TD1: Rappel

Master 1 Data Science et Intelligence Artificielle

Ibrahima SY

10/12/2021

Exercice 1

Un passager du métro mesure son temps de trajet domicile-travail pendant 10 jours et relève successivement (en minutes) : \$32 ; 25 ; 28 ; 36 ; 30 ; 26 ; 37 ; 25 ; 33 ; 28 \$. Quel est en moyenne la durée du trajet ? Évaluer aussi la variabilité de cette durée. Comparer avec un autre itinéraire emprunté par notre voyageur pendant les jours suivants et qui lui prend : 46; 21; 24; 38; 44; 22; 37; 20; 25; 23 minutes.

Exercice 2

A chaque balade qu'il effectue, un cavalier a une probabilité p d'être désarçonné. 1. Quelle est la probabilité que le cavalier ait chuté k fois au terme de n balades? On suppose que les différentes promenades sont indépendantes les unes des autres.

- 2. Quelle est la loi du nombre de chutes en n balades ?
- 3. Donner l'espérance et la variance du nombre de chutes en n balades.

Exercice 3

Soient X_1, X_2, \ldots, X_n n variables aléatoires indépendantes et identiquement distribuées (i.i.d.) de moyenne m et de variance σ^2 . La moyenne empirique est : $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$. Calculer $E(\overline{X})$ et $V(\overline{X})$.

Exercice 4

Soient X_1, X_2, \ldots, X_n n variables aléatoires indépendantes et identiquement distribuées (i.i.d.) de moyenne m et de variance σ^2 . La statistique T est : $T = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})$ š . Calculer E(T)\$. et comparer avec celle $E(S^2)$

Exercice 4:

Considérons une variable aléatoire X de loi de χ^2 á 10 degré de liberté . Determiner c tel que

- 1. $\mathbb{P}(X > c) = 0, 10$
- 2. $\mathbb{P}(X < c) = 0.10$
- 3. Que vaut $\mathbb{P}(X) > 0,5415$

Exercice 5

Considérons une variable aléatoire X de loi de student á 7 degrés de liberté . Determiner c tel que :

- 1. $\mathbb{P}(-c < X \le c = 0, 10 ?$
- 2. $\mathbb{P}(X > c) = 0.10$?
- 3. Que vaut $\mathbb{P}(X.2,558)$?