Topic 5C. Phase Equilibria in Two-Component Systems

- 5C.I The Vapor Pressure of Mixtures
- 5C.2 Binary Liquid Mixtures
- 5C.3 Distillation
- 5C.4 Azeotropes

Vapor Pressure of Mixture

Raoult's Law: The vapor pressure of a liquid is proportional to its

mole fraction.

$$P_A = \frac{n_A}{n_A + n_B} P_A^* = x_A P_A^*$$

Vapor Pressure of Mixture

Raoult's Law: the vapor pressure of a liquid is proportional to its mole fraction.

$$P_A = \frac{n_A}{n_A + n_B} P_A^* = x_A P_A^*$$

$$P_B = \frac{n_B}{n_A + n_B} P_B^* = x_B P_B^*$$

$$P_{TOT} = x_A P_A^* + x_B P_B^* = x_A P_A^* + (1 - x_A) P_B^*$$

Ideal solution: a hypothetical mixture in which both volatile components obey Raoult's law.
 → A-A, B-B, and A-B interactions are the same.

Vapor Pressure of Mixture

 Difference in vapor pressure in the absence and presence of a solute.

Binary Liquid Mixtures

Phase diagram of a mixture of benzene and toluene

Distillation

- Distillation
- Fractional distillation

Azeotropes

- Enthalpy of mixing leads to a deviation from Raoult's law.
- Azeotropes

Topic 5D. Solubility

- 5D.I The Limits of Solubility
- 5D.2 The Like-Dissolves-Like Rule
- 5D.3 Pressure and Gas Solubility
- 5D.4 Temperature and Solubility
- 5D.5 The Thermodynamics of Dissolving
- 5D.6 Colloids

Limits of Solubility

- Molar solubility: substance's molar concentration in a saturated solution; the limit of its ability to dissolve in a given quantity of solvent.
- Dynamic equilibrium of solute in a saturation solution.

Dissolution Process

For a dissolution process takes place
 → Solute-solute attraction must be replaced by solute-solvent attractions.

10

Like-Dissolves-Like Rule

- "Like-dissolves-like" rule
 - Polar liquids are good solvents for ionic or polar solutes.
 - Nonpolar liquids are good solvents for nonpolar solutes.
- Soap and surfactant: amphiphilic character

Micelle structure

Pressure and Gas Solubility

• Henry's Law: $s = k_H P$

TABLE 5D.2	Henry's Constants for Gases in Water at 20 °C
Gas	$k_{\rm H}/({ m mol}\cdot{ m L}^{-1}\cdot{ m atm}^{-1})$
air	7.9×10^{-4}
argon	1.5×10^{-3}
carbon dioxide	2.3×10^{-2}
helium	3.7×10^{-4}
hydrogen	8.5×10^{-4}
neon	5.0×10^{-4}
nitrogen	7.0×10^{-4}
oxygen	1.3×10^{-3}

Temperature and Solubility

- Solubility of a solid: endothermic; generally, increases with temperature
- Solubility of a gas: exothermic; generally, decreases with temperature
- Many exceptions exist

- A simple thermodynamic approach
- Gibbs Free Energy of solution

$$\Delta G_{sol} = \Delta H_{sol} - T\Delta S_{sol}$$

- For liquid or solid solutes, $\Delta S_{sol} > 0$ $\Delta H_{sol} < 0 \rightarrow$ generally soluble $\Delta H_{sol} > 0 \rightarrow$ soluble with highly positive ΔS_{sol}
- For gaseous solutes, $\Delta S_{sol} < 0$ ΔG_{sol} increases with T

TABLE 5D.3 Limiting Enthalpies of Solution, ΔH_{sol}/(kJ·mol⁻¹), at 25 °C*

	Anion							
Cation	fluoride	chloride	bromide	iodide	hydroxide	carbonate	sulfate	nitrate
lithium	+4.9	-37.0	-48.8	-63.3	-23.6	-18.2	-2.7	-29.8
sodium	+1.9	+3.9	-0.6	-7.5	-44.5	-26.7	+20.4	-2.4
potassium	-17.7	+17.2	+19.9	+20.3	-57.1	-30.9	+34.9	-23.8
ammonium	-1.2	+14.8	+16.0	+13.7	_	_	+25.7	+6.6
silver	-22.5	+65.5	+84.4	+112.2		+41.8	+22.6	+17.8
magnesium	-12.6	-160.0	-185.6	-213.2	+2.3	-25.3	-90.9	-91.2
calcium	+11.5	-81.3	-103.1	-119.7	-16.7	-13.1	-19.2	-18.0
aluminum	-27	-329	-368	-385	_	_	_	-350

^{*}The limiting enthalpy of solution value for silver iodide, $\Delta H_{\rm sol}$, for example, is the entry found where the row labeled "silver" intersects the column labeled "iodide," and it is $+112.2 \text{ kJ} \cdot \text{mol}^{-1}$.

TABLE 5D.4 Limiting Enthalpies of Hydration, ΔH_{hyd}/(kJ·mol⁻¹), at 25 °C, of Some Halides*

		Anion				
Cation	\mathbf{F}^-	Cl ⁻	Br ⁻	I-		
H ⁺	-1613	-1470	-1439	-1426		
Li ⁺	-1041	-898	-867	-854		
Na ⁺	-927	-784	-753	-740		
K ⁺	-844	-701	-670	-657		
Ag ⁺ Ca ²⁺	-993	-850	-819	-806		
Ca ²⁺	_	-2337	_			

*The enthalpy of hydration for NaCl, ΔH_{hyd} for example, is the entry where the row labeled Na⁺ intersects the column labeled Cl⁻. The resulting value, $-784 \text{ kJ} \cdot \text{mol}^{-1}$, is for the process Na⁺(g) + Cl⁻(g) \rightarrow Na⁺(aq) + Cl⁻(aq) when the resulting solution is very dilute.

Colloids

Colloid: a dispersion of large particles from I nm to I μm
 Properties between homogeneous solution and heterogeneous

TABLE 5D.5	The Classification of Colloids*			
Dispersed phase	Dispersion medium	Technical name	Examples	
solid	gas	aerosol	smoke	
liquid	gas	aerosol	hairspray, mist, fog	
solid	liquid	sol or gel	printing ink, paint	
liquid	liquid	emulsion	milk, mayonnaise	
gas	liquid	foam	fire-extinguisher foam	
solid	solid	solid dispersion	ruby glass (Au in glass); some alloys	
liquid	solid	solid emulsion	bituminous road paving; ice cream	
gas	solid	solid foam	insulating foam	

mixture

Colloids

https://en.wikipedia.org/wiki/Tyndall_effect