#01. 작업준비

패키지 참조

그래프 초기화

데이터 가져오기

#02. ARIMA 분석 수행

학습 결과에 대한 예측값 생성

이후 10 단계의 예측값 생성

관측치와 예측치의 비교 결과 시 각화

시계열 데이터 분석 (정석)

#01. 작업준비

패키지 참조

```
from pandas import read_excel
from matplotlib import pyplot as plt
from matplotlib import dates as mdates
from statsmodels.tsa.arima.model import ARIMA
from datetime import timedelta
import seaborn as sb
import sys
```

그래프 초기화

```
plt.rcParams["font.family"] = 'AppleGothic' if sys.platform = 'darwin'
plt.rcParams["font.size"] = 12
plt.rcParams["figure.figsize"] = (15, 5)
plt.rcParams["axes.unicode_minus"] = False
```

데이터 가져오기

#01. 작업준비

패키지 참조

그래프 초기화

데이터 가져오기

#02. ARIMA 분석 수행

학습 결과에 대한 예측값 생성

이후 10 단계의 예측값 생성

관측치와 예측치의 비교 결과 시 각화

<pre>df = read_excel("https://data.hossam.kr/E06/air_passengers.xlsx", in df</pre>	ndex_
4	•

	Passengers
Month	
1949-01-01	112
1949-02-01	118
1949-03-01	132
1949-04-01	129
1949-05-01	121
1960-08-01	606
1960-09-01	508
1960-10-01	461
1960-11-01	390
1960-12-01	432

144 rows × 1 columns

#02. ARIMA 분석 수행

#01. 작업준비

패키지 참조

그래프 초기화

데이터 가져오기

#02. ARIMA 분석 수행

학습 결과에 대한 예측값 생성

이후 10 단계의 예측값 생성

관측치와 예측치의 비교 결과 시 각화

13 시계열분석(정석).ipynb

시계열 데이터를 계절 ARIMA 모델에 맞추려고 할 때 첫 번째 목표는 측정항목을 최적화하는 ARIMA(p,d,q)(P,D,Q)s 값을 찾는 것

```
# 기본수행 -> order=(p,d,q)
#model = ARIMA(df['Passengers'], order=(1,2,0))

# 계절성 고려 -> seasonal_order=(P,D,Q,s)
# 월단위 데이터이므로 1년 주기로 보고 주기는 12로 설정(분석가가 직접 판단)
model = ARIMA(df['Passengers'], order=(1,2,0), seasonal_order=(1,2,0,12)

fit = model.fit()
print(fit.summary())
```

c:\Users\leekh\AppData\Local\Programs\Python\Python311\Lib\site-packages
self._init_dates(dates, freq)

c:\Users\leekh\AppData\Local\Programs\Python\Python311\Lib\site-packages
self._init_dates(dates, freq)

c:\Users\leekh\AppData\Local\Programs\Python\Python311\Lib\site-packages
self._init_dates(dates, freq)

SARIMAX Results

Dep. Variable: Passengers No. Observations:

Model: ARIMA(1, 2, 0)x(1, 2, 0, 12) Log Likelihood

Date: Fri, 04 Aug 2023 AIC Time: 15:14:05 BIC

#01. 작업준비

패키지 참조

그래프 초기화

데이터 가져오기

#02. ARIMA 분석 수행

학습 결과에 대한 예측값 생성

이후 10 단계의 예측값 생성

관측치와 예측치의 비교 결과 시 각화

Sample:	01-01-1949	HQIC
---------	------------	------

Sample:	01-01-1949	HQIC

- 12-01-1960 opg

Covariance Type:

	coef	std err	Z	P> z	[0.025	
ar.L1 ar.S.L12	-0.6988 -0.5743	0.078 0.087	-9.008 -6.606	0.000	-0.851 -0.745	
sigma2	314.2623	33.935	9.261	0.000	247.751	3
Ljung-Box ((L1) (Q):		7.80	Jarque-Bera	(JB):	
Prob(Q): Heteroskeda	asticity (H):		0.01 1.85	Prob(JB): Skew:		
Prob(H) (to			0.06	Kurtosis:		

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (d

학습 결과에 대한 예측값 생성

```
start_index = 0
end index = len(df['Passengers'])
pd = fit.predict(start=start_index, end=end_index)
pd
```

#01. 작업준비

패키지 참조

그래프 초기화

데이터 가져오기

#02. ARIMA 분석 수행

학습 결과에 대한 예측값 생성

이후 10 단계의 예측값 생성

관측치와 예측치의 비교 결과 시 각화

1949-01-01						
1949-03-01 124.026712 1949-04-01 145.979273 1949-05-01 126.019141 1960-09-01 477.004006 1960-10-01 436.744842 1960-11-01 428.093455 1960-12-01 435.128564	1949-01-01	0.000000				
1949-04-01	1949-02-01	195.988808				
1949-05-01 126.019141 1960-09-01 477.004006 1960-10-01 436.744842 1960-11-01 428.093455 1960-12-01 435.128564	1949-03-01	124.026712				
1960-09-01 477.004006 1960-10-01 436.744842 1960-11-01 428.093455 1960-12-01 435.128564	1949-04-01	145.979273				
1960-09-01 477.004006 1960-10-01 436.744842 1960-11-01 428.093455 1960-12-01 435.128564	1949-05-01	126.019141				
1960-10-01		•••				
1960-11-01	1960-09-01	477.004006				
1960-12-01 435.128564	1960-10-01	436.744842				
	1960-11-01	428.093455				
1961-01-01 432.016710	1960-12-01	435.128564				
	1961-01-01	432.016710				
Freq: MS, Name: predicted_mean, Length: 145, dtype: float64	Freq: MS, Na	me: predicted_mean,	Length:	145,	dtype:	float64

이후 10 단계의 예측값 생성

fc = fit.forecast(10)
fc

```
1961-01-01
              432.016710
1961-02-01
              395.569595
1961-03-01
              404.189553
1961-04-01
              459.418748
1961-05-01
              455.818546
1961-06-01
              499.898325
1961-07-01
              589.469959
1961-08-01
              547.689220
1961-09-01
              438.423581
```

#01. 작업준비

패키지 참조

그래프 초기화

데이터 가져오기

#02. ARIMA 분석 수행

학습 결과에 대한 예측값 생성

이후 10 단계의 예측값 생성

관측치와 예측치의 비교 결과 시 각화

```
1961-10-01 376.157403
```

Freq: MS, Name: predicted_mean, dtype: float64

관측치와 예측치의 비교 결과 시각화

```
plt.figure(figsize=(20,8))
# 원본
sb.lineplot(x=df.index, y=df['Passengers'])
# 원본을 토대로 학습하여 예측한 값
sb.lineplot(x=pd.index, y=pd, linestyle='--')
# 이후 10단계를 예측한 값
sb.lineplot(x=fc.index, y=fc, linestyle='--', color='red')
plt.xlabel('Month')
plt.ylabel('Passengers')
# 그래프의 x축이 날짜로 구성되어 있을 경우 형식 지정
monthyearFmt = mdates.DateFormatter('%y.%m.%d')
plt.gca().xaxis.set major formatter(monthyearFmt)
plt.grid()
plt.show()
plt.close()
```

file:///D:/13_시계열분석(정석).ipynb

23. 8. 4. 오후 3:54

시계열 데이터 분석 (정석)

#01. 작업준비

패키지 참조

그래프 초기화

데이터 가져오기

#02. ARIMA 분석 수행

학습 결과에 대한 예측값 생성

이후 10 단계의 예측값 생성

관측치와 예측치의 비교 결과 시 각화

