МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ

федеральное государственное автономное образовательное учреждение высшего образования «Санкт-Петербургский государственный университет аэрокосмического приборостроения»

ФАКУЛЬТЕТ СРЕДНЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

<mark>,</mark> ИЩЕН С ОЦЕНЬ	κой		
ОВОДИТЕЛЬ			
преподавател	Ь		Попов И.Д.
должность, уч. степень, з	вание	подпись, дата	инициалы, фамилия
		U	
	ОТЧЕТ ПО У	УЧЕБНОЙ ПРАКТИКЕ	
D.C			луна
		ЕССИОНАЛЬНОГО МС	
ПМ.01 «Выпол	нение работ по п	роектированию сетевой	инфраструктуры»
ЕТ ВЫПОЛНИЛ			
дент группы	C142		Е.И. Блинов
	номер группы	подпись, дата	инициалы, фамилия

ИНДИВИДУАЛЬНОЕ ЗАДАНИЕ

на прохождение учебной практики обучающегося по специальности 09.02.06 Сетевое и системное администрирование

код и наименование специальности

- 1. Фамилия, имя, отчество обучающегося: Блинов Егор Игоревич
- 2. Группа: <u>С142</u> Сроки проведения практики: с <u>«06» апреля 2024 г.</u> по <u>«26» апреля 2024 г.</u>
- 3. Тема задания: приобретение первичных профессиональных умений и навыков, начального опыта практической деятельности, овладение необходимыми компетенциями по профессиональному модулю.

ПМ.01 ВЫПОЛНЕНИЕ РАБОТ ПО ПРОЕКТИРОВАНИЮ СЕТЕВОЙ ИНФРАСТРУКТУРЫ

код и наименование профессионального модуля

- 4. Вопросы, подлежащие изучению:
 - 1) Проектирование сетевой инфраструктуры.
 - 2) Организация сетевого администрирования.
 - 3) Управление сетевыми сервисами.
 - 4) Модернизация сетевой инфраструктуры.
- 5. Выполнение комплексных работ по проектированию архитектуры локальной сети; установке и настройке сетевых протоколов и сетевого оборудования; использованию специального программного обеспечения для моделирования, проектирования и тестирования компьютерных сетей; настройке механизмов фильтрации трафика на базе списков контроля доступа.
- 6. Содержание отчетной документации:
 - 6.1.1. Отчёт, включающий в себя:
 - титульный лист;
 - индивидуальное задание;
 - материалы о выполнении индивидуального задания;
 - список использованных источников.
 - 6.1.2. Аттестационный лист.
- 7. Срок представления отчета заместителю декана по учебно-производственной работе: $\underline{\text{«26»}}$ апреля 2024 г.

Руководитель практики от факультета СПО

преподаватель	06.04.2024 г	И.Д. Попов	_
должность, уч. степень, звание	подпись, дата	инициалы, фамилия	_
Задание принял к исполнению: Обучающийся			
06.04.2024 г.		Е.И. Блинов	
лата	полпись	инициалы, фамилия	_

СОДЕРЖАНИЕ

ВВЕДЕНИЕ4	
1 Проектирование сетевой инфраструктуры5	
1.1 Схема сети	
1.2 Оборудование	
2 Организация сетевого администрирования9	
2.1 Настройка сети провайдера	
2.2. Базовая настройка филиалов	
2.3 Настройка VRRP в филиалах	
3 Управление сетевыми сервисами	
3.1 Настройка DHCP в филиалах	
3.2 Настройка GRE туннелирования и OSPF	
3.3 Настройка DNS в филиалах	
4 Модернизация сетевой инфраструктуры	
4.1 Настройка беспроводного маршрутизатора	
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ27	
ПРИЛОЖЕНИЕ А	
ПРИЛОЖЕНИЕ Б	
ПРИЛОЖЕНИЕ В	
ПРИЛОЖЕНИЕ Г	

					УП.09.02.	$\cap \epsilon$	< (۱1	ПЗ	
Изм.	Лист	№ докум.	Подп.	Дата	У11.09.02.	υ	<i>).</i> (<i>J</i>]	1113	
Разраб	б.	Блинов Е. И.				Ли	IT.		Лист	Листов
Пров.		Попов И. Д.							4	
					Отчет по учебной					
Н. кон	тр.				практике			(ФСПО 1	ГУАП
Утв.					mp saxrince					

ВВЕДЕНИЕ

В настоящее время тяжело представить себе туристическую фирму без сетевой инфраструктуры из-за нескольких факторов, приведенных далее.

Управление информацией: туристические компании работают с большим объемом информации, включая бронирование отелей, билетов, транспорта и других услуг. Эффективная сетевая инфраструктура позволяет управлять этой информацией без задержек и с минимальными ошибками.

Работа в реальном времени: клиенты ожидают моментальных ответов и оперативного обновления информации. Хорошо спроектированная сетевая инфраструктура обеспечивает возможность работать в реальном времени, что позволяет операторам быстро реагировать на запросы клиентов и изменения на рынке.

Безопасность данных: туристические компании обрабатывают конфиденциальные данные клиентов, такие как данные паспортов, кредитные карты и информация о бронировании. Надежная сетевая инфраструктура с соответствующими мерами безопасности защищает эти данные от утечек и несанкционированного доступа.

Связь с поставщиками услуг: туристические фирмы часто работают с различными поставщиками услуг, такими как авиакомпании, отели, транспортные компании и туристические агентства.

Масштабируемость и гибкость: туристический бизнес может быть подвержен сезонным колебаниям спроса. Надежная сетевая инфраструктура должна быть способна масштабироваться в зависимости от изменяющихся потребностей бизнеса и гибко адаптироваться к новым технологиям и требованиям рынка.

Исходя из всего вышеперечисленного можно понять то, что любая туристическая фирма в наше время обязана иметь сетевую инфраструктуру для успешного выполнения работы.

Изм.	Лист	№ докум.	Подп.	Дата

1 Проектирование сетевой инфраструктуры

В туристической фирме есть главный офис и недавно открылось три филиала, в главном офисе стоит Web-сервер туристической фирмы к которому можно обратиться через Интернет. В офисах все адреса выдаются динамически. В первом филиале дополнительная настройка не требуется. Во втором филиале необходимо разграничить трафик. В самой компании, как и в филиалах необходимо организовать 2 точки выхода в сеть для доступа к серверу, при условии отключения или поломки одного из маршрутизаторов. Главами компании было выдано задание, чтобы весь трафик филиалов проходил через главный офис. Примерная схема сети изображена на рисунке 1.

Рисунок 1 – Примерная схема сети

1.1 Схема сети

Схема сети L1 показана в приложении A.

Схема сети L2 показана в приложении Б.

Схема сети L3 показана в приложении В.

Схема диаграммы маршрутизации показана в приложении Γ .

Далее приведены ІР-планы филиалов и провайдеров.

В таблице 1 показан ІР-план главного офиса.

						Лист	l
					УП.09.02.06.01ПЗ	5	1
Изм.	Лист	№ докум.	Подп.	Дата	311.07.02.00.01113)	ı

Таблица 1 – ІР-план главного офиса

Главный офис					
Оборудование	Интерфейс	IP-адрес	Маска		
Mikrotik 7.14.2 (Brunch1)	ether1	192.168.1.2	24		
	ether2	DHCP (200.1.1.254)	24		
	vrrp1	192.168.1.1	24		
	gre-tunnellF3	13.1.13.2	30		
	gre-tunnellF3-2	132.1.132.1	30		
Mikrotik 7.14.2 (Brunch1-2)	ether1	192.168.1.3	24		
	ether2	DHCP (200.1.11.254)	24		
	vrrp1	192.168.1.1	24		
	gre-tunnellF3	123.1.123.2	30		
	gre-tunnellF3-2	125.1.125.2	30		
PC3	Ethernet0	DHCP (192.168.1.0)	24		
PC4	Ethernet0	DHCP (192.168.1.0)	24		
PC5	Ethernet0	DHCP (192.168.1.0)	24		

В таблице 2 показан ІР-план первого филиала

Таблица 2 – IP-план первого филиала

	Филиал №1		
Оборудование	Интерфейс	IP-адрес	Маска
Mikrotik 7.14.2 (Brunch2)	ether1	-	-
	ether2	DHCP (200.1.2.254)	24
	vrrp1	10.1.1.1	25
	vppr2	10.1.1.129	25
	ether1.100	10.1.1.2	25
	ether1.1000	10.1.1.130	25
	gre-tunnellF3	23.1.23.2	30
	gre-tunnellF3-2	110.1.110.1	30
Mikrotik 7.14.2 (Brunch2-2)	ether1	-	-
	ether2	DHCP (200.1.22.254)	24
	vrrp1	10.1.1.1	25
	vppr2	10.1.1.129	25
	ether1.100	10.1.1.3	25
	ether1.1000	10.1.1.131	25
	gre-tunnellF3	223.1.223.1	30
	gre-tunnellF3-2	115.1.115.1	30
L2 (Cisco switch)	vlan 100	10.1.1.4	25
	vlan 1000	10.1.1.132	25
PCADMIN	Ethernet0	DHCP (10.1.1.128)	25
PC6	Ethernet0	DHCP (10.1.1.0)	25
PC7	Ethernet0	DHCP (10.1.1.0)	25
PC8	Ethernet0	DHCP (10.1.1.0)	25

Изм.	Лист	№ докум.	Подп.	Дата

В таблице 3 показан ІР-план второго филиала

Таблица 3 – ІР-план второго филиала

	Филиал №2		
Оборудование	Интерфейс	IP-адрес	Маска
Mikrotik 7.14.2 (Brunch3)	ether1	192.168.3.2	24
	ether2	DHCP (200.1.3.254)	24
	vrrp1	192.168.3.1	24
	gre-tunnellF1	13.1.13.1	30
	gre-tunnellF1-2	123.1.123.1	30
	gre-tunnellF2	23.1.23.1	30
	gre-tunnellF2-2	223.1.223.1	30
	gre-tunnellvESR	43.1.43.1	30
Mikrotik 7.14.2 (Brunch3-2)	ether1	192.168.3.3	24
	ether2	DHCP (200.1.33.254)	24
	vrrp1	192.168.3.1	24
	gre-tunnellF1	132.1.132.2	30
	gre-tunnellF1-2	125.1.125.1	30
	gre-tunnellF2	110.1.110.2	30
	gre-tunnellF2-2	115.1.115.1	30
ApacheServer (Debian)	ens4	DHCP (192.168.3.254)	24
PC1	Ethernet0	DHCP (192.168.3.0)	24
PC2	Ethernet0	DHCP (192.168.3.0)	24

В таблице 4 показан ІР-план третьего филиала.

Таблица 4 – ІР-план третьего филиала

Филиал №3					
Оборудование	Интерфейс	IP-адрес	Маска		
vESR (brunch4)	gi1/0/4	192.168.4.1	24		
	gi1/0/8	DHCP (200.1.4.254)	24		
	gre-tunnellF3	43.1.43.2	30		
Mikrotik RB2011UIAS- 2HnD (Wireless)	bridge1	DHCP (192.168.4.129)	24		
PC9	Ethernet0	DHCP (192.168.4.0)	24		

В таблице 5 показан IP-план провайдера AS22000.

Таблица 5 – IP-план провайдера AS22000

Провайдер AS 22000						
Оборудование	Оборудование Интерфейс IP-адрес Маска					
Mikrotik 7.7 (M1)	ether1	200.1.3.1	24			
	ether2	40.1.1.2	30			
	ether3	40.1.2.2	30			
	ether4	200.1.11.1	24			

Изм. Лист № докум. Подп. Дата

УП.09.02.06.01ПЗ

Лист

Оборудование	Интерфейс ІР-адрес		Маска
	ether7	DHCP (192.168.242.191)	24
	Loop0	1.1.1.1	32
Mikrotik 7.7 (M2)	ether1	40.1.1.1	30
	ether2	100.1.1.2	30
	Loop0	2.2.2.2	32
Mikrotik 7.7 (M3)	ether1	40.1.2.1	30
	ether2	100.1.2.2	30
	Loop0	3.3.3.3	32

В таблице 6 показан IP-план провайдера AS33000.

Таблица 6 – IP-план провайдера AS33000

	Провайдер 3300	00	
Оборудование	Интерфейс	IP-адрес	Маска
Mikrotik 7.7 (M5)	ether1	20.1.1.1	30
	ether2	100.1.1.1	30
	Loop0	5.5.5.5	32
Mikrotik 7.7 (M6)	ether1	20.1.1.2	30
	ether2	200.1.1.1	24
	ether3	200.1.22.1	24
	Loop0	6.6.6.6	32

В таблице 7 показан IP-план провайдера AS55000.

Таблица 7 – IP-план провайдера AS55000

Провайдер AS 55000					
	<u> </u>				
Оборудование	Интерфейс	IP-адрес	Маска		
Mikrotik 7.7 (M7)	ether1	30.1.1.2	30		
	ether2	100.1.2.1	30		
	Loop0	7.7.7.7	32		
Mikrotik 7.7 (M8)	ether1	30.1.1.1	30		
	ether2	200.1.2.1	24		
	ether3	200.1.33.1	24		
	Loop0	8.8.8.8	32		

В таблице 8 показан IP-план провайдера AS48000

Таблица 8 – IP-план провайдера AS48000

Провайдер AS 48000				
Оборудование	Интерфейс	IP-адрес	Маска	
Mikrotik 7.14.2 (M14-	ether1	100.1.3.2	30	
1)	ether2	2.1.2.1	30	
	ether3	3.1.3.1	30	

Изм.	Лист	№ докум.	Подп.	Дата

Оборудование	Интерфейс	IP-адрес	Маска
	lo	141.141.141.141	32
Mikrotik 7.14.2 (M14-	ether1	4.1.4.2	29
2)	ether2	2.1.2.2	30
	lo	142.142.142.142	32
Mikrotik 7.14.2 (M14-	ether1	4.1.4.1	29
3)	ether2	3.1.3.2	30
	ether3	200.1.4.1	24
	lo	143.143.143.143	32

1.2 Оборудование

Для настройки примерной сети также пришлось настраивать и зону провайдера. В таблице 9 показано оборудование, использованное для сети провайдера.

Таблица 9 – Оборудование провайдера

Оборудование провайдеров				
Кол-во	Наименование			
7	Mikrotik 7.7			
3	Mikrotik 7.14.2			

Оборудование, выбранное для настройки филиалов, показано в таблице 10.

Таблица 10 – Оборудование филиалов

	Оборудование филиалов				
Кол-во	Наименование				
6	Mikrotik 7.14.2				
1	vESR				
11	PC				
3	Коммутатор (не управляемый)				
1	Cisco L2				

2 Организация сетевого администрирования

2.1 Настройка сети провайдера

В сети провайдера были выданы IP-адреса, настроена динамическая маршрутизация при помощи OSPF и IS-IS, также в сети есть 4 провайдера, соседские отношения которых настроены по BGP, также провайдеры клиентам выдают адреса по DHCP, также через провайдера AS22000 для всей

						Лист
					УП.09.02.06.01ПЗ	0
Изм.	Лист	№ докум.	Подп.	Дата	311.07.02.00.01113	9

схемы сети есть выход в интернет

2.2. Базовая настройка филиалов.

Для начала настройки маршрутизаторам в сети были выдан локальный адрес, адрес через который филиалы общаются выдается им провайдером. На рисунке 2 и 3 показано как они получали адреса

Рисунок 2 – Статический адрес на Brunch1

Рисунок 3 – Динамический адрес на Brunch1

Аналогично были настроены маршрутизаторы Mikrotik.

Для настройки ESR мы подключили два интерфейса и создали две зоны настройки показаны ниже

config

security zone trust

security zone untrust

security zone-pair trust self

rule 1

action permit

match protocol icmp

match icmp echo

exit

exit

security zone-pair untrust self

Изм.	Лист	№ докум.	Подп.	Дата

rule 1

action permit

match protocol icmp

enable

После настройки зон безопасности заходим на сами интерфейсы и настраиваем их.

config

int gi1/0/8

ip add dhcp

security-zone untrust

int gi1/0/4

ip add 192.168.4.1/24

security-zone trust

После настройки адресации необходимо создать статические маршруты, чтобы попасть к другим внешним адресам филиалов, это показано на рисунке 4.

·-	,		
AS	200.1.3.0/24	200.1.11.1	1 main
DAC	▶ 200.1.11.0/24	ether2	0 main
AS	200.1.33.0/24	200.1.11.1	1 main

Рисунок 4 — Статическая маршрутизация Brunch1-2

Аналогично были настроены другие маршрутизаторы Mikrotik.

Ha ESR создаем маршруты.

Ip route 200.1.3.0/24 200.1.4.1

2.3 Настройка VRRP в филиалах

Во всех филиалах, кроме 4, настроен VRRP протокол для повышения отказоустойчивости сети. Создаем интерфейс VRRP, задаем на нем адрес и меняем на интерфейсе, также на Васкир маршрутизаторах настраиваем по preemption mode, и уменьшаем приоритет. Сама настройка показана на рисунках 5 и 6.

Изм.	Лист	№ докум.	Подп.	Дата

УП.09.02.06.01ПЗ

Лист

Рисунок 5 – Настройка Backup vrrp на Brunch1-2

Рисунок 6 – Настройка Master vrrp на Brunch3

Аналогично настроены маршрутизаторы в первом и третьем филиале Настройка во втором филиале не сильно отличается за исключением того, что там два VRRP интерфейса, и они поставлены на vlan интерфейсы. Настройка показана на рисунках 7 и 8.

Изм.	Лист	№ докум.	Подп.	Дата

Рисунок 7 – Настройка vrrp1 на Brunch2

Рисунок 8 – Настройка vrrp2 на Brunch2

Аналогично настроен маршрутизатор Brunch2-2.

3 Управление сетевыми сервисами

После выполнения базовой настройки приступим к настройке выдачи адресов клиентам, доступности между филиалами.

3.1 Настройка DHCP в филиалах

Во всех филиалах настроена динамическая выдача адресов.

На Mikrotik маршрутизаторах все DHCP сервера находятся на VRRP

1	интег	эфейсах это	показ	ано в	<u>и писунке 9- на писунке 10 показан пул алпесов</u>	R
	1	1			J 74	Лист
					УП.09.02.06.01ПЗ	12
Изм.	Лист	№ докум.	Подп.	Дата	311.07.02.00.01113	13

для этого DHCP сервера.

DHCP Server <server1></server1>	□×
General Queues Script	ОК
Name: server1 ◆	Cancel
Interface: vmp1	Apply
Relay: ▼	Disable
Lease Time: 00:10:00	Comment
Bootp Lease Time: forever Address Pool: pool1 ▼	Сору
DHCP Option Set: ▼	Remove
Server Address: ▼	
Delay Threshold: ▼	
Authoritative: yes	
Bootp Support: static ▼	
Client MAC Limit: ▼	
Use RADIUS: no ▼	
☐ Always Broadcast	
•	
enabled invalid	

Рисунок 9 — Настройка DHCP сервера на Brunch3-2

Рисунок 10 – Pool на Brunch3-2

Аналогично настроены другие Mikrotik маршрутизаторы, за исключением второго филиала в котором 2 DHCP сервера, а не один, и в 3 филиале. Настройка ESR показана далее:

config
object-group service dhcp_server
port-range 67
exit
security zone-pair trust self
rule 2

Изм.	Лист	№ докум.	Подп.	Дата

action permit
match protocol udp
match destination-port dhcp_server
enable
exit
exit
ip dhcp-server
ip dhcp-server pool pool1
network 192.168.4.0/24
domain-name blinov1.up
default-lease-time 0:0:30
address-range 192.168.4.2-192.168.4.128
dns-server 192.168.4.1

3.2 Настройка GRE туннелирования и OSPF

Весь трафик должен проходить через главный офис, для этого реализуется GRE-туннелирование и настраивается доступ в Интернет, все маршруты проходят через главный офис. Настройка GRE-туннелирования показана на рисунках 11 и 12.

Рисунок 11 – Настройка GRE на Brunch1

Изм.	Лист	№ докум.	Подп.	Дата

Рисунок 12 – Hacтройка GRE на Brunch3

Аналогично настроено на других маршрутизаторах в сети, за исключением ESR, его конфигурация показана далее:

config

security zone-pair untrust self

rule 5

//Для дальнейшей настройки OSPF

action permit

match protocol ospf

enable

exit

exit

//Добавляем возможность эхо запроса в другие области

security zone-pair trust untrust

rule 1

action permit

match protocol icmp

enable

Изм.	Лист	№ докум.	Подп.	Дата

exit
rule 2
action permit
match protocol ospf
enable
exit
exit
tunnel gre 3
security-zone untrust
local address 200.1.4.254
remote address 200.1.3.254
ip address 43.1.43.2/30
enable

После настройки GRE туннелей, локальные сети должны иметь доступ друг к другу, для этого настраивается OSPF внутри GRE-туннелей. Настройка OSPF показана на рисунках 13-15.

Рисунок 13 – Настройка OSPF instance на Brunch3

Рисунок 14 – Настройка OSPF area на Brunch3

					VI
Изм.	Лист	№ докум.	Подп.	Дата	J 1

Рисунок 15 – Hастройка OSPF interfaces на Brunch3

Аналогично OSPF настроен на других маршрутизаторах Mikrotik, настройка на ESR показана далее:

Router

Router ospf 1

router-id 4.4.4.4

area 0.0.0.0

network 192.168.4.0/24

network 43.1.43.0/30

enable

exit

enable

exit

tunnel gre 3

ip ospf instances 1

ip ospf priority 100

ip ospf

mtu 1476

Изм.	Лист	№ докум.	Подп.	Дата

УΠ	09	02	06	011	П3
J 11	.ひノ.	UZ.	vv.	\mathbf{O}	

ttl 250

end

После настройки OSPF необходимо проверить доступность другого устройства из другого филиала. Это изображено на рисунке 16.

```
DORA IP 192.168.3.253/24 GW 192.168.3.1

PC1> ping 192.168.1.254

84 bytes from 192.168.1.254 icmp_seq=1 tt1=62 time=7.263 ms
84 bytes from 192.168.1.254 icmp_seq=2 tt1=62 time=8.444 ms
84 bytes from 192.168.1.254 icmp_seq=3 tt1=62 time=14.427 ms
```

Рисунок 16 – Ping c PC1 PC3

Как видно на рисунке доступ из одного филиала в другой есть, теперь необходимо обеспечить выход в интернет через главный офис.

3.3 Настройка DNS в филиалах

После настройки доступа клиентов друг с другом необходимо настроить выход в интернет для клиентов. Интернет выдает провайдер, необходимо просто настроить кэширующие DNS сервера. Настройка кэширующего DNS показана на рисунках 17 и 18.

Рисунок 17 – Настройка кэширующего DNS на Brunch3

Рисунок 18 – Настройка кэширующего DNS на Brunch1

Как видно на рисунке 18 указывается 2 DNS сервера, так как доступ в

						Лист
					УП.09.02.06.01ПЗ	10
Изм.	Лист	№ докум.	Подп.	Дата	311.07.02.00.01113	19

Интернет имеют сразу 2 маршрутизатора в главном офисе, при отключении одного, трафик будет идти через другой. Аналогично настроены и другие маршрутизаторы Mikrotik, настройка ESR показана ниже.

domain lookup enable

domain name-server 43.1.43.1 //Адрес GRE туннеля

проверим доступ в интернет и разрешение имен из филиалов, это показано на рисунках 19 и 20.

```
PC1> ping google.com
google.com resolved to 142.251.1.100

84 bytes from 142.251.1.100 icmp_seq=1 tt1=126 time=117.309 ms
84 bytes from 142.251.1.100 icmp_seq=2 tt1=126 time=84.988 ms
84 bytes from 142.251.1.100 icmp_seq=3 tt1=126 time=87.672 ms
84 bytes from 142.251.1.100 icmp_seq=4 tt1=126 time=110.556 ms
^C
PC1>
```

Рисунок 19 – Ping google.com c PC1

```
PC3> ip dhcp
DORA IP 192.168.1.253/24 GW 192.168.1.1

PC3> ping ya.ru
ya.ru resolved to 77.88.55.242

84 bytes from 77.88.55.242 icmp_seq=1 tt1=125 time=38.866 ms
84 bytes from 77.88.55.242 icmp_seq=2 tt1=125 time=33.741 ms
84 bytes from 77.88.55.242 icmp_seq=3 tt1=125 time=41.665 ms
84 bytes from 77.88.55.242 icmp_seq=4 tt1=125 time=41.665 ms
84 bytes from 77.88.55.242 icmp_seq=4 tt1=125 time=32.231 ms
84 bytes from 77.88.55.242 icmp_seq=5 tt1=125 time=41.423 ms
```

Рисунок 20 – Ping google.com c PC4

4 Модернизация сетевой инфраструктуры

В одном из филиалов появилась необходимость в беспроводной точке доступа для клиентов.

4.1 Настройка беспроводного маршрутизатора

Для начала необходимо объединить в bridge порт порты WLAN и ether2. Это показано на рисунке 21.

Изм.	Лист	№ докум.	Подп.	Дата

Рисунок 21 – Объединение портов в bridge

После объединения портов необходимо задать адрес для bridge интерфейса, так как маршрутизатор находится в локальной сети он получает адрес по DHCP. Затем мы резервируем этот адрес на ESR командами.

config

ip dhcp-server pool pool1

//Резервирование адреса маршрутизатора

address 192.168.4.129 mac-address c4:ad:34:7d:67:40

После всей настройки переходим к настройкам DHCP и DNS серверов на маршрутизаторе. Настройка DHCP и DNS показана на рисунках 22-24.

Рисунок 22 – Настройка DHCP на Wireless

Изм.	Лист	№ докум.	Подп.	Дата

Рисунок 23 – Настройка пула на Wireless

Рисунок 24 – Настройка DNS на Wireless

После настройки DNS у нас появился интернет на маршрутизаторе Wireless, также DHCP сервер настроен на bridge интерфейсе для возможности выдачи адресов беспроводным клиентам. Теперь приступим к настройке wlan интерфейса, этот процесс изображен на рисунках 25 и 26.

Изм.	Лист	№ докум.	Подп.	Дата

Рисунок 25 – Настройка wlan на Wireless

Рисунок 26 – Настройка wlan на Wireless

После данной настройки необходимо задать пароль для WI-FI, в security profiles настраиваем профиль по умолчанию, пароль задаем 34127856, это показано на рисунке 27.

Изм.	Лист	№ докум.	Подп.	Дата

Рисунок 27 – Настройка Security profile

После настройки включаем интерфейс и подключаемся с телефона пользователя. Подключение пользователя к интернету и сайту с телефона показано на рисунках 28 и 29.

Изм.	Лист	№ докум.	Подп.	Дата

Рисунок 28 – Ping google.com с пользователя

Изм.	Лист	№ докум.	Подп.	Дата

Turfirma

Рисунок 29 — Подключение к сайту пользователя Настройка выполнена успешно.

Изм.	Лист	№ докум.	Подп.	Дата

приложение а

Схема L1

приложение Б

Схема L2

приложение в

Схема L3

ПРИЛОЖЕНИЕ Г ДИАГРАММА МАРШРУТИЗАЦИИ

