020 10

"VSAQ"

O write the conditions for the existence of Laplace Transform of a function.

Existence of Laplace Teransform conditions:

L[f(t)] exists of 1. f(t) is a continous function

B. Lt e-st. f(8) is a finite.

- © State: First Shifting property
 - x second shifting property
 - 3. change of scale property
 - ! First shifting property:
 - If L[f(6)] = \(\bar{f}(8)\) Then L[eat.f(6)] = \(\bar{f}(8-a)\)
 - 2. Second shifting property:
 - If $L\left\{f(t)\right\} = \overline{f}(s)$ then $L\left\{f(t-a)u(t-a)\right\} = e^{-as}\cdot\overline{f}(s)$
 - 3 change of scale property:
 - If $L[f(t)] = \overline{f(s)}$ then $L[f(at)] = \frac{1}{a} \overline{f(s)}$
- 3 state convolution Theorem?

convolution theorem:

- 1 Define 1. unit step function B. unit impulse function.
 - 1. unit step function:

If is defined as $u(t-a) = \begin{cases} 0 & \text{for } t < a \end{cases}$ where a E z+ve and Denoted (u(t-a)

as u (t-a)

2. unit Impulse function:

It is defined as

$$\delta(t-\alpha) = \begin{cases} \infty & \text{for } t-\alpha \\ 0 & \text{for } t\neq \alpha \end{cases} = \begin{cases} \infty & \text{for } t=\alpha \\ 0 & \text{for } t\neq \alpha \end{cases}$$

- (3) write the wrea enclosed by the curves (i) ? = f (x) & Y = f & (x) between $x = x_i & x = x_i$ (ii) volume as triple Integral in Rectangular coordinates.
 - (i) drea enclosed by curves $\gamma_1 = f_1(x) & \gamma_2 = f_2(x)$ B/n , x = x1 , x = x4 x= x, y= +,(x)

- (ii) volume as Triple Sintegral in Rectangular coordinates
 volume = III & (x, y, z) d x d y d z

- Restrict the volume as triple Integral in cylindrical polar co-ordinates.

 Cylindrical polar co-ordinates are $x = x \cos 0$, $y = x \sin 0$, z = zand $Tacobian (T) = \frac{\partial (x, y, z)}{\partial (x, 0, z)} = y$

$\sum_{k=1}^{n} \left(\left(x e^{x} - y \right) - \frac{x^{1}}{e^{x}} \right)^{k}$	(3) It is besting took, it is defined, it is took then find Faceban of Theoretism from $(3,1,2)$ to $(7,0,0)$ of the find faceban straing costs, it is stronger as $\frac{2x}{3x}$ and $\frac{2x}{3y}$	+	
--	--	---	--

If
$$u = x + y$$
, $v = x - Ey$ then find $\frac{\partial(x,y)}{\partial(u,v)}$

Guiven,

$$x - Ry = V$$

 $x + Y = U$
 $x - Ry + V$
 $x = Ry + V$
 $y = \frac{U - V}{3} + V$

$$\frac{\partial (x,y)}{\partial (u,v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} \Rightarrow \begin{vmatrix} \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} \end{vmatrix} \Rightarrow -\frac{1}{3}$$

Evaluate Sex'dxdy over the Region R: {BYSXSE &OSYSI}

Given,
$$y = 1$$
 $x = 8$

$$\int \int e^{x^{2}} dx dy$$

$$Y = 0 \quad x = 8y$$

Given strip is a horizontal strip and it is changing to the vertical strip.

Vertical attrib Limits:
$$Y = 0$$
 To $Y = \frac{x}{R}$
 $x = 0$ To $x = R$
 $x = 0$ To $x = 0$
 $x = 0$

(3) How can you convert = \fightriangleright \xi(z, y, z) dx dydz into xylindrical folar co-ordinates.

In eylindrical polar co-ordinates: x = xcoso, y = x sino, , z = z

$$\overline{J} = \frac{\partial (x, y, z)}{\partial (x, o_1, z)} = \frac{\partial x}{\partial x} \frac{\partial x}{\partial x} \frac{\partial x}{\partial o_1} \frac{\partial x}{\partial z} \\
\frac{\partial y}{\partial x} \frac{\partial y}{\partial o_1} \frac{\partial y}{\partial z} \\
\frac{\partial z}{\partial x} \frac{\partial z}{\partial o_1} \frac{\partial z}{\partial z}$$

029 20

R

consider Sum,

 $\sum_{r=1}^{n} f(x_r, y_r) \delta A_r = f(x_1, y_1) \delta A_1 + f(x_2, y_2) \delta A_2 + f(x_2, y_3) \delta A_3$

If we snarease these sub regions sndefinitely such that the hargest kinear dimension $SA_S \longrightarrow 0$, the simil of sum If it Exists is called 'DOUBLE INTERAL'' of f(x,y) over kegion R & denoted by $\iint f(x,y) \, dx \, dy$

&. Triple Integral:

consider, function f(x,v,z) defined at every point of 3-D finite kegion *. (Dif) Divide v into m elementary volumes, δv_n , δv_n .

Let (x_7, y_7, z_7) be any foint within y_1^2h sub divisor δv_7 consider asum, $\frac{\omega}{z_{-1}} f(x_7, y_7, z_7) \delta v_7$ The Limit of this sum, If it exists as m = 200

The Limit of this sum, If it exists as $m \to \infty$ ($V_7 \to 0$ is called "TRIPLE INTEGRAL" of f(x, Y, z) over Region V & is denoted by $\iiint f(x, Y, z) dx dy dz$

