Economía 5

Formulario · Primavera 2021

Parte I

Producción y consumo

1. El modelo estático de producción y consumo

Definición 1.1 (Función de producción). La función de producción f_j describe la relación entre la producción de bienes y la cantidad de trabajo requerido en la j-ésima empresa competitiva, y se denota:

$$y_j = f_j(l) \ tal \ que \ j \in J.$$

Propiedades de la función de producción

- (I) Creciente $(f'_i > 0)$, i.e. el trabajo es siempre productivo.
- (II) Cóncava $(f_j'' \le 0)$, i.e. está sujeta a la ley de rendimientos marginales decrecientes.

1.1. El problema de la firma

$$\max_{\{l\}} pf_j(l) - wl$$
Función de producción Nivel de empleo

p Precio del bien finalw Precio del trabajo (salario)

Condición de optimalidad

$$l: pf'_i(l_i(w,p)) = w.$$

Definición 1.2 (Ganancias óptimas). Definimos las ganancias óptimas de la firma j como sique:

$$\pi_j(w,p) = pf_j(l_j(w,p)) - wl_j(w,p).$$

Definición 1.3 (Demanda laboral). La solución l_j de la condición de optimalidad del problema de la firma se conoce como demanda laboral de la firma j.

Definición 1.4 (Oferta de bienes). A la función $y_j(w,p)$ se le conoce como oferta de bienes de la empresa j.

Proposición 1.1

Las funciones de **demanda laboral** y **oferta de bienes** son homogéneas de grado 0.

Proposición 1.2

La función de ganancias óptimas es homogénea de grado 1.

Definición 1.5 (Función de utilidad). Sea una función $u_i(h,c)$, esta representa la utilidad del i-ésimo consumidor por ocio y consumo si, para cualquier par de alternativas $(h_0,c_0),(h_1,c_1) \in \mathbb{R}^2$, se tiene $u_i(h_0,c_0) < h_i(h_1,c_1)$ si y solo si el consumidor en cuestión prefiere la canasta (h_1,c_1) sobre la canasta (h_0,c_0) .

Propiedades de la función de utilidad

- (I) Continuamente diferenciable, i.e. existe u'_i continua.
- (II) Creciente $(u_i' > 0)$.
- (III) Monótona.
- (IV) Cuasicóncava.

1.2. El problema de los consumidores

$$\begin{aligned} \max_{\{h,c\}} \ u_i(h,c) \\ \text{sujeto a} \quad h+n = H_i, \\ pc = wn + \sum_J \theta_{ij} \pi_j(w,p). \end{aligned}$$

O bien,

$$\max_{\{h,c\}} u_i(h,c)$$
 sujeto a
$$wh + pc = wH_i + \sum_J \theta_{ij} \pi_j(w,p).$$

$ heta_{ij}$	Acciones de la firma j
c	Consumo del bien final
π_j	Ganancias de la firma j
wn	Ingreso laboral
$\sum_{J} \theta_{ij} \pi_j(w, p)$	Ingreso no laboral o de capital
J	
p	Precio del bien final
w	Precio del trabajo (salario)
$h+n=H_i$	Restricción de tiempo
$pc = wn + \sum \theta_{ij}\pi_j(w, p)$	Restricción presupuestal
$\overset{J}{h}$	
h	Tiempo dedicado al ocio
n	Tiempo dedicado al trabajo
H_i	Unidades de tiempo disponibles
wh+pc	Valor de mercado de la canasta de consumo

Condiciones de optimalidad

$$h: \frac{\partial u_i}{\partial h}(h^*, c^*) = \lambda^* w,$$

$$c: \frac{\partial u_i}{\partial c}(h^*, c^*) = \lambda^* p,$$

$$\lambda: wh^* + pc^* = wH_i + \sum_I \theta_{ij} \pi_j(w, p).$$

Si $h^*, c^* > 0$, en el óptimo: TMS $(h^*, c^*) = \frac{w}{p}$ tal que

Parte II Consumo en el tiempo Parte III Producción en el tiempo Parte IV Economía abierta Parte V Inversión y capital