Let R be an equivalence relation on the set E. The family $(C_x)_{x\in E}$ of the associated equivalence classes create a partition of the set E.

Proof:

1- Proove that
$$\forall (i,j) \in I^2, C_i \cap C_j \neq \Rightarrow C_i = C_j$$

Let $x \in C_i, C_i \cap C_j \neq$ and R an equivalence relation $\Rightarrow \exists y \in C_j \mid xRy$
 $\Rightarrow \forall z \in C_j, yRz \Rightarrow zRx$
 $\Rightarrow C_i = C_j$

2- Proove that $\forall i \in I, C_i \neq$ Let $x \in E$ and C_i its equivalence class $\Rightarrow x \in C_i \Rightarrow \forall i \in I, C_i \neq$

3- Proove that $\bigcup_{i \in I} C_i = E$ Let $x \in E$ $\Rightarrow \exists i \in I \mid x \in C_i$ $\Rightarrow E \subset C_i \subset \bigcup_{i \in I} C_i$ Let $x \in \bigcup_{i \in I} C_i$ $\Rightarrow x \in E$ $\Rightarrow E \supset \bigcup_{i \in I} C_i$