Dynamic Structural Models Bus Engine CCP

Aaron Barkley
Aug 2025

Static: McFadden's Random Utility Model

• Binary choice model of random utility:

$$U_j(x, \epsilon_j) = u_j(x) + \epsilon_j, \quad j \in \{0, 1\}$$

where

- $\circ x$ is an observed state variable,
- $\circ u_j$ is the deterministic component of utility,
- $\circ \epsilon_j$ is an iid random utility shock for each choice j=0,1. Observed to the agent but not by the econometrician.
- Agent's goal: choose the option with the highest utility, i.e., take action 1 iff $U_1(x,\epsilon_1)>U_0(x,\epsilon_0)$.
- Econometrician's goal: estimate u_j given data on choices d and states: $\{d_n, x_n\}_{n=1}^N$.

Random utility model estimation

- Normalize one of the choices: set $u_0(x) = 0$ for all x.
- Parameterize utility for the other choice: $u_1(x) = \theta_0 + \theta_1 x$.
- Assume that $\epsilon_j \stackrel{iid}{\sim}$ Type I EV for all j.
- Choice one is made (d = 1) in state x iff

$$\theta_0 + \theta_1 x + \epsilon_1 > \epsilon_0$$

$$\Rightarrow \Pr(d = 1|x) = \Pr(\epsilon_0 - \epsilon_1 < \theta_0 + \theta_1 x)$$

$$= \frac{\exp(\theta_0 + \theta_1 x)}{1 + \exp(\theta_0 + \theta_1 x)}$$

because $\epsilon_1 - \epsilon_0 \sim \text{Logistic}(0,1)$ when both $\epsilon \sim \text{Type I EV}$.

• Estimate θ_0, θ_1 with a logistic regression.

From static to dynamic

- Now we move to a dynamic environment: discount factor β and state transition probabilities F_j . Consumer chooses action j to maximize expected discounted future utility.
- ullet Binary choice. Take action j=1 iff

$$v_1(x_t) + \epsilon_{1t} > v_0(x_t) + \epsilon_{0t}$$

• Maintain the assumption that $\epsilon_{jt} \sim \text{Type I EV}$ for all j,t. Probability that decision in time t is choice one, or $\Pr(d_t = 1)$, is

$$\Pr(d_t = 1) = \frac{\exp(v_1(x_t) - v_0(x_t))}{1 + \exp(v_1(x_t) - v_0(x_t))}$$

Introduction

- Problem: we cannot simply parameterize v_j and estimate directly with a logit. That would give us parameters that are not related to the theory.
- Recall that

$$v_j(x_t) = u_j(x_t) + \beta \sum_{x=1}^{\overline{x}} V(x_{t+1}) f_j(x_{t+1} | x_t)$$

and

$$V_t(x_t) \equiv E\left\{\sum_{\tau=t}^{\overline{T}} \sum_{j=0}^{1} \beta^{\tau-t-1} d_{jt}^o(x_\tau \epsilon_\tau) (u_{j\tau}(x_\tau) + \epsilon_{j\tau}^*)\right\}$$

where d_{jt}^0 represents that choice j was optimal in time t, and ϵ_{jt}^* is the value of ϵ conditional on j being optimal.

The CCP solution

- If we knew ϵ_{jt}^* , then we could express $V_t(x_t)$ in terms of utility parameters and things that we already know or can estimate.
- The insight of Hotz and Miller (1993) is that we can estimate ϵ_{jt}^* using the conditional choice probabilities!
- ullet Specifically, if $\epsilon_{jt}\sim$ Type I EV, then

$$\epsilon_{jt}^* = \gamma - \ln(p_j(x_t)), \quad V(x) = v_j(x) + \gamma - \ln(p_j(x_t))$$

Now the conditional value function can be expressed as

$$v_j(x_t) = u_j(x_t) + \beta \sum_{x_{t+1} \in \mathcal{X}} f_j(x_{t+1}|x_t) \left[v_0(x_{t+1}) + \gamma - \ln(p_0(x_{t+1})) \right]$$

The CCP solution

- We continue to replace v_0 with a u_0 term and a $V(x_{t+1})$ term.
- Every time we see $V(x_{\tau})$, we replace it with $v_0(x_{\tau}) + \gamma \ln(p_0(x_{\tau}))$. Then the right-hand side will only have F_j, F_0, u_0 , and $\gamma \ln(p_0(x_{\tau}))$ terms.
- With some matrix algebra and setting $\overline{T}=\infty$, the difference between the conditional value functions is:

$$\mathbf{v}_{1} - \mathbf{v}_{0} = \mathbf{u}_{1} - \mathbf{u}_{0} + \beta \left(F_{1} - F_{0} \right) \left[I - \beta F_{0} \right]^{-1} \left(\Psi_{0} + \mathbf{u}_{0} \right)$$

$$= X\theta + \underbrace{\beta \left(F_{1} - F_{0} \right) \left[I - \beta F_{0} \right]^{-1} \left(\Psi_{0} \right)}_{\equiv \Delta \mathbf{V}}$$

after using $u_0(x) = 0$ for all x and linear utility for u_1 .

Estimation steps with linear utility:

- 1. Estimate the CCPs $p_j(x_{jt})$ and state transitions f_1, f_0 .
- 2. Calculate the differenced "Big V" term:

$$\Delta \mathbf{V} = \beta \Big(F_1 - F_0 \Big) \Big[I - \beta F_0 \Big]^{-1} \Big(\gamma - \ln(\hat{\mathbf{p}}_0) \Big)$$

3. Specify logistic log-likelihood function *Q*:

$$\Delta \mathbf{v} \equiv \mathbf{v}_1 - \mathbf{v}_0 = X\theta + \Delta \mathbf{V}$$

$$Q(\theta) = \sum_{n=1}^{N} \sum_{t=1}^{T} \mathbf{1} \{ d_{nt} = 1 \} \Delta v(x_{nt}) - \ln(1 + \exp(\Delta v(x_{nt})))$$

4. Maximize $Q(\theta)$ over θ .