Network Science

2019. október 8.

Network models

E-R model

Definition

p(k) in the E-R

C in the E-R model Giant component Generating function formalism

Network models

Network models

E-R model

petinition
p(k) in the E-R model
C in the E-R model
Giant component
Generating function
formalism

THE ERDŐS-RÉNYI MODEL

Network models

E-R model

Definition
p(k) in the E-R mod
C in the E-R model
Giant component
Generating function

The Erdős-Rényi model (classical random graphs)

- Take N nodes.
- Uniformly link each pair independently of each other with probability
 p.

- This is also called as G(N,p) model.
- The G(N,M) model is almost the same: distribute M links independently amongst the N nodes with uniform probability.

Network models

E-R model

Definition
p(k) in the E-R mod
C in the E-R model
Giant component
Generating function

The Erdős-Rényi model (classical random graphs)

- Take N nodes.
- Uniformly link each pair independently of each other with probability
 p.

- This is also called as G(N,p) model.
- The G(N,M) model is almost the same: distribute M links independently amongst the N nodes with uniform probability.

Network models

E-R model

Definition
p(k) in the E-R mod
C in the E-R model
Giant component
Generating function

The Erdős-Rényi model (classical random graphs)

- Take N nodes.
- Uniformly link each pair independently of each other with probability
 p.

- This is also called as G(N,p) model.
- The G(N,M) model is almost the same: distribute M links independently amongst the N nodes with uniform probability.

Network models

E-R model

Definition
p(k) in the E-R mod
C in the E-R model
Giant component
Generating function

The Erdős-Rényi model (classical random graphs)

- Take N nodes.
- Uniformly link each pair independently of each other with probability
 p.

- This is also called as G(N,p) model.
- The G(N,M) model is almost the same: distribute M links independently amongst the N nodes with uniform probability.

Network models

Definition
p(k) in the E-R model
C in the E-R model
Giant component

Properties of the E-R model:

small world property?

Network models

E-R model

Definition
p(k) in the E-R model
C in the E-R model
Giant component
Generating function

Properties of the E-R model:

small world property.

Network models

E-R model

Definition

p(k) in the E-

- small world property.
- average degree?

Network models

E-R mode Definition

p(k) in the E-R mode C in the E-R mode Giant component Generating function formalism

- small world property.
- average degree: $\langle k \rangle = (N-1)p \simeq Np$,

Network models

E-R mode Definition

p(k) in the E-R mode C in the E-R mode Giant component Generating function formalism

- small world property.
- average degree: $\langle k \rangle = (N-1)p \simeq Np$,
- number of expected links?

Network models

E-R model Definition

p(k) in the E-R mo C in the E-R mode Giant component Generating functio formalism

- small world property.
- average degree: $\langle k \rangle = (N-1)p \simeq Np$,
- number of expected links: M = pN(N-1)/2.

Network models

E-R model
Definition
p(k) in the E-R model
C in the E-R model
Giant component
Generating function
formalism

Network models

E-R model
Definition
p(k) in the E-R model
C in the E-R model
Giant component
Generating function

We have already derived the p(k) of the E-R graph earlier,

$$p(k) = \binom{N-1}{k} p^k (1-p)^{N-1-k} \simeq \binom{N}{k} p^k (1-p)^{N-k}$$
 (binomial)
$$\simeq \frac{\langle k \rangle^k}{k!} e^{-\langle k \rangle}$$
 (Poisson)

Ā

Network models

E-R model
Definition
p(k) in the E-R model
C in the E-R model
Giant component
Generating function
formalism

Network models

E-R model
Definition
p(k) in the E-R model
C in the E-R model
Giant component
Generating function
formalism

Network models

E-R model
Definition
p(k) in the E-R model
C in the E-R model
Giant component
Generating function

• What is the variance of p(k)?

The degree distribution is binomial,

$$p(k) = \binom{N}{k} p^k (1-p)^{N-k},$$

→ the average and variance for a binomial distribution in general is

$$\langle k \rangle = Np,$$

$$\langle k^2 \rangle = Np(1-p) + p^2 N^2,$$

$$\operatorname{Var}(k) = \langle k^2 \rangle - \langle k \rangle^2 = Np(1-p),$$

$$\sigma(k) = \sqrt{\operatorname{Var}(k)} = \sqrt{Np(1-p)}$$

Network models

E-R model
Definition
p(k) in the E-R model
C in the E-R model
Giant component
Generating function
formalism

• What is the variance of p(k)?

The degree distribution is binomial,

$$p(k) = \binom{N}{k} p^k (1-p)^{N-k},$$

→ the average and variance for a binomial distribution in general is

$$\langle k \rangle = Np,$$

$$\langle k^2 \rangle = Np(1-p) + p^2 N^2,$$

$$Var(k) = \langle k^2 \rangle - \langle k \rangle^2 = Np(1-p),$$

$$\sigma(k) = \sqrt{Var(k)} = \sqrt{Np(1-p)}.$$

Degree distribution of the E-R graph Variance

Network models

E-R model
Definition
p(k) in the E-R model
C in the E-R model
Giant component
Generating function

What happens in the N → ∞ limit for a "realistic" E-R graph?
 (I.e., an E-R graph modeling a real system).

Network models

E-R model
Definition
p(k) in the E-R model
C in the E-R model
Giant component
Generating function

What happens in the N → ∞ limit for a "realistic" E-R graph?
 (I.e., an E-R graph modeling a real system).

It must remain sparse! $\rightarrow \langle k \rangle$ =const.,

$$\begin{cases}
N \to \infty \\
\langle k \rangle = Np \to \text{const.}
\end{cases} \Rightarrow p \to 0$$

$$\text{Var}(k) = Np(1-p) = \langle k \rangle (1-p)$$

$$\rightarrow$$
 Var $(k) \rightarrow \langle k \rangle = \text{const.}$

Network models

E-R model
Definition
p(k) in the E-R model
C in the E-R model
Giant component
Generating function
formalism

What happens in the N → ∞ limit for a "realistic" E-R graph?
 (I.e., an E-R graph modeling a real system).

It must remain sparse! $\rightarrow \langle k \rangle$ =const.,

$$N \to \infty$$

 $\langle k \rangle = Np \to \text{const.}$ $\Rightarrow p \to 0$
 $\text{Var}(k) = Np(1-p) = \langle k \rangle (1-p)$

$$\rightarrow$$
 Var $(k) \rightarrow \langle k \rangle =$ const.

The variance is **constant**, thus, it becomes **negligible compared to the system size**!

Network models

E-R model
Definition
p(k) in the E-R model
C in the E-R model
Giant component
Generating function

· In the continuum formalism:

$$\mathcal{P}(k > k_0) = \int_{k_0}^{\infty} p(k) dk = \int_{k_0}^{\infty} \frac{\langle k \rangle^k}{k!} e^{-\langle k \rangle} dk.$$

- E.g, for $\langle k \rangle = 10$:
 - the prob. to find a node with $k \ge 20$ is 0.00158826,
 - the prob. to find a node with $k \le 1$ is 0.00049,
 - the prob. to find a node with $k \ge 100$ is $1.79967152 \times 10^{-13}$.
- According to sociologists, for a typical individual $k \sim 1000$.
- \rightarrow the prob. to find someone with $k \ge 2000$ is roughly 10^{-27}
- → A random society would be extremely homogeneous, with no outliers!

Network models

E-R model
Definition
p(k) in the E-R model
C in the E-R model
Giant component
Generating function

In the continuum formalism:

$$\mathcal{P}(k > k_0) = \int_{k_0}^{\infty} p(k) dk = \int_{k_0}^{\infty} \frac{\langle k \rangle^k}{k!} e^{-\langle k \rangle} dk.$$

- E.g, for $\langle k \rangle = 10$:
 - the prob. to find a node with $k \ge 20$ is 0.00158826,
 - the prob. to find a node with $k \le 1$ is 0.00049,
 - the prob. to find a node with $k \ge 100$ is $1.79967152 \times 10^{-13}$.
- According to sociologists, for a typical individual k ~ 1000.
- \rightarrow the prob. to find someone with $k \ge 2000$ is roughly 10^{-27}
- → A random society would be extremely homogeneous, with no outliers!

Network models

E-R model
Definition
p(k) in the E-R model
C in the E-R model
Giant component
Generating function

In the continuum formalism:

$$\mathcal{P}(k > k_0) = \int_{k_0}^{\infty} p(k) dk = \int_{k_0}^{\infty} \frac{\langle k \rangle^k}{k!} e^{-\langle k \rangle} dk.$$

- E.g, for $\langle k \rangle = 10$:
 - the prob. to find a node with $k \ge 20$ is 0.00158826,
 - the prob. to find a node with $k \le 1$ is 0.00049,
 - the prob. to find a node with $k \ge 100$ is $1.79967152 \times 10^{-13}$.
- According to sociologists, for a typical individual k ~ 1000.
- \rightarrow the prob. to find someone with $k \ge 2000$ is roughly 10^{-27} !
- → A random society would be extremely homogeneous, with no outliers!

Clustering coefficient in the E-R graph

Network models

E-R model
Definition
p(k) in the E-R model
C in the E-R model
Giant component
Generating function
formalism

What is the clustering coefficient in the E-R graph?

Clustering coefficient in the E-R graph

Network models

E-R model
Definition
p(k) in the E-R model
C in the E-R model
Giant component
Generating function

- What is the clustering coefficient in the E-R graph?
 - The E-R graph is very democratic, and we expect all nodes to have more or less the same C, thus, C_i ≃ ⟨C⟩.
 - C_i can be also interpreted as the probability of the neighbors of i being connected. Since in the E-R model we link every pair independently with uniform probability p, the neighbors of any node shall be linked also with probability p.
 - Thus, in the E-R graph $\langle C \rangle = p$.

Network models

E-R model
Definition
p(k) in the E-R model
C in the E-R model
Giant component
Generating function

Network models

E-R model
Definition
p(k) in the E-R model
C in the E-R model
Giant component
Generating function

Relative size of the largest component:

(from the slides of A.-L. Barabási)

Network models

E-R model
Definition
p(k) in the E-R model
C in the E-R model
Giant component
Georganism

• How to calculate the relative size of the largest component, $S = \frac{s_1}{N}$?

Network models

E-R model
Definition
p(k) in the E-R mod
C in the E-R model
Giant component
Generating function
formalism

- How to calculate the relative size of the largest component, $S = \frac{s_1}{N}$?
 - Let u = 1 S denote the fraction of nodes NOT in the giant component.

Network models

E-R model
Definition
p(k) in the E-R model
C in the E-R model
Giant component
Generating function
formalism

- How to calculate the relative size of the largest component, $S = \frac{s_1}{N}$?
 - Let u = 1 S denote the fraction of nodes NOT in the giant component.
 - Suppose node i is NOT in the giant component, and let us examine the connection between i and j:

Network models

E-R model
Definition
p(k) in the E-R model
C in the E-R model
Giant component
Generating function
formalism

- How to calculate the relative size of the largest component, $S = \frac{s_1}{N}$?
 - Let u = 1 S denote the fraction of nodes NOT in the giant component.
 - Suppose node i is NOT in the giant component, and let us examine the connection between i and j:
 - it is either non existent

Network models

E-R model
Definition
p(k) in the E-R mode
C in the E-R model
Giant component
Generating function
formalism

- How to calculate the relative size of the largest component, $S = \frac{s_1}{N}$?
 - Let u = 1 S denote the fraction of nodes NOT in the giant component.
 - Suppose node i is NOT in the giant component, and let us examine the connection between i and j:
 - it is either non existent \rightarrow probability= 1 p,

Network models

E-R model
Definition
p(k) in the E-R mode
C in the E-R model
Giant component
Generating function

- How to calculate the relative size of the largest component, $S = \frac{s_1}{N}$?
 - Let u = 1 S denote the fraction of nodes NOT in the giant component.
 - Suppose node i is NOT in the giant component, and let us examine the connection between i and j:
 - it is either non existent \rightarrow probability= 1 p,
 - or j is also not in the giant component

Network models

E-R model
Definition
p(k) in the E-R mode
C in the E-R model
Giant component
Generating function

- How to calculate the relative size of the largest component, $S = \frac{s_1}{N}$?
 - Let u = 1 S denote the fraction of nodes NOT in the giant component.
 - Suppose node i is NOT in the giant component, and let us examine the connection between i and j:
 - it is either non existent \rightarrow probability= 1 p,
 - or j is also not in the \rightarrow probability= pu. giant component

Network models

- How to calculate the relative size of the largest component, $S = \frac{s_1}{N}$?
 - Let u = 1 S denote the fraction of nodes NOT in the giant component.
 - Suppose node i is NOT in the giant component, and let us examine the connection between i and j:
 - it is either non existent \rightarrow probability= 1 p,
 - or j is also not in the \rightarrow probability= pu. giant component
 - \rightarrow The probability that *i* is NOT in the giant component is

$$(1-p+pu)^{N-1}$$

Network models

E-R model
Definition
p(k) in the E-R model
C in the E-R model
Giant component
Generating function

- How to calculate the relative size of the largest component, $S = \frac{s_1}{N}$?
 - Let u = 1 S denote the fraction of nodes NOT in the giant component.
 - Suppose node i is NOT in the giant component, and let us examine the connection between i and j:
 - it is either non existent \rightarrow probability= 1 p,
 - or j is also not in the \rightarrow probability= pu. giant component
 - \rightarrow The probability that *i* is NOT in the giant component is

$$(1-p+pu)^{N-1}$$

However, the probability that i is NOT in the giant component is u
by definition, thus

$$u=\left(1-p+pu\right)^{N-1}.$$

Network models

- How to calculate the relative size of the largest component, $S = \frac{s_1}{N}$?
 - Let u = 1 S denote the fraction of nodes NOT in the giant component.

$$u = \left(1 - p + pu\right)^{N-1}.$$

Network models

E-R model
Definition
p(k) in the E-R model
C in the E-R model
Giant component
Generating function

- How to calculate the relative size of the largest component, $S = \frac{s_1}{N}$?
 - Let u = 1 S denote the fraction of nodes NOT in the giant component.

$$u = \left(1 - p + pu\right)^{N-1}.$$

$$u = (1 - p(1 - u))^{N-1} = \left(1 - \frac{\langle k \rangle}{N - 1}(1 - u)\right)^{N-1}$$

4

Network models

E-R model
Definition
p(k) in the E-R model
C in the E-R model
Giant component
Generating function

- How to calculate the relative size of the largest component, $S = \frac{s_1}{N}$?
 - Let u = 1 S denote the fraction of nodes NOT in the giant component.

$$u = \left(1 - p + pu\right)^{N-1}.$$

$$u = (1 - p(1 - u))^{N-1} = \left(1 - \frac{\langle k \rangle}{N - 1}(1 - u)\right)^{N-1}$$

$$\ln u = (N - 1)\ln\left[1 - \frac{\langle k \rangle}{N - 1}(1 - u)\right]$$

4

Network models

- How to calculate the relative size of the largest component, $S = \frac{s_1}{N}$?
 - Let u = 1 S denote the fraction of nodes NOT in the giant component.

$$u = \left(1 - p + pu\right)^{N-1}.$$

$$u = (1 - p(1 - u))^{N-1} = \left(1 - \frac{\langle k \rangle}{N - 1}(1 - u)\right)^{N-1}$$

$$\ln u = (N - 1) \ln\left[1 - \frac{\langle k \rangle}{N - 1}(1 - u)\right]$$

$$\ln u \approx -(N - 1)\left[\frac{\langle k \rangle}{N - 1}(1 - u)\right]$$

Network models

- How to calculate the relative size of the largest component, $S = \frac{s_1}{2}$?
 - Let u = 1 S denote the fraction of nodes NOT in the giant component.

$$u = \left(1 - p + pu\right)^{N-1}.$$

$$u = (1 - p(1 - u))^{N-1} = \left(1 - \frac{\langle k \rangle}{N - 1}(1 - u)\right)^{N-1}$$

$$\ln u = (N - 1) \ln\left[1 - \frac{\langle k \rangle}{N - 1}(1 - u)\right]$$

$$\ln u \approx -(N - 1)\left[\frac{\langle k \rangle}{N - 1}(1 - u)\right]$$

$$u \approx e^{-\langle k \rangle(1 - u)}$$

Network models

- How to calculate the relative size of the largest component, $S = \frac{s_1}{N}$?
 - Let u = 1 S denote the fraction of nodes NOT in the giant component.

$$u=\left(1-p+pu\right)^{N-1}.$$

$$u \approx e^{-\langle k \rangle(1-u)}$$
.

Network models

- How to calculate the relative size of the largest component, $S = \frac{s_1}{N}$?
 - Let u = 1 S denote the fraction of nodes NOT in the giant component.

$$u=(1-p+pu)^{N-1}.$$

$$u \approx e^{-\langle k \rangle(1-u)}$$
.

$$S \approx 1 - e^{-\langle k \rangle S}$$
.

Network models

E-R model
Definition
p(k) in the E-R model
C in the E-R model
Giant component
Generating function

- How to calculate the relative size of the largest component, $S = \frac{s_1}{N}$?
 - Let u = 1 S denote the fraction of nodes NOT in the giant component.

$$u = \left(1 - p + pu\right)^{N-1}.$$

$$u \approx e^{-\langle k \rangle(1-u)}$$
.

$$S \approx 1 - e^{-\langle k \rangle S}$$
.

This equation can be solved numerically for any $\langle k \rangle$, giving the corresponding S:

Network models

E-R model
Definition
p(k) in the E-R model
C in the E-R model
Giant component
Generating function

Where is the "critical" point?

Network models

- Where is the "critical" point?
 - The critical point is where *S* becomes larger than zero.

Network models

- Where is the "critical" point?
 - The critical point is where *S* becomes larger than zero.
 - Let us solve $S = 1 e^{-(k)S}$ "graphically":

Network models

E-R model

Definition
p(k) in the E-R mode
C in the E-R model
Giant component
Generating function
formalism

- Where is the "critical" point?
 - The critical point is where *S* becomes larger than zero.
 - Let us solve $S = 1 e^{-\langle k \rangle S}$ "graphically":

→ What is the condition for having a non-trivial solution?

Network models

E-R model
Definition
p(k) in the E-R mod
C in the E-R model
Giant component
Generating function

- Where is the "critical" point?
 - The critical point is where *S* becomes larger than zero.
 - Let us solve $S = 1 e^{-(k)S}$ "graphically":

→ What is the condition for having a non-trivial solution?

$$\left. \frac{d}{dS} \left(1 - e^{-\langle k \rangle S} \right) \ge 1 \right|_{S=0}$$

_

Network models

- Where is the "critical" point?
 - The critical point is where *S* becomes larger than zero.

$$\left. \frac{d}{dS} \left(1 - e^{-\langle k \rangle S} \right) \ge 1 \right|_{S=0}$$

Network models

- Where is the "critical" point?
 - The critical point is where *S* becomes larger than zero.

$$\left. \frac{d}{dS} \left(1 - e^{-\langle k \rangle S} \right) \ge 1 \right|_{S=0}$$

$$\langle k \rangle e^{-\langle k \rangle S} \Big|_{S=0} \ge 1$$

Network models

- Where is the "critical" point?
 - The critical point is where *S* becomes larger than zero.

$$\frac{d}{dS} \left(1 - e^{-\langle k \rangle S} \right) \ge 1 \Big|_{S=0}$$

$$\langle k \rangle e^{-\langle k \rangle S} \Big|_{S=0} \ge 1$$

$$\Rightarrow \langle k \rangle \ge 1$$

Network models

E-R model
Definition
p(k) in the E-R model
C in the E-R model
Giant component
Generating function

- Where is the "critical" point?
 - The critical point is where S becomes larger than zero.

$$\frac{d}{dS} \left(1 - e^{-\langle k \rangle S} \right) \ge 1 \Big|_{S=0}$$

$$\langle k \rangle e^{-\langle k \rangle S} \Big|_{S=0} \ge 1$$

$$\Rightarrow \langle k \rangle \ge 1$$

 Thus, the critical point is at k = 1, and for k ≥ 1 we have a giant component in the E-R graph.

Network models

E-R model
Definition
p(k) in the E-R model
C in the E-R model
Giant component
Generating function
formalism

 What if we would like to study the emergence (or disappearance) of the giant component in another type of random graph?

Network models

- E-R model
 Definition
 p(k) in the E-R model
 C in the E-R model
 Giant component
 Generating function
 formalism
- What if we would like to study the emergence (or disappearance) of the giant component in another type of random graph?
- → The generating function formalism provodes a general tool for studying that.

Network models

E-R model
Definition
p(k) in the E-R model
C in the E-R model
Giant component
Generating function
formalism

- What if we would like to study the emergence (or disappearance) of the giant component in another type of random graph?
- → The generating function formalism provodes a general tool for studying that.

Network models

- E-R model
 Definition
 p(k) in the E-R model
 C in the E-R model
 Giant component
 Generating function
 formalism
- What if we would like to study the emergence (or disappearance) of the giant component in another type of random graph?
- → The generating function formalism provodes a general tool for studying that.
 - (In fact the generating function formalism can be useful in many other problems as well...)
- Our main assumptions:

Network models

- E-R model
 Definition
 p(k) in the E-R model
 C in the E-R model
 Giant component
 Generating function
 formalism
- What if we would like to study the emergence (or disappearance) of the giant component in another type of random graph?
- → The generating function formalism provodes a general tool for studying that.

- Our main assumptions:
 - we know the degree distribution p(k),

Network models

- E-R model
 Definition
 p(k) in the E-R model
 C in the E-R model
 Giant component
 Generating function
 formalism
- What if we would like to study the emergence (or disappearance) of the giant component in another type of random graph?
- → The generating function formalism provodes a general tool for studying that.

- Our main assumptions:
 - we know the degree distribution p(k),
 - · we assume no degree correlations,

Network models

E-R model
Definition
p(k) in the E-R model
C in the E-R model
Giant component
Generating function
formalism

- What if we would like to study the emergence (or disappearance) of the giant component in another type of random graph?
- → The generating function formalism provodes a general tool for studying that.

- Our main assumptions:
 - we know the degree distribution p(k),
 - · we assume no degree correlations,
 - we approach the critical point of the percolation transition from below, i.e., from the dispersed phase where the network is sparse and can be assumed to be localy tree-like.

Percolation and generating functions

Network models

E-R model
Definition
p(k) in the E-R mode
C in the E-R model
Giant component
Generating function

Quick overview on generating functions in general:

Percolation and generating functions

Network models

E-R model
Definition
p(k) in the E-R model
C in the E-R model
Giant component
Generating function

Quick overview on generating functions in general:

• For a discrete random variable X that can take non-negative integer values with a probability distribution given by $P(X = k) = p_X(k)$, the corresponding **generating function** is defined as

$$G_X(z) = \sum_{k=0}^{\infty} z^k p_X(k).$$

Percolation and generating functions

Network models

E-R model
Definition
p(k) in the E-R mod
C in the E-R model
Giant component
Generating function

Quick overview on generating functions in general:

• For a discrete random variable X that can take non-negative integer values with a probability distribution given by $P(X = k) = p_X(k)$, the corresponding **generating function** is defined as

$$G_X(z) = \sum_{k=0}^{\infty} z^k p_X(k).$$

 The p_X(k) probabilities defining the distributions can be obtained from the generating function as

$$p_X(k) = \frac{1}{k!} \left. \frac{dG_X(z)}{dz^k} \right|_{z=0}.$$