Size of facility (critical load watts)	8,000,000
Average power usage (%)	80%
Power usage effectiveness	1.45
Cost of power (\$/kWh)	\$0.07
% Power and cooling infrastructure (% of total facility cost)	82%
CAPEX for facility (not including IT equipment)	\$88,000,000
Number of servers	45,978
Cost/server	\$1450
CAPEX for servers	\$66,700,000
Number of rack switches	1150
Cost/rack switch	\$4800
Number of array switches	22
Cost/array switch	\$300,000
Number of layer 3 switches	2
Cost/layer 3 switch	\$500,000
Number of border routers	2
Cost/border router	\$144,800
CAPEX for networking gear	\$12,810,000
Total CAPEX for WSC	\$167,510,000
Server amortization time	3 years
Networking amortization time	4 years
Facilities amortization time	10 years
Annual cost of money	5%

Reference for case study data

1.)

[A]

20% more expensive than the original cost of \$1450 per server, which would be \$1740 per server. The number of faster servers needed for the same utilization is 45978/1.1 = 41799

Cost of faster servers = number of servers \times cost per server for faster servers = $41799 \times $1740 = $72,730,260$

 $New\ WSC\ CAPEX = 88000000 + 72730260 + 12810000 = $173,540,260$

[B]

Assuming the servers use 15% more power, and the baseline use is 165 W, new server use is 165*1.15 = 190 W. Network load is 377,795 W.

Critical Load = Number of Servers \times Watts per Server + Network Load = 41799 \times 190 W + 377795 = 7941810 + 377795 = 8,319,605 W OPEX = \$493,153

2.)

[A]

 $100\% \times 45978 \, servers \times 100\% \, power = 75\% \times N \, servers \times 60\% \, power$ $45978 = 0.75 \times N \times 0.6$ $N = 45978/(0.75 \times 0.6) \approx 102,172 \, servers$

... The server operator would need approximately 102,172 servers running at medium performance to achieve the same level of performance as all servers running at full performance.

3.)

[A]

Dataset = 300 Gb Network bandwidth = 1 Gb/s Map rate = 10 s/Gb Reduce rate = 20 s/Gb

Disk bandwidth = 200 Mb/s; 300 Gb * 0.2 Gb = 60 Gb 30% of data read from remote nodes

60 Gb * 0.3 = 18 Gb read remotely; 42 Gb read from disk

Local Data Access Time =
$$\frac{42 \, Gb}{200 \, Mb/s}$$
 = 210 s

60 Gb * 20 s/Gb = 1200 s to reduce

Expected Execution Time = $((180 + 210) \times 2 + 600 + 1200) = 2508 s$ 1000 Nodes:

300 Gb/1000 = 300 Mb per node

300 Mb * 0.3 = 90 Mb read remotely; 210 Mb read locally

$$Network = \frac{90 \, Mb}{100 \, Mb/s} = 0.9 \, s$$
 $Disk = \frac{210 \, Mb}{200 \, Mb/s} = 1.05 \, s$ $Map \, Time = \frac{300 \, Mb}{10 \, s/Mb} = 3 \, s$ $Reduce \, Time = \frac{300 \, Mb}{20 \, s/Mb} = 6 \, s$

Main bottleneck is the reduce step, and data transfer is the other.

: Communication occurs locally in a rack; bottlenecks are the same for every node size.