TEORIA DEI SEGNALI

Teoria della probabilità e variabili aleatorie

Testi di problemi concepiti e risolti dal Prof. Giorgio Picchi (Lotto 5: V.A. e loro Valori Attesi)

Quesito A2 18/2/11

Un componente in garanzia viene sostituito gratuitamente se si guasta entro un anno dall'acquisto. Se il tempo di guasto del componente è una variabile aleatoria esponenziale negativa con valore medio 5 anni (ovvero di parametro $\lambda = 1/5$), quant'è la probabilità che su un lotto di 20 componenti ne debbano essere sostituiti in un anno 2 o più?

Quesito A20

La vita di un certo tipo di lampade è rappresentata da una v.a. X con densità di probabilità $f_X(x) = \lambda e^{-\lambda x}$ u(x). Due di tali lampade vengono accese contemporaneamente in una stanza. Si calcoli la probabilità che: a) all'istante generico t_0 le lampade siano entrambe accese; b) all'istante t_0 siano entrambe spente; c) le lampade siano entrambe accese osservando che all'istante t_0 nella stanza c'è luce.

Quesito A6 17/6/11

Il sig. Rossi ha l'abitudine di entrare ogni giorno del bar B1 o nel bar B2 (scelto a caso) in un istante a caso fra le 10 e le 11 e di intrattenervisi esattamente 10 min per prendere un caffè. Un giorno il sig. Bianchi entra nel bar B1 alle 10:30 e osserva che il sig. Rossi non c'è.

- E' più probabile che il sig. Rossi sia già uscito o che non sia mai entrato? (Si assuma indipendenza fra gli eventi {Scelta del bar} e {Istante di entrata del sig. Rossi}).

Quesito A18 2/12/10

La durata di una conversazione telefonica è una v.a. con funzione di distribuzione $F_X(x) = (1 - e^{-\lambda x}) u(x)$. Quanto vale la probabilità che una telefonata in atto all'istante t_0 termini entro i successivi t secondi?

Quesito A27 15/5/00

Sulle facce di un disco di colore rosso sono impressi i numeri 1 e 3. Sulle facce di un altro disco di colore bianco (ma per il resto identico al primo) sono impressi i numeri 3 e 5. Si sceglie un disco a caso e lo si lancia come una moneta. Sia X la v.a. {Numero che si legge sul disco lanciato}. Si consideri l'evento $A = \{Si \ evento \ ev$

Si trovino la funzione di distribuzione e la densità di probabilità della v.a. X e le stesse condizionate dall'evento A (o dato l'evento A), ossia $F_X(x \mid A)$ e $f_X(x \mid A)$.

Ouesito A28 22/5/00

Una variabile casuale X ha densità di probabilità $f_X(x)$ come in Figura A28. Si dica quanto vale a. Si trovi la funzione di distribuzione $F_X(x)$ tracciandone un grafico accurato. Si dica quanto vale $F_X(12)$.

Quesito A37 13/02/12

Il livello massimo che un certo fiume raggiunge in un anno (misurato in metri oltre il livello normale del fiume) è una $v.a.\ X$ con densità di probabilità:

$$f_X(x) = a (x-10)^4 \prod \left(\frac{x-5}{10}\right)$$

Esiste un argine alto $h_1 = 2$ m (rispetto al livello normale del fiume) quindi se X supera tale livello si verifica un'alluvione.

- Si calcoli la probabilità che si abbiano una o più alluvioni in 6 anni.

{Si assuma che si verifichi una sola piena all'anno e che il livello massimo raggiunto sia indipendente da un anno all'altro}.

Dato un gruppo di n = 100 persone formato da italiani e stranieri si scelgono a caso due persone. Sapendo che la probabilità che una sola di esse sia straniera è $p \approx 0,18$ si individui una possibile composizione del gruppo (numero di italiani $n_{\rm I}$ e numero di stranieri $n_{\rm S}$).

Quesito A77 rid 16/11/13

Una commissione di *n* membri è convocata per le ore 10:00.

I partecipanti arrivano indipendentemente con un ritardo che è una v.a R avente densità $f_R(x)$ uniforme fra i valori a = -5 e b = 15 minuti, uguale per tutti (Nota: ritardo negativo = anticipo). La riunione ha inizio non appena arriva l'ultimo membro.

a) Si trovi la funzione di distribuzione $F_X(x)$ e la densità di probabilità $f_X(x)$ della v.a.

 $X = \{$ Ritardo di inizio della riunione (rispetto alle ore 10:00) $\}$

b) Si traccino i grafici di $F_X(x)$ e di $f_X(x)$ nel caso n=2.

Quesito A26 22/5/00

Una fabbrica di elettrodomestici monta sui suoi frigoriferi termostati di tipo A o di tipo B indifferentemente.

Un termostato mantiene nel frigorifero una temperatura a regime il cui valore è rappresentato da una variabile casuale uniformemente distribuita fra $(T - \Delta)$ e $(T + \Delta)$, essendo T la temperatura impostata dall'utente.

Nel caso in esame, per i termostati di tipo A si ha Δ = 1 °C e per i termostati di tipo B si ha Δ = 2 °C.

Si sceglie a caso un frigorifero e si imposta la temperatura T = 2 °C.

Si trovi in tal caso la funzione di distribuzione e la densità di probabilità della variabile casuale $X = \{\text{Temperatura a regime nel frigorifero}\}.$

Osservato che in tale frigorifero la a temperatura a regime è di 2,5 °C, si calcoli la probabilità che il termostato sia di tipo $\bf A$

Quesito A34 16/1/12

Un satellite artificiale deve svolgere una missione di osservazione della Terra di durata T=6 mesi. Se l'apparecchiatura di osservazione ha una vita rappresentata da una v.a. X con densità di probabilità

 $f_X(x) = \lambda e^{-\lambda x}$ u(x), quale deve essere il valore di λ (espresso con l'appropriata unità di misura) necessario affinché la probabilità che l'apparecchiatura funzioni almeno per tutta la durata della missione sia P = 0.9? Qual è il corrispondente valor medio della vita dell'apparecchiatura, $E\{X\}$? La missione viene effettuata con un'apparecchiatura avente proprio il valore di λ trovato sopra, ma purtroppo al termine della missione l'apparecchiatura risulta non funzionante: qual è la probabilità che abbia funzionato per almeno $T_1 = 5$ mesi ?

Quesito A63 13/02/13

- a) Sia X una generica v.a con funzione di distribuzione F_X (x). Fissato un generico numero reale t si trovi l'espressione analitica della funzione di distribuzione condizionata F_X ($x \mid X > t$) esprimendola utilizzando la funzione F_X ($x \mid X > t$).
- b) *Successivamente* si applichi quanto trovato al caso in cui la v.a. X sia uniformemente distribuita nell'intervallo $0 \le x \le 4$, e sia: t = 3. Si traccino anche i grafici di $F_X(x)$ e di $F_X(x \mid X \ge t)$.

Quesito A54 23/11/12

Un certo giorno voi entrate nella vostra banca all'istante t_2 e trovate che allo sportello c'è già un cliente entrato ad un istante incognito $t_1 < t_2$. Sapendo che la v.a. $X = \{\text{Tempo di permanenza allo sportello di un generico cliente}\}$ è di tipo esponenziale negativo con valor medio $\eta_X = 5$ minuti, qual è la probabilità che dobbiate attendere più di 5 minuti prima che sia il vostro turno? $\{\text{Si troverà che tale probabilità non dipende dai valori di } t_1 \in t_2\}$.

Quesito A30 11/11/11

Un certo tipo di sfere ha diametro che è una variabile aleatoria *D* uniforme fra 1 e 4 cm. Avete bisogno di tre sfere di diametro compreso fra 2 e 3 cm.

- Qual è la probabilità che dobbiate misurare almeno 10 sfere per trovare le tre desiderate?
- Definita la v.a. $N = \{\text{Numero di sfere da misurare per ottenere le tre desiderate}\}$, si trovi la distribuzione di probabilità della variabile N, ossia la probabilità $P\{N = n\}$ per ogni n, e se ne tracci un grafico accurato per $n \le 5$. (Alternativamente si tracci un grafico della funzione di distribuzione (CDF) o della densità di probabilità (PDF) della variabile N vista come continua).

Quesito A104 16/02/15

- a) Si definisca la varianza σ^2_X di una variabile aleatoria X.
- b) Si scriva la relazione che esiste fra la varianza, il valore quadratico medio e il valore medio di una variabile aleatoria e si dimostri tale relazione.
- c) Si trovino il valor medio e la varianza di una variabile aleatoria esponenziale negativa con densità di probabilità $f_X(x) = \lambda e^{-\lambda x}$ u(x), con $\lambda > 0$.

Quesito A112bis

Una variabile casuale X ha densità di probabilità $f_X(x)$ come in figura.

- a) Si trovi il valore di a.
- b) Si trovi la funzione di distribuzione $F_X(x)$ e se ne tracci un grafico.
- c) Si trovi il valor medio di *X*.