Control of Mobile Robots: Glue Lectures

Instructor:

Smriti Chopra ECE Ph.D. Candidate Georgia Tech

Glue Lecture 4: Controllability and Observability

Pay attention, this lecture will help you all with Quiz 4!

System Stability

$$x = \begin{bmatrix} \theta_1 \\ \dot{\theta}_1 \\ \theta_2 \\ \dot{\theta}_2 \end{bmatrix} \quad A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\dot{x} = Ax$$

In Matlab: >> eig(A)

All eigen values of A are zero! Unstable !!!

Introduce Control...

$$x = \begin{bmatrix} \dot{\theta}_1 \\ \dot{\theta}_1 \\ \dot{\theta}_2 \\ \dot{\theta}_2 \end{bmatrix} \quad A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$B = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

Say we can control θ_1

$$\dot{x} = Ax + Bu$$
 Controllable ??

Introduce Control...

$$x = \begin{bmatrix} \dot{\theta}_1 \\ \theta_2 \\ \dot{\theta}_2 \end{bmatrix}$$

$$A = \left[\begin{array}{cccc} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{array} \right]$$

$$B = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \qquad \begin{aligned} & h = \eta u m b^n & \sigma b \\ & states & (x) \\ & Say \text{ we can control } \ddot{\theta}_1 \end{aligned}$$

$$\dot{x} = Ax + Bu$$
 Uncontrollable !!!

$$\Gamma = \left[\begin{array}{ccccc} B & AB & A^2B & A^3B \end{array} \right] \ = \$$

$$rank(\Gamma) = 2 \\ \neq 4$$

In Matlab...

```
EDU>> A=[0 1 0 0; 0 0 0 0; 0 0 0 1; 0 0 0 0]
A =
EDU>> B=[0; 1; 0; 0]
B =
EDU>> ctrb(A,B)
ans =
EDU>> rank(ctrb(A,B))
ans =
```

$$x = \begin{bmatrix} \theta_1 \\ \dot{\theta}_1 \\ \dot{\theta}_2 \\ \dot{\theta}_2 \end{bmatrix} \quad A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$B = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

Need "more" control...

$$\dot{x} = Ax + Bu$$

$$B = \left[\begin{array}{c} 0 \\ 1 \\ 0 \\ 0 \end{array} \right]$$

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Need "more" control...

$$\begin{bmatrix} \theta_1 \\ \dot{\theta}_1 \\ \theta_2 \\ \dot{\theta}_2 \end{bmatrix} A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$B = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix}$$

Say we can control $\ddot{\theta}_1$ and $\ddot{\theta}_2$

$$\dot{x} = Ax + Bu$$
 Controllable ??

$$\Gamma = \begin{bmatrix} B & AB & A^2B & A^3B \end{bmatrix}$$

In Matlab again @...

```
EDU>> A=[0 1 0 0; 0 0 0 0; 0 0 0 1; 0 0 0 0]
A =
EDU>> B=[0 0; 1 0; 0 0; 0 1]
B =
EDU>> ctrb(A,B)
ans =
```

```
x = \begin{bmatrix} \theta_1 \\ \dot{\theta}_1 \\ \theta_2 \\ \dot{\theta}_2 \end{bmatrix} \quad A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}
```

$$B = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix}$$

State feedback...

$$\dot{x} = Ax + Bu$$
 Controllable $u = -Kx$

$$x = \begin{bmatrix} \theta_1 \\ \dot{\theta}_1 \\ \theta_2 \\ \dot{\theta}_2 \end{bmatrix} \quad A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$B = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$x = \left[\begin{array}{c} \theta_1 \\ \dot{\theta}_1 \end{array} \right] \quad A = \left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right]$$

$$\dot{x} = Ax$$

Unstable !!!

$$x = \left[\begin{array}{c} \theta_1 \\ \dot{\theta}_1 \end{array} \right]$$

$$B = \left[\begin{array}{c} 0 \\ 1 \end{array} \right]$$

$$x = \begin{bmatrix} \theta_1 \\ \dot{\theta}_1 \end{bmatrix} \quad A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$

 $B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ Say we can control $\ddot{\theta}_1$

$$\dot{x} = Ax + Bu$$
 Controllable ???

$$x = \begin{bmatrix} \theta_1 \\ \dot{\theta}_1 \end{bmatrix} \quad A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$

$$\dot{x} = Ax + Bu$$
 Controllable !!! $u = -Kx$

$$\dot{x} = Ax + Bu$$
 Controllable $u = -Kx$

$$\dot{x} = (A - BK)x$$

$$\dot{x} = \left(\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} - \begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} k_1 & k_2 \end{bmatrix} \right) x$$

$$\dot{x} = \begin{bmatrix} 0 & 1 \\ -k_1 & -k_2 \end{bmatrix} x$$

$$B = \left[\begin{array}{c} 0 \\ 1 \end{array} \right]$$

$$x_2 \mid x$$

$$\dot{x} = \begin{bmatrix} 0 & 1 \\ -k_1 & -k_2 \end{bmatrix} \overset{\triangleright}{x} A'$$

$$x = \begin{bmatrix} \theta_1 \\ \dot{\theta}_2 \end{bmatrix}$$

 $B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

$$x = \left| \begin{array}{c} \theta_1 \\ \dot{\theta}_1 \end{array} \right| \quad A = \left| \begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right|$$

Characteristic polynomial:

$$det(A' - \lambda I)$$

 $\lambda^2 + k_2\lambda + k_1$

$$-\lambda$$

$$\begin{cases}
D - \begin{bmatrix} 1 \end{bmatrix} \\
-k_2 - \lambda = \lambda^2 + k_2 \lambda + k_1
\end{cases}$$

Pick your favorite 2 eigen values (LHP):

$$\lambda_1 = -1$$

$$2 \sim$$

$$(\lambda + 1)(\lambda + 2)$$

$$\lambda^2 + 3\lambda + 2$$

$$\int_{N=1}^{N=\infty} \left(\lambda - \lambda \right)$$

$$K_1=2$$
 $K_2=3$

$$\dot{x} = \begin{bmatrix} 0 & 1 \\ -k_1 & -k_2 \end{bmatrix} x \xrightarrow{A'} A'$$

$$x = \left[\begin{array}{c} \theta_1 \\ \dot{\theta}_1 \end{array} \right]$$

$$x = \left| \begin{array}{c} \theta_1 \\ \dot{\theta}_1 \end{array} \right| \quad A = \left| \begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right|$$

Characteristic polynomial:

$$B = \left| \begin{array}{c} 0 \\ 1 \end{array} \right|$$

$$det(A' - \lambda I)$$

$$\lambda^2 + k_2\lambda + k_1$$

Pick your favorite 2 eigen values (LHP):

$$\lambda_1 = -1$$
$$\lambda_2 = -2$$

$$\lambda^2 + 3\lambda + 2$$

$$k_2 = 3$$

$$k_1 = 2$$

$$x = \begin{bmatrix} \theta_1 \\ \dot{\theta}_1 \end{bmatrix} \quad A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$

$$B = \left[\begin{array}{c} 0 \\ 1 \end{array} \right]$$

$$\begin{split} \dot{x} &= Ax + Bu \quad \text{Stable !!!} \\ u &= -Kx \end{split}$$

$$K = \left[\begin{array}{cc} k_1 & k_2 \end{array} \right] = \left[\begin{array}{cc} 2 & 3 \end{array} \right]$$

But we don't know our state...

$$x = \begin{bmatrix} \theta_1 \\ \dot{\theta}_1 \end{bmatrix} \quad A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$

$$\dot{x} = Ax + Bu$$

$$u = -Kx$$

Need to estimate our state...

$$x = \begin{bmatrix} \theta_1 \\ \dot{\theta}_1 \end{bmatrix} \quad A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$

$$B = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \quad C = \begin{bmatrix} 1 & 0 \end{bmatrix}$$
Say we can "see" θ_1

$$\dot{x} = Ax + Bu$$

$$y = Cx$$

$$u = -K\hat{x}$$

Need to estimate our state...

$$x = \begin{bmatrix} \theta_1 \\ \dot{\theta}_1 \end{bmatrix} \quad A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$
$$B = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \quad C = \begin{bmatrix} 1 & 0 \end{bmatrix}$$

$$B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$A = \left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right]$$

$$C = \begin{bmatrix} 1 & 0 \end{bmatrix}$$

$$\dot{x} = Ax + Bu$$
 u

$$u = Cx$$

$$\Omega = \left[\begin{array}{c} C \\ CA \end{array} \right]$$

$$= \left| \begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right|$$

$$rank(\Omega) = 2$$

 $\Omega = \left[\begin{array}{c} C \\ CA \end{array} \right] \ = \left[\begin{array}{c} 1 & 0 \\ 0 & 1 \end{array} \right] \ rank(\Omega) = 2$

Need to estimate our state...

$$x = \begin{bmatrix} \theta_1 \\ \dot{\theta}_1 \end{bmatrix} \quad A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$
$$B = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \quad C = \begin{bmatrix} 1 & 0 \end{bmatrix}$$

$$\dot{x}=Ax+Bu$$
 $y=Cx$ Observable !!!
$$\dot{\hat{x}}=A\hat{x}+Bu+L(y)-C\hat{x}$$
 $\dot{e}=\dot{x}-\dot{\hat{x}}=(A-LC)e$ Some way we pink to some way

All together... execution

$$\dot{x} = Ax + Bu \quad y = Cx \quad x = \begin{bmatrix} \theta_1 \\ \dot{\theta}_1 \end{bmatrix} \quad A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$
Controllable and Observable
$$K \quad L \quad B = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \quad C = \begin{bmatrix} 1 & 0 \end{bmatrix}$$
a) Wake up $t = t_0, \ x = x_0, \ \hat{x} = \hat{x}_0$
b) Start Loop (dt increments)

a) Wake up
$$t = t_0, \ \ x = x_0, \ \ \hat{x} = \hat{x}_0$$

- c) Read output y = Cx
- d) Compute control $u = -K\hat{x}$
- e) Send control u
- f) Update \hat{x} using dynamics $\hat{x} = A\hat{x} + Bu + L(y C\hat{x})$
- g) Repeat

Check the forums, and good luck with Quiz 4!