## Tarea2

#### Luis Mantilla

2023-09-26

### Contents

1 Diferencia de medias

1

### 1 Diferencia de medias

En la página Link se descararga las bases de datos del Censo de Habitantes de Calle 2020 y 2021. Realizaremos los siguientes numerales en lenguaje R:

```
library(readr)
CHC_2020 <- read_delim("CHC_2020.csv", delim = ";", escape_double = FALSE, trim_ws = TRUE)
# Rows: 5043 Columns: 130
# -- Column specification ------
# Delimiter: ";"
       (3): P1, P1S1, P2S1
# dbl (118): DIRECTORIO, TIP_FOR, P2, P5, CTL_1, P8R, P9, P10R, P11R, P12, P13...
       (9): P17S1, P20, P23, P26, P30, P32S4, P32S5, P33, P33_2
# i Use `spec()` to retrieve the full column specification for this data.
# i Specify the column types or set `show_col_types = FALSE` to quiet this message.
CHC_2021 <- read_csv("CHC_base_anonimizada09-09-2021.csv")</pre>
# Rows: 6250 Columns: 130
# -- Column specification -----
# Delimiter: ","
# chr
       (3): P1, P1S1, P2S1
# dbl (125): DIRECTORIO, TIP_FOR, P2, P5, CTL_1, P8R, P9, P10R, P11, P12, P13,...
       (2): P23, P32S4
# i Use `spec()` to retrieve the full column specification for this data.
# i Specify the column types or set `show_col_types = FALSE` to quiet this message.
Tomemos la columna de la edad de cada base de datos:
Edad 2020=CHC 2020$P8R
Edad_2021=CHC_2021$P8R
#Quitemos los datos faltante
Edad 2020=na.omit(Edad 2020)
Edad_2021=na.omit(Edad_2021)
```

1. Haga las pruebas de hipótesis correspondientes para establecer si las variables aleatorias de edad de un habitante de calle en el 2020 y en el 2021 presentan normalidad o no. Veamos si los datos presentan

normalidad usando una prueba de Anderson-Darlinng ya que tenemos más de 50 datos:

Como el valor p para ambas pruebas es menor al 0.05 entonces decimos que con una confianza del 95% la edad del 2020 y 2021 no presentan normalidad. Además veamos de una manera descriptiva, si los datos se aproximan a la normalidad:

• Veamos Las edades del 2020:

# Normal Q-Q Plot



• Veamos Las edades del 2021:

## Normal Q-Q Plot



2. Asumiendo los supuestos de misma población, independencia entre, independencia dentro y normalidad, encuentre e interprete el intervalo de confianza de la diferencia de medias de edad entre un habitante de calle en el 2020 y un habitante de calle en el 2021. No olvide verificar si se tiene o no igualdad de varianzas a nivel poblacional.

Sol: Como asumimos normalidad, entonces veamos si mantienen igualdad de varianza: Usando una distribución F, calculemos y las hipotesis

$$H_0: \quad \sigma_X^2/\sigma_Y^2 = 1$$
  
 $Ha: \quad \sigma_X^2/\sigma_Y^2 \neq 1$ 

Calculamos el  $F_c$  (F calculado):

```
Fc= var(Edad_2020)/var(Edad_2021)
Fc
```

# [1] 1.040514

Y el intervalo de confianza del 95% es:

```
c(qf(0.05/2, length(Edad_2020) - 1, length(Edad_2021) - 1),
qf(1-0.05/2, length(Edad_2020) - 1, length(Edad_2021) - 1))
```

# [1] 0.9442442 1.0588320

Como Fc se encuentra dentro del intervalo de confianza, entonces asumimos con una confianza del 95% que las varianzas son iguales. Entonces desvariamos calcular el intervalo de confianza para la diferencia de medias, para esto usamos la distribución t:

$$H_0: \mu_{2020} - \mu_{2021} = 0$$

```
H_a: \mu_{2020} - \mu_{2021} \neq 0
```

```
t.test(Edad_2020, Edad_2021, var.equal = T)

#
    Two Sample t-test
#
    data: Edad_2020 and Edad_2021
# t = -1.6326, df = 9516, p-value = 0.1026
# alternative hypothesis: true difference in means is not equal to 0
# 95 percent confidence interval:
# -1.1447408    0.1043926
# sample estimates:
# mean of x mean of y
# 40.77030    41.29047
```

Como el cero se encuentra en el intervalo de confianza del 95%, entonces decimos que se asume que las medias son iguales con una confianza del 95%.

3. Asumiendo los supuestos de misma población, independencia entre e independencia dentro, encuentre e interprete el intervalo de confianza de la diferencia de medias de edad entre un habitante de calle en el 2020 y un habitante de calle en el 2021.

Sol: Por el ejercicio 1, no podemos asumir normalidad en los datos, entonces debemos hacer una prueba de wilcoxon

Dado que el intervalo es de confianza es (-1, -0.00007) entonces decimos que las edades del 2021 son mayores que las edades del 2020 a lo sumo 1 año, con una confianza del 95%.

4. Pruebe que la edad de primer consumo de cigarrillo en un habitante de calle de Bogotá es igual a la edad de primer consumo de Marihuana, con una confianza del 90%, para el año 2021. Asuma misma población, independencia entre, independencia dentro y normalidad. No olvide verificar si se tiene o no igualdad de varianzas a nivel poblacional.

Sol: Tomemos los datos

```
CHC_2021=data.frame(CHC_2021)

datos=data.frame(cigarrillo=CHC_2021$P30S1A1, marihuana=CHC_2021$P30S3A1)

datos=na.omit(datos)
```

Veamos si la varianza son iguales:

```
Fc= var(datos$cigarrillo)/var(datos$marihuana)
Fc

# [1] 0.6337432

c(qf(0.1/2, length(datos$cigarrillo) - 1, length(datos$marihuana) - 1),
   qf(1-0.1/2, length(datos$cigarrillo) - 1, length(datos$marihuana) - 1))
```

Con una confianza del 90% rechazamos la hipotiposis nula, es decir rechazamos que las varianzas sean iguales. Por otro lado, de una manera descriptiva veamos si las cajas, en los diagramas de caja se parecen



# [1] 0.9225664 1.0839329



Vemos que las cajas tienen diferente tamaño. Entonces asumiendo que las varianzas no son iguales, calculamos el intervalo de confianza para la diferencia de medias con varianzas distintas:

```
t.test(datos$cigarrillo, datos$marihuana, var.equal = F, conf.level = 0.90)
```

```
#
# Welch Two Sample t-test
#
# data: datos$cigarrillo and datos$marihuana
# t = -4.1888, df = 3174.5, p-value = 2.881e-05
# alternative hypothesis: true difference in means is not equal to 0
# 90 percent confidence interval:
# -0.8767609 -0.3822319
# sample estimates:
# mean of x mean of y
# 16.61751 17.24700
```

Con una confianza del 90% rechazamos que las medias sean iguales. Es decir rechazamos que las edades de inicio de conumo de cigarrillo y marihuana sean iguales, más aun por el intervalo de confianza (-0.87, -0.38) decimos que las edades iniciales de consumo de marihuana es mayor entre 0.38 y 0.87 años que las edades del 2020.

5. Desarrolle este ejercicio MANUALMENTE: En un grupo de 12 personas se mide el cambio de ritmo cardiaco antes de levantarse y antes de acostarse. Haga las correspondientes pruebas de hipótesis utilizando la siguiente tabla:

| Antes de levantarse | -2 | 4  | 8 | 25 | -5 | 16 | 3 | 1  | 12 | 17 | 20 | 9 | 15 |
|---------------------|----|----|---|----|----|----|---|----|----|----|----|---|----|
| Antes de acostarse  | -3 | -2 | 7 | 20 | -3 | 17 | 7 | -1 | 13 | 15 | 22 | 8 | 15 |

Pruebe la hipótesis de que el ritmo cardíaco de las personas es igual antes de levantarse al ritmo cardíaco de antes de acostarse con una confianza del 95%. Concluya. Para responder este numeral vea el vídeo wilcoxon.wmv subido en Google Classroom.

Sol: Tomemos los datos:

```
AL=c(-2,4,8,25,-5,16,3,1,12,17,20,9)
AC=c(-3,-2,7,20,-3,17,7,-1,13,15,22,8)
```

Ahora se hace la diferencia de uno por uno

```
# [1] 1 6 1 5 -2 -1 -4 2 -1 2 -2 1
```

Ahora el absoluto de cada termino:

```
# [1] 1 6 1 5 2 1 4 2 1 2 2 1
```

Ahora agrupando todo en una matriz, tenemos en la primera columna la diferencia, luego el valor absoluto de la diferencia, en la tercer columna el  $R^+$  y en la ultima  $S(x_i - \theta_0)$ :

```
[,1] [,2] [,3] [,4]
#
   [1,]
            1
                 1 3.0
                             1
   [2,]
            6
                 6 12.0
                             1
#
   [3,]
            1
                 1 3.0
                             1
#
   [4,]
            5
                 5 11.0
                             1
#
   [5,]
           -2
                 2 7.5
                             0
   [6,]
           -1
                    3.0
                             0
#
   [7,]
           -4
                 4 10.0
                             0
#
   [8,]
            2
                 2
                    7.5
                             1
#
   [9,]
           -1
                 1 3.0
                             0
# [10,]
            2
                    7.5
                 2
                             1
# [11,]
           -2
                 2
                    7.5
                             0
# [12,]
            1
                 1 3.0
                             1
```

Ahora calculamos el estadistico de prueba  $W_s$ :

```
S=0
for (i in 1:12){
    S=S+ R[i,3]*R[i,4]
}
S
```

```
# [1] 47
```

Entonces  $W_c = 47$ , con base en tabla de wilcoxon

| alpha values |       |       |      |       |      |      |      |  |
|--------------|-------|-------|------|-------|------|------|------|--|
| n            | 0.001 | 0.005 | 0.01 | 0.025 | 0.05 | 0.10 | 0.20 |  |
| 5            |       |       |      |       |      | 0    | 2    |  |
| 6            |       |       |      |       | 0    | 2    | 3    |  |
| 7            |       |       |      | 0     | 2    | 3    | 5    |  |
| 8            |       |       | 0    | 2     | 3    | 5    | 8    |  |
| 9            |       | 0     | 1    | 3     | 5    | 8    | 10   |  |
| 10           |       | 1     | 3    | 5     | 8    | 10   | 14   |  |
| 11           | 0     | 3     | 5    | 8     | 10   | 13   | 17   |  |
| 12           | 1     | 5     | 7    | 10    | 13   | 17   | 21   |  |
| 13           | 2     | 7     | 9    | 13    | 17   | 21   | 26   |  |
| 14           | 4     | 9     | 12   | 17    | 21   | 25   | 31   |  |
| 15           | 6     | 12    | 15   | 20    | 25   | 30   | 36   |  |
| 16           | 8     | 15    | 19   | 25    | 29   | 35   | 42   |  |
| 17           | 11    | 19    | 23   | 29    | 34   | 41   | 48   |  |
| 18           | 14    | 23    | 27   | 34    | 40   | 47   | 55   |  |
| 19           | 18    | 27    | 32   | 39    | 46   | 53   | 62   |  |
| 20           | 21    | 32    | 37   | 45    | 52   | 60   | 69   |  |
| 21           | 25    | 37    | 42   | 51    | 58   | 67   | 77   |  |
| 22           | 30    | 42    | 48   | 57    | 65   | 75   | 86   |  |
| 23           | 35    | 48    | 54   | 64    | 73   | 83   | 94   |  |
| 24           | 40    | 54    | 61   | 72    | 81   | 91   | 104  |  |
| 25           | 45    | 60    | 68   | 79    | 89   | 100  | 113  |  |
| 26           | 51    | 67    | 75   | 87    | 98   | 110  | 124  |  |
| 27           | 57    | 74    | 83   | 96    | 107  | 119  | 134  |  |

| alpha values |       |       |      |       |      |      |      |  |  |
|--------------|-------|-------|------|-------|------|------|------|--|--|
| n            | 0.001 | 0.005 | 0.01 | 0.025 | 0.05 | 0.10 | 0.20 |  |  |
| 28           | 64    | 82    | 91   | 105   | 116  | 130  | 145  |  |  |
| 29           | 71    | 90    | 100  | 114   | 126  | 140  | 157  |  |  |
| 30           | 78    | 98    | 109  | 124   | 137  | 151  | 169  |  |  |
| 31           | 86    | 107   | 118  | 134   | 147  | 163  | 181  |  |  |
| 32           | 94    | 116   | 128  | 144   | 159  | 175  | 194  |  |  |
| 33           | 102   | 126   | 138  | 155   | 170  | 187  | 207  |  |  |
| 34           | 111   | 136   | 148  | 167   | 182  | 200  | 221  |  |  |
| 35           | 120   | 146   | 159  | 178   | 195  | 213  | 235  |  |  |
| 36           | 130   | 157   | 171  | 191   | 208  | 227  | 250  |  |  |
| 37           | 140   | 168   | 182  | 203   | 221  | 241  | 265  |  |  |
| 38           | 150   | 180   | 194  | 216   | 235  | 256  | 281  |  |  |
| 39           | 161   | 192   | 207  | 230   | 249  | 271  | 297  |  |  |
| 40           | 172   | 204   | 220  | 244   | 264  | 286  | 313  |  |  |
| 41           | 183   | 217   | 233  | 258   | 279  | 302  | 330  |  |  |
| 42           | 195   | 230   | 247  | 273   | 294  | 319  | 348  |  |  |
| 43           | 207   | 244   | 261  | 288   | 310  | 336  | 365  |  |  |
| 44           | 220   | 258   | 276  | 303   | 327  | 353  | 384  |  |  |
| 45           | 233   | 272   | 291  | 319   | 343  | 371  | 402  |  |  |
| 46           | 246   | 287   | 307  | 336   | 361  | 389  | 422  |  |  |
| 47           | 260   | 302   | 322  | 353   | 378  | 407  | 441  |  |  |
| 48           | 274   | 318   | 339  | 370   | 396  | 426  | 462  |  |  |
| 49           | 289   | 334   | 355  | 388   | 415  | 446  | 482  |  |  |
| 50           | 304   | 350   | 373  | 406   | 434  | 466  | 503  |  |  |

y con  $\alpha=0.05$ , a dos colas, entonces la región critica está en los valores menores que 10, y dado que nuestro valor estimado es 47, no rechazamos la hipótesis nula, es decir tenemos igualdad de medianas o el ritmo cardíaco de las personas es igual al del levantarse y acostarse.