

4		CONTENTS

4.2	Dialog	gue moves)
	4.2.1	Core dialogue moves in GoD15-IOD)
	4.2.2	Grounding moves	L
	4.		

6 CONTENTS

A.1.6 TRINDIKIT

Chapte

Chapter 3

lements f the inf rmati п-state appr а h

14CHA■TER 3. ELEMENTS OF THE INFORMATION-STATE

16CHA■TER 3. ELEMENTS OF THE INFORMATION-STATE A■■ROACH TO DIALOG

18CHATTER 4. ELEMENTS OF ISSUE-BASED DIALOGUE MANAGEMENT

PRIVATE	:			

4.1. TOTAL INFORMA

20CHA■TER 4. ELEMENTS OF ISSUE-BASED

• g

4.5 Di logue pl ns

In this section, we introduce a formalism for representing procedural plans as sequences of actions. Dialogue plans are implemented in the domain resource (see Section ??).

4.5.1 Action sequences and actions

In the simplest case, a plan consists of a sequence of actions. More complex plans may also include e.g. conditionals (if-then-else). In general, dialogue plans are built from so-called plan constructors.

Action sequences have the form $\langle u_1, \dots, u_n \rangle$ where u_i : Action

up the answer to q in the database. The resulting proposition is stored in

28CHA■TER 4. ELEMENTS OF ISSUE-BASED DIALOGUE MANAGEMENT

as e.g., want(user, go-to(user, paris)) or want(u, go-to(u,p)) & city(p) & name(p, paris) & user(u). GoDIS uses a reduced semantic representation with a coarser, domain-dependent level of granularity; for example, the

4.6. Demain entelegy (sem

Chappp

A.U. DOWNLOADING AND

src/prolog/trinu

Appendix B

D wnl ading and installing additi na ma m n

Appendix C

sing Dis with Nuan e 8.0 and V alizer

C.1

C.3. RUNNING NUANCE AND VOCALIZER WITH YOUR ADDLICATION51

Edit the se