

ତୃତୀୟ ଅଧ୍ୟାୟ

ପରମାଣୁ ଓ ଅଣୁ (ATOMS AND MOLECULES)

ପୁରାତନ ଯୁଗରୁ ଭାରତୀୟ ଓ ପାଷ୍ଟାତ୍ୟ ଦାର୍ଶନିକମାନେ ପଦାର୍ଥର ଅକଣା ରୂପ ସୟକ୍ଷରେ କାଣିବା ପାଇଁ ସବୁବେଳେ ଆଗ୍ରହ ପ୍ରକାଶ କରିଆସିଛନ୍ତି । ପ୍ରାଚୀନ ଭାରତର ଦାର୍ଶନିକ ମହର୍ଷି କଣାଦ ପରିକଳ୍ପନା କରିଥିଲେ ଯେ, ପଦାର୍ଥକୁ ଯଦି ଆମେ ବିଭାଜନ କରି କରି ଯିବା, ଆମେ କ୍ଷୁଦ୍ରରୁ କ୍ଷୁଦ୍ର କଣିକା ପାଇବା । ଶେଷରେ ଏମିତି ଏକ କଣିକାରେ ପହଞ୍ଚବା ଯାହାକୁ ଆଉ ବିଭାଜନ କରିବା ସୟବ ହେବ ନାହିଁ । ଏହି କ୍ଷୁଦ୍ରତମ କଣିକାକୁ ସେ ନାମ ଦେଲେ 'ପରମାଣୁ' । ଭାରତୀୟ ଦାର୍ଶନିକ ପାକୁଧା କାତ୍ୟାୟନ କହିଥିଲେ ଯେ, ଏହି କଣିକାଗୁଡ଼ିକ ସାଧାରଣତଃ ସମ୍ମିଳିତ ଭାବରେ ରହିଥା'ନ୍ତି ଏବଂ ଅନେକ ପ୍ରକାର ପଦାର୍ଥ ଗଠନ କରିଥା'ନ୍ତି ।

କଣାଦଙ୍କ ପରବର୍ତ୍ତୀ କାଳରେ, ଖ୍ରୀ.ପୂ. ପଞ୍ଚମ ଶତାବ୍ଦୀରେ ଗ୍ରୀକ୍ ଦାର୍ଶନିକ ଲିଉସିପ୍ସସ୍ (Leucippus) ଏବଂ ଗ୍ରୀକ୍ ଦାର୍ଶନିକ ଡିମୋକ୍ରିଟସ୍ ପ୍ରୟାବ ଦେଲେ ଯେ, ପଦାର୍ଥଗୁଡ଼ିକ କ୍ଷୁଦ୍ର ଏବଂ ଅବିଭାଜ୍ୟ କଣିକାଗୁଡ଼ିକୁ ନେଇ ଗଠିତ ହୋଇଥାଏ । ଦାର୍ଶନିକ ଡିମୋକ୍ରିଟସ୍ ଏହି କ୍ଷୁଦ୍ର କଣିକାକୁ 'ଆଟମ' ବୋଲି କହିଥିଲେ । ଗ୍ରୀକ୍ ଭାଷାରେ ଆଟମର ଅର୍ଥ 'ଅବିଭାଜ୍ୟ' ।

ଏହି ସବୁ ପରିକଳ୍ପନା ପଛରେ କୌଣସି ନିର୍ଭରଯୋଗ୍ୟ ଯୁକ୍ତି କିୟା ପରୀକ୍ଷାମୂଳକ ଭିତ୍ତିଭୂମି ନଥିଲା ।

3.1. ରାସାୟନିକ ସଂଯୋଗର ନିୟମ(Laws of Chemical Combination)

ଅଷ୍ଟାଦଶ ଶତାବ୍ଦୀର ଶେଷ ଭାଗରେ ବୈଜ୍ଞାନିକ ଏ. ଏଲ୍. ଲାଭଇସିଅର ବୟୁତ୍ୱ ସଂରକ୍ଷଣ ନିୟମ ପ୍ରତିପାଦନ କରି ରସାୟନ ବିଜ୍ଞାନର ଭିତ୍ତି ସ୍ଥାପନ କରିଥିଲେ । ପରବର୍ତ୍ତୀ ସମୟରେ ବୈଜ୍ଞାନିକ ଜେ. ଏଲ୍. ପ୍ରାଉଷ୍ଟ ରାସାୟନିକ ସଂଯୋଗର ସ୍ଥିରାନୁପାତ ନିୟମ ପ୍ରତିପାଦନ କରିଥିଲେ । ପରେ ପରେ ରାସାୟନିକ ସଂଯୋଗର ଆଉ କେତୋଟି ନିୟମ ପ୍ରଶୀତ ହୋଇଥିଲା ।

ରାସାୟନିକ ସଂଯୋଗ ସଂକ୍ରାନ୍ତୀୟ ପ୍ରଣୀତ ନିୟମମାନଙ୍କ ମଧ୍ୟରୁ ଦୁଇଟି ନିୟମ ସମ୍ପର୍କରେ ଆମେ ଆଲୋଚନା କରିବା ।

3.1.1 ବସ୍ତୃତ୍ୱ ସଂରକ୍ଷଣ ନିୟମ

(Law of Conservation of Mass)

ଯେତେବେଳେ ଏକ ରାସାୟନିକ ପରିବର୍ତ୍ତନ ବା ରାସାୟନିକ ପ୍ରତିକ୍ରିୟା ଘଟେ, ସେତେବେଳେ ବସ୍ତୁତ୍ୱର ପରିବର୍ତ୍ତନ ଘଟେ ନାହିଁ । ଆସ ପରୀକ୍ଷା କରି ଦେଖିବା ।

ତୁମ ପାଇଁ କାମ : 3.1

କଳରେ ବେରିୟମ କ୍ଲୋରାଇଡ୍ରର ଏକ 5% ଦ୍ରବଣ ଓ ସୋଡ଼ିୟମ ସଲ୍ଫେଟ୍ର ଏକ 5% ଦ୍ରବଣ ଅଲଗା ଅଲଗା ପ୍ରସ୍ତୁତ କର ।

ଏକ କୋନିକାଲ ଫ୍ଲାୟ (conical flask)ରେ ସୋଡ଼ିୟମ ସଲ୍ଫେଟ୍ର ଅହ ପରିମାଣ ଦ୍ରବଣ ଏବଂ ଏକ ଜ୍ୱଳନ ନଳୀ (ignition tube)ରେ ବେରିୟମ କ୍ଲୋରାଇଡ଼ର କିଛି ପରିମାଣର ଦ୍ରବଣ ନିଅ । କୋନିକାଲ ଫ୍ଲାୟ ଭିତରେ ଯତ୍ନର ସହିତ ଜ୍ୱଳନ ନଳୀଟି ଝୁଲାଅ, ଯେପରି ଦ୍ରବଣଗୁଡ଼ିକ ମିଶି ନ ଯାଆନ୍ତି (ଚିତ୍ର 3.1 ଦେଖ) । ଫ୍ଲାୟମୁହଁରେ ଏକ କର୍କ ଦିଅ ।

ଚିତ୍ର 3.1 ସୋଡ଼ିୟମ ସଲ୍ଫେଟ୍ ଦ୍ରବଣଥିବା କୋନିକାଲ ଫ୍ଲାୟ ଏବଂ ବେରିୟମ କ୍ଲୋରାଇଡ୍ ଥିବା ଜ୍ୱଳନ ନଳୀ

ଏ ସମୟ ବ୍ୟବସ୍ଥା ସହ କୋନିକାଲ ଫ୍ଲାୟର ଓଜନ ନିଅ । ଫ୍ଲାୟଟିକୁ ଟିକେ ଏପରି ଅଣେଇ ଦିଅ ଯେପରି ଦୁଇଟିଯାକ ଦ୍ରବଣ ମିଶିଯିବ । ଫ୍ଲାୟର ଉପରଭାଗକୁ ଧରି ତଳପଟକୁ ଆୟେ ଆୟେ ହଲେଇ ଦିଅ । ଦୁଇଟିଯାକ ଦ୍ରବଣ ଭଲ ଭାବରେ ମିଶିଯିବ ।

ଫ୍ଲାୟରେ ରାସାୟନିକ ପ୍ରତିକ୍ରିୟା ଘଟି ଧଳାରଙ୍ଗର ବେରିୟମ ସଲ୍ଫେଟ୍ ଅବକ୍ଷେପ (precipitate) ସୃଷ୍ଟି ହେବ । ଏପରି ବ୍ୟବସ୍ଥାକୁ ପୂଣି ଥରେ ଓଜନ କର । ଲକ୍ଷ୍ୟକର ପ୍ରଥମ ଓଜନ ଓ ଦ୍ୱିତୀୟ ଓଜନ ମଧ୍ୟରେ କିଛି ପାର୍ଥକ୍ୟ ନାହିଁ । ଏଥିରୁ ଜଣାଗଲା ଯେ ରାସାୟନିକ ପ୍ରତିକ୍ରିୟା ଦ୍ୱାରା ବସ୍ତୁତ୍ୱର କିଛି ପରିବର୍ତ୍ତନ ହୁଏ ନାହିଁ ।

ଏହି ପରୀକ୍ଷାରୁ ଆମେ ଜାଣିଲୁ ଯେ, **ଏକ** ରାସାୟନିକ ପ୍ରତିକ୍ରିୟାରେ ବ<mark>ଞ୍ଚତ୍ୱର ସୃଷ୍ଟି ନାହିଁ କିୟା</mark> ବିନାଶ ନାହିଁ । ଏହାକୁ ବୟୁତ୍ୱ ସଂରକ୍ଷଣ ନିୟମ କୁହାଯାଏ ।

3.1.2 ସ୍ଥିରାନୁପାତ ନିୟମ

(Law of Constant Proportions)

କୌଣସି ଏକ ଯୌଗିକ ପଦାର୍ଥ ଯେପରି ପ୍ରଞ୍ଚୁତ ହେଉ ନା କାହିଁକି କିୟା ଯେ କୌଣସି ଉସ୍ତରୁ ମିଳିଥାଉ, ସେଥିରେ ସମାନ ମୌଳିକଗୁଡ଼ିକ ସର୍ବଦା ଏକ ନିର୍ଦ୍ଦିଷ୍ଟ ବୟୁତ୍ସ ଅନୁପାତରେ ସଂଯୁକ୍ତି ହେବାଦ୍ୱାରା ତାହା ସୃଷ୍ଟି ହୋଇଥାଏ । ବିଜ୍ଞାନାଗାରରେ ଜଳ ପ୍ରସ୍ତୁତ କରାଯାଇପାରିବ । ନଈ, ନାଳ, କୂଅ, ପୋଖରୀ ଇତ୍ୟାଦିରେ ମଧ୍ୟ ଜଳ ମିଳିଥାଏ । ଜଳରେ ସର୍ବଦା ହାଇଡ୍ରୋଜେନ ଓ ଅକ୍ସିଜେନ 1:8 ବସ୍ତୁତ୍ସ ଅନୁପାତରେ ସଂଯୁକ୍ତ । 9 ଗ୍ରାମ ଜଳକୁ ବିଘଟନ (decompose) କଲେ ସର୍ବଦା 1 ଗ୍ରାମ ହାଇଡ୍ରୋଜେନ ଏବଂ 8 ଗ୍ରାମ୍ ଅକ୍ସିଜେନ୍ ମିଳେ । ସେହିପରି କାର୍ବନ ତାଇଅକ୍ସାଇଡ଼କୁ ଯେ କୌଣସି ପ୍ରଣାଳୀରେ ପ୍ରସ୍ତୁତ କରାଯାଉ କିୟା ଯେ କୌଣସି ଉସ୍ତରୁ ସଂଗ୍ରହ କରାଯାଉ, ସେଥିରେ କାର୍ବନ ଓ ଅକ୍ସିଜେନ୍ର ବସ୍ତୁତ୍ୱର ଅନୁପାତ ସର୍ବଦା 3:8 ହେବ ।

ଏହା ସ୍ଥିରାନୁପାତ ନିୟମ ଅଟେ । ଏହାକୁ ନିର୍ଦ୍ଦିଷାନୁପାତ ନିୟମ (Law of Definite Proportions) ମଧ୍ୟ କୁହାଯାଏ । ବୈଜ୍ଞାନିକ ପ୍ରାଉଷ୍ଟଙ୍କ ଅନୁଯାୟୀ ଏହି ନିୟମଟି ହେଲା- ଏକ ରାସାୟନିକ ଯୌଗିକରେ ମୌଳିକଗୁଡ଼ିକ ସର୍ବଦା ଏକ ନିର୍ଦ୍ଦିଷ୍ଟ ବସ୍ତୁଦ୍ୱ ଅନୁପାତରେ ରହିଥାଏ ।

3.1.3 ଡାଲ୍ଟନଙ୍କ ପରମାଣୁ ତତ୍ତ୍ୱ (Dalton's Atomic Theory)

ବୈଜ୍ଞାନିକ ଜନ୍ ଡାଲ୍ଟନ୍ 1808 ମସିହାରେ ପଦାର୍ଥର ଗଠନ ସୟନ୍ଧରେ ଏକ ନୂତନ ତତ୍ତ୍ୱ ଉପସ୍ଥାପନ କଲେ । ଏହାକୁ ଡାଲ୍ଟନଙ୍କ ପରମାଣୁ ତତ୍ତ୍ୱ କୁହାଯାଏ । ଏହି ତତ୍ତ୍ୱର ସ୍ୱୀକାର ଗୁଡ଼ିକ ହେଲା :

- (i) ପଦାର୍ଥ ଅନେକଗୁଡ଼ିଏ ଅତି କ୍ଷୁଦ୍ର କଣିକାଦ୍ୱାରା ଗଠିତ । ସେହି କଣିକାକୁ ପରମାଣୁ କୁହାଯାଏ ।
- (ii) ପରମାଣୁଗୁଡ଼ିକ ଅବିଭାକ୍ୟ କଣିକା, ରାସାୟନିକ ପ୍ରତିକ୍ରିୟାରେ ଯାହାକୁ ସୃଷ୍ଟି କରାଯାଇପାରିବ ନାହିଁ କିୟା ବିନାଶ କରାଯାଇପାରିବ ନାହିଁ ।
- (iii) କୌଣସି ଏକ ମୌଳିକର ପରମାଣୁଗୁଡ଼ିକର ବୟୁତ୍ୱ ଓ ରାସାୟନିକ ଧର୍ମ ସମାନ ।
- (iv) ବିଭିନ୍ନ ମୌଳିକର ପରମାଣୁଗୁଡ଼ିକର ବସ୍ତୁତ୍ୱ ଓ ରାସାୟନିକ ଧର୍ମ ଭିନ୍ନ ହୋଇଥାଏ ।
- (v) ଛୋଟ ପୂର୍ତ୍ତି ସଂଖ୍ୟା (small whole numbers) ଅନୁପାତରେ ବିଭିନ୍ନ ମୌଳିକର ପରମାଣୁଗୁଡ଼ିକ ସଂଯୁକ୍ତ ହୋଇ ଯୌଗିକ ସୃଷ୍ଟି ହୋଇଥାଏ ।

ବିଜ୍ଞାନର ଅଗ୍ରଗତି ଯୋଗୁଁ ଡାଲ୍ଟନଙ୍କ ପରମାଣୁ ତତ୍ତ୍ୱ ଆଜି ସଂଶୋଧିତ ହୋଇଛି । ପରମାଣୁକୁ ବିଭାଜନ କରି ହେଲାଣି । ପରମାଣୁ ମଧ୍ୟରେ ଏହାଠାରୁ କ୍ଷୁଦ୍ରତର ଏକାଧିକ ଅବପରମାଣୁ (subatomic) କଣିକାମାନ ରହିଛି । ଏ ବିଷୟରେ ପରବର୍ତ୍ତୀ ଅଧ୍ୟାୟରେ ଆଲୋଚନା କରାଯାଇଛି ।

ତ୍ରମେ ଜାଣିଛ କି ?

ଜନ୍ ଡାଲଟନ୍ 1766 ମସିହାରେ ଇଂଲଣ୍ଡର ଏକ ଗରିବ ପରିବାରରେ ଜନ୍ମ ହୋଇଥିଲେ । 12 ବର୍ଷ ବୟସରେ ଏକ ଶିକ୍ଷକ ଭାବରେ ତାଙ୍କର ବୃତ୍ତି ଆରୟ କରିଥିଲେ । ସାତବର୍ଷ ପରେ ସେ ଗୋଟିଏ ସ୍କୁଲର ଅଧିକ୍ଷ ହେଲେ । 1793 ମସିହାରେ ଡାଲଟନ୍ ମାଞ୍ଚେଷ୍ଟରର ଗୋଟିଏ କଲେଜରେ ଗଣିତ, ପଦାର୍ଥବିଜ୍ଞାନ ଓ ରସାୟନବିଜ୍ଞାନ ପଢ଼ାଇଲେ । ଅଧ୍ୟୟନ ଓ ଗବେଷଣା କରି ଜୀବନର ଅଧିକାଂଶ ସମୟ ସେହିଠାରେ କଟାଇଥିଲେ । ପରମାଣୁ ତତ୍ତ୍ୱ ପାଇଁ ଡାଲଟନ୍ ମୁଖ୍ୟତଃ ଜଣାଶୁଣା ହେଲେ ମଧ୍ୟ ବିଜ୍ଞାନର ଅନ୍ୟାନ୍ୟ ଦିଗ ପତି ତାଙ୍କର ଅବଦାନ ଚିରସ୍ତରଣୀୟ ।

ଜନ୍ ଡାଲଟନ୍

ପରମାଣ୍ଡ (Atom) 3.2

ରାଜମିସ୍ତୀ ବିରାଟ ବିରାଟ ଘର ତିଆରି କରନ୍ତି I ଏହି ବିରାଟ ଘର ଛୋଟ ଛୋଟ ଇଟାର ସମାହାରରେ ତିଆରି ହୋଇଥାଏ । ବୁନ୍ଦା ବୁନ୍ଦା ଜଳର ସମାହାରରେ ସମୁଦ୍ର ସୃଷ୍ଟି ହୋଇଛି । ସେହିପରି ପ୍ରତ୍ୟେକ ପଦାର୍ଥ ବହୁ ସଂଖ୍ୟକ ଛୋଟ ଛୋଟ ପରମାଣ୍ର ଦ୍ୱାରା ଗଠିତ ହୋଇଥାଏ ।

ପରମାଶ୍ରର ଆକାର ଏତେ ଛୋଟ ଯେ ଖାଲି ଆଖରେ ଦେଖିବା ଦୂରେ ଥାଉ, ଏହାର ଛୋଟ ଆକାର କଳ୍ପନା କରିବା ମଧ୍ୟ ସହଜ ନୃହେଁ । ଗୋଟିଏ ବାଲିକଣାର ବ୍ୟାସାର୍ଦ୍ଧ ପ୍ରାୟ 10⁴ ମିଟର ଏବଂ ଗୋଟିଏ ହାଇଡ଼ୋଜେନ ପରମାଣ୍ଡର ବ୍ୟାସାର୍ଦ୍ଧ ହେଉଛି ପାୟ 10⁻¹⁰ ମିଟର । ଅନ୍ୟ ଅର୍ଥରେ କହିବାକୁ ଗଲେ ହାଇଡ୍ରୋଜେନ ପରମାଣୁର ବ୍ୟାସାର୍ଦ୍ଧ ଏକ ସେଣ୍ଟିମିଟରର ଦଶକୋଟି ଭାଗରୁ ଗୋଟିଏ ଭାଗ । ଏହି କ୍ଷୁଦ୍ରାତିକ୍ଷୁଦ୍ର କଣିକା ଅର୍ଥାତ୍ ପରମାଣୁଗୁଡ଼ିକରେ ବିଶ୍ୱବୃହ୍ୟୁଣ୍ଡ ସୃଷ୍ଟି ହୋଇଛି । ପରମାଣୁକୁ ଆମେ ଖାଲି ଆଖିରେ ଦେଖି ନ ପାରିଲେ ମଧ୍ୟ ଆଧୁନିକ ବୈଷୟିକ ଜ୍ଞାନଦ୍ୱାରା ଏହାର ସ୍ଥିତି ପ୍ରମାଣିତ ହୋଇପାରିଛି । ରାସାୟନିକ ପ୍ରତିକ୍ରିୟାରେ ପରମାଣ୍ଡ ଭାଗନିଏ ।

3.2.1 ବିଭିନ୍ନ ମୌଳିକର ପରମାଣୁମାନଙ୍କର ପ୍ରତୀକ

ମୌଳିକର ପତୀକକ୍ ଏକ ନିର୍ଦ୍ଦିଷ୍ଟ ଅର୍ଥରେ ବ୍ୟବହାର କରିବାରେ ଡାଲଟନ୍ ହେଉଛନ୍ତି ପୃଥମ ବୈଜ୍ଞାନିକ । ପ୍ରତୀକଟି ଗୋଟିଏ ପରମାଣୁକୁ ବୁଝାଏ । ବୈଜ୍ଞାନିକ

ବର୍ଚ୍ଚିଲିୟସଙ୍କ ମତରେ ମୌଳିକ ନାମର ଗୋଟିଏ କିୟା ଦୁଇଟି ଅକ୍ଷରକୁ ନେଇ ସେହି ମୌଳିକର ପ୍ରତୀକ ଲେଖାଯାଇପାରେ ।

ଚିତ୍ର 3.2 ଡାଲଟନ୍ଙ୍କ ପ୍ରୟାବିତ କେତୋଟି ମୌଳିକର ପ୍ରତୀକ

ଆରୟରୁ ମୌଳିକମାନଙ୍କର ନାମ ପ୍ରଥମେ ଯେଉଁ ସ୍ଥାନରୁ ମିଳିଥିଲା, ସେହି ସ୍ଥାନର ନାମ ଅନୁସାରେ ଦିଆଯାଉଥିଲା । ଉଦାହରଣ ସ୍ୱରୂପ, କପର ନାମଟି ସାଇପ୍ରସ୍ (Cyprus)ରୁ ଆନୀତ । କେତୋଟି ନାମ ନିର୍ଦ୍ଦିଷ୍ଟ ରଙ୍ଗଗୁଡ଼ିକରୁ ଆନୀତ । ଉଦାହରଣ : ଗୋଲ୍ଡ଼ (Gold) ଏକ ଇଂରାଜୀ ଶବ୍ଦ ଯାହାର ଅର୍ଥ ଉଜ୍ଜଳ ହଳଦିଆ (bright yellow)ରୁ ଆନୀତ । ଏବେ ଆନ୍ତର୍ଜାତିକ ବିଶୁଦ୍ଧ ଓ ପ୍ରୟୋଗାତ୍କକ ରସାୟନ ସଂଘ (International Union of Pure and Applied Chemistry) ବା ଆଇୟୃପିଏସି (IUPAC) ମୌଳିକଗୁଡ଼ିକର ନାମ ଅନୁମୋଦନ କରିଛି । ଅଧିକାଂଶ

ପ୍ରତୀକ ମୌଳିକର ଇଂରାଜୀ ନାମର ପ୍ରଥମ ଅକ୍ଷର କିୟା ପ୍ରଥମ ଦୁଇଟି ଅକ୍ଷର ନେଇ ଗଠିତ । ପ୍ରତୀକର ପ୍ରଥମ ଅକ୍ଷରଟି ସବୁବେଳେ ଇଂରାଜୀର ବଡ଼ ଅକ୍ଷର (capital letter) ଏବଂ ଦ୍ୱିତୀୟଟି ଛୋଟ ଅକ୍ଷର (small letter) ଲେଖାଯାଏ ।

ଉଦାହରଣ :

- (i) ଅକ୍ଟିକେନ (Oxygen), O
- (ii) ହାଇଡ୍ରୋଜେନ (Hydrogen), H
- (iii) ବେରିୟମ (Barium), Ba (BA ନୁହେଁ)
- (iv) ବ୍ରୋମିନ (Bromine), Br (BR ନୁହେଁ)
- (v) ନିୟନ (Neon), Ne (NE ନୁହେଁ)

ମୌଳିକର ପ୍ରତୀକଗୁଡ଼ିକ ସେଗୁଡ଼ିକର ଲାଟିନ ଭାଷାରେ ଲିଖ୍ଡ ନାମରୁ ଆନୀତ । ଯଥା : ଆଇରନ (ଲୁହା)ର ଲାଟିନ ନାମ ଫେରମ (Ferrum)ରୁ Fe, ସୋଡ଼ିୟମର ଲାଟିନ ନାମ ନେଟ୍ରିୟମ (Natrium)ରୁ Na, ପୋଟାସିୟମର ଲାଟିନ ନାମ କେଲିୟମ (Kalium)ରୁ K ପ୍ରତୀକ ଆସିଛି । ପ୍ରତ୍ୟେକ ମୌଳିକର ଗୋଟିଏ ନାମ ଓ ଏକମାତ୍ର ରାସାୟନିକ ପ୍ରତୀକ ରହିଥାଏ ।

3.2.2 ପାରମାଣବିକ ବସ୍ତୁତ୍ୱ (Atomic Mass)

ପରମାଣୁ ଅତି କ୍ଷୁଦ୍ର ହେଲେବି ଏହାର ବସ୍ତୁତ୍ୱ ଅଛି । ଏହି ବସ୍ତୁତ୍ୱ ଏତେ କମ୍ପରେ, ଗୋଟିଏ ପରମାଣୁର ବସ୍ତୁତ୍ୱକୁ ସିଧାସଳଖ ମପାଯାଇ ପାରିବନାହିଁ । ତେଣୁ ବୈଜ୍ଞାନିକମାନେ ରାସାୟନିକ ସଂଯୋଗର ନିୟମ ଏବଂ ସୃଷ୍ଟି ହେଉଥିବା

		\neg	
$\alpha \alpha $	COCOO	calooo	α
ସାରଣୀ 3.1	<i>Θ μ</i> , <i>Θ Θ</i> , <i>μ</i> ,	የዓ.መ.መ!!! አ	KIR, IM.

ମୌଳିକ	ପ୍ରତୀକ	ମୌଳିକ	ପ୍ରତୀକ	ମୌଳିକ	ପ୍ରତୀକ	ମୌଳିକ	ପ୍ରତୀକ
ଏଲୁମିନିୟମ୍	Al	କ୍ଲୋରିନ୍	CI	ମ୍ୟାଗ୍ନେସିୟମ	Mg	ସେଲେନିୟମ	Se
ଏଣ୍ଟିମୋନି	Sb	କ୍ରୋମିୟମ	Cr	ମାଙ୍ଗାନିଜ	Mn	ସିଲିକନ	Si
ଆର୍ଗନ	Ar	କୋବାଲ୍ଟ	Co	ମର୍କ୍ୟୁରି	Hg	ସିଲ୍ଭର	Ag
ଆର୍ସେନିକ	As	କପର	Cu	ନିୟନ	Ne	ସୋଡ଼ିୟମ	Na
ବେରିୟମ	Ва	ଫ୍ଲୋରିନ	F	ନିକେଲ	Ni	ସଲ୍ଫର	S
ବେରିଲିୟମ	Be	ଗୋଲ୍ଡ	Au	ନାଇଟ୍ରୋଜେନ	Ν	ଟିନ	Sn
ବିସ୍ମଥ	Bi	ହିଲିୟମ	He	ଅକ୍ସିଜେନ	0	ଟଙ୍ଗସ୍ଟନ	W
ବୋରନ	В	ହାଇତ୍ରୋଜେନ	Н	ଫସ୍ଫରସ୍	Р	ୟୁରେନିୟମ	U
ବ୍ରୋମିନ	Br	ଆୟୋଡିନ	I	ପ୍ଲାଟିନମ୍	Pt	ଭାନେଡ଼ିୟମ	V
କ୍ୟାଡ୍ମିୟମ	Cd	ଆଇରନ	Fe	ପୋଟାସିୟମ	K	ଜେନନ	Xe
କ୍ୟାଲ୍ସିୟମ	Ca	ଲେଙ୍	Pb	ରେଡ଼ିୟମ୍	Ra	ଜିଙ୍କ	Zn
କାର୍ବନ	С	ଲିଥ୍ୟମ	Li	ୟାଣ୍ଡିୟମ	Sc		

କେତେକ ମୌଳିକର ପ୍ରତୀକ, ଇଂରାଜୀ ନାମର ପ୍ରଥମ ଅକ୍ଷର ଏବଂ ସେହି ନାମରେ ରହିଥିବା ଅନ୍ୟ ଗୋଟିଏ ଅକ୍ଷରକୁ ନେଇ ଗଠିତ ହୋଇଥାଏ ।

ଉଦାହରଣ : (i) କ୍ଲୋରିନ୍ (Chlorine), Cl (ii) ମ୍ୟାଗ୍ନେସିୟମ (Magnesium), Mg । ଅନ୍ୟ କେତେ ଯୌଗିକକୁ ଉପଯୋଗ କରି ମୌଳିକର ତୁଳନାତ୍ପକ ବା ଆପେକ୍ଷିକ (relative) ବୟୁତ୍ୱ ନିର୍ଣ୍ଣୟ କଲେ । ଏଥିପାଇଁ କୌଣସି ଏକ ପରମାଣୁର ବୟୁତ୍ୱକୁ ମାନକ ଏକକ (standard unit) ରୂପେ ନେଇ ଅନ୍ୟ ମୌଳିକର ପରମାଣୁର ବୟୁତ୍ୱ ନିର୍ଣ୍ଣୟ କରିବା ପାଇଁ ବୈଜ୍ଞାନିକମାନେ

ନିଷ୍ପଭି ନେଲେ । ଏହି କ୍ରମରେ ପ୍ରାକୃତିକ ଭାବରେ ମିଳୁଥିବା ଅକ୍ସିଜେନର ଗୋଟିଏ ପରମାଣୁର $\frac{1}{16}$ ଭାଗ ବସ୍ତୁତ୍ୱକୁ ପ୍ରଥମେ ବୈଜ୍ଞାନିକମାନେ ମାନକ ଏକକ ରୂପେ ନେଲେ । ଦୁଇଟି କାରଣ ପାଇଁ ଏହା ପ୍ରାସଙ୍ଗିକ ବୋଲି ବିବେଚନା କରାଗଲା । ସେଗୁଡ଼ିକ ହେଲା :

- (i) ଅନେକ ମୌଳିକ ସହିତ ଅକ୍ସିଜେନ ରାସାୟନିକ ପ୍ରତିକ୍ରିୟା କରେ ଏବଂ ଯୌଗିକ ସୃଷ୍ଟି କରିପାରେ ।
- (ii) ଅଧିକାଂଶ ମୌଳିକର ପାରମାଣବିକ ବୟୂତ୍ୱ ଏହି ମାନକ ଏକକ ନେବା ଦ୍ୱାରା ପୂର୍ଣ୍ଣ ସଂଖ୍ୟା ହୋଇଥାଏ ।

ପରବର୍ତ୍ତୀ ସମୟରେ ବୈଜ୍ଞାନିକମାନେ ଅକ୍ସିଜେନକୁ ପରମାଣୁର ବସ୍ତୁତ୍ୱ ନିର୍ତ୍ତୟ କରିବା ପାଇଁ ମାନକ ଏକକ ରୂପେ ଗ୍ରହଣ କଲେ ନାହିଁ ।

1961 ମସିହାରୁ C^{12} ବା କାର୍ବନ-12 (ବା C-12) ସମାବୟବ (isotope) ର $\frac{1}{12}$ ଭାଗ ବା ଅଂଶକୁ ମାନକ ଏକକ ରୂପେ ବିଶ୍ୱବ୍ୟାପୀ ବ୍ୟବହାର କରାଗଲା । C^{12} ର ପାରମାଣବିକ ବୟୁତ୍ୱ 12 ଅଟେ । ଏହି ଏକକକୁ 'ପାରମାଣବିକ ବୟୁତ୍ୱ ଏକକ' (atomic mass unit) ବା ସଂକ୍ଷେପରେ 'amu' କୁହାଯାଏ । ଏବେ ଏହି ଏକକକୁ 'u' (unified mass) ଲେଖାଯାଉଛି ।

ଏକ C-12 ପରମାଣୁର $\frac{1}{12}$ ଭାଗ ବୟୂତ୍ୱ ତୁଳନାରେ ଗୋଟିଏ ମୌଳିକର ପରମାଣୁର ବୟୂତ୍ୱ ହେଉଛି ସେହି ମୌଳିକର ପାରମାଣବିକ ବୟୁତ୍ୱ ।

ତେଣୁ ମୌଳିକର ପାରମାଣବିକ ବସ୍ତୁତ୍ୱ ଏକ ଆନୁପାତିକ ବା ତୁଳନାତ୍କକ ମୂଲ୍ୟ । ସୁତରାଂ କୌଣସି ମୌଳିକର ପାରମାଣବିକ ବସ୍ତୁତ୍ୱ

ସାରଣୀ 3.2 କେତୋଟି ମୌଳିକର ପାରମାଣବିକ ବସ୍ତୃତ୍ୱ

ମୌଳିକ	ପାରମାଣବିକ ବୟୂତ୍ୱ (u)
ହାଇଡ୍ରୋଜେନ	1
କାର୍ବନ	12
ନାଇଟ୍ରୋଜେନ	14
ଅକ୍ସିଜେନ	16
ଫ୍ଲୋରିନ୍	19
ସୋଡ଼ିୟମ	23
ମ୍ୟାଗ୍ନେସିୟମ	24
ସଲ୍ଫର	32
କ୍ଲୋରିନ୍	35.5
କ୍ୟାଲସିୟମ	40

ପାରମାଣବିକ ବୟୃତ୍ୱକୁ ଗ୍ରାମରେ ପ୍ରକାଶ କଲେ ତାହାକୁ ଗ୍ରାମ ପାରମାଣବିକ ବୟୃତ୍ୱ କୁହାଯାଏ ।

ଉପରେ କରାଯାଇଥିବା ଆଲୋଚନାଗୁଡ଼ିକରୁ ପରମାଣୁ ସମ୍ବନ୍ଧରେ କେତେକ ତଥ୍ୟ ଆମେ ଜାଣିଲେ । କିନ୍ତୁ ପରମାଣୁ କ'ଶ ? ପରମାଣୁ ହେଉଛି ମୌଳିକର କ୍ଷୁଦ୍ରତମ କଣିକା ଯାହା ରାସାୟନିକ ପ୍ରତିକ୍ରିୟାରେ ଭାଗନିଏ ।

3.3 ଅଣୁ (Molecule)

ଅନେକ ମୌଳିକର ପରମାଣୁଗୁଡ଼ିକର ସ୍ୱାଧୀନ ସଭା ନଥାଏ । ପରମାଣୁଗୁଡ଼ିକ ମିଶି ଅଣୁ ଏବଂ ଆୟନ ସୃଷ୍ଟି କରନ୍ତି । ଏହି ଅଣୁଗୁଡ଼ିକ କିୟା ଆୟନଗୁଡ଼ିକ ବହୁ ସଂଖ୍ୟାରେ ମିଳିତ ହୋଇ ପଦାର୍ଥ ସୃଷ୍ଟି କରନ୍ତି । ଏହି ପଦାର୍ଥକୁ ଆମେ ଦେଖିପାରୁ କିୟା ଅନୁଭବ କରିପାରୁ କିୟା ସ୍ପର୍ଶ କରିପାରୁ ।

ଅଣୁ ହେଉଛି, ଏକ ମୌଳିକ କିୟା ଯୌଗିକର ଷୁଦ୍ରତମ କଣିକା ଯାହା ସ୍ୱାଧୀନ ଭାବରେ ରହିବାକୁ ସମର୍ଥ ଏବଂ ସେହି ମୌଳିକ କିୟା ଯୌଗିକର ସମୟ ଧର୍ମ ପ୍ରଦର୍ଶନ କରିଥାଏ । ଏକ ମୌଳିକର ଅଣୁ ଏକ ବା ଏକାଧିକ ସମଜାତୀୟ ପରମାଣୁକୁ ନେଇ ଗଠିତ ହୋଇଥାଏ । ଯୌଗିକର ଅଣୁ ସର୍ବଦା ଏକାଧିକ ଅସମଜାତୀୟ ପରମାଣୁକୁ ନେଇ ଗଠିତ ହୋଇଥାଏ । ଅଣୁ ମଧ୍ୟରେ ଥିବା ଏକାଧିକ ପରମାଣୁ ପରସର ମଧ୍ୟରେ ରାସାୟନିକ ବନ୍ଧ ଦ୍ୱାରା ଅର୍ଥାତ୍ ଆକର୍ଷଣ ବଳ ଦ୍ୱାରା ଶକ୍ତଭାବେ ବାନ୍ଧି ହୋଇଥା'ନ୍ତି ।

3.3.1 ମୌଳିକର ଅଣୁ (Molecules of Elements)

ଏକ ମୌଳିକର ଅଣୁ ସମଜାତୀୟ ପରମାଣୁକୁ ନେଇ ଗଠିତ ହୋଇଥାଏ । କେତେକ ମୌଳିକ ଯଥା : ହିଲିୟମ, ନିୟନ, ଆର୍ଗନ ଇତ୍ୟାଦିର ଅଣୁ ସେହି ମୌଳିକର କେବଳ ଗୋଟିଏ ପରମାଣୁରେ ଗଠିତ । ଅଧିକାଂଶ ଅଧାତୁ ମୌଳିକର ଅଣୁ ଏକାଧିକ ସମଜାତୀୟ ପରମାଣୁକୁ ନେଇ ଗଠିତ ହୋଇଥାଏ । ଉଦାହରଣ : ଗୋଟିଏ ହାଇଡ୍ରୋଜେନ ଅଣୁ (H₂) ଦୁଇଟି ହାଇଡ୍ରୋଜେନ ପରମାଣୁକୁ ନେଇ ଗଠିତ ହୋଇଥାଏ । ସେଥିପାଇଁ ହାଇଡ୍ରୋଜେନ ଅଣୁକୁ ଦୁଇପରମାଣୁବିଶିଷ୍ଟ ଅଣୁ (diatomic molecule), କୁହାଯାଏ । ଡିନୋଟି ଅକ୍ସିଜେନ ପରମାଣୁ ଏକତ୍ର ହୋଇଥାଏ । ବାୟୁମଣ୍ଟଳରେ ଓଜୋନ୍ ଗ୍ୟାସର ଏକ ସ୍ତର ଅଛି । ଅଣୁରେଥିବା ପରମାଣୁର ସଂଖ୍ୟା ଦ୍ୱାରା ଅଣୁର ପରମାଣୁକତା (atomicity) ଜଣାଯାଏ । ସାରଣୀ 3.3 ରେ କେତୋଟି ଅଧାତୁର ପରମାଣୁକତା ଦିଆଯାଇଛି ।

ସାରଣୀ 3.3 କେତୋଟି ଅଧାତୁର ପରମାଣୁକତା

ଅଧାତୁର ନାମ	ପରମାଣୁକତା		
ହିଲିୟମ	ଏକ ପରମାଣୁ ବିଶିଷ୍ଟ		
ନିୟନ	ଏକ ପରମାଣୁ ବିଶିଷ୍ଟ		
ଆର୍ଗନ	ଏକ ପରମାଣୁ ବିଶିଷ୍ଟ		
ହାଇଡ୍ରୋଜେନ୍	ଦୁଇ ପରମାଣୁ ବିଶିଷ୍ଟ		
ଅକ୍ସିଜେନ	ଦୁଇ ପରମାଣୁ ବିଶିଷ୍ଟ		
ନାଇଟ୍ରୋଜେନ	ଦୂଇ ପରମାଣୁ ବିଶିଷ୍ଟ		
କ୍ଲୋରିନ	ଦୁଇ ପରମାଣୁ ବିଶିଷ୍ଟ		
ଫସ୍ଫରସ୍	ଚାରି ପରମାଣୁ ବିଶିଷ୍ଟ		
ସଲ୍ଫର	ବହୁ ପରମାଣୁ ବିଶିଷ୍ଟ		

3.3.2 ଯୌଗିକର ଅଣୁ (Molecules of Compounds)

ବିଭିନ୍ନ ମୌଳିକର ପରମାଣୁଗୁଡ଼ିକ ଏକ ନିର୍ଦ୍ଦିଷ୍ଟ ଅନୁପାତରେ ଏକତ୍ର ମିଳିତ ହୋଇ ଯୌଗିକର ଅଣୁ ଗଠନ ହୋଇଥାଏ । ପୂର୍ବରୁ ଦିଆଯାଇଥିବା 'ସ୍ଥିରାନୁପାତ ନିୟମ' ଶୀର୍ଷକରେ ଏ ବିଷୟରେ ବ୍ୟାଖ୍ୟା କରାଯାଇଛି ।

3.3.3 ଆୟନ (lon)

ଧାତବ ମୌଳିକ ଓ ଅଧାତୁ ମୌଳିକର ସଂଯୋଗରେ ଗଠିତ ଯୌଗିକ ଚାର୍ଜଯୁକ୍ତ କଣିକାମାନ ଧାରଣ କରିଥାଏ । ଏହି ଚାର୍ଜଯୁକ୍ତ କଣିକାକୁ ଆୟନ କୁହାଯାଏ । ଯୁକ୍ତାତ୍ମକ ଆୟନକୁ କ୍ୟାଟାୟନ (cation) ଏବଂ ବିଯୁକ୍ତାତ୍ମକ ଆୟନକୁ ଆନାୟନ (anion) କୁହାଯାଏ । ସୋଡ଼ିୟମ କ୍ଲୋରାଇଡ଼ ଯୌଗିକରେ ଥିବା ଚାର୍ଜଯୁକ୍ତ କଣିକାଗୁଡ଼ିକ ହେଉଛି, ଯୁକ୍ତାତ୍ମକ ସୋଡ଼ିୟମ ଆୟନ (Na+) ଏବଂ ବିଯୁକ୍ତାତ୍ମକ କ୍ଲୋରାଇଡ଼ ଆୟନ (CI-) । ଗୋଟିଏ ଚାର୍ଜଯୁକ୍ତ ପରମାଣୁରେ ଆୟନ ଗଠିତ ହୋଇପାରେ କିୟା ଏକାଧିକ ପରମାଣୁ ଏକତ୍ର ହୋଇ ଯୁକ୍ତ ବା ବିଯୁକ୍ତ ଚାର୍ଜ ବହନ କରିପାରେ । ଏକାଧିକ ପରମାଣୁ ଏକତ୍ର ହୋଇ ଧୁକ୍ତ ବା ବିଯୁକ୍ତ ଚାର୍ଜ ବହନ କରିଥିଲେ ସେଗୁଡ଼ିକୁ ପଲିଆଟମିକ ଆୟନ (polyatomic ion) କୁହାଯାଏ । ସାରଣୀ 3.4ରେ କେତୋଟି ଆୟନର ନାମ ଓ ପ୍ରତୀକ / ସଙ୍କେତ ଦିଆଯାଇଛି ।

ସାରଣୀ **3.4** କେତୋଟି ଆୟନର ନାମ ଓ ପ୍ରତୀକ / ସଙ୍କେତ

ଆୟନର ନାମ	ପ୍ରତୀକ / ସଙ୍କେତ			
ହାଇଡ୍ରୋଜେନ୍	H ⁺			
ସୋଡ଼ିୟମ୍	Na⁺			
ପୋଟାସିୟମ୍	K ⁺			
ମ୍ୟାଗ୍ନେସିୟମ୍	Mg ²⁺			
ଜିଙ୍କ୍	Zn ²⁺			
ଏଲୁମିନିୟମ୍	Al ³⁺			
କ୍ଲୋରାଇଡ୍	Cl ⁻			
ବ୍ରୋମାଇଡ୍	Br [_]			
ଅକ୍ସାଇଡ୍	O ²⁻			
ଏମୋନିୟମ୍	NH_4^+			
ହାଇତ୍ରକ୍ସାଇତ୍	OH-			
ନାଇଟ୍ରେଟ୍	NO ₃			
କାର୍ବୋନେଟ୍	CO ₃ ²⁻			
ସଲ୍ଫେଟ୍	SO ₄ ²⁻			
ଫସ୍ଫେଟ୍	PO ₄ ³⁻			

ତୁମ ପାଇଁ କାମ : 3.2

ଅଷମ ଶ୍ରେଣୀ ବିଜ୍ଞାନ ବହିରେ ତୁମେ ବିଦ୍ୟୁତସ୍ରୋତର ରାସାୟନିକ ପ୍ରଭାବ ବିଷୟରେ ପଢ଼ିଛ । ପରୀକ୍ଷା କରି ଦେଖିଛ ଯେ, ଖାଇବା ଲୁଣର ଜଳୀୟ ଦ୍ରବଣ ବିଦ୍ୟୁତ୍ ସୁପରିବାହୀ । ସେହିପରି ଆଉ ଏକ ପରୀକ୍ଷା କରି ତୁମେ ଜାଣିଛ ଯେ ଚିନିର ଜଳୀୟ ଦ୍ରବଣ ବିଦ୍ୟୁତ୍ ସୁପରିବାହୀ ନୁହେଁ । ଜଳୀୟ ଦ୍ରବଣରେ ଆୟନ ସୃଷ୍ଟି ହେଲେ ଦ୍ରବଣଟି ବିଦ୍ୟୁତ୍ ସୁପରିବାହୀ ହୋଇଥାଏ । ଖାଇବା ଲୁଣରୁ ପ୍ରସ୍ତୁତ ଜଳୀୟ ଦ୍ରବଣରେ ଯୁକ୍ତାତ୍କଳ Na+ ଆୟନ ଓ ବିଯୁକ୍ତାତ୍କଳ CI- ଆୟନ ରହିଥାଏ । ତେଣୁ ଲୁଣ ଦ୍ରବଣ ବିଦ୍ୟୁତ୍ ସୁପରିବାହୀ । ଚିନିର ଜଳୀୟ ଦ୍ରବଣରେ ଚିନି ଅଣୁର ବିଯୋଜନ (dissociation) ହୁଏ ନାହିଁ ଏବଂ ଆୟନ ସୃଷ୍ଟି ହୁଏ ନାହିଁ । ତେଣୁ ଚିନିର ଜଳୀୟ ଦ୍ରବଣ ବିଦ୍ୟୁତ୍ ସୁପରିବାହୀ ନୁହେଁ ।

ତୁମ ଘରେ ବ୍ୟବହାର କରୁଥିବା କେତୋଟି ଆୟନିକ ଯୌଗିକର ତାଲିକା କର । ପ୍ରତ୍ୟେକ ଯୌଗିକ ପାଇଁ ଗୋଟିଏ ଲେଖାଏଁ ପରିଷ୍କାର ଛୋଟ ବିକର କିୟା କାଚ ପାତ୍ର ନିଅ । ବିକର କିୟା କାଚପାତ୍ରରେ ଦୁଇ ଚାମଚ ପାତିତ ଜଳରେ ଅଧା ଚାମଚ ଆୟନିକ ଯୌଗିକକୁ ଦ୍ରବୀଭୂତ କର । ତୁମେ ପ୍ରୟୁତ କରିଥିବା ଟେଷ୍ଟର ଦ୍ୱାରା ପ୍ରତ୍ୟେକ ଦ୍ରବଣକୁ ପରୀକ୍ଷା କରି ଦେଖ, ତାହା ବିଦ୍ୟୁତ୍ ସୁପରିବାହୀ କି ନୁହେଁ ।

3.4 ରାସାୟନିକ ସଙ୍କେତ ଓ ଯୋଜ୍ୟତା (Chemical Formula & Valency)

ଏକ ଯୌଗିକର ରାସାୟନିକ ସଙ୍କେତ ହେଉଛି ଏହାର ଗଠନର ପ୍ରତୀକ ମୂଳକ ଚିତ୍ରଣ । ବିଭିନ୍ନ ଯୌଗିକର ରାସାୟନିକ ସଙ୍କେତ ଲେଖିବା ପାଇଁ ଆମେ ମୌଳିକର ପ୍ରତୀକ ଏବଂ ସଂଯୋଜନ କ୍ଷମତା (combining capacity) ସୟନ୍ଧରେ ଜାଣିବା ଦରକାର ।

ମୌଳିକର ସଂଯୋଜନ କ୍ଷମତାକୁ ଏହାର ଯୋଜ୍ୟତା (valency) କୁହାଯାଏ । ହାଇଡ୍ରୋଜେନର ଯୋଜ୍ୟତାକୁ ଏକ ଧରି ଅଧିକାଂଶ ମୌଳିକର ଯୋଜ୍ୟତା ନିର୍ଶ୍ଚୟ କରାଯାଇଛି । ହାଇଡ୍ରୋକ୍ଲୋରିକ ଏସିଡ଼ (HCI)ର ଗୋଟିଏ ଅଣୁରେ ଗୋଟିଏ କ୍ଲୋରିନ ପରମାଣୁ ଗୋଟିଏ ହାଇଡ୍ରୋଜେନ ପରମାଣୁ ସହ ସଂଯୁକ୍ତ ହୋଇଛି । ତେଣୁ କ୍ଲୋରିନ୍ର ଯୋଜ୍ୟତା

ଏକ ଅଟେ । ସେହିଭଳି ଗୋଟିଏ କଳ (H_2O) ଅଣୁରେ ଗୋଟିଏ ଅକ୍ସିକେନ ପରମାଣୁ ଦୁଇଟି ହାଇଡ୍ରୋକେନ ପରମାଣୁ ସହ ସଂଯୁକ୍ତ ହୋଇଛି । ତେଣୁ ଅକ୍ସିକେନର ଯୋଜ୍ୟତା ହେଉଛି ଦୁଇ । ଏମୋନିଆ (NH_3) ଅଣୁରେ ନାଇଟ୍ରୋକେନର ଗୋଟିଏ ପରମାଣୁ ହାଇଡ୍ରୋକେନର ତିନୋଟି ପରମାଣୁ ସହ ସଂଯୁକ୍ତ ହୋଇଛି । ତେଣୁ ନାଇଟ୍ରୋକେନର ଯୋଜ୍ୟତା ତିନି ଅଟେ । ସେହିପରି ମିଥେନ (CH_4) ଅଣୁକୁ ବିଚାର କଲେ କାର୍ବନର ଯୋଜ୍ୟତା ଚାରି ହୁଏ ।

ସମୟ ଯୌଗିକର ଉପାଦାନ ହାଇଡ୍ରୋଜେନ ନୁହେଁ । ତେଣୁ ଅନ୍ୟ ମୌଳିକର ଯୋଜ୍ୟତାକୁ ଭିଭି କରି କେତେକ ମୌଳିକର ଯୋଜ୍ୟତା ନିର୍ଣ୍ଣୟ କରାଯାଇଛି । ମ୍ୟାଗ୍ନେସିୟମ କ୍ଲୋରାଇଡ୍ (MgCl₂) ଯୌଗିକର ଅଣୁରେ ଗୋଟିଏ ମ୍ୟାଗ୍ନେସିୟମ ପରମାଣୁ ଦୁଇଟି କ୍ଲୋରିନ ପରମାଣୁ ସହ ସଂଯୁକ୍ତ ହୋଇଛି । କ୍ଲୋରିନ୍ର ଯୋଜ୍ୟତା ଏକ, ତେଣୁ ମ୍ୟାଗ୍ନେସିୟମର ଯୋଜ୍ୟତା ଦୁଇ ଅଟେ । ସେହିଭଳି ଏଲୁମିନିୟମ କ୍ଲୋରାଇଡ୍ (AICl₃) ଯୌଗିକରେ ଏଲୁମିନିୟମର ଯୋଜ୍ୟତା 3 ଅଟେ । ପରବର୍ତ୍ତୀ କାଳରେ ଏହିପରି ଯୋଜ୍ୟତା ନିର୍ଣ୍ଣୟ ପଦ୍ଧତିକୁ ପରିହାର କରି ପରମାଣୁର ଇଲେକ୍ଟ୍ରନ ସଂରଚନାକୁ ଭିଭିକରି ଯୋଜ୍ୟତା ନିର୍ଣ୍ଣୟ କରାଗଲା । ଏ ବିଷୟରେ ପରବର୍ତ୍ତୀ ଅଧ୍ୟାୟରେ ଅଧିକ ଆଲୋଚନା କରାଯାଇଛି ।

କେତେକ କ୍ଷେତ୍ରରେ ମୌଳିକର ଏକାଧିକ ଯୋଜ୍ୟତା ଦେଖାଯାଏ । ଯଥା:- ଫେରସ୍ ଅକ୍ସାଇଡ଼୍ (FeO)ରେ ଆଇରନର ଯୋଜ୍ୟତା 2 ଏବଂ ଫେରିକ ଅକ୍ସାଇଡ଼୍ (Fe $_2$ O $_3$)ରେ ଆଇରନ୍ର ଯୋଜ୍ୟତା 3 ଅଟେ । ସେହିଭଳି N $_2$ O, NO, N $_2$ O $_3$, N $_2$ O $_4$ ଓ N $_2$ O $_5$ ଯୌଗିକଗୁଡ଼ିକରେ ନାଇଟ୍ରୋଜେନର ଯୋଜ୍ୟତା ଯଥାକ୍ରମେ 1, 2, 3, 4 ଓ 5 ଅଟେ । କୌଣସି ମୌଳିକର ଏକାଧିକ ଯୋଜ୍ୟତାକୁ ଚଳଯୋଜ୍ୟତା (variable valency) କହନ୍ତି ।

3.4.1 ରାସାୟନିକ ସଙ୍କେତ ଲେଖିବାର ପ୍ରଣାଳୀ (Methods of Writing Chemical Formula)

ରାସାୟନିକ ସଙ୍କେତ ଲେଖିଲାବେଳେ ଅନୁସୃତ ନିୟମଗୁଡ଼ିକ ହେଲା :

ସାରଣୀ 3.5 କେତୋଟି ସାଧାରଣ ମୌଳିକର ଯୋଜ୍ୟତା

ମୌଳିକର ପ୍ରତୀକ	ଯୋଜ୍ୟତା	ମୌଳିକର ପ୍ରତୀକ	ଯୋଜ୍ୟତା	ମୌଳିକର ପ୍ରତୀକ	ଯୋଜ୍ୟତା
Н	1	Ag	1	Fe	2,3
F	1	Cu	1, 2	Pb	2,4
CI	1	0	2	Sn	2,4
Br	1	S	2,4,6	С	4
ı	1	Ca	2	Si	4
Na	1	Ва	2	В	3
K	1	Zn	2	N	1,2,3,4,5
Hg	1, 2	Mg	2	Р	3,5
Al	3	Cr	3,6		
Sb	3,5	As	3,5		

- (i) ଆୟନର ଯୋଜ୍ୟତା କିନ୍ୟା ଚାର୍ଚ୍ଚ ସମତୁଲ ହେବ ।
- (ii) ଧାତୁ ଏବଂ ଅଧାତୁରୁ ଗଠିତ ଯୌଗିକ ପାଇଁ ଧାତୁର ନାମ କିୟା ପ୍ରତୀକ ପ୍ରଥମେ ଲେଖାଯାଏ । ଉଦାହରଣ : ମ୍ୟାଗ୍ନେସିୟମ ଅକ୍ସାଇଡ଼ (MgO), ପୋଟାସିୟମ ବ୍ରୋମାଇଡ଼ (KBr) ।
- (iii) ପଲିଆଟମିକ ଆୟନରୁ ସୃଷ୍ଟ ଯୌଗିକରେ ଆୟନକୁ ବନ୍ଧନୀ ମଧ୍ୟରେ ରଖି ଅନୁପାତ ସୂଚାଉଥିବା ସଂଖ୍ୟାଟି ଲେଖାଯାଏ । ଏହି ସଂଖ୍ୟା ଯଦି ଏକ ହୋଇଥାଏ, ବନ୍ଧନୀର ଆବଶ୍ୟକତା ନାହିଁ । ଉଦାହରଣ : HNO୍ୱ ।

3.4.2 ଯୌଗିକର ସଙ୍କେତ

(Formulae of Compounds)

ଦୂଇଟି ପୃଥକ୍ ମୌଳିକରୁ ଗଠିତ ହୋଇଥିବା ଯୌଗିକକୁ ଦ୍ୱିଅଙ୍ଗୀ ଯୌଗିକ (Binary compound) କୁହାଯାଏ । ଆୟନର ଯୋଜ୍ୟତା ଆୟନ ଉପରେ ଦିଆଯାଇଥିବା ଚାର୍ଜରୁ ସୂଚନା ମିଳେ (ସାରଣୀ 3.4) । ସାରଣୀ 3.5ରେ କେତୋଟି ମୌଳିକର ଯୋଜ୍ୟତା ଦିଆଯାଇଛି ।

କୌଣସି ଯୌଗିକ ଅଣୁର ଆଣବିକ ସଙ୍କେତ ଲେଖିବାକୁ ହେଲେ ପ୍ରଥମେ ଏଥିରେ ଥିବା ମୌଳିକଗୁଡ଼ିକର ପ୍ରତୀକକୁ ପାଖାପାଖି ଲେଖାଯାଏ । ମୌଳିକଗୁଡ଼ିକର ଯୋଜ୍ୟତା ପ୍ରତୀକର ଠିକ୍ ତଳେ ଲେଖାଯାଏ । ତା'ପରେ ଯୋଜ୍ୟତା ସଂଖ୍ୟା ଦୁଇଟିର ସ୍ଥାନ ଅଦଳବଦଳ (cross over) କରି ସଙ୍କେତ ଲେଖାଯାଏ । ନିମ୍ନରେ କେତୋଟି ଉଦାହରଣ ଦିଆଯାଇଛି ।

1. ସୋଡ଼ିୟମ କ୍ଲୋରାଇଡ୍ର ସଙ୍କେତ :

ପ୍ରତୀକ : Na CI ଯୋଜ୍ୟତା : 1⁺ 1-

ସଙ୍କେତ : NaCl

2. ମିଥେନ୍ର ସଙ୍କେତ :

ପ୍ରତୀକ : C H ଯୋଜ୍ୟତା : 4 1

ସଙ୍କେତ : CH₄

 କ୍ୟାଲସିୟମ କ୍ଲୋରାଇଡ୍ ପାଇଁ କ୍ୟାଟାୟନ (Ca²⁺) ପ୍ରତୀକଟି ପ୍ରଥମେ ଲେଖାଯାଏ, ତା'ପରେ ଆନାୟନ (Cl⁻) ପ୍ରତୀକଟି ଲେଖାଯାଏ । ସେଗୁଡ଼ିକର ଚାର୍ଚ୍ଚ ଅଦଳବଦଳ କରି ସଙ୍କେତଟି ଲେଖାଯାଏ ।

> ପ୍ରତୀକ : Ca Cl ଯୋଜ୍ୟତା : 2⁺ 1⁻

ସଙ୍କେତ : CaCl₂

ଯୁକ୍ତ ଓ ବିଯୁକ୍ତଚାର୍ଚ୍ଚ ପରମ୍ବର ସମତୁଲ ହେବ ଏବଂ ଯୌଗିକଟି ଚାର୍ଚ୍ଚହୀନ ହେବ । ସଙ୍କେତରେ ଆୟନର ଚାର୍ଚ୍ଚକୁ ସୂଚାଯାଏ ନାହିଁ ।

4. ମ୍ୟାଗୁସିୟମ ଅକ୍ସାଇଡ୍ର ସଙ୍କେତ :

ପ୍ରତୀକ : Mg O

ଯୋଜ୍ୟତା : 2⁺ 2⁻

ସଙ୍କେତ : MgO

ଏଠାରେ ଦୁଇଟିଯାକ ଆୟନର ଯୋଜ୍ୟତା ସମାନ । ତେଣୁ ଏହାର ସଙ୍କେତକୁ ${
m Mg_2O_2}$ ନଲେଖି ସରଳରେ ${
m MgO}$ ଲେଖାଯାଏ ।

5. କ୍ୟାଲସିୟମ ହାଇଡ୍ରକ୍ସାଇଡ୍ର ସଙ୍କେତ :

ପ୍ରତୀକ / ସଙ୍କେତ : Ca OH

: 2⁺ 1⁻

ଚାଜି

ଚାର୍ଜ

ସଙ୍କେତ

: Ca (OH),

ଦୁଇ ବା ଅଧିକ ସମାନ ପଲିଆଟମିକ୍ ଆୟନ ରହିଲେ ବନ୍ଧନୀ ବ୍ୟବହାର କରାଯାଏ । ତେଣୁ କ୍ୟାଲସିୟମ ହାଇଡ୍ରକ୍ସାଇଡ଼୍ର ସଙ୍କେତ $Ca(OH)_2$, $CaOH_2$ ନୂହେଁ ।

6. ସୋଡ଼ିୟମ ସଲ୍ଫେଟ୍ର ସଙ୍କେତ :

ପ୍ରତୀକ / ସଙ୍କେତ : Na ${
m SO}_{\scriptscriptstyle 4}$

: 1⁺ 2⁻

ସଙ୍କେତ : Na₂ SO₄

ଏଠାରେ ବନ୍ଧନୀର ଆବଶ୍ୟକତା ନାହିଁ, କାରଣ ଗୋଟିଏ ${{SO_2}^{2}}$ ଆୟନ ଅଛି ।

7. ଏମୋନିୟମ କାର୍ବୋନେଟର ସଙ୍କେତ :

ସଙ୍କେତ : NH₄ CO₃

ଚାର୍ଜି : 1⁺ 2⁻

ସଙ୍କେତ : $(NH_4)_2 CO_3$

ତୁମ ପାଇଁ କାମ : 3.3

ତଳେ କେତେକ ମୌଳିକ ପରମାଣୁର ମଡ଼େଲ ଚିତ୍ର ଦିଆଯାଇଛି ।

 $H \rightarrow \square$, $C \rightarrow \bigcirc$, $N \rightarrow \bigcirc$,

 $0 \rightarrow \bigcirc$, $S \rightarrow \bigcirc$

ଏହି ଚିତ୍ରଗୁଡ଼ିକ ବ୍ୟବହାର କରି ଭିନ୍ନ ଭିନ୍ନ ଅଣୁର ମଡ଼େଲ ଚିତ୍ର ଅଙ୍କନ କର ।

ଜଦାହରଣ : H_2 → \square \square NO → \bigcirc 🕲

ଏହି ପଦ୍ଧତି ଅବଲୟନ କରି ତଳେ ଦିଆଯାଇଥିବା ଅଣୁଗୁଡ଼ିକର ମଡ଼େଲ ଚିତ୍ର ଅଙ୍କନ କର ।

 CO_2 , NO_2 , N_2 , SO_2 , SO_3 , NH_3 , O_2 , CH_4 , CS_2 , H_2O

3.5 ଆଣବିକ ବସ୍ତୃତ୍ୱ ଏବଂ ମୋଲ୍

(Molecular Mass and Mole)

ଆଣବିକ ବୟୂତ୍ୱ ହେଉଛି, ଗୋଟିଏ ଅଣୁରେ ଥିବା ସମୟ ପରମାଣୁର ପାରମାଣବିକ ବୟୃତ୍ୱର ଯୋଗଫଳ । ପାରମାଣବିକ ବୟୁତ୍ୱଭଳି ଆଣବିକ ବୟୁତ୍ୱ ଏକ ଆନୁପାତିକ ସଂଖ୍ୟା ଏବଂ ଏହାର ଏକକ ମଧ୍ୟ 'ପାରମାଣବିକ ବୟୁତ୍ୱ ଏକକ' ବା 'u' ।

ଉଦାହରଣ:

(i) ଜଳର ଆଣବିକ ବୟୁତ୍ୱ ନିର୍ଣ୍ଣୟ କରିବା । ଜଳ ଅଣୁର ସଙ୍କେତ H₂O ଅଟେ । ହାଇଡ୍ରୋଜେନର ପାରମାଣବିକ ବୟୁତ୍ୱ ହେଉଛି 1 u ଏବଂ ଅକ୍ସିଜେନର ପାରମାଣବିକ ବୟୁତ୍ୱ ହେଉଛି 16u । ଜଳ ଅଣୁରେ ଦୁଇଟି ହାଇଡ୍ରୋଜେନ ପରମାଣୁ ଓ ଗୋଟିଏ ଅକ୍ସିଜେନ ପରମାଣୁ ରହିଛି । ତେଣୁ ଜଳ ଅଣୁର ଆଣବିକ ବୟୁତ୍ୱ

$$= (2 \times 1u) + (1 \times 16u) = 18u$$

(ii) କ୍ୟାଲ୍ସିୟମ କାର୍ବୋନେଟ୍ର ଆଣବିକ ବୟୁତ୍ୱ କଳନା କରିବା । କ୍ୟାଲ୍ସିୟମ କାର୍ବୋନେଟ୍ର ସଙ୍କେତ ହେଉଛି CaCO₃ ।

ମୌଳିକଗୁଡ଼ିକର ପରମାଣବିକ ବସ୍ତୁତ୍ୱ :

Ca = 40u, C = 12u, O=16u କ୍ୟାଲ୍ସିୟମ କାର୍ବୋନେଟର ଆଣବିକ ବୟୁତ୍ୱ : 40u+ 12u+(3×16u) =100u

3.5.1 ମୋଲ୍

ବିଜ୍ଞାନରେ ମୋଲ୍ ନାମକ ଏକ ଏକକ ବ୍ୟବହାର କରଯାଏ । ଏକ ଡ଼କନ (dozen) ଯେପରି ଏକ ନିର୍ଦ୍ଦିଷ୍ଟ ସଂଖ୍ୟା 12କୁ ସୂଚାଏ ବା ଏକ ଗ୍ରସ (gross) କହିଲେ ଯେପରି 144 ସଂଖ୍ୟାକୁ ବୁଝାଏ, ସେହିପରି ଏକ ମୋଲ୍ କହିଲେ 6.02×10²³ ସଂଖ୍ୟାକୁ ବୁଝାଏ । ଏହି ବିରାଟ ସଂଖ୍ୟାକୁ ଏଭୋଗାଡ଼୍ରୋ ସ୍ଥିରାଙ୍କ (Avogadro constant) ବା ଏଭୋଗାଡ଼୍ରେ ସଂଖ୍ୟା (Avogadro Number) କୁହାଯାଏ । ଏହାକୁ 'N୍ର' ପ୍ରତୀକ ଦ୍ୱାରା ଚିହ୍ନିତ କରାଯାଏ । ଏହା ଅଣୁ, ପରମାଣୁ, ଆୟନ ବା କଣିକା ସଂଖ୍ୟା ଗଣନାର ଗୋଟିଏ ଏକକ ।

ଏକ ମୋଲ୍ ହାଇଡ୍ରୋକେନ ପରମାଣୁ କହିଲେ 6.02×10²³ ସଂଖ୍ୟକ ହାଇଡ୍ରୋକେନ ପରମାଣୁକୁ ବୁଝାଏ । ସେହିପରି ଏକ ମୋଲ୍ ନାଇଟ୍ରୋକେନ ଅଣୁ କହିଲେ 6.02×10²³ ସଂଖ୍ୟକ ନାଇଟ୍ରୋକେନ ଅଣୁକୁ ବୁଝାଏ । 1 ମୋଲ୍ ସୋଡ଼ିୟମ ପରମାଣୁ

= 6.02×10^{23} ସଂଖ୍ୟକ ସୋଡ଼ିୟମ ପରମାଣୁ 1 ମୋଲ୍ କ୍ଲୋରିନ ଅଣୁ

= 6.02×10^{23} ସଂଖ୍ୟକ କ୍ଲୋରିନ ଅଣୁ 1 ମୋଲ୍ ଇଲେକ୍ଟ୍ରନ= 6.02×10^{23} ସଂଖ୍ୟକ ଇଲେକ୍ଟ୍ରନ 1 ମୋଲ୍ ଆୟନ = 6.02×10^{23} ସଂଖ୍ୟକ ଆୟନ 5 ମୋଲ୍ ଏମୋନିଆ (NH_3) ଅଣୁ

= 5×6.02×10²³ ସଂଖ୍ୟକ ଏମୋନିଆ ଅଣ୍ଡ

ମୋଲ୍ର ବସ୍ତୁତ୍ୱ ସହିତ ମଧ୍ୟ ସମ୍ପର୍କ ରହିଛି । ଏକ ନିର୍ଦ୍ଦିଷ୍ଟ ପଦାର୍ଥର ଏକ ମୋଲ୍ର ବସ୍ତୁତ୍ୱ ମଧ୍ୟ ନିର୍ଦ୍ଦିଷ୍ଟ ଅଟେ । ତେଣୁ ମୋଲ୍ ପଦାର୍ଥର ବସ୍ତୁତ୍ୱର ମଧ୍ୟ ଏକ ସୂଚକ ଅଟେ । ନାଇଟ୍ରୋଜେନର ପାରମାଣବିକ ବସ୍ତୁତ୍ୱ = 14u ଏକ ମୋଲ୍ ନାଇଟ୍ରୋଜେନ ପରମାଣୁର ବସ୍ତୁତ୍ୱ = 14ଗ୍ରାମ ଅର୍ଥାତ୍ 6.02×10²³ ସଂଖ୍ୟକ ନାଇଟ୍ରୋଜେନ ପରମାଣୁର ବସ୍ତୁତ୍ୱ = 14ଗ୍ରାମ

ଏକ ମୋଲ୍ ପଦାର୍ଥର ବସ୍ତୁତ୍ୱକୁ "ମୋଲାର ବସ୍ତୁତ୍ୱ" (Molar Mass) କୁହାଯାଏ । ପରମାଣୁର ମୋଲାର ବସ୍ତୁତ୍ୱକୁ ଗ୍ରାମ–ପରମାଣୁ–ବସ୍ତୁତ୍ୱ ମଧ୍ୟ କୁହାଯାଏ ।

ସୂତରାଂ ଏକ ମୋଲ୍ ନାଇଟ୍ରୋଜେନ ପରମାଣୁର ବଞ୍ଚୁତ୍ୱ = ନାଇଟ୍ରୋଜେନର ଗ୍ରାମ-ପରମାଣୁ ବସ୍ତୁତ୍ୱ । କାର୍ବନର ପାରମାଣବିକ ବସ୍ତୁତ୍ୱ = 12u ତେଣୁ କାର୍ବନର ଗ୍ରାମ ପାରମାଣବିକ ବସ୍ତୁତ୍ୱ = 12ଗ୍ରାମ

ଗ୍ରାମ-ଆଣବିକ-ବୟୁତ୍ୱ ବା ଅଣୁର ମୋଲାର ବୟୁତ୍ୱର କେତୋଟି ଉଦାହରଣ ତଳେ ଦିଆଯାଇଛି । ହାଇଡ୍ରୋଜେନର ଆଣବିକ ବୟୁତ୍ୱ = 2u ଏକ ମୋଲ୍ ହାଇଡ୍ରୋଜେନ ଅଣୁ (H₂) ର ବୟୁତ୍ୱ = 2ଗ୍ରାମ ହାଇଡ୍ରୋଜେନର ଗ୍ରାମ-ଆଣବିକ ବୟୁତ୍ୱ = 2ଗ୍ରାମ ସେହିପରି, ଜଳର ଆଣବିକ ବୟୁତ୍ୱ = 18u ଜଳର ଗ୍ରାମ-ଆଣବିକ ବୟୁତ୍ୱ = 18ଗ୍ରାମ

18ଗ୍ରାମ ଜଳରେ ଏକ ମୋଲ୍ ଜଳଅଣୁ ଅର୍ଥାତ୍ 6.02×10²³ ସଂଖ୍ୟକ ଜଳଅଣୁ ରହିଛି ।

ରାସାୟନିକ ପ୍ରତିକିୟା ପରିପ୍ରେକ୍ଷୀରେ ରସାୟନବିତ୍ମାନଙ୍କ ପାଇଁ ପରମାଣୁ ଓ ଅଣୁର ସଂଖ୍ୟା ଏବଂ ବୟୂତ୍ୱ ଓ ସଂଖ୍ୟାମଧ୍ୟରେ ସଂପର୍କ ଜାଣିବା ଆବଶ୍ୟକ ହୋଇଥାଏ ।

ତେଣୁ ମୋଲ୍ ଏଭଳି ଗୋଟିଏ ଏକକ ଯାହାକୁ ବିଜ୍ଞାନରେ ବିଭିନ୍ନ ପରିପ୍ରେକ୍ଷୀରେ ଭିନ୍ନ ଭିନ୍ନ ମାପକରୂପେ ବ୍ୟବହାର କରାଯାଏ ।

ନିର୍ଦ୍ଦିଷ୍ଟ ଚାପ ଓ ତାପମାତ୍ରାରେ ଏବଂ ଉତ୍ପ୍ରେରକର ଉପସ୍ଥିତିରେ ନାଇଟ୍ରୋଜେନ ଗ୍ୟାସ ଓ ହାଇଡ୍ରୋଜେନ ଗ୍ୟାସ ପ୍ରତିକ୍ରିୟା କରି ଏମୋନିଆ ଗ୍ୟାସ ଉତ୍ପନ୍ନ ହୁଏ । ଏହି ପ୍ରତିକ୍ରିୟାର ସମତୁଲ ସମୀକରଣରୁ ମୋଲ୍ ସୟନ୍ଧୀୟ ନିମ୍ନଲିଖିତ ସୂଚନାମାନ ମିଳେ ।

ପ୍ରତିକ୍ରିୟା : N, + 3H, = 2NH,

ଅଶ୍ରସଂଖ୍ୟା : 1ଅଣୁ 3ଅଣୁ 2ଅଣୁ

ମୋଲ୍ : 1ମୋଲ୍ 3ମୋଲ୍ 2ମୋଲ୍

ଅଣୁସଂଖ୍ୟା : 6.02×10²³ 3×6.02×10²³ 2×6.02×10²³

ସଂଖ୍ୟକ ସଂଖ୍ୟକ ସଂଖ୍ୟକ ଅଣୁ ଅଣୁ ଅଣୁ

ଗ୍ରାମ-ଆଶବିକ

ବୟୂତ୍ୱ : 2×14 3×(1×2) 2×(14+3×1) = 28ଗ୍ରାମ = 6ଗ୍ରାମ = 34ଗ୍ରାମ

ଉଦାହରଣ: 3.1

0.5 ମୋଲ୍ ନାଇଟ୍ରୋଜେନ ଗ୍ୟାସର ବସ୍ତୁତ୍ୱ କଳନା କର ।

ଉଉର :

ନାଇଟ୍ରୋଜେନ୍ ଗ୍ୟାସରେ ନାଇଟ୍ରୋଜେନ ଅଣୁ ଦୂଇପରମାଣୁ ବିଶିଷ୍ଟ ($N_{\scriptscriptstyle 2}$) ।

ନାଇଟ୍ରୋଜେନର ପାରମାଣବିକ ବସ୍ତୁତ୍ୱ = 14

1 ମୋଲ୍ ନାଇଟ୍ରୋଜେନ ଗ୍ୟାସ୍ର ବସ୍ତୁତ୍ୱ

= 14×2 ଗ୍ରାମ = 28ଗ୍ରାମ

ତେଶ୍ର, 0.5 ମୋଲ୍ ନାଇଟ୍ରୋଜେନ ଗ୍ୟାସର ବସ୍ତୁତ୍ୱ

= 28×0.5 ଗ୍ରାମ = 14ଗ୍ରାମ

ଉଦାହରଣ : 3.2

1 ମୋଲ୍ କ୍ୟାଲ୍ସିୟମ କାର୍ବୋନେଟକୁ ଉତ୍ତପ୍ତ କଲେ କେତେ ଗ୍ରାମ ଲେଖାଏଁ ପ୍ରତ୍ୟେକ ଉତ୍ପାଦ ଉତ୍ପନ୍ନ ହେବ ଏବଂ ପ୍ରତ୍ୟେକ ଉତ୍ପାଦର ଅଣ୍ଡସଂଖ୍ୟା କେତେ ?

ଉଉର :

କ୍ୟାଲ୍ସିୟମ କାର୍ବୋନେଟକୁ ଉଉପ୍ତ କଲେ କ୍ୟାଲ୍ସିୟମ ଅକ୍ସାଇଡ଼ ଓ କାର୍ବନଡାଇଅକ୍ସାଇଡ଼ ଉପ୍ନୃ ହୁଏ । ଏହି ରାସାୟନିକ ପ୍ରତିକ୍ରିୟାର ସମତୂଲ ସମୀକରଣଟି ଲେଖି ଉପର ପ୍ରଶ୍ମ ସମାଧାନ କରାଯାଇପାରିବ ।

 $CaCO_3 = CaO + CO_2$

1ମୋଲ୍ 1ମୋଲ୍ 1ମୋଲ୍

ଗ୍ରାମରେ : 40+12+(3×16) 40+16 12+(2×16)

= 100ଗ୍ରାମ = 56ଗ୍ରାମ = 44ଗ୍ରାମ

ଅଣୁସଂଖ୍ୟା :6.02×10²³ 6.02×10²³ 6.02×10²³

100 ଗ୍ରାମ ବା 1 ମୋଲ୍ କ୍ୟାଲସିୟମ କାର୍ବୋନେଟକୁ ଉତ୍ତପ୍ତ କଲେ 56ଗ୍ରାମ ବା 1 ମୋଲ୍ କ୍ୟାଲ୍ସିୟମ ଅକ୍ସାଇଡ଼ ଏବଂ 44ଗ୍ରାମ ବା 1 ମୋଲ୍ କାର୍ବନ ଡ଼ାଇଅକ୍ସାଇଡ଼ ଉତ୍ପନ୍ନ ହେବ । ପ୍ରତ୍ୟେକ ଉତ୍ପାଦର ଅଣୁସଂଖ୍ୟା 6.02×10²³ ।

ଆମେ କ'ଣ ଶିଖିଲେ :

- ବୟୁତ୍ୱ ସଂରକ୍ଷଣ ନିୟମ : ଏକ ରାସାୟନିକ ପ୍ରତିକ୍ରିୟାରେ ବୟୁତ୍ୱର ସୃଷ୍ଟି ନାହିଁ କିୟା ବିନାଶ ନାହିଁ ।
- ସ୍ଥିରାନୁପାତ ବା ନିର୍ଦ୍ଦିଷ୍ଟାନୁପାତ ନିୟମ : ଏକ ରାସାୟନିକ ଯୌଗିକରେ ମୌଳିକଗୁଡ଼ିକ ସର୍ବଦା ଏକ ନିର୍ଦ୍ଦିଷ୍ଟ ବସ୍ତୁତ୍ୱ ଅନୁପାତରେ ରହିଥାଏ ।
- ପରମାଣୁକୁ ଆମେ ଖାଲି ଆଖିରେ ଦେଖି ନ ପାରିଲେ ମଧ୍ୟ, ଆଧୁନିକ ବୈଷୟିକ ଜ୍ଞାନ ଦ୍ୱାରା ଏହାର ସ୍ଥିତି ପ୍ରମାଣିତ ହୋଇପାରିଛି ।
- ପରମାଣୁ ହେଉଛି, ମୌଳିକର କ୍ଷୁଦ୍ରତମ କଣିକା ଯାହା
 ରାସାୟନିକ ପ୍ରତିକ୍ରିୟାରେ ଭାଗ ନିଏ ।
- ଅଣୁ ହେଉଛି, ଏକ ମୌଳିକ କିୟା ଯୌଗିକର ଷୁଦ୍ରତମ କଣିକା ଯାହା ସ୍ୱାଧୀନ ଭାବରେ ରହିବାକୁ ସମର୍ଥ ଏବଂ ସେହି ମୌଳିକ କିୟା ଯୌଗିକର ସମୟ ଧର୍ମ ପ୍ରଦର୍ଶନ କରିଥାଏ ।
- ପ୍ରତ୍ୟେକ ମୌଳିକର ଗୋଟିଏ ନାମ ଓ ଏକମାତ୍ର ରାସାୟନିକ ପ୍ରତୀକ ରହିଥାଏ ।
- ଏକ C-12 ପରମାଣୁର 1/12 ଭାଗ ବୟୃତ୍ୱ ତୁଳନାରେ ଗୋଟିଏ ମୌଳିକର ପରମାଣୁର ବୟୃତ୍ୱ ହେଉଛି ସେହି ମୌଳିକର ପାରମାଣବିକ ବୟୃତ୍ୱ ।

- ଅଣୁରେ ଥିବା ପରମାଣୁ ସଂଖ୍ୟାଦ୍ୱାରା ଅଣୁର ପରମାଣୁକତା ଜଣାଯାଏ ।
- ଚାର୍ଜଯୁକ୍ତ କଣିକାକୁ ଆୟନ କୁହାଯାଏ ।
- ଏକ ଯୌଗିକର ରାସାୟନିକ ସଙ୍କେତ ଏହାର ଗଠନର ପ୍ରତୀକମୂଳକ ଚିତ୍ରଣ ।
- ମୌଳିକର ସଂଯୋଜନ କ୍ଷମତାକୁ ଏହାର ଯୋଜ୍ୟତା କୁହାଯାଏ । ଗୋଟିଏ ମୌଳିକର ଯୋଜ୍ୟତାକୁ ଭିଭିକରି ଅନ୍ୟ ଏକ ମୌଳିକର ଯୋଜ୍ୟତା ନିର୍ଣ୍ଣୟ କରାଯାଏ ।
- ଗୋଟିଏ ଅଣୁରେ ଥିବା ସମୟ ପରମାଣୁର ପାରମାଣବିକ ବୟୁତ୍ୱର ଯୋଗଫଳ ହେଉଛି ଆଣବିକ ବୟୁତ୍ୱ ।
- ଏଭୋଗାଡ୍ରୋ ସ୍ଥିରାଙ୍କ ବା ଏଭୋଗାଡ୍ରୋ ସଂଖ୍ୟା
 6.02×10²³ ସଂଖ୍ୟାକୁ ବୁଝାଏ ।
- ଏକ ମୋଲ୍ = 6.02×10²³ ସଂଖ୍ୟକ କଣିକା ।
- ପଦାର୍ଥର ଏକ ମୋଲ୍ ବୟୃତ୍ୱକୁ ଏହାର ମୋଲାର ବୟୃତ୍ୱ କୁହାଯାଏ ।

ପ୍ରଶ୍ନାବଳୀ

- 1. ରାସାୟନିକ ସଂଯୋଗର ଦୁଇଟି ନିୟମ ଲେଖ ଏବଂ ବୁଝାଅ ।
- 2. ଡାଲ୍ଟନଙ୍କ ପରମାଣୁତତ୍ତ୍ୱର ସ୍ୱୀକାରଗୁଡ଼ିକ ଲେଖ I
- 3, ଗୋଟିଏ ଉଦାହରଣ ସହ ପାରମାଣବିକ ବୟୃତ୍କ କ'ଣ ବୁଝାଅ ।
- 4. ଆଣବିକ ବସ୍ତୁତ୍ୱ କ'ଶ ? ଏକ ଯୌଗିକର ଆଣବିକ ବସ୍ତୁତ୍ୱ କିପରି ନିର୍ଣ୍ଣୟ କରାଯାଇପାରିବ, ଉଦାହରଣ ଦେଇ ଲେଖ ।
- 5. ପଲିଆଟମିକ ଆୟନ କ'ଶ ? ଚାରୋଟି ପଲିଆଟମିକ ଆୟନର ଉଦାହରଣ ଦିଅ ।
- 6. ନିମ୍ନଲିଖିତ ମୌଳିକଗୁଡ଼ିକର ପ୍ରତୀକ ଲେଖ ।(i) ବେରିୟମ୍ (ii) ବେରିଲିୟମ୍ (iii) କ୍ୟାଡ଼୍ମିୟମ୍ (iv) କ୍ରୋମିୟମ୍ (v) ଗୋଲଡ଼୍
- 7. ନିମ୍ନଲିଖିତ ପ୍ରତୀକଗୁଡ଼ିକରୁ ମୌଳିକର ନାମ ଲେଖ । (i) Al (ii) He (iii) Co (iv) Mn (v) Hg (vi) B (vii) P (viii) S (ix) C (x) F
- 8. ରାସାୟନିକ ସଙ୍କେତ ଲେଖିବାର ପ୍ରଣାଳୀ ବୁଝାଅ ।
- 9. ନିମ୍ନଲିଖିତ ଯୌଗିକମାନଙ୍କର ସଙ୍କେତ ଲେଖ । (i) ସୋଜିୟମ ତୋମାଳଜ (ii) ଳିଙ୍କ ସଳଫେଟ
 - (i) ସୋଡ଼ିୟମ ବ୍ରୋମାଇଡ଼ (ii) ଜିଙ୍କ୍ ସଲଫେଟ୍ (iii) ଏମୋନିୟମ କ୍ଲୋରାଇଡ଼ (iv) ବେରିୟମ କାର୍ବୋନେଟ୍ (vi) ଏଲୁମିନିୟମ ଫସ୍ଫେଟ୍
- 10. ପାଞ୍ଚୋଟି ଅଧାତୁର ନାମ ଲେଖି ସେଗୁଡ଼ିକର ପରମାଣୁକତା ଲେଖ ।
- 11. ଏଭୋଗାଡ୍ରୋ ସ୍ଥିରାଙ୍କ କ'ଣ ବୁଝାଅ ।
- 12. ଗ୍ରାମ-ଆଣବିକ ବସ୍ତୁତ୍ୱ କ'ଣ ଗୋଟିଏ ଉଦାହରଣ ସହ ବୁଝାଅ ।

000