UNIVERSIDAD MAYOR DE SAN SIMÓN FACULTAD DE CIENCIAS Y TECNOLOGÍA DEPARTAMENTO DE ELÉCTRICA-ELECTRÓNICA

LABORATORIO DE ELECTRÓNICA ANALÓGICA I INFORME No. 1

CURVA DE POLARIZACIÓN, RECORTADORES Y SUJETADORES

Estudiante:

Caballero Burgoa, Carlos Eduardo.

Carrera:

Ing. Electromecánica.

Docente:

Ing. Alberto Arispe Santander.

Grupo: 1B.

Fecha de entrega: 1 de Octubre del 2024.

1. Objetivos

- Verificar la curva caracteristica de polarización de un diodo.
- Verificar el comportamiento de circuitos recortadores.
- Verificar el comportamiento de circuitos sujetadores.

2. Marco Teorico

El dispositivo electrónico no lineal más simple se conoce como *diodo*. Un diodo está compuesto de dos materiales diferentes colocados juntos de tal forma que la carga fluye fácilmente en una dirección, pero no en dirección contraria. [1]

2.1. Curva caracteristicas de polarización

En la figura (??), se muestra la grafica de la corriente en funcion del voltaje, donde pueden observarse tres regiones donde puede operar el diodo: [?]

Region de conduccion en polarizacion directa (PD) Donde $V_D > 0[V]$, siendo:

- La corriente en el diodo muy pequeña, cuando $0[V] < V_D < V_F$.
- La corriente en el diodo es cada vez mas grande, cuando $V_D > V_F$.

Region de no conducción Donde $V_D < 0[V]$, siendo la corriente en el diodo demasiado pequeña y negativa, conocida como corriente de saturación inversa: I_S .

Region de conduccion en polarizacion inversa Se encuentra a la izquierda del voltaja de ruptura V_{BR} , para voltajes del diodo cada vez mayor, pero negativo, el diodo se encuentra con corriente cada vez mas grande (pero negativa), conocida como corriente de avalancha.

3. Simulación

Se utilizó el software Quite Universal Circuit Simulator. version 23.3.1 para simular los circuitos.

3.1. Curva de polarización

La curva de polarización simulada para dos diodos en serie puede verse en la figura (1):

3.2. Recortador sin fuente de voltaje

Se simulo un circuito recortador con tres tipos diferentes de señales: una señal rectangular (2), una señal triangular (3) y una señal sinusoidal (4).

3.3. Recortador con fuente de voltaje

Se simulo un circuito recortador con fuente de voltaje de 5[V] con tres tipos diferentes de señales: una señal rectangular (5), una señal triangular (6) y una señal sinusoidal (7).

Figura 1: Simulación de la curva V-I en dos diodos en serie.

Figura 2: Simulación de un recortador con una señal rectangular.

3.4. Sujetador sin fuente de voltaje

Se simulo un circuito sujetador con tres tipos diferentes de señales: una señal rectangular (8), una señal triangular (9) y una señal sinusoidal (10).

3.5. Sujetador con fuente de voltaje

Se simulo un circuito sujetador con fuente de voltaje de 5[V] con tres tipos diferentes de señales: una señal rectangular (11), una señal triangular (12) y una señal sinusoidal (13).

Figura 3: Simulación de un recortador con una señal triangular.

Figura 4: Simulación de un recortador con una señal senoidal.

4. Resultados

4.1. Curva de polarización

En laboratorio de se obtuvieron los siguientes datos:

$V_i[V]$	$V_d[V]$	i[A]
0.4	0.29	0.001
1	0.80	0.014
2	0.95	0.094
3	1.02	0.188
4	1.06	0.286
5	1.08	0.379

Figura 5: Simulación de un recortador con fuente de voltaje con una señal rectangular.

Figura 6: Simulación de un recortador con fuente de voltaje con una señal triangular.

5. Conclusiones y Recomendaciones

Referencias

- C.J. Savant Jr, Martin S. Roden, Gordon Carpenter. (1992).
 Diseño Electrónico. Circuitos y sistemas. 2da Edición. Addison-Wesley
- [2] Ing. Jose F. Tancara S. (2019).Guia de laboratorio electronica analogica I

Figura 7: Simulación de un recortador con fuente de voltaje con una señal senoidal.

Figura 8: Simulación de un sujetador con una señal rectangular.

Figura 9: Simulación de un sujetador con una señal triangular.

Figura 10: Simulación de un sujetador con una señal senoidal.

Figura 11: Simulación de un sujetador con fuente de voltaje con una señal rectangular.

Figura 12: Simulación de un sujetador con fuente de voltaje con una señal triangular.

Figura 13: Simulación de un sujetador con fuente de voltaje con una señal senoidal.