CRYPTOGRAPHY

МАТЕМАТИЧНІ ОСНОВИ КРИПТОГРАФІЧНИХ АЛГОРИТМІВ

МОДУЛЬНАЯ АРИФМЕТИКА # 2

Диофантово уравнение.

• В общем виде $F(a_1,a_2,...,a_n,x_1,x_2,...,x_m)=0$ где a_i , x_j - целые!

• Линейное

$$a_1 * x_1 + a_2 * x_2 + \cdots + a_n * x_n = b$$

• Линейное с 2-мя переменными a*x+b*y=c (1) Все a,b,c,x,y целые !!! Важно! Если $\gcd(a,b) \dagger c$ — уравнение неразрешимо в целых. Важно! Если $\gcd(a,b) \mid c$ — уравнение разрешимо в целых. Имеет бесконечное число

Линейное диофантово уравнение

Пусть gcd(a,b) = d и $d \mid c$ (бесконечное число решений),

тогда (1), делим на d

$$a_1x + b_1y = c_1$$

Находим параметры s,t в равенстве (используем расширенный алгоритм Эвклида) $a_1s+b_1t=1$

Тогда частное решение

$$x_0 = \frac{c}{d}s, \qquad y_0 = \frac{c}{d}t$$

Общее решение

$$x=x_0+krac{b}{d}, \qquad y=y_0-krac{a}{d}$$
где k - целое.

Линейное диофантово уравнение

Решить

$$21x + 14y = 35$$

- 1. gcd(21, 14) = 7, d = 7
- 2. 7 | 35 = true! Бесконечное число решений
- 3. $3x + 2y = 5 \rightarrow$ решаем 3s + 2t = 1
- 4. Используем алгоритм Эвклида
- 5. s = 1, t = -1

Частное решение

$$x_0 = \frac{35}{7} * 1 = 5,$$
 $y_0 = \frac{35}{7} * -1 = -5$

Общее решение x = 5 + 2k, y = -5 - 3kЧастное решение при $k = 2 \rightarrow x = 9$, y = -15

Линейное уравнение с одним неизвестным, содержащее сравнение

```
Уравнение 1-го порядкаa \ x = bУравнение видаa \ x \equiv b \ (mod \ n)a \ , b \ , n \ - \  заданные целые!Например: 125 \ x \equiv 11 \ (mod \ 15)Например: 125 \ x \equiv 10 \ (mod \ 15)
```

Может:

- а) не иметь решения
- б) ограниченное число решений.

 Π усть d = gcd(a, n) Тогда

- а) если d + b нет решения
- б) если d|b есть d решений

Линейное уравнение с одним неизвестным, содержащее сравнение

Уравнение вида

$$a x \equiv b \pmod{n}$$

Алгоритм решения:

а) сокращаем уравнение – делим на d б) умножаем обе стороны на $\binom{a}{a}$ –1 мультипликативную инверсию $\left(\frac{a}{d}\right)^{-1}$ – находим решение x_0 .

Общее решение имеет вид

$$x = x_0 + k * \frac{n}{d},$$
 $k = 0, 1, ..., (d - 1)$

Линейное уравнение с одним неизвестным, содержащее сравнение

Пример.

$$125 \ x \equiv 10 \ (mod \ 15)$$
 Находим $d = gcd(125, 15) = 5 \rightarrow$ делит Сокращаем на $d = 5$ $25 \ x \equiv 2 \ (mod \ 3)$

Или

$$x_0 \equiv 2 * 25^{-1} \ (mod \ 3)$$
 , $\rightarrow 25^{-1} \ (mod \ 3) = 1$

To есть $x_0 \equiv 2 * 1 \pmod{3} = 2$ Общее решение имеет вид

$$x = 2 + k * 3, k = 0, 1, 2$$

 $x_0 = 2; x_1 = 5; x_2 = 8;$

Линейное уравнение с одним неизвестным, содержащее сравнение

Пример.

$$14 \ x \equiv 12 \ (mod \ 18)$$
 Находим $d = gcd(14, 18) = 2 \rightarrow$ делит Сокращаем на $d = 2$ $7 \ x \equiv 6 \ (mod \ 9)$

Или

$$x_0 \equiv 6 * 7^{-1} \pmod{9}$$
 , $\rightarrow 7^{-1} \pmod{9} = 4$

То есть $x_0 \equiv 6 * 4 \pmod{9} = 6$ Общее решение имеет вид

$$x = 6 + k * 9, \qquad k = 0, 1$$

Линейное уравнение с одним неизвестным, содержащее сравнение

Пример.

$$7 \ x \equiv 9 \ (mod \ 13)$$
 Находим $d = gcd(7, 13) = 1 \rightarrow$ делит Сокращаем на $d = 1$ $7 \ x \equiv 9 \ (mod \ 13)$

Или

$$x_0 \equiv 9 * 7^{-1} \ (mod \ 13) \quad , \rightarrow 7^{-1} \ (mod \ 13) = 2$$

То есть $x \equiv 9 * 2 \pmod{13} = 18 \pmod{13} = 5$ Общее решение имеет вид

$$x = 5$$

Система линейных алгебраических уравнений (СЛАУ)

Стандартная СЛАУ A * X = B или

$$\begin{pmatrix}
a_{1,1} & \cdots & a_{1,m} \\
\vdots & \ddots & \vdots \\
a_{m,1} & \cdots & a_{m,m}
\end{pmatrix} * \begin{bmatrix}
x_1 \\
\vdots \\
x_m
\end{bmatrix} = \begin{bmatrix}
b_1 \\
\vdots \\
b_m
\end{bmatrix}$$

Если $det(A) \neq 0$ есть A^{-1} и $X = A^{-1}B$.

Обратная матрица A^{-1} ищется как

$$A^{-1} = \frac{1}{det(A)}A^*,$$

 $A^{-1} = rac{1}{det(A)} A^*,$ где A^* транспонировання матрица алгебраических дополнений $a_{j,i}^* = (-1)^{i+j} * M_{i,j}$, $(M_{i,j}$ - минор).

Система линейных уравнений, содержащих сравнения

Уравнение вида

$$A * X \equiv B \pmod{n}$$

ИЛИ

$$\begin{pmatrix} a_{1,1} & \cdots & a_{1,m} \\ \vdots & \ddots & \vdots \\ a_{m,1} & \cdots & a_{m,m} \end{pmatrix} * \begin{bmatrix} x_1 \\ \vdots \\ x_m \end{bmatrix} \equiv \begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix} \pmod{n}$$

? если есть A^{-1} мультипликативная инверсия матрицы A, то

$$X \equiv A^{-1}B \ (mod \ n)$$

\mathbf{M} ножество \mathbb{R}

1 порядок	п-й порядок
a * x = b	A * X = B
$x = a^{-1}b$	$X = A^{-1}B$

Множество \mathbb{Z}_n

1 порядок	п-й порядок
$a * x \equiv b \pmod{n}$	$A * X \equiv B \ (mod \ n)$
$x \equiv a^{-1}b \pmod{n}$	$X \equiv A^{-1}B \ (mod \ n)$

Матрицы в \mathbb{Z}_n . Матрицы вычетов Особенность:

Мультипликативная инверсия матриц:

матрица A , где все $a_{i,j} \in \mathbb{Z}_n$, имеет мультипликативную инверсию, только если $\det(A)$ имеет мультипликативную инверсию в \mathbb{Z}_n .

Например:

$$A = {7 \choose 1} {5 \choose 5}, \qquad n = 10$$

$$\det(A) = 7 * 5 - 4 * 1 = 31$$

$$\det(A) mod 10 = 1 !!!!! \det(A)^{-1} = 1$$

Последовательность поиска инверсной матрицы.

Пусть $[\det(A)]^{-1}$ в \mathbb{Z}_n есть! и найдены все алгебраические дополнения $a_{j,i}^*$.

Для каждого *і, ј* решаем линейное уравнение

$$det(A) * \boldsymbol{a_{j,i}^{-1}} \equiv a_{j,i}^*(\boldsymbol{mod} \, \boldsymbol{n})$$

Таким образом формируется матрица $(A)^{-1}$

Дана A в \mathbb{Z}_{10}

$$A = \begin{pmatrix} 7 & 4 \\ 1 & 5 \end{pmatrix}, det(A) = 1, ?B = \frac{6}{3}.$$

Ищем мультипликативную инверсию 1 в \mathbb{Z}_{10} . Находим $\gcd(26,21)=1$.

$$det(A)^{-1} \mod 1 = 1$$

$$A^{-1} = \begin{bmatrix} 5mod10 & -4mod10 \\ -1mod10 & 7mod10 \end{bmatrix} = \begin{bmatrix} 5 & 6 \\ 9 & 7 \end{bmatrix}$$

$$X = \begin{bmatrix} (5*6+6*3)mod10 \\ (9*6+7*3)mod10 \end{bmatrix} = \begin{bmatrix} 48mod10 \\ 75mod10 \end{bmatrix} = \begin{bmatrix} 8 \\ 5 \end{bmatrix}$$

$$X = \begin{bmatrix} 8 \\ 5 \end{bmatrix}$$

$$A = \begin{bmatrix} 3 & 5 & 7 & 2 \\ 1 & 4 & 7 & 2 \\ 6 & 3 & 9 & 17 \\ 13 & 5 & 4 & 16 \end{bmatrix}, det(A) = 21.$$

Ищем мультипликативную инверсию 21 в \mathbb{Z}_{26} (расширенный алгоритм Эвклида). Находим $\gcd(26,21)=1$ и t=5.

$$det(A)^{-1} \ mod \ 26 = 5$$

Решение

$$A^{-1} = \begin{bmatrix} 15 & 21 & 0 & 15 \\ 23 & 9 & 0 & 22 \\ 15 & 16 & 18 & 3 \\ 24 & 7 & 15 & 3 \end{bmatrix}$$

Вопросы:

- Укажите условие существования решения уравнения a * x + b * y = c и опишите порядок поиска решения.
- Укажите условие существования решения уравнения $a \ x \equiv b \ (mod \ n)$ и опишите порядок поиска решения.
- Как найти мультипликативно инверсную матрицу в \mathbb{Z}_n ?

ЛИТЕРАТУРА

Нечаев В.И. Элементы криптографии (Основы теории защиты информации).- Учеб. пособие. — М.:, ВШ., 1999.- 109 с.

Введение в криптографию. **Под общ. ред. В.В.Ященко.** — 4-е изд., доп. М.: МЦНМО, 2012 — 348 с. ISBN 978-5-4439-0026-1

ЛИТЕРАТУРА

Венбо Мао. Современная криптография: теория и практика.—М.: Издательский дом «Вильямс», 2005.—768 с.: ил. ISSN 5-8459-0847-7 (рус.)

Шнайер Б. Прикладная криптография. Протоколы, алгоритмы и исходный код на Си. – Москва: Вильямс, 2016. 1024 с.

ЛИТЕРАТУРА

Francisco Rodriguez-Henriquez, N.A. Saqib, A. Diaz-Perez, Cetin Kaya Koc.

Cryptographic Algorithms on Reconfigurable Hardware. - Springer, 2006.

A. Menezes, P. van Oorschot, S. Vanstone.

Handbook of Applied Cryptography.- CRC Press, 1996.

END #4