National	University of	Computer and Emerging S	Sciences, Lahore Camp	
A STANTA AND SO	Course:	Linear Algebra	Course Course	MT104 Fall 100 50-54% 03
	Program:	BS (CS, SE, DS)	Semester: Total Marks:	
	Duration:	3 hours		
	Paper Date:	20-1-22	Weight	
	Section:	All	Page(s):	
	Exam:	Final term	Roll No:	questions.
nstruction/Notes:	1 54% Wtg. 18 app	Final term calculators are not allowed. She clicable to only those sections v BONUS question.	ow complete working in an who had no quiz-3 due Univ	ersity

Question#1[05+05][CLO-1]: Use Elementary Matrices to find the Inverse of $A = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$. Also verify that $A = E_1^{-1} E_2^{-1} E_3^{-1} \dots E_{k-1}^{-1} E_k^{-1}$ for some k.

Any other method used to evaluate the inverse will not be considered for marking.

Application in Computer Graphics

Question#2[2+5+5+5+3][CLO-1,5]: Discuss the Geometric Effect on the Unit Square of multiplication by the matrix $A = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$ using the following steps:

- 1. Decompose $A = E_1^{-1} E_2^{-1} E_3^{-1} \dots E_{k-1}^{-1} E_k^{-1}$ for some k. 2. Show the effect of $E_1^{-1} E_2^{-1} E_3^{-1} \dots E_{k-1}^{-1} E_k^{-1}$ on the unit square. Also show the action of elementary matrix (each) via diagram separately.
- 3. Show mathematically action of each elementary matrix on the end points of the edges.
- 4. Illustrate the geometric effects at each step.

Lines & Planes in R3

Question#3(a) [05][CLO-2]: Find the vector and parametric equation of the plane in \mathbb{R}^3 that passes through the origin and is orthogonal to = (3,1,-6).

3(b)[5] [CLO-2]: Find a vector parallel to the line of intersection of two planes 3x - 6y - 2z = 15 & 2x + y - 2z = 5.

Gram-Schmidt Process for Orthonormal basis

Question#4[20][CLO-4]: Suppose $A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 1 & 2 & 0 \end{bmatrix}$ define the column vectors u_1 , u_2 and u_3 as

$$u_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, u_2 = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} \& u_3 = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}.$$

4(a)[10]: Use the Gram – Schmidt process to find the orthogonal set of vectors $\{v_1, v_2, v_3\}$ and then 1 orthonormal set of vectors $\{q_1, q_2, q_3\}$ by considering standard inner product between the vectors.

4(b)[10]. Also find a matrix R and verify A = QR where, $Q = [q_1 \mid q_2 \mid q_3]$ and R is given below

$$R = \begin{bmatrix} \langle u_1, q_1 \rangle & \langle u_2, q_1 \rangle & \langle u_3, q_1 \rangle \\ 0 & \langle u_2, q_2 \rangle & \langle u_3, q_2 \rangle \\ 0 & 0 & \langle u_3, q_3 \rangle \end{bmatrix}.$$

General Linear Transformations

Question#5 [2+2+2+2][CLO-5]: Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be the linear transformation defined by the formula

$$T(x_1, x_2) = (x_1 + 3x_2, x_1 - x_2, x_1)$$

- a. Find the Standard Basis Matrix (A) for the above transformation.
- b. Find the rank of A i.e. rank(A).
- c. Find the nullity of A i.e. null(A).
- d. Find the rank of the At i.e. rank(At).
- e. Find the nullity of the At i.e. null(At).

Question#6 [10][CLO-5]: Let $T: R^2 \to R^3$ be defined as $\binom{x_1}{x_2} = \binom{x_1 + 2x_2}{-x_1}$. Find the matrix $[T]_{B',B} = [T(u_1)]_{B'} + [T(u_2)]_{B'}$ relative to the basis $B = \{u_1, u_2\}$ and $B' = \{v_1, v_2, v_3\}$, where

$$u_1 = \begin{bmatrix} 1 \\ 3 \end{bmatrix}, u_2 = \begin{bmatrix} -2 \\ 4 \end{bmatrix}, v_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, v_2 = \begin{bmatrix} 2 \\ 2 \\ 0 \end{bmatrix}, v_3 = \begin{bmatrix} 3 \\ 0 \\ 0 \end{bmatrix}.$$

Question #7[2+2+2+2][CLO-5]: Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear operator defined as

 $T(x_1, x_2, x_3) = (0x_1 + x_2 - x_3, x_1 + 0x_2 + 2x_3, -1x_1 + x_2 + 0x_3)$ defined by T(X) = AX as, where

$$A = \begin{bmatrix} 0 & 1 & -1 \\ 1 & 0 & 2 \\ -1 & 1 & 0 \end{bmatrix}$$

- a) Check whether T is One to One.
- b) Check whether T is Onto.
- c) Find Kernel of T and Basis for Kernel of T.
- d) Find Range of T and Basis for Range of T.
- e) Find Null space of T and Row space of T.

$$a_{1} = \{0\}, a_{2} = \{0\}, a_{3} = \{0\}, a_{5} = \{0\}, a_{$$

Equivalence Theorem

Question#8[10]: STATE ONLY the Equivalent Statements (as much as you remember) for the n x n Matrix, if it's given that:

- a) A is invertible.
- b)

Note: For each equivalent statement one point will be given. Maximum points are 10.

Similarity of Operators (Bonus)

Question#9[05+05][CLO-3,5]: If $C = \begin{bmatrix} 1 & 1 \\ -2 & 4 \end{bmatrix}$ and $= \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$, then

- a. Find a matrix P (consisting of the Eigen vectors of the matrix C) using Eigenvalues of C & show that $P^{-1}CP = D$. Also, find the dimension of Eigen Spaces associated with each Eigen value.
- b. Show that C and D represents the same linear operator $T: R^2 \to R^2$ by showing $P^{-1}CP = D$, where $P = P_{B' \to B} = [[u'_1]_B \ [u'_2]_B]$ and $P^{-1} = P_{B \to B'}$, $B' = \{u'_1, u'_2\}$, $B = \{e_1, e_2\}$, $u'_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \& u'_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$. Here $P \& P^{-1}$ represents the transition matrices.

Good Luck : Thank you = (smile in pain)

