

Concurso Nacional

Virtual, septiembre 21-24, 2023

Examen Individual

Nivel I

Estado:	
Nombre:	

Instrucciones:

- $\bullet\,$ El examen consta de 15 problemas con un valor de 5 puntos cada uno.
- En estos problemas sólo se toma en cuenta la respuesta final, que debe ser claramente escrita en el espacio correspondiente a cada problema, no se darán puntos parciales y no hay penalizaciones por respuestas incorrectas.
- Para las preguntas con varias respuestas, se darán los 5 puntos sólo si todas las respuestas correctas están escritas y sólo ellas.
- En caso de que las respuestas a estos problemas no sean enteras, estas deben ser aproximadas a dos decimales tomando en cuenta los siguientes valores:

$$\pi = 3.14, \quad \sqrt{2} = 1.41, \quad \sqrt{3} = 1.73, \quad \sqrt{5} = 2.23.$$

- Las figuras mostradas, podrían no estar a escala.
- No está permitido el uso de calculadoras, transportadores y aparatos electrónicos.
- La duración del examen es 1 hora y media.

Examen Individual

Hoja de Respuestas

Nivel I

Nombre:	
1.	9.
2.	10.
∠.	10.
3.	11.
4.	12.
5.	13.
6.	14.
7.	15.
8.	

Problema 1. ¿Cuál es la mínima cantidad de cuadrados adicionales que deben sombrearse para que la figura tenga un eje de simetría?

R:

Problema 2. La multiplicación de los dígitos de un número natural es igual a 20. Si la suma de sus dígitos es 13, ¿cuál es el menor valor posible de dicho número?

R:

Problema 3. La siguiente figura está compuesta por 5 cuadrados iguales y sus diagonales. Si la región sombreada tiene de área 21 cm². ¿Cuántos cm² tiene de área el área blanca de la figura?

R:

Problema 4. Un científico loco ha creado un rayo encogedor. Cada vez que dispara hacia un objeto, las dimensiones de éste disminuyen a un 25% de las que se tenían antes del último disparo. El científico dispara el rayo 3 veces a un gran edificio, reduciendo su altura a 1 m. ¿Cuál era la altura original del edificio en metros?

R:

Problema 5. La recta AB parte a cuatro hexágonos regulares a la mitad. Si sabemos que la línea AB mide 36 cm, ¿cuántos centímetros mide la línea punteada?

Problema 6. ¿Cuántos números de tres cifras cumplen que al multiplicar cualesquiera dos cifras consecutivas el producto es par? (Por ejemplo, 827 cumple la propiedad porque $8 \times 2 = 16$ es par y también lo es $2 \times 7 = 14$).

R:

Problema 7. La figura muestra 3 rectángulos iguales (A, B, C) con dos rectángulos iguales dentro del rectángulo B. Dado que $\frac{2}{11}$ del rectángulo A está sombreado por el rectángulo negro, y que el área total de la figura es de $145 \, \mathrm{cm}^2$, ¿cuántos cm^2 mide el área de la región negra?

R:

Problema 8. La suma de 7 enteros positivos consecutivos es 2023. ¿Cuál es el número mayor de dichos enteros?

R:

Problema 9. En el trapecio isósceles ABCD (con AB||CD) la base mayor AB mide 50 cm y la base menor CD mide 30 cm. Además los ángulos $\angle BCD$ y $\angle CDA$ miden 60°. ¿cuántos centímetros mide el perímetro del trapecio?

R:

Problema 10. ¿De cuántas maneras se pueden sentar alrededor de una mesa redonda 2 hombres y 3 mujeres, si los hombres no pueden estar juntos? (Nota: El mismo orden de personas pero rotado cuenta como el mismo acomodo).

R:

Problema 11. Una tira de papel rectangular ABCD se ha dividido en 6 triángulos, como se ve en la figura. Los cinco primeros triángulos tienen áreas $1\,\mathrm{cm}^2$, $2\,\mathrm{cm}^2$, $3\,\mathrm{cm}^2$, $4\,\mathrm{cm}^2$ y $5\,\mathrm{cm}^2$ como se indica en la figura. ¿Cuántos cm² tiene de área el triángulo sombreado EBC?

R:

Problema 12. El número positivo $A222\cdots 222B$ tiene 2004 dígitos (A y B son dígitos y todos los dígitos entre A y B son 2). Este número es divisible por 72. ¿Cuánto es el producto $A \times B$?

R:

Problema 13. Mi carro rinde en la ciudad 8 km/l, es decir, se gasta un litro en recorrer 8 kilómetros. En carretera, rinde 13 km/l. Si en un viaje, recorrí 115 kilómetros y me gasté 10 litros, ¿cuántos kilómetros recorrí en carretera?

R:

Problema 14. En la figura se muestra un cuadrado ABCD de lado $24\,\mathrm{cm}$; M es el punto medio de AB, P es el punto de intersección de AC con MD y Q es la intersección con BC de la paralela a DC desde P. ¿Cuánto vale el área del triángulo PQC en cm^2 ?

R:

Problema 15. La maquinita de chicles de burbulandia acepta monedas de 1 y de 7 pesos. Un chicle cuesta 3 pesos. Hay 2023 personas que quieren comprar los 2023 chicles que hay en la maquinita. La maquinita tiene 2023 monedas de 1 peso para dar cambio. ¿Cuántas personas como mínimo deben pagar con cambio exacto para que todas puedan comprar su chicle?

R:
