KU LEUVEN

Multi-Agent Systems Based Solution for Pickup-And-Delivery

Thierry Deruyttere (r0660485) Armin Halilovic (r0679689) KU Leuven - Multi-Agent Systems

- 1 Problem definition
- Objectives
- 3 Research Questions and Hypotheses
- 4 Variables
- Multi-Agent System Design
- **6** Experiments
- Conclusions

- Problem definition
- Objectives
- 3 Research Questions and Hypotheses
- 4 Variables
- Multi-Agent System Design
- 6 Experiments
- Conclusions

1 Problem definition - Setting

- Pizzeria chain RoboPizza
- Pizza delivery using robots (AGVs)
- RoboPizza receives pizza delivery requests (tasks), robots deliver the pizzas
- Manhattan style city blocks

1 Problem definition - Robots

- Can move from and to any position in the city
- Have maps and can compute paths between locations
- Can carry up to 5 pizzas at once
- Can only communicate with entities that are close to them

1 Problem definition - Tasks

- Consist of picking up (multiple) pizzas and delivering them to a position before a certain timepoint
- ▶ If there are more than 5 pizzas in a task, it will have to be split up
- Pizzas have no preparation time / can be picked up instantly
- Will be created every time step with low probability:
 - Delivery time window based on distance from pizzeria + randomness
 - Amount of pizzas from Gaussian distribution
 - Delivery position uniformly random in city

Problem definition - World

Dynamism

- Streets can become closed off due to road works
- Amount of pizzerias can increase/decrease

Potential AGV crashes

- Running out of battery
- > 7

Efficiency measure

Total waiting time for task

Charging

- Happens on one position
- Only limited amount of robots can charge at once

- 2 Objectives

2 Objectives

- Develop a BDI & Delegate MAS algorithm for the described setting
- ▶ Analyze the performance for certain parameter settings

- Problem definition
- Objectives
- **3** Research Questions and Hypotheses
- 4 Variables
- 6 Multi-Agent System Design
- 6 Experiments
- Conclusions

3 Research Questions and Hypotheses I

- ▶ What is the relation between the amount of requests that RoboPizza receives and the waiting time for customers?
 - H_1 : The waiting time increases with the amount of requests.
 - H₀: The waiting time does **not** increase with the amount of requests.
- Do robots drive more (non-idle time) when there are more requests in the system?
 - H₁: Robots drive more when there are more requests in the system.
 - H_0 : Robots do **not** driving more when there are more requests in the system.

3 Research Questions and Hypotheses II

- ▶ Does increasing the amount of robots decrease customer waiting time when there are many requests?
 - H_1 : Increasing the amount of robots decreases customer waiting time when there are many requests.
 - H₀: Increasing the amount of robots does not decrease customer waiting time when there are many requests.
- How do waiting times change as the amount of road works changes (dynamism)?
 - H_1 : Waiting times increase as the amount of road works increase.
 - H₀: Waiting times do **not** increase as the amount of road works increase.

- Problem definition
- Objectives
- Research Questions and Hypotheses
- 4 Variables
- 6 Multi-Agent System Design
- 6 Experiments
- Conclusions

Independent Variables

- $n_{robots} =$ amount of delivery robots
- $ightharpoonup p_{request} = probability for a new request$
- $ightharpoonup \mu_{pizza}, \sigma_{pizza} =$ Gaussian distribution parameters for amount of pizzas
- $ightharpoonup p_{pizzeria_opens} = probability for a pickup position to open$
- $ightharpoonup p_{pizzeria_closes} = probability for a pickup position to close$
- $ightharpoonup p_{road_works_start} = probability for road works to start$
- $ightharpoonup p_{road_works_finish} = probability for existing road works to finish$

4 Dependent Variables

- $t_{wait} =$ total waiting time for customers
- $lacktriangleright t_{robots_driving} = ext{total time robots spent driving}$
- $ightharpoonup t_{robots_idle} = \text{total time robots were idle}$
- lacktriangledown $t_{robots_charging} = ext{total time robots were charging}$
- $ightharpoonup n_{robots_distance} =$ the cumulative distance all robots have traveled
- $lacktriangleright n_{requests} = {\sf amount} \ {\sf of} \ {\sf requests} \ {\sf in} \ {\sf the} \ {\sf system}$
- $ightharpoonup n_{pizzerias} = ext{amount of open pizzerias}$
- $ightharpoonup n_{road_works} = \text{amount of road works}$
- $ightharpoonup n_{deliveries} = ext{amount of finished deliveries}$
- $ightharpoonup avg_{pizzas} = average amount of pizzas carried by robots$

4 Other V ariables

- $ightharpoonup v_{robots} = moving speed of the robots$
- $t_{pizza} =$ the baking time of a pizza
- lacktriangledown $t_{robot_charge} =$ time it takes to recharge a battery
- ▶ battery_size = the pizzas of a robot's battery

- Problem definition
- Objectives
- 3 Research Questions and Hypotheses
- 4 Variables
- Multi-Agent System Design
- 6 Experiments
- Conclusions

5 Multi-Agent System Design: Overview

- Agents
 - Robot Agent for each robot
 - Resource Agent for each node on world graph
- Ant-based Delegate MAS
 - Desire Ants
 - Find delivery tasks
 - Exploration Ants
 - Find paths towards destinations
 - Intention Ants
 - Choose path and create reservation
- Buildings
 - 1 Pizzeria
 - 1 Charging Station
 - Random Road Works

5 Multi-Agent System Design: Robot Strategy

strategy

- Problem definition
- Objectives
- 3 Research Questions and Hypotheses
- 4 Variables
- Multi-Agent System Design
- **6** Experiments
- Conclusions

6 Experiments

- Different parameter settings for each hypothesis
- Each experiment is run 50 times
- Experiment end statistics are written to files
- ► Test method: two-sample t-test
- Significance level: 0.05
- Hypotheses entail one-tailed tests. Null hypothesis will be rejected if the mean difference between sample means is too small.
- ► Could not experiment with varying dynamism because of an error with RinSim Experiment repeats we couldn't fix

6 Experiments: Question 1 (1)

- ▶ What is the relation between the amount of requests that RoboPizza receives and the waiting time for customers?
 - H_1 : The waiting time increases with the amount of requests.
 - H₀: The waiting time does **not** increase with the amount of requests.
- ▶ TODO: Hypotheses in termen van $H_0: \mu_1 \ge \mu_2$ en $H_1: \mu_1 < \mu_2$
- http://stattrek.com/hypothesis-test/difference-in-means.aspx

6 Experiments: Question 1 (2)

► grafieken ofzo

6 Experiments: Question 2 (1)

- ▶ Do robots drive more (non-idle time) when there are more requests in the system?
 - H_1 : Robots drive more when there are more requests in the system.
 - H_0 : Robots do **not** driving more when there are more requests in the system.
- ▶ TODO: Hypotheses in termen van $H_0: \mu_1 \ge \mu_2$ en $H_1: \mu_1 < \mu_2$
- http://stattrek.com/hypothesis-test/difference-in-means.aspx

6 **Experiments: Question 2 (2)**

▶ grafieken ofzo

6 Experiments: Question 3 (1)

- ▶ Does increasing the amount of robots decrease customer waiting time when there are many requests?
 - H₁: Increasing the amount of robots decreases customer waiting time when there are many requests.
 - H_0 : Increasing the amount of robots does **not** decrease customer waiting time when there are many requests.
- ▶ TODO: Hypotheses in termen van $H_0: \mu_1 \ge \mu_2$ en $H_1: \mu_1 < \mu_2$
- http://stattrek.com/hypothesis-test/difference-in-means.aspx

6 **Experiments: Question 3 (2)**

▶ grafieken ofzo

- Problem definition
- Objectives
- 3 Research Questions and Hypotheses
- 4 Variables
- Multi-Agent System Design
- 6 Experiments
- Conclusions

7 Conclusions

conclude our Conclusions

