Title

D. Zack Garza

Contents

Contents

L	Mor	nday August 12
	1.1	Overview
		1.1.1 Chapter 2
		1.1.2 Chapter 3-4
	1.2	Classification
	1.3	Chapters 4-5
		1.3.1 Chapter 6
		1.3.2 Chapter 7
		1.3.3 Topics
	1.4	Content
	1.5	Linear Lie Algebras

Contents 2

1 | Monday August 12

The material for this class will roughly come from Humphrey, Chapters 1 to 5. There is also a useful appendix which has been uploaded to the ELC system online.

\sim 1.1 Overview \sim

Here is a short overview of the topics we expect to cover:

1.1.1 Chapter 2

- Ideals, solvability, and nilpotency
- Semisimple Lie algebras
 - These have a particularly nice structure and representation theory
- Determining if a Lie algebra is semisimple using Killing forms
- Weyl's theorem for complete reducibility for finite dimensional representations
- Root space decompositions

1.1.2 Chapter 3-4

We will describe the following series of correspondences:

\sim 1.2 Classification \sim

The classical Lie algebras can be essentially classified by certain classes of diagrams:

Monday August 12 3

Figure 1: The Dynkin diagrams of the simple root systems

1.3 Chapters 4-5

~

These cover the following topics:

- Conjugacy classes of Cartan subalgebras
- The PBW theorem for the universal enveloping algebra
- Serre relations

1.3.1 Chapter 6

Some import topics include:

- Weight space decompositions
- Finite dimensional modules
- Character and the Harish-Chandra theorem
- The Weyl character formula
 - This will be computed for the specific Lie algebras seen earlier

We will also see the type A_{ℓ} algebra used for the first time; however, it differs from the other types in several important/significant ways.

1.3.2 Chapter 7

Skip!

1.3 Chapters 4-5

1.3.3 Topics

Time permitting, we may also cover the following extra topics:

- Infinite dimensional Lie algebras [Carter 05]
- BGG Cat- \mathcal{O} [Humphrey 08]

1.4 Content

Fix F a field of characteristic zero – note that prime characteristic is closer to a research topic.

Definition 1.4.1.

A Lie Algebra \mathfrak{g} over F is an F-vector space with an operation denoted the Lie bracket,

$$[\cdot,\cdot]:\mathfrak{g}\times\mathfrak{g}\to\mathfrak{g}$$

 $(x,y)\mapsto[x,y].$

satisfying the following properties:

- $[\cdot, \cdot]$ is bilinear
- [x, x] = 0
- The Jacobi identity:

$$[x, [y, z]] + [y, [x, z]] + [z, [x, y]] = \mathbf{0}.$$

Exercise 1.4.1: Show that [x, y] = -[y, x].

Definition 1.4.2.

Two Lie algebras $\mathfrak{g}, \mathfrak{g}'$ are said to be isomorphic if $\varphi([x,y]) = [\varphi(x), \varphi(y)]$.

1.5 Linear Lie Algebras

Let $V = \mathbb{F}^n$, and define $\operatorname{End}(V) = \{f : V \to V \mid V \text{ is linear}\}$. We can then define $\mathfrak{gl}(n,V)$ by setting $[x,y] = (x \circ y) - (y \circ x)$.

Exercise 1.5.1: Verify that V is a Lie algebra.

1.4 Content 5

Definition 1.5.1.

Define

$$\mathfrak{sl}(n,V) = \left\{ f \in \mathfrak{gl}(n,V) \mid \operatorname{Tr}(f) = 0 \right\}.$$

(Note the different in definition compared to the lie $group \, \mathrm{SL}(n,V)$.).

Definition 1.5.2.

A subalgebra of a Lie algebra is a vector subspace that is closed under the bracket.

Definition 1.5.3.

The symplectic algebra

$$\mathfrak{sp}(2\ell, F) = \left\{ A \in \mathfrak{gl}(2\ell, F) \mid MA - A^TM = 0 \right\} \text{ where } M = \left(\begin{array}{c|c} 0 & I_n \\ \hline -I_n & 0 \end{array} \right).$$

Definition 1.5.4.

The orthogonal algebra

$$\mathfrak{so}(2\ell,F) = \left\{ A \in \mathfrak{gl}(2\ell,F) \; \middle| \; MA - A^TM = 0 \right\} \; \text{where}$$

$$M = \begin{cases} \left(\begin{array}{c|c} 1 & 0 \\ \hline 0 & \overline{I_n} \\ \hline -I_n & 0 \end{array} \right) & n = 2\ell + 1 \; \text{odd}, \\ \\ \left(\begin{array}{c|c} 0 & I_n \\ \hline -I_n & 0 \end{array} \right) & \text{else.} \end{cases}$$

Proposition 1.5.1.

The dimensions of these algebras can be computed;

• The dimension of $\mathfrak{gl}(n,\mathbb{F})$ is n^2 , and has basis $\{e_{i,j}\}$ the matrices if a 1 in the i,j position and zero elsewhere.

x is determined to force the trace to be zero

- For type A_{ℓ} , we have $\dim \mathfrak{sl}(n,\mathbb{F}) = (\ell+1)^2 1$.
- For type C_{ℓ} , we have $||\mathfrak{sp}(n,\mathbb{F})| = \ell^2 + 2\left(\frac{\ell(\ell+1)}{2}\right)$, and so elements here

$$\left(\begin{array}{cc} A & B = B^t \\ C = C^t & A^t \end{array}\right).$$

• For type D_{ℓ} we have

$$||\mathfrak{so}(2\ell,\mathbb{F}) = \dim \left\{ \left(\begin{array}{cc} A & B = -B^t \\ C = -C^t & -A^t \end{array} \right) \right\},$$

which turns out to be $2\ell^2 - \ell$.

• For type B_{ℓ} , we have $\dim \mathfrak{so}(2\ell, \mathbb{F}) = 2\ell^2 - \ell + 2\ell = 2\ell^2 + \ell$, with elements of the form

$$\begin{pmatrix}
0 & M & N \\
-N^t & A & C = C^t \\
-M^t & B = B^t & -A^t
\end{pmatrix}.$$

Exercise 1.5.2: Use the relation $MA = A^{tM}$ to reduce restrictions on the blocks.

Theorem 1.5.1.

These are all of the isomorphisms between any of these types of algebras, in any dimension.