Insper

Adobe: Versão para impressão.

Indique o nome dos elementos lógicos a seguir:

Tabela verdade

• A tabela verdade a seguir representa qual porta lógica?

• A tabela verdade a seguir representa qual porta lógica?

Aplicando a lei da Distributividade na expressão $A(B+\bar{C}+D)$ se tem:

1.
$$A.B + A.C + A.D$$

3.
$$A + B + C + D$$

$$AB + A\bar{C} + A.D$$

$$A(O+C+D) = AB + AC + AD$$

Aplicando o teorema de DeMorgan na expressão \overline{ABC} , obtem:

$$\frac{\bar{A} + \bar{B} + \bar{C}}{2. \ \overline{A + B + C}}$$

2.
$$\overline{A+B+C}$$

3.
$$A + \bar{B} + C\bar{C}$$

4.
$$A.(B+C)$$

Qual simplificação está incorreta:

xy =x+y (De Morgan)

$$\overline{(\bar{x} + \bar{y})} = \bar{\bar{x}} * \bar{y} = x * \bar{y}$$

2.
$$x(\bar{x}+y) = x/\bar{x} + x.y = 0 + x.y = x.y$$

3. $x.y + x(y+z) = x.y + x.y + z = x.y + z$

3.
$$x.y + x(y+z) = (x.y + x.y + z = x.y + z)$$

4.
$$\underline{\bar{x}}.\underline{\bar{y}}.\underline{z} + \bar{x}.y.\underline{z} + x.\bar{y} = \underline{\bar{x}}.z(\underline{\bar{y}}) + x.\underline{\bar{y}} = \bar{x}.z + x.\underline{\bar{y}}$$

Qual forma canônica está correta?

$$1. \ Q = A\bar{B} + A\bar{B}$$

$$2. \ Q = A + B * \bar{A}\bar{B}$$

3.
$$Q = A.B$$

$$Q = \bar{A}.\bar{B} + A.B$$

Dado a seguinte tabela verdade (entradas A, B e C, e a saída Q):

\perp				
A	В	\mathbf{C}	${f Q}$	7
0 0 0 0 1 1 1	0	0	1	_
0	0	1	0	9
0	1	0	0	
0	1	1	1	
1	0	0	1	
1	0	1	0	
1	1	0	0	
1	1	1	1	
\top				

- $1.\,$ Crie uma fórmula em álgebra booleana que represente a tabela via SoP e PoS.
- 2. Simplifique SoP (interprete o resultado!)
- 3. Desenhe um circuito usando os ícones da álgebra booleana.

Quantas saídas com 1 existem na tabela verdade que resulta na seguinte fórmula de soma de produtos:

$$A\bar{B}\bar{C} + \bar{A}BC + \bar{A}B\bar{C} + A\bar{B}\bar{C} + ABC$$

Qual das seguintes opções é uma característica importante da forma canônica de soma de produtos?

- Y. Os circuitos lógicos são reduzidos a nada mais do que simples portas AND e OR. (+ vol
- 2. Os tempos de atraso são muito reduzidas em relação a outras formas.
- Nenhum sinal deve passar por mais de dois portas lógicas, não incluindo inversores.
- 4. O número máximo de portas que qualquer sinal deve passar é reduzido por um factor de dois.

Qual é a expressão em álgebra booleana do seguinte circuito:

Gere a Tabela Verdade das equações a seguir:

Converta a seguinte expressão em Soma de Produtos para Produto de Somas:

$$A.B.C + A\bar{B}\bar{C} + A.\bar{B}C + A.B.\bar{C} + \bar{A}.\bar{B}.C$$

- 1. Faça a tabela verdade
- 2. Encontre o PoS

Determine os valores de A, B, C e D que fazem a fórmula a seguir ser igual a zero (Z = 0).

ser igual à zero (
$$Z = 0$$
).

 $Z = \vec{A} + \vec{B} + \vec{C} + \vec{D}_0$
 \vec{A}
 \vec{A}

Qual das seguintes propriedades da álgebra booleana é falsa:

1.
$$A.(\bar{A}+B) = A.B$$

$$A + (A.B) = A$$

$$A + (A.B) = A$$

- 3. $A + \bar{A} = 1$
- 4. A.A = A

$$3\overline{c}(\overline{A}, A) + B\overline{c}(\overline{A}, A) + \overline{A}BC$$
 $\overline{b}C + BC + \overline{A}.B.C$
 $\overline{c}.(\overline{b}A).\overline{a}.B.C$
 $\overline{c}.A.B.C$
Simplifique a seguinte expressão:

 $\bar{A}\bar{B}\bar{C} + \bar{A}BC + \bar{A}\bar{B}\bar{C} + A\bar{B}\bar{C} + AB\bar{C}$

Encontre as equações para os mapas de Karnaugh a seguir:

			_		_	
ĀB	(4	AB	+	3	ر

B+ A

AB/ C	00	01	11	10
0		1	X	1
1		1	1	1
			∇	

AB/ C	00	01	11	10	
0		(1)		1	
1	1		((1)	

ABC+BCD+ 20

AB/ CD	00	01	11	10	
00	1				
01				1	
11		1			
10		1	1)	

		T	ı		1
AB/ CD_	00	01	11	10	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
00	1)	1	1	$A + CD + B\overline{D}$
01			1	1	
11			1	1	
10	1	1	1		
					•

Crie o mapa de Karnaugh e encontre a equação da tabela verdade a seguir.

A	В	\mathbf{C}	\mathbf{OUT}
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

Crie o mapa de Karnaugh da tabela verdade de quatro entradas.

$\overline{\mathbf{A}}$	В	\mathbf{C}	D	OUT
0	0	0	0	0
0	0	0	1	1
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	0
1	1	1	1	1

Crie o mapa de Karnaugh para a expressão a seguir e simplifique:

$$ABC\bar{D} + \bar{A}\bar{B}CD + A\bar{B}\bar{C}D + \bar{A} + \bar{B} + \bar{C} + \bar{D}$$

A seguinte expressão foi resultado da forma canônica do produto de somas de uma tabela verdade para a produção de um circuito lógico. O objetivo é simplificar a álgebra booleana dessa lógica para o menor número possível de portas, porém visivelmente quem fez essa fórmula não percebeu que se tivesse feito a soma de produtos já partiria com um número menor de termos. Converta essa fórmula para a soma de produtos e minimize ela.

$$(A+B+C) * (A+B+C) * (A+B+C) * (A+B+C) * (A+B+C)$$
 $(A+B+C) * (A+B+C) * (A+B+C) * (A+B+C)$

Acabou? Os exercícios não param por aqui, tem a parte 2!