Parameter Tuning Off the Grid

Henry Moss, David Leslie, Paul Rayson

h.moss@lancaster.ac.uk https://github.com/henrymoss

Plan

- Introduce simple NLP task
- Grid Search
- Random Search
- Bayesian Optimisation

Generic NLP task

IMDB Data

- 25,000 positive and 25,000 negative movie reviews.
- Yellow Yellow
- √ This is a must-see movie. You will laugh, you will cry, and when it's
 over you'll wish there were more. Well-written and compelling, this
 movie draws you in and holds on tight. The casting was perfect,
 the characters purposeful, and the performances outstanding.

Generic NLP Model

Model

- Random Forest Classifier
- 5,000 random training examples
- BOW of uni-grams, bi-grams and tri-grams.
- Use 500 features with highest TF-IDF scores.
- 1000 trees

Parameter to Tune

- max_features: continuous on (0, 1]
- max_depth: discrete in {1,2,3,4,5}
- min_samples_split: continuous in (0, 0.5]
- min_samples_leaf: continuous in (0, 0.5]

Approach 1: Grid Search

Grid Search Algorithm

- Try 3 values for each parameter (3⁴ = 81 evaluation):
 - max_features: {0.1, 0.5, 0.9}
 - max_depth: {1,3,5}
 - min_samples_split: {0.1, 0.3, 0.5}
 - min_samples_leaf: {0.1, 0.3, 0.5}
- Choose values that give highest 5-fold CV score

Chosen Parameter Values

- max_features=0.1
- max_depth=1
- min_samples_split=0.1
- min_samples_leaf=0.1

Providing 68% Accuracy

Approach 1: Grid Search

Advantages

- Simple to understand and implement
- √ Can exploit prior knowledge of 'good' parameter values

Disadvantages

- × Naive exhaustive approach
- × Computational cost : n^d
- × Setting an effective grid requires prior knowledge

Random Search Algorithm

- Draw a parameter choice:
 - max_features uniformly from (0, 1]
 - max_depth uniformly over [1, 2, 3, 4, 5]
 - min_samples_split uniformly from (0, 1]
 - min_samples_leaf uniformly from (0, 1]
- Repeat n times
- Choose values that give highest 5-fold CV score

Accuracy of the best found parameter values from random-search. The red line represents the performance found by grid-search.

Look at performance over 50 runs of random search

Advantages

- Equally simple to understand and even easier to implement
- √ Adding non-important parameters doesn't effect performance
- √ Freedom to choose computational budget

Disadvantages

- × Harder to retain reproducibility
- × Small chance of not finding a 'good' solution
- × Could repeat evaluations of poorly performing parameter choices

Intuition 1: Evaluate each parameter at more places ¹

Intuition 2: High probability of finding "good" parameter values²

- Consider the region R containing the optimum parameter choice and the surrounding 5% of parameter space.
- Each of *n* random evaluation has a 5% chance of being in *R*
- $p = prob(At least one point is in R) = 1 (1 0.005)^n$
- For $n \ge 60 \ p > 0.95$

Consider Trying to find the minimum of $f(x) = (6x - 2)^2 sin(12x - 4)$

Using as few function evaluations as possible

Suppose we make evaluations at 0,0.5 and 1

Where should we next evaluate?
What would grid or random search do?

Possible functions that pass through the observed points

Where should we next evaluate?

We can summarize this belief by fitting a Gaussian process

Where should we next evaluate? Do we want to explore? or exploit?

Compare our statistical model with the truth

(d) Truth

We choose the next evaluation by maximizing an acquisition function

This procedure is known as Bayesian Optimization (BO)

Accuracy of the best found parameter values from BO. The red line represents the performance found by grid-search.

Look at performance over 50 runs of BO

(h) Random-search for 81 evaluations

Look at performance over 50 runs of BO

(j) Random-search for 25 evaluations

Advantages

- √ Efficient
- Doesn't revisit bad parameter values
- √ Fully black-box

Disadvantages

- × More complicated
- × Computational cost grows cubically in n

Further Questions

- Is 5-fold CV appropriate for effective tuning?
 We say it often is not https://arxiv.org/abs/1806.07139
- Can we adaptively choose how to partition our data as part of BO?

We think so, watch this space!

References

- Intuition 1: A blog post by Alice Zheng https://www.oreilly.com/ideas/evaluating-machine-learningmodels/page/5/hyperparameter-tuning
- Intuition 2: Bergstra and Bengio, Random search for hyper-parameter optimization, Journal of Machine Learning Research, 2012.
- Bayesian Optimization Summary: Snoek, Larochelle, and Adams, Practical bayesian optimization of machine learning algorithms, Advances in neural information processing systems, 2012.
- Gaussian Process Introduction: Williams and Rasmussen, Gaussian processes for machine learning, MIT Press, 2006.
- Python Package for Gaussian Processes: GPy, https://sheffieldml.github.io/GPy/
- Python Package for BO: GPyOpt, https://sheffieldml.github.io/GPyOpt/