DATA SCIENCE CAPSTONE PROJECT

MILESTONE 4

Franco Paz- UPC

CONTENTS

- Project presentation
- Questions to Answer
- Initial Hypotheses
- Data Analysis Approach
- Technical Challenges
- Detail: Entity Relationship Diagram (ERD)
- Initial Findings
- Deeper Analysis / Going Broader
- Final Findings (Hypotheses Results)
- Recommendations

PROJECT PRESENTATION

- <u>Client/Dataset:</u> **SportsStats (Olympics Dataset 120 years of data)** SportsStats is a sports analysis firm partnering with local news and elite personal trainers to provide "interesting" insights to help their partners.
- Objective: establish whether a correlation exists between the country of medal-winning Summer and Winter Games athletes and their age or their morphology over the years.
- Such informations could be of a certain interest for anyone who want to have a better understanding of such relationship.
 - For elite trainers: could help to identify future talents and where they come from.
 - From a commercial side: could provide informations to sportswear designers and sellers to target specific countries, clothing sizes, etc.

QUESTIONS TO ANSWER

- Q1. Which countries were the most prolific during Summer and Winter Games over the years?
- Q2. How the height/weight ratio and age of medalists is evolving through the years?
- Q3. Is there any correlation between the country of medal-winning athletes and their age or their morphology?

INITIAL HYPOTHESES

- I am expecting to see best results for highly populated and developed countries such as USA, China or Russia.
- Regarding the age, talented athletes are detected earlier and earlier, which would lead to decrease the average age of medalist.
- For their morphology, trainings of athletes evolved a lot over years in order to optimize their performance. **Different morphologies** are expected compared to the past.
- I suppose that medalists of many (or all) countries are within same ranges of ages or morphologies.

DATA ANALYSIS APPROACH

- Relationship between country of athletes and the year of Winter or Summer Games.
- The age and height/weight ratio averages will be also studied.
- Statistics will also be used by evaluating minimum, maximum or average of data, as well as more advanced technics such as Pearson correlation coefficients
- Data visualization with line plots, heatmaps, etc.
- <u>Tools:</u> Jupyter Notebook, SQL (Pandasql library), Python libraries

TECHNICAL CHALLENGES

- Encountered challenges with data visualization for representing large amount of data when establishing the relationship with countries
- Limitations of Pandasql Python library to execute SQL commands

ENTITY RELATIONSHIP DIAGRAM

Contains null-data

• In average, medalists are of **medium size** (mean 177.55) **and weight** (mean 73.77), with an average ratio of 2.48. They are also **relatively young** (mean 25.93).

	Data	Count	Minimum	Maximum	Mean
0	Age	39051	10.000000	73.000000	25.925175
1	Height	31072	136.000000	223.000000	177.554197
2	Height/Weight	30196	1.005714	4.892857	2.482802
3	Weight	30456	28.000000	182.000000	73.770680

- The fifth first ranked countries are developed countries but also highly populated (so statistically a higher number of athletes)
- In contrast, the fifth last ranked countries correspond to small countries with a rather small number of citizens (so statistically a lower number of athletes)

	NOC	region	Medals
0	USA	USA	5637
1	URS	Russia	2503
2	GER	Germany	2165
3	GBR	UK	2068
4	FRA	France	1777
143	CYP	Cyprus	1
144	вот	Botswana	1
145	BER	Bermuda	1
146	BAR	Barbados	1
147	АНО	Curacao	1

Medals in Summer Games

- USA dominates the Summer Games for more than 40 years.
- For 20 years, USA are followed by some European nations (Germany, France, UK, Italy, etc.) as well as Asian nations (Russia, China, Japan, etc.) or Australia.
- From the 50s to 70s, these Games were dominated by ex-URSS.

✓ 1st Hypothesis

INITIAL FINDINGSals in Winter Games

- USA also mainly dominates over the years, followed by Canada since 1992.
- Again, Russia (and ex-URSS) shown some medals, but most of time less important than Nordic countries such as Sweden, Norway or Finland.

✓ 1st Hypothesis

- Mean age of medalists is near 25, while the distribution of data is wider for oldest years than closest years.
- Could be interesting to correlate it with the nature of sports.

X2nd and 3rd Hypotheses

- Mean appears more or less constant over the years and whatever the season is, around 2.5 which is a "regular" ratio.
- In contrast, the distribution of data is wider for closest years than oldest years.
- Could be interesting to plot separately Height and Weight to get deeper insights.

- Most of the countries show same behavior with medalists ranging between 20 and 25 years old, whatever the season is.
- Most of countries show same behavior with medalists with a mean Height/Weight ratio arount 2.3-2.5, whatever the season is.

√ 4th Hypothesis

DEEPER ANALYSIS

- Correlation between the total number of medalists in the Winter and Summer Games.
- Pearson corr. coef. = 0.960
- High correlation of performances in both seasons

	sum_medals	win_medals	Year
0	832	130	1924
1	734	89	1928
2	647	92	1932
3	917	108	1936
4	852	135	1948
5	897	136	1952
6	893	150	1956
7	910	147	1960
8	1029	186	1964
9	1057	199	1968
10	1215	199	1972
11	1320	211	1976
12	1384	218	1980
13	1476	222	1984
14	1582	263	1988
		·	

	Data	Count	Minimum	Maximum	Average
0	sum_medals	16	647	1712	1091.0625
1	win_medals	16	89	318	175.1875

GOING ABROAD

- Correlation between the total number of women and men medalists for given ages
- Pearson corr. coef. = 0.924
- Good correlation of performances for both sexes

	fem_medals	mal_medals	Age
0	9	_ 3	12.0
1	37	5	13.0
2	123	25	14.0
3	293	74	15.0
4	491	161	16.0
5	558	464	17.0
6	831	892	18.0
7	892	1573	19.0
8	974	2449	20.0
9	1168	2807	21.0
10	1110	3105	22.0
11	1054	3091	23.0
12	879	2652	24.0
13	754	2113	25.0
14	529	1811	26.0
15	428	1323	27.0
16	305	1051	28.0
17	202	832	29.0
18	154	623	30.0
19	107	461	31.0

	Data	Count	Minimum	Maximum	Average
0	fem_medals	43	1	1168	261.00000
1	mal_medals	43	3	3105	644.44186

DEEPER ANALYSIS / GOING BROADER

- New metric: total number of bronze, silver and gold medals; allows to more finely inspect similarities in both situations, because of the introduction of the rank.
- Confirms high correlation in both cases

Pearson corr. coef.	Summer vs Winter / Years	Men vs Women / Age
Gold medals	0.943	0.918
Silver medals	0.937	0.917
Bronze medals	0.973	0.930

FINAL FINDINGS (RESULTS OF HYPOTHESES)

- Best results for highly populated and developed countries such as USA, China or Russia.
- *The average age of medalist is constant over the years
- *The average of morphologies is constant over the years
- Most of countries have medalists within same range of ages or morphologies.

RECOMMENDATIONS

- The average age and morphology of medalists being the same between countries, I would suggest to sportswear sellers that clothes do not have to present specific sizes or mensurations depending on the country.
- Nordic countries show logically good performances during Winter Games. I would advise concerned elite trainers to take more informations on those countries (their technics, etc.).
- To complete this analysis, it would be interesting to go deeper by distinguishing categories of sports. That could enable to find new correlations (more specifically with the morphology of medalists).