10

15

HEXYLCARBOXANILIDE UND DEREN VERWENDUNG ZUR BEKÄMPFUNG VON UNERWÜNSCHTEN MIKROORGANISMEN

Die vorliegende Erfindung betrifft neue Hexylcarboxanilide, mehrere Verfahren zu deren Herstellung und deren Verwendung zur Bekämpfung von unerwünschten Mikroorganismen.

Es ist bereits bekannt, dass zahlreiche Carboxanilide fungizide Eigenschaften besitzen (vgl. z.B. WO 03/010149, WO 02/059086, WO 02/38542, WO 00/09482, EP-A 0 591 699, EP-A 0 589 301 und EP-A 0 545 099). So sind z.B. 5-Fluor-1,3-dimethyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1H-pyrazol-4-carboxamid aus WO 03/010149, N-Allyl-N-[2-(1,3-dimethylbutyl)phenyl]-1-methyl-3-(trifluormethyl)-1H-pyrazol-4-carboxamid aus WO 02/059086 und N-[2-(1,3-Dimethylbutyl)phenyl]-1-methyl-4-(trifluormethyl)-1H-pyrrol-3-carboxamid aus WO 02/38542 bekannt. Die Wirksamkeit dieser Stoffe ist gut, lässt aber bei niedrigen Aufwandmengen in manchen Fällen zu wünschen übrig.

Es wurden nun neue Hexylcarboxanilide der Formel (I)

gefunden, in welcher

L für
$$\stackrel{}{ }$$
 $\stackrel{}{ }$ $\stackrel{}{ }$ steht,

wobei die mit * markierte Bindung mit dem Amid verbunden ist, während die mit # markierte Bindung mit der Alkylseitenkette verknüpft ist,

für Wasserstoff, C₁-C₈-Alkyl, C₁-C₆-Alkylsulfinyl, C₁-C₆-Alkylsulfonyl, C₁-C₄-Alkoxy-C₁-C₄-alkyl, C₃-C₈-Cycloalkyl; C₁-C₆-Halogenalkyl, C₁-C₄-Halogenalkylthio, C₁-C₄-Halogenalkylsulfinyl, C₁-C₄-Halogenalkylsulfonyl, Halogen-C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-Halogen-cycloalkyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen; Formyl, Formyl-C₁-C₃-alkyl, (C₁-C₃-Alkyl)carbonyl-C₁-C₃-alkyl, (C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl; Halogen-(C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl mit jeweils 1 bis 13 Fluor-, Chlor- und/oder Bromatomen; (C₁-C₈-Alkyl)carbonyl, (C₁-C₈-Alkoxy)carbonyl, (C₁-C₄-alkyl)carbonyl, (C₃-C₈-Cycloalkyl)carbonyl; (C₁-C₆-Halogenalkyl)carbonyl, (C₁-C₆-Halogenalkoxy)carbonyl, (Halogen-C₁-C₄-alkoxy-C₁-C₄-alkyl)carbonyl, (C₃-C₈-Halogencycloalkyl)carbonyl mit jeweils

15

25

30

1 bis 9 Fluor-, Chlor- und/oder Bromatomen; oder -C(=O)C(=O)R⁴, -CONR⁵R⁶ oder -CH₂NR⁷R⁸ steht,

- R² für Wasserstoff, Fluor, Chlor, Methyl oder Trifluormethyl steht,
- R³ für Halogen, C₁-C₈-Alkyl oder C₁-C₈-Halogenalkyl steht,
- für Wasserstoff, C₁-C₈-Alkyl, C₁-C₈-Alkoxy, C₁-C₄-Alkoxy-C₁-C₄-alkyl, C₃-C₈-Cycloalkyl; C₁-C₆-Halogenalkyl, C₁-C₆-Halogenalkoxy, Halogen-C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-Halogencycloalkyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen steht,
 - R⁵ und R⁶ unabhängig voneinander jeweils für Wasserstoff, C₁-C₈-Alkyl, C₁-C₄-Alkoxy-C₁-C₄-alkyl, C₃-C₈-Cycloalkyl; C₁-C₈-Halogenalkyl, Halogen-C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-Halogen-cycloalkyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen stehen,
 - R⁵ und R⁶ außerdem gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, einen gegebenenfalls einfach oder mehrfach, gleich oder verschieden durch Halogen oder C₁-C₄-Alkyl substituierten gesättigten Heterocyclus mit 5 bis 8 Ringatomen bilden, wobei der Heterocyclus 1 oder 2 weitere, nicht benachbarte Heteroatome aus der Reihe Sauerstoff, Schwefel oder NR⁹ enthalten kann,
 - R⁷ und R⁸ unabhängig voneinander für Wasserstoff, C₁-C₈-Alkyl, C₃-C₈-Cycloalkyl; C₁-C₈-Halogenalkyl, C₃-C₈-Halogencycloalkyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen stehen,
- R⁷ und R⁸ außerdem gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, einen gegebenen20 falls einfach oder mehrfach, gleich oder verschieden durch Halogen oder C₁-C₄-Alkyl
 substituierten gesättigten Heterocyclus mit 5 bis 8 Ringatomen bilden, wobei der Heterocyclus 1 oder 2 weitere, nicht benachbarte Heteroatome aus der Reihe Sauerstoff, Schwefel
 oder NR⁹ enthalten kann,
 - R⁹ für Wasserstoff oder C₁-C₆-Alkyl steht,

A für den Rest der Formel (A1)

- für Wasserstoff, Hydroxy, Formyl, Cyano, Fluor, Chlor, Brom, Nitro, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, C₃-C₆-Cycloalkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkyl bis 5 Halogenatomen, Aminocarbonyl oder Aminocarbonyl-C₁-C₄-alkyl steht,
- R¹¹ für Wasserstoff, Chlor, Brom, Iod, Cyano, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkyl oder C₁-C₄-Halogenalkylthio mit jeweils 1 bis 5 Halogenatomen, steht und

 R^{12} für Wasserstoff, C1-C4-Alkyl, Hydroxy-C1-C4-alkyl, C2-C6-Alkenyl, C3-C6-Cycloalkyl, C₁-C₄-Alkylthio-C₁-C₄-alkyl, C₁-C₄-Alkoxy-C₁-C₄-alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkylthio-C₁-C₄-alkyl, C₁-C₄-Halogenalkoxy-C₁-C₄-alkyl mit jeweils 1 bis 5 Halogenatomen, oder für Phenyl steht,

5 oder

Α für den Rest der Formel (A2)

(A2) steht, in welcher

R¹³ und R¹⁴ unabhängig voneinander für Wasserstoff, Halogen, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit jeweils 1 bis 5 Halogenatomen stehen und

 R^{15} für Halogen, Cyano oder C1-C4-Alkyl, oder C1-C4-Halogenalkyl oder C1-C4-Halogenalkoxy mit jeweils 1 bis 5 Halogenatomen steht,

oder

10

15

25

Α für den Rest der Formel (A3)

R¹⁶ und R¹⁷ unabhängig voneinander für Wasserstoff, Halogen, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit 1 bis 5 Halogenatomen stehen und

 R^{18} für Wasserstoff, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit 1 bis 5 Halogenatomen steht,

oder

für den Rest der Formel (A4) 20 A

(A4) steht, in welcher

für Halogen, Hydroxy, Cyano, C1-C4-Alkyl, C1-C4-Alkoxy, C1-C4-Alkylthio, C1-C4-R19 Halogenalkyl, C₁-C₄-Halogenalkylthio oder C₁-C₄-Halogenalkoxy mit jeweils 1 bis 5 Halogenatomen steht und

 R^{20} für Wasserstoff, Halogen, Cyano, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, C₁-C4-Halogenalkyl, C1-C4-Halogenalkoxy mit jeweils 1 bis 5 Halogenatomen, C1-C4-Alkylsulfinyl oder C1-C4-Alkylsulfonyl steht,

oder

für den Rest der Formel (A5) Α

oder

Α für den Rest der Formel (A6)

(A6) steht, in welcher

 R^{21} für C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit 1 bis 5 Halogenatomen steht, 5

oder

Α für den Rest der Formel (A7)

(A7) steht, in welcher

 R^{22} für C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit 1 bis 5 Halogenatomen steht,

10 oder

> für den Rest der Formel (A8) A

(A8) steht, in welcher

R²³ und R²⁴ unabhängig voneinander für Wasserstoff, Halogen, Amino, C₁-C₄-Alkyl oder C₁-C4-Halogenalkyl mit 1 bis 5 Halogenatomen steht und

 R^{25} für Wasserstoff, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit 1 bis 5 Halogenatomen steht,

oder

15

für den Rest der Formel (A9) A

R²⁶ und R²⁷ unabhängig voneinander für Wasserstoff, Halogen, Amino, Nitro, C₁-C₄-Alkyl 20 oder C1-C4-Halogenalkyl mit 1 bis 5 Halogenatomen stehen und

> R^{28} für Halogen, C1-C4-Alkyl oder C1-C4-Halogenalkyl mit 1 bis 5 Halogenatomen steht,

oder

für den Rest der Formel (A10) Α

R²⁹ für Wasserstoff, Halogen, Amino, C₁-C₄-Alkylamino, Di-(C₁-C₄-alkyl)amino, Cyano, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit 1 bis 5 Halogenatomen steht und

R³⁰ für Halogen, Hydroxy, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₃-C₆-Cycloalkyl, C₁-C₄-Halogenalkyl oder C₁-C₄-Halogenalkoxy mit jeweils 1 bis 5 Halogenatomen steht,

5 oder

A für den Rest der Formel (A11)

R³¹ für Wasserstoff, Halogen, Amino, C₁-C₄-Alkylamino, Di-(C₁-C₄-alkyl)amino, Cyano, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit 1 bis 5 Halogenatomen steht und

10 R³² für Halogen, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit 1 bis 5 Halogenatomen steht, oder

A für den Rest der Formel (A12)

R³³ für Wasserstoff oder C₁-C₄-Alkyl steht und

R³⁴ für Halogen oder C₁-C₄-Alkyl steht,

oder

15

A für den Rest der Formel (A13)

R³⁵ für C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit 1 bis 5 Halogenatomen steht,

20 oder

A für den Rest der Formel (A14)

R³⁶ für Wasserstoff, Halogen, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit 1 bis 5 Halogenatomen steht,

25 oder

A für den Rest der Formel (A15)

R³⁷ für Halogen, Hydroxy, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkylthio oder C₁-C₄-Halogenalkoxy mit jeweils 1 bis 5 Halogenatomen steht,

oder

5 A für den Rest der Formel (A16)

$$R^{40}$$
 R^{39}
 R^{41}
(A16)

(A16) steht, in welcher

für Wasserstoff, Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl mit 1 bis 5 Halogenatomen, C₁-C₄-Alkoxy-C₁-C₄-alkyl, Hydroxy-C₁-C₄-alkyl, C₁-C₄-Alkylsulfonyl, Di(C₁-C₄-alkyl)aminosulfonyl, C₁-C₆-Alkylcarbonyl oder für jeweils gegebenenfalls substituiertes Phenylsulfonyl oder Benzoyl steht,

R³⁹ für Wasserstoff, Halogen, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit 1 bis 5 Halogenatomen steht,

R⁴⁰ für Wasserstoff, Halogen, Cyano, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit 1 bis 5 Halogenatomen steht,

R⁴¹ für Wasserstoff, Halogen, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit 1 bis 5 Halogenatomen steht,

oder

10

15

A für den Rest der Formel (A17)

(A17) steht, in welcher

20 R^{42} für C_1 - C_4 -Alkyl steht.

Die erfindungsgemäßen Verbindungen können gegebenenfalls als Mischungen verschiedener möglicher isomerer Formen, insbesondere von Stereoisomeren, wie z. B. E- und Z-, threo- und erythro-, sowie optischen Isomeren, gegebenenfalls aber auch von Tautomeren vorliegen. Es werden sowohl die E- als auch die Z-Isomeren, wie auch die threo- und erythro-, sowie die optischen Isomeren, beliebige Mischungen dieser Isomeren, sowie die möglichen tautomeren Formen beansprucht.

Weiterhin wurde gefunden, dass man Hexylcarboxanilide der Formel (I) erhält, indem man

a) Carbonsäure-Derivate der Formel (II)

in welcher

A die oben angegebenen Bedeutungen hat und

X1 für Halogen oder Hydroxy steht,

mit einem Anilin-Derivate der Formel (III)

in welcher L, R1 und R3 die oben angegebenen Bedeutungen haben,

gegebenenfalls in Gegenwart eines Katalysators, gegebenenfalls in Gegenwart eines Kondensationsmittels, gegebenenfalls in Gegenwart eines Säurebindemittels und gegebenenfalls in Gegenwart eines Verdünnungsmittels umsetzt,

10 oder

5

b) Hexylcarboxanilide der Formel (I-a)

in welcher L, A und R³ die oben angegebenen Bedeutungen haben mit Halogeniden der Formel (IV)

$$R^{1-A} X^2$$
 (IV)

in welcher

X² für Chlor, Brom oder Iod steht,

R^{1-A} für C₁-C₈-Alkyl, C₁-C₆-Alkylsulfinyl, C₁-C₆-Alkylsulfonyl, C₁-C₄-Alkoxy-C₁-C₄-alkyl, C₃-C₈-Cycloalkyl; C₁-C₆-Halogenalkyl, C₁-C₄-Halogenalkylthio, C₁-C₄-Halogenalkylsulfinyl, C₁-C₄-Halogenalkylsulfonyl, Halogen-C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-Halogencycloalkyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen; Formyl, Formyl-C₁-C₃-alkyl, (C₁-C₃-Alkyl)carbonyl-C₁-C₃-alkyl, (C₁-C₃-Alkoxy)carbonyl-C₁-C₃-alkyl; Halogen-(C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, Halogen-(C₁-C₃-alkyl) mit jeweils 1 bis 13 Fluor-, Chlor- und/oder Bromatomen;

(C₁-C₈-Alkyl)carbonyl, (C₁-C₈-Alkoxy)carbonyl, (C₁-C₄-Alkoxy-C₁-C₄-alkyl)carbonyl, (C₃-C₈-Cycloalkyl)carbonyl; (C₁-C₆-Halogenalkyl)carbonyl, (C₁-C₆-Halogenalkoxy)carbonyl, (Halogen-C₁-C₄-alkoxy-C₁-C₄-alkyl)carbonyl, (C₃-C₈-Halogencycloalkyl)carbonyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen; oder -C(=O)C(=O)R⁴, -CONR⁵R⁶ oder -CH₂NR⁷R⁸ steht,

wobei R⁴, R⁵, R⁶, R⁷ und R⁸ die oben angegebenen Bedeutungen haben,

in Gegenwart einer Base und in Gegenwart eines Verdünnungsmittels umsetzt.

15

20

25

Schließlich wurde gefunden, dass die neuen Hexylcarboxanilide der Formel (I) sehr gute mikrobizide Eigenschaften besitzen und zur Bekämpfung unerwünschter Mikroorganismen sowohl im Pflanzenschutz als auch im Materialschutz verwendbar sind.

- Die erfindungsgemäßen Hexylcarboxanilide sind durch die Formel (I) allgemein definiert. Bevorzugte Restedefinitionen der vorstehenden und nachfolgend genannten Formeln sind im Folgenden angegeben. Diese Definitionen gelten für die Endprodukte der Formel (I) wie für alle Zwischenprodukte gleichermaßen.
- 10 L steht <u>bevorzugt</u> für L-1, wobei R² jeweils die allgemeinen, bevorzugten, besonders bevorzugten, ganz besonders bevorzugten oder insbesondere bevorzugten Bedeutungen haben kann.
 - L steht außerdem bevorzugt für L-2.
 - L steht außerdem bevorzugt für L-3.
- 15 L steht außerdem bevorzugt für L-4.
 - L steht <u>besonders bevorzugt</u> für L-1, wobei R² jeweils die allgemeinen, bevorzugten, besonders bevorzugten, ganz besonders bevorzugten oder insbesondere bevorzugten Bedeutungen haben kann.
 - L steht außerdem besonders bevorzugt für L-2.
- 20 L steht ganz besonders bevorzugt für L-1, wobei R² jeweils die allgemeinen, bevorzugten, besonders bevorzugten, ganz besonders bevorzugten oder insbesondere bevorzugten Bedeutungen haben kann.
- R^{1} steht bevorzugt für Wasserstoff, C1-C6-Alkyl, C1-C4-Alkylsulfinyl, C1-C4-Alkylsulfonyl, C1-C₁-Alkoxy-C₁-C₃-alkyl, C₃-C₆-Cycloalkyl; C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkylthio, C₁-25 C_4 -Halogenalkylsulfinyl, C_1 - C_4 -Halogenalkylsulfonyl, Halogen- C_1 - C_3 -alkoxy- C_1 - C_3 -alkyl, C₃-C₈-Halogencycloalkyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen; Formyl, Formyl-C₁-C₃-alkyl, (C₁-C₃-Alkyl)carbonyl-C₁-C₃-alkyl, (C₁-C₃-Alkoxy)carbonyl-C₁-C₃alkyl; Halogen-(C1-C3-alkyl)carbonyl-C1-C3-alkyl, Halogen-(C1-C3-alkoxy)carbonyl-C1-C3-al-30 kyl mit jeweils 1 bis 13 Fluor-, Chlor- und/oder Bromatomen; (C₁-C₆-Alkyl)carbonyl, (C₁-C₄-Alkoxy)carbonyl, (C₁-C₃-Alkoxy-C₁-C₃-alkyl)carbonyl, (C₃- C_6 -Cycloalkyl)carbonyl; (C_1 - C_4 -Halogenalkyl)carbonyl, (C_1 - C_4 -Halogenalkoxy)carbonyl, (Halogen-C₁-C₃-alkoxy-C₁-C₃-alkyl)carbonyl, (C₃-C₆-Halogencycloalkyl)carbonyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen; oder -C(=O)C(=O)R⁴, -CONR⁵R⁶ oder -CH₂NR⁷R⁸. 35

- steht besonders bevorzugt für Wasserstoff, Methyl, Ethyl, n- oder iso-Propyl, n-, iso-, sec- R^1 oder tert-Butyl, Pentyl oder Hexyl, Methylsulfinyl, Ethylsulfinyl, n- oder iso-Propylsulfinyl, n-, iso-, sec- oder tert-Butylsulfinyl, Methylsulfonyl, Ethylsulfonyl, n- oder iso-Propylsulfonyl, n-, iso-, sec- oder tert-Butylsulfonyl, Methoxymethyl, Methoxyethyl, Ethoxymethyl, Ethoxyethyl, Cyclopropyl, Cyclopentyl, Cyclohexyl, Trifluormethyl, Trichlormethyl, 5 Trifluorethyl, Difluormethylthio, Difluorchlormethylthio, Trifluormethylthio, Trifluormethylsulfinyl, Trifluormethylsulfonyl, Trifluormethoxymethyl; Formyl, -CH2-CHO, -(CH2)2--CH₂-CO-CH₂CH₃, -CH₂-CO-CH(CH₃)₂, -(CH₂)₂-CO-CH₃,CHO. -CH₂-CO-CH₃, -CH₂-CO₂CH₂CH₃, -CH₂-CO₂CH₃, -(CH₂)₂-CO-CH(CH₃)₂, -(CH₂)₂-CO-CH₂CH₃, $-(CH_2)_2-CO_2CH_3$, $-(CH_2)_2-CO_2CH_2CH_3$, $-(CH_2)_2-CO_2CH(CH_3)_2$, $-CH_2-CO_2CH(CH_3)_2$, 10 $-CH_2-CO-CF_3, -CH_2-CO-CCl_3, -CH_2-CO-CH_2CF_3, -CH_2-CO-CH_2CCl_3, -(CH_2)_2-CO-CH_2CF_3, -(CH_2)_2-CO-CH_2CF_3-CO-CH_2CF_3-CO-CH_2CF_3-CO-CH_2CF_3-CO-CH_2CF_3-CO-CH_2CF_3-CO-CH_2CF_3-CO-CH_2CF_3-CO-CH_2CF_3-CO-CH_2CF_3-CO-CH_2CF_3-CO-CH_2CF_3-CO-CH_2CF_3-CO-CH_2CF_3-CO$ -CH₂-CO₂CH₂CCl₃, -CH₂-CO₂CH₂CF₃, -CH₂-CO₂CF₂CF₃, -(CH₂)₂-CO-CH₂CCl₃, $-CH_2-CO_2CCl_2CCl_3, \quad -(CH_2)_2-CO_2CH_2CF_3, \quad -(CH_2)_2-CO_2CF_2CF_3, \quad -(CH_2)_2-CO_2CH_2CCl_3, \quad -(CH_2)_2-CO_2CH_2CCl_2, \quad -(CH_2)_2-CO_2CH_2CCl_2,$ -(CH₂)₂-CO₂CCl₂CCl₃;
- Methylcarbonyl, Ethylcarbonyl, n-Propylcarbonyl, iso-Propylcarbonyl, tert-Butylcarbonyl, Methoxycarbonyl, Ethoxycarbonyl, tert-Butoxycarbonyl, Cyclopropylcarbonyl; Trifluormethylcarbonyl, Trifluormethoxycarbonyl, oder -C(=O)C(=O)R⁵, -CONR⁶R⁷ oder -CH₂NR⁸R⁹.
- steht ganz besonders bevorzugt für Wasserstoff, Methyl, Methoxymethyl, Formyl, -CH₂-CHO, -(CH₂)₂-CHO, -CH₂-CO-CH₃, -CH₂-CO-CH₂CH₃, -CH₂-CO-CH(CH₃)₂, -C(=0)CHO, -C(=0)C(=0)CH₃, -C(=0)C(=0)CH₂OCH₃, -C(=0)CO₂CH₃, -C(=0)CO₂CH₂CH₃.
 - R² steht bevorzugt für Wasserstoff.
- steht außerdem <u>bevorzugt</u> für Fluor, wobei Fluor <u>besonders bevorzugt</u> in 4-, 5- oder 6Position, <u>ganz besonders bevorzugt</u> in 4- oder 6-Position, <u>insbesondere</u> in 4-Position des
 Anilidrestes steht [vgl. oben Formel (I)].
 - R² steht außerdem <u>bevorzugt</u> für Chlor, wobei Chlor <u>besonders bevorzugt</u> in 5-Position des Anilidrestes steht [vgl. oben Formel (I)]. Chlor steht außerdem <u>besonders bevorzugt</u> in 4-Position des Anilidrestes.
- 30 R² steht außerdem <u>bevorzugt</u> für Methyl, wobei Methyl <u>besonders bevorzugt</u> in 3-Position des Anilidrestes steht [vgl. oben Formel (I)].
 - R² steht außerdem <u>bevorzugt</u> für Trifluormethyl, wobei Trifluormethyl <u>besonders bevorzugt</u> in 4- oder 5-Position des Anilidrestes steht [vgl. oben Formel (I)].
- steht <u>bevorzugt</u> für Fluor, Chlor, Brom, Iod, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl mit jeweils 1 bis 13 Fluor-, Chlor- und/oder Bromatomen.

- R³ steht <u>besonders bevorzugt</u> für Fluor, Chlor, Brom, Methyl, Ethyl, n-, iso-Propyl, n-, iso-, sec-, tert-Butyl oder für C₁-C₄-Halogenalkyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen.
- R³ steht ganz besonders bevorzugt für Fluor, Chlor, Methyl, Ethyl oder Trifluormethyl.

10

15

20

- R⁴ steht <u>bevorzugt</u> für Wasserstoff, C₁-C₆-Alkyl, C₁-C₄-Alkoxy, C₁-C₃-Alkoxy-C₁-C₃-alkyl, C₃-C₆-Cycloalkyl; C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkoxy, Halogen-C₁-C₃-alkoxy-C₁-C₃-alkyl, C₃-C₆-Halogencycloalkyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen.
- R⁴ steht <u>besonders bevorzugt</u> für Wasserstoff, Methyl, Ethyl, n- oder iso-Propyl, tert-Butyl, Methoxy, Ethoxy, n- oder iso-Propoxy, tert-Butoxy, Methoxymethyl, Cyclopropyl; Trifluor-methyl, Trifluormethoxy.
 - R⁵ und R⁶ stehen unabhängig voneinander <u>bevorzugt</u> für Wasserstoff, C₁-C₆-Alkyl, C₁-C₃-Alkoxy-C₁-C₃-alkyl, C₃-C₆-Cycloalkyl; C₁-C₄-Halogenalkyl, Halogen-C₁-C₃-alkoxy-C₁-C₃-alkyl, C₃-C₆-Halogencycloalkyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen.
 - R⁵ und R⁶ bilden außerdem gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, <u>bevorzugt</u> einen gegebenenfalls einfach bis vierfach, gleich oder verschieden durch Halogen oder C₁-C₄-Alkyl substituierten gesättigten Heterocyclus mit 5 oder 6 Ringatomen, wobei der Heterocyclus 1 oder 2 weitere, nicht benachbarte Heteroatome aus der Reihe Sauerstoff, Schwefel oder NR⁹ enthalten kann.
 - R⁵ und R⁶ stehen unabhängig voneinander <u>besonders bevorzugt</u> für Wasserstoff, Methyl, Ethyl, noder iso-Propyl, n-, iso-, sec- oder tert-Butyl, Methoxymethyl, Methoxyethyl, Ethoxymethyl, Ethoxyethyl, Cyclopropyl, Cyclopentyl, Cyclohexyl; Trifluormethyl, Trifluormethyl, Trifluormethyl, Trifluormethyl, Trifluormethyl, Trifluormethyl.
- R⁵ und R⁶ bilden außerdem gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, <u>besonders</u> <u>bevorzugt</u> einen gegebenenfalls einfach bis vierfach, gleich oder verschieden durch Fluor, Chlor, Brom oder Methyl substituierten gesättigten Heterocyclus aus der Reihe Morpholin, Thiomorpholin oder Piperazin, wobei das Piperazin am zweiten Stickstoffatom durch R⁹ substituiert sein kann.

30

- R⁷ und R⁸ stehen unabhängig voneinander <u>bevorzugt</u> für Wasserstoff, C₁-C₆-Alkyl, C₃-C₆-Cycloalkyl; C₁-C₄-Halogenalkyl, C₃-C₆-Halogencycloalkyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen.
- R⁷ und R⁸ bilden außerdem gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, <u>bevorzugt</u> einen gegebenenfalls einfach oder mehrfach, gleich oder verschieden durch Halogen oder C₁-C₄-Alkyl substituierten gesättigten Heterocyclus mit 5 oder 6 Ringatomen, wobei der

10

35

Heterocyclus 1 oder 2 weitere, nicht benachbarte Heteroatome aus der Reihe Sauerstoff, Schwefel oder NR⁹ enthalten kann.

- R⁷ und R⁸ stehen unabhängig voneinander <u>besonders bevorzugt</u> für Wasserstoff, Methyl, Ethyl, noder iso-Propyl, n-, iso-, sec- oder tert-Butyl, Methoxymethyl, Methoxyethyl, Ethoxymethyl, Ethoxyethyl, Cyclopentyl, Cyclopentyl, Cyclopentyl, Trifluormethyl, Trifluormet
- R⁷ und R⁸ bilden außerdem gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, <u>besonders</u>
 <u>bevorzugt</u> einen gegebenenfalls einfach bis vierfach, gleich oder verschieden durch Fluor,
 Chlor, Brom oder Methyl substituierten gesättigten Heterocyclus aus der Reihe Morpholin,
 Thiomorpholin oder Piperazin, wobei das Piperazin am zweiten Stickstoffatom durch R⁹ substituiert sein kann.
- R⁹ steht <u>bevorzugt</u> für Wasserstoff oder C₁-C₄-Alkyl.
- R⁹ steht <u>besonders bevorzugt</u> für Wasserstoff, Methyl, Ethyl, n- oder iso-Propyl, n-, iso-, secoder tert-Butyl.
 - A steht <u>bevorzugt</u> für einen der oben angegebenen Reste
 A1, A2, A3, A4, A5, A8, A9, A10, A11, A13, A15, A16 oder A17.
 - A steht <u>besonders bevorzugt</u> für einen der oben angegebenen Reste
- 20 A1, A2, A4, A5, A8, A10, A11, A13, A15, A16 oder A17.
 - A steht ganz besonders bevorzugt für den Rest A1.
 - A steht außerdem ganz besonders bevorzugt für den Rest A2.
 - A steht außerdem ganz besonders bevorzugt für den Rest A4.
 - A steht außerdem ganz besonders bevorzugt für den Rest A5.
- 25 A steht außerdem ganz besonders bevorzugt für den Rest A8.
 - A steht außerdem ganz besonders bevorzugt für den Rest A10.
 - A steht außerdem ganz besonders bevorzugt für den Rest All.
 - A steht außerdem ganz besonders bevorzugt für den Rest A13.
 - A steht außerdem ganz besonders bevorzugt für den Rest A15.
- 30 A steht außerdem ganz besonders bevorzugt für den Rest A17.
 - R¹⁰ steht <u>bevorzugt</u> für Wasserstoff, Hydroxy, Formyl, Cyano, Fluor, Chlor, Brom, Methyl, Ethyl, iso-Propyl, Methoxy, Ethoxy, Methylthio, Ethylthio, Cyclopropyl, C₁-C₂-Halogenalkyl, C₁-C₂-Halogenalkoxy mit jeweils 1 bis 5 Fluor, Chlor und/oder Bromatomen, Trifluormethylthio, Difluormethylthio, Aminocarbonyl, Aminocarbonylmethyl oder Aminocarbonylethyl.

- R¹⁰ steht <u>besonders bevorzugt</u> für Wasserstoff, Hydroxy, Formyl, Fluor, Chlor, Brom, Methyl, Ethyl, iso-Propyl, Methoxy, Ethoxy, Monofluormethyl, Monofluorethyl, Difluormethyl, Tri-fluormethyl, Difluorchlormethyl, Trichlormethyl, Dichlormethyl, Pentafluorethyl, Cyclopropyl, Methoxy, Ethoxy, Trifluormethoxy, Difluormethoxy, Trichlormethoxy, Methylthio, Ethylthio, Trifluormethylthio oder Difluormethylthio.
- R¹⁰ steht ganz besonders bevorzugt für Wasserstoff, Hydroxy, Formyl, Fluor, Chlor, Brom, Methyl, Ethyl, iso-Propyl, Methoxy, Cyclopropyl, Monofluormethyl, Monofluorethyl, Difluormethyl, Difluormethyl, Trifluormethyl, Difluorchlormethyl, Trichlormethyl, -CHFCH₃ oder Difluormethoxy.
- 10 R¹⁰ steht <u>insbesondere bevorzugt</u> für Wasserstoff, Hydroxy, Formyl, Chlor, Methyl, Ethyl, Methoxy, Cyclopropyl, Monofluormethyl, Difluormethyl, Dichlormethyl, Trifluormethyl, -CHFCH₃ oder Difluormethoxy.
- steht <u>bevorzugt</u> für Wasserstoff, Chlor, Brom, Iod, Methyl, Ethyl, Methoxy, Ethoxy,
 Methylthio, Ethylthio, C₁-C₂-Halogenalkyl mit 1 bis 5 Fluor, Chlor und/oder Bromatomen,
 - R¹¹ steht besonders bevorzugt für Wasserstoff, Chlor, Brom, Iod, Methyl oder -CHFCH₃.
 - R¹¹ steht ganz besonders bevorzugt für Wasserstoff, Chlor, Methyl oder -CHFCH₃.
- steht <u>bevorzugt</u> für Wasserstoff, Methyl, Ethyl, n-Propyl, iso-Propyl, C₁-C₂-Halogenalkyl mit

 1 bis 5 Fluor, Chlor und/oder Bromatomen, Hydroxymethyl, Hydroxyethyl, Cyclopropyl,

 Cyclopentyl, Cyclohexyl oder Phenyl.
 - R¹² steht <u>besonders bevorzugt</u> für Wasserstoff, Methyl, Ethyl, iso-Propyl, Trifluormethyl, Difluormethyl, Hydroxymethyl, Hydroxyethyl oder Phenyl.
 - R¹² steht ganz besonders bevorzugt für Wasserstoff, Methyl, Trifluormethyl oder Phenyl.
- 25 R¹² steht <u>insbesondere bevorzugt</u> für Methyl.
 - R¹³ und R¹⁴ stehen unabhängig voneinander <u>bevorzugt</u> für Wasserstoff, Fluor, Chlor, Brom, Methyl, Ethyl oder C₁-C₂-Halogenalkyl mit 1 bis 5 Fluor, Chlor und/oder Bromatomen.
 - R¹³ und R¹⁴ stehen unabhängig voneinander <u>besonders bevorzugt</u> für Wasserstoff, Fluor, Chlor, Brom, Methyl, Ethyl, Difluormethyl, Trifluormethyl, Difluorchlormethyl oder Trichlormethyl.
 - R¹³ und R¹⁴ stehen unabhängig voneinander ganz besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom oder Methyl.
 - R¹³ und R¹⁴ stehen <u>insbesondere bevorzugt</u> jeweils für Wasserstoff.
- 35 R¹⁵ steht <u>bevorzugt</u> für Fluor, Chlor, Brom, Iod, Cyano, Methyl, Ethyl, C₁-C₂-Halogenalkyl oder C₁-C₂-Halogenalkoxy mit jeweils 1 bis 5 Fluor, Chlor und/oder Bromatomen.

- R¹⁵ steht <u>besonders bevorzugt</u> für Fluor, Chlor, Brom, Iod, Cyano, Methyl, Trifluormethyl, Trifluormethoxy, Difluormethoxy, Difluormethoxy oder Trichlormethoxy.
- R¹⁵ steht <u>ganz besonders bevorzugt</u> für Fluor, Chlor, Brom, Iod, Methyl, Trifluormethyl oder Trifluormethoxy.
- 5 R¹⁵ steht <u>insbesondere bevorzugt</u> für Chlor oder Methyl.
 - R¹⁶ und R¹⁷ stehen unabhängig voneinander <u>bevorzugt</u> für Wasserstoff, Fluor, Chlor, Brom, Methyl, Ethyl oder C₁-C₂-Halogenalkyl mit 1 bis 5 Fluor, Chlor und/oder Bromatomen.
 - R¹⁶ und R¹⁷ stehen unabhängig voneinander <u>besonders bevorzugt</u> für Wasserstoff, Fluor, Chlor, Brom, Methyl, Ethyl, Difluormethyl, Trifluormethyl, Difluorchlormethyl oder Trichlormethyl.
 - R¹⁶ und R¹⁷ stehen unabhängig voneinander ganz besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom oder Methyl.
 - R¹⁶ und R¹⁷ stehen <u>insbesondere bevorzugt</u> jeweils für Wasserstoff.

10

- R¹⁸ steht <u>bevorzugt</u> für Wasserstoff, Methyl, Ethyl oder C₁-C₂-Halogenalkyl mit 1 bis 5 Fluor, Chlor und/oder Bromatomen.
- R¹⁸ steht <u>besonders bevorzugt</u> für Wasserstoff, Methyl oder Trifluormethyl.
- R¹⁸ steht ganz besonders bevorzugt für Methyl.

- R¹⁹ steht <u>bevorzugt</u> für Fluor, Chlor, Brom, Iod, Hydroxy, Cyano, C₁-C₄-Alkyl, Methoxy, Ethoxy, Methylthio, Ethylthio, Difluormethylthio, Trifluormethylthio, C₁-C₂-Halogenalkyl oder C₁-C₂-Halogenalkoxy mit jeweils 1 bis 5 Fluor, Chlor und/oder Bromatomen.
- R¹⁹ steht <u>besonders bevorzugt</u> für Fluor, Chlor, Brom, Iod, Hydroxy, Cyano, Methyl, Ethyl, n-25 Propyl, iso-Propyl, n-Butyl, iso-Butyl, sec-Butyl, tert-Butyl, Trifluormethyl, Difluormethyl, Difluorchlormethyl, Trichlormethyl, Methoxy, Ethoxy, Methylthio, Ethylthio, Difluormethylthio, Trifluormethylthio, Trifluormethoxy, Difluormethoxy, Difluorchlormethoxy oder Trichlormethoxy.
- steht ganz besonders bevorzugt für Fluor, Chlor, Brom, Iod, Hydroxy, Methyl, Trifluormethyl, Difluormethyl oder Trichlormethyl.
 - R²⁰ steht <u>bevorzugt</u> für Wasserstoff, Fluor, Chlor, Brom, Iod, Cyano, C₁-C₄-Alkyl, Methoxy, Ethoxy, Methylthio, Ethylthio, C₁-C₂-Halogenalkyl oder C₁-C₂-Halogenalkoxy mit jeweils 1 bis 5 Fluor, Chlor und/oder Bromatomen, C₁-C₂-Alkylsulfinyl oder C₁-C₂-Alkylsulfonyl.
- steht <u>besonders bevorzugt</u> für Wasserstoff, Fluor, Chlor, Brom, Iod, Cyano, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sec-Butyl, tert-Butyl, Trifluormethyl, Difluormethyl, Difluor-

- chlormethyl, Trichlormethyl, Methoxy, Ethoxy, Methylthio, Ethylthio, Trifluormethoxy, Difluormethoxy, Difluormethoxy, Trichlormethoxy, Methylsulfinyl oder Methylsulfonyl.
- R²⁰ steht ganz besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Iod, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sec-Butyl, tert-Butyl, Trifluormethyl, Difluormethyl, Trichlormethyl, Methylsulfinyl oder Methylsulfonyl.
- R²⁰ steht <u>insbesondere bevorzugt</u> für Wasserstoff oder Trifluormethyl,.
- R²¹ steht <u>bevorzugt</u> für Methyl, Ethyl oder C₁-C₂-Halogenalkyl mit 1 bis 5 Fluor, Chlor und/oder Bromatomen.
- steht <u>besonders bevorzugt</u> für Methyl, Ethyl, Trifluormethyl, Difluormethyl, Difluorchlormethyl oder Trichlormethyl.
 - R²¹ steht <u>ganz besonders bevorzugt</u> für Methyl, Trifluormethyl, Difluormethyl oder Trichlormethyl.
- steht <u>bevorzugt</u> für Methyl, Ethyl, Trifluormethyl, Difluormethyl, Difluorchlormethyl oder
 Trichlormethyl.
 - R²² steht <u>besonders bevorzugt</u> für Methyl, Trifluormethyl, Difluormethyl oder Trichlormethyl.
 - R²³ und R²⁴ stehen unabhängig voneinander <u>bevorzugt</u> für Wasserstoff, Fluor, Chlor, Brom, Amino, Methyl, Ethyl oder C₁-C₂-Halogenalkyl mit 1 bis 5 Fluor, Chlor und/oder Bromatomen.
- 20 R²³ und R²⁴ stehen unabhängig voneinander <u>besonders bevorzugt</u> für Wasserstoff, Fluor, Chlor, Brom, Methyl, Ethyl, Trifluormethyl, Difluormethyl, Difluorchlormethyl oder Trichlormethyl.
 - R²³ und R²⁴ stehen unabhängig voneinander ganz besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom oder Methyl.
 - R²³ und R²⁴ stehen insbesondere bevorzugt jeweils für Wasserstoff.
- 25

- R²⁵ steht <u>bevorzugt</u> für Wasserstoff, Methyl, Ethyl oder C₁-C₂-Halogenalkyl mit 1 bis 5 Fluor, Chlor und/oder Bromatomen.
- R²⁵ steht <u>besonders bevorzugt</u> für Wasserstoff, Methyl, Ethyl, Trifluormethyl, Difluormethyl, Difluormethyl oder Trichlormethyl.
- 30 R²⁵ steht ganz besonders bevorzugt für Wasserstoff, Methyl, Trifluormethyl, Difluormethyl oder Trichlormethyl.
 - R²⁵ steht <u>insbesondere bevorzugt</u> für Methyl oder Trifluormethyl.
 - R²⁶ und R²⁷ stehen unabhängig voneinander <u>bevorzugt</u> für Wasserstoff, Fluor, Chlor, Brom, Amino, Nitro, Methyl, Ethyl oder C₁-C₂-Halogenalkyl mit 1 bis 5 Fluor, Chlor und/oder Bromatomen.
 - R²⁶ und R²⁷ stehen unabhängig voneinander besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom,

Nitro, Methyl, Ethyl, Trifluormethyl, Difluormethyl, Difluorchlormethyl oder Trichlormethyl.

- R²⁶ und R²⁷ stehen unabhängig voneinander ganz besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom oder Methýl.
- R²⁶ und R²⁷ stehen <u>insbesondere bevorzugt</u> jeweils für Wasserstoff.
- 5

- R²⁸ steht <u>bevorzugt</u> für Fluor, Chlor, Brom, Methyl, Ethyl oder C₁-C₂-Halogenalkyl mit 1 bis 5 Fluor, Chlor und/oder Bromatomen.
- R²⁸ steht <u>besonders bevorzugt</u> für Fluor, Chlor, Brom, Methyl, Ethyl, Trifluormethyl, Difluormethyl, Difluormethyl, Difluormethyl oder Trichlormethyl.
- 10 R²⁸ steht ganz besonders bevorzugt für Fluor, Chlor, Brom, Methyl, Trifluormethyl, Difluormethyl oder Trichlormethyl.
 - R²⁸ steht <u>insbesondere bevorzugt</u> für Methyl.
- steht <u>bevorzugt</u> für Wasserstoff, Fluor, Chlor, Brom, Amino, C₁-C₄-Alkylamino, Di(C₁-C₄-alkylamino, Cyano, Methyl, Ethyl oder C₁-C₂-Halogenalkyl mit 1 bis 5 Fluor, Chlor und/oder Bromatomen.
 - R²⁹ steht <u>besonders bevorzugt</u> für Wasserstoff, Fluor, Chlor, Brom, Amino, Methylamino, Dimethylamino, Cyano, Methyl, Ethyl, Trifluormethyl, Difluormethyl, Difluorchlormethyl oder Trichlormethyl.
- 20 R²⁹ steht ganz besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Amino, Methylamino, Dimethylamino, Methyl, Trifluormethyl, Difluormethyl oder Trichlormethyl.
 - R²⁹ steht <u>insbesondere bevorzugt</u> für Wasserstoff, Chlor, Amino, Methylamino, Dirnethylamino, Methyl oder Trifluormethyl.
- 25 R³⁰ steht <u>bevorzugt</u> für Fluor, Chlor, Brom, Hydroxy, Methyl, Ethyl, Methoxy, Ethoxy, Cyclopropyl, C₁-C₂-Halogenalkyl oder C₁-C₂-Halogenalkoxy mit 1 bis 5 Fluor, Chlor und/oder Bromatomen.
 - R³⁰ steht <u>besonders bevorzugt</u> für Fluor, Chlor, Brom, Hydroxy, Methyl, Ethyl, Methoxy, Ethoxy, Cyclopropyl, Trifluormethyl, Difluormethyl, Difluorchlormethyl oder Trichlormethyl.
- 30 R³⁰ steht ganz besonders bevorzugt für Fluor, Chlor, Brom, Hydroxy, Methyl, Methoxy, Cyclopropyl, Trifluormethyl, Difluormethyl oder Trichlormethyl.
 - R³¹ steht <u>bevorzugt</u> für Wasserstoff, Fluor, Chlor, Brom, Amino, C₁-C₄-Alkylamino, Di(C₁-C₄-alkyl)amino, Cyano, Methyl, Ethyl oder C₁-C₂-Halogenalkyl mit 1 bis 5 Fluor, Chlor und/oder Bromatomen.
 - R³¹ steht besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Amino, Methylamino,

- Dimethylamino, Cyano, Methyl, Ethyl, Trifluormethyl, Difluormethyl, Difluorchlormethyl oder Trichlormethyl.
- steht ganz besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Amino, Methylamino, R^{31} Dimethylamino, Methyl, Trifluormethyl, Difluormethyl oder Trichlormethyl.

- 16 -

- steht insbesondere bevorzugt für Amino, Methylamino, Dimethylamino, Methyl oder \mathbb{R}^{31} 5 Trifluormethyl.
 - steht bevorzugt für Fluor, Chlor, Brom, Methyl, Ethyl oder C1-C2-Halogenalkyl mit 1 bis 5 R^{32} Fluor, Chlor und/oder Bromatomen.
- steht besonders bevorzugt für Fluor, Chlor, Brom, Methyl, Ethyl, Trifluormethyl, R^{32} 10 Difluormethyl, Difluorchlormethyl oder Trichlormethyl.
 - steht ganz besonders bevorzugt für Fluor, Chlor, Brom, Methyl, Trifluormethyl, R^{32} Difluormethyl oder Trichlormethyl.
 - steht insbesondere bevorzugt für Methyl, Trifluormethyl oder Difluormethyl. R^{32}

15

- steht bevorzugt für Wasserstoff, Methyl oder Ethyl. R^{33}
- R^{33} steht besonders bevorzugt für Methyl.
- steht bevorzugt für Fluor, Chlor, Brom, Methyl oder Ethyl, R^{34}
- steht besonders bevorzugt für Fluor, Chlor oder Methyl. R34 20
 - steht bevorzugt für Methyl, Ethyl oder C1-C2-Halogenalkyl mit 1 bis 5 Fluor, Chlor und/oder \mathbb{R}^{35} Bromatomen.
 - steht besonders bevorzugt für Methyl, Ethyl, Trifluormethyl, Difluormethyl, Difluorchlor- R^{35} methyl oder Trichlormethyl.
 - steht ganz besonders bevorzugt für Methyl, Trifluormethyl, Difluormethyl oder Trichlormethyl. R^{35}
 - steht insbesondere bevorzugt für Methyl oder Trifluormethyl. R^{35}
- steht bevorzugt für Wasserstöff, Fluor, Chlor, Brom, Methyl, Ethyl oder C1-C2-Halogenalkyl R^{36} mit 1 bis 5 Fluor, Chlor und/oder Bromatomen. 30
 - steht besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Methyl oder Trifluormethyl. R^{36}
 - steht ganz besonders bevorzugt für Wasserstoff oder Chlor. R^{36}
- steht bevorzugt für Fluor, Chlor, Brom, Iod, Hydroxy, C1-C4-Alkyl, Methoxy, Ethoxy, R^{37} Methylthio, Ethylthio, Difluormethylthio, Trifluormethylthio, C1-C2-Halogenalkyl oder C1-35 C1-Halogenalkoxy mit jeweils 1 bis 5 Fluor, Chlor und/oder Bromatomen.

- R³⁷ steht <u>besonders bevorzugt</u> für Fluor, Chlor, Brom, Iod, Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sec-Butyl, tert-Butyl, Trifluormethyl, Difluormethyl, Difluorchlormethyl, Trichlormethyl.
- R³⁷ steht ganz besonders bevorzugt für Fluor, Chlor, Brom, Iod, Methyl, Trifluormethyl, Difluormethyl oder Trichlormethyl.
 - R³⁸ steht <u>bevorzugt</u> für Wasserstoff, Methyl, Ethyl, C₁-C₂-Halogenalkyl mit 1 bis 5 Fluor-, Chlorund/oder Bromatomen, C₁-C₂-Alkoxy-C₁-C₂-alkyl, Hydroxymethyl, Hydroxyethyl, methylsulfonyl oder Dimethylaminosulfonyl.
- steht <u>besonders bevorzugt</u> für Wasserstoff, Methyl, Ethyl, Trifluormethyl, Methoxymethyl, Ethoxymethyl, Hydroxymethyl oder Hydroxyethyl.
 - R³⁸ steht ganz besonders bevorzugt für Methyl oder Methoxymethyl.
- steht <u>bevorzugt</u> für Wasserstoff, Fluor, Chlor, Brom, Methyl, Ethyl oder C₁-C₂-Halogenalkyl mit 1 bis 5 Fluor-, Chlor- und/oder Bromatomen.
 - R³⁹ steht <u>besonders bevorzugt</u> für Wasserstoff, Fluor, Chlor, Brom, Methyl, Ethyl Trifluormethyl, Difluormethyl oder Trichlormethyl.
 - R³⁹ steht ganz besonders bevorzugt für Wasserstoff oder Methyl.
- 20 R⁴⁰ steht <u>bevorzugt</u> für Wasserstoff, Fluor, Chlor, Brom, Cyano, Methyl, Ethyl, iso-Propyl oder C₁-C₂-Halogenalkyl mit 1 bis 5 Fluor-, Chlor- und/oder Bromatomen.
 - R⁴⁰ steht <u>besonders bevorzugt</u> für Wasserstoff, Fluor, Chlor, Brom, Cyano, Methyl, Ethyl, iso-Propyl, Trifluormethyl, Difluormethyl, Difluorchlormethyl oder Trichlormethyl.
 - R⁴⁰ steht ganz besonders bevorzugt für Wasserstoff, Fluor, Methyl oder Trifluormethyl.
 - R⁴¹ steht <u>bevorzugt</u> für Wasserstoff, Fluor, Chlor, Brom, Methyl, Ethyl oder C₁-C₂-Halogenalkyl mit 1 bis 5 Fluor, Chlor und/oder Bromatomen.
 - R⁴¹ steht <u>besonders bevorzugt</u> für Wasserstoff, Fluor, Chlor, Brom, Iod, Methyl oder Trifluormethyl.
- 30 R⁴¹ steht ganz besonders bevorzugt für Wasserstoff oder Trifluormethyl.
 - R⁴² steht <u>bevorzugt</u> für Methyl, Ethyl, n-Propyl oder iso-Propyl.
 - R⁴² steht <u>besonders bevorzugt</u> Methyl oder Ethyl.
- Hervorgehoben sind Verbindungen der Formel (I), in welcher L für L-1 steht, wobei R² die oben angegebenen allgemeinen Bedeutungen hat.

Hervorgehoben sind Verbindungen der Formel (I), in welcher L für L-1 steht, wobei R² die oben angegebenen bevorzugten Bedeutungen hat.

Hervorgehoben sind Verbindungen der Formel (I), in welcher L für L-1 steht, wobei R² die oben angegebenen besonders bevorzugten Bedeutungen hat.

5 Hervorgehoben sind Verbindungen der Formel (I), in welcher L für L-1 steht, wobei R² die oben angegebenen ganz besonders bevorzugten Bedeutungen hat.

Hervorgehoben sind Verbindungen der Formel (I), in welcher L für L-1 steht, wobei R² die oben angegebenen insbesondere bevorzugten Bedeutungen hat.

Hervorgehoben sind Verbindungen der Formel (I), in welcher L für L-2 steht.

10 Hervorgehoben sind Verbindungen der Formel (I), in welcher R¹ für Wasserstoff steht.

Hervorgehoben sind Verbindungen der Formel (I), in welcher R¹ für Formyl steht.

Hervorgehoben sind außerdem Verbindungen der Formel (I), in welcher R^1 für -C(=O)C(=O) R^4 steht, wobei R^4 die oben angegebenen Bedeutungen hat.

Hervorgehoben sind Verbindungen der Formel (I), in welcher A für A1 steht.

Gesättigte oder ungesättigte Kohlenwasserstoffreste wie Alkyl oder Alkenyl können, auch in Verbindung mit Heteroatomen, wie z.B. in Alkoxy, soweit möglich, jeweils geradkettig oder verzweigt sein.

Gegebenenfalls substituierte Reste können einfach oder mehrfach substituiert sein, wobei bei 20 Mehrfachsubstitutionen die Substituenten gleich oder verschieden sein können.

Durch Halogen substituierte Reste, wie z.B. Halogenalkyl, sind einfach oder mehrfach halogeniert. Bei mehrfacher Halogenierung können die Halogenatome gleich oder verschieden sein. Halogen steht dabei für Fluor, Chlor, Brom und Iod, insbesondere für Fluor, Chlor und Brom.

25

15

Die oben aufgeführten allgemeinen oder in Vorzugsbereichen aufgeführten Restedefinitionen bzw. Erläuterungen können jedoch auch untereinander, also zwischen den jeweiligen Bereichen und Vorzugsbereichen beliebig kombiniert werden. Sie gelten für die Endprodukte sowie für die Vor- und Zwischenprodukte entsprechend.

30

Die genannten Definitionen können untereinander in beliebiger Weise kombiniert werden. Außerdem können auch einzelne Definitionen entfallen.

Bevorzugt, besonders bevorzugt oder ganz besonders bevorzugt sind Verbindungen der Formel (I), welche jeweils die unter bevorzugt, besonders bevorzugt oder ganz besonders bevorzugt genannten Substituenten tragen.

Beschreibung der erfindungsgemäßen Verfahren zum Herstellen der Hexylcarboxanilide der Formel (I) sowie der Zwischenprodukte

Verfahren (a)

Verwendet man 3-Dichlormethyl-1-methyl-1H-pyrazol-4-carbonyl-chlorid und [2-(1,3,3-Trimethyl-butyl)phenyl]amin als Ausgangsstoffe, so kann das erfindungsgemäße Verfahren (a) durch das folgende Formelschema veranschaulicht werden:

Die zur Durchführung des erfindungsgemäßen Verfahrens (a) als Ausgangsstoffe benötigten Carbonsäure-Derivate sind durch die Formel (II) allgemein definiert. In dieser Formel (II) hat A bevorzugt, besonders bevorzugt bzw. ganz besonders bevorzugt diejenigen Bedeutungen, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Verbindungen der Formel (I) als bevorzugt, besonders bevorzugt bzw. ganz besonders bevorzugt für A angegeben wurden. X¹ steht bevorzugt für Chlor, Brom oder Hydroxy.

15

10

Die Carbonsäure-Derivate der Formel (II) sind größtenteils bekannt und/oder lassen sich nach bekannten Verfahren herstellen (vgl. WO 93/11117, EP-A 0545 099, EP-A 0589 301 und EP-A 0589 313).

20 3-Dichlormethyl-1H-pyrazol-4-carbonsäure-Derivate der Formel (II-a)

in welcher

R¹² die oben angegebenen Bedeutungen hat,

X¹ für Halogen oder Hydroxy steht,

25

können erhalten werden, indem man in einem ersten Schritt Ketoacetale der Formel (V)

in welcher

 R^{43} für C_1 - C_4 -Alkyl, bevorzugt für Methyl, Ethyl, n-, iso-Propyl, n-, sec-, tert-Butyl, steht, R^{44} und R^{45} jeweils für Methyl oder Ethyl stehen, oder

R⁴⁴ und R⁴⁵ gemeinsam für -(CH₂)₃- oder -CH₂-C(CH₃)₂-CH₂- stehen,

5 mit Orthoameisensäurealkylestern der Formel (VI)

$$HC-(OR^{46})_3$$
 (VI)

in welcher

R⁴⁶ für C₁-C₄-Alkyl, bevorzugt für Methyl, Ethyl, n-, iso-Propyl, n-, sec-, tert-Butyl, steht, in Gegenwart eines Anhydrids (z.B. Essigsäureanhydrid) umsetzt

10

und die so erhaltenen Verbindungen der Formel (VII)

in welcher R^{43} , R^{44} , R^{45} und R^{46} die oben angegebenen Bedeutungen haben, in einem zweiten Schritt mit Hydrazin-Derivaten der Formel (VIII)

$$R^{12}$$
—NH—NH₂ (VIII)

15

in welcher R^{12} die oben angegebenen Bedeutungen hat, in Gegenwart eines Verdünnungsmittels (z.B. Methanol) umsetzt

und die so erhaltenen Pyrazol-Derivate der Formel (IX)

20

in welcher R¹², R⁴³, R⁴⁴ und R⁴⁵ die oben angegebenen Bedeutungen haben, in einem dritten Schritt in Gegenwart einer Säure (z.B. Salzsäure) und in Gegenwart eines Verdünnungsmittels (z.B. Dioxan) umsetzt

25 und die so erhaltenen 3-Formyl-1H-pyrazol-4-carbonsäureester der Formel (X)

in welcher R^{12} und R^{43} die oben angegebenen Bedeutungen haben, entweder

a) in einem vierten Schritt in Gegenwart einer Base (z.B. Lithiumhydroxid) und in Gegenwart eines Verdünnungsmittels (z.B. Tetrahydrofuran) verseift

und die so erhaltenen 3-Formyl-1H-pyrazol-4-carbonsäuren der Formel (XI)

in welcher R¹² die oben angegebenen Bedeutungen hat, anschließend mit einem Chlorierungsmittel (z.B. Phosphorpentachlorid) in Gegenwart eines Verdünnungsmittels (z.B. Dichlormethan) umsetzt,

oder

5

10

b) in einem vierten Schritt mit einem Chlorierungsmittel (z.B. Phosphorpentachlorid) in Gegenwart eines Verdünnungsmittels (z.B. Dichlormethan) umsetzt

und die so erhaltenen 3-Dichlormethyl-1H-pyrazol-4-carbonsäureester der Formel (XII)

in welcher R¹² und R⁴³ die oben angegebenen Bedeutungen haben, anschließend in Gegenwart einer Base (z.B. Lithiumhydroxid) und in Gegenwart eines Verdünnungsmittels (z.B. Tetrahydrofuran) verseift.

20

25

30

Die zur Durchführung des erfindungsgemäßen Verfahrens (a) als Ausgangsstoffe weiterhin benötigten Anilin-Derivate sind durch die Formel (III) allgemein definiert. In dieser Formel (III) haben L, R¹ und R³ bevorzugt, besonders bevorzugt bzw. ganz besonders bevorzugt diejenigen Bedeutungen, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Verbindungen der Formel (I) für diese Reste als bevorzugt, besonders bevorzugt bzw. ganz besonders bevorzugt angegeben wurden.

Die Anilin-Derivate der Formel (III), in denen L für L-1 steht, sind teilweise neu. Anilin-Derivate der Formel (III), in denen L für L-1 steht, lassen sich herstellen, indem man

c) in einem ersten Schritt ein Anilin-Derivat der Formel (XIII)

10

15

20

25

in welcher R1 und R2 die oben angegebenen Bedeutungen haben,

mit einem Alken der Formel (XIV)

$$H^3C_{n}$$
 CH^3 CH^3 CH^3

in welcher R3 die oben angegebenen Bedeutungen hat,

in Gegenwart eines Katalysators, gegebenenfalls in Gegenwart einer Base und gegebenenfalls in Gegenwart eines Verdünnungsmittels umsetzt,

und das so erhaltene Alkenanilin der Formel (XV)

in welcher R1, R2 und R3 die oben angegebenen Bedeutungen haben,

in einem zweiten Schritt gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Katalysators hydriert.

Die zur Durchführung des erfindungsgemäßen Verfahrens (c) als Ausgangsstoffe benötigten Anilin-Derivate sind durch die Formel (XIII) allgemein definiert. In dieser Formel (XIII) haben R¹ und R² bevorzugt, besonders bevorzugt bzw. ganz besonders bevorzugt diejenigen Bedeutungen, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Verbindungen der Formel (I) für diese Reste als bevorzugt, besonders bevorzugt bzw. ganz besonders bevorzugt angegeben wurden.

Anilin-Derivate der Formel (XIII) sind bekannt oder können nach bekannten Methoden erhalten werden. Anilin-Derivate der Formel (XIII), in welcher R¹ nicht für Wasserstoff steht, können erhalten werden, indem man Aniline der Formel (XIII-a)

$$H_2N$$
 (XIII-a)

in welcher R² die oben angegebenen Bedeutungen hat, mit Halogeniden der Formel (IV)

$$R^{1-A} - X^2$$
 (IV)

in welcher R1-A und X2 die oben angegebenen Bedeutungen hat,

in Gegenwart einer Base und in Gegenwart eines Verdünnungsmittels umsetzt. [Die Reaktionsbedingungen des Verfahrens (b) gelten entsprechend.]

5

10

15

Die zur Durchführung des erfindungsgemäßen Verfahrens (c) als Ausgangsstoffe weiterhin benötigten Alkene sind durch die Formel (XIV) allgemein definiert. In dieser Formel (XIV) hat R³ bevorzugt, besonders bevorzugt bzw. ganz besonders bevorzugt diejenigen Bedeutungen, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Verbindungen der Formel (I) für diesen Rest als bevorzugt, besonders bevorzugt bzw. ganz besonders bevorzugt angegeben wurden.

Alkene der Formel (XIV) sind bekannt oder können nach bekannten Methoden erhalten werden.

Die bei der Durchführung des erfindungsgemäßen Verfahrens (c) als Zwischenprodukte durchlaufenen Alkenaniline sind durch die Formel (XV) allgemein definiert. In dieser Formel (XV) haben R¹, R² und R³ bevorzugt, besonders bevorzugt bzw. ganz besonders bevorzugt diejenigen Bedeutungen, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Verbindungen der Formel (I) für diese Reste als bevorzugt, besonders bevorzugt bzw. ganz besonders bevorzugt angegeben wurden.

20

25

Alkenaniline der Formel (XV) sind teilweise bekannt.

Das erfindungsgemäße Verfahren (c) kann in verschiedenen Varianten durchgeführt werden. So ist es möglich, zunächst Aniline der Formel (XIII-a) mit Alkenen der Formel (XIV) zu den entsprechenden Anilin-Derivaten der Formel (III-a)

$$H_2N$$
 R^2
 CH_3
 CH_3
 CH_3

in welcher R² und R³ die oben angegebenen Bedeutungen haben, umzusetzen, welche dann gegebenenfalls mit Halogeniden der Formel (IV)

$$R^{1-}X^2$$
 (IV)

30

in welcher R^{1-A} und X² die oben angegebenen Bedeutungen haben, in Gegenwart einer Base und in Gegenwart eines Verdünnungsmittels zu den entsprechenden Anilin-Derivaten der Formel (III) umgesetzt werden. [Die Reaktionsbedingungen des Verfahrens (b) gelten entsprechend.] Es ist jedoch auch möglich, auf der Stufe der Alkenaniline der Formel (XV) die Umsetzung mit einem Halogenid der Formel (IV) durchzuführen und anschließen zu hydrieren.

5 Anilin-Derivate der Formel (III-b)

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

in welcher

a) R^{1-B} für Wasserstoff steht, und
R^{3-B} für Halogen, C₃-C₈-Alkyl, C₁-C₈-Halogenalkyl steht,

10 oder

R^{1-B} für C_1 - C_8 -Alkyl, C_1 - C_6 -Alkylsulfinyl, C_1 - C_6 -Alkylsulfonyl, C_1 - C_4 -Alkoxy- C_1 - C_4 b) alkyl, C₃-C₈-Cycloalkyl; C₁-C₆-Halogenalkyl, C₁-C₄-Halogenalkylthio, C₁-C₄-Halogenalkyl genalkylsulfinyl, C₁-C₄-Halogenalkylsulfonyl, Halogen-C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-Halogencycloalkyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen; Formyl, Formyl-C₁-C₃-alkyl, (C₁-C₃-Alkyl)carbonyl-C₁-C₃-alkyl, (C₁-C₃-Alkoxy)car-15 bonyl-C₁-C₃-alkyl; Halogen-(C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, Halogen-(C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl mit jeweils 1 bis 13 Fluor-, Chlor- und/oder Bromatomen; $(C_1-C_8-Alkyl)$ carbonyl, $(C_1-C_8-Alkoxy)$ carbonyl, $(C_1-C_4-Alkoxy-C_1-C_4-alkyl)$ carbonyl, (C₃-C₈-Cycloalkyl)carbonyl; (C₁-C₆-Halogenalkyl)carbonyl, (C₁-C₆-Halogenalkoxy)carbonyl, (Halogen-C₁-C₄-alkoxy-C₁-C₄-alkyl)carbonyl, (C₃-C₈-Halogen-20 cycloalkyl)carbonyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen; oder -C(=O)C(=O)R⁴, -CONR⁵R⁶ oder -CH₂NR⁷R⁸ steht, und

R^{3-B} für Wasserstoff, Halogen, C₁-C₈-Alkyl, C₁-C₈-Halogenalkyl steht,

und

30

25 R², R⁴, R⁵, R⁶, R⁷ und R⁸ jeweils die oben angegebenen Bedeutungen haben, sind neu und ebenfalls Gegenstand dieser Anmeldung.

Die bevorzugten, besonders bevorzugten bzw. ganz besonders bevorzugten Bedeutungen von R¹ und R³ finden auf R^{1-B} und R^{3-B} entsprechend Anwendung, wobei im Fall a) R^{1-B} immer für Wasserstoff und R^{3-B} nicht für Wasserstoff, Methyl oder Ethyl steht und im Fall b) R^{1-B} nicht für Wasserstoff steht. Die bevorzugten, besonders bevorzugten bzw. ganz besonders bevorzugten Bedeutungen von R², R⁴, R⁵, R⁶, R⁷ und R⁸ gelten ebenfalls für die neuen Verbindungen der Formel (III-b).

Hervorgehoben sind Verbindungen der Formel (III-b), in welcher R¹ und R² jeweils für Wasserstoff und R³ für Fluor, Chlor, Methyl, Ethyl, Trifluormethyl oder Pentafluorethyl steht.

Die Anilin-Derivate der Formel (III), in denen L für L-2, L-3 oder L-4 steht, sind bekannt und/oder können nach bekannten Verfahren erhalten werden (vgl. z.B. EP-A 1 036 793 und EP-A 0 737 682).

Anilin-Derivate der Formel (III), in denen L für L-2, L-3 oder L-4 steht und R¹ nicht für Wasserstoff steht, können erhalten werden, indem man Aniline der Formel (III-c)

$$H_2N$$
 L^1
 R^3
 CH_3
 CH_3
 CH_3
 CH_3

10 in welcher

15

L¹ für L-2, L-3 oder L-4 steht und L-2, L-3, L-4 und R³ die oben angegebenen Bedeutungen haben, mit Halogeniden der Formel (IV)

$$R^{1-A} X^2$$
 (IV)

in welcher R^{1-A} und X² die oben angegebenen Bedeutungen hat, in Gegenwart einer Base und in Gegenwart eines Verdünnungsmittels umsetzt. [Die Reaktionsbedingungen des Verfahrens (b) gelten entsprechend.]

Verfahren (b)

Verwendet man 1,3,5-Trimethyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1H-pyrazol-4-carboxamid und Ethyl-chlor(oxo)acetat als Ausgangsstoffe, so kann der Verlauf des erfindungsgemäßen Verfahrens (b) durch das folgende Formelschema veranschaulicht werden:

Die zur Durchführung des erfindungsgemäßen Verfahrens (b) als Ausgangsstoffe benötigten Hexylcarboxanilide sind durch die Formel (I-a) allgemein definiert. In dieser Formel (I-a) haben R², R³ und A
bevorzugt, besonders bevorzugt bzw. ganz besonders bevorzugt diejenigen Bedeutungen, die bereits im
Zusammenhang mit der Beschreibung der erfindungsgemäßen Verbindungen der Formel (I) als bevorzugt, besonders bevorzugt bzw. ganz besonders bevorzugt für diese Reste angegeben wurden.

Die Hexylcarboxanilide der Formel (I-a) sind ebenfalls erfindungsgemäße Verbindungen und Gegenstand dieser Anmeldung. Sie können nach dem erfindungsgemäßen Verfahren (a) erhalten werden (mit R¹ = Wasserstoff).

- Die zur Durchführung des erfindungsgemäßen Verfahrens (b) als Ausgangsstoffe weiterhin benötigten Halogenide sind durch die Formel (IV) allgemein definiert.
- steht bevorzugt für C₁-C₆-Alkyl, C₁-C₄-Alkylsulfinyl, C₁-C₄-Alkylsulfonyl, C₁-C₃-Alkoxy-C₁-C₃-alkyl, C₃-C₆-Cycloalkyl; C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkylthio, C₁-C₄-Halogenalkylsulfinyl, C₁-C₄-Halogenalkylsulfonyl, Halogen-C₁-C₃-alkoxy-C₁-C₃-alkyl, C₃-C₈-Halogencycloalkyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen; Formyl, Formyl-C₁-C₃-alkyl, (C₁-C₃-Alkyl)carbonyl-C₁-C₃-alkyl, (C₁-C₃-Alkoxy)carbonyl-C₁-C₃-alkyl; Halogen-(C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, Halogen-(C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl mit jeweils 1 bis 13 Fluor-, Chlor- und/oder Bromatomen;
- 15 (C₁-C₆-Alkyl)carbonyl, (C₁-C₄-Alkoxy)carbonyl, (C₁-C₃-Alkoxy-C₁-C₃-alkyl)carbonyl, (C₃-C₆-Cycloalkyl)carbonyl; (C₁-C₄-Halogenalkyl)carbonyl, (C₁-C₄-Halogenalkoxy)carbonyl, (Halogen-C₁-C₃-alkoxy-C₁-C₃-alkyl)carbonyl, (C₃-C₆-Halogencycloalkyl)carbonyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen; oder -C(=O)C(=O)R⁴, -CONR⁵R⁶ oder -CH₂NR⁷R⁸.
- R1-A steht besonders bevorzugt für Methyl, Ethyl, n- oder iso-Propyl, n-, iso-, sec- oder tert-Butyl, 20 Pentyl oder Hexyl, Methylsulfinyl, Ethylsulfinyl, n- oder iso-Propylsulfinyl, n-, iso-, secoder tert-Butylsulfinyl, Methylsulfonyl, Ethylsulfonyl, n- oder iso-Propylsulfonyl, n-, iso-, sec- oder tert-Butylsulfonyl, Methoxymethyl, Methoxyethyl, Ethoxymethyl, Ethoxyethyl, Cyclopropyl, Cyclopentyl, Cyclohexyl, Trifluormethyl, Trichlormethyl, Trifluorethyl, Difluormethylthio, Difluorchlormethylthio, Trifluormethylthio, Trifluormethylsulfinyl, Tri-25 Formyl, -CH₂-CHO, -(CH₂)₂-CHO, fluormethylsulfonyl, Trifluormethoxymethyl; -CH₂-CO-CH(CH₃)₂, -(CH₂)₂-CO-CH₃, -CH₂-CO-CH₃, -CH₂-CO-CH₂CH₃, -(CH₂)₂-CO-CH₂CH₃, -(CH₂)₂-CO-CH(CH₃)₂,-CH₂-CO₂CH₃, -CH₂-CO₂CH₂CH₃, $-(CH_2)_2-CO_2CH_3$, $-(CH_2)_2-CO_2CH_2CH_3$, $-(CH_2)_2-CO_2CH(CH_3)_2$, -CH₂-CO₂CH(CH₃)₂, -CH₂-CO-CF₃, -CH₂-CO-CCl₃, -CH₂-CO-CH₂CF₃, -CH₂-CO-CH₂CCl₃, -(CH₂)₂-CO-CH₂CF₃, 30 -CH₂-CO₂CH₂CCl₃, -CH₂-CO₂CH₂CF₃, -CH₂-CO₂CF₂CF₃, -(CH₂)₂-CO-CH₂CCl₃, $-CH_2-CO_2CCl_2CCl_3$, $-(CH_2)_2-CO_2CH_2CF_3$, $-(CH_2)_2-CO_2CF_2CF_3$, $-(CH_2)_2-CO_2CH_2CCl_3$, -(CH₂)₂-CO₂CCl₂CCl₃;

Methylcarbonyl, Ethylcarbonyl, n-Propylcarbonyl, iso-Propylcarbonyl, tert-Butylcarbonyl, Methoxycarbonyl, Ethoxycarbonyl, tert-Butoxycarbonyl, Cyclopropylcarbonyl; Trifluormethylcarbonyl, Trifluormethoxycarbonyl, oder -C(=O)C(=O)R⁵, -CONR⁶R⁷ oder -CH₂NR⁸R⁹.

R^{1-A} steht <u>ganz_besonders_bevorzugt</u> für Methyl, Methoxymethyl, Formyl, -CH₂-CHO, -(CH₂)₂-CHO, -CH₂-CO-CH₃, -CH₂-CO-CH₂CH₃, -CH₂-CO-CH(CH₃)₂, -C(=O)CHO, -C(=O)C(=O)CH₃, -C(=O)C(=O)CH₂OCH₃, -C(=O)CO₂CH₃, -C(=O)CO₂CH₂CH₃.

5 X² steht <u>bevorzugt</u> für Chlor oder Brom.

Halogenide der Formel (IV) sind bekannt.

Reaktionsbedingungen

20

25

Als Verdünnungsmittel zur Durchführung des erfindungsgemäßen Verfahrens (a) kommen alle inerten organischen Lösungsmittel in Betracht. Hierzu gehören vorzugsweise aliphatische, alicyclische oder aromatische Kohlenwasserstoffe, wie z.B. Petrolether, Hexan, Heptan, Cyclohexan, Methylcyclohexan, Benzol, Toluol, Xylol oder Decalin; halogenierte Kohlenwasserstoffe, wie z.B. Chlorbenzol, Dichlorbenzol, Dichlorb

Das erfindungsgemäße Verfahren (a) wird gegebenenfalls in Gegenwart eines geeigneten Säure-akzeptors durchgeführt. Als solche kommen alle üblichen anorganischen oder organischen Basen infrage. Hierzu gehören vorzugsweise Erdalkalimetall- oder Alkalimetallhydride, -hydroxide, -amide, -alkoholate, -acetate, -carbonate oder -hydrogencarbonate, wie z.B. Natriumhydrid, Natriumamid, Natrium-methylat, Natrium-ethylat, Kalium-tert.-butylat, Natriumhydroxid, Kaliumhydroxid, Ammoniumhydroxid, Natriumacetat, Kaliumacetat, Calciumacetat, Ammoniumacetat, Natriumcarbonat, Kaliumcarbonat, Kaliumcarbonat, Natriumhydrogencarbonat oder Ammoniumcarbonat, sowie tertiäre Amine, wie Trimethylamin, Triethylamin, Tributylamin, N,N-Dimethylanilin, N,N-Dimethylaminopyridin, Diazabicyclooctan (DABCO), Diazabicycloonen (DBN) oder Diazabicycloundecen (DBU).

Das erfindungsgemäße Verfahren (a) wird gegebenenfalls in Gegenwart eines geeigneten Kondensationsmittels durchgeführt. Als solche kommen alle üblicherweise für derartige Amidierungsreaktionen verwendbaren Kondensationsmittel infrage. Beispielhaft genannt seien Säurehalogenidbildner wie Phosgen, Phosphortribromid, Phosphortrichlorid, Phosphorpentachlorid, Phosphoroxychlorid oder Thionylchlorid; Anhydridbildner wie Chlorameisensäureethylester, Chlorameisensäuremethylester, Chlorameisensäureisopropylester, Chlorameisensäureisobutylester oder Methansulfonylchlorid; Carbodiimide, wie N,N'-Dicyclohexylcarbodiimid (DCC) oder andere übliche Kondensationsmittel,

wie Phosphorpentoxid, Polyphosphorsäure, N,N'-Carbonyldiimidazol, 2-Ethoxy-N-ethoxycarbonyl-1,2-dihydrochinolin (EEDQ), Triphenylphosphin/Tetrachlorkohlenstoff oder Brom-tripyrrolidino-phosphonium-hexafluorophosphat.

Das erfindungsgemäße Verfahren (a) wird gegebenenfalls in Gegenwart eines Katalysators durchgeführt. Beispielsweise genannt seien 4-Dimethylaminopyridin, 1-Hydroxy-benzotriazol oder Dimethylformamid.

Die Reaktionstemperaturen können bei der Durchführung des erfindungsgemäßen Verfahrens (a) in einem größeren Bereich variiert werden. Im allgemeinen arbeitet man bei Temperaturen von 0°C bis 150°C, vorzugsweise bei Temperaturen von 0°C bis 80°C.

Zur Durchführung des erfindungsgemäßen Verfahrens (a) zur Herstellung der Verbindungen der Formel (I) setzt man pro mol des Carbonsäure-Derivates der Formel (II) im Allgemeinen 0,2 bis 5 mol, vorzugsweise 0,5 bis 2 mol an Anilin-Derivat der Formel (III) ein.

Als Verdünnungsmittel zur Durchführung des erfindungsgemäßen Verfahrens (b) kommen alle inerten organischen Lösungsmittel in Betracht. Hierzu gehören vorzugsweise aliphatische, alicyclische oder aromatische Kohlenwasserstoffe, wie z.B. Petrolether, Hexan, Heptan, Cyclohexan, Methylcyclohexan, Benzol, Toluol, Xylol oder Decalin; halogenierte Kohlenwasserstoffe, wie z.B. Chlorbenzol, Dichlorbenzol, Dichlorbenz

25

30

35

15

20

Das erfindungsgemäße Verfahren (b) wird in Gegenwart einer Base durchgeführt. Als solche kommen alle üblichen anorganischen oder organischen Basen infrage. Hierzu gehören vorzugsweise Erdalkalimetall- oder Alkalimetallhydride, -hydroxide, -amide, -alkoholate, -acetate, -carbonate oder -hydrogencarbonate, wie z.B. Natriumhydrid, Natriumamid, Natrium-methylat, Natrium-ethylat, Kalium-tert.-butylat, Natriumhydroxid, Kaliumhydroxid, Ammoniumhydroxid, Natriumacetat, Kalium-acetat, Calciumacetat, Ammoniumacetat, Natriumcarbonat, Kaliumcarbonat, Kaliumhydrogencarbonat, Natriumhydrogencarbonat oder Caesiumcarbonat, sowie tertiäre Amine, wie Trimethylamin, Triethylamin, Tributylamin, N,N-Dimethylanilin, N,N-Dimethyl-benzylamin, Pyridin, N-Methylpiperidin, N-Methylmorpholin, N,N-Dimethylaminopyridin, Diazabicyclooctan (DABCO), Diazabicyclononen (DBN) oder Diazabicycloundecen (DBU).

Die Reaktionstemperaturen können bei der Durchführung des erfindungsgemäßen Verfahrens (b) in einem größeren Bereich variiert werden. Im allgemeinen arbeitet man bei Temperaturen von 0°C bis 150°C, vorzugsweise bei Temperaturen von 20°C bis 110°C.

Zur Durchführung des erfindungsgemäßen Verfahrens (b) zur Herstellung der Verbindungen der Formel (I) setzt man pro Mol des Hexylcarboxanilids der Formel (I-a) im Allgemeinen 0,2 bis 5 Mol, vorzugsweise 0,5 bis 2 Mol an Halogenid der Formel (IV) ein.

Als Verdünnungsmittel zur Durchführung des ersten Schrittes des erfindungsgemäßen Verfahrens (c) kommen alle inerten organischen Lösungsmittel in Betracht. Hierzu gehören vorzugsweise Nitrile, wie Acetonitril, Propionitril, n- oder i-Butyronitril oder Benzonitril oder Amide, wie N,N-Dimethylformamid, N,N-Dimethylacetamid, N-Methylformanilid, N-Methylpyrrolidon oder Hexamethylphosphorsäuretriamid.

Der erste Schritt des erfindungsgemäßen Verfahrens (c) wird gegebenenfalls in Gegenwart eines geeigneten Säureakzeptors durchgeführt. Als solche kommen alle üblichen anorganischen oder organischen Basen infrage. Hierzu gehören vorzugsweise Erdalkalimetall- oder Alkalimetallhydride, -hydroxide, -amide, -alkoholate, -acetate, -carbonate oder -hydrogencarbonate, wie z.B. Natriumhydrid, Natriumamid, Natrium-methylat, Natrium-ethylat, Kalium-tert.-butylat, Natriumhydroxid, Kaliumhydroxid, Ammoniumhydroxid, Natriumacetat, Kaliumacetat, Calciumacetat, Ammoniumacetat, Natriumcarbonat, Kaliumcarbonat, Kaliumhydrogencarbonat, Natriumhydrogencarbonat oder Ammoniumcarbonat, sowie tertiäre Amine, wie Trimethylamin, Triethylamin, Tributylamin, N,N-Dimethylanilin, N,N-Dimethylbenzylamin, Pyridin, N-Methylpiperidin, N-Methylmorpholin, N,N-Dimethylaminopyridin, Diazabicycloctan (DABCO), Diazabicyclononen (DBN) oder Diazabicycloundecen (DBU).

25

30

35

Der erste Schritt des erfindungsgemäßen Verfahrens (c) wird in Gegenwart eines oder mehrerer Katalysatoren durchgeführt.

Dazu eignen sich besonders Palladiumsalze oder -komplexe. Hierzu kommen vorzugsweise Palladiumchlorid, Palladiumacetat, Tetrakis-(triphenylphosphin)-Palladium oder Bis-(triphenylphosphin)-Palladiumdichlorid infrage. Es kann auch ein Palladiumkomplex in der Reaktionsmischung erzeugt werden, wenn man ein Palladiumsalz und ein Komplexligand getrennt zur Reaktion zugibt.

Als Liganden kommen vorzugsweise Organophosphorverbindungen infrage. Beispielhaft seien genannt: Triphenylphosphin, tri-o-Tolylphosphin, 2,2'-Bis(diphenylphosphino)-1,1'-binaphthyl, Dicyclohexylphosphinebiphenyl, 1,4-Bis(diphenylphosphino)butan, Bisdiphenylphosphinoferrocen,

Di(tert.-butylphosphino)biphenyl, Di(cyclohexylphosphino)biphenyl, 2-Dicyclohexylphosphino-2'-N,N-dimethylaminobiphenyl, Tricyclohexylphosphin, Tri-tert.-butylphosphin. Es kann aber auch auf Liganden verzichtet werden.

Der erste Schritt des erfindungsgemäßen Verfahrens (c) wird ferner gegebenenfalls in Gegenwart eines weiteren Metallsalzes, wie Kupfersalzen, beispielsweise Kupfer-(I)-iodid durchgeführt.

Die Reaktionstemperaturen können bei der Durchführung des ersten Schrittes des erfindungsgemäßen Verfahrens (c) in einem größeren Bereich variiert werden. Im allgemeinen arbeitet man bei Temperaturen von 20°C bis 180°C, vorzugsweise bei Temperaturen von 50°C bis 150°C.

Zur Durchführung des ersten Schrittes des erfindungsgemäßen Verfahrens (c) zur Herstellung der Alkenaniline der Formel (XV) setzt man pro Mol des Anilin-Derivates der Formel (XIII) im Allgemeinen 1 bis 5 mol, vorzugsweise 1 bis 3 mol an Alken der Formel (XIV) ein.

15

30

35

10

Als Verdünnungsmittel zur Durchführung des zweiten Schrittes (Hydrierung) des erfindungsgemäßen Verfahrens (c) kommen alle inerten organischen Lösungsmittel in Betracht. Hierzu gehören vorzugsweise aliphatische oder alicyclische Kohlenwasserstoffe, wie z.B. Petrolether, Hexan, Heptan, Cyclohexan, Methylcyclohexan oder Decalin; Ether, wie Diethylether, Diisopropylether, Methyl-tert-butylether, Methyl-tert-amylether, Dioxan, Tetrahydrofuran, 1,2- Dimethoxyethan oder 1,2-Diethoxyethan; Alkohole, wie Methanol, Ethanol, n- oder iso-Propanol, n-, iso-, sec- oder tert-Butanol, Ethandiol, Propan-1,2-diol, Ethoxyethanol, Methoxyethanol, Diethylenglykolmonomethylether, Diethylenglykolmonoethylether, deren Gemische mit Wasser oder reines Wasser.

Der zweite Schritt (Hydrierung) des erfindungsgemäßen Verfahrens (c) wird in Gegenwart eines Katalysators durchgeführt. Als solche kommen alle Katalysatoren infrage, die für Hydrierungen üblicherweise verwendet werden. Beispielhaft seien genannt: Raney-Nickel, Palladium oder Platin, gegebenenfalls auf einem Trägermaterial, wie z.B. Aktivkohle.

Die Hydrierung im zweiten Schritt des erfindungsgemäßen Verfahrens (c) kann statt in Gegenwart von Wasserstoff in Kombination mit einem Katalysator auch in Anwesenheit von Triethylsilan durchgeführt werden.

Die Reaktionstemperaturen können bei der Durchführung des zweiten Schrittes des erfindungsgemäßen Verfahrens (c) in einem größeren Bereich variiert werden. Im Allgemeinen arbeitet man bei Temperaturen von 0°C bis 150°C, vorzugsweise bei Temperaturen von 20°C bis 100°C.

Der zweite Schritt des erfindungsgemäßen Verfahrens (c) wird unter einem Wasserstoffdruck zwischen 0.5 and 200 bar, bevorzugt zwischen 2 und 50 bar, besonders bevorzugt zwischen 3 und 10 bar durchgeführt.

Wenn nicht anders angegeben, werden alle erfindungsgemäßen Verfahren im Allgemeinen unter Normaldruck durchgeführt. Es ist jedoch auch möglich, unter erhöhtem oder vermindertem Druck – im Allgemeinen zwischen 0,1 bar und 10 bar – zu arbeiten.

Die erfindungsgemäßen Stoffe weisen eine starke mikrobizide Wirkung auf und können zur Bekämpfung von unerwünschten Mikroorganismen, wie Fungi und Bakterien, im Pflanzenschutz und im Materialschutz eingesetzt werden.

Fungizide lassen sich Pflanzenschutz zur Bekämpfung von Plasmodiophoromycetes, Oomycetes, Chytridiomycetes, Zygomycetes, Ascomycetes, Basidiomycetes und Deuteromycetes einsetzen.

15

20

Bakterizide lassen sich im Pflanzenschutz zur Bekämpfung von Pseudomonadaceae, Rhizobiaceae, Enterobacteriaceae, Corynebacteriaceae und Streptomycetaceae einsetzen.

Beispielhaft aber nicht begrenzend seien einige Erreger von pilzlichen und bakteriellen Erkrankungen, die unter die oben aufgezählten Oberbegriffe fallen, genannt:

Xanthomonas-Arten, wie z.B. Xanthomonas campestris pv. oryzae;

Pseudomonas-Arten, wie z.B. Pseudomonas syringae pv. lachrymans;

Erwinia-Arten, wie z.B. Erwinia amylovora;

Pythium-Arten, wie z.B. Pythium ultimum;

25 Phytophthora-Arten, wie z.B. Phytophthora infestans;

Pseudoperonospora-Arten, wie z.B. Pseudoperonospora humuli oder

Pseudoperonospora cubensis;

Plasmopara-Arten, wie z.B. Plasmopara viticola;

Bremia-Arten, wie z.B. Bremia lactucae;

30 Peronospora-Arten, wie z.B. Peronospora pisi oder P. brassicae;

Erysiphe-Arten, wie z.B. Erysiphe graminis;

Sphaerotheca-Arten, wie z.B. Sphaerotheca fuliginea;

Podosphaera-Arten, wie z.B. Podosphaera leucotricha;

(Konidienform: Drechslera, Syn: Helminthosporium);

Venturia-Arten, wie z.B. Venturia inaequalis;

35 Pyrenophora-Arten, wie z.B. Pyrenophora teres oder P. graminea

30

Cochliobolus-Arten, wie z.B. Cochliobolus sativus

(Konidienform: Drechslera, Syn: Helminthosporium);

Uromyces-Arten, wie z.B. Uromyces appendiculatus;

Puccinia-Arten, wie z.B. Puccinia recondita;

5 Sclerotinia-Arten, wie z.B. Sclerotinia sclerotiorum;

Tilletia-Arten, wie z.B. Tilletia caries;

Ustilago-Arten, wie z.B. Ustilago nuda oder Ustilago avenae;

Pellicularia-Arten, wie z.B. Pellicularia sasakii;

Pyricularia-Arten, wie z.B. Pyricularia oryzae;

10 Fusarium-Arten, wie z.B. Fusarium culmorum;

Botrytis-Arten, wie z.B. Botrytis cinerea;

Septoria-Arten, wie z.B. Septoria nodorum;

Leptosphaeria-Arten, wie z.B. Leptosphaeria nodorum;

Cercospora-Arten, wie z.B. Cercospora canescens;

15 Alternaria-Arten, wie z.B. Alternaria brassicae;

Pseudocercosporella-Arten, wie z.B. Pseudocercosporella herpotrichoides,

Rhizoctonia-Arten, wie z.B. Rhizoctonia solani.

Die erfindungsgemäßen Wirkstoffe weisen auch eine starke stärkende Wirkung in Pflanzen auf. Sie eignen sich daher zur Mobilisierung pflanzeneigener Abwehrkräfte gegen Befall durch unerwünschte Mikroorganismen.

Unter pflanzenstärkenden (resistenzinduzierenden) Stoffen sind im vorliegenden Zusammenhang solche Substanzen zu verstehen, die in der Lage sind, das Abwehrsystem von Pflanzen so zu stimulieren, dass die behandelten Pflanzen bei nachfolgender Inokulation mit unerwünschten Mikroorganismen weitgehende Resistenz gegen diese Mikroorganismen entfalten.

Unter unerwünschten Mikroorganismen sind im vorliegenden Fall phytopathogene Pilze, Bakterien und Viren zu verstehen. Die erfindungsgemäßen Stoffe können also eingesetzt werden, um Pflanzen innerhalb eines gewissen Zeitraumes nach der Behandlung gegen den Befall durch die genannten Schaderreger zu schützen. Der Zeitraum, innerhalb dessen Schutz herbeigeführt wird, erstreckt sich im Allgemeinen von 1 bis 10 Tage, vorzugsweise 1 bis 7 Tage nach der Behandlung der Pflanzen mit den Wirkstoffen.

Die gute Pflanzenverträglichkeit der Wirkstoffe in den zur Bekämpfung von Pflanzenkrankheiten notwendigen Konzentrationen erlaubt eine Behandlung von oberirdischen Pflanzenteilen, von Pflanz-

WO 2005/042493 PCT/EP2004/011397

- 33 -

und Saatgut, und des Bodens.

5

30

35

Dabei lassen sich die erfindungsgemäßen Wirkstoffe mit besonders gutem Erfolg zur Bekämpfung von Getreidekrankheiten, wie z.B. gegen Puccinia-Arten und von Krankheiten im Wein-, Obst- und Gemüseanbau, wie z.B. gegen Botrytis-, Venturia- oder Alternaria-Arten, einsetzen.

Die erfindungsgemäßen Wirkstoffe eignen sich auch zur Steigerung des Ernteertrages. Sie sind außerdem mindertoxisch und weisen eine gute Pflanzenverträglichkeit auf.

Die erfindungsgemäßen Wirkstoffe können gegebenenfalls in bestimmten Konzentrationen und Aufwandmengen auch als Herbizide, zur Beeinflussung des Pflanzenwachstums, sowie zur Bekämpfung von tierischen Schädlingen verwendet werden. Sie lassen sich gegebenenfalls auch als Zwischen- und Vorprodukte für die Synthese weiterer Wirkstoffe einsetzen.

Erfindungsgemäß können alle Pflanzen und Pflanzenteile behandelt werden. Unter Pflanzen werden hierbei alle Pflanzen und Pflanzenpopulationen verstanden, wie erwünschte und unerwünschte Wildpflanzen oder Kulturpflanzen (einschließlich natürlich vorkommender Kulturpflanzen). Kulturpflanzen können Pflanzen sein, die durch konventionelle Züchtungs- und Optimierungsmethoden oder durch biotechnologische und gentechnologische Methoden oder Kombinationen dieser Methoden erhalten werden können, einschließlich der transgenen Pflanzen und einschließlich der durch Sortenschutzrechte schützbaren oder nicht schützbaren Pflanzensorten. Unter Pflanzenteilen sollen alle oberirdischen und unterirdischen Teile und Organe der Pflanzen, wie Spross, Blatt, Blüte und Wurzel verstanden werden, wobei beispielhaft Blätter, Nadeln, Stängel, Stämme, Blüten, Fruchtkörper, Früchte und Samen sowie Wurzeln, Knollen und Rhizome aufgeführt werden. Zu den Pflanzenteilen gehört auch Erntegut sowie vegetatives und generatives Vermehrungsmaterial, beispielsweise Stecklinge, Knollen, Rhizome, Ableger und Samen.

Die erfindungsgemäße Behandlung der Pflanzen und Pflanzenteile mit den Wirkstoffen erfolgt direkt oder durch Einwirkung auf deren Umgebung, Lebensraum oder Lagerraum nach den üblichen Behandlungsmethoden, z.B. durch Tauchen, Sprühen, Verdampfen, Vernebeln, Streuen, Aufstreichen und bei Vermehrungsmaterial, insbesondere bei Samen, weiterhin durch ein- oder mehrschichtiges Umhüllen.

Im Materialschutz lassen sich die erfindungsgemäßen Stoffe zum Schutz von technischen Materialien gegen Befall und Zerstörung durch unerwünschte Mikroorganismen einsetzen.

Unter technischen Materialien sind im vorliegenden Zusammenhang nichtlebende Materialien zu verstehen, die für die Verwendung in der Technik zubereitet worden sind. Beispielsweise können technische Materialien, die durch erfindungsgemäße Wirkstoffe vor mikrobieller Veränderung oder Zerstörung geschützt werden sollen, Klebstoffe, Leime, Papier und Karton, Textilien, Leder, Holz, Anstrichmittel und Kunststoffartikel, Kühlschmierstoffe und andere Materialien sein, die von Mikroorganismen befallen oder zersetzt werden können. Im Rahmen der zu schützenden Materialien seien auch Teile von Produktionsanlagen, beispielsweise Kühlwasserkreisläufe, genannt, die durch Vermehrung von Mikroorganismen beeinträchtigt werden können. Im Rahmen der vorliegenden Erfindung seien als technische Materialien vorzugsweise Klebstoffe, Leime, Papiere und Kartone, Leder, Holz, Anstrichmittel, Kühlschmiermittel und Wärmeübertragungsflüssigkeiten genannt, 10 besonders bevorzugt Holz.

Als Mikroorganismen, die einen Abbau oder eine Veränderung der technischen Materialien bewirken können, seien beispielsweise Bakterien, Pilze, Hefen, Algen und Schleimorganismen genannt. Vorzugsweise wirken die erfindungsgemäßen Wirkstoffe gegen Pilze, insbesondere Schimmelpilze, holzverfärbende und holzzerstörende Pilze (Basidiomyceten) sowie gegen Schleimorganismen und Algen.

Es seien beispielsweise Mikroorganismen der folgenden Gattungen genannt:

Alternaria, wie Alternaria tenuis,

Aspergillus, wie Aspergillus niger, 20

5

15

Chaetomium, wie Chaetomium globosum,

Coniophora, wie Coniophora puetana,

Lentinus, wie Lentinus tigrinus,

Penicillium, wie Penicillium glaucum,

Polyporus, wie Polyporus versicolor, 25

Aureobasidium, wie Aureobasidium pullulans,

Sclerophoma, wie Sclerophoma pityophila,

Trichoderma, wie Trichoderma viride,

Escherichia, wie Escherichia coli,

30 Pseudomonas, wie Pseudomonas aeruginosa,

Staphylococcus, wie Staphylococcus aureus.

Die Wirkstoffe können in Abhängigkeit von ihren jeweiligen physikalischen und/ oder chemischen Eigenschaften in die üblichen Formulierungen überführt werden, wie Lösungen, Emulsionen, Suspensionen, Pulver, Schäume, Pasten, Granulate, Aerosole, Feinstverkapselungen in polymeren 35 Stoffen und in Hüllmassen für Saatgut, sowie ULV-Kalt- und Warmnebel-Formulierungen.

Diese Formulierungen werden in bekannter Weise hergestellt, z.B. durch Vermischen der Wirkstoffe mit Streckmitteln, also flüssigen Lösungsmitteln, unter Druck stehenden verflüssigten Gasen und/ oder festen Trägerstoffen, gegebenenfalls unter Verwendung von oberflächenaktiven Mitteln, also Emulgiermitteln und/oder Dispergiermitteln und/oder schaumerzeugenden Mitteln. Im Falle der Benutzung von Wasser als Streckmittel können z.B. auch organische Lösungsmittel als Hilfslösungsmittel verwendet werden. Als flüssige Lösungsmittel kommen im Wesentlichen infrage: Aromaten, wie Xylol, Toluol oder Alkylnaphthaline, chlorierte Aromaten oder chlorierte aliphatische Kohlenwasserstoffe, wie Chlorbenzole, Chlorethylene oder Methylenchlorid, aliphatische Kohlenwasserstoffe, wie Cyclohexan oder Paraffine, z.B. Erdölfraktionen, Alkohole, wie Butanol oder Glycol sowie deren Ether und Ester, Ketone, wie Aceton, Methylethylketon, Methylisobutylketon oder Cyclohexanon, stark polare Lösungsmittel, wie Dimethylformamid und Dimethylsulfoxid, sowie Wasser. Mit verflüssigten gasförmigen Streckmitteln oder Trägerstoffen sind solche Flüssigkeiten gemeint, welche bei normaler Temperatur und unter Normaldruck gasförmig sind, z.B. Aerosol-Treibgase, wie Halogenkohlenwasserstoffe sowie Butan, Propan, Stickstoff und Kohlendioxid. Als feste Trägerstoffe kommen infrage: z.B. natürliche Gesteinsmehle, wie Kaoline, Tonerden, Talkum, Kreide, Quarz, Attapulgit, Montmorillonit oder Diatomeenerde und synthetische Gesteinsmehle, wie hochdisperse Kieselsäure, Aluminiumoxid und Silikate. Als feste Trägerstoffe für Granulate kommen infrage: z.B. gebrochene und fraktionierte natürliche Gesteine wie Calcit, Bims, Marmor, Sepiolith, Dolomit sowie synthetische Granulate aus anorganischen und organischen Mehlen sowie Granulate aus organischem Material wie Sägemehl, Kokosnussschalen, Maiskolben und Tabakstängel. Als Emulgier und/oder schaumerzeugende Mittel kommen infrage: z.B. nichtionogene und anionische Emulgatoren, wie Polyoxyethylen-Fettsäureester, Polyoxyethylen-Fettalkoholether, z.B. Alkylarylpolyglycolether, Alkylsulfonate, Alkylsulfate, Arylsulfonate sowie Eiweißhydrolysate. Als Dispergiermittel kommen infrage: z.B. Lignin-Sulfitablaugen und Methylcellulose.

25

10

15

20

Es können in den Formulierungen Haftmittel wie Carboxymethylcellulose, natürliche und synthetische pulverige, körnige oder latexförmige Polymere verwendet werden, wie Gummiarabicum, Polyvinylalkohol, Polyvinylacetat, sowie natürliche Phospholipide, wie Kephaline und Lecithine, und synthetische Phospholipide. Weitere Additive können mineralische und vegetabile Öle sein.

30

Es können Farbstoffe wie anorganische Pigmente, z.B. Eisenoxid, Titanoxid, Ferrocyanblau und organische Farbstoffe, wie Alizarin-, Azo- und Metallphthalocyaninfarbstoffe und Spurennährstoffe, wie Salze von Eisen, Mangan, Bor, Kupfer, Kobalt, Molybdän und Zink verwendet werden.

Die Formulierungen enthalten im Allgemeinen zwischen 0,1 und 95 Gewichtsprozent Wirkstoff, vorzugsweise zwischen 0,5 und 90 %.

Die erfindungsgemäßen Wirkstoffe können als solche oder in ihren Formulierungen auch in Mischung mit bekannten Fungiziden, Bakteriziden, Akariziden, Nematiziden oder Insektiziden verwendet werden, um so z.B. das Wirkungsspektrum zu verbreitern oder Resistenzentwicklungen vorzubeugen. In vielen Fällen erhält man dabei synergistische Effekte, d.h. die Wirksamkeit der Mischung ist größer als die Wirksamkeit der Einzelkomponenten.

Als Mischpartner kommen zum Beispiel folgende Verbindungen infrage:

Fungizide:

5

2-Phenylphenol; 8-Hydroxychinolinsulfat; Acibenzolar-S-methyl; Aldimorph; Amidoflumet; Ampropylfos; Ampropylfos-potassium; Andoprim; Anilazine; Azaconazole; Azoxystrobin; Benalaxyl; Benodanil; 10 Benomyl: Benthiavalicarb-isopropyl; Benzamacril; Benzamacril-isobutyl; Bilanafos; Binapacryl; Biphenyl; Bitertanol; Blasticidin-S; Bromuconazole; Bupirimate; Buthiobate; Butylamin; Calcium polysulfide; Capsimycin; Captafol; Captan; Carbendazim; Carboxin; Carpropamid; Carvone; Chinomethionat; Chlobenthiazone; Chlorfenazole; Chloroneb; Chlorothalonil; Chlozolinate; Clozylacon; Cyazofamid; Cyflufenamid; Cymoxanil; Cyproconazole; Cyprodinil; Cyprofuram; Dagger G; Debacarb; Dichloflua-15 nid; Dichlone; Dichlorophen; Diclocymet; Diclomezine; Dicloran; Diethofencarb; Difenoconazole; Diflumetorim; Dimethirimol; Dimethomorph; Dimoxystrobin; Diniconazole; Diniconazole-M; Dinocap; Diphenylamine: Dipyrithione; Ditalimfos; Dithianon; Dodine; Drazoxolon; Edifenphos; Epoxiconazole; Ethaboxam; Ethirimol; Etridiazole; Famoxadone; Fenamidone; Fenapanil; Fenarimol; Fenbuconazole; Fenfuram; Fenhexamid; Fenitropan; Fenoxanil; Fenpiclonil; Fenpropidin; Fenpropimorph; Ferbam; 20 Fluazinam: Flubenzimine; Fludioxonil; Flumetover; Flumorph; Fluoromide; Fluoxastrobin; Fluquinconazole; Flurprimidol; Flusilazole; Flusulfamide; Flutolanil; Flutriafol; Folpet; Fosetyl-Al; Fosetyl-sodium; Fuberidazole; Furalaxyl; Furametpyr; Furcarbanil; Furmecyclox; Guazatine; Hexachlorobenzene; Hexaconazole; Hymexazol; Imazalil; Imibenconazole; Iminoctadine triacetate; Iminoctadine tris(albesil; Iodocarb; Ipconazole; Iprobenfos; Iprodione; Iprovalicarb; Irumamycin; Isoprothiolane; Isovaledione; 25 Kasugamycin; Kresoxim-methyl; Mancozeb; Maneb; Meferimzone; Mepanipyrim; Mepronil; Metalaxyl; Metalaxyl-M; Metconazole; Methasulfocarb; Methfuroxam; Metiram; Metominostrobin; Metsulfovax; Mildiomycin; Myclobutanil; Myclozolin; Natamycin; Nicobifen; Nitrothal-isopropyl; Noviflumuron; Nuarimol; Ofurace; Orysastrobin; Oxadixyl; Oxolinic acid; Oxpoconazole; Oxycarboxin; Oxyfenthiin: Paclobutrazol; Pefurazoate; Penconazole; Pencycuron; Phosdiphen; Phthalide; Picoxystro-30 bin; Piperalin; Polyoxins; Polyoxorim; Probenazole; Prochloraz; Procymidone; Propamocarb; Propanosine-sodium; Propiconazole; Propineb; Proquinazid; Prothioconazole; Pyraclostrobin; Pyrazophos; Pyrifenox; Pyrimethanil; Pyroquilon; Pyroxyfur; Pyrrolnitrine; Quinconazole; Quinoxyfen; Quintozene; Simeconazole; Spiroxamine; Sulfur; Tebuconazole; Tecloftalam; Tecnazene; Tetcyclacis; Tetraconazole; Thiabendazole; Thicyofen; Thifluzamide; Thiophanate-methyl; Thiram; Tioxymid; Tolclofos-methyl; 35 Tolylfluanid; Triadimefon; Triadimenol; Triazbutil; Triazoxide; Tricyclamide; Tricyclazole; Tridemorph; Trifloxystrobin; Triflumizole; Triforine; Triticonazole; Uniconazole; Validamycin A; Vinclozolin; Zineb; Ziram; Zoxamide; (2S)-N-[2-[4-[[3-(4-Chlorphenyl)-2-propinyl]oxy]-3-methoxyphenyl]-ethyl]-3-methyl-2-[(methylsulfonyl)amino]-butanamid; 1-(1-Naphthalenyl)-1H-pyrrol-2,5-dion; 2,3,5,6-Tetrachlor-4-(methylsulfonyl)pyridin; 2-Amino-4-methyl-N-phenyl-5-thiazolcarboxamid; 2-Chlor-N-(2,3-dihydro-1,1,3-trimethyl-1H-inden-4-yl)-3-pyridincarboxamide; 3,4,5-Trichlor-2,6-pyridindicarbonitril; Actinovate; cis-1-(4-Chlorphenyl)-2-(1H-1,2,4-triazol-1-yl)-cycloheptanol; Methyl 1-(2,3-dihydro-2,2-dimethyl-1H-inden-1-yl)-1H-imidazol-5-carboxylat; Monokaliumcarbonat; N-(6-Methoxy-3-pyridinyl)-cyclopropancarboxamid; N-Butyl-8-(1,1-dimethylethyl)-1-oxaspiro[4.5]decan-3-amin; Natriumtetrathiocarbonat; sowie Kupfersalze und -zubereitungen, wie Bordeaux mixture; Kupferhydroxid; Kupfermaphthenat; Kupferoxychlorid; Kupfersulfat; Cufraneb; Kupferoxid; Mancopper; Oxine-copper.

Bakterizide:

5

10

15

Bronopol, Dichlorophen, Nitrapyrin, Nickel-dimethyldithiocarbamat, Kasugamycin, Octhilinon, Furancarbonsäure, Oxytetracyclin, Probenazol, Streptomycin, Tecloftalam, Kupfersulfat und andere Kupfer-Zubereitungen.

Insektizide / Akarizide / Nematizide:

Abamectin, ABG-9008, Acephate, Acequinocyl, Acetamiprid, Acetoprole, Acrinathrin, AKD-1022, AKD-3059, AKD-3088, Alanycarb, Aldicarb, Aldoxycarb, Allethrin, Allethrin 1R-isomers, Alpha-20 Cypermethrin (Alphamethrin), Amidoflumet, Aminocarb, Amitraz, Avermectin, AZ-60541, Azadirachtin, Azamethiphos, Azinphos-methyl, Azinphos-ethyl, Azocyclotin, Bacillus popilliae, Bacillus sphaericus, Bacillus subtilis, Bacillus thuringiensis, Bacillus thuringiensis strain EG-2348, Bacillus thuringiensis strain GC-91, Bacillus thuringiensis strain NCTC-11821, Baculoviren, Beauveria bassiana, Beauveria tenella, Benclothiaz, Bendiocarb, Benfuracarb, Bensultap, Benzoximate, Beta-Cyfluthrin, Beta-Cypermethrin, Bifenazate, Bifenthrin, Binapacryl, Bioallethrin, Bioallethrin-S-cyclopentyl-isomer, Bio-25 ethanomethrin, Biopermethrin, Bioresmethrin, Bistrifluron, BPMC, Brofenprox, Bromophos-ethyl, Bromopropylate, Bromfenvinfos (-methyl), BTG-504, BTG-505, Bufencarb, Buprofezin, Butathiofos, Butocarboxim, Butoxycarboxim, Butylpyridaben, Cadusafos, Camphechlor, Carbaryl, Carbofuran, Carbophenothion, Carbosulfan, Cartap, CGA-50439, Chinomethionat, Chlordane, Chlordimeform, Chloethocarb, Chlorethoxyfos, Chlorfenapyr, Chlorfenvinphos, Chlorfluazuron, Chlormephos, Chlorobenzi-30 late, Chloropicrin, Chlorproxyfen, Chlorpyrifos-methyl, Chlorpyrifos (-ethyl), Chlovaporthrin, Chromafenozide, Cis-Cypermethrin, Cis-Resmethrin, Cis-Permethrin, Clocythrin, Cloethocarb, Clofentezine, Clothianidin, Clothiazoben, Codlemone, Coumaphos, Cyanofenphos, Cyanophos, Cycloprene, Cycloprothrin, Cydia pomonella, Cyfluthrin, Cyhalothrin, Cyhexatin, Cypermethrin, Cyphenothrin (1R-trans-35 isomer), Cyromazine, DDT, Deltamethrin, Demeton-S-methyl, Demeton-S-methylsulphon, Diafenthiuron, Dialifos, Diazinon, Dichlofenthion, Dichlorvos, Dicofol, Dicrotophos, Dicyclanil, Diflubenz-

10

15

20

25

30

35

uron, Dimefluthrin, Dimethoate, Dimethylvinphos, Dinobuton, Dinocap, Dinotefuran, Diofenolan, Disulfoton, Docusat-sodium, Dofenapyn, DOWCO-439, Eflusilanate, Emamectin, Emamectin-benzoate, Empenthrin (1R-isomer), Endosulfan, Entomopthora spp., EPN, Esfenvalerate, Ethiofencarb, Ethiprole, Ethion, Ethoprophos, Etofenprox, Etoxazole, Etrimfos, Famphur, Fenamiphos, Fenazaquin, Fenbutatin oxide, Fenfluthrin, Fenitrothion, Fenobucarb, Fenothiocarb, Fenoxacrim, Fenoxycarb, Fenpropathrin, Fenpyrad, Fenpyrithrin, Fenpyroximate, Fensulfothion, Fenthion, Fentrifanil, Fenvalerate, Fipronil, Flonicamid, Fluacrypyrim, Fluazuron, Flubenzimine, Flubrocythrinate, Flucycloxuron, Flucythrinate, Flufenerim. Flufenoxuron, Flufenprox, Flumethrin, Flupyrazofos, Flutenzin (Flufenzine), Fluvalinate, Fonofos, Formetanate, Formothion, Fosmethilan, Fosthiazate, Fubfenprox (Fluproxyfen), Furathiocarb, Gamma-Cyhalothrin, Gamma-HCH, Gossyplure, Grandlure, Granuloseviren, Halfenprox, Halofenozide, HCH, HCN-801, Heptenophos, Hexaflumuron, Hexythiazox, Hydramethylnone, Hydroprene, IKA-2002, Imidacloprid, Imiprothrin, Indoxacarb, Iodofenphos, Iprobenfos, Isazofos, Isofenphos, Isoprocarb, Isoxathion, Ivermectin, Japonilure, Kadethrin, Kempolyederviren, Kinoprene, Lambda-Cyhalothrin, Lindane, Lufenuron, Malathion, Mecarbam, Mesulfenfos, Metaldehyd, Metam-sodium, Methacrifos, Methamidophos, Methamizium anisopliae, Methamizium flavoviride, Methidathion, Methiocarb, Methornyl, Methoprene, Methoxychlor, Methoxyfenozide, Metofluthrin, Metolcarb, Metoxadiazone, Mevinphos, Milbernectin, Milbernycin, MKI-245, MON-45700, Monocrotophos, Moxidectin, MTI-800, Naled, NC-104, NC-170, NC-184, NC-194, NC-196, Niclosamide, Nicotine, Nitenpyram, Nithiazine, NNI-0001, NNI-0101, NNI-0250, NNI-9768, Novaluron, Noviflumuron, OK-5101, OK-5201, OK-9601, OK-9602, OK-9701, OK-9802, Omethoate, Oxamyl, Oxydemeton-methyl, Paecilomyces fumosoroseus, Parathion-methyl, Parathion (-ethyl), Permethrin (cis-, trans-), Petroleum, PH-6045, Phenothrin (1Rtrans isomer), Phenthoate, Phorate, Phosalone, Phosmet, Phosphamidon, Phosphocarb, Phoxim, Piperonyl butoxide, Pirimicarb, Pirimiphos-methyl, Pirimiphos-ethyl, Potassium oleate, Prallethrin, Profenofos, Profluthrin, Promecarb, Propaphos, Propargite, Propetamphos, Propoxur, Prothiofos, Prothoate, Protrifenbute, Pymetrozine, Pyraclofos, Pyresmethrin, Pyrethrum, Pyridaben, Pyridalyl, Pyridaphenthion, Pyridathion, Pyrimidifen, Pyriproxyfen, Quinalphos, Resmethrin, RH-5849, Ribavirin, RU-12457, RU-15525, S-421, S-1833, Salithion, Sebufos, SI-0009, Silafluofen, Spinosad, Spirodiclofen, Spiromesifen, Sulfluramid, Sulfotep, Sulprofos, SZI-121, Tau-Fluvalinate, Tebufenozide, Tebufenpyrad, Tebupirimfos, Teflubenzuron, Tefluthrin, Temephos, Temivinphos, Terbam, Terbufos, Tetrachlorvinphos, Tetradifon, Tetramethrin, Tetramethrin (1R-isomer), Tetrasul, Theta-Cypermethrin, Thiacloprid, Thiamethoxam, Thiapronil, Thiatriphos, Thiocyclam hydrogen oxalate, Thiodicarb, Thiofanox, Thiometon, Thiosultap-sodium, Thuringiensin, Tolfenpyrad, Tralocythrin, Tralomethrin, Transfluthrin, Triarathene, Triazamate, Triazophos, Triazuron, Trichlophenidine, Trichlorfon, Trichoderma atroviride, Triflumuron, Trimethacarb, Vamidothion, Vaniliprole, Verbutin, Verticillium lecanii, WL-108477, WL-40027, YI-5201, YI-5301, YI-5302, XMC, Xylylcarb, ZA-3274, Zeta-Cypermethrin, Zolaprofos, ZXI-8901, die Verbindung 3-Methyl-phenyl-propylcarbamat (Tsumacide Z), die Verbindung 3-(5-Chlor-3-pyridinyl)-

8-(2,2,2-trifluorethyl)-8-azabicyclo[3.2.1]octan-3-carbonitril (CAS-Reg.-Nr. 185982-80-3) und das entsprechende 3-endo-Isomere (CAS-Reg.-Nr. 185984-60-5) (vgl. WO 96/37494, WO 98/25923), sowie Präparate, welche insektizid wirksame Pflanzenextrakte, Nematoden, Pilze oder Viren enthalten.

Auch eine Mischung mit anderen bekannten Wirkstoffen, wie Herbiziden oder mit Düngemitteln und Wachstumsregulatoren, Safener bzw. Semiochemicals ist möglich.

Darüber hinaus weisen die erfindungsgemäßen Verbindungen der Formel (I) auch sehr gute antimykotische Wirkungen auf. Sie besitzen ein sehr breites antimykotisches Wirkungsspektrum, insbesondere gegen Dermatophyten und Sprosspilze, Schimmel und diphasische Pilze (z.B. gegen CandidaSpezies wie Candida albicans, Candida glabrata) sowie Epidermophyton floccosum, AspergillusSpezies wie Aspergillus niger und Aspergillus fumigatus, Trichophyton-Spezies wie Trichophyton
mentagrophytes, Microsporon-Spezies wie Microsporon canis und audouinii. Die Aufzählung dieser
Pilze stellt keinesfalls eine Beschränkung des erfassbaren mykotischen Spektrums dar, sondern hat
nur erläuternden Charakter.

10

15

20

35

Die Wirkstoffe können als solche, in Form ihrer Formulierungen oder den daraus bereiteten Anwendungsformen, wie gebrauchsfertige Lösungen, Suspensionen, Spritzpulver, Pasten, lösliche Pulver, Stäubemittel und Granulate angewendet werden. Die Anwendung geschieht in üblicher Weise, z.B. durch Gießen, Verspritzen, Versprühen, Verstreuen, Verstäuben, Verschäumen, Bestreichen usw. Es ist ferner möglich, die Wirkstoffe nach dem Ultra-Low-Volume-Verfahren auszubringen oder die Wirkstoffzubereitung oder den Wirkstoff selbst in den Boden zu injizieren. Es kann auch das Saatgut der Pflanzen behandelt werden.

Beim Einsatz der erfindungsgemäßen Wirkstoffe als Fungizide können die Aufwandmengen je nach Applikationsart innerhalb eines größeren Bereiches variiert werden. Bei der Behandlung von Pflanzenteilen liegen die Aufwandmengen an Wirkstoff im Allgemeinen zwischen 0,1 und 10.000 g/ha, vorzugsweise zwischen 10 und 1.000 g/ha. Bei der Saatgutbehandlung liegen die Aufwandmengen an Wirkstoff im Allgemeinen zwischen 0,001 und 50 g pro Kilogramm Saatgut, vorzugsweise zwischen 0,01 und 10 g pro Kilogramm Saatgut. Bei der Behandlung des Bodens liegen die Aufwandmengen an Wirkstoff im Allgemeinen zwischen 0,1 und 10.000 g/ha, vorzugsweise zwischen 1 und 5.000 g/ha.

Wie bereits oben erwähnt, können erfindungsgemäß alle Pflanzen und deren Teile behandelt werden. In einer bevorzugten Ausführungsform werden wild vorkommende oder durch konventionelle biologische Zuchtmethoden, wie Kreuzung oder Protoplastenfusion erhaltenen Pflanzenarten und

10

15

20

25

30

35

Pflanzensorten sowie deren Teile behandelt. In einer weiteren bevorzugten Ausführungsform werden transgene Pflanzen und Pflanzensorten, die durch gentechnologische Methoden gegebenenfalls in Kombination mit konventionellen Methoden erhalten wurden (Genetically Modified Organisms) und deren Teile behandelt. Der Begriff "Teile" bzw. "Teile von Pflanzen" oder "Pflanzenteile" wurde oben erläutert.

Besonders bevorzugt werden erfindungsgemäß Pflanzen der jeweils handelsüblichen oder in Gebrauch befindlichen Pflanzensorten behandelt. Unter Pflanzensorten versteht man Pflanzen mit neuen Eigenschaften ("Traits"), die sowohl durch konventionelle Züchtung, durch Mutagenese oder durch rekombinante DNA-Techniken gezüchtet worden sind. Dies können Sorten, Rassen, Bio- und Genotypen sein.

Je nach Pflanzenarten bzw. Pflanzensorten, deren Standort und Wachstumsbedingungen (Böden, Klima, Vegetationsperiode, Ernährung) können durch die erfindungsgemäße Behandlung auch überadditive ("synergistische") Effekte auftreten. So sind beispielsweise erniedrigte Aufwandmengen und/oder Erweiterungen des Wirkungsspektrums und/oder eine Verstärkung der Wirkung der erfindungsgemäß verwendbaren Stoffe und Mittel, besseres Pflanzenwachstum, erhöhte Toleranz gegenüber hohen oder niedrigen Temperaturen, erhöhte Toleranz gegen Trockenheit oder gegen Wasser- bzw. Bodensalzgehalt, erhöhte Blühleistung, erleichterte Ernte, Beschleunigung der Reife, höhere Ernteerträge, höhere Qualität und/oder höherer Ernährungswert der Ernteprodukte, höhere Lagerfähigkeit und/oder Bearbeitbarkeit der Ernteprodukte möglich, die über die eigentlich zu erwartenden Effekte hinausgehen.

Zu den bevorzugten erfindungsgemäß zu behandelnden transgenen (gentechnologisch erhaltenen) Pflanzen bzw. Pflanzensorten gehören alle Pflanzen, die durch die gentechnologische Modifikation genetisches Material erhielten, welches diesen Pflanzen besondere vorteilhafte wertvolle Eigenschaften ("Traits") verleiht. Beispiele für solche Eigenschaften sind besseres Pflanzenwachstum, erhöhte Toleranz gegenüber hohen oder niedrigen Temperaturen, erhöhte Toleranz gegen Trockenheit oder gegen Wasser- bzw. Bodensalzgehalt, erhöhte Blühleistung, erleichterte Ernte, Beschleunigung der Reife, höhere Ernteerträge, höhere Qualität und/oder höhere Ernährungswert der Ernteprodukte, höhere Lagerfähigkeit und/oder Bearbeitbarkeit der Ernteprodukte. Weitere und besonders hervorgehobene Beispiele für solche Eigenschaften sind eine erhöhte Abwehr der Pflanzen gegen tierische und mikrobielle Schädlinge, wie gegenüber Insekten, Milben, pflanzenpathogenen Pilzen, Bakterien und/oder Viren sowie eine erhöhte Toleranz der Pflanzen gegen bestimmte herbizide Wirkstoffe. Als Beispiele transgener Pflanzen werden die wichtigen Kulturpflanzen, wie Getreide (Weizen, Reis), Mais, Soja, Kartoffel, Baumwolle, Tabak, Raps sowie Obstpflanzen (mit den Früchten Äpfel, Birnen, Zitrusfrüchten und Weintrauben)

10

15

20

erwähnt, wobei Mais, Soja, Kartoffel, Baurnwolle, Tabak und Raps besonders hervorgehoben werden. Als Eigenschaften ("Traits") werden besonders hervorgehoben die erhöhte Abwehr der Pflanzen gegen Insekten, Spinnentiere, Nematoden und Schnecken durch in den Pflanzen entstehende Toxine, insbesondere solche, die durch das genetische Material aus Bacillus Thuringiensis (z.B. durch die Gene CryIA(a), CryIA(b), CryIA(c), CryIIA, CryIIIA, CryIIIB2, Cry9c Cry2Ab, Cry3Bb und CryIF sowie deren Kombinationen) in den Pflanzen erzeugt werden (im Folgenden "Bt Pflanzen"). Als Eigenschaften ("Traits") werden auch besonders hervorgehoben die erhöhte Abwehr von Pflanzen gegen Pilze, Bakterien und Viren durch Systemische Akquirierte Resistenz (SAR), Systemin, Phytoalexine, Elicitoren sowie Resistenzgene und entsprechend exprimierte Proteine und Toxine. Als Eigenschaften ("Traits") werden weiterhin besonders hervorgehoben die erhöhte Toleranz der Pflanzen gegenüber bestimmten herbiziden Wirkstoffen, z.B. Imidazolinonen, Sulfonylharnstoffen, Glyphosate oder Phosphinotricin (z.B. "PAT"-Gen). Die jeweils die gewünschten Eigenschaften ("Traits") verleihenden Gene können auch in Kombinationen miteinander in den transgenen Pflanzen vorkommen. Als Beispiele für "Bt Pflanzen" seien Maissorten, Baumwollsorten, Sojasorten und Kartoffelsorten genannt, die unter den Handelsbezeichnungen YIELD GARD® (z.B. Mais, Baumwolle, Soja), KnockOut® (z.B. Mais), Star-Link® (z.B. Mais), Bollgard® (Baumwolle), Nucoton® (Baumwolle) und NewLeaf® (Kartoffel) vertrieben werden. Als Beispiele für Herbizid tolerante Pflanzen seien Maissorten, Baumwollsorten und Sojasorten genannt, die unter den Handelsbezeichnungen Roundup Ready® (Toleranz gegen Glyphosate z.B. Mais, Baumwolle, Soja), Liberty Link® (Toleranz gegen Phosphinotricin, z.B. Raps), IMI® (Toleranz gegen Imidazolinone) und STS® (Toleranz gegen Sulfonylharnstoffe z.B. Mais) vertrieben werden. Als Herbizid resistente (konventionell auf Herbizid-Toleranz gezüchtete) Pflanzen seien auch die unter der Bezeichnung Clearfield® vertriebenen Sorten (z.B. Mais) erwähnt. Selbstverständlich gelten diese Aussagen auch für in der Zukunft entwickelte bzw. zukünftig auf den Markt kommende Pflanzensorten mit diesen oder zukünftig entwickelten genetischen Eigenschaften ("Traits").

25

30

Die aufgeführten Pflanzen können besonders vorteilhaft erfindungsgemäß mit den Verbindungen der allgemeinen Formel (I) bzw. den erfindungsgemäßen Wirkstoffmischungen behandelt werden. Die bei den Wirkstoffen bzw. Mischungen oben angegebenen Vorzugsbereiche gelten auch für die Behandlung dieser Pflanzen. Besonders hervorgehoben sei die Pflanzenbehandlung mit den im vorliegenden Text speziell aufgeführten Verbindungen bzw. Mischungen.

Die Herstellung und die Verwendung der erfindungsgemäßen Wirkstoffe geht aus den folgenden Beispielen hervor.

Herstellungsbeispiele

Beispiel 1

- Zu einer Lösung bestehend aus 250.2 mg (1.1 mmol) 3-Dichlormethyl-1-methyl-1H-pyrazol-4-car-bonylchlorid und 161.9 mg (1.6 mmol) Triethylamin in 10 ml Tetrahydrofuran werden 191.3 mg (1.0 mmol) [2-(1,3,3-Trimethylbutyl)phenyl]amin gegeben. Die Reaktionslösung wird 16 h bei 60°C gerührt, über Silica filtriert und im Vakuum aufkonzentriert.
- Säulenchromatographie (Cyclohexan/Essigsäureethylester 3:1) liefert 342.1 mg (89 % der Theorie) an 3-(Dichlormethyl)-1-methyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1H-pyrazol-4-carboxamid [logP (pH = 2.3) = 4.02].

Analog Beispiel 1, sowie entsprechend den Angaben in den allgemeinen Verfahrensbeschreibungen, werden die in der nachstehenden Tabelle 1 genannten Verbindungen der Formel (I) erhalten.

Tabelle 1

Bsp.	R ¹	R ²	R ³	Α	logP
2	н	н	СН₃	H ₃ C CH ₃	3.19
4	н	Н	СН₃	H ₃ C CH ₃	4.25

Bsp.	R ¹	R ²	R ³	Α	logP
3	Н	н	СН₃	F ₃ C N N CH ₃	4.34
5	Ŧ	Н	СН₃	CI N N CH ₃	4.39

Bsp.	R ¹	R ²	R³	Α	logP	Bsp.	R ¹	R ²	R ³	Α	logP
6	Н	Н	СН₃	F ₃ C N N CH ₃	3.81	7	н	н	C₂H₅	F ₃ C N N C C C C C C C C C C C C C C C C C	4.13
8	н	н	CH₃	H ₃ C F	3.63	9	н	н	СН₃	CI N N CH ₃	3.79
10	н	н	CH₃	F ₂ HC-O N N I CH ₃	4.19	11	н	Н	СН₃	CH ₃	3.81
12	н	н	CH₃	F ₃ C N S CH ₃	4.24	13	н	н	CH₃	H ₃ C N CH ₃	3.60
14	Н	н	CH₃	H ₃ C N S	4.52	15	Н	Н	C₂H₅	H ₃ C N S	4.89
16	н	н	СН₃	CH ₃	4.27	17	Н	н	C₂H₅	CH ₃	4.63
18	н	н	СН₃	CH₃ CH₃	4.39	19	Н	Н	СН₃	CH3	4.04
20	н	н	C₂H₅	CH3	4.38	21	н	Н	СН₃	CF ₃	4.37
22	н	Н	СН₃	H ₃ C	4.40	23	н	н	C₂H₅	H ₃ C s	4.75
24	Н	н	CH ₃	CI	4.92	25	н	н	CH ₃	H ₃ C S	3.84
26	н	н	CH₃	CI S	4.15	27	н	н	СН₃	F ₃ C N OH	3.97

Bsp.	R ¹	R ²	R ³	Α	logP
28	н	н	СН₃	CF ₃	3.89
30	н	н	СН₃	N CI	3.95
32	н	н	CH₃	F ₃ C N S	4.80

Bsp.	R ¹	R²	R³	Α	logP
29	н	н	CH₃		3.97
31	н	н	СН₃	F₂HC N N CH₃	4.16

Herstellung von Ausgangsstoffen der Formel (II)

Beispiel (II-1)

300.0 mg (1.9 mmol) 3-Formyl-1-methyl-1H-pyrazole-4-carbonsäure werden in 60 ml Dichlormethan gelöst und mit 1.0 g (4.9 mmol) Phosphorpentachlorid versetzt. Nach 1.5 h bei Raumtemperatur wird auf Eiswasser gegeben, mit Dichlormethan extrahiert, über Magnesiumsulfat getrocknet, filtriert und im Vakuum aufkonzentriert.

Man erhält so 384.0 mg (86 % der Theorie) an 3-Dichlormethyl-1-methyl-1H-pyrazol-4-carbonyl-chlorid [logP (pH 2.3) = 1.80].

Herstellung von Ausgangsstoffen der Formel (VII)

Beispiel (VII-1)

10

Zu einer Lösung bestehend aus 10.0 g (57 mmol) 4,4-Dimethoxy-3-oxo-buttersäure-methylester in 9.0 g (85 mmol) Orthoameisensäuretrimethylester werden 16.0 ml (170 mol) Essigsäureanhydrid gegeben. Die Reaktionsmischung wird für 16 h unter Rückfluss erhitzt.

Destillation aus der Reaktionsmischung (Siedepunkt 132-135°C, 0.2 bar) liefert 7.0 g (56 % der Theorie) an 4,4-Dimethoxy-2-methoxymethylen-3-oxo-buttersäuremethylester.

Herstellung von Ausgangsstoffen der Formel (IX)

Beispiel (IX-1)

Bei -5°C wird eine Lösung bestehend aus 2.0 ml (38 mmol) Methylhydrazin in 340 ml Methanol langsam zu 7.5 g 4,4-Dimethoxy-2-methoxymethylen-3-oxo-buttersäuremethylester getropft. Nach beendeter Zugabe wird die Reaktionsmischung für 16 h bei Raumtemperatur gerührt und im Vakuum aufkonzentriert.

Säulenchromatographie (Laufmittelgradient Cyclohexan/Essigsäureethylester) liefert 6.5 g (77 % der Theorie) an 3-Dimethoxymethyl-1-methyl-1H-pyrazol-4-carbonsäuremethylester.

10

15

20

Herstellung von Ausgangsstoffen der Formel (X)

Beispiel (X-1)

Eine Lösung aus 2.1 g (10 mmol) 3-Dimethoxymethyl-1-methyl-1H-pyrazol-4-carbonsäuremethylester in 20 ml Dioxan wird mit 10 ml konzentrierter Salzsäure versetzt und für 16 h bei Raumtemperatur gerührt. Zur Aufarbeitung wird im Vakuum aufkonzentriert, der Rückstand mit 200 ml Methylenchlorid aufgenommen und mit 50 ml Wasser gewaschen. Die organische Phase wird über Magnesiumsulfat getrocknet, filtriert und aufkonzentriert.

Man erhält 1.6 g (94 % der Theorie) an 3-Formyl-1-methyl-1H-pyrazole-4-carbonsäuremethylester [logP (pH 2.3) = 0.46].

Herstellung von Ausgangsstoffen der Formel (XI)

Beispiel (XI-1)

6.0 g (35.68 mmol) 3-Formyl-1-methyl-1H-pyrazol-4-carbonsäuremethylester werden in 180 ml
 Tetrahydrofuran und 90 ml Wasser gelöst und mit 0.94 g (39.25 mmol) Lithiumhydroxid versetzt.
 Die Reaktionsmischung wird für 16 h bei Raumtemperatur gerührt, das organische Lösungsmittel im

Vakuum entfernt, die verbleibende wässrige Phase mit verdünnter Salzsäure angesäuert, dreimal mit je 100 ml Essigsäureethylester extrahiert. Die organischen Phasen werden über Magnesiumsulfat getrocknet, filtriert und aufkonzentriert.

Man erhält so 4.28 g (78 % der Theorie) an 3-Formyl-1-methyl-1H-pyrazole-4-carbonsäure mit dem logP (pH = 2.3) = -0.19.

Herstellung von Ausgangsstoffen der Formel (XII)

Beispiel (XII-1)

46.1 mg (0.27 mmol) 3-Formyl-1-methyl-1H-pyrazol-4-carbonsäuremethylester werden in 10 ml Dichlormethan gelöst und mit 142.9 mg (0.67 mmol) Phosphorpentachlorid versetzt. Die Reaktionsmischung wird für 1.5 h bei Raumtemperatur gerührt, auf Wasser gegeben, mit Diethylether extrahiert, über Magnesiumsulfat getrocknet und im Vakuum konzentriert.

Man erhält so 53.0 mg (86 % der Theorie) an 3-(Dichlormethyl)-1-methyl-1H-pyrazol-4-carbonsäure-methylester mit dem logP (pH 2.3) = 1.80.

Dieser Methylester kann auf übliche Weise verseift werden. Man erhält die 3-(Dichlormethyl)-1-methyl-1H-pyrazol-4-carbonsäure, welche entweder direkt mit Verbindungen der Formel (III) gekuppelt wird oder zuvor in das Säurechlorid überführt wird.

20

15

Die Bestimmung der in den voranstehenden Tabellen und Herstellungsbeispielen angegebenen logP-Werte erfolgt gemäß EEC-Directive 79/831 Annex V.A8 durch HPLC (High Performance Liquid Chromatography) an einer Phasenumkehrsäule (C 18). Temperatur: 43°C.

Die Bestimmung erfolgt im sauren Bereich bei pH 2.3 mit 0,1 % wässriger Phosphorsäure und Acetonitril als Eluenten; linearer Gradient von 10 % Acetonitril bis 90 % Acetonitril.

Die Eichung erfolgt mit unverzweigten Alkan-2-onen (mit 3 bis 16 Kohlenstoffatomen), deren logP-Werte bekannt sind (Bestimmung der logP-Werte anhand der Retentionszeiten durch lineare Interpolation zwischen zwei aufeinanderfolgenden Alkanonen).

30 Die lambda-max-Werte wurden an Hand der UV-Spektren von 200 nm bis 400 nm in den Maxima der chromatographischen Signale ermittelt.

Anwendungsbeispiele

Beispiel A

5 Podosphaera-Test (Apfel) / protektiv

Lösungsmittel:

24,5 Gewichtsteile Aceton

24,5 Gewichtsteile Dimethylacetamid

Emulgator:

1 Gewichtsteil Alkyl-Aryl-Polyglykolether

10

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

2 Zur Prüfung auf protektive Wirksamkeit werden junge Pflanzen mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge besprüht. Nach Antrocknen des Spritzbelages werden die Pflanzen mit einer wässrigen Sporensuspension des Apfelmehltauerregers Podosphaera leucotricha inokuliert. Die Pflanzen werden dann im Gewächshaus bei ca. 23°C und einer relativen Luftfeuchtigkeit von ca. 70 % aufgestellt.

20

10 Tage nach der Inokulation erfolgt die Auswertung. Dabei bedeutet 0 % ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100 % bedeutet, dass kein Befall beobachtet wird.

<u>Tabelle A</u>
Podosphaera-Test (Apfel) / protektiv

Wirkstoff Erfindungsgemäß	Aufwandmenge an Wirkstoff in g/ha	Wirkungsgrad in %
H ₃ C CH ₃ CH ₃	100	85
CH ₃ H ₃ C CH ₃ CH ₃	100	94
CH ₃ H ₃ C CH ₃ CH ₃	100	91
H ₃ C CH ₃ CH ₃	100	98
H ₃ C CH ₃ CH ₃	100	95
H ₃ C CH ₃ CH ₃	100	96
H ₃ C CH ₃ CH ₃	100	100
H ₃ C CH ₃ CH ₃	100	97
H ₃ C CH ₃ CH ₃	100	100

Beispiel B

Venturia - Test (Apfel) / protektiv

1

5 Lösungsmittel:

24,5 Gewichtsteile Aceton

24,5 Gewichtsteile Dimethylacetamid

Emulgator:

Gewichtsteil Alkyl-Aryl-Polyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff
 mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

Zur Prüfung auf protektive Wirksamkeit werden junge Pflanzen mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge besprüht. Nach Antrocknen des Spritzbelages werden die Pflanzen mit einer wässrigen Konidiensuspension des Apfelschorferregers Venturia inaequalis inokuliert und verbleiben dann 1 Tag bei ca. 20°C und 100 % relativer Luftfeuchtigkeit in einer Inkubationskabine.

Die Pflanzen werden dann im Gewächshaus bei ca. 21°C und einer relativen Luftfeuchtigkeit von ca. 90 % aufgestellt.

20

15

10 Tage nach der Inokulation erfolgt die Auswertung. Dabei bedeutet 0 % ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100 % bedeutet, dass kein Befall beobachtet wird.

- 50 -

Tabelle B

Venturia - Test (Apfel) / protektiv

Venturia - Test (Apfel) / protektiv					
Wirkstoff Erfindungsgemäß	Aufwandmenge an Wirkstoff in g/ha	Wirkungsgrad in %			
H ₃ C CH ₃ CH ₃	100	96			
CH ₃ H ₃ C CH ₃ CH ₃	100	100			
CH ₃ H ₃ C CH ₃ CH ₃	100	100			
CH ₃ H ₃ C CH ₃ CH ₃	100	93			
H ₃ C O H ₃ C CH ₃ CH ₃	100	99			
H ₃ C CH ₃ CH ₃	100	95			
H ₃ C CH ₃ CH ₃	100	92			
H ₃ C CH ₃	100	100			

Venturia - Test (Apfel) / protektiv

Wirkstoff Erfindungsgemäß	Aufwandmenge an Wirkstoff in g/ha	Wirkungsgrad in %
F ₃ C O H ₃ C CH ₃ CH ₃	100	99
H ₃ C CH ₃	100	99

Beispiel C

Botrytis - Test (Bohne) / protektiv

5 Lösungsmittel:

24,5 Gewichtsteile Aceton

24,5 Gewichtsteile Dimethylacetamid

Emulgator:

15

20

1 Gewichtsteil Alkyl-Aryl-Polyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff
10 mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser
auf die gewünschte Konzentration.

Zur Prüfung auf protektive Wirksamkeit werden junge Pflanzen mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge besprüht. Nach Antrocknen des Spritzbelages werden auf jedes Blatt 2 kleine mit Botrytis einerea bewachsene Agarstücken aufgelegt. Die inokulierten Pflanzen werden in einer abgedunkelten Kammer bei ca. 20°C und 100 % relativer Luftfeuchtigkeit aufgestellt.

2 Tage nach der Inokulation wird die Größe der Befallsflecken auf den Blättern ausgewertet. Dabei bedeutet 0 % ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100 % bedeutet, dass kein Befall beobachtet wird.

<u>Tabelle C</u>
Botrytis - Test (Bohne) / protektiv

Wirkstoff Erfindungsgemäß	Aufwandmenge an Wirkstoff in g/ha	Wirkungsgrad in %
H ₃ C CH ₃ CH ₃	500	100
CH ₃ H ₃ C CH ₃ CH ₃	500	95
CH ₃ H ₃ C CH ₃ CH ₃	500	100
CH ₃ H ₃ C CH ₃ CH ₃	500	88
H ₃ C O H ₃ C CH ₃ CH ₃	500	100
H ₃ C CH ₃ CH ₃	500	100
H ₃ C CH ₃ CH ₃	500	95
H ₃ C CH ₃ CH ₃	500	97
H ₃ C CH ₃	500	95

Beispiel D

Puccinia-Test (Weizen) / protektiv

5 a) Lösungsmittel: 50 Gewichtsteile N,N-Dimethylacetamid

Emulgator: 1 Gewichtsteile Alkylarylpolyglykolether

b) Lösungsmittel: 25 Gewichtsteile N,N-Dimethylacetamid

Emulgator: 0,6 Gewichtsteile Alkylarylpolyglykolether

2 Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

Zur Prüfung auf protektive Wirksamkeit werden junge Pflanzen mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge besprüht. Nach Antrocknen des Spritzbelages werden die Pflanzen mit einer Konidiensuspension von Puccinia recondita besprüht. Die Pflanzen verbleiben 48 Stunden bei 20°C und 100 % relativer Luftfeuchtigkeit in einer Inkubationskabine.

Die Pflanzen werden dann in einem Gewächshaus bei einer Temperatur von ca. 20°C und einer relativen Luftfeuchtigkeit von 80 % aufgestellt, um die Entwicklung von Rostpusteln zu begünstigen.

10 Tage nach der Inokulation erfolgt die Auswertung. Dabei bedeutet 0 % ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100 % bedeutet, dass kein Befall beobachtet wird.

20

<u>Tabelle D</u>

Puccinia-Test (Weizen) / protektiv

Puccinia-Test (Weizen) / protektiv			
Wirkstoff Erfindungsgemäß	Aufwandmenge an Wirkstoff in g/ha	Wirkungsgrad in %	Lösungsmittel/ Emulgator
H ₃ C CH ₃ CH ₃	500	100	a)
CH ₃ H ₃ C CH ₃ CH ₃	500	100	a)
H ₃ C CH ₃ CH ₃	500	100	a)
H ₃ C O H ₃ C CH ₃ CH ₃	500	100	a)
H ₃ C CH ₃ CH ₃	500	100	a)
H ₃ C CH ₃ CH ₃	500	100	a)
H ₃ C CH ₃ CH ₃	500	100	b)
CH ₃ H ₃ C CH ₃ CH ₃	500	100	b)

Puccinia-Test (Weizen) / protektiv

Wirkstoff Erfindungsgemäß	Aufwandmenge an Wirkstoff in g/ha	Wirkungsgrad in %	Lösungsmittel/ Emulgator
S N H ₃ C CH ₃ CH ₃	500	100	b)
CH ₃ H ₃ C CH ₃ CH ₃	500	100	b)

Beispiel E

Sphaerotheca-Test (Gurke) / protektiv

5 Lösungsmittel:

49 Gewichtsteile N, N-Dimethylformamid

Emulgator:

10

15

1 Gewichtsteil Alkylarylpolyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

Zur Prüfung auf protektive Wirksamkeit bespritzt man junge Gurkenpflanzen mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge. 1 Tag nach der Behandlung werden die Pflanzen mit einer Sporensuspension von Sphaerotheca fuliginea inokuliert. Anschließend werden die Pflanzen in einem Gewächshaus bei 70 % relativer Luftfeuchtigkeit und einer Temperatur von 23°C aufgestellt.

7 Tage nach der Inokulation erfolgt die Auswertung. Dabei bedeutet 0 % ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100 % bedeutet, dass kein Befall beobachtet wird.

<u>Tabelle E</u> Sphaerotheca-Test (Gurke) / protektiv

Wirkstoff Erfindungsgemäß	Aufwandmenge an Wirkstoff in g/ha	Wirkungsgrad in %
H ₃ C O H ₃ C CH ₃ H ₃ C CH ₃	750	95
H ₃ C CH ₃ CH ₃	750	95
H ₃ C CH ₃ CH ₃	750	90

Beispiel F

Erysiphe-Test (Gerste) / protektiv

5 Lösungsmittel:

25 Gewichtsteile N,N-Dimethylacetamid

Emulgator:

0,6 Gewichtsteile Alkylarylpolyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

Zur Prüfung auf protektive Wirksamkeit besprüht man junge Pflanzen mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge. Nach Antrocknen des Spritzbelages werden die Pflanzen mit Sporen von Erysiphe graminis f.sp. hordei bestäubt.

15

10

Die Pflanzen werden in einem Gewächshaus bei einer Temperatur von ca. 20°C und einer relativen Luftfeuchtigkeit von ca. 80 % aufgestellt, um die Entwicklung von Mehltaupusteln zu begünstigen.

7 Tage nach der Inokulation erfolgt die Auswertung. Dabei bedeutet 0 % ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100 % bedeutet, dass kein Befall beobachtet wird.

<u>Tabelle F</u>
Erysiphe-Test (Gerste) / protektiv

Wirkstoff Erfindungsgemäß	Aufwandmenge an Wirkstoff in g/ha	Wirkungsgrad in %
H ₃ C O H ₃ C CH ₃ CH ₃	500	100
H ₃ C CH ₃ CH ₃	500	100
CH ₃ H ₃ C CH ₃ CH ₃	500	94
CH ₃ H ₃ C CH ₃ CH ₃	500	100
H ₃ C CH ₃ CH ₃	500	100

Patentansprüche

1. Hexylcarboxanilide der Formel (I)

5 in welcher

10

15

20

25

30

L für
$$R^2$$
 R^2 R^2

wobei die mit * markierte Bindung mit dem Amid verbunden ist, während die mit # markierte Bindung mit der Alkylseitenkette verknüpft ist,

R¹ für Wasserstoff, C₁-C₈-Alkyl, C₁-C₆-Alkylsulfinyl, C₁-C₆-Alkylsulfonyl, C₁-C₄-Alkoxy-C₁-C₄-alkyl, C₃-C₈-Cycloalkyl; C₁-C₆-Halogenalkyl, C₁-C₄-Halogenalkylsulfonyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-Halogencycloalkyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen; Formyl, Formyl-C₁-C₃-alkyl, (C₁-C₃-Alkyl)carbonyl-C₁-C₃-alkyl, (C₁-C₃-Alkyl)carbonyl-C₁-C₃-alkyl, Halogen-(C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, Halogen-(C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, Halogen-(C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl mit jeweils 1 bis 13 Fluor-, Chlor- und/oder Bromatomen;

 $(C_1-C_8-Alkyl)$ carbonyl, $(C_1-C_8-Alkoxy)$ carbonyl, $(C_1-C_4-Alkoxy-C_1-C_4-alkyl)$ carbonyl, $(C_3-C_8-Cycloalkyl)$ carbonyl; $(C_1-C_6-Halogenalkyl)$ carbonyl, $(C_1-C_6-Halogenalkoxy)$ carbonyl, $(Halogen-C_1-C_4-alkoxy-C_1-C_4-alkyl)$ carbonyl, $(C_3-C_8-Halogen-cycloalkyl)$ carbonyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen; oder $-C(=O)C(=O)R^4$, $-CONR^5R^6$ oder $-CH_2NR^7R^8$ steht,

R² für Wasserstoff, Fluor, Chlor, Methyl oder Trifluormethyl steht,

R³ für Halogen, C₁-C₈-Alkyl oder C₁-C₈-Halogenalkyl steht,

R⁴ für Wasserstoff, C₁-C₈-Alkyl, C₁-C₈-Alkoxy, C₁-C₄-Alkoxy-C₁-C₄-alkyl, C₃-C₈-Cycloalkyl; C₁-C₆-Halogenalkyl, C₁-C₆-Halogenalkoxy, Halogen-C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-Halogencycloalkyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen steht,

R⁵ und R⁶ unabhängig voneinander jeweils für Wasserstoff, C₁-C₈-Alkyl, C₁-C₄-Alkoxy-C₁-C₄-alkyl, C₃-C₈-Cycloalkyl; C₁-C₈-Halogenalkyl, Halogen-C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-Halogencycloalkyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen stehen,

10

15

20

25

- R⁵ und R⁶ außerdem gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, einen gegebenenfalls einfach oder mehrfach, gleich oder verschieden durch Halogen oder C₁-C₄-Alkyl substituierten gesättigten Heterocyclus mit 5 bis 8 Ringatomen bilden, wobei der Heterocyclus 1 oder 2 weitere, nicht benachbarte Heteroatome aus der Reihe Sauerstoff, Schwefel oder NR⁹ enthalten kann,
- R⁷ und R⁸ unabhängig voneinander für Wasserstoff, C₁-C₈-Alkyl, C₃-C₈-Cycloalkyl; C₁-C₈-Halogencycloalkyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen stehen,
- R⁷ und R⁸ außerdem gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, einen gegebenenfalls einfach oder mehrfach, gleich oder verschieden durch Halogen oder C₁-C₄-Alkyl substituierten gesättigten Heterocyclus mit 5 bis 8 Ringatomen bilden, wobei der Heterocyclus 1 oder 2 weitere, nicht benachbarte Heteroatome aus der Reihe Sauerstoff, Schwefel oder NR⁹ enthalten kann,
- R⁹ für Wasserstoff oder C₁-C₆-Alkyl steht,

A für den Rest der Formel (A1)

- R¹⁰ für Wasserstoff, Hydroxy, Formyl, Cyano, Fluor, Chlor, Brom, Nitro, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, C₃-C₆-Cycloalkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkoxy oder C₁-C₄-Halogenalkylthio mit jeweils 1 bis 5 Halogenatomen, Aminocarbonyl oder Aminocarbonyl-C₁-C₄-alkyl steht,
- R¹¹ für Wasserstoff, Chlor, Brom, Iod, Cyano, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkyl oder C₁-C₄-Halogenalkylthio mit jeweils 1 bis 5 Halogenatomen, steht und
- für Wasserstoff, C₁-C₄-Alkyl, Hydroxy-C₁-C₄-alkyl, C₂-C₆-Alkenyl, C₃-C₆-Cycloalkyl, C₁-C₄-Alkylthio-C₁-C₄-alkyl, C₁-C₄-alkyl, C₁-C₄-alkyl, C₁-C₄-alkyl, C₁-C₄-alkyl, C₁-C₄-alkyl, C₁-C₄-alkyl mit jeweils 1 bis 5 Halogenatomen, oder für Phenyl steht,

oder

30 A für den Rest der Formel (A2)

R¹³ und R¹⁴ unabhängig voneinander für Wasserstoff, Halogen, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit jeweils 1 bis 5 Halogenatomen stehen und

R¹⁵ für Halogen, Cyano oder C₁-C₄-Alkyl, oder C₁-C₄-Halogenalkyl oder C₁-C₄-Halogenalkoxy mit jeweils 1 bis 5 Halogenatomen steht,

5 oder

10

15

20

25

A für den Rest der Formel (A3)

$$R^{16}$$
 (A3) steht, in welcher

R¹⁶ und R¹⁷ unabhängig voneinander für Wasserstoff, Halogen, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit 1 bis 5 Halogenatomen stehen und

 R^{18} für Wasserstoff, C_1 - C_4 -Alkyl oder C_1 - C_4 -Halogenalkyl mit 1 bis 5 Halogenatomen steht,

oder

A für den Rest der Formel (A4)

R¹⁹ für Halogen, Hydroxy, Cyano, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkylthio oder C₁-C₄-Halogenalkoxy mit jeweils 1 bis 5 Halogenatomen steht und

R²⁰ für Wasserstoff, Halogen, Cyano, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkoxy mit jeweils 1 bis 5 Halogenatomen, C₁-C₄-Alkylsulfinyl oder C₁-C₄-Alkylsulfonyl steht,

oder

A für den Rest der Formel (A5)

oder

A für den Rest der Formel (A6)

R²¹ für C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit 1 bis 5 Halogenatomen steht,

oder

A für den Rest der Formel (A7)

(A7) steht, in welcher

R²² für C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit 1 bis 5 Halogenatomen steht,

oder

A für den Rest der Formel (A8)

(A8) steht, in welcher

5

R²³ und R²⁴ unabhängig voneinander für Wasserstoff, Halogen, Amino, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit 1 bis 5 Halogenatomen steht und

R²⁵ für Wasserstoff, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit 1 bis 5 Halogenatomen steht,

10 oder

A für den Rest der Formel (A9)

(A9) steht, in welcher

R²⁶ und R²⁷ unabhängig voneinander für Wasserstoff, Halogen, Amino, Nitro, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit 1 bis 5 Halogenatomen stehen und

R²⁸ für Halogen, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit 1 bis 5 Halogenatomen steht,

oder

A für den Rest der Formel (A10)

(A10) steht, in welcher

20

25

15

R²⁹ für Wasserstoff, Halogen, Amino, C₁-C₄-Alkylamino, Di-(C₁-C₄-alkyl)-amino, Cyano, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit 1 bis 5 Halogenatomen steht und

R³⁰ für Halogen, Hydroxy, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₃-C₆-Cycloalkyl, C₁-C₄-Halogenalkoxy mit jeweils 1 bis 5 Halogenatomen steht,

oder

A für den Rest der Formel (A11)

R³¹ für Wasserstoff, Halogen, Amino, C₁-C₄-Alkylamino, Di-(C₁-C₄-alkyl)-amino, Cyano, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit 1 bis 5 Halogenatomen steht und

R³² für Halogen, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit 1 bis 5 Halogenatomen steht,

oder

5

10

15

20

25

A für den Rest der Formel (A12)

 R^{33} für Wasserstoff oder C_1 - C_4 -Alkyl steht und

R³⁴ für Halogen oder C₁-C₄-Alkyl steht,

oder

A für den Rest der Formel (A13)

R³⁵ für C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit 1 bis 5 Halogenatomen steht,

oder

A für den Rest der Formel (A14)

R³⁶ für Wasserstoff, Halogen, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit 1 bis 5 Halogenatomen steht,

oder

A für den Rest der Formel (A15)

R³⁷ für Halogen, Hydroxy, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkylthio oder C₁-C₄-Halogenalkoxy mit jeweils 1 bis 5 Halogenatomen steht,

oder

10

15

20

25

A für den Rest der Formel (A16)

$$R^{40}$$
 R^{39}
 R^{41}
 R^{41}
(A16) steht, in welcher

für Wasserstoff, Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl mit 1 bis 5 Halogenatomen, C₁-C₄-Alkoxy-C₁-C₄-alkyl, Hydroxy-C₁-C₄-alkyl, C₁-C₄-Alkylsulfonyl, Di(C₁-C₄-alkyl)aminosulfonyl, C₁-C₆-Alkylcarbonyl oder für jeweils gegebenenfalls substituiertes Phenylsulfonyl oder Benzoyl steht,

R³⁹ für Wasserstoff, Halogen, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit 1 bis 5 Halogenatomen steht,

R⁴⁰ für Wasserstoff, Halogen, Cyano, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit 1 bis 5 Halogenatomen steht,

R⁴¹ für Wasserstoff, Halogen, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit 1 bis 5 Halogenatomen steht,

oder

A für den Rest der Formel (A17)

 R^{42} für C_1 - C_4 -Alkyl steht.

2. Hexylcarboxanilide der Formel (I) gemäß Anspruch 1, in welcher

L für
$$I_{2}$$
 I_{3} I_{5} I_{5} I_{5} I_{5} steht,

wobei die mit * markierte Bindung mit dem Amid verbunden ist, während die mit # markierte Bindung mit der Alkylseitenkette verknüpft ist,

für Wasserstoff, C₁-C₆-Alkyl, C₁-C₄-Alkylsulfinyl, C₁-C₄-Alkylsulfonyl, C₁-C₃-Alkoxy-C₁-C₃-alkyl, C₃-C₆-Cycloalkyl; C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkylthio, C₁-C₄-Halogenalkylsulfinyl, C₁-C₄-Halogenalkylsulfonyl, Halogen-C₁-C₃-alkoxy-C₁-C₃-alkyl, C₃-C₈-Halogencycloalkyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen; Formyl, Formyl-C₁-C₃-alkyl, (C₁-C₃-Alkyl)carbonyl-C₁-C₃-alkyl, (C₁-C₃-Alkoxy)carbonyl-C₁-C₃-alkyl; Halogen-(C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, Halogen-(C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, Halogen-(C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, Unit jeweils 1 bis 13 Fluor-, Chlor- und/oder Bromatomen;

10

15

20

25

30

(C₁-C₆-Alkyl)carbonyl, (C₁-C₄-Alkoxy)carbonyl, (C₁-C₃-Alkoxy-C₁-C₃-alkyl)carbonyl, (C₃-C₆-Cycloalkyl)carbonyl; (C₁-C₄-Halogenalkyl)carbonyl, (C₁-C₄-Halogenalkoxy)carbonyl, (Halogen-C₁-C₃-alkoxy-C₁-C₃-alkyl)carbonyl, (C₃-C₆-Halogencycloalkyl)carbonyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen; oder -C(=O)C(=O)R⁴, -CONR⁵R⁶ oder -CH₂NR⁷R⁸ steht,

R² für Wasserstoff, Fluor, Chlor, Methyl oder Trifluormethyl steht,

R³ für Fluor, Chlor, Brom, Iod, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl mit jeweils 1 bis 13 Fluor-, Chlor- und/oder Bromatomen steht,

für Wasserstoff, C₁-C₆-Alkyl, C₁-C₄-Alkoxy, C₁-C₃-Alkoxy-C₁-C₃-alkyl, C₃-C₆-Cycloalkyl; C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkoxy, Halogen-C₁-C₃-alkoxy-C₁-C₃-alkyl, C₃-C₆-Halogencycloalkyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen steht,

R⁵ und R⁶ unabhängig voneinander jeweils für Wasserstoff, C₁-C₆-Alkyl, C₁-C₃-Alkoxy-C₁-C₃-alkyl, C₃-C₆-Cycloalkyl; C₁-C₄-Halogenalkyl, Halogen-C₁-C₃-alkoxy-C₁-C₃-alkyl, C₃-C₆-Halogencycloalkyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen stehen,

R⁵ und R⁶ außerdem gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, einen gegebenenfalls einfach bis vierfach, gleich oder verschieden durch Halogen oder C₁-C₄-Alkyl substituierten gesättigten Heterocyclus mit 5 oder 6 Ringatomen bilden, wobei der Heterocyclus 1 oder 2 weitere, nicht benachbarte Heteroatome aus der Reihe Sauerstoff, Schwefel oder NR⁹ enthalten kann,

R⁷ und R⁸ unabhängig voneinander jeweils für Wasserstoff, C₁-C₆-Alkyl, C₃-C₆-Cycloalkyl; C₁-C₄-Halogenalkyl, C₃-C₆-Halogencycloalkyl mit jeweils 1 bis 9 Fluor-, Chlorund/oder Bromatomen stehen,

R⁷ und R⁸ außerdem gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, einen gegebenenfalls einfach oder mehrfach, gleich oder verschieden durch Halogen oder C₁-C₄-Alkyl substituierten gesättigten Heterocyclus mit 5 oder 6 Ringatomen bilden, wobei der Heterocyclus 1 oder 2 weitere, nicht benachbarte Heteroatome aus der Reihe Sauerstoff, Schwefel oder NR⁹ enthalten kann,

R⁹ für Wasserstoff oder C₁-C₄-Alkyl steht,

A für den Rest der Formel (A1)

10

15

20

25

für Wasserstoff, Hydroxy, Formyl, Cyano, Fluor, Chlor, Brom, Methyl, Ethyl, iso-Propyl, Methoxy, Ethoxy, Methylthio, Ethylthio, Cyclopropyl, C₁-C₂-Halogenalkyl, C₁-C₂-Halogenalkoxy mit jeweils 1 bis 5 Fluor, Chlor und/oder Bromatomen, Trifluormethylthio, Difluormethylthio, Aminocarbonyl, Aminocarbonylmethyl oder Aminocarbonylethylsteht,

R¹¹ für Wasserstoff, Chlor, Brom, Iod, Methyl, Ethyl, Methoxy, Ethoxy, Methylthio, Ethylthio, C₁-C₂-Halogenalkyl mit 1 bis 5 Fluor, Chlor und/oder Bromatomen steht und

R¹² für Wasserstoff, Methyl, Ethyl, n-Propyl, iso-Propyl, C₁-C₂-Halogenalkyl mit 1 bis 5 Fluor, Chlor und/oder Bromatomen, Hydroxymethyl, Hydroxyethyl, Cyclopropyl, Cyclopentyl, Cyclohexyl oder Phenyl steht,

oder

A für den Rest der Formel (A2)

R¹³ und R¹⁴ unabhängig voneinander für Wasserstoff, Fluor, Chlor, Brom, Methyl, Ethyl oder C₁-C₂-Halogenalkyl mit 1 bis 5 Fluor, Chlor und/oder Bromatomen stehen und

R¹⁵ für Fluor, Chlor, Brom, Iod, Cyano, Methyl, Ethyl, C₁-C₂-Halogenalkyl oder C₁-C₂-Halogenalkoxy mit jeweils 1 bis 5 Fluor, Chlor und/oder Bromatomen steht,

oder

A für den Rest der Formel (A3)

R¹⁶ und R¹⁷ unabhängig voneinander für Wasserstoff, Fluor, Chlor, Brom, Methyl, Ethyl oder C₁-C₂-Halogenalkyl mit 1 bis 5 Fluor, Chlor und/oder Bromatomen stehen und

R¹⁸ für Wasserstoff, Methyl, Ethyl oder C₁-C₂-Halogenalkyl mit 1 bis 5 Fluor, Chlor und/oder Bromatomen steht,

oder

30 A für den Rest der Formel (A4)

R¹⁹ für Fluor, Chlor, Brom, Iod, Hydroxy, Cyano, C₁-C₄-Alkyl, Methoxy, Ethoxy, Methylthio, Ethylthio, Difluormethylthio, Trifluormethylthio, C₁-C₂-Halogenalkyl oder C₁-C₂-Halogenalkoxy mit jeweils 1 bis 5 Fluor, Chlor und/oder Bromatomen steht und

5

10

R²⁰ für Wasserstoff, Fluor, Chlor, Brom, Iod, Cyano, C₁-C₄-Alkyl, Methoxy, Ethoxy, Methylthio, Ethylthio, C₁-C₂-Halogenalkyl oder C₁-C₂-Halogenalkoxy mit jeweils 1 bis 5 Fluor, Chlor und/oder Bromatomen, C₁-C₂-Alkylsulfinyl oder C₁-C₂-Alkylsulfonyl steht,

oder

A für den Rest der Formel (A5)

oder

A für den Rest der Formel (A6)

15

R²¹ für Methyl, Ethyl oder C₁-C₂-Halogenalkyl mit 1 bis 5 Fluor, Chlor und/oder Bromatomen steht,

oder

A für den Rest der Formel (A7)

20

R²² für Methyl, Ethyl, Trifluormethyl, Difluormethyl, Difluorchlormethyl oder Trichlormethyl steht,

oder

A für den Rest der Formel (A8)

25

R²³ und R²⁴ unabhängig voneinander für Wasserstoff, Fluor, Chlor, Brom, Amino, Methyl, Ethyl oder C₁-C₂-Halogenalkyl mit 1 bis 5 Fluor, Chlor und/oder Bromatomen steht und

R²⁵ für Wasserstoff, Methyl, Ethyl oder C₁-C₂-Halogenalkyl mit 1 bis 5 Fluor,
Chlor und/oder Bromatomen steht,

15

25

oder

Α für den Rest der Formel (A9)

(A9) steht, in welcher

R²⁶ und R²⁷ unabhängig voneinander für Wasserstoff, Fluor, Chlor, Brom, Amino, Nitro, Methyl, Ethyl oder C₁-C₂-Halogenalkyl mit 1 bis 5 Fluor, Chlor und/oder Bromatomen stehen und

 R^{28} für Fluor, Chlor, Brom, Methyl, Ethyl oder C1-C2-Halogenalkyl mit 1 bis 5 Fluor, Chlor und/oder Bromatomen steht,

oder

für den Rest der Formel (A10) 10 Α

(A10) steht, in welcher

 R^{29} für Wasserstoff, Fluor, Chlor, Brom, Amino, C1-C4-Alkylamino, Di(C1-C4alkyl)amino, Cyano, Methyl, Ethyl oder C1-C2-Halogenalkyl mit 1 bis 5 Fluor, Chlor und/oder Bromatomen steht und

 R^{30} für Fluor, Chlor, Brom, Hydroxy, Methyl, Ethyl, Methoxy, Ethoxy, Cyclopropyl, C₁-C₂-Halogenalkyl oder C₁-C₂-Halogenalkoxy mit 1 bis 5 Fluor, Chlor und/oder Bromatomen steht,

oder

Α für den Rest der Formel (A11)

20 R^{31}

für Wasserstoff, Fluor, Chlor, Brom, Amino, C1-C4-Alkylamino, Di(C1-C4alkyl)amino, Cyano, Methyl, Ethyl oder C1-C2-Halogenalkyl mit 1 bis 5 Fluor, Chlor und/oder Bromatomen steht und

 R^{32} für Fluor, Chlor, Brom, Methyl, Ethyl oder C1-C2-Halogenalkyl mit 1 bis 5 Fluor, Chlor und/oder Bromatomen steht,

oder

Α für den Rest der Formel (A12)

R³³ für Wasserstoff, Methyl oder Ethyl steht und

R³⁴ für Fluor, Chlor, Brom, Methyl oder Ethyl steht,

oder

A für den Rest der Formel (A13)

(A13) steht, in welcher

R³⁵ für Methyl, Ethyl oder C₁-C₂-Halogenalkyl mit 1 bis 5 Fluor, Chlor und/oder Bromatomen steht,

oder

A für den Rest der Formel (A14)

(A14) steht, in welcher

10

5

R³⁶ für Wasserstoff, Fluor, Chlor, Brom, Methyl, Ethyl oder C₁-C₂-Halogenalkyl mit 1 bis 5 Fluor, Chlor und/oder Bromatomen steht,

oder

A für den Rest der Formel (A15)

(A15) steht, in welcher

15

25

R³⁷ für Fluor, Chlor, Brom, Iod, Hydroxy, C₁-C₄-Alkyl, Methoxy, Ethoxy, Methylthio, Ethylthio, Difluormethylthio, Trifluormethylthio, C₁-C₂-Halogenalkyl oder C₁-C₂-Halogenalkoxy mit jeweils 1 bis 5 Fluor, Chlor und/oder Bromatomen steht,

20 oder

A für den Rest der Formel (A16)

$$R^{40}$$
 R^{39}
 R^{41}
 R^{39}
(A16) steht, in welcher

R³⁸ für Wasserstoff, Methyl, Ethyl, C₁-C₂-Halogenalkyl mit 1 bis 5 Fluor-, Chlor- und/oder Bromatomen, C₁-C₂-Alkoxy-C₁-C₂-alkyl, Hydroxymethyl, Hydroxyethyl, methylsulfonyl oder Dimethylaminosulfonyl steht,

R³⁹ für Wasserstoff, Fluor, Chlor, Brom, Methyl, Ethyl oder C₁-C₂-Halogenalkyl mit 1 bis 5 Fluor-, Chlor- und/oder Bromatomen steht,

- R⁴⁰ für Wasserstoff, Fluor, Chlor, Brom, Cyano, Methyl, Ethyl, iso-Propyl oder C₁-C₂-Halogenalkyl mit 1 bis 5 Fluor-, Chlor- und/oder Bromatomen steht,
- R⁴¹ für Wasserstoff, Fluor, Chlor, Brom, Methyl, Ethyl oder C₁-C₂-Halogenalkyl mit 1 bis 5 Fluor, Chlor und/oder Bromatomen steht,

5 oder

25

A für den Rest der Formel (A17)

(A17) steht, in welcher

R⁴² für Methyl, Ethyl, n-Propyl oder iso-Propyl steht.

- 10 3. Hexylcarboxanilide der Formel (I) gemäß Anspruch 1 oder 2, in welcher L für L-1 steht.
 - 4. Hexylcarboxanilide der Formel (I) gemäß Anspruch 1 oder 2, in welcher L für L-2 steht.
- Hexylcarboxanilide der Formel (I) gemäß Anspruch 1 oder 2, in welcher R¹ für Wasserstoff,
 Formyl oder -C(=O)C(=O)R⁴ steht, wobei R⁴ die in Anspruch 1 oder 2 angegebenen
 Bedeutungen hat.
 - 6. Hexylcarboxanilide der Formel (I) gemäß Anspruch 1 oder 2, in welcher A für A1 steht.
- 7. Hexylcarboxanilide der Formel (I) gemäß Anspruch 1 oder 2, in welcher R³ für Halogen steht.
 - 8. Hexylcarboxanilide der Formel (I) gemäß Anspruch 1 oder 2, in welcher R³ für C₁-C₈-Alkyl steht.
 - 9. Hexylcarboxanilide der Formel (I) gemäß Anspruch 1 oder 2, in welcher R³ für C₁-C₈-Halogenalkyl steht.
- Verfahren zum Herstellen der Verbindungen der Formel (I) gemäß Anspruch 1, dadurch
 gekennzeichnet, dass man
 - a) Carbonsäure-Derivate der Formel (II)

$$A \xrightarrow{X^1} (II)$$

in welcher

A die in Anspruch 1 angegebenen Bedeutungen hat und

X1 für Halogen oder Hydroxy steht,

mit einem Anilin-Derivate der Formel (III)

in welcher L, R¹ und R³ die in Anspruch 1 angegebenen Bedeutungen haben, gegebenenfalls in Gegenwart eines Katalysators, gegebenenfalls in Gegenwart eines Kondensationsmittels, gegebenenfalls in Gegenwart eines Säurebindemittels und gegebenenfalls in Gegenwart eines Verdünnungsmittels umsetzt,

oder

b) Hexylcarboxanilide der Formel (I-a)

in welcher L, A und R³ die in Anspruch 1 angegebenen Bedeutungen haben mit Halogeniden der Formel (IV)

$$R^{1-A} - X^2$$
 (IV)

in welcher

X² für Chlor, Brom oder Iod steht,

R^{1-A} für C₁-C₈-Alkyl, C₁-C₆-Alkylsulfinyl, C₁-C₆-Alkylsulfonyl, C₁-C₄-Alkoxy-C₁-C₄-alkyl, C₃-C₈-Cycloalkyl; C₁-C₆-Halogenalkyl, C₁-C₄-Halogenalkylthio, C₁-C₄-Halogenalkylsulfinyl, C₁-C₄-Halogenalkylsulfonyl, Halogen-C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-Halogencycloalkyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen; Formyl, Formyl-C₁-C₃-alkyl, (C₁-C₃-Alkyl)-carbonyl-C₁-C₃-alkyl, (C₁-C₃-Alkoxy)carbonyl-C₁-C₃-alkyl; Halogen-(C₁-C₃-alkyl) mit jeweils 1 bis 13 Fluor-, Chlor- und/oder Bromatomen;

(C₁-C₈-Alkyl)carbonyl, (C₁-C₈-Alkoxy)carbonyl, (C₁-C₄-Alkoxy-C₁-C₄-alkyl)carbonyl, (C₃-C₈-Cycloalkyl)carbonyl; (C₁-C₆-Halogenalkyl)carbonyl, (C₁-C₆-Halogenalkoxy)carbonyl, (Halogen-C₁-C₄-alkoxy-C₁-C₄-alkyl)carbonyl, (C₃-C₈-Halogencycloalkyl)carbonyl mit jeweils 1 bis 9 Fluor-, Chlorund/oder Bromatomen; oder -C(=O)C(=O)R⁴, -CONR⁵R⁶ oder -CH₂NR⁷R⁸ steht,

wobei R⁴, R⁵, R⁶, R⁷ und R⁸ die in Anspruch 1 angegebenen Bedeutungen haben, in Gegenwart einer Base und in Gegenwart eines Verdünnungsmittels umsetzt.

20

15

5

10

25

30

15

20

25

30

- 11. Mittel zum Bekämpfen unerwünschter Mikroorganismen, gekennzeichnet durch einen Gehalt an mindestens einem Hexylcarboxanilid der Formel (I) gemäß Anspruch 1 neben Streckmitteln und/oder oberflächenaktiven Stoffen.
- Verwendung von Hexylcarboxaniliden der Formel (I) gemäß Anspruch 1 zum Bekämpfen unerwünschter Mikroorganismen.
 - 13. Verfahren zum Bekämpfen unerwünschter Mikroorganismen, dadurch gekennzeichnet, dass man Hexylcarboxanilide der Formel (I) gemäß Anspruch 1 auf die Mikroorganismen und/oder deren Lebensraum ausbringt.
 - 14. Verfahren zum Herstellen von Mitteln zum Bekämpfen unerwünschter Mikroorganismen, dadurch gekennzeichnet, dass man Hexylcarboxanilide der Formel (I) gemäß Anspruch 1 mit Streckmitteln und/oder oberflächenaktiven Stoffen vermischt.

15. Anilin-Derivate der Formel (III-b)

$$R^{1-B}$$
 R^{3-B}
 CH_3
 CH_3
 CH_3

in welcher

a) R^{1-B} für Wasserstoff steht, und

R^{3-B} für Halogen, C₃-C₈-Alkyl, C₁-C₈-Halogenalkyl steht,

oder

b) R^{1-B} für C₁-C₈-Alkyl, C₁-C₆-Alkylsulfinyl, C₁-C₆-Alkylsulfonyl, C₁-C₄-Alkoxy-C₁-C₄-alkyl, C₃-C₈-Cycloalkyl; C₁-C₆-Halogenalkyl, C₁-C₄-Halogenalkylthio, C₁-C₄-Halogenalkylsulfinyl, C₁-C₄-Halogenalkylsulfonyl, Halogen-C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-Halogencycloalkyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen; Formyl, Formyl-C₁-C₃-alkyl, (C₁-C₃-Alkyl)-carbonyl-C₁-C₃-alkyl, (C₁-C₃-Alkoxy)carbonyl-C₁-C₃-alkyl; Halogen-(C₁-C₃-alkyl) mit jeweils 1 bis 13 Fluor-, Chlor- und/oder Bromatomen;

 $(C_1-C_8-Alkyl)$ carbonyl, $(C_1-C_8-Alkoxy)$ carbonyl, $(C_1-C_4-Alkoxy-C_1-C_4-alkyl)$ carbonyl, $(C_3-C_8-Cycloalkyl)$ carbonyl; $(C_1-C_6-Halogenalkyl)$ carbonyl, $(C_1-C_6-Halogenalkoxy)$ carbonyl, $(Halogen-C_1-C_4-alkoxy-C_1-C_4-alkyl)$ carbonyl, $(C_3-C_8-Halogencycloalkyl)$ carbonyl mit jeweils 1 bis 9 Fluor-, Chlor-

und/oder Bromatomen; oder -C(=O)C(=O)R⁴, -CONR⁵R⁶ oder -CH₂NR⁷R⁸ steht, und

R^{3-B} für Wasserstoff, Halogen, C₁-C₈-Alkyl, C₁-C₈-Halogenalkyl steht,

und

- 5 R², R⁴, R⁵, R⁶, R⁷ und R⁸ jeweils die in Anspruch 1 angegebenen Bedeutungen haben.
 - 16. 3-Dichlormethyl-1H-pyrazol-4-carbonsäure-Derivate der Formel (II-a)

in welcher

10

15

25

R¹² die in Anspruch 1 angegebenen Bedeutungen hat,

X¹ für Halogen oder Hydroxy steht.

17. Verfahren zum Herstellen von 3-Dichlormethyl-1H-pyrazol-4-carbonsäure-Derivaten der Formel (II-a) gemäß Anspruch 16, dadurch gekennzeichnet, dass man

3-Formyl-1H-pyrazol-4-carbonsäuren der Formel (XI)

$$H \xrightarrow{\text{OH}} OH$$

$$N \xrightarrow{\text{N}} I^{12}$$

$$R^{12}$$

$$(XI)$$

in welcher R¹² die in Anspruch 1 angegebenen Bedeutungen hat, mit einem Chlorierungsmittel in Gegenwart eines Verdünnungsmittels umsetzt.

20 18. 3-Dichlormethyl-1H-pyrazol-4-carbonsäureester der Formel (XII)

in welcher

R¹² die in Anspruch 1 angegebenen Bedeutungen hat,

R⁴⁴ für C₁-C₄-Alkyl steht.

19. Verfahren zum Herstellen von 3-Dichlormethyl-1H-pyrazol-4-carbonsäureester der Formel (XII) gemäß Anspruch 18, dadurch gekennzeichnet, dass man

3-Formyl-1H-pyrazol-4-carbonsäureester der Formel (X)

in welcher

5

R¹² die in Anspruch 1 angegebenen Bedeutungen hat,

 R^{44} für C_1 - C_4 -Alkyl steht,

mit einem Chlorierungsmittel in Gegenwart eines Verdünnungsmittels umsetzt.

INTERNATIONAL SEARCH REPORT

Interpolation No PCT/EP2004/011397

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 C070231/14 C070 CO7D231/16 C07D327/06 C07D277/56 C07D333/38 C07D307/68 C07D285/06 C07D213/82 C07D241/24 C07C211/46 A01N43/78 A01N43/08 A01N43/56 A01N43/40 A01N43/32 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC 7 CO7D C07C A01N Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the International search (name of data base and, where practical, search terms used) EPO-Internal, WPI Data, BEILSTEIN Data, CHEM ABS Data C. DOCUMENTS CONSIDERED TO BE RELEVANT Category ° Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. X WO 03/010149 A (MAULER-MACHNIK ASTRID ; 15 DUNKEL RALF (DE); RIECK HEIKO (DE); BAYER AG () 6 February 2003 (2003-02-06) abstract page 47; example 1 claims 1,11-15,17,19 1,10-19Α examples X WO 02/059086 A (WALTER HARALD : TRAH 15 STEPHAN (CH); SYNGENTA PARTICIPATIONS AG (CH)) 1 August 2002 (2002-08-01) abstract page 20 - page 21; examples 1.24,1.50 claim 10 Α 1,10-19 claims 1,10-13 examples Further documents are listed in the continuation of box C. Patent family members are listed in annex. Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but *A* document defining the general state of the art which is not considered to be of particular relevance cited to understand the principle or theory underlying the invention *E* earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to filing date *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention citation or other special reason (as specified) cannot be considered to involve an inventive step when the document is combined with one or more other such docu-"O" document referring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person skilled document published prior to the international filing date but later than the priority date claimed in the art. "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 20 January 2005 28/01/2005 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016 Stix-Malaun, E

INTERNATIONAL SEARCH REPORT

International application No. PCT/EP2004/011397

Box I	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This inte	mational search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. X	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
A1:	though claims 12-14 relate to a method for treatment of the human or
	imal body, the search was carried out on the basis of the alleged effects of
	compound or composition.
2.	Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
	·
3.	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This Inte	ernational Searching Authority found multiple inventions in this international application, as follows:
1.	As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
_	
3.	As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
	·
4.	No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark	t on Protest The additional search fees were accompanied by the applicant's protest.
	No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

Interconal Application No PCT/EP2004/011397

Patent document cited in search report	Publication date		Patent family member(s)		Publication date
WO 03010149 A	06-02-2003	DE	10136065	A1	13-02-2003
WG GGG167 13 11 G	•••	BR	0211482	A	17-08-2004
		WO	03010149	A1	06-02-2003
		EP	1414803	A1	06-05-2004
		HU	0401478	A2	29-11-2004
		US	2004204470	A1	14-10-2004
WO 02059086 A	01-08-2002	BR	0206678	 A	10-02-2004
NO 02003000 A 01 00 2002		CA	2433819	A1	01-08-2002
		CZ	20032018	A3	15-10-2003
	WO	02059086	A1	01-08-2002	
	EP	1355879	A1	29-10-2003	
		HU	0302581	A2	28-11-2003
		JP	2004519464	T	02-07-2004
	US	2004138265	A1	15-07-2004	

INTERNATIONALER RECHERCHENBERICHT

Interpenales Aktenzeichen
PCT/EP2004/011397

A. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES IPK 7 C07D231/14 C07D231/16 CO7D327/06 C07D333/38 C07D277/56 C07D307/68 C07D285/06 C07D213/82 CO7D241/24 C07C211/46 A01N43/40 A01N43/32 A01N43/08 A01N43/78 A01N43/56 Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK **B. RECHERCHIERTE GEBIETE** Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) IPK 7 CO7D CO7C **A01N** Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen Während der Internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe) EPO-Internal, WPI Data, BEILSTEIN Data, CHEM ABS Data C. ALS WESENTLICH ANGESEHENE UNTERLAGEN Betr. Anspruch Nr. Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile Kategorles 15 WO 03/010149 A (MAULER-MACHNIK ASTRID X DUNKEL RALF (DE); RIECK HEIKO (DE); BAYER AG () 6. Februar 2003 (2003-02-06) Zusammenfassung Seite 47; Beispiel 1 Ansprüche 1,11-15,17,19 1,10-19 Α Beispiele 15 WO 02/059086 A (WALTER HARALD : TRAH X STEPHAN (CH); SYNGENTA PARTICIPATIONS AG (CH)) 1. August 2002 (2002-08-01) Zusammenfassung Seite 20 - Seite 21; Beispiele 1.24,1.50 Anspruch 10 1,10-19 Ansprüche 1,10-13 A Beispiele Siehe Anhang Patentfamilie Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen *T* Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Besondere Kategorien von angegebenen Veröffentlichungen 'A' Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist "E" ätteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tällgkeit beruhend betrachtet werden *L* Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft er-scheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt) *O* Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht

P Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach
dem beanspruchten Prioritätsdatum veröffentlicht worden ist *&* Veröffentlichung, die Mitglied derselben Patentfamilie ist Absendedatum des internationalen Recherchenberichts Datum des Abschlusses der Internationalen Recherche 28/01/2005 20. Januar 2005 Name und Postanschrift der Internationalen Recherchenbehörde Bevollmächtigter Bediensteter Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016 Stix-Malaun, E

INTERNATIONALER RECHERCHENBERICHT

Feld II Bemerkungen zu den Ansprüchen, die sich als nicht recherchierbar erwiesen haben (Fortsetzung von Punkt 2 auf Blatt
Gemäß Artikel 17(2)a) wurde aus folgenden Gründen für bestimmte Ansprüche kein Recherchenbericht erstellt:
1. X Ansprüche Nr. weil sie sich auf Gegenstände beziehen, zu deren Recherche die Behörde nicht verpflichtet ist, nämlich
Obwohl die Ansprüche 12-14 sich auf ein Verfahren zur Behandlung des menschlichen/tierischen Körpers beziehen, wurde die Recherche durchgeführt und gründete sich auf die angeführten Wirkungen der Verbindung/Zusammensetzung.
2. Ansprüche Nr. weil sie sich auf Teile der Internationalen Anmeldung beziehen, die den vorgeschriebenen Anforderungen so wenig entsprechen, daß eine sinnvolle Internationale Recherche nicht durchgeführt werden kann, nämlich
3. Ansprüche Nr. weil es sich dabei um abhängige Ansprüche handelt, die nicht entsprechend Satz 2 und 3 der Regel 6.4 a) abgefaßt sind.
Feld III Bemerkungen bei mangelnder Einheitlichkeit der Erfindung (Fortsetzung von Punkt 3 auf Blatt 1)
Die Internationale Recherchenbehörde hat festgestellt, daß diese internationale Anmeldung mehrere Erfindungen enthält:
Da der Anmelder alle erforderlichen zusätzlichen Recherchengebühren rechtzeitig entrichtet hat, erstreckt sich dieser internationale Recherchenbericht auf alle recherchierbaren Ansprüche.
2. Da für alle recherchierbaren Ansprüche die Recherche ohne einen Arbeitsaufwand durchgeführt werden konnte, der eine zusätzliche Recherchengebühr gerechtfertigt hätte, hat die Behörde nicht zur Zahlung einer solchen Gebühr aufgefordert.
3. Da der Anmeider nur einige der erforderlichen zusätzlichen Recherchengebühren rechtzeitig entrichtet hat, erstreckt sich dieser internationale Recherchenbericht nur auf die Ansprüche, für die Gebühren entrichtet worden sind, nämlich auf die Ansprüche Nr.
4. Der Anmelder hat die erforderlichen zusätzlichen Recherchengebühren nicht rechtzeitig entrichtet. Der internationale Recher-chenbericht beschränkt sich daher auf die in den Ansprüchen zuerst erwähnte Erfindung; diese ist in folgenden Ansprüchen erfaßt:
Bemerkungen hinslichtlich eines Widerspruchs Die zusätzlichen Gebühren wurden vom Anmelder unter Widerspruch gezahlt. Die Zahlung zusätzlicher Recherchengebühren erfolgte ohne Widerspruch.

INTERNATIONALER RECHERCHENBERICHT

Intermales Aktenzeichen
PCT/EP2004/011397

Im Recherchenbericht angeführtes Patentdokumer	nt	Datum der Veröffentlichung		Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
WO 03010149	A	06-02-2003	DE	10136065 A1	13-02-2003
			BR	0211482 A	17-08-2004
			WO	03010149 A1	06-02-2003
			EP	1414803 A1	06-05-2004
			HU	0401478 A2	29-11-2004
			US	2004204470 A1	14-10-2004
WO 02059086		01-08-2002	BR	0206678 A	10-02-2004
		•• -•	CA	2433819 A1	01-08-2002
			CZ	20032018 A3	15-10-2003
		WO	02059086 A1	01-08-2002	
		EP	1355879 A1	29-10-2003	
		HU	0302581 A2	28-11-2003	
			JP	2004519464 T	02-07-2004
		US	2004138265 A1	15-07-2004	