'RLumCarlo': Tedious features - fine examples

Sebastian Kreutzer, Johannes Friedrich, Vasilis Pagonis, Christoph Schmidt

RLumCarlo: v0.1.0 | last modified: 2020-05-01

1 Scope

'RLumCarlo' is a collection of energy-band models to simulate luminescence signals in dosimeteric materials using Monte-Carlo (MC) methods for various stimulation modes. This document aims at supplementing the package documentation and elaborating the package examples.

2 The models in 'RLumCarlo'

2.1 Overview

TRANSITION	BASE MODEL	IRSL	OSL	LM-OSL	$\overline{\mathrm{TL}}$
Delocalised	OTOR	-	X	X	X
Localised Excited state tunnelling	GOT LTM	X X	-	X X	X X

In the table above column headers refer to stimulation modes, which are infrared stimulated luminescence (IRSL), optically stimulated luminescence (OSL), LM-OSL (Bulur 1996), and thermally stimulated luminescence (short: TL). In the column 'BASE MODEL' OTOR refers to 'One Trap-One Recombination Centre', GOT to 'General One Trap', and LTM to 'Localized Transition Model' (Jain, Guralnik, and Andersen 2012; Pagonis et al. 2019). For general overview we refer to the excellent book by Chen and Pagonis (2011).

2.2 Where to find them

The following table lists models as implemented in 'RLumCarlo' along with the \mathbf{R} function call and the corresponding R (*.R) and C++ (*.cpp) files. The modelling takes place in the C++ functions which are wrapped by the R functions with a similar name. If you, however, want to cross-check the code, you should inspect files with the ending .cpp.

MODEL_NAME	R_CALL	CORRESPONDING_FILES
MC_CW_IRSL_LOC	run_MC_CW_IRSL_LOC()	R/run_MC_CW_IRSL_LOC.R src/MC_C_MC_CW_IRSL_LOC.cpp
MC_CW_IRSL_TUN	run_MC_CW_IRSL_TUN()	R/run_MC_CW_IRSL_TUN.R src/MC_C_MC_CW_IRSL_TUN.cpp
MC_CW_OSL_DELOC	$run_MC_CW_OSL_DELOC()$	R/run_MC_CW_OSL_DELOC.R src/MC_C_MC_CW_OSL_DELOC.cpp
MC_ISO_DELOC	run_MC_ISO_DELOC()	R/run_MC_ISO_DELOC.R src/MC_C_MC_ISO_DELOC.cpp
MC_ISO_LOC	run_MC_ISO_LOC()	R/run_MC_ISO_LOC.R src/MC_C_MC_ISO_LOC.cpp
MC_ISO_TUN	run_MC_ISO_TUN()	R/run_MC_ISO_TUN.R src/MC_C_MC_ISO_TUN.cpp
$MC_LM_OSL_DELOC$	$run_MC_LM_OSL_DELOC()$	R/run_MC_LM_OSL_DELOC.R src/MC_C_MC_LM_OSL_DELOC.cpp
$MC_LM_OSL_LOC$	$run_MC_LM_OSL_LOC()$	R/run_MC_LM_OSL_LOC.R src/MC_C_MC_LM_OSL_LOC.cpp
$MC_LM_OSL_TUN$	$run_MC_LM_OSL_TUN()$	R/run_MC_LM_OSL_TUN.R src/MC_C_MC_LM_OSL_TUN.cpp
MC_TL_DELOC	run_MC_TL_DELOC()	R/run_MC_TL_DELOC.R src/MC_C_MC_TL_DELOC.cpp
MC_TL_LOC	$run_MC_TL_LOC()$	R/run_MC_TL_LOC.R src/MC_C_MC_TL_LOC.cpp
MC_TL_TUN	run_MC_TL_TUN()	R/run_MC_TL_TUN.R src/MC_C_MC_TL_TUN.cpp

Each model is run by calling one of the **R** functions starting with run_. Currently, three different model types (TUN: tunnelling, LOC: localised transition, DELOC: delocalised transition) are implemented for the stimulation types TL, IRSL, LM-OSL, and ISO (isothermal). Please note that each model has different parameters and requirements.

3 'RLumCarlo' model parameters and variables

The following table summarises the parameters used in the implemented MC models along with their physical meaning, units and the range of realistic values. This range represents just a rough guideline and might be exceeded for particular cases.

Stimulation mode	Parameter	Parameter description	Unit	Realistic values
Delocalized TL	E	Thermal activation energy of the trap	eV	0.5 - 3
	\mathbf{s}	Frequency factor of the trap	1/s	1E8-1E16
	times	Sequence of time steps for simulation (heating rate is 1 $\mathrm{K/s}$)	s	0-700
	clusters	Number of MC runs	1	1E1-1E4
	N_e	Total number of electron traps available	1	2 - 1E5
	n_filled	Number of filled electron traps at the beginning of the simulation	1	1 - 1E5
	R	Delocalized retrapping ratio	1	0-1
Delocalized CW-IRSL	A	Optical excitation rate from trap to conduction band	1/s	1E-3-1
	times	Sequence of time steps for simulation	s	0-500
	clusters	Number of MC runs	1	1E1-1E4

	N_e	Total number of electron traps available	1	2 - 1E5
	n_filled	Number of filled electron traps at the beginning of the simulation	1	1–1E5
	R	Delocalized retrapping ratio	1	0-1
Delocalized ISO	E	Thermal activation energy of the trap	eV	0.5 - 3
	s	Frequency factor of the trap	1/s	1E8-1E16
	T	Temperature of the isothermal process	$^{\circ}\mathrm{C}$	20-300
	times	Sequence of time steps for simulation	s	0 - 1000
	clusters	Number of MC runs	1	1E1-1E4
	N_e	Number of electrons	1	2 - 1E5
	n_filled	Number of filled electron traps at the beginning of the simulation	1	1–1E5
	R	Delocalized retrapping ratio	1	0-1
Delocalized LM-OSL	A	Optical excitation rate from trap to conduction band	1/s	1E-3-1
	times	Sequence of time steps for simulation	\mathbf{s}	0-3000
	clusters	Number of MC runs	1	1E1-1E4
	N_e	Total number of electron traps available	1	2 - 1E5
	n_filled	Number of filled electron traps at the beginning of the simulation	1	1–1E5
	R	Delocalized retrapping ratio	1	0–1
Localized TL	E	Thermal activation energy of the trap	eV	0.5–3
Localized 11	s	Frequency factor of the trap	1/s	1E8–1E16
	times	Sequence of time steps for simulation (heating rate 1 K/s)	s	0-700
	clusters	Number of MC runs	1	1E1–1E4
	n_filled	Number of filled electron traps at the beginning of the simulation	1	1–1E5
	r	Localized retrapping ratio	1	0–1E5
Localized CW-IRSL	A	Optical excitation rate from ground state of the trap to the excited state	1/s	1E-3–1
	times	Sequence of time steps for simulation	s	0-500
	clusters	Number of MC runs	1	1E1-1E4
	n_filled	Number of filled electron traps at the beginning of the simulation	1	1–1E5
	r	Localized retrapping ratio	1	0 - 1E5
Localized ISO	E	Thermal activation energy of the trap	eV	0.5 - 3
	s	Frequency factor of the trap	1/s	1E8-1E16
	T	Temperature of the isothermal process	$^{\circ}\mathrm{C}$	20-300
	times	Sequence of time steps for simulation	s	0-1000
	clusters	Number of MC runs	1	1E1-1E4
	n_filled	Number of filled electron traps at the beginning of the simulation	1	1 - 1E5
	r	Localized retrapping ratio	1	0 - 1E5
Localized LM-OSL	A	Optical excitation rate from ground state of the trap to the excited state	1/s	1E-3-1
	times	Sequence of time steps for simulation	\mathbf{s}	0-3000

	clusters	Number of MC runs	1	1E1-1E4
	n_filled	Number of filled electron traps at the beginning of the simulation	1	1–1E5
	r	Localized retrapping ratio	1	0–1E5
TL with tunneling recombination	E	Thermal activation energy of the trap	eV	0.5 – 3
	s	Effective frequency factor of the tunneling process	1/s	1E8-1E16
	rho	Dimensionless density of recombination centers (defined as ρ' in Huntley 2006)	1	1E-7–1E-4
	r_c	Critical distance (>0) that is to be inserted if the sample has been thermally and/or optically pretreated, so that the electron-hole pairs within r_c have already recombined	1	0–2
	times	Sequence of time steps for simulation (heating rate 1 $\mathrm{K/s}$)	s	0-700
	clusters	Number of MC runs	1	1E1-1E4
	N_e	Total number of electron traps available	1	2 - 1E5
	delta.r	Increments of the unitless distance parameter \mathbf{r}'	1	1E-3-1E-1
CW-IRSL with tunneling recombination	A	Effective optical excitation rate of the tunneling process	1/s	1E-3–1
	rho	Dimensionless density of recombination centers (defined as ρ' in Huntley 2006)	1	1E-7–1E-4
	times	Sequence of time steps for simulation	s	0 - 500
	clusters	Number of MC runs	1	1E1-1E4
	N_e	Total number of electron traps available	1	2 - 1E5
	r_c	Critical distance (>0) that is to be inserted if the sample has been thermally and/or optically pretreated, so that the electron-hole pairs within r_c have already recombined	1	0–2
	delta.r	Increments of the unitless distance parameter \mathbf{r}'	1	1E-3–1E-1
ISO with tunneling recombination	E	Thermal activation energy of the trap	eV	0.5 – 3
	s	Effective frequency factor of the tunneling process	1/s	$1\mathrm{E}81\mathrm{E}16$
	T	Temperature of the isothermal process	$^{\circ}\mathrm{C}$	20 – 300
	rho	Dimensionless density of recombination centers (defined as ρ' in Huntley 2006)	1	1E-7–1E-4
	times	Sequence of time steps for simulation	\mathbf{s}	0 - 1000
	clusters	Number of MC runs	1	1E1-1E4
	N_e	Total number of electron traps available	1	2-1E5
	r_c	Critical distance (>0) that is to be inserted if the sample has been thermally and/or optically pretreated, so that the electron-hole pairs within r_c have already recombined	1	0–2
	delta.r	Increments of the unitless distance parameter \mathbf{r}'	1	1E-3-1E-1
LM-OSL with tunneling recombination	A	Effective optical excitation rate of the tunneling process	1/s	1E-3-1
	rho	Dimensionless density of recombination centers (defined as ρ' in Huntley 2006)	1	1E-7–1E-4
	times	Sequence of time steps for simulation	s	0-3000
	clusters	Number of MC runs	1	1E1-1E4

N_e	Total number of electron traps available	1	2-1E5
r_c	Critical distance (>0) that is to be inserted if the sample has been thermally and/or optically pretreated, so that the electron-hole pairs within r_c have already recombined	1	0–2
delta.r	Increments of the unitless distance parameter \mathbf{r}'	1	1E-3-1E-1

4 Examples

The following examples illustrate the capacity of 'RLumCarlo', by using code-snippets deploying longer simulation times than allowed for the standard package examples, which aim at a functionality test.

4.1 Example 1: A first example

The first example is an iso-thermal decay curve using the tunnelling model (other models work similarly). Returned are either the simulated signal or the estimated remaining trapped charge carriers. The Function plot_RLumCarlo() provides an easy way to visualise the modelling results and is here called using the tee operator %T> from the package magrittr (which is imported by 'RLumCarlo'). Simulation results are stored in the object results while, at the same time, piped to the function plot_RLumCarlo() for the output visualisation.

4.1.1 Model the signal

The most obvious modelling output is the luminescence signal itself, our example below simulates an isothermal (ITL) signal for a temperature (T) of 200 °C over 5,000 s using a tunnelling transition model. Trap parameters are E = 1.2 eV for the trap depth and a frequency factor of 1×10^{10} (1/s). The parameter rho (ρ') defines the recombination centre density.

```
results <- run_MC_ISO_TUN(
    E = 1.2,
    s = 1e10,
    T = 200,
    rho = 0.007,
    times = seq(0, 5000)
) %T>%
    plot_RLumCarlo(norm = TRUE, legend = TRUE)
```


4.1.2 Model remaining charges

The first example can be slightly altered to provide alternative insight. Instead of the luminescence signal, the variant below returns the number of remaining electrons in the trap.

```
results <- run_MC_ISO_TUN(
    E = 1.2,
    s = 1e10,
    T = 200,
    rho = 0.007,
    times = seq(0, 5000),
    output = "remaining_e"
) %T>%
    plot_RLumCarlo(
    legend = TRUE,
        ylab = "Remaining electrons"
    )
```


4.1.3 Understanding the numerical output

In both cases the modelling output is an object of class RLumCarlo_Model_Output, which is basically a list consisting of an array and a numeric (vector).

```
str(results)
```

```
## List of 2
## $ signal: num [1:5001, 1:21, 1:10] 200 200 199 198 198 198 198 197 196 196 ...
## ...attr(*, "dimnames")=List of 3
## ...$: NULL
## $ time : int [1:5001] 0 1 2 3 4 5 6 7 8 9 ...
## - attr(*, "class")= chr "RLumCarlo_Model_Output"
## - attr(*, "model")= chr "run_MC_ISO_TUN"
```

While this represents the full modelling output results, its interpretation might be less straight forward, and the user may want to condense the information via summary(). The function summary() is also used internally by the function plot_RLumCarlo() to simplify the data before there are plotted.

df <- summary(results)</pre> ## time y_min sdmean y_max ## 0 :3080 :3060 :3100 : 0.7379 Min. : Min. Min. Min. Min. 1st Qu.:1250 1st Qu.:10.3392 ## 1st Qu.:3188 1st Qu.:3159 1st Qu.:3219 ## Median:2500 Median:3341 Median:3320 Median:3370 Median :14.0637 ## Mean :2500 Mean :3423 Mean :3402 Mean :3445 Mean :13.7298 ## 3rd Qu.:3750 3rd Qu.:3598 3rd Qu.:3581 3rd Qu.:3619 3rd Qu.:16.9509 :5000 :4199 :4198 :4200 :20.9149 ## Max. Max. Max. Max. Max. ## var ## Min. : 0.5444 1st Qu.:106.9000 ## Median :197.7889 ## Mean :205.2451 ## 3rd Qu.:287.3333 Max. :437.4333 head(df)

```
##
     time
            mean y_min y_max
                                     sd
                                               var
## 1
        0 4199.1
                  4198 4200 0.7378648 0.5444444
## 2
        1 4197.7
                  4195
                        4200 1.4181365 2.0111111
## 3
        2 4196.8
                  4195
                         4198 1.1352924 1.2888889
## 4
        3 4195.3
                  4193
                         4197 1.6363917 2.6777778
## 5
        4 4194.6
                  4191
                         4197 1.8378732 3.3777778
## 6
        5 4193.6
                  4190
                        4197 2.1186998 4.4888889
```

The call summarises the modelling results and returns a terminal output and a data.frame with, e.g., the mean or the standard deviation, which can be used to create plots for further insight. For instance, the stimulation time against coefficient of variation (CV in %):

```
plot(
    x = df$time,
    y = (df$sd / df$mean) * 100,
    pch = 20,
    col = rgb(0,0,0,.1),
    xlab = "Stimulation time [s]",
    ylab = "CV [%]"
)
```


4.2 Example 2: Combining two plots

The following examples use again the tunnelling model but for continuous wave (CW) infrared light stimulation (IRSL), and they combine two plots in one single plot window.

```
## set time vector
times <- seq(0, 1000)

## Run MC simulation
run_MC_CW_IRSL_TUN(A = 0.12, rho = 0.003, times = times) %>%
    plot_RLumCarlo(norm = TRUE, legend = TRUE)

run_MC_CW_IRSL_TUN(A = 0.21, rho = 0.003, times = times) %>%
    plot_RLumCarlo(norm = TRUE, add = TRUE)
```


4.3 Example 3: Testing different parameters

The example above can be further extended to test the effect of different parameters. Contrary to the example above, here the results are stored in a list and plot_RLumCarlo() is called only one time and it will then iterate automatically over the results to create a combined plot.

```
s <- 3.5e12
rho <- 0.015
E <- 1.45
r_c <- c(0,0.7,0.77,0.86, 0.97)
times <- seq(100, 450) # here time = temperature
results <- lapply(r_c, function(x) {
    run_MC_TL_TUN(
        s = s,
        E = E,
        rho = rho,
        r_c = x,
        times = times
)
})</pre>
```

The plot output can be highly customised to provide a better visual experience, e.g., the manual setting of the colours and the legend.

```
## plot curves, but without legend
plot_RLumCarlo(
  object = results,
 ylab = "normalised TL signal",
 xlab = "Temperature [\u00b0C]",
 plot_uncertainty = "range",
  col = khroma::colour("bright")(length(r_c)),
 legend = FALSE,
 norm = TRUE
## add legend manually
legend(
  "topleft",
 bty = "n",
 legend = paste0("r_c: ", r_c),
 lty = 1,
  col = khroma::colour("bright")(length(r_c))
)
```


References

Bulur, Enver. 1996. "An Alternative Technique for Optically Stimulated Luminescence (OSL) Experiment." Radiation Measurements 26 (5): 701–9. https://doi.org/10.1016/S1350-4487(97)82884-3.

Chen, R, and Vasilis Pagonis. 2011. Thermally and Optically Stimulated Luminescence - A Simulation Approach. Thermally and Optically Stimulated Luminescence a Simulation Approach. John Wiley & Sons, Ltd.

Jain, Mayank, Benny Guralnik, and Martin Thalbitzer Andersen. 2012. "Stimulated luminescence emission from localized recombination in randomly distributed defects." Journal of Physics: Condensed Matter 24 (38): 385402. https://doi.org/10.1088/0953-8984/24/38/385402.

Pagonis, Vasilis, Johannes Friedrich, Michael Discher, Anna Müller-Kirschbaum, Veronika Schlosser, Sebastian Kreutzer, Reuven Chen, and Christoph Schmidt. 2019. *Journal of Luminescence* 207: 266–72. https://doi.org/10.1016/j.jlumin.2018.11.024.