APOSTILA DE ALGORITMOS E ANÁLISE DE COMPLEXIDADE

Uma Abordagem Prática e Didática

Professor Engenheiro de Computação

Vagner Cordeiro

VERSÃO 1.0 Setembro de 2025

Material didático para estudo de Análise de Algoritmos e Estruturas de Dados

PREFÁCIO

Esta apostila foi desenvolvida com o objetivo de fornecer aos estudantes de Ciência da Computação e Engenharia de Software uma base sólida em análise de algoritmos e complexidade computacional. O material apresenta de forma didática e progressiva os conceitos fundamentais, desde a notação Big-O até técnicas avançadas de otimização.

Objetivos de Aprendizagem

Ao final do estudo desta apostila, o aluno será capaz de:

- Analisar a complexidade temporal e espacial de algoritmos
- Aplicar a notação Big-O em problemas reais
- **Compreender** e implementar algoritmos recursivos
- Otimizar soluções utilizando técnicas de programação dinâmica
- Resolver problemas de algoritmos de forma estruturada
- Identificar padrões algorítmicos em diferentes contextos

Metodologia

O material está estruturado de forma progressiva, começando com conceitos básicos e evoluindo para tópicos avançados. Cada capítulo inclui:

- Fundamentação teórica
- Exemplos práticos em Python e C
- Exercícios resolvidos
- Questões para fixação
- Aplicações reais

Sobre o Autor

Prof. Vagner Cordeiro é Professor Universitário do Curso de Graduação e Pós-Graduação em Sistemas de Informação na Faculdade Estácio de Florianópolis. Leciona diversas disciplinas como Análise de Algoritmos, Redes de Computadores, Segurança Cibernética, Tópicos de Big Data em Python, IoT e Indústria 4.0 em Python, e Pensamento Computacional. Atua também como Instrutor de Informática no Governo do Estado de SC pela SEJURI.

Possui formação em Tecnólogo em Análise e Desenvolvimento de Sistemas, Técnico em Telecomunicações, Engenharia de Computação, especializações em Análise de Dados, MBA em Segurança da Informação e Engenharia e Segurança do Trabalho. Também possui Licenciatura em Matemática.

Com mais de 15 anos de experiência em empresas de destaque no setor de tecnologia de Santa Catarina como Intelbras, Embratel, Digitro e startups, traz para o ensino uma perspectiva prática e atual do mercado de trabalho em tecnologia.

5
ÍNDICE
PREFÁCIO 3
CAPÍTULO 1 - INTRODUÇÃO À ANÁLISE DE ALGORITMOS5
 1.1 Conceitos Fundamentais 1.2 Importância da Análise Algorítmica 1.3 Eficiência vs. Simplicidade
CAPÍTULO 2 - COMPLEXIDADE DE TEMPO E ESPAÇO 12
 2.1 Definições Básicas 2.2 Análise de Caso Médio, Melhor e Pior 2.3 Complexidade Espacial
CAPÍTULO 3 - NOTAÇÃO BIG-O18
 3.1 Definição Formal 3.2 Propriedades da Notação Big-O 3.3 Exemplos Práticos 3.4 Outras Notações (Ω, Θ)
CAPÍTULO 4 - RECURSIVIDADE25
 4.1 Conceitos Fundamentais 4.2 Casos Base e Recursivos 4.3 Tipos de Recursão 4.4 Análise de Complexidade Recursiva 4.5 Técnicas de Otimização
CAPÍTULO 5 - ALGORITMOS DE ORDENAÇÃO45
 5.1 Algoritmos Básicos (O(n²)) 5.2 Algoritmos Eficientes (O(n log n)) 5.3 Análise Comparativa 5.4 Quando Usar Cada Algoritmo
CAPÍTULO 6 - ALGORITMOS DE BUSCA 58
6.1 Busca Linear6.2 Busca Binária6.3 Busca em Estruturas Complexas
CAPÍTULO 7 - ANÁLISE AMORTIZADA 65
 7.1 Conceitos e Aplicações 7.2 Método do Agregado 7.3 Método do Contador 7.4 Método do Potencial
CAPÍTULO 8 - INVARIANTES DE LOOP72

8.1 Definição e Importância8.2 Demonstração de Corretude

• 8.3 Exemplos Práticos

- 9.1 Metodologia RICE
- 9.2 Padrões Algorítmicos Comuns
- 9.3 Técnicas de Otimização

APÊNDICES 85

- A. Tabela de Complexidades
- B. Glossário de Termos
- C. Bibliografia e Referências
- D. Exercícios Adicionais

CAPÍTULO 1 INTRODUÇÃO À ANÁLISE DE ALGORITMOS

1.1 Conceitos Fundamentais

O que é um Algoritmo?

Um algoritmo é uma sequência finita de instruções bem definidas e não ambíguas para resolver um problema computacional específico.

Características de um Bom Algoritmo:

- Finitude: Deve terminar após um número finito de passos
- **Definição**: Cada passo deve ser precisamente definido
- **Entrada**: Zero ou mais entradas
- Saída: Uma ou mais saídas
- **Efetividade**: Cada operação deve ser básica o suficiente para ser executada

Análise de Algoritmos

A análise de algoritmos é o processo de determinar a quantidade de recursos computacionais (tempo e espaço) que um algoritmo consome.

CAPÍTULO 2

COMPLEXIDADE DE TEMPO E ESPAÇO

2.1 Definições Básicas

Complexidade de Tempo

Mede o número de operações fundamentais que um algoritmo executa em função do tamanho da entrada (n).

```
# Exemplo simples: busca linear

def busca_linear(lista, item):
    for i in range(len(lista)):  # Executa n vezes
        if lista[i] == item:  # 1 operação por iteração
            return i
    return -1

# Complexidade: O(n) - no pior caso, verifica todos os elementos
```

Complexidade de Espaço

Mede a quantidade de memória adicional que um algoritmo usa, além da entrada.

```
# Exemplo: soma recursiva

def soma_recursiva(n):
    if n <= 1:
        return n
    return n + soma_recursiva(n - 1)

# Espaço: O(n) - cada chamada usa memória na pilha</pre>
```

2.2 Casos de Análise

Melhor Caso (Best Case)

```
# Busca linear - melhor caso
lista = [10, 20, 30, 40, 50]
busca_linear(lista, 10) # Encontra na primeira posição = 0(1)
```

Caso Médio (Average Case)

```
# Busca linear - caso médio
# Em média, encontra na metade da lista = O(n/2) = O(n)
```

Pior Caso (Worst Case)

```
# Busca linear - pior caso
busca_linear(lista, 99) # Item não existe, verifica toda lista = O(n)
```

2.3 Operações Fundamentais

Operações Básicas por Estrutura

Estrutura	Acesso	Busca	Inserção	Remoção
Array	O(1)	O(n)	O(n)	O(n)
Lista Ligada	O(n)	O(n)	O(1)	O(1)
Pilha	O(1)	O(n)	O(1)	O(1)
Fila	O(1)	O(n)	O(1)	O(1)

Macete: Contagem de Operações

Macete: Hash table = O(1) para acesso por chave

print(dados["nome"]) # O(1) acesso direto

```
### **Ponteiros e Referências**

'``python

# Python usa referências automaticamente
lista_a = [1, 2, 3]
lista_b = lista_a  # lista_b aponta para lista_a
lista_b.append(4)  # Modifica lista_a também!

# Macete: Para copiar, use copy()
import copy
lista_c = copy.copy(lista_a)  # Cópia rasa
lista_d = copy.deepcopy(lista_a)  # Cópia profunda
```

Macetes de Estruturas de Dados

ACESSO POR ÍNDICE:

Array/Lista \rightarrow O(1) # Posição = base + índice \times tamanho Lista Ligada \rightarrow O(n) # Precisa percorrer desde o início

BUSCA:

Array Ordenado → O(log n) # Busca binária

Hash Table \rightarrow O(1)* # Média, O(n) pior caso

Lista Ligada \rightarrow O(n) # Sempre linear

INSERÇÃO:

Array (final) \rightarrow O(1) # Amortizada

Array (meio) \rightarrow O(n) # Precisa deslocar elementos

Lista Ligada → O(1) # Se tiver a posição

Hash Table → $O(1)^*$ # Média

CAPÍTULO 3

NOTAÇÃO BIG-O

3.1 Definição Formal

A notação Big-O descreve o comportamento assintótico de algoritmos, ou seja, **como o tempo de execução cresce em relação ao tamanho da entrada**.

Como Entender Big-O de Forma Simples

Imagine que você tem uma tarefa para fazer e precisa saber quanto tempo vai demorar:

- O(1): Não importa quantos dados você tem, sempre demora o mesmo tempo
- O(n): Se você tem 10 itens, demora X tempo. Se tem 100 itens, demora 10X tempo
- O(n²): Se você tem 10 itens, demora X tempo. Se tem 100 itens, demora 100X tempo!

Visualização do Crescimento

```
Para n = 10:
0(1)
       = 1
                    | Excelente
O(\log n) = 3
                    | Muito bom
0(n) = 10
                   Bom
                  | Aceitável
0(n log n) = 33
                  | Cuidado
0(n^2) = 100
                | Evitar
0(2^n) = 1024
O(n!) = 3,628,800 | Impraticável
Para n = 1000:
0(1) = 1
                       | Ainda excelente
0(\log n) = 10
                       | Ainda muito bom
0(n) = 1,000
                       | Ainda bom
0(n log n) = 10,000
                       | Ainda aceitável
0(n^2) = 1,000,000
                       | Já problemático
0(2^{n})
        = 10^301
                       | Impossível
```

Classes de Complexidade - Do Melhor ao Pior

Ranking	Notação	Nome	Exemplo Prático	Quando usar
1º	O(1)	Constante	Pegar item da geladeira	Acesso direto
2°	O(log n)	Logarítmica	Buscar palavra no dicionário	Busca inteligente
3°	O(n)	Linear	Ler um livro página por página	Verificar todos
4°	O(n log n)	Linearítmica	Organizar cartas de forma eficiente	Ordenação boa
5°	O(n²)	Quadrática	Comparar todos com todos	Pequenas entradas

6°	O(n³)	Cúbica	Três loops aninhados	Evitar
7°	O(2 ⁿ)	Exponencial	Testar todas combinações	Só para problemas pequenos
8°	O(n!)	Fatorial	Testar todas permutações	Praticamente impossível

Como Calcular Big-O - Passo a Passo

Passo 1: Identifique os loops

```
# Um loop = O(n)
for i in range(n):
    print(i) # O(1)
# Total: O(n)

# Dois loops aninhados = O(n²)
for i in range(n): # n vezes
    for j in range(n): # n vezes para cada i
        print(i, j) # O(1)
# Total: O(n²)
```

Passo 2: Some as complexidades

```
# Operações em sequência se somam
for i in range(n):  # O(n)
    print(i)

for j in range(n):  # O(n)
    print(j)

# Total: O(n) + O(n) = O(2n) = O(n)
```

Passo 3: Aplique as regras de simplificação

Regras de Ouro para Big-O

1. Constantes são ignoradas:

```
o O(2n) = O(n)
o O(100) = O(1)
o O(n/2) = O(n)
```

2. Termo dominante vence:

```
o O(n^2 + n) = O(n^2)
o O(n + log n) = O(n)
o O(n^3 + n^2 + n + 1) = O(n^3)
```

3. Sempre considere o pior caso:

• Mesmo que às vezes seja rápido, Big-O mede o pior cenário

Exemplos Práticos com Explicação

Exemplo 1: Busca Linear

```
def encontrar_numero(lista, numero):
    for i in range(len(lista)): # No pior caso, percorre toda a lista
        if lista[i] == numero: # O(1) para cada comparação
            return i
    return -1

# Análise: No pior caso, o número está no final ou não existe
# Precisa verificar todos os n elementos
# Complexidade: O(n)
```

Exemplo 2: Busca em Pares

```
def encontrar_par(lista):
    for i in range(len(lista)):  # n iterações
        for j in range(i+1, len(lista)): # n-1, n-2, ..., 1 iterações
            if lista[i] + lista[j] == 10:
                return (i, j)
    return None

# Análise: Dois loops aninhados
# Total de comparações: (n-1) + (n-2) + ... + 1 = n(n-1)/2
# Complexidade: O(n²)
```

Como Identificar Complexidade Rapidamente

```
# Padrões comuns:
# 1. Um loop simples = O(n)
for item in lista:
    fazer_algo()
# 2. Loop dividindo pela metade = O(log n)
while n > 1:
    n = n // 2
# 3. Dois loops aninhados = O(n^2)
for i in range(n):
    for j in range(n):
        fazer_algo()
# 4. Loop dentro de função recursiva = O(n^2) ou mais
def recursiva(n):
    if n <= 1: return</pre>
    for i in range(n): # O(n)
        fazer_algo()
```

```
recursiva(n-1)  # Chama n vezes

# 5. Dividir e conquistar = O(n log n)

def merge_sort(lista):
    # Divide: O(log n) níveis
    # Conquista: O(n) em cada nível
    # Total: O(n log n)
```

Dicas para Melhorar Complexidade

Do Ruim para o Bom:

```
# RUIM: O(n²) - Busca em lista

def buscar_duplicata_ruim(lista):
    for i in range(len(lista)):
        if or j in range(i+1, len(lista)):
            if lista[i] == lista[j]:
                return True
    return False

# BOM: O(n) - Usando conjunto

def buscar_duplicata_bom(lista):
    visto = set()
    for item in lista:
        if item in visto:
            return True
        visto.add(item)
    return False
```

Gráfico Mental de Crescimento

Para entender visualmente como cada complexidade cresce:

```
n=1
      n=10 n=100 n=1000
0(1):
              (sempre igual)
O(log n): |
             \Box
                    | | |
                          |||| (cresce devagar)
O(n): |
           |||||||||| |||... (cresce linear)
0(n^2):
        |||| ||||||... (cresce rápido)
O(2<sup>n</sup>):
              XXX
                      XXXXXXX
                                (explode)
```

Estruturas de Dados Fundamentais

Array/Vetor

- **Acesso**: O(1)
- **Busca**: O(n)
- Inserção: O(n) no meio, O(1) no final
- Remoção: O(n) no meio, O(1) no final

Lista Ligada

```
• Acesso: O(n)
```

- Busca: O(n)
- Inserção: O(1) conhecendo a posição
- Remoção: O(1) conhecendo a posição

Pilha (Stack)

- **Push**: O(1)
- **Pop**: O(1)
- **Top**: O(1)

Fila (Queue)

- **Enqueue**: O(1)
- **Dequeue**: O(1)
- **Front**: O(1)

4.5 Exercícios de Fixação - Capítulo 4

Exercício 4.1: Implementação Básica

Implemente uma função recursiva que calcule a soma dos dígitos de um número:

```
def soma_digitos(n):
    # Caso base: se n < 10, retorna n
    # Caso recursivo: último dígito + soma_digitos(n // 10)
    pass</pre>
```

Solução:

```
def soma_digitos(n):
    if n < 10:
        return n
    return n % 10 + soma_digitos(n // 10)</pre>
```

Exercício 4.2: Análise de Complexidade

Qual a complexidade das seguintes funções recursivas?

```
# Função A

def funcao_a(n):
    if n <= 1:
        return 1
        return funcao_a(n - 1)

# Função B

def funcao_b(n):
    if n <= 1:
        return 1
        return funcao_b(n // 2)

# Função C

def funcao_c(n):</pre>
```

```
if n <= 1:
    return 1
return funcao_c(n - 1) + funcao_c(n - 1)</pre>
```

Respostas: A = O(n), B = O(log n), $C = O(2^n)$

Exercício 4.3: Problema Prático

Implemente o algoritmo das "Torres de Hanói" recursivamente e calcule quantos movimentos são necessários para n=4 discos.

Resposta: $2^4 - 1 = 15$ movimentos

Exercício 4.4: Otimização

Converta a seguinte função recursiva para iterativa:

```
def potencia_rec(base, exp):
    if exp == 0:
        return 1
    return base * potencia_rec(base, exp - 1)
```

Solução Iterativa:

```
def potencia_iter(base, exp):
    resultado = 1
    for i in range(exp):
        resultado *= base
    return resultado
```

CAPÍTULO 5

ALGORITMOS DE ORDENAÇÃO

5.1 Visão Geral dos Algoritmos

Tabela Comparativa Essencial

Algoritmo	Complexidade	Quando Usar
Bubble Sort	O(n²)	Nunca (só para ensinar)
Selection Sort	O(n²)	Datasets muito pequenos
Insertion Sort	O(n²)	Arrays quase ordenados
Merge Sort	O(n log n)	Quando precisa de estabilidade
Quick Sort	O(n log n)	Uso geral, performance
Heap Sort	O(n log n)	Quando espaço é limitado

5.2 Algoritmos Básicos (O(n2))

Bubble Sort - "Ordenação da Bolha"

Selection Sort - "Ordenação por Seleção"

```
def selection_sort(arr):
    n = len(arr)
    for i in range(n):
        min_idx = i
        for j in range(i + 1, n):
            if arr[j] < arr[min_idx]:
                  min_idx = j
                  arr[i], arr[min_idx] = arr[min_idx], arr[i]</pre>
# Macete: "Seleciona o menor" e coloca na posição correta
```

Insertion Sort - "Ordenação por Inserção"

```
def insertion_sort(arr):
    for i in range(1, len(arr)):
        key = arr[i]
        j = i - 1
        while j >= 0 and arr[j] > key:
            arr[j + 1] = arr[j]
            j -= 1
        arr[j + 1] = key
# Macete: Como organizar cartas na mão - insere cada carta no lugar certo
```

5.3 Algoritmos Eficientes (O(n log n))

Merge Sort - "Dividir para Conquistar"

```
def merge_sort(arr):
    if len(arr) > 1:
       mid = len(arr) // 2
       left = arr[:mid]
        right = arr[mid:]
        merge_sort(left) # Ordena metade esquerda
        merge_sort(right) # Ordena metade direita
        # Intercala as duas metades
        i = j = k = 0
        while i < len(left) and j < len(right):</pre>
            if left[i] < right[j]:</pre>
               arr[k] = left[i]
                i += 1
            else:
                arr[k] = right[j]
                j += 1
            k += 1
        # Copia elementos restantes
        while i < len(left):</pre>
            arr[k] = left[i]
            i += 1
            k += 1
        while j < len(right):</pre>
            arr[k] = right[j]
            j += 1
            k += 1
# Macete: Sempre O(n log n) - divide até ficar trivial, depois intercala
```

Quick Sort - "Pivô e Partição"

```
def quick_sort(arr, low=0, high=None):
    if high is None:
        high = len(arr) - 1
    if low < high:</pre>
        # Particiona e encontra posição do pivô
        pi = partition(arr, low, high)
        # Ordena elementos antes e depois do pivô
        quick_sort(arr, low, pi - 1)
        quick_sort(arr, pi + 1, high)
def partition(arr, low, high):
    pivot = arr[high] # Escolhe último elemento como pivô
    i = low - 1
    for j in range(low, high):
        if arr[j] <= pivot:</pre>
            i += 1
            arr[i], arr[j] = arr[j], arr[i]
    arr[i + 1], arr[high] = arr[high], arr[i + 1]
    return i + 1
# Macete: Escolhe pivô, separa menores/maiores, repete recursivamente
```

5.4 Quando Usar Cada Algoritmo

Escolha Prática

```
# Para arrays pequenos (n < 50)
def ordenar_pequeno(arr):
    return insertion_sort(arr) # Simples e eficiente

# Para arrays médios/grandes (n > 50)
def ordenar_grande(arr):
    return quick_sort(arr) # Rápido na prática

# Quando precisa de garantias (sempre O(n log n))
def ordenar_garantido(arr):
    return merge_sort(arr) # Nunca degrada para O(n²)

# Quando memória é limitada
def ordenar_economico(arr):
    return heap_sort(arr) # 0(1) de espaço extra
```

Macetes de Complexidade

```
# Como lembrar das complexidades:
# O(n²) - Dois loops aninhados
# Bubble, Selection, Insertion = todos O(n²)

# O(n log n) - Divide e conquista
# Merge, Quick, Heap = todos O(n log n)

# Exceções importantes:
# - Insertion Sort: O(n) para arrays quase ordenados
# - Quick Sort: O(n²) no pior caso (pivô sempre o menor/maior)

arr[i]. arr[i + 1] = arr[i + 1]. arr[i]
```

```
arr[j], arr[j + 1] = arr[j + 1], arr[j]
    trocou = True

# Se não houve troca, array já está ordenado
if not trocou:
    break

return arr
```

Teste

lista = [64, 34, 25, 12, 22, 11, 90] print("Lista original:", lista) print("Lista ordenada:", bubble_sort(lista.copy()))

```
**Implementação C:**
```c
#include <stdio.h>
#include <stdbool.h>
void bubble_sort(int arr[], int n) {
 for (int i = 0; i < n - 1; i++) {
 bool trocou = false;
 for (int j = 0; j < n - i - 1; j++) {
 if (arr[j] > arr[j + 1]) {
 // Troca elementos
 int temp = arr[j];
 arr[j] = arr[j + 1];
 arr[j + 1] = temp;
 trocou = true;
 }
 }
 // Otimização: se não houve troca, array está ordenado
 if (!trocou) {
```

```
break;
 }
 }
void imprimir_array(int arr[], int n) {
 for (int i = 0; i < n; i++) {
 printf("%d ", arr[i]);
 printf("\n");
}
int main() {
 int arr[] = {64, 34, 25, 12, 22, 11, 90};
 int n = sizeof(arr) / sizeof(arr[0]);
 printf("Array original: ");
 imprimir_array(arr, n);
 bubble_sort(arr, n);
 printf("Array ordenado: ");
 imprimir_array(arr, n);
 return 0;
}
```

#### **Selection Sort**

**Conceito:** Encontra o menor elemento e o coloca na primeira posição, depois encontra o segundo menor, e assim por diante.

#### Implementação Python:

```
def selection_sort(arr):
 n = len(arr)

for i in range(n):
 # Encontra o indice do menor elemento na parte não ordenada
 min_idx = i
 for j in range(i + 1, n):
 if arr[j] < arr[min_idx]:
 min_idx = j

Troca o menor elemento encontrado com o primeiro elemento
 arr[i], arr[min_idx] = arr[min_idx], arr[i]</pre>
return arr
```

#### Implementação C:

```
#include <stdio.h>
void selection_sort(int arr[], int n) {
 for (int i = 0; i < n - 1; i++) {</pre>
 int min_idx = i;
 // Encontra o menor elemento na parte não ordenada
 for (int j = i + 1; j < n; j++) {
 if (arr[j] < arr[min_idx]) {</pre>
 min_idx = j;
 }
 }
 // Troca o menor elemento com o primeiro
 if (min_idx != i) {
 int temp = arr[i];
 arr[i] = arr[min_idx];
 arr[min_idx] = temp;
 }
 }
}
```

#### **Insertion Sort**

Conceito: Constrói a lista ordenada um elemento por vez, inserindo cada novo elemento na posição correta.

#### Implementação Python:

```
def insertion_sort(arr):
 for i in range(1, len(arr)):
 key = arr[i]
 j = i - 1

Move elementos maiores que key uma posição à frente
 while j >= 0 and arr[j] > key:
 arr[j + 1] = arr[j]
 j -= 1

Insere key na posição correta
 arr[j + 1] = key

return arr
```

#### Implementação C:

```
int j = i - 1;

// Move elementos maiores que key uma posição à frente
while (j >= 0 && arr[j] > key) {
 arr[j + 1] = arr[j];
 j--;
 }

// Insere key na posição correta
 arr[j + 1] = key;
}
```

#### **Merge Sort**

**Conceito:** Divide o array em duas metades, ordena cada metade recursivamente e depois mescla as duas metades ordenadas.

#### Implementação Python:

```
def merge_sort(arr):
 if len(arr) <= 1:</pre>
 return arr
 # Divide o array em duas metades
 meio = len(arr) // 2
 esquerda = merge_sort(arr[:meio])
 direita = merge_sort(arr[meio:])
 # Mescla as duas metades ordenadas
 return merge(esquerda, direita)
def merge(esquerda, direita):
 resultado = []
 i = j = 0
 # Mescla elementos enquanto ambas as listas têm elementos
 while i < len(esquerda) and j < len(direita):</pre>
 if esquerda[i] <= direita[j]:</pre>
 resultado.append(esquerda[i])
 i += 1
 else:
 resultado.append(direita[j])
 j += 1
 # Adiciona elementos restantes
 resultado.extend(esquerda[i:])
 resultado.extend(direita[j:])
 return resultado
```

#### Implementação C:

```
#include <stdio.h>
#include <stdlib.h>
void merge(int arr[], int 1, int m, int r) {
 int n1 = m - 1 + 1;
 int n2 = r - m;
 // Arrays temporários
 int *L = (int*)malloc(n1 * sizeof(int));
 int *R = (int*)malloc(n2 * sizeof(int));
 // Copia dados para arrays temporários
 for (int i = 0; i < n1; i++) {</pre>
 L[i] = arr[l + i];
 }
 for (int j = 0; j < n2; j++) {
 R[j] = arr[m + 1 + j];
 }
 // Mescla os arrays temporários de volta em arr[l..r]
 int i = 0, j = 0, k = 1;
 while (i < n1 && j < n2) {</pre>
 if (L[i] <= R[j]) {</pre>
 arr[k] = L[i];
 i++;
 } else {
 arr[k] = R[j];
 j++;
 }
 k++;
 }
 // Copia elementos restantes de L[], se houver
 while (i < n1) {</pre>
 arr[k] = L[i];
 i++;
 k++;
 }
 // Copia elementos restantes de R[], se houver
 while (j < n2) {
 arr[k] = R[j];
 j++;
 k++;
 }
 free(L);
 free(R);
```

```
void merge_sort(int arr[], int 1, int r) {
 if (1 < r) {
 int m = 1 + (r - 1) / 2;

 // Ordena primeira e segunda metades
 merge_sort(arr, 1, m);
 merge_sort(arr, m + 1, r);

 // Mescla as metades ordenadas
 merge(arr, 1, m, r);
 }
}</pre>
```

#### **Quick Sort**

**Conceito:** Escolhe um elemento como pivô e particiona o array de forma que elementos menores fiquem à esquerda e maiores à direita do pivô.

#### Implementação Python:

```
def quick_sort(arr, low=0, high=None):
 if high is None:
 high = len(arr) - 1
 if low < high:</pre>
 # pi é o índice de partição
 pi = partition(arr, low, high)
 # Ordena elementos antes e depois da partição
 quick_sort(arr, low, pi - 1)
 quick_sort(arr, pi + 1, high)
 return arr
def partition(arr, low, high):
 # Pivô é o último elemento
 pivot = arr[high]
 # Índice do menor elemento (indica a posição correta do pivô)
 i = low - 1
 for j in range(low, high):
 # Se elemento atual é menor ou igual ao pivô
 if arr[j] <= pivot:</pre>
 i += 1
 arr[i], arr[j] = arr[j], arr[i]
 # Coloca pivô na posição correta
```

```
arr[i + 1], arr[high] = arr[high], arr[i + 1]
return i + 1
```

#### Implementação C:

```
#include <stdio.h>
void trocar(int* a, int* b) {
 int temp = *a;
 *a = *b;
 *b = temp;
int partition(int arr[], int low, int high) {
 int pivot = arr[high]; // Pivô é o último elemento
 // Índice do menor elemento
 int i = (low - 1);
 for (int j = low; j <= high - 1; j++) {</pre>
 // Se elemento atual é menor ou igual ao pivô
 if (arr[j] <= pivot) {</pre>
 i++;
 trocar(&arr[i], &arr[j]);
 }
 }
 trocar(&arr[i + 1], &arr[high]);
 return (i + 1);
}
void quick_sort(int arr[], int low, int high) {
 if (low < high) {</pre>
 // pi é o índice de partição
 int pi = partition(arr, low, high);
 // Ordena elementos antes e depois da partição
 quick_sort(arr, low, pi - 1);
 quick_sort(arr, pi + 1, high);
 }
}
```

## **CAPÍTULO 6**

## **ALGORITMOS DE BUSCA**

#### 6.1 Algoritmos de Busca Fundamentais

#### **Busca Linear**

Conceito: Percorre o array sequencialmente até encontrar o elemento ou chegar ao final.

#### Implementação Python:

```
def busca_linear(arr, x):
 Busca linear em array não ordenado
 Retorna o índice do elemento ou -1 se não encontrado
 for i in range(len(arr)):
 if arr[i] == x:
 return i
 return -1
Versão com informações de debug
def busca_linear_debug(arr, x):
 print(f"Buscando {x} em {arr}")
 comparacoes = 0
 for i in range(len(arr)):
 comparacoes += 1
 print(f" Comparação {comparacoes}: arr[{i}] = {arr[i]}")
 if arr[i] == x:
 print(f" Encontrado! Posição {i}")
 print(f" Total de comparações: {comparacoes}")
 return i
 print(f" Não encontrado após {comparações")
 return -1
Teste
lista = [64, 34, 25, 12, 22, 11, 90]
elemento = 22
resultado = busca_linear_debug(lista, elemento)
```

#### Implementação C:

```
#include <stdio.h>
int busca_linear(int arr[], int n, int x) {
```

```
for (int i = 0; i < n; i++) {</pre>
 if (arr[i] == x) {
 return i; // Retorna o indice se encontrado
 }
 return -1; // Retorna -1 se não encontrado
}
int busca linear debug(int arr[], int n, int x) {
 printf("Buscando %d no array\n", x);
 for (int i = 0; i < n; i++) {</pre>
 printf(" Comparação %d: arr[%d] = %d\n", i + 1, i, arr[i]);
 if (arr[i] == x) {
 printf(" Encontrado na posição %d!\n", i);
 return i;
 }
 }
 printf(" Elemento não encontrado\n");
 return -1;
}
int main() {
 int arr[] = {64, 34, 25, 12, 22, 11, 90};
 int n = sizeof(arr) / sizeof(arr[0]);
 int x = 22;
 int resultado = busca_linear_debug(arr, n, x);
 if (resultado != -1) {
 printf("Elemento %d encontrado no índice %d\n", x, resultado);
 } else {
 printf("Elemento %d não encontrado\n", x);
 }
 return 0;
}
```

#### **Busca Binária**

**Conceito:** Divide repetidamente o array ordenado pela metade, comparando o elemento do meio com o elemento procurado.

#### Implementação Python (Iterativa):

```
def busca_binaria_iterativa(arr, x):
 """
 Busca binária iterativa em array ordenado
 Retorna o índice do elemento ou -1 se não encontrado
 """
```

```
esquerda, direita = 0, len(arr) - 1
 while esquerda <= direita:</pre>
 meio = (esquerda + direita) // 2
 if arr[meio] == x:
 return meio
 elif arr[meio] < x:</pre>
 esquerda = meio + 1
 else:
 direita = meio - 1
 return -1
Versão com debug
def busca_binaria_debug(arr, x):
 print(f"Buscando {x} em array ordenado: {arr}")
 esquerda, direita = 0, len(arr) - 1
 comparacoes = 0
 while esquerda <= direita:</pre>
 meio = (esquerda + direita) // 2
 comparacoes += 1
 print(f" Comparação {comparaçoes}: esq={esquerda}, dir={direita}, meio={meio}")
 print(f"
 arr[{meio}] = {arr[meio]}")
 if arr[meio] == x:
 print(f" Encontrado! Posição {meio}")
 print(f" Total de comparações: {comparacoes}")
6.2 Busca Binária
Conceito: Dividir pela Metade
Funciona apenas em arrays **ordenados**. Compara com o elemento do meio e elimina metade da
busca.
Implementação Simples:
```python
def busca_binaria(arr, x):
    esq, dir = 0, len(arr) - 1
    while esq <= dir:</pre>
        meio = (esq + dir) // 2
        if arr[meio] == x:
            return meio
        elif arr[meio] < x:</pre>
            esq = meio + 1  # Busca na metade direita
        else:
            dir = meio - 1 # Busca na metade esquerda
    return -1 # Não encontrado
```

```
# Macete: Sempre elimina metade das possibilidades
```

Versão Recursiva:

```
def busca_binaria_rec(arr, x, esq=0, dir=None):
    if dir is None:
        dir = len(arr) - 1

if esq > dir:
        return -1

meio = (esq + dir) // 2

if arr[meio] == x:
        return meio
    elif arr[meio] < x:
        return busca_binaria_rec(arr, x, meio + 1, dir)
    else:
        return busca_binaria_rec(arr, x, esq, meio - 1)</pre>
```

Comparação: Linear vs Binária

Aspecto	Linear	Binária
Complexidade	O(n)	O(log n)
Pré-requisito	Nenhum	Array ordenado
Array 1.000	500 comparações	10 comparações
Array 1.000.000	500.000 comparações	20 comparações

Quando usar cada uma:

- Linear: Arrays pequenos ou não ordenados
- Binária: Arrays grandes e ordenados

Macete para Lembrar:

- Busca Linear = "um por um" = O(n)
- Busca Binária = "corta pela metade" = O(log n)

3.4 Exercícios de Fixação - Capítulo 3

Exercício 3.1: Análise Básica de Complexidade

Determine a complexidade Big-O dos seguintes códigos:

```
# Código A

def codigo_a(n):
    count = 0
    for i in range(n):
```

```
count += 1
   return count
# Código B
def codigo_b(n):
   count = 0
   for i in range(n):
       for j in range(n):
           count += 1
   return count
# Código C
def codigo_c(n):
   count = 0
   i = 1
   while i < n:
       count += 1
        i *= 2
   return count
```

Respostas: A = O(n), $B = O(n^2)$, C = O(log n)

Exercício 3.2: Comparação de Algoritmos

Para n = 1000, calcule aproximadamente quantas operações cada complexidade executaria:

O(1): ____ operações
 O(log n): ____ operações
 O(n): ____ operações
 O(n²): ____ operações

Respostas: 1, 10, 1000, 1.000.000

Exercício 3.3: Problema Prático

Um algoritmo de busca tem complexidade O(log n) e leva 1ms para processar 1000 elementos. Quanto tempo levará para processar 1.000.000 de elementos?

Resposta: Aproximadamente 2ms ($log_2(1.000.000) \approx 20$, $log_2(1000) \approx 10$, então 20/10 = 2x)

CAPÍTULO 4

RECURSIVIDADE

4.1 Conceitos Fundamentais

O que é Recursividade?

Recursividade é como ensinar alguém a subir escadas:

- Regra simples: "Para subir N degraus, suba 1 degrau e depois suba os N-1 restantes"
- Regra de parada: "Se não há mais degraus (N=0), você chegou!"

Em programação: Uma função que chama ela mesma para resolver problemas menores do mesmo tipo.

Os 3 Ingredientes Mágicos da Recursividade

1. Caso Base (Base Case)

```
A condição que PARA a recursão
Sem ele = Loop infinito = Crash!
```

2. Caso Recursivo (Recursive Case)

```
A função chama ela mesma com um problema MENOR
```

3. Progresso em Direção ao Caso Base

```
Cada chamada deve nos aproximar da parada
```

Receita Universal para Recursividade

```
def minha_funcao_recursiva(problema):
    # PRIMEIRO: Verificar caso base
    if problema_muito_simples:
        return solucao_direta

# SEGUNDO: Quebrar o problema
problema_menor = reduzir_problema(problema)

# TERCEIRO: Chamar recursivamente
resultado_parcial = minha_funcao_recursiva(problema_menor)

# QUARTO: Combinar resultado
return combinar(problema_atual, resultado_parcial)
```

Exemplos Explicados Passo a Passo

Exemplo 1: Fatorial - O Clássico

Como Pensar:

"Para calcular 5!, preciso de 5 \times 4!. Para calcular 4!, preciso de 4 \times 3!..."

Definição Matemática:

```
n! = n \times (n-1) \times (n-2) \times ... \times 1
Casos especiais: 0! = 1, 1! = 1
```

Implementação Comentada:

```
def fatorial(n):
    # CASO BASE: números pequenos têm resposta direta
    if n == 0 or n == 1:
        print(f" Caso base: {n}! = 1")
        return 1

# CASO RECURSIVO: quebrar o problema
    print(f" Calculando {n}! = {n} × {n-1}!")
    resultado_menor = fatorial(n - 1) # Problema menor
    resultado_final = n * resultado_menor # Combinar

    print(f" Resultado: {n}! = {resultado_final}")
    return resultado_final

# Testando:
    print("Calculando 4!:")
    resultado = fatorial(4)
    print(f"Resposta final: {resultado}")
```

Filme da Execução:

```
Calculando 4!:
    Calculando 4! = 4 × 3!
        Calculando 3! = 3 × 2!
        Calculando 2! = 2 × 1!
        Caso base: 1! = 1
        Resultado: 2! = 2
        Resultado: 3! = 6
        Resultado: 4! = 24
        Resposta final: 24
```

Visualização da Pilha de Chamadas:

Exemplo 2: Fibonacci - O Famoso

Como Pensar:

"Para saber quantos coelhos tem no mês N, preciso somar os coelhos do mês N-1 com os do mês N-2"

A Sequência:

```
F(0)=0, F(1)=1, F(2)=1, F(3)=2, F(4)=3, F(5)=5, F(6)=8... Cada número = soma dos dois anteriores
```

Versão Simples (Ineficiente):

```
def fibonacci_simples(n):
   print(f" Calculando F({n})")
   # CASOS BASE
   if n == 0:
       print(f" Caso base: F(0) = 0")
        return 0
   if n == 1:
       print(f" Caso base: F(1) = 1")
        return 1
   # CASO RECURSIVO: somar os dois anteriores
   print(f'' F({n}) = F({n-1}) + F({n-2})'')
   esquerda = fibonacci_simples(n - 1)
   direita = fibonacci_simples(n - 2)
   resultado = esquerda + direita
   print(f" F({n}) = {esquerda} + {direita} = {resultado}")
   return resultado
# Problema: O(2<sup>n</sup>) - muito lento!
```

Versão Otimizada com Memoização:

```
def fibonacci_otimizado(n, memo={}):
    """

Memo = dicionário que lembra resultados já calculados
Se já calculamos F(n) antes, só retornamos o valor salvo!
    """

# Já calculamos antes?
if n in memo:
    print(f" Cache hit! F({n}) = {memo[n]} (já sabia)")
    return memo[n]
```

```
print(f" Calculando F({n}) pela primeira vez")

# CASOS BASE
if n == 0:
    memo[n] = 0
    return 0
if n == 1:
    memo[n] = 1
    return 1

# CASO RECURSIVO
resultado = fibonacci_otimizado(n-1, memo) + fibonacci_otimizado(n-2, memo)
memo[n] = resultado # Salvar para próxima vez

print(f" Salvando F({n}) = {resultado}")
return resultado

# Complexidade melhora de O(2") para O(n)!
```

Comparação de Performance:

```
import time

# Teste com n=35
n = 35

# Versão lenta
inicio = time.time()
resultado1 = fibonacci_simples(35)  # Demora ~10 segundos
tempo1 = time.time() - inicio

# Versão rápida
inicio = time.time()
resultado2 = fibonacci_otimizado(35)  # Demora ~0.001 segundos
tempo2 = time.time() - inicio

print(f"Simples: {tempo1:.3f}s")
print(f"Otimizado: {tempo2:.6f}s")
print(f"Melhoria: {tempo1/tempo2:.0f}x mais rápido!")
```

Exemplo 3: Torres de Hanói - O Espetacular

O Problema:

- 3 torres: A, B, C
- N discos em A (maior embaixo, menor em cima)
- Objetivo: Mover todos para C
- Regras:
 - Só move 1 disco por vez
 - Só pega o disco do topo

• Nunca põe disco maior sobre menor

Como Pensar Recursivamente:

"Para mover N discos de A para C:"

- 1. Mova N-1 discos de A para B (usando C como auxiliar)
- 2. Mova o disco grande de A para C
- 3. Mova N-1 discos de B para C (usando A como auxiliar)

Implementação Explicada:

```
def torres_hanoi(n, origem, destino, auxiliar, nivel=0):
   n = número de discos
   origem = torre de onde tirar
   destino = torre para onde levar
   auxiliar = torre temporária
   nivel = para identar a saída
    ....
   identacao = " " * nivel # Para visualizar a recursão
   # CASO BASE: só 1 disco
    if n == 1:
       print(f"{identacao}Mover disco {n} de {origem} → {destino}")
       return 1 # 1 movimento
   print(f"{identacao}Para mover {n} discos de {origem} → {destino}:")
    # PASSO 1: Mover n-1 discos para auxiliar
   print(f"{identacao} 1. Primeiro: mover {n-1} discos {origem} → {auxiliar}")
   mov1 = torres_hanoi(n-1, origem, auxiliar, destino, nivel+1)
   # PASSO 2: Mover o disco grande
   print(f"{identacao} 2. Depois: mover disco {n} de {origem} → {destino}")
   mov2 = 1
   # PASSO 3: Mover n-1 discos da auxiliar para destino
   print(f"{identacao} 3. Finalmente: mover {n-1} discos {auxiliar} → {destino}")
   mov3 = torres_hanoi(n-1, auxiliar, destino, origem, nivel+1)
   total = mov1 + mov2 + mov3
   print(f"{identacao}Total para {n} discos: {total} movimentos")
   return total
# Testando:
print("Resolvendo Torres de Hanói com 3 discos:")
movimentos = torres_hanoi(3, 'A', 'C', 'B')
print(f"\nResolvido em {movimentos} movimentos!")
print(f"Fórmula: 2^n - 1 = 2^3 - 1 = {2**3 - 1}")
```

Recursividade vs Iteração - O Duelo

Comparação Lado a Lado

Fatorial Recursivo vs Iterativo:

Versão Recursiva:

```
def fatorial_recursivo(n):
    if n <= 1:
        return 1
    return n * fatorial_recursivo(n - 1)</pre>
```

Versão Iterativa:

```
def fatorial_iterativo(n):
    resultado = 1
    for i in range(1, n + 1):
        resultado *= i
    return resultado
```

Versão em C - Recursiva:

```
#include <stdio.h>
int fatorial_recursivo(int n) {
    if (n <= 1) {
        return 1;
    }
    return n * fatorial_recursivo(n - 1);
}

int main() {
    int num = 5;
    printf("Fatorial de %d = %d\n", num, fatorial_recursivo(num));
    return 0;
}</pre>
```

Versão em C - Iterativa:

```
#include <stdio.h>
int fatorial_iterativo(int n) {
   int resultado = 1;
   for (int i = 1; i <= n; i++) {
      resultado *= i;
   }
   return resultado;
}</pre>
```

```
int main() {
   int num = 5;
   printf("Fatorial de %d = %d\n", num, fatorial_iterativo(num));
   return 0;
}
```

Análise Comparativa:

Recursivo:

- ✓ Mais elegante e legível
- √ Mais próximo da definição matemática
- X Usa mais memória (pilha)
- X Risco de stack overflow

Iterativo:

- ✓ Mais eficiente em memória
- ✓ Mais rápido na execução
- X Menos intuitivo
- X Mais código para casos complexos

Quando Usar Cada Um

Use Recursividade Quando:

- O problema tem estrutura naturalmente recursiva (árvores, fractais)
- A solução recursiva é muito mais clara que a iterativa
- Você pode otimizar com memoização se necessário
- A **profundidade é limitada** (não vai estourar a pilha)

Use Iteração Quando:

- Performance é crítica
- A **profundidade** pode ser muito grande
- A versão iterativa é **simples** de implementar
- **Memória** é limitada

Tipos Especiais de Recursividade

1. Recursividade Linear

```
# Cada chamada gera APENAS UMA nova chamada

def conta_regressiva(n):
    if n <= 0:
        print("Fogo!")
        return

print(f"{n}...")
    conta_regressiva(n - 1) # Uma só chamada

# Complexidade: O(n) tempo, O(n) espaço</pre>
```

Implementação em C:

```
#include <stdio.h>

void conta_regressiva(int n) {
    if (n <= 0) {
        printf("Fogo!\n");
        return;
    }

    printf("%d...\n", n);
    conta_regressiva(n - 1);
}

int main() {
    conta_regressiva(5);
    return 0;
}</pre>
```

2. Recursividade Binária

```
# Cada chamada gera DUAS novas chamadas
def fibonacci_binario(n):
    if n <= 1:
        return n

    return fibonacci_binario(n-1) + fibonacci_binario(n-2)
    # ↑ chamada 1 ↑ chamada 2

# Complexidade: O(2<sup>n</sup>) tempo - cuidado!
```

Implementação em C:

```
#include <stdio.h>
int fibonacci_binario(int n) {
    if (n <= 1) {
        return n;
    }

    return fibonacci_binario(n - 1) + fibonacci_binario(n - 2);
}

int main() {
    int num = 10;
    printf("Fibonacci de %d = %d\n", num, fibonacci_binario(num));
    return 0;
}</pre>
```

3. Recursividade de Cauda (Tail Recursion)

```
# A chamada recursiva é a ÚLTIMA operação
def fatorial_cauda(n, acumulador=1):
    if n <= 1:
        return acumulador

# Última operação = chamada recursiva
    return fatorial_cauda(n - 1, n * acumulador)

# Vantagem: Pode ser otimizada pelo compilador para O(1) espaço</pre>
```

Implementação em C:

```
#include <stdio.h>
int fatorial_cauda(int n, int acumulador) {
   if (n <= 1) {
      return acumulador;
   }

   return fatorial_cauda(n - 1, n * acumulador);
}

int main() {
   int num = 5;
   printf("Fatorial de %d = %d\n", num, fatorial_cauda(num, 1));
   return 0;
}</pre>
```

4. Recursividade Mútua

```
# Duas funções se chamam mutuamente
def eh_par(n):
    if n == 0:
        return True
    return eh_impar(n - 1)

def eh_impar(n):
    if n == 0:
        return False
    return eh_par(n - 1)
# Exemplo: eh_par(4) → eh_impar(3) → eh_par(2) → eh_impar(1) → eh_par(0) → True
```

Implementação em C:

```
#include <stdio.h>
#include <stdbool.h>
bool eh_impar(int n); // Declaração antecipada
```

```
bool eh_par(int n) {
    if (n == 0) {
        return true;
   return eh_impar(n - 1);
}
bool eh_impar(int n) {
## **4.5 Técnicas de Otimização**
### **Memoização - "Cache Inteligente"**
```python
X Lento: 0(2ⁿ)
def fib_lento(n):
 if n <= 1: return n</pre>
 return fib_lento(n-1) + fib_lento(n-2)
☑ Rápido: O(n)
def fib_rapido(n, cache={}):
 if n in cache:
 return cache[n]
 if n <= 1:
 return n
 cache[n] = fib_rapido(n-1, cache) + fib_rapido(n-2, cache)
 return cache[n]
Macete: Guardar resultados para não recalcular
```

# Programação Dinâmica Bottom-Up

```
def fib_iterativo(n):
 if n <= 1: return n

a, b = 0, 1
 for i in range(2, n + 1):
 a, b = b, a + b
 return b

Macete: Construir de baixo para cima, sem recursão</pre>
```

### Recursividade vs Iteração

Aspecto	Recursão	Iteração	
Legibilidade	✓ Mais clara	X Mais verbosa	
Memória	X Usa pilha	✓ Constante	

Performance	X Mais lenta	√ Mais rápida
Stack Overflow	X Risco	✓ Sem risco

#### Quando usar recursão:

- Problemas naturalmente recursivos (árvores, fractais)
- Código mais limpo e legível
- Profundidade limitada

### Quando usar iteração:

- Performance crítica
- Grandes volumes de dados
- Memória limitada

Vantagem: Pode ser otimizada pelo compilador para usar espaço constante.

### 4. Recursividade Mútua

Duas ou mais funções se chamam mutuamente.

```
def eh_par(n):
 if n == 0:
 return True
 return eh_impar(n - 1)

def eh_impar(n):
 if n == 0:
 return False
 return eh_par(n - 1)
```

# Técnicas de Otimização

### 1. Memoização

Armazenar resultados de chamadas anteriores para evitar recálculos.

```
Fibonacci com memoização usando decorador
from functools import lru_cache

@lru_cache(maxsize=None)
def fibonacci_otimizado(n):
 if n <= 1:
 return n
 return fibonacci_otimizado(n - 1) + fibonacci_otimizado(n - 2)</pre>
```

# 2. Programação Dinâmica Bottom-Up

Construir a solução de baixo para cima.

```
def fibonacci_dp(n):
 if n <= 1:
 return n

dp = [0] * (n + 1)
 dp[1] = 1

for i in range(2, n + 1):
 dp[i] = dp[i - 1] + dp[i - 2]

return dp[n]</pre>
```

### **Problemas Comuns e Como Resolver**

### 1. Stack Overflow - A Pilha Explodiu!

### O que acontece:

```
def conta_infinita(n):
 print(n)
 return conta_infinita(n + 1) # X Nunca para!
RecursionError: maximum recursion depth exceeded
```

### Como resolver:

```
Sempre tenha um caso base claro:
def conta_segura(n, limite=1000):
 if n >= limite: # Caso base
 print("Parou!")
 return

print(n)
 conta_segura(n + 1, limite)

② Ou aumente o limite (use com cuidado):
import sys
sys.setrecursionlimit(10000) # Padrão: ~1000
```

### 2. Casos Base Incorretos

### X Problemas comuns:

```
Problema 1: Esqueceu caso base
def soma_lista(lista):
 return lista[0] + soma_lista(lista[1:]) # X E se lista vazia?

Problema 2: Caso base errado
def fatorial_errado(n):
```

```
if n == 1: # X E se n = 0?
 return 1
return n * fatorial_errado(n - 1)

Problema 3: Não progride para caso base
def loop_infinito(n):
 if n == 0:
 return 0
return loop_infinito(n) # X n nunca diminui!
```

### ✓ Versões corretas:

```
Sempre trate o caso vazio

def soma_lista_certa(lista):
 if not lista: # Lista vazia
 return 0
 return lista[0] + soma_lista_certa(lista[1:])

Cubra todos os casos base

def fatorial_certo(n):
 if n <= 1: # Cobre 0 e 1
 return 1
 return n * fatorial_certo(n - 1)

Sempre faça progresso

def contagem_certa(n):
 if n <= 0:
 return 0
 return contagem_certa(n - 1) # n diminui!</pre>
```

### 3. Debugging de Recursividade

### Técnica do Print Investigativo:

```
def debug_fibonacci(n, nivel=0):
 identacao = " " * nivel
 print(f"{identacao}→ Entrando: fibonacci({n})")

if n <= 1:
 print(f"{identacao}← Saindo: fibonacci({n}) = {n}")
 return n

esquerda = debug_fibonacci(n-1, nivel+1)
 direita = debug_fibonacci(n-2, nivel+1)
 resultado = esquerda + direita

print(f"{identacao}← Saindo: fibonacci({n}) = {resultado}")
 return resultado</pre>
```

```
Teste: debug_fibonacci(4)
Você verá exatamente o que está acontecendo!
```

#### **Contando Chamadas:**

```
contador_chamadas = 0

def fibonacci_contador(n):
 global contador_chamadas
 contador_chamadas += 1

 if n <= 1:
 return n
 return fibonacci_contador(n-1) + fibonacci_contador(n-2)

Teste:
 contador_chamadas = 0
 resultado = fibonacci_contador(10)
 print(f"Resultado: {resultado}")
 print(f"Chamadas: {contador_chamadas}")
Fibonacci(10) faz 177 chamadas!</pre>
```

# Dicas de Ouro para Recursividade

### 1. Como Projetar uma Função Recursiva:

### Passo 1: Identifique o padrão

```
"Para resolver problema de tamanho N,
posso usar a solução de tamanho N-1?"
```

### Passo 2: Encontre o caso mais simples

```
"Qual é o menor problema que sei resolver diretamente?"
```

#### Passo 3: Conecte os dois

```
"Como combino a solução menor com o problema atual?"
```

### **Exemplo Prático: Soma de Lista**

```
Passo 1: Padrão
soma([1,2,3,4]) = 1 + soma([2,3,4])

Passo 2: Caso simples
soma([]) = 0

Passo 3: Conectar
def soma_lista(lista):
```

```
if not lista: # Passo 2
 return 0
return lista[0] + soma_lista(lista[1:]) # Passo 1
```

### 2. Truques Mentais:

### "Role-Playing" Mental:

```
"Eu sou a função soma_lista([1,2,3]).

Meu trabalho é somar essa lista.

Ei, função soma_lista([2,3])! Você pode me ajudar?

Depois eu só preciso somar 1 com sua resposta!"
```

#### "Principio da Confiança":

```
"Assumo que minha função funciona para problemas menores.
Só preciso focar em como usar essa resposta."
```

### 3. Otimizações Práticas:

### Memoização Automática:

```
from functools import lru_cache

@lru_cache(maxsize=None)
def fibonacci_turbo(n):
 if n <= 1: return n
 return fibonacci_turbo(n-1) + fibonacci_turbo(n-2)

Agora é O(n) automaticamente!</pre>
```

### Transformar em Iterativo:

```
Se a recursividade está lenta, tente iterativo:
def fibonacci_iterativo(n):
 if n <= 1: return n

a, b = 0, 1
 for _ in range(2, n + 1):
 a, b = b, a + b
 return b

Mesmo resultado, O(n) tempo, O(1) espaço!</pre>
```

# Exercícios Práticos - Do Básico ao Ninja

### **Nível 1: Primeiro Contato**

#### **Exercício 1.1: Contagem Regressiva**

```
Implemente uma função que conta de n até 0
def conta_regressiva(n):
 # Seu código aqui
 pass
Teste: conta_regressiva(5) deve imprimir: 5 4 3 2 1 0
```

### **Exercício 1.2: Soma Simples**

```
Some todos os números de 1 até n
def soma_ate_n(n):
 # Seu código aqui
 pass

Teste: soma_ate_n(5) deve retornar 15 (1+2+3+4+5)
```

### Exercício 1.3: Potência

```
Calcule x^n recursivamente
def potencia(x, n):
 # Seu código aqui
 pass
Teste: potencia(2, 3) deve retornar 8
```

### Nível 2: Esquentando

#### Exercício 2.1: Máximo de Lista

```
Encontre o maior número em uma lista
def maximo_lista(lista):
 # Seu código aqui
 pass
Teste: maximo_lista([3, 1, 4, 1, 5]) deve retornar 5
```

### Exercício 2.2: Palíndromo

```
Verifique se uma string é palíndromo
def eh_palindromo(s):
 # Seu código aqui
 pass
Teste: eh_palindromo("arara") deve retornar True
```

### Exercício 2.3: Busca Binária

```
Implemente busca binária recursivamente
def busca_binaria(lista, elemento, inicio=0, fim=None):
 # Seu código aqui
 pass
Teste: busca_binaria([1,2,3,4,5], 3) deve retornar 2
```

### Nível 3: Desafio

### Exercício 3.1: Permutações

```
Gere todas as permutações de uma string
def permutacoes(s):
 # Seu código aqui
 pass

Teste: permutacoes("abc") deve retornar ["abc", "acb", "bac", "bac", "cab", "cba"]
```

### **Exercício 3.2: Subconjuntos**

```
Gere todos os subconjuntos de uma lista
def subconjuntos(lista):
 # Seu código aqui
 pass

Teste: subconjuntos([1,2]) deve retornar [[], [1], [2], [1,2]]
```

### Soluções Comentadas:

### Solução 1.1:

```
def conta_regressiva(n):
 # Caso base: quando chegar a zero, para
 if n < 0:
 return

Ação: imprimir número atual
 print(n)

Caso recursivo: chamar com n-1
 conta_regressiva(n - 1)</pre>
```

### Solução 2.2:

```
def eh_palindromo(s):
 # Caso base: string vazia ou 1 char é palíndromo
 if len(s) <= 1:
 return True</pre>
```

```
Verificar primeiro e último caracteres
if s[0] != s[-1]:
 return False

Caso recursivo: verificar o meio
return eh_palindromo(s[1:-1])
```

### Solução 3.1:

```
def permutacoes(s):
 # Caso base: string vazia
 if len(s) <= 1:
 return [s]

 resultado = []

Para cada caractere na string
 for i in range(len(s)):
 # Tira o caractere atual
 char = s[i]
 resto = s[:i] + s[i+1:]

Gera permutações do resto
 for perm in permutacoes(resto):
 resultado.append(char + perm)</pre>
```

### **Exercícios Práticos de Recursividade**

#### Nível Básico:

- 1. Potência: Calcule x^n usando recursividade.
- 2. Soma de Dígitos: Some todos os dígitos de um número.
- 3. Máximo em Lista: Encontre o maior elemento de uma lista recursivamente.

### Nível Intermediário:

- 4. Palíndromo: Verifique se uma string é palíndromo.
- 5. Busca Binária: Implemente busca binária recursiva.
- 6. GCD/MDC: Calcule o máximo divisor comum usando algoritmo de Euclides.

### Nível Avançado:

- 7. Permutações: Gere todas as permutações de uma string.
- 8. Subconjuntos: Gere todos os subconjuntos de um conjunto.
- 9. N-Queens: Resolva o problema das N rainhas.

### Soluções dos Exercícios:

```
1. Potência
def potencia(x, n):
 if n == 0:
 return 1
 return x * potencia(x, n - 1)
2. Soma de Dígitos
def soma_digitos(n):
 if n < 10:
 return n
 return (n % 10) + soma_digitos(n // 10)
3. Máximo em Lista
def maximo_lista(lista):
 if len(lista) == 1:
 return lista[0]
 max_resto = maximo_lista(lista[1:])
 return lista[0] if lista[0] > max_resto else max_resto
4. Palíndromo
def eh_palindromo(s):
 if len(s) <= 1:
 return True
 if s[0] != s[-1]:
 return False
 return eh_palindromo(s[1:-1])
5. Busca Binária Recursiva
def busca_binaria_rec(lista, elemento, inicio=0, fim=None):
 if fim is None:
 fim = len(lista) - 1
 if inicio > fim:
 return -1
 meio = (inicio + fim) // 2
 if lista[meio] == elemento:
 return meio
 elif lista[meio] < elemento:</pre>
 return busca_binaria_rec(lista, elemento, meio + 1, fim)
 else:
 return busca_binaria_rec(lista, elemento, inicio, meio - 1)
6. GCD (Algoritmo de Euclides)
def gcd(a, b):
 if b == 0:
```

return a
return gcd(b, a % b)

# **CAPÍTULO 7**

# **ALGORITMOS DE ORDENAÇÃO AVANÇADOS**

# 7.1 Análise dos Algoritmos Elementares

Limitações dos Algoritmos O(n2)

```
Bubble Sort - O(n²) - Só para ensinar!

def bubble_sort(arr):
 n = len(arr)
 for i in range(n):
 for j in range(0, n-i-1):
 if arr[j] > arr[j+1]:
 arr[j], arr[j+1] = arr[j]

Macete: n² operações = LENTO para n > 1000
```

# 7.2 Ordenação por Intercalação (MergeSort)

### Macete: Divide e Conquista

```
def merge_sort(arr):
 if len(arr) <= 1:</pre>
 return arr
 # Divide
 meio = len(arr) // 2
 esq = merge_sort(arr[:meio])
 dir = merge_sort(arr[meio:])
 # Conquista (intercala)
 return merge(esq, dir)
def merge(esq, dir):
 resultado = []
 i = j = 0
 # Intercala ordenado
 while i < len(esq) and j < len(dir):
 if esq[i] <= dir[j]:</pre>
 resultado.append(esq[i])
 i += 1
 else:
 resultado.append(dir[j])
 j += 1
```

```
Adiciona sobras
 resultado.extend(esq[i:])
 resultado.extend(dir[j:])
 return resultado

Complexidade: O(n log n) SEMPRE!
Espaço: O(n) - precisa de array auxiliar
```

# 7.3 Ordenação Rápida (QuickSort)

### Macete: Pivô e Partição

```
def quick_sort(arr, inicio=0, fim=None):
 if fim is None:
 fim = len(arr) - 1
 if inicio < fim:</pre>
 # Particiona e encontra pivô
 pivo = particionar(arr, inicio, fim)
 # Recursão nas duas partes
 quick_sort(arr, inicio, pivo - 1)
 quick_sort(arr, pivo + 1, fim)
def particionar(arr, inicio, fim):
 pivo = arr[fim] # Último elemento como pivô
 i = inicio - 1 # Índice do menor elemento
 for j in range(inicio, fim):
 if arr[j] <= pivo:</pre>
 i += 1
 arr[i], arr[j] = arr[j], arr[i]
 arr[i + 1], arr[fim] = arr[fim], arr[i + 1]
 return i + 1
Complexidade:
Melhor/Médio: O(n log n)
Pior: O(n^2) - se sempre escolher pior pivô
Espaço: O(log n) - recursão
```

### 7.4 ShellSort

### **Macete: Insertion Sort com Gaps**

```
def shell_sort(arr):
 n = len(arr)
 gap = n // 2 # Começa com gap = metade
```

```
while gap > 0:
 # Insertion sort com gap
 for i in range(gap, n):
 temp = arr[i]
 j = i

 while j >= gap and arr[j - gap] > temp:
 arr[j] = arr[j - gap]
 j -= gap

 arr[j] = temp

gap //= 2 # Reduz gap pela metade

Complexidade: O(n^1.25) a O(n^1.5)
Melhor que O(n^2), pior que O(n log n)
```

# Comparação de Algoritmos Avançados

Algoritmo	Melhor	Médio	Pior	Espaço	Estável
MergeSort	O(n log n)	O(n log n)	O(n log n)	O(n)	Sim
QuickSort	O(n log n)	O(n log n)	O(n²)	O(log n)	Não
ShellSort	O(n log n)	O(n^1.25)	O(n²)	O(1)	Não

# **CAPÍTULO 8**

# ALGORITMOS EM ÁRVORES BINÁRIAS E AVL

# 8.1 Árvore Binária de Busca (BST)

#### **Estrutura Básica**

```
class No:
 def __init__(self, valor):
 self.valor = valor
 self.esquerda = None
 self.direita = None

class BST:
 def __init__(self):
 self.raiz = None
```

### Busca - O(log n) / O(n)

```
def buscar(self, valor, no=None):
 if no is None:
 no = self.raiz

if no is None or no.valor == valor:
 return no

Macete: < vai esquerda, > vai direita
 if valor < no.valor:
 return self.buscar(valor, no.esquerda)
 else:
 return self.buscar(valor, no.direita)</pre>
```

### Inserção - O(log n) / O(n)

```
def inserir(self, valor):
 self.raiz = self._inserir_rec(self.raiz, valor)

def _inserir_rec(self, no, valor):
 if no is None:
 return No(valor)

Macete: menor esquerda, maior direita
 if valor < no.valor:
 no.esquerda = self._inserir_rec(no.esquerda, valor)
 elif valor > no.valor:
```

```
no.direita = self._inserir_rec(no.direita, valor)
return no
```

### Remoção - O(log n) / O(n)

```
def remover(self, valor):
 self.raiz = self._remover_rec(self.raiz, valor)
def _remover_rec(self, no, valor):
 if no is None:
 return no
 if valor < no.valor:</pre>
 no.esquerda = self._remover_rec(no.esquerda, valor)
 elif valor > no.valor:
 no.direita = self._remover_rec(no.direita, valor)
 else:
 # Achou o nó para remover
 if no.esquerda is None:
 return no.direita
 elif no.direita is None:
 return no.esquerda
 # Dois filhos: substitui pelo sucessor
 sucessor = self._minimo(no.direita)
 no.valor = sucessor.valor
 no.direita = self._remover_rec(no.direita, sucessor.valor)
 return no
def _minimo(self, no):
 while no.esquerda:
 no = no.esquerda
 return no
```

# 8.2 Percursos em Árvores

### **Macetes dos Percursos**

```
In-Order: Esquerda → Raiz → Direita (ordem crescente em BST)

def in_order(self, no):
 if no:
 self.in_order(no.esquerda)
 print(no.valor) # Processa raiz
 self.in_order(no.direita)

Pré-Order: Raiz → Esquerda → Direita (cópia da árvore)

def pre_order(self, no):
```

```
if no:
 print(no.valor) # Processa raiz ANTES
 self.pre_order(no.esquerda)
 self.pre_order(no.direita)

Pós-Order: Esquerda → Direita → Raiz (deletar árvore)
def pos_order(self, no):
 if no:
 self.pos_order(no.esquerda)
 self.pos_order(no.direita)
 print(no.valor) # Processa raiz DEPOIS
```

### Complexidade dos Percursos: O(n)

Cada nó é visitado exatamente uma vez.

# 8.3 Balanceamento - Algoritmo DSW

### **Problema: BST Degenerada**

```
Inserindo [1,2,3,4,5] sequencialmente vira lista ligada!
Busca fica O(n) ao invés de O(log n)
```

### Algoritmo DSW (Day-Stout-Warren)

```
def balancear_dsw(self):
 # Fase 1: Criar "espinha dorsal" (vine)
 self._criar_vine()
 # Fase 2: Criar árvore balanceada
 n = self._contar_nos()
 self._vine_para_arvore(n)
def _criar_vine(self):
 # Rotações à direita para criar lista ligada à direita
 pseudo_raiz = No(⊘)
 pseudo_raiz.direita = self.raiz
 atual = pseudo_raiz
 while atual.direita:
 if atual.direita.esquerda:
 # Rotação à direita
 self._rotacao_direita(atual)
 else:
 atual = atual.direita
 self.raiz = pseudo_raiz.direita
Complexidade DSW: O(n) - linear!
```

# 8.4 Árvore AVL

### **Propriedade AVL**

```
Macete: Diferença de altura entre filhos ≤ 1

def altura(self, no):
 if no is None:
 return 0
 return max(self.altura(no.esquerda), self.altura(no.direita)) + 1

def fator_balanceamento(self, no):
 if no is None:
 return 0
 return self.altura(no.esquerda) - self.altura(no.direita)

def esta_balanceada(self, no):
 return abs(self.fator_balanceamento(no)) <= 1</pre>
```

### Rotações AVL

```
Rotação Simples à Direita
def rotacao_direita(self, y):
 x = y.esquerda
 t2 = x.direita
 # Rotação
 x.direita = y
 y.esquerda = t2
 return x # Nova raiz
Rotação Simples à Esquerda
def rotacao_esquerda(self, x):
 y = x.direita
 t2 = y.esquerda
 # Rotação
 y.esquerda = x
 x.direita = t2
 return y # Nova raiz
Macete: 4 casos de rotação
LL → Rotação direita
RR → Rotação esquerda
\# LR \rightarrow Esquerda depois direita
RL → Direita depois esquerda
```

# Complexidade AVL: SEMPRE O(log n)

Busca: O(log n)Inserção: O(log n)

• Remoção: O(log n)

• Altura máxima: 1.44 × log<sub>2</sub>(n)

# **CAPÍTULO 9**

# **ALGORITMOS EM GRAFOS**

### 9.1 Conceitos Básicos

```
Grafo = G(V, E) onde V = vértices, E = arestas
Tipos: Dirigido (setas), Não-dirigido, Ponderado (com pesos)
```

# 9.2 Representação

### Lista de Adjacência (mais comum)

```
grafo = {
 'A': ['B', 'C'],
 'B': ['A', 'D'],
 'C': ['A', 'D'],
 'D': ['B', 'C']
}
Espaço: O(V + E) - eficiente para grafos esparsos
```

# Matriz de Adjacência

```
matriz[i][j] = 1 se existe aresta entre i e j
matriz = [
 [0, 1, 1, 0], # A conecta com B, C
 [1, 0, 0, 1], # B conecta com A, D
 [1, 0, 0, 1], # C conecta com A, D
 [0, 1, 1, 0] # D conecta com B, C
]
Espaço: O(V²) - melhor para grafos densos
```

# 9.3 Algoritmos de Busca

### **DFS - Busca em Profundidade**

```
def dfs(grafo, inicio, visitados=None):
 if visitados is None:
 visitados = set()

 visitados.add(inicio)
 print(inicio)

 for vizinho in grafo[inicio]:
```

# **BFS - Busca em Largura**

```
from collections import deque

def bfs(grafo, inicio):
 visitados = set([inicio])
 fila = deque([inicio])

while fila:
 vertice = fila.popleft()
 print(vertice)

 for vizinho in grafo[vertice]:
 if vizinho not in visitados:
 visitados.add(vizinho)
 fila.append(vizinho)

 return visitados

Macete: "Vai por camadas" - usa fila
Uso: menor caminho (sem pesos)
```

# 9.4 Caminho Mínimo

### Dijkstra (para pesos positivos)

```
import heapq

def dijkstra(grafo, inicio):
 distancias = {v: float('inf') for v in grafo}
 distancias[inicio] = 0
 heap = [(0, inicio)]

while heap:
 dist_atual, vertice = heapq.heappop(heap)

if dist_atual > distancias[vertice]:
 continue

for vizinho, peso in grafo[vertice]:
 nova_dist = dist_atual + peso
```

### Resumo - Quando Usar Cada Algoritmo

Algoritmo	Uso	Complexidade
DFS	Ciclos, componentes	O(V + E)
BFS	Menor caminho (sem peso)	O(V + E)
Dijkstra	Menor caminho (peso ≥ 0)	O((V+E) log V)
Floyd-Warshall	Todos os pares	O(V <sup>3</sup> )

# Macete: Todos os pares de vértices

# Funciona com pesos negativos (sem ciclos negativos)

```
Resumo de Complexidades - Grafos

| Operação | Lista Adj. | Matriz Adj. |
|----------------------------------|
| Espaço | O(V + E) | O(V²) |
| Adicionar vértice | O(1) | O(V²) |
| Adicionar aresta | O(1) | O(1) |
| Verificar aresta | O(V) | O(1) |
| DFS/BFS | O(V + E) | O(V²) |

Quando Usar Cada Algoritmo
```

### BUSCA:

• DFS: Detectar ciclos, componentes, topologia

• BFS: Menor caminho (não ponderado), nível por nível

### CAMINHO MÍNIMO:

- Dijkstra: Um para todos, pesos positivos
- Floyd-Warshall: Todos para todos, permite negativos
- Bellman-Ford: Um para todos, detecta ciclo negativo

```
if vizinho not in visitados:
 dfs(grafo, vizinho, visitados)
```

# Busca em Largura (BFS):

```
from collections import deque

def bfs(grafo, inicio):
 visitados = set()
 fila = deque([inicio])

while fila:
 no = fila.popleft()
 if no not in visitados:
 visitados.add(no)
 print(no)
 fila.extend(grafo[no])
```

# **CAPÍTULO 7**

# **ANÁLISE AMORTIZADA**

# 7.1 Conceitos e Aplicações

### O que é Análise Amortizada?

A análise amortizada é uma técnica para analisar o tempo de execução de uma sequência de operações, onde algumas operações podem ser custosas, mas o custo médio por operação é baixo quando consideramos uma sequência longa de operações.

### Diferença entre Análise Amortizada e Caso Médio

- Caso Médio: Considera a distribuição probabilística das entradas
- Análise Amortizada: Considera uma sequência de operações, garantindo que o custo total é limitado

### Métodos de Análise Amortizada

#### 1. Método Agregado

**Princípio**: Mostrar que para qualquer sequência de n operações, o tempo total é T(n), então cada operação custa T(n)/n em média.

### **Exemplo: Array Dinâmico**

```
class ArrayDinamico:
 def __init__(self):
 self.capacity = 1
 self.size = 0
 self.data = [None] * self.capacity
 def append(self, item):
 if self.size == self.capacity:
 # Redimensionar: O(n)
 self._resize()
 self.data[self.size] = item # 0(1)
 self.size += 1
 def _resize(self):
 old_capacity = self.capacity
 self.capacity *= 2
 new_data = [None] * self.capacity
 # Copia todos os elementos: O(n)
 for i in range(self.size):
 new_data[i] = self.data[i]
 self.data = new_data
```

```
Análise:
- Operação normal: O(1)
- Redimensionamento: O(n), mas acontece raramente
- Para n inserções: redimensiona em 1, 2, 4, 8, ..., k onde k ≤ n
- Custo total de cópias: 1 + 2 + 4 + ... + k ≤ 2n
- Custo amortizado por inserção: O(1)
```

#### 2. Método do Contador

Princípio: Atribuir "créditos" para operações baratas que podem ser usados para pagar operações caras futuras.

### Exemplo: Stack com Array Dinâmico

```
class StackDinamico:
 def init (self):
 self.capacity = 1
 self.size = 0
 self.data = [None] * self.capacity
 def push(self, item):
 # Custo real: O(1) normal ou O(n) com redimensionamento
 # Custo amortizado: O(1) + 2 créditos = O(1)
 if self.size == self.capacity:
 self._resize()
 self.data[self.size] = item
 self.size += 1
 # Cada push "paga" 3 unidades:
 # 1 para a inserção atual
 # 2 créditos para futuro redimensionamento
 def _resize(self):
 self.capacity *= 2
 new_data = [None] * self.capacity
 # Usa os créditos acumulados para pagar a cópia
 for i in range(self.size):
 new_data[i] = self.data[i]
 self.data = new_data
```

### 3. Método do Potencial

**Princípio**: Define uma função potencial  $\Phi(D)$  que mede a "energia armazenada" na estrutura de dados.

**Fórmula**: Custo amortizado = Custo real +  $\Phi(D')$  -  $\Phi(D)$ 

**Exemplo: Array Dinâmico com Potencial** 

```
Função potencial: \Phi(D) = 2 * size - capacity
Quando size está próximo de capacity, potencial é alto
Após redimensionamento, potencial diminui drasticamente
def custo_amortizado_append():
 Análise do custo amortizado usando potencial
 Caso 1: Inserção sem redimensionamento
 - Custo real: 1
 - Δ Potencial: 2 (size aumenta 1, capacity inalterada)
 - Custo amortizado: 1 + 2 = 3
 Caso 2: Inserção com redimensionamento (size = capacity = n)
 - Custo real: n + 1 (n cópias + 1 inserção)
 - Potencial antes: 2n - n = n
 - Potencial depois: 2(n+1) - 2n = 2
 - \Delta Potencial: 2 - n = -(n-2)
 - Custo amortizado: (n + 1) + (-(n-2)) = 3
 Em ambos os casos: O(1) amortizado
 pass
```

### Estruturas de Dados com Análise Amortizada

### **Union-Find (Disjoint Set Union)**

```
class UnionFind:
 def __init__(self, n):
 self.parent = list(range(n))
 self.rank = [0] * n
 def find(self, x):
 # Compressão de caminho
 if self.parent[x] != x:
 self.parent[x] = self.find(self.parent[x]) # Recursão com compressão
 return self.parent[x]
 def union(self, x, y):
 # União por rank
 root_x = self.find(x)
 root_y = self.find(y)
 if root_x != root_y:
 if self.rank[root_x] < self.rank[root_y]:</pre>
 self.parent[root_x] = root_y
 elif self.rank[root_x] > self.rank[root_y]:
 self.parent[root_y] = root_x
```

Fibonacci Heap

# **CAPÍTULO 10**

# PROGRAMAÇÃO DINÂMICA

# 10.1 Conceito: "Dividir + Memorizar"

```
Problema: Fibonacci ingênuo é muito lento

def fib_lento(n):
 if n <= 1: return n
 return fib_lento(n-1) + fib_lento(n-2) # O(2^n) - LENTO!

Solução: Guardar resultados calculados

def fib_rapido(n):
 memo = {}
 def fib_aux(x):
 if x in memo: return memo[x]
 if x <= 1: return x
 memo[x] = fib_aux(x-1) + fib_aux(x-2)
 return memo[x]

 return fib_aux(n) # O(n) - RÁPIDO!

Macete: DP = Recursão + Memoização</pre>
```

# 10.2 Problema da Mochila 0/1

```
def mochila(pesos, valores, capacidade):
 n = len(pesos)
dp[i][w] = valor máximo com i itens e capacidade w
 dp = [[0] * (capacidade + 1) for _ in range(n + 1)]

for i in range(1, n + 1):
 for w in range(1, capacidade + 1):
 # Opção 1: não pegar item i-1
 dp[i][w] = dp[i-1][w]

Opção 2: pegar item i-1 (se couber)
```

# **10.3 Maior Subsequência Comum (LCS)**

```
def lcs(str1, str2):
 m, n = len(str1), len(str2)
 dp = [[0] * (n + 1) for _ in range(m + 1)]

for i in range(1, m + 1):
 for j in range(1, n + 1):
 if str1[i-1] == str2[j-1]:
 dp[i][j] = dp[i-1][j-1] + 1 # Caracteres iguais
 else:
 dp[i][j] = max(dp[i-1][j], dp[i][j-1]) # Pega o melhor

return dp[m][n]

Exemplo: LCS("ABCD", "AEBD") = "ABD" (tamanho 3)
```

### 10.4 Quando Usar DP

- Subproblemas sobrepostos: mesmo cálculo repetido
- Subestrutura ótima: solução ótima contém soluções ótimas menores
- Decisões sequenciais: escolhas em cada passo

#### Padrão Bottom-Up (sem recursão)

```
def fib_bottom_up(n):
 if n <= 1: return n
 a, b = 0, 1
 for i in range(2, n + 1):
 a, b = b, a + b
 return b</pre>
Vantagem: sem risco de stack overflow
```

```
* Invariante: max_so_far é o maior elemento em arr[0..i-1]
 */
if (n <= 0) return -1; // Erro

int max_so_far = arr[0]; // Inicialização

for (int i = 1; i < n; i++) {</pre>
```

```
// Invariante: max_so_far = max(arr[0..i-1])

if (arr[i] > max_so_far) {
 max_so_far = arr[i];
}

// Invariante mantida: max_so_far = max(arr[0..i])
}

// Terminação: max_so_far = max(arr[0..n-1])
return max_so_far;
```

 $void\ insertion\_sort\_c(int\ arr[],\ int\ n)\ \{\ /^*\ *\ Invariante:\ arr[0..i-1]\ est\'a\ ordenado\ */\ for\ (int\ i=1;\ i<n;\ i++)\ \{\ //\ Invariante:\ arr[0..i-1]\ est\'a\ ordenado\ */\ for\ (int\ i=1;\ i<n;\ i++)\ \{\ //\ Invariante:\ arr[0..i-1]\ est\'a\ ordenado\ */\ for\ (int\ i=1;\ i<n;\ i++)\ \{\ //\ Invariante:\ arr[0..i-1]\ est\'a\ ordenado\ */\ for\ (int\ i=1;\ i<n;\ i++)\ \{\ //\ Invariante:\ arr[0..i-1]\ est\'a\ ordenado\ */\ for\ (int\ i=1;\ i<n;\ i++)\ \{\ //\ Invariante:\ arr[0..i-1]\ est\'a\ ordenado\ */\ for\ (int\ i=1;\ i<n;\ i++)\ \{\ //\ Invariante:\ arr[0..i-1]\ est\'a\ ordenado\ */\ for\ (int\ i=1;\ i<n;\ i++)\ \{\ //\ Invariante:\ arr[0..i-1]\ est\'a\ ordenado\ */\ for\ (int\ i=1;\ i<n;\ i++)\ \{\ //\ Invariante:\ arr[0..i-1]\ est\'a\ ordenado\ */\ for\ (int\ i=1;\ i<n;\ i++)\ \{\ //\ Invariante:\ arr[0..i-1]\ est\'a\ ordenado\ */\ for\ (int\ i=1;\ i<n;\ i++)\ \{\ //\ Invariante:\ arr[0..i-1]\ est\'a\ ordenado\ */\ for\ (int\ i=1;\ i<n;\ i++)\ \{\ //\ Invariante:\ arr[0..i-1]\ est\'a\ ordenado\ */\ for\ (int\ i=1;\ i<n;\ i++)\ \{\ //\ Invariante:\ arr[0..i-1]\ est\'a\ ordenado\ */\ for\ (int\ i=1;\ i<n;\ i++)\ \{\ //\ Invariante:\ arr[0..i-1]\ est\'a\ ordenado\ */\ for\ (int\ i=1;\ i<n;\ i++)\ \{\ //\ Invariante:\ arr[0..i-1]\ est\'a\ ordenado\ */\ for\ (int\ i=1;\ i<n;\ i++)\ \{\ //\ Invariante:\ arr[0..i-1]\ est\'a\ ordenado\ */\ for\ (int\ i=1;\ i<n;\ i++)\ \{\ //\ Invariante:\ arr[0..i-1]\ est\'a\ ordenado\ */\ for\ (int\ i=1;\ i<n;\ i++)\ \{\ //\ Invariante:\ arr[0..i-1]\ est\'a\ ordenado\ */\ for\ (int\ i=1;\ i<n;\ i++)\ \{\ //\ Invariante:\ arr[0..i-1]\ est\'a\ ordenado\ */\ for\ (int\ i=1;\ i<n;\ i++)\ \{\ //\ Invariante:\ arr[0..i-1]\ est\'a\ ordenado\ */\ for\ (int\ i=1;\ i++)\ est\'a\ ordenado\ */\ for\ (int\ i$ 

```
int key = arr[i];
int j = i - 1;

// Move elementos maiores que key uma posição à frente
while (j >= 0 && arr[j] > key) {
 arr[j + 1] = arr[j];
 j--;
}

arr[j + 1] = key;

// Invariante mantida: arr[0..i] está ordenado
}

// Terminação: arr[0..n-1] está ordenado
```

}

```
Benefícios das Invariantes

1. **Prova de Correção**: Garantem que o algoritmo funciona
2. **Debugging**: Ajudam a encontrar bugs lógicos
3. **Otimização**: Identificam propriedades que podem ser exploradas
4. **Documentação**: Explicam como o algoritmo funciona
5. **Manutenção**: Facilitam modificações futuras

Dicas para Criar Boas Invariantes

1. **Seja específico**: "arr está parcialmente ordenado" vs "arr[0..i] está ordenado"
2. **Use quantificadores**: "Para todo x em S, propriedade P(x) é verdadeira"
3. **Relacione com o objetivo**: A invariante deve levar ao resultado desejado
4. **Mantenha simples**: Invariantes complexas são difíceis de verificar
5. **Teste com exemplos**: Verifique a invariante em execuções específicas

```

```
Exercícios Práticos
Exercício 1: Análise de Complexidade
Determine a complexidade dos seguintes códigos:
```python
# a)
for i in range(n):
    for j in range(n):
        print(i, j)
# b)
def busca_binaria(lista, x):
    # ... implementação da busca binária
# c)
def fibonacci(n):
    if n <= 1:
        return n
    return fibonacci(n-1) + fibonacci(n-2)
```

Exercício 2: Implementação

Implemente um algoritmo de ordenação merge sort e analise sua complexidade.

Exercício 3: Recursividade Avançada

Implemente uma função recursiva que calcule o número de formas de subir uma escada com n degraus, onde você pode subir 1 ou 2 degraus por vez.

Exercício 4: Programação Dinâmica

Resolva o problema de encontrar a maior subsequência crescente em um array.

Resumo Visual dos Pontos Principais

Complexidade - Cheat Sheet:

```
COMPLEXIDADES DO MELHOR AO PIOR:
0(1)
        - Acesso direto
                               [=====]
O(log n) - Busca inteligente
                               [===
        - Verificar todos
0(n)
                               [=====]
O(n log n) - Ordenação boa
                               [======]
O(n²) - Comparar todos x todos [=========]
0(2<sup>n</sup>)
        - Explorar combinações [XXXXXXXXXXXXXXXX]
0(n!)
        - Impossível na prática [XXXXXXXXXXXXXXXXXXX]
```

Recursividade - Checklist:

```
ANTES DE CODIFICAR:

□ Identifiquei o padrão recursivo?

□ Defini o caso base claramente?

□ Cada chamada progride para o caso base?

□ Testei com casos pequenos?

SINAIS DE ALERTA:

- Sem caso base → Loop infinito

- Caso base errado → Crash

- Não progride → Stack overflow

- Muito lento → Precisa otimizar

TÉCNICAS DE OTIMIZAÇÃO:

- Memoização → Guardar resultados

- Iteração → Quando possível

- Bottom-up → Programação dinâmica
```

Kit de Sobrevivência do Programador:

Para Análise de Algoritmos:

```
# 1. Conte os loops:
for i in range(n): # 0(n)
    for j in range(n): # × 0(n) = 0(n²)
        operacao() # 0(1)

# 2. Identifique o padrão:
# - Dividir pela metade → 0(log n)
# - Visitar todos → 0(n)
# - Comparar todos × todos → 0(n²)
# - Dividir e conquistar → 0(n log n)
```

Para Recursividade:

```
# Template universal:
def resolver_recursivo(problema):
    # SEMPRE primeiro: caso base
    if problema_simples:
        return solucao_direta

# Quebrar problema
    subproblema = reduzir(problema)

# Resolver recursivamente
    resultado_parcial = resolver_recursivo(subproblema)

# Combinar resultado
    return combinar(problema, resultado_parcial)
```

Estruturas de Dados - Guia Rápido:

Estrutura	Acesso	Busca	Inserção	Remoção	Quando Usar
Array	O(1)	O(n)	O(n)	O(n)	Acesso rápido por índice
Lista Ligada	O(n)	O(n)	O(1)*	O(1)*	Inserções/remoções frequentes
Pilha	O(1) topo	-	O(1)	O(1)	LIFO, desfazer, recursão
Fila	O(1) frente	-	O(1)	O(1)	FIFO, processamento ordem
Hash Table	O(1)*	O(1)*	O(1)*	O(1)*	Busca super rápida
Árvore Binária	O(log n)*	O(log n)*	O(log n)*	O(log n)*	Dados ordenados

^{*} No caso médio

Algoritmos Essenciais:

```
BUSCA:

Linear → O(n) → Simples, qualquer lista

Binária → O(log n) → Lista ordenada obrigatória

ORDENAÇÃO:

Bubble/Selection → O(n²) → Só para estudar

Insertion → O(n²) → Bom para listas pequenas

Merge → O(n log n) → Estável, sempre eficiente

Quick → O(n log n)* → Rápido na prática

ÁRVORES:

DFS → Profundidade primeiro → Recursivo

BFS → Largura primeiro → Fila

OTIMIZAÇÃO:

Programação Dinâmica → Subproblemas sobrepostos

Guloso → Escolhas localmente ótimas

Dividir e Conquistar → Quebrar problema
```

Estratégias de Resolução de Problemas

Metodologia RICE:

R - Read (Ler)

- Leia o problema 2-3 vezes
- Identifique entrada e saída
- Procure por palavras-chave (ordenado, único, etc.)

I - Identify (Identificar)

- Que tipo de problema é? (busca, ordenação, otimização...)
- Há restrições de tempo/espaço?
- Casos especiais ou edge cases?

C - Code (Codificar)

- Comece com força bruta
- Otimize depois se necessário
- Teste com exemplos pequenos

E - Evaluate (Avaliar)

- Analise complexidade
- Teste edge cases
- Refatore se possível

Padrões Comuns de Problemas:

1. Problemas de Busca:

```
# Sinais: "encontrar", "buscar", "existe"
# Ferramentas: busca linear, binária, hash

# Exemplo: Buscar elemento em lista ordenada

def buscar(lista, x):
    # O(log n) com busca binária
    esq, dir = 0, len(lista) - 1
    while esq <= dir:
        meio = (esq + dir) // 2
        if lista[meio] == x: return meio
        elif lista[meio] < x: esq = meio + 1
        else: dir = meio - 1
    return -1</pre>
```

2. Problemas de Contagem:

```
# Sinais: "quantos", "contar", "número de"
# Ferramentas: loops, recursão, DP

# Exemplo: Contar caminhos em grade

def contar_caminhos(m, n):
    # DP: O(m×n)
    dp = [[1]*n for _ in range(m)]
    for i in range(1, m):
        for j in range(1, n):
            dp[i][j] = dp[i-1][j] + dp[i][j-1]
    return dp[m-1][n-1]
```

3. Problemas de Otimização:

```
max_atual = max_global = arr[0]
for i in range(1, len(arr)):
    max_atual = max(arr[i], max_atual + arr[i])
    max_global = max(max_global, max_atual)
return max_global
```

Dicas para Entrevistas:

Comunicação:

- Pense em voz alta
- Explique sua abordagem antes de codificar
- Pergunte sobre edge cases
- Discuta trade-offs

Gestão de Tempo:

Progressão Típica:

```
    Força bruta → Funciona mas é lento
    Identificar gargalos → O que está lento?
    Otimizar → Usar estruturas melhores
    Polir → Edge cases e clareza
```

Bibliografia e Recursos Adicionais

Livros Recomendados:

- "Introduction to Algorithms" Cormen, Leiserson, Rivest, Stein
- "Algorithms" Robert Sedgewick
- "Algorithm Design" Jon Kleinberg, Éva Tardos

Recursos Online:

- LeetCode: Prática de algoritmos
- HackerRank: Desafios de programação
- Coursera/edX: Cursos de algoritmos

Visualizadores:

- VisuAlgo: Visualização de algoritmos
- Algorithm Visualizer: Animações interativas

CAPÍTULO 10

ALGORITMOS DE PROGRAMAÇÃO DINÂMICA

10.1 Conceito de Programação Dinâmica

Macete: Subproblemas + Memoização

```
# Fibonacci Ingênuo: O(2^n) - MUITO LENTO!

def fib_ingenuo(n):
    if n <= 1:
        return n
    return fib_ingenuo(n-1) + fib_ingenuo(n-2)

# Fibonacci com DP: O(n) - RÁPIDO!

def fib_dp(n):
    if n <= 1:
        return n

dp = [0] * (n + 1)
    dp[0], dp[1] = 0, 1

for i in range(2, n + 1):
    dp[i] = dp[i-1] + dp[i-2]

return dp[n]

# Macete: Evita recalcular subproblemas!</pre>
```

10.2 Problema da Mochila (0/1 Knapsack)

Formulação

```
def mochila_01(pesos, valores, capacidade):
    n = len(pesos)
# dp[i][w] = valor máximo com i itens e capacidade w
    dp = [[0 for _ in range(capacidade + 1)] for _ in range(n + 1)]

for i in range(1, n + 1):
    for w in range(1, capacidade + 1):
        # Não pega o item i-1
        dp[i][w] = dp[i-1][w]

# Se cabe, tenta pegar o item i-1
        if pesos[i-1] <= w:
            pegar = valores[i-1] + dp[i-1][w - pesos[i-1]]
            dp[i][w] = max(dp[i][w], pegar)</pre>
```

```
return dp[n][capacidade]

# Complexidade: O(n × W) onde W = capacidade

# Espaço: O(n × W)
```

10.3 Maior Subsequência Comum (LCS)

Macete: Comparar Caractere por Caractere

CAPÍTULO 11

ALGORITMOS DE BUSCA E HASHING

11.1 Busca Linear vs Binária

Busca Linear - O(n)

```
def busca_linear(arr, x):
    for i in range(len(arr)):
        if arr[i] == x:
            return i
    return -1

# Macete: Funciona em qualquer array
# Não precisa estar ordenado
```

Busca Binária - O(log n)

```
def busca_binaria(arr, x):
    esq, dir = 0, len(arr) - 1

while esq <= dir:
    meio = (esq + dir) // 2

if arr[meio] == x:
    return meio
    elif arr[meio] < x:
        esq = meio + 1 # Procura na direita
    else:
        dir = meio - 1 # Procura na esquerda

return -1

# REQUISITO: Array deve estar ORDENADO!
# Macete: Divide pela metade a cada iteração</pre>
```

11.2 Tabelas Hash

Conceito: Acesso O(1)

```
class TabelaHash:
    def __init__(self, tamanho=10):
        self.tamanho = tamanho
        self.tabela = [[] for _ in range(tamanho)] # Lista de listas
```

```
def _hash(self, chave):
       # Função hash simples
        return hash(chave) % self.tamanho
   def inserir(self, chave, valor):
       indice = self._hash(chave)
        bucket = self.tabela[indice]
        # Atualiza se já existe
        for i, (k, v) in enumerate(bucket):
            if k == chave:
                bucket[i] = (chave, valor)
                return
        # Adiciona novo
        bucket.append((chave, valor))
   def buscar(self, chave):
       indice = self._hash(chave)
        bucket = self.tabela[indice]
        for k, v in bucket:
           if k == chave:
               return v
        return None # Não encontrado
# Complexidade:
# Melhor caso: O(1) - sem colisões
# Pior caso: O(n) - todas as chaves no mesmo bucket
```

CAPÍTULO 12

ALGORITMOS GULOSOS E DIVISÃO E CONQUISTA

12.1 Algoritmos Gulosos (Greedy)

Conceito: Escolha Localmente Ótima

```
# Problema da Troca: Dar troco com menor número de moedas
def troco_guloso(valor, moedas=[100, 50, 25, 10, 5, 1]):
    resultado = []

for moeda in moedas:
    while valor >= moeda:
        resultado.append(moeda)
        valor -= moeda

return resultado

# Exemplo: troco_guloso(189) = [100, 50, 25, 10, 1, 1, 1, 1]
# Funciona para sistema monetário brasileiro!
```

Problema da Mochila Fracionária

```
def mochila_fracionaria(itens, capacidade):
   # itens = [(peso, valor), ...]
   # Ordena por valor/peso (densidade de valor)
   itens.sort(key=lambda x: x[1]/x[0], reverse=True)
   valor_total = 0
    for peso, valor in itens:
        if capacidade >= peso:
            # Pega item inteiro
            capacidade -= peso
            valor_total += valor
            # Pega fração do item
            fracao = capacidade / peso
            valor_total += fracao * valor
            break
   return valor_total
# Macete: Sempre pega item com melhor custo-benefício
```

12.2 Divisão e Conquista

Template Geral

```
def divisao_conquista(problema):
    # Caso base
    if problema_pequeno(problema):
        return resolucao_direta(problema)

# Divisão
    subproblemas = dividir(problema)

# Conquista (recursão)
    resultados = []
    for sub in subproblemas:
        resultados.append(divisao_conquista(sub))

# Combinação
    return combinar(resultados)
```

APÊNDICES

APÊNDICE A - TABELA DE COMPLEXIDADES

Tabela Resumo de Complexidades Comuns

Complexidade	Nome	Exemplo	n=10	n=100	n=1000
O(1)	Constante	Acesso a array[i]	1	1	1
O(log n)	Logarítmica	Busca binária	3	7	10
O(n)	Linear	Busca linear	10	100	1000
O(n log n)	Linearítmica	Merge Sort	30	700	10000
O(n²)	Quadrática	Bubble Sort	100	10000	1000000
O(2 ⁿ)	Exponencial	Subconjuntos	1024	2 ¹⁰⁰	2 ¹⁰⁰⁰
O(n!)	Fatorial	Permutações	3628800	100!	1000!

Complexidades por Estrutura de Dados

Estrutura	Acesso	Busca	Inserção	Remoção
Array	O(1)	O(n)	O(n)	O(n)
Lista Ligada	O(n)	O(n)	O(1)	O(1)
Pilha	O(1)	-	O(1)	O(1)
Fila	O(1)	-	O(1)	O(1)
Hash Table	O(1)*	O(1)*	O(1)*	O(1)*
Árvore Binária	O(log n)*	O(log n)*	O(log n)*	O(log n)*
Неар	O(1)	O(n)	O(log n)	O(log n)

^{*}Caso médio

APÊNDICE C - GLOSSÁRIO DE TERMOS

Algoritmo: Sequência finita de instruções bem definidas para resolver um problema.

Análise Amortizada: Técnica para analisar o tempo total de uma sequência de operações.

Big-O: Notação matemática que descreve o comportamento assintótico de funções.

Caso Base: Condição de parada em algoritmos recursivos.

Complexidade Espacial: Quantidade de memória necessária para executar um algoritmo.

Complexidade Temporal: Tempo necessário para executar um algoritmo em função do tamanho da entrada.

Divide e Conquista: Estratégia que divide um problema em subproblemas menores.

Estrutura de Dados: Forma de organizar e armazenar dados para acesso e modificação eficientes.

Heurística: Técnica para encontrar soluções aproximadas quando métodos exatos são impraticáveis.

Invariante de Loop: Propriedade que permanece verdadeira durante todas as iterações de um loop.

Memoização: Técnica de otimização que armazena resultados de funções para evitar recálculos.

Programação Dinâmica: Método para resolver problemas complexos dividindo-os em subproblemas.

Recursão: Técnica onde uma função chama a si mesma para resolver subproblemas.

Tail Recursion: Tipo especial de recursão onde a chamada recursiva é a última operação.

APÊNDICE B - TRUQUES E MACETES DE PROGRAMAÇÃO

B.1 Bitwise Operations (Operações de Bit)

```
# Verificar se número é par
def eh par(n):
   return (n & 1) == 0 # Mais rápido que n % 2
# Multiplicar/dividir por 2^k
def mult_por_2k(n, k):
   return n << k # n * 2^k
def div por 2k(n, k):
   return n >> k # n // 2^k
# Trocar dois números sem variável auxiliar
def trocar_xor(a, b):
   a = a ^ b
   b = a ^ b
   a = a \wedge b
   return a, b
# Contar bits setados (população de bits)
def contar_bits(n):
   count = 0
   while n:
      count += n & 1
       n >>= 1
   return count
# Macete: bin(n).count('1') é mais simples!
```

B.2 Truques com Strings

```
# Verificar se string é palíndromo
def palindromo(s):
    return s == s[::-1]

# Remover caracteres especiais
def limpar_string(s):
    return ''.join(c for c in s if c.isalnum())

# Converter para title case
def title_case(s):
    return ' '.join(word.capitalize() for word in s.split())

# Encontrar todas as permutações
from itertools import permutations
```

```
def todas_permutacoes(s):
    return [''.join(p) for p in permutations(s)]
```

B.3 Truques com Listas

```
# Achatar lista aninhada
def achatar(lista):
   resultado = []
   for item in lista:
        if isinstance(item, list):
            resultado.extend(achatar(item))
        else:
            resultado.append(item)
   return resultado
# List comprehension para achatar um nível
def achatar_1nivel(lista):
    return [item for sublista in lista for item in sublista]
# Remover duplicatas mantendo ordem
def remover_duplicatas(lista):
   return list(dict.fromkeys(lista))
# Dividir lista em chunks
def chunks(lista, tamanho):
   return [lista[i:i+tamanho] for i in range(0, len(lista), tamanho)]
```

B.4 Decoradores Úteis

```
import time
import functools
# Medir tempo de execução
def cronometro(func):
   @functools.wraps(func)
   def wrapper(*args, **kwargs):
        inicio = time.time()
        resultado = func(*args, **kwargs)
        fim = time.time()
        print(f"{func.__name__}} levou {fim - inicio:.4f}s")
        return resultado
   return wrapper
# Memoização simples
def memoize(func):
   cache = {}
   @functools.wraps(func)
   def wrapper(*args):
       if args in cache:
```

```
return cache[args]
    resultado = func(*args)
    cache[args] = resultado
    return resultado
    return wrapper

# Uso:
@cronometro
@memoize
def fibonacci(n):
    if n <= 1:
        return n
    return fibonacci(n-1) + fibonacci(n-2)</pre>
```

APÊNDICE C - ESTRUTURAS DE DADOS ESPECIAIS

C.1 Heap (Priority Queue)

```
import heapq
class MinHeap:
   def __init__(self):
       self.heap = []
   def push(self, item):
        heapq.heappush(self.heap, item)
   def pop(self):
        return heapq.heappop(self.heap)
   def peek(self):
        return self.heap[0] if self.heap else None
   def __len__(self):
        return len(self.heap)
# Para MaxHeap, use números negativos
class MaxHeap:
   def __init__(self):
       self.heap = []
   def push(self, item):
        heapq.heappush(self.heap, -item)
   def pop(self):
        return -heapq.heappop(self.heap)
```

C.2 Trie (Árvore de Prefixos)

```
node = node.children[char]
node.is_end_word = True

def search(self, word):
    node = self._find_node(word)
    return node is not None and node.is_end_word

def starts_with(self, prefix):
    return self._find_node(prefix) is not None

def _find_node(self, prefix):
    node = self.root
    for char in prefix:
        if char not in node.children:
            return None
        node = node.children[char]
    return node

# Uso: Autocompletar, corretor ortográfico
```

C.3 Union-Find (Disjoint Set)

```
class UnionFind:
   def init (self, n):
        self.parent = list(range(n))
        self.rank = [0] * n
   def find(self, x):
        # Path compression
        if self.parent[x] != x:
            self.parent[x] = self.find(self.parent[x])
        return self.parent[x]
   def union(self, x, y):
        root_x = self.find(x)
        root_y = self.find(y)
        if root_x != root_y:
            # Union by rank
            if self.rank[root_x] < self.rank[root_y]:</pre>
                self.parent[root_x] = root_y
            elif self.rank[root_x] > self.rank[root_y]:
                self.parent[root_y] = root_x
            else:
                self.parent[root_y] = root_x
                self.rank[root_x] += 1
   def connected(self, x, y):
        return self.find(x) == self.find(y)
```

Uso: Detectar ciclos, componentes conectados

APÊNDICE D - PADRÕES DE CÓDIGO COMUNS

D.1 Two Pointers (Dois Ponteiros)

```
# Verificar se array tem soma alvo
def tem soma alvo(arr, alvo):
   arr.sort()
   esq, dir = 0, len(arr) - 1
   while esq < dir:
        soma_atual = arr[esq] + arr[dir]
       if soma_atual == alvo:
           return True
        elif soma_atual < alvo:</pre>
            esq += 1
        else:
           dir -= 1
   return False
# Remover duplicatas de array ordenado
def remover_duplicatas_ordenado(arr):
   if not arr:
        return 0
   i = 0
   for j in range(1, len(arr)):
        if arr[j] != arr[i]:
            i += 1
            arr[i] = arr[j]
   return i + 1 # Novo comprimento
```

D.2 Sliding Window (Janela Deslizante)

```
# Maior substring sem caracteres repetidos

def maior_substring_unica(s):
    char_map = {}
    esq = 0
    max_len = 0

for dir in range(len(s)):
    if s[dir] in char_map and char_map[s[dir]] >= esq:
        esq = char_map[s[dir]] + 1

    char_map[s[dir]] = dir
    max_len = max(max_len, dir - esq + 1)

return max_len
```

```
# Soma máxima de subarray de tamanho k

def soma_maxima_janela(arr, k):
    if len(arr) < k:
        return -1

# Primeira janela

soma_janela = sum(arr[:k])

soma_maxima = soma_janela

# Deslizar janela

for i in range(k, len(arr)):
    soma_janela = soma_janela - arr[i-k] + arr[i]
    soma_maxima = max(soma_maxima, soma_janela)

return soma_maxima</pre>
```

D.3 Fast & Slow Pointers

```
# Detectar ciclo em lista ligada
def tem_ciclo(head):
   if not head or not head.next:
        return False
   lento = head
   rapido = head.next
   while rapido and rapido.next:
        if lento == rapido:
           return True
        lento = lento.next
        rapido = rapido.next.next
   return False
# Encontrar meio da lista ligada
def encontrar_meio(head):
   lento = rapido = head
   while rapido and rapido.next:
       lento = lento.next
        rapido = rapido.next.next
   return lento
```

APÊNDICE E - PROBLEMAS CLÁSSICOS DE ENTREVISTA

E.1 Array e String

```
# 1. Rotacionar array k posições
def rotacionar array(nums, k):
   n = len(nums)
   k = k \% n
   # Reverter todo array, depois reverter partes
   nums.reverse()
   nums[:k] = nums[:k][::-1]
   nums[k:] = nums[k:][::-1]
# 2. Produto de array exceto self
def produto_exceto_self(nums):
   n = len(nums)
   resultado = [1] * n
   # Produto à esquerda
   for i in range(1, n):
        resultado[i] = resultado[i-1] * nums[i-1]
   # Produto à direita
   direita = 1
    for i in range(n-1, -1, -1):
       resultado[i] *= direita
       direita *= nums[i]
   return resultado
# 3. Maior subarray (Kadane's Algorithm)
def maior_subarray(nums):
   max_atual = max_global = nums[0]
   for i in range(1, len(nums)):
        max_atual = max(nums[i], max_atual + nums[i])
        max_global = max(max_global, max_atual)
   return max_global
```

E.2 Árvores

```
# 1. Validar BST

def validar_bst(root, min_val=float('-inf'), max_val=float('inf')):
    if not root:
        return True

if root.val <= min_val or root.val >= max_val:
        return False
```

```
return (validar_bst(root.left, min_val, root.val) and
            validar_bst(root.right, root.val, max_val))
# 2. Árvore balanceada
def eh_balanceada(root):
   def altura(node):
       if not node:
            return 0
        altura_esq = altura(node.left)
        if altura_esq == -1:
            return -1
        altura_dir = altura(node.right)
        if altura_dir == -1:
            return -1
        if abs(altura_esq - altura_dir) > 1:
            return -1
        return max(altura_esq, altura_dir) + 1
   return altura(root) != -1
# 3. Serialize/Deserialize árvore binária
class Codec:
   def serialize(self, root):
       def preorder(node):
            if node:
                vals.append(str(node.val))
                preorder(node.left)
                preorder(node.right)
            else:
                vals.append("#")
        vals = []
        preorder(root)
        return ",".join(vals)
   def deserialize(self, data):
        def build():
           val = next(vals)
            if val == "#":
                return None
            node = TreeNode(int(val))
            node.left = build()
            node.right = build()
            return node
```

```
vals = iter(data.split(","))
return build()
```

APÊNDICE F - EXERCÍCIOS RESOLVIDOS (TEÓRICOS)

F.1 Questões sobre Modularização e Funções

Questão 1: A modularização de algoritmos é importante para organizar melhor o código, facilitar a manutenção, entre outras coisas. Sobre funções e procedimentos, assinale a alternativa correta sobre a modularização:

- a) O procedimento sempre retorna um valor ao programa.
- b) A função retorna um valor ao programa.
- c) As variáveis definidas no escopo de cada função são acessíveis em todo o programa.
- d) As variáveis locais são declaradas no escopo do programa inteiro.
- e) Variáveis globais não são acessíveis no corpo de uma função.

Resposta: b) A função retorna um valor ao programa.

Explicação: Funções são subprogramas que sempre retornam um valor, enquanto procedimentos executam ações mas não retornam valores. Variáveis locais têm escopo limitado à função onde foram declaradas.

Questão 2: Do ponto de vista de projeção de algoritmos, quais são as questões mais importantes a serem consideradas na escolha de um algoritmo?

- a) Corretude, eficiência, robustez e reusabilidade
- b) Corretude, eficiência, robustez e recursividade
- c) Corretude, eficiência, robustez e versatilidade
- d) Corretude, independência, robustez e autenticidade
- e) Corretude, independência, robustez e recursividade

Resposta: a) Corretude, eficiência, robustez e reusabilidade

Explicação: Os pilares fundamentais na escolha de algoritmos são:

- Corretude: O algoritmo deve resolver o problema corretamente
- Eficiência: Deve ter boa performance (tempo e espaço)
- Robustez: Capaz de lidar com entradas inesperadas
- Reusabilidade: Pode ser aplicado em diferentes contextos

F.2 Questões sobre Complexidade de Algoritmos

Questão 3: Qual das seguintes afirmações sobre complexidade de algoritmos está correta?

- a) A complexidade de um algoritmo é sempre medida em termos de tempo de execução.
- b) A complexidade de um algoritmo nunca leva em consideração o espaço de memória utilizado.
- c) A complexidade de um algoritmo pode ser representada pela notação "O(n)" para denotar seu pior caso.
- d) A complexidade de um algoritmo no melhor caso é sempre pior do que no pior caso.
- e) A complexidade de um algoritmo não depende da entrada que ele processa.

Resposta: c) A complexidade de um algoritmo pode ser representada pela notação "O(n)" para denotar seu pior caso.

Explicação: A notação Big O representa o limite superior da complexidade (pior caso). A complexidade pode ser temporal ou espacial, e sempre depende da entrada.

Questão 4: O que significa uma complexidade O(1) em termos de tempo de execução de um algoritmo?

- a) O tempo de execução do algoritmo é diretamente proporcional ao tamanho da entrada.
- b) O tempo de execução do algoritmo aumenta exponencialmente à medida que o tamanho da entrada aumenta.
- c) O tempo de execução do algoritmo permanece constante, independentemente do tamanho de entrada.
- d) O tempo de execução do algoritmo é impossível de determinar.
- e) O tempo de execução do algoritmo é igual a zero.

Resposta: c) O tempo de execução do algoritmo permanece constante, independentemente do tamanho de entrada.

Explicação: O(1) significa complexidade constante - o tempo não varia com o tamanho da entrada. Exemplo: acessar um elemento específico de um array.

Questão 5: Com relação ao algoritmo abaixo, calcule a complexidade Big O, no pior caso:

```
(1) para i de 1 até n faça
(2) para j de 0 até n-1 faça
(3) a = a*(i+j)
```

a) O(n) b) $O(n^2)$ c) O(1) d) $O(n^3)$ e) $O(n \log n)$

Resposta: b) O(n2)

Explicação: Temos dois loops aninhados, cada um executando n vezes. O loop externo executa n vezes, e para cada execução, o loop interno executa n vezes. Total: $n \times n = n^2$ operações.

Questão 6: Qual a complexidade do algoritmo a seguir?

```
bool localizar(int vetor[10], int valor) {
   int tamanho = 10;
   for (int i = 0; i < tamanho; i++) {
      if(vetor[i] == valor)
            return true;
   }
   return false;
}</pre>
```

a) O(n) b) $O(\log n)$ c) $O(n^2)$ d) $O(n \log n)$ e) $O(n^3)$

Resposta: a) O(n)

Explicação: O algoritmo realiza uma busca linear. No pior caso, precisa verificar todos os elementos do vetor. Se o tamanho fosse n (ao invés de 10), seriam n operações.

Questão 7: Suponha que um algoritmo, sendo executado com uma entrada de tamanho n, leve exatos 5n²+10n+200 instruções de máquina. Qual a complexidade de pior caso desse algoritmo, considerando a Notação O (Big Oh)?

a) O(n) b) $O(n^2)$ c) O(1) d) $O(n^3)$ e) $O(n \log n)$

Resposta: b) O(n2)

Explicação: Na notação Big O, consideramos apenas o termo de maior ordem. Em $5n^2 + 10n + 200$, o termo dominante é $5n^2$, que simplifica para $O(n^2)$.

Questão 8: A complexidade de algoritmos considera o tempo de execução que um código usa para solucionar um problema. Selecione a alternativa que mostra a notação da menor complexidade entre as seguintes: Ordem quadrática; Ordem cúbica; Ordem logarítmica; Ordem linear; Ordem exponencial

a) $O(n^2)$ b) $O(n^3)$ c) O(n) d) $O(c^n)$ e) $O(\log n)$

Resposta: e) O(log n)

Explicação: Em ordem crescente de complexidade: $O(log n) < O(n) < O(n^2) < O(n^3) < O(c^n)$. A complexidade logarítmica é a menor entre as listadas.

F.3 Questões sobre Ponteiros

Questão 9: Em relação aos ponteiros nas linguagens de programação, selecione a opção que justifica sua aplicação:

- a) Flexibilidade de endereçamento e controle do gerenciamento de armazenamento dinâmico.
- b) Aumento da legibilidade dos programas.
- c) Facilidade de implementação no gerenciamento dinâmico.
- d) Dificuldade na implementação de tipos primitivos.
- e) Código fica mais legível e menos propenso a erros.

Resposta: a) Flexibilidade de endereçamento e controle do gerenciamento de armazenamento dinâmico.

Explicação: Ponteiros permitem acesso direto à memória, possibilitam alocação dinâmica e oferecem flexibilidade no gerenciamento de dados.

Questão 10: Marque a alternativa correta sobre ponteiros:

- a) Ponteiro é uma variável cujo conteúdo é um endereço de memória.
- b) Ponteiro é uma variável cujo conteúdo é um valor de variável.
- c) Ponteiros é um tipo de dado do tipo float que consegue armazenar outros tipos de dados.
- d) Ponteiros é um tipo de dado do tipo int que consegue armazenar outros tipos de dados.
- e) Todas as alternativas estão corretas.

Resposta: a) Ponteiro é uma variável cujo conteúdo é um endereço de memória.

Explicação: Por definição, um ponteiro armazena o endereço de memória onde outro dado está localizado, não o valor em si.

F.4 Questões sobre Recursividade

Questão 11: Qual é o conceito fundamental por trás da recursividade em algoritmos?

- a) Repetição de uma operação em um loop.
- b) Dividir um problema em subproblemas semelhantes menores.
- c) Utilizar funções matemáticas.
- d) Organizar dados em uma pilha.
- e) Multiplicação de números inteiros.

Resposta: b) Dividir um problema em subproblemas semelhantes menores.

Explicação: Recursividade baseia-se no princípio "divide e conquista", onde um problema é decomposto em versões menores do mesmo problema.

Questão 12: O que é necessário para que uma função recursiva não entre em um loop infinito?

- a) Ela deve sempre conter uma instrução "while".
- b) Ela deve ser chamada com um valor negativo.
- c) Ela deve conter uma condição de parada.
- d) Ela deve chamar outra função recursiva.
- e) Ela deve ser executada apenas uma vez.

Resposta: c) Ela deve conter uma condição de parada.

Explicação: O caso base (condição de parada) é essencial para interromper as chamadas recursivas e evitar loops infinitos.

Questão 13: Considere a seguinte função recursiva em Python para calcular o fatorial:

```
def fatorial(n):
    if n == 0:
        return 1
    else:
        return n * fatorial(n - 1)
```

Qual é o valor de fatorial(4)?

a) 4 b) 6 c) 12 d) 24 e) 120

Resposta: d) 24

Explicação:

- fatorial(4) = $4 \times \text{fatorial}(3)$
- fatorial(3) = 3 × fatorial(2)
- fatorial(2) = 2 × fatorial(1)
- $fatorial(1) = 1 \times fatorial(0)$
- fatorial(0) = 1
- Resultado: 4 × 3 × 2 × 1 = 24

Questão 14: Existem casos em que um procedimento ou função chama a si próprio. Sobre introdução à computação, é correto afirmar que:

- a) quando um procedimento ou função chama a si próprio, denomina-se passagem de parâmetro por referência.
- b) quando um procedimento ou função chama a si próprio, denomina-se passagem de parâmetro por valor.
- c) quando um procedimento ou função chama a si próprio, denomina-se recursividade.
- d) quando um procedimento ou função chama a si próprio, denomina-se passagem de parâmetro por variável.
- e) quando um procedimento ou função chama a si próprio, denomina-se passagem de parâmetro por recursão.

Resposta: c) quando um procedimento ou função chama a si próprio, denomina-se recursividade.

Explicação: Por definição, recursividade é quando uma função chama a si mesma direta ou indiretamente.

Questão 15: Sobre funções recursivas, analise as afirmativas:

- I. Toda função recursiva precisa de um caso base para evitar chamadas infinitas.
- II. O uso de recursividade pode levar a consumo elevado de memória devido à pilha de chamadas.
- III. Recursividade é sempre mais eficiente que a versão iterativa.
- IV. Funções recursivas podem ser reescritas como funções iterativas.
- V. Um algoritmo recursivo sempre executa mais rapidamente que um iterativo.

Quais são as alternativas corretas?

Resposta: I, II e IV estão corretas.

Explicação:

- I: ✓ Caso base é obrigatório
- II: √ Cada chamada usa memória da pilha
- III: X Nem sempre é mais eficiente
- IV: ✓ Qualquer recursão pode ser convertida para iteração
- V: X Frequentemente recursão é mais lenta

F.5 Questões sobre Estruturas de Dados

Questão 16: Estrutura de dados caracterizada por: Ou não ter elemento algum (árvore vazia); Ou tem um elemento distinto denominado raiz, com dois ponteiros para duas estruturas diferentes, denominadas subárvore esquerda e subárvore direita. Essa estrutura é chamada de:

a) Trevo Binário b) Nó Folha c) Fila d) Árvore Binária e) Folha Binária

Resposta: d) Árvore Binária

Explicação: A definição descreve perfeitamente uma árvore binária: estrutura hierárquica com no máximo dois filhos por nó.

Questão 17: Considerando uma árvore de pesquisa binária com N nós, qual é a complexidade da inserção em uma árvore de pesquisa binária balanceada?

a) O(1) b) O(log N) c) O(N) d) O(N log N) e) $O(N^2)$

Resposta: b) O(log N)

Explicação: Em uma árvore balanceada, a altura é log N, e a inserção requer percorrer da raiz até uma folha, resultando em O(log N).

F.6 Questões sobre Algoritmos de Busca

Questão 18: A busca sequencial e a busca binária são dois algoritmos para pesquisa. Diante do cenário, quais alternativas são corretas?

- a) O tempo de execução da busca binária é menor do que o da busca sequencial.
- b) A busca sequencial é uma solução mais eficiente que a busca binária.
- c) A busca sequencial é um algoritmo simples de implementar, mas não é muito eficiente.
- d) A taxa de crescimento de log(n) é maior do que n.

Resposta: a) e c) estão corretas.

Explicação:

- a) ✓ Busca binária: O(log n) vs Sequencial: O(n)
- b) X Busca binária é mais eficiente
- c) √ Sequencial é simples mas O(n)
- d) X log(n) cresce mais lentamente que n

F.7 Questões sobre Algoritmos de Ordenação

Questão 19: A ordenação é uma operação comum em muitas aplicações. Sobre alguns algoritmos de ordenação, é correto afirmar:

- a) O quicksort particiona os itens em dois segmentos separados por um elemento pivô e ordena-os recursivamente.
- b) O selection sort divide os itens em dois segmentos, ordena-os individualmente e depois mescla-os.
- c) O insertion sort troca dois elementos adjacentes se estiverem fora de ordem.
- d) O bubble sort busca um elemento fora de ordem em elementos sucessivos.
- e) O bubble sort é baseado em passar sempre o menor valor para a primeira posição.

Resposta: a) O quicksort particiona os itens em dois segmentos separados por um elemento pivô e ordena-os recursivamente.

Explicação: Esta é a descrição correta do QuickSort. As outras alternativas confundem as características dos algoritmos.

F.8 Questões sobre Desenvolvimento de Algoritmos

Questão 20: (ENADE) Avalie se, no contexto da lógica de programação, as etapas para o desenvolvimento de um programa estão corretamente descritas:

- I. Estuda-se o enunciado do problema para definir os dados de entrada, o processamento e os dados de saída.
- II. Usa-se fluxogramas ou português estruturado para descrever o problema com suas soluções.
- III. O algoritmo é transformado em códigos da linguagem de programação escolhida.
- a) I, II e III b) I e III, apenas c) II e III, apenas d) I e II, apenas e) I, apenas

Resposta: a) I, II e III

Explicação: Todas as etapas estão corretas e representam o processo completo de desenvolvimento: análise → projeto → implementação.

F.9 Questões Adicionais (Nível Fácil)

Questão 21: Quantas vezes posso chamar a mesma função?

a) 1 b) 4 c) nenhuma d) quantas quiser e) 3

Resposta: d) quantas quiser

Explicação: Não há limite para o número de chamadas de uma função, exceto limitações de memória do sistema.

Questão 22: Em programação, qual é a principal diferença entre recursividade e iteração?

- a) A recursividade usa um contador para executar repetições.
- b) A recursividade utiliza estruturas de laço como for e while.
- c) A recursividade é uma técnica onde uma função chama a si mesma até atingir um caso base, enquanto a iteração usa estruturas de laço.
- d) A iteração ocorre apenas em linguagens que suportam estruturas de laço.
- e) A recursividade é sempre mais eficiente que a iteração.

Resposta: c) A recursividade é uma técnica onde uma função chama a si mesma até atingir um caso base, enquanto a iteração usa estruturas de laço.

Explicação: Esta é a diferença fundamental: recursão usa chamadas de função, iteração usa loops.

Questão 23: Qual das seguintes afirmações sobre recursividade está correta?

- a) Funções recursivas são mais rápidas que funções iterativas em qualquer caso.
- b) Toda função recursiva deve ter pelo menos dois casos base.
- c) Uma função recursiva chama a si mesma até atingir um caso base.
- d) Funções recursivas não podem usar estruturas de dados como pilhas.
- e) Recursividade sempre leva a um aumento de consumo de memória.

Resposta: c) Uma função recursiva chama a si mesma até atingir um caso base.

Explicação: Esta é a definição correta de recursividade. O caso base é o que interrompe as chamadas recursivas.

F.10 Resumo dos Conceitos-Chave

Principais tópicos abordados nos exercícios:

- 1. **Modularização:** Funções vs Procedimentos, escopo de variáveis
- 2. Complexidade: Big O, análise de loops, casos de complexidade
- 3. Ponteiros: Definição, uso, vantagens
- 4. Recursividade: Caso base, pilha de chamadas, comparação com iteração
- 5. Estruturas de Dados: Árvores binárias, operações básicas
- 6. Algoritmos de Busca: Linear vs Binária, complexidades
- 7. **Algoritmos de Ordenação:** Características dos principais algoritmos
- 8. **Desenvolvimento:** Etapas de criação de programas

Dicas para resolver questões similares:

- Sempre identifique o conceito principal sendo testado
- Para complexidade, conte os loops aninhados
- Para recursividade, trace a execução passo a passo
- Para estruturas de dados, visualize a organização dos elementos

APÊNDICE G - BIBLIOGRAFIA E REFERÊNCIAS

Bibliografia Básica

- 1. CORMEN, Thomas H. et al. Introduction to Algorithms, 4th Edition. MIT Press, 2022.
- 2. **SEDGEWICK, Robert; WAYNE, Kevin.** *Algorithms*, 4th Edition. Addison-Wesley, 2011.
- 3. KLEINBERG, Jon; TARDOS, Éva. Algorithm Design. Pearson, 2005.

Bibliografia Complementar

- 4. AHO, Alfred V. et al. Data Structures and Algorithms. Addison-Wesley, 1983.
- 5. **SKIENA, Steven S.** *The Algorithm Design Manual*, 3rd Edition. Springer, 2020.
- 6. DASGUPTA, Sanjoy et al. Algorithms. McGraw-Hill, 2008.

Recursos Online

- LeetCode: https://leetcode.com/ Prática de algoritmos
- HackerRank: https://www.hackerrank.com/ Desafios de programação
- GeeksforGeeks: https://www.geeksforgeeks.org/ Tutoriais e exemplos
- VisuAlgo: https://visualgo.net/ Visualização de algoritmos
- **Algorithm Visualizer**: https://algorithm-visualizer.org/ Animações interativas

Artigos Científicos Relevantes

- Knuth, D. E. (1976). "Big Omicron and big Omega and big Theta". SIGACT News, 8(2), 18-24.
- Tarjan, R. E. (1985). "Amortized computational complexity". *SIAM Journal on Algebraic Discrete Methods*, 6(2), 306-318.

APÊNDICE D - EXERCÍCIOS ADICIONAIS

Seção 1: Análise de Complexidade

Exercício D.1: Determine a complexidade dos seguintes algoritmos:

```
# Algoritmo A
def algoritmo_a(n):
    soma = 0
    for i in range(n):
        for j in range(i):
            soma += i * j
    return soma

# Algoritmo B
def algoritmo_b(n):
    if n <= 1:
        return 1
    return algoritmo_b(n//2) + algoritmo_b(n//2) + n</pre>
```

Exercício D.2: Calcule quantas operações básicas são executadas para n=16:

- Busca linear em array desordenado
- Busca binária em array ordenado
- Insertion sort

Seção 2: Recursividade Avançada

Exercício D.3: Implemente a função ackermann(m, n) e analise sua complexidade.

Exercício D.4: Converta o seguinte algoritmo recursivo para iterativo:

```
def fibonacci_rec(n):
    if n <= 1:
        return n
    return fibonacci_rec(n-1) + fibonacci_rec(n-2)</pre>
```

Seção 3: Problemas Práticos

Exercício D.5: Problema da Moeda: Dado um valor V e moedas de denominações [1, 5, 10, 25], encontre o número mínimo de moedas necessárias.

Exercício D.6: Torres de Hanói: Implemente a solução recursiva e calcule o número de movimentos para n discos.

Gabarito Resumido

- **D.1**: Algoritmo A: O(n²), Algoritmo B: O(n log n)
- D.2: Linear: 16 ops (pior caso), Binária: 4 ops, Insertion: 136 ops (pior caso)
- **D.3**: Ackermann tem crescimento mais que exponencial
- **D.4**: Usar loop com duas variáveis para O(n)
- **D.5**: Usar programação dinâmica para O(V×n)
- **D.6**: 2ⁿ 1 movimentos, O(2ⁿ) complexidade

FIM DA APOSTILA

© 2025 - Prof. Vagner Cordeiro Material Didático - Algoritmos e Análise de Complexidade