Работа 1.4.8 Измерение модуля Юнга методом акустического резонанса

Подлесный Артём группа 827

12 сентября 2020 г.

Содержание

1	Цель работы						
2	Обо	рудов	ание	2			
3	Отч	ет о р	работе	2			
	3.1	Обща	я теория	2			
		3.1.1	Распространение продольных волн в тонких стержнях	2			
		3.1.2	Собственные колебания стержня	3			
		3.1.3	Измерение скорости распространения продольных волн в стержне	4			
		3.1.4	Описание экспериментальной установки	4			
	3.2	Сняти	ие эскпериментальных данных	5			
		3.2.1	Медь	5			
		3.2.2	Сталь	5			
		3.2.3	Дюраль	6			
		3.2.4	Добротность	8			
	3.3	Обраб	ботка экспериментальных данных	8			
4	Вы	вод		10			

1 Цель работы

Исследование явления акустического резонанса. Измерение скорости распространения продольных колебаний в тонких стрежнях. Измерение модуля Юнга различных материалов.

2 Оборудование

Генератор звуковых частот, частотомер, осциллограф, электромагнитные излучатель и приемник колебаний, набор стержней из различных материалов (стали, алюминия, меди).

3 Отчёт о работе

3.1 Общая теория

3.1.1 Распространение продольных волн в тонких стержнях

Распространение продольных волн в тонких стержнях Акустические волны, распространяющиеся в металлических стержнях, существенно отличаются от волн в неограниченной среде. Строгий анализ распространения таких волн связан с довольно громоздкими математическими расчетами. Будем рассматривать волны, длина λ которых велика по сравнению с радиусом R стержня. Опишем распространение продольной волны вдоль оси тонкого стержня постоянного сечения площадью S. Стержень считается тонким в том случае, когда радиус стержня R мал по сравнению с длиной волны λ , т.е. $R/\lambda \ll 1$.

Направим ось х вдоль геометрической оси стержня (рис. 1). Под действием продольной

Рис. 1: Силы, действующие на элемент стержня при продольных колебаниях

силы F элементарный отрезок стержня Δx , ограниченный плоскостями Δx и $(x+\Delta x)$, растянется или сожмется на величину $\Delta \xi = \frac{\partial \xi}{\partial x} \Delta x$, где $\frac{\partial \xi}{\partial x}$ — относительное удлинение, т. е. деформация элемента стержня. Напряжение σ (т. е. сила, действующая на единицу поперечного сечения стержня) согласно закону Гука равно

$$\sigma = \frac{F}{S} = E \frac{\partial \xi}{\partial x}.\tag{1}$$

Коэффициент пропорциональности E носит название модуля Юнга и имеет размерность H/m2. В результате переменной деформации вдоль оси стержня будет распространяться

продольная волна. Действительно, в сечениях x и $x + \Delta x$ напряжения будут различными, а их разность можно записать следующим образом:

$$\sigma(x + \Delta x) - \sigma(x) = \frac{1}{S} \frac{\partial \xi}{\partial x} \Delta x = \frac{\partial}{\partial x} \left(\frac{F}{S} \right) \Delta x. \tag{2}$$

Эта разность напряжений вызовет движение элемента стержня массой $m = S\rho\Delta x$ вдоль оси x (ρ — плотность материала стержня). Используя соотношения (1) и (2), на основании второго закона Ньютона уравнение движения этого элемента можно записать в виде:

$$S\rho\Delta x \frac{\partial^2 \xi}{\partial t^2} = SE \frac{\partial^2 \xi}{\partial x^2} \Delta x. \tag{3}$$

Обозначив E/ρ через c_{ct}^2 , выражение (3) запишем в следующем виде:

$$\frac{\partial^2 \xi}{\partial t^2} = c_{\text{cr}}^2 \frac{\partial^2 \xi}{\partial x^2}.$$
 (4)

Это уравнение носит название волнового уравнения. Оно, в частности, описывает распространение продольных волн в стержне. Общее решение волнового уравнения можно представить в форме двух бегущих волн, распространяющихся в обе стороны вдоль оси x со скоростью $c_{\rm cr}^2$:

$$\xi(x,t) = f(c_{cT}t - x) + g(c_{cT}t + x), \tag{5}$$

где f и g — произвольные функции (определяемые начальными и граничными условиями). Параметр $c_{\rm cr}$ в выражениях (4) и (5) имеет смысл скорости распространения волны. В рассматриваемом нами случае $R/\lambda \to 0$ скорость распространения упругой продольной волны стремится к величине

$$c_{\rm ct} \approx \sqrt{\frac{E}{\rho}}.$$
 (6)

В данной работе исследуются именно такие волны.

Отметим, что в высокочастотном (т. е. коротковолновом) пределе при $\lambda \ll R$ скорость акустических волн в стержне стремится к скорости продольных волн в неограниченной среде (μ — коэффициент Пуассона):

$$c_{i} = \sqrt{\frac{E(1+\mu)}{\rho(1+\mu)(1-2\mu)}}.$$
 (7)

3.1.2 Собственные колебания стержня

В случае гармонического возбуждения колебаний с частотой f продольная волна в тонком стержне может быть представлена в виде суперпозиции двух бегущих навстречу друг другу синусоидальных волн:

$$\xi(x,t) = A_1 \sin(\omega t - kx + \varphi_1) + A_2 \sin(\omega t + kx + \varphi_1), \tag{8}$$

где $\omega=2\pi f$ — циклическая частота, коэффициент $k=2\pi/\lambda$ называют волновым числом или пространственной частотой. Здесь первое слагаемое описывает волну, бегущую в положительном направлении по оси x, второе — в отрицательном. Скорость их распространения равна

$$c_{\text{ct}} = \omega/k$$
.

Несложно показать, что при отражении синусоидальной волны от свободного конца стержня, её фаза не изменяется. Тогда

$$L = n \frac{\lambda_{\rm n}}{2}.\tag{9}$$

Таким образом, на длине стержня должно укладываться целое число полуволн.

3.1.3 Измерение скорости распространения продольных волн в стержне

Зная плотность материала и величину скорости $c_{\rm ct}$ можно по формуле (6) вычислить модуль Юнга материала E. Для определения скорости $c_{\rm ct}$ в данной работе используется метод акустического резонанса. Это явление состоит в том, что при частотах гармонического возбуждения, совпадающих с собственными частотами колебаний стержня $f \approx f_{\rm n}$, резко увеличивается амплитуда колебаний, при этом в стержне образуется стоячая волна. В данной работе возбуждение колебаний происходит посредством воздействия на торец стержня периодической силой, направленной вдоль его оси. Зная номер гармоники n и частоту $f_{\rm n}$, на которой наблюдается резонансное усиление амплитуды колебаний, вызванных периодическим воздействием на торец стержня, можно рассчитать скорость распространения продольных волн в стержне:

$$c_{\rm cr} = f_{\rm n}\lambda_{\rm n} = \frac{2Lf_{\rm n}}{n}.$$
 (10)

Таким образом, для того, чтобы измерить скорость $c_{\rm cr}$, нужно измерить частоты резонансных гармоник для различных n, и зная геометрические размеры стержня, рассчитать скорость по формуле (15). Далее, по формуле (6) можно рассчитать и модуль Юнга материала, из которого изготовлен стержень. Этот метод определения модуля Юнга материала является одним из самых точных.

3.1.4 Описание экспериментальной установки

Рис. 3. Схема установки: 1 — генератор звуковой частоты, 2 — частотомер, 3 — осциллограф, 4 — электромагнит-возбудитель, 5 — образец, 6 — электромагнит-приемник, 7 — усилитель звуковой частоты, 8 — блок питания усилителя, 9, 11 — стойки крепления электромагнитов, 10 — стойка крепления образца, 12 — направляющая.

Рис. 2: Установка с описанием

3.2 Снятие эскпериментальных данных

Для начала мы собрали экспериментальную установку так как, показано в предыдущем разделе. После подготовления всех элементов и настройки осциллографа мы приступили к снятию экспериментальных данных. Для каждого стержня данные представлены в отдельном пункте.

3.2.1 Медь

Размер 1 Линейные размеры представлены с помощью этой таблицы:

Медь1	L, mm	d, mm	M, gr	V, cm^3
Значение	605	12,0	636,34	68,424
Погрешность	1	0,2	0,3	0,024

Исходя из этого, плотность стержня:

$$\rho = (9, 30 \pm 0, 01)gr/cm^3. \tag{11}$$

На данной талице представлена зависимость частоты резонанса для соответсвтвенных гармоник:

n	1	2	3	4	5
f, Hz	3214,7	6444,8	9646,4	12884	16048,4

Размер 2 Линейные размеры представлены с помощью этой таблицы:

Медь2	L, mm	d, mm	M, gr	V, cm^3
Значение	532	10,0	375,1	41,78
Погрешность	1	0,2	0,3	0,03

Исходя из этого, плотность стержня:

$$\rho = (8,98 \pm 0,02)gr/cm^3. \tag{12}$$

На данной талице представлена зависимость частоты резонанса для соответсвтвенных гармоник:

3.2.2 Сталь

Размер 1 Линейные размеры представлены с помощью этой таблицы: Исходя из этого, плотность стержня:

$$\rho = (7,712 \pm 0,008)gr/cm^3. \tag{13}$$

На данной талице представлена зависимость частоты резонанса для соответсвтвенных гармоник:

n	1	2	3	4	5
f, Hz	3804,4	7606	11391,3	15234,2	19005

Сталь1	L, mm	d, mm	M, gr	V, cm^3
Значение	605	12,2	545,43	70,724
Погрешность	1	0,2	0,3	0,026

n	1	2	3	4	5
f, Hz	4127,4	-	12380,6	16556,4	20602,2

Сталь2	L, mm	d, mm	M, gr	V, cm^3
Значение	401	8,0	157,53	20,16
Погрешность	1	0,2	0,3	0,03

n	1	2	3	4	5
f, Hz	6438,6	12885	19317	25749	32142

Размер 2 Линейные размеры представлены с помощью этой таблицы: Исходя из этого, плотность стержня:

$$\rho = (7,81 \pm 0,03)gr/cm^3. \tag{14}$$

На данной талице представлена зависимость частоты резонанса для соответсвтвенных гармоник:

3.2.3 Дюраль

Размер 1 Линейные размеры представлены с помощью этой таблицы:

Дюраль1	L, mm	d, mm	M, gr	V, cm^3
Значение	604	11,8	192,04	66,053
Погрешность	1	0,2	0,3	0,025

Исходя из этого, плотность стержня:

$$\rho = (2,907 \pm 0,006)gr/cm^3. \tag{15}$$

На данной талице представлена зависимость частоты резонанса для соответсвтвенных гармоник:

n	1	2	3	4	5
f, Hz	4244,5	8495	12730	16976	21204

Размер 2 Линейные размеры представлены с помощью этой таблицы:

Дюраль2	L, mm	d, mm	M, gr	V, cm^3
Значение	436	9,9	93,451	33,562
Погрешность	1	0,2	0,3	0,036

Исходя из этого, плотность стержня:

$$\rho = (2,782 \pm 0,012)gr/cm^3. \tag{16}$$

На данной талице представлена зависимость частоты резонанса для соответсвтвенных гармоник:

\overline{n}	1	2	3	4	5
f, Hz	5834,9	-	-	-	1

Половинный резонанс Для дюрали 1 размера мы так же померили частоту резонанса для "половинной гармоники". Это значение равно 2122,1 герца. Это – фотография рисунка, получившаяся на осциллографе в момент резонанса: Этот результат можно объяснить

Рис. 3: Узор на осциллографе

следующим образом: как уже было сказано ранее, общее решение волнового уравнения можно представить в форме двух бегущих волн, распространяющихся в обе стороны вдоль оси x со скоростью $c_{\rm c}^2$:

$$\xi(x,t) = f(c_{\text{ct}}t - x) + g(c_{\text{ct}}t + x),$$

где f и g — произвольные функции (определяемые начальными и граничными условиями). Далее было получено упрощенное решение этого уравнения, однако полное решение этого уравнения — это произведение двух рядов Фурье волновой функции, и из этого уравнения получается, что при половине собственной частоты стержня для его первой гармоники все равно возникает резонанс, а фигура, показанная на фото — это фигура Лиссажу, которая показывает, что частота волны, поступающей со стержня в 2 раза больше частоты волны, поступающей с генератора частот. Это объясняется тем же решением уравнений Фурье, из которых получается интерференция половинных волн первой гармоники, которые вместе дают резонансную частоту.

3.2.4 Добротность

Для измерения добротности системы, для каждого из стержней мы снимали в амплитудно-частотную характеристику $A(f-f_1)$ колебаний вблизи первого резонанса. Ширина максимума $A(f-f_n)$, как известно из теории колебаний, связана с добротностью Q стержня как колебательной системы: если Δf — ширина амплитудно-частотной характеристики на уровне $A = \frac{A_{max}}{\sqrt{2}}$, то

$$Q = \frac{f}{\Delta f} \tag{17}$$

Для каждого из стержней мы смотрели ширину пика первой гармоники. Полученные значения указаны в таблице:

Медь		Сталь		Дюраль	
f_r , Hz	3214,6	f_r , Hz	4127,2	f_r , Hz	4242,12
f_1 , Hz	3214,2	f_1 , Hz	4125,4	f_1 , Hz	4241,7
f_2 , Hz	3214,8	f_2 , Hz	4128	f_2 , Hz	4242,6
Q_1	8037	Q_1	2293	Q_1	10100
Q_2	16073	Q_2	5157	Q_2	8838

Мы измеряли ширину пика "с двух сторон', при меньшем значении f_1 , и большем – f_2 . Как видно из таблицы, погрешности такого измерения добротности уже не меньше 50%, поэтому данные служат лишь для оценки порядка добротности нашей системы. Такая неточность в измерении савязана в первую очередь с тем, что система для выставления частоты на генераторе очень неустойчивая, а пик резонанса по ширине имеет порядок единиц Γ ц.

3.3 Обработка экспериментальных данных

Построим графики для каждого стержня размера 1.

Рис. 4: Гармоники Меди

$\mathbf{Meдb}$ Отсюда находим c_{cr} :

$c_{ m ct1},~{ m M/c}$	$\sigma_{c1},~{ m m/c}$	$c_{ m ct2},~{ m m/c}$	σ_{c2} , м/с
3892	15	4046	24

Здесь результаты для двух размеров меди.

Рис. 5: Гармоники Стали

Сталь Отсюда находим $c_{\text{ст}}$:

$c_{ m ct1},~{ m M/c}$	$\sigma_{c1},~{ m m/c}$	$c_{ m ct2},~{ m M/c}$	σ_{c2} , м/с
4995	20	5163	26

Рис. 6: Гармоники Дюрали

$c_{ m ct1},~{ m m/c}$	$\sigma_{c1},~{ m m/c}$	$c_{ m ct2},~{ m M/c}$	$\sigma_{c2},~{ m M/c}$
5127	21	5088	48

Дюраль Отсюда находим $c_{\text{ст}}$:

Таким образом, мы можем найти модуль Юнга для каждого из стержней, воспользовавшись формулой:

$$E = \rho c_{cr}^2. \tag{18}$$

Таким образом запишем результаты в таблицу и сравним с табличными значениями.

$N_{ar{0}}$	Медь	Табличные данные для меди
$E_1, \Pi a$	$(1.409 \pm 0.012) \times 10^{11}$	$(1.30 \pm 0.15 \times 10^{11})$
E_2 , Πa	$(1.470 \pm 0.014) \times 10^{11}$	
$N_{ar{0}}$	Сталь	Табличные данные для стали
$E_1, \Pi a$	$(1.924 \pm 0.015) \times 10^{11}$	$(2.1 \pm 0.1) \times 10^{11}$
E_2 , Πa	$(2.082 \pm 0.018) \times 10^{11}$	
$N_{ar{0}}$	Дюраль	Табличные данные для Дюраля
$E_1, \Pi a$	$(0.763 \pm 0.009) \times 10^{11}$	$(0.73 \pm 0.05) \times 10^{11}$
E_2 , Πa	$(0.720 \pm 0.010) \times 10^{11}$	

4 Вывод

Таким образом мы исследовали свойства акустического резонанса и измерили модуль Юнга для трех металлов с достаточно хорошей точностью. Как видно, данные соотносятся с табличными с учетом погрешности. Многие характеристики для стержней разных размеров не совпадают, даже с учетом погрешности, из чего можно сделать вывод, что они были сделаны из разных партий сплавов, или с разной термической обработкой. Так же мы показали, что оборудование недостаточно чувствительное для того, чтобы измерить добротность системы, однако позволяет оценить ее порядок.