Lecture 8

Kinds of graphs. Data structures for graph representation. Connectivity: The naíve algorithm and Warshall algorithm

23 November 2015

Remember that:

Graph = mathematical structure G = (V, E) where

- *V* : set of nodes (or vertices)
- E : set of edges incident to 2 nodes, or 1 node

Depending on the kind of edges $e \in E$, graphs are of two kinds:

▶ **Undirected**: Every edge has one or two endpoints

Graphical representation:
$$a \stackrel{e}{\longrightarrow} b$$
 or $a \stackrel{e}{\bigcirc} (loop)$

▶ **Directed** (or digraphs): Every edge $e \in E$ has a source (or start) end a destination (or end)

Graphical representation:
$$a \xrightarrow{e} b$$
 or $a \text{ (loop)}$

The directed edges are called arcs.

Simple graph: graph (directed or not) with at most one arc between any pair of nodes, and no loop.

$$G=(V,E)$$

 $e_1, e_2 \in E$ are parallel edges if they are incident to the same nodes, and

- If G is directed, then $start(e_1) = start(e_2)$ and $end(e_1) = end(e_2)$
- Multigraph (directed or not):no loops, and if the graph is undirected: it can have parallel edges directed: it can have parallel arcs
- Pseudograph: undirected graph that can have loops and parallel edges.
- ▶ Weighted graph: every edge $e \in E$ has a weight w(E); usually $w(e) \in \mathbb{R}$.

Graphical representations of graphs Illustrative examples

➤ Simple graphs: draw lines or arcs between the connected nodes

Simple **undirected** graph:

b

c

c

Simple **directed** graph:

➤ Simple weighted graphs: we indicate the weights along the corresponding connections

Graphical representations of graphs Example (continued)

Multigraphs or pseudographs: if we want to distinguish parallel edges, we can label them:

Concrete representations of graphs

- List of nodes + list of edges
- Adjacency lists
- Adjacency matrix
- Incidence matrix
- Weight matrix

Example

List of nodes
$$V = [a, b, c, d, e]$$

List of edges $E = [\{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{c, e\}, \{d, e\}]$
Remarks: $\{a, b\} = \{b, a\}, \{a, c\} = \{c, a\}, a.s.o.$
edge \leftrightarrow set of nodes adjacent to the edge


```
List of nodes V = [a, b, c, d, e]

List of arcs E = [(a, b), (c, a), (c, b), (d, a), (e, c), (e, d)]

Remarks: (a, b) \neq (b, a), (a, c) \neq (c, a), a.s.o.

edge \leftrightarrow pair (start,end)
```

Remark

If the graph has no isolated nodes (with 0 neighbors), there is no need to store the list of nodes V:

 \triangleright V can be computed from E

Simple graphs

The representation with adjacency lists

For every node $u \in V$ we keep the list of nodes that are adjacent to u

- ▶ If *G* is **undirected**, *v* is adjacent to *u* of there is an edge with endpoints *u* and *v*.
 - In undirected graphs, the relation of adjacency is symmetric.
- ▶ If G is **directed**, v is adjacent to u if there is an arc $e \in E$ from u to v, i.e. start(e) = u and end(e) = v.

Example $\begin{array}{cccc} b & c & a \mapsto [b, c, d] & d \mapsto [a, e] \\ b \mapsto [a, c] & e \mapsto [c, d] \\ c \mapsto [a, b, e] & c \mapsto [a, b] \end{array}$ $\begin{array}{cccc} b \mapsto [a, b] & d \mapsto [a] \\ b \mapsto [a, b] & d \mapsto [a]$

If G has n nodes, $A_G = (m_{ij})$ has dimension $n \times n$ and $m_{ij} :=$ number of edges from the i-th node to the j-th node.

Remarks

- **1** Before computing M_G from G, be must fix an enumeration of its nodes: $[v_1, v_2, \dots, v_n]$
- ② If G is undirected, A_G is a symmetric matrix
- \odot If G is a simple graph, A_G contains just 0s and 1s

The adjacency matrix A_G of an undirected graph G

The adjacency matrix the undirected graph

$$G: \int_{a}^{b} c e$$

for the node enumeration [a, b, c, d, e] is

$$A_G = \begin{pmatrix} 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 \end{pmatrix}$$

Remark: the matrix A_G is symmetric.

If A is a symmetric matrix of size $n \times n$ with $a_{ij} \in \mathbb{N}$ for all i, j, an undirected graph G whose adjacency matrix is A can be built as follows:

- **1** Draw n points v_1, \ldots, v_n in plane
- ② For every $i,j \in \{1,\ldots,n\}$, draw a_{ij} distinct edges between v_i and v_j

Example

$$A = \begin{pmatrix} 0 & 1 & 0 & 2 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 2 & 0 & 1 & 0 \end{pmatrix} \Rightarrow G : \begin{vmatrix} v_2 - v_3 \\ & & \\ & & \\ & v_1 - v_4 \end{vmatrix}$$

The adjacency matrix of the digraph

$$G: \int_{a \leftarrow d}^{b \leftarrow c} e$$

for the enumeration [a, b, c, d, e] of nodes is

$$A_G = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \end{pmatrix}$$

If A is an $n \times n$ matrix with $a_{ij} \in \mathbb{N}$ for all i, j, a digraph G whose adjacency matrix is A can be constructed as follows:

- **1** Draw n points v_1, \ldots, v_n in the plane
- ② For every $i, j \in \{1, ..., n\}$, draw a_{ij} distinct arcs from v_i to v_j

Example

Digraphs with labeled edges

The representation with incidence matrices

We assume given two lists (or enumerations):

- $V = [v_1, \dots, v_n]$ of the nodes of G
- $L = [e_1, \dots, e_p]$ of the labels of edges of G

The incidence matrix $M_G = (m_{ij})$ has dimension $n \times p$ and

$$m_{ij} = \begin{cases} -1 & \text{if start}(e_j) = v_i \\ 1 & \text{if end}(e_j) = v_i \\ 0 & \text{otherwise.} \end{cases}$$

Example

If
$$V = [a, b, c, d, e]$$
, $L = [e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8]$ and
$$M_G = \begin{pmatrix} -1 & 0 & 0 & -1 & 1 & 0 & 0 & -1 \\ 1 & -1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & -1 & 1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & -1 & -1 & 0 \end{pmatrix} \Rightarrow \underbrace{\begin{pmatrix} b \\ e_4 \\ e_5 \\ e_7 \\ d \end{pmatrix}}_{e_6}$$

The weight matrix $W_G = (w_{ij})$ of a simple weighted graph G with n nodes $[v_1, \ldots, v_n]$ has dimension $n \times n$ and

- $\triangleright w_{ii} = 0$ for all $1 \le i \le n$.
- $\triangleright w_{ij} = w(\{v_i, v_j\})$ for every edge $\{v_i, v_j\} \in E$, if G is undirected.
- $\triangleright w_{ij} = w((v_i, v_j))$ for every arc $(v_i, v_j) \in E$, if G is directed.
- $\triangleright w_{ij} = \infty$ otherwise.

Example (Weight digraph with node enumeration [a, b, c, d, e, f])

$$G: a \xrightarrow{g} c \\ e \xrightarrow{1} d f \Rightarrow W_G = \begin{pmatrix} 0 & 3 & \infty & \infty & 4 & \infty \\ \infty & 0 & 2 & \infty & \infty & \infty \\ \infty & 9 & 0 & \infty & 1 & 12 \\ \infty & \infty & \infty & 0 & \infty & 7 \\ \infty & 5 & \infty & 1 & 0 & \infty \\ \infty & \infty & \infty & \infty & \infty & 0 \end{pmatrix}$$

The representation of graphs Comparative study

- ► The representation with list of edges
 - Adequate for the representation of simple graphs without isolated nodes, and with $|E| \ll |V|$
 - Space complexity: O(|E|)
- ► The representation with lists of adjacencies
 - Allows the fast enumeration of the neighbors of a node
 - Space complexity: O(|V| + |E|)
- ▶ The representation with adjacency matrix $A_G = (a_{ij})$ or with weight matrix $W_G = (w_{ij})$
 - Fast test to check direct connection between 2 nodes: O(1)
 - $\sharp(v_i,v_j)\in E$ if $a_{ij}=0$ or if $w_{ij}=\infty$
 - Space complexity: $O(|V|^2)$
 - inadequate representation when $|E| \ll |V|^2$
- ullet The representation with incidence matrix M_G
 - ▶ Time complexity: $O(|V| \cdot |E|)$

Simple digraphs

Properties of the adjacency matrix A_G

We assume that G is a simple (di)graph with n nodes and with the adjacency matrix $A_G = (a_{ij})$

- $a_{ij}=0$ or false) if \nexists arc $v_i \rightarrow v_j$
- $a_{ij}=1$ (or true) if \exists arc $v_i \rightarrow v_j$

We define:

- I_n : the identity matrix of size $n \times n$
- The Boolean operations ⊙ (conjunction) and ⊕ (disjunction):

\odot	0	1	\oplus	0	1
0	0	0	0	0	1
1	0	1	1	1	1

Remarks:

$$a \odot b = \min(a, b)$$

 $a \oplus b = \max(a, b)$

- If $U = (u_{ij})$, $V = (v_{ij})$ are $n \times n$ matrices with elements 0 or 1, we define
 - $U \oplus V = (c_{ij})$ if $c_{ij} = u_{ij} \oplus v_{ij}$ for all i, j
 - $U \odot V = (d_{ij})$ if $d_{ij} = (u_{i1} \odot v_{1j}) \oplus \ldots \oplus (u_{in} \odot v_{nj})$
 - $U^k = \underbrace{U \odot \ldots \odot U}$ for every k > 0

k times

Properties

- If $A_G^k = (a_{ij}^{(k)})$ for $k \ge 1$ then $a_{ij}^{(k)} = 1$ if and only if there is a path with length k from node v_i to v_j .
- ② Let $A_G^* = I_n \oplus A_G \oplus A_G^2 \oplus \ldots \oplus A_G^{n-1} = (\overline{a}_{ij})$. Then
 - $\overline{a}_{ij} = 1$ if and only if there is a path with length $j \in \{1, \dots, n-1\}$ from node v_i to v_j .
 - A_G^* can be computed in $O(n^4)$.
 - A_G^* is called reflexive and transitive closure of A_G .
- 3 v_i and v_j are connected $\Leftrightarrow \exists$ a simple path $v_i \rightsquigarrow v_j \Leftrightarrow \overline{a}_{ij} = 1$.

Simple digraphs

Properties of the adjacency matrix A_G (contd.)

Properties

- If $A_G^k = (a_{ij}^{(k)})$ for $k \ge 1$ then $a_{ij}^{(k)} = 1$ if and only if there is a path with length k from node v_i to v_j .
- ② Let $A_G^* = I_n \oplus A_G \oplus A_G^2 \oplus \ldots \oplus A_G^{n-1} = (\overline{a}_{ij})$. Then
 - $\overline{a}_{ij} = 1$ if and only if there is a path with length $j \in \{1, \dots, n-1\}$ from node v_i to v_j .
 - A_G^* can be computed in $O(n^4)$.
 - A_G^* is called reflexive and transitive closure of A_G .
- **3** v_i and v_j are connected $\Leftrightarrow \exists$ a simple path $v_i \rightsquigarrow v_j \Leftrightarrow \overline{a}_{ij} = 1$.

Corollary

The connectivity between all pairs of nodes in a simple digraph can be checked in $O(n^4)$.

Warshall algorithm computes A_G^* in $O(n^3)$.

Warshall's main idea

If $V = [v_1, \dots, v_n]$ is an enumeration of the nodes of G and $v_k \in V$, then every simple path $\pi : v_i \leadsto v_j$ is of one of the following two kinds:

 $\bullet v_k$ does not appear along π between v_i and v_j

$$(v_i) \sim \sim \sim \sim (v_j)$$

2 v_k appears exactly once in π , between v_i and v_j

Assumption: $A_G = (a_{ij})$ has size $n \times n$

▶ Compute recursively $C^{[n]} = (c_{ij}^{[n]})$ where

$$c_{ij}^{[k]} := \left\{ egin{array}{ll} a_{ij} & ext{if } k = 0 \ c_{ij}^{[k-1]} \oplus (c_{ik}^{[k-1]} \odot c_{kj}^{[k-1]}) & ext{if } k \geq 1 \end{array}
ight.$$

Properties

- $C^{[0]} = A_G$
- ② $c_{ij}^{[k]}=1$ if and only if there is a path $\pi: v_i \leadsto v_j$ where all intermediary nodes are from the subset $\{v_1,\ldots,v_k\}$
- $C^{[n]} = A_G^*$
- $C^{[n]}$ can be computed in $O(n^3)$.

Consider the simple digraph G=(V,E) with $V=\{1,\ldots,n\}$ and the weight function $w:E\to\mathbb{R}^+$

- ▶ In G, the weight of a path $\pi: v_1 \to v_2 \to \ldots \to v_p$ is
 - $w(\pi) = \sum_{i=1}^{p-1} w((v_i, v_{i+1}))$
 - (we add up the weights of all arcs of π)
- ▶ For every pair of nodes (i,j) din V, we wish to find
 - a lightest path from node i to node j (there can be more than one lightest path)
 - the weight of a lightest path

Remember that the weight matrix of G is $W_G = (w_{ij})$ where

$$w_{ij} = \begin{cases} 0 & \text{if } j = i, \\ w((i,j)) & \text{if } (i,j) \in E, \\ \infty & \text{if } (i,j) \notin E \end{cases}$$

Finding the lightest paths in a simple weighted digraph Warshall algorithm: main idea

Let $k \in V = \{1, ..., n\}$, and $\pi : i \leadsto j$ be a lightest path from i to j. We distinguish two cases:

- **1** k is not an intermediary node of π
- ② k is an intermediary node of π . Then $\pi = i \stackrel{\pi_1}{\leadsto} k \stackrel{\pi_2}{\leadsto} j$ and $w(\pi) = w(\pi_1) + w(\pi_2)$.

Finding the lightest paths in a simple weighted digraph Warshall algorithm: main idea

Let $k \in V = \{1, ..., n\}$, and $\pi : i \leadsto j$ be a lightest path from i to j. We distinguish two cases:

- **1** k is not an intermediary node of π
- ② k is an intermediary node of π . Then $\pi = i \stackrel{\pi_1}{\leadsto} k \stackrel{\pi_2}{\leadsto} j$ and $w(\pi) = w(\pi_1) + w(\pi_2)$.

An useful auxiliary data structure:

- ullet A matrix of paths $P^{[k]}=(p_{ij}^{[k]})$ where
 - $p_{ij}^{[k]} := \left\{ \begin{array}{ll} \bullet & \text{special value: } \nexists \text{ path } i \leadsto j \text{ through} \\ & \text{intermediary nodes from } \{1, \dots, k\} \\ \pi & \text{a lightest path from } i \text{ to } j \text{ through} \\ & \text{intermediary nodes from } \{1, \dots, k\} \end{array} \right.$

Finding the lightest paths in a simple weighted digraph Warshall algorithm: the recursive formula of computation

We assume that $W_G = (w_{ij})$

$$p_{ij}^{[k]} := \left\{ egin{array}{ll} \bullet & ext{if } k=0 ext{ and } w_{ij}=\infty \ [i,j] & ext{if } k=0 ext{ and } w_{ij}<\infty \ p ext{-}min(p_{ij}^{[k-1]},p_{ik}^{[k-1]}symp p_{kj}^{[k-1]}) & ext{if } k\geq 1 \end{array}
ight.$$

where $p_{ik}^{[k-1]} \asymp p_{kj}^{[k-1]}$ denotes the concatenation of the paths $p_{ik}^{[k-1]}$ and $p_{kj}^{[k-1]}$. If both exist (i.e., they are not \bullet), and \bullet otherwise.

Remark

If $p_{ij}^{[n]} = \bullet$, there is no path from node i to j. Otherwise, $p_{ij}^{[n]}$ is a lightest path from node i to j.

Finding the lightest paths in a simple weighted digraph Warshall algorithm: pseudocode

Compute recursively and simultaneously two matrices:

$$\begin{split} \mathcal{W}^{[k]} &= \left(w_{ij}^{[k]}\right) \quad \text{and} \quad \mathcal{P}^{[k]} &= \left(p_{ij}^{[k]}\right) \quad \text{for } 0 \leq k \leq n \\ w_{ij}^{[k]} &= \left\{ \begin{array}{ll} w_{ij} & \text{if } k = 0, \\ \max \left(w_{ij}^{[k-1]}, \min\{w_{ik}^{[k-1]}, w_{kj}^{[k-1]}\}\right) & \text{otherwise.} \end{array} \right. \\ p_{ij}^{[k]} &= \left\{ \begin{array}{ll} \bullet & \text{if } k = 0 \text{ and } w_{ij}^{[0]} = \infty, \\ [i,j] & \text{if } k = 0 \text{ and } w_{ij}^{[0]} \neq \infty, \\ w_{ij}^{[k-1]} & \text{if } k > 0 \text{ and } w_{ij}^{[k-1]} \leq w_{ik}^{[k-1]} + w_{kj}^{[k-1]}, \\ w_{ik}^{[k-1]} \asymp w_{kj}^{[k-1]} & \text{otherwise.} \end{array} \right. \end{split}$$

Remark

 $W^{[n]}$ and $P^{[n]}$ can be computed in $O(n^3)$.

A special case of Warshall algorithm

Finding the shortest paths in a simple digraph

All arcs are assumed to have weight 1