

The Journey

UC

1 Basics of Graphs

2 Matrix Representations

3 Computational Geometry

The Graph Structure

Definition (Graph)

A graph is a pair G=(V,E) where E is comprised of two element subsets of V. The elements of V are called $\it{vertices}$ and the elements of E \it{edges}

The Graph Structure

Definition (Graph)

A graph is a pair G=(V,E) where E is comprised of two element subsets of V. The elements of V are called *vertices* and the elements of E edges

UCI

Graphs at their core encode connectivity

UCI

Graphs at their core encode connectivity

> Friend networks on social media platforms

UC

Graphs at their core encode connectivity

- > Friend networks on social media platforms
- Molecules and bonds between atoms in structural chemistry

UCI

Graphs at their core encode connectivity

- > Friend networks on social media platforms
- Molecules and bonds between atoms in structural chemistry
- Connectivity of meshes in computational geometry

Matrix Representations

UC

	v_1	v_2	v_3	v_4	v_5	v_6	v_7
v_1							
v_2							
v_3							
v_4							
v_5							
v_6							
v_7							

Matrix Representations

UCI

	v_1	v_2	v_3	v_4	v_5	v_6	v_7
v_1		✓	✓	√	√	✓	√
v_2	✓		✓		√	√	√
v_3	√	√					√
v_4	√				√	√	√
v_5	✓	✓		√		√	
v_6	✓	√		√	✓		
v_7	√	√	√	√			

Matrix Representations

v_1	v_1	v_2	v_3	v_4	v_5	v_6	<i>v</i> ₇
2	√	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	∨	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	∨	∨	∨
v_3	√	√					√
v_4	√				√	√	√
v_5	√	√		√		√	
v_6	√	√		√	√		
v_7	√	√	√	√			

Definition (Degree Matrix)

The degree matrix of a graph G with n vertices is the $n \times n$ matrix D such that

$$(D)_{ij} = \begin{cases} \deg(v_i) & i = j \\ 0 & i \neq j \end{cases}.$$

Definition (Laplacian Matrix)

The Laplacian matrix of a graph G is

$$L := D - A$$
.

Theorem

A graph has m connected components if and only if zero has algebraic multiplicty m for L

Theorem

The eigenvector associated with the smallest positive eigenvalue of L (called the "Fiedler Vector") defines a well behaved partitioning scheme of a graph.

Definition (Triangular Mesh)

A triangular mesh is a triple K = (V, E, F) such that

Definition (Triangular Mesh)

A triangular mesh is a triple K = (V, E, F) such that

 $ightharpoonup V \subseteq \mathbb{R}^3$ is the set of vertices

Definition (Triangular Mesh)

A triangular mesh is a triple K = (V, E, F) such that

- $ightharpoonup V \subseteq \mathbb{R}^3$ is the set of vertices
- $E \subseteq [V]^2$ is the set of representing non-intersecting edges

Definition (Triangular Mesh)

A triangular mesh is a triple K = (V, E, F) such that

- $ightharpoonup V \subseteq \mathbb{R}^3$ is the set of vertices
- $E \subseteq [V]^2$ is the set of representing non-intersecting edges
- > $F \subseteq [E]^3$ is the set of faces such that for any $f = \{e_1, e_2, e_3\} \in F$,

$$e_1 \cap e_2 = \{v_1\}$$

 $e_2 \cap e_3 = \{v_2\}$
 $e_3 \cap e_1 = \{v_3\}$

for
$$v_1 \neq v_2 \neq v_3$$
.

Dual Mesh UC

Spectral Partitioning

