

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

(11) International Publication Number:

WO 97/31499

H04Q 7/38

A1

(43) International Publication Date:

28 August 1997 (28.08.97)

(21) International Application Number:

PCT/FI97/00115

(22) International Filing Date:

21 February 1997 (21.02.97)

(30) Priority Data:

960815

22 February 1996 (22.02.96)

FI

(71) Applicant (for all designated States except US): NOKIA MOBILE PHONES LTD. [FI/FI]; P.O. Box 86, FIN-24101 Salo (FI).

(72) Inventors; and

(75) Inventors/Applicants (for US only): MITTS, Håkan [FI/FI]; Kytösuonpolku 3 D 38, FIN-00300 Helsinki (FI). IMMO-NEN, Jukka [FI/FI]; Leipurinkuja 1 B 19, FIN-02600 Espoo (FI). HANSEN, Harri [FI/FI]; Aapelinkatu 10 B 10, FIN-02230 (FI).

(74) Agent: BERGGREN OY AB; P.O. Box 16, FIN-00101 Helsinki (FI).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM). European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(54) Title: METHOD FOR EXECUTING HANDOVER IN A RADIO EXTENSION OF AN ATM NETWORK

(57) Abstract

In the handover of a radio extension of an ATM network there are used markers that are located at fixed locations in the ATM cell stream in order to indicate the ending of an uplink and downlink cell stream, so that the switching of cell streams can be carried out in a synchronised fashion, and cells are not lost and their relative order does not change. If a downlink data transmission via the old access point succeeds, the old access point attaches to the last forwarded information field a notice of closing the traffic, in which case the mobile terminal transfers the information of successful transmission to the new access point. In another case, the old access point sends the unforwarded cells to the new access point and terminates the transaction with the same marker that generally indicates the end of a downlink cell stream.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
ΑU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	ΙE	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin .	JР	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgystan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SG	Singapore
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	· u	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LR	Liberia	SZ	Swaziland
CS	Czechoslovakia	LT	Lithuania	TD	Chad
CZ	Czech Republic	LU	Luxembourg	TG	Togo
DE	Germany	LV	Larvia	TJ	Tajikistan
DK	Denmark	MC	Monaco	TT	Trinidad and Tobago
EE	Estonia	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	UG	Uganda
FI	Finland	ML	Mali	US	United States of America
FR	France	MN	Mongolia	UZ	Uzbekistan
GA	Gabon	MR	Mauritania	VN	Viet Nam

Method for executing handover in a radio extension of an ATM network

The invention relates generally to operations aiming at the mobility of a wireless terminal in a data transmission network, where data is transmitted in packets, i.e. cells. The invention particularly relates to a method, the application whereof reduces interference in data transmission in a situation where the wireless terminal of an ATM network performs a handover.

The ATM (Asynchronous Transfer Mode) network is a data transmission system where data is transferred in digital form as 53-byte cells from one terminal to another through switches and rapid transfer connections therebetween. Each cell contains a 48-byte payload and a 5-byte header. In order to save space, the header information of each cell does not include complete address information describing the used data transfer route from the transmitting to the receiving device, but only information of the virtual path and channel where said data transfer connection is being carried. The switches or nodes of the network contain necessary routing information, on the basis whereof said identifiers of the virtual path and channel are interpreted as references to the respective node in succession.

It is to be expected that in the future the ATM network, which has so far been based mainly on cable connections, will also serve wireless terminals that are in contact with the network via radio base stations, i.e. access points. These mobile terminals may move with respect to the base stations and their coverage area, in which case the system must be able to execute a handover when necessary. A specific feature of each ATM connection is the contract between the terminal and the network as to the quality of service (QoS) required by the connection. This contract particularly covers the maximum length of the delays allowed in the connection and the capacity needed by the connection, which capacity is measured in units of transfer rate (for instance cells/s). The agreed quality of service for the connection and its upkeep are important factors when making decisions as for the point of time of the handover and the new base station to be assigned for a given mobile terminal.

Figure 1 illustrates a simple radio extension of an ATM system comprising a mobile terminal 1, three base stations, henceforth called access points (AP) 2, 3 and 4, as well as a switch 5 transmitting connections between the access points

20

10

15

20

25

30

35

and the rest of the network. At first the connection between the mobile terminal 1 and the ATM network proceeds via the access point 2. During connection, the mobile terminal may also have information of the existence of access points 3 and 4 as recorded in a given register of alternative access points. When the connection to the access point 2 weakens, the mobile terminal 1 hands the connection over to the access point 3 or 4. The mobile terminal 1 may also have several simultaneous ATM connections with cell streams that are independent of each other.

It is typical of the ATM system that cells of a given cell stream must not be lost; neither are the cells allowed to double or to change their relative order at the different stages of the connection, which would cause difficult synchronisation demands in the handover. A loss of cells or a confusion in their relative order generally results in that on some higher protocol layer, there is detected an incorrect check sum or other indicator, in which case a certain multi-cell data structure PDU (Protocol Data Unit) is discarded and selected to be retransmitted. This is uneconomical from the point of view of utilising the network capacity.

The handing over of access points in a wireless ATM network has been discussed in prior art publications, but they have usually not dealt with problems connected to the quality of service nor suggested a method for preventing the loss, doubling or disorganisation of ATM cells. In the patent publication EP 426,269 (British Telecommunications) there is known a method where base stations are grouped into groups of several stations. In order to help and speed up the handover, all cells directed to a mobile terminal located in the coverage area of a given base station are transmitted, by the data transmission network, to all base stations of the same group. Said publication introduces a system where the old base station transmits all cells that it has received, whereafter a new base station starts transmitting cells that are transferred therethrough. The publication also introduces a predictor mechanism to be connected to the base station control unit or to the switch controlling the base stations, the task of said predictor being to observe the movements of the mobile terminal from one coverage area to another and to estimate to which area the mobile terminal will move next. The purpose of this system is to reduce the number of cells that are transmitted in vain to the more distant base stations in the group. This application is not, however, capable of maintaining the order of the cells nor preventing the loss of certain cells, because the old and the new base station cannot know exactly which cells were transmitted and received correctly immediately before and/or after the handover.

From the patent publication EP 366.342 (AT & T) there is known a system where data is transmitted in a cellular radio network as cells, and the header of each cell contains an unchanging part which remains the same irrespective of changes in the routing, plus a changing part, the content whereof changes in connection with the handover or some other change in the routing. The publication suggests that the handover can be made easier by means of said system, but only as regards the definition of the routing. A similar system is described in the EP patent publication 577,959 (Roke Manor Research Ltd.), where the focus is particularly an ATM network. Now the unchanging part of the cell header is a so-called VCI (Virtual Channel Identifier) field, and the changing part is a so-called VPI (Virtual Path Identifier) field. Neither of said publications describes a method that could guarantee the maintenance of the order of the cells and/or prevent their loss during a handover.

From the EP patent publication 577.960 (Roke Manor Research Ltd.) there is known an application where at least one of the base stations of the cellular network is, via the ATM network, connected to at least two switches, which in said application also serve as gateway equipment for the ATM network and the cable-transmitted telephone network. The idea is to arrange the route-defining VPI and VCI codes of the ATM network so that although a given mobile terminal moves over to an area covered by another switch (or another mobile phone exchange), the routing is taken care of by linkage through the original switch. This arrangement has certain advantages in order to reduce connections to be switched in the network, but it does not affect possible loss and/or delay of cells taking place in between access points and the mobile terminal during a handover.

The article "BAHAMA: A Broadband Ad-Hoc Wireless ATM Local-Area Network", Proc. ICC '95, 18-22 June 1995, Seattle, by K.Y. Eng et al, describes an arrangement where the GFC field included in the header part of the ATM cells is used for realising a sequential numbering on a per-cell basis. The purpose is to enhance the synchronisation and combining of cell streams arriving via two parallel routes to a given merging point. A particular aim of the numbering of cells is that they could be unambiguously identified, so that the cells would not be doubled or lost when combining cell streams, and that their order would remain unchanged. A new problem could now be that by means of the maximum four bits of the GFC field, only numbers from 0 to 15 can be represented, in which case the

30

35

numbering cycle becomes so short that successive cells with similar numbers can be confused.

From the Finnish patent application FI 955,812, "Maintaining the composition of transferred data during handover", applicant Nokia Mobile Phones Oy. which is 5 not yet public when the present application is being filed, there is known a method where ATM cells can be referred to with an accuracy of at least a given amount of cells, in which case the base stations can exchange information as to which cells were transmitted and/or received successfully in connection with the handover. In said method, the old base station sends to the ATM switch and/or to the new base 10 station information as to which cells were successfully transferred therefrom to the new base station, in which case the transferring of cells is continued between the new access point and the mobile terminal starting from the first cell which was not successfully transmitted via the old access point. Moreover, the application introduces an acknowledgement system, whereby a given access point and mobile 15 terminal both control which cells were successfully transferred over the radio connection. This method does not take into account the general control of the handover nor the quality of service agreed for the different connections.

The object of the present invention is to provide a handover protocol suited for a radio extension of an ATM network, which protocol prevents the loss or doubling of transmitted cells.

The objects of the invention are achieved by arranging the traffic between the access points, switches and mobile terminal in a suitable fashion and by sending the information describing the closing of the old connection to the new access point via the mobile terminal.

The method of the invention for executing a handover in a data transmission system comprising a switch, a first access point, a second access point and a mobile terminal, and where data is transmitted as cells of a determined size, is characterised in that said first access point investigates whether all cells transferred from the switch to the first access point prior to the handover were successfully transmitted to said mobile terminal, whereafter

35 - as a response to the observation of the first access point, according to which all cells transferred from the switch to the first access point prior to the handover were successfully transmitted to said mobile terminal, said first access point sends

acknowledgement of successful downlink transmission to said mobile terminal, which then, as a response to said acknowledgement further informs the second access point that the downlink transmission via the first access point was successful, and

- as a response to the observation of the first access point, according to which all cells transferred from the switch to the first access point were not successfully transmitted to said mobile terminal, said first access point directs those cells that were not successfully transmitted to said mobile terminal to be forwarded to the second access point.

10

15

20

5

The procedure of the present invention uses particular marker cells, which are transported in the cell stream according to the same rules as ordinary ATM cells; by means of the marker cells, the access points and the switch together send information as to when the cell transfer in a given direction will terminate.

Moreover, in the procedure of the invention, the old access point receives information of the address of the new access point, so that it can, when necessary, forward the untransmitted downlink cells to the new access point. If the old access point is able to transfer all downlink ATM cells that were assigned to it to the mobile terminal before the old connection terminates, it adds the information to that effect to the transferable cell stream sent to the mobile terminal, and the mobile terminal forwards the information to the new access point. Downlink data transmission via the new access point can be started immediately after the new access point has received acknowledgement of the termination of the old connection.

25

30

35

073120Q2+ I

A radio extension of an ATM network according to the method of the present invention is easily modified to comprise a larger or smaller number of access points. When the data transmission between the access points and the switch relating to for instance the termination of a cell stream in a given direction is arranged according to the system of the present invention, the switch has good possibilities to continuously control the operation over the whole radio extension. Moreover, the switch needs not be dependent on the radio traffic standards nor connection practices applied in the system, because it needs not make decisions per given access point, which decisions are affected for example by the different radio interfaces offered by the access points to the mobile terminals. Neither does the switch necessarily require any type of cell buffering in connection with the

25

30

handover, which makes the dimensioning of the switch memory capacity remarkably easier.

The invention is explained in more detail below, with reference to the preferred embodiments described by way of example, and to the accompanying drawings, where

figure 1 illustrates a prior art radio extension of an ATM network;

figures 2a-2f illustrate the steps of application of a preferred embodiment of the invention in a backward handover:

figure 3 illustrates a message sequence chart in the handover shown in figures 2a-2f;

figures 4a-4h illustrate the steps of application of a preferred embodiment of the invention in a forward handover, and

figure 5 illustrates a message sequence chart in the handover shown in figures 4a-4h.

In the above description of the prior art we referred to figure 1; hence, the following specification of the invention and its preferred embodiments, mainly figures 2-5 will be referred to. Like numbers for like parts are being used in the drawings.

Let us first explain a backward handover, where the method of a preferred embodiment of the invention is applied. Handovers are generally divided into two types: a controlled, i.e. a backward handover, where information of the handover exists before the connection between the mobile terminal and the old access point is closed, and an interference-based, i.e. a forward handover, where the mobile terminal disappears from the coverage area of the old access point so quickly, that there is no time to officially terminate the connection. As an example, let us now describe a situation where the mobile terminal has only one connection to the ATM network. For anyone skilled in the art it is obvious that there may be several

ATM network. For anyone skilled in the art it is obvious that there may be severa connections independent of each other. In the specification below, uplink ATM cells are, by way of example, represented by numbers u1, u2, u3 etc., and

downlink ATM cells by numbers d1, d2, d3 etc., where the number of each cell refers to its location in the cell stream. It is pointed out that the numbering of all individual ATM cells is generally not practical nor even possible, and the numbers are used in this specification and accompanying drawings only in order to facilitate the understanding of the invention. The standard-form messages represented in the drawings are written with capital letters, and the encircled numbers attached to them and certain other procedures refer to their relative chronological order. The numbers of cells and messages are not linked to each other.

10

15

20

30

35

5

Figure 2a illustrates a radio extension of an ATM system comprising a mobile terminal 1, three access points 2, 3 and 4 and a switch 5. Each access point has a FIFO (First-In-First-Out) type register D for the temporary storing of downlink cells, and a corresponding register U for the temporary storing of uplink cells. Moreover, the mobile terminal 1 includes a corresponding register U for the temporary storing of uplink cells. During normal operation, the mobile terminal 1 also keeps up a list (not illustrated in the drawing) of those access points that it hears. The list may be arranged in an order of preference, for instance on the basis of the quality of an assumed connection, or on the basis of factors connected to prices.

When the mobile terminal 1 senses that the connection to the old access point 2 is weakening, it makes a decision to start the handover procedure. The mobile terminal 1 sends a HO_REQUEST message, which the access point 2 transmits to the switch 5. The message contains, among others, a list in order of preference of 25 those access points to which the mobile terminal 1 can hand over, i.e. that it hears. As a response to the HO_REQUEST message, the switch 5 can now select the new access point directly, or it can send a status enquiry, i.e. a RR-STATUS_ ENQUIRY message to all access points in the list or to only part of them in order to find out how the different access points could take over the new connection. Now each access point that has received the status enquiry checks the situation. makes a preliminary reservation of the required resources and responds to the switch with a RR-STATUS message to indicate whether the connection can be transmitted or not and what is the identifier of the preliminary reservation. On the basis of the received responses, or in a simpler embodiment only on the basis of the list included in the HO_REQUEST message. the switch 5 selects, among the access points that sent a positive answer, the one with the highest priority. In

BNGWOID - WO 079140Q4 1 I

30

35

figure 2b, the switch 5 selects the access point 3 and sends the access point 4 a RR-DEALLOC message, which cancels the preliminary reservation of the resources in access point 4.

According to figure 2c, after the switch 5 has chosen a new access point, it sends. 5 via the old access point 2, to the mobile terminal 1, a HO_RESPONSE message containing, among others, information of the new access point. At the same time, the switch 5 changes the routing of the downlink cells toward the new access point 3. After the last cell transmitted downlink via the old access point, the switch adds a Down_ready signal DR, which can be for instance an ATM cell of a given form. 10 Because the signal DR is transported through the same virtual channel as the other cells, its location in relation to other cells remains constant. The use of signals in indicating the end of a cell stream has been dealt with in the FI patent application 955,812 referred to in the description of the prior art above. It is possible that the radio connection between the old access point 2 and the mobile terminal 1 15 terminates before the old access point 2 has transported all downlink cells to the mobile terminal 1. With this in mind, the switch 5 sends to the access point 2 a FORWARD message containing, among others, information of the new access point, so that the old access point can, when necessary, transport the untransmitted cells to the new access point in a procedure to be described below. 20

The mobile terminal 1 can now decide to hand the radio connection over to the new access point immediately after receiving the HO_RESPONSE message sent by the switch. In connections where the timing is not critical, it may be most advantageous for the mobile terminal 1 to wait until the old access point 2 has sent all downlink cells transferred therethrough. On the other hand, the mobile terminal 1 can also decide to hand the connection over to the new access point immediately, in order to cause as little disturbance as possible in the stream of downlink cells. As for the uplink and downlink connections, the handover may take place at different times. Moreover, if several connections are maintained simultaneously in between the mobile terminal 1 and the switch 5, the handover becomes remarkably more complicated than the one described here. Owing to different demands for the quality of service, for instance, the mobile terminal may handle the various connections differently during handover. The most advantageous way to determine the moment of handover is found out by calculatory simulation of various usage situations, or by experimenting.

10

15

35

If the old access point 2 is capable of sending all downlink cells transmitted therethrough to the mobile terminal 1 (i.e., the above mentioned DR signal gets the downlink transmission turn), it finally declares the ending of downlink cells for instance by sending a given No_more_traffic flag according to figure 2d. The inclusion of this flag in the last downlink information field sent over the radio connection is more economical than the transmission of the whole DR marked cell to the mobile terminal 1. The mobile terminal 1 terminates the uplink connection at a chosen moment, when the old access point 2 adds, after the last transmitted uplink cell, a given Up_ready signal UR, the location whereof in relation to the cell stream is constant. After receiving said signal, the switch 5 can allow the transmission of uplink cells via the new access point 3 without changing the relative order of the cells.

The method of the invention requires that the old access point and the mobile terminal have identical information as to when the connection is closed, i.e. which are the last uplink and downlink cells to be transmitted over the radio connection. One method to achieve this agreement is described in the FI patent application 955.812 referred to above. Other methods can be applied, too.

In the next step, the mobile terminal I forms a radio connection with the new 20 access point 3 and sends it a CONN_ACTIVATE message in order to activate transferable ATM connections according to figure 2e. The message contains connectionwise information as to whether the mobile terminal has received the No more traffic information per each connection from the old access point. This 25 information can be transmitted for instance in the form of a given DR flag. The CONN ACTIVATE message informs the new access point 3 that the mobile terminal 1 is ready to receive downlink cells connected to these connections, and contains the necessary MVC (Mobile Virtual Circuit) signals and other information owing to which the new access point 3 can start the transmission of 30 downlink cells immediately. In the case of figure 2e, the new access point 3 had buffered downlink cells in advance, so that it starts their transmission as a response to the CONN ACTIVATE message. At the same time the new access point 3 sends the mobile terminal 2 a certain CONN PENDING message to indicate that uplink connections cannot as yet be opened.

When the switch has received the Up_ready message sent by the old access point, the switch transfers, according to figure 2f, the routing of uplink cells to the new

10

access point 3 and informs this by a CONN_SWITCHED message. The connection towards the old access point 2 is closed by a CONN_RELEASE message. When the new access point 3 has received the CONN_SWITCHED message sent by the switch, it sends the mobile terminal 1 a certain CONN_ACTIVE message, whereafter the mobile terminal can start the transmission of uplink cells via the new access point 3.

Figure 3 illustrates a sequence chart of the messages that the mobile terminal 1, the old access point 2, the new access point 3 and the switch 5 exchange during a backward handover. In the chart of figure 3, the mobile terminal 1 has two separate ATM connections. The abbreviations and terms used in the drawing are as follows:

MT - Mobile Terminal

15 AP - Access Point

CS - Connection Switch

Conn - Connection

VC - Virtual Circuit

Traf_desc - Traffic descriptor

20 QoS - Quality of Service

ack - acknowledge

DR flag

X - switching instant

- In addition to this, the drawing illustrates the buffer D of the downlink cells of the access point 3 and the buffer U of the uplink cells of the mobile terminal 1 at those points where the filling or emptying (marked with arrows) of a given buffer starts. The letter symbols of the buffers correspond to those in figures 2a-2f.
- Let us now discuss a forward handover caused by interference, where the mobile terminal disappears from the coverage area of the old access point so quickly that there is no time to officially terminate the connection. The specification refers to figures 4a-4h, where similar symbols are used as in the figures 2a-2f above. In the situation of figure 4a, the handover starts when the radio connection between the
- mobile terminal 1 and the old access point 2 terminates, in which case the old access point 2 stores the untransmitted downlink cells in the buffer D. The mobile terminal 1 respectively stores the untransmitted uplink cells in the buffer U.

According to figure 4b, the old access point 2 forwards the rest of the received uplink cells to the access point and adds at the end of the cell stream a particular Up_ready signal UR. Here, like in the above situation, we assume that owing to a certain system of acknowledgement applied in the radio connection, the mobile terminal 1 and the old access point 2 have identical information as to which cells were successfully transmitted over the radio connection.

The mobile terminal 1 establishes a radio connection with the old access point 3 and transmits therethrough to the switch 5 a HO REQUEST message expressing handover according to figure 4c. This message contains, among other things, a list 10 in order of preference of those access points where the mobile terminal 1 can be handed over, i.e. the broadcast whereof it reads. The mobile terminal 1 also transfers to the new access point 3 a CONN ACTIVATE message in order to activate the ATM connections to be transmitted. Because the uplink ATM connection cannot as yet be opened, the new access point 3 transfers to the mobile 15 terminal 2 a given CONN PENDING message according to figure 4d. As a response to the HO_REQUEST message, the switch 5 can send a status enquiry, i.e. a RR-STATUS ENQUIRY message to all access points in the list or to part of them, in order to find out how the individual access points could take over the new 20 connection. The responses of the access points to this message as well as the decision made on the basis thereof in the switch 5 are performed in the same fashion as above, in the case of the backward handover. Because the mobile terminal has established a connection through the access point 3 considering it as the preferred new access point, it is probable that the switch 5 decides to assign 25 the connection to the access point 3. If the mobile terminal does not transmit a prioritised list of access points but only information of the old access point, the new access point can make direct contact with the old access point and require forwarding of the untransmitted downlink cells.

The switch hands the routing of both uplink and downlink cells simultaneously over to the new access point 3 according to figure 4e. At the same time it releases the resources possibly reserved in a preliminary reservation by other access points with a RR-DEALLOC message sent thereto and sends the old access point 2 a FORWARD message containing among others information of the new access point. Moreover, the switch 5 sends the old access point 2, after a routed cell, a Down_ready signal DR and transfers via the new access point 3 a handover response, i.e. a HO RESPONSE message to the mobile terminal 1.

BRIGHTONIN - WO

As a response to the FORWARD message, the old access point 2 sends all buffered downlink cells, including the last Down ready signal, to the new access point 3. The new access point must include a particular forwarded cells register F. so that the cells forwarded from the old access point are not confused with the 5 downlink cells coming directly from the switch 5. When the new access point 3 receives the Down ready signal from the old access point 2, all cells have been forwarded. The new access point 3 can transmit the forwarded cells immediately to the mobile terminal 1, because the downlink ATM connection was earlier activated by the CONN ACTIVATE message. According to figure 4f, the switch 5 sends the new access point a CONN SWITCHED message and to the old access 10 point a CONN RELEASE message, which releases all resources reserved for terminated connections. When the new access point 3 has received the CONN SWITCHED message, it sends, according to figure 4g, to the mobile terminal a CONN ACTIVE message, in which case both uplink and downlink ATM connections are available via the new access point. 15

As was explained above, the new access point 3 transmits for the mobile terminal first the forwarded cells contained in the buffer F. When the new access point detects that only the Down_ready signal is left in the buffer, it may start transmitting those cells which were received directly from the switch 5 and stored temporarily in the buffer D, as is illustrated in figure 4h. Figure 5 shows another timing chart which illustrates the relative timing of the messages in the above described process. Like symbols are used both in figure 5 and in figure 3.

It is apparent for anyone skilled in the art that the above described messages and their relative order are given by way of example only, and that they do not limit the invention in any way. Thus the preferred embodiments of the inventional idea presented in this patent application may in their practical realisations vary within the scope of the claims below. For instance, the CONN_PENDING message is not necessarily needed, because the activation of an uplink ATM connection is in any case declared separately by the CONN_ACTIVE message.

In a preferred application of the invention, the mobile terminal does not buffer uplink cells during a handover, but both the uplink and downlink buffering takes place in the access points. The above described HO_REQUEST message can in the new access point be interpreted as a resource reservation, in which case the

mobile terminal can start the forwarding of uplink cells immediately, although the switch has not yet sent the CONN_SWITCHED message to the new access point

In the above specification we have described how the invention is applied to a radio extension of an ATM system only, but the same inventional idea can also be applied to all such data transmission systems where the data transmission connection includes a certain quality of service which requires that resources are reserved in the access point.

Claims

5

10

- 1. A method for executing a handover in a data transmission system comprising a switch, a first access point, a second access point and a mobile terminal, and wherein data is transmitted in cells of a determined size, in which method prior to the handover cells are transferred from said switch to said first access point and therefrom by radio connection to said mobile terminal, and after the handover from said switch to said second access point and therefrom by radio connection to said mobile terminal, in which case said switch informs said first access point as to which is the last cell transmitted from the switch to the first access point, characterised in that said first access point checks whether all cells forwarded from the switch to the first access point prior to the handover were successfully
- transferred to said mobile terminal, whereafter
 as a response to the observation of the first access point that all cells forwarded
 from the switch to the first access point prior to the handover were successfully
- transmitted to said mobile terminal, said first access point acknowledges successful downlink transmission to said mobile terminal, which as a response to said acknowledgement further informs the second access point that the downlink transmission via the first access point has succeeded, and
- as a response to the observation of the first access point that not all cells
 forwarded from the switch to the first access point prior to the handover were
 successfully transmitted to said mobile terminal, said first access point directs
 those cells that were not successfully transmitted to said mobile terminal to be
 forwarded to the second access point.
- 2. A method according to claim 1, characterised in that it also includes, prior to the above mentioned steps, a step where said mobile terminal transmits over radio connection a request for handover, and that at least one of said first and second access points receives said request and transmits it to said switch.
- 3. A method according to claim 2, **characterised** in that as a response to said request, said switch makes a decision that said second access point is the new access point through which cells are transmitted to said mobile terminal after the handover.
- 4. A method according to claim 3, characterised in that after making said decision, said switch informs said first access point that said second access point is the new access point.

10

15

20

- A method according to claim 4, characterised in that after making said decision, said switch further sends said first access point a command to forward to the new access point those cells located in said first access point that could not be transmitted to said mobile terminal via said first access point.
- A method according to any of the claims 3-5, characterised in that after 6. making said decision, said switch sends said second access point information of the performed switching corresponding to the use of said new access point, and as a response to said switching information, said new access point notifies said mobile terminal of the opening of an uplink data transmission connection.
- A method according to any of the preceding claims, characterised in that 7. the closing message, whereby said switch informs said first access point as to which is the last cell transmitted from the switch to the first access point, is a special cell of a certain form, and as a response to the observation of the first access point that all cells forwarded from the switch to said access point prior to the handover were not successfully transferred to said mobile terminal, said first access point directs
- those cells that were not successfully transmitted to the mobile terminal, and - said closing message to be forwarded to said second access point.
- A method according to claim 7, characterised in that said second access point starts transmitting to the mobile terminal such downlink data which was 25 forwarded directly from said switch to said second access point, but only after - it has received said closing message from said first access point, in which case the second access point transmits also the cells forwarded from said first access point prior to transferring the cells forwarded directly from the switch, or - it has received from said mobile terminal a message that the downlink 30

PCT/FI97/00115

Fig. 1

BMSTCID: -WO 073+4004+

Drietacio -mu 37314005. . .

ENERGOD AND STREET

4/17

Fig. 2c

Fig. 2d

BNICOCCID AND DESCRIPTION I

Fig. 2e

BAICTOCID -WO 07314004 1 -

7/17

Fig. 2f

Fig. 3

BYCTOCID -WO 073140041 1 -

Fig. 4a

באנכחרמים שעות מדוי מספיא

10/17

Fig. 4b

Fig. 4c

ENCOCCID 2270 0704 4004 4

Fig. 4d

Fig. 4e

BNSDOCID: -WO 973140041 1

Fig. 4f

BHSDOCID- WO 973140024 1

Fig. 4g

16/17

Fig. 4h

PNSCOCID: -WO 07314004+1

Fig. 5

BM600010- MU 62314007- 1

INTERNATIONAL SEARCH REPORT

International application No. PCT/FI 97/00115

A. CLASSIFICATION OF SUBJECT MATTER

IPC6: H04Q 7/38
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC6: H04Q, H04L

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

SE,DK,FI,NO classes as above

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

	MENTS CONSIDERED TO BE RELEVANT	
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	IEEE International Conference on Communications, Volume, June 1995, (Seattle, USA), Eng K.Y. et al, "BAHAMA: A Broadband Ad-Hoc Wireless ATM Local-Area Network, pages 1216-1223", chapter 2, paragraph 3; chapter 2.1, paragraph 1 and 4; chapter 2.2	1-8
		
A	US 4989204 A (TOSHIMITSU SHIMIZU ET AL), 29 January 1991 (29.01.91), column 1, line 50 - column 3, line 18	1-8
A	EP 0522773 A2 (AMERICAN TELEPHONE AND TELEGRAPH COMPANY), 13 January 1993 (13.01.93), column 3, line 48 - column 6, line 10; column 24, line 40 - column 25, line 31	1-8

LX]	Further documents are listed in the continuation of Bo	See patent family	annex.
* "A" "E" "L" "O" "P"	Special categories of cited documents: document defining the general state of the art which is not considered to be of particular relevance criter document but published on or after the international filing date document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date claimed	"Y" document of particular relevan considered novel or cannot be step when the document is take "Y" document of particular relevan considered novel or cannot be step when the document is take "Y" document of particular relevan considered to involve an invenional with one or more of being obvious to a person skiller	ce: the claimed invention cannot be considered to involve an inventive in alone ce: the claimed invention cannot be tive step when the document is the such documents, such combinationed in the art
	e of the actual completion of the international search	*2" document member of the same late of mailing of the internati 13 -06- 199	onal search report
	June 1997 ne and mailing address of the ISA/		
Swe Box Facs	edish Patent Office (5055, S-102 42 STOCKHOLM simile No. + 46 8 666 02 86 PCT/ISA/210 (second sheet) (July 1992)	uthorized officer Kenneth Ahrengart elephone No. +46 8 782 25	5 00

International application No.

PCT/FI 97/00115

	CI/FI 97/0	00115
Citation of document, with indication, where appropriate, of the relevan	t passages	Relevant to claim No
US 5384826 A (NOACH AMITAY), 24 January 1995 (24.01.95), column 2, line 22 - column 3, l	ine 29	1-8
WO 9532594 A1 (NTT MOBILE COMMUNICATION NETWORK INC.), 30 November 1995 (30.11.95), page 3, line 9 - page 6, line 6		1
	US 5384826 A (NOACH AMITAY), 24 January 1995 (24.01.95), column 2, line 22 - column 3, l WO 9532594 A1 (NTT MOBILE COMMUNICATION NETWORK INC.), 30 November 1995 (30.11.95) page 3	US 5384826 A (NOACH AMITAY), 24 January 1995 (24.01.95), column 2, line 22 - column 3, line 29 WO 9532594 A1 (NTT MOBILE COMMUNICATION NETWORK INC.), 30 November 1995 (30.11.95) page 3

Information on patent family members

03/06/97

International application No.
PCT/FI 97/00115

Patent document cited in search report		Publication date				Publication date		
US	4989204	A	29/01/91	AU	2985589 A		10/08/89	
			,	CA	1301845		26/05/92	
				DE	68923102		02/11/95	
				EP	0328100		16/08/89	
				JP	2198229		06/08/90	
				JP	8017346	В	21/02/96	
				JP	1204545	Α	17/08/89	
				JP	6103883	В	14/12/94	
				JP	1204546		17/08/89	
				JP	1204543		17/08/89	
				JP	7048712	В	24/05/95	
P	0522773	A2	13/01/93	SE	0522773	T3		
				CA	2066538	Α	10/01/93	
				DE	69213587	D,T	20/02/97	
				ES	2092047	T	16/11/96	
				HK	220196	A	03/01/97	
				JP	2504896		05/06/96	
				JP	6253363		09/09/94	
				US	527889 <i>2</i>	Α	11/01/94	
S	5384826	A	24/01/95	CA	2050104	A,C	02/04/92	
				DE	69124724	D,T	05/06/97	
				EP	0479477	A,B	08/04/92	
				SE	0479477	T3		
				JP	2520529		31/07/96	
				JP	4264829		21/09/92	
				US	5371780	A	06/12/94	
)	9532594	A1	30/11/95	CN	1129054	 A	14/08/96	
				EP	0710425	4	08/05/96	

Form PCT/ISA/210 (patent family annex) (July 1992)

THIS PAGE BLANK (USPTO)