Основы машинного обучения

Лекция 11

Решающие деревья

Евгений Соколов

esokolov@hse.ru

НИУ ВШЭ, 2022

Многоклассовая классификация

Бинарная классификация

Многоклассовая классификация

Многоклассовая классификация

One-vs-all

- K классов: $\mathbb{Y} = \{1, ..., K\}$
- $X_k = (x_i, [y_i = k])_{i=1}^{\ell}$
- Обучаем $a_k(x)$ на X_k , k = 1, ..., K
- $a_k(x)$ должен выдавать оценки принадлежности классу (например, $\langle w, x \rangle$ или $\sigma(\langle w, x \rangle)$)
- Итоговая модель:

$$a(x) = \arg \max_{k=1,\dots K} a_k(x)$$

One-vs-all

- Модель $a_k(x)$ при обучении не знает, что её выходы будут сравнивать с выходами других моделей
- Нужно обучать К моделей

All-vs-all

- $X_{km} = \{(x_i, y_i) \in X \mid y_i = k$ или $y_i = m\}$
- Обучаем $a_{km}(x)$ на X_{km}
- Итоговая модель:

$$a(x) = \arg \max_{k \in \{1, \dots, K\}} \sum_{m=1}^{K} [a_{km}(x) = k]$$

All-vs-all

- Нужно обучать порядка K^2 моделей
- Зато каждую обучаем на небольшой выборке

Доля ошибок

• Функционал ошибки — доля ошибок (error rate)

$$Q(a,X) = \frac{1}{\ell} \sum_{i=1}^{\ell} [a(x_i) \neq y_i]$$

• Нередко измеряют долю верных ответов (accuracy):

$$Q(a, X) = \frac{1}{\ell} \sum_{i=1}^{\ell} [a(x_i) = y_i]$$

• Подходит для многоклассового случая!

Общие подходы

Микро-усреднение

Вычисляем TP_k , FP_k , FN_k , TN_k для каждого класса

Суммируем по всем классам, получаем ТР, FP, FN, TN

Подставляем их в формулу для precision/recall/...

Крупные классы вносят больший вклад

Макро-усреднение

Вычисляем нужную метрику для каждого класса (например, precision₁, ..., precision_K)

Усредняем по всем классам

Игнорирует размеры классов

Как делать нелинейные модели

- Признаки: площадь, этаж, расстояние до метро и т.д.
- Целевая переменная: рыночная стоимость квартиры

• Линейная модель:

$$a(x) = w_0 + w_1 * (площадь) + w_2 * (этаж) + w_3 * (расстояние до метро) + ···$$

• Вряд ли признаки линейно связаны с целевой переменной

• Линейная модель:

$$a(x) = w_0 + w_1 * (площадь) + w_2 * (этаж) + w_3 * (расстояние до метро) + \cdots$$

• Вряд ли признаки не связаны между собой

• Линейная модель с полиномиальными признаками:

$$a(x) = w_0 + w_1 * (площадь) + w_2 * (этаж)$$
 $+w_3 * (расстояние до метро) + w_4 * (площадь)^2$
 $+w_5 * (этаж)^2 + w_6 * (расстояние до метро)^2$
 $+w_7 * (площадь) * (этаж) + \cdots$

• Линейная модель с полиномиальными признаками:

$$a(x) = w_0 + w_1 * (площадь) + w_2 * (этаж)$$
 $+w_3 * (расстояние до метро) + w_4 * (площадь)^2$
 $+w_5 * (этаж)^2 + w_6 * (расстояние до метро)^2$
 $+w_7 * (площадь) * (этаж) + \cdots$

- Может быть сложно интерпретировать модель
- Что такое (расстояние до метро) * (этаж)²?

- Допустим, изначально имеем 10 признаков
- Полиномиальных степени 2: 55
- Полиномиальных степени 3: 220
- Полиномиальных степени 4: 715

• Линейная модель с полиномиальными признаками:

• Линейная модель с полиномиальными бинаризованными признаками:

$$a(x) = w_0 + w_1 * [30 < площадь < 50]$$
 $+w_2 * [50 < площадь < 80] + \cdots$ $+w_{20} * [2 < этаж < 5] + \cdots$ $+w_{100} * [30 < площадь < 50][2 < этаж < 5] + \cdots$

- Признаки интерпретируются куда лучше: [30 < площадь < 50][2 < этаж < 5][100 < расстояние до метро < 500]
- Но их станет ещё больше!

Решающие деревья

Логические правила

- [30 < площадь < 50][2 < этаж < 5][500 < расстояние до метро < 1000]
- Легко объяснить, как работают
- Находят нелинейные закономерности

- Нужно как-то искать хорошие логические правила
- Нужно уметь составлять модели из логических правил

- Внутренние вершины: предикаты $\left[x_j < t\right]$
- Листья: прогнозы $c \in \mathbb{Y}$

Сложность дерева

- Решающее дерево можно строить до тех пор, пока каждый лист не будет соответствовать ровно одному объекту
- Деревом можно идеально разделить любую выборку!
- Если только нет объектов с одинаковыми признаками, но разными ответами

Решающее дерево для регрессии

Решающее дерево для регрессии

Решающее дерево для регрессии

Решающее дерево для регрессии

Решающее дерево

- Внутренние вершины: предикаты $\left[x_j < t\right]$
- Листья: прогнозы $c \in \mathbb{Y}$

Предикаты

- Порог на признак $\left[x_{j} < t
 ight]$ не единственный вариант
- Предикат с линейной моделью: $[\langle w, x \rangle < t]$
- Предикат с метрикой: $[\rho(x, x_0) < t]$
- И много других вариантов
- Но даже с простейшим предикатом можно строить очень сложные модели

Прогнозы в листьях

- Наш выбор: константные прогнозы $c_v \in \mathbb{Y}$
- Регрессия:

$$c_v = \frac{1}{|R_v|} \sum_{(x_i, y_i) \in R_v} y_i$$

• Классификация:

$$c_v = \arg\max_{k \in \mathbb{Y}} \sum_{(x_i, y_i) \in R_v} [y_i = k]$$

Прогнозы в листьях

- Наш выбор: константные прогнозы $c_v \in \mathbb{Y}$
- Классификация и вероятности классов:

$$c_{vk} = \frac{1}{|R_v|} \sum_{(x_i, y_i) \in R_v} [y_i = k]$$

Прогнозы в листьях

- Можно усложнять листья
- Например:

$$c_v(x) = \langle w_v, x \rangle$$

Решающее дерево

Решающее дерево

Формула для дерева

- Дерево разбивает признаковое пространство на области R_1 , ..., R_J
- Каждая область R_i соответствует листу
- В области R_j прогноз c_j константный

$$a(x) = \sum_{j=1}^{J} c_j \left[x \in R_j \right]$$

Формула для дерева

$$a(x) = \sum_{j=1}^{J} c_j \left[x \in R_j \right]$$

- Решающее дерево находит хорошие новые признаки
- Над этими признаками подбирает линейную модель

Как выбирать предикаты

- Разберёмся на примере
- Начнём с задачи классификации

• Как разбить вершину?

Как сравнить разбиения?

ИЛИ

• Мера неопределённости распределения

• Мера неопределённости распределения

- Дискретное распределение
- Принимает n значений с вероятностями p_1 , ..., p_n
- Энтропия:

$$H(p_1, \dots, p_n) = -\sum_{i=1}^n p_i \log p_i$$

- $H = 1.60944 \dots$
- (0.2, 0.2, 0.2, 0.2, 0.2) (0.9, 0.05, 0.05, 0, 0)
 - $H = 0.394398 \dots$

- (0, 0, 0, 1, 0)
- H = 0

Как сравнить разбиения?

- (0.5, 0.5, 0) и (0, 0, 1)
- H = 0.693 + 0 = 0.693

- (0.33, 0.33, 0.33) и (0.33, 0.33, 0.33)
- H = 1.09 + 1.09 = 2.18

$$H(p_1, ..., p_K) = -\sum_{i=1}^K p_i \log_2 p_i$$

- Характеристика «хаотичности» вершины
- Impurity

Критерий Джини

$$H(p_1, ..., p_K) = \sum_{i=1}^K p_i (1 - p_i)$$

- Вероятность ошибки случайного классификатора, который выдаёт класс k с вероятностью p_k
- Примерно пропорционально количеству пар объектов, относящихся к разным классам

Критерии качества вершины

