# Intro to Survival Analysis + my project

Peem L. May 27th

# What is survival analysis?

• A regression problem on time until an event occurs.

#### • Examples:

- Predict how long an admitted patient will stay in a hospital.
- Predict when a subscriber unsubscribes from a service.

#### Censored data makes survival analysis challenging.

- Suppose we study how long patients with stage-2 cancer will survive. We might collect data for 5 years, but at the end of study, some patients might still survive.
- Reasons for censoring: Study ends, patients withdraw from studies, etc.
- Challenge: We haven't fully observed their outcomes, but we don't want to discard the data either.

# Survival time and censoring time

- For each individual i, suppose there exists a true failure time  $T_i$  and a true censoring time  $C_i$ . However, we can only observe  $y_i = min(T_i, C_i)$ .
  - If an event appears before the study ends,  $y_i = T_i$ .
  - Else, if the study ends and nothing happens to that individual (i.e., is censored),  $y_i = C_i$ .
- We can denote our dataset as  $(x_i, y_i, \delta_i)$ , where  $x_i$  denotes feature vectors,  $y_i$  as above, and  $\delta_i$  = 0 implies censored  $\delta_i$  = 1 implies fully observed.

# Examples



#### What are we estimating in survival analysis?

- Survival function: S(t|x) = Pr(T > t|x) = 1 F(t|x), where F(t|x) denotes CDF of conditional survival time.
- Cumulative hazard function:  $H(t|X) = -\log S(t|X)$ .
- . Hazard function:  $h(t|x) = \frac{\partial}{\partial t}H(t|x)$

### Q: Why do we care about censoring?

• **Answer:** Yes, especially to examine whether there are systematic reasons why censoring occurs.

#### Example:

- **Data:** SUPPORT dataset on survival time of seriously ill patients (n = 8,873)
- Task: We want to estimate how many patients survive beyond 100 days.

#### Examples on why censoring matters.

- Idea: Number of patients surviving beyond 1,000 days / total patients = 1,522/8,873 = 17.15%.
  - However, 1,584 patients are censored with observed duration < 1,000.</li>
     So, 17.15% is an underestimated.
  - We essentially assume these censored patients are all dead.

# Kaplan-Meier estimator (1959)

#### What it does:

- 1. List of periods when an event occurs.
- 2. Compute products of conditional probability of surviving until each period.
- Assume: Independent censoring

# K-M estimator (1959) (cont.)



# K-M estimator (1959) (cont.)



# K-M estimator (1959) (cont.)



#### K-M estimator on SUPPORT.



Age < 30: 304

50 > Age > 30: 1,550

70 > Age > 50: 3,854

Age > 70: 3,165

### Cox-proportional hazard model

 Note that K-M doesn't use any covariate. However, we might want to study how each term influences the survival probability. Recall the Hazard function:

$$h(t|x) = \frac{\partial}{\partial t} H(t|x)$$

$$= \lim_{\Delta t \to 0} \frac{Pr(t \le T \le T + \Delta t)}{\Delta t}$$

### Cox-proportional Hazard model

• Use hazard function as the basis for regression:

$$h(t|x_i) = h_0(t) \exp\left(\sum_{j \in [p]} x_{ij} \beta_j\right)$$

- Here,  $\beta_j$  refers to the coefficient for covariates of interests.
- Then,  $h(t|x_i) \rightarrow H(t|x_i) \rightarrow S(t|x_i)$

#### Cox-proportional hazard on SUPPORT.



Cox-proportional hazard model on SUPPORT.

# C-PH on SUPPORT (cont.)



#### My project with Nynke, Larry, George Chen.

- Currently, there exist many survival models beyond Kaplan-Meier and Cox proportional hazard models, specifically one that uses machine learning (or deep + sth.).
- Besides performance on test set, we want to **quantify uncertainty** in the predicted survival curve, which is more difficult than a point. Methods such as conformal prediction provide too large of an interval.
- Question: Can we provide conditional guarantees on a specific interval of interest?
- Data: Medical Information Mart for Intensive Care III (MIMIC-III) (EHR on 2,183 patients).

#### Credit

 https://sakai.unc.edu/access/content/group/2842013b-58f5-4453aa8d-3e01bacbfc3d/public/Ecol562\_Spring2012/docs/lectures/ lecture27.htm

• ISLR Version 2 by Hastie et. al.