

PROFESSIONAL STUDIES

R Lesson 3 - Solutions MSPA 401 - Introduction to Statistical Analysis

1) For each weight class determine the mean and standard deviation of MPG. What can you conclude from these calculations?

4	5	C1 C2 C3 C4 C5	23.8500000	2.1124989 0.7728342	Mean MPG changes with CLASS. The standard deviation is small in relation to MPG.
---	---	----------------------------	------------	------------------------	--

2) For each weight class determine the mean and standard deviation of HP. What can you conclude from these calculations?

1 2 3 4 5 6	C4 C5	MEAN_HP 89.222222 92.000000 103.500000 123.833333 171.583333 224.714286	STD_DEV 7.049429 9.086882 12.767145 25.672176 45.350069 74.017372	The standard deviation increases with increasing horsepower.
----------------------------	----------	---	---	--

shoppers.csv contains the dollar amounts spent in a store by individual shoppers during one day. Find the mean, median, range, standard deviation, variance, Q1, Q3 and P10. Plot the histogram and describe the distribution.

The distribution is skewed right.

Lessons in R

3) Find the mean, median, range, standard deviation, Q1, Q3 and P10 of the Presidents' ages. Plot hist() and comment on the distribution.

The distribution is relatively symmetric. The mean and median are close to each other.

4) Find the mean, median, range, standard deviation, Q1, Q3 and P10 of the heights of the Presidents and also their opponents. Comment on what you find.

Presidents' Heights	Opponents' Heights
mean: 179.6842	mean: 179.9706
median: 181	median: 180
range: 30	range: 28
sd: 7.308289	sd: 6.201101
variance: 53.4111	variance: 38.45365
Q1: 173	Q1: 175.5
Q3: 184.5	Q3: 182.75
P10: 170	P10: 173

Heights are very similar. The difference is minor in comparison to the standard deviation.

5) Calculate the difference between each President's height and that of his opponent. Plot a histogram and construct a boxplot of these differences. Why is the difference of average heights calculated in (2) different from the average of the pairwise differences calculated in (3)?

Lessons in R

Immaterial difference in heights observed; difference in calculations dues to missing data (i.e. NA) for some opponents.

geyser.csv contains the intervals (in minutes) between eruptions of Old Faithful Geyser in Yellowstone National Park. The data were taken on two consecutive weeks: WEEK1 and WEEK2. Compare the two sets of data using summary() and hist(). What do you conclude? WEEK1

: 43.00 Min. :45.00 Min. 1st Qu.: 58.75 1st Qu.:63.25 Median : 75.00 Median:76.00 Mean 71.62 :72.76 Mean 3rd Qu.: 82.00 3rd Qu.:81.25 Max. :108.00 :94.00 Max.

The mean and median are comparable between WEEK1 and WEEK2. The two histograms suggest a multi-modal distribution. Note the difference in scales for the boxplots. This is one of the difficulties when base R boxplot() is used.

No apparent average difference between weeks, but multi-modal distribution.