

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5: C07D 311/22, 405/12, 413/12 C07D 417/12, A61K 31/35 A61K 31/535

(11) International Publication Number:

WO 91/19707

(43) International Publication Date:

26 December 1991 (26.12.91)

(21) International Application Number:

PCT/US91/04140

(22) International Filing Date:

18 June 1991 (18.06.91)

(74) Agent: JAMESON, William, G.; Corporate Patents & Trademarks, The Upjohn Company, Kalamazoo, MI 49001 (US).

(30) Priority data:

541,126

20 June 1990 (20.06.90)

US

(60) Parent Application or Grant (63) Related by Continuation

Filed on

541,126 (CIP) 20 June 1990 (20.06.90)

(71) Applicant (for all designated States except US): THE UP-JOHN COMPANY [US/US]; 301 Henrietta Street, Kal-amazoo, MI 49001 (US).

(72) Inventors; and

(75) Inventors; and (75) Inventors; and (75) Inventors/Applicants (for US only): GAMMILL, Ronald, B. [US/US]; 6704 Pleasantview Drive, Kalamazoo, MI 49002 (US). JUDGE, Thomas, M. [US/US]; 411 Wallace, Kalamazoo, MI 49001 (US). MORRIS, Joel [US/US]; 3001 Applelane, Kalamazoo, MI 49008 (US).

(81) Designated States: AT (European patent), AU, BB, BE (European patent), BF (OAPI patent), BG, BJ (OAPI patent), BR, CA, CF (OAPI patent), CG (OAPI patent), CH (European patent), CI (OAPI patent), CM (OAPI patent), DE (European patent), DK (European patent), ES (European patent), FI, FR (European patent), GA (OAPI patent), GB (European patent), GN (OAPI patent), GR (European patent), HU, IT (European patent), JP, KP, KR, LK, LU (European patent), MC, MG, ML (OAPI patent), MR (OAPI patent), MW, NL (European patent), NO, PL, RO, SD, SE (European patent), SN (OAPI patent), SU, TD (OAPI patent), TG (OAPI patent), US.

Published Without international search report and to be republished upon receipt of that report.

(54) Title: ANTIATHEROSCLEROTIC AND ANTITHROMBOTIC 1-BENZOPYRAN-4-ONES AND 2-AMINO-1,3-BEN-**ZOXAZINE-4-ONES**

$$R_6$$
 R_7
 R_8
 R_8
 R_8
 R_8
 R_8
 R_8
 R_8
 R_8
 R_8

(57) Abstract

This invention relates to compounds of formula (I) which are useful in association with a pharmaceutical carrier as antiatherosclerotic agents. In addition, various compounds of formula (1) are useful inhibitors of cell proliferation.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	ES	Spain	MG	Madagascar .
AU	Australia	FI	Finland	ML.	Mali
BB	Barbados	FR	France	MN	Mongolia
BE	Belgium	GA	Gabon	MR	Mauritania
BF	Burkina Faso	GB	United Kingdom	MW	Malawi
BG.	Bulgaria	GN	Guinea		
BJ	Benin	GR	Greece	NL.	Netherlands
BR	Brazil	HU		NO	Norway
CA	Canada	IT	Hungary	PL	Poland
CF	Central African Republic		Italy	RO	Romania
		JP	Japan	SD	Sudan
CC	Congo	KP	Democratic People's Republic	SE	Sweden
CH	Switzerland		of Korea	SN	Senegal ·
ÇI	Côte d'Ivoire	KR	Republic of Korea	SU	Soviet Union
CM	Cameroon	LI	Licchtenstein	TD	Chad
CS	Czechoslovakia	LK	Sri Lanka	TC	Togo
DE	Germany	LU	Luxembourg	us	United States of America
DK	Denmark	MC	Monaco	UJ	Cinico Suas Ol America

ANTIATHEROSCLEROTIC AND ANTITHROMBOTIC 1-BENZOPYRAN-4-ONES AND 2-AMINO-1,3-BENZOXAZINE-4-ONES BACKGROUND OF THE INVENTION

The present specification provides methods for use of 5 pharmacologically active substances. Further the present specification provides novel compositions of matter and novel methods of their preparation.

Atherosclerosis in mammals is a disease characterized by the deposition of atherosclerotic plaque on arterial walls. 10 While atherosclerosis exhibits many varied forms consequences, typical consequences of atherosclerotic diseases include angina pectoris, myocardial infarction, stroke and transient cerebral ischemic attacks. Other forms of atherosclerotic diseases include certain peripheral vascular 15 diseases and other ischemias (e.g., bowel and renal).

Medical science now recognizes that certain forms of atherosclerosis may be preventable or reversible. capable of preventing or reversing atherosclerosis are characterized as exhibiting antiatherosclerotic activity. 20 Since serum lipids have a recognized association with atherogenesis, an important class of antiatherosclerotic agents are those with serum lipid-modifying effects. Serum lipids implicated in atherogenesis include serum cholesterol, serum triglycerides, and serum lipoproteins.

25

With respect to serum lipoproteins, at least three different classes of these substances have been characterized; high density lipoproteins (HDL's), low density lipoproteins (LDL's), and very low density lipoproteins (VLDL's). HDL's are often referred to as alphalipoproteins, while LDL's and VLDL's 30 are referred to as betalipoproteins. The enhancement of HDL levels (hyperalphalipoproteinemic activity) is postulated to have direct antiatherosclerotic effects. See Eaton, R.P., J. Chron. Dis 31:131-135 (1978). In contrast, agents which reduce serum LDL's and serum VLDL's (hypobetalipoproteinemic agents) 35 are also associated with antiatherogenic effects. See Haust, M.D., "Reaction Patterns of Intimal Mesenchyme to Injury and Repair in Atherosclerosis", Adv. Exp. Med. Biol. 43:35-57 (1974), which postulates that serum LDL is a factor in atherosclerotic lesion formation.

Numerous animal models have been developed for assessing antiatherosclerotic activity. Principal among these are models for assessing hypolipoproteinemic activity in the rat and antiatherosclerotic activity in the Japanese quail. For a description of the operation of the hypobetalipoproteinemic rat model, refer to the known methods of Schurr, P.E., et al., "High Volume Screening Procedure for Lypobetalipoproteinemia Activity in Rats", Adv. Exp. Med. Biol. 67: Atherosclerotic Drug Discovery, pp. 215-229, Plenum Press (1975). For a description of the Japanese quail model, see Day, C.E. et al., "Utility of a Selected Line (SEA) of the Japanese Quail (Corturnic Corturnix japonica) for the Discovery of New Anti-Atherosclerosis Drugs", Laboratory Animal Science 27:817-821

2-Aminochromones (4H-1-benzopyran-4-ones) are known in the For example, the antiallergic activity of 2literature. aminochromones has been described in the literature by Mazzei, Balbi, Ermili, Sottofattori and Roma (Mazzei, M., Ballbi, A., 20 Ernili, A., Sottofattori, E., Roma, G., Farmaco. Ed. Sci., (1985) 40, 895 and Mazzei, M., Ermili, A., Balbi, A., Di (1986), 41, 611; Farmaço. Ed. Sci., Braccio, M., The CNS activity of 2-aminochromones has also 106:18313w). been described (Balbi, A., Roma, G., Ermili, A., Farmaco. Ed. 25 Sci., (1982) 37, 582; Ermili, A., Mazzei, M., Roma, G., Cacciatore, C., Farmaco. Ed. Sci., (1977), 32, 375 and 713). The nitro derivatives of various 2-aminochromones have recently been described (Balbi, A., Roma, G., Mazzei, M., Ermili, A., Farmaco. Ed. Sci., (1983) 38, 784) and Farmaco. Ed. Sci., 30 41(7), 548-57. 2-Amino-3-hydroxychromones are described in DE 2205913 and GB 1389186.

U.S. Patent 4,092,416 (see also DE 2555290 and CA 87:102383r) discloses various benzopyrone derivatives exhibiting anti-allergic activity, including 2-{2-[4-(2-35 methoxyphenyl)-piperazinyl-1]-ethyl}-5-methoxy-4-oxo-4H-1-benzopyran and 2-{2-[4-(2-methoxyphenyl)-piperazinyl-1]-ethyl}-5-(2-hydroxypropoxy)-4-oxo-4H-1-benzopyran.

JA-025657 and JP-259603 describe various 2-amino-3-

carboxamide derivatives and 3-phenyl (optionally substituted) -2aminochromone derivatives as useful as oncostatic immunosuppressive agents.

The pharmacomodulation of a-adrenergic blocking agents by 5 a series of benzopyrans, including 2-(1-piperidinylmethylene)-4H-1-benzopyran-4-one, is described in Eur. J. Med. Chem., 1987, 22(6), 539-44; CA 109:92718k.

Structurally, the closest compounds in the literature to 2-(4-morpholinyl)-4H-1-benzopyran-4-one (Cpd 2) is believed to 10 be the 3-hydroxy, 3-methoxy and 3-acetyloxy analogues (i.e., 2-2-(4-morpholinyl)-3-(4-morpholiny1)-3-hydroxychromone, methoxychromone and 3-(acetyloxy)-2-(4-morpholinyl)chromone) reported by Eiden and Docher (Eiden, F., Dolcher, D., Arch. Pharm. (Weinheim Ger.) (1975) 308, 385) and DE 2205913; CA 6,7-dimethoxy-2-(4-15 83(11):96942w and CA79(19):115440s. morpholinyl)chromone is disclosed in J. Chem. Soc., Perkins 3-Acety1-2-(4-CA78(9);58275v. 173-4; (2), morpholinyl)chromone is disclosed in Arch. Pharm. 316(1), 34-3-hydroxy-2-[4-(2-hydroxyethyl)-1-CA98(15):12915g. 20 piperazinyl]-4H-1-benzopyran-4-one and 3-hydroxy-2-(4-methyl-1piperazinyl)-4H-1-benzopyran-4-one are disclosed in Arch. Pharm 308(5), 385-8; CA83(11):96942w. 5,8-dimethoxy-2-(4-methyl-1disclosed piperazinyl)-4H-1-benzopyran-4-one is Heterocycl. Chem., 18(4), 679-84; CA95(17):150348v.

The synthesis of 2-aminochromones from the corresponding 2-sulphonyl and 2-sulphinyl analogues has been reported by Bantick and Suschitzky (Bantick, J.R., Suschitzky, J.L., J. Heterocyclic Chem., (1981) 18, 679). Also described in this report is the preparation of the HCL and H2SO4 salts of several 30 2-aminochromones.

25

2 some activity anti-platelet The 2-(diethylamino)-5,6-(dialkylamino) chromones, namely: dimethyl-4H-1-benzopyran-4-one,2-(diethylamino)-6,7-dimethyl-4H-1-benzopyran-4-one, 2-(diethylamino)-7-hydroxy-5-methyl-4H-35 1-benzopyran-4-one, 2-(diethylamino)-5-hydroxy-7-methyl-4H-1benzopyran-4-one, 2-(diethylamino)-6-chloro-8-isopropyl-4H-1benzopyran-4-one, 2-(diethylamino)-5,7-methoxy-4H-1-benzopyran-2-(ethylamino)-5-hydroxy-4H-1-benzopyran-4-one, 4-one.

(ethylamino) -7-hydroxy-4H-1-benzopyran-4-one, 2-(diethylamino)-7-hydroxy-6-nitro-4H-1-benzopyran-4-one, 2-(diethylamino)-4H-1benzopyran-4-one, 2-(dimethylamino)-7-methoxy-4H-1-benzopyran-4-one, 2-(diethylamino)-7-methoxy-4H-1-benzopyran-4-one, 2-(1-5 pyrrolidinyl)-7-methoxy-4H-1-benzopyran-4-one, piperidinyl)-7-methoxy-4H-1-benzopyran-4-one, 2 -(diethylamino) -7-hydroxy-4H-1-benzopyran-4-one, 2-(1piperdinyl)-7-hydroxy-4H-1-benzopyran-4-one, 2-(ethylamino)-7methoxy-4H-1-benzopyran-4-one, 2-(diethylamino)-5-hydroxy-4H-1-10 benzopyran-4-one, 2-(diethylamino)-5-methyl-8-isopropyl-4H-1benzopyran-4-one, and 2-(diethylamino)-3-(4-morpohoinomethyl)-7-methoxy-4H-1-benzopyran-4-one, was reported by Mazzei et al. in Eur. J. Med. Chem. 23, 237-242 (May-June 1988); CA 110:75246h.

The literature on the use of an ynamine in the synthesis of a 2-aminochromones has been reported by Tronchet, Bachler and Bonenfant (Tronchet, J.M. J., Bachler, B., Bonenfant, A., Helv. Chim. Acta. (1976), 59, 941). In this report, a 2-amino-3-glycosylchromone was prepared.

15

20

2-Amino-1,3-benzoxazin-4-ones are also known in the Specifically, 2-morpholinyl-4H-1,3-benzoxazin-4literature. one and 8-methyl-2-(4-morpholinyl)-4H-1,3-benzoxazin-4-one are described in Netherlands patent application 6,412,966 (see also U.S. 3,491,092), and in the literature (Grigat, E., Putter, R., 25 Schneider, K., Wedemeyer, K., Chem. Ber., (1964) 97, 3036).

The fungicide and analgesic activity of 2-amino-1,3-benzoxazin-4-ones are also claimed by Sankyo in Japn. Tokkyo Koho 79 20,504 (CA 91:157755b) and in Japan (Kokai 72, 17,781 (CA 77:140107e). These patents appear to cover 2-(4-morpholinyl)-30 4H-1,3-benzoxazin-4-one and 6,7-substituted-2-(4-morpholinyl) analogues for the above indications.

The synthesis of 2-dialkylamino-1,3-benzoxazin-4-ones has been described by Kokel et al (see Tet. Letters (1984) 3837).

2-N-Alkyl and 2-N-aryl-1,3-benzoxazin-4-ones have been 35 described by Palazzo and Giannola (Palazzo, S., Giannola, L.I., Atti. Accad. Sci. Lett. Arti Palermo, Parte 1, (1976) 34(2), 83-7).

2-Benzamidino-1,3-benzoxazin-4-one have been described by

Brunetti, H., and Luthi, C.E. (in Helv. Chim. Acta., (1972) 55, 1566).

PCT/US89/05526, filed 15 December 1989 (published 28 June 1990) discloses various 1-benzopyran-4-ones and 2-amino-1,3-2-(4-morpholiny1)-4H-1including 5 benzoxazines-4-ones, benzopyran-4-one, 8-Methyl-2-(4-morpholinyl)-(7-phenylmethoxy)-7-[(1-cyclohexyl-1H-tetrazol-5-4H-benzopyran-4-one, y1) methoxy]-8-methyl-2-(4-morpholinyl)-4H-1-benzopyran-4-one, 8-Methyl-2-(4-morpholinyl)-7-(2-(1-piperidinyl)ethyl)oxy-4H-1-8-Methyl-2-(4-morpholinyl)-7-(2-(1-10 benzopyran-4-one, pyrrolidinyl)ethyl)oxy-4H-1-benzopyran-4-one, (ethylphenylamino)ethoxy]-8-methyl-2-(4-morpholinyl)-4H-1-Benzopyran-4-one, as well as their antiatherosclerotic, antithrombotic activity, cell proliferation (inhibitive) and/or 15 inhibitive of platelet aggregation.

BRIEF DESCRIPTION OF THE INVENTION

This invention relates to compounds of the Formula I which are useful in association with a pharmaceutical carrier as antiatherosclerotic agents. In addition, various compounds of the Formula I are useful inhibitors of cell proliferation and/or platelet aggregation.

DETAILED DESCRIPTION OF THE INVENTION

The compounds of this invention are represented by Formula I wherein

25 X is N, or CZ where Z is H, C₁-C₅ alkyl, amino (-NH₂) or a halogen atom;

when X is CZ, Y is selected from the group consisting of $-(CH_2)_nNR_9R_{10}$ wherein R_9 and R_{10} , being the same or different, are selected from the group consisting of

- 30 (a) hydrogen, with the provisio that R₉ and R₁₀ are not both hydrogen;
 - (b) C₁-C₁₂ alkyl;
- (c) phenyl optionally substituted with one, 2 or 3 C_1-C_4 alkyl, C_1-C_4 alkoxy, halo, OH, trifluoromethyl or $-CO_2(C_1-C_4)$ alkyl);
 - (d) $-(CH_2)_n$ phenyl [wherein phenyl is optionally substituted with one, 2 or 3 C_1-C_4 alkyl, C_1-C_4 alkoxy, halo, OH, trifluoromethyl or $-CO_2(C_1-C_4$ alkyl)],

- (e) $-(CH_2)_n$ pyridinyl or
- (f) wherein R_q and R₁₀, taken together with N, form a saturated or unsaturated heterocyclic amine ring selected from the group consisting of
- (aa) 4-morpholine optionally substituted with one or two members selected from the group consisting of C1-C4. alkyl, C,-C, alkoxy, halo or trifluoromethyl,
- (bb) 4-thiomorpholine optionally substituted with one or two members selected from the group consisting of 10 c_1-c_4 alkyl, c_1-c_4 alkoxy, halo or trifluoromethyl,
 - (cc) 3-amino-1-pyrrolidine,
 - (dd) 1-pyrrolidine optionally substituted with one or two members selected from the group consisting of C1-C1 alkyl, C,-C, alkoxy, halo, OH, -CH2OH, or trifluoromethyl,
- (ee) 1-piperidine optionally substituted with one or two members selected from the group consisting of C1-C4 alkyl, C,-C, alkoxy, halo, trifluoromethyl, -(CH2)gOH, -CO2H, -CO₂CH₃ -CO₂CH₂CH₃ or phenyl (wherein phenyl is optionally substituted with one, 2 or 3 C1-C4 alkyl, C1-C4 alkoxy, halo or 20 trifluoromethyl),
- (ff) 1-piperazine, 4-(C₁-C₄alkyl)-1-piperazine (preferably 4-methyl-1-piperazine), 4-(cycloC₃-C₆alkyl)-1piperazine, 4-phenyl-1-piperazine (wherein phenyl is optionally substituted with one, 2 or 3 C_1-C_4 alkyl, C_1-C_4 alkoxy, halo or 25 trifluoromethyl) or 4-pyridinyl-1-piperazine substituted with one or two members selected from the group . consisting of C_1-C_4 alkyl, C_1-C_4 alkoxy, trifluoromethyl, -CH2OH, -CO2H, -CO2CH3 or -co, CH, CH, (gg) thiazolidine, thiazolidine-4-carboxylic
- pipecolinic p-piperazinacetophenone, 30 acid, acid, 1-methylhomopiperazine, 4-phenyl-1,2-3,6homopiperazine, proline, tetrahydrofurylamine, 1-(3tetrahydropyridine, hydroxy) pyrrolidine, nipecotamide, 1,2,3,4-tetrahydroisoquinoline or imidazole;
- and R_5 , R_6 , R_7 and R_8 , being the same or different, are 35 selected from the group consisting of hydrogen, C,-C, alkyl, -(CH2) phenyl [wherein phenyl is optionally substituted with one, 2 or 3 C1-C4 alkyl, C1-C4 alkoxy, halo, OH, trifluoromethyl

-(CH₂)_nnaphthyl, -(CH₂)_npyridinyl, $-co_2(c_1-c_4alkyl)$, $-(CH_2)_qNR_9R_{10}$, -CH=CH-phenyl [wherein phenyl is optionally substituted with one, 2 or 3 C_1-C_4 alkyl, C_1-C_4 alkoxy, halo, OH, trifluoromethyl or $-CO_2(C_1-C_4alkyl)$], $-CH_2-CH=CH_2$, $-CH=CH-CH_3$, 5 -CH=CH₂, -O-CH₂-CH=CH₂, -C=C-phenyl (wherein phenyl is optionally substituted with one, 2 or 3 C1-C4 alkyl, C1-C4 alkoxy, halo, OH, trifluoromethyl or -CO2(C1-C4alkyl)], -O- $(CH_2)_p(N-methylpiperdin-3-yl)$, $-0-(CH_2)_pNR_9R_{10}$ [preferably -0- $(CH_2)_p^{-4}-(C_1-C_4alkyl)-1$ -piperazine, $-0-(CH_2)_p^{-4}$ (1-piperidinyl), 10 -O-(CH₂)_p(1-pyrrolidinyl), more preferably -O-(CH₂)₂-4-methyl-1piperazine], $-O-CH_2CH(OCH_3)_2$, $-O-(CH_2)_pOR_{15}$ {wherein R_{15} is selected from H, C1-C5 alkyl, -(CH2) phenyl [phenyl optionally substituted with one, 2 or 3 C_1-C_4 alkyl, C_1-C_4 alkoxy, halo, OH, trifluoromethyl or $-CO_2(C_1-C_4alkyl)$], $-(CH_2)_n$ pyridin-1-yl, 15 $-(CH_2)_n$ pyridin-2-yl, $-(CH_2)_n$ pyridin-3-yl, $-(CH_2)_n$ pyridin-4-yl, $-(CH_2)_n-1-(C_1-C_4alkyl)-1H-5-tetrazole, -(CH_2)_n-pyrimidine,$ $-(CH_2)_n$ -2-benzoxazole, $-(CH_2)_n$ -2-benzothiazole, $-(CH_2)_n$ - $(C_1$ - C_4 alkyl)-triazole, $-(CH_2)_n-(C_1-C_4$ alkyl)-imidazole}, $-0-(CH_2)_p-0 (CH_2)_p - OR_{15}$, $-O-(CH_2)_p - S-R_{15}$, $-O-(CH_2)_p - O-(CH_2)_p NR_9 R_{10}$, $-O-(CH_2)_p - O-(CH_2)_p - O-(CH_2)_p NR_9 R_{10}$, $-O-(CH_2)_p NR_9 R_{10}$ 20 $S-(CH_2)_pNR_9R_{10}$, $-O-(CH_2)_p-S-(CH_2)_p-OR_{15}$, $-O-(CH_2)_p-S(O)-R_{15}$, $-O-(CH_2)_p$ $(CH_2)_p - S(O_2) - R_{15}$, $-O - (CH_2)_p - S(O) - (CH_2)_p NR_9 R_{10}$, $-O - (CH_2)_p - S(O) - (CH_2)_p - S(O)_p - (CH_2)_p - (CH_2)_p$ $(CH_2)_p - OR_{15}$, $-O - (CH_2)_p - S(O_2) - (CH_2)_p NR_9 R_{10}$, $-O - (CH_2)_p - S(O_2) - (CH_2)_p$ OR_{15} , $-O-(CH_2)_p-[4-[(CH_2)_pOR_{15}]-1-piperazine], <math>-O-(CH_2)_p-[4-(CH_2)_p]$ (CH) (phenyl) 2-1-piperazine] [phenyl optionally substituted with one, 2 or 3 C_1 - C_4 alkyl, C_1 - C_4 alkoxy, halo, OH, trifluoromethyl or $-CO_2(C_1-C_4alkyl)$, $-O-(CH_2)_p-[4-(CH_2)_qphenyl-1-piperazine]$ [phenyl optionally substituted with one, 2 or 3 C1-C4 alkyl, c_1-c_4 alkoxy, halo, OH, trifluoromethyl or $-c_2(c_1-c_4$ alkyl)], -0-(CH₂)_p-[4-(CH₂)_qpyridinyl-1-piperazine] [pyridinyl optionally substituted with one, 2 or 3 C_1-C_4 alkyl, C_1-C_4 alkoxy, halo, OH, trifluoromethyl, NR_9R_{10} or $-CO_2(C_1-C_4alkyl)$], $O-(CH_2)_p-[4-C_4alkyl)$ substituted pyridinyl)-1-piperazine, -O-(CH₂)_p-(OH -0-(CH₂)_p-1-pyrrolidin-2-one, 1-piperidine), substituted $-(CH_2)_nC(0)O-(CH_2)_pR_9$, $-(CH)_nC(0)O -(CH_2)_nC(O)-(CH_2)_nR_9$ 35 $(CH_2)_pNR_9R_{10}$, $-(CH_2)_nC(0)(CH_2)_nNR_9R_{10}$, NO_2 , $-C-(CH_2)_nC(0)$ $(CH_2)_p^R R_9$, $-O-(CH_2)_n^C (O) O-(CH_2)_p^R R_9$, $-O-(CH_2)_n^C (O) -(CH_2)_n^{NR_9} R_{10}$, $-NR_{9}R_{10}, -N(R_{9})(CH_{2})_{n}C(O) - (CH_{2})_{n}R_{10}, -N(R_{9}) - (CH_{2})_{n}C(O)O - (CH_{2})_{n}R_{10},$ $N(R_9)(CH_2)_nC(O)-(CH_2)_nNR_9R_{10}$, -O-(CH₂)_nphenyl [wherein phenyl is

optionally substituted with one, 2 or 3 C1-C4 alkyl, C1-C4 alkoxy, halo, OH, trifluoromethyl or -CO2(C1-C4alkyl)], -O- $(CH_2)_n$ pyridine, $-O(CH_2)_nC(O)-(CH_2)_n$ pyridine, $-O-(CH_2)_nC(O)O -o(CH_2)_nC(O)-N(R_9)(CH_2)_n$ pyridine, (CH₂) pyridine, 5 (CH₂)_nquinoxaliny1, -O-(CH₂)_nquinoliny1, -O-(CH₂)_npyraziny1, -O- $(CH_2)_n$ naphthyl, $-0-(CH_2)_n$ $C(0)-(CH_2)_n$ naphthyl, $-0-(CH_2)_n$ C(0) $0-(CH_2)_n$ (CH₂)_nnaphthyl, -O-(CH₂)_nC(O)NR₉-(CH₂)_nnaphthyl, halo (fluoro, chloro, bromo, iodo), OH, $-(CH_2)_q$ -OH, $(CH_2)_q$ OC(O) R_9 , $-(CH_2)_q$ OC-(O)-NR₉R₁₀, -(1-cyclohexyl-1H-tetrazol-5-yl)C₁-C₄ alkoxy, -[1-10 $(C_1-C_5alkyl)-1H-tetrazol-5-yl]C_1-C_4$ alkoxy (including -(1 $cycloC_3-C_5$ alkyl-1H-tetrazol-5-yl) C_1C_4 alkoxy), -[1-(phenyl)-1Htetrazol-5-yl]c₁-c₄ alkoxy [wherein phenyl is optionally substituted with one, 2 or 3 C1-C4 alkyl, C1-C4 alkoxy, halo, OH, trifluoromethyl or $-CO_2(C_1-C_4alkyl)$], -[1-(pyridinyl)-1H-15 tetrazol-5-yl]C₁-C₄ alkoxy, -[1-(1-phenylethyl)-1H-tetrazol-5 $y1]C_1-C_4$ alkoxy, $-C_1-C_4$ alkoxyl, or a group of Formula II (see Formula Sheet) wherein R' is methyl or carboxy, R'' is hydrogen and R''' is selected from benzyl [optionally substituted with one, two or three groups selected from hydroxy, halogen or 20 phenoxy (optionally substituted with one, two or three groups selected from hydroxy or halogen)], C_1-C_5 alkyl, $-(CH_2)_nCO_2H$, -CH₂SH, -CH₂SCH₃, imidazolinylmethylene, indolinylmethylene, CH3CH(OH), CH2OH, H2N(CH2)4-(optionally in protected form) or $H_2NC(NH)NH(CH_2)_3$ (optionally in protected form); with the 25 overall proviso that at least one member of R₅, R₆, R₇ or R₈ is selected from the group consisting of -CH=CH2, -O-(CH2)pOH, -O- $(CH_2)_p$ -O- $(CH_2)_n$ pyridin-2-y1, -O- $(CH_2)_p$ -O- $(CH_2)_n$ pyridin-3-y1, -O- $(CH_2)_p^p$ -0- $(CH_2)_n^p$ pyridin-4-yl, -0- $(CH_2)_p$ -0- $(CH_2)_n$ -1- $(C_1$ - C_4 alkyl)- $-O-(CH_2)_p-O-(CH_2)_n$ -pyrimidine, $-O-(CH_2)_p$ -1H-5-tetrazole, 30 O-(CH_2)_n-2-benzoxazole, -O-(CH_2)_p-O-(CH_2)_n-2-benzothiazole, -O- $(CH_2)_p$ -O- $(CH_2)_n$ - $(C_1$ - C_4 alkyl)-triazole, -O- $(CH_2)_p$ -O- $(CH_2)_n$ - $(C_1$ - C_4 alkyl)-imidazole, -O-(CH_2) $_p$ -O-(CH_2) $_p$ -OR $_{15}$, -O-(CH_2) $_p$ -S-R $_{15}$, -O- $(CH_2)_p - O - (CH_2)_p NR_9 R_{10}$, $-O - (CH_2)_p - S - (CH_2)_p NR_9 R_{10}$, $-O - (CH_2)_p - S - (CH_2)_p NR_9 R_{10}$ $(CH_2)_p - OR_{15}$, $-O-(CH_2)_p - S(O) - R_{15}$, $-O-(CH_2)_p - S(O_2) - R_{15}$, $-O-(CH_2)_p - S(O_2) - R_{15}$ $S(O) - (CH_2)_p NR_9 R_{10}$, $-O - (CH_2)_p - S(O) - (CH_2)_p - OR_{15}$, $-O - (CH_2)_p - S(O_2) - OR_{15}$ $-O-(CH_2)_p-S(O_2)-(CH_2)_p-OR_{15}$, $-O-(CH_2)_p-[4-$ (CH₂)_pNR₉R₁₀,[(CH₂)_pOR₁₅]-1-piperazine], $-0-(CH_2)_p-[4-(CH) (phenyl)_2-1$ piperazine] [phenyl optionally substituted with one, 2 or 3 C1-

15

25

 C_4 alkyl, C_1 - C_4 alkoxy, halo, OH, trifluoromethyl or $-CO_2(C_1-C_4$ alkyl)], $-O-(CH_2)_p$ - $[4-(CH_2)_q$ phenyl-1-piperazine] [phenyl optionally substituted with one, 2 or 3 C_1 - C_4 alkyl, C_1 - C_4 alkoxy, halo, OH, trifluoromethyl or $-CO_2(C_1-C_4$ alkyl)], $-O-(CH_2)_p$ - $[4-(CH_2)_q$ pyridinyl-1-piperazine] [pyridinyl optionally substituted with one, 2 or 3 C_1 - C_4 alkyl, C_1 - C_4 alkoxy, halo, OH, trifluoromethyl, NR_9R_{10} or $-CO_2(C_1-C_4$ alkyl)], $O-(CH_2)_p$ - $[4-(NR_9R_{10}$ substituted pyridinyl)-1-piperazine, $-O-(CH_2)_p$ - $[4-(NR_9R_{10}$ substituted pyridinyl)-1-piperazine, $-O-(CH_2)_p$ - $[4-(NR_9R_{10}$ substituted 1-piperidine), $-O-(CH_2)_p$ - $[4-(CH_2)_p$ - $[4-(NR_9R_{10}$ substituted 1-piperidine), $-O-(CH_2)_p$ - $[4-(CH_2)_p$ - $[4-(CH_2)_p]$ - $[4-(CH_2)_p$ - $[4-(CH_2)_p]$ - $[4-(CH_2)_p$ - $[4-(CH_2)_p]$ -[4-(CH

when X is N, Y is selected from the group consisting of $-{\rm NR_9R_{10}}$ wherein ${\rm R_9}$ and ${\rm R_{10}},$ being the same or different, are selected from the group consisting of

- (a) hydrogen, with the provisio that R_9 and R_{10} are not both hydrogen;
 - (b) C_1-C_{12} alkyl;
- (c) phenyl optionally substituted with one, 2 or 3 C_1-C_4 alkyl, C_1-C_4 alkoxy, halo, OH, trifluoromethyl or $-CO_2(C_1-C_4$ alkyl);
- (d) $-(CH_2)_n$ phenyl [wherein phenyl is optionally sub-20 stituted with one, 2 or 3 C_1-C_4 alkyl, C_1-C_4 alkoxy, halo, OH, trifluoromethyl or $-CO_2(C_1-C_4$ alkyl)],
 - (e) $-(CH_2)_n$ pyridinyl or (f) wherein R_9 and R_{10} , taken together with N, form a saturated or unsaturated heterocyclic amine ring selected from the group consisting of
 - (aa) 4-morpholine optionally substituted with one or two members selected from the group consisting of C_1 - C_4 alkoxy, halo or trifluoromethyl,
- (bb) 4-thiomorpholine optionally substituted with one or two members selected from the group consisting of C_1-C_4 alkyl, C_1-C_4 alkoxy, halo or trifluoromethyl,
 - (cc) 3-amino-1-pyrrolidine,
 - (dd) 1-pyrrolidine optionally substituted with one or two members selected from the group consisting of C_1 - C_4 alkoy, halo, OH, -CH₂OH, or trifluoromethyl,
- (ee) 1-piperidine optionally substituted with one or two members selected from the group consisting of C₁-C₄ alkyl, C₁-C₄ alkoxy, halo, trifluoromethyl, -(CH₂)_qOH, -CO₂H, -CO₂CH₃, -CO₂CH₂CH₃ or phenyl (wherein phenyl is optionally

substituted with one, 2 or 3 C_1-C_4 alkyl, C_1-C_4 alkoxy, halo or trifluoromethyl),

(ff) 1-piperazine, 4-(C₁-C₄alkyl)-1-piperazine
(preferably 4-methyl-1-piperazine), 4-phenyl-1-piperazine
5 (wherein phenyl is optionally substituted with one, 2 or 3 C₁C₄ alkyl, C₁-C₄ alkoxy, halo or trifluoromethyl) or 4pyridinyl-1-piperazine optionally substituted with one or two
members selected from the group consisting of C₁-C₄ alkyl, C₁-C₄
alkoxy, halo, OH, trifluoromethyl, -CH₂OH, -CO₂H, -CO₂CH₃ or
10 -CO₂CH₂CH₃, and

(gg) thiazolidine, thiazolidine-4-carboxylic
acid, pipecolinic acid, p-piperazinacetophenone, 1homopiperazine, 1-methylhomopiperazine, 4-phenyl-1,2-3,6tetrahydropyridine, proline, tetrahydrofurylamine, 1-(3hydroxy)pyrrolidine, nipecotamide, 1,2,3,4-tetrahydroisoquinoline or imidazole;

and R_5 , R_6 , R_7 and R_8 , being the same or different, are selected from the group consisting of hydrogen, C1-C8 alkyl, -(CH2) phenyl [wherein phenyl is optionally substituted with 20 one, 2 or 3 C₁-C₄ alkyl, C₁-C₄ alkoxy, halo, OH, trifluoromethyl $-co_2(c_1-c_4alkyl)$, $-(CH_2)_n$ naphthyl, $-(CH_2)_n$ pyridinyl, -(CH2) NR9R10, -CH=CH-phenyl (wherein phenyl is optionally substituted with one, 2 or 3 C1-C4 alkyl, C1-C4 alkoxy, halo, OH, trifluoromethyl or -CO₂(C₁-C₄alkyl)], -CH₂-CH=CH₂, -CH=CH-CH₃, 25 -CH=CH2, -O-CH2-CH=CH2, -C=C-phenyl [wherein phenyl is optionally substituted with one, 2 or 3 C1-C4 alkyl, C1-C4 alkoxy, halo, OH, trifluoromethyl or -CO2(C1-C4alkyl)], -O(CH₂)_p(N-methylpiperdin-3-yl), -0-(CH₂)_pNR₉R₁₀, $CH_2CH(OCH_3)_2$, -0-(CH_2) $_pOR_{15}$ {wherein R_{15} is selected from H, C_1 -30 C_s alkyl, -(CH₂) phenyl [phenyl optionally substituted with one, 2 or 3 C_1 - C_4 alkyl, C_1 - C_4 alkoxy, halo, OH, trifluoromethyl or -CO₂(C₁-C₄alkyl)], -(CH₂)_npyridin-1-yl, -(CH₂)_npyridin-2-yl, -(CH₂) pyridin-4-yl, -(CH₂)_n-1-(C₁--(CH₂) pyridin-3-yl, C_{4} alkyl)-1H-5-tetrazole, -(CH₂)_n-pyrimidine, -(CH₂)_n-2-35 benzoxazole, $-(CH_2)_n$ -2-benzothiazole, $-(CH_2)_n$ - $(C_1$ - C_4 alkyl)triazole, $-(CH_2)_n-(C_1-C_4alkyl)-imidazole$, $-O-(CH_2)_p-O-(CH_2)_p$ OR_{15} , $-O-(CH_2)_p-S-R_{15}$, $-O-(CH_2)_p-O-(CH_2)_pNR_9R_{10}$, $-O-(CH_2)_p-S (CH_2)_pNR_9R_{10}$, $-0-(CH_2)_p-S-(CH_2)_p-OR_{15}$, $-0-(CH_2)_p-S(O)-R_{15}$, $-0-(CH_2)_p$

 $(CH_2)_p - S(O_2) - R_{15}$, $-O - (CH_2)_p - S(O) - (CH_2)_p NR_9 R_{10}$, $-O - (CH_2)_p - S(O) - (CH_2)_p - S(O)_p - (CH_2)_p - (CH_2$ $(CH_2)_p - OR_{15}$, $-O - (CH_2)_p - S(O_2) - (CH_2)_p NR_9 R_{10}$, $-O - (CH_2)_p - S(O_2) - (CH_2)_p$ OR_{15} , $-O-(CH_2)_p-[4-[(CH_2)_pOR_{15}]-1-piperazine]$, $-O-(CH_2)_p-[4-[(CH_2)_p]-[4-[(CH_2)_$ (CH) (phenyl) 2-1-piperazine) [phenyl optionally substituted with 5 one, 2 or 3 C_1 - C_4 alkyl, C_1 - C_4 alkoxy, halo, OH, trifluoromethyl or $-CO_2(C_1-C_4alkyl)$], $-O-(CH_2)_p-[4-(CH_2)_qphenyl-1-piperazine]$ [phenyl optionally substituted with one, 2 or 3 C1-C4 alkyl, C_1-C_4 alkoxy, halo, OH, trifluoromethyl or $-CO_2(C_1-C_4$ alkyl)], -O-(CH₂)_p-[4-(CH₂)_qpyridinyl-1-piperazine] [pyridinyl optionally 10 substituted with one, 2 or 3 C_1-C_4 alkyl, C_1-C_4 alkoxy, halo, OH, trifluoromethyl, NR_9R_{10} or $-CO_2(C_1-C_4alkyl)$], $O-(CH_2)_p-[4-C_4alkyl)$ substituted pyridinyl)-1-piperazine, -0-(CH₂)_p-(OH (NR₉R₁₀ -0-(CH₂)_p-1-pyrrolidin-2-one, 1-piperidine), substituted $-(CH_2)_nC(0)O-(CH_2)_pR_9$, $-(CH_{n}C(0)0 -(CH_2)_nC(0)-(CH_2)_nR_9$, $-(CH_2)_nC(0)(CH_2)_nNR_9R_{10}$, NO_2 , $-O-(CH_2)_nC(0)$ 15 $(CH_2)_{2}NR_{9}R_{10}$, $(CH_2)_p^-R_9$, $-O-(CH_2)_n^-C(O)O-(CH_2)_p^-R_9$, $-O-(CH_2)_n^-C(O)-(CH_2)_n^-NR_9^-R_{10}$, $-NR_9R_{10}^-$, $-N(R_9)(CH_2)_nC(O)-(CH_2)_nR_{10}^-$, $-N(R_9)-(CH_2)_nC(O)O-(CH_2)_nR_{10}^ N(R_9)(CH_2)_nC(O)-(CH_2)_nNR_9R_{10}$, -O-(CH₂)_nphenyl [wherein phenyl is optionally substituted with one, 2 or 3 C_1-C_4 alkyl, C_1-C_4 20 alkoxy, halo, OH, trifluoromethyl or $-CO_2(C_1-C_4$ alkyl), $-O-CO_2(C_1-C_4)$ $(CH_2)_n$ pyridine, $-O(CH_2)_n$ $C(O)-(CH_2)_n$ pyridine, $-O-(CH_2)_n$ $C(O)O-(CH_2)_n$ $-O(CH_2)_nC(O)-N(R_9)(CH_2)_n$ pyridine, (CH₂) pyridine, $(CH_2)_n$ quinoxalinyl, -O- $(CH_2)_n$ quinolinyl, -O- $(CH_2)_n$ pyrazinyl, -O- $(CH_2)_n$ naphthyl, $-O-(CH_2)_n$ C(O)- $(CH_2)_n$ naphthyl, $-O-(CH_2)_n$ C(O)O- $(CH_2)_n$ naphthyl, $-O-(CH_2)_n$ C $(O)NR_9-(CH_2)_n$ naphthyl, halo (fluoro, chloro, bromo, iodo), OH, $-(CH_2)_q$ -OH, $(CH_2)_q$ OC(O) R_9 , $-(CH_2)_q$ OC-(0) $-NR_9R_{10}$, $-(1-cyclohexyl-1H-tetrazol-5-yl)C_1-C_4$ alkoxy, $-[1-cyclohexyl-1H-tetrazol-5-yl)C_1$ $(C_1-C_5alkyl)-1H-tetrazol-5-yl]C_1-C_4$ alkoxy (including -(1-30 tetrazol-5-yl]C₁-C₄ alkoxy [wherein phenyl is optionally substituted with one, 2 or 3 C_1-C_4 alkyl, C_1-C_4 alkoxy, halo, OH, trifluoromethyl or $-CO_2(C_1-C_4alkyl)$], -[1-(pyridinyl)-1Htetrazol-5-yl]C₁-C₄ alkoxy, -[1-(1-phenylethyl)-1H-tetrazol-5 $y1]c_1-c_4$ alkoxy, or $-c_1-c_4$ alkoxyl, or a group of Formula II 35 (see Formula Sheet) wherein R' is methyl or carboxy, R'' is hydrogen and R''' is selected from benzyl [optionally substituted with one, two or three groups selected from hydroxy, halogen or phenoxy (optionally substituted with one,

35

two or three groups selected from hydroxy or halogen)], C,-C, alkyl, -(CH₂)_nCO₂H, -CH₂SH, -CH₂SCH₃, imidazolinylmethylene, indolinylmethylene, CH3CH(OH), CH2OH, H2N(CH2)4-(optionally in protected form) or H2NC(NH)NH(CH2)3 (optionally in protected 5 form) with the overall proviso that at least one member of $R_{\rm S}$, R_6 , R_7 or R_8 is selected from the group consisting of -CH=CH₂, $-0-(CH_2)_p-0-(CH_2)_n$ pyridin-2-yl, $-0-(CH_2)_p-$ -0-(CH₂)_pOH, O-(CH₂)_npyridin-3-y1, -O-(CH₂)_p-O-(CH₂)_npyridin-4-y1, -O-(CH₂)_p-O-(CH₂)_n-1-(C₁-C₄alkyl)-1H-5-tetrazole,-0-(CH₂)_p-0-(CH₂)_p-10 pyrimidine, $-0-(CH_2)_p-0-(CH_2)_n-2-benzoxazole$, $O-(CH_2)_n-2-benzothiazole$, $-O-(CH_2)_p-O-(CH_2)_n-(C_1-C_4alkyl)$ triazole, $-0-(CH_2)_p-0-(CH_2)_n-(C_1-C_4alkyl)-imidazole, <math>-0-(CH_2)_p-0$ $O-(CH_2)_p-OR_{15}$, $O-(CH_2)_p-S-R_{15}$, $O-(CH_2)_p-O-(CH_2)_pNR_9R_{10}$, $O-(CH_2)_p$ $(CH_2)_p - S - (CH_2)_p NR_9 R_{10}$, $-O - (CH_2)_p - S - (CH_2)_p - OR_{15}$, $-O - (CH_2)_p - S(O) - CH_2$ 15 R_{15} , $-0-(CH_2)_p-S(O_2)-R_{15}$, $-0-(CH_2)_p-S(O)-(CH_2)_pNR_9R_{10}$, $-0-(CH_2)_p-S(O)-(CH_2)_p$ $S(O) - (CH_2)_p - OR_{15}$, $-O - (CH_2)_p - S(O_2) - (CH_2)_p NR_9 R_{10}$, $-O - (CH_2)_p - S(O_2) - (CH_2)_p - (CH_2$ $(CH_2)_p - OR_{15}$, $-O - (CH_2)_p - [4 - [(CH_2)_p OR_{15}] - 1 - piperazine]$, $-O - (CH_2)_p - [(CH_2)_p - (CH_2)_p - (CH_2)_p$ [4-(CH)(phenyl)2-1-piperazine] [phenyl optionally substituted with one, 2 or 3 C_1 - C_4 alkyl, C_1 - C_4 alkoxy, halo, OH, tri-20 fluoromethyl or $-CO_2(C_1-C_4alkyl)$], $-O-(CH_2)_p-[4-(CH_2)_qphenyl-1$ piperazine] [phenyl optionally substituted with one, 2 or 3 C1 c_4 alkyl, c_1 - c_4 alkoxy, halo, OH, trifluoromethyl or $-co_2(c_1$ c_{4} alkyl)], -O-(CH₂)_p-[4-(CH₂)_qpyridinyl-1-piperazine] [pyridinyl optionally substituted with one, 2 or 3 C_1-C_4 alkyl, C_1-C_4 25 alkoxy, halo, OH, trifluoromethyl, NR₉R₁₀ or -CO₂(C₁-C₄alkyl)], $0-(CH_2)_p-[4-(NR_9R_{10}]$ substituted pyridinyl)-1-piperazine, -0-(CH₂)_p-(OH substituted 1-piperidine), -O-(CH₂)_p-1-pyrrolidin-2one;

n is 0-5, preferably 0 or one;

p is 2-5, preferably 2 or 3;

q is 1-5, preferably 1 or 2;

and pharmaceutically acceptable salts thereof.

X is preferably CZ where Z is H or C_1-C_5 alkyl, more preferably H or methyl, most preferably H.

when x is CZ, Y is preferably selected from the group consiting of $-(CH_2)_nNR_9R_{10}$ wherein R_9 and R_{10} , taken together with N, form a saturated or unsaturated heterocyclic amine ring selected from the group consisting of:

- (aa) 4-morpholine optionally substituted with one or two members selected from the group consisting of C_1 - C_4 alkoxy, halo or trifluoromethyl,
- (bb) 4-thiomorpholine optionally substituted with one 5 or two members selected from the group consisting of C_1 - C_4 alkoxy, halo or trifluoromethyl,
 - (cc) 3-amino-1-pyrrolidine,
- (dd) 1-pyrrolidine optionally substituted with one or two members selected from the group consisting of C_1 - C_4 alkoxy, halo, OH, -CH₂OH, or trifluoromethyl,
- (ee) 1-piperidine optionally substituted with one or two members selected from the group consisting of C_1 - C_4 alkyl, C_1 - C_4 alkoxy, halo, trifluoromethyl, $-(CH_2)_qOH$, $-CO_2H$, $-CO_2CH_3$, $-CO_2CH_2CH_3$ or phenyl (wherein phenyl is optionally substituted with one, 2 or 3 C_1 - C_4 alkyl, C_1 - C_4 alkoxy, halo or trifluoromethyl), and
- (ff) 1-piperazine, 4-methyl-1-piperazine, 4-phenyl-1-piperazine (wherein phenyl is optionally substituted with one, 2 or 3 C₁-C₄ alkyl, C₁-C₄ alkoxy, halo or trifluoromethyl) or 4-pyridinyl-1-piperazine optionally substituted with one or two members selected from the group consisting of C₁-C₄ alkyl, C₁-C₄ alkoxy, halo, trifluoromethyl, -CH₂OH, -CO₂H, -CO₂CH₃ or -CO₂CH₂CH₃.

When X is CZ wherein Z is H or C_1 - C_5 alkyl (most preferably H), Y is more preferably selected from the group consisting of $-(CH_2)_nNR_9R_{10}$ wherein n is 0 or 1 (most preferably 0) and R_9 and R_{10} , taken together with N, form:

(aa) morpholine (preferably 4-morpholine) optionally substituted with one or two members selected from the group consisting of C₁-C₄ alkyl or phenyl (wherein phenyl is optionally substituted with one or 2 C₁-C₄ alkyl, C₁-C₄ alkoxy, halo or trifluoromethyl);

and preferably, at least one member selected from R_5 , R_6 , R_7 or R_8 is selected from the group consisting of $-O-(CH_2)_p-S-35$ R_{15} , $-O-(CH_2)_p-[4-(CH)phenyl)_2-1-piperazine], <math>-CH=CH_2$, or $-O-(CH_2)_pO-(CH_2)_pOR_{15}$; more preferably,

(i) R_5 , R_6 , and R_7 are each hydrogen, and R_8 is selected from: $-O-(CH_2)_p-[4-(CH)phenyl)_2-1-piperazine]$, or $-O-(CH_2)_p-S-$

20

R₁₅; or

(ii) R_s and R_6 are hydrogen, R_8 is hydrogen, halo, -CH=CH₂, or C_1-C_5 alkyl, and R_7 is selected from: $-0-(CH_2)_p-[4-$ (CH) phenyl)₂-1-piperazine], or $-0-(CH_2)_p-S-R_{15}$.

X is most preferably CH.

Y is most preferably 4-morpholinyl.

 R_8 is preferably hydrogen or C_1 - C_5 alkyl, more preferably hydrogen or methyl.

 R_{15} is preferably hydrogen, C_1-C_5 alkyl, $-(CH_2)_n$ phenyl, -(CH₂)_pyridin-2-yl or -(CH₂)_pyridin-3-yl. 10

Examples of preferred compounds include: Compounds 208, 233, 266, 283, 293, 304, 326, and 347; as well as salts thereof.

Accordingly the present invention includes the novel 2-15 amino(4H)-1-benzopyran-4-ones and 2-aminoalkyl(4H)-1benzopyran-4-ones of Formula I when X is CZ and the antiatherosclerotic utility of said compounds as well as the antiatherosclerotic utility of the known compounds of Formula I, including the 2-amino-1,3-benzoxazine-4-ones of Formula IB.

The carbon content of various hydrocarbon containing moieties is indicated by a prefix designating the minimum and maximum number of carbon atoms in the moiety, i.e., the prefix C_i-C_i indicates a carbon atoms content of the integer "i" to the integer "j" carbon atoms, inclusive. Thus, C₁-C₃ alkyl 25 refers to alkyl of 1-3 carbon atoms, inclucive, or methyl, ethyl, propyl, and isopropyl.

With respect to the above, C_1-C_4 alkyl is methyl, ethyl, propyl, or butyl, including isomeric forms thereof. Similarly, c_1 - c_6 alkyl is methyl, ethyl, propyl, butyl, pentyl, hexyl, and 30 isomeric forms thereof.

The term "halo" includes fluoro, chloro, bromo and iodo. All temperatures throughout the specification are expressed in degrees Celcius (°C).

Examples of C1-C8 alkylthiomethyl are methylthiomethyl, propylthiomethyl, butylthiomethyl, 35 ethylthiomethyl, pentylthiomethyl, hexylthiomethyl, and heptylthiomethyl, and isomeric forms thereof.

> of C,-C, alkoxymethyl are methoxymethyl, Examples

-15-

pentoxymethyl, ethoxymethyl, propoxymethyl, butoxymethyl, butoxymethyl, pentoxymethyl, hexoxymethyl, and heptoxymethyl, and isomeric forms thereof.

corresponding amines heterocylic of Examples 5 heterocyclic amine rings according to -NR₉N₁₀ are:

4-morpholine,

4-phenyl-1-piperazine,

4-(2-pyridinyl)-1-piperazine,

2,6-dimethyl-4-morpholine,

1-pyrrolidine, 10

4-methyl-1-piperazine,

1-piperidine,

4-phenyl-1-piperidine

thiazolidine,

3-piperidine methanol, 15

2-piperidine methanol,

pipecolic acid,

3-piperidine ethanol,

2-piperidine ethanol,

1-piperazine propanol, 20

p-piperazinoacetophenone,

4-phenyl-1,2,3,6-tetrahydropyridine,

4-phenylpiperidine,

proline,

1-(3-hydroxy)pyrrolidine, 25

tetrahydrofurylamine,

pyrrolidimethanol,

3-pyrroline,

thiazolidine-4-carboxylic acid,

thiomorpholine, 30

nipecotamide,

2-methylpiperidine,

3-methylpiperidine,

4-methylpiperidine,

N-methylpiperazine, 35

1-methylhomopiperazine,

1-acetylpiperazine,

N-carboethoxypiperazine,

30

3-methylpiperazine-2-carboxylic acid,
2-methylpiperazine,
2,3,5,6,-tetramethylpiperazine,
1,4-dimethylpiperazine,
5 2,6-dimethylpiperazine,
2-methyl-1-phenylpiperazine,
1-(1-phenylethyl)piperazine,
1-(2-pyrazinyl)piperazine,
1-cyclopropylpiperazine,
1-cyclobutylpiperazine,
1,2,3,4-tetrahydroisoquinoline,
imidazole,

homopiperdine, and pharmaceutically acceptable salts and hydrates thereof.

Examples of -O(CH₂)_p(N-methylpiperdin-3-y1) include (2-(N-methylpiperdin-3-y1) ethyl) oxy, (3-(N-methylpiperdin-3-y1) propyl) oxy, (4-(N-methylpiperdin-3-y1) butyl) oxy.

Examples of -O-(CH₂)_pNR₉R₁₀ include (2-(1-piperidinyl)ethyl)oxy, (2-(4-morpholinyl)ethyl)oxy, (2-(1-20 pyrrolidinyl)ethyl)oxy, (3-(N-methylpiperazinyl)propyl)oxy, (4-(N-ethyl-N-phenylamino)butyl)oxy, (5-(diethylamino)pentyl)oxy, (2-(4-benzylpiperazinyl)ethyl)oxy, and (3-(N,N-diisopropyl)propyl)oxy.

Examples of O-(CH₂)_pOR₁₅ include (2-methoxyethyl)oxy, (3-25 butoxypropyl)oxy, (4-phenoxybutyl)oxy, (2-benzyloxyethyl)oxy, (2-(2-(1-piperidinyl)ethoxy)ethyl)oxy and (3-(3picolylmethoxy)propyl)oxy.

Examples of $-(CH_2)_n$ pyridinyl include 2-pyridyl, 3-pyridylmethyl and 4-pyridylethyl.

Examples of -(CH₂)_npiperdinyl include 1-piperidinyl, 1-peiperidinylmethyl, 2-(1-piperidinyl)ethyl and 3-(1-piperidinyl)propyl.

Examples of -(CH2)qNR9R10 include (1-piperidiny1)methyl, 2-(4-morpholiny1)ethyl, 3-(1-pyrrolindiny1)propyl and 4-(1-35 piperaziny1)butyl.

Examples of $-(CH_2)_nC(O)-(CH_2)_nR_9$ include acetyl, acetylmethyl, methylacetylmethyl, methylacetylethyl, phenylacetyl, phenylacetylmethyl, 2-(phenylacetyl)ethyl, 2-

30

pyridylacetyl, 3-pyridylacetylmethyl, 3-(t-butylacetyl)propyl and 4-(ethylacetyl)butyl.

Examples of -(CH₂)_nC(O)O-(CH₂)_pR₉ include carbomethoxy, carbomethoxymethyl, 2-(carbomethoxy) ethyl, carbophenylmethoxy, carbophenylmethoxymethyl, 2-(carbo(3-pyridyl)methoxy) ethyl, carboethoxymethyl and 3-(carbopropoxy) propoxy.

Examples of $-(CH_2)_nC(0)O-(CH_2)_pNR_9R_{10}$ include $-C(0)O-(CH_2)_2N(ethyl)_2$, $-(CH_2)_2C(0)O-(CH_2)_2N(CH_3)$ (phenyl), $-(CH_2)_3C(0)O-(CH_2)_3$ (1-pyrrolidine), $-(CH_2)_3C(0)O-(CH_2)_2$ (1-piperidinyl), and $-(CH_2)C(0)O-(CH_2)_2$ (4-morpholinyl).

Examples of $-(CH_2)_nC(0)(CH_2)_nNR_9R_{10}$ include $-(CH_2)C(0)(CH_2)N(ethyl)_2$, $-(CH_2)_2C(0)(CH_2)_2N(methyl)(phenyl)$, -C(0)(1-pyrrolidine), $-(CH_2)_2C(0)(CH_2)_3(1-piperidine)$, and $-(CH_2)_3C(0)(CH_2)(4-morpholine)$.

Examples of $-O-(CH_2)_nC(O)-(CH_2)_pR_9$ include $-O-(CH_2)C(O)-(CH_2)(CH_3)$, $-O-C(O)-(CH_2)_2(CH_3)$, $-O-(CH_2)_3C(O)-(CH_2)_phenyl$, $-O-(CH_2)_2C(O)-(CH_2)_3(2-pyridyl)$, $-O-(CH_2)C(O)-(CH_2)_2(3-pyridyl)$ and $-O-(CH_2)_4C(O)-(CH_2)_4(t-butyl)$.

Examples of $-O-(CH_2)_nC(O)O-(CH_2)_pR_9$ include $-O-(CH_2)C(O)O-(CH_2)_1C(O)O-(CH_2)_2(CH_3)$, $-O-(CH_2)_2C(O)O-(CH_2)_3(D)O-(CH_2)_3(O)O-(CH_2)_2(O)O-(CH_2)_3(O)O-(CH_2$

Examples of $-O-(CH_2)_nC(O)-(CH_2)_nNR_9R_{10}$ include $-O-(CH_2)C-(O)-(CH_2)N(CH_3)_2$, $-O-C(O)-(CH_2)(1-pyrrolidine)$, $-O-(CH_2)C(O)-(1-piperidine)$, $-O-(CH_2)_2C(O)-(CH_2)(1-N-methylpiperazine)$, $-O-(CH_2)_2C(O)-(CH_$

Examples of $-N(R_9)$ (CH₂)_nC(O)-(CH₂)_nR₁₀ include $-N(CH_3)$ C(O)-(CH₃), -N(H) (CH₂)₂C(O)-(CH₂) (phenyl), -N(H) (CH₂)C(O)-(CH₂)₂(3-pyridyl) and $-N(CH_3)$ (CH₂)₃C(O)-(CH₂) (CH₃).

Examples of $-N(R_9) - (CH_2)_n C(0) O - (CH_2)_n R_{10}$ include $-N(H) - (CH_2) C(0) O - (CH_3)$, $-N(H) - (CH_2)_2 C(0) O - (CH_2)$ (benzyl), $-N(H) - (CH_2)_2 + (CO) O - (CH_2)_2 C(0) O -$

(CH₂)₂(4-morpholine).

Examples of -O-(CH₂)_nphenyl include 2-(4-trifluoromethylphenyl) ethoxy, 4-chlorophenoxy, 4-fluorophenylmethoxy, 3-(4-methoxyphenyl) propoxy, 4-(2-methyl-4-fluorophenyl) butoxy, 2-(2-methoxyphenyl) ethoxy, 3-methoxyphenylmethoxy, 4-carbomethoxyphenylmethoxy, 2-(3,4-dichlorophenyl) ethoxy, 4-ethoxyphenylmethoxy, 3-(4-nitrophenyl) propoxy, 4-t-butylphenylmethoxy, 4-benzyloxyphenylmethoxy and 2-(3-triflouromethylphenyl) ethoxy.

Examples of -O-(CH₂)_npyridine include 2-pyridyloxy, 3-pyridylmethoxy and 2-(4-pyridyl)ethoxy.

Examples of $-O(CH_2)_nC(O)-(CH_2)_n$ pyridine include $-O(CH_2)C(O)-(CH_2)$ (2-pyridine), $-O(CH_2)_3C(O)-(CH_2)$ (3-pyridine) and $-O(CH_2)_2C(O)-(CH_2)_3$ (4-pyridine).

Examples of $-O-(CH_2)_nC(O)O-(CH_2)_n$ pyridine include $-O(CH_2)C(O)O-(CH_2)$ (2-pyridine), $-O(CH_2)_3C(O)O-(CH_2)$ (3-pyridine) and $-O(CH_2)_2C(O)O-(CH_2)_3$ (4-pyridine).

Examples of $-O(CH_2)_nC(O)-N(R_9)(CH_2)_n$ pyridine include $-O(CH_2)C(O)-N(CH_3)(CH_2)(2-pyridine)$, $-O(CH_2)_2C(O)-N(CH_3)(CH_2)(3-pyridine)$ and $-O(CH_2)C(O)-N(benzyl)(CH_2)_2(4-pyridine)$.

Examples of -O-(CH₂)_nquinoxalinyl include 2-quinoxalinyloxy, 2-quinoxalinylmethoxy and 2-(2-quinoxalinyl)ethoxy.

Examples of -0-(CH₂)_nquinolinyl include 2-quinolinyloxy, 25 2-quinolinylmethoxy and 2-(2-quinolinyl)ethoxy.

Examples of -O-(CH₂)_npyrazinyl include 2-pyrazinyloxy, 2-pyrazinylmethoxy and 2-(2-pyrazinyl)ethoxy.

Examples of -O-(CH₂)_nnaphthyl include 1-naphthyloxy, 2-naphthylmethoxy and 2-(1-naphthyl)ethoxy.

30 Examples of $-O-(CH_2)_nC(O)-(CH_2)_n$ naphthyl include $-O-(CH_2)C(O)-(CH_2)$ (1-naphthyl), $-O-(CH_2)_2C(O)-(CH_2)$ (2-naphthyl), $-O-C(O)-(CH_2)$ (1-naphthyl) and $-O-(CH_2)2C(O)-(CH_2)_2$ (2-naphthyl).

Examples of $-O-(CH_2)_nC(O)O-(CH_2)_n$ naphthyl include $-O-(CH_2)C(O)O-(CH_2)$ (1-naphthyl), $-O-(CH_2)_2C(O)O-(CH_2)$ (2-naphthyl), $-O-C(O)O-(CH_2)$ (1-naphthyl) and $-O-(CH_2)_2C(O)O-(CH_2)_2$ (2-naphthyl).

Examples of -O-(CH₂)_nC(O)NR₉-(CH₂)_nnaphthyl include -O-

 $(CH_2)C(0)N(H)(CH_2)(1-naphthy1)$, $-0-(CH_2)C(0)N(CH_3)(CH_2)_2(2-naphthy1)$ and $-0-(CH_2)C(0)N(benzy1)(CH_2)_3(1-naphthy1)$.

Examples of $-(CH_2)_q$ -OH include hydroxymethyl, hydroxyethyl and hydroxybutyl.

Examples of $(CH_2)_qOC(0)R_9$ include $(CH_2)OC(0)$ methyl, $(CH_2)_2OC(0)$ ethyl, $(CH_2)_3OC(0)$ phenyl, $(CH_2)_4OC(0)$ (3-pyridyl) and $(CH_2)OC(0)$ thiophene.

Examples of $-(CH_2)_qOC(0)-NR_9R_{10}$ include $-(CH_2)OC(0)-N(CH_2)_2$, $-(CH_2)_2OC(0)-N(ethyl)_2$, $-(CH_2)_3OC(0)-(1-pyrrolidine)$, $-(CH_2)_4OC(0)-(1-piperidine)$ and $-(CH_2)OC(0)-N-benzylamine$.

Examples of -(1-cyclohexyl-1H-tetrazol-5-yl)C₁-C₄ alkoxy,
-[1-(C₁-C₅alkyl)-1H-tetrazol-5-yl]C₁-C₄ alkoxy include -(1cyclohexyl-1H-tetrazol-5-yl)methoxy, -(1-cyclohexyl-1Htetrazol-5-yl)ethoxy, -[1-(methyl)-1H-tetrazol-5-yl]methoxy,
-[1-(cyclopropyl)-1H-tetrazol-5-yl]ethoxy,-[1-(1-tert-butyl)1H-tetrazol-5-yl]propoxy and -[1-(cyclopentyl)-1H-tetrazol-5yl]methoxy.

Examples of -[1-(phenyl)-1H-tetrazol-5-yl]C₁-C₄ alkoxy (wherein phenyl is optionally substituted with one, 2 or 3 C₁-20 C₄ alkyl, C₁-C₄ alkoxy, halo or trifluoromethyl) include -[1-(phenyl)-1H-tetrazol-5-yl]methoxy,-[1-(phenyl)-1H-tetrazol-5-yl]ethoxy, -[1-(4-methoxyphenyl)-1H-tetrazol-5-yl]methoxy, -[1-(4-fluorophenyl)-1H-tetrazol-5-yl]propoxy.

Examples of -[1-(pyridinyl)-1H-tetrazol-5-yl]C₁-C₄ alkoxy

25 or -[1-(1-phenylethyl)-1H-tetrazol-5-yl]C₁-C₄ alkoxy include

-[1-(2-pyridinyl)-1H-tetrazol-5-yl]methoxy,-[1-(3-pyridinyl)
1H-tetrazol-5-yl]ethoxy, -[1-(4-pyridinyl)-1H-tetrazol-5
yl]propoxy,-[1-(1-phenylethyl)-1H-tetrazol-5-yl]methoxy,-[1(1-phenylethyl)-1H-tetrazol-5-yl]ethoxy.

Examples of $-(CH_2)_n-1-(C_1-C_4$ alkyl)-1H-5-tetrazole include $-CH_2-1$ -methyl-1H-5-tetrazole, 1-methyl-1H-5-tetrazole, and $-(CH_2)_2-1$ -methyl-1H-5-tetrazole.

Examples of $-(CH_2)_n$ -pyrimidine include $-CH_2$ -pyrimidine, $-(CH_2)_2$ -pyrimidine, pyrimidine.

Examples of $-(CH_2)_n$ -2-benzoxazole include $-(CH_2)$ -2-benzoxazole, and 2-benzoxazole.

Examples of $-(CH_2)_n$ -2-benzothiazole include $-(CH_2)$ -2-benzothiazole, $-(CH_2)_2$ -2-benzothiazole, and 2-benzothiazole.

Examples of $-(CH_2)_n-(C_1-C_4alkyl)$ -triazole include $-(CH_2)$ -methyl-triazole, $-(CH_2)_2$ -methyl-triazole, and -methyl-triazole.

Examples of $-(CH_2)_n - (C_1 - C_4 alkyl) - imidazole include - (CH_2) - methyl-imidazole, <math>-(CH_2)_2$ -methyl-imidazole, and -methyl-5 imidazole.

Examples of $-O-(CH_2)_p-O-(CH_2)_p-OR_{15}$ include $-O-(CH_2)_2$

Examples of $-O-(CH_2)_p-S-R_{15}$ include $-O-(CH_2)_2-S-1$ -methyl10 1H-5-tetatrazole, $-O-(CH_2)_2-S$ -pyrimidine, $-O-(CH_2)_2-S$ -pyridine, $-O-(CH_2)_2-S$ -benzyl.

Examples of $-0-(CH_2)_p-0-(CH_2)_pNR_9R_{10}$ include $-0-(CH_2)_2-0-(CH_2)_2-1$ -piperidine, $-0-(CH_2)_2-0-(CH_2)_2-4$ -methyl-1-piperazine, $-0-(CH_2)_2-0-(CH_2)_2$ -diethylamine, and $-0-(CH_2)_2-0-(CH_2)_2-4$ -pyridinyl-1-piperazine.

Examples of $-O-(CH_2)_p-S-(CH_2)_pNR_9R_{10}$ include $-O-(CH_2)_2-S-(CH_2)_2-1$ -piperidine, $-O-(CH_2)_2-S-(CH_2)_2-4$ -methyl-1-piperazine, $-O-(CH_2)_2-S-(CH_2)_2$ -diethylamine, $-O-(CH_2)_2-S-(CH_2)_2-4$ -pyridinyl-1-piperazine.

20 Examples of $-O-(CH_2)_p-S-(CH_2)_p-OR_{15}$ include $-O-(CH_2)_2-S-(CH_2)_2-O-Denzyl$, $-O-(CH_2)_2-S-(CH_2)_2-O-Denzyl$, $-O-(CH_2)_2-S-(CH_2)_2-O-Denzyl$, $-O-(CH_2)_2-S-(CH_2)_2-O-Denzyl$.

Examples of $-O-(CH_2)_p-S(O)-R_{15}$ include $-O-(CH_2)_2-S(O)-1-methyl-1H-5-tetatrazole, <math>-O-(CH_2)_2-S(O)-pyrimidine, -O-(CH_2)_2-S(O)-pyridine, and <math>-O-(CH_2)_2-S(O)-pyridine$.

Examples of $-0-(CH_2)_p-S(O_2)-R_{15}$ include $-0-(CH_2)_2-S(O_2)-1-methyl-1H-5-tetatrazole, <math>-0-(CH_2)_2-S(O_2)$ -pyrimidine, $-0-(CH_2)_2-S(O_2)$ -pyridine, and $-0-(CH_2)_2-S(O_2)$ -benzyl.

Examples of $-O-(CH_2)_p-S(O)-(CH_2)_pNR_9R_{10}$ include $-O-(CH_2)_2-30$ $S(O)-(CH_2)_2-1$ -piperidine, $-O-(CH_2)_2-S(O)-(CH_2)_2-4$ -methyl-1-piperazine, $-O-(CH_2)_2-S(O)-(CH_2)_2$ -diethylamine, and $-O-(CH_2)_2-S(O)-(CH_2)_2-4$ -pyridinyl-1-piperazine.

Examples of $-O-(CH_2)_p-S(O)-(CH_2)_p-OR_{15}$ include $-O-(CH_2)_2-S(O)-(CH_2)_2-O-Denzyl, <math>-O-(CH_2)_2-S(O)-(CH_2)_2-O-Denzyl, -O-(CH_2)_2-O-Denzyl, -$

35 $S(0)-(CH_2)_2-O-phenyl$, and $-O-(CH_2)_2-S(O)-(CH_2)_2-O-pyridinyl$. Examples of $-O-(CH_2)_p-S(O_2)-(CH_2)_pNR_9R_{10}$ include $-O-(CH_2)_2-S(O_2)-(CH_2)_2-1-piperidine$, $-O-(CH_2)_2-S(O_2)-(CH_2)_2-4-piperidine$, $-O-(CH_2)_2-S(O_2)-(CH_2)_2-4-piperidine$, and $-O-(CH_2)_2-S(O_2)-(CH_2)_2-3-piperidine$, and $-O-(CH_2)_2-S(O_2)-(CH_2)_2-3-piperidine$, and $-O-(CH_2)_2-S(O_2)-(CH_2)_2-3-piperidine$, and $-O-(CH_2)_2-S(O_2)-(CH_2)_2-3-piperidine$.

 $S(O_2)-(CH_2)_2-4$ -pyridinyl-1-piperazine.

Examples of $-O-(CH_2)_p-S(O_2)-(CH_2)_p-OR_{15}$ include $-O-(CH_2)_2-S(O_2)-(CH_2)_2-O-Denzyl$, $-O-(CH_2)_2-S(O_2)-(CH_2)_2-O-Denzyl$, $-O-(CH_2)_2-S(O_2)-(CH_2)_2-O-Denzyl$, and $-O-(CH_2)_2-S(O_2)-(CH_2)_2-O-Denzyl$, pyridinyl.

Examples of $-O-(CH_2)_p-[4-[(CH_2)_pOR_{15}]-1$ -piperazine] include $-O-(CH_2)_2-[4-[(CH_2)_2OH]-1$ -piperazine], $-O-(CH_2)_2-[4-[(CH_2)_2Obenzy1]-1$ -piperazine], and $-O-(CH_2)_2-[4-[(CH_2)_2Opyridinylmethyl]-1$ -piperazine].

10 Examples of $-O-(CH_2)_p-[4-(CH) (phenyl)_2-1-piperazine]$ include $-O-(CH_2)_2-[4-(CH) (phenyl) (p-chlorophenyl)-1-piperazine], <math>-O-(CH_2)_2-[4-(CH) (phenyl)_2-1-piperazine]$, and $-O-(CH_2)_2-[4-(CH) (p-fluorophenyl)_2-1-piperazine].$

Examples of $-O-(CH_2)_p-[4-(CH_2)_q$ phenyl-1-piperazine] include 15 $-O-(CH_2)_2-[4-(CH_2)]$ phenyl-1-piperazine], $-O-(CH_2)_2-[4-(CH_2)]$ and $-O-(CH_2)_2-[4-(CH_2)]$ trifluoromethylphenyl-1-piperazine].

Examples of $-O-(CH_2)_p-[4-(CH_2)_q$ pyridinyl-1-piperazine] include $-O-(CH_2)_2-[4-(CH_2)_p$ pyridinyl-1-piperazine], and $-O-(CH_2)_2-[4-(CH_2)_p$ pyridinyl-1-piperazine].

Examples of $-0-(CH_2)_p-[4-(NR_9R_{10} \text{ substituted pyridiny1})-1-piperazine]$ include $-0-(CH_2)_2[4-(3-\text{ethylamino-2-pyridiny1})-1-piperazine, <math>-0-(CH_2)_2-[4-(3-\text{piperidiny1-2-pyridiny1})-1-piperazine,$ and $-0-(CH_2)_2-[4-(3-\text{amino-2-pyridiny1})-1-piperazine.$

Examples of $-O-(CH_2)_p-(OH \text{ substituted 1-piperidine})$ include $-O-(CH_2)_2-(4-\text{hydroxy-1-piperidine})$ and $-O-(CH_2)_2-(3-\text{hydroxy-1-piperidine})$.

Examples of $-O-(CH_2)_p-1$ -pyrrolidin-2-one include $-O-(CH_2)_2-30$ 1-pyrrolidin-2-one and $-O-(CH_2)_3-1$ -pyrrolidin-2-one.

Examples of optionally substituted piperazines include 2-hydroxymethyl4-methyl-1-piperazine, 2-carboxy-4-phenyl-1-piperazine, 2-methoxy-1-piperazine, 3-methyl-4-phenyl-1-piperazine, and 2-carbomethoxy-4-methyl-1-piperazine.

The tertiary amines and aromatic heterocyclic amines of the subject specification and claims include the N-oxides thereof.

Pharmaceutically acceptable salts means salts useful for

administering the compounds of this invention and include mesylate, hydrochloride, hydrobromide, hydroiodide, sulfate, phosphate, acatate, propionate, lactate, maleate malate, succinate, tartrate, and the like. These salts may be in hydrated form.

The compounds of Formula I are all characterized by pronounced antiatherogenic activity, rendering these compounds useful in the treatment and prophylaxis of atherosclerosis.

Various compounds including 2-(4-morpholinyl)-4H-10 benzopyran-4-one (Cpd #2), 2-(4-morpholinyl)-4H-1, 3-benzoxazin-4-one (Cpd #98), 8-methyl-2-(4-morpholinyl)-4H-1,3-benzoxazin-4-one (Cpd #84), 2-(1-(4-thiomorpholinyl))-4H-1,3-benzoxazin-4one (Cpd #95) and 2-(4-methyl-1-piperazinyl)-4H-1,3-benzoxazin-4-one (Cpd 496) reduced arterial cholesterol accumulation in 15 the SEA Japanese quail model. The reduction in arterial cholesterol was accompanied with reduced serum cholesterol levels with Compounds 84 and 95, but not with Compounds 2, 98 and 96. In normal cholesterolemic SEA Japanese quail, Compound 84 also lowered serum cholesterol. For a description of the 20 Japanese quail model, see Day, C.E. et al., "Utility of a Selected Line (SEA) of the Japanese Quail (Coturnic Coturnix japonica) for the Discovery of New Anti-Atherosclerosis Drugs", Laboratory Animal Science 27:817-821 (1977).

Preferred antiatherosclerotic compounds include Compounds 25 204, 208, 233, 266, 283, 293, 304, and 326.

In addition, various compounds of Formula I are also potent inhibitors of cell proliferation and are contemplated as useful in the treatment of proliferative diseases such as cancer, rheumatoid arthritis, psoriasis, pulmonary fibrosis, scleroderma, cirrhosis of the liver and for the improved utilization of artificial prosthetic devices such as arterial grafts. These agents may also be useful in the prevention or treatment of obstruction or restenosis of arteries by subsequent administration of drug in cases such as by-pass surgery, coronary by-pass surgery, balloon angioplasty (and other procedures directed at re-establishing patency in occluded or partly occluded vessels, i.e atherectomy, laser or ultrasonic procedures), transplants, and post-thrombotic re-

stenosis.

Compounds of Formula I which are inhibitors of cell proliferation are those active in the test procedure described in Pledger W.J., Stiles C.D., Antniades H.N., Scher C.D., [Proc. Natl. Acad. Sci (USA) (1977). Examples of inhibitors of cell proliferation include Compounds 17, 39, 204, 206, 208, 209, 211-213, 216-219, 221-226, 229, 230, 232-238, 242-250, 253-271, 274-278, 280, 282, 285, 287-297, 299, 303-304, 306-308, 312, 315-316, 320-322, 326, 346, and 348-352.

In addition, various compounds of Formula I are also inhibitors of ADP induced platelet aggregation and are useful in the prevention or treatment of thrombotic diseases and related complications by, for example, inhibition or reversal of platelet aggregation, or platelet adhesion or blood coagulation.

Compounds which are inhibitors of platelet aggregation are those active in the test procedure described in Born, G.R., Cross M.J., J. Physiol., 168, p. 178 (1963). Examples of inhibitiors of ADP induced platelet aggregation include: Compounds 39, 194, 195, 208-217, 219, 223, 239-241, 245-248, 250, 253-255, 257-263, 265, 266, 268-273, 275-282, 285-291, 293-296, 298-303, 308-310, 312, 314-331, 333-346, 347, 348-349, 351, and 352.

Several of these compounds, including compounds 239, 240, 340, 343, 344, 345 and 347, have been found to signficantly inhibit platelet thrombus formation in a canine model of platelet-dependent coronary thrombus formation. Shebuski, R.J., Ramjit, D.R., Bencen, G.H. and Polokoff, M.A. J. Biol. Chem. 264:21550, 1989. Compound 239 accelerates the rate of thrombolysis and prevents reocclusion following successful thrombolysis in a canine model of coronary thrombosis. Shebuski, R.J., Stabilito I.J., Sitko, G.R., and Polokoff, M.H., Circulation 82:169-177, 1990.

In addition, various compounds of Formula I are also potent vasodilators and are useful in the treatment of hypertension, peripheral vascular disease, vascular complications of diabetes and tissue ischemia due to poor blood flow or poor oxygen delivery. Compounds of Formula I which are

vasodilators are those active in the test procedure described in Papadopoulos S.M., Gilbert B.A., Webb R.C., D'Amato C.J. [Neurosurgery 26:2605-2608 (1990)] using phenylephrine and other constricting agents in addition to endothelin. Examples of inhibitors of vasoconstrictors include compounds 194, 208-210, 212, 213, 215, 223-225, 227, 231-234, 237, 243, 250, 254, 255, 257, 259, 263, 268, 269, 271, 278, 279, 281-283, 285, 347-349.

Accordingly, in using compounds of Formula I for the prevention or treatment of atherosclerotic disease or thrombotic diseases, an oral route of administration, either by conventional oral dosage forms or by mixture with food, represents the preferred method of their systemic administration. Alternatively, however, these compounds may be administrated by other convenient routes of administration whereby systemic activity is obtained. These other routes of administration would include rectal, vaginal, subcutaneous, intramuscular, intravenous, and like routes.

In using compounds of Formula I for use in angioplasty, an oral route of administration represents the preferred method of their systemic administration. Alternatively, however, these compounds may be administered by other convenient routes of administration whereby systemic activity is obtained.

The patient or animal being treated must be given periodic

25 doses of the drug in amounts effective to reduce serum and/or
arterial cholesterol, and reduce arterial atherosclerotic
lesion size (as determined by angiogram, ultrasound, NMR,
etc.); or, by the inhibition or reversal of platelet
aggregation, platelet adhesion or blood coagulation; or, by
preventing arterial occlusion in vascular trauma associated
with procedures such as by-pass grafts, coronary by-passes,
angioplasty, post-thrombotic re-stenosis and transplants.

Such effective dosages are readily determined by methods known in the art. For example, small daily doses of the drug (e.g., 0.01-200 mg/kg) may be administered initially with higher succeeding doses until levels of serum and/or arterial cholesterol are favorably affected. By this regimen, a compound of Formula I is administered initially at doses as low

as about 0.01 mg/kg per patient per day, with increasing doses up to about 200 mg/kg per patient per day. In the event the antiatherogenic response in a patient being treated at a dose of 200 mg/kg per day is insufficient, higher doses are also utilized to the extent patient tolerance permits further increases in dose.

While the preferred dosage regimen is with single daily dosing of patients, also preferred for obtaining more uniform serum levels of drug are multiple dosages per day (e.g., up to 4-6 times daily). Accordingly, when 4 daily doses of drug are to be administered, each such dose may be about 50 mg/kg per patient per dose, or higher depending on tolerance.

Similar doses are employed in hon-human mammals, e.g. 0.01-200 mg/kg/day.

Charts A, E, G, I, J, K and L herein describe various methods by which the compounds of Formula I are prepared. With respect to these Charts, X, Y, R_5 , R_6 , R_7 , R_8 , R_9 and R_{10} are as defined above.

with respect to Chart A, the compounds of Formula I are prepared by mixing the salicylic acid ester with the morpholine ynamine neat, or in an organic solvent, with stirring. After several minutes, a tertiary amine base, e.g. TEA (triethylamine), is added and the reaction stirred for a period of time. The product can be isolated by recrystallization or column chromatography.

with respect to Chart E, these compounds can be prepared by treatment of a o-hydroxy acetophenone with an iminium salt such as morpholine-4-phosgene iminium chloride, in the presence of boron trifluoride etherate. Subsequent hydrolysis and alkylation yields the desired compounds.

with respect to Chart G, the treatment of an o-hydroxy acetophenone containing a halogen group with an iminium salt such as 4-morpholine dichloromethyleniminium chloride, in the presence of boron trifluoride etherate. Subsequent hydrolysis and alkylation yields the 2-aminochromone. Treatment of the 2-aminochromone with a tetraalkyl tin reagent in the presence of a palladium catalyst such as (bis)triphenylphosphine palladium dichloride and a salt such as lithium chloride affords a 2-

aminochromone substituted with an alkyl substituent.

With respect to Chart I, the compounds of formula I are prepared by treating 4-benzyloxy-2-hydroxy-3-methylacetophenone with sodium hydride, then ethyl c-methylthicacetate and finally 5 acid to yield 7-benzyloxy-8-methyl-2-methylthiomethyl-4H-[1]benzopyran-4-one. Treatment of that compound with methyl iodide affords the corresponding 7-benzyloxy-6-methyl-2-iodomethyl-4H-[1]-benzopyran-4-one. Treatment of that compound with the appropiate amine then afforded the compounds of formula I. 10 Compounds of formula I were also prepared by treating a formula such 88 7-benzyloxy-8-methyl-2-(4-I compound morpholiniylmethyl)-4H-[1]-benzopyran-4-one with a transition metal catalyst in an atmosphere of hydrogen to yield 7-hydroxy-8-methyl-2-(4-morpholiniylmethyl)-4H-[1]-benzopyran-4-one. 15 Alkylation of that phenol with the appropriate group also afforded compounds of formula I.

Alternatively, compounds of formula I can also be prepared by hydrogenation of a R₅₋₈ benzyloxy 2-amino-4H-1-benzopyran-4-one followed by alkylation of the resulting phenol as illustrated in chart H.

With respect to Chart J, these compounds are prepared by initial alkylation of the appropriate 2-aminochromone phenol (e.g. prepared according to the methods of Charts D or E) with 1,2-dibromoethane under phase transfer catalysis. Direct substitution of the bromine with an appropriate amine nucleophile affords the 2-aminochromone with a 2-aminoethyloxy substitutent.

With respect to Chart K, these compounds are prepared by treatment of a O-hydroxyacetophenone with potassium t-butoxide 30 and an e-amino acetate, such as methy-2-(4-morpholinyl)-acetate, followed by acidification of the initial adduct.

With respect to Chart L, a procedure for the preparation of 2-aminochromones is contemplated in which a salicylic ester is treated with the anion of an acetyl amine (such as from lithium diisopropyl amide deprotonation of acetyl-4-morpholine) to afford an initial β -ketoamide. This compound, upon cyclodehydration with a reagent such as polyphosphoric ester, would give the 2-aminochromone.

The synthesis of the compounds of the present invention is more completely understood by the following examples:

Relating to Chart A:

Example 17 Preparation of 2-(Morpholinyl)-6-nitro-4H-1benzopyran-4-one, Compound #17

The ethyl ester of 5-nitro salicylic acid (634 mg, 3.0 mmol) is dissolved in TEA (2.0 mL) and the morpholine ynamine added. The mixture is then stirred for 48 h. The reaction is diluted with EtOAc (200 mL) and washed with water (5 X 25 mL), 10 brine (30 mL) and dried (MgSO₄). Evaporation of the solvent yields product which is chromatographed (silica gel [50 g]; 4% EtOH/CH,Cl,) to afford 182 mg (22%) of the desired product. MP = 258-9°C; 1H NMR (CDC13, 300 MHz) 9.05 (d, J = 2.9 Hz, 1 H), 8.44 (dd, J = 8.7, 2.9 Hz, 1 H), 7.46 (d, J = 9.3 Hz, 1 H), 15 5.69 (s, 1 H), 3.91-3.86 (m, 4 H), 3.61-3.56 (m, 4 H); UV (EtOH) 226 (23,700), 234sh (19,000), 282 (17,600), 316 (15,000); LRMS m/e (rel. intensity) 277 (28), 276 (100), 261 (38), 219 (80), 218 (53), 191 (38), 172 (19), 55 (30), 53 (35), 41 (31); IR (mull) 2954, 2924, 2856, 1637, 1627, 1604, 1565, 20 1447, 1422, 1347, 1253, 1126, 740, 638; HRMS calc'd. for C13H12N2O5: 276.0746; found: 276.0742; anal calc'd. for C13H12N2O5: C, 56.52, H, 4.38, N, 10.14; found: C, 56.32, H, 4.52, N, 10.16.

Relating to Chart E:

25 Example 39 Preparation of 7-hydroxy-2-(4-morpholinyl)-8-methyl-4H-1-benzopyran-4-one, Compound 39 (according to Chart E)

Alternate Part A

2',4',-Dihydroxy-3'-methyl-acetophenone (90% purity,
30 1.108g, 6 mmole) is suspended in 25ml 1,2-dichloroethane and
the mixture is treated with boron trifluoride etherate (1.48ml,
12 mmole) while stirring in a 50ml one neck round bottom flask
under nitrogen. The mixture is stirred for 30 min at room
temperature and is subsequently treated with morpholine-435 phosgene iminium chloride (2.70g, 13.2 mmole). The reaction
mixture is warmed to 70°C for 3h. The reaction is cooled to
room temperature and the insoluble orange solid is collected by
filtration and the filter cake is washed well with

-28-

diethylether. The solid is taken up in 25ml acetonitrile in a 50ml one neck round bottom flask under nitrogen and the solution is cooled to 0 C. The mixture is treated with 2.5ml water and the reaction is stirred for 48h as the cooling bath 5 expired. The acetonitrile is removed in vacuo and the residue diluted with 75ml 2:1 saturated carefully bicarbonate/sodium chloride. The mixture is extracted with 4 X 35ml dichloromethane. The combined organics are dried over magnesium sulfate and are concentrated in vacuo to an amber 10 solid. The solid is washed successively with ethylacetate and diethylether to afford 980mg (44%) of [8-methyl-2-(4morpholinyl) -4-oxo-4H-1-benzopyran-7-yl]4-morpholinyl carboxylic acid ester (Cpd 100) mp. 232-234°C. The carbamate (945mg, 2.51 mmole) is suspended in 9ml 2/1 methanol/water in 15 a 25ml on neck round bottom flask under nitrogen. suspension is treated with lithium hydroxide (236mg, 5.62 mmole) and the reaction mixture is stirred for 48h at room temperature. The methanol is removed in vacuo and the pH of the aqueous residue is adjusted to pH = 4.9 by the addition of 5% 20 hydrochloric acid. The precipitated material is collected by filtration and is dried in vacuo at 25 C to afford 569mg (87%) of phenol 39 (mp. > 250 C) as a chalky grayish solid. Second Alternate Part A

2',4'-Dihydroxy-3'-methyl-acetophenone (90% purity, 25 18.46g, 100 mmole) is suspended in 50 ml diethylether in a 100 ml one neck round bottom flask under nitrogen. The mixture is treated with boron trifluoride etherate (18.45ml, 150 mmole) and the reaction is stirred overnight at room temperature. The precipitated material is collected by filtration and the filter 30 cake is washed well with fresh diethylether. The filtered is air dried to afford 10.45g (47%) material difluoroboronate salt as a yellow solid.

The difluoroboronate salt (10.45g, 47 mmole) is combined with morpholine-4-phosgene iminium chloride (21.2g, 104 mmole) in 125ml 1,2-dichloroethane in a 250ml one neck round bottom flask under argon. The reaction mixture is warmed to 70 C for 3h and is cooled to room temperature. The orange-yellow precipitate is collected by filtration and is washed

successively with 1,2-dichloroethane and diethylether to provide 25.3g of an orange solid. The solid is suspended in 200ml acetonitrile in a 500ml one neck round bottom flask and the mixture is cooled to 0 C. The cooled mixture is treated 5 with 20ml water and after stirring 20 min at 0 C, the reaction mixture is stirred overnight at room temperature. The mixture is subsequently cooled to -33 C for 2h and the precipitated hydrochloride salt is collected by filtration and is washed with 125ml ice cold acetonitrile. The filter cake is dried to 10 provide 13.25g (69%) of the carbamate-chromone hydrochloride as a white solid. The filtrate is concentrated in vacuo to an amber syrup. The syrup is diluted with 100ml saturated sodium bicarbonate and the mixture is extracted with 4 X 50ml dichloromethane. The combined organics are dried over magnesium 15 sulfate and are concentrated in vacuo to a reddish oil which upon crystallization with ethylacetate yielded 875mg (5%) of carbamate-chromone as a yellow solid. Hydrolysis of the carbamate-chromone as described in method B affords the desired phenol.

20 Part B

35

7-Hydroxy-8-methyl-2-(4-morpholinyl)-4H-1-benzopyran-4-one (0.50g, 1.91mmol) is suspended in 15ml of acetonitrile. 1.3 g of potassium carbonate is added followed by 0.39g (2.1mmol) of alphabromo-p-xylene. The mixture is refluxed for 5 hours.

25 0.04 g of additional alkylating agent is added and the mixture is refluxed for 2 hours. The cooled mixture is diluted with 5ml of water and filtered. The white solid is washed with water and dried. The solid is recrystallized from ethyl acetate to afford 0.59g (84%) of the product 48 (mp. 167.5-168°C).

Following the general procedure of Example 39 but employing the appropriate hydroxyacetophenone the following products are prepared:

Cpd 216 8-Methyl-7-[(2-methoxy)ethyl]oxy-2-(4-morpholinyl)-4H-1-benzopyran-4-one, mp. 165-166;

Cpd 219 8-Methyl-7-[(2-thiomethyl)ethyl]oxy-2-(4-Morpholinyl)-4H-1-benzopyran-4-one, mp.

	•	182.5-184;
	Cpd 221	8-Methyl-7-[2-(phenylmethoxy)ethyl]oxy-2-
	-	(4-morpholinyl)-4H-1-benzopyran-4-one,mp.
		155-156;
5	Cpd 222	7-[2-(Hydroxy)ethyl]oxy-8-methyl-2-(4-
3	cpa ccc	morpholinyl)-4H-1-benzopyran-4-one, mp.
		267-268;
	Cpd 333	7-[2-(2-methoxyethoxy)ethoxy]-8-methyl-2-
	cpa 333	(4-morpholinyl)-4H-1-Benzopyran-4-one, mp.
10		127-128;
10	ond 224	8-methyl-2-(4-morpholinyl)-7-(2-
	Cpd 334	phenoxyethoxy)-4H-1-Benzopyran-4-one, mp.
		178-179;
	Cpd 251	N-cyclohexyl-N-methyl-2-[[2-(4-
15	Cpu 231	morpholinyl)-4-oxo-4H-1-benzopyran-6-
13		yl]oxy]-Acetamide, mp. 168-169;
	Cpd 252	2-(4-morpholinyl)-6-(1-
	Cpu 232	naphthalenylmethoxy)-4H-1-Benzopyran-4-
		one, mp. 205-207;
20	Cpd 262	8-methyl-2-(4-morpholinyl)-7-[(1-phenyl-
20		1H-tetrazol-5-yl)methoxy]-4H-1-Benzopyran-
		4-one, mp. 238-241;
	Cpd 263	5-[[[8-methyl-2-(4-morpholinyl)-4-oxo-4H-
	opa so	1-benzopyran-7-yl]oxy]methyl]-α-
25		(phenylmethyl)-1H-Tetrazole-1-acetic acid
		ethyl ester, mp. 61-68;
	Cpd 266	7-[[1-(1,1-dimethylethyl)-1H-tetrazol-5-
		yl]methoxy]-8-methyl-2-(4-morpholinyl)-4H-
		1-Benzopyran-4-one, mp. 261-263;
30	Cpd 271	8-methyl-1-(4-morpholinyl)-7-[[1-(1-
	•	phenylethyl)-1H-tetrazol-5-yl]methoxy]-4H-
		1-Benzopyran-4-one, mp. 181-183;
	Cpd 298	7-(acetyloxy)-6-bromo-8-methyl-2-(4-
	•	morpholinyl)-4H-1-Benzopyran-4-one, mp.
35		249.5-250.5;
	Cpd 299	7-(acetyloxy)-6,8-dimethyl-2-(4-
	-	morpholinyl)-4H-1-Benzopyran-4-one, mp.
		245-246;

	Cpd 300	7-hydroxy-6,8-dimethyl-2-(4-morpholinyl)-
		4H-1-Benzopyran-4-one, mp. >300;
	Cpd 301	7-(acetyloxy)-6-iodo-8-methyl-2-(4-
		morpholinyl)-4H-1-Benzopyran-4-one, mp.
5		214-216, dec;
	Cpd 302	7-hydroxy-6-iodo-8-methyl-2-(4-
	•	morpholinyl)-4H-1-Benzopyran-4-one, mp.
		243-244, dec;
	Cpd 303	6-bromo-7-hydroxy-8-methyl-2-(4-
10	-	morpholinyl)-4H-1-Benzopyran-4-one, mp.
10		284-285, dec;
	Cpd 305	2-(4-morpholinyl)-8-(2-quinolinylmethoxy)-
	cpu sus	4H-1-Benzopyran-4-one, mp. 247-248;
	Cpd 312	2-(4-morpholinyl)-8-(2-propenyloxy)-4H-1-
15	Cpa 312	Benzopyran-4-one, mp. 158-159; and
15	Cpd 286	7-(acetyloxy)-2-(4-morpholinyl)-8-(2-
	Cpa 200	propenyl)-4H-1-Benzopyran-4-one, mp. 183-
		184.5;
	and 207	7-(acetyloxy)-2-(4-morpholinyl)-8-propyl-
20	Cpd 287	4H-1-Benzopyran-4-one, mp. 183.5-184.5;
20	a 3 ann	7-hydroxy-2-(4-morpholinyl)-8-propyl-4H-1-
	Cpd 288	Benzopyran-4-one, mp. 294-297;
	o-1 200	7-[2-(4-methyl-1-piperazinyl)ethoxy]-2-(4-
	Cpd 289	morpholinyl)-8-propyl-4H-1-Benzopyran-4-
		one, mp. 158-159;
25		2-(4-morpholinyl)-8-propyl-7-[2-(1-
	Cpd 290	pyrrolindinyl)ethoxy]-4H-1-Benzopyran-4-
	-	- -
		one, mp. 162-163.5;
	Cpd 291	2-(4-morpholinyl)-7-[2-(1-
30		piperidinyl)ethoxy]-8-propyl-4H-1-
		Benzopyran-4-one, mp. 174-174.75;
	Cpd 292	2-(4-morpholinyl)-7-[2-(4-phenyl-1-
		piperidinyl) ethoxy]-8-propyl-4H-1-
		Benzopyran-4-one, mp. 142.5-143.5;
35	Cpd 293	2-(4-morpholiny1)-8-propy1-7-[2-(4-
		thiomorpholinyl)ethoxy]-4H-1-Benzopyran-4-
		one, mp. 161.5-162;
	Cpd 294	(R) -7 - [2 - [2 - (hydroxymethyl) -1 -

		pyrrolidinyl]ethoxy]-2-(4-morpholinyl)-8-
		propyl-4H-1-Benzopyran-4-one, mp. 127.5-
		129;
	Cpd 320	7-[2-(4-methyl-1-piperazinyl)ethoxy]-2-
5	-	2(4-morpholinyl)-8-(2-propenyl)-4H-1-
		Benzopyran-4-one, mp. 165-165.5;
	Cpd 321	2-(4-morpholinyl)-8-(2-propenyl)-7-[2-(1-
	•	pyrrolidinyl) ethoxy -4H-1-Benzopyran-4-
		one, mp. 169.5-171;
10	Cpd 322	2-(4-morpholiny1)-7-[2-(1-
	•	piperidinyl)ethoxy]-8-(2-propenyl)-4H-1-
		Benzopyran-4-one, mp. 184.5-186;
	Cpd 323	2-(4-morpholinyl)-7-[2-(4-phenyl-1-
	-	piperidinyl)ethoxy]-8-(2-propenyl)-4H-1-
15		Benzopyran-4-one, mp. 148.5-149;
	Cpd 324	2-(4-morpholinyl)-8-(2-propenyl)-7-[2-(4-
	-	thiomorpholinyl)ethoxy]-4H-1-Benzopyran-4-
		one, mp. 165-166.5;
	Cpd 325	(R) -7 - [2 - [2 - (hydroxymethyl) -1 -
20	_	pyrrolidinyl]ethoxy]-2-(4-morpholinyl)-8-
		(2-propenyl)-4H-1-Benzopyran-4-one, mp.
		136.5-138;
	Cpd 348	7-[(1-cyclopropyl-1H-tetrazol-5-yl)
		methoxy]-8-methyl-2-(4-morpholinyl)-4H-1-
25		Benzopyran-4-one, mp. 241-242; and
	Cpd 349	7-[(1-cyclobutyl-1H-tetrazol-5-yl)
		methoxy]-8-methyl-2-(4-morpholinyl)-4H-1-
		Benzopyran-4-one, mp. 179-181.
	Example 83	Preparation of 6-Methyl-2-(4-morpholinyl)-4H-
30	•	1,3-benzoxazin-4-one, Compound 83

The methyl ester of 5-methylsalicylic acid (2.73 g; 16.4 mmol) is dissolved in acetone (50 ml), cyanogen bromide (1.81g; 17.2 mmol) is added and the solution is cooled to 0°C. Triethylamine (1.73 g; 18.2 mmol) is dissolved in acetone (5 ml) and added dropwise. Precipitation occurred rapidly and the solid is removed by filtration. The filtrate is concentrated in vacuo to afford 3.41 g of the intermediate cyanoether. The cyanoether is dissolved in acetonitrile (50 ,1), morpholine

(1.43 g; 16.4 mmol) is added in 5 ml of acetonitrile and the reaction is stirred for two hours at room temperature. Crystals form and the reaction mixture is cooled to 0°C, and washed with cold acetonitrile to afford 1.65 g (40.8%). Mother 5 liquors are recrystallized from acetonitrile to afford 0.54 g (13.4%); mp. 197-197.9°C; IR (mull) 2955, 2923, 2858, 1674, 1619, 1576, 1466, 1453, 1433, 1424, 1333, 1325, 1315, 1112, 817 cm^{-1} ; ¹H-NMR (CDCl₃, δ) 7.91 (d, J=1.4 Hz, 1 H, aromatic), 7.40 (d of d's, J=8.3 Hz, 1.9 Hz, 1 H, aromatic), 7.09 (d, J=8.4 Hz, 10 1 H, aromatic), 3.81 (broad s, 8H, morpholine methylenes), 2.40 (s, 3 H, methyl); UV λ max (ϵ) 217sh(26,550), 223sh(26,350), 259(15,100), 296(4,250), 304sh(3,550); Mass spectrum, ions at m/e (relative intensity) 246(parent, 29), 218(10), 189(20), 134(base, 100), 106(18), 105(10), 78(12), 77(8), 28(19); Anal. Calc'd. for: $C_{13}H_{14}N_2O_3$: C, 63.40; H, 5.73; N, 15

11.38. Found: C, 63.29; H, 5.92; N, 11.31.

Following the general procedure of Example 83, but employing the appropriate o-hydroxy salicylic methyl ester in place of the methyl ester of 5-methylsalicylic acid there are prepared the following product:

Cpd 346 7-Acetoxy-8-methyl-2-(4-morpholinyl)-4H1,3-benzoxazin-4-one, mp. 263-264.

Example 194 (Relating to Chart G)

25 Part A

Preparation of 4'-acetoxy-3'-iodo-2'-hydroxy-propiophenone 2',4'-dihydroxy-3'-iodoacetophenone (55.6 g, 0.2 mol) is suspended in 600 ml of methylene chloride. Triethylamine (27.8 ml, 0.2 mol) is added and the cooled mixture (0°C) is treated dropwise with acetyl chloride (16.35 ml, 0.23 mol). The mixture is stirred at 0°C for 1 h and at ambient temperature for 2 h. The mixture is washed with 5% hydrochloric acid, dried owver magnesium sulfate and evaporated. The solid is recrystallized from ethanol to provide 48.39 g of the product.

35 Part B
Preparation of 7-acetyloxy-8-iodo-2-(4-morpholinyl)-4H-1benzopyran-4-one (Cpd 194)

4'-Acetoxy-3'-iodo-2'-hydroxy-propiophenone (48.4 g, 0.15

mol) is suspended in 750 ml of ether and treated with boron trifluoride etherate (27.9 ml, 0.22 mol). The mixture is stirred overnight at ambient temperature, filtered and the solid is washed well with ether to afford 47.0 g of the boron 5 difluoride complex. The complex is combined with 4-morpholine dichloromethyleniminium chloride in 400 ml of dichloride and heated at 70°C for 5 h and at 50°C for 16 h. The reaction is cooled to 0°C and the solid is filtered and washed well with ether (45 g). The solid is suspended in 400 10 ml of acetonitrile, 40 ml of water is added and the mixture is stirred overnight at room temperature, heated at 50°C for 2 h and finally heated at 60°C for 30 min. The solvent is evaporated and the material is taken up in methylene chloride/ saturated sodium bicarbonate. The aqueous layer is extracted 15 twice with methylene chloride and the combined organics are dried over magnesium sulfate. Evaporation of the solvent and recrystallization from methanol gave 20.8 g (39%) of the chromone. The mother liquors contained 5.8 g of crude product from which a second recrystallization yielded 0.7 q. 20 201.5-202.5

Part C

Preparation of 8-ethyl-7-hydroxy-2-(4-morpholinyl)-4H-1-benzopyran-4-one

7-Acetyloxy-8-iodo-2-(4-morpholinyl)-4H-1-benzopyran-4-one 25 (2.07 g, 5.0 mmol) is combined with lithium chloride (0.64 g, tetraethyltin (1.04 ml, 5.25 mmol) (bis) triphenylphosphine palladium dichloride (70 mg, 0.10 mmol) in 20 ml of dimethylformamide. The mixture is heated a 100°C for 40 min., poured into half saturated sodium chloride and 30 extracted twice with methylene chloride. The organics are washed twice with half saturated sodium chloride, dried over magnesium sulfate and evaporated. The material is taken up in 20 ml of methanol and 10 ml of water and treated with 0.63 g (15 mmol) of lithium hydroxide. The mixture is stirred at room 35 temperature for 30 min. The solvent is evaporated, the mixture is diluted with water and extracted twice with ethyl acetate. The aqueous layer is acidified to pH 6.1 with 5% hydrochloric acid and the solid is filtered, washed with ether and dried to

5

afford 0.98 g (71%) of the product. Part D

Preparation of 8-ethyl-2-(4-morpholinyl)-7-(3-pyrindinylmethoxy)-4H-1-benzopyran-4-one (Cpd 195)

8-Ethyl-7-hydroxy-2-(4-morpholinyl)-4H-1-benzopyran-4-one (0.176 g, 0.64 mmol) and sodium hydride (0.105 g, 60%, 2.6 mmol) are combine in 4 ml of dimethylformamide and heated to 60°C for 20 min. 3-Picoyl chloride hydrochloride (0.321 g, 1.76 mmol) is added and the mixture is heated at 60°C for 1 h. 10 The cooled mixture is poured into 2N sodium hydroxide and ice. The solid is filtered, washed well with water and ether and recrystallzed form ethyl acetate to provide 0.156 g of the product. mp.178-179

Following the general procedure of Example 194, but 15 starting with the 2'-hydroxyacetophonone, there are prepared the following products:

	tue lottom	rng	produces.
	Cpd 2	17	2-(4-Morpholinyl)-7-phenylmethoxy-8-vinyl-
			4H-1-benzopyran-4-one, mp. 181-182.5;
	Cpd 2	18	2-(4-Morpholinyl)-8-phenyl-7-
20	_		phenylmethoxy-4H-1-benzopyran-4-one, mp.
			178.5-180.5;
	Cpd 2	73	8-buty1-2-(4-morpholiny1)-7-
	•		(phenylmethoxy)-4H-1-Benzopyran-4-one,mp.
			142-143;
25	Cpd 2	80	8-ethyl-2-(4-morpholinyl)-7-[2-(4-phenyl-
	•		1-piperidinyl)ethoxy]-4H-1-Benzopyran-4-
			one, mp. 178-179;
	Cpd 2	81	(R)-8-ethyl-7-[2-[2-(hydroxymethyl)-1-
	-		pyrrolidinyl]ethoxy]-2-(4-morpholinyl)-4H-
30			1-Benzopyran-4-one, mp. 127-128.5;
30	Cpd 2	82	8-ethy1-2-(4-morpholiny1)-7-[2-(4-
	opu -		thiomorpholinyl) ethoxy]-4H-1-Benzopyran-4-
			one, mp. 151.5-153.5;
	Cpd 2	283	8-ethyl-7-[2-(4-methyl-1-
35	-		<pre>piperazinyl)ethoxy]-2-(4-morpholinyl)-4H-</pre>
			1-Benzopyran-4-one, mp. 124-124.5;
	Cpd 3	326	8-ethenyl-7-[2-(4-methyl-1-
			piperazinyl)ethoxy]-2-(4-morpholinyl)-4H-
			• •

	Cpd 327	1-Benzopyran-4-one, mp. 151-152; 8-ethenyl-2-(4-morpholinyl)-7-[2-(1-piperidinyl)ethoxy]-4H-1-Benzopyran-4-one,
. 5	Cpd 328	mp. 161-162; 8-ethenyl-1-(4-morpholinyl)-7-[2-(4-phenyl-1-piperidinyl)ethoxy]-4H-1-
	Cpd 329	Benzopyran-4-one, mp. 169-169.5; 8-ethenyl-2-(4-morpholinyl)-7-[2-(1-pyrrolidinyl)ethoxy]-4H-1-Benzopyran-4-
10	Cpd 330	one, mp. 155-156; 8-ethenyl-2-(4-morpholinyl)-7-[2-(4-thiomorpholinyl)ethoxy]-4H-1-Benzopyran-4-
15	Cpd 331	one, mp. 210.5-211.5; and (R)-8-ethenyl-7-[2-[2-(hydroxymethyl)-1- pyrrolidinyl]ethoxy]-2-(4-morpholinyl)-4H-
	Example 208	1-Benzopyran-4-one, mp. 115-117 Preparation of 7-(2-Bromoethyl)oxy-8-methyl-2- (4-morpholinyl)-4H-1-benzopyran-4-one(Relating to Chart J)

20 Part A

Cpd 39 (13.1g) is suspended in 150ml of 50% sodium hydroxide in a 500ml flask. The mixture is treated successively with 2.8g (8.2 mmol) tetrabutylammonium hydrogen sulfate and 50ml (0.58 mol) of 1,2-dibromoethane. The reaction 25 mixture is warmed to 60°C for 2h and cooled to 0°C. The solid is collected and washed well with 2N NaOH, water and ether. The material is dissolved in chloroform, adsorbed onto 30g of silica gel (230-400 mesh) and chromatographed over 400g silica gel, eluting with 4% methanol/methylene chloride to afford 8.1g (40%) of 7-(2-Bromoethyl)oxy-8-methyl-2-(4-morpholinyl)-4H-1-benzopyran-4-one, mp. 210-211.5°C

Part B

35

Preparation of 7-[2-(4-Methyl-1-piperazinyl)ethyl]oxy-8-methyl-2-(4-morpholinyl)-4H-1-benzopyran-4-one (Cpd 208)

7-(2-Bromoethyl)oxy-8-methyl-2-(4-morpholinyl)-4H-1benzopyran-4-one (4.0g, 10.9 mmol) is suspended in 10ml chloroform and 7ml of N-methyl piperazine is added. The reaction is warmed to reflux for 5h and cooled to room temperature. The mixture is partitioned between 50ml of 1:1 2N NaOH/saturated NaCl and 25ml of methylene chloride. The combined organics were dried over magnesium sulfate, concentrated in vacuo, and chromatographed over 80g silica gel, eluting with 15% methanol/dichlormethane to afford 3.5g (83%) of cpd 208, mp. 159-159.5, after recrystallization from ethyl acetate.

Following the general procedure of Example 208 (Part B), using the appropriate bromoethyloxy-2-(4-morpholinyl)-4H-110 benzopyran-4-one and employing the appropriate amine, alcohol or sulfide nucleophile, there are prepared the following products:

	produces.	
	Cpd 209	7-(2-(2-Hydroxymethylpiperidin-1-yl)ethyl)oxy-8-methyl-2-(4-morpholinyl)-
15		4H-1-benzopyran-4-one, mp. 142-144;
	Cpd 210	7-(2-(3-Hydroxymethylpiperidin-1-
		yl)ethyl)oxy-8-methyl-2-(4-morpholinyl)-
		4H-1-benzopyran-4-one, mp. 143-145;
	Cpd 211	7-(2-(2-Carboethoxypiperidin-1-
20	opu and	yl)ethyl)oxy-8-methyl-2-(4-morpholinyl)-
20		4H-1-benzopyran-4-one, mp. 91.5-92.5;
	Cpd 212	7-(2-(3-Carboethoxypiperidin-1-
	opa ua-	yl)ethyl)oxy-8-methyl-2-(4-morpholinyl)-
		4H-1-benzopyran-4-one, mp. 113-115;
25	Cpd 213	8-Methyl-7-(2-(2-methylpiperidin-1-
23	opu 110	yl)ethyl)oxy-2-(4-morpholinyl)-4H-1-
		benzopyran-4-one, mp. 108-110;
	Cpd 214	7-(2-(3-Carboxypiperidin-1-yl)ethyl)oxy-8-
		methyl-2-(4-morpholinyl)-4H-1-benzopyran-
30		4-one, mp. 226.5-228.5;
50	Cpd 215	8-Methyl-2-(4-morpholinyl)-7-[2-(1-
	opu III	piperazinyl)ethyl]oxy-4H-1-benzopyran-4-
		one, mp. 112-114;
	Cpd 220	8-Methyl-2-(4-morpholinyl)-7-[2-(4-(2-
35		hydroxy) ethyl-1-piperazinyl) ethyl]oxy-4H-
33		1-benzopyran-4-one, mp. 192.5-193.5;
	Cpd 223	8-Methyl-2-(4-morpholinyl)-7-[2-(2-
		thiopyrindinyl)ethyl]oxy-4H-1-benzopyran-
		- ·

	•	4-one, mp. 146-147;
	Cpd 224	8-Methyl-2-(4-morpholinyl)-7-[2-(4-
		thiopyrindinyl)ethyl]oxy-4H-1-benzopyran-
		4-one, mp. 211.5-212;
5	Cpd 225	7 - [2 - (4 - (2 - Ethoxyphenyl) - 1 -
	•	piperazinyl) ethyl]oxy-8-methyl-2-(4-
		morpholinyl)-4H-1-benzopyran-4-one, mp.
		158-159;
	Cpd 226	8-Methyl-7-[2-((1-Methyl-1,3-imidazol-2-
10	-	yl)thio)ethyl]oxy-2-(4-morpholinyl)-4H-1-
		benzopyran-4-one, mp. 170-170.5;
	Cpd 227	7 - [2 - ((B i s - N , N ' - (2 -
	•	methoxy) ethoxy) amino) ethyl]oxy-8-methyl-2-
		(4-morpholinyl)-4H-1-benzopyran-4-one, mp.
15		88-89;
	Cpd 228	8-Methyl-7-[2-((4-Methyl-1,2,4-triazol-3-
	•	yl) thio) ethyl]oxy-2-(4-morpholinyl)-4H-1-
		benzopyran-4-one, mp. 221-221.5;
	Cpd 229	· 7 - [2 - (N - E t h y 1 - N ' - ((2 -
20	_	hydroxy) ethyl) amino) ethyl]oxy-8-methyl-2-
		(4-morpholinyl)-4H-1-benzopyran-4-one,mp.
		144-145;
	Cpd 230	8-Methyl-7-[2-((1-Methyl-5-
		tetrazoyl)thio)ethyl]oxy-2-(4-
25		morpholinyl)-4H-1-benzopyran-4-one, mp.
		188.5-189.5;
	Cpd 231	8-Methyl-2-(4-morpholinyl)-7-[2-((2-
		pyrimidinyl)thio)ethyl]oxy-4H-1-
	•	benzopyran-4-one, mp. 202.5-203.5;
30	Cpd 232	8-Methyl-2-(4-morpholinyl)-7-[2-(4-(2-
		pyridinyl)-1-piperazinyl)ethyl]oxy-4H-1-
		benzopyran-4-one, mp. 207-208;
	Cpd 233	8-Methyl-2-(4-morpholinyl)-7-[2-(4-
		thiomorpholinyl)ethyl]oxy-4H-1-benzopyran-
35		4-one, mp. 207.5;
	Cpd 234	7 - [2 - ((2 - (B i s - N , N ' -
		diethylamino) ethyl) thio) ethyl] oxy-8-
		Methyl-2-(4-morpholinyl)-4H-1-benzopyran-

	Cpd 235	4-one, mp. 101-103; 8 - M e t h y l - 7 - [2 - ((2 - benzoxazolyl)thio)ethyl]oxy-2-(4-morpholinyl)-4H-1-benzopyran-4-one, mp.
5	Cpd 236	221-222; 8 - M e t h y l - 7 - [2 - ((2 - benzothiazolyl)thio)ethyl]oxy-2-(4-morpholinyl)-4H-1-benzopyran-4-one, mp.
10	Cpd 237	185.5-187; 7-[2-(4-(3-Ethylamino-pyridin-2-yl)-1-piperazinyl) ethyl]oxy-8-methyl-2-(4-morpholinyl)-4H-1-benzopyran-4-one, mp.
15	Cpd 238	168-169; 8-Methyl-2-(4-morpholinyl)-7-[2- (pyrrolidinone-1-yl)ethyl]oxy-4H-1- benzopyran-4-one, mp. 144.5-145.5; and
	Cpd 335	8-methyl-2-(4-morpholinyl)-7-[2- (phenylthio)ethoxy]-4H-1-Benzopyran-4-one,
20	Cpd 242	mp. 158-159; 2-(4-morpholinyl)-8-[2-(2- pyridinylthio)ethoxy]-4H-1-Benzopyran-4- one, mp. 148-149;
	Cpd 243	8-[2-[4-(2-ethoxyphenyl)-1- piperazinyl]ethoxy]-2-(4-morpholinyl)-4H-
. 25	Cpd 244	1-Benzopyran-4-one, mp. 133-134; 8-[2-[4-[3-(ethylamino)-2-pyridinyl]-1-piperazinyl]ethoxy]-2-(4-morpholinyl)-4H-
30	Cpd 245	1-Benzopyran-4-one, mp. 122-123; 2-(4-morpholinyl)-8-[2-(1-piperidinyl)ethoxy]-4H-1-Benzopyran-4-one, mp. 127.5-128.5;
	Cpd 246	8-methyl-2-(4-morpholinyl)-7-[2- (phenylsulfinyl)ethoxy]-4H-1-Benzopyran-4-
35	Cpd 247	one, mp. 202-203; 7-[2-[bis(2-pyridinylmethyl)amino]ethoxy]- 8-methyl-2-(4-morpholinyl)-4H-1-
	Cpd 248	Benzopyran-4-one, mp. 106-108; (S)-7-[2-[2-(hydroxymethyl)-1-

		· •
		pyrrolidinyl]ethoxy]-8-methyl-2-(4-
		morpholinyl)-4H-1-Benzopyran-4-one, mp.
		138-139;
	Cpd 249	7-[2-[bis[(4-methoxyphenyl)methyl]
5		amino]ethoxy]-8-methyl-2-(4-morpholinyl)-
		4H-1-Benzopyran-4-one, mp. 117-119;
	Cpd 250	8-methyl-2-(4-morpholinyl)-7-[2-(3-
		thiazolindinyl)ethoxy]-4H-1-Benzopyran-4-
		one, mp. 158-160.5;
10	Cpd 253	7-[2-[(2-methoxyphenyl)thio]ethoxy]-8-
•		methyl-2-(4-morpholinyl)-4H-1-Benzopyran-
		4-one, mp. 155-156;
	Cpd 254	8-methyl-2-(4-morpholinyl)-7-[2-(3-
		piperidinyloxy)ethoxy]-4H-1-Benzopyran-4-
15		one, mp. 204-205;
	Cpd 255	7-[2-(hexahydro-1H-azepin-1-y1)ethoxy]-8-
		methyl-2-(4-morpholinyl)-4H-1-Benzopyran-
	- 1	4-one, mp. 153-154; 8-methyl-2-(4-morpholinyl)-7-[2-(4-phenyl-
	Cpd 256	1-piperazinyl) ethoxy]-4H-1-Benzopyran-4-
20		one, mp. 242.5-243.5;
	cm4 257	8-methyl-2-(4-morpholinyl)-7-[2-(4-phenyl-
	Cpd 257	1-piperidinyl)ethoxy]-4H-1-Benzopyran-4-
		one, mp. 177-178;
25	Cpd 258	(R) -7-[2-[2-(hydroxymethyl)-1-
2.0	opu see	pyrrolidinyl]ethoxy]-8-methyl-2-(4-
		morpholinyl)-4H-1-Benzopyran-4-one, mp.
		132-134;
	Cpd 259	7-[2-(3-hydroxy-1-pyrrolidinyl)ethoxy]-8-
30	-	methy]-2-(4-morpholinyl)-4H-1-Benzopyran-
		4-one, mp. 160-161;
	Cpd 260	7-[2-[4-(2-chlorophenyl)-1-
		piperazinyl]ethoxy]-8-methyl-2-(4-
		morpholinyl)-4H-1-Benzopyran-4-one, mp.
35		171-172;
	Cpd 261	2-(4-morpholiny1)-8-[2-(4-pheny1-1-
		<pre>piperidinyl) ethoxy]-4H-1-Benzopyran-4-one,</pre>
		mp. 138-139;

	Cpd 268	8-methyl-7-[2-[methyl[2-(2-pyridinyl)ethyl]amino]ethoxy]-2-(4-morpholinyl)-4H-1-Benzopyran-4-one, mp. 83-84;
5	Cpd 269	8-methyl-2-(4-morpholinyl)-7-[2-(2-pyridinyloxy)ethoxy]-4H-1-Benzopyran-4-one, mp. 175-175.5;
	Cpd 272	6-chloro-8-methyl-7-[2-(4-methyl-1-piperazinyl)ethoxy]-2-(4-morpholinyl)-4H-1-Benzopyran-4-one, mp. 155-156;
10	Cpd 279	8-ethyl-2-(4-morpholinyl)-7-[2-(1-pyrrolidinyl)ethoxy]-4H-1-Benzopyran-4-one, mp. 144-145;
15	Cpd 285	7 - [2 - (3, 4 - dihydro - 2(1H) - isoquinolinyl)ethoxy]-8-methyl-2-(4-morpholinyl)-4H-1-Benzopyran-4-one, mp.
	Cpd 295	143-144; 8 - [2 - (3, 4 - dihydro - 2(1H) - isoquinolinyl)ethoxy]-2-(4-morpholinyl)-
20	Cpd 296	4H-1-Benzopyran-4-one, mp. 157-158; 2-(4-morpholinyl)-8-[2-[4-(phenylmethyl)- 1-piperazinyl]ethoxy]-4H-1-Benzopyran-4-
25	Cpd 297	one, mp. 151.5-152.5; 8-[2-[4-[(4-chlorophenyl)phenylmethyl]-1-piperazinyl]ethoxy]-2-(4-morpholinyl)-4H-1-Benzopyran-4-one, mp. 167-168;
	Cpd 304	8-[2-(ethylphenylamino)ethoxyl]-2-(4-morpholinyl)-4H-1-Benzopyran-4-one, mp. 127-128;
30	Cpd 306	1-[2-[[2-(4-morpholinyl)-4-oxo-4H-1-benzopyran-8-yl]oxy]ethyl]-3-Piperidinecarboxylic acid ethyl ester, mp.
35	Cpd 307	83-85; 1-[2-[[2-(4-morpholinyl)-4-oxo-4H-1-benzopyran-8-yl]oxy]ethyl]-2- piperidinecarboxylic acid ethyl ester, mp. 119-120;
	Cpd 309	6,8-dimethyl-7-[2-(4-methyl-1-

		piperazinyl)ethoxy]-2-(4-morpholinyl)-4H-
		1-Benzopyran-4-one, mp. 135-136.5;
	Cpd 310	6,8-dimethyl-2-(4-morpholinyl)-7-[2-(1-
		<pre>piperidinyl)ethoxy]-4H-1-Benzopyran-4-one,</pre>
5		mp. 139.5-140.5;
	Cpd 311	6,8-dimethyl-2-(4-morpholinyl)-7-[2-(1-
		pyrrolindinyl)ethoxy]-4H-1-Benzopyran-4-
		one, mp. 144-145;
	Cpd 314	6-iodo-8-methyl-2-(4-morpholinyl)-7-[2-(1-
10		pyrrolidinyl)ethoxy]-4H-1-Benzopyran-4-
		one, mp. 171-172;
	Cpd 315	6-iodo-8-methyl-2-(4-morpholinyl)-7-[2-(1-
		<pre>piperidinyl) ethoxy]-4H-1-Benzopyran-4-one,</pre>
		mp. 170-171;
15	Cpd 316	6-iodo-8-methyl-7-{2-(4-methyl-1-
		<pre>piperazinyl)ethoxy]-2-(4-morpholinyl)-4H-</pre>
		1-Benzopyran-4-one, mp. 174-175;
	Cpd 317	6-bromo-8-methyl-2-(4-morpholinyl)-7-[2-
		(1-pyrrolidinyl)ethoxy]-4H-1-Benzopyran-4-
20		one, mp. 171-172;
	Cpd 318	6-bormo-8-methyl-2-(4-morpholinyl)-7-[2-
		(1-piperidinyl) ethoxy -4H-1-Benzopyran-4-
		one, mp. 175-176;
	Cpd 319	6-bromo-8-methyl-7-[2-(4-methyl-1-
25		<pre>piperazinyl)ethoxy]-2-(4-morpholinyl)-4H-</pre>
		1-Benzopyran-4-one, mp. 162-163;
	Cpd 332	2-(4-morpholinyl)-8-[2-(4-
		thiomorophlinyl)ethoxy]-4H-1-Benzopyran-4-
		one, mp. 160.5-161.5; and
30	Cpd 347	7-[2-(4-Ethyl-1-piperazinyl)ethyl]oxy-8-
	•	methyl-2-(4-morpholinyl)-4H-1-benzopyran-
		4-one, mp. 144.5-145.5.
	Example 239	Preparation of 7-[2-(4-Methyl-1-
		piperazinyl)ethyl]oxy-8-methyl-2-(4-
35		morpholinyl)-4H-1-benzopyran-4-one, mesylate
		salt Compound 239
	7-[2-(4-	Methyl-1-piperazinyl)ethyl]oxy-8-methyl-2-(4-
	morpholinyl)-	H-1-benzopyran-4-one, Cpd 208 (2.0g, 5.16 mmol)

is dissolved in 25ml of methylene chloride under nitrogen. The solution is diluted with 5ml of methanol and treated with 0.335ml (5.16 mmol) of methanesulfonic acid. The mixture is concentrated in vacuo to a residual foam. The foam is crystallized from 25ml of ethyl acetate and allowed to digest overnight. The off-white solid is collected, washed with ether and dried in vacuo for 6h at room temperature and for 24h at 50 C to afford 2.48g (99%) of the title salt (mp. 207.5-208.5)

Following the general procedure of example 239, the 10 following salts were prepared:

10	IOTIOMING Saics	ABLO Propulsor
	Cpd 240	8-Methyl-2-(4-morpholinyl)-7-(2-(1-
		piperidinyl)ethyl)oxy-4H-1-benzopyran-4-
		one, mesylate salt, mp. 151-153;
	Cpd 241	8-Methyl-2-(4-morpholinyl)-7-(3-
15	-	pyridinyl)methyl)oxy-4H-1-benzopyran-4-
		one, mesylate salt, mp. 222-223;
	Cpd 336	8-Methyl-2-(4-morpholinyl)-7-(2-
		pyridinylmethoxy)-4H-1-benzopyran-4-one,
		mesylate salt, mp. 175-176;
20	Cpd 337	8-Methyl-2-(4-morpholinyl)-7-(2-
20		pyridinylmethoxy)-4H-1-benzopyran-4-one,
	•	bismesylate salt, mp. 211-212;
	Cpd 338	8-Methyl-2-(4-morpholinyl)-7-(3-
	cpa sse	pyrindinylmethoxy)-4H-1-benzopyran-4-one,
25		bismesylate salt, mp. 218-220;
23	Cpd 339	7-[(1-cyclohexyl-1H-tetrazol-5-
	cpa 333	yl)methoxy]-8-methyl-2-(4-morpholinyl)-4H-
		1-Benzopyran-4-one, mesylate salt, mp.
		>250;
20	Cpd 340	8-Methyl-2-(4-morpholinyl)-7-(2-(1-
30	сра 340	pyrrolidinyl)ethyl)oxy-4H-1-benzopyran-4-
		one, mesylate salt, mp. 215-217;
	Cpd 341	8-Methyl-2-(4-morpholinyl)-7-[2-(1-
	Cpa 341	piperazinyl) ethyl]oxy-4H-1-benzopyran-4-
		one, mesylate salt, mp. 192-194, dec;
35	5.3.040	8-Methy1-2-(4-morpholiny1)-7-[2-(4-
	Cpd 342	thiomorpholinyl)ethyl]oxy-4H-1-benzopyran-
		4-one, mesylate salt, mp. 191-193;
		d-ous' mapliare part, wh. The that

	Cpd 343	8-Methyl-2-(4-morpholinyl)-7-[2-(4-thiomorpholinyl)ethyl]oxy-4H-1-benzopyran-
	Cpd 344	4-one, bismesylate salt, mp. 200-202; 8-methyl-2-(4-morpholinyl)-7-[2-(3-
5	opu o	pyridinyloxy)ethoxy]-4H-1-Benzopyran-4-
·	Cpd 345	one, bismesylate salt, mp. 175-177; and (R) -7-[2-[2-(hydroxymethyl)-1- pyrrolidinyl]ethoxy]-8-methyl-2-(4-
		morpholinyl) -4H-1-Benzopyran-4-one,
10		mesylate salt, mp. 161-162.5.

7-phenylmethoxy-2-methylof Preparation Example 203 thiomethyl-8-methyl-4H-1-benzopyran-4-one, Cpd 203 (Relating to Chart I)

Part A

15

Sodium hydride (50% oil dispersion washed 3x in hexane, 23.2 g, 0.48 mol) is stirred in THF (195 ml) under nitrogen in a flame dried 2 1 three-necked round bottom flask equipped with an addition funnel and a condensor. A solution of the 2hydroxyacetophenone (25 g, 97.6 mmol) and ethyl α -thiomethyl-20 acetate (130.4 g, 123 ml, 0.9 mol) in THF (164 ml) is slowly dropped into the sodium hydride slurry. After about half of the reagent solution had been added the reaction is heated with a heating gun until the reaction had begun to reflux on its The remainder of the reagent solution is slowly added 25 with stirring. After 10 min at ambient temperature and 1 h 40 min at reflux, the solution is evaporated in vacuo. solution is transferred to a separatory funnel with methylene chloride/2N HCl and shaken for about 10 min. Extraction with methylene chloride (2x) and drying over magnesium sulfate 30 affords the crude B-diketone which is not further purified.

A biphasic solution of the B-dikeone and 6N HCl (250 ml) is stirred at ambient temperature overnight. Extraction with methylene chloride and drying over magnesium sulfate afforded 127.13g of crude material after evaporation of the solvent. 35 Flash chromatography (700 g silica gel, 30-50% EtOAc/hexane) afforded 122 g of a mixture of the starting acetophenone, the thiomethylacetate, and some B-diketone and 4.94 g Cpd 203 (15%).An analytical sample is recrystallized from ether/hexane to afford white crystalline title product. mp. 110-114°C.

Part B

Preparation of 7-phenylmethoxy-2-iodomethyl-8-methyl-4H-1-5 benzopyran-4-one

A solution of Cpd 203 (4.0 g, 12.3 mmol) in methyl iodide (12.5 ml) and CH₂Cl₂ (8 ml) is stirred under reflux. After 3 days, the solution is cooled to 0°C and the yellow precipitate filtered off. The filtrate is evaporated down and the residue 10 flash chromatographed (100 g silica gel, 40% EtOAc/hexane) to afford 1.48 g of 7-phenylmethoxy-2-iodomethyl-8-methyl-4H-1benzopyran-4-one (30%). An analytical sample is prepared by recrystallization from CH2Cl2/EtOAc/hexane to afford white crystalline title product. mp. 144-7°C.

15 Part C

30

8-Methyl-2-(4-morpholinylmethyl)-7of Preparation (phenylmethoxy) -4H-1-benzopyran-4-one (Cpd 204)

Morpholine (0.21 g, 2.5 mmol) is added to a stirring 7-phenylmethoxy-2-iodomethyl-8-methyl-4H-1-20 benzopyran-4-one (1.0 g, 2.5 mmol) and triethylamine (0.25 ml, 2.5 mmol) in CHCl₃ (12 ml). After stirring at ambient temperature for 2.5 h, the solvent is evaporated in vacuo. The residue is flash chromatographed (100 g silica gel, 50-100% EtOAc/CH₂Cl₂, 45 ml fractions) to afford 0.72 g (79%) of the 25 product. Recrystallization from ether afforded a white solid title product. mp. 130-3°C.

Part D Preparation of 7-hydroxy-2-(4-morpholinylmethyl)-8-methyl-4H-1-benzopyran-4-one, Cpd 205

Palladium black (140 mg) is added to a solution of the benzyl ether Cpd 204 (0.65 g, 1.78 mmol) in EtOAc (50 ml). After shaking in a Parr hydrogenation apparatus under 50 lbs pressure of hydrogen for 23 h, the catalyst is filtered off through a cintered glass funnel rinsing with EtOAc and MeOH. 35 Evaporation of the solvent afforded 0.49 g of crude material. Flash chromatography (100 g silica gel, 4% MeOH/CH2Cl2, 50 ml fractions) afforded 35 mg (5%, fractions 6-7) of the starting material and 0.33 g (68%, fractions 11-16) of the phenol. An

20

Part E

analytical sample is prepared by recrystallization from EtOAc/ether/hexane at 4°C to afford white crystalline title product. mp. 144-6°C;

5 Preparation of 7-[(1-cyclohexyl-1H-tetrazol-5-yl)methyoxy]-8-methyl-2-(4-morpholinylmethy)-4H-1-benzopyran-4-one, Cpd 206

A suspension of Cpd 205 (100 mg, 0.36 mmol), 5-(4-chloromethyl)-1-cyclohexyltetrazole [see e.g. Chem. Pharm.

Bull. 31, 1151 (1983)] (146 mg, 0.73 mmol), and potassium carbonate (201 mg, 1.45 mmol) in acetonitrile (3 ml) is stirred at 60oC. After 17 h, the reaction mixture is evaporated down and then CHCl₃ added. The solids are filtered off and the filtrate evaporated. Flash chromatography of the residue (25 g silica gel, 3% MeOH/CH₂Cl₂, 15 ml fractions) afforded 134 mg (85%, fractions 5-6) of white crystalline title product. mp. 193-5°C.

Example 274 (Relating to chart K) Preparation of 8-Hydroxy-2-(4-morpholinylmethylene)-4H-1-benzopyran-4one

2',3'-Dihydroxy-acetophenone (7.5g, 49 mmole) is dissolved in 303ml dry tetrahydrofuran in a flame dried 1,000ml three neck round bottom flask under nitrogen. The solution is treated rapidly dropwise with potassium t-butoxide (1.0M/THF) 25 (197ml, 197 mmole) and is mechanically stirred vigorously as methyl-2-(4-morpholinyl)-acetate (10.2g, 64 mmole) is added The reaction mixture is heated at reflux for 48h, is treated with a second lot of methyl-2-(4-morpholinyl)-acetate (7g, 44 mmole), and is stirred an additional 24h at reflux. 30 The reaction is cooled to room temperature, is diluted with 200ml water, and the tetrahydrofuran is removed in vacuo. pH of the aqueous residue is adjusted to 6.8 with 10% hydrochloric acid and the mixture is extracted with 5 X 100ml dichloromethane. The combined organics are dried over 35 magnesium sulfate and are concentrated in vacuo to a brown solid. The solid is washed with 200ml diethyl ether and is dried to afford 8.8g of a tan solid. The solid is recrystallized twice from ethyl acetate to provide 7.5g (60%)

of the title compound as an off-white solid, mp. 202.5°C. Example 275 Preparation of 8-Benzyloxy-2-(4-morpholinylmethylene) -4H-1-benzopyran-4-one Cpd 275

8-Hydroxy-2-(4-morpholinylmethylene)-4H-1-benzopyran-4-one 5 (261mg, 1 mmole) is suspended in 7ml acetonitrile in a 25ml one neck round bottom flask under nitrogen. The suspension is treated successively with potassium carbonate (829mg, 6 mmole) and benzyl bromide (150ul, 1.3 mmole) and the reaction mixture is warmed to 70°C for 1h. The mixture is cooled to room 10 temperature and the acetonitrile is removed in vacuo. residue is washed with 1 X 25ml dichloromethane and the insoluble material is removed by filtration. The filtrate is concentrated in vacuo to a yellow oil. The oil is chromatographed over 15g silica gel (230-400 mesh) eluting with 15 3% methanol/dichloromethane and collecting 6ml fractions. Fractions 12-27 are combined and concentrated to afford a colorless oil which is crystallized from diethyl ether to provide 246mg (70%) of the title compound as a white solid, mp. 107-107.5°C.

20 Following the general procedures of examples 203 and 274 there are prepared the following products:

	Cpd 264	8-methyl-2-(4-morpholinylmethyl)-7-[[1-(1-phenylethyl)-1H-tetrazol-5-yl]methoxy]-4H-1-Benzopyran-4-one, mp. 145-147;
25	Cpd 265	8-methyl-2-(4-morpholinylmethyl)-7-[(1-phenyl-1H-tetrazol-5-yl)methoxy]-4H-1-
		Benzopyran-4-one, mp. 162-163;
	Cpd 267	7-[[1-(1,1-dimethylethyl)-1H-tetrazol-5-
		y1]methoxy]-8-methyl-1-(4-
30		morpholinylmethyl)-4H-1-Benzopyran-4-one,
		mp. 125-130;
	Cpd 270	5-[[[8-methyl-2-(4-morpholinylmethyl)-4-
		$oxo-4H-1-benzopyran-7-yl]oxy]methyl]-\alpha-$
		(pehnylmethyl)-1H-Tetrazole-1-acetic acid
35		ethyl ester, mp. 190-194;
	Cpd 276	2-(4-morpholinylmethyl)-8-[[3-
		(trifluoromethyl)pehnyl]methoxy]-4H-1-
		Benzopyran-4-one, mp. 124.5-125.5;

	Cpd 277	<pre>8-[2-(4-methyl-1-piperazinyl)ethoxy]-2-(4- morpholinylmethyl)-4H-1-Benzopyran-4-one, mp. 88.5-89.5;</pre>
5	Cpd 278	<pre>8 - [2 - [4 - (2 - e t h o x y p h e n y l) - 1 - p i p e r a z i n y l] e t h o x y] - 2 - (4 - morpholinylmethyl) - 4H - 1 - Benzopyran - 4 - one, mp. 134.5 - 135.5;</pre>
	Cpd 308	2-(4-morpholinyllmethyl)-8-[[1-(1-phenylethyl)-1H-tetrazol-5-yl]methoxy]-4H-
10		1-Benzopyran-4-one, mp. 105-110;
	Cpd 350	8-[(1-cyclopropyl-1H-tetrazol-5-yl) methoxy]-2-(4-morpholinylmethyl)-4H-1-Benzopyran-4-one, mp. 84-87;
15	Cpd 351	7-[(1-cyclobutyl-1H-tetrazol-5-yl) methoxy]-8-methyl-2-(4-morpholinylmethyl)- 4H-1-Benzopyran-4-one, mp. 178-179; and
	Cpd 352	7-[(1-cyclopropyl-1H-tetrazol-5-yl) methoxy]-8-methyl-2-(4-morpholinylmethyl)-4H-1-Benzopyran-4-one, mp. 146-147.

CHART A

CHART E

CHART G

CHART H

$$\bigcap_{CH_3} \bigcap_{NR_9R_{10}} \bigcap_{H_0} \bigcap_{CH_3} \bigcap_{NR_9R_{10}}$$

CHART I

CHART J

CHART K

CHART L

5

FORMULA

$$\begin{array}{c|c}
R_{6} \\
R_{7} \\
R_{8}
\end{array}$$

$$R_6$$
 R_7
 R_8
 R_8
 R_7
 R_8
 R_8

FORMULA (Continued)

5

CLAIMS

1. A compound of Formula I

5

10

15

20

wherein X is CZ where Z is H, C_1-C_5 alkyl, amino $(-NH_2)$ or a halogen atom;

Y is selected from the group consisting of $-(CH_2)_nNR_9R_{10}$ wherein R_9 and R_{10} , being the same or different, are selected from the group consisting of (a) hydrogen, with the provisio that R_9 and R_{10} are not both hydrogen; (b) C_1-C_{12} alkyl; (c) phenyl optionally substituted with one, 2 or 3 C_1-C_4 alkyl, C_1-C_4 alkoxy, halo, OH, trifluoromethyl or $-CO_2(C_1-C_4$ alkyl); (d) $-(CH_2)_n$ phenyl [wherein phenyl is optionally substituted with one, 2 or 3 C_1-C_4 alkyl, C_1-C_4 alkoxy, halo, OH, trifluoromethyl or $-CO_2(C_1-C_4$ alkyl)], (e) $-(CH_2)_n$ pyridinyl or (f) wherein R_9 and R_{10} , taken together with N, form a saturated or unsaturated heterocyclic amine ring selected from the group consisting of

- 25 group consisting of (aa) 4-morpholing
 - (aa) 4-morpholine optionally substituted with one or two members selected from the group consisting of C_1-C_4 alkyl, C_1-C_4 alkoxy, halo or trifluoromethyl,

30

- (bb) 4-thiomorpholine optionally substituted with one or two members selected from the group consisting of C_1-C_4 alkyl, C_1-C_4 alkoxy, halo or trifluoromethyl,
- (cc) 3-amino-1-pyrrolidine,

35

(dd) 1-pyrrolidine optionally substituted with one or two members selected from the group consisting of C_1-C_4 alkyl, C_1-C_4 alkoxy, halo, OH, -CH₂OH, or trifluoromethyl,

5

10

15

20

- (ee) 1-piperidine optionally substituted with one or two members selected from the group consisting of C_1 - C_4 alkyl, C_1 - C_4 alkoxy, halo, trifluoromethyl, $-(CH_2)_qOH$, $-CO_2H$, $-CO_2CH_3$, $-CO_2CH_2CH_3$ or phenyl (wherein phenyl is optionally substituted with one, 2 or 3 C_1 - C_4 alkyl, C_1 - C_4 alkoxy, halo or trifluoromethyl),
- (ff) 1-piperazine, 4-(C₁-C₄alkyl)-1-piperazine, 4-phenyl-1-piperazine (wherein phenyl is optionally substituted with one, 2 or 3 C₁-C₄ alkyl, C₁-C₄ alkoxy, halo or trifluoromethyl) or 4-pyridinyl-1-piperazine optionally substituted with one or two members selected from the group consisting of C₁-C₄ alkyl, C₁-C₄ alkoxy, halo, trifluoromethyl, -CH₂O_H, -CO₂H, -CO₂CH₃ or -CO₂CH₂CH₃, and
- (gg) thiazolidine, thiazolidine-4-carboxylic acid, pipecolinic acid, p-piperazinacetophenone, 1homopiperazine, 1-methylhomopiperazine, 4phenyl-1,2-3,6-tetrahydropyridine, proline, tetrahydrofurylamine,1-(3-hydroxy)pyrrolidine, nipecotamide, 1,2,3,4-tetrahydroisoquinoline or imidazole;

and R_5 , R_6 , R_7 and R_8 , being the same or different, are 25 selected from the group consisting of hydrogen, c_1 - c_8 alkyl, -(CH2) phenyl [wherein phenyl is optionally substituted with one, 2 or 3 C_1 - C_4 alkyl, C_1 - C_4 alkoxy, halo, OH, trifluoromethyl $-CO_2(C_1-C_4alkyl)$, $-(CH_2)_n$ naphthyl, $-(CH_2)_n$ pyridinyl, -(CH₂)_qNR₉R₁₀, -CH=CH-phenyl [wherein phenyl is optionally sub-30 stituted with one, 2 or 3 C₁-C₄ alkyl, C₁-C₄ alkoxy, halo, OH, trifluoromethyl or -CO₂(C₁-C₄alkyl)], -CH₂-CH=CH₂, -CH=CH-CH₃, -CH=CH₂, -O-CH₂-CH=CH₂, -C=C-phenyl [wherein phenyl optionally substituted with one, 2 or 3 C_1-C_4 alkyl, C_1-C_4 trifluoromethyl or -CO₂(C₁-C₄alkyl)], alkoxy, halo, OH, 35 $-O(CH_2)_p(N-methylpiperdin-3-y1)$, $-O-(CH_2)_pNR_9R_{10}$, $CH_2CH_1OCH_3)_2$, $-O-(CH_2)_pOR_{15}$, $-O-(CH_2)_p-O-(CH_2)_pOR_{15}$, $-O-(CH_2)_p-S-(CH_2)_pOR_{15}$ R_{15} , $-0-(CH_2)_p-0-(CH_2)_pNR_9R_{10}$, $-0-(CH_2)_p-S-(CH_2)_pNR_9R_{10}$, $(CH_2)_p - S - (CH_2)_p - OR_{15}$, $-O - (CH_2)_p - S(O) - R_{15}$, $-O - (CH_2)_p - S(O_2) - R_{15}$

 $-0-(CH_2)_p-S(0)-(CH_2)_p-OR_{15}$, -0- $-0-(CH_2)_p-S(0)-(CH_2)_pNR_9R_{10}$, $(CH_2)_p - S(O_2) - (CH_2)_p NR_9 R_{10}$, $-O - (CH_2)_p - S(O_2) - (CH_2)_p - OR_{15}$, $-O - (CH_2)_p - OR_{15}$ [4-[(CH₂)_pOR₁₅]-1-piperazine], -0-(CH₂)_p-[4-(CH)(phenyl)₂-1piperazine] [phenyl optionally substituted with one, 2 or 3 C1-5 C₄ alkyl, C₁-C₄ alkoxy, halo, OH, trifluoromethyl or -CO₂(C₁-C₄alkyl)], -O-(CH₂)_p-[4-(CH₂)_qphenyl-1-piperazine] optionally substituted with one, 2 or 3 C1-C4 alkyl, C1-C4 alkoxy, halo, OH, trifluoromethyl or -CO2(C1-Calkyl)], -O- $(CH_2)_p-[4-(CH_2)_q$ pyridinyl-1-piperazine] [pyridinyl optionally 10 substituted with one, 2 or 3 C_1-C_4 alkyl, C_1-C_4 alkoxy, halo, OH, trifluoromethyl, NR_9R_{10} or $-CO_2(C_1-C_4alkyl)$], $-O-(CH_2)_p-[4-C_4alkyl)$ substituted pyridinyl)-1-piperazine, -0-(CH₂)_p-(OH substituted 1-piperidine), -O-(CH₂)_p-1-pyrrolidin-2-one, $-(CH_2)_nC(0)O-(CH_2)_nR_9$, -(CH₂)_nC(O)-(CH₂)_nR₉,-(CH_{)n}C(O)O-15 $(CH_2)_n NR_9 R_{10}$, $-(CH_2)_n C(O) (CH_2)_n NR_9 R_{10}$, NO_2 , $-O-(CH_2)_n C(O) (CH_2)_{p}^{R_9}$, $-O-(CH_2)_{n}^{C}(O)O-(CH_2)_{p}^{R_9}$, $-O-(CH_2)_{n}^{C}(O)-(CH_2)_{n}^{NR_9}R_{10}$, $-NR_qR_{10}$, $-N(R_q)(CH_2)_nC(O)-(CH_2)_nR_{10}$, $-N(R_q)-(CH_2)_nC(O)O N(R_9)(CH_2)_nC(O)-(CH_2)_nNR_9R_{10}$ -O-(CH₂)_nphenyl [wherein phenyl is optionally substituted with one, 2 or 3 C,-20 C_4 alkyl, C_1-C_4 alkoxy, halo, OH, trifluoromethyl or $-CO_2(C_1-C_4)$ C_4 alkyl)], -0-(CH_2)_npyridine, -0(CH_2)_nC(O)-(CH_2)_npyridine, -0- $(CH_2)_nC(O)O-(CH_2)_n$ pyridine, $-O(CH_2)_nC(O)-N(R_9)(CH_2)_n$ pyridine, -O-(CH₂)_nquinoxalinyl, -O-(CH₂)_nquinolinyl, -O-(CH₂)_npyrazinyl, $-0-(CH_2)_n$ naphthyl, $-0-(CH_2)_n$ C(0)-(CH₂)_nnaphthyl, $-0-(CH_2)_n$ C(0)0-25 $(CH_2)_n$ naphthyl, -0- $(CH_2)_n$ C(0)NR₉- $(CH_2)_n$ naphthyl, halo (fluoro, chloro, bromo, iodo), OH, $-(CH_2)_q$ -OH, $(CH_2)_q$ OC(O)R₉, $-(CH_2)_q$ OC-(O) -NR_gR₁₀, -(1-cyclohexyl-1H-tetrazol-5-yl)C₁-C₄ alkoxy, -[1- $(C_1-C_5alkyl)-1H-tetrazol-5-yl]C_1-C_4$ alkoxy, -[1-(phenyl)-1H-(phenyl)-1tetrazol-5-yl]C₁-C₄ alkoxy [wherein phenyl is optionally 30 substituted with one, 2 or 3 C_1-C_4 alkyl, C_1-C_4 alkoxy, halo, OH, trifluoromethyl or $-CO_2(C_1-C_4alkyl)$], -[1-(pyridinyl)-1Htetrazol-5-yl]C,-C, alkoxy, -[1-(1-phenylethyl)-1H-tetrazol-5 $yl]C_1-C_4$ alkoxy, $-C_1-C_4$ alkoxyl, a group of Formula II

5

wherein R' is methyl or carboxy, R'' is hydrogen and R''' is selected from benzyl [optionally substituted with one, two or 10 three groups selected from hydroxy, halogen or phenoxy (optionally substituted with one, two or three groups selected from hydroxy or halogen)], C_1-C_5 alkyl, $-(CH_2)_nCO_2H$, $-CH_2SH$, -CH₂SCH₃, imidazolinylmethylene, indolinylmethylene, CH₃CH(OH), CH2OH, H2N(CH2)4-(optionally in protected form) or H2NC(NH)NH(C-15 H_2)₃ (optionally in protected form); with the overall proviso that at least one member of R₅, R₆, R₇ or R₈ is selected from the group consisting of $-CH=CH_2$, $-O-(CH_2)_pOH$, $-O-(CH_2)_p-(CH_2)_p$ $O-(CH_2)_n$ pyridin-2-yl, $-O-(CH_2)_p$ - $O-(CH_2)_n$ pyridin-3-yl, $-O-(CH_2)_p$ - $O-(CH_2)_n$ pyridin-4-yl, $-O-(CH_2)_p-O-(CH_2)_n-1-(C_1-C_4alkyl)-1H-5-$ 20 tetrazole, $-O-(CH_2)_p-O-(CH_2)_n$ -pyrimidine, $-O-(CH_2)_p-O-(CH_2)_n-2$ benzoxazole, $-0-(CH_2)_p-0-(CH_2)_n-2$ -benzothiazole, $-0-(CH_2)_p-0$ - $(CH_2)_n - (C_1 - C_4 alky1) - triazole, -0 - (CH_2)_p - 0 - (CH_2)_n - (C_1 - C_4 alky1) - (C_1 - C_4 alky1)_n - (C_1 - C_4 alky1$ imidazole, $-0-(CH_2)_p-0-(CH_2)_p-0R_{15}$, $-0-(CH_2)_p-S-R_{15}$, $-0-(CH_2)_p-0-(CH_2)_p$ $(CH_2)_p NR_9 R_{10}$, $-O-(CH_2)_p -S-(CH_2)_p NR_9 R_{10}$, $-O-(CH_2)_p -S-(CH_2)_p -OR_{15}$, 25 $-0-(CH_2)_p-S(0)-R_{15}$, $-0-(CH_2)_p-S(0_2)-R_{15}$, $-0-(CH_2)_p-S(0)-R_{15}$ $(CH_2)_pNR_9R_{10}$, $-O-(CH_2)_p-S(O)-(CH_2)_p-OR_{15}$, $-O-(CH_2)_p-S(O_2) (CH_2)_p^2NR_9R_{10}$, $-O-(CH_2)_p^2-S(O_2)-(CH_2)_p^2-OR_{15}$, $-O-(CH_2)_p^2-[4 [(CH_2)_pOR_{15}]$ -1-piperazine], -0- $(CH_2)_p$ -[4-(CH) (phenyl)₂-1piperazine] [phenyl optionally substituted with one, 2 or 3 C_1 -30 C_4 alkyl, C_1-C_4 alkoxy, halo, OH, trifluoromethyl or $-CO_2(C_1-C_4)$ C_4 alkyl)], $-O-(CH_2)_p-[4-(CH_2)_q$ phenyl-1-piperazine] [phenyl optionally substituted with one, 2 or 3 c_1-c_4 alkyl, c_1-c_4 alkoxy, halo, OH, trifluoromethyl or -CO₂(C₁-C₄alkyl)], -O- $(CH_2)_p$ -[4- $(CH_2)_q$ pyridinyl-1-piperazine] [pyridinyl optionally] substituted with one, 2 or 3 C_1-C_4 alkyl, C_1-C_4 alkoxy, halo, OH, trifluoromethyl, NR_9R_{10} or $-CO_2(C_1-C_4alkyl)$], $O-(CH_2)_p-[4-C_4alkyl)$ substituted pyridinyl)-1-piperazine, -0-(CH₂)_p-(OH substituted 1-piperidine), -O-(CH₂)_p-1-pyrrolidin-2-one;

 R_{15} is selected from H, C_1 - C_5 alkyl, $-(CH_2)_n$ phenyl [phenyl optionally substituted with one, 2 or 3 C_1 - C_4 alkyl, C_1 - C_4 alkoxy, halo, OH, trifluoromethyl or $-CO_2(C_1$ - C_4 alkyl)], $-(CH_2)_n$ pyridin-1-yl, $-(CH_2)_n$ pyridin-2-yl, $-(CH_2)_n$ pyridin-3-yl, $-(CH_2)_n$ pyridin-4-yl, $-(CH_2)_n$ -1- $-(C_1$ - $-(C_4$ alkyl)-1H-5-tetrazole, $-(CH_2)_n$ -pyrimidine, $-(CH_2)_n$ -2-benzoxazole, $-(CH_2)_n$ -2-benzothiazole, $-(CH_2)_n$ - $-(C_1$ - $-(C_4$ alkyl)-triazole, $-(CH_2)_n$ - $-(C_1$ - $-(C_4$ alkyl)-imidazole;

-63-

n is 0-5;

10 p is 2-5;

25

q is 1-5;

and pharmaceutically acceptable salts and hydrates thereof.

- 2. A compound according to Claim 1 wherein Y is selected from the group consiting of $-(CH_2)_nNR_9R_{10}$ wherein R_9 and R_{10} , taken together with N, form a saturated or unsaturated heterocyclic amine ring selected from the group consisting of:
- (aa) 4-morpholine optionally substituted with one or two members selected from the group consisting of C₁-C₄ alkyl,
 C₁-C₄ alkoxy, halo or trifluoromethyl,
 - (bb) 4-thiomorpholine optionally substituted with one or two members selected from the group consisting of C_1 - C_4 alkoy, halo or trifluoromethyl,
 - (cc) 3-amino-1-pyrrolidine,
 - (dd) 1-pyrrolidine optionally substituted with one or two members selected from the group consisting of C_1-C_4 alkyl, C_1-C_4 alkoxy, halo, OH, $-CH_2OH$, or trifluoromethyl,
- (ee) 1-piperidine optionally substituted with one or two members selected from the group consisting of C₁-C₄ alkyl, 30 C₁-C₄ alkoxy, halo, trifluoromethyl, -(CH₂)_qOH, -CO₂H, -CO₂CH₃, -CO₂CH₂CH₃ or phenyl (wherein phenyl is optionally substituted with one, 2 or 3 C₁-C₄ alkyl, C₁-C₄ alkoxy, halo or trifluoromethyl),
- (ff) 1-piperazine, 4-methyl-1-piperazine, 4-phenyl-135 piperazine (wherein phenyl is optionally substituted with one,
 2 or 3 C₁-C₄ alkyl, C₁-C₄ alkoxy, halo or trifluoromethyl) or
 4-pyridinyl-1-piperazine optionally substituted with one or two
 members selected from the group consisting of C₁-C₄ alkyl, C₁-C₄

alkoxy, halo, trifluoromethyl, -CH2OH, -CO2H, -CO2CH3 or -CO2CH2CH3-

- 3. A compound according to Claim 1 wherein Z is H or C_1-C_5 5 alkyl.
 - 4. A compound according to Claim 3 wherein Y is selected from the group consisting of $-(CH_2)_nNR_9R_{10}$ wherein n is 0 or 1, and R_9 and R_{10} , taken together with N, form 4-morpholine.

10

- 5. A compound according to Claim 4 wherein Z is H.
- 6. A compound according to Claim 5 wherein n is 0.
- 15 7. A compound according to Claim 2 wherein at least one member selected from R₅, R₆, R₇ or R₈ is selected from:

 -O-(CH₂)_p-S-R₁₅, -O-(CH₂)_p-[4-(CH)phenyl)₂-1-piperazine],

 -CH=CH₂, or -O-(CH₂)_pO-(CH₂)_pOR₁₅.
- 20 8. A compound according to Claim 1 selected from the group consisting of:

Cpd 217	2-(4-Morpholinyl)-7-phenylmethoxy-8-vinyl-
	4H-1-benzopyran-4-one;
Cpd 219	8-Methyl-7-[(2-thiomethyl)ethyl]oxy-2-(4-
	Morpholinyl)-4H-1-benzopyran-4-one;
Cpd 220	8-Methyl-2-(4-morpholinyl)-7-[2-(4-(2-
	hydroxy) ethyl-1-piperazinyl) ethyl]oxy-4H-
	1-benzopyran-4-one;
Cpd 222	7-[2-(Hydroxy) ethyl]oxy-8-methyl-2-(4-
	morpholinyl)-4H-1-benzopyran-4-one;
Cpd 223	8-Methyl-2-(4-morpholinyl)-7-[2-(2-
	thiopyrindinyl)ethyl]oxy-4H-1-benzopyran-
	4-one;
Cpd 226	8-Methyl-7-[2-((1-Methyl-1,3-imidazol-2-
	yl)thio)ethyl]oxy-2-(4-morpholinyl)-4H-1-
	benzopyran-4-one;
Cpd 228	8-Methyl-7-[2-((4-Methyl-1,2,4-triazol-3-
•	yl)thio)ethyl]oxy-2-(4-morpholinyl)-4H-1-
	Cpd 219 Cpd 220 Cpd 222 Cpd 223

	•	benzopyran-4-one;
	Cpd 230	8-Methyl-7-[2-((1-Methyl-5-
	-•	tetrazoyl)thio)ethyl]oxy-2-(4-morpho-
		linyl)-4H-1-benzopyran-4-one;
5	Cpd 231	8-Methyl-2-(4-morpholinyl)-7-[2-((2-
•		pyrimidinyl)thio)ethyl]oxy-4H-1-
		benzopyran-4-one;
	Cpd 233	8-Methyl-2-(4-morpholinyl)-7-[2-(4-
		thiomorpholinyl)ethyl]oxy-4H-1-benzopyran-
10		4-one;
10	Cpd 234	7-[2-((2-(Bis-N,N'-diethylamino)ethyl)
		thio) ethyl]oxy-8-Methyl-2-(4-morpholinyl)-
		4H-1-benzopyran-4-one;
	Cpd 235	8-Methyl-7-[2-((2-benzoxazolyl)thio)
15	•	ethyl]oxy-2-(4-morpholinyl)-4H-1-
		benzopyran-4-one;
	Cpd 236	8-Methyl-7-[2-((2-benzothiazolyl)thio)
	-	ethyl]oxy-2-(4-morpholinyl)-4H-1-
		benzopyran-4-one;
20	Cpd 237	7-[2-(4-(3-Ethylamino-pyridin-2-yl)-1-
•	-	piperazinyl) ethyl]oxy-8-methyl-2-(4-
		morpholinyl)-4H-1-benzopyran-4-one; and
	Cpd 238	8-Methyl-2-(4-morpholinyl)-7-[2-
		(pyrrolidinone-1-yl)ethyl]oxy-4H-1-
25		benzopyran-4-one;
	or a pharmaceutica	lly acceptable salt or hydrate thereof.
	9. A compound ac	cording to Claim 1 selected from the group

consisting of:

30	Cpd 242	2 - (4 - m or p h o l i n y l) - 8 - [2 - (2 - pyridinylthio)ethoxy]-4H-1-Benzopyran-4-one;
	Cpd 244	8-[2-[4-[3-(ethylamino)-2-pyridinyl]-1-piperazinyl]ethoxy]-2-(4-morpholinyl)-4H-
35		1-Benzopyran-4-one;
	Cpd 246	8-methyl-2-(4-morpholinyl)-7-[2-
		<pre>(phenylsulfinyl)ethoxy]-4H-1-Benzopyran-4-</pre>
		one;

	Cpd 253	7-[2-[(2-methoxyphenyl)thio]ethoxy]-8-methyl-2-(4-morpholinyl)-4H-1-Benzopyran-
		4-one;
	Cpd 254	8-methyl-2-(4-morpholinyl)-7-[2-(3-
5		<pre>piperidinyloxy) ethoxy]-4H-1-Benzopyran-4- one;</pre>
	Cpd 296	2-(4-morpholinyl)-8-[2-[4-(phenylmethyl)-
	•	1-piperazinyl]ethoxy]-4H-1-Benzopyran-4- one;
10	Cpd 326	8-etheny1-7-[2-(4-methy1-1-
	_	piperazinyl) ethoxy]-2-(4-morpholinyl)-4H-
		1-Benzopyran-4-one;
	Cpd 327	8-ethenyl-2-(4-morpholinyl)-7-[2-(1-
	Sp. SS.	piperidinyl) ethoxy]-4H-1-Benzopyran-4-one;
15	Cpd 328	8-ethenyl-1-(4-morpholinyl)-7-[2-(4-
	· ·	phenyl-1-piperidinyl)ethoxy]-4H-1-
		Benzopyran-4-one;
	Cpd 329	8-ethenyl-2-(4-morpholinyl)-7-[2-(1-
	Cpu J25	
20		<pre>pyrrolidinyl)ethoxy]-4H-1-Benzopyran-4- one;</pre>
	Cpd 330	8-etheny1-2-(4-morpholiny1)-7-[2-(4-
	•	thiomorpholinyl)ethoxy]-4H-1-Benzopyran-4-one;
	Cpd 331	(R) -8-ethenyl-7-[2-[2-(hydroxymethyl)-1-
25	opu sau	pyrrolidinyl]ethoxy]-2-(4-morpholinyl)-4H-
		1-Benzopyran-4-one;
	Cpd 333	
	Cpa JJJ	7-[2-(2-methoxyethoxy)ethoxy]-8-methyl-2-
	Cmd 225	(4-morpholinyl)-4H-1-Benzopyran-4-one; and
20	Cpd 335	8-methyl-2-(4-morpholinyl)-7-[2-
30		(phenylthio)ethoxy]-4H-1-Benzopyran-4-
		one;

or a pharmaceutically acceptable salt or hydrate thereof.

10. A compound selected from the group consisting of:

35	Cpd 208	7-[2-(4-Methyl-1-piperazinyl)ethyl]oxy-8-
		methyl-2-(4-morpholinyl)-4H-1-benzopyran-
		4-one;
	Cpd 209	7-(2-(2-Hydroxymethylpiperidin-1-

WO 91/19707 PCT/US91/04140

		•
	•	yl)ethyl)oxy-8-methyl-2-(4-morpholinyl)-
		4H-1-benzopyran-4-one;
	Cpd 210	7-(2-(3-Hydroxymethylpiperidin-1-
		yl)ethyl)oxy-8-methyl-2-(4-morpholinyl)-
5		4H-1-benzopyran-4-one;
	Cpd 211	7-(2-(2-Carboethoxypiperidin-1-
		yl)ethyl)oxy-8-methyl-2-(4-morpholinyl)-
		4H-1-benzopyran-4-one;
	Cpd 212	7-(2-(3-Carboethoxypiperidin-1-
10	-	yl)ethyl)oxy-8-methyl-2-(4-morpholinyl)-
		4H-1-benzopyran-4-one;
	Cpd 213	8-Methyl-7-(2-(2-methylpiperidin-1-
	•	yl)ethyl)oxy-2-(4-morpholinyl)-4H-1-
		benzopyran-4-one;
15	Cpd 214	7-(2-(3-Carboxypiperidin-1-yl)ethyl)oxy-8-
	opu mos	methyl-2-(4-morpholinyl)-4H-1-benzopyran-
		4-one;
	Cpd 215	8-Methyl-2-(4-morpholinyl)-7-[2-(1-
	•••	piperazinyl)ethyl]oxy-4H-1-benzopyran-4-
20		one;
	Cpd 216	8-Methyl-7-[(2-methoxy)ethyl]oxy-2-(4-
		morpholinyl)-4H-1-benzopyran-4-one;
	Cpd 218	2-(4-Morpholiny1)-8-pheny1-7-
	•	phenylmethoxy-4H-1-benzopyran-4-one;
25	Cpd 225	7-[2-(4-(2-Ethoxyphenyl)-1-piperazinyl)
		ethyl]oxy-8-methyl-2-(4-morpholinyl)-4H-1-
		benzopyran-4-one;
	Cpd 227	7-[2-((Bis-N,N'-(2-methoxy)ethoxy)amino)
		ethyl]oxy-8-methyl-2-(4-morpholinyl)-4H-1-
30		benzopyran-4-one;
	Cpd 229	7-[2-(N-Ethyl-N'-((2-hydroxy)ethyl)amino)
	opu aar	ethyl]oxy-8-methyl-2-(4-morpholinyl)-4H-1-
		benzopyran-4-one;
	Cpd 232	8-Methyl-2-(4-morpholinyl)-7-[2-(4-(2-
35	opu asa	pyridinyl)-1-piperazinyl)ethyl]oxy-4H-1-
		benzopyran-4-one;
	Cpd 233	8-Methyl-2-(4-morpholinyl)-7-[2-(4-
	opa soo	thiomorpholinyl)ethyl]oxy-4H-1-benzopyran-
		curomorphoratifa, confrient and a possophidit

4-one; or a pharmaceutically acceptable salt or hydrate thereof.

	11.	A compound	selected from the group consisting of:
5		Cpd 243	8-[2-[4-(2-ethoxyphenyl)-1-
		•	piperazinyl]ethoxy]-2-(4-morpholinyl)-4H-
			1-Benzopyran-4-one;
		Cpd 245	2-(4-morpholinyl)-8-[2-(1-
			<pre>piperidinyl) ethoxy]-4H-1-Benzopyran-4-one;</pre>
10		Cpd 247	7-[2-[bis(2-pyridinylmethyl)amino]ethoxy]-
			8-methy1-2-(4-morpholiny1)-4H-1-
			Benzopyran-4-one;
		Cpd 248	(S)-7-[2-[2-(hydroxymethyl)-1-
			pyrrolidinyl]ethoxy]-8-methyl-2-(4-
15			morpholinyl)-4H-1-Benzopyran-4-one;
		Cpd 249	7-[2-[bis[(4-methoxyphenyl)methyl]
			amino]ethoxy]-8-methyl-2-(4-morpholinyl)-
			4H-1-Benzopyran-4-one;
		Cpd 250	8-methyl-2-(4-morpholinyl)-7-[2-(3-
20			thiazolindinyl)ethoxy]-4H-1-Benzopyran-4-
			one;
		Cpd 251	N-cyclohexyl-N-methyl-2-[[2-(4-
			morpholinyl)-4-oxo-4H-1-benzopyran-6-
			<pre>yl]oxy]-Acetamide;</pre>
25		Cpd 252	2 - (4 - morpholinyl) - 6 - (1 -
			<pre>naphtalenylmethoxy)-4H-1-Benzopyran-4-one;</pre>
		Cpd 255	7-[2-(hexahydro-1H-azepin-1-yl)ethoxy]-8-
			methyl-2-(4-morpholinyl)-4H-1-Benzopyran-
			4-one;
30		Cpd 256	8-methyl-2-(4-morpholinyl)-7-[2-(4-phenyl-
			1-piperazinyl)ethoxy]-4H-1-Benzopyran-4-
			one;
		Cpd 257	8-methyl-2-(4-morpholinyl)-7-[2-(4-phenyl-
			1-piperidinyl)ethoxy]-4H-1-Benzopyran-4-
35·			one;
		Cpd 258	(R) - 7 - [2 - [2 - (hydroxymethyl) - 1 -
			pyrrolidinyl]ethoxy]-8-methyl-2-(4-
			<pre>morpholinyl)-4H-1-Benzopyran-4-one;</pre>

WO 91/19707 PCT/US91/04140

	Cpd 259	7-[2-(3-hydroxy-1-pyrrolidinyl)ethoxy]-8-
		methy]-2-(4-morpholinyl)-4H-1-Benzopyran-
		4-one;
	Cpd 260	7-[2-[4-(2-chlorophenyl)-1-
5		piperazinyl]ethoxy]-8-methyl-2-(4-
		<pre>morpholinyl)-4H-1-Benzopyran-4-one;</pre>
	Cpd 261	2-(4-morpholinyl)-8-[2-(4-phenyl-1-
		<pre>piperidinyl)ethoxy]-4H-1-Benzopyran-4-one;</pre>
	Cpd 262	8-methyl-2-(4-morpholinyl)-7-[(1-phenyl-
10		1H-tetrazol-5-yl)methoxy]-4H-1-Benzopyran-
		4-one;
	Cpd 263	5-[[[8-methyl-2-(4-morpholinyl)-4-oxo-4H-
		1-benzopyran-7-yl]oxy]methyl]- α -
		(phenylmethyl)-1H-Tetrazole-1-acetic acid
15		ethyl ester;
	Cpd 264	8-methyl-2-(4-morpholinylmethyl)-7-[[1-(1-
		<pre>phenylethyl)-1H-tetrazol-5-yl]methoxy]-4H-</pre>
		1-Benzopyran-4-one;
	Cpd 265	8-methyl-2-(4-morpholinylmethyl)-7-[(1-
20		phenyl-1H-tetrazol-5-yl)methoxy}-4H-1-
		Benzopyran-4-one;
	Cpd 266	7-[[1-(1,1-dimethylethyl)-1H-tetrazol-5-
		yl]methoxy]-8-methyl-2-(4-morpholinyl)-4H-
		1-Benzopyran-4-one;
25	Cpd 267	7-[[1-(1,1-dimethylethyl)-1H-tetrazol-5-
		yl]methoxy]-8-methyl-1-(4-
		<pre>morpholinylmethyl)-4H-1-Benzopyran-4-one;</pre>
	Cpd 268	8-methyl-7-[2-[methyl[2-(2-
		pyridinyl)ethyl]amino]ethoxy]-2-(4-
30	•	morpholinyl)-4H-1-Benzopyran-4-one;
	Cpd 269	8-methyl-2-(4-morpholinyl)-7-[2-(2-
		pyridinyloxy)ethoxy]-4H-1-Benzopyran-4-
		one;
	Cpd 270	5-[[[8-methyl-2-(4-morpholinylmethyl)-4-
35		$oxo-4H-1-benzopyran-7-yl]oxy]methyl]-\alpha-$
		(pehnylmethyl)-1H-Tetrazole-1-acetic acid
		ethyl ester;
	Cpd 271	8-methyl-1-(4-morpholinyl)-7-[[1-(1-

WO 91/19707 PCT/US91/04140

•	•	phenylethyl) -1H-tetrazol-5-yl]methoxy]-4H-
	0-1.070	1-Benzopyran-4-one;
	Cpd 272	6-chloro-8-methyl-7-[2-(4-methyl-1-
		<pre>piperazinyl)ethoxy]-2-(4-morpholinyl)-4H-</pre>
5		1-Benzopyran-4-one;
	Cpd 273	8-buty1-2-(4-morpholiny1)-7-
		(phenylmethoxy)-4H-1-Benzopyran-4-one;
	Cpd 274	8-Hydroxy-2-(4-morpholinylmethylene)-4H-1-
		benzopyran-4-one;
10	Cpd 275	8-Benzyloxy-2-(4-morpholinylmethylene)-4H-
		1-benzopyran-4-one;
	Cpd 276	2-(4-morpholinylmethyl)-8-[[3-
		(trifluoromethyl)pehnyl]methoxy]-4H-1-
		Benzopyran-4-one;
15	Cpd 277	8-[2-(4-methyl-1-piperazinyl)ethoxy]-2-(4-
	•	morpholinylmethyl) -4H-1-Benzopyran-4-one;
	Cpd 278	8-[2-[4-(2-ethoxyphenyl)-1-
	•	piperazinyl]ethoxy]-2-(4-
		morpholinylmethyl) -4H-1-Benzopyran-4-one;
20	Cpd 279	8-ethyl-2-(4-morpholinyl)-7-[2-(1-
	opu o	pyrrolidinyl) ethoxy]-4H-1-Benzopyran-4-
		one;
	Cpd 280	8-ethyl-2-(4-morpholinyl)-7-[2-(4-phenyl-
	opu dov	1-piperidinyl) ethoxy]-4H-1-Benzopyran-4-
25		
23	Cpd 281	(P) = 2 = 0 thul = 7 = 12 = (hudwownothul) = 2 =
	Cpu 201	(R) -8-ethyl-7-[2-[2-(hydroxymethyl)-1-
		pyrrolidinyl]ethoxy]-2-(4-morpholinyl)-4H-
	2.2.000	1-Benzopyran-4-one;
	Cpd 282	8-ethyl-2-(4-morpholinyl)-7-[2-(4-
30		thiomorpholinyl)ethoxy]-4H-1-Benzopyran-4-
		one;
	Cpd 283	8-ethyl-7-[2-(4-methyl-1-
		<pre>piperazinyl)ethoxy]-2-(4-morpholinyl)-4H-</pre>
		1-Benzopyran-4-one;
35	Cpd 285	7 - [2 - (3 , 4 - d i h y d r o - 2 (1 H) -
		isoquinolinyl) ethoxy]-8-methyl-2-(4-
		morpholinyl)-4H-1-Benzopyran-4-one;
	Cpd 286	7-(acetyloxy)-2-(4-morpholinyl)-8-(2-

WO 91/19707 PCT/US91/04140

		managed \ - AU_1 - Bonzonuran - A=ono:
		propenyl) -4H-1-Benzopyran-4-one;
	Cpd 287	7-(acetyloxy)-2-(4-morpholinyl)-8-propyl-
	_	4H-1-Benzopyran-4-one;
	Cpd 288	7-hydroxy-2-(4-morpholinyl)-8-propyl-4H-1-
5		Benzopyran-4-one;
	Cpd 289	7-[2-(4-methyl-1-piperazinyl)ethoxy]-2-(4-
		morpholinyl)-8-propyl-4H-1-Benzopyran-4-
		one;
	Cpd 290	2-(4-morpholinyl)-8-propyl-7-[2-(1-
10		pyrrolindinyl)ethoxy]-4H-1-Benzopyran-4-
		one;
	Cpd 291	2-(4-morpholiny1)-7-[2-(1-
		piperidinyl)ethoxy]-8-propyl-4H-1-
		Benzopyran-4-one;
15	Cpd 292	2-(4-morpholinyl)-7-[2-(4-phenyl-1-
		piperidinyl)ethoxy]-8-propyl-4H-1-
		Benzopyran-4-one;
	Cpd 293	2-(4-morpholinyl)-8-propyl-7-[2-(4-
		thiomorpholinyl)ethoxy]-4H-1-Benzopyran-4-
20		one;
	Cpd 294	(R)-7-[2-[2-(hydroxymethyl)-1-
		<pre>pyrrolidinyl]ethoxy]-2-(4-morpholinyl)-8-</pre>
		<pre>propyl-4H-1-Benzopyran-4-one;</pre>
	Cpd 295	8 - [2 - (3 , 4 - d i h y d r o - 2 (1 H) -
25		isoquinolinyl)ethoxy]-2-(4-morpholinyl)-
	1	4H-1-Benzopyran-4-one;
	Cpd 298	7-(acetyloxy)-6-bromo-8-methyl-2-(4-
		morpholinyl)-4H-1-Benzopyran-4-one;
	Cpd 299	7-(acetyloxy)-6,8-dimethyl-2-(4-
30		morpholinyl)-4H-1-Benzopyran-4-one;
	Cpd 300	7-hydroxy-6,8-dimethyl-2-(4-morpholinyl)-
		4H-1-Benzopyran-4-one;
	Cpd 301	7-(acetyloxy)-6-iodo-8-methyl-2-(4-
		morpholinyl)-4H-1-Benzopyran-4-one;
35	Cpd 302	7-hydroxy-6-iodo-8-methyl-2-(4-
		morpholinyl)-4H-1-Benzopyran-4-one;
	Cpd 303	6-bromo-7-hydroxy-8-methyl-2-(4-
		morpholinyl)-4H-1-Benzopyran-4-one;

	Cpd 304	8-[2-(ethylphenylamino)ethoxyl]-2-(4-
	o-1 005	morpholinyl)-4H-1-Benzopyran-4-one;
	Cpd 305	2-(4-morpholiny1)-8-(2-quinolinylmethoxy)-
		4H-1-Benzopyran-4-one;
5	Cpd 306	1-[2-[[2-(4-morpholiny1)-4-oxo-4H-1-
		benzopyran-8-yl]oxy]ethyl]-3-
		Piperidinecarboxylic acid ethyl ester;
	Cpd 307	1-[2-[[2-(4-morpholinyl)-4-oxo-4H-1-
		benzopyran-8-yl]oxy]ethyl]-2-
10		Piperidinecarboxylic acid ethyl ester;
	Cpd 308	2-(4-morpholinyllmethyl)-8-[[1-(1-
		phenylethyl)-1H-tetrazol-5-yl]methoxy]-4H-
		1-Benzopyran-4-one;
	Cpd 309	6,8-dimethy1-7-[2-(4-methy1-1-
15	•	piperazinyl)ethoxy]-2-(4-morpholinyl)-4H-
		1-Benzopyran-4-one;
	Cpd 310	6,8-dimethyl-2-(4-morpholinyl)-7-[2-(1-
	•	piperidinyl)ethoxy]-4H-1-Benzopyran-4-one;
	Cpd 311	6,8-dimethyl-2-(4-morpholinyl)-7-[2-(1-
20	•	pyrrolindinyl)ethoxy]-4H-1-Benzopyran-4-
,		one;
	Cpd 312	2-(4-morpholinyl)-8-(2-propenyloxy)-4H-1-
	•	Benzopyran-4-one;
	Cpd 314	6-iodo-8-methyl-2-(4-morpholinyl)-7-[2-(1-
25		pyrrolidinyl) ethoxy]-4H-1-Benzopyran-4-
		one;
	Cpd 315	6-iodo-8-methyl-2-(4-morpholinyl)-7-[2-(1-
	opa vis	piperidinyl)ethoxy]-4H-1-Benzopyran-4-one;
	Cpd 316	6-iodo-8-methyl-7-[2-(4-methyl-1-
30	cpa 310	
30		piperazinyl)ethoxy]-2-(4-morpholinyl)-4H-
	G-4 217	1-Benzopyran-4-one;
	Cpd 317	6-bromo-8-methyl-2-(4-morpholinyl)-7-[2-
		<pre>(1-pyrrolidinyl)ethoxy]-4H-1-Benzopyran-4- one;</pre>
35	Cpd 318	6-bormo-8-methyl-2-(4-morpholinyl)-7-[2-
	-	(1-piperidinyl)ethoxy]-4H-1-Benzopyran-4-
		one;
	Cpd 319	6-bromo-8-methyl-7-[2-(4-methyl-1-
	• • • • • • • • •	

٠		<pre>piperazinyl)ethoxy]-2-(4-morpholinyl)-4H-</pre>
		1-Benzopyran-4-one;
	Cpd 320	7-[2-(4-methyl-1-piperazinyl)ethoxy]-2-
		2(4-morpholinyl)-8-(2-propenyl)-4H-1-
5		Benzopyran-4-one;
•	Cpd 321	2-(4-morpholinyl)-8-(2-propenyl)-7-[2-(1-
	•	pyrrolidinyl)ethoxy]-4H-1-Benzopyran-4-
		one;
	Cpd 322	2 - (4 - morpholiny 1) - 7 - [2 - (1 -
10	•	piperidinyl)ethoxy]-8-(2-propenyl)-4H-1-
		Benzopyran-4-one;
	Cpd 323	2-(4-morpholinyl)-7-[2-(4-phenyl-1-
	•	piperidinyl)ethoxy]-8-(2-propenyl)-4H-1-
		Benzopyran-4-one;
15	Cpd 324	2-(4-morpholinyl)-8-(2-propenyl)-7-[2-(4-
•	•	thiomorpholinyl)ethoxy]-4H-1-Benzopyran-4-
		one;
	Cpd 325	(R) - 7 - [2 - [-(hydroxymethoxy) - 1 -
	-•	pyrrolidinyl]ethoxy]-2-(4-morpholinyl)-8-
20		(2-propenyl)-4H-1-Benzopyran-4-one;
	Cpd 332	2-(4-morpholiny1)-8-[2-(4-
	•	thiomorophlinyl)ethoxy]-4H-1-Benzopyran-4-
		one;
	Cpd 334	8-methyl-2-(4-morpholinyl)-7-(2-
25	-	phenoxyethoxy)-4H-1-Benzopyran-4-one;
	Cpd 348	7-[(1-cyclopropyl-1H-tetrazol-5-yl)
	• -	methoxy]-8-methyl-2-(4-morpholinyl)-4H-1-
	•	Benzopyran-4-one;
	Cpd 349	7-[(1-cyclobutyl-1H-tetrazol-5-yl)
30	-	methoxy]-8-methyl-2-(4-morpholinyl)-4H-1-
		Benzopyran-4-one;
	Cpd 350	8-[(1-cyclopropyl-1H-tetrazol-5-yl)
	•	methoxy]-2-(4-morpholinylmethyl)-4H-1-
		Benzopyran-4-one;
35	Cpd 351	7-[(1-cyclobutyl-1H-tetrazol-5-yl)
	-	methoxy]-8-methyl-2-(4-morpholinylmethyl)-
		4H-1-Benzopyran-4-one;
	Cpd 352	7-[(1-cyclopropyl-1H-tetrazol-5-yl)
	-	

20

methoxy]-8-methyl-2-(4-morpholinylmethyl)-4H-1-Benzopyran-4-one;

or a pharmaceutically acceptable salt or hydrate thereof.

- 5 12. 7-[2-(4-Methyl-1-piperazinyl)ethyl]oxy-8-methyl-2-(4-morpholinyl)-4H-1-benzopyran-4-one or a pharmaceutically acceptable salt thereof.
- 13. 7-[2-(4-Ethyl-1-piperazinyl)ethyl]oxy-8-methyl-2-(4-10 morpholinyl)-4H-1-benzopyran-4-one or a pharmaceutically acceptable salt thereof.
 - 14. Use of a compound selected from the group consisting of a compound of Formula I

R₆

wherein X is N, or CZ where Z is H, C_1 - C_5 alkyl, amino (-NH₂) or a halogen atom; when X is CZ, Y is selected from the group consisting of $-(CH_2)_nNR_gR_{10}$ wherein R_g and R_{10} , being the same or different, are selected from the group consisting of

- (a) hydrogen, with the provisio that R_9 and R_{10} are not both hydrogen;
 - (b) C₁-C₁₂ alkyl;
- 30 (c) phenyl optionally substituted with one, 2 or 3 C_1-C_4 alkyl, C_1-C_4 alkoxy, halo, OH, trifluoromethyl or $-CO_2(C_1-C_4)$;
- (d) $-(CH_2)_n$ phenyl (wherein phenyl is optionally substituted with one, 2 or 3 C_1-C_4 alkyl, C_1-C_4 alkoxy, halo, OH, trifluoromethyl or carbo C_1-C_4 alkoxy),
 - (e) $-(CH_2)_n$ pyridinyl or
 - (f) wherein $R_{\rm g}$ and $R_{\rm 10}$, taken together with N, form a saturated or unsaturated heterocyclic amine ring selected from

30

the group consisting of "

- (aa) 4-morpholine optionally substituted with one or two members selected from the group consisting of C_1-C_4 alkyl, C,-C, alkoxy, halo or trifluoromethyl
- (bb) 4-thiomorpholine optionally substituted with one or two members selected from the group consisting of C1-C4 alkyl, C₁-C₄ alkoxy, halo or trifluoromethyl
 - (cc) 3-amino-1-pyrrolidine,
- (dd) 1-pyrrolidine optionally substituted with one or 10 two members selected from the group consisting of C_1-C_4 alkyl, C,-C, alkoxy, halo, OH, -CH2OH, or trifluoromethyl,
- (ee) 1-piperidine optionally substituted with one or two members selected from the group consisting of C_1-C_4 alkyl, C_1-C_4 alkoxy, halo, trifluoromethyl, $-(CH_2)_qOH$, $-CO_2H$, $-CO_2CH_3$, 15 -CO2CH2CH3 or phenyl (wherein phenyl is optionally substituted with one, 2 or 3 C1-C4 alkyl, C1-C4 alkoxy, halo or trifluoromethyl),
- (ff) 1-piperazine, 4-(C₁-C₄alkyl)-1-piperzine, 4phenyl-1-piperazine (wherein phenyl is optionally substituted 20 with one, 2 or 3 C_1-C_4 alkyl, C_1-C_4 alkoxy, halo or tri-4-pyridinyl-1-piperazine fluoromethyl) or substituted with one or two members selected from the group consisting of C_1 - C_4 alkyl, C_1 - C_4 alkoxy, halo, trifluoromethyl, - CH_2OH , - CO_2H , - CO_2CH_3 or - $CO_2CH_2CH_3$, and
 - (gg) thiazolidine, thiazolidine-4-carboxylic acid, pipecolinic acid, p-piperazinacetophenone, 1-homopiperazine, 1-4-phenyl-1,2-3,6-tetrahydropyridine, methylhomopiperazine, proline, tetrahydrofurylamine, 1-(3-hydroxy)pyrrolidine, nipecotamide, 1,2,3,4-tetrahydroisoquinoline or imidazole;
- and R_5 , R_6 , R_7 and R_8 , being the same or different, are selected from the group consisting of hydrogen, C_1-C_8 alkyl, -(CH2) phenyl [wherein phenyl is optionally substituted with one, 2 or 3 C_1 - C_4 alkyl, C_1 - C_4 alkoxy, halo, OH, trifluoromethyl $-co_2(C_1-C_4alkyl)$], -(CH₂)_nnaphthyl,-(CH₂) pyridinyl, 35 $-(CH_2)_a NR_9 R_{10}$, -CH=CH-phenyl [wherein phenyl is optionally substituted with one, 2 or 3 C1-C4 alkyl, C1-C4 alkoxy, halo, OH, trifluoromethyl or $-CO_2(C_1-C_4alkyl)$], $-CH_2-CH=CH_2$, $-CH=CH-CH_3$, -CH=CH₂, -O-CH₂-CH=CH₂, -C=C-phenyl [wherein phenyl

optionally substituted with one, 2 or 3 C1-C1 alkyl, C1-C1 trifluoromethyl or -CO2(C1-Calkyl)], alkoxy, halo, OH, $-O(CH_2)_p(N-methylpiperdin-3-yl), -O-(CH_2)_pNR_9R_{10}$ $CH_2CH(OCH_3)_2$, $-O-(CH_2)_pOR_{15}$, $-O-(CH_2)_p-O-(CH_2)_p-OR_{15}$, $-O-(CH_2)_p-O-(CH_2)_p$ 5 $S-R_{15}$, $-O-(CH_2)_p-O-(CH_2)_p NR_9 R_{10}$, $-O-(CH_2)_p-S-(CH_2)_p NR_9 R_{10}$, $-O-(CH_2)_p NR_9 R_{10}$ $(CH_2)_p - S - (CH_2)_p - OR_{15}$, $-O - (CH_2)_p - S(O) - R_{15}$, $-O - (CH_2)_p - S(O_2) - R_{15}$ $O-(CH_2)_p-S(O)-(CH_2)_pNR_9R_{10}$, $-O-(CH_2)_p-S(O)-(CH_2)_p-OR_{15}$, $(CH_2)_p - S(O_2) - (CH_2)_p NR_3 R_{10}$, $-O - (CH_2)_p - S(O_2) - (CH_2)_p - OR_{15}$, $-O - (CH_2)_p - OR_{15}$ [4-[(CH_2) $_pOR_{15}$]-1-piperazine], -0-(CH₂)_p-[4-(CH)(phenyl)₂-1-10 piperazine] [phenyl optionally substituted with one, 2 or 3 C_1 - C_0 alkyl, C_1-C_4 alkoxy, halo, OH, trifluoromethyl or $-CO_2(C_1-C_2)$ -0-(CH₂)_p-[4-(CH₂)_qphenyl-1-piperazine] (phenyl optionally substituted with one, 2 or 3 C1-C4 alkyl, C1-C4 alkoxy, halo, OH, trifluoromethyl or -CO2(C1-Calkyl)], -O-15 (CH₂)_p-[4-(CH₂)_qpyridinyl-1-piperazine] [pyridinyl optionally substituted with one, 2 or 3 C_1-C_0 alkyl, C_1-C_0 alkoxy, halo, OH, trifluoromethyl, NR_9R_{10} or $-CO_2(C_1-C_4alkyl)$], $-O-(CH_2)_p-[4$ substituted pyridinyl)-1-piperazine, -0-(CH₂) p-(OH -O-(CH₂)_p-1-pyrrolidin-2-one, substituted 1-piperidine), $-(CH_2)_nC(0)O-(CH_2)_nR_9$, $-(CH_1)_nC(0)O-$ 20 $-(CH_2)_nC(O)-(CH_2)_nR_{q^n}$ $(CH_2)_n NR_9 R_{10}$, $-(CH_2)_n C(O)(CH_2)_n NR_9 R_{10}$, NO_2 , $-O-(CH_2)_n C(O)$ $(CH_2)_{p}^{R_{9}}$, $-O-(CH_2)_{n}^{C}(O)O-(CH_2)_{p}^{R_{9}}$, $-O-(CH_2)_{n}^{C}(O)-(CH_2)_{n}^{R_{9}}$ $-NR_9R_{10}$, $-N(R_9)(CH_2)_nC(0)-(CH_2)_nR_{10}$, $-M(R_9) - (CH_2)_n C(0) 0 M(R_9)(CH_2)_nC(O) - (CH_2)_nMR_9R_{10}$ -O-(CH₂) phenyl (CH₂)_nR₁₀, 25 (wherein phenyl is optionally substituted with one, 2 or 3 C_1 - C_4 alkyl, C_1-C_4 alkoxy, halo, OH, trifluoromethyl or $-CO_2(C_1-C_4)$ $C_{4}alkyl)$], -0-(CH_{2})_npyridine, -0(CH_{2})_nC(0)-(CH_{2})_npyridine, -0- $(CH_2)_n C(0) O - (CH_2)_n pyridine, -O(CH_2)_n C(0) - N(R_9) (CH_2)_n pyridine,$ -o-(CH₂) quinoxalinyl, -o-(CH₂) quinolinyl, -o-(CH₂) pyrazinyl, 30 $-0-(CH_2)_n$ naphthyl, $-0-(CH_2)_n$ C(0) $-(CH_2)_n$ naphthyl, $-0-(CH_2)_n$ C(0) $0-(CH_2)_n$ (CH₂) naphthyl, -O-(CH₂) nC(O) MR₉-(CH₂) naphthyl, halo (fluoro, chloro, bromo, iodo), OH, $-(CH_2)_q$ -OH, $(CH_2)_q$ OC(O) R_9 , $-(CH_2)_q$ OC-(0) -NR₂R₁₀, -(1-cyclohexyl-1H-tetrazol-5-yl)C₁-C₄ alkoxy, -[1- $(C_1-C_5alkyl)-1H-tetrazol-5-yl]C_1-C_0$ alkoxy, -[1-(phenyl)-1H-35 tetrazol-5-yl] C_1 - C_4 alkoxy [wherein phenyl is optionally substituted with one, 2 or 3 $C_1 - C_0$ alkyl, $C_1 - C_0$ alkoxy, halo, OH, trifluoromethyl or $-CO_2(C_1-C_0alkyl)$], -[1-(pyridinyl)-1H-(pyridinyl)]tetrazol-5-yl]C,-C, alkoxy, -[1-(1-phenylethyl)-1H-tetrazol-5WO 91/19707 PCT/US91/04140

yl]c₁-c₄ alkoxy, -c₁-c₄ alkoxyl, a group of Formula II

-77-

5

10 wherein R' is methyl or carboxy, R'' is hydrogen and R''' is selected from benzyl [optionally substituted with one, two or three groups selected from hydroxy, halogen or phenoxy (optionally substituted with one, two or three groups selected from hydroxy or halogen)], C_1-C_5 alkyl, $-(CH_2)_nCO_2H$, $-CH_2SH$, 15 -CH₂SCH₃, imidazolinylmethylene, indolinylmethylene, CH₃CH(OH), $H_2N(CH_2)_4$ -(optionally protected H2NC(NH)NH(CH2)3 (optionally in protected form); overall proviso that at least one member of R₅, R₆, R₇ or R₈ is $-CH=CH_2$, $-O-(CH_2)_pOH$, $-O-(CH_2)_p-O-(CH_2)_n$ pyridin-2-yl, $-O-(CH_2)_p-O-(CH_2)_n$ 20 O-(CH₂)_npyridin-3-y1,-0-(CH₂)_p-0-(CH₂)_npyridin-4-y1,-0-(CH₂)_p--0-(CH₂)_p-0-(CH₂)_n- $0-(CH_2)_n-1-(C_1-C_4alkyl)-1H-5-tetrazole,$ -0-(CH₂)_p-0-(CH₂)_n-2-benzoxazole,pyrimidine, $-0-(CH_2)_p-0-(CH_2)_n-(C_1-C_4alky1)-$ O-(CH₂)_n-2-benzothiazole, triazole, $-0-(CH_2)_p-0-(CH_2)_n-(C_1-C_4alkyl)-imidazole, <math>-0-(CH_2)_p-0$ 25 $O-(CH_2)_p-OR_{15}$, $-O-(CH_2)_p-S-R_{15}$, $-O-(CH_2)_p-O-(CH_2)_pNR_9R_{10}$, $-O-(CH_2)_p$ $(CH_2)_p - S - (CH_2)_p NR_9 R_{10}$, $-O - (CH_2)_p - S - (CH_2)_p - OR_{15}$, $-O - (CH_2)_p - S(O) - CH_2$ R_{15} , $-0-(CH_2)_p-S(O_2)-R_{15}$, $-0-(CH_2)_p-S(O)-(CH_2)_pNR_9R_{10}$, $-0-(CH_2)_p-S(O)-(CH_2)_p$ $S(0) - (CH_2)_p - OR_{15}$, $-O - (CH_2)_p - S(O_2) - (CH_2)_p NR_9 R_{10}$, $-O - (CH_2)_p - S(O_2) - (CH_2)_p - S(O_2)_p - (CH_2)_p - S(O_2)_p - (CH_2)_p - S(O_2)_p - (CH_2)_p - ($ $(CH_2)_p - OR_{15}$, $-O-(CH_2)_p - [4-[(CH_2)_p OR_{15}] - 1-piperazine]$, $-O-(CH_2)_p - [(CH_2)_p - (CH_2)_p - (CH_2$ 30 [4-(CH)(phenyl)2-1-piperazine] [phenyl optionally substituted with one, 2 or 3 C_1-C_4 alkyl, C_1-C_4 alkoxy, halo, OH, trifluoromethyl or $-co_2(c_1-c_4alkyl)$, $-o-(cH_2)_p-[4-(cH_2)_qphenyl-1$ piperazine] [phenyl optionally substituted with one, 2 or 3 C_1 - C_4 alkyl, C_1 - C_4 alkoxy, halo, OH, trifluoromethyl or - CO_2 (C_1 -35 C_4 alkyl)], -O-(CH₂)_p-[4-(CH₂)_qpyridinyl-1-piperazine] [pyridinyl optionally substituted with one, 2 or 3 C_1 - C_4 alkyl, C_1 - C_4 alkoxy, halo, OH, trifluoromethyl, NR₉R₁₀ or -CO₂(C₁-C₄alkyl)], O-(CH₂)_p-[4-(NR₉R₁₀ substituted pyridinyl)-1-piperazine, -O-

25

 $(CH_2)_p$ -(OH substituted 1-piperidine), -O- $(CH_2)_p$ -1-pyrrolidin-2-one;

when X is N, Y is selected from the group consisting of $-NR_9R_{10}$ wherein R_9 and R_{10} , being the same or different, are selected from the group consisting of

- (a) hydrogen, with the provisio that R_9 and R_{10} are not both hydrogen;
 - (b) C,-C, alkyl;
- (c) phenyl optionally substituted with one, 2 or 3 C_1-C_4 10 alkyl, C_1-C_4 alkoxy, halo, OH, trifluoromethyl or $-CO_2(C_1-C_4$ alkyl);
 - (d) $-(CH_2)_n$ phenyl (wherein phenyl is optionally substituted with one, 2 or 3 C_1-C_4 alkyl, C_1-C_4 alkoxy, halo, OH, trifluoromethyl or carbo C_1-C_4 alkoxy),
 - (e) -(CH₂)_npyridinyl, or
 - (f) wherein R_9 and R_{10} , taken together with N, form a saturated or unsaturated heterocyclic amine ring selected from the group consisting of
- (aa) 4-morpholine optionally substituted with one or 20 two members selected from the group consisting of c_1 - c_4 alkyl, c_1 - c_4 alkoxy, halo or trifluoromethyl,
 - (bb) 4-thiomorpholine optionally substituted with one or two members selected from the group consisting of C_1-C_4 alkyl, C_1-C_4 alkoxy, halo or trifluoromethyl,
 - (cc) 3-amino-1-pyrrolidine,
 - (dd) 1-pyrrolidine optionally substituted with one or two members selected from the group consisting of C_1-C_4 alkyl, C_1-C_4 alkoxy, halo, OH, $-CH_2OH$, or trifluoromethyl,
- (ee) 1-piperidine optionally substituted with one or two members selected from the group consisting of $\rm C_1-\rm C_4$ alkyl, $\rm C_1-\rm C_4$ alkoxy, halo, trifluoromethyl, $-(\rm CH_2)_q\rm OH$, $-\rm CO_2\rm CH_3$, $-\rm CO_2\rm CH_2\rm CH_3$ or phenyl (wherein phenyl is optionally substituted with one, 2 or 3 $\rm C_1-\rm C_4$ alkyl, $\rm C_1-\rm C_4$ alkoxy, halo or trifluoromethyl),
- 35 (ff) 1-piperazine, $4-(c_1-c_4$ alkyl)-1-piperazine, 4-phenyl-1-piperazine (wherein phenyl is optionally substituted with one, 2 or 3 c_1-c_4 alkyl, c_1-c_4 alkoxy, halo or trifluoromethyl) or 4-pyridinyl-1-piperazine optionally

substituted with one or two members selected from the group consisting of C_1-C_4 alkyl, C_1-C_4 alkoxy, halo, trifluoromethyl, $-CH_2O_H$, $-CO_2H$, $-CO_2CH_3$ or $-CO_2CH_2CH_3$, and

(gg) thiazolidine, thiazolidine-4-carboxylic acid, pipecolinic acid, p-piperazinacetophenone, 1-homopiperazine, 1methylhomopiperazine, 4-phenyl-1,2-3,6-tetrahydropyridine, proline, tetrahydrofurylamine, 1-(3-hydroxy)pyrrolidine, nipecotamide, 1,2,3,4-tetrahydroisoquinoline or imidazole;

and R_5 , R_6 , R_7 and R_8 , being the same or different, are 10 selected from the group consisting of hydrogen, C1-C8 alkyl, -(CH2) phenyl [wherein phenyl is optionally substituted with one, 2 or 3 C_1-C_4 alkyl, C_1-C_4 alkoxy, halo, OH, trifluoromethyl $-co_2(c_1-c_4alkyl)$, $-(CH_2)_n$ naphthyl, $-(CH_2)_n$ pyridinyl, $-(CH_2)_qNR_9R_{10}$, -CH=CH-phenyl [wherein phenyl is optionally substituted with one, 2 or 3 C_1-C_4 alkyl, C_1-C_4 alkoxy, halo, OH, trifluoromethyl or $-CO_2(C_1-C_4alkyl)$], $-CH_2-CH=CH_2$, $-CH=CH-CH_3$, -O-CH2-CH=CH2, -C=C-phenyl [wherein phenyl is optionally substituted with one, 2 or 3 C_1-C_4 alkyl, C_1-C_4 alkoxy, halo, OH, trifluoromethyl or -CO2(C1-C4alkyl)], 20 $-O(CH_2)_p(N-methylpiperdin-3-y1)$, $-O-(CH_2)_pNR_9R_{10}$, $CH_2CH(OCH_3)_2$, $-O-(CH_2)_pOR_{15}$, $-O-(CH_2)_p-O-(CH_2)_pOR_{15}$, $-O-(CH_2)_p-OR_{15}$ $S-R_{15}, \quad -O-(CH_2)_p-O-(CH_2)_pNR_9R_{10}, \quad -O-(CH_2)_p-S-(CH_2)_pNR_9R_{10}, \quad -O-(CH_2)_pNR_9R_{10}, \quad -O-(CH_2)_$ $(CH_2)_p$ -S- $(CH_2)_p$ -OR₁₅, -O- $(CH_2)_p$ -S(O)-R₁₅, -O- $(CH_2)_p$ -S(O₂)-R₁₅, $- O - \left(\text{CH}_2 \right)_p - \text{S} \left(\text{O} \right) - \left(\text{CH}_2 \right)_p \text{NR}_9 \text{R}_{10} \, , \qquad - O - \left(\text{CH}_2 \right)_p - \text{S} \left(\text{O} \right) - \left(\text{CH}_2 \right)_p - \text{OR}_{15} \, ,$ 25 $(CH_2)_p - S(O_2) - (CH_2)_p NR_9 R_{10}$, $-O - (CH_2)_p - S(O_2) - (CH_2)_p - OR_{15}$, $-O - (CH_2)_p - OR_{15}$ $[4-[(CH_2)_pOR_{15}]-1-piperazine], -0-(CH_2)_p-[4-(CH)(phenyl)_2-1-(CH_2)_p]$ piperazine] [phenyl optionally substituted with one, 2 or 3 C1- C_4 alkyl, C_1 - C_4 alkoxy, halo, OH, trifluoromethyl or $-CO_2(C_1$ - C_4 alkyl)], $-O-(CH_2)_p-[4-(CH_2)_q$ phenyl-1-piperazine] 30 optionally substituted with one, 2 or 3 C_1-C_4 alkyl, C_1-C_4 alkoxy, halo, OH, trifluoromethyl or -CO2(C1-C4alkyl)], -O- $(CH_2)_p$ -[4-(CH_2)_qpyridinyl-1-piperazine] [pyridinyl optionally substituted with one, 2 or 3 C1-C4 alkyl, C1-C4 alkoxy, halo, OH, trifluoromethyl, NR_9R_{10} or $-CO_2(C_1-C_4alkyl)$], $O-(CH_2)_p-[4-C_4alkyl)$ 35 (NR₉R₁₀ substituted pyridinyl)-1-piperazine, -0-(CH₂)_p-(OH -O-(CH₂)_p-1-pyrrolidin-2-one, substituted 1-piperidine), $-(CH_2)_nC(O)O-(CH_2)_pR_9$, $-(CH_2)_nC(O)-(CH_2)_nR_9$, $-(CH_{n}C(0)O (\text{CH}_2)_{\,\,\text{p}} \text{NR}_9 \text{R}_{10} \,, \quad - (\text{CH}_2)_{\,\,\text{n}} \text{C(O)} \,\, (\text{CH}_2)_{\,\,\text{n}} \text{NR}_9 \text{R}_{10} \,, \quad \text{NO}_2 \,, \\ - \text{O} - (\text{CH}_2)_{\,\,\text{n}} \text{C(O)} - (\text{CH}_2)_{\,\,\text{p}} \text{R}_9 \,, \quad \text{NO}_2 \,, \\ - \text{O} - (\text{CH}_2)_{\,\,\text{n}} \text{C(O)} - (\text{CH}_2)_{\,\,\text{p}} \text{R}_9 \,, \quad \text{NO}_2 \,, \\ - \text{O} - (\text{CH}_2)_{\,\,\text{n}} \text{C(O)} - (\text{CH}_2)_{\,\,\text{n}} \text{C(O)} \,, \\ - \text{O} - (\text{CH}_2)_{\,\,\text{n}} \text{C(O)} - (\text{CH}_2)_{\,\,\text{n}} \text{C(O)} \,, \\ - \text{O} - (\text{CH}_2)_{\,\,\text{n}} \text{C(O)} - (\text{CH}_2)_{\,\,\text{n}} \text{C(O)} \,, \\ - \text{O} - (\text{CH}_2)_{\,\,\text{n}} \text{C(O)} - (\text{CH}_2)_{\,\,\text{n}} \text{C(O)} \,, \\ - \text{O} - (\text{CH}_2)_{\,\,\text{n}} \text{C(O)}$

 $-0-(CH_2)_nC(0)0-(CH_2)_pR_9$, $-0-(CH_2)_nC(0)-(CH_2)_nNR_9R_{10}$, $-NR_9R_{10}$, $-N(R_9)(CH_2)_nC(O)-(CH_2)_nR_{10}$, $-N(R_9)-(CH_2)_nC(O)O-(CH_2)_nR_{10}$, $N(R_9)(CH_2)_nC(O)-(CH_2)_nNR_9R_{10}$, -O-(CH₂)_nphenyl [wherein phenyl is optionally substituted with one, 2 or 3 C_1-C_4 alkyl, C_1-C_4 5 alkoxy, halo, OH, trifluoromethyl or -CO2(C1-C4alkyl)], -O- $(CH_2)_n$ pyridine, $-O(CH_2)_nC(O)-(CH_2)_n$ pyridine, $-O-(CH_2)_nC(O)O-(CH_2)_n$ $-O(CH_2)_nC(O)-N(R_9)(CH_2)_n$ pyridine, (CH₂) pyridine, (CH₂)_nquinoxalinyl, -O-(CH₂)_nquinolinyl, -O-(CH₂)_npyrazinyl, -O- $(CH_2)_n$ naphthyl, $-O-(CH_2)_n$ C(O)- $(CH_2)_n$ naphthyl, $-O-(CH_2)_n$ C(O)O-10 (CH₂)_nnaphthyl, -0-(CH₂)_nC(O)NR₉-(CH₂)_nnaphthyl, halo (fluoro, chloro, bromo, iodo), OH, $-(CH_2)_q$ -OH, $(CH_2)_q$ OC(O) R_9 , $-(CH_2)_q$ OC-(O) -NR₉R₁₀, -(1-cyclohexyl-1H-tetrazol-5-yl)C₁-C₄ alkoxy, -[1- $(C_1-C_5alkyl)-1H-tetrazol-5-yl]C_1-C_4$ alkoxy, -[1-(phenyl)-1Htetrazol-5-yl]C1-C4 alkoxy [wherein phenyl is optionally 15 substituted with one, 2 or 3 C_1-C_4 alkyl, C_1-C_4 alkoxy, halo, OH, trifluoromethyl or $-CO_2(C_1-C_4alkyl)$], -[1-(pyridinyl)-1Htetrazol-5-yl]C₁-C₄ alkoxy, -[1-(1-phenylethyl)-1H-tetrazol-5 $yl_1c_1-c_4$ alkoxy, or $-c_1-c_4$ alkoxyl;

 R_{15} is selected from H, C_1 - C_5 alkyl, $-(CH_2)_n$ phenyl [phenyl optionally substituted with one, 2 or 3 C_1 - C_4 alkyl, C_1 - C_4 alkoxy, halo, OH, trifluoromethyl or $-CO_2(C_1$ - C_4 alkyl)], $-(CH_2)_n$ pyridin-1-yl, $-(CH_2)_n$ pyridin-2-yl, $-(CH_2)_n$ pyridin-3-yl, $-(CH_2)_n$ pyridin-4-yl, $-(CH_2)_n$ -1- $(C_1$ - C_4 alkyl)-1H-5-tetrazole, $-(CH_2)_n$ -pyrimidine, $-(CH_2)_n$ -2-benzoxazole, $-(CH_2)_n$ -2-benzoxazole, $-(CH_2)_n$ -2-benzoxazole, $-(CH_2)_n$ -(C_1 - C_4 alkyl)-imidazole;

n is 0-5;

p is 2-5;

q is 1-5;

- 30 and pharmaceutically acceptable salts or hydrates thereof; to prepare a medicament for preventing or treating atherosclerosis.
- 15. The use according to Claim 14 wherein Y is selected from the group consiting of $-(CH_2)_nNR_9R_{10}$ wherein R_9 and R_{10} , taken together with N, form a saturated or unsaturated heterocyclic amine ring selected from the group consisting of:
 - (aa) 4-morpholine optionally substituted with one or

two members selected from the group consisting of C1-C4 alkyl, C1-C4 alkoxy, halo or trifluoromethyl,

(bb) 4-thiomorpholine optionally substituted with one or two members selected from the group consisting of C1-C1 5 alkyl, C1-C4 alkoxy, halo or trifluoromethyl,

(cc) 3-amino-1-pyrrolidine,

(dd) 1-pyrrolidine optionally substituted with one or two members selected from the group consisting of C1-C4 alkyl, C₁-C₄ alkoxy, halo, OH, -CH₂OH, or trifluoromethyl,

(ee) 1-piperidine optionally substituted with one or two members selected from the group consisting of C1-C4 alkyl, C_1-C_4 alkoxy, halo, trifluoromethyl, $-(CH_2)_QOH$, $-CO_2H$, $-CO_2CH_3$. -CO2CH2CH3 or phenyl (wherein phenyl is optionally substituted with one, 2 or 3 C_1 - C_4 alkyl, C_1 - C_4 alkoxy, halo or tri-15 fluoromethyl),

(ff) 1-piperazine, 4-methyl-1-piperazine, 4-phenyl-1piperazine (wherein phenyl is optionally substituted with one, 2 or 3 C₁-C₄ alkyl, C₁-C₄ alkoxy, halo or trifluoromethyl) or 4-pyridinyl-1-piperazine optionally substituted with one or two 20 members selected from the group consisting of C_1-C_4 alkyl, C_1-C_4 alkoxy, halo, trifluoromethyl, -CH2OH, -CO2H, -CO2CH3 or -co, CH, CH3.

16. A pharmaceutical composition comprising a compound selected from the group consisting of compounds of Formula I

30

35

wherein X is N, or CZ where Z is H, C1-C5 alkyl, amino (-NH2) or a halogen atom;

when X is CZ, Y is selected from the group consisting of $-(CH_2)_nNR_9R_{10}$ wherein R_9 and R_{10} , being the same or different,

15

25

are selected from the group consisting of

- (a) hydrogen, with the provisio that R_q and R₁₀ are not both hydrogen;
 - (b) C₁-C₁₂ alkyl;
- (c) phenyl optionally substituted with one, 2 or 3 C₁-C₄ alkyl, C,-C, alkoxy, halo, OH, trifluoromethyl or -CO2(C1-C,alkyl);
- (d) -(CH₂)_nphenyl [wherein phenyl is optionally substituted with one, 2 or 3 C1-C4 alkyl, C1-C4 alkoxy, halo, OH, 10 trifluoromethyl or -CO₂(C₁-C₄alkyl)],
 - (e) -(CH₂)_npyridinyl or
 - (f) wherein R_9 and R_{10} , taken together with N, form a saturated or unsaturated heterocyclic amine ring selected from the group consisting of
 - (aa) 4-morpholine optionally substituted with one or two members selected from the group consisting of C,-C, alkyl, C,-C, alkoxy, halo or trifluoromethyl
- (bb) 4-thiomorpholine optionally substituted with one or two members selected from the group consisting of C;-C, 20 alkyl, C,-C, alkoxy, halo or trifluoromethyl
 - (cc) 3-amino-1-pyrrolidine,
 - (dd) 1-pyrrolidine optionally substituted with one or two members selected from the group consisting of C,-C, alkyl, C1-C2 alkoxy, halo, OH, -CH2OH, or trifluoromethyl
- (ee) 1-piperidine optionally substituted with one or two members selected from the group consisting of C1-C1 alkyl, C₁-C₄ alkoxy, halo, trifluoromethyl, -(CH₂)_gOH, -CO₂H, -CO₂CH₃. -CO2CH2CH3 or phenyl (wherein phenyl is optionally substituted with one, 2 or 3 C_1-C_4 alkyl, C_1-C_4 alkoxy, halo or tri-30 fluoromethyl),
- (ff) 1-piperazine, 4-(C,-Calkyl)-1-piperazine, 4phenyl-1-piperazine (wherein phenyl is optionally substituted with one, 2 or 3 C_1-C_4 alkyl, C_1-C_4 alkoxy, halo or tri-4-pyridinyl-1-piperazine fluoromethyl) or 35 substituted with one or two members selected from the group consisting of C₁-C₄ alkyl, C₁-C₄ alkoxy, halo, trifluoromethyl, -CH₂OH, -CO₂H, -CO₂CH₃ or -CO₂CH₂CH₃, and
 - (gg) thiazolidine, thiazolidine-4-carboxylic acid,

pipecolinic acid, p-piperazinacetophenone, 1-homopiperazine, 1-4-phenyl-1,2-3,6-tetrahydropyridine, methylhomopiperazine, proline, tetrahydrofurylamine, 1-(3-hydroxy)pyrrolidine, nipecotamide, 1,2,3,4-tetrahydroisoquinoline or imidazole; and R_5 , R_6 , R_7 and R_8 , being the same or different, are selected from the group consisting of hydrogen, C1-C8 alkyl, -(CH2) phenyl [wherein phenyl is optionally substituted with one, 2 or 3 C_1-C_4 alkyl, C_1-C_4 alkoxy, halo, OH, trifluoromethyl $-co_2(c_1-c_4alkyl)$, $-(CH_2)_n$ naphthyl, -(CH₂) pyridinyl, $-(CH_2)_qNR_9R_{10}$, -CH=CH-phenyl [wherein phenyl is optionally substituted with one, 2 or 3 C₁-C₄ alkyl, C₁-C₄ alkoxy, halo, OH, trifluoromethyl or $-CO_2(C_1-C_4alkyl)$], $-CH_2-CH=CH_2$, $-CH=CH-CH_3$, -CH=CH₂, -O-CH₂-CH=CH₂, -C=C-phenyl [wherein phenyl optionally substituted with one, 2 or 3 C₁-C₄ alkyl, C₁-C₄ 15 alkoxy, halo, OH, trifluoromethyl or -CO2(C1-C4alkyl)], $-O(CH_2)_p(N-methylpiperdin-3-y1)$, $-O-(CH_2)_pNR_9R_{10}$, $CH_2CH(OCH_3)_2$, $-O-(CH_2)_pOR_{15}$, $-O-(CH_2)_p-O-(CH_2)_pOR_{15}$, $-O-(CH_2)_p-O-(CH_2)_pOR_{15}$ $S-R_{15}$, $-O-(CH_2)_p-O-(CH_2)_pNR_9R_{10}$, $-O-(CH_2)_p-S-(CH_2)_pNR_9R_{10}$, $-O-(CH_2)_pNR_9R_{10}$ $(CH_2)_p - S - (CH_2)_p - OR_{15}$, $-O - (CH_2)_p - S(O) - R_{15}$, $-O - (CH_2)_p - S(O_2) - R_{15}$, $20 -O-(CH_2)_p-S(O)-(CH_2)_pNR_9R_{10}, -O-(CH_2)_p-S(O)-(CH_2)_p-OR_{15}, -O-(CH_2)_p$ $(CH_2)_p - S(O_2) - (CH_2)_p NR_9 R_{10}, -O - (CH_2)_p - S(O_2) - (CH_2)_p - OR_{15}, -O - ($ $[4-[(CH_2)_pOR_{15}]-1-piperazine], -0-(CH_2)_p-[4-(CH)(phenyl)_2-1$ piperazine] [phenyl optionally substituted with one, 2 or 3 C₁ c_4 alkyl, c_1-c_4 alkoxy, halo, OH, trifluoromethyl or $-co_2(c_1-c_4)$ 25 C_4 alkyl)], $-0-(CH_2)_p-[4-(CH_2)_q$ phenyl-1-piperazine] [phenyl optionally substituted with one, 2 or 3 C1-C4 alkyl, C1-C4 alkoxy, halo, OH, trifluoromethyl or -CO2(C1-C4alkyl)], -O- $(CH_2)_p$ -[4- $(CH_2)_q$ pyridinyl-1-piperazine] [pyridinyl optionally substituted with one, 2 or 3 C1-C4 alkyl, C1-C4 alkoxy, halo, 30 OH, trifluoromethyl, NR_9R_{10} or $-CO_2(C_1-C_4alkyl)$], $-O-(CH_2)_p-[4-C_4alkyl]$ substituted pyridinyl)-1-piperazine, -0-(CH₂)_p-(OH -0-(CH₂)_p-1-pyrrolidin-2-one, 1-piperidine), $-(CH_2)_nC(O)O-(CH_2)_pR_9$, $-(CH_2)_nC(0)-(CH_2)_nR_9$, -(CH_{)n}C(0)0- $(CH_2)_pNR_9R_{10}$, $-(CH_2)_nC(O)(CH_2)_nNR_9R_{10}$, NO_2 , $-O-(CH_2)_nC(O)-(CH_2)_pR_9$, $^{35} \quad -\text{O-($\bar{\text{CH}}_{2}$)}_{\,\,n}\text{C(O)O-($\bar{\text{CH}}_{2}$)}_{\,\,p}\text{R}_{9}\,, \quad -\text{O-($\bar{\text{CH}}_{2}$)}_{\,\,n}\text{C(O)-($\bar{\text{CH}}_{2}$)}_{\,\,n}\text{NR}_{9}\text{R}_{10}\,, \quad -\text{NR}_{9}\bar{\text{R}}_{10}\,,$ $-N(R_9)-(CH_2)_nC(O)O-(CH_2)_nR_{10}$ $-N(R_9)(CH_2)_nC(0)-(CH_2)_nR_{10}$ $N(R_9)(CH_2)_nC(O)-(CH_2)_nNR_9R_{10}$, -O-(CH₂)_nphenyl [wherein phenyl is optionally substituted with one, 2 or 3 C_1-C_4 alkyl, C_1-C_4

alkoxy, halo, OH, trifluoromethyl or -CO2(C1-C4alkyl)], -O- $(CH_2)_n$ pyridine, $-O(CH_2)_n$ C(O)- $(CH_2)_n$ pyridine, $-O-(CH_2)_n$ C(O)O--0(CH₂)_nC(0)-N(R₉)(CH₂)_npyridine,(CH₂) pyridine, (CH₂)_nquinoxalinyl, -O-(CH₂)_nquinolinyl, -O-(CH₂)_npyrazinyl, -O-5 $(CH_2)_n$ naphthyl, $-0-(CH_2)_n$ C(0)- $(CH_2)_n$ naphthyl, $-0-(CH_2)_n$ C(0)0- $(CH_2)_n$ naphthyl, -0- $(CH_2)_n$ C(0)NR₉- $(CH_2)_n$ naphthyl, halo (fluoro, chloro, bromo, iodo), OH, $-(CH_2)_q$ -OH, $(CH_2)_q$ OC(O) R_9 , $-(CH_2)_q$ OC-(0) -NR₉R₁₀, -(1-cyclohexyl-1H-tetrazol-5-yl)C₁-C₄ alkoxy, -[1- $(C_1-C_5alkyl)-1H-tetrazol-5-yl]C_1-C_4$ alkoxy, -[1-(phenyl)-1H-10 tetrazol-5-yl]C1-C4 alkoxy [wherein phenyl is optionally substituted with one, 2 or 3 C_1-C_4 alkyl, C_1-C_4 alkoxy, halo, OH, trifluoromethyl or $-CO_2(C_1-C_4alkyl)$], -[1-(pyridinyl)-1Htetrazol-5-yl] C_1 - C_4 alkoxy, -[1-(1-phenylethyl)-1H-tetrazol-5yl]C₁-C₄ alkoxy, -C₁-C₄ alkoxyl, a group of Formula II wherein 15 R' is methyl or carboxy, R'' is hydrogen and R''' is selected from benzyl [optionally substituted with one, two or three groups selected from hydroxy, halogen or phenoxy (optionally substituted with one, two or three groups selected from hydroxy or halogen)], C_1-C_5 alkyl, $-(CH_2)_nCO_2H$, $-CH_2SH$, $-CH_2SCH_3$, 20 imidazolinylmethylene, indolinylmethylene, CH3CH(OH), CH2OH, $H_2N(CH_2)_4$ -(optionally in protected form) or $H_2NC(NH)NH(CH_2)_3$ (optionally in protected form); with the overall proviso that at least one member of R_5 , R_6 , R_7 or R_8 is $-CH=CH_2$, $-O-(CH_2)_DOH$, $-0-(CH_2)_p-0-(CH_2)_n$ pyridin-2-y1, $-0-(CH_2)_p-0-(CH_2)_n$ pyridin-3-y1, C₄alkyl)-1H-5-tetrazole, -O-(CH₂)_p-O-(CH₂)_n-pyrimidine, -O- $(CH_2)_p$ -0- $(CH_2)_n$ -2-benzoxazole, -0- $(CH_2)_p$ -0- $(CH_2)_n$ -2benzothiazole, $-0-(CH_2)_p-0-(CH_2)_n-(C_1-C_4alkyl)$ -triazole, -0- $(CH_2)_p$ -O- $(CH_2)_n$ - $(C_1$ - C_4 alkyl)-imidazole,-O- $(CH_2)_p$ -O- $(CH_2)_p$ -OR₁₅, 30 $-O-(CH_2)_p-S-R_{15}$, $-O-(CH_2)_p-O-(CH_2)_pNR_9R_{10}$, $(CH_2)_pNR_9R_{10}$, $-O-(CH_2)_p-S-(CH_2)_p-OR_{15}$, $-O-(CH_2)_p-S(O)-R_{15}$, $-O-(CH_2)_p$ $(CH_2)_p - S(O_2) - R_{15}$, $-O - (CH_2)_p - S(O) - (CH_2)_p NR_9 R_{10}$, $-O - (CH_2)_p - S(O) - (CH_2)_p - (CH_2)_p$ $(CH_2)_p - OR_{15}$, $-O - (CH_2)_p - S(O_2) - (CH_2)_p NR_9 R_{10}$, $-O - (CH_2)_p - S(O_2) - (CH_2)_p$ OR_{15} , $-O-(CH_2)_p-[4-[(CH_2)_pOR_{15}]-1-piperazine]$, $-O-(CH_2)_p-[4-[(CH_2)_pOR_{15}]-1-piperazine]$ 35 (CH) (phenyl) 2-1-piperazine] [phenyl optionally substituted with one, 2 or 3 C_1 - C_4 alkyl, C_1 - C_4 alkoxy, halo, OH, trifluoromethyl or $-CO_2(C_1-C_4alkyl)$], $-O-(CH_2)_p-[4-(CH_2)_qphenyl-1-piperazine]$ [phenyl optionally substituted with one, 2 or 3 C1-C4 alkyl,

 C_1 - C_4 alkoxy, halo, OH, trifluoromethyl or $-CO_2(C_1$ - C_4 alkyl)], $-O-(CH_2)_p$ - $[4-(CH_2)_q$ pyridinyl-1-piperazine] [pyridinyl optionally substituted with one, 2 or 3 C_1 - C_4 alkyl, C_1 - C_4 alkoxy, halo, OH, trifluoromethyl, NR_9R_{10} or $-CO_2(C_1$ - C_4 alkyl)], $O-(CH_2)_p$ - $[4-(NR_9R_{10}$ substituted pyridinyl)-1-piperazine, $-O-(CH_2)_p$ - $[4-(CH_2)_p]$

when X is N, Y is selected from the group consisting of -NR₉R₁₀ wherein R₉ and R₁₀, being the same or different, are selected from the group consisting of (a) hydrogen, with the provisio that R₉ and R₁₀ are not both hydrogen; (b) C₁-C₁₂ alkyl; (c) phenyl optionally substituted with one, 2 or 3 C₁-C₄ alkyl, C₁-C₄ alkoxy, halo, OH, trifluoromethyl or -Co₂(C₁-C₄alkyl); (d) -(CH₂)_nphenyl (wherein phenyl is optionally substituted with one, 2 or 3 C₁-C₄ alkyl, C₁-C₄ alkoxy, halo, OH, trifluoromethyl or carboC₁-C₄ alkoxy), (e) -(CH₂)_npyridinyl or (f) wherein R₉ and R₁₀, taken together with N, form a saturated or unsaturated heterocyclic amine ring selected from the group consisting of

- (aa) 4-morpholine optionally substituted with one or two members selected from the group consisting of C_1 - C_4 alkoxy, halo or trifluoromethyl,
 - (bb) 4-thiomorpholine optionally substituted with one or two members selected from the group consisting of C_1 - C_4 alkoxy, halo or trifluoromethyl,
 - (cc) 3-amino-1-pyrrolidine,
 - (dd) 1-pyrrolidine optionally substituted with one or two members selected from the group consisting of C_1-C_4 alkyl, C_1-C_4 alkoxy, halo, OH, $-CH_2$ OH, or trifluoromethyl,
- (ee) 1-piperidine optionally substituted with one or two members selected from the group consisting of C_1 - C_4 alkyl, C_1 - C_4 alkoxy, halo, trifluoromethyl, $-(CH_2)_qOH$, $-CO_2H$, $-CO_2CH_3$, $-CO_2CH_2CH_3$ or phenyl (wherein phenyl is optionally substituted with one, 2 or 3 C_1 - C_4 alkyl, C_1 - C_4 alkoxy, halo or trifluoromethyl),
- (ff) 1-piperazine, $4-(C_1-C_4$ alkyl)-1-piperazine, 4-phenyl-1-piperazine (wherein phenyl is optionally substituted with one, 2 or 3 C_1-C_4 alkyl, C_1-C_4 alkoxy, halo or trifluoromethyl) or 4-pyridinyl-1-piperazine optionally

substituted with one or two members selected from the group consisting of C_1-C_4 alkyl, C_1-C_4 alkoxy, halo, trifluoromethyl, $-CH_2OH$, $-CO_2CH_3$ or $-CO_2CH_2CH_3$, and

(gg) thiazolidine, thiazolidine-4-carboxylic acid, pipecolinic acid, p-piperazinacetophenone, 1-homopiperazine, 1methylhomopiperazine, 4-phenyl-1,2-3,6-tetrahydropyridine, proline, tetrahydrofurylamine, 1-(3-hydroxy)pyrrolidine, nipecotamide, 1,2,3,4-tetrahydroisoquinoline or imidazole;

and R_5 , R_6 , R_7 and R_8 , being the same or different, are 10 selected from the group consisting of hydrogen, C1-Ca alkyl, -(CH2) phenyl [wherein phenyl is optionally substituted with one, 2 or 3 C_1 - C_4 alkyl, C_1 - C_4 alkoxy, halo, OH, trifluoromethyl $-co_2(c_1-c_4alkyl)$, $-(CH_2)_n$ naphthyl, -(CH₂) pyridinyl, -(CH2) NR9R10, -CH=CH-phenyl [wherein phenyl is optionally sub-15 stituted with one, 2 or 3 C1-C4 alkyl, C1-C4 alkoxy, halo, OH, trifluoromethyl or -CO2(C1-C4alkyl)], -CH2-CH-CH3, -CH-CH-CH3, -CH=CH2, -O-CH2-CH=CH2, -C=C-phenyl [wherein phenyl is optionally substituted with one, 2 or 3 C1-C4 alkyl, C1-C4 alkoxy, halo, OH, trifluoromethyl or -CO2(C1-C4alkyl)], 20 -O(CH_2)_p(N-methylpiperdin-3-yl), =0-(CH_2)_p NR_9R_{10} , CH2CH(OCH3)2, -0-(CH2)pOR15, -0-(CH2)p-O-(CH2)p-OR15, -0-(CH2)p- $S-R_{15}$, $-O-(CH_2)_p-O-(CH_2)_p MR_9 R_{10}$, $-O-(CH_2)_p-S-(CH_2)_p NR_9 R_{10}$, $-O-(CH_2)_p NR_9 R_{10}$ $(CH_2)_p - S - (CH_2)_p - OR_{15}$, $-O - (CH_2)_p - S(O) - R_{15}$, $-O - (CH_2)_p - S(O_2) - R_{15}$ -0-(CH₂)_p-s(0)-(CH₂)_p-OR₁₅, 0-(CH₂)_p-S(0)-(CH₂)_pNR₉R₁₀, 25 $(CH_2)_p = \hat{s}(O_2) - (CH_2)_p NR_9 R_{10}$, $-O - (CH_2)_p = s(O_2) - (CH_2)_p - OR_{15}$, $-O - (CH_2)_p = c(O_2)_p - OR_{15}$ [4-[(CH₂)_pOR₁₅]-1-piperazine], -0-(CH₂)_p-[4-(CH)(phenyl)₂-1piperazine] (phenyl optionally substituted with one, 2 or 3 C_1 c_{g} alkyl, c_{1} - c_{g} alkoxy, halo, OH, trifluoromethyl or - co_{2} (c_{1} - $C_{qalkyl)}$, $-O-(CH_2)_{p}-[4-(CH_2)_{q}]$ phenyl-1-piperazine] [phenyl 30 optionally substituted with one, 2 or 3 C_1-C_0 alkyl, C_1-C_0 alkoxy, halo, OH, trifluoromethyl or -CO2(C1-C3alkyl)], -O-(CH₂)_p-[4-(CH₂)_qpyridinyl-1-piperazine] [pyridinyl optionally substituted with one, 2 or 3 C_1-C_0 alkyl, C_1-C_0 alkoxy, halo, OH, trifluoromethyl, MR_9R_{10} or $-CO_2(C_1-C_4alkyl)$], $O-(CH_2)_p-(4-C_4alkyl)$ 35 $(NR_9R_{10}$ substituted pyridinyl)-1-piperazine, -0- $(CH_2)_p$ -(OH -O-(CH₂)_p-1-pyrrolidin-2-one, 1-piperidine), substituted -(CH₂)_nC(O)O-(CH₂)_pR₉,-(CH)2C(0)0--(CH₂)_nC(O)-(CH₂)_nR₉, $(CH_2)_n NR_9 R_{10}$, $-(CH_2)_n C(0) (CH_2)_n NR_9 R_{10}$, NO_2 , $-0-(CH_2)_n C(0) - (CH_2)_n R_9$,

 $-0-(CH_2)_nC(0)0-(CH_2)_pR_9$, $-0-(CH_2)_nC(0)-(CH_2)_nNR_9R_{10}$, $-N(R_9)(CH_2)_nC(O)-(CH_2)_nR_{10}$, $-N(R_9)-(CH_2)_nC(O)O-(CH_2)_nR_{10}$, $N(R_9)(CH_2)_nC(O)-(CH_2)_nNR_9R_{10}$, -O-(CH₂)_nphenyl [wherein phenyl is optionally substituted with one, 2 or 3 C_1-C_4 alkyl, C_1-C_4 5 alkoxy, halo, OH, trifluoromethyl or -CO₂(C₁-C₄alkyl)], -O- $(CH_2)_n$ pyridine, $-O(CH_2)_n$ $C(O)-(CH_2)_n$ pyridine, $-O-(CH_2)_n$ $C(O)O-(CH_2)_n$ $-O(CH_2)_nC(O)-N(R_9)(CH_2)_n$ pyridine, (CH₂)_npyridine, (CH₂)_nquinoxaliny1, -O-(CH₂)_nquinoliny1, -O-(CH₂)_npyraziny1, -O- $(CH_2)_n$ naphthyl, $-O-(CH_2)_n$ C(O) $-(CH_2)_n$ naphthyl, $-O-(CH_2)_n$ C(O) $O-(CH_2)_n$ 10 (CH₂)_nnaphthyl, -O-(CH₂)_nC(O)NR₉-(CH₂)_nnaphthyl, halo (fluoro, chloro, bromo, iodo), OH, $-(CH_2)_q$ -OH, $(CH_2)_q$ OC(O) R_9 , $-(CH_2)_q$ OC-(0) $-NR_9R_{10}$, -(1-cyclohexyl-1H-tetrazol-5-yl)C₁-C₄ alkoxy, <math>-[1-cyclohexyl-1H-tetrazol-5-yl)C₁-C₄ alkoxy, <math>-[1-cyclohexyl-1H-tetrazol-5-yl] $(C_1-C_5alkyl)-1H-tetrazol-5-yl]C_1-C_4$ alkoxy, -[1-(phenyl)-1Htetrazol-5-yl]C1-C4 alkoxy [wherein phenyl is optionally 15 substituted with one, 2 or 3 C_1-C_4 alkyl, C_1-C_4 alkoxy, halo, OH, trifluoromethyl or $-CO_2(C_1-C_4alkyl)$], -[1-(pyridinyl)-1H $tetrazol-5-yl]C_1-C_4$ alkoxy, -[1-(1-phenylethyl)-1H-tetrazol-5 $yl_1c_1-c_4$ alkoxy, or $-c_1-c_4$ alkoxyl;

with the overall proviso that at least one member of R_5 , 20 R_6 , R_7 , or R_8 is -CH=CH₂, -O-(CH₂)_pOH, -O-(CH₂)_p-O-(CH₂)_npyridin-2-y1, $-0-(CH_2)_p-0-(CH_2)_n$ pyridin-3-y1, $-0-(CH_2)_p-0-(CH_2)_n$ pyridin-4-y1, -0-(CH₂)_p-0-(CH₂)_n-1-(C₁-C₄alky1)-1H-5-tetrazole, -0- $(CH_2)_p$ -O- $(CH_2)_n$ -pyrimidine, -O- $(CH_2)_p$ -O- $(CH_2)_n$ -2-benzoxazole, $-O-(CH_2)_p-O-(CH_2)_n-2$ -benzothiazole, $-O-(CH_2)_p-O-(CH_2)_n-(C_1-CH_2)_p$ 25 C_4 alkyl)-triazole, -0-(CH_2)_p-0-(CH_2)_n-(C_1 - C_4 alkyl)-imidazole, $-0-(CH_2)_p-0-(CH_2)_p-OR_{15}$, $-0-(CH_2)_p-S-R_{15}$, $-0-(CH_2)_p-0-(CH_2)_p$ $(CH_2)_pNR_9R_{10}$, $-O-(CH_2)_p-S-(CH_2)_pNR_9R_{10}$, $-O-(CH_2)_p-S-(CH_2)_pOR_{15}$, $[(CH_2)_pOR_{15}]$ -1-piperazine], -0- $(CH_2)_p$ -[4-(CH)(phenyl)₂-1piperazine] [phenyl optionally substituted with one, 2 or 3 C1 c_4 alkyl, c_1 - c_4 alkoxy, halo, OH, trifluoromethyl or $-co_2(c_1$ --O-(CH₂)_p-[4-(CH₂)_qphenyl-1-piperazine] [phenyl C_alkyl)], 35 optionally substituted with one, 2 or 3 C_1-C_4 alkyl, C_1-C_4 alkoxy, halo, OH, trifluoromethyl or -CO2(C1-C4alkyl)], -O-(CH₂)_p-[4-(CH₂)_qpyridinyl-1-piperazine] [pyridinyl optionally substituted with one, 2 or 3 C1-C4 alkyl, C1-C4 alkoxy, halo,

OH, trifluoromethyl, NR_9R_{10} or $-CO_2(C_1-C_4alkyl)$], $O-(CH_2)_p-[4-(NR_9R_{10}$ substituted pyridinyl)-1-piperazine, $-O-(CH_2)_p-(OH_2)_p$ substituted 1-piperidine), $-O-(CH_2)_p-1$ -pyrrolidin-2-one;

 R_{15} is selected from H, C_1-C_5 alkyl, $-(CH_2)_n$ phenyl [phenyl optionally substituted with one, 2 or 3 C_1-C_4 alkyl, C_1-C_4 alkoxy, halo, OH, trifluoromethyl or $-CO_2(C_1-C_4$ alkyl)], $-(CH_2)_n$ pyridin-1-yl, $-(CH_2)_n$ pyridin-2-yl, $-(CH_2)_n$ pyridin-3-yl, $-(CH_2)_n$ pyridin-4-yl, $-(CH_2)_n-1-(C_1-C_4$ alkyl)-1H-5-tetrazole, $-(CH_2)_n$ -pyrimidine, $-(CH_2)_n-2$ -benzoxazole, $-(CH_2)_n-2$ -total benzothiazole, $-(CH_2)_n-(C_1-C_4$ alkyl)-triazole, $-(CH_2)_n-(C_1-C_4$ alkyl)-imidazole;

n is 0-5;

p is 2-5;

q is 1-5;

15 and pharmaceutically acceptable salts and hydrates thereof, in association with a pharmaceutcal carrier.

17. A process for the preparation of a compound of Formula I

20

25

35

wherein X is CZ where Z is H, C_1-C_5 alkyl, amino $(-NH_2)$ or a halogen atom;

30 Y is selected from the group consisting of $-(CH_2)_nNR_gR_{10}$ wherein R_g and R_{10} , being the same or different, are selected from the group consisting of

- (a) hydrogen, with the provisio that $\mathbf{R}_{\mathbf{9}}$ and $\mathbf{R}_{\mathbf{10}}$ are not both hydrogen;
 - (b) C₁-C₁₂ alkyl;
- (c) phenyl optionally substituted with one, 2 or 3 C_1 - C_4 alkyl, C_1 - C_4 alkoxy, halo, OH, trifluoromethyl or $-CO_2(C_1$ - C_4 alkyl);

PCT/US91/04140

-89-

- (d) $-(CH_2)_n$ phenyl (wherein phenyl is optionally substituted with one, 2 or 3 C_1-C_4 alkyl, C_1-C_4 alkoxy, halo, OH, trifluoromethyl or $carboC_1-C_4$ alkoxy),
- (e) $-(CH_2)_n$ pyridinyl or (f) wherein R_9 and R_{10} , taken together with N, form a saturated or unsaturated heterocyclic amine ring selected from the group consisting of
 - (aa) 4-morpholine optionally substituted with one or two members selected from the group consisting of C_1 - C_4 alkoxy, halo or trifluoromethyl,
 - (bb) 4-thiomorpholine optionally substituted with one or two members selected from the group consisting of C_1 - C_4 alkoxy, halo or trifluoromethyl,
 - (cc) 3-amino-1-pyrrolidine,

10

- (dd) 1-pyrrolidine optionally substituted with one or two members selected from the group consisting of C_1 - C_4 alkyl, C_1 - C_4 alkoxy, halo, OH, -CH₂OH, or trifluoromethyl,
- (ee) 1-piperidine optionally substituted with one or two members selected from the group consisting of C_1 - C_4 alkyl, C_1 - C_4 alkoxy, halo, trifluoromethyl, $-(CH_2)_qOH$, $-CO_2H$, $-CO_2CH_3$, 20 $-CO_2CH_2CH_3$ or phenyl (wherein phenyl is optionally substituted with one, 2 or 3 C_1 - C_4 alkyl, C_1 - C_4 alkoxy, halo or trifluoromethyl),
- (ff) 1-piperazine, 4-methyl-1-piperazine, 4-phenyl-1-piperazine (wherein phenyl is optionally substituted with one, 25 2 or 3 C₁-C₄ alkyl, C₁-C₄ alkoxy, halo or trifluoromethyl) or 4-pyridinyl-1-piperazine optionally substituted with one or two members selected from the group consisting of C₁-C₄ alkyl, C₁-C₄ alkoxy, halo, trifluoromethyl, -CH₂OH, -CO₂H, -CO₂CH₃ or -CO₂CH₂CH₃, and
- gg) thiazolidine, thiazolidine-4-carboxylic acid, pipecolinic acid, p-piperazinacetophenone, 1-homopiperazine, 1-methylhomopiperazine, 4-phenyl-1,2-3,6-tetrahydropyridine, proline, tetrahydrofurylamine, 1-(3-hydroxy)pyrrolidine, nipecotamide, 1,2,3,4-tetrahydroisoquinoline or imidazole;
- and R_5 , R_6 , R_7 and R_8 , being the same or different, are selected from the group consisting of hydrogen, C_1 - C_8 alkyl, -(CH₂)_nphenyl [wherein phenyl is optionally substituted with one, 2 or 3 C_1 - C_4 alkyl, C_1 - C_4 alkoxy, halo, OH, trifluoromethyl

-(CH₂)_nnaphthyl, -(CH₂)_npyridinyl, -co₂(c₁-c₄alkyl)], -(CH₂) $_{\rm N}$ R $_{\rm 2}$ R $_{\rm 10}$, -CH=CH-phenyl (wherein phenyl is optionally substituted with one, 2 or 3 C1-C4 alkyl, C1-C4 alkoxy, halo, OH, trifluoromethyl or -CO2(C1-C4alkyl)], -CH2-CH-CH2, -CH-CH-CH3, 5 -CH=CH2, -O-CH2-CH=CH2, -C=C-phenyl [wherein phenyl optionally substituted with one, 2 or 3 C1-C alkyl, C1-C4 halo, OH, trifluoromethyl or -CO2(C1-C4alkyl)], $-o(CH_2)_p(M-methylpiperdin-3-yl), -o-(CH_2)_pMR_9R_{10}$ CH2CH(OCH3)2, -0-(CH2)pOR15, -0-(CH2)p-0-(CH2)p-OR15, -0-(CH2)p-10 S-R₁₅, -O-(CH₂)_p-O-(CH₂)_pMR₉R₁₀, -O-(CH₂)_p-S-(CH₂)_pMR₉R₁₀, -O- $(CH_2)_p$ -S- $(CH_2)_p$ -OR₁₅, -O- $(CH_2)_p$ -S(O)-R₁₅, -O- $(CH_2)_p$ -S(O₂)-R₁₅, -0-(CH₂)_p-s(0)-(CH₂)_p-OR₁₅, -0- $-0-(CH_2)_p-S(0)-(CH_2)_pNR_9R_{10}$ $(CH_2)_p - S(O_2) - (CH_2)_p NR_9 R_{10}$, $-O-(CH_2)_p - S(O_2) - (CH_2)_p - OR_{15}$, $-O-(CH_2)_p - OR_{15}$ [4-[(CH₂)_pOR₁₅]-1-piperazine],-0-(CH₂)_p-[4-(CH)(phenyl)₂-1piperazine] [phenyl optionally substituted with one, 2 or 3 C1 c_4 alkyl, c_1 - c_4 alkoxy, halo, OH, trifluoromethyl or - co_2 (c_1 --O-(CH₂)_p-[4-(CH₂)_qphenyl-1-piperazine] [phenyl Calkyl)], optionally substituted with one, 2 or 3 C1-C4 alkyl, C1-C4 alkoxy, halo, OH, trifluoromethyl or -CO2(C1-C4alkyl)], -O-20 $(CH_2)_p = (4-(CH_2)_q pyridinyl-1-piperazine)$ [pyridinyl optionally . substituted with one, 2 or 3 C_1 - C_0 alkyl, C_1 - C_0 alkoxy, halo, OH, trifluoromethyl, MRgR10 or -CO2(C1-C4alkyl)], O-(CH2)p-[4- $(MR_9R_{10}$ substituted pyridinyl)-1-piperazine, -0- $(CH_2)_p$ - $(OH_2)_p$ -0-(CH₂) p-1-pyrrolidin-2-one, 1-piperidine), substituted -(ch) "c(0) o- $-(CH_2)_nC(0)O-(CH_2)_pR_9$, 25 - (CH₂)_nC(O) - (CH₂)_nR₉, $(CH_2)_{n}NR_{9}R_{10}$, $-(CH_2)_{n}C(0)(CH_2)_{n}NR_{9}R_{10}$, NO_2 , $-O-(CH_2)_{n}C(0)-(CH_2)_{n}R_{9}$, $-0-(CH_2)_nC(0)0-(CH_2)_pR_9$, $-0-(CH_2)_nC(0)-(CH_2)_nRR_9R_{10}$, $-H(R_9) - (CH_2)_n C(0) 0 - (CH_2)_n R_{10}$ $-\mathbb{M}(\mathbb{R}_{9})(\mathbb{CH}_{2})_{n}\mathbb{C}(0)-(\mathbb{CH}_{2})_{n}\mathbb{R}_{10},$ $N(R_9)$ (CH₂)_nC(O)-(CH₂)_nNR₉R₁₀, -O-(CH₂)_nphenyl [wherein phenyl is 30 optionally substituted with one, 2 or 3 C_1-C_0 alkyl, C_1-C_0 alkoxy, halo, OH, trifluoromethyl or -CO2(C1-C4alkyl)], -O- $(CH_2)_n pyridine$, $-O(CH_2)_n C(O) - (CH_2)_n pyridine$, $-O-(CH_2)_n C(O) O-$ -o(CH₂)_nC(O)-H(R₉)(CH₂)_npyridine,(CH₂) pyridine, (CH₂) guinoxalinyl, -O-(CH₂) quinolinyl, -O-(CH₂) npyrazinyl, -O- $(CH_2)_n$ naphthy1, $-O-(CH_2)_n$ C(O)-(CH₂) naphthy1, $-O-(CH_2)_n$ C(O)O-(CH₂) naphthyl, -0-(CH₂) nC(0) MR₉-(CH₂) naphthyl, halo (fluoro, chloro, bromo, iodo), OH, -(CH2), -OH, -(CH2), OC(O)R9, -(CH2), OC-(O) -NR₉R₁₀, _(1-cyclohexyl-1H-tetrazol-5-yl)C₁-C₃ alkoxy, -[1-

 $(C_1-C_5alkyl)-1H-tetrazol-5-yl]C_1-C_4$ alkoxy, -[1-(phenyl)-1Htetrazol-5-yl]C₁-C₄ alkoxy [wherein phenyl is optionally substituted with one, 2 or 3 C_1-C_4 alkyl, C_1-C_4 alkoxy, halo, OH, trifluoromethyl or $-CO_2(C_1-C_4alkyl)$], -[1-(pyridinyl)-1H-5 tetrazol-5-yl]C₁-C₄ alkoxy, -[1-(1-phenylethyl)-1H-tetrazol-5 $y1]c_1-c_4$ alkoxy, $-c_1-c_4$ alkoxyl, or a group of Formula II

15

10

wherein R' is methyl or carboxy, R'' is hydrogen and R''' is selected from benzyl [optionally substituted with one, two or three groups selected from hydroxy, halogen or phenoxy (optionally substituted with one, two or three groups selected 20 from hydroxy or halogen)], C_1-C_5 alkyl, $-(CH_2)_nCO_2H$, $-CH_2SH$, -CH2SCH3, imidazolinylmethylene, indolinylmethylene, CH3CH(OH), $H_2N(CH_2)_4$ -(optionally in protected form) CH,OH, H2NC(NH)NH(CH2)3 (optionally in protected form); with the overall proviso that at least one member of R₅, R₆, R₇ or R₈ is 25 -CH=CH₂, -O-(CH₂)_pOH, -O-(CH₂)_p-O-(CH₂)_npyridin-2-yl, -O-(CH₂)_p- $0-(CH_2)_n$ pyridin-3-yl, $-0-(CH_2)_p$ -0- $(CH_2)_n$ pyridin-4-yl, $-0-(CH_2)_p$ - $-0-(CH_2)_p-0-(CH_2)_n 0-(CH_2)_n-1-(C_1-C_4alky1)-1H-5-tetrazole,$ -O-(CH₂)_p-O-(CH₂)_n-2-benzoxazole,pyrimidine, $-0-(CH_2)_p-0-(CH_2)_n-(C_1-C_4alkyl)-$ 0-(CH₂)_n-2-benzothiazole, 30 triazole, $-0-(CH_2)_p-0-(CH_2)_n-(C_1-C_4alkyl)-imidazole, <math>-0-(CH_2)_p-0$ $O-(CH_2)_p-OR_{15}$, $-O-(CH_2)_p-S-R_{15}$, $-O-(CH_2)_p-O-(CH_2)_pNR_9R_{10}$, $-O-(CH_2)_pNR_9R_{10}$ $(CH_2)_p - S - (CH_2)_p NR_9 R_{10}$, $-O - (CH_2)_p - S - (CH_2)_p - OR_{15}$, $-O - (CH_2)_p - S(O) - CH_2$ R_{15} , $-0-(CH_2)_p-S(O_2)-R_{15}$, $-0-(CH_2)_p-S(O)-(CH_2)_pNR_9R_{10}$, $-0-(CH_2)_p-S(O)-(CH_2)_p$ $S(O) - (CH_2)_p - OR_{15}$, $-O - (CH_2)_p - S(O_2) - (CH_2)_p NR_9 R_{10}$, $-O - (CH_2)_p - S(O_2) - OR_{15}$ 35 $(CH_2)_p - OR_{15}$, $-O - (CH_2)_p - [4 - [(CH_2)_p OR_{15}] - 1 - piperazine]$, $-O - (CH_2)_p - [(CH_2)_p - (CH_2)_p - (CH_2$ [4-(CH)(phenyl)2-1-piperazine] [phenyl optionally substituted with one, 2 or 3 C_1-C_4 alkyl, C_1-C_4 alkoxy, halo, OH, trifluoromethyl or $-CO_2(C_1-C_4alkyl)$], $-O-(CH_2)_p-[4-(CH_2)_qphenyl-1-$ piperazine] [phenyl optionally substituted with one, 2 or 3 C₁-C₄ alkyl, C₁-C₄ alkoxy, halo, OH, trifluoromethyl or -CO₂(C₁-C₄alkyl)], -O-(CH₂)_p-[4-(CH₂)_qpyridinyl-1-piperazine] [pyridinyl optionally substituted with one, 2 or 3 C₁-C₄ alkyl, C₁-C₄ alkoxy, halo, OH, trifluoromethyl, NR₉R₁₀ or -CO₂(C₁-C₄alkyl)], O-(CH₂)_p-[4-(NR₉R₁₀ substituted pyridinyl)-1-piperazine, -O-(CH₂)_p-(OH substituted 1-piperidine), -O-(CH₂)_p-1-pyrrolidin-2-one;

 R_{15} is selected from C_1-C_5 alkyl, $-(CH_2)_n$ phenyl [phenyl optionally substituted with one, 2 or 3 C_1-C_4 alkyl, C_1-C_4 alkoxy, halo, OH, trifluoromethyl or $-CO_2(C_1-C_4$ alkyl)], $-(CH_2)_n$ pyridin-1-yl, $-(CH_2)_n$ pyridin-2-yl, $-(CH_2)_n$ pyridin-3-yl, $-(CH_2)_n$ pyridin-4-yl, $-(CH_2)_n-1-(C_1-C_4$ alkyl)-1H-5-tetrazole, $-(CH_2)_n$ -pyrimidine, $-(CH_2)_n-2$ -benzoxazole, $-(CH_2)_n-2$ -benzothiazole, $-(CH_2)_n-(C_1-C_4$ alkyl)-triazole, $-(CH_2)_n-(C_1-C_4$ alkyl)-imidazole;

n is 0-5;

p is 2-5;

q is 1-5;

20 which comprises reacting a salicylic acid ester of Formula A

with an ynamine of Formula B

30

35

25

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.