$\overline{\mathcal{R}}$ obert \mathcal{S} tańczy

Zadanie 105. Zbadać stabilność rozwiązania zerowego na prostej rozwiązując układ:

a)
$$y' = y$$
, b) $y' = -y$, c) $y' = 0$, d) $y' = y^2$, e) $y' = -y^2$, f) $y' = y^3$.

Zadanie 106. Ustal czy rozwiązania stacjonarne $x(t) \equiv 0$ i $x(t) \equiv 1$ równania x' = x(1-x)są stabilne czy niestabilne w sensie Lapunowa. Zrób to zadanie na dwa sposoby: bezpośrednion, badając rozwiązania, oraz konstruując funkcję Lapunowa (tylko w przypadku stabilności, por. Z. 112).

Zadanie 107. Podobne polecenie dla rozwiązań $x(t) \equiv 0$ i $x(t) \equiv 1$ równania x' = -x(1-x).

Zadanie 108. Rozważamy równanie różniczkowe $x' = x^2$. Udowodnij, że wszystkie rozwiązania z warunkiem początkowym $x(0) \geq 0$ są niestabilne, natomiast rozwiązania z warunkiem początkowym x(0) < 0 sa stabilne w sensie Lapunowa.

Zadanie 109. Zbadać stabilność rozwiązania x = y = 0 układów:

a)
$$x' = -y$$
, $y' = 2x^3$; b) $x' = y$, $y' = \sin x$; c) $x' = y$, $y' = \operatorname{tg} x$.

Zadanie 110. Zbadać punkty stacjonarne układu x' = xy + 12, $y' = x^2 + y^2 - 25$ i określić ich stabilność.

Zadanie 111. Udowodnij, że stabilność rozwiązań dowolnego rozwiązania $\bar{x}(t)$ równania niejednorodnego $\bar{x}' = A\bar{x} + \bar{f}(t)$ jest równoważna stabilności rozwiązania stacjonarnego $\bar{x} \equiv 0$ równania jednorodnego $\bar{x}' = A\bar{x}$.

Zadanie 112. Podać przykład układu równań, do którego można zastosować Twierdzenia Lapunowa o niestabilności:

Niech dana będzie funkcja V(x) klasy C^1 w pewnym zbiorze Q, będącym otoczeniam początku układu współrzędnych. Jeżeli funkcja V(x) spełnia warunki:

- i) V(0) = 0,
- ii) dla każdgo $\varepsilon > 0$ istnieje x, taki że $|x| < \varepsilon$ i V(x) > 0,
- iii) $\nabla V \cdot f > 0$ dla $x \in Q \setminus \{0\},$

to rozwiazanie zerowe równania autonomicznego x' = f(x) nie jest stabilne w sensie Lapunowa. Uwaga. W przypadku stabilności ii) zastępujemy dodatniością, a w iii) zmieniamy znak.

Zadanie 113. Udowodnić, że rozwiązanie równania x' = a(t)x, gdzie a(t) jest funkcją ciągłą, jest stabilne w sensie Lapunowa wtedy i tylko wtedy, gdy $\limsup_{t\to+\infty} \int_0^t a(s) \, ds < +\infty$.

Zadanie 114. Zbadać stabilność lub brak stabilności rozwiązania zerowego układów równań:

- a) $x' = x^3 y$, $y' = x + y^3$;
- b) x' = y x + xy, $y' = x y x^2 y^3$; c) $x' = 2y^3 x^5$, $y' = -x y^3 + y^5$.

Zadanie 115. Załóżmy, że przynajmniej jedna wartość własna operatora liniowego A na \mathbb{R}^n ma ściśle dodatnią część rzeczywistą. Pokazać, że dla dowolnego $\varepsilon > 0$ istnieje rozwiązanie równania $\dot{x} = Ax \text{ takie, } \dot{z}e \|x(0)\| < \varepsilon \text{ oraz } \lim_{t \to \infty} \|x(t)\| = \infty.$

Zadanie 116. Znaleźć warunek konieczny i dostateczny na stabilność rozwiązania zerowego układu dwóch równań liniowych jednorodnych o stałych współczynnikach.

Zadanie 117. Dany jest układ równań x'' = f(x) z niewiadomą $x = (x_1, ..., x_n)$, gdzie f(x) = $-\nabla\Phi(x)=-\left(\frac{\partial\Phi}{x_1},\ldots,\left(\frac{\partial\Phi}{x_n}\right),$ a $\Phi(x)$ jest funkcją skalarną klasy C^2 . Sprawdzić, że funkcja U(A,B)= $(A_1^2 + \ldots + A_n^2)/2 + \Phi(B)$ spełnia tożsamość $\frac{d}{dt}U(x'(t), x(t)) = 0$ dla dowolnego rozwiązania tego układu. Funkcja U nazywa się całką pierwszą tego układu. Porównaj z przypadkiem skalarnym, tzn. n=1 przedstawionym na wykładzie jako układy zachowawcze z jednym stopniem swobody. W przypadku ogólnym $n \ge 1$ mamy do czynienia z układem zachowawczym z n-stopniami swobody.