Lecture 11

EECS 483: COMPILER CONSTRUCTION

Announcements

- HW3: LLVM lite
 - Available on the course web pages.
 - Due: Tues., February 20th at 11:59pm

it is officially too late to **START EARLY!!**

- Midterm: Tuesday, March 12th
 - 7-9pm, DOW 1013 and 1014 (seat assignments will be announced later)
 - One-page, letter-sized, double-sided "cheat sheet" of notes permitted
 - Coverage: interpreters / program transformers / x86 / calling conventions / IRs / LLVM / Lexing / Parsing
 - See examples of previous exams on the web pages
 - March 11 class: review/office hours, no lecture

Parsing

а

```
Source Code
(Character stream)
if (b == 0) { a = 1; }
```

Token stream:

if

b

Lexical Analysis

Parsing

Abstract Syntax Tree:

Intermediate code:

=

0

```
11:
    %cnd = icmp eq i64 %b,
0
    br i1 %cnd, label %12,
label %13
12:
    store i64* %a, 1
    br label %13
13:
```

Analysis & Transformation

Backend

Assembly Code

```
11:
    cmpq %eax, $0
    jeq 12
    jmp 13
12:
    ...
```

Parsing: Finding Syntactic Structure

CONTEXT FREE GRAMMARS

Context-free Grammars

Here is a specification of the language of balanced parens:

$$S \mapsto (S)S$$

 $S \mapsto \varepsilon$

Note: Once again we have to take care to distinguish meta-language elements (e.g. "S" and "→") from object-language elements (e.g. "(").*

- The definition is <u>recursive</u> S mentions itself.
- Idea: "derive" a string in the language by starting with S and rewriting according to the rules:
 - Example: $S \mapsto (S)S \mapsto ((S)S)S \mapsto ((\epsilon)S)S \mapsto ((\epsilon)S)E \mapsto ((\epsilon)E)E = (())E$
- You can replace the "nonterminal" S by one of its definitions anywhere
- A context-free grammar accepts a string iff there is a derivation from the start symbol

CFGs Mathematically

- A Context-free Grammar (CFG) consists of
 - A set of *terminals* (e.g., a lexical token or ε)
 - A set of *nonterminals* (e.g., S and other syntactic variables)
 - A designated nonterminal called the start symbol
 - A set of productions: LHS \mapsto RHS
 - LHS is a nonterminal
 - RHS is a *string* of terminals and nonterminals
- Example: The balanced parentheses language:

$$S \mapsto (S)S$$

 $S \mapsto \varepsilon$

How many terminals? How many nonterminals? Productions?

Another Example: Sum Grammar

A grammar that accepts parenthesized sums of numbers:

$$S \mapsto E + S \mid E$$

$$E \mapsto number \mid (S)$$

e.g.:
$$(1 + 2 + (3 + 4)) + 5$$

Note the vertical bar '|' is shorthand for multiple productions:

$$S \mapsto E + S$$

 $S \mapsto E$
 $E \mapsto \text{number}$
 $E \mapsto (S)$

4 productions

2 nonterminals: S, E

4 terminals: (,), +, number

Start symbol: S

Derivations in CFGs

Example: derive (1 + 2 + (3 + 4)) + 5

 $S \mapsto E + S \mid E$ $E \mapsto \text{number} \mid (S)$

• Example: derive
$$(1 + 2 + (3 + 4)) + 5$$

•
$$\underline{\mathbf{S}} \mapsto \underline{\mathbf{E}} + \mathbf{S}$$

 $\mapsto (\underline{\mathbf{S}}) + \mathbf{S}$
 $\mapsto (\underline{\mathbf{E}} + \mathbf{S}) + \mathbf{S}$
 $\mapsto (1 + \underline{\mathbf{S}}) + \mathbf{S}$
 $\mapsto (1 + \underline{\mathbf{E}} + \mathbf{S}) + \mathbf{S}$
 $\mapsto (1 + 2 + \underline{\mathbf{S}}) + \mathbf{S}$
 $\mapsto (1 + 2 + (\underline{\mathbf{S}})) + \mathbf{S}$
 $\mapsto (1 + 2 + (\underline{\mathbf{E}} + \mathbf{S})) + \mathbf{S}$
 $\mapsto (1 + 2 + (3 + \underline{\mathbf{S}})) + \mathbf{S}$
 $\mapsto (1 + 2 + (3 + \underline{\mathbf{E}})) + \mathbf{S}$
 $\mapsto (1 + 2 + (3 + 4)) + \underline{\mathbf{S}}$
 $\mapsto (1 + 2 + (3 + 4)) + \underline{\mathbf{E}}$

 \mapsto (1 + 2 + (3 + 4)) + 5

For arbitrary strings α , β , γ and production rule $A \mapsto \beta$ a single step of the derivation is:

$$\alpha A \gamma \mapsto \alpha \beta \gamma$$

(*substitute* β for an occurrence of A)

In general, there are many possible derivations for a given string

Note: Underline indicates symbol being expanded.

From Derivations to Parse Trees

- Tree representation of the derivation
- Leaves of the tree are terminals
 - In-order traversal yields the input sequence of tokens
- Internal nodes: nonterminals
- No information about the order of the derivation steps

From Parse Trees to Abstract Syntax

Derivation Orders

- Productions of the grammar can be applied in any order.
- There are two standard orders:
 - Leftmost derivation: Find the left-most nonterminal and apply a production to it.
 - Rightmost derivation: Find the right-most nonterminal and apply a production there.
- Idea: These are search strategies for finding a parse tree
 - Both strategies (and any other) yield the same parse tree!
 - Parse tree doesn't contain the information about what order the productions were applied.

Example: Left- and rightmost derivations

Leftmost derivation:

•
$$\underline{\mathbf{S}} \mapsto \underline{\mathbf{E}} + \mathbf{S}$$

 $\mapsto (\underline{\mathbf{S}}) + \mathbf{S}$
 $\mapsto (\underline{\mathbf{E}} + \mathbf{S}) + \mathbf{S}$
 $\mapsto (1 + \underline{\mathbf{S}}) + \mathbf{S}$
 $\mapsto (1 + \underline{\mathbf{E}} + \mathbf{S}) + \mathbf{S}$
 $\mapsto (1 + 2 + \underline{\mathbf{E}}) + \mathbf{S}$
 $\mapsto (1 + 2 + (\underline{\mathbf{E}}) + \mathbf{S})$
 $\mapsto (1 + 2 + (\underline{\mathbf{E}} + \mathbf{S})) + \mathbf{S}$
 $\mapsto (1 + 2 + (3 + \underline{\mathbf{E}})) + \mathbf{S}$
 $\mapsto (1 + 2 + (3 + \underline{\mathbf{E}})) + \mathbf{S}$
 $\mapsto (1 + 2 + (3 + 4)) + \underline{\mathbf{S}}$
 $\mapsto (1 + 2 + (3 + 4)) + \underline{\mathbf{E}}$
 $\mapsto (1 + 2 + (3 + 4)) + \underline{\mathbf{E}}$
 $\mapsto (1 + 2 + (3 + 4)) + \underline{\mathbf{E}}$

Rightmost derivation:

Loops and Termination

- Some care is needed when defining CFGs
- Consider:

$$S \longmapsto E$$

$$E \longmapsto S$$

- This grammar has nonterminal definitions that are "nonproductive".
 (i.e. they don't mention any terminal symbols)
- There is no finite derivation starting from S, so the language is empty.
- Consider: $S \mapsto (S)$
 - This grammar is productive, but again there is no finite derivation starting from S, so the language is empty
- Easily generalize these examples to a "cycle" of many nonterminals, which can be harder to find in a large grammar
- Upshot: be aware of "vacuously empty" CFG grammars.
 - Every nonterminal should eventually rewrite to an alternative that contains only terminal symbols.

Associativity, ambiguity, and precedence.

GRAMMARS FOR PROGRAMMING LANGUAGES

Associativity

Consider the input: 1 + 2 + 3

 $S \mapsto E + S \mid E$ $E \mapsto \text{number} \mid (S)$

Leftmost derivation: Rightmost derivation:

$$\underline{S} \mapsto \underline{E} + S$$

$$\mapsto 1 + \underline{S}$$

$$\mapsto 1 + \underline{E} + S$$

$$\mapsto 1 + 2 + \underline{S}$$

$$\mapsto 1 + 2 + \underline{E}$$

$$\mapsto 1 + 2 + 3$$

$$\begin{array}{c}
\mathbf{S} & \longmapsto \mathbf{E} + \mathbf{S} \\
& \longmapsto \mathbf{E} + \mathbf{E} + \mathbf{S} \\
& \longmapsto \mathbf{E} + \mathbf{E} + \mathbf{E} \\
& \longmapsto \mathbf{E} + \mathbf{E} + 3 \\
& \longmapsto \mathbf{E} + 2 + 3 \\
& \longmapsto 1 + 2 + 3
\end{array}$$

Associativity

- This grammar makes '+' *right associative*...
 - i.e., the abstract syntax tree is the same for both 1 + 2 + 3 and 1 + (2 + 3)
- Note that the grammar is *right recursive*...

```
S \mapsto E + S \mid E

E \mapsto \text{number} \mid (S)
```

S refers to itself on the right of +

- How would you make '+' left associative?
- What are the trees for "1 + 2 + 3"?

Ambiguity

Consider this grammar:

$$S \mapsto S + S \mid (S) \mid number$$

- Claim: it accepts the same set of strings as the previous one.
- What's the difference?
- Consider these *two* leftmost derivations:

$$-\underline{\mathbf{S}} \mapsto \underline{\mathbf{S}} + \mathbf{S} \mapsto \mathbf{1} + \underline{\mathbf{S}} \mapsto \mathbf{1} + \underline{\mathbf{S}} \mapsto \mathbf{1} + \mathbf{2} + \underline{\mathbf{S}} \mapsto \mathbf{1} + \mathbf{2} + \mathbf{3}$$

$$- \underline{\mathbf{S}} \mapsto \underline{\mathbf{S}} + S \mapsto \underline{\mathbf{S}} + S + S \mapsto 1 + \underline{\mathbf{S}} + S \mapsto 1 + 2 + \underline{\mathbf{S}} \mapsto 1 + 2 + 3$$

- One derivation gives left associativity, the other gives right associativity to '+'
 - Which is which?

Why do we care about ambiguity?

- The '+' operation is associative, so it doesn't matter which tree we pick. Mathematically, x + (y + z) = (x + y) + z
 - But, some operations aren't associative. Examples?
 - Some operations are only left (or right) associative. Examples?
- Moreover, if there are multiple operations, ambiguity in the grammar leads to ambiguity in their *precedence*
- Consider:

$$S \mapsto S + S \mid S * S \mid (S) \mid number$$

- Input: 1 + 2 * 3
 - One parse = (1 + 2) * 3 = 9
 - The other = 1 + (2 * 3) = 7

Eliminating Ambiguity

- We can often eliminate ambiguity by adding nonterminals and allowing recursion only on the left (or right).
- Higher-precedence operators go farther from the start symbol.
- Example:

$$S \mapsto S + S \mid S * S \mid (S) \mid number$$

- To disambiguate:
 - Decide (following math) to make '*' higher precedence than '+'
 - Make '+' left associative
 - Make '*' right associative
- Note:
 - S₂ corresponds to 'atomic' expressions

$$S_0 \mapsto S_0 + S_1 \mid S_1$$

 $S_1 \mapsto S_2 * S_1 \mid S_2$
 $S_2 \mapsto \text{number} \mid (S_0)$

Context Free Grammars: Summary

- Context-free grammars allow concise specifications of programming languages.
 - An unambiguous CFG specifies how to parse: convert a token stream to a (parse tree)
 - Ambiguity can (often) be removed by encoding precedence and associativity in the grammar.
- Even with an unambiguous CFG, there may be more than one derivation
 - Though all derivations correspond to the same abstract syntax tree.
- Still to come: finding a derivation
 - But first: menhir

parser.mly, lexer.mll, range.ml, ast.ml, main.ml

DEMO: BOOLEAN LOGIC