A perspective on MLOps from experimentation: Weights and Bias implementations

Globant Daniel Jiménez

Content

- Motivation
 - Machine Learning and Hardware
 - **Mathematical Al Computing**
 - Challenges of experimentation
- Weights and Bias Platform
- Weights and Bias Example

Thinking about machine learning in terms of three components:

- Algos (LSTM, XGBoost, Random Forest)
- Data (From accessibility, and the cookies that you and I accept)
- Hardware (Gpus, CPus, architecture)

Thinking about machine learning in terms of three components:

```
Algos
Data > Computing > Resource demand
Hardware
```

Thinking about machine learning in terms of three components:

Nvidia Reference

Carlos Santana Tweet

Consume

Architecture

Machine Learning Systems

Machine Learning System Design — The template

Scaling
Infraestructura
Deployment
Monitoring

Data

ML engineer

Metrics

Version

Interate

MLOPs engineer

Scaling

Infraestructura

Deployment

Monitoring

Hopper 100

Rendimiento de Inferencia de IA hasta 30 Veces Mayor en los Modelos Más Grandes

Inferencia del chatbot Megatron (530 mil millones de parámetros)

Rendimiento proyectado sujeto a cambios. Inferencia en el chatbot basado en el modelo de parámetros Megatron 530B para longitud de secuencia de entrada = 128, longitud de secuencia de salida = 20 | Clúster A100: red HDR IB | Clúster H100: sistema de conmutador NVLink, NDR IB

Entrenamiento de IA Hasta 4 Veces Superior en GPT-3

Rendimiento proyectado sujeto a cambios. Entrenamiento GPT-3 175B Clúster A100: red HDR IB, clúster H100: red NDR IB |
Variante del Switch-XXL del transformador de capacitación de mezcla de expertos (MoE) con parámetros 395B en un
conjunto de datos de token de 1T, clúster A100: red HDR IB, clúster H100: red NDR IB con sistema de conmutador NVLink
donde se indique.

Al Computing

- Mathematically intensive process to calculate machine learning algorithms using accelerated hardware.
- Three Elements to Al Computing
 - ELT
 - Model Design
 - Inference

Challenges of experimentation

- Making the pipeline of models for inference efficient
- Tracking model experimentation
- GPU-CPU monitoring
- Understanding time consumption per algorithm phase
- Resource configuration for the problem being addressed (Machine Learning system)

Weights and Bias Platform

Weights and Bias

- https://wandb.ai/site
- Build models faster, fine-tune LLMs, develop GenAl applications with confidence, all in one system of record developers are excited to use. (https://wandb.ai/site)

Weights and Bias VS MLflow

Weights and Bias: It is specifically designed for tracking machine learning experiments.

MLflow: It follows the complete lifecycle of machine learning, including experiment tracking, model management, and deployment

Weights and Bias Platform

Function	Tool
Code Tracking	Github, Gitlab, Bitbucket
Experiment tracking	Weights and bias, MLflow
Artifact tracking	Weights and bias
Model repository	Weights and bias
ML pipelines	MLflow
Environment isolation	Conda - Docker
Orchestration	MLflow
Modelling	Tensorflow, Pytorch, scikit- learn

Weights and Bias Platform

- Work is done under artifacts (best practices).
- Pipelines should yield different artifacts as results.
- Artifacts must be versioned, tracked, and saved.

Experiments names

Metrics logs

System Performs

System Performs

General Options

Weights and Bias Propose Roadmap

- Generate a Infrastructure code like a system with Artifacts
- We will follow a design path focused on data science engineering, although we will not build an API.
- It will end with the registration of a model, to be used in inference.

Weights and Bias Propose Roadmap

Weights and Bias Propose Roadmap segmentation

Weights and Bias Platform

Artifacts: These are the products resulting from the components. Artifacts can be used as inputs in subsequent components, thus creating connections between the different steps of the pipeline. Artifacts should be carefully tracked and versioned to ensure traceability and efficient management of the different model development versions.

Weights and Bias Example

Roadmap

you must paste into the terminal in order to access

Roadmap

Roadmap

Python Scripting with Argparse

Python Scripting with Argparse

- Automating tasks
- Using the command line for customization of situations in front of model design
- Flexible code configuration
- By having a script with Argparse that contains all the necessary steps to train and evaluate your model, other users can easily reproduce your experiments and results

Python Scripting with Argparse

Colocar el link del código

```
def go():
    run = wandb.init(
    project='example_1',
    config={
        'learning_rate': args.learning_rate,
        'epochs': args.epochs
    }
)

logger.info('Initialize example.....')

offset=random.random()/8
logger.info(f'offset: {offset}')
logger.info(f"lr: {args.learning_rate}")

for epoch in range(2, args.epochs):
    acc = 1 - 2 ** -epoch - random.random() / epoch - offs
    loss = 2 ** -epoch + random.random() / epoch + offset
    logging.info(f"epoch={epoch}, accuracy={acc}, loss={loprint(f"epoch={epoch}, accuracy={acc}, loss={loss}")
    wandb.log({"accuracy": acc, "loss": loss})
```

Roadmap into WandB

```
wand.init()
    wand.log()
    wand.log_artifact()
```

Roadmap into WandB

```
wand.init(
project='name',
job_type='some amazing process',
group='experiment_final_final_ya_no_va_más'
)
```

```
wandb.Artifact(
name=args.artifact_name,
type=args.artifact_type,
description=args.artifact_description,
metadata={'original_url': args.file_url})
```

Now let's write code!!! That's what we came here for."

https://github.com/Carlos-Jimenez-mlops/wandb-mlops