

第39讲 统计量与常用统计量

在上一讲例3中,为了估计指数分布的参数 λ ,进行抽样观测,得到样本 X_1,\ldots,X_{10} 和样本值6394,1105,4717,1399,7952,17424,3275,21639,2360,2896.

样本中包含了许多信息。

对于推断总体的参数或分布而言,有些是有用的,重要的信息,有些则并不重要。

上例的样本至少提供了两种信息:

- 1) 10个灯泡的平均寿命; 一有用且重要的信息
- 2) 灯泡寿命的序号(如6394是第1个).—不重要信息

从样本中提取有用的信息来研究总体的 分布及各种特征数.——构造统计量.

》统计量:样本的不含任何未知参数的函数。 $\mathcal{Q}(X_1, X_2, ..., X_n)$ 为样本, $\mathcal{Z}g(X_1, X_2, ..., X_n)$

不含任何未知参数,则称 $g(X_1,X_2,...,X_n)$ 为统计量.

一旦有了样本观察值 $x_1, x_2, ..., x_n$,就可以算出统计量的具体值 $g(x_1, x_2, ..., x_n)$.

比如10个灯泡的平均寿命 $(X_1 + X_2 + ... + X_{10})/10$ 是统计量. 平均寿命的观测值是6916.1小时.

常用统计量:

1. 样本均值
$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i}$$
,

2. 样本方差
$$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$$
,

样本标准差
$$S = \sqrt{S^2}$$

常用统计量:

3. 样本矩 *k*阶矩: $A_k = \frac{1}{n} \sum_{i=1}^{n} X_i^k$

$$A_k = \frac{1}{n} \sum_{i=1}^n X_i^k$$

松价中心矩: $B_k = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^k$

$$k = 1, 2, ...$$

根据样本数据,用Excel计算 $\overline{X}, S^2, B_2, \Omega$ 实验11.

例1:设X为总体, $E(X) = \mu$ 存在, $X_1,...,X_n$ 是总体 X的简单随机样本,则 $\overline{X} = \mu$,对吗?

答: 不对.

 $E(X) = \mu$ 是一个数,可能已知,可能未知;

X是随机变量,依赖于样本值,

对于不同的样本值, \overline{X} 的取值可能不一样.

例2 接上一讲例2,总体为88,75,70,63,总体均值为74,总体方差为83.5.计算全部16个样本的样本均值。样本方差和样本二阶中心矩。

 $\sum_{i}(X_{i}-\overline{X})^{2}$ $B_2 = \frac{1}{n}$ 样本均值 样本方差 样本中心矩 样本编号 样本 (88,88)88 0 0 2 81.5 (88,75)84.5 42.25 3 (88,70)79 162 81

	•			
4	(88,63)	75.5	312.5	156.25
5	(75,88)	81.5	84.5	42.25
6	(75,75)	75	0	0
				/

样本编号	样本	样本均值	样本方差	样本中心矩
7	(75,70)	72.5	12.5	6.25
8	(75,63)	69	72	36
9	(70,88)	79	162	81
10	(70,75)	72.5	12.5	6.25
11	(70,70)	70	0	0
12	(70,63)	66.5	24.5	12.25
13	(63,88)	75.5	312.5	156.25
14	(63,75)	69	72	36
15	(63,70)	66.5	24.5	12.25
16	(63,63)	63	0	0
平均		_74	83.5	41.75

与总体均值74相同 与总体方差83.5相同

比总体方差小

当总体数字特征未知时

- •用样本均值X估计总体均值 $\mu = E(X)$
- •用样本方差 S^2 估计总体方差 $\sigma^2 = E(X \mu)^2$
- •用样本原点矩 A_k 估计总体原点矩 $\mu_k = E(X^k)$
- •用样本中心矩 B_k 估计总体中心矩 $\nu_k = E(X \mu)^k$

这些非常直观的想法,有什么理论依据吗?这部分内容我们会在第44讲介绍。

- •统计量的分布被称为抽样分布.
- •当总体X服从一般分布(如指数分布、均匀分布等),要得出统计量的分布是很困难的.
- •当总体X服从正态分布时,统计量 \overline{X} , S^2 是可以计算的。那么服从什么分布呢?
- •下两讲我们将介绍数理统计中三个重要的抽样分布—— γ^2 分布,t分布,F分布.