

WATTROUTER M - UŽIVATELSKÁ PŘÍRUČKA

PRO MODELY:
WATTROUTER M SSR (WRM 01/06/12 A WT 02/10)
WATTROUTER M MAX (WRM 01/06/12 A WT 03/11)

NÁVOD K INSTALACI A NASTAVENÍ PŘÍSTROJE

Verze dokumentu: 2.4

Datum poslední revize: 3. 6. 2020

Výrobce: SOLAR controls s.r.o.

OBSAH

Obecné informace	4
Základní popis funkce	5
Obsah balení	6
Bezpečnostní upozornění	7
Návod k instalaci přístroje	8
Nastavení přístroje	15
Instalace ovladače USB připojení	15
Instalace programu WATTconfig M	18
Základní nastavení regulátoru	18
Nastavení funkce CombiWATT	20
Nastavení časových plánů	21
Nastavení vstupů FB	21
Ukončení nastavení	22
Popis položek programu WATTconfig M	23
Hlavní okno	23
Měřené veličiny a stavy	24
Karta Nastavení vstupů	26
Karta Nastavení výstupů	28
Karta Časové plány	32
Karta Další nastavení	34
Karta Statistiky	38
Karta Log	40
Volby a tlačítka	40
Okno Nastavení ovladače rozhraní USB/COM	42
Okno Nastavení ovladače rozhraní LAN/UDP	42
Stavy LED	43
Příklady nastavení	44
Příklad 1 - pouze jeden spotřebič	44
Příklad 2 – všech 6 spotřebičů, regulace = součet fází	46
Příklad 3 – všech 6 spotřebičů, regulace = každá fáze zvlášť	48
Příklad 4 – 5 spotřebičů, regulace = každá fáze zvlášť	50
Nastavení sítě Ethernet	52
Nastavení připojení k lokální síti	52

WATTrouter M - uživatelská příručka

Nastavení připojení k Internetu	53
Popis webového rozhraní a XML komunikace	54
Řešení potíží	61
Údržba a opravy přístroje	65
Technická specifikace	66
Recyklace	68
FU Prohlášení o shodě	69

OBECNÉ INFORMACE

WATTrouter M je programovatelný regulátor vlastní spotřeby fotovoltaických elektráren (dále jen FVE) pracujících v režimu zelený bonus, popř. obdobném režimu. Po správné instalaci a nastavení regulátor dokonale optimalizuje vlastní spotřebu elektřiny vyrobené vaší FVE. WATTrouter M se skládá z měřicího modulu a vlastního regulátoru.

WATTrouter M zajišťuje následující funkce:

- Třífázové nepřímé měření velikosti proudu.
- Jednofázová detekce napětí pro určení směru proudu ve fázi L1, pro ostatní 2 fáze se počítá softwarově.
- Vyhodnocení činných výkonů v jednotlivých fázích pro stanovení přebytku vyrobené energie.
- Regulace podle součtu výkonů (sumárního přebytku) ze všech tří fází nebo podle přebytku v každé fázi.
- Spínání až 6 výstupů (2 triakových, 2 reléových a 2 externích polovodičových relé- SSR) podle nastavitelných priorit.
- Optimální využití přebytků z FVE v proporcionálních výstupech synchronním spínáním ohmické zátěže v souladu s evropskými normami EN 61000-3-2 a EN 61000-3-3.
- Velmi krátká průměrná dynamická odezva regulátoru (do 10 s)
- Volitelný program CombiWATT pro spínání zátěží v kombinovaném režimu přebytek FVE + nízký tarif
 (vhodný především pro ohřev TUV a např. i pro bazénové filtrace).
- Vstup pro signál nízkého tarifu (noční proud) pro funkci CombiWATT (kombinovaný režim provozu).
- 3 vstupy FB pro připojení impulzních výstupů externích elektroměrů.
- Oddělený měřicí modul a regulátor pro snadnější instalaci do stávajících domovních rozvodů.
- Software WATTconfig pro Microsoft Windows, Linux a MAC OS X zajišťuje komfortní nastavení a sledování činnosti regulátoru pomocí rozhraní USB a Ethernet.
- Integrované webové rozhraní umožňující komfortní nastavení a sledování činnosti regulátoru pomocí běžného internetového prohlížeče.
- Modul reálného času zálohovaného lithiovou baterií pro pokročilé řízení výstupů i funkce CombiWATT.
- Denní, týdenní, měsíční a roční statistiky výroby, přebytků a spotřeby.
- Možnost aktualizace firmwaru

ZÁKLADNÍ POPIS FUNKCE

Měřicí modul v reálném čase měří proud ve všech fázích. Regulátor vyhodnocuje měřené proudy a je-li zjištěna výroba FVE, spíná připojené spotřebiče podle nastavitelných priorit, přičemž se neustále snaží udržet nulový tok energie měřicím modulem, tzv. "virtuální nulu" (součet činných výkonů ve všech třech fázích = 0) nebo volitelně na každé fázi odděleně, tzv. "fázovou nulu".

Spínání dle priorit probíhá následovně:

Ve výchozím stavu (v noci) jsou všechny spotřebiče vypnuté. Je-li ráno zjištěna výroba FVE (součet činných výkonů je větší než nula), dojde k sepnutí výstupu s první (nejvyšší) prioritou.

Okamžik sepnutí se liší podle nastavené funkce výstupu.

- výstupy s nastavenou funkcí plynulé regulace popř. PWM (proporcionální výstupy triaky a SSR) se sepnou prakticky ihned po zjištění výroby a regulátor jimi plynule (synchronním řízením popř. PWM modulací) udržuje "virtuální nulu" nebo "fázovou nulu".
- výstupy s nastavenou funkcí relé (reléové výstupy) se sepnou až tehdy, překročí-li výkon FVE
 nastavený údaj o příkonu spotřebiče. Alternativně lze tyto výstupy provozovat v režimu tzv. předřazení
 při dostatku výkonu na proporcionálním výstupu, čímž lze dosáhnout maximálního využití vyrobené
 elektrické energie viz funkce Předřadit před triaky/SSR.

Po sepnutí spotřebiče s první prioritou (u proporcionálního výstupu sepnutí na nastavený maximální výkon) se čeká, až výkon FVE opět stoupne (rozednívá se). Je-li i při tomto sepnutém spotřebiči zjištěna výroba, sepne se ve shodném režimu spotřebič s druhou prioritou.

Při dalším zvýšení výkonu FVE se ve shodném režimu připnou další spotřebiče.

Dojde-li ke snížení výkonu FVE nebo k zapnutí jiného spotřebiče nepřipojeného na WATTrouter, sepnuté výstupy se opět odpojí dle nastavených priorit (nejprve se odpojí spotřebič s nejnižší prioritou).

U výstupů s funkcí relé lze nastavit minimální dobu sepnutí. Je-li zároveň s tímto výstupem sepnut proporcionální výstup s vyšší prioritou a dojde ke snížení výkonu FVE, proporcionální výstup sníží výkon spotřebiče (i na nulu) tak, aby byla pokud možno udržena virtuální nula/fázová nula na měřicím modulu.

Regulátor vyjma předchozího odstavce nikdy neporuší stanovené priority.

Výše uvedený princip platí pouze u standardního zapojení měřicího modulu ihned za elektroměrovým rozvaděčem tak, aby WATTrouter využíval pouze skutečné přebytky FVE (doporučené zapojení). Regulátor ovšem lze zapojit i tak, aby využil celou výrobu FVE a na ostatní spotřebiče v objektu nedbal zřetel.

Výše popsaný základní regulační režim lze kombinovat se sepnutím za podmínky přítomnosti signálu nízkého tarifu (režim CombiWATT) nebo sepnutím podle nastavené časové podmínky (časové plány).

Přístroj není určen k přesnému měření výkonů (nenahrazuje wattmetr ani elektroměr). Měření výkonů je zabezpečeno s dostatečnou přesností pro zajištění všech regulačních funkcí.

OBSAH BALENÍ

Balení obsahuje:

- 1 ks WATTrouter M regulátor
- 1 ks WATTrouter M měřicí modul
- 1 ks USB kabel
- 1 ks krátký návod s odkazy na tento návod, software a aktualizace firmwaru.

BEZPEČNOSTNÍ UPOZORNĚNÍ

Po obdržení zásilky zkontrolujte neporušenost obalu. Po otevření obalu zkontrolujte neporušenost regulátoru a měřicího modulu. Regulátor ani měřicí modul neinstalujte, vykazují-li známky mechanického poškození!

Instalaci regulátoru a měřicího modulu svěřte vždy osobě s příslušnou elektrotechnickou kvalifikací. Je bezpodmínečně nutné pečlivě pročíst tento návod a dodržet všechna bezpečnostní upozornění v něm uvedená.

Regulátor i měřicí modul musí být umístěn v suché místnosti bez zvýšené prašnosti. Místo musí být chráněno před přímým slunečním zářením a okolní teplota se nesmí pohybovat mimo rozsah uvedený v kap. Technická specifikace. Regulátor ani další elektronické komponenty systému neumísťujte v blízkosti hořlavých předmětů!

V případě aktivace triakových výstupů nebo připojení výkonových polovodičových relé (SSR) na SSR výstupy je bezpodmínečně nutné instalovat regulátor i tato SSR v rozvaděči s dostatečným odvodem tepla (s větrací mřížkou nebo větracími otvory) a zajistit jejich dostatečné chlazení v souladu s instalačním manuálem!

Je nutné zamezit přístupu neoprávněných osob, zejména dětí, do místa instalace regulátoru. Hrozí zde vážné riziko úrazu elektrickým proudem!

Na výstupy regulátoru připojujte jen takové elektrické spotřebiče, které jsou pro tento režim provozu vhodné a uzpůsobené a u nichž výrobce výslovně nezakazuje připojení přes spínací prvek!

Výrobce neručí za jakékoli škody v případě neodborné instalace a obsluhy přístroje! Za provoz celého systému zodpovídá v plné míře jeho vlastník.

NÁVOD K INSTALACI PŘÍSTROJE

WATTrouter M regulátor lze instalovat do běžného elektrorozvodného rozvaděče upevněním na lištu DIN 35mm nebo přišroubováním na zeď 2 šrouby s půlkulatou či zápustnou hlavou o průměru do 6mm.

WATTrouter M proudový měřicí modul lze instalovat do běžného elektrorozvodného rozvaděče na lištu DIN 35mm.

Regulátor ani měřicí modul nelze dle stávající legislativy instalovat do elektroměrového rozvaděče!

Měřicí vstupy regulátoru lze zapojit jedno-, dvou- a třífázově.

Doporučená maximální vzdálenost měřicího modulu a regulátoru je 2m. Větší vzdálenost je možná, ale malou měrou ovlivňuje přesnost měření.

Je-li provlečení běžně používaných vodičů CYKY proudovými transformátory v měřicím modulu obtížné, použijte ohebné kabely (lanka), jimiž prodloužíte stávající připojení. Při instalaci měřicího modulu nevyvíjejte přílišné deformační tlaky, které by mohly modul poškodit!

Tip: Jednotlivé fázové vodiče lze měřicím modulem provléknout libovolným směrem. Směr proudu pak lze nakonfigurovat v nastavení přístroje.

K připojení napájení regulátoru a použijte vodiče s min. průřezem 0,5 mm², např. CYKY 1,5.

Připojení výkonových obvodů spotřebičů k reléovým výstupům proveďte vodiči s průřezem odpovídajícím příkonu připojených spotřebičů.

Připojení výkonových obvodů spotřebičů k výkonovým triakům a SSR proveďte rovněž vodiči s průřezem odpovídajícím příkonu připojených spotřebičů.

K propojení měřicího modulu a regulátoru (vstupy Y a ILx) použijte 4žilový kabel s průřezem žil 0,5 až 1,5 mm². Jsou-li přívody delší než 2m nebo mají souběh s jinými silovými vodiči, použijte pokud možno stíněný kabel.

Připojení ovládání výkonových SSR nebo analogového ovládání PWM k SSR výstupům proveďte vodiči s průřezem žil 0,5 až 1,5 mm². Jsou-li přívody delší než 2m nebo mají souběh s jinými silovými vodiči, použijte pokud možno stíněný kabel.

Připojení impulzních signálů SO z externích elektroměrů ke vstupům FB proveďte 2žilovým kabelem s průřezem žil 0,5 až 1,5 mm² mezi svorku GND a příslušný vstup FB. Jsou-li přívody delší než 2m nebo mají souběh s jinými silovými vodiči, použijte pokud možno stíněný kabel.

Stínění všech kabelů propojte se svorkou GND co nejblíže regulátoru.

Obrázek 1: Popis konektorů a LED (pohled shora).

Popis svorek regulátoru:

Horní svorkovnice (tato jedině akceptuje síťové napětí!):

L1 – napájení regulátoru a detekce napětí L1, 230VAC/50Hz (musí být vždy zapojeno)

- N nulový vodič (musí být vždy zapojen)
- R1 1 reléový výstup 1 svorka 1
- R1_2 reléový výstup 1 svorka 2
- R2_1 reléový výstup 2 svorka 1
- R2_2 reléový výstup 2 svorka 2
- T1 1 triakový výstup 1 anoda A1
- T1_2 triakový výstup 1 anoda A2
- T2 1 triakový výstup 2 anoda A1
- T2_2 triakový výstup 2 anoda A2

Dolní levá svorkovnice:

- FB2 vstup pro připojení impulzního výstupu externího elektroměru (0V nebo +5V)
- FB3 vstup pro připojení impulzního výstupu externího elektroměru (0V nebo +5V)

Dolní pravá svorkovnice:

- GND signálová zem
- IL1 měřicí vstup proudu L1 z měřicího modulu (musí být vždy zapojen)
- IL2 měřicí vstup proudu L2 z měřicího modulu
- IL3 měřicí vstup proudu L3 z měřicího modulu
- LT detekce signálu nízkého tarifu (0V nebo +5V)
- FB1 vstup pro připojení impulzního výstupu externího elektroměru (0V nebo +5V)
- S+ externí výstupy SSR společná kladná elektroda (+5V vůči GND)
- S1- externí výstup pro SSR 1 záporná elektroda (otevřený kolektor)
- S2- externí výstup pro SSR 2 záporná elektroda (otevřený kolektor)

Komunikační konektory vlevo dole:

- USB konektor USB rozhraní (USB B)
- LAN konektor Ethernet rozhraní (RJ45, 10/100 Mbit/s)
- •
- •
- •
- •
- •
- •
- •
- •
- _
- .

Popis LED:

- PWR LED indikace napájení regulátoru (zelená)
- USB LED indikace komunikace přes USB rozhraní (žlutá)
- ERR LED indikace chybového stavu (červená)
- T1 LED indikace aktivity triakového výstupu 1
- T2 LED indikace aktivity triakového výstupu 2
- R1 LED indikace aktivity reléového výstupu 1
- R2 LED indikace aktivity reléového výstupu 2

- S1 LED indikace aktivity externího výstupu pro SSR 1
- S2 LED indikace aktivity externího výstupu pro SSR 2
- Konektor RJ45 indikace připojení rozhraní Ethernet (levá LED rychlost připojení, pravá LED aktivita na lince)

Ostatní konektory:

• MicroSD – rezervovaný slot pro SD kartu (není využito)

Obrázek 2: Popis svorek měřicího modulu WT 02/10 pro WATTrouter M SSR a WT 03/11 pro WATTrouter M MAX.

Popis svorek měřicího modulu (svorky jsou popsány přímo na základní desce měřicího modulu pro model M MAX):

- GND společný vodič (musí být vždy zapojen)
- IL1 měřicí výstup proudu L1 (musí být vždy zapojen)
- IL2 měřicí výstup proudu L2
- IL3 měřicí výstup proudu L3

Regulátor zapojte dle vzorových zapojení na obrázcích uvedených níže, při dodržení základních principů lze zapojení různě kombinovat. Lze zapojit různý počet spotřebičů na libovolné výstupy, v určitých případech lze vyjmout některý fázový vodič z měření aj.

Obrázek 3: Třífázové zapojení s obvodem signálu nízkého tarifu pro režim CombiWATT, popř. časové plány. Měřicí modul zapojen ihned za přívodem z elektroměrového rozvaděče, připojené spotřebiče využívají pouze skutečné přebytky z FVE. Je zapojeno 6 spotřebičů, 2

z nich přes SSR řady RJ1A výrobce Carlo Gavazzi. Je připojen 1 elektroměr typu EM10 výrobce Carlo Gavazzi s pulzním výstupem (otevřený kolektor) na vstup FB1. Elektroměr může měřit jakýkoli energetický tok, např. výrobu FVE.

Obrázek 4: Třífázové zapojení se 2 měřicími moduly a obvodem signálu nízkého tarifu pro program CombiWATT. Toto zapojení je nezbytné v případě, že propojení výstupu FVE s domovním rozvodem není přístupné např. z důvodu původního zapojení FVE v režimu výkupních cen a pozdější změny na režim zelený bonus. Měřicí modul 1 zapojen ve větvi domovního rozvodu, měřicí modul 2 ve větvi připojení FVE. Přesnost měření výkonů se v tomto zapojení vlivem konečné impedance sekundárních vinutí měřicích proudových transformátorů snižuje na ±10%. Pozor: Toky proudů měřicími moduly se musí v tomto zapojení vždy odečítat (naznačeno šipkami na obrázku) a je nutné dodržet shodný sled fází u regulátoru i obou měřicích modulů!

Obrázek 5: Třífázové zapojení modelu WATTrouter M se 2 regulátory a bez obvodu signálu nízkého tarifu (nelze použít program CombiWATT). Zapojení ostatních modelů je analogické. Tímto zapojením lze rozšířit počet výstupů na 12. Měřicí modul zapojen ihned za

přívodem z elektroměrového rozvaděče, připojené spotřebiče využívají pouze skutečné přebytky z FVE. Pro jednoduchost jsou zapojeny pouze 3 ohmické (topné) spotřebiče, lze ale využít všech 12 výstupů. Obdobně lze napojit i 3 regulátory na 1 měřicí modul, pak každý regulátor funguje na jedné fázi a získáváme celkem 18 výstupů.

Obrázek 6: Připojení solid state relé řady RGS1A výrobce Carlo Gavazzi. Relé RGS1A nahrazují starší typy R1JA téhož výrobce. Lze použít i jiná SSR s obdobnými parametry (viz technická specifikace).

Obrázek 7: Zvětšení proudového rozsahu zařízení pro přípojky s hlavním jističem větším než 3x125A, kde již nestačí varianta MAX. Zde jsou použity transformátory 200/5A, lze užít i 400/5A apod. podle hodnoty hl. jističe objektu. Sekundární vinutí proudových transformátorů je zkratováno přes měřicí modul (sekundární obvod prochází měřicími transformátory v měřicím modulu). Zvětšení proudového rozsahu lze provést s oběma modely (SSR i MAX), ale doporučujeme model WATTrouter M SSR kvůli většímu rozsahu A/D převodníku při použití proudových transformátorů se jmenovitým sekundárním proudem 5A. Dalšího zlepšení proudového rozsahu dosáhneme tím, že sekundární obvod proudového transformátoru provlékneme (obtočíme) měřicím transformátorem v měřicím modulu vícekrát (u transformátorů 200/5A ideálně 4x pro dosažení optimálního převodního poměru 200/20A). Pro tento účel bývá

vhodné použít lanka, která nejsou ve vztahu k jmenovitému sekundárnímu proudu předimenzovaná. Je-li WATTrouter zapojen přes externí proudové transformátory, je zapotřebí správně nastavit převodní poměr – viz položka Převodní poměr externích MT v hlavním okně ovládacího softwaru WATTconfig M.

Regulátor se smí zapojovat pouze ve střídavých elektrorozvodných sítích s parametry 230VAC, 50 Hz. Regulátor je zapotřebí jistit jističem o doporučené velikosti B6A, připojené spotřebiče musí být rovněž odpovídajícím způsobem jištěny! Montáž provádějte při vypnutém hlavním jističi v elektroměrovém rozvaděči!

Po dokončení montáže pečlivě zkontrolujte zapojení regulátoru i měřicího modulu. Na veškeré svorky v dolní řadě svorkovnic NESMÍ být připojeno síťové napětí ani napětí mimo tolerance uvedené v technické specifikaci! Na triakových výstupech a připojených polovodičových relé (SSR) NESMÍ být zapojeny jiné nežli čistě ohmické (tepelné) spotřebiče! Na SSR výstupy se NESMÍ připojovat obyčejná dvoustavová relé! Není dovoleno zapojovat spotřebiče s větším než max. povoleným příkonem! Není-li tomu tak, dojde téměř jistě ke zničení regulátoru a ztrátě záruky!

Pro správnou funkci regulátoru je bezpodmínečně nutné zajistit správné sfázování měřených proudů s interní detekcí napětí regulátoru. To lze provést volbou příslušné fáze v záložce Nastavení vstupů. Jednoznačně doporučujeme zapojovat regulátor tak, aby fázový vodič přivedený na svorku L1 odpovídal fázovému vodiči provlečenému měřicím transformátorem příslušným ke vstupu IL1, čímž bude měření vyhovovat výchozímu nastavení regulátoru (a tedy stejně jako to bylo nutné u starších modelů resp. verzí firmwaru). Proudové vstupy IL2 a IL3 lze zapojit libovolně, příslušné fáze pro tyto vstupy se pak opět musí správně nastavit v ovládacím softwaru WATTconfig.

Spotřebiče připojené na triakové výstupy a výkonová polovodičová relé (SSR) jednoznačně doporučujeme jistit pojistkovými vložkami pro jištění polovodičů, např. pojistky řady PV510 xx gR s odpínačem OPV10 fy. OEZ, spíše než běžnými jističi. Upozorňujeme, že na SSR poškozená nadproudem nebo zkratem nelze uplatnit reklamaci. Dbejte na správné připojení polovodičových relé v souladu s uživatelským manuálem.

Mezi polovodičová relé a spotřebič není dovoleno instalovat žádná elektronická zařízení (různé měřicí a ochranné prvky, např. podružné elektroměry a proudové chrániče), neboť se může dojít vlivem impulzního napájení k jejich poškození! Tato zařízení případně vždy instalujte na vedení mezi pojistkovým odpojovačem a polovodičovým relé, kde je k dispozici stálé napájení.

Nachází-li se Váš objekt v oblasti se zvýšeným výskytem přepětí v síti v důsledku působení atmosférických výbojů (blesků), pak zejména doporučujeme odbornou instalaci vhodných svodičů přepětí již mezi elektroměrový rozvaděč a proudový měřicí modul!

Měřicí modul dodaný s regulátorem WATTrouter M SSR je plně kompatibilní s měřicím modulem dodaným se staršími typy regulátorů WATTrouter CWx, WATTrouter CWx SSR a naopak. Měřicí modul instalovaný spolu s těmito regulátory lze tedy užít k regulátoru WATTrouter M (a naopak).

V případě připojení počítače USB kabelem použijte VŽDY JEN JEDNU zásuvku USB na regulátoru. V opačném případě může dojít k poškození USB rozhraní v regulátoru!

V případě trvalého propojení regulátoru s PC pomocí USB rozhraní (zejména pak delším kabelem) jednoznačně doporučujeme připojení pomocí optického USB oddělovače popř. opticky odděleného USB rozbočovače!

Poznámka: Čistě ohmickými spotřebiči pro zapojení na triakové a SSR výstupy se zde rozumí tepelné spotřebiče, které nesmí mít vlastní elektronickou regulaci ani vestavěné točivé stroje (např. ventilátory – viz poznámka níže). Tepelné spotřebiče smí mít pouze klasické mechanické termostaty a indikační doutnavku popř. LED. Lze použít téměř jakýkoli sériově vyráběný bojler, infrazářič, rohož podlahového topení, bezmotorový vysoušeč (infra), olejový radiátor, elektropatronu v solární akumulační nádobě aj.

Poznámka: Triakový/SSR výstup ve funkci plynulé regulace vydrží dlouhodobě napájet i tepelné spotřebiče s vestavěným ventilátorem (fén, teplomet). Tyto spotřebiče ale mají vestavěnou tepelnou ochranu, která při použitém synchronním řízení zejména v nízkém výkonu triakového/SSR výstupu spotřebič odpojí (ventilátor má v tomto případě nízký výkon a nestačí dostatečně chladit topnou spirálu spotřebiče). Instalaci takových spotřebičů na triakové/SSR výstupy proto pečlivě zvažte.

Poznámka: Tepelné spotřebiče zapojené přes proudový chránič lze zapojit i na triakové resp. SSR výstupy.

Poznámka: Tepelné spotřebiče do příkonu 2 kW lze zapojit na reléové výstupy přímo bez použití stykače.

Po pečlivé kontrole zapojení regulátoru vypněte jističe/pojistkové odpojovače spotřebičů a zapněte hlavní jistič a dále jistič regulátoru. Rozsvítí se LED PWR (indikace napájení). Pokud se nerozsvítí, popř. nesvítí trvale nebo začne blikat LED ERR (chybový stav), postupujte dle kap. Řešení potíží. Ve výchozím stavu není aktivní žádný výstup a nebude tudíž spínán žádný spotřebič.

Nyní je regulátor nainstalován a připraven pro nastavení.

NASTAVENÍ PŘÍSTROJE

K nastavení přístroje je zapotřebí notebook popř. běžné stolní PC (umístěné v dostatečné blízkosti regulátoru) s USB rozhraním (dále jen počítač). Nastavení se provádí programem WATTconfig M, jehož instalaci najdete ke stažení na webových stránkách výrobce. Před instalací vlastního software WATTconfig M je zapotřebí nainstalovat ovladač USB připojení.

Pro připojení k USB rozhraní při manipulaci v rozvaděči je nutné z bezpečnostních důvodů vypnout celý rozvaděč.

Tip: Po nastavení připojení sítě Ethernet je možné veškeré nastavení včetně aktualizace firmwaru provádět pomocí rozhraní Ethernet. USB rozhraní není nutné použít vůbec, pokud se parametry připojené LAN shodují s výchozími parametry regulátoru a nenastane současně konflikt adres IP popř. konflikt fyzických MAC adres.

Nelze-li v nastavení z jakékoli příčiny pokračovat dále, postupujte dle kap. Řešení potíží.

INSTALACE OVLADAČE USB PŘIPOJENÍ

Popisy nastavení počítače, vyobrazení dialogových oken aj. jsou uvedeny pro operační systém Windows XP v české lokalizaci. Pro novější systémy je nastavení velmi podobné, případně zjednodušené. Novější operační systémy (Windows, Linux, MAC OS) také mívají tyto ovladače předinstalované, takže je možné tyto odstavce přeskočit.

- 1. Zasuňte přiložený USB kabel do USB konektoru regulátoru a do počítače.
- 2. Zapněte jistič regulátoru. Musí se rozsvítit zelená LED PWR (indikace napájení). Dále problikne žlutá LED USB (indikace komunikace), zařízení USB se registruje do počítače.
- 3. Na obrazovce počítače se po určité době musí objevit okno informující o nalezení nového zařízení:

4. Klikněte na položku: Ne, nyní ne. V následujícím okně klikněte na položku: Instalovat ze seznamu či daného umístění (pro zkušené uživatele).

5. Zvolte cestu k ovladači:

6. Ovladač je nainstalován, objeví-li se toto okno:

- 7. Objeví-li se v průběhu instalace upozornění na neplatný digitální podpis ovladače, výstrahu ignorujte. Zařízení se ve správci hardwaru identifikuje jako USB serial converter (nabídka Universal Serial Bus Controllers)
- 8. Shodnou instalaci proveďte i pro druhé zařízení USB Serial Port.

INSTALACE PROGRAMU WATTCONFIG M

- 1. Zapněte počítač.
- 2. Spustte program WATTconfig_M_Setup_x86_64.exe.
- 3. Postupujte dle pokynů na obrazovce.

ZÁKLADNÍ NASTAVENÍ REGULÁTORU

- 1. Z nabídky START spusťte program WATTconfig M. Objeví se hlavní okno programu.
- 2. Přesvědčte se, že je regulátor zapnutý a propojen s počítačem. Zkontrolujte, zda je ovladač USB rozhraní správně nainstalován.
- 3. Zvolte režim připojení přes USB (rozbalovací pole vedle tlačítka "Připojit").
- 4. Zvolte správný port připojení. To provedete pomocí rozbalovací nabídky Port v okně Konfigurace ovladače rozhraní USB/COM, který se objeví po stisku tlačítka Konfigurovat připojení.

Poznámka: Na rozdíl od regulátorů řady WATTrouter CWx nebo starších verzí firmwaru se u regulátorů WATTrouter M používá připojení pomocí sériového portu (COMx). Tento port je virtuální, neboť regulátor je připojen pomocí USB. Zobrazuje-li nabídka více portů, je nutno zjistit ve Správci zařízení, který port je přiřazen zařízení USB Serial Port.

- 5. Klikněte na tlačítko Připojit. Regulátor by měl být nyní připojen a indikátor (pruh) připojení by měl být zobrazen zeleně. Není-li tomu tak a objeví-li se chybové hlášení, vyčkejte, než bude ovladač USB v PC připraven k použití, případně zkontrolujte nastavení v okně Konfigurace ovladače rozhraní USB/COM. Okno zobrazíte stiskem tlačítka Konfigurovat připojení. Při prvním připojení WATTconfig nahraje do počítače tzv. mapu proměnných, která je nezbytná pro navázání další komunikace s regulátorem.
- 6. Po navázání úspěšné komunikace byste měli vidět aktuální měřené veličiny (výkony na jednotlivých fázích atd.). Žádný z výstupů by neměl být aktivní (priorita "nepoužito") a všechny časové plány by měly být rovněž nepoužité.
- 7. Nyní můžete přistoupit k nastavení měřicích vstupů ILx. Toto nastavení se provádí na kartě "Nastavení vstupů". Nastavuje se nejprve sled fází a poté směr toku proudů měřicím modulem.
 - a. Nastavení sledu fází: Vypněte FVE a na všech fázích, které se účastní měření, zapněte nějaký čistě ohmický (tepelný) spotřebič. Zobrazí se hodnoty měřených činných výkonů v jednotlivých fázích. Nyní neberte ohled na znaménka měřených výkonů. V nabídce Fáze zvolte příslušnou fázi pro daný vstup a stiskněte tlačítko Zapsat. Nastavení se zapíše do regulátoru. Pokud měřené hodnoty výkonů v jednotlivých fázích hrubě nesouhlasí se skutečností, přiřaďte příslušnému vstupu jinou fázi a opět stiskněte tlačítko Zapsat. Postup opakujte pro všechny 3 vstupy IL1, IL2 a IL3, dokud měřené výkony nebudou zobrazovány správně.
 - b. Nastavení směru toku proudů měřicím modulem: Z předchozího kroku ponechte zapnuté spotřebiče na měřených fázích. Při vypnuté FVE musí být všechny měřené hodnoty výkonů menší nebo rovny nule. Je-li některý z výkonů kladný, znamená to, že fázový vodič je provlečen měřicím modulem obráceně. V nabídce Směr proudu pro tyto vstupy zvolte obrácený směr proudu a stiskněte tlačítko Zapsat. Nastavení se zapíše do regulátoru. Nyní musí být všechny měřené výkony <= 0. Zapněte FVE a vypněte všechny spotřebiče. Měřené výkony musí pak být nezáporné (>=0). Není-li tomu tak nebo měřené hodnoty neodpovídají příkonům připojených spotřebičů nebo výkonu FVE, jsou buď připojeny další spotřebiče, o kterých právě nevíte (různé spotřebiče v režimu stand-by aj.), popř. je závada v elektroinstalaci. Ve všech případech pečlivě zkontrolujte celou instalaci.

c. Zapojení měřicích vstupů (zejména správnost sledu fází) můžete zkontrolovat pomocí grafu "Kontrolní osciloskop". Tento graf zobrazuje tvar měřené proudové vlny pro zvolenou fázi, hodnoty jsou udány v jednotkách vestavěného A/D převodníku (tzv. digits) a z důvodu rychlosti měření nejsou přepočtené na fyzikální jednotky. Jedná se tedy pouze o pomůcku při konfiguraci měřicích vstupů. Kontrolu provádějte výhradně s připojenou čistě ohmickou (tepelnou) zátěží tak, aby fázový posun mezi napětím a proudem byl nulový (cos(φ)=1)! Amplituda proudu by měla pro účel ověření správnosti zapojení měřicích vstupů přesáhnout alespoň 1000 digits!

Poznámka: V reálném provozu se mohou zobrazovat nejrůznější tvary proudové vlny. Jedná se o skutečný proud procházející daným fázovým vodičem, resp. o superpozici proudů procházejících jednotlivými spotřebiči, které nemají čistě sinusový odběr nebo účiník různý od jedné.

Obrázek 8: Správně nastavený měřicí vstup – sinusovka proudu procházejícího ohmickou (tepelnou) zátěží je ve fázi s napětím. WATTconfig M ukazuje na příslušné fázi záporné hodnoty (spotřeba). Na levém obrázku je výchozí směr proudu, na pravém obrácený směr. Poznámka: Výroba střídače se zobrazuje přesně obráceně, pokud navíc střídač provádí kompenzaci účiníku, je to v zobrazeném grafu patrné fázovým posunem.

Obrázek 9: Chybně nastavený měřicí vstup – sinusovka proudu procházejícího ohmickou (tepelnou) zátěží není ve fázi s napětím a probíhá buď o 1/3 síťové půlperiody před napětím (vlevo) nebo za napětím (vpravo). Měření je chybně nastaveno a je nutno správně sfázovat proudové měřicí vstupy, tj. nastavit pro daný vstup správnou volbu z nabídky Fáze.

- 8. Po úspěšném nastavení měřicích vstupů můžeme přistoupit k otestování výstupů. Otestujte zvlášť každý připojený spotřebič. Zapněte příslušný jistič nebo pojistkový odpínač a stiskněte tlačítko TEST na příslušném výstupu. Spotřebič by se měl zapnout. Při sepnutí spotřebiče musí v krátké době zareagovat i měření činného výkonu na příslušné fázi.
- 9. Po úspěšném otestování výstupů můžeme přistoupit k nastavení režimu regulace. Toto nastavení se provádí na kartě "Další nastavení". Nastavte způsob regulace buď v režimu součtu všech tří fází nebo v režimu oddělených fází, podle nastavení Vašeho čtyřkvadrantního elektroměru. V případě pochybností o nastavení Vašeho elektroměru prosím kontaktujte zákaznickou podporu Vašeho distributora nebo použijte režim oddělených fází, který funguje s jakýmkoli nastavením elektroměru.
 - Pro regulační režim oddělených fází je u každého výstupu nutné správně nastavit fázi, ke které je připojen. Regulátor se pak pokusí udržovat nulový tok energie v každé fázi ("fázová nula"). Kontrolu proveďte opět tlačítkem TEST, v krátké době musí zareagovat měření činného výkonu na příslušné fázi.

U elektroměrů, které sčítají okamžité výkony všech fází, použijte součtový režim. Regulátor pak bude udržovat nulový tok energie podle součtu výkonů ve všech fázích ("virtuální nula"). Lze experimentovat s oběma způsoby regulace, doporučujeme zde však použít jako výchozí nastavení režim součtu všech fází.

10. Po nastavení režimu regulace můžeme přistoupit k nastavení priorit a příkonů jednotlivých výstupů. Toto nastavení se provádí na kartě "Nastavení výstupů". Zvolte priority jednotlivých spotřebičů. Princip spínání dle priorit lze popsat takto:

Ve výchozím stavu (v noci) jsou všechny spotřebiče vypnuté. Je-li ráno zjištěna výroba FVE (součet činných výkonů je > 0 při započtení tzv. výkonového ofsetu, viz níže), dojde k sepnutí výstupu s první (nejvyšší) prioritou. Okamžik sepnutí se liší pro proporcionální výstupy (funkce plynulá regulace nebo PWM) a výstupy s funkcí relé. Proporcionální výstupy se sepnou prakticky ihned po zjištění výroby (jedná se proporcionální spínání), reléové až tehdy, překročí-li výkon FVE údaj uvedený v kolonce Připojený příkon (existuje i alternativní funkce - viz volba Předřadit před triaky/SSR). Po sepnutí spotřebiče (u triakového/SSR výstupu sepnutí na hodnotu danou kolonkou Maximální příkon) se čeká, až výkon FVE opět stoupne (rozednívá se). Je-li i při sepnutém spotřebiči s první prioritou zjištěna výroba, sepne se ve shodném režimu spotřebič s druhou prioritou. Shodný režim se uplatní pro všechny výstupy. Dojde-li ke snížení výkonu FVE nebo k zapnutí jiného spotřebiče v domovním rozvodu, sepnuté výstupy se odpojí opět dle nastavených priorit (nejprve se odpojí spotřebič s nejnižší prioritou).

Hodnota Připojený příkon u reléového výstupu musí být vždy větší nebo rovna skutečnému příkonu spotřebiče, jinak regulátor nebude pracovat správně a spotřebič se bude neustále zapínat a vypínat. Stejná kolonka u proporcionálního výstupu nastavuje pouze dynamiku regulace, měla by být ovšem rovna skutečnému příkonu spotřebiče.

Kolonka Zpoždění sepnutí/vypnutí u reléových výstupů stanovuje prodlevu mezi zjištěním okamžiku pro sepnutí/vypnutí relé a jeho skutečným sepnutím/vypnutím. Toto je nezbytné pro zařízení, která nelze spínat příliš často.

Nastavte výstupy dle připojených spotřebičů a vámi požadovaných priorit a stiskněte tlačítko Zapsat. Nastavení se zapíše do regulátoru. Nyní by měla být nastavena hlavní funkce regulátoru.

11. Otestujte hlavní funkci regulátoru, případně upravte priority výstupů a příkony spotřebičů.

NASTAVENÍ FUNKCE COMBIWATT

Po úspěšném otestování hlavní funkce můžete přistoupit k nastavení programu CombiWATT, máte-li k regulátoru připojen signál nízkého tarifu. Toto nastavení se provádí na kartě "Nastavení výstupů". Režim CombiWATT zajišťuje konstantní denní přísun energie do připojeného spotřebiče. Je nepostradatelný v případě ohřevu TUV (ale i např. v provozu bazénové filtrace) ve dnech, kdy je zataženo nebo FVE dočasně nefunguje. V režimu CombiWATT je elektřina dodávána do připojených spotřebičů z FVE i ze sítě.

Pro připojený spotřebič (např. bojler) stanovte optimální hodnotu elektrické energie v kWh, kterou chcete denně do spotřebiče dodat. Např. pro bojler je vhodné stanovit hodnotu dle průměrné spotřeby TUV. Běžně je

uváděna energie potřebná k ohřevu TUV v bojleru o 40°C:
$$E[kWh] = \frac{c_V * V[l] * \Delta T[K]}{3600000}$$
. Dosadíme-li,

dostaneme: E[kWh] = 0.0464 * V[l]. Pro bojler o objemu 180l to bude 8,36 kWh. Tuto hodnotu doporučujeme zvýšit o denní tepelnou ztrátu bojleru a dále upravit (snížit) podle skutečné průměrné spotřeby teplé vody.

Poznámka: V případě ohřevu TUV regulátor samozřejmě neví, v jakém stavu se nachází voda v bojleru, předpokládané hodnoty dodané energie tedy mohou být vyšší než skutečně dodaná energie (termostat bojleru může kdykoli vypnout). Chcete-li, aby se počítala pouze skutečně dodaná energie do bojleru, zapojte pro bojler měření podle obrázku 8.

U příslušného výstupu (výstup musí být aktivován, tj. musí mít přiřazenou prioritu) zaškrtněte políčko CombiWATT, zadejte stanovenou hodnotu denní energie v kWh a stiskněte tlačítko Zapsat. Nastavení se zapíše do regulátoru.

Režim CombiWATT se aktivuje pouze tehdy, jsou-li současně splněny VŠECHNY tyto podmínky:

- a. Výstup je aktivován (má přiřazenu prioritu, tj. není ve stavu "nepoužito").
- b. FVE nevyrábí (hodnoty činných výkonů u všech měřených fází jsou <= položka Limit výroby pro CombiWATT).
- c. FVE přes den nedodala do spotřebiče požadované množství energie, tj. v poli "Dodaná energie" je menší hodnota než v poli "CombiWATT [kWh]" pro daný výstup.
- d. Je detekován signál nízkého tarifu (informační pole "Nízký tarif" je červené).
- e. V kolonce "Čas do aktivace CombiWATT" je zobrazena nula.

Režim CombiWATT se deaktivuje tehdy, je-li splněna některá z těchto podmínek:

- a. Hodnota v poli "Dodaná energie" dosáhne hodnoty "CombiWATT [kWh]" pro daný výstup.
- b. Je zjištěna výroba (kladný okamžitý výkon) na některé měřené fázi.
- c. Signál nízkého tarifu se vypne.

Reset čítačů energií (tj. hodnot v poli "Dodaná energie")

- a. Východ Slunce. Čítače se nulují při východu Slunce, který je automaticky počítán regulátorem.
- b. Fixní čas. Čítače se nulují ve stanovenou dobu.

Podrobněji k uvedeným způsobům nulování viz kap. Popis položek programu WATTconfig M.

Poznámka: Pro bojler nebo jinou nádobu určenou pro ohřev TUV zapojenou v režimu CombiWATT je nepodstatné, v jakou denní dobu se voda ohřívá a odebírá, funkce CombiWATT pouze zajišťuje nejméně nastavený denní přísun energie do bojleru tak, aby tento při doporučeném nastavení vyhovoval většině uživatelů. V případech, kdy se při doporučeném nastavení častěji nedostává teplé vody, doporučujeme postupně zvyšovat denní množství energie ("CombiWATT [kWh]") např. po 1kWh tak, aby teplá voda byla k dispozici a zároveň se nečerpalo příliš velké množství energie ze sítě v nízkém tarifu. Toto doporučujeme zejména v případech časté intenzivní večerní spotřeby teplé vody, kdy se může stát, že aktuální den byla voda dostatečně ohřátá denní výrobou FVE, ale následující den již FVE takový výkon nemá (zatažená obloha). Režim CombiWATT lze dále doplnit vynucením sepnutí daného výstupu časovým plánem výstupu. Časovými plány lze režim CombiWATT i plně nahradit podle uživatelských preferencí. Podrobněji viz kap. Nastavení časových plánů.

Nemáte-li k dispozici signál nízkého tarifu a přesto chcete režim CombiWATT využít, spojte svorku GND se svorkou LT. V tomto případě bude stále aktivní signál nízký tarif a k aktivaci režimu CombiWATT dojde po ukončení výroby FVE (po setmění).

NASTAVENÍ ČASOVÝCH PLÁNŮ

Pro každý výstup lze nastavit až 4 nezávislé časové intervaly, ve kterých lze pro daný výstup vynutit jeho sepnutí nebo naopak jeho sepnutí zakázat (omezit). Vynucení/omezení lze dále podmínit přítomností signálu nízkého tarifu, stavem denních čítačů energií daného výstupu (pole "Dodaná energie") nebo teplotními podmínkami.

Nastavení časových plánů se provádí na kartě "Časové plány". Podrobněji k nastavení viz kap. Popis položek programu WATTconfig, karta Časové plány.

NASTAVENÍ VSTUPŮ FB

Regulátor má 3 vstupy FB pro připojení externích elektroměrů s impulzním výstupem S0, který splňuje parametry uvedené v technické specifikaci a jeho výstupní signál poskytuje informaci o měřené elektrické energii.

Vstupy FB plní doplňkové funkce regulátoru. Podrobněji k nastavení viz kap. Popis položek programu WATTconfig, karta Nastavení vstupů.

UKONČENÍ NASTAVENÍ

Po nastavení podle předchozích kapitol je regulátor plně konfigurován. Konfiguraci můžete uložit tlačítkem Uložit a kdykoli opět načíst tlačítkem Otevřít. Můžete tak vytvořit několik různých konfigurací a dlouhodobě sledovat, jaká z nich vede k lepšímu využití vlastní spotřeby vašeho objektu.

Po ukončení nastavení přes vrchní zásuvku USB vypněte regulátor jističem, vyjměte USB kabel a nasaďte kryt regulátoru.

Po ukončení nastavení přes boční zásuvku USB v případě manipulace v rozvaděči vypněte celý rozvaděč, vyjměte USB kabel a opět rozvaděč zapněte.

Tip: Regulátor lze ponechat za účelem monitoringu trvale připojený jak přes zásuvku USB, tak přes Ethernet rozhraní. Pro trvalé připojení přes USB doporučujeme použít USB oddělovač případně prodloužení USB přes síť Ethernet (např. typ Silex 3000GB), pro trvalé připojení přes Ethernet můžete zapojit síťový kabel přímo do Vašeho síťového routeru popř. switche.

POPIS POLOŽEK PROGRAMU WATTCONFIG M

V této kapitole je uveden seznam všech položek v ovládacím programu WATTconfig M a jejich význam. Shodné názvy i význam mají i položky ve webovém rozhraní regulátoru.

HLAVNÍ OKNO

V hlavním okně jsou zobrazeny přehledně na jedné obrazovce veškeré základní měřené veličiny a stavy a na jednotlivých kartách pak parametry nastavení.

Obrázek 10: Hlavní okno programu WATTconfig.

MĚŘENÉ VELIČINY A STAVY

Měřené veličiny:

- Výkon na fázi L... aktuální hodnota činného výkonu na příslušném fázovém vodiči. Kladná hodnota znamená výrobu (FVE dodává do sítě), záporná spotřebu.
- Součet výkonů L1+L2+L3 součet činných výkonů ve všech třech fázích
- Teplota regulátoru teplota uvnitř regulátoru. Slouží jako tepelná ochrana regulátoru.

Chybové a informační stavy (šedé v neaktivním stavu, červené v aktivním stavu):

- Porucha měření napětí L1 porucha synchronizačního obvodu detekujícího napětí na svorce L1, který je nutný pro správnou funkci měření regulátoru. Jedná se o hardwarovou závadu regulátoru a je nutná jeho oprava resp. výměna.
- Porucha snímače(ů) teploty jedná se o hardwarovou chybu regulátoru a je nutná jeho oprava resp. výměna.
- Překročena max. teplota byla překročena maximální teplota regulátoru. Zlepšete podmínky chlazení, snižte hodnoty Maximální příkon u aktivovaných triakových výstupů nebo zvyšte příslušnou hodnotu v položce Maximální teplota regulátoru na kartě Další nastavení.
- Přetížení vnitřního zdroje úroveň vnitřního zdroje napětí poklesne pod +6,5V vůči svorce GND. Tato porucha může nastat při velkém vytížení vnitřního stejnosměrného zdroje napětí. Firmware od verze 3.0 napětí tohoto zdroje kontroluje a případně vyhlásí tuto poruchu. Tento poruchový stav trvá po dobu trvání příčiny a ještě 60s poté. Typicky může nastat při plném vytížení všech 6 interních výstupů nebo při jiném přetížení svorky S+ (např. zkrat v ovládacím obvodu SSR relé). K nápravě zkontrolujte, zda svorka S+ není přetěžována.
- Nízký tarif je-li detekován signál nízkého tarifu, svítí červeně.
- Letní čas informuje uživatele o letním času. Období pro letní čas je od 2:00 SEČ, poslední neděle v březnu do 3:00 SELČ, poslední neděle v říjnu. Není-li zaškrtnuta volba "Používat letní čas" na kartě Další nastavení, indikátor zůstane neaktivní.
- CombiWATT je aktivní informuje uživatele o aktivitě režimu CombiWATT. Tento indikátor je aktivní, pokud je platná podmínka pro spuštění CombiWATTu, je-li aktivní nízký tarif a je-li nastavena funkce CombiWATT na některém výstupu.
- Test výstupů je aktivní informuje uživatele o stavu, kdy některý z výstupů je aktivován tlačítkem
 TEST. Test výstupů přes rozhraní LAN je chráněn před neoprávněným zásahem autorizací.

V případě chybového stavu se všechny výstupy vypnou a všechny regulační funkce se zastaví..

Stavy výstupů:

- Výkon zátěže ... aktuální výkon daného výstupu. Jedná se předpokládaný výkon, který vyplývá z nastavení výstupu a nemusí souhlasit se skutečným výkonem spotřebiče.
- Dodaná energie ... denní čítače energie dodané do daného výstupu. Jedná se o energii
 předpokládanou, která vyplývá z nastavení výstupu a nemusí souhlasit se skutečně dodanou energií do
 spotřebiče.
 - Čítače energií informují režim CombiWATT nebo příslušný časový plán o množství již dodané energie do spotřebiče a zároveň informují uživatele o dodané energii. Čítače se nulují v závislosti na nastavení položky "CombiWATT Reset čítačů energií" na kartě Další nastavení.

Poznámka: WATTrouter nezná stav spotřebiče, a proto čítače mohou ukazovat i výrazně větší hodnotu energie, než bylo skutečně dodáno do spotřebiče (např. v případě, že se připojený bojler v průběhu dne nahřeje a odpojí termostatem).

- Stavové indikátory výstupu informují uživatele o příčině sepnutí případně omezení výstupu.
 Indikátory jsou 4:
 - a. modrý zobrazí se pouze při sepnutí výstupu v důsledku základní regulace podle měřeného kladného výkonu (přebytku). Tímto indikátorem je také signalizován případný doběh reléového výstupu (po vynucení časovým plánem nebo CombiWATTem).
 - b. fialový zobrazí se pouze při sepnutí výstupu pomocí funkce CombiWATT.
 - c. zelený zobrazí se při vynucení sepnutí výstupu časovým plánem.
 - d. červený zobrazí se při zákazu (omezení) výstupu časovým plánem.

Stavy vstupů FB:

• Výkon – zobrazuje elektrický výkon, který je měřen externím elektroměrem s impulzním výstupem S0.

$$\label{eq:power_power} \text{Hodnota se pak počítá podle vzorce: } P[kW] = \frac{3600}{t_p[s].Imp_{kWh}}$$

Kde:

P – výsledný výkon (tato kolonka)

t_p – perioda impulzů

Imp_{kWh} – počet impulzů na kWh (viz Nastavení vstupů FB)

Dynamika měření závisí na četnosti impulzů, která pro malé výkony může být velmi malá. Maximální měřitelná perioda impulzů je nastavena na 15 s (při nastavení 1000 impulzů/kWh to odpovídá výkonu 0, 24 kW). Je-li výkon menší, zobrazí se nula.

Energie – zobrazuje elektrickou energii, která je načítána externím elektroměrem s impulzním

výstupem S0. Hodnota se pak počítá podle vzorce:
$$E[kWh] = E_p[kWh] + \frac{Imp}{Imp_{kWh}}$$

Kde:

E – výsledná energie (tato kolonka)

E_n – počáteční energie (viz Nastavení vstupů FB)

Imp – počet impulzů registrovaných vstupem FB od okamžiku zapojení vstupu. Tyto čítače se nikde nezobrazují.

Imp_{kWh} – počet impulzů na kWh (viz Nastavení vstupů FB)

Impulzy se načítají pouze tehdy, je-li regulátor v chodu. Načtené impulzy se ukládají každou hodinu do paměti EEPROM, v případě výpadku napájení by se proto hodnoty neměly příliš lišit od skutečnosti. Častější ukládání není z technických důvodů možné. Pokud se hodnoty neshodují například se zobrazovačem připojeného elektroměru, upravte příslušným způsobem kolonku "Počáteční energie" a zaškrtněte pole "Nulovat energii".

Ostatní stavy:

Název objektu/konfigurace - slouží k pojmenování objektu instalace, případně i aktuální konfigurace.
 Text může mít nejvýše 16 znaků v ASCII kódování.

- Východ Slunce dnes zobrazuje čas východu Slunce. Tento čas je počítán přímo v regulátoru na základě aktuálního kalendářního data a aktuální polohy objektu (viz "Zeměpisná poloha objektu"). Vypočtený čas je přepočten na lokální čas v závislosti na nastavení kolonek "Používat letní čas" a "Časové pásmo". Je uvažován oficiální zenit východu Slunce, tj. 90°50'. Čas východu Slunce se používá k nulování čítačů energií (kolonky Dodaná energie v hlavním okně), je-li zvolen příslušný režim v kolonce "CombiWATT Reset čítačů energií".
- Den v týdnu udává aktuální den v týdnu, zjištěný podle data regulátoru.
- Výkon ventilátoru ukazuje okamžitý výkon ventilátoru v procentech.
- Verze firmwaru zobrazuje aktuální verzi firmwaru nahranou v regulátoru.
- Datum (regulátor) udává reálný čas běžící v regulátoru (datum).
- Čas (regulátor) udává reálný čas běžící v regulátoru (čas).

Poznámka: Reálný čas v regulátoru je zálohován zabudovanou lithiovou baterií, takže běží i při vypnutém napájení regulátoru.

- Datum (klient) udává reálný čas běžící v klientovi, tedy na PC (datum).
- Čas (klient) udává reálný čas běžící v klientovi, tedy na PC (čas).

KARTA NASTAVENÍ VSTUPŮ

Na této kartě lze nastavit měřicí vstupy ILx a vstupy FB.

Společné položky pro Nastavení měřicích vstupů ILx a Nastavení vstupů FB:

 Jmenovka – slouží k pojmenování daného vstupu. Jmenovka může mít nejvýše 8 znaků v ASCII kódování. Pro vstupy ILx ji nelze změnit.

Nastavení měřicích vstupů ILx:

- Směr proudu slouží ke kalibraci měřicích vstupů proudu v případech obrácené montáže měřicího modulu nebo v případech, kdy je vhodné např. jeden fázový vodič vést modulem obráceně.
- Fáze slouží k přiřazení fyzické fáze k danému vstupu, v případě že je nastaven na funkci měření výkonů. Fázi přiřaďte tak, aby měřené proudy byly ve fázi s napětím. Přiřazení zkontrolujte pomocí kontrolního osciloskopu a čistě ohmické (tepelné) zátěže zapnuté na dané fázi.
 - **Poznámka**: Parametr Fáze nahrazuje nabídku "Nastavení sledu fází" ze starších modelů WATTrouterů a starších verzí firmwaru. Umožňuje nastavit libovolné sfázování pro všechny vstupy.
- Převodní poměr externích MT tento poměr nastavujte pouze tehdy, používáte-li navíc externí měřicí transformátory (MT), jejichž sekundární vinutí jsou zkratována vodičem provlečeným měřicími cívkami v měřicím modulu. Pokud WATTrouter zapojujete standardně, tj. měřicími cívkami je protažen přímo přívod k elektroměru, pak by tento poměr měl být 1:1 (lze ovšem tímto poměrem kalibrovat měření proudu i v případě standardního zapojení bez externích měřicích transformátorů). Tímto zapojením lze posílit měřicí rozsah regulátoru na libovolnou hodnotu danou převodním poměrem externích MT.

Příklad: Chceme použít WATTrouter M v podmínkách, kde přípojka je dimenzována až na 3x400A. Pak zakoupíme externí měřicí transformátory s poměrem 400A:5A, jejich sekundární svorky propojíme/vyzkratujeme vodičem, který zároveň provlečeme měřicími cívkami v měřicím modulu. Převodní poměr bychom nastavili 400:5. Pro lepší využití rozsahu A/D převodníku však doporučujeme provléci sekundární obvod měřicími cívkami 4x pro dosažení optimálního převodního poměru 400A:20A. Převodní poměr pak nastavíme 400:20, popř. 40:2 apod.

Upozornění: Použití externích MT je určeno pro velké instalace a velké výkony FV systému. Při velkém převodním poměru je třeba počítat s tím, že (relativně) malé výkony (v uvedeném příkladu optimalizovaného převodního poměru 400A:20A činí mez přibližně 100 W na 1 fázi) jsou pod rozlišovací schopností proudových vstupů a tyto výkony nebudou měřeny.

Poznámka: Nastavení je možné pouze pro vstup IL1 a toto se použije i pro ostatní vstupy.

Nastavení vstupů FB:

•

- a.
- b.
- c.
- d.
- e.
- f.
- σ
- h.
- i. j.
- Počáteční energie tato kolonka slouží k nastavení počáteční hodnoty čítače energie. Pokud se hodnoty měřených energií neshodují například se zobrazovačem připojeného elektroměru, nastavte do této kolonky hodnotu energie na displeji a vynulujte interní čítače WATTrouteru zaškrtnutím volby "nulovat energii".
- Nulovat energii slouží k nulování čítače energie.
- Počet impulzů na kWh tato kolonka slouží k nastavení počtu impulzů na kWh v případě nastavené funkce čítač impulzů SO. Nastavte hodnotu podle štítku nebo manuálu připojeného elektroměru, střídače, příp. jiného kompatibilního měřidla. Doporučuje se používat měřidla s co nejvyšším počtem impulzů na kWh, tak aby položky Výkon v poli "Stavy vstupů FB" byly zobrazeny s co nejvyšším rozlišením.
- Zdroj měření slouží k nastavení zdroje měřených výkonů vstupem FB. Na výběr je několik možností pro každý vstup:
 - k. neznámý vstup měří blíže neurčený výkon (spotřebič atp.)
 - I. výroba L1 vstup měří výrobu na L1, regulátor přiřadí hodnotu do statistiky výroby L1
 - m. výroba L2 vstup měří výrobu na L2, regulátor přiřadí hodnotu do statistiky výroby L2
 - n. výroba L3 vstup měří výrobu na L3, regulátor přiřadí hodnotu do statistiky výroby L3
 - o. výroba L1+L2 vstup měří výrobu na L1+L2, regulátor rozdělí měřenou hodnotu rovnoměrně do statistiky výroby na L1 a L2 (tj. dělí měřenou hodnotu dvěma).
 - p. výroba L2+L3 vstup měří výrobu na L2+L3, regulátor rozdělí měřenou hodnotu rovnoměrně do statistiky výroby na L2 a L3 (tj. dělí měřenou hodnotu dvěma).
 - q. výroba L1+L3 vstup měří výrobu na L1+L3, regulátor rozdělí měřenou hodnotu rovnoměrně do statistiky výroby na L1 a L3 (tj. dělí měřenou hodnotu dvěma).
 - r. výroba L1+L2+L3 vstup měří výrobu na všech fázích, regulátor rozdělí měřenou hodnotu rovnoměrně do statistiky výroby na L1, L2 a L3 (tj. dělí měřenou hodnotu třemi).

Poznámka: V případě, kdy měříte jedním vstupem FB výrobu na několika fázích externím třífázovým elektroměrem a střídač výrobu nerozděluje vždy rovnoměrně, musíte vzniklé rozdíly zanedbat. Přesnější

je samozřejmě použití 3 vstupů FB a 3 externích jednofázových elektroměrů popř. 3 externích měřicích transformátorů proudu, popř. je možno použít další měřicí modul i k měření samotné výroby FVE.

Kontrolní osciloskop:

Tento graf slouží primárně ke kontrole správnosti nastavení měřicích vstupů ILx, ale lze jej použít i pro kontrolu u vstupů FB. Z rozbalovací nabídky vyberte vstup, který chcete zkontrolovat a sledujte graf.

Osciloskop bude vždy zobrazovat dění na analogových vstupech mikroprocesoru WATTrouteru, které se liší podle funkce vstupu:

- a. Měření výkonů (vstupy ILx) zobrazí se jedna celá síťová půlperioda měřeného proudu, klidová hodnota v případě nulového měřeného výkonu by se měla pohybovat okolo 0 digitů. Pro více informací o tomto zobrazení viz kap. Základní nastavení regulátoru.
- b. Čítač impulzů (vstupy FB) zobrazí se logická 1 (okolo 4000 digitů) v případě prodlevy mezi impulzy nebo logická 0 (okolo 10 digitů) v případě aktivního impulzu z elektroměru.

KARTA NASTAVENÍ VÝSTUPŮ

Na této kartě lze nastavit parametry základní regulace výstupů a také režim CombiWATT.

- Funkce nastavení funkce daného výstupu:
 - a. relé výstup bude fungovat v režimu zapnuto/vypnuto (jako relé).
 - b. plynulá reg. (pouze pro triakové a SSR výstupy) výstup bude fungovat v režimu plynulé regulace výkonu.

Tento režim je určen pouze pro řízení výkonu ohmických (tepelných) spotřebičů a v případě SSR výstupů vyžaduje připojení externích výkonových polovodičových relé (SSR)! Tento režim může dále zvyšovat flikr (rychlé změny napětí v elektrické síti, resp. rychlé blikání žárovek a zářivek). Před připojením spotřebiče v tomto režimu si důkladně prostudujte doporučení ohledně redukce flikru v sekci Časté dotazy na stránkách výrobce.

c. PWM – (pouze pro výstupy SSR) výstup bude fungovat v režimu plynulé regulace výkonu, přičemž výstup přiřazeného regulátoru bude vysílán na příslušný výstup v režimu PWM, viz technická specifikace.

Tento režim je určen pouze pro řízení výkonu externích zařízení (nabíječe akumulátorů, tepelná čerpadla, apod.), která mají příslušný ovládací vstup, a nelze jej použít, jsou-li k výstupu připojena externí výkonová polovodičová relé (SSR)!

- Jmenovka slouží k pojmenování daného výstupu. Jmenovka může mít nejvýše 8 znaků v ASCII kódování.
- Priorita nastavení priority daného výstupu. První priorita je nejvyšší, šestá nejnižší, nepoužito znamená, že výstup není aktivován. Výstup s vyšší prioritou se spíná "dříve" a odpíná "později" (viz kap. Základní nastavení regulátoru). V regulačním režimu součtu všech tří fází nesmí být zvoleny shodné priority (vyjma stavu nepoužito), v regulačním režimu oddělených fází musí být nastaveny pro každou fázi od první (nejvyšší) priority až k nejnižší prioritě. V nastavení priorit nesmí být mezery, tj. nelze nastavit pouze první a třetí prioritu bez nastavení druhé priority. WATTconfig kontroluje nastavení priorit a fází před zápisem do regulátoru.
- Fáze v regulačním režimu oddělených fází nastavte fázi, na kterou je příslušný spotřebič připojen.
 Nastavení musí odpovídat skutečnosti, ověřte tlačítkem TEST.

Poznámka: Fáze výstupu nemusí odpovídat nastavení fyzické fáze u vstupů ILx. Důvodem je skutečnost, že u vstupů se nastavuje fyzická fáze podle skutečného zapojení měřicího modulu a u výstupů logická fáze ve vztahu ke vstupům ILx.

• 3f režim – v regulačním režimu oddělených fází umožňuje stanovit odlišný výpočet přebytků pro spínání výstupu. Odlišné režimy lze použít pouze pro symetrické třífázové spotřebiče (3f patrony, 3f tepelná čerpadla), které se musí vždy připojovat třífázově. Připojení těchto spotřebičů proveďte zásadně přes externí třífázové relé nebo stykač nebo třífázové výkonové SSR, popř. v případě 3f invertorového tepelného čerpadla pomocí příslušného modulu, který přímo řídí jeho výkon.

Položka fáze pro výstup ve 3f režimu značí tzv. *referenční fázi*, která slouží pouze pro přiřazení výstupu do prioritního řetězce na dané fázi.

Do kolonky Připojený příkon uveďte třetinu jmenovitého příkonu spotřebiče, fázi a prioritu nastavte podle vašich preferencí (fáze je zde pouze referenčním parametrem pro zařazení daného výstupu do správného prioritního řetězce). Lze stanovit tyto režimy:

- a. min (L1, L2, L3) použije se minimum přebytku ze všech 3 fází
- b. prům. (L1, L2, L3) použije se průměrná hodnota přebytku ze všech 3 fází
- c. max (L1, L2, L3 použije se maximum přebytku ze všech 3 fází

V rámci přiřazení jedné fáze lze kombinovat jednofázové i třífázové zátěže. Funkci používejte velmi opatrně a pouze tehdy, není-li skutečně možné daný spotřebič "rozdělit" na jednofázové odběry (jako například zmiňovaná 3f patrona).

Od verze firmwaru 3.0 došlo v tomto režimu ke změnám:

- Výstup ve 3f režimu již neblokuje spínání výstupů s nižší prioritou na referenční fázi, pokud na této fázi je k jejich sepnutí dostatek přebytku.
- Dále také při dostatku přebytku na referenční fázi jsou-li současně sepnuty výstupy na nižších prioritách a poklesu dostupného přebytku na ostatních fázích nezůstává výstup ve 3f režimu trvale (chybně) sepnutý, ale upraví (zreguluje) si vybuzení dle aktuálního požadavku ze všech 3 fází.
- Připojený příkon stanovuje hodnotu (činného) příkonu připojených spotřebičů. Je-li udána hodnota příkonu ve VA a účiník $\cos{(\Phi)}$, lze činný výkon určit ze vztahu $P[W] = S[VA].\cos{(\Phi)}$. Hodnota připojeného příkonu by měla být přibližně rovna skutečnému příkonu spotřebiče v případě nastavené funkce plynulé regulace nebo PWM a musí být větší nebo rovna (spíše větší) v případě nastavené funkce relé.
- Maximální příkon u proporcionálních výstupů udává hodnotu maximálního povoleného výkonu spotřebiče. Tato hodnota je ve většině případů rovna připojenému příkonu, ale např. z důvodů horších podmínek chlazení výkonových triaků/SSR nebo výkonové rezervy FVE pro další výstupy ji můžete snížit. Hodnota předpokládaného výkonu zátěže při dosažení maximálního příkonu může být nižší než zadaná hodnota maximálního příkonu. Důvodem je skutečnost, že výstupy v režimu plynulé regulace nespínají plně proporcionálně, ale pouze tzv. kvaziproporcionálně, tj. v určitých stupních.

Hodnotu ponechte vždy rovnu připojenému příkonu v případech, kdy výstup je nastaven na plynulou regulaci spotřebiče, který způsobuje zvýšený flikr (rychlé změny napětí v elektrické síti, resp. rychlé blikání žárovek a zářivek). Výstup tak bude při plném vybuzení vždy trvale sepnutý. Viz doporučení ohledně redukce flikru v sekci Časté dotazy na stránkách výrobce.

Předřadit před triaky/SSR – umožňuje předřadit reléový výstup před příslušný počet proporcionálních výstupů. Vyplňte hodnotu 1, pokud chcete, aby se relé sepnulo při dosažení příslušného výkonu na proporcionálním výstupu s nejbližší vyšší prioritou. Obdobně vyplňte hodnotu 2, chcete-li, aby se relé sepnulo při dosažení součtu výkonů na proporcionálních výstupech v nejbližších 2 vyšších prioritách. Analogicky se funkce chová i pro vyšší hodnoty. Tato funkce poruší stanovené pořadí priorit, nicméně umožňuje dokonale využít vyrobenou energii FVE například v případě třífázové topné spirály.

Příklad 1: topná spirála 3x2 kW připojená a nastavená následovně:

- 1. spirála připojena na SSR 1, 1. priorita, připojený příkon 2 kW, maximální příkon 2 kW
- 2. spirála připojena na relé 1, 2. priorita, připojený příkon 2 kW, kolonka Předřadit = 1
- 3. spirála připojena na relé 2, 3. priorita, připojený příkon 2 kW, kolonka Předřadit = 1

Při překročení výkonu FVE 2 kW na SSR 1 se připne relé 1 a SSR 1 automaticky sníží výkon. Při dalším zvýšení výkonu o 2 kW se připne relé 2 a SSR 1 opět automaticky sníží výkon. Při dalším zvyšování výkonu se připnou další výstupy s nižší prioritou. Analogicky se výstupy odpojí při snižování výkonu FVE.

Poznámka: Aby funkce pracovala správně, musí být vždy všechny 3 spirály současně aktivní (topit) nebo neaktivní (odpojené termostatem). Algoritmus nebude fungovat, pokud 1. spirála bude odpojena termostatem a ostatní dvě budou topit. Pak nutně bude docházet k neustálému připojování a odpojování relé, protože regulátor se snaží udržet "virtuální nulu" nebo "fázovou nulu" a nemůže z průběhu měření na vstupech ILx zjistit, že 1. spirála je odpojena.

Poznámka: Pro správnou funkci algoritmu je také nutné, aby SSR výstup, na který je připojena 1. spirála, měl nastavenu nejbližší vyšší prioritu, než má nastaveno 1. relé s 2. spirálou. Pokud 1. spirála připojená na SSR výstup bude mít nižší výkon, než obě zbývající, připnou se relé až poté, co celkový výkon (spotřebovaný na 1. spirálu + přebytečný) přesáhne hodnotu nastaveného příkonu 1. relé. Tj. v tomto případě bude část výkonu dodávána do rozvodné sítě, jako při klasické funkci WATTrouteru.

Příklad 2: bojler a 2 další topné spirály:

- bojler připojen na SSR 1, 1. priorita, připojený příkon 2 kW, maximální příkon 2 kW,
- 1. spirála připojena na SSR 2, 2. priorita, připojený příkon 2 kW, maximální příkon 2 kW,
- 2. spirála připojena na relé 1, 3. priorita, připojený příkon 2 kW,
 - a) předřazení nastaveno na hodnotu **0**: V tomto případě nebude 2. spirála předřazována a po dosažení přebytku 4 kW spotřebovávaného na bojleru a 1. spirále se bude čekat až po dosažení přebytku 6 kW, kdy teprve bude tato spirála připnuta. V mezičase bude přebytek dodáván do sítě.
 - b) předřazení nastaveno na hodnotu 1: V tomto případě bude pro předřazení 2. spirály uvažován pouze výkon na 1. spirále, tj. bojler bude mít vždy přednost. Tedy při dosažení přebytku 4 kW se 2. spirála připne a předřadí před 1. spirálu.
 - c) Počet priorit nastaven na hodnotu **2 a vyšší**: v tomto příkladu bude pro předřazení 2. spirály uvažován součet výkonů na bojleru a 1. spirále a 2. spirála se tedy připne již při dosažení přebytku 2kW a tedy plného výkonu na bojleru.

Poznámka: Funkce Předřadit před triaky/SSR neovlivňuje priority reléových výstupů. Má-li např. relé 2 nastavenou nejbližší nižší prioritu než relé 1, ale vyšší stupeň předřazení než relé 1, nebude relé 2 předřazeno dříve než relé 1. Proto v tomto případě nemá smysl pro relé 2 nastavovat vyšší stupeň předřazení než pro relé 1.

 Minimální příkon – u proporcionálních výstupů s nastavenou funkcí PWM udává nejmenší možný příkon spotřebiče. Výstup se aktivuje až tehdy, překročí-li přebytek nastavenou mez. Nenulová

hodnota této meze lze použít například pro plynulou regulaci tepelného čerpadla nebo klimatizace. Tyto přístroje totiž obvykle nikdy neodebírají méně než 1/3 jmenovitého příkonu. Pro více informací ohledně řízení tepelných čerpadel a klimatizačních invertorů podle přebytku viz webové stránky výrobce.

• PWM-I – u proporcionálních výstupů s nastavenou funkcí PWM udává přímo hodnotu I složky regulátoru, který je přiřazen aktuálnímu výstupu. Hodnotu lze volit mezi 1 a 1000 (bezrozměrné číslo). Hodnotu zvolte podle dynamiky připojeného systému. Začněte vždy s malou hodnotou (1 až 10) a je-li dynamika systému pomalá, hodnotu postupně zvyšujte. Při hodnotách menších než 100 se regulace výrazně zpomaluje, systém proto umožní spínat výstupy v nižších prioritách tak, aby umožnily vykrýt případný přebytek. Je-li kolonka Minimální příkon nenulová, regulace se zahájí až po 3 minutách, kdy je udržován minimální příkon (softstart tepelného čerpadla).

V případě příliš vysoké hodnoty PWM-I může dojít k rozkmitání systému a možnému poškození připojeného zařízení!

- Rozsah PWM (od verze firmwaru 3.0) tato konfigurační pole lze použít pro vytvoření části základního fyzického rozsahu výstupu (=podrozsahu) v režimu PWM. Připojíme-li k SSR výstupu v režimu PWM příslušný převodník PWM/0-10V a potřebujeme-li například signál 1-10V (1V odpovídá nulovému výkonu, 10V odpovídá plnému výkonu), pak nastavíme 10-100%. Potřebujeme-li obdobně signál 2-5V (2V odpovídá nulovému výkonu, 5V odpovídá plnému výkonu), pak nastavíme 20-50%. Výstup se v tomto podrozsahu opět chová lineárně a i pro nejmenší možný podrozsah (10% plného rozsahu, takže např. 10-20%, resp. 1-2V) je dostatečně jemný a má rozlišení nejméně 100 úrovní (tedy pro nejmenší možný podrozsah 1V je toto rozlišení 10mV).
- Zpoždění sepnutí u reléových výstupů udává prodlevu mezi zjištěním podmínky pro sepnutí relé a jeho skutečným sepnutím. Touto podmínkou rozumíme překročení rozhodného přebytku přes limit stanovený položkou Připojený příkon, zvýšený o interní pevnou hysterezi 0,1 kW. Doporučujeme ponechat výchozí hodnotu tohoto zpoždění, popř. hodnotu mírně zvětšit v případě, že dané zařízení nelze spínat často. Hodnotu lze zkrátit až na 2s. Takto malé zpoždění ale může někdy způsobit falešné sepnutí spotřebiče. Snížení proto doporučujeme jen v odůvodněných případech a po náležitém otestování. Zpoždění není aktivní v režimu CombiWATT ani při aktivaci časových plánů.
- Zpoždění vypnutí u reléových výstupů udává prodlevu mezi zjištěním podmínky pro vypnutí relé a jeho skutečným vypnutím. Toto je nezbytné pro zařízení, která nelze spínat příliš často. Hodnotu lze zkrátit až na 2s. Zpoždění není aktivní v režimu CombiWATT ani při aktivaci časových plánů, počítá se s tím, že doba sepnutí nízkého tarifu popř. časového plánu bude vždy dostatečně dlouhá.
 - U proporcionálních výstupů s nastavenou funkcí PWM a nastaveným nenulovým minimálním příkonem udává prodlevu mezi zjištěním podmínky pro vypnutí výstupu a jeho skutečným vypnutím. Poklesne-li přebytek a je splněna podmínka pro vypnutí výstupu, zůstane výstup aktivován na minimálním příkonu po stanovenou dobu. To je užitečné např. pro plynule regulovaná tepelná čerpadla, která dobíhají stanovenou dobu na minimálním příkonu.
- CombiWATT aktivuje režim CombiWATT pro daný výstup (výstup musí být aktivován). Do políčka zapište požadované množství energie, které musí být denně dodáno do příslušného spotřebiče.
- Plný výkon zaškrtněte toto pole, chcete-li v režimu CombiWATT a TEST sepnout daný proporcionální výstup trvale. Tímto lze eliminovat výskyt flikru (rychlých změn napětí v elektrické síti, resp. rychlého blikání žárovek a zářivek) při aktivním režimu CombiWATT, popř. TEST. V opačném případě se použije stanovený maximální příkon spotřebiče (pole Maximální příkon).

inverzní – zaškrtněte toto pole, aby zvolený reléový nebo PWM výstup byl v neaktivním stavu sepnut a
v aktivním stavu vypnut. Od verze firmwaru 3.0 inverze platí v každém stavu přístroje (nezávisle na
přiřazení priority a i v režimu TEST). Výjimkou je pouze chybový stav, kdy inverze neplatí pro reléový
výstup, který tak zůstane fyzicky vypnutý.

Funkce v případě reléového výstupu najde uplatnění například tehdy, je-li WATTrouter provozován jako omezovač maximálního výkonu FVE. Inverzní výstup zde slouží k odblokování činnosti střídačů, jejichž výkon by za dobrých podmínek mohl zvýšit výkon celé FVE nad přípustnou mez.

Příklad: Konfigurace omezovače maximálního výkonu FVE mařicími topnými spirálami.

Zadání: 3fázová FVE nesmí překročit celkový výkon 60kW. Měřeno distributorem ve čtvrthodinových intervalech.

Výkonový ofset na kartě Karta Další nastavení nastavíme na hodnotu max. výkonu FVE 20kW v každé fázi, tj. zde -20kW (hodnotu bývá vhodné doladit).

Mařicí spirály a invertovaný výstup zapojíme následovně:

- SSR 1, 1. priorita, připojený příkon mařicí spirály 2 kW, maximální příkon 2 kW,
- SSR 2, 2. priorita, připojený příkon mařicí spirály 2 kW, maximální příkon 2 kW,
- triak 1, 3. priorita, připojený příkon mařicí spirály 2 kW, maximální příkon 2 kW.
- relé 1, 4. Priorita, připojený příkon 0,05kW, zpoždění sepnutí 15s, zpoždění vypnutí 120s.

Jako invertovaný výstup nastavíme právě relé 1 a tímto relé podmíníme funkci "přebytečných" střídačů. Dojde-li k závadě na mařicích spirálách a přebytek vzroste nad přípustnou mez, odpojení regulátoru od sítě apod., relé se odpojí, čímž dojde také k odpojení střídačů. "Přebytečné" střídače tímto tedy vyrábí energii bez rizika překročení maximálního výkonu FVE.

Funkce v případě reléového výstupu najde uplatnění i tehdy, je-li nutno pokud možno zamezit toku přebytku do distribuční soustavy. Na daném výstupu je opět připojeno blokování střídače, který je při dosažení nespotřebovatelného přebytku na jistou dobu odpojen. Doba odpojení je dána zpožděním vypnutí. Pro blokování střídače se doporučuje využít analogových vstupů u střídačů, které podporují omezování výkonu (typicky německé střídače). Střídač se v této konfiguraci odpojí i v případě zjištění poruchy na WATTrouteru nebo v případě odpojení napájení WATTrouteru.

V případě výstupu ve funkci PWM je výstupní střída PWM signálu invertována.

 TEST – otestuje příslušný výstup a spotřebič. Je-li stisknuto některé z tlačítek TEST, pak se výstup sepne nezávisle na jeho konfiguraci. V případě invertovaného výstupu se výstup od verze firmwaru 3.0 naopak odepne. Chování regulace během režimu test závisí na volbě "Test výstupů blokuje regulaci" popsané v kapitole Karta Další nastavení.

KARTA ČASOVÉ PLÁNY

Na této kartě lze nastavit časové plány pro jednotlivé výstupy.

Pro každý výstup lze nastavit až 4 nezávislé časové intervaly, ve kterých lze pro daný výstup vynutit jeho sepnutí nebo naopak jeho sepnutí zakázat (omezit). Vynucení/omezení lze dále podmínit přítomností signálu nízkého tarifu, stavem denních čítačů energií daného výstupu (pole Dodaná energie) nebo teplotními podmínkami.

Časovými plány lze vytvořit složitější konfigurace chování výstupů podle uživatelských preferencí. Časovými plány lze doplnit případně nahradit i vestavěný režim CombiWATT.

Časové plány fungují nezávisle na základním režimu regulace a neuváženým používáním mohou zhoršit energetickou bilanci Vašeho objektu. Nastavení časových plánů závisí plně na vaší kreativitě a poskytuje široké spektrum různých kombinací. Jejich použití proto doporučujeme

pouze po důkladném obeznámení se s funkcí tohoto přístroje a zkušenějším uživatelům!

Popis časového plánu:

- Režim časového plánu:
 - a) Nepoužito časový plán je neaktivní.
 - b) Omezit výstup bude omezen/zakázán v době dané intervalem Od-Do. Je-li čas "Od" větší než "Do", pak omezení platí od času "Od" do půlnoci a druhý den od půlnoci do času "Do". Omezení se týká veškeré aktivity tohoto výstupu a má absolutně nejvyšší prioritu. V době omezení nebude fungovat ani základní regulace podle přebytku, ani CombiWATT, ani jiný časový plán nastavený do režimu vynucení. Omezení výstupu nebrání výstupům s nižšími prioritami v jejich běžné činnosti.
 - c) Vynutit výstup bude vynucen/sepnut v době dané intervalem Od-Do. Je-li čas "Od" větší než "Do", pak vynucení platí od času "Od" do půlnoci a druhý den od půlnoci do času "Do". Vynucení má druhou nejvyšší prioritu a lze jej zakázat pouze jiným časovým plánem nastaveným ve stejné době na režim omezení. Vynucení výstupu deaktivuje ve stanovené době režim základní regulace podle přebytku (pouze je-li položka Výkon rovna 100%, viz k tomu níže), avšak nijak neovlivňuje podmínky aktivity režimu CombiWATT, který tak může běžet současně s vynucením. Vynucení výstupu nebrání výstupům s nižšími prioritami v jejich běžné činnosti.
- Od čas zahájení časového plánu
- Do čas ukončení časového plánu
- Výkon u proporcionálních výstupů (výstupy ve funkci plynulé regulace a PWM) lze pro režim Vynutit nastavit sepnutí výstupu v procentech připojeného příkonu. Výstup tedy lze spínat proporcionálně i pomocí časového plánu. Je-li nastaven výkon nižší než 100%, pak takové vynucení nedeaktivuje režim základní regulace dle přebytku. Je-li tedy výstup vynucen např. na 50% a je dostupný přebytek pro jeho sepnutí na 75%, výstup se bude spínat na 75% výkonu. Pro režim Omezit se tato hodnota nijak nepoužívá.

Hodnotu ponechte vždy rovnu 100% v případech, kdy výstup je ve funkci plynulé regulace a připojený spotřebič způsobuje zvýšený flikr (rychlé změny napětí v elektrické síti, resp. rychlé blikání žárovek a zářivek). Výstup tak bude při vynucení vždy trvale sepnutý. Viz doporučení ohledně redukce flikru v sekci Časté dotazy na stránkách výrobce.

- P až N zkratky pro dny v týdnu. Časový plán se použije jen v zaškrtnutých dnech v týdnu.
- NT je-li toto pole zaškrtnuto, časový plán je dále podmíněn přítomností signálu nízkého tarifu. Funkce je odlišná v závislosti na režimu časového plánu a vychází primárně z podmínky, že elektřina v nízkém tarifu je levnější než elektřina v běžném (vysokém) tarifu:
 - a) Omezení výstup je omezen pouze tehdy, není-li detekován nízký tarif.
 - b) Vynucení výstup je vynucen pouze tehdy, je-li detekován nízký tarif.
- Energie je-li toto pole zaškrtnuto, časový plán je dále podmíněn stavem denního čítače energie daného výstupu (pole Dodaná energie). Funkce je opět odlišná v závislosti na režimu časového plánu:
 - a) Omezení výstup je omezen pouze tehdy, překročí-li denní čítač energie hodnotu uvedenou v poli Limit.
 - b) Vynucení výstup je vynucen pouze tehdy, nedosahuje-li denní čítač energie hodnoty uvedené v poli Limit.

Tip: Časový plán lze nastavit i pro výstup, který nemá přiřazenu žádnou prioritu. Takové výstupy lze použít například jako spínací hodiny apod. Lze pro ně nastavit jmenovky i jmenovité příkony na kartě Nastavení výstupů. Jmenovitý příkon takového výstupu se pak použije jen pro aktualizaci denního čítače energie (pole Dodaná energie).

Poznámka: Výše popisované podmínky se v jednom časovém plánu kombinují ve funkci logického součinu. Je-li potřeba vytvořit logický součet, je třeba přidat druhý časový plán se stejným rozmezím časů a jinou podmínkou. Má-li například časový plán omezit funkci výstupu, pokud čítač energie překročí limit 5 kWh a ZÁROVEŇ teplota na přiřazeném vstupu překročí 60 °C, stačí použít jeden časový plán, kde nastavíme obě podmínky. Má-li tento plán omezit funkci výstupu, pokud čítač energie překročí limit 5 kWh NEBO teplota na přiřazeném vstupu překročí 60 °C, bude nutné použít 2 časové plány, kde u každého nastavíme shodné časy a odlišnou podmínku.

Poznámka: Beznárazové přepnutí do základního regulačního režimu: Pomine-li podmínka pro vynucení reléového výstupu, je pro tento výstup nastaveno základní zpoždění vypnutí 10 s, uživatelsky stanovené zpoždění se po skončení podmínky pro vynucení výstupu nepoužije. Toto zpoždění slouží pro zajištění beznárazového přepnutí do základního regulačního režimu. Obdobná metoda se použije i pro proporcionální výstupy.

Praktické příklady nastavení časových plánů viz kap. Příklady nastavení.

KARTA DALŠÍ NASTAVENÍ

Na této kartě lze nastavit obecné parametry regulace a další funkce přístroje.

Nastavení regulace:

- Režim regulace slouží k nastavení režimu regulace, ta se nastavuje obvykle v souladu s konfigurací čtyřkvadrantního elektroměru:
 - a. Každá fáze samostatně regulace bude probíhat podle měřeného výkonu na každém fázovém vodiči odděleně. V tomto režimu je nutné správně nastavit fáze výstupů tak, aby odpovídaly fázovému vodiči, na který je příslušný spotřebič připojen. Tato regulace bude fungovat s libovolným nastavením čtyřkvadrantního elektroměru.
 - b. Součet všech fází regulace bude probíhat v režimu součtu měřených výkonů ze všech tří fází. V tomto režimu není nutné nastavovat fáze jednotlivých výstupů, ale tuto regulaci musí umožnit nastavení čtyřkvadrantního elektroměru.
- Výkonový ofset udává rozdíl mezi skutečným součtem výkonů L1+L2+L3 a hodnotou použitou pro regulační funkce. Je-li např. skutečný součet výkonů L1+L2+L3 roven +500W a výkonový ofset roven 100W, regulátor použije pro vyhodnocení spínání výstupů hodnotu 400W. Výše uvedené platí pro regulační režim součtu všech fází. Pro regulační režim každé fáze odděleně se výkonový ofset použije pro každou fázi. Čím nižší (zápornější) je výkonový ofset, tím více se zamezuje odběr elektřiny ze sítě v přechodových jevech i ustálených stavech při spínání malých výkonů proporcionálními výstupy. Přechodové jevy spínání spotřebičů jsou obvykle indikovány čtyřkvadrantními elektroměry jako "pohyb okolo nuly", kdy se nepravidelně a často střídají indikátory výroby a spotřeby. Zápornější výkonový ofset omezuje výskyt zobrazení indikátoru spotřeby, ale v běžných ustálených stavech "pouští" nastavenou část výkonu FVE do sítě. U standardního zapojení nedoporučujeme používat kladný ofset.
- Frekvence PWM (od verze firmwaru 3.0) nastavte požadovanou frekvenci pro výstupy v režimu PWM. Frekvence je vždy stejná pro všechny výstupy (a nelze hardwarově nastavit jinak).
- Napětí vnitřního zdroje (od verze firmwaru 3.0) informuje o aktuální velikosti napětí vnitřního stejnosměrného zdroje regulátoru. Tato hodnota slouží ke kontrole eventuálního přetížení tohoto zdroje, což může vést až k vyhlášení poruchy "Přetížení vnitřního zdroje", detailně viz kap. Měřené veličiny a stavy).
- Test výstupů blokuje regulaci (od verze firmwaru 3.0) tato funkce slouží k nastavení chování výstupů v režimu TEST. Je-li volba zaškrtnutá, chová se režim test jako ve všech starších verzích firmwaru, a

tedy aktivace libovolného výstupu do režimu TEST kompletně zastaví regulaci. Při odškrtnuté volbě režim TEST neblokuje regulaci ostatních výstupů, které v režimu TEST nejsou.

Časový limit testu výstupů – (od verze firmwaru 3.0) tato položka slouží k časovému omezení aktivity režimu TEST. Je-li položka rovna nule, režim TEST je neomezený a chová se jako ve všech starších verzích firmwaru. Je-li položka nenulová, režim TEST bude u všech výstupů omezen na stanovenou dobu. Tuto novou funkci lze použít např. k dočasnému sepnutí výstupu v ručním režimu, je-li potřeba rychle vynutit sepnutí určitého výstupu na stanovenou dobu.

Nastavení sítě:

- IP adresa regulátoru IP adresa uložená v regulátoru. Na této adrese regulátor bude naslouchat veškerým UDP i TCP/IP(HTTP) požadavkům.
- Maska podsítě maska podsítě, ke které je regulátor připojen.
- IP adresa výchozí brány doporučujeme zadat IP adresu Vašeho routeru. Na tuto adresu jsou směrovány požadavky směřující mimo lokální síť, vyjma serveru DNS.
- IP adresa DNS serveru (od verze firmwaru 3.0) zadejte IP adresu vámi upřednostňovaného DNS serveru.
- MAC adresa regulátoru fyzická (MAC) adresa regulátoru. Měňte pouze při konfliktu fyzických adres ve Vaší lokální síti.
- UDP port port, na kterém bude regulátor naslouchat UDP požadavkům.
- HTTP port port, na kterém bude regulátor naslouchat HTTP požadavkům.
- Režim DHCP (od verze firmwaru 3.0) volí režim automatické konfigurace síťového připojení pomocí protokolu DHCP:
 - a) nic DHCP není aktivní, veškerá síťová nastavení je nutno zadat ručně, jako v případě všech starších verzí firmwaru.
 - b) DNS DHCP se použije pouze pro získání IP adresy DNS serveru (přístroj použije pouze dotaz DHCP inform popř. DHCP discover).
 - c) vše DHCP se použije pro kompletní nastavení sítě. Pozor, v tomto režimu se může kdykoli změnit IP adresa regulátoru, který pak nemusí být přístupný např. z Internetu (přestane fungovat směrování NAT). Doporučujeme pouze zkušeným uživatelům!

Nastavení sítě bude účinné až po restartování regulátoru (volba Restartovat regulátor po zápisu konfigurace)!

Nastavení reálného času:

- Nastavit datum a čas podle klienta zaškrtněte toto pole, chcete-li synchronizovat datum a čas v regulátoru s reálným časem běžícím v klientovi (PC).
- Synchronizovat datum a čas s časovým serverem (od verze firmwaru 3.0) zaškrtněte toto pole, chcete-li, aby regulátor pravidelně jednou týdně synchronizoval datum a čas v regulátoru s časovým serverem v Internetu. Aby synchronizace fungovala, regulátor musí být připojen k Internetu, musí být nastavena platná IP adresa časového serveru a také platná IP adresa výchozí brány. Okamžik provedení synchronizace se počítá ze sériového čísla regulátoru a je pro každý regulátor jiný.

Aby funkce synchronizace s časovým serverem fungovala, musí být regulátor připojen k Internetu, IP adresa časového serveru nebo jeho doménový název musí být platné a také musí být správně nastavena IP adresa výchozí brány!

- Název časového serveru (od verze firmwaru 3.0) doménový název časového serveru. Název časového serveru se ukládá přímo do regulátoru a ten si zjistí jeho IP automaticky pomocí nově implementovaného protokolu DNS. Pak se ignoruje pole IP adresa časového serveru. Výchozím a doporučeným názvem je pool.ntp.org, což je služba, která přidělí IP adresu konkrétního časového serveru automaticky, podle vytížení jednotlivých časových serverů a dalších kritérií. Tlačítko "Otestuj časový server a zjisti IP" můžete použít k ověření funkčnosti serveru.
- IP adresa časového serveru (od verze firmwaru 3.0) IP adresa časového serveru uložená v regulátoru. IP adresu časového serveru není nutné nastavovat a zjišťovat, stačí pouze platný název časového serveru. V případě nefunkčnosti zjištění IP časového serveru z jeho názvu však bude učiněn ještě pokus o kontaktování časového serveru specifikovaného touto IP. Je tedy možné toto pole použít jako alternativu k doménovému názvu a specifikovat jím např. jiný (záložní) časový server.
- Používat letní čas Zaškrtněte toto pole, chcete-li automaticky měnit zimní a letní čas. Je podporován pouze letní čas dle doporučení EU, tj. platnost letního času od 2:00 SEČ, poslední neděle v březnu do 3:00 SELČ, poslední neděle v říjnu. Informace o letním času je používána k automatické úpravě aktuálního času i vypočteného času východu Slunce.
- Časové pásmo uveďte časové pásmo podle umístění regulátoru. Výchozí hodnotou je středoevropský čas. Hodnota se používá k úpravě vypočteného času východu Slunce a také při komunikaci s časovým serverem. Časová pásma mimo násobky celých hodin nejsou podporována.
- Otestuj časový server a zjisti IP (od verze firmwaru 3.0) stiskněte pro otestování časového serveru a zjištění jeho IP adresy. Ta se zapíše do regulátoru při následném zápisu konfigurace. Od verze firmwaru 1.5 není nutné tuto funkci používat, IP se zjistí primárně ze zadaného doménového názvu.
- Synchronizuj čas teď (od verze firmwaru 3.0) stiskněte toto tlačítko pro okamžitou synchronizaci času
 v regulátoru (bez nutnosti zápisu konfigurace). Je-li zaškrtnuto pole Nastavit datum a čas podle klienta,
 čas se nastaví podle PC, v opačném případě se provede synchronizace s časovým serverem (je-li časový
 server správně nastaven, jinak se neprovede nic).

Nastavení režimu CombiWATT:

- Zpoždění CombiWATT udává zpoždění aktivace programu CombiWATT po ukončení výroby FVE (po setmění). Nastavení doporučujeme zvýšit v případě, že hojně využíváte elektrické spotřebiče (jiné nežli ty připojené k regulátoru), jejichž příkon dlouhodobě přesahuje výkon FVE (regulátor v tomto případě nerozezná tento stav od ukončení výroby FVE).
- Čas do aktivace CombiWATT ukazuje okamžitý čas zbývající do aktivace programu CombiWATT.
 Hodnota je rovna parametru Zpoždění CombiWATT v případě, že je zjištěna výroba FVE. Je-li hodnota rovna nule a zároveň je detekován signál nízkého tarifu, dojde ke spuštění režimu CombiWATT (pro nastavené výstupy).
- Limit výroby pro CombiWATT u objektů s instalovanou výraznou kapacitní zátěží (blokovací kondenzátory, UPS stanice, velké množství spínaných zdrojů aj.) může být detekováno malé množství výroby (jednotky až desítky W) i v případě, že střídač nepracuje. Detekce malého množství činné výroby je v tomto případě způsobena výraznými jalovými odběry, které jsou měřeny blízko hranice rozeznání výroby od spotřeby. Obdobné chování vykazují i wattmetry či elektroměry jiných výrobců. Tato položka udává limit pro spuštění režimu CombiWATT v každé fázi. Je-li například limit výroby

roven 0,05 kW, dojde ke spuštění režimu CombiWATT (za předpokladu splnění dalších podmínek pro spuštění tohoto režimu) již při poklesu přebytku pod 0,05 kW v každé fázi.

- CombiWATT Reset čítačů energií toto pole slouží k výběru možnosti nulování čítačů energií, tj. kolonek "Dodaná energie" ve skupině Stavy výstupů. Na výběr jsou 2 možnosti:
 - a) východ Slunce: čítače se nulují tehdy, rovná-li se aktuální čas době východu Slunce.
 - b) fixní čas: čítače se nulují tehdy, rovná-li se aktuální čas době nastavené v kolonce "Pevný čas resetu energií".
- Pevný čas resetu energií stanovuje fixní čas nulování čítačů energií pro metodu nulování fixním časem (předchozí odstavec, režim b).

Zeměpisná poloha objektu:

- Zeměpisná šířka zadejte zeměpisnou šířku ve stupních. Hodnota se používá pouze pro výpočet času východu Slunce, a proto je rozlišení ve stupních dostatečné.
- Zeměpisná délka zadejte zeměpisnou délku ve stupních. Hodnota se používá pouze pro výpočet času východu Slunce, a proto je rozlišení ve stupních dostatečné.

Tip: Změnou (posunem) zeměpisné délky lze upravit čas východu Slunce tak, aby se čítače energií nulovaly podle Vašich potřeb, například v závislosti na zastínění objektu apod. Pokud si nejste jisti, hodnoty neupravujte. Výchozí zeměpisná poloha je umístěna ve středních Čechách.

Ostatní nastavení:

- Jazyk Nastavte jazyk, který bude aplikace WATTconfig používat při příštím spuštění. Položka Jiný je určena pro libovolný dosud nepodporovaný jazyk. Pak je nutné ručně přeložit řetězce v souboru custom.xml do Vámi preferovaného jazyka.
- Restartovat regulátor po zápisu konfigurace Zaškrtněte toto pole, chcete-li regulátor restartovat po každém zápisu konfigurace. Restart je nutný, aby regulátor změnil nastavení sítě.
- Výchozí záložka nastavte záložku, kterou si přejete zobrazit po spuštění programu WATTconfig nebo po načtení webového rozhraní. Toto nastavení se v programu WATTconfig ukládá na disk PC, shodné nastavení ve webovém rozhraní se ukládá přímo do regulátoru.
- Výchozí záložka statistik (od verze firmwaru 3.0) nastavte záložku na kartě Statistiky, kterou si
 přejete zobrazit po spuštění programu WATTconfig nebo po načtení webového rozhraní. Toto
 nastavení se v programu WATTconfig ukládá na disk PC, shodné nastavení ve webovém rozhraní se
 ukládá přímo do regulátoru.

Nastavení autorizace:

- Vyžadovat vyšší zabezpečení HTTP zaškrtněte toto pro zákaz posílání uživatelského jména a hesla v podobě prostého textu v požadavcích HTTP / XML (viz kapitola Popis webového rozhraní a XML komunikace). Je-li toto pole zaškrtnuto, autorizace bude provedena pomocí otisku hashe (XML uzel <sig>, který nahrazuje uzly <UN> a <UP>) a uživatelské jméno a heslo již nelze měnit pomocí webového rozhraní (tj. nelze použít uzly <UNn> a <UNp>). V případě, že používáte nadřazený systém pro úpravu konfigurace zařízení, tato volba musí být ponechána nezaškrtnutá, protože zde nebudete moci vygenerovat tento otisk (hash).
- Nové uživatelské jméno zapište nové přístupové uživatelské jméno pro zápis dat do regulátoru přes rozhraní Ethernet.
- Nové heslo zapište nové přístupové heslo pro zápis dat do regulátoru přes rozhraní Ethernet.

Poznámka: Nové údaje se zapíšou do regulátoru a lze je použít až při příštím zápisu konfigurace. WATTconfig si přístupové údaje sám přenastaví tak, abyste je při příštím zápisu nemuseli znovu zadávat.

Chlazení:

- Chladit v pohotovostním režimu zaškrtněte toto políčko, chcete-li zapínat ventilátor i v době mimo sepnutí triakových výstupů. Režim můžete využít pro cirkulaci vzduchu v rozvaděči a chlazení dalších komponent. Není-li tato položka zaškrtnuta, ventilátor se sepne pouze při sepnutí interních výkonových triaků.
- Teplota spínání ventilátoru v pohotovostním režimu se ventilátor sepne, překročí-li teplota uvnitř regulátoru tuto hodnotu.
- Max. teplota regulátoru při překročení této teploty uvnitř regulátoru je vyhlášena chyba "Překročena max. teplota".

Aktualizace firmwaru:

Tlačítko Aktualizace firmwaru – umožňuje aktualizovat firmware tohoto produktu. Aktualizace jsou
dostupné na internetových stránkách výrobce v sekci Ke stažení. Existuje-li aktualizace, můžete si ji
stáhnout a nainstalovat. Průběh aktualizace je indikován a trvá podle typu a rychlosti připojení od 20s
do 60s. Aktualizace přes rozhraní LAN je chráněna před neoprávněným zásahem autorizací.

Aktualizace originálního firmwaru je naprosto bezpečná. Systém plně kontroluje integritu souboru aktualizace i integritu dat po nahrání do jednotky. Při výpadku napájení během aktualizace lze firmware nahrát znovu kdykoli po zapnutí napájení. Firmware nahrávejte pokud možno přes USB nebo POUZE z lokální sítě (v případě chyby při nahrávání aktualizace si regulátor pamatuje nastavení sítě pouze cca. 2 minuty). V případě opakovaně nezdařené aktualizace originálního firmwaru se reklamace řídí platnými obchodními podmínkami. Je zakázáno jakkoli měnit soubor stažené aktualizace. V opačném případě i přes kontrolu integrity může dojít k poškození produktu a ztrátě záruky!

KARTA STATISTIKY

Na této kartě se zobrazují denní, týdenní, měsíční a roční statistiky výroby, přebytku a spotřeby, tak jak byly uloženy do interní paměti EEPROM regulátoru. Tyto statistiky lze v případě potřeby exportovat do souborů *.csv.

Měřicí modul je schopen změřit pouze údaje o spotřebě a přebytku. Aby se zobrazily údaje o výrobě a vlastní spotřebě, je nutno na některý ze vstupů FB přivést impulzní výstup z externího elektroměru, který měří výkon a energii ze střídače, případně vstupem FB tyto veličiny přímo měřit pomocí externího proudového transformátoru. Lze také propojit vstup FB přímo se střídačem, je-li střídač vybaven kompatibilním impulzním výstupem. Dále je nutno příslušný vstup FB nakonfigurovat v poli "Zdroj měření" na kartě Nastavení vstupů tak, aby údaj o výrobě byl regulátorem zpracován korektně.

Hodnoty jsou pouze orientační! Přístroj nezná přesné údaje z fakturačních elektroměrů!

Denní statistiky se nulují vždy těsně po půlnoci, tedy v 0:00 hodin. Ve stejné době probíhá přesun hodnot právě skončeného dne do historie. Při změně data v regulátoru může dojít k nevratnému vymazání uložené historie!

Online graf (od verze firmwaru 3.0):

V tomto čárovém grafu lze zvolit až 7 řad, které mohou zobrazovat průběhy výkonů. Lze zvolit periodu načítání hodnot do grafu v rozmezí od 1 s do 10 minut. Maximální počet bodů na časové ose grafu je 144 (při volbě desetiminutové periody odpovídá 1 dnu). Tento graf se neukládá do nepřechodné paměti EEPROM, a tudíž po resetu příp. výpadku napájení regulátoru se data vymažou. K výmazu dat dojde také při každé změně konfigurace tohoto grafu.

- Perioda udává periodu načítání hodnot do grafu.
- Řada 1-7 rozbalovací nabídky konfigurují vstup nebo výstup, jenž se má načítat do příslušné řady grafu.
- Exportovat vyexportuje data grafu do souboru *.csv, který lze načíst např. v MS Excel.

Denní statistiky:

- Zobrazit pro den zvolí den, pro který se mají denní statistiky zobrazit. Lze zobrazit aktuální den a posledních 7 dnů.
- Fáze Lx zobrazí se údaje o přebytku, spotřebě ve vysokém i nízkém tarifu a (volitelně) i o výrobě, je-li měřena příslušným vstupem FB, v aktuálním nebo zvoleném dni.
- Celkem L1+L2+L3 zobrazí se sumární údaje ze všech 3 fází. Metoda výpočtu těchto dat závisí na nastavení regulačního režimu – položka "Nastavení regulace" na kartě Nastavení vstupů:
 - a. Každá fáze samostatně sumární údaje jsou prostým součtem příslušných polí ze všech 3 fází
 - b. Součet všech fází sumární údaje se načítají průběžně podle okamžitých výkonů. V tomto režimu regulace nemusí prostý součet zobrazených hodnot v jednotlivých fázích souhlasit s celkovou hodnotou (přebytek v jedné fázi vykrývá spotřebu v jiné fázi apod.).
- Denní stavy výstupů zobrazí se předpokládané hodnoty dodané energie do jednotlivých zátěží v
 aktuálním nebo zvoleném dni. Vzhledem k tomu, že statistiky se nulují vždy těsně po půlnoci, tyto
 hodnoty nemusí souhlasit s hodnotami v polích "Dodaná energie" ve skupině Stavy výstupů (nulování
 těchto polí probíhá obecně v jiném okamžiku).
- Denní stavy vstupů FB zobrazí údaje o měřené energii na příslušném vstupu FB v aktuálním nebo zvoleném dni. V závorkách vpravo se také zobrazuje konfigurovaný zdroj měření. Je-li vstup FB nakonfigurován pro měření teploty, položka vždy zůstane nulová. Teploty se do statistik nijak nezapočítávají.
- Vymaž interní statistiky stiskněte toto tlačítko, chcete-li vymazat veškeré statistiky uložené v interní paměti EEPROM. Funkce vyžaduje dodatečné potvrzení uživatele.
- Grafy zobrazují grafickou interpretaci denních statistik výroby a spotřeby. Grafy v jednotlivých fázích indikují vždy poměrnou část (výseč nebo část sloupce) sumárních údajů. Údaj o vlastní spotřebě je počítán ze vztahu: vlastní spotřeba = výroba přebytek. Údaj o vlastní spotřebě není dostupný, pokud není měřená žádná výroba nebo je výroba menší než zjištěný přebytek (chyba konfigurace, měření apod.).

Poznámka: U velmi malých hodnot energií (typicky bezprostředně po vynulování statistik) hraje při zobrazení grafů roli zaokrouhlování na 0,01 kWh. V těchto případech se nemusí koláčové grafy zobrazovat zcela správně.

Týdenní statistiky:

 Graf – zobrazuje 5 hlavních sumárních údajů (výroba, přebytek, vlastní spotřeba, spotřeba ve vysokém a nízkém tarifu) ve sloupcích za posledních 7 dnů. Dvojklikem na sloupec zobrazíte příslušný den v denních statistikách.

Měsíční statistiky:

• Graf Výroba – zobrazuje sumární údaje o výrobě (výroba + přebytek) za posledních 31 dnů. Dvojklikem na sloupec zobrazíte příslušný den v denních statistikách.

- Graf Spotřeba zobrazuje sumární údaje o spotřebě (vlastní spotřeba, spotřeba ve vysokém a nízkém tarifu) za posledních 31 dnů. Dvojklikem na sloupec zobrazíte příslušný den v denních statistikách.
- Exportovat vyexportuje měsíční statistiky do souboru *.csv, který lze načíst např. v MS Excel.
- Importovat importuje měsíční statistiky ze souboru *.csv. Soubor musí obsahovat měsíční statistiky uložené v programu WATTconfig Mx, M nebo ECO. Touto funkcí lze přenést statistiky z jiného přístroje. Neimportují se denní stavy vstupů a výstupů.

Roční statistiky:

- Graf Výroba zobrazuje sumární údaje o výrobě (výroba + přebytek) za posledních 12 měsíců.
- Graf Spotřeba zobrazuje sumární údaje o spotřebě (vlastní spotřeba, spotřeba ve vysokém a nízkém tarifu) za posledních 12 měsíců.
- Exportovat vyexportuje roční statistiky do souboru *.csv, který lze načíst např. v MS Excel. Exportují se data za posledních 24 měsíců.
- Importovat importuje roční statistiky ze souboru *.csv. Soubor musí obsahovat roční statistiky uložené v programu WATTconfig Mx, M nebo ECO. Touto funkcí lze přenést statistiky z jiného přístroje. Neimportují se denní stavy vstupů a výstupů.

Poznámka: Aktuální den se v roční historii (aktuálním měsíci) projeví až po uložení do historie (po půlnoci).

KARTA LOG

Na této kartě je zobrazen log chyb a výstrah. Zobrazují se zde například zjištěné chyby komunikace. Dále od verze firmwaru 3.0 se na této kartě zobrazuje také seznam až 20 chyb uložených v regulátoru od nejnovější po nejstarší Tento seznam chyb se v regulátoru neukládá do nepřechodné paměti (EEPROM), takže při výpadku napájení se vymaže.

- Vymazat seznam chyb stiskněte toto tlačítko pro vymazání seznamu chyb v regulátoru.
- Uložit seznam chyb stiskněte toto tlačítko pro uložení seznamu chyb do souboru ve formátu CSV na pevný disk počítače.
- Vymazat log stiskněte toto tlačítko pro vymazání logu.
- Uložit log stiskněte toto tlačítko pro uložení logu do textového souboru na pevný disk počítače.
- Zapisuj detailní informace o komunikace zaškrtněte toto tlačítko, chcete-li zobrazit detailnější
 informace o komunikaci s regulátorem, například za účelem diagnostiky. Dodatečné informace mohou
 pomoci technické podpoře odhalit případný problém v nastavení připojení k regulátoru apod.

VOLBY A TLAČÍTKA

Tlačítka na hlavním okně:

- Připojit přes volba umožňuje zvolit připojení přes USB nebo LAN.
- Připojit připojí počítač k regulátoru a načte konfiguraci z regulátoru.
- Odpojit odpojí počítač od regulátoru.
- Konfigurovat připojení zobrazí okno s nastavením aktivního připojení.
- Načíst načte konfiguraci z regulátoru.
- Zapsat zapíše konfiguraci do regulátoru a volitelně provede restart regulátoru. Zápis přes rozhraní
 LAN je chráněn před neoprávněným zásahem autorizací.
- Otevřít otevře konfiguraci.
- Uložit uloží konfiguraci.

WATTrouter M - uživatelská příručka

- Výchozí nastavení obnoví výchozí konfiguraci ve WATTconfigu (tu je poté potřeba zapsat do regulátoru).
- Konec- ukončí program WATTconfig.

OKNO NASTAVENÍ OVLADAČE ROZHRANÍ USB/COM

V tomto okně lze nastavit volby týkající se připojení k regulátoru přes USB rozhraní nebo rozhraní RS485.

Nastavení portu:

 Port – je-li ovladač správně nainstalován a regulátor připojen k počítači, lze v rozbalovací nabídce nalézt příslušný port COMx. Pokud se zobrazuje více portů nebo žádný, zkontrolujte správnost instalace zařízení USB serial port ve Správci zařízení. Zde se také lze dozvědět, který port je pro komunikaci použitý. Komunikační parametry jsou pevně nastavené: 38400 Bd, 8N1.

Timeouty:

• Výchozí timeout čtení – celkový timeout pro příjem odpovědí z regulátoru. Hodnotu upravte (zvyšte) jen při problémech s komunikací.

Tlačítka:

- Výchozí nastaví výchozí parametry komunikace.
- OK, Storno standardní potvrzení a zrušení dialogu.

OKNO NASTAVENÍ OVLADAČE ROZHRANÍ LAN/UDP

V tomto okně lze nastavit volby týkající se připojení k regulátoru pomocí protokolu UDP přes síť Ethernet.

Nastavení protokolu UDP:

- Výběr profilu slouží pro výběr profilu připojení. Profily připojení slouží pro rychlou konfiguraci
 připojení například v případě připojení z lokální a veřejné sítě, kde je potřeba přepínat mezi dvěma IP
 adresami. Nový profil lze vytvořit tlačítkem Nový. Do nového profilu se uloží aktuální nastavení IP
 adresy a UDP portu. Vytvořené profily lze vymazat tlačítkem Smazat.
- IP adresa (IPv4) IP adresa použitá pro přístup WATTconfigu k regulátoru, může být uvedena adresa
 regulátoru v lokální síti nebo v případě vhodného nastavení NAT na Vašem routeru i adresa regulátoru
 v Internetu. V případě změny IP adresy je předtím nutné změnit nastavení IP adresy přímo v regulátoru
 viz karta Další nastavení.
- UDP port UDP port použitý pro přístup WATTconfigu k regulátoru. Výchozí hodnota je 50000.

Poznámka: Máte-li problémy s navázáním komunikace, připojte se přes USB a zjistěte aktuální nastavení sítě LAN.

Timeouty:

- Výchozí timeout čtení celkový timeout pro příjem odpovědí z regulátoru. Hodnotu upravte (zvyšte)
 jen při problémech s komunikací.
- Pauza komunikace po resetu v případě připojení přes LAN trvá "znovunaběhnutí" spojení po restartu
 regulátoru déle než v případě připojení přes USB. Hodnotu upravte (zvyšte) pouze při problémech
 s komunikací po restartu regulátoru (typicky při nahrávání nového firmwaru do regulátoru).

STAVY LED

V následující tabulce jsou uvedeny možné stavy indikačních LED regulátoru.

LED	Stav	Poznámka
LED PWR (zelená)	svítí	Regulátor je pod napětím, žádný
		výstup není aktivní (sepnut).
	bliká	Regulátor je pod napětím, některý
		výstup je aktivní (sepnut).
	rychle bliká	Regulátor je pod napětím,
		bootovací režim.
	nesvítí	Regulátor bez napětí nebo závada.
LED USB (žlutá)	nesvítí	Komunikace s počítačem přes USB
		není navázána.
	svítí nebo rychle problikává	Je navázána komunikace
		s počítačem přes USB.
LED ERR (červená)	nesvítí	Není detekován žádný chybový
		stav.
	bliká kódem krátce-krátce-krátce	Porucha měření napětí L1,
		postupujte dle kap. Měřené
		veličiny a stavy.
	bliká kódem krátce-krátce-dlouze	Porucha snímačů teploty,
		postupujte dle kap. Měřené
		veličiny a stavy.
	bliká kódem dlouze-dlouze-dlouze	Překročena max. teplota,
		postupujte dle kap. Měřené
		veličiny a stavy.
	bliká kódem dlouze-dlouze-krátce	Přetížení vnitřního zdroje,
		postupujte dle kap. Měřené
		veličiny a stavy.
LED OUT	Nesvítí	Příslušný výstup není aktivní.
	svítí (popř. problikává)	Výstup je aktivní (sepnut).
LED na konektoru LAN – pravá LED	nesvítí	Není indikován nosný signál
		Ethernet.
	svítí	Je indikován nosný signál Ethernet.
	bliká	Aktivní přenos dat.
LED na konektoru LAN – levá LED	nesvítí	Rychlost 10 Mbit/s.
	svítí	Rychlost 100 Mbit/s.

PŘÍKLADY NASTAVENÍ

Uvedené příklady pouze ilustrují možné využití přístroje, ve většině případů bývá nutné nastavení upravit. Příklady jsou ilustrovány ve verzi 1.0, v novějších verzích softwaru mohou existovat další možnosti zlepšení účinnosti systému.

PŘÍKLAD 1 - POUZE JEDEN SPOTŘEBIČ

Bojler o příkonu 2 kW, 200l vody, průměrná teplota studené vody na vstupu 12 °C, ohřev na 50 °C, průměrná spotřeba teplé vody 160 l denně. Denní množství el. energie potřebné k ohřevu celého bojleru (bez započtení tepelných ztrát) je:

$$E = \frac{c_V \cdot V[l] \cdot \Delta T[K]}{3600000} = \frac{4180.200.38}{3600000} = 8,82 \, kWh$$

Průměrné denní ztráty bojlerů s těmito parametry jsou asi 1,5 kWh. Při odběru teplé vody 160 l a přičtení tepelných ztrát vychází denní přísun el. energie cca. 8,6 kWh.

Bojler je připojen na triakový výstup 1 a WATTrouter má k dispozici signál nízkého tarifu a pro bojler je nastaven režim CombiWATT.

Časovým plánem je nastaveno sepnutí bojleru při menším než nastaveném množství energie v době od 15:00 do 19:00 a pouze je-li přítomen nízký tarif. Tímto nastavením lze docílit dohřev teplé vody pro večerní užití v případě, že v dopoledních a popoledních hodinách nebyl bojler dostatečně ohřátý energií z FVE. Není-li sepnut nízký tarif, pokračuje základní regulace podle přebytku i v době vymezené časovým plánem.

PŘÍKLAD 2 – VŠECH 6 SPOTŘEBIČŮ, REGULACE = SOUČET FÁZÍ

Bojler z příkladu 1, bazénová filtrace a přímotopný průtočný ohřev bazénu 6 kW (čerpadlo a třífázová spirála). Doporučený výkon FVE > 8 kWp.

Ohřev bojleru má první prioritu (triak 1), požadavky jsou shodné jako v příkladu 1.

Motor filtrace má druhou prioritu (relé 1), jmenovitý výkon 0,3 kW (hodnota ve VA se zde obvykle neuvádí), musí běžet právě 6 hodin denně a minimální doba sepnutí je 5 minut. Denní množství potřebné energie pro tento motor je tedy 1,8 kWh. Není-li dostatek slunečního svitu, sepne se na nízký tarif. Motor nemá běžet v noci mezi 23. a 5. hodinou, aby pokud možno nerušil noční klid (záleží vždy na místním časovém rozvržení nízkého tarifu, aby mohl "dostat šanci").

Čerpadlo ohřevu má třetí prioritu (relé 2), výkon 0,16 kW a musí běžet vždy, topí-li spirála. Doběh čerpadla je 1 minuta. Ohřev bazénu na noční tarif nezapínáme. Průtočný ohřev bazénu musí být vybaven bezpečnostní tepelnou ochranou!

Vlastní ohřev je zapojen na zbývající výstupy v nižších prioritách (triak 2, oba výstupy SSR).

Pro motory doporučujeme použít samostatné stykače, ale vzhledem k jejich nízkému příkonu to není nezbytně nutné. WATTrouter má k dispozici signál nízkého tarifu a pro bojler i motor bazénové filtrace je nastaven režim CombiWATT.

Časový plán pro bojler je shodný s příkladem 1.

Pro motor filtrace jsou nastaveny 2 časové plány. Prvním z nich je omezení výstupu v "denní" době od 8:00 do 23:00, které zajišťuje nejvýše 6 hodin chodu a je tedy platné pouze za podmínky, pokud denní čítač energie dosáhne hodnoty 1,6 kWh. Druhý časový plán omezuje chod čerpadla nepodmíněně v nočních hodinách od 23:00 do 5:00. Předpokladem pro správnou funkci těchto omezení je volba režimu nulování čítačů energií podle východu Slunce nebo fixního času, který by ovšem měl být volen ráno před 8:00.

PŘÍKLAD 3 – VŠECH 6 SPOTŘEBIČŮ, REGULACE = KAŽDÁ FÁZE ZVLÁŠŤ

Spotřebiče z příkladu 2 ve složitějším zapojení a nastavení regulace pro každou fázi odděleně.

Na fázi L1 připojíme:

- ohřev bojleru v první prioritě (triak 1), požadavky jsou shodné jako v příkladu 1.
- motor filtrace v druhé prioritě (relé 1), požadavky jsou shodné jako v příkladu 2.

Na fázi L2 připojíme:

- čerpadlo ohřevu v první prioritě (relé 2), požadavky jsou shodné jako v příkladu 2.
- jednu spirálu ohřevu v druhé prioritě (SSR 1).

Na fázi L3 připojíme:

- -pomocný kontakt v první prioritě (triak 2 ve funkci relé), který rovněž zapne oběhové čerpadlo připojené reálně k fázi L2 (zde může dojít na fázi L2 k mírnému odběru ze sítě, ale abychom tomu zabránili, potřebovali bychom 2 oběhová čerpadla).
- druhou spirálu ohřevu v druhé prioritě (SSR 2).

Třetí spirálu ohřevu bohužel v této konfiguraci s jedním regulátorem nelze připojit, museli bychom spouštění oběhového čerpadla ohřevu zajistit pouze jedním výstupem pomocí časového plánu nebo zcela mimo WATTrouter.

Časové plány jsou shodné s příkladem 2.

PŘÍKLAD 4 – 5 SPOTŘEBIČŮ, REGULACE = KAŽDÁ FÁZE ZVLÁŠŤ

Bojler a bazénová filtrace z příkladu 2, dále 2 čistě ohmická přímotopná tělesa a tepelné čerpadlo pro ohřev bazénu. Vše ve složitějším zapojení a nastavení regulace pro každou fázi odděleně.

Přímotopy mají příkon 2kW a spínají se pouze přebytkem, nezávisle na regulaci vytápění domu. V létě je nutno přímotopy deaktivovat buď termostatem přímotopu, nebo vyjmutím pojistek z odpojovače eventuálně deaktivováním výstupu v programu.

Tepelné čerpadlo má příkon 1,3kW a spíná se pouze přebytkem nebo manuálně mimo WATTrouter.

Na fázi L1 připojíme:

- ohřev bojleru v první prioritě (triak 1), požadavky jsou shodné jako v příkladu 1.
- motor filtrace v druhé prioritě (relé 1), požadavky jsou shodné jako v příkladu 2.

Na fázi L2 připojíme:

- první přímotop v první prioritě (SSR1).
- tepelné čerpadlo v druhé prioritě (relé2).

Na fázi L3 připojíme:

- druhý přímotop v první prioritě (SSR 2).

Pro reléové výstupy můžeme v nové verzi softwaru aktivovat funkce Předřadit, abychom lépe využili přebytek na L2 v době souběhu TČ a přímotopu.

Časové plány jsou shodné s příkladem 2.

NASTAVENÍ SÍTĚ ETHERNET

WATTrouter M umožňuje sledování a nastavení pomocí zásuvky Ethernet. Ke zprovoznění komunikace je zapotřebí správně nastavit připojení sítě.

Nastavení sítě a přístupu k regulátoru z Internetu vždy svěřte osobě s patřičnou odborností. Na problémy spojené s nastavováním sítě vyjma prokazatelné nefunkčnosti síťového rozhraní regulátoru výrobce neposkytuje žádnou technickou podporu.

Nastavení sítě v regulátoru je vhodné provádět pomocí připojení k USB rozhraní (při připojení přes zásuvku Ethernet dojde při změně parametrů sítě téměř vždy ke ztrátě připojení).

Základem úspěšného nastavení je znalost o parametrech Vaší lokální sítě. Je nezbytné znát tyto údaje:

- IP adresa Vašeho routeru, případně jiného přístupového bodu do Vaší lokální sítě (je-li instalován),
- Volný rozsah IP adres, tedy adres, které nepatří do rozsahu dynamicky přidělovaných adres v případě zapnutého DHCP serveru ani to nejsou pevné adresy jiných zařízení ve Vaší lokální síti.
- Maska Vaší lokální sítě, kterou používají všechna zařízení k ní připojená.

NASTAVENÍ PŘIPOJENÍ K LOKÁLNÍ SÍTI

Síťové připojení se provádí na kartě Další nastavení, skupina Nastavení sítě.

V případě nastavení parametrů připojení pomocí serveru DHCP (od verze firmwaru 3.0) se parametry IP adresa, Maska a Výchozí brána nenastavují, jsou regulátoru přiděleny automaticky.

Nastavení sítě bude účinné až po restartování regulátoru (volba Restartovat regulátor po zápisu konfigurace)!

- IP adresa: nastavte IP adresu tak, aby nekolidovala s jiným zařízením ve Vaší lokální síti. Pokud je například adresa Vašeho routeru 192.168.2.1, nastavte třeba 192.168.2.10, pokud tato adresa již nepatří jinému zařízení ve Vaší lokální síti a pokud také tato adresa neleží v rozsahu dynamicky přidělovaných adres DHCP serveru ve Vaší lokální síti (ten obvykle bývá aktivní ve Vašem routeru).
- Maska: uveďte masku Vaší lokální sítě. V drtivé většině případů půjde o hodnotu 255.255.255.0.
- Výchozí brána: nastavte IP adresu zařízení, které bude použito pro odeslání požadavků regulátoru mimo lokální síť. V drtivé většině jde o IP adresu Vašeho routeru. V uvedeném příkladu to bude adresa 192.168.2.1. Pokud takové zařízení nemáte, zadejte jinou nepoužitou IP adresu ve Vaší lokální síti, požadavky směřující mimo lokální síť pak ale nebudou zodpovězeny.
- MAC adresa regulátoru: uveďte fyzickou/MAC adresu Vašeho regulátoru. Tuto hodnotu měňte jen
 v případě existence zařízení se shodnou fyzickou adresou ve Vaší lokální síti.
 Poznámka: Od verze firmwaru 3.0 mají regulátory WATTrouter M přidělen vlastní registrovaný adresní
 rozsah u organizace IEEE. Při případné změně MAC adresy je nutné respektovat specifická pravidla
 pro tyto adresy!
- UDP port: uveďte hodnotu UDP portu, na který bude směrována UDP komunikace z programu WATTconfig. Tuto hodnotu doporučujeme měnit pouze v případě existence více UDP serverů ve Vaší lokální síti (které mají být přístupny z Internetu) nebo nutnosti lepšího utajení připojení. V případě změny UDP portu v regulátoru je také nutné změnit nastavení UDP portu v konfiguraci ovladače připojení přes LAN/UDP.
- HTTP port: uveďte hodnotu HTTP portu, na kterém bude regulátoru naslouchat požadavkům protokolu HTTP, tedy webového rozhraní. Tuto hodnotu doporučujeme měnit pouze v případě existence více webových serverů ve Vaší lokální síti (které mají být přístupny z Internetu) nebo nutnosti lepšího utajení připojení.

NASTAVENÍ PŘIPOJENÍ K INTERNETU

Pro připojení k Internetu je doporučeno mít aktivní veřejnou pevnou IP adresu. Pokud máte pouze dynamicky přidělenou IP adresu, lze tuto zjistit z nastavení Vašeho routeru. Dynamickou veřejnou IP adresu lze užít také, ale v závislosti na poskytovateli připojení k Internetu se tato může více či méně často měnit. V případě nedostupnosti regulátoru z Internetu proto vždy nejprve zkontrolujte nastavení globální sítě WAN ve Vašem routeru.

Připojení k regulátoru z Internetu umožňují pouze routery nebo jiné přístupové body, které obsahují funkci **NAT** (Native Address Translation) nebo jinou obdobnou funkci určenou pro překlad IP adres a portů do lokální sítě.

V následujícím textu je uvedeno vzorové nastavení připojení k Internetu pomocí běžného širokopásmového routeru Edimax BR-6204Wg-M. Postup je následující:

- V záložce NAT Settings zaškrtněte Enable NAT module function, stiskněte Apply a následně Continue.
- V záložce Port forwarding zaškrtněte Enable Port Forwarding, vyplňte směrovací tabulku pro uvedený příklad podle obrázku, zaškrtněte Apply a následně také Apply, čímž se nastavení zapíše do routeru a dojde k resetu routeru.

	NO.	Private IP	Туре	Port Range	Comment	Select
	1	192.168.2.200	TCP	80	WATTrouter HTTP	
	2	192.168.2.200	UDP	50000	WATTrouter UDP	
-	тт'					

Nastavení funkce NAT je u jiných routerů obdobné.

Je-li Vaše globální (pevná nebo aktuální dynamická) IP adresa např. **80.200.50.6**, pak pro přístup k regulátoru z Internetu pomocí protokolu http zadejte do Vašeho prohlížeče jednoduše (doporučujeme vytvořit záložku v prohlížeči):

http://80.200.50.6/

Pro přístup k regulátoru z Internetu pomocí programu WATTconfig zadejte do okna konfigurace ovladače připojení přes LAN/UDP tutéž IP adresu, tedy **80.200.50.6**.

Při konfliktu portů HTTP v případě existence více webových serverů v lokální síti, které mají být přístupny z Internetu, je nutné pro přístup k regulátoru místo standardního portu č. 80 volit náhradní port, např. port 8080. Pak je nutné změnit i nastavení HTTP portu v regulátoru a pro přístup z Internetu volit:

http://80.200.50.6:8080/

POPIS WEBOVÉHO ROZHRANÍ A XML KOMUNIKACE

Regulátory řady WATTrouter M umožňují sledování stavu i konfiguraci pomocí běžného internetového prohlížeče. Webové rozhraní lze použít pouze v případě připojení regulátoru přes zásuvku Ethernet.

Obrázek 11: Webové rozhraní přístroje.

Pomocí webového rozhraní lze sledovat a nastavovat veškeré parametry regulátoru jako pomocí programu WATTconfig, s výjimkou kontrolního osciloskopu, testování časového serveru, exportu/importu statistik, upgradu firmwaru.

Webové rozhraní je implementováno pomocí technologie AJAX/XML, v internetovém prohlížeči je proto nutné mít povolen Javascript.

Sledování a nastavování činnosti regulátoru lze pomocí této technologie implementovat do libovolného nadřazeného celku, který podporuje načítání XML dat. Implementace vyžaduje určité znalosti o protokolu HTTP i formátu souborů XML.

Autorizace zápisu dat do regulátoru není prováděna pomocí standardního HTTP ověřování, ale zasíláním přístupových údajů přímo v datech každého požadavku na zápis dat. Tento mechanismus zjednodušuje implementaci do nadřazeného celku, kde by práce s HTTP ověřováním mohla být problematická. Aby bylo možné tento přístup použít, nesmí být povoleno vyšší zabezpečení protokolu HTTP na kartě Další nastavení.

Pro sledování a nastavení regulátoru jsou dostupné následující HTTP/XML požadavky (**pozor, od verze firmwaru 3.0 zde došlo ke změnám!**). Popisy jednotlivých položek XML dat jsou uvedeny jako HTML/XML komentáře přímo ve výpisech XML dat:

1. GET/meas.xml

Vysláním tohoto HTTP požadavku získáme z regulátoru aktuální měřená/stavová data (aktuální výkony na fázích a připojených spotřebičích). Struktura vrácených dat vypadá následovně:

```
<!--Hlavičky odpovědi-->
<!--jeden prázdný řádek-->
<meas>
<I1>
 <P>-2.20</P><!-- výkon měřený vstupem IL1 v kW-->
</I1>
<I2>
 <P>1.50</P><!-- výkon měřený vstupem IL2 v kW-->
</12>
<13>
  <P>-1.10</P><!-- výkon měřený vstupem IL3 v kW-->
</T3>
<I4><!-- stavy vstupu FB1-->
  <P>0.50</P><!-- výkon měřený vstupem v kW -->
  <E>1.60</E><!-- energie počítaná vstupem v kWh-->
</I4>
<!-- analogicky pro zbývající vstupy FB2(I5) až FB3(I6)-->
<01><!-- stavy výstupu triak 1-->
  <A>0</A><!-- rezervováno -->
  <P>1.00</P><!-- výkon zátěže na výstupu v kW-->
  <E>3.00</E><!-- dodaná energie na výstupu v kWh-->
  <HN>1</HN><!-- režim základní regulace: 0=neaktivní, 1=aktivní-->
  <HC>0</HC><!-- režim CombiWATT: 0=neaktivní, 1=aktivní-->
  <HE>0</HE><!-- výstup vynucen čas. plánem: 0=neaktivní, 1=aktivní-->
  <HR>0</HR><!-- výstup omezen čas. plánem: 0=neaktivní, 1=aktivní-->
  <TOT>0</TOT><!-- stav časovače zpoždění sepnutí relé-->
  <TFT>0</TFT><!-- stav časovače zpoždění vypnutí relé-->
  <T>0</T><!-- test výstupu: 0=neaktivní, 1=aktivní-->
<!-- analogicky pro zbývající výstupy triak 2(02) až SSR 2(06)-->
<PPS>-1.80</PPS><!-- součet výkonů L1+L2+L3 v kW-->
<DaR>2017-01-01<!-- datum (regulátor)-->
<TiR>0:00:00</TiR><!-- čas (regulátor)-->
<CW>7200</CW><!-- čas zbývající do aktivace CombiWATT-->
<DC>12.0</DC><!--napětí vnitřního zdroje -->
<FW>3.0</FW><!-- verze firmwaru-->
<Te>25.0</Te><!-- Teplota regulátoru ve °C -->
<FP>15<!-- Výkon ventilátoru v % -->
<EL1>0</EL1><!-- 0=není porucha, 1=porucha měření napětí L1-->
<ETS>0</ETS><!-- 0=není porucha, 1=porucha snímače(ů) teploty-->
<EDC>0</EDC><!-- 0=není porucha, 1=přetížení vnitřního zdroje-->
<ETL>0</ETL><!-- 0=není porucha, 1=překročena max. teplota-->
<ILT>0</ILT><!-- 0=není, 1=je indikován nízký tarif-->
<ICW>0</ICW><!-- 0=není, 1=je indikován CombiWATT-->
<TTS>0</TTS><!-- 0=není, 1=je indikován test výstupů-->
<IDST>0</IDST><!-- 0=není, 1=je indikován letní čas-->
<SRT>6:00</SRT><!-- čas východu Slunce-->
<DW>1</DW><!-- den v týdnu (0=pondělí až 6=neděle)-->
<DIP>...</DIP><!-- IP adresa regulátoru (aktuální platná) -->
<DMS>...</DMS><!-- maska podsítě regulátoru (aktuální platná)-->
<DDR>...</pd><!-- IP adresa výchozí brány (aktuální platná)-->
```



```
<DDN>...</DDN><!-- IP adresa DNS serveru (aktuální platná)--> </meas>
```

2. GET /conf.xml

Vysláním tohoto HTTP požadavku získáme z regulátoru aktuální konfiguraci (nastavení vstupů, výstupů aj.). Struktura vrácených dat vypadá následovně:

```
<!--Hlavičky odpovědi-->
<!--jeden prázdný řádek-->
<conf>
<DE>Moje konfigurace<!-- název objektu/konfigurace-->
<I1><!-- konfigurace vstupu IL1-->
  <N>IL1</N><!-- jmenovka vstupu, u vstupů ILx nelze měnit-->
  F>0</F><!-- funkce vstupu (0=měření výkonů až 1=impulzní vstup), nelze
měnit -->
  <Ph>0</Ph><!-- fáze vstupu (0=L1 až 2=L3)-->
  <CD>0</CD><!-- směr proudu (0=výchozí, 1=obrácený)-->
 <M>1</M><!-- převodní poměr externích MT - násobitel-->
 <D>1</D><!-- převodní poměr externích MT - dělitel-->
..<0>0.00</0><!-- počáteční energie v kWh, jen pro vstupy FB-->
..<Pu>1000</Pu><!-- počet impulzů na kWh, jen pro vstupy FB-->
..<DS>0</DS><!-- zdroj měření: 0=neznámý, 1=výroba L1 atd.-->
</I1>
<!-- analogicky pro zbývající vstupy IL2(I2) až FB3(I6)-->
<01><!-- konfigurace výstupu triak 1-->
  <N>BOJLER</N><!-- jmenovka výstupu-->
  <F>1</F><!-- funkce výstupu (0=relé, 1=plynulá regulace, 2=PWM)-->
  <Pr>>1</Pr><!-- priorita výstupu (0=nepoužito až 6=šestá)-->
  <Ph>0</Ph><!-- fáze výstupu (0=L1 až 2=L3)-->
  <M>0</M><!-- 3f režim (0=žádný až 3=max(L1,L2,L3))-->
  <Po>2.00</Po><!-- připojený příkon k výstupu v kW-->
  <PM>2.00</PM><!-- maximální příkon k výstupu v kW-->
  <PN>0.00</PN><!-- minimální příkon k výstupu v kW, jen funkce PWM-->
  <PI>500</PI><!-- hodnota PWM-I výstupu, jen funkce PWM-->
  <PRB>0</PRB><!-- Rozsah PWM, minimum v %-->
  <TO>15</TO><!-- zpoždění sepnutí výstupu v s, jen funkce relé-->
  <TF>15</TF><!-- zpoždění vypnutí výstupu v s, jen funkce relé-->
  <CE>0.50</CE><!-- limit energie výstupu pro CombiWATT v kWh-->
  <CF>0</CF><!-- plný výkon výstupu v CombiWATTu (0=ne, 1=ano)-->
  <PR>0</PR><!-- předřadit před SSR (0=neaktivní až 5=max. počet výstupů)--
  <In>0</In><!-- inverzní výstup (0=normální, 1=inverzní), jen funkce relé-</pre>
->
  <TS>0</TS><!-- počet zobrazených časových plánů (0=žádný až 4=všechny)-->
</01>
<!-- analogicky pro zbývající výstupy triak 2(O2) až SSR 2(O6)-->
<TS11><!-- 1. časový plán výstupu 1 (triak 1)-->
  <M>2</M><!-- režim (0=nepoužito, 1=omezen, 2=vynucen) + příznaky NT,
Energie, Teplota a dny v týdnu, detaily poskytneme na vyžádání-->
 <N>15:00</N><!-- čas Od-->
 <F>19:00</F><!-- čas Do-->
 <P>100</P><!-- Výkon v procentech, jen proporcionální výstupy-->
..<Li>8.60</Li><!-- limit energie-->
</TS11>
<!-- analogicky pro zbývající výstupy a časové plány (celkem 24 časových
plánů) -->
<RM>0</RM><!-- režim regulace (0=každá fáze samostatně, 1=součet fází)-->
<PO>-0.05</PO><!-- výkonový ofset v kW-->
```



```
<PWM>0</PWM><!-- frekvence PWM (0=10kHz až 5=200Hz -->
<TB>1</TB><!-- test výstupů blokuje regulaci (0=ne, 1=ano)-->
<TTL>0</TTL><!-- časový limit testu výstupů (0=není)-->
<SCO>1</SCO><!-- chladit v pohotovostním režimu (0=ne, 1=ano)-->
<TF>30.0</TF><-- teplota spínání ventilátoru ve
<TM>50.0</TM><-- maximální teplota regulátoru ve °C>
<IP>...</IP><!-- IP adresa regulátoru-->
<MSK>...</MSK><!-- maska podsítě regulátoru-->
<DR>...<!-- IP adresa výchozí brány-->
<DNS>...<!-- IP adresa DNS serveru-->
<MAC>...</MAC><!-- fyzická adresa regulátoru (MAC)-->
<http>80</http><!-- port HTTP-->
<UDP>50000</UDP><!-- port UDP-->
<DHCP>1</DHCP><!-- DHCP režim (0=nic to 2=vše)-->
<CWD>7200</CWD><!-- zpoždění CombiWATT v s-->
<CWL>0.05</CWL><!-- limit výroby pro CombiWATT v kW-->
<CWR>0</CWR><!-- reset čítačů výroby (0=východ Slunce až 1=fixní čas)-->
<CWT>6:00</CWT><!-- fixní čas resetu čítačů výroby-->
<LA>50</LA><!-- zeměpisná šířka ve °-->
<LO>15</LO><!-- zeměpisná délka ve °-->
<STC>0</STC><!-- synchronizace data podle klienta (0=neaktivní, 1=aktivní)-
<STS>0</STS><!-- pravidelná synchronizace data podle časového serveru
(0=neaktivní, 1=aktivní)-->
<DST>1</pst><!-- používat letní čas (0=neaktivní, 1=aktivní)-->
\TZ>13</TZ><!-- časové pásmo (0=GMT-12 až 25=GMT+14)-->
<TSH>pool.ntp.org</TSH><!-- název časového serveru -->
<TSIP>...</TSIP><!-- IP adresa časového serveru-->
<DT>0</DT><!-- typ digitálních čidel (0=DS18S20, 1=DS18B20)-->
<DFT>1/ DFT><!-- výchozí záložka (0=Nastavení vstupů až 4=Statistiky)-->
<DFS>1</DFS><!-- výchozí záložka pro statistiky (0=Online graf až 5=Celé
období) -->
<SC><!-- Konfigurace online grafu -->
  <P>5</P><!-- perioda (0=1s až 8=600s)-->
  <L1>1</L1><!-- přiřazení pro řadu 1 (0=nepřiřazeno až 13=SSR2)-->
  <!-- analogicky pro zbývající řady-->
</sc>
</conf>
```

3. POST /conf.xml

Vysláním tohoto HTTP požadavku zapíšeme do regulátoru konfiguraci, která má shodný formát jako v případě příkazu GET /conf.xml, navíc je nutné nebo možné zaslat další údaje. Konfiguraci přidáme za příkaz POST /conf.xml s vynecháním 1 prázdného řádku, tedy:

```
POST /conf.xml
<!--Hlavičky dotazu-->
<!--jeden prázdný řádek-->
<conf>
<!--následuje struktura dat konfigurace jako v dotazu GET /conf.xml-->
<Dac>2012-01-01</Dac><!-- datum (klient)-->
<Tic>0:00:00</Tic><!-- čas (klient)-->
<UN>admin</UN><!-- uživatelské jméno pro autorizaci, povinná položka-->
<UP>1234</UP><!-- heslo pro autorizaci, povinná položka-->
<UNn>home</UNn><!-- nové uživatelské jméno, jen v případě změny-->
<UPn>abcd</UPn><!-- nové heslo, jen v případě změny -->
<RST>1</RST><!-- restartovat regulátor, jen v případě požadavku-->
</conf>
```

Regulátor odpoví tímto hlášením:


```
<!--Hlavičky odpovědi-->
<!--jeden prázdný řádek-->
<conf>
<accept>0</accept><!-- kód chyby: 0-ok, 1-chybná konfigurace, 2-chybné
přístupové údaje, 3-chybné nové přístupové údaje, 4-chybný formát XML
souboru-->
</conf>
```

4. POST /test.xml

Vysláním tohoto HTTP požadavku aktivujeme testovací režim pro daný výstup. Data přidáme za příkaz POST /test.xml s vynecháním 1 prázdného řádku, tedy:

```
POST /test.xml
<!--Hlavičky dotazu-->
<!--jeden prázdný řádek-->
<test>
<TST1>1</TST1><!-- testovací režim pro výstup triak 1 (1=aktivovat,
0=deaktivovat)-->
<!-- analogicky pro zbývající výstupy, požadujeme-li u daného výstupu změnu
stavu testovacího režimu-->
<UN>admin</UN><!-- uživatelské jméno pro autorizaci, povinná položka-->
<UP>1234</UP><!-- heslo pro autorizaci, povinná položka-->
</test>
```

Regulátor odpoví tímto hlášením:

```
<!--Hlavičky odpovědi-->
<!--jeden prázdný řádek-->
<test>
<accept>0</accept><!-- kód chyby: 0-ok, 2-chybné přístupové údaje, 4-chybný formát XML souboru-->
</test>
```

5. GET /stat_chart.xml

Vysláním tohoto HTTP požadavku získáme z regulátoru data online grafu. Struktura vrácených dat vypadá následovně:

```
<!--Hlavičky odpovědi-->
<!--jeden prázdný řádek-->
<stat_chart>
<DaR>2020-01-01</DaR><!-- datum poslední aktualizace hodnot-->
<TiR>08:00:00</TiR><!-- čas poslední aktualizace hodnot-->
<P1>0.50,0.40,...</P1><!-- hodnoty pro řadu 1 - výkon-->
<!-- analogicky pro zbývající řady-->
</stat_chart>
```

6. GET /stat_day.xml?day={index}

Vysláním tohoto HTTP požadavku získáme z regulátoru denní statistiky. Parametr "index" udává zvolený den (0=aktuální den, 1=včerejšek až 31=poslední uložený den). Struktura vrácených dat vypadá následovně:

```
<!--Hlavičky odpovědi-->
<!--jeden prázdný řádek-->
<stat_day>
<SDD0>2017-07-20</SDD0><!-- aktuální datum, dnešek-->
<SDD{index}>2017-07-17</SDD{index}><!-- datum zvoleného dne-->
<SDS1>0.00</SDS1><!-- přebytek fáze L1 v kWh-->
<SDH1>0.00</SDH1><!-- spotřeba vysoký tarif fáze L1 v kWh-->
```



```
<SDL1>0.00</SDL1><!-- spotřeba nízký tarif fáze L1 v kWh-->
<SDP1>0.00</SDP1><!-- výroba fáze L1 v kWh-->
<!-- analogicky pro zbývající fáze L2 a L3-->
<SDS4>0.00</SDS4><!-- přebytek všechny fáze v kWh-->
<SDH4>0.00</SDH4><!-- spotřeba vysoký tarif všechny fáze v kWh-->
<SDL4>0.00</SDL4><!-- spotřeba nízký tarif všechny fáze v kWh-->
<SDP4>0.00</SDL4><!-- výroba všechny fáze v kWh-->
<SDO1>0.00</SDP4><!-- denní čítač energie počítané/měřené pro výstup 1 v kWh-->
<!-- analogicky pro zbývající výstupy triak 2(SDO2) až SSR 2(SDO6)-->
<SDI1>0.00</SDI1><!-- denní čítač energie měřené pomocí FB1 v kWh-->
<!-- analogicky pro zbývající vstupy FB2(SDI2) až FB3(SDI3)-->
</stat_day>
```

7. GET /stat_week.xml

Vysláním tohoto HTTP požadavku získáme z regulátoru týdenní statistiky. Struktura vrácených dat vypadá následovně:

```
<!--Hlavičky odpovědi-->
<!--jeden prázdný řádek-->
<stat_week>
<SWD>2017-07-20</SWD><!-- aktuální datum, dnešek-->
<SWS1>0.00</SWS1><!-- přebytek všechny fáze v kWh, včerejšek-->
<SWH1>0.00</SWH1><!-- spotřeba vysoký tarif všechny fáze v kWh, včerejšek-->
<SWL1>0.00</SWL1><!-- spotřeba nízký tarif všechny fáze v kWh, včerejšek-->
<SWP1>0.00</SWP1><!-- spotřeba nízký tarif všechny fáze v kWh, včerejšek-->
<!-- analogicky pro 2. až 7. poslední den-->
</stat_week>
```

8. GET/stat month.xml

Vysláním tohoto HTTP požadavku získáme z regulátoru měsíční statistiky. Struktura vrácených dat vypadá následovně:

```
<!--Hlavičky odpovědi-->
<!--jeden prázdný řádek-->
<stat_month>
<SMD>2017-07-20</SMD><!-- aktuální datum, dnešek-->
<SMS1>0.00</SMS1><!-- přebytek všechny fáze v kWh, včerejšek-->
<SMH1>0.00</SMH1><!-- spotřeba vysoký tarif všechny fáze v kWh, včerejšek-->
<SML1>0.00</SML1><!-- spotřeba nízký tarif všechny fáze v kWh, včerejšek-->
<SMP1>0.00</SMP1><!-- spotřeba nízký tarif všechny fáze v kWh, včerejšek-->
<!-- analogicky pro 2. až 31. poslední den-->
</stat_month>
```

9. GET /stat_year.xml

Vysláním tohoto HTTP požadavku získáme z regulátoru roční statistiky. Struktura vrácených dat vypadá následovně:

```
<!--Hlavičky odpovědi-->
<!--jeden prázdný řádek-->
<stat_year>
<SYD>2017-07-20</SYD><!-- aktuální datum, dnešek-->
<SYS1>0.00</SYS1><!-- přebytek všechny fáze v kWh, aktuální měsíc-->
<SYH1>0.00</SYH1><!-- spotřeba vysoký tarif všechny fáze v kWh, aktuální měsíc-->
```

WATTrouter M - uživatelská příručka

 $<SYL1>0.00</SYL1><!-- spotřeba nízký tarif všechny fáze v kWh, aktuální měsíc--> <SYP1>0.00</SYP1><!-- výroba všechny fáze v kWh, aktuální měsíc--> <!-- analogicky pro 2. až 12. poslední měsíc--> </stat_year>$

ŘEŠENÍ POTÍŽÍ

V následující tabulce jsou uvedeny nejčastější příčiny problémů a způsoby jejich odstranění:

Popis problému	Možné příčiny	Řešení
Regulátor je nainstalován dle	Jistič je sepnut, ale	Zkontrolujte, ev. proměřte, zda na
návodu, ale po zapnutí jističe	napájecí napětí není	svorkách L1 a N je skutečně připojeno
nesvítí ani nebliká žádná LED	přítomno.	síťové napětí.
	Porucha regulátoru	Vyměňte, popř. zašlete regulátor k
	•	opravě.
Regulátor je nainstalován dle	Regulátor je spuštěn	Pomocí programu WATTconfig nahrajte
návodu, ale po zapnutí jističe	v bootovacím režimu bez	aplikační firmware v nejnovější verzi popř.
rychle bliká zelená LED, regulátor	aplikačního firmwaru	ve verzi Vámi upřednostněné. Aplikaci je
nefunguje a v programu		v tomto případě nutné nahrát přes USB
WATTconfig se zobrazuje verze		rozhraní, které není blokováno autorizací
firmwaru BOOT.		přístupu do regulátoru.
Regulátor nekomunikuje s	Regulátor je bez napětí	Zkontrolujte, zda svítí zelená LED PWR a
počítačem		regulátor je napájen.
	Počítač není řádně	Zkontrolujte propojení USB/síťového
	propojen s regulátorem	kabelu, zkuste použít jiný síťový kabel,
		popř. vyzkoušejte kabel na jiném zařízení
		(např. tiskárně).
		U síťového připojení může být problém ve
		směrovači/routeru nebo dalších síťových
		prvcích. Zkuste zařízení restartovat popř.
		zapojit síťový kabel do jiné zásuvky.
		Zařízení může být též chybně
		nakonfigurováno, totéž platí o konfiguraci
		lokální sítě. Při problémech kontaktujte
		odborníka na počítače a sítě.
		Je-li problém s připojením přes USB
		rozhraní, pak zkuste aktualizovat ovladač
		USB připojení.
	Počítač nedetekuje	Zkontrolujte propojení USB/síťového
	připojený regulátor	kabelu. Žlutá LED USB při registraci USB
		zařízení musí probliknout a v případě
		úspěšného připojení síťového kabelu musí
		svítit minimálně 1 LED na síťovém
		konektoru regulátoru.
	V počítači není řádně	Ujistěte se, že ovladač USB rozhraní je
	nainstalován ovladač USB	správně nainstalován a správce hardwaru
	rozhraní	PC jej detekuje jako USB serial converter.
	Ovladač USB rozhraní není	V okně Nastavení ovladače rozhraní
	správně nastaven	USB/COM programu WATTconfig nastavte
		všechny parametry na výchozí hodnoty.
	Ovladač rozhraní LAN/UDP	V okně Nastavení ovladače rozhraní
	rozhraní není správně	LAN/UDP rozhraní programu WATTconfig
	nastaven	zkontrolujte platnost IP adresy a UDP
		portu. Připojte se k regulátoru pomocí
		i leader a bernea.

		USB, abyste zjistili aktuální nastavení sítě v regulátoru (karta Další nastavení). IP adresy i UDP porty musí být nastaveny shodně.
	Na kartě Log jsou zaznamenány chyby komunikace	Velmi řídký výskyt chyb komunikace je běžný stav a souvisí s vytížením operačního systému ve Vašem počítači, lokální sítě nebo operačního systému v regulátoru. Je-li chyb více, zkontrolujte funkčnost vašeho PC, popř. se jedná o konflikt na USB rozhraní v PC nebo o zahlcenou nebo nefunkční síť Ethernet. Velký výskyt chyb komunikace (ztrát paketů) při připojení z Internetu je normální stav.
	Zahlcená síť Ethernet	Vaše lokální síť nebo připojení k Internetu je dočasně nefunkční nebo neprůchodné (zahlcené jinými přenosy aj.). Zkuste obnovit připojení později nebo požádejte odborníka na počítačové sítě o optimalizaci připojení a technické poradenství.
	Porucha regulátoru	Vyměňte, popř. zašlete regulátor k opravě.
Měřené výkony na vstupech ILx se vůbec nezobrazí nebo se zobrazují	Měřicí modul není připojen	Připojte měřicí modul dle tohoto návodu.
nesprávně	Chybný sled fází	Ujistěte se, zda je u všech vstupů ILx správně nastavena položka Fáze. Zkontrolujte nastavení dle kap. Základní nastavení regulátoru, použijte ke kontrole funkci Kontrolní osciloskop.
	Chybné nastavení směrů proudu	Ujistěte se, zda je u všech vstupů ILx správně nastavena položka Směr proudu. Zkontrolujte nastavení dle kap. Základní nastavení regulátoru.
	Porucha regulátoru, popř. měřicího modulu	Vyměňte, popř. zašlete regulátor/měřicí modul k opravě.
V grafu "Kontrolní osciloskop" se zobrazují neobvyklé tvary proudů	Nejedná se o závadu	V reálném provozu se mohou zobrazovat nejrůznější tvary proudové vlny. Jedná se o superpozici proudů procházejících jednotlivými spotřebiči, které nemají čistě sinusový odběr nebo jejich účiník je různý od jedné.
Hodnota kladného výkonu (výroby) se hrubě neshoduje s údajem na displeji střídače	Je zapojen spotřebič, který snižuje hodnotu měřené výroby regulátorem	Není závada
	Střídač ukazuje orientační	Není závada

	hodnoty, popř. není ustálený stav	
	Chybný sled fází popř. chybné nastavení směrů proudu	Postupujte dle předchozího bodu.
Chybí signál nízkého tarifu	Signál nízkého tarifu není zapojen	Zapojte signál nízkého tarifu na svorku LT. Signál je zapotřebí zapojit přes pomocné relé dle tohoto návodu.
	Signál nízkého tarifu není aktivní	Vyčkejte, až bude signál aktivní, popř. otestuje ručním sepnutím pomocného relé (některé typy toto umožňují).
	Porucha regulátoru	Vyměňte, popř. zašlete regulátor k opravě.
Vstupy FB nefungují	Impulzní výstup SO elektroměru/střídače je zapojen obráceně	Prohoďte svorky na výstupu zařízení (elektroměru, střídače).
	Signál z výstupu není podporovaným impulzním signálem	Používejte pouze zařízení s impulzním výstupem, jehož signál informuje o měřené energii a má minimální šířku impulzu 1ms.
	Porucha regulátoru	Vyměňte, popř. zašlete regulátor k opravě.
Tlačítkem TEST nelze sepnout některý z připojených spotřebičů	Spotřebič není zapojen nebo je zapojen nesprávně	Zkontrolujte zapojení příslušného spotřebiče a zapněte příslušný jistič nebo pojistkový odpínač.
	Spotřebič je zapojen správně, ale nelze ho sepnout	Zkontrolujte, zda spotřebič nemá např. vestavěnou tepelnou ochranu popř. termostat, který je právě vypnutý.
	LED výstupu nesvítí nebo jiná porucha regulátoru	Vyměňte, popř. zašlete regulátor k opravě.
Výstupy nespínají tak, jak by měly	Výstup není aktivován FVE nemá dostatečný výkon	Aktivujte výstup nastavením dané priority. Zkontrolujte, zda FVE dodává do sítě a zda existuje přebytek v příslušné fázi nebo v součtu fází L1+L2+L3, na základě nastavení regulačního režimu.
	Chybně nastavené priority či hodnoty příkonů	Zkontrolujte nastavení priorit vašich spotřebičů a příkonů dle štítkových hodnot.
	Chybné nastavení položek na kartě Další nastavení	Zkontrolujte nastavení kolonky Výkonový ofset a dále hodnotu Limit výroby pro CombiWATT, která by neměla být vysoká.
Opakovaně nelze nahrát aplikační firmware	Nesprávný nebo poškozený soubor *.scf Chyby komunikace	Nahrávejte pouze originální firmware pro regulátor WATTrouter M. Ujistěte se, že nejsou problémy na straně
		připojení PC k regulátoru či v samotném

		PC (viry aj.).
	Porucha regulátoru	Vyměňte, popř. zašlete regulátor k
		opravě.
Bliká červená LED	Byl zjištěn chybový stav	Postupujte dle kap. Stavy LED.
Proporcionální (triakový/SSR)	Nejedná se o závadu	Reléový výstup má vždy určité zpoždění
výstup s vyšší prioritou se při		při odpojení. Aby se zbytečně nečerpala
poklesu výkonu FVE odpíná dříve		energie ze sítě, pak v případě, že je již
než reléový výstup s nižší		připojen proporcionální výstup s vyšší
prioritou		prioritou, tento se může odpojit dříve než reléový výstup.
Program CombiWATT běží, i když	Nejedná se o závadu	Program CombiWATT se spustí v případě,
FVE vyrábí		že není po dobu danou parametrem
		Zpoždění CombiWATT zjištěna výroba na
		žádném fázovém vodiči, což může nastat,
		vyrábí-li FVE málo nebo dlouho běží
		spotřebiče s velkým odběrem. Chcete-li
		tomuto chování zamezit, zvětšete
		parametr Zpoždění CombiWATT.
Polovodičové relé (SSR) nespíná	Relé připojeno nesprávně	Zkontrolujte správnost připojení a polaritu
		svorek, ta musí být vždy dodržena.
	Nekompatibilní relé	Použijte vždy relé, které spíná v nule a je
		ovládáno malým stejnosměrným napětím
		>4VDC.
	Porucha regulátoru	Vyměňte, popř. zašlete regulátor k
		opravě.
	Porucha SSR relé	Vyměňte SSR
Statistiky se neshodují s realitou	Nejedná se o závadu	Údaje jsou pouze orientační, přístroj nemá
		k dispozici přesné údaje z fakturačních
		elektroměrů. Regulátor může být také
		chybně nakonfigurován, resp.
		vyhodnocuje jinak než fakturační
		elektroměry.
Statistiky se náhle vymazaly	Nejedná se o závadu	Došlo ke změně data v regulátoru nebo k
		výpadku napájení během zápisu historie
		do paměti EEPROM.

ÚDRŽBA A OPRAVY PŘÍSTROJE

Regulátor i měřicí modul je navržen jako bezúdržbový, je-li správně nastaven a umístěn v souladu s tímto návodem. V pravidelných intervalech (alespoň 1 měsíčně např. při kontrole stavu FVE) se doporučuje zkontrolovat chod celého systému, především funkčnost spínání spotřebičů a průchodnost odvodu tepla.

V případě závady, kterou nelze odstranit podle kapitoly Řešení potíží, se obracejte na náš servis (platí pro záruční i pozáruční opravy). Adresu pro doručení zboží naleznete na našich stránkách <u>www.solarcontrols.cz</u>, případně se obraťte na email: <u>servis@solarcontrols.cz</u>.

Přístroj opravíme, popř. vyměníme v nejkratším možném termínu (obvykle do 10 pracovních dní). V případě pozáručních oprav nebo závad, na které se záruka nevztahuje, přístroje opravujeme za výhodných cenových podmínek.

Závada na měřicím modulu je velmi nepravděpodobná, při zřejmé závadě regulátoru stačí zaslat k opravě popř. výměně pouze regulátor. Měřicí modul může zůstat nainstalovaný i bez regulátoru a při průchodu proudu provlečenými vodiči se nepoškodí.

Přístroj nikdy neopravujte sami! V opačném případě se vystavujete riziku úrazu elektrickým proudem a ztrácíte záruku v plném rozsahu!

TECHNICKÁ SPECIFIKACE

Parametr	Hodnota, poznámky
Hlavní parametry	
Napájecí napětí	230V~, 50Hz
Spotřeba elektrické energie – režim stand-by	<3VA
Spotřeba elektrické energie – 1 triakový výstup	cca.1W/A
Spotřeba elektrické energie – 1 reléový výstup	0,4W
Spotřeba elektrické energie – všechny výstupy	25W (do této hodnoty nejsou započteny spínací
sepnuté a zatížené max. dovolenými proudy	ztráty výkonových SSR)
Proudový měřicí rozsah	Model SSR: 0-20A~ (±5%), 50Hz (±5%)
	Model MAX: 0-100 A~ (±5 %), 50 Hz (±5 %)
Napěťový měřicí rozsah	230V~ (±5%), 50Hz (±5%)
Proudová zatížitelnost měřicího modulu	Model SSR: 0-40 A~ (±5 %), 50 Hz (±5 %)
	Model MAX: 0-125 A~ (±5 %), 50 Hz (±5 %)
Přesnost měření činného výkonu	5% ± 0,05kW
Parametry vstupů a výstupů	
Napájecí svorky L1 a N	230V∼, 50Hz. L1 = fáze, N = nulový vodič
Vstupy I_L1, I_L2, I_L3:	Proudové. Max. přípustné napětí vůči svorce GND je
1, = , = , =	5,5V.
	Model SSR: max. 40 mA~.
	Model MAX: max. 125 mA~.
Triakové výstupy	230V~, 50Hz, max. 10A, 2300 W, pouze ohmická
	zátěž s cos(Φ) = 1
	Jištění: pojistka pro jištění polovodičů
	(např. PV510 12A gR s odpínačem OPV10 fy. OEZ)
Reléové výstupy	230V~, 50Hz, max. 10A, 2300W (zátěž s cos(Φ) ≠ 1 se
	doporučuje zapojit přes samostatný stykač)
	Jištění: běžný jistič typu B
Externí výstupy pro připojení polovodičových relé SSR	0 nebo 5VDC, galvanicky odděleno od napájecí sítě
(S+, S1-, S2-)	Parametry SSR: ovládání DC min. 4VDC, SSR musí být
	v provedení spínání v nule (zero switch).
	Jištění: podle manuálu k SSR relé
Externí výstupy – připojení s funkcí PWM	0 nebo 5VDC, galvanicky odděleno od napájecí sítě
(S+, S1-, S2-)	Parametry PWM: nosná frekvence 200 Hz, střída 0-
	100% v jednoprocentních krocích.
	Jištění: podle manuálu k připojenému zařízení
Vstupy LT, FB1, FB2 a FB3	0 nebo 5VDC, galvanicky odděleno od napájecí sítě.
	Lze spínat běžnými reléovými výstupy i výstupy
	s otevřeným kolektorem, vždy proti GND.
	Min. šířka pulsu i mezery u vstupů FB je 1ms.
USB připojení	USB 1.1/ USB 2.0, galvanicky odděleno od napájecí
Land V /	sítě a dodatečně opticky odděleno
LAN připojení	10/100 Mbit/s, galvanicky odděleno od napájecí sítě a
	dodatečně galvanicky odděleno dle IEEE 802.3

Dynamické charakteristiky	
Perioda měření výkonů (efektivní hodnoty)	typ. 600ms (vč. průměrování sepnutých triaků/SSR)
Doba přeběhu regulace triakového/SSR výstupu	typ. 3s (z 0 na 100 % výkonu a naopak)
Zpoždění sepnutí reléového výstupu	Programovatelné (min. 2s)
Zpoždění vypnutí reléového výstupu	Programovatelné (min. 2s)
Ostatní parametry	
Max. průměr vodičů zapojených do svorek	2,5mm
Max. průměr vodičů provlečených měřicími	Model SSR: 9 mm (vč. izolace)
transformátory	Model MAX: 14 mm (vč. izolace)
Vzdálenost měřicího modulu a regulátoru	<2 m (delší přívody jsou možné, ale snižují přesnost
	přibližně o 0,2% na 2m)
Vzdálenost regulátoru a polovodičového relé	<10 m
Pracovní poloha	Libovolná
Upevnění	Regulátor: DIN 35mm nebo 2 šrouby s půlkulatou či
	zápustnou hlavou o průměru do 6mm. Rozvaděč musí
	mít zajištěn dostatečný odvod tepla.
	Měřicí modul: DIN 35mm nebo 1 šroub s půlkulatou č
	zápustnou hlavou o průměru do 6mm
Kategorie přepětí	III
Elektrická pevnost	4 kV / 1 min (napájení(L1, N)-výstup, výstup –výstup,
	napájení-proudový vstup, externí výstup aj.
	(GND,I_L,LT,FB,S+,S1-,S2-))
Stupeň znečištění	2
Teplotní rozsah provozu	-20°C až +40°C
Teplotní rozsah skladování	-40°C až +80°C
Jištění	B6A
Krytí	Regulátor i měřicí modul: IP 20
Rozměry (ŠxVxH)	Regulátor: 106x110x64mm (6M)
	Měřicí modul:
	Model SSR: 70x110x64mm (4M)
	Model MAX: 91x90x65mm (5-6M)
Hmotnost	Regulátor: 350g
	Měřicí modul:
	Model SSR: 100g
	Model MAX: 250g
Hlučnost ventilátoru	Max. 15 dB(A)
Baterie pro zálohování reálného času	CR2032 lithium, výdrž obvykle >6 let
Záruční doba	24 měsíců

RECYKLACE

Výrobek nepodléhá povinnosti zpětného odběru vysloužilého elektrozařízení podle zákona o odpadech č.185/2001 Sb., zařízení spadá do výjimky podle přílohy č. 1, vyhlášky č. 352/2005 Sb., skupina 5923/ENV/720/05.

Výrobek je možné po ukončení životnosti demontovat, recyklovat nebo uložit na zabezpečenou skládku.

Výrobek nevyhazujte do běžného komunálního odpadu!

EU PROHLÁŠENÍ O SHODĚ

Společnost:

SOLAR controls s.r.o. (název výrobce), IČ: 29109795 Brojova 25, Plzeň, 32600, Česká republika (sídlo výrobce)

Prohlašuje na svoji plnou zodpovědnost, že výrobek:

WATTrouter M SSR, WATTrouter M MAX (název výrobku)
WRM01/06/12 (regulátor) a WT 02/10, WT03/11 (měřicí moduly) (typ/model)
Pro regulaci a optimalizaci vlastní spotřeby energie vyrobené fotovoltaickou elektrárnou (funkce)

Je za podmínek obvyklého a v návodu k používání určeného použití bezpečný a že byla přijata opatření, kterými je zabezpečena shoda všech výrobků uváděných na trh s technickou dokumentací, se základními požadavky nařízení vlády, která se na něj vztahují a s požadavky technických předpisů uvedených v následujícím odstavci.

Uvedený výrobek odpovídá výrobní dokumentaci a parametrům v ní uvedených, dále odpovídá českým a evropským směrnicím a technickým normám, které byly použity pro posuzování shody:

Směrnice:

- Směrnice LVD 2006/95 EC
- Směrnice EMC 2004/108 EC

Normy:

- EN 61010-1:2010
- EN 61000-3-2:2006+A1:08+A2:09
- EN 61000-3-3:2008
- EN 61000-3-11:2000
- EN 61000-4-2:2009
- EN 61000-4-4:2012
- EN 61000-4-5:2006
- EN 61000-4-11:2004
- EN 61000-6-3:2007

Posouzení shody výrobku bylo provedeno ve smyslu zákona č. 22/1997 Sb. o technických požadavcích na výrobky, ve znění pozdějších změn a doplňků a podle nařízení vlády č. 17/2003 Sb., kterým se stanoví technické požadavky na elektrické zařízení nízkého napětí a nařízení vlády č. 616/2006 Sb., kterým se stanoví technické požadavky na výrobky z hlediska jejich elektromagnetické kompatibility.

Rok umístění známky CE: 2012

Místo a datum vydání prohlášení:

Plzeň, 1. 7. 2012

ELEKTRONICKÉ A DIAGNOSTICKÉ SYSTÉMY BYDOVA 2053/35, PLZEŇ, CZ 326 00 IČ: 29109795 Tel: +420 724 54 601 WWw.eolarcontrols.cz

Ing. Tomáš Krýsl, jednatel společnosti

(jméno, funkce a podpis odpovědné osoby výrobce)