MA-110 Linear Algebra and Differential Equations

Rekha Santhanam

Department of Mathematics Indian Institute of Technology Bombay Powai, Mumbai - 76

> January 9, 2024 Lecture 3 D3

Recap Choosing pivots: Two examples

Example 2: 3 equations in 3 unknowns (u, v, w)0u + v + 2w = 1, 0u + 6v + 4w = -2, 0u + 7v - 2w = -9.

$$[A|b] = \begin{pmatrix} \mathbf{0} & \mathbf{1} & 2 & | & 1 \\ \mathbf{0} & 6 & 4 & | & -2 \\ \mathbf{0} & 7 & -2 & | & -9 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & \mathbf{1} & 2 & | & 1 \\ 0 & 0 & -\mathbf{8} & | & -8 \\ 0 & 0 & -16 & | & -16 \end{pmatrix}$$

Coefficient of u is 0 in every equation. The first pivot is 1 and we eliminate v from the second and third equations. Solve for w and v to get w=1, and v=-1.

Note: (0,-1,1) is a solution of the system. So is (1,-1,1). In general, (*,-1,1) is a solution, for any real number *.

Observe: Unique solution is not an option. Why? This system has infinitely many solutions.

Q: Does such a system always have infinitely many solutions?

A: Depends on the constant vector *b*.

Exercise: Find 3 vectors *b* for which the above system has (i) no solutions (ii) infinitely many solutions.

Summary: Pivots

- Can a pivot be zero? No (since we need to divide by it).
- If the first pivot (coefficient of 1st variable in 1st equation) is zero, then interchange it with next equation so that you get a non-zero first pivot. Do the same for other pivots.
- If the coefficient of the 1st variable is zero in every equation, consider the 2nd variable as 1st and repeat the previous step.
- Consider system of *n* equations in *n* variables.
 - The non-singular case, i.e. the system has exactly n pivots: The system has a unique solution.
 - The singular case, i.e., the system has atmost n-1 pivots: The system has no solutions, i.e., it is inconsistent, or it will have infinitely many solutions, provided it is consistent.

Rekha Santhanam Lecture 3 D3

What is a matrix?

A *matrix* is a collection of numbers arranged into a fixed number of rows and columns.

If a matrix A has m rows and n columns, the size of A is $m \times n$.

The rows of
$$A$$
 are denoted $A_{1*}, A_{2*}, \ldots, A_{m*}$, i.e., $A = \begin{pmatrix} A_{1*} \\ A_{2*} \\ \vdots \\ A_{m*} \end{pmatrix}$,

the columns are denoted $A_{*1}, A_{*2}, \dots, A_{*n}$, i.e.,

$$A = (A_{*1} \quad A_{*2} \quad \cdots \quad A_{*n})$$
, and the (i,j) th entry is A_{ij} (or a_{ij}).

Operations on Matrices: Matrix Addition

Example 1. We know how to add two row or column vectors.

$$\begin{pmatrix} 1 & 2 & 3 \end{pmatrix} + \begin{pmatrix} -3 & -2 & -1 \end{pmatrix} = \begin{pmatrix} -2 & 0 & 2 \end{pmatrix}$$
 (component-wise)

We can add matrices if and only if they have the same size ,

and the addition is component-wise.

Example 2.

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 2 & 4 \end{pmatrix} + \begin{pmatrix} -1 & -4 & -2 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & -2 & 1 \\ 2 & 2 & 5 \end{pmatrix}$$

Thus

$$(A+B)_{i*} = A_{i*} + B_{i*}$$
 and $(A+B)_{*i} = A_{*i} + B_{*i}$

Linear Systems: Multiplying a Matrix and a Vector

One row at a time (dot product): The system

2u + v + w = 5, 4u - 6v = -2, -2u + 7v + 2w = 9 can be rewritten using dot product as follows:

$$(2 \quad 1 \quad 1) \begin{pmatrix} u \\ v \\ w \end{pmatrix} = 5, \quad (4 \quad -6 \quad 0) \begin{pmatrix} u \\ v \\ w \end{pmatrix} = -2 \quad \text{and}$$

$$(-2 \quad 7 \quad 2) \begin{pmatrix} u \\ v \\ w \end{pmatrix} = 9.$$

Write the system in the Ax = b form:

$$\begin{pmatrix} 2 & 1 & 1 \\ 4 & -6 & 0 \\ -2 & 7 & 2 \end{pmatrix} \begin{pmatrix} u \\ v \\ w \end{pmatrix} = \begin{pmatrix} 2u + v + w \\ 4u - 6v \\ -2u + 7v + 2w \end{pmatrix} = \begin{pmatrix} 5 \\ -2 \\ 9 \end{pmatrix}$$

Note: No. of columns of A = length of the vector x.

Multiplication of a Matrix and a Vector

Dot Product (row method): Ax is obtained by taking dot product of each row of A with x.

If
$$A = \begin{pmatrix} A_{1*} \\ A_{2*} \\ A_{3*} \end{pmatrix}$$
, then $\begin{vmatrix} Ax = \begin{pmatrix} A_{1*} \cdot x \\ A_{2*} \cdot x \\ A_{3*} \cdot x \end{vmatrix} \end{vmatrix}$

Linear Combinations (column method):

The column form of the system

$$2u + v + w = 5$$
, $4u - 6v = -2$, $-2u + 7v + 2w = 9$ is:

$$u\begin{pmatrix} 2\\4\\-2 \end{pmatrix} + v\begin{pmatrix} 1\\-6\\7 \end{pmatrix} + w\begin{pmatrix} 1\\0\\2 \end{pmatrix} = \begin{pmatrix} 2 & 1 & 1\\4 & -6 & 0\\-2 & 7 & 2 \end{pmatrix}\begin{pmatrix} u\\v\\w \end{pmatrix}$$

Thus Ax is a linear combination of columns of A, with the coordinates of x as weights, i.e., $Ax = uA_{*1} + vA_{*2} + wA_{*3}$.

Rekha Santhanam Lecture 3 D3

An Example

Let
$$A = \begin{pmatrix} 1 & 3 & -3 & -1 \\ 1 & 2 & 0 & -2 \\ 1 & 0 & -2 & 0 \end{pmatrix}$$
, $x = \begin{pmatrix} 2 \\ 1 \\ 1 \\ 2 \end{pmatrix}$, and $e_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$. $A_{1*} = \begin{pmatrix} 1 & 3 & -3 & -1 \end{pmatrix}$, $A_{2*} = \begin{pmatrix} 1 & 2 & 0 & -2 \end{pmatrix}$ $A_{3*} = ?$. Then $A_{1*} \cdot x = ?$, $A_{2*} \cdot x = 0$, $A_{3*} \cdot x = 0$, hence $Ax = \begin{pmatrix} ? \\ ? \\ ? \end{pmatrix}$.

Q: What is Ae_1 ? **A**: The first column A_{*1} of A.

Exercise:

What should x be so that $Ax = A_{*j}$, the jth column of A?

Observe: No. of rows of Ax = No. of rows of A, and No. of columns of Ax = No. of columns of x.

Question: What can you say about the solutions of Ax = 0?

Operations on Matrices: Matrix Multiplication

Two matrices A and B can be multiplied if and only if

no. of columns of A = no. of rows of B. If $A \text{ is } m \times n \text{ and } B \text{ is } n \times r, \text{ then } AB \text{ is } m \times r.$

Key Idea: We know how to multiply a matrix and a vector.

Column wise: Write B column-wise, i.e., let $B = \begin{pmatrix} B_{*1} & B_{*2} & \cdots & B_{*r} \end{pmatrix}$. Then $AB = \begin{pmatrix} AB_{*1} & AB_{*2} & \cdots & AB_{*r} \end{pmatrix}$

Note: Each B_{*j} is a column vector of length n. Hence, AB_{*j} is a column vector of length m. So, the size of AB is $m \times r$.

Rekha Santhanam Lecture 3 D3

Operations on Matrices: Matrix Multiplication

Row wise: Write *A* row-wise, i.e., let A_{1*}, \ldots, A_{m*} be the rows of *A*. Then

$$AB = \begin{pmatrix} A_{1*} \\ \vdots \\ A_{m*} \end{pmatrix} B = \begin{pmatrix} A_{1*}B \\ \vdots \\ A_{m*}B \end{pmatrix}$$

Note: Each A_{i*} is a row vector of size $1 \times n$. Hence, $A_{i*}B$ is a row vector of size $1 \times r$. So, the size of AB is $m \times r$.

Working Rule:

The entry in the *i*th row and *j*th column of AB is the dot product of the *i*th row of A with the *j*th column of B, i.e., $(AB)_{ij} = A_{i*} \cdot B_{*j}$.

Properties of Matrix Multiplication

- If A is $m \times n$ and B is $n \times r$.
- a) $(AB)_{ij} = A_{i*} \cdot B_{*j} = (i\text{th row of } A) \cdot (j\text{th column of } B)$
- b) jth column of $AB = A \cdot (j\text{th column of }B)$, i.e., $(AB)_{*j} = AB_{*j}.$
- c) ith row of $AB = (ith row of A) \cdot B$, i.e., $(AB)_{i*} = A_{i*}B$.

Properties of Matrix Multiplication:

- (associativity) (AB)C = A(BC). Why?
- (distributivity) A(B+C) = AB + AC. How to verify? (B+C)D = BD + CD. Why?
- (non-commutativity) $AB \neq BA$, in general. Why? Find examples.