AVR-GCC ASSIGMNMENT

NARENDRA MANIKANTA

manikantakesana0@gmail.com

IITH - Future Wireless Communications (FWC)

Contents

1 Question

A Boolean function F of three X, Y and Z is given as $F(X,Y,Z)=(X'+Y+Z)\cdot(X+Y'+Z')\cdot(X'Y'Z'+X'YZ'+XYZ')$. Which one of the following is true?

(a)
$$F(X,Y,Z) = (X + Y + Z') \cdot (X' + Y' + Z')$$

(b)
$$F(X,Y,Z) = (X'+Y) \cdot (X+Y'+Z')$$

(c)
$$F(X, Y, Z) = X'Z' + YZ'$$

(d)
$$F(X, Y, Z) = X'Y'Z + XYZ$$

2 Answer

The above question can reduced as follows

$$\to (X' + Y + Z) \cdot (X' + Y + Z') \cdot (X + Y' + Z') \cdot (X'Y'Z' + X'YZ' + XYZ')$$

$$\rightarrow (X'+Y)\cdot (X+Y'+Z')\cdot (X'Z'+XYZ')$$

$$\rightarrow (X'+Y) \cdot (X+Y'+Z') \cdot (X'Z'+YZ')$$

$$\rightarrow (X'Y' + X'Z' + YX + YZ') \cdot (X'Z' + YZ')$$

$$\rightarrow \dot{X}'Y'Z' + X'Z' + X'YZ' + X\dot{Y}\dot{Z}' + X'YZ' + \dot{Y}Z'$$

$$\rightarrow X'Z' + YZ' + YZ'$$

$$\rightarrow X'Z' + YZ'$$

Therefore, the Boolean function $F(X,Y,Z) = (X'+Y)\cdot Z'$

3 Logic Diagram

Fig. 1

4 Truth Table

X	Y	Z	F
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

Truth table for Boolean Function F

5 K-Map Implementation

Using the boolean logic output F can be expressed in terms of the inputs X,Y,Z with the help of the following Kmap.

Fig. 2

6 Components

Component	Values	Quantity
Arduino	UNO	1
Jumper	M-M	5
Wires		
Breadboard		1

7 Implementation

Arduino PIN	INPUT	OUTPUT
5	X	
6	Y	
7	Z	
2		F

Connections

Procedure

- 1. Connect the circuit as per the above table.
- 2. Connect inputs to Vcc for logic 1, ground for logic 0.
- 3. Execute the circuit using the below code.

https://github.com/arduinojinarendra/ fwc 1may/blob/main/avrgcc code/mainċ