

AD-A104 617 CONSOER TOWNSEND AND ASSOCIATES LTD ST LOUIS MO
NATIONAL DAM SAFETY PROGRAM, GENTRY LAKE DAM (MO 10213), MISSIS--ETC(U)
JUL 80 W 6 SHIFRIN DACW43-80-C-0096

UNCLASSIFIED NL

1 of 2
AD-A104 7

AD A104617

LEVEL II

(1)
B-1

MISSISSIPPI-SALT-QUINCY RIVER BASIN

GENTRY LAKE DAM
LINCOLN COUNTY, MISSOURI
MO. 65213

DTIC
SELECTED
S D
SEP 28 1981
F

PHASE I INSPECTION REPORT NATIONAL DAM SAFETY PROGRAM

United States Army
Corps of Engineers

... Serving the Army
... Serving the Nation

St. Louis District

THIS DOCUMENT IS BEST QUALITY PRACTICABLE.
THE COPY FURNISHED TO DDC CONTAINED A
SIGNIFICANT NUMBER OF PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

PREPARED BY: U. S. ARMY ENGINEER DISTRICT, ST. LOUIS

FOR: STATE OF MISSOURI

81 9 28 111

JULY 1980

FILE COPY

DISCLAIMER NOTICE

**THIS DOCUMENT IS BEST QUALITY
PRACTICABLE. THE COPY FURNISHED
TO DTIC CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO NOT
REPRODUCE LEGIBLY.**

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
		AD-A104 617
4. TITLE (and Subtitle) Phase I Dam Inspection Report National Dam Safety Program Gentry Lake Dam (MO 10213) Lincoln County, Missouri		5. TYPE OF REPORT & PERIOD COVERED Final Report.
7. AUTHOR(s) Consoer, Townsend and Associates, Ltd.		6. PERFORMING ORG. REPORT NUMBER DACH43-80-C-0094
9. PERFORMING ORGANIZATION NAME AND ADDRESS U.S. Army Engineer District, St. Louis Dam Inventory and Inspection Section, LMSED-PD 210 Tucker Blvd., North, St. Louis, Mo. 63101		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS 111111
11. CONTROLLING OFFICE NAME AND ADDRESS U.S. Army Engineer District, St. Louis Dam Inventory and Inspection Section, LMSED-PD 210 Tucker Blvd., North, St. Louis, Mo. 63101		12. REPORT DATE July 1980
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office) 6) National Dam Safety Program. Gentry Lake Dam (MO 10213), Mississippi-Salt-Quincy River Basin, Lincoln County, Missouri. Phase I Inspection Report.		13. NUMBER OF PAGES Approximately 80
16. DISTRIBUTION		15. SECURITY CLASS. (of this report) UNCLASSIFIED
Approved for release; distribution unlimited. 111111 617 1980		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Dam Safety, Lake, Dam Inspection, Private Dams		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) This report was prepared under the National Program of Inspection of Non-Federal Dams. This report assesses the general condition of the dam with respect to safety, based on available data and on visual inspection, to determine if the dam poses hazards to human life or property.		

DEPARTMENT OF THE ARMY
ST. LOUIS DISTRICT, CORPS OF ENGINEERS
210 NORTH 12TH STREET
ST. LOUIS, MISSOURI 63101

IN REPLY REFER TO

SUBJECT: Gentry Lake Dam (Mo. 10213) Phase I Inspection Report

This report presents the results of field inspection and evaluation of the Gentry Lake Dam (Mo. 10213).

It was prepared under the National Program of Inspection of Non-Federal Dams.

SUBMITTED BY:

SIGNED

28 AUG 1980

Date

Chief, Engineering Division

APPROVED BY:

SIGNED

29 AUG 1980

Date

Colonel, ~~St. Louis~~ District Engineer

Accession For	
NTIS GRA&I	<input checked="" type="checkbox"/>
DTIC TAB	<input type="checkbox"/>
Unannounced	<input type="checkbox"/>
Justification	
By _____	
Distribution/ _____	
Availability Codes	
Dist	Avail and/or Special
A	23 CD

GENTRY LAKE DAM
LINCOLN COUNTY, MISSOURI

MISSOURI INVENTORY NO. 10213

PHASE I INSPECTION REPORT
NATIONAL DAM SAFETY PROGRAM

PREPARED BY
CONSOER, TOWNSEND AND ASSOCIATES, LTD.
ST. LOUIS, MISSOURI
AND
PRC ENGINEERING CONSULTANTS, INC.
ENGLEWOOD, COLORADO
A JOINT VENTURE

UNDER DIRECTION OF
ST. LOUIS DISTRICT, CORPS OF ENGINEERS
FOR
GOVERNOR OF MISSOURI

JULY 1980

PHASE I INSPECTION REPORT
NATIONAL DAM SAFETY PROGRAM

Name of Dam: Gentry Lake Dam, Missouri Inv. No. 10213
State Located: Missouri
County Located: Lincoln
Stream: An unnamed tributary of the Lost Creek
Date of Inspection: April 22, 1980

Assessment of General Condition

Gentry Lake Dam was inspected by the engineering firms of Consoer, Townsend and Associates, Ltd. and PRC Engineering Consultants, Inc. (A Joint Venture) of St. Louis, Missouri according to the U. S. Army Corps of Engineers "Engineer Regulation No. 110-2-106" and additional guidelines furnished by the St. Louis District of the Corps of Engineers. Based upon the criteria in the guidelines, the dam is in the high hazard potential classification, which means that loss of life and appreciable property loss could occur in the event of failure of the dam. Within the estimated damage zone of four miles downstream of the dam are four dwellings, five buildings, three barns, one quarry scale house, and a dam which may be subjected to flooding, with possible damage and/or destruction, and possible loss of life. Gentry Lake Dam is in the small size classification since it is less than 40 feet and more than 25 feet high, and impounds more than 50 acre-feet but less than 1,000 acre-feet of water.

Our inspection and evaluation indicates that the spillway of Gentry Lake Dam does not meet the criteria set forth in the guidelines for a dam having the above size and hazard potential. Gentry Lake Dam being a small size dam with a high hazard potential is required by the guidelines to pass from one-half of the Probable Maximum Flood to the Probable Maximum Flood without overtopping. Considering the number of inhabited dwellings located downstream of the dam and another dam being located on the same stream approximately 1 mile downstream of the dam, the PMF is considered the appropriate spillway design flood for Gentry Lake Dam. It was determined that the reservoir/spillway system can accommodate approximately 80 percent of the Probable Maximum Flood without overtopping the dam. Our evaluation also indicates that the reservoir/spillway system can accommodate the one-percent chance flood without overtopping.

The Probable Maximum Flood is defined as the flood discharge that may be expected from the most severe combination of critical meteorological and hydrologic conditions that are reasonably possible in the region.

Other deficiencies noted by the inspection team were the two larger sized bush plants on the downstream slope, old brush and logs in and around the principal spillway outlet, brush and trash on the downstream half of the emergency spillway channel, eroded areas in the vicinity of the emergency spillway discharge channel, livestock activities on the dam embankment, a need for periodic inspection by a qualified engineer and a lack of maintenance schedule. The lack of seepage and stability analyses on record is also a deficiency that should be corrected.

It is recommended that the owner take action to correct
or control the deficiencies described above.

Walter G. Shifrin, P.E.

Overview of Gentry Lake Dam

NATIONAL DAM SAFETY PROGRAM

GENTRY LAKE DAM, I.D. No. 10213

TABLE OF CONTENTS

<u>Sect. No.</u>	<u>Title</u>	<u>Page</u>
SECTION 1	PROJECT INFORMATION	1
1.1	General	1
1.2	Description of Project	3
1.3	Pertinent Data	7
SECTION 2	ENGINEERING DATA	10
2.1	Design	10
2.2	Construction	10
2.3	Operation	11
2.4	Evaluation	11
SECTION 3	VISUAL INSPECTION	13
3.1	Findings	13
3.2	Evaluation	20

TABLE OF CONTENTS

(Continued)

<u>Sect. No.</u>	<u>Title</u>	<u>Page</u>
SECTION 4	OPERATION PROCEDURES	22
4.1	Procedures	22
4.2	Maintenance of Dam	22
4.3	Maintenance of Operating Facilities	22
4.4	Description of Any Warning System in Effect	23
4.5	Evaluation	23
SECTION 5	HYDRAULIC/HYDROLOGIC	24
5.1	Evaluation of Features	24
SECTION 6	STRUCTURAL STABILITY.	28
6.1	Evaluation of Structural Stability.	28
SECTION 7	ASSESSMENT/REMEDIAL MEASURES.	31
7.1	Dam Assessment	31
7.2	Remedial Measures.	33

TABLE OF CONTENTS

(Continued)

LIST OF PLATES

	<u>Plate No.</u>
LOCATION MAP	1
PLAN AND ELEVATION OF DAM	2
EMBANKMENT SECTION AND SPILLWAY PROFILE	3
SCS AS-BUILT DRAWINGS AND OTHER INFORMATION	4-15
GEOLOGIC MAP	16-17
SEISMIC ZONE MAP	18

APPENDICES

APPENDIX A - PHOTOGRAPHS

APPENDIX B - HYDROLOGIC AND HYDRAULIC COMPUTATIONS

PHASE I INSPECTION REPORT
NATIONAL DAM SAFETY PROGRAM

GENTRY LAKE DAM, Missouri Inv. No. 10213

SECTION I: PROJECT INFORMATION

1.1 General

a. Authority

The Dam Inspection Act, Public Law 92-367 of August, 1972, authorizes the Secretary of the Army, through the Corps of Engineers, to initiate a national program of dam inspections. Inspection for Gentry Lake Dam was carried out under Contract DACW 43-80-C-0094 between the Department of the Army, St. Louis District, Corps of Engineers, and the engineering firms of Consoer, Townsend & Associates, Ltd., and PRC Engineering Consultants, Inc. (A Joint Venture), of St. Louis, Missouri.

b. Purpose of Inspection

The visual inspection of Gentry Lake Dam was made on April 22, 1980. The purpose of the inspection was to make a general assessment as to the structural integrity and operational adequacy of the dam embankment and its appurtenant structures.

c. Scope of Report

This report summarizes available pertinent data relating to the project, presents a summary of visual observations made during the field inspection, presents an assessment of hydrologic and hydraulic conditions at the site, presents an assessment of the structural adequacy of the various project features and assesses the general condition of the dam with respect to safety.

Subsurface investigations, laboratory testing and detailed analyses were not within the scope of this study. No warranty as to the absolute safety of the project features is implied by the conclusions presented in this report.

It should be noted that in this report reference to left or right abutments is viewed as looking downstream. Where left abutment or left side of the dam is used in this report, this also refers to the west abutment or side, and right to the east abutment or side.

d. Evaluation Criteria

The inspection and evaluation of the dam is performed in accordance with the U.S. Army Corps of Engineers "Engineer Regulation No. 1110-2-106" and additional guidelines furnished by the St. Louis District office of the Corps of Engineers for Phase 1 Dam Inspection.

1.2

Description of the Project

a. Description of Dam and Appurtenances

The following description is based upon observations and measurements made during the visual inspection and from conversations with Mr. M. Gentry, the owner. "As-Built" drawings are included as part of this report. There were no major discrepancies between our field notes and the "As-Built" plans.

The dam consists of a zoned, rolled, earthfill embankment with a straight alignment between earthen abutments. Material was removed from the reservoir and local area for construction of the embankment, which, according to Mr. Gentry, includes an impervious clay core wall founded on bedrock. The shape of the dam's maximum cross-section is generally trapezoidal with a 14 foot top thickness and a structural height of 31 feet. The total horizontal distance along the axis at the top of dam was measured as 473 feet; the elevation at the top of dam is 724.5 feet above mean sea level (M.S.L.)

The upstream slope was measured as 1.0 V to 2.8 H to the berm and the downstream slope as 1.0 V to 2.1 H. A 10-foot wide berm was constructed on the upstream slope approximately 13 feet below the top of dam.

Included in the length measurement along the axis is an emergency spillway, trapezoidal in shape, cut into the dam at the right abutment. This spillway is a grass-lined open channel with a measured 79-foot top width and 33 foot spillway crest width, which is approximately 5.5 feet below the top of dam. The left and the right side slopes of the channel is 1.0 V to 3.5 H and 1.0 V to 4.9 H respectively.

The principal spillway for Gentry Lake Dam is an 18 inch concrete conduit laid through the embankment with seepage collars placed on bedrock. The spillway intake is about 294 feet right of the left abutment and consists of a drop inlet concrete standpipe with a 12 foot drop (Photo 6). The concrete standpipe, also founded on bedrock (see Plate 9), has a 36-inch inside diameter and joins to the 18-inch diameter concrete conduit, which then outlets into a 4 foot deep, 25 foot diameter pool near the toe of the embankment (Photo 7). Using field measurements, the length of the 18 inch conduit was calculated as 122 feet. Affixed to the top of the standpipe is a metal trashrack and concrete anti-vortex wall combination. The wall is 4 inches thick, 2 feet high and about 12 feet in length, and is oriented in the direction of the 18 inch pipe. The trashrack, bolted to the anti-vortex wall, consists of welded steel channels (Photo 6).

There are no low level outlets, gates, or other appurtenant structures associated with this dam.

b. Location

Gentry Lake Dam is located in Lincoln County in the State of Missouri, and crosses an unnamed tributary of Lost Creek. The small community of Elsberry is about seven miles to the east. The Gentry Lake Dam location on the 7.5 minute series of the U.S. Geological Survey maps is found in Section 7 of Township 50 North, Range 2 East, of the Luckett Ridge, Missouri Quadrangle Sheet.

c. Size Classification

The impoundment of Gentry Lake Dam is less than 1,000 acre-feet but more than 50-acre feet, and the height is within the 25 to 40 foot range. Therefore the size is determined to fall in the "small" category, according to the "Engineer Regulation No. 1110-2-106, Appendix D" by the U.S. Department of the Army, Office of the Chief Engineer.

d. Hazard Classification

The dam has been classified as having a "high" hazard potential in the National Inventory of Dams, on the basis that in the event of failure of the dam or its appurtenances, excessive damage could occur to downstream property, together with the possibility of the loss of life. Our findings concur with this classification. Within the estimated damage zone, extending four miles downstream of the dam, are four dwellings, five buildings, three barns plus another dam and a quarry scale house.

e. Ownership

Gentry Lake Dam and Reservoir is privately owned. The owner's name is Moebius Gentry; his address is as follows: R.F.D. 1, Elsberry, Missouri, 63343.

f. Purpose of Dam

The dam was constructed as a flood control structure, however, the reservoir is also used for a livestock drinking water supply.

g. Design and Construction History

Gentry Lake Dam was designed by the Department of Agriculture, Soil Conservation Service as part of the Lost Creek Watershed Protection Project. Mr. Bernard Browning was the Soil Conservation Service engineer for the project. According to the owner, Mr. Moebius Gentry, the dam was constructed between July, 1959 and September, 1959 by Gamett & Wilson Construction Company, of Clark County, Missouri.

h. Normal Operational Procedures

Normal procedure is to allow the reservoir to remain as full as possible with the water level being controlled by rainfall, runoff, evaporation and the elevation of the principal spillway crest.

1.3 Pertinent Data

a. Drainage Area (square miles): 0.29

b. Discharge at Damsite

Estimated experienced maximum flood (cfs): 30

Estimated ungated spillway capacity with
reservoir at top of dam elevation (cfs): 1985

c. Elevation (Feet above MSL)

Top of dam (minimum): 724.5

Spillway crest:

Principal Spillway 709.5

Emergency Spillway 719.0

Normal Pool: 709.5

Maximum Experienced Pool: 716.0

Observed Pool 709.5

d. Reservoir

Length of pool with water surface
at top of dam elevation (feet): 1100

e. Storage (Acre-Feet)

Top of dam (minimum): 123

Spillway crest:

Principal Spillway 17

Emergency Spillway 70

Normal Pool: 17

Maximum Experienced Pool 48.5

Observed Pool. 17

f. Reservoir Surfaces (Acres)

Top of dam (minimum): 11.7

Spillway crest:

g. Dam

Type:	Rolled, Earthfill
Length:	473 feet
Structural Height:	31 feet
Hydraulic Height:	31 feet*
Top width:	14 feet
Side slopes:	
Downstream	1V to 2.1H (measured to berm)
Upstream	1V to 2.8H (measured to berm)
Zoning:	
	a. Impervious clay core (according to Mr. Gentry)
	b. Upstream and downstream clay and chert shells
Impervious core:	yes
Cutoff:	A core trench 4-foot deep with 10-foot bottom width and side slopes of 1H to 1V.
Grout curtain:	no
Freeboard above normal reservoir level:	15 feet
Volume:	24,259 cu.yds. (according to as-built plans)

h. Diversion and Regulating Tunnel

None

i. Spillway

Type:

Principal Spillway Drop inlet, uncontrolled

Emergency Spillway Earthcut channel, uncontrolled

Length of crest:

Principal Spillway 3-foot diameter standpipe with
an 18-inch diameter connecting
pipe

Emergency Spillway 33 feet

Crest Elevation (feet above MSL):

Principal Spillway 709.5

Emergency Spillway 719.0

j. Regulating Outlets . . . None

- * The hydraulic height of the dam is the vertical distance from the lowest point on the downstream toe to the top of the dam or the maximum water surface, if below the top of the dam.

SECTION 2: ENGINEERING DATA

2.1

Design

"As-built" drawings are available from the Department of Agriculture, Soil Conservation Service, and are included as part of this report. The drawings were prepared in April, 1958 by the Department of Agriculture, Soil Conservation Service. Geologic and soil mechanics reports were prepared for this dam by the Department of Agriculture, Soil Conservation Service, however, they were not available during the preparation of this report.

2.2

Construction

No data is available concerning the construction of the dam and appurtenant structures, other than the "As-built" drawings, and the information obtained from Mr. Gentry.

According to Mr. Gentry, the embankment consists of three zones as follows: an impervious core, and an upstream and a downstream shell. The core was constructed of a clay material removed from the right abutment area and the two shells were constructed of a clay and chert material removed from the reservoir. The embankment was compacted by a sheepfoot roller and density tests were taken at an interval of at least one per day. A 4-foot deep core trench was excavated to bedrock (shale) and parallel to the dam axis. This corresponds to what is shown on the "As-built" drawings. The trench has a bottom width of 10 feet and side slopes of 1V to 1H.

2.3 Operation

No operation records are available for Gentry Lake Dam.

2.4 Evaluation

a. Availability

The availability of engineering data is fair and consists of the "As-built" drawings mentioned in Section 2.1, State Geological Maps and U.S.G.S. Quadrangle Sheets. Geologic and soil mechanics reports for this dam were prepared by the Department of Agriculture, Soil Conservation Service, however, they were not available during the preparation of this report. Information on design hydrology and hydraulic design is available and is included in this report (Plate 13 and 14). Seepage and stability analyses comparable to the requirements of the "Recommended Guidelines for Safety Inspection of Dams", were not available which is considered a deficiency.

b. Adequacy

The conclusions presented in this report are based on field measurements, the available engineering data, past performance and present condition of the dam. The available data including the field measurements taken by the field inspection team are considered adequate to evaluate the hydraulic and hydrologic capabilities of the dam. Seepage and stability analyses comparable to the requirements of the "Recommended Guidelines for Safety Inspection of Dams" were not available, which is considered a deficiency.

c. Validity

A set of "As-built" drawings and information on design hydrology and hydraulic design were available for review. From field measurements and conversations with the owner, the dam appears to have been constructed according to the available drawings, except for the discrepancies described in Section 6.1b. Gentry Lake Dam was originally Structure E-1 according to the "As-built" drawings provided by the Soil Conservation Service.

SECTION 3: VISUAL INSPECTION

3.1 Findings

a. General

A visual inspection of the Gentry Lake Dam was made on April 22, 1980. The following persons were present during the inspection:

Name	Affiliation	Disciplines
Dr. M.A. Samad	PRC Engineering Consultants, Inc.	Project Engineer, Hydraulics and Hydrology
Mark R. Haynes	PRC Engineering Consultants, Inc.	Soils and Mechanical
Robert McLaughlin	PRC Engineering Consultants, Inc.	Civil
Razi Quraishi	PRC Engineering Consultants, Inc.	Geology
John Lauth	Consoer, Townsend & Assoc., Ltd.	Civil and Structural
Moebius Gentry	Owner	

Specific observations are discussed below.

b. Dam

The dam is well maintained and is generally in good condition. The top of dam area shows no vehicular wear in the grass cover protection which seems to be adequate (Photo 1). No cracking or misalignments in either the vertical or horizontal directions were apparent during the visual inspection; also there were no localized settlements or bulges observed. According to Mr. Gentry, not only has there never been an occurrence of overtopping, but the emergency spillway has never been used. There was no evident animal burrowing activity.

The upstream slope has adequate grass cover; however, there are livestock trails in the vicinity of the berm near the water's edge (Photo 2). Although this presents no hazards, it is mentioned because some portions of the berm seemingly have been cut back, as much as six to ten feet, by the cutting effect of the hooves of cattle. This condition has allowed a small amount of erosion to occur due to wave action. Also, there is a pile of old logs and rubbish stored behind the trashrack; this poses a slight potential problem as there is no trashrack cross-bar to block entry into the drop inlet from the rear. No bulges, depressions or other irregularities were observed.

The downstream slope also has adequate grass cover. Although no seepage was encountered either on the slope or downstream of the toe, there are two fairly good sized shrubs growing on the slope (Photo 5). No bulges, depressions, or other signs of instability were apparent. Some livestock paths were worn into the slope itself and along the line of intersection of the dam and emergency spillway fill (Photo 10). No animal burrows were observed.

Both abutments slope gently upward from the crest of the dam. No instabilities or seepage were observed on either abutment. One erosion gully was observed on the right abutment several feet to the right of the emergency spillway. The erosion did not appear to affect the safety of the emergency spillway, dam, or abutment.

No rodent activity was apparent on the abutments. According to Mr. Gentry, there has been some muskrat activity in the reservoir in the past. The muskrats are trapped during the winter when present.

c. Project Geology and Soils

(1) Project Geology

The damsite is located on an unnamed tributary of Lost Creek in the Dissected Till Plains Section of the central Lowland Physiographic Province. Loess-mantled Kansas drift covers the surface of most of the Dissected Till Plains Section. This section is distinguished from the Young Drift Section to the north and from the Till Plains on the east by the stage it has reached in the post-glacial erosion cycle. Broadly generalized, this section is a nearly flat till plain submature to mature in its erosion cycle.

The regional bedrock geology beneath the glacial outwash deposit in the damsite area as shown on the Geologic Map of Missouri (1979) (Plate 16) consists of Mississippian Burlington limestone, Fern Glen Formation, and Ordovician rocks consisting of interbedded limestone, sandstone, and shale.

The topography at the damsite is rolling with V- to U-shaped valleys. Elevation ranges from 930 feet above M.S.L. (2 miles northeast of the site) to about 720 feet above M.S.L. at Gentry Lake. The reservoir slopes are generally 10° to 15° from horizontal. The area near the damsite is covered with slope wash deposits of glacial-fluvial and loess origin, consisting of brown, silty, fine sand with brown sandstone fragments. Inlet and outlet areas of the unnamed tributary of Lost Creek exhibits Quaternary Alluvium. Outcrops of Ordovician Maquoketa Shale are exhibited at the downstream channel of the spillway and at the inlet areas of a southeasterly creek. Maquoketa Shale exhibited at the site consists of yellowish gray, moderately hard, thinly laminated, horizontally bedded Calcareous to Dolomitic shale with local lenses of limestone (Photos 13 and 14).

No faults have been identified in the vicinity of the damsite. The closest trace of a fault to the damsite is the Cap Au Gres faulted flexure nearly 5 miles southwest of the site. The Cap Au Gres faulted flexure had its last movement in post-Pennsylvanian, pre-Pleistocene time. Thus, the fault appears to have no effect on the dam.

Gentry Lake Dam consists of a zoned earthfill embankment and a grass lined spillway which is located at the right end of the embankment.

Based on the visual inspection, construction drawings and from the personal communication with the owner, Mr. Gentry, the embankment probably rests on gray, hard Maquoketa Shale. The foundation materials underneath the spillway area is compacted embankment fill (brown clayey silt, some fine sand).

(2) Project Soils

According to the "Missouri General Soil Map and Soil Association Descriptions" published by the Soil Conservation Service, the materials in the general area of the dam belong to the soil series of Menfro-Winfield-Lindley in the central Mississippi Valley wooded slopes family. The soils were basically formed from loess and glacial till. The permeability of these soils range from moderate to moderately slow. The Lindley soil is generally quite susceptible to erosion. If the Lindley soil type was used in the embankment, the potential of failure of the embankment would be increased due to erosion during overtopping.

Materials removed from the embankment on the upstream and downstream slopes approximately 1 foot below the vegetative cover appeared to be a brownish clayey silt with some fine sand. Based upon the Unified Soil Classification System, the soil would probably be classified as an ML-CL. This soil type generally has the following characteristics: impervious with a coefficient of permeability less than 1.0 foot per year; medium to low shear strength; and an intermediate resistance to piping.

d. Appurtenant Structures

(1) Principal Spillway

The principal spillway seemed to be in generally good shape. No major cracks were seen in the concrete in either the standpipe overflow rim or the anti-vortex wall, although some minor pitting was observed in the wall. Also, the metal trashrack, bolted to the wall, had no protective coating and a moderate amount of rust was present along with

possible corrosion at the water line (Photo 6). According to the "Ac-t-It" plans, paragraph 2.1, the spillway conduit was tongue and groove, reinforced concrete, culvert pipe, constructed on a reinforced concrete cradle (Type II) base with an unreinforced joint block at the point where the invert slope changes; two 6.5 foot by 12.0 foot reinforced concrete anti-seep collars were also constructed. Although there was no internal inspection of the conduit, it is assumed that all is functioning as it should; nothing to the contrary could be observed.

The spillway flow outlets from the conduit, dropping approximately eight inches into the stilling pool, before continuing into the downstream channel. The pool edge seems to be sloughing off due either to livestock activity or erosion, or both (Photo 7).

(2) Emergency Spillway

The emergency spillway conveys excess water flows beyond the toe of the dam through a grassed open channel (Photo 9). Although the spillway has never been needed during the life of the dam, it appears to be in good shape for the most part. The left side of the spillway channel was constructed with embankment fill material which looks to be in stable condition except for a large slough area observed at the end of the constructed channel (Photo 10). After conveying the excess flows past the dam, the emergency channel turns towards the downstream channel. At this point the emergency channel continues as a rough cut or eroded gully which is filled with trash and brush (Photo 11).

The soils in the emergency spillway channel appear to be silty clay. The channel has a good cover of grass. However, the spillway channel may be subject to erosion due to high velocity flows through the spillway during a large flood.

(3) Outlet Works

There were no regulated outlet works or low level drain pipes constructed in this dam.

e. Reservoir Area

The reservoir water surface elevation at the time of inspection was 709.5 feet above M.S.L.

The surface area of the reservoir at normal water level is about 3-1/2 acres. The rim seems to be stable as no severe erosive areas were observed. The land around the reservoir slopes gently to the rim and is grass and/or tree covered. There are no homes built in close proximity to the reservoir (Photo 8).

f. Downstream Channel

The downstream channel is well defined. The channel has a bottom width of about 5 feet and has a side slope of 1V to 1H on the right side and a side slope of 1V to 2H on the left side. The channel is approximately 3 feet deep. Some trees were observed growing on the channel, however, the trees will not significantly affect the hydraulic efficiency of the channel (Photo 12).

3.2

Evaluation

The visual inspection uncovered nothing of a consequential nature which would require immediate remedial action. However, some conditions were observed which could adversely affect the dam in the future and these should be corrected within a reasonable period of time.

1. There are two larger sized bushes presently growing on the downstream slope plus numerous smaller (approximately 8 inches) bush type plants (perhaps of the same variety as the larger). It does not seem likely that there is any present threat to the safety of the dam from this plant growth, however, the slope should generally be kept clear of all larger plant growth (Photo 5).

2. There seems to be a surplus of old brush and logs in and about the principal spillway inlet; the trashrack has no horizontal member which would prevent entry of the logs into the drop inlet from the slope side of the trashrack (Photo 4). If these logs were to be washed into the inlet, serious reduction in capacity would likely result.

3. The emergency spillway channel should be maintained in a clean condition; presently, there exists within the latter half of this channel an aggregate amount of brush and trash more or less clogging the channel area at one point. Although this condition does not present a hazard, it could be the cause of some real problems in the event the emergency spillway is required for use in the future. The sloughing of the embankment slope of the emergency channel in this same area has caused a break area in the ground surface where there is no grass protection. This condition could be the beginning of a problem gradually increasing in severity in this area (Photos 10 and 11).

4. Another potential problem arises from the fact that livestock paths have been worn into the dam on both the upstream and downstream slopes, and the edges of the embankment (both upstream and downstream) at water level are being broken off by the hooves of the stock. Both the broken edges and the worn paths provide excellent conditions for erosive action (Photo 3).

SECTION 4: OPERATIONAL PROCEDURES

4.1 Procedures

Gentry Lake Dam was constructed to impound water for flood control as part of the Lost Creek Watershed Protection Project. There are no specific procedures which are followed for the operation of the dam. The water level is controlled by rainfall, runoff, evaporation and the elevation of the principal spillway.

4.2 Maintenance of Dam

The dam is maintained by the owner, Mr. Moebius Gentry. The dam crest and slopes are kept clear of trees, bushes and weeds. However, two larger sized bushes were observed growing on the downstream slope of the embankment. Mr. Gentry also cleans and removes the debris from the trashrack at the drop inlet. There have not been any repairs done to the dam since its original construction.

4.3 Maintenance of Operating Facilities

The only facility at the damsite which requires maintenance is the trashrack of the drop inlet structure. Debris must be periodically removed from the trashrack. There are no outlet works at this dam.

4.4 Description of Any Warning System in Effect

The inspection team is not aware of any warning system in use at the dam site.

4.5 Evaluation

The maintenance at Gentry Lake Dam appears to be adequate, however, the remedial measures described in Section 7 should be undertaken to improve the condition of the dam.

SECTION 5: HYDRAULIC/HYDROLOGIC

5.1 Evaluation of Features

a. Design

The watershed area of the Gentry Lake Dam upstream from the dam axis consists of approximately 183 acres. The watershed area is mostly wooded with some pasture and range land. Land gradients in the watershed average roughly 5 percent. The Gentry Lake Dam Reservoir is located on an unnamed tributary of the Lost Creek. The reservoir is about 1-1/2 miles upstream from the confluence of the unnamed tributary and the Lost Creek. The watershed is 0.60 mile long. A drainage map showing the watershed and the downstream hazard zone is presented as Plate 1 in Appendix B.

Evaluation of the hydraulic and hydrologic features of Gentry Lake Dam was based upon criteria set forth in the Corps of Engineers' "Engineer Regulation No. 1110-2-106" and additional guidance provided by the St. Louis District of the Corps of Engineers. The Probable Maximum Flood (PMF) was calculated from the Probable Maximum Precipitation (PMP) using the methods outlined in the U.S. Weather Bureau Publication, Hydrometeorological Report No. 33. The probable maximum storm duration was set at 24 hours, and storm rainfall distribution was based upon criteria given in the Corps of Engineers' EM 1110-2-1411 (Standard Project Storm). The Soil Conservation Service (SCS) method was used for deriving the unit hydrograph, utilizing the Corps of Engineers' computer program HEC-1 (Dam Safety Version). The unit hydrograph parameters are

presented in Appendix B. The SCS method also was used for determining the loss rate. The hydrologic soil group of the watershed was determined by use of published soil maps. The hydrologic soil group of the watershed and the SCS curve number are presented in Appendix B. The curve number, unit hydrograph parameters, the PMP index rainfall and the percentages for various durations were directly input to the HEC-1 (Dam Safety Version) computer program to obtain the PMF hydrograph. The computed peak inflow of the PMF and one-half of the PMF are 3,919 cfs and 1,960 cfs, respectively.

Both the PMF and one-half of the PMF inflow hydrographs were routed through the reservoir by the Modified Puls Method also utilizing the HEC-1 (Dam Safety Version) computer program. A storm of 50 percent and 25 percent PMF, respectively, preceded the PMF and 50 percent PMF by four days. The reservoir was assumed at the mean annual high water level at the beginning of the antecedent storm. The mean annual high water level for Gentry Lake was estimated to be at the crest of the principal spillway. The antecedent 50 percent PMF storm, when routed through the reservoir, will leave the reservoir at approximately the same elevation as the crest of the principal spillway (See Appendix B) at the end of the the four day period. Thus the reservoir was assumed at the crest level of the principal spillway at the start of the routing computation for PMF, one-half of the PMF and other PMF ratio floods. The peak outflow discharges for the PMF and one-half of the PMF are 2,789 and 1,135 cfs, respectively. Only the PMF when routed through the reservoir resulted in overtopping of the dam.

The size of physical features utilized to develop the stage-outflow relation for the spillway and overtopping of the dam were prepared from field notes and sketches prepared

during the field inspection and available "As-built" drawings obtained from the Soil Conservation Service. The reservoir elevation-capacity data were taken from Soil Conservation Service hydrologic design data for the dam. The stage capacity data were extended by using the U.S.G.S. Luckett Ridge, Missouri Quadrangle topographic map (7.5 minute series). The spillway and dam overtop-rating curve and the reservoir-elevation-capacity curve are presented as Plates 2 & 3, respectively, in Appendix B.

From the standpoint of dam safety, the hydrologic design of a dam must aim at avoiding overtopping. Overtopping is especially dangerous for an earth dam because of its erodible characteristics. The safe hydrologic design of an embankment dam requires a spillway discharge capability combined with an embankment crest height that can handle a very large and exceedingly rare flood without overtopping.

The Corps of Engineers designs dams to safely pass the Probable Maximum Flood that could be generated from the dam's watershed. This is generally the accepted criterion for major dams throughout the world and is the standard for dam safety where overtopping would pose any threat to human life. Accordingly, the hydrologic requirement for safety for this dam is the capability to pass the Probable Maximum Flood without overtopping.

b. Experience Data

It is believed that records of reservoir stage or spillway discharge are not maintained for this site. However, according to the owner, the maximum reservoir level was about 6-1/2 feet above the crest of the principal spillway.

c. Visual Observations

Observations made of the spillway during the visual inspection are discussed in Section 3.1d and evaluated in Section 3.2.

d. Overtopping Potential

As indicated in Section 5.1.a, only the Probable Maximum Flood when routed through the reservoir, resulted in overtopping of the dam. The peak outflow discharges for the PMF and one-half of the PMF are 2,789 and 1,135 cfs, respectively. The maximum capacity of the spillway just before overtopping the dam is 1985 cfs. The PMF overtopped the dam by half a foot. The total duration of overflow over the dam is 20 minutes during the occurrence of the PMF. The spillway/reservoir system of Gentry Lake Dam is capable of accommodating a flood equal to approximately 80 percent of the PMF just before overtopping the dam. The reservoir/spillway system of Gentry Lake Dam will accommodate the one percent chance flood without overtopping.

The failure of the dam could cause extensive damage to the property downstream of the dam and possible loss of life. The estimated damage zone extends approximately four miles downstream of the dam. Within the damage zone are four dwellings, five buildings, three barns, one quarry scale house and another dam (MO 10972).

SECTION 6: STRUCTURAL STABILITY

6.1

Evaluation of Structural Stability

a. Visual Observations

There were no signs of settlements, misalignments, cracking or other types of distress observed on any part of the embankment or foundation during the visual inspection. The top of dam shows no signs of use by any kinds of vehicular traffic; it is covered with a grass vegetation as are both the upstream and the downstream slopes (Photo 1). Some method of preventing livestock from entering the embankment area would probably have a constructive effect on the surface condition of the dam. Although stock animals have done nothing as yet to seriously affect the dam, their continued trampling can have nothing but overall negative effects.

As far as could be observed, the spillway conduit, the intake, and the outlet area and pool seem to be in a structurally sound condition. Also, the portion of the emergency spillway in the vicinity of the dam embankment was observed to be in good condition. It was mentioned by Mr. Gentry, however, that the emergency spillway has never been used during the life of the dam.

b. Design and Construction Data

Some design assumptions and hydrologic and hydraulic analyses from the project records were made available and these are included in the report (Plates 4 to 15). However, seepage and stability analyses comparable to the requirements of the "Recommended Guidelines for Safety Inspection of Dams" were not available. Embankment and foundation soil parameters, construction test result data, and specifications relating to the degree of embankment compaction were not available for use in a stability analysis.

The "As-Built" drawings mentioned in paragraph 2.1 aided in ascertaining an evaluation of the structural components of the dam and appurtenances. They helped to verify the correctness of measurements, to show location of bedrock, to determine whether or not certain concrete members were reinforced, to give an idea of the quantities involved, and to show the overall method of construction used. Field measurements taken were in general agreement with the "As-Built" plans, although there were some minor disagreements; e.g. the top thickness was measured as 14 feet vs. 13 feet on the plans; "As-Built" drawings show the settled top of dam elevation as 723.3 feet above M.S.L. whereas, the field measurements result in an elevation of 724.5 feet above M.S.L. (assuming as correct the "As-Built" elevation for the drop inlet rim). From a review of the "As-Built" drawings for Gentry Lake Dam, coupled with an on-site inspection, the dam and appurtenant structures appear to be structurally sound.

c. Operating Records

No operating records were available relating to the stability of the dam or appurtenant structures. The water level on the day of the visual inspection was approximately one-half inch more or less above the intake, which was 15 feet below the top of dam. This is considered to be the normal operating level; however, the water has apparently been from four to six feet above the intake level at its highest point in recent years according to Mr. Gentry. The reservoir would normally be controlled at the level or the crest of the overflow pipe. The dam apparently has never seeped.

d. Post Construction Changes

No post construction changes were in evidence nor did the owner remember any having taken place.

e. Seismic Stability

The dam is located in Seismic Zone 2 (Plate 18), as defined in "Recommended Guidelines For Safety Inspection of Dams" as prepared by the Corps of Engineers, and will not require a seismic stability analysis. An earthquake of the magnitude which would be expected in Seismic Zone 2 should not cause significant distress to a well designed and constructed earth dam. Available literature indicates that no active faults exist near the vicinity of the damsite.

SECTION 7: ASSESSMENT/REMEDIAL MEASURES

7.1

Dam Assessment

The assessment of the general condition of the dam is based upon available data and visual inspection. Detailed investigations, testing and detailed computational evaluations are beyond the scope of a Phase I investigation; however, the investigation is intended to identify any need for such studies.

It should be realized that the reported condition of the dam is based upon observations of field conditions at the time of inspection along with data available to the inspection team.

It is also important to note that the condition of a dam depends upon numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through continued care and inspection can there be assurance that an unsafe condition could be detected.

a. Safety

The spillway capacity of Gentry Lake Dam is found to be "Inadequate". The spillway/reservoir system will accommodate approximately 80 percent of the PMF without overtopping the dam. The surface soils in the embankment and the emergency spillway appears to be silty clay. The emergency spillway and the dam embankment have a good cover of grass. The dam is overtopped by half a foot during the occurrence of the PMF. The maximum velocity of flow in the

emergency spillway during PMF will be about 10 ft/sec. The emergency spillway channel may be subject to erosion due to high velocity of flow during the PMF. The dam may also be susceptible to erosion due to high velocity of flow on its downstream slope, due to overtopping of the dam during the PMF. However, it is possible that no significant degradation of the dam crest or the spillway will occur due to short duration of overtopping (20 minutes) and short duration of high velocity flow (approximately 3-1/2 hours over 7 ft/sec during PMF) through the spillway.

A quantitative evaluation of the safety of the embankment could not be made in view of the absence of seepage and stability analyses. Seepage and stability analyses comparable to the requirements of the "Recommended Guidelines for Safety Inspection of Dams" were not available, which is considered a deficiency. These seepage and stability analyses should be performed for appropriate loading conditions and made a matter of record. The present embankment and appurtenant structures, however, reportedly have performed satisfactorily since their construction; there have been no failures or evidence of instability. Reportedly, the dam has never been overtopped and no evidence indicating the contrary was observed.

b. Adequacy of Information

The conclusions presented in this report are based upon field measurement, past performance and the present condition of the dam. Some information on the design hydrology and hydraulic design of the dam was available, and this information was considered good, and hydrologic and hydraulic data from this information were used for Phase I hydrologic and hydraulic evaluation of the dam. However, seepage and

stability analyses comparable to the requirements of the "Recommended Guidelines for Safety Inspection of Dams" were not available, which is considered a deficiency.

c. Urgency

The remedial measures recommended in Paragraph 7.2 should be accomplished within a reasonable period of time, and the item recommended in paragraph 7.2a should be pursued on a high priority basis.

d. Necessity for Phase II Inspection

Based upon results of the Phase I inspection, and if the remedial measures recommended in Paragraph 7.2 are undertaken, a Phase II inspection is not felt to be necessary.

7.2 Remedial Measures

a. Alternatives

Spillway capacity should be increased to pass the PMF without overtopping the dam.

b. O & M Procedures

1. The two larger sized bush plants on the downstream slope should be removed and prevented from continued growth. Other bushes of smaller size should be prevented from excessive growth.

2. Any logs and brush behind and inside the principal spillway inlet should be removed.
3. Brush and trash should be removed from the downstream half of the emergency spillway channel.
4. Deterioration of erodible areas in the vicinities of the emergency spillway channel, the livestock paths, and edges of the embankment (both upstream and downstream), should be checked and repaired.
5. Some action should be taken in order to prevent livestock from any continued activity on the dam embankment.
6. Seepage and stability analyses should be performed by a professional engineer experienced in the design and construction of earth dams.
7. The owner should initiate the following programs:
 - (a) Periodic inspection of the dam by a professional engineer experienced in the design and construction of earthen dams.
 - (b) Set up a maintenance schedule and log all visits to the dam for operation, repairs and maintenance.

APPENDIX A

PHOTOGRAPHS TAKEN DURING INSPECTION

PHOTO INDEX
FOR
GENTRY LAKE DAM

Gentry Lake Dam

Photographs

- Photo 1 - Top of dam showing left abutment contacts and entry from street.
- Photo 2 - Upstream slope showing livestock trails and principal spillway.
- Photo 3 - View of berm breakoff area and livestock paths in vicinity of right abutment upstream contact.
- Photo 4 - View from rear of spillway trashrack showing logs and lack of horizontal bar.
- Photo 5 - Downstream slope displaying large plant growth and more livestock trails.
- Photo 6 - View of principal spillway morning glory inlet with antivortex wall and trashrack.
- Photo 7 - View of spillway outlet and stilling pool showing top of dam, stock trails, and erosive areas in pool edge.
- Photo 8 - View of reservoir and rim area taken from dam.
- Photo 9 - Inlet area of emergency spillway.
- Photo 10 - View of right abutment downstream slope, livestock trails, emergency spillway embankment, and sloughed earth in vicinity of emergency spillway outlet.

Photo 11 - Brush and trash in outlet channel of emergency spillway and slough area.

Photo 12 - Overview of downstream channel area of Lost Creek tributary.

Photo 13 - Downstream channel outcrop of Ordovician Maquoketa shale bedrock.

Photo 14 - Same as Photo 11, but further downstream.

Gentry Lake Dam

Photo 1

Photo 2

Gentry Lake Dam

Photo 3

Photo 4

Gentry Lake Dam

Photo 5

Photo 6

Gentry Lake Dam

Photo 7

Photo 8

Gentry Lake Dam

Photo 9

Photo 10

Gentry Lake Dam

Photo 11

Photo 12

Gentry Lake Dam

Photo 13

Photo 14

PLATES

PLATE I

KEY MAP
SHOWING LOCATION OF COUNTY

SHOWING LOCATION OF COUNTY

LINCOLN COUNTY

SCALE

LOCATION MAP - GENTRY LAKE DAM

GENTRY LAKE DAM
PLAN AND PROFILE

MAXIMUM SECTION

SCALE: 1" = 40' HORIZ.
1" = 20' VERT.

SPILLWAY PROFILE SECTION A-A

SCALE: 1" = 40' HORIZ.
1" = 10' VERT.

GENTRY LAKE DAM
SECTION OF EMBANKMENT &
SPILLWAY PROFILE

U. S. DEPARTMENT OF AGRICULTURE
SOIL CONSERVATION SERVICE

DETAIL PLANS
LOST CREEK WATERSHED PROJ.
THE SOIL DISTRICT OF LINCOLN COUNTY
PART 3 OF MINOR WATERSHED

N

APPROVED BY

M. C. [Signature]

APPROVED BY

J. E. [Signature]

MINOR WATERSHED "E"
PART 3

U.S. DEPARTMENT OF AGRICULTURE
SOIL CONSERVATION SERVICE

DETAIL PLANS FOR
WATERSHED PROTECTION PROJECT
MIL DISTRICT OF LINCOLN COUNTY, MISSOURI
OF MINOR WATERSHED "E"

LOCATION IN MISSOURI

As built 14

3-E-450-20-0
Sheet 1 of 11

LEGEND

State Line	- - - - -
County Line	- - - - -
Township Line	- - - - -
Section Line	- - - - -
Property Line	- - - - -
Paved Road	=====
Improved Road	=====
Dirt Road	=====
Private or Field Road	=====
Railroad	-----
Base Line	-----
Offset Line	-----
Center Line of Improvements	-----
Watershed Boundary	====
Sub-Watershed Boundary	====
Fence	----- x x -----
Fence to be Removed	----- x x -----
Telephone Line (Location of Pole)	----- T T -----
Power Line (Location of Pole)	----- ■ ■ -----
Pipe Line	-----
Water Pipe Line (Farm)	----- Water Line
Existing Tile Line	----- ○ ○ -----
Proposed Tile Line	----- ○ ○ -----
Junction Box	----- ○ □ ○ -----
Open Ditch (4' deep or over)	=====
Shallow Ditch (less than 4' deep)	→ → -----
Cen Ditch to be Cleaned Out	=====
Terrace, Graded	=====
Terrace, Level	=====
River	=====
Crossed Watercourse	=====
Stream (Large)	=====
Stream (Small)	=====
Intermittent Stream	=====
Stream Disappears on Flat	=====
Stream Disappears in Sink	=====
Marsh	=====
Levee	=====

Building	
School	
Church	
Cemetery	
Windmill	X
Well	Offset
Spring	O
Mine, Quarry, or Gravel Pit	X
Section Corner	78
Section Center	5
Bench Mark, Permanent	xBM 70
Bench Mark, Temporary	xBM 71
Control Point, Permanent	AD
Control Point, Temporary	*13
Point on Offset Line	
Point of Intersection	O
Lake or Pond	
Intermittent Lake or Pond	
Soil Boring	• 102
Approximate Limit of Work Area	
Fill Lines	
Contours	1820
* Gully Banks	
North Arrow	
Drop Inlet	
Drop Spillway	
Box Inlet Drop Spillway	
Box Inlet Drop Spillway with Bridge	
	Indicated elevation at deepest point

Chute
 Cutoff with Bridge
 Box Inlet Chute
 Box Inlet Chute with Bridge
 Bridge
 Box Inlet Culvert
 Culvert
 Culvert Extension
 Inlet on Culvert
 Outlet on Culvert
 Sod Flume
 Terrace Outlet
 Stock Watering System
 Embankment Drainage System

- A vertical column diagram representing a geological cross-section. The top portion shows soil horizons labeled 1 through 9, each with a distinct pattern. Below these are bedrock layers labeled 10 through 17, also with unique patterns. A horizontal line near the bottom is labeled "G.W. = Ground Water".

Layer	Description
1	Muck
2	Peat
3	Silt Loam
4	Silty Clay Loam
5	Sandy Loam
6	Clay Loam
7	Sandy Clay
8	Clay
9	Sand
10	Fine Gravel
11	Course Gravel
12	Slate and Shale
13	Cool seam
14	Sandstone
15	Limestone
16	Glacial drift (impervious)
17	Glacial drift (permeous)
	G.W. = Ground Water

"Dashed lines indicate existing contours or gully banks within areas of excavation and fill."

NOTE: These symbols are used primarily on the Work Location Map, where applicable they may be shown on the plans.

Chute	
Chute with Bridge	
Box Inlet Chute	
Box Inlet Chute with Bridge	
Bridge	
Outlet	
Box Inlet Culvert	
Culvert	
Culvert Extension	
Inlet on Culvert	
Outlet on Culvert	
Sod Flume	
Terrace Outlet	
Stock Watering System	
Embankment Drainage System	

Pipe Pt-Rn Gravel

SOIL BORINGS

LOG	METHOD No 1
1 Muck	1
2 Peat	3
3 Silt Loam	5
4 Silty Clay Loam	7
5 Clay Loam	9
6 Clay	
7 Sand	
8 Fine Gravel	
9 Coarse Gravel	
10 Slate and Shale	
11 Coal seam	
12 Sandstone	
13 Limestone	
14 Glacial drift (impervious)	
15 Glacial drift (permeable)	
G.W. = Ground Water	

METHOD No 1

Using either the description,
numerical number or symbol
representing the soil type

METHOD No 2

Using Mechanical Analysis
% gravel % sand % silt % clay
0-18-76-6
0-28-64-8
0-20-66-14

TYPICAL CROSS SECTIONSIMPROVED DRAINAGEWAYS
CHANNELS, GRADED WATERCOURSES, SOD FLUMES, ETCDIVERSIONS & EMERGENCY SPILLWAYSDEFINITIONS OF TERMS

s - Grade of channel in feet of drop per foot of length

b - Bottom width of channel in feet

ss - Side slope ratio, horizontal to vertical

T - Top width of dike, levee or fill in feet

FH - Fill height of dike in feet (vertical distance from bottom of channel to top of dike)

TABLE OF STANDARD DIMENSIONSIMPROVEMENTImproved Drainageways

Diversions	6	
Levees	6	3 or 4' above ground line
Drop Inlet Embankments	0	3 or 4' above ground line
Chute Embankments	6'	3 or 4' above ground line
Drop Spillway Embankments	6	3' upstream

NOTE

1. Use standard dimensions unless otherwise shown on plans.
2. Use s, b, and FH as shown on plans.

GENERAL NOTES

Improvements are along Base Line unless otherwise indicated

Elevations of pipes refer to invert elevations

Cross sections shown as looking downstream

Lines showing limits of structure excavation are on a 1:1 slope unless otherwise indicated

CROSS SECTION LEGENDSTRUCTURELEGENDS AT THE BOTTOM

Local Area Watershed Project
Soil District of Custer County
Union Watershed E

U.S. DEPARTMENT OF AGRICULTURE
SOIL CONSERVATION SERVICE

Designer _____
Drafter _____
Reviewer _____
Checker _____

3-11 3-F-45, PO-P

TBM 1 Top 16' Dm
Elev. 720
TBM 2 Top 24' Dm
Elev. 732
P.I.W. Property of J.N. Mac

TBM 1 Top 110' Iron Pipe STA D-10 E FILL
Elev. 729.40
TBM 2 Top End Hub STA 6-07 E FILL
Elev. 732.47
P.I.W. Property Corner & Fence Corner
of J.N. Morris

J. Ira Gandy

James N. Morris

Note: All necessary Fence removal and/or replacement
to be done by the landowners

Telephone & Power line to be moved by others (E&A)

Borrow Areas - Priority of use

NO. 1 - FIRST
" " - Second

Auxiliary Borrow-Trips

Borrow Area - A minimum of two feet of soil left over rock.

Class III Fill (top soil) to be placed to a depth of 4' over borrow area that is 8000 ft long 70.5' wide. Excavation is completed Class III fill required to be 4220 Cu Yds based on covering 10000 sq ft. Top soil to be secured from borrow area by the Engineer.

*Rock to be spread below Elev. 7.2 - 5' 3".
the Engineer.*

FILL STATION		STATION NO.	DATE
G. E. T. C. S.			
Lost Creek Watershed Project US District of Columbia Minor Watershed "E"			
U.S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE			
Designation	Date	Approved by	
Soil Survey Division	2-27	Title	
Brown			
Soil Survey Division	2-27	Title	
Treated			
Soil Survey Division	2-27	Title	
Iceberg Varieties	2-27	Sheet No. 5 Date 2-27	
Chard			
G. E. Beaman	1-16-62	3-2-4562	

AS AT ELEVATION SECTION 1-1

720 721 722 723 724 725
720 721 722 723 724 725
720 721 722 723 724 725
720 721 722 723 724 725

*160 Cu Yds Class II Earth Fill (Top Soil)

- AREA FILL ALONG S OF
ENTRANCE SIDEWALK -

720 721 722 723 724 725
cmr 1800 1800 1800 1800 1800

600

500

TOP OF FIL
ELEV. 723.3 ✓

720

720

! Boundary Limit

*180 Cu Yds Class III Earth Fill
*(Note those quantities included in total)

Sta 14+00

*1010 Cu Yds Class III Earth Fill from Sta 14+00

As built ~~Survey~~
STRUCTURE STA. 2064 FILL STA. 20400

PROJECT		APPROVED BY	
Lone Creek Watershed Protection Project Tentative Site Plan of Lincoln County, Missouri Part 3		Title _____	
U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE			
Designed by _____ Date _____	Approved by _____ Title _____	Drawn by _____ Title _____	Sheet No. 6 Drawing No. 3-E-45620-P
Owner _____ Traced _____ Revised _____ Approved _____			

For Det. 5

See Sheets 9 & 11

PLAN

602 - 60 -

667' - 66 - 8 3/8

Normal Elevation of top of constructed
fill will vary along Centerline of fill
to allow for two 12 percent settlement

Top of Settled Fill Elec
Settled Fill
Constructed
Elev. 717.8 ✓

Crest Emergency Spillway

25-0
Top of Rock

122 Lin. Ft. Standard
Strength 18" diam.
RC Culvert Pipe
Tongue and Groove

Anti-Seep Collars

5-0003039

Type II Cradle

SECTION ON CENTERLINE

Reinforced Concrete
Reinforcing Steel
Spillway, Reinforced Concrete
Standard Strength tongue
Guard Rail

See Sheets 9 & 11

For Details
See Sheet 8 & 1PLANQUANTITIES

Reinforced Concrete ----- cu yd 21.96 cu yds
 Reinforcing Steel ----- Pound 1033.7 Pound 1043.7 lbs.
 Spillway, Reinforced Concrete Culvert Pipe 18" diam
 Standard Strength tongue and groove ----- 122.0 Lin Ft
 Guard Rail ----- Part Job

Do not fit

STRUCTURE E-1 & FILL STA 1+00	
R/C DROP INLET FOR 18" DIA PIPE	
GENERAL LAYOUT	
Lost Creek Watershed Project No. 1 Soil District of Lincoln County, N. C.	
MINOR WATERSHED E Part 3	
U. S. DEPARTMENT OF AGRICULTURE	
SOIL CONSERVATION SERVICE	
Per:	B.G. Browning 7-28-57
"	G. Daniels 7-28-57
"	H. H. Lubcke
"	R. Kuster 8-27-58
Drawn:	J.A. Stasch
Approved:	4-17-58 7 3-E-45620-P

SCALE: $\frac{1}{8}$ = 1-0'

Unit	12"	15"	18"	21"	24"	27"
	4' 6"	6'	6'	8'	10'	8'
	10' 8"	10'	8'	12'	10'	8'
Footing	0.24	0.024	0.024	0.024	0.024	0.024
Bent	0.60	2.0	1.6	2.0	1.6	2.0
Yoke	0.93	1.9	3.9	1.9	3.9	1.9
Cradle	0.9	0.10		1.0		
Support	3.4	3.9	4.0	4.3	4.6	4.9
Yoke	1.12	1.52	1.72	1.9	1.10	
Cradle	2.62	3.1	3.42	3.0	3.11	
Support	2.23	22.50	10.50	27.00	27.75	28.50
Yoke	3.5	15.0	7.175	18.0	18.5	19.0
Cradle	5.50	56.00	63.00	66.50	70.00	7.00
Support	10.71	21.1	23.7	25.0	26.3	29.0
Yoke	11.00	22.00	22.00	42.00	42.00	42.00
Cradle	2.17	28	28.1	28.1	28.1	28.1
Support	15.0	19.2	71.50	58	58.4	57
Footing	26.00	32.00	11.700	43.00	139.50	170.50
Bent	7.21	18.82	70.2	95.5	93.2	113.9
Yoke	11.52	60.00	52.00	60.00	52.00	60.00
Cradle	5.50	62.6	54.3	62.6	54.2	62.6
Support	10.00	11.2	11.2	12.2	13.2	13.8
Yoke	1.16	1.16	1.16	1.16	1.16	1.16
Cradle	1.16	1.16	1.16	1.16	1.16	1.16
Support	0.09	0.13	0.23	0.25	0.27	0.29
Yoke	0.47	0.59	0.7	0.94	1.02	1.10
Cradle	1.01	1.24	1.22	1.49	1.98	2.43
Support	0.09	0.11	0.17	0.20	0.22	0.25
Yoke	0.48	0.55	0.70	0.78	0.86	0.94

Notes

- * 1' 5" dimension shown for 4' and 6' unit pipe lengths
- 2 See "SIDE ELEVATION" for yoke location for 8' unit pipe length
- 3 No yoke used with 10' and 12' unit pipe lengths

Pipe Diameter						
Location	Mark	Type	Size	Quan	Length	A B C Total
Footing & Bent	a	3	"4	6	2-6	0-9 1-9
Footing	b	1	"4	3	1-9	5-3 2-6
Drain Support (each)	c	1	"4	2	2-0	4-0 2-0
Bent	d	1	"4	6	7-0	12-0 7-0
Bent	e	4	"3	14	3-3 1-5 0-5	1-5 4-5 6-6
Yoke	f	4	"4	2	5-0 1-6 3-1-1 6-6 0-5	0-5
Yoke	g	1	"3	2	1-0	2-0 1-0
Cradle	h	1	"5	2	8-0	16-0 8-0
Additional Schedule to be used for L = 2						
Cradle	k	1	"4	3	18-0	54-0 18-0
Cradle	l	1	"5	2	18-0	36-0 18-0
Cradle	m	4	"4	18	3-0 0-6 3-1-1 0-6 3-0 3-0	3-0
Additional Schedule to be used for L = 2						
Cradle	k	1	"4	3	22-0	64-0 22-0
Cradle	l	1	"5	2	22-0	44-0 22-0
Cradle	m	4	"4	22	3-0 0-6 3-1-1 0-6 3-0 3-0	3-0

SECTION B-B

DRAIN SUPPORT DETAIL

SECTION A-A

To be used only when shown on General Layout

Scale 5' 0" x 10'

PLATE

STEEL SCHEDULE

Diameter	Mark	Type	Size	Quan	Length	18"			21"			24"			27"			
						A	B	C	Total Length A	B	C	Total Length A	B	C	Total Length A	B	C	
<i>Schedule to be used for both L = 20-0 and L = 24-0</i>																		
a	3	"4	6	2	0-9 1-9	15-0	2-9	0-10 1-11	16-6	3-0	1-0 2-0	17-0	3-0	1-0 2-0	18-6	3-0	1-0 2-0	
b	1	"4	3	1	9	5-3	2-0		6-0	2-9	0-9 0	6-0	2-9	0-9 0	6-0	2-9	0-9 0	
c	1	"4	2	2	0	4-0	2-0		4-0	2-0	4-0 2-0	4-0	2-0	4-0 2-0	4-0	2-0	4-0 2-0	
d	1	"4	6	7	0	4-2	0-7	0	4-2	0-7	4-2 0-7	4-2	0-7	4-2 0-7	4-2	0-7	4-2 0-7	
e	4	"3	14	3-3	1-5 0-5	1-5	4-6	4-0 1-9 0-6	1-9	5-6	4-6 1-11 0-8	1-11	6-3	4-9 2-0	0-8	2-0	0-6 6-5	
f	4	"4	2	5-0	1-6 1-11 6-5	10-0	5-9	1-9 2-2 1-9	11-6	7-9	2-6 2-9 2-6	15-6	8-6	2-9 3-0 2-9	1-0	9-3	2-2 4-2	
g	1	"3	2	1	0	2-0	1-0		2-0	1-0	2-0 1-0	2-0	1-0	2-0 1-0	2-0	1-0	2-0 1-0	
h	1	"5	2	8	0	16-0	8-0		16-0	8-0	16-0 8-0	16-0	8-0	16-0 8-0	16-0	8-0	16-0 8-0	
i	1	"6	2															
<i>Additional Schedule to be used for L = 20-0 only</i>																		
k	1	"4	3	18	0	54-0	18-0		54-0	18-0	54-0 18-0	54-0	18-0	54-0 18-0	54-0	18-0	54-0 18-0	
l	1	"5	2	18	0	36-0	18-0		36-0	18-0	36-0 18-0	36-0	18-0	36-0 18-0	36-0	18-0	36-0 18-0	
m	4	"4	18	3-0	0-6 1-11 0-6	56-0	3-6	0-8 2-2 0-8	43-0	4-9 1-0 2-9	1-0 85-6	51-3	1-1/2 3-0 1-1/2	34-6	6-0	4-2 4-2	16-0	
<i>Additional Schedule to be used for L = 24-0 only</i>																		
k	1	"4	3	22	0	66-0	22-0		66-0	22-0	66-0 22-0	66-0	22-0	66-0 22-0	66-0	22-0	66-0 22-0	
l	1	"5	2	22	0	44-0	22-0		44-0	22-0	44-0 22-0	44-0	22-0	44-0 22-0	44-0	22-0	44-0 22-0	
m	4	"4	22	3-0	0-6 1-11 0-6	66-0	3-6	0-8 2-2 0-8	77-0	3-9 1-0 2-9	1-0 115-3	1-1/2 3-0 1-1/2	115-6	6-0	1-4 3-4	132-0	0-6	132-0

DETAIL OF CRADLE AND BLOCK LOCATIONS

SECTION A-A

ELEVATION OF ANTI-SEEP COLLAR

Shown with Type II Cradle

* Note: length of collar maybe reduced to that required
for a minimum extension of 1-0" into firm stone
of the sides of structure

SECTION ON C
Shown with Type II Cradle

As Constructed

ANTI-SEEP COLLAR (E-1 G.F.L. ST.)						
COLLAR NO.	MATERIAL	SIZE	COST	LEAD TIME	TYPE	PER FT.
1	Steel	1-4	6	1-2 weeks	A	\$11.60
2	Steel	2	3	1-2 weeks	B	\$11.60
3	Steel	3	11.5	1-2 weeks	C	\$11.60
4	Steel	4	6	4 weeks	D	\$11.60
5	Steel	5	6	4 weeks	E	\$11.60
6	Steel	6	1.9	1-2 weeks	F	\$11.60
7	Steel	7	4	1-2 weeks	G	\$11.60
8	Steel	8	4	1-2 weeks	H	\$11.60

TYPE II CRADLE (PER FT. OF CRADLE)

SECTION A-A

PLAN

FRONT ELEVATION

QUANTITIES

Reinforced Concrete
Steel "4 bars" 167.00 lin Ft
(For One (1) Anti-Step Collar or Cradle)

By Contract Modification #1

3 - Expansion Joints

R/C 95 Cu Yds + t-t-1
Steel 10. Pounds ✓

DETAILS OF PRECAST CONCRETE BLOCK

NOTE: Concrete building block or brick may be provided in lieu of precast concrete block as shown.
(Scale 1" = 1'-0")

SECTION ON C

Shown with Type II Cradle

SECTION B-B

With Type II Cradle

STRUCTURE E-1 G.F.L. ST. DETAILS OF ANTI-SEEP COLLAR

FOR 15" PIPE

Lost Creek Watershed Project on Fire Creek
Soil District of Lincoln County, Missouri
Minor Watershed, E Part 3

U.S. DEPARTMENT OF AGRICULTURE
SOIL CONSERVATION SERVICE

H. Luedcke 3-26-54

R. Kuster 4-1-54

D.J. Neubauer 4-8-54 3-E-45620-1

Scale 1" = 1'-0" unless shown

SECTION ON CENTERLINE

PLAN

PLATE-12

STEEL SCHEDULE

LOCATION	MARK	SIZE	AN	TH
Riser	1	#2	2	.9
		3	2	.2
Riser Bafflewall	3	#5	2	4-0
	4	"	2	5-0
Bafflewall	5	#8	1	3-0"
	6	#5	1	3-0"
	7	#4	1	6-9"
	8	"	1	10-9
	9	#5	1	12-9
	10	#3	e	2-0"

QUANTITIES

#2	45.5	Linel	Feet
#3	16.00	"	"
#4	20.50	"	"
#5	31.75		T.C.

BAR TYPE DETAILS

Straight

TYPE

10

3" - 10

8

TABLE SHOWING DIMENSION & MATERIALS

DIMENSION		DIMENSION	
18		18	
12-0		12-0	
14-10		14-10	
12-10		12-10	

~~SEARCHED~~ ~~INDEXED~~ ~~SERIALIZED~~ ~~FILED~~

~~• FILL STA. 21-00000000~~

CONCRETE CIRCULAR T-SER WITH

Lost Creek Watershed
Soil District or Lincoln
Minor Watershed "E"

**U.S. DEPARTMENT OF AGRICULTURE
SOIL CONSERVATION SERVICE**

DESIGNER		DATE	APPROV.
R. N. Lubcke		8-27-50	TITLE
DRAWN BY			
R. N. Murphy		4-1-50	TITLE
REVIEWED		8-2-50	
APPROVED		8-2-50	
SPECIAL INSTRUCTIONS		3-E-45620-P	
STANDARD DESIGN NO. 37504			

PLATE-13

INVESTIGATION		DEVELOPMENT FOR EMERGENCY SPILLWAY DESIGN		CHECK HYDROGRAPH FOR HIGH HAZARD DESIGN		SUMMARY DATA		FLOOD ROUTING		SPILLWAY	
Hours	Min	Acres	Min	Acres	Min	Acres	Min	Elev	Min	Elev	Min
Flow Rate in ft ³ /sec	ft	ft	Flow Rate in ft ³ /sec	ft	Flow Rate in ft ³ /sec	ft	Flow Rate in ft ³ /sec	ft	Flow Rate in ft ³ /sec	ft	Flow Rate in ft ³ /sec
Total Vol Runoff ft ³		Total Vol Runoff ft ³		Total Vol Runoff ft ³		Total Vol Runoff ft ³		Top of Embankment	Elev	Top of Embankment	Elev
(Total Area) _____	Ac Ft	(Total Area) _____	Ac Ft	(Total Area) _____	Ac Ft	(Total Area) _____	Ac Ft	Emergency Spillway	Elev	Emergency Spillway	Elev
								High Stage Inlet	Elev	High Stage Inlet	Elev
								Low Stage Inlet	Elev	Low Stage Inlet	Elev
								Invert Inlet End of Conduit	Elev	Invert Inlet End of Conduit	Elev
								Invert Outlet End of Conduit	Elev	Invert Outlet End of Conduit	Elev
								Maximum Total Head	Elev	Maximum Total Head	Elev
								Print	Emer	Print	Emer
								Degree of Hazard	M2	Degree of Hazard	M2
								Design Rate of Runoff	in/h	Design Rate of Runoff	in/h
								Peak Rate of Inflow	ft/s	Peak Rate of Inflow	ft/s
								Maximum Discharge	ft/s	Maximum Discharge	ft/s
								Elev Maximum Stage	ft	Elev Maximum Stage	ft
								Maximum Storage	loc ft	Maximum Storage	loc ft
								Available Sediment Storage	loc ft	Available Sediment Storage	loc ft
								Below Elev	ft	Below Elev	ft
								Conduit Size	in	Conduit Size	in
								Riser Size	in	Riser Size	in
								Orifice	in	Orifice	in

TIME HOURS	ACCUM PRECIP PERCENT	HYDROGRAPH DEVELOPMENT FOR PRINCIPAL SPILLWAY DESIGN						HYDROGRAPH DEVELOPMENT FOR EMERGENCY SPILLWAY DESIGN						CHECK HIGH WATER	
		CONTROLLED INFLUX CFS	ACCUM PRECIP P-IN	ACCUM RUNOFF Q-IN	Q IN	Q CFS	CONTROLLED INFLUX CFS	ACCUM PRECIP P-IN	ACCUM RUNOFF Q-IN	Q IN	Q CFS				
0.0	0.0	-	-	-	-	-	-	-	-	-	-	-	-	-	
0.5	0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	
1.0	0.8	-	-	-	-	-	-	-	-	-	-	-	-	-	
1.5	1.35	-	-	-	-	-	-	-	-	-	-	-	-	-	
2.0	2.30	-	-	-	-	-	-	-	-	-	-	-	-	-	
2.5	6.00	-	-	-	-	-	-	-	-	-	-	-	-	-	
3.0	10.0	-	-	-	-	-	-	-	-	-	-	-	-	-	
3.5	7.85	-	-	-	-	-	-	-	-	-	-	-	-	-	
4.0	8.14	-	-	-	-	-	-	-	-	-	-	-	-	-	
4.5	8.9	-	-	-	-	-	-	-	-	-	-	-	-	-	
5.0	9.25	-	-	-	-	-	-	-	-	-	-	-	-	-	
5.5	9.65	-	-	-	-	-	-	-	-	-	-	-	-	-	
6.0	9.9	-	-	-	-	-	-	-	-	-	-	-	-	-	
		Total						Total						Total Vol.	
		Runoff R						Runoff R						Vol.	
		Ac ft						Ac ft						Ac ft	
		ABC1						ABC1						ABC1	

PLATE-14

CROSS SECTION FOR FREQUENCY SP. WAY DESIGN				CHECK HYDROGRAPH FOR HIGH HAZARD DESIGN				SUMMARY DATA				FIELD STRUCTURE			
Area	Accum. Runoff	Q = in cfs	Q = in cfs	Controlled Accum. Runoff	Accum. Precip Runoff	Q = in	Q = in cfs	Top of Embankment	Ex.	Top of Embankment	Ex.	Emergency Spillway	Ex.	Emergency Spillway	Ex.
								High Stage Alert	Ex.						
								Low Stage Alert	Ex.						
								Invert Inlet End of Conduit	Ex.						
								Water Outlet End of Conduit	Ex.						
								Maximum Waterlevel	Ex.						
								Degree of Hazard	Ex.						
								Design Rate of Runoff	Ex.						
								Peak Rate of Inflow	Ex.						
								Max. num. Discharge	Ex.						
								Ex. Maximum Stage	Ex.						
								Minimum Storage	Ex.						
								Available Sediment Storage	Ex.						
								Rate of Erosion	Ex.						
								End of Stage	Ex.						
								Water Stage	Ex.						
								Depth	Ex.	Depth	Ex.	Depth	Ex.	Depth	Ex.

PLATE-15

SURFACE EROSION BOHRN AREA	
100% Creek Watershed Soil Conservation Service Michigan State Office Michigan Department of Natural Resources	
U.S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE	
Designed by	Date
Drawn	Approved by
Planned	Planned
Charged	Sheet No. 4 3-E-45612-C

PLATE 16

 LOCATION OF DAM
NOTE: LEGEND OF THIS DAM IS ON PLATE 17

REFERENCE:

GEOLOGIC MAP OF MISSOURI

DEPARTMENT OF NATURAL RESOURCES

MISSOURI GEOLOGICAL SURVEY

**REGIONAL GEOLOGICAL MAP
OF
GENTRY LAKE DAM**

LEGEND

<u>PERIOD</u>	<u>SYMBOL</u>	<u>DESCRIPTION</u>
QUATERNARY	Qal	ALLUVIUM: SAND, SILT, GRAVEL
PENNSYLVANIAN	Pm	MARMATON GROUP: CYCLIC DEPOSITS OF SHALE, LIMESTONE AND SANDSTONE
	Pcc	CHEROKEE GROUP: CYCLIC DEPOSITS OF SHALE, LIMESTONE AND SANDSTONE
MISSISSIPPIAN	Mm	ST. LOUIS FORMATION: LIMESTONE INTERBEDDED WITH SHALE.
	Mm	SALEM FORMATION: LIMESTONE INTERBEDDED WITH SHALE AND SILTSTONE
	Mm	WARSAW FORMATION: ARGILLACEOUS LIMESTONE AND CALCAREOUS SHALE
	Mo	KEOKUK- BURLINGTON FORMATION: CHERTY GRAYISH BROWN SANDY LIMESTONE
	Mk	NORTHVIEW- COMPTON AND BACHELOR FORMATION
DEVONIAN	D	CHATTANOOGA SHALE SYLAMORE SANDSTONE
ORDOVICIAN	Om k	MAQUOKETA SHALE: KIMMSWICK LIMESTONE
	Odp	DECORAH FORMATION: GREEN TO GRAY CALCAREOUS SHALE WITH THIN FOSSILIFEROUS LIMESTONE

PLATE 18

APPENDIX B
HYDROLOGIC AND HYDRAULIC COMPUTATIONS

PLATE I, APPENDIX B

ECI-4 PRC ENGINEERING CONSULTANTS , INC.

DAM SAFETY INSPECTION / MISSOURI - 1980

SHEET NO. 1 OF 2

GENTRY LAKE DAM

JOB NO. 1263

PRINCIPAL STILLWAY DISCHARGE

BY MAS DATE 5-9-80

GENTRY LAKE 2AM

PRINCIPAL SPILLWAY DISCHARGE

Information From SCS DWGS:

$$Q_W = C L h^{3/2} = 3 \cdot 4 \times \pi \times 3' \times h^{3/2} = 32 h^{3/2}$$

Calculation of Discharge:

W. S. Elev.	WEIR FLOW		PRESSURE FLOW		Controlling Discharge Q_p
	h	$Q_w = 32 h^{3/2}$	H	$Q_c = 6.58 H^{1/2}$	
709.5	0	0			0
710	0.5	11.30			11.30
710.2	0.7	18.70	15	25.5	18.70
710.5	1.0	<u>32.0</u>	15.3	25.7	<u>25.70</u>
711.0			15.8	26.2	26.2
715			19.8	29.3	29.3
719.0			23.8	32.1	32.1
720.0			24.8	32.8	32.8
724.5			29.3	35.6	35.6
720.5			25.3	33.1	33.1
721.8			26.6	33.9	33.9
723.2			28.0	34.8	34.8
725.1			29.9	36.0	36.0
725.8			30.6	36.4	36.4
726.5			31.3	36.8	36.8
727.0			31.8	37.1	37.1
729.5			34.3	39.5	38.5

ELI-4 PHC ENGINEERING CONSULTANTS, INC.

DAM SAFETY INSPECTION / MISSOURI - 1980

SHEET NO. 2 OF 2

GENTRY LAKE DAM

JOB NO. 1263

PRINCIPAL SPILLWAY DISCHARGE

BY MAS DATE 5-9-80

* Check for Orifice flow:

$$Q_o = 0.6 A \sqrt{2gh}$$

$$= 0.6 \times 785 \times 9 \sqrt{64.4 \times 1}$$

$$\Rightarrow \underline{\underline{34 \text{ cfs}}}$$

Orifice flow cannot occur.

ECI-4 PRC ENGINEERING CONSULTANTS, INC.

DAM SAFETY INSPECTION / MISSOURI - 1980

SHEET NO. 1 OF 1

GENTRY LAKE DAM (MO 10213)

JOB NO. 1263

EMERGENCY SPILLWAY AND OVERTOP RATING CURVE BY JFK DATE 5/14/80

Y_4	A_4	T_{4i}	$V_{4i} = \sqrt{\frac{A_4}{T_{4i}} g}$	$V_{4i}^2 / 2g$	$Q_{4i} = A_4 V_{4i}$	$\frac{U/S \text{ W.S.}}{V_{4i} + \frac{V_{4i}^2}{2g}}$	C_i	L_i	H_i	$Q_i = C_i L_i H_i^{2/3} \frac{2}{3} (\frac{H_i}{\Delta Y})$	$\frac{Y_{4i}}{\frac{1}{4} \Delta Y}$	T_{4i}	A_{4i}	$Q_{4i} = \left(\frac{A_{4i}}{T_{4i}} \right)^{2/3} Q_{4i} + Q_1 + Q_2$
0	0	0	0	0	0	719.	-	-	-	-	-	-	-	0
1	37.2	41.4	5.4	0.45	200.8	720.5	-	-	-	-	-	-	-	201
2	82.7	49.7	7.3	0.83	603.7	721.8	-	-	-	-	-	-	-	604
3	136.6	58.1	8.7	1.17	1188.4	723.2	-	-	-	-	-	-	-	1188
4	198.9	66.5	9.8	1.49	1249.2	724.5	-	-	-	-	-	-	-	194.9
4.5	233.2	70.6	10.3	1.65	2402.0	725.1	2.70	394	0.6	494.4	0.5	522	1.31	3.7
5	269.6	74.8	10.8	1.81	2911.7	725.8	2.64	394	1.3	1541.8	1.04	1086	5.65	23.1
5.5	308.0	79.0	11.2	1.95	3449.6	726.5	2.63	394	2.0	2930.9	1.6	1670	13.36	67.8
6	324.5	79.0	11.5	2.05	3731.8	727.0	2.63	394	2.5	4096.0	2.0	2088	20.88	118.5
8	390.5	79.0	12.6	2.47	4920.3	729.5	2.63	394	5.0	11585.3	4.0	4176	83.52	670.2
12	522.5	79.0	14.6	3.30	7628.5	734.3	2.63	394	9.8	31790.0	7.84	8185	320.9	3605.6
														43024

ECI-4 PRC ENGINEERING CONSULTANTS, INC.

DAM SAFETY INSPECTION / MISSOURI - 1980

SHEET NO. 1 OF 1

GENTRY LAKE DAM (MO 10213)

JOB NO. 1263

CHECK EMERGENCY SPILLWAY SLOPE

BY JFK DATE 5/14/80

$$T = y (46/\text{s.s.}) + 33$$

$$A = y (1/2 y (46/\text{s.s.}) + 33)$$

$$Q = \left(\frac{BA^3}{T} \right)^{1/2} \quad \text{and} \quad S_c = \left[\frac{Q_m}{1.49 A_c R_c^{2/3}} \right]^2$$

Mildest Slope in Spillway, $s = 6''/36' = 0.014$

for $y = 1$,

$$A = 37.2$$

$$T = 41.4$$

$$Q = 201$$

$$S_c = \left[\frac{201 (0.02)}{1.49 (37.2) (0.89)^{2/3}} \right]^2 = 0.006$$

$s > S_c$ O.K.

for $y = .5$,

$$A = 269.5$$

$$T = 74.8$$

$$Q = 2911.7$$

$$S_c = \left[\frac{2911.7 (0.02)}{1.49 (269.5) (3.55)^{2/3}} \right]^2 = 0.001$$

$s > S_c$ O.K.

∴ The assumption of critical depth at the spillway crest is valid.

ECI-4 PRC ENGINEERING CONSULTANTS, INC.

DAM SAFETY INSPECTION / MISSOURI

SHEET NO. 1 OF 1

GENTRY LAKE DAM (MO 10213)

JOB NO. 1263

COMBINED RATING CURVE

BY JFK DATE 5/14/60

COMBINED SPILLWAYS AND OVERTOP RATING CURVE TABULATION

RESERVOIR WATER SURFACE ELEVATION	PRINCIPAL SPILLWAY DISCHARGE	EMERGENCY SPILLWAY AND OVERTOP DISCHARGE	COMBINED DISCHARGE
709.5	0	0	0
710.0	11	0	11
710.2	19	0	19
710.5	26	0	26
711.0	26	0	26
715.0	29	0	29
719.0	32	0	32
720.0	33	135	168
720.5	33	201	234
721.8	34	604	638
723.2	35	1188	1223
724.5	36	1949	1985
725.1	36	2900	2936
725.8	36	4477	4513
726.5	37	6448	6485
727.0	37	7946	7983
729.5	39	17176	17215
734.3	41	43024	43065

PLATE 2, APPENDIX B

GENTRY LAKE DAM (MO. 10213)
SPILLWAY & OVERTOP RATING CURVE

AD-A104 617

CONSOER TOWNSEND AND ASSOCIATES LTD ST LOUIS MO
NATIONAL DAM SAFETY PROGRAM, GENTRY LAKE DAM (MO 10213), MISSISS--ETC(U)
JUL 80 W G SHIFRIN

F/G 13/15

DACW43-80-C-0094

NL

UNCLASSIFIED

2+2
AD-A104 617

END
DATE
FILED
10-81
DTIC

E-1-4 PRC ENGINEERING CONSULTANTS, INC.

DAM SAFETY INSPECTION/MISCELLANEOUS INFO

SHEET NO. 1 OF 1

GENTRY LAKE DAM

JOB NO. 1263

RESERVOIR AREA CAPACITY TABLE

BY MAS DATE 5-1-80

GENTRY LAKE DAMRESERVOIR ELEV. AREA CAPACITY TABLE

Elevation (M.S.L) Ft.	Reservoir Area (Acres)	Cumulative Storage (Ac. Ft.)	Remarks
700	0	0	
704.2	1.58	3.32	→ Data from SCS Drawings
707.2	2.62	9.62	
709.5	3.48	16.64	Principal Spillway Circuit
710.2	3.52	19.20	
713.5	5.19	34.03	Data from SCS Drawings
716.0	6.38	48.51	
719.0	7.90	69.93	Interpolated values at Emergency Spillway Circuit
720.0	8.40	78.11	
722.0	9.85	96.36	Data from SCS DWG.
724.5	11.70	123.0	Extrapolated area & capacity at top of dam
740	23	392	Area at El 740 is from USGS topo map.

PLATE 3, APPENDIX B

GENTRY LAKE DAM (MO. 10213)
RESERVOIR CAPACITY CURVE

ECI-4 PRC ENGINEERING CONSULTANTS, INC.

DAM SAFETY INSPECTION / MISSOURI - 1980 SHEET NO. 1 OF 1
 DAM NAME: GENTRY LAKE DAM (MO 10213) JOB NO. 1263
 PROBABLE MAXIMUM PRECIPITATION BY JFK DATE 5/1/80

DETERMINATION OF PMP

- 1) Determine drainage area of the basin

$$D.A. = 0.29 \text{ sq. mi.}$$

- 2) Determine PMP Index Rainfall (for D.A. = 200 sq. mi. & 24 hr. duration)

Location of centroid of basin,

$$\text{Long.} = 90^\circ 50' 18'' \quad \text{Lat.} = 39^\circ 06' 37''$$

$$\text{PMP} = 24.7'' \quad (\text{from Fig. 1, HMR 33})$$

$$\text{Zone} = 7$$

- 3) Determine basin rainfall in terms of percentage of PMP Index Rainfall for various durations.
 (from Fig. 2, HMR 33)

Duration (Hrs.)	Percent of Index Rainfall (%)	Total Rainfall (Inches)	Rainfall Increments (Inches)	Duration of Increment (Hrs.)
6	100	24.7	24.7	6
12	120	29.6	4.9	6
24	130	32.1	2.5	12

GENTRY LAKE DAM

⊗ Location of Centroid of Basin

FIGURE 1
PROBABLE MAXIMUM PRECIPITATION
For 200 Square Miles - 24 Hours (in inches)
THE ALL SEASON ENVELOPE

ECI-4 PRC ENGINEERING CONSULTANTS, INC.

DAM SAFETY INSPECTION / MISSOURI - 1980

SHEET NO. 1 OF 1

DAM NAME: GENTRY LAKE DAM (MO 10213)

JOB NO. 1263

UNIT HYDROGRAPH PARAMETERS

BY JFK DATE 5/1/80

- 1) DRAINAGE AREA, $A = 0.29 \text{ sq. mi} = (182.5 \text{ acres})$
- 2) LENGTH OF STREAM, $L = (1.4'' \times 2000') = 2800' = 0.53 \text{ mi.}$
- 3) ELEVATION AT DRAINAGE DIVIDE ALONG THE LONGEST STREAM,
 $H_1 = 900'$
- 4) ELEVATION OF RESERVOIR AT SPILLWAY CREST, $H_2 = 709.5'$
- 5) ELEVATION OF CHANNEL BED AT $0.85L$, $E_{85} = 860'$
- 6) ELEVATION OF CHANNEL BED AT $0.10L$, $E_{10} = 715'$
- 7) AVERAGE SLOPE OF THE CHANNEL, $S_{AVG} = (E_{85} - E_{10}) / 0.75L = 860 - 715 / 2100 = 0.069$
- 8) TIME OF CONCENTRATION:
 - A) BY KIRPICH'S EQUATION,
 $t_c = [(11.9 \times L^3) / (H_1 - H_2)]^{0.385} = [11.9 \times (0.53)^3 / (900 - 709.5)]^{0.385} = 0.17 \text{ hr.}$
 - B) BY VELOCITY ESTIMATE,
 $\text{SLOPE} = 0.069 \Rightarrow \text{AVERAGE VELOCITY} = 5 \text{ fps}$
 $t_c = L/V = 2800 / (5 \times 3600) = 0.16 \text{ hr}$
 USE $t_c = 0.17 \text{ hr}$
- 9) LAG TIME, $t_l = 0.6 t_c = 0.6 (0.17) = 0.10 \text{ hr}$
- 10) UNIT DURATION, $D \leq t_c / 3 = 0.10 / 3 = 0.033 < 0.083 \text{ hr.}$
 USE $D = 0.083 \text{ hr}$
- 11) TIME TO PEAK, $T_p = D/2 + t_l = 0.083/2 + 0.10 = 0.14 \text{ hr}$
- 12) PEAK DISCHARGE,
 $q_p = (484 \times A) / T_p = 484 \times 0.29 / 0.14 = 1003 \text{ cfs}$

ECI-4 PRC ENGINEERING CONSULTANTS, INC.

DAM SAFETY INSPECTION / MISSOURI

SHEET NO. 1 OF 1

DAM NAME: GENTRY LAKE DAM (SMO 10213)

JOB NO. 1263

CURVE NUMBER DETERMINATION

BY JPK DATE 5/1/80

I) SOIL GROUP

WATERSHED SOILS IN THE BASIN CONSIST OF GROUP A.

(B)
(C)
(D)

GROUP C SOILS PREDOMINATE THE BASIN. THEREFORE,
ASSUME GROUP C SOILS FOR THE ENTIRE WATERSHED
FOR HYDROLOGIC PURPOSES.

II) COVER COMPLEX

ASSUMED HYDROLOGIC CONDITION OF THE WATERSHED: FAIR

LAND USE	PER CENT AREA	CN (AMC II)
WOODS	75	73
PASTURE OR RANGE	25	79

III) CURVE NUMBER

WEIGHTED AVERAGE CN = 75 FOR AMC II

CURVE NUMBER = 88 FOR AMC III

ECI-4 PRC ENGINEERING CONSULTANTS, INC.

DAM SAFETY INSPECTION / MISSOURI - 1980

SHEET NO. 1 OF 1

GENTRY LAKE LAD (M) 10213)

JOB NO. 1263

STARTING WATER SURFACE ELEVATION FOR PMF BY JFK DATE 5/15/80

$$S_i - S_f = \bar{Q} \Delta t$$

$$S_i - S_f / \bar{Q} = \Delta t$$

ELEV _i (ft)	ELEV _f (ft)	S _i (ac-ft)	S _f (ac-ft)	ΔS (ac-ft)	\bar{Q} (cfs)	Δt (hrs)
718.5	717	67	56	11	31	4.3
717	715	56	43	13	30	5.2
715	713	43	32	11	28.5	4.7
713	711	32	23	11	27	4.9
711	709.5	23	21	2	26	0.9
710.5	709.5	21	17	4	11	4.4
$\Sigma = 24.4 \text{ hrs}$						

TIME AT END OF INFLOW = 24.25 hrs , TOTAL TIME = 24.4 hrs + 24.25 hrs = 48.65 hrs
 = 2 days < 4 days

IF THE 1/2 PMF PRECEDES THE PMF BY 4 DAYS, THE RESERVOIR
 POOL WILL HAVE DRAINED TO THE LEVEL OF THE PRINCIPAL
 SPILLWAY WITHIN THAT TIME. THEREFORE, START THE PMF
 ROUTING AT THE PRINCIPAL SPILLWAY CREST ELEVATION.

HEC1DB INPUT DATA

LOGO HYDROGRAPH PACKAGE (HFC-1)
CAN SAFETY VERSION JULY 1978
LAST MODIFICATION 26 FEB 79

DAY SAFETY INSPECTION - MISSOURI
 GENTRY LAKE DAM (NO 10213)
 PWF AND 50 PERCENT PWF

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29		
Y1	0	0	300	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Y2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Y3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Y4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Y5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Y6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Y7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Y8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Y9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Y10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Y11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Y12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Y13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Y14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Y15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Y16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Y17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Y18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Y19	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Y20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Y21	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Y22	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Y23	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Y24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Y25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Y26	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Y27	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Y28	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Y29	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

1 INPUT PRECIPITATION INDEX RATIOS, AND UNIT HYDROGRAPH PARAMETERS
 2 ROUTE HYDROGRAPH THROUGH GENTRY LAKE DAM (NO 10213)

INFLOW PMF AND ONE-HALF PMF HYDROGRAPHS

PRI VIE OF SEQUENCE OF STREAM NFT-CHK CALCULATIONS
RUNCFT HYDROGRAPH AT C10213
ROUTE HYDROGRAPH TU C10213
END OF NFT-CHK

FLOUR HYDROGRAPH PACKAGE (HFC-1)
DATA ENTRY VERSION 16 JULY 1978
LAST NO. INJECTION 16 FEB 78

RUN DATE 11/05/78
TIME 08:56:27

DAM SAFETY INSPECTION - HFC-C-1
CUTOFF LINE 0M TWO 102133
PMF A% - 0 PERCENT PMF

NO	NAME	TYPE	1-AAY	JO SPECIFICATION
1	SPFE	0	0	1HP 1W1 1P1P 0 0 0 J-PROT L-OPT S-NACE 0 0 0

MULTI-PLATE ANALYSIS TO PLATFORM
INLET 1 NITRUE = LP110E 1

RTTUSE 1.00 0.00

SUB-BRUTE RUN OFF COMPUTATION

INPUT PRECIPITATION, INfiltrations, AND UNIT HYDROGRAPH PARAMETERS

1STA:	ICAMP	1STCON	1STAPE	1PLT	1P1P	1NTR	1STAGE	1LUTO
01-21:	0	0	0	0	0	0	0	0

HYD	1UNG	1APTE	2NAC	1NSNA	1RSNA	1STG0A	1STG0B	1SANT	1DOL
1	0.29	0.00	0.00	1.00	1.00	0.00	0.00	0	0

PRECIP DATA

SPFE	PIS	24	912	924	946	972	996	0.00	0.00
0.30	24.00	100.00	120.00	130.00	140.00	150.00	160.00	0.00	0.00

L-PROT	STW1	AT1CL	LR1AI	STATS	WT100	STATL	ALSHX	WT100C
0.00	0.00	1.00	-0.00	-0.00	1.00	-0.00	-0.00	0.00

CURVE NO = -0.50.00 WT100C = -1.00 EFFECT CN = 0.0.30

TC= 0.00 LAC= .10

SINTGE	0.0	ACCESSION DATA	RTTUSE = 1.00
GCSN=	0.00		

TIME INCREMENT 100 LARGE--(hr). 100 LAG/2

UNIT HYDROGRAPH B END OF PERIOD 200100	TC=	-0.000 NCURE	LAG= .10 VOL= 1.00

NO. & PERIOD	PERIOD	RAIN	EXCISE	LOSS	EVC-A	EVC-B	FLUX	EVC-C	FLUX	HD-MN	PREVIOUS	MAIN	EACS	LOSS	COMP. %	
500.	940.	415.	160.	51.	24.	10.	3.	500.	940.	415.	160.	51.	24.	10.	3.	500.
1.01	1.05	1	.01	.01	.01	.01	.01	1.01	12.35	151	.01	.01	.01	.01	.01	4.99.
1.01	1.10	2	.01	.01	.01	.01	.01	1.01	10.42	152	.01	.01	.01	.01	.01	450.
1.01	1.15	3	.01	.01	.01	.01	.01	1.01	12.45	153	.01	.01	.01	.01	.01	450.
1.01	1.20	5	.01	.01	.01	.01	.01	1.01	10.50	154	.01	.01	.01	.01	.01	451.
1.01	1.25	6	.01	.01	.01	.01	.01	1.01	11.55	155	.01	.01	.01	.01	.01	451.
1.01	1.30	7	.01	.01	.01	.01	.01	1.01	11.00	156	.01	.01	.01	.01	.01	452.
1.01	1.35	8	.01	.01	.01	.01	.01	1.01	12.05	157	.01	.01	.01	.01	.01	476.
1.01	1.40	9	.01	.01	.01	.01	.01	1.01	11.10	158	.01	.01	.01	.01	.01	516.
1.01	1.45	10	.01	.01	.01	.01	.01	1.01	13.17	159	.01	.01	.01	.01	.01	535.
1.01	1.50	11	.01	.01	.01	.01	.01	1.01	15.20	160	.01	.01	.01	.01	.01	540.
1.01	1.55	12	.01	.01	.01	.01	.01	1.01	17.74	161	.01	.01	.01	.01	.01	543.
1.01	1.60	13	.01	.01	.01	.01	.01	1.01	15.71	162	.01	.01	.01	.01	.01	545.
1.01	1.65	14	.01	.01	.01	.01	.01	1.01	17.36	163	.01	.01	.01	.01	.01	545.
1.01	1.70	15	.01	.01	.01	.01	.01	1.01	11.40	164	.01	.01	.01	.01	.01	566.
1.01	1.75	16	.01	.01	.01	.01	.01	1.01	11.45	165	.01	.01	.01	.01	.01	566.
1.01	1.80	17	.01	.01	.01	.01	.01	1.01	17.50	166	.01	.01	.01	.01	.01	547.
1.01	1.85	18	.01	.01	.01	.01	.01	1.01	17.74	167	.01	.01	.01	.01	.01	547.
1.01	1.90	19	.01	.01	.01	.01	.01	1.01	15.00	168	.01	.01	.01	.01	.01	547.
1.01	1.95	20	.01	.01	.01	.01	.01	1.01	16.37	169	.01	.01	.01	.01	.01	586.
1.01	2.00	21	.01	.01	.01	.01	.01	1.01	14.37	170	.01	.01	.01	.01	.01	644.
1.01	2.05	22	.01	.01	.01	.01	.01	1.01	14.10	171	.01	.01	.01	.01	.01	670.
1.01	2.10	23	.01	.01	.01	.01	.01	1.01	14.15	172	.01	.01	.01	.01	.01	670.
1.01	2.15	24	.01	.01	.01	.01	.01	1.01	14.20	173	.01	.01	.01	.01	.01	680.
1.01	2.20	25	.01	.01	.01	.01	.01	1.01	14.30	174	.01	.01	.01	.01	.01	684.
1.01	2.25	26	.01	.01	.01	.01	.01	1.01	14.35	175	.01	.01	.01	.01	.01	686.
1.01	2.30	27	.01	.01	.01	.01	.01	1.01	14.40	176	.01	.01	.01	.01	.01	687.
1.01	2.35	28	.01	.01	.01	.01	.01	1.01	14.45	177	.01	.01	.01	.01	.01	687.
1.01	2.40	29	.01	.01	.01	.01	.01	1.01	14.50	178	.01	.01	.01	.01	.01	687.
1.01	2.45	30	.01	.01	.01	.01	.01	1.01	14.55	179	.01	.01	.01	.01	.01	698.
1.01	2.50	31	.01	.01	.01	.01	.01	1.01	15.00	180	.01	.01	.01	.01	.01	698.
1.01	2.55	32	.01	.01	.01	.01	.01	1.01	15.05	181	.01	.01	.01	.01	.01	698.
1.01	2.60	33	.01	.01	.01	.01	.01	1.01	15.10	182	.01	.01	.01	.01	.01	698.
1.01	2.65	34	.01	.01	.01	.01	.01	1.01	15.15	183	.01	.01	.01	.01	.01	743.
1.01	2.70	35	.01	.01	.01	.01	.01	1.01	17.20	184	.01	.01	.01	.01	.01	919.
1.01	2.75	36	.01	.01	.01	.01	.01	1.01	14.55	185	.01	.01	.01	.01	.01	1177.
1.01	2.80	37	.01	.01	.01	.01	.01	1.01	15.30	186	.01	.01	.01	.01	.01	1943.
1.01	2.85	38	.01	.01	.01	.01	.01	1.01	15.35	187	.01	.01	.01	.01	.01	2546.
1.01	2.90	39	.01	.01	.01	.01	.01	1.01	15.40	188	1.01	1.01	1.01	1.01	1.01	3919.
1.01	2.95	40	.01	.01	.01	.01	.01	1.01	15.45	189	.01	.01	.01	.01	.01	2775.
1.01	3.00	41	.01	.01	.01	.01	.01	1.01	17.20	190	.01	.01	.01	.01	.01	1935.
1.01	3.05	42	.01	.01	.01	.01	.01	1.01	15.75	191	.01	.01	.01	.01	.01	1177.
1.01	3.10	43	.01	.01	.01	.01	.01	1.01	15.80	192	.01	.01	.01	.01	.01	1064.
1.01	3.15	44	.01	.01	.01	.01	.01	1.01	16.04	193	.01	.01	.01	.01	.01	1463.
1.01	3.20	45	.01	.01	.01	.01	.01	1.01	17.05	194	.01	.01	.01	.01	.01	873.
1.01	3.25	46	.01	.01	.01	.01	.01	1.01	16.10	195	.01	.01	.01	.01	.01	1455.
1.01	3.30	47	.01	.01	.01	.01	.01	1.01	16.51	196	.01	.01	.01	.01	.01	676.
1.01	3.35	48	.01	.01	.01	.01	.01	1.01	16.56	197	.01	.01	.01	.01	.01	656.
1.01	3.40	49	.01	.01	.01	.01	.01	1.01	16.51	198	.01	.01	.01	.01	.01	649.
1.01	3.45	50	.01	.01	.01	.01	.01	1.01	16.56	199	.01	.01	.01	.01	.01	646.
1.01	3.50	51	.01	.01	.01	.01	.01	1.01	16.46	200	.01	.01	.01	.01	.01	645.
1.01	3.55	52	.01	.01	.01	.01	.01	1.01	16.40	201	.01	.01	.01	.01	.01	645.
1.01	3.60	53	.01	.01	.01	.01	.01	1.01	16.26	202	.01	.01	.01	.01	.01	645.
1.01	3.65	54	.01	.01	.01	.01	.01	1.01	16.10	203	.01	.01	.01	.01	.01	645.
1.01	3.70	55	.01	.01	.01	.01	.01	1.01	17.00	204	.01	.01	.01	.01	.01	606.

HYPOTHYROIDISM AT CRAGLEES FOR PLAN 10 WITH 1

6557	6557
C-1	214
C-2	70
1-200	60
2-200	50-60
3-200	770-795
4-200	470-500
5-200	500-520
6-200	520-540
7-200	540-560
8-200	560-580
9-200	580-600
10-200	600-620
11-200	620-640
12-200	640-660
13-200	660-680
14-200	680-700
15-200	700-720
16-200	720-740
17-200	740-760
18-200	760-780
19-200	780-800
20-200	800-820
21-200	820-840
22-200	840-860
23-200	860-880
24-200	880-900
25-200	900-920
26-200	920-940
27-200	940-960
28-200	960-980
29-200	980-1000
30-200	1000-1020
31-200	1020-1040
32-200	1040-1060
33-200	1060-1080
34-200	1080-1100
35-200	1100-1120
36-200	1120-1140
37-200	1140-1160
38-200	1160-1180
39-200	1180-1200
40-200	1200-1220
41-200	1220-1240
42-200	1240-1260
43-200	1260-1280
44-200	1280-1300
45-200	1300-1320
46-200	1320-1340
47-200	1340-1360
48-200	1360-1380
49-200	1380-1400
50-200	1400-1420
51-200	1420-1440
52-200	1440-1460
53-200	1460-1480
54-200	1480-1500
55-200	1500-1520
56-200	1520-1540
57-200	1540-1560
58-200	1560-1580
59-200	1580-1600
60-200	1600-1620
61-200	1620-1640
62-200	1640-1660
63-200	1660-1680
64-200	1680-1700
65-200	1700-1720
66-200	1720-1740
67-200	1740-1760
68-200	1760-1780
69-200	1780-1800
70-200	1800-1820
71-200	1820-1840
72-200	1840-1860
73-200	1860-1880
74-200	1880-1900
75-200	1900-1920
76-200	1920-1940
77-200	1940-1960
78-200	1960-1980
79-200	1980-2000
80-200	2000-2020
81-200	2020-2040
82-200	2040-2060
83-200	2060-2080
84-200	2080-2100
85-200	2100-2120
86-200	2120-2140
87-200	2140-2160
88-200	2160-2180
89-200	2180-2200
90-200	2200-2220
91-200	2220-2240
92-200	2240-2260
93-200	2260-2280
94-200	2280-2300
95-200	2300-2320
96-200	2320-2340
97-200	2340-2360
98-200	2360-2380
99-200	2380-2400
100-200	2400-2420
101-200	2420-2440
102-200	2440-2460
103-200	2460-2480
104-200	2480-2500
105-200	2500-2520
106-200	2520-2540
107-200	2540-2560
108-200	2560-2580
109-200	2580-2600
110-200	2600-2620
111-200	2620-2640
112-200	2640-2660
113-200	2660-2680
114-200	2680-2700
115-200	2700-2720
116-200	2720-2740
117-200	2740-2760
118-200	2760-2780
119-200	2780-2800
120-200	2800-2820
121-200	2820-2840
122-200	2840-2860
123-200	2860-2880
124-200	2880-2900
125-200	2900-2920
126-200	2920-2940
127-200	2940-2960
128-200	2960-2980
129-200	2980-3000
130-200	3000-3020
131-200	3020-3040
132-200	3040-3060
133-200	3060-3080
134-200	3080-3100
135-200	3100-3120
136-200	3120-3140
137-200	3140-3160
138-200	3160-3180
139-200	3180-3200
140-200	3200-3220
141-200	3220-3240
142-200	3240-3260
143-200	3260-3280
144-200	3280-3300
145-200	3300-3320
146-200	3320-3340
147-200	3340-3360
148-200	3360-3380
149-200	3380-3400
150-200	3400-3420
151-200	3420-3440
152-200	3440-3460
153-200	3460-3480
154-200	3480-3500
155-200	3500-3520
156-200	3520-3540
157-200	3540-3560
158-200	3560-3580
159-200	3580-3600
160-200	3600-3620
161-200	3620-3640
162-200	3640-3660
163-200	3660-3680
164-200	3680-3700
165-200	3700-3720
166-200	3720-3740
167-200	3740-3760
168-200	3760-3780
169-200	3780-3800
170-200	3800-3820
171-200	3820-3840
172-200	3840-3860
173-200	3860-3880
174-200	3880-3900
175-200	3900-3920
176-200	3920-3940
177-200	3940-3960
178-200	3960-3980
179-200	3980-4000
180-200	4000-4020
181-200	4020-4040
182-200	4040-4060
183-200	4060-4080
184-200	4080-4100
185-200	4100-4120
186-200	4120-4140
187-200	4140-4160
188-200	4160-4180
189-200	4180-4200
190-200	4200-4220
191-200	4220-4240
192-200	4240-4260
193-200	4260-4280
194-200	4280-4300
195-200	4300-4320
196-200	4320-4340
197-200	4340-4360
198-200	4360-4380
199-200	4380-4400
200-200	4400-4420
201-200	4420-4440
202-200	4440-4460
203-200	4460-4480
204-200	4480-4500
205-200	4500-4520
206-200	4520-4540
207-200	4540-4560
208-200	4560-4580
209-200	4580-4600
210-200	4600-4620
211-200	4620-4640
212-200	4640-4660
213-200	4660-4680
214-200	4680-4700
215-200	4700-4720
216-200	4720-4740
217-200	4740-4760
218-200	4760-4780
219-200	4780-4800
220-200	4800-4820
221-200	4820-4840
222-200	4840-4860
223-200	4860-4880
224-200	4880-4900
225-200	4900-4920
226-200	4920-4940
227-200	4940-4960
228-200	4960-4980
229-200	4980-5000
230-200	5000-5020
231-200	5020-5040
232-200	5040-5060
233-200	5060-5080
234-200	5080-5100
235-200	5100-5120
236-200	5120-5140
237-200	5140-5160
238-200	5160-5180
239-200	5180-5200
240-200	5200-5220
241-200	5220-5240
242-200	5240-5260
243-200	5260-5280
244-200	5280-5300
245-200	5300-5320
246-200	5320-5340
247-200	5340-5360
248-200	5360-5380
249-200	5380-5400
250-200	5400-5420
251-200	5420-5440
252-200	5440-5460
253-200	5460-5480
254-200	5480-5500
255-200	5500-5520
256-200	5520-5540
257-200	5540-5560
258-200	5560-5580
259-200	5580-5600
260-200	5600-5620
261-200	5620-5640
262-200	5640-5660
263-200	5660-5680
264-200	5680-5700
265-200	5700-5720
266-200	5720-5740
267-200	5740-5760
268-200	5760-5780
269-200	5780-5800
270-200	5800-5820
271-200	5820-5840
272-200	5840-5860
273-200	5860-5880
274-200	5880-5900
275-200	5900-5920
276-200	5920-5940
277-200	5940-5960
278-200	5960-5980
279-200	5980-6000
280-200	6000-6020
281-200	6020-6040
282-200	6040-6060
283-200	6060-6080
284-200	6080-6100
285-200	6100-6120
286-200	6120-6140
287-200	6140-6160
288-200	6160-6180
289-200	6180-6200
290-200	6200-6220
291-200	6220-6240
292-200	6240-6260
293-200	6260-6280
294-200	6280-6300
295-200	6300-6320
296-200	6320-6340
297-200	6340-6360
298-200	6360-6380
299-200	6380-6400
300-200	6400-6420
301-200	6420-6440
302-200	6440-6460
303-200	6460-6480
304-200	6480-6500
305-200	6500-6520
306-200	6520-6540
307-200	6540-6560
308-200	6560-6580
309-200	6580-6600
310-200	6600-6620
311-200	6620-6640
312-200	6640-6660
313-200	6660-6680
314-200	6680-6700
315-200	6700-6720
316-200	6720-6740
317-200	6740-6760
318-200	6760-6780
319-200	6780-6800
320-200	6800-6820
321-200	6820-6840
322-200	6840-6860
323-200	6860-6880
324-200	6880-6900
325-200	6900-6920
326-200	6920-6940
327-200	6940-6960
328-200	6960-6980
329-200	6980-7000
330-200	7000-7020
331-200	7020-7040
332-200	7040-7060
333-200	7060-7080
334-200	7080-7100
335-200	7100-7120
336-200	7120-7140
337-200	7140-7160
338-200	7160-7180
339-200	7180-7200
340-200	7200-7220
341-200	7220-7240
342-200	7240-7260
343-200	7260-7280
344-200	7280-7300
345-200	7300-7320
346-200	7320-7340
347-200	7340-7360
348-200	7360-7380
349-200	7380-7400
350-200	7400-7420
351-200	7420-7440
352-200	7440-7460
353-200	7460-7480
354-200	7480-7500
355-200	7500-7520
356-200	7520-7540
357-200	7540-7560
358-200	7560-7580
359-200	7580-7600
360-200	7600-7620
361-200	7620-7640
362-200	7640-7660
363-200	7660-7680
364-200	7680-7700
365-200	7700-7720
366-200	7720-7740
367-200	7740-7760
368-200	7760-7780
369-200	7780-7800
370-200	7800-7820
371-200	7820-7840
372-200	7840-7860
373-200	7860-7880
374-200	7880-7900
375-200	7900-7920
376-200	7920-7940
377-200	7940-7960
378-200	7960-7980
379-200	7980-8000
380-200	8000-8020
381-200	8020-8040
382-200	8040-8060
383-200	8060-8080
384-200	8080-8100
385-200	8100-8120
386-200	8120-8140
387-200	8140-8160
388-200	8160-8180
389-200	8180-8200
390-200	8200-8220
391-200	8220-8240
392-200	8240-8260
393-200	8260-8280
394-200	8280-8300
395-200	8300-8320
396-200	8320-8340
397-200	8340-8360
398-200	8360-8380
399-200	8380-8400
400-200	8400-8420
401-200	8420-8440
402-200	8440-8460
403-200	8460-8480
404-200	8480-8500
405-200	8500-8520
406-200	8520-8540
407-200	8540-8560
408-200	8560-8580
409-200	8580-

THE JOURNAL OF CLIMATE

FLOOD ROUTING

KINETIC HOMOLOGUE THIOGLUTATHIONE (KGTH) 1021

PEAK OUTLET & 15 27.30 ± 1.11% 11.75 ± 0.00%

PRICE	1-1000	1-4-HOUR	7-24-HOUR	TOTAL	VOLUME
7.90	7.90	212.	203.	61012.	
7.90	21.	6.	6.	1728.	
23.50	23.50	27.18	27.18	27.18	
59.00	59.00	67.41	67.41	67.41	
175.	175.	420.	425.	420.	
450.	450.	518.	518.	518.	

STATION 010213. PLAN 10. RATIO 2
LNG-UF-PTRIG. NO. PCC-104. QUADRANT 5

711.4	711.6	711.0	711.1	711.2	711.3	711.4
711.4	711.5	711.7	711.8	711.9	711.9	712.0
712.1	712.2	712.3	712.4	712.5	712.6	712.7
712.4	712.9	713.0	713.1	713.2	713.3	713.4
713.5	713.6	713.7	713.8	713.9	713.9	714.0
714.6	714.7	714.8	714.9	714.9	715.0	715.0
714.9	715.0	715.1	715.2	715.3	715.4	715.5
715.5	715.6	715.7	715.8	715.9	715.9	716.0
716.0	716.1	716.2	716.3	716.4	716.4	716.5
716.5	716.6	716.7	716.8	716.9	716.9	717.0
717.1	717.2	717.3	717.4	717.5	717.5	717.6
717.6	717.7	717.8	717.9	718.0	718.0	718.1
718.4	718.5	718.6	718.7	718.8	718.8	718.9
719.0	719.1	719.2	719.3	719.4	719.4	719.5
719.4	719.5	719.6	719.7	719.8	719.8	719.9
719.8	719.9	720.0	720.1	720.2	720.2	720.3
720.2	720.3	720.4	720.5	720.6	720.6	720.7
720.6	720.7	720.8	720.9	720.9	720.9	721.0
721.3	721.4	721.5	721.6	721.7	721.7	721.8
721.6	721.7	721.8	721.9	721.9	721.9	722.0
722.0	722.1	722.2	722.3	722.4	722.4	722.5
722.4	722.5	722.6	722.7	722.8	722.8	722.9
722.8	722.9	723.0	723.1	723.2	723.2	723.3

THE AMERICAN JOURNAL OF PSYCHOLOGY.

SUMMARY OF PMF AND ONE-HALF PMF FLOOD ROUTING

WATER AND STORMS - TABLE OF DATA FOR MULTIPLE PLANE-RATIO ECONOMIC COMPUTATIONS
FLOWS IN CUBIC FEET PER SECOND (CUBIC METERS PER SECOND)
AREA IN SQUARE MILES (.001 KILOMETERS²)

SECTION	FLOW	AREA	PLAN-RATIO	RATIO ²	RATIOS APPLIED TO FLOWS
W. 2000' - 2000' CHT	1000	1	1.000	1.000	1000
right 1' - 11521'	1000	1	1.000	1.000	1000

SUMMARY OF DAM SAFETY ANALYSIS

PLAN	ELEVATION STOKE OUTFLOW	INITIAL VALUE	SPILLWAY CREST 716.50 17. 0.	TOP OF DAM 724.50 17. 123. 1905.
WATER LEVEL PERIOD	MAXIMUM WATER LEVEL IN FEET 0.50	MAXIMUM STOKE OUTFLOW AC-FT	MAXIMUM OUTFLOW CFS	LOCATION WATER TOP HOURS
1.00 0.00	716.01 724.50	0.1 0.00	17. 1130.	TIME OF MAX OUTFLOW HOURS 0.00 0.00

PERCENT OF PMF FLOOD ROUTING
EQUAL TO SPILLWAY CAPACITY

**** FLOOD HYDROGRAPH PACKAGE (HEC-1)
 DAM SAFETY VERSION JULY 1978
 LAST MODIFICATION 26 FEB 79

		DAM SAFETY INSPECTION - MISSOURI		
		GENTRY LAKE DAM (MO 10213)		
		PERCENT SWF		
		0	C	0
		-4	0	3
1				0
2				
3				
4	A2	300	0	
5		5		
6		1	4	1
7		•75	•77	•78
8		0	•010213	
9	K1	INPUT PRECIPITATION INDEX RATIOS, AND UNIT HYDROGRAPH PARAMETERS	1	
10		1	2	•29
11		24.7	130	130
12	T			-1
13				-88
14	X	6	1	
15	X	0	1	
16	K1	•010213	ROUTE HYDROGRAPH THROUGH GENTRY LAKE DAM (MO 10213)	1
17	Y1	1	0	0
18	Y4	709.5	710.2	710.5
19	Y4	723.2	724.5	725.1
20	Y5	3	11	15
21	Y5	1223	1985	2936
22	Y5	0	3.32	6.62
23	Y5	123	125	16.64
24	Y5	15	15	19.02
25	SE	709.2	709.5	710.2
26	SE	724.5	743	
27	SE	709.5		
28	SE	724.5		
29		99		

PREVIEW OF SEQUENCE OF STEEL NETWORK CALCULATIONS

END OFF HYDROGRAPH AT
ROUTE HYDROGRAPH TO
END OF NETWORK

C10215

010211

DATE: 4/10/2000

PROPERTY INSPECTION - MISSOURI
AT THE LAKE DAM (2, 16214)
CITY OF ST. LOUIS, MO.

• 67 •
• 68 •
• 69 •
• 70 •
• 71 •
• 72 •
• 73 •
• 74 •
• 75 •
• 76 •
• 77 •
• 78 •
• 79 •
• 80 •
• 81 •
• 82 •
• 83 •
• 84 •
• 85 •
• 86 •
• 87 •
• 88 •
• 89 •
• 90 •
• 91 •
• 92 •
• 93 •
• 94 •
• 95 •
• 96 •
• 97 •
• 98 •
• 99 •
• 100 •
• 101 •
• 102 •
• 103 •
• 104 •
• 105 •
• 106 •
• 107 •
• 108 •
• 109 •
• 110 •
• 111 •
• 112 •
• 113 •
• 114 •
• 115 •
• 116 •
• 117 •
• 118 •
• 119 •
• 120 •
• 121 •
• 122 •
• 123 •
• 124 •
• 125 •
• 126 •
• 127 •
• 128 •
• 129 •
• 130 •
• 131 •
• 132 •
• 133 •
• 134 •
• 135 •
• 136 •
• 137 •
• 138 •
• 139 •
• 140 •
• 141 •
• 142 •
• 143 •
• 144 •
• 145 •
• 146 •
• 147 •
• 148 •
• 149 •
• 150 •
• 151 •
• 152 •
• 153 •
• 154 •
• 155 •
• 156 •
• 157 •
• 158 •
• 159 •
• 160 •
• 161 •
• 162 •
• 163 •
• 164 •
• 165 •
• 166 •
• 167 •
• 168 •
• 169 •
• 170 •
• 171 •
• 172 •
• 173 •
• 174 •
• 175 •
• 176 •
• 177 •
• 178 •
• 179 •
• 180 •
• 181 •
• 182 •
• 183 •
• 184 •
• 185 •
• 186 •
• 187 •
• 188 •
• 189 •
• 190 •
• 191 •
• 192 •
• 193 •
• 194 •
• 195 •
• 196 •
• 197 •
• 198 •
• 199 •
• 200 •

Digitized by srujanika@gmail.com

	LOCAL	TIME	DATE	LOCATION	TEMP.	WIND	WIND DIR.	SKY	TEMP.	WIND	WIND DIR.	SKY
1	10:45	10:45	10:45	SACRAMENTO	70°	15-20	SW	clear	70°	15-20	SW	clear
2	10:45	10:45	10:45	TRUCKEE	70°	15-20	SW	clear	70°	15-20	SW	clear
3	10:45	10:45	10:45	ROGERS	70°	15-20	SW	clear	70°	15-20	SW	clear
4	10:45	10:45	10:45	ROGERS	70°	15-20	SW	clear	70°	15-20	SW	clear

	STPMS	BLTMS	WTRBL	LOSS	CNTA	STRTL	CONSTL	ALSMX	RTIMX
RCPT	5000	5000	1.00	0.00	0.00	1.00	-1.00	0.00	0.00
SHPP	5000	5000	1.00	0.00	0.00	1.00	-1.00	0.00	0.00
SHPP	5000	5000	1.00	0.00	0.00	1.00	-1.00	0.00	0.00

UNIT HYDROGRAPH DATA
TC= C=0.7 LAG= .010

STRICT= 0.000 GRCSN= 0.00 RATIO= 1.00

Sum 50.11 30.51 1.51 68.51%
 (01.01) 77.50 (40.00) 1940.00 13%

PROGRESSIVE MUNICIPAL

پارک ایالتی هایلند پارک (Highland Park) ۱۷

THE JOURNAL OF CLIMATE

THE JOURNAL OF POLITICAL ECONOMY

卷之三

PREVIEW UNITED STATES INSTITUTE OF INTERNATIONAL AFFAIRS

-EQU. NO. 2 (U.S. AIR FORCE) SURFACE FRICTION COEFFICIENT COMPUTATION,
FLUID IN CIRCULAR TUBE (SECOND EQUATION)
AREA IN SQUARE MILLIMETERS (SQUARE MILLEMETERS)

PERFIC.	STATION	AERA	STATIC COEFFICIENT OF FRICTION			PERFIC. APPLIED TO FLUID
			1	2	3	
170-0000 AT 01521	0.75	1	.0176	.0167	.0177	315.0
ROUTE	01-211	.75	.0176	.0167	.0177	315.0

SUMMARY OF DAM SAFETY ANALYSIS

PLAN 1	ELEVATION STOPGATE OUTLET, C.	INITIAL VALUE 700.50	SPILLWAY CREST 700.50	TOP OF DAM 724.50
RATIO OF RESERVOIR W.S. SELLV PKF	MAXIMUM RESERVOIR W.S. SELLV	MAXIMUM STORAGE AC-FT	MAXIMUM OUTFLOW CFS	CUMULATION OVER TOP HOURS
0.75	724.57	0.50	121.0	1848.0
0.77	724.57	0.50	122.0	1848.0
0.71	724.51	0.50	123.0	1848.0
0.71	724.51	0.1	124.0	1848.0

TIME OF
FAILURE
HOURS

0.00

15.75

0.00

15.75

0.00

15.75

0.00

15.75

0.00

15.75