Theory of Computation

Tutorial - Minimal DFAs

Cesare Spinoso-Di Piano

Plan for today

1. Minimal DFA

Minimal DFA

Minimal DFA

Given a language L, there are several DFAs M that can accept it.

Theorem. For every regular language L, there is a unique minimal DFA \hat{M} that accepts it. \hat{M} is minimal in the sense that no other DFA M where L(M) = L has a <u>smaller</u> number of states.

State Reduction Algorithm

The following procedure takes as input any DFA $M=(Q,\Sigma,\delta,q_0,F)$ and outputs an equivalent minimal DFA $\hat{M}=(\hat{Q},\Sigma,\hat{\delta},\hat{q_0},\hat{F})$ (i.e. $L(M)=L(\hat{M})$).

- Step 1. Remove all unreachable states from M.
- Step 2. Initialize two sets $S_1 \leftarrow Q F$ and $S_2 \leftarrow F$.
- Step j, (j > 2). For each pair $p, q \in S_i$

If $\delta(p,\sigma)$ & $\delta(q,\sigma)$ map to the same set $\forall \sigma \in \Sigma$, then p,q are $\underline{\text{indistinguishable}}$ and stay in the same set they were in Step $\overline{j-1}$.

Otherwise, p, q are distinguishable, split the set from Step j-1 into two new sets one with p and another with q. These sets may continue to grow.

If no new sets have been created from j-1 to j, end. Otherwise, continue.

 \hat{M} : Each set S becomes a state in \hat{Q} . $\hat{q_0}$ is the set S that contains q_0 . \hat{F} are the sets that contain at least one final state from F.

Example 1. Reduce the following DFA M

4

Example 1.

- Step 1: Remove all unreachable states from M.
- Step 2: Initialize two sets $S_1 \leftarrow \{q_0, q_1, q_3\}, S_2 \leftarrow \{q_2, q_4\}$

Example 1.

Step j: Distinguishable and indistinguishable states

- $\rightarrow \{q_0, q_1, q_3\}, \{q_2, q_4\}$
- $\to \{q_0\}\{q_1\}\{q_3\}\{q_2,q_4\}$
- $\to \{q_0\}\{q_1\}\{q_3\}\{q_2,q_4\}$

No change from previous step, states have been identified.

Example 1.

Create \hat{M} : Each set S becomes a state in \hat{Q} . $\hat{q_0}$ is the set S that contains q_0 . \hat{F} are the sets that contain at least one final state from F.

7

Exercise

Exercise 1. Minimize the DFA

 $M=(\{q_0,q_1,q_2,q_3,q_4,q_5\},\{0,1\},\delta,q_0,\{q_2,q_5\}).$ Where δ is given as:

δ	0	1
q_0	q_1	q_3
q_1	q_1	q_4
q_2	q_0	q_2
q_3	q_3	q_2
q_4	q_4	q_5
q_5	q_0	q_2