Project Report: Smart Sensor System with RFID and IoT Integration

1. Introduction

This project integrates various sensors and modules to create a smart system capable of monitoring environmental data and controlling access using RFID cards. The system uses an ESP8266 Wi-Fi

module to send data to the ThingSpeak IoT platform, allowing real-time monitoring of temperature,

humidity, gas concentration, light intensity, and motion detection.

The project also incorporates RFID technology to manage access control. A servo motor acts as a

physical barrier (e.g., door lock), opening only when an authorized RFID card is detected.

2. Hardware Components

The following hardware components are used in this project:

2.1. Microcontroller

- Arduino Uno: Manages sensor data collection, RFID card detection, and communication with the

ESP8266 module.

2.2. Sensors and Modules

- DHT11 Sensor:

- Measures temperature and humidity.

- Digital pin connection: D3.

- MQ2 Gas Sensor:

- Detects gases such as LPG, CO, methane, and smoke.

- Analog pin connection: A0.

- LDR (Light-Dependent Resistor):

- Measures light intensity.

- PIR Motion Sensor: - Detects motion. - Digital pin connection: D2. - RFID Module (MFRC522): - Detects RFID cards and retrieves their unique IDs. - Pin connections: - SDA: D10 - RST: D9 - MOSI: D11 - MISO: D12 - SCK: D13 - Servo Motor: - Controls a physical barrier (e.g., door lock). - Digital pin connection: D5. 2.3. Communication Module - ESP8266 Wi-Fi Module: - Sends sensor data to ThingSpeak. - Pin connections: - TX: D7 - RX: D6 2.4. Power Supply

- The Arduino Uno is powered via USB or an external 5V power source.

- The RFID module and sensors are powered by the 3.3V and 5V pins of the Arduino.

- Analog pin connection: A0.

3. Circuit Connections

The following table summarizes the pin connections:

Component	Pin on Module Pin on Arduino		
RFID (SDA)	SDA	D10	1
RFID (RST)	RST	D9	1
RFID (MOSI)	MOSI	D11	1
RFID (MISO)	MISO	D12	1
RFID (SCK)	SCK	D13	I
DHT11 (Data)	DATA	D3	1
MQ2 Sensor (Analog) A0		A0	I
PIR Motion Sens	sor OUT	D2	1
LDR Sensor	Analog C	Out AO	I
Servo Motor	PWM	D5	I
ESP8266 (TX)	TX	D7	1
ESP8266 (RX)	RX	D6	I

4. Software Implementation

The software is implemented using the Arduino IDE. The key functionalities include:

4.1. Sensor Data Collection

- The DHT11 sensor measures temperature and humidity.
- The MQ2 sensor provides a raw analog value indicating gas concentration.
- The LDR measures light intensity as a raw analog value.
- The PIR sensor detects motion and returns a binary value (HIGH/LOW).

4.2. RFID Card Detection

- The RFID module reads the unique ID of nearby RFID cards.

- If the card ID matches a predefined authorized ID, the servo motor unlocks the door.

4.3. Data Transmission to ThingSpeak

- The ESP8266 module sends collected data to ThingSpeak using HTTP GET requests.
- The data is displayed on ThingSpeak's dashboard in real time.

4.4. Code Structure

- Setup Phase: Initializes sensors, RFID module, servo motor, and ESP8266 Wi-Fi module.
- Loop Phase: Continuously reads sensor values, checks RFID cards, and sends data to ThingSpeak.

5. Workflow

- 1. The system powers on and connects to the specified Wi-Fi network.
- 2. Sensors collect data, which is processed and sent to ThingSpeak every 20 seconds.
- 3. The RFID module monitors for card activity:
 - If an authorized card is detected, the servo motor unlocks the door for 3 seconds.
 - Unauthorized cards trigger a warning message on the serial monitor.

6. Results

The system successfully:

- Monitors temperature, humidity, gas levels, light intensity, and motion.
- Logs real-time data on the ThingSpeak IoT platform.
- Controls access using RFID technology.

7. Conclusion and Future Work

This project demonstrates a practical application of IoT and sensor integration. Future improvements could include:

- Adding a mobile app for real-time alerts.
- Enhancing security by implementing encrypted communication.
- Expanding the system to support multiple RFID cards.

8. References

- Arduino Documentation
- ThingSpeak API Documentation
- MFRC522 RFID Library

Appendices

A. Schematic Diagram

(A diagram can be included here if available.)

B. Source Code

(The full source code can be included here if necessary.)