Definition: Null space of a matrix A is $\{\mathbf{u} : A * \mathbf{u} = \mathbf{0}\}$. Written Null A

Definition: Null space of a matrix A is $\{\mathbf{u} : A * \mathbf{u} = \mathbf{0}\}$. Written Null A

Example:

$$\begin{bmatrix} 1 & 2 & 4 \\ 2 & 3 & 9 \end{bmatrix} * [0,0,0] = [0,0]$$

so the null space includes [0,0,0]

$$\left[\begin{array}{ccc} 1 & 2 & 4 \\ 2 & 3 & 9 \end{array}\right] * [6, -1, -1] = [0, 0]$$

so the null space includes [6, -1, -1]

Definition: Null space of a matrix A is $\{\mathbf{u} : A * \mathbf{u} = \mathbf{0}\}$. Written Null A

By dot-product definition,

$$\begin{bmatrix} \mathbf{a}_1 \\ \vdots \\ \mathbf{a}_m \end{bmatrix} * \mathbf{u} = [\mathbf{a}_1 \cdot \mathbf{u}, \ldots, \mathbf{a}_m \cdot \mathbf{u}]$$

Thus \mathbf{u} is in null space of $\begin{bmatrix} \mathbf{a}_1 \\ \vdots \\ \mathbf{a}_m \end{bmatrix}$ if and only if \mathbf{u} is a solution to the

homogeneous linear system

$$\mathbf{a}_1 \cdot \mathbf{x} = 0$$

 \vdots
 $\mathbf{a}_m \cdot \mathbf{x} = 0$

We just saw:

equals the solution set of the homogeneous linear system

$$\mathbf{a}_{1} \cdot \mathbf{x} = 0$$

$$\vdots$$

$$\mathbf{a}_{m} \cdot \mathbf{x} = 0$$

This shows: Null space of a matrix is a vector space.

Can also show it directly, using algebraic properties of matrix-vector multiplication:

Property V1: Since $A * \mathbf{0} = \mathbf{0}$, the null space of A contains $\mathbf{0}$

Property V2: if $\mathbf{u} \in \text{Null } A \text{ then } A * (\alpha \mathbf{u}) = \alpha (A * \mathbf{u}) = \alpha \mathbf{0} = \mathbf{0} \text{ so } \alpha \mathbf{u} \in \text{Null } A$

Property V3: If
$$\mathbf{u} \in \text{Null } A$$
 and $\mathbf{v} \in \text{Null } A$
then $A * (\mathbf{u} + \mathbf{v}) = A * \mathbf{u} + A * \mathbf{v} = \mathbf{0} + \mathbf{0} = \mathbf{0}$
so $\mathbf{u} + \mathbf{v} \in \text{Null } A$

Definition: Null space of a matrix A is $\{\mathbf{u} : A * \mathbf{u} = \mathbf{0}\}$. Written Null A

Proposition: Null space of a matrix is a vector space.

Example:

Null
$$\begin{bmatrix} 1 & 2 & 4 \\ 2 & 3 & 9 \end{bmatrix}$$
 = Span $\{[6, -1, -1]\}$

Solution space of a matrix-vector equation

Earlier, we saw:

then the solution set is $\mathbf{u}_1 + \mathcal{V}$,

where
$$\mathcal{V}=$$
 solution set of

where $\mathcal{V}=$ solution set of $\begin{array}{cccc} \mathbf{a_1} \cdot \mathbf{x} & = & 0 \\ & \vdots & \\ \mathbf{a}_m \cdot \mathbf{x} & = & 0 \end{array}$

Restated: If \mathbf{u}_1 is a solution to $A * \mathbf{x} = \mathbf{b}$ then solution set is $\mathbf{u}_1 + \mathcal{V}$ where $\mathcal{V} = \text{Null } A$

Solution space of a matrix-vector equation

Proposition: If \mathbf{u}_1 is a solution to $A * \mathbf{x} = \mathbf{b}$ then solution set is $\mathbf{u}_1 + \mathcal{V}$ where $\mathcal{V} = \mathsf{Null}\ A$

Example:

- ► Null space of $\begin{bmatrix} 1 & 2 & 4 \\ 2 & 3 & 9 \end{bmatrix}$ is Span $\{[6, -1, -1]\}$.
- One solution to $\begin{bmatrix} 1 & 2 & 4 \\ 2 & 3 & 9 \end{bmatrix} * \mathbf{x} = [1, 1]$ is x = [-1, 1, 0].
- ▶ Therefore solution set is $[-1,1,0] + \text{Span } \{[6,-1,-1]\}$
- For example, solutions include
 - [-1,1,0]+[0,0,0]
 - [-1,1,0]+[6,-1,-1]
 - [-1,1,0]+2[6,-1,-1]

.

Solution space of a matrix-vector equation

Proposition: If \mathbf{u}_1 is a solution to $A * \mathbf{x} = \mathbf{b}$ then solution set is $\mathbf{u}_1 + \mathcal{V}$ where $\mathcal{V} = \mathsf{Null}\ A$

- ▶ If V is a trivial vector space then \mathbf{u}_1 is the only solution.
- ▶ If V is not trivial then \mathbf{u}_1 is *not* the only solution.

Corollary: $A * \mathbf{x} = \mathbf{b}$ has at most one solution iff Null A is a trivial vector space.

Question: How can we tell if the null space of a matrix is trivial?

Answer comes later...