11120IIS/500400 Applied Cryptography, Spring 2023

19-Apr-2023

Midterm

Instructor: Prof. Amir Rezapour

- 1. Discuss the advantages and disadvantages of public-key and symmetric-key cryptosystems. (10 points)
- 2. Describe the polynomial-time reduction $A \leq_{ploy} B$. (10 points)
- 3. What is the Kerckhoff's principle in cryptanalysis? (10 points)
- 4. We use DES in cipher feedback mode (CFB) to encrypt a plaintext $m = m_1 m_2 \dots m_{100}$ into a ciphertext $c_1 c_2 \dots c_{100}$, where each m_i is 16-bit long. The ciphertext is sent to Bob. If c_{16} and c_{26} are missing and c_{9} and c_{89} are received as c'_{9} and c'_{89} wrongly, what m_i 's can B compute correctly from the received ciphertext? (10 points)
- 5. Assume that a plaintext bit M is given with $Pr[M=b]=p_b$, where $b \in \{0,1\}$. Assume that random key K of the one-time pad encryption is chosen by Pr[K=0]=0.42 and Pr[K=1]=0.58. Consider the one-time pad encryption $C=M \oplus K$.
 - (a) Assume that an adversary A_1 guesses M randomly without even examining the ciphertext C. Show that the success probability of A_1 is exactly 0.5. (10 points)
 - (b) Suggest a good strategy A_2 of guessing M if p_0 and p_1 are known. (15 points)
- 6. Use the Chinese Remainder Theorem to compute $0 \le x < 1785$ for $x \mod 7 = 1$, $x \mod 15 = 3$, and $x \mod 17 = 12$. (15 points)
- 7. In the SubBytes of AES, $f(x) = x^{-1} \mod X^8 + X^4 + X^3 + X + 1$. Compute f(01100011). (20 points)