2.3.1. Division Algorithm

Theorem 2.3. For any given integers a and b with b > 0, there exist unique integers q and r such that

Proof. by Division allow

$$a = bq + r$$
, where $0 \le r < b$.

Proof. Let us consider an infinite sequence of multiples of b as follows. 9w (1) mod nedt . 1 If we take $q_1 = q_2$ $q_3 = r$ and c = 1

$$....$$
 $-3b$, $-2b$, $-b$, 0 , b , $2b$, $3b$, $...$, qb , $...$

Then for any integer a, either a = bq or a lies between two consecutive multiples say, bq and b(q+1).

Thus we have $bq \le a < b(q+1)$ for some integer q. and ex-1 the

This implies $0 \le a - bq < b$.

Let a - bq = r, Then a = bq + r and $0 \le r < b$.

This proves the existence part of the theorem.

Now let us prove uniqueness of q and r. Let us assume that q and r are not unique and there exist two integers q' and r' such that Also if we put on = q + 1, m = b

$$q' \neq q$$
, $r' \neq r$ and $a = bq' + r'$, $0 \leq r' < b$.

 $N_{0W} a = bq + r$ and $a = bq' + r', 0 \le r, r' < b'$

Subtracting we get
$$r'-r=b(q-q')$$
. (1)

Also,
$$|r'-r| < b$$
.

Also, |r'-r| < b. For |r'-r| < b.

As q-q' is an integer, it follows that $b\mid (r'-r)$. N_{0W} , if $r'-r \neq 0$, then $b \mid (r'-r) \Rightarrow b \leq |r'-r|$, which Contradicts that |r'-r| < b.

Therefore, $r'-r=0 \Rightarrow r=r'$. Then from (1) q'=q. $H_{ence} q$ and r are unique. Front. Follows Num Theorem 2.

This completes the proof.

Remark. The above theorem is known as $Division \ Algorith_{\eta_{0}}$ **Theorem 2.4.** For any two integers a and b with b>0, there exist unique integers q_1 and r_1 such that $a = bq_1 + cr_1$ where $0 \le r_1 < \frac{b}{2}$, $c = \pm 1$. **Proof.** By Division algorithm, we have for any integers a_{and} b with b > 0, there exist unique $q, r \in \mathbb{Z}$ such that $a = bq + r, \ 0 \le r < b.$ Now we consider the following cases: Case 1: $r < \frac{b}{2}$ Proof. Let us consider an infinite sec If we take $q_1 = q$, $r_1 = r$ and c = 1, then from (1) we get, $a = bq_1 + cr_1$, $0 \le r_1 < \frac{b}{2}$ and c = 1. Case 2: r > b/2In this case, $0 < b - r < \frac{b}{2}$. If we take $q_1 = q + 1$, $r_1 = b - r$ and c = -1 then from (1) we get, $a = bq_1 + cr_1, 0 \le r_1 \le b/2$ and $c = -1, 0 \le r_1 \le b/2$ Case 3: $r = \frac{b}{2}$ never the existence part of the through and severe will If we take $q_1 = q$, $r_1 = r$ and c = 1, then from (1), we get $a = bq_1 + cr_1$, $r_1 = b/2$, c = 1. Also if we put $q_1 = q + 1$, $r_1 = b - r$ and c = -1, then from (1) we get, a = b(q+1) - (b-r)or, $a = bq_1 + cr_1$, $r = \frac{b}{2}$, c = -1Thus in this case (i.e., when $r = \frac{b}{2}$), q_1 and r_1 are not unique Hence for any two integers a and b (> 0), $\exists q_1, r_1 \in \mathbb{Z}$ such that $a = bq_1 + cr_1$, where $0 \le r_1 < \frac{b}{2}$, $c = \pm 1$. Corollary 1. If a and b be two integers with b > 0, then there exist integers q and r such that a = bq + r, $0 \le |r| \le \frac{b}{2}$. Proof. Follows from Theorem 2.4.

Tourig and estalound

Remainder in Corollary 1 is called minimal remainder whose Note 2. formal definition is as follows.

$Minimal\ remainder$

When an integer a is divided by an integer $b \neq 0$ then the remainder r obtained is called a minimal remainder if r satisfies the following conditions:

a = bq + r, $0 \le |r| < \frac{b}{2}$, q being an integer. It is denoted by R. (1) which the B. w. cet from (1).

When $r < \frac{b}{2}$, the minimal remainder is R = r;

when $r > \frac{b}{2}$, the minimal remainder is R = r - b;

(ii) When b = 1, we get from (i) when $r = \frac{b}{2}$, the minimal remainder is $R = \frac{b}{2}$.

For illustration see Problem 6 of Illustrative Examples 1.

Theorem 2.5. For any two integers a and b with $b \neq 0$, there exist unique integers q and r such that a = bq + r, $0 \le r < |b|$.

Proof. By Division algorithm, we have for any two integers a and b with b > 0, there exist unique integers q and r such that a = bq + r, $0 \le r < b$

So it is enough to consider the case where b < 0.

If b < 0 then |b| > 0. By the Division algorithm there exist unique integers q_1 and r such that

$$a = |b| \hat{q}_1 + r$$
, $0 \le r < |b|$

Or,
$$a = -bq_1 + r$$
, $0 \le r < |b|$

Taking $q = -q_1$, we get $a = b\vec{q} + r$, $0 \le r < |b|$. Hence proved.

these manufers are of the l Theorem 2.6. Every integer is of the form

(i) 3k or $3k \pm 1$.

- (ii) 4k or $4k \pm 1$ or $4k \pm 2$.
 - (iii) 5k or $5k \pm 1$ or $5k \pm 2$.
 - (iv) 6k or $6k \pm 1$ or $6k \pm 2$ or $6k \pm 3$.

for some $k \in \mathbb{Z}$.

Proof. From Corollary 1 we can infer that any integer a is of the form

$$a = bk \pm r$$
, $b, k, r \in \mathbb{Z}$ and $0 \le |r| \le \frac{b}{2}$ (1)

(i) When b=3, we get from (1),

$$a = 3k \pm r$$
 where $0 \le |r| \le \frac{3}{2} = 1.5 \implies r = 0, \pm 1$.

Therefore, a = 3k or $3k \pm 1$.

(ii) When b = 4, we get from (1)

$$a = 4k \pm r$$
 where $0 \le |r| \le 2 \implies r = 0, \pm 1, \pm 2$.

Therefore, a = 4k or $4k \pm 1$ or $4k \pm 2$.

(iii) When b = 5, we have from (1)

$$a = 5k \pm r$$
, $0 \le |r| \le \frac{5}{2} = 2.5 \implies r = 0, \pm 1, \pm 2$.

Therefore, a = 5k or, $5k \pm 1$ or $5k \pm 2$.

(iv) When b = 6, we have from (1),

$$a = 6k \pm r, \quad 0 \le |r| \le \frac{6}{2} = 3 \implies r = 0, \pm 1, \pm 2, \pm 3.$$
Therefore, $a = 6k$

Therefore, a = 6k or $6k \pm 1$ or $6k \pm 2$ or $6k \pm 3$. Hence proved.

Illustrative Examples 1

Problem 1. Show that every square integer is of the form 5k or $5k \pm 1$ for some $k \in \mathbb{Z}$.

Solution. From Theorem 2.6 (iii) we know that every integer is of the form 5p or $5p \pm 1$ or $5p \pm 2$ for some $p \in \mathbb{Z}$. Square of these numbers are of the form:

$$(5p)^2 = 5 \times (5p^2) = 5k$$
, where $k = 5p^2$ is a positive integer.

$$(5p \pm 1)^2 = 25p^2 \pm 10p + 1 = 5(5p^2 \pm 2p) + 1$$

= $5k + 1$ where $k(=5p^2 \pm 2p)$ is a positive integer.
 $(5p \pm 2)^2 = 25p^2 \pm 20p + 4$

 $(5p \pm 2)^{\circ} = 25p^{\circ} \pm 20p^{\circ}$ = $5(5p^2 \pm 4p + 1) - 1$

=5k-1 where $k\left(=5p^2\pm4p+1\right)$ is a positive integer. Thus square of every integer is of the form 5k or $5k\pm1$ for some $k\in\mathbb{Z}$.

Problem 2. Show that cube of any integer is of the form 9p, 9p + 1, 9p + 8 (or of the form 9p or $9p \pm 1$).

Solution. From Theorem 2.6 (i) we know that every integer is of the form 3m, $3m \pm 1$, $m \in \mathbb{Z}$. Cube of these numbers are of the form:

$$(3m)^3 = 9.3m^2 = 9p \text{ where } p(=3m^2) \in \mathbb{Z}.$$

$$(3m+1)^3 = 27m^3 + 27m^2 + 9m + 1$$

$$= 9(3m^3 + 3m^2 + 3m) + 1$$

$$= 9p + 1 \text{ where } p(=3m^3 + 3m^2 + m) \in \mathbb{Z}.$$

$$(3m-1)^3 = 27m^3 - 27m^2 + 9m - 9 + 8$$

$$= 9(3m^3 - 3m^2 + m - 1) + 8$$

$$= 9p + 8 \text{ where } p(=3m^3 - 3m^2 + m - 1) \in \mathbb{Z}.$$
Also $(3m-1)^3 = 9(3m^3 - 3m^2 + m) - 1.$

$$= 9p - 1 \text{ where } p(=3m^3 - 3m^2 + m) \in \mathbb{Z}.$$
Hence cube of any integer is of the form $9p$ or $9p + 1$ or $9p + 8$ (or of the form $9p$ or $9p \pm 1$). (Proved)

Problem 3. Show that every odd integer is any one of th_{θ} forms:

(i)
$$2p-1$$
 (ii) $2p+1$ (iii) $4p\pm 1$ (iv) $\pm (4p+1)$ where $p\in \mathbb{Z}$.

Solution. Since 2p is an even integer, therefore, 2p-1 and 2p+1 are odd integers.

Also, by Theorem 2.6 (ii), we know that every integer has one of the forms 4p, $(4p \pm 1)$, $(4p \pm 2)$ of which 4p and $4p \pm 2$ are even integers, p being an integer. Therefore, $(4p \pm 1)$ are odd integers.

Now,
$$4p - 1 = -(-4p + 1) = -[4(-p) + 1].$$

 $\therefore \pm (4p+1)$ are odd integers. Thus every odd integer is of the

form
$$2p - 1$$
, or $2p + 1$ or $4p \pm 1$ or, $\pm (4p + 1)$. (Proved)

Problem 4. Show that one of every three consecutive integers is divisible by 3.

Solution. Let a, a + 1, a + 2 be any three consecutive integers. Then by Theorem 2.6 (i), a is of the form

$$3p, 3p + 1, 3p - 1, p \in \mathbb{Z}$$
.

If a = 3p then a is divisible by 3.

If a = 3p+1 then a + 2 = 3p + 1 + 2 = 3(p+1) is divisible by 3.

If a = 3p-1 then a + 1 = 3p - 1 + 1 = 3p is divisible by 3.

Thus one of every three consecutive integers is divisible by 3. (Proved)

+ (1 - 18 + 5m2 - 5mg) 12

Problem 5. Prove that the product of any three consecutive integers is divisible by 3!.

Solution. Let a, a + 1 and a + 2 be any three consecutive positive integers. We shall prove the result by the Principle of Mathematical Induction.

Let us consider the proposition P(a): "The product of a, a+1, a+2 is divisible by 3! for $a \in \mathbb{Z}^+$."

Inductive base: For a = 1, which is divisible by 3!. Hence a = 1, a =

Inductive hypothesis: Let P(n) be true for some $n \in \mathbb{Z}^+$. Then n(n+1)(n+2) is divisible by 3! or by 6.

$$n(n+1)(n+2) = 6p \text{ for some } p \in \mathbb{Z}^{+0}$$

Induction step: We have,

$$(n+1)(n+2)(n+3) = n(n+1)(n+2) + 3(n+1)(n+2)$$

Now, n+1 and n+2 are two consecutive natural numbers so that their product is even.

$$(n+1)(n+2)(n+3) = 6p + 6q, \ p, \ q \in \mathbb{Z}^+$$

$$= 6(p+q) = (3!)(p+q) \text{ which is divisible by 3!}.$$

 $p+q\in\mathbb{Z}^+$, it follows that P(n+1) is true whenever P(n) is true.

But P(1) is true, Hence by the Principle of Mathematical Induction, P(a) is true for all positive integral values of a.

a(a+1)(a+2) is divisible by 3! for all $a \in \mathbb{Z}^+$.

Since for any integers x, y we have $x|y \Leftrightarrow x|(-y)$, therefore,

$$a(a+1)(a+2)$$
 is divisible by 3! for all

This complete a(a+1)(a+2) is divisible by 3! for all $a \in \mathbb{Z}$.

This completes the proof of the given result.

Problem 6. Find the minimal remainder of 416 with respect. (i) 37 (ii) 42.

Solution. We know that if an integer a is divided by an b(x,0)

 $^{b}(\neq 0)$ then the remainder r obtained is called a minimal $^{e_{mainder}}$ if r satisfies the following condition. (6.50 diagram)

$$a = bq + r, \ q, r \in \mathbb{Z}, \ 0 \le |r| < \frac{b}{2} \ .$$

Also, when $r < \frac{b}{2}$, the minimal remainder is R = r;

when r > b/2, the minimal remainder is R = r - b;

and when $r = \frac{b}{2}$, the minimal remainder is $R = \frac{b}{2}$.

(i) Here a = 416, b = 37. Now, $416 = 37 \times 11 + 9$. Since the remainder $9 < \frac{37}{2}$, the minimal remainder of 416 w.r.t. 37 is

$$R=9$$
: $(Ans.)$ $\varepsilon + (\varepsilon + s)$ $(1+s)$ $\varepsilon = (\varepsilon + s)$

(ii) Here a = 416, b = 42.

Now, $416 = 42 \times 9 + 38$. Since the remainder $38 > \frac{42}{2}$, the

minimal remainder of 416 w.r.t. 42 is

$$R = 38 - 42 = -4$$
. (Ans.)