About Dataset

A data set of 1,000 most popular movies on IMDB in the last 10 years. The data points included are: Title, Genre, Description, Director, Actors, Year, Runtime, Rating, Votes, Revenue, Metascrore Feel free to tinker with it and derive interesting insights

Download

https://www.kaggle.com/datasets/PromptCloudHQ/imdb-dataa (https://www.kaggle.com/datasets/PromptCloudHQ/imdb-dataa)

In [1]:

```
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings("ignore")
```

In [2]:

data=pd.read_csv("IMDB-Movie-Data.csv")#Read csv file
data.head() #Display Top 5 rows of the dataset

Out[2]:

	Rank	Title	Genre	Description	Director	Actors	Yea
0	1	Guardians of the Galaxy	Action,Adventure,Sci-Fi	A group of intergalactic criminals are forced	James Gunn	Chris Pratt, Vin Diesel, Bradley Cooper, Zoe S	2014
1	2	Prometheus	Adventure,Mystery,Sci-Fi	Following clues to the origin of mankind, a te	Ridley Scott	Noomi Rapace, Logan Marshall- Green, Michael Fa	2012
2	3	Split	Horror,Thriller	Three girls are kidnapped by a man with a diag	M. Night Shyamalan	James McAvoy, Anya Taylor-Joy, Haley Lu Richar	2016
3	4	Sing	Animation,Comedy,Family	In a city of humanoid animals, a hustling thea	Christophe Lourdelet	Matthew McConaughey,Reese Witherspoon, Seth Ma	2016
4	5	Suicide Squad	Action,Adventure,Fantasy	A secret government agency recruits some of th	David Ayer	Will Smith, Jared Leto, Margot Robbie, Viola D	2016
4							•

In [3]:

data.tail() #Check Last 5 rows of the dataset

Out[3]:

	Rank	Title	Genre	Description	Director	Actors	Year	Run (Minı
995	996	Secret in Their Eyes	Crime,Drama,Mystery	A tight-knit team of rising investigators, alo	Billy Ray	Chiwetel Ejiofor, Nicole Kidman, Julia Roberts	2015	
996	997	Hostel: Part II	Horror	Three American college students studying abroa	Eli Roth	Lauren German, Heather Matarazzo, Bijou Philli	2007	
997	998	Step Up 2: The Streets	Drama,Music,Romance	Romantic sparks occur between two dance studen	Jon M. Chu	Robert Hoffman, Briana Evigan, Cassie Ventura,	2008	
998	999	Search Party	Adventure,Comedy	A pair of friends embark on a mission to reuni	Scot Armstrong	Adam Pally, T.J. Miller, Thomas Middleditch,Sh	2014	
999	1000	Nine Lives	Comedy,Family,Fantasy	A stuffy businessman finds himself trapped ins	Barry Sonnenfeld	Kevin Spacey, Jennifer Garner, Robbie Amell,Ch	2016	
4								•

In [4]:

data.shape #Shape of our dataset

Out[4]:

(1000, 12)

In [5]:

```
data.isnull().sum() #Any null value in our dataset
```

Out[5]:

dtype: int64

Rank		0
Title		0
Genre		0
Descript	tion	0
Director	n	0
Actors		0
Year		0
Runtime	(Minutes)	0
Rating		0
Votes		0
Revenue	(Millions)	128
Metascor	re	64

localhost:8888/notebooks/Movie analysis project.ipynb

In [6]:

data2=data.fillna(value=1)
data2

Out[6]:

	Rank	Title	Genre	Description	Director	Actors	١
0	1	Guardians of the Galaxy	Action,Adventure,Sci-Fi	A group of intergalactic criminals are forced	James Gunn	Chris Pratt, Vin Diesel, Bradley Cooper, Zoe S	2
1	2	Prometheus	Adventure,Mystery,Sci-Fi	Following clues to the origin of mankind, a te	Ridley Scott	Noomi Rapace, Logan Marshall- Green, Michael Fa	2
2	3	Split	Horror,Thriller	Three girls are kidnapped by a man with a diag	M. Night Shyamalan	James McAvoy, Anya Taylor-Joy, Haley Lu Richar	2
3	4	Sing	Animation,Comedy,Family	In a city of humanoid animals, a hustling thea	Christophe Lourdelet	Matthew McConaughey,Reese Witherspoon, Seth Ma	2
4	5	Suicide Squad	Action,Adventure,Fantasy	A secret government agency recruits some of th	David Ayer	Will Smith, Jared Leto, Margot Robbie, Viola D	2
995	996	Secret in Their Eyes	Crime,Drama,Mystery	A tight-knit team of rising investigators, alo	Billy Ray	Chiwetel Ejiofor, Nicole Kidman, Julia Roberts	2
996	997	Hostel: Part II	Horror	Three American college students studying abroa	Eli Roth	Lauren German, Heather Matarazzo, Bijou Philli	2
997	998	Step Up 2: The Streets	Drama,Music,Romance	Romantic sparks occur between two dance studen	Jon M. Chu	Robert Hoffman, Briana Evigan, Cassie Ventura,	2
998	999	Search Party	Adventure,Comedy	A pair of friends embark on a mission to reuni	Scot Armstrong	Adam Pally, T.J. Miller, Thomas Middleditch,Sh	2
999	1000	Nine Lives	Comedy,Family,Fantasy	A stuffy businessman finds himself trapped ins	Barry Sonnenfeld	Kevin Spacey, Jennifer Garner, Robbie Amell,Ch	2

In [7]:

data3=data.fillna(method="bfill",inplace=True)
data3

In [8]:

data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	Rank	1000 non-null	int64
1	Title	1000 non-null	object
2	Genre	1000 non-null	object
3	Description	1000 non-null	object
4	Director	1000 non-null	object
5	Actors	1000 non-null	object
6	Year	1000 non-null	int64
7	Runtime (Minutes)	1000 non-null	int64
8	Rating	1000 non-null	float64
9	Votes	1000 non-null	int64
10	Revenue (Millions)	1000 non-null	float64
11	Metascore	1000 non-null	float64
d+vn	as: float64(3) int6	A(A) object(5)	

dtypes: float64(3), int64(4), object(5)

memory usage: 93.9+ KB

In [9]:

data.describe()

Out[9]:

	Rank	Year	Runtime (Minutes)	Rating	Votes	Revenue (Millions)	Metas
count	1000.000000	1000.000000	1000.000000	1000.000000	1.000000e+03	1000.000000	1000.00
mean	500.500000	2012.783000	113.172000	6.723200	1.698083e+05	81.295100	58.97
std	288.819436	3.205962	18.810908	0.945429	1.887626e+05	104.038645	17.05
min	1.000000	2006.000000	66.000000	1.900000	6.100000e+01	0.000000	11.00
25%	250.750000	2010.000000	100.000000	6.200000	3.630900e+04	12.467500	47.00
50%	500.500000	2014.000000	111.000000	6.800000	1.107990e+05	47.240000	60.00
75%	750.250000	2016.000000	123.000000	7.400000	2.399098e+05	110.520000	72.00
max	1000.000000	2016.000000	191.000000	9.000000	1.791916e+06	936.630000	100.00
4							•

```
In [10]:
```

```
data.corr()
```

Out[10]:

	Rank	Year	Runtime (Minutes)	Rating	Votes	Revenue (Millions)	Metascore
Rank	1.000000	-0.261605	-0.221739	-0.219555	-0.283876	-0.281174	-0.197986
Year	-0.261605	1.000000	-0.164900	-0.211219	-0.411904	-0.116304	-0.061384
Runtime (Minutes)	-0.221739	-0.164900	1.000000	0.392214	0.407062	0.246862	0.185508
Rating	-0.219555	-0.211219	0.392214	1.000000	0.511537	0.175988	0.576603
Votes	-0.283876	-0.411904	0.407062	0.511537	1.000000	0.573607	0.307505
Revenue (Millions)	-0.281174	-0.116304	0.246862	0.175988	0.573607	1.000000	0.129089
Metascore	-0.197986	-0.061384	0.185508	0.576603	0.307505	0.129089	1.000000

In [11]:

```
from sklearn.preprocessing import LabelEncoder
```

In [12]:

```
lb=LabelEncoder()
lb
```

Out[12]:

LabelEncoder()

In [13]:

```
data["Title"]=lb.fit_transform(data['Title'])
data["Genre"]=lb.fit_transform(data['Genre'])
data["Title"]=lb.fit_transform(data['Title'])
data["Director"]=lb.fit_transform(data['Director'])
data["Actors"]=lb.fit_transform(data['Actors'])
data["Rating"]=lb.fit_transform(data['Rating'])
```

In [14]:

```
data.columns
```

```
Out[14]:
```

In [15]:

data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype		
0	Rank	1000 non-null	int64		
1	Title	1000 non-null	int64		
2	Genre	1000 non-null	int32		
3	Description	1000 non-null	object		
4	Director	1000 non-null	int32		
5	Actors	1000 non-null	int32		
6	Year	1000 non-null	int64		
7	Runtime (Minutes)	1000 non-null	int64		
8	Rating	1000 non-null	int64		
9	Votes	1000 non-null	int64		
10	Revenue (Millions)	1000 non-null	float64		
11	Metascore	1000 non-null	float64		
dtyp	es: float64(2), int3	2(3), int64(6),	object(1)		
memory usage: 82.2+ KB					

In [16]:

data.head()

Out[16]:

	Rank	Title	Genre	Description	Director	Actors	Year	Runtime (Minutes)	Rating	Votes	Revenue (Millions)
0	1	287	11	A group of intergalactic criminals are forced	265	184	2014	121	47	757074	333.18
1	2	568	85	Following clues to the origin of mankind, a te	518	736	2012	124	36	485820	126.4€
2	3	655	195	Three girls are kidnapped by a man with a diag	391	418	2016	117	39	157606	138.12
3	4	635	92	In a city of humanoid animals, a hustling thea	105	658	2016	108	38	60545	270.32
4	5	673	7	A secret government agency recruits some of th	136	971	2016	123	28	393727	325.02
4											•

In [17]:

```
data.dropna(axis=0,inplace=True)
```

In [18]:

```
sns.barplot(x='Year',y='Votes',data=data)
plt.title("votes by year")
plt.show()
```


A Movie analysis is reviewing the types of variables it offers to compare to the year and votes. You can use a bar chart to visualize the total votes for each year. When the chart is sorted in ascending order, you can see the highest and lowest values. In 2012 has highest votes and in 2016 has lowest votes.

In [19]:

```
sns.stripplot(y = data['Rating'].head(10), x = data['Year'],data=data)
plt.show()
```


Stripplot is used to show all observations along with some representation of the underlying distribution.

In [20]:

```
sns.heatmap(data.corr(), annot = True, cmap = 'viridis')
plt.show()
```


A heatmap is a graphical representation of numerical data. Create a heat map to visualize areas with the most point features as the hottest. Here we can see that many of variables has 100% accuracy.

In [21]:

```
data_year=data["Year"]
data_revenue=data["Revenue (Millions)"]
plt.bar(data_year,data_revenue,color="pink")
plt.title("Revenue by year")
plt.show()
```


On above bar chart we can see that on year 2016 and 2015 has highest revenue other hand 2007 has lowest revenue.

In [22]:

```
sns.countplot(x="Year",data=data)
plt.title("Number of movies per year")
plt.show()
```


The above count plot helps us to understand that the category which has the most number of movies in 2016.

In [23]:

```
sns.scatterplot(x="Rating",y="Revenue (Millions)",data=data,color="red")# Does Rating affec
plt.show()
```


Scatter plots are used to determine the strength of a relationship between two numeric variables. A public rating has noticed an increase in Revenue. We can see that if rating is increase than Revenue also simultaneously rised.

In [24]:

```
sns.pairplot(data[["Revenue (Millions)", "Rank",]], diag_kind="auto")
plt.show()
```


The default pairs plot by itself often gives us valuable insights. We see that Rank and Revenue are positively correlated showing that Rank has increased directly Revenue also rised.

In [25]:

```
from sklearn import linear_model
```

In [26]:

```
from sklearn.linear_model import LinearRegression
```

In [27]:

```
lr=LinearRegression()
```

In [28]:

```
x=data[["Rank"]]
y=data[["Revenue (Millions)"]]
```

In [29]:

```
from sklearn.model_selection import train_test_split
```

```
In [30]:
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=0)
In [31]:
x_train.head()
Out[31]:
     Rank
      106
 105
  68
       69
 479
      480
 399
      400
 434
      435
In [32]:
lr.fit(x_train,y_train)
Out[32]:
LinearRegression()
In [33]:
y_pred=lr.predict(x_test)
In [34]:
lr.score(x_train,y_train)
Out[34]:
0.08015876065570848
In [35]:
print("Coefficient: \n", lr.coef_)
Coefficient:
 [[-0.09956305]]
In [36]:
print("Intercept :\n",lr.intercept_)
Intercept :
 [129.9446301]
```

```
In [37]:
lr.score(y_test, y_pred)
Out[37]:
-2.6978713157382135
In [38]:
from sklearn.metrics import mean_absolute_error
from sklearn.metrics import mean_squared_error
from sklearn.metrics import r2_score
In [39]:
mean_absolute_error(y_test, y_pred)
Out[39]:
69.2409777608766
In [40]:
mean_squared_error(y_test, y_pred)
Out[40]:
11175.122946057541
In [41]:
np.sqrt(mean_squared_error(y_test, y_pred))
Out[41]:
105.71245407262828
In [42]:
r2_score(y_test, y_pred)
Out[42]:
```

0.0764065782166029

```
In [43]:
a={"Actual value":x_train,"predicted value":y_pred}
Out[43]:
{'Actual value':
                       Rank
 105
       106
 68
        69
 479
       480
 399
       400
434
       435
 . .
       . . .
835
       836
 192
       193
 629
       630
 559
       560
 684
       685
 [700 rows x 1 columns],
 'predicted value': array([[ 30.97896277],
        [ 44.32041088],
        [100.17527947],
```

Multi linear regression

Γ 74.786702841.

```
In [44]:

x=data[["Rank","Votes","Genre","Director","Rating"]]
y=data[["Revenue (Millions)"]]
```

```
In [45]:
```

```
from sklearn.model_selection import train_test_split
```

```
In [46]:
```

```
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=0)
```

In [47]:

```
x_train.head()
```

Out[47]:

	Rank	Votes	Genre	Director	Rating
105	106	115546	145	147	43
68	69	291	149	529	41
479	480	41642	185	351	33
399	400	113686	112	589	27
434	435	223	26	116	30

```
In [48]:
lr.fit(x_train,y_train)
Out[48]:
LinearRegression()
In [49]:
y_pred=lr.predict(x_test)
In [50]:
lr.score(x_train,y_train)
Out[50]:
0.3392838717599991
In [51]:
print("Coefficient: \n", lr.coef_)
Coefficient:
 [[-5.43594907e-02 2.96269065e-04 -2.18711585e-01 4.71542953e-03
  -1.82147912e+00]]
In [52]:
print("Intercept :\n",lr.intercept_)
Intercept:
 [138.35418115]
In [53]:
from sklearn.metrics import mean_absolute_error
from sklearn.metrics import mean_squared_error
from sklearn.metrics import r2 score
In [54]:
mean_absolute_error(y_test, y_pred)
Out[54]:
49.22025475683878
In [55]:
mean_squared_error(y_test, y_pred)
Out[55]:
6386.541757634827
```

```
In [56]:
np.sqrt(mean_squared_error(y_test, y_pred))
Out[56]:
79.9158417188659
In [57]:
r2_score(y_test, y_pred)
Out[57]:
0.4721697484878724
In [ ]:
```

Decision Tree

```
In [58]:

x=data[["Rank","Votes"]]
y=data[["Revenue (Millions)"]]
```

```
In [59]:
```

```
from sklearn.model_selection import train_test_split
```

```
In [60]:
```

```
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=0)
```

```
In [61]:
```

```
x_train.head()
```

Out[61]:

	Rank	Votes
105	106	115546
68	69	291
479	480	41642
399	400	113686
434	435	223

```
In [62]:
from sklearn.tree import DecisionTreeRegressor
reg = DecisionTreeRegressor()
reg.fit(x_train, y_train)
Out[62]:
```

In [63]:

DecisionTreeRegressor()

```
y_train_pred = reg.predict(x_train)
y_train_pred
```

```
Out[63]:

array([2.6860e+01, 1.0000e-02, 6.2880e+01, 1.1371e+02, 3.0000e-02, 6.7240e+01, 2.5030e+01, 3.0000e-02, 3.1580e+01, 7.1590e+01, 8.3810e+01, 2.0007e+02, 7.1900e+00, 7.2200e+00, 1.4440e+01, 3.3300e+00, 4.0250e+01, 3.6380e+01, 4.0070e+01, 9.3663e+02, 1.8019e+02, 4.7310e+01, 1.6380e+01, 1.3300e+00, 2.9102e+02, 6.2328e+02, 1.5880e+02, 2.7000e+00, 7.9000e-01, 3.9000e+00,
```

6.2328e+02, 1.5880e+02, 2.7000e+00, 7.9000e-01, 3.9000e+00, 1.3600e+00, 3.4900e+01, 5.3080e+01, 2.5980e+01, 3.2460e+01, 2.3490e+02, 4.4813e+02, 5.2880e+01, 5.8880e+01, 7.7600e+00, 9.5330e+01, 6.2880e+01, 7.1900e+01, 5.3217e+02, 8.4240e+01, 1.2487e+02, 3.8560e+01, 3.4400e+00, 1.7740e+01, 1.5520e+01, 3.5645e+02, 1.0100e+01, 1.0147e+02, 2.2490e+01, 9.5000e+01, 3.1450e+01, 2.7360e+01, 5.8720e+01, 5.0000e-02, 5.6440e+01,

7.5590e+01, 1.6216e+02, 1.7200e+00, 1.0000e-01, 1.2487e+02, 5.1000e-01, 9.0000e-02, 2.0320e+01, 2.5511e+02, 9.4000e+00,

7.0000e-02, 3.2280e+01, 3.1060e+01, 2.2000e-01, 1.3090e+01, 1.2507e+02, 3.7370e+01, 1.2100e+00, 6.5070e+01, 4.2303e+02, 1.6970e+01, 3.8350e+01, 9.1120e+01, 1.6000e-01, 1.1000e-01,

7.9000e-01. 3.6800e+00. 5.2000e+00. 4.7700e+01. 1.7659e+02.

In [64]:

```
y_pred=reg.predict(x_test)
```

In [65]:

```
reg.score(x_train,y_train)
```

Out[65]:

1.0

In [66]:

```
print("Coefficient: \n",lr.coef_)
```

Coefficient:

```
[[-5.43594907e-02 2.96269065e-04 -2.18711585e-01 4.71542953e-03 -1.82147912e+00]]
```

```
In [67]:
print("Intercept :\n",lr.intercept_)
Intercept :
 [138.35418115]
In [68]:
from sklearn.metrics import mean_absolute_error
from sklearn.metrics import mean_squared_error
from sklearn.metrics import r2_score
In [69]:
mean_absolute_error(y_test, y_pred)
Out[69]:
73.6444
In [70]:
mean_squared_error(y_test, y_pred)
Out[70]:
14304.77388466665
In [71]:
np.sqrt(mean_squared_error(y_test, y_pred))
Out[71]:
119.60256637993461
In [72]:
r2_score(y_test, y_pred)
Out[72]:
```

-0.18225053305906003

```
In [73]:
```

```
a={"Actual value":x_train,"predicted value":y_pred}
а
Out[73]:
{'Actual value':
                      Rank
                              Votes
 105
       106 115546
 68
        69
               291
 479
       480
             41642
 399
       400 113686
 434
       435
               223
 . .
       . . .
               . . .
 835
       836
             38804
 192
       193 268282
 629
       630
             74886
 559
       560 115355
 684
       685 245144
 [700 rows x 2 columns],
 'predicted value': array([1.4821e+02, 2.3210e+01, 7.1000e+00, 7.7000e+00,
5.7370e+01,
        3.0052e+02, 6.5000e+00, 3.0436e+02, 8.0020e+01, 2.0300e+01,
        1.1280e+01. 3.8320e+01. 3.4900e+01. 6.7240e+01. 1.3880e+02.
```

conclusion

The simple linear regression has best r2 score i.e.76% We've seen a nice range of different movies from different groups in this notebook, with Pulp Fiction and Schindler's List coming out on top overall. Of course there is so much more exploring that could be done - exploring more genres, specific countries etc. but this is where I'll end this notebook.

Thank you so much for reading. Hope you enjoyed!