EduPulse: School & Student Insights Dashboard

Project Objective

The objective of this project is to simulate and analyze a comprehensive education dataset to uncover insights into school performance trends across regions and demographic groups.

The goal is to support data-driven decisions aimed at improving educational outcomes for children, particularly in the post-COVID era.

Key Questions to be Addressed

- 1. How did COVID-19 impact student performance across academic terms and years?
- 2. Which regions or school types consistently performed better?
- 3. Is there a relationship between household income and student academic scores?
- 4. What is the impact of parental education on student performance?

Step 1: Data Generation

 Synthetic datasets will be programmatically generated using Python to simulate realworld school systems.

```
In [52]: import pandas as pd
import numpy as np
from faker import Faker
import random
import os

fake = Faker()

# Parameters
num_students = 1000
num_schools = 10
num_years = 5
terms = ["Term1", "Term2", "Term3"]
subjects = ["Math", "English", "Science", "Social Studies", "ICT"]

# Lookup tables
school_types = pd.DataFrame({
    "SchoolType_ID": ["TYP-0001", "TYP-0002"],
```

```
"SchoolType": ["Public", "Private"]
})
boarding statuses = pd.DataFrame({
    "BoardingStatus_ID": ["BRD-0001", "BRD-0002"],
   "BoardingStatus": ["Boarding", "Day"]
})
countries = ["Utopia", "Val Verde", "Wakanda", "Montalei"]
country_df = pd.DataFrame({
    "Country_ID": [f"CTR-{str(i+1).zfill(4)}" for i in range(len(countries))],
    "Country": countries
})
regions = [fake.state() for _ in range(10)]
region_df = pd.DataFrame({
    "Region_ID": [f"REG-{str(i+1).zfill(4)}" for i in range(len(regions))],
   "Region": regions
})
counties = [fake.city() for _ in range(10)]
county df = pd.DataFrame({
    "County_ID": [f"CNT-{str(i+1).zfill(4)}" for i in range(len(counties))],
   "County": counties
})
education_levels = ["None", "Primary", "Secondary", "Vocational", "Tertiary"]
parent_edu_df = pd.DataFrame({
    "ParentEdu_ID": [f"PED-{str(i+1).zfill(4)}" for i in range(len(education_levels
   "Parent_Education": education_levels
})
income_brackets = ["<20K", "20K-50K", "50K-100K", "100K-200K", ">200K"]
income df = pd.DataFrame({
    "Income_ID": [f"INC-{str(i+1).zfill(4)}" for i in range(len(income_brackets))],
    "Household_Income": income_brackets
})
# Schools
schools = pd.DataFrame({
    "School_ID": [f"SCH-{str(i+1).zfill(4)}" for i in range(num_schools)],
    "School_Name": [fake.company() for _ in range(num_schools)],
    "SchoolType_ID": np.random.choice(school_types["SchoolType_ID"], size=num_school
    "BoardingStatus_ID": np.random.choice(boarding_statuses["BoardingStatus_ID"], s
    "Country_ID": np.random.choice(country_df["Country_ID"], size=num_schools),
    "Region_ID": np.random.choice(region_df["Region_ID"], size=num_schools),
    "County_ID": np.random.choice(county_df["County_ID"], size=num_schools)
})
# Students
students = pd.DataFrame({
    "Student_ID": [f"STU-{str(i+1).zfill(5)}" for i in range(num_students)],
    "Student_Name": [fake.name() for _ in range(num_students)],
    "Gender": np.random.choice(["M", "F"], size=num_students),
    "School_ID": np.random.choice(schools["School_ID"], size=num_students),
    "ParentEdu ID": np.random.choice(parent edu df["ParentEdu ID"], size=num studen
```

```
"Income_ID": np.random.choice(income_df["Income_ID"], size=num_students)
})
# Performance records
records = []
for student in students["Student_ID"]:
    for year in range(1, num_years + 1):
        for term in terms:
            for subject in subjects:
                records.append({
                    "Student_ID": student,
                    "Year": 2018 + year,
                    "Term": term,
                    "Subject": subject,
                    "Score": np.random.randint(20, 100)
                })
performance_df = pd.DataFrame(records)
# Export all to Excel
schools.to_excel("schools.xlsx", index=False)
school_types.to_excel("school_types.xlsx", index=False)
boarding_statuses.to_excel("boarding_statuses.xlsx", index=False)
country_df.to_excel("countries.xlsx", index=False)
region_df.to_excel("regions.xlsx", index=False)
county_df.to_excel("counties.xlsx", index=False)
students.to_excel("students.xlsx", index=False)
parent_edu_df.to_excel("parent_education.xlsx", index=False)
income_df.to_excel("household_income.xlsx", index=False)
performance_df.to_excel("performance.xlsx", index=False)
print("All Excel files exported successfully.")
```

All Excel files exported successfully.

Step 2: Data Export & Excel Staging

- Generated data was exported into structured Excel sheets for initial validation and backup.
- Ensured integrity and proper format alignment for SQL ingestion. Replaced all country specific regions and counties with fictitious data

Step 3: SQL Database Modeling

- 1. Designed a Star Schema model in SQL for performance-efficient analysis.
- 2. Tables were normalized and loaded into a SQL server 2025 database.

3. Foreign key relationships linked students to their schools, Performance, and household details.

Step 4: Connecting SQL to Python

```
In [53]: from sqlalchemy import create_engine
         # For Windows Authentication
         server = 'DESKTOP-SCOAHMQ' # Your sql server
         database = 'EduPulse'
         connection_string = f'mssql+pyodbc://@{server}/{database}?driver=ODBC+Driver+17+for
         engine = create_engine(connection_string)
In [54]: #Test the connection:
         import warnings
         from sqlalchemy import exc as sa_exc
         from sqlalchemy import text
         # Suppress the specific SQLAlchemy warning about server version
         warnings.filterwarnings('ignore',
                                message='Unrecognized server version info.*',
                                category=sa_exc.SAWarning)
         try:
             with engine.connect() as conn:
                 result = conn.execute(text("SELECT GETDATE()"))
                 print("Connection successful. SQL Server current date/time:")
                 for row in result:
                     print(row[0])
         except Exception as e:
             print("Connection failed:", e)
        Connection successful. SQL Server current date/time:
        2025-07-31 10:19:20.410000
In [55]: # Run a test query
         with engine.connect() as conn:
             result = conn.execute(text("SELECT TOP 5 * FROM dbo.schools"))
             for row in result:
                 print(row)
```

```
('SCH-0001', 'Smith-Gomez', 'TYP-0001', 'BRD-0002', 'CTR-0003', 'REG-0008', 'CNT-0005')
('SCH-0002', 'Cook Ltd', 'TYP-0001', 'BRD-0001', 'CTR-0004', 'REG-0002', 'CNT-0001')
('SCH-0003', 'Williams, Valentine and Russell', 'TYP-0002', 'BRD-0001', 'CTR-0003', 'REG-0002', 'CNT-0005')
('SCH-0004', 'Edwards-Harding', 'TYP-0001', 'BRD-0002', 'CTR-0001', 'REG-0007', 'CNT-0008')
('SCH-0005', 'Jones Group', 'TYP-0002', 'BRD-0001', 'CTR-0003', 'REG-0001', 'CNT-0002')
```

Step 5: Load SQL Tables into Pandas

```
In [56]: import pandas as pd

df_schools = pd.read_sql("SELECT * FROM dbo.schools", engine)
    df_boarding_status = pd.read_sql("SELECT * FROM dbo.boarding_status", engine)
    df_counties = pd.read_sql("SELECT * FROM dbo.counties", engine)
    df_countries = pd.read_sql("SELECT * FROM dbo.countries", engine)
    df_household_income = pd.read_sql("SELECT * FROM dbo.household_income", engine)
    df_parent_education = pd.read_sql("SELECT * FROM dbo.parent_education", engine)
    df_performance = pd.read_sql("SELECT * FROM dbo.regions", engine)
    df_regions = pd.read_sql("SELECT * FROM dbo.school_types", engine)
    df_school_types = pd.read_sql("SELECT * FROM dbo.school_types", engine)
    df_students = pd.read_sql("SELECT * FROM dbo.students", engine)

# Preview performance
    df_performance.head()
```

_			-	_	_	-	
\cap	11	+	1	5	6	- 1	4
\cup	ч	L		\mathcal{L}	\cup	- 1	4

•		Student_ID	Year	Term	Subject	Score
	0	STU-00943	2023	Term3	Math	62
	1	STU-00943	2023	Term3	English	57
	2	STU-00943	2023	Term3	Science	78
	3	STU-00943	2023	Term3	Social Studies	57
	4	STU-00943	2023	Term3	ICT	77

Step 6: Data Cleaning

```
In [57]: # 6.1 Check for missing values on Schools table
print(df_schools.isnull().sum())
```

```
School ID
                              0
        School_Name
        SchoolType ID
        BoardingStatus_ID
        Country_ID
                              0
        Region_ID
                              0
        County_ID
        dtype: int64
In [58]: # View rows where SchoolType_ID is null
         df_schools[df_schools['SchoolType_ID'].isnull()]
Out[58]:
             School_ID School_Name SchoolType_ID BoardingStatus_ID Country_ID Region_ID Cou
                         Keith, White
          7 SCH-0008
                                              None
                                                            BRD-0001
                                                                        CTR-0004 REG-0006 CN
                           and James

    Handle Missing: Fill with Previous Value (Forward Fill)

    For demo purposes, missing school type will be filled using forward-fill to maintain data

              consistency in the dashboard.
           • In production environments, we would validate and correct this at the source.
In [59]: # If the missing value is the first row, ffill won't work unless there's something
         # We will use bfill() after ffill() to catch both directions if needed:
         df_schools['SchoolType_ID'] = df_schools['SchoolType_ID'].ffill()
          df_schools['SchoolType_ID']=df_schools['SchoolType_ID'].bfill()
In [60]: # Confirm it's filled
         print(df_schools.isnull().sum())
        School ID
                              0
        School Name
                              0
        SchoolType_ID
        BoardingStatus_ID
        Country_ID
                              0
        Region_ID
                              0
        County_ID
        dtype: int64
In [61]: # 6.2 Check for missing values on fact table performance
         print(df_performance.isnull().sum())
        Student ID
                       0
        Year
                       0
        Term
                       0
```

No missing value

0

Subject

dtype: int64

Score

Step 7: Exploratory Data Analysis (EDA)

7.1 Check Basic Information

```
In [62]: df_schools.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 10 entries, 0 to 9
        Data columns (total 7 columns):
             Column
                                 Non-Null Count Dtype
            -----
                                 -----
             School_ID
                                 10 non-null
                                                 object
             School_Name
                                 10 non-null
                                                 object
             SchoolType ID
                                                 object
                                 10 non-null
             BoardingStatus_ID 10 non-null
                                                 object
             Country_ID
                                 10 non-null
                                                 object
             Region_ID
                                 10 non-null
                                                 object
             County_ID
                                 10 non-null
                                                 object
        dtypes: object(7)
        memory usage: 692.0+ bytes
In [63]: df_schools.head()
             School_ID School_Name SchoolType_ID BoardingStatus_ID Country_ID
Out[63]:
                                                                                  Region_ID
          0 SCH-0001
                        Smith-Gomez
                                          TYP-0001
                                                            BRD-0002
                                                                        CTR-0003
                                                                                   REG-0008
                                                                                              C١
             SCH-0002
                            Cook Ltd
                                          TYP-0001
                                                            BRD-0001
                                                                        CTR-0004
                                                                                   REG-0002
                                                                                              CN
                            Williams,
            SCH-0003
                        Valentine and
                                          TYP-0002
                                                            BRD-0001
                                                                        CTR-0003
                                                                                   REG-0002
                                                                                              C<sub>1</sub>
                             Russell
                            Edwards-
             SCH-0004
                                          TYP-0001
                                                            BRD-0002
                                                                        CTR-0001
                                                                                   REG-0007
                                                                                              CN
                            Harding
          4 SCH-0005
                         Jones Group
                                          TYP-0002
                                                            BRD-0001
                                                                        CTR-0003
                                                                                   REG-0001
                                                                                              C١
In [64]: # View the first 10 records on performance dataframe
         df_performance.head(10)
```

```
0 STU-00943 2023 Term3
                                          Math
                                                   62
            STU-00943 2023 Term3
                                         English
                                                   57
            STU-00943 2023 Term3
                                        Science
                                                   78
            STU-00943 2023 Term3 Social Studies
                                                   57
             STU-00943 2023 Term3
                                            ICT
                                                   77
            STU-00944 2019 Term1
                                                   22
                                          Math
            STU-00944 2019 Term1
                                         English
                                                   70
            STU-00944 2019 Term1
                                        Science
                                                   20
            STU-00944 2019 Term1 Social Studies
                                                   66
            STU-00944 2019 Term1
                                            ICT
                                                   90
In [65]: # Value Counts
         print(df_schools['SchoolType_ID'].value_counts())
        SchoolType_ID
        TYP-0002
        TYP-0001
        Name: count, dtype: int64
In [66]: # For percentages
         print(df_students['Gender'].value_counts(normalize=True) * 100)
        Gender
            51.948052
            48.051948
        Name: proportion, dtype: float64
In [67]: print(df_performance['Term'].unique())
        ['Term3' 'Term1' 'Term2']
In [68]: print(df_performance['Subject'].unique())
        ['Math' 'English' 'Science' 'Social Studies' 'ICT']
         7.2 Numerical Descriptive Stats
In [69]:
        df_counties.describe()
```

Subject Score

Out[64]:

Student_ID Year

Term

```
        count
        10
        10

        unique
        10
        10

        top
        CNT-0001
        Zantora

        freq
        1
        1
```

```
In [70]: df_household_income.describe()
```

Out[70]:		Income_ID	Household_Income
	count	5	5
	unique	5	5
	top	INC-0001	<20K
	frea	1	1

7.3 Check for Duplicates

```
In [71]: # full row duplicates
         duplicate_schools = df_schools.duplicated().sum()
         print(f"Duplicate schools: {duplicate_schools}")
        Duplicate schools: 0
In [72]: # Count duplicates on students
         num_duplicates = df_students.duplicated(subset=['Student_Name', 'Gender', 'School_I
         print(f"Duplicate students before removal: {num_duplicates}")
        Duplicate students before removal: 1
In [73]: # View duplicated student
         df_students[df_students.duplicated(subset=['Student_Name', 'Gender', 'School_ID',
Out[73]:
                 Student_ID Student_Name Gender School_ID ParentEdu_ID Income_ID
         10 STU-00010 DUP
                              Robert Lester
                                               M SCH-0002
                                                                 PED-0002
                                                                            INC-0004
```

7.4 Handle Duplicates

We will remove duplicates

```
In [74]: df_students_cleaned = df_students.drop_duplicates(subset=['Student_Name', 'Gender',
In [75]: # confirm duplicate removal
```

```
num_duplicates_after = df_students_cleaned.duplicated(subset=['Student_Name', 'Gend
print(f"Duplicates after removal: {num_duplicates_after}")
```

Duplicates after removal: 0

7.5 Join all datsets into one unified DataFrame for analysis.

• We shall use Left Join to keep all rows from the performance table (df_performance)

```
In [76]: # Merge performance with student details
          df overall performance = df performance.merge(df students, on='Student ID', how='le
          print(df_overall_performance.head())
           Student_ID Year Term
                                               Subject Score Student_Name Gender \
                                                Math 62 Brittany Howe
         0 STU-00943 2023 Term3
        1 STU-00943 2023 Term3 English 57 Brittany Howe 2 STU-00943 2023 Term3 Science 78 Brittany Howe 3 STU-00943 2023 Term3 Social Studies 57 Brittany Howe
                                                                                      F
         4 STU-00943 2023 Term3
                                                   ICT 77 Brittany Howe
           School_ID ParentEdu_ID Income_ID
        0 SCH-0006 PED-0005 INC-0004
1 SCH-0006 PED-0005 INC-0004
2 SCH-0006 PED-0005 INC-0004
3 SCH-0006 PED-0005 INC-0004
4 SCH-0006 PED-0005 INC-0004
In [77]: # Also merge with schools
          df_overall_performance = df_overall_performance.merge(df_schools, on='School_ID',ho
          # drop the _sch suffix columns
          df_overall_performance.drop(columns=[col for col in df_overall_performance.columns
In [78]: # Also merge with parent_education
          df_overall_performance = df_overall_performance.merge(df_parent_education, on='Pare
          # drop the sch suffix columns
          df_overall_performance.drop(columns=[col for col in df_overall_performance.columns
In [79]: # Also merge with school_types
          df_overall_performance = df_overall_performance.merge(df_school_types, on='SchoolTy
          # drop the _sch suffix columns
          df overall performance.drop(columns=[col for col in df overall performance.columns
In [80]: # Also merge with household income
          df_overall_performance = df_overall_performance.merge(df_household_income, on='Inco
          # drop the _sch suffix columns
          df_overall_performance.drop(columns=[col for col in df_overall_performance.columns
```

```
In [81]: # Also merge with countries
             df_overall_performance = df_overall_performance.merge(df_countries, on='Country_ID'
             # drop the sch suffix columns
             df_overall_performance.drop(columns=[col for col in df_overall_performance.columns
In [82]: # Also merge with counties
             df_overall_performance = df_overall_performance.merge(df_counties, on='County_ID',h'
             # drop the _sch suffix columns
             df_overall_performance.drop(columns=[col for col in df_overall_performance.columns
In [83]: # Also merge with regions
             df_overall_performance = df_overall_performance.merge(df_regions, on='Region_ID',ho
             # drop the sch suffix columns
             df_overall_performance.drop(columns=[col for col in df_overall_performance.columns
In [84]: # Also merge with boarding_status
             df_overall_performance = df_overall_performance.merge(df_boarding_status, on='Board
             # drop the _sch suffix columns
             df overall performance.drop(columns=[col for col in df overall performance.columns
             df_overall_performance.info()
           <class 'pandas.core.frame.DataFrame'>
           RangeIndex: 75000 entries, 0 to 74999
           Data columns (total 23 columns):
            # Column Non-Null Count Dtype
           # Column Non-Null Count Dtype

Student_ID 75000 non-null object

Year 75000 non-null int64

Term 75000 non-null object

Subject 75000 non-null object

Score 75000 non-null int64

Student_Name 75000 non-null object

Gender 75000 non-null object

School_ID 75000 non-null object

ParentEdu_ID 75000 non-null object

ParentEdu_ID 75000 non-null object

Income_ID 75000 non-null object

School_Name 75000 non-null object

School_Name 75000 non-null object

SchoolType_ID 75000 non-null object

BoardingStatus_ID 75000 non-null object
           --- -----
                                          -----
            12 BoardingStatus_ID 75000 non-null object
            13 Country_ID 75000 non-null object
14 Region_ID 75000 non-null object
15 County_ID 75000 non-null object
            16 Parent_Education 75000 non-null object
            17 SchoolType 75000 non-null object
            18 Household_Income 75000 non-null object
19 Country 75000 non-null object
20 County 75000 non-null object
21 Region 75000 non-null object
            22 BoardingStatus 75000 non-null object
           dtypes: int64(2), object(21)
           memory usage: 13.2+ MB
```

* Fully joined table can now be used for further analysis. We will remove all ID columns except Student_ID & School_ID

```
In [85]: df_merged_performance = df_overall_performance[[col for col in df_overall_performan
            # Confirm all required columns
            df_merged_performance.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 75000 entries, 0 to 74999
          Data columns (total 16 columns):
                           Non-Null Count Dtype
           # Column
          --- -----
                                       -----
           0 Student_ID 75000 non-null object
1 Year 75000 non-null int64
           75000 non-null int64
75000 non-null object
75000 non-null object
75000 non-null object
75000 non-null object
75000 non-null
           5 Student_Name 75000 non-null object 6 Gender 75000 non-null object 7 School_ID 75000 non-null object 8 School_Name 75000 non-null object
           9 Parent_Education 75000 non-null object
10 SchoolType 75000 non-null object
           11 Household_Income 75000 non-null object
           12 Country 75000 non-null object
13 County 75000 non-null object
14 Region 75000 non-null object
            15 BoardingStatus 75000 non-null object
          dtypes: int64(2), object(14)
          memory usage: 9.2+ MB
```

Step 8 Key analyses:

8.1. Term & Year Performance Trends

```
In [86]: # Total score per student per year and term
student_total = (
    df_merged_performance.groupby(['Student_ID', 'Year', 'Term'])['Score']
        .sum()
        .reset_index(name='total_score')
)

# Then get the average total_score across students per year and term
term_year_total = (
    student_total.groupby(['Year', 'Term'])['total_score']
        .mean()
        .reset_index()
        .pivot(index='Year', columns='Term', values='total_score')
        .sort_index()
```

```
term_year_total
Out[86]: Term
                           Term2
                                    Term3
                  Term1
           Year
           2019
                 289.115 289.840 289.301
           2020 291.072 290.305 291.443
           2021 327.949 327.613 326.949
           2022 335.867 337.673 339.243
           2023 345.516 345.022 341.905
In [87]:
          # Visualize
          import matplotlib.pyplot as plt
          term_year_total.plot(marker='o', figsize=(10,6))
          plt.title("Average Total Score per Student by Term and Year")
          plt.xlabel("Year")
          plt.ylabel("Avg Total Score (Sum of All Subjects)")
          plt.grid(True)
          plt.legend(title='Term')
          plt.tight_layout()
          plt.show()
                                      Average Total Score per Student by Term and Year
                 Term
                 Term1
                 Term2
          340
                   Term3
        Avg Total Score (Sum of All Subjects)
          330
          320
          310
           300
          290
```

Key Observations: Term & Year Performance Trends

2021.0

2021.5

2022.0

2022.5

2023.0

2020.5

2020.0

2019.0

2019.5

- 1. Significant Growth Post-2020: There is a clear jump in total scores from 2020 to 2021, indicating a strong post-COVID recovery.
- Consistent Improvement: Scores steadily increased from 2019 (avg ~289) to 2023 (avg ~344), suggesting improvements in teaching quality, learning strategies, or student support.
- 3. Peak Performance: The highest total scores were observed in 2023, with Term 1 leading at 345.52, closely followed by Term 2.
- 4. Pre-COVID Stability: From 2019 to 2020, scores were relatively flat, indicating a stable but low-performing system.

• Term-wise Insight:

- 1. Term 3 had the highest scores in 2022 but slightly dipped in 2023, possibly due to end-of-year fatigue or exam scheduling.
- 2. Term 1 and Term 2 show strong, consistent growth year over year.

8.2. Regional comparison

 To understand which regions performed better, we'll compute and visualize the total subject scores grouped by Region

```
In [88]: # Step 1: Total score per student per region, year and term
student_region_total = (
    df_merged_performance.groupby(['Student_ID', 'Region', 'Year', 'Term'])['Score'
        .sum()
        .reset_index(name='total_score')
)

# Step 2: Average total_score across students per region, year and term
region_term_year_avg = (
    student_region_total.groupby(['Region', 'Year', 'Term'])['total_score']
        .mean()
        .reset_index()
        .pivot_table(index=['Year', 'Term'], columns='Region', values='total_score')
        .sort_index()
)

region_term_year_avg
```

		Region	Cresthaven	Myrelia	Northvale	Sunderal	Vornstead	Zerador
	Year	Term						
	2019	Term1	290.571429	296.849462	288.477064	293.395349	285.321429	287.362694
		Term2	285.152381	294.010753	293.123853	293.395349	291.035714	287.116580
		Term3	288.866667	285.860215	292.669725	289.023256	289.473214	288.357513
	2020	Term1	293.876190	297.913978	292.155963	284.488372	290.366071	289.720207
		Term2	292.447619	296.784946	289.486239	288.430233	291.589286	288.668394
		Term3	289.228571	290.043011	293.256881	286.639535	287.142857	293.676166
	2021	Term1	331.257143	327.290323	322.981651	323.709302	329.392857	330.538860
		Term2	331.028571	327.150538	323.720183	333.383721	327.803571	327.652850
		Term3	325.780952	321.720430	329.270642	324.500000	321.660714	329.295337
2022	Term1	341.514286	333.086022	332.435780	342.267442	336.535714	335.318653	
		Term2	335.123810	336.419355	337.454128	335.383721	334.803571	340.134715
	Term3	336.314286	344.913978	334.899083	346.395349	346.589286	337.401554	
	2023	Term1	345.219048	348.623656	345.463303	344.779070	345.473214	345.054404
		Term2	338.923810	348.430108	345.522936	345.220930	340.794643	346.759067
		Term3	346.466667	340.322581	341.711009	344.279070	337.901786	341.787565

Out[88]:

```
plt.xlabel('Year-Term')
plt.ylabel('Average Total Score')
plt.xticks(rotation=45)
plt.grid(True)
plt.tight_layout()
plt.legend(title='Region', bbox_to_anchor=(1.05, 1), loc='upper left')
plt.show()
```


Key Observations

- There was consistent growth across all regions
- All six regions show a steady increase in average performance from 2019 to 2023.
- The rise is particularly notable between 2020 and 2021, suggesting either curriculum changes, improved teaching strategies, or better student outcomes post-2020 disruptions.

• Top Performing Regions

- Myrelia and Sunderal consistently lead across most terms, especially from 2021 onward.
- By 2023, Myrelia achieves the highest scores across Terms 1 and 2.

• Notable Improvements

- Cresthaven showed a major jump in scores between 2020 and 2021, maintaining steady growth afterward.
- Zerador displayed a significant leap in performance in 2021, catching up with other regions.

Variations Across Terms

- Term 1 often has slightly higher scores compared to Terms 2 and 3.
- This may suggest stronger performance earlier in the year, possibly influenced by student motivation or curriculum pacing.

Closing Gaps

■ The performance gap between top and lower-performing regions narrows over time, indicating a trend toward equity in education quality across regions.

8.3 Boarding Status Performance Analysis

```
In [90]: # Step 1: Total score per student per boarding_status, year and term
    student_boarding_total = (
          df_merged_performance.groupby(['Student_ID', 'BoardingStatus', 'Year', 'Term'])
          .sum()
          .reset_index(name='total_score')
)

# Step 2: Average total_score across students per boarding_status, year and term
boarding_term_year_avg = (
          student_boarding_total.groupby(['BoardingStatus', 'Year', 'Term'])['total_score
          .mean()
          .reset_index()
          .pivot_table(index=['Year', 'Term'], columns='BoardingStatus', values='total_sc
          .sort_index()
)

boarding_term_year_avg
```

	BoardingStatus	Boarding	Day
Year	Term		
2019	Term1	286.897351	292.497475
	Term2	287.264901	293.767677
	Term3	288.849338	289.989899
2020	Term1	290.215232	292.378788
	Term2	289.846026	291.005051
	Term3	292.000000	290.593434
2021	Term1	328.629139	326.911616
	Term2	327.163907	328.297980
	Term3	326.922185	326.989899
2022	Term1	335.903974	335.810606
	Term2	337.758278	337.542929
	Term3	337.629139	341.704545
2023	Term1	345.299669	345.845960
	Term2	343.834437	346.833333
	_		

Out[90]:

Key Observations:

• 2019–2020 (Pre-COVID and COVID Onset):

Term3 342.622517 340.810606

- Day schools had higher average scores than boarding schools in most terms, possibly due to closer family support during disruptions.
- The performance gap was narrow but consistent, with Day students outperforming Boarding students in 5 out of 6 terms.

• 2021 (Post-COVID Rebound):

- Scores between both groups nearly converged, with Boarding students slightly outperforming in Term 1, while Day students led in Term 2.
- Indicates equal recovery across school types after pandemic-related challenges.

• 2022 (Stabilization Period):

A very tight race in Term 1 and Term 2 shows strong parity.

However, Day schools surpassed Boarding schools notably in Term 3 (Day: 341.70 vs. Boarding: 337.63), suggesting better academic momentum heading into exam periods.

• 2023 (Recent Trends):

- Performance flipped between terms:
- Term 1: Day schools slightly outperformed Boarding.
- Term 2: Day schools clearly led by ~3 points.
- Term 3: Boarding reclaimed the lead with ~2-point advantage.

• Insights & Interpretation:

- Over the five-year period, Day schools consistently performed at par or better than Boarding schools.
- This defies traditional assumptions that Boarding environments always produce stronger academic outcomes, highlighting the importance of home-based support, community involvement, or better teacher-to-student ratios in Day schools.

8.4 Gender & Subject trends over time

```
In [91]: # Step 1: Total score per student per term
         student_term_score = (
             df_merged_performance.groupby(['Student_ID', 'Year', 'Term', 'Gender'])['Score'
             .reset_index(name='term_total')
         # Step 2: Total annual score per student (sum of all 3 terms)
         student_year_score = (
             student_term_score.groupby(['Student_ID', 'Year', 'Gender'])['term_total']
             .reset_index(name='annual_total_score')
         # Step 3: Divide by 3 to get average per term
         student_year_score['avg_per_term'] = student_year_score['annual_total_score'] / 3
         # Step 4: Average score per gender per year
         gender_year_avg = (
             student_year_score.groupby(['Year', 'Gender'])['avg_per_term']
             .mean()
             .reset index()
             .pivot(index='Year', columns='Gender', values='avg_per_term')
             .sort_index()
```

```
gender_year_avg
Out[91]: Gender
                          F
                                    M
            Year
           2019 289.496188 289.346821
           2020 290.633403 291.224149
           2021 328.273735 326.789981
           2022 337.316701 337.851638
           2023 344.011088 344.274245
In [92]: # Step 5: Average score per gender per year per Subject
         gender_subject_avg = (
             df_merged_performance.groupby(['Year', 'Gender', 'Subject'])['Score']
             .mean()
             .reset_index()
         gender_subject_avg
```

Out[92]:

	Year	Gender	Subject	Score
0	2019	F	English	63.781705
1	2019	F	ICT	69.463617
2	2019	F	Math	49.736660
3	2019	F	Science	48.661816
4	2019	F	Social Studies	57.852391
5	2019	М	English	63.817598
6	2019	М	ICT	68.401413
7	2019	М	Math	50.858703
8	2019	М	Science	48.897881
9	2019	М	Social Studies	57.371227
10	2020	F	English	58.596674
11	2020	F	ICT	61.620236
12	2020	F	Math	55.982675
13	2020	F	Science	56.872488
14	2020	F	Social Studies	57.561331
15	2020	М	English	58.569043
16	2020	М	ICT	62.129094
17	2020	М	Math	55.344252
18	2020	М	Science	56.989082
19	2020	М	Social Studies	58.192678
20	2021	F	English	56.839224
21	2021	F	ICT	59.282051
22	2021	F	Math	71.455994
23	2021	F	Science	70.734581
24	2021	F	Social Studies	69.961885
25	2021	М	English	56.614644
26	2021	М	ICT	59.242775
27	2021	М	Math	71.781631
28	2021	М	Science	69.478484
29	2021	М	Social Studies	69.672447

	Year	Gender	Subject	Score
30	2022	F	English	71.125433
31	2022	F	ICT	69.939016
32	2022	F	Math	71.030492
33	2022	F	Science	69.364518
34	2022	F	Social Studies	55.857242
35	2022	М	English	70.361593
36	2022	М	ICT	71.192678
37	2022	М	Math	71.100193
38	2022	М	Science	69.527296
39	2022	М	Social Studies	55.669878
40	2023	F	English	73.777547
41	2023	F	ICT	70.971587
42	2023	F	Math	72.152460
43	2023	F	Science	70.783091
44	2023	F	Social Studies	56.326403
45	2023	М	English	72.885035
46	2023	М	ICT	71.588953
47	2023	М	Math	72.979448
48	2023	М	Science	70.935132
49	2023	М	Social Studies	55.885678

```
In [93]: # Plot of average score per gender by year using a line chart for clear trend compa
import matplotlib.pyplot as plt

# Plotting
gender_year_avg.plot(kind='line', marker='o', figsize=(10, 6))

plt.title('Average Score per Term per Gender')
plt.xlabel('Year')
plt.ylabel('Average Score per Year')
plt.legend(title='Gender')
plt.grid(True)
plt.tight_layout()
plt.show()
```


Gender & Subject Trends

• Overall Summary:

 Both male and female students have shown steady improvement in average scores from 2019 to 2023. Performance has remained competitive with no consistent dominance by either gender.

Key Highlights:

- 2019–2020: Scores were fairly balanced. Females had a slight lead in 2019, while males edged ahead in 2020.
- 2021: Marked improvement for both genders. Females led slightly.
- 2022: Males had a marginal lead.
- 2023: Near tie with males averaging just 0.26 points higher.

Subject-Level Trends:

- English & ICT: Both genders improved consistently. Females excelled in English, males in ICT.
- Math & Science: Steady rise in scores, with males slightly outperforming in recent years.
- Social Studies: Females led in earlier years, but scores leveled out by 2023.

Conclusion:

■ The gender gap has narrowed significantly. Both groups have benefited from systemic improvements in teaching and curriculum.

8.5 Parental Education Impact on Student Scores

• This analysis explores how the level of parental education correlates with average student scores over the years 2019 to 2023.

```
In [94]: # Step 1: Total score per student per term
         student_term_score = (
             df_merged_performance.groupby(['Student_ID', 'Year', 'Term', 'Parent_Education'
             .reset_index(name='term_total')
         # Step 2: Total annual score per student (sum of all 3 terms)
         student_year_score = (
             student_term_score.groupby(['Student_ID', 'Year', 'Parent_Education'])['term_to
             .reset_index(name='annual_total_score')
         # Step 3: Divide by 3 to get average per term
         student_year_score['avg_score'] = student_year_score['annual_total_score'] / 3
         # Step 4: Average score per Parent_Education per year
         pedu_year_avg = (
             student_year_score.groupby(['Year', 'Parent_Education'])['avg_score']
             .mean()
             .reset index()
             .pivot(index='Year', columns='Parent_Education', values='avg_score')
             .sort_index()
         pedu_year_avg
```

Out[94]:	Parent_Education	None	Primary	Secondary	Tertiary	Vocational
	Year					
	2019	291.626214	289.371528	290.297209	285.731183	289.708920
	2020	291.731392	292.598958	289.356322	290.876344	290.244131
	2021	326.590615	328.711806	328.333333	325.849462	327.951487
	2022	339.187702	338.112847	336.339901	336.921147	337.369327
	2023	344.666667	343.720486	342.940887	345.301075	344.173709

```
In [95]: # Plot of average score per parent_education by year
import matplotlib.pyplot as plt
```

```
import seaborn as sns
import pandas as pd

# Melt pedu_year_avg to long format
pedu_melted = pedu_year_avg.reset_index().melt(id_vars='Year', var_name='Parent_Edu

# Plotting
plt.figure(figsize=(12, 6))
sns.barplot(x='Year', y='avg_score', hue='Parent_Education', data=pedu_melted)
plt.title('Average Student Score by Parental Education Level')
plt.ylabel('Average Score')
plt.legend(title='Parental Education')
plt.tight_layout()
plt.show()
```


Key Observations: Parental Education and Student Performance

• 2019-2020

- Differences in average scores across parental education levels were minimal.
- Students whose parents had no formal education slightly outperformed others, although the variation remained under 2 points across all groups.

• 2021

- A notable overall increase in scores was observed.
- Students whose parents attained Primary or Vocational education showed slightly higher averages.
- However, the gap among education levels remained narrow (around 3 points).

• 2022-2023

Scores continued to improve across all categories. In 2023:

- Students with Tertiary-educated parents had the highest average scores (345.30).
- Closely followed by students whose parents had no formal education (344.67).
- Overall, the performance gap across education levels remained consistently small (typically less than 3 points).

Conclusion:

While average student scores have increased significantly from 2019 to 2023, parental education level appears to have a minimal impact on overall student performance. The differences between groups are minor, suggesting that other factors - such as school quality, teacher effectiveness, or community support—may play a stronger role in shaping academic outcomes.

8.6 Household Income Correlation

```
In [96]: import pandas as pd
         import matplotlib.pyplot as plt
         import seaborn as sns
         # Define the order and midpoint values for each income category
         income_order = ["<20K", "20K-50K", "50K-100K", "100K-200K", ">200K"]
         income_mapping = {
             "<20K": 10000,
             "20K-50K": 35000,
             "50K-100K": 75000,
             "100K-200K": 150000,
             ">200K": 250000
         }
         # Step 1: Total score per student per term
         student_term_score = (
             df_merged_performance.groupby(['Student_ID', 'Year', 'Term', 'Household_Income'
             .sum()
             .reset_index(name='term_total')
         # Step 2: Total annual score per student (sum of all 3 terms)
         student_year_score = (
             student_term_score.groupby(['Student_ID', 'Year', 'Household_Income'])['term_to
             .sum()
             .reset_index(name='annual_total_score')
         # Step 3: Divide by 3 to get average per term
         student_year_score['avg_score'] = student_year_score['annual_total_score'] / 3
         # Step 4: Replace income category with midpoint numeric value for correlation
         student_year_score['Income_Midpoint'] = student_year_score['Household_Income'].map(
         # Drop rows with missing values (if any)
```

```
student_year_score.dropna(subset=['Income_Midpoint', 'avg_score'], inplace=True)

# Step 5: Calculate correlation
correlation = student_year_score['Income_Midpoint'].corr(student_year_score['avg_score'])
print(f"Correlation between Household Income and Student Score: {correlation:.4f}")

# Step 6: Plot the relationship
plt.figure(figsize=(10, 6))
sns.boxplot(data=student_year_score, x='Household_Income', y='avg_score', order=inc
plt.title('Student Average Score by Household Income Bracket')
plt.xlabel('Household Income')
plt.ylabel('Average Score')
plt.grid(True)
plt.tight_layout()
plt.show()
```

Correlation between Household Income and Student Score: 0.0140

Key Findings

• Weak Positive Correlation:

The correlation coefficient between household income and student average score is 0.0140, indicating a very weak positive relationship. This suggests that household income has minimal impact on student performance across all years.

Additional Analysis

Top 10 Performing Students Overall for year 2023

```
In [97]: # Step 1: Filter year 2023
         df_2023 = df_merged_performance[df_merged_performance['Year'] == 2023]
         print("Step 1: Filtered 2023 data:", df_2023.shape)
         # Step 2: Total score per student per term
         df_term_totals = df_2023.groupby(['Student_ID', 'Term'])['Score'].sum().reset_index
         print("Step 2: Score per student per term:", df_term_totals.shape)
         # Step 3: Average total score across terms
         df_student_avg = df_term_totals.groupby('Student_ID')['Term_Total_Score'].mean().re
         print("Step 3: Average across terms:", df_student_avg.shape)
         # Step 4: Join back student details (student name, gender & School)
         student_details = df_merged_performance[['Student_ID', 'Student_Name', 'Gender', 'S
         df_top_students = df_student_avg.merge(student_details, on='Student_ID', how='left'
         # Step 5: Sort and display top 10
         df_top_10 = df_top_students.sort_values(by='Avg_Overall_Score', ascending=False).he
         df_top_10['Avg_Overall_Score'] = df_top_10['Avg_Overall_Score'].round(2)
         # Step 6: Visualize top 10 students
         import seaborn as sns
         import matplotlib.pyplot as plt
         plt.figure(figsize=(10,6))
         sns.barplot(data=df_top_10, x='Avg_Overall_Score', y='Student_Name', hue='Gender',
         plt.title("Top 10 Students by Average Score (2023)")
         plt.xlabel("Average Overall Score")
         plt.ylabel("Student Name")
         plt.tight_layout()
         plt.show()
        Step 1: Filtered 2023 data: (15000, 16)
        Step 2: Score per student per term: (3000, 3)
```

Step 3: Average across terms: (1000, 2)

Top 10 Students by Average Score (2023)

• Proportion (%) of students from each Country within each Gender.

• Distribution of student scores

```
In [99]: sns.histplot(df_merged_performance['Score'], kde=True, bins=20, color='skyblue')
   plt.title('Distribution of Student Scores')
   plt.xlabel('Score')
   plt.ylabel('Frequency')
   plt.show()
```

Distribution of Student Scores

9. Final Conclusion and Recommendations

Conclusion

The EduPulse data analysis from 2019–2023 has uncovered insightful trends related to academic performance, demographics, and school dynamics:

1. COVID-19 Impact

 Performance was steady through 2019–2020, with a notable post-pandemic improvement in 2021. This may reflect recovery measures such as enhanced teaching strategies, revised assessments, or digital interventions.

2. Regional and School Type Trends

- Myrelia and Cresthaven consistently outperformed other regions.
- Day schools have slightly outpaced boarding schools since 2022, especially during pandemic recovery, suggesting that home support may have contributed to learning continuity.

3. Gender and Subject Performance

 Performance between male and female students remained close, with no sustained gender gaps. • Female students showed stronger gains in Math and Science between 2021–2023, narrowing the historical gender divide.

4. Parental Education Influence

- While average student scores have increased significantly from 2019 to 2023, parental education level appears to have a minimal impact on overall student performance.
- The differences between groups are minor, suggesting that other factors may play a stronger role in shaping academic outcomes.

5. Household Income Correlation

- The correlation between income and academic performance was very weak (r = 0.014).
- This suggests that income alone does not predict success school environment and support systems may be more influential.

Recommendations

1. Target Underperforming Regions

Direct investments toward regions like Zerador and Sunderal through better teacher training, infrastructure, and regional performance monitoring.

2. Enhance Math and Science Instruction

Sustain the gains in STEM subjects by adopting adaptive learning tools and investing in teacher upskilling.

3. Revitalize Boarding Schools

Re-evaluate boarding school strategies—especially in student engagement, pastoral care, and academic rigor — to close the emerging gap with day schools.

4. Focus on Equity Beyond Income

Prioritize interventions that address learning needs and school quality, regardless of a student's income bracket, to promote equal opportunity for all learners.

The EduPulse Dashboard serves as a blueprint for using data to drive actionable insights and improve educational outcomes across diverse demographics.

Prepared By Ann Kandie