数据仓库与数据挖掘1-8讲提纲_snowball Lecture 1 引言

• 问题的提出

技术发展的角度	 ● 信息体系(DIKW):信息金字塔 ● 数据管理技术发展的脉络 ● 现有DBMS系统 ○ 关注的问题 ○ 面临的挑战
应用发展的角度	电子化、信息化、数字化金融信息化科学研究企业生产人员:不同人员信息需求

• 数据环境理论

体系结构化环境的层次	 操作层 原子/数据仓库层 报表区别:操作型 vs 数据仓库 部门层 个体层
数据仓库要解决的基本问题	
数据仓库需要建立,而不是购买	

- 几项技术之间的区别和联系
 - 数据库技术
 - 与数据仓库技术
 - o 操作型系统(Operational Systems)
 - o 联机事务(OLTP)系统
 - RDBMS通常应用于OLTP

Lecture 2 数据仓库基本概念及其特征

数据仓库的定义	 定义 理解 回答的问题
数据仓库的特点	 面向主题 集成的 数据集成的方法: MQS 数据仓库vs. 联邦数据库 相对稳定的 反映时间变化
0LTP系统和数据仓库	全面比较

Lecture 3 数据仓库设计

• 数据仓库建设的目标

使组织机构的信息变得容易存取	容易理解,见名知义存取工具必须简单易用,存取速度快
一致地展示组织机构的信息	数据具有可信性高质量的数据:一致的、完整的、定义唯一理解的

具有广泛的适应性和便于修改	变化:用户需求、业务情形、数据内容和技术状况 新数据的加入,现有数据和应用不应该发生改变或者崩溃
发挥安全堡垒作用以保护信息资产	能够有效地控制对机构机密信息和个人隐私信息的访问
数据仓库必须在推进有效决策方面承担重要角色	
数据仓库建设成功的前提是为业务群体所接受	

- 数据仓库设计的基本思想
- 数据仓库设计方法概述

数据仓库设计力法概还	
DB和DW设计方法的比较	 处理类型 面向需求 设计目标 数据来源 设计方法 DB: SDLC (System Development Life Cycle) 应用需求驱动 DW: CLDS 数据驱动+需求驱动 SDLC与CLDS方法比较 数据仓库设计的原则 在实际工程中的设计方法 数据驱动系统设计方法的基本思路
DW设计的三级数据模型	DW与DB的三级数据模型的区别 过程模型与数据模型 DW设计的三级数据模型 概念模型 逻辑模型 物理模型
性能问题	 粒度划分 数据分片 合并表 选择冗余 进一步分离数据 导出数据 建立广义索引
数据仓库中的元数据	 定义 重要性 内容

• 数据仓库设计中的性能考虑

Lecture 4 联机分析处理

• OLAP的提出

提出	 关系数据库满足了联机事务处理(OLTP)的要求 存在着大量的分析型应用—— RDB无法适应 在RDBMS上开发前端产品,支持上述应用逻辑 E.F. Codd把这类技术称为"OLAP"(1993年)
0LAP应用举例	• 不同时间段的比较(同期比) • 排序和统计分类(top N/bottom N) • 客户特定的即席分析(市场分割、即席分组的情况)

• 多维数据结构

数据立方体	多维数组 数据单元
维	组织方式:维层次路径维层次
	○ 维成员(DIMENSION VALUES), 维成员树 ■ 维层次关系
	○ 维成员属性 (ATTRIBUTES)

。 维层次和类的区别

事实(度量)

- 多维数据操作(含义,举例)
 - 主要操作
 - 切片 (Slice)
 - 切块 (Dice)
 - 旋转
 - 钻取
 - 。 其他操作
 - Drill through (穿透)
 - Ranking (排序)
- 多维数据模型的实现

实现技术 (OLAP分类)	 Relational OLAP (ROLAP) Multidimensional OLAP (MOLAP) MOLAP 和 ROLAP 的比较 Hybrid OLAP (HOLAP)
多维数据库存取	 多维查询语言MDSQL 用关系结构表示多维数据 事实表/维表 星型模式/雪花模式 事实的提取

Lecture 5 数据仓库系统

- 数据仓库系统概念
 - 统包括:数据、硬件、软件和用户
 - 数据库系统与数据仓库系统比较
- 数据仓库系统体系结构(图)
- 数据仓库系统组成

数据源	内部数据外部数据
数据存储及管理 (数据仓库管理系统)	在现有的数据库管理系统的基础上增加若干功能构建数据仓库管理系统
OLAP引擎	OLAP引擎的分类 OLAP引擎的要求
工具	 后端工具 数据仓库建模工具 ETL工具 数据仓库监测工具 数据仓库运行与维护工具 前端工具: 查询和报表工具 联机分析处理工具 数据挖掘工具

• 数据仓库系统工具

200 = 7 · 10 · 20 = 2 · 1	
数据仓库建模工具	建立概念模型 建立逻辑模型 难点
ETL工具	 数据抽取 (Data Extraction) 开放的数据源 数据的完整性和有效性检查 数据转换 (Data Transformation) 模式冲突 语义冲突 数据加载 (Data Load)
数据仓库监测工具	监视数据内容数据仓库性能的监测

	• 数据仓库"报警"时钟(主动)
数据仓库运行、维护工具	安全性管理数据仓库的备份和恢复如何保证数据仓库系统的高可用性数据存放周期和过期数据的处理
数据仓库查询、报表工具	二维报表交叉表邮签报表自由式报表
数据仓库前端分析展现工具	验证型 (Verification) 工具: OLAP工具挖掘型 (Discovery) 工具: Data Mining工具

Lecture 6 数据挖掘技术概论

- 数据挖掘的提出
 - "啤酒和尿布"的故事
 - o 数据爆炸
 - 数据、信息和知识
- 数据挖掘基本概念
 - 。 定义
 - 。 感兴趣的模式
 - 有效
 - 新颖
 - 潜在有用
 - 最终可被理解
- 数据挖掘的应用与发展前景
 - 卫星遥感
 - 生物信息
 - o 购物篮问题
 - o Web日志分析
 - 。 市场营销
 - 。 风险管理
- 数据挖掘的技术分类

数据挖掘技术的要求	
不同角度的数据挖掘分类	数据源不同不同分析方法采用不同技术不同应用领域
方法分类	描述型 概念/类描述 关联分析 聚类分析 异常点检测
	预测型 分类分析 趋势分析
方法评估	兴趣度的度量 "查全率"和"查准率"

• 数据挖掘基本步骤

r	
KDD处理的基本步骤	○ 数据准备
	■数据选择
	■ 数据选择
	■ 数据清理与预处理
	○ 数据集成
	○ 数据挖掘
	o 知识表达(挖掘结果的表述)
	○ 模式评估
	○ 知识应用
数据挖掘系统的典型结构	
数据挖掘成功的关键	

- 数据挖掘的发展方向
 - 数据挖掘技术的研究历史

- 。 数据挖掘的问题
- 。 数据挖掘研究的主要方向

Lecture 7 数据预处理

- 数据质量的概念和内涵
 - 数据质量的基本概念
 - 数据质量主要问题
- 为什么需要数据预处理?
 - 脏数据是数据质量的主要问题
 - 数据预处理的主要任务

数据清洗	补充缺失数据识别孤立点,平滑噪音数据处理不一致的数据
数据集成	模式集成冗余数据的处理检测和解决数值冲突
数据转换	 平滑处理:从数据中消除噪音数据 聚集操作:对数据进行综合,类似于Data Cube的构建 数据概化:构建概念层次 数据规范化:将数据集中到一个较小的范围之中 属性构造
数据归约	 数据立方体聚集 减少数据维度(维归约) 基于判定树归纳的方法 数据压缩:使用编码机制压缩数据集 有损 无损 数值压缩:用替代的、较小的数据表示替换或估计数据 有参:如线性回归 无参:如直方图 数据聚类
• 数据离散化与概念层次的构建	分箱(Binning)直方图分析聚类分析的方法基于熵的离散化根据自然分类进行分割概念层次树

- 在大型数据库中挖掘描述统计度量
 - 数据描述性分析
 - 。 聚集函数
 - o 数字特征

Lecture 8 关联规则挖掘(不全)

- 什么是关联规则挖掘
 - 。 基本形式,种类
 - 。 相关概念
 - k-项集,频繁项集
 - 规则有效性和确定性的度量值: 支持度、置信度
 - 。 形式化定义
 - 基本思路,基本过程
 - 频繁项集:基本特征
 - o 优缺点,重要性

单维	 查找频繁项集—Apriori算法 FP-growth 算法: 不用生成候选集 模式评价 兴趣度 置信度
多层	自上而下,深度优先的方法多层关联规则支持度不变支持度递减
多维	雨性 ○ 分类属性 ○ 量化属性 ○ 量化属性 使索频繁k阶-谓词集合 ○ 用量化属性的静态离散化挖掘多维关联规则 ○ 量化关联规则 ○ 基于距离的关联规则
基于约束	 知识类型约束:指定要挖掘的知识类型 数据约束:指定与任务相关的数据集 维/层次约束:指定所用的维或概念结构中的层 规则约束:指定要挖掘的规则形式(如规则模板) ○ 单调性约束(monotone constraint) ○ 反单调性约束(anti-monotone constraint) ○ 简洁性约束(succinct constraint) ○ 可转变的约束(convertibale constraint) ○ 不可转变的约束(unconvertibale constraint) 兴趣度约束:指定规则兴趣度阈值或统计度量