例一: 钢条切割

每段长度都有一个价格,怎样切割总收益最大

2ⁿ-1种切割方案都要考虑,但可利用小结果

算法1: 自顶向下

DAG

```
1 CutRodRec(prices,n):
2    if (n==0)
3        return 0
4    r = -INF
5    for (i=1 to n)
6    r = Max(r, prices[i]+CutRodRec(prices,n-i))
7    return r
```

• 如果要存储每个n的最优方案r[i]

```
1 CutRodRecMemAux(prices,r,n):
     for (i=0 to n)
       r[i] = -INF
    if (r[n]>0)
4
       return r[n]
5
      if (n==0)
6
       q = 0
7
      else
8
       q = -INF
9
       for (i=1 to n)
10
          q = Max(q, prices[i]+CutRodRecAux(prices,r,n-i))
11
      r[n] = q//只有记录作用,未重复调用
12
      return q
13
```

• Θ (nn)

算法2: 自底向上

Floyd-Warshall也是自底向上

```
1 PrintOpt(cuts,n):
2 while (n>0)
3     Print cuts[n]
4     n = n - cuts[n]
```

```
1 CutRodIter(prices,n):
2     r[0] = 0
3     for (i=1 to n)
4         q = -INF
5         for (j=1 to i)
6         q = Max(q, prices[j] + r[i-j])//调用之前已赋值
7         cuts[i]=j
8         r[i] = q
9     return r[n]
```

• Θ (nn)

例二:矩阵乘法

n个矩阵相乘找到最小代价 Ai of size pi-1×pi

• 最优子结构

只有这个例子是中分方法

```
Let m[i, j] be min cost for computing A_i A_{i+1} \cdots A_j

m[i, j] = \min_{i \le k < j} \left( m[i, k] + m[k+1, j] + p_{i-1} p_k p_j \right)
```

```
1 MatrixChainDP(A1, A2,...,An):
2 for (i=1 to n)
3  m[i,i] = 0
4 for (l=2 to n)
```

```
for (i=1 to n-l+1)

j = i+l-1

m[i,j] = INF

for (k=i to j-1)

cost = m[i,k] + m[k+1,j] + pi-1*pk*pj//从小规模开始,重复利用

if (cost < m[i,j])

m[i,j] = cost

s[i,j] = k

return <m,s> //m是代价,s是拆分点
```

- O(n^3)
- 空间O (nn)

动态规划原理

步骤

1、解析问题结构

Characterize the structure of solution

2、递归算式

Recursively define the value of an optimal solution.

3、解决子问题

Compute the value of an optimal solution.

4、最优解

Construct an optimal solution.

时间

- 子问题总数*每种子问题选择=时间
- 自底向上

先找到子问题最优解, 然后求原问题最优解

贪心&动态规划

- 贪心先做选择
- 动态规划先计算所有子问题最优解,然后以递归式形式合并子问题

重叠子问题

- 问题的递归算法总是重复处理相同的子问题
 - 处理的不同, 那是分治法
- 所以要对每个子问题的解决方法进行记录

例三:字符串相似度

防错误输入法 给定字符串A[1···m] B[1···n]

- 按最后一列情况分三类
- (-,B[n]): edit distance of $A[1\cdots m]$ and $B[1\cdots (n-1)]$
- (A[m], B[n]): edit distance of $A[1\cdots(m-1)]$ and $B[1\cdots(n-1)]$
- (A[m], -): edit distance of $A[1 \cdots (m-1)]$ and $B[1 \cdots n]$

$$dist(i,j) = \begin{cases} i & \text{if } j = 0 \\ j & \text{if } i = 0 \end{cases}$$

$$dist(i,j-1) + 1$$

$$dist(i-1,j) + 1$$

$$dist(i-1,j-1) + I[A[i] = B[j]]$$
 otherwise

```
1 EditDistDP(A[1...m],B[1...n]):
2 for (i=0 to m)
3    dist[i,0] = i
4 for (j=0 to n)
5    dist[0,j] = j
6 for (i=1 to m)
7    for (j=1 to n)
8    delDist = dist[i-1,j] + 1
9        insDist = dist[i,j-1] + 1
10        subDist = dist[i-1,j-1] + Diff(A[i],B[j])
11    dist[i,j] = Min(delDist,insDist,subDist)
12    return dist
```

例四: 最大独立集MaxIS

已知树的根, 求包含最多不相邻的点

树:直系亲属不同时存在

• 最优子结构: 大图的MIS包含子图的MIS

如果要了父亲,那么爷爷和儿子都不能要了

```
Let mis(T_u,1) be size of MaxIS of T_u, s.t. u in the MaxIS. Let mis(T_u,0) be size of MaxIS of T_u, s.t. u NOT in the MaxIS. mis(T_u,1)=1+\sum_{v \text{ is a child of } u}mis(T_v,0) mis(T_u,0)=\sum_{v \text{ is a child of } u}mis(T_v) mis(T_u)=\max\{mis(T_u,0),mis(T_u,1)\}
```

```
1 MaxIsDP(u):
2 mis1 = 1,mis0 = 0
3 for (each child v of u)
4  mis1 = mis1 + MaxISDP(v).mis0
5  mis0 = mis0 + MaxISDP(v).mis
6 mis = Max(mis0,mis1)
7 return <mis,mis0,mis1>
```

O(V+E)=O(V)

例五: 子集合求和

在X[1,n]中找任意数的和为T

- 原始递归O(2^n)
- 按包含第一个元素分类

If there is a solution S, either X[1] is in it or not. If $X[1] \in S$, then there is a solution to instance " $X[2 \cdots n], T - X[1]$ If $X[1] \notin S$, then there is a solution to instance " $X[2 \cdots n], T$ ".

Let ss(i,t) = true iff instance " $X[i \cdots n]$, t" has a solution.

$$ss(i,t) = \begin{cases} true & \text{if } t = 0\\ ss(i+1,t) & \text{if } t < X[i]\\ false & \text{if } i > n\\ ss(i+1,t) \lor ss(i+1,t-X[i]) & \text{otherwise} \end{cases}$$

• n行T列都要遍历到

```
1 SubsetSumDP(X,T):
2 ss[n,0] = True
3 for (t=1 to T)//先筛一遍X[n]的具体值
4 ss[n,t] = (X[n]==t)?True:False
5 for (i=n-1 downto 1)
6 ss[i,0] = True//t=0初始化
7 for (t=1 to X[i]-1)
8 ss[i,t] = ss[i+1,t]
9 for (t=X[i] to T)
10 ss[i,t] = Or( ss[i+1,t], ss[i+1,t-X[i]] )
11 return ss[1,T]
```

O(nT)

实际未必比暴力算法快 都不是多项式问题

证无最优子结构

最优子结构也可能是贪心

• 无权最短路径:有最优子结构

原因: 子问题具有无关性, 每个子问题之间不共享资源

• 无权最长路径: 无最优子结构

15.3-6 假定你希望兑换外汇,你意识到与其直接兑换,不如进行多种外币的一系列兑换,最后兑换到你想要的那种外币,可能会获得更大收益。假定你可以交易 n 种不同的货币,编号为 1 , 2 , \cdots , n , 兑换从 1 号货币开始,最终兑换为 n 号货币。对每两种货币 i 和 j ,给定汇率 r_{ij} ,意味着你如果有 d 个单位的货币 i ,可以兑换 dr_{ij} 个单位的货币 j 。进行一系列的交易需要支付一定的佣金,金额取决于交易的次数。令 c_k 表示 k 次交易需要支付的佣金。证明:如果对所有 k=1 , 2 , \cdots , n , $c_k=0$,那么寻找最优兑换序列的问题具有最优子结构性质。然后请证明:如果佣金 c_k 为任意值,那么问题不一定具有最优子结构性质。

关键:分解出两段后,ck变化了

步骤

- 把最优的一段分解,分出的两个小的非最优
- 最好举反例