TD 2 - Corrigé

Micromanipulateur compact pour la chirurgie endoscopique (MC²E)

Concours Commun Mines Ponts 2016

Savoirs et compétences :

- Res1.C4.SF1: Proposer la démarche de réglage d'un correcteur proportionnel intégral
- □ Con.C2 : Correction d'un système asservi

Mise en situation

Modèle de connaissance de l'asservissement

Question 1 Déterminer les expressions des fonctions de transfert $H_1(p)$, $H_2(p)$ et $H_3(p)$.

$$\begin{split} \textbf{Correction} \quad &\text{On a } p \, \theta_m(p) = \Omega_m(p) \text{ et donc } H_2(p) = \frac{\theta_m(p)}{\Omega_m(p)} = \frac{1}{p}. \\ \text{De plus } &J \, p^2 \, \theta_m(p) = C_m(p) - C_e(p) \\ \Leftrightarrow &J \, p \, \Omega_m(p) = \Omega_m(p) \text{ et donc } H_1(p) = \frac{\Omega_m(p)}{C_m(p) - C_e(p)} = \frac{1}{J \, p}. \\ \text{Enfin, } &H_3(p) = \frac{C_e(p)}{\theta_m(p)} = K_{C\theta}. \end{split}$$

Question 2 Donner l'expression de la fonction de transfert en boucle fermée $H_{BF}(p)$ de l'asservissement d'effort.

$$\begin{array}{l} \textbf{Correction} \quad \text{D'une part, } F(p) = \frac{H_1(p)H_2(p)H_3(p)}{1 + H_1(p)H_2(p)H_3(p)} = \frac{\frac{1}{Jp}\frac{1}{p}K_{C\theta}}{1 + \frac{1}{Jp}\frac{1}{p}K_{C\theta}} = \frac{K_{C\theta}}{Jp^2 + K_{C\theta}}. \\ \\ \text{D'autre part, } H_{\text{BF}}(p) = \frac{\frac{K_{C\theta}}{Jp^2 + K_{C\theta}}}{1 + \frac{K_{C\theta}}{Jp^2 + K_{C\theta}}} = \frac{K_{C\theta}}{Jp^2 + 2K_{C\theta}}. \end{array}$$

Question 3 *Quel sera le comportement de cet asservissement en réponse à un échelon d'amplitude* C_0 ? *Conclure.*

Correction Il s'agit d'un système du second ordre avec un coefficient d'amortissement nul. Le gain est de $\frac{1}{2}$ et la pulsation est de $\frac{1}{\omega_0^2} = \frac{J}{2K_{C\theta}} \Rightarrow \omega_0 = \sqrt{\frac{2K_{C\theta}}{J}}$.

Pour une entrée échelon d'ampitude C_0 , le système répondra par un sinus d'amplitude $\frac{C_0}{2}$ (valeur crête à crête C_0) de pulsation ω_0 .

Question 4 Donner l'expression analytique du gain B, en fonction de J et $K_{C\theta}$, permettant d'obtenir cette forme de fonction de transfert. En déduire l'expression analytique de la constante de temps τ .

Correction

$$\text{D'une part, } F_1(p) = \frac{H_1(p)}{1 + H_1(p)B}. \\ \text{D'autre part, } H_{BO}(p) = \frac{\frac{H_1(p)}{1 + H_1(p)B} H_2(p) H_3(p)}{1 + \frac{H_1(p)}{1 + H_1(p)B} H_2(p) H_3(p)} = \frac{H_1(p) H_2(p) H_3(p)}{1 + H_1(p) H_2(p) H_3(p)} = \frac{\frac{K_{C\theta}}{Jp^2}}{1 + \frac{B}{Jp} + \frac{K_{C\theta}}{Jp^2}} = \frac{K_{C\theta}}{Jp^2 + Bp + K_{C\theta}}$$

$$=\frac{1}{\frac{J}{K_{C\theta}}p^2+\frac{B}{K_{C\theta}}p+1}.$$
 Enfin, $(1+\tau p)^2=1+2\tau p+\tau^2 p^2$. Donc nécessairement $\tau^2=\frac{J}{K_{C\theta}}\Rightarrow \tau=\sqrt{\frac{J}{K_{C\theta}}}$ et $2\tau=\frac{B}{K_{C\theta}}\Leftrightarrow B=2\tau K_{C\theta}=2\sqrt{\frac{J}{K_{C\theta}}}K_{C\theta}=2\sqrt{JK_{C\theta}}$.

Question 5 Donner l'expression de l'erreur statique en réponse à un échelon d'amplitude C_0 . Conclure vis-à-vis du cahier des charges.

Correction La boucle ouverte est de classe 1. L'erreur statique (entrée échelon) est donc nulle ce qui est conforme à l'exigence 1.2.2.1 du cahier des charges.

Question 6 Proposer une expression simple pour la constante de temps T_i .

Correction

Pour avoir une FTBF d'ordre 2, il faut que la BO soit d'ordre 2. En conséquence, vu la forme de correcteur proposé, on peut envisager que le correcteur compense un pôle du système.

Ainsi pour
$$\tau = T_i$$
, on a $\frac{C_e(p)}{C_C(p)} = \frac{\frac{K_i}{\tau p(1+\tau p)}}{1+\frac{K_i}{\tau p(1+\tau p)}} = \frac{K_i}{\tau p(1+\tau p)+K_i} = \frac{K_i}{\tau^2 p^2 + \tau p + K_i} = \frac{1}{\frac{\tau^2}{K_i}p^2 + \frac{\tau}{K_i}p + 1}.$

Question 7 En s'appuyant sur les diagrammes ci-dessous, proposer un choix de réglage pour K_i permettant (si possible) de vérifier toutes les performances.

Correction

- Marge de gain 10 dB : la boucle ouverte est d'ordre 2. La phase est donc toujours supérieure à -180° et la marge de gain est infinie. Le critère est respecté.
- Marge de phase supérieure à 70° : il est donc nécessaire que le gain (dB) de la boucle ouverte soit nul lorsque

la phase est égale à 120°. D'après la réponse fréquentielle en BO, il faut donc que $20 \log K_i \le 4 \Rightarrow K_i \le 10^{\overline{20}} = 1,58$.

• Dépassement inférieur à 15% : l'abaque ci-dessous montre que pour une marge de phase de 70°, le dépassement sera inférieur à 15%. Ainsi, avec une marge de phase de 70°, le dépassement sera donc d'environ 2% et le coefficient d'amortissement sera d'environ 0,8.

• Temps de réponse à 5% inférieur à 0,5 s : en utilisant la réponse fréquentielle pour un gain de 0,4 (<1,58) on a $\omega_0 \simeq 15 \, \mathrm{rad \, s^{-1}}$. En utilisant l'abaque du temps de réponse réduit, on a $\omega_0 \cdot T_{r5\%} \simeq 3,5$; donc $T_{r5\%} \simeq \frac{3,5}{15} = 0,23 \, \mathrm{s}$.

• D'après le diagramme de Bode en BF, le gain basse fréquence est nul. Le gain de la fonction de transfert est donc unitaire. L'erreur statique est donc nulle.

On propose donc $K_i = 0, 4(<1,58)$.

Retour sur le cahier des charges

Question 8 Remplir le tableau et conclure sur la validation des critères de performance. Tracer l'allure de la réponse temporelle à un échelon C_{c0} en indiquant toutes les valeurs caractéristiques nécessaires.

Correction

Critère	Valeur	Valeur système	Écart
	CDCF	réglé	
Marges de gain	10 dB	∞	OK
Marges de phase	70°	70°	OK
Dépassement	< 15 %	2%	OK
T5 %	< 0,5 s	0,23 s	OK
Erreur statique	Nulle	Nulle	OK

Le cahier des charges est donc respecté. (Réponse indicielle d'un second ordre avec un coefficient d'amortissement de 0.8 et un gain unitaire).