Project Title:

Data Pipeline for Customer Account Analysis

Objective: Design and implement a scalable, efficient, and robust data pipeline to process customer account data. This includes data ingestion, transformation using Azure Data Factory (ADF), and upsertion of cleansed data into a SQL database from Azure Data Lake Storage (ADLS) GOLD Layer. The pipeline will support downstream analytics and reporting.

Table of Contents

- 1. Architecture Overview
- 2. Step 1: Data Ingestion (Backend Storage to Raw/Bronze Layer)
- 3. Step 2: Data Cleaning and Transformation (Bronze Layer)
- 4. Step 3: Load to SQL Database using SCD Techniques
- 5. Step 4: Data Visualization Using Power BI
- 6. Conclusion

Architecture Overview

Data Pipeline for Customer Account Analysis

Step 1: Data Ingestion (Backend Storage to Raw/Bronze Layer)

Tool: Azure Data Factory (ADF) - Copy Activity

Action:

• Set up a copy activity in ADF to transfer data from the backend team's Azure Storage account to the Raw (Bronze) container in the Data Lake.

Source Files:

- accounts.csv
- customers.csv
- loan_payments.csv
- loans.csv
- transactions.csv

Create SelfhostedIR and Filesystem linked service

- Using KeyVault secrets we provide the password securely
- Using wildcard path , I have copied all the documents into my bronze folder in my container

Sink:

- Target: Azure Data Lake Storage (ADLS)
- Container: input/bronze

Step 2: Data Cleaning and Transformation (Bronze Layer)

Tool: Azure Data Factory (ADF) - Data Flows

Sub-Steps:

- 1. Read Data: Load the five datasets from the Bronze layer using five sources
- 2. **Remove Duplicates:** Used Aggregate/Window transformations to detect and eliminate duplicate rows.

3. **Data Cleaning:** Remove hanging/null rows using filter transformations.

Apply filter on major columns so that we can avoid null records

Step 3: Load to SQL Database using SCD Techniques

Tool: Azure Data Factory - Data Flows + Pipelines

Tasks:

- 1. Implement Slowly Changing Dimensions (SCD):
- SCD Type 1: Overwrite existing records
 - I have done the SCD Type-1 for the Accounts, loans, loan-payments, transactions

Accounts Dataflow

Source

From Silver.accounts folder using wildcard path

Select

To rename columns

Hashkey derived Column Activity

crc32(src_account_id,src_customer_id,src_account_type,src_balance)

Source2

From sql table for lookup new records

LookUp

Lookup based on ID

Conditional Split activity

Insert condition: !isNull(src_account_id) && isNull(account_id)

Update condition: account_id == src_account_id && src_Hashkey!=hashkey

InsertAudit derived column activity

UpdateAudit derived column activity

Sink1 for insert

Sink2 for Update

• Similarly for the loans, loan_payments and Transaction file dataflows

Output Validation

Initial record

```
99 98,49,Checking,9900.5
100 99,80,Savings,975.75
101 100,50,Checking,10100.0
102
```

Initial load in database

Day2 record

SCD Type 2: Preserve history of changes using effective start and end dates

Performed SCD 2 for customers data

All the activities are similar but we use Union activity to insert a new record and make it active

Conditional split activity

Union Activity

Union insert split with update split

Insert audit derived column activity

Update Audit derived column activity

Alter row activity for Update

Sink 1 for Insert

Sink 2 for Update

Output Validation

Initial data record

```
88 87, William, McDonald, 8686 Maple Ave, Haileybury,,,1
```

89 88, vishal, Cardinal Health, 222, sad, ON, POJØA1, 1

90

Day2 Updated record

```
88 87, William, McDonald, 8686 Maple Ave, Haileybury,,,1
89 88, vishal, CH, 222, sad, ON, POJOA1, 1
90
```

After SCD-2

Pipelines

o Local to Bronze Layer

Master Pipeline Creation:

o Use Execute Pipeline Activity to trigger child pipelines in sequence

Scheduled Trigger

Step 4: Data Visualization Using Power BI

Tasks:

1. Connect Power BI to SQL Database tables

2. Publish reports to Microsoft Fabric Workspace

Code Repository:

https://github.com/VishalKanaka/DataMigration_SCD_Type1_2.git

Conclusion

This project successfully demonstrates the implementation of a modern data pipeline using Azure Data Factory, Azure Data Lake Storage, and SQL Database integration. The structured approach from data ingestion to transformation and finally to visualization enables efficient and scalable analytics. Automation using ADF pipelines and security through Azure Key Vault ensure a production-ready solution. By delivering clean, well-modeled data to Power BI, this pipeline supports powerful insights into customer account behaviors and loan activities. The project lays a strong foundation for future enhancements and enterprise-grade deployments.