

Lab1

Przykład układu scalonego

Cena bramki NAND

Bramki transmisyjne

Multiplekser

Cena bramki NAND

Tranzystory NMOS i PMOS mogą działać jak klucze analogowe. Ale czy napięcie na wyjściu dokładnie odwzorowuje napięcie na wyjściu?

Idealnie chcielibyśmy uzyskać VIN = VOUT zarówno dla 0 jak i 1.

NMOS

Załóżmy, że VGS > VT, czyli tranzystor

Jeśli VIN = VD = 0 to VS =

VDD oczekiwa

Jeśli VIN = VD = VDD, to na wyjściu oczekiwalibyśmy VDD, ale...

Jeśli VS rośnie i osiągnie wartość:

$$VS = VDD - VT$$
, to

Załóżmy, że VGS > VT, czyli tranzystor przewodzi

VDD G G Jeśli VIN = VD = VDD, to na wyjściu oczekiwalibyśmy VDD, ale...

Jeśli VS rośnie i osiągnie wartość:

$$VS = VDD - VT$$
, to

$$VGS = VDD - (VDD-VT) = VT$$

... i tranzystor wyłączy się, czyli nigdy nie osiągniemy VDD

Załóżmy, że VGS > VT, czyli tranzystor przewodzi

MOCNE "0"

Jeśli VIN = VD = VDD, to na wyjściu oczekiwalibyśmy VDD, ale...

Jeśli VS rośnie i osiągnie wartość:

SŁABE "1"

PMOS

Załóżmy, że VGS < -VT, czyli tranzystor

Jeśli VIN = VD = VDD => VS =

Jeśli VIN = VD = 0, to na wyjściu oczekiwalibyśmy 0, ale...

Jeśli VS maleje i osiągnie wartość:

$$VS = VT$$
, to

VGS =.....

PMOS

Załóżmy, że VGS < -VT, czyli tranzystor przewodzi

Jeśli VIN = VD = 0, to na wyjściu oczekiwalibyśmy 0, ale...

Jeśli VS maleje i osiągnie wartość:

$$VS = VT$$
, to

$$VGS = -VT$$

... i tranzystor wyłączy się, czyli Vs nigdy nie osiągnie 0

PMOS

Załóżmy, że VGS < -VT, czyli tranzystor przewodzi

Jeśli VIN = VD = 0, to na wyjściu oczekiwalibyśmy 0, ale...

Jeśli VS maleje i osiągnie wartość:

$$VS = VT$$
, to $VGS = -VT$

... i tranzystor wyłączy się

SŁABE "0"

https://www.electronics-tutorials.ws/combination/transmission-gate.html

Multiplekser

2-input Multiplexer

MUXes can be generalized to 2^k data inputs and k select inputs ...

Truth Table

s	$\mathbf{D_1}$	$\mathbf{D_0}$	Y
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

... and implemented as a tree of smaller MUXes:

Realizacja funkcji logicznej

$$Y = A\overline{B} + \overline{B}\overline{C} + \overline{A}BC$$

A	В	C	$oxed{Y}$
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Realizacja funkcji logicznej

$$Y = A\overline{B} + \overline{B}\overline{C} + \overline{A}BC$$

A	В	C	Y
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

MUX z bramek logicznych

Jak zbudować MUX z bramek NAND?

$$A + B = A \cdot B$$

$$\overline{A} \cdot \overline{B} = \overline{A} + B$$

$$- \bigcirc - = - \bigcirc - = - \bigcirc$$

$$- \bigcirc - = - \bigcirc - = - \bigcirc$$

$$- \bigcirc - = - \bigcirc - = - \bigcirc$$