Raport: Komputery kwantowe

Jerzy Szyjut 193064 Hubert Malinowski 193088

May 20, 2025

1 Wstęp

W ramach $\mu Projektu$ z przedmiotu Zaawansowane architektury komputerów przygotowaliśmy implementację kilku algorytmów kwantowych przy pomocy biblioteki Qiskit w języku Python. W projekcie wzięliśmy pod uwagę algorytmy:

- Grovera
- Shora
- Teleportaacji

Dzięki funkcjonalności biblioteki Qiskit algortmy te można uruchomić na prawdziwych komputerach kwantowych, które są dostępne w chmurze IBM.

2 Wstęp teoretyczny

Komputery kwantowe to urządzenia obliczeniowe, które wykorzystują zjawiska mechaniki kwantowej do przetwarzania informacji. Podstawową jednostką informacji w komputerze kwantowym jest **kubity** (ang. *qubit*), który w przeciwieństwie do klasycznego bitu może znajdować się nie tylko w stanie 0 lub 1, ale także w ich superpozycji, czyli w stanie będącym kombinacją obu tych wartości:

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle,$$

gdzie α i β są liczbami spełniającymi $|\alpha|^2 + |\beta|^2 = 1$.

Kubity charakteryzują się dwoma kluczowymi właściwościami:

- Superpozycja możliwość jednoczesnego przebywania w wielu stanach.
- Splątanie zjawisko, w którym stan jednego kubitu jest nierozerwalnie związany ze stanem innego, nawet jeśli są one od siebie oddalone.

Obliczenia w komputerach kwantowych realizowane są za pomocą **bramek kwantowych**, które odpowiadają operacjom na kubitach. Bramki te, takie jak bramka Hadamarda, bramka Pauli-X czy bramka CNOT, pozwalają na manipulowanie stanami kubitów i tworzenie złożonych algorytmów kwantowych.

Komputery kwantowe mają potencjał do rozwiązywania pewnych problemów znacznie szybciej niż komputery klasyczne, wykorzystując równoległość obliczeń wynikającą z superpozycji oraz korelacje wynikające ze splątania.

3 Uruchomienie projektu

Aby uruchomić projekt wystarczy podążać za instrukcjami zawartymi w pliku README.md. Kopię tych instrukcji zamieszczam poniżej:

3.1 Wymagania wstępne

Aby rozpocząć pracę, upewnij się, że masz zainstalowane następujące elementy:

- Python 3.11 lub nowszy
- Qiskit
- Jupyter Notebook

3.2 Instalacja

1. Utwórz środowisko wirtualne (opcjonalnie, ale zalecane):

```
python -m venv venv
source venv/bin/activate # W systemie Windows użyj 'venv\Scripts\activate'
```

2. Zainstaluj wymagane zależności:

```
pip install -r requirements.txt
```

3. Uruchom Jupyter Notebook:

```
jupyter notebook
```

- 4. Otwórz notatniki Jupyter znajdujące się w katalogu notebooks/.
- 5. Jeśli chcesz uruchomić kod na sprzęcie IBM Quantum, skonfiguruj swoje konto IBM Quantum i wprowadź token API w odpowiednim miejscu w kodzie.

3.3 Użytkowanie

- 1. Uruchom notatniki Jupyter w katalogu notebooks/.
- 2. Modyfikuj i eksperymentuj z kodem, aby pogłębić swoją wiedzę.

4 Dostęp do komputerów kwantowych IBM

Aby uzyskać dostęp do komputerów kwantowych IBM, należy zarejestrować się na stronie IBM Quantum i uzyskać token API. Następnie można skonfigurować token w kodzie, aby uzyskać dostęp do zasobów kwantowych. W momencie w którym piszę ten raport, dostępne są komputery kwantowe o różnej liczbie kubitów, o architekturach różnych. W planie darmowym można przeprowadzać obliczenia na komputerach kwantowych przez 10 minut miesięcznie.

5 Budowa biblioteki Qiskit

Qiskit to modułowa, open-source'owa biblioteka kwantowa rozwijana przez IBM i społeczność, zaprojektowana do tworzenia, analizowania i wykonywania obliczeń kwantowych. Architektura Qiskit została zbudowana z myślą o skalowalności i wsparciu dla różnych backendów kwantowych i klasycznych.

5.1 Quantum Circuit

Komponent QuantumCircuit stanowi podstawowy interfejs programowania algorytmów kwantowych. Umożliwia definiowanie rejestrów (klasycznych i kwantowych), aplikowanie bramek, pomiarów, a także kontrolę przepływu programu. Obwody są obiektami wysokiego poziomu, które można analizować, optymalizować oraz kompilować przy użyciu narzędzi takich jak transpile.

5.2 Pass Manager

PassManager odpowiada za kompilację obwodów kwantowych, przeprowadzając je przez szereg transformacji zwanych passami. Każdy pass może optymalizować, przekształcać lub analizować obwód. Passy są organizowane w etapy (stages) takie jak unifikacja bramek, mapowanie na topologię sprzętową oraz redukcja głębokości obwodu. Użytkownik może tworzyć własne sekwencje passów lub korzystać z domyślnych przepływów.

5.3 Primitives

Primitives to uproszczony i nowoczesny interfejs programistyczny umożliwiający użytkownikom wykonywanie zadań kwantowych takich jak próbkowanie (Sampler), szacowanie oczekiwanej wartości (Estimator) czy pomiary stanu. Odseparowują one szczegóły backendu i umożliwiają programowanie na wyższym poziomie abstrakcji, z zachowaniem precyzyjnej kontroli nad parametrami eksperymentu.

5.4 Inne komponenty

- Qiskit Runtime: Architektura wykonawcza zapewniająca elastyczną i wydajną obsługę zadań kwantowych, działającą lokalnie lub w chmurze.
- **Qiskit Terra**: Podstawowy pakiet odpowiedzialny za kompilację i reprezentację obwodów.

- Qiskit Aer: Symulator kwantowy umożliwiający emulację obliczeń kwantowych na klasycznym sprzęcie.
- Qiskit Experiments: Framework do prowadzenia eksperymentów kalibracyjnych i charakterystyki urządzeń kwantowych.