BIG DATA COMPUTING 2021/22 - HOMEWORK 3

PYTHON VERSION

Run your algorithm on the cluster on CloudVeneto using the following datasets: **HIGGS-REDUCED-7D.txt** (about 1.2M points in 7 dimensions), and **artificial9000.txt** (9200 points in 2 dimensions). The datasets are in the **directory /data/BDC2122** of the HDFS. You must fill the two tables below, one for each dataset, where the headers of the rows indicate the values to report, and the headers of the columns indicate the configurations of parameters to be used.

The first table collects results aimed at assessing the **scalability** of the algorithm.

HIGGS-REDUCED-7D.txt	2 executors k=10, z=150,	4 executors k=10, z=150,	8 executors k=10, z=150,	16 executors k=10, z=150,
	L=2	L=4	L=8	L=16
Time to read input from file (in ms)	11156.63170	7430.318355	5485.337734	5754.363536
	8145142	560303	222412	834717
Time of ROUND 1 (in ms)	369891.9751	187617.8948	96774.56498	48003.89409
	6441345	879242	146057	0652466
Time of ROUND 2 (in ms)	49.28803443	150.6471633	431.1201572	1829.772233
	9086914	9111328	418213	9630127
Time to compute objective function (in ms)	2348.786592	1363.988161	634.9282264	492.1143054
	4835205	0870361	709473	962158
Value of objective function	9.122390510	7.568193009	6.532160553	6.062788908
	09	74	26	65

The second table collects results aimed at comparing the **accuracy** attained by the algorithm against the one attained by the sequential algorithm from Homework 2 on the entire dataset.

Artificial9000.txt	2 executors k=9, z=200, L=2	4 executors k=9, z=200, L=4	8 executors k=9, z=200, L=8	16 executors k=9, z=200, L=16	Sequential algorithm from Homework 2 with k=9, z=200
Value of objective function	13.24243818	12.85579161	11.84149167	11.71766060	11.57693970788481
	18	31	12	27	•

Provide below a brief comment to justify the scalability and accuracy observed (your answer should be of at most 6 lines, font 12 points):

The scalability of the algorithm is shown by the fact that by increasing the number of partitions the total execution time decreases. The execution time of Round 1 halves accordingly by doubling the executors and the Round 2 increases because the sequential algorithm has to handle more points. By increasing the number of partitions the value of the objective function converges to the score of the sequential algorithm, that's because increasing the partitions leads to a better representation of the initial full pointset, which is where Sequential computes its solution.