

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI INSTRUCTION DIVISION FIRST SEMESTER 2015-2016

Course Handout (Part II)

Date: 03 / 08 / 2015

In addition to part-I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course No. : CHE F471

Course Title : Advanced Process Control Instructor-in-Charge : AJAYA KUMAR PANI

Course Description

Process identification and adaptive control; Model predictive control structures; Model-based control structures; Multivariable control; State estimations; Intelligent control; Synthesis of control systems – some case studies.

Scope and Objective

This course is designed to study different important advanced control methodologies that are able to solve efficiently many industrial challenges. It covers the synthesis of several advanced control schemes supported by the process dynamics and simulation. The primary objective of this study is to select and to develop a suitable advanced control technique for achieving excellent closed-loop process responses.

Text Books:

- T1: Mohanta, H.K. Patle, D.S., and Pani, A.K. "Advanaced Process Control," Lecture Notes for the Course CHE C473: Advanced Process Control, Educational Development Division, BITS Pilani (Rajasthan), 2010.
- T2: Bequette, B. W. "Process Control: Modeling, Design, and Simulation," Prentice-Hall of India Private Limited, New Delhi, 1st ed., 2003.
- T3: Seborg, D. E., Edgar, T. F., and Mellichamp, D. A. "Process Dyna mics and Control," John Wiley & Sons, Inc., New Jersey, 2nd ed., 2004.

Reference Books:

- R1: Marlin T.E., "Process Control", Tata McGraw Hill, 2nd Edition, 2000
- R3: Ogunnaike, B. A. and Ray, W. H. "Process Dynamics, Modeling, and Control," Oxford University Press, New York, 1st ed., 1994.
- R4: Ray, W.H. "Advanced Process Control," McGraw-Hill Book Company, New York, 1981.

Course Plan:

Lecture	Learning	Topics to be covered	Reference
No.	objectives		Chap/Sec.(Bo
			ok)
1 – 8	Basic process	Review of basic process control system, Use	Class notes
	control and	of MATLAB for modeling, closed loop	
	MATLAB	simulation	
	Application		

9 – 11	PID Controller	Closed-loop oscillation-based tuning, Tuning	4 (T1)		
	Tuning	rules for FOPTD processes, Direct synthesis			
10 14	E 1 10' 1		5 15 (TI)		
12 - 14	Enhanced Single	Cascade Control, Smith Predictor, Soft sensor	5, 15 (T1)		
	Loop Control	and Inferential Control, Override Control.			
15 - 16	Feedforward and	Feedforward Control, Ratio control.	6 (T1)		
	Ratio Control				
17 - 20	Sampling and z-	Clamping, Impulse modulation, z-Transform,	7 (T1)		
	Transforms	Digital PID control	, ,		
21 - 23	Process	Empirical models, First- and Second-Order	1 (T1)		
	Identification	Models.	, ,		
24 - 28	Artificial Neural	Linear and Nonlinear Transformation. Back	2 (T1)		
	Network	Propagation algorithm	, ,		
29 - 31	Fuzzy logic control	Fuzzy sets, Fuzzy variables, Fuzzy Logic	8 (T1)		
		Control			
32 - 34	Control-Loop	General pairing problem, Relative Gain	13 (T2)		
	Interactions	Array, Application of RGA, RGA and	, ,		
		sensitivity			
35 - 37	Model Predictive	Optimization problem, Dynamic Matrix	9 (T1)		
	Control	Control, Model Algorithmic Control			
38-40	State Estimation	Controllability and Observability; Kalman	13-14 (T1)		
		filter estimator.	, ,		
Self	Model Reference Adaptive Control, Globally Linearized Control, Generic Model				
Study	Control, Statistical Process Control; Introduction to LabView				

Evaluation Scheme:

EC	Evaluation component	Duration	Weightage	Date and	Nature of
No.	(EC)	(Minutes)	(Marks)	time	component
1	Mid Semester Test	90	90	10/10 2:00	Closed and
				- 3:30 PM	Open Book
2	Projects	-	70		Continuous
3	Class participation	-	20		Continuous
4	Comprehensive	180	120	14/12 FN	Closed and
	examination				Open Book

Chamber consultation hour: Tuesday 5 PM to 6 PM

Make-up policy: Make-up will be granted only when one attends more than 75% classes and has genuine reason(s) for not appearing in the regular test.

Notices: All notices concerning this course will be uploaded in the on-campus Learning Management System, http://nalanda.bits-pilani.ac.in/

Instructor-in-charge CHE F471

