Matrix Analysis Homework 8

龙肖灵 Xiaoling Long Student ID.:81943968 email:longxl@shanghaitech.edu.cn

November 27, 2017

For A symmetric $n \times n$ matrix, we assume the following ordering on its eigenvalues:

$\lambda_1(A) \ge \lambda_2(A) \ge \dots \ge \lambda_n(A)$
Problem 1 : (Finish the proof of the second part of the Weyl-II theorem) Let A,B be $n \times n$ symmetric matrices. Prove that $\lambda_j(A) + \lambda_k(B) \leq \lambda_{j+k-n}(A+B), \forall i,j=1,\cdots,n$.
Proof.
Done. \Box
Problem 2 : (Finish the proof of the second part of the Interlacing-II theorem) Let A be $n \times n$ symmetric matrix. Let B be an $r \times r$ principal submatrix of A , obtained by deleting rows/columns i_1, \dots, i_{n-r} . Show that $\lambda_k(B) \leq \lambda_k(A), \forall k = 1, \dots, r$.
Proof. Done. \Box
Problem 3 : (Finish the proof of the second part of the variational characterization of sums of eigenvalues) Let A be $n \times n$ symmetric matrix. Prove that $\sum_{i=n-k+1}^{n} \lambda_i(A) = \min_{U \in \mathbb{R}^{n \times k}, U^T U = I_k} trace(U^T A U)$.
<i>Proof.</i> Done. \Box
Problem 4:
Let A be an $n \times n$ symmetric matrix. Prove that $\lambda_n(A) \leq a_{ii} \leq \lambda_1(A), \forall i = 1, \dots, n$.
Proof. Done. \Box
Problem 5 : Let A, B be $n \times n$ symmetric matrices. Prove that $\sum_{i=1}^k (\lambda_i(A) + \lambda_i(B)) \ge \sum_{i=1}^k \lambda_i(A+B)$, $\forall k = 1, \dots, n$. Hint: Use the variational characterization of the sum of eigenvalues.
Proof. Done.