Matemática atuarial

Aula 17 Comutação

Danilo Machado Pires

<u>danilo.pires@unifal-mg.edu.br</u>

Leonardo Henrique Costa

<u>leonardo.costa@unifal-mg.edu.br</u>

- Comutação é a troca de ordem dos elementos, todavia, sem perder a sua realidade.
- Uma Tábua de comutação é uma tabela confeccionada a partir de probabilidades sobre as quais é aplicada uma taxa de juros compostos.
- As tábuas de comutação simplificam o cálculo de diversas operações relacionadas a previdência e a seguros contra morte.

Johanes Nikolaus Tetens (Alemanha, 1736 - 1807).

Matemática e atuário, (1785).

JOHN NICHOLAS TETENS

➤ Griffith Davies (Inglaterra- 1750-1833). ➤ Atuário, (1825).

- ➤ Utilizada para calcular os prêmios puros dos seguros de vida e anuidades.
 - Simplificação para cálculos de prêmios.
- $ightharpoonup \acute{\rm E}$ o resultado das operações com os dados obtidos das colunas dos valores de l_x e d_x associados algebricamente com o valor da taxa de juros.
- ➤ A cada vez que se altera a taxa de juros obtêm-se tábuas de comutação.

➤ A tábua de comutação é formada por sete colunas, considerando as idades, sendo os valores de :

 D_{χ} , N_{χ} , S_{χ} \rightarrow Funções que se referem a sobrevivência.

 C_x , M_x , R_x \rightarrow Funções que referem a mortalidade (falecimento).

- Uma tábua de comutação é constituída a partir de dois elementos:
 - → i) tábua de sobrevivência;
 - ➢ ii) taxa de juros (ou fator de desconto).

Griffith Davies X George Barret

Sistema Antigo.

Sistema moderno.

Uma das colunas e a forma de cálculo é que demonstra a diferença entre os sistemas.

TÁBUA DE SOBREVIVÊNCIA.

Idade x, q_x , p_x , d_x e l_x

- $ightharpoonup q_x$: Probabilidade de morte de uma pessoa com idade x antes de completar a idade de x+1 anos.
- p_x : $1 q_x$: Probabilidade de sobrevivência de uma pessoa com idade x antes de completar a idade x + 1.

VARIAÇÕES

- $ightharpoonup _{n}q_{x}$: Probabilidade de uma pessoa com idade x morrer antes de completar a idade de x+n anos.
- $parboonup p > np_x$: Probabilidade que uma pessoa com idade x, sobreviva pelo menos mais n anos.

TÁBUA DE SOBREVIVÊNCIA.

Idade
$$x$$
, q_x , p_x , d_x e l_x

- $> d_x$: Número de pessoas que faleceram entre a idade x e x+1.
- $\triangleright l_x$: Número (hipotético) de pessoas vivas com idade x.

RELAÇÕES

$$d_{x} = l_{x} - l_{x+1}$$

$$nq_{x} = \frac{l_{x} - l_{x+n}}{l_{x}}$$

$$np_{x} = \frac{l_{x+n}}{l_{x}}$$

$$m+lp_{x} = (mp_{x})(l_{x+m})$$

$$m+lPx - (mPx)(lPx+m)$$

 \triangleright Coluna D_x

$$D_{x} = l_{x}v^{x} = \frac{l_{x}}{(1+i)^{x}}$$

- > A letra D refere-se a Denominador.
- $ightharpoonup D_x$ é o valor presente, à idade zero, de um benefício unitário pago a cada pessoa da coorte de l_0 que chegam vivas à idade x.

Suponha i=5% então $D_{\chi}=l_{\chi}v^{\chi}=\frac{l_{\chi}}{(1,05)^{\chi}}$

Idade	q_X	p_X	l_x	D_{χ}	100000
25	0,00077	0,99923	100000	29530,28	$D_{25} = \frac{100000}{(1,05)^{25}}$
26	0,00081	0,99919	99923	28102,42	
27	0,00085	0,99915	99842	26742,51	
28	0,00090	0,99910	99757	25447,38	
29	0,00095	0,99905	99667	24213,73	22028 72
30	0,00100	0,99900	99572	23038,72	$D_{30} = \frac{23038,72}{(1,05)^{30}}$
31	0,00107	0,99893	99472	21919,60	
32	0,00114	0,99886	99365	20853,35	
33	0,00121	0,99879	99251	19837,55	
34	0,00130	0,99870	99131	18870,06	4704040
35	0,00139	0,99861	99002	17948,10	$D_{35} = \frac{17948,10}{(1,05)^{35}}$
					(1,03)

 \triangleright Coluna N_{χ}

$$N_{x} = \sum_{t=0}^{\omega - x} D_{(x+t)} = \frac{l_{x}}{(1+i)^{x}} + \frac{l_{x+1}}{(1+i)^{x+1}} + \frac{l_{x+2}}{(1+i)^{x+2}} + \dots + \frac{l_{\omega}}{(1+i)^{\omega}}$$

- $\succ \omega$ corresponde a idade máxima atingida, e a letra N refere-se a Numerador.
- $\nearrow N_x$ é o valor presente do total gasto para pagar uma vitalícia de R\$ 1,00 por ano para a coorte da tábua de vida. Pagamentos são feitos a partir da idade x.
- > Na prática, constrói-se a coluna na ordem reversa.

Suponha
$$i=5\%$$
 então: $N_x=\sum_{t=0}^{\omega}D_{(x+t)}=\sum_{t=0}^{\omega}\frac{l_{x+t}}{(1,05)^{x+t}}$

Idade	q_X	p_X	l_x	D_{x}	N_x	90
25	0,00077	0,99923	100000	29530,28	6928266	$N_{25} = \sum_{t=0}^{\infty} D_{(25+t)} = D_{25} + D_{26} + \cdots D_{115}$
26	0,00081	0,99919	99923	28102,42	6573343	t=0
27	0,00085	0,99915	99842	26742,51	6235516	
28	0,00090	0,99910	99757	25447,38	5913968	
29	0,00095	0,99905	99667	24213,73	5607924	85
30	0,00100	0,99900	99572	23038,72	5316645	$N_{30} = \sum_{t=0}^{\infty} D_{(30+t)} = D_{30} + D_{31} + \cdots D_{115}$
31	0,00107	0,99893	99472	21919,60	5039426	t=0
32	0,00114	0,99886	99365	20853,35	4775598	
33	0,00121	0,99879	99251	19837,55	4524517	
						0
115	1,00000	00000	0,18042	0,000022	0,00066	$N_{115} = \sum_{t=0}^{0} D_{(115+t)} = D_{115}$
						t=0

 \triangleright Coluna S_x

$$S_x = \sum_{t=0}^{\omega - x} N_{x+t} = N_x + N_{x+1} + N_{x+2} + \dots + N_{\omega}$$

 $\succ \omega$ corresponde a idade máxima atingida, e a letra S refere-se a soma.

A utilização de S_{χ} pertence ao cálculo de rendas crescentes, assunto que foge ao escopo dessa disciplina.

 \triangleright Coluna C_x

$$C_{x} = v^{x+1} dx = \frac{d_{x}}{(1+i)^{x+1}}$$

Lembrando que $d_x = l_x - l_{x+1}$ e $_1q_x = \frac{l_x - l_{x+1}}{l_x}$, logo :

$$C_{x} = v^{x+1} q_{x} l_{x}$$

 \succ Valor presente total necessário a um benefício de 1u.m. Para todos os indivíduos da coorte que morrem com x anos.

Suponha i=5% então $C_x=v^{x+1}dx$

Idade	q_X	p_X	l_x	D_{x}	C_x
25	0,00077	0,99923	100000	29530,28	21,655
26	0,00081	0,99919	99923	28102,42	21,679
27	0,00085	0,99915	99842	26742,51	21,648
28	0,00090	0,99910	99757	25447,38	21,812
29	0,00095	0,99905	99667	24213,73	21,907
30	0,00100	0,99900	99572	23038,72	21,941
31	0,00107	0,99893	99472	21919,60	<u> </u>

$$C_{25} = v^{25+1}(l_{25} - l_{26}) = q_{25}l_{25}(v^{26})$$

$$C_{30} = v^{30+1} (l_{30} - l_{31}) = q_{30} l_{30} v^{31}$$

 \triangleright Coluna M_{χ}

$$M_{x} = C_{x} + C_{x+1} + C_{x+2} + \dots + C_{\omega} = \sum_{t=0}^{\omega} C_{x+t}$$

$$M_{x} = v^{x+1}q_{x}l_{x} + v^{x+2}q_{x+1}l_{x+1} + v^{x+3}q_{x+2}l_{x+2} + \cdots$$

 ω corresponde a idade máxima atingida, e a letra S refere-se a soma.

Na prática, constrói-se a coluna na ordem reversa.

 \triangleright Coluna R_x

$$R_{x} = \sum_{t=0}^{\omega - x} M_{x+t} = M_{x} + M_{x+1} + M_{x+2} + \dots + M_{\omega}$$

 $\succ \omega$ corresponde a idade máxima atingida, e a letra S refere-se a soma.

A utilização de R_{χ} pertence ao cálculo de seguro contra morte de capital crescente, assunto que foge ao escopo dessa disciplina.