Question Number	Answer		Mark
3(a)(i)	ax TWO from		
	The vernier calipers have a smaller resolution		
	Or the vernier calipers have a lower uncertainty	(1)	
	The vernier calipers can measure without parallax error	(1)	
	Tips of vernier calipers are easier to align with the rings (as surface is curved)	(1)	2
3(a)(ii)	Demost the measurement and calculate a mean value	(1)	
	 Repeat the measurement and calculate a mean value Measure the diameter in different orientations 	(1)	2
	Weasure the diameter in different orientations	(1)	_
	If no other marks awarded, allow 1 mark for "check for zero error before measuring"	(4)	
3(b)(i)	Calculation of mean value using all three values	(1)	
	• Mean $a = 1.22 \times 10^{-18}$ (m ² V) rounded to 3 s.f.	(1)	2
	Example of calculation		
	Mean value of $a = (1.23 + 1.11 + 1.32) \times 10^{-18} / 3 = 1.22 \times 10^{-18} \text{ m}^2 \text{ V}$		
3(b)(ii)	Use of helf their renge for uncertainty		
3(b)(ll)	• Use of half their range for uncertainty [Accept use of furthest value from the mean]	(1)	
	• Percentage uncertainty = 9 (%) e.c.f. 3(b)(i)	(1)	2
	- 1 ercentage uncertainty - 7 (70)	(*)	
	Example of calculation		
	Uncertainty = half range = $(1.32 - 1.11) \times 10^{-18} / 2 = 0.105 \times 10^{-18} \text{ m}^2 \text{ V}$		
	Percentage uncertainty = $(0.105 \times 10^{-18} / 1.22 \times 10^{-18}) \times 100 = 8.6 \%$		
3(b)(iii)	Max TWO from		
	More pairs of values were used		
	Adding a line of best fit acts as an averaging method	(1)	
	Adding a line of best fit can identify anomalous values	(1)	
	The gradient value will ignore any systematic error	(1)	
	Or the line/intercept will identify any systematic error	(4)	
	[accept named examples of systematic error, e.g., zero error]	(1)	2
3(c)(i)	h^2	(1)	
	• Use of $a = \frac{h^2}{2em_e}$. ,	
	• $h = 6.52 \times 10^{-34} (\text{J s})$	(1)	2
	Evenue of coloulation		
	Example of calculation $h = \sqrt{(2 \times 1.6 \times 10^{-19} \times 9.11 \times 10^{-31} \times 1.46 \times 10^{-18})} = 6.52 \times 10^{-34} \text{ (J s)}$		
3(c)(ii)	EITHER	(1)	
	• Calculation of upper limit of h	(1)	
	• Conclusion based on comparison to 6.63×10^{-34} J s e.c.f. 3(c)(ii) For 1 mark only – accept the calculation of 6% limit of 6.63×10^{-34} J s		
	OR (1.14) (1.15) (1.16) (1.16) (1.16) (1.16)	(1)	
	• Calculation of percentage difference from $6.63 \times 10^{-34} \mathrm{J}\mathrm{s}$ e.c.f. $3(c)(i)$	(1)	2
	• Conclusion based on comparison to 6 %	(1)	
	Examples of calculation		
	Upper limit of $h = 6.52 \times 10^{-34} \times 1.06 = 6.92 \times 10^{-34} \text{ J s}$		
	As this is above value of 6.63×10^{-34} J s then the calculated value is accurate		
	Percentage difference = $((6.63 - 6.52) \times 10^{-34} / 6.63 \times 10^{-34}) \times 100 = 1.7 \%$		
	As this is less than 6 % then calculated value is accurate		
	Total for question 3		14
	Total for question o		17