BykovDS 26122024-165646

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

Источник колебаний и частотой $5860 \text{ M}\Gamma$ ц имеет равномерную спектральную плотность мощности фазового шума равную минус $170 \text{ дБн}/\Gamma$ ц. Он был подключён к согласованному линейному усилителю с шумовой температурой плюс 1290 K. Выход усилителя подключён ко входу анализатор фазовых шумов. Какую спектральную плотность мощности измерит анализатор фазовых шумов на частоте отстройки $2000 \text{ }\Gamma$ ц, если с доступная мощность на выходе источника равна -1.2 дБм?

- 1) -164.6 дБн/ Γ ц
- 2) -165.1 дБн/Гц
- 3) 165.6 дБн/Гц
- 4) -166.1 дБн/ Γ ц
- 5) -166.6 дБн/Гц
- 6) -167.1 дБн/ Γ ц
- 7) -167.6 дБн/Гц
- 8) -168.1 дБн/Гц
- 9) -168.6 дБн/Гц

Колебание синтезировано с помощью кольца ФАПЧ (Рисунок 2). Частота колебаний опорного генератора (ОГ) 80 МГц. Частота колебаний ГУН 2990 МГц. Известно, что спектральная плотность мощности фазовых шумов на частоте отстройки 1 Гц равна минус 119.8 дБн/Гц для ОГ и минус 2.3 дБн/Гц для ГУН. Наклон спектральной плотности мощности фазовых шумов ОГ равен минус 0 дБ/декада, а фазовых шумов ГУН минус 20 дБ/декада.

Коэффициент передачи цепи обратной связи равен описывается формулой $A_0(1+(j\Omega\tau)^{-1})$, где $A_0=0.27152, \tau=416.102$ мкс.

Крутизна характеристики управления частотой ГУН равна 2.6 М Γ ц/В. Крутизна характеристики фазового детектора 0.9 В/рад.

Рисунок 1 — Синтезатор с кольцом ФАПЧ: ОГ - опорный генератор, ГУН - генератор управляемый напряжением, ФД - фазовый детектор, Цепь ОС - цепь обратной связи, $\frac{1}{N}$ - делитель частоты на N, причём N необязательно целое число

На сколько дБ отличается спектральная плотность мощности фазовых шумов на частоте отстройки 3 кГц колебания той же выходной частоты, но полученного из опорного путём прямого синтеза?

- 1) на минус 0.6 дБ
- 2) на минус 1 дБ
- на минус 1.4 дБ
- 4) на минус 1.8 дБ
- на минус 2.2 дБ
- на минус 2.6 дБ
- 7) на минус 3 дБ
- 8) на минус 3.4 дБ
- 9) на минус 3.8 дБ

Источник колебаний с доступной мощностью -1.7 дБм и частотой 4530 М Γ ц имеет равномерную спектральную плотность мощности фазового шума равную минус 138 дБн/ Γ ц. Этот источник подключён к согласованному входу анализатора спектра. Какую мощность измерит анализатор спектра на частоте 4530.0006 М Γ ц, если спектральная плотность мощности его собственных шумов равна минус 141 дБм/ Γ ц, а полоса пропускания Π Ч установлена в положение 100 Γ ц?

- 1) -117.3 дБм
- 2) -119 дБм
- 3) -120.7 дБм
- 4) -122.4 дБм
- 5) -124.1 дБм
- 6)-125.8 дБм
- 7) -127.5 дБм
- 8) -129.2 дБм
- 9) -130.9 дБм

Колебание синтезировано с помощью кольца ФАПЧ (Рисунок 2). Коэффициент передачи цепи обратной связи частотно независим и равен 10¹, а крутизна характеристики фазового детектора равна 0.7 В/рад. Частота колебаний опорного генератора (ОГ) 260 МГц. Частота колебаний ГУН 430 МГц. Известно, что неприведённые спектральные плотности мощности фазовых шумов двух генераторов равны на частоте отстройки 3.4 МГц. Наклон спектральной плотности мощности фазовых шумов ОГ равен минус 10 дБ/декада, а фазовых шумов ГУН минус 30 дБ/декада. Также известно, что вклад ОГ в фазовые шумы выходного синтезированного колебания на частоте отстройки 5799 кГц на 3.8 дБ больше, чем вклад ГУН. Чему равна крутизна характеристики управления частотой ГУН?

Рисунок 2 — Синтезатор с кольцом ФАПЧ: ОГ - опорный генератор, ГУН - генератор управляемый напряжением, ФД - фазовый детектор, Цепь ОС - цепь обратной связи, $\frac{1}{N}$ - делитель частоты на N, причём N необязательно целое число

- 1) $0.75 \text{ M}\Gamma \text{ц/B}$
- 2) $0.83 \, \text{M}$ Γη/B
- 3) $0.91 \text{ M}\Gamma \mu/B$
- 4) 0.99 MΓη/B
- 5) 1.07 MΓ_I/B
- 6) $1.15 \text{ M}\Gamma \text{H}/\text{B}$
- 7) 1.23 MΓ_{II}/B
- 8) 1.31 $M\Gamma \mu/B$
- 9) $1.39 \text{ M}\Gamma \text{H}/\text{B}$

Если цепь на рисунке 3 используется в качестве цепи обратной связи в кольце ФАПЧ, то вклад ОГ в фазовые шумы выходного синтезированного колебания на частоте отстройки 3.664 кГц меньше на 5.1 дБ, чем вклад ГУН. Если исключить эту цепь и замкнуть кольцо, то на той же частоте отстройки вклад ОГ меньше на 2.4 дБ, чем вклад ГУН. Известно, что C=20.4 нФ, а $R_2=1579$ Ом. Чему равно сопротивление другого резистора цепи обратной связи?

Рисунок 3 – Электрическая схема цепи обратной связи

- 1) 2915 Om
- 2) 3266 O_M
- $3)3617 \, O_{\rm M}$
- $4)3968\,\mathrm{Om}$
- 5) 4319 Ом
- 6) 4670 Ом
- $7)5021 \, \text{Om}$
- 8) 5372 O_M
- $9)5723\,\mathrm{Om}$

Для прямого синтеза заданной частоты использовались два источника колебаний, двойной балансный смеситель и полосовой фильтр. Нужная частота была получена преобразованием вверх с выделением верхней боковой с помощью полосового фильтра.

Один источник колебаний имеет частоту 550 М Γ ц и спектральную плотность мощности фазового шума на отстройке 100 к Γ ц минус 98 дBн/ Γ ц . Спектральная плотность мощности фазового шума на отстройке 100 к Γ ц второго колебания равна минус 96 дBн/ Γ ц, а частота его равна 690 М Γ ц. Чему равна спектральная плотность мощности фазового шума синтезированного колебания на отстройке 100 к Γ ц при описанном выше некогерентном синтезе?

- 1) -112.9 дБн/Гц
- 2) -109.9 дБн/Гц
- 3) -106.9 дБн/Гц
- 4) -103.3 дБн/ Γ ц
- 5) -100.3 дБн/Гц
- 6) 97.3 дБн/Гц
- 7) -96.9 дБн/Гц
- 8) -93.9 дБн/Гц
- 9) -90.9 дБн/ Γ ц