Lecture 12: Analytic Sets

Definition 12.1: A subset *A* of a Polish space *X* is **analytic** if it is empty or there exists a continuous function $f : \mathbb{N}^{\mathbb{N}} \to X$ such that $f(\mathbb{N}^{\mathbb{N}}) = A$.

We will later see that the analytic sets correspond to the sets definable by means of Σ^1_1 formulas, that is formulas in the language of second order arithmetic that have *one existential function quantifier*. Therefore, we will denote the analytic subsets of X also by

$$\Sigma_1^1(X)$$
.

Here are some simple properties of analytic sets.

Proposition 12.2:

- (i) Every Borel set is analytic.
- (ii) A continuous image of analytic set is analytic.
- (iii) Countable unions of analytic sets are analytic.

Proof. (i) This follows directly from Corollary 11.3.

- (ii) The composition of continuous mappings is continuous.
- (iii) Let A_n be analytic and $f_n : \mathbb{N}^{\mathbb{N}} \to X$ such that $f_n(\mathbb{N}^{\mathbb{N}}) = A_n$. Define $f : \mathbb{N}^{\mathbb{N}} \to X$ by

$$f(m, \alpha) = f_n(\alpha)$$
.

Then f is continuous and $f(\mathbb{N}^{\mathbb{N}}) = \bigcup_{n} A_{n}$.

We can use our previous results about Borel sets to give various equivalent characterizations of analytic sets.

Proposition 12.3: For a subset A of a Polish space X, the following are equivalent.

- (i) A is analytic,
- (ii) A is empty or there exists a Polish space Y and a continuous $f: Y \to X$ such that f(Y) = A,
- (iii) A is empty or there exists a Polish space Y, a Borel set $B \subseteq Y$ and a continuous $f: Y \to X$ such that f(B) = A.
- (iv) A is the projection of a closed set $F \subseteq \mathbb{N}^{\mathbb{N}} \times X$ along $\mathbb{N}^{\mathbb{N}}$,

- (v) A is the projection of a Π_2^0 set $G \subseteq 2^{\mathbb{N}} \times X$ along $2^{\mathbb{N}}$,
- (vi) A is the projection of a Borel set $B \subseteq X \times Y$ along Y, for some Polish space Y.

Proof. (i) \Leftrightarrow (ii): Follows from Theorem 2.6 and Proposition 12.2 (ii).

- (ii) \Leftrightarrow (iii): Follows from Corollary 11.3 and Proposition 12.2 (ii).
- (i) \Rightarrow (iv): Let $f: \mathbb{N}^{\mathbb{N}} \to X$ be continuous, $f(\mathbb{N}^{\mathbb{N}}) = A$. Then

$$x \in A \iff \exists \alpha (\alpha, x) \in Graph(f),$$

hence *A* is the projection of the closed set Graph(f) along $\mathbb{N}^{\mathbb{N}}$.

- (iv) \Rightarrow (iii): Clear, since projections are continuous.
- (iv) \Rightarrow (v): $\mathbb{N}^{\mathbb{N}}$ is homeomorphic to a Π_2^0 subset of $2^{\mathbb{N}}$. (Exercise!)

$$(v) \Rightarrow (vi), (vi) \Rightarrow (iii)$$
: Obvious.

The Lusin Separation Theorem

In a course on computability theory one learns that there are *effectively inseparable* disjoint r.e. sets. i.e. disjoint r.e. sets $W, Z \subseteq \mathbb{N}$ for which no recursive set A exists with $W \subseteq A$ and $A \cap Z = \emptyset$.

In contrast to this, disjoint analytic sets can always be separated by a Borel set, they are **Borel separable**.

Theorem 12.4 (Lusin): Let $A, B \subseteq X$ be disjoint analytic sets. Then there exists a Borel $C \subseteq X$ such that

$$A \subseteq C$$
 and $B \cap C = \emptyset$,

Proof. Let $f: \mathbb{N}^{\mathbb{N}} \to A$ and $g: \mathbb{N}^{\mathbb{N}} \to B$ be continuous surjections.

We argue by contradiction. The key idea is: if *A* and *B* are Borel inseparable, then, for some $i, j \in \mathbb{N}$, $A_{\langle i \rangle} = f(N_{\langle i \rangle})$ and $B_{\langle j \rangle} = g(N_{\langle j \rangle})$ are Borel inseparable.

This follows from the observation

(*) if the sets $R_{m,n}$ separate the sets P_m , Q_n (for each m,n), then $R = \bigcup_m \bigcap_n R_{m,n}$ separates the sets $P = \bigcup_m P_m$, $Q = \bigcup_n Q_n$.

So, by using (*) repeatedly, we can construct sequences $\alpha, \beta \in \mathbb{N}^{\mathbb{N}}$ such that for all $n, A_{\alpha|n}$ and $B_{\beta|n}$ are Borel inseparable, where

$$A_{\sigma} = f(N_{\sigma})$$
 and $B_{\sigma} = g(N_{\sigma})$.

Then we have $f(\alpha) \in A$ and $g(\beta) \in B$, and since A and B are disjoint, $f(\alpha) \neq g(\beta)$. Let U, V be disjoint open sets such that $f(\alpha) \in U$, $g(\beta) \in V$. Since f and g are continuous, there exists N such that $f(N_{\alpha|N}) \subseteq U$, $g(N_{\beta|N}) \subseteq V$, hence U separates $A_{\alpha|N}$ and $B_{\beta|N}$, contradiction.

The Separation Theorem yields a nice characterization of the Borel sets.

Theorem 12.5 (Souslin): If a set A and its complement $\neg A$ are both analytic, then A is Borel.

Proof. In Theorem 12.4, chose
$$A_0 = A$$
 and $A_1 = \neg A$.

Sets whose complement is analytic are called **co-analytic**. Analogous to the levels of the Borel hierarchy, the co-analytic subsets of a Polish space X are denoted by

$$\Pi_1^1(X)$$
.

If we define, again analogy to the Borel hierarchy,

$$\Delta_1^1(X) = \Sigma_1^1(X) \cap \Pi_1^1(X),$$

then Souslin's Theorem states that

$$Borel(X) = \Delta_1^1(X).$$

The Souslin operation

Souslin schemes give an alternative presentation of analytic sets which will be useful later.

Definition 12.6: A **Souslin scheme** on a Polish space X is a family $P = (P_{\sigma})_{\sigma \in \mathbb{N}^{< \mathbb{N}}}$ of subsets of X indexed by $\mathbb{N}^{< \mathbb{N}}$.

The **Souslin operation** A for a Souslin scheme is given by

$$\mathcal{A}P = \bigcup_{\alpha \in \mathbb{N}^{\mathbb{N}}} \bigcap_{n \in \mathbb{N}} P_{\alpha|n}.$$

This means

$$x \in \mathcal{A}P \iff \exists \alpha \in \mathbb{N}^{\mathbb{N}} \ \forall n \in \mathbb{N} \ x \in P_{\alpha \upharpoonright n}.$$
 (*)

The analytic sets are precisely the sets that can be obtained by Souslin operations on closed sets. If a Γ is a class of sets in various Polish spaces, we let

 $A\Gamma = \{AP : P = (P_{\sigma}) \text{ is a Souslin scheme with } P_{\sigma} \in \Gamma \text{ for all } \sigma\}.$

Theorem 12.7:

$$\mathbf{\Sigma}_1^1(X) = \mathcal{A}\,\mathbf{\Pi}_1^0(X).$$

Proof. Suppose $f: \mathbb{N}^{\mathbb{N}} \to X$ is continuous with $f(\mathbb{N}^{\mathbb{N}}) = A$. Then

$$x \in A \iff \exists \alpha \in \mathbb{N}^{\mathbb{N}} \ \forall n \in \mathbb{N} \ x \in \overline{f(N_{\alpha|n})}.$$

Hence if we let $P_{\sigma} = \overline{f(N_{\sigma})}$, then

$$A = \mathcal{A} P$$

for the Souslin scheme $P = (P_{\sigma})$.

To see that any set A in $\mathcal{A}\Pi_1^0(X)$ is analytic, consider (*). If the P_σ are closed, the condition

$$(\alpha, x) \in F \iff \forall n \in \mathbb{N} \ x \in P_{\alpha \upharpoonright n}$$

defines a closed subset of $\mathbb{N}^{\mathbb{N}} \times X$ such that *A* is the projection of *F* along $\mathbb{N}^{\mathbb{N}}$. \square

Note that the Souslin scheme (P_{σ}) used in the previous proof has the additional property that

$$\sigma \subseteq \tau \Rightarrow P_{\sigma} \supseteq P_{\tau}$$
.

Such Souslin schemes are called regular.