

Convolution Neural Network

Computer Vision and Deep learning

컴퓨터 비전은 딥러닝의 발전 영역에 있어서 가장 두각을 나타내는 분야 중 하나

EXAMPLE

Image Classification

Object Detection

• Neural style Transfer

Computer Vision and Deep learning

- 64 x 64 x 3
- 입력 값 x의 크기: 12288

Neural Network

- 1000 x 1000 x 3
- 입력 값 x의 크기: 3백만

Convolution Operation

- 사람과 컴퓨터가 이미지를 받아들이고 해석하는 과정은 유사
- 컴퓨터는 Convolution 메커니즘으로 이러한 과정을 구현해 낸다

보다 High level feature를 인식해 나감

Convolution Operation with Edge Detection

• 즉, 컴퓨터가 Input Image를 인식할 때 처음으로 할 일은 Vertical/ Horizon Edge를 찾는 것

Filter

• Filter(of Kernel)을 적용해 Convolution operation(합성곱 연산)을 수행함으로써 Edge를 찾아낸다

$$3x1 + 1x1 + 2x1 + 0x0 + 5x0 + 7x0 + 1x-1 + 8x-1 + 2x-1 = -5$$

3 ₁	0	1	2 -①	7 ⊖	4 -1
11	5 _Φ	8_	9_	3 _Q	1 -1
2	7	2 -(1	5_ _	1	3 ₋₁
01	1 _O	3 ₋₁	1 ₁	7 0	8 -1
4	2	1	6 ₁	2 _O	8 ₋₁
2	4	5	2	3 _0	9 -1

*convolution	1	0	-1	
	1	0	-1	=
	1	0	-1	
	3x3	3x1 F	ilter	
f	or ve	rtical	edg	е

-5	-4	0	8
-10	-2	2	3
0	-2	-4	-7
-3	-2	-3	-16

4x4x1 Output Image

6x6x1 Input Image

Filter

Vertical Edge

Filter

Vertical and Horizontal Edge Detection

1	0	-1
1	0	-1
1	0	-1

Vertical

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10

0 0 0

1	1	1
0	0	0
-1	-1	-1

Horizontal

0	0	0	0
30	10	-10	-30
30	10	-10	-30
0	0	0	0

Learning to detect Edges

- Image가 주어졌을 때, 그 이미지에서 우리가 윤곽선을 검출하기 위해서 filter를 직접 설정해줄 필요는 없다
- CNN에서는 filter의 원소를 parameter로 설정한 뒤, **Backpropagation**을 이용해 스스로 학습하게해서 최적의 filter를 찾는다

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5	1	3
0	1	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

w_1	W_2	W_3	
W_4	w_5	w_6	
w_7	<i>w</i> ₈	W ₉	

Padding

- n x n image를 f x f filter로 convolution 연산을 할 때마다 image size가 축소
- 또한 가장자리에 위치한 pixel이 output image에 덜 사용되어서 정보가 손실된다는 문제가 발생

Padding을 사용하지 않았을 때 output image의 크기: (n - f + 1)x(n - f + 1)

Padding

- 합성곱 연산을 수행하기 전에 입력 데이터(이미지) 주변을 특정 값 (예컨대 0)으로 채우는 기법
- Padding을 사용했을 때 output image의 크기: (n+2p-f+1)x(n+2p-f+1)
- output과 input의 크기가 같게 해주는 p = (f 1)/2

Stride

S = 2

	ilte	r l	-ilte	r l	Filte	r	•					
3	4	3	4	3	4	4						
1	-i t e	1	0	1	0	2						
3	4	4	0	-1	0	3		3	4	4		91 100 83
1	0	2	6	6	F B te	r4	*	1	0	2	=	69 91 127
-1	0	3	8	3	4	4		-1	0	3		44 72 74
3	2	4	1	1	0	2	25	3x3	Sx1 F	ilter		3x3x1
0	1	3	9	-1	0	3						Output image

7x7x1 Input Image

- Filter의 적용 위치 간격
- output image: $(n + 2p f)/s + 1 \times (n + 2p f)/s + 1$

Summary of convolutions

output image:
$$\frac{n + 2p - f}{s} + 1 \times \frac{n + 2p - f}{s} + 1$$

Convolutions over volumes

• convolutions on RGB images

Convolutions over volumes

Multiple Features

If, stride = 1 & No padding

output image: $n - f + 1 \times n - f + 1 \times n'_c$

사용한 filter의 개수

One layer of a convolutional Network

• Example of a layer

CNN example

Pooling

1	3	2	1
2	9	1	1
1	3	2	3
5	6	1	2

1	3	2	1
2	9	1	1
1	3	2	3
5	6	1	2

Hyperparameter

f:2 S:2

Max Pooling

Average Pooling

9	2
6	3

3.75	1.25
3.75	2.0

- Pooling은 합성곱 계층과 달리 대상 영역에서 최댓값이나 평균을 취하는 명확한 처리이므로 학습해야 할 매개변수가 없음
- Pooling을 사용해도 채널 수가 변하지 않음
- 입력데이터가 조금 변해도 Pooling의 결과는 잘 변하지 않음
- 주로 f=2, s=2 가 자주 사용되고 이러한 Fooling은 높이와 너비를 절반 정도만큼 줄어들게 하는 효과가 있음

CNN

대표적인 CNN

LeNet

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

- LeNet은 손글씨 숫자를 인식하는 네트워크로, 1998년에 제안된 CNN의 원조
- 활성화 함수로 시그모이드 함수를 사용, 서브 샘플링을 하여 중간 데이터의 크기를 줄임

대표적인 CNN

AlexNet

- 2012년에 발표된 AlexNet은 딥러닝 열풍을 일으키는데 큰 역할
- 활성화함수로 ReLU를 이용, 드롭아웃을 사용, LRN이라는 국소적 정규화를 실시하는 계층을 이용

감사합니다