Planar pressure measurement

Truck blow down by wind

Planar pressure measurement

Boeing X48C Unmanned Aerial Vehicle in wind tunnel test

Pressure sensitive paint (PSP)

Traditionally, surface pressure is measured by **pressure taps**

- 1. Small holes need to be drilled on a model surface
- 2. Preparing the model is very time consuming and expensive
- 3. Pressure measured only at discrete points
- 4. Only suitable for stationary measurements

Transducer Reference Pressure Display Surface Taps Front View

Pressure sensitive paint (PSP)

PSP, on the other hand, offers

- 1. Non-contact, full field pressure measurement
- 2. Image based measurement technique provides much higher spatial resolution
- 3. Relatively easy to implement, cost effective
- 4. Suitable for both stationary and rotary measurements

PSP measurements on a helicopter blade

Large-scale rotor test at NASA Langley

Pressure sensitive paint (PSP)

Basic Photophysics

Singlet Excited States

Pressure sensitive paint (PSP)

PSP consists of

- Paintluminophore, polymer binder (粘合剂), solvent
- Scientific grade camera
- Excitation lightlaser, UV lamps, xenon lamps, LED
- Data acquisition/processing unit

Stern-Volmer relation

> Excitation

Luminophore (发光基团) is excited by a photon from a ground state L0 to an excited state L*

$$L_0 + \hbar \nu \rightarrow L^*$$

➤ Luminescent冷光radiation (Fluorescence荧光, Phosphorescence磷光) Excited luminophore returns to ground state via emitting energy

$$L^* \xrightarrow{K_r} L_0 + \hbar v_1$$

kr - rate constant for the radiation process

v1 - is the frequency of the luminescent emission

Stern-Volmer relation

> Non-radiative process

Excited luminophore returns to ground state by releasing heat

$$L^* \xrightarrow{k_{nr}} L_0 + \Delta$$

knr - rate constant for combined effect of all non-radiative process

> Oxygen quenching

$$k_q$$

$$L^* + O_2 \rightarrow L_0 + O_2^*$$

kq - rate constant quenching (淬灭) process

Stern-Volmer relation

> Change rate of the population of excited state

$$\frac{d[L^*]}{dt} = I_a - (k_r + k_{nr} + k_q[Q])[L^*]$$

la=ks1[L0]: rate of excitation ks1: the excitation rate constant

[L0] is the population in the ground state kr: the radiation rate constant

knr: non-radiation rate constant kq: the quenching rate constant

[Q]: population of the oxygen (O_2)

> At steady state

$$d[L^*]/dt = 0$$
 $I_a = (k_r + k_{nr} + k_q[Q])[L^*]$

Stern-Volmer relation

Non-radiative process (Arrhenius relation)

$$k_{nr} = k_{nr0} + k_{nr1} exp(-\frac{E_{nr}}{RT})$$

knr0=knr(T=0) and knr1: rate constants for temperature-independ &

temperature-dependent process, respectively

Enr: activation energy for the non-radiative process

R: universal gas constant

➢Oxygen quenching process (Smoluchowski relation)

$$k_q = 4\pi R_{AB} N_0 D_0 \exp(-\frac{E_D}{RT})$$

 R_{AB} : interaction distance between the luminophore and oxygen molecules

 \underline{D}_0 : diffusivity of oxygen molecules in the paint

 \underline{E}_D : activation energy for the oxygen diffusion process

Stern-Volmer relation

Luminescence efficient

$$\Phi = \frac{rate \ of \ luminescence}{rate \ of \ excitation}$$

$$1$$

$$\Phi = \frac{rate\ of\ luminescence}{rate\ of\ excitation} \qquad \Phi = \frac{k_r[L^*]}{I_a} = \frac{k_r}{k_r + k_{nr} + k_q[Q]} = \frac{I}{I_a}$$

> Relation of quenching and Pressure

$$\frac{1}{\tau} = k_r + k_{nr0} + k_{nr1} exp(-\frac{E_{nr}}{RT}) + 4\pi R_{AB} N_0 D_0 exp(-\frac{E_D}{RT}) [O_2]_{polymer}$$

Stern-Volmer relation

Relation of quenching and Pressure

Oxygen population (Henry's law)

$$[O_2]_{polymer} = S p_{O_2} = S \phi_{O_2} p$$

S: oxygen solubility in a polymer binder

 ϕ_{O_2} : mole fraction of oxygen in the testing gas (21%)

> Simplify

$$\frac{1}{\tau} = k_r + k_{mr0} + k_{mr1} exp(-\frac{E_{mr}}{RT}) + 4\pi R_{AB} N_0 D_0 \ exp(-\frac{E_D}{RT}) [O_2]_{polymer}$$

$$\frac{1}{\tau} = k_a + K p$$

$$k_a = k_r + k_{nr0} + k_{nr1} exp(-\frac{E_{nr}}{RT})$$
 $K = 4\pi R_{AB} N_0 P_0 exp(-\frac{E_D}{RT}) \phi_{O_2}$

Stern-Volmer relation

$$\frac{I_{\mathit{ref}}}{I} = \frac{\tau_{\mathit{ref}}}{\tau} = A_{\mathit{polymer}}(T) + B_{\mathit{polymer}}(T) \frac{p}{p_{\mathit{ref}}}$$

$$A_{polymer} = A_{polymer,ref} \left[1 + \eta \frac{E_{nr}}{RT_{ref}} \left(\frac{T - T_{ref}}{T_{ref}} \right) \right] \qquad B_{polymer} = B_{polymer,ref} \left[1 + \frac{E_{D}}{RT_{ref}} \left(\frac{T - T_{ref}}{T_{ref}} \right) \right]$$

$$A_{polymer, ref} = \frac{1}{1 + K_{ref} p_{ref} / k_{aref}} \qquad B_{polymer, ref} = \frac{p_{ref}}{k_{aref} / K_{ref} + p_{ref}}$$

$$k_a = k_r + k_{nr0} + k_{nr1} exp(-\frac{E_{nr}}{RT}) \qquad K = 4\pi R_{AB} N_0 P_0 exp(-\frac{E_D}{RT}) \phi_{O_2}$$

$$A = 0.12$$

B = 0.88

Apply the Stern-Volmer relation

- 1. Take image sequence when wind tunnel is off (Iref) Pref=P0
- 2. Take image sequence when wind tunnel is on (I)
- 3. A, B are predetermined and is constant for specific paint (assume temperature does not change)

Paint

> Polymer binder

- 1. Oxygen permeability
- 2. Temperature effect
- 3. humidity effect
- 4. adhesion
- 5. stability

> Typical binders

Silicon rubbers, GP-197, Silica gel

$$I_{ref} / I = A(T) + B(T)p / p_{ref}$$

Luminophore	Binder	Excitation wavelength (nm)	Emission wavelength (nm)	Stern- coeffic A	Volmer ients B
H ₂ TSPP	silica gel	400	650, 709	0.58	0.42
H ₂ (Me ₂ N)TFPP	silica gel	400	650	0.43	0.56
H ₂ TCPP	silica gel	410	709	0.40	0.61
H ₂ TNMPP	silica gel	420	661, 714	0.43	0.60
H ₂ TTMAPP	silica gel	410	653, 710	0.40	0.60
Perylene dibutyrate	silica gel	457	520	0.33	0.67
Perylene dye	silica gel	480, 530	550, 570	0.47	0.53

Paint

PSP tests in Tsinghua University

- 1. LED light (ISSI): intensity variation 0.1% per hour
- 2. Alta Apogee U2000 (512X512, 16bit)
- 3. UniCoat paint (ISSI)
- 4. Model: Delta wing, NACA0012 wing
- 5. Flow speed: 30m/s

Pressure distribution on a Mercedes Benz car model

- 1. Xenon-flash lamp: 308nm, intensity variation <0.1%
- Cooled CCD camera: 1340X1300 pixel
- 3. Paint developed by ONERA (法国宇航局)
- 4. Model: Mercedes Benz car model
- 5. Flow speed: 65m/s
- 6. 64 raw images were acquired

Pressure distribution on the car model surface

Accuracy: 0.0145psi

Pressure distribution along centre line

Aircraft model in transonic (跨音速) flow

- 1. 8 UV lights
- 2. 8 Cooled CCD camera: 12bit
- 3. Paint developed by DLR (德国宇航局)
- 4. Model: AerMacchi M-346 Advanced Trainer (教练机)
- 5. Flow speed: 0.6 ~ 0.95 March

(1March=343.2m/s)

