Department of Mathematics, Bennett University Engineering Calculus (EMAT101L) Assignment

- 1. Let $\{a_n\}$ be a sequence of real numbers such that $\lim_{n\to\infty} \left| a_n + 3\left(\frac{n}{n+1}\right)^n \right|^{\frac{1}{n}} = \frac{2}{3}$. Determine $\lim_{n\to\infty} a_n$.
- 2. Let $f:[0,1]\to\mathbb{R}$ be a differentiable function such that f(0)=0 and f(1)=1. Show that there exist $x,y\in(0,1)$ with $x\neq y$ such that $\frac{1}{f'(x)}+\frac{1}{f'(y)}=2$.
- 3. Evaluate: $\lim_{x \to \infty} \left[(x+1)^{\frac{x+2}{x+1}} x^{\frac{x+1}{x}} \right]$.
- 4. Compute the sums of the following series

(a)
$$\sum_{n=1}^{\infty} \sqrt{n+2} - 2\sqrt{n+1} + \sqrt{n}$$
 (b) $\sum_{n=1}^{\infty} \frac{2}{n^3 + 3n^2 + 2n}$.

5. Give examples of series such that

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = 1$$

- but (a) the series diverges, (b) the series conditionally converges, (c) the series absolutely converges.
- 6. Determine all real values of p for which the integral $\int_0^\infty \frac{x^{p-1}}{1+x} dx$ is convergent.