

Deep Learning

Herramientas de IA

Docente: Cristian Guarnizo Lemus

Contenido

- 1. Neural Networks
- Convolutional Neural Networks
- 3. Generative Adversarial Networks
- 4. Transformers
- 5. Transfer Learning
- 6. Fine Tuning

Neural Networks

Vigilada Mineducación

Neural Networks - Basic Unit

Neural Networks – Multiple layers

Neural Network - Setup

Contenido

- Neural Networks
- 2. Convolutional Neural Networks
- Generative Adversarial Networks
- 4. Transformers
- 5. Transfer Learning
- 6. Fine Tuning

Vision Artificial

Recordemos - Clasificación

Extracción de características

Machine Learning

Deep Learning

Vigilada Mineducaci

Refinamiento por capas

Vigilada Mineducació

Pentido Humano

Como se forman las imagenes

Red renjujo Humano

Green

Blue

23 30 31 33

Recordemos - Machine Learning

What if the input is an image?

Classification

Is it a tiger, a cat, or a fox?

Class	Probability
Dog	0.03
Cat	0.96
Bird	0.01

224x224x3 = **150,528** pixels (!!)

Clasificación de imágenes

Detección de objetos

Convolutional Neural Network

n3 units

Aplicaciones

Aplicaciones

Vigilada Mineducació

SULTIUS II II I I I VACIOIT TECTIOIOGICA COIT JUNIO

zentido Humano

Convolution 2D

Image

Convolution Output

Kernel product

input

Convolutional layer - example

Ejercicio

Image

59	58	67	82
66	75	100	124
69	89	121	150

Kernel

-1	-1
-1	3

Kernel: 2x2

Stride: 1

Padding: valid

Output

<u>.</u>		
	х	

Pooling

Max Pooling

29	15	28	184
0	100	70	38
12	12	7	2
12	12	45	6

2 x 2 pool size

100	184
12	45

Average Pooling

31	15	28	184
0	100	70	38
12	12	7	2
12	12	45	6

2 x 2 pool size

36	80
12	15

Max Pooling – Example

Deep Learning

Vigilada Mineducación

Somos Innovación Tecnológica con Sentid

Sentido Humano

Contenido

- 1. Neural Networks
- 2. Convolutional Neural Networks
- 3. Generative Adversarial Networks
- 4. Transformers
- 5. Transfer Learning
- 6. Fine Tuning

Contenido

- 1. Neural Networks
- Convolutional Neural Networks
- 3. Generative Adversarial Networks
- 4. Transformers
- 5. Transfer Learning
- 6. Fine Tuning

Word Embedding

Attention

do Humano

Attention

https://deepgram.com/learn/visualizing-and-explaining-transformer-models-from-the-ground-up

0 11 0

Transformers

Vigilada Mineducació

Transformers

Vigilada Mineducación

Input text sequence

Concatenated word embeddings

Hidden layer of the neural network

Output probability distribution

Contenido

- Neural Networks
- 2. Convolutional Neural Networks
- 3. Generative Adversarial Networks
- 4. Transformers
- 5. Transfer Learning
- 6. Fine Tuning

Transfer Learning

Vigilada Mineducacion

Contenido

- Neural Networks
- Convolutional Neural Networks
- 3. Generative Adversarial Networks
- 4. Transformers
- 5. Transfer Learning
- 6. Fine Tuning

Fine tuning

Preguntas?

- 1. Que es la caracterización de imágenes? Este paso es necesario en Deep Learning?
- 2. Cual es el proceso de aprendizaje de una GAN?
- 3. Que aplicaciones tienen las GANs?
- 4. Que es transfer learning?

1 Gracias!

