

Projet Mycelium

Soutenance finale

Suivi environnemental avec un réseau de capteurs intelligents

ENCADRANTS INSA : Nikolaos PARLAVANTZAS Christian RAYMOND

La naissance du projet Mycelium

Compréhension de l'environnement

Projet pluridisciplinaire

Du matériel fourni

Nœud SoLo équipé de 4 capteurs internes et 1 capteur externe

Collecter des données environnementales

1 passerelle LoRaWAN

Recevoir et transmettre des données

1 cluster de Raspberry Pi

Traiter des données

O1 OBJECTIFS

Principaux objectifs de Mycélium

• • •

Créer un système qui soutiendra des études réalisées par le pôle géosciences

• • •

Fournir des données-types de la Croix-Verte de manière régulière

 \bullet \bullet

Réagir automatiquement en cas d'événements climatiques exceptionnels

Les caractéristiques que doit respecter notre solution technique

1. Envoi et réception des données

- Possibilité d'envoyer des données hétérogènes et de les recevoir

4. Envoi de notifications

 Envoi d'alertes lors de la détection d' événements inhabituels

2. Mise en place d'un historique de mesures

- Stockage local des mesures
- Visualisation des données

3. Analyse automatique des mesures

- Évolution automatique des réactions en fonction des mesures
- Détection d'aberrations et d' événements exceptionnels

Une solution : une infrastructure Fog

02 ARCHITECTURE

Architecture générale de Mycelium

Avantages de l'architecture

Réseau	 Connexion stable entre la gateway et le cluster (éthernet) Tolérance aux pannes de réseau Réponses rapides : stockage et des traitements de proximité
Traitement	Des fonctions serverless : extensibilité, scalabilité, portabilité
Système	• Autonomie

Une problématique autour de scénarios

Scénario

Événement environnemental rare, étrange, ou simplement intéressant à observer dans le cadre du suivi environnemental

Comment peut-on utiliser l'architecture Fog de Mycélium présentée afin de traiter des scénarios ?

FONCTIONNALITÉS

Scénario : un changement dans les données environnementales

Scénarios traités

Vol L'accéléromètre sur l'axe horizontal Soleil Le capteur de luminosité et le capteur HumiTemp Nuit Le capteur de luminosité Neige Le capteur HumiTemp

Temperatures anormales

Le capteur HumiTemp

Écarts importantes

Comparaison des données entre elles grâce à un historique

Traitement au niveau du nœud SoLo

Traitement au niveau du cluster

DÉPLOIEMENTS

Test général

Objectif

Mise en conditions réelles

Capture et envoi des données pendant 16h

Fréquence de mesure: 20s 2880 fois

Fréquence d'envoi: 60s 960 fois

Réception des donnés via LoRaWAN

La communication LoRa dépend des conditions de propagation du signal radio

Déclenchement d'un scénario : **Neige**

Nœud SoLo

. . .

Augmentation des fréquences de mesures et des fréquences d'envoi

Cluster

Réception d'une donnée

Décodage des données

Stockage dans InfluxDB

Reconnaissance scénario Neige

Envoi d'une **notification** "Neige" sur Discord avec les données de température et d'humidité

Démonstration du scénario global **Neige**

05 **BILAN DE PLANIFICATION**

Répartition des tâches

Implémentation des fonctions embarquées sur le nœud SoLo

Ajout du pluviomètre au nœud SoLo et à son firmware

Tests sur les scénarios

Equipe Boîtier

Implémentation des fonctions de traitement et des test

Maintenance du cluster

Tests sur les fonctions de traitement

Equipe Cluster

Tests généraux

Rédaction des rapports et préparations des soutenances

Page Web

Commun

Diagramme de Gantt mis à jour

Décembre Février Janvier Mars Avril Mai Fonctions de traitement Tests sur les Déploiement de

CONCLUSION

Perspectives pour Mycelium

Améliorations techniques

- Plusieurs nœuds et capteurs
- Lien descendant
- Installations du matériel aux normes environnementales

Nouveaux scénarios environnementaux

- Canicule
- Historique par année
- Prévisions (algorithmes IA)

Mycelium en résumé

Un projet pluridisciplinaire : une dimension **technique** et **environnementale**

- Technique : réalisation d'une architecture Fog
- Environnement : compréhension des phénomènes météorologique par l'analyse des données

De nombreuses interactions avec des intervenants aux expertises variées

