Algebra Booleana

Corso di Architettura degli elaboratori e laboratorio

Modulo Laboratorio

Gabriella Verga

Introduzione

L'Algebra Booleana è un sistema algebrico in cui ogni variabile può assumere solo 2 valori (0 e 1)

Principali operazioni definite su variabili binarie (FUNZIONI LOGICHE FONDAMENTALI):

- Somma logica o OR
- Prodotto logico o AND
- Complementazione, Negazione, Inversione o NOT
- Differenza simmetrica, OR esclusivo o XOR

Ciascuna operazione prende in ingresso una o più variabili binarie e rende in uscita una variabile binaria

Somma logica o OR

- La somma logica o OR è una funzione che vale 1 solo se almeno uno dei suoi ingressi binari vale 1.
- Si denota tramite gli operatori a due argomenti "+" o "V"
- La forma algebrica della somma è:

•
$$f(x_1, x_2) = x_1 + x_2 = x_1 \vee x_2$$

• Dove x₁,x₂ si dicono variabili d'ingresso ed f il valore di uscita della funzione.

X ₁	X ₂	f(x ₁ ,x ₂)
0	0	0
0	1	1
1	0	1
1	1	1

Proprietà base della Somma logica

- Proprietà commutativa: $x_1 + x_2 = x_2 + x_1$
- Proprietà associativa: $x_1 + (x_2 + x_3) = (x_1 + x_2) + x_3$
- Pertanto:

•
$$f = x_1 + x_2 + x_3 + + x_n = 1 \iff \exists x_i \mid x_i = 1 \text{ con } 1 \le i \le n$$

- Identità:
- 1 + x = 1
- 0 + x = x

Prodotto logico o AND

- Il prodotto logico o AND è una funzione che vale 1 solo se tutti i suoi ingressi binari valgono 1
- Si denota tramite gli operatori a due argomenti "·" ο "Λ"
- La forma algebrica della somma è:

•
$$f(x_1, x_2) = x_1 \cdot x_2 = x_1 \wedge x_2$$

X ₁	X ₂	f(x ₁ ,x ₂)
0	0	0
0	1	0
1	0	0
1	1	1

Proprietà base del Prodotto logico

- Proprietà commutativa: $x_1 \cdot x_2 = x_2 \cdot x_1$
- Proprietà associativa: $x_1 \cdot (x_2 \cdot x_3) = (x_1 \cdot x_2) \cdot x_3$
- Pertanto:

•
$$f = x_1 \cdot x_2 \cdot x_3 \cdot \dots \cdot x_n = 1 \Leftrightarrow \forall x_i \mid x_i = 1 \text{ con } 1 \leq i \leq n$$

- Identità:
- $1 \cdot x = x$
- $0 \cdot x = 0$

Operatori di Negazione o NOT

- Il complemento logico o inversione o NOT è una funzione che inverte il valore dell'unica variabile in ingresso
- Si denota tramite gli operatori a due argomenti "-" o "¬"
- La forma algebrica della inversione è:

•
$$f(x_1) = \neg x_1$$

• Proprietà di involuzione (doppia negazione)

$\mathbf{x_1}$	f(x ₁)
0	1
1	0

Differenza simmetrica o XOR

- La differenza simmetrica o XOR è la funzione che vale 1 se e solo se gli 1 nei suoi ingressi sono in numero dispari.
- Si denota tramite gli operatori a due argomenti "⊕".
- La forma algebrica della differenza simmetrica è:

•
$$f(x_1, x_2) = x_1 \oplus x_2$$

X ₁	X ₂	f(x ₁ ,x ₂)
0	0	0
0	1	1
1	0	1
1	1	0

Proprietà

- Proprietà commutativa: $x_1 \oplus x_2 = x_2 \oplus x_1$
- Proprietà associativa: $x_1 \oplus (x_2 \oplus x_3) = (x_1 \oplus x_2) \oplus x_3$
- Identità:
- $1 \oplus x = \overline{x}$
- $0 \oplus x = x$

• f=
$$x_1 \oplus x_2 = x_1 \times x_2 + x_1 \times x_2$$

X ₁	X ₂	$\overline{\mathbf{x}}_{1} \mathbf{x}_{2}$	$x_1 \overline{x_2}$	f
0	0	0	0	0
0	1	1	0	1
1	0	0	1	1
1	1	0	0	0

Precedenza tra operatori

Operatore	Precedenza
Negazione – NOT	1
Prodotto – AND	2
Somma – OR	3
OR esclusivo – XOR	4

Per forzare la precedenza di un operatore si possono usare le parentesi.

$$(x_1x_2) + (x_1\overline{x_2}) + (\overline{x_1}x_2)$$

 $x_1(x_2 + x_1)(\overline{x_2} + \overline{x_1}) x_2$

$$x_1x_2 + x_1\overline{x}_2 + \overline{x}_1x_2$$
$$x_1x_2 + x_1\overline{x}_2 + \overline{x}_1x_2$$

Altre proprietà: Regole dell'algebra di Boole

REGOLA		FORMA DUALE
	Proprietà Distributiva	
$x + y \cdot z = (x + y) \cdot (x + z)$		$x \cdot (y + z) = (x \cdot y) + (x \cdot z)$
	Proprietà Di idempotenza	
x + x = x		$x \cdot x = x$
	Proprietà di complemento	
$x + \neg x = 1$		$x \cdot \neg x = 0$
	Proprietà dello 1 e dello 0	
1 + x = 1		$0 \cdot x = 0$

Teorema di De Morgan

_		_				
Χ	+	У	=	X	•	У

X	У	X	y	$\overline{\mathbf{x}} \cdot \overline{\mathbf{y}}$	x + y	$\overline{x + y}$
0	0	1	1	1	0	1
0	1	1	0	0	1	0
1	0	0	1	0	1	0
1	1	0	0	0	1	0

$$\overline{\mathbf{x} \cdot \mathbf{y}} = \overline{\mathbf{x}} + \overline{\mathbf{y}}$$

X	у	X	<u>y</u>	$\overline{x} + \overline{y}$	х·у	$\overline{\mathbf{x} \cdot \mathbf{y}}$
0	0	1	1	1	0	1
0	1	1	0	1	0	1
1	0	0	1	1	0	1
1	1	0	0	0	1	0