Statistical Predictive Modeling

Prof Dr Marko Robnik-Šikonja

Intelligent Systems, October 2022

Learning

• **Learning** is the act of acquiring new, or modifying and reinforcing existing, knowledge, behaviors, skills, values, or preferences and may involve synthesizing different types of information.

- Statistical learning deals with the problem of finding a predictive function based on data.
- The goals of statistical learning: prediction and understanding.

Statistics and machine learning

Definition from Wikipedia:

ML algorithms operate by building a model from example inputs i.e.,

sample

ML can also be viewed as compression

The Data

Provided by the Institute of Oncology, Ljubljana

Post-surgery data for about 1000 breast cancer patients.

+

Recurrence and time of recurrence.

The Data

	class1	class2	menop	stage	grade	hType	PgR	inv	nLymph	cTh	hTh	famHist	LVI	ER	maxNode	posRatio	age
300	11.82	0	1	2	2	1	0	0	1	1	0	3	0	1	2	3	2
301	4.89	1	0	1	2	1	0	0	2	1	0	0	0	2	1	4	3
302	14.63	0	1	1	4	2	0	0	0	0	0	1	0	1	1	1	3
303	21.83	0	0	1	4	2	1	0	1	0	0	9	0	4	1	2	2
304	19.87	0	0	1	2	1	0	0	0	0	0	0	0	1	2	1	2
305	7.54	0	1	2	3	1	9	2	1	0	1	1	0	3	3	3	4
306	15.15	0	0	1	4	2	1	0	0	0	0	2	0	4	1	1	2
307	0.30	1	0	2	2	1	0	0	3	0	0	9	0	1	1	4	2
308	12.49	0	1	2	2	3	1	0	0	0	0	0	0	4	1	1	5
309	1.77	1	0	2	3	1	1	2	2	1	0	9	1	3	3	3	2

Each patient is described with 17 values:

- 15 patient's features
- 2 values, which describe the outcome

1 instance = 1 patient

	class1	class2	menop	stage	grade	hType	PgR	inv	nLymph	cTh	hTh	famHist	LVI	ER	maxNode	posRatio	age
300	11.82	0	1	2	2	1	0	0	1	1	0	3	0	1	2	3	2
301	4.89	1	0	1	2	1	0	0	2	1	0	0	0	2	1	4	3
302	14.63	0	1	1	4	2	0	0	0	0	0	1	0	1	1	1	3
303	21.83	0	0	1	4	2	1	0	1	0	0	9	0	4	1	2	2
304	19.87	0	0	1	2	1	0	0	0	0	0	0	0	1	2	1	2
305	7.54	0	1	2	3	1	9	2	1	0	1	1	0	3	3	3	4
306	15.15	0	0	1	4	2	1	0	0	0	0	2	0	4	1	1	2
307	0.30	1	0	2	2	1	0	0	3	0	0	9	0	1	1	4	2
308	12.49	0	1	2	2	3	1	0	0	0	0	0	0	4	1	1	5
309	1.77	1	0	2	3	1	1	2	2	1	0	9	1	3	3	3	2

- Menopause?
- Tumor stage
- Tumor grade
- Histological type
- Progesterone receptor IvI.
- Invasive tumor type
- Number of positive lymph nodes

- Hormonal therapy?
- Chemotherapy?
- Family medical history
- Lymphovascular invasion?
- Estrogen receptor Ivl.
- Size of max. removed node
- Ratio of positive lymph nodes
- Age group

Prognostic Features

	class1	class2	menop	stage	grade	hType	PgR	inv	nLymph	cTh	hTh	famHist	LVI	ER	maxNode	posRatio	age
300	11.82	0	1	2	2	1	0	0	1	1	0	3	0	1	2	3	2
301	4.89	1	0	1	2	1	0	0	2	1	0	0	0	2	1	4	3
302	14.63	0	1	1	4	2	0	0	0	0	0	1	0	1	1	1	3
303	21.83	0	0	1	4	2	1	0	1	0	0	9	0	4	1	2	2
304	19.87	0	0	1	2	1	0	0	0	0	0	0	0	1	2	1	2
305	7.54	0	1	2	3	1	9	2	1	0	1	1	0	3	3	3	4
306	15.15	0	0	1	4	2.	1	0	0	0	0	2	0	4	1	1	2.
307	0.30	1	0	2	2	1	0	0	3	0	0	9	0	1	1	4	2
308	12.49	0	1	2	2	3	1	0	0	0	0	0	0	4	1	1	5
309	1.77	1	0	2	3	1	1	2	2	1	0	9	1	3	3	3	2

- Menopause?
- Tumor stage
- Tumor grade
- Histological type
- Progesterone receptor Ivl.
- Invasive tumor type
- Number of positive lymph nodes

- Hormonal therapy?
- Chemotherapy?
- Family medical history
- Lymphovascular invasion?
- · Estrogen receptor Ivl.
- Size of max. removed node
- Ratio of positive lymph nodes
- Age group

Oncologists use these attributes for prognosis in every-day medical practice.

Basic Task in ML

We want to learn from past examples, with known outcomes.

To predict the outcome for a new patient.

Basic notation of predictive modelling

- Cancer recurrence is a statistical variable named response or target or prediction variable that we wish to predict. We usually refer to the response as Y.
- Other variables are called attributes, features, inputs, or predictors; we name them X_i .
- The input vectors forms a matrix X

$$X = \begin{pmatrix} X_1 \\ X_2 \\ X_3 \end{pmatrix}$$

The model we write as

$$Y = f(X) + \epsilon$$

where \in is independent from X, has zero mean and represents measurement errors and other discrepancies.

Further notation for instances

- Suppose we observe Y_i and $X_i = (X_{i1},...,X_{ip})$ for i = 1,...,n
- We believe that there is a relationship between Y and at least one of the X's.
- We can model the relationship as

$$Y_i = f(\mathbf{X}_{i.}) + \varepsilon_i$$

• Where f is an unknown function and ε is a random error with mean zero.

A simple example

A simple example

Different standard deviations of error

• The difficulty of estimating f will depend on the standard deviation of the ϵ 's.

Different estimates for *f*

Income vs. Education and Seniority

Multidimensional X

1st goal of learning: prediction

• If we can produce a good estimate for *f* (and the variance of *ε* is not too large), we can make accurate predictions for the response, *Y*, based on a new value of *X*.

- Example: Direct Mailing Prediction
 - Interested in predicting how much money an individual will donate based on observations from 90,000 people on which we have recorded over 400 different characteristics.
 - Don't care too much about each individual characteristic.
 - Just want to know: For a given individual should I send out a mailing?

2nd goal of learning: inference

- often we are interested in the type of relationship between Y and the X's.
- For example,
 - Which particular predictors actually affect the response?
 - Is the relationship positive or negative?
 - Is the relationship a simple linear one or is it more complicated, etc.?
- Sometimes more important than prediction, e.g., in medicine.
- Example: Housing Inference
 - Wish to predict median house price based on 14 variables.
 - Probably want to understand which factors have the biggest effect on the response and how big the effect is.
 - For example how much impact does a river view have on the house value etc.

How do we estimate *f*?

We will assume we have observed a set of training data

$$\{(\mathbf{X}_1, Y_1), (\mathbf{X}_2, Y_2), \dots, (\mathbf{X}_n, Y_n)\}$$

- We must then use the training data and a statistical method to estimate f.
- Statistical Learning Methods:
 - Parametric Methods
 - Non-parametric Methods

Parametric methods

- They reduce the problem of estimating f down to one of estimating a set of parameters.
- They involve a two-step model based approach

<u>STEP 1:</u>

Make some assumption about the functional form of f, i.e. come up with a model. The most common example is a linear model, i.e.

$$f(\mathbf{X}_{i}) = \beta_{0} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + \dots + \beta_{p}X_{ip}$$

More complicated and flexible models for *f are often* more realistic.

STEP 2:

Use the training data to fit the model, i.e. estimate f or equivalently the unknown parameters such as β_0 , β_1 , β_2 ,... β_p

For linear model the most common method uses ordinary least squares (OLS).

Example: a linear regression estimate

 Even if the standard deviation is low, we will still get a bad answer if we use the wrong model.

Non-parametric methods

• They do not make explicit assumptions about the functional form of f.

Advantage: They accurately fit a wider range of possible shapes of f.

• <u>Disadvantage</u>: A large number of observations is required to obtain an accurate estimate of $f_{,}$.

Example: a thin-plate spline estimate

 Non-linear regression methods are more flexible and can potentially provide more accurate estimates.

Trade-off between prediction accuracy and model interpretability

Why not just use a more flexible method if it is more realistic?

Reason 1:

A simple method such as linear regression produces a model which is much easier to interpret (the inference part is better). For example, in a linear model, β_j is the average increase in Y for a one unit increase in X_i holding all other variables constant.

Reason 2:

Even if you are only interested in prediction, so the first reason is not relevant, it is often possible to get more accurate predictions with a simple, instead of a complicated, model. This seems counter intuitive but has to do with the fact that it is harder to fit a more flexible model.

A poor estimate: overfitting

 Non-linear regression methods can also be too flexible and produce poor estimates for f.

Goodness of fit for three models

<u>LEFT</u>

Black: Truth

Orange: Linear Estimate
Blue: smoothing spline
Green: smoothing spline

(more flexible)

RIGHT

RED: Test MSE

Grey: Training MSE

Dashed: Minimum possible

test MSE (irreducible error)

Supervised, unsupervised, semi-supervised, self-supervised, weakly-supervised learning 1/2

- We can divide learning problems into Supervised and Unsupervised situations
- Supervised learning:
 - Supervised Learning is where both the predictors, X_i , and the response, Y_i , are observed.
 - e.g., linear regression
- <u>Unsupervised learning:</u>
 - In this situation only the X_i's are observed.
 - We need to use the X_i's to guess what Y would have been and build a model from there.
 - A common example is market segmentation where we try to divide potential customers into groups based on their characteristics.
 - A common approach is clustering.
 - Idea: Maximizing initra-cluster similarity & minimizing inter-cluster similarity
- Semi-supervised learning
 - only a small sample of labelled instances are observed but a large set of unlabeled instances
 - an initial supervised model is used to label unlabeled instances
 - the most reliable predictions are added to the training set for the next iteration of supervised learning

A simple clustering example

Supervised, unsupervised, semi-supervised, self-supervised, weakly-supervised learning 2/2

Self-supervised learning

- a mixture of supervised and unsupervised learning
- learns from unlabelled data
- the labels are obtained from related properties of the data itself, often leveraging the underlying structure in the data
- usually predicts any unobserved or hidden part (or property) of the input from any observed or unhidden part of the input.
- e.g., in NLP, we can hide part of a sentence and predict the hidden words from the remaining words
- e.g., in video processing, we can predict past or future frames in a video (hidden data) from current ones (observed data)

Weakly-supervised data

- noisy, limited, or imprecise sources are used to provide supervision signal for labeling large amounts
 of training data to do supervised learning
- reduces the burden of obtaining hand-labeled data sets, which can be costly or impractical
- e.g., using smart electricity meter to estimate household occupancy

Regression vs. classification

- Supervised learning problems can be further divided into
- Regression problems: Y is continuous/numerical. e.g.
 - Predicting the value of certain share on stock market
 - Predicting the value of a given house based on various inputs
 - The duration in years till cancer recurrence
- Classification problems: Y is categorical, e.g.,
 - Will the price of a share go up (U) or down (D)?
 - Is this email a SPAM or not?
 - Will the cancer recur?
 - What will be an outcome of a football match (Home, Away, or Draw)?
 - Credit card fraud detection, direct marketing, classifying stars, diseases, webpages, etc.
- Some methods work well on both types of problem, e.g., neural networks or kNN

Data mining: on what kinds of data?

- Database-oriented data sets and applications
 - Relational database, data warehouse, transactional database
- Advanced data sets and advanced applications
 - Data streams and sensor data
 - Time-series data, temporal data, sequence data (incl. bio-sequences)
 - Structure data, graphs, social networks and multi-linked data
 - Object-relational databases
 - Heterogeneous databases and legacy databases
 - Spatial data and spatiotemporal data
 - Multimedia database
 - Text databases
 - The World-Wide Web

Association and correlation analysis

- Frequent patterns (or frequent itemsets)
 - What items are frequently purchased together in the supermarket?
- Association, correlation vs. causality
 - A typical association rule
 - Diaper → Beer [0.5%, 75%] (support, confidence)
 - Are strongly associated items also strongly correlated?
- How to mine such patterns and rules efficiently in large datasets?
- How to use such patterns for classification, clustering, and other applications?

Outlier analysis

- Outlier: A data object that does not comply with the general behavior of the data
- Noise or exception? One person's garbage could be another person's treasure
- Methods: byproduct of clustering or regression analysis, ...
- Useful in fraud detection, rare events analysis

Relational learning

- Several variants:
 - Bayesian networks,
 - inductive logic programming
 - graph learning, e.g., link prediction

	SPRIN	KLER
RAIN	Т	F
F T	0.4 0.01	0.6 0.99

Notation	Example rule
Explicit	IF $Shape = triangle \land Color = red \land Size = big \text{ THEN } Class = positive$
Formal	$Class = positive \leftarrow Shape = triangle \land Color = red \land Size = big$
Logical	positive(X):-shape(X,triangle),color(X,red),size(X,big).

		GRASS	WET
SPRINKLER	RAIN	Т	F
F	F	0.0	1.0
F	Т	0.8	0.2
Т	F	0.9	0.1
Т	Т	0.99	0.01

Another view on learning: generalization as search

- Inductive learning: find a concept description that fits the data
- Example: rule sets as description language
 - Enormous but finite search space
- Simple solution:
 - enumerate the concept space
 - eliminate descriptions that do not fit examples
 - surviving descriptions contain target concept

Learning as optimization

- Usually the goal of classification is to minimize the test error
- Therefore, many learning algorithms solve optimization problems, e.g.,
 - linear regression minimizes squared error on the training set
 - AntMiner algorithms minimize the classification accuracy of decision rules on the training set using ACO
 - to find a good architecture of neural networks, GAs can be applied and minimize the prediction error on the validation set

Criteria of success for ML

- No single best ML method (no free lunch theorem)
- How to select the best model?
 - measure the quality of fit, i.e. how well the predictions match the observed data
 - measure on previously unseen data (called test set). Why?
- In regression the most popular measure is mean squared error

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - f'(x_i))^2$$

• in classification the classification accuracy = 1 - error rate is the most popular criterion

$$CA = \frac{1}{n} \sum_{i=1}^{n} I(y_i = y'_i)$$

We will say more about this topic later

No-Free-Lunch theorem

- In the "no free lunch" metaphor, each "restaurant" (problem-solving procedure) has a "menu" associating each "lunch plate" (problem) with a "price" (the performance of the procedure in solving the problem).
- The menus of restaurants are identical except in one regard the prices are shuffled from one restaurant to the next.
- For an omnivore who is as likely to order each plate as any other, the average cost of lunch does not depend on the choice of restaurant.
- But a vegan who goes to lunch regularly with a carnivore who seeks economy might pay a high average cost for lunch.
- To methodically reduce the average cost, one must use advance knowledge of
 - a) what one will order and
 - b) what the order will cost at various restaurants.
- That is, improvement of performance in problem-solving hinges on using prior information to match procedures to problems.

Consequences of the NFL theorem

If no information about the target function F(x) is provided:

- No classifier is better than some other in the general case.
- No classifier is better than random in the general case.
- ML practicioners poses implicit or explicit knowledge about the prices in different restaurants
- Meta-learning
- Automatic ML

