Byczko Maciej Malek Jan Maziec Michał	Prowadzący: Mgr Inż. Monika Prucnal	Numer ćwiczenia 1
Grupa nr. 1	Temat ćwiczenia: Narzędzia pomiarowe	Ilość punktów:
Tydzień Nieparzysty Godzina 11:15-13:00	Data wykonania ćwiczenia: 16 marca 2020	

1 Część teoretyczna i opisowa

1.1 cel ćwiczenia

1.1.1 Wprowadzenie

Celem ćwiczenia jest poznanie źródeł informacji o parametrach i warunkach exploatacji narzędzi pomiarowych, zapoznanie ze sposobami użytkowania wybranych analogowych i cyfrowych przyrządów pomiarowych oraz wzorców rezystancji, nabycie umiejętności oceny niepewności wyników pomiarów, wynikającej z wartości błędów granicznych użytkowanego narzędzia pomiarowego.

1.2 program ćwiczenia

1. Przyrząd analogowy

- (a) Rozpoznać informacje umieszczone na podzielni przyrządu, ze szczególnym uwzględnieniem parametrów metrologicznych i sposobem podawania informacji o błędzie podstawowym przyrządu.
- (b) Zmierzyć wskazane napięcie woltomierzem magnetoelektrycznym. Pomiar tego samego napięcia wykonać stosując różne zakresy woltomierza. Porównać wyniki pomiarów.
- (c) Obliczyć graniczne błędy bezwzględne i względne wskazań woltomierza na dla każdego wyniku.
- (d) Podać dla każdego pomiaru przedział wartości w jakim znajduje się napięcie wskazywane przez woltomierz.

2. Przyrząd cyfrowych

- (a) Zapoznać się parametrami metrologicznymi i technicznymi oraz sposobem podawania błędu podstawowego dla przyrządó cyfrowych.
- (b) Zmierzyć wskazane napięcie. Pomiar tego samego napięcia wykonać stosując różne zakresy woltomierza. Porównać wyniki pomiarów.
- (c) Obliczyć graniczne błędy bezwzględne i względne wskazań woltomierza dla każdego wyniku.
- (d) Podać dla każdego pomiaru przedział wartości w jakim znajduje sie napiecie wskazywane przez woltomierz.
- (e) Zmierzyć prąd płynący we wskazanym obwodzie. Pomiar wykonać stosując różne zakresy amperomierza.
- (f) Obliczyć graniczne błędy bezwzględne i względne wskazań amperomierza decydujące o niepewności wartości odczytanej z amperomierza.

3. Wzorzec rezystancji

- (a) Zapoznać się z informacją umieszczoną na jednomiarowym wzorcu rezystancji i na dekadzie rezystancyjnej.
- (b) Obliczyć błąd graniczny bezwzględny wzorca rezystancji i podać przedział wartości, w którym leży rzeczywista wartość wzorca.
- (c) Zmierzyć omomierzem cyfrowym wartość rezystora wzorcowego oraz wartość rezystancji R ustawionej na dekadzie.
- (d) Określić błąd bezwzględny i względny wyniku pomiaru (niepewność wyniku pomiaru) wynikający z błędu granicznego omomierza i na tej podstawie przedział wartości, w którym znajduje się rzeczywista wartość mierzonej rezystancji.
- (e) Sprawdzić czy wyniki obliczeń z punktu 3.2 nie są sprzeczne z wynikami obliczeń w punktach 3.4.

1.3 Wstęp teoretyczny

Do wykonania pomiaru niezbędne są narzędzia pomiarowe i pomocniczy sprzęt pomiarowy. Do narzędzi pomiarowych zaliczane są przyrządy pomiarowe i wzorce miar. Wartości błędów narzędzi pomiarowych bardzo rzadko są znane dokładnie. Producenci aparatury podają jedynie wartości graniczne błędów podstawowych i dodatkowych, gwarantując tym samym, że przy zachowaniu określonych warunków użytkowania danego narzędzia pomiarowego popełniane nim błędy nie przekroczą określonych wartości. Błędy podstawowe narzędzi pomiarowych określają niedokładność wykonanego nimi pomiaru w warunkach odniesienia. Warunki odniesienia stanowi odpowiedni, znormalizowany, zbiór określonych wartości wielkości wpływających (temperatury, wilgotności,...). Parametrem metrologicznym charakteryzującym narzędzie pomiarowe jest błąd podstawowy. Błędy podstawowe wielu narzędzi pomiarowych podawane są w postaci odpowiedniego wskaźnika klasy dokładności.

1.4 spis przyrządów

Nr.	Przyrząd	Nazwa	Klasa przyrządu
1.	Zasilasz	TYP 5121	
2.	Woltomierz analogowy		0.5
3.	Woltomierz cyfrowy		
4.	Amperomierz analogowy		0.5
5.	Amperomierz cyfrowy		
6.	omomierz		

1.5 przebieg ćwiczenia

- podłączenie urządzenia do
- •
- •
- •

$$\Delta U = \pm \frac{kl * U_z}{100}$$

2 Pomiary i obliczenia

- 2.1 Doświadczenie 1
- 2.1.1 Schemat pomiarowy

Rysunek 1: schemat pomiarowy

2.1.2 Pomiary

Nr. pomiaru	Zakres pomiaru[V]	Wskazania podziałki[max. 75 działek]	$\mid ext{Wyniki pomiaru}[ext{V}] \mid$
1.	30	6	2.4
2.	15	11	2.2
3.	7.5	23	2.3
4.	3	58	2.32

2.2 Obliczenia

Brak obliczeń

3 Wyniki i Wnioski

Pomiary są dosyć niedokładne z powodu analogowego sposobu dokonywania pomiarów