15. Pohjoismainen matematiikkakilpailu

Torstai, 29. maaliskuuta 2001

Työaikaa 4 tuntia. Maksimipistemäärä joka tehtävästä 5 pistettä. Laskinten ja taulukoiden käyttö ei ole sallittu.

Tehtävä 1. Olkoon A äärellinen kokoelma sellaisia koordinaattitason neliöitä, että jokaisen A:han kuuluvan neliön kärkipisteet ovat muotoa (m, n), (m + 1, n), (m, n + 1) ja (m + 1, n + 1) joillain kokonaisluvuilla m ja n. Osoita, että on olemassa sellainen A:n osakokoelma B, että B:hen kuuluu ainakin 25 % A:n neliöistä, mutta millään kahdella B:n neliöllä ei ole yhteistä kärkipistettä.

Tehtävä 2. Olkoon f rajoitettu reaaliarvoinen funktio, joka on määritelty kaikilla reaaliluvuilla ja joka toteuttaa kaikilla reaaliluvuilla x ehdon

$$f\left(x+\frac{1}{3}\right)+f\left(x+\frac{1}{2}\right)=f(x)+f\left(x+\frac{5}{6}\right).$$

Osoita, että f on jaksollinen. (Funktio f on rajoitettu, jos on olemassa luku L siten, että |f(x)| < L kaikilla reaaliluvuilla x. Funktio f on jaksollinen, jos on olemassa positiivinen luku k siten, että f(x+k) = f(x) kaikilla reaaliluvuilla x.)

Tehtävä 3. Määritä yhtälön

$$x^{8} - x^{7} + 2x^{6} - 2x^{5} + 3x^{4} - 3x^{3} + 4x^{2} - 4x + \frac{5}{2} = 0$$

reaalisten juurten lukumäärä.

Tehtävä 4. Olkoon ABCDEF kupera kuusikulmio, jossa kukin lävistäjistä AD, BE ja CF jakaa kuusikulmion kahdeksi nelikulmioksi, joiden alat ovat yhtä suuret. Osoita, että AD, BE ja CF leikkaavat toisensa samassa pisteessä.