INSTITUTO FEDERAL DE GOIÁS CURSO DE GRADUAÇÃO EM ENGENHARIA DE CONTROLE E AUTOMAÇÃO

Alexandre Alves Trindade

INSTALAÇÕES INDUSTRIAIS DESENVOLVIMENTO DO PROJETO

Goiânia

PROJETO LUMINOTÉCNICO

Para o desenvolvimento do projeto luminotécnico, foi utilizado as seguintes especificações para lâmpadas.

Тіро	Fluorescente
Comprimento	120 cm
Diâmetro	2,6 cm
Possui Driver Integrado	Não
Acabamento do Vidro ou Plástico da Lâmpada	Leitosa
Formato	Tubular
Cor da Luz	Neutra
Temperatura da Cor	4000 K
IRC (Índice de Reprodução de Cor)	80
Ângulo de Abertura	360°
llumina	1149 lm
Potência	28 W
Tipo de Soquete	G5
Durabilidade da Lâmpada	8000 h
Acionamento	Comum
Índice de Proteção	20 IP
Produto	Lâmpada
Modelo	T5
Marca	Osram
Peso do Produto	0,2 Kg
Produto Acompanha Embalagem	Sim

Lâmpada Fluorescente Tubular Luz Neutra 28W Osram.

Reator Eletrônico Digital Para 2 Lâmpadas T5 de 28W 03501- Intral

As especificações técnicas do reator utilizado.

Indicação	Para uso residencial ou comercial, em áreas internas ou externas Cobertas				
Fabricante	Intral				
Modelo	REH-T5 SL 2x28/100-242/50-60 REAT. EL DIGITAL				
Consumo	64W				
Tipo de Lâmpada	2x 28W (Tubular T5)				
Tensão Nominal	Bivolt				
Corrente de Entrada	127V = 0,50A / 220V = 0,29A				
Fator de Potência	>0,99C				
THD	<10				
Fator de Fluxo Luminoso	1,0				
Fator de Eficácia	1,50				
Esquema de Ligação	2				
Dimensões	C 285mm x L 155mm x A 55mm				
Peso	180 Gramas				
Site	http://www.intral.com.br/				

Luminária Suspensa ProLux

Descrição da luminária.

Especificações

Tipo	TPS550	Ótica	Difusor em policarbonato
Fonte de Luz	4 x 50 W / 6 x 50 W / TL5	Materiais e acabamento	Corpo em chapa de aço com cabeceiras em ABS e logo PHILIPS
Tensão de rede	Eletrônico 220 V / 60-50 Hz: (EB)		Óptica: Alumínio de alta refletância (95%)
	Eletrônico Touch and Dim DALI (HFD)	Instalação	Suspensa, pendente ou por meio de tubo (G1/2")

A tabela abaixo foi preenchida conforme as especificações da lâmpada tubular T5, base tipo G5, 28 W; luminária eficiência 45%, valor usado para obter o fator de utilização eficiência do recinto pela eficiência da luminária; e o reator fator de fluxo luminoso igual a 1.

		CÁLCULO DE ILUMINAÇÃO INTERNA ILUMINÂNCIAS MÉDIAS - MÉTODO DOS LUMENS		
DATA:				
CLIENTE: RECINTO:	⊢			
ATIVIDADE:				
	П	INFORMAÇÕES	UNIDADE	DADOS SISTEMA A
	1	COMPRIMENTO (C)	m	
E	2	LARGURA (L)	m	
	3	ÁREA (A = C x L)	m²	0.00
Ë	4	PÉ-DIREITO (H)	m	
AMB	5	ALTURA DE TRABALHO (HT)	m	
000	6	ALTURA ÚTIL: HU = H- HT	m	0.00
DESCRIÇÃO DO AMBIENTE	7	INDICE DO RECINTO: K = C x L / (HU x (C + L))		#DIV/0!
DESC	8	FATOR DE DEPRECIAÇÃO: (FD) (ou fator de manutenção)		
_	9	COEFICIENTE DE REFLEXÃO TETO	%	
	10	COEFICIENTE DE REFLEXÃO PAREDE	%	
	11	COEFICIENTE DE REFLEXÃO PISO	%	
8 B	12	ILUMINÂNCIA PLANEJADA (EM)	lux	
QUALIDADE DA ILUMINAÇÃO	13	TONALIDADE OU TEMPERATURA DE COR (KELVIN)	К	
OU OU	14	INDICE DE REPRODUÇÃO DE CORES: IRC OU RA	%	
	15	MODELOTIPO DE LÁMPADA		
	16	FLUXO LUMINOSO DE CADA LÂMPADA (φ)	lm	
AS AS	17	MODELOTIPO DA LUMINÁRIA		
LUMINÁRIAS LÁMPADAS REATORES	18	LÁMPADAS POR LUMINÁRIA (Z)	Unidade	
골중	19	MODELO/TIPO DE REATOR (Prev)		
	20	POTÊNCIA DO REATOR (Prev)	w	
	21	FATOR DE FLUXO LUMINOSO OU BALLAST FACTOR (FFL ou BF)		
NDE IAS	22	FATOR DE UTILIZAÇÃO (FU) * (Ver tabela Fator de Utilização (K) do Fabricante)		
QUANTIDADE DE LUMINÀRIAS	23	QUANTIDADE DE LÂMPADAS: N = (EM x A) / (ϕ x FU x FD x FFL)	Unidade	#DIV/0!
	24	QUANTIDADE DE LUMINÁRIAS: N = n/z	Unidade	#DIV/0!
CÁLCULO DE CONTROLE	25	QUANTIDADE DE LUMINÁRIAS NA INSTALAÇÃO (NI) * (Informar a quantidade)	Unidade	
CALCU	26	ILUMINÂNCIA ALCANÇADA: E = (Z x NI x φ x FU x FD x FFL) / A	lux	#DIV/0!
	27	POTÊNCIA TOTAL INSTALADA: P1 = NI x Prev / 1000	KW	0.000
CONSUMO DA NSTALAÇÃO	28	DENSIDADE DE POTÊNCIA D = (P1 x 1000) / A	W / m²	#DIV/0!
S	29	DENSIDADE DE POTÊNCIA RELATIVA: Dr = (D x 100) / E ou Dr = (P1 x 100) / (A x E)	W / m² / 100lux	#DIV/0!
Prev - Som	a da r	oténda das lámpadas e equipamentos auxiliares instaladas em cada luminária (W)		

O projeto do AutoCad foi modificado as lâmpadas de 14W para 28W. As tabelas de cada recinto estão em anexo como planilhas do excel.

Segue na tabela abaixo o dimensionamento dos condutores feito utilizando o método de queda de tensão unitária. A queda de tensão variando entre 0,5 e 2%, a partir dos dados do projeto, e a distância foi definido 0,03km.

OUTORES PEL	A QUEDA DE TEN	NSÃO UNITÁ	RIA							
CIRCUITO	ESQUEMA	TENSÃO	lp	POTENCIA (W)	POTENCIA (VA)	FP	QUEDA DE TENSÃO (2%)	∆vunit	o nominal mm2	$\Delta vunit=e(\%)V/(Ip L)$
1	MONOFÁSICO	220	0.79	160	173.91	0.920016	0.0025	23.20675	1.5	
2	MONOFÁSICO	220	2.22	450	489.13	0.920001	0.005	16.51652	2.5	L=0.03 km
3	MONOFÁSICO	220	9.86	1996	2169.57	0.919998	0.02	14.87492	2.5	
4	MONOFÁSICO	220	10.38	2100	2282.61	0.919999	0.02	14.12974	2.5	
5	MONOFÁSICO	220	13.34	2700	2934.78	0.920001	0.02	10.9945	4	
6	MONOFÁSICO	220	6.92	1400	1521.74	0.919999	0.02	21.19461	1.5	
7	MONOFÁSICO	220	10.38	2100	2282.61	0.919999	0.02	14.12974	2.5	
8	MONOFÁSICO	220	10.38	2100	2282.61	0.919999	0.02	14.12974	2.5	
9	MONOFÁSICO	220	7.91	1600	1739.13	0.92	0.02	18.54193	1.5	
10	MONOFÁSICO	220	24.55	5400	5400	1	0.02	5.974202	6	
11	MONOFÁSICO	220	24.55	5400	5400	1	0.02	5.974202	6	
12	MONOFÁSICO	220	11.86	2400	2608.7	0.919998	0.02	12.3665	2.5	
13	MONOFÁSICO	220	7.66	1550	1684.78	0.920001	0.02	19.14708	1.5	
14	MONOFÁSICO	220	9.09	1840	2000	0.92	0.02	16.13495	2.5	
15	MONOFÁSICO	220	13.64	2760	3000	0.92	0.02	10.75269	2.5	
16	MONOFÁSICO	220	7.41	1500	1630.43	0.920003	0.02	19.79307	1.5	
17	MONOFÁSICO	220	21.14	4278	4650	0.92	0.02	6.937874	6	
18	TRIFÁSICO	380	10.45	5520	6900	0.8	0.02	24.24242	1.5	
19	MONOFÁSICO	220	1.82	368	400	0.92	0.005	20.14652	1.5	
20	TRIFÁSICO	380	7.6	4000	5000	0.8	0.01	16.66667	2.5	
21	MONOFÁSICO	220	25.2	5100	5543.48	0.92	0.02	5.820106	6	
22	MONOFÁSICO	220	3.95	800	869.57	0.919995	0.01	18.5654	1.5	
23	MONOFÁSICO	220	4.45	900	978.26	0.920001	0.01	16.4794	2.5	

Para o dimensionamento da seção do condutor a seguinte tabela contém dos dados para comparar o fator de potência e queda de tensão unitária, tanto to esquema monofásico quanto trifásico.

oduto e Instalação ao ar livre (3) na (5) Eletroduto e calha (5) (mat. não magnético) Cabos Sintenax, Voltenax e Voltalene rético) Pirastic Super Pirastic Cabos Unipolares (4) C. Uni/Bipolar C. Tri/Tetrapolar Flex Super Circuito Trifásico Circuito Trifásico Circuito Circuito Trifásico Trifásico \odot S=10cm S=10cm FP=0,95 23.6 27.8 23.7 27.8 23.4 27.6 20.5 24.0 20.5 24.1 20.3 24.0 14.3 16.9 14.6 17.1 14.4 17.0 14.8 12.7 14.8 12.5 14.7 12.4 14.7 12.7 14.3 16.9 12.4 14.7 10.6 7.79 9.15 9.0 9.3 10.6 9.1 6.1 4.3 4.2 1.48 1.25 0.98 1.09 1.12 1.33 0.81 0.59 0.67 0.58 0.48 0.50 0.43 0.44 0.65 0.50 0.43 0.40 0.41 0.36 0.36 0.57 0.49 0.41 0.35 0.50 0.42 0.45 0.42 0.38 0.45 0.34 0.30 0.39 0.37 0.32 0.40 0.29 0.25 0.30 0.24 0.20 0.20 | 0.21 | 0.18 | 0.35 0.25 | 0.18 | 0.26 | 0.18 | 0.32 | 0.21 | 0.24 | 0.17 | 0.17 | 0.14 0.18 | 0.13 | 0.16 | 0.12 | 0.26 | 0.17 0.21 0.24 0.16 0.24 0.16 0.29 0.19 0.22 0.15 0.16 0.17 0.12 0.15 0.11 0.23 0.15 0.29 0.18 0.22 0.15 0.22 0.14 0.27 0.17 0.21 0.14 0.15 0.11

Tabela 10.22 - Queda de tensão em V/A.km.

CORREÇÃO DO FATOR DE POTÊNCIA

A seguinte tabela foi utilizada para realizar a correção do fator de potência. Fabricantes de banco de capacitores fornecem seus catálogos, tabelas para melhoramento do fator de potência. Resolução da ANEEL 456/2000 determina que o fator de potência deve ser mantido o mais próximo possível de 1, e no mínimo 0,92.

COSφ	cosφ desejado										
atual	0,92	0,93	0,94	0,95	0,96	0,97	0,98	0,99	1,00		
0,55	1,092	1,123	1,156	1,190	1,227	1,268	1,315	1,376	1,518		
0,56	1,053	1,084	1,116	1,151	1,188	1,229	1,276	1,337	1,479		
0,57	1,015	1,046	1,079	1,113	1,150	1,191	1,238	1,299	1,441		
0,58	0,979	1,009	1,042	1,076	1,113	1,154	1,202	1,262	1,405		
0,59	0,943	0,973	1,006	1,040	1,077	1,118	1,165	1,226	1,368		
0,60	0,907	0,938	0,970	1,005	1,042	1,083	1,130	1,191	1,333		
0,61	0,873	0,904	0,936	0,970	1,007	1,048	1,096	1,157	1,299		
0,62	0,839	0,870	0,903	0,937	0,974	1,015	1,062	1,123	1,265		
0,63	0,807	0,837	0,870	0,904	0,941	0,982	1,030	1,090	1,233		
0,64	0,775	0,805	0,838	0,872	0,909	0,950	0,998	1,058	1,201		
0,65	0,743	0,774	0,806	0,840	0,877	0,919	0,966	1,027	1,169		
0,66	0,712	0,743	0,775	0,810	0,847	0,886	0,935	0,996	1,138		
0,67	0,682	0,713	0,745	0,779	0,816	0,857	0,905	0,966	1,108		
0,68	0,652	0,683	0,715	0,750	0,787	0,828	0,875	0,936	1,078		
0,69	0,623	0,654	0,686	0,720	0,757	0,798	0,846	0,907	1,049		
0,70	0,594	0,625	0,657	0,692	0,729	0,770	0,817	0,878	1,020		
0,71	0,566	0,597	0,629	0,663	0,700	0,741	0,789	0,849	0,992		
0,72	0,538	0,569	0,601	0,635	0,672	0,713	0,761	0,821	0,964		
0,73	0,510	0,541	0,573	0,608	0,645	0,686	0,733	0,794	0,936		
0,74	0,483	0,514	0,546	0,580	0,617	0,658	0,706	0,766	0,909		
0,75	0,456	0,487	0,519	0,553	0,590	0,631	0,679	0,739	0,882		
0,76	0,429	0,460	0,492	0,526	0,563	0,605	0,652	0,713	0,855		
0,77	0,403	0,433	0,466	0,500	0,537	0,578	0,626	0,686	0,829		
0,78	0,376	0,407	0,439	0474	0,511	0,552	0,599	0,660	0,802		
0,79	0,350	0,381	0,413	0,447	0,484	0,525	0,573	0,634	0,776		
0,80	0,324	0,355	0,387	0,421	0,458	0,499	0,547	0,608	0,750		
0,81	0,298	0,329	0,361	0,395	0,432	0,473	0,521	0,581	0,724		
0,82	0,272	0,303	0,335	0,369	0,406	0,447	0,495	0,556	0,698		
0,83	0,246	0,277	0,309	0,343	0,380	0,421	0,469	0,530	0,672		
0,84	0,220	0,251	0,283	0,317	0,354	0,395	0,443	0,503	0,646		
0,85	0,194	0,225	0,257	0,291	0,28	0,369	0,417	0,477	0,620		
0,86	0,167	0,198	0,230	0,265	0,302	0,343	0,390	0,450	0,593		
0,87	0,141	0,172	0,204	0,238	0,275	0,316	0,364	0,424	0,567		
0,88	0,114	0,145	0,177	0,211	0,248	0,289	0,337	0,397	0,540		
0,89	0,086	0,117	0,149	0,184	0,221	0,262	0,309	0,370	0,512		
0,90	0,058	0,089	0,121	0,156	0,193	0,234	0,281 0,253	0,342	0,484		
0,91	0,030	0,060	0,093	0,127	0,164	0,205		0,313	0,456		
0,92	0,000	0,031	0,063 0,032	0,097 0,067	0,134	0,175	0,223 0,192	0,284 0,253	0,426 0,395		
0,93 0,94		0,000	0,032	0,067	0,104 0,071	0,145 0,112	0,192	0,253	0,395		
			0,000	0,000	0,071	0,112	0,126	0,230	0,303		
0,95 0,96				0,000	0,037	0,078	0,126	0,186	0,329		
0,96					0,000	0,041	0,069	0,149	0,292		
0,97						0,000	0,046	0,108	0,203		
0,90							0,000	0,000	0,203		
1,00								0,000	0,000		
1,00									0,000		

O circuito 18 de fator de potência igual a 0,8 deve ser corrigido para 0,95.

K = 0.421

 $Q=P\cdot K$

Q=5520W·0,421

Q=2323,92VAR

São necessários cerca de 2,3kVAR para corrigor o fator de potência para próximo de 0,95.

Sem correção do fator de potência:

 $I=S/(\sqrt{3}\cdot V \cdot \cos \phi)$

 $I=6900/(\sqrt{3.380.0,8})$

I=13,10 A

Com o novo fator de potência a corrente seria:

 $I=S/(\sqrt{3}\cdot V\cdot \cos \phi)$

 $I=6900/(\sqrt{3}\cdot380\cdot0,95)$

I=11,04 A

O circuito 20 de fator de potência igual a 0,8 deve ser corrigido para 0,95.

K = 0.421

 $Q=P\cdot K$

Q=4000W·0,421

Q=1684VAR

São necessários cerca de 1,7kVAR para corrigor o fator de potência para próximo de 0,95.

Sem correção do fator de potência:

 $I=S/(\sqrt{3}\cdot V \cdot \cos \phi)$

 $I=5000/(\sqrt{3.380.0,8})$

I=9,49 A

Com o novo fator de potência a corrente seria:

 $I=S/(\sqrt{3}\cdot V\cdot \cos\phi)$

 $I=5000/(\sqrt{3}\cdot380\cdot0.95)$

I=7,99 A

REFERÊNCIAS

https://www.andreiluminacao.com.br/reator-eletronico-digital-para-2-lampadas-t5-de-28w-03501-intral

http://www.assets.lighting.philips.com/is/content/PhilipsLighting/comf2610-pss-pt_br

 $http://www.leroymerlin.com.br/lampada-fluorescente-tubular-luz-neutra-28w-osram_89145826$

http://slideplayer.com.br/slide/295628/1/images/40/TABELA+10.22+%E2%80%93+QUEDA+DE+TENS%C3%83O+EM+V/A.KM.jpg

Acesso 21 de agosto de 2017, 00:42.

 $http://clubedaeletronica.com.br/Eletricidade/PDF/Correcao\%\,20do\%\,20fator\%\,20de\%\,20potencia.pdf$

Acesso 2 de setembro de 2017, 21:40.