A Glossary of Group Theory

Phil Hazelden

2012-02-04 Sat

1 Notation

- [g,h] The commutator, $g^{-1}h^{-1}gh$.
- [G,G] The commutator subgroup, $\langle [g,h] \mid g,h \in G \rangle$.
- α^g When $G \ni g$ acts on $\Omega \ni \alpha$, the image of α under g.
- α^G When G acts on $\Omega \ni \alpha$, the orbit $\{\alpha^g : g \in G\}$.
- Aut(G) The automorphism group of G.
- C_g The conjugation map $x \mapsto g^{-1}xg$.
- $C_G(x)$ The centraliser of x in G; $\{g \in G : gx = xg\}$. This is G_x under the conjugation action.
- $C_G(H)$ The centraliser of H in G; $\{g \in G : h \in H \Rightarrow gh = hg\}$. This is not an orbit or stabiliser; see also $N_G(H)$.
- $\operatorname{Cl}_G(x)$ The conjugacy class of x in G; $\{g^{-1}xg:g\in G\}$. This is x^G under the conjugation action.
- G^{Ω} When G acts on Ω , $G^{\Omega} \leq \operatorname{Sym}(\Omega)$ contains permutations of the form $\alpha \mapsto \alpha^g$, for each $g \in G$.
- $G^{(i)}$ $G^{(0)} = G$, and $G^{(i)} = [G^{(i-1)}, G^{(i-1)}]$.
- G_{α} The stabilizer of α in G, $\operatorname{Stab}_{G}(\alpha) = \{g \in G : \alpha^{g} = \alpha\}.$
- $G_{\alpha,\beta}$ The stabilizer of α and β , $G_{\alpha} \cap G_{\beta}$.
- G_{Σ} The setwise stabilizer of Σ , $\{g \in G : \alpha \in \Sigma \Rightarrow \alpha^g \in \Sigma\}$.
- $G_{(\Sigma)}$ The pointwise stibilizer of Σ , $\bigcap_{\alpha \in \Sigma} G_{\alpha}$.
- $\operatorname{Inn}(G)$ The inner automorphism group of G, $\{C_g : g \in G\}$. $\operatorname{Inn}(G) \subseteq \operatorname{Aut}(G)$.
- $N_G(H)$ The normalizer of H in G, $\{g^{-1}Hg:g\in G\}$. This is G_H under the conjugation action.
- $n^{\underline{k}}$ n to the k falling, $n(n-1)\dots(n-k+1)$.
- $\operatorname{Syl}_p(G)$ The set of Sylow *p*-subgroups of G.
- $\mathrm{Z}(G)$ The centre of G, $\{g\in G:x\in G\Rightarrow gx=xg\}$. The kernel of the conjugation action.

2 Definitions

- **Block** A block for G^{Ω} is a subset $B \subsetneq \Omega$ with |B| > 1 such that for every $g \in G$, either $B^g = B$ or $B^g \cap B = \emptyset$.
- Characteristic subgroup $N \leq G$ is a characteristic subgroup (written $N \operatorname{char} G$) if every automorphism of G preserves N.
- Conjugation action G acts on itself by $x^g = g^{-1}xg$. Also, G acts on $\{H : H \leq G\}$ by $H^g = g^{-1}Hg$.
- Coset action if $H \leq G$, then G acts on $\Omega = \{Hx : x \in G\}$ by $(Hx)^g = Hxg$. Transitive, not necessarily faithful. If H = 1, this is the right-regular action.
- Cycle type The cycle type of a permutation group is the lengths of the cycles in its cyclic decomposition.
- **Direct product** if G_1, \ldots, G_n are groups then $\prod_{i=1}^n G_i = G_1 \times \ldots \times G_n$ is the group $\{(g_1, \ldots, g_n) : g_i \in G_i\}$ with obvious multiplication.
- **Faithful** A group action is faithful if no two orbits are identical; for every $g \neq e$ there is α such that $\alpha^g \neq \alpha$.
- **Maximal** $H \leq G$ is maximal if H < G and there is no K with H < K < G.
- *n*-transitive G^{Ω} is *n*-transitive if $|\Omega| \geq n$ and for any *n*-tuples α_i, β_i , there is $g : \alpha_i^g = \beta_i$. (Here the α_i are distinct and the β_i are distinct, but may have $\alpha_i = \beta_i$.)
- **Nilpotent** A finite group is nilpotent if it is the direct product of its Sylow subgroups.
- **p-group** For prime p, a finite group G is a p-group if $|G| = p^n$.
- **Perfect** A group is perfect if G = [G, G].
- **Primitive** G^{Ω} is primitive if it is transitive and has no blocks; imprimitive if it is transitive and has blocks.
- **Regular normal subgroup** when G^{Ω} is specified, a regular normal subgroup is $N \subseteq G$ such that N^{Ω} is regular.
- **Right-regular action** G acts on itself by $x^g = xg$. Transitive and faithful.
- Semidirect product if $H \leq G$, $K \trianglelefteq G$, HK = G and $H \cap K = 1$, then $G = H \ltimes K = K \rtimes H$. If φ is an action of H on K, then $H \ltimes_{\varphi} K = K \ltimes_{\varphi} H$ is the group $\{(h,k) : h \in H, k \in K\}$ with multiplication $(h_1, k_1)(h_2, k_2) = (h_1h_2, k_1^{h_2}k_2)$. If φ is the conjugation action $k^h = h^{-1}kh$, this just gives us G, but we can use this to define products of any two groups.
- Series A sequence $G = G_0 \ge G_1 \ge ... \ge G_n = 1$. May be **normal** if each $G_i \le G$; or **subnormal** if each $G_i \le G_{i-1}$; or a **composition series** if it is subnormal and each factor group G_i/G_{i+1} is simple. The **derived series** has $G_i = G^{(i)} = [G^{(i-1)}, G^{(i-1)}]$, and need not terminate at 1.

Simple A simple group has no normal subgroups except itself and 1. (1 does not count as simple, analogously to primes.)

Soluble G is soluble if it has a finite subnormal series with each factor group abelian.

Sylow p-subgroup $H \leq G$ is a Sylow p-subgroup if $|H| = p^n$ and $|G| = p^n t$, where $p \nmid t$.

Transitive G^{Ω} is transitive if every orbit contains all of Ω ; for every pair α, β there is g such that $\alpha^g = \beta$. (This is almost 1-transitive, except that G^{\varnothing} is considered transitive.)

3 Theorems

3.1 Miscellany

- First isomorphism theorem if $\varphi: G \to H$ is a homomorphism, then $K = \ker(\varphi) \unlhd G$ and the map $Kg \mapsto \varphi(g)$ is an isomorphism $G/K \to \operatorname{im}(\varphi)$.
- Second isomorphism theorem if $H \leq G$ and $K \leq G$ then $\frac{H}{H \cap K} \approx \frac{HK}{K}$.
- Third isomorphism theorem if $N \subseteq K \subseteq G$ and further $N \subseteq G$, then $\frac{K}{N} \subseteq \frac{G}{N}$ and $\frac{G/N}{K/N} \cong G/K$.
- If $N \subseteq G$ then subgroups of G/N are of the form H/N, where $N \subseteq H \subseteq G$.
- Orbit-stabilizer theorem if G is finite, then $|G| = |\alpha^G||G_\alpha|$.
- If G^{Ω} is k-transitive and $|\Omega| = n$, then $|G| = n^{\underline{k}} |G_{\alpha_1,...,\alpha_k}|$ for any k-tuple of distinct elements.
- Any transitive action of G on a set Ω is equivalent to a coset action of G on $\{(G_{\alpha})g:g\in G\}$.
- Two permutations on a set are conjugate iff they have the same cycle type.
- If $N \leq G$ then N is a union of conjugacy classes of G (i.e. $x \in N \Rightarrow \operatorname{Cl}_G(x) \subseteq N$).
- Let P be a p-group and $N \subseteq P$ nontrivial. Then $N \cap \mathbf{Z}(P) \neq 1$. In particular, p-groups have nontrivial centres.
- Let $H, K \leq G$. If either $H \subseteq G$ or $K \subseteq G$, then $HK \subseteq G$. If both $H, K \subseteq G$, then $HK \subseteq G$.
- If $H, K \leq G$, HK = G and $H \cap K = 1$ then $G = H \times G$.
- If $K_1, \ldots K_n \leq G$, $G = K_1 \ldots K_n$ and each $K_i \cap (K_1 \ldots K_{i-1} K_{i+1} \ldots K_n) = 1$, then $G = \prod K_i$.

3.2 Sylow's theorem

- If $p^{\beta} | |G|$, then $|\{H \leq G : |H| = p^{\beta}\}| \equiv 1 \mod p$.
- If $P \in \operatorname{Syl}_p(G)$ and Q is any p-subgroup of G, then $Q \subseteq g^{-1}Pg$ for some $g \in G$.
- Sylow's theorem follows from the above. Let G be a group with $p \mid |G|$.

Existence $Syl_p(G)$ is nonempty.

Containment any p-subgroup is contained in some Sylow p-subgroup.

Conjugacy if $P, Q \in \text{Syl}_p(G)$ then $\exists g \in G$ with $g^{-1}Pg = Q$.

Number $|\operatorname{Syl}_p(G)| \equiv 1 \mod p$.

- Corollaries $p \mid |G|, k = |\operatorname{Syl}_p(G)|, P \in \operatorname{Syl}_p(G)$:
 - -G has an element of order p.
 - For some $Q \in \operatorname{Syl}_p(G)$, $k = |G|/|\operatorname{N}_G(Q)|$. In particular, $k \mid |G|/|P|$.
 - $-k=1 \text{ iff } P \subseteq G.$
 - If $N_G(P) \leq M \leq G$, then $N_G(M) = M$.
 - If $N \subseteq G$ and $Q \in \operatorname{Syl}_p(N)$, then $G = \operatorname{N}_G(P)N$.

3.3 Nilpotent and soluble groups

- Nilpotent groups TFAE:
 - $\forall p \mid |G| : |\operatorname{Syl}_p(G)| = 1.$
 - $\forall p \mid |G| : P \in \text{Syl}_p(G) \Rightarrow P \subseteq G.$
 - $-G = \prod \{P : P \in \mathrm{Syl}_p(G) \text{ for some } p\}.$
 - $-H < G \Rightarrow H < N_G(H).$
 - All maximal subgroups of G are normal in G.
- If $G \neq 1$ is nilpotent, then
 - $-Z(G) \neq 1.$
 - $-H \leq G \Rightarrow H$ is nilpotent.
 - $N \leq G \Rightarrow G/N$ is nilpotent.
- On [G, G]:
 - $[G,G] \le G.$
 - -G/[G,G] is abelian.
 - If $N \leq G$ and G/N abelian then $[G, G] \leq N$.
- Characteristic subgroups
 - $-N \operatorname{char} G \Rightarrow N \leq G.$

- $-N \operatorname{char} K \leq G \Rightarrow N \operatorname{char} G.$
- $-N \operatorname{char} K \operatorname{char} G \Rightarrow N \operatorname{char} G.$
- $[G, G] \operatorname{char} G.$
- $Z(G) \operatorname{char} G.$
- $-P \in \mathrm{Syl}_{p}(G), P \subseteq G \Rightarrow P \operatorname{char} G.$

• Soluble groups TFAE:

- $-G^{(n)}=1$ for some n.
- G has a subnormal series with abelian factor groups.
- -G has a normal series with abelian factor groups.
- If $N \leq G$, then $\left(\frac{G}{N}\right)^{(k)} = \frac{G^{(k)}N}{N}$.

• Proving a group is soluble

- If G is soluble and $H \leq G$ then H is soluble.
- If G is soluble and $N \subseteq G$ then G/N is soluble.
- If N and G/N are soluble then G is soluble.
- If G is nilpotent, it is soluble.
- Every finite group has a composition series, which is structurally unique: if (A_i) and (B_i) are two composition series, then after permutation, the factors $A_i/A_{i+1} \cong B_i/B_{i+1}$.
- A group is soluble iff its composition factors are all cyclic groups of prime order.

3.4 Permutation groups

- If B is a block, then every B^g is a block.
- If G^{Ω} is transitive and B is a block, then $|B| | |\Omega|$.
- If G^{Ω} is 2-transitive, it is primitive.
- If G^{Ω} and H^{Ω} are transitive and $G_{\alpha} \leq H \leq G$, then H = G.
- Let G^{Ω} be transitive, $|\Omega| > 1$. Then G^{Ω} is primitive iff every G_{α} is a maximal subgroup of G.
- Let G^{Ω} be transitive, $N \subseteq G$ and $\alpha \in \Omega$. One of the following holds:
 - $-\alpha^N = {\alpha}$ and $N^{\Omega} = 1$
 - $-\alpha^N = \Omega$ and N^{Ω} is transitive
 - $-\alpha^N$ is a block of G^{Ω} .
- For $n \geq 5$, A_n has no regular normal subgroup (under the permutation action).
- For $n \geq 5$, A_n is simple and is the only nontrivial normal subgroup of S_n .

3.5 Matrix groups

Choose a field K and $n \in \mathbb{N}^+$. Let Ω be the set of 1-subspaces of K^n , $\Omega = \{\langle v \rangle : 0 \neq v \in K^n\}$. We define four matrix groups:

GL(n, K): invertible $n \times n$ matrices over K, acting on Ω by $\langle v \rangle^g = \langle vq \rangle$, the projective action.

$$SL(n, K) = \{ g \in GL(n, K) : \det g = 1 \}.$$

$$\operatorname{PGL}(n,K) = \frac{\operatorname{GL}(n,K)}{\operatorname{Z}(\operatorname{GL}(n,K))} \cong \operatorname{GL}(n,K)^{\Omega}.$$

$$PSL(n, K) = SL(n, K)^{\Omega}.$$

When K is finite of order q (which is necessarily a prime power), we also denote these groups by GL(n,q), etc.

- $GL(n,K)^{\Omega}$ is 2-transitive.
- $\ker(\operatorname{GL}(n,K)^{\Omega}) = \operatorname{Z}(\operatorname{GL}(n,K)) = \{\lambda I_n : \lambda \in K^*\}$
- $|\operatorname{GL}(n,q)| = \prod_{i=0}^{n} (q^{n} q^{i}); |\operatorname{SL}(n,q)| = |\operatorname{PGL}(n,q)| = \frac{|\operatorname{GL}(n,q)|}{q-1}; |\operatorname{PGL}(n,q)| =$ $|\operatorname{SL}(n,q)|$ gcd(n,q)
- PSL(n, K) is simple, except for PSL(2, 2) and PSL(2, 3). Proof involves:
 - SL(n, K) is 2-transitive on Ω .
 - $-\operatorname{SL}(n,K)$ is generated by transvections. These are matrices conjugate in $\operatorname{GL}(n,K)$ to the matrix T with 1s on the diagonal and in the (2,1) position and 0s everywhere else. In fact any matrix with 1s on the diagonal and a single other nonzero element is a transvection; and if n = 1, we consider (1) to be a transvection.
 - SL(n, K) is perfect, except (2, 2) and (2, 3).
 - Lemma: Let G be perfect, G^{Ω} primitive. Suppose for some $\alpha \in \Omega$ there is $M \unlhd G_{\alpha}$ such that $G = \langle g^{-1}Mg : g \in G \rangle$. Then G^{Ω} is simple.
 - Choose α to be the first standard basis vector, and M to be matrices with 1s on the diagonal, arbitrary elements in the first column (except (1,1)), and 0s everywhere else. Then the lemma applies.

The transfer homomorphism

Let $H \leq G$, [G:H] = r, and $\Omega = \{Hg_1, \ldots, Hg_r\}$ where $g_1 = 1$. G acts on Ω by right multiplication.

For $1 \leq i \leq r$ and $g \in G$, let i^g be such that $(Hg_i)g = Hg_{i^g}$. Then we can define r

functions (not homomorphisms) $h_i: G \to H$ satisfying $g_i g = h_i(g) g_{ig}$. We define the transfer homomorphism $T: G \to \frac{H}{[H,H]}$ by $T(g) = [H,H] \prod_{i=1}^r h_i(g)$.

- \bullet T is a homomorphism.
- Let the lengths of the cycles of g^{Ω} be r_1, \ldots, r_s . Let $i_j = \sum_{m=0}^{j-1} r_m$. Then each $g_{i_j} g^{r_j} g_{i_j}^{-1} \in H$, and $T(g) = [H, H] \prod_{j=1}^s g_{i_j} g^{r_j} g_{i_j}^{-1}$.

- If G is finite abelian and $r \in \mathbb{Z}$ with $\gcd(r, |G|) = 1$, then the map $\varphi : G \to G : g \mapsto g^r$ is an automorphism of G.
- If $P \in \operatorname{Syl}_p(G)$ is abelian and $g, h \in P$ are conjugate in G, then they are conjugate in $\operatorname{N}_G(P)$.
- Burnside's transfer theorem G a finite group, $P \in \operatorname{Syl}_p(G)$, and $P \leq \operatorname{Z}(\operatorname{N}_G(P))$. Then G has a normal subgroup N with $P \cap N = 1$ and PN = G. In particular, G can only be simple if G = P.
- Corollary: no group of twice-odd order is simple (except C_2).

3.7 Classification of groups

- If |G| = p then $G \cong C_p$.
- If |G| = 2p where p is an odd prime, then $G \cong C_{2p}$ or $G \cong D_{2p}$.
- If $|G| = p^2$ then $G \cong C_{p^2}$ or $G \cong C_p \times C_p$.
- If $|G| = p^n$ then $Z(G) \neq 1$ so G is not simple.
- Let G be finite simple nonabelian.
 - If G acts on Ω with $G^{\Omega} \neq 1$, then G^{Ω} is faithful, $G \leq \text{Alt}(\Omega)$ and $|\Omega| \geq 5$.
 - If H < G, let n = [G : H] > 1. Then $G \le A_n$ and $n \ge 5$.
 - If $\operatorname{Syl}_p(G) = n > 1$ for some p, then $G \leq A_n$ and $n \geq 5$.
- All finite simple groups of orders 60, 168, 360 are isomorphic. (360 nonexaminable.)
- The only finite simple nonabelian groups of order ≤ 500 are those of order 60, 168, 360.
 - Most orders can be done simply by above theorems. Orders 264, 288, 336, 420, 432 and 480 are harder.