Problemi di Flusso

Una **rete di flusso** è una tupla G=(V,E,s,t,c). Un grafo diretto (V,E) con sorgente $s\in V$ (assumendo che ogni nodo sia raggiungibile da s) e una destinazione $t\in V$. Capacità $c(e)\geq 0$ per ogni $e\in E$.

[!NOTE]

Intuitivamente, materiale che scorre lungo la rete di trasporto; il materiale viene originato nella sorgente ed è mandato a destinazione

Problema del minimo taglio

Un **st-cut** è una partizione (A,B) dei nodi con $s\in A$ e $t\in B$ La sua **capacità** è la somma delle capacità degli archi che da A vanno in B

$$cap(A,B) = \sum_{e \ out \ of \ A} c(e)$$

Obiettivo: Trovare un taglio di capacità minima!

Problema del massimo flusso

Un $\operatorname{st-flow}$ è una funzione f che soddisfa:

- Per ogni arco $e \in E: 0 \leq f(e) \leq c(e)$
- Per ogni nodo $v \in V \{s,t\}$: $\sum_{e\ in\ to\ v} f(e) = \sum_{e\ out\ of\ v} f(e)$ [Conservazione del flusso]

Il **valore** del flusso f è $val(f) = \sum_{e \ out \ to \ s} f(e) - \sum_{e \ in \ of \ s} f(e)$

Obiettivo: Trovare un flusso di valore massimo!

Verso un algoritmo per il max flow

Greedy Template

1. Inizia con f(e)=0 per ogni arco $e\in E$

2. Trova un percorso $s \rightarrowtail t$ detto P dove in ogni arco f(e) < c(e)

3. Aumenta il flusso lungo il percorso \overline{P}

4. Ripeti finché non hai ulteriori percorsi disponibili

Nell'esempio il greedy alla fine trova il seguente valore di flusso $% \left(1\right) =\left(1\right) \left(1\right)$

Sbagliando perché il massimo flusso ottenibile da questa rete è 19

Perché fallisce? Una volta che il greedy incrementa il flusso in un arco, non lo decrementa mai!

[!NOTE]

Necessitiamo di un meccanismo che esegue "undo" su una decisione sbagliata

Reti residue

Arco originale

$$e=(u,v)\in E$$

Arco al contrario

$$e^{\mathit{reverse}} = (v,u)$$

$$c_f(e) = egin{cases} c(e) - f(e) \ if \ e \in E \ f(e^{reverse}) \ if \ e^{reverse} \in E \end{cases}$$

Rete residua

 $G = (V, E_f, s, t, c_f)$:

- $E_f = \{\,e: f(e) < c(e)\,\} \cup \{\,e: f(e^{reverse}) > 0\,\}$ f' è un flusso in G_f se e soltanto se f'+f è un flusso in G

Cammino aumentante

Un **cammino aumentante** è un percorso semplice $s \rightarrowtail t$ nella rete residua G_f

La **bottleneck capacità** di un cammino aumentante P è la minima capacità residua in uno dei qualsiasi archi in P.

Dato f un flusso e P un cammino aumentante in G_f .

Quindi, dopo aver chiamato $f' \leftarrow AUGMENT(f,c,P)$, il risultato f' è un flusso e val(f') = val(f) + bottleneck(Gf,P)

```
Augment(f, c, P)
\delta \leftarrow \text{bottleneck capacity of augmenting path } P.
Foreach edge e \in P:

If (e \in E) f(e) \leftarrow f(e) + \delta.

Else f(e^{\text{reverse}}) \leftarrow f(e^{\text{reverse}}) - \delta.

Return f.
```

Algoritmo Ford-Fulkerson

- 1. Inizia con f(e)=0 per ogni arco $e\in E$
- 2. Trova un percorso $s \rightarrowtail t$ detto P nella rete residua G_f
- 3. Aumenta il flusso lungo il percorso ${\cal P}$
- 4. Ripeti finché non hai ulteriori percorsi disponibili

Relazione tra flusso e taglio

Lemma

 $\ \, {\rm Dato} \,\, f \,\, {\rm un} \,\, {\rm qualsiasi} \,\, {\rm flusso} \,\, {\rm e} \,\, {\rm dato} \,\, (A,B) \,\, {\rm un} \,\, {\rm qualsiasi} \,\, {\rm taglio} \,\, (A,B). \\$

$$val(f) = \sum_{e \ out \ of \ A} f(e) - \sum_{e \ in \ to \ A} f(e)$$

dim

val(f)

$$=\sum_{e \ out \ to \ s} f(e) - \sum_{e \ in \ of \ s} f(e)$$

$$=\sum_{v\in A}(\sum_{e\ out\ of\ v}f(e)$$
 $-$

 $\sum_{e \text{ in to } v} f(e)$) (per la conservazione del flusso questa differenza sarà sempre uguale a 0 tranne per il nodo s)

$$=\sum_{e\;out\;of\;A}f(e)-\sum_{e\;in\;to\;A}f(e)$$
 (Questo invece perché A contiene $s)$

Dualità debole

Dato f un qualsiasi flusso e (A,B) un taglio qualsiasi. Allora $val(f) \leq cap(A,B)$

dim

val(f)

$$=\sum_{e \ out \ of \ A} f(e) - \sum_{e \ in \ to \ A} f(e)$$

$$\leq \sum_{e \ out \ of \ A} f(e)$$

$$\leq \sum_{e \ out \ of \ A} c(e) = cap(A, B)$$

Corollario

Sia f un qualsiasi flusso e (A,B) un qualsiasi taglio.

Se val(f) = cap(A, B) allora f è un flusso massimo e (A, B) è un taglio minimo

dim

Per un qualsiasi flusso $f': val(f') \leq cap(A,B) = val(f)$. Per un qualsiasi taglio $(A',B'): (A',B') \geq val(f) = cap(A,B)$

Teorema Max-flow Min-cut

Valore del flusso massimo è uguale alla capacità del minimo taglio

Teorema del cammino aumentante

Un flusso f è massimo flusso se e soltanto se non ci sono cammini aumentanti in G_f

dim

I seguenti tre enunciati sono equivalenti:

- 1. Esiste un taglio (A, B) tale che cap(A, B) = val(f).
- 2. f è un flusso massimo.
- 3. Non ci sono cammini aumentanti rispetto a f.

$$[1 \implies 2]$$

Conseguenza della dualità debole

$$[2 \implies 3]$$
 (dimostriamo per contrapposizione $[\neg 3 \implies \neg 2]$)

Supponiamo che ci sia un cammino aumentante rispetto a f.

Possiamo migliorare il flusso f inviando flusso lungo questo percorso.

Dunque f non è un flusso massimo.

[3
$$\Longrightarrow$$
 1]

Sia f un flusso che non ha cammini aumentanti.

Sia A un insieme di nodi raggiungibile da s nella rete residua in G_f

Per definizione $s \in A$

Per definizione di flusso $f\ t\notin A$ (non ci sono più cammini aumentanti in G_f dunque t non è raggiungibile da s e dunque non è in A)

$$val(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e)$$

$$=\sum_{e \ out \ of \ A} c(e) - 0 = cap(A,B)$$

Se l'arco nell'immagine e=(v,w) non fosse saturato allora in G_f avrei un arco che dal nodo in A mi porta al nodo in B, dunque sarebbe raggiungibile da s e quel nodo dovrebbe anch'esso stare in B.

Se l'arco nell'immagine e=(w,v) non fosse vuoto allora in G_f avrei un arco che dal nodo in A mi porta al nodo in B, dunque sarebbe raggiungibile da s e quel nodo dovrebbe anch'esso stare in B.

Dunque per forza di cose gli archi che da A vanno in B devono essere saturi e gli archi che da B vanno in A devono essere liberi. Dunque ho quei valori nelle sommatorie.

Teorema

Dato un qualsiasi flusso massimo f, si può calcolare un minimo taglio (A,B) in O(m) passi.

dim

Dato A insieme dei nodi raggiungibili da S in G_f

Tempo di esecuzione Ford&Fulkerson

[!NOTE]

Assumiamo che ogni arco abbia capacità c(e) intera da 1,...,C. Ogni flusso nell'arco f(e) e la residue capacità $c_f(e)$ sono interi.

Teorema

L'algortimo di Ford&Fulkerson termina dopo al più $val(f') \leq nC$ cammini aumentanti, dove f' è il massimo flusso.

dim

Ogni cammino aumentante incrementa il valore del flusso di almeno 1.

Corollario

Il tempo di esecuzione dell'algoritmo è $O(m\ val(f')) = O(m\ nC)$

dim

Si può usare BFS o DFS per trovare un cammino aumentante in O(m) passi.

[!NOTE]

Con capacità intere, il flusso massimo ha valore intero

[!IMPORTANT]

L'algoritmo Ford&Fulkerson è **pseudo-polinomiale**, se la capacità massima è C, l'algoritmo può eseguire $\geq C$ iterazioni.

Il numero di cammini aumentanti può essere esponenziale nella dimensione dell'input

Scegliere buoni cammini aumentanti

Scegliere una grande bottleneck capacità e il minor numero possibile di archi.

Capacità scalabile

- 1. Mantieni un parametro scalabile Δ
- 2. Dato $G_f(\Delta)$ parte della rete residua contenenti solo archi con peso $\geq \Delta$
- 3. Qualsiasi cammino aumentante in $G_f(\Delta)$ ha bottleneck capacità $\geq \Delta$


```
Capacity-Scaling(G)

Foreach edge e \in E: f(e) \leftarrow 0.

\Delta \leftarrow largest power of 2 \leq C.

While (\Delta \geq 1)

G_f(\Delta) \leftarrow \Delta-residual network of G with respect to flow f.

While (there exists an s \sim t path P in G_f(\Delta))

f \leftarrow \text{Augment}(f, c, P).

Update G_f(\Delta).

\Delta \leftarrow \Delta / 2.
```

Tempo di esecuzione

Lemma

Ci sono $1 + \lfloor log_2 C \rfloor$ fasi di ridimensionamento

Lemma

Ci sono $\leq 2m$ aumenti per fasi di ridimensionamento (in totale $O(m \log C)$)

Teorema

L'algoritmo richiede $O(m^2 \log C)$ passi.

Cammini brevi

Prendi il cammino che usa meno archi

```
SHORTEST-AUGMENTING-PATH(G)

FOREACH e \in E : f(e) \leftarrow 0.

G_f \leftarrow \text{residual network of } G \text{ with respect to flow } f.

WHILE (there exists an s \sim t path in G_f)

P \leftarrow \text{BREADTH-FIRST-SEARCH}(G_f).

f \leftarrow \text{AUGMENT}(f, c, P).

Update G_f.

RETURN f.
```

Tempo di esecuzione

Lemma

Il numero totale di aumenti è al più $m \ n$

Teorema

L'algoritmo richiede $O(m^2 \ n)$ passi.