Sistemas Operacionais

Aula 03 – Arquiteturas de SOs Prof. Igor da Penha Natal

Conteúdo

- 1 Sistemas monolíticos
- 2 Sistemas micronúcleo
- 3 Sistemas em camadas
- 4 Sistemas híbridos
- 5 Arquiteturas avançadas
 - Máquinas virtuais
 - Contêineres
 - Sistemas exonúcleo
 - Sistemas uninúcleo

Arquiteturas de SOs

Arquitetura

Forma organizar as várias partes do sistema operacional

Aspectos a considerar:

- Isolamento do núcleo
- Modularização
- Desempenho
- Segurança

Sistemas monolíticos

Mónos (único) + Líthos (pedra) = um bloco único

Todo o núcleo roda em modo privilegiado Sem restrições de acesso entre componentes

Vantagens: desempenho, tamanho Desvantagens: complexidade, fragilidade

Sistemas monolíticos

6/18

Exemplo: núcleo Linux

© 2007-2009 Constantine Shulyupin http://www.MakeLinux.net/kernel/diagram

Sistemas micronúcleo

O núcleo implementa:

- espaços de memória protegidos
- tarefa (thread, processo, ...)
- comunicação entre tarefas

Ficam fora do núcleo:

- políticas de escalonamento
- políticas de uso de memória
- sistemas de arquivos
- protocolos de rede

Vantagens: estabilidade, modularidade

Desvantagens: baixo desempenho

Sistemas micro-núcleo - Minix 3

Sistemas em camadas

Princípio: Organizar o núcleo em camadas de abstração Características gerais:

- Camada inferior: interface com o hardware
- Camadas intermediárias: abstração e gerência
- Camada superior: define as chamadas de sistema

Parcialmente usado na prática:

- HAL Hardware Abstraction Layer do Windows
- Sub-sistemas de arquivos e de rede (modelo OSI)

Sistemas híbridos

Misturam características dos anteriores:

- Monolítico
- Micronúcleo
- em camadas

A maioria dos sistemas atuais é híbrida.

Sistemas híbridos - Windows 2000

Máquinas virtuais

Virtualização

Simular em software um sistema computacional sobre outro sistema.

Um ambiente de máquina virtual consiste de três partes:

Host: contém os recursos reais de hardware e software

Hypervisor: constrói o sistema computacional virtual

Guest: executa sobre o sistema virtual

Máquinas virtuais

Famílias de hipervisores

Quanto ao ambiente virtual provido:

HV de aplicação: suporta aplicação convidada (Java, C#)

HV de sistema : suporta SOs convidados (VMWare, VirtualBox)

Quanto ao suporte de execução:

HV nativo : executa diretamente sobre o hardware (Xen)

HV convidado : executa sobre um SO hospedeiro (*VirtualBox*)

Contêineres

Virtualização do espaço de usuário:

- Espaço de usuário dividido em domínios isolados
- Cada contêiner tem seus próprios recursos
 - usuários, processos, semáforos
 - árvores de diretórios e arquivos
 - interface de rede
- Cada contêiner tem seus próprios namespaces
 - UID, PID, IP, ports, ...
- Contêineres compartilham o mesmo núcleo

Exemplos: FreeBSD Jails, Linux Containers (LXC), Docker

Contêineres

Interações e migrações entre domínios são proibidas.

Sistemas exonúcleo

SO dividido em: Micronúcleo + Biblioteca de serviços

Sistemas uninúcleo

Núcleo, serviços e aplicação executam em modo privilegiado Usado em *appliances* para computação em nuvem (CloudOS)

user 					
kernel	binary C app libC unikernel		Java app Java VM unikernel		Ruby app Ruby runtime unikernel
ĺ	virtual machine virtual machine virtual machine hypervisor				
	hardware				

Exercícios de Fixação

- 1 Sobre as afirmações a seguir, relativas às diversas arquiteturas de sistemas operacionais, indique quais são incorretas, justificando sua resposta:
- a) Uma máquina virtual de sistema é construída para suportar uma aplicação escrita em uma linguagem de programação específica, como Java.
- b) Um hipervisor convidado executa sobre um sistema operacional hospedeiro.
- c) Em um SO micronúcleo, os diversos componentes do sistema são construídos como módulos interconectados executando dentro do núcleo.
- d) Núcleos monolíticos são muito utilizados devido à sua robustez e facilidade de manutenção.

Exercícios de Fixação

2 – Monte uma tabela com os benefícios e deficiências mais relevantes das principais arquiteturas de sistemas operacionais.