ЗАДАНИЕ НА ПРОЕКТИРОВАНИЕ НЦФ

- 1. Изучить метод проектирования НЦФ с линейной ФЧХ на основе аппроксимации заданной идеальной АЧХ фильтра нижних частот модифицированным гармоническим рядом Фурье (метод "окон").
- 2. Согласно варианту индивидуальных заданий (см. табл. 3) спроектировать $\mathsf{H} \mathsf{L} \Phi$ (в частности, определить порядок N фильтра, изучить влияние типа "окна" на $\mathsf{A} \mathsf{L} \mathsf{L} \mathsf{L} \Phi$ и др., см. пример 1).
- 3. Пользуясь пакетом прикладных программ DNF, провести испытание синтезированного в виде программы для ПЭВМ типа IBM PC нерекурсивного фильтра с прямоугольным "окном".

Для этой цели необходимо поочерёдно подавать на вход НЦФ сформированные подпрограммами:

- a) единичный импульс $\overline{\delta}(k)$;
- б) единичную последовательность $\bar{1}(k)$;
- в) дискретизированные синусоидальный и косинусоидальный сигналы с частотой $w (0 \le w \le w_n)$;
- г) полигармонический сигнал (для решения модельной задачи фильтрации)

$$x(k) = x_1(k) + x_2(k) + x_3(k) = 1 \cdot \sin(w_1 k \Delta t) + 1 \cdot \sin(w_2 k \Delta t) + 1 \cdot \sin(w_3 k \Delta t),$$
 где $0 < w_1 < w_n; w_3 < w_2 < (1,1...1,2)w_3; 1,2 w_3 < w_3 < (1,5...1,7)w_3;$

д) четырёхточечную последовательность.

Анализируя реакции (выходные сигналы) фильтра на соответствующие входные воздействия:

- а) записать импульсную функцию g(k) фильтра;
- б) определить фронт нарастания переходной функции h(k) фильтра (в отсчётах, от 0,1 до 0,9 установившегося значения без учёта задержки, равной L отсчётам);
- в) зарисовать с экрана (или выполнить распечатку на принтере) графики H(w), $\Psi(w)$, $\alpha(w)$, g(k), h(k), входной x(k) и выходной y(k) полигармонические сигналы, реакцию y(k) фильтра на четырёхточечный входной сигнал;
- г) рассчитать "вручную" реакцию фильтра y(k) на четырёхточечный входной сигнал, равную свёртке входного сигнала x(k) и импульсной функции g(k) фильтра, т. е. y(k) = x(k) * g(k), при k = L, L + 1 и L + 2 и сравнить полученные значения отсчётов с результатами машинного расчёта. Для выполнения операции свёртки четыре отсчёта входного сигнала нужно построить в обратном направлении k таким образом, чтобы отсчёт x(0) оказался бы напротив центрального отсчёта g(L) импульсной характеристики фильтра. При этом значение выходного отсчёта

$$y(L) = x(0)g(L) + x(1)g(L-1) + x(2)g(L-2) + x(3)g(L-3).$$

Далее, смещая поочерёдно на один шаг вправо сигнал x(k), определить выходные отсчёты y(L+1) и y(L+2).

4. Сформулировать выводы.

Таблица 3 Исходные данные для проектирования нерекурсивных и рекурсивных Цф нижних частот

	1			_			Ι _
Номер						Тип	Входной
вари-	f_n	f_3 ,	\mathcal{E}_n	\mathcal{E}_3	f_{∂} ,	"окна"	четырёхто
анта	кГц	кГц			кГц	для	чечный
allia						ΗЦФ	сигнал
1 (16)	4,8	9,6 (13,2)	0,0013	0,032	48	1 и 2	{1,-1, 2,-2}
2 (17)	2,4	4,8 (9,6)	0,0025	0,025	48	1 и 3	{-1,1, -2,2}
3 (18)	1,2	3,0 (4,8)	0,004	0,017	48	1 и 4	{-2,-1, 1,2}
4 (19)	2,0	6,0 (8,0)	0,006	0,011	48	1 и 2	{1, 2,-1,-2}
5 (20)	1,6	6,4 (8,0)	0,008	0,009	32	1 и 3	{1,2, -2, 1}
6 (21)	1,0	5,0 (6,0)	0,010	0,0075	32	1 и 4	{1, 1, 1, 1}
7 (22)	1,6	8,0 (9,6)	0,012	0,006	32	1 и 2	{1, 1, 2, 1}
8 (23)	3,2	9,6 (12,8)	0,015	0,005	32	1 и 3	{1, 2, 1, 1}
9 (24)	2,4	7,2 (9,6)	0,018	0,004	24	1 и 4	{-1,1, -1,1}
10 (25)	1,2	4,8 (6,0)	0,020	0,003	24	1 и 2	{1,-1, 1,-1}
11 (26)	2,4	8,0 (10,0)	0,025	0,0025	24	1 и 3	{2, 1, 1, 2}
12 (27)	1,0	4,0 (6,0)	0,030	0,002	24	1 и 4	{2, 2, 1, 1}
13 (28)	0,5	2,5 (4,5)	0,035	0,0017	10	1 и 2	{2, 1, 2, 1}
14 (29)	0,5	2,0 (2,5)	0,040	0,0013	10	1 и 3	{1, 1, 1, -1}
15 (30)	0,6	3,0 (5,4)	0,045	0,001	10	1 и 4	{1,-1, 1, 1}