Apprentissage statistique

Chapitre 2 : Estimation ponctuelle

Lucie Le Briquer

15 janvier 2019

Table des matières

1	Définitions	2
2	Méthode des moments	2
3	Z-estimateurs	4
4	Maximum de vraisemblance (Maximum Likelihood)	5
5	M-estimateurs	7

1 Définitions

Problème de statistique : on a y_1, \ldots, y_n des données. On suppose que ce sont des réalisations d'un modèle statistique $(\mathbb{Z}, \mathcal{Z}, \mathcal{P})$ associées à $Z = (Y_1, \ldots, Y_n)$. Y_1, \ldots, Y_n des variables aléatoires sous \mathbb{P}^* . On voudrait $\bar{\mathbb{P}} \in \mathcal{P}$ tel que $\bar{\mathbb{P}}$ est proche de \mathbb{P}^* "en un certain sens".

On va supposer dans tout ce chapitre que l'on est dans le cadre paramétrique :

$$\mathcal{P} = \{ \mathbb{P}_{\theta} : \theta \in \Theta \} \text{ avec } \Theta \subset \mathbb{R}^d$$

Définition 1 (estimateur) -

Soit $(\mathbb{Z}, \mathcal{Z}, \mathcal{P})$. Soit $\theta \mapsto g(\theta)$ tel que g est mesurable de Θ dans \mathbb{R}^d . On appelle estimateur de $\theta \mapsto g(\theta)$ toute statistique T de \mathbb{Z} dans \mathbb{R}^q .

- **Définition 2** (erreur en moyenne quadratique) —

Soit $(\mathbb{Z}, \mathcal{Z}, \mathcal{P})$ un modèle statistique et T un estimateur de g. On définit l'erreur en moyenne quadratique de T comme :

$$MSE_{\theta}(T) = \mathbb{E}_{\theta} \left[||T(Z) - g(\theta)||^2 \right]$$

MSE signifie mean square error.

- **Définition 3** (non biaisé) -

On dit que T est non biaisé si $\forall \theta \in \Theta$, $\mathbb{E}_{\theta}[T(Z)] = g(\theta)$.

2 Méthode des moments

 (X_1,\ldots,X_n) un n-échantillon associé à $(\mathbb{X},\mathcal{X},\{\mathbb{Q}_{\theta}:\theta\in\Theta\})$. Il est associé au modèle $(\mathbb{Z},\mathcal{Z},\{\mathbb{P}_{\theta}:\theta\in\Theta\})$ où $\mathbb{Z}=\mathbb{X}^b,\ \mathcal{Z}=\mathcal{X}^{\otimes n}$ et $\mathbb{P}_{\theta}=\mathbb{Q}_{\theta}^{\otimes n}$.

On a supposé qe l'o est dans un modèle paramétrique $\Theta \subset \mathbb{R}^d$. Supposons que l'on veuille estimer $\theta \mapsto \theta$. "Moralement", à partir de X_1, \dots, X_n i.i.d. suivant \mathbb{P}_{θ^*} comment estimer θ^* ?

Supposons que l'on ait une fonction bijective $F \colon \Theta \longrightarrow U \subset \mathbb{R}^d$ et $F(\theta^*)$. Pour estimer θ^* on aurait juste à résoudre $F(\theta) = F(\theta^*)$ (1).

Dans la méthode des moments, l'idée est de prendre une famille de statistiques :

$${T_i: \mathbb{X} \longrightarrow \mathbb{R}}_{i=1,...,d}$$

et de poser $F_i(\theta) = \mathbb{E}_{\theta}[T_i(X_1)].$

Remarque. En pratique, on obtient donc F mais il faut vérifier que F est bijective.

Le problème est que l'on a pas accès à $F(\theta^*)$ mais seulement à des échantillons X_1, \ldots, X_n i.i.d. suivant \mathbb{Q}_{θ^*} . L'idée est donc d'approcher $F_i(\theta^*)$ par la moyenne empirique :

$$\frac{1}{n} \sum_{j=1}^{n} T_i(X_j)$$

L'équation (1) avec l'approximation suggérée donne les équations suivantes à résoudre en θ :

$$\frac{1}{n}\sum_{i=1}^{n} T_i(X_j) = F_i(\theta) \quad \text{pour } i = 1, \dots, d \quad (M)$$

On aboutit à un système à d équations et d inconnues. S'il admet une solution $\hat{\theta}_n$, on appelle $\hat{\theta}_n$ l'estimateur des moments.

Exemple. (loi exponentielle)

On considère le modèle $(\mathbb{R}_+, \mathcal{B}(\mathbb{R}_+), \{\mathcal{E}(\theta) : \theta \in \mathbb{R}_+^*\})$ et les deux statistiques suivantes :

$$T^{(1)}(x) = x$$
 $T^{(2)}(x) = x^2$

On calcule $F^{(1)}$ et $F^{(2)}$ associées à $T^{(1)}$ et $T^{(2)}$. $F^{(1)}(\theta) = \mathbb{E}_{\theta}[X_1] = \frac{1}{\theta}$ et $F^{(2)}(\theta) = \mathbb{E}_{\theta}[X_1^2] = \frac{2}{\theta^2}$. Pour $F^{(1)}$ et $T^{(1)}$, (M) devient :

$$\frac{1}{n}\sum_{j=1}^{n}X_{j} = \frac{1}{\theta}$$

donc $\hat{\theta}_n^{(1)}$ l'estimateur des moments associé à $F^{(1)}$ et $T^{(1)}$ est :

$$\hat{\theta}_n^{(1)} = \frac{n}{\sum_{j=1}^n X_j}$$

Pour $F^{(2)}$ et $T^{(2)}$, (M) devient :

$$\frac{1}{n} \sum_{j=1}^{n} X_j^2 = \frac{2}{\theta^2}$$

donc $\hat{\theta}_n^{(2)}$ l'estimateur des moments associé à $F^{(2)}$ et $T^{(2)}$ est :

$$\hat{\theta}_n^{(2)} = \left(\frac{2n}{\sum_{j=1}^n X_j^2}\right)^{1/2}$$

Exemple. (modèle de Cauchy)

On considère le modèle $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \{Cauchy(\theta) : \theta \in \mathbb{R}\})$. Où $Cauchy(\theta) \ll Leb$ et :

$$\frac{d \text{Cauchy}(\theta)}{d \text{Leb}} = \frac{1}{\pi (1 + (x - \theta)^2)}$$

On ne peut pas utiliser des statistiques aussi simples que précédemment puisque les moyennes ne sont pas définies. On propose d'utiliser $T(x) = \operatorname{sgn}(n)$ (avec la convention $\operatorname{sgn}(0) = 1$).

On peut montrer que :

$$\mathbb{E}_{\theta}[T(X_1)] = \frac{2}{\pi} \arctan(\theta)$$

L'équation (M) devient :

$$\frac{1}{n}\sum_{j=1}^{n}\operatorname{sgn}(X_{j}) = \frac{2}{\pi}\arctan(\theta)$$

Donc,

$$\hat{\theta}_n = \tan\left(\frac{\pi}{2n}\sum_{j=1}^n \operatorname{sgn}(X_j)\right)$$

3 Z-estimateurs

On rappelle l'équation des moments :

$$\frac{1}{n}\sum_{j=1}^{n} T_i(X_j) = F_i(\theta) \quad \text{pour } i = 1, \dots, d \quad (M)$$

Si on introduit les fonctions $\psi_i^{(m)}(x,\theta) = T_i(x) - F_i(\theta)$, (M) devient :

$$\frac{1}{n} \sum_{j=1}^{n} \psi_i^{(m)}(X_j, \theta) = 0 \quad \text{pour } i = 1, \dots, d$$

Définition 4 (Z-estimateur) –

Soit (X_1, \ldots, X_n) un n-échantillon associé à \mathcal{P} . Soit :

$$\{\psi_i : \mathbb{X} \times \Theta \longrightarrow \mathbb{R}\}_{i=1,\ldots,d}$$

que l'on suppose mesurables. Soit alors $\psi \colon \mathbb{X} \times \Theta \longrightarrow \mathbb{R}^d$ définie par $\psi = (\psi_1, \dots, \psi_d)$. On appelle Z-estimateur $\hat{\theta}_n$ toute solution de l'équation :

$$\frac{1}{n}\sum_{j=1}^{n}\psi(X_j,\theta)=0$$

Exemples.

1. $(\mathbb{R}, \mathcal{B}(\mathbb{R}), {\mathbb{P}_{\theta} : \theta \in \mathbb{R}})$, on suppose que $\forall \theta \in \mathbb{R}, \mathbb{P}_{\theta}$ a pour fonction de répartition :

$$\mathbb{P}_{\theta}(]-\infty,x]) = F_{\theta}(x) = F(x-\theta)$$

où F est une fonction de répartition fixée supposée symétrique (F(x)=1-F(-x)) et que :

$$\int_{\mathbb{R}} x dF(x) = 0 \qquad \int_{\mathbb{R}} x^2 dF(x) < +\infty$$

On considère $\psi(x,\theta) = x - \theta$. On doit donc résoudre :

$$\frac{1}{n}\sum_{j=1}^{n}(X_j - \theta) = 0$$
 $\hat{\theta}_n = \frac{1}{n}\sum_{j=1}^{n}X_j$

2. On considère $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \{\text{Cauchy}(\theta), \theta \in \mathbb{R}\})$ et la fonction :

$$\psi(x,\theta) = \operatorname{sgn}(x-\theta)$$

Trouver le Z-estimateur associé à ψ .

À faire en exercice.

4 Maximum de vraisemblance (Maximum Likelihood)

Exemple. (sondage)

 (X_1,\ldots,X_n) n-échantillon du modèle $\{\operatorname{Ber}(\theta):\theta\in]0,1[\}$. La loi de (X_1,\ldots,X_n) admet une densité p_θ par rapport à la mesure de comptage sur $\{0,1\}^n$

$$p_{\theta}(x_1, \dots, x_n) = \prod_{i=1}^n q_{\theta}(x_i) = \prod_{i=1}^n \{\theta^{x_i} (1-\theta)^{1-x_i}\}$$

La vraisemblance et la log-vraisemblance sont :

$$L_n(\theta) = p_{\theta}(X_1, \dots, X_n)$$
 $l_n(\theta) = \log L_n(\theta)$

On justifie dans la suite pour quoi \mathcal{L}_n et \mathcal{l}_n sont intéressantes.

Soit X_1, \ldots, X_n distribuées suivant \mathbb{P}_{θ^*} .

$$\varphi_{\theta^*}(\theta) = \mathbb{E}_{\theta^*} \left[\log q_{\theta}(X_1) \right] = (1 - \theta^*) \log q_{\theta}(0) + \theta^* \log q_{\theta}(1)$$
$$= (1 - \theta^*) \log(1 - \theta) + \theta^* \log(\theta)$$

On montre que $\theta \mapsto \varphi_{\theta^*}(\theta)$ est concave et admet un unique maximum : θ^* . En effet :

$$\varphi_{\theta^*}'(\theta) = \frac{\theta^*}{\theta} - \frac{1 - \theta^*}{1 - \theta} \qquad \varphi_{\theta^*}''(\theta) = -\frac{\theta^*}{\theta^2} - \frac{1 - \theta^*}{(1 - \theta)^2} < 0$$

Si on avait accès à φ_{θ^*} on aurait juste à la maximiser. Mais φ_{θ^*} est inconnue car la loi de X_1, \ldots, X_n (\mathbb{P}_{θ^*}) l'est. On la remplace cependant par la quantité empirique associée :

$$\frac{1}{n}\sum_{j=1}^{n}\log q_{\theta}(X_{j}) = \frac{l_{n}(\theta)}{n}$$

Maintenant au lieu de maximiser φ_{θ^*} , on maximise $\theta \mapsto l_n(\theta)$. Par définition :

$$l_n(\theta) = \sum_{j=1}^n \log q_{\theta}(X_j) = \sum_{j=1}^n X_j \log(\theta) + (1 - X_j) \log(1 - \theta)$$

On trouve $\hat{\theta}_n = \frac{1}{n} \sum_{j=1}^n X_j$.

- **Définition 5** (vraisemblance, log-vraisemblance) -

Soit (X_1, \ldots, X_n) un n-échantillon de $\{\mathbb{Q}_{\theta} : \theta \in \Theta\}$. On suppose que $\{\mathbb{P}_{\theta} : \theta \in \Theta\}$ est dominé par μ . On note $\forall \theta \in \Theta$, $f_{\theta} = d\mathbb{P}_{\theta}/d\mu$. On définit la vraisemblance $L_n : \Theta \longrightarrow \mathbb{R}_+$ pour tout $\theta \in \Theta$ par :

$$L_n(\theta) = f_{\theta}(X_1, \dots, X_n)$$

On définit la log-vraisemblance $l_n: \Theta \longrightarrow [-\infty, +\infty[$ par $l_n(\theta) = \log L_n$.

Définition 6 (estimateur du maximum de vraissemblance, EMV) -

Soit (X_1, \ldots, X_n) un n-échantillon de vraissemblance L_n . On appelle un estimateur du maximum de vraissemblance $\hat{\theta}_n$ toute estimateur qui satisfait :

$$\hat{\theta}_n \in \operatorname{argmax}_{\Theta} L_n(\theta) = \operatorname{argmax}_{\Theta} l_n(\theta)$$

Définition 7 (racine de l'équation de vraissemblance) -

Soit (X_1, \ldots, X_n) un n-échantillon. On suppose que, pour tout θ^* , $\theta \mapsto l_n(\theta)$ est \mathcal{C}^1 \mathbb{P}_{θ^*} -presque sûrement. On appelle racine de l'équation de vraissemblance $\hat{\theta}_n$ tout estimateur de θ qui vérifie :

$$\nabla_{\theta} l_n(\hat{\theta}_n) = 0$$

Exemples.

1. (modèle gaussien)

 $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \{N(m, \sigma^2), m \in \mathbb{R}, \sigma^2 \in \mathbb{R}_+^*\})$ modèle dominé par Leb.

$$q_{\theta}(x_i) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x_i - m)^2}{2\sigma^2}\right)$$

$$\frac{1}{n}l_n(\theta) = \frac{1}{n}\sum_{i=1}^n \log q_{\theta}(X_i) = \frac{1}{n}\sum_{i=1}^n \frac{(X_i - m)^2}{2\sigma^2} - \frac{\log(2\pi\sigma^2)}{2}$$

On peut montrer que $\theta \mapsto \frac{1}{n}l_n(\theta)$) admet un unique maximum :

$$\hat{\mu}_n = \frac{1}{n} \sum_{i=1}^n X_i$$
 $\hat{\sigma}_n = \frac{1}{n} \sum_{i=1}^n (X_i - \hat{\mu}_n)^2$

2. L'EMV n'existe pas forcément. $(\mathbb{R}, \mathcal{B}(\mathbb{R}), (\mathbb{Q}_{\theta})_{\Theta}), \mathbb{Q}_{\theta} \ll \text{Leb } \forall \theta$

$$\frac{d\mathbb{Q}_{\theta}}{d\text{Leb}}(x) = \frac{e^{-|x-\theta|/2}}{2\sqrt{2\pi|x-\theta|}}$$

On considère la vraissemblance associée à (X_1, \ldots, X_n) :

$$L_n(\theta) = \prod_{i=1}^n \frac{e^{-|X_i - \theta|/2}}{2\sqrt{2\pi|X_i - \theta|}}$$

On a que $\lim_{\theta \to X_i} L_n(\theta) = +\infty$.

5 M-estimateurs

On a définit l'EMV comme maximum de $l_n(\theta)$ ou $L_n(\theta)$ qui sont utilisées comme approximation à la place de la fonction $\mathbb{E}_{\theta^*}[\log q_{\theta}(X_1)]$.

$$\hat{\theta}_n \in \operatorname{argmax} l_n(\theta)$$

L'idée tout d'abord est de considérer d'autres fonctions $m \colon \mathbb{X} \times \Theta \longrightarrow \mathbb{R}$ et on définit alors :

$$M(\theta, \theta^*) = \mathbb{E}_{\theta^*}[m(X_1, \theta)]$$

On suppose (ou on choisit en fait) m, et donc M, tel que $\forall \theta^*, \theta \mapsto M(\theta, \theta^*)$ admet un unique maximum atteint en θ^* . On a pas accès à θ^* , donc pas non plus à M mais on remplace M par :

$$M_n(\theta) = \frac{1}{n} \sum_{j=1}^{n} m(X_j, \theta)$$

Définition 8 —

Soit (X_1, \ldots, X_n) un n-échantillon du modèle $\{\mathbb{Q}_{\theta} : \theta \in \Theta\}$. Soit $m \colon \mathbb{X} \times \Theta \longrightarrow \mathbb{R} \cup \{-\infty\}$ vérifiant :

$$\mathbb{E}_{\theta_1}[|m|(X_1, \theta_2)] < +\infty \quad \forall \theta_1, \theta_2 \in \Theta$$

Un M-estimateur associé à m est tout estimeur $\hat{\theta}_n$ vérifiant :

$$\hat{\theta}_n \in \operatorname{argmax}_{\theta \in \Theta} M_n(\theta)$$

où
$$M_n(\theta) = \frac{1}{n} \sum_{j=1} m(X_j, \theta)$$
.

Lien avec les Z-estimateurs. Si $\forall x \in \mathbb{X}, \ \theta \mapsto m(x,\theta)$ est \mathcal{C}^1 sur Θ , alors $\hat{\theta}_n$ vérifie :

$$\nabla_{\theta} M_n(\hat{\theta}_n) = 0 \quad \Leftrightarrow \quad \frac{1}{n} \sum_{j=1}^n \nabla_{\theta} m(X_j, \hat{\theta}_n) = 0$$

et donc $\hat{\theta}_n$ est un Z-estimateur pour $\psi = \nabla_{\theta} m(.,.)$.

Remarque. Tout M-estimateur n'est pas réciproquement un Z-estimateur et réciproquement.