MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 2 - NOVEMBER 2013 SOLUTION KEY

Team Round

D)
$$x^{14} - x^8 - x^6 + 1 = (x^6 - 1)(x^8 - 1) = (x^3 + 1)(x^3 - 1)(x^4 + 1)(x^4 - 1)$$

= $(x+1)(x^2 - x + 1)(x-1)(x^2 + x + 1)(x^4 + 1)(x^2 + 1)(x+1)(x-1)$

Thus, the sum of the factors is $x^4 + 3x^2 + 4x + 4 \Rightarrow (1, 3, 4, 4)$.

E)
$$\frac{\cot 2x \cdot \cot x + 1}{\cot x - \cot 2x} = \frac{\frac{1 - \tan^2 x}{2\tan x} \cdot \frac{1}{\tan x} + 1}{\frac{1}{\tan x} - \frac{1 - \tan^2 x}{2\tan x}} \cdot \frac{2\tan^2 x}{2\tan^2 x} = \frac{1 - \tan^2 x + 2\tan^2 x}{2\tan x - \tan x (1 - \tan^2 x)}$$
$$= \frac{1 + \tan^2 x}{\tan x + \tan^3 x} = \frac{1 + \tan^2 x}{\tan x (1 + \tan^2 x)} = \frac{1}{\tan x} = \cot x$$

Thus, we have $\cot x = \tan 300^\circ = -\tan 60^\circ = -\cot 30^\circ$.

The 30° family over the specified domain is $\{30^{\circ},150^{\circ},210^{\circ},330^{\circ}\}$.

The solution set consists of only values in quadrants 2 and 4, where the cotangent takes on a negative value, namely, $x = 150^{\circ}$, 330° .

F) Since the interior and exterior angles in a regular polygon with *n* sides are given by $\frac{180(n-2)}{n}$ and $\frac{360}{n}$ respectively, the given ratios translate to $\frac{n-2}{2} = \frac{11}{q}$ and $\frac{2}{m-2} = \frac{1}{11}$

Thus, $q = \frac{22}{n-2}$ and m = 24 and the exterior angles must be 15°.

The required ratio is
$$\frac{\frac{180(n-2)}{n}}{15} = 12\left(1-\frac{2}{n}\right) = 12-\frac{24}{n}$$
 and

n must be a factor of 24 (\geq 3 of course).

Thus, n = 3, 4, 6, 8, 12 and 24 are under consideration and only 3, 4 and 24 produce integer values of q. Therefore, (n, q) = (3, 22), (4, 11) and (24, 1).