$f: \chi (top.Space) \rightarrow \gamma$ topology $U \subseteq \gamma$, U as "open" $\Leftrightarrow f^{-1}(u)$

X/ = Set of allequivalance class in X

quotient $TT: X \longrightarrow X/N$ Space.

 $U \subseteq X_{/} \rightarrow open iff t(v) is open X.$

Cone of a topo. $\chi \times [0,1] \sim : (\chi, \Pi_{\infty}(y,1)) \forall \chi, y \in \chi_{-}$

 $Cx = x \times [01]$

Suspension $\chi \times [0,1]$ $\sim : (\chi,1) \sim (\chi,1) \rightarrow \chi, \chi \in \chi$ $(\chi,0) \sim (\chi,0) \rightarrow (\chi,\chi) \in \chi$

 $\sum X \cdot (x,0) \sim (y,0) \rightarrow (x,y) \in X$

TT.

Thm. X/ Hausdorff [x] is closed X.

Proof.

[x] is not closed in x.

yed[x] yf[x]

[x] #[y]

open set

[2] closed.

$$P(0) = f(1) \rightarrow Satisfies Identification Prop.$$

$$\underbrace{[x. (torus)]}_{\pi} = S' \times S'$$

$$[x]$$
, \sim : $(x, 0) \sim (x, 1)$ $[x]$ $= \pi \cong S' \times S$

$$f: I \times I \rightarrow S' \times S'$$

$$\Rightarrow f(x,y) = \left(e^{2\pi x}, e^{2\pi y}\right)$$

$$cont + swy + identified on equiv. Class.
$$I \times I / \cong S' \times S'$$$$

Adjunction Spaces.

$$X_0 \subseteq X$$
 $f: X_0 \rightarrow Y$ $\times LY_1$
 $\sim : X \sim f(x)$

Cells.
$$X \rightarrow homeomorph$$
. $Br(x)$ (X is called h-closed cell) $X \rightarrow ll$ $Br(x)$ (X is couled open n-cell).

$$\begin{array}{ccc}
\left(D_{1} \sqcup D_{2}\right) &= \forall . \\
\varphi &: \partial P_{1} \sqcup \partial D_{2} \longrightarrow \times \\
\varphi &: \partial P_{1} \sqcup \partial D_{2} \longrightarrow \times \\
\varphi &: \partial P_{1} \sqcup \partial D_{2} \longrightarrow \times \\
\varphi &: \partial P_{1} \sqcup \partial D_{2} \longrightarrow \times \\
\varphi &: \partial P_{1} \sqcup \partial D_{2} \longrightarrow \times \\
\varphi &: \partial P_{1} \sqcup \partial D_{2} \longrightarrow \times \\
\varphi &: \partial P_{1} \sqcup \partial D_{2} \longrightarrow \times \\
\varphi &: \partial P_{1} \sqcup \partial D_{2} \longrightarrow \times \\
\varphi &: \partial P_{1} \sqcup \partial D_{2} \longrightarrow \times \\
\varphi &: \partial P_{1} \sqcup \partial D_{2} \longrightarrow \times \\
\varphi &: \partial P_{1} \sqcup \partial D_{2} \longrightarrow \times \\
\varphi &: \partial P_{1} \sqcup \partial D_{2} \longrightarrow \times \\
\varphi &: \partial P_{1} \sqcup \partial D_{2} \longrightarrow \times \\
\varphi &: \partial P_{1} \sqcup \partial D_{2} \longrightarrow \times \\
\varphi &: \partial P_{1} \sqcup \partial D_{2} \longrightarrow \times \\
\varphi &: \partial P_{1} \sqcup \partial D_{2} \longrightarrow \times \\
\varphi &: \partial P_{1} \sqcup \partial D_{2} \longrightarrow \times \\
\varphi &: \partial P_{1} \sqcup \partial D_{2} \longrightarrow \times \\
\varphi &: \partial P_{1} \sqcup \partial D_{2} \longrightarrow \times \\
\varphi &: \partial P_{1} \sqcup \partial D_{2} \longrightarrow \times \\
\varphi &: \partial P_{1} \sqcup \partial D_{2} \longrightarrow \times \\
\varphi &: \partial P_{1} \sqcup \partial D_{2} \longrightarrow \times \\
\varphi &: \partial P_{1} \sqcup \partial D_{2} \longrightarrow \times \\
\varphi &: \partial P_{1} \sqcup \partial D_{2} \longrightarrow \times \\
\varphi &: \partial P_{1} \sqcup \partial D_{2} \longrightarrow \times \\
\varphi &: \partial P_{1} \sqcup \partial D_{2} \longrightarrow \times \\
\varphi &: \partial P_{1} \sqcup \partial D_{2} \longrightarrow \times \\
\varphi &: \partial P_{1} \sqcup \partial D_{2} \longrightarrow \times \\
\varphi &: \partial P_{1} \sqcup \partial D_{2} \longrightarrow \times \\
\varphi &: \partial P_{1} \sqcup \partial D_{2} \longrightarrow \times \\
\varphi &: \partial P_{1} \sqcup \partial D_{2} \longrightarrow \times \\
\varphi &: \partial P_{1} \sqcup \partial D_{2} \longrightarrow \times \\
\varphi &: \partial P_{1} \sqcup \partial D_{2} \longrightarrow \times \\
\varphi &: \partial P_{1} \sqcup \partial D_{2} \longrightarrow \times \\
\varphi &: \partial P_{1} \sqcup \partial D_{2} \longrightarrow \times \\
\varphi &: \partial P_{1} \sqcup \partial D_{2} \longrightarrow \times \\
\varphi &: \partial P_{1} \sqcup \partial D_{2} \longrightarrow \times \\
\varphi &: \partial P_{1} \sqcup \partial D_{2} \longrightarrow \times \\
\varphi &: \partial P_{1} \sqcup \partial D_{2} \longrightarrow \times \\
\varphi &: \partial P_{1} \sqcup \partial D_{2} \longrightarrow \times \\
\varphi &: \partial P_{1} \sqcup \partial D_{2} \longrightarrow \times \\
\varphi &: \partial P_{1} \sqcup \partial D_{2} \longrightarrow \times \\
\varphi &: \partial P_{1} \sqcup \partial D_{2} \longrightarrow \times \\
\varphi &: \partial P_{1} \sqcup \partial D_{2} \longrightarrow \times \\
\varphi &: \partial P_{1} \sqcup \partial D_{2} \longrightarrow \times \\
\varphi &: \partial P_{1} \sqcup \partial D_{2} \longrightarrow \times \\
\varphi &: \partial P_{1} \sqcup \partial D_{2} \longrightarrow \times \\
\varphi &: \partial P_{2} \sqcup \partial D_{2} \longrightarrow \times \\
\varphi &: \partial P_{1} \sqcup \partial D_{2} \longrightarrow \times \\
\varphi &: \partial P_{2} \sqcup \partial D_{2} \longrightarrow \times \\
\varphi &: \partial P_{2} \sqcup \partial D_{2} \longrightarrow \times \\
\varphi &: \partial P_{2} \sqcup \partial D_{2} \longrightarrow \times \\
\varphi &: \partial P_{2} \sqcup \partial D_{2} \longrightarrow \times \\
\varphi &: \partial P_{2} \sqcup \partial D_{2} \longrightarrow \times \\
\varphi &: \partial P_{2} \sqcup \partial D_{2} \longrightarrow \times \\
\varphi &: \partial P_{2} \sqcup \partial D_{2} \longrightarrow \times \\
\varphi &: \partial P_{2} \sqcup \partial D_{2} \longrightarrow \times \\
\varphi &: \partial P_{2} \sqcup \partial D_{2} \longrightarrow \times \\
\varphi &: \partial P_{2} \sqcup \partial D_{2} \longrightarrow \times \\
\varphi &: \partial P_{2} \sqcup \partial D_{2} \longrightarrow \times \\
\varphi &: \partial P_{2} \sqcup \partial D_{2} \longrightarrow \times \\
\varphi &: \partial P_{2} \sqcup \partial D_{2} \longrightarrow \times \\
\varphi &: \partial P_{2} \sqcup \partial D_{2} \longrightarrow \times \\
\varphi &: \partial P_{2} \sqcup \partial D_{2} \longrightarrow \times \\
\varphi &: \partial P_{2} \sqcup \partial D_{2} \longrightarrow \times \\
\varphi &: \partial P_{2} \sqcup \partial D_{2} \longrightarrow \times \\
\varphi &: \partial P_{2} \sqcup \partial D_{2} \longrightarrow \times \\
\varphi &: \partial P_{2} \sqcup \partial D_{2} \longrightarrow \times \\
\varphi &: \partial P_{2} \sqcup \partial D_{2} \longrightarrow \times \\
\varphi &: \partial P$$

Cell Complex.

Connected Sum.

(Inv. of Boundary) M and N $\partial M \cong \partial N$.

C: JM → JN

The Bisa regular Co-ord Ball. $M/B \rightarrow n$ -manifold with boundary. $\partial (M/B) \cong S^{n-1}$.

Mobius

f: [-1,1] x to,1] --> M

Klein Bottle. $S' \times I$ \sim ; $(z,0) \sim (\overline{z},1)$

If you bisect Klein bottle (k) along the line (-) then you will end up gerting two Mobius Strip.

W Jr

MU M -> Affaching

Mobius

11 Strip along Boundary

K

Mobius Strip K = MUIJM MUN → n-manifold → with no boundary with noboundary. Klein Bottle is 2- manifold -> Projective Plane. 511 , Mobius. D'uk: $K \cong \mathbb{P}^2 \# \mathbb{P}^2$. (Important)