/ /	\
1440	2014
	South Africa

Contestant	MASI			
Problem	2			
Page				

Answer: 1277-1

First, we show that $k = \lceil \sqrt{n} \rceil - 1$ fits. Suppose that there exists such peaceful configuration, where this k fails. Knowing that $n > k^2$, consider the following:

Now, consider the k^2 squares with diagonal west diagonals $\mathbb{E}(a-1)k+1$, (b-1)k+1) and (ak,bk), if $k \le b \le k$. Since every such squares has at least a rook, we know that this $k \ge k^2$ square contains at least k^2 rooks. These k^2 rooks all have distinct coordinates, and in the $k \ge k^2$ chessboard, hence for each column 1,2,..., k^2 and each row 1,2,..., k^2 there is exactly a rook. This means, the remaining n^n-k^2 rooks have the row and column number greater vertices than k^2 , hand there are $n-k^2$ rooks in the square with diagonals at (k^2+1, k^2+1) , (n, n).

,	Contestant _	MAS	1	
1MO 2014	Problem	2		
Cape Town - South Africa	Page	2		

However, # by - rotating notation, and consider k2 squares with diagonals [(a-1)k+1+(n-k2), (b-1)k+1) and (ak+(n-k2), bk) for kc, b \(k \) we know that the square with diagonals $(1, k^2+1)$, $(n-k^2, n)$ has $n-k^2$ Tooks too, For $k \ge 2$ (i.e. $n \ge 5$), we know that $n \le 2k^2$ as n < (k+1) -1 = k2+2k, so the squares, each with dragonals (|2+1, |2+1), (|5, n), and (|, |2+1), (|-12, n) are disjoint, and we get that there are two row 2(1/k²) rooks in now 1241, k²2, ", n, which is impossible. (For k=1, it is obvious that some square This implies that any k greater than this fairls. doesn't ontain a rook). Now, we show that k=[In] fails. It suffices to find one such configuration. Let us start with $n=k^2$.

Consider the following partition:

IMO 2014

Cape Town - South Africa

Contestant PAS |

Problem 2

Now, we assign a rook in each square that by the following, for the square with vertex diagonals (alk+1), th+1), (ak, bk), we assign it to (alk+1)+b, b(+1)+a). This is the example for k=3.

Suppose there is a kink square without any rook. We denote as boundaries for all a. We denote the line seperating the column at and akt. the Let the square to have such coordinate; building when what without a have such coordinate; building

(no) k - cologle boundary

Since each of (x+1)k (y+1)k (y+1)

IMO 2014

Cape Town - South Africa

Contestant MASI
Problem Page

QEO

(2) if a keys bex, then (zk+y, cy-1)k+n+1) is in the square, (3) if acys bown, then ((2+1)k+y+1) y 1+n) is in the square.
(4) it ary, boxen then (nktyt), yk+x+1) is in the square
Since any combination of [a,b] falls into one of the four cases above, any kxk square ontains a rook.
Finally, for $n < k^2$, consider the subgrid with diagonals (L1) described aboves and salofe all solvers and rooks not in the number of and (nn) in the $k^2 > k^2$ board and the remove the field this grid
and (n) in the k2xk2 board and to remove the food this grid
has all its rooks in different columns and rows. Moreover, the kxk square size contains a nock. If there is any rook "mizzing"
Kxk square of conforms a not I the condition still holds

IMO 2014 Cape Town - South Africa

Contestant	<u> </u>					
Problem _						
Page						

Tori			
	Y	- 1-	-
		×	t

