TEOREMES D'ÀLGEBRA LINEAL

NIL FONS Andreu Huguet Èric Sierra

ApuntsFME

Universitat Politècnica de Catalunya Barcelona

GENER 2018

1 Teorema d'Steinitz

Sigui \mathbb{E} un \mathbb{k} espai vectorial finitament generat, sigui $\{u_1, \ldots, u_n\}$ un conjunt de generadors de \mathbb{E} i sigui $\{w_1, \ldots, w_m\}$ un conjunt de vectors linealment indepentents de \mathbb{E} . Aleshores, $m \leq n$ i podem substituir m vectors del conjunt $\{u_1, \ldots, u_n\}$ pels m vectors de $\{w_1, \ldots, w_m\}$ de manera que el conjunt sigui conjunt de **generadors** de \mathbb{E} .

Demostració

Raonem per inducció sobre m, que és el cardinal de $\{w_1, ..., w_m\}$.

Volem saber si el conjunt substituït és generador de \mathbb{E} . Per tant, començarem la inducció amb la hipòtesi que el conjunt $\{w_1, ..., w_m, u_{m+1}, ..., u_m\}$ és generador de \mathbb{E} .

- (1) m = 0. És fàcil veure que si no traiem cap vector de $\{u_1, ..., u_n\}$, aquest conjunt és generador de \mathbb{E} per hipòtesi.
- (2) $m \ge 1$. En aquest cas, assumirem que el cas m-1 del teorema és cert i volem veure si el cas m també ho és.

Suposarem que el conjunt $\{w_1, ..., w_{m-1}\}$ és linealment independent. Per tant, $m-1 \le n = \dim(\mathbb{E})$ ja que no hi pot haver més vectors linealment independents que el cardinal de la dimensió de \mathbb{E} . També podem suposar que $\mathbb{E} = \langle w_1, ..., w_{m-1}, u_m, ..., u_n \rangle$, ja que el cas m-1 era cert.

Per hipòtesi, w_m és un vector d' \mathbb{E} : $w_m \in \mathbb{E} = \langle w_1, ..., w_{m-1}, u_m, ..., u_n \rangle \Leftrightarrow w_m = \lambda_1 w_1 + ... + \lambda_{m-1} w_{m-1} + \mu_m u_m + ... + \mu_n u_n$. És a dir, que com que el conjunt $\{w_1, ..., w_m\}$ és linealment independent per hipòtesi, hi ha almenys un μ_k que acompanya un u_k , que no és nul: $\exists \mu_k \neq 0$ i podem suposar que aquest $\mu_k = \mu_m \neq 0$.

En conclusió, ens queda que $m \leq n$ i aïllant u_m de l'equació:

$$w_m = \lambda_1 w_1 + \dots + \lambda_{m-1} w_{m-1} + \mu_m u_m + \dots + \mu_n u_n.$$

Passant-ho tot restant i aïllant el terme $\mu_m u_m$,

$$w_m - \lambda_1 w_1 - \dots - \lambda_{m-1} w_{m-1} - \mu_{m+1} u_{m+1} - \dots - \mu_n u_n = \mu_m u_m.$$

I finalment divint les dues equacions per $\mu_m \neq 0$,

$$\frac{1}{\mu_m}w_m - \frac{\lambda_1}{\mu_m}w_1 - \dots - \frac{\lambda_{m-1}}{\mu_m}w_{m-1} - \frac{\mu_{m+1}}{\mu_m}u_{m+1} - \dots - \frac{\mu_n}{\mu_m}u_n = u_m.$$

Així doncs, $u_m \in \langle w_1, ..., w_m, u_{m+1}, ..., u_n \rangle$. És a dir, el conjunt $\{w_1, ..., w_m, u_m, ..., u_n\}$, generador de \mathbb{E} per la hipòtesi d'inducció, pot ser expressat amb combinacions lineals del nou conjunt $\langle w_1, ..., w_m, u_{m+1}, ..., u_n \rangle$. Consegüentment,

$$\mathbb{E} = \langle w_1, ..., w_m, u_{m+1}, ..., u_n \rangle$$
.

Corol·lari 1.1

En un k-espai vectorial finitament generat \mathbb{E} , totes les bases són finites i tenen el mateix cardinal

Demostració

- Sigui B_1 base de \mathbb{E} de cardinal n ($|B_1| = n$).
- Sigui B_2 base de \mathbb{E} de cardinal m ($|B_2| = m$).

Pel Teorema d'Steinitz $m \le n$ i $n \le m$, per tant, n = m.

2 Fórmula de Grassmann

Si F, G són dos subespais vectorials d'un k-espai vectorial E, aleshores:

$$\dim(F+G) + \dim(F \cap G) = \dim(F) + \dim(G).$$

Demostració

Primer de tot, si \mathbb{F} i \mathbb{G} no són finitament generats i les seves dimensions són infinites: dim $\mathbb{F} = \dim \mathbb{G} = \infty \Rightarrow \dim(\mathbb{F} + \mathbb{G}) = \infty$ i per definició $\dim(\mathbb{F} \cap \mathbb{G}) \geq 0$, la fórmula queda $\infty = \infty$. Per tant, ens concentrarem en subespais finitament generats.

Si les dimensions de \mathbb{F} i \mathbb{G} són finites, anomenarem $n = \dim \mathbb{F}$ i $m = \dim \mathbb{G}$. Com que observem que $\mathbb{F} \cap \mathbb{G}$ és un subespai de \mathbb{F} i de \mathbb{G} a la vegada, anomenem $r = \dim \mathbb{F} \cap \mathbb{G}$ i obtenim les següents inequacions $r \leq m$, $r \leq n$.

Sigui $\{u_1, ..., u_r\}$ una base de $\mathbb{F} \cap \mathbb{G}$ (i per tant, linealment independents), la podem substituïr per r vectors de les bases de \mathbb{F} i \mathbb{G} en virtut del Teorema d'Steinitz, aconseguint dos nous conjunts linealment independents i generadors \mathbb{F} i \mathbb{G} de respectivament:

- $\{u_1, ..., u_r, w_{r+1}, ..., w_m\}$ base de \mathbb{F} ,
- $\{u_1, ..., u_r, w'_{r+1}, ..., w'_n\}$ base de \mathbb{G} .

Veurem que, $B = \{u_1, ..., u_r, w_{r+1}, ..., w_m, w'_{r+1}, ..., w'_n\}$ és base de $\mathbb{F} + \mathbb{G}$ i això acabarà la demostració per què tindrem que $\dim(F + G) = n + m - r = \dim(F) + \dim(G) - \dim(F \cap G) = |\{u_1, ..., u_r, w_{r+1}, ..., w_m, w'_{r+1}, ..., w'_n\}|.$

Per veure que B és una base de $\mathbb{F} + \mathbb{G}$, s'ha de mirar si B és un conjunt de generadors de $\mathbb{F} + \mathbb{G}$ i si B és linealment independent.

- (1) B és un conjunt de generadors de $\mathbb{F} + \mathbb{G}$, perquè B és la unió d'una base de \mathbb{F} i una base de \mathbb{G} . Visualment, el conjunt repetit $\{u_1, ..., u_r\}$, no es repeteix **quan** es fa la unió: $B = \{u_1, ..., u_r, w_{r+1}, ..., w_m, w'_{r+1}, ..., w'_n\} = \{u_1, ..., u_r, w_{r+1}, ..., w_m\} \cup \{u_1, ..., u_r, w'_{r+1}, ..., w'_n\}$.
- (2) B és linealment independent de $\mathbb{F}+\mathbb{G}$ si suposem que per contradicció, B és linealment dependent i es pot representar el $\mathbf{0}$ com a combinació lineal del conjunt. Usarem les següents combinacions lineals:

$$\mathbf{u} = \lambda_1 u_1 + \dots + \lambda_r u_r \in \mathbb{F} \cap \mathbb{G},$$

$$\mathbf{w} = \mu_{r+1} w_{r+1} + \dots + \mu_m w_m \in \mathbb{F},$$

$$\mathbf{w}' = \mu'_{r+1} w'_{r+1} + \dots + \mu'_n w'_n \in \mathbb{G}.$$

Per tant tenim

$$\mathbf{0} = \overbrace{\lambda_1 u_1 + \dots + \lambda_r u_r}^{\mathbf{u}} + \overbrace{\mu_{r+1} w_{r+1} + \dots + \mu_m w_m}^{\mathbf{w}} + \overbrace{\mu'_{r+1} w'_{r+1} + \dots + \mu'_n w'_n}^{\mathbf{w}'}.$$

Amb aquesta igualtat es té que $\mathbf{w}' = -\mathbf{u} - \mathbf{w}$. Això ens dona dues proposicions: $-\mathbf{u} - \mathbf{w}$ és una combinació lineal d'elements d' \mathbb{F} , per tant, $\mathbf{w}' \in \mathbb{F}$ i $\mathbf{w}' \in \mathbb{G}$. És a dir, que \mathbf{w}' pertany a \mathbb{F} i $\mathbb{G} \Rightarrow \mathbf{w}'$ pertany a $\mathbb{F} \cap \mathbb{G}$. Aleshores,

$$\mathbf{w}' = \alpha_1 u_1 + \dots + \alpha_r u_r = \mu_1' u_1 + \dots + \mu_r' u_r.$$

Podem passar restant tots els termes μ_k restant i ens queda el $\mathbf{0}$ com a una combinació lineal de vectors de $\mathbb{F} \cap \mathbb{G}$ i de vectors de \mathbb{G} .

$$\mathbf{0} = \alpha_1 u_1 + \dots + \alpha_r u_r - \mu'_1 u_1 - \dots - \mu'_r u_r.$$

Però com que els vectors \mathbf{u} i \mathbf{w}' són linealment independents per definició (la seva unió és la base de \mathbb{G}), aleshores els escalars que els acompanyen són tots nuls.

$$\alpha_1 = \dots = \alpha_r = \mu'_{r+1} = \dots = \mu'_n = 0 \Rightarrow \mathbf{w}' = \mathbf{0}.$$

Ens queda, per la hipòtesi, que si B és linealment dependent, \mathbf{w}' és el vector $\mathbf{0}$.

$$\mathbf{w}' = -\mathbf{u} - \mathbf{w} = \mu'_{r+1}w'_{r+1} + \dots + \mu_n w'_n = \mathbf{0}.$$

Consegüentment, ens que da que $\mathbf{u} = \mathbf{w}$ i com que els vectors \mathbf{u} i \mathbf{w} formen la base de \mathbb{F} , són linealment independents. Per tant, no poden representar el vector $\mathbf{0}$ com a combinació lineal dels dos excepte si els escalars que els acompanyen són tots nuls.

$$\mathbf{0} = \mathbf{u} + \mathbf{w} = \lambda_1 u_1 + \dots + \lambda_r u_r + \mu_{r+1} w_{r+1} + \dots + \mu_n w_n,$$
$$\lambda_1 = \dots = \lambda_r = \lambda_{r+1} = \dots = \mu_n = 0.$$

En conclusió, el vector $\mathbf{0}$ només podrà ser representat com a combinació lineal dels vectors de $B = \{u_1, ..., u_r, w_{r+1}, ..., w_m, w'_{r+1}, ..., w'_n\}$ si els coeficients reals que els acompanyen són 0, wue és la definició de conjunt linealment independent.

Finalment tenim que B és un conjunt de generadors de $\mathbb{F}+\mathbb{G}$ i és linealment independent, és a dir que B és base de $\mathbb{F}+\mathbb{G}$ i la fórmula de Grassmann queda demostrada.

3 Teorema d'Isomorfisme

Siguin \mathbb{E} , \mathbb{F} dos \mathbb{k} -espais vectorials, i sigui $f \colon \mathbb{E} \longrightarrow \mathbb{F}$ una funció lineal, aleshores:

$$g: \mathbb{E}/\operatorname{Nuc}(f) \longrightarrow \operatorname{Im}(f)$$

 $u + \operatorname{Nuc}(f) \longmapsto f(u)$

és un isomorfisme, és a dir, és una aplicació lineal bijectiva.

Demostració

Abans de començar, cal comprovar que la funció g està ben definida. En efecte, siguin $u, v \in \mathbb{E}$ tals que u + Nuc(f) = v + Nuc(f), és a dir, que estiguin a la mateixa classe de l'espai quocient, aleshores:

$$(u-v) \in \operatorname{Nuc}(f) \implies f(u-v) = 0 \implies f(u) - f(v) = 0 \implies$$

$$\implies g(u + \operatorname{Nuc}(f)) - g(v + \operatorname{Nuc}(f)) = 0.$$

Com que g(u + Nuc(f)) = g(v + Nuc(f)), u i v tenen la mateixa imatge sota g, per tant el representant és independent i la funció està ben definida. Cada representant particular (o cada classe) és enviat a una sola imatge.

Ara que ja hem comprovat que la funció g està ben definida, podem començar a demostrar que g és una aplicació lineal bijectiva (definició d'isomorfisme).

Primer, vegem que g és **lineal**, és a dir, que, per tot λ , $\mu \in \mathbb{k}$ i tot $u, v \in \mathbb{E}$,

$$g(\lambda u + \mu v + \operatorname{Nuc}(f)) = f(\lambda u + \mu v) = \lambda f(u) + \mu f(v) =$$
$$= \lambda g(u + \operatorname{Nuc}(f)) + \mu g(v + \operatorname{Nuc}(f)).$$

Ara que ja hem vist que g és lineal, cal veure que g és bijectiva. És a dir, **injectiva** i **exhaustiva** a la vegada. Ho comprovarem per separat:

Per a demostrar la **injectivitat** de g aplicarem: g injectiva $\Leftrightarrow \text{Nuc}(g) = \{0\}$

$$u \in \text{Nuc}(q) \implies q(u + \text{Nuc}(f)) = 0 \implies f(u) = 0 \implies u \in \text{Nuc}(f).$$

Per tant $u = 0 \Leftrightarrow u + \text{Nuc}(f) = \text{Nuc}(f)$, que és el neutre en l'espai quocient E/Nuc(f). Així doncs, com que els vectors del Nuc(g) també ho són del Nuc(f), és a dir $\text{Nuc}(g) = \mathbf{0}_{E/\text{Nuc}(f)}$, i consegüentment g és injectiva.

Per a demostrar la **exhaustivitat**, utilitzarem que per a tot element de la imatge de f (espai d'arribada de g), existeix una classe de vectors de l'espai quocient $E/\operatorname{Nuc}(f)$ (espai de sortida de g) tal que la seva imatge és l'element de f: $\forall y \in \operatorname{Im}(f) \exists \bar{x} \in \mathbb{E}/\operatorname{Nuc}(f)$ tal que $g(\bar{x}) = y$.

Com que $y \in \text{Im}(f)$, sabem que $\exists x \in \mathbb{E}$ tal que f(x) = y. A més, com que la funció g està ben definida, tota la classe de x en l'espai quocient, notem-la $\bar{x} = x + \text{Nuc}(f)$, tindrà la mateixa imatge sota g que qualsevol dels seus representants sota f, és a dir, $g(\bar{x}) = f(x) = y$.

Per tant, existeix $\bar{x} \in \mathbb{E}/\operatorname{Nuc}(f)$ tal que $g(\bar{x}) = y$, i g és exhaustiva.

Alternativament, podem comprovar que els elements y estan continguts a la imatge de g: $y = f(x) = g(x + \operatorname{Nuc}(f)) \in \operatorname{Im}(g)$, per tant tots els elements $y \in \operatorname{Im}(f)$ estaran dins la $\operatorname{Im}(g)$: $\operatorname{Im}(f) \subseteq \operatorname{Im}(g)$. I trivialment, $\operatorname{Im}(g) \subseteq \operatorname{Im}(f)$ ja que $\operatorname{Im}(f)$ és el codomini de g. Per tant, $\operatorname{Im}(g) = \operatorname{Im}(f)$ i g és exhaustiva.

En conclusió, g és una aplicació lineal i bijectiva, i per tant, un **isomorfisme**. \square

4 Teorema de Cayley-Hamilton

Si $f \in \text{End}(\mathbb{E})$ amb \mathbb{E} un \mathbb{k} espai vectorial de dimensió finita. Aleshores,

$$Q_f(f) = 0.$$

Això es tradueix a que el polinomi característic de f aplicat en f és 0, que és equivalent a que $Q_A(A) = 0$, $\forall A \in \mathcal{M}_n(\mathbb{k})$. Per notació: $Q_f(T) = Q_A(T) = \det(A - T \operatorname{Id}_n) = a_n T^n + ... + a_1 T + a_0$ on $A = M_B(f)$ per alguna base de \mathbb{E} .

Demostració

Sigui $u \in \mathbb{E}, u \neq 0$. Volem veure $Q_f(f)(u) = 0$. Aleshores, sigui $m \geq 1$ el nombre mínim tal que el conjunt $\{u, f(u), ..., f^m(u)\}$ és linealment dependent. Així doncs, $\{u, f(u), ..., f^{m-1}(u)\}$ és linealment independent i el podem ampliar per Steinitz a una base B de \mathbb{E} . I també es té que f^m és combinació lineal de $\{u, f(u), ..., f^{m-1}(u)\}$:

$$f^{m}(u) = a_{0}u + a_{1}f(u) + \dots + a_{m-1}f^{m-1}(u).$$

Per tant, si apliquem la funció f al conjunt de generadors de Eampliat per Steinitz (amb $n = \dim \mathbb{E}$): $\{u, f(u), ..., f^{m-1}(u), w_m, ..., w_n\}$, ens queda una matriu de canvi de base $M_B(f)$ de quatre blocs:

$$M_B(f) = \begin{pmatrix} A & * \\ 0 & C \end{pmatrix}.$$

- **A**: Uns a la segona diagonal ja que i tots els altres elements nuls $f^k(u) = 0 \cdot f(u) + \dots + 1 \cdot f^k(u) + \dots + 0 \cdot f^{m-1}(u)$, $\forall k \in [1, m-1]$. La última columna, però, són els coeficients $a_0, a_1, \dots, a_{m-2}, a_{m-1}$ de $f^m(u)$.
- *: les columnes són els coeficients de les imatges de $\{w_m, w_{m+1}, ..., w_n\}$ que acompanyen a $\{u, f(u), ..., f^{m-1}(u)\}$ i poden tenir valors qualssevol, així que ho denominem * per indicar valors qualssevol.
- C: semblant a *, són els coeficients de $\{f(w_m), f(w_{m+1}), ..., f(w_n)\}$ que acompanyen a $\{w_m, w_{m+1}, ..., w_n\}$. També són valors qualssevol.
- 0: coeficients de $\{f(u), ..., f^m(u)\}$ que acompanyen a $\{w_m, w_{m+1}, ..., w_n\}$. Com que $\{w_m, w_{m+1}, ..., w_n\}$ són linealment independents amb $\{u, f(u), ..., f^{m-1}(u)\}$ ja que la seva unió és base de \mathbb{E} , són valors nuls.

Visualment, la matriu és representada així:

Per definició, el polinomi característic de f serà el determinant de la matriu de canvi de base $M_B(f)$ menys $T \cdot \mathrm{Id}_n$ i l'obtindrem fent el determinant per blocs:

$$Q_f(T) = \det(M_B(f) - T \cdot \mathrm{Id}_n) = Q_A(T) \cdot Q_C(T) - Q_*(T) \cdot Q_0(T).$$

Com que $Q_0(T) = 0$ perquè no toca la diagonal principal (i per tant no té Ts), sabem que $Q_f(T) = Q_A(T) \cdot Q_C(T) = Q_C(T) \cdot Q_A(T)$. Per tant, ens podem concentrar en determinar $Q_A(T)$ que és el polinomi el qual sabem els seus valors. L'obtindrem desenvolupant per la última columna de la submatriu A, és a dir, $\sum_{i=1}^{m-1} (-1)^{(m-1)+i} a_{im+1} M_{im+1}$:

Calcular els determinants que acompanyen els coeficients $a_0, a_1, ..., a_{m+1}$ no és difícil, ja que al ser majoritàriament nuls, només pren rellevància la diagonal principal (fent-ho per Sarrus per exemple). Així doncs, ens queda:

$$Q_A(T) = (-1)^{m-1} \left(a_0 \cdot 1 - a_1(-T) + \dots + (-1)^{m-1} (a_{m-1} - T)(-T)^{m-1} \right) =$$

$$= (-1)^m \left(-a_0 \cdot 1 + a_1 T + \dots + (-1)^{k+1} a_k T^k + \dots - a_{m-1} T^{m-1} + T^m \right).$$

Per tant, si apliquem f a aquest polinomi característic $Q_A(f)(u)$ ens que la següent expressió:

$$Q_{A}(f)(u) = (-1)^{m} \left(f^{m}(u) - \left(a_{0}u + a_{1}f(u) + \dots + a_{m-1}f^{m-1}(u) \right) \right).$$

I com hem definit abans, $f^m(u)$ és una combinació lineal tal que $f^m(u) = a_0u + a_1f(u) + \dots + a_{m-1}f^{m-1}(u)$, i consegüentment $Q_A(f)(u) = (-1)^m(f^m(u) - f^m(u)) = 0$. Aleshores, $Q_f(f) = (Q_C(f)Q_A(f))(u) = 0$; és a dir, el polinomi característic de f aplicat en f és 0 i es demostra el Teorema de Cayley-Hamilton.

5 Primer Teorema de Descomposició

Sigui \mathbb{E} un \mathbb{k} -espai vectorial de dimensió finita, $f \in \operatorname{End}(\mathbb{E})$. Suposem que un polinomi $P(T) \in \mathbb{k}[T]$ factoritza en $\mathbb{k}[T]$ com a producte de polinomis coprimers:

$$P(T) = P_1(T) \cdot \cdot \cdot \cdot P_n(T), \quad \operatorname{mcd}(P_i, P_j) = 1, \quad \forall i \neq j.$$

Aleshores, $\operatorname{Nuc}(P(f)) = \operatorname{Nuc}(P_1(f)) \oplus \operatorname{Nuc}(P_2(f)) \oplus \cdots \oplus \operatorname{Nuc}(P_n(f))$. És a dir, que el nucli del polinomi podrà ser expressat de forma única com a suma directa dels nuclis dels seus polinomis coprimers.

Demostració

Per a demostrar el Teorema, utilitzarem un cas d'inducció sobre n on només caldrà demostrar el cas n=2, i aplicar-lo successivament:

$$\operatorname{Nuc}(p(f)) = \operatorname{Nuc}(p_1(f)) \oplus \operatorname{Nuc}((p_2...p_n)(f))$$

$$= \operatorname{Nuc}(p_1(f)) \oplus \operatorname{Nuc}(p_2(f)) \oplus \operatorname{Nuc}((p_3...p_n)(f))$$

$$= ...$$

Si agafem n=2 tenim

$$p(t) = p_1(T)p_2(T)$$
 amb $mcd(p_1(T), p_2(T)) = 1$.

Com que la hipòtesi és una suma directa, volem veure dues coses: (1) la suma dels dos nuclis és igual al nucli original, i que (2) la intersecció entre els dos nuclis és el zero.

- 1. $Nuc(p(f)) = Nuc(p_1(f)) + Nuc(p_2(f)),$
- 2. $Nuc(p_1(f)) \cap Nuc(p_2(f)) = \{0\}.$

Vegem (1), separant la igualtat en dues inclusions:

Volem veure que $\operatorname{Nuc}(p_1(f)) + \operatorname{Nuc}(p_2(f)) \subseteq \operatorname{Nuc}(p(f))$. Per tant, agafarem un vector x del $\operatorname{Nuc}(p_1(f))$ i veurem que és del nucli de p(f), aprofitant que $p_2(f)(0) = 0$,

$$x \in \text{Nuc}(p_1(f)) \implies p_1(f)(x) = 0 \implies p_2(f)(p_1(f)(x)) = 0 \implies x \in \text{Nuc}(p(f)).$$

Ja que $p_2(f)(p_1(f)(x)) = (p_2(f) \circ p_1(f))(x) = (p_1(f)) \circ (p_2(f)) = p(f)$. Anàlogament, $x \in \text{Nuc}(p_2(f)) \implies x \in \text{Nuc}(p(f))$. Per tant, com que $\text{Nuc}(p_1(f)) \subseteq \text{Nuc}(p(f))$ i també $\text{Nuc}(p_2(f)) \subseteq \text{Nuc}(p(f))$ es té que: $\text{Nuc}(p_1(f)) + \text{Nuc}(p_2(f)) \subset \text{Nuc}(p(f))$.

Ara, volem veure la inclusió contrària: $\operatorname{Nuc}(p(f)) \subseteq \operatorname{Nuc}(p_1(f)) + \operatorname{Nuc}(p_2(f))$. Per la identitat de Bézout, es té que $\operatorname{mcd}(p,q) = a \cdot p + b \cdot q$, amb $a, b \in \mathbb{Z}$.

Com que p i q són coprimers:

$$1 = a(T)p_1(T) + b(T)p_2(T) \implies Id = a(f) \circ p_1(f) + b(f) \circ p_2(f)$$

Per tant, qualsevol $x \in \text{Nuc}(p(f))$ s'expressa com a $x = (Id)(x) = (a(f) \circ p_1(f))(x) + (b(f) \circ p_2(f))(x) = x_1 + x_2$, amb $x_1 \in \text{Nuc}(p_2(f))$ i $x_2 \in \text{Nuc}(p_1(f))$.

Ja que $p_2(f)(x_1) = (p_2(f) \circ a(f) \circ p_1(f) \circ)(x) = (a(f) \circ p(f))(x) = a(f) \circ (p(f)(x)) = 0$. Perquè $x \in \text{Nuc}(p(f))$, i per tant, $x_1 \in \text{Nuc}(p_2(f))$. Anàlogament, $x_2 \in \text{Nuc}(p_1(f))$.

Amb això conclou la demostració de l'apartat (1), i ara queda per demostrar l'apartat (2), que diu que la intersecció entre els nuclis de $p_1(f)$ i $p_2(f)$ és el zero.

Sigui $x \in \text{Nuc}(p_1(f)) \cap \text{Nuc}(p_2(f))$, és a dir, $x \in \text{Nuc}(p_1)(f)$ i $x \in \text{Nuc}(p_2)(f)$. Aleshores, sigui u un vector del nucli de $(p_2(f))$ i v un vector del nucli de $(p_1(f))$. És a dir, $u = a(f)(p_1(f)(x)) = \mathbf{0}$ i $v = b(f)(p_2(f)(x)) = \mathbf{0}$. I, per tant, $x = u + v = \mathbf{0} + \mathbf{0} = \mathbf{0}$ és l'únic vector del nucli de la intersecció. Queda demostrada, doncs, la suma directa.