## Router Operations

- Routers operate at Layer 3 of the OSI stack
- Hosts in separate IP subnets must send traffic via a router to communicate
- Security rules on routers or firewalls can be used to easily control what traffic is allowed between different IP subnets at Layer 3
- Routers do not forward broadcast traffic by default
- They provide performance and security by splitting networks into smaller domains at Layer 3



# Switch Operations

- Switches operate at Layer 2 of the OSI stack
- They do forward broadcast traffic by default
- By default a campus switched network is one large broadcast domain
- Switches flood broadcast traffic everywhere, including between different IP subnets
- This raises performance and security concerns



## LAN Networks



## Unicast Traffic within same IP subnet



#### Unicast Traffic between different IP subnets



## **Broadcast Traffic**



#### The Problem

- Switches flood broadcast traffic everywhere, including between different IP subnets
- This affects security because the traffic bypasses router or firewall Layer 3 security policies
- It affects performance because every end host has to process the traffic
- It also affects performance by using bandwidth on links where the traffic is not required



## **Broadcast Traffic**



#### VLAN Virtual Local Area Networks

- We can increase performance and security in the LAN by implementing VLANs on our switches
- VLANs segment the LAN into separate broadcast domains at Layer 2
- There is typically a one-to-one relationship between an IP subnet and a VLAN



#### VLAN Virtual Local Area Networks



#### Unicast Traffic within same IP subnet



## Unicast Traffic between different IP subnets



## **Broadcast Traffic**

