Repaso tema 5

- **1.-** Sea U el subespacio de \mathbb{Z}_7^3 generado por los vectores (3,5,2), (2,1,6) y W el subespacio de Z_7^3 de ecuaciones $\begin{cases} 2x + y + 3z = 0 \\ x + 4y + 4z = 0 \end{cases}$ Entonces: 5x + 6y + 3z = 0
 - a) $\{(2,1,6), (5,2,6)\}$ es una base de U+W
 - b) $\{(1,4,3), (2,1,4)\}$ es una base de U+W
 - c) $U + W = Z_7^3$
 - d) U + W = U.
- Sean $B_1 = \{(1,0,1); (1,-1,0); (2,1,2)\}$ y $B_2 = \{(2,1,1); (1,0,1); (1,-1,1)\}$ dos bases de O^3 y sea u un vector de O^3 cuyas coordenadas en B_1 son (1,1,1). Las coordenadas de u en B_2 son
 - a) (0,2,-1)
- b) (1,1,1) c) (0,0,0) d) (4,0,3)

3.- Sean

$$U = \left\{ (x, y, z, t) \in (Z_5)^4 : \begin{array}{l} 2x + 3y + 4z + t = 0 \\ x + 4y + 2z + 3t = 0 \end{array} \right\}$$

$$W = \left\{ (x, y, z, t) \in (Z_5)^4 : x + y + z + t = 0 \right\}$$

entonces una base de $U \cap W$ es

- a) $\{(1,3,1,0), (3,1,0,1)\}$
- b) $\{(2,3,4,1), (1,4,2,3)\}$
- c) $\{(1,3,0,1)\}$
- d) $\{(2,3,4,1)\}$
- **4.-** Sea $V = (Z_5)^3$, y sea U el subespacio de V generado por los vectores (2,1,3) y (3,4,2). ¿Para cuál de los siguientes subespacios $W \subseteq V$ se verifica que $V = U \oplus W$?

a)
$$W = L\{(1,2,2)\}$$
 b) $W = \begin{cases} 2x + y + 3z = 0 \\ 2y + 3z = 0 \end{cases}$ c) $W = L\{(1,2,2), (3,0,1)\}$ d) $W = \{2x + y + z = 0\}$

- **5.-** Sea $V = \{a(x) \in Z_2[x] : gr(a(x)) \le 3\}$ y $p_1(x) = x^3 + x + 1$, $p_2(x) = x^2 + x + 1$, $p_3(x) = x^3 + x^2 + x$ y $p_4(x) = x^2 + 1$ elementos de V. Entonces:
 - a) Forman una base de V.
- b) Son linealmente dependientes, pues el tercero es combinación lineal del resto.
- c) Son linealmente dependientes, pues el segundo es combinación lineal del resto.
 - d) Son un sistema de generadores de V.

Sean en R^3 los conjuntos $B_1 = \{(1,0,1), (0,1,1), (1,1,1)\}$ 6.- $B_2 = \{(1,-1,0),(2,1,1),(1,1,2)\}.$ Entonces:

- a) La matriz del cambio de base de B_2 a B_1 es $\begin{pmatrix} 1 & 2 & 1 \\ -1 & 1 & 1 \\ 0 & 1 & 2 \end{pmatrix}$
- b) No existe matriz del cambio de base de B_2 a B_1
- c) La matriz del cambio de base de B_2 a B_1 es $\begin{pmatrix} 1 & 0 & 1 \\ -1 & -1 & 0 \\ 0 & 2 & 0 \end{pmatrix}$ d) La matriz de cambio de base de B_2 a B_1 es $\begin{pmatrix} 1 & 0 & 1 \\ -1 & -1 & 1 \\ 0 & 2 & 0 \end{pmatrix}$
- 7.- Sea $U = \{A \in M_3(Q) : A = -A^t\}$. Entonces:
 - a) U es un subespacio vectorial de $M_3(Q)$ de dimensión 2.
 - b) U es un subespacio vectorial de $M_3(Q)$ de dimensión 5
 - c) U es un subespacio vectorial de $M_3(Q)$ de dimensión 3.
 - d) U no es un subespacio vectorial de $M_3(Q)$.
- **8.-** Sean $B = \{(1,3,2), (3,0,5), (2,1,6)\}$ y $B' = \{(3,4,1), (4,5,0), (4,6,1)\}$ dos bases de $(Z_7)^3$. Sea x el vector cuyas coordenadas en la base B' son (3,2,3), entonces las coordenadas se x en la base B son
 - a) (1,5,6)
- b) (3,2,3) c) (5,3,5)
- d) (6, 1, 3)
- **9.-** En el espacio vectorial $(Z_3)^4$ se conocen las dimensiones de dos subespacios: $\dim U = 2$ y $\dim W = 3$; ¿cuál de las siguientes afirmaciones es necesariamente falsa?
- a) $(Z_3)^4 = U \oplus W$ b) $\dim(U + W) = 4$ c) $\dim(U \cap W) = 2$ $\dim(U \cap W) = 1$
- d)
- **10.-** Sean $B_1 = \{v_1, v_2\}$ y $B_2 = \{u_1, u_2\}$ dos bases de R^2 tales que $v_1 = -2u_1 u_2$ y $v_2 = 5u_1 + 2u_2$. Si w es un vector de R^2 cuyas coordenadas respecto a B_1 son (8,3), entonces las coordenadas de w respecto de B_2 son
 - a) (1,2)

- b) (-1,-2) c) (2,1) d) (-2,-1)
- 11.- Uno de los siguientes subconjuntos no es un subespacio vectorial de R^4 , ¿cuál es?
 - a) $\{(a,b,1,a): a,b \in R\}$
 - b) $\{(a,b,a+b,a-b) : a,b \in R\}$
 - c) $\{(a,0,b,0): a,b \in R\}$
 - d) $\{(a, 2a + b, b, a + 2b) : a, b \in R\}$
- 12.- Consideremos los subespacios de $(Z_5)^4$ definidos por las ecuaciones

$$U_{1} = \begin{cases} x+y+2z = 0 \\ 3x+y+4z+t = 0 \end{cases} \quad \text{y} \quad U_{2} = \begin{cases} y+3z = 0 \\ x+z+3t = 0 \\ x+2y+z+3t = 0 \end{cases}$$

Una base de $U_1 + U_2$ es

- a) $\{(1,0,4,0),(1,0,0,3),(0,1,0,0)\}$
- b) $\{(1,0,4,0),(1,0,0,3)\}$
- c) $\{(1,0,4,0),(1,0,0,3),(0,0,1,3)\}$
- d) $\{(1,0,4,0),(1,0,0,3),(1,1,1,3)\}$
- **13.-** Sea $v = (1,0,2) \in (Z_5)^3$ y sea $B = \{(1,1,1),(0,3,1),(a,1,2)\}$. ¿Para que valor de a es B una base, y el vector v tiene coordenadas (3,2,1) con respecto a la base

- a) a = 4 b) a = 1 c) a = 0 d) a = 3.