Forecasting Energy Consumption in Denmark: A Data Science Approach

Avesta Narimani 1/10/2024

Part One: EDA

Gross Electricity Consumption Consumption:

Autocorrelation function:

Gross Electricity Consumption:

Onshore Wind Power and Offshore Wind Power:

Wind power autocorrelation:

Yearly pattern

Autocorrelation function

Solar power:

Yearly pattern

Weekly pattern

Wind power autocorrelation:

Yearly pattern

Autocorrelation function

Bar plot all energies:

- Onshore wind power and solar energy increased over the last few years
- Central Production decreased over the last few years

Future work:

Forecast the timeline for Denmark to achieve complete electricity generation from renewable sources and eliminate the use of fossil fuels (both locally and centrally produced).

Part Two: forecasting models

Is data stationary?

Augmented Dickey-Fuller Test

Test results:

Augmented Dickey-Fuller Test: ADF test statistic -21.634155 p-value 0.000000 # lags used 63.000000 # observations 75895.000000 critical value (1%) -3.430436 critical value (5%) -2.861578 critical value (10%) -2.566790 Strong evidence against the null hypothesis Reject the null hypothesis Data has no unit root and is stationary

First Model: Exponential Smoothing

This model caters the 24 hour frequency but the amplitude does not match the expected values!

Mean Absolute Error: 379.4 Mean Squared Error: 193060.1 Root Mean Squared Error: 439.3

Forecasting into the Future using Exponential Smoothing

Second model: Autoregression (AR) Model

This model accurately predicts the average value but struggles to capture the oscillations.

Mean Absolute Error: 390.7 Mean Squared Error: 215660.9 Root Mean Squared Error: 464.4

Third model:

Automated ARIMA Model Selection with pmdarima

ARIMA(1,0,2)(1,0,2)[24] is the best model.

This model successfully captures the 24-hour frequency of the data but does not accurately predict the amplitude.

Mean Absolute Error: 317.8 Mean Squared Error: 147733.2 Root Mean Squared Error: 384.3

Fourth model:

Seasonal Autoregressive Integrated Moving Average (SARIMA) Model

First decompose the data and use that as exogenic data in the model:

Forecasting based on test and train data:

Mean Absolute Error: 351.0 Mean Squared Error: 176078.1 Root Mean Squared Error: 419.6

Forecasting the future:

Table for different metrics for each model:

Model	Mean Absolut e Error	Mean Squared Error	Root Mean Squared Error	24-hour frequency	Trend
Exponential Smoothing	379.4	193060.1	439.4	✓	X
AR	390.7	215660.9	464.4	X	X
ARIMA	317.8	147733.2	384.4	✓	X
SARIMA	351.0	176078.1	419.6	✓	✓

Thank you!