EPOCHS V1 Catalogue Information

EPOCHS Group at JBCA, University of Manchester

July 2024

1 Introduction

This document provides information on the available columns in the EPOCHS v1 catalogue release. The EPOCHS v1 catalogue consists of 1165 galaxy canidates at z > 6.5 taken from 214 arcmin² of deep JWST NIRCam observations. The EPOCHS paper series is as follows:

- 1. EPOCHS I: The Discovery and Properties of Distant Galaxies in the Epoch of Reionization at 6.5 < z < 20 with Pearls, JADES GTO, and Public JWST data Conselice et al. 2024, ApJ submitted
- 2. EPOCHS II: The Ultraviolet Luminosity Function from 7.5 < z < 13.5 using 180 square arcminutes of deep, blank-fields from the PEARLS Survey and Public JWST data Adams et al. 2024, ApJ
- 3. EPOCHS III: Unbiased UV continuum slopes at 6.5 < z < 13 from combined PEARLS GTO and public JWST NIRCam imaging Austin et al. 2024, ApJ submitted
- 4. EPOCHS IV: SED Modelling Assumptions and their impact on the Stellar Mass Function at $6.5 \le z \le 13.5$ using PEARLS and public JWST observations Harvey et al. 2024, ApJ submitted
- 5. EPOCHS V: The dependence of galaxy formation on galaxy structure at z < 7 from JWST observations Conselice et al. 2024, MNRAS
- 6. EPOCHS VI: the size and shape evolution of galaxies since $z \sim 8$ with JWST Observations Ormerod et al. 2024, MNRAS
- 7. EPOCHS VII: Discovery of high-redshift (6.5 < z < 12) AGN candidates in JWST ERO and PEARLS data Juodžbalis et al. 2023, MNRAS
- 8. EPOCHS VIII: An Insight into MIRI-selected Galaxies in SMACS-0723 and the Benefits of Deep MIRI Photometry in Revealing AGN and the Dusty Universe Li et al. 2023, MNRAS
- 9. EPOCHS IX. When cosmic dawn breaks: Evidence for evolved stellar populations in 7 < z < 12 galaxies from PEARLS GTO and public NIRCam imaging Trussler et al. 2024, MNRAS
- 10. EPOCHS X: Environmental effects on Galaxy Formation and Protocluster Galaxy candidates at 4.5 < z < 10 from JWST observations Li et al. 2024, MNRAS submitted
- 11. More to come!

1.1 Notes

BAND refers to any of the ACS_WFC or NIRCam bands listed in Table 1. If a band is listed as available in Table 1, but is not given for a galaxy in that field, then that galaxy fall swithin our image mask in that filter.

Table 1: Table of the available HST/ACS_WFC and JWST/NIRCam data used in each field in the EPOCHS v1 catalogue.

A '*' means the imaging only partially covers the NIRCam wideband footprint.

	HST/ACS_WFC		JWST/NIRCam									
Field	F606W	F814W	F090W	F115W	$\mathbf{F150W}$	F200W	F277W	$\mathbf{F335M}$	F356W	F410M	F444W	
NEP	Y	N	Y	Y	Y	Y	Y	N	Y	Y	Y	
El Gordo	N	N	Y	Y	Y	Y	Y	N	Y	Y	Y	
MACS-0416	N	N	Y	Y	Y	Y	Y	N	Y	Y	Y	
CLIO	N	N	Y	N	Y	Y	Y	N	Y	N	Y	
CEERS	Y	Y	N	Y	Y	Y	Y	N	Y	Y	Y	
SMACS0723	N	N	Y	N	Y	Y	Y	N	Y	N	Y	
GLASS	N	N	Y	Y	Y	Y	Y	N	Y	N	Y	
NGDEEP	Y*	Y^{\star}	N	Y	Y	Y	Y	N	Y	N	Y	
JADES Deep GS	Y	N	Y	Y	Y	Y	Y	Y	Y	Y	Y	

Table 2: Table of EPOCHS v1 catalog column names, units, descriptions and column shape. A "*" indicates that the column has been corrected for any flux associated with the galaxy which falls outside the extraction aperture.

Column Name	\mathbf{Unit}	Description						
IDs, Positions, Fluxes and local depths								
ID		Unique catalogue ID, consisting of number and fieldname						
$\mathrm{ALPHA_J2000}$	degree	Right ascension						
$\mathrm{DELTA_J2000}$	$_{ m degree}$	Declination						
FIELDNAME		Field/pointing in Table 1 the galaxy is in						
FLUX_APER_ BAND	nJy	Aperture corrected flux in 0.16 arcsec radius apertures						
FLUXERR_APER_ BAND	nJy	Local-depth derived flux error from NMAD of 200 nearby empty apertures						
$\operatorname{sigma}_{-}\mathbf{BAND}$		SNR of detection in 0.16 arcsec aperture						
$local_depth_{f BAND}$	AB Mag	5σ local depth from NMAD of flux in 200 nearby empty apertures						
${\rm unmasked}_{\bf BAND}$	Boolean	Whether galaxy is masked in BAND						
$auto_corr_factor_BAND$		Correction factor in BAND for flux outside 0.16 arcsec aperture						
	Pl	hotometric Redshifts and Selection						
zbest		Photometric redshift using EAZY-py						
$zbest_{-}11$		-1σ photometric redshift uncertainty using EAZY-py						
$zbest_u1$		$+1\sigma$ photometric redshift uncertainty using EAZY-py						
$\mathrm{chi}2\mathrm{_best}$		χ^2 of EAZY-py fit						
$PDF_integral_eazy$		$\int_{0.94 imes ext{zbest}}^{1.06 imes ext{zbest}} ext{PDF}(z) dz$ - Integral of EAZY-py posterior redshift PDF						
$zbest_lowz$		Photometric redshift using EAZY-py, with $z_{\rm max}=6$						
$chi2_best_lowz$		χ^2 of EAZY-py fit, with $z_{ m max}=6$						
		UV Properties						
$\mathrm{M}_{-}\mathrm{UV}^{\star}$	AB Mag	Absolute UV mag in 100Å tophat at 1500Å rest-frame flux at redshift zbest						
$M_{ ext{-}}UV_{ ext{-}}u1$	AB Mag							
M_UV_1	AB Mag							
$\mathrm{BETA}_{-}\mathrm{UV}$		UV slope $f \propto \lambda^{\beta}$						
$\mathrm{BETA}_{-}\mathrm{UV}_{-}\mathrm{l}1$								
$\mathrm{BETA_UV_u1}$								
$\mathrm{SFR}_{-}\mathrm{UV}^{\star}$	${ m M}_{\odot}~{ m yr}^{-1}$							
SFR_UV_1	${\rm M}_{\odot}~{\rm yr}^{-1}$							
SFR_UV_u1	${\rm M}_{\odot}~{\rm yr}^{-1}$							
		Sample identifiers						
certain_by_eye	Boolean	Visual inspection of cutout and SED boolean						
EPOCHS_II	Boolean	Used in EPOCHS II (UV LF)						
EPOCHS_III	Boolean	Used in EPOCHS III (UV and SF properties)						
EPOCHS_IV	Boolean	Used in EPOCHS IV (SMF)						

Table 3: Table of EPOCHS v1 catalog column names, units, descriptions and column shape, specifically for the stellar population parameters calculated using Bagpipes. EXT indicates that the column name appears multiple time with different extensions, and in this case "EXT" can take the value of zfix or zgauss, depending on whether the redshift is fixed to the EAZY-py maximum likelihood result given by "zbest", or allowed to vary within a Gaussian centered on "zbest". A "*" indicates that the column has been corrected for any flux associated with the galaxy which falls outside the extraction aperture - for masses this is done by correcting the mass by the ratio of MAG_AUTO to MAG_APER in the longest wavelength F444W band, where this exceeds unity. For star formation rates the band covering the rest-frame 1500Å wavelength is used instead.

Column Name	${f Unit}$	Description					
Fiducial Bagpipes Results ($\mathbf{z}_{ ext{fix}}$ or $\mathbf{z}_{ ext{gauss}}$)							
redshift_pipes_zgauss		Fitted redshift (zgauss only)					
$redshift_pipes_l1_zgauss$		Lower uncertainty (50th - 16th percentile)					
$redshift_pipes_u1_zgauss$		Upper uncertainty (84th - 50th percentile)					
$stellar_mass_pipes_EXT^*$	$\log_{10}({ m M}_{\odot})$	Total surviving stellar mass					
$stellar_mass_pipes_l1_EXT$	$\log_{10}({ m M}_{\odot})$	Lower uncertainty (50th - 16th percentile)					
$stellar_mass_pipes_u1_EXT$	$\log_{10}({ m M}_{\odot})$	Upper uncertainty (84th - 50th percentile)					
$SFR_10Myr_pipes_{-}EXT^{*}$	${ m M}_{\odot}~{ m yr}^{-1}$	Average total star formation rate over a 10 Myr timescale					
$SFR_10Myr_pipes_11_{-EXT}$	${ m M}_{\odot}~{ m yr}^{-1}$	Lower uncertainty (50th - 16th percentile)					
$SFR_10Myr_pipes_u1_{-}EXT$	${ m M}_{\odot}~{ m yr}^{-1}$	Upper uncertainty (84th - 50th percentile)					
$SFR_100Myr_pipes_{-}EXT^{*}$	${ m M}_{\odot}~{ m yr}^{-1}$	Average total star formation rate over a 100 Myr timescale					
$SFR_100Myr_pipes_l1_{-}EXT$	${ m M}_{\odot}~{ m yr}^{-1}$	Lower uncertainty (50th - 16th percentile)					
$SFR_100Myr_pipes_u1_EXT$	${ m M}_{\odot}~{ m yr}^{-1}$	Upper uncertainty (84th - 50th percentile)					
$mass_weighted_age_pipes_\textbf{EXT}$	Myr	Mass-weighted age of galaxy					
$mass_weighted_age_pipes_l1_EXT$	Myr	Lower uncertainty (50th - 16th percentile)					
$mass_weighted_age_pipes_u1_EXT$	Myr	Upper uncertainty (84th - 50th percentile)					
$beta_pipes_{\mathbf{EXT}}$		UV β slope of best-fitting Bagpipes spectra in Calzetti filters					
$beta_pipes_l1_\mathbf{EXT}$		Lower uncertainty (50th - 16th percentile)					
$beta_pipes_u1_{EXT}$		Upper uncertainty (84th - 50th percentile)					
$Z_{star_pipes_\textbf{EXT}}$	$ m Z_{\odot}$	Stellar metallicity					
$Z_{star_pipes_l1_EXT}$	$ m Z_{\odot}$	Lower uncertainty (50th - 16th percentile)					
$Z_{star_pipes_u1_EXT}$	$ m Z_{\odot}$	Upper uncertainty (84th - 50th percentile)					
A_V_{pipes}	AB mag	Dust extinction in V band					
$A_V_{pipes_l1_{EXT}}$	AB mag	Lower uncertainty (50th - 16th percentile)					
$A_V_{pipes_u1}$	AB mag	Upper uncertainty (84th - 50th percentile)					
$\text{U-V_pipes_}\mathbf{EXT}$	AB mag	U-V colour					
$U-V_pipes_l1_{EXT}$	AB mag	Lower uncertainty (50th - 16th percentile)					
$U-V_pipes_u1_{\overline{EXT}}$	AB mag	Upper uncertainty (84th - 50th percentile)					
M_UV_{pipes}	AB mag	Absolute UV Magnitude					
$M_UV_pipes_l1_{EXT}$	AB mag	Lower uncertainty (50th - 16th percentile)					
$M_UV_{pipes_u1_{EXT}}$	AB mag	Upper uncertainty (84th - 50th percentile)					
chisq_phot_pipes_ EXT		χ^2 of fit					