## Analysis I

Sebastian Baader

Herbstsemester 2020

## Einleitung

#### Über dieses Dokument

Diese Vorlesungsnotizen werden in Echtzeit während der Vorlesung mitgeschrieben und werden deshalb viele Fehler enthalten. Ihr dürft mir diese und andere Verbesserungsvorschläge gerne zukommen lassen, am liebsten via GitHub auf dem Repository

 $\verb|https://github.com/raw-bacon/anal-notes|,$ 

oder via E-Mail an levi.ryffel@math.unibe.ch.

## Inhaltsverzeichnis

| I            | Konstruktion der Reellen Zahlen | <b>3</b> |
|--------------|---------------------------------|----------|
| 1            | Historische Motivation          | 3        |
| 2            | Mengen im Vergleich             | 5        |
| II           | Folgen und Reihen               | 7        |
| III          | Stetige Funktionen              | 8        |
| IV           | Differenzierbare Funktionen     | 9        |
| $\mathbf{V}$ | Differentialrechnung            | 10       |
| VI           | Riemann Integral                | 11       |
| VII          | Funktionenfolgen                | 12       |

### Kapitel I

## Konstruktion der Reellen Zahlen

#### 1 Historische Motivation

In der Antike war Mathematik praktisch synonym mit Geometrie. Der Zahlenbegriff war direkt an das Konzept der  $L\ddot{a}nge$  gekoppelt.

**Definition** (Euklid, 300 vor Christus). Zwei Längen a, b > 0 heissen kommensurabel, falls eine Länge L > 0 existiert, so wie zwei natürliche Zahlen  $m, n \in \mathbb{N}$ , so dass a = mL und b = nL.

Hier ist

$$\mathbb{N} = \{0, 1, 2, 3, 4, \dots\}$$

die Menge der Natürlichen Zahlen.

Satz (Euklid). Die Seite und Diagonale eines ebenen Quadrats sind nicht kommensurabel.

Beweis. Dieser Beweis ist geometrisch, nach Euklid. Wir nehmen an, es gäbe L>0 und  $m,n\in\mathbb{N}$  mit x=mL und d=nL. Wir zeigen, dass das zu einem Widerspruch führt. Wir stellen fest, dass die Längen  $x_1=d-x$  und  $d_1=2x-d$  ebenfalls die Seite und Diagonale eines Quadrats bilden, siehe Abbildung I.1.





Abbildung I.1: Euklids Konstruktoin

Weiterhin gilt, dass sowohl  $x_1$  als auch  $d_1$ , ganze Vielfache von L sind:

$$x_1 = d - x = (n - m)L$$
  
 $d_1 = 2x - d = (2m - n)L$ 

Nach Pythagoras gilt  $d^2=2x^2$ , und somit  $d\leq 3/2\cdot x$ , da  $(3/2)^2>2$ . Daraus folgt, dass

$$x_1 = d - x \le \frac{1}{2} \cdot x.$$

Iteriere dieses Verfahren und erhalte eine Serie von Quadraten mit Seiten  $x_2, x_3, \ldots$  und Diagonalen  $d_2, d_3, \ldots$  Es gilt:

$$x_k \le \frac{1}{2^k} \cdot x.$$

Ausserdem ist jedes  $x_k$  (und  $d_k$ ) ein ganzes Vielfaches von L. Wähle nun k so gross, dass

$$x_k \le \frac{1}{2^k} x < L.$$

Dies impliziert, dass  $x_k=0$ , was unmöglich ist. Deshalb können x und d nicht kommensurabel sein.

Wir haben diese Aussage mit einem sogenannten *Widerspruchsbeweis* bewiesen. Hierfür haben wir eine Annahme getroffen, und diese zu einem Widerspruch geführt. Dies zeigt, dass unsere Annahme falsch war.

#### Zeitgenössische Umformulierung

Seien a, b > 0 zwei kommensurable Längen. Das heisst, es existieren L > 0 und  $m, n \in \mathbb{N}$  mit a = mL, b = nL. Dann gilt:

$$\frac{a}{b} = \frac{mL}{nL} = \frac{m}{n},$$

das heisst das Verhältnis a/b ist eine rationale Zahl. Zurück zum Quadrat mit Seite x und Diagonale d. Nach Pythagoras gilt  $d^2=2x^2$ . Falls x=mL und d=nL gilt, dann also

$$2 = \frac{d^2}{x^2} = \left(\frac{d}{x}\right)^2 = \left(\frac{n}{m}\right)^2,$$

und somit

$$2m^2 = n^2.$$

Die linke Seite dieser Gleichung ist durch 2 teilbar. Dies impliziert, dass  $n^2$ , und somit auch n, durch 2 teilbar ist. Schreibe nun n=2k. Schreibe n=2k mit  $k \in \mathbb{N}$ . Setze ein und erhalte  $2m^2=(2k)^2=4k^2$ , beziehungsweise

$$m^2 = 2k^2.$$

Die rechte Seite ist durch 2 teilbar, also auch m. Wir schliessen, dass sowohl n als auch m durch 2 teilbar sind. Schreibe noch  $m=2\ell$  mit  $\ell\in\mathbb{N}$ . Es gilt also

$$2 = \left(\frac{n}{m}\right)^2 = \left(\frac{k}{\ell}\right)^2.$$

In anderen Worten sind Zähler und Nenner beide gerade. Iteriere dieses Verfahren k mal, bis  $n/2^k<1$ , Dann entsteht ein Widerspruch.

**Korollar.** Die Gleichung  $z^2 = 2$  hat keine rationale Lösung, das heisst, keine Lösung der Form z = p/q mit  $p, q \in \mathbb{N}$  und q > 0.

Das Ziel für den Rest dieses Kapitels ist es, eine Zahlenmenge  $\mathbb{R}$  (die Menge der reellen Zahlen) zu konstruieren, in welcher die Gleichung  $z^2=2$  eine Lösung hat.

Übung. Die Gleichung  $z = \sqrt{2}x + \sqrt{3}y$  hat keine ganze Lösungen ausser (0,0,0).

#### 2 Mengen im Vergleich

Wir haben bereits einige Mengen eingeführt, nämlich die natürlichen Zahlen

$$\mathbb{N} = \{0, 1, 2, 3, \dots\},\$$

die Menge der ganzen Zahlen,

$$\mathbb{Z} = \{0, 1, -1, 2, -2, \dots\},\$$

die Menge der rationalen Zahlen

$$\mathbb{Q} = \{ p/q \mid p, q \in \mathbb{Z}, q > 0 \}.$$

Wir wollen eine weitere Menge, die Menge  $\mathbb R$  der reellen Zahlen einführen. Es gelten dann die Inklusionen

$$\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$$
.

#### Wichtige Grundbegriffe

**Definition.** Seien A, B zwei Mengen. Eine Abbildung  $f: A \to B$  heisst

- i) injektiv, falls für alle  $a_2, a_1 \in A$  mit  $a_2 \neq a_1$  gilt, dass  $f(a_1) \neq f(a_2)$ ,
- ii) surjektiv, falls für alle  $b \in B$  ein Element  $a \in A$  existiert mit f(a) = b,
- iii) bijektiv, falls f sowohl injektiv als auch surjektiv ist.

#### Beispiel.

- i) Seien  $A = B = \{0, 1\}$ . Es gibt 4 Abbildungen  $f: A \to B$ :
  - a)  $0 \mapsto 0$  und  $1 \mapsto 0$ ,
  - b)  $0 \mapsto 1$  und  $1 \mapsto 1$ ,
  - c)  $0 \mapsto 0$  und  $1 \mapsto 1$ ,
  - d)  $0 \mapsto 1$  und  $1 \mapsto 0$ .

Abbildungen a) und b) sind weder injektiv noch surjektiv. Abbildungen c) und d) sind beide bijektiv.

ii) Seien  $A = B = \mathbb{N}$ . Betrachte die Abbildung

$$f: \mathbb{N} \to \mathbb{N}$$
$$n \mapsto 2n.$$

Diese Abbildung ist injektiv, aber nicht surjektiv. Die Abbildung

$$g: \mathbb{N} \to \mathbb{N}$$
 
$$n \mapsto \frac{2n-1+(-1)^n}{4},$$

also die Abbildung die durch 2 dividiert und dann abrundet, ist nicht injektiv, aber surjektiv.

#### Bemerkung.

1) Bijektive Abbildungen  $f:A\to B$  haben eine eindeutige Umkehrabbildung  $f^{-1}:B\to A$ . Die Konstruktion dafür ist wie folgt. Sei  $b\in B$ . Da f surjektiv ist, existiert  $a\in A$  mit f(a)=b. Da f injektiv ist, ist dieses a eindeutig. Setze  $f^{-1}(b)=a$ . Es gilt dann

$$f^{-1}(f(a)) = a$$

für alle  $a \in A$ , und ebenso

$$f(f^{-1}(b))$$

für alle  $b \in B$ . Wir schreiben häufig

$$f^{-1} \circ f = \mathrm{Id}_A,$$
$$f \circ f^{-1} = \mathrm{Id}_B,$$

ausgesprochen " $f^{-1}$  verknüpft mit f ist die Identitätsabbildung auf A".

2) Für endliche Mengen A und B gilt: Es existiert eine bijektive Abbildung  $f:A\to B$ , genau dann, wenn A und B gleich viele Elemente haben.

**Definition.** Eine Menge A heisst

- i) unendlich, falls eine injektive, nicht surjektive Abbildung  $f:A\to A$  existiert,
- ii) abzählbar, falls eine bijektive Abbildung  $f: \mathbb{N} \to A$  existiert.

**Beispiel.** Sei  $A = \mathbb{N}$ . Die Abbildung f aus Beispiel 2 ii) ist injektiv, aber nicht surjektiv. Also ist  $\mathbb{N}$  eine unendliche Menge.

Folgende Proposition zeigt in einem gewissen Sinn, dass es gleich viele Brüche wie natürliche Zahlen gibt.

**Proposition.** Die Menge  $\mathbb Q$  der rationalen Zahlen ist abzählbar.

Beweisskizze. Wir konstruieren eine bijektive Abbildung  $\varphi: \mathbb{N} \to \mathbb{Q}$ . Definiere hierzu eine Teilmenge  $A_k \subset \mathbb{Q}$  durch

$$A_k = \{ p/q \in \mathbb{Q} \mid |p| + |q| = k \}.$$

Wir haben  $A_0 = \emptyset$ ,  $A_1 = \{0/1\}$ ,  $A_2 = \{1/1, -1/1, 0/2\}$ ,.... Setze  $a_k = |A_k|$ , die Anzahl Elemente in  $A_k$ .

# Kapitel II Folgen und Reihen

# Kapitel III

Stetige Funktionen

## ${\bf Kapitel~IV}$

## Differenzierbare Funktionen

## Kapitel V

## Differentialrechnung

# Kapitel VI Riemann Integral

# Kapitel VII Funktionenfolgen