

Chapter 9. Advanced Classification: Support Vector Machines (SVMs)

Meng Jiang

CSE 40647/60647 Data Science Fall 2017

Concepts

Quick start:

- 1. Hyperplane
- 2. Supper Vector
- 3. Margin
- 4. SVMs
- 5. Maximize Margin Width
- 6. Non-linear SVMs: Kernel Function

A Classification Problem

Dataset

- Suppose data science course instructors have observed that students get the most out of the course if they are good at Math or Stats.
- Over time, they have recorded the scores of the enrolled students in these subjects.
- Also, for each of these students, they have a *label* depicting their performance in the data science course: "*Good*" or "*Bad*".

- Research problem
 - Now they want to determine the relationship between Math and Stats scores and the performance (label) in the ML course.
- Application
 - Perhaps, based on what they find, they want to specify a prerequisite for enrolling in the course.

- Data Preprocessing + Visualization
 - Draw a two-dimensional scatter plot, where one axis represents scores in Math, while the other represents scores in Stats.
 - A <u>student</u> with certain scores is shown as a <u>point</u> on the graph.
 - The color of the point green or red represents how he/she did on the data science course: "Good" or "Bad" respectively.

Goal

 Finding a *line* that passes between the red and green clusters, and then *determining which side* of this line a score tuple lies on, is a good algorithm.

- The *line* is our *separating boundary* (because it separates out the labels) or *classifier* (we use it classify points).
- Two classifiers:

Concept 1: Hyperplane

- In two dimensions we find a line.
- In three dimensions we find a plane.
- In high dimensions we find a *hyperplane* a generalization of the two-dimensional line and three-dimensional plane to an *arbitrary number of dimensions*.

Concepts

Quick start:

- 1. Hyperplane
- 2. Supper Vector
- 3. Margin
- 4. SVMs
- 5. Maximize Margin Width
- 6. Non-linear SVMs: Kernel Function

Q: Both lines separate the red and green clusters. Is there a good reason to choose one over another?

Q: Both lines separate the red and green clusters. Is there a good reason to choose one over another?

A: We try to find the second kind of line.

Q': Define *underlying philosophy* in the general case.

- Philosophy
 - Find lines that correctly classify the training data
 - Among all such lines, pick the one that has the greatest distance to the points closest to it

Concept 2: Support Vector

 The closest points that identify this line are known as support vectors.

Concept 3: Margin

• The (shaded) region support vectors define around the line is known as the margin.

Concepts

Quick start:

- 1. Hyperplane
- 2. Supper Vector
- 3. Margin
- 4. SVMs
- 5. Maximize Margin Width
- 6. Non-linear SVMs: Kernel Function

Support Vector Machines

- Definition (Wikipedia)
 - A SVM is a discriminative classifier formally defined by a separating hyperplane. In other words, given labeled training data, the algorithm outputs an optimal hyperplane which categorizes new examples.
 - A data point is viewed as a p-dimensional vector, and we want to know whether we can separate such points with a (p-1)-dimensional hyperplane.

Use

 SVMs give you a way to pick between many possible classifiers in a way that guarantees a higher chance of correctly labeling your test data.

SVM: General Philosophy

Concepts

Quick start:

- 1. Hyperplane
- 2. Supper Vector
- 3. Margin
- 4. SVMs
- 5. Maximize Margin Width
- 6. Non-linear SVMs: Kernel Function

Formally Define the Problem

- Binary Classification
 - E.g., course performance classification
 - $x_i = (x_1, x_2, x_3, ...)$: Subject scores
 - $y_i = +1 \text{ or } -1$: "Good" or "Bad"
 - x₁: score of subject Math
 - x₂: score of subject Stats

- Mathematically, $x \in \Re^n$, $y \in \{+1, -1\}$,
 - We want to derive a function $f: X \rightarrow Y$

Optimization

Support vectors:

Hyperplane:

wx+b=0

What we know:

•
$$\mathbf{W} \cdot \mathbf{X}^+ + b = +1$$

•
$$\mathbf{W} \cdot \mathbf{X} + b = -1$$

A separating hyperplane can be written as

$$\mathbf{w} \cdot \mathbf{x} + \mathbf{b} = \mathbf{o}$$

where $\mathbf{w} = \{\mathbf{w}_1, \mathbf{w}_2, ..., \mathbf{w}_n\}$ is a weight vector and \mathbf{b} a scalar (bias).

Optimization

Support vectors:

Hyperplane:

wx+b=0

What we know:

•
$$\mathbf{W} \cdot \mathbf{X}^+ + b = +1$$

•
$$\mathbf{W} \cdot \mathbf{X} + b = -1$$

How to calculate the Margin Width?

Distance between two parallel lines.

Optimization: Maximize Margin Width

Support vectors: X⁺

Hyperplane:

wx+b=0

What we know:

•
$$\mathbf{W} \cdot \mathbf{X}^+ + b = +1$$

•
$$\mathbf{W} \cdot \mathbf{X} + b = -1$$

$$max M = \frac{(x^+ - x^-) \cdot w}{|w|} = \frac{2}{|w|}$$

same as $min = \frac{1}{2} w^t w$

Any constraints?

Correctly categorize...

Optimization: Maximize Margin Width

Support vectors: X⁺

Hyperplane:

wx+b=0

What we know:

•
$$\mathbf{W} \cdot \mathbf{X}^+ + b = +1$$

•
$$\mathbf{w} \cdot \mathbf{x} + b = -1$$

$$max M = \frac{(x^+ - x^-) \cdot w}{|w|} = \frac{2}{|w|}$$

same as $min = \frac{1}{2} w^t w$

$$H_1: \mathbf{w} \mathbf{x}_i + b \ge 1$$
 for $y_i = +1$
 $H_2: \mathbf{w} \mathbf{x}_i + b \le -1$ for $y_i = -1$
 $\rightarrow y_i (\mathbf{w} \mathbf{x}_i + b) \ge 1$ for all i

The MMW Problem

min
$$\Phi(w) = \frac{1}{2}w^t w$$

s.t. $y_i(wx_i + b) \ge 1$ for all i

It's a Constrained (Convex) Quadratic Optimization Problem!

Quadratic optimization problems are a well-known class of mathematical programming problems, and many (rather intricate) algorithms exist for solving them.

Solving the MMW Problem

- Need to optimize a quadratic function subject to linear constraints.
- Quadratic objective function and linear constraints →
 Quadratic Programming (QP) → Lagrangian multipliers
- The solution involves constructing a dual problem where a **Lagrange multiplier** α_i is associated with every constraint in the primary problem:

Find **w** and b such that $\Phi(\mathbf{w}) = \frac{1}{2} \mathbf{w}^T \mathbf{w}$ is minimized; and for all $\{(\mathbf{x}_i, y_i)\}: y_i (\mathbf{w}^T \mathbf{x}_i + b) \ge 1$

Find $\alpha_1 ... \alpha_N$ such that

$$\mathbf{Q}(\mathbf{\alpha}) = \sum \alpha_i - \frac{1}{2} \sum \sum \alpha_i \alpha_j y_i y_j \mathbf{x_i}^\mathsf{T} \mathbf{x_j}$$
 is maximized and

- (1) $\sum \alpha_i y_i = 0$
- (2) α_i ≥ o for all α_i

Concepts

Quick start:

- 1. Hyperplane
- 2. Supper Vector
- 3. Margin
- 4. SVMs
- 5. Maximize Margin Width
- 6. Non-linear SVMs: Kernel Function

LinearSVM: Summary

- The classifier is a separating hyperplane.
 - Linearly separable data points
- Most "important" training points are support vectors; they define the hyperplane.

maximum marginal hyperplane

• Quadratic optimization algorithms can identify which training points x_i are support vectors with non-zero Lagrangian multipliers α_i .

Find $\alpha_1...\alpha_N$ such that $Q(\alpha) = \Sigma \alpha_i - \frac{1}{2} \Sigma \Sigma \alpha_i \alpha_j y_i y_j x_i^T x_j$ is maximized and (1) $\Sigma \alpha_i y_i = 0$ (2) $0 \le \alpha_i \le C$ for all α_i

Why is SVM Effective on High Dimensional Data?

- The complexity of trained classifier is characterized by the # of support vectors rather than the dimensionality of the data.
- The support vectors are the essential or critical training examples — they lie closest to the decision boundary.
- If all other training examples are removed and the training is repeated, the same separating hyperplane would be found.

Non-Linear Data Points

Non-linear SVMs: Feature Spaces

 General idea: The original input space can always be mapped to some higher-dimensional feature space where the training set is separable:

The "Kernel Trick"

The classifier relies on dot product between vectors

$$K(x_i, x_j) = x_i^T x_j$$

• If every data point is mapped into high-dimensional space via some transformation $\Phi: x \to \phi(x)$, the dot product becomes:

$$K(x_i, x_j) = \varphi(x_i)^T \varphi(x_j)$$

• A *kernel function* is some function that corresponds to an inner product in some expanded feature space.

What Functions are Kernels?

- For some functions $K(x_i, x_j)$ checking that $K(x_i, x_j) = \phi(x_i)^T \phi(x_j)$ can be cumbersome.
- Mercer's theorem:

Every semi-positive definite symmetric function is a kernel

• Semi-positive definite symmetric functions correspond to a semi-positive definite symmetric Gram matrix:

K =	$K(\mathbf{x}_1,\mathbf{x}_1)$	$K(\mathbf{x_1},\mathbf{x_2})$	$K(\mathbf{x}_1,\mathbf{x}_3)$		$K(\mathbf{x}_1,\mathbf{x}_N)$
	$K(\mathbf{x}_2,\mathbf{x}_1)$	$K(\mathbf{x_2},\mathbf{x_2})$	$K(\mathbf{x}_2,\mathbf{x}_3)$		$K(\mathbf{x_2},\mathbf{x_N})$
	•••		•••		
	$K(\mathbf{x_N}, \mathbf{x_1})$	$K(\mathbf{x_N},\mathbf{x_2})$	$K(\mathbf{x_N},\mathbf{x_3})$	•••	$K(\mathbf{x_N}, \mathbf{x_N})$

Example: A Kernel Function

- Polynomial kernel of degree h=2: $K(X_i, X_j) = X_i X_j^2 \rightarrow \varphi(x, y) = (x^2, \sqrt{2}xy, y^2)$
- Suppose there are 5 original 2-dimensional points:

$$- X_1(0, 0), X_2(4, 4), X_3(-4, 4), X_4(-4, -4), X_5(4, -4)$$

	x	у	Ф1 = X ²	Ф2 = ху	ф3 = у²
X ₁	0	0	0	0	0
<i>X</i> ₂	4	4	16	$16\sqrt{2}$	16
<i>x</i> ₃	-4	4	16	$-16\sqrt{2}$	16
<i>X</i> ₄	-4	-4	16	$16\sqrt{2}$	16
<i>X</i> ₅	4	-4	16	$-16\sqrt{2}$	16

Example: A Kernel Function

- Polynomial kernel of degree h=2: $K(X_i, X_j) = X_i X_j^2 \rightarrow \phi(x, y) = (x^2, \sqrt{2}xy, y^2)$
- Suppose there are 5 original 2-dimensional points:

Kernel Functions for Nonlinear Classification

- Instead of computing the dot product on the transformed data, it is mathematically equivalent to applying a kernel function $K(\mathbf{X_i}, \mathbf{X_j})$ to the original data, i.e., $K(\mathbf{X_i}, \mathbf{X_j}) = \Phi(\mathbf{X_i}) \Phi(\mathbf{X_j})$.
- Typical Kernel Functions

Polynomial kernel of degree $h: K(X_i, X_j) = (X_i \cdot X_j + 1)^h$

Gaussian radial basis function kernel: $K(X_i, X_i) = e^{-\|X_i - X_j\|^2/2\sigma^2}$

Sigmoid kernel: $K(X_i, X_j) = \tanh(\kappa X_i \cdot X_j - \delta)$

Non-linear SVMs: Optimization

Dual problem formulation:

Find
$$\alpha_1...\alpha_N$$
 such that $Q(\alpha) = \sum \alpha_i - \frac{1}{2} \sum \sum \alpha_i \alpha_j y_i y_j K(x_i, x_j)$ is maximized and (1) $\sum \alpha_i y_i = 0$ (2) $\alpha_i \ge 0$ for all α_i

The solution is:

$$f(x) = \sum \alpha_i y_i K(x_i, x_i) + b$$

• Optimization techniques for finding α_i 's remain the same!

Concepts

Quick start:

- 1. Hyperplane
- 2. Supper Vector
- 3. Margin
- 4. SVMs
- 5. Maximize Margin Width
- 6. Non-linear SVMs: Kernel Function

SVM: History and Applications

- Vapnik and colleagues (1992)—groundwork from Vapnik & Chervonenkis' statistical learning theory in 1960s
- Features: training can be slow but accuracy is high owing to their ability to model complex nonlinear decision boundaries (margin maximization)
- Applications:
 - Text categorization
 - Image classification
 - Hand-written digit/character recognition
 - Object recognition
 - Bioinformatics (Protein classification, Cancer classification...)

SVM Related Links

- SVM Website: http://www.kernel-machines.org/
- Representative implementations
 - LIBSVM: an efficient implementation of SVM, multi-class classifications, nu-SVM, one-class SVM, including also various interfaces with java, python, etc.
 - SVM-light: simpler but performance is not better than LIBSVM,
 support only binary classification and only in C
 - SVM-torch: another recent implementation also written in C
 - http://www.meng-jiang.com/teaching/SVMDemo.zip

References

- C. M. Bishop, Neural Networks for Pattern Recognition. Oxford University Press, 1995
- L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees. Wadsworth International Group, 1984
- C. J. C. Burges. A Tutorial on Support Vector Machines for Pattern Recognition. Data Mining and Knowledge Discovery, 2(2): 121-168, 1998
- N. Cristianini and J. Shawe-Taylor, Introduction to Support Vector Machines and Other Kernel-Based Learning Methods, Cambridge University Press, 2000
- H.Yu, J. Yang, and J. Han. Classifying large data sets using SVM with hierarchical clusters.
 KDD'03
- A. J. Dobson. An Introduction to Generalized Linear Models. Chapman & Hall, 1990
- R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification, 2ed. John Wiley, 2001
- T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer-Verlag, 2001
- S. Haykin, Neural Networks and Learning Machines, Prentice Hall, 2008
- D. Heckerman, D. Geiger, and D. M. Chickering. Learning Bayesian networks: The combination of knowledge and statistical data. Machine Learning, 1995
- H. Cheng, X. Yan, J. Han & C.-W. Hsu, Discriminative Frequent Pattern Analysis for Effective Classification, ICDE'07
- W. Cohen. Fast effective rule induction. ICML'95

References (cont.)

- H. Cheng, X. Yan, J. Han & P. S. Yu, Direct Discriminative Pattern Mining for Effective Classification, ICDE'08
- G. Cong, K. Tan, A. Tung & X. Xu. Mining Top-k Covering Rule Groups for Gene Expression Data, SIGMOD'05
- M. Deshpande, M. Kuramochi, N. Wale & G. Karypis. Frequent Substructure-based Approaches for Classifying Chemical Compounds, TKDE'05
- G. Dong & J. Li. Efficient Mining of Emerging Patterns: Discovering Trends and Differences, KDD'99
- W. Fan, K. Zhang, H. Cheng, J. Gao, X. Yan, J. Han, P. S. Yu & O. Verscheure. Direct Mining of Discriminative and Essential Graphical and Itemset Features via Model-based Search Tree, KDD'08
- W. Li, J. Han & J. Pei. CMAR: Accurate and Efficient Classification based on Multiple Class-association Rules, ICDM'01
- B. Liu, W. Hsu & Y. Ma. Integrating Classification and Association Rule Mining, KDD'98
- J. R. Quinlan and R. M. Cameron-Jones. FOIL: A midterm report. ECML'93
- Jingbo Shang, Wenzhu Tong, Jian Peng, and Jiawei Han, "<u>DPClass: An Effective but Concise</u>
 <u>Discriminative Patterns-Based Classification Framework</u>", SDM'16
- J. Wang and G. Karypis. HARMONY: Efficiently Mining the Best Rules for Classification, SDM'05
- X. Yin & J. Han. CPAR: Classification Based on Predictive Association Rules, SDM'03