Problem solving: kinematics (II)

Physics 211 Syracuse University, Physics 211 Spring 2023 Walter Freeman

February 1, 2023

1/33

Announcements

- Homework 2 due date is this Thursday or Friday
- Exam 1 is next Tuesday
 - No homework due next week
 - HW2 problems are similar to those on Exam 1
 - Recitation Thursday/Friday is your group practice exam
 - If you must miss the group exam, notify your TA and your group in advance
 - Weekend: Exam review in the auditorium, Saturday, 5PM-8PM.

Help hours this week

Homework help / general assistance:

- Anytime in the Physics Clinic (there is usually a tutor there)
- Tuesday 2:00-4:00 (Walter)
- Wednesday 3:00-5:00 (Walter)
- Thursday 3:00-5:00 (Walter)

Wednesday night: Extra assistance session in room B129E (probably 6:30-8:30pm – I'll announce by email this afternoon). Topics:

- "Setting up problems"
- Algebra review
- Trigonometry review
- The quadratic formula
- Vectors (if you missed Thurs/Fri recitation last week)
- Position/velocity/acceleration graphs

Friday all day: Group Exam Review. Not sure how something in the group exam worked? Come by to discuss!

Saturday, 5:00-8:00: Exam 1 Review (Stolkin Auditorium)

- The exam covers kinematics in one and two dimensions
- Kinematics: how are an object's position, velocity, and acceleration related?

- The exam covers kinematics in one and two dimensions
- Kinematics: how are an object's position, velocity, and acceleration related?
- The exam will be somewhat easier than the homework.

- The exam covers kinematics in one and two dimensions
- Kinematics: how are an object's position, velocity, and acceleration related?
- The exam will be somewhat easier than the homework.
- You may use any ordinary calculator or graphing calculator on the exam, but no cellphones or computers, or Ti N-spire CAS level devices
- Students who do not speak English well: I will try to use only simple English on the exam, but if you like you may bring a dictionary
- Bring: your calculator, pencils, your physics smarts, and kitten/dog treats

- The exam covers kinematics in one and two dimensions
- Kinematics: how are an object's position, velocity, and acceleration related?
- The exam will be somewhat easier than the homework.
- You may use any ordinary calculator or graphing calculator on the exam, but no cellphones or computers, or Ti N-spire CAS level devices
- Students who do not speak English well: I will try to use only simple English on the exam, but if you like you may bring a dictionary
- Bring: your calculator, pencils, your physics smarts, and kitten/dog treats
- You are allowed to bring one side of one page of notes that you handwrite yourself on Tuesday
- You do not need to bring notes; I will give you the kinematics relations on a reference page
 - No typed notes unless you have a disability that prevents you from writing
 - Your friend can't write it
 - You can't print stuff from the internet

- The exam covers kinematics in one and two dimensions
- Kinematics: how are an object's position, velocity, and acceleration related?
- The exam will be somewhat easier than the homework.
- You may use any ordinary calculator or graphing calculator on the exam, but no cellphones or computers, or Ti N-spire CAS level devices
- Students who do not speak English well: I will try to use only simple English on the exam, but if you like you may bring a dictionary
- Bring: your calculator, pencils, your physics smarts, and kitten/dog treats
- You are allowed to bring one side of one page of notes that you handwrite yourself on Tuesday
- You do not need to bring notes; I will give you the kinematics relations on a reference page
 - No typed notes unless you have a disability that prevents you from writing
 - Your friend can't write it
 - You can't print stuff from the internet
 - It won't help you as much anyway

Exam 1, promises

- There will be one problem where you need the quadratic formula
 - ... this means interpreting the two values it spits out
- There will be at least one instance where you need to interpret or sketch position, velocity, and acceleration graphs
- There will be at least one problem with "piecewise constant" acceleration (bicycle problem on HW1, rocket problem in Week 2 Recitation 1)
- You will not need to compute derivatives or integrals algebraically
- The exam will be four problems

- Vectors: objects with direction and magnitude.
 - \bullet Two representations:

- Vectors: objects with direction and magnitude.
 - Two representations:
 - Magnitude and direction (easiest to state, hardest to work with)
 - Components (easiest to work with)
 - Use trigonometry to go back and forth
- One more piece of notation about vectors...

A word on positive and negative acceleration, velocity, "speed", and displacement:

When you choose your origin, you choose one direction to be positive, and the other to be negative. (Here: right = positive.)

- An object with x < 0 just means it's left of the origin.
- An object with v < 0 means it's moving to the left.
- An object with a < 0 means:
 - A: it is moving to the left and gaining speed
 - B: it is moving to the right and slowing down
 - C: it is moving to the left and slowing down
 - D: it is moving to the right and gaining speed

A word on positive and negative acceleration, velocity, "speed", and displacement:

When you choose your origin, you choose one direction to be positive, and the other to be negative. (Here: right = positive.)

- An object with x < 0 just means it's left of the origin.
- An object with v < 0 means it's moving to the left.
- An object with a < 0 means:
 - A: it is moving to the left and gaining speed
 - B: it is moving to the right and slowing down
 - C: it is moving to the left and slowing down
 - D: it is moving to the right and gaining speed

Do not confuse the sign of something with the sign of its derivative!

Acceleration, velocity, and position relationships are the same in 2D; they just apply independently for each component.

$$\vec{v}(t) = \vec{a}t + \vec{v}_0$$

$$\vec{s}(t) = \frac{1}{2}\vec{a}t^2 + \vec{v}_0t + \vec{s}_0$$

Acceleration, velocity, and position relationships are the same in 2D; they just apply independently for each component.

$$\vec{v}(t) = \vec{a}t + \vec{v}_0$$

$$\vec{s}(t) = \frac{1}{2}\vec{a}t^2 + \vec{v}_0t + \vec{s}_0$$

$$v_x(t) = a_x t + v_{x,0}$$

$$v_y(t) = a_y t + v_{y,0}$$

Acceleration, velocity, and position relationships are the same in 2D; they just apply independently for each component.

$$\vec{v}(t) = \vec{a}t + \vec{v}_0$$

$$\vec{s}(t) = \frac{1}{2}\vec{a}t^2 + \vec{v}_0t + \vec{s}_0$$

$$v_x(t) = a_x t + v_{x,0}$$
$$v_y(t) = a_y t + v_{y,0}$$

$$x(t) = \frac{1}{2}a_x t^2 + v_{x,0}t + x_0$$
$$y(t) = \frac{1}{2}a_y t^2 + v_{y,0}t + y_0$$

If you don't know the numerical value of a quantity yet, it's fine to leave it as a variable!

This is essential for solving many problems.

If you don't know the numerical value of a quantity yet, it's fine to leave it as a variable!

This is essential for solving many problems.

Example from the dog-and-ball problem:

$$x(t) = \frac{1}{2}a_x t^2 + \frac{\mathbf{v}_{x,0}t}{\mathbf{v}_{x,0}t} + x_0$$
$$y(t) = \frac{1}{2}a_y t^2 + \frac{\mathbf{v}_{y,0}t}{\mathbf{v}_{y,0}t} + y_0$$

If you don't know the numerical value of a quantity yet, it's fine to leave it as a variable!

This is essential for solving many problems.

Example from dog-and-ball problem:

$$x(t) = \frac{\mathbf{v}_{x,0}t}{y(t)} = -\frac{1}{2}gt^2 + \frac{\mathbf{v}_{y,0}t}{y(t)}$$

If you don't know the numerical value of a quantity yet, it's fine to leave it as a variable!

This is essential for solving many problems.

Example from dog-and-ball problem:

$$x(t) = \frac{v_0 \cos 45^{\circ} t}{y(t)} = -\frac{1}{2}gt^2 + \frac{v_0 \sin 45^{\circ} t}{t}$$

(I leave the rest to you for now...)

Problem solving: 2D kinematics, constant acceleration

- 0. Draw a cartoon of the situation, and choose a coordinate system
- **2** 1. If you have vectors in the "angle and magnitude" form $(\vec{a}, \vec{v}, \vec{s})$, convert them to components
- \bullet 2. Write down the kinematics relations, separately for x and y
 - Many terms will usually be zero
 - Freefall: $a_x = 0$, $a_y = -g$ (with conventional choice of axes)
- 3. Understand what instant in time you want to know about: ask the right question
- 4. Put in what you know; solve for what you don't (using substitution, if necessary)
- 5. Think about the physical meaning of your solution

Problem solving: 2D kinematics, constant acceleration

- 0. Draw a cartoon of the situation, and choose a coordinate system
- **2** 1. If you have vectors in the "angle and magnitude" form $(\vec{a}, \vec{v}, \vec{s})$, convert them to components
- \bullet 2. Write down the kinematics relations, separately for x and y
 - Many terms will usually be zero
 - Freefall: $a_x = 0$, $a_y = -g$ (with conventional choice of axes)
- 3. Understand what instant in time you want to know about: ask the right question
- 4. Put in what you know; solve for what you don't (using substitution, if necessary)
- 5. Think about the physical meaning of your solution

Homework questions?

"What instant in time do you know about?"

This is often the most difficult part of problems: it requires thought, not just math.

You throw a ball upward over a hole of height h. Your position is the origin, and up is positive.

What condition means "the ball has hit the ground"?

- A: y = 0
- B: y = h
- C: y = -h
- D: $v_y = 0$

"What instant in time do you know about?"

You throw a ball upward off of a cliff of height h. The top of the cliff is the origin, and up is positive.

What condition means "the ball is at its highest point?"?

- A: y = 0
- B: $v_y = 0$
- C: y = h
- D: y is a maximum

A football player kicks the ball at 15 m/s at an angle of 30 degrees above the horizontal.

How can we frame the question "How far does the ball go?" in terms of our variables?

- A: What is x at the same time that v_x is zero?
- B: What is y at the same time that x is is zero?
- \bullet C: What is x at the same time that y is zero?
- D: What is x at the same time that v_y is zero?

- A football player kicks the ball at 15 m/s at an angle of 30 degrees above the horizontal.
- If the field is level ground, how far does the ball go?

- A football player kicks the ball at 15 m/s at an angle of 30 degrees above the horizontal.
- If the field is level ground, how far does the ball go?
- How high does the ball go?

- A football player kicks the ball at 15 m/s at an angle of 30 degrees above the horizontal.
- If the field is level ground, how far does the ball go?
- How high does the ball go?
- How fast is it traveling at its highest point?

- A football player kicks the ball at 15 m/s at an angle of 30 degrees above the horizontal.
- If the field is level ground, how far does the ball go?
- How high does the ball go?
- How fast is it traveling at its highest point?
- How fast is it traveling when it strikes the ground?

- A football player kicks the ball at 15 m/s at an angle of 30 degrees above the horizontal.
- If the field is level ground, how far does the ball go?
- How high does the ball go?
- How fast is it traveling at its highest point?
- How fast is it traveling when it strikes the ground?

What is $v_{0,x}$?

A: $v_0 \cos \theta$ B: $v_0 \sin \theta$ C: $v_0 \tan \theta$

D: v_0

- A football player kicks the ball at 15 m/s at an angle of 30 degrees above the horizontal.
- If the field is level ground, how far does the ball go?
- How high does the ball go?
- How fast is it traveling at its highest point?
- How fast is it traveling when it strikes the ground?

What is $v_{0,y}$?

A: $v_0 \cos \theta$ B: $v_0 \sin \theta$

C: $v_0 \tan \theta$

D: v_0

• What changes if I put the football player up on a cliff?

- What changes if I put the football player up on a cliff?
- What changes if they are kicking the ball up to someone on a cliff?

February 1, 2023

- What changes if I put the football player up on a cliff?
- What changes if they are kicking the ball up to someone on a cliff?
- What changes if I want to know what velocity they need to kick the ball to midfield?

- What changes if I put the football player up on a cliff?
- What changes if they are kicking the ball up to someone on a cliff?
- What changes if I want to know what velocity they need to kick the ball to midfield?
- What changes if I have air resistance?

Throwing a rock off a cliff

A hiker throws a rock horizontally off of a h = 100 m tall cliff. If the rock strikes the ground d = 30 m away, how hard did she throw it? How fast was it going when it hit the ground? (Choose the origin at the base of the cliff, up/direction of throw as positive)

What is $v_{0,x}$ here?

A: 0

B: 10/3 m/s

What is $v_{0,y}$ here?

A: 0

B: 9.8 m/s

What is a_x here?

A: 0

B: -g

C: +g

What is a_y here?

A: 0

B: -g

C: +g

What is x_0 here?

A: 0

B: h

C: d

What is y_0 here?

A: 0

B: h

C: d

What question do you ask to find "how hard did she throw it?"

A: What value of $v_{x,0}$ makes it such that x=d when y=0?

B: What value of $v_{y,0}$ makes it such that x = d when y = h?

C: What is the value of v_x when y = 0?

D: What is the magnitude of \vec{v} when y = 0?

E: What is the magnitude of \vec{v}_x when y = h?

What question do you ask to find "how fast is it going when it hits the ground?"

- A: What is v_x at the time when $v_y = 0$?
- B: What is v_x at the time when y = 0?
- C: What is v_y at the time when y = h?
- D: What is the magnitude of \vec{v} when y = 0?
- E: What is the magnitude of \vec{v} when y = h?

What's the magnitude of \vec{v} ?

A: $v\cos\theta$

B: $v \sin \theta$

C: $\tan^{-1} \frac{v_x}{v_y}$

A: $\sqrt{v_x^2 + v_y^2}$

Throwing a stone onto a slope

A hiker kicks a stone off of a mountain slope with an initial velocity of v_0 3 m/s horizontally. If the mountain has a slope of 45 degrees, how far down the slope does it land? (Choose the origin as the starting point.)

```
A: What is the magnitude of \vec{s} when x = y?
B: What is the magnitude of \vec{s} when x = -y?
C: What is the magnitude of \vec{s} when y = 0?
D: What is y when x = -y?
E: What is y when x = 0?
```

Throwing a stone onto a slope

A hiker kicks a stone off of a mountain slope with an initial velocity of v_0 3 m/s horizontally. If the mountain has a slope of 45 degrees, how far down the slope does it land? (Choose the origin as the starting point.)

```
A: What is the magnitude of \vec{s} when x = y?
B: What is the magnitude of \vec{s} when x = -y?
C: What is the magnitude of \vec{s} when y = 0?
D: What is y when x = -y?
E: What is y when x = 0?
```

This is on your homework:) I won't give the answer here – this is for you to ponder!

A rocket

A rocket is launched from rest on level ground. While its motor burns, it accelerates at 10 m/s at an angle 30 degrees below the vertical. After $\tau=10$ s its motor burns out and it follows a ballistic trajectory until it hits the ground.

How far does it go?