BECA / Dr. Huson / Geometry

Unit 6: Distance & slope

10 January 2019

Name: Solv Dras

7.7b Exam: Similarity ratios, dilation, the tangent function, transformations, symmetry

1. Given the following two linear equations:

$$l_1: y = \frac{5}{4}x - 3$$

$$l_2: 5x + 4y = 8$$
 $y = -5x + 2$

Write down the slopes of the two lines.

$$m_1 = \frac{5}{4}$$

$$m_2 = -\frac{5}{4}$$

Are the lines parallel, perpendicular, or neither? Justify your answer using the slopes.

Neither. Their slopes are not equal. Nor are they negative reciprocals.

\$\frac{5}{4} \tau - \frac{5}{4} \tau - \frac{5}{4} \tau - \frac{1}{4} \tau - \frac{5}{4} \ta

2. Given $\triangle ABC \sim \triangle DEF$. $m\angle A = 80^{\circ}$ and $m\angle F = 40^{\circ}$. Find the measure of $\angle C$.

3. In the diagram below of $\triangle ABC$, D is a point on \overline{BA} , E is a point on \overline{BC} , and \overline{DE} is

If BD = 7, BA = 21, and BE = 8, what is the length of \overline{BC} so that $\overline{AC} \parallel \overline{DE}$?

$$\begin{array}{c}
\overline{Bo} \rightarrow \overline{BA} \\
7 \rightarrow 21 \\
14 = \frac{21}{7} = 3 \\
\overline{BC} \rightarrow \overline{BC} \\
BC = 8 \times 3 = 24
\end{array}$$

4. Find the image of P(3,-5) after the translation $(x,y) \to (x-5,y+8)$.

(-7,3)

5. (a) Graph and label $\triangle ABC$ with $A(0,0),\,B(5,6),\,$ and C(5,0). Calculate each length:

i.
$$AC = 5$$

ii.
$$BC = 6$$

iii.
$$AB = \sqrt{5^2 + 6^2}$$

(b) Write down the equation of the line \overrightarrow{BC} .

(c) Write down the equation of the line \overrightarrow{AB} .

(d) The tangent of an angle is the ratio of the side lengths opposite over adjacent to the angle. Write down the value as a fraction.

$$\tan \angle BAC = \frac{\zeta}{5}$$

(e) Find $m \angle A$ with a calculator's inverse tangent function, $m \angle BAC = \tan^{-1}(\frac{opp}{adi})$

$$mLA = 50, 1944...$$

10 January 2019

6. Given $\triangle ABP \sim \triangle JKP$ as shown below. $AB=13.5,\ AP=10.0,\ BP=9,$ and JP=27.0. Find JK.

$$\overrightarrow{AP} \rightarrow \overrightarrow{JP}$$
 $10 \rightarrow 27$
 $K = \frac{27}{10} = 2.7$
 $\overrightarrow{AB} \rightarrow \overrightarrow{JK}$
 $JK = 2.7 \times 13.5$
 $= 36.45$

7. The line l has the equation $y = \frac{3}{2}x + 5$. To each line below, circle whether l is parallel, perpendicular, or neither.

(a) parallel perpendicular neither $y = \frac{3}{2}x - 2$

(b) parallel perpendicular neither $y = \frac{2}{3}x + 7$

(c) parallel perpendicular neither 3x - 2y = -6 $y = \frac{3}{2} x + 3$

8. A(-1,4) is one endpoint of \overline{AB} . The segment's midpoint is M(3,1), as shown below. Find the coordinates of the other endpoint, B.

B (7,-2)

9. The vertices of $\triangle JKL$ have the coordinates J(0,0), K(6,0), and L(6,4), as shown. Apply a dilation to $\triangle JKL \to \triangle J'K'L'$, centered on the origin and with a scale factor k=1.5. Draw the image $\triangle J'K'L'$ on the set of axes below, labeling the vertices, and make a table showing the correspondence of both triangles' coordinate pairs.

$$J(o, \circ) \rightarrow J'(o, \circ)$$

$$K(6, \circ) \rightarrow k'(9, \circ)$$

$$L(6, 4) \rightarrow L'(9, 6)$$

10. Given isosceles $\triangle ABC$ with $\overline{AB} \cong \overline{BC}$, $m \angle A = 53$. Mark and label the diagram, and then find $m \angle B$. (the diagram is not to scale)

$$mLB + 2(53) = 180$$

 $mLB = 74$

11. A translation maps $N(-3,7) \to N'(-4,1)$. What is the image of M(0,-5) under the same translation? T-1,-6

$$m' = \left(-1, -11\right)$$

BECA / Dr. Huson / Geometry Unit 6: Distance & slope 10 January 2019

Name:

Solve each equation for x, rounding to the nearest hundredth.

12.
$$\tan 50^{\circ} = \frac{x}{10}$$

14.
$$\sin 35^{\circ} = \frac{x}{3.5}$$

13.
$$\tan 22^{\circ} = \frac{3}{x}$$

15.
$$\cos 80^\circ = \frac{x}{20}$$

Solve for x, rounding to the nearest whole degree.

16.
$$x = \tan^{-1}(\frac{6}{10})$$

17.
$$\tan x^{\circ} = \frac{4.2}{2.9}$$

18. A dilation centered at A maps $\triangle ABC \rightarrow \triangle ADE$. Given AB=9, AC=6, BD=18, and DE=15. Find AD and the scale factor k. Then find AE and BC.

(a)
$$AD = 9 + 18 = 27$$

(b)
$$k = \frac{27}{9} = 3$$

(c)
$$AE = 6 \times 3 = 18$$

(d)
$$BC = \frac{15}{3} = 5$$

19. The line \overrightarrow{AB} has points A(0,2) and B(4,0). Apply a dilation mapping $\overrightarrow{AB} \rightarrow \overrightarrow{A'B'}$ with a factor of k=2 centered at the origin.

(a) Draw and label the image on the grid.

(b) Write the coordinates of the points A' and B'.

20. The side \overline{AB} of triangle ABC is extended and an altitude to the vertex C is drawn, as shown below. The triangle's height is h=11.0 and its base measures AB=19.1. Find the area of the triangle.

$$A = \frac{1}{2}bk$$

$$= \frac{1}{2}(19.1)(10.0)$$

$$= 105.05$$

21. Find the midpoint M of \overline{AB} with coordinates A(-3,1) and B(7,5).

M (2,3)

22. Given two parallel lines and a transversal, as shown below. Given $m \angle 1 = 108^{\circ}$.

- (a) Find the measure $m \angle 2$.
- (b) Find the measure $m \angle 8$.
- (c) Given $m \angle 5 = (6x 12)^{\circ}$. Find x.

23. Given two points A = -4.7 and B = 3.3. Find the value of the midpoint M between A and B, and mark and label it on the numberline below.

$$M = \frac{-4.7 + 3.3}{2} = -0.7$$