### **ENGR 232: Dynamic Engineering Systems – Summer 2022**

#### MATLAB Exam - Version 60C

#### ANSWER TEMPLATE FOR EASY SUBMISSION

Part A: Multiple Choice - Just circle the answer for each question in part A.

Warning: Highlighting may disappear when you print the PDF. Don't use highlighting to show your answers!

**1.** Find the matrix for which  $\lambda = 0$  is a repeated eigenvalue. You can just record the answer in the answer template file.

**a.** 
$$A_1 = \begin{bmatrix} 6 & -6 & 0 \\ 3 & -3 & 0 \\ 1 & -1 & 0 \end{bmatrix}$$

**b.** 
$$A_2 = \begin{bmatrix} -2 & 6 & 9 \\ -2 & 5 & 6 \\ 0 & 0 & 1 \end{bmatrix}$$

**a.** 
$$A_1 = \begin{bmatrix} 6 & -6 & 0 \\ 3 & -3 & 0 \\ 1 & -1 & 0 \end{bmatrix}$$
 **b.**  $A_2 = \begin{bmatrix} -2 & 6 & 9 \\ -2 & 5 & 6 \\ 0 & 0 & 1 \end{bmatrix}$  **c.**  $A_3 = \begin{bmatrix} -2 & 6 & 14 \\ -2 & 5 & 8 \\ 0 & 0 & 3 \end{bmatrix}$  **d.**  $A_4 = \begin{bmatrix} -4 & 10 \\ -3 & 7 \\ 0 & 0 \end{bmatrix}$ 

$$\mathbf{d.} A_4 = \begin{bmatrix} -4 & 10 & 15 \\ -3 & 7 & 8 \\ 0 & 0 & 3 \end{bmatrix}$$

**2.** Here is a <u>new</u> matrix, for which  $\lambda = 0$  is a <u>triple</u> eigenvalue:  $A = \begin{bmatrix} -24 & 16 & -16 \\ -40 & 28 & -28 \\ -4 & 4 & -4 \end{bmatrix}$ 

You can check that it has only one independent eigenvector  $\vec{\mathbf{v}} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$  for this repeated eigenvalue. Find a generalized

eigenvector  $\vec{\mathbf{w}}$  so that:  $(A - \lambda I) \vec{\mathbf{w}} = \vec{\mathbf{v}}$  where  $\lambda = 0$  and  $\vec{\mathbf{v}}$  is the above eigenvector.

$$\mathbf{a.} \ \overrightarrow{\mathbf{w}} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$

$$\mathbf{b.} \ \overrightarrow{\mathbf{w}} = \begin{bmatrix} 3/4 \\ 1/2 \\ 0 \end{bmatrix}$$

$$\mathbf{b.} \ \vec{\mathbf{w}} = \begin{bmatrix} 3/4 \\ 1/2 \\ 0 \end{bmatrix} \qquad \qquad \mathbf{c.} \quad \vec{\mathbf{w}} = \begin{bmatrix} 1/2 \\ 3/4 \\ 0 \end{bmatrix} \qquad \qquad \mathbf{d.} \ \vec{\mathbf{w}} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

$$\mathbf{d.} \, \overrightarrow{\mathbf{w}} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

**3.** The function  $y(t) = t \cdot \cos t$  is a solution to one of these differential equations. Using **dsolve** & **simplify**, find the DE. Note the given function implies y(0) = 0 and y'(0) = 1.

$$\mathbf{a.} \, \mathbf{y''} + \mathbf{y} = t$$

**b.** 
$$y'' + y = -2\sin t$$
 **c.**  $y'' + y = 2\cos t$  **d.**  $y'' + y = \sin t$ 

$$\mathbf{c.} \ y'' + y = 2\cos t$$

$$\mathbf{d.} \ y'' + y = \sin t$$

**4.** Find the coefficient  $A_2$  in the partial fraction:  $F(s) = \frac{3125 \cdot s}{(s-2)^3 \cdot (s+3)^3} = \frac{A_1}{s-2} + \frac{A_2}{(s-2)^2} + \frac{A_3}{(s-2)^3} + \frac{B_1}{s+3} + \frac{B_2}{(s+3)^2} + \frac{B_3}{(s+3)^3}$ Be sure you noticed the s in the numerator!

**a.** 
$$A_2 = -3$$

**b.** 
$$A_2 = -5$$

**c.** 
$$A_2 = +50$$

**c.** 
$$A_2 = +50$$
 **d.**  $A_2 = +3$  **e.**  $A_2 = 20$  **f.**  $A_2 = 75$ 

**e.** 
$$A_2 = 20$$

$$f. A_2 = 75$$

**5.** The function  $y = x^2 e^{-x}$  is a solution to one of these differential equations.

Note the given function implies y(0) = 0 and y'(0) = 0. Using **dsolve** and **simplify**, find the DE.

**a.** 
$$y'' + 3y' + 2y = e^{-x}$$

**b.** 
$$y'' + 4y' + 3y = 4x \cdot e^{-x}$$

**c.** 
$$y'' + y' = xe^{-x}$$

**d.** 
$$y'' + 3y' + 2y = 2(1+x) \cdot e^{-x}$$

#### Part B: Numerical Solutions: Earth-Venus Orbital Resonance

(5 points)

**1-2:** Complete this MATLAB <u>function</u> to represent the system in matrix form and return **xdot** ( i.e.  $\frac{d}{dt}\vec{\mathbf{x}}$  ) using the above equation. Inside the function, define the matrix A, the vector  $\vec{\mathbf{f}}$  and compute **xdot**.

(2 points)

## 3-5: Paste your filled graph with the Rose of Venus and yellow hexagram here. Replace this sample with your plot!



## Part C: Exact Solution for 2<sup>nd</sup>-Order DE using Laplace Transform

(10 points)

This new DE features a large limiting circle. That circle passes through the point (-60,0). Consider this the first initial value.

**DE**: 
$$y'' + \frac{1}{6} \cdot y' + y = 12 + 12 \cdot \sin t$$
 **IC**:  $y(0) = -60$ ,  $y'(0) = 0$ 

**Point 1:** Find the Laplace transform F(s) of the forcing term  $f(t) = 12 + 12\sin(t)$  and record it in the box below.

**Point 1:** The transform 
$$F(s)$$
 is:  $F(s) = \frac{12}{s} + \frac{12}{s^2+1}$ 

$$Y(s) = \frac{-60s^2 + 12}{s^3 + s}$$

Hint, it is a quadratic.

**Point 3:** Using the **partfrac** command, find the missing coefficient *C*. Hint: It's negative.

$$Y(s) = \frac{12}{s} + \frac{cs}{s^2 + 1}$$

Answer: *C* = -72s ?

Point 4:  $\lim_{t\to\infty} y(t) = 0$  ? (not true however)

**Point 5:** Using the **ilaplace** command, and **matlabFunction**, find the exact solution y(t) with the given initial condition (-60,0). There is a constant, and a cosine term. The constant is given for you. Give the missing term.

**Point 5:**  $y(t) = 12 - 72\cos(t)$ 

**Point 6:** Use matlabFunction, simplify and the diff command, to find a symbolic expression for y'(t).

**Answer:**  $y'(t) = -72 * \sin(t)$ 

Points 7-8: Paste your completed plot with the red limit cirle and yellow hexagram here.



Points 9-10: Paste your combined graph with the black circle and red curve here. Be sure grid and axis are turned off.



# Part D: Exact Solution for Rose of Venus using Laplace Transform in Matrix Form

(5 points)

**Point 1:** 
$$(sI - A)^{-1} = \frac{1}{s^2 + 4\pi^2} \cdot \begin{bmatrix} s & -2pi \\ 2pi & s \end{bmatrix}$$

Point 2: 
$$\vec{\mathbf{F}}(s) = \frac{c}{s^2 + \omega_V^2} \cdot \begin{bmatrix} -wv \\ s \end{bmatrix}$$

**Point 3:** 
$$\vec{\mathbf{X}}zin(s) = \frac{1}{s^2 + 4\pi^2} \cdot \begin{bmatrix} -0.28s \\ -0.56 * pi \end{bmatrix}$$

**Point 4:** 
$$\vec{\mathbf{X}}zs(s) = \frac{c}{(s^2 + 4\pi^2)(s^2 + \omega_V^2)} \cdot \begin{bmatrix} -(2\pi + \omega_V) \cdot s \\ s^2 - 2 * pi * wv \end{bmatrix}$$

**Point 5:** 
$$\vec{x}(4) = \begin{bmatrix} -1.72 \\ 0.00 \end{bmatrix}$$

Give both components.

## Ready to Submit?

Be sure all questions are answered. When your MATLAB Exam is complete, be sure to submit three files:

- 1. Your completed Answer Template as a PDF file
- 2. A copy of your MATLAB Live Script
- 3. A PDF copy of your MATLAB Live Script (Save-Export to PDF...)