

Relatore:

Prof. Rocco Zaccagnino

Candidato:

Gisolfi Andrea Matr. 0512114162

Un gene di fusione, chiamato anche **gene chimerico** o **gene ibrido**, è la giustapposizione di due geni altrimenti separati.

Un gene di fusione, chiamato anche **gene chimerico** o **gene ibrido**, è la giustapposizione di due geni altrimenti separati.

Un gene di fusione, chiamato anche **gene chimerico** o **gene ibrido**, è la giustapposizione di due geni altrimenti separati.

Traslocazione

Un gene di fusione, chiamato anche **gene chimerico** o **gene ibrido**, è la giustapposizione di due geni altrimenti separati.

Traslocazione

Inversione

Un gene di fusione, chiamato anche **gene chimerico** o **gene ibrido**, è la giustapposizione di due geni altrimenti separati.

Questo può avvenire attraverso:

Traslocazione

Inversione

Duplicazione in tandem

Un gene di fusione, chiamato anche **gene chimerico** o **gene ibrido**, è la giustapposizione di due geni altrimenti separati.

Questo può avvenire attraverso:

Traslocazione

Inversione

Duplicazione in tandem

Possibili implicazioni nel cancro

Il rilevamento tradizionale utilizza strumenti di allineamento

Il rilevamento tradizionale utilizza strumenti di allineamento

Limiti:

Il rilevamento tradizionale utilizza strumenti di allineamento

Limiti:

Il rilevamento tradizionale utilizza strumenti di allineamento

Limiti:

Il rilevamento tradizionale utilizza strumenti di allineamento

Limiti:

Falsi positivi

Carico computazionale

Limiti:

Falsi positivi

Carico computazionale

Nuova soluzione basta sulle Graph Neural Network che sia:

Il rilevamento tradizionale utilizza strumenti di allineamento

Limiti:

Bias

Falsi positivi

Carico computazionale

Nuova soluzione basta sulle Graph Neural

Network che sia:

Affidabile

Il rilevamento tradizionale utilizza strumenti di allineamento

Limiti:

Bias

Falsi positivi

Carico computazionale

Nuova soluzione basta sulle Graph Neural

Network che sia:

Affidabile

- Innovativa

Il rilevamento tradizionale utilizza strumenti di allineamento

Limiti:

Bias

Carico computazionale

Nuova soluzione basta sulle Graph Neural

Network che sia:

Affidabile

- Innovativa

G Robusta

Grafo di De Bruijn

Grafo di De Bruijn

Un **grafo di De Bruijn** è una struttura utilizzata per rappresentare sequenze genetiche o altri dati lineari in modo compatto.

Grafo di De Bruijn

Un **grafo di De Bruijn** è una struttura utilizzata per rappresentare sequenze genetiche o altri dati lineari in modo compatto.

Viene costruito utilizzando i **k-mers** di una sequenza.

Graph Neural Network

Graph Neural Network

Una **Graph Neural Network (GNN)** è un modello di apprendimento automatico progettato per lavorare su dati rappresentati come grafi.

Graph Neural Network

Una **Graph Neural Network (GNN)** è un modello di apprendimento automatico progettato per lavorare su dati rappresentati come grafi.

Sono stati testati tre diversi modelli:

Graph Neural Network

Una Graph Neural Network (GNN) è un modello di apprendimento automatico progettato per lavorare su dati rappresentati come grafi.

Sono stati testati tre diversi modelli:

Graph Convolution Network

Graph Neural Network

Una **Graph Neural Network (GNN)** è un modello di apprendimento automatico progettato per lavorare su dati rappresentati come grafi.

Sono stati testati tre diversi modelli:

Graph Attention Network

Graph Neural Network

Una **Graph Neural Network (GNN)** è un modello di apprendimento automatico progettato per lavorare su dati rappresentati come grafi.

Sono stati testati tre diversi modelli:

Graph Attention Network

Graph Sample and Aggregate

Tecniche di Encoding

Sono state adottate due tecniche principali di encoding.

Tecniche di Encoding

Sono state adottate due tecniche principali di encoding.

DNABERT

Modello basato su BERT, addestrato su k-mers per generare rappresentazioni avanzate.

Tecniche di Encoding

Sono state adottate due tecniche principali di encoding.

DNABERT

Modello basato su BERT, addestrato su k-mers per generare rappresentazioni avanzate.

One-Hot Encoding

Ogni nucleotide (A, C, G, T) è trasformato in un vettore binario unico.

Implementazione

1 sequence extraction

2 k-mers extraction

3 De Bruijn Graph

- 4 k-mers encoding
- 5 graph dataset creation
- 6 GNN classifier

Risultati

L'analisi sperimentale ha dimostrato che i modelli proposti ottengono delle prestazioni notevoli.

L'analisi sperimentale ha dimostrato che i modelli proposti ottengono delle prestazioni notevoli.

Sviluppi futuri:

L'analisi sperimentale ha dimostrato che i modelli proposti ottengono delle prestazioni notevoli.

Sviluppi futuri:

L'analisi sperimentale ha dimostrato che i modelli proposti ottengono delle prestazioni notevoli.

Sviluppi futuri:

Valutazione su campioni reali

L'analisi sperimentale ha dimostrato che i modelli proposti ottengono delle prestazioni notevoli.

Sviluppi futuri:

Ottimizzazione

Valutazione su campioni reali

Tecniche di explainability

