DESCRIPTION:

This business case has information of 100k orders from 2016 to 2018 made at AMERICAN RETAIL CORPORATION in Brazil. Its features allow viewing an order from multiple dimensions: from order status, price, payment and freight performance to customer location, product attributes and finally reviews written by customers. Performing Exploratory analysis and giving insights and recommendation from the data.

ANALYSIS OF DATASET:

PERFORMING EXPLORATORY ANALYSIS

1. Data type of columns in a table:

The schema part of the big query gives us the datatype of any table, attached the screenshot for reference:

2. Time period for which the data is given:

Query:

SELECT

min(order purchase timestamp) as start time,

max(order_purchase_timestamp) as end_time

FROM

target brazil.orders

JOB IN	NFORMATION	RESULTS	JSON	EXECUTION DETAILS
Row	start_time	h	end_time	li .
1	2016-09-04 21:15	5:19 UTC	2018-10-17 17	7:30:18 UTC

3.1 States covered in the dataset:

Query:

SELECT

geolocation_state FROM target_brazil.geolocation GROUP BY geolocation_state

Output:

3.2 Cities covered in the data set:

Query:

SELECT

distinct geolocation_city

FROM

target_brazil.geolocation

In-depth Exploration:

1. Is there a growing trend on e-commerce in Brazil? How can we describe a complete scenario? Can we see some seasonality with peaks at specific months?

Query: Year wise

SELECT

count(order id) as count,

extract(year from order_purchase_timestamp) as year_of_order,

FROM

target_brazil.orders

group by order_purchase_timestamp

output:

Row	count	year_of_order
1	1	2017
2	1	2017
3	1	2017
4	1	2018

Chart: Year wise

Query: Month wise

SELECT

count(order_id) as count ,

extract(MONTH from order purchase timestamp) as odr month,

FROM

target_brazil.orders

group by extract(MONTH from order_purchase_timestamp)

Output:

JOB IN	NFORMATION	RESULTS	JSON	EXECUTION DETAIL
Row /	count	odr_month //		
1	7544	11		
2	5674	12		
3	8508	2		
4	9343	4		
5	10318	7		
6	10573	5		
7	4959	10		
8	8069	1		
9	9412	6		
10	4305	9		
11	9893	3		
12	10843	8		

Chart: Month wise

4. Evolution of E-commerce orders in the Brazil region:

4.1 Get month on month orders by states:

Query:

SELECT count(o.order_id) as monthlyorders_perstate,

EXTRACT(month FROM order purchase timestamp) as month,c.customer state,

FROM target_brazil.customers as c LEFT JOIN target_brazil.orders as o

ON c.customer id=o.customer id

GROUP BY month ,c.customer_state

ORDER BY month desc

Chart: For the total number of orders as per state

Chart: For state and month wise orders

- 1. Clearly from the graph the "State of São Paulo" has more number of orders .Notable fact is that the SP has as many orders as all other states combined from Brazil.
- 4.2 Get month on month orders by cities:

Query:

SELECT count(o.order_id) as monthlyorders_percity,
EXTRACT(month FROM order_purchase_timestamp)as month,
c.customer_city
FROM target_brazil.customers as c left join target_brazil.orders as o
on c.customer_id=o.customer_id
GROUP BY month ,c.customer_city
order by month desc

The above query gives the number of orders order city wise per every month

output:

Row /	monthlyord	month //	customer_city //
29	6	12	avare
30	17	12	bauru
31	34	12	belem
32	16	12	betim
33	1	12	caibi
34	1	12	cambe
35	11	12	cotia
36	2	12	crato
37	1	12	cuite
38	2	12	edeia
39	1	12	galia
40	2	12	garca
41	1	12	goias
42	1	12	guara
43	2	12	icara

4.3 How are customers distributed in Brazil?

Query:

SELECT customer_state, count(customer_id) as total_customers

FROM target sql.customers

GROUP BY customer_state

ORDER BY count(customer_id) desc

Row	customer_state	total_custo
1	SP	41746
2	RJ	12852
3	MG	11635
4	RS	5466
5	PR	5045
6	SC	3637
7	BA	3380
8	DF	2140
9	ES	2033
10	GO	2020

Chart: percantage of customers per state

Insights:

- 1. We can clearly see that the customers are more from state "SP"
- 5. Impact on Economy: Analyze the money movement by e-commerce by looking at order prices, freight and others.
 - 1.Get % increase in cost of orders from 2017 to 2018 (include months between Jan to Aug only $\,$

```
SELECT
z.*,
 ROUND((total_per_year-prv_year)/prv_year*100,2) AS YOY
FROM (
 SELECT
  SUM(y.total) AS total_per_year,
 y.order year,
  LAG(SUM(y.total),1) OVER(ORDER BY y.order year ) AS prv year
 FROM (
  SELECT
  x.order id,
   SUM(x.price+x.freight_value) AS total,
  x.order year,
   x.order_month
  FROM (
   SELECT
    ord.order id,
    EXTRACT(month
    FROM
     ord.order purchase timestamp) AS order month,
    EXTRACT(year
    FROM
     ord.order purchase timestamp) AS order year,
    ord_it.price,
    ord_it.freight_value
   FROM
   target_brazil.orders AS ord
   LEFT JOIN
   target_brazil.order_items AS ord_it
   ON
    ord.order id = ord it.order id
   WHERE
    EXTRACT(year
    FROM
     ord.order purchase timestamp) IN(2017,
     2018)
    AND EXTRACT(month
    FROM
     ord.order_purchase_timestamp) IN(1,
     2,
     3,
```

```
4,
5,
6,
7,
8)) AS x
GROUP BY
x.order_month,
x.order_jear,
x.order_id
ORDER BY
x.order_year DESC,
x.order_month DESC) AS y
GROUP BY
order_year)AS z
```

output:

Row	total_per_ye	order_year	prv_year //	YOY
1	3610270.14	2017	nuli	nuli
2	8643531.13	2018	3610270.14	139.42

Insight:

From the table we can say there is 139.42% increase in sales from 2017 to 2018 (with Jan to Aug months)

2. Mean & Sum of price and freight value by customer state

```
o.order_id,
c.customer_state,
SUM(price) AS price_per_state,
SUM(freight_value) AS freight_per_state,
AVG(price) AS mean_price,
AVG(freight_value) AS mean_freight
FROM
target_brazil.customers AS c
LEFT JOIN
target_brazil.orders AS o
ON
```

```
c.customer_id=o.customer_id
LEFT JOIN
target_brazil.order_items AS ot
ON
o.order_id=ot.order_id
GROUP BY
o.order_id,
c.customer_state
```

output:

Row	order_id //	customer_state	price_per_st	freight_per	mean_price	mean_freight	,
1	bf74f34eea55f16dd17b621231	RN	157.49	38.65	157.49	38.65	
2	667fc0af3acc404a6ef971908b	RN	105.99	48.18	105.99	48.18	
3	9f738fc8b806bc3d86ccf78855	RN	349.6	49.68	174.8	24.84	
4	9fd3d5bb20296499ef3fbcaa4d	CE	149.99	27.59	149.99	27.59	
5	ecf6789fa93718435fc6279a4c	CE	79.99	27.1	79.99	27.1	
6	9b41629ccbc3ae4be489cb815	CE	572.0	90.62	572.0	90.62	

chart:

- 1. We can clearly see that the mean freight price of states RR and PB are highest while PA the lowest freight charges.
- 2. The average price of products is highest In the state of PB followed by AL.

Recommendations:

May be the people in the state of RR and are willing to buy good quality products as seen that the avg price is higher in that state . So we can recommend good quality brands in that state

6. Analysis on sales, freight and delivery time

6.1 Calculate days between purchasing, delivering and estimated delivery:

```
Query:
SELECT

*,

x.estimated_days-x.actual_days AS differnce

FROM (

SELECT

order_id,

DATE_DIFF(order_estimated_delivery_date, order_purchase_timestamp,day)

AS estimated_days,

DATE_DIFF(order_delivered_customer_date, order_purchase_timestamp,day)

AS actual_days,

FROM

target_brazil.orders

WHERE

order_delivered_customer_date IS NOT NULL) AS x
```

output:

Row	order_id	estimated_d	actual_days	differnce
1	1950d777989f6a877539f5379	17	30	-13
2	2c45c33d2f9cb8ff8b1c86cc28	59	30	29
3	65d1e226dfaeb8cdc42f66542	52	35	17
4	635c894d068ac37e6e03dc54e	32	30	2
5	3b97562c3aee8bdedcb5c2e45	33	32	1
6	68f47f50f04c4cb6774570cfde	31	29	2
7	276e9ec344d3bf029ff83a161c	39	43	-4
8	54e1a3c2b97fb0809da548a59	36	40	-4
9	fd04fa4105ee8045f6a0139ca5	35	37	-2
10	302bb8109d097a9fc6e9cefc5	28	33	-5

From the above table the negative values gives the early delivery and the positive values gives the delay in the delivery

6.2 Group data by state, take mean of freight_value, time_to_delivery, diff_estimated_delivery

output:

Query: select cust.customer_state,count(order_id) as Total_orders, round(avg(DATE_DIFF(order_delivered_customer_date, order_purchase_timestamp, DAY)),0) As Avg_time_to_delivery, round(avg(DATE_DIFF(order_estimated_delivery_date,order_delivered_customer_date, DAY)),0) as Avg_diff_estimated_delivery from target_brazil.orders o inner join target_brazil.customers cust ON o.customer_id= cust.customer_id where order_status='delivered' group by customer_state order by customer_state

Row	customer_state	Total_orders	Avg_time_to	Avg_diff_est
1	AC	80	21.0	20.0
2	AL	397	24.0	8.0
3	AM	145	26.0	19.0
4	AP	67	27.0	19.0
5	BA	3256	19.0	10.0
6	CE	1279	21.0	10.0
7	DF	2080	13.0	11.0
8	ES	1995	15.0	10.0
9	GO	1957	15.0	11.0
10	MA	717	21.0	9.0

6.3 Sort the data to get the following:

order_status='delivered'

6.3.1 Top 5 states with highest/lowest average time to delivery : Query:

```
SELECT

cust.customer_state,

COUNT(order_id) AS Total_orders,

ROUND(AVG(DATE_DIFF(order_delivered_customer_date, order_purchase_timestamp,
DAY)),0) AS Avg_time_to_delivery,

ROUND(AVG(DATE_DIFF(order_delivered_customer_date,
order_estimated_delivery_date, DAY)),0) AS Avg_diff_estimated_delivery

FROM

target_brazil.orders o

INNER JOIN

target_brazil.customers cust

ON

o.customer_id= cust.customer_id

WHERE
```

```
GROUP BY

customer_state

ORDER BY

Avg_time_to_delivery DESC

LIMIT
```

5

Output:

Row	customer_state	Total_orders	Avg_time_to	Avg_diff_est	
1	RR	41	29.0	-16.0	
2	AP	67	27.0	-19.0	
3	AM	145	26.0	-19.0	
4	AL	397	24.0	-8.0	
5	PA	946	23.0	-13.0	

- **1.** From the table we can say that top 5 countries have deliveries delivered within estimated time of delivery. Negative number indicates the difference of days
 - 6.3.2 Top 5 states where delivery is really fast/ not so fast compared to estimated date: Query:

```
SELECT
cust.customer_state,
COUNT(order_id) AS Total_orders,
ROUND(AVG(DATE_DIFF(order_delivered_customer_date,
order_purchase_timestamp, DAY)),0) AS Avg_time_to_delivery,
ROUND(AVG(DATE_DIFF(order_delivered_customer_date,
order_estimated_delivery_date, DAY)),0) AS Avg_diff_estimated_delivery
FROM
target_brazil.orders o
INNER JOIN
```

```
target_brazil.customers cust
ON
o.customer_id= cust.customer_id
WHERE
order_status='delivered'
GROUP BY
customer_state
ORDER BY
Avg_diff_estimated_delivery ASC
LIMIT
5
```

Output:

Row	customer_state	Total_orders	Avg_time_to	Avg_diff_est
1	RR	41	29.0	-16.0
2	AP	67	27.0	-19.0
3	AM	145	26.0	-19.0
4	AL	397	24.0	-8.0
5	PA	946	23.0	-13.0

Insight:

1.

7. Payment type analysis:

7.1 Month and year of count of orders for different payment types:

```
SELECT
COUNT(o.order_id) AS total_orders,
p.payment_type,
EXTRACT(YEAR
FROM
o.order_purchase_timestamp) AS per_year,
EXTRACT(MONTH
FROM
order_purchase_timestamp) AS per_month,
```

```
FROM
  target_brazil.orders o,
  target_brazil.payments p
WHERE
  p.order_id = o.order_id
GROUP BY
  EXTRACT(YEAR
  FROM
    order_purchase_timestamp),
  EXTRACT(MONTH
  FROM
    order_purchase_timestamp),
  p.payment_type
```

Output:

Row	total_orders //	payment_type	per_year	per_month	
1	1509	UPI	2017	11	
2	4377	credit_card	2017	12	
3	1325	UPI	2018	2	
4	5897	credit_card	2017	11	
5	202	voucher	2017	4	
6	3086	credit card	2017	7	

7.2 Month on month count of orders;

```
SELECT

COUNT(o.order_id) AS total_orders,
p.payment_type,
EXTRACT(MONTH
FROM
order_purchase_timestamp) AS month,
FROM
target_brazil.orders o,
target_brazil.payments p
WHERE
p.order_id = o.order_id
GROUP BY
```

```
EXTRACT(MONTH
FROM
order_purchase_timestamp),
p.payment_type
```

output:

Row	total_orders	payment_type	month
1	1509	UPI	11
2	4378	credit_card	12
3	1723	UPI	2
4	5897	credit_card	11
5	572	voucher	4

7.3 Distribution of payment installments and count of orders:

Query:

```
p.payment_installments,
COUNT(o.order_id) total_orders
FROM
target_brazil.orders o
RIGHT JOIN
target_brazil.payments p
ON
o.order_id = p.order_id
GROUP BY
p.payment_installments
ORDER BY
COUNT(o.order_id) desc
```

Row	payment_in	total_orders //
1	1	52546
2	2	12413
3	3	10461
4	4	7098
5	10	5328
6	5	5239
7	8	4268
8	6	3920
9	7	1626
10	9	644

Insights:

1. Most customers prefer to pay mostly in lesser installments , might be due to interest getting added