LP n° 8 Titre : Notion de viscosité d'un fluide. Ecoulement visqueux

Présentée par : Florian Poydenot Rapport écrit par : Nathan Vaudry

Correcteur: Marc Rabaud Date: 26/11/18

Bibliographie de la leçon :			
Titre Hydrodynamique physique	Auteurs Guyon Petit	Éditeur	Année
Physique spé PC, PC*	Olivier,Gié,Sarm ant		2000
National commitee for fluid mechanics films			

Plan détaillé

Niveau choisi pour la leçon : CPGE

Pré-requis: Hydrostatique, fluides parfaits, diffusion, électromagnétisme

19ème siècle : travaux de Stokes, Navier et de Couette. Vidéo de mise en évidence du phénomène de viscosité (déformation unidirectionnelle)

I Notion de viscosité

1)Expérience

2 plaques distantes de h. Celle du haut se déplaçant à vitesse U selon \mathbf{e}_{x}

 $\mathbf{v} = \mathbf{v}(\mathbf{y})\mathbf{e}_{\mathbf{x}}$

 $dF = \eta dS(dv/dy)e_z$ (d rond)

Action de contact dF=-pdS OG de n

2) Modèle microscopique

Gaz parfait $\mathbf{v}_i = \mathbf{v} + \mathbf{u}_i < \mathbf{u}_i > = \mathbf{0}$ et $< \mathbf{u}_i^2 > = \mathbf{u}_{moy}$

Nombre de particules moyen $\delta N=nu_{moy}dS/6$ d'où $\delta Fx=m\delta Nv(y+l)-m\delta Nv(y-l)$ avec l'el libre parcours moyen des particules. Développement limité $\delta Fx=2m\delta N(dv/dy)l=mnu_{moy}(dv/dy)ldS$ (d rond) D'où $\eta=mnu_{moy}l/3$ or $mn=p_0$ la masse volumique du fluide. On définit $v=\eta/p_0$ qui correspond à un coefficient de diffusion (analogue au coefficient de diffusion thermique). OG pour l'air à 20°C

Il Dynamique des écoulements visqueux

1)Contraintes exercées sur une particule de fluide

Schéma montrant les différentes forces de cisaillement.

 $dF_{tot} = dF(y) - dF(y - dy) = \eta dS((dv(y)/dy) - (dv(y - dy)/dy)) e_x (d rond)$

On a alors $d\mathbf{F}_{tot}/d\tau = \eta(d^2v/dy^2) \mathbf{e}_x$ (d rond)

2) Equation de Navier-Stokes

 $\rho_0 Dv/Dt = -grad P + \rho_0 g + \eta \Delta v$

et div v=0

3)Conditions aux limites

-Cinématiques

Paroi solide: $v_{perp}=0$ et $v_{fluide}=v_{paroi}$

-Dynamiques Solide: P_{fluide}=P_{paroi}

Fluide : égalité des forces volumiques 4) Nombre de Reynolds

Vitesse U, longueur L caractéristiques. . Introduction de grandeurs adimensionnées selon les échelles introduites et simplification de l'équation de Navier-Stokes selon :

 $d\mathbf{v}^*/dt^*+(\mathbf{v}^*.\mathbf{grad}^*)\mathbf{v}^*=-\mathbf{grad}^*p^*+\mathbf{g}^*+(\text{Re }1)\Delta^*\mathbf{v}^*$ avec

Re=LU/v=(OG(terme convectif)/OG(terme diffusif))

Re<<1: écoulement visqueux et Re>>1: écoulement inertiel

Exemple de la bactérie : L=1 μ m , U=15 μ m/s et v=10⁻⁶m²/s Re=10⁻⁵

Voiture: L= 1m. U=30 m/s et v=1.4.10⁻⁵m²/s Re=10⁶ (approximation du fluide

parfait)

III Applications

Ecoulement de Couette plan

 $\mathbf{v}=\mathbf{v}(\mathbf{y},\mathbf{t})\mathbf{e}_{\mathbf{x}}(\mathbf{v}.\mathbf{grad})\mathbf{v}=0$ car div $\mathbf{v}=0$

Ecriture de l'équation de Navier-Stokes et projection selon e_v

0=dP/dy-pg (équation fondamentale de l'hydrostatique) donc P=P(y) (d rond)

Selon **e**_∗ nous obtenons

dv/dt= v(d²v/dy²) (d rond) Equation de diffusion attendue car réponse linéaire entre la force et la vitesse similaire à la loi de Fick et Navier-Stokes correspond à une équation de conservation de quantité de mouvement.

Stationnaire: $d^2v/dy^2=0$ d'où v(y)=ay+b et conditions aux limites donnent b=0 et ah=U d'où $\mathbf{v}(y)=U(y/h)\mathbf{e}_x$

Ecriture des forces en y=h:

 $-\eta(U/h)dS$ donnant une puissance surfacique égale à $\eta(U^2/h)$. Cette puissance dissipée s'écrit - n(U/h²)

Non abordé : que se passe-t-il si n est arbitrairement petit (fluide parfait) ? Notion de couche limite.

Questions posées par l'enseignant

- -Expérience : quelles précautions à prendre ? Quel temps caractéristique faut-il attendre pour que l'on atteigne le régime stationnaire ? Viscosité cinématique de l'eau ?
- -Est-ce que Re est le seul nombre adimensionné apparaissant dans l'adimensionnement de l'équation de Navier-Stokes ?
- -Pourquoi n'y a-t-il pas de signe dans la réponse liant force et gradient de vitesse contrairement à la loi de Fick?
- -D'où vient la force de traînée aérodynamique pour la voiture ? Pourquoi y applique-t-on Navier-Stokes et pas Euler ? Pourquoi la vitesse tangentielle près d'une paroi est nulle ? Trouvez l'origine microscopique de la distribution des vitesses.
- -Quelle différence physique fondamentale est présente avec la viscosité ?
- -Equation de Stokes? Exemples?
- -Réversibilité et dissipation d'énergie, comment est-ce possible ?
- -Existe-t-il des valeurs critiques de Re correspondant à une certaine équation ? Comment savoir si un écoulement est laminaire?
- -Quelle est l'expression globale de la force appliquée sur le fluide ? Calcul global de la force exercée sur une paroi.
- -Exemple de fluides rhéofluidifiants.
- -Evolution de la viscosité avec la température. Viscosité dépend-elle de l'écoulement ? Existe-telle uniquement à cause d'un cisaillement du fluide?
- -Profil de Couette : résultat indépendant de la viscosité. Est-ce que la viscosité intervient encore dans l'équation de Navier-Stokes?

Commentaires donnés par l'enseignant

Préciser ce qui se passe dans la manipulation du film. Prendre plus de temps sur les conditions aux limites.

Viscosité <u>à une certaine température</u>

Modèle 1/6 des gaz parfaits : pré-requis de thermodynamique. A bien maîtriser (car distribution statistique).

Div v=0 si incompressibilité. Adimensionnement de Navier-Stokes plus court. Puissance dissipée en chaleur n'est pas une conclusion.

Viscosité tendant vers 0 un peu limite mais bonne ouverture.

Equation d'Euler en pré-requis ? Electromagnétisme ? (effet de Peau)

Pourquoi P=P(y) dans l'écoulement de Couette?

- -Réversibilité : exemple d'une particule sédimentant parallèlement à une paroi à très faible Re. Pas d'attraction et attraction par renversement du temps. La particule reste donc parallèle à la paroi.
- -Il existe un Re dans le cas d'écoulements parallèles (défini par le rapport de 2 temps (diffusif/convectif)).

Partie réservée au correcteur

Avis sur le plan présenté

Bien pour les 40 mn. Il faut savoir expliquer vos choix de ne pas parler d'autre chose dans ces 40 mn.

Concepts clés de la leçon

Modèle microscopique thermodynamique pour expliquer la diffusion de quantité de mouvement.

Concepts secondaires mais intéressants

Description instationnaire au démarrage de Couette plan Réversibilité à petit Reynolds

Expériences possibles (en particulier pour l'agrégation docteur)

Mise en évidence des contraintes de cisaillement dans un montage de Couette. La rotation d'un des cylindres entraine l'autre ...

Points délicats dans la leçon

Justifier la vitesse nulle à la paroi.

Savoir expliquer la dépendance en température pour un gaz et un liquide.

Expliquer la réversibilité avec les bons arguments de symétrie.

Bibliographie conseillée