International IOR Rectifier

IRLML5203PbF

HEXFET® Power MOSFET

Г	V _{DSS}	$R_{DS(on)}$ max (m Ω)	I _D
	-30V	98@V _{GS} = -10V	-3.0A
		165@V _{GS} = -4.5V	-2.6A

- Ultra Low On-Resistance
- P-Channel MOSFET
- Surface Mount
- Available in Tape & Reel
- Low Gate Charge
- Lead-Free
- Halogen-Free

Description

These P-channel MOSFETs from International Rectifier utilize advanced processing techniques to achieve the extremely low on-resistance per silicon area. This benefit provides the designer with an extremely efficient device for use in battery and load management applications.

A thermally enhanced large pad leadframe has been incorporated into the standard SOT-23 package to produce a HEXFET Power MOSFET with the industry's smallest footprint. This package, dubbed the Micro3TM, is ideal for applications where printed circuit board space is at a premium. The low profile (<1.1mm) of the Micro3 allows it to fit easily into extremely thin application environments such as portable electronics and PCMCIA cards. The thermal resistance and power dissipation are the best available.

Absolute Maximum Ratings

3		
Parameter	Max.	Units
Drain- Source Voltage	-30	V
Continuous Drain Current, V _{GS} @ -10V	-3.0	
Continuous Drain Current, V _{GS} @ -10V	-2.4	A
Pulsed Drain Current ①	-24	
Power Dissipation	1.25	W
Power Dissipation	0.80	VV
Linear Derating Factor	10	mW/°C
Gate-to-Source Voltage	± 20	V
Junction and Storage Temperature Range	-55 to + 150	°C
	Drain- Source Voltage Continuous Drain Current, V _{GS} @ -10V Continuous Drain Current, V _{GS} @ -10V Pulsed Drain Current ① Power Dissipation Power Dissipation Linear Derating Factor Gate-to-Source Voltage	Drain- Source Voltage -30 Continuous Drain Current, V _{GS} @ -10V -3.0 Continuous Drain Current, V _{GS} @ -10V -2.4 Pulsed Drain Current ① -24 Power Dissipation 1.25 Power Dissipation 0.80 Linear Derating Factor 10 Gate-to-Source Voltage ± 20

Thermal Resistance

	Parameter	Max.	Units
$R_{\theta JA}$	Maximum Junction-to-Ambient®	100	°C/W

Electrical Characteristics @ $T_J = 25^{\circ}C$ (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	-30			V	$V_{GS} = 0V, I_D = -250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.019		V/°C	Reference to 25°C, I _D = -1mA
Book	Static Drain-to-Source On-Resistance			98	mΩ	V _{GS} = -10V, I _D = -3.0A ②
R _{DS(on)}				165		V _{GS} = -4.5V, I _D = -2.6A ②
V _{GS(th)}	Gate Threshold Voltage	-1.0		-2.5	V	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$
9 fs	Forward Transconductance	3.1			S	$V_{DS} = -10V, I_{D} = -3.0A$
1	Drain-to-Source Leakage Current			-1.0		$V_{DS} = -24V, V_{GS} = 0V$
I _{DSS}				-5.0	μA	V _{DS} = -24V, V _{GS} = 0V, T _J = 70°C
I _{GSS}	Gate-to-Source Forward Leakage			-100	nA	V _{GS} = -20V
IGSS	Gate-to-Source Reverse Leakage			100	IIA	V _{GS} = 20V
Q _g	Total Gate Charge		9.5	14		$I_D = -3.0A$
Q _{gs}	Gate-to-Source Charge		2.3	3.5	nC	V _{DS} = -24V
Q_{gd}	Gate-to-Drain ("Miller") Charge		1.6	2.4		V _{GS} = -10V ②
t _{d(on)}	Turn-On Delay Time		12			V _{DD} = -15V ②
t _r	Rise Time		18		ns	$I_D = -1.0A$
t _{d(off)}	Turn-Off Delay Time		88		115	$R_G = 6.0\Omega$
t _f	Fall Time		52			$V_{GS} = -10V$
C _{iss}	Input Capacitance		510			V _{GS} = 0V
Coss	Output Capacitance		71		pF	$V_{DS} = -25V$
C _{rss}	Reverse Transfer Capacitance		43			f = 1.0MHz

Source-Drain Ratings and Characteristics

	Parameter		Тур.	Max.	Units	Conditions	
Is	Continuous Source Current			4.0		MOSFET symbol	
	(Body Diode)	Diode) -1.3		A	showing the		
I _{SM}	Pulsed Source Current		24	04	-24	A	integral reverse G
	(Body Diode) ①			-24	·	p-n junction diode.	
V _{SD}	Diode Forward Voltage	T		-1.2	V	T _J = 25°C, I _S = -1.3A, V _{GS} = 0V ②	
t _{rr}	Reverse Recovery Time	T	17	26	ns	$T_J = 25^{\circ}C$, $I_F = -1.3A$	
Q _{rr}	Reverse Recovery Charge	T	12	18	nC	di/dt = -100A/μs ②	

Notes:

① Repetitive rating; pulse width limited by max. junction temperature.

② Pulse width \leq 400 μ s; duty cycle \leq 2%.

International TOR Rectifier

IRLML5203PbF

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 8. Maximum Safe Operating Area

International IOR Rectifier

IRLML5203PbF

Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

International **TOR** Rectifier

Fig 11. Typical On-Resistance Vs. Gate Voltage

Fig 12. Typical On-Resistance Vs. Drain Current

Fig 13a. Basic Gate Charge Waveform

Fig 13b. Gate Charge Test Circuit

6

International TOR Rectifier

IRLML5203PbF

Fig 14. Threshold Voltage Vs. Temperature

Fig 15. Typical Power Vs. Time

Micro3 (SOT-23) Package Outline

Dimensions are shown in millimeters (inches)

DIMENSIONS						
SYMBOL	MILLIM	ETERS	INCHES			
STIVIBOL	MIN	MAX	MIN	MAX		
Α	0.89	1.12	0.035	0.044		
A1	0.01	0.10	0.0004	0.004		
A2	0.88	1.02	0.035	0.040		
b	0.30	0.50	0.012	0.020		
С	0.08	0.20	0.003	0.008		
D	2.80	3.04	0.110	0.120		
E	2.10	2.64	0.083	0.104		
E1	1.20	1.40	0.047	0.055		
е	0.95	BSC	0.037	BSC		
e1	1.90	BSC	0.075	BSC		
L	0.40	0.60	0.016	0.024		
L1	0.54	REF	0.021	REF		
L2	0.25	BSC	0.010	BSC		
0	0	8	0	8		

- 1. DIMENSIONING & TOLERANCING PER ANSI Y14.5M-1994
 2. DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES);
 3. CONTROLLING BIMENSION. MILLIMETER

 \$\triangle \text{DATIM PLANE HIS LOCATED AT THE MOLD PARTITING LINE.}

 \$\triangle \text{DATIM PLANE TO STORE TO STORE THE PLANE HIS LOCATED AT THE MOLD PARTITING LINE.}

 \$\triangle \text{DATIM PLANE HIS LOCATED AT THE MEASURED AT DATIM PLANE HIS DIMENSIONS DOCS.} NOT INCLUDE MOLD PROTRUSIONS OR INTERLEAD FLASH, MOLD PROTRUSIONS OR INTERLEAD FLASH SHALL NOT EXCEED 0.25 MM [0.010 INCH] PER SIDE.
- ⚠ DIMENSION L IS THE LEAD LENGTH FOR SOLDERING TO A SUBSTRATE.

 8. OUTLINE CONFORMS TO JEDEC OUTLINE TO 236 AB.

Micro3 (SOT-23/TO-236AB) Part Marking Information

Notes: This part marking information applies to devices produced after 02/26/2001

YEAR	Υ	WORK WEEK	W
2001	1	01	Α
2002	2	02	В
2003	3	03	С
2004	4	04	D
2005	5		
2006	6		
2007	7		
2008	8		
2009	9	7	7
2010	0	24	Х
		25	Υ

W = (27-52) IF PRECEDED BY A LETTER

YEAR

W = (1-26) IF PRECEDED BY LAST DIGIT OF CALENDAR YEAR

- A = IRLML2402 B = IRLML2803
- C = IRLML6302
- D = IRLML5103
- E = IRLML6402
- F = IRLML6401
- G = IRLML2502H = IRLML5203
- I = IRLML0030 J = IRLML2030
- K = IRLML0100 L = IRLML0060
- M = IRLML0040N = IRLML2060P = IRLML9301R = IRLML9303
- 2001 2002 2003 28 29 2004 2005 30 D 2007 2009 2010

Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/

Micro3™ Tape & Reel Information

Dimensions are shown in millimeters (inches)

Data and specifications subject to change without notice.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.05/2010

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

International Rectifier:

IRLML5203TRPBF