```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib import style
import seaborn as sns
```

%matplotlib inline

data = pd.read csv('/content/health care diabetes.csv')

data.head(5) #Printing First Five Rows

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedig
0	6	148	72	35	0	33.6	
1	1	85	66	29	0	26.6	
2	8	183	64	0	0	23.3	
3	1	89	66	23	94	28.1	
4	0	137	40	35	168	43.1	
4							>

data.isnull().any() #Finding Null Values

Pregnancies False
Glucose False
BloodPressure False

To undo cell deletion use Ctrl+M Z or the Undo option in the Edit menu X

DiabetesPedigreeFunction False
Age False
Outcome False
dtype: bool

data.info() #Information of Dataset

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries, 0 to 767
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Pregnancies	768 non-null	int64
1	Glucose	768 non-null	int64
2	BloodPressure	768 non-null	int64
3	SkinThickness	768 non-null	int64
4	Insulin	768 non-null	int64
5	BMI	768 non-null	float64
6	DiabetesPedigreeFunction	768 non-null	float64
7	Age	768 non-null	int64
8	Outcome	768 non-null	int64

dtypes: float64(2), int64(7) memory usage: 54.1 KB

Positive.head(5)

Positive = data[data['Outcome']==1] #selecting only positive Outcome Only

P	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedig
0	6	148	72	35	0	33.6	
2	8	183	64	0	0	23.3	
4	0	137	40	35	168	43.1	
6	3	78	50	32	88	31.0	
8	2	197	70	45	543	30.5	

data['Glucose'].value_counts().head() #Getting count for Glucose Only

99 17 100 17 111 14 129 14 125 14

Name: Glucose, dtype: int64

plt.hist(data['Glucose']) # Histogram for Glucose

data['BloodPressure'].value_counts().head() #Getting count for BloodPressure Only

```
70 57
74 52

To undo cell deletion use Ctrl+M Z or the Undo option in the Edit menu ×
```

Name: BloodPressure, dtype: int64

data['SkinThickness'].value_counts().head() #Getting count for SkinThickness Only

```
0 227
32 31
30 27
27 23
23 22
```

Name: SkinThickness, dtype: int64

```
(array([231., 107., 165., 175., 78., 9., 2., 0., 0., 1.]), array([ 0. , 9.9, 19.8, 29.7, 39.6, 49.5, 59.4, 69.3, 79.2, 89.1, 99. ]), <BarContainer object of 10 artists>)
          200
          150
          100
           50
data['Insulin'].value_counts().head()
                                                            #Getting count for Insulin Only
                  374
       105
                   11
                     9
```

130 140 9 120 8

Name: Insulin, dtype: int64

plt.hist(data['Insulin'])

Histogram for Insulin

2., 1.]), 92.2, 676.8, To undo cell deletion use Ctrl+M Z or the Undo option in the Edit menu X


```
data['BMI'].value_counts().head()
                                      #Getting count for BMI Only
```

32.0 13 31.6 12 31.2 12 0.0 11 32.4 10

Name: BMI, dtype: int64

plt.hist(data['BMI']) # Histogram for BMI


```
BloodPressure = Positive['BloodPressure'] #Selecting all Positive
Glucose = Positive['Glucose']
SkinThickness = Positive['SkinThickness']
Insulin = Positive['Insulin']
BMI = Positive['BMI']

plt.scatter(BloodPressure, Glucose, color=['b']) #Scatter PLot for BloodPressure and glucose for Positive
plt.xlabel('BloodPressure')
plt.ylabel('Glucose')
plt.title('BloodPressure & Glucose')
plt.show()
```

g =sns.scatterplot(x= "Glucose" ,y= "BloodPressure",hue="Outcome",data=data);

#Scatter PLot for BloodPressure and glucose

To undo cell deletion use Ctrl+M Z or the Undo option in the Edit menu

 ${\tt g = sns.scatterplot(x="BMI" ,y="Insulin",hue="Outcome",data=data);} \\ {\tt \#Scatter PLot for Insulin and BMI}$

g =sns.scatterplot(x= "SkinThickness" ,y= "Insulin",hue="Outcome",data=data); #Scatter PLot for SkinThickness and Insulin

	Pregnancies	Glucose	BloodPressure	SkinThickness	Ins
Pregnancies	1.000000	0.129459	0.141282	-0.081672	-0.07
Glucose	0.129459	1.000000	0.152590	0.057328	0.33
BloodPressure	0.141282	0.152590	1.000000	0.207371	0.08
ChinThiaknasa	0.001670	0.057220	0 207371	1.000000	0.43
To undo cell deletion use Ctrl+M Z	or the Undo opti	on in the Ed	it menu × 933	0.436783	1.00
ВМІ	0.017683	0.221071	0.281805	0.392573	0.19
DiabetesPedigreeFunction	-0.033523	0.137337	0.041265	0.183928	0.18
Age	0.544341	0.263514	0.239528	-0.113970	-0.04
Outcome	0.221898	0.466581	0.065068	0.074752	0.13

plt.subplots(figsize=(8,8))
sns.heatmap(data.corr(),annot=True) #HeatMaps With Values

<Axes: >

data.head(5)

Pr	egnancies	Glucose	${\tt BloodPressure}$	SkinThickness	Insulin	BMI	${\tt DiabetesPedigreeFunction}$	Age	Outcome	10+	ıl.	
0	6	148	72	35	0	33.6	0.627	50	1			
1	1	85	66	29	0	26.6	0.351	31	0			
2	8	183	64	0	0	23.3	0.672	32	1			
3	1	89	66	23	94	28.1	0.167	21	0			
4	0	137	40	35	168	43.1	2.288	33	1			
o undo cel	l deletion us	e Ctrl+M Z	or the Undo option	in the Edit menu	×							
	data.iioc a.iloc[:,8		,3,4,5,6,/]].va	tues #aet	ınıng Fea	itures	and Label					
				1:+ #C			into Torinius and torting					
rain , X m sklear el = Log	_test , y_	train , y nodel impo		_test_split(fea	tures, la	bel,t	into Training and testing est_size = 0.2 , random_st egression on Training Data		42)			
rain , X om sklear del = Log del.fit(X /usr/l	_test , y_ n.linear_m isticRegre _train, y_ ocal/lib/p	train , y nodel impo ession() train) python3.10	/_test = train ort LogisticReg	test_split(fearession #Fit	tures, la	abel,t	est_size = 0.2 , random_st	set	ŕ	led to	converg	ge (st
om sklear del = Log del.fit(X /usr/l STOP: Increa ht Please	_test , y_ n.linear_m isticRegre _train, y_ ocal/lib/p TOTAL NO. se the num tps://scik also refe tps://scik	model important of interest of interest of interest of the cit-learn neck_optime.	/_test = train ort LogisticRego 0/dist-packages,	ression #Fit /sklearn/linear IMIT. iter) or scale ules/preprocess for alternative	tures, la ting Logi _model/_l the data ing.html solver o	ebel,ton	est_size = 0.2 , random_st. egression on Training Data ic.py:458: ConvergenceWarn. own in:	set	ŕ	led to	conver	ge (st
om sklear del = Log del.fit(X /usr/l STOP: Increa ht Please ht n_it	r.linear_m isticRegre _train, y_ ocal/lib/p TOTAL NO. se the num tps://scik also refe tps://scik er_i = _ch	model impossion() train) python3.10 of ITERA wher of it tit-learn er to the tit-learn eck optim	<pre>/_test = train ort LogisticRego O/dist-packages, TIONS REACHED L: terations (maxorg/stable/mod documentation .org/stable/mod</pre>	ression #Fit /sklearn/linear IMIT. iter) or scale ules/preprocess for alternative	tures, la ting Logi _model/_l the data ing.html solver o	ebel,ton	est_size = 0.2 , random_st. egression on Training Data ic.py:458: ConvergenceWarn. own in:	set	ŕ	led to	converg	ge (st

```
print( The values for training data set is : ',model.score(X_train,y_train))

The values for training data set is : ',model.score(X_test, y_test))
```

The values for training data set is : 0.7719869706840391 The values for testing data set is : 0.7467532467532467

from sklearn.metrics import confusion_matrix
cm = confusion_matrix(label,model.predict(features)) #Using features for Confusion Matrix for prediction
f'The Confusion Matrix is : {cm}'

'The Confusion Matrix is : [[432 $\,$ 68]\n [111 $\,$ 157]]'

from sklearn.metrics import classification_report
print(classification_report(label,model.predict(features))) #Using features for Classification Report for prediction

	precision	recall	f1-score	support
0	0.80	0.86	0.83	500
1	0.70	0.59	0.64	268
accuracy			0.77	768
macro avg	0.75	0.72	0.73	768
weighted avg	0.76	0.77	0.76	768

```
from sklearn.metrics import roc_curve
from sklearn.metrics import roc auc score
probs = model.predict proba(features)
                                          #predicting probabilities
probs = probs[:, 1] #for positive Outcome
auc = roc_auc_score(label, probs) #calculating AUC
print('AUC: %.3f' % auc)
fpr, tpr, thresholds = roc_curve(label, probs) #calculating ROC
plt.plot([0, 1], [0, 1], linestyle='--') #[0,1] Plot on graph using --
plt.plot(fpr, tpr, marker='.') # ROC Curve
     AUC: 0.835
     [<matplotlib.lines.Line2D at 0x79ecd39a50c0>]
      1.0
      0.8
      0.6
      0.4
 To undo cell deletion use Ctrl+M Z or the Undo option in the Edit menu X
      0.0
                        0.2
                                                                       1.0
            0.0
                                    0.4
                                                0.6
                                                            0.8
from sklearn.neighbors import KNeighborsClassifier #Using KNeighbour Classifier
model2 = KNeighborsClassifier(n_neighbors=7,metric='minkowski',p = 2)
{\sf Ktrain = model2.fit(X\_train,y\_train)}
Ktest = model2.fit(X_test , y_test)
f'Value using KNeighbour Classifier Classifier For Training is : {Ktrain} and For Testing is : {Ktest}'
     'Value using KNeighbour Classifier Classifer For Training is : KNeighborsClassifier(n_neighbors=7) and For Testing is : KNeighbors
     Classifier(n neighbors=7)
from sklearn.tree import DecisionTreeClassifier #Using DecisionTree Classifier
model3 = DecisionTreeClassifier(max_depth=5)
model3.fit(X_train,y_train)
Dtrain = model3.score(X_train,y_train)
Dtest = model3.score(X_test,y_test)
f'Value using DecisionTree Classifer For Training is : {Dtrain} and For Testing is : {Dtest}'
     'Value using DecisionTree Classifer For Training is : 0.8420195439739414 and For Testing is : 0.7922077922077922'
from sklearn.ensemble import RandomForestClassifier #Using RandomForest Classifier
model4 = RandomForestClassifier(n_estimators=11)
model4.fit(X train,y train)
Rtrain = model4.score(X_train,y_train)
Rtest = model4.score(X_test,y_test)
f'Value using RandomForest Classifer For Training is : {Rtrain} and For Testing is : {Rtest}'
     'Value using RandomForest Classifer For Training is : 0.993485342019544 and For Testing is : 0.7337662337662337
from sklearn.svm import SVC
                               #Using Support Vector Classifier
model5 = SVC(kernel='rbf',gamma='auto')
model5.fit(X_train,y_train)
Strain = model5.score(X_train,y_train)
Stest = model5.score(X test,y test)
f'Value using Support Vector Classifer For Training is : {Strain} and For Testing is : {Stest}'
     'Value using Support Vector Classifer For Training is : 1.0 and For Testing is : 0.6428571428571429'
from sklearn.metrics import roc curve
from sklearn.metrics import roc_auc_score
probs = model2.predict_proba(features)
probs = probs[:, 1]
```

```
auc = roc_auc_score(label, probs) # calculate AUC
print('AUC: %.3f' % auc)
fpr, tpr, thresholds = roc curve(label, probs)# calculate roc curve
 print("True\ Positive\ Rate\ -\ \{\},\ False\ Positive\ Rate\ -\ \{\}\ Thresholds\ -\ \{\}".format(tpr,fpr,thresholds)) 
plt.plot([0, 1], [0, 1], linestyle='--')
plt.plot(fpr, tpr, marker='.')
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
     AUC: 0.771
     True Positive Rate - [0.
                                        0.00746269 0.07089552 0.35447761 0.57835821 0.697
      0.83208955 0.95895522 1.
                                        ], False Positive Rate - [0.
                                                                               0.02 0.078
                                                                        0.
      0.28571429 0.14285714 0.
     Text(0, 0.5, 'True Positive Rate')
         1.0
         0.8
      True Positive Rate
         0.6
         0.4
  To undo cell deletion use Ctrl+M Z or the Undo option in the Edit menu X
         0.0
                            0.2
                                        0.4
                                                    0.6
                                                                 0.8
                                                                             1.0
               0.0
                                       False Positive Rate
from sklearn.metrics import precision_recall_curve , f1_score , auc , average_precision_score #For Logistic Regression
probs = model.predict_proba(features)
probs = probs[:, 1]
yhat = model.predict(features)
precision, recall, thresholds = precision_recall_curve(label, probs)
f1 = f1_score(label, yhat)
auc = auc(recall, precision)
ap = average_precision_score(label, probs)
print('f1=%.3f auc=%.3f ap=%.3f' % (f1, auc, ap))
```

plt.plot([0, 1], [0.5, 0.5], linestyle='--') plt.plot(recall, precision, marker='.') f1=0.637 auc=0.722 ap=0.723 [<matplotlib.lines.Line2D at 0x79ecd1c4dcf0>]

from sklearn.metrics import precision_recall_curve , f1_score , auc , average_precision_score probs = model2.predict proba(features)

```
probs = probs[:,1]
yhat = model2.predict(features)
precision, recall , thresholds = precision_recall_curve(label,probs)
f1 = f1 score(label,yhat)
auc = auc(recall, precision)
ap = average_precision_score(label,probs)
\label{eq:print(f1 = {} .format(f1,auc,ap))} print('f1 = {} .format(f1,auc,ap))
plt.plot([0,1],[0.5,0.5],linestyle = '--')
plt.plot(recall,precision , marker='.')
      \texttt{f1} = \texttt{0.6163021868787275} \text{ , AUC} = \texttt{0.6266704749836112} \text{ , Average Precision} = \texttt{0.5997408147758778}
      [<matplotlib.lines.Line2D at 0x79ecceb8a620>]
       1.0
       0.9
       0.8
       0.7
       0.6
       0.5
       0.4
  To undo cell deletion use Ctrl+M Z or the Undo option in the Edit menu
```

U.O

U.Z

0.5

0.4

0.0

0.2

0.4

U.4

```
from sklearn.metrics import precision_recall_curve , f1_score , auc , average_precision_score #For Logistic Regression
# Random Forest
probs = model4.predict_proba(features)
probs = probs[:, 1]
yhat = model4.predict(features)
precision, recall, thresholds = precision_recall_curve(label, probs)
f1 = f1_score(label, yhat)
auc = auc(recall, precision)
ap = average_precision_score(label, probs)
print('f1=%.3f auc=%.3f ap=%.3f' % (f1, auc, ap))
plt.plot([0, 1], [0.5, 0.5], linestyle='--')
plt.plot(recall, precision, marker='.')
     f1=0.916 auc=0.965 ap=0.957
     [<matplotlib.lines.Line2D at 0x79ecceb30340>]
      1.0
      0.9
      0.8
      0.7
      0.6
```

U.Ö

1.0

0.6

0.8

1.0

✓ 0s completed at 11:58 AM

×