第一章

1.1 (分派问题)设有n种不同规格的零件要分派在n台不同性能的机床上进行加工,每种零件分派且仅分派在一台机床上加工,每台机床有且仅有一个零件分排在它上加工,设产品i在机床j上加工时的工时定额为 d_{ij} 。问这n种零件应各分派给哪一台机床加工,才能使总加工时间最少?

解: 设变量 $x_{ij} = \begin{cases} 1, & \text{当零件}i 分派在机床j 上加工时, \\ 0, & \text{当零件}i 不分派在机床j 上加工; \end{cases}$

则总加工时间为
$$t = \sum_{i=1}^{n} \sum_{j=1}^{n} x_{ij} d_{ij}$$
,同时应满足 $\sum_{i=1}^{n} x_{ij} = 1$,其中 $i, j = 1 \sim n$ 。

该问题的数学模型为

$$\begin{cases} \min \quad t = \sum_{i=1}^{n} \sum_{j=1}^{n} x_{ij} d_{ij}, \\ s.t. \sum_{i=1}^{n} x_{ij} = 1, i = 1 \sim n, \\ \sum_{j=1}^{n} x_{ij} = 1, j = 1 \sim n. \end{cases}$$

第一音

2.1 求函数 $f(x,y) = 3axy - x^3 - y^3(a > 0)$ 的驻点, 极值点和鞍点。

解: 由
$$\begin{cases} f_x' = 3ay - 3x^2 = 0 \\ f_y' = 3ax - 3y^2 = 0 \end{cases} \Rightarrow 函数的驻点为(x_0, y_0) = (a, a), (x_1, y_1) = (0, 0);$$

又函数的 Hesse 矩阵为

$$H = \begin{bmatrix} f_{xx}^{"} & f_{xy}^{"} \\ f_{yx}^{"} & f_{yy}^{"} \end{bmatrix} = \begin{bmatrix} -6x & 3a \\ 3a & -6y \end{bmatrix}, \quad \sharp \ \exists \ a > 0 \ ;$$

在点
$$(x_0, y_0) = (a, a)$$
处, det $H = \begin{vmatrix} -6a & 3a \\ 3a & -6a \end{vmatrix} = 27a^2 > 0$,

∴由 -6a < 0知, 点 $(x_0, y_0) = (a, a)$ 是 f(x, y)的极大值点;

在点
$$(x_1, y_1) = (0,0)$$
处, det $H = \begin{vmatrix} 0 & 3a \\ 3a & 0 \end{vmatrix} = -9a^2 < 0$,

 \therefore 点 $(x_1,y_1)=(0,0)$ 是函数f(x,y)的鞍点。

2.2 试证函数 $F(x,y) = (x,1-x) \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} y \\ 1-y \end{pmatrix}$ 无极值点,只有一个鞍点,其中

 $a+d-b-c\neq 0$.

证明: 由
$$\begin{cases} F_x' = (a+d-b-c)y+b-d=0 \\ F_y' = (a+d-b-c)x+c-d=0 \end{cases} \Rightarrow (x_0, y_0) = \left(\frac{c-d}{a+d-b-c}, \frac{b-d}{a+d-b-c}\right);$$

- : 函数F(x,y) 无极值点,只有一个鞍点 (x_0,y_0) 。
- **2.3** 求函数 $f(x_1, x_2) = (x_1 x_2^2)^2$ 的极值点, 是否是严格的极值点?

解: 由
$$\begin{cases} f_{x_1} = 2(x_1 - x_2^2) = 0 \\ f_{x_2} = -4x_2(x_1 - x_2^2) = 0 \end{cases}$$
 得 $(x_{10}, x_{20}) = (C^2, C)$, 其中 C 为任意常数;

$$X f''_{x_1x_1}(x_{10}, x_{20}) = 2 > 0$$
, det $H(x_{10}, x_{20}) = -8C^2 + 8C^2 = 0$;

- ∴点 (C^2,C) 为 $f(x_1,x_2)$ 的极大值,但不是严格极值点。
- **2.4** 讨论参数 a 为何值时,点(0,0,0) 为函数 $f(x_1,x_2,x_3) = ax_1^2 e^{x_2} + x_2^2 e^{x_3} + x_3^2 e^{x_1}$ 的极值点,是极大值点或极小值点或鞍点?
- 解: 由 $f(x_1, x_2, x_3) = ax_1^2 e^{x_2} + x_2^2 e^{x_3} + x_3^2 e^{x_1}$ 知其在点(0,0,0) 处的 *Hesse* 矩阵为:

$$H(0,0,0) = \begin{bmatrix} 2a & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix};$$

当a > 0时,由detH(0,0,0) = 8a > 0知点(0,0,0)为函数的极小值点;

当a=0时,无法判断;

当a < 0时,由detH(0,0,0) = 8a < 0知点(0,0,0)为函数的鞍点。

- 2.5 在半径为 R 的已知圆的一切内接三角形中, 求出其面积最大者。
- 解: 三角形面积最大时一定为等腰三角形(高最大时过圆心)。

则
$$S = h \cdot \sqrt{R^2 - (h - R)^2}$$
, 其中 h 为三角形的高, $R \le h < 2R$ 。

$$\pm S' = \sqrt{R^2 - (h - R)^2} + \frac{h(R - h)}{\sqrt{R^2 - (h - R)^2}} = 0 \approx h = 1.5R;$$

又
$$S''|_{h=1.5R}$$
< 0 , $: h=1.5R$ 为 S 的最大值点, $S_{\max}=\frac{3}{4}\sqrt{3}R^2$;

- ∴面积最大的三角形是底为 $\sqrt{3}R$,高为1.5R的等腰三角形(正三角形)。
- 2.9 设 $x = (x_1, x_2, x_3)^T$, $A = (a_{ij})_{3\times 3}$, $A^T = A$,试直接展开 $f(x) = x^T A x$,然后验 $i \mathbb{E} \nabla f(x) = 2Ax$

2.10 试证 $\nabla(\lambda^T G x) = G^T \lambda$, λ , $x \to n$ 维列向量, $G \to n \times n$ 矩阵。

证明:
$$\mathcal{X}^T G x = (\lambda_1, \lambda_2, \dots, \lambda_n)$$

$$\begin{bmatrix} g_{11} & g_{12} & \cdots & g_{1n} \\ g_{21} & g_{22} & \cdots & g_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ g_{n1} & g_{n2} & \cdots & g_{nn} \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

$$= x_1 \sum_{i=1}^{n} \lambda_i g_{i1} + x_2 \sum_{i=1}^{n} \lambda_i g_{i2} + \dots + x_n \sum_{i=1}^{n} \lambda_i g_{in}$$

2.11 设f(x)在点 x^0 的泰勒展开式为

$$f(x) = f(x^{0}) + (x - x^{0})^{T} \nabla f(x^{0}) + \frac{1}{2} (x - x^{0})^{T} \nabla^{2} f(x^{0}) (x - x^{0}), \quad \text{id if:}$$

$$\nabla f(x) = \nabla f(x^{0}) + \nabla^{2} f(x^{0}) (x - x^{0}).$$

证明:对n阶矩阵A,由

$$x^{T} A = (x_{1}, x_{2}, \dots, x_{n}) \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} = \left(\sum_{i=1}^{n} a_{i1} x_{i}, \sum_{i=1}^{n} a_{i2} x_{i}, \dots, \sum_{i=1}^{n} a_{in} x_{i} \right),$$

可知
$$abla (x^T A) = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} = A;$$

又由教材式 2-4 知 $\nabla(x^TAx)=2Ax$;

则由于
$$f(x) = f(x^0) + (x - x^0)^T \nabla f(x^0) + \frac{1}{2}(x - x^0)^T \nabla^2 f(x^0)(x - x^0)$$
,

$$\therefore \nabla f(x) = \nabla f(x^0) + \nabla^2 f(x^0)(x - x^0) ,$$
得证。

2.12 试证 $\nabla ||Ax||^2 = 2A^T Ax$ 。

∴由式 2-4 中
$$\nabla(x^T A x) = 2Ax$$
 可得 $\nabla \|Ax\|^2 = 2A^T A x$, 命题得证。

2.13 试证 $\nabla ||Ax-b||^2 = 2A^T (Ax-b)$ 。

证明:
$$: ||Ax-b||^2 = (Ax-b)^T (Ax-b) = x^T (A^T A)x - x^T A^T b - b^T Ax + b^T b$$
,

由式 2-4 可得
$$\nabla(x^T(A^TA)x)=2A^TAx$$
;

运用上 2.11 的结论
$$\nabla (x^T A) = A \, \overline{\eta} \, \nabla (x^T A^T b) = A^T b$$
;

又式 2-2 中
$$\nabla(b^Tx)=b$$
可得 $\nabla(b^TAx)=A^Tb$;

$$\therefore \nabla \|Ax - b\|^2 = 2A^T Ax - A^T b - A^T b$$

$$= 2A^T (Ax - b), \quad \text{得证}.$$

2.14 设
$$A_{n\times n}$$
, $A^T \neq A$, 试证 $\nabla(x^T A x) = A x + A^T x$ 。

证明:
$$x^T A x = (x_1, x_2, \dots, x_n)$$
$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j$$

$$= x_k \sum_{\substack{j=1\\j \neq k}}^{n} a_{kj} x_j + x_k \sum_{\substack{i=1\\i \neq k}}^{n} a_{ik} x_i + a_{kk} x_k^2 \quad (k = 1 \sim n)$$

$$\mathbf{..} \nabla (x^{T} A x) = \begin{pmatrix} \sum_{j=2}^{n} a_{1j} x_{j} + \sum_{i=2}^{n} a_{i1} x_{i} + 2a_{11} x_{1} \\ \sum_{j=1}^{n} a_{2j} x_{j} + \sum_{i=1}^{n} a_{i2} x_{i} + 2a_{22} x_{2} \\ \vdots \\ \sum_{j=1}^{n-1} a_{nj} x_{j} + \sum_{i=1}^{n-1} a_{in} x_{i} + 2a_{nn} x_{n} \end{pmatrix} = \begin{pmatrix} \sum_{j=1}^{n} a_{1j} x_{j} \\ \sum_{j=1}^{n} a_{2j} x_{j} \\ \vdots \\ \sum_{j=1}^{n} a_{nj} x_{j} \end{pmatrix} + \begin{pmatrix} \sum_{i=1}^{n} a_{i1} x_{i} \\ \sum_{i=1}^{n} a_{i2} x_{i} \\ \vdots \\ \sum_{i=1}^{n} a_{nj} x_{j} \end{pmatrix}$$

 $=A^{T}x+Ax$,得证。

2.19 设A为 $m \times n$ 阶矩阵, $b \in R^n$,试证集 $S = \{x \mid x \in R^n, Ax = b, x \ge 0\}$ 为凸集。

2.20 试证平面上椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ 所包围的区域是凸集。

 $\therefore S$ 即椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ 所包围的区域是凸集。

证明: 椭圆
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
所包围的区域是集合 $S = \left\{ (x,y) | \frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1, (x,y) \in \mathbb{R}^2 \right\};$
对于 $\forall (x_1, y_1), (x_2, y_2) \in S$, $0 \le \alpha \le 1$;
$$\diamondsuit (x_3, y_3) = \alpha(x_1, y_1) + (1 - \alpha)(x_2, y_2) = (\alpha x_1 + (1 - \alpha)x_2, \alpha y_1 + (1 - \alpha)y_2),$$

$$\boxed{ \mathbb{M} \frac{x_3^2}{a^2} + \frac{y_3^2}{b^2} = \frac{\left[\alpha x_1 + (1 - \alpha)x_2\right]^2}{a^2} + \frac{\left[\alpha y_1 + (1 - \alpha)y_2\right]^2}{b^2}$$

$$= \alpha^2 \left(\frac{x_1^2}{a^2} + \frac{y_1^2}{b^2}\right) + (1 - \alpha)^2 \left(\frac{x_2^2}{a^2} + \frac{y_2^2}{b^2}\right) + 2\alpha(1 - \alpha)\left(\frac{x_1 x_2}{a^2} + \frac{y_1 y_2}{b^2}\right)$$

$$\le \alpha^2 + (1 - \alpha)^2 + 2\alpha(1 - \alpha)\left(\frac{x_1 x_2}{a^2} + \frac{y_1 y_2}{b^2}\right)$$

$$\boxed{ \vec{m} \frac{x_1 x_2}{a^2} + \frac{y_1 y_2}{b^2} \le \frac{1}{2}\left(\frac{x_1^2 + x_2^2}{a^2} + \frac{y_1^2 + y_2^2}{b^2}\right) = \frac{1}{2} \cdot (1 + 1) = 1 }$$

$$\vec{x} \cdot \frac{x_3^2}{a^2} + \frac{y_3^2}{b^2} \le \alpha^2 + (1 - \alpha)^2 + 2\alpha(1 - \alpha) = 1, \quad \boxed{ } \mathbb{P} \left(x_3, y_3\right) \in S;$$

2.20 试判断下列函数为凸函数或凹函数或严格凸函数或严格凹函数:

(1)
$$f(x_1, x_2) = 2x_1^2 + 3x_2^2$$
;

解:由函数的 Hesse 矩阵

$$H = \nabla^2 f = \begin{bmatrix} 4 & 0 \\ 0 & 6 \end{bmatrix}$$
为正定矩阵

:.函数 $f(x_1,x_2)$ 为严格凸函数。

(2)
$$g(x_1, x_2) = x_1^3 - x_2^3 \left(x_1 < -\frac{1}{3}\right);$$

解:由函数的 Hesse 矩阵

$$H = \nabla^2 g = \begin{bmatrix} 6x_1 & 0 \\ 0 & -6x_2 \end{bmatrix}$$
在 $x_1 < -\frac{1}{3}$ 时为负定矩阵,

:.函数 $g(x_1,x_2)$ 为严格凹函数。

(3)
$$h(x_1, x_2, x_3) = x_1^2 + 2x_2^2 + x_3^2 + x_1x_2 - 2x_3 - 7x_1 + 12$$

解:由函数的 Hesse 矩阵

$$H = \nabla^2 h = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 4 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$
为正定矩阵,

:.函数 $h(x_1,x_2,x_3)$ 为严格凸函数。

2.32
$$\frac{1}{2} \left(e^x + e^y \right) > e^{\frac{x+y}{2}} \left(x \neq y \right) \circ$$

证明: $\Leftrightarrow F(x) = e^x$,则 $F'(x) = e^x > 0$; $\therefore F(x)$ 为严格凸函数。

所以有
$$F\left(\frac{1}{2}x + \frac{1}{2}y\right) < \frac{1}{2}F(x) + \frac{1}{2}F(y)$$
 对 $\forall x \neq y$ 成立,

即
$$e^{\frac{x+y}{2}} < \frac{1}{2}e^x + \frac{1}{2}e^y = \frac{1}{2}(e^x + e^y)$$
 对 $\forall x \neq y$ 成立,得证。

2.36 设 $x_i > 0(i=1 \sim n)$, 试证:

(1)
$$\frac{x_1 + x_2 + \dots + x_n}{2} \le \left(\frac{x_1^p + x_2^p + \dots + x_n^p}{n}\right)^{1/p} (p > 1),$$

(2)
$$\frac{x_1 + x_2 + \dots + x_n}{2} \ge \left(\frac{x_1^p + x_2^p + \dots + x_n^p}{n}\right)^{1/p} (p < 1 \le p \ne 0), \quad \stackrel{\text{deg}}{=} 1 \le \sqrt{2}$$

 $x_1 = x_2 = \cdots = x_n$ 时上式中等号成立。

证明: (1)令
$$f(x) = x^p(x>0, p>1)$$
,

则
$$f'(x) = p(p-1)x^{p-2} > 0$$
, 所以 $f(x)$ 为严格凸函数。

∴有
$$f\left(\frac{x_1+x_2+\cdots+x_n}{n}\right) \le \frac{1}{n} \left(f\left(x_1\right)+f\left(x_2\right)+\cdots+f\left(x_n\right)\right)$$

当且仅当 $x_1 = x_2 = \cdots = x_n$ 时等号成立;

即
$$\left(\frac{x_1 + x_2 + \cdots + x_n}{n}\right)^p \le \frac{x_1^p + x_2^p + \cdots + x_n^p}{n}$$
,两边开方得

$$\frac{x_1 + x_2 + \dots + x_n}{n} \le \left(\frac{x_1^p + x_2^p + \dots + x_n^p}{n}\right)^{1/p}, \quad \text{@iff.}$$

(2)证明方法同(1)。

//鉴于本人水平有限,如有错误敬请谅解,可联系修正。

第三章

3.1 栅法:设f(x)在[a,b]上为单峰函数,其最小值点在[a,b]内。对[a,b]n等分,记分点为

$$a = x_0 < x_1 < x_2 < \dots < x_n = b$$
,

计算 $f(x_i)(i=0,1,2,\cdots,n)$ 。求出 $f(x_k)=\min f(x_i)$ 。若 $|x_{k+1}-x_{k-1}|<\varepsilon$,则求出了近似最优解为 x_k ; k=0 时以 $[x_k,x_{k+1}]$ 代替 [a,b]; k=n 时以 $[x_{k-1},x_k]$ 代替 [a,b]; 其他情形以 $[x_{k-1},x_{k+1}]$ 代替 [a,b]。继续仿前做下去,直到满足精度为止。试画出算法框图。

解:

3.7 利用三次插值法求 $f(x) = x^4 - 4x^3 - 6x^2 - 16x + 4$ 的最小值点和最小值,取 a = 0 , h = 1 , $\varepsilon = 0.5$ (即 $\left| \bar{f}^{\cdot}(x) \right| < 0.5$)。

(答:
$$\bar{x} = 3.995$$
, $f(\bar{x}) = -155.9989515$; 准确解 $x^* = 4$, $f(x^*) = -156$)

解: 1) 确定初始区间

$$a = 0$$
, $f'(a) = -16$; $\mathbb{N}b = a + h = 1$, $f'(b) = -36$;

$$\Rightarrow a = b = 1$$
, $f'(a) = -36$; $b = a + 2h = 3$, $f'(b) = -52$;

$$\Rightarrow a = b = 3$$
, $f'(a) = -52$; $b = a + 4h = 7$, $f'(b) = 684$;

- ∴初始区间[*a*,*b*]=[3,7]。
- 2) 三次插值迭代

①
$$u = f'(b) = 684$$
, $v = f'(a) = -52$, $s = \frac{3[f(b) - f(a)]}{b - a} = 564$

$$z = s - u - v = -68$$
, $w = \sqrt{z^2 - uv} = 200.4794$

则
$$x_1 = a + (b - a) \left(1 - \frac{u + w + z}{u - v + 2w} \right) = 4.1275$$
, $f'(x_1) = 11.3035 > 0.5$

 $2[a,b]=[a,x_1]=[3,4.1275]$

$$u = f(b) = 11.30$$
, $v = f'(a) = -52$, $s = \frac{3[f(b) - f(a)]}{b - a} = -80.5998$

$$z = s - u - v = 3-9.90$$
, $w = \sqrt{z^2 - uv} = 46.6911$

则
$$x_2 = a + (b - a) \left(1 - \frac{u + w + z}{u - v + 2w} \right) = 3.9973$$
, $f'(x_2) = -0.2265 < 0.5$ 停止。

$$\vec{x} = x_2 = 3.9973$$
, $f(\vec{x}) = -155.9997$.

- 3.8 在三次插值法中已给数据 f(a), f(b), f'(a), f'(b)且 f'(a)f'(b) < 0,
- (i) 这些数据适合什么条件时, $\alpha=0$?
- (ii) 当 α =0 时,试证 u+v-2z=0。

解: 三次插值多项式可写成
$$P(x) = \alpha(x-a)^3 + \beta(x-a)^2 + \gamma(x-a) + \delta$$

其中
$$P(a) = f(a)$$
, $P(b) = f(b)$, $P'(a) = f'(a)$, $P'(b) = f'(b)$

(i)要使
$$\alpha$$
=0,则应满足
$$\begin{cases} f(b) = \beta(b-a)^2 + \gamma(b-a) + \delta \\ f'(b) = 2\beta(b-a) + \gamma \end{cases}$$
 联立可得
$$\frac{f(b) - f(a)}{b-a} = \frac{f'(b) + f'(a)}{2}$$

即当
$$\frac{f(b)-f(a)}{b-a}=\frac{f'(b)+f'(a)}{2}$$
 时 $\alpha=0$;

(ii)
$$\stackrel{\text{def}}{=} \alpha = 0$$
 $\stackrel{\text{def}}{=} f'(b) + f'(a) - 2 \Big[\beta(b-a) + \gamma \Big]$

$$= f'(b) + f'(a) - 2 \Big[\frac{f'(b) - f'(a)}{2(b-a)} (b-a) + f'(a) \Big]$$

$$= f'(b) + f'(a) - \Big[f(b) + f(a) \Big] = 0$$

得证。

3.9 用公式(3.33)计算函数
$$f(x) = \frac{1}{2} (e^x + e^{-x})$$
的驻点的近似值,取 $x_0 = 1$, $x_1 = 2$, $x_2 = 3$, $x_3 = 4$ 。

解: 由
$$z = f'(x)$$
知 $z_0 = \frac{e - e^{-1}}{2}$, $z_1 = \frac{e^2 - e^{-2}}{2}$, $z_2 = \frac{e^3 - e^{-3}}{2}$, $z_3 = \frac{e^4 - e^{-4}}{2}$ 根据公式(3.33)

$$\Rightarrow x_1 = 2.45$$

由
$$x_0 := x_0 - \frac{z_0}{x_1} = 0.0328$$
 \Rightarrow $x^* = x_0 = 0.03$ 即 $f(x)$ 驻点近似值。

补充: 用黄金分割法求函数 $f(x)=3x^4-4x^2+2$ 的极小点, 给定 $x_0=-2$, h=1 , $\varepsilon=0.1(x_0=2$, h=1 , $\varepsilon=0.1)$ 。

解: 1) 确定初始区间

$$\mathbb{R} x_0 = 2$$
, $f(x_0) = 34 < f(x_0 + h) = 209$, $f(x_0 - h) = 1 < f(x_0)$

加大步长 $f(x_0-2h)=2>f(x_0-h)$ 则初始区间 $[a,b]=[x_0-2h,x_0]=[0,2]$

2) 黄金分割法

①
$$x_1 = a + 0.382b = 0.764$$
, $f(x_1) = 0.6873$

$$x_2 = a + 0.618b = 1.236$$
, $f(x_2) = 2.8908$

$$f(x_1) < f(x_2)$$
,则新区间 $[a,b] = [a,x_2] = [0,1.236]$, $b-a > 0.1$

$$2 \Rightarrow x_2 = x_1 = 0.764$$
, $f(x_2) = 0.6873$

$$x_1 = a + 0.382b = 0.4722$$
, $f(x_1) = 1.2573$

$$f(x_1) > f(x_2)$$
, 则新区间 $[a,b] = [x_1,b] = [0.4722,1.236]$, $b-a > 0.1$

③
$$\diamondsuit$$
 $x_1 = x_2 = 0.764$, $f(x_1) = 0.6873$

$$x_2 = a + 0.618(b - a) = 0.9442$$
, $f(x_2) = 0.8183$

$$f(x_1) < f(x_2)$$
, 则新区间 $[a,b] = [a,x_2] = [0.4722,0.9442]$, $b-a > 0.1$

$$\textcircled{4} \Leftrightarrow x_2 = x_1 = 0.764$$
, $f(x_2) = 0.6873$

$$x_1 = a + 0.382(b - a) = 0.6525$$
, $f(x_1) = 0.8408$

$$f(x_1) > f(x_2)$$
, 则新区间 $[a,b] = [x_1,b] = [0.6525,0.9442]$, $b-a > 0.1$

(5)
$$\Leftrightarrow x_1 = x_2 = 0.764$$
, $f(x_1) = 0.6873$

$$x_2 = a + 0.618(b - a) = 0.8328$$
, $f(x_2) = 0.6688$

$$f(x_1) > f(x_2)$$
, 则新区间 $[a,b] = [x_1,b] = [0.764,0.9442]$, $b-a > 0.1$

⑥
$$\diamondsuit$$
 $x_1 = x_2 = 0.8328$, $f(x_1) = 0.6688$

$$x_2 = a + 0.618(b - a) = 0.8754$$
, $f(x_2) = 0.6965$

$$f(x_1) < f(x_2)$$
,则新区间 $[a,b] = [a,x_2] = [0.764,0.8754]$, $b-a > 0.1$ ⑦令 $x_2 = x_1 = 0.8328$, $f(x_2) = 0.6688$
$$x_1 = a + 0.382(b-a) = 0.8066$$
, $f(x_1) = 0.6674$
$$f(x_1) < f(x_2)$$
,则新区间 $[a,b] = [a,x_2] = [0.764,0.8328]$, $b-a = 0.0688 < 0.1$ 停止,又 $f(x) = f(-x)$,则 $x^* = \pm \frac{1}{2}(a+b) = \pm 0.7984$, $f(x^*) = 0.6692$

第四章

4.1 设 $f(x) = (x_1 - 1)^2 + (x_2 - 1)^2$,用最速下降法求f(x)的最小值点,取 $\varepsilon = 0.1$,

试证: 任取初始点 $x^0 = (2,3)^T$, 迭代一次即达到最优点。

证明:
$$f(x) = (x_1 - 1)^2 + (x_2 - 1)^2$$
, $x^0 = (2,3)^T$

$$\therefore \nabla f(x^0) = (2,4)^T$$
, $\|\nabla f(x^0)\| > \varepsilon = 0.1$
第一次迭代: $x^1 = x^0 - \lambda \nabla f(x^0)$
则 $f(x^1)$ 对 λ 进行精确一维搜索可得 $\lambda = 0.5$, $\therefore x^1 = (1,1)^T$
由 $\nabla f(x^1) = 0$ 知 x^1 为 $f(x)$ 的最优点,即迭代一次即达到最优点。

4.2 试证在最速下降法中,相邻两次搜索方向必正交,即

$$\left[\nabla f\left(x^{k}\right)\right]^{T}\nabla f\left(x^{k+1}\right)=0.$$

证明: 在最速下降法中 $x^{k+1} = x^k + \lambda_k s^k$, 其中 $s^k = -\nabla f(x^k)$

 $:: \lambda_{k}$ 是由 $f(x^{k+1})$ 对 λ 精确一维搜索得到

∴应有
$$\nabla f(x^k + \lambda_k s^k) \cdot s^k = 0$$

即
$$\left[\nabla f\left(x^{k}\right)\right]^{T}\nabla f\left(x^{k+1}\right)=0$$
,得证。

4.3 设 $f(x) = x_1 + x_2^2 + x_1^4 + 2x_1^2x_2^2 + 8x_1^2x_2^6$,用阻尼牛顿法求 f(x)的最小点, ε =0.1, $x^0 = (1,1)^T$ 。

解:
$$\nabla f(x) = \begin{bmatrix} 1+4x_1^3+4x_1x_2^2+16x_1x_2^6\\ 2x_2+4x_1^2x_2+48x_1^2x_2^5 \end{bmatrix}$$
, $\nabla^2 f(x) = \begin{bmatrix} 12x_1^2+4x_2^2+16x_2^6 & 8x_1x_2+96x_1x_2^5\\ 8x_1x_2+96x_1x_2^5 & 240x_1^2x_2^4+4x_1^2+2 \end{bmatrix}$ 迭代开始

①
$$x^{1} = (1,1)^{T}$$
, $\nabla f(x^{0}) = (25,54)^{T} > \varepsilon$, $\nabla^{2} f(x^{0}) = \begin{bmatrix} 32 & 104 \\ 104 & 246 \end{bmatrix}$

$$d^{0} = -\left[\nabla^{2} f\left(x^{0}\right)\right]^{-1} \nabla f\left(x^{0}\right) = \left(0.1814, -0.2962\right)^{T}$$

$$\boxplus \min_{\lambda>0} f\left(x^0 + \lambda d^0\right) = f\left(x^0 + \lambda_0 d^0\right) \implies \lambda_0 = 1.6773,$$

$$\therefore x^{1} = x^{0} + \lambda_{0} d^{0} = (1.3042, 0.5032)^{T}, \quad \nabla f(x^{1}) = (11.5332, 7.0642)^{T} > \varepsilon$$

$$\lim_{\lambda \to 0} f\left(x^{1} + \lambda d^{1}\right) = f\left(x^{1} + \lambda_{1} d^{1}\right) \implies \lambda_{1} = 3.8375$$

$$\therefore x^2 = x^1 + \lambda_1 d^1 = (-0.6241, 0.2403)^T, \quad \nabla f(x^2) = (-0.1184, 0.87)^T > \varepsilon$$

$$\lim_{\lambda > 0} f(x^2 + \lambda d^2) = f(x^2 + \lambda_2 d^2) \implies \lambda_2 = 0.9909$$

$$\therefore x^3 = x^2 + \lambda_2 d^2 = (-0.6598, 0.0061)^T$$
, $\nabla f(x^3) = (-0.1490, 0.0228)^T < \varepsilon$ 停止

则
$$x^* = x^3 = (-0.6598, 0.0061)^T$$
, $f(x^*) = -0.4702$ 。

证明:要证 s^k 是f(x)在点 x^k 的下降方向,即证 $g^k \cdot s^k < 0$ 。

$$: (g^k)^T s^k = -\left[\nabla f(x^k)\right]^T \left[H(x^k)\right]^{-1} \nabla f(x^k) \quad \coprod H(x) > 0$$

$$\therefore \boxplus \left[H\left(x\right) \right]^{-1} > 0 \quad \text{All} \quad \left(g^{k}\right)^{T} s^{k} = -\left[\nabla f\left(x^{k}\right) \right]^{T} \left[H\left(x^{k}\right) \right]^{-1} \nabla f\left(x^{k}\right) < 0$$

则 s^k 是 f(x) 在点 x^k 的下降方向,得证。

 4.5^* 设 $f(x) = \frac{1}{2} x^T A x + b^T x + c$, $A^T = A > 0$, 给定初始点 x^0 , 试证由最速下降法产生的点列 $\{x^k\}$ 有如下公式:

$$x^{k+1} = x^k - \frac{\left(g^k\right)^T g^k}{\left(g^k\right)^T A g^k} g^k, \quad k = 0, 1, 2, 3, \dots,$$

其中 $g^k = Ax^k + b$ 。

证明: 在最速下降法中 $x^{k+1} = x^k - t_k g^k$,则命题即证 $t_k = \frac{\left(g^k\right)^T g^k}{\left(g^k\right)^T A g^k}$ 。

$$g^{k} = Ax^{k} + b$$
, $\min_{t>0} f(x^{k+1}) = f(x^{k} - t_{k}g^{k})$

$$\therefore (Ax^{k+1} + b)(-g^k) = 0 \implies [A(x^k - t_k g^k) + b]g^k = 0$$

$$\therefore (g^k)^T g^k = t_k (Ag^k)^T g^k \quad X \quad A^T = A$$

4.9 设 $Q = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$, $p_1 = (1,0)^T$, $p_2 = (1,-2)^T$, 试证 $p_1 = p_2$ 是q一共轭的和线性

无关的。并说明不是所有线性无关的向量组都是Q共轭的,考虑反例: $p_1 = \begin{pmatrix} 1,0 \end{pmatrix}^T$, $p_2 = \begin{pmatrix} 1,1 \end{pmatrix}^T$ 。

解: 由
$$p_1^T Q p_2 = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ -2 \end{bmatrix} = 0$$
 可知 $p_1 与 p_2 为 Q$ 共轭;

又 $\alpha_1 p_1 + \alpha_2 p_2 = (\alpha_1 + \alpha_2, -2\alpha_2) = 0$ 仅在 $\alpha_1 = \alpha_2 = 0$ 时成立,: p_1 , p_2 线性无关。

并非所有线性无关的向量组都是Q共轭的,如 $p_1 = \begin{pmatrix} 1,0 \end{pmatrix}^T$, $p_2 = \begin{pmatrix} 1,1 \end{pmatrix}^T$

显然可证 p_1 , p_2 线性无关, 但由 $p_1^T Q p_2 = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = 3 \neq 0$ 知

 p_1 与 p_2 不是Q共轭的。

4.10
$$\mbox{if } f(x) = x^T A x - b^T x$$
, $A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$, $b = (3,3)^T$, $\mbox{If } x^1 = (0,0)^T$, $p_1 = (1,0)^T$,

 $p_2 = (1,-2)^T$,试证由本章共轭方向法产生的 x^3 为f(x)的最优解。

证明:
$$x^2 = x^1 + t_1 p_1 = (t_1, 0)^T$$

$$f(x^2)$$
对 t 做精确一维搜索 $\min_{t>0} f(x^1 + tp_1) = f(x^1 + t_1p_1)$ 可得 $t_1 = \frac{3}{4}$

∴
$$x^2 = \left(\frac{3}{4}, 0\right)^T$$
, 可得 $\nabla f(x^2) = 2 \cdot \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{vmatrix} \frac{3}{4} \\ 0 \end{vmatrix} - \begin{bmatrix} 3 \\ 3 \end{bmatrix} = \left(0, -\frac{3}{2}\right)^T \neq 0$

$$x^3 = x^2 + t_2 p_2 = \left(t_2 + \frac{3}{4}, -2t_2\right)^T$$
,同理 $f(x^3)$ 对 t 一维搜索可求得 $t_2 = -\frac{1}{4}$

$$\therefore x^3 = \left(\frac{1}{2}, \frac{1}{2}\right)^T, \quad \text{可得} \quad \nabla f\left(x^3\right) = 2 \cdot \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} - \begin{bmatrix} 3 \\ 3 \end{bmatrix} = 0$$

则 x^3 为f(x)的最优解,得证。

4.11 设Q为n阶对称矩阵, z^1, z^2, \dots, z^n 是Q共轭的,试找一个方阵P使 P^TQP 为对角阵。

解: 令 $P=(z^1,z^2,\dots,z^n)$,则P即所要找的方阵,证明如下:

由于 z^1, z^2, \dots, z^n 是Q 共轭的,则有 z^1, z^2, \dots, z^n 线性无关且 $\left(z^i\right)^T Q z^j = 0, \left(i \neq j\right)$

$$\therefore P^{T}QP = \left(z^{1}, z^{2}, \dots, z^{n}\right)^{T} Q\left(z^{1}, z^{2}, \dots, z^{n}\right)$$

$$= \begin{bmatrix} \left(z^{1}\right)^{T} \\ \left(z^{2}\right)^{T} \\ \vdots \\ \left(z^{n}\right)^{T} \end{bmatrix} Q \begin{bmatrix} z^{1} & z^{2} & \cdots & z^{n} \end{bmatrix} = \begin{bmatrix} \left(z^{1}\right)^{T} Q z^{1} & \left(z^{1}\right)^{T} Q z^{2} & \cdots & \left(z^{1}\right)^{T} Q z^{n} \\ \left(z^{2}\right)^{T} Q z^{1} & \left(z^{2}\right)^{T} Q z^{2} & \cdots & \left(z^{2}\right)^{T} Q z^{n} \\ \vdots & \vdots & \ddots & \vdots \\ \left(z^{n}\right)^{T} Q z^{1} & \left(z^{n}\right)^{T} Q z^{2} & \cdots & \left(z^{n}\right)^{T} Q z^{n} \end{bmatrix}$$

$$= \begin{bmatrix} \left(z^{1}\right)^{T} Q z^{1} & 0 & \cdots & 0 \\ 0 & \left(z^{2}\right)^{T} Q z^{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \left(z^{n}\right)^{T} Q z^{n} \end{bmatrix} = \Lambda 为对角阵,得证。$$

-4.12 设Q为n阶对称正定矩阵, p_1, p_2, \dots, p_n 为Q一共轭的非零向量组,向量x与 $p_i(i=1\sim n)$ 为Q共轭,试证: x=0。

证明:
$$x = p_i(i=1 \sim n)$$
为 Q 共轭 $x^T Q p_i = 0, (i=1 \sim n)$

$$\diamondsuit P = (p_1, p_2, \dots, p_n)$$
 可知 $x^T Q P = 0$

由于 p_1, p_2, \cdots, p_n 为 Q 共轭的非零向量组, p_1, p_2, \cdots, p_n 线性无关且 Q 为对称正定矩阵

$$\therefore |QP| \neq 0$$
 则由 $x^T QP = 0 \Rightarrow x = 0$ 得证。

4.13 设Q为n阶对称正定矩阵, p_1,p_2,\cdots,p_n 为Q一共轭的非零向量组,则任意 $x\in R^n$,可表示为

$$x = \sum_{i=1}^{n} \frac{\left(p_{i}\right)^{T} Qx}{\left(p_{i}\right)^{T} Qp_{i}} p_{i} \circ$$

证明: $: p_1, p_2, \cdots, p_n$ 为Q共轭的非零向量组

$$\therefore$$
 $(p_i)^T Q p_i = 0, (i \neq j)$ 且 p_1, p_2, \dots, p_n 线性无关

$$\therefore$$
对于 $\forall x \in \mathbb{R}^n$, 可表示为 $x = \sum_{i=1}^n \alpha_i p_i$, 其中 α_i 为常数

又
$$Q$$
对称正定,有 $(p_j)^T Qx = \sum_{i=1}^n \alpha_i(p_j)^T Qp_i = \alpha_i(p_i)^T Qp_i$, $i = 1 \sim n$

$$\therefore \alpha_i = \frac{(p_i)^T Q x}{(p_i)^T Q p_i} \implies x = \sum_{i=1}^n \frac{(p_i)^T Q x}{(p_i)^T Q p_i} p_i$$
 得证。

4.14 设Q为实对称矩阵,试证Q的任意两个对应于不同特征值的特征向量都是Q共轭的。

证明:设 λ_1 , λ_2 为Q的任意两个不同特征值, x^1 , x^2 为其对应的特征向量

则
$$Qx^1 = \lambda_1 x^1$$
, $Qx^2 = \lambda_2 x^2$

$$\therefore Q$$
 为对称矩阵 $\therefore (x^1)^T Q x^2 = (x^1)^T \lambda_2 x^2 = \lambda_2 (x^1)^T x^2$

又有
$$(x^1)^T Q x^2 = (Q x^1)^T x^2 = (\lambda_1 x^1)^T x^2 = \lambda_1 (x^1)^T x^2$$
 $\therefore \lambda_1 (x^1)^T x^2 = \lambda_2 (x^1)^T x^2$

$$\therefore \lambda_1 \neq \lambda_2$$
 $\therefore (x^1)^T x^2 = 0$ \Rightarrow $(x^1)^T Q x^2 = 0$,得证。

4.15 设Q为n阶对称正定矩阵,且设 p_1,p_2,\cdots,p_n 为n维的线性无关向量组,用 Gram-Schmidt 方法,由 p_1,p_2,\cdots,p_n 产生一组向量:

$$d_1 = p_1$$
, $d_k = p_k - \sum_{i=1}^{k-1} \frac{p_k^T Q d_i}{d_i^T Q d_i} d_i$, $k = 2, \dots, n$,

试证 d_1, d_2, \cdots, d_n 构成Q一共轭向量组。

证明:用数学归纳法。先证 d_1 与 d_2 ,…, d_n 关于Q共轭。

① 当
$$n = 2$$
 时, $d_1^T Q d_2 = (p_1)^T Q p_2 - (p_1)^T Q \frac{(p_2)^T Q p_1}{(p_1)^T Q p_1} p_1 = (p_1)^T Q p_2 - (p_2)^T Q p_1$

由于Q对称正定, $(p_1)^T Q p_2 - (p_2)^T Q p_1 = 0$, $\therefore d_1 = d_2$ 关于Q 共轭成立;

- ②当n=k时,假设 d_1 与 d_2 ,…, d_k 关于Q共轭;
- ③当n = k + 1时,

$$\begin{split} &d_{1}^{T}Qd_{k+1} = \left(p_{1}\right)^{T}Q\left(p_{k+1} - \sum_{i=1}^{k}\frac{\left(p_{k+1}\right)^{T}Qd_{i}}{d_{i}^{T}Qd_{i}}d_{i}\right) \\ &= &(p_{1})^{T}Qp_{k+1} - \left(p_{k+1}\right)^{T}Qp_{1} - \frac{\left(p_{k+1}\right)^{T}Qd_{2}}{d_{2}^{T}Qd_{2}}d_{1}^{T}Qd_{2} - \dots - \frac{\left(p_{k+1}\right)^{T}Qd_{k}}{d_{k}^{T}Qd_{k}}d_{1}^{T}Qd_{k} \\ &= &0 \,, \quad \mathbb{D} d_{1} \stackrel{L}{=} d_{k} \stackrel{L}{\times} \mathcal{T} Q \stackrel{L}{\to} \mathbb{H}; \end{split}$$

由归纳法原理可知 $d_1 = d_2, \dots, d_n$ 关于Q共轭。

同理可证 d_1 , d_2 , …, d_n 分别都关于Q共轭, 即得证。

4.17 用 Fletcher-Reeves 共轭梯度法求 f(x) 的最小值,

$$f(x) = \frac{3}{2}x_1^2 + \frac{1}{2}x_2^2 - x_1x_2 - 2x_1$$
, $\Re x^1 = (-2, 4)^T$

解:
$$x^1 = (-2,4)^T$$
, $p_1 = -g_1 = -\nabla f(x^1) = (12,-6)^T$

$$f(x^2) = f(x^1 + t_1 p_1)$$
 对 t 精确一维搜索可得 $t_1 = \frac{5}{17}$

$$x^{2} = x^{1} + t_{1}p_{1} = \left(\frac{26}{17}, \frac{38}{17}\right)^{T}, \quad g_{2} = \nabla f\left(x^{2}\right) = \left(\frac{6}{17}, \frac{12}{17}\right)^{T}$$

$$\therefore \alpha_1 = \frac{\|g_2\|^2}{\|g_1\|^2} = \frac{1}{289}, \quad p_2 = -g_2 + \alpha_1 p_1 = \left(-\frac{90}{289}, -\frac{210}{289}\right)^T$$

同理 $f(x^3) = f(x^2 + t_2 p_2)$ 对 t 精确一维搜索可得 $t_2 = 1.7$

$$x^{3} = x^{2} + t_{2}p_{2} = (1,1)^{T}, \quad g_{3} = \nabla f(x^{3}) = (0,0)^{T}$$

$$\therefore f(x)$$
的最小值点为 $x^3 = (1,1)^T$,最小值为 $f(x^3) = -1$ 。

4.18 设
$$f(x) = \frac{1}{2}x^{T}Qx + b^{T}x + c$$
 , $Q^{T} = Q > 0$, 试证在共轭梯度法的一维搜素

证明:
$$\nabla f(x) = Qx + b$$
, 由 $\min_{z>0} f(x^k + \lambda z^k) = f(x^k + \lambda_k z^k)$ 可得

$$\nabla f(x^k + \lambda_k z^k) z^k = 0 \implies (Q(x^k + \lambda_k z^k) + b) z^k = 0$$

$$\Rightarrow (Qx^k + b)z^k + \lambda_k (z^k)^T Qz^k = 0$$

$$\therefore \lambda_k = -\frac{\left(Qx^k + b\right)z^k}{\left(z^k\right)^T Qz^k} = -\frac{g_k^T z^k}{\left(z^k\right)^T Qz^k}, \quad 得证。$$

4.24 设 $f(x) = \frac{1}{2}x^{T}Hx + b^{T}x + c$, $H^{T} = H > 0$, 试证它满足拟牛顿方程:

$$H^{-1}\Delta g_k = \Delta x^k \quad (k=1,2,3,\cdots)$$

证明:
$$f(x) = \frac{1}{2}x^T H x + b^T x + c$$
, $H^T = H > 0$ $\therefore \nabla f(x) = H x + b$ 且 H 可逆

$$\therefore \boxplus \Delta g_k = g_{k+1} - g_k = \nabla f(x^{k+1}) - \nabla f(x^k) = H(x^{k+1} - x^k) = H\Delta x^k, \ (k = 1, 2, 3, \cdots)$$

$$\Rightarrow$$
 $H^{-1}\Delta g_k = \Delta x^k$, $(k=1,2,3,\cdots)$; 得证。

4.26 设
$$f(x) = \frac{1}{2}x^TQx$$
, $Q = \begin{bmatrix} 3 & -1 \\ -1 & 1 \end{bmatrix}$,试用 DFP 法求 $f(x)$ 的最小值点。

解: 取初始点
$$x^1 = \begin{pmatrix} -2,4 \end{pmatrix}^T$$
, $H_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

则
$$x^2 = x^1 + t_1 p_1$$
, 其中 $p_1 = -g_1 = -Qx^1 = (10, -6)^T$

由
$$f(x^2) = f(x^1 + tp_1)$$
 对 t 精确一维搜索可得 $t_1 = \frac{17}{57}$

$$\therefore x^2 = \left(\frac{56}{57}, \frac{126}{57}\right)^T, \quad g_2 = Qx^2 = \left(\frac{42}{57}, \frac{70}{57}\right)^T$$

則由
$$\Delta x^1 = x^2 - x^1 = (2.9825, -1.7895)^T$$
, $\Delta g_1 = g_2 - g_1 = (10.7368, -4.7719)^T$

$$\Rightarrow H_2 = H_1 + \frac{\Delta x^1 (\Delta x^1)^T}{(\Delta x^1)^T \Delta g_1} - \frac{(H_1 \Delta g_1)(H_1 \Delta g_1)^T}{(\Delta g_1)^T H_1 \Delta g_1} = \begin{bmatrix} 0.3843 & 0.2396 \\ 0.2396 & 0.9140 \end{bmatrix}$$

则
$$x^3 = x^2 + t_2 p_2$$
, 其中 $p_2 = -H_1 g_1 = (-0.5774, -1.2990)^T$

由
$$f(x^3) = f(x^2 + tp_2)$$
 对 t 精确一维搜索可得 $t_2 = 1.7017$

$$\therefore x^3 = (0,0)^T, \quad g_3 = Qx^3 = (0,0)^T$$

$$\therefore f(x)$$
的最小值点为 $x^* = (0,0)^T$,最小值 $f(x^*) = 0$ 。

//鉴于本人水平有限,如有错误敬请谅解,可联系修正。

5.4. 解: 将共化为核准形式,取 B= (R, R, ..., R.)

(Mas
$$\sigma_0 = \frac{2}{56} a_{11} \alpha_{11} + \frac{2}{56} a_{21} \alpha_{21} + ... + \frac{2}{56} a_{21} \alpha_{21} + \frac{2}{56} a_{21} + ... + \frac{2}{56} a_{21} \alpha_{21} + ... + \frac{2}{56} a_{21} \alpha_{21} + ... + \frac{2}{56} a_{21} + ... + \frac{2}{56$$

5.7. 解,加入松驰变量、将此规范化为林星形对特.

$$\begin{cases} man & b_0 = h_1 + 2h_2 + 0 \cdot h_3 + 0 \cdot h_4 + 0 \cdot h_5, \\ S.t. & b_1 + h_3 = 4, \\ b & b_2 + h_4 = 3, \\ b_1 + 2h_2 + h_5 = 8, \\ b_1 + 2h_3 + h_5 = 8, \\ b_1 > 0, b_2 > 0, b_3 > 0, h_4 > 0, b_5 > 0. \end{cases}$$

	G		-			_		
CB			7/2	0	0	0	T	θ
0	N3	1		3	154	ts	Б	0
0	04	0	0	1	0	0	4	-
1000			0	0	1	0	3	3-
	75	1	2	0	0	1	8	4
	-2	1	Z	0	0	0	0	
0	为	1	0	1	0	0	4	4
12	1/2	0	1	0	1	0	3	-
0	1/5		0	0	-2	1	2	24
-	2	1	0	0	-2	0	-6	
0	13	0	0	1	2	-1	2	
2	152	0	1	0	1	0	3	
1	5,	1	0	0	-2	1	2	
-2	-	0	0	0	0	-1	-8	

最成解为: X=(2,3,2,0,0), Z=8.

58. 解:在第一个方程中加入人工整型方。第二个方程中加入人工整型方。因此可能中加上(约为+MIN)之一项、将到大八年的形式数份模型。

man か。= -2か、-2か - Mが。- Mが。,
S. t. -か、+か-か、+ な=1,
-か、- が、-か、か、か、か、か、か。

百列单屯形着战群,由下表所永

9	3 -2	->		-			-
G X	1		0	0	-M	-M	
-M X	D,	_ Xa_	3	1/4	1/s	6	T 0
-M 3	-1	1	-1	0	1	0	1
-M 56	-1	-1	0	-1	0	1	2
-2	-2-2M	-2	-M	-M	0	0	3M
-						_	5/4

所解解以=(0,0,0,0,1,z)*, Z=-3M

但是政府中含有人工企业各种场,说明这个特别的未不解,这个可以心。

因此原河岛不列行群。

59、「解·在第一个多程产的人人工整星场。第一个多程中加入人工整星场。 第二个多程中加入人工电影场。 日本马数中加入一(MS+MS+MS+MS) 2-13、福利大州草林市的数学模型

> man 1/4 = -At, -35, -M& -MA - MA, -MB, S. t. 是为十九十六年一音唯十份 二二 , 新引擎的东京群、南下车下海。 童的一点的十九二品 36,-60, +46,+ 7,=0,

-	_ 9	-4	0	-3	0	-M	-M	-M		- 4
8	1/0	2,	th_	75	754	759	the.	ઝ ,	Б	θ
M	th	支	1	#	- 2	1	0	0	2	4
-14	1/2	三	0	-+	0	0	1	0	3	2
-14	15,	3	-6	0	4	0	0	1	0	00-
-	2	-4-1941	-5M	-3	10 M	0	0	0	51	1
-M	75	0	2	1 2	- ±	1	-6		2	1
-M	De.	0	3	-2	-2	0	1	-+	3	
-4	3,	1	3	0	43	0	0	3	0	0+
-	2	0	5M-8	-3	-学州+学	0	0	-3444		M
74	杏	0	0	量	0	1	0	17	2	24
-M	1/6	3 7	0	ઝ	0	0	1	0	3	2
0	Ď2	(-±)	1	0	-3	D	0	-6	0	10
-2	1	₹M-4	0	-3	0	0	0	- FM		5M
4	75,	1	0	支	0	1	0	7	2	2(1)
M	78	0	0	-54	0	-3	1	-14	D	
3	为	0	1	4	-2	1	0	4	1	
一叉		0	0	7-44	0	-5M+4	0	-74	2	0
		"福河南"	Rem≱. x	=(2,	1,0,0	1970		4-1	3	8
	10		2	= -8.					1	

尚胸: 通信工程岗院

维名: 张阳阳

183: 1401120314.

宝八章 犯

解: 构造增广函数 4,1分为下: 8.1

$$\begin{aligned} \phi_{k}(\pi) &= \pi_{i}^{2} + \pi_{\epsilon}^{2} + M_{k} \min (f \pi_{i} - I_{i}, 0)^{2} \\ &= \begin{cases} \pi_{i}^{2} + \pi_{2}^{2} &, & \pi_{i} \geq I \\ \pi_{i}^{2} + \pi_{2}^{2} + M_{k} (\pi_{i} - I)^{2} &, & \pi_{i} < I \end{cases} \end{aligned}$$

$$\frac{\partial \phi_{E}(h)}{\partial h_{i}} = \begin{cases} zh_{i} &, & h_{i} \geq 1 \\ zh_{i} + zM_{E}(h_{i}-1), & h_{i} < 1 \end{cases}$$

$$\dot{\oplus} \frac{\partial \phi_{k}(s)}{\partial x_{i}} = 0 \quad \overline{D}(\dot{g}: 2t_{i} + 2M_{k}(t_{i}, -1) = 0)$$

这就是对于国定的外,问题min中(t, Me)的常识解。

战, 於 就是阿城區问题心病来解。

8.2. 瞬: 构选塘广西数中(1x)分下;

$$\begin{aligned} \varphi_{k}(4) &= \beta_{1}^{2} + \beta_{2}^{2} + M_{k} min(\{ \beta_{1} + \beta_{2} - 1 , 0 \})^{2} \\ &= \left\{ \begin{array}{ccc} \beta_{1}^{2} + \beta_{2}^{2} & , & \beta_{1} + \beta_{2} > 1 \\ \beta_{1}^{2} + \beta_{2}^{2} + M_{k} (\beta_{1} + \beta_{2} - 1)^{2} & , & \beta_{1} + \beta_{2} < 1 \end{array} \right. \end{aligned}$$

$$\frac{\partial \varphi_k(h)}{\partial h_i} = \left\{ \begin{array}{l} 2 \beta_1 & , \quad \beta_1 + \beta_2 \geqslant \emptyset \\ \\ 2 \beta_1 + 2 M_K \left(\beta_1 + \beta_2 - 1 \right) & , \quad \beta_1 + \beta_2 \leqslant 0 \end{array} \right.$$

由3族的=0 可语:当为十九多1,且为《1时、为=0不在明城内。

10结两种的是 本本之,特别的专 · > 方, ** · ● , 日本工学

84. 瞬:证明: 在约为6尺,码有

「mu、かち(P)の場所研

更强的力力。则为十九十二十五十二十五十二 当为=0时, 为=1. 引为=1 f(+6)= T(ガンMx) > T(が: Mx)= f(が) 当カニーかは、f(か)=(1-九)2+が2 当なこまで f的那般,此时为=主 fin)=主

河里界如今16,41)的老旅游为

かきま、カキョナ

8·10. 解: (1) W側数函数水为降碍函数。 构造增于函数作例如下: 作(か)= か、+2な + ルトーが+な + Mトラ、

由
$$\frac{\partial f_{1}(x)}{\partial h_{1}} = 1 + \mu_{1} \frac{2h_{1}}{(h_{1}^{2} + h_{2}^{2})^{2}} - \mu_{1} \frac{1}{h_{1}^{2}} = 0$$
 $\frac{h_{1}^{2} + h_{2}^{2} + h_{2}^{2}}{(-h_{1}^{2} + h_{2}^{2})^{2}} = \mu_{1} \rightarrow 0$
 $h_{1} = 0 - h_{1}^{2} + h_{2} = 0$
 $h_{2} = 0$
 $h_{3} = 0$
 $h_{4} = h_{1}^{2} + h_{2}^{2} + h_{3}^{2} + h_{4}^{2} + h_{4}^{2}$
 $h_{4} = h_{3}^{2} + 2h_{3}^{2} + h_{4}^{2} + h_{4}^{2} + h_{5}^{2}$
 $h_{4} = h_{5}^{2} + h_{5}^{2} + h_{5}^{2} + h_{5}^{2} + h_{5}^{2} + h_{5}^{2} + h_{5}^{2}$
 $h_{5} = 1 + \mu_{1} + h_{1}^{2} + h_{5}^{2} + h_$

$$g(t) = \chi^{2} + t^{2}$$

 $g(t) = \chi^{2} + t^{2}$
 $g(t) = \chi^{2} + \chi^{2} + \chi^{2}$
 $g(t) = \chi^{2} + \chi^{2} + \chi^{2} + \chi^{2}$
 $g(t) = \chi^{2} + \chi^{2} + \chi^{2} + \chi^{$