Logical Devices

We are here

Building up from gates...

- Some common and more complex structures:
 - Multiplexers (aka mux)
 - Decoders
 - Seven-segment decoders
 - Adders (half and full)
 - Subtractors
 - Comparators

These are all combinational circuits

Combinational Circuits

- Combinational Circuits are any circuits where the outputs rely strictly on the inputs.
 - Everything we've done so far and what we'll do today is all combinational logic.
- Another category is sequential circuits that we will learn in the next few weeks.

More Karnaugh Maps

- Karnaugh maps can be of any size, and have any number of inputs.
 - i.e. the 4-input example here.

	<u>C</u> . <u>D</u>	<u>C</u> ∙D	C ·D	C · <u>D</u>
$\overline{A} \cdot \overline{B}$	$\rm m_{\rm o}$	m_1	m_3	m_2
Ā·B	m_4	m_5	m_7	m_6
A·B	m ₁₂	m ₁₃	m ₁₅	m ₁₄
Α·B	m ₈	m ₉	m ₁₁	m_{10}

Since adjacent minterms only differ by a single value, they can be grouped into a single term that omits that value.

 K-maps provide an illustration of a circuit's minterms (or maxterms), and a guide to how neighbouring terms may be combined.

$$Y = \overline{A} \cdot B \cdot C + \overline{A} \cdot \overline{B} \cdot \overline{C} + \overline{A} \cdot B \cdot \overline{C} + \overline{A} \cdot B \cdot C$$

 K-maps provide an illustration of a circuit's minterms (or maxterms), and a guide to how neighbouring terms may be combined.

$$Y = \overline{A} \cdot B \cdot C + \overline{A} \cdot \overline{B} \cdot \overline{C} + \overline{A} \cdot B \cdot \overline{C} + \overline{A} \cdot B \cdot C$$

$$= B \cdot C + \overline{A} \cdot \overline{C}$$

Reminder on Reducing Circuits

- Eliminating variables in K-Maps by drawing larger (>1 element) rectangular groupings results in a circuit with a lower cost function.
- The resulting expression is still in sum-ofproducts form.
 - But, if simplified, it is no longer in sum-of-minterms form.
- Note: It is not only the number of gates that matters when reducing circuits, but also the number of inputs to each gate.

K-Maps – Different Notations A 3-variables map example

Helpful Hint

More Examples w/ K-Maps

		F2 =	=	
A BC		01	11	10
0	0	0	0	0
1	1	1	1	1

More Examples w/ K-Maps

F3 = C'	F	3 =	C '
---------	---	-----	------------

ABC		01	11	10
0	1	0	0	1
1	1	0	0	1

		F2 = A				
A BC		01	11	10		
0	0	0	0	0		
1	1	1	1	1		

- Create a circuit with four inputs (A, B, C, D), and two outputs (X, Y):
 - The output X is high whenever two or more of the inputs are high.
 - The output Y is high when three or more of the inputs are high.

A	В	С	D	х	Y
0	0	0	0		
0	0	0	1		
0	0	1	0		
0	0	1	1		
0	1	0	0		
0	1	0	1		
0	1	1	0		
0	1	1	1		
1	0	0	0		
1	0	0	1		
1	0	1	0		
1	0	1	1		
1	1	0	0		
1	1	0	1		
1	1	1	0		
1	1	1	1		

- Create a circuit with four inputs (A, B, C, D), and two outputs (X, Y):
 - The output X is high whenever two or more of the inputs are high.
 - The output Y is high when three or more of the inputs are high.

A	В	С	D	х	Y
0	0	0	0	0	0
0	0	0	1	0	0
0	0	1	0	0	0
0	0	1	1	1	0
0	1	0	0	0	0
0	1	0	1	1	0
0	1	1	0	1	0
0	1	1	1	1	1
1	0	0	0	0	0
1	0	0	1	1	0
1	0	1	0	1	0
1	0	1	1	1	1
1	1	0	0	1	0
1	1	0	1	1	1
1	1	1	0	1	1
1	1	1	1	1	1

X:

X =

X:

	<u>C</u> . <u>D</u>	<u>C</u> ∙D	C ·D	C · <u>D</u>
$\overline{A} \cdot \overline{B}$	0	0	1	0
Ā·B	0	1	1	1
A·B	1	1		1
A·B	0	1	1	1

$$X = A \cdot B + C \cdot D + B \cdot D + B \cdot C + A \cdot D + A \cdot C$$

Y:

	<u>C</u> ∙ <u>D</u>	<u>C</u> ∙D	C ·D	C · <u>D</u>
$\overline{A} \cdot \overline{B}$	0	0	0	0
Ā·B	0	0	1	0
A·B	0	1	1	1
A ·B	0	0	1	0

 $Y = A \cdot B \cdot D + B \cdot C \cdot D + A \cdot B \cdot C + A \cdot C \cdot D$

Alternative for X: Maxterms

X:

	C+D	C+D	C+D	C +D
A+B	0	0	1	0
A+B	0	1	1	1
Ā+B	1	1	1	1
Ā+B	0	1	1	1

X =

Alternative for X: Maxterms

X:

	C+D	C+D	C+D	C +D
A+B	0	0	1	0
A+B	0	1	1	1
Ā+B	1	1	1	1
Ā+B	0	1	1	1

$$X = (A+C+D) \cdot (B+C+D) \cdot (A+B+C) \cdot (A+B+D)$$

- Note: There are cases where no combinations are possible. K-maps cannot help in these cases.
- Example: Multi-input XOR gates.
 - Output is 1 iff odd number of inputs is 1.

	B·C	B·C	B·C	B⋅C
Ā	0	1	0	1
A	1	0	1	0

$$Y = \overline{A} \cdot \overline{B} \cdot C + A \cdot \overline{B} \cdot \overline{C} + \overline{A} \cdot B \cdot \overline{C} + A \cdot B \cdot C$$

Logic devices

- Certain structures are common to many circuits, and have block elements of their own.
 - e.g., Multiplexers (short form: mux)
 - Behaviour: Output is X if S is 0, and Y if S is 1:
 - S is the select input; X and Y are the data inputs.

Multiplexer design

X	Y	S	M
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

	y ⋅ s	₹·s	y·s	y ⋅ S
x	0	0	1	0
x	1	0	1	1

$$M = Y \cdot S + X \cdot \overline{S}$$

Multiplexer uses

- Muxes are very useful whenever you need to select from multiple input values.
 - <u>Example:</u> surveillance video monitors, digital cable boxes, routers.

Demultiplexers

- Related to decoders: demultiplexers.
 - Does multiplexer operation, in reverse.
 - <u>Example:</u> modems receiving Internet data.

Mux + Demux

Source:

https://upload.wikimedia.org/wikipedia/commons/e/eo/Telephony_multiplexer_system.gif

Decoders

- Decoders are essentially translators.
 - Translate from the output of one circuit to the input of another.
 - Think of them as providing a mapping between 2 different encodings!
- Example: Binary signal splitter
 - Activates one of four output lines, based on a two-digit binary number.

7-segment decoder

0

- Common and useful decoder application.
 - Translate from a binary number to the seven segments of a digital display.
 - Each output segment has a particular logic that defines it.
 - <u>Example:</u> Decimal number, segment 0
 - Activate for values: 0, 2, 3, 5, 6, 7, 8, 9.
 - In binary: 0000, 0010, 0011, 0101, 0110, 0111, 1000, 1001.
 - First step: Build the truth table and K-map.

7-segment decoder

- These segments are "active-high", meaning that setting it high turns it on.
- Example: To display the digits 0-9
 - Assume input is a 4-digit binary number
 - Segment 0 (top segment) is high whenever the input values are 0000, 0010, 0011, 0101, 0110, 0111, 1000 or 1001, and low whenever input number is 0001 or 0100.
 - This create a truth table and map like the following....

7-segment decoder

X ₃	X ₂	X ₁	\mathbf{X}_{0}	HEX _o
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1

	$\overline{\mathbf{X}}_{1} \cdot \overline{\mathbf{X}}_{0}$	$\overline{\mathbf{x}}_{1} \cdot \mathbf{x}_{0}$	$\mathbf{x_1} \cdot \mathbf{x_0}$	$\mathbf{x}_{1} \cdot \overline{\mathbf{x}}_{0}$
$\overline{X}_3 \cdot \overline{X}_2$	1	0	1	1
$\overline{\mathbf{X}}_{3} \cdot \mathbf{X}_{2}$	0	1	1	1
$X_3 \cdot X_2$	x	x	x	x
$X_3 \cdot \overline{X}_2$	1	1	X	X

- $\begin{array}{ll} \bullet & \text{HEXO} = \overline{X}_3 \cdot X_2 \cdot X_0 + \\ & X_3 \cdot \overline{X}_2 \cdot \overline{X}_1 + \overline{X}_3 \cdot \overline{X}_2 \cdot \overline{X}_0 \\ & + \overline{X}_3 \cdot X_1 \end{array}$
- But wait...what about input values 1010 to 1111?

"Don't care" values

- Input values that will never happen or are not meaningful in a given design, and so their output values do not have to be defined.
 - Recorded as X' in truth-tables and K-Maps.
- In the K-maps we can think of these "don't care" values as either 0 or 1 depending on what helps us simplify our circuit.
 - Note: you do NOT replace X values with all 0s or 1s, you just include each X in groupings as needed.

"Don't care" values

New equation for HEX0:

	$\overline{\mathbf{X}}_{1} \cdot \overline{\mathbf{X}}_{0}$	$\overline{\mathbf{X}}_{1} \cdot \mathbf{X}_{0}$	$\mathbf{x_1} \cdot \mathbf{x_0}$	$\mathbf{x_1} \cdot \overline{\mathbf{x}_0}$
$\overline{X}_3 \cdot \overline{X}_2$	1	0	1	1
$\overline{X}_3 \cdot X_2$	0	1	1	1
$X_3 \cdot X_2$	X	X	х	X
$X_3 \cdot \overline{X}_2$	1	1	x	x

Same number of terms, but fewer inputs = smaller gates

$$HEXO = X_1 + X_2 \cdot X_0 + X_3 + \overline{X}_2 \cdot \overline{X}_0$$

Again for segment 1

X ₃	X ₂	X ₁	X ₀	HEX ₁
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1

	2	$\overline{\mathbf{x}}_1 \cdot \overline{\mathbf{x}}_0$	0	$\overline{\mathbf{X}}_{1} \cdot \mathbf{X}_{0}$	2	$\mathbf{x}_1 \cdot \mathbf{x}_0$)	$\mathbf{x}_{1} \cdot \overline{\mathbf{x}}_{0}$
$\overline{\mathbf{X}}_{3} \cdot \overline{\mathbf{X}}_{2}$		1		1		1		1
$\overline{\mathbf{X}}_{3} \cdot \mathbf{X}_{2}$		1		0		1		0
$X_3 \cdot X_2$		х		X		x		X
$X_3 \cdot \overline{X}_2$		1		1		х		X

$$\mathbf{HEX1} = \overline{\mathbf{X}}_1 \cdot \overline{\mathbf{X}}_0 + \mathbf{X}_1 \cdot \mathbf{X}_0 + \mathbf{X}_2$$

Again for segment 2

X ₃	X ₂	X ₁	X ₀	HEX ₂
0	0	0	0	1
0	0	0	1	1
0	0	1	0	0
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1

	$\overline{\mathbf{X}}_{1} \cdot \overline{\mathbf{X}}_{0}$	$\overline{\mathbf{X}}_{1} \cdot \mathbf{X}_{0}$	$\mathbf{x_1} \cdot \mathbf{x_0}$	$\mathbf{x}_{1} \cdot \overline{\mathbf{x}}_{0}$
$\overline{X}_3 \cdot \overline{X}_2$	1	1	1	0
$\overline{\mathbf{X}}_{3} \cdot \mathbf{X}_{2}$	1	1	1	1
$X_3 \cdot X_2$	X	х	х	x
$X_3 \cdot \overline{X}_2$	1	1	x	x

$$HEX2 = X_2 + \overline{X}_1 + X_0$$

The final 7-seg decoder

- Decoders all look the same, except for the inputs and outputs.
- Unlike other devices, the implementation differs from decoder to decoder.

Another "don't care" example

(not related to decoders)

- Climate control fan:
 - The fan should turn on (F) if the temperature is hot (H) or if the temperature is cold (C), depending on whether the unit is set to A/C or heating (A).

Н	С	A	F
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

	Ħ⋅C	Ħ·C	H·C	H ⋅C
Ā	0	1	X	0
A	0	0	X	1

$$F = A \cdot H + \overline{A} \cdot C$$

Adders

- Also known as binary adders.
 - Small circuit devices that add two digits together.
 - Combined together to create iterative combinational circuits.
- Types of adders:
 - Half adders (HA)
 - Full adders (FA)
 - Ripple Carry Adder

Review of Binary Math

Each digit of a decimal number represents a power of 10:

$$258 = 2 \times 10^2 + 5 \times 10^1 + 8 \times 10^0$$

Each digit of a binary number represents a power of 2:

$$01101_2 = 0x2^4 + 1x2^3 + 1x2^2 + 0x2^1 + 1x2^0$$

= 13_{10}

Decimal to Binary Conversion

- Let's say I give you number 11 in decimal. How would you represent this in binary?
 - Keep dividing by 2 and write down the 11 in decimal is remainders!

1011 in binary!

Use the quotient from previous row

11

Number	Quotient =	Remainder =	
	Number / 2	Number % 2	

Decimal to Binary Conversion

- Let's say I give you number 11 in decimal. How would you represent this in binary?
 - Keep dividing by 2 and write down the 11 in decimal is remainders!

1011 in binary!

Use the quotient from previous row.

Number	Quotient = Number / 2	Remainder = Number % 2			
11	5		1		Least Significant Bit
5	2		1		
2	1		0		
1	0		1	Ļ	Most Significant Bit

Hexadecimal Numbers

- Base 16 numbers, where valid values are:
 - 0 to 9 as in decimal, and
 - 10 is A
 - □ 11 is B

 - 15 is F

Hex numbers are typically expressed as 0x

- Writing a binary number in hex(-adecimal):
 - 0000010111111010 = 0000 0101 1111 1010 = 0x05fa

Unsigned binary addition

```
27 + 53
    27 = 00011011
    53 = 00110101
       1 1 1 1 1 1
      00011011
    +00110101
      01010000
8010
     01010000
```

Unsigned binary addition

00010100

Half Adders

A 2-input, 1-bit width binary adder that performs the following computations:

- A half adder adds two bits to produce a two-bit sum.
- The sum is expressed as a sum bit S and a carry bit C.

Half Adder Implementation

 Equations and circuits for half adder units are easy to define (even without Karnaugh maps)

Half Adder Implementation

 Equations and circuits for half adder units are easy to define (even without Karnaugh maps)

$$C = X \cdot Y \qquad S = X \cdot \overline{Y} + \overline{X} \cdot Y \\ = X \oplus Y$$

Full Adders

Similar to half-adders, but with another input Z, which represents a carry-in bit.

- C and Z are sometimes labeled as C_{out} and C_{in}.
- When Z is 0, the unit behaves exactly like a half adder.
- When Z is 1:

Full Adder Design

X	Y	Z	С	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

С	$\overline{\mathbf{Y}} \cdot \overline{\mathbf{Z}}$	$\overline{\mathbf{Y}}\cdot\mathbf{Z}$	Y · Z	$\mathbf{Y} \cdot \overline{\mathbf{Z}}$
x	0	0	1	0
X	0	1	1	1

S	$\overline{\mathbf{Y}}\cdot\overline{\mathbf{Z}}$	$\overline{\mathbf{Y}}\cdot\mathbf{Z}$	Y ·Z	$\mathbf{Y} \cdot \overline{\mathbf{Z}}$
$\overline{\mathbf{x}}$	0	1	0	1
x	1	0	1	0

$$C = X \cdot Y + X \cdot Z + Y \cdot Z$$

$$S = X \oplus Y \oplus Z$$

Full Adder Design

■ The C term can also be rewritten as:

$$C = X \cdot Y + (X \oplus Y) \cdot Z$$

- Two terms come from this:
 - X · Y = carry generate (G).
 - $X \oplus Y = carry propagate (P)$.
- Results in this circuit →

Ripple-Carry Binary Adder

 Full adder units are chained together in order to perform operations on signal vectors.

The role of C_{in}

- Why can't we just have a half-adder for the smallest (right-most) bit?
- We could, if we were only interested in addition. But the last bit allows us to do subtraction as well!
 - Time for a little fun with subtraction!

What is 11111111?

- Assume you have an 8-bit binary number.
 - How do you represent negative numbers?
 - For instance, the number -1?
- Add 1 to 111111111 and see what happens.

```
11111111

+00000001

100000000

00000000
```

■ Therefore, 111111111 must be -1!

Subtractors

- Subtractors are an extension of adders.
 - Basically, perform addition on a negative number.
- Before we can do subtraction, need to understand negative binary numbers.
- Two types of numbers:
 - Unsigned = all numbers are positive.
 - Still use signed representation to perform subtraction
 - Signed = all bits are used to store a 2's complement negative number.
 - More common, and what we use for this course.

Two's complement

- First step: getting 1's complement:
 - Given number X with n bits, take $(2^{n}-1) X$
 - Negates each individual bit (bitwise NOT).

```
01001101 → 10110010
11111111 → 00000000
```

2's complement = (1's complement + 1)

```
01001101 → 10110011
11111111 → 00000001
```

Know this!

 Note: Adding a 2's complement number to the original number produces a result of zero.

Signed subtraction

- Negative numbers are generally stored in 2's complement notation.
 - Reminder: 1's complement → bits are the bitwise NOT of the equivalent positive value.
 - □ 2's complement → one more than 1's complement value; results in zero when added to equivalent positive value.
 - Subtraction can then be performed by using the binary adder circuit with negative numbers.

Signed 3-Digit Numbers

Decimal	Unsigned	Signed
7	111	
6	110	
5	101	
4	100	
3	011	011
2	010	010
1	001	001
0	000	000
-1		111
-2		110
- 3		101
- 4		100

Rules about signed numbers

- When thinking of signed binary numbers, there are a few useful rules to remember:
 - The largest positive binary number is a zero followed by all ones.
 - The binary value for -1 has ones in all the digits.
 - The most negative binary number is a one followed by all zeroes.
- There are 2ⁿ possible values that can be stored in an n-digit binary number.
 - ^{1} 2^{$^{n-1}$} are negative, 2^{$^{n-1}$}-1 are positive, and one is zero.
 - For example, given an 8-bit binary number:
 - There are 256 possible values

-1 to -128

- One of those values is zero
- 128 are negative values (11111111 to 1000000)
- 127 are positive values (00000001 to 011111111)

Practicing 2's complement

Assume 4-bit signed numbers, write the following decimal numbers in binary:

- What is max positive number? => 7 (or 2⁴⁻¹ -1)
- What is min negative number? => -8 (or -24-1)

At the core of subtraction

- Subtraction of a number is simply the addition of its negative value.
 - Where the negative value is found using the 2's complement process.

$$-7-3 = 7 + (-3)$$

$$-3-2 = -3 + (-2)$$

Signed Subtraction example

 $1011 = -5_{10}$

What about bigger numbers?

$$11100110 = -26_{10}$$

Subtraction circuit

- 4-bit subtractor: X Y
 - X plus 2's complement of Y
 - X plus 1's complement of Y plus 1

Feed 1 as carry-in in the least significant adder.

Addition/Subtraction circuit

- The full adder circuit can be expanded to incorporate the subtraction operation.
 - Remember: 2's complement = 1's complement + 1
 - We need Sub to provide the value for C_{in}

Food for Thought

- What happens if we add these two positive signed binary numbers 0110 + 0011 (i.e., 6 + 3)?
 - The result is 1001.
 - But that is a negative number (-7)!
- What happens if we add the two negative numbers 1000 + 1111 (i.e., -8 + (-1))?
 - The result is 0111 with a carry-out. \otimes
- We need to know when the result might be wrong.
 - This is usually indicated in hardware by the Overflow flag!
 - More about this when we'll talk about processors.

Sign & Magnitude Representation

- Instead of signed numbers, some (older) processors use sign and magnitude representation.
 - The sign part: one bit is designated as the sign (+/-).
 - 0 for positive numbers
 - 1 for negative numbers
 - The magnitude part: remaining bits store the positive (i.e., unsigned) version of the number.
- Example: 4-bit binary numbers:
 - \circ 0110 is 6 while 1110 is -6 (most significant bit is the sign)
 - What about 0000 and 1000? => zero (two ways)
- Sign-magnitude computation is more complicated.
 - 2's complement is what today's systems use!

Comparators

Comparators

- A circuit that takes in two input vectors, and determines if the first is greater than, less than or equal to the second.
- How does one make that in a circuit?

- A B

 A=B

 Comparator
 A>B

 A>B

 A<B
- Consider two binary numbers
 A and B, where A and B are one bit long.
- The circuits for this would be:

$$A \cdot B + \overline{A} \cdot \overline{B}$$

A>B:

A<B:</p>

A	В
0	0
0	1
1	0
1	1

- What if A and B are two bits long?
- The terms for this circuit for have to expand to reflect the second signal.
- For example:

• A==B:
$$(A_1 \cdot B_1 + \overline{A}_1 \cdot \overline{B}_1) \cdot (A_0 \cdot B_0 + \overline{A}_0 \cdot \overline{B}_0)$$

Make sure that the values of bit 1 are the same of bit 0 are the same

What about checking if A is greater or less than B?

□ A>B:

$$\boxed{A_1 \cdot \overline{B}_1 + \left((A_1 \cdot B_1 + \overline{A}_1 \cdot \overline{B}_1) \cdot \left((A_0 \cdot \overline{B}_0) \right) + \left((A_0 \cdot \overline{B}$$

Check if first bit satisfies condition

If not, check that the first bits are equal...

...and then do the 1-bit comparison

A<B:</p>

$$\overline{\mathbf{A}}_1 \cdot \mathbf{B}_1 + \left((\mathbf{A}_1 \cdot \mathbf{B}_1 + \overline{\mathbf{A}}_1 \cdot \overline{\mathbf{B}}_1) \right) \cdot \left(\overline{\mathbf{A}}_0 \cdot \mathbf{B}_0 \right)$$

- The final circuit equations for twoinput comparators are shown below.
 - Note the sections they have in common!

General Comparators

- The general circuit for comparators requires you to define equations for each case.
- Case #1: Equality
 - If inputs A and B are equal, then all bits must be the same.
 - Define X_i for any digit i:
 - (equality for digit i)

$$X_i = A_i \cdot B_i + \overline{A}_i \cdot \overline{B}_i$$

Equality between A and B is defined as:

$$A==B$$
 : $X_0 \cdot X_1 \cdot ... \cdot X_n$

Comparators

- Case #2: A > B
 - The first non-matching bits occur at bit i, where $A_i=1$ and $B_i=0$. All higher bits match.
 - Using the definition for X_i from before:

$$A>B = A_n \cdot \overline{B}_n + X_n \cdot A_{n-1} \cdot \overline{B}_{n-1} + ... + A_0 \cdot \overline{B}_0 \cdot \prod_{k=1}^n X_k$$

- Case #3: A < B
 - The first non-matching bits occur at bit i, where $A_i=0$ and $B_i=1$. Again, all higher bits match.

$$A < B = \overline{A}_n \cdot B_n + X_n \cdot \overline{A}_{n-1} \cdot B_{n-1} + \dots + \overline{A}_0 \cdot B_0 \cdot \prod_{k=1}^n X_k$$

Comparator truth table

 Given two input vectors of size n=2, output of circuit is shown at right.

Inputs					Outputs	
$A\hspace{-0.2cm}A_1$	A_0	B_1	B_0	A < B	A = B	A > B
0	0	0	0	0	1	0
0	0	0	1	1	0	0
0	0	1	0	1	0	0
0	0	1	1	1	0	0
0	1	0	0	0	0	1
0	1	0	1	0	1	0
0	1	1	0	1	0	0
0	1	1	1	1	0	0
1	0	0	0	0	0	1
1	0	0	1	0	0	1
1	0	1	0	0	1	0
1	0	1	1	1	0	0
1	1	0	0	0	0	1
1	1	0	1	0	0	1
1	1	1	0	0	0	1
1	1	1	1	0	1	0

Comparator example (cont'd)

A<B:

	$\overline{\mathtt{B}}_{0}\cdot\overline{\mathtt{B}}_{1}$	$B_0 \cdot \overline{B}_1$	$B_0 \cdot B_1$	$\overline{B}_0 \cdot B_1$
$\overline{\mathbf{A}}_0 \cdot \overline{\mathbf{A}}_1$	0	1	1	1
$A_0 \cdot \overline{A}_1$	0	0	1	1
$\mathbf{A}_0 \cdot \mathbf{A}_1$	0	0	0	0
$\overline{\mathbf{A}}_0 \cdot \mathbf{A}_1$	0	0	1	0

$$LT = B_1 \cdot \overline{A}_1 + B_0 \cdot B_1 \cdot \overline{A}_0 + B_0 \cdot \overline{A}_0 \cdot \overline{A}_1$$

Comparator example (cont'd)

$$A=B$$
:

	$\overline{B}_0 \cdot \overline{B}_1$	$B_0 \cdot \overline{B}_1$	B ₀ ·B ₁	$\overline{B}_0 \cdot B_1$
$\overline{\mathbf{A}}_0 \cdot \overline{\mathbf{A}}_1$	1	0	0	0
$A_0 \cdot \overline{A}_1$	0	1	0	0
$\mathbf{A}_0 \cdot \mathbf{A}_1$	0	0	1	0
$\overline{\mathbf{A}}_0 \cdot \mathbf{A}_1$	0	0	0	1

Comparator example (cont'd)

A>B:

	$\overline{\mathtt{B}}_{0}\cdot\overline{\mathtt{B}}_{1}$	$B_0 \cdot \overline{B}_1$	$B_0 \cdot B_1$	$\overline{\mathtt{B}}_{0}\cdot\mathtt{B}_{1}$
$\overline{\mathbf{A}}_0 \cdot \overline{\mathbf{A}}_1$	0	0	0	0
$\mathbf{A}_0 \cdot \overline{\mathbf{A}}_1$	1	0	0	0
$\mathbf{A}_0 \cdot \mathbf{A}_1$	1	1	0	1
$\overline{\mathbf{A}}_0 \cdot \mathbf{A}_1$	1	1	0	0

$$GT = \overline{B}_1 \cdot A_1 + \overline{B}_0 \cdot \overline{B}_1 \cdot A_0 + \overline{B}_0 \cdot A_0 \cdot A_1$$

Comparing larger numbers

- As numbers get larger, the comparator circuit gets more complex.
- At a certain level, it can be easier sometimes to just process the result of a subtraction operation instead.
 - Easier, less circuitry, just not faster.

