Assignment 5

Duc Viet Le CS536

March 9, 2017

Problem 1.

step	N	d(t), p(t)	d(u), p(u)	d(v), p(v)	d(w), p(w)	d(y), p(y)	d(z), p(z)
0	X	∞	∞	$_{3,x}$	6,x	6, x	8, x
1	XV	7,v	6,v		6,x	6, x	8, x
2	XVW	7,v	6,v			6, x	8, x
2	xvwy	7,v	$_{6,\mathrm{v}}$				8, x
2	xvwyu	7,v					8, x
2	xvwyut						8, x
2	xvwyutz						

Problem 2.

• Give x's distance vector for destinations w,y, and u.

$$\begin{array}{c|ccccc} & w & y & u \\ \hline x & 2 & 4 & 7 \end{array}$$

- $c(x,y) \in (0,1)$: the cost from y to u is 6, and the current shortest path from x to u is 7. In order to have new minimum cost path to u, c(x,y) has to be in interval (0,1), and the new minimum cost path will be less than 7.
 - c(x,w) > 6: in order to have new minimum cost path, c(x,w) + c(w,u) has to be greater than c(x,y) + c(y,u).
- Similarly,

 $c(x,y) \ge 1$: the minimum path is still 7 as the path from x to u via y is bigger than 7