Partial Differential Equations I

January 8, 2024

Homework

Assigned exercises and concept maps. Graded by completion.

Presentations

Assigned topics; responsible for giving a class.

Definition: Partial Differential Equation(s) (PDE)

An identity relating an uknown function, its partial derivatives and its variables.

$$F(D^k u, \dots, D^2 u, Du, u, x) = 0, \quad x \in U \subseteq \mathbb{R}^n$$

where U is an open subset of \mathbb{R}^n , $u:U\subset\mathbb{R}^n\to\mathbb{R}$, $Du=(\partial_{x_1}u_1,\ldots,\partial_{x_n}u)$.

Then $F: \mathbb{R}^{n^k} \times \cdots \times \mathbb{R}^n \times \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}$, where F is given.

 $x = (x_1 \dots, x_n)$ is (are) the independent variable(s).

u is the unknown function or dependent variable.

k is the order of the PDE.

Goal

Given a PDE, we consider

- Existence
- Uniqueness
- Stability

Recall: Multiindex Notation

 $\alpha = (\alpha_1, \dots, \alpha_n)$ a vector such that $\alpha_i \in \mathbb{Z}_{\geq 0}$. Then we say that α is a multiindex with order $|\alpha| = \alpha_1 + \dots + \alpha_n$.

Notation

$$u: U \subseteq \mathbb{R}^n \to \mathbb{R}, \ \alpha = (\alpha_1, \dots, \alpha_n).$$

 $u^{\alpha} := D^{\alpha}u = \partial_{x_n}^{\alpha_n} \cdots \partial_{x_1}^{\alpha_1}u, \text{ where } \partial^0 u = u.$

Definition: Linear Partial Differential Equation

A linear PDE of order k is of the form

$$(*) \sum_{|\alpha|=k} a_{\alpha}(x) D^{\alpha} u = f(x)$$

Remark

This means that F is multilinear in the first $n^k + n^{k-1} + \cdots$ variables.

Definition: Homogeneous Linear Partial Differential Equation

A linear given by (*) is homogeneous if $f(x) \equiv 0$.

Otherwise, it is non-homogeneous.

Example 1: Linear Transport Equation

$$\nabla u \cdot (1, b) = u_t + b \cdot Du = f(t, x)$$

This is a linear PDE of order 1 on $\mathbb{R} \times \mathbb{R}^n \equiv \mathbb{R}^{n+1}$ where (t, x) are independent variables and u is dependent. Here, x is the spatial variable while t is time and Du represents the gradient. $\nabla u = (\partial_t u, \nabla u), \ b \cdot Du = \sum_{i=1}^n b_i \partial_{x_i} u, \ (b_1, \dots, b_n) \in \mathbb{R}^n$ is fixed.

Example 2: Laplace Equation

$$\Delta u := \sum_{i=1}^{n} \partial_{x_i} u = 0$$

This is a linear, homogeneous PDE of order 2.

Example 3: Poisson Equation

 $-\Delta u := f(u)$

This is a nonlinear PDE of order 2.

Consider $f(u) = u^2$.

Example 4: Heat Equation (Diffusion Equation)

$$u_t - \Delta u = 0$$

This is a linear, homogeneous PDE of order 2.

Example 5: Wave Equation

$$u_{tt} - \Delta u = 0$$

This is a linear, homogeneous PDE of order 2.

Transport Equation

 $u: \mathbb{R}^n(0, \infty) \to \mathbb{R}$ given by

$$u_t + b \cdot Du = 0, \quad b \in \mathbb{R}^n$$

In order to get a solution, first assume that ther exists a "nice" (e.g. smooth, C^1 , differentiable, etc.) solution.

Step 1

Notice that the PDE is equivalent to

$$\nabla u \cdot (b,1) = 0$$

Step 2

Consider a curve on \mathbb{R}^{n+1} with velocity (1,b) which passes through (x,t). i.e.

$$\alpha(s) = (x + sb, t + s)$$

Notice $\alpha'(s) = (b, 1)$.

Then, let us study u along the curve $\alpha(s)$.

$$z(s) := u(\alpha(s))$$

Taking the derivative with respect to s,

$$z'(s) := \frac{d}{ds}(u \circ \alpha(s)) = \nabla u|_{\alpha(s)} \cdot \alpha'(s) = \nabla u|_{\alpha(s)} \cdot (b, 1) = 0$$

That is z'(s) = 0, z(s) is constant, and u along $\alpha(s)$ is constant.

Conclusion

If we know some value of u along $\alpha(s)$, then we know all values along $\alpha(s)$. If we have some value of u along every $\alpha(s)$, then we know u on $\mathbb{R}^n \times (0, \infty)$.

Transport Equation - Homogeneous Initial Value Problem

$$(*)\begin{cases} \nabla u \cdot (b,1) = 0, \quad \mathbb{R}^n \times (0,\infty) \\ u = g, \quad \mathbb{R}^n \times \{t = 0\} \end{cases}$$

$$(0,\infty),t)$$

$$(x,t) \times (b,1)$$

$$(x,t) \times (b,1)$$

$$(x,t) \times (b,1)$$

$$(x,t) \times (x,t) \times (x,t)$$

Here, $g: \mathbb{R}^n \to \mathbb{R}$ is given.

Consider (x, t); we want to find $(x_0, 0)$.

We know $\alpha(s) = (x + sb, t + s) = (x_0, 0)$, therefore

$$\begin{cases} x + sb = x_0 & (1) \\ t + s = 0 \implies s = -t & (2) \end{cases}$$

Then, by replacing (2) in (1),

$$x_0 = x - tb$$

Then from the conclusion

$$u(x,t) = u(x_0,0) = g(x_0) = g(x-tb)$$

Therfore, u(x,t) := g(x-tb) ().

Remark

- 1. If there exists a regular (differentiable or C^1) solution u for *, then u should look like \heartsuit .
- 2. If g is (differentiable or C^1), then u defined by ∇ is a (differentiable or C^1) solution for my problem.

Homework

Show that ∇ satisfies *.

Transport Equation - Non-homogeneous Initial Value Problem

$$(*)\begin{cases} \nabla u \cdot (b,1) = f(x,t), & \mathbb{R}^n \times (0,\infty) \\ u = g, & \mathbb{R}^n \times \{t=0\} \end{cases}$$

Where $g: \mathbb{R}^n \to \mathbb{R}$ and $f: \mathbb{R}^n \times (0, \infty) \to \mathbb{R}$ are given.

Solution

Notice that the PDE is equivalent to

$$\nabla u \cdot (b,1) = f(x,t)$$

Define the "characteristic curve"

$$\alpha(s) = (x + sb, t + s)$$

and

$$z(s) := u(\alpha(s))$$

Taking $\frac{d}{ds}$,

$$z'(s) = \nabla u|_{\alpha(s)} \cdot (b,1) = f(\alpha(s)) \implies z'(s) = f(x+sb,t+s) (c)$$

Notice that c is an ordinary differential equation. Integrating from -t to 0.

$$\int_{-t}^{0} z'(s) ds = \int_{-t}^{0} f(x+sb,t+s) ds$$
$$z(0) - z(-t) = \int_{-t}^{0} f(x+sb,t+s) ds$$

Notice that z(0) = u(x,t) and $z(-t) = u(\alpha(-t)) = u(x-tb,0)$.

$$u(x,t) = u(x-tb,0) + \int_{-t}^{0} f(x+sb,t+s) \ ds$$

Then

$$u(x,t) = g(x-tb) + \int_{-t}^{0} f(x+sb,t+s) ds$$

$$= g(x-tb) + \int_{0}^{t} f(x+(\overline{s}-t)b,\overline{s}) d\overline{s}$$

$$= g(x-tb) + \int_{0}^{t} f(x+(s-t)b,s) ds$$

Remark: Method of Characteristics

Try to vert the PDE into an ODE and solve using characteristic curves.

January 10, 2024

Definition: Harmonic Function

If $u \in C^2$ such that $\Delta u = 0$, then u is a harmonic function.

Laplace Equation

Consider $u:U\subseteq\mathbb{R}^n\to\mathbb{R}$ with U open, then the homogeneous (Laplace) form is given by

$$\Delta u = 0$$

and the non-homogeneous (Poisson) form is

$$-\Delta u = f$$

where $f: \mathbb{R}^n \to \mathbb{R}$ is given.

Remark / Exercise

The Laplace equation is invariant under translation and rotation.

That is, if $\Delta u(x) = 0$ and v(x) = u(x - y), then $\Delta v = 0$.

Similarly, if w(x) = u(O(x)) then $\Delta w = 0$ where O is an orthogonal matrix.

Fundamental Solution of the Laplace Equation

Remark: since the Laplace equation is invariant under rotation, we can consider a function in terms of the radius v(x) = v(|x|).

Recall $r = |x| = (x_1^2 + \dots + x_n^2)^{1/2}$.

Because of this remark, assume that u(x) = v(|x|) = v(r(x)) (*) where $v:(0,\infty) \to \mathbb{R}$.

Therefore, we need

$$\frac{\partial r}{\partial x_i} = \frac{1}{2} \cdot \frac{2x_i}{(x_1^2 + \dots + x_n^2)^{1/2}} = \frac{x_i}{r}$$

Replace (*) in the PDE

$$\frac{\partial u}{\partial x_i} = \frac{\partial}{\partial x_i} v(r(x)) = v'(r(x)) \cdot \frac{\partial r}{\partial x_i} = v'(r(x)) \cdot \frac{x_i}{r}$$

and

$$\frac{\partial^2 u}{\partial x_i^2} = \frac{\partial}{\partial x_i} \left(v'(r(x)) \cdot \frac{x_i}{r} \right)$$

$$= \frac{\partial}{\partial x_i} (v'(r(x))) \cdot \frac{x_i}{r} + v'(r(x)) \cdot \frac{\partial}{\partial x_i} \left(\frac{x_i}{r} \right)$$

$$= v''(r(x)) \cdot \frac{x_i^2}{r^2} + v'(r(x)) \left[\frac{1}{r} + x_i \frac{\partial}{\partial x_i} (r) \right]$$

$$= v'' \frac{x_i^2}{r^2} + v' \left[\frac{1}{r} - \frac{x_i^2}{r^3} \right]$$

Thenm, summing across i,

$$\Delta u = v'' + v' \left\lceil \frac{n}{r} + \frac{1}{r} \right\rceil = 0$$

Then the PDE is equivalent to

$$v''(r) + \frac{v'}{r}(n-1) = 0 \ (\Box)$$

We need to find a solution for \square .

$$v''(r) = \frac{(1-n)v'}{r}$$

Assume, without loss of generality, that $v' \neq 0$ such that

$$\frac{v''(r)}{v'(r)} = \frac{1-n}{r} \implies (\log(|v'|))' = \frac{1-n}{r}$$

Then, integrating,

$$\log(|v'|) = (1-n)\log(r) + C = \log(r^{1-n}) + C$$

such that

$$|v'| = Cr^{1-n} \implies v' = Cr^{1-n} \implies v(r) = Cr^{1-n+1} + D = Cr^{2-n} + D$$

Definition: Fundamental Solution of the Laplace Equation

The function Φ given by

$$\Phi(x) = \begin{cases} -\frac{1}{2\pi} \log |x|, & n = 2\\ \frac{1}{n(n-2)\alpha(n)} \cdot \frac{1}{|x|^{n-2}}, & n \ge 3 \end{cases}$$

where $\alpha(n)$ is the volume of the unit ball in \mathbb{R}^n is called the fundamental solution.

Remark

 Φ solves the Laplace equation away from 0.

Lemma: Estimates for the Fundamental Solution

• First Estimate $|D\Phi(x)| \le \frac{C}{|x|^{n-1}}$, for $x \ne 0$.

$$\frac{\partial \Phi}{\partial x_i} = C \frac{\partial}{\partial x_i} \left(\left| x \right|^{2-n} \right) = \frac{C(2-n)}{1-n} \left| x \right|^{2-n-1} \frac{\partial \left| x \right|}{\partial x_i} = \left| x \right|^{1-n} \cdot \frac{x_i}{\left| x \right|} = C x_i \left| x \right|^{-n}$$

Therefore

$$|D\Phi(x)| \le C|x||x|^{-n} \implies |D\Phi(x)| \le C|X|^{1-n}$$

- Exercise Compute for n = 2.
- Second Estimate $|D^2\Phi(x)| \le \frac{C}{|x|^n}$, for $x \ne 0$.

$$\frac{\partial^{2}}{\partial x_{J} \partial x_{i}} \Phi = C \frac{\partial}{\partial x_{J}} \left(x_{i} | x |^{-n} \right)$$

$$= C \left[\delta_{iJ} | x |^{-n} + x_{i} \frac{\partial}{\partial x_{J}} | x |^{-n} \right]$$

$$= C \left[\delta_{iJ} | x |^{-n} + (-n) \cdot \frac{x_{i} | x |^{-n-1} x_{J}}{| x} \right]$$

$$= C \left[\frac{\delta_{iJ} | x |}{| x |^{n}} + \frac{C x_{i} x_{J}}{| x |^{n+1}} \right]$$

Then

$$\left|\frac{\partial\Phi}{\partial x_i\partial x_J}\right| \leq \frac{C}{|x|^n} + \frac{C|x_i||x_J|}{|x|^{n+2}} \leq \frac{2C}{|x|^n} = \frac{C}{|x|^n}$$

Then, we are done since

$$|D^2\Phi(x)| = \sqrt{\sum_J \left(\frac{\partial \Phi}{\partial x_i \partial x_J}\right)}$$

Poisson Equation

Motivation

Suppose we have $\Phi(x)$, the fundamental solution.

Then for an arbitrary, fixed element $y \in \mathbb{R}^n$, then we have $x \to \Phi(x-y)$ harmonic for $x \neq y$.

Consider $f: \mathbb{R}^n \to \mathbb{R}$ such that $y \to f(y)$ then $x \to f(y)\Phi(x-y)$ is similarly harmonic for $x \neq y$. Now, if given $\{y_1, \ldots, y_m\}$ where $y_i \in \mathbb{R}^n$, then $x \to \sum_{i=1}^m f(y_i)\Phi(x-y_i)$ is harmonic $\forall x \neq \{y_1, \ldots, y_m\}$.

Then, what happens if we consider

$$u(x) := \int_{\mathbb{R}^n} f(y)\Phi(x-y) \, dy \quad (\square_3)$$

Is u harmonic? No, since $\Delta\Phi(x-y)$ is not summable in \mathbb{R}^n we may not pass the limit into the integral. (to be covered later) However, since $\Delta\Phi(x-y)$ acts as δ_{xy} in distribution, this may solve the Poisson equation.

Remark / Exercise

Assume that $f \in C_C^2(\mathbb{R}^n)$ (i.e f is twice continuously differentiable with compact support on \mathbb{R}^n).

The function Φ is integrable near the singularity on compact sets.

Prove using spherical coordinates.

Therefore, u defined by \square_3 is well defined

$$|u| = \left| \int_{\mathbb{R}^n} f(y) \Phi(x - y) \ dy \right| = \left| \int_K \Phi(x - y) \ dy \right| < \infty$$

Theorem: Solving the Poisson Equation

If $f \in C_C^2(\mathbb{R}^n)$ and u is defined by \square_3 , then

- 1. $u \in C^2(\mathbb{R}^n)$
- 2. $-\Delta u = f$, in \mathbb{R}^n
- Proof of 1

Since Φ presents a problem at x = y but f is well behaved, we will change variables such that $\overline{y} = x - y$, $y = x - \overline{y}$, and $\frac{dy}{d\overline{y}}(-1)I_{m \times m}$ and then redefine $\overline{y} = y$.

$$u(x) = \int_{\mathbb{R}^n} f(y)\Phi(x-y) \ dy = \int_{\mathbb{R}^n} f(x-\overline{y})\Phi(\overline{y}) \ d\overline{y} = \int_{\mathbb{R}^n} f(x-y)\Phi(y) \ dy$$

In short, we have sent the problem from Φ to f.

Now, let us consider $e_i = (0, \ldots, 1, \ldots, 0)$.

Then for h > 0,

$$\frac{u(x+he_i)-u(x)}{h}=\frac{1}{h}\int_{\mathbb{R}^n}\Phi(y)\left[f(x+he_i-y)-f(x-y)\right]\,dy$$

Now, the limit as $h \to 0$

$$\lim_{h \to 0} \frac{u(x + he_i) - u(x)}{h} = \lim_{h \to 0} \int_{\mathbb{R}^n} \Phi(y) \left[\frac{f(x + he_i - y) - f(x - y)}{h} \right] dy$$
$$= \int_{\mathbb{R}^n} \Phi(y) \cdot \frac{\partial f(x - y)}{\partial x_i} dy$$

To justify passing the limit into the integral, take an arbitrary sequence $h_m \xrightarrow{\to 0} 0$ and consider

$$f_m(y) := H(h_m, y)$$

We want to consider

$$|H(h_m, y)| \le \Phi(y) \left[\frac{f(x + h_m e_i - y) - f(x - y)}{h} \right]$$

$$\le \Phi(y) f'(c)$$

Where c is along the curve between $f(x + h_m e_i - y)$ and f(x - y) and chosen by mean value theorem.

- Exercise

$$|H(h_m, y)| \le \Phi(y)||f'||_{L^{\infty}}\chi_{B(x,R)}(y)$$

Note that

$$C \int_{\mathbb{R}^n} |\Phi(y)| \chi_{B(x,R)}(y) \ dy = \int_{B(x,R)} |\Phi(y)| \ dy < \infty$$

- Exercise

Using the fact that a continuous function is uniformly continuous on a compact set, show that $u \in C^2(\mathbb{R}^n)$.

Dominated Convergence Theorem

If $f_m(x)$ such that $f_m(x) \xrightarrow{m \to \infty} f(x)$, and $|f_m(x)| \le g(x)$ for $g \in L^1$, then f is integrable and

$$\lim_{m \to \infty} \int f_m(x) \ dx = \int f(x) \ dx$$

January 17, 2024

Recall: Averages

$$f: \{1, \dots, n\} \to \mathbb{R}$$

 $i \to a(i)$

The average is given as $\frac{a(i)+\cdots+a(n)}{n}$.

Then for $f: \Omega \to \mathbb{R}$, the average is given as

$$\frac{1}{|\Omega|} \int f(y) \, dy := \oint_{\Omega} f \, d\mu$$

In our case, $f: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}$

$$\oint_{B(x,n)} f \ d\mu \equiv \frac{1}{|B(x,n)|} \oint_{B(x,n)} f \ d\mu$$

$$\oint_{\partial B(x,n)} f \ d\mu = \frac{1}{|\partial B(x,n)|} \oint_{\partial B(x,b)} f \ d\mu$$

Theorem: Lebesgue Differentiation

$$u|x| = \lim_{r \to 0} \int_{B(x,n)} u \ d\mu = \lim_{r \to 0} \int_{\partial B(x,n)} u \ d\mu$$

Integration by Parts

Recall: Poisson's PDE

$$f \in C_c^2 |\mathbb{R}^n|, u(x) = \int_{\mathbb{R}^n} \Phi(x - y) f(y) dy.$$

$$\Phi(x) = \left\{ \frac{1}{n(n-2)|\alpha(n)|} \frac{1}{|X|(n-2)} \right\}$$

$$u(x)" = " \int_{\mathbb{R}^n} f(x-y) \Phi(y) \ dy$$

Part A

$$u \in C^2(\mathbb{R}^n)$$

Then

$$\frac{\partial u}{\partial x_1} = \int_{\mathbb{R}^n} \frac{\partial f}{\partial x_1} (x - y) \Phi(y) \, dy$$

$$\frac{\partial^2 u}{\partial x_1 x_T} = \int_{\mathbb{R}^n} \frac{\partial^2 f}{\partial x_1 x_T} (x - y) \Phi(y) \ dy$$

Notice that if we prove that

$$g(x) = \int_{\mathbb{R}^n} h(x - y) \Phi(y) \ dy$$

– where h is continuous with compact support – is continuous then we are done. Let us prove that g is continuous. Let $\varepsilon > 0$,

$$|g(x) - g(x_0)| \le \int_{\mathbb{R}^n} \Phi(y) |h(x - y) - h(x_0 - y)| dy$$

Without loss of generality, h has compact support on B(0,r) for some radius r. Therefore h(x,y) has compact support on B(x,r) and $h(x_0,y)$ has compact support on $B(x_0,r)$.

Consider $|x-x_0| < 1$, then $|h(x-y)-h(x_0-y)|$ has compact support on $B(x_0,r+1)$. Then

$$|g(x) - g(x_0)| \le \int_{B(x_0, r+1)} \Phi(y) |h(x-y) - h(x_0 - y)| dy$$

Since h is continuous on a compact domain, it is uniformly continuous.

Therefore $\exists \delta > 0$ such that $|w - z| < \delta \implies |h(w) - h(z)| < \epsilon$.

Set w = x - y and $z = x_0 - y$ such that $|w - z| = |x - x_0| < \delta$, then $|h(x - y) - h(x_0 - y)| < \epsilon$. Thus,

$$|g(x) - g(x_0)| \le \varepsilon \int_{B(x_0, r+1)} \Phi(y) dy$$

Part B

 $-\Delta u = f$

Letting $\varepsilon > 0$ and taking the Laplacian of both sides,

$$\Delta_x u(x) = \int_{\mathbb{R}^n} \Delta_x f(x - y) \Phi(y) \ dy$$

$$= \int_{B(0,\varepsilon)} \Delta_x f(x - y) \Phi(y) \ dy + \int_{\mathbb{R}^n \setminus B(0,\varepsilon)} \Delta_x f(x - y) \Phi(y) \ dy$$

Then

$$|I_{\varepsilon}| \leq \int_{B(0,\varepsilon)} |\Delta_x f(x-y)| \Phi(y) \, dy$$

$$\leq ||\nabla^2 f||_{L^{\infty}} \int_{B(0,\varepsilon)} \Phi(y) \, dy$$

$$\leq c \int_0^{\varepsilon} \int_{\partial B(0,r)} \Phi(y) \, dS(y) \, dr$$

$$\leq c \int_0^{\varepsilon} \int_{\partial B(0,r)} \frac{1}{|y|^{n-2}} \, dS(y) \, dr$$

$$= c \int_0^{\varepsilon} \int_{\partial B(0,r)} \frac{1}{r^{n-2}} \, dS(y) \, dr$$

$$= c \int_0^{\varepsilon} \frac{1}{r^{n-2}} \int_{\partial B(0,r)} dS(y) \, dr$$

$$\leq c \int_0^{\varepsilon} \frac{r^{n-1}}{r^{n-2}} \, dr$$

$$c \int_0^{\varepsilon} r \, dr = c\varepsilon^2$$

As an exercise, attempt the same argument with n=2. Therefore,

$$\Delta_x u = I_\varepsilon + J_\varepsilon$$

and $\lim_{\varepsilon \to 0} I_{\varepsilon} = 0$. Now, we need to control J_{ε} .

$$J_{\varepsilon} = \int_{\mathbb{R}^n} \Delta_x f(x - y) \Phi(y) \ dy$$

$$\Delta_x f(x-y) = \sum \frac{\partial^2 f}{\partial x^2} f(x-y)$$

$$\frac{\partial f}{\partial x}(x-y) = \nabla f|_{z=(x-y)} \cdot e_i = \frac{\partial f}{\partial z_i}|_{z=(x-y)}$$
$$\frac{\partial^2 f}{\partial x_i^2} = \frac{\partial^2 f}{\partial z_i^2}|_{z=(x-y)}$$

$$\Delta_y f(x-y) = \sum_i \frac{\partial f^2}{\partial y_i} (x-y)$$
$$\frac{\partial f}{\partial y_i} (x-y) = \nabla_i f|_{z=(x-y)} \cdot -e_i = -\frac{\partial f}{\partial z_i}|_{z=(x-y)}$$
$$\frac{\partial^2 f}{\partial y_i^2} = \frac{\partial^2}{\partial y_i^2}|_{z=x-y}$$

So

$$J_{\varepsilon} = \int_{\mathbb{R}^{n} \backslash B(0,\varepsilon)} \Delta_{y} f(x-y) \Phi(y) \, dy$$

$$= \underbrace{-\int_{\mathbb{R}^{n} \backslash B(0,\varepsilon)} \nabla_{y} f(x-y) \nabla \Phi(y) \, dy}_{K_{\varepsilon}} + \underbrace{\int_{\partial(\mathbb{R}^{n} \backslash B(0,\varepsilon))} \frac{\partial f}{\partial \eta} \Phi(y) \, dS(y)}_{D_{\varepsilon}}$$

and

$$\Delta_r u = I_\varepsilon + K_\varepsilon + L_\varepsilon$$

To control L_{ε} , since

$$|L_{\varepsilon}| \leq \int_{\partial B(0,\varepsilon)} \frac{|\partial f|}{\partial \eta} \Phi(y) \, dy$$

$$\leq \int_{\partial B(0,\varepsilon)} |\nabla f| \Phi(y) \, dy$$

$$\leq ||\nabla f||_{L^{\infty}} \int_{\partial B(0,\varepsilon)} \Phi(y) \, dy$$

$$\leq c \int_{\partial B(0,\varepsilon)} \frac{1}{|y|^{n-2}} \, dy$$

$$= \frac{c}{\varepsilon^{n-2}} \int_{\partial B(0,\varepsilon)} dy$$

$$\leq \frac{c\varepsilon^{n-1}}{\varepsilon^{n-2}}$$

$$= c\varepsilon$$

and
$$K_{\varepsilon}$$
, since $\frac{\partial \Phi}{\partial \eta} = \nabla \phi \cdot \eta = \frac{-y}{n\alpha(n)|y|^n} \cdot \eta = \frac{|y|^2}{n\alpha(n)|y|^n|y|} = \frac{1}{n\alpha(n)|y|^{n-1}}$

$$|K_{\varepsilon}| = -\int_{\mathbb{R}^{n} \setminus B(0,\varepsilon)} \nabla_{y} f(x-y) \nabla_{y} \Phi(y) dy$$

$$= \int_{\mathbb{R}^{n} \setminus B(0,\varepsilon)} f(x-y) \Delta_{y} \Phi(y) dy - \int_{\partial(\mathbb{R}^{n} \setminus B(0,\varepsilon))} f(x-y) \frac{\partial \Phi}{\partial \eta}$$

$$= -\int_{\partial B(0,\varepsilon)} f(x-y) \frac{1}{n\alpha(n)|y|^{n-1}} dS(y)$$

$$= -\frac{1}{n\alpha(n)\varepsilon^{n-1}} \int_{\delta B(0,\varepsilon)} f(x-y) dS(y)$$

$$= -\frac{1}{n\alpha(n)\varepsilon^{n-1}} \int_{\partial B(0,\varepsilon)} f(z) dS(z)$$

$$= \frac{1}{|\partial B(0,\varepsilon)|} \int_{\partial B(0,\varepsilon)} f(z) dz$$

$$= -\int_{\partial B(x,\varepsilon)} f(z) dz$$

Laplacian as a Distribution

$$-\Delta\Phi(y)=\delta(y)$$

Define the Dirac delta "function" as

$$\delta(y) = \begin{cases} \infty & y = 0 \\ 0 & y \neq 0 \end{cases}$$

such that $\int_{\mathbb{R}^n} \delta = 1$. Translate the Dirac delta as

$$\delta_x = \begin{cases} \infty & y = x \\ 0 & y \neq x \end{cases}$$

and recall that

$$\Delta u(x) = \Delta \left(\int_{\mathbb{R}^n} \Phi(x - y) f(y) \, dy \right)$$

$$= \int_{\mathbb{R}^n} \overline{\Delta \Phi(x - y)} \, f(y) \, dy$$

$$= -\int_{\mathbb{R}^n} \delta_x(y) f(y) \, dy$$

$$= -\int_{\mathbb{R}^n} \delta_x(y) f(x) \, dy$$

$$= -f(x) \int_{\mathbb{R}^n} \delta_x(y) \, dy$$

$$= -f(x)$$

Harmonic Functions

Suppose u is harmonic

 $u: \Omega \to \mathbb{R}^n$ harmonic.

Mean-value Formulas

Let U be an open set in \mathbb{R}^n , $u:U\to\mathbb{R}$ such that $\Delta u=0$ in U. Then

$$u(x) = \int_{\partial B(0,r)} -u(y) \, dS(y)$$
$$= \int_{B(x,r)} u(y) \, dy$$

where $B(x,r) \subseteq U$. IMAGE HERE

Proof

Consider $\phi(r) = \frac{1}{|\partial B(x,r)|} \int_{\partial B(x,r)} u(y) dS(y)$.

If $\phi'(r) = 0$, when we are done since that would make ϕ constant and $\phi(r) = \lim_{s\to 0} \phi(s) = u(x)$. Then

$$\phi(r) = \frac{1}{|\partial B(x,r)|} \int_{\partial B(x,r)} u(y) \, dS(y)$$

$$= \frac{1}{y=x+rz} \frac{1}{n\alpha(n)r^{n-1}} \int_{\partial B(0,1)} u(x+rz)r^{n-1} \, dS(z)$$

$$= \frac{1}{n\alpha(n)} \int_{\partial B(0,1)} u(x+rz) \, dS(z)$$

Therefore

$$\phi'(r) = \frac{1}{n\alpha(n)} \int_{\partial B(0,1)} \nabla u(x+rz) \cdot z \, dS(z)$$

$$= \frac{1}{|\partial B(0,r)|} \int_{\partial B(x,r)} \nabla u(y) \cdot \frac{y-x}{r} \, dS(y)$$

$$= \frac{1}{|\partial B(0,r)|} \int_{\partial B(x,r)} \nabla u(y) \cdot \eta \, dS(y)$$

$$= \frac{1}{|\partial B(0,r)|} \int_{\partial B(x,r)} \frac{\partial y}{\partial \eta} \, dS(y)$$

$$= \frac{1}{|\partial B(0,r)|} \int_{B(x,r)} \Delta u$$

$$= 0$$

January 22, 2024

Mean Value Formula

For $U \subseteq \mathbb{R}^n$, U open with $u: U \to \mathbb{R}$ such that $u \in C^2(U)$, $\Delta u = 0$, we have

$$u(x) \underset{\text{(a)}}{=} \int_{\partial B(x,r)} u \underset{\text{(b)}}{=} \int_{B(x,r)} u$$

for all $B(x,r) \subseteq U$.

Recall that (a) was proven above by setting $\phi(r) = \int_{\partial B(r)} u(y) dS(y)$ and showing $\phi'(r) = 0$. For (b), we again apply spherical coordinates such that

$$\int_{B(x,r)} u(y) \, dy = \int_0^r \int_{\partial B(x,s)} u(y) \, dS(y) ds$$

$$= \int_0^r |\partial B(x,s)| \int_{\partial B(x,s)} u(y) \, dS(y) \, ds$$

$$= u(x) \int_0^r |\partial B(x,s)| \, ds$$

$$= u(x) \int_0^r n\alpha(n) S^{n-1} \, ds$$

$$= \frac{u(x)n\alpha(n)S^n}{n} \Big|_0^r$$

$$= u(x) \frac{|B(x,r)|}{\alpha(n)r^n}$$

Converse

Recall that

$$\phi'(r) = \frac{1}{n\alpha(n)r^{n-1}} \int_{B(x,r)} \Delta u(y) \ dy$$

Suppose then that we do not know that $\Delta u = 0$ but we have

$$u(x) = \int_{\partial B(x,r)} u, \quad \forall B(x,r) \subseteq U$$

Then, necessarily, $\Delta u = 0$ in U.

• Proof Suppose, for sake of contradiction, that $\Delta u \neq 0$. Then, without loss of generality, there exists $y \in U$ such that $\Delta u(x) > 0$ for $x \in B(y, n) \subseteq U$. IMAGE HERE

$$\phi(r) = \int_{\partial B(x,r)} u(x) \ dS(x)$$

and

$$\phi'(r) = \frac{1}{n\alpha(n)r^{n-1}} \int_{B(y,r)} \Delta u(x) \, dS(x) > 0$$

which contradicts $\phi'(x) = 0$.

Strong Maximum Principle

Let $U \subseteq \mathbb{R}^n$ be a bounded open set, $u \in C^2(U) \cap C(\overline{U})$, $\Delta u = 0$ on U. Then

- 1. $\max_{\overline{U}}(u) = \max_{\partial U}(u)$.
- 2. If U is connected and u has its maximum in an interior point, then u is constant on \overline{U} .

IMAGE HERE - 2

Proof of A

Since $\partial U \subseteq \overline{U}$, $\max_{\partial U}(u) \leq \max_{\overline{U}}(u)$.

Let $x_0 \in \overline{U}$ such that $u(x_0) = \max_{\overline{U}}(u)$.

IMAGE HERE - 4

So either $x_0 \in \partial U$ or $x_0 \in U$.

Let U' be the connected component which contains x_0 . Then $x_0 \in U'$, so by part (b) u is constant on $\overline{U'}$. So

$$\max_{\overline{U}}(u) = u(x_0) = \max_{\partial U'}(u) \le \max_{\partial U}(u)$$

Proof of B

Then there exists $x_0 \in U$ such that $\max_{\overline{U}}(u) = u(x_0) = M$. Let us define $\Omega = \{y \in U \mid u(y) = M\}$. Then

- 1. $\Omega \neq \emptyset$, $B \setminus x_0 \in \Omega$.
- 2. Ω open set.

IMAGE HERE - 3

1. Ω is closed, since $\Omega = u^{-1}(\{M\})$.

It follows that $\Omega = U$ and, therefore, u(y) = M, $\forall y \in U$.

• Proof of 2 Let $y \in \Omega$, $y \in U$, u(y) = M. Then there exists $B(y,r) \subseteq U$, and

$$M = u(y) = \int_{B(y,r)} u(x) \, dS(x) \le M$$

Then

$$\int_{B(y,r)} u(x) \ dx = M$$

so u(x) = M, $\forall x \in B(y, r)$ and, therefore $B(y, r) \subseteq \Omega$ and Ω is open.

Remark: Boundedness Is Important

- 1. Consider f(x) = x on $\mathbb{R}_{\geq 0}$.
- 2. IMAGE HERE 5

Remark: Strong Minimum Principle Is Equivalent

Consequences

- 1. Positivity of harmonic functions.
- 2. Uniqueness of the Poisson problem.

Corollary: Positivity of Harmonic Functions

Suppose that U is connected and $u: U \to \mathbb{R}$, $u \in C^2(U) \cap C(\overline{U})$ solves the following problem

$$\begin{cases} \Delta u = 0 & \text{on } U \\ u = g & \text{on } \partial U \end{cases}$$

If $g \ge 0$ on ∂U , then u is positive on U as long as g is positive in some point.

Proof

Assume $\exists x_0 \in \partial U$ where x_0 is the minimum. Then $u(x_0) = \min_{\overline{U}}(u)$ and, $\forall x \in U$,

$$0 \le u(x_0) = \min_{\overline{U}}(u) \le u(x)$$

so u is non-negative. If u(x) = 0, then $u(x_0) = 0$ and the minimum is achieved in the interior. That would mean u(x) = 0, $\forall x \in \overline{U} \supseteq \partial U$ and g(x) = 0, $\forall x \in \partial U$ which would be a contradiction.

Theorem: Uniqueness of the Poisson Problem

Suppose $U \subseteq \mathbb{R}^n$ is open, connected and bounded. Then, there exists at most one solution to

$$(*) \begin{cases} -\Delta u = f & \text{in } U \\ u = g & \text{on } \partial U \end{cases}$$

where $u \in C^2(U) \cap C(\overline{U})$.

Proof

Let u_1 and u_2 be two solutions of *. Consider $w = u_1 - u_2$ and observe that

$$\Delta w = \Delta u_1 - \Delta u_2 = -f + f = 0, \quad \text{in } U$$

and $w|_{\partial U} = g - g = 0$ on ∂U . Therefore

$$\begin{cases} \Delta w = 0 & \text{in } U \\ w = 0 & \text{on } \partial U \end{cases}$$

By applying the minimum and maximum principles,

$$w(x_0) = \min_{\overline{t}}(w) \leq w(x) \leq \max_U(w) = w(x)$$

so w(x) = 0, $\forall x \in \overline{U}$ and therefore $u_1 = u_2$.

Example

Let's consider $f: \mathbb{C} \to \mathbb{C}$ analytic (i.e. $f(z) = \sum_{n=0}^{\infty} a_n z^n$ for $a_n, z \in \mathbb{C}$). Then

$$f(z) = u(z) + v(z)$$

If $\mathbb{C} \cong \mathbb{R}^2$,

$$f(x+y) = u(x,y) + v(x,y)$$

for $u : \mathbb{R}^2 \to \mathbb{R}$ and $v : \mathbb{R}^2 \to \mathbb{R}$. Claim: u and v are Harmonic.

$$u(x,y) + v(x,y) = \sum_{n=0}^{\infty} a_n (x+iy)^n$$

and

$$\frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} = \sum_{n=1}^{\infty} a_n n |x + iy|^{n-1}$$
$$\frac{\partial u}{\partial y} + i \frac{\partial v}{\partial y} = \sum_{n=1}^{\infty} a_n n |x + iy|^{n-1} i$$

So

$$i\left(\frac{\partial u}{\partial x} + i\frac{\partial v}{\partial x}\right) = \frac{\partial u}{\partial y} + i\frac{\partial v}{\partial y}$$

and

$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$
 and $\frac{\partial v}{\partial y} = \frac{\partial u}{\partial x}$

Recall: Convolution and Smoothing

Let $U \subseteq \mathbb{R}^n$ be an open set.

For $\varepsilon > 0$, define $U_{\varepsilon} = \{x \in U \mid d(x, \partial U) > \varepsilon\}$.

IMAGE HERE - 6

Define

$$\eta(x) \begin{cases} ce\left(\frac{1}{|x|^2 - 1}\right) & |x| < 1\\ 0 & |x| \ge 1 \end{cases}$$

with c such that $\int_{\mathbb{R}^n} \eta(x) dx = 1, \eta \in C^{\infty}(\mathbb{R}^n)$

IMAGE HERE - 7

Note that $supp(\eta) = B(0,1)$ and take

$$\eta_{\varepsilon}(x) = \frac{1}{\varepsilon^n} \eta\left(\frac{x}{\varepsilon}\right), \quad \eta_{\varepsilon} \in C^{\infty}(\mathbb{R}^n)$$

Then

$$\int_{\mathbb{R}^n} \eta_{\varepsilon}(x) \ dx = 1$$

and supp $(\eta_{\varepsilon}) \subseteq B(0, \varepsilon)$.

If f is locally integrable on U, define its mollification

$$f^{\varepsilon} = (x) = \int_{U} \eta_{\varepsilon}(x - y) f(y) dy \quad \forall x \in U_{\varepsilon}$$

January 24, 2024

Recall: Mollifiers

Define

$$\eta(x) = \begin{cases} ce\left(\frac{1}{|x|^2 - 1}\right) & |x| < 1\\ 0 & |x| \ge 1 \end{cases}$$

where $\eta \in C^{\infty}(\mathbb{R}^n)$, $\int_{\mathbb{R}^n} \eta(x) = 1$ and $\operatorname{supp}(\eta) \subseteq B(0,1)$. Then for $\varepsilon > 0$, $\eta_{\varepsilon}(x) = \frac{1}{\varepsilon} \left(\frac{x}{\varepsilon}\right)$ where $\eta_{\varepsilon} \in C^{\infty}(\mathbb{R}^n)$. So $\int_{\mathbb{R}^n} \eta_{\varepsilon}(x) = 1$ and $\operatorname{supp}(\eta_{\varepsilon}) \subseteq B(0, \varepsilon)$ Given f locally summable; $f: U \to \mathbb{R}$,

$$f^{\varepsilon}(x) := \int_{U} \eta_{\varepsilon}(x - y) f(y) \, dy \quad x \in U_{\varepsilon}$$
$$= \int_{B(x,\varepsilon)} \eta_{\varepsilon}(x - y) f(y) \, dy \quad x \in U_{\varepsilon}$$

Properties

1.
$$f^{\varepsilon} \in C^{\infty}(U_{\varepsilon})$$
.

2.
$$f^{\varepsilon} \xrightarrow[\varepsilon \to 0]{} f$$
 a.e.

3. If f continuous, then $f^{\varepsilon} \xrightarrow[\varepsilon \to 0]{} f$ uniformly on compact sets of U.

Theorem 6:

Let $u \in C(U)$ with $U \in \mathbb{R}^n$ open and such that u satisfies the mean-value property (i.e. $u(x) = \int_{\partial B(x,r)} u(y) dS(y)$, $\forall B(x,r) \subseteq U$), then $u \in C^{\infty}$.

Corollary

If $u \in C^2(U)$ is harmonic, then $u \in C^{\infty}(U)$.

Proof

Let us take $x_0 \in U$

IMAGE HERE - 1

Notice, that if we prove that $u = u_{\varepsilon}$ on U_{ε} then we are done.

Let $x \in U_{\varepsilon}$, and noticing that $\eta(x) = \eta(|x|)$,

$$u_{\varepsilon}(x) = \int_{B(x,\varepsilon)} \eta_{\varepsilon}(x - y)u(y) \, dy$$

$$= \frac{1}{\varepsilon^n} \int_{B(x,\varepsilon)}^{\infty} \eta \frac{|x - y|}{\varepsilon} u(y) \, dy$$

$$= \frac{1}{\varepsilon^n} \int_0^{\varepsilon} \int_{\partial B(x,r)} \eta \frac{r}{(x - y)} u(y) \, dS(y) dr$$

$$= \frac{1}{\varepsilon^n} \int_0^{\varepsilon} \eta \frac{r}{\varepsilon} \int_{\partial B(x,r)} u(y) \, dS(y) dr$$

$$= \frac{1}{\varepsilon^n} \int_0^{\varepsilon} \eta \frac{r}{\varepsilon} \underbrace{|\partial B(x,r)|}_{|\partial B(0,r)|} u(x) \, dr$$

$$= \frac{u(x)}{\varepsilon^n} \int_0^r \eta \frac{r}{\varepsilon} \int_{\partial B(0,r)} dS(y) dr$$

$$= u(x) \int_0^{\varepsilon} \frac{1}{\varepsilon^n} \eta \frac{r}{\varepsilon} \, dS(y) dr$$

$$= u(x) \int_{B(0,\varepsilon)}^{\infty} \eta_{\varepsilon}(y) \, dy = u(x)$$

Theorem 7: Local Estimates of Harmonic Functions

Suppose $u \in C^2(U)$ a harmonic function. Then $|D^{\alpha}u(x_0)| \leq \frac{C_k}{r^{n+k}}||u||_{L^1(B(x_0,r))}, \ B(x_0,r) \subseteq U$, where α is a multiindex of order k, $C_0 = \frac{1}{\alpha(n)}$ and $C_k = \frac{(2^{n+1}nk)^k}{\alpha(n)}$ for $k = 1, 2, \dots$

We may take α since, by previous theorem, $u \in C^{\infty}(U)$.

Proof

By induction.

Consider k = 0.

$$u(x_0) = \int_{B(x_0,r)} u(y) \, dy$$

$$= \frac{1}{\alpha(n)r^n} \int_{B(x_0,r)} u(y) \, dy$$

$$|u(x_0)| \le \frac{1}{\alpha(n)r^n} \int_{B(x_0,r)} |u(y)| \, dy$$

$$= \frac{C_0}{r^n} ||u||_{L^1(B(x_0,r))}$$

For k = 1, if $|\alpha| = k = 1$ then $D^{\alpha}u(X_0) = \frac{\partial u}{\partial x_i}(x)$ for $i = 1, 2, \dots$ Notice that $\frac{\partial u}{\partial x_i}$ is also harmonic.

$$\Delta \frac{\partial u}{\partial x_i} = \sum_{t=1}^n \frac{\partial^2}{\partial x_t^2} \frac{\partial u}{\partial x_i}$$
$$= \frac{\partial}{\partial x_i} \underbrace{\sum_{t=1}^\infty \frac{\partial^2 u}{\partial x_t^2}}_{0}$$

Applying the mean-value formula to $\frac{\partial u}{\partial x_i}(x_0)$ in B(x,r/2). IMAGE HERE - 2

$$\frac{\partial u}{\partial x_i}(x_0) = \int_{B(x_0, r/2)} \frac{\partial u}{\partial x_i}(y) \, dy$$
$$= \frac{2^n}{\alpha(n)r^n} \frac{\partial u}{\partial x_i}(y) \, dy$$

Recall $\int_{\Omega} w \Delta v = -\int_{\Omega} \nabla w \cdot \nabla v + \int_{\Omega} w \frac{\partial v}{\partial \eta}$.

$$= \sum_{e_i = \nabla y_i} \frac{2^n}{\alpha(n)r^n} \int_{B(x_0, r/2)} \nabla \underbrace{u(y)}_{w} \cdot \nabla \underbrace{y_i}_{v} dy$$

$$= \sum_{IBP} \frac{2^n}{\alpha(n)r^n} \left[-\int_{B(x_0, r/2)} u(y) \Delta y_i dy + \int_{\partial B(x_0, r/2)} u(y) \frac{\partial y_i}{\partial \eta} \right]$$

Note that

$$\frac{\partial y_i}{\partial \eta} = \nabla y_i \cdot \eta = e_i \cdot \eta = \eta_i$$

and

$$\left| \frac{\partial y_i}{\partial \eta} \right| = |\eta_i| \le |\eta| = 1$$

So,

$$\left| \frac{\partial u}{\partial x_i} x_0 \right| \le \frac{2^n}{\alpha(n) r^n} \int_{\partial B(x_0, r/2)} |u(y)| \, dS(y)$$

$$= \frac{2^n n \alpha(n) \left(\frac{r}{2}\right)^{n-1}}{\alpha(n) r^n} ||u||_{L^{\infty}(\partial B(x_0, r/2))}$$

$$= \frac{2n}{r} \underbrace{||u||_{L^{\infty}(\partial B(x_0, r/2))}}_{*}$$

Let's analyze *.

Let $x \in \partial B(x_0, r/2)$, then $B(x, r/2) \subseteq B(x_0, r)$.

IMAGE HERE - 3

Then we may apply k = 0.

$$|u(x)| \le \frac{C_0}{\left(\frac{r}{2}\right)^n} ||u||_{L^1(B(x,r/2))}$$

$$\le \frac{C_0}{\left(\frac{r}{2}\right)^n} ||u||_{L^1(B(x_0,r))}$$

Then

$$\begin{split} \left| \frac{\partial u}{\partial x_i}(x_0) \right| &\leq \frac{2n}{r} \frac{C_0}{\left(\frac{r}{2}\right)^n} ||u||_{L^1(B(x_0,r))} \\ &= \frac{2^{n+1}n}{r^{n+1}\alpha(n)} ||u||_{L^1(B(x_0,r))} \end{split}$$

HOMEWORK: Induct for arbitrary k.

Theorem 8: Liouville's Theorem

Suppose $u:\mathbb{R}^n\to\mathbb{R}$ is harmonic and bounded. Then u is constant.

Proof

$$|D^{\alpha}u(x)| = \sqrt{\sum_{i=1}^{n} \left[\frac{\partial u}{\partial x_{i}}\right]^{2}} \leq \sum_{i=1}^{n} \left|\frac{\partial u}{\partial x_{i}}\right|$$

Let r > 0, $B(x, r) \subseteq \mathbb{R}^n$. Then, using estimates

$$\left| \frac{\partial u}{\partial x_i}(x) \right| \le \frac{C_1}{r^{n+1}} ||u||_{L^1(B(x,r))}$$

Therefore,

$$|D^{\alpha}u(x)| \leq \frac{nC_1}{r^{n+1}} ||u||_{L^1(B(x,r))}$$

$$= \frac{nC_1}{r^{n+1}} \int_{B(x,r)} |u(y)| dy$$

$$\leq \frac{nC_1}{r^{n+1}} ||u||_{L^{\infty}(B(x,r))} \alpha(n) r^n$$

$$= \frac{C||u||_{L^{\infty}(B(x,r))}}{r}$$

and

$$\begin{split} \left| \frac{\partial u}{\partial x_i}(x) \right| &\leq \frac{C||u||_{L^{\infty}(B(x,r))}}{r} \\ \left| \frac{\partial u}{\partial x_i}(x) \right| &\leq C||u||_{L^{\infty}(B(x,r))} \lim_{r \to \infty} \frac{1}{r} \implies \frac{\partial u}{\partial x_i}(x) = 0 \implies u = Ck \end{split}$$

Theorem: Representation Formula

Recall: $f \in C_c^2(\mathbb{R}^n)$, $(*) - \Delta u = f$ in \mathbb{R}^n , we saw that

$$\tilde{u}(x): \int_{\mathbb{R}^n} \Phi(x-y) f(y) dy$$

solves *.

Let us consider $u \in C^2(\mathbb{R}^n)$ solving $-\Delta u = f$ for $n \ge 3$ where $f \in C_c^2(\mathbb{R}^n)$ and u is bounded. Then $u(x) = \tilde{u}(x) + C = \int_{\mathbb{R}^n} \Phi(x - y) f(y) dy + C$.

Proof

Notice that if \tilde{u} is bounded, then we are done. Because we may consider $w = u - \tilde{u}$ on \mathbb{R}^n where

$$\Delta w = \Delta u - \Delta \tilde{u} = -f - (-f) = 0$$

Therefore w is bounded and, by Liouville's Theorem, w = C and $u - \tilde{u} = c \iff u = \tilde{u} + C$.

$$|\tilde{u}(x)| \le \int_{B(0,k)} \Phi(x-y) f(y) \, dy$$

$$\le ||f||_{L^{\infty}(\mathbb{R}^n)} \int_{B(0,k)} \Phi(x-y) \, dy$$

If this is less than some C which does not depend on x, we are done.

Since $\Phi(x) \to 0$ for $|x| \to \infty$, for any $C_1 \exists \alpha$ such that if $|x| > \alpha$ then $|\Phi(x)| < C_1$.

IMAGE HERE - 4

 $\operatorname{dist}(x, B(0, k)) = \operatorname{dist}(x, y_0) \text{ where } y_0 \in \overline{B(0, k)}.$

IMAGE HERE - 5

There are two cases.

• Case 1 $\operatorname{dist}(x, B(0, k)) \le \alpha$

 $B(x,k) \subseteq B(0,\alpha + Ck)$

Let $y \in B(x, k)$, then |y - x| < k so $|x - y_0| < \alpha$.

Therefore $|y-y_0| \le k+\alpha \implies |y| \le k+\alpha+|y_0| = 2k+\alpha \implies y \in B(0,2k+\alpha)$. Then

$$||f||_{L^{\infty}(\mathbb{R}^n)} \int_{B(x,k)} \Phi(y) \ dy \le ||f||_{L^{\infty}(\mathbb{R}^n)} \int_{B(0,\alpha+2k)} \Phi(y) \ dy$$

HOMEWORK - Consider the other case.

January 29, 2024

Recall: Representation Formula

For $n \geq 3$.

$$\tilde{u}(x): \int_{\mathbb{R}^n} \Phi(x-y) f(y) dy$$

It is sufficient to show that \tilde{u} is bounded. Then

$$|\tilde{u}| \le C \int_{B(0,k)} \Phi(x-y) \, dy$$

 $\forall C_1, \exists \alpha \text{ such that } |z| \geq \alpha \implies |\Phi(z)| \leq C_1.$

Case 2

For dist $(x, B(0, k)) \ge \alpha$, dist $(x, y) \ge \alpha$, $\forall y \in B(0, k)$. Then

$$|x - y| \ge \alpha$$

$$\frac{1}{|x - y|} \le \frac{1}{\alpha}$$

$$\frac{1}{|x - y|^{n-2}} \le \frac{1}{\alpha^{n-1}}$$

and

$$|\tilde{u}(x)| \le C \int_{B(0,k)} \frac{1}{|x-y|^{n-2}} dy \le \frac{C}{\alpha^{n-2}} \int_{B(0,k)} dy$$

Theorem 10: Harmonic Implies Analytic

Let $U \subseteq \mathbb{R}^n$ open, $u \in C^2(U)$ harmonic. Then u is analytic in U.

Proof

Let $x_0 \in U$. We want to prove that the power series converges to u(x) for x in a neighborhood around x_0 . Let $r = \operatorname{dist}\left(x_0, \frac{\partial U}{4}\right)$, $M = \frac{1}{\alpha(n)r^n}||u||_{L^1(B(x_0,r))} \subset U$. IMAGE HERE - 1

We want to analyze $x \in B(x_0, r)$.

Notice that $B(x,r) \leq B(x_0,2r)$, and $z \in B(x,r)$ gives |z-x| < r so

$$|z - x_0| \le \underbrace{|z - x|}_{\le r} + \underbrace{|x - x_0|}_{\le r} \le 2r$$

Applying estimates on B(x,r), $|\alpha| = k$,

$$|D^{\alpha}u(x)| \le \frac{C_k}{r^{n+k}} ||u||_{L^1(B(x,r))}$$

$$\le \frac{C_k}{r^{n+k}} ||u||_{L^1(B(x_0,2r))}$$

and

$$\sup_{x \in B(x_0, r)} |D^{\alpha} u(x)| \le \frac{\left(2^{n+1} n k\right)^k}{\alpha(n) r^{n+k}} ||u||_{L^1(B(x_0, 2r))}$$

Notice, by Stirling's approximation or Taylor expansion, $\frac{k^k}{k!} < e^k$, $\forall k \ge 1$. So

$$|\alpha|^{|\alpha|} < e^{|\alpha|} |\alpha|!$$

and

$$n^{k} = \underbrace{\left(1 + \cdots + 1\right)}_{n = \text{times}} = \sum_{|\beta| = k} \frac{|\beta|!}{\beta!} \ge \frac{|\alpha|!}{\alpha!}$$

where $|\alpha|! \leq \alpha! n^k$, $\beta = (\beta_1, \dots, \beta_2)$ and $\beta! := \beta_1! \beta_2! \dots \beta_n!$. Therefore

$$|\alpha|^{|\alpha|} \le e^{|\alpha|} |\alpha|! \le e^{|\alpha|} \alpha! n^k$$

and finally

$$(*) \quad k^k \le e^k \alpha! n^k$$

Applying * to the above inequality,

$$\sup_{X \in B(x_0, r)} |D^{\alpha} u(x)| \le \frac{\left(2^{n+1} n\right)^k e^k \alpha! n^k}{\alpha(n) r^n r^k} ||u||_{L^1(B(x_0, 2r))}$$
$$\le \left(\frac{2^{n+1} n^2 e}{r}\right)^k \cdot \alpha! M$$

Let us analyze the Taylor expansion

$$\sum_{k=0}^{N} \sum_{|\alpha|=k} \frac{D^{\alpha} u(x_0)}{\alpha!} (x - x^0)^{\alpha}$$

Where $\alpha = (\alpha_1, \dots, \alpha_n), y \in \mathbb{R}^n$ and $y^{\alpha} = y_1^{\alpha_1} \cdots y_n^{\alpha_n}$. Pick $|x - x_0| \leq \frac{r}{2^{n+2}n^3e}$. We want to prove that the remainder $R_N(x) \xrightarrow[N \to \infty]{} 0$.

$$R_{N}(x) = u(x) - \sum_{k=0}^{N-1} \sum_{|\alpha|=k} \frac{D^{\alpha} u(x_{0})}{\alpha!} (x - x_{0})^{\alpha}$$

$$= \sum_{|\alpha|=N} \frac{D^{\alpha} u(x_{0} + t(x - x_{0}))(x - x_{0})^{\alpha}}{\alpha!}, \quad \text{for some } |t| \le 1$$

Using the remainder of the Taylor expansion with $g(t) = u(x_0 + t(x - x_0))$ for $g: I \to \mathbb{R}$. Homework: show this around t = 0 at t = 1.

Note that $u(x_0 + t(x - x_0))$ describes a straight long with $t = 0 \implies u(x_0)$ and $t = 1 \implies u(x)$.

Notice also that $x_0 + t(x - x_0)$ describes a straight long with $t = 0 \longrightarrow u(x_0)$ and $t = 1 \longrightarrow u(x_0)$. Notice also that $x_0 + t(x - x_0) \in B(x_0, r)$. Then, considering the superemum of the remainder,

$$|R_n(x)| \le \sum_{|\alpha|=N} \left(\frac{2^{n+1}n^2e}{r}\right)^N \cdot M\alpha! \cdot \frac{|(x-x_0)^{\alpha}|}{\alpha!}$$

Remark: for $\alpha = (\alpha_1, \dots, \alpha_n)$ and $y = (y_1, \dots, y_n)$,

$$\begin{split} |y^{\alpha}| &= |y_1^{\alpha_1} \cdots y_n^{\alpha_n}| \le |y_1|^{\alpha_1} \cdots |y_n|^{\alpha_n} \\ &\le |y|^{\alpha_1} \cdots |y|^{\alpha_n} \\ &= |y|^{\alpha_1 + \alpha_2 + \cdots + \alpha_n} \\ &= |y|^{\alpha} \end{split}$$

Therefore

$$|R_n(x)| \le \sum_{|\alpha|=N} \left(\frac{2^{n+1}n^2e}{r}\right)^N \cdot M|x - x_0|^N$$

$$\le M \cdot \sum_{|\alpha|=N} \left(\frac{2^{n+1}n^2e}{r}\right)^N \left(\frac{r}{2^{n+2}n^3e}\right)^N$$

$$= M \cdot \sum_{|\alpha|=N} \left(\frac{1}{2n}\right)^N$$

$$\le M \left(\frac{1}{2n}\right)^N \sum_{|\alpha|=N}$$

$$\le M \left(\frac{1}{2n}\right)^N n^N$$

$$= M \left(\frac{1}{2}\right)^N$$

Note that $\sum_{|\alpha|=N} (1) \leq n^N$ since

$$\alpha = (\alpha_1, \dots, \alpha_n) = (\alpha_{1_N}, \dots, \alpha_{i_N}) = n^N$$

Theorem 11: Harnack's Inequality

Define $V \subset U$ as "V totally contained in U" meaning \overline{V} compact and $V \subseteq \overline{V} \subseteq U$. IAMGE HERE - 2

Let U open and $u \in C^2(U)$ harmonic and non-negative.

Then for each connected open set $V \subset U$

$$\sup_V u \leq C \inf_V u$$

for some C that depends on V.

Remark

Then

$$\frac{1}{C}u(y) \le u(x) \le Cu(y), \quad \forall x, y \in V$$

Since

$$u(x) \le \sup_{V} u \le C \inf_{V} u \le C u(y)$$

and

$$\frac{1}{C}u(y) \leq \frac{1}{C}\sup_V u \leq \inf_V u \leq u(x).$$

Proof

Take $r = \frac{\operatorname{dist}(v, \partial U)}{4} > 0$.

• Case 1

Let us suppose that $x, y \in V$ such that |x - y| < r.

IMAGE HERE - 3

Notice $B(x, 2r) \subseteq U$. Applying mean-value formulas,

$$u(x) = \int_{B(x,2r)} u = \frac{1}{\alpha(n)(2r)^n} \int_{B(x,2r)} u$$

But notice that $B(y,r) \subseteq B(x,2r)$, so

$$u(x) \ge \frac{1}{\alpha(n)2^n r^n} \int_{B(y,r)} u = \frac{1}{2^n} \int_{B(y,r)} u = \frac{1}{2^n} u(y)$$

That is, if $x, y \in V$ such that |x - y| < r, then $u(x) \ge \frac{1}{2^n} u(y)$ and, mutatis mutandis, $u(y) \ge \frac{1}{2^n} u(x)$.

• Case 2

Let us cover \overline{V} by an open covering of balls $\{B_i\}_{i=1}^N$ such that the radius of each ball is $\frac{r}{2}$ and $B_i \cap B_{i-1} \neq \emptyset$. IMAGE HERE - 4

Then $u(x) \ge \frac{1}{2^n} u(z) \frac{1}{2^n 2^n} u(y)$, so $u(x) \ge \frac{1}{2^{2n}} u(y)$.

In the same way, $u(y) \ge \frac{1}{2^{2n}}u(x)$.

IMAGE HERE - 5

For three balls, $u(x) \ge \frac{1}{2^{3n}}u(y)$ and $u(y) \ge \frac{1}{2^{3n}}u(x)$.

Since we have a finite covering of N balls, the same strategy gives

$$u(x) \ge \frac{1}{2^{Nn}}u(y) \qquad \qquad u(y) \ge \frac{1}{2^{Nn}}u(x)$$

and

$$\frac{1}{2^{Nn}} \le u(x)$$

Taking the supremum $y \in V$;

$$\sup_{y \in V} u(y) \le 2^{Nn} u(x)$$

taking the infemum $x \in V$

$$\inf_{x \in V} u(y)$$

Recap: Laplace Equation

• Fundemental Solution

- Poisson Equation in \mathbb{R}^n
- Mean-value Formulas
- Properties
 - Strong Maximum / Minimum Principles
 - * Uniqueness of the Poisson Equation on Bounded Domains
 - Regularity
 - Derivative Estimates
 - Liouville's Theorem
 - * Representation Formula
 - · Uniqueness of the Poisson Equation up to a Constant on \mathbb{R}^n for Bounded Functions
 - Analyticity
 - Harnack's Inequality

Green's Functions

For U open and bounded, $\partial U \in C^1$.

Goal: We want to solve $-\Delta u = f$ on U and u = g on ∂U .

Recall: Green's Formula

$$\int_{\Omega} u \Delta v - v \Delta u = \int_{\partial \Omega} u \frac{\partial v}{\partial \eta} - v \frac{\partial u}{\partial \eta}$$

Obtaining Green's Formula

Let $x \in U$ and consider u(y), $\Phi(y-x)$ as functions of y.

Let $\varepsilon > 0$ and consider $V_{\varepsilon} = U \setminus B_{\varepsilon}(x)$. Applying Green's formula; $\Omega = V_{\varepsilon}$,

$$\int_{V_{\varepsilon}} \underbrace{u(y)\Delta_{y}\Phi(y-x)}_{=0} - \Phi(y-x)\Delta_{y}u = \int_{\partial V_{\varepsilon}} u(y)\frac{\partial \Phi(y-x)}{\partial \eta} - \Phi(y-x)\frac{\partial u(y)}{\partial \eta}$$

IMAGE HERE - 6