

2025 年数理经济学笔记

授课: 杨佳楠老师

作者:徐靖 组织:PKU

时间: Febuary 27, 2025

声明:请勿用于个人学习外其他用途!

目录

第1章 Linear Algebra¹

内容提要

□ Leading Principal Minor: 顺序主子式

□ Orthogonal matrix:正交矩阵

□ Positive semi-definite matrix: 半正定矩阵

□ Positive definite matrix:正定矩阵

■ Symmetric matrix: 对称矩阵

□ Determinant: 行列式

定义 1.1

For $N \times N$ matrix $A = (a_{ij})$, using any row or column:

$$\det A = \sum_{i=1}^{N} (-1)^{i+j} a_{ij} \det A_{ij}$$

where A_{ij} is the $(N-1) \times (N-1)$ matrix obtained by deleting the i-th row and j-th column of A.

定理 1.1

$$A^{-1} = \frac{1}{\det A}\tilde{A}$$

where $\tilde{a_{mn}} = (-1)^{m+n} \det A_{nm}$.

定义 1.2

Orthogonal matrix : $P^TP = I$.

Symmetric matrix : $A^T = A$.

Positive definite matrix : $x^T A x > 0$ for all $x \neq 0$. **Positive semi-definite** matrix : $x^T A x \ge 0$ for all x.

定义 1.3

Leading Principal Minor: determinant of the first $k \times k$ submatrix of A. For real symmetric matrix A, A is positive definite if and only if all its leading principal minors are positive.

定义 1.4

$$Av = \lambda v$$

where v is eigenvector, λ is eigenvalue. λ is a root of the characteristic polynomial $\det(A - \lambda I) = 0$.

定义 1.5

Complex inner product:

$$\langle x, y \rangle = x^* y = \sum_{i=1}^n \bar{x_i} y_i$$

where \bar{x} is the **complex conjugate** and x^* is the **conjugate transpose** (adjoint).

Hermitian matrix : $A^* = A$.

For real matrices, Hermitian matrix is symmetric.

For Hermitian matrix, all eigenvalues are real.

¹只记一些矩阵分解吧,以防忘了

定理 1.2 (Diagonalization of Symmetric Matrices)

$$P^T A P = \operatorname{diag}\{\lambda_1, \dots, \lambda_n\}$$

where P is orthogonal matrix, λ_i are eigenvalues of A.