

General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

(NASA-CR-173403) SHUTTLE INTERACTION STUDY
EXTENSION Midterm Review (Rockwell
International Corp.) 160 p HC A08/MF A01

N84-21596

DR. A

SPACE OPERATIONS CENTER

SHUTTLE INTERACTION STUDY EXTENSION

MID-TERM REVIEW

NAS9-16153

Satellite Systems Division

**Rockwell
International**

15 OCT 1981

PD81-20A

Unclass
12935

SPACE OPERATIONS CENTER
SHUTTLE INTERACTION STUDY

STUDY OBJECTIVE

"ANALYZE, IN A PRELIMINARY FASHION, THE IMPLICATIONS OF USING THE SHUTTLE WITH THE SOC, INCLUDING CONSTRAINTS THAT THE SHUTTLE WILL PLACE UPON THE SOC DESIGN. IDENTIFY ALL THE CONSIDERATIONS INVOLVED IN THE USE OF THE SHUTTLE AS A PART OF THE SOC CONCEPT."

- IMPLICATIONS TO THE SOC
- IMPLICATIONS TO THE SHUTTLE
- IMPLICATIONS TO AN OTV/MOTV

STUDY TASKS

TASK	ISSUES
1.0 ORBITAL ALTITUDE	<ul style="list-style-type: none"> • AT WHAT ALTITUDE SHOULD THE SOC OPERATE WHILE BEING COMPATIBLE WITH THE SHUTTLE CAPABILITIES?
2.0 BERTHING AND/OR DOCKING	<ul style="list-style-type: none"> • IS A STANDARD BERTHING/DOCKING INTERFACE FEASIBLE? • CAN THE ORBITER DOCK TO THE SOC? • CAN THE ORBITER BERTH TO THE SOC USING THE RMS?
3.0 SOC ASSEMBLY	<ul style="list-style-type: none"> • WHAT EQUIPMENT AND OPERATIONS ARE REQUIRED FOR THE SHUTTLE TO ASSEMBLE THE SOC? • WHAT ARE THE IMPLICATIONS TO THE SOC ELEMENTS?
4.0 SOC RESUPPLY AND FUEL TRANSFER	<ul style="list-style-type: none"> • WHAT ARE THE IMPLICATIONS OF SOC RESUPPLY VIA THE LOGISTICS MODULE AND THE SHUTTLE? • WHAT ARE THE IMPLICATIONS OF TRANSFERRING PROPELLANTS FROM THE SHUTTLE TO THE SOC? • DEVELOP A SHUTTLE LOGISTICS MODEL
5.0 FLIGHT SUPPORT FACILITY	<ul style="list-style-type: none"> • WHAT ARE THE IMPLICATIONS TO THE SOC TO PROVIDE SPACECRAFT SERVICING? • WHAT ARE THE IMPLICATIONS TO THE SHUTTLE TO PROVIDE SPACECRAFT SERVICING? • WHAT ARE THE SPACE-BASED VEHICLE REQUIREMENTS?

Space Operations/Integration &
Satellite Systems Division

101SSD22443X

ORBITAL ALTITUDE

USE VARIABLE ALTITUDE STRATEGY

FLY HIGH DURING
HIGH ATMOS DENSITY

FLY LOW WHEN ATMOS
DENSITY IS LOW

- CAPITALIZES ON GREATER SHUTTLE
'P/L'S AT LOW ALTITUDES

- COMBINES ORBITAL SAFETY
WITH EFFICIENCY

- SAVES UP TO 15% LOGISTICS
OVER CONSTANT ALTITUDE
STRATEGY

Space Operations / Integration &
Satellite Systems Division

101SSD2106

BERTHING AND/OR DOCKING

DOCKING MODULE CONCEPT

RMS BERTHING IS FEASIBLE
BUT REQUIRES SOFTWARE MODS.

ORIGINAL PAGE IS
OF POOR QUALITY

PROXIMITY OPERATIONS

- CLOSURE PATH EFFECTS
- RUNAWAY JET
- ABORTS FROM RUNAWAY JET ARE POSSIBLE
- SOC DESIGN FOR THRUST WHILE DOCKED

PLUME IMPINGEMENT

- DESIGN FOR "HI Z" ABORT MODE
- LONG TERM CONTAMINATION NEEDS STUDY

SOC ASSEMBLY

- ASYMMETRIC CONFIGURATION PROBLEMS

- RCS SUPPLEMENT REQUIRED FOR SOC BUILDUP

- SOC CAN BE ASSEMBLED WITH ORBITER PROVISIONS IN DEVELOPMENT OR PLANNED

ORIGINAL PAGE IS
OF POOR QUALITY.

PLUS SUPPLEMENTAL LIGHTS
& ALIGNMENT AIDS

SOC RESUPPLY AND FUEL TRANSFER

LOGISTICS OPERATION

PROPELLANT TRANSFER

ORIGINAL PAGE IS
OF POOR QUALITY

- LOGISTIC MODULE EXCHANGE
- FLIGHT SUPPORT FACILITY LOGISTICS
- CONSTRUCTION LOGISTICS
- ZERO "G" TRANSFER IS FEASIBLE
- PROPELLANT STORAGE HIGHLY DESIRABLE

Space Operations/Integration &
Satellite Systems Division

101SSD22105

FLIGHT SUPPORT FACILITY

FUNCTIONAL REQUIREMENTS

FACILITY ARRANGEMENTS

ORIGINAL PAGE IS
OF POOR QUALITY

STUDY EXTENSION TASKS

TASK 1.0 SHUTTLE FLEET UTILIZATION & PROGRAMMATICS

OBJECTIVE: DETERMINE SHUTTLE FLEET UTILIZATION REQUIREMENTS & RELATED PROGRAMMATICS DATA FOR SOC/SHUTTLE OPERATIONS IN LEO.

TASK 2.0 SOC ASSEMBLY OPERATIONS

OBJECTIVE: TO CONFIRM THE CAPABILITY OF THE RMS TO ASSEMBLE THE SOC, & TO DETERMINE THE ASSEMBLY OPERATIONAL IMPLICATIONS & THE IMPLICATIONS TO THE SOC MODULES

TASK 3.0 SHUTTLE SYSTEM PROPELLANT SCAVENGING

OBJECTIVE: DETERMINE PRINCIPAL FUNCTIONAL IMPACTS ON THE SOC DUE TO PROPELLANT SCAVENGING

* TASK 4.0 FLIGHT SUPPORT FACILITY

OBJECTIVE: TO COMPARE THE SERVICING/CHECKOUT LOGIC & COSTS ASSOCIATED WITH PERFORMING FLIGHT SUPPORT SERVICES ON FREE-FLYING SATELLITES & OTVs AT THE SOC, ON THE GROUND & FROM THE ORBITER

Space Operations/Integration &
Satellite Systems Division

10SSD21949

TASKS SCHEDULE

ORIGINAL PRINTING
OF POOR QUALITY

106SD21950

Space Operations/Integration &
Satellite Systems Division

SHUTTLE FLEET UTILIZATION & PROGRAMMATICS

This task will determine the key interrelationships among the main STS utilization variables, with particular emphasis on the differences between SOC and "non-SOC" scenarios. We will be looking at the interacting effects of cargo density, OTV performance models, and Shuttle logistics performance for their effects on fleet utilization and fleet size requirements. In particular, we will examine the potential benefits within the SOC scenario of increasing Shuttle load factors by adding high-density propellants to low-density cargo manifests to always fly the orbiter near its 65K lb payload capacity.

The further fleet utilization benefits of scavenging ET residual propellants will also be investigated. This technique is particularly suited to the SOC scenario where propellant storage capability in space could easily be provided as part of the SOC flight support activity.

It is also planned to investigate the potential ground turnaround benefits which can be attained with an orbiter dedicated to SOC resupply missions.

SHUTTLE FLEET UTILIZATION AND PROGRAMMATICS

SUMMARY

GOALS:

- DEVELOP AN UNDERSTANDING OF THE GROUND TURNAROUND PROCESS & POTENTIAL SOC RELATED INTERACTIONS
- DETERMINE THE SIGNIFICANCE &/OR NEED FOR DEDICATED ORBITER(S)
- SHOW FLEET IMPACTS FROM NON-SOC SCENARIO
- DETERMINE PROPELLANT TANK SIZES MATCHING TRAFFIC PREDICTIONS . . . , AND UNDERSTAND THE INTERACTIONS WITH PAYLOAD DENSITY, ET SCAVENGING AND PAYLOAD TOP OFF

Space Operations/Integration &
Satellite Systems Division

101SSD22006

TASK 2--SOC ASSEMBLY OPERATIONS APPROACH

Our approach to the Assembly Operations task is to use a company-developed computer program RMSKAT (Remote Manipulator System Kinematic Analysis Tool). The program assesses the motion path the RMS is expected to follow in assembling each module, and indicates whether it is within the capability and desired operating range of the RMS. The assessment is based on a SOC assembly concept that was generated during our initial effort on the SOC/Shuttle Interaction Study. From that concept, grapple fixtures were located on each module and the initial and final end effector coordinates were determined for each assembly operation. The coordinates served as the inputs to the RMSKAT computer program.

Space Operations and
Satellite Systems Division

**TASK 2 - SOC ASSEMBLY OPERATIONS
APPROACH**

REMOTE MANIPULATOR SYSTEM KINEMATIC ANALYSIS TOOL (RMSKAT)

The RMSKAT program is used for the kinematic evaluation of the RMS operational envelopes. It features rigid body simulations only, i.e., without flexible body effects. Besides the typical computer printouts, the program presents a graphic feedback of the kinematic path of the RMS and its grappled payload. Both types of output are illustrated on the next two charts. Incorporation of the SOC graphics is partially complete at this time.

RMSKAT can be operated in any one of two modes, as indicated.

Space Operations and
Satellite Systems Division

REMOTE MANIPULATOR SYSTEM KINEMATIC ANALYSIS TOOL
(RMSKAT)*

- COMPUTER PROGRAM FOR KINEMATIC EVALUATION OF RMS OPERATIONAL ENVELOPES
- RIGID BODY SIMULATIONS ONLY
- GRAPHIC FEED BACK (SOC GRAPHICS MOD IN PROGRESS)
- TWO OPERATING MODES

- | | |
|--|--|
| <u>INPUT</u> | <u>OUTPUT</u> |
| • START & FINAL END EFFECTOR COORDINATES & ORIENTATION IN ORBITER REFERENCE SYSTEM | • RMS JOINT ANGLE READINGS AT SPECIFIED TIME INTERVALS |
| • RMS JOINT ANGLE SPECIFICATIONS | • END EFFECTOR COORDINATES & ORIENTATION IN ORBITER REFERENCE SYSTEM |
- *DEVELOPED WITH DISCRETIONARY FUNDS

SOC TUNNEL ASSEMBLY

This chart illustrates a typical graphic output of RMSKAT. In this particular example, the assembly operation of the SOC tunnel module is featured. It should be noted that the SOC interfaces with the orbiter on an assumed handling and positioning aid (HPA) which places the SOC interface outside the orbiter payload bay envelope. The use of the HPA was found necessary to bring the depicted tunnel assembly operation within the reach limits of the RMS.

Another point of interest for the RMS is the geometric relationship of its wrist segment to its lower-arm segment, as can be clearly seen in the upper sketch. The relationship is an acute angle, and this was one of two points that were found to exceed the wrist pitch joint limits, as indicated on the next chart.

SOC TUNNEL ASSEMBLY

ORIGINAL PAGE IS
OF POOR QUALITY

Space Operations/Integration &
Satellite Systems Division

101SSD22139

RMS ANGLES—SOC ASSEMBLY

Assessment of the first set of grapple fixture locations, as determined by the baselined assembly sequence, resulted in the RMS joint angles indicated on this chart. Grapple fixture locations on two modules, Service Module No. 1 (SM-1) and the tunnel module (TM), were found to exceed the wrist pitch joint limits. The operational limits of each RMS joint are indicated in the heading of each column. Besides the operational limits, certain desired limits exist for the elbow pitch and the wrist yaw joints which state that the wrist pitch joint should be less than $\pm 60^\circ$ at the time of berthing and, similarly, the elbow joint should be greater than -40° . The circled results exceed these requirements and, consequently, grapple fixtures on the affected modules will be relocated and reassessed until compatible locations are found.

RMS ANGLES -- SOC ASSEMBLY

ORIGINAL PAGE IS
OF POOR QUALITY

MODULE	SY (-177.4 TO 177.4)	SP (0.6 TO 142.4)	EP (-0.4 TO -157.6)	WP (-116.4 TO 116.4)	WY (-116.6 TO 116.6)	WR (-442 TO 442)
SM-1 STOWED ↓	-31.54 -46.68 -61.82 -76.97	50.71 68.02 85.34 102.65	-72.86 -82.50 -92.14 -101.79	-11.92 51.77 115.45 179.14	-53.47 (-61.30) (-69.13) (-76.97)	-28.52 17.48 63.48 109.48
SM-1 DEPLOYED						
SM-2 STOWED SM-2 DEPLOYED	-32.82 -32.59	54.09 76.54	-78.37 -85.32	-8.85 -92.01	-52.40 16.32	152.65 -55.85
HMI STOWED HMI DEPLOYED	-30.93 -21.64	60.48 78.56	-82.34 -42.91	-12.68 -79.48	-53.97 (-61.20)	-29.10 140.00
HM2 = HMI						
LM STOWED LM DEPLOYED	-28.62 -61.31	53.82 75.58	-72.01 -68.93	-18.26 -28.61	-55.85 -26.91	148.57 69.66
TM STOWED ↓	-28.99 0.54 27.91 56.36	71.21 75.00 78.80 82.58	-133.56 -97.30 -61.10 (-24.99)	-37.38 15.80 69.10 122.41	-16.96 30.20 43.30 56.36	120.45 56.70 6.90 -70.52
TM DEPLOYED						

SHUTTLE SYSTEM PROPELLANT SCAVENGING

There is 9500 lb of propellant or more remaining in the ET at the end of boost. This includes flight performance reserves, trapped residuals, and other unused propellants. The 9500 lb is the expected average for cases where the Shuttle is delivering a maximum 65,000-lb payload to orbit. With smaller payloads, even more ET propellants will be available—almost pound for pound.

The benefits of recovering these propellants and delivering them to a storage facility on the SOC for later use on OTV missions are enormous. Significant savings in annual Shuttle flights through reduced OTV propellant deliveries are possible.

We have conducted preliminary investigations of the major feasibility issues related to the implementation of this technique. These include trajectory mods to the boost profile and the closely related effects on ET debris impact zones, the various factors affecting cryogenic fluid flow phenomena, some of the transient effects on fluid integrity at NECO, various ullage or propellant settling thrust options and hardware arrangements for the receiver tanks, and plumbing interfaces with the orbiter main propulsion system.

All of these investigations to date have given strong indications of the practical feasibility of performing suborbital recovery of ET propellant residuals or even larger amounts of unused propellants.

SHUTTLE SYSTEM PROPELLANT SCAVENGING

AVAILABLE RESIDUALS - lb

FPR	6000
LH ₂	900
ET TRAPPED	850
MPS PLUMBING	1800
TOTAL	9550 (\pm FPR)

NOTE:

UP TO 30,000 lb ADDITIONAL
RESIDUALS IF ORBITER
UNDERLOADED

PRINCIPAL STUDY AREAS

- TRAJECTORY ANALYSIS
- FLUID TRANSFER PROCESS
- MECO TRANSIENTS
- ULLAGE THRUST OPTIONS
- HARDWARE CONCEPTS

ORIGINAL PAGE IS
OF POOR QUALITY.

CURRENT STUDY OBJECTIVE
DETERMINE THE PRACTICAL
FEASIBILITY OF PERFORMING
SUBORBITAL RECOVERY OF ET
PROPELLANT RESIDUALS

Space Operations/Integration &
Satellite Systems Division

101SSD22145

TRAJECTORY ANALYSIS

One of the important considerations affecting the feasibility of ET propellant scavenging is the nature and magnitude of the changes which must be made to the Shuttle boost trajectory in order to give sufficient time to perform the propellant transfer operations. The main factors in this analysis are the ullage thrust options (thrust levels employed), the post-MECO time-trajectory relationships and their effects on the ET debris impact zones. As part of these considerations, we were also concerned with how much propellant is needed for ullage thrusting and the combined affects of all factors on Shuttle payload.

It was determined that a relatively linear relationship exists between the Shuttle burnout velocity at MECO and the amount of ullage thrusting time which could be applied. In essence, ΔV 's from ullage thrusting can be used to approximately compensate for small changes in MECO velocity such that ET impacts occur in acceptable zones (primary or secondary) while providing sufficient time for the propellant transfer operations. Up to 20 minutes or more are available for propellant transfer with low thrust ullage options. MECO changes of less than ± 1 second (<100 fps bias) in combination with appropriate ullage thrusting periods will meet the ET impact constraints.

It was further determined that the net effects of all factors on the Shuttle payload are negligible. These include the direct effects of changing MECO velocity ($\Delta PL/\Delta V_{MECO} = 25.7 \text{ lb/fps}$), the change in OMS propellants for subsequent maneuvers flying the orbiter on up to orbit, and the extra RCS propellants required for ullage thrusting.

These analyses showed boost trajectory solutions to ET propellant recovery requirements are easily possible.

TRAJECTORY ANALYSIS

IMPACT ZONE	NUMBER OF RCS	RCS THRUST (LB)	THRUST TIME (MINUTES)	AV/PP	INFLU/CAPACITY	ΔAV	ΔM/P DELTAP
SECONDARY	1	870	20.8	10	-8.8	100	-10.1
SECONDARY	2	870	11.0	6.4	-8.9	63	-6.3
PRIMARY	2	1740	6.0	2.8	-2.8	42	-2.8

ORIGINAL PAGE IS
OF POOR QUALITY

- ET IMPACT SATISFIED
- MECO CHANGES MINOR
- SHUTTLE BOOST TRAJ CONSTRAINTS ARE MET
- NEGLIGIBLE SHUTTLE P/L IMPACTS

ULLAGE THRUST PROPELLANT REQUIREMENTS

This chart shows the amount of RCS propellants which are required for ullage thrusting as a function of thrusting time. Three thrust options are shown: (1) dual RCS, (2) single RCS (alternate left-right firing), and (3) an "idealized" case with thrust equal to drag plus 50 lb. Aerodynamic drag at MECO ranges from 10 to 30 or 40 lb, and decays rapidly to less than 1 lb. Thus, the idealized case is essentially 50 lb of continuous thrust.

The dual RCS case is shown to require over 8000 lb of propellant for a thrust period of 20 minutes. Propellant consumption is 414 lb/minut^e and includes an 11% factor for attitude control. Single RCS consumption would be one-half this amount (207 lb/minute), while the idealized case would use only 11.5 lb/minute.

The amount of RCS propellant available after other maneuvers required for ascent/descent and mission operations is shown to be 1604 lb. Propellant needs beyond this amount can be met by utilizing the OMS cross-feed capability. Here, propellant from the OMS tanks can be transferred to the RCS system for use by the RCS thrusters. Ample OMS propellant exists to meet all of the ullage thrust options, but propellant amounts over the 1604 lb available in the RCS system would reduce the Shuttle payload. The low-thrust options for ullage thrusting fall well within the 1604-lb limit.

Thus, propellant availability for ullage thrusting is not a serious problem.

ULLAGE THRUST PROPELLANT REQUIREMENTS

RCS PROPELLANT BUDGET, LB		(3398)
ASCENT/DESCENT		1127
INSERTION AND ORBIT ADJUST		1164
ENTRY		1107
RESIDUALS AND CONTINGENCIES		(1450)
MISSION OPERATIONS		1450
RENDEZVOUS		4848
TOTAL		

ORIGINAL PAGE IS
OF POOR QUALITY

PROPELLANT TRANSFER PROCESS

The transfer process in moving the propellants from the ET to receiver tanks in the orbiter is affected by many factors. The focal point for all of these effects is the pressure differential between the ET and the receiver tank.

The LO₂ and LH₂ tanks in the ET are pressurized by "bleed gas" loops in their respective systems. These "hot" gasses are fed back into the ET during boost to maintain sufficient system pressure to avoid cavitating the turbopumps feeding the main engines. The required tank pressures are approximately 20 and 32 psia for the LO₂ and LH₂ tanks respectively. At MEKO the pressurization system is shut off and the vapor in the tanks is cooled by contact with the relatively cool tank walls and by residual liquid propellants in the tank. This cooling process causes the pressure in the ET tanks to decay; the rate of decay is affected by ullage thrust levels, high thrust produces faster ET pressure decay.

In contrast to the ET tanks above, the pressure environment in the receiver tanks rises with time. After the initial pressure surge for tank chilldown this pressure rise is due to the heat leaks into the system. In the LO₂ system significant heat inputs occur from the boost heated belly tiles of the orbiter along the LO₂ feedline and heat soakback from the main engines and plumbing. The LH₂ system is also heated by engine soakback, but also receives considerable heating from the aft bulkhead which can be exposed to direct solar heating at MEKO. Thus, receiver tank pressures rises with time.

In the case of LH₂ transfer the starting pressure (32 psia) is sufficiently high that an adequate pressure differential exists to perform pressurized transfer within reasonable periods of time (up to 10 or 20 minutes).

The low starting pressure for LO₂, however, imposes the requirement for pumped transfer. Pressurized transfer of nominal amounts of LO₂ could probably be made to work, but for wider applications of the scavenging techniques and to gain higher technical confidence, a pumped LO₂ transfer approach is preferred.

PROPELLANT TRANSFER PROCESS

ORIGINAL PAGE IS
OF POOR QUALITY

Rockwell
International

Space Operations/Integration &
Satellite Systems Division

101SSD2214

PRACTICAL SCAVENGING CONCEPTS

This chart depicts some of the main hardware considerations pertinent to ET propellant scavenging. First, there are a number of possible ullage thrust options. Ullage thrusting is required to keep the residual propellants settled at the bottom of tanks. Analysis has shown that existing primary RCS thrusters can be used, although propellant consumption can be greatly reduced by adding vernier thrusters to fire in the X-direction (the current verniers do not thrust in this direction). Thus, practical solutions to ullage thrusting are possible.

Analysis has also shown that 4 inch transfer lines will be sufficient to perform the basic propellant flow process. With this line size a pump must be used in the LO₂ transfer system. Modified centaur pumps can be used for this application, but smaller capacity pumps of new design would use less electrical power. Preliminary looks indicate ample space is available in the orbiter engine compartment to install these elements. Thus, practical pumping solutions are possible.

A number of receiver tank options were explored, both internal and external to the orbiter. Some of the external options could probably be made to work, but would have significant orbiter design impacts. Internal designs ranging from conventional, easy to install tanks to more advanced torus configuration were determined to have capabilities ranging from 10,000 to 30,000 pounds (sized for a 6:1 mixture ratio and to fit the OMS kit length of 9 feet). The enormous benefit potential of the propellant scavenging concept suggests an optimum tank concept leaning toward the advanced designs would be highly appropriate. Regardless of the final tanking concept selected, practical solutions are possible.

PRACTICAL SCAVENGING CONCEPTS

ULLAGE THRUST OPTIONS

DUAL PRCS THRUSTERS

- $2 \times D_0 = 1700 \text{ lb}_f$
- $T/W = 0.0074 \text{ s}^2$
- $\dot{v}_p \approx 414 \text{ ft/sec}$
- MINIMUM CRATER IMPACT

SINGLE PRCS THRUSTER

- $1 \times D_0 = 850 \text{ lb}_f$
- $T/W = 0.0024 \text{ s}^2$
- $\dot{v}_p \approx 207 \text{ ft/sec}$
- ATTITUDE CONTROL SOFTWARE MOD

ADDED VERNIER THRUSTERS

- $T/HITAIL = 2 \times D_0 = 1700 \text{ lb}_f$
(APPROX. 40 - 60 sec)
- FINAL = DIAG + 50 lb_f
- $T/W \approx 10^{-4} \text{ s}^2$
- $\dot{v}_p \approx 11.5 \text{ ft/sec}$
- HARDWARE & SOFTWARE MODS

ORIGINAL PAGE IS
OF POOR QUALITY.

HARDWARE CONCEPTS

CONVENTIONAL

WING INTERNAL

TIP TANKS

BELLY TANKS

CREW CONSIDERATIONS

It is envisioned that the orbiter crew would play an active role in the ET propellant scavenging operations. Given the ability to monitor temperatures, pressures, flow rates and fluid characteristics probably the simplest transfer concept would involve crew participation. Further studies are required to define the specific nature of the crew requirements and the degree of automation to be introduced into the flow process.

For our preliminary look, here, it has been determined that control panel space is available for appropriate flow monitor and control functions. Further, this panel area (panel R-11) is within the reach envelope of the mission specialist from his seated position at MECO. Thus, crew participation in the transfer process appears possible. Additional study is required to determine the transition effects on crew capabilities from the boost environment to zero-g. However, fighter pilots frequently perform in this type of environment so crew participation in the flow control process appears feasible.

CREW CONSIDERATIONS

Space Operations/Integration &
Satellite Systems Division

101SSD22007

NOMINAL PROPELLANT RESIDUALS AT MECCO

The amount of propellant remaining in the ET at the end of boost is dependent upon how much payload was carried to orbit. Aside from the flight performance reserves and residuals trapped in the system the ET will contain an additional 0.95 pounds of propellants for every pound of unused payload capacity that might exist on a given flight manifest.

The relationship between LO₂, LH₂ and total propellants remaining and the Shuttle unused payload capacity is shown in the accompanying chart. Values of propellant remaining can be up to 80,000 pounds or even higher depending upon future Shuttle improvements and/or growth options. Superimposed on these propellant/payload relationships are three possible scavenging scenarios. These range from the "basic scavenging" situation in which only the nominal residuals remaining after a full payload launch are recovered. The second scenario reflects the density characteristics of most dry cargo manifests. Hard cargos approximately filling the orbiter bay tend to weigh about 30,000 pounds. This type of payload manifest could either be "topped off" on the ground with propellants to bring the total payload up to the orbiter capacity or the system could be "dry" launched and the 30,000 to 40,000 pounds of remaining propellants scavenged similar to the case above.

In the third scenario we carry the "dry" launch concept all the way to a dedicated tanker flight. Here, instead of launching the orbiter with a full cargo of propellant the tanker is launched empty and the full 71,000 pounds (theoretical maximum) of propellants would be recovered through scavenging operations.

Thus, a wide range of scavenging scenarios is possible.

Space Operations and
Satellite Systems Division

NOMINAL PROPELLANT RESIDUALS AT MECO

- INCLUDES ET & MPS PLUMBING

ORIGINAL PAGE IS
OF POOR QUALITY

SCAVENGING ANALYSIS SUMMARY

All analysis to date have indicated that suborbital recovery of unused ET propellants is a viable concept with enormous benefits to the SOC operational scenario.

Trajectory analyses have shown ET debris impact constraints can be satisfied with minor ΔV biases at MECO for a wide range of ullage thrust options including the use of existing primary RCS thrusters. All of these solutions provide ample time for the propellant transfer operations and are within RCS propellant budget limits.

Practical hardware concepts for receiver tanks and plumbing are achievable within the space/volume constraints of the orbiter engine compartment. MECO transient effects and fluid flow phenomena can all be satisfied with practical control and design solutions.

The MECO changes and subsequent flight maneuvers have negligible effects on Shuttle payload capability.

The system can be designed and qualified to meet the safety standards currently applied to the Shuttle system. Scavenging is a post MECO operation which would not jeopardize earlier main engine operations.

A wide range of scavenging applications are possible. We can safely and efficiently recover propellant amounts ranging from the 9,500 pound expected for Shuttles launched with maximum payloads up to 70,000 pounds or more for the dedicated tanker "dry launch" concept where the orbiter is launched with an empty tank (no other payload) and all the ET propellants remaining are transferred via scavenging operations.

Thus, ET propellant scavenging is judged to be a viable and desirable concept.

SCAVENGING ANALYSIS SUMMARY

JET PROPELLANT SCAVENGING IS FEASIBLE

WIDE RANGE OF SCAVENGING SCENARIOS
ARE POSSIBLE

ORIGINAL PAGE IS
OF POOR QUALITY

• BASIC SCAVENGING

$$w_p \approx 10-15K \text{ LB}$$

• P/L TOP-OFF

$$w_p \approx 30-40K \text{ LB}$$

• DEDICATED TANKER

$$w_p \approx 70 + KLB$$

TASK 4—FLIGHT SUPPORT FACILITY

To accomplish this task, our approach is to select several representative spacecraft and analyze their servicing requirements if they are to be serviced by the SOC, by the orbiter, and on the ground. From the analysis, implications to the SOC, the orbiter, and the spacecraft will be determined. For the SOC, the implications will lead to a preliminary integrated configuration of the Flight Support Facility. Furthermore, the implications, along with those of ground servicing and orbiter servicing, will serve as the basis for generating end-to-end costing of the servicing functions and comparison of the costs of the various servicing methods.

TASK 4 -- FLIGHT SUPPORT FACILITY

REPRESENTATIVE SPACECRAFT

To determine the implications and drive out the required servicing provisions of the SOC Flight Support Facility, three spacecraft were selected for detailed analysis. These spacecraft are characterized by many subsystems and features that are likely to be included on many of the spacecraft that are expected to be serviced by the SOC. Consequently, the diversity of these subsystems and features was the main contributor to their selection. The OTV is a cryogenic stage that also uses hydrazine for its RCS. In addition, it utilizes helium and gaseous nitrogen for various pneumatic valve actuation, pressurization, and purge systems. This spectrum of fluids must be supplied through the SOC Flight Support Facility and, consequently, will dictate the required provisions for fluid loading operations.

The communication satellite is a relatively large spacecraft that requires extensive deployment and checkout operations and final mating to the OTV for launch to GEO. The Space Processing Facility is smaller in size and its servicing requirements consist mainly of refueling and module exchange operations during frequent revisits to the SOC.

To scope the analysis of servicing these spacecraft, six scenarios were selected for estimating servicing man-hours and final cost comparisons. For the OTV, ground and SOC servicing scenarios were analyzed. The other two spacecraft were considered in terms of orbiter and SOC servicing. It is noted that servicing the communication satellite consists mainly of initial deployment, mating to the OTV, and launch to GEO. Once launched, it will not revisit SOC.

REPRESENTATIVE SPACECRAFTS

OTV
COMMUNICATION SATELLITE

SPACE PROCESSING FACILITY

ORIGINAL PAGE IS OF POOR QUALITY

- FEATURES SIGNIFICANT TO SERVICING
 - LOADING OF FLUIDS
 - CRYOGENICS - LO₂, LH₂
 - NON-CRYOGENICS - He, GN₂, HYDRAZINE
 - MODULE & COMPONENT EXCHANGE OPS
 - EXTENSIVE DEPLOYMENT & C/O OPS
 - FREQUENT REVISITS
 - SMALL TO LARGE S/C

S/C	GROUND SERVICING	ORBITER SERVICING	SOC SERVICING
OTV	✓	N/A	✓
COMM SAT	N/A	✓ INITIAL ASSY & LAUNCH TO GEO	✓ INITIAL ASSY & LAUNCH TO GEO
SPACE PROCESSING FACILITY	N/A	✓	✓

CHECKOUT/SERVICING MAN-HOURS

Detailed activities for the six selected servicing scenarios were individually generated and analyzed in terms of functions that are required to turn-around the spacecraft within assumed servicing boundaries. Subsequently, timelines were estimated to perform the servicing functions as illustrated on this chart. A summary of the results is presented on the next chart.

Space Operations and
Satellite Systems Division

CHECK-OUT SERVICING MANHOURS

CHECKOUT/SERVICING MAN-HOURS SUMMARY

The results of the timeline estimates show that the difference between the elapsed time required to service the communication satellite from the SOC and that of servicing it from the orbiter is very small. Similar results are indicated for the Space Processing Facility. However, servicing the OTV on the ground requires considerably more time than servicing it on the SOC. The difference is attributed mainly to the design philosophy that was assumed for each of the OTV servicing scenarios. For the ground-designed OTV, a scenario without SOC or in-space fueling provisions was assumed which necessitated launching the OTV in the fueled state. To accommodate this mass-sensitive condition, a conventional aerospace structural design was assumed that could not afford the weight penalties associated with extensive servicing accessibility provisions or remote module exchange operations. In addition, ground servicing implies considerable transportation timelines where the OTV must be moved from one dedicated servicing facility to another. These constraints do not exist for the SOC servicing scenario where the space-designed OTV was assumed to be launched in the unfueled condition. As a non-weight-sensitive payload, weight penalties of accessibility provisions and remote/automatic component/module exchange operations are more tolerable.

CHECK-OUT / SERVICING MANHOURS SUMMARY

ORIGINAL PAGE IS
OF POOR QUALITY.

LOCATION	ELAPSED TIME	MAN-HOURS	NO. CREW	
			RANGE	Avg
OTV - GROUND	134.0	576.0	3 - 6	4.3
OTV - SOC	26.3	99.7	3 - 5	3.8
COMM SAT - ORBITER	50.8	164.8	2 - 4	2.4
COMM SAT - SOC	61.0	199.6	2 - 5	2.6
SPACE PROCESSING - ORBITER	27.5	106.0	2 - 4	3.5
SPACE PROCESSING - SOC	29.6	103.4	3 - 4	3.5

OTV-SOC SERVICING IMPLICATIONS:

Analysis of the turnaround functions and activities for each of the selected servicing scenarios implied a general set of required provisions and equipment to perform the servicing operations. This chart presents a summary of the particular set concerned with OTV servicing on the SOC. Similar sets were identified for each of the remaining servicing scenarios.

OTV-SOC SERVICING IMPLICATIONS

SUMMARY OF REQUIRED SERVICE PROVISIONS & EQUIPMENT

OTV	SOC
<ul style="list-style-type: none">• REMOTE SAFING SYSTEM• COMMUNICATION & DATA LINK TO SOC & GROUND OCC• NON-PROPELLIVE VENT SYSTEM• DOCKING PORT WITH ALIGNMENT TARGET• OTV-SOC SYSTEM INTERFACES (3-FLUID & 1-ELECT). WITH DUAL QUICK DISCONNECTS• OTV-SOC STRUCTURAL INTERFACES (2 PIDA DEVICES)• OTV-SOC MANIPULATOR INTERFACES (2 GRAPPLE FIXTURES)• ACCESSIBLE COMPONENT DESIGN	<ul style="list-style-type: none">• OTV CONTROL & MONITOR STATION• COMMUNICATION & DATA LINKS TO OTV & ITS GROUND OCC• ACTIVE DOCKING PORT ON FSF WITH ALIGNMENT MONITORING SYSTEM• EXTENDABLE NON-PROPELLIVE BOOM• MOBILE MANIPULATORS (2) WITH STD END EFFECTOR & SPEE• CCTV CAMERA ON MOBILE MANIPULATORS• OPEN CHERRY PICKER & MMU• RETRACTABLE UMBILICALS -- 3 FLUID & 1 ELECT• LRU STORAGE & RETRIEVAL SYSTEM

CONCLUSIONS AND PLANS

- FLEET UTILIZATION ANALYSIS HAS BEEN STARTED...
 - IMPORTANT RESULTS ARE EXPECTED
- SOC ASSEMBLY ANALYSIS UNDERWAY...
 - COMPUTER INTERACTIVE GRAPHICS WILL GIVE HIGH CONFIDENCE TO CLEARANCE GEOMETRIES
- ET PROPELLANT SCAVENGING PROVEN FEASIBLE...
 - AMPLE TRANSFER TIME
 - ET IMPACT SATISFIED
 - NO SIGNIFICANT STS PAYLOAD IMPACT
 - ACCEPTABLE SAFETY STANDARDS CAN BE MET
 - WIDE RANGE OF APPLICATION SCENARIOS IS POSSIBLE
- FLIGHT SUPPORT FACILITY ANALYSIS WELL UNDERWAY...
 - SERVICING IMPLICATIONS IDENTIFIED
 - SERVICING TIMELINES AND COST DATA ARE BEING GENERATED
 - KEY INSIGHTS INTO COST EFFECTIVENESS OF VARIOUS SERVICING SCENARIOS WILL BE GAINED

ORIGINAL PAGE IS
OF POOR QUALITY

FLEET UTILIZATION ANALYSIS

ORIGINAL PAGE IS
OF POOR QUALITY

SHUTTLE TURNAROUND ANALYSIS

DEDICATED ORBITER CONSIDERATIONS

ORIGINAL PAGE IS
OF POOR QUALITY

Space Operations and
Satellite Systems Division

101SSD21944

DEDICATED ORBITER EFFECTS

ORIGINAL PAGE IS
OF POOR QUALITY.

NON-SOC TO SOC MISSION CONFIGURATION

- MAX CHANGE OUT OPERATION
- BEST AND WORST MISSION SCHEDULES
- RANGE OF TRAFFIC LEVELS

SOC VS NO SOC

SOC PROPELLANT DELIVERY OPTIONS

TRAFFIC MODEL

	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996
COMMERCIAL	4	5	1	8							
ESTATE AND APPROVA	1	1	2	1							
DSD	3	6	1	4							

ET SCAVENGING
TANKS

P/L TOPPING
TANKS

FIXED CARGO

ISSUES

- SIZE RANGE OF P/L TOPPING TANKS
- COMBINED P/L TOPPING & ET SCAVENGE TANKS
- POSSIBILITY OF LAUNCH "DRY" CONCEPT

MANIFEST
VARIATIONS

Space Operations and
Satellite Systems Division

101SSD21958

ORIGINAL PAGE IS
OF POOR QUALITY

REFERENCE TRAFFIC MODEL CONSTRUCTION

BASIC MISSION ANALYSIS		
	COMMERCIAL	NASA
DOD	•	•

- GROUND RULES AND ASSUMPTIONS
- SPACE PROGRAM LEVELS
- HI - LO MIX
- MANIFEST DEFINITION AND SCHEDULES

ORIGINAL PAGE IS
OF POOR QUALITY

TOTAL SPACE TRAFFIC		
	1982	• • • • • 2000
COMMERCIAL	•	•
NASA	•	•
DOD	•	•
TOTAL		641

SOC RELATED TRAFFIC		
	1990	• • • • • 2000
COMMERCIAL	•	•
NASA	•	•
DOD	•	•
TOTAL		288

Space Operations/Integration &
Satellite Systems Division

101SSD22146

COMMUNICATION DEMAND PROJECTIONS AND TECHNOLOGY DEVELOPMENTS

NOTE: 1000 VOICE CHANNELS EQUIVALENT TO ONE 36 MHz TRANSPOUNDER

Space Operations/Integration &
Satellite Systems Division

101SSD22102

ADVANCED COMMUNICATIONS SATELLITE CONCEPT

12,000 LB GEO COMMSAT

TYPE IV
12,000 LB
240 TRANSPONDER
44 FT STOWAGE IN SHUTTLE
CARGO BAY

ORIGINAL PAGE IS
OF POOR QUALITY.

STOWED CONFIGURATION

Space Operations/Integration &
Satellite Systems Division

 Rockwell
International

10ISSD22103

MISSION MANIFEST DEVELOPMENT

ORIGINAL PAGE IS
OF POOR QUALITY

PAYOUT CATEGORY	MISS OTV	MASS (LBS)	LENGTH (FEET)	SHUTTLE FLIGHT NO.	CODE	CARGO MANIFEST LENGTH (FT)
SOC	4 0	35,000	26	1 - 4	DM LOG MOD	UNUSED ET
SOC LOGISTICS					4.5 / 35 7	18 26 18 2.5 9
OTV	1 0	5,020	25	5	DM	UNUSED ET
OTV DELIVERY NO. 2					4.5 / 5 7	25 48 2.5 9
TELEOPERATOR	1 0	11,000	20	6	DM TELE	UNUSED ET
					4.5 / 11 7	20 42 2.5 9
COMMUNICATIONS					DM S/C	UNUSED ET
US COMMERCIAL TYPE IV S/C	5 5	12,000	44	7 - 11	4.5 / 12 7	44 2.5 9
TYPE V S/C	1 1	12,000	28	12	DM S/C	UNUSED ET
FOREIGN TYPE IV S/C	2 2	12,000	44		4.5 / 12 7	26 41 2.5 8 19
TYPE V S/C					DOD	

- 11 YEARS OPERATIONS
- ALL MISSIONS AREAS

- PAYLOAD PHYSICAL CHARACTERISTICS AND MANIFESTING GROUND RULES USED TO ESTABLISH 3 TRAFFIC MODELS
- UNALLOCATED LOAD FACTOR (LF) AND PAYLOAD VOLUME USED IN PROPELLANT TRANSPORT ANALYSIS (A)

SUMMARY

GOALS:

- DEVELOP AN UNDERSTANDING OF THE GROUND TURNAROUND PROCESS & POTENTIAL SOC RELATED INTERACTIONS
- DETERMINE THE SIGNIFICANCE &/OR NEED FOR DEDICATED ORBITER(S)
- SHOW FLEET IMPACTS FROM NON-SOC SCENARIO
- DETERMINE PROPELLANT TANK SIZES MATCHING TRAFFIC PREDICTIONS . . . , AND UNDERSTAND THE INTERACTIONS WITH PAYLOAD DENSITY, ET SCAVENGING AND PAYLOAD TOP OFF

Space Operations/Integration &
Satellite Systems Division

101SSD22006

ET RESIDUALS RECOVERY CONCEPT

AVAILABLE RESIDUALS - lb	
FPR	6000
LH ₂	900
ET TRAPPED	850
MPS PLUMBING	1800
TOTAL	9550 (\pm FPR)

NOTE:

UP TO 30,000 lb ADDITIONAL
RESIDUALS IF ORBITER
UNDERLOADED

POSSIBLE SCAVENGING SCENARIOS

BASIC SCAVENGING

- LAUNCH WITH 65K P/L
- RECOVER STATISTICAL FPR
- SIZE SCAVENGE SYSTEM TO $+3\sigma$ RESIDUALS
- OPTIONS CAN BE SIZED TO OTHER P/L WEIGHTS

P / L TOP-OFF

- LAUNCH WITH LESS THAN 65K HARD CARGO
- TOP-OFF TO 65K WITH PROPELLANT
- SIZE SCAVENGE SYSTEM TO $+3\sigma$ RESIDUALS
- OPTION TO COMBINE SCAVENGE VOLUME INTO TOP-OFF TANKS
- OPTION TO LAUNCH "DRY"

DEDICATED TANKER

ORIGINAL PAGE IS
OF POOR QUALITY

- LAUNCH WITH 65K PROPELLANT
- SIZE SCAVENGE SYSTEM TO $+3\sigma$ RESIDUALS
- OPTION TO OVERSIZE TANKER TO INCLUDE SCAVENGE
- OPTION TO LAUNCH "DRY"

Space Operations/Integration &
Satellite Systems Division

101SSD21911

KEY ISSUES

ORIGINAL PAGE IS
OF POOR QUALITY

- MECO TRANSIENTS
- ULLAGE THRUST STEERING
- PRACTICAL HARDWARE CONCEPTS
 - PROCEDURES AND CREW OPERATIONS
 - SAFETY IMPLICATIONS

Space Operations/Integration &
Satellite Systems Division

101SSD21916

ULLAGE THRUST OPTIONS

DUAL PRCS THRUSTERS

- $2 \times 870 = 1740 \text{ lbf}$
- $T/W = 0.0047 \text{ g's}$
- $\dot{w} P \approx 41.4 \text{ lb/min}$
- MINIMUM ORBITER IMPACT

SINGLE PRCS THRUSTER

- $1 \times 870 = 870 \text{ lbf}$
- $T/W = 0.0024 \text{ g's}$
- $\dot{w} P \approx 20.7 \text{ lb/min}$
- ATTITUDE CONTROL SOFTWARE MOD

ADDED VERNIER THRUSTERS

- $T_{INITIAL} = 2 \times 870 = 1740 \text{ lbf}$
(APPROX. 40 - 60 sec)
- $T_{FINAL} = DRAG + 50 \text{ lbf}$
- $T/W \approx 10.4 \text{ g's}$
- $\dot{w} P \approx 11.5 \text{ lb/min}$
- HARDWARE & SOFTWARE MODS

ORIGINAL PAGE IS
OF POOR QUALITY

Space Operations/Integration &
Satellite Systems Division

101SSD21914

ULLAGE THRUST PROPELLANT REQUIREMENTS

RCS PROPELLANT BUDGET, LB		TOTAL PROPELLANT LOADED 7254 LB
ASCENT/DESCENT	(3398)	AVAILABLE FOR ULLAGE THRUST
INSERTION AND ORBIT ADJUST	1127	7254-4848 = 2406 LB
ENTRY	1164	
RESIDUALS AND CONTINGENCIES	1107	
MISSION OPERATIONS	(1450)	
RENDEZVOUS	1450	2/3 IN AFT QUADS = 1604 LB
TOTAL	4848	

ET IMPACT CONSTRAINTS

ORIGINAL PAGE IS
OF POOR QUALITY.

Space Operations/Integration
Satellite Systems Division

REFERENCE ASCENT PROFILE

ETR DUE EAST LAUNCH
65K PAYLOAD

- STS 26
- LAUNCH APR 85
- HIGH PERFORMANCE SRM
- WT AT ARM IGNITION 41505 LB
- RTLS AND AOA ABORT CONSTRAINTS:
- MAX Q = 650 PSF
- THROTTLED TO 3G MAX

NOMINAL MECO

$h = 57 \text{ N.M. (EQUATORIAL)}$
 $V = 25,680 \text{ F.P.S. (INERTIAL)}$
 $\gamma = 0.65^\circ \text{ (INERTIAL)}$
 $28.4^\circ \text{ INCLINED ORBIT}$

RETURN-TO-LAUNCH SITE

ORIGINAL DRAWING
OF POOR QUALITY

$h \approx 142,000 \text{ FT}$
 $R \approx 24 \text{ N.M.}$
 $t \approx 120 \text{ SEC}$

SRB STAGING

SRB IMPACT

KSC

Space Operations/Integration &
Satellite Systems Division

1015SD22147

POST MECO TRAJECTORY PROFILE

Space Operations/Integration &
Satellite Systems Division

10ISSD21979

POST MECO TRAJECTORY PROFILE OPTIONS

DELTA MECO FOR ET IMPACT CONTROL

ET IMPACT DISPERSIONS

**SECONDARY ZONE
DISPERSIONS ARE
PROBABLY ACCEPTABLE**

ORIGINAL PAGE IS
OF POOR QUALITY

IMPACT ZONE	NUMBER OF RCS	RCS THRUST (LB)	THRUST TIME (MINUTES)	$\partial R / \partial W$ (NM/%)	$\partial R / \partial CA$ (NM/%)	$\partial R / \partial V$ (NM/FPS)	$\partial R / \partial \rho$ (NM/%)
SECONDARY	1	870	20.8	10	-9.8	109	-10.1
SECONDARY	2	1740	11.0	6.4	-5.9	63	-6.1
PRIMARY	1	870	5.0	2.8	-2.9	42	-3.0
PRIMARY	2	1740	5.0	2.8	-3.0	43	-3.1

$$V_{MEO} = 25,680 \text{ FPS (NOMINAL)}$$

$$\text{ET WEIGHT} = 70,772 \text{ LB}$$

$$CA_{ET} = 0.25$$

STD AMOS (1962)

PAYOUT IMPACTS

ORIGINAL PAGE IS
OF POOR QUALITY

OPTION	ET IMPACT ZONE	NO. OF RCS THRUSTERS	THRUST (LB)	ULLAGE TIME (MINUTES)	ΔV MECO (FPS)	ΔV P/L (1) Δ MECO (LB)	PROPELLANT FOR ULLAGE THRUST (LB)	$\Delta P/L$ NET (LB)			
							Δ OMS PROPELLANT (LB)	TOTAL CROSSFEED			
1	I	2	1740	5	-50	+1284	+474	2070	466	+344	
2	I	1	870	.5	-25	+642	+469	1035	-569	(2)	+742
3	I	0	50+DRAG	20	-5	+128	+260	224	-1380	(2)	+1248
4	II	1	870	20.3	0	0	-2597	4306	2702	-105	
5	II	2	1740	11	0	0	-2564	4554	2950	-386	
6	II	2	1740	8	+30	-771	-2589	3312	1708	+110	

(1) AN EARLY MECO CUTOFF PROVIDES AN INCREASE IN PAYLOAD AT THE RATE OF 25.7 LB PER FPS

(2) NEGATIVE NUMBER INDICATES LESS THAN FULL RCS PROPELLANT IS REQUIRED
AND OFFLOADED PROPELLANT COULD BE CREDITED TO ADDITIONAL PAYLOAD.

NEGIGIBLE PAYLOAD IMPACT

THRUST AND CG GEOMETRY

CG COORDINATES

BRM NO. 6	MECO MASS, lb	X _o	Y _o	Z _o
65K ETR	366,500	964	2.1	324
30K ETR	352,400	922	2.0	266

FWD RCS THRUST APPLICATION				
	X _o	Y _o	Z _o	
THRUST	350.93	14.39	413.46	
PLUME	350.92	0.0	415.53	
UP	350.93	-14.39	413.40	
LEFT	333.84	-61.42	356.95	
SIDE	348.44	-66.23	358.44	
DOWN	324.35	-59.70	350.12	
RIGHT	348.44	66.23	358.44	
SIDE	333.84	61.42	356.95	
DOWN	324.35	59.70	350.12	

AFT RCS THRUST APPLICATION

	X _o	Y _o	Z _o	
LEFT	1516	-132	480.5	RIGHT
SIDE	1529	-132	480.5	SIDE
UP	1542	-132	480.5	DOWN
RIGHT	1516	132	480.5	LEFT
SIDE	1529	132	480.5	SIDE
UP	1542	132	480.5	DOWN

ORIGINAL PAGES
OF POOR QUALITY

ULLAGE THRUST STEERING

ORIGINAL PAGE IS
OF POOR QUALITY

ANGULAR ACCELERATION

$$\dot{\omega}_P \text{ MAX} = 414 \text{ lb/min}$$

$$\Delta t_1 \approx 6.6 \text{ sec}$$

$$\Delta t_2 \approx 0.8 \text{ sec}$$

MECO THRUST TRANSIENT EFFECTS

BULKHEAD "TWANG"

BULKHEAD STRAIN ENERGY

BEFORE MECO

MECO THRUST TAILOFF

RCS THRUST DIRECTION

ORIGINAL PAGE IS
OF POOR QUALITY

PENDULUM MOTION

- SHUTTLE HYDRO ELASTIC MODELING AT MECO
- SHELL-FLUID $f_c = 26 \text{ Hz}$

$$\frac{T}{T} = 39$$

STRUCTURAL RESPONSE

$$R = 1 + \left| \frac{\cos \pi \frac{T}{T}}{\left(2 \frac{T}{T} \right)^2 - 1} \right| / -1.00016$$

NO "TWANG" PROBLEM

- AMPLITUDE $R \theta_{MAX} \approx 16 \text{ INCHES}$
- VERY MILD TRANSIENT

ET LO₂ TANK DRAINING

ORIGINAL PAGE IS
OF POOR QUALITY

LH₂ TANK DRAINING

- LH₂ TRAPPED IN ET (FLOW INERTIA AND SURFACE TENSION)
 - ~1000 LB AT 10^{-4} G & 650 LB/MIN
 - ~200 LB AT 10^{-3} G & 650 LB/MIN
 - ~400 LB AT 10^{-4} G & 100 LB/MIN
- ADEQUATE TANK DRAINING IS POSSIBLE

MAIN PROBLEM VARIABLES

THRUST/OPTIONS
& PROPELLANT
REQUIREMENTS

SIZE OF TRANSFER LINES

PUMPED OR PRESSURIZED TRANSFER

AMOUNT OF ET
PROPELLANT TO
BE TRANSFERRED

ORIGINAL ET PROPELLANT
OF POOR QUALITY

ULLAGE
ACCELERATION LEVEL

Space Operations and
Satellite Systems Division

101SSD21919

NOMINAL PROPELLANT RESIDUALS AT MECO

• INCLUDES ET & MPS PLUMBING

'ORBITER 103 NOMINAL'
RESIDUAL FOR ZERO
CARGO (71K LB)

DEDICATED
TANKER
"DRY LAUNCH"

NOMINAL RESIDUAL AT MECO - 1000 LB

ORIGINAL PAGE IS
OF POOR QUALITY

PROPELLANT RESIDUALS AT MECO (+5 SECONDS)

ORIGINAL PAGE IS
OF POOR QUALITY

Space Operations/Integration &
Satellite Systems Division

101SSD21918

FLOW RATE REQUIREMENTS

ORIGINAL PAGE IS
OF POOR QUALITY

ET LO₂ TRANSFER PHENOMENA

L₂ TRANSFER PRESSURE HISTORIES

- 98% RESIDUAL RECOVERY
 - COMPUTER SIMULATION OF ET ULLAGE PRESSURE HISTORY
 - POST-MECO ET ACCELERATION 10⁻⁴ G
- LO₂ PRESSURIZATION SYSTEM PERFORMANCE FOR BRM-1
FCV ORIFICES -6500, -6510
VARIABLE CO

TYPICAL LO₂ VAPOR PRESSURE PROFILES

- CONSTANT TRANSFER RATE 3250 LB/MIN
- WORST CASE POST-MECO HEATING
- ET LO₂ SETTLING (10⁻⁴ 6 MINIMUM)

Space Operations/Integration &
Satellite Systems Division

 Rockwell
International

101SSD21960

LO_2 TRANSFER LINE SIZE

Space Operations: Integration &
Satellite Systems Division

101SSD21959

LO₂ TRANSFER BOOST PUMP TRADE

Space Operations/Integration &
Satellite Systems Division

101SSD21995

ET LH₂ TRANSFER PHENOMENA

- 13 KLB XFER
- NO PUMP
- 4-IN. DIA LINE

VAPOR PRESS
(LINE INLET)

AXIAL MIXING &
ULLAGE CONDENSATION

ORIGINAL PAGE IS
OF POOR QUALITY

LH₂ TRANSFER PRESSURE HISTORIES

- PRESSURIZED XFER
 - 98% RESIDUAL RECOVERY
 - COMPUTER SIMULATION OF ET ULLAGE PRESSURE HISTORY
 - 10⁻⁴ G POST-MECO ACCELERATION
- LH₂ PRESSURIZATION SYSTEM PERFORMANCE FOR BRM-1
PRESSURANT SUPPLY CONDITIONS BASED ON JULY, 1980 INFLUENCE COEFF
FCV ORIFICES -5400, -5410

LH₂ TRANSFER BOOST PUMP TRADE

- WORST CASE HEATING
- 10~4 G (ET PRESS DECAY)
- 98% LH₂ RECOVERY
- INCLUDES EFFECTS OF 2nd FLOW

ORIGINAL PAGE IS
OF POOR QUALITY.

PRESSURIZED TRANSFER THE WAY TO GO ✓

Space Operations/Integration &
Satellite Systems Division

101SSD21999

PROPULSION/SCAVENGING SYSTEM SCHEMATIC

CONCEPT 'A'

VENT & RELIEF VALVE

ORIGINAL PAGE IS
OF POOR QUALITY.

ORBITER - MAIN PROPULSION SYSTEM.

CONCEPT 'A'

PROPULSION/SCAVENGING SYSTEM SCHEMATIC

ORIGINAL PAGE IS
OF POOR QUALITY

**Space Operations / Integration &
Satellite Systems Division**

101SSD21969

ORBITER - MAIN PROPULSION SYSTEM

CONCEPT 'B'

LO₂ FILL & DRAIN PORT

AVIONICS BAY 5
17.0 DIA MANIFOLD
RECIRC PUMP

ORIGINAL PAGE IS
OF POOR QUALITY.

CONVENTIONAL TANK CONCEPT

ORIGINAL PAGE IS
OF POOR QUALITY

TORUS & RING TANK CONCEPTS

ORIGINAL PAGE IS
OF POOR QUALITY.

Space Operations/Integration &
Satellite Systems Division

101SSD21976

TIP TANK CONCEPT

ORIGINAL PAGE IS
OF POOR QUALITY

Space Operations/Integration &
Satellite Systems Division

101SSD21975

BELLY TANK CONCEPT

WING AND GLOVE STORAGE TANK CONCEPT

Space Operations and
Satellite Systems Division

101SSD21973

ON-SITE FUEL TRANSFER CONCEPT

ORIGINAL PAGE IS
OF POOR QUALITY

Space Operations / Integration &
Satellite Systems Division

101SSD21968

CREW CONSIDERATIONS

AFT FLIGHT DECK - VIEW LOOKING AFT

FLIGHT DECK

ORIGINAL PAGE IS
OF POOR QUALITY.

Space Operations/Integration &
Satellite Systems Division

Rockwell
International

101SSD22007

REPRESENTATIVE SCAVENGING SEQUENCE

TIME	EVENT
• T/O + 100 SEC	• START VENTING RECEIVER TANKS
• MECO	• TURN ON RCS SETTLING THRUSTERS
• MECO + 10 SEC	• VERIFY RECEIVER TANKS BELOW ONE PSIA • CLOSE RECEIVER VENT VALVES
• MECO + 15 SEC	• OPEN ISO-VALVES TO START CHILLDOWN OF LOX & LH2 XFER LINES • MONITOR SYSTEM FLOWS/TEMPS/PRESS
• MECO + 60 SEC	• OPEN MAIN FILL VALVES • START LOX PUMP • MONITOR SYSTEM FLOWS/TEMPS/PRESS
• MECO + 460 SEC	• STOP LOX PUMP AND CLOSE ET DISCONNECT WHEN ET LINE DEPLETED (FLOWRATE < 5% AS RECEIVER PRESSURE REACHES 26 PSIA). ALLOW CRYOPUMPING FROM MPS INTO RECEIVER TANK • STOP RCS SETTLING THRUST WHEN LH2 ET DEPLETED (EXCESSIVE BUBBLES IN XFER LINE) AND ALLOW LH2 SIPHON TO DRAIN (AIDED BY AERO-DRAg)
• MECO + 1200 SEC	• CLOSE LH2 ET DISCONNECT WHEN LH2 SIPHON DEPLETED (FLOWRATE (FLOWRATE < 5% OR RECEIVER PRESS REACHES 26 PSIA). ALLOW CRYOPUMPING FROM MPS INTO RECEIVER TANK • SEPARATE ET • TERMINATE CRYOPUMPING BY CLOSING XFER LINE ISO-VALVES WHEN RECEIVER TANK PRESSURES REACH 28 PSIA (OR MPS PRESSURES EQUAL RECEIVER PRESSURES.
• MECO + 1400 SEC	• QMS 1 BURN • VENT MPS PLUMBING AND SECURE XFER SYSTEM

ASSUMPTIONS

- MAXIMUM RESIDUALS
(65K LOX, 13K LH2)
- 8 MINUTE XFER TIME
- PRESSURIZED LH2 XFER
(6 IN. DIA. LINE)
- PUMPED LOX XFER
(6 KW, 6 IN. DIA. LINE)
- SECONDARY ZONE
- ET IMPACT
- SETTLING THRUST,
 5×10^{-3} G
(2 PRIMARY RCS
THRUSTERS)
- LH2 RECEIVER TANK
PRECHILLED TO 160°R
(LN2)

SAFETY CONSIDERATIONS

ISSUE	COMMENT
LINE INTEGRITY	QUALIFY TO MPS PLUMBING REQ
MPS INTEGRITY	MULTIPLE ISOLATION VALVES
VALVE MALFUNCTION	REDUNDANT VALVING
O_2 AND H_2 LEAKAGE	GN_2 PURGE ON THE PAD; MINIMAL HAZZARD IN SPACE
SAFEING FOR RE-ENTRY	VENT SYSTEM TO SPACE, PRESS TO 16 PSIA WITH INERT GAS
ET IMPACT	ACCEPTABLE IMPACT ZONES ARE ACHIEVABLE
MECO CHANGE	LESS THAN 1 SECOND CHANGE REQUIRED
RCS MODS	WITHIN THE COMPLEXITY LEVEL OF CURRENT SYSTEM
CREW OPERATIONS	MINIMAL ACTION REQUIRED BEFORE MECO
ORBITER ENGINE OUT	SHUTTLE E/O TOLERANCE INCREASED WITH "DRY LAUNCH" CONCEPT
LO_2 AND LH_2 ABORT DUMPING	NONE REQUIRED WITH "DRY LAUNCH" CONCEPT

SUMMARY

- ESTABLISHED SUBORBITAL ET PROPELLANT RECOVERY AS A VIABLE CONCEPT
- PROPELLANT TRANSFER ACHIEVABLE WITHIN PRACTICAL TIMES
- ULLAGE THRUSTING REQUIREMENTS CAN BE MET BY PRIMARY RCS
- PLUMBING REQUIREMENTS CAN BE SATISFIED WITHIN ORBITER SPACE/VOLUME CONSTRAINTS
- ET IMPACT ZONES ARE ACCEPTABLE
- EFFECTS ON SHUTTLE PAYLOADS ARE NEGIGIBLE
- WIDE RANGE OF APPLICATIONS ARE POSSIBLE
- BEST APPLICATION IS TRAFFIC DEPENDENT
- NEXT STEP: FURTHER HARDWARE DEFINITION AND STUDY PRELIMINARY OF COST IMPLICATIONS

TASK 2 -- SOC ASSEMBLY OPERATIONS OBJECTIVES

- CONFIRM CAPABILITY OF RMS TO ASSEMBLE SOC
- DETERMINE ASSEMBLY OPERATIONAL IMPLICATIONS
- DETERMINE IMPLICATIONS TO SOC MODULES

**TASK 2 - SOC ASSEMBLY OPERATIONS
APPROACH**

SOC ASSEMBLY

ORIGINAL PAGE IS
OF POOR QUALITY.

101SSDI4898B

**Space Operations/Integration &
Satellite Systems Division**

RMS / SOC ASSEMBLY ISSUES

- RMS REACH & JOINT LIMITS DURING SOC ASSEMBLY TRAJECTORIES
 - START & FINAL END EFFECTOR LOCATIONS
 - IN-BETWEEN POINTS
- PRACTICAL LOCATION ZONES FOR GRAPPLE FIXTURES
- BERTHING ACCURACY V/S GRAPPLE FIXTURE LOCATION
- ASSEMBLY AIDS -- DM, HPA, PIDA
 - OPERATOR VISIBILITY
- COLLISION AVOIDANCE DURING ASSEMBLY

RMS PARAMETERS OF MAIN INTEREST

- JOINT ANGLE LIMITS AT BERTHING
 - NO BERTHING IN REACH LIMIT OR SINGULARITY ZONES
 - WRIST YAW ANGLE NOT GREATER THAN ± 60 DEG
 - ELBOW ANGLE NOT LESS THAN - 40 DEG
- GRAPPLER FIXTURE LOCATION
 - WITHIN 5% (OF PAYLOAD LENGTH) OF THE Y-Z PLANE OF PAYLOAD CENTER OF MASS
- POSITIONING ACCURACY -- RELATIVE TO ORBITER
 - AUTO MODE: ± 9 INCHES MAX } INCLUDES MECHANICAL
} INACCURACIES &
 ± 3 DEGREES MAX } THERMAL DISTORTIONS
 - MAM: FUNCTION OF OPERATOR VISIBILITY

REMOTE MANIPULATOR SYSTEM KINEMATIC ANALYSIS TOOL
(RMSKAT)*

- COMPUTER PROGRAM FOR KINEMATIC EVALUATION OF RMS OPERATIONAL ENVELOPES
- RIGID BODY SIMULATIONS ONLY
- GRAPHIC FEED BACK (SOC GRAPHICS MOD IN PROGRESS)
- TWO OPERATING MODES

INPUT

- START & FINAL END EFFECTOR COORDINATES & ORIENTATION IN ORBITER REFERENCE SYSTEM

OUTPUT

- RMS JOINT ANGLE READINGS AT SPECIFIED TIME INTERVALS
- END EFFECTOR COORDINATES & ORIENTATION IN ORBITER REFERENCE SYSTEM
- RMS JOINT ANGLE SPECIFICATIONS

*DEVELOPED WITH DISCRETIONARY FUNDS

RMSKAT SAMPLE OUTPUT

TIME: 9.00 SECONDS

PPOSE3 1	-1117.000	PPOPPS 2	25.000	PPOSES 3	-566.000	ATIMES 1	271.000	ATIMES 2	0.000	ATIMES 3	271.000
PPOPPS 1	-1116.985	PPOPPS 2	24.997	PPOPPS 3	-565.976	PINATT 1	269.979	PINATT 2	0.002	PINATT 3	269.974
CRCB 1	0.000	CRCB 2	1.000	CRCB 3	5.000	RCRCB 4	0.000	RCRCB 5	0.000	RCRCB 6	0.000
RCRCB 1	0.000	RCRCB 2	0.000	RCRCB 3	0.000	RCRCB 4	0.000	RCRCB 5	0.000	RCRCB 6	0.000
RCRCB 1	-52.650	RCRCB 2	97.030	RCRCB 3	-126.880	RCRCB 4	-77.650	RCRCB 5	11.770	RCRCB 6	-15.730
RCRCB 1	-52.650	RCRCB 2	97.030	RCRCB 3	-126.880	RCRCB 4	-77.650	RCRCB 5	11.770	RCRCB 6	-15.730
RCRCB 1	0.000	RCRCB 2	0.000	RCRCB 3	0.000	RCRCB 4	0.000	RCRCB 5	0.000	RCRCB 6	0.000
ROT 1	0.000	ROT 2	0.000	ROT 3	0.000	ROT 4	0.000	ROT 5	0.000	ROT 6	0.000
ROT 1	269.952	ROT 2	-7.787	ROT 3	92.920	ROT 4	-1.720	ROT 5	0.000	ROT 6	0.000
PPOSE3 1	1.000	PPOSE3 2	0.000	PPOSE3 3	0.000	PPOSE3 4	0.000	PPOSE3 5	0.000	PPOSE3 6	0.000
PPOSE3 1	0.000	PPOSE3 2	-0.007	PPOSE3 3	1.000	PPOSE3 4	0.028	PPOSE3 5	0.000	PPOSE3 6	0.019
PPOSE3 1	0.000	PPOSE3 2	0.000	PPOSE3 3	0.000	PPOSE3 4	0.000	PPOSE3 5	0.000	PPOSE3 6	0.000
MSEL 1	0.000	MSEL 2	0.000	MSEL 3	0.000	XSEL 1	0.000	XSEL 2	0.000	XSEL 3	0.000
NOTICE 1	0.000	NOTICE 2	0.000	NOTICE 3	0.000	NOTICE 4	0.000	NOTICE 5	0.000	NOTICE 6	0.000

TIME: 10.00 SECONDS

PPOSE3 1	-1117.000	PPOSE3 2	25.000	PPOSE3 3	-566.000	ATIMES 1	270.000	ATIMES 2	0.000	ATIMES 3	270.000
PPOPPS 1	-1119.142	PPOPPS 2	21.002	PPOPPS 3	-564.151	PINATT 1	269.993	PINATT 2	0.012	PINATT 3	270.011
RCRCB 1	-1.530	RCRCB 2	2.290	RCRCB 3	-2.953	RCRCB 4	-0.053	RCRCB 5	-0.312	RCRCB 6	-1.445
RCRCB 1	1.530	RCRCB 2	-2.290	RCRCB 3	2.953	RCRCB 4	0.053	RCRCB 5	0.312	RCRCB 6	-1.545
RCRCB 1	-52.650	RCRCB 2	97.030	RCRCB 3	-126.880	RCRCB 4	-77.650	RCRCB 5	11.770	RCRCB 6	-15.730
RCRCB 1	-52.650	RCRCB 2	97.030	RCRCB 3	-126.880	RCRCB 4	-77.650	RCRCB 5	11.770	RCRCB 6	-15.730
RCRCB 1	0.000	RCRCB 2	0.000	RCRCB 3	0.000	RCRCB 4	0.000	RCRCB 5	0.000	RCRCB 6	0.000
ROT 1	0.000	ROT 2	0.000	ROT 3	0.000	ROT 4	0.000	ROT 5	0.000	ROT 6	0.000
ROT 1	269.957	ROT 2	80.370	ROT 3	-107.897	ROT 4	-73.776	ROT 5	16.123	ROT 6	-34.294
ROT 1	0.000	ROT 2	0.000	ROT 3	0.000	ROT 4	0.000	ROT 5	0.000	ROT 6	0.000
ROT 1	269.957	ROT 2	-1.113	ROT 3	91.837	ROT 4	-1.720	ROT 5	0.000	ROT 6	0.928
PPOSE3 1	0.000	PPOSE3 2	0.000	PPOSE3 3	0.000	PPOSE3 4	0.000	PPOSE3 5	1.000	PPOSE3 6	0.007
PPOSE3 1	0.000	PPOSE3 2	-0.007	PPOSE3 3	1.000	PPOSE3 4	0.000	PPOSE3 5	1.000	PPOSE3 6	0.007
MSEL 1	0.000	MSEL 2	0.000	MSEL 3	3.421	XSEL 1	-1.102	XSEL 2	0.004	XSEL 3	0.001
NOTICE 1	0.000	NOTICE 2	0.000	NOTICE 3	0.000	NOTICE 4	0.000	NOTICE 5	0.000	NOTICE 6	0.000

ORIGINAL PAGE IS
OF POOR QUALITY

Space Operations/Integration &
Satellite Systems Division

91SSD21814

RMSKAT SAMPLE OUTPUT

Space Operations/Integration &
Satellite Systems Division

91SSD21815

SOC ASSEMBLY -- END EFFECTOR LOCATIONS
ALTERNATIVE SCENARIO NO. 1

ORIGINAL PAGE IS
OF POOR QUALITY

FLIGHT NO.	PAY- LOAD	INITIAL RMS END EFFECTOR COORDINATES			FINAL RMS END EFFECTOR COORDINATES			WRIST ATTITUDE					
		X ₀	Y ₀	Z ₀	P	Y	R	X ₀	Y ₀	Z ₀	P	Y	R
1	SM-1	1053	129.06	568.88	270	90	329	671.00	0	755.00	0	0	0
2	SM-2	1035	129.06	568.88	270	90	329	363.00	0	627.00	270	0	270
3	HM-1	1062	99.92	586.39	270	90	329	950.00	-84.00	857.00	0	90	0
4	HM-2	1062	99.92	586.39	270	90	329	950.00	-84.00	857.00	0	90	0
5A	LM	1186.5	99.92	586.39	270	90	329	852.50	155.00	802.64	0	90	0
5B	TM	750	0	400.00	180	180	0	679.50	-407.00	827.64	90	0	90
5C	TM	750	0	400.00	180	180	0	679.50	-407.00	827.64	90	0	90
6	FSF	1002	129.06	568.88	270	90	329	983.00	0	773.00	0	90	0
DM INTERFACE		621.00	0	515.00									
HPA INTERFACE		679.50	239.00	520.64									

Space Operations/Integration &
Satellite Systems Division

91SSD2182I

SOC TUNNEL ASSEMBLY

ORIGINAL PAGE IS
OF POOR QUALITY

Space Operations/Integration &
Satellite Systems Division

101SSD22139

RMS ANGLES -- SOC ASSEMBLY

ORIGINAL PAGE IS
OF POOR QUALITY.

MODULE	SY (-177.4 TO 177.4)	SP (0.6 TO 142.4)	EP (-0.4 TO -157.6)	WP (-116.4 TO 116.4)	WY (-116.6 TO 116.6)	WR (-442 TO 442)
SM-1 STOWED ↓	-31.54 -46.68 -61.82 -76.97	50.71 68.02 85.34 102.65	-72.86 -82.50 -92.14 -101.79	-11.92 51.77 115.45 179.14	-53.47 -61.30 -69.13 -76.97	-28.52 17.48 63.48 109.48
SM-1 DEPLOYED						
SM-2 STOWED SM-2 DEPLOYED	-32.82 -32.59	54.09 76.54	-78.37 -85.32	-8.85 -92.01	-52.40 16.32	152.65 -55.85
HMI STOWED HMI DEPLOYED	-30.93 -21.64	60.48 78.56	-82.34 -42.91	-12.68 -79.48	-53.97 -61.20	-29.10 140.00
HM2 = HMI						
LM STOWED LM DEPLOYED	-28.62 -61.31	53.82 75.58	-72.01 -68.93	-18.26 -28.61	-55.85 -26.91	148.57 169.66
TM STOWED ↓	-28.99 0.54 27.91 56.36	71.21 75.00 78.80 82.58	-133.56 -97.30 -61.10 -24.99	-37.38 15.80 69.10 122.41	-16.96 30.20 43.30 56.36	120.45 56.70 6.90 -70.52
TM DEPLOYED						

Space Operations/Integration &
Satellite Systems Division

101SSD22009

**TASK 4 -- FLIGHT SUPPORT FACILITY
OBJECTIVES**

**COMPARE SERVICING / CHECKOUT LOGIC & COSTS OF
SERVICING FREE FLYERS AT THE SOC FLIGHT SUPPORT
FACILITY (FSFI), ON THE GROUND & FROM THE ORBITER**

Space Operations/Integration &
Satellite Systems Division

91SSD21842

TASK 4 -- FLIGHT SUPPORT FACILITY

ACCOMPLISHMENTS TO DATE

- UPDATED SOC REFERENCE CONFIGURATION

- SELECTED THREE REPRESENTATIVE SPACECRAFTS FOR SERVICING & COST ESTIMATES

- SINGLE STAGE OTV

- GEO COMMUNICATION SATELLITE

- SPACE PROCESSING FACILITY (FREE FLYER)

- GENERATED SERVICING SCENARIOS

- COMPLETED SERVICING SCENARIO ANALYSIS & DETERMINED IMPLICATIONS

- COMPLETED MANPOWER ESTIMATES FOR SERVICING SCENARIOS

Space Operations/Integration &
Satellite Systems Division

91SSD21844

SPACE OPERATIONS CENTER (SOC)

Space Operations/Integration &
Satellite Systems Division

101SSD22093

REPRESENTATIVE SPACECRAFTS

COMMUNICATION SATELLITE

SPACE PROCESSING FACILITY

ORIGINAL PAGE IS
OF POOR QUALITY

S/C	GROUND SERVICING	ORBITER SERVICING	SOC SERVICING
OTV	✓	N/A	✓
COMM SAT	N/A	✓ INITIAL ASSY & LAUNCH TO GEO	✓ INITIAL ASSY & LAUNCH TO GEO
SPACE PROCESSING FACILITY	N/A	✓	✓

• FEATURES SIGNIFICANT TO SERVICING

- LOADING OF FLUIDS
- CRYOGENICS - LO₂, LH₂
- NON-CRYOGENICS - He, GN₂, HYDRAZINE
- MODULE & COMPONENT EXCHANGE OPS
- EXTENSIVE DEPLOYMENT & C/O OPS
- FREQUENT REVISITS
- SMALL TO LARGE S/C

ORBIT TRANSFER VEHICLE (OTV)

ORIGINAL PAGE IS
OF POOR QUALITY

- REFUELING OF A SPECTRUM OF PROPELLANTS- LO_2/LH_2 ; HYDRAZINE; He & GN_2

- EXTENSIVE SERVICING & MODULE EXCHANGE OPERATIONS ARE REQUIRED
- FREQUENT VISITS TO SOC

GEOSYNCHRONOUS COMMUNICATIONS SPACECRAFT --
CONFIGURATION NO. 1

SPACE PROCESSING FACILITY (SPF)

- VERY SMALL SPACECRAFT
- FREQUENT REVISITS TO SOC
- SERVICING INCLUDE MODULE &
- COMPONENT EXCHANGE OPERATIONS
- REFUELING IS REQUIRED

Space Operations/Integration &
Satellite Systems Division

101SSD22097

ORBITER
BASIC GROUNDRULES AND ASSUMPTIONS

- TRANSPORTATION VEHICLE IS STD STS
- SERVICING TO BE CONDUCTED WITHIN ORBITER OPERATIONAL & SAFETY CONSTRAINTS
- REMOTE SERVICING OPERATIONS CAPABILITY WITH EVA BACKUP
- CONTROL & DATA LINKS WITH S/C BEING SERVICED
- VOICE LINK WITH S/C OCC
- LOGISTICS & FUEL REPLENISHMENT PROVISIONS
 - UNAVAILABLE FOR COMMSAT & OTV
 - AVAILABLE FOR SPF
- RMS, DOCKING MODULE, HPA, PIDA, & FSS AVAILABLE AS ASE OPTIONS

SOC
BASIC GROUNDRULES AND ASSUMPTIONS

- CONFIGURATION PER SOC / SHUTTLE INTERACTION STUDY & AS UPDATED FOR EXTENSION STUDY
- SERVICING TO BE CONDUCTED WITHIN SOC OPERATIONAL & SAFETY CONSTRAINTS AT 28.5° INCCL & 200 NM ALTITUDE
- LOGISTICS & REFUELING PROVISIONS ON SOC
- CONTROL & DATA LINKS WITH S/C BEING SERVICED
- VOICE LINK WITH S/C OCC
- NON-PROPELLSIVE VENT & PURGE PROVISIONS

Space Operations/Integration &
Satellite Systems Division

915SD21846

**GROUND BASED OTV
BASIC GROUNDRULES AND ASSUMPTIONS**

- CONTROL & DATA LINK WITH ORBITER
- LAUNCHED IN FUELED CONDITION
- STRUCTURAL STRENGTH FOR FUELED LAUNCH
- PROVISION FOR HANDLING BY ORBITER
- HEALTH, STATUS & PERFORMANCE MONITORING PROVISIONS OF OTV & ITS SUBSYSTEMS
- NON-PROPELLIVE VENT & PURGE PROVISIONS
- SWITCHING CAPABILITY TO REDUNDANT SYSTEMS OR UNITS

SPACE BASED OTV BASIC GROUNDRULES AND ASSUMPTIONS

- CONTROL & DATA LINKS WITH ORBITER & SOC
- MODULAR COMPONENT DESIGN TO FACILITATE ON ORBIT REPLACEMENT
- HEALTH, STATUS & PERFORMANCE MONITORING PROVISIONS OF OTV & ITS SUBSYSTEM
- LAUNCHED IN NON-FUELED CONDITIONS
- PROVISIONS FOR HANDLING BY SOC & ORBITER
- NON-PROPELLSIVE VENT & PURGE PROVISIONS
- OTV RETURNS TO EARTH AFTER 8 MISSIONS FOR MAJOR GROUND OVERHAUL
- SINGLE STAGE -- UNMANNED OTV CONFIGURATIONS
- SWITCHING CAPABILITY TO REDUNDANT SYSTEMS OR UNITS

COMMSAT BASIC GROUNDRULES AND ASSUMPTIONS

- LAUNCHED IN FUELED CONDITION
- CONTROL & DATA LINKS WITH SOC & ORBITER
- MANUAL OVERRIDE PROVISIONS FOR ALL MECHANISMS
- MODULAR COMPONENT DESIGN TO FACILITATE ON-ORBIT REPLACEMENT
- ACCESSIBILITY IS PRIME DESIGN REQUIREMENT
- HEALTH, STATUS & PERFORMANCE MONITORING PROVISIONS OF COMMSAT & ITS SUBSYSTEMS
- SWITCHING CAPABILITY TO REDUNDANT SYSTEMS OR UNITS

SPF

BASIC GROUNDRULES AND ASSUMPTIONS

- RETRACTABLE SOLAR ARRAYS
- CONTROL & DATA LINKS WITH ORBITER & SOC
- LAUNCHED IN FUELED CONDITION
- NON-PROPELLIVE VENT & PURGE PROVISIONS
- SWITCHING CAPABILITY TO REDUNDANT SYSTEMS OR UNITS
- MODULAR COMPONENT DESIGN TO FACILITATE ON-ORBIT REPLACEMENT

OTV -- GROUND SERVICING

Space Operations/Integration &
Satellite Systems Division

91SSD21852

OTV -- SOC SERVICING

COMM SAT -- ORBITER SERVICING

COMM SAT -- SOC SERVICING

SPACE PROCESSING FACILITY -- ORBITER SERVICING

Space Operations/Integration &
Satellite Systems Division

**Rockwell
International**

9155D21856

SPACE PROCESSING FACILITY -- SOC SERVICING

**COMMSAT -- SOC SERVICING
SCENARIO**

**ORIGINAL PAGE IS
OF POOR QUALITY**

COMMSAT -- APPENDAGES DEPLOYMENT SCENARIO

ORIGINAL PAGE IS
OF POOR QUALITY

Space Operations/Integration &
Satellite Systems Division

101SSD22091

COMMSAT / OTV MATING & DEPLOYMENT SCENARIO

ORIGINAL PAGE IS
OF POOR QUALITY.

Space Operations / Integration &
Satellite Systems Division

101SSD22090

**SPACE PROCESSING FACILITY
ORBITER SERVICING**

ORIGINAL PAGE IS
OF POOR QUALITY

**Rockwell
International**

Space Operations/Integration &
Satellite Systems Division

101SSD22081

SPACE PROCESSING FACILITY
DELIVERY AND CHECK-OUT BY ORBITER

ORIGINAL PAGE IS
OF POOR QUALITY

101SSD22082

Rockwell
International

Space Operations/Integration &
Satellite Systems Division

SPACE PROCESSING FACILITY
DEPLOY AND RETRIEVE SPACECRAFT BY ORBITER

ORIGINAL PAGE IS
OF POOR QUALITY

- REMOVE MODULE FROM HPA WITH RMS, CLEAR ORBITER AND RELEASE
- RECAPTURE MODULE WITH RMS

Space Operations/Integration &
Satellite Systems Division

101SSD22083

SPACE PROCESSING FACILITY
BERTH AND SERVICE SPACECRAFT AT ORBITER

ORIGINAL PAGE IS
OF POOR QUALITY

RMS OPERATIONS

- BERTH MODULE TO HPA
- CONNECT UMBILICAL
- EXCHANGE CANNISTERS
- DISCONNECT UMBILICAL
- DEPLOY

Rockwell
International

Space Operations / Integration &
Satellite Systems Division

101SSD22084

OTV GROUND SERVICING IMPLICATIONS

SUMMARY OF REQUIRED SERVICE PROVISIONS & EQUIPMENT

OTV	GSE	ORBITER
• CRANE INTERFACE	• ORBITER PROCESSING FACILITY • CRANE • OTV TRANSPORT DEVICE	• STD ORBITER PLUS
• TRANSPORT DEVICE INTERFACE	• OTV PROCESSING FACILITY • OTV SERVICE FIXTURE WITH SERVICE CORRECTIONS	• PIDA • HPA
• SERVICE FIXTURE INTERFACE	• FUNCTIONAL TEST STATION • LRU STORAGE	• OTV FLUIDS INTERFACE
• PIDA INTERFACE	• MANUAL TOOLS FOR ASSEMBLY/ DISASSEMBLY • CRANE	• OTV ELECT INTERFACE
• HPA INTERFACE		
• GRAPPLE FIXTURES		
• VERTICAL PROCESSING	• VERTICAL PROCESSING FACILITY • CRANE	• VERTICAL PROCESSING FACILITY • CRANE
• FACILITY INTERFACE	• VERTICAL PAYLOAD HANDLING DEVICE • P/L BAY INTERFACE MOCKUP	• VERTICAL PAYLOAD HANDLING DEVICE • P/L BAY INTERFACE MOCKUP
• ORBITER INTERFACE	• ROTATING SERVICE STRUCTURE • CRANE	• ROTATING SERVICE STRUCTURE • CRANE
• STRUCTURAL	• FLUID TANKAGE & UMBILICALS	• FLUID TANKAGE & UMBILICALS
• FLUID	• PAYLOAD GROUND HANDLING MECHANISM	• PAYLOAD GROUND HANDLING MECHANISM

OTV-SOC SERVICING IMPLICATIONS

SUMMARY OF REQUIRED SERVICE PROVISIONS & EQUIPMENT

OTV	SOC
<ul style="list-style-type: none">• REMOTE SAFING SYSTEM• COMMUNICATION & DATA LINK TO SOC & GROUND OCC• NON-PROPELLIVE VENT SYSTEM• DOCKING PORT WITH ALIGNMENT TARGET• OTV-SOC SYSTEM INTERFACES (3-FLUID & 1-ELECT). WITH DUAL QUICK DISCONNECTS• OTV-SOC STRUCTURAL INTERFACES (2 PIDA DEVICES)• OTV-SOC MANIPULATOR INTERFACES (2 GRAPPLE FIXTURES)• ACCESSIBLE COMPONENT DESIGN	<ul style="list-style-type: none">• OTV CONTROL & MONITOR STATION• COMMUNICATION & DATA LINKS TO OTV & ITS GROUND OCC• ACTIVE DOCKING PORT ON FSF WITH ALIGNMENT MONITORING SYSTEM• EXTENDABLE NON-PROPELLIVE BOOM• MOBILE MANIPULATORS (2) WITH STD END EFFECTOR & SPEE• CCTV CAMERA ON MOBILE MANIPULATORS• OPEN CHERRY PICKER & MMU• RETRACTABLE UMBILICALS -- 3 FLUID & 1 ELECT• LRU STORAGE & RETRIEVAL SYSTEM

Space Operations/Integration &
Satellite Systems Division

91SSD21862

COMMSAT - ORBITER SERVICING IMPLICATIONS

SUMMARY OF REQUIRED SERVICE PROVISIONS AND EQUIPMENT

COMMSAT	ORBITER
<ul style="list-style-type: none">• PIDA HEAD• GRAPPLE FIXTURE• HPA INTERFACE• COMMSAT-ORBITER SYSTEM CHECKOUT INTERFACE• APPENDAGES WITH REMOTE RELEASE, DEPLOY & LATCH SYSTEM• MANUAL OVERRIDE PROVISIONS FOR ALL MECHANISMS• SAFING SYSTEM• COMMSAT - OTV STRUCTURAL & FUNCTIONAL INTERFACES• ACCESSIBLE COMPONENT DESIGN• COMMUNICATION & DATA LINKS WITH ORBITER & GROUND OCC	<ul style="list-style-type: none">• PIDA• HPA• RETRACTABLE UMBILICAL SYSTEM• OTV COMPATIBLE WITH COMMSAT• OPEN CHERRY PICKER & MMU• COMMSAT CONTROL & MONITER STATION• COMMUNICATION & DATA LINKS WITH COMMSAT & ITS GROUND OCC• SYSTEM CONTINUITY ORBITER - OTV-COMMSAT

COMSAT-SOC SERVICING IMPLICATIONS

SUMMARY OF REQUIRED SERVICE PROVISIONS & EQUIPMENT

COMMSAT	SOC	ORBITER
<ul style="list-style-type: none"> • PIDA HEAD • GRAPPLE FIXTURE • BERTHING PORT WITH ALIGNMENT TARGET • COMMSAT-SOC SYSTEM C/O INTERFACE • APPENDAGES WITH REMOTE RELEASE, DEPLOY, & LATCH SYS • SAFING SYSTEM • COMMSAT-OTV STRUCTURAL & FUNCTIONAL INTERFACES • ACCESSIBLE COMPONENT DESIGN • COMMUNICATION & DATA LINKS WITH SOC & GROUND OCC • MANUAL OVERRIDE PROVISIONS FOR ALL MECHANISMS 	<ul style="list-style-type: none"> • MANIPULATOR WITH STD END EFFECTOR • CCTV CAMERA ON MANIPULATOR • ACTIVE BERTHING PORT WITH ALIGNMENT MONITORING SYSTEM • RETRACTABLE UMBILICAL SYSTEM • OTV COMPATIBLE WITH COMMSAT SYSTEM CONTINUITY SOC-OTV-COMMSAT • OPEN CHERRY PICKER & MMU • COMMSAT CONTROL & MONITER STATION • COMMUNICATION & DATA LINK WITH COMMSAT & ITS OCC 	<ul style="list-style-type: none"> • STD ORBITER PLUS • PIDA

Space Operations/Integration &
Satellite Systems Division

101SSD21859

SPF -- ORBITER SERVICING IMPLICATIONS

SUMMARY OF REQUIRED SERVICE PROVISIONS & EQUIPMENT

SPF	ORBITER
<ul style="list-style-type: none">• GRAPPLE FIXTURE• PIDA HEAD FITTINGS• SPF-ORBITER SYSTEM INTERFACE• MODULE LATCHING & RELEASE MECHANISM• EXPERIMENT CANNISTER LATCHING & RELEASE MECHANISM• REPLACEABLE MODULE & CANNISTER DESIGN• COMMUNICATION & DATA LINK WITH ORBITER & GROUND OCC	<ul style="list-style-type: none">• STANDARD ORBITER PLUS• SCUFF PLATES• HPA• SPF-ORBITER UMBILICAL• SPEE• MODULE & CANNISTER STORAGE & RETRIEVAL SYSTEM• MMU• COMMUNICATION & DATA LINK WITH SPF & ITS GROUND OCC

SPF-SOC SERVICING IMPLICATIONS

SUMMARY OF REQUIRED SERVICE PROVISIONS & EQUIPMENT

SPF	SOC	ORBITER
• GRAPPLE FIXTURE	• SPF CONTROL & MONITOR STATION	• STD ORBITER PLUS
• PIDA HEAD FITTINGS	• COMMUNICATION & DATA LINKS WITH SPF & ITS GROUND OCC	• SCUFF PLATES • HPA
• SPF-SOC SYSTEM INTERFACE	• MOBILE MANIPULATOR WITH STD END EFFECTOR & SPEE	• MODULE & CANNISTER STORAGE
• MODULE LATCHING & RELEASE MECHANISM	• CCTV CAMERA ON MOBILE MANIPULATOR	
• EXPERIMENT CANNISTER LATCHING & RELEASE MECHANISM	• OPEN CHERRY PICKER & MMU	
• REPLACEABLE MODULE & CANNISTER DESIGN	• RETRACTABLE UMBILICALS WITH REFUELING PROVISIONS	
• COMMUNICATION & DATA LINK WITH SOC & GROUND OCC	• MODULE & CANNISTER STORAGE & RETRIEVAL SYSTEM	

CHECK-OUT SERVICING MANHOURS

Space Operations/Integration &
Satellite Systems Division

101SSD22085

CHECKOUT / SERVICING TIMELINE
OTV -- GROUND SERVICING

Space Operations/Integration &
Satellite Systems Division

101SSD22086

**CHECKOUT / SERVICING TIMELINE
OTV TURNAROUND AT SOC
(INCL P/L MATE)**

Space Operations/Integration &
Satellite Systems Division

1015SD22087

**SPACE PROCESSING FACILITY
ORBITER TURNAROUND OPERATIONS -- TIMELINE**

Space Operations/Integration
Satellite Systems Division

101SSD22088

SPACE PROCESSING FACILITY
TURNAROUND OPERATIONS AT SOC

Space Operations/Integration &
Satellite Systems Division

101SSD22089

CHECK-OUT/SERVICING MANHOURS SUMMARY

LOCATION	ELAPSED TIME	MAN-HOURS	NO. CREW	
			RANGE	Avg
OTV - GROUND	134.0	576.0	3 - 6	4.3
OTV - SOC	26.3	99.7	3 - 5	3.8
COMM SAT - ORBITER	50.8	164.8	2 - 4	2.4
COMM SAT - SOC	61.0	199.6	2 - 5	2.6
SPACE PROCESSING - ORBITER	27.5	106.0	2 - 4	3.5
SPACE PROCESSING - SOC	29.6	103.4	3 - 4	3.5

Space Operations/Integration &
Satellite Systems Division

10ISSD22092

SUMMARY

COMPLETED TASKS

- GENERATED SERVICING SCENARIOS FOR 3 REF S/C
(6 SERVICING CONDITIONS)
- ANALYZED ALL SERVICING SCENARIOS & DETERMINED IMPLICATIONS
- ESTIMATED SERVICING TIMELINES FOR 4 OF THE 6 CONDITIONS

TASKS TO BE COMPLETED

- ESTIMATE TIMELINES FOR COMMSAT SERVICING AT ORBITER & SOC
- PREPARE PRELIMINARY DESIGN LAYOUT OF SOC FSF & INTEGRATING RESULTS OF SERVICING SCENARIO ANALYSIS
- GENERATE & COMPARE SERVICING COST DATA

CONCLUSIONS AND PLANS

- FLEET UTILIZATION ANALYSIS HAS BEEN STARTED...
 - IMPORTANT RESULTS ARE EXPECTED
- SOC ASSEMBLY ANALYSIS UNDERWAY...
 - COMPUTER INTERACTIVE GRAPHICS WILL GIVE HIGH CONFIDENCE TO CLEARANCE GEOMETRIES
- ET PROPELLANT SCAVENGING PROVEN FEASIBLE...
 - AMPLE TRANSFER TIME
 - ET IMPACT SATISFIED
 - NO SIGNIFICANT STS PAYLOAD IMPACT
 - ACCEPTABLE SAFETY STANDARDS CAN BE MET
 - WIDE RANGE OF APPLICATION SCENARIOS IS POSSIBLE
- FLIGHT SUPPORT FACILITY ANALYSIS WELL UNDERWAY...
 - SERVICING IMPLICATIONS IDENTIFIED
 - SERVICING TIMELINES AND COST DATA ARE BEING GENERATED
 - KEY INSIGHTS INTO COST EFFECTIVENESS OF VARIOUS SERVICING SCENARIOS WILL BE GAINED

Space Operations/Integration &
Satellite Systems Division

i10iSSD2214B