Character-based Neural Networks for Sentence Pair Modeling

THE OHIO STATE UNIVERSITY

Wuwei Lan and Wei Xu

Introduction

- Sentence pair modeling is critical for paraphrase identification, question answering, natural language inference and etc.
- Various neural models achieved state-of-the-art performance by using pretrained word embeddings, however they have poor coverage in domain (e.g., social media) with high OOV ratio.
- We explored character-based neural networks for sentence pair modeling, which is more challenging than individual sentence modeling: similarly spelled words with completely different meanings could introduce error (e.g., ware and war).

Example for Sentence Pair Modeling

Paraphrase task: given a sentence pair, predict whether they imply the same meaning. Sample from **Twitter URL** [Lan et.al 2017]:

Pairwise Word Interaction Model (PWIM [He et.al 2016])

1. Context modeling:

$$egin{aligned} \overrightarrow{m{h}}_i &= LSTM^f(m{w}_i, \overrightarrow{m{h}}_{i-1}) \ \overleftarrow{m{h}}_i &= LSTM^b(m{w}_i, \overleftarrow{m{h}}_{i+1}) \ \overleftrightarrow{m{h}}_i &= [\overrightarrow{m{h}}_i, \overleftarrow{m{h}}_i] \ m{h}_i^+ &= \overrightarrow{m{h}}_i + \overleftarrow{m{h}}_i \end{aligned}$$

2. Pairwise word interaction:

$$D(\overrightarrow{\boldsymbol{h}}_{i}, \overrightarrow{\boldsymbol{h}}_{j}) = [cos(\overrightarrow{\boldsymbol{h}}_{i}, \overrightarrow{\boldsymbol{h}}_{j}), \\ L2Euclid(\overrightarrow{\boldsymbol{h}}_{i}, \overrightarrow{\boldsymbol{h}}_{j}), \\ DotProduct(\overrightarrow{\boldsymbol{h}}_{i}, \overrightarrow{\boldsymbol{h}}_{j})].$$

3. Similarity focus:

sorting the interaction values and selecting top ranked pairs

4. Aggregation and prediction:19-layer deep ConvNet

Embedding Subwords in PWIM

1. Char RNN [Ling et.al 2015]

2. Char CNN [Kim et.al 2016]

Conclusion

- ✓ Pretrained word embedding is not a necessity for sentence pair modeling.
- ✓ Subword models without any pretraining achieved new SOTA results in Twitter URL and PIT-2015.
- ✓ Multitask LM can improve subword embedding performance by injecting semantic information.

Source Code

https://github.com/lanwuwei/Subword-PWIM

See Also

- Wuwei Lan, Siyu Qiu, Hua He, and Wei Xu. A continuously growing dataset of sentential paraphrases. In EMNLP 2017
- Wuwei Lan and Wei Xu. Neural Network Models
 for Paraphrase Identification, Semantic Textual
 Similarity, Natural Language Inference, and
 Question Answering. In COLING 2018

Language Modeling Objective (Multitask)

The forward LSTM predicts the **next word** and the backword LSTM predicts the **previous word**. The log-likelihood loss for both language models is added to the training objective:

$$egin{aligned} \widetilde{E} &= E + \gamma (\overrightarrow{E} + \overleftarrow{E}) \ \overrightarrow{E} &= -\sum\limits_{t=1}^{T-1} log(P(w_{t+1}|\overrightarrow{m_t})) \end{aligned} \qquad \overleftarrow{E} &= -\sum\limits_{t=2}^{T} log(P(w_{t-1}|\overleftarrow{m_t})) \end{aligned}$$

Experiments

We performed experiments on three benchmark datasets for paraphrase identification: **Twitter URL** (social media/news, OOV ratio 31.5%), **PIT-2015** (social media, OOV ratio 13.7%) and **MSRP** (news, OOV ratio 9.0%).

Model	INV Words		OOV Words	
	any	walking	#airport	brexit
Word	anything	walk	salomon	bollocks
	anyone	running	363	missynistic
	other	dead	#trumpdchotel	patriarchy
Subword	analogy	waffling	@atlairport	grexit
	nay	slagging	#dojreport	bret
	away	scaling	#macbookpro	juliet
Subword + LM	any1	warming	airport	#brexit
	many	wagging	#airports	brit
	ang	waging	rapport	ofbrexit

Nearest neighbors of word (subword, subword + LM) vectors under cosine similarity in Twitter-URL dataset.