St	at 2	30	H	[W 3) ,	Yi-	fan	2h	eng	ج	035	52]:	×86	5					
(.	Lec	6.	Q	١.															
				npler) $X_2\hat{eta}_2 +$	$\hat{\varepsilon}$, first	show t	hat					decom	position	of the	long re	egres-			
	(i) $ (I_n - H_1)Y = (I_n - H_1)X_2\hat{\beta}_2 + \hat{\varepsilon}, $ then show that																		
	(3)			n then f	•	-		$I_1)Y =$ The FW	-			v uses tl	ne fact t	hat X_2^{T}	$(I_n - H$	$I_1)X_2$			
				is it tr							.p,			112	(211 22	1)-12			
(1)	(In	- H.	۱۲	= (T., -	Ц. \	(Yí	^ / 2 + 6	<u>}</u> \										
U).	(10	(1)	<i>/</i>	= (In Tn -	H.)	(X.	2. +	2) Y. 6	\ \ +	ŝ)		-	,					
				= (In-	н.)	Y. R) 	12 y (Tn-	H.);	ر کر ج	1)(becau	ધ્ય (]	in-H	ı) XıB	;=0)	
				= (ти Тл -	H.) '	12 P 12 R	+	Ś	1117	1	(bec	ause	色上	C(X)	.)			
					F1 1	111 /	12 P												
(Z) _.	χ,	Г(Т,	\ – Н	۲(،	, =	χ,τ	(I _n -	· H.)) · X	ĝ	+ χ _Σ	ī. ŝ		berr	nco	(i)			
										,	+ X ₂			•				 2	
								- H ₁ `				P-7	Z	(bec	aus	6 (Ju) Χιβι =0.	1
						• _													
(3)	Sup	DOSE	Χ	T) ^T 2	n- H	h) }	(<u>)</u>	is i	ih ve	rtil	ole								
·				•															
		Λ β ₂ =	: ()	(^T (]	.n-}	{ı)}	(^z)_	-ι χ	⁷ ()	_ _n-t	۱,) ۲	Υ.	(be	2COU	ક્ટ	(z) .)		
		_	= (χ_{Σ}^{T}	$\widetilde{\chi}_{\mathbf{\lambda}}$) –	X	TΥ		(w	here	Š X	_= (In –	Hi) X ₂			
													- - (
							, C	•									-		

3 Multivariate regression via univariate regressions The FWL Theorem states that the OLS coefficient in the long regression can be obtained from several short regressions. Consider the most extreme case, if you only know how to compute univariate regressions, how can you compute $\hat{\beta}_j$, the *j*-th coordinate in the long regression?

the long regression? X Hint: The coefficient in the OLS fit of a vector a on a vector b equals $a^{T}b/b^{T}b$. $X^{T}X$

Suppose
$$X = (X_1, \dots, X_p)$$
 $B = (B_1, \dots B_p)^T$

(1) If
$$X_1 \cdots X_p$$
 are orthogonal, then $\hat{\beta_j} = \frac{Y^T X_j}{X_j^T X_j}$

(a). If they are not ofthogonal.

Let
$$W_1 = X_1$$
,
 $W_2 = X_2 - \frac{X_2^T X_1}{X_1^T X_1} X_1$
 $W_3 = X_3 - \frac{X_3^T X_2}{X_2^T X_2} \cdot X_2 - \frac{X_3^T X_1}{X_1^T X_1} X_1$
 \vdots
 $W_P = X_P - \frac{X_P^T X_{P-1}}{X_{P-1}^T X_{P-1}} X_{P-1} - \dots - \frac{X_P^T X_1}{X_1^T X_1} X_1$

Then Wi,..., Wp are orthogonal, and Wi... Wp E C(X)

$$\widehat{\beta_j} = \frac{Y^T w_j}{w_j^T w_j}$$

3. Prove Theorem 1.

Theorem 1. For $Y, X, W \in \mathbb{R}^n$,

$$\hat{\rho}_{yx|w} = \frac{\hat{\rho}_{yx} - \hat{\rho}_{yw}\hat{\rho}_{xw}}{\sqrt{1 - \hat{\rho}_{yw}^2}\sqrt{1 - \hat{\rho}_{xw}^2}}.$$

• Run OLS of X on
$$(1, \omega)$$
 $\hat{X} = \bar{X} + P_{xw} \cdot \frac{\hat{3}x}{\hat{3}w} (\omega - \bar{\omega})$

$$\Rightarrow \widehat{\mathcal{E}}_{X} = X - \overline{X} - P_{XW} \cdot \frac{\widehat{J}_{X}}{\widehat{J}_{W}} (W - \overline{W}) = C_{n} X - \frac{X^{T} C_{n} W}{W^{T} C_{n} W} \cdot C_{n} W.$$

• Run OLS of Y on (IIW).
$$\hat{Y} = F + P_{YW} \cdot \frac{\hat{J}_{Y}}{\hat{J}_{W}} (W - \overline{W})$$

$$=) \quad \hat{\mathcal{L}}_{\Upsilon} = \Upsilon - \bar{\Upsilon} - \hat{\Gamma}_{\Upsilon} \frac{3\hat{\Upsilon}}{7\hat{\omega}} (w - \bar{w}) = \hat{C}_{\Pi} \Upsilon - \frac{\Upsilon^{T}\hat{C}_{\Pi} w}{w^{T}\hat{C}_{\Pi} w} \cdot \hat{C}_{\Pi} w$$

· Hene,
$$\hat{\xi}_{X}^{T}\hat{\xi}_{Y}^{T} = \left[C_{N}X - \frac{X^{T}C_{N}W}{W^{T}C_{N}W} \cdot C_{N}W\right]^{T} \cdot \left[C_{N}Y - \frac{Y^{T}C_{N}W}{W^{T}C_{N}W} \cdot C_{N}W\right]$$

$$= X^{T}C_{n}Y - \frac{X^{T}C_{n}W}{W^{T}C_{n}W} \cdot W^{T}C_{n}Y - \frac{Y^{T}C_{n}W}{W^{T}C_{n}W} \cdot X^{T}C_{n}W + \frac{X^{T}C_{n}W \cdot Y^{T}C_{n}W}{W^{T}C_{n}W}$$

$$= X^{\mathsf{T}} \mathsf{Cn} Y - \frac{X^{\mathsf{T}} \mathsf{Cn} W \cdot W^{\mathsf{T}} \mathsf{Cn} Y}{W^{\mathsf{T}} \mathsf{Cn} W}$$

· And
$$\|\hat{\mathbf{x}}_{\mathbf{x}}\| = \|\hat{\mathbf{x}}_{\mathbf{x}}^{\mathsf{T}}\mathbf{x}_{\mathbf{x}}\| = \|[\mathbf{x}_{\mathbf{x}}^{\mathsf{T}}\mathbf{x}_{\mathbf{w}}^{\mathsf{T}}\mathbf$$

$$= \sqrt{X^{T}C_{n} X - \frac{X^{T}C_{n} W}{W^{T}C_{n} W}} = \sqrt{X^{T}C_{n} X} \cdot \sqrt{1 - C_{XW}^{T}}$$

· In the same way.
$$\|\hat{\Sigma_{\Upsilon}}\| = \sqrt{\Upsilon G \Upsilon} \cdot \sqrt{1 - \ell_{qw}^2}$$

• Finally .
$$\hat{Q}_{1} = \frac{\hat{\Sigma}_{x}^{T} \hat{\Sigma}_{Y}^{T}}{\|\hat{\Sigma}_{x}\| \cdot \|\hat{\Sigma}_{Y}^{T}\|} = \frac{\hat{Q}_{1x} - \hat{Q}_{xw} \cdot \hat{Q}_{yw}}{\sqrt{1 - \hat{Q}_{ww}}}$$