CMPS 130

Computational Models

Spring 2016

Midterm Exam 1

Solutions

1. (20 Points) Let S be a set. Prove that no function $f: S \to 2^S$ is onto. (Recall that 2^S denotes the power set of S, i.e. the set of all subsets of S.)

Proof:

Assume $f: S \to 2^S$ is onto. Define $A \subseteq S$ by $A = \{x \in S \mid x \notin f(x)\}$. Since f is supposedly onto, there exists $y \in S$ such that f(y) = A. Either $y \in A$ or $y \in S - A$. If $y \in A$ then $y \in f(y)$, so by the definition of A we have $y \notin A$, a contradiction. On the other hand if $y \notin A$ then $y \notin f(y)$ so again by definition of A we have $y \in A$, another contradiction. These contradictions show that our assumption was false, and therefore no such function f can exist.

- 2. (20 Points) Let Σ be a finite alphabet and let $M = (Q, \Sigma, q_0, A, \delta)$ be a finite state automaton. Write down the following recursive definitions.
 - a. (5 Points) Σ^* the set of all strings over Σ .

Definition:

- (1) $\lambda \in \Sigma^*$
- (2) If $x \in \Sigma^*$ and $\sigma \in \Sigma$, then $x\sigma \in \Sigma^*$.
- b. (5 Points) $r: \Sigma^* \to \Sigma^*$ the reversal function.

Definition:

- (1) $r(\lambda) = \lambda$
- (2) If $x \in \Sigma^*$ and $\sigma \in \Sigma$, then $r(x\sigma) = \sigma r(x)$
- c. (5 Points) $\delta^*: Q \times \Sigma^* \to Q$ the extended transition function.

Definition:

- (1) If $q \in Q$, then $\delta^*(q, \lambda) = q$
- (2) If $x \in \Sigma^*$, $\sigma \in \Sigma$ and $q \in Q$, then $\delta^*(q, x\sigma) = \delta(\delta^*(q, x), \sigma)$
- d. (5 Points) $\mathscr{F} \subseteq 2^{\Sigma^*}$ the set of all finite languages over Σ .

Definition:

- (1) \emptyset , $\{\lambda\}$, $\{\sigma\} \in \mathcal{F}$ (for any $\sigma \in \Sigma$)
- (2) If $L_1, L_2 \in \mathcal{F}$, then $L_1 \cup L_2 \in \mathcal{F}$
- (3) If $L_1, L_2 \in \mathcal{F}$, then $L_1 L_2 \in \mathcal{F}$

3. (20 Points) Let Σ be a finite alphabet, $M = (Q, \Sigma, q_0, A, \delta)$ be a finite state automaton, and let $p \in Q$. Prove that for all strings $x, y \in \Sigma^*$: $\delta^*(p, xy) = \delta^*(\delta^*(p, x), y)$. Hint: write this as

$$\forall y \quad \forall x \ \delta^*(p, xy) = \delta^*(\delta^*(p, x), y)$$

and proceed by structural induction on y. To do this let P(y) be the boxed statement and prove: I. $P(\lambda)$ is true, and II. if P(y) holds, then so does $P(y\sigma)$ for any $\sigma \in \Sigma$.

Proof:

I. Show $P(\lambda)$:

$$\delta^*(p, x\lambda) = \delta^*(p, x) \qquad \text{(since } x = x\lambda)$$
$$= \delta^*(\delta^*(p, x), \lambda) \qquad \text{(by (1) in the recursive definition of } \delta^*)$$

II. Show $P(y) \Rightarrow P(y\sigma)$:

Assume P(y) holds for some $y \in \Sigma^*$, i.e. assume: $\forall x \ \delta^*(p, xy) = \delta^*(\delta^*(p, x), y)$. We must show that $P(y\sigma)$ holds for any $\sigma \in \Sigma$, i.e. show: $\forall x \ \delta^*(p, x(y\sigma)) = \delta^*(\delta^*(p, x), y\sigma)$. We have

$$\delta^{*}(p, x(y\sigma)) = \delta^{*}(p, (xy)\sigma)$$
 (by the associative law)

$$= \delta(\delta^{*}(p, xy), \sigma)$$
 (by (2) in the recursive definition of δ^{*})

$$= \delta(\delta^{*}(\delta^{*}(p, x), y), \sigma)$$
 (by the induction hypothesis)

$$= \delta^{*}(\delta^{*}(p, x), y\sigma)$$
 (by (2) in the recursive definition of δ^{*})

Therefore P(y) holds for all $y \in \Sigma^*$, i.e. $\delta^*(p, xy) = \delta^*(\delta^*(p, x), y)$ for all $x, y \in \Sigma^*$.

4. (20 Points) Let L_1 and L_2 be the languages over $\{a,b\}$ accepted by the FAs M_1 and M_2 pictured below, respectively.

 M_1 :

 M_2 :

Use the product construction to draw an FA accepting the language L_1-L_2 . Give simple verbal descriptions of the languages L_1 , L_2 and $L_1 - L_2$. (No justification is necessary for either the drawing or the descriptions.)

 $\begin{array}{l} L_1 = \{ \text{ strings containing } aa \, \} \\ L_2 = \{ \text{ strings containing } bb \, \} \end{array}$

 $L_1 - L_2 = \{ \text{ strings containing } aa \text{ but not containing } bb \}$

- 5. (20 Points) Let L_1 and L_2 be languages over a finite alphabet Σ .
 - a. (10 Points) Prove that $(L_1 \cap L_2)^* \subseteq L_1^* \cap L_2^*$.

Proof:

Let $x \in (L_1 \cap L_2)^*$. Then $x \in (L_1 \cap L_2)^n$ for some $n \ge 0$. Thus $x = x_1 x_2 \dots x_n$ for some $x_i \in L_1 \cap L_2$ ($1 \le i \le n$). But then both $x_i \in L_1$ and $x_i \in L_2$ ($1 \le i \le n$). Therefore both $x \in L_1^n$ and $x \in L_2^n$, hence $x \in L_1^*$ and $x \in L_2^*$. Therefore $x \in L_1^* \cap L_2^*$, whence $(L_1 \cap L_2)^* \subseteq L_1^* \cap L_2^*$.

b. (10 Points) Give an example of specific Σ , L_1 and L_2 for which $(L_1 \cap L_2)^* \neq L_1^* \cap L_2^*$.

Example:

Let $\Sigma = \{a,b\}$, $L_1 = \{a,ba\}$ and $L_2 = \{ab,a\}$. Then $aba \in L_1^2 \subseteq L_1^*$ and $aba \in L_2^2 \subseteq L_2^*$, whence $aba \in L_1^* \cap L_2^*$. But $L_1 \cap L_2 = \{a\}$ so that $(L_1 \cap L_2)^* = \{a^n \mid n \ge 0\}$. Thus $aba \notin (L_1 \cap L_2)^*$ showing that $(L_1 \cap L_2)^* \ne L_1^* \cap L_2^*$.

Note: there are many other possible examples illustrating $(L_1 \cap L_2)^* \neq L_1^* \cap L_2^*$.