Joe Holbrook Memorial Math Competition

5th Grade Solutions

October 9th, 2016

1. Since half an hour is 30 minutes, Kelvin the Frog can listen to his favorite song $\frac{30}{6} = \boxed{5}$ times.

2. The list of numbers consists of integers between -17 and 17, which includes 0. Any product of a number and 0 is $\boxed{0}$.

3.

$$2 + (0 - (1 \cdot 6(2^{0 \cdot \frac{1}{6}}))) = 2 + (0 - (1 \cdot 6(2^{0}))) = 2 + (0 - (1 \cdot 6)) = 2 - 6 = \boxed{-4}$$

4. Alex the Kat needs to write x questions such that 25 + x = 40, so $x = 40 - 25 = \boxed{15}$

5. A total of 5+2=7 points were scored.

6. A hexagon has 6 sides, and a triangle has 3 sides, so a hexagon has $6-3=\boxed{3}$ more sides than a triangle does.

7. Three of the twelve months start with a J: January, June, July. Therefore, $\frac{3}{12} = \boxed{\frac{1}{4}}$.

8. 2, 4, and 6 are the even numbers on a regular six-sided die. Because each number has an equal likelihood of being rolled, the probability of rolling an even number is $\frac{3}{6} = \boxed{\frac{1}{2}}$.

9. The total tests graded can be calculated by mutiplying 3 and 150, which yields $\boxed{450}$.

10. There are twelve inches per foot, so Yousun is 5*12=60 inches tall. Youjung is therefore $60+6=\boxed{66}$ inches tall.

11. The phone has a maximum battery life of 10 + 60 = 600 minutes. Therefore, the phone has $12\% * 600 = \boxed{72}$ minutes left.

12. By the formula that says the interior angle of a regular n-sided polygon can be found by $\frac{180 \cdot (n-2)}{n}$, we can see that an 8-sided polygon (octagon) has angles of 135 degrees and a 5-sided polygon (pentagon) has angles of 108 degrees. Therefore, $8+5=\boxed{13}$.

13. The prime factorization of 2016 is $2^5 \cdot 3^2 \cdot 7$. The prime factorization of 2772 is $2^2 \cdot 3^2 \cdot 7 \cdot 11$. The greatest common factor can be found by identifying the least exponent of each prime factor: $2^2 \cdot 3^2 \cdot 7 = 252$.

14. Aligning our multiplicands in vertical fashion, we see that many numerators and denominators cancel, leaving a final answer of $\begin{bmatrix} 1 \\ 6 \end{bmatrix}$.

15. $\frac{5}{55} = \frac{1}{11}$. $111 \cdot 5555 = \frac{5555}{11} = \boxed{505}$.

16. $2^11 = 2048$, and $2^10 = 1024$ Therefore, the smallest n satisfying the equation is 11

17. Four years pass between Kelvin's 4th and 8th grades, which means that his scores improved 4 times. During this period, his score increased by 43 - 31 = 12 points. Since he increased by an equal amount every year, we divide the total increase by the total time to get $\frac{12}{4} = 3$. This means that in 7th grade he scored 3 fewer points than in 8th grade, or $43 - 40 = \boxed{40}$.

1

- 18. Let's call our number n. We then perform many operations: first we obtain n + 2016, then $4 \cdot (n + 2016)$, then $4 \cdot (n + 2016) 12$, then $\frac{4 \cdot (n + 2016) 12}{4} = n + 2016 3 = n + 2013$, then (n + 2013) n = 2013.
- 19. Each of the fractions here are equal to $\frac{1}{2}$. $\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \boxed{\frac{1}{16}}$.
- 20. Since doubling any number gives us an even number, we have to work backwards. On Friday, Kelvin had $\frac{48}{2} = 24$ lilypads. On Thursday, he had $\frac{24}{2} = 12$ lilypads. On Wednesday, he had $\frac{12}{2} = 6$ lilypads. On Tuesday, he had $\frac{6}{2} = 3$ lilypads, making our day Tuesday.
- 21. The sum of integers from 1 through n can be found by the formula $\frac{n(n+1)}{2}$. Plugging in n=63 results in 2016. For more information on this fascinating topic, look up "triangle numbers" you'll encounter them often in the future!
- 22. Two out of every three cakes were thrown out, which means that one in every three cakes was kept. This is $\frac{1}{3}$ of 132, which is $\boxed{44}$.
- 23. Let a slice of plain pizza cost x dollars and a slice of pepperoni pizza cost x + 0.5 dollars. David and June ordered 3+2=5 slices of plain pizza and 2+4=6 slices of pepperoni pizza, so 5x + 6(x + 0.5) = 11x + 3 = 25. Since x = 2 from the previous equation, a slice of plain pizza costs \$2 and a slice of pepperoni pizza costs \$2.50. David ordered 3 slices of plain pizza and 2 slices of pepperoni pizza, so he paid $3 \cdot 2 + 2 \cdot 2.5 = 6 + 5 = 11$ dollars.
- 24. There are 60 seconds in a minute, so his song is $3 \cdot 60 + 45 = 225$ seconds long. There are 60 minutes in an hour, so there are $60 \cdot 60 = 3600$ seconds in an hour. Thus the final fraction is $\frac{225}{3600} = \boxed{\frac{1}{16}}$.
- 25. There are 3 different choices for buying milk, 2 different choices for buying eggs, and 4 different choices for buying butter, so the total number of ways to buy one of each is equal to $3 * 2 * 4 = \boxed{24}$.
- 26. Using the formula for average , we have $\frac{34+35+39}{3} \frac{23-14-17}{3} = \frac{34+35+39-23-14-17}{3} = \boxed{18}$.
- 27. Using Vieta's formula, the sum is $\frac{-(-2)}{1} = \boxed{2}$.
- 28. 54 flips = $18 \cdot 5 = 90$ flops. 90 flops = $10 \cdot 14 = \boxed{140}$ flaps.
- 29. There is a probability of $\frac{1}{3}$ of pulling out the letter B first; then a probability of $\frac{1}{2}$ of pulling out C; the letter A then has a $\frac{1}{1}$ chance of being selected. Multiplying the fractions together gives a total probability of $\left[\frac{1}{6}\right]$.
- 30. Arthur ran 40 meters in the first 5 seconds. He only has to run for $\frac{100-40}{3}=\frac{60}{3}=20$ more seconds. Sunny ran for 32 meters in the first 8 seconds. That means that in 25-8=17 seconds, he must run 68 meters, which is an average speed of $\frac{68}{17}=\boxed{4}$ m/s.
- 31. The number of permutations disregarding the repeated alphabat is 5! = 120. However, the letter M is repeated twice, thus the number should be divided by 2!, yielding $\boxed{60}$ as the answer.
- 32. Note that 2^4 has a units digit of 6. Since $2^{2016} = (2^4)^{504} = 6^{504}$, and every power of 6 ends in 6, we know 2^{2016} has a units digit of 6. Also note that $3^4 = 81$ has a units digit of 1. Since $3^{2016} = (3^4)^{504} = 81^{504}$, we know 3^{2016} has a units digit of 1. Our answer is therefore 1 + 6 = 7.
- 33. Recall that $2015 = 5 \cdot 13 \cdot 31$, $2016 = 2^5 \cdot 3^2 \cdot 7$, and 2017 is prime. The number of factors of a positive integer n with prime factorization $p_1^{e_1}p_2^{e_2}\cdots p_k^{e_k}$ is $(e_1+1)(e_2+1)\cdots (e_k+1)$. Thus, $A=2\cdot 2\cdot 2=8$, $B=6\cdot 3\cdot 2=36$, and C=2, with average value $\frac{A+B+C}{3}=\boxed{\frac{46}{3}}$.

- 34. The resulting figure is a semicircle with radius $\sqrt{2}$, and two half-squares with side length 1, which yields an area of $[\pi + 1]$.
- 35. The ratio of the areas is $\frac{360}{40} = 9$, hence the ratio of the sides will be $\sqrt{9} = 3$. The length h of the larger hypotenuse will satisfy $\frac{h}{15} = 3$, and we find $h = \boxed{45}$.
- 36. Since $\frac{x}{x+2} < \frac{61}{64}$, multiplying both sides of the inequality by 64(x+2) yields 64x < 61(x+2), which can be simplified to 3x < 122, then the largest integer value for x would be $\boxed{40}$.
- 37. Consider Hannah and Julia as if they were joint together into one block "person", so now there are 6 people. There are 6! = 12 ways to arrange them in a line. Now we "unravel" the block: either Hannah is to the left of Julia, or Julia is to the left of Hannah. Thus we double the number for a total of $2 \cdot 6! = \boxed{1440}$ different ways to arrange them.
- 38. We write $3.\overline{703} = 3.703703703...$ as $10 \cdot 0.\overline{370} = 10 \cdot 0.370370370...$, so our fractional expression will be equivalent to $10 \cdot \frac{370}{999}$. Since $999 = 27 \cdot 37$, we have $\frac{10 \cdot 370}{999} = \frac{10 \cdot 10 \cdot 37}{27 \cdot 37} = \boxed{\frac{100}{27}}$.
- 39. We can subtract equation 1 from equation 2 to get that $(3a^2+5b^2+7c^2+9d^2+11e^2+13f^2)-(a^2+3b^2+5c^2+7d^2+9e^2+11f^2)=2(a^2+b^2+c^2+d^2+e^2+f^2)=40-20=20$. Then adding that with equation 2, $(3a^2+5b^2+7c^2+9d^2+11e^2+13f^2)+2(a^2+b^2+c^2+d^2+e^2+f^2)=5a^2+7b^2+9c^2+11d^2+13e^2+15f^2=40+20=\boxed{60}$.
- 40. We can see that the quadrilateral XABY is a trapezoid, and since XY is tangent to circles A and B, $\angle XYB$ and $\angle YXA$ are both right. Since the sum of the angles in a trapezoid is 360 degrees, $\angle XAB + \angle YBA = 180$. We can see that $\triangle XAC$ and $\triangle YBC$ are isosceles, as two of their sides are radii. If we let $\angle XAC = \angle XAB = \alpha$, then $\angle YBC = \angle YBA = 180 \alpha$. Next, $\angle ACX = \frac{180 \alpha}{2}$, and $\angle BCY = \frac{180 (180 \alpha)}{2} = \frac{\alpha}{2}$. Since $\angle XCY = 180 (\angle ACX + \angle BCY)$, $\angle XCY = 180 90 = \boxed{90}$ degrees.
- 41. There are 2 cases in which both balls are the same color: Either both are green, or both are blue. P(both are green) $= \frac{10}{16} * \frac{8}{N+8}$ P(both are blue) $= \frac{6}{16} * \frac{N}{N+8}$

The sum of these probabilities must be $0.575 = \frac{23}{40}$

 $\frac{6N+80}{16\cdot(N+8)} = 23/40$. Cross-multiplying, we get: 240N+3200 = 368N+2944 $256 = 128N \rightarrow N = 2$.

- 42. By difference of squares, the expression becomes $\frac{(5^{2016} + 5^{2014})(5^{2016} 5^{2014})}{(5^{2015} + 5^{2013})(5^{2015} 5^{2013})}.$ After factoring out 5^{2014} from the numerator and 5^{2013} from the denominator: $\frac{5^{2014} \cdot (5^2 + 1) \cdot 5^{2014} \cdot (5^2 1)}{5^{2013} \cdot (5^2 + 1) \cdot 5^{2013} \cdot (5^2 1)}.$ After cancellation, the result is $5 \cdot 5 = \boxed{25}$.
- 43. Let x = 2016. Therefore, we get $\sqrt{(x)(x+1)(x+2)(x+3)+1}$. By multiplying by pair, we get $\sqrt{(x^2+3x)(x^2+3x+2)+1}$, which we can multiply out to get $\sqrt{(x^2+3x)^2+2(x^2+3x)+1}$, which then factors out to x^2+3x+1 . Then, you just plug back in x = 2016 and solve to get 4070305.
- 44. Let z = x + 5. Thus the equation becomes

$$(z-3)(z-1)(z+1)(z+3) = (z-3)^2 + (z-1)^2 + (z+1)^2 + (z+3)^2 + 4$$

This evaluates to,

$$(z^2 - 9)(z^2 - 1) = 4z^2 + 24$$

Which is also,

$$z^4 - 10z^2 + 9 = 4z^2 + 24$$

If this is solved as a quadratic in z^2 and then the solutions for z are substituted back in to get the values of x, it can be seen that the only real solutions for x are $-5 \pm \sqrt{15}$.

45. Let

$$x = \sqrt{7 + \sqrt{13}} - \sqrt{7 - \sqrt{13}}$$

Then,

$$x^{2} = 7 + \sqrt{13} - 2\sqrt{49 - 13} + 7 - \sqrt{13} = 14 - 12 = 2 \Rightarrow x = \sqrt{2}$$

We can quickly check that $x \neq -\sqrt{2}$ by noticing that $\sqrt{7+\sqrt{13}} > \sqrt{7-\sqrt{13}}$. However, the problem statement asks for the answer in the form $a\sqrt{b}$. We have a=1 and b=2, so $a+b=\boxed{3}$.

- 46. Let Q(x) = P(x-2). Then, $Q(x) = (x-2)^10 + 2(x-2)^9 + 4(x-2)^8 + 8(x-2)^7 + R(x)$, where R(x) is a polynomial of degree 6. The coefficient of the term with degree 7 is therefore $(-1 \cdot \binom{10}{3} \cdot 2^3) + (2 \cdot \binom{9}{2} \cdot 2^2) + (-4 \cdot \binom{8}{1} \cdot 2^1) + (8 \cdot \binom{7}{0} \cdot 2^0) = -960 + 288 64 + 8 = \boxed{-728}$.
- 47. Our new polynomial is of the form $x^3 + bx^2 + cx + d$. By Vieta's, -b = pq + pr + qr, which equals -1 from the original polynomial. Likewise, $-d = pq \cdot pr \cdot qr = p^2q^2r^2 = (-30)^2 = 900$. Finally, $c = pq \cdot pr + pq \cdot qr + pr \cdot qr = p^2qr + pq^2r + pqr^2 = pqr(p+q+r) = (-30)(6) = -180$. Now, we can plug in the values we found for each coefficient into the polynomial, which yields $x^3 + x^2 180x 900$. Thus, our answer is $1 180 900 = \boxed{-1079}$.
- 48. Let $S = \frac{1}{2} + \frac{3}{4} + \frac{5}{8} + \frac{7}{16} + \dots$ Then we know that $\frac{1}{2}S = \frac{1}{4} + \frac{3}{8} + \frac{5}{16} + \dots$ Subtracting yields that

$$\frac{1}{2}S = \frac{1}{2} + \frac{2}{4} + \frac{2}{8} + \frac{2}{16} + \dots$$

Hence we have,

$$\frac{1}{2}S = \frac{1}{2} + \left(\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots\right)$$

The expression in the parenthesis is a geometric series with starting term $\frac{1}{2}$ as well as a common ratio of $\frac{1}{2}$. Thus the expression in the parentheses evaluates to $\frac{\frac{1}{2}}{1-\frac{1}{2}}=1$. Multiplying the overall equation by 2, we have $S=2\cdot(\frac{1}{2}+1)=\boxed{3}$.

49. Since $2016^2 = 2^{10} \cdot 3^4 \cdot 7^2$, so $k = (10+1) \cdot (4+1) \cdot (2+1) = 165$. Notice for every d_i other than 2016, there is a d_j such that the product of d_i and d_j is 2016^2 . Now consider the sum $\frac{1}{d_i + 2016} + \frac{1}{d_j + 2016}$:

$$\begin{split} \frac{1}{d_i + 2016} + \frac{1}{d_j + 2016} &= \frac{1}{d_i + 2016} + \frac{1}{\frac{2016^2}{d_i} + 2016} \\ &= \frac{1}{d_i + 2016} + \frac{d_i}{2016d_i + 2016^2} \\ &= \frac{2016}{2016d_i + 2016^2} + \frac{d_i}{2016d_i + 2016^2} \\ &= \frac{1}{2016} \end{split}$$

Among the 165 divisors of 2016^2 there are $\frac{165-1}{2}=82$ pairs of such d_i and d_j . Therefore, the desired sum is $82\cdot\frac{1}{2016}+\frac{1}{2016+2016}=\boxed{\frac{165}{4032}}$.

50. Let Q be the midpoint of BC. Since $\triangle BMQ \sim \triangle BAC$ with a 1 : 2 ratio, QM = AC/2 = 6. Similarly, QN = BD/2 = 9. Then, from right triangle MQN, we have that $MN = \sqrt{9^2 + 6^2} = \sqrt{117}$. Finally, from right triangle MNP, $MP = \sqrt{117 - 36} = \boxed{9}$.