Treinamento Ferramentas Bioinformática

Msc. Ricardo Roldan Dra. Roberta Lane

Alinhamento

Por que fazer alinhamento?

MFGE8 Anolis_Ref	А	Τ	G	G	G	Т	G	А	T	T	C	C	T	G	C	G	A	A	G	T	G	A	А	T	C	А	А	T	G	T	C	T	G
MFGE8 BWA	N	N	N	G	G	Т	G	Д	T	T	C	C	T	G	T	G	А	А	G	T	G	А	Д	T	C	Д	Д	T	G	T	C	Т	G
MFGE8 NGM	N	N	N	G	G	Т	G	Д	T	T	C	C	Т	G	T	G	Α	A	G	Т	G	А	Д	Т	C	А	А	T	G	T	C	Т	G
MFGE8 SOAP	N	N	N	G	G	Т	G	А	T	T	C	C	T	G	T	G	А	A	G	T	G	А	А	T	C	А	А	T	G	T	C	T	G
MFGE8 Trinity	N	N	N	G	G	Т	G	Д	T	T	C	C	T	G	T	G	Α	А	G	T	G	Д	Д	T	C	А	А	T	G	T	C	Т	G
MFGE8 Velvet	N	N	N	G	G	Т	G	А	T	T	C	C	T	G	T	G	Α	А	G	T	G	А	А	T	C	А	А	T	G	T	C	T	G

Alinhamento

Por que fazer alinhamento?

- >Comparar amostra vs DB;
- >Identificar o que é sua amostra;
- >Identificar motivos e domínios;
- >Permite criar filogenias e fenética

MFGE8 Anolis_Ref	Д	T	G	G	G	T	G	А	T	T	C	C	T	G	C	G	Д	А	G	T	G	А	А	T	C	А	А	T	G	T	C	T	G
MFGE8 BWA	N	N	N	G	G	Т	G	Д	Т	T	C	C	T	G	Т	G	А	А	G	T	G	А	А	T	C	А	А	T	G	T	С	T	G
MFGE8 NGM	N	N	N	G	G	Т	G	Д	Т	T	C	C	T	G	Т	G	А	Д	G	T	G	А	А	T	C	А	А	T	G	T	C	T	G
MFGE8 SOAP	N	N	N	G	G	Т	G	Д	Т	T	C	C	T	G	Т	G	Д	A	G	T	G	А	А	T	C	А	А	T	G	T	C	T	G
MFGE8 Trinity	N	N	N	G	G	Т	G	А	T	Т	С	C	T	G	Т	G	А	Α	G	T	G	Α	А	T	C	А	А	T	G	T	С	T	G
MFGE8 Velvet	N	N	N	G	G	Т	G	Д	Т	T	C	C	T	G	Т	G	Д	А	G	T	G	А	Д	T	C	А	А	T	G	T	С	T	G

Tipos de Alinhamento

Extensão

- > Tentativa de alinhar toda a extensão das sequências (Inicio ao fim);
- Utilizada para comparação de genes ou proteínas com funções similares.

- Alinhamento com apenas a região de maior similaridade;
- Utilizada para identificação de padrões e domínios conservados.

Tipos de Alinhamento

Quantidade

Basic Local Alignment Search Tool

https://blast.ncbi.nlm.nih.gov/Blast.cgi

>Desconhecido KDCKRESNTFPGICITKPPCRKACIREKFTDGHCSKILRRCLCTKPC

https://www.megasoftware.net/

Motivos e Domínios

Motivos e Domínios

Motivos:

"Motivo" ~ "Padrão"
*Ex: Defensinas vegetais : βαββ
Defensinas humanas : αβββ

Domínios:

- Regiões funcionais e/ou estruturais das proteínas;
- Proteínas podem apresentar 1 ou mais domínios.

Motivos e Domínios

Motivos:

"Motivo" ~ "Padrão"

*Ex: Defensinas vegetais : $\beta \alpha \beta \beta$

Defensinas humanas : $\alpha\beta\beta\beta$

Domínios:

- Regiões funcionais e/ou estruturais das proteínas;
- Proteínas podem apresentar 1 ou mais domínios.

Classification of protein families

Interpro

https://www.ebi.ac.uk/in terpro/

CD-Search (NCBI)

https://www.ncbi.nlm.nih .gov/Structure/cdd/wrps b.cgi

Modelagem proteínas

Modelagem proteínas

Por que estudar estrutura das proteínas?

Sergey Ovchinnikov

Fatores responsáveis pelo dobramento

Backbone conformations

Sidechain conformations

Dr. Sergey Ovchinnikov

Dobramento e a problemática da modelagem

"Para uma dada **sequência**, encontre a **estrutura** de **menor energia livre**"

Sequence

[Video credit: C. Fennell]

Dill, K.A. and MacCallum, J.L., 2012. The protein-folding problem, 50 years on. *science*, 338(6110), pp.1042-1046.

Slide credit: Sergey Ovchinnikov

Modelagem comparativa ("Modelagem por homologia")

Modeller

Program for Comparative Protein Structure Modelling by Satisfaction of Spatial Restraints

Utiliza uma **estrutura resolvida** experimentalmente como **template** para gerar **modelos**

Modelagem *ab initio* ("do zero")

Inteligência artificial

ALPHAFOLD

Inteligência artificial e modelagem

Jumper J. et al. 2021. Highly accurate protein structure prediction with AlphaFold. *Nature*

Baek M, DiMaio F, Anishchenko I, Dauparas J, Ovchinnikov S, ..., Baker D. 2021. Acc. pred. of protein struct. and inter. using a 3-track NN. *Science* **Slide credit: Sergey Ovchinnikov**

PyMOL → Ferramenta de visualização (".pdb")

https://pymol.org/2/

https://github.com/sokrypton/ColabFold

Sergey Ovchinnikov Harvard University

Promotores E Elementos cis-regulatórios

Regulação gênica

Níveis de regulação:

- ✓ Transcricional;
- ✓ Pós-transcricional;
- ✓ Pós-traducional

Regulação gênica

Níveis de regulação:

- ✓ Transcricional;
- ✓ Pós-transcricional;
- ✓ Pós-traducional

Estrutura de um gene

"Região onde proteínas se ligam para iniciar a transcrição"

Estrutura de um gene

Fig. 1. Simplified model of transcriptional regulation of protein-encoding genes.

Preditores

Version 5.5.4

https://meme-suite.org/meme/tools/meme

https://bioinformatics.psb.ugent.be/webtools/plantcare/html/

Table 4 Known cis-regulatory elements (CREs) in the promoter regions of NP-like genes within Populus trichocarpa identified by the motif prediction programs MEME and MotifClick (MC), CRE database and the transcription factors and/or functions

CRE name	Prediction Program	CRE database	Transcription factor/function
AG	MC	TRANSFAC	AGAMOUS, expressed in flowers
	MEME		
AGL3	MEME	TRANSFAC	AGAMOUS-like (AGL) 3, expressed in vegetative and floral above ground tissue
	MC		
ANT	MEME	TRANSFAC	ANT (a member of AP2/EREBP TFs)
ARR10	MC	JASPER	ARR10, involved in 2 component regulation and possibly cytokinin signaling
Athb-1	MC	TRANSFAC	AtHB-1, involved in cell differentiation in leaves, expressed in leaves
Athb-5	MC	TRANSFAC	AtHB-5, expressed in vegetative tissues, preferentially in leaf tissues. Function in mature vegetative tissues.
Athb-9	MC	TRANSFAC	AtHB-9, possibly involved in dorsiventral patterning of lateral organs (leaves).
	MEME		
bZIP910	MC	TRANSFAC	BZIP transcript factor from snapdragon.
C8GCARGAT	MC	PLACE	AGL15, possibly involved in gibberellin metabolic signaling.
CARGCW8GAT	MC	PLACE	AGL15, possibly involved in gibberellin metabolic signaling.
CDC5	MEME	TRANSFAC	AtCDC5, required for function of shoot apical meristem. Silencing accelerates cell death in leaves Possibly involved in cell cycle regulation.
CIACADIANLELHC	MC	PLACE	Region necessary for circadian expression of light harvesting complex genes
ERELEE4	MC	PLACE	Ethylene responsive element, senescence-related expression
GMHDLGMVSPB	MC	PLACE	GmHdl56/GmHd157, found in the promoter vegetative storage protein conferring function vacuolar glycoprotein acid phosphatase in soybean
HMG-IY	MEME	JASPER	Binding regions for proteins similar to histone H1/H5 family
MYB.ph3	MC	JASPER	MYB.ph3, petal epidermis-specific, possibly GA regulated and may bind chromatin
		TRANSFAC	
O2	MC	TRANSFAC	Opaque-2, found in Maize endosperm
	MEME		
PIF3	MEME	TRANSFAC	PIF3, present in many light-regulated promoters, including PhyB
RAV1	MC	TRANSFAC	RAV1, may be negative regulator of plant development, down regulated by brassinosteroids.
	MEME		Touch-, drought-, salt- cold-, bacteria-induced. Positively regulates leaf senescence. Ethylene mediated signaling.
RYREPEATVFLEB4	MEME	PLACE	FUS3/TRAB1, ABA and auxin responsive, found in seed proteins
SQUA	MC	JASPER	SQUA, required for inflorescence development
UPRE2AT	MEME	PLACE	Found in promoters of many genes associated with ER stress
UPRMOTIFIAT	MEME	PLACE	

Preditores

Version 5.5.4

https://meme-suite.org/meme/tools/meme

https://bioinformatics.psb.ugent.be/webtools/plantcare/html/

Obrigado e Boa Jornada!

Contato:

