space Telescope. The fifth Tracking and Data Relay Satellite has essentially been completed and will be ready for launch on a Space Shuttle flight in 1991. The Advanced Tracking and Data Relay Satellite System (ATDRSS) Phase B study contracts were awarded. ATDRSS will ensure the essential continuation of the space network through the year 2012.

SAFETY AND MISSION QUALITY

The Government Accounting Office reviewed the Office of Safety and Mission Quality (SMQ) and concluded that the office is working well in providing independent oversight, review, assessment and policy development. SMQ made a significant contribution to the successful launch of the Ulysses spacecraft and contingency planning of the Galileo spacecraft flyby. In addition to overall safety planning, the office conducted independent reviews and evaluations of risks posed by the use of onboard nuclear power systems.

The Seventh Annual NASA/Contractors Conference provided a forum for senior NASA and aerospace management to exchange information and experiences on Total Quality Management (TQM) and the continuous improvement process.

EDUCATIONAL AFFAIRS

NASA adopted the National Education Goals set by the President and the Governors as fundamental guidelines for developing and conducting education programs. As a result, a complementary 10-year plan is being developed.

Astronauts presented the first live lesson from space in December during the STS-35, Astro-1 mission. "Space Classroom, Assignment: The Stars," focused on the electromagnetic spectrum and its relationship to the high-energy astronomy mission. Over 4 million student scientists planted gardens during the spring semester to experiment with tomato seeds flown in space. The Space Exposed Experiment Developed for Students (SEEDS), was one of 57 experiments housed on the LDEF.

In March, NASA debuted the first tractor-trailer mounted mobile teacher resource center that will travel the nation providing lesson materials to teachers who could not otherwise travel to a NASA field center. The mobile center is part of a larger education initiative, project LASER (Learning About Science, Engineering and Research).

Section B

Space Flight Activity

PAGE B-2 INTENTIONALLE BLANK **Current Worldwide Launch Vehicles JAPAN CHINA INDIA** USA Payload Weight (Tons) Titan IV ASLV Atlas f Titan II Defta 3920 Delta Atlas G/ Centaur SLV-3 Centaur G 3.0 1.2 0.6 GTO GEO 6.1 2.4 1.1 29.5 0.04 9.6 4.5 USSR **ESA** Payload Weight (Tons) SL-14 SL-3 6.3 SL-4/6 7.6 Medium Lift SL-8 SL-11 Proton Energiya Energiva/Buran Ariane 2.3 Arlane 44L LEO GEO 1.9 19.5 2.6 PRECEDING PAGE BLANK NOT

Summary of Announced Launches

TOTAL	1957	1958	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974
1 Australia	_	_	_	-	_	_	-	_	_	_	1	0	0	0	0	0	0	0
476 DOD	_	5	6	11	19	34	27	35	39	42	32	26	19	17	17	13	10	8
35 ESA	_	_	_	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-
10 France	-	_	_	_	-	-	-	_	1	1	2	0	0	2	1	0	0	0
3 India	_	_	_	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-
2 Isreal	_	_	-	_	_	-	-	_	_	-	-	-	-	-	-	-	-	-
41 Japan	_	_	-	_	_	-	-	_	-	-	-	_	-	1	2	1	0	1
5 MDAC	_	_	_		_	_	-	-	_	-	-	-	-	-	-	-	-	_
3 MMarietta	_	_	_	-	_	-	-	-	_	-	-	_	-	_	-	-	-	_
450 NASA	-	2	5	5	10	18	11	22	24	31	26	19	21	12	15	18	13	16
1 Orbital Sciences	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_	-	-	-
28 PRC	_	-	_	_	-	-	_	-	_	-	-	-	-	1	1	0	0	0
1 United Kingdom	_	_	-	_	_	-	-	_	-	_	_	_	_	-	1	0	0	0
2255 USSR	2	1	3	3	6	20	17	30	48	44	66	74	70	81	83	74	86	81
3311 TOTAL	2	8	14	19	35	72	55	87	112	118	126	119	110	114	120	106	109	106
							NASA	LAUNC	HES									
TOTAL	1957	1958	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974
256 NASA	_	2	5	5	10	15	9	20	21	26	18	12	13	6	6	9	9	2
34 Cooperative	_	_	_	_	_	2	0	2	2	0	2	3	2	0	. 5	1	0	5
29 DOD	_	-	_	_	_	-	1	0	0	1	0	0	0	0	0	1	1	0
92 USA	_	-	-	_	-	1	1	0	1	4	6	3	4	4	3	3	2	4
39 Foreign	-	-	-	-	-	-	-	-	-	-	-	1	2	2	1	4	1	5
450 TOTAL		2	5	5	10	18	11	22	24	31	26	19	21	12	15	18	13	16

Summary of Announced Launches

TOTAL	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	TOTAL
1 Australia	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
476 DOD	9	11	10	12	7	6	5	6	7	10	3	1	5	4	10	10	476
35 ESA	_	_	-	-	1	0	2	0	2	4	3	2	2	7	7	5	35
10 France	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	10
3 India	-	_	-	-	_	1	1	0	1	0	0	0	0	0	0	0	3
2 Isreal	_	-	-	-	-	-	-	-	_	-	_	_	_	1	0	1	2
41 Japan	2	1	2	3	2	2	3	1	3	3	2	2	3	2	2	3	41
6 MDAC	_	_	-	-	-	_	-	-	-	-	-	_	_	_	1	5	6
3 MMarietta	_	_	-	-	-	_	-	-	-	-	-	_	_	_	-	3	3
449 NASA	19	15	14	20	9	7	13	12	15	12	14	5	3	8	7	8	449
1 Orbital Sciences	-	_	_	-	-	-	-	-	-	-	_	-	_	_	-	1	1
28 PRC	3	2	0	1	0	0	1	1	1	3	1	2	2	4	a	5	28
1 United Kingdom	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
2255 USSR	89	99	98	88	87	89	98	101	98	97	97	91	95	90	74	75	2255
3311 TOTAL	125	128	124	124	106	105	123	121	127	129	120	103	110	116	101	116	3311
							NASA	LAUNCI	1ES								
TOTAL	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	TOTAL
256 NASA	10	1	3	8	3	1	4	4	4	6	9	1	0	2	6	6	256
33 Cooperative	1	2	1	2	0	0	0	0	1	0	0	0	0	1	0	1	33
29 DOD	1	2	1	1	2	2	2	0	1	1	2	3	1	4	1	1	29
92 USA	4	8	2	4	3	4	7	6	8	4	3	1	1	1	0	0	92
39 Foreign	3	2	7	5	1	0	0	2	1	1	0	0	1	0	0	0	39
449 TOTAL	19	15	14	20	9	7	13	12	15	12	14	5	3	8	7	8	449

NASA Launches By Vehicle

١	TOTAL	1957	1958	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	
	7 Atlas					2	3	1	0	0	1	0	0	0	0	0	0	0	0	
ı	29 Atlas Agena			-		2	4	ò	5	2	9	6	1	ō	ō	ō	ō	ŏ	Õ	
Į	9 Atlas E/F	_						-			_									
١	61 Atlas Centaur					••	_	1	1	1	4	4	3	3	0	3	4	3	1	
١	155 Delta		-				-	1	4	7	8	12	7	10	7	5	7	5	7	
ı	5 Juno II		1	2	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	
١	6 Saturn I		-	••			_	_	3	3	0	0	0	0	0	0	0	0	0	
ı	7 Saturn IB			_			_				1	0	2	0	0	0	0	3	0	
ı	13 Saturn V			-			_					1	2	4	1	2	2	1	0	
l	64 Scout					2	1	2	6	4	1	2	4	2	2	5	5	1	6	
ı	37 Shuttle			-			-													
ı	4 Thor Able		1	1	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
ı	12 Thor Agena		-	_	-		1	0	2	2	2	1	0	2	2	0	0	0	0	
ı	21 Thor Delta	_		-	2	3	9	6	0	0	0	0	0	0	0	0	0	0	0	
ı	11 Titen II	_	_	-		••			1	5	5	0	0	0	0	0	0	0	0	
ì	7 Titan Centaur	-	_									-			-	-			2	
ı	2 Vanguard	_	-	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
ı	450 TOTAL	_	2	5	5	10	18	11	22	24	31	26	19	21	12	15	18	13	16	

NASA Launches By Vehicle

TOTAL	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	TOTAL
7 Atlas	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	7
29 Atlas Agena	0	0	0	0	0	0	0	0	0	Ō	ō	Ö	Ö	Ď	ŏ	ō	29
9 Atlas E/F	-	_	-	2	1	1	1	0	1	1	Ó	1	Ö	1	'O	Õ	9
61 Atlas Centaur	2	3	2	7	2	3	4	2	1	1	3	1	Ō	Ó	1	1	61
154 Delta	12	9	9	10	3	3	5	7	7	4	Q	1	2	1	1	à	154
5 Juno II	0	0	0	0	0	0	0	0	Ö	0	ō	Ó	ō	Ò	Ó	ŏ	5
6 Saturn I	0	0	0	0	0	0	0	0	0	0	0	0	Ö	0	Ō	. 0	6
7 Saturn IB	1	0	0	0	0	0	0	0	0	0	Ó	Ó	ō	Ō	ō	Ō	7
13 Saturn V	0	0	0	0	0	0	0	0	0	0	Ō	Ō	Õ	Ō	ō	ō	13
64 Scout	2	2	1	1	3	0	1	0	1	1	2	1	1	4	ŏ	1	64
37 Shuttle	-	-		_	_	_	2	3	4	5	9	1	Ò	2	5	6	37
4 Thor Able	0	0	0	0	0	0	0	0	0	Ô	Ó	0	0	0	ō	Ō	4
12 Thor Agena	0	0	0	0	0	0	0	0	0	Ó	Ó	Ó	Ō	Ō	ō	ō	12
21 Thor Delta	0	0	0	0	0	0	0	0	1	Ö	Ō	0	ō	Ō	Ō	Ō	21
11 Titan li	0	0	0	0	0	0	0	0	0	ō	Ö	Ö	Ō	Ō	ō	. 0	11
7 Titan Centaur	2	1	2	0	0	0	0	0	Ō	ō	ō	Õ	ō	ō	ō	õ	7
2 Vanguard	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ö	2
449 TOTAL	19	15	14	20	9	7	13	12	15	12	14	5	3	8	7	8	449

Summary of Worldwide Payloads

TOTAL	1957	1958	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974
1 Argentina	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	_	-	-
5 Australia	-	-	-	-	-	-	-	-	-	-	1	0	0	1	0	0	0	0
3 Brazil	_		-	_	-	-	-	_	-	-	-	-	_	-	_	_	-	-
9 Canada	-	-	_	_	-	_	-	-	-	-	-	-	_	-	_	1	1	0
29 China	-	-	-	_	-	-	-	-	-	-	-	-	_	1	1	0	0	D
44 Cooperative *	-	-	-	-	-	2	0	2	3	0	2	3	2	0	6	1	1	7
2 Czechoslovakia	-	-	-	-	-	_	-	-	_	-	-	-	-	-	_	-	-	_
21 France	-	-	-	-	-	-	-	-	1	1	2	0	0	2	1	1	0	0
10 Germany	_	-	-	_	-	-	-	-	-	-	-	-	-	1	0	0	0	1
12 India	-	-	-	_	-	_	-	-	-	-	_	-	-	_	-	_	_	_
6 Indonesia	-	-	-	-	-	-	-	_	-	-	-	-	-	_	_	_	_	_
37 International Organizations *	-	-	-	-	-	-	-	-	-	-	••	1	1	1	1	3	0	0
2 Isreal	-	_	_	_	-	_	-	-	_	_	-	-	-	_	_	-	_	_
1 Italy	-	-	-	-	_	-	-	-	-	_	_	_	-	-	-	-	-	_
51 Japan	-	_	-	-	-	-	-	-	-	-	-	-	-	1	2	1	0	1
2 Mexico	-	_	_	_	-	-	-	-	-	_	_	-	-	_	-	_	_	-
1 Pakistan	_	_	_	_	_	_	_	-	_	_	-	_	-	_	_	_	-	
2660 Soviet Union	2	1	3	3	4	20	17	35	66	44	66	74	70	88	96	88	106	95
2 Sweden	_	-	-	_		_	-	-	_	-	_	_	_	-	-		-	_
16 United Kingdom	_	_	_	-	_	-	-	-	_	-	-	_	1	1	1	0	0	3
1102 United States *	_	7	11	17	36	53	54	72	88	102	78	63	51	30	36	28	22	15
4015 TOTAL	2	8	14	20	40	75	71	109	158	147	149	141	125	126	144	123	130	122
* Separate Breakdown Follows																		
						INTERI	NOTTAN	AL ORG	ANIZATI	ONS								
TOTAL	1957	1958	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974
1 AsiaSat	_	_	_	_	-	-	_	_	_	_	-	_	_	_	_	_	_	_
2 ASCO	_	_	_	-	-	_	_	-	-	_	-	_	_	~	_	_	_	_
26 ESA	_		_	-	-	_	-	-	_	_	_	1	1	0	0	3	0	0
1 InMarSet	_	_	-	_	~	_	_	-	**	_	_	_			_	_	_	_
6 NATO	_	-	-	_	-	_	-			_	_	_	_	1	1.1	0	0	a
1 PanAmSat	_	_	-		-	_	_	_	-	_	_	_	_		_	_	_	_
37 TOTAL	_		_	_									1			3	0	0

網藻語 医机动性坏疽 医切片

Summary of Worldwide Payloads

TOTAL	1975				4070	40.00	4004		1000			4000					
1 Argentina	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	TOTAL
5 Australia	0	0	0	0	ō	0	0	_	0	0	2	- 0	-	0	_	1	1
3 Brazil	_	-	-	_	-		U	v	U	·	- 1	٠	ò	Ö	ŭ	Ų	5
9 Canada		-	_	-	-	-	0	- 2		- 7	- :		0	0	ŭ	0	3
29 China	,	٥	ž	•	ŏ	ŏ	3	2	- :	3	1	3	v	v	v	5	9
46 Cooperative	2	5	2	2	ŏ	ő	•	ö	2	0	ď	0	ď	3		5	29
2 Czechoslovakia		-	- 4	- 1	ŏ	ő	á	ŏ	í	ŏ	Ö	ň	ŏ	,	,	2	46 2
21 France	_	<u> </u>		ò	ŏ	ŏ	ů	ŭ	ŭ	·			ŭ		1	2	
10 Germany	ő	ň	,	ő	ŏ	ŏ	Ö	ŏ	9	- :	ď	,	٠			2	21
12 India	·	ŏ	ž	ő	1	,	3			ď	ŏ	ŏ	'n	1	2		10
6 Indonesia		٠	,	ŏ	ö	ò	0	ö		,	ŏ	ŏ	,	0			12
37 International Organizations	- 7	- ;		3	1	Ö	4	٠	1	2	3	ŏ	- :	0	Ů	1	6
2 isreal			-	-		U	4	1	2	2	3	U	•	3	2	3	37
1 Italy	_	_	-	-	ō	-	_ D	-		-	-	-	_	1	ŏ	1	2
51 Japan	2	- 1	,	4	2	2	3	٠	3	3	2	3	3	9		Ų.	
2 Mexico	•	•	*	•	-	-	3	,	3	3	2	0	0	0	4		51
1 Pakistan	-	_	-	_	-	-	-	-	-	-	2	U	U	U	0	0	2
2660 Soviet Union	109	121	104	119	101	110	123	119	115	115	118	114	116		~	96	1
2 Sweden	109	_	104		101	110	123	119	115	115	110	114	110	107	95		2660
16 United Kingdom	0	õ	5	ō	- ī		1	_	_	2	-		ö	0	1	0	. 2
1101 United States	26	27	17	29	17	13	19	17	0 22	32	33	9	9	0	1	5	16
4016 TOTAL	150	155	133	160	123	126	157	142	151	161	164	132	133	15 136	22 129	31 160	1101 4016
40/0 /O/AL	130		133	100	123	120	137	142	131	101	104	132	133	130	129	160	4010
						INTER	NOITAN	AL ORG	ANIZATI	ONS							
TOTAL	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	TOTAL
1 AsiaSat	-	-	-	-	-	-	-	-	-	_	_	_	_	_	-	1	1
2 ASCO	-		-	-		-	-	-	-	_	2	0	O	0	0	0	2
26 ESA	1	0	2	2	1	0	4	0	2	2	1	0	1	2	2	1	26
1 inMarSat	-	_		-	-	-	-	-	-	-	_	_	_	_	_	1	1
	0	1	1	1	0	0	0	1	0	0	0	0	0	0	٥	ò	6
6 NATO																	
	-			_	-		_	-	-	_	_	_	_	1	ō	õ	1

Summary of USA Payloads

							U.S. F	PAYLOA	DŞ									
OTAL	1957	1958	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	19
5 AMSAT	-	-	-	-	-	_	-	-	-	-	-	-		_	-	1	0	
5 AT&T	-	-	-	-	-	1	2	1	0	0	0	0	0	0	0	0	0	
1 ASC	-	_	-	-	-	-	-	-	-	-	-	-	-	_	-	_	-	
47 COMSAT	-	-	-	-	-	_	-	_	1	1	3	1	3	3	2	2	1	
690 DOD	-	5	6	12	23	39	.44	50	66	71	57	43	32	18	24	14	11	
7 GTE	_	-	_	-	-	-	· -	-	-	_	-	-	-		_	-	_	
8 Hughes	_	-	-	-	_	-	-	-	_	_	-	-	-		_	_	-	
286 NASA	-	2	5	5	13	13	8	21	21	27	15	17	15	8	9	10	9	
3D NOAA	-	-	-	-	_	-	-	-	-	3	3	2	1	1	1	1	1	
1 N. Utah Univ	-	-	-	_	-	-	-	-	-	-	_	_	-	-	_	-	-	
11 RCA	-	_	_	-	_	-	-	-	-	-	_	_	_	_	_	-	-	
5 SBS	-	_	-	-	_	-	-		-	_	_	-	_	-		-	-	
6 WU	_		-	-	_		-	-	-	_	-	_	_	-	_	-	_	
1102 TOTAL	-	7	11	17	36	53	54	72	88	102	78	63	51	30	36	28	22	
						CO	OPERA	TIVE PA	YLOAD	S								
OTAL	1957	1958	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	
5 NASA/Canada	-	_	-	-	-	1	0	0	1	0	0	0	1	0	1	0	0	
2 NASA/DOD	-	-	_	-	-	-	-	_	-	-	_	-	-	-	-	-	-	
6 NASA/ESA	_	-	-	-	-	-	-	-	-	-	_	2	0	0	0	0	0	
6 NASA/France	-	-	-	-	-	-	_	-	1	0	0	0	0	0	2	0	1	
2 France/Germany	-	-	-	-	-	_	-	-	-	-	-	-	~	-	-	-	-	
5 NASA/Germany	-	-	-	-	-	-	-	-	-	-	-	-	1	0	0	1	. 0	
5 NASA/Italy	-	-	-	_	-	-	-	1	0	0	1	0	0	0	1	0	0	
2 NASA/Netherlands	-	-	-	-	-	_	-	-	_	_	-	_		-	-	-	_	
2 NASA/NOAA	-	-	-	-	-	-	-	-	-	-	-	_	~	-	_	-	-	
3 NASA/NRL	-	-	-	-	-	-	-	-	1	0	0	1	0	0	1	0	0	
1 NASA/Spain	-	-	-		-	-	_	-	_	_	-	_	~	-	-	-	_	
5 NASA/UK	-	••	_	**	~	1	0	1	0	0	1	0	0	0	1	0	0	
44 TOTAL						2	0	2	3	Ó	2	3	2	0	6			

Summary of USA Payloads

							U.S. F	PAYLOA	DS								
TOTAL	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	TOTAL
5 AMSAT	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	2	5
5 AT&T	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	5
1 ASC		-	-	-	-	-	-	-	-	-	1	0	0	0	0	0	1
47 COMSAT	2	6	1	3	0	1	3	2	2	2	3	0	0	1	1	2	47
690 DOD	10	18	12	14	11	8	7	6	8	12	11	5	8	9	12	16	690
7 GTE	-	-	_	_	_	-	-	-	-	2	1	1	0	2	0	1	7
8 Hughes	-	_	-	-	-	-	-	-	2	3	2	0	D	0	0	1	8
285 NASA	12	1	3	10	3	1	5	4	6	9	12	1	0	2	9	7	285
30 NOAA	1	1	1	1	1	2	2	0	2	2	0	1	1	1	0	0	30
1 N. Utah Univ	-	-	-	-	-	-	-	-	-	-	1	0	0	0	0	0	1
11 RCA	1	1	0	0	1	0	1	2	2	0	1	1	0	0	0	1	11
5 SBS	-	-	-	-	-	1	1	1	0	1	0	0	0	0	0	1	5
6 WU	0	0	0	0	1	0	0	2	0	1	0	0	0	0	0	0	6
1101 TOTAL	26	27	17	29	17	13	19	17	22	32	33	9	9	15	22	31	1101
TOTAL 5 NASA/Canada 2 NASA/DOD 6 NASA/ESA 6 NASA/ESA 6 NASA/France 2 France/Cermany 5 NASA/Germany 5 NASA/dermany 2 NASA/Natherlands 2 NASA/NAA 3 NASA/NRL 1 NASA/Spain 5 NASA/UK	1975 0 -0 0 1 0 0 0	1976 1 	1977 0 - 2 0 0 0 0 0 0	1978 0 2 0 0 0 0 0 0	1979 0 0 0 0 0 0 0	1980 0 0 0 0 0 0 0 0	1981 0 - 0 1 0 0 0 0 0 0	1982 0 0 0 0 0 0 0 0	1983 0 - 0 1 0 0 0 1 0 0 0	1984 0	1985 0 	1986 0 	1987 0 0 0 0 0 0	1988 0 	1989 0 0 0 0 0 0 0 0	1990 0 2 0 0 0 1 0 0 0	TOTAL 5 2 6 6 2 5 5 2 2 2 2 3 1 5 44
44 TOTAL	2	2	2	2	0	0	1	0	2	0	0	0	0	'	U	3	***

Soviet Spacecraft Designations PRECEDING PAGE BLANK NOT FILMED INTENTIONALLY BLANK

BURAN (Snowstorm): Reusable orbital space shuttle.

COSMOS: Designation given to many different activities in space.

EKRAN (Screen): Geosynchronous comsat for TV services. **ELEKTRON**: Dual satellites to study the radiation belts.

FOTON: Scientific satellite to continue space materials studies.

GAMMA: Radiation detection satellite.

GORIZONT (Horizon): Geosynchronous comsat for international relay.

GRANAT: Astrophysical orbital observatory.

INTERCOSMOS: International scientific satellite.

ISKRA: Amateur radio satellite. KRISTALL: Module carrying technical and biomedical instruments to MIR.

KVANT: MIR space station astrophysics module. LUNA: Lunar exploration spacecraft.

MARS: Spacecraft to explore the planet Mars.

METEOR: Polar orbiting meteorological satellite.

MIR (Peace): Advanced manned scientific space station in Earth orbit.

MOLNIYA (Lightning): Part of the domestic communications satellite system. NADEZHDA: Navigation satellite.

OKEAN: Oceanographic satellite to monitor ice conditions. PHOBOS: International project to study Mars and its moon Phobos.

POLYOT: Maneuverable satellite capable of changing orbits.

PROGNOZ (Forecast): Scientific interplanetary satellite.

PROGRESS: Unmanned cargo flight to resupply manned space stations. PROTON: Scientific satellite to investigate the nature of Cosmic Rays.

RADUGA (Rainbow): Geosynchronous comsat for telephone, telepraph, and

VEGA: Two spacecraft international project to study Venus and Halley's Comet.

domestic TV. RESURS: Earth resources satellite.

RADIO: Small radio relay satellite for use by amateurs.

SALYUT: Manned scientific space station in Earth orbit.

SOYUZ (Union): Manned spacecraft for flight in Earth orbit.

VENERA: Spacecraft to explore the planet Venus.

VOSKHOD: Modified Vostok capsule for two and three Cosmonauts.

spacecraft to make a circumlunar flight and return safely to Earth.

SPUTNIK: Early series of satellites to develop manned spaceflight.

VOSTOK (East): First manned capsule; placed six Cosmonauts in orbit. ZOND: Automatic spacecraft development tests. Zond 5 was the first

B-15

Unofficial Tabulation of USSR Payloads

TOTAL	1957	1958	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	197
1 Buran	-				_	-	-	-	_	_	-	-		-			_	
2120 Cosmos	_		_	-	_	12	12	27	52	34	61	64	55	72	81	72	85	1
19 Ekran	-		-		_		_	_		_	_	-		-	_	_	_	
4 Electron	_		_		_	_	-	4	0	0	0	0	0	0	0	0	0	
3 Foton			_		_		_	-	-		_	_		-		_	_	
1 Gamma	_		-			-			_	-	-	_	••	-			_	
22 Gorlzont	_		-		_			-	_	-	_	_		-	-		_	
1 Granat	-		-						_	-	_			_	-			
23 Intercosmos	_	-	-			-			-	-		_	2	2	1	3	2	
3 Iskra	-		-		_		-	_		-	_	-			_		_	
1 Kristall	_	_	_		-		-		_	_		_	_	_	_	_	-	
2 Kvant	-		_		_		_	_		_	_			-	-		_	
24 Luna	_		3	0	0	0	1	0	4	5	0	1	1	2	2	1	1	
7 Mars	-			-	_	1	Ô	ō	Ó	0	ō	ò	Ó	0	2	ò	4	
54 Meteor	_	_		_	-	-	_	-	_	_	_	-	2	4	4	3	2	
1 Mir	_		-	-	_		_	_		_	_			_	_	_	_	
136 Molniya	_		_				_	-	2	2	3	3	2	5	3	6	8	
2 Nadezhda	-	_	-	_	_		_	_	-	_	_	_	_	_	-	_	_	
2 Okean	_		_	_	_	_	_		_	_	_	_	_		_	_		
2 Phobos	-	_		-	_		_	_		_	_	_					_	
2 Polyot	_		_		_	-	1	1	0	0	0		0	Ð	0	0	D	
10 Prognoz	_		-				_	_	-	_	_	-		_	-	ž	1	
47 Progress	_		_			_	_		_	_	_	_		-	_	_		
4 Proton	-	_			_		_	_	2	1	0	1	0	0	D	0	n	
8 Radio	_		_	_	-	_	_	_			_	·	_		_	_	_	
28 Raduga	_	-	-		_	-	_	_	_		_	_		_		-	_	
9 Resurs	_			-	_	-	_	_	_	-	_	_	-	_		-	_	
7 Salyut	_		_	_	_	_		_	_	_	_	_		_	1	0	1	
66 Soyuz	_	_	_	_	_		-		_	_	1	2	5	1	;	ň	;	
12 Sputnik	,	1	0	3	4	2	0	n	0	0	á	ā	ň	'n	ñ	ň	ñ	
2 Vega	_		_	-			_	-	_	_	_	_	-	-	-	_	-	
15 Venera			_	_		_		_	,	_	1	0	2	1	0	1	0	
2 Voskhod	_	_		-	-		_	-	1	ň	ċ	0	6	'n	ň	'n		
4 Vostok	_	_		_	_	-	2	,	'n	ň	Ň	ŏ	Ň	ň	, ñ	ň	Ň	
10 Zond	_	-	_	-	-		4	v	3	Ö		3	٠	1	. 0	ŏ	ŭ	
6 No Designation	-		_	-		3	1	2	0	2	,	0	ò	1	0	ö	V	
2660 TOTAL	2	1	3	3		20	17	35	66	44	66	74	70	88	96	88	106	

Unofficial Tabulation of USSR Payloads

Unomiciai Tabi	ulali	UII	ט וכ	الح	110	יטועג	aus											
TOTAL	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	TOTAL	
1 Buran	-		_		-		-	-	-	_	_	-		1	0	0	1	
2120 Cosmos	85	101	86	96	79	88	94	97	94	94	99	96	97	79	68	66	2120	
19 Ekran	-	1	1	0	2	2	1	2	2	2	1	1	2	2	0	0	19	
4 Electron	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	
3 Foton	_		-		-		_	_	-	_				1	1	1	3	
1 Gamma	-		_		_		-	-	-	_	_	-		_		1	1	
22 Gorizont	-		-	1	2	1	0	2	2	2	1	2	1	2	3	3	22	
1 Granat	_	-	-		-			-	-	_	-	-		-	1	0	1	
23 Intercosmos	2	2	1	1	2	0	2	0	0	0	0	0	0	0	1	0	23	
3 iskra	-	-	-	••		-	1	2	0	0	0	0	0	0	0	0	3	
1 Kristali	-	-	-	••			-	-	-	-		••		-		1	1	
2 Kvant	-		-		-		-	-	-		_	-	1	0	1	0	2	
24 Luna	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	24	
7 Mars	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	7	
54 Meteor	4	3	4	0	3	2	2	2	1	1	3	1	2	2	2	2	54	
1 Mir	-	-	-		-		-		-	-	-	1	0	0	0	0	1	
136 Molniya	10	7	6	6	5	4	8	5	7	4	8	7	1	7	4	6	136	
2 Nadezhda	-		-		-		-		-	-	-	-			1	1	2	
2 Okean	-		-		-	-	-	ب ج	-	-	-	-		1	0	1	2	
2 Phobos	-	-	-		-	••	-	-	-	-	-	-		2	0	0	2	
2 Polyot	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	
10 Prognoz	1	1	1	1	0	1	0	0	1	0	1	0	0	0	0	0	10	
47 Progress	-		-	4	3	4	1	4	2	5	1	2	7	6	4	4	47	
4 Proton	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	
8 Radio	-	-	-	2	0	0	6	0	0	0	0	0	0	0	0	0	8	
28 Raduga	1	1	1	1	1	2	3	1	2	2	2	2	2	1	3	3	28	
9 Resurs	-		-		-	-	-	-	-	-	-	-		-	5	4	9	
7 Salyut	0	1	1	0	0	0	0	1	0	0	0	0	0	0	0	0	7	
66 Soyuz	4	3	3	5	4	6	3	3	2	3	2	2	3	3	1	3	66	
12 Sputnik	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	12	
2 Vega	-	-	-	-	-	-	-	-	-	2	0	0	0	0	0	0	2	
15 Venera	2	0	0	2	0	0	2	0	2	0	0	0	0	0	0	0	15	
2 Voskhod	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	
4 Vostok	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	
10 Zond	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	10	
6 No Designation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	6	
2660 TOTAL	109	121	104	119	101	110	123	119	115	115	118	114	116	107	95	96	2660	

NAME	SERVICE	MISSION	POSITION	FLIGHT TIME	EVA	TOTAL FLIGHT TIME	NAME	SERVICE	MISSION	POSITION	FLIGHT TIME	EVA	TOTAL FLIGHT TIME
				(HR:MIN:SEC)	(HR:MIN)	(HR:MIN:SEC)	-				(HR:MIN:SEC)	(HR:MIN)	(HR:MIN:SEC
Acton, Loren W., PhD	Clv	STS-51F	PS	190:45:26		190:45:26	Brand, Vance D.	Civ	Apollo Soy	uz CMP	217:28:23		763:54:44
Adamson, James C., Lt. Col.	USA	STS-28	MS	121:00:09		121:00:09			STS-5	Cdr	122:14:26		
Akers, Thomas D., Maj.	USAF	STS-41	MS	98:11:00		98:11:00			STS-41B	Cdr	191:15:55		
Aldrin, Edwin E., Jr., Col.	USAF Ret	Gemini 12	PIt	68:34:31	05:37	289:53:06			STS-35	Cdr	215:06:00		
		Apollo 11	LMP	195:18:35	02:15 *		Brandenstein, Daniel C., Capi	USN	STS-8	Pit	145:08:43		575:48:12
Allen, Joseph P. PhD	Civ	STS-5	·MS	122:14:26		313:59:22			STS-51G	Cdr	169:38:52		
		STS-51A	MS	191:44:56	12:14				STS-32	Cdr	120:06:49		
Al-Saud, Salman	Civ	STS-51G	PS	169:38:52		169:38:52	Bridges, Roy D., Col	USAF	STS-51-F	Plt	190:45:26		190:45:26
Anders, William A., B. Gen.	USAF	Apollo 8	LMP	147:00:42		206:00:01	Brown, Mark F., Lt. Col	USAF	STS-28	MS	121:00:09		121:00:09
Armstrong, Neil	Civ	Gemini 8	Cdr	10:41:26				USMC	STS-51C	MS	73:33:23		361:57:06
.		Apollo 11	Cdr	195:18:35	02:32 *				STS-61A	MS	168:44:51		
Bagian, James P. MD	Civ	STS-29	MS	119:38:52		119:38:52			STS-29	MS	119:38:52		
Baker, Ellen S., MD	Civ	STS-34	MS	119:39:24		119:39:24	Cabana, Robert D., Lt. Col.	USMC	STS-41	Pit	98:11:00		98:11:00
Bartoe, John-David F., PhD	Civ	STS-51F	PS	190:45:26		190:45:26		USN Ret	Aurora 7	Cdr	4:56:05		4:56:05
Baudry, Patrick, Lt. Col.	FAF	STS-51G	PS	169:38:52		169:38:52		USMC Ret		Cdr	2017:15:32	15:48	2017:15:32
Bean, Alan F., Capt	USN Ret	Apollo 12	LMP	244:36:25	07:45 *	1671:45:29		USN	STS-33	MS	120:06:49		120:06:49
		Skylab 3	Cdr	1427:09:04	02:45			USAF	STS-36	Plt	106:18:23		106:18:23
Blaha, John E., Col	USAF	STS-29	Plt	119:38:52		239:45:41		Civ	STS-61C	PS	146:03:51		146:03:51
Diamaj Com En Co	•••	STS-33	Plt	120:06:49				USN Ret	Gemini 9A	Pit	72:21:00	02:08	566:16:32
Bluford, Guion S., Col	USAF	STS-8	MS	145:08:43		313:53:34	Committee and a second	••••	Apollo 10	LMP	192:03:23	VI	000
biardra, daloir o., oor	00/1	STS-61A	MS	168:44:51					Apollo 17	Cdr	301:51:59	22:04 *	
Bobko, Karol J., Col	USAF	STS-6	Pit	120:23:42		386:03:43	Chang-Diaz, Franklin R., PhD	Civ	STS-61C	MS	146:03:51		265:43:15
200101111111111111111111111111111111111		STS-51D	Cdr	167:55:23				•	STS-34	MS	119:39:24		200.101.10
		STS-51J	Cdr	97:44:38			Cleave, Mary L., PhD	Civ	STS-61B	MS	165:04:49		262:02:20
Bolden, Charles F., Col	USMC	STS 61-C	Pit	146:03:51		267:19:56	Glouve, many ca, r mb	•••	STS-30	MS	96:56:25		202102121
bolders, Granes 7., Go	000	STS-31	Pit	121:16:05		201110.00	Coats, Michael L., Capt.	USN	STS-41D	Pit	144:56:04		264:34:56
Borman, Frank, Col.	USAF Ret		Cdr	330:35:31		477:36:13	Ooats, michael L., Oapt	0314	STS-29	Cdr	119:38:52		204.54.50
Bornian, Frank, Col.	UJAI NU	Apollo 8	Cdr	147:00:42		477.00.10	Collins, Michael, M. Gen	USAF	Gemini 10	Pit	70:46:39	01:30	266:11:14
		Apollo u	001	147.00.42			Commo, Machael, M. Gen	VJA:	Apollo 11	CMP	195:18:35	01.50	200.11.15
					*Lunar Su	rface EVA						*Lunar Su	ırface EVA

NAME	SERVICE	MISSION	POSITION	FLIGHT TIME	EVA	TOTAL FLIGHT TIME	NAME	SERVICE	MISSION	POSITION	FLIGHT TIME	EVA	TOTAL FLIGHT TIME
	<u>ULITTUE</u>	1111001011	7 00	(HR:MIN:SEC)	(HR:MIN)	(HR:MIN:SEC)		<u> </u>		000	(HR:MIN:SEC)	(HR:MIN)	(HR:MIN;SEC)
				,	· · · · · · · · · · · · · · · · · · ·	,	f				,	, ,	,,
Conrad, Charles (Pete), Capt	USN Ret	Gemini 5	PII	190:55:14		1179:28:36	Fisher, William F., MD	Civ	STS-511	MS	170:17:42	11:51	170:17:42
		Gemini 11	Cdr	71:17:08			Fullerton, C. Gordon, Col.	USAF	STS-3	PII	192:04:45		382:50:11
		Apollo 12	Cdr	244:36:25	07:45 *		ì		STS-51F	Cdr	190:45:26		1
		Skylab 2	Cdr	672:49:49	05:51		Furrer, Reinhard, PhD	Civ	STS-61A	PS	186:44:51		186:44:51
Cooper, L. Gordon, Jr., Col.	USAF Ret	Faith 7	Plt	34:19:49		226:18:03	Gardner, Dale A.,	USN	STS-8	MS	145:08:43		336:53:39
• • •		Gemini 5	Çdr	190:55:14			1		STS-51A	MS	191:44:56	12:14	
Covey, Richard O., Col	USAF	STS-511	PIt	170:17:42		485:12:53	Gardner, Guy S., Lt. Col.	USAF	ST\$-27	Pit	105:05:37		320:11:37
		STS-26	Plt	97:00:11			1		STS-35	Ptt	215:06:00		
		STS-38	Cdr	117:55:00			Garn, E. J. "Jake"	Civ	STS-510	PS	167:55:23		167:55:23
Creighton, John O., Capt	USN	STS-51G	Plt	169:38:52		275:57:15	Garneau, Marc, PhD	Civ	STS-41G	PS	197:23:33		197:23:33
		STS-36	Cdr	106:18:23			Garriott, Owen K., PhD	Civ	Skylab 3	Pit	1427:09:04	13:44	1674:56:28
Crippen, Robert L. Capt	USN	STS-1	Plt	54:20:32		565:48:11			STS-9	MS	247:47:24		
and and		STS-7	Cdr	146:23:59			Gemar, Charles D.		STS-38	MS	117:55:00		117:55:00
		STS-41C	Cdr	167:40:07			Gibson, Edward G., PhD	Civ	Skylab 4	Plt	2017:15:32	15:20	2017:15:32
		STS-41G	Cdr	197:23:33			Gibson, Robert L., Cdr.	USN	STS-41B	PIL	191:15:55		442:25:23
Culbertson, Frank L.		STS-38	Plt	117:55:00		117:55:00]		STS-61C	Cdr	146:03:51		
	Civ	Apollo 7	LMP	260:09:03		260:09:03	ł		STS-27	Cdr	105:05:37		
	USAF	Apollo 16	LMP	265:51:05	20:14 *	265:51:05	Glenn, John H., Jr., Col	USMC Ret	Friendship 7	Cdr	4:55:23		4:55:23
	Civ	STS-61A	MS	168:44:51		429:45:28	Gordon, Richard F., Jr., Capt.		Gemini 11	Ptt	71:17:08	01:57	315:53:33
Carlour, Commo di, 1 110		STS-32	MS	261:00:37					Apollo 12	CMP	244:35:25		
Durrance, Samuel T.		STS-35	PS	215:06:00		215:06:00	Grabe, Ronald J., Col	USAF	STS-51J	Pli	97:44:38		194:42:09
	USAF Ret		CMP	260:09:03		260:09:03			STS-30	Pit	96:56:25		
	Civ	STS-51F	MS	190:45:26		190:45:26	Gregory, Frederick D., Col	USAF	STS-51B	Plt	168:08:46		288:13:35
	USAF	STS-2	Cdr	54:13:13		244:30:55]		STS-33	Cdr	120:06:49		200.10.00
Ligie, see 11., coi	00/4	STS-511	Cdr	170:17:42		244.00.00	Griggs, S. David	Civ	STS-51D	MS	167:55:23	03:10	167:55:23
Evans, Ronald R., Capt	USN Ret	Apollo 17	CMP	301:51:59	01:06	301:51:59	Grissom, Virgil L. Lt. Col.	USAF	"Liberty Bel		15:37	00.10	5:08:37
	USAF	STS-7	MS	146:23:59	01.00	316:02:51	unasam, viigii i., Et voi.	005	Gemini 3	Cdr	4:53:00		3.00.01
rapidly strill in our	GOM	STS-51G	MS	169:38:52		310,02,01	Haise, Fred W.	Civ	Apollo 13	LMP	142:54:41		142:54:41
Fisher, Anna L., MD	Civ	STS-51A	MS	191:44:56		191:44:56	Hart, Terry J	Civ	STS-41C	MS	167:40:07		167:40:07
LIBRER' WILL THE	···	0.00IA	,			.5,,44.00	1,, .	•••	5.5 710				
					*Lunar Su	rface EVA		•	** Suborbital	Flight			
													B 10

						TOTAL	1						TOTAL
NAME	SERVICE	MISSION		FLIGHT TIME	EVA	FLIGHT TIME	NAME	SERVICE	MISSION	POSITION	FLIGHT TIME	EVA	FLIGHT TIM
				(HR:MIN:SEC)	(HR:MUN)	(HR:MIN:SEC)	· · · ·				(HR:MIN:SEC)	(HR:MIN)	(HR:MIN:SE
Hartsfield, Henry W.	USAF Ret	STS-4	Pit	169:09:40		482:50:35	Lousma, Jack R., Col	USMC	Skylab 3	Pit	1427:09:04	10:59	1619:13:4
		STS-410	Cdr	144:56:04					STS-3	Cdr	192:04:45		
		STS-61A	Cdr	168:44:51			Lovell, James A., Jr., Cept	USN Ret	Gemini 7	Pit	330:35:31		715:05:2
Hauck, Frederick H., Capt	USN	STS-7	Plt	146:23:59		435:09:06			Gemini 12	Cdr	94:34:31		
		STS-51A	Cdr	191:44:56			ì		Apollo 8	CMP	147:00:42		
		STS-26	Cdr	97:00:11			i		Apollo 13	Cdr	142:54:41		
Hawley, Steven A., PhD	Civ	STS-41D	MS	144:56:04		412:16:00	Low, G. David	Civ	STS-32	MS	261:00:37		261:00:3
		STS-61C	MS	146:03:51			Lucid, Shannon W., PhD	Civ	STS-51G	MS	169:38:52		289:18:1
		STS-31	MS	121:16:05					STS-34	MS	119:39:24		
Henize, Karl G., PhD	Civ	STS-51F	MS	190:45:26		190:45:26	Mattingly, Thomas K., Capt	USN	Apollo 16	CMP	265:51:05	01:24	508:34:0
Hilmers, David C., Lt. Col.	USMC	STS-51J	MS	97:44:38		301:03:11	1		STS-4	Cdr	169:09:40		
,	-	STS-26	MS	97:00:11		***			STS-51C	Cdr	73:33:23		
		STS-36	MS	106:18:23			McAuliffe, S. Christa	Civ	STS-51L	PS	N/A		N.
Hoffman, Jeffery A., PhD	Civ	STS-51D	MS	167:55:23	03:10	383:01:23	McBride, Jon A., Cdr	USN	STS-41G	Pit	197:23:33		197:23:3
, - , - ,		STS-35	MS	215:06:00	•••••	•••	McCandless, Bruce, Capt.	USN	STS-41B	MS	121:16:05	11:37	121:16:0
Irwin, James B., Col	USAF Ret		LMP	295:11:53	18:35	295:11:53	McCulley, Michael, Cdr	USN	STS-34	Plt	119:39:24		119:39:
Ivins, Marsha S.	Civ	STS-32	MS	261:00:37		261:00:37	McDivitt, James A., B. Gen	USAF Ret	Gemini 4	Cdr	97:56:11		338:57:
Jarvis, Gregory B	Civ	STS-51L	PS	N/A		N/A			Apollo 9	Cdr	241:00:54		
Kerwin, Joseph P., Capt	USN Ret	Skytab 2	Pit	672:49:49	03:30	672:49:49	McNair, Ronald E., PhD	Civ	STS-41B	MS	191:15:55		191:15:
Lee, Mark C. Maj	USAF	STS-30	MS	96:56:25		96:56:25			STS-51L	MS	N/A		
Leetsma, David C., Cdr	USN	STS-41G	MS	197:23:33	03:29	318:23:42	Meade, Carl J.		STS-38	MS	117:55:00		117:55:
-5013110, 52110 0., 001	00,1	STS-28	MS	121:00:09	W.L.	121:00:09	Melnick, Bruce E., Cdr	USCG	STS-41	MS	98:11:00		98:11:
Lenoir, William B., PhD	Civ	STS-5	MS	122:14:26		122:14:26	Merbold, Ulf, PhD	Civ	STS-9	PS	247:47:24		247:47:
Lichtenberg, Bryon K., PhD	Civ	STS-9	PS	247:47:24		247:47:24	Messerschmid, Ernest, PhD		STS-61A	PS	168:44:51		168:44:
Lind, Don Leslie, PhD	City	STS-51B	MS	168:08:46		168:08:46	Mitchell, Edger D., Capt	USN Ret	Apollo 14	LMP	216:01:57	09:23	
Lounge, John M.	Civ	STS-511	MS	170:17:42		482:23:53	Mullane, Richard M., Col	USAF	STS-410	MS	144:56:04		356:20:
-ounge, outnim.		STS-26	MS	97:00:11		₩.20.50	,	00AI	STS-27	MS	105:05:37		300.20.
		STS-35	MS	215:06:00					STS-36	MS	106:18:23		
		313-33	m3	213:00:00					01330	Mo	100.10.23		
					4 unar S	urface EVA	1					*Lunar S	Surface EVA

NAME	SERVICE	MISSION	POSITION	FLIGHT TIME	EVA	TOTAL FLIGHT TIME	NAME	SERVICE	MISSION	DOSITION.	FLIGHT TIME	EVA	TOTAL FLIGHT TIME
TV MAG		10.00.0.0		(HR:MIN:SEC)	(HR:MIN)	(HR:MIN:SEC)		00.111.02	migoron		(HR:MIN:SEC)	(HR:MIN)	(HR:MIN:SEC)
												•	
Musgrave, F. Story, MD, PhD	Civ	STS-6	MŞ	120:23:42	03:54	431:15:57	Roosa, Stuart A., Col	USAF Ret		CMP	216:10:57		216:10:57
		STS-51F	MS	190:45:26			Ross, Jerry L., Lt. Col	USAF	STS-61B	MS	165:04:49	12:20	270:10:26
		STS-33	MS	120:06:49					STS-27	MS	105:05:37		
Nagel, Steven R., Col.	USAF	STS-51G	MŞ	169:38:52		338:23:43	Schirra, Walter M., Jr., Capt	USN Ret	Sigma 7	Plt	9:13:11		295:13:38
		STS-61A	Plt	168:44:51			ì		Gemini 6A	Çdr	25:51:24		í
Nelson, Bill	Civ	STS-61C	PS	146:03:51		146:03:51	1		Apollo 7	Cdr	260:09:03		
Nelson, George D., PhD	Civ	STS-41C	MS	167:40:07	10:06	410:44:09	Schmitt, Harrison H., PhD	Civ	Apollo 17	LMP	301:51:59	22:04 *	301:51:59
		STS-61C	MS	146:03:51			Schweickart, Russell	Civ	Apollo 9	LMP	241:00:54	01:07	241:00:54
		STS-26	MS	97:00:11			Scobee, Francis R. (Dick)	USAF Ret	STS-41C	Pit	167:40:07		167:40:07
Neri Vela, Rodolpho, PhD	Civ	STS-61B	PS	165:04:49		165:04:49	1		STS-51L	Cdr	N/A		
O'Connor, Bryan O., Col	USMC	STS-61B	Pit	165:04:49		165:04:49	Scott, David R., Col	USAF Ret	Gemini 8	PIt	10:41:26		546:54:13
Ockels, Wubbo J., PhD	Civ	STS-61A	PS	168:44:51		168:44:51			Apollo 9	CMP	241:00:54	01:01	
Onizuka, Ellison S., Lt. Col	USAF	STS-51C	MS	73:33:23		73:33:23			Apollo 15	Cdr	295:11:53	19:08 *	
		STS-51L	MS	· N/A			Scully-Power, Paul D.	Civ	STS-41G	PS	197:23:33		197:23:33
Overmyer, Robert F., Col	USMC	STS-5	Plt	122:14:26		290:23:12	Seddon, M. Rhea, MD	Civ	STS-51D	MS	167:55:23		167:55:23
, ,		STS-51B	Cdr	168:08:46			Shaw, Brewster H., Col	USAF	STS-9	PIt	247:47:24		533:52:22
Pailes, William A., Mai	USAF	STS-51J	PS	97:44:38		97:44:38	1		STS-61B	Cdr	165:04:49		
Parise, Ronald A.	•	STS-35	PS	215:06:00		215:06:00	i		STS-28	Cdr	121:00:09		
Parker, Robert A., PhD	Clv	STS-9	MS	247:47:24		462:53:24	Shepard, Alan B., Jr., R. Adm	USN Ret	**Freedom 7		15:22		216:17:19
2.007,1	•	STS-35	MS	215:06:00]		Apollo 14	Cdr	216:01:57	09:23 *	
Payton, Gary E., Maj	USAF	STS-51C	PS	73:33:23		73:33:23	Shepherd, William M., Capt	USN	STS-27	MS	105:05:37		203:16:37
Peterson, Donald H.	USAF Ret		MS	120:23:42	03:54	120:23:42		••••	STS-41	MS	98:11:00		200
Poque, William R., Col.	USAF Ret		Pit	2017:15:32	13:34	2017:15:32	Shriver, Loren J., Col	USAF	STS-51C	Pit	73:33:23		194:49:28
Resnik, Judith A., PhD	Clv	STS-41D	MS	144:56:04		144:56:04			STS-31	Cdr	121:16:05		
11001111, 020111111111111111111111111111	•	STS-51L	MS	N/A			Slavton, Donald K., Mai	USAF Ret			217:28:23		217:28:23
Richards, Richard N., Cdr	USN	STS-28	Ptt	121:00:09		219:11:09	Smith, Michael J., Cdr	USN	STS-51L	PIt	N/A		N/A
monarda, monard (c., our	-	STS-41	Cdr	98:11:00			Spring, Sherwood C., Lt. Col		STS-61B	MS	165:04:49	12:20	165:04:49
Ride, Sally K., PhD	Civ	STS-7	MS	146:23:59		343:47:32	Springer, Robert C., Col	USMC	STS-29	MS	119:38:52		237:33:52
made, daily re, FIID	OI.	STS-41G	MS	197:23:33		1	opringer, nobel to, col	JOHIU	STS-38	MS	117:55:00		au 1.00.02
					*Lunar Sc	urface EVA			* *Suborbita	l Flight		*Lunar Su	rface EVA
· — — · — — — — — — — — — — — — — — — —													B.21

NAME	SERVICE	MISSION	POSITION	FLIGHT TIME	EVA	TOTAL FLIGHT TIME	NAME	SERVICE	MISSION	POSITION	FLIGHT TIME	EVA	TOTAL FUGHT TI
				(HR:MIN:SEC)	(HR:MIN)	(HR:MIN:SEC)					(HR:MIN:SEC)	(HR:MIN)	(HR:MIN:SI
Stafford, Thomas P., Lt. Gen	USAF Ret	Gemini 6A	Pit	25:51:24		507:44:10	White, Edward H., Lt. Col	USAF	Gemini 4	Pit	97:56:11	00:23	97:56
		Gemini 9A	Cdr	72:21:00			Williams, Donald E., Capt	USN	STS-51D	Pit	167:55:23		287:34:
		Apollo 10	Cdr	192:03:23					STS-34	Cdr	119:39:24		
		Apolio Soyı		217:28:23			Worden, Alfred M., Col		Apolio 15	CMP	295:11:53	00:39	295:11:
Stewart, Robert L., Col	USA	STS-41B	MS	191:15:55	11:37	289:00:33	Young, John W., Capt	USN Ret	Gemini 3	Plt	4:53:00		835:41:
		STS-51J	MS	97:44:38					Gemini 10		70:46:39		
Sullivan, Kathryn D., PhD	Civ	STS-41G	MS	. 197:23:33	03:29	318:39:38			Apolio 10	CMP	192:03:23		
		STS-31	MS	121:16:05					Apolio 16	Cdr	265:51:05	20:14	•
Swigert, John L., Jr.	Civ	Apollo 13	CMP	142:54:41		142:54:41			STS-1	Cdr	54:20:32		
Thagard, Norman E., MD	Civ	STS-7	MS	146:23:59		411:30:16	Į.		STS-9	Cdr	247:47:24		
		STS-51B	MS	168:08:46			ļ						
		STS-30	MS	96:56:25									
	Civ	STS-33	MS	120:06:49		120:06:49							
Thornton, William E., MD	Civ	STS-8	MS	145:08:43		313:17:29	ŀ						
		STS-51B	MS	168:08:46			ĺ						
Thuot, Pierre J., Lt. Cdr	USG	STS-36	MS	106:18:23		106:18:23	J						
Truly, Richard H., Capt	USN	STS-2	Plt	54:13:13		199:21:56							
•		STS-8	Cdr	145:08:43									
van den Berg, Lodewijk, PhD	Civ	STS-51B	PS	168:08:46		168:08:46							
van Hoften, James D., PhD	Civ	STS-41C	MS	167:40:07	10:06	377:57:49							
		STS-51l	MS	170:17:42	11:51)						
Walker, Charles D.	Civ	STS-41D	PS	144:56:04		477:56:16							
		STS-510	PS	167:55:23			l .						
		STS-61B	PS	165:04:49									
Walker, David M., Capt	USN	STS-51A	Plt	191:44:56		288:42:27	[
• •		STS-30	Cdr	96:56:25			Į.						
Wang, Taylor G., PhD	Civ	STS-51B	PS	168:08:46		168:08:46	I						
		Skylab 2	Plt	672:49:49	01:44	793:13:31	1						
		STS-6	Cdr	120:23:42			<u> </u>						
Wetherbee, James, Cdr	USN	STS-32	Pit	261:00:37		261:00:37	1						
	••••						1					*Lunar S	urface EVA

huttle Approach And Landing Tests

			<u> </u>
LIGHT	FLIGHT DATE	WEIGHT (kg,	DESCRIPTION OF FLIGHT
aptive Inert light l	Feb 18, 1977	64,717.0	Unmanned inert Orbiter (Enterprise) mated to Shuttle Carrier Aircraft (SCA) to evaluate low speed performance and handling qualities of Orbiter/SCA combination. SCA Crew: Fitzhugh L. Fulton, Jr., Thomas C. McMurtry, Vic Horton, and Skip Quidry. Flight Time: 2 hours 10 minutes.
aptive Inert light 2	Feb 22, 1977	64,717.0	Unmanned inert Orbiter (Enterprise) mated to SCA to demonstrate flutter free envelope. SCA Crew: Fitzhugh L. Fulton, Jr., Thomas C. McMurtry, Vic Horton, and Skip Guidry. Flight Time: 3 hours 15 minutes.
aptive Inert light 3	Feb 25, 1977	64,717.0	Unmanned inert Orbiter (Enterprise) mated to SCA to complete flutter and stability testing. SCA Crew: Fitzhugh L. Fulton, Jr., Thomas C. McMurtry, Vic Horton, and Skip Guidry. Flight Time: 2 hours 30 minutes.
aptive Inert light 4	Feb 28, 1977	64,717.0	Unmanned inert Orbiter (Enterprise) mated to SCA to evaluate configuration variables. SCA Crew: Fitzhugh L. Fulton, Jr., Thomas C. McMurtry, Vic Horton, and Skip Guidry. Flight Time: 2 hours 11 minutes.
aptive Inert light 5	Mar 2, 1977	65,142.0	Unmanned inert Orbiter (Enterprise) mated to SCA to evaluate maneuver performance and procedures. SCA Crew: Pitzhugh L. Pulton, Jr., A. J. Roy, Vic Horton, and Skip Quidry. Plight Time: 1 hour 40 minutes.
aptive Active light 1A	Jun 18, 1977	68,462.3	First manned captive active flight with Fred W. Haise, Jr. and C. Gordon Fullerton, Jr. Manned active Orbiter (Enterprise) mated to SCA for initial performance checks of Orbiter Flight Control System. SCA Crew: Fitzhugh L. Fulton, Jr., Thomas C. McMurtry, Vic Horton, and Skip Quidry. Flight Time: 56 minutes.
aptive Active light 1 .	Jun 28, 1977	68,462.3	Manned captive active flight with Joe H. Engle and Richard H. Truly. Manned active Orbiter (Enterprise) mated to SCA to verify conditions in preparation for free flight. SCA Crew: Pitzhugh L. Fulton, Jr. and Thomas C. McMurtry. Flight Time: I hour 3 minutes.
aptive Active light 3	Jul 26, 1977	68,462.3	Manned captive active flight with Fred W. Haise, Jr. and C. Gordon Fullerton, Jr. Manned active Orbiter (Enterprise) mated to SCA to verify conditions in preparation for free flight. SCA Crew: Fitzhugh L. Fulton, Jr. and Thomas C. McMurtry. Flight Time: 59 minutes
ree Flight l	Aug 12, 1977	68,039.6	First manned free flight with Fred W. Haise, Jr. and C. Gordon Fullerton, Jr. Manned Orbiter (Enterprise) with tailcone on, released from SCA to verify handling qualities of Orbiter. SCA Crew: Fitzhugh L. Fulton, Jr. and Thomas C. McMurtry. Flight Time: 53 minutes 51 seconds.
ee Flight 2	Sep 13, 1977	68,039.6	Manned free flight with Joe H. Engle and Richard H. Truly. Manned Orbiter (Enterprise) released from SCA to verify characteristics of Orbiter. SCA Crew: Pitzhugh L. Pulton, Jr. and Thomas C. McMurtry. Plight Time: 54 minutes 55 seconds.
ee Flight 3	Sep 23, 1977	68,402.4	Manned free flight with Fred W. Haise, Jr. and C. Gordon Fullerton. Manned Orbiter (Enterprise) released from SCA to evaluate Orbiter handling characteristics. SCA Crew: Fitzhugh L. Fulton, Jr. and Thomas C. McMurtry. Flight Time: 51 minutes 12 seconds.
ee Flight 4	Oct 12, 1977	68,817.5	Namned free flight with Joe H. Engle and Richard H. Truly. Manned Orbiter (Enterprise) with tailcone off and three simulated engine bells installed released from SCA to evaluate Orbiter handling charactistics. SCA Crew: Fitzhugh L. Fulton, Jr. and Thomas C. McMurtry. Flight Time: 1 hour 7 minutes 48 seconds.
ee Flight 5	Oct 26, 1977	68,825.2	Manned free flight with Fred W. Haise, Jr. and C. Gordon Fullerton. Manned Orbiter (Enterprise) with tailcone off released from SCA to evaluate performance of landing gear on paved runway. SCA Crew: Fitzhugh L. Fulton, Jr. and Thomas C. McMyrtry. Flight Time: 54 minutes 42 seconds.
			B-23

Summary of United States Manned Space Flight

		MISSION		MICOLON	ADE: 145145500	MISSION	
MISSION	CREW MEMBERS	DURATION	CREW HOURS	MISSION	CREW MEMBERS	DURATION	CREW HOUR
		(HR:MIN:SEC)	(HR:MIN:SEC)			(HR:MIN:SEC)	(HR:MIN:SE
MERCURY REDST	FONE (Suborbital)		•	APOLLO SATUR	RNI		
*Freedom ?	Shepard	15:22	15:22:00	Apollo 7	Schirra, Eisele, Cunningham	260:09:03	780:27:09
'Liberty Bell ?	Grissom	15:37	15:37:00				
Total Flights - 2		30:59	30:59	APOLLO SATUR	RN V		
MERCURY ATLAS	(Orbital)			Apollo 8	Borman, Lovell, Anders	147:00:42	441:02:06
	•			Apollo 9	McDivitt, Scott, Schweickart	241:00:54	723:02:42
Friendship 7	Glenn	4:55:23	4:55:23	Apollo 10	Stafford, Young, Cernan	192:03:23	576:10:09
Aurora 7	Carpenter	4:56:05	4:56:05	Apoilo 11	Armstrong, Collins, Aldrin	195:18:35	585:55:45
Sigma 7	Schirra	9:13:11	295:13:38	Apollo 12	Conrad, Gordon, Bean	244:36:25	733:49:15
Faith 7	Cooper	34:19:49	226:18:03	Apollo 13	Lovell, Swigert, Haise	142:54:41	428:44:03
Total Flights - 4	•	53:24:28	53:24:28	Apollo 14	Shepard, Roosa, Mitchell	216:01:57	648:05:51
				Apollo 15	Scott, Worden, Irwin	295:11:53	885:35:39
TOTAL MERCURY	FLIGHTS - 6	53:55:27	53:55:27	Apollo 16	Young, Mattingly, Duke	265:51:05	797:33:15
				Apollo 17	Ceman, Evans, Schmitt	301:51:59	905:35:57
GEMINI TITAN				Total Flights -	10	2241:51:34	7506:01:51
Gemini 3	Grissom, Young	4:53:00	9:46:00	TOTAL APOLLO)-11	2502:00:37	7506:01:51
Gemini 4	McDivitt, White	97:56:11	195:52:22				
Gemini 5	Cooper, Conrad	190:55:14	381:50:28	SKYLAB SATUR	RN IB		
Gemini 6A	Schirra, Stafford	25:51:24	51:42:48	ì			
Gemini 7	Borman, Lovell	330:35:31	661:11:02	Skylab 2	Conrad, Kerwin, Weitz	672:49:49	2018:29:2
Gemini 8	Armstrong, Scott	10:41:26	21:22:52	Skylab 3	Bean, Garriott, Lousma	1427:09:04	4281:27:1
Gemini 9A	Stafford, Cernan	72:21:00	144:42:00	Skylab 4	Carr, E. Gibson, Pogue	2017:15:32	6051:46:3
Gemini 10	Young, Collins	70:46:39	141:33:18	1			_
Gemini 11	Conrad, Gordon	71:17:08	142:34:16	TOTAL SKYLA	AB FLIGHTS - 3	4117:14:25	12351:43:1
Gemini 12	Lovell, Aldrin	94:34:31	189:09:02	1			
	•			APOLLO SATUI	RNIB		
TOTAL GEMINI	FLIGHTS - 10	969:52:04	1939:44:08	1			
		•		ASTP	Stafford, Brand, Slayton	217:28:23	652:25:0

Summary of United States Manned Space Flight

	DURATION HR:MIN:SEC) 54:20:32 54:13:13 192:04:45 169:09:40 122:14:26 120:23:42 146:23:59 145:08:43 247:47:24	CREW HOURS (HR:MIN:SEC) 108:41:04 108:26:26 384:09:30 338:19:20 488:57:44 481:34:48 731:59:55 725:43:35	STS-61B - Atlantis STS-61C - Columbia STS-51L - Challenger	CREW MEMBERS Hartsfield, Nagel, Buchti, Bluford, Dunbar, Furrer, Messerschmid, Ockets Shaw, O'Connor, Cleave, Spring, Ross, Nerl Vela, C. Walker R. Gilsson, Bolden, Chang-Diaz, Hawley, G. Nelson, Cenker, B. Nelson Scobes, Smith, Resnik, Onizuka, McNair, Jarvis, McAuliz, McAul	DURATION (HR:MIN:SEC) 168:44:51 165:04:49 146:03:51 N/A	CREW HOURS (HR:MIN:SEC) 1349:58:48 1155:33:43 1022:26:57 N/A
rippen tily Fullerton , Hartsfield rermyer, Allen, Lenoir bko, Peterson, Musgrave Hauch, Rile, Fabian, Thagard undenstein, D. Gardner, Bluford, on aw, Garriott, Parker,	54:20:32 54:13:13 192:04:45 169:09:40 122:14:26 120:23:42 146:23:59 145:08:43	108:41:04 108:26:26 384:09:30 38:19:20 488:57:44 481:34:48 731:59:55 725:43:35	STS-61B - Atlantis STS-61C - Columbia STS-51L - Challenger	Hartaffeld, Nagel, Buchli, Bluford, Dunbar, Furrer, Messerschmid, Ockets Shaw, O'Connor, Cleave, Spring, Ross, Nerl Yeta, C. Walker R. Gibson, Bolden, Chang-Diaz, Hawley, G. Nelson, Cenker, B. Nelson Scobes, Smith, Resnik, Onizuka, McNair,	168:44:51 165:04:49 146:03:51	1349:58:48 1155:33:43 1022:26:57
uly Fullerton , Hartsfield vermyer, Allen, Lenoir bloom, Cherton, Musgrave Hauch, Rilde, Fabian, Thagard andenstein, D. Gardner, Bluford, ton ton, Garriott, Parker,	54:13:13 192:04:45 169:09:40 122:14:26 120:23:42 146:23:59 145:08:43	108:26:26 384:09:30 338:19:20 488:57:44 481:34:48 731:59:55 725:43:35	STS-61B - Atlantis STS-61C - Columbia STS-51L - Challenger	Furrer, Messerschmid, Ockels Shaw, O'Connor, Cleave, Spring, Ross, Nerl Vela, C. Walker R. Gibson, Bolden, Chang-Diaz, Hawley, G. Nelson, Cenker, B. Nelson Scobee, Smith, Resnik, Onizuka, McNair,	165:04:49 146:03:51	1155:33:43 1022:26:57
Fullerton , Hartsfield rermyer, Allen, Lenoir oko, Peterson, Musgrave Hauch, Ride, Fabian, Thegard undenstein, D. Gardner, Bluford, ion naw, Garriott, Parker,	192:04:45 169:09:40 122:14:26 120:23:42 146:23:59 145:08:43	384:09:30 338:19:20 488:57:44 481:34:48 731:59:55 725:43:35	STS-61B - Atlantis STS-61C - Columbia STS-51L - Challenger	Shaw, O'Connor, Cleave, Spring, Ross, Nerl Yela, C. Walker R. Gibson, Bolden, Chang-Diaz, Hawley, G. Nelson, Cenker, B. Nelson Scobee, Smith, Resnik, Onizuka, McNair,	146:03:51	1022:26:57
, Hartsfield rermyer, Allen, Lenoir blo, Peterson, Musgrave Hauch, Ride, Fablan, Thagard undenstein, D. Gardner, Bluford, too haw, Garnfott, Parker,	169:09:40 122:14:26 120:23:42 146:23:59 145:08:43	338:19:20 488:57:44 481:34:48 731:59:55 725:43:35	STS-61C - Columbia STS-51L - Challenger	Neri Veta, C. Walker R. Gibson, Bolden, Chang-Diaz, Hawley, G. Nelson, Cenker, B. Nelson Scobee, Smith, Resnik, Onizuka, McNair,	146:03:51	1022:26:57
ermyer, Allen, Lenoir bko, Peterson, Musgrave Hauch, Ride, Fabian, Thagard undenstein, D. Gardner, Bluford, ton haw, Garriott, Parker,	122:14:26 120:23:42 146:23:59 145:08:43	488:57:44 481:34:48 731:59:55 725:43:35	STS-61C - Columbia STS-51L - Challenger	R. Gibson, Bolden, Chang-Diaz, Hawley, G. Nelson, Cenker, B. Nelson Scobee, Smith, Resnik, Onizuka, McNair,		
oko, Peterson, Musgrave Hauch, Ride, Fabian, Thagard Indenstein, D. Gardner, Bluford, Ion Ion haw, Garriott, Perker,	120:23:42 146:23:59 145:08:43	481:34:48 731:59:55 725:43:35	STS-51L - Challenger	G. Nelson, Cenker, B. Nelson Scobee, Smith, Resnik, Onizuka, McNair,		
Hauch, Ride, Fabian, Thagard undenstein, D. Gardner, Bluford, ton haw, Garrfott, Parker,	146:23:59 145:08:43	731:59:55 725:43:35	STS-51L - Chailenger	Scobee, Smith, Resnik, Onizuka, McNair,	N/A	N/A
undenstein, D. Gardner, Bluford, ion haw, Garriott, Parker,	145:08:43	725:43:35	•		N/A	N/A
ton haw, Garriott, Parker,			STS-26 - Diecovens	Jarvis, McAuliffe		
haw, Garriott, Parker,	247:47:24	1486:44:24	STS-26 - Discovery			
	247:47:24	1486:44:24	O TO SO DISCUTELY	Hauck, Covey, Lounge, Hilmers, G. Nelson	97:00:11	485:00:55
em Merhold			STS-27 - Atlantis	R. Gibson, Gardner, Mullane, Ross, Shepherd	105:05:37	525:28:05
		ì	STS-29 - Discovery	Coats, Blaha, Bagian, Buchi, Springer	119:38:52	598:14:20
bson, McCandless, McNair,	191:15:55	956:19:35	STS-30 - Atlantis	Walker, Grabe, Thagard, Cleave, Lee	96:56:25	484:47:35
		1	STS-28 - Columbia	Shaw, Richards, Leetsma, Adamson, Brown	121:00:09	605:00:45
Scobee, van Hoften, G. Nelson, Hart	167:40:07	838:20:35	STS-34 - Atlantis	Williams, McCully, Baker, Chang-Diaz, Lucid	119:39:24	598:17:00
, Coats, Resnik, Hawley, Mullane,	144:56:04	869:36:24	STS-33 - Discovery	Gregory, Blaha, Musgrave, K. Thornton, Carter		600:34:05
•		i		Brandenstein, Wetherbee, Dunbar, Ivins, Low	261:00:37	1305:03:05
McBride, Ride, Sullivan, Leetsma,	197:23:33	1381:44:51	STS-36 - Atlantis	Creighton, Casper, Hilmers, Mullane, Thuot	106:18:23	531:31:55
Scully-Power				Shriver, Bolden, McCandless, Hawley, Sullivar		606:20:25
Walker, Gardner, A. Fisher, Allen	191:44:56	958:44:40				490:45:00
		367:46:55				589:35:00
		1175:27:41				1290:36:00
Gam						
Grecory, Lind. Thagard.	168:08:46	1177:01:22		G. Garanor, Fariac, Parianeo		
			TOTAL SHUTTLE FLIC	RE.PTHS	5363-57-12	28681:54:13
	169:38:52	1187:32:04	101/220101122120	31113-30	3000.31.12	20001.04.15
	100.00.02					
	190-45-26	1335-18-02				
	150.75.20					
414.4 Am 140	170-17-42	851-28-30				
very van Haffen I ourse W Eleber						
vey, van Hoften, Lounge, W. Fisher		400.33.10				
֡	Walker, Gardner, A. Fisher, Allen Shriver, Onizuka, Buchil, Payton Illiams, Seddon, Hoffman, Griggs, Garm , Gregory, Lind, Thagard, on, van den Berg, Wang tein, Creighton, Lucid, Fabian, udry, Al-Saud Bridges, Musgrave, England, cton, Bartoe vey, van Hoften, Lounge, W. Fisher	Walker, Gardner, A. Fisher, Allen 191:44:56 Shriver, Onlizuka, Buchti, Payton 73:33:23 Iffars, Seddon, Noffman, Griggs, 167:55:23 Garm , Gregory, Lind, Thagard, on, van den Berg, Wang teln, Creighton, Lucid, Fabian, udry, Al-Saud Bridges, Musgrave, England, 190:45:26 Eton, Bartoe	Welker, Gardner, A. Fisher, Allen 191:44:56 958:44:40 Shriver, Onizuka, Buchili, Payton 73:33:23 367:46:55 Illiams, Seddon, Hoffman, Griggs, 167:55:23 1775:27:41 , Gregory, Lind, Thagard, 168:08:46 177:01:22 on, van den Berg, Wang tein, Creighton, Lucid, Fabian, 169:38:52 1187:32:04 udry, Al-Saud Bridges, Musgrave, England, 190:45:26 1335:18:02 cton, Bartoe vey, van Hoften, Lounge, W. Fisher 170:17:42 851:28:30	Walker, Gardner, A. Fisher, Allen 191:44:56 958:44:40 STS-41- Discovery Shriver, Onizuka, Buchili, Payton 73:33:23 367:48:55 STS-35 - Attantis Illiams, Seddon, Noffman, Griggs, Garn 168:08:46 1177:27:41 STS-35 - Columbia Garn Gregory, Lind, Thagard, on, van den Berg, Wang 168:08:45 1177:01:22 TOTAL SHUTTLE FLK Bridges, Musgrave, England, 190:45:26 1335:18:02 TOTAL SHUTTLE FLK Bridges, Musgrave, England, 190:45:26 1335:18:02 TOTAL SHUTTLE FLK Vey, van Hotten, Lounge, W. Fisher 170:17:42 851:28:30	Welker, Gardner, A. Fisher, Allen 191:44:56 958:44:40 STS-41- Discovery Richards, Cabana, Melnick, Shepard, Akers Shriver, Onizuka, Buchili, Payton 73:33:23 367:46:55 STS-38- Attantia Covey, Springer, Meade, Oulbertson, Gemar Illiams, Seddon, Noffman, Origgs, Gardner, Parise, Durrance 177:55:23 1177:01:22 G. Gardner, Parise, Durrance on, van den Berg, Wang 169:38:52 1187:32:04 TOTAL SHUTTLE FLIGHTS - 38 Bridges, Musgrave, England, 190:45:26 1335:18:02 TOTAL SHUTTLE FLIGHTS - 38 toton, Bartoe 170:17:42 851:28:30	Welker, Gardner, A. Fisher, Allen 191:44:56 958:44:40 STS-41- Discovery STS-38 - Atlantis Richards, Cabana, Melnick, Shepard, Akers Covey, Springer, Meade, Culbertson, Gemar STS-38 - Atlantis 98:11:00 Shriver, Onizuka, Buchili, Payton 167:55:22 1175:22** STS-38 - Atlantis Covey, Springer, Meade, Culbertson, Gemar STS-38 - Columbia 177:55:00 117:55:00 175:56:00 215:06:00 215:06:00 215:06:00 150:00 175:57:12 187:33:04 188:13:02 1187:32:04 188:13:02 1187:32:04 189:38:52 1187:32:04 1335:18:02

FLIGHT	LAUNCH DATE	LANDING DATE	CREW		PAYLOADS AND EXPERIMENTS
STS-1 (Columbia) Mission Dura	Apr 12, 1981 (KSC) ation: 54 hrs 30	Apr 14, 1981 (DFRF) 0 min 32 sec		John W. Young Robert L. Crippen	Development Flight Instrumentation (DFI) Passive Optical Sample Assembly (POSA) Aerodynamic Coefficient Identification Package (ACIP)
STS-2 (Columbia) Mission Dura	Nov 12, 1981 (KSC) ation: 54 has 1	(DPRF)	Cdr: Plt:	Joe Henry Engle Richard H. Truly	OSTA-1 Development Flight Instrumentation (DPI) Induced Environment Containment Monitor (IECM) Aerodynamic Coefficient Identification Package (ACIP) OEX Tile Gap Heating Effects OEX Catalytic Surface Effects OEX Dynamic, Acoustic, and Thermal Environment (DATE) Experiment
STS-3 (Columbia) Mission Dura	Mar 22, 1982 (KSC) ation: 192 hrs	(White Sands)	Cdr; Plt:	Jack R. Lousma Charles G. Fullerton	OSS-1 Monodisperse Latex Reactor (MIR) Experiment Electrophoresis Equip. Verification Test (EEVT) Tile Gap Heating Effects Experiment Catalytic Surface Effects Experiment Dynamic, Acoustic, and Thermal Environment (DATE) Experiment Development Plight Instrumentation (DFI) Induced Environment Containment Monitor (IECM) Aerodynamic Coefficient Identification Package (ACIP) Get-Away Special (GAS) Test Canister Student Experiment - Insects in Flight Motion Study

FLIGHT	LAUNCH DATE	LANDING	DATE CREW		PAYLOADS AND EXPERIMENTS
STS-4 (Columbia) Mission Du	Jun 27, 1982 (KSC) ration: 169	Jul 4, 1 (DFRF) hrs 09 m	Plt:	Thomas K. Mattingly II Henry W. Hartsfield, Jr.	DOD Payload - 82-1 Monodisperse Latex Reactor (MIR) Experiment - NASA Continuous Flow Electrophoresis System (CFES - NASA Tile Gap Heating Effects Experiment - NASA Catalytic Surface Effects Experiment - NASA Catalytic Surface Effects Experiment - NASA Dynamic, Acoustic, and Thermal Environment (DATE) Exp - NASA Development Flight Instrumentation (DFI) - NASA Induced Environment Containment Monitor (IECM) - NASA Aerodynamic Coefficient Identification Package (ACIP) - NASA Get-Away Special - Utah State University Student Experiments: Effects of Diet/Exercise/Zero Gravity on Lipoprotein Profiles Effects of Space Travel on Trivalent Chrominum in the Body
STS-5 (Columbia) Mission Durat	Nov 11, 1982 (KSC) ion: 122 hrs	Nov 16, (DFRF) 14 min 26 s	Plt: MS:	Vance DeVoe Brand Robert F. Overmyer Joseph P. Allen William B. Lenoir	Deployed: SBS-C - Satellite Business Systems Telesat-E -Telesat Canada, Ltd. Tile Gap Heating Effects Experiment - NASA Catalytic Surface Effects Experiment - NASA Dynamic, Acoustic, and Thermal Environment (DATE) Exp - NASA Atmospheric Luminosities Investigation (Glow Experiment) - NASA Development Flight Instrumentation (DFI) - NASA Aerodynamic Coefficient Identification Package (ACIP) - NASA Get-Away Special - ERNO, West Germany Student Experiments: Formation of Crystals in Weightlessness Growth of Porifera in Zero-Gravity Convection in Zero-Gravity

FLIGHT LAUNCH DATE LANDIN	G DATE CREW	PAYLOADS AND EXPERIMENTS
STS-6 Apr 4, 1983 Apr 9, (Challenger) (KSC) (DFRP) Mission Duration: 120 hrs 23 min 4	Plt: Karol J. MS: Donald H.	Bobko TTRS-A/TUS - Spacecom/USAF Peterson Continuous Flow Electrophonesis System (CFES) - NASA
STS-7 Jun 18, 1983 Jun 24 (Challenger) (KSC) (DFRF) Mission Duration: 146 hrs 23 min 5	PIt: Frederick MS: John M. F	: H. Hauck Telesat-F (ANIK C-2)/PAM-D - Telesat, Canada abian Palapa-Bl/PAM-D - Peruntel, Indonesia Ride Shuttle Pallet Satellite (SPAS-01) - MBB, Germany

PLIGHT	LAUNCH DATE	LANDING	DATE CREW		PAYLOADS AND EXPERIMENTS
STS-8 (Challenger) Mission Durat	Aug 30, 1983 (KSC) ion: 145 hrs 8	Sep 5, 1 (DFRP) i min 43 s	Plt: MS:	Guion S. Bluford, Jr.	Deployed: INSAT-IB/PAM-D - India Payload Flight Test Article (PPTA) - NASA Radiation Monitoring Equipment (RME) - NASA Heat Pipe - NASA Oxy. Interaction on Materials (OIM)- NASA Investigation of STS Atmospheric Luminosities (ISAL) - NASA Animal Enclosure - NASA Continuous Flow Electrophoresis System (CPES) - NASA/MDAC Modular Auxiliary Data System (MADS) - NASA Aercodynamic Coefficient Identification Package (ACIP) - NASA Get-Away Specials: G-0346 - Cosmic Ray Upset Experiment (CRUX) - GSPC/Neupert G-0347 - Photographic Film Evaluation Exp - GSPC/Neupert G-0348 - Contamination Monitor - GSPC/McIntosh G-0475 - Asahi/Shimban, Japan Student Experiment - Biofeedback SESI-I Other - Postal Covers
STS-9 (Columbia) Mission Durat	Nov 28, 1983 (KSC) ion: 247 hrs 4	Dec 8, 1 (DFRF) 7 min 24	Plt: MS:	Robert A. R. Parker	Spacelab-1 (Long Module) + Pallet - ESA/NASA Spacelab Attach Hardware, TK. set, Misc - ESA/NASA STS Operator - NASA

FLIGHT	LAUNCH DATE	LANDING DATE	CREW	PAYLOADS AND EXPERIMENTS
STS 41-B (Challenger)	Feb 3, 1984 (KSC)	Feb 11, 1984 (KSC)	Cdr: Vance D. Brand Plt: Robert L. Gibson MS: Bruce McCandless	Deployed: Westar VI/PAM-D - Western Union Palapa-U2/PAM-D - Indonesia
Mission Durat	tion: 191 hts 1	15 min 55 sec	MS: Robert L. Stewart MS: Ronald E. McNair	Integrated Rendezvous Tanget (IRT) - NASA Acoustic Containerless Experiment System (ACES) - NASA-OSSA/JSC SPAS-Ola - MBB, Germany Isoelectric Focusing Experiment (IEF) - NASA-OSSA/MSFC Radiation Monitoring Emigment (RME) - NASA Monodisperse Latex Reactor: (MER) - NASA/OSSA Cinama 360 - Cinama 360, Inc. Manned Maneuvering Unit (MMU) - NASA Manipulation Foot Restraint (MFR) - NASA Cargo Bay Storage Assambly (CBSA) - NASA Cargo Bay Storage Assambly (CBSA) - NASA Get-Away Specials: C004 - Utah State University/Aberdeen University G008 - AIAA/Utah State Univ/Brighton High School G051 - Arc Discharge Lamp Test - GTE Laboratories, Inc. G309 - CRUX - Air Force Space Test Program G349 - Goddard Space Flight Center Student Experiment - SEB1-40 - Arthritis, Dan Weber - Pfizer/GD
STS 41-C (Challenger) Mission Duran	Apr 6, 1994 (KSC) tion: 167 hrs	Apr 13, 1984 (DRRF) 40 min 07 sec	Cdr: Robert L. Crippen Plt: Francis R. Scobee MS: Terry J. Hart MS: James D. Van Hoften MS: George D. Nelson	Deployed: Long Duration Exposure Facility (LDEF-1) - NASA/Langley Solar Max Mission Flight Support System - NASA/SFC Manned Maneuvering Unit Flight Support System - NASA Manned Poot Restraint - NASA Cinema 360 - Cinema 360, Inc. LMAX - IMAX/NASA Radiation Monitoring Experiment (RME) - NASA Student Experiment - Honeycomb construction by bee colony

FLIGHT	LAUNCH DATE	LANDING DATE	CKEW	PAYLOADS AND EXPERIMENTS
(Discovery)	Aug 30, 1984 (KSC) :ion: 144 hrs	Sep 5, 1984 (EAFB) 56 min 4 sec	Odr: Henry W. Hartsfield Plt: Michael L. Coats MS: Richard M. Mullane MS: Steven A. Hawley MS: Judith A. Resnik PS: Charles D. Walker	Deployed: SBS-D/PAM-D - Satellite Business Systems Syncom IV-2/Unique Upper Stage - Hughes Comm. Service, Inc. Telstar 3-C/PAM-D - AT&T Co. OAST-1/MPESS - NASA CPES III (Cont. Plow Electp. Sys.) - MDAC IMAX - IMAX RME (Radiation Monitor Exp.) - NASA Clouds Photo Experiment - USAP Student Experiment - SE82-14 - Murphy/RI
STS 41-G (Challenger) Mission Durat	,,	Oct 13, 1984 (KSC) 23 min 33 sec	Cdr: Robert L. Crippen Plt: Jon A. McBride MS: Kathryn D. Sullivan MS: Sally K. Ride MS: David D. Leetsma FS: Marc D. Garneau PS: Paul D. Scully-Power	Deployed: Earth Radiation Budget Satellite (ERBS) - NASA CSTA-3/Pallet - NASA LFC/CRS/MPESS - NASA LFC/CRS/MPESS - NASA LFC/CRS/MPESS - NASA IMAX - JMAX RME (Radiation Monitor Exp.) - NASA APE (Auroral Photog. Exp.) - USAF TLD (Thermo. Lum. Dosimeter) - Hungary CANEX (Canadian Experiment) - Canada Get-Away Specials: G007 - Stud. Exp., Radio Trans. Exp Ala. Space & Rocket Cntr G013 - Halogen Lamp Ex. (HALEX) - Kayser-Threde/ESA G012 - Physics of Solids/Liquids - Asahi Corp., Japan G038 - Vapor Deposition - McShane/MSFC G074 - Fuel System Test - MDAC G306 - Trapped Ions in Space - Naval Res Lab/USNA G469 - Cosmic Ray Upset Exp NASA/CSFC/TEM G518 - Physics and Mat'l Process Utah State U.

FLIGHT	LAUNCH DATE	LANDING DATE	CREW		PAYLOADS AND EXPIRIMENTS
STS 51-A (Discovery) Mission Durat	Nov 8, 1984 (KSC) tion: 191 hrs	Nov 16, 1984 (KSC) 44 min 56 sec	Plt: David MS: Josep MS: Anna	erick H. Hauck i M. Walker oh P. Allen L. Pisher A. Gardner	Deployed: Telesat-H/PAM-D - Telesat, Canada Syncom IV-1/Unique Upper Stage - Hughes Comm. Services, Inc. Satellite Retrieval Pallets (2) - NASA/MDAC MMU/FSS (2) - NASA Diffuse Mixing of Organic Solids (DMOS) - 3M Co. Radiation Monitoring Equipment (RME) - NASA Man. Poot Restraint (MFR) -NASA
STS 51-C (Discovery) Mission Duran	Jan 24, 1985 (KSC) tion: 73 hrs 3	Jan 27, 1985 (KSC) 33 min 23 sec	Plt: Lorer MS: Ellis	as K. Mattingly n J. Shriver son S. Onizuka s F. Buchli E. Payton	Deployed: DOD/Inertial Upper Stage - DOD Aggregation of Red Cells (ARC) Mid-deck Exp Univ. of Sydney
STS 51-D (Discovery) Mission Durat	Apr 12, 1985 (KSC) tion: 167 hrs	Apr 19, 1985 (KSC) 55 min 23 sec	Plt: Donal PS: Charl PS: E. J. MS: M. Rh MS: S. De	I.J. Bobko (USAP) Id E. Williams (USN) Les D. Walker (MDAC). Garm (Senator) nea Seddon (MD) avid Griggs (NAR) rey A. Hoffman (PhD)	Deployed: Telesat-I/PAM-D - Telesat Canada, Ltd Syncon IV-3/UIS - Hughes Corm. Services, Inc. American Plight Echocardiograph - NASA Continuous Plow Electrophoresis Sys. (CFRS III) - MDAC/NASA Image Intensifier Investigation - NASA Informal Science Study (Toys in Space) - Houston Museuma/Nat. Sci. Phase Partitioning Experiment (PPE) - NASA Get Away Specials (GAS): G035 - Physics of Solids & Liquids - Asahi, Japan G471 - Cap. Pump Loop Experiment - GSFC Student Experiments: SC 82-03 - Statoliths in Corn Rt Caps - Ambery/Martin Macietta SE 83-03 - Effect of Weightlessnuss on Aging of Brain Cells - Pras/USC/LA Orthopaelic Hospital Other - Statute of Liberty Replicas (2)

FLIGHT	LAUNCH DATE	LANDING DATE	CREW	PAYLOADS AND EXPERIMENTS
STS 51-B (Challenger) Mission Durat		May 6, 1985 (DFRF) 08 min 46 sec	Cdr: R. F. Overmyer (USMC) Plt: P. D. Gregory (USAF) MS: Don L. Lind (PhD) MS: Norman E. Thagard (MD) MS: Whn. E. Thornton (MD) PS: Lodewijk Vandenberg (PhD) PS: Taylor Wang (PhD)	Deployed: NUSAT - Northern Utah University Spacelab 3 (LM + MPESS) - NASA/ESA GLONR - DOD
STS 51–G (Discovery) Mission Durat	Jun 17, 1985 (KSC)	Jun 24,1985 (EDW) 38 min 52 sec	Cdr: Daniel Brandenstein (USN) Plt: John O. Creighton (USN) MS: John M. Fabian (USAF) MS: Steven R. Nagel (USAF) MS: Shannon W. Lucid (PhD) FS: Patrick Baudry (France) FS: Prince Sultan Salman Al-Saud (Saudi Arabia)	Deployed: Morelos-A/PAM-D - Mexico Arabsat-A/PAM-D - ASCO Telstar 3-D/PAM-D - ATET Spartan-I/MPESS - NASA/CSFC/NRL Pr. Echocardiograph Exp (FEE) - CNES, France Fr. Postural Exp. (FPE) - CNES, France Auto. Dir. Solid. Furn (ADSF) - NASA/MSFC High-Prec, Track. Exp. (HPTE) - USAF Getaway Specials (GAS): GO25 - Dyn. Behavior of Liq. Props W.Germany GO27 - Slipcasting under Micro-G - W.Germany GO28 - Func'l Study of MnBi - W.Germany GO34 - Bioc'Phys. Sci. Stud. Exp El Paso/Ysleta, TX G314 - Space Ultra. Rad. Env. (SURE) - USAF/NRL G471 - Cap. Pump Loop Exp GSFC

PLIGHT LA	NCH DATE	LANDING DATE	CREW	PAYLOADS AND EXPERIMENTS
STS 51-F Jui (Challenger) (KS Mission Duration:		Aug 6, 1985 (EDW) 15 min 26 sec	Cdr: Chas. Fullerton (USAF) Plt: Roy D. Bridges (USAF) MS: F. Story Musgrave (M.D.) MS: Anthony W. England (PhD) MS: Karl G. Henize (PhD) FS: Loren W. Acton (Lockheed) PS: John-David Bartoe (USN)	Deployed: Plasma Diagnostics Package - NASA Spacelab-2 - NASA/ESA Shuttle Amateur Radio Experiment - AMSAT Space Life Sciences Training Program - NASA
STS 51-I Aug (Discovery) (KS Mission Duration:		(EDW)	Cdr: Joe H. Engle (USAF) Plt: Richard O. Covey (USAF) MS: James van Hoften (PhD) MS: John M. Lounge MS: William F. Fisher (MD)	Deployed: AUSSAT-1/PAM-D - Australia ASC-1/PAM-D - American Satellite Co. SYNCOM IV-4/UNQ - Hughes Comm Services, Inc. Physical Vapor Transport of Organic Solids (PVTOS) - 3M Corp SYNCOM IV-3 Repair Equipment - NASA/Hughes
STS 51-J Oct (Atlantis) (KS	•	Oct 7, 1985 (EDW) 44 min 38 sec	Cdr: Karol Bobko (USAF) Plt: Ronald J. Grabe (USAF) MS: Robert C. Stewart (USA) MS: David C. Hilmers (USMC) PS: William A. Pailes (USAF)	DOD Mission
STS 61-A Oct (Challenger) (KS Mission Dication:		(EDW)	Cdr: Henry Hartsfield (USAF) Plt: Steven Nagel (USAF) MS: Bonnie Dunbar (PhD) MS: James Buchli (USMC) MS: Guion Bluford (USAF) PS: Ernst Messerschmid (PhD, G PS: Reinhard Furrer (PhD, Germ PS: Wubbo Ockels (PhD, Dutch)	

				·	
FLIGHT	LAUNCH DATE	LANDING	DATE CRE	N .	PAYLOADS AND EXPERIMENTS
STS 61-B (Atlantis) Mission Dura	Nov 26, 1985 (KSC) ation: 165 hrs	Dec 3, (EAFB) 4 min 49	Plt MS:	Sherwood C. Spring (USA) Jerry L. Ross (USAF) Rudolfo Neri Vela (PhD)	Deployed: Vorelos-B/PAM-D - Nexico Aussat-2/PAM-D - Australia Satcom KU-2/PAM-DII - RCA OEX Target - NASA EASE/ACCESS/MPESS - NASA/MIT IMAX Payload Bay Camera - IMAX/NASA Continuous Plow Electrophoresia Sys (CFES III) - MDAC/3M/NASA Diffusive Mixing of Organic Solutions (DMOS) - 3M Company Morelos Payload Specialist Experiments (MFSE) - Mexican Gow't Cetaway Special: G479 - Primary Surface Mirrors/Metallic Crys (Telesat, Canada)
STS 61-C (Columbia) Mission Dura	Jan 12, 1986 (KSC) ition: 146 hrs	Jan 18, (KSC) 3 min 51	Plt: MS: sec MS: MS: PS:	Robert L. Gibson (USN) C. F. Bolden, Jr. (USMC) F R. Chang-Diaz (PhD) Geotrge D. Nelson (PhD) Steven A. Hawley (PhD) Robert J. Cenker (RCA) C. William Nelson (Cong)	Deployed: SATCOM KU-1/PAM-D2 - RCA Materials Science Lab (MSL-2) - NASA Hitchhiker G-1 (HRG-1) - NASA GAS Bridge Assembly (12 GAS cans) - NASA Getaway Special (G-470) - Dept. of Agriculture Infrared Imaging Experiment (RR-IE) - NASA Initial Blood Storage Experiment (IBSE) - NASA Comet Halley Active Monitoring Program (CHAMP) - NASA Shuttle Student Involvement Program (SSIP) - NASA
STS 51-L (Challenger) Mission Dura		Jan 28,	Plt: MS: MS: MS: PS:	Prancis R. Scobee (USAF) Michael J. Smith (USN) Judith A. Resnik (PhD) Ellison S. Onizuka (USAF) Ronald E. McNair (PhD) Gregory Jarvis (Hughes) S. Christa McAuliffe (Teacher)	TURS-B/IUS - NASA/Spacecom Spartan-Halley/MPESS - NASA/U. of Col. Comet Halley Active Monitor Prog (CHAMP) - NASA/Lockheed/U.Col. Fluid Dynamics Experiment (PDE) - Hughes Radiation Monitoring Experiment (RME) - NASA Phase Partitioning Experiment (PPE) - NASA Teacher in Space Project (TISS) - NASA Shuttle Student Involvement Program (SSIP) - NASA
					B-3

LAUNCH DATE	LANDING DATE	CREW	PAYLOADS AND EXPERIMENTS
Sep 29, 1988 (KSC)	Oct 3, 1988 (EAFB)	Cdr. Frederick H. Hauck Plt: Richard O. Covey MS: John M. Lounge MS: David C. Hilmers MS: George D. Nelson	Deployed: TDRS-C - TRN CONTEL/NASA Inertial Upper Stage (IUS) - Boeing/USAF/NASA Orbiter Exp Auto Support Ins Sys (OASIS) - Lockheed/USAF/NASA Automated Directional Solidification Furnace (ASDF) - NASA Aggregation of Red Blood Cells (ARC) - NASA
uration: 97)	hrs 00 min 11	sec	Earth Limb Radiance Experiment (ELRAD) - NASA Isoelectric Focusing Experiment (IEF) - NASA Infrared Communication Flight Exp (IRCFE) - Wilton Ind./NASA Mesoscale Lightning Exp (MLE) - NASA Protein Crystal Growth (PGG) - U of Alabama/NASA Phased Partitioning Experiment (PPE) - NASA Physical Vapor Transport of Organic Solids (PVTOS) - 3M/NASA Shuttle Student Involvement Projects: SSIP 82-4 - MDAC/Lloyd Bruce SSIP 82-5 - Union College/R. Caboli
Dec 2, 1988 (KSC)	Dec 6, 1988 (EAFB)	Cdr: Robert L. Gibson Plt: Guy S. Gardner MS: Richard M. Mullane MS: Jerry L. Ross MS: William M. Shepherd	Deployed: DOD Payload - DOD
	Sep 29, 1988 (KSC)	Sep 29, 1988 Oct 3, 1988 (KSC) (CAFB) Dec 2, 1988 Dec 6, 1988	Sep 29, 1988 Oct 3, 1988 Cdr. Frederick H. Hauck (KSC) (EAFB) Plt: Richard O. Covey MS: John M. Lounge MS: John M. Lounge MS: George D. Nelson Dec 2, 1988 Dec 6, 1988 Cdr: Robert L. Gibson (KSC) (EAFB) Plt: Guy S. Cardner MS: Richard M. Mullane MS: Jerry L. Robss

FLIGHT	LAUNCH DATE	LANDING DATE	CREW	PAYLOADS AND EXPERIMENTS
STS-29 (Discovey)	Mar 13, 1989 (KSC)	Mar 17, 1989 (EAFB)	Cdr: Michael L. Coats Plt: John E. Blaha	Deployed: TDRS-D - TRW/CONTEL/NASA
Mission Durat	ion 119 hrs 3	38 min 52 sec	MS: James P. Bagian Ms:James F. Buchli MS: Robert C. Springer	Inertial Upper Stage (IUS) - Boeing/USAF/NASA Orbier Experiments Autonomous Supporting Instrumentation System (OASIS-I) - Lockheed/ISAF/NASA Space Station Heat Pipe Advanced Radiator Element (SHARE) - NASA
				Air Force Maui Optial System (AMOS) Calibration Test - USAF Chromosome and Plant Cell Division in Space Experiment (CHROMEX) - NASA
				IMAX Corporation Camera Experiment (IMAX) - IMAX of Canada/NASA Protein Crystal Growth (PCG) - Univ. of Alabama/NASA Shuttle Student Involveent Project:
				SSIP-82-8 - Ky, Fried Chicken/John C. Vellinger SSIP-9 - Orthopaedic Hosp./USC/Andrew I, Fras
STS-30 (Atlantis)	May 4, 1989 (KSC)	May 8, 1989 (EAFB)	Cdr: David M. Walker Plt: Ronald J. Grabe MS: Norman E. Thacard	Deployed: Magellan Spacecraft/Inertial Upper Stae (IUS) - Martin/JPL/NASA
Mission Durat	ion 96 hrs 56	5 min 25 sec	MS: Mary L. Cleave MS: Mark C. Lee	Fluid Experiment Apparatus (FEA) - Rockwell/NASA Air Force Maui Optical Site Calibration (AMOS) - USAF
STS-28 (Columbia	Aug 8, 1989 (KSC)	Aug 13, 1989 (EAFB)	Cdr: Brewster H. Shaw Plt: Richard N. Richards	Deployed: DOD Payload - DOD
Mission Durat	ion 121 hrs 0	00 min 09 sec	MS: David C. Leetsma MS: James C. Adamson MS: Mark N. Brown	

Mission Duration: 120 hrs 6 mins 49 secs

L	FLIGHT	LAUNCH	DATE	LANDING	DATE	CREW	PAYLOADS AND EXPERIMENTS
		Oct 18, (KSC)	1989	Oct 23, (EAFB)	1989	Cdr: Donald E. Williams Plt: Michael McCulley MS: Ellen S. Baker MS: Franklin R. Chang-Diaz MS: Shannon W. Lucid	Deployable Payload Galileo/IUS Attached PLB Payload
-	STS-33 (Discovery)		, 1989	Nov 27, (EAFB)	1989	Cdr: Frederick D. Gregory Plt: John E. Blaha MS: Manley L. Carter MS: Franklin Musgrave	DOD Mission

MS: Kathryn C. Thornton

_	FLIGHT	LAUNCH	DATE	LANDING	DATE	CREW	PAYLOADS AND EXPERIMENTS
	STS-32 (Columbia)	Jan 09, (KSC)	1990	Jan 20, (EAFB)	1990	Cdr: Daniel C. Brandenstein Plt: James D. Wetherbee MS: Bonnie J. Dunbar MS: Marsha S. Ivins	Syncom IV-5 Returned Cargo LDEF (deployed on STS-41C)
	Mission Dur	ration:	261 h	rs O min	s 37	MS: G. David Low Secs	Crew Compartment Payload American Flight Echocardiograph (AFE) Air Force Maui Optical Site Calibration Test (AMOS) Characterization of Neurospora Circadian Rhythms (CNC) Fluids Experiment Apparatus IMAX Camera Latitude/Longitude Locator (L3) Mesoscale Lightning Experiment Protein Crystal Growth (PCG) Special Payload Mission Kits Remote Manipulator System (RMS) Gally MADS
	STS-36 (Atlantis)	(KSC)		(DFRF)	1990	Cdr: John D. Creighton Plt: John H. Casper MS: David C. Hilmers MS: Richard M. Mullane MS: Pierre J. Thuot	DOD Mission

			,
FLIGHT LAUNCH	DATE LANDING DATE	CREW	PAYLOADS AND EXPERIMENTS
STS-31 Apr 24, (Discovery) (KSC)	1990 Apr 29, 1990 (EAFB)	Cdr: Loren J. Shriver Plt: Charles F. Bolden MS: Bruce McCandless MS: Steven A. Hawley MS: Kathryn D. Sullivan	Deployable Payload Hubble Space Telescope (HST) Attached PLB Payload IMAX Cargo Bay Camera (ICBC) Ascent Particle Monitor (APM)
Mission Duration:	121 hrs 16 mins 5		Crew Compartment Payload Air Force Maui Optical Site Calibration Test (AMOS) IMAX Camera Investigation into Polymer Membrane Processing (IPM Protein Crystal Growth (PCG) Radiation Monitoring Experiment (RME) Investigation of Arc and Ion Behavior in Microgravi (Student Experiment 82-16) Special Payload Mission Kits Remote Manipulator System (RMS) Gally HST EVA Tools
STS-41 Oct 06, (Discovery) (KSC)	1990 Oct 10, 1990 (DFRF)	Cdr: Richard N. Richards Plt: Robert D. Cabana MS: Bruce E. Melnick MS: William M. Shepherd	Deployable Payload Ulysses Secondary Payloads Shuttle Solar Backscatter Ultraviolet (SSBUV)
Mission Duration:		MS: Thomas D. Akers	Intelsat Solar Array Coupon (ISAC) Air Force Maui Optical Site (AMOS) Chromosome and Plant Cell Division in Space (CHROME Voice Command System (VCS) Solid Surface Combustion Experiment (SSCE)
	ORIGI	NAL PAGE IS	Investigation into Polymer Membrane Processing (IPM Physiological Systems Experiment (PSE)
	OF 00	YTH IALLO WOL	Physiological Systems Experiment (PSE) Radiation Monitor Experiment (RME-III)

	LANDING DATE	CREW	PAYLOADS AND EXPERIMENTS
KSC)	(KSC)	Cdr: Richard O. Covey Plt: Frank L. Culbertson MS: Robert C. Springer MS: Carl J. Meade MS: Charles D. Gemar	DOD Mission
KSC)	(DFRF)	Cdr: Vance Brand Plt: Guy S. Gardner MS: John M. Lounge MS: Jeffrey A. Hoffman MS: Robert A. R. Parker PS: Ronald A. Parise PS: Samuel T. Durrance	Primary Payload Astro-1 Middeck Experiments Air Force Maui Optical Site (AMOS) Shuttle Amateur Radio Experiment (SAREX-II) Ultraviolet Plume Instrument (UVPI)

During the first decade of planetary flights, NASA spacecraft were dispatched to scan the other inner planets: Mercury, Venus, and Mars. These worlds, and our own, are known as the terrestrial planets because of their similarity to Earth's rocky composition. In 1972, NASA opened the second decade of planetary exploration with the launch of a Jupiter probe. Interest was shifting to the other planets, giant balls of dense gas quite different from the terrestrial worlds we had previously surveyed. By studying the geology of planets and moons, and comparing the differences and similarities, we are learning more about the origin and history of these worlds and the solar system as a whole.

MERCURY

Obtaining the first closeup views of Mercury was the primary objective of the Mariner 10 space probe, launched from Kennedy Space Center in November 1973. After a journey of nearly 5 months, which included a flyby of Venus, the spacecraft passed within 805 kilometers (500 miles) of the solar system's innermost planet on March 29, 1974. Mariner 10 photographs revealed an ancient, heavity cratered surface on Mercury, and showed huge cliffs crisscrossing the planet. These apparently were created when Mercury's interior cooled and shrank, compressing the planet's crust. The cliffs are as high as 2 kilometers (1.2 miles) and as long as 1500 kilometers (932 miles).

Instruments onboard Mariner 10 discovered that the planet has a weak magnetic field and a trace of atmosphere composed chiefly of argon, neon and helium. The spacecraft reported temperatures ranging from 510 degrees Celsius (950 degrees Fahrenheit) on Mercury's sunfit side to -210 degrees Celsius (-346 degrees Fahrenheit) on the dark side.

It takes 59 Earth days for Mercury to make a single rotation. It spins at a rate of about 10 kilometers (about 6 miles) per hour, measured at the equator. Mercury appears to have a crust of light silicate rock. Scientists believe it has a heavy iron-rich core that makes up about half of its volume.

Mariner 10 made two additional flybys of Mercury - on September 21, 1974 and March 6, 1975.

<u>YENUS</u>

The Mariner 2 space probe, launched August 27, 1962, was the first of more than a dozen successful American and Soviet missions to study the mysterious planet. Mariner 2 passed within 34,762 kilometers (21,600 miles) of Venus on December 14, 1962, and became the first spacecraft to scan another planet. Its instruments made measurements of Venus for 42 minutes. Mariner 5, launched in June 1967, flew within 4,023 kilometers (2,500 miles) of Venus. Its instruments measured the planer's magnetic field, ionosphere, radiation belts and temperatures. On its way to Mercury, Mariner 10 flew by Venus and returned ultraviolet pictures showing cloud circulation patterns in the Venusian atmosphere.

On December 4, 1978 the Pioneer Venus Orbiter became the first spacecraft placed in orbit around the planet. Five days later, the Pioneer Venus Multiprobe entered the Venusian atmosphere at different locations above the planet. Four independent probes and a main body radioed data about the planet's atmosphere during this descent toward the surface.

Approximately 97 percent of Verus' atmosphere is carbon dioxide. Verus' atmosphere acts like a greenhouse, permitting solar radiation to reach the surface but trapping the heat which would ordinarily be radiated back into space. As a result, surface temperatures are 482 degrees Celsius (900 degrees Fahrenheit), hot enough to melt lead.

Radar aboard the Pioneer Venus orbiter provided a means of seeing through Venus' dense cloud cover and determining surface features over much of the planet. Among the features determined are two continent-like highland areas, one located in the equatorial region and the other to the north.

Venus' predominant weather pattern is a highspeed circulation of clouds which are made up of sulfuric acid. These speeds reach as high as 362 kilometers (225 miles) per hour. The circulation is in the same direction - east to west - as Venus' slow retrograde rotation.

NASA's Pioneer-Venus orbiter continues to circle the planet. It is expected to send data about Venus to Earth for years to come.

In May 1999 the space shuttle deployed the Magellan spacecraft, which is currently mapping the surface of Venus. Magellan returned radar images in 1990 that showed geological features unlike anything seen on Earth. One area scientists called crater farms; another area was covered by a checkered pattern of closely spaced fault lines running at right angles. Most intriguing were indications that Venus still may be geologically active. Magellan will continue to map the entire surface of Venus and observe evidence of volcaric eruptions into 1991.

EARTH

From our journeys into space, we have learned much about our home planet - Earth. The first American satellite, Explorer 1, was launched from Cape Canaveral on January 31, 1958. It discovered an intense realation zone, now called the Van Allen Radiation Region, surrounding Earth. Since then, other research satellites have revealed that our planet's magnetic field is distorted into a teardrop shape by the solar wind - the stream of charged particles continuously ejected from the Sun. Earth's magnetic field does not fade off into space but has definite boundaries. Our upper atmosphere, once believed catm and quiescent, seethes with activity, swelling by day and contracting by night. It is affected by the changes in solar activity and contributes to weather and climate on Earth.

Satellites positioned about 35,000 kilometers (22,000 miles) out in space play a major role every day in local weather forecasting. Their watchful electronic eyes warm us of dangerous storms. Continuous global monitoring provides a vast amount of useful data, as well as contributing to a better understanding of Earth's complex weather machine. From their unique vantage point in space, spacecraft can survey the Earth's resources and monitor the planet's heath. As viewed from space, Earth's distinguishing characteristics are its blue waters and white clouds. Enveloped by an ocean of air consisting of 78 percent nitrogen and 21 percent oxygen, the planet is the only one in our solar system known to harbor life. Circling the Sun at an average distance of 149 million kilometers (93 million miles), Earth is the third planet from the Sun and the fifth largost in the solar system.

its rapid spin and molten nickel-iron core give rise to an extensive magnetic field, which, coupled with the atmosphere, shields us from nearly all of the harmful radiation coming from the Sun and other stars. Most meteors burn up in Earth's atmosphere before they can strike the surface. The planet's active geological processes have left no evidence of the ancient petting it almost certainly received soon after it was formed.

MOON

The Apollo program left us a large legacy of funar materials and data. Six two-man crews landed on and explored the funar surface between 1969 and 1972. They returned a collection of rocks and soil weighing 382 kilograms (842 pounds) and consisting of more than 2,000 separate samples. From this material and other studies, scientists have constructed a history of the Moon dating back to its infancy. Rocks collected from the funar highlands date about 4.0 to 4.3 billion years old. It's believed that the solar system formed about 4.6 billion years ago. The first few million years of the Mooris existence were so violent that few traces of this period remain. As a moiten outer layer gradually cooled and solidified into different kinds of rock, the Moon was bombarded by huge asteroids and smaller objects and their collisions with the Moon created huge basins hundreds of kilometers across.

This catastrophic bombardment died away about 4 billion years ago, leaving the lunar highlands covered with huge overlapping craters and a deep layer of shattered and broken rock. Heat produced by the decay of radioactive elements began to meit the inside of the Moon at depits of about 200 kilometers (124 miles) below its surface. Then, from about 3.8 to 3.1 billion years ago, great floods of lava rose from inside the Moon and poured out over its surface, filling in the large impact basins to form the dark parts of the Moon - called maria or seas. Exportations show that there has been no significant volcanic activity on the Moon for more than 3 billion years and, since then, the lunar surface has been altered only by the rare impacts of large meteorites and by the the atomic particles of the Sun and stars.

MARS

Mariner 4, launched in late 1964, flew past Mars on July 14, 1965, to within 9,656 kilometers (6,000 miles) of the surface. Returning 22 close-up pictures, it found no evidence of artificial canals or lowing water. Mariners 6 and 7 followed during the summer of 1969, returning about 200 pictures showing a diversity of surface conditions. Earlier atmospheric data were contimed and refined. On May 30, 1971, Mariner 9 was launched on a mission to study the Martian surface from orbit. It arrived five and a half months after littleft, only to find Mars in the midst of a planet-wide dust storm which made surface photography impossible for several weeks. After the storm cleared, Mariner 9 began returning the first of 7,000 pictures which revealed previously unknown Martian features, including evidence that rivers, and possibly seas, could have once existed on the planet.

In August and September 1975, two Viking spacecraft, each consisting of an orbiter and a lander were launched on a mission designed to answer several questions, including: is there life on Mars? The results sent back by the two unmanned laboratories, which soft-landed on the planet, were inconclusive. Small samples of the red Martian soil were specially treated in three different experiments designed to detect biological processes. While some of the tests indicated

iological activities were occurring, the same results could be explained by the planet's soil hemistry. There was a notable absence of evidence that organic molecules exist on Mars.

hotos sent from the Plain of Chryse, where Viking 1 landed on July 20, 1976, show a bleak, usly red landscape. A panorama returned by the robot explorer pictures a gently rolling plain, thered with rocks and graced by rippled sand dunes. Fine red dust from the Martian soil gives he sky a pinkish hue. Viking 2 landed on the Plain of Utopia, arriving several weeks after its win. The landscape it viewed is more rolling than that seen by Viking 1, and there are no dunes isible.

loth Viking landers became weather stations, recording wind velocity and direction, amperatures, and atmospheric pressure. As days became weeks, the Martian weather hanged little. The highest atmospheric temperature recorded by either lander was -21 degrees lentigrade (-17 degrees Fahrenheit) at the Viking 1 site in midsummer. The lowest temperature 124 degrees Celsius (-19 degrees Fahrenheit), was recorded at the more northerly Viking 2 site uring winter. Wind speeds near hurricane force were measured by both weather stations uring global dust storms. Viking 2 photographed light patches of frost, probably water ice, uring its second winter on Mars.

/1000 as much water as Earth's but even this small amount can condense out and form clouds inlich ride high in the atmosphere, or swirl around the slopes of towering Martian volcances, ocal patches of early morning fog can form in valleys. There is evidence that in the past, a enser Martian atmosphere may have allowed water to flow on the planet. Physical features losely resembling shorelines, gorpes, riverbeds and islands suggest that great rivers once xisted on the planet. Mars has two small, irregularly shaped moons, Phobos and Deimos, with noiem, cratered surfaces.

he Martian atmosphere is primarily carbon dioxide. Present in small percentages are nitrogen.

xygen and argon, with trace amounts of krygton and xenon. Martian air contains only about

Il four Viking spacecraft, two orbiters and two landers, exceeded by large margins their design letime of 90 days. The four spacecraft were launched in 1975 and began Mars operation in 976. The first to fall was Orbiter 2 which stopped operating on July 24, 1978 when its attitude ontrol gas was depleted because of a leak. Lander 2 operated until April 12, 1980 when it was hut down due to battery degeneration. Orbiter 1 operated until August 7, 1980, when it too used to last of its aftitude control gas. Lander 1 ceased operating on November 13, 1983.

JUPITER

In March 1972, NASA dispatched the first of four space probes to survey the colossal worlds of gas and their moons of rock and ice. For each probe, Jupiter was the first port of call.

Pioneer 10 launched March 2, 1972, was the first spacecraft to penetrate the Asteroid Belt and travel to the outer regions of the solar system. In December 1973, if returned the first closeup pictures of Jupiter as it flew within 132,252 kilometers (81,168 miles) of the planet's banded cloud tops. Pioneer 11 followed a year later. Voyagers 1 and 2 were launched in 1977 and returned spectacular photographs of Jupiter and its 16 satellites during flybys in 1979.

Ouring their visits these exploring spacecraft found Jupiter to be a whirling ball of liquid hydrogen and helium. It contains small amounts of methane, ammonla, ethane, acetylene, phosphene, germanium tetrahydride and possibly hydrogen cyanide. Jupiter's clouds also contain ammonia and water crystals. Scientists believe it likely that between the planet's frigid cloud tops and the warmer hydrogen ocean that lies below, there are regions where methane, ammonia, water and other gases could react to form organic molecules. Because of Jupiter's atmospheric dynamics, however, these compounds, if they exist, are probably short lived.

The Great Red Spot, observed for centuries through Earth-based telescopes, is a tremendous atmospheric storm, similar to Earth's hurricanes, which rotates counterclockwise. Our space probes detected lightning in Jupiter's upper atmosphere and observed auroral emissions in the Jovian polar regions similar to Earth's northern lights. Voyager 1 returned the first evidence of a ring encircling Jupiter. Photographs returned by the spacecraft and its companion Voyager 2 showed a narrow ring too faint to be seen by Earth's telescopes.

Largest of the solar system's planets, Jupiter rotates at a dizzying pace, once every 9 hours 55 minutes 30 seconds. It takes the massive planet almost 12 Earth years to complete a journey around the Sun. The planet is something of a mini solar system, with 16 known moons orbiting above its clouds.

One of the most remarkable findings of the Voyager mission was the discovery of active volcances on the Gaillean moon lo. It was the first time volcance emptions were observed on a world other than Earth. The Voyager cameras identified at least eight active volcances on the moon. Plumes extended as far as 250 kilometers (155 miles) above the moon's surface. The

satellite's pizza-colored surface, rich in hues of oranges and yellow, is probably the result of sulfur-rich materials which have been brought to the surface by volcanic activity. Europa, approximately the same size as the Earth's Moon, is the brightest Galilean satellite. Its surface displays a complex array of streaks that indicate the crust has been fractured.

Like Europa, the other two Galiliean moons (Ganymede and Callisto) are frozen worlds of ice and rock. Ganymede is the largest satellite in the solar system, larger than the planet Mercury. It is composed of about 50 percent water or ice and the rest rock. Callisto, only slightly smaller than Ganymede, has the lowest density of any Galilean satellite, implying that it has large amounts of water in its composition. In October 1989, Galileo began its round about trip to Jupiter, where it dropped a probe into the Jovian atmosphere in the first direct study of the solar system's largest planet.

SATURN

No planet in the solar system is adored like Saturn. Its exquisite ring system is unrivalled. Like Jupiter, Saturn is composed mostly of hydrogen. But in contrast to the vivid colors and wild turbulence found in Jupiter's clouds, Saturn has a more subtle, butterscotch hue and its markings are often muted by high altitude haze.

Three American spacecraft have visited Saturn. Pioneer 11 zipped by the planet and its moon Titan in 1979, returning the first loseup pictures. Voyager 1 followed in November 1980, sending back breathtaking photographs that revealed for the first time the complexities of Saturn's ring system and moons. Voyager 2 flew by the planet and its moons in August 1981.

The spacecraft discovered that there are actually thousands of ringlets encircling Saturn. These rings are composed of countless low-density particles orbiting individually around the equator at progressive distances from the planet's cloud tops. Analysis of radio waves passing through the rings showed that the particles vary widely in size, ranging from dust to boulders. Most of the material is ice and frosted rock.

Radio emissions quite similar to the static heard on an AM car radio during an electrical storm were detected by the Voyager spacecraft. These emissions are typical of lightning but are believed to be coming from the planet's ring system rather than its atmosphere. No lightning was observed in Saturn's atmosphere. But as they had at Jupiter, the Voyager spacecraft saw a version of Earth's northern and southern lights near Saturn's poles. In 1990 the Hubble Space

Telescope took several hundred pictures of Saturn showing white spots on the planet growing into an immense storm that spread around the planet's equator.

The Voyager probes also studied Saturn's moon, detected undiscovered moons, found some that share the same orbit, and determined that Tifan has a nitrogen-based atmosphere. A lat constituent of Titan's atmosphere is methane. The surface temperature of Titan appears to b around the "triple" point of methane, meaning methane may be present on Titan in all three states: liquid, gaseous, and solid (ice). Methane, therefore, may play the same role on Titan that water olavs on Earth.

Although the spacecraft's cameras could not peer through the dense haze that obscures the surface of Titan, measurements indicate Titan may be a place where rain or snow falls from methane clouds and rivers of methane cut through methane diaciers.

Continuing photochemistry due to solar radiation may be converting Titan's methane to ethan acetylene, ethylene, and, in combination with nitrogen, hydrogen cyanide. The latter is a building block to amino acids. Titan's temperature is believed to be too low to permit progres beyond this stage of organic chemistry. However, this condition may be similar to that which occurred in the atmosphere of the primeval Earth between 3 and 4 billion years ago.

<u>URANUS</u>

Four and a half years after visiting Saturn, the Voyager 2 spacecraft completed the first close observation of the Uranian system.

Uranus, third largest of the planets, is the odd-ball of the solar system. Unlike the other plans it lies toped on its side with its north and south poles atternately facing the Sun during its 84-year swing around the solar system. During Voyager's flyby, the south pole faced the Sui

Voyager found that the planet's magnetic field does not follow the usual north-south axis four on the other planets. Instead, it is tilted 60 degrees, and offset from the planet's center

Uranus's atmosphere consists mainly of hydrogen, with about 12 percent helium and small amounts of ammonia, methane and water vapor. Wind speeds range up to 200 meters per second (447 mph), and blow from the west instead of the east as previously expected. Temperatures near the cloud tops measure -200 degrees Celsius (-329 degrees Fahrenheit)

The sunlit south pote is shrouded in a kind of photo-chemical "smog" believed to be a combination of acetylene, ethane and other sunlight-generated chemicals. Surrounding the planet's atmosphere and extending thousands of kilometers into space is a mysterious ultraviolet sheen called and "electroglow." About 8,000 kilometers (5,000 miles) below Uranus's cloud tops there is thought to be a scakling ocean of water and dissolved ammonia some 10,000 kilometers (6,000 miles) deep. Beneath this ocean is an earth-sized molten core of heavier materials.

Voyager discovered 10 new moons orbiting Uranus, each about 40-170 kilometers [24-102 miles) in diameter. The planets five known moons, Titania, Ariel, Miranda, Umbriel and Oberon, range in size from 480-1600 kilometers (300-1000 miles) across. The half-ice, half-rock spheres are a geological showcase, featuring 12-mile-high mountains, jagged diffs and canyons, crater-pocked plains and winding valleys possibly carved out by glaciers. The planet was lihought to have 9 dark rings; Voyager found 11. In contrast to Satum's rings, which are composed of bright grain-sized particles, Uranus's rings are made up of boulder-sized chunks.

NEPTUNE

Voyager 2 completed its Grand Tour of the solar system on August 25, 1989, when it swept to within about 1,280 kilometers (800 miles) of Neptune. The planet has two known moons, Nereid and Triton. Voyager 2's close-up view of Neptune showed a bright blue planet with winds up to 1,500 miles per hour and six previously unknown moons. It was discovered that Triton, the coldest known body in the solar system, is one of the geologically most active with four ice rolcances. Neptune is the fourth largest of the planets and is believed to be a twin of Uranus, and is 2,8 billion miles from Earth.

PLUTO

Puto is the most distant of the planets, yet the eccentricity of its orbit periodically carries it inside hat of Neptune's. The orbit also is highly inclined, well above and below the orbital plane of where planets. Pluto appears to be little more than a celestial snowbail. Its diameter is calculated to be between 3,000 and 3,500 kilometers (1,864 and 2,175 miles), about the same as Earth's noon. Ground-based observations indicate that its surface is covered with methane ice. The planet has one known satellite, Charon. There are no plans to send a probe to Puto.

THE SPACE EXPLORATION INITIATIVE

President Bush has a challenging vision of America's future in space — A Space Exploration Initiative (SEI) that will enable the American people to journey together toward a permanent human presence beyond Earth orbit. The SEI will take us back to the Moon, his time to stay, and then to Mars. By first establishing a permanent base on the Moon, we will learn about living and working on another planetary surface, under harsh conditions. Then we will learn about both robotic and human missions to Mars to thoroughly study the planet, and especially to search for signs of life — both past and present.

By advancing our technological competitiveness, ensuring our leadership position in the global marketplace, and utilimately improving our balance of trade through promoting innovative high-technology research and development, the SEI will help achieve our national goals.

The SEI will advance science as well. The Moon is an ideal location for astronomical observations, planetary geology, and life sciences research. On Mars, scientists will be able to learn more about planetary evolution, climate change, and the origin of life. Whether life has ever evolved on Mars is a major scientific question that cannot be answered until human crews thoroughly search the planet for any signs of life forms. By learning more about the Moon and Mars, scientists will better understand the evolution of our solar system and the history and nature of our own planet.

The SEI will draw on the collective expertise of government, academia, and industry. New ideas are being solicited from private companies and academic institutions for advanced technologies ranging from propulsion to energy production to waste recycling and life support. An outreach program is now underway to solicit bold new concepts that may enable quicker, cheaper, and better missions to the Moon and Mars. All federally funded research that could contribute to the SEI is being reviewed. By means of an organized synthesis process, the innovative ideas collected through the outreach program will be analyzed, alternative architectures defined, technologies identified for demonstration, and early milestones identified.

The SEI provides an opportunity for the American people to work together toward a national goal, landing men and women on Mars no later than 2019, sharing the excitement of expanding human presence in space, learning more about our solar system and our own planet as we move beyond Earth orbit, and reaping the benefits of space technology for all of humankind.

USA Planetary Space Flights

- 1					
١	SPACECRAFT	MISSION	LAUNCH DATE	ARRIVAL DATE	REMARKS
I	Mariner 1	Venus Flyby	Jul 22, 1962		Destroyed shortly after launch when vehicle veered off course.
I	Mariner 2	Venus Flyby	Aug 27, 1962	Dec 14, 1962	First successful planetary flyby. Provided instrument scanning data. Entered solar orbit.
I	Mariner 3	Mars Flyby	Nov 5, 1964		Shroud failed to jettison properly; Sun and Canpous not acquired; did not encounter Mars. Entered solar orbit.
ı	Mariner 4	Mars Flyby	Nov 28, 1964	Jul 14, 1965	Provided first close-range pictures of Martian surface. Entered solar orbit.
	Mariner 5	Venus Flyby	Jun 14, 1967	Oct 19, 1967	Advanced instruments returned data on Venus' surface temperature, atmosphere, and magnetic field environment. Entered solar orbit.
Į	Mariner 6	Mars Flyby	Feb 24, 1969	Jul 31, 1969	Provided high-resolution photos of Martian surface, concentrating on equatorial region. Entered solar orbit.
ı	Mariner 7	Mars Flyby	Mar 27, 1969	Aug 5, 1969	Provided high-resolution photos of Martian surface, concentrating on southern hemisphere. Entered solar orbit.
١	Mariner 8	Mars Orbiter	May 8, 1971		Centaur stage malfunctioned shortly after launch.
	Mariner 9	Mars Orbiter	May 30, 1971	Nov 18, 1971	Mapped the whole planet; provided detailed photos of Phobos and Deimos. Craft inoperable in Mars orbit.
	Pioneer 10	Jupiter Flyby	Mar 2, 1972	Dec 3, 1973	First spacecraft to penetrate the Asteroid Belt. Obtained first close-up images of Jupiter, investigated its magnetosphere, atmosphere and internal structure. Still operating in the outer Solar System.
	Pioneer 11	Jupiter/Saturn Flyby	Apr 5, 1973	Dec 2, 1974 (Jupiter) Sep 1, 1979 (Saturn)	The successful encounter of Jupiter by Pioneer 10 permitted Pioneer 11 to be retargeted in flight to fly by Jupiter and encounter Saturn. Still operating in the outer Solar System.

JSA Planetary Space Flights

MISSION	LAUNCH DATE	ARRIVAL DATE	REMARKS
Venus/Mercury Flyby	Nov 3, 1973		First dual-planet mission. Used gravity of Venus to attain Mercury encounter. Provided first ultraviolet photographs of Venus; returned close-up photographs and detailed data of Mercury. Transmitter was turned off March 24, 1975, when attitude control gas was depleted. Craft inoperable in solar orbit.
Mars Orbiter and Lander	Aug 20, 1975	Jul 19, 1976 (in orbit) Jul 20, 1976 (landed)	First U.S. attempt to soft land a spacecraft on another planet. Landed on the Plain of Chryse. Photographs showed an orange-red plain strewn with rocks and sand dunes. Orbiter 1 operated until August 7, 1980, when it used the last of its attitude control gas. Lander 1 ceased operating on November 13, 1983.
Mars Orbiter and Lander	Sep 9, 1975	Aug 7, 1976 (in orbit) Sep 3, 1976 (landed)	Landed on the Plain of Utopia. Discovered water frost on the surface at the end of the Martian winter. Orbiter 2 stopped operating on July 24, 1978, when its attitude control gas was depleted because of a leak. Lander 2 operated until April 12, 1980, when it was shut down due to battery degeneration.
Tour of Jupiter and Saturn	Sep 5, 1977	Mar 5, 1979 (Jupiter) Nov 12, 1980 (Saturn)	Investigated the Jupiter and Saturn planetary systems. Returned spectacular photographs and provided evidence of a ring encircling Jupiter. Continues to return data enroute toward interstellar space.
Tour of the Outer Planets	Aug 20, 1977		Investigated the Jupiter, Saturn and Uranus planetary systems. Provided first close-up photographs of Uranus and its moons. Used gravity-assist at Uranus to continue on to Neptune. Swept within 1280 km of Neptune on August 25, 1989. The spacecraft will continue into interstellar space.
Venus Orbiter	May 20, 1978	Dec 4, 1978	Mapped Venus' surface by radar, imaged its cloud systems, explored its magnetic environment and observed interactions of the solar wind with a planet that has no intrinsic magnetic field. Provided radar altimetry maps for nearly all of the surface of Venus, resolving features down to about 50 miles across. Still operating in orbit around Venus.
	Venus/Mercury Flyby Mars Orbiter and Lander Mars Orbiter and Lander Tour of Jupiter and Saturn Tour of the Outer Planets	Venus/Mercury Flyby Mars Orbiter and Lander Mars Orbiter Sep 9, 1975 and Lander Tour of Jupiter and Saturn Tour of the Outer Planets Nov 3, 1973 Aug 20, 1975 Sep 9, 1975 Aug 20, 1977	Venus/Mercury Nov 3, 1973 Feb 5, 1974 (Venus) Mar 29, 1974 (Mercury) Sep 21, 1974 (Mercury) Mar 16, 1975 (Mercury) Mar 16, 1975 (Mercury) Mar 16, 1975 (Mercury) Mar 16, 1976 (in orbit) Jul 20, 1976 (landed)

USA Planetary Space Flights

SPACECRAFT	MISSION	LAUNCH DATE	ARRIVAL DATE	REMARKS
Pioneer Venus 2	Venus Probe	Aug 8, 1978	Dec 9, 1978	Dispatched heat-resisting probes to penetrate the atmosphere at widely separated locations and measured temperature, pressure, and density down to the planet's surface. Probes impacted on the surface.
Magelian	Venus Radar Mapping	May 4, 1989	Aug 1990	Returned radar images that showed geological features unlike anything seen on Earth. One area scientists called crater farms; another area was covered by a checkered pattern of closely spaced fault lines running at right angles. Most intriguing were indications that Venus still may be geologically active. Will continue to map the entire surface and observe evidence of volcanic eruption into 1991.
Galileo	Jupiter Orbiter and Probe	Oct 18, 1989	Dec 8, 1990 (Earth) Feb 1991 (Venus)	A sophisticated two-part spacecraft; an Orbiter will be inserted into orbit around Jupiter to remotely sense the planet, its satellites and the Jovian magnetosphere and a Probe will descent into the atmosphere of Jupiter to make in situ measurements of its nature. Galileo flew by Venus, conducting the first infrared imagery and spectroscopy below the planet's cloud deck and used the Earth's gravity to speed it on its way to Jupiter.

JSSR Planetary Space Flights

MISSION	LAUNCH DATE		
	LAUNCH DATE	ARRIVAL DATE	REMARKS
Venus Probe	Feb 12, 1961		First Soviet planetary flight; launched from Sputnik 8. Radio contact lost during flight; not operating when it passed Venus.
Venus Probe	Aug 25, 1962		Unsuccessful Venus attempt.
Venus Probe	Sep 1, 1962		Unsuccessful Venus attempt.
Venus Probe	Sep 12, 1962		Unsuccessful Venus attempt.
Mars Probe	Oct 24, 1962		Spacecraft and final rocket stage blew up when accelerated to escape velocity.
Mars Probe	Nov 1, 1962		Contact was lost when the spacecraft antenna could no longer be pointed towards $\ensuremath{Earth.}$
Mars Probe	Nov 4, 1962		Disintegrated during attempt at Mars trajectory from Earth parking orbit.
Venus Probe	Apr 2, 1964		Communications lost; spacecraft went into solar orbit.
Mars Probe	Nov 30, 1964		Passed by Mars; failed to return data; went into solar orbit.
Venus Probe	Nov 12, 1965	Feb 27, 1966	Passed by Venus, but failed to return data.
Venus Probe	Nov 16, 1965		Impacted on Venus, becoming the first spacecraft to reach another planet. Failed to return data. $$
Venus Probe	Jun 12, 1967		Descent capsule transmitted data during parachute descent. Sent measurements of pressure, density, and chemical composition of the atmosphere before transmissions ceased.
Venus Probe	Jan 5, 1969		Entry velocity was reduced by atmospheric braking before deployment of main parachute. Capsule entered the atmosphere on the planet's dark side; transmitted data for 53 minutes while traveling into the atmosphere before being crushed.
, , ,	Venus Probe Venus Probe Venus Probe Mars Probe Mars Probe Mars Probe Venus Probe Venus Probe Venus Probe Venus Probe Venus Probe	Venus Probe Aug 25, 1962 Venus Probe Sep 1, 1962 Venus Probe Sep 12, 1962 Venus Probe Oct 24, 1962 Mars Probe Nov 1, 1962 Mars Probe Nov 4, 1962 Venus Probe Apr 2, 1964 Mars Probe Nov 30, 1964 Venus Probe Nov 12, 1965 Venus Probe Nov 16, 1965 Venus Probe Jun 12, 1967	Venus Probe Aug 25, 1962 Venus Probe Sep 1, 1962 Venus Probe Sep 12, 1962 Venus Probe Oct 24, 1962 Mars Probe Nov 1, 1962 Mars Probe Nov 4, 1962 Venus Probe Apr 2, 1964 Mars Probe Nov 30, 1964 Venus Probe Nov 12, 1965 Feb 27, 1966 Venus Probe Nov 16, 1965 Mar 1, 1966 Venus Probe Jun 12, 1967 Oct 18, 1967 Venus Probe Jan 5, 1969 Mar 16, 1969

USSR Planetary Space Flights

MISSION	SPACECRAFT	LAUNCH DATE	ARRIVAL DATE	REMARKS
Venus Probe	Venera 6	Jan 10, 1969	Mar 17, 1969	Descent capsule entered the atmosphere on the planet's dark side; transmitted data for 51 minutes while traveling into the atmosphere before being crushed.
Venus Lander	Venera 7	Aug 17, 1970	Dec 15, 1970	Entry velocity was reduced aerodynamically before parachute deployed. After fast descent through upper layers, the parachute canopy opened fully, slowing descent to allow fuller study of lower layers. Gradually increasing temperatures were transmitted. Returned data for 23 minutes after landing.
Venus Lander	Cosmos 359	Aug 22, 1970		Unsuccessful Venus attempt; failed to achieve escape velocity.
. Mars Probe	Cosmos 419	May 10, 1971		First use of Proton launcher for a planetary mission. Placed in Earth orbit but failed to separate from fourth stage.
Mars Orbiter and Lander	Mars 2	May 19, 1971	Nov 27, 1971	Landing capsule separated from orbiter and made first, unsuccessful attempt to soft land. Lander carried USSR pennant. Orbiter continued to transmit data.
Mars Orbiter and Lander	Mars 3	May 28, 1971	Dec 2, 1971	Lander separated from parent capsule and landed in the southern hemisphere. It camera transmitted small panoramic view. Orbiter transmitted for 3 months
Venus Lander	Venera 8	Mar 27, 1972	Jul 22, 1972	As the spacecraft entered the upper atmosphere, the descent module separates while the service module burned up in the atmosphere. Entry speed was reduced by aerodynamic braking before parachute deployment. During descent, a refrigeration system was used to offset high temperatures. Returned data or temperature, pressure, light levels and descent rates. Transmitted from surface for about 1 hour.
Venus Lander	Cosmos 482	Mar 31, 1972		Unsuccessful Venus probe; escape stage misfired leaving craft in Earth orbit.
Mars Orbiters and Landers	Mars 4 & 5	Jul 21, 1973 Jul 25, 1973	Feb 10, 1974 Feb 12, 1974	Pair of spacecraft launched to Mars. Mars 4 retro rockets failed to fire as it passed the planet, it returned one swath of pictures and some radio occultation data. Mars 5 was successfully placed in orbit, but only operated only a few days. Returned photographs showing small portion of southern hemisphere.
	mais 4 & 5			

JSSR Planetary Space Flights

SPACECRAFT	MISSION	LAUNCH DATE	ARRIVAL DATE	REMARKS
Mars 6 & 7	Mars Orbiters and Landers	Aug 5, 1973 Aug 9, 1973	Mar 12, 1974 Mar 9, 1974	Second pair of spacecraft launched to Mars. Mars 6 lander module transmitted measurements of the Martian atmosphere during descent. Telemetry ceased abruptly when the landing rockets were fired. Soviet report of Mars 7 said "the descent module was separated from the station because of a hitch in the operation of one of the onboard system, and passed by the planet."
Venera 9	Venus Orbiter and Lander	Jun 8, 1975	Oct 22, 1975	First spacecraft to transmit a picture from the surface of another planet. The lander's signals were transmitted to Earth via the orbiter. Utilized a new parachute system, consisting of six chutes. Signals continued from the surface for nearly 2 hours 53 minutes.
Venera 10	Venus Orbiter and Lander	Jun 14, 1975	Oct 25, 1975	During descent, atmospheric measurements and details of physical and chemical contents were transmitted via orbiter. Transmitted pictures from the surface.
Venera 11	Venus Orbiter and Lander	Sep 9, 1978	Dec 25, 1978	Arrived at Venus 4 days after Venera 12. The two landers took nine samples of the atmosphere at varying heights and confirmed the basic components. Imaging system failed; did not return photos. Operated for 95 minutes.
Venera 12	Venus Orbiter and Lander	Sep 14, 1978	Dec 21, 1978	A transit module was positioned to relay the lander's data from behind the planet. Returned data on atmospheric pressure and components. Did not return photos; imaging system failed. Operated for 110 minutes.
Venera 13	Venus Orbiter and Lander	Oct 31, 1981	Mar 1, 1982	Provided first soil analysis from Venusian surface. Transmitted eight color pictures via orbiter. Measured atmospheric chemical and isotopic composition, electric discharges, and cloud structure. Operated for 127 minutes.
Venera 14	Venus Orbiter and Lander	Nov 4, 1981	Mar 3, 1982	Transmitted details of the atmosphere and clouds during descent; soil sample taken. Operated for 57 minutes.
Venera 15	Venus Orbiter	Jun 2, 1983	Oct 10, 1983	Obtained first high-resolution pictures of polar area. Compiled thermal map of almost entire northern hemisphere.
Venera 16	Venus Orbiter	Jun 7, 1983	Oct 16, 1983	Provided computer mosiac images of a strip of the northern continent. Soviet and U.S. geologists cooperated in studying and interpreting these images.
				B-5

USSR Planetary Space Flights

ĺ	SPACECRAFT	MISSION	LAUNCH DATE	ARRIVAL DATE	REMARKS
	Vega 1 & 2	Venus/Halley	Dec 15, 1984 Dec 21, 1984	Jun 11, 1985 (Venus) Mar 6, 1985 (Halley) Jun 15, 1985 (Venus) Mar 9, 1985 (Halley)	International two-spacecraft project using Venusian gravity to send them on to Halley's Comet after dropping the Venusian probes. The Venus landers studied the atmosphere and acquired a surface soil sample for analysis. Each lander released a helium-filled instrumented balloon to measure cloud properties. The other half of the Vega payloads, carrying cameras and instruments, continued on to encounter Comet Halley.
	Phobos 1 & 2	Mars/Phobos	Jul 7, 1988 Jul 12, 1988	Jan 1989 (Mars) Jan 1989 (Mars)	International two-spacecraft project to study Mars and its moon Phobos. Phobos 1 was disabled by a ground controller error. Phobos 2 entered Mars orbit in January 1989 to study the Martian surface, atmosphere, and magnetic field. On March 27, 1989 communication with Phobos was lost and efforts to contact the craft were discontinued.

JSA Lunar Space Flights

SPACECRAFT	MISSION	LAUNCH DATE	ARRIVAL DATE	REMARKS
Pioneer 1	Lunar Orbit	Oct 11, 1958		Did not achieve lunar trajectory; launch vehicle second and third stages did not separate evenly. Returned data on Van Allen Belt and other phenomena before reentering on October 12, 1958.
Pioneer 2	Lunar Orbit	Nov 8, 1958		Third stage of launch vehicle failed to ignite. Returned data that indicated the Earth's equatorial region has higher flux and energy levels than previously believed. Did not achieve orbit.
Pioneer 3	Lunar Probe	Dec 6, 1958		First stage of launch vehicle cutoff prematurely; transmitted data on dual bands of radiation around Earth. Reentered December 7, 1958
Pioneer 4	Lunar Probe	Mar 3, 1959	Mar 4, 1959	Passed within 37,300 miles from the Moon; returned excellent data on radiation. Entered solar orbit.
Ranger 1	Lunar Probe	Aug 23, 1961		Flight test of lunar spacecraft carrying experiments to collect data on solar plasma, particles, magnetic fields, and cosmic rays. Launch vehicle failed to restart resulting in low Earth orbit. Reentered August 30, 1961.
Ranger 2	Lunar Probe	Nov 18, 1961		Flight test of spacecraft systems for future lunar and interplanetary missions. Launch vehicle altitude control system failed, resulting in low Earth orbit. Reentered November 20, 1961.
Ranger 3	Rough Landing	Jan 26, 1962		Launch vehicle malfunction resulted in spacecraft missing the Moon by 22,862 miles. Spectrometer data on radiation were received. Entered solar orbit.
Ranger 4	Rough Landing	Apr 23, 1962	Apr 26, 1962	Failure of central computer and sequencer system rendered experiments useless. No telemetry received. Impacted on far side of Moon.
Ranger 5	Rough Landing	Oct 18, 1962		Power failure rendered all systems and experiments useless; 4 hours of data received from gamma ray experiment before battery depletion. Passed within 450 miles of Moon; entered solar orbit.

USA Lunar Space Flights

SPACECRAFT	MISSION	LAUNCH DATE	ARRIVAL DATE	REMARKS
Ranger 6	Lunar Photo	Jan 30, 1964	Feb 2, 1964	TV cameras failed; no data returned. Impacted in Sea of Tranquility area.
Ranger 7	Lunar Photo	Jul 28, 1964	Jul 31, 1964	Transmitted high quality photographs, man's first close-up lunar views, before impacting in Sea of Clouds area.
Ranger 8	Lunar Photo	Feb 17, 1965	Feb 20, 1965	Transmitted high quality photographs before impacting in Sea of Tranquility area.
Ranger 9	Lunar Photo	Mar 21, 1965	Mar 24, 1965	Transmitted high quality photographs before impacting in Crater of Alphonsus. Almost 200 pictures were shown live via commercial television in the first TV spectacular from the Moon.
Surveyor 1	Lunar Lander	May 30, 1966	Jun 2, 1966	First U.S. spacecraft to make a fully controlled soft landing on the Moon; landed in the Ocean of Storms area. Returned high quality images, from horizon views of mountains to close-ups of its own mirrors, and selemological data.
Lunar Orbiter 1	Lunar Orbiter	Aug 10, 1966	Aug 14, 1966	Photographed over 2 million square miles of the Moon's surface. Took first photo of Earth from lunar distance. Impacted on the far side of the Moon on October 29, 1966.
Surveyor 2	Lunar Lander	Sep 20, 1966	Sep 22, 1966	Spacecraft crashed onto the lunar surface southeast of crater Copernicus when one of its three vernier engines failed to ignite during a mid-course maneuver.
Lunar Orbiter 2	Lunar Orbiter	Nov 6, 1966	Nov 10, 1966	Photographed landing sites, including Ranger 8 landing point, and surface debris tossed out at impact. Impacted Moon on Oct 11, 1967.
Lunar Orbiter 3	Lunar Orbiter	Feb 4, 1967	Feb 8, 1967	Photographed lunar landing sites; provided gravitational field and lunar environment data. Impacted Moon on October 9, 1967.

ISA Lunar Space Flights

SPACECRAFT	MISSION	LAUNCH DATE	ARRIVAL DATE	REMARKS
Surveyor 3	Lunar Lander	Apr 17, 1967	Apr 19, 1967	Vernier engines failed to cut off as planned and the spacecraft bounced twice before landing in the Ocean of Storms. Returned images, including a picture of the Earth during lunar eclipse, and used a scoop to make the first excavation and bearing test on an extraterrestrial body. Returned data on a soil sample. Visual range of TV cameras was extended by using two flat mirrors.
Lunar Orbiter 4	Lunar Orbiter	May 4, 1967	May 8, 1967	Provided first pictures of the lunar south pole. Impacted the Moon on October 6, 1967.
Surveyor 4	Lunar Lander	Jul 14, 1967	Jul 17, 1967	Radio contact was lost $2\text{-}1/2$ minutes before touchdown when the signal was abruptly lost; impacted in Sinus Medii.
Lunar Orbiter 5	Lunar Orbiter	Aug 1, 1967	Aug 5, 1967	Increased lunar photographic coverage to better than 99%. Used in orbit as a tracking target. Impacted the Moon on January 31, 1968.
Surveyor 5	Lunar Lander	Sep 8, 1967	Sep 10, 1967	Technical problems were successfully solved by tests and maneuvers during flight. Soft-landed in the Sea of Tranquility. Returned images and obtained data on lunar surface radar and thermal reflectivity. Performed first on-site chemical soil analysis.
Surveyor 6	Lunar Lander	Nov 7, 1967	Nov 9, 1967	Soft-landed in the Sinus Medii area. Returned images of the lunar surface, Earth, Jupiter, and several stars. Spacecraft engines were restarted, lifting the spacecraft about 10 feet from the surface and landing it 8 feet from the original site.
Surveyor 7	Lunar Lander	Jan 7, 1968	Jan 9, 1968	Landed near the crater Tycho. Returned some stereo pictures of the surface and of rocks that were of special interest. Provided first observation of artificial light from Earth.

USSR Lunar Space Flights

SPACECRAFT	MISSION	LAUNCH DATE	ARRIVAL DATE	REMARKS
Luna 1	Lunar Impact	Jan 2, 1959		Intended to impact on the Moon; carried instruments for measuring radiation. Passed the Moon and went into solar orbit. This was only Russia's 4th space launch.
Luna 2	Lunar Impact	Sep 12, 1959	Sep 15, 1959	First spacecraft to reach another celestial body. Impacted East of the Sea of Serenity; carried USSR pennants.
Luna 3	Lunar Probe	Oct 4, 1959		First spacecraft to pass behind the Moon and send back pictures of the far side. Equipped with a TV processing and transmission system, returned pictures of far side including a composite full view of the far side. Reentered April 29, 1960.
Sputnik 25	Lunar Probe	Jan 4, 1963		Unsuccessful lunar attempt.
Luna 4	Lunar Orbiter	Apr 2, 1963		Attempt to solve problems of soft landing instrument containers. Contact lost as it passed by the Moon. Barycentric orbit.
Luna 5	Lunar Lander	May 9, 1965	May 12, 1965	First soft landing attempt. Retrorocket malfunctioned; spacecraft impacted in Sea of Clouds.
Luna 6	Lunar Lander	Jun 8, 1965		During midcourse correction maneuver, engine failed to switch off. Spacecraft missed the Moon and went into solar orbit.
Zond 3	Lunar Probe	Jul 18, 1965		Photographed lunar far side and transmitted them to Earth 9 days later. Entered solar orbit.
Luna 7	Lunar Lander	Oct 4, 1965	Oct 7, 1965	Retrorockets fired early; crashed in Ocean of Storms.
Luna 8	Lunar Lander	Dec 3, 1965	Dec 6, 1965	Retrorockets fired late; crashed in Ocean of Storms.
Luna 9	Lunar Lander	Jan 31, 1966	Feb 3, 1966	First successful soft landing; first TV transmission from the lunar surface. Three panoramas of the lunar landscape were transmitted from the eastern edge of the Ocean of Storms.
Cosmos 111	Lunar Probe	Mar 11, 1966		Unsuccessful lunar attempt. Reentered March 16, 1966.

USSR Lunar Space Flights

SPACECRAFT	MISSION	LAUNCH DATE	ARRIVAL DATE	REMARKS
Luna 10	Lunar Orbiter	Mar 31, 1966		First lunar satellite. Studied lunar surface radiation and magnetic field intensity; monitored strength and variation of lunar gravitation. Selenocentric orbit.
Luna 11	Lunar Orbiter	Aug 24, 1966		Second lunar satellite. Data received during 277 orbits. Selenocentric orbit.
Luna 12	Lunar Orbiter	Oct 22, 1966		TV system transmitted large-scale pictures of Sea of Rains and Crater Aristarchus areas. Tested electric motor for Lunokhod's wheels. Selenocentric orbit.
Luna 13	Lunar Lander	Dec 21, 1966	Dec 24, 1966	Soft landed in Ocean of Storms and sent back panoramic views. Two arms were extended to measure soil density and surface radioactivity.
Luna 14	Lunar Orbiter	Apr 7, 1968		Studied gravitational field and "stability of radio signals sent to spacecraft at different locations in respect to the Moon". Made further tests of geared electric motor for Lunokhod's wheels. Selenocentric orbit.
Zond 5	Circumlunar	Sep 15, 1968		First spacecraft to circumnavigate the Moon and return to Earth. Took photographs of the Earth. Capsule was recovered from the Indian Ocean on September 21, 1968. Russia's first sea recovery.
Zond 6	Circumlunar	Nov 10, 1968		Second spacecraft to circumnavigate the Moon and return to Earth "to perfect the automatic functioning of a manned spaceship that will be sent to the Moon". Photographed lunar far side. Reentry made by skip-glide technique; capsule was recovered on land inside the Soviet Union on November 17, 1968.
Luna 15	Lunar Sample Return	Jul 13, 1969	Jul 21, 1969	First lunar sample return attempt. Began descent maneuvers on its 52nd revolution. Spacecraft crashed at the end of a 4 minute descent in the Sea of Crises .
2ond 7	Circumlunar	Aug 7, 1969		Third circumlunar flight. Far side of Moon photographed. Color pictures of Earth and Moon brought back. Reentry by skip-glide technique on August 14, 1969.
Cosmos 300	Lunar Probe	Sep 23, 1969		Unsuccessful lunar attempt. Reentered September 27, 1969.
Cosmos 305	Lunar Probe	Oct 22, 1969		Unsuccessful lunar attempt. Reentered October 24, 1969.
			-	P.50

USSR Lunar Space Flights

LAUNCH DATE

Lunar Sample Return Aug 9, 1976

ARRIVAL DATE

Aug 14, 1976

REMARKS

SPACECRAFT MISSION

			111111111111111111111111111111111111111	
Luna 16	Lunar Sample Return	Sep 12, 1970	Sep 20, 1970	First recovery of lunar soil by an automatic spacecraft. Controlled landing achieved in Sea of Fertility; automatic drilling rig deployed; samples collected from lunar surface and returned to Earth on September 24, 1970.
Zond 8	Circumlunar	Oct 20, 1970		Fourth circumlunar flight. Color pictures taken of Earth and Moon. Russia's second sea recovery occurred on October 27, 1970, in the Indian Ocean.
Luna 17	Lunar Rover	Nov 10, 1970	Nov 17, 1970	Carrying the first Moon robot, soft landed in Sea of Rains. Lunokhod 1, driven by 5-man team on Earth, traveled over the lunar surface for 11 days and transmitted photos and analyzed soil samples.
Luna 18	Lunar Lander	Sep 2, 1971		Attempted to land in Sea of Fertility on September 11, 1971. Communications ceased shortly after command was given to start descent engine.
Luna 19	Lunar Orbiter	Sep 28, 1971		From lunar orbit, studied Moon's gravitational field; transmitted TV pictures of the surface. Selenocentric orbit.
Luna 20	Lunar Sample Return	Feb 14, 1972		Soft landed in Sea of Crises. Used "photo-telemetric device" to relay pictures of the surface. A rotary-percussion drill was used to drill into rock; samples were lifted into a capsule on ascent stage and returned to Earth on February 25, 1972.
Luna 21	Lunar Rover	Jan 8, 1973	Jan 15, 1973	Carrying improved equipment and additional instruments, the second Lunokhod rover soft landed on the edge of the Sea of Serenity. Lunar surface pictures were transmitted and experiments performed. Ceased operating on the 5th lunar day.
Luna 22	Lunar Orbiter	May 29, 1974	Jun 2, 1974	Initially placed in circular lunar orbit; orbit was lowered to obtain TV panoramas of high quality and good resolution. Simultaneously, altimeter readings were taken and chemical rock composition determined by gamma radiation. Selenocentric orbit.
Luna 23	Lunar Sample Return	Oct 28, 1974		Landed on the southern part of the Sea of Crises on November 6, 1974. Device for taking samples damaged; no drilling or sample collection possible.

for analyses.

Landed in Sea of Crises on August 18, 1976. Carried larger soil carrier. Core samples were drilled and returned. U.S. and British scientists were given samples

Luna 24

USA Planetary Space Flights

SPACECRAFT	MISSION	LAUNCH DATE	ARRIVAL DATE	REMARKS
Mariner 1	Venus Flyby	Jul 22, 1962		Destroyed shortly after launch when vehicle veered off course.
Mariner 2	Venus Flyby	Aug 27, 1962	Dec 14, 1962	First successful planetary flyby. Provided instrument scanning data. Entered solar orbit.
Mariner 3	Mars Flyby	Nov 5, 1964		Shroud failed to jettison properly; Sun and Canopus not acquired; did not encounter Mars. Entered solar orbit.
Mariner 4	Mars Flyby	Nov 28, 1964	Jul 14, 1965	Provided first close-range pictures of Martian surface. Entered solar orbit.
Mariner 5	Venus Flyby	Jun 14, 1967	Oct 19, 1967	Advanced instruments returned data on Venus' surface temperature, atmosphere, and magnetic field environment. Entered solar orbit.
Mariner 6	Mars Flyby	Feb 24, 1969	Jul 31, 1969	Provided high-resolution photos of Martian surface, concentrating on equatorial region. Entered solar orbit.
Mariner 7	Mars Flyby	Mar 27, 1969	Aug 5, 1969	Provided high-resolution photos of Martian surface, concentrating on southern hemisphere. Entered solar orbit.
Mariner 8	Mars Orbiter	May 8, 1971		Centaur stage malfunctioned shortly after launch.
Mariner 9	Mars Orbiter	May 30, 1971	Nov 18, 1971	Mapped the whole planet; provided detailed photos of Phobos and Deimos. Craft inoperable in Mars orbit.
Pioneer 10	Jupiter Flyby	Mar 2, 1972	Dec 3, 1973	First spacecraft to penetrate the Asteroid Belt. Obtained first close-up images of Jupiter, investigated its magnetosphere, atmosphere and internal structure. Still operating in the outer Solar System.
	Jupiter/Saturn Flyby	Apr 5, 1973	Dec 2, 1974 (Jupiter) Sep 1, 1979 (Saturn)	The successful encounter of Jupiter by Pioneer 10 permitted Pioneer 11 to be retargeted in flight to fly by Jupiter and encounter Saturn. Still operating in the outer Solar System.

MISSION/	LAUNCH LAU	INCH]	PERIOD CURRENT C	PRITAL PAR	AMETERS (km)	WEIGHT	I REMARKS
Intl Desig		ATE	(Mins.) Apogee	Perigee	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
1958	1 (111111111111111111111111111111111111		(HILLDE/) Apogee	rerigee	The (day)	((////	1956
Pioneer I (U)		: 11	DOWN C	CT 12, 195	8	34.2	Measure magnetic fields around Earth or Moon. Error in
Eta I	Able I (U)						burnout velocity and angle; did not reach Moon. Returned
							43 hours of data on extent of radiation band, hydromagneti
							oscillations of magnetic field, density of micrometeors in
							interplanetary space, and interplanetary magnetic field.
Beacon I (U)	Jupiter C Oct	: 23	DID NO	T ACHIEVE (RBIT	4.2	Thin plastic sphere (12-feet in diameter after inflation)
	(U)						to study atmosphere density at various levels. Upper
							stages and payload separated prior to first-stage burnout.
Pioneer II (U)	Thor Nov	7 8	DID NO	T ACHIEVE (RBIT	39.1	Measurement of magnetic fields around Earth or Moon. Thir
	Able I (U)						stage failed to ignite. Its brief data provided evidence
							that equatorial region about Earth has higher flux and
		,					higher energy radiation than previously considered.
Pioneer III (U)	Juno II (U) Dec	: 6	DOWN D	EC 7, 1958		5.9	Measurement of radiation in space. Error in burnout
Theta l							velocity and angle; did not reach Moon. During its flight
VACCO							discovered second radiation belt around Earth.
1959		17	102.0	550			1959
Vanguard II (U)	Vanguard Feb (SLV-4) (U)) 1/	123.8 3140	558	32.9	9.4	Sphere (20 inches in diameter) to measure cloud cover.
Alpha 1	(SLV-4) (U)						First Earth photo from satellite. Interpretation of data
Pioneer IV (S)	Juno II (S) Mar		1807 7000	ENTRIC ORB	rm .		difficult because satellite developed precessing motion.
Nu 1	Julio II (5) Mar		necio	ENTRIC ORB.	11	6.1	Measurement of radiation in space. Achieved Earth-Moon
NU I							trajectory; returned excellent radiation data. Passed
Vanguard (U)	Vanguard Apr	. 12	DYD AV	T ACHIEVE (TO D YOU	10.6	within 37,300 miles of the Moon on Mar 4, 1959. Payload consisted of two independent spheres: A contained
(SLV-5) (U)	vanguard Apr	1.5	DIO NO	I ACHIEVE (JKDII	10.6	precise magnetometer to map Earth's magnetic field, B was
(300-3) (0)							30-inch inflatable sphere for optical tracking. Second
							stage failed because of damage at stage separation.
Vanguard (U)	Vanguard Jun	22	מא מזמ	T ACHIEVE O	PATT	9.8	Magnesium alloy sphere (20 inches in diameter), to measure
1 (0)	(SLV-6) (U)		D10 140	I ACIIIIVE (WILL	7.0	solar-Earth heating process which generates weather.
Ī	,, ,, ,,,						Faulty second-stage pressure valve caused failure.
Explorer (S-1)	Juno II (U) Jul	16	DID NO	T ACHIEVE C	RATT	41.5	To measure Earth's radiation balance. Destroyed by Range
(U)			215 110			41.5	Safety Officer 5-1/2 seconds after liftoff; failure of
l' '							power supply to guidance system.
1							bount pubbyl so deronine planes.
<u> </u>							
D 62							

IISSION/ ntl Desig xplorer 6 (S-2)	LAUNCH LAUNCH VEHICLE DATE Thor-Able Aug 7	PERIOD CURRENT CRBITAL PARAMETERS (km) (Mins.) Apogee Perigee Incl (deg) DOWN APR 26, 1959	WEIGHT (kg) 64.4	REMARKS (All Launches from ESMC, unless otherwise noted) Carried instruments to study particles and meteorology. It
S) Elta l	(S)			helped in the discovery of three radiation levels, a ring of electric current circling the Earth, and obtained crude cloud cover images.
eacon II (U)	Juno II (U) Aug 14	DID NOT ACHIEVE ORBIT	4.5	Thin plastic inflatable sphere (12-feet in diameter) to study atmosphere density at various levels. Premature fuel depletion in first stage caused upper stage malfunction.
ig Joe (Mercury) S)		SUBORBITAL FLIGHT		Suborbital test of the Mercury Capsule. Capsule recovered successfully after reentry test.
anguard III (S) TA 1	(SLW-7) (S)	127.6 3521 514 33.4	45.4	Solar-powered magnesium sphere with magnetometer boom; provided a comprehensive survey of the Earth's magnetic field, surveyed location of lower edge of Van Allen radiation belts, and provided an accurate count of micrometeorite impacts. Last transmission Dec 8, 1959.
ittle Joe 1 S)	Little Joe Oct 4 (L/V #6) (S)	SUBORBITAL FLIGHT		Suborbital test of the Mercury Capsule to qualify the booster for use with the Mercury Test Program.
xplorer 7 S-la) (S) ota l	Juno II (S) Oct 13	DOWN JULY 16, 1989	41.5	Provided data on energetic particles, radiation, and magnetic storms. Also recorded the first micrometeorite penetration of a sensor.
ittle Joe 2 S)	Little Joe Nov 4 (L/V #1A) (S)	SUBORBITAL FLIGHT		Suborbital test of Mercury Capsule to test the escape system. Vehicle functioned perfectly, but escape rocket ignited several seconds too late. (MFF)
Ioneer P-3 (U)	Atlas-Able Nov 26 (U)	DID NOT ACHIEVE ORBIT	168.7	Lunar Orbiter Probe; payload shroud broke away after 45 seconds.
ittle Joe 3 (S)	Little Joe Dec 4 (L/V #2) (S)	SUBCRBITAL FLIGHT		Suborbital test of the Mercury Capsule, included escape system and biomedical tests with monkey (Sam) aboard, to demonstrate high altitude abort at max q. (MFF)
960				1960
ittle Joe 4 (S)	Little Joe Jan 21 (L/V #1B)(S)	SUBORBITAL PLIGHT		Suborbital test of Mercury Capsule included escape system and biomedical test with monkey (Miss Sam) aboard. (WFF)
ioneer V (P-2) 3) lpha l	Thor- Mar 11 Able IV (S)	HELIOCENTRIC GRBIT	43.0	Sphere, 26 inches in diameter, to investigate interplanetary space between orbits of Earth and Venus; test long-range communications; and determine strength of magnetic fields.
				B-63

MISSION/	LAUNCH	LAUNCH	PERIOD	CURRENT	ORBITAL P	ARAMETERS (km)	WEIGHT	REMARKS
Intl Desig	VEHICLE	DATE	(Mins.)	Apogee			(kg)	(All Launches from ESMC, unless otherwise noted)
Explorer (S-46) (U)	Juno II (U)	Mar 23		DID I	NOT ACHIEV	E ORBIT	16.0	Analyze electron and proton radiation energies in a high elliptical orbit. Telemetry lost shortly after first stage burnout; one of the upper stages failed to fire.
Tiros I (S) Beta 2	Thor-Able (S)	Apr 1	98.7	717	673	48.4	122.5	First successful weather-study satellite. Demonstrated that satellites can be used to survey global weather conditions and study other surface features from space. Transmitted 22,952 good-quality cloud-cover photographs.
Scout X (U)	Scout X (U)	Apr 18		SUBOR	RBITAL FLI	GHT		Suborbital Launch Vehicle Development Test with live fire and third stages. Vehicle broke up after first-stage burnout.
Echo A-10 (U)	Thor- Delta (U)	May 13		DID	OT ACHIEV	E ORBIT	75.3	100-foot passive reflector sphere to be used in a series communications experiments. During coast period, attitut control jets on second stage failed.
Scout I (S)	Scout (S)	Jul 1		SUBO	RBITAL FLI	GHI		Launch Vehicle Development Test; first complete Scout vehicle. (WFI
Mercury (MA-1) (U)	Atlas (U)	Jul 29		DID N	NOT ACHIEV	E ORBIT		Suborbital test of Mercury Capsule Reentry. The Atlas exploded 65 seconds after launch.
Echo I (A-11) (S) Iota 1	Thor- Delta (S)	Aug 12		DOWN	MAY 24, 1	968	75.3	First passive communications satellite (100-foot sphere). Reflected a pre-taped radio message from President Eisenhower across the Nation, demonstrating feasibility of global radio communications via satellite.
Pioneer (P-30) (U)	Atlas-Able (U)	Sep 25		DID	NOT ACHIEV	E CRBIT	175.5	Highly instrumented probe, in lunar orbit, to investigate the environment between the Earth and Moon. Second stage failed due to malfunction in oxidizer system.
Scout II (S)	Scout (S)	Oct 4		SUBCE	RBITAL FLI	GHT		Launch Vehicle Development Test; second complete Scout vehicle, reached altitude of 3,500 mi. (WFI
Explorer 8 (S-30) (S) Xi 1	Juno II (S)	Nov 3	106.1	1689	405	49.9	40.8	Contained instrumentation for detailed measurements of the ionosphere. Confirmed existence of a helium layer in the upper atmosphere.
Little Joe 5 (U)	Little Joe (L/V #5) (S)		SUBOR	RBITAL FLI	CHT		Suborbital test of Mercury Capsule to quality capsule system. Capsule did not separate from booster. (WFI
Tiros II (S) Pi l	Thor- Delta (S)	Nov 23	97.2	668	583	48.5	127.0	Test of experimental television techniques and infrared equipment for global meteorological information system.
rı ı					OT ACHIEV		6.4	12-foot sphere to determine density of Earth's atmosphere

MISSION/	LAUNCH	LAUNCH			RAMETERS (km)	WEIGHT	REMARKS
Intl Desig	VEHICLE	DATE	(Mins.) Apogee		Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
Pioneer (P-31) (U)	Atlas- Able (U)	Dec 15		NOT ACHIEVE		175.9	Highly instrumented probe, in lunar orbit, to investigate environment between Earth and Moon. Vehicle exploded about 70 seconds after launch due to malfunction in first stage.
Mercury (MR-1A) (S)	Redstone (S)	Dec 19	SUBC	RBITAL FLIG	स		Unmanned Mercury spacecraft, in suborbital trajectory, impacted 235 miles down range after reaching an altitude of 135 miles and a speed of near 4,200 mph. Capsule recovered about 50 minutes after launch.
1961							1961
Mercury (MR-2)	Redstone (S)	Jan 31	SUBC	RBITAL FLIG	rr .	1315.0	Suborbital test of Mercury Capsule; 16-minute flight included biomedical test with chimpanzee (Ham) aboard.
explorer 9 (S)	Scout (S)	Feb 16	DOWN	APR 9, 1964	1	6.8	12-foot sphere to determine density of Earth's atmosphere. First spacecraft orbited by all-solid rocket. (WFF)
Mercury (MA-2)	Atlas (S)	Feb 21	SUBC	RBITAL FLIG	ir .	1315.0	Suborbital test of Mercury Capsule; upper part of Atlas strengthened by 8-inch wide stainless steel band. Capsule recovered less than 1 hour after launch.
explorer (S-45) (U)	Juno II (U)	Feb 24	, DID	NOT ACHIEVE	CRBIT	33.6	Investigate the shape of the ionosphere. Malfunction following booster separation resulted in loss of payload telemetry and third and fourth stages failed to ignite.
ittle Joe 5A U)	Little Joe (L/V #5A) (SUBC	RBITAL FLIG	łr	1315.0	Suborbital test of Mercury Capsule; escape rocket motor fired prematurely and prior to capsule release. (WFF)
ercury (MR-BD) S)	Redstone (S)	Mar 24	SUBC	RBITAL FLIG	ří.	1315.0	Suborbital test of launch vehicle for Mercury flight to acquire further experience with booster before manned flight was attempted.
xplorer 10 (S) appa 1	Thor- Delta (S)	Mar 25	DOWN	JUN 1968		35.8	Injected into highly elliptical orbit. Provided information on solar winds, hydromagnetic shock waves, and reaction of the Earth's magnetic field to solar flares.
lercury (MA-3) U)	Atlas (U)	Apr 25	DID	NOT ACHIEVE	ORBIT	907.2	Orbital flight test of Mercury capsule. Destroyed after 40 seconds by Range Safety Officer when the inertial guidance system failed to pitch the vehicle over toward the horizon.
xplorer 11 (S) tu 1	Juno II (S) (4 stages)	-	105.8 1578	485	28.8	37.2	Placed in elliptical orbit to detect high energy gamma rays from cosmic sources and map their distribution in the sky.
ittle Joe 5B S)	Little Joe (L/V #5B) (SUBC	RBITAL FLIG	ī	1315.0	Suborbital flight test to demonstrate ability of escape and sequence systems to function properly at max q. (WPP)
ercury (S) Freedom 7)	Mercury- Redstone-3	May 5		RBITAL FLIG ED MAY 5, 19		1315.0	Manned suborbital flight with Alan B. Shepard, Jr. Pilot and spacecraft recovered after 15 minute 22 second flight, B-6:

MISSION/	LAUNCH	LAUNCH	PERIOD			RAMETERS (km)	WEIGHT	REMARKS
	VEHICLE	DATE	(Mins.)		Perigee			(All Launches from ESMC, unless otherwise noted)
	Juno II (U)	May 24		DID N	OT ACHIEVE	CRBIT	33.6	Investigate the shape of the ionosphere. Second stage
(U)								ignition system malfunctioned.
Meteoroid Sat A	Scout (U)	Jun 30		DID NO	OT ACHIEVE	CRBIT	84.8	Evaluate launch vehicle; investigate micrometeoroid impact
Explorer (S-55) (and penetration. Third stage failed to ignite. (WFF)
Tiros III (S)	Thor-	Jul 12	100.1	801	730	47.9	129.3	Development of meteorological satellite system. Provided
Rho 1	Delta (S)							excellent quality photographs and infrared data.
								Photographed many tropical storms during 1961 hurricane
								season and credited with discovering Hurricane Esther.
Liberty Bell 7	Mercury-	Jul 21		SUBOR	BITAL FLIG	HT	1470.0	Manned suborbital flight with Virgil I. Grissom. After
(S)	Redstone-4			LANDE	JUL 21,	1961		landing, spacecraft was lost but pilot was rescued from
	(S)							surface of water. Mission Duration 15 minutes 37 seconds.
Explorer 12 (S-3)	Thor-	Aug 16		DOWN S	EP 1963		37.6	First of a series to investigate solar winds,
(S)	Delta (S)							interplanetary magnetic fields, and energetic particles.
Upsilon l								Identified the Van Allen Belts as a magnetosphere.
Ranger I (U)	At las-	Aug 23		DOWN A	AUG 30, 19	61	306.2	Flight test of lunar spacecraft carrying experiments to
Phi l	Agena (U)							investigate cosmic rays, magnetic fields, and energetic
1								particles. Agena failed to restart, resulting in low
1								Earth orbit
Explorer 13 (U)	Scout (U)	Aug 25		DOWN A	UG 28, 19	61	84.8	Evaluate launch vehicle; investigate micrometeoroid impact
Chi l								and penetration. Initial orbit lower than planned, (WFF)
Mercury (MA-4)	At las (S)	Sep 13		DOWN S	EP 13, 19	61	1224.7	Orbital test of Mercury capsule to test systems and ability
(S)								to return capsule to predetermined recovery area after one
A-Alpha l								orbit. All capsule, tracking, and recovery objectives met.
Probe A (P-21)	Scout (S)	Oct 19		SUBORE	SITAL FLIG	HT		Vehicle test/scientific Geoprobe. Reached altitude of
(S)								4,261 miles; provided electron density measurements. (WFF)
Saturn Test	Saturn I	Oct 27		SUBORE	SITAL FLIG	HT		Suborbital launch vehicle development test of propulsion
(SA-1) (S)	(S)							system of the S-1 booster; verification of aerodynamic and
								structural design of entire vehicle.
Mercury (MS-1)	AF 609A	Nov 1		DID N	OT ACHIEVE	CRBIT	97.1	Orbital test of Mercury Tracking Network. First stage
(U)	Blue Scout	(U)						exploded 26 seconds after liftoff; other three stages
								destroyed by range safety officer 44 seconds after launch.
Ranger II (U)	At las	Nov 18		DOMN I	IOV 20, 19	61	306.2	Flight test spacecraft systems designed for future lunar
A-Theta l	Agena (U)							and interplanetary missions. Inoperative roll gyro
l .								prevented Agena restart resulting in a low Earth orbit.
								<u> </u>

SSION/	LAUNCH	LAUNCH	PERIOD CURRENT CRBITAL PARAMETERS (km)	WEIGHT	
tl Desig rcury (MA-5)	VEHICLE At las (S)	Nov 29	(Mins.) Apagee Perigee Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
reary (MM-3)	At las (S)	NOV 29	DOMN NOV 29, 1961	1315.4	Final flight test of all Mercury systems prior to manned orbital flight; chimpanzee Enos on board. Spacecraft and
, Iota l					chimpanzee recovered after two orbits.
62					Chimpanizee recovered after two orbits.
ho (AVT-1) (S)	Thor (C)	Jan 15	SUBORBITAL FLIGHT	256.0	Suborbital Communications Test. Canister ejection and
	INOL (B)	Jan 13	SUBCRETTAL PERSON	236.0	opening successful, but 135-foot sphere ruptured.
nger [[[(U)	At las-	Jan 26	HELIOCENTRIC ORBIT	329.8	Rough land instrumented capsule on Moon. Booster
pha l	Agena (U)				malfunction resulted in spacecraft missing Moon by 22,862
					miles and going into solar orbit. TV pictures unusable.
ros IV (S)	Thor-	Feb 8	100.1 824 700 48.3	129.3	Continued research and development of meteorological
ta l	Delta (S)				satellite system. U.S. Weather Bureau initiated
					international radio facsimile transmission of cloud maps
					based on data received.
ccury (MA-6)	Atlas (S)	Feb 20	LANDED FEB 20, 1962	1354.9	First U.S. manned orbital flight. John H. Glenn, Jr. made
riendship 7) (S)		·		three orbits of Earth. Capsule and pilot recovered after
ma l			•		21 minutes in the water. Mission Duration 4 hours
					55 minutes 23 seconds.
entry I (U)	Scout (S)	Mar 1	SUBORBITAL FLIGHT		Launch vehicle development test/Reentry test, Desired
					speed not achieved. (WFF)
)-I (S)	Thor-	Mar 7	DOWN OCT 8, 1981	207.7	Carried 13 instruments to study Sun-Earth relationships.
:a 1	Delta (S)				Transmitted almost 1,000 hours of information on solar
					phenomena, including measurements on 75 solar flares.
xbe B (P-2la)	Scout (S)	Mar 29	SUBORBITAL FLIGHT		Suborbital vehicle test/scientific geoprobe. Reached an
,					altitude of 3,910 miles; provided electron density
1					measurements. (WFF)
ger 4 (U)	At las-	Apr 23	IMPACTED MOON ON APR 26, 1962	331.1	Second attempt to rough land instrumented capsule on Moon.
ĭ	Agena (S)	•			Failure of central computer and sequencer system rendered
	•				experiments useless. Impacted on far side of Moon after
					flight of 64 hours.
urn Test	Saturn I	Apr 25	SUBCRBITAL FLIGHT	86167.0	Suborbital launch vehicle test; carried 95 tons of ballast
-2) (S)	(S)	-			water in upper stages which was released at an altitude of
					65 miles to observe effect on upper region of the
					atmosphere (Project High Water).
					B 67

Delta (S)

Agena B (S)

Sep 29

Oct 2

105.3

1025

989

DOWN JUL 1, 1966

Thor-

Thor-

Delta (S)

INTON INIC	joi Lau		ICCOI	u				198
MISSION/ Intl Desig	LAUNCH VEHICLE	LAUNCH DATE	PERIOD	CURRENT	ORBITAL PARAM	ETERS (km) Incl (deg)	WEIGHT (kg)	REMARKS (All Launches from ESMC, unless otherwise noted)
Ariel I (S) Omicron l	Thor- Delta (S)	Apr 26			MAY 24, 1976		59.9	Carried six British experiments to study ionosphere, sola radiation, and cosmic rays. First International Satellit Cooperative with UK.
Centaur Test 1 (AC-1) (U)	Atlas- Centaur (U)	May 8		SUBOR	BITAL FLIGHT			Launch vehicle development test. Centaur exploded before separation.
Aurora 7 (MA-7) (S) Tau 1	Atlas (S)	May 24		LANDE	D MAY 24, 196	2	1349.5	Orbital Manned Flight with M. Scott Carpenter. Reentered under manual control after three orbits. Mission Duratio 4 hours 56 minutes 5 seconds.
Tiros V (S) A—Alpha 1	Thor- Delta (S)	Jun 19	99.8	916	583	58.1	129.3	Continued research and development of meteorological satellite system. Extended observations to higher latitudes. Observed ice breakup in northern latitudes an storms originating in these areas.
Telstar I (S) A-Epsilon	Thor- Delta (S)	Jul 10	157.8	5651	938	44.8	77.1	First privately built satellite to conduct communication experiments. First telephone and television experiments transmitted. Reimbursable.
Echo (AVT-2) (S)	Thor (S)	Jul 18		SUBOR	BITAL FLIGHT		256.0	Suborbital communications test. Inflation successful; radar indicated sphere surface not as smooth as planned.

Mariner I (P-37) Atlas-Venus Flyby. Vehicle destroyed by range safety officer Jul 22 DID NOT ACHIEVE ORBIT 202.8 Agena (U) about 290 seconds after launch when it veered off course. Mariner II (P-38) At las-Second Venus flyby. First successful interplanetary prob Aug 27 HELIOCENIRIC ORBIT 202.8 (S) Agena (S) Passed Venus on Dec 14 at 21,648 miles, 109 days after A-Rho I launch. Provided data on solar wind, cosmic dust density and particle and magnetic field variations. Reentry II (U) Scout (U) Aug 31 SUBCRBITAL FLIGHT Reentry test at 28,000 fps: late third stage ignition; desired speed not achieved. (WPF Provide coverage of 1962 hurricane season. Returned high Tiros VI (S) 679 Thor-Sep 18 98.1 653 58.3 127.5

80.5

145.2

40.4

quality cloud cover photographs.

(Cooperative with Canada)

Designed and built by Canada to measure variations in

Monitor trapped corpuscular radiation, solar particles,

cosmic radiation, and solar winds. Placed into a highly

ionosphere electron density distribution. Returned excellent data to 13 Canadian, British, and U.S. stations

elliptical orbit: excellent data received.

(S-3a)(S) B-Gamma 1

B-68

A∽Psil

B-Alpha 1

Explorer 14

Alouette I (S)

	<u></u>							
SSION/	LAUNCH	LAUNCH	PERIOD		RBITAL PARAM			REMARKS
tl Desig	VEHICLE	DATE	(Mins.)			Incl (deg		(All Launches from ESMC, unless otherwise noted)
gma 7(MA-8) (S) Delta 1	•	Oct 3			OCT 3, 1962		1360.8	Manned Orbital Flight with Walter M. Schirra, Jr. Made six orbits of the Earth. Mission Duration 9 hrs 13 min 11 sec.
nger V (U) Eta l	Atlas- Agena (S)	Oct 18		HELIOC	ENTRIC ORBIT		342.5	Rough land instrumented capsule on Moon. Malfunction caused power supply loss after 8 hours 44 minutes. Passed within 450 miles of the Moon.
plorer 15 -3b) (S) Lambda 1	Thor- Delta (S)	Oct 27		DOWN	OCT 5, 1967	7	44.5	Study location, composition, and decay rate of artificial radiation belt created by high altitude nuclear explosion over the Pacific Ocean. Despin device failed; considerable useful data transmitted.
turn (SA-3))	Saturn I (S)	Nov 16		SUBORB	ITAL FLIGHT		86167.0	Suborbital launch vehicle development flight. Second "Project High Water" using 95 tons of water released at an altitude of 90 n.mi.
Lay I (S) Upsilon l	Thor- Delta (S)	Dec 13	185.1	7440	1318	47.5	78.0	Test intercontinental microwave communication by low- altitude active repeater satellite. Initial power failure overcome. Over 500 communication tests and demonstrations conducted.
plorer 16 -55b) (S) Chi 1	Scout (S)	Dec 16	104.2	1166	747	52.0	100.7	Measure micrometeoroid puncture hazard to structural skin samples. First statistical sample; flux level found to lie between estimated extremes. (WFP)
hcom I (U) 53 004A	Thor- Delta (S)	Feb 14	CU	RENT ELEM	ENTS NOT MAI	NTAINED	39.0	First test of communication satellite in geosynchronous orbit. Initial communication tests successful; all contact lost 20 seconds after command to fire apogee motor.
turn Test A-4) (S)	Saturn I (S)	Mar 28		SUBORB	ITAL FLIGHT			Suborbital launch vehicle development test. Programmed in-flight cutoff of one of eight engines successfully demonstrated propellant utilization system function.
olorer 17 -6) (S) 53 009A	Thor- Delta (S)	Apr 3			OV 24, 1966		183.7	Measure density, composition, pressure and temperature of Earth's atmosphere. Discovered belt of neutral helium around Earth.
lstar II (S)	Thor-Delta (S)		225.3	10807	968	42.8	79.4	Conduct wideband communication experiments. Color and 1963 black and white television successfully transmitted to Great Britain and France. Reimbursable.
cury (Faith 7)	Atlas (S)	May 15	<u> </u>		MAY 16, 196	3	1360.8	Orbital Manned flight with L. Gordon Cooper, Jr. Various tests and experiments performed. Capsule reentered after 22 orbits. Mission Duration 34 hrs 19 min 49 sec.
_			ころに 10					B-69

OF POOR QUALITY

B-69

MISSION/	LAUNCH	LAUNCH	PERIOD	CURRENT C	RBITAL PARA		WEIGHT	
Intl Desig	VEHICLE	DATE	(Mins.)			Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
RFD-1 (S)	Scout (S)	May 22		SUBORE	ITAL FLIGHT		217.6	Suborbital reentry flight test; carried AEC Reactor mock Reimbursable.
Piros VII (S)	Thor-Delta	Jun 19	95.8	560	557	58.2	134.7	Continued meteorological satellite development. Furnish
1963 024A	(S)							over 30,000 useful cloud cover photographs, including
								pictures of Hurricane Ginny in early stages in mid-Octob
ORL (USAF) (S) 1963 026A	Scout (S)	Jun 28			EC 14, 1983		99.8	Cambridge Research Lab geophysics experiment test. (Reimbursable)
Reentry III (U)	Scout (U)	Jul 20		SUBORE	ITAL FLIGHT			Suborbital reentry flight demonstration test of an ablat material at reentry speeds. Vehicle failed. (WF.
yncom II (S)	Thor-Delta	Jul 26	C	URRENT ELEM	ENTS NOT MAI	NTAINED	39.0	Geosynchronous communication satellite test. Voice,
1963 031A	(S)	_						teletype, facsimile, and data transmission tests conduct
ittle Joe II	Little Joe	Aug 28		SUBORB	ITAL FLIGHT			Suborbital Apollo launch vehicle test. Booster
Test (S)	II #1 (S)							qualification test with dummy payload. (White Sand
Explorer 18 (S) (IMP-A) 1963 046A	Thor-Delta (DSV-3C) (S			DOWN D	EC 30, 1965		62.6	First in a series of Interplanetary Monitoring Platforms observe interplanetary space over extended period of sol cycle. Discovered region of high-energy radiation beyon Van Allen belts; reported stationary shock wave created interaction of the solar wind and geomagnetic field.
Centaur Test II	At las-	Nov 27	105.8	1585	473	30.4	4620.8	Launch vehicle development test. Instrumented with 2,00
(AC-2) (S) 1963 047A	Centaur (S))						pounds of sensors, equipment, and telemetry; performance and structural integrity test.
explorer 19	Scout 24	Dec 19		DOWN M	AY 10, 1981		7.7	Sphere, 12 feet in diameter, was optically tracked after
(AD-A) (S)	(S)							tracking beacon failed, to obtain long-term atmospheric
1963 053A								density data and study density changes. (WSM
Tiros VIII (S)	Delta 22	Dec 21	98.9	719	687	58.5	120.2	Continued meteorological satellite development; initial
1963 054A	(DSV-3B) (S	5)						flight testing of Automatic Picture Transmission (APT)
								camera system which made it possible to obtain local clo
								cover pictures using inexpensive ground stations.
1964	0-14-03	7 03	304 3	9211	1990	45.4	05.3	Modified communication satellite with a capability of TV
Relay II (S) 1964 003A	Delta 23 (DSV-38) (S	Jan 21	194.7	7511	1990	46.4	85.3	Modified communication satellite with a capability of it 300 one-way voice transmissions or 12 two-way narrowband
1304 0034	(LOV-38) (S	,						communication. Completed more than 230 demonstrations a
								tests; also obtained over 600 hours of radiation data.
•								cests; also obtained over 600 hours of radiation data.

B-70

ISSION/	LAUNCH	LAUNCH	PERIOD CURRENT ORBITAL PARAMETERS (km)	WEIGHT	REMARKS
tl Desig	VEHICLE	DATE	(Mins.) Apogee Perigee Incl (deg)		(All Launches from ESMC, unless otherwise noted)
tho II (S) 164 004A	Thor- Agena (S)	Jan 25	DOWN JUN 7, 1969	348.4	Rigidized sphere, 135 feet in diameter, to conduct passive communication experiments (radio, teletype, and facsimile tests). Good experiment results obtained; data exchanged with USSR. (WSMC)
iturn I (SA-5) ;) 164 005A	Saturn I (S)	Jan 29	<u> </u>	17,554.2	Launch vehicle development test. Fifth flight of Saturn first Block II Saturn, first live flight of the LOX/LH, fueled second stage (S-IV). 1,146 measurements taken.
inger VI (U) 164 007A	At las- Agena (S)	Jan 30	IMPACTED MOON ON FEB 2, 1964	364.7	Photograph lunar surface before hard impact. No video signals received. Impacted on west side of Sea of Tranquility, within 20 miles of target, after 65.6 hour flight.
acon Explorer A -66) (U)	Delta 24 (U)	Mar 19	DID NOT ACHIEVE CRBIT	54.7	Provide data on ionosphere and conduct laser and Doppler shift geodetic tracking experiments. Vehicle third stage malfunctioned.
iel II (UK) (S) 64 015A	(S)	Mar 27	DOWN NOV 18, 1967	74.8	Carried three British experiments to measure galactic radio noise. Cooperative with UK. (WFF)
mini I (S) 64 018A	Titan II (S)	Apr 8	89.2 328.2 160.9 32.6	3175.2	Qualification of Gemini spacecraft configuration and Gemini launch vehicle combination in launch environment through orbital insertion phase.
re I (S)	Atlas (S)	Apr 14	SUBORBITAL FLIGHT	1995.8	Reentry Test to study the heating environment encountered by a body entering Earth's atmosphere at high speed.
ollo Abort 001 (S)	Little Joe (S)	May 13	SUBORBITAL FLIGHT		Vehicle development test to demonstrate Apollo spacecraft atmospheric abort system capabilities. (White Sands)
turn I (SA-6)) 64 025A	Saturn I (S)	May 28		17644.9	Vehicle development test. First flight of urmanned model of the Apollo spacecraft. 106 measurements obtained.
ntaur Test III -3 (S)	Atlas Centaur (S)	Jun 30	SUBORBITAL FLIGHT		Launch vehicle development test; performance and guidance evaluation.
RT I (S)	Scout (S)	Jul 20	SUBCRBITAL FLIGHT		Test ion engine performance in space. Confirmed that high prevalence ion beams could be neutralized in space. (WFF)
nger VII (S) 64 041A	Atlas- Agena (S)	Jul 28	IMPACTED MOON ON JUL 31, 1964	364.7	Photograph lunar surface before hard impact. Transmitted 4,316 high quality photographs showing amazing detail before impacting in Sea of Clouds; flight time 68 hours 35 minutes 55 seconds.
					0.74

MISSION/ Intl Desig	LAUNCH	LAUNCH	PERIOD CURRENT CRBITAL PARAMETERS (km)	WEIGHT	REMARKS
Reentry IV (S)	VEHICLE Scout (S)	DATE	(Mins.) Apogee Perigee Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted) Reentry Test; Demonstrated the ability of the Apollo
keentry IV (S)	Scout (S)	Aug 18	SUBCRBITAL FLIGHT		spacecraft to withstand reentry conditions at 27,950 fp
Syncom III (S)	Delta 25	Aux 19	CURRENT ELEMENTS NOT MAINTAINED	65.8	Experimental geosynchronous communications at 27,950 ip
1964 047A	(S)	Aug 19	CORRENT ELEMENTS NOT MAINTAINED	03.0	Provided live TV coverage of the Olympic games in Tokyo
1304 04/10	(3)		\$		conducted various communications tests.
Explorer 20 (S)	Scout 123	Aug 25	103.7 1007 858 79.9	44.5	Ionosphere Explorer to obtain radio soundings of upper
1964 051A	(S)	Aug 25	103.7 1007 036 73.3	44.5	ionosphere as part of the Topside Sounder program.
Nimbus I (S)	Thor-	Aug 28	DOWN MAY 16, 1974	376.5	Improved meteorological satellite; Earth oriented to
1964 052A	Agena 386		5512, 1212 207 1571		provide complete global cloud cover images. Returned mo
		(S)			than 27,000 excellent photos; APT system supplied dayti
					photos to low-cost ground stations.
OGO I (U)	At las-	Sep 4	CURRENT ELEMENTS NOT MAINTAINED	487.2	Standardized spacecraft capable of conducting related
1964 054A	Agena (S)	-			experiments. Carried 20 instruments to investigate
					geophysical and solar phenomena. Boom deployment anomal
					obscured horizon scanner's view of Earth. Varying quali
					data received from all experiments.
Saturn I (SA-7)	Saturn I	Sep 18	DOWN SEP 22, 1964		Demonstrate Launch Vehicle/spacecraft compatibility and
(S)	(S)				test launch escape system. Telemetry obtained from 131
1964 057A			·		separate and continuous measurements.
Explorer 21 (U)	Delta 26	Oct 4	DOWN JAN 30, 1966		Interplanetary Monitoring Platform to obtain magnetic
1964 060A	(U)				fields, radiation, and solar wind data. Failed to reach
					planned apogee, but provided good data.
RFD-2 (S)		Oct 9	SUBCRBITAL FLIGHT	217.6	Reentry flight carried AEC Reactor Mockup. Reimbursable
Explorer 22 (S)	Scout 123	Oct 10	104.5 1060 877 79.7	52.6	Beacon Explorer; to provide data on variations in the
1964 064A	(S)				ionosphere's structure and relate ionospheric behavior
					solar radiation. Low-cost ground stations throughout the
					world received uncoded radio signals. Laser tracking
					accomplished on October 11. (WS
Mariner III (U)	At las-	Nov 5	HELIOCENTRIC CRBIT	260.8	Mars flyby. Fiberglass shroud failed to jettison proper
					solar panels failed to extend, Sun and Canopus not
	Agena (U)				
1964 073A			200	122.0	acquired. Transmissions ceased 9 hours after launch.
1964 073A Explorer 23	Scout S-123	Nov 6	DOWN JUN 29, 1983	133.8	Provided data on meteoroid penetration and resistance of
1964 073A		Nov 6	DOWN JUN 29, 1983	133.8	

MISSION/	LAUNCH {	LAUNCH (PERIOD CURRENT CRBITAL PARAM	etters (km.) W	EIGHT	REMARKS
Intl Desig	VEHICLE	DATE	(Mins.) Apogee Perigee	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
Explorer 24 (S)	Scout 135	Nov 21	DOWN OCT 18, 1968		8.6	First dual payload (Air Density/Injun); two satellites
1964 076A	(S)					provided detailed information on complex radiation-air
Explorer 25 (S)			115.2 2401 524	81.3	34.0	density relationships in the upper atmosphere. (WSMC)
1964 076B						• • • • • • • • • • • • • • • • • • • •
Mariner IV (S)	Atlas	Nov 28	HELIOCENTRIC ORBIT	2	60.8	Second of two 1964 Mars flyby launches. Encounter occurred
1964 077A	Agena (S)					on Jul 14, 1965, with closest approach at 6,118 miles of
						the planet. Transmitted 22 pictures.
Apollo Abort	Little Joe	Dec 8	SUBCRBITAL FLIGHT	425	93.0	First test of Apollo emergency detection system at abort
A-002 (S)	(S)					altitude. (White Sands)
Centaur (AC-4)(S)	A-Centaur	Dec 11	DOWN DEC 12, 1964	29	93.0	Vehicle development flight carried mass model of Surveyor
1964 082A	(S)					spacecraft; propulsion and stage separation test.
San Marco I (S)	Scout (S)	Dec 15	DOWN SEP 13, 1965	1	15.2	Flight test of satellite to furnish data on air density and
1964 084A						ionosphere characteristics. Launch vehicle provided by
						NASA; launched by Italian Crew. (WFF)
Explorer 26 (S)	Delta 27	Dec 21	CURRENT ELEMENTS NOT MAI	NTAINED	45.8	Energetic Particles Explorer; carried five experiments to
1964 086A	(S)					provide data on high-energy particles.
1965						1965
Gemini II (S)	Titan II	Jan 19	SUBORBITAL FLIGHT	31	33.9	Demonstrate structural integrity of reentry module heat
	(S)					protection during maximum heating rate reentry and
						demonstrate variable lift on reentry module.
Tiros IX (S)	Delta 28	Jan 22	119.0 2568 702	96.4 1	38.3	First "Cartwheel" configuration for Weather Bureau's
1965 004A	(S)					Operational system. Provided increased coverage of global
						cloud cover with pictures of excellent quality.
060 B-2 (S)	Delta (S)	Feb 3	DOWN AUG 9, 1989		44.9	Second in a series to measure frequency and energy of solar
1965 007A				electrom	agnetio	c radiation in ultraviolet, X-ray and gamma-
						ray regions of spectrum.
Pegasus I (S)	Saturn I	Feb 16	DOWN SEP 17, 1978	14	51.5	Obtained scientific and engineering data on magnitude and
1965 00 <u>9A</u>	(SA-9) (S)					direction of meteoroids in near-Earth orbit.
	At las-	Feb 17	IMPACTED MOON ON FEB 20,	1965 3	64.7	Photograph lunar surface before hard impact. Transmitted
L965 010A	Agena (S)					7,137 high quality photographs before impacting in Sea of
						Tranquility; flight time 64.54 hours.
æntaur Test	A-Centaur	Mar 2	SUBCRBITAL FLIGHT	25	48.0	Vehicle development test; Atlas stage failed 4 seconds
(AC-5) (U)	(U)					after liftoff.

MISSION/	LAUNCH	LAUNCH	PERIOD CURRENT ORBITAL PARAMETERS	(km) WEIGHT	REMARKS
Intl Desig	VEHICLE	DATE	(Mins.) Apogee Perigee Incl	(deg) (kg)	(All Launches from ESMC, unless otherwise noted)
Ranger IX (S)	At las	Mar 21	IMPACTED MOON ON MAR 24, 1965	364.7	Photograph lunar surface before hard impact. Transmitted
1965 023A	Agena (S)				5,814 excellent quality pictures; about 200 pictures
					relayed live via commercial TV. Flight time 64.52 hours.
Gemini III (S)	Titan II	Mar 23	LANDED MAR 23, 1965	3236.9	First manned orbital flight of the Gemini program, with
1965 024A	(S)				astronauts Virgil I. Grissom and John W. Young. Manually
			•		controlled reentry after three orbits. Mission Duration
		_			4 hours 53 minutes.
Intelsat 1 (F-1)	Delta 30	Apr 6	CURRENT ELEMENTS NOT MAINTAIN	ED 38.5	First operational satellite for Comsat Corp., to provide
(S)	(S)				commercial trans-Atlantic communications. Reimbursable.
1965 028A					
Explorer 27 (S)	Scout 136	Apr 29	107.8 1317 931 41	.2 60.8	Beacon Explorer; obtained data on Earth's gravitational
1965 032A	(S)				field. Also carried laser tracking experiments.
Apollo Abort	Little Joe	May 19	SUBCRBITAL FLIGHT		Demonstration of abort capability of Apollo spacecraft.
A-003 (U)	II (U)				Launch escape vehicle at high altitude not accomplished du
					to malfunction of Little Joe II Booster. (White Sands)
Fire II (S)	At las	May 22	SUBCRBITAL FLIGHT	2005.8	Second Reentry Test to study heating environment
Į.	(S)				encountered by a body entering Earth's atmosphere at high
					speed.
Pegasus II (S)	Saturn I	May 25	DOWN NOV 3, 1979	1451.5	Micrometeoroid detection experiment confirmed lower
1965 039A	(SA-8) (S)				meteoroid density than expected.
Explorer 28 (S)	Delta 31	May 29	DOWN JUL 4, 1968	59.0	Third Interplanetary Monitoring Platform, carrying eight
1965 042A	(S)				scientific instruments, to measure magnetic fields, cosmic
					rays, and solar wind beyond Earth's magnetosphere.
Gemini IV (S)	Titan II	Jun 3	LANDED JUN 7, 1965	3537.6	Second manned Gemini flight with James A. McDivitt and
1965 043A	(S)				Edward H. White. During flight, White donned pressure sui
1					and performed EVA using ZIP (Zero-G Integral Propulsion)
l			•		Unit. EVA duration 22 minutes. Mission Duration 97 hours
					56 minutes 11 seconds.
Tiros X (S)	Delta 32	Jul 1	100.3 817 728 98	.6 127.0	First U.S. Weather Bureau-funded Tiros; obtained maximum
1965 051A	(S)				coverage of 1965 hurricane and typhoon season.
Pegasus III (S)	Saturn I	Jul 30	DOWN AUG 4, 1969	1451.5	Final micrometeoroid detection experiment. Results of
1965 060A	(SA-10) (S)				Pegasus program indicated flux of small particles was less
1					than expected, flux of large particles more than expected,
1					and flux of medium-sized particles about as predicted.
L					. <u> </u>

				_				
MISSION/	LAUNCH	LAUNCH	PERIOD		ORBITAL PARA		WEIGHT	
Intl Desig	VEHICLE	DATE	(Mins.)	Apogee	Perigee	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
Scout Test (S) Secor (S) 1965 063A	Scout S-131R (S)	Aug 10	122.2	2418	1136	69.2	20.0	Vehicle development test. Carried U.S. Army Secor geodetic satellite. Reimbursable.
Centaur Test (AC-6) (S) 1965 064A	A-Centaur (S)	Aug 11		BARY	CENTRIC CRBI	r	952.6	Vehicle development test. Carried Surveyor dynamic model. Direct-ascent test for guidance evaluation.
Gemini V (S) 1965 068A REP 1965 068C	Titan II (S)	Aug 21			2D AUG 29, 19		3175.2	Manned orbital flight with L. Gordon Cooper and Charles Conrad, Jr. Ejected rendezvous evaluation POD (REP) for simulated rendezvous maneuvers; participated in communications and other on-board experiments. Mission Duration 190 hours 56 minutes 14 seconds.
060-C (U)	Delta (U)	Aug 25		DID	OT ACHIEVE (RBIT	281.2	Third in a series to maintain continuity of observations during solar activity cycle. Vehicle third stage ignited prematurely.
000 II (U) 1965 081A	Thor-Agena (S)	Oct 14		DOWN	SEP 17, 1981		507.1	Carried 20 experiments to investigate near-Earth space phenomena on an interdisciplinary basis. Failure of primary launch vehicle guidance resulted in higher than planned orbit. 19 experiments returned useful data. (MEMC)
Gemini VI (U)	At las-Agena (U)	Oct 25		DID N	OT ACHIEVE C	RBIT		Agena target vehicle. Simultaneous countdown of Gemini spacecraft and Atlas/Agena Target Vehicle. Telemetry lost 175 seconds after launch of target vehicle; Gemini launch terminated at T-42 minutes.
xplorer 29 (S) 965 089A	Delta (S)	Nov 6	120.3	2273	1114	59.4	174.6	GEOS-A, part of U.S. Geodetic Satellite Program to provide new geodetic data about the Earth.
xplorer 30 (S) .965 093A	Scout 138 (S)	Nov 18	100.4	881	676	59.7	56.7	Monitor solar X-rays and ultraviolet emissions during final portion of IGSY. Data acquired by NRL and foreign stations in 13 countries. Comperative with NRL
oplorer 31 (S) 965 098B	Thor-Agena (S)	Nov 29	120.5	2905	502	79.8	98.9	Make related studies of ionospheric composition and temperature variations. Provided excellent data from
louette II (S) 965 098A			119.3	2801	500	79.8	146.5	regions of the ionosphere never before investigated. Cooperative with Canada. (WSMC)
emini VII (S) 965 10(A	Titan II (S)	Dec 4			D DEC 18, 19	65	3628.8	Fourth manned mission with Frank Borman and James A. Lovell, Jr. Astronauts flew part of mission without pressure suits. Mission Duration 330 hrs 35 min 31 sec.
	ORIGIN		AGE	S		······································		B-7:

OF POOR QUALITY

MISSION/ Intl Desig	LAUNCH VEHICLE	LAUNCH DATE				Incl (deg)	(kg)	REMARKS (All Launches from ESMC, unless otherwise noted)
French 1A (S) 1965 101A	Scout 139 (S)	Dec 6	99.2	728	716	75.9	71.7	Study VLF wave propagation in the ionosphere and magnetosphere and measure electron densities. Cooperativ with France. (WSMC
Gemini VI-A (S) 1965 104A	Titan II (S)	Dec 15		LANDE	D DEC 16, 196	5	3175.2	Fifth manned mission with Walter M. Schirra, Jr. and Thom P. Stafford. First rendezvous in space accomplished with Gemini VII spacecraft. Mission Duration 25 hours 51 minutes 24 seconds.
Pioneer VI (S) 1965 105A	Delta 35 (S)	Dec 16		HELIC	CENTRIC ORBIT		63.5	Operated in solar orbit to provide data on solar wind, interplanetary magnetic field, Solar physics, and high-energy charged particles and magnetic fields.
1966								196
Apollo Abort A-004 (S)	Little Joe (II #5) (S)	_			BITAL FLIGHT		4989.0	Apollo development flight to demonstrate launch escape vehicle performance. Last urmanned ballistic flight. (White Sands)
ESSA I (S) 1966 008A	Delta 36 (S)	Feb 3	99.9	819	688	97.9	138.3	Sun-synchronous orbit permitted satellite to view weather in each area of the globe each day, photographing a given area. First Advanced Vidicon Camera System provided valuable information about weather patterns and condition Reimbursable. (WSMC
Reentry V (S)	Scout (S)	Feb 9			BITAL FLIGHT		95.0	Test to investigate heating environment of body reentering Earth's atmosphere at 27,000 fps. (WFF
Apollo Saturn (AS-201) (S)	Saturn IB (S)	Feb 26		SUBOR	BITAL FLIGHT		20820.1	Launch Vehicle development flight; carried unmanned Apoll spacecraft.
	Delta 37 (S)	Feb 28	113.4	1413	1352	101.0	131.5	Provided direct readout of cloud cover photos to local users. Along with ESSA I, completed initial global weath satellite system. Reimbursable. (WSMC
Gemini VIII (U) 1966 020A	Titan II (S)	Mar 16		LANDE	D MAR 17, 196	6	3788.0	Agena Target Vehicle launched from Complex 14 and manned Gemini launched from Complex 19. Astronauts Neil A.
GATV (S) 1966 019A	A-Agena (S)	Mar 16		DOWN	SEP 15, 1967			Armstrong and David R. Scott accomplished rendezvous and docking. Attitude and maneuver thruster malfunction caus docked spacecraft to tumble. Astronauts separated vehicl and terminated mission early; EVA not accomplished. Firs Pacific Ocean Landing. Mission Duration 10 hours 41 minutes 26 seconds.
B-76								3 4 1917 1 1 1 1

ISSION/	LAUNCH	LAUNCH	PERIOD			METERS (km)		
ntl Desig	VEHICLE	DATE	(Mins.)		Perigee	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
entaur Test	A-Centaur	Apr 8		DOWN N	IAY 5, 1966		784.7	Launch vehicle development flight; carried Surveyor model.
AC-8) (U)	(U)							Second Centaur engine firing unsuccessful.
966 03QA								
AO I (U)	A-Agena	Apr 8	100.8	799	788	35.0	1769.0	Carried four experiments to study UV, X-ray and gamma-ray
966 031A	(S)							regions. Primary battery malfunctioned.
imbus II (S)	Thor-Agena	May 14	108.0	1175	1092	100.4	413.7	Provided global weather photography on 24-hour basis for
966 040A	_(S)							meteorological research and operational use. (WSMC)
emini IX (U)	A-Agena	May 17		DID NO	OT ACHIEVE (RBIT	3252.0	Target vehicle for Gemini IX; vehicle failure caused by a
	(U)							short in the servo control circuit.
xplorer 32 (S)	Delta 38	May 25		DOWN F	EB 22, 198	5	224.5	Atmosphere Explorer; carried 8 experiments to measure
966 044A	(S)							temperatures, composition, density and pressures in upper
								atmosphere.
urveyor I (S)	A-Centaur	May 30		LANDED ON	MOON JUN 2	1966	995.2	Achieved soft lunar landing in Ocean of Storms. Performed
966 045A	(AC-10) (S)	_						engineering tests and transmitted photography. Landing
								pads penetrated lunar surface to maximum depth of 1 inch.
emini IXA (U)	Titan II	Jun 3		LANDEL	JUN 6, 190	56	3750.3	Seventh manned mission with Thomas P. Stafford and Rugene
966 047A	(S)				•			A. Cernan. Target vehicle shroud failed to separate,
ATV (U) VEA	Atlas	Jun 1		DOMN J	UN 11, 1960	5		docking not achieved. EVA successful, but evaluation of
966 046A	(S)				•			AMU not achieved. Mission Duration 72 hours 21 minutes.
30 III (S)	A-Agena	Jun 7	C	URRENT ELEM	LENTS NOT MA	AINTAINED	514.8	Carried 21 experiments to obtain correlated data on
966 049A	(S)							geophysical and solar phenomena in Earth's atmosphere.
								First 3-axis stabilization in highly elliptical orbit.
7-3 (S)	Scout (S)	Jun 9	143.0	4711	647	40.8	173.0	Radiation Research Satellite. USAF Reimbursable. (WFF)
966 052A								
ageos I (S)	Thor-Agena	Jun 23	177.6	5443	2735	84.4	56.7	Sphere, 100 feet in diameter, to determine location of
966 056A	(S)							continents, land masses, and other geographic points by
								world-wide triangulation network of stations. (WSMC)
(plorer 33 (S)	Delta (S)	Jul 1	a	RRENT ELEV	ENTS NOT M	INTAINED	93.4	Interplanetary Monitoring Platform to study, at lunar
366 058A	•		_				,,,,	distance, Earth's magnetosphere and magnetic tail. Planned
								anchored lunar orbit not achieved; useful data obtained
								from Earth orbit.
xollo Saturn	Saturn IB	Jul 5		DOWN J	UL 5, 1966		26535.4	Launch vehicle development flight; evaluate S-IVB stage
3-203 (S)	(S)	•						vent and restart capability.
966 059A	,							Ante min topont embantitel.
	OPPORT							
			A					

OF POOR QUALITY

MISSION/	LAUNCH	LAUNCH	PERIOD CURRENT O	RBITAL PARAME	TERS (km)	WEIGHT	REMARKS
Intl Desig	VEHICLE	DATE	(Mins.) Apogee	Perigee I	ncl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
Gemini X (S)	Titan II	Jul 18	LANDED	JUL 21, 1966		3762.6	Manned mission with John W. Young and Michael Collins.
1966 066A	(S)						Performed first docked vehicle maneuvers; standup EVA of 8
GATV (S)	A-Agena	Jul 18	DOMIN D	EC 29, 1966			minutes; umbilical EVA of 27 minutes. Mission duration
1966 065A	(S)						70 hours 46 minutes 39 seconds.
Lunar Orbiter I	A-Agena	Aug 10	DOWN O	CT 29, 1966		385.6	Photograph landing sites for Apollo and Surveyor from luna
(S)	(S)						orbit. Photographed over 2 million square miles of Moon's
1966 073A							surface; took first two photos of Earth from distance of
							the Moon. Demonstrated maneuverability in lunar orbit.
Pioneer VII (S)	Delta 40	Aug 17	HELIOC	ENTRIC ORBIT		63.5	Second in a series of interplanetary probes to provide dat
1966 075A	(S)						on solar wind, magnetic fields, and cosmic rays.
Apollo Saturn	Saturn IB	Aug 25	SUBORB	ITAL FLIGHT		25809.7	Apollo launch vehicle and spacecraft development flight to
AS-202 (S)	(S)	_		•			test Command Module heat shield and obtain launch vehicle
							and spacecraft data.
Gemini XI (S)	Titan II	Sep 12	LANDED	SEP 15, 1966		3798.4	Manned mission with Charles Conrad, Jr. and Richard F.
1966 081A	(S)	-					Gordon, Jr. Rendezvous and docking achieved. Umbilical
GATV (S)	A-Agena	Sep 12	DOMN D	EC 30, 1966			and standup EVA performed and well as tethered spacecraft
1966 080A	(S) _						experiment. Mission Duration 71 hrs 17 min 8 sec.
Surveyor II (U)	A-Centaur	Sep 20	IMPACTED MOO	N ON SEP 23,	1966	1000.2	Second soft lunar landing planned. One vernier engine did
1966 084A	(AC-7) (S)						not fire for midcourse correction, sending spacecraft into
							tumbling mode. Spacecraft crashed southeast of crater
							Copernicus after 62.8 hour flight.
ESSA III (S)	Delta 41	Oct. 2	114.5 1484	1383	101.1	147.4	Replaced ESSA I in Tiros Operational Satellite (TOS) 1966
087A	(S)						system. Sophisticated cameras and sensors provided
							valuable information about world's weather patterns and
1							conditions. Reimbursable (WSMC)
Centaur Test	A-Centaur	Oct 26	DOWN N	OV 6, 1966		952.6	Launch vehicle development flight; Surveyor model injecte
(AC-9) (S)	(S)						into simulated lunar transfer orbit. Demonstrated two-bur
1966 095A							parking orbit operational capability.
Intelsat II F-l	Delta 42	Oct 26	717.7 37023	3326	17.0	87.1	Comsat commercial communications satellite. Apogee motor
(U)	(S)						malfunction resulted in elliptical orbit. Reimbursable.
1966 096A							
Lunar Orbiter II	A-Agena	Nov 6	DOWN O	CT 11, 1967		385.6	Photographed lunar landing sites from lunar orbit; provide
(S)	(8)						new data on lunar gravitational field; photographed Ranger
1966 100A							VIII landing point and surface debris tossed out at impact
L							<u> </u>

IISSION/ intl Desig	LAUNCH VEHICLE	LAUNCH DATE		AL PARAMETERS (km)	WEIGHT (kg)	REMARKS (All Launches from ESMC, unless otherwise noted)
emini XII (S) .966 104A	Titan II (S)	Nov 11	LANDED NOV	15, 1966	3762.1	Last manned Gemini flight with James A. Lovell, Jr. and Edwin E. Aldrin, Jr. Rendezvous and docking achieved. Two
ATV (S) .966 103A	A-Agena (S)	Nov 11	DOWN DEC 23	·		EVA's performed. Mission duration 94 hours 35 minutes 31 seconds.
TS I (S) .966 110A	A-AGENA (S)	Dec 7	1250.5 35251 288	14.0	703.1	Perform various communication, meteorology, and control technology experiments and carry out scientific measurements of orbital environment. Experiments results outstanding. Spin-scan cloud camera photographed changing weather patterns; air-to-ground and air-to-air communications demonstrated for first time.
Biosatellite I U) 966 114A	Delta (S)	Dec 14	DOWN PEB 15	5, 1967	426.4	Carried biological specimens to determine effects of space environment on life processes. Reentry vehicle separated but retro rocket failed, leaving capsule in orbit. No useful scientific data obtained.
1967						1967
ntelsat II F-2 S) 967 001A	Delta 44 (S)	Jan 11	CURRENT ELEMENTS	NOT MAINTAINED	87.1	Comsat commercial communication satellite. Reached intended location on February 4. Reimbursable.
ISSA IV (S) 1967 006A	Delta 45 (S)	Jan 26	113.4 1437 13	324 102.0	131.5	Replaced ESSA II in TOS system. Provided daily coverage of local weather systems to APT receivers. Shutter malfunction rendered one camera inoperative. Reimbursable. (WSMC)
unar Orbiter III S) .967 008A	A-Agena (S)	Feb 5	DOWN OCT 9	, 1967	385.6	Photographed lunar landing sites from lunar orbit; also returned 600,000 sq.mi. of front and 250,000 sq.mi. of back side lunar photography; provided gravitational field and lunar environment data.
SO III (S) .967 020A	Delta 46 (S)	Mar 8	DOWN APR 4,		284.4	Carried 9 experiments to study structure, dynamics and chemical composition of outer solar atmosphere through X-ray, visible, and UV radiation measurements.
ntelsat II F-3 S) 967 026A	Delta 47 (S)	Mar 22	CURRENT ELEMENTS	NOT MAINTAINED	87.1	Comsat commercial communication satellite. Completed Intelsat II system. Reimbursable.

MISSION/	LAUNCH	LAUNCH	PERIOD CURRENT ORBITAL PARAMETERS (km)	WEIGHT	REMARKS
Intl Desig	VEHICLE	DATE	(Mins.) Apogee Perigee Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
ATS II (U)	A-Agena	Apr 6	DOWN SEP 2, 1969	324.3	Test gravity gradient control system; microwave
1967 031A	(U)				communications, meteorological cameras, and 8 scientific
					experiments. Second stage failed to restart resulting in
					elliptical orbit. Limited data obtained.
Surveyor III	A-Centaur		LANDED ON MOON AFR 20, 1967	1035.6	Vernier engines failed to cut off as planned; spacecraft
(S)	(AC-12) (S)				bounced twice before landing. Surface sampler used for
1967 035A					pressing, digging, trenching, scooping, and depositing
l .					surface material in view of camera. Returned over 6,300
					photos including pictures of Earth during lunar eclipse.
ESSA V (S)	Delta 48	Apr 20	113.5 1419 1352 101.8	147.4	Replaced ESSA III in TOS System. Furnished daily global
1967 036A	(S)				coverage of weather systems. Reimbursable. (WSMC
San Mar∞ II	Scout S-153	Apr 26	DOWN OCT 14, 1967	129.3	First satellite launch attempt from mobile sea-based
(S)	(S)				platform in the Indian Ocean; launched conducted by Itali
1967 038A					crew. Spacecraft provided continuous equatorial air
					density measurements. Cooperative with Italy.
		May 4	DOWN OCT 6, 1967	385.6	Lunar orbit achieved. Photographed 99% of Moon's front
(S)	(S)				side and additional back side areas.
1967 041A					
Ariel III (S)	Scout	May 5	DOWN DEC 14, 1970	102.5	Pirst UK-built satellite to extend atmospheric and
1967 042A	(S)				ionospheric investigations. Cooperative with UK. (WSMC
Explorer 34 (S)	Delta 49	May 24	DOWN MAY 3, 1969	73.9	Fifth in Interplanetary Monitoring Platform series to stu
1967 051A	(S)				Sun-Earth relationships. Elliptical orbit achieved.
ļ					Useful data returned. (WSMC
ESRO II-A (U)	Scout (U)	May 29	DID NOT ACHIEVE ORBIT	89.1	Carried 7 experiments to study solar and cosmic radiation
					Third stage vehicle failure. Cooperative with ESRO. (WSM
Mariner V (S)	A-Agena	Jun 14	HELIOCENTRIC CREIT	244.9	Venus flyby. Returned data on planet's atmosphere,
1967 060A	(S)				radiation, and magnetic field environment.
Surveyor IV (U)	A-Centaur	Jul 14	IMPACTED MOON ON JUL 17, 1967	1037.4	Lunar soft landing mission. All systems normal until 2
1967 068A	(AC-11) (S)				seconds before retro rocket burnout (2-1/2 minutes before
L					touchdown) when signal was abruptly lost.
Explorer 35 (S)	Delta (S)	Jul 19	SELENOCENTRIC ORBIT	104.4	Interplanetary Monitoring Platform to study solar wind an
1967 070A					interplanetary fields at lunar distances. Lunar orbit
					achieved. Results indicated no shock front precedes Moon
ŀ					no magnetic field, no radiation belts or evidence of luna
					ionosphere.
P. 90		•			

B-80

1967

IISSION/	LAUNCH	LAUNCH		ORBITAL PARA			
ntl Desig	VEHICLE	DATE	(Mins.) Apogee	Perigee	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
IGO IV (S) .967 073A	Thor-Agena (S)	Jul 28		AUG 16, 1972		551.6	Study relationship between Sun and Earth's environment. Near-polar orbit achieved, 3-axis stabilized. (WSMC)
amar Orbiter V S) .967 075A	A-Agena (S)	Aug 1		JAN 31, 1968		385.6	Fifth and final mission to photograph potential landing sites from lunar orbit. Increased lunar photographic coverage to better than 99%.
liosatellite II S) .967 083A	Delta (S)	Sep 7		SEP 9, 1967		425.4	Carried 13 experiments to conduct biological experiments in low Earth orbit. Reentry initiated 17 orbits early because of communications difficulties and storm in recovery area. Air recovery successful.
urveyor V (S) .967 084A	A-Centaur (AC-13) (S)	Sep 8	LANDED O	N MOON SEP 11	, 1967	1006.1	Lunar soft landing accomplished; returned TV photos of lunar surface; and data on chemical characteristics of lunar soil.
ntelsat II (F-4) S) .967 094A	(S)	Sep 28		EMENTS NOT MA		87.1	Commant commercial communications satellite to provide 24-hour transoceanic service. Reimbursable.
SO-IV (S) 967 100A	Delta 53 (S)	Oct 18	DOWN	JAN 15, 1982		276.7	Continuation of GSO program to better understand the Sun's structure and determine solar influence upon Earth. Obtained first pictures made of Sun in extreme ultraviolet.
AM C-1 (S)	Scout (S)	Oct 19		RBITAL FLIGHT		116.6	Reentry test to investigate communications problems on reentry. (WPF)
MS III (S) 967 111A	A-Agena (S)	Nov 5	1436.1 35842	35733	12.1	714.0	Further development of experiments and concepts in useful applications of space technology to communications, meteorology, navigation, and Earth resources management.
Surveyor VI (S) 967 112A	(AC-14) (S)	Nov 7	LANDED C	N MOON NOV 10	, 1967	1008.3	Lunar soft landing achieved; pictures and soil analysis data transmitted. Vernier engines restarted, lifting spacecraft 10 feet from surface and landing 8 feet from original site, performing first rocket-powered takeoff from lunar surface.
pollo 4 (S) 967 113A	Saturn V (S)	Nov 9	DOWN	NOV 9, 1967		45506.0	Launch vehicle/spacecraft development flight. First launch of Saturn V; carried urmanned Apollo Command/Service Module.
SSA VI (S) .967 114A O R	IGINAL	Nov 10	114.8 1483	1407	102.1	129.7	Replaced ESSA II and ESSA IV in the TOS system; used in central analysis of global weather. Reimbursable. (WSMC)
OF	POOR	QUA	LITY				B-8

MISSION/	LAUNCH	LAUNCH	PERIOD	CURRENT	ORBITAL PAR	AMETERS (kg	n) WEIGHT	
Intl Desig	VEHICLE	DATE	(Mins.)		Perigee	Incl (dec		(All Launches from ESMC, unless otherwise noted)
Pioneer VIII (S)	Delta (S)	Dec 13		HELIC	CENTRIC ORB	IT	65.8	Third in series of interplanetary probes to provide data
1967 123A								solar wind, magnetic fields, and cosmic rays. Carried
TETR-1 (S)				DOMN	APR 28, 196	8	20.0	TTS-1, first NASA piggyback payload.
1967 123B								
1968								19
Surveyor VII (S)		Jan 7		LANDED OF	MOON JAN 9	, 1968	1040.1	Lunar soft landing achieved; provided pictures of lunar
1968 001A	(AC-15) (S))						terrain, portions of spacecraft, experiment operations,
								stars, planets, crescent Earth as it changed phases, and
								first observation of artificial light from Earth.
Explorer 36 (S)	Delta (S)	Jan 11	112.2	1572	1079	105.8	212.3	GEOS spacecraft to provide precise information about siz
1968 002A			•					and shape of Earth and strength of and variations in
								gravitational field; part of National Geodetic Program.
								(WSMC)
Apollo 5 (S)	Saturn IB	Jan 22		DOWN	JAN 24, 196	8	42,506.0	First flight test of Lunar Module; verified ascent and
1968 007A	(S)							descent stages, propulsion systems and restart operation
000 V (S)	A-Agena	Mar 4		JIKRENT ELI	EMENTS NOT M	ALNTAINED	611.0	Provided measurements of energy characteristics in Earth
1968 014A	(S)							radiation belts; first evidence of electric fields in bo
D-12-2- 37 (C)	Court (C)	Van E						shock.
Explorer 37 (S) 1968 017A	Scout (S)	Mar 5	I	DOWN NOV	16, 1990		89.8	Solar Explorer to provided data on selected solar X-ray
Apollo 6 (U)	Saturn V	Apr 4		199.57	APR 4, 1968		42856.0	ultraviolet emissions. NRL/NASA Cooperative. (WF Launch vehicle and spacecraft development flight. Launch
ADOILO 6 (U) 1968 025A	(U)	Whr 4		DOWN	ALT: 4, 1968		42056.0	vehicle engines malfunctioned; spacecraft systems perform
1900 UZJA	(0)					•		normally. Mission judged unsuccessful.
Reentry VI (S)	Scout (S)	Apr 27		CHOOL	BITAL FLIGH	m*	272.0	Turbulent heating experiment to obtain heat transfer
Recticity AT (2)	acout (a)	MPL 21		SUBU	COLIME PETCH	1	2/2.0	measurements at 20,000 FPS. (WF
ESRO IIB (S)	Scout (S)	May 17		POWN	MAY 8, 1971		89.1	Carried 7 experiments to study solar and cosmic radiation
1968 041A	Scout (S)	may 17		DOMEN	mai 0, 19/1		69.1	in lower Van Allen belt. Cooperative with ESRO. (WEM
Nimbus B (U)	Thor-Agena	May 18		מות	OT ACHIEVE	PRTT	571.5	Experimental meteorological satellite; also carried Sec
Secor 10 (U)	(U)	tern 10		ו פוט	ANT UNUTERS	CKDII	20.4	10 (DOD) secondary payload. Booster malfunctioned;
Secor IO (O)	(0)						20.4	destruct signal sent by range safety officer. (WSM
Explorer 38 (S)	Delta 57	Jul 4	224.2	5865	5828	120.8	275.4	Radio Astronomy Explorer to monitor low-frequency radio
1968 055A	(S)	941 4	2.7.2	3863	3020	140.0	2/3.9	signals originating in our own solar system and Earth's
1500 0338	(0)							magnetosphere and radiation belts.
								magneroshiere and radiation parcs.

IISSION/ ntl Desig	LAUNCH VEHICLE	LAUNCH DATE	PERIOD (Mins.)	CURRENT OF	RBITAL PARAMI	TERS (km)		REMARKS (All Launches from ESAC, unless otherwise noted)
xplorer 39 (S) 968 066A	Scout (S)	Aug 8			UN 22, 1981		9.3	Dual payload (Air Density/Injun) to continue the detailed scientific study of density and radiation characteristics
xplorer 40 (S) 968 066B			118.0	2506	678	80.7	69.4	of Earth's upper atmosphere. (WSMC)
TS IV (U) 968 068A	A-Centaur (U)	Aug 10		DOWN O	CT 17, 1968		390.1	Evaluate gravity-gradient stabilization, simultaneous transmission of voice, TV, telegraph, and digital data. Centaur failed to reignite for second burn; spacecraft remained in parking orbit attached to Centaur.
SSA VII (S) 968 069A	Delta 58 (S)	Aug 16	114.9	1471	1429	101.5	147.4	Replace ESSA V as the primary stored data satellite in the TOS system. Reimbursable. (WEMC)
AM CII (S)	Scout (S)	Aug 22		SUBORB	ITAL PLIGHT		122.0	Measure electron and ion concentrations during reentry. (MPF)
ntelsat III F-1 U) SRO IA (S)	Delta (U)	Sep 18		DID NO	r achieve ore	BIT	286.7	Comsat commercial communications satellite. Vehicle failure. Reimbursable.
SRO IA (S) 968 084A	Scout (S)	Oct 3		DOWN J	IN 26, 1970	•	85.8	Carried 8 experiments to measure energies and pitch angles of particles impinging on polar ioncephere during magnetic storms and quiet periods. Cooperative with ESRO. (WSMC)
pollo 7 (S) 968 089A	(S)	Oct 11		LANDED	OCT 22, 1968		51,655.0	First manned flight of Apollo spacecraft with Walter M. Schirra, Jr., Donn F. Eisele, and Walter Cunningham. Performed Earth orbit operations. Mission Duration 260 hours 9 minutes 3 seconds.
Toneer IX (S) 968 100A ETR 2 (S) 968 100B	Delta (S)	Nov 8			ENTRIC CRBIT EP 19, 1979		66.7	Deep space probe to collect scientific data on the electromagnetic and plasma properties of interplanetary space. Carried TEIR 2 as secondary payload.
EOS A (S) 968 109A		Dec 5		DOWN OC	T 28, 1975		108.8	Study interplanetary magnetic fields and solar cosmic ray particles. ESRO Reimbursable,
AO II (S) 968 110A	(AC-16) (S)	Dec 7	100.1	768	759	35.0	2016.7	Perform astronomy investigations of celestial objects in the ultraviolet region of the electromagnetic spectrum.
SSA VIII (S) 968 114A	(S)	Dec 15	114.6	1461	1411	101.5	136.1	Meteorological satellite for ESSA. Reimbursable. (WFF)
ntelsat III F-2 S) 968 116A	Delta 63 (S)	Dec 18	CUF	RENT ELEME	ENTS NOT MAIN	TAINED	286.7	Initial increment of first global commercial communications satellite system for Communications. Reimbursable.

	LAUNCH	LAUNCH	PERIOD	CURRENT		PARAMETERS ()	om) WEIGHT	REMARKS
	VEHICLE	DATE	(Mins.)	Apogee	Perige			(All Launches from ESMC, unless otherwise noted)
	Saturn V	Dec 21		LANDE	D DEC 27,	1968	51655.0	First manned Saturn V flight with Frank Borman, James A.
1968 118A	(S)							Lovell, Jr. and William A. Anders. First manned lunar
								orbit mission; provided close-up look at Moon during 10
l								lunar orbits. Mission Duration 147 hrs 0 min 42 sec.
1969								196
	Delta (S)	Jan 22		DOWN	APR 2, 19	984	288.5	Continuation of OSO program to study Sun's X-rays, gamma
1969 006A								rays, and radio emissions.
	Delta 65	Jan 30	127.9	3489	574	88.4	235.9	Satellite built by Canada carried 10 experiments to study
1969 009A	(S)							the ionosphere. Cooperative with Canada. (WSMC
	Delta 66	Feb 5	C	irrent ele	MENTS NOT	CHAINTAINED	286.7	Second increment of Comsat's operational commercial
(S)	(S)							communication satellite system. Reimbursable.
1969 011A								
	A-Centaur	Feb 25		HELIC	CENTRIC C	RBIT	411.8	Mars flyby; provided high resolution photos of Martian
1969 014A	(AC-20) (S)							surface. Closest approach was 2,120 miles on July 31.
	Delta 67	Feb 26	115.2	1503	1423	101.6	157.4	Ninth and last in the TOS series of meteorological
1969 016A	(S)							satellites. Reimbursable.
	Saturn V	Mar 3		LANDE	D MAR 13,	, 1969	51655.0	Earth orbital flight with James A. McDivitt, David R.
1969 018A	(S)							Scott, and Russell Schweickart. First flight of lunar
l								module. Performed rendezvous, docking, and EVA. Mission
L								Duration 241 hours 1 minute 54 seconds.
		Mar 27		HELIC	CENTRIC C	RBIT	411.8	Mars flyby; provided high resolution photos of Martian
	(AC-19) (S)							surface. Closest approach was 2,190 miles on August 5.
	Thor-Agena	Apr 14	107.3	1130	1069	99.9	575.6	Provided night and day global meteorological measurements
	(S)							from space. Secor (DOD) provided geodetic position
Secor 13 (S)			107.2	1127	1067	99.9	20.4	determination measurements.
(WSMC)								
1969 037B								
	Saturn V	May 18		LANDE	D MAY 26,	1969	51655.0	Manned lunar orbital flight with Thomas P. Stafford, John
1969 043A	(S)							W. Young, and Eugene A. Cernan to test all aspects of an
1								actual manned lunar landing except the landing. Mission
						 		Duration 192 hours 3 minutes.
Intelsat III F-4	Delta (S)	May 21	α	RRENT ELE	MENTS NOT	MAINTAINED	143.8	Third increment of Comsat's operational commercial
(S)								communication satellite system. Reimbursable.
1969 045A								
L								

B-84

OF POOR QUALITY

ISSION/	LAUNCH	LAUNCH	PERIOD		SITAL PARAMETE		WEIGHT	
ntl Desig	VEHICLE	DATE	(Mins.)			:1 (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
GO VI (S)	Thor-Agena	Jun 5		DOWN OC	r 12, 1979		631.8	Last in the OGO series to provide measurements of energy
969 051A	(S)							characteristics in Earth's radiation belts; first evidence
								of electric fields in bow shock. (WSMC)
xplorer 41 (S)	Delta 69	Jun 21		DOWN DEX	23, 1972		78.7	Seventh Interplanetary Monitoring Platform to continue the
969 053A	(S)							study of the environment within and beyond the Earth's
								magnetosphere. (WSMC)
iosatellite III	Delta (S)	Jun 28		DOWN JUI	7, 1969		696.3	Conduct intensive experiments to evaluate the effects of
U)								weightlessness with a pigtail monkey onboard. Spacecraft
969 056A								deorbited after 9 days because monkey's metabolic condition
								was deteriorating rapidly. Monkey expired 8 hours after
								recovery presumably from a massive heart attack brought on
								by dehydration. Mission judged unsuccessful.
pollo II (S)	Saturn V	Jul 16		LANDED 3	UL 24, 1969		51655.0	First manned lunar landing and return to Earth with Neil A.
969 059A	(S)							Armstrong, Michael Collins, and Edwin A. Aldrin. Landed in
								the Sea of Tranquility on July 20, deployed TV camera and
								EASEP experiments, performed EVA, returned lunar soil
								samples. Mission Duration 195 hours 18 minutes 35 seconds.
ntelsat III F-5	Delta (U)	Jul 26		DOWN OC	r 14, 1988		146.1	Fourth increment of Comsat's operational commercial
U)								communication satellite system. Third-stage malfunctioned;
969 064A								satellite did not achieve desired orbit. Reimbursable.
50 VI (S)	Delta (S)	Aug 9		DOWN MAI	7, 1981		173.7	Continuing study of Sun's X-rays, gamma rays, and radio
969 068A								emissions. Carried PAC experiment to stabilize spent
AC (S)				DOWN APP	28, 1977		117.9	Delta stage.
969 068B								
rs v (u)	A-Centaur	Aug 12	1464.5	38298	34383	9.5	432.7	Evaluate gravity-gradient stabilization for geosynchronous
969 069A	(AC-18) (S)							satellites. Anomaly after apogee motor firing resulted in
								counterclockwise spin; gravity-gradient booms could not be
· · · · · · · · · · · · · · · · · · ·								deployed. Nine of 13 experiments returned useful data.
loneer E (U)	Delta (U)	Aug 27		DID NOT	ACHIEVE ORBIT	ſ	67.1	Deep space probe to study magnetic disturbances in
TETER C) (U)							18.1	interplanetary space. Vehicle malfunctioned; destroyed 8
								min 3 sec into powered flight by range safety officer.
RO IB (S)	Scout (S)	Oct 1		DOWN NO.	23, 1969		85.8	Fourth European-designed and built satellite to study
169 083A								ionospheric and auroral phenomena over the northern polar
								regions. Reimbursable. (WSMC)
		MACE						
		AUL	13			-	<u> </u>	B-85

MISSION/	LAUNCH	LAUNCH	PERIOD	CURRENT	ORBITAL P.	ARAMETERS (km) WEIGHT	REMARKS
Intl Desig	VEHICLE	DATE	(Mins.)	Apogee	Perigee		(kg)	(All Launches from ESMC, unless otherwise noted)
GRS-A (S)	Scout (S)	Nov 7	115,1	2538	379	102.8	72.1	Study inner Van Allen belt and auroral zones of the
1969 097A								Northern Hemisphere. Cooperative with Germany. (WSMC
Apollo 12 (S)	Saturn V	Nov 14		LAND	ED NOV 24,	1969	51655.0	Second Manned lunar landing and return with Charles Conra
1969 099A	(S)							Jr., Richard F. Gordon, and Alan F. Bean. Landed in the
								Ocean of Storms on Nov 19; deployed TV camera and ALSEP experiments; two EVA's performed; collected core sample a
								lunar materials; photographed and retrieved parts from
								Surveyor III spacecraft. Mission duration 244 hours
								36 minutes 25 seconds,
Skynet A (S)	Delta	Nov 21		ELEM	ENTS NOT A	VAILABLE	242.7	Communication satellite for the United Kingdom.
1969 101A	(S)							Reimbursable.
1970								197
Intelsat III F-6	Delta (S)	Jan 14		CURRENT E	LEMENTS NO	T MAINTAINED	155.1	Part of Comsat's operational commercial communication
(S)								satellite system. Reimbursable.
1970 003A	Delta							
ITOS I (S) 1970 008A	(S)	Jan 23	115.0	1477	1432	101.5	306.2	Second generation meteorological satellite to provide daytime and nighttime cloud cover observations in both
Oscar 5 (S)	(5)		115.0	1475	1432	101.5	9.1	direct and stored modes. Oscar (Australia), carried pioc
1970 008B			113.0	14/3	1432	101.5	7.1	back, used by radio amateurs throughout the world. WSMC)
SERT II (U)	Thor-Agena	Feb 3	106.0	1046	1038	99.3	503.5	Ion engine test. Fell short of mission duration objective
1970 009A	(S)		20000	2010	1000	,,,,	55575	by less than 1 month. (WSMC
NATOSAT I (S)	Delta 77	Mar 20	1436.2	36491	35086	9.4	242.7	Communications satellite for NATO. Reimbursable
1970 021A	(S)							
Nimbus D (S)	Thor-Agena	Apr 8	107.1	1097	1086	99.7	619.6	Stabilized, Earth-oriented platform to test advanced
1970 025A	(S)							systems for collecting meteorological and geological data
TOPO 1 (S)			106.9	1085	1082	99.5	21.8	TOPO, carried as piggyback, for triangulation exercises.
1970 025B Abollo 13 (U)	Saturn V	Apr 11		V 1100	ND 100 17	1070	51655.0	(WSMC) Third manned lunar landing attempt with James A. Lovell,
1970 029A	(S)	Was II		LAND	ED APR 17,	19/0	21032*0	Jr., John L. Swigert, Jr., and Fred W. Haise, Jr. Pressu
1370 0278	(3)							lost in SM oxygen system; mission aborted; IM used for Ii
								support. Mission Duration 142 hours 54 minutes 41 second
Intelsat III F-7	Delta (S)	Apr 22		URRENT EL	MENTS NOT	MAINTAINED	290.3	Part of Comsat's operational commercial communication
(S)	(S)							satellite system. Reimbursable.
1970 032A	•-•							•
L					_			

SSION/	LAUNCH	LAUNCH	PERIOD	CURRENT	ORBITAL PAR	AMETERS (km)	WEIGHT	REMARKS
tl Desig	VEHICLE	DATE	(Mins.)	Apogee	Perigee	Incl (deg	(kg)	(All Launches from ESMC, unless otherwise noted)
telsat III F-8	Delta (S)	Jul 23	1408.2	36650	33823	12.2	290.3	Part of Comsat's operational commercial communication
1)								satellite system. Malfunctioned during apogee motor
70 O55A								firing; failed to achieve desired orbit. Reimbursable.
ynet 2 (U)	Delta (S)	Aug 19	-	URRENT ELE	MENTS NOT M	AINTAINED	242.7	Communication satellite for the United Kingdom. Telemetary
70 062A								terminated following apogee motor failure. Reimbursable.
M CIII (S)	Scout (S)	Sep 30			BITAL PLIGH		134.0	Reentry test of radio blackout.
0 I (S)	Scout (S)	Nov 9		DOWN	MAY 9, 1971		132.9	Orbiting Prog Otolith (OFO) in which frogs were used to
70 094A								study effects of weightlessness on the inner ear, which
S (S)				DOWN	FEB 7, 1971		21.0	controls balance. Radiation Meteoroid Spacecraft (RMS)
70 094B								provided data on radiation belts. (WFF)
OB (U)	A-Centaur	Nov 30		DID N	OT ACHIEVE (ORBIT	2122.8	Perform stellar observations in the UV region. Centaur
	(U)							nose fairing failed to separate; orbit not achieved.
OS A (S)	Delta 81	Dec 11	114.8	1471	1421	101.5	306.2	To augment NOAA's satellite world-wide weather observation
70 106A	(S)							capabilities. Reimbursable. (WSMC)
plorer 42 (S)	Scout 175C	Dec 12		DOWN /	APR 5, 1979		142.0	Small Astronomy Satellite to catalog celestial X-ray
70 107A	(S)							sources within and outside the Milky Way. First X-ray
								satellite. (San Marco)
71								1971
telsat IV F-2	A-Centaur	Jan 25		ELEMENT	S NOT AVAIL	ABLE	1387.1	Fourth generation satellite to provide increased capacity
)	(S)							for Comsat's global commercial communications network.
71 006A								Reimbursable.
ollo 14 (S)	Saturn V	Jan 31		LANDE	D FEB 9, 197	71	51655.0	Third Manned lunar landing with Alan B. Shepard, Jr.,
71 008A	(S)							Stuart A. Roosa, and Edgar D. Mitchell. Landed in the Fra
? (S)	SM			IMPACTED 8	MOON FEB 4,	1971		Mauro area on Feb 5; performed EVA, deployed lunar
71 008B								experiments, returned lunar samples. P&F Subsatellite
								spring-launched from SM in lunar orbit. Mission duration
								216 hours 1 minute 57 seconds.
COSAT 2 (S)	Delta 82	Feb 2	1435.8	41063	30496	8.7	242.7	Second communications satellite for NATO. Reimbursable
1 009A	(S)							
plorer 43 (S)	Delta 83	Mar 13		DOWN (OCT 2, 1974	· · ·	288.0	Second generation Interplanetary Monitoring Platform to
'1 019A	(S)							extend man's knowledge of solar-lunar relationships.
S B (S)	Delta (S)	Mar 31	113.5	1423	1354	88.2	264.0	Study electron production and loss, and large scale
'1 024A								transport of ionization in ionosphere. Cooperative with
_								Canada. (WSMC)
	CIMAL	paer						
		355	. TS					B-87
~~	2000		1 HEZPIN . 6					D-07

OF POOR QUALITY

MISSION/	LAUNCH	LAUNCH	PERIOD I	CURRENT OR	BITAL PARAME	TERS (km)	WEIGHT	REMARKS
Intl Desig	VEHICLE	DATE	(Mins.)			ncI (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
San Marco C (S)	Scout 173C	Apr 24		DOWN NO	/ 29, 1971		163.3	Study atmospheric drag, density, neutral composition, an
1971 036A	(S)							temperature. Cooperative with Italy. (San Marc
Mariner H (U)	A-Centaur	May 8		DID NOT	ACHIEVE ORB	IT	997.9	Mariner Mars '71 Orbiter mission to map the Martian
<u></u>	(AC-24) (U)							surface. Centaur stage malfunctioned shortly after laun
Mariner I (S)	A-Centaur			AREOCEN	RIC ORBIT		997.9	Second Mariner Mars '71 Orbiter mission to map the Marti
1971 051A	(AC-23) (S)							surface. Achieved orbit around Mars on Nov 13, 1971.
								Transmitted 6,876 pictures.
PAET (S)	Scout (S)	Jun 20		SUBORBI	TAL FLIGHT		62.1	Test to determine structure and composition of an
		` -						atmosphere from a probe entering at high speed. (WF
Explorer 44 (S) 1971 058A	Scout (S)	Jul 8		DOWN DE	C 15, 1979		115.0	Solar radiation spacecraft to monitor Sun's X-ray and ultraviolet emissions. Cooperative with NRL. (WF
Apollo 15 (S)	Cabina W	2.1.22					CLOSE O	
1971 063A	Saturn V	Jul 26		LANDED	AUG 7, 1971		51655.0	Fourth manned lunar landing with David R. Scott, Alfred
P&P Subsat (S)	(S) SM	A					26.2	Worden, and James B. Irwin. Landed at Hadley Rille on J 30; performed EVA with Lunar Roving Vehicle; deployed
1971 063D	SM	Aug 4		SELENCCI	ENTRIC CRBIT		36.3	experiments. Mission Duration 295 hrs 11 min 53 sec.
CAS/EOLE (S)	Scout (S)	Aug 16	100.2	870	662	50.1	85.0	Obtain data on winds, temperatures, and pressures using
1971 071A	SCOUL (S)	Aug 16	100.2	870	662	50.1	85.0	instrumented balloons launched from Argentina and a
1271 0724								satellite. Cooperative with France. (WF
BIC (S)	Scout 166C	Sep. 20		CIRCODIT	TAL FLIGHT		31.7	Barium Ion Cloud Project to study Earth's magnetic field
DAC (3)	(S)	3ep 20		SUBCKET.	IAL FLIGHT		31.7	Cooperative with Germany. (WF
OSO H (S)	Delta (S)	Sep 29		TYWN .TIT	. 9, 1974		635.0	Observe active physical processes on the Sun and how it
1971 083A				50.11. 00.	,			influences the Earth and its space environment.
TETR4 (S)				DOWN SE	P 21, 1978		20.4	·
1971 083B								
TROS B (U)	Delta 86	Oct 21		DOWN JU	21, 1972		31.7	To augment NOAA's satellite world-wide weather observati
1971 091A	(U)							capabilities. Second stage failed. Reimbursable. (WSM
Explorer 45 (S)	Scout (S)	Nov 15	322.8	18149	272	3.2	50.0	Small Scientific Satellite to study magnetic storms and
1971 096A								acceleration of charged particles within the inner
L								magnetosphere. (San Marc
UR-4 (S)	Scout (S)	Dec 11		DOWN DE	C 12, 1978		102.4	Study interactions between plasma and charged particle
1971 109A								streams in the atmosphere. Cooperative with UK. (WSM
Intelsat IV F-3	A-Centaur	Dec 20	1454.6	36645	35649	3.9	1387.1	Fourth generation satellite to provide increased capacit
(S) ·	(S)							for Comsat's global commercial communications network.
1971 116A								Reimbursable.
								<u> </u>
B-88								

DEMADES

ASA Major Launch Record I LAUNCH | PERIOD | CURRENT CRRITAL PARAMETERS (1cm) | METCHT |

STON/

STON/	LAUNCH	LAUNCH	LEKTOD			AMETERS (KM)		REMARKS
1 Desig	VEHICLE	DATE	(Mins.)	Apogee	Perigee	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
2								1972
elsat IV F-4	A-Centaur (S)	Jan 22	1438.0	35851	35797	5.3	1387.1	Fourth generation satellite to provide increased capacity for Comsat's global commercial communications network.
2 003A .	,							Reimbursable.
6 A-2 (S)	Delta (S)	Jan 31		TYNKIN I	AUG 2, 1974		117.0	Carried 7 experiments provided by various European
2 005A					,		117.00	organizations to investigate particles and micrometeorites
								in space. Reimbursable. (WSMC)
neer 10 (S)	A-Centaur	Mar 2	- Gr	MATTEN DATE	ESCAPE TRA	TECTIVE V	258.0	Jupiter Flyby, First spacecraft to flyby Jupiter and
2 012A	(S)		~	JULE DIDILLE	COCATE DOL	Delect	230.0	return scientific data.
1 (s)	Delta (S)	Mar 11		TYTEN.	JAN 9, 1980		470.8	Western European satellite to obtain data on high-energy
2 014A	20144 (5)			00,111	, , 1500		470.0	emissions from stellar and galactic sources. ESRO
e ores		ı						Reimbursable. (WEMC)
11o 16 (S)	Saturn V	Apr 16		Y ANDET	D APR 27, 1	272	51655.0	Fifth manned lunar landing mission with John W. Young, Ken
2 031A	(S)	int in			J 141 27 1	,,,	31033.0	Mattingly, and Charles M. Duke. Landed at Descartes on Apr
Subsat (S)	SM	Apr 16		TMDA/MED I	MOON MAY 29	1072	36.3	20. Deployed camera and experiments; performed EVA with
2 031D	Gr.	Apr 10		DIFACIED I	HOON MAI 29	, 1972	30.3	lunar roving vehicle. Deployed P&F Subsatellite in lunar
- U31D								orbit. Mission Duration 265 hours 51 minutes 59 seconds.
elsat IV F-5	A-Centaur	Jun 13	1438.3	35852	35807	6.3	1387.1	Fourth generation satellite to provide increased capacity
ALBAC IV 1-5	(5)	Jul 13	1430.3	330,72	33607	0.3	130/.1	for Comsat's global commercial communications network.
2 041A	(5)							Reimbursable.
S-A (S)	Delta	Jul 23	103.1	909	899	99.1	941.0	Demonstrate remote sensing technology of Earth's surface on
2 058A	(S)	Jul 23	103.1	303	099	39.1	941.0	
lorer 46 (S)	Scout (S)	Aug 13		TOWAY A	10V 2, 1979			
2 061A	SCOUL (S)	way 13		DOMEN C	WOV 2, 1979		206.4	Meteoroid Technology Satellite to measure meteoroid penetration rates and velocity. (WPF)
3 (S)	A-Centaur	Aug 21	99.4	735	726	35.0	2200.0	
2 065A	(S)	aug 21	77.4	/33	/20	33.0	2200.0	Study interstellar absorption of common elements in the
2 003A	(8)							interstellar gas, and investigate ultraviolet radiation
nsit (\$)	0	0 0	100.0					emitted from young hot stars.
	Scout (S)	Sep 2	100.2	816	721	90.0	94.0	Navigation Satellite for U.S. Navy. Reimbursable. (WSMC)
2 069A	N-14- 00	G 22						
lorer 47 (S) 2 073A	Delta 90 (S)	Sep 22	(JUKKENT ELE	MENTS NOT M	ALNTAINED	375.9	Interplanetary Monitoring Platform; an automated space physics lab to study interplanetary radiation, solar wind
2 0/3A	(3)							
								and energetic particles.
	MAIR DO .	_						

ORIGINAL PAGE IS OF POOR QUALITY

MISSION/	LAUNCH	LAUNCH	PERIOD	CURRENT (RBITAL PAR	AMETERS (km)		REMARKS
Intl Desig	VEHICLE	DATE	(Mins.)	Apogee	Perigee	Incl (deg		(All Launches from ESMC, unless otherwise noted)
ITOS D (S)	Delta 91	Oct 15	114.9	1453	1447	101.7	345.0	To augment NOAA's satellite world-wide weather observati
1972 082A	(S)							capabilities. Oscar, amateur radio satellite, carried a
OSCAR (S)		Oct 15	114.9	1453	1446	101.7	15.9	piggyback. Reimbursable. (WSM
1972 082B								
Telesat A (ANIK)	Delta 92	Nov 9	1457.5	36257 .	36150	4.6	544.3	First of a series of domestic communications satellites
(S) 1972 090A	(S)							for Canada. Reimbursable.
Explorer 48 (S)	Scout 170C	Nov. 15		200.21	20 100		186.0	Control between Colollies and
1972 091A	(S)	MON TO		DOWN A	AUG 20, 198	U	199.0	Small Astronomy Satellite; carried gamma ray telescope in bulbous dome to study gamma rays. Launched by Italian of
1372 03EA	(3)							from San Marco.
ESRO IV (S)	Scout (S)	Nov 21		DOWN /	APR 15, 197	4	114.0	Carried five experiments to investigate the ionosphere,
1972 092A	, , , , , , , , , , , , , , , , , , ,			DO-111 1	II. 13, 13,	•	22	near magnetosphere, auroral, and solar particles.
								Reimbursable. (WSM
Apollo 17 (S)	Saturn V	Dec 7		LANDE	DEC 19, 1	972	51655.0	Sixth and last manned lunar landing mission with Eugene
(AS-512/CSM-	(S)							Cernan, Ronald E. Evans, and Harrison H. (Jack) Schmitt.
114/tM-12)								Landed at Taurus-Littrow on Dec 11. Deployed camera and
1972 096A								experiments; performed EVA with lunar roving vehicle.
								Returned lunar samples. Mission duration 301 hours
l 								51 minutes 59 seconds.
Nimbus E (S)	Delta (S)	Dec 11	107.1	1100	1087	99.6	716.8	Stabilized, Earth-oriented platform to test advanced
1972 097A								systems for collecting meteorological and geological dat (WSMC)
AEROS	Scout (S)	Dec 16		TOTAL I	AUG 22, 197	3	125.7	Study state and behavior of upper atmosphere and
(German A-2) (S)	SCOUL (S)	Dec: 16		DOWN 8	40G 22, 19/	3	125.7	ionosphere. Cooperative with Germany. (WSMC
1972 100A								Totopiers: coperacive with defining:
1973								19
Pioneer G (S)	A-Centaur	Apr 5	SOI	AR SYSTEM	ESCAPE TRA	JECTORY	259.0	Investigate interplanetary medium beyond the orbit of Ma
1973 019A	(S)							the Asteroid Belt, and the near-Jupiter environment.
Te lesat B	Delta 94	Apr 20	1443.0	35973	35870	5.1	544.3	Second domestic communications satellite for Canada.
(ANIK-2) (S)	(S)							Reimbursable.
1973 023A								
Skylab Workshop	Saturn V	May 14		DOWN J	TUL 11, 197	9	71500.0	Unmanned launch of first U.S. Space Station. Workshop
(8)	(S)							incurred damage during launch. Repaired during follow-c
1973 027A								manned missions.
L								
B-90								्राप्त कर के किया है। जिल्ला के किया के किया के किया के किया किया के किया किया किया किया किया किया किया किया

NASA Major Launch Record

MISSION/ Intl Desig	LAUNCH VEHICLE	LAUNCH DATE	PERIOD (Mins.)	CURRENT O	ORBITAL PAR	AMETERS (km)		REMARKS (All Launches from ESMC, unless otherwise noted)
Skylab 2 206/CSM-116 (S) 1973 032A	Saturn IB (S)	May 25	[(HIRS.)		D JUN 22, 1		29750.0	First manned visit to Skylab workshop with Charles (Pete) Conrad, Jr., Joseph P. Kerwin, and Paul J. Weitz. Deployed parasol-like themal blanket to protect hull and reduce temperatures within workshop; freed solar wing that was jammed with debris. Mission duration 672 hours 49 minutes 49 seconds.
Explorer 49 (S) 1973 039A	Delta 95 (S)	Jun 10		SELEN	CENTRIC OR	BIT	328.0	Radio Astronomy Explorer to measure low frequency radio noise from galactic and extragalactic sources and from the Sun, Earth and Jupiter.
ITOS E (U)	Delta (U)	Jul 16		DID NO	OT ACHIEVE	CRBIT	333.8	To augment NOWA's satellite world-wide weather observation capabilities. Vehicle second stage malfunctioned. (MSMC)
Skylab 3 207/CSM-117 (S) 1973 050A	Saturn IB (S)	Jul 28		LANDEI	SEP 25, 1	973	29750.0	Second manned visit to Skylab Workshop with Alan L. Bean, Owen K. Garriot, and Jack R. Lousma. Performed systems and operational tests, conducted experiments, deployed thermal shield. Mission Duration 1427 hours 9 minutes 4 seconds.
Intelsat IV F-7 (S) 1973 058A	A-Centaur (AC-31) (S)	Aug 23	1466.3	38057	34693	5.7	1387.1	Fourth generation satellite to provide increased capacity for Comsat's global commercial communications network. Reimbursable.
Explorer 50 (S) 1973 078A	Delta 98 (S)	Oct 25		ELEMEN	VIS NOT AVA	ILABLE	397.2	Last Interplanetary Monitoring Platform to investigate Earth's radiation environment.
Transit (S) 1973 081A	Scout (S)	Oct 30	105.3	1133	887	89.9	95.0	Navigation satellite for the U.S. Navy. Reimbursable. (WSMC)
Mariner 10 (Mariner/Venus/ Mercury) (S) 1973 085A	A-Centaur (AC-34) (S)	Nov 3		HELIC	CENTRIC ORB	IT	504.0	Venus and Mercury flyby mission; first dual planet mission. Photographed Earth and the Moon on its flight to Venus; Yenus encounter (at 5,800 km) on Feb 5; Mercury encounter (at 704 km) on Mar 29, 1974; second Mercury encounter (at 48,069 km) on Sep 21, 1974; third Mercury encounter (at 19,000 km) on Sep 21, 1974; third Mercury encounter (at 19,000 km) on Sep 21, 1974; third Mercury encounter (at 19,000 km) on Sep 21, 1974; third Mercury encounter (at 19,000 km) on Mar 16, 1975. Engineering tests conducted before attitude control gas was depleted and transmitter commanded off on Mar 24, 1975.
TTOS F (S) 1973 086A	Delta 98 (S)	Nov 6	116.1	1508	1499	101.9	345.0	To augment NDAA's satellite world-wide weather observation capabilities. Reimbursable. (WEMC)

MISSION/	LAUNCH	LAUNCH	PERIOD		BITAL PARAM			
Intl Desig	VEHICLE	DATE		Apogee		Incl (deg)		(All Launches from ESMC, unless otherwise noted)
Skylab 4 (S)	Saturn IB	Nov 16		LANDED	PEB 8, 1974	1	29,750.0	Third manned visit to Skylab Workshop with Gerald P. Carr,
1973 09QA	(S)							Edward G. Gibson, and William R. Pogue. Performed infligh
								experiments; obtained medical data on crew; performed four
								EVA's. Mission duration 2017 hours 15 minutes 32 seconds.
Explorer 51 (S)	Delta (S)	Dec 16		DOWN DE	C 12, 1978		663.0	Atmosphere Explorer; carried 14 instruments to study energ
1973 101A								transfer, atomic and molecular processes, and chemical
								reactions in the atmosphere. (WSMC)
1974								1974
Skynet II-A (U)	Delta (U)	Jan 18		DOWN J	N 25, 1974		435.5	Communication satellite for the United Kingdom. Short
1974 002A								circuit in electronics package caused vehicle failure.
								Reimbursable.
Centaur Proof	Titan III E			DID NO	ACHIEVE OF	RBIT		Launch vehicle development test of the Titan IIIE/Centaur
Flight (U)	Centaur (U)	1						(TC-1); carried simulated Viking spacecraft and Sphinx.
								Liquid oxygen boost pump failed to operate during Centaur
								starts. Destruct command sent 748 seconds after liftoff.
San Marco C-2	Scout	Feb 18		DOWN MA	Y 4, 1976		170.0	Measure variations of equatorial neutral atmosphere
(S)	S-190C (S)							density, composition, and temperature. Cooperative with
1974 009A								Italy. (San Marco)
UX-X4 (S)	Scout (S)	Mar 8	100.6	890	688	97.9	91.6	Three-axis stabilized spacecraft to demonstrate technology
1974 013A								involved in design and manufacture of this type platform
								for use on small spacecraft. Reimbursable. (WSMC)
Westar A (S)	Delta 101	Apr 13	1441.6	35942	35846	4.1	571.5	Domestic communications satellite for Western Union.
1974 022A	(S)							Reimbursable.
SMS A (S)	Delta 102	May 17		ELEMENTS	NOT AVAIL	ABLE	628.0	Geostationary environmental satellite to provide Earth
1974 033A	(S)							imaging in visible and IR spectrum. First weather observe
								to operate in fixed geosynchronous orbit about the Equator
								Cooperative with NOAA.
ATS F (S)	Titan III (1412.0	35433	35195	8.8	1403.0	Applications Technology Satellite capable of providing goo
1974 039A	Centaur (S)	_						quality TV signals to small, inexpensive ground receivers.
Į.								Carried over 20 technology and science experiments.
Explorer 52 (S)	Scout (S)	Jun 3		DOWN A	R 28, 1978		26.6	"Hawkeye" spacecraft to investigate the interaction of the
1974 040A								solar wind with the Earth's magnetic field. (WSMC)
AEROS B (5)	Scout (S)	Jul 16		DOWN SE	P 25, 1975		125.7	German-built satellite to study the state and behavior of
1974 055A								upper atmosphere and ionosphere. Reimbursable. (WSMC)
								·
<u> </u>				_				

IASA Major Launch Record

			_					
ISSION/	LAUNCH	LAUNCH	PERIOD	CURRENT	ORBITAL PAR	AMETERS (km)	WEIGHT	REMARKS
ntl Desig	VEHICLE	DATE	(Mins.)		Perigee	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
NS A (S)	Scout 189C	Aug 30		DOWN .	JUN 14, 197	7	129.8	Study the sky in ultraviolet and X-ray from above the
974 070A	(S)	-						atmosphere. Cooperative with the Netherlands. (WSMC)
estar B (S)	Delta (5)	Oct 10	1442.0	35917	35886	4.4	571.5	Domestic communications satellite for Western Union.
974 075A								Reimbursable.
K-5 (S)	Scout 187C	Oct 15		DOMEN	MAR 14, 1980	0	130.3	Measure spectrum, polarization and pulsar features of
974 077A	(S)							non-solar X-ray sources. Cooperative with UK. (San Marco)
TOS-G (S)	pelta 104	Nov 15	114.9	1456	1443	101.6	345.0	ITOS-G - To augment NOAA's satellite world-wide weather
974 089A	(S)							observation capabilities. Reimbursable. Intasat - Conduct
NTASAT (S)			114.8	1457	1439	101.6	20.4	worldwide observations of ionospheric total electron
974 089B								counts. Cooperative with Spain. Oscar - provide
SCAR (S)			114.8	1457	1438	101.6	28.6	communications for amateur radio enthusiasts around the
974 089C								world. (WSMC)
ntelsat IV F-8	A-Centaur	Nov 21	1443.1	35946	35901	3.6	1387.1	Fourth generation satellite to provide increased capacity
S)	(AC-32) (S)							for Comsat's global commercial communications network.
974 093A								Reimbursable.
kynet II-B (S)	Delta (S)	Nov 22	1434.5	35773	35736	7,7	435.0	Communication satellite for the United Kingdom.
974 094A								Reimbursable.
elios A (S)	Titan III	Dec 10		HELIC	CENTRIC ORB	ΙΤ	370.0	Study the Sun from an orbit near the center of the solar
974 097A	Centaur (S)	_						system. Cooperative with West Germany.
ymphonie A (S)	Delta 106	Dec 18	1435.0	36658	34871	3.6	402.0	Joint French-German communications satellite to serve North
974 101A	(S)							and South America, Europe, Africa and the Middle East.
	•							Reimbursable.
975								1975
andsat 2 (S)	Delta (S)	Jan 22	103.1	913	901	98.8	953.0	Second Earth Resources Technology Satellite to locate, map,
975 004A								and measure Earth resources parameters from space and
								demonstrate the applicability of this approach to the
•								management of the worlds resources. (WSMC)
MS-B (S)	Delta 108	Feb 6		ELEME	NTS NOT AVA	ILABLE	628.0	Together with SMS-A, provide cloud-cover pictures every 30
975 011A	(S)							minutes to weathermen at NOAA. Cooperative with NOAA.
ntelsat IV F-6	A-Centaur	Feb 20		DID N	OT ACHIEVE (RBIT	1387.1	Fourth generation satellite to provide increased capacity
ט)	(AC-33) (U)							for Comsat's global commercial communications network.
								Launch Vehicle malfunctioned. Reimbursable.
20S C (S)	Delta (S)	Apr 9	101.7	857	816	115.0	340.0	Oceanographic and geodetic satellite to measure ocean
975 027A							210.0	topography, sea state, and other features. (WSMC)
					_			ashadrafust, san sensot mm onest reasons. (1999)
								D 00

MISSION/	LAUNCH	LAUNCH	PERIOD		ORBITAL PARA			REMARKS
Intl Desig	VEHICLE	DATE	(Mins.)	Apogee	Perigee	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
Explorer 53 (S)	Scout	May 7		DOWN	APR 9, 1979		196.7	Small Astronomy Satellite to study X-ray sources within a
1975 037A	S194C (S)							beyond the Milky Way galaxy. (San Marco
Telesat C (S)	Delta 109	May 7	1439.6	35867	35842	3.8	544.3	Third domestic communications satellite for Canada.
1975 038A	_(S)							Reimbursable.
Intelsat IV F-1	A-Centaur		1450.8	36120	36028	3.6	1387.1	Fourth generation satellite to provide increased capacity
(S)	(AC-35) (S))						for COMSAT's commercial communications network. Last of
1975 042A								the IV series. Reimbursable.
Nimbus F (S)	Delta (S)	Jun 12	107.4	m	1100	99.6	827.0	Stabilized, Earth-oriented platform to test advanced
1975 052A								systems for collecting meteorological and geological data
								(WSMC)
OSO I (S)	Delta (S)	Jun 21		DOWN	JUL 9, 1986		1088.4	Observe active physical processes on the Sun and how it
1975 057A								influences the Earth and its space environment.
Apollo Soyuz	Saturn IB	Jul 15		DOWN	JUL 24, 1975		14,856.0	Manned Apollo spacecraft with Thomas P. Stafford, Vance D
Test Project (S)	(S)							Brand and Donald K. Slayton rendezvoused and docked with
1975 066A								Soyuz 19 spacecraft with Aleksey Leonov and Valeriy Kubas
								on July 17, 1975. Mission Duration 217 hrs 28 min 23 sec
COS B (S)	Delta 113	Aug 8	α	RRENT ELE	MENTS NOT MA	INTAINED	277.5	Cosmic ray satellite to study extraterrestrial gamma
1975 072A	(S)							radiation. ESA Reimbursable. (WSMC
Viking A (S)	Titan III	Aug 20		AEROC	ENIRIC ORBIT		2324.7	Mars Orbiter and Lander mission to conduct systematic
1975 075A	Centaur (S)							investigation of Mars. U.S. first attempt to soft land a
LANDER (S)			τ	ANDED ON	MARS JUL 20,	1976	571.5	spacecraft on another planet achieved on July 20, 1976.
1975 075C								First analysis of surface material on another planet.
Symphonie B (S)	Delta 114	Aug 29	1440.5	35879	35864	8.1	402.0	Second joint French-German communications satellite to
1975 077A	(S)							serve North and South America, Europe, Africa and the
								Middle East. Reimbursable.
Viking B (S)	Titan III	Sep 9		AEROC	ENTRIC ORBIT		2324.7	Second Mars Orbiter and Lander mission to conduct
1975 083A	Centaur (S)							systematic investigation of Mars. Soft landed on Mars on
Lander			I	ANDED ON	MARS SEP 3,	1976	571.5	Sep 3, 1976. Returned excellent scientific data.
1975 083A								• •
Intelsat IVA F-1	A-Centaur	Sep 25	1441.1	35896	35870	3.6	1515.0	Improved satellite with double the capacity of previous
(S)	(AC-36) (S)							Intelsats for Comsat's global commercial communications
1975 091A								network. Reimbursable.
Explorer 54 (S)	Delta 115	Oct 6		DOWN	MAR 12, 1976		675.0	Atmosphere Explorer to investigate the chemical processes
1975 096A	(S)							and energy transfer mechanisms which control Earth's
	• •							atmosphere. (WSMC
3-94								
U- U-								

NASA Major Launch Record

,								1919
MISSION/	LAUNCH	LAUNCH	PERIOD			AMETERS (km)	WEIGHT	REMARKS
Intl Desig	VEHICLE	DATE	(Mins.)		Perigee	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
Transit (S)	Scout	Oct 12	96.8	677	529	90.4	161.9	Second in a series of improved navigation satellite for
1975 099A	S-195C (S)							U.S. Navy. Reimbursable. (WSMC)
SMS-C/GOES A (S)	Delta 116	Oct 16	1435.6	35780	35771	7.6	628.0	First operational satellite in NOAA's geosynchronous
1975 100A	(S)							weather satellite system. Reimbursable.
Explorer 55 (S)	Delta (S)	Nov 20		DOWN	JUN 10, 198	1	719.6	Atmosphere Explorer to investigate the chemical processes
1975 107A								and energy transfer mechanisms which control Earth's
								atmosphere.
Dual Air Density	Scout	Dec 5		DID N	OT ACHIEVE O	ORBIT		Measure global density of upper atmosphere and lower
Explorer (U)	S-196C (U)						35.3	exosphere. Malfunction during third stage burn resulted in
•								loss of vehicle control; destroyed by range safety officer
								at 341 seconds. (WSMC)
RCA A (S)	Delta 118	Dec 13	1445.9	36074	35880	3.7	867.7	First RCA domestic communications satellite. Reimbursable.
1975 117A	(S)							
1976								1976
Helios B (S)	Titan III	Jan 15		HELIC	CENTRIC ORB	IT	374.7	Carried 11 scientific instruments to study the Sun.
1976 003A	Centaur (S)							Cooperative with Germany.
CTS (S)	Delta (S)	Jan 17	1436.3	35859	35732	8.2	347.0	Experimental high-powered communication satellite for
1976 004A								communication in remote areas. Cooperative with Canada.
Intelsat IVA F-2	A-Centaur	Jan 29	1444.6	35965	35941	3.8	1515.0	Second improved satellite with double the capacity of
(S)	(AC-37) (S)							previous Intelsats for Comsat's global commercial
1976 010A								communications network. Reimbursable.
Marisat A (S)	Delta 120	Feb 19	1436.2	35800	35776	6.5	655.4	Comsat Maritime Satellite to provide rapid, high-quality
1976 017A	(S)							communications between ships at sea and home offices.
	•							Reimbursable.
(CA B (S)	Delta 121	Mar 26	1406.1	36536	35973	3.2	867.7	Second RCA domestic communications satellite.
1976 029A	(S)							Reimbursable.
VATO IIIA (S)	Delta 122	Apr 22	1436.0	35788	35783	6.1	670.0	Third-generation communications satellite for NATO.
1976 035A	(S)							Reimbursable
LAGEOS (S)	Delta (S)	May 4	225.4	5945	5837	109.9	411.0	Solid, spherical passive satellite to provide a reference
1976 039A								point for laser ranging experiments. (WSMC)
Comstar 1A (S)	A-Centaur	May 13	1442.6	35925	35902	3.6	1490.1	First domestic communications satellite for Comsat.
1976 042A	(AC-38) (S)							Reimbursable.
Air Force P76-5	Scout	May 22	105.5	1049	985	99.6	72.6	Evaluate propagation effects of disturbed plasmas on radar
(S)	S-179C (S)	,		-343	205		. 2.00	and communications systems. Reimbursable. (WEMC)
1976 047A	- 1,50 (0)							
<u> </u>								P 06

MISSION/	LAUNCH	LAUNCH	PERIOD	CURRENT	ORBITAL PARA	METERS (km)	WEIGHT	REMARKS
Intl Desig	VEHICLE	DATE	(Mins.)	Apogee	Perigee	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
Marisat B (S)	Delta 124	Jun 9	1436.1	35799	35776	5.4	655.47	Second Comsat Maritime Satellite to provide rapid,
1976 053A	(S)							high-quality communications between ships at sea and home
								offices. Reimbursable.
Gravity Probe A	Scout	Jun 18		SUBO	RBITAL FLIGHT		102.5	Scientific probe to test Einstein's Theory of Relativity.
(S)	S-193C (S)							(WFP)
Palapa A (S)	Delta 125	Jul 8	1435.9	36028	35537	2.3	573.8	Communication Satellite for Indonesia. Reimbursable.
1976 066A	(S)							
Comstar B (S)	A-Centaur	Jul 22		GEOS:	YNCHRONOUS OR	BIT	1490.1	Second domestic communications satellite for Comsat.
1976 073A	(AC-40) (S)							Reimbursable.
ITOS H (S)	Delta 126	Jul 29	116.2	1519	1503	101.8	345.0	Second generation satellite for NOAA's world-wide weather
1976 077A	(S)							observation. Reimbursable. (WSMC)
TIP III (S)	Scout	Sep 1		DOWN	MAY 30, 1981		166.0	Improved Transit Navigation Satellite for the U.S. Navy.
1976 089A	S-197C (S)							Reimbursable. (WSMC)
Marisat C (S)	Delta 127	Oct 14	1436.2	35797	35780	6.9	655.4	Third Comsat Maritime Satellite to provide rapid,
1976 101A	(S)							high-quality communications between ships at sea and home
								offices. Reimbursable.
1977								1977
NATO IIIB (S)	Delta 128	Jan 27	1436.0	35790	35779	5.7	670.0	Third-generation communications satellite for NATO.
1977 005A	(S)							Reimbursable.
Palapa B (S)	Delta 129	Mar IO		GEOS'	YNCHRONOUS OR	BIT	573.8	Second Communication Satellite for Indonesia.
1977 018A	(S)							Reimbursable.
GEOS/ESA (U)	Delta 130	Apr 20	734.1	38475	2682	26.6	571.5	ESA scientific satellite; carried seven experiments to
1977 029A	(U) .							investigate Earth's magnetosphere. Malfunction during
1								second stage/third stage spinup placed GEOS in unusable
								orbit. Reimbursable.
Intelsat IVA F-4	A-Centaur	May 26	1436.2	35802	35774	2.5	1515.0	Improved satellite with double the capacity of previous
(S)	(AC-39) (S)							Intelsats for Comsat's global commercial communications
1977 041A								network. Reimbursable.
COES/NOAA (S)	Delta (S)	Jun 16	1436.3	35824	35754	5.8	635.0	Visible/infrared spin-scan radiometer provided day and
1977 048A								night global weather pictures for NOAA. Reimbursable.
GMS (S)	Delta 132	Jul 14	1436.2	35796	35779	6.0	669.5	Operational weather satellite; Japan's contribution to
1977 065A	(S)							Global Atmosphere Research Program (GARP). Reimbursable.
HEAOA (S)	A-Centaur	Aug 12		DOWN	MAR 15, 1979		2551.9	High Energy Astronomy Observatory to study and map X-rays
1977 075A	(S)	-			-			and gamma rays.
1								and gamma rays.

ISSION/ ntl Desig	LAUNCH VEHICLE	LAUNCH	PERIOD (Mins.)		ORBITAL PAR	AMETERS (km)	WEIGHT (kg)	REMARKS (All Launches from ESMC, unless otherwise noted)
oyager 2 (S) 977 076A	T-IIIE Centaur (S)	Aug 20			ESCAPE TRA		2086.5	Investigate the Jupiter and Saturn planetary systems and the interplanetary medium between Earth and Saturn.
					·			Jupiter flyby occurred on July 9, 1979; Saturn flyby occurred on Aug 25, 1981; Uranus flyby occurred on Jan 24, 1986; Neptune flyby planned for Aug 24, 1989.
IRIO (S) 977 080A	Delta 133 (S)	Aug 25	1435.6	35793	35759	1.9	398.0	Italian scientific satellite to study propagation characteristics of radio waves transmitted at super high frequencies during adverse weather. Reimbursable.
oyager 1 (S) 977 084A	T-IIIE Centaur (S)	Sep 5		HELIC	CENTRIC ORE	STT	2086.5	Investigate the Jupiter and Saturn planetary systems and the interplanetary medium between Earth and Saturn. Jupiter flyby occurred on Mar 5, 1979; Saturn flyby
	,							occurred on Nov 12, 1980; departed Saturn at a high angle to the ecliptic plane to observe large cloud-covered moon Titan. Will not be involved in any more planetary
SA/OIS (U)	Delta 134 (U)	Sep 13		DID N	OT ACHIEVE	ORBIT	865.0	encounters. ESA experimental communications satellite. Vehicle exploded at 54 seconds after liftoff. Reimbursable.
ntelsat IVA F-5 U)	A-Centaur (AC-43) (U)	Sep 29		DID N	OT ACHIEVE	CRBIT	1515.0	Improved satellite with double the capacity of previous Intelsats for Comsat's global commercial communications network, Launch vehicle failed, Reimbursable.
SEE A/B 977 102A (S) 977 102B (S)	Delta 135 (S)	Oct 22			OWN SEP 26		329.0 157.7	Dual payload International Sun Earth Explorer to study interaction of interplanetary medium with Earth's immediate environment. Cooperative with ESA.
ransat (S) 977 106A	Scout S-200C (S)	Oct 27	106.9	1101	1060	89.9	93.9	Improved Transit navigation satellite for the U.S. Navy. Reimbursable. (WSMC)
steosat (S) 177 108A	Delta 136 (S)	Nov 22		35875	35741	7.0	695.3	ESA Meteorological satellite; Europe's contribution to the Global Atmospheric Research Program (GARP). Reimbursable.
3/Japan (S) 977 118A	Delta 137 (S)	Dec 14	1455.9	36185	36159	5.3	677.0	Experimental communication satellite for Japan. Reimbursable.
178 	A-Centaur (AC-46) (S)	Jan 6	1436.2	35792	35783	1.9	1515.0	Provide increased telecommunications capacity for Intelsat's global network. Reimbursable.
OF	RIGINAL	PA	GF IS					

..OF POOR QUALITY

				_				
MISSION/	LAUNCH	LAUNCH	PERIOD	CURRENT	ORBITAL PAR	RAMETERS (km)	WEIGHT	
Intl Desig	VEHICLE	DATE	(Mins.)	Apogee	Perigee	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
IUE-A (S) 1978 012A	Delta (S)	Jan 26	1436.1	43036	28536	30.9	698.5	International Ultraviolet Explorer to obtain high resolution data of stars and planets in the ultraviolet region of the spectrum. Cooperative with ESA.
FLTSATCOM-A (S) 1978 016A	A-Centaur (AC-44) (S)	Feb 9	1436.5	35807	35774	6.1	1863.3	Provide communications capability for USAF and USN for fleet relay and fleet broadcast. Reimbursable.
Landsat-C (S) 1978 026A	Delta (S)	Mar 5	103.1	917	897	98.8	900.0	Third Earth Resources Technology Satellite to study Earth natural resources; measure water, agricultural fields, and
OSCAR-8 (S) 1978 026B			103.0	908	896	98.9	27.3	mineral deposits. Carried Lewis Research Center Plasma Interaction Experiment (PIX-I) and AMSAT Oscar Amateur
PIX-I (S) 1978 026C			C	URRENT EL	EMENTS NOT	MAINTAINED	34.0	Radio communications relay satellite.
Intelsat IVA F-6 (AC-48) (S) 1978 035A		Mar 31	1437.6	35860	35769	1.7	1515.0	Provide increased telecommunications capacity for (S) Intelsat's global network. Reimbursable.
BSE/Japan (S) 1978 039A	Delta 140 (S)	Apr 7	1433.7	37702	33775	4.5	665.0	Japan's Broadcasting Satellite/Experimental for conducting TV broadcast experiments. Reimbursable.
HCMM/AEM-A (S) 1978 041A	Scout (S)	Apr 26		DOMIN	DEC 22, 19	81	134.3	Heat Capacity Mapping Mission to test the feasibility of measuring variations in the Earth's temperatures. (WSMC)
OIS-B (S) 1978 044A	Delta 141 (S)	May 11	1436.1	35802	35722	4.1	865.0	Orbital Test Satellite to conduct communications experiments for ESA. Reimbursable.
Pioneer Venus-A (Orbiter) (S) 1978 051A	A-Centaur (S)	May 20			ENTS NOT AV	ATLABLE	582,0	in orbit around Venus for remote sensing and direct measurements of the planet and its surrounding environment
GOES-C/NOAA (S) 1978 062A	Delta 142 (S)	Jun 16	1436.0	35795	35775	4.7	635.0	Part of NOAA's global network of geostationary environmental satellites to provide Earth imaging, monit the space environment, and relay meteorological data to users. Reimbursable.
Seasat-A (S) 1978 Q64A	Atlas-F (S)	Jun 26	100.4	779	775	108.0	2300.0	Demonstrate techniques for global monitoring of oceano- graphic phenomena and features. After 105 days of returning data, contact was lost with the satellite when short circuit drained all power from batteries. (WSMC
Comstar C (S) 1978 068A	A-Centaur (AC-41) (S)	Jun 29	1451.7	36168	36012	1.7	1516.0	Third domestic communications satellite for Comsat. Reimbursable.

ASA Major Launch Record

SSION/	LAUNCH	LAUNCH	PERIOD		ORBITAL PARA		WEIGHT	
1 Desig	VEHICLE	DATE	(Mins.)		Perigee	Incl (deg)	(kg)_	(All Launches from ESMC, unless otherwise noted)
OS-B/ESA (S)	Delta 143	Jul 14	1449.1	36066	36016	6.9	575.0	Positioned on magnetic field lines to study magnetosphere
78 071A	(S)							and correlate data with ground station, balloon, and
								sounding rocket measurements. Reimbursable.
oneer/Venus-B	A-Centaur	Aug 8		PROBES I	ANDED DEC 9,	1978	904.0	Second Pioneer flight to Venus in 1978 to determine nature
ultiprobe) (S)	(AC-51) (S)						and composition of the atmosphere of Venus. All four
78 078A								probes and the bus transmitted scientific data. The large
								probe, north probe, and night probe went dead upon impact,
								but the day probe continued to transmit for 68 minutes
EE-C (S)	Delta 144	Aug 12			ENTRIC CRBIT		470.0	after impact.
78 079A	(S)	AUG 12		неслос	ENIKIC ORBITI		479.0	Monitored characteristics of solar phenomena about 1 hour
10 0138	(3)							before ISEE-A and B to gain knowledge of how the Sun controls the Earth's near space environment. Cooperative
								with ESA.
ros-N (S)	At las-F	Oct. 13	101.8	851	836	99.0	1405.0	Third generation polar orbiting environmental spacecraft to
78 096A	(S)	JUL 13	101.0	031	030	33.0	140340	provide improved meteorological and environmental data.
	,							Operated by NOAA. (WSMC)
nbus-G(S)	Delta (S)	Oct 24	104.0	970	925	99.4	987.0	Carried advanced sensors and technology to conduct
78 098A	,						20,10	experiments in pollution monitoring, oceanography, and
MEO			104.0	970	925	99.4		meteorology. ESA received and processed data direct.
78 098B								After separation from Nimbus-G, Delta vehicle released
								lithium over Northern Scandinavia and barium over Northern
								Alaska as part of Project CAMEO (Chemically Active Material
					_			Ejected in Orbit). (WSMC)
Ю-B (S)	A-Centaur	Nov 13		DOWN M	AR 25, 1982		3152.0	Second High Energy Astronomical Observatory; carried large
78 103A	(S)							X-ray telescope to study the high energy universe, pulsars,
								neutron stars, black holes, quasars, radio galaxies, and
								supernovas.
O IIIC (S)	Delta 146	Nov 18	1436.1	35792	35782	3.2	706.0	Third-generation communications satellite for NATO.
78 106A	(S)							Reimbursable
lesat D (S)	Delta 147	Dec 15	1442.9	36022	35818	1.3	887.2	Fourth domestic communications satellite for Canada.
78 116A	(S)							Reimbursable.
	53. 3.6							1979
ITHA (S)	Delta 148	Jan 30	1415.7	42425	28348	5.5	658.6	Spacecraft Charging at High Altitudes (SCATHA) carried 12
9 007A	(S)							experiments to investigate electrical static discharges
	MALD	206						that affect satellites. USAF Reimbursable.
, o mai	INVE L	MUE	13					B-99
AF DA	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\							5 30

OF POOR QUALITY

								
MISSION/	LAUNCH	LAUNCH	PERIOD			AMETERS (km)	WEIGHT	REMARKS
Intl Desig	VEHICLE	DATE	(Mins.)		Perigee	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
SAGE/AEM-2 (S)	Scout (S)	Feb 18		DOWN .	APRIL 11, 19	89	127.0	Stratospheric Aerosol and Gas Experiment Applications
1979 013A								Explorer Mission, to map vertical profiles of ozone,
								aerosol, nitrogen dioxide, and Rayleight molecular
								extinction around the globe. (
FLISATCOM B (S)	A-Centaur	May 4	1436.1	35837	35736	4.7	1876.1	Provide communications capability for USAF and USN for
1979 038A	(AC-47) (S)							fleet relay and fleet broadcast. Reimbursable.
UK-6 (S)	Scout	Jun 2		DOWN	SEP 23, 1	990	154.5	Measure ultra-heavy cosmic ray particles and study low
1979 047A	S-198C (S)							energy cosmic X-rays. UK Reimbursable. (
NOAA-6 (S)	Atlas-F (S)) Jun 27	101.0	813	797	98.5	1405.0	To provide continuous coverage of the Earth and provide
1979 057A								high-accuracy worldwide meteorological data. NOAA
								Reimbursable. (W
WESTAR C (S)	Delta 149	Aug 9	1436.2	35793	35782	0.0	571.5	Domestic communications satellite for Western Union.
1979 072A	(S)							Reimbursable.
HEAO 3 (S)	A-Centaur			DOWN	DEC 7, 1981		2898.5	High Energy Astronomy Observatory carried two cosmic r
1979 082A	(AC-53) (S)	1						experiments and one gamma ray spectrometer to obtain d
								on cosmic rays observed across the far reaches of space
MAGSAT/AEM-3 (S)	Scout (S)	Oct 30		DOMN 3	JUN 11, 1980		183.0	Magnetic Field Satellite, Applications Explorer Mission
1979 094A								to map the magnetic field of the Earth. (W
RCA-C (U)	Delta 150	Dec 6	789.0	35495	8314	10.5	895.4	Third RCA domestic communications satellite. Contact
1979 101A	(S)							shortly after apogee motor firing. Reimbursable.
1980								
FLISATCOM C (S)	A-Centaur	Jan 17	1436.1	35804	35767	4.3	1864.7	Provide communications capability for USAF and USN for
1980 004A	(AC-49) (S)							fleet relay and fleet broadcast. Reimbursable.
SMM-A (S)	Delta 151	Feb 14		DOWN	DEC 2, 1989		2315.0	Solar Maximum Mission carried seven instruments to stu
1980 014A	(S)							solar activity during the maximum of solar flares and
								related phenomena.
NOAA-7 (U)	Atlas-F (U)	May 29		DOWN	MAY 3, 1981		1405.0	A companion to TIROS N to provide continuous coverage
1980 043A								the Earth and provide high-accuracy worldwide
								meteorological data. Launch vehicle malfunctioned; f
								to place satellite into proper orbit. NOAA Reimbursat
								(WSMC)
GOES D (S)	Delta 152	Sep 9	1436.2	35795	35780	4.1	832.0	Part of NOAA's global network of geostationary 1980 07
(S)								environmental satellites to provide Earth imaging, mor
								the space environment, and relay meteorological data.
								Reimbursable.
R-100								

ASA Major Launch Record

SSION/	LAUNCH	LAUNCH	PERIOD			RAMETERS (km)	WEIGHT	REMARKS
	VEHICLE	DATE	(Mins.)		Perigee	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
80 087A	A-Centaur (AC-52) (S)	Oct 30		35811	35765	4.0	1863.8	Provide communications capability for USAF and USN for fleet relay and fleet broadcast. Reimbursable.
S-A (S)	Delta 153	Nov 15	1436.1	35797	35777	0.7	1057.0	Satellite Business Systems (SBS) to provide fully switched
80 091A	(S)							private networks to businesses, government agencies, and other organizations with large, varied communications requirements. Reimbursable.
TELSAT V-A F-2) 80 098A	A-Centaur (AC-54) (S)	Dec 6	1436.2	35810	35765	0.0	1928.2	Advanced series of spacecraft to provide increased telecommunications capacity for Intelsat's global network. Reimbursable.
81								1981
81 018A	A-Centaur (AC-42) (S)	Feb 21	1436.2	35794	35784	1.9	1484.0	Fourth domestic communications satellite for Comsat. Reimbursable.
S-1 (S) 181 034A	Shuttle (S) (Columbia)	Apr 12		LANDED AT	DERF APR	14, 1981		First Manned orbital test flight of the Space Transportation System with John W. Young and Robert L. Crippen to verify the combined performance of the Shuttle vehicle. Mission duration 54 hours 20 minutes 32 seconds.
WA-1 (S) 81 044A	Scout S-192C (S)	May 15		ELEME	NIS NOT AV	AILABLE	166.9	Improved Transit satellite for the Navy's operational navigation system. Reimbursable. (WSMC)
ES E (S) 81 049A	Delta 154 (S)	May 22	1436.1	35792	35782	1.2	837.0	Part of NOAA's Geostationary Operational Environmental Satellite system to provide near continual, high resolution visual and infrared imaging over large areas. Reimbursable.
91 050A	(AC-56) (S)	May 23		35809	35768	0.0	1928.2	Advanced series of spacecraft to provide increased telecommunications capacity for Intelsat's global network. Reimbursable.
AA-C (S) 81 059A	At las-F (S)	Jun 23	101.8	. 855	835	99.1	1405.0	To provide continuous coverage of the Earth and provide high-accuracy worldwide meteorological data. NCAA Reimbursable. (WSMC)
namics Explorer and B	Delta (S)	Aug 3						Dual spacecraft to study the Earth's electromagnetic fields. (WSMC)
B1 070A (S) B1 070B (S)			410.4		495 FEB 19, 198		424.0 420.0	
ISATOOM E (U) Bl 073A	A-Centaur (AC-59) (S)	Aug 6	1460.0	36284	36222	4.6	1863.8	Provide communications capability for USAF and USN for fleet relay and fleet broadcast. Reimbursable.
ORI	GINAL	PAG	E IS					

OF POOR QUALITY

MISSION/	LAUNCH	LAUNCH	PERIOD		ORBITAL PARA		WEIGHT	REMARKS
	VEHICLE	DATE	(Mins.		Perigee	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
SBS-B (S)	Delta 156	Sep 24	1436.1	35789	35785	0.0	1057.0	Satellite Business Systems (SBS) to provide fully switched
1981 096A	(S)							private networks to businesses, government agencies, and
								other organizations with large, varied communications
0.0.								requirements. Reimbursable.
SME (S)	Delta (S)	Oct 6	94.7	504	502	97.7	437.0	Solar Mesosphere Explorer, an atmospheric-research
1981 100A				DOWN OCT	13, 1989			satellite to study reactions between sunlight, ozone, and
UoSAT 1 (S)				DOWN OCT	13, 1989		52.0	other chemicals in the atmosphere. Carried UoSat-Oscar 9
1981 100B	- Total							(UK) Amateur Radio Satellite as secondary payload.
STS 2 (S)	Shuttle (S)	Nov 12		LANDED AT	DERF NOV 14,	1981		Second Manned orbital test flight of the Space
1981 111A	(Columbia)							Transportation System with Joe H. Engle and Richard H.
								Truly to verify the combined performance of the Shuttle
								vehicle. OSTA-1 payload demonstrated capability to condu
								scientific research in the attached mode. Mission durati
RCA-D (S)	Delta 158	Nov 19	1436.2	35791	35785	0.1	1081.8	54 hours 13 minutes 13 seconds. Fourth RCA domestic communications satellite.
1981 114A	(S)	MOA TA	1430.2	33791	33/83	0.1	1001.0	Reimbursable.
Intelsat V F-3	A-Centaur	Dec 15	1426 2	35809	35771	0.0	1928.2	Advanced series of spacecraft to provide increased
(S)	(AC-55) (S)		1430.3	33609	33/11	0.0	1920.2	telecommunications capacity for Intelsat's global network
1981 119A	(MC-33) (B)							Reimbursable.
1982								Relibursable.
RCA C' (S)	Delta 159	Jan 16	1/36 3	35795	35784	0.1	1081.8	RCA domestic communications satellite. Reimbursable.
1982 004A	(S)	oan 10	1430.3	33193	33704	0.1	1001.0	NON GOMESTIC COMMUNICACIONS SECETIFICE. REMINISTRATE:
Westar IV (S)	Delta 160	Feb 25	1436.2	35796	35778	0.1	1072.0	Second generation domestic communications satellite for
1982 014A	(S)		113012	33,70	33.70	***	10.20	Western Union. Reimbursable.
Intelsat V-D F-4		Mar 4	1436.1	35808	35767	0.0	1928.2	Advanced series of spacecraft to provide increased
(8)	(AC-58) (S)			35000	23.0.	***		telecommunications capacity for Intelsat's global network
1982 017A								Reimbursable.
S1S 3 (S)	Shuttle (S)	Mar 22		LANDED AT	WHITE SANDS	MAR 30, 1982		Third Manned orbital test flight of the Space
1982 022A	(Columbia)				_ =			Transportation System with Jack R. Lousma and C. Gordon
								Pullerton to verify the combined performance of the Shutt
1								vehicle. OSS-1 scientific experiments conducted from the
L		_						cargo bay. Mission duration 192 hours 4 minutes 45 second
Insat 1-A (U)	Delta 161	Apr 10	1434.2	35936	35562	0.1	1152.1	Multipurpose telecommunications/meteorology spacecraft for
1982 031A	(S)							India. Reimbursable.

	<u> </u>							
SSION/ tl Desig	LAUNCH VEHICLE	LAUNCH	PERIOD (Mins.		CRBITAL PA	RAMETERS (km)	WEIGHT (kg)	REMARKS (All Launches from ESMC, unless otherwise noted)
star V (S) 82 058A	Delta 162 (S)	Jun 8	1436.2	35796	35778	0.1	1105.0	Western Union domestic communications satellite. Reimbursable.
S 4 (S) 82 065A	Shuttle (S) (Columbia)			LANDED AT	DFRF JUL 4	1, 1982		Fourth and last manned orbital test flight of the Space Transportation System with Thomas K. (Ken) Mattingly II and Henry W. Hartsfield to verify the combined performance of the Shuttle vehicle. Carried first operational Getaway Special canister for Utah State University and payload DOD 82-1. Mission duration 169 hours 4 minutes 40 seconds.
ndsat D (S) 82 072A	Delta 163 (S)	Jul 16	98.8	702	698	98.3	1942.0	Earth Resources Technology Satellite to provide continuing Earth remote sensing data. Instruments included a multispectral scanner and thematic mapper. (MSMC)
lesat G (5) 82 082A	Delta 164 (S)	Aug 25		35796	35776	0.0	1238.3	Commercial communications satellite for Canada. Reimbursable.
telsat V-E F-5) 82 097A	A-Centaur (AC-60) (S)		1436.1	35805	35769	0.1	1928.2	Advanced series of spacecraft to provide increased telecommunications capacity for Intelsat's global network. Carried Maritime Communications Services (MCS) package for INWARSAT. Reimbursable.
A-E (S) 82 105A	Delta 165 (S)	Oct 27	1436.2	35791	35784	0.0	1116.3	RCA domestic communications satellite. Reimbursable.
5 5 (S) B2 110A	Shuttle (S) (Columbia)				DPRF NOV			First operational flight of STS with Vance Brand, Robert Overmyer, Joseph Allen and William Lenoir. Two satellites
S-C (S) 82 110B		Nov 11	1436.1	35788	35786	0.0	3344.8	deployed: SBS-C (Commercial Reimbursable) and Telesat-C (Canada Reimbursable). Demonstrated ability to conduct
lesat-E (S) 82 110C 83		Nov 12	1436.1	35794	35779	0.0	4443.4	routine space operations. Mission duration 122 hours 14 minutes 26 seconds.
AS (S) B3 004A	Delta 166 (S)	Jan 25	102.9	905	887	99.1	1075.9	Infrared Astronomical Satellite to make the first all-sky survey for objects that emit infrared radiation and to
K II (S) 33 004B			102.4	886	855	. 100.1		provide a catalog of infrared sources and infrared sky maps. Lewis Research Center Plasma Interaction Experiment (PIX), to investigate interactions between high voltage systems and space environment, activated by Delta after IRAS separation. Cooperative with the Netherlands.
•								

OF POOR QUALITY

MISSION/	LAUNCH	LAUNCH	PERIOD			RAMETERS (km)	WEIGHT	REMARKS
Intl Desig	VEHICLE	DATE	(Mins.)		Perigee	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
NOAA-8 (S)	Atlas-E (S)	Mar 28	101.2	825.5	805	98.6	1712.0	Advanced Tiros-N spacecraft to provide continuous coverage
1983 022A								of the Earth and provide high-accuracy worldwide
								meteorological data. NOAA Reimbursable. (WSMC
STS 6 (S)	Shuttle (S)	Apr 4		LANDED AT	DFRF AFR 9,	1983		Second operational flight of the STS with Paul Weitz, Kar
1983 026A	(Challenger	:)						Bobko, Donald Peterson, and Story Musgrave. Deployed
TURS-A (S)	_	Apr 4	1436.3	35804	35776	2.3	17014.0	Tracking and Data Relay Satellite (TDRS) to provide
1983 026B		-						improved tracking and data acquisition services to
								spacecraft in low Earth orbit; performed EVA. Mission
								duration 120 hours 23 minutes 42 seconds.
RCAF(S)	Delta 167	Apr 11	1436.1	35790	35781	0.1	1116.3	RCA domestic communications satellite. Reimbursable.
1983 030A	(S)							_
GOES 6 (S)	Delta (S)	Apr 28	1436.4	35891	35776	0.1	838.0	Part of NOAA's Geostationary Operational Environmental
1983 041A		-						Satellite system to provide near continual, high resoluti
								visual and infrared imaging over large areas.
								Reimbursable.
Intelsat V-F F-6	A-Centaur	May 19	1436.2	35810	35765	0.0	1928.2	Advanced series of spacecraft to provide increased
	(AC-61) (S)							telecommunications capacity for Intelsat's global network
1983 047A	,							Carried Maritime Communications Services (MCS) package for
								INMARSAT. Reimbursable.
EXOSAT (S)	Delta 169	May 26		DOWN !	AAY 6. 1986		500.0	ESA X-ray satellite to provide continuous observations of
1983 051A	(S)				- •			X-ray sources. Reimbursable. (WSM)
STS 7 (S)	Shuttle (S)	Jun 18		LANDED AT	DFRF JUN 24	4, 1983		Third operational flight of STS with Robert L. Crippen,
1983 059A	(Challenger							Frederick H. Hauck, John M. Fabian, Sally K. Ride (first
Telesat-F (S)		Jun 18	1436.0	35791	35782	0.0	4443.4	woman astronaut), and Norman E. Thagard. Deployed two
1983 059B								communications satellites. Telesat (Canada-Reimbursable
Palapa-B-1 (S)		Jun 18	1436.1	35788	35783	0.0	4521.5	and Palapa (Indonesia - Reimbursable). Carried out
1983 059C				23700	22703	•••		experiments including launching and recovering SPAS 01
SPAS-01 (S)		Jun 18		RETRIES	JED JUN 24.	1983		(FRG). Mission duration 146 hours 23 minutes 59 seconds
1983 059F		Jun. 10			00., 24,			()
AF P83-1 (S)	Scout	Jun 27	100.9	834	765	82.0	112,6	Air Force HILAT satellite to evaluate propagation effects
1983 063A	S-205 (S)			034	,03	52.0		of disturbed plasmas on radar and communication systems.
[· · · · · · · · · · · · · · · · · · ·	2 223 (8)							Reimbursable. (WSM)
Galaxy 1 (S)	Delta 170	Jun 28	1436.2	35797	35782	0.0	519.0	Hughes Communications, Inc. communications satellite.
1983 065A	(S)	Jul 20	1.0012	33131	33702	0.0	327.0	Reimbursable.
1	(5)							· ·
		_						

SSION/	LAUNCH	LAUNCH	PERIOD	CTDDDENET C	DDTTAL DADA	METERS (km)	WEIGHT	I REMARKS
tl Desig	VEHICLE	DATE	(Mins.)		Perigee	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
lstar 3A (S)	Delta 171	Jul 28	1436.1	35796	35778	0.0	635.0	AT&T communications satellite. Reimbursable.
B3 077A	(S)	Jul 20	1430.1	33/90	33//0	0.0	635.0	Arai communications sateriffe. Remoursable.
S 8 (S)	Shuttle (S) Ave 30		ANTOGO ATE D	FRF SEP 5.	1002		Fourth operational flight of STS with Richard H.
83 089A	(Challenge			WINED AT D	TRE SEP 3,	1903		
SAT-B (S)	(Chailenge	Aug 31	1426 2	35819	35755	0.1	2201 0	Truly, Daniel C. Brandenstein, Dale A. Gardner, Guion S.
33 089B		Aug 31	1430.2	33013	33/33	0.1	3391.0	Bluford (first black astronaut), and William E. Thornton.
93 089B								First night launch and landing. Deployed satellite, INSAT
								(India-Reimbursable), performed tests and experiments.
								Mission duration 145 hours 8 minutes 43 seconds.
AG(S)	Delta 172	Sep 8	1436.2	35797	35778	0.0	1121.3	RCA domestic communications satellite. Reimbursable.
83 094A	(s)							
laxy 2 (S)	Delta 173	Sep 22	1436.2	35799	35782	0.0	579.0	Hughes Communications Satellite. Reimbursable.
83 098A	(S)							
S-9 (S)	Shuttle (S		L	ANDED AT D	FRF DEC 8,	1983		Fifth operational flight of STS with John W. Young,
acelab-l	(Columbia)							Brewster W. Shaw, Jr., Owen K. Garriott, Robert A. R.
33 116A								Parker, Byron K. Lichtenberg, and Ulf Merbold (ESA).
								Spacelab-1, a multidiscipline science payload, carried in
								Shuttle Cargo Bay. Cooperative with ESA. Mission Duration
								247 hours 47 minutes 24 seconds.
34								1984
6 41-B (S)	Shuttle (S		L	ANDED AT K	SC FEB 11,	1984		Fourth Challenger flight with Vance D. Brand, Robert L.
84 011A	(Challenge	r)						Gibson, Bruce McCandless, Ronald E. McNair and Robert L.
STAR 6 (U)	=	Feb 3	RETI	RIEVED NO	V 16, 198	4 (51-A)	3309.0	Stewart. Deployed WESTAR (Western Union-Reimbursable), and
84 011B								Palapa B-2 (Indonesia-Reimbursable). Both PAM's failed;
r (S)		Feb 3		DOWN FE	B 11, 1984		234.0	both satellites retrieved on 51-A mission. Rendezvous
34 011C								tests performed with IRT, using deflated target. Evaluated
lapa B-2 (U)		Feb 6	RETE	TEVED NO	V-16, 198	4 (51-A)	3419.0	Manned Maneuvering Unit (MMU) and Manipulator Foot
84 011D					,	. (0- 11)	3417.0	Restraint (MFR). First STS landing at KSC. Mission
74 0110								duration 191 hours 15 minutes 55 seconds.
NDSAT 5 (S)	Delta 174	Mar 1	98.8	702	697	98.2	1947.0	Earth resources technology satellite to provide continuing
84 021A	(S)	ricia I	30.0	702	057	30.2	1947.0	Earth remote sensing data. Instruments included a
SAT (S)	(3)		98.4	691	674	98.1	52.0	multispectral scanner and thematic mapper. UoSAT sponsored
84 021B			70.4	991	0/4	98.1	52.0	
34 UZIB								by AMSAT. NOAA Reimbursable. (WSMC)

ORIGINAL PAGE IS OF POOR QUALITY

MISSION/		UNCH	PERIOD		ORBITAL PARA		WEIGHT	REMARKS
Intl Desig		ATE	(Mins.	Apogee	Perigee	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
STS 41-C (S)	Shuttle (S) Ap	r 6		LANDED AT	DFRF APR 13,	1984		Fifth Challenger flight with Robert L. Crippen, Frances
1984 034A	(Challenger)							Scobee, Terry J. Hart, George D. Nelson and James D. Van
LDEF (S)	Ąρ	r 6	RET	RIEVED JA	N 20, 1990	(STS-32)	9670.0	Hoften. LDEF deployed; SMM retrieved and repaired in Car
1984 034B								Bay, redeployed Apr 12. Mission duration 167:40:07
	A-Centaur Ju	n 9		DOWN C	CT 24, 1984		1928.2	Advanced series of spacecraft to provide increased
(U)	(AC-62) (U)							telecommunications capacity for Intelsat's global network
1984 057A								Carried Maritime Communications Services (MCS) package for
								INMARSAT. Vehicle failed to place satellite in useful
								orbit. Reimbursable.
AMPTE	Delta (S) Au	g 16						Three active magnetospheric particle tracer explorers:
CCE (S)		-	939.4	49817	974	3.8	242.0	Charge Composition Explorer (CCE) provided by The U.S.;
1984 088A								Release Module (IRM) provided by The Federal Republic of
DRM (S)			2653.4	113818	402	27.0	605.0	Germany (FGR); and United Kingdom; Subsatellite (UKS)
1984 088B								provided by The United Kingdom; to study the transfer
UKS (S)								of mass from the solar wind to the magnetosphere.
1984 088C			2659.6	113417	1002	26.9	77.0	International Cooperative.
STS 41-D (S)	Shuttle (S) Au				EAFB SEP 5.			First Discovery flight with Henry W. Hartsfield, Michael
1984 093A	(Discovery)	-			,			Coats, Richard M. Mullane, Steven A. Hawley, Judith A.
SBS-4 (S)		a 31	1436.1	35793	35781	0.0	3344.0	Resnik, and Charles D. Walker. Deployed SBS (Commercial-
1984 093B		-		- 3,,,,				Reimbursable), LEASAT (Commercial-Reimbursable) and Tels
Syncom IV-2 (S)	Au	g 31	1436.0	35788	35782	0.7	6889.0	(AT&T-Reimbursable), carried out experiments including
1984 093C		-						OAST-1 solar array structural testing. Mission duration
Telstar 3-C (S)	Se	ρl	1436.1	35791	35782	0.0	3402.0	144 hours 56 minutes 4 seconds.
1984 093D			,	-3.72				
Galaxy C (S)	Delta 176 Se	p 21	1436.2	35792	35783	0.0	519.0	Hughes Communication, Inc., Communications Satellite.
1984 101A	(S)			23/30				Reimbursable.
STS 41-G (S)	Shuttle (S) Oc	t 5		LANDED AT	KSC OCT 13,	1984		Sixth Challenger flight with Robert L. Crippen, Jon A.
1984 108A	(Challenger)					-		McBride, Kathryn D. Sullivan, Sally K. Ride, David C.
ERBS (S)		t 5	96.8	607	599	57.0	2449.0	Leestma, Paul D. Scully-Power, and Marc Garneau (Canada)
1984 108B			. , , ,	•••				Deployed ERBS to provide global measurements of the Sun's
								radiation reflected and absorbed by Earth; performed
								scientific experiments using OSTA-3 and other instrument
								Mission duration 197 hrs 23 min 33 sec
NOVA III (S)	Scout Oc	t 11	108.9	1200	1149	90.0	173.7	Improved Transit Navigation Satellite for U.S. Navy.
1984 110A	S-208C (S)			1200		- 300	3.7	Reimbursable. (WSM
	2 2000 107			_			_	
B-106								* · · · · · · · · · · · · · · · · · · ·

IISSION/	LAUNCH	LAUNCH	PERIOD	CURRENT	ORBITAL PAR	AMETERS (km)	WEIGHT	REMARKS		
intl Desig	VEHICLE	DATE	(Mins.)	Apoqee	Perigee	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)		
TS 51-A (S)	Shuttle (S)			ANDED AT	KSC NOV 16,	1984		Second Discovery flight with Frederick H. Hauck, David M.		
984 113A	(Discovery)							Walker, Joseph P. Allen, Anna L. Fisher, Dale A. Gardner.		
elesat-H (S)		Nov 9	1436.1	35795	35788	0.0	3420.0	Deployed Telesat (Canada-Reimbursable) and Syncom		
984 113B								IV-1 (Hughes-Reimbursable). Retrieved and returned Palapa		
yncom IV-1 (S)		Nov 10	1436.0	35890	35679	0.9	6889.0	B-2 and Westar 6 (Launched on 41-B). Mission duration		
984 113C								191 hours 44 minutes 56 seconds.		
ATO III-D (S)	Delta 177	Nov 13	1436.1	35788	35783	3.2	761.0	Fourth in a series of communication satellites for NATO.		
984 115A	(S)							Reimbursable.		
QAA-9 (S)	Atlas-E (S)	Dec 12	102.2	863	839	99.1	1712.0	Advanced TTROS-N spacecraft to provide continuous coverage		
984 123A								of the Earth and provide high-accuracy worldwide		
								meteorological data. NOAA. Reimbursable. (WSMC)		
985								1985		
IS 51-C (S)	Shuttle (S)	Jan 24	_	LANDED AT	KSC JAN 27	, 1984		Third Discovery flight with Thomas K. Mattingly, Loren J.		
985 010A	(Discovery)							Shriver, Ellison S. Onizuka, James F. Buchli, and Gary E.		
OD (S)				ELEME	INTS NOT AVA	ILABLE		Payton. Unannounced payload for DOD. (Reimbursable).		
985_010B								Mission duration 73 hours 33 minutes 23 seconds		
ntelsat V-A F-10	A-Centaur	Mar 22	1436.1	35807	35768	0.0	1996.7	First in a series of improved Commercial Communication		
S)	(AC-36) (S)							Satellites for Intelsat. Reimbursable.		
985 025A										
	Shuttle (S)	Apr 12		LANDED AT	KSC APR 19	, 1985		Fourth Discovery flight with Karol J. Bobko, Donald F.		
985 028A	(Discovery)							Williams, M. Rhea Seddon, S. David Griggs, Jeffrey A.		
elesat-I (S)		Apr 13	1436.0	35796	35777	0.3	3350.0	Hoffman, Charles D. Walker, and E.J. "Jake" Garn (U.S.		
985 028B								Senator). Deployed Syncom (Hughes-Reimbursable) and		
yncom IV-3 (S)		Apr 12	1436.2	35809	35768	1.4	6889.0	Telesat (Canada-Reimbursable). Syncom Sequencer failed to		
985 028C								start, despite attempts by crew; remained inoperable until		
		_						restarted by crew of 51-I. Mission duration 167 hrs 54 min.		
	Shuttle (S)	Apr 29		LANDED AT	DPRP MAY 6	, 1985		Sixth Challenger flight with Robert F. Overmyer, Frederick		
pacelab-3	(Challenger)						D. Gregory, Don Lind, Norman E. Thagard, William E.		
385 034A								Thornton, Lodewijk Vanderberg, and Taylor Wang. Spacelab-3		
ISAT (S)				DOWN	DEC 15, 19	86	47.6	mission to conduct applications, science, and technology		
)85 034B								experiments. Deployed Northern Utah Satellite (NUSAT).		
								Global Low Orbiting Message Relay Satellite (GLOMR) failed		
								to deploy and was returned. Mission duration 167 hours		
ADIA	TARABA	AAF	10					55 minutes 23 seconds		
ORIG	<u>inal f</u>	AUE	<u> </u>							
OFB	വെയ്യ വ	HAL	ITY					B-107		
	OF POOR QUALITY									

MISSION/ Intl Desig	LAUNCH VEHICLE	LAUNCH DATE	PERIOD (Mins.)	CURRENT	ORBITAL PARA	METERS (km) Incl (deg)	WEIGHT (kg)	REMARKS (All Launches from ESMC, unless otherwise noted)
STS 51-G (S)	Shuttle (S)	Jun 17		LANDED Z	AT EAFB JUN 2	4, 1985		Fifth Discovery flight with Daniel C. Brandenstein, John
1985 048A	(Discovery)							Creighton, Shannon W. Lucid, John M. Fabian, Steven R.
MORELOS-A (S)		Jun 17	1436.2	35793	35782	0.0	3443.0	Nagel, Patrick Baudry (France), and Prince Sultan Salman
1985 048B								Al-Saud (Saudi Arabia). Deployed MCRELOS (Mexico -
ARABSAT-A (S)		Jun 18	1436.2	35807	35768	0.0	3499.0	Reimbursable), ARABSAT (ASCO-Reimbursable) and TELSTAR
1985 048C								(AT&T-Reimbursable). Deployed and retrieved SPARTAN 1.
TELSTAR 3-D (S)		Jun 19	1436.1	35804	35770	0.0	3437.0	Mission duration 168 hours 08 minutes 46 seconds
1985 048D								
SPARTAN 1 (S)		Jun 20		RETR	IEVED JUN 24,	1985	2051.0	
1985 048E								
Intelsat VA F-11		Jun 29	1436.1	35802	35772	0.0	1996.7	Second in a series of improved Commercial Communications
(S)	(AC-64) (S)							Satellites for Intelsat. Reimbursable.
1985 055A								
STS 51-F (S)	Shuttle (S)			LANDED A	ΓEAFB AUG 6,	1985		Seventh Challenger flight with Charles G. Fullerton, Roy
Space Lab-2	(Challenger	:)						Bridges, Jr., Karl G. Heinze, Anthony W. England, F. Stor
1985 063A								Musgrave, Loren W. Acton, and John-David F. Bartow.
PDP (S)				RETR	IEVED JUL 29,	. 1985		Conducted experiments in Spacelab-2. Deployed Plasma
1985 063B								Diagnostic Package (PDP) which was retrieved 6 hours late
								Mission duration 190 hours 45 minutes 26 seconds.
Navy SOOS-I	Scout	Aug 2						Two Navigation Satellites for U.S. Navy. Reimbursable.
1985 066A (S)	S-209C (S)		107.9	1257	1002	89.9	64.2	(WSMC)
1985 066B (S)			107.9	1258	1002	89.9	64.2	
STS 51-I (S)	Shuttle (S)			LANDED A	r eafb sep 3,	1985		Sixth Discovery flight with Joe H. Engle, Richard O. Cove
1985 076A	(Discovery)							James D. VanHoften, William F. Fisher, John M. Lounge.
Aussat-1 (S)		Aug 27	1436.2	35794	35781	0.0	3445.5	Deployed Aussat (Australia-Reimbursable), ASC (American
1985 076В								Satellite CoReimbursable), and Syncom IV-4 (Hughes -
ASC (S)		Aug 27	1436.1	35796	35777	0.1	3406.1	Reimbursable). After reaching Geosynchronous Orbit,
1985 076C								Syncom IV-4 ceased functioning. Repaired Syncom IV-3
Syncom IV-4 (U)		Aug 29	1436.1	36493	35079	1.4	6894.7	(Launched by 51-D). Mission duration 170 hours.
1985 076D								17 minutes 42 seconds
Intelsat VA F-12		Sep 28	1436.1	35802	35772	0.0	1996.7	Third in a series of improved commercial Communications
(S)	(AC-65) (S)							Satellites for Intelsat. Reimbursable.
1985 087A								
ſ								

SSION/	LAUNCH	LAUNCH	PERIOD			AMETERS (km)	WEIGHT	
tl Desig S 51-J (S)	VEHICLE Shuttle (S)	DATE Oct 3	(Mins.)	Apogee	EAPB OCT 7	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted) First Atlantis flight with Karol J. Bobko, Ronald J. Grabe,
OD)	(Atlantis)	OCC 3		- NION MI	LAED OCT /	, 1303		Robert A. Stewart, David C. Hilmers, and William A. Pailes.
85 092A	(11011111111)							DOD mission. Mission duration 97 hrs 14 min 38 sec.
S 61-A (S)	Shuttle (S)	Oct 30		LANDED AT	EAFB NOV 6	, 1985		Eighth Challenger flight with Henry W. Hartsfield, Steven
acelab D-1	(Challenger)						R. Nagel, Bonnie J. Dunbar, James F. Buchli, Guion S.
85 104A								Bluford, Ernst Messerschmid (Germany), Reinhard Furrer
OMR (S)				DOWN	DEC 26, 198	6	267.6	(Germany), and Wubbo Ockels (Dutch). Spacelab D-1 mission
85 104B								to conduct scientific experiments. Deployed GLOMR.
								Carried Materials Experiment Assembly (MEA) for on-orbit
ĺ								processing of materials science experiment specimens.
S 61-B (S)	Shuttle (S)	Nov. 26		TANDED AT	EAFB DEC 3	1005		Mission duration 168 hours 44 minutes 51 seconds.
85 109A	(Atlantis)	NOV 20		TUNDED WI	L EMPO DEC 3	, 1903		Second Atlantis Flight with Brewster H. Shaw, Bryan D. O'Conner, Mary L. Cleave, Sherwood C. Spring, Jerry L.
RELOS—B (S)	(ACMICIS)	Nov 27	1436.1	35794	35780	1.1	4539.6	Ross, Rudolfo Neri Vela (MORELOS), Charles D. Walker
85 1098		.407 21	143011	33,34	33.00	***	-JJJ-0	(MDAC). Deployed MCRELOS (Mexico-Reimbursable), Aussat
ssat-2 (S)		Nov 27	1436.2	35794	35780	0.0	4569.1	(Australia-Reimbursable), and Satcom (RCA-Reimbursable).
85 109C								Demonstrated construction in space by manually assembling
tcom (S)		Nov 28	1436.2	35796	35781	0.0	7225.3	EASE and ACCESS Experiments. Deployed Station Keeping
B5 109D								Target (OEX) to conduct advanced Station Keeping Tests.
X Target								Mission duration 165 hours 4 minutes 49 seconds.
85 109E			DOW	N MAR 2, 1	1987			
-16	Scout	Dec 12		601	21.1	20.1		Air Force instrumented test vehicle. (Dual Payload)
85 114A (S)	S-207C (S)		94.6	691 N AUG 9, 1	311	37.1		Reimbursable. (WFF)
35 114B (S)			LUM	N MUG 9, 1	1901			1986
61-C (S)	Shuttle (S)	.Tan 12		TANDED AT	EAFB JAN 1	8. 1986		Seventh Columbia flight with Robert L. Gibson, Charles F.
36 003A	(Columbia)	Jul 12		D-LUD AI	. LLE OPEN 1	0, 1700		Bolden, Jr., Franklin R. Chang-Diaz, George D. Nelson,
COM (S)	, 552410147	Jan 12	1436.2	35795	35780	0.0	7225.3	Steven A. Hawley, Robert J. Cenker (RCA), and C. William
36 003B						3.00		Nelson (Congressman). Deployed SATCOM (RCA-Reimbursable).
								Evaluated material science lab payload carrier and
								processing facilities. Carried HHG-1 to accommodate GAS
								payloads. Mission duration 146 hours 3 minutes 51 seconds.
1	ORIGINA	I PA	IGE IS	S				i
	AF PAAI	R-01	HALIT	/				

MISSION/	LAUNCH	LAUNCH	PERIOD			AMETERS (km)	WEIGHT	REMARKS
Intl Desig	VEHICLE	DATE	(Mins.)	Apogee	Perigee	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
STS 51-L (U) MDRS-8 (U)	Shuttle (U) (Challenger			DID N	OT ACHIEVE (RBIT	2103.3	Ninth Challenger flight with Francis R. Scobee, Michael Smith, Judith A. Resnik, Ellison S. Onizuka, Ronald E. McNair, Gregory Jarvis (Hughes) S. Christa McAuliffe (Teacher). Approximately 73 seconds into flight, the Shuttle exploded.
GOES-G (U)	Delta (U)	May 5		DID N	OT ACHIEVE	RBIT	840.0	Provide systematic worldwide weather coverage for NOAA. Vehicle failed. Reimbursable.
DOD (U) 1986 069A	Delta (U)	Sep 5			SEP 28, 198	6		Carried DOD experiment. Reimbursable
NOAA-G (S) 1986 073A	Atlas-E (S)	Sep 17	101.2	823	804	98.7	1712.00	Operational environmental satellite for NOAA. Included RRBE instrument to complement data being acquired by RRB launched in 1984, Carried search and rescue instruments provided by Canada and France. Reimbursable. (NSM
AF P87-11 (S) Polar Bear 1986 088A	Scout (S) S-199	Nov 13	104.9	1018	957	89.5		Scientific satellite to study atmospheric effects on electromagnetic propagation. USAF Reimbursable. (WSM)
FLTSATCOM (F-7) (S) 1986 096A	A-Centaur (AC-66) (S)	Dec 4	1436.2	35875	35703	4.3	1128.5	Provide communications between aircraft ships, and groun stations for DDD. Reimbursable.
1987								19
GOES-H (S) 1987 022A	Delta 179 (S)	Feb 26	1436.3	35796	35783	0.1	840.0	Operational environmental satellite to provide systematic worldwide weather coverage. NOAA Reimbursable.
PALAPA B2-P 1987 029A	Delta 180	Mar 20	1436.2	35788	35788	0.0	652.0	Provide communication coverage over Indonesia and the Asian countries. Reimbursable.
FLISATOOM (F-6) (U)	A-Centaur 67 (U)	Mar 26		DIO N	OT ACHIEVE (RBIT	1038.7	Part of worldwide communications system between aircraft ships, and ground stations for DOD. Telemetry lost show after launch; destruct signal sent at 70.7 seconds into flight. An electrical transient, caused by lighting stron launch weblicle, most probable cause of loss. Reimbursable.
SOOS-2 1987 080A (S) 1987 080B (S)	Scout (S) S204C	Sep 16	107.2 107.2	1175 1181	1017 1014	90.3 90.3	64.5 64.5	Two transit navigation satellites in a stacked configura- tion for the U.S. Navy. Reimbursable. (WSMC)
3-110								利益等等等。

NOA Maj	Of Laui	1011	116601	<u> </u>				
SSION/ tl Desig	LAUNCH VEHICLE	LAUNCH DATE	PERIOD (Mins.)		DRBITAL PAR Perigee	AMETERS (km) Incl (deg)	WEIGHT (kg)	REMARKS (All Launches from ESMC, unless otherwise noted)
D (SDI) (S) B8 008A	Delta 181 (S)	Feb 8	90.1	333	223	28.6		Strategic Defense Initiative Organization (SDIO) Payload. Reimbursable.
Marco D/L(S) 38 026A	Scout (S) S-206C	Mar 25		DOWN	DEC 6, 1	988	273	Explore the relationship between solar activity and meteorological phenomena. Cooperative with Italy. (San Marco)
0S-3 38 033A (S) 38 033B(S)	Scout (S) S-211C	Apr 25					129.6	Two Transit navigation satellites in a stacked configura- tion for the U.S. Navy. Reimbursable (WSMC)
/a II 38 052A	Scout (S) S-213C	Jun 16					170.5	Improved Transit Navigation Satellite for the U.S. Navy. Reimbursable. (WSMC)
XS-4 38 074A (S) 38 074B (S)	Scout (S) S-214C	Aug 25					128.2	Two Transit navigation satellites in a stacked configura- tion for the U.S. Navy. Reimbursable (WSMC)
AA—H (S), 38 089A	Atlas-E (S)	Sep 24					1712.0	Operational environmental satellite for NOAA. Carried Search and Rescue instruments provided by Canada and France. Reimbursable. (WSMC)
5-26 (S) 38 091A 38-3 (S) 38 091B	Shuttle (S) (Discovery)		1434.8	LANDED AT	35719	0.1	2224.9	Sixth Discovery flight with Frederick H. Hauck, Richard O. Covey, John M. Lounge, David C. Hilmers, and George D. Nelson. Deployed TDRS-3. Performed experiment activities for commercial and scientific middeck experiments. Mission Duration 97 hours 00 minutes 11 seconds
5-27 38 106A) 8 106B	Shuttle (S) (Atlantis)	Dec 2		LANDED AT	EAFB DEC	6, 1988		Third Atlantis flight with Robert L. Gibson, Guy S. Gardner, Richard M. Mullane, Jerry L. Ross and William M. Shepherd. DOD Mission. Mission Duration 105 hours: 05 minutes!37 seconds
9								1989
-29 9 021A S-D 9 021B	Shuttle (S) (Discovery)	Mar 13	1436.1	35808	35768	0.0	2224	Eighth Discovery flight with Michael L. Coats, John E. Blaha, James Bagian, James F. Buchli, Robert Springer. Deployed a new Tracking and Data Relay Satellite. Performed commercial and scientific experiments. Mission Duration 119 hours 38 minutes 52 seconds
OF	RIGINAL	PA	GE IS					

OF POUR QUALITY

MISSION/ INTL DESIG	LAUNCH VEHICLE	LAUNCH DATE	PERIOD CURRENT (Mins) Apogee		TERS (km) Incl (deg)		REMARKS (All Launches from ESMC, unless otherwise not
STS-30 1989 33A Magellan 1989 33B	Shuttle (S) (Atlantis)	May 4		ED AT EAFB MAY			Fourth Atlantis flight with David M. Walker, Ronald J. Grabe, Mary L. Cleve, Mark C. Lee, Norman E. Thagard. Deployed the Magellan spacecraft on a mission toward Venus. Perform commercial and scientific middeck experiments. Mission Duration: 96 hrs 56 mins 25 secs.
STS-28 1989 61A	Shuttle (S) (Columbia)	Aug 8	LANDE	D AT EAFB AUG	13, 1989		Ninth Columbia flight with Brewster H. Shaw, Richard N. Richards, David C. Leetsma, James C Adamson, Mark N. Brown. DOD Mission. Mission Duration: 121 hours 00 minutes 09 seconds.
FLTSATCOM 1989 77A	Atlas/ Centaur (S)		1436.2 35898	35677	4.1	1863	Navy Communications satellite to provide communications between aircraft, ships and ground stations for DOD.
STS-34 1989 84A Galileo 1989 84B	Shuttle (S) (Atlantis)	Oct 18		D AT EAFB OCT			Fifth Atlantis flight with Donald E. Williams, Michael J. McCulley, Ellen Baker, Shannon N. Lucid and Franklin Chang-Diaz. Deployed the Galileo spacecraft on a mission toward Jupiter Performed experiment activities for commercial and scientific middeck experiments. Mission Duration: 119 hours 39 minutes 24 seconds.
COBE 1989 89A	Delta 2 (S)	Nov 18	102.6 889	877	99.0	2206	Cosmic Background Explorer spacecraft to provide the most comprehensive observations to date of the radiative content of the universe.
STS-33 1989 90A DOD 1989 90B	Shuttle (S) (Discovery)			D AT EAFB NOV EMENTS NOT AVAI			Ninth Discovery flight with Frederick Gregory, John E. Blaha, Manly L. Carter, Franklin S. Musgrave and Kathryn C. Thorton. DOD Mission. Mission Duration: 120 hours 6 minutes 49

seconds.

ASA Major Launch Record

						-		B-113
CSAT 90 43A/B	Scout M-1 (S)	May 9	98.5 PAGE	765 IS	605	3.0	89.9	Two Multiple Access Communications Satellites (MACSATs) to provide global store-and-forward message relay capability for DOD Users. (VAFB)
S-31 90 37A T 90 37B	Shuttle (S) (Discovery)		97.0	619	AT EAFB APR	28.5		Tenth Discovery flight with Loren J. Shriver, Charles F. Bolden, Bruce McCandless, Steven A. Hawley, Kathryn D. Sullivan. Deployed the Edwin P. Hubble Space Telescope (HST) astronomical observatory. Designed to operate above the Earth's turbulent and obscuring atmosphere, HST will observe celestial objects at ultraviolet, visible and near-infrared wavelengths. Joint NASA/ESA mission. Mission Duration: 121 hours 16 minutes 05 seconds.
990 19B GSAT 990 28A	Pegasus (S) (Orb Sci)	•	95.6	645	453	94.1		Mission Duration: 106 hrs 18 mins 23 secs. A 50-foot rocket (Pegasus), dropped from the wing of a B-52 aircraft flying over the Pacific Ocean, launched the PEGSAT satellite in the first demonstration flight of the Pegasus launch vehicle. The PEGSAT science investigations are part of the Combined Release and Radiation Effects Satellite (CRRES), a joint NASA/DOD program.
'S-36 990 19A	Shuttle (S) (Atlantis)	Feb 28			O AT EAFB MAF WENTS NOT AVA	•		Sixth Atlantis flight with John D. Creighton, John H. Casper, David C. Hilmers, Richard M. Mullane and Pierre J. Thuot. DOD Mission.
TIL DESIG SS-32 990 2A NCOM IV-5	Shuttle (S) (Columbia)	Jan 9	(Mins) i		Perigee AT EAFB JAN 35744	Incl (deg) 20, 1990 3.0		(All Launches from ESMC, unless otherwise noted) Tenth Columbia flight with Daniel C. Brandenstein, James D. Wetherbee, Bonnie J. Dunbar, Marsha S. Ivins and G. David Low. Deployed SYNCOM IV-5, a geostationary communications satellite also known as LEASAT, for the U.S. Navy. Also retrieved the Long Duration Exposure Facility (LDEF) deployed on STS-41C Apr 6, 1984. Mission Duration: 261 hours 37 seconds.
SSION/	LAUNCH	LAUNCH			ORBITAL PARA		WEIGHT	REMARKS

OF POOR OUALITY

-113

NASA Major Launch Record

		201101						
MISSION/ INTL DESIG	LAUNCH VEHICLE	LAUNCH DATE		CURRENT Apogee	ORBITAL PAR Perigee	AMETERS (km Incl (deg		REMARKS (All Launches from ESMC, unless otherwise note
ROSAT 1990 49A	Delta 2 (S) (MacDac)	Jun 1	96.1	578	560	53.0	2421.18	Roentgen Satellite (ROSAT), an Explorer class scientific satellite configured to accommodate a large x-ray telescope, to study x-ray emissions from non-solar celestial objects. International cooperative program.
	Atlas/ Centaur (S)	Jul 25	591.0	33575	323	18.2		Combined Release and Radiation Effects Satellite (CRRES) which uses chemical releases to study the Earth's magnetic fields and the plasmas, crionized gases, that travel through them. Joint NASA/DOD program.
STS-41 1990 90A Ulysses 1990 90B	Shuttle (S) (Discovery)	Oct 6	_		AT EAFB OCT	·	20079.51	Eleventh Discovery flight with Richard N. Richards, Robert D. Cabana, Bruce E. Melnick, William M. Shepard and Thomas D. Akers. Deployed the Ulysses spacecraft, a joint NASA/ESA mission to study the poles of the Sun and interplanetary space above and below the poles. Mission Duration: 98 hours 11 minutes.
STS-38 1990 97A DOD 1990 97B	Shuttle (S) (Atlantis)	Nov 15			AT KSC NOV	•		Seventh Atlantis flight with Richard O. Covey, Robert C. Springer, Carl J. Meade, Frank L. Culbertson and Charles D. Gemar. DOD Mission. Mission Duration: 117 hours 55 minutes.
STS-35 1990 106A	Shuttle (S) (Columbia)	Dec 2		LANDED	AT EAFB DEC	11, 1990		Eleventh Columbia flight with Vance D. Brand, John M. Lounge, Jeffrey A. Hoffman, Robert A. Parker, Guy S. Gardner, Ronald A. Parise and Samuel T. Durrance. Carried Astro-1, a Space Shuttle attached payload to acquire high priority astrophysical data on a variety of celestial objects. Mission Duration: 215 hour 6 minutes.

Section C

Procurement, Funding and Manpower

J.S. Geographical Distribution of NASA Prime Contract Awards *

 Excludes smaller procurements, generally those of \$25,000 or less; also excludes awards placed through other Government agencies, awards outside the U.S., and awards on the JPL contracts.

INTENTIONALLE BLANK

NASA Contract Awards By State

(FY 1990)	70741		EDUCATIONAL		TOTAL	BUSINESS	EDUCATION.
STATE	TOTAL (THOUSANDS)	BUSINESS (THOUSANDS)	& NONPROFIT (THOUSANDS)	STATE	TOTAL (THOUSANDS)	(THOUSANDS)	& NONPROF (THOUSAND
Alabama	1,121,914	1,101,162	20,752	Nevada	976	729	2
Alaska	7,702	21	7,681	New Hampshire	12,517	3,218	9,2
Arizona	28,028	6,543	21,485	New Jersey	186,176	181,017	5,1
Arkansas	197	15	182	New Mexico	54,456	47,996	6,4
California	3,147,758	2,994,879	152,879	New York	77,776	52,128	25,6
Colorado	235,470	217,749	17,721	North Carolina	12,206	2,405	9,80
Connecticut	67,116	64,906	2,210	North Dakota	62		
Delaware	2,216	513	1,703	Ohio	214,031	186,394	27,63
District of Columbia	81,666	56,491	25,175	Oklahoma	4,041	531	3,5
Florida	1,340,936	1,331,263	9,673	Oregon	5,128	2,505	
Georgia	16,653	10,807	5,846	Pennsylvania	228,605	214,149	
Hawaii	7,204	324	6,880	Rhode Island	3,018	606	2,4
ldaho	1,717		1,717	South Carolina	1,202	207	9
Illinois	25,226	13,085	12,141	South Dakota	432	85	3
Indiana	19,455	14,729	4,726	Tennessee	29,535	23,203	
lowa	5,187	327	4,860	Texas	1,250,982	1,175,035	
Kansas	8,727	7,497	1,230	Utah	509,201	507,139	
Kentucky	2,493	1,444	1,049	Vermont	480	364	1
Louisiana	359,370	358,130	1,240	Virginia	371,805	338,219	33,5
Maine	673	45	628	Washington	68,013	60,426	
Maryland	802,463	740,078	62,385	West Virginia	1,526	144	1,3
Massachusetts	96,398	26,302	70,096	Wisconsin	40,200	26,993	
Michigan	24,234	8,964	15,270	Wyoming	259		2
Minnesota	7,362	4,239	3,123	1 "			
Mississippi	103,907	100,174	3,733	TOTAL	\$10,607,982	\$9,900,002	\$707,9
Missouri	19,794	16,440	3,354				
Montana	772	326	446		aller procurements, gen		
Nebraska	717	56	661		excludes awards placed ards outside the U.S., a		

C4 GENERAL SERVICE SERVICES SANGEOFES

THE THE THE THE THE

Procurement Activity

TOTAL PROCUREMENT BY INSTALLATION
(FY 1990)

INSTALLATION	AWARDS (MILLIONS)	PERCENT
IQTAL	<u>\$12.565.2</u>	100.0
Marshall Space Flight Center	3,154.6	25.1
Johnson Space Center	2,760.4	22.0
Goddard Space Flight Center	1,823.6	14.4
Kennedy Space Center	1,275.9	10.2
NASA Resident Office/JPL	1,138.5	9.1
Lewis Research Center	730.6	5.8
Headquarters	686.5	5.5
Ames Research Center	482.8	3.8
Langley Research Center	399.7	3.2
Stennis Space Center	112.6	.9

AWARDS TO BUSINESS FIRMS BY TYPE OF EFFORT

AWARDS TO BUSINESS FIRMS BY	TIPEOPER	Oni
(FY 1990) CATAGORY	NUMBER OF CONTRACTS	TOTAL (MILLIONS)
TOTAL	5.080	9.900.1*
Research and Development	1.822	3.885.3
Aeronautics & Space Technology	825	931.0
Space Science & Applications	364	404.4
Space Flight	102	1,390.1
Space Operations	67	378.0
Commercial Programs	28	43.6
Space Station	22	401.3
Other Space R&D	375	316.4
Other R&D	39	20.5
Services	1.393	3.627.5
ADP & Telecommunication	125	361.6
Maint., Repair & Rebldg. of Equip.	210	1,041.8
Operation of Gov't-owned Facilities	41	366.0
Professional, Admin. & Mgmt Support	186	934.4
Utilities & Housekeeping	100	227.5
Constr. of Structures & Facilities	152	332.3
Maint., Repair, Alter. of Real Prop.	244	147.7
Other Services	335	216.2
Supplies and Equipment	1.865	2.387.3
Ammunition & Explosives	7	151.2
Space Vehicles	44	1,209.9
Engines, Turbines & Components	13	7 19.7
Commun., Detection, & Coherent Radiation Equip.	125	28.2
Electrical & Electronic Equip. Components	63	15.3
Instruments & Laboratory Equipment	363	34.8
ADP Equip, software, Supplies& Support Equip.	791	163.9
Fuels, Lubricants, Oils & Waxes	30	22.6
Other Supplies & Equipment	429	41.7
* Excludes smaller procurements, generally those of \$25,000 c	or less	

Distribution of NASA Procurements

(in Millions of Dollars)				Fisca	al Years 19	61 - 1990						
	FY 61	FY 62	FY 63	FY 64	FY 65	FY 66	FY 67	FY 68	FY 69	FY 70	FY 71	FY 72
Total Business	423.3	1,030.1	2,261.7	3,521.1	4,141.4	4,087.7	3,864.1	3,446.7	3,022.3	2,759.2	2,279.5	2,143.3
(Small Business)	(63.5)	(123.6)	(191.3)	(240.3)	(286.3)	(255.9)	(216.9)	(189.6)	(162.8)	(161.2)	(178.1)	(160.9)
Educational	24.5	50.2	86.9	112.9	139.5	150.0	132.9	131.5	131.3	134.3	133.9	118.8
Nonprofit			15.3	29.1	25.3	27.7	39.6	33.6	32.3	33.0	29.3	28.0
JPL	86.0	148.5	230.2	226.2	247.2	230.3	222.2	207.2	156.3	179.8	173.3	210.8
Government	221.7	321.8	628.5	692.6	622.8	512.5	366.9	287.0	279.0	265.8	212.5	207.8
Outside U.S.	. (*)	(*)	7.9	12.0	11.2	23.4	25.2	26.7	30.8	33.5	29.7	29.1
Total	755.5	1,550.6	3,230.5	4,593.9	5,187.4	5,031.6	4,650.9	4,132.7	3,652.0	3,405.6	2,858.2	2,737.8
	FY 73	FY 74	FY 75	FY 76	FY 7T	FY 77	FY 78	FY 79	FY 80	FY 81	FY 82	FY 83
Total Business	2,063.8	2.118.6	2.255.0	2,536,1	663.2	2.838.1	2,953.8	3,416.4	3,868.3	4,272.8	4,805.6	5,586.0
(Small Business)	(155.3)	(181.2)	(216.0)	(218.3)	(68.4)	(255.0)	(281.5)	(325.4)	(384.6)	(409.4)	(430.1)	(482.3)
Educational	111.7	97.8	111,4	123.0	27.7	125.5	137.2	147.2	177.0	192.5	187.0	211.3
Nonprofit	26.4	39.3	33.0	32.0	7.6	32.0	42.8	50.8	82.2	155.1	108.8	102.5
JPL	202.3	215.2	234.5	263.7	63.6	289.0	283.8	338.6	397.2	410.8	426.3	454.9
Government	235.2	208.6	198.3	222.4	63.9	223.2	216.0	221.4	271.8	321.9	308.1	394.2
Outside U.S.	34.0	34.1	34.2	27.4	3.8	24.5	26.0	37.4	46.1	55.2	47.9	47.9
Total	2,673.4	2,713.6	2,866.4	3,204.6	829.8	3,532.3	3,659.6	4,211.8	4,842.6	5,408.3	5,883.7	6,796.8
	FY 84	FY 85	FY 86	FY 87	FY 88	FY 89	FY 90					
Total Business	5,967.4	6,652.9	6,356.0	6,540.5	7,274.9	8,567.6	10,071.5					
(Small Business)	(556.2)	(644.7)	(671.3)	(786.3)	(801.4)	(857.3)	(924.3)					
Educational	22.6	256.9	276.6	315.4	370.3	464.2	513.6					
Nonprofit	98.6	103.1	119.0	119.1	129.5	180.0	200.6					
JPL	533.1	724.6	891.3	1,005.6	979.9	1,058.1	1,106.8					
Government	494.3	535.1	489.7	594.9	734.6	543.2	610.4					
Outside U.S.	38.1	35.4	47.1	34.3	55.9	63.3	62.3					
Total	7.154.1	8.308.0	8,179.7	8,609.8	9,545.1	10,876.4	12,565.2		•1	ncluded in G	overnment	

incipal Contractors (Business Firms)

One Hundred Contractors (Business Firms) Listed According To Total Awards Received (FY 1990)

			(64 (880)				
CONTRACTOR AND PRINCIPLE	AWA	RDS		CONTRACTOR AND PRINCIPLE	AW	/ARDS	
ACE OF CONTRACT PERFORMANCE.	(THOUSANDS)	PERCENT		PLACE OF CONTRACT PERFORMANCE	(THOUSANDS)	PERCENT	
TAL AWARDS TO BUSINESS FIRMS	\$10.071.530	100.00	15.	FORD AEROSPACE CORP Houston, TX	\$174,485	1.73	
ROCKWELL INTERNATIONAL CORP Downey, CA	1,746,840	17.34	16.	BOEING COMPUTER SUPPORT SERV	164,616	1.63	
MCDONNELL DOUGLAS CORP	850,639	8.45	17.	Marshall Space Flight, AL BENDIX FIELD ENGINEERING CORP	155,960	1.55	
Huntington Beach, CA LOCKHEED SPACE OPERATIONS CO	583,473	5.79	18.	Columbia, MD UNITED TECHNOLOGIES CORP	136,099	1.35	
Kennedy Space Center, FL MARTIN MARIETTA CORP	507,292	5.04	19.	West Palm Beach, FL INTERNATIONAL BUSINESS MACHINES	101,521	1.01	
New Orleans, LA THIOKOL CORP	498,437	4.95	20.	Houston, TX GRUMMAN AEROSPACE CORP	85,637	.85	
Brigham City, UT GENERAL ELECTRIC CO	401,589	3.99	21.	Reston, Va SVERDRUP TECHNOLOGY INC	79,373	.79	
King of Prussia, PA BOEING CO	398,881	3.96	22.	Middleburgh Heights, OH TELEDYNE INDUSTRIES INC	73,426	.73	
Marshall Space Flight, AL ROCKWELL SPACE OPERATIONS INC	308,708	3.07	23.	Marshall Space Flight, AL CONTEL CORP	64,952	.64	
HOUSTON, TX LOCKHEED MISSILES & SPACE CO	293,908	2.92	24	Gaithersburg, MD PAN AMERICAN WORLD SERV INC	64,794	.64	
Marshall Space Flight, FL T R W INC	241,408	2.40	25.	Stennis Space Center, MS . CAE LINK CORP	53,038	.53	
Redondo Beach, CA LOCKHEED ENGRG & SCIENCE CO	233,702	2.32	26.	Houston, TX FAIRCHILD INDUSTRIES INC	44,340	.44	
Houston, TX U S B I BOOSTER PRODUCTION CO	232,860	2.31	27.	Germantown, MD . CRAY RESEARCH INC	43,135	.43	
Huntsville, AL E G & G FLORIDA INC	191,087	1.90	28.	Chippewa Falls, WI BAMSI INC	(D) 38,367	.38	
Kennedy Space Center, FL COMPUTER SCIENCES CORP Greenbelt, MD	182,613	1.81	29.	Marshall Space Flight, AL N S I TECHNOLOGY SERV CORP Moffett Field, CA	37,597	.37	

Principal Contractors (Business Firms)

One Hundred Contractors (Business Firms) Listed According To Total Awards Received (Cont) (FY 1990)

CONTRACTOR AND PRINCIPLE	AW	ARDS		CONTRACTOR AND PRINCIPLE	_	AWARDS		
PLACE OF CONTRACT PERFORMANCE		(THOUSANDS)	PERCENT		PLACE OF CONTRACT PERFORMANCE	Œ ODH	(OUSANDS)	PERCENT
30. UNISYS CORP Greenbelt, MD		\$37,003	.37	45.	AIR PRODUCTS & CHEMICALS INC Allentown, PA		\$19,558	.19
31. BIONETICS CORP Marshall Space Flight, AL	(S)	36,398	.38	46.	BALL CORP Boulder, CO		19,465	.19
32. ORBITAL SCIENCES CORP Deriver, CO	(S)	34,848	.35	47.	NORTHROP WORLDWIDE AIRCRAFT Houston, TX		19,235	.19
33. GENERAL DYNAMICS CORP San Diego, CA		33,696	.33		LOCKHEED CORP Burbank, CA		17,880	.18
34. ST SYSTEMS CORP Greenbelt, MD		(D) 32,693	.32	49.	HONEYWELL FEDERAL SYSTEMS INC Kennedy Space Center, FL	•	17,540	.17
35. STODDARD HAMILTON AIRCRAFT Arlington, WA	(S)	32,575	.32		ANALEX CORP Fairview Park, OH		17,437	.17
38. STERLING SOFTWARE INC Moffett Field, CA		32,160	.32		DIGITAL EQUIPMENT CORP Greenbelt, MD		17,044	.17
37. PLANNING RESEARCH CORP Washington, DC		29,732	.30		JOHNSON ENGINEERING CORP Houston, TX	(S)	16,378	.16
38. RAYTHEON SERVICE CO Greenbelt, MD		29,701	.29		BOEING AEROSPACE OPERATN INC Houston, TX		16,381	.16
39. GRUMMAN DATA SYSTEMS CORP Marshall Space Flight, AL		27,976	.28	J	SCIENCE APPLICATION INTL CORP Washington, DC		15,728	.16
40. CORTEZ III SERVICE CORP Cleveland, OH	(S)	(D) 27,357	.27		ENGINEERING & ECONOMICS RES Beltsville, MD	(S) (D)	15,604	.15
41. AEROJET GENERAL CORP Nimbus, CA		24,968	.25	1	WYLE LABORATORIES Hampton, VA		15,458	.15
42. HARRIS SPACE SYSTEMS CORP Rockledge, FL		24,842	.24	- 1	SILICON GRAPHICS INC Mountain View, CA	(S)	15,242	.15
43. KRUG INTERNATIONAL CORP Houston, TX		24,010	.24		SYSTOLIC SYSTEMS INC Moffett Field, CA	(S) (D)	15,137	.15
44. HUGHES DANBURY OPTICAL SYS Danbury, CT		23,337	.23	59	CALSPAN CORP Moffet Field, CA		15,120	.15

Principal Contractors (Business Firms)

One Hundred Contractors (Business Firms) Listed According to Total Awards Received (Cont)

	CONTRACTOR AND PRINCIPLE AWARDS				(FY 1990)	CONTRACTOR AND PRINCIPLE		AVA	ARDS
	PLACE OF CONTRACT PERFORMANCE	α	HOUSANDS)	PERCENT		· PLACE OF CONTRACT PERFORMANCE		(THOUSANDS)	PERCENT
60.	QUAD S CO	(S)	\$15,004	.15	75.	ADVANCED TECHNOLOGY INC Marshall Space Flight, AL		\$10,607	.11
61.	BATESON J W CO INC Houston, TX		14,883	.15	76.	CLEVELAND ELECTRIC ILLUMINATG Cleveland, OH		10,421	.10
62.	INDUSTRIAL AMELCO JV Marshall Space Flight, AL	(S)	14,724	.15	77.	VITRO CORP Washington, DC		10,202	.10
63	OGDEN LOGISTICS SERVICES Greenbelt, MD		13,815	.14	78.	B D M INTERNATIONAL INC Columbia, MD		9,455	.09
64	PIONEER CONTRACT SERVICES INC Houston, TX	(S)	13,731	.14	79.	HERNANDEZ ENGINEERING INC Houston, TX	(S)	(D) 8,982	.09
65	BARRIOS TECHNOLOGY INC Houston, TX	(S)	13,404	.13	80.	C B I NA CON INC Hampton, VA		8,946	.09
66	MICRO CRAFT INC Tullahoma, TN	(S)	12,801	.13	81.	CATES CONSTRUCTION INC Edwards, CA		8,611	.09
67.	FLUOR CONSTRUCTORS INTL INC Stennis Space Flight, AL		11,961	.12		DICKMAN NOURSE INC Mottett Field, CA		8,544	.08
68.	VIRGINIA ELECTRIC & POWER CO Hampton, Va		11,680	.12		R M S ASSOCIATES INC JV Linthicum, MD		(D) 8,466	.08
6 9.	UNIVERSAL CONSTRUCTION CO INC Marshall Space Flight, AL		11,545	.11		GENERAL MOTORS CORP Indianapolis, IN		8,384	.08
70.	COLEJON MECHANICAL CORP Cleveland, OH	(S) (D)	11,371	.11	85.	STELLACOM INC Houston, TX	(S)	8,260	.08
	COMMUNICATIONS SATELLITE CORP Clarksburg, MD		11,182	.11		MASON & HANGER SERVICES INC Hampton, VA		8,251	.08
72.	WARNER R E & ASSOCIATES Lorain, OH	(S)	11,008	.11		COMPUTER SCIENCES PAN AM SERV Slidell, LA		8,214	.08
73.	BOOZ ALLEN & HAMILTON INC Bethesda, MD		10,801	.11		KELSEY SEYBOLD CLINIC Houston, TX		8,070	.08
74.	L T V AEROSPACE & DEFENSE CO Dallas, TX		10,743	.11		OSTERLAND G R CO Cleveland, OH	(S)	8,056	.08

Principal Contractors (Business Firms)

CONTRACTOR AND PRINCIPLE

(S=Small Business/D=Disadvantaged Business)

Educational and Nonprofit Institutions

One Hundred Educational and Nonprofit Institutions

Listed According to Total Awards Received *

PERCENT

100.00

888

4.42

3.71

3.37

3 10

2.97

2.72

2 84

2.51

2.30

2.21

1.91

1.78

1.78

(FY 1990)

(N)

13.622

12,717

12,688

One Hundred Contractors(Business Firms) Listed According to Total Awards Received (FY 1990)

AWARDS

AWARDS INSTITUTION AND PRINCIPLE PLACE OF PERFORMANCE (THOUSANDS) TOTAL AWARDS TO EDUCATIONAL & NONPROFIT INSTITUTIONS \$714.166 1. STANFORD UNIV 49.144 Stanford CA 2. ASSN UNIV RESEARCH & ASTRON (N) 31.592 Baltimore, MD 3 SMITHSONIAN INSTITUTION 26 465 Cambridge, MA 4. UNIVERSITIES SPACE RESEARCH 24.099 Houston, TX 5 MITRE CORP 22 805 Houston, TX 6. MASS INSTITUTE OF TECHNOLOGY 21.242 Cambridge, MA 7. UNIV CALIFORNIA BERKELEY 19,403 Berkeley, CA 8. UNIV ARIZONA 18.887 Tucson, AZ 9. UNIV MARYLAND COLLEGE PARK 17.920 College Park, MD 10. NEW MEXICO STATE UNIV LAS CRU 16.455 Palestine, TX 11. UNIV ALABAMA HUNTSVILLE 15.818

Huntsville, Al

Boulder, CO

La Jolla, CA

Cambridge, MA

13. UNIV COLORADO BOULDER

14. UNIV CALIF SAN DIEGO

12. CHARLES STARK DRAPER LAB INC.

P	ACE OF CONTRACT PERFORMANCE			(THOUSANDS)	PERCENT
90.	DYNAMIC ENGINEERING INC Newport News, VA	(S)		\$7,968	.08
91.	JACKSON & TULL INC Greenbelt, MD	(S)	(D)	7,965	.08
92.	CENTENNIAL CONTRACTORS INC			7,380	.07
93.	HUGHES AIRCRAFT CO Torance, CA			7,362	.07
94.	SYREJV Moffett Field, Ca			7,279	.07
95.	SCIENCE SYSTEMS APLICATIONS Seabrook, MD	(S)	(D)	7,108	.07
96.	PERKIN ELMER CORP Pomona, CA			7,059	.07
97.	R M S TECHNOLOGIES INC Cleveland, OH	(S)	(D)	7,058	.07
98.	W & J CONSTRUCTION CORP Kennedy Space Center, FL			6,964	.07
99.	HERCULES INC Magna, UT			6,945	.07
100.	EATON CORP Famingdale, NY			6,830	.07
	OTHER*			976,432	9.70

*includes other awards over \$25,000 and smaller procurements of \$25,000 or less

Educational and Nonprofit Institutions

One Hundred Educational And Nonprofit institutions Listed According to Total Awards Received (Cont)* (FY 1990)

	(· · · · · · · · · · · · · · · · · · ·											
	INSTITUTION AND PRINCIPLE		AW	/ARDS		INST	ITUTION AND PRINCIPLE		AWA	RDS		
	PLACE OF PERFORMANCE		(THOUSANDS)	PERCENT			ACE OF PERFORMANCE		(THOUSANDS)	PERCENT		
15.	UNIV WISCONSIN MADISON		12,458	1.74			CORNELL UNIV		5,968	.84		
	Madison, WI		44	4.05			thaca, NY	40				
16.	SOUTHWEST RESEARCH INSTITUTE San Antonio, TX		11,775	1.65			BATELLE MEMORIAL INSTITUTE Columbus, OH	(N)	5,566	.78		
17.	NATIONAL ACADEMY SCIENCES	(N)	10,894	1.53		32.	COLUMBIA UNIV		5,500	.77		
l	Washington, DC						New York, NY			_		
18.	UNIV MICHIGAN ANN ARBOR	(N)	10,420	1.46			UNIV SOUTHERN CALIF		5,453	.76		
٠.	Ann Arbor, MI		0.000	1.35			Los Angeles, CA			.72		
19.	CALIF INSTITUTE TECHNOLOGY Pasadena, CA		9,632	1.35	1		SAN JOSE STATE UNIV Moffett Field, CA		5,175	.12		
20	UNIV NEW HAMPSHIRE		8.384	1.17			UNIV VIRGINIA		5.054	.71		
-0.	Durham, NH		0,004	****			Charlottesville, VA		3,004	., ,		
21.	1. PENNSYLVANIA STATE UNIV UP		7,872	1.10			UNIV HOUSTON		4.919	.69		
	University Park, Pa		•				Houston, TX		•-			
22.	2. UNIV ALASKA FAIRBANKS		7,681	1.08		37.	JOHNS HOPKINS UNIV		4,918	.69		
	Fairbanks, AK				i		Baltimore, MD					
23.	CASE WESTERN RESERVE UNIV		7,573	1.08			OHIO STATE UNIV		4,638	.65		
	Cleveland, OH						Columbus, OH					
24.	UNIV HOUSTON CLEAR LAKE Houston, TX		7,400	1,04			OLD DOMINION UNIV		4,279	.60		
25	UNIV CALIF LOS ANGELES		7.337	1.03	i		Norfolk, VA UNIV IOWA		4.149	.58		
49 .	Los Angeles, CA		,,007	1.00			lowa City, IA		7,140	.50		
26.	UNIV WASHINGTON		7.151	1.00			PRINCETON UNIV		4.123	.58		
	Seattle, WA		•				Princeton, NJ		.,			
27.	UNIV HAWAII		6,880	.96		42.	VIRGINIA POLYTECHNIC INSTITUTE	Ε	4,120	.58		
	Honolulu, HI						Blacksburg, VA					
28.	UNIV TEXAS AUSTIN		6,785	.95			UNIV ILLINOIS URBANA		3,974	.56		
	Austin TX				i		Urbana, IL					
29.	UNIV CHICAGO		6,244	.87			NORTH CAROLINA STATE UNIV		3,951	.55		
	Chicago, IL						Raleigh, NC					

Educational and Nonprofit Institutions

One Hundred Educational And Nonprofit Institutions Listed According to Total Awards Received (Cont)* (FY 1990)

ı	INSTITUTION AND PRINCIPLE		AW	ARDS	INSTITUTION AND PRINCIPLE	AWARDS		
1	PLACE OF PERFORMANCE	۵	HOUSANDS)	PERCENT	PLACE OF PERFORMANCE	(THOUSANDS)	PERCENT	
45	GEORGIA INSTITUTE TECHNOLOGY Atlanta, GA	(N)	\$3,908	.55	60. OKLAHOMA STATE UNIV Stillwater. OK	2,754	.39	
46	HARVARD UNIV Cambridge, MA	(N)	3,884	.54	61. WASHINGTON UNIV ST LOUIS St. Louis, MO	2,739	.38	
47.	AMERICAN INSTIT AERON & ASTRO New York, NY	(N)	3,844	.54	62. VANDERBILT UNIV Nashville, TN	2,702	.38	
48	S E T I INSTITUTE Moffett Field, CA	(N)	3,648	.51	63. UNIV FLORIDA Gainesville, FL	2,698	.38	
49	HAMPTON CITY Harroton, VA		3,491	.49	64. GEORGE WASHINGTON UNIV Washington, DC	2,574	.36	
50	S R I INTERNATIONAL CORP Menio Park, CA	(N)	3,477	.48	65. UNIV CALIF SANTA BARBARA Santa Barbara, CA	2,444	.34	
51.	TEXAS A & M UNIV el Paso, TX	(N)	3,399	.48	66. COLORADO STATE UNIV Fort Collins. CO	2,379	.33	
52	RESEARCH TRIANGLE INSTITUTE Research Triangle, NC		3,255	.46	67. PURDUE UNIV West Lafayette, IN	2,315	.32	
53	ELORET INSTITUTE Moffett Field, Ca		3,199	.45	68. UNIV CINCINNATI Cincinnati, OH	2,248	.31	
54	UNIV MINNESOTA MINNPL ST PAUL Minneapolis, MN		3,108	.44	69. HAMPTON UNIV Hampton, VA	2,198	.31	
55	UNIV ALABAMA BIRMINGHAM Birmingham, AL		3,061	.43		(N) 2,172	.30	
56	AUBURN UNIV AUBURN Auburn, AL		3,051	.43	71. UNIV TEXAS DALLAS Dallas, TX	2,155	.30	
57	CLEVELAND STATE UNIV		2,836	.40	72. NORTH CAROLINA A & T STATE UNIV Greensboro, NC	2,130	.30	
58	CARNEGIE MELLON UNIV		2,822	.40		(N) 2,106	.29	
59	SAGINAW VALLEY STATE UNIV University Center, MI		2,800	.39	74. OREGON STATE UNIV Corvailis, OR	2,057	.29	

ducational and Nonprofit Institutions

One H	andred E	ducati	ional	and Nor	profit	Instit	utions
Listed	Accord	ing to	Total	Awards	Rece	ived (Cont)*

TITUTION AND PRINCIPLE	4141	ARDS	(FT 1990)	ISTITUTION AND PRINCIPAL	AWARDS			
ACE OF PERFORMANCE	(THOUSANDS)	PERCENT		LACE OF PERFORMANCE	(THOUS	ANDS)	PERCENT	
RIZONA STATE UNIV	1,964	.28	90.	UNIV TENNESSEE KNOXVILLE Tullahoma, TN	1,44	9	.20	
INIV PITTSBURGH Pittsburgh, PA	1,930	.27	91.	FOOTHILL COLLEGE Moffett field, CA	1,44	16	.20	
CLARKSON UNIV	1,889	.26	92.	INSTITUTE TECHNOLOGY DEVELOP Jackson, MS	(N) 1,41	0	.20	
IENSSELAER POLY INST NY roy, NY	1,849	.26	. 93.	UNIV CENTRAL FLORIDA Orlando, FL	1,41	10	.20	
NICE UNIV Houston, TX	1,842	.26	94.	OHIO AEROSPACE INSTITUTE Brook Park, OH	(N) 1,35	34	.19	
JNIV MIAMI Kiami, FL	1,836	.26	95.	UTAH STATE UNIV Logan, UT	1,35		.19	
UNIV MASS AMHERST	1,830	.26	96.	BROWN UNIV Providence, RI	1,32		.19	
JNIV IDAHO Aoscow, ID	1,726	.24	97.	UNIV AKRON Akron, OH	1,33	20	.18	
JNIV CORP ATMOSPHERIC RESRCH Boulder, CO	(N) 1,663	.23	98.	HOWARD UNIV Washington, DC	1,20	37	.18	
STATE UNIV NEW YORK STONY BROOK Stony Brook, NY	1,654	.23	99.	UNIV DELAWARE Newark, DE	1,25	-	.18	
ACAT INSTITUTE Aotlett Field, CA	(N) 1,608	.23	100.	UNIV DENVER Denver, CO	1,23	33	.17	
JNIV CALIF IRVINE rvine, CA	1,549	.22		Other**	84,96	37 _.	11.90	
JNIV NEW MEXICO Libuquerque, NM	1,546	.22						
STATE UNIV NEW YORK ALBANY Jibany, NY	1,476	.21		Excludes JPL				
INIV CALIF DAVIS Pavis, CA	1,462	.20	"	Includes other awards over \$25,000 and s	smaller procure	ments of \$2	25,000 or less	

NASA's Budget Authority in 1991 Dollars

Financial Summary

(in Million	a of Dollars)				OUTLAYS		* -	AS OF SEP 1	
	TOTAL	TOTAL DIRECT		RESEARCH &	SFC & D	CONSTRUCTION	RESEARCH & PROGRAM	TRUST	OFFICE OF
FY	APPROPRIATIONS	OBLIGATIONS	TOTAL	DEVELOPMENT	COMMUNICATIONS	OF FACILITIES	MANAGEMENT	FUNDS	INS. GEN.
1959	330.90	298.70	145.50	34.00	-	24.80	86.70	-	-
1960	523.90	486.90	401.00	255.70	_	54.30	91.00	-	-
1961	966.70	908.30	744.30	487.70	_	98.20	159.10	_	_
1962	1,825.30	1,691.70	1,257.00	935.60	_	114.30	207.10	-	-
1963	3,674.10	3,448.80	2,552.40	2,308.40	-	225.30	18.70	-	-
1964	5,100.00	4.864.80	4,171.00	3,317.40	-	437.70	415.90	-	-
1965	5,250.00	5,500.70	5,092.90	3,984.50	-	530.90	577.50	-	
1966	5,175.00	5,350.50	5,933.00	4,741.10	-	572.50	619.40	-	-
1967	4,968.00	5,011.70	5,425.70	4,487.20	-	288.60	649.90	-	-
1968	4,588.90	4,520.40	4,723.70	3,948.10	-	126.10	651.50	`	-
1969	3,995.30	4,045.20	4,251.70	3,530.20		65.30	656.20	-	-
1970	3,749.20	3,858.90	3,753.10	2,991.60	-	54.30	707.20	-	-
1971	3,312.60	3,324.00	3,381.90	2,630.40	-	43.70	707.80	-	_
1972	3,310.10	3,228.60	3,422.90	2,623.20	-	50.30	749.40	-	_
1973	3,407,60	3,154.00	3,315.20	2,541.40	-	44.70	729.10	_	-
1974	3,039,70	3,122.40	3,256.20	2,421.60	_	75.10	759.50	-	-
1975	3,231.20	3,265.90	3,266.50	2,420.40		85.30	760.80	_	_
1976	3,551,80	3,604.80	3,669.00	2,748.80	_	120.90	799.30	-	
To	932.20	918.80	951.40	730.70	-	25.80	194.90	-	_
1977	3,819.10	3,858.10	3,945.30	2,980.70	-	105.00	859.60	-	-
1978	4,083.70	4,000.30	3,983.10	2,988.70	-	124.20	870.20	-	-
1979	4,561.20	4,557.50	4,196.50	3,138.80	-	132.70	925.00	-	-
1980	5,243.40	5,098.10	4,851.60	3,701.40	-	140.30	1,009.90	-	-
1981	5,522.70	5,606.20	5,421.20	4,223.00	-	146.80	1,051.40	_	_
1982	6,020.00	5,946.70	6,035.40	4,796.40	-	109.00	1,130.00	_	
1983	6,837.70	6,723.90	6,663.90	5,316.20	-	108.10	1,239.60	-	-
1984	7,228.10	7,135.20	7,047.60	2,791.80	2,914.60	108.00	1,232.40	-	_
1985	7,546.70	7,638.40	7,317.70	2,118.20	3,707.00	170.00	1,322.50	-	_
1988	7,764.20	7,463.00	7,403.50	2,614.80	3.267.40	188.90	1,332.40	-	_
1987	10,796.00	8,603.70	7,591.40	2,435.20	3,597.30	149.00	1,408.90	-	-
1988	9,116.60	9,914.70	9,091.60	2,915.80	4,362.20	165.90	1,647.70	-	-
1989	11,008.90	11,315.80	11,051.50	3,922,40	5,030,20	190.10	1,908.30	0.50	-
1990	12,397.67	13,068.93	12,428.83	5,094.30	5,116.52	218.42	1,991.09	1.00	7.50

Research And Development Funding By Program

(In Millions of Dollars)	FY 1990	FY 1989	FY 1988	FY 1987	FY 1988	FY 1985	FY 1984	FY 1983	FY 1982	FY 1981	FY 1980	FY 1979	As Of Sept FY 1978	ember 1990 FY 1977 & Prior
SPACE STATION	1,723.70	884.60	387.40	414.50	197.80	153.60	-	-	-	-	_	-	-	
SPACE FLIGHT														
Space Shuttle	-	-	_	_	_	-	-	1,696.20	2,098,10	1,994,70	1,870,30	1,637,60	1,348.80	4,599.90
Space Transp Cap Dev	546.10	660.40	585.80	522.30	390.00	387.80	446.10	1,771,50	902.20	676.20	446,60	299.70	263.80	3.946.30
STS Oper Capability Dev	()	()	()	()	(⊷)	()	()	(278.80)	(201.50)	(223.50)	(112.90)	(89.90)	(65.40)	(65.40
Spacelab	(93.70)	(87.60)	(66.50)	(72.00)	(77.30)	(55.60)	(111.00)	()	()	()	()	()	()	(
Upper Stages	(79.70)	(131.60)	(142.20)	(152.00)	(113.60)	(135.80)	(157.70)	()	()	()	()	()	()	<u>(</u>
Payload Oper & Support Eqt	(58.40)	(53.10)	(74.10)	(34.10)	(54.20)	(54.50)	(59.60)	(-)	()	()	()	()	()	i
Eng & Tech Base (ETBYOTMS	(181.60)	(160.60)	(133.90)	(133.40)	(105.50)	(105,60)	(93.10)	(70.20)	(182.90)	(183.50)	(172.60)	(177.20)	(171,90)	(1,050.80
Advanced Programs	(29.70)	(47,70)	(46.40)	(37.70)	(19.40)	(20.50)	(21.40)	(12.60)	(9.70)	(8.80)	(13.00)	(7.00)	(10.00)	(188.80
Advanced Launch Systems	` ()	(80.40)	(64.30)	()	()	()	()	()	()	()	()	(~)	()	(
Tethered Satellite Program	(27.30)	(26.40)	(12.10)	(10.60)	(15.00)	(15.80)	(3.30)	()	()	()	()	(<u>)</u>	()	Ì
Orbital Maneuvering Veh (OMV	(75.70)	(73.00)	(46.30)	(82.50)	(5.00)	()	` ()	()	()	()	()	()	()	į
STS Operations	` (- <u>)</u>	· ()	()	(-)	` ()	()	()	(1,409.90)	(508.10)	(260.40)	(148.10)	(25.60)	(16.50)	(
Skylab	()	()	()	()	()	()	()	()	(-)	()	()	()	(-)	(2,427,10
Appollo Soyuz Test Project	(-)	()	()	()	()	()	()	(-i	(-)	(-i	()	()	()	(214,20
Expendable Launch Vehicles	· <u>·</u>	· <u>-</u>	`-	`-	`-	`	`-	82.90	31,10	54.40	67,40	73.60	136.50	2,276.8
Completed Programs	_	_		-		-	-	_	_	-	-	-	_	22,020.50
Apollo	()	()	()	()	()	()	()	()	()	()	()	()	()	(20,444.00
Gernini	()	()	(<u>)</u>	()	()	()	()	()	()	()	()	()	()	(1,280.70
Others	(-)	<u>(-)</u> _	(-)	<u> </u>	<u>(-)</u>	<u> </u>	()	<u>()</u>	<u>(-)</u>	<u>()</u>	(-)	(-)	(-)	(295.80
TOTAL OSF	546.10	660.40	585.80	522.30	390.00	387.80	446.10	3,550.60	3,031.40	2,725.30	2,384.30	2,010.90	1,749.10	32,843.50
COMMERCIAL PROGRAMS														
Technology Utilization	23.40	16.30	18.80	15.50	10.40	9.40	9.00	9.00	8.00	8.80	12.00	9.10	9.10	75.3
Commercial Use of Space	32.40	27.80	29.30	23.60	16.00					<u> </u>				
Total OCP	55.80	44.10	48.10	39.10	26.40	9.40	9.00	9.00	8.00	8.80 8	.812.0	9.10	9.10	75.3

lesearch And Development Funding By Program

In Millions of Dollars)													As Of Septe	mber 1990
_	FY 1990	FY 1989	FY 1988	FY 1987	FY 1986	FY 1965	FY 1984	FY 1983	FY 1982	FY 1981	FY 1980	FY 1979	FY 1978	FY 1977 & Prior
MERONAUTICS AND SPACE TECHNOLOGY														
Current Programs														
pace Research & Technology eronautical Research & Tech	273.80	273.70	217.10	164.50	148.10	141.00	130.30	121.20	106.90	107.80	111.80	98.30	88.70	431.60
	431.60 58.30	384.60	320.20	360.50	324.30	328.30	296.70	274.50	261.10	268.80	308.30	264.10	228.00	1,022.00
ransatmospheric Res & Tech Energy Tech. Applications	58.30	68.50	51.90	44.40	-	-	-	-	-	1.90	3.00	5.00	7.50	20.80
inity recit Appressors	-	-	-	-	-	-	-	-	-	1.80	3.00	5.00	7.50	20.00
nor Programs	-	-		-	-	_	-	-	-	-	-	-	-	-
polio Applications Expr	_	-	-	-	-	-	-	-	-	-	-	-	-	1.00
hemical & Solar Power	-	-	-	-	-	-	-	-	-	-	-	-	-	62.30
asic Research	-	-	-	-	-	-	-	-	-	-	-	-	-	193.60
pece Vehicle Systems	-	-	-	-	-	-	-	-	-	-	-	-	-	332.30
lectronic Systems	-	-	-	-	-	-	-	-	-	-	-	-	_	272.00
luman Factor Systems	-	-	-	-	-	-	-	-	-	-	-	-	151.30	-
pace Power & Elec Prop Sys	-	•	•	-	-	-	-	-	-	-	-	-	-	385.40
uclear Rockets	-	-	-	-	-	-	-	-	-	-	-	-	-	512.90
hemical Propulsion	-	-	-	-	-	-	-	-	-		•	-	-	365.40
eronautical Vehicles	-	-	-	-	-	-	-	-	-	-	-	-	-	451.20
uclear Power & Propulsion	-	-	-	-	-	-	-	-	-	•	-	-	-	44.10
Ession Analysis	-	-	-	-	-	-	-	-	-	-	-	-	-	16.00
OTAL OAST	763.70	726.80	589.20	569.40	472.40	469.30	427.00	395.70	368.00	378.50	423.10	367.40	324.20	4,261.90
PACE TRACKING & DATA SYSTEMS														
racking and Data Acquisition	19.10	18.60	17.70	16.90	15.30	14.70	14.10	496.30	401.30	339.80	332.10	299.90	276.30	3,852.90
AFETY, RELIABILITY, MAINTAINABILITY & NUALITY ASSURANCE Nandards and Practices	22.30	22.10	13.90	11.90	7.50	4.80	4.60	3.00	3.00	2.10	3.80	9.00	9.00	24.20
INIVERSITY SPACE SCIENCE &	22.00	-2.10	.0.30	.1.50		4.00	4.00	5.55		2.0		3.00		24420
Academic Programs	23.00						_	_	_	_	_		_	_
Cacemic Programs linority University Res. Prog.	14.00	-	-	-	-	-	_	-	-	-	-	-	-	-
				-	-	-					<u>-</u>			
OTAL U.S.S.AT.A.P.	37.00							-						

Research And Development Funding By Program

In Millions of Dollars)	FY 1990	FY 1989	FY 1988	FY 1987	FY 1986	FY 1985	FY 1984	FY 1983	FY 1982	FY 1981	FY 1980	FY 1979	As Of Sept FY 1978	ember 1: FY 1: & P
SPACE SCIENCE AND APPLICAT	TONS													
Physics & Astronomy	847.10	712.10	596.20	528.50	554.60	654.70	558.60	480.80	318.20	320.00	335.60	281.80	223.10	2,19
Nanetary Exploration	380.90	405.90	323.50	362.20	349.10	286.50	216.10	180.00	205.00	174.10	219.40	181.90	146.70	3,55
ife Sciences	104.70	78.10	72.10	70.20	65.00	61.90	57.60	55.60	39.50	42.20	43.80	40.10	33.30	14
pace Applications	632.00	578.30	557.40	550.60	478.40	367.60	309.50	311.40	325.00	325.70	328.50	271.90	232.10	2,09
rior Programs														
anned Space Science	-	-		-	-	-	-	-	-	-	-	-	-	
runch Vehicle Development	-	-	-	-	-	-	-	-	-	-	-	-	-	6
loscience	-	-	-	-	-	-	-	-		-	_	-	-	2
pace Flight Operations	-	-		-	-	-	-	-	-	-	-	-	4.00	
Payload, Plan & Prog Integ	(-)	()	()	()	()	()	()	()	(−)	(~)	()	()	(4.00)	(5
OTAL OSSA	1,964.70	1,774.40	1,549.20	1,511.50	1,447.10	1,370.70	1,141.80	1,027.80	887.70	862.00	927.30	775.70	639.20	8,9
NIVERSITY AFFAIRS	-		-	-	-	-	-	-	_	_	-	-	-	2
PERATING ACCOUNT	95.20	103.50	63.60	68.10	59.60	55.00	23.60	33.10	23.60	17.80	5.50	5.20	4.70	2
OTAL PROGRAM	5,227.60	4,234.50	3,254.80	3,153.70	2,616.10	2,465.30	2,066.20	5,515.50	4,723.00	4,334.30	4,088.10	3,477.20	3,011.60	50,4
pprop Trans & Adjustment	54.20	-45.90	19.30	-26.00	19.00	-2.70	-54.30	27.30	17.90	2.00	3.00	0.00	1.40	3
ppropriation	5,281,80	4,188.60	3,274.10	3,127.70	2,635.10	2,462.60	2,011.90	5,542.80	4,740.90	4,336.30	4,091.10	3,477.20	3,013.00	50,7
bh oburnou.	-,													

esearch And Development Funding By Location

Millions of Dollars)		••	· <u>—</u>	_	-								As of Septem	ber 1990
	FY 1990	FY 1989	FY 1988	FY 1987	FY 1986	FY 1985	FY 1984	FY 1983	FY 1982	FY 1981	FY 1980	FY 1979	FY 1978	FY 1977 & Prior
adquarters	465.60	403.50	332.80	258.20	175.80	150.30	141.80	218.40	152.60	136.00	132.50	115.30	95.00	2,254.50
nes Research Center	311.30	295.10	261.70	292.10	241.50	223.50	196.80	180.60	162.90	141.00	147.50	140.40	115.50	1,183.30
den Flight Research Facility		-				••			11.90	18.40	16.60	13.10	18.60	242.00
ctronics Research Center				-			-				-	-		82.50
ddard Space Flight Center	915.30	743.70	510.90	488.80	522.60	447.10	361.60	816.30	744.00	567.60	552.00	516.80	492.90	6,400.30
Propulsion Laboratory	571.80	581.60	490.30	466.80	451.90	347.80	253.70	308.20	316.40	262.80	320.50	236.80	201.40	3,018.40
hnson Space Center	1,014.20	572.60	334.80	331.00	249.50	235.20	174.90	1,593.00	1,557.20	1,524.50	1,398.30	1,161.80	970.70	15,424.00
nnedy Space Center	149.90	116.20	90.50	57.30	71.10	49.00	55.70	529.30	420.50	365.40	300.60	234.90	170.00	2,503.50
ngley Research Center	258.60	245.90	199.00	221.10	175.20	177.70	140.40	131.90	130.50	143.30	168.20	138.20	157.10	2,323.50
wis Research Center	483.20	393.70	257.30	286.80	257.10	325.10	292.80	269.90	178.40	163.30	170.40	148.50	133.60	2,868.30
rshall Space Flight Center	945.10	870.00	760.90	730.10	465.30	503.20	443.50	1,702.10	1,238.50	1,005.90	888.20	785.20	630.90	13,292.20
SA Pasadena Office												-		4.40
nnis Space Center	15.10	17.30	16.70	22.50	10.20	11.10	9.70	8.60	10.10	8.90	9.30	9.20	10.00	21.50
offic Launch Operations														0.30
ace Nuclear Systems Office								••		••				436.50
ition 17		-5.10			-3.80	-4.70	-4.70	-242.80	-200.00	-14.00	-31.70	-38.80		
llops Flight Facility									11.20	15.70	15.80	15.90	156.30	
stern Support Office										-2		•-		119.70
distributed	97.50						<u>-</u> -							
TAL PROGRAM	5,277.60	4,234.50	3.254.90	3.153.70	3,616.40	2,465.30	2,066.20	5.515.50	4.723.00	4.334.30	4.088.10	3.477.20	3.011.60	50.331.20
prop Trans & Adjustment	54.20	-45.90	19.30	-26.00	19.00	-2.70	-54.30	27.30	17.90	2.00	3.00	0.00	1.40	301.00
propriation	5,281.80	4,188.60	3,274.20	3,127.70	2,635.40	2,462.60	2,011.90	5,542.80	4,740.90	4,336.30	4,091.10	3,477.20	3,013.00	50,632.20
ise Unoblig Bal Incl		(.50)	(1.10)	(4.40)	(.30)	(.20)	(.30)	(.20)	(.30)	(08.)	(.10)	(.30)	(.30)	

Space Flight, Control And Data Communications By Program

(In Millions of Dellars)						As Of Sept	tember 1990
,	FY 1990	FY 1989	FY 1988	FY 1987	FY 1986	FY 1985	FY 1984
SPACE FLIGHT							
Shuttle Prod & Oper Cap	1,189.80	1,123.00	1,092.40	3,501.40	1,354.70	1,478.10	1,637.20
Space Transportation Ops	2,628.40	2,377.30	1,825.50	1,636.90	1,633.20	1,308.60	1,431.70
TOTAL OSF	3,818.20	3,500.30	2,917.90	5,138.30	2,987.90	2,786.70	3,068.90
SPACE TRACKING & DATA SYSTEMS	898.00	1,040.50	969.30	764.70	658.20	792.20	673.90
OPERATING ACCOUNT	9.40	13.80	8.70	17.50	15.60	15.30	9.00
TOTAL PROGRAM Approp Trans & Adjustment	4,725.60 -182.50	4,554.60 -190.40	3,895.90 12.40	5,920.50 -180.50	3,661.70 19.10	3,594.20 7.60	3,751.80 39.80
Appropriation	4,543.10	4,364.20	3,908.30	5,740.00	3,680.80	3,601.80	3,791.60
Lapae Unobilg Bai Inci		(0.90)	(0.40)	(0.30)	(0.30)	(0.20)	(0.50)

NOTE: Unobligated Balances Lapsed at the end of the second year of accountability

pace Flight, Control And Data Communications By Location

(in Millions of Dollars)						As Of Sep	tember 1990
	FY 1990	FY 1989	FY 1988	FY 1987	FY 1986	FY 1985	FY 1984
Headquarters	160.30	153.50	364.40	332.70	204.50	259.50	227.6
Arnes Research Center	18.70	16.70	15.40	16.30	18.00	15.60	10.30
Goddard Space Flight Center	609.30	492.60	467.10	415.90	330.00	432.20	431.00
Jet Propulsion Laboratory	153.50	122.10	132.10	128.00	117.40	111.90	97.30
Johnson Space Center	1,101.80	1,013.90	909.70	1,960.40	1,083.70	1,308.00	1,360.50
Kennedy Space Center	850.50	803.40	720.20	656.00	511.50	493,40	490.5
Langley Research Center	6.20	14.30	0.10	0.30	0.40	0.60	0.20
Lewis Research Center	47.90	9.40	3.70	5.00	3.30	4.30	2.00
Marshall Space Flight Center	1,616.00	1,526.60	1,263,90	1.653.50	1.655.40	1,437,00	1,379.00
Stennis Space Flight Center	24.70	21.50	19.30	16.10	15.10	12.30	1.10
Station 17		-12.40			-277.60	-480.60	-247.70
Undistributed	136.70	393.00	-	736.30	-	-	-
TOTAL PROGRAM	4,725.60	4,554.60	3.895.90	5.920.50	3.661.70	3,594,20	3,751.80
Approp Trans & Adjustment	-182.50	-190.40	12.40	-180.00	19.10	7.60	39.80
Appropriation	4,543.10	4,364.20	3,908.30	5,740.00	3,680.80	3,601.80	3,791.60
Lapse Unoblig Bal Incl	-	(0.90)	(0.40)	(0.30)	(0.30)	(0.20)	(0.50)

NOTE: Unobligated Balances Lapsed at the end of the second year of accountability

Construction of Facilities Funding

(in Millons of Dollars)															s of Septen	
_	FY 90	FY 89	FY 88	FY 87	FY 86	FY 85	FY 84	FY 83	FY 82	FY 81	FY 80	FY 79	FY 78	FY 77	78/TQ	<u>Fì</u>
Ames Research Center	13.00	_	16.00	18.80	7.80	14.20	14.70	-	-	13.60	2.90	9.10	_	4.40	2.50	:
Dryden Right Research Fec.	-	_	12.70	-	-	-	-	3.50	-	-	-	-	0.40	0.80	-	
Goddard Space Flight Center	18.40	6.20	8.60	8.00	3.60	2.10	-	2.60	-	-	-	5.60	4.50	-	-	
Jet Propulsion Laboratory	5.30	-	-	11.70	9.20	13.70	5.50	-	1.80	2.80	-	4.60	3.10	-	-	
Kennedy Space Center	10.30	-	-	0.80	_	-	-	-	1.10	0,60	4.80	-	1.70	2.60	-	
Langley Research Center	6.80	7.40	-	11.30	4.70	13.80	10.50	13.50	2.90	22.00	7.10	5.30	1.60	6.10	1.60	
Lewis Research Center	-	-	17.00	-	-	-	12.90	4.80	1.20	8.70	5.70	5.80	0.80	2.70	-	
Johnson Space Center	2.60	7.80	-	7.80	_	-	-	-	3.00	-	-	-	2.00	2.20	-	
Marshall Space Flight Ctr.	-	12.50	_	•	-	1.60	-	-	-	4.00	6.30	-	-	-	-	
Stennia Space Center	-	-	-		-	-	-	-	-	-	-	-	0.60	-	-	
Wallops Flight Facility	-	-	-	-	-	-	-	2.10	-	-	1.10	-	-	-	-	
Various Locations	2,60	-	6.40	17.00	17.40	14.00	-	-	9.80	32.00	1.70	-	1.10	-	-	
Facility Planning & Design	26.30	22.00	18.00	17.00	11.80	12.00	9.10	8.20	10.00	9.70	13.90	10.60	11.70	12.60	12.50	
Larga Aero Fac		-	_	-	-	-	-	-	-	-	45.70	56.10	37.00	31.00	-	
Minor Construction	10,00	9.00	7.30	6.80	6.00	4.90	4.70	3.70	2.30	3.90	3.50	4.20	6.00	2.90	6.20	
Repair	27,20	22.90	22.90	21.70	19.50	17.90	17.20	13.60	12.60	14.80	12.00	-	-	-	-	
Envir Compl & Rest. Program	30,00	26.00	23.90	-	-	-	-	-	-	-	-	-	-	-	-	
Rehab & Mods *	35,00	30.90	31.60	30.20	24.30	21.50	21.40	18.90	17.60	17.30	19.70	14.10	18.90	17.80	23.00	
Space Station Facilities	49,10	-	-	12.50	-	-	-	-	-		-	-	-	_	_	
Shuttle Facilities	122,20	65.00	17.20	6.90	36.20	37.70	48.70	28.10	32.80	9.90	27.90	30.90	64.70	30.30	48.60	
Shuttle Payload Facility	-	-	-	-	3.80	6.70	13.20	1.80	-	1.50	4.30	-	7.30	4.40	-	
Unallocated Plans & Design	-	-	-	-	_	-	-	1.80	-	-	-	-	-	_	-	
Aero. Facils Revitalization	54,40	46.00	-	_	-	_	-	-	-	-	-	-	-	-	-	
Advanced Launch System Fa	-	15.00	-	-	_	-	-	-	-	-	-	-	-	-	-	
Trust Fund	-	15.00	-		-	-	-	-	-	-	-	-	-	-	-	
Wake Shield Facility	2,20	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
TOTAL PROGRAM	413,60	285.70	179.60	170.50	144.30	160.10	157.90	102,80	95.30	140.80	156.60	146.30	161.40	117.80	92,50	14
Approp Trans & Adjust	178,40	4.40	-1.30	298.80	-11.00	-10.10	-2.40	-5.30	0.50	-25.80	-0.50	1.20	-0.50	0.30	0.40	
Approp & Availability	592,00	290.10	178.30	469.30	133.30	150.00	155.50	97.50	95.80	115.00	156.10	147.50	160.90	118.10	92.90	1

nstruction of Facilities Funding

(In Millions of Dollars)																
	FY 74	FY 73	FY 72	FY 71	FY 70	FY 69	PY 68	FY 67	FY 66	FY 65	FY 64	FY 63	FY 62	FY 61	_FY 60	FY 59
Arnes Research Center		4.00	4.54	4 44	4.40	0.40	4.00									
	-	3.20	6.50	1.10	0.30	0.40	4.20	-	2.80	5.80	11.30	14.30	6.30	0.60	6.10	3.80
Dryden Flight Research Facility		-	-	-	0.90	-	-			-	2.50	1.80	-	-	1.80	-
Electronica Research Center	1.30				-	-		7.40	5.20	10.40	1.60	-	-	-	-	- 1
Goddard Space Flight Center	1,30	0.60	0.70	1.40	0.70	-	0.60	0.70	2.40	2.30	17.70	21.30	11.50	9.40	14.00	3.90
Jet Propulsion Laboratory	-	0.50	-	1.90	-	-	3.10	0.30	0.90	3.60	3.00	11.40	3.60	8.60	7.70	-
Johnson Space Center	4.00	0.60	-	1.10	-	0.90	0.60	11,60	4.00	17.30	33.90	24.50	-	-	-	-
Kennedy Space Center	-	9.70	15.60	0.30	10.50	7.40	20.40	34.60	7.20	67.80	273.40	332.80	115.60	27.80	4.00	-
Langley Research Center	-	4.30	-	0.60	5.60	-	-	8.40	8.40	3.30	9.70	9.80	6.90	12.30	4.50	10.80
Lewis Research Center	-	10.00	0.80	0.70	0.30	-	2.10	16.20	0.90	0.80	20.40	45.50	1.10	9.60	6.60	8.00
Marshall Space Flight Center	-	-	-	1.30	-	-	0.90	-	1.80	12.00	28.20	40.50	30.70	26.10	-	- 1
Michoud Assembly Facility	0,90	-	-	-	-	0.40	0.50	0.50	0.30	6.20	7.30	28.50	-	-	-	-
Stennis Space Center	1.70	-	-	-	1.40	-	-	-	-	58.40	102.90	77.10	_	_	-	- 1
Nuclear Rocket Dev Station	13,50	-	-	-	-	-	-	-	-	-	4.10	11.50	-	-	-	-
Pacific Launch Operations	-	-	-	-	-	-	-	-	-	0.30	-	-	0.60	0.40	1.10	_
Wallops Flight Facility	4.60	0.60	-	-	0.50	0.50	0.70	0.20	1.00	1.70	0.50	4.10	11.30	2.00	_	16.10
Various Locations	-	_	0.70	22.50	26.40	20.80	3.50	6.50	15.10	28.30	211.50	129.90	159.00	28.00	52.40	5.10
Facility Planning & Design	-	7.90	3.40	5.40	3.50	1.00	5.40	5.40	5.00	8.80	10.40	12.90	9.80	-	_	-
Rehab & Mods *	14.80	11.60	7.80	(17.50)	-	-	-		-	-	-	-	_	-	_	_
Shuttle Facilities	-	28.80	18.50	· •	-	-	-	-	-	-	_	_	_	_	_	_
Other	56.50	1.70	-	-	-	-	-	-	-	-	-	-	-	-	-	-
TOTAL PROGRAM	100,60	78.50	54.00	36.30	50.10	31.40	42.00	90.00	55.00	247.00	738.40	765.90	358.40	124.80	98.20	47.70
Approp Trans & Adjust	0.50	-1.20	-1.30	-11.30	3.10	-9.60	-6.10	-7.10	5.00	15.90	-58.40	10.30	-40.40	-2.00	-13.60	0.30
Appropr & Availability	101,10	77.30	52.70	25.00	53.20	21.80	35.90	82.90	60.00	262.90	680.00	776.20	316.00	122.80	84.60	48.00

*Included in Various Locations Prior to FY 1972

Research and Program Management Funding

FY 90	FY 89	FY 88	FY 87	FY 86	FY 85	FY 84	FY 83	FY 82	FY 81	FY 80	FY 79	FY 78	FY 77	76/TQ	FY 75	F
259.10	255.10	205.60	142.50	124.00	122.20	114.00	111.90	115.90	96.40	88.70	84.60	83.40	78.40	93.50	68.90	6
187.70	178.30	165.30	134.00	123.50	122.30	114.90	107.20	76.60	72.20	87.40	62.80	57.70	53.10	53,90	48.60	4
-	-	-	-	-	_	_	-	24.40	22.60	20.20	18.90	18.20	17.20	19.70	13.20	13
266.40	255.90	244.00	215.10	200.50	198.30	191.40	183.90	169.10	142.50	133.70	127.80	123.50	114.30	138,60	104.80	97
277.80	269.90	243.70	200.00	192.20	185.10	178.40	164.90	156.00	150.20	135.50	126.40	116.30	110.10	128.00	95.90	. 9
198.80	188.70	178.20	153.70	145.00	147.60	139.20	132.70	126.60	120.80	113.80	106.60	100.70	94.70	115,70	88.60	8
206.30	196.30	182.00	151.70	143.10	137.40	128.50	118.80	106.40	99.90	94.80	87.50	84.70	83.30	102.40	80.30	71
325.20	302,70	283.30	228.00	208.90	216.10	201.90	195.20	230.50	176.30	164.70	153.00	146.20	139.10	165.20	121,30	117
276.80	256.00	239.90	213.10	195.00	199.70	190.90	184.30	172.10	165.30	156.60	149.00	143.60	140.20	170,00	129.10	137
25.10	23.50	20.60	12.40	11.20	10.70	6.30	6.60	5.50	4.90	2.80	1.30	0.10	0.70	0.50	1.60	
-	-	-	-	-0.10	-7.60	-7.60	-8.10	-	-	-	-	_	-	-	-	
-	-	-	-	-	_	-	-	-	-	_	_	-	-	-	-	•
-	-	-	-	-	-	-	-	-	. 20.00	17.80	15.90	15.10	13.30	17.00	12.40	11
2,023.20	1,926.40	1,762.60	1,451.50	1,341.30	1,331.80	1,255.90	1,197.40	1,183.10	1,071.10	996.00	933.80	889.50	844.40	1,012,50	764.70	74
0.20	_	_	1.00	0.20	0.50	0.20	_	0.20	0.30	0.20	0.30	0.30	0.20	0.60	0.20	
-71.90	-71.60	-266.90	-27.50	20.50	-	-	-	-	-	-	-	-	-	-	-4.90	
1.951.50	1.855.00	1.495.70	1.425.00	1.362.00	1,332,30	1.256.10	1,197,40	1,183,30	1.071.40	996.20	934.10	889.80	844.60	1.013.10	780.00	74
	259.10 187.70 - 266.40 277.80 198.80 206.30 325.20 276.80 25.10 - - 2,023.20	259.10 255.10 167.70 178.30 266.40 255.90 277.80 269.90 198.00 188.30 305.20 302.70 278.80 256.00 25.10 23.50 2,023.20 1,926.40 0.20 - -71.90 -71.00	259.10 255.10 205.60 167.70 178.30 165.30 266.40 255.90 244.00 277.80 259.90 243.70 198.00 188.70 178.20 205.30 198.30 182.00 227.80 256.00 233.90 251.10 23.50 20.70 25.10 20.60 25.10 198.30 182.00 25.10 20.60 25.10 20.60	259.10 255.10 205.60 142.50 167.70 178.30 163.30 134.00 275.00 265.90 244.00 216.10 277.80 265.90 243.70 200.00 198.30 188.30 182.00 151.70 208.30 182.00 151.70 208.30 182.00 151.70 225.20 302.70 203.30 225.00 278.80 255.00 293.90 273.10 25.10 25.50 20.60 12.40	259.10 255.10 205.60 142.50 124.00 167.70 178.30 168.30 134.00 122.50 277.00 269.90 244.00 218.10 200.50 277.00 269.90 243.70 200.00 162.20 198.30 188.30 182.00 153.70 145.10 202.50 302.70 263.30 278.00 263.00 198.30 182.00 151.70 145.10 225.30 302.70 263.30 278.00 263.00 198.30 162.00 151.70 145.10 225.30 302.70 263.30 278.00 263.00 200.90 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 20	259.10 255.10 205.60 142.50 124.00 122.20 167.70 178.30 165.30 134.00 123.50 122.30 122.30 266.40 255.90 244.00 216.10 200.50 189.30 277.60 269.90 243.70 200.00 182.20 185.10 198.00 186.70 178.20 153.70 145.00 147.60 208.30 198.30 182.00 151.70 143.10 137.40 202.30 302.70 263.30 228.00 208.00 216.10 278.60 255.00 239.90 213.10 195.00 195.70 165.70 165.70 165.70 178.20 255.10 20.50 20.60 12.40 11.20 10.70 0.10 77.60 0.10 77.60 200.00 210.10 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 100.70 1	259.10 255.10 205.60 142.50 124.00 122.20 114.00 167.70 178.30 163.30 134.00 122.50 122.30 114.90 268.40 255.90 244.00 216.10 200.50 198.30 191.40 277.60 265.90 243.70 200.00 122.20 185.10 178.40 198.00 186.70 178.20 151.70 145.00 147.60 139.20 208.30 198.30 182.00 151.70 145.10 137.40 125.50 225.20 302.70 283.30 228.00 208.90 216.10 201.90 278.60 255.00 219.90 278.10 125.50 20.50 198.30 120.00 12.40 11.20 10.70 6.30	259.10 255.10 205.50 142.50 124.00 122.20 114.00 111.90 167.70 178.30 163.30 134.00 122.50 122.30 114.60 107.20 256.40 255.90 244.00 216.10 200.50 196.30 191.40 183.90 277.00 269.90 243.70 2200.00 122.20 185.10 178.40 164.50 198.00 186.70 178.20 153.70 145.00 147.60 139.20 132.70 206.30 189.30 182.00 151.70 143.10 137.40 122.50 132.70 206.30 189.30 182.00 151.70 143.10 137.40 122.50 118.00 227.80 255.00 293.90 213.10 201.90 195.20 278.00 255.00 293.90 213.10 201.90 195.20 278.00 255.00 293.90 213.10 10.70 6.30 6.60 - 0.10 7.50 7.50 5.50 10.20 7.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1	253.10 255.10 205.60 142.50 124.00 122.20 114.00 111.90 115.90 167.70 178.30 163.30 134.00 122.30 122.30 114.60 107.20 78.60 244.00 255.90 244.00 216.10 200.50 198.30 191.40 183.90 169.10 198.40 188.70 178.20 200.00 182.20 185.10 178.40 184.90 159.10 198.40 188.70 178.20 153.70 145.00 147.60 139.20 132.70 126.50 198.30 182.00 158.20 200.00 182.20 185.10 178.40 184.90 156.00 206.30 186.30 182.00 151.70 143.10 137.40 129.50 118.60 106.40 225.20 302.70 223.30 228.00 208.00 216.10 201.90 185.20 230.50 182.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125.50 125	253.10 255.10 205.60 142.50 124.00 122.20 114.00 111.90 115.90 96.40 167.70 178.30 163.30 134.00 122.20 114.00 111.90 107.20 76.60 72.20 268.40 255.90 244.00 216.10 200.50 198.30 191.40 183.90 189.10 142.50 150.20 198.30 188.70 178.20 269.90 248.70 200.00 192.20 185.10 176.40 184.00 156.00 150.20 198.30 182.00 151.30 145.00 147.60 139.20 132.70 125.60 120.80 208.30 188.30 182.00 151.70 145.10 137.40 122.50 118.20 166.40 99.90 245.70 265.00 209.90 216.10 201.90 198.20 205.50 176.30 2778.60 255.00 239.90 216.10 195.00 199.70 199.50 198.50 205.50 176.30 278.60 255.00 239.90 216.10 195.00 199.70 190.90 184.30 177.10 177.10 177.30 278.60 255.00 230.50 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.80 120.8	259.10 255.10 205.60 142.50 124.00 122.20 114.00 111.90 155.00 96.40 88.70 167.70 178.30 163.30 134.00 122.50 122.30 114.90 107.20 76.60 72.20 67.40 22.60 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 2	259.10 255.10 205.60 142.50 124.00 122.20 114.00 111.90 115.90 96.40 88.70 84.60 167.70 178.30 163.30 134.00 122.20 114.60 107.20 78.60 72.20 67.40 82.90 268.40 255.90 244.00 216.10 200.50 198.30 191.40 183.90 189.10 142.50 133.70 127.80 277.00 269.90 243.70 200.00 122.20 185.10 178.40 189.00 159.10 142.50 133.70 127.80 198.30 189.70 178.20 153.70 145.00 147.60 139.20 132.70 126.50 120.80 113.30 186.30 182.00 151.70 143.10 137.40 128.50 188.30 186.40 99.90 94.80 67.50 225.20 302.70 226.30 208.00 216.10 201.80 189.20 126.40 198.20 156.60 150.20 135.70 145.00 147.60 129.20 189.20 180.40 150.60 150.20 133.50 126.40 206.30 189.30 182.00 151.70 143.10 137.40 128.50 118.80 108.40 99.90 94.80 67.50 225.20 302.70 263.30 275.00 226.00 216.10 201.80 178.20 172.10 155.30 156.40 150.20 125.10 23.50 126.40 198.70 199.70 190.90 194.30 172.10 155.30 156.40 143.00 125.10 125.00 125.10 123.50 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 126.40 12	253.10 255.10 205.60 142.50 124.00 122.20 114.00 111.90 115.90 96.40 88.70 84.60 83.40 167.70 178.30 163.30 134.00 122.30 114.80 107.20 78.60 72.20 67.40 82.80 57.70 268.40 225.50 244.00 218.10 200.50 198.30 191.40 183.90 169.10 142.50 133.70 178.20 182.50 277.80 269.90 243.70 200.00 192.20 183.10 178.40 184.90 156.00 150.20 133.70 178.80 118.30 191.40 183.90 156.00 150.20 133.70 127.80 123.50 123.40 116.30 198.30 191.40 183.90 156.00 150.20 133.50 123.40 116.30 198.30 198.30 182.00 157.80 123.20 132.70 125.50 120.80 113.80 108.60 100.70 198.30 182.00 157.00 125.00 125.20 133.70 145.00 147.60 139.20 132.70 125.50 120.80 113.80 108.60 100.70 198.30 182.00 157.00 157.40 129.50 118.80 108.40 99.30 94.80 87.50 94.70 225.30 302.70 283.30 228.00 208.00 218.10 201.90 198.20 108.20 172.10 165.30 164.70 153.00 146.20 278.80 255.00 229.90 273.10 195.00 195.70 199.30 194.30 172.10 165.30 156.60 149.00 144.20 25.10 23.50 20.60 12.40 11.20 10.70 6.30 8.60 5.50 4.90 2.80 1.30 0.10 0.10 -7.60 -7.60 -7.60 -7.60 -8.10 20.00 17.80 15.90 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 15.10 1	253.10 255.10 205.60 142.50 124.00 122.20 114.00 111.90 115.90 96.40 88.70 84.60 83.40 78.40 167.70 178.30 163.30 134.00 122.20 114.80 177.20 78.60 72.20 67.40 82.50 57.70 53.10 256.40 2255.90 244.00 218.10 200.50 198.30 191.40 183.90 168.910 142.50 133.70 127.80 125.50 114.30 172.00 259.90 243.70 200.00 192.20 185.10 178.40 183.90 156.00 150.20 133.50 127.80 125.50 114.30 198.40 188.70 178.20 133.70 143.10 137.40 125.50 114.30 150.00 150.20 133.50 126.40 116.30 110.10 198.40 188.70 178.20 153.70 143.10 137.40 125.50 118.30 166.40 99.90 94.80 87.50 94.70 206.30 188.30 182.00 151.70 143.10 137.40 125.50 118.80 106.40 99.90 94.80 87.50 94.70 83.30 1278.40 225.50 208.80 218.10 201.90 172.10 155.30 156.50 150.70 94.70 252.50 252.50 229.90 213.10 195.00 198.70 199.90 198.30 172.10 155.30 156.50 164.70 153.00 146.20 139.10 1278.40 125.50 114.80 106.40 99.90 94.80 87.50 94.70 83.30 125.70 225.30 202.90 213.10 195.00 109.70 94.70 125.50 172.10 155.30 156.50 164.70 153.00 146.20 139.10 125.50 150.50 172.10 155.30 156.50 169.00 145.60 140.00 145.60 140.00 145.60 140.00 145.60 140.00 145.60 140.00 145.60 140.00 145.60 140.00 145.60 140.00 145.60 140.00 145.60 140.00 145.60 140.00 145.60 140.00 145.60 140.00 145.60 140.00 145.60 140.00 145.60 140.00 145.60 140.00 145.60 140.00 145.60 140.00 145.60 140.00 145.60 140.00 145.60 140.00 145.60 140.00 145.60 140.00 145.60 140.00 145.60 140.00 145.60 140.00 145.60 140.00 145.60 140.00 145.60 140.00 145.60 140.00 145.60 140.00 145.60 140.00 145.60 140.00 145.60 140.00 145.60 140.00 145.60 140.00 145.60 140.00 145.60 140.00 145.60 140.00 145.60 140.00 145.60 140.00 145.60 140.00 145.60 140.00 145.60 140.00 145.60 140.00 145.60 140.00 145.60 140.00 145.60 140.00 145.60 140.00 145.60 140.00 145.60 140.00 145.60 140.00 145.60 140.00 145.60 140.00 145.60 140.00 145.60 140.00 145.60 140.00 145.60 140.00 145.60 140.00 145.60 140.00 145.60 140.00 145.60 140.00 145.60 140.00 145.60 140.00 145.60 140.00 145.60 140.00 145.60 140.00 140.00 145.60 140.00 145.60 140.00 140.00 140.00 140.00 140.	253.10 255.10 205.50 142.50 124.00 122.20 114.00 111.90 115.90 96.40 88.70 84.60 83.40 78.40 93.50 167.70 178.30 163.30 134.00 122.20 114.00 117.20 78.60 72.20 87.40 82.90 57.70 53.10 83.90 278.00 255.90 244.00 216.10 200.50 189.30 191.40 183.90 189.10 142.50 133.70 127.80 127.80 18.20 17.20 187.70 269.90 244.70 200.00 192.20 185.10 178.40 184.00 159.00 159.00 133.50 124.40 116.30 110.10 129.00 198.30 188.70 178.20 153.70 145.00 147.60 139.20 132.70 125.60 133.50 124.40 116.30 110.10 129.00 198.30 188.30 120.00 158.70 158.30 145.00 147.60 139.20 132.70 125.60 120.80 113.90 106.60 100.70 94.70 115.70 120.00 198.30 182.00 158.30 120.00 159.30 189.30 180.00 159.30 180.40 183.10 180.40 99.90 94.60 87.50 84.70 83.30 102.40 225.30 302.70 280.30 290.90 216.10 201.90 186.20 200.50 178.30 184.70 153.00 148.20 139.10 163.20 278.60 255.60 239.90 216.10 195.00 195.00 184.30 172.10 165.20 200.50 172.10 163.00 143.60 140.20 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 170.00 25.10 23.50 20.60 12.40 11.20 10.70 6.30 8.60 5.50 4.90 2.80 1.30 15.00 160.00 170.00 25.10 20.50 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 14	259.10 255.10 205.50 142.50 124.00 122.20 114.00 111.90 115.90 96.40 88.70 84.60 83.40 78.40 93.50 68.90 167.70 178.30 163.30 143.00 122.50 122.30 114.80 107.20 78.60 72.20 87.40 82.90 57.70 53.10 83.90 44.60 275.00 255.90 244.00 218.10 200.50 198.30 191.40 183.90 169.10 142.50 133.70 127.80 122.50 114.30 183.60 104.80 277.80 269.90 243.70 200.00 122.20 185.10 178.40 164.90 155.00 150.20 133.50 128.40 116.30 110.10 122.00 95.90 198.30 198.30 198.30 128.70 128.50 133.70 128.60 100.70 178.20 183.70 145.00 147.60 139.20 132.70 125.60 120.80 113.80 106.60 100.70 94.70 115.70 88.60 198.30 188.70 178.20 153.70 145.00 147.60 139.20 132.70 125.60 120.80 113.80 106.60 100.70 94.70 115.70 88.60 198.30 120.00 151.70 143.10 137.40 122.50 118.80 106.40 99.90 94.80 87.50 84.70 83.30 102.40 80.30 122.50 265.00 299.90 213.10 201.90 198.20 201.50 178.30 184.70 153.00 146.20 139.10 165.20 121.90 125.50 126.40 145.00 145.60 140.70 94.70 115.70 88.60 102.70 263.90 273.00 263.90 273.10 195.00 199.70 199.30 184.50 172.10 155.30 156.40 143.00 143.60 140.20 170.00 122.10 25.10 23.50 20.60 12.40 11.20 10.70 6.30 6.60 5.50 4.90 2.80 13.30 0.10 0.70 0.50 122.40 20.20 123.90 123.50 123.50 123.60 143.00 143.60 140.20 170.00 122.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.10 123.1

1/ Includes NASA Pasadena Office

Research and Program Management Funding

In Millions of Dollars)								_						A	of September 199	0
	FY 73	FY 72	FY 7t	FY 70	FY 69	FY 68	FY 67	FY 68	FY 65	FY 64	FY 63	FY 62	FY 61	FY 60	FY 59	
u -										.,,,,,						
Headquarters	61.20	61.60	64.90	63.20	60.80	57.10	57.40	54.40	69.30	56.10	51.30	26.00	13.90	8.50	5.70	
Ames Research Center 2/	42.40	42.20	40.60	37.60	34.00	33.80	33.80	33.20	31.80	26.90	25.60	22.90	19.90	17.80	16.30	
Electronics Research Center	-	_	_	19.10	17.20	15.40	12.20	6.40	3.20	0.50	_	_	-	-	-	
Dryden Flight Research Center	11.70	11.70	11.10	10.30	9.70	9.50	9.50	9.40	10.50	9.40	7.50	7.20	5.10	4.30	3.30	
Goddard Space Flight	95,70	96.50	93.10	86.40	73.20	68.30	71.10	64.40	93.30	61.90	52.80	39.10	20.40	15.50	1.80	
Kennedy Space Center	92.40	92.60	98.30	97.60	95.80	93.10	92.70	82.00	40.80	26.80	18.80	6.40	-	-	-	
Langley Research Center	78.60	80,20	75.30	69.80	63.00	62.20	64.30	63.50	59.00	52.10	51.80	46.60	39.10	33.00	31.40	
Lewis Research Center	81,20	82.50	78.00	73.90	67.90	66.20	66.30	66.40	69.30	58.50	53.40	45.20	35.80	31.20	27.80	
Johnson Space Center	110.60	113.00	111.10	106.60	98.90	95.70	95.70	86.50	88.70	64.70	51.00	24.10	9.20	-	-	
Marshall Space Flight Center	137.20	138.90	145.10	125.70	116.30	126.20	128.70	128.40	138.70	124.30	112.60	89.20	68.60	5.10	-	
Pacific Launch Operations	-	-	-	-	-	-	-	0.60	0.90	0.90	0.60	0.10 .	-	-	-	
Space Nuclear Systems Office	-	2.20	2.40	2.30	2.10	2.00	2.00	1.80	1.70	1.50	1.00	0.30	-	-	-	
Western Support Office	-	_	-	-	-	1.00	3.20	4.90	5.00	4.40	3.40	1.40	5.70	0.50	-	
Wallops Flight Facility	10.80	10.90	10.30	9.70	9.10	8.80	9.70	9.30	11.10	8.80	8.90	7.10	5.00	2.70	1.30	
			3/													
TOTAL PROGRAM	721.80	732.30	730.20	702.20	648.00	639.30	646.60	611.20	623.30	496.80	438.70	315.60	222.70	118.60	87.60	
	7.60	0.30	0.20	0.40	0.10	0.10	0.90	0.60	-	-	-	· -	_	-	-	
Approp Trans & Adjust	-	2.10	-7.70	-12.60	-44.90	-11.40	-7.50	-27.80	0.20	-2.80	-	-	-	-	-	
Appropriation	729.40	734.70	722.70	690.00	603.20	628.00	640.00	584.00	623.50	494.00	438.70	315.60	222.70	118.60	87.60	

^{1/}Includes NASA Pasadena Office

^{2/}ERC was closed on June 30, 1970

^{3/}includes \$10 million for basic institutional and other requirements for agencies resident at MTF/Slidell Pacific Launch Operations (PLO)

Space Nuclear Systems Office (SNSO)

Western Support Office (WSO)

Personnel Summary

Onboard At End Of Fiscal Year	•								As Of Septe	mber 1996
	FY 1990	FY 1989	FY 1988	FY 1987	FY 1986	FY 1985	FY 1984	FY 1983	FY 1982	FY 198
NASA HQ	1,996	1,867	1,829	1,648	1,468	1,553	1,526	1,638	1,614	1,63
ARC 1/	2,205	2,217	2,169	2,161	2,153	2,159	2,145	2,138	2,164	1,65
DFRF									-	49
GSFC2/	3,873	3,860	3,727	3,746	3,785	3,738	3,647	3,794	3,746	3,43
KSC	2,466	2,504	2,330	2,278	2,120	2,165	2,131	2,180	2,199	2,22
LaRC	2,961	3,003	2,966	2,979	2,932	2,949	2,952	3,032	2,916	3,02
LeRC	2,728	2,832	2,716	2,716	2,642	2,782	2,702	2,751	2,667	2,78
JSC	3,615	3,704	3,498	3,463	3,362	3,449	3,352	3,411	3,445	3,49
MSFC	3,619	3,703	3,429	3,478	3,361	3,386	3,286	3,464	3,440	3,47
NASA Pasadena Office	-		-	-	-	_	-	·		
ISSC	192	203	159	147	137	135	129	128	119	113
WFF								_	_	400
TOTAL	23,625	23,893	22,823	22,646	21,960	22,316	21,870	22,534	22,310	22,73
	FY1980	FY 1979	FY 1978	FY 1977	FY 1976	FY 1975	FY 1974	FY 1973		
NASA HQ	1,658	1,534	1,606	1,619	1,708	1,673	1,734	1,747		
ARC 1/	1,713	1,713	1,691	1,645	1,724	1,754	1,776	1,740		
DFRF	499	498	514	546	566	544	531	509		
GSFC2/	3,535	3,562	3,641	3,666	3,808	3,871	3,936	3,852		
KSC	2,291	2,264	2,234	2,270	2,404	2.377	2,408	2,516		
LaRC	3,094	3,125	3,167	3,207	3,407	3,472	3,504	3,389		
LeRC	2,901	2,907	2,964	3,061	3,168	3,181	3,172	3,368		
JSC	3,616	3,563	3,617	3,640	3,796	3,877	3,886	3,896		
MSFC	3,646	3,677	3,808	4,014	4,336	4,337	4,574	5,287		
NASA Pasadena Office		-			-	35	39	39		
JSSC	111	108	108	94	72	76				
WFF	406	409	429	426	437	441	447	434		

*Includes Temporary Personnel 1/Includes DFRF After FY 1981 Excludes Employees in the Youth Program 2/Includes WFF After 1981

The Year In Review

Onboard At End Of Fiscal Year*	FY 1972	FY 1971	FY 1970	FY 1969	FY 1968	FY 1967	FY 1966	FY 1965	FY 1964
NASA Headquarters	1,755	1,895	2,187	2,293	2,310	2,373	2,336	2,135	2,158
Ames Research Center	1,844	1,968	2,033	2,117	2,197	2,264	2,310	2,270	2.204
Dryden Flight Research Facility	539	579	583	601	622	642	662	669	619
Electronics Research Center			592	951	950	791	555	250	33a/
Goddard Space Flight Center	4,178	4,459	4,487	4,295	4,073	3,997	3,958	3,774	3,675
Kennedy Space Center	2,568	2,704	2,895	3,058	3,044	2,867	2,669	2.464	1,625
Langley Research Center	3,592	3,830	3,970	4,087	4,219	4,405	4,485	4,371	4,330
Lewis Research Center	3,866	4,083	4,240	4,399	4,583	4.956	5,047	4.897	4.859
Johnson Space Center	3,935	4,298	4,539	4.751	4.956	5,064	4,889	4,413	4.277
Marshall Space Flight Center	5,555	6,060	6,325	6,639	6,935	7,602	7.740	7,719	7.679
NASA Pasadena Office	40	44	72	80	79	91	85	19	b/
Pacific Launch Operations			••	-			c/	21	22
Space Nuclear Systems Office	45	89	103	104	108	113	115	116	112
Wallops Flight Facility	465	497	522	554	565	576	563	554	530
Western Support Office				-	d/	119	294	377	376
TOTAL	28,382	30,506	32,548	33,929	34,641	35,860	35,708	34,049	32,499
	FY 1963	FY 1962	FY 1961	FY 1960	FY 1959				
NASA Headquarters	2,001	1,477	735	587	429				
Ames Research Center	2,116	1,658	1,471	1,421	1,464		Includes Te	emporary Pe	ersonnel
Dryden Flight Research Facility	616	538	447	408	340				
Electronics Research Center	25a/	_					a/Figures Fo	r North Eas	stern Office
Goddard Space Flight Center	3,487	2,755	1,599	1,255	398		•		
Kennedy Space Center	1,181	339		·	-	J	Prior Years	Figures Inc	cluded in WSO
Langley Research Center	4,220	3,894	3,338	3.203	3.624			-	
Lewis Research Center	4,697	3,800	2,773	2,722	2,809		c/Effective in	1966, PLC	OO Activity Was
Johnson Space Center	3,345	1,786	794	in GSFC			Was Merge	d Under KSC	c í
Marshall Space Flight Center	7,332	6,843	5.948	370					
NASA Pasadena Office			-				d/Effective in	1 1968, WS	O Was Disestablish
Pacific Launch Operations	17							ents Merged	
Space Nuclear Systems Office	96	39	4	-					
Wallops Flight Facility	493	421	302	229	171				
Western Support Office	308	136	60	37	••				
Western Support Onice									

Employment Summary

9/30/90

Full - Time Permanent and Other Employees*

		OAET		OSSA		os	F				
	ARC	LARC	LERC	GSFC	KSC	JSC	MSFC	SSC	HQ	Total NASA	JPL
Fuil - Time Permanent Employees	2,205	2,961	2,728	3,873	2,466	3,615	3,619	192	1,966	23,625	
Other than Permanent Employees	74	152	92	119	76	112	115	14	187	941	
Total	2,279	3,113	2,820	3,992	2,542	3,727	3,734	206	2,153	24,566	5,920

Full - Time Permanent Employee Occupational Breakdown

	ARC	LARC	LERC	GSFC	KSC	JSC	MSFC	SSC	HQ	Total NASA	JPL*
S&E	1,183	1,434	1,500	2,136	1,468	2,360	2,376	103	571	13,131	3,664
Prof'i Admin.	345	304	284	786	406	611	605	55	970	4,366	878
Cierical	216	281	243	434	319	446	466	32	415	2,852	607
Tech. Support	139	930	297	442	268	189	172	2	7	2,446	385
Wage System	322	12	404	75	5	9	0	0	3	830	386
Total	2,205	2,961	2,728	3,873	2,466	3,615	3,619	192	1,966	23,625	

^{*} Does Not Include Non-Ceiling Employees

otal NASA Civil Service Workforce

Minorities as Percent of Permanent Employees

Women as Percent of Permanent Employees

