LIMITES NO INFINITO, LIMITES INFINITO E LIMITES FUNDAMENTAIS

1. Calcule os limites:

(a)
$$\lim_{x \to +\infty} \frac{4x^3 - 5x^2 + x}{x^4 + 7x^2}$$

(b)
$$\lim_{x\to-\infty} \frac{3x^5 - x^4 + 7x}{6x^5 + 8x^4 + 20}$$

(c)
$$\lim_{x \to -\infty} \frac{x^5 + \sin(x)}{20x^4 + 3x^2 + x}$$

(d)
$$\lim_{x\to+\infty} \frac{\sqrt{x^2-\sqrt{x}}}{\sqrt{x+1}}$$

(b)
$$\lim_{x \to -\infty} \frac{3x^5 - x^4 + 7x}{6x^5 + 8x^4 + 20}$$

(c) $\lim_{x \to -\infty} \frac{x^5 + \sin(x)}{20x^4 + 3x^2 + x}$
(d) $\lim_{x \to +\infty} \frac{\sqrt{x^2 - \sqrt{x}}}{\sqrt{x + 1}}$
(e) $\lim_{x \to -\infty} \frac{x}{\sqrt{x^2 + \sqrt{x^2 + 1}}}$
(f) $\lim_{x \to 0} \frac{x^4 + 7x^2}{6x^5 + 8x^4 + 20}$
(i) $\lim_{x \to 0} \frac{(7x^{-1} - \frac{1}{7})}{x}$
(j) $\lim_{x \to 0} \frac{((ab)^x - a^x)}{ax}$ $a, b \neq 0$
(k) $\lim_{x \to +\infty} \left(1 + \frac{2}{x + 1}\right)^x$
(l) $\lim_{x \to 0} x^2 \cot^2(x)$
(l) $\lim_{x \to 0} x^2 \cot^2(x)$

(f)
$$\lim_{x\to 0} \frac{x}{\tan(x)}$$

(g)
$$\lim_{x\to 0} \frac{1-\cos(x)^4}{x^2}$$

(a)
$$\lim_{x \to +\infty} \frac{4x^3 - 5x^2 + x}{x^4 + 7x^2}$$
 (b) $\lim_{x \to \infty} \left(1 + \frac{5}{x - 1}\right)^{x + 7}$

(i)
$$\lim_{x\to 0} \frac{\left(7^{x-1} - \frac{1}{7}\right)}{x}$$

(j)
$$\lim_{x\to 0} \frac{((ab)^x - a^x)}{ax}$$
 $a, b \neq 0$

(k)
$$\lim_{x \to +\infty} \left(1 + \frac{2}{x+1} \right)^x$$

(l)
$$\lim_{x\to 0} x^2 \cot^2(x)$$

(m)
$$\lim_{x\to 0} \frac{\tan(x)}{x \cdot \sec(x)}$$

(n)
$$\lim_{x\to 0} x \cdot \sec(x) \cdot \csc(x)$$

2. Se
$$f(x) = \frac{3x + |x|}{7x - 5|x|}$$
, calcule $\lim_{x \to +\infty} f(x)$ e $\lim_{x \to -\infty} f(x)$.

3. Calcule:

(a)
$$\lim_{x\to 0} \frac{\tan(x)}{x}$$

(b)
$$\lim_{x\to 0} \frac{x}{\sin(x)}$$

(c)
$$\lim_{x\to 0} \frac{\sin(3x)}{x}$$

(d)
$$\lim_{x \to \pi} \frac{\sin(x)}{x - \pi}$$

(e)
$$\lim_{x\to 0} \frac{x^2}{\sin(x)}$$

(f)
$$\lim_{x\to 0} \frac{3x^2}{\tan(x)\sin(x)}$$

(g)
$$\lim_{x\to 0} \frac{\tan(3x)}{\sin(4x)}$$

(h)
$$\lim_{x\to 0} \frac{1-\cos(x)}{x}$$

(i)
$$\lim_{x\to 0} \frac{x - \tan(x)}{x + \tan(x)}$$

(j)
$$\lim_{x\to 1} \frac{\sin(\pi x)}{x-1}$$