微纳系统综合设计课程作业结题答辩

Guetzli图像压缩算法

罗恬 刘健伟 杨文曦

微纳系统综合设计课程作业结题答辩

图像压缩算法

罗恬 刘健伟 杨文曦

目录

- □ 内容: 尝试和最终选择
- □ 实现: 算法,HLS与嵌入式
- 口结果与分析: 压缩结果与HLS优化
- 口创新点
- 口分工

内容

最终选择并实现的算法

前期尝试实现的算法

前期尝试 Guetzli图像压缩算法^{[1][2]}

修改 Guetzli图像压缩算法

原因 为什么没有选择Guetzli

代码量过大 46个文件, 共256KB

C++版本问题 大量代码需要修改

所需资源过多

预计板上资源不够

能力不足

遇到一些代码编写 上的问题

最终实现算法 图像压缩算法^{[3][6][7]}

预处理 图像与RGB值之间的转换

预处理 图像与RGB值之间的转换^[4]

DAT文件格式

Line 1: 图像的宽和高 (Pixels)

Others: 红绿蓝三色亮度

(0-255)

DAT文件格式示例

392 392

141 135 82

165 159 106

137 131 78

189 183 130

.

使用OpenCV库在Python中实现

算法实现 RGB与YCrCb色彩空间之间的转换^[4]

RGB色彩空间

灰阶-色度色彩空间Li

R: 红色亮度

G: 绿色亮度

B: 蓝色亮度

Y: 灰阶/色度

Cr: 红色浓度

Cb: 蓝色浓度

算法实现 RGB与YCrCb色彩空间之间的转换

$$\begin{cases} Y = 16 + \frac{65.738R}{256} + \frac{129.057G}{256} + \frac{25.064B}{256} \\ C_B = 128 - \frac{37.945R}{256} - \frac{74.494G}{256} + \frac{112.439B}{256} \\ C_R = 128 + \frac{112.439R}{256} - \frac{94.154G}{256} - \frac{18.285B}{256} \end{cases}$$

负责人: 罗恬

算法实现 归一化二维离散余弦变换^[5]

$$G_{u,v} = \frac{1}{4}\alpha(u)\alpha(v) \sum_{x=0}^{7} \sum_{v=0}^{7} g_{x,y} cos \left[\frac{(2x+1)u\pi}{16} \right] cos \left[\frac{(2y+1)u\pi}{16} \right]$$

负责人: 罗恬

算法实现 量化矩阵^[5]

$$B_{j,k} = round\left(\frac{G_{j,k}}{Q_{j,k}}\right) for j, k = 0,1,2,...,7$$

G:未量化的DCT系数

O:量化矩阵

B: 量化的DCT系数

round(): 取整

$$Q = egin{bmatrix} 16 & 11 & 10 & 16 & 24 & 40 & 51 & 61 \ 12 & 12 & 14 & 19 & 26 & 58 & 60 & 55 \ 14 & 13 & 16 & 24 & 40 & 57 & 69 & 56 \ 14 & 17 & 22 & 29 & 51 & 87 & 80 & 62 \ 18 & 22 & 37 & 56 & 68 & 109 & 103 & 77 \ 24 & 35 & 55 & 64 & 81 & 104 & 113 & 92 \ 49 & 64 & 78 & 87 & 103 & 121 & 120 & 101 \ 72 & 92 & 95 & 98 & 112 & 100 & 103 & 99 \ \end{bmatrix}$$

将高频元素(空间频率较大)量化为0

负责人: 刘健伟

算法实现 HLS优化: Directive

类型	对应操作		
函数	HLS PIPELINE		
for循环	HLS UNROLL		
多维数组	HLS ARRAY_PARTITION		
设置中间变量	对中间变量进行进一步优化		

负责人: 罗恬

算法实现 嵌入式实现

目标效果 通过SDKFPGA开发板上运行算法 证明板上运行能达到更快的速度

未实现!

原因:不能产生对应的IP核

函数改写后出现一些

结果与分析

原始图像 697KB 1184×1184

预处理 87.9KB 392×392

Q = 8027.0KB 392×392

Q = 6012.1KB 392×392

结果与分析

结果与分析

函数	指标	优化前	优化后
quantize()	Latency	2001	63
evalCos()	Clock	7.76	2.71
evalCos()	FF	5428	32
evalCos()	LUT	18893	692
evalCos()	Latency	17137	31

创新点

研究意义

对图像压缩算法和HLS中代码规范 有了更深入的了解

分工

组员	前期	主要项目	后期	
杨文曦	文献阅读代码修改	预处理 色域转换 debug	答辩材料	
罗恬		DCT/IDCT 辅助函数 (拓展,量化) 嵌入式修改 debug	继续尝试嵌入式	报告撰写
刘健伟		testbench HLS优化	HLS优化总结	

参考资料

[1] Guetzli, https://github.com/google/guetzli

[2] Alakuijala, Jyrki, et al. "Guetzli: Perceptually guided jpeg encoder." preprint arXiv: 1703.04421 (2017).

[3] YCbCr, https://en.wikipedia.org/wiki/YCbCr

[4] RGB to YCbCr, https://sistenix.com/rgb2ycbcr.html

[5] Discrete cosine transform, https://en.wikipedia.org/wiki/JPEG#Discrete_cosine_transform

参考资料

[6] Fu, Sizhe, Ping Shi, and Da Pan. "A modified algorithm of Guetzli encoder." 2018 IEEE 4th Information Technology and Mechatronics Engineering Conference (ITOEC). IEEE, 2018

[7] Hudson, Graham, et al. "JPEG-1 standard 25 years: past, present, and future reasons for a success."

Journal of Electronic Imaging 27.4 (2018): 040901.

Thanks for watching.