Теоретичен ТЕСТ за изпит по Аналитична геометрия

- На изпита се дават 30 въпроса от предложените
- Решаването на изпитния тест е в рамките на 45 минути
- На всеки въпрос е предложен само един правилен отговор
- Оценяването се извършва по следния начин:
 - правилен отговор = 2 точки
 - грешен отговор = − 1 точка

$$O$$
ценк $a=2+\max\left\{\frac{k}{15},0\right\}$, $(k=cymama\ om\ moчките)$

- без отговор = 0 точки
- **1.** Насочената отсечка се характеризира с: **a**) дължина; **б**) начало и край; **в**) дължина и посока.
- **2.** Алгебрична мярка на насочена отсечка върху ос наричаме: **a)** насочената отсечка, взета със знак минус; **б)** дължината на отсечката; **в)** дължината на отсечката, взета със знак плюс, ако посоката й съвпада с посоката на оста и със знак минус, ако посоката й е противоположна с посоката на оста.
- **3.** Свободен вектор наричаме: **a)** всяка насочена отсечка; **б)** насочена отсечка, хлъзгаща се по права; **в)** множеството от равни насочени отсечки.
- **4.** Не е вярно, че два вектора се събират: **a**) по правилото на триъгълника; **б**) по правилото на успоредника; **в**) като се събират дължините им.
- **5.** Сумата на два колинеарни вектора \vec{a} и \vec{b} , $|\vec{a}| > |\vec{b}|$ е вектор, колинеарен с тях и: **a**) $|\vec{a} + \vec{b}| = |\vec{a}| + |\vec{b}|$, **б**) $\overline{\vec{a} + \vec{b}} = \overline{\vec{a}} + \overline{\vec{b}}$; **B**) $|\vec{a} + \vec{b}| = |\vec{a}| - |\vec{b}|$.
- **6.** Не е вярно, че : **a**) $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} + \overrightarrow{DE} = \overrightarrow{AE}$; **б**) $\overrightarrow{OM} = \frac{1}{2} \left(\overrightarrow{OA} + \overrightarrow{OB} \right) \Leftrightarrow \overrightarrow{AM} = \overrightarrow{MB}$; **в**) \overrightarrow{ABCD} е успоредник $\Leftrightarrow \overrightarrow{AB} = \overrightarrow{CD}$.
- 7. Произведението на число λ и вектор \vec{a} е: **a**) числото $|\lambda|$. $|\vec{a}|$; **б**) вектор, еднопосочен с \vec{a} при $\lambda > 0$ и разнопосочен с \vec{a} при $\lambda < 0$; **b**) вектор с дължина $|\lambda|$. $|\vec{a}|$ и при $\lambda > 0$ еднопосочно колинеарен с \vec{a} , а при $\lambda < 0$, разнопосочно колинеарен с \vec{a} .
- **8.** Не е вярно, че: **a**) $\overline{\lambda a} = \lambda \overline{a}$; **б**) $|\lambda \vec{a}| = \lambda |\vec{a}|$; **в**) $|\lambda \vec{a}| = |\lambda| |\vec{a}|$.
- **9.** Ако $\vec{a} \parallel \vec{b}, \vec{a} \neq \vec{0}$, то не е вярно, че: **a**) \vec{a} и \vec{b} са линейно зависими; **б**) съществува точно едно число λ , така че $\vec{a} = \lambda \vec{b}$; **в**) съществува точно едно число λ , така че $\vec{b} = \lambda \vec{a}$.
- **10.** Не е вярно твърдението: **a)** Два вектора са линейно зависими ⇔ те са колинеарни; **б)** Три вектора са линейно независими ⇔ те са некомпланарни; **в)** Всеки четири вектора са линейно независими.
- **11.** Координатна система в тримерно афинно пространство се определя от: **a**) три вектора; **б**) точка и три вектора; **в**) точка и три линейно независими вектора.
- **12.** Ако координатните вектори са единични и два по два перпендикулярни, то координатната система се нарича: **a)** нормирана; **б)** ортонормирана; **в)** ортогонална.
- **13.** Под координати на точка M относно координатна система K в тримерно афинно пространство се разбира наредена тройка числа: **a**) от векторите, чиято линейна комбинация е радиус- векторът на M; **б**) от коефициентите в линейната комбинация на радиус-вектора на M относно координатните вектори; **в**) еднозначно съпоставена на M посредством K.

- **14.** Ако са дадени точките $A(a_1, a_2, a_3)$ и $B(b_1, b_2, b_3)$, тогава: **a**) $\overrightarrow{AB}(a_1 + b_1, a_2 + b_2, a_3 + b_3)$; **б**) $\overrightarrow{AB}(a_1 b_1, a_2 b_2, a_3 b_3)$; **в**) $\overrightarrow{AB}(b_1 a_1, b_2 a_2, b_3 a_3)$.
- **15.** Не е вярно, че простото отношение на наредената тройка колинеарни точки $\lambda = (A,B,C)$ е числото $\lambda \neq 1$, за което: **a**) $\overrightarrow{OC} = \frac{\overrightarrow{OA} + \lambda \overrightarrow{OB}}{1 + \lambda}$; **б**) $\overrightarrow{AC} = \lambda \overrightarrow{BC}$; **B**) $\overrightarrow{OC} = \frac{\overrightarrow{OA} \lambda \overrightarrow{OB}}{1 \lambda}$.
- **16.** Във формулите X = TX' + A за смяна на координатната система $K = (O, \vec{e}_i)$ с $K' = (O', \vec{e}_i')$ матрицата T има свойството: **a**) стълбовете са координатите на векторите \vec{e}_i' относно K; **б**) стълбовете са координатите на векторите \vec{e}_i относно K'; **в**) редовете са координатите на векторите \vec{e}_i' относно K.
- **17.** Не е вярно, че матрицата T на смяната на ортонормирана координатна система с друга ортонормирана координатна система е: **a**) изродена; **б**) единична при транслация; **в**) ортогонална при ротация.
- **18.** Във формулата за обща смяна на $K = (O, \vec{e}_i)$ с $K' = (O', \vec{e}'_i)$: X = TX' + A, където X, X' и A са матрици от тип (3×1) , а T от тип (3×3) : **a**) T е матрицата на прехода, а A се образува от координатите на произволна точка спрямо K; **б**) T е произволна неизродена матрица, а A се образува от координатите на точка O' относно K; **в**) T е матрицата на прехода, а A се образува от координатите на точка O' относно K.
- **19.** Скаларното произведение на два вектора е: **a**) вектор, ортогонален и на двата вектора; **б**) реално число; **в**) цяло положително число.
- **20.** Скаларното произведение $\vec{a}\vec{b}$ на векторите \vec{a} и \vec{b} е равно на: **a**) $|\vec{a}| |\vec{b}|$; **б**) $|\vec{a}| |\vec{b}| \cos(\vec{a}, \vec{b})$; **в**) $|\vec{a}| |\vec{b}| \sin(\vec{a}, \vec{b})$.
- **21.** Дължина притежават векторите: **a**) само в геометричното векторно пространство; **б**) в произволно векторно пространство; **в**) във всяко евклидово векторно пространство.
- **22.** Скаларното произведение на \vec{a} и \vec{b} е нула \Leftrightarrow : **a**) или \vec{a} или \vec{b} е нулев; **б**) \vec{a} и \vec{b} са ненулеви и перпендикулярни; **в**) поне един от векторите \vec{a} и \vec{b} е нулев или те са перпендикулярни.
- **23.** Скаларното произведение притежава свойството: **a)** $\vec{a}\vec{b} = \vec{b}\vec{c}$; $\vec{b} \neq \vec{0} \Leftrightarrow \vec{a} = \vec{c}$; **б)** $(\vec{a}\vec{b})^2 = \vec{a}^2\vec{b}^2$; **B)** $(\vec{a} \vec{b})^2 = \vec{a}^2 2\vec{a}\vec{b} + \vec{b}^2$.
- **24.** За всеки два вектора \vec{a} и \vec{b} от евклидово векторно пространство е в сила неравенството: **a**) $|\vec{a}\vec{b}| \ge |\vec{a}| |\vec{b}|$; **б**) $|\vec{a}\vec{b}| < |\vec{a}| |\vec{b}|$; **в**) $|\vec{a}\vec{b}| \le |\vec{a}| |\vec{b}|$.
- **25.** За два ненулеви вектора \vec{a} и \vec{b} от евклидово векторно пространство съществува еднозначно определен ъгъл $\phi \in [O\pi]$, определен чрез равенството:

a)
$$\cos \varphi = \frac{\vec{a}\vec{b}}{|\vec{a}||\vec{b}|}$$
; **6**) $\cos \varphi = \frac{|\vec{a}||\vec{b}|}{\vec{a}\vec{b}}$; **B**) $\sin \varphi = \frac{|\vec{a}||\vec{b}|}{\vec{a}\vec{b}}$.

- **26.** Ъгълът между \vec{a} и \vec{b} е остър \Leftrightarrow : **a**) $\vec{a} \neq \vec{0}$, $\vec{b} \neq \vec{0}$; **6**) $\vec{a}\vec{b} < 0$; **B**) $\vec{a}\vec{b} > 0$.
- **27.** Скаларното произведение на векторите $\vec{a}(a_1, a_2, a_3)$, $\vec{b}(b_1, b_2, b_3)$ е числото $\vec{a}\vec{b} = a_1b_1 + a_2b_2 + a_3b_3$, ако координатната система е: **a**) ортогонална; **б**) произволна; **в**) ортонормирана.

- **28.** Скаларното произведение на два вектора има геометрично приложение за определяне: **a**) на дължини на вектори и ъгли между тях, на лица на триъгълници, на обеми на тетраедъри; **б**) само на лица на триъгълници; **в**) само на дължини на вектори и ъгли между тях.
- 29. Векторното произведение на два вектора е: а) реално число; б) вектор; в) векторно пространство, породено от двата вектора.
- **30.** Векторното умножение на вектори притежава свойствата: **a**) комутативност, дистрибутивност, асоциативност; **б**) антикомутативност, дистрибутивност, асоциативност. **в**) антикомутативност, дистрибутивност, дистрибутивност.
- **31.** Не е вярно, че: **a**) $\vec{a} \times \vec{b}$ е вектор, перпендикулярен на \vec{a} и на \vec{b} ; **б**) наредената тройка $(\vec{a}, \vec{b}, \vec{a} \times \vec{b})$ е дясно ориентирана; **в**) $\vec{a} \times \vec{b} = |\vec{a}| . |\vec{b}| . \sin(\vec{a}, \vec{b})$.
- **32.** Векторното произведение на \vec{a} и \vec{b} е нулевият вектор \Leftrightarrow : **a**) някой от векторите е нулев; **б**) \vec{a} е перпендикулярен на \vec{b} ; **в**) \vec{a} и \vec{b} са колинеарни.
- **33.** От следните шест равенства: **1**) $\vec{a} \times \vec{b} = \vec{b} \times \vec{a}$, **2**) $(\vec{a} \times \vec{b})^2 = \vec{a}^2 \vec{b}^2 (\vec{a}\vec{b})^2$; **3**) $(\vec{a} \times \vec{b})\vec{a} = 0$;
 - 4) $(\vec{a} \times \vec{b}) \times \vec{c} = \vec{a}\vec{c}.\vec{b} \vec{b}\vec{c}.\vec{a}$; 5) $(\vec{a} \times \vec{b}) \times \vec{c} = \vec{a} \times (\vec{b} \times \vec{c})$; 6) $\vec{a} \times \vec{b} = |\vec{a}|.|\vec{b}|.\sin(\angle \vec{a},\vec{b})$ са верни:
 - **a**) 1), 4) и 5); **б**) 2), 3) и 4); **в**) всички.
- **34.** Векторното произведение на два вектора има геометрично приложение за определяне: \mathbf{a}) на лица на триъгълници; $\mathbf{б}$) на обеми на тетраедри; \mathbf{b}) на дължини на вектори, на лица на успоредници и обеми на паралелепипеди.
- **35.** Векторното произведение на векторите $\vec{a}(a_1, a_2, a_3)$ и $\vec{b}(b_1, b_2, b_3)$ има следните координати спрямо ортонормирана координатна система:
 - **a)** $\vec{a} \times \vec{b} (a_2b_3 + a_3b_2, a_3b_1 + a_1b_3, a_1b_2 + a_2b_1);$ **6)** $\vec{a} \times \vec{b} (a_2b_3 a_3b_2, a_1b_3 a_3b_1, a_1b_2 a_2b_1);$
 - **B)** $\vec{a} \times \vec{b} (a_2b_3 a_3b_2, a_3b_1 a_1b_3, a_1b_2 a_2b_1).$
- **36.** Не е вярно, че смесеното произведение на векторите $\vec{a}, \vec{b}, \vec{c}$ е равно на произведението: **a**) $(\vec{a}\vec{b})\times\vec{c}$; **6**) $(\vec{a}\times\vec{b})\vec{c}$; **B**) $\vec{a}(\vec{b}\times\vec{c})$.
- **37.** От следните произведения не е вектор: **a**) $\vec{a}\vec{b}\vec{c}$; **б**) $\vec{a}\times\vec{b}$; **в**) $\vec{a}\times(\vec{b}\times\vec{c})$.
- **38.** Смесеното произведение на $\vec{a}, \vec{b}, \vec{c}$ е нула \Leftrightarrow : **a**) $\vec{a}, \vec{b}, \vec{c}$ са взаимно перпендикулярни; **б**) $\vec{a}, \vec{b}, \vec{c}$ са некомпланарни; **в**) $\vec{a}, \vec{b}, \vec{c}$ са компланарни.
- **39.** От следните равенства: 1) $\vec{a}\vec{b}\vec{c} = (\vec{a} \times \vec{b})\vec{c} = \vec{a}(\vec{b} \times \vec{c})$, 2) $(\vec{a} + \lambda \vec{b})\vec{c}\vec{d} = \vec{a}\vec{c}\vec{d} + \lambda \vec{b}\vec{c}\vec{d}$, 3) $\vec{a}\vec{b}\vec{c} = \vec{c}\vec{a}\vec{b}$, 4) $\vec{a}\vec{b}\vec{c} = -\vec{b}\vec{a}\vec{c}$ са верни: **a**) само 1), 2) и 4); **6**) само 1), 2) и 3); **в**) всички.
- **40.** Смесеното произведение на векторите $\vec{a}(a_1, a_2, a_3)$, $\vec{b}(b_1, b_2, b_3)$, $\vec{c}(c_1, c_2, c_3)$ относно ортонормирана координатна система е равно на числото: **a**) $\vec{a}\vec{b}\vec{c} = a_1b_1c_1 + a_2b_2c_2 + a_3b_3c_3$,

6)
$$\vec{a}\vec{b}\vec{c} = (a_1 + b_1)c_1 + (a_2 + b_2)c_2 + (a_3 + b_3)c_3$$
, **B**) $\vec{a}\vec{b}\vec{c} = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$.

- **41.** За координатните вектори $\vec{e}_1, \vec{e}_2, \vec{e}_3$ на дясна ортонормирана координатна система не е вярно, че: **a**) $\vec{e}_1 = \vec{e}_2 \times \vec{e}_3, \vec{e}_2 = \vec{e}_1 \times \vec{e}_3, \vec{e}_3 = \vec{e}_1 \times \vec{e}_2;$ **б**) $\vec{e}_1 = \vec{e}_2 \times \vec{e}_3, \vec{e}_2 = \vec{e}_3 \times \vec{e}_1, \vec{e}_3 = \vec{e}_1 \times \vec{e}_2;$ **в**) $\vec{e}_1 \vec{e}_2 \vec{e}_3 = 1$.
- **42.** Обемът на тетраедър ABCD е равен на : **a**) $\left| \overrightarrow{AB} \times \overrightarrow{CD} \right|$; **б**) $\left| \overrightarrow{AB} \overrightarrow{AC} \overrightarrow{AD} \right|$; **в**) $\frac{1}{6} \left| \overrightarrow{AB} \overrightarrow{AC} \overrightarrow{AD} \right|$.

- **43.** Смесеното произведение на три вектора има геометрично приложение за измерване: **a**) на дължини на вектори и ъгли между тях, на обеми на тетраедри; **б**) на лица на успоредници и обеми на паралелепипеди; **в**) на обеми на тетраедри.
- **44.** За три произволни вектора $\vec{a}, \vec{b}, \vec{c}$ е изпълнено тъждеството: **a**) $(\vec{a} \times \vec{b}) \times \vec{c} = (\vec{a}\vec{c})\vec{b} (\vec{b}\vec{c})\vec{a}$; **6**) $(\vec{a} \times \vec{b}) \times \vec{c} = (\vec{a}\vec{c})\vec{b} + (\vec{b}\vec{c})\vec{a}$; **B**) $(\vec{a} \times \vec{b}) \times \vec{c} = \vec{a} \times (\vec{b} \times \vec{c})$.
- **45.** Във векторното параметрично уравнение на права $g: \vec{r} = \vec{r}_0 + \lambda \vec{p}$ векторите \vec{r}_0 и \vec{p} са съответно: **a**) радиус-вектор на началото на координатната система и вектор, нормален на правата; **б**) радиус-вектор на дадена точка от правата и вектор, нормален на правата; **в**) радиус-вектор на дадена точка от правата и вектор, колинеарен на нея.
- **46.** В каноничното уравнение $\frac{x-x_0}{a_1} = \frac{y-y_0}{a_2}$ на права g в равнината двойката (a_1,a_2) определя координатите на: **a**) точка от правата; **б**) вектор, колинеарен на g; **b**) вектор, нормален на g.
- **47.** Уравнението Ax + By + C = 0 относно афинна координатна система в равнина е уравнение на права: **a**) за всяка тройка реални числа A, B, C; **б**) при условие, че $|A| + |B| + |C| \neq 0$; **b**) при условие, че $|A| + |B| \neq 0$.
- **48.** Ако права g има уравнение Ax + By + C = 0 относно ортонормирана координатна система в равнината, то нормален вектор на g е векторът с координати: **a**) (-B, A); **б**) (B, A); **в**) (A, B).
- **49.** Права, определена с двете точки $M_1(x_1, y_1)$ и $M_2(x_2, y_2)$ има уравнение \mathbf{a}) $\frac{x-x_1}{x_2} = \frac{y-y_1}{y_2}$; \mathbf{b}) $\frac{x-x_1}{x_2-x_1} = \frac{y-y_1}{y_2-y_1}$; \mathbf{b}) $\frac{x+x_1}{x_2+x_1} = \frac{y+y_1}{y_2+y_1}$.
- **50.** За права g: Ax + By + C = 0 в равнината не е вярно, че: **a**) $g \mid |Oy \Leftrightarrow A = 0$; **б**) $O \in g \Leftrightarrow C = 0$; **в**) $g = Ox \Leftrightarrow A = C = 0$.
- **51.** За правите g_1 : $A_1x + B_1y + C_1 = 0$ и g_2 : $A_2x + B_2y + C_2 = 0$ не е вярно, че: **a**) съвпадат \Leftrightarrow $A_1 = A_2$; $B_1 = B_2$; $C_1 = C_2$; **б**) са успоредни $\Leftrightarrow \frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2}$; **в**) се пресичат $\Leftrightarrow \frac{A_1}{A_2} \neq \frac{B_1}{B_2}$.
- **52.** Успоредни са правите: **a)** $g_1: Ax + By + C = 0$ и $g_2: Bx Ay + C = 0$; **6)** $g_1: y = x + n$ и $g_2: y = n$; **B)** $g_1: Ax + By + C_1 = 0$ и $g_2: Ax + By + C_2 = 0$.
- **53.** Сноп прави в равнината не може да се определи само чрез: **a)** две прави от снопа; **б)** една права от снопа; **в)** центъра на снопа.
- **54.** Правите p и q, зададени със следните уравнения относно ортонормирана координатна система, са перпендикулярни: **a**) $p: Ax + By + C_1 = 0$ и $q: Ax + By + C_2 = 0$; **б**) p: y = kx + n и q: y = -kx + n; **в**) p: Ax + By + C = 0 и q: Bx Ay + C = 0.
- **55.** Коефициентите k и n в декартовото уравнение y = kx + n на права относно ортонормирана координатна система в равнината са съответно: **a)** tg(g,Ox) и отрезът от оста Oy; **6)** tg(g,Oy) и отрезът от оста Ox; **b)** $\angle(g,Ox)$ и отрезът от оста Ox.
- **56.** Ако общото уравнение на права относно ортонормирана координатна система е Ax + By + C = 0, то нормалното й уравнение е:

a)
$$\frac{Ax + By + C}{\sqrt{A^2 + B^2}} = 0$$
; **6**) $\frac{Ax + By + C}{\sqrt{B^2 + C^2}} = 0$; **B**) $\frac{Ax + By + C}{-\operatorname{sgn} C.\sqrt{A^2 + B^2}} = 0$.

57. Разстоянието от точка $M(x_0, y_0)$ до права g: Ax + By + C = 0, зададени спрямо ортонормирана координатна система, е числото: **a**) $\frac{Ax_0 + By_0 + C}{\sqrt{A^2 + B^2}};$ **б**) $\frac{|Ax_0 + By_0 + C|}{\sqrt{A^2 + B^2}};$

$$\mathbf{B}) \frac{\left| Ax_0 + By_0 \right|}{\sqrt{A^2 + B^2}}.$$

- **58.** Ако са дадени права g: Ax + By + C = 0 и точките $M_1(x_1, y_1)$ и $M_2(x_2, y_2)$, като числата $g(M_1) = Ax_1 + By_1 + C$ и $g(M_2) = Ax_2 + By_2 + C$ са с еднакви знаци, тогава: **a)** нищо не следва за взаимното положение на g, M_1 и M_2 ; **б)** M_1 и M_2 лежат в една и съща полуравнина относно g; **в)** M_1 и M_2 са на еднакво разстояние от g.
- **59.** Ако a,b,c са положителни числа, то следното уравнение не е уравнение на окръжност: **a**) $(x+a)^2 + (y+b)^2 = c^2$; **б**) $(x-a)^2 + (y-b)^2 = -c^2$; **в**) $(x-a)^2 + (y+b)^2 = c$.
- **60.** Ако $l^2 + m^2 4p > 0$, то окръжност в равнината се задава с уравнението: **a)** $x^2 + y^2 - 2xy + lx + my + p = 0$;
 - **B**) $x^2 + y^2 + lx + my + p = 0$.
- **61.** До оста *Oy* се допира окръжността: **a**) $(x-a)^2 + (y-b)^2 = a^2$; **б**) $(x-a)^2 + (y-b)^2 = b^2$; **в**) $x^2 + y^2 = r^2$.
- **62.** Не е вярно, че спрямо ортонормирана координатна система в пространството една равнина се определя с: **a**) точка и два колинеарни вектора; **б**) точка и два неколинеарни вектора; **в**) точка и нормален вектор.
- 63. Кои от следните уравнения не могат да определят равнина:
 - **a)** $x = x_0 + \lambda a_1 + \mu b_1$, $y = y_0 + \lambda a_2 + \mu b_2$, $z = z_0 + \lambda a_3 + \mu b_3$;

6)
$$x = x_0 + \lambda(a_1 - b_1), y = y_0 + \lambda(a_2 - b_2), z = z_0 + \lambda(a_3 - b_3); \mathbf{B}) \begin{vmatrix} x - x_0 & y - y_0 & z - z_0 \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = 0.$$

- **64.** За равнината α : Ax + By + Cz + D = 0 не е вярно, че: **a**) $\alpha \mid \mid Oz \Leftrightarrow B=0$; **б**) $\alpha \mid \mid Oxy \Leftrightarrow A=B=0$; **в**) $\alpha \perp Oy \Leftrightarrow A=C=0$.
- **65.** С уравнението Ax + By + C = 0 спрямо координатна система Oxyz се задава: **a**) права; **б**) равнина през оста Oz; **b**) равнина, успоредна на Oz.
- **66.** За равнината α : Ax + By + Cz + D = 0 тройката (A, B, C) задава координатите на:
 - **a**) компланарен вектор на α ; **б**) нормален вектор на α ; **в**) нормален вектор на α , ако координатната система е ортонормирана.
- **67.** Ако коефициентите пред текущите координати в общите уравнения на две равнини са пропорционални, то равнините: **a**) съвпадат; **б**) се пресичат; **в**) са успоредни.
- **68.** Ако две равнини имат общи уравнения с пропорционални коефициенти, то те: **a**) съвпадат; **б**) се пресичат; **в**) са успоредни.
- 69. Ако коефициентите пред текущите координати в общите уравнения на две равнини са непропорционални, то равнините: а) съвпадат; б) се пресичат; в) са успоредни.
- **70.** Равнините $\alpha_1: A_1x + B_1y + C_1z + D_1 = 0$ и $\alpha_2: A_2x + B_2y + C_2z + D_2 = 0$ се пресичат тогава и само тогава, когато: **a**) (A_1, B_1, C_1) и (A_2, B_2, C_2) са различни тройки; **б**) (A_1, B_1, C_1) и (A_2, B_2, C_2) не са пропорционални тройки; **в**) $\frac{A_1}{A_2} \neq \frac{B_1}{B_2} \neq \frac{C_1}{C_2}$.

- **71.** Сноп равнини наричаме множеството от всички равнини, които минават през: **a**) една точка; **б**) една права; **в**) през една равнина.
- **72.** Ако $M(x_0, y_0, z_0)$ е дадена точка, а A, B, C са реални числа параметри, то уравнението $A(x-x_0)+B(y-y_0)+C(z-z_0)=0$ задава: **a**) равнина през точката M; **б**) звезда равнини с център точката M; **в**) сноп равнини през M.
- 73. Разстоянието от точка $M(x_0, y_0, z_0)$ до равнина $\alpha : Ax + By + Cz + D = 0$, зададени спрямо ортонормирана координатна система, е числото:

a)
$$\frac{\left|Ax_0 + By_0 + Cz_0\right|}{\sqrt{A^2 + B^2 + C^2}}$$
; **6)** $\frac{\left|Ax_0 + By_0 + Cz_0 + D\right|}{\sqrt{A^2 + B^2 + C^2}}$; **B)** $\frac{Ax_0 + By_0 + Cz_0 + D}{\sqrt{A^2 + B^2 + C^2 + D^2}}$.

74. Нормалното уравнение на равнина относно ортонормирана координатна система се получава от общото й уравнение Ax + By + Cz + D = 0 по следния начин:

a)
$$\frac{Ax + By + Cz + D}{\sqrt{A^2 + B^2 + C^2 + D^2}} = 0$$
; **6)** $\frac{Ax + By + Cz + D}{-\operatorname{sgn}(D)\sqrt{A^2 + B^2 + C^2}} = 0$; **B)** $\frac{Ax + By + Cz + D}{\sqrt{A^2 + B^2 + C^2}} = 0$.

- **75.** Права в тримерното пространство притежава: **a**) векторно параметрично уравнение; **б**) общо уравнение; **в**) декартово уравнение.
- **76.** Ако $M(x_0, y_0, z_0)$ е точка от правата g, а $\vec{a}(a_1, a_2, a_3)$ вектор, колинеарен на g, то нейно уравнение не е: **a**) $x = x_0 + \lambda a_1$, $y = y_0 + \lambda a_2$, $z = z_0 + \lambda a_3$; **б**) $\frac{x a_1}{x_0} = \frac{y a_2}{y_0} = \frac{z a_3}{z_0}$;

B)
$$\frac{x-x_0}{a_1} = \frac{y-y_0}{a_2} = \frac{z-z_0}{a_3}$$
.

- 77. Ако равнината α : Ax + By + Cz + D = 0 и правата g: $x = x_0 + \lambda A$, $y = y_0 + \lambda B$, $z = z_0 + \lambda C$ са зададени в ортонормирана координатна система, то: **a**) $g \in \alpha$; **б**) $g \mid |\alpha; \mathbf{B}| g \perp \alpha$.
- **78.** В пространството уравнението y=0 определя: **a**) оста Oy; **б**) равнината Oyz; **в**) равнината Oxz.
- **79.** Ако r_1 и r_2 са съответно е ранговете на матриците $\begin{pmatrix} A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \end{pmatrix}$ и $\begin{pmatrix} A_1 & B_1 & C_1 & D_1 \\ A_2 & B_2 & C_2 & D_2 \end{pmatrix}$,

то системата уравнения $\begin{vmatrix} A_1x+B_1y+C_1z+D_1=0\\A_2x+B_2y+C_2z+D_2=0 \end{vmatrix}$ задава права, ако: **a**) $r_1=r_2=1$;

6)
$$r_1 = r_2 = 2$$
; **B**) $r_1 \neq r_2$.

80. Сфера не се задава с уравнението: **a**) $(x-a)^2 + (y-b)^2 + (z-c)^2 = R^2$;

б)
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = R^2$$
; **в**) $x^2 + y^2 + z^2 + lx + my + nz + p = 0$, където $l^2 + m^2 + n^2 - 4p > 0$.

- **81.** Сферата с уравнение $(x-3)^2 + (y+1)^2 + z^2 = 4$ има: **a**) център C(-3,1,0) и радиус R=4; **б**) център C(3,-1,0) и радиус R=2; **в**) център C(-3,1,0) и радиус R=4.
- **82.** Ако нехомогенните координати на точка M са (X,Y,Z), то хомогенните й координати не са: **a**) (X,Y,Z,0); **б**) (X,Y,Z,1); **в**) (Xt,Yt,Zt,t), $t \neq 0$.
- **83.** Точките $M_1(x_1, y_1, z_1, t_1)$ и $M_2(x_2, y_2, z_2, t_2)$ съвпадат \Leftrightarrow : **a**) $t_1 = t_2 = 0$;

6)
$$\frac{x_1}{x_2} = \frac{y_1}{y_2} = \frac{z_1}{z_2} \neq \frac{t_1}{t_2}$$
; **B**) $\frac{x_1}{x_2} = \frac{y_1}{y_2} = \frac{z_1}{z_2} = \frac{t_1}{t_2}$.

- **84.** От точките A(-1,0,5,-3), B(0,4,-2,0), C(0,-4,-7,2) безкрайна е точката: **a**) A; **б**) B; **в**) C.
- **85.** Успоредните прави: **a)** нямат общи крайни или безкрайни точки; **б**) се пресичат в една и съща безкрайна точка; **в**) не образуват сноп прави.
- **86.** Една крайна равнина: **a)** има повече от една безкрайна права; **б)** има само една безкрайна права; **в)** няма безкрайни прави.
- **87.** Разширеното пространство: **a)** има повече от една безкрайна равнина; **б)** има само една безкрайна равнина; **в)** няма безкрайна равнина.
- **88.** Не е вярно, че уравнение на права в разширена равнина в хомогенни координати е: **a**) $x = \lambda x_1 + \mu x_2$, $y = \lambda y_1 + \mu y_2$, $t = \lambda t_1 + \mu t_2$, където $M(x_1, y_1, t_1)$, $N(x_2, y_2, t_2)$ са точки от правата; **б**) Ax + By + Ct = 0, където $|A| + |B| \neq 0$; **в**) Ax + By + Ct = 0, където $|A| + |B| + |C| \neq 0$.
- **89.** Уравнението в хомогенни координати Ax+By+Cz+Dt=0 определя безкрайна равнина \Leftrightarrow : **a**) |A|+|B|+|C|+|D|=0; **6**) A=B=C=0, $D\neq 0$; **B**) $|A|+|B|+|C|\neq 0$, D=0.
- **90.** Двойно отношение се определя за: **a**) четири произволни точки в пространството; **б**) четири произволни точки в една равнина; **в**) четири произволни точки върху една права.
- **91.** Ako $(P_1P_2P_3P_4) = \delta$, to the ebspho: **a**) $(P_4P_2P_3P_1) = 1 \delta$; **6**) $(P_2P_1P_3P_4) = \delta$; **b**) $(P_1P_2P_4P_3) = \frac{1}{\delta}$.
- 92. За крайните точки $P_{\alpha}\left(X_{\alpha}\right)$ (α =1,2,3,4 двойното отношение $\left(P_{1}P_{2}P_{3}P_{4}\right)$ е равно на: а) $\frac{X_{1}+X_{3}}{X_{2}+X_{3}}\cdot\frac{X_{2}+X_{4}}{X_{1}+X_{4}}$; б) $\frac{X_{1}-X_{2}}{X_{3}-X_{4}}\cdot\frac{X_{1}-X_{3}}{X_{2}-X_{4}}$; в) $\frac{X_{1}-X_{3}}{X_{2}-X_{3}}\cdot\frac{X_{2}-X_{4}}{X_{1}-X_{4}}$.
- **93.** Ако U е безкрайната точка на правата g, а P_1, P_2, P_3 са нейни крайни точки, то не е вярно, че: **a**) $\left(P_1P_2P_3U\right) = \left(P_1P_2P_3\right)$; **б**) $\left(P_1P_2P_3U\right) = \frac{X_1 + X_3}{X_2 + X_3}$; **в**) $\left(P_1P_2P_3U\right) = \frac{X_1 X_3}{X_2 X_3}$.
- **94.** Групата A, B, C, D от колинеарни точки се нарича хармонична \Leftrightarrow : **a**) (ABCD)=1; **6**) (ABCD)=0.
- **95.** Ако наредената четворка A, B, C, U е хармонична група, то: **a**) A е средата на отсечката BC; **б**) B е средата на отсечката AC; **в**) C е средата на отсечката AB.
- **96.** Ако правите g_1 , g_2 , g_3 и g_4 принадлежат на един сноп прави и $(g_1g_2g_3g_4) = -1$, то g_3 и g_4 са: **a)** ъглополовящите на ъгъла между g_1 и g_2 ; **б)** перпендикулярни съответно на g_1 и g_2 ; **в)** имагинерно спрегнати съответно на g_1 и g_2 .
- **97.** Крива от втора степен се нарича множество от точки в равнината, чиито координати относно координатна система Oxy удовлетворяват уравнение от вида: **a)** $a_{11}x^2 + 2a_{12}xy + a_{22}y^2 = 0$; **б)** $a_{11}x^2 + a_{22}y^2 + a_{33}z^2 + 2a_{12}xy + 2a_{13}xz + 2a_{23}yz = 0$;
 - **B)** $a_{11}x^2 + 2a_{12}xy + a_{22}y^2 + 2a_{13}x + 2a_{23}y + a_{33} = 0$.
- **98.** В разширената евклидова равнина съществуват следните проективни типа криви от втора степен: **a**) с представител овална крива и с представител изродена крива; **б**) с представители на имагинерна крива, на овална крива, на изродена крива; **в**) с представители на овална крива, на имагинерна крива, на две комплексно спрегнати прави, на две реални прави и на двойна права.
- **99.** Не вярно, че рангът ρ на детерминантата на изродена крива е: **a**) ρ = 1; **б**) ρ = 2; **b**) ρ = 3.
- 100. Ако рангът на детерминантата на повърхнина е три, то тя е: а) овална повърхнина; б) хиперболоид; в) конус.

- **101.** Две системи от реални прави съдържа: **a**) овалната повърхнина; **б**) хиперболоидът; **в**) конусът.
- **102.** Не е вярно, че през точка минават реални допирателни прави към овална крива от 2. степен, ако спрямо кривата точката е: **a**) външна; **б**) вътрешна; **в**) лежи на нея.
- **103.** Ако е дадена точка M, не е вярно, че точка N лежи на допирателна към крива с уравнение F(x)=0, ако координатите й удовлетворяват уравнението:
 - а) $F_1(M)x + F_2(M)y + F_3(M)t = 0$ при условие, че M лежи на кривата;
 - **б**) $[F(M;N)]^2 F(M)F(N) = 0$ при условие, че M не лежи на кривата;
 - в) $[F(M; N)]^2 F(M) = 0$ при условие, че M не лежи на кривата.
- **104.** Не е вярно, че допирателните през точка към овална повърхнина лежат : \mathbf{a}) на хиперболо-ид, ако точката е вътрешна; $\mathbf{б}$) в равнина, ако точката лежи на повърхнината; \mathbf{b}) на конус, ако точката е външна.
- **105.** Множеството от хармонично спрегнатите точки на дадена точка относно пресечните точки на всички секущи през нея с крива от втора степен е: **a**) допирателна в точката; **б**) асимптота през точката; **в**) поляра на точката.
- **106.** Не е вярно, че уравнението $F_1(M)x + F_2(M)y + F_3(M)t = 0$ е уравнение: **a**) на секуща на кривата през точка M; **б**) на допирателна в точка M от кривата; **в**) на полярата на точка M относно кривата.
- **107.** Хармонично спрегнатите точки на дадена точка относно пресечните точки на всички секущи през нея с повърхнина от 2. степен лежат: **a**) на една крива, наречена полярна; **б**) на една права, наречена поляра на точката относно повърхнината; **в**) на една равнина, наречена полярна равнина на точката относно повърхнината.
- **108.** Точките M и N са спрегнати относно фигура от 2. степен, ако: **a**) само M лежи на полярната фигура на N; **б**) само N лежи на полярната фигура на M; **в**) всяка от тях лежи на полярната фигура на другата.
- **109.** Права p пресича овална крива в две точки T_1 и T_2 . Допирателните в тези точки на кривата минават през: **a**) центъра C на кривата; **б**) през полюса P на p относно кривата; **в**) през точка, различна от C и P.
- **110.** Нека детерминантата на крива от 2. степен е $A = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{vmatrix}$, а адюнгираното количест-

во на a_{33} е $A_{33} = \begin{vmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{vmatrix}$. От твърденията: 1) $A \neq 0$, $A_{33} < 0 \iff$ кривата е хипербола;

- **2**) $A = A_{33} = 0$ \iff кривата е парабола; **3**) $A = 0, A_{33} > 0$ \iff кривата е хипербола;
- **4**) $A \neq 0, A_{33} = 0$ \Leftrightarrow кривата е парабола; **5**) $A \neq 0, A_{33} > 0$ \Leftrightarrow кривата е елипса;
- **6**) A = 0, $A_{33} < 0 \Leftrightarrow$ кривата е две успоредни прави или двойна права са верни: **a**) 1), 4) и 5); **б**) 2), 5) и 6); **в**) 3), 4) и 5).
- **111.** Афинната класификация на криви от 2. степен зависи от: **a**) броя на безкрайните й точки; **б**) от броя на центровете й; **в**) от ранга на матрицата й.
- **112.** Уравненията на центъра C на крива от 2. степен са: **a**) $F_1(C) = 0, F_2(C) = 0, F_3(C) = 0;$ **б**) $F_1(C) = 0; F_2(C) = 0;$ **в**) $F_1(C) = 0.$
- 113. Един краен център имат: а) кривите от елиптичен и параболичен тип; б) кривите от хиперболичен и параболичен тип; в) кривите от елиптичен и хиперболичен тип.

- **114.** Един безкраен център имат кривите: **a**) от параболичен тип; **б**) от хиперболичен тип; **в**) от елиптичен тип.
- **115.** Повече от един краен център имат изродените криви от: **a**) елиптичен вид; **б**) параболичен вид; **в**) хиперболичен вид.
- **116.** Централните фигури от 2. степен са симетрично разположени спрямо: **a**) началото на координатната система; **б**) оста Ox; **в**) центъра си.
- 117. Централно уравнение имат: а) всички криви; б) кривите от параболичен вид; в) кривите от елиптичен и хиперболичен вид.
- **118.** Не е вярно, че централното уравнение на крива от 2. степен с център C: **a**) се получава след транслация в центъра й; **б**) има вида $a_{11}X^2 + 2a_{12}XY + a_{22}Y^2 = 0$; **в**) има вида $a_{11}X^2 + 2a_{12}XY + a_{22}Y^2 + a_{33} = 0$, където $a_{33} = \frac{A}{A_{33}}$.
- **119.** Всяка асимптота не минава: **a)** през безкрайната си точка; **б)** през всеки център на фигурата от 2. степен; **в)** през началото на координатната система.
- **120.** Не е вярно, че диаметър на крива от 2. степен: **a**) е поляра само на безкрайна точка на кривата; **б**) е поляра на произволна безкрайна точка; **в**) минава през всеки център на кривата.
- **121.** За спрегнатите диаметри на централна крива не е вярно: **a**) всеки минава през центъра и полюса на другия; **б**) всеки съдържа средите на хордите, успоредни на другия; **в**) за ъгловите им коефициенти k_1, k_2 е изпълнено $a_{11}k_1k_2 + a_{12}(k_1 + k_2) + a_{22} = 0$.
- **122.** Диаметрална равнина на повърхнина е: **a**) спрегната на безкрайната равнина; **б**) полярна равнина на безкрайна права; **в**) полярна равнина на безкрайна точка.
- **123.** Диаметрална равнина на повърхнина съдържа средите на: **a**) хордите, които лежат на секущите през безкрайна точка; **б**) хордите, които лежат на секущите през крайна точка; **в**) всички хорди.
- **124.** Не е вярно, че уравнението на крива от 2. степен може да се приведе в каноничен вид чрез следните трансформации на координатната система: **a**) ротация и осева симетрия; **б**) ротация и транслация; **в**) транслация и ротация.
- **125.** Кривите от 2. степен се разделят на: **a**) 3 класа: елипси, хиперболи и параболи; **б**) 4 класа: елипси, имагинерни елипси, хиперболи и параболи; **в**) 9 класа: елипси, имагинерни елипси, хиперболи, параболи и още 5 класа изродени криви.
- **126.** Изродените криви от 2. степен са: **a**) 6 класа: двойка реални пресичащи се прави, двойка имагинерни пресичащи се прави, двойка реални успоредни прави, двойка имагинерни успоредни прави, двойка сливащи се прави, имагинерни елипси; **б**) 5 класа: двойка реални пресичащи се прави, двойка имагинерни пресичащи се прави, двойка реални успоредни прави, двойка имагинерни успоредни прави, двойка сливащи се прави; **в**) 4 класа: елипси, имагинерни елипси, хиперболи, параболи.
- **127.** Множеството от точките в равнина, за които сумата от разстоянията им до две фиксирани точки е константа е: **a**) парабола; **б**) хипербола; **в**) елипса.
- **128.** Множеството от точки в равнина, за които абсолютната стойност на разликата от разстоянията им до две дадени точки е константа е: **a**) парабола; **б**) хипербола; **в**) елипса.
- **129.** Множеството от точките в равнина, отстоящи на равни разстояния от дадена точка и дадена права, неминаваща през точката, се нарича: **a)** елипса; **б)** парабола; **в)** хипербола.
- **130.** Светлинните лъчи, пуснати от фокус на конично сечение k, след отразяването си от k стават успоредни помежду си, ако k е: **a**) елипса; **б**) парабола; **в**) хипербола.

- **131.** Хиперболата пресича осите си общо в: **a**) четири реални точки; **б**) 2 реални точки; **в**) 1 реална точка.
- **132.** Параболата $x^2 = 2py$ е симетрично разположена относно: **a**) оста Ox; **б**) оста Oy; **в**) началото O на координатната система.
- **133.** Асимптотите на хиперболата $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ имат уравнения: **a)** x = 0, y = 0; **б)** $y = \pm \frac{a}{b}x$; **в)** $y = \pm \frac{b}{a}x$.
- **134.** За линейния ексцентрицитет c на елипсата $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, b > a$ е изпълнено: **a**) $c^2 = a^2 + b^2$; **б**) $c^2 = b^2 a^2$; **в**) фокусите са $F_1(c,0), F_2(-c,0)$.
- **135.** Ако c е линеен ексцентрицитет на хипербола $b^2x^2 a^2y^2 = a^2b^2$, то: **a**) $c = \sqrt{b^2 a^2}$; **б**) $c = \sqrt{a^2 b^2}$; **в**) $c = \sqrt{a^2 + b^2}$.
- **136.** Ако парабола $x^2 = 2py$ има фокус F и директриса d, то те се определят по следния начин: **a**) $F\left(\frac{p}{2},0\right)$, $d: x = -\frac{p}{2}$; **б**) $F\left(-\frac{p}{2},0\right)$, $d: x = \frac{p}{2}$; **в**) $F\left(0,\frac{p}{2}\right)$, $d: y = -\frac{p}{2}$.
- **137.** Светлинен лъч, пуснат от фокус на елипса, след отразяването си от нея, минава през: **a**) същия фокус; **б**) през другия фокус; **в**) през центъра на елипсата.
- **138.** Ако от единия фокус на хипербола светлинен източник излъчи сноп лъчи, то след отразяването си от хиперболата: **a**) те ще се съберат в другия фокус; **б**) продълженията на отраженията им ще се съберат в другия фокус; **в**) продълженията на отраженията им ще минат през същия фокус.
- 139. Окръжността не е: а) конично сечение; б) елипса; в) изродена крива от втора степен.
- **140.** Кривата $x^2 y^2 = 1$ е: **a)** окръжност с радиус 1; **б)** елипса; **в)** хипербола.
- **141.** Ротационната повърхнина, получена при завъртането на хиперболата $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ около оста Ox има уравнение: **a**) $\frac{x^2}{a^2} \frac{y^2}{b^2} + \frac{z^2}{a^2} = 1$; **б**) $\frac{x^2}{a^2} \frac{y^2}{b^2} + \frac{z^2}{b^2} = 1$; **в**) $\frac{x^2}{a^2} \frac{y^2}{b^2} \frac{z^2}{b^2} = 1$.
- **142.** Ротационната повърхнина, получена при завъртането на параболата $y^2 = 2px$ около оста Ox има уравнение: **a**) $y^2 = 2pxz$; **б**) $y^2 + z^2 = 2px$; **в**) $y^2 z^2 = 2px$.
- **143.** В тримерно пространство уравнението $x^2 + y^2 = 16$ задава: **a**) окръжност с център O(0,0) и радиус 4; **b**) цилиндрична повърхнина с управителна крива окръжността от a) и праволинейни образуващи, успоредни на Oz.
- **144.** Уравнението на прост хиперболоид е следното: **a**) $\frac{x^2}{a^2} + \frac{y^2}{b^2} \frac{z^2}{c^2} = 0$; **б**) $\frac{x^2}{a^2} + \frac{y^2}{b^2} \frac{z^2}{c^2} = 1$; **в**) $\frac{x^2}{a^2} \frac{y^2}{b^2} \frac{z^2}{c^2} = 1$.
- **145.** Хиперболичен параболоид (или седло) се нарича повърхнината с уравнение: r^2 z^2 v^2 v^2 v^2 v^2

a)
$$\frac{x^2}{a^2} - \frac{z^2}{c^2} = 1$$
; **6**) $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 2z$; **B**) $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 2z$.

- **146.** От повърхнините с уравнения: 1) $\frac{x^2}{a^2} \frac{y^2}{b^2} \frac{z^2}{c^2} = 1;$ 2) $\frac{x^2}{a^2} + \frac{y^2}{b^2} \frac{z^2}{c^2} = 1;$
 - 3) $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$; 4) $\frac{x^2}{a^2} \frac{y^2}{b^2} = 2z$; 5) $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 2z$ симетрично разположени спрямо началото на координатното начало са: **a**) всичките; **б**) 1), 2) и 3); **в**) 4) и 5).
- **147.** Съществуващите сечения на елипсоид с равнини, успоредни на координатните равнини са: **a)** елипси и хиперболи; **б)** елипси и параболи; **в)** само елипси.
- **148.** Възможните сечения на елиптичен параболоид с равнини, успоредни на координатните равнини са: **а)** елипси, хиперболи, параболи; **б)** елипси и параболи; **в)** само параболи.
- **149.** Сеченията на конус с равнини са: **a)** само елипси; **б)** елипси и параболи; **в)** елипси, параболи и хиперболи.
- **150.** От следните шест повърхнини: 1) $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$; 2) $\frac{x^2}{a^2} + \frac{y^2}{b^2} \frac{z^2}{c^2} = 1$;
 - 3) $\frac{x^2}{a^2} \frac{y^2}{b^2} \frac{z^2}{c^2} = 1$; 4) $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 2z$; 5) $\frac{x^2}{a^2} \frac{y^2}{b^2} = 2z$; 6) $\frac{x^2}{a^2} + \frac{y^2}{b^2} \frac{z^2}{c^2} = 0$ праволинейни образуващи имат: **a)** 1), 3) и 4); **б)** 2), 5) и 6); **в)** 2), 3) и 5).