環論(第9回)の解答

問題 9-1

(1) A は整域より $A \neq \{0\}$ に注意. $ab \in \{0\}$ $(a,b \in A)$ とする. ab = 0 で, A は整域より a = 0 または b = 0. よって $a \in \{0\}$ または $b \in \{0\}$. よって $\{0\}$ は素イデアル.

$$f(x) = xq(x) + a \quad (q(x) \in \mathbb{C}[x], \ a \in \mathbb{C})$$

と表す. $f(x), x \in J$ より $a \in J$. 仮に a = 0 とすると, $f(x) = xq(x) \in I$ となり矛盾. 従って $a \neq 0$. よって

$$1 = a \cdot \frac{1}{a} \in J.$$

従って $J = \mathbb{C}[x]$. よって I は極大イデアル.

問題 9-2

 $f(1_A) = 1_B \neq 0_B$ より $1_A \notin \ker f$. 従って $\ker f \neq A$. 次に $xy \in \ker f$ $(x, y \in A)$ とすると,

$$0_B = f(xy) = f(x)f(y)$$

であり, B は整域だから $f(x)=0_B$ または $f(y)=0_B$. よって $x\in\ker f$ または $y\in\ker f$. 従って $\ker f$ は素イデアル.

問題 9-3

(1) $2=(1+i)(1-i)\in I$ に注意する. $x+I\in A/I$ をとる. x=a+ib $(a,b\in\mathbb{Z})$ とし、さらに a-b=2n+r $(n\in\mathbb{Z},\ r\in\{0,1\})$ と表す. このとき、

$$x = (a - b) + b(1 + i) = r + 2n + b(1 + i).$$

$$x + I = r + I \in \{0 + I, 1 + I\}.$$

よって $A/I = \{0 + I, 1 + I\}.$

(2) 0+I=1+I と仮定する. $1\in I$ より 1=(1+i)(a+bi) $(a,b\in\mathbb{Z})$ と表せる. 両辺に定理 3-2 の写像 N をとると,

$$1 = N(1) = N(1+i)N(a+bi) = 2(a^2 + b^2).$$

 $a^2 + b^2$ は整数より矛盾. 従って $0 + I \neq 1 + I$.

(3) (2) より $A/I \neq \{0+I\}$. また (1+I)(1+I) = 1+I より, 1+I は A/I の可逆元. よって A/I は体である. 定理 9-3 より I は極大イデアルである.

copyright ⓒ 大学数学の授業ノート