GEIPI-POLYTECH Nom d (Suivi, s'il y a lieu, du	de famille :																		
• •¥•	rénom(s) :																		
	Numéro Candidat :	numér	o est ce	elui qui f	figure s	sur la c	onvoce	ation ou	la feuil	le d'ém	argeme	é(e) l	e :		/		/		
 Remplir soigneusement, sur CHAQUE feuille officielle, la zone d'identification en MAJUSCULES. Ne pas signer la composition et ne pas y apporter de signe distinctif. Rédiger avec un stylo à encre foncée (bleue ou noire) ; éviter le stylo plume à encre noire. N'effectuer aucun collage ou découpage de sujets ou de feuille officielle. Ne joindre aucun brouillon. 																			

Document réponses Physique-Chimie EXERCICE I

I-1-	Sens: \square \vec{E}_1 \boxtimes \vec{E}_2		I-2- I	Polarité :	☐ Positi	ve 🗵 Négative						
I-3-	2^{e} loi de Newton : $m\vec{a}=q\vec{E}$											
I-4-	Composantes vecteur accélération :	$\mathbf{a}_{\mathbf{x}} = \frac{qE}{m}$			$a_y =$	0						
I-5-	Composantes vecteur vitesse :	$\mathbf{v}_{\mathbf{x}} = \frac{qE}{m}t$			$\mathbf{v}_{\mathbf{y}}$ =	\mathbf{v}_0						
I-6-	Evolution de la norme :	□a	□b	□с	□ d ⊠	e □ f						
I-7-	Equations horaires :	$x = \frac{qE}{2m}t^2$	2		y =	$v_0 t$						
I-8-	Equation de la trajectoire :	$y = \sqrt{\frac{2 m}{q}}$	$\frac{x v_0^2}{vE}$									
I-9-	Expr. Litt. : $\mathbf{y}_{C} = \sqrt{\frac{2m d v_{0}^{2}}{qE}}$		Appl. Num. : $y_c = 3.5 \text{ mm}$									
 I-10- Choisir la bonne réponse Si la masse de la particule double, alors la hauteur de C double aussi Si la masse de la particule double, alors la particule mettra 4 fois plus de temps pour arriver en C Pour une même particule, si sa vitesse initiale est 4 fois plus grande, alors le point C est 2 fois plus haut. Si le champ électrique est 4 fois plus petit, la particule met deux fois plus de temps pour arriver en C. Si le champ électrique est 4 fois plus grand, la hauteur du point C sera deux fois plus grande 												
EXERCICE II												
II-1-	Représentation de Lewis :		II-2- pH = 13.7									
II-3-	Sens de parcours	I	II-4-									
	(G) o +		Electrode	Polarito	é Gaz dégagée	Transformation						
			Anode	+	O ₂	Oxydation						

Cathode

Réduction

 H_2

II-5-b
$$n(H_2) = \frac{Q}{2F} = \frac{Q}{2e N_A}$$

II-5-c
$$n(H_2) = 3.11 \times 10^{-2} \text{ mol}$$

II-6-

(cocher la réponse exacte)

II-7- Masse:
$$m(H_2O) = 9 \text{ tonnes}$$

EXERCICE III

Intensité : $\mathbf{i(t)} = \frac{dq}{dt}$ III-1III-2- Relation : $\mathbf{q} = \mathbf{C} \mathbf{u}_{c}$

III-3-

III-5-

(cocher la réponse exacte)

$$\Box \frac{du_c}{dt} - \frac{1}{\tau} u_c = E$$

$$\Box \frac{du_c}{dt} + \tau u_c = E$$

$$\Box \frac{du_c}{dt} + \frac{1}{\tau} u_c = E$$

$$\Box \frac{du_c}{dt} - \frac{1}{\tau}u_c = E \qquad \qquad \Box \frac{du_c}{dt} + \tau u_c = E \qquad \qquad \Box \frac{du_c}{dt} + \frac{1}{\tau}u_c = E \qquad \qquad \Box \frac{du_c}{dt} + \frac{1}{\tau}u_c = 0$$

$$\boxtimes \frac{du_c}{dt} + \frac{1}{\tau}u_c = \frac{E}{\tau}$$

 \Box C

$$\Box \frac{du_c}{dt} - \frac{1}{\tau} u_c = \frac{E}{\tau}$$

 $\square \Omega$

$$\Box_{\tau}^{\frac{1}{d}\frac{du_c}{dt}} + u_c = E$$

$$\boxtimes \frac{du_c}{dt} + \frac{1}{\tau}u_c = \frac{E}{\tau} \qquad \qquad \Box \frac{du_c}{dt} - \frac{1}{\tau}u_c = \frac{E}{\tau} \qquad \qquad \Box \frac{1}{\tau}\frac{du_c}{dt} + u_c = E \qquad \qquad \Box \frac{du_c}{dt} - \frac{1}{\tau}u_c = 0$$

III-4-Unité de τ : \Box V

(cocher la réponse exacte)

- Courbe a
- ☐ Courbe b

 \Box A

 \Box F

⊠ Courbe c

 \boxtimes s

III-6valeur maximale : $U_{c,max} = E$

 \square V-1 \square C-1 \square F-1 \square A-1 \square Ω -1 \square s-1

III-7-Explication du tracé:

> Méthode 1 : tracé de la tangente à l'origine et intersection avec l'axe des abscisses.

Ou

Méthode 2 : valeur de t lorsque $u_c = 0.37 \times 7.4$ = 2,7 V, intersection avec la courbe.

$$au_{exp} = 3.9 s$$

III-8- Expr. Litt. :
$$A = \frac{VR}{\tau}$$

Appl. Num. :
$$A = 5,70 \ 10^{-4}$$
 L/nF