Sub Code: BCST-302 ROLL NO......

Back Paper

IIIrd SEMESTER EXAMINATION, 2023 – 24 IInd yr B.Tech. – Computer Science and Engineering Discrete Structure

Duration: 3:00 hrs Max Marks: 100

Note: - Attempt all questions. All Questions carry equal marks. In case of any ambiguity or missing data, the same may be assumed and state the assumption made in the answer.

Q 1.	Answer any four parts of the following.	5x4=20
	a) Prove that a relation R on a set is symmetric Iff $R \equiv R^{-1}$	
	b) Prove that	
	$(A \times B) \cap (P \times Q) = (A \cap P) \times (B \cap Q)$	
	c) Let $A=B = \{1,2,3,4,5\}$. Define Function f:A \rightarrow B i. 'f' is one to one and onto	
	ii. 'f' is onto but not one to one	
	d) If f: A \rightarrow B and g: B \rightarrow c are two bijective, them $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$	
	e) Find a formula for the inverse of $f(x) = \frac{2x-3}{5x-7}$	
	f) If $f(x) = x^2$, $g(x) = x^3$ find (i) fofog(x) and (ii) gofof(x)	
Q 2.	Answer any four parts of the following.	5x4=20
	Define:	
	a) Isomorphism.	
	b) Hamiltonian & Euler walk.	
	c) Deduction theorem.	
	d) Syntax and semantics. e) Pseudo Boolean Lattice.	
0.2	f) Hashing Function.	10x2 = 20
Q 3.	Answer any two parts of the following.	10x2 = 20
	a) Define:	
	i. Integral Domain	
	ii. Lattice & Poset with an example.	
	b) If $A = \{a,b,c\}$, then, power set $P(A)$ under Relation`subset` is a poset.	
	c) Show that $P \Leftrightarrow (p \lor q) \Rightarrow (p \land q)$ using truth table & algebra of preposition.	
Q 4.	Answer any two parts of the following.	10x2 = 20
	a) Prove that:	
	$G=\{1,2,3,5,6,7\}$ is a finite abelian group of order '6' under multiplication	
	modulo 7.	

	b) Among the first 1000 positive integers: (i) Determine the integers which are not divisible by 5, nor by 7, nor by 9.	
	(ii) Determine the integers divisible by 5, not by 7, not by 9.	
	c) Define pigeonhole principle. Find the minimum number of students in a class to be sure that three of them are born in the same month.	
Q 5.	Answer any two parts of the following.	10x2 = 20
	a) In a shipment, there are 400 floppy disks of which 50 are defective. Determine.i. In how many ways we can select fifty floppy disks?	
	ii. In how many ways we can select fifty non-defective floppy disks?	
	In how many ways we can select 50 floppy disks containing exactly '30' defective	
	floppy disks?	
	b) Find the solution of the recurrence relation by generating function method	
	$a_n = 3a_{n-1} + 5n$, what is the solution with $a_1 = 8$.	
	c) Show that $\{0,1,2,3,4,5,6,7\}(x,+)$ is ring under modulo '8'.	
