Basic Exam (S04)

In several problems you will need the usual "norm" terminology. If V is a real vector space, then a norm on V is a map $|| \ || : V \to [0, \infty)$ such that $||v + w|| \le ||v|| + ||w||$, ||cv|| = |c|||v||, and ||v|| = 0 if and only if v = 0. Each norm determines a metric d on V via the relation d(v, w) = ||v - w||. The Euclidean norm (also called the "inner product" norm) on \mathbb{R}^n is given by

$$\left\| \sum_{k=1}^{n} x_k e_k \right\|_2 = \left[\sum_{k=1}^{n} |x_k|^2 \right]^{1/2}$$

where e_k is the usual vector basis. Given a linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ we define

$$||T|| = \sup\{||T(x)||_2 : ||x||_2 \le 1\}$$

For all x, $||T(x)|| \le ||T|| ||x||$.

1. Let S denote the set of sequences $a = (a_1, a_2, \dots)$, with $a_k = 0$ or 1 Show that the mapping $\theta: S \to \mathbb{R}$ defined by

$$\theta((a_1, a_2,)) = \frac{a_1}{10} + \frac{a_2}{10^2} +$$

is an injection. Include an explanation of why the infinite series converges Hint: if $a \neq b$, you may assume that

$$a = (a_1, \dots, a_{n-1}, 0, a_{n+1}, \dots, a_{n-1}, 1, b_{n+1}, \dots)$$

- 2. Is $f(x) = \sqrt{x}$ uniformly continuous on $[0, \infty)$? Prove your assertion.
- 3. a) Carefully define when a function f on [0,1] is Riemann integrable.
- b) Show that if f_n are Riemann integrable functions on [0,1] and f_n converges to f uniformly, then f is Riemann integrable.
 - 4. Are there infinite compact subsets of \mathbb{Q} ? Prove your assertion
- 5. Suppose that G is an open set in \mathbb{R}^n , $f:G\to\mathbb{R}^m$ is a function, and that $x_0\in G$.
 - a) Carefully define what is meant by $f'(x_0): \mathbb{R}^n \to \mathbb{R}^m$.
- b) Suppose that I is a line segment in G such that f'(x) is defined for all $x \in I$. Show that if f is differentiable at all the points of I, then for some point c in I

$$||f(q) - f(p)||_2 \le ||f'(c)|| ||q - p||_2$$

let w be a unit vector with $||f(q) - f(p)||_2$ $f(q) = f(p) \cdot u$

- 6. Let $\| \cdot \|$ be any norm on \mathbb{R}^n .
- a) Prove that there exists a constant d with $||x|| \le d ||x||_2$ for all $x \in \mathbb{R}^n$, and use this to show that N(x) = |x| is continuous in the usual topology on \mathbb{R}^n .
- b) Prove that there exists a constant c with $||x|| \ge c ||x||_2$ (Hint: use the fact that N is continuous on the sphere $\{x: ||x||_2 = 1\}$).
- c) Show that if L is an n-dimensional subspace of an arbitrary normed vector space V, then L is closed.
- 7. Let V be a finite dimensional real vector space Let W $W_2 \subset V$ be subspaces. Show both of the following:

a) $W_1^0 \cap W_2^0 = (W_1 + W_2)^0$ b) $(W_1 \cap W_2)^0 = W_1^0 + W_2^0$ [Note: W_i^0 is the annihilator of W_i .]

- 8. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a rotation about the axis (1, 0-1) by an angle of 30° (you can use either orientation).
- a) Find the matrix representation $A \in \mathbf{M}_3(\mathbf{R})$ of T in the standard basis. (You do not have to multiply out matrices but must evaluate inverses.)
 - b) Find all the eigenvalues of $A \in \mathbf{M}_3(\mathbf{R})$.
 - c) Find all the eigenvalues of $A \in \mathbf{M}_3(\mathbf{C})$.
 - 9. Let V be a finite dimensional real inner product space under (, and $V \to V$ a linear operator. Show the following are equivalent:
 - a) (Tx, Ty) = (x, y) for all $x, y \in V$.
 - b) ||T(x)|| = ||x|| for all $x \in V$.
 - c) $T^*T = Id_V$, where T^* is the adjoint of T.
 - d) $TT^* = Id_V$.
- 10. Let T be a real symmetric matrix Show that T is similar to a diagonal matrix.

[You cannot use the Spectral Theorem.]