Exercices 15.16 et 15.17 du cours

François Coulombeau

coulombeau@gmail.com

Lycée La Fayette, Clermont-Ferrand (63)

17 mars 2020

Ex. 16 (Cor.)

Soit $\phi: \mathbb{R}^2 \to \mathbb{R}^2$ l'application linéaire telle que $\phi(1;0) = \left(\frac{1}{2}; \frac{\sqrt{3}}{2}\right)$ et $\phi(0;1) = \left(\frac{-\sqrt{3}}{2}; \frac{1}{2}\right)$.

Quelle est l'image par ϕ du vecteur (-1; 2)?.....

Quelle est l'image par ϕ du vecteur (x; y)?.....

Cor. 16:

$$\phi(-1;2) = -\phi(1;0) + 2\phi(0;1) = -\left(\frac{1}{2}; \frac{\sqrt{3}}{2}\right) + 2\left(\frac{-\sqrt{3}}{2}; \frac{1}{2}\right) = \left(\frac{-1-2\sqrt{3}}{2}; \frac{-\sqrt{3}+2}{2}\right)$$

$$\phi(x;y) = x\phi(1;0) + y\phi(0;1) = x\left(\frac{1}{2}; \frac{\sqrt{3}}{2}\right) + y\left(\frac{-\sqrt{3}}{2}; \frac{1}{2}\right) = \left(\frac{x-y\sqrt{3}}{2}; \frac{x\sqrt{3}+y}{2}\right)$$

Ex. 17 (Cor.) Soient
$$n \in \mathbb{N}$$
 et $\phi : \begin{cases} \mathbb{R}_n[X] \to \mathbb{R}_n[X] \\ P \mapsto \int_X^{X+1} P(t) dt \end{cases}$.

- 1) Montrer que ϕ est linéaire.
- 2) Montrer que deg $\phi(P) = \deg P$.
- 3) Montrer que ϕ est un automorphisme de $\mathbb{R}_n[X]$.
- 4) On note B_i l'image réciproque par ϕ de X^i . Calculer B_0, B_1, B_2, B_3 .
- 5) Montrer que pour tout $i \in [0; n]$, $B_i(X+1) B_i(X) = iX^{i-1}$.
- 6) Déduire des questions précédentes une expression simplifiée pour $p \in \mathbb{N}$ de $\sum_{k=1}^{p} k^2$.

Cor. 17:

1) Soit $E = \mathbb{R}_n[X]$ et P et Q deux polynômes de E.

Soient λ, μ deux constantes.

$$\phi(\lambda P + \mu Q) = \int_{X}^{X+1} \lambda P(t) + \mu Q(t) dt = \lambda \int_{X}^{X+1} P(t) dt + \mu \int_{X}^{X+1} Q(t) dt.$$
Donc $\phi(\lambda P + \mu Q) = \lambda \phi(P) + \mu \phi(Q)$.

2) Soit $P = \sum_{k=0}^{\infty} a_k X^k$ un polynôme de E, avec $p = \deg(P)$.

Par linéarité, $\phi(P) = \sum_{k=0}^{p} a_k \phi(X^k)$. Il suffit donc de démontrer que $\deg(\phi(X^k)) = k$.

En effet, en supposant ce dernier résultat vérifié, on a alors :

 $\deg \phi(P) = \deg \left(\sum_{k=0}^{p} a_k \phi(X^k) \right) = p$ car le degré d'une somme est égal au maximum des degrés dans le cas où les termes de la somme sont de degrés distincts.

Montrons donc que $\forall k \in [0; n], \deg(\phi(X^k)) = k$:

$$\phi(X^k) = \int_X^{X+1} t^k dt = \frac{(X+1)^{k+1} - X^{k+1}}{k+1}.$$

D'où, en utilisant la formule du binôme, $\phi(X^k) = \frac{1}{k+1} \sum_{i=0}^{k} \binom{k+1}{i} X^i$ qui est de degré k.

3) ϕ est un endomorphisme de $\mathbb{R}_n[X]$ puisque elle est linéaire et que l'image d'un polynôme de degré inférieur ou égal à n est un polynôme de degré inférieur ou égal à n.

Pour montrer qu'elle est bijective, il suffit donc de montrer qu'elle est injective (propriété 15.52 du cours sur la caractérisation des isomorphismes en dimension finie).

Calculons Ker ϕ : soit P un polynôme tel que $\phi(P) = 0$. On a alors deg $\phi(P) = -\infty$ deg(P) donc P = 0.

Donc Ker $\phi = \{0\}$, ϕ est un endomorphisme injectif, donc bijectif: c'est un automorphisme.

4) On cherche B_0 tel que $\phi(B_0) = 1$. Notamment, B_0 est de degré 0 (d'après la question 2).

 $\phi(a) = aX + a - aX = a \text{ donc } B_0 = 1.$

On utilise le même raisonnement pour calculer les autres polynômes :
$$\phi(aX+b)=a\frac{X^2+2X+1-X^2}{2}+b=aX+\frac{a+2b}{2}=X.$$

Donc
$$B_1 = X - \frac{1}{2}$$
.

$$\phi(aX^2 + bX + c) = a\frac{X^3 + 3X^2 + 3X + 1 - X^3}{3} + bX + \frac{b + 2c}{2}$$

$$\phi(aX^2 + bX + c) = aX^2 + (a+b)X + \frac{2a+3b+6c}{6} = X^2.$$

Donc
$$B_2 = X^2 - X + \frac{1}{6}$$
.

$$\phi(aX^3 + bX^2 + cX + d) = a\frac{X^4 + 4X^3 + 6X^2 + 4X + 1 - X^4}{4} + bX^2 + (b+c)X + \frac{2b + 3c + 6d}{6}$$
$$\phi(aX^3 + bX^2 + cX + d) = aX^3 + \frac{3a + 2b}{2}X^2 + (a+b+c)X + \frac{3a + 4b + 6c + 12d}{12} = X^3.$$

Donc $B_3 = X^3 - \frac{3}{2}X^2 + \frac{1}{2}X$ après calcul.

5) C'est probablement la question la plus difficile : soit $i \in [0; n]$ et Q_i un polynôme primitif de B_i , autrement dit Q_i tel que $Q'_i = B_i$.

On sait que $\phi(B_i) = X^i$ par définition des polynômes B_i .

Or
$$\phi(B_i) = Q_i(X+1) - Q_i(X)$$
 par définition de ϕ .

Donc,
$$Q_i(X+1) - Q_i(X) = X^i$$
 et en dérivant, $B_i(X+1) - B_i(X) = iX^{i-1}$.

6)
$$\sum_{k=1}^{p} k^2 = \frac{1}{3} \sum_{k=1}^{p} 3k^2 = \frac{1}{3} \sum_{k=1}^{p} B_3(k+1) - B_3(k) = \frac{B_3(p+1) - B_3(1)}{3} \text{ par t\'elescopage.}$$

$$\text{Donc } \sum_{k=1}^{p} k^2 = \frac{p^3 - \frac{3}{2}p^2 + \frac{1}{2}p - 0}{3} = \frac{p(2p^2 - 3p + 1)}{6} = \frac{p(p+1)(2p+1)}{6}.$$