

Algorithm Analysis 01

Computer Science Department Eastern Washington University Yun Tian (Tony) Ph.D.

Today

- Introduction
- How to tell an algorithm is better than another?
 - Approach 1 experimental study
 - Approach 2 Theoretical Analysis

Introduction

```
1 public boolean contains(E target) {
2  for (int i = 0; i < size; i++) {
3    if (data[i].equals(target)) {
4    return true;
5    }
6  }
7  return false;
8 }</pre>
```

Hard to analyze because of the if statement.

Best-case Analysis

- Tells us how fast the program runs if we get really lucky about the data.
 - contains() could find the data at the first index.
 - It takes only one basic operation.
 - Complexity of O(1)

Worst-case Analysis

- Contains()
- We have to go through all elements in the ArrayList.
- This means assuming that target is not in the ArrayList, giving a running time of O(n).

Average-case Analysis

- Contains()
- Requires that we make some assumption about what the "average" data set looks like.
- We have to consider all cases for the input ArrayList.
- It is quite challenging
 - Require us to define a probability distribution on the set of inputs.

Average-case Analysis

- Contains()
- The average running time is:

 $\sum_{\text{events}} \langle \text{probability of event occurring} \rangle \cdot \langle \text{running time if event occurs} \rangle$

 Depends on the input distribution, the running time of an algorithm can be anywhere between the worst-case and the best-case time.

Best, Average and Worst Case

Worst Case

- The running time of an algorithm typically grows with the input size.
 - Except for algorithms that have constant running time.
- Average case time is often difficult to determine.
- We focus on the worst case running time.
 - Easier to analyze
 - Crucial to applications such as games, finance and robotics.

Approach 1: Experimental Studies

- Write a program implementing the algorithm
- Run the program with inputs of varying size and composition
- Use a method like System.currentTimeMillis() to get an accurate measure of the actual running time
- Plot the results

Experimental Studies

Approach 1: Experimental Studies

- Limitations of Experiments
 - It is necessary to implement the algorithm, which may be difficult
 - Results may not be indicative of the running time on other inputs not included in the experiment.
 - In order to compare two algorithms, the same hardware and software environments must be used.

- Uses a high-level description of the algorithm instead of an implementation.
- Characterizes running time as a function of the input size n.
- Takes into account all possible inputs.
- Allows us to evaluate the speed of an algorithm independent of the hardware/ software environment.

- Primitive Operations in Algorithms
 - Basic computations performed by an algorithm
 - Identifiable in pseudo code.
 - Largely independent from the programming language
 - Correspond to a low-level instruction with an constant execution time.

- Example of Primitive Operations in Algorithms
 - Evaluating an expression
 - Assigning a value to a variable
 - Indexing into an array
 - Calling a method (if the method is independent of program size)
 - Returning from a method.
 - Compare two numbers.
 - Following an object reference.

Basic Idea

- Instead of trying to determine the specific execution time of each primitive operation,
- But, we will simply count how many primitive operations are executed and use this number t as a measure of the running time of the algorithm.

Basic Idea

- In this approach, we assume the running times of different primitive operations will be fairly similar.
 - Thus the number **t** is proportional to the actual running time of that algorithm.
 - Where **t** is the number of primitive operations the algorithm performs.

Functions in Theoretical Analysis

- Seven functions that often appear in algorithm analysis:
 - Constant ≈ 1
 - Logarithmic $\approx \log n$
 - Linear $\approx n$
 - N-Log-N $\approx n \log n$
 - Quadratic $\approx n^2$
 - Cubic $\approx n^3$
 - Exponential $\approx 2^n$
- ☐ In a log-log chart, the slope of the line corresponds to the growth rate

Functions in Theoretical Analysis

Functions in Theoretical Analysis

Counting Primitive Operations

 By inspecting the pseudocode or the implementation, we can determine the maximum number of primitive operations executed by an algorithm, as a function of the input size.

Counting Primitive Operations

```
public String toString() {
                                                  N+1
        String result = ""; (1) + (1)
        Node cur; (1)
        for( cur = this.head.next; cur!= this.head; cur = cur.next) {
                results += cur.data + "\n"; //(2N)
        return result; //(1)
}//if the size of this list is N
```

Total 4N + 6. Here, f(n) = 4N + 6 is the growth rate function.

Take Home Summary

- Two approaches to analyze the algorithm
- Better to use theoretical analysis
- Seven functions
- Growth Rate Function(GRF)

Next Class

Big-Oh Notation