Apprentissage Machine / Statistique

Support Vector Machines (SVM)

PHILIPPE BESSE

INSA de Toulouse Institut de Mathématiques

Exemples

Principes généraux

- Séparateur à Vaste Marge (SVM)
- Machine à Vecteurs Support (MVS)
- Apprentissage en discrimination : {-1, 1}
- Etendu à m > 2 et \mathbb{R}
- Hyperplan de marge optimale pour la généralisation
- Vapnik (1998) et VC-dimension
- Contrôle de la complexité
- L'objectif, seulement l'objectif
- Coût calcul fonction de n, pas de p

Spécificités

- Ramener la discrimination à un problème linéaire
- Problème d'optimisation sous-contrainte et support
- Utilisation d'un espace intermédiaire (feature space)
- Produit scalaire et noyau reproduisant

Remarques

- Efficacité et flexibililté des noyaux
- Schölkopf et Smola (2002)
- www.kernel-machines.org

Notations

- Y à valeurs dans $\{-1,1\}$
- $X = X^1, \dots, X^p$ les variables prédictives
- Y = f(X) un modèle pour Y
- Un échantillon statistique de loi F

$$z = \{(x_1, y_1), \ldots, (x_n, y_n)\}\$$

- Estimation de \widehat{f} de f, (\mathbb{R}^p (ou \mathcal{F}) $\mapsto \{-\infty, \infty\}$)
- par minimisation de :

$$P(f(X) \neq Y)$$

Définition de la marge

• f définie par une fonction réelle f : $\widehat{f} = \text{signe}(f)$

Exemples

- L'erreur devient : $P(f(X) \neq Y) = P(Yf(X) \leq 0)$
- |Yf(X)| est un indicateur de confiance
- Yf(X) est la marge de f en (X, Y)

Espace hilbertien

- $ullet \Phi: \mathbb{R}^p(\mathsf{ou}\ \mathcal{F}) \mapsto \mathcal{H}$
- H: feature space de grande dimension avec produit scalaire

Recherche du plan de marge maximale

ullet Un hyperplan est défini à l'aide du produit scalaire de ${\cal H}$:

$$\langle \mathbf{w}, \mathbf{x} \rangle + b = 0$$

où w est un vecteur orthogonal au plan

- Le signe de la fonction $f(x) = \langle w, x \rangle + b$ indique la position de x à prédire
- Un point est bien classé si et seulement si : yf(x) > 0
- (w,b) est défini à un coef. près ; on impose : $yf(x) \ge 1$
- Un plan (w, b) est un séparateur si : $\forall i \quad y_i f(x_i) \ge 1$
- Distance de x au plan (w,b): $d(\mathbf{x}) = \frac{|\langle w, x \rangle + b|}{||w||} = \frac{|f(x)|}{||w||}$
- La marge du plan a pour valeur : $\frac{2}{\|\mathbf{w}\|^2}$

Problème primal d'optimisation sous contraintes

$$\left\{ \begin{array}{l} \min_{\mathbf{w}} \frac{1}{2} \|\mathbf{w}\|^2 \\ \\ \text{avec } \forall i, y_i < \mathbf{w}, \mathbf{x}_i > +b \geq 1 \end{array} \right.$$

Problème dual avec multiplicateurs de Lagrange

• La solution est un point-selle (w^*, b^*, λ^*) du lagrangien :

$$L(\mathbf{w}, b, \lambda) = 1/2 \|\mathbf{w}\|_{2}^{2} - \sum_{i=1}^{n} \lambda_{i} \left[y_{i} \left(< \mathbf{w}, \mathbf{x}_{i} > + b \right) - 1 \right]$$

- Ce point-selle vérifie : $\forall i \quad \lambda_i^* \left[y_i \left(< \mathbf{w}^*, \mathbf{x}_i > + b^* \right) 1 \right] = 0$
- Vecteurs support : x_i avec contrainte active
- Appartiennent au plan : $y_i (< w^*, x_i > +b^*) = 1$

Formule duale du lagrangien

- Plan optimal : $\mathbf{w}^* = \sum_{i=1}^n \lambda_i^* y_i \mathbf{x}_i$ et $\sum_{i=1}^n \lambda_i^* y_i = 0$
- $W(\lambda) = \sum_{i=1}^{n} \lambda_i \frac{1}{2} \sum_{i,j=1}^{n} \lambda_i \lambda_j y_i y_j < x_i, x_j > 1$
- Le point-selle maximise $W(\lambda)$ avec $\lambda_i \geq 0 \quad \forall i$
- Problème d'optimisation quadratique de taille n
- Hyperplan optimal : $\sum_{i=1}^{n} \lambda_i^* y_i < x, x_i > +b^* = 0$
- avec $b^* = -\frac{1}{2} \left[\langle w^*, sv_{class+1} \rangle + \langle w^*, sv_{class-1} \rangle \right]$
- La prévision de x est fournie par le signe de

$$f(\mathbf{x}) = \sum_{i=1}^{n} \lambda_i^* y_i \langle \mathbf{x}, \mathbf{x}_i \rangle + b^*$$

Cas non séparable

- Assouplissement des contraintes
- les termes d'erreur ξ_i contrôlent le dépassement :

$$y_i \langle \mathbf{w}, \mathbf{x}_i \rangle + b \ge +1 - \xi_i \quad \forall i \in \{1, \dots, n\}$$

- La prédiction de x_i est fausse à un vecteur si $\xi_i > 1$
- La somme des ξ_i est une borne du nombre d'erreurs
- Nouveau problème de minimisation avec pénalisation par le dépassement de la contrainte :

$$\begin{cases} \min \frac{1}{2} \|\mathbf{w}\|^2 + \delta \sum_{i=1}^n \xi_i \\ \forall i, y_i \langle \mathbf{w}, \mathbf{x}_i \rangle + b \ge +1 - \xi_i \end{cases}$$

Remarques

- ullet δ contrôle le compromis entre ajustement et généralisation
- Même forme duale mais avec les λ_i bornés par δ
- n grand : algorithmes avec décomposition de l'ensemble d'apprentissage
- Capacité de généralisation dépend du nombre de vecteurs supports mais pas de la taille de l'espace
- Si les X sont dans une boule de rayon R, l'ensemble des hyperplans de marge fixée δ a une VC-dimension bornée par $\frac{R^2}{\delta^2}$ avec $\|\mathbf{w}\| \leq R$
- Bornes d'erreur estimables mais trop pessimistes

Produit scalaire et noyau

- \bullet $\Phi: \mathbb{R}^p(\mathsf{ou}\;\mathcal{F}) \mapsto \mathcal{H}$
- \mathcal{H} muni d'un produit scalaire et de plus grande dimension
- Le problème de minimisation et la solution :

$$f(\mathbf{x}) = \sum_{i=1}^{n} \lambda_i^* y_i \langle \mathbf{x}, \mathbf{x}_i \rangle + b^*$$

font intervenir x et x' par l'intermédiaire de produits scalaires :

$$\langle x, x' \rangle$$

Astuce du noyau

- Il est inutile d'expliciter Φ
- ullet Il suffit de calculer les produits scalaires dans ${\cal H}$
- Fonction noyau $k : \mathbb{R}^p \times \mathbb{R}^p \mapsto \mathbb{R}$ symétrique :

$$k(\mathbf{x}, \mathbf{x'}) = \langle \Phi(\mathbf{x}), \Phi(\mathbf{x'}) \rangle_{\mathcal{H}}$$

Le noyau définit une notion de distance

Exemple trivial

- $\mathbf{x} = (x_1, x_2)$ dans \mathbb{R}^2
- $\Phi(\mathbf{x}) = (x_1^2, \sqrt{2}x_1x_2, x_2^2)$
- ullet de dimension 3 et de produit scalaire :

$$\langle \Phi(\mathbf{x}), \Phi(\mathbf{x}') \rangle = x_1^2 x_1'^2 + 2x_1 x_2 x_1' x_2' + x_2^2 x_2'^2$$

 $= (x_1 x_1' + x_2 x_2')^2$
 $= \langle \mathbf{x}, \mathbf{x}' \rangle^2$
 $= k(\mathbf{x}, \mathbf{x}')$

Astuce du Noyau Condition de Mercer Exemples de noyaux SVM pour la régression

En général

- ullet Le produit scalaire dans ${\mathcal H}$ ne nécessite pas d'expliciter Φ
- Le plongement dans ${\mathcal H}$ peut rendre possible la séparation linéaire

Astuce du Noyau Condition de Mercer Exemples de noyaux SVM pour la régression

Définition

Une fonction k(.,.) symétrique est un noyau si, pour tous les x_i possibles, la matrice de terme général $k(x_i,x_j)$ est une matrice définie positive

- Elle définit une matrice de produit scalaire
- Dans ce cas, 'il existe un espace H (Hilbert à noyau reproduisant) et une fonction Φ tels que :

$$k(\mathbf{x}, \mathbf{x'}) = \langle \Phi(\mathbf{x}), \Phi(\mathbf{x'}) \rangle$$

Attention

Condition d'existence, pas constructive et difficile à vérifier

Noyaux classiques

Linéaire

$$k(x,x') = \langle x,x' \rangle$$

Polynômial

$$k(\mathbf{x}, \mathbf{x'}) = (c + \langle \mathbf{x}, \mathbf{x'} \rangle)^d$$

Radial gaussien

$$k(\boldsymbol{x}, \boldsymbol{x'}) = e^{-\frac{\|\boldsymbol{x} - \boldsymbol{x'}\|^2}{2\sigma^2}}$$

Noyaux spécifiques

- Travail : construction d'un noyau adapté : reconnaissance de séquences, de caractères, l'analyse de textes, de graphes...
- Grande flexibilité entraîne une bonne efficacité
- Choix de noyau, des paramètres par validation croisée
- Paradoxe : les SVM à noyaux gaussiens dans le cas séparable ou à pénalité variable, dont de VC-dimension infinie

Cas de la régression

- Y est quantitative
- La fonction se décompose : $f(x, w) = \sum_{i=1}^{\infty} w_i v_i(x)$
- Fonction coût issue de la robustesse :

$$E(\mathbf{w}, \gamma) = \frac{1}{n} \sum_{i=1}^{n} |y_i - f(\mathbf{x}_i, \mathbf{w})|_{\epsilon} + \gamma ||\mathbf{w}||^2$$

- $|.|_{\epsilon}$ fonction paire, continue, identiquement nulle sur $[0, \epsilon]$ et qui croît linéairement sur $[\epsilon, +\infty]$
- ullet γ contrôle l'ajustement
- Même principe de résolution
- Noyaux de splines ou encore noyau de Dériclet

Cookies : optimisation des SVM avec noyau linéaire

Exemple de discrimination						
	Cancer du sein			Dépassement du seuil d'ozone		
benign malignant				FALSE	TRUE	
benign	83	1	FALSE	161	13	
malignant	3	50	TRUE	7	27	
	Taux de 3%		Taux de	Taux de 9,6%(régression)		
			et 12%	et 12% (discrimination)		

Ozone : Valeurs observées et résidus du test en fonction des valeurs prédites