Analisis Peragam (Analysis Of Covarians(ANCOVA))

Responsi 13 STA1333 Pengantar Model Linear

Review Materi:

ANOVA (Analysis of Variance) dan ANCOVA (Analysis of Covariance) adalah dua metode statistik yang digunakan untuk menganalisis perbedaan antara kelompok-kelompok yang berbeda. Meskipun keduanya memiliki kesamaan dalam penggunaan ANOVA, ANCOVA memasukkan peubah kovariat (tambahan) sebagai kontrol untuk meningkatkan keakuratan analisis.

Perbedaan antara ANOVA dan ANCOVA adalah sebagai berikut :

ANOVA: Mengukur perbedaan antara rata-rata kelompok tanpa mempertimbangkan peubah respon.

ANCOVA: Memasukkan satu atau lebih peubah kovariat sebagai kontrol untuk meningkatkan keakuratan analisis. peubah kovariat ini harus memiliki hubungan dengan peubah bebas tetapi tidak seharusnya memiliki hubungan dengan kelompok perlakuan.

Review Materi:

ANOVA: Mengidentifikasi perbedaan signifikan antara rata-rata kelompok yang berbeda dalam satu peubah terikat.

ANCOVA: Selain mengidentifikasi perbedaan antara rata-rata kelompok, ANCOVA juga bertujuan untuk mengontrol variabilitas tambahan yang dapat dijelaskan oleh peubah kovariat.

ANOVA: Tidak mempertimbangkan efek variabel kovariat.

ANCOVA: Mengontrol efek variabel kovariat, sehingga menghasilkan estimasi yang lebih akurat terkait perbedaan antara kelompok.

ANOVA: Mengasumsikan bahwa kelompok-kelompok memiliki varians yang sama. ANCOVA: Menerima bahwa kelompok-kelompok memiliki varians yang berbeda, asalkan variabel kovariat dapat memperbaiki perbedaan ini.

ANOVA: Menghasilkan estimasi perbedaan antara kelompok.

ANCOVA: Menghasilkan estimasi perbedaan antara kelompok setelah mengontrol peubah kovariat.

Review Materi:

Model dari model kovarians dengan 1 factor dan 1 covariate.

$$y_{ij} = \mu + \tau_i + \beta x_{ij} + \varepsilon_{ij},$$
 i=1,2,...t, j=1,2,...n

 $τ_i$ merupakan efek dari perlakuan dan x_{ij} adalah covariate pada perlakuan ke i subyek ke j . Model dalam bentuk matriks $\underline{\mathbf{y}} = \mathbf{X}\underline{\mathbf{β}} + \underline{\mathbf{ε}}$

$$\mathbf{X}'\mathbf{X} = \begin{bmatrix} & & & & & & & & & & & & \\ nt & n & n & & & & & & & \\ n & n & 0 & & & & & & & \\ n & n & 0 & & & & & & & \\ & & & & & & & & & \\ n & 0 & n & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & \\ & & & &$$

Inferensia Pengaruh Perlakuan(1)

Untuk menguji apakah perlakuan berpengaruh terhadap respon atau hasil percobaan:

 H_0 : $\tau_1 = \tau_2 = \cdots = \tau_t \ vs \ H_1$: $tidak \ semua \ \tau_i sama$ Untuk bisa melakukan estimasi dan melakukan pengujian hipotesis dilakukan reparameterisasi sehingga model analisis covarians dapat ditulis:

$$y_{ij} = \mu + \tau^*_i + \beta(x_{ij} - \overline{x_{i.}}) + \varepsilon_{ij}, i=1,2,...t, j=1,2,...n$$

Dimana $\overline{x_{i.}} = \sum_{j=1}^{n} x_{ij}/n \text{ dan } \tau^*_i = \tau_i + \beta \overline{x_{i.}}$

Inferensia Pengaruh Perlakuan(2)

Dengan reparameterisasi matriks X'X dan X'y menjadi:

$$X'X = \begin{bmatrix} nt & n & n & n & \cdots & n & 0 \\ n & n & 0 & 0 & \cdots & 0 & 0 \\ n & 0 & n & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \ddots & \vdots \\ n & 0 & 0 & 0 & \cdots & n & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & E_{xx} \end{bmatrix} X'\underline{y} = \begin{bmatrix} y_{...} \\ y_{1...} \\ y_{2...} \\ \vdots \\ y_{t...} \\ E_{xy} \end{bmatrix}$$

Hint: $\sum_{j} (x_{ij} - \overline{x_{i.}}) = \sum_{j} x_{ij} - \sum_{j} \overline{x_{i.}} = x_{i.} - n \overline{x_{i.}} = x_{i.} - x_{i.} = 0$

Dimana $E_{xx}=\sum_{i=1}^t\sum_{j=1}^n(x_{ij}-\overline{x_{i.}})^2$ dan $E_{xy}=\sum_{i=1}^t\sum_{j=1}^n(x_{ij}-\overline{x_{i.}})y_{ij}$, ordo matriks X'X (t+2)x(t+2) dengan rank (t+1)

Sistem persamaan normal: $(\mathbf{X}'\mathbf{X})\underline{\boldsymbol{b}} = \mathbf{X}'\underline{\boldsymbol{y}}$ untuk menyelesaikan persamaan tersebut didefinisikan restriksi $\sum_{i=1}^{t} \tau^*_{\ i} = 0$ sehingga diperoleh solusi:

$$\hat{\tau}^{*}_{i} = \overline{y}_{..}$$

$$\hat{\tau}^{*}_{i} = \overline{y}_{i.} - \overline{y}_{..}$$

$$\hat{\beta} = \frac{E_{xy}}{E_{xx}}$$

Pengujian Hipotesis Pengaruh Perlakuan pada Model Ancova(1)

$$JK_{Reg(hipotesis)} = JK_{Reg(full)} - JK_{Reg(reduced)}$$

$$JK_{Reg(full)} = \underline{b'}X'\underline{y} = \sum_{i=1}^{t} {y_{i.}}^{2}/_{n} + {^{E_{xy}}^{2}}/_{E_{xx}} \qquad \text{dengan}$$
 derajat bebas t+1.

Jumlah kuadrat regresi tereduksi merupakan jumlah kuadrat ketika kondisi hipotesis nol benar. Model ketika H_0 : $\tau_1 = \tau_2 = \cdots = \tau_t$ benar adalah:

$$y_{ij} = \mu^* + \beta x_{ij} + \varepsilon_{ij}$$

 $JK_{Reg(reduced)} = {^{y_{..}^{2}}/_{tn}} + {^{S_{xy}^{2}}/_{S_{xx}}}$, dengan derajat bebas berjumlah 2

Dimana
$$S_{xx} = \sum_{i=1}^{t} \sum_{j=1}^{n} (x_{ij} - \overline{x}_{..})^2$$
 dan $E_{xy} = \sum_{i=1}^{t} \sum_{j=1}^{n} (x_{ij} - \overline{x}_{..})(y_{ij} - \overline{y}_{..})$

Pengujian Hipotesis Pengaruh Perlakuan pada Model Ancova(2)

$$JK_{Reg(hipotesis)} = JK_{Reg(full)} - JK_{Reg(reduced)}$$

$$JK_{Reg(hipotesis)} = \left[\sum_{i=1}^{t} y_{i}^{2}/n - y_{i}^{2}/t_{n}\right] + \left[E_{xy}^{2}/E_{xx} - S_{xy}^{2}/S_{xx}\right]$$

$$JK_{Reg(hipotesis)} = B_{yy} + \frac{E_{xy}^{2}}{E_{xx}} - \frac{S_{xy}^{2}}{S_{xx}}$$

Derajat bebas dari jumlah kuadrat regresi hipotesis adalah (t+1)-2= (t-1)

$$JK_{Residual} = \underline{y'y} - \underline{b'}X'\underline{y} = \sum_{i} \sum_{j} y_{ij}^{2} - \left[\sum_{i=1}^{t} \frac{y_{i.}^{2}}{n} + \frac{E_{xy}^{2}}{E_{xx}} \right]$$
$$= \left[\sum_{i} \sum_{j} y_{ij}^{2} - \sum_{i=1}^{t} \frac{y_{i.}^{2}}{n} \right] - \frac{E_{xy}^{2}}{E_{xx}} = E_{yy} - \frac{E_{xy}^{2}}{E_{xx}} / E_{xx}$$

Derajat bebas jumlah kuadrat residual sebesar nt-t-1 Statistik Uji untuk menguji hipotesis pengaruh perlakuan

$$F = \frac{JK_{reg(hipotesis)}/t - 1}{JK_{Res}/(nt - t - 1)}$$

Inferensia Koefisien Covariate

Estimasi titik untuk slope adalah $\hat{\beta} = \frac{E_{xy}}{E_{xx}}$ Untuk pengujian hipotesis pengaruh dari covariate:

$$H_0: \beta = 0 \text{ vs } H_0: \beta \neq 0$$

$$JK_{Reg(hipotesis)} = \frac{E_{xy}^{2}}{E_{xx}}$$

Derajat bebas jumlah kuadrat regresi hipotesis adalah sebesar 1

Sama dengan pengujian pengaruh perlakuan,

$$JK_{Residual} = E_{yy} - \frac{E_{xy}^2}{E_{xx}}$$

Statistik Uji:

$$F = \frac{JK_{Reg(hipotesis)}}{JK_{Residual}/(nt - t - 1)}$$

Mengestimasi Rata-Rata Perlakuan

Pada analisis 1 arah/ 1 factor kesamaan dalam pengaruh perlakuan ekuivalen dengan persamaan pada rata-rata perlakuan.

Solusi dari analisis covarians:

$$\widehat{\mu} = \overline{y}_{..}$$

$$\widehat{\tau^*}_i = \overline{y}_{i.} - \overline{y}_{..}$$

Dalam analisis 1 factor didefinisikan $\mu_i = \mu + \tau_i$ dan dalam analisis covarians $\tau^*_i = \tau_i + \beta \overline{x_i}$ atau $\tau_i = \tau^*_i - \beta \overline{x_i}$

Sehingga:

$$\widehat{\mu_i} = \widehat{\mu} + \widehat{\tau_i} = \widehat{\mu} + \widehat{\tau^*_i} - \widehat{\beta} \overline{x_i} = \overline{y_i} - \widehat{\beta} \overline{x_i}$$

Untuk mengestimasi rataan perlakuan ketika nilai xo tertentu dapat diestimasi dengan persamaan regresi:

$$\widehat{\mu_{y/x}} = \widehat{\mu_i} + \widehat{\beta}x_0 = \overline{y_i} - \widehat{\beta}\overline{x_i} + \widehat{\beta}x_0$$

Untuk membandingkan perlakuan diperlukan pembandingan untuk beberapa nilai x sehingga pada persamaan di atas didefinisikan $x_0 = \overline{x_{...}}$. Sehingga rata-rata perlakuan yang disesuaikan dengan covariate adalah:

$$\mu_{i(adjusted)} = \overline{y_{i.}} - \hat{\beta}(\overline{x_{i.}} - \overline{x}_{..})$$

Terima Kasih

Departemen Statistika
Fakultas Matematika dan Ilmu Pengetahuan
Alam Jl Meranti Wing 22 Level 4
Kampus IPB Darmaga - Bogor 16680
0251-8624535 | http://stat.ipb.ac.id