ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧЕРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

"Калининградский государственный технический университет" (ФГБОУ ВО "КГТУ")

Кафедра систем управления и вычислительной техники

Курсовая работа по дисциплине: Дискретная математика Вариант №70

Работу проверил:	Работу выполнил:
доцент, профессор,	сту дент группы 18-ВТ
к.т.н. Иванов В. Е.	Подковыров Д.Р.
с оценкой:	подпись:
подпись:	« <u></u> »2020г
« <u></u> »2020г.	

Калининград 2020г.

Содержание

Расчетно-графическая работа № 1	3
Расчетно-графическая работа № 2	22
Расчетно-графическая работа № 3	30
Расчетно-графическая работа № 4	52
Расчетно-графическая работа № 5	62
Расчетно-графическая работа № 6	76
Расчетно-графическая работа № 7	88
Список используемой литературы	99

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧЕРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ "Калининградский государственный технический университет" (ФГБОУ ВО "КГТУ")

Кафедра систем управления и вычислительной техники Дисциплина: Дискретная математика

Расчетно-графическая работа № 1

«Расчет числовых характеристик графов» Вариант №70

Работу проверил:	Работу выполнил:
доцент, профессор, к.т.н. Иванов В. Е.	студент группы 18-ВТ Подковыров Д.Р.
с оценкой:	подпись:
подпись:	« <u> </u>
«»2020г.	

Калининград 2020г.

Содержание

1. 3a ₂	цание на расчетно-графическую работу №1	3
1.1.	Расчет числовых характеристик графов	3
	Расчет количества вершин $n(G)$ графа G	
	Расчет количества ребер m(G) графа G	
1.4.	Расчет степеней вершин δ_i графа G	4
1.5.	Расчет числа компонент связности $\alpha(G)$	4
	Расчет хроматического числа $\gamma(G)$ графа G	
	Расчет внешней устойчивости $\psi(G)$ графа G	
1.8.	Расчет числа внутренней устойчивости φ (G) графа G	18

1. Задание на расчетно-графическую работу №1

Найти основные числа графа G по данным, приведенным в таблице 1 для модели графа, представленной на рисунке 1: число вершин, число ребер, степени всех вершин, число компонент связности, цикломатическое число, хроматическое число, плотность и неплотность графа, числа внешней и внутренней устойчивости.

Рисунок 1.1 – модель графа G

Таблица 1.1 — Данные для формирования графа G

Номер	Удалить в модели графа	Удалить в модели графа ребра
варианта	вершины $\{i\}$	$\{(i,j)\}$
16	{10,13}	{(1,2),(2,3),(2,7),(6,7),(7,8),(7,12)}

1.1. Расчет числовых характеристик графов

Пусть задан граф G (рисунок 1.2).

Рисунок 1.2 – граф G

1.2. Расчет количества вершин n(G) графа G

Расчет выполняется методом визуального анализа графа G. В итоге расчета имеем:

$$n(G)=11$$

1.3. Расчет количества ребер m(G) графа G

Расчет выполняется методом визуального анализа графа G. В итоге расчета имеем:

$$m(G)=15$$

1.4. Расчет степеней вершин δ_i графа G

Расчет выполняется методом визуального анализа графа G с целью определения количества ребер, инцидентных вершине x_i . Результаты расчета сведены в таблицу 1.2.

Таблица 1.2 — Результаты расчета степеней вершин графа G

- 1	пастица	1.2	Cojubic	TDI Pae	to tota etemenen Bepillini i paque e							
	\mathcal{X}_i	1	2	3	4	5	6	7	8	9	11	12
	δ_i	2	2	3	5	2	2	3	3	3	2	3

1.5. Расчет числа компонент связности $\alpha(G)$

Для расчета числа компонент связности графа G вычисляют матрицу достижимости $/|Q^p|/|$ и определяют полные подграфы графа. Для построения матрицы достижимости удобно воспользоваться матрицей смежности графа G:

$$\|Q^p\| = \|1\| \bigcup \|H(x_i)\| \bigcup \|H^2(x_i)\| \bigcup ... \bigcup \|H^p(x_i)\|,$$

где ||1|| — единичная матрица (рисунок 1.3), $||H(x_i)||$ — матрица смежности графа G, $||H^p(x_i)||$ — матрица смежности графа G, возведенная в p-ую степень.

2.5 Расчет цикломатического числа $\lambda(G)$ графа G

Рассчитаем цикломатическое число графа G, т.е. наименьшее число ребер, удаление которых приведет к графу без циклов и петель.

Расчет выполним по формуле: $\lambda(G) = m(G) - n(G) + \alpha(G) = 15 - 11 + 2 = 6$

В качестве примера удалим на графе G шесть ребер: (2,6), (3,4), (4,7), (4,8), (8,9), (8,12). Получим граф на рисунке 1.1(1).

Рисунок 1.1(1) — граф без циклов и петель

1	1	2	3	4	5	6	7	8	9	11	12
1	1	0	0	0	0	0	0	0	0	0	0
2	0	1	0	0	0	0	0	0	0	0	0
3	0	0	1	0	0	0	0	0	0	0	0
4	0	0	0	1	0	0	0	0	0	0	0
5	0	0	0	0	1	0	0	0	0	0	0
6	0	0	0	0	0	1	0	0	0	0	0
7	0	0	0	0	0	0	1	0	0	0	0
8	0	0	0	0	0	0	0	1	0	0	0
9	0	0	0	0	0	0	0	0	1	0	0
11	0	0	0	0	0	0	0	0	0	1	0
12	0	0	0	0	0	0	0	0	0	0	1

Рисунок 1.3 — Единичная матрица для графа G

Построим матрицу смежности графа G (рисунок 1.4).

H	1	2	3	4	5	6	7	8	9	11	12
1	0	0	1	1	0	0	0	0	0	0	0
2	0	0	0	0	1	1	0	0	0	0	0
3	1	0	0	1	0	0	1	0	0	0	0
4	1	0	1	0	0	0	1	1	1	0	0
5	0	1	0	0	0	1	0	0	0	0	0
6	0	1	0	0	1	0	0	0	0	0	0
7	0	0	1	1	0	0	0	0	0	1	0
8	0	0	0	1	0	0	0	0	1	0	1
9	0	0	0	1	0	0	0	1	0	0	1
11	0	0	0	0	0	0	1	0	0	0	1
12	0	0	0	0	0	0	0	1	1	1	0

Рисунок 1.4 — Матрица смежности //H// графа G

Получим матрицу достижимости //Q// графа G (рисунок 1.5).

								-	_		•
Q	1	2	3	4	5	6	7	8	9	11	12
1	1	0	1	1	0	0	0	0	0	0	0
2	0	1	0	0	1	1	0	0	0	0	0
3	1	0	1	1	0	0	1	0	0	0	0
4	1	0	1	1	0	0	1	1	1	0	0
5	0	1	0	0	1	1	0	0	0	0	0
6	0	1	0	0	1	1	0	0	0	0	0
7	0	0	1	1	0	0	1	0	0	1	0
8	0	0	0	1	0	0	0	1	1	0	1
9	0	0	0	1	0	0	0	1	1	0	1
11	0	0	0	0	0	0	1	0	0	1	1
12	0	0	0	0	0	0	0	1	1	1	1

Рисунок 1.5 — Матрица достижимости //Q// графа G

Возведем матрицу смежности //H// в квадрат, т.е. умножим ее саму на себя. Получим // H^2 // (рисунок 1.6).

\mathbf{H}^2	1	2	3	4	5	6	7	8	9	11	12
1	1	0	1	1	0	0	1	1	1	0	0
2	0	1	0	0	1	1	0	0	0	0	0
3	1	0	1	1	0	0	1	1	1	1	0
4	1	0	1	1	0	0	1	1	1	1	1
5	0	1	0	0	1	1	0	0	0	0	0
6	0	1	0	0	1	1	0	0	0	0	0
7	1	0	1	1	0	0	1	1	1	0	1
8	1	0	1	1	0	0	1	1	1	1	1
9	1	0	1	1	0	0	1	1	1	1	1
11	0	0	1	1	0	0	0	1	1	1	0
12	0	0	0	1	0	0	1	1	1	0	1

Рисунок 1.6 — Матрица // H^2 // графа G

Возведем матрицу смежности ||H|| в третью степень (рисунок 1.7).

\mathbf{H}^3	1	2	3	4	5	6	7	8	9	11	12
1	1	0	1	1	0	0	1	1	1	1	1
2	0	1	0	0	1	1	0	0	0	0	0
3	1	0	1	1	0	0	1	1	1	1	1
4	1	0	1	1	0	0	1	1	1	1	1
5	0	1	0	0	1	1	0	0	0	0	0
6	0	1	0	0	1	1	0	0	0	0	0
7	1	0	1	1	0	0	1	1	1	1	1
8	1	0	1	1	0	0	1	1	1	1	1
9	1	0	1	1	0	0	1	1	1	1	1
11	1	0	1	1	0	0	1	1	1	0	1
12	1	0	1	1	0	0	1	1	1	1	1

Рисунок 1.7 — Матрица $\|H^3\|$ графа G

Возведем матрицу смежности ||H|| в четвертую степень (рисунок 1.8).

\mathbf{H}^4	1	2	3	4	5	6	7	8	9	11	12
1	1	0	1	1	0	0	1	1	1	1	1
2	0	1	0	0	1	1	0	0	0	0	0
3	1	0	1	1	0	0	1	1	1	1	1
4	1	0	1	1	0	0	1	1	1	1	1
5	0	1	0	0	1	1	0	0	0	0	0
6	0	1	0	0	1	1	0	0	0	0	0
7	1	0	1	1	0	0	1	1	1	1	1
8	1	0	1	1	0	0	1	1	1	1	1
9	1	0	1	1	0	0	1	1	1	1	1
11	1	0	1	1	0	0	1	1	1	1	1
12	1	0	1	1	0	0	1	1	1	1	1

Рисунок 1.8 — Матрица $\|H^4\|$ графа G

Возведем матрицу смежности ||H|| в пятую степень (рисунок 1.9).

H^5	1	2	3	4	5	6	7	8	9	11	12
1	1	0	1	1	0	0	1	1	1	1	1
2	0	1	0	0	1	1	0	0	0	0	0
3	1	0	1	1	0	0	1	1	1	1	1
4	1	0	1	1	0	0	1	1	1	1	1
5	0	1	0	0	1	1	0	0	0	0	0
6	0	1	0	0	1	1	0	0	0	0	0
7	1	0	1	1	0	0	1	1	1	1	1
8	1	0	1	1	0	0	1	1	1	1	1
9	1	0	1	1	0	0	1	1	1	1	1
11	1	0	1	1	0	0	1	1	1	1	1
12	1	0	1	1	0	0	1	1	1	1	1

Рисунок 1.9 — Матрица $||H^5||$ графа G

Анализ матриц $\|H^4\|$ и $\|H^5\|$ показывает, что никаких изменений в $\|H^5\|$ по сравнению $\|H^4\|$ нет. Значит процесс вычислений завершен.

Матрица достижимости // Q^5 // (рисунок 1.10) рассчитывается следующим образом:

$\left\ Q^{5}\right\ = \left\ 1\right\ \bigcup \left\ H\right\ $	$\int H^2 $	$\int H^3 \cup$	$ H^4 $
--	-----------------	---------------------	---------

Q^5	2	5	6	1	3	4	7	8	9	11	12
2	1	1	1	0	0	0	0	0	0	0	0
5	1	1	1	0	0	0	0	0	0	0	0
6	1	1	1	0	0	0	0	0	0	0	0
1	0	0	0	1	1	1	1	1	1	1	1
3	0	0	0	1	1	1	1	1	1	1	1
4	0	0	0	1	1	1	1	1	1	1	1
7	0	0	0	1	1	1	1	1	1	1	1
8	0	0	0	1	1	1	1	1	1	1	1
9	0	0	0	1	1	1	1	1	1	1	1
11	0	0	0	1	1	1	1	1	1	1	1
12	0	0	0	1	1	1	1	1	1	1	1

Рисунок 1.10— Матрица // Q^5 // графа G

Поскольку матрица // Q^5 // содержит два блока: один — 3x3 элемента, другой — 8x8 элементов, то граф G содержит два связных подграфа:

$$G_1 = \langle X_1, H_1 \rangle, G_2 = \langle X_2, H_2 \rangle,$$

где
$$X_1 = \{x_2, x_5, x_6\}, X_2 = \{x_1, x_3, x_4, x_7, x_8, x_9, x_{11}, x_{12}\}.$$

Таким образом, для исходного графа $G=<\!\!X,H\!\!>$ число компонент связности равно $\alpha(G)=2$.

1.6. Расчет хроматического числа $\gamma(G)$ графа G

Рассчитаем хроматическое число графа G, т.е. наименьшее число красок, при применении которых для раскраски вершин графа две любые смежные вершины графа G не будут окрашены в один цвет. Для расчета хроматического числа будем использовать два способа: 1) раскраска вручную с применение оценочных соотношений; 2) раскраска с применением алгоритма.

Для раскраски вручную воспользуемся двумя оценочными соотношениями. Одно из них задает левую границу для $\gamma(G)$, min возможное значение $\gamma(G)$, т.е. $\gamma_{min}(G)$:

- 1) полный n-вершинный граф имеет $\gamma_{min}(G) = n$;
- 2) пустой граф имеет $\gamma_{min}(G)=1$;
- 3) граф с циклом (т.е. хотя бы одним) четной длины имеет $\gamma_{min}(G)=2$;
- 4) граф с циклом нечетной длины имеет $\gamma_{min}(G)=3$;
- 5) граф-дерево имеет $\gamma_{min}(G)=2$.

Другое оценочное соотношение задает правую границу для $\gamma(G)$, *max* необходимое значение $\gamma(G)$, т.е. $\gamma_{max}(G)$:

$$\gamma_{\max}(G) \le \max_{i} \{\delta_{i} + 1\} = 5 + 1 = 6$$

Начинаем проверку с вычисления $\gamma_{min}(G)$. Поскольку в графе G есть цикл нечетной длины, пробуем раскрасить граф тремя красками (рисунок 1.12).

Рисунок 1.12 — Раскраска графа G синей, желтой и красной красками

Вывод: трех красок, т.е. $\gamma_{min}(G) = 3$ оказалось достаточно:

$$\gamma(G) = \gamma_{\min}(G) = 3 \le 6$$
.

Для раскраски графа вторым способом используем следующий алгоритм:

- 1. Вычислить степени вершин. Положить k = 1.
- 2. Просмотреть вершины в порядке невозрастания степеней и окрасить первую неокрашенную вершину в цвет N_2 k.
- 3. Просмотреть вершины в порядке невозрастания степеней и окрасить в цвет N_{2} k все вершины, которые не смежны вершинам, уже окрашенным в цвет N_{2} k .
- 4. Если все вершины окрашены, то k искомое хроматическое число. Иначе k=k+1 и переход к пункту 2.

Вычислим степени всех вершин (на рис. 1.13 степени вершин указаны рядом с вершинами).

Рисунок 1.13 — Граф *G*, для которого рассчитаны степени

Просмотрим вершины графа в порядке невозрастания значений их степеней и окрасим в цвет №1 все неокрашенные вершины, которые не смежны уже окрашенным в этот цвет вершинам (рис. 1.14).

Рисунок 1.14 — Граф G после первого шага

Просмотрим вершины графа в порядке невозрастания значений их степеней и окрасим в цвет №2 все неокрашенные вершины, которые не смежны уже окрашенным вершинам в цвет №2 (рис. 1.15).

Рисунок 1.15 — Граф G после второго шага

Просмотрим вершины графа в порядке невозрастания значений их степеней и окрасим в цвет №3 все неокрашенные вершины, которые не смежны уже окрашенным вершинам в синий цвет (рис. 1.16).

Рисунок 1.16 — Граф G после третьего шага

Поскольку все вершины графа раскрашены, алгоритм заканчивает работу. Хроматическое число графа равно трем, т.е. $\gamma(G)=3$. Применение раскраски с помощью алгоритма и ручной раскраски дали равные результаты. Рассчитаем плотность графа G, т.е. наибольшее число вершин подграфа графа G, между всеми вершинами которого задано отношение смежности.

Получим матрицы смежности //H// и достижимости //Q// графа G (рисунок 1.17)

H	1	3	4	7	8	9	11	12
1	0	1	1	0	0	0	0	0
3	1	0	1	1	0	0	0	0
4	1	1	0	1	1	1	0	0
7	0	1	1	0	0	0	1	0
8	0	0	1	0	0	1	0	1
9	0	0	1	0	1	0	0	1
11	0	0	0	1	0	0	0	1
12	0	0	0	0	1	1	1	0

Q	1	3	4	7	8	9	11	12
1	1	1	1	0	0	0	0	0
3	1	1	1	1	0	0	0	0
4	1	1	1	1	1	1	0	0
7	0	1	1	1	0	0	1	0
8	0	0	1	0	1	1	0	1
9	0	0	1	0	1	1	0	1
11	0	0	0	1	0	0	1	1
12	0	0	0	0	1	1	1	1

Рисунок 1.17 — Матрицы //H// и //Q// графа

В матрице |Q|// сформируем блоки, используя метод визуального анализа и перестановок строк (т.е. стоки меняются местами) и перестановок столбцов (т.е. столбцы меняются местами). В итоге получим матрицу |Q|// на рисунке 1.18.

Q	1	3	4	7	8	9	11	12
1	1	1	1	0	0	0	0	0
3	1	1	1	1	0	0	0	0
4	1	1	1	1	1	1	0	0
7	0	1	1	1	0	0	1	0
8	0	0	1	0	1	1	0	1
9	0	0	1	0	1	1	0	1
11	0	0	0	1	0	0	1	1
12	0	0	0	0	1	1	1	1

Рисунок 1.18 — Матрица ||Q|| с четырьмя выделенными блоками

Анализ матрицы ||Q|| на рисунке 1.18 показывает, что поскольку число блоков равно четырем, то имеем четыре полных подграфа G. (1— ый блок: 3х3, 2— ой блок: 2х2, 3— ий блок: 2х2, 4— ый блок: 2х2). Иными словами, $|X_1|=3$, $|X_2|=2$, $|X_3|=2$, $|X_4|=2$ (рисунок 1.19).

Oбозначения: пунктиром выделены полные подграфы графа G. Рисунок 1.19 — Три подграфа графа G.

Таким образом, имеем:

$$\rho\left(G\right) = \max_{i} \left\{ \left| X_{i} \right| \right\} = 3$$

2.8 Расчет неплотности $\varepsilon(G)$ графа G

Рассмотрим плотность графа G, т.е. наибольшее число вершин пустого подграфа графа G между всеми вершинами которого нет отношений смежности.

Построим обратный граф γ G для графа G. Для этого получим матрицу $\|H\|$ и обратную ей матрицу $\|\gamma H\|$ (рисунок 1.20).

H	1	3	4	7	8	9	11	12
1	0	1	1	0	0	0	0	0
3	1	0	1	1	0	0	0	0
4	1	1	0	1	1	1	0	0
7	0	1	1	0	0	0	1	0
8	0	0	1	0	0	1	0	1
9	0	0	1	0	1	0	0	1
11	0	0	0	1	0	0	0	1
12	0	0	0	0	1	1	1	0

¬H	1	3	4	7	8	9	11	12
1	1	0	0	1	1	1	1	1
3	0	1	0	0	1	1	1	1
4	0	0	1	0	0	0	1	1
7	1	0	0	1	1	1	0	1
8	1	1	0	1	1	0	1	0
9	1	1	0	1	0	1	1	0
11	1	1	1	0	1	1	1	0
12	1	1	1	1	0	0	0	1

Рисунок 1.20 — Матрицы смежности графа G и графа $\neg G$

Строим матрицу достижимости графа γG и выполняем операцию перестановки строк и столбцов. Результаты показаны на рисунке 1.21.

$\neg Q^p$	1	3	4	7	8	9	11	12
1	1	0	0	1	1	1	1	1
3	0	1	0	0	1	1	1	1
4	0	0	1	0	0	0	1	1
7	1	0	0	1	1	1	0	1
8	1	1	0	1	1	0	1	0
9	1	1	0	1	0	1	1	0
11	1	1	1	0	1	1	1	0
12	1	1	1	1	0	0	0	1

$\neg Q^p$	1	11	9	8	7	3	12	4
1	1	1	1	1	1	1	1	0
11	1	1	1	1	0	1	0	1
9	1	1	1	0	0	1	0	0
8	1	1	0	1	1	0	0	0
7	1	0	0	1	1	1	1	0
3	1	1	1	0	1	1	1	0
12	1	0	0	0	1	1	1	1
4	0	1	0	0	0	0	1	1

Анализ матрицы γQ^p с блочной структурой на рисунке 1.21 показывает, что поскольку число блоков четыре, то имеем четыре пустых подграфов графа G с двумя вершинами в двух подграфах и тремя вершинами в двух (рисунок 1.22).

$$|X_1|=3$$
, $|X_2|=2$, $|X_3|=3$, $|X_4|=2$.

Рисунок 1.22 — четыре пустых подграфа графа G

Таким образом, имеем:

$$\varepsilon (G) = \rho(\neg G) = \max_{i} \{|X_{i}^{'}|\} = 3.$$

1.7. Расчет внешней устойчивости $\psi(G)$ графа G

Рассчитаем внешнюю устойчивость графа G, т.е. наименьшее число вершин графа G смежных со всеми остальными вершинами графа.

Составим таблицу 1.3 отображений для графа G и дополним ее столбцом несмежных вершин.

X_i		H_i	$\neg H_i$
1		3,4	7,8,9,11,12
3		1,4,7	8,9,11,12
4		1,3,7,8,9	11,12
7		3,4,11	1,8,9,12
8		4,9,12	1,3,7,11
9		4,8,12	1,3,7,11
1 1	l	7,12	1,3,4,8,9
12	2	8,9,11	1,3,4,7

Таблица 1.3 — Таблица отображений графа G

Анализ таблицы 1.3 показывает, что в столбце γ H_i есть несмежные вершины. В этом случае необходимо построить еще одну таблицу — таблицу 4 следующим образом:

Таблица 1.4 строится на базе строк таблицы 1.3, в которых нет знака \emptyset в столбце γ H_i . В нашем случае таких строк восемь. В строках первого столбца таблицы 1.4 пары вершин, образованные полным перебором вершин из первого и второго столбцов таблицы 1.3. В строках второго и третьего столбцов таблицы 1.4 указываются смежные и несмежные вершины, соответственно, для $\{x_i, x_j\}$, перечисляемых в строках первого столбца таблицы 1.4.

Имеем таблицу 1.4:

$\{x_i,x_j\}$	$H(x_i,x_j)$	$\neg H(x_i,x_j)$
x_1,x_3	x_4, x_7	$x_8, x_{9,}x_{11} x_{12}$
x_1, x_4	X_3, X_7, X_8, X_9	$x_{11,}x_{12}$
x_3,x_4	X_1, X_7, X_8, X_9	x_{11}, x_{13}
x_3,x_7	x_1, x_4, x_{11}	x_8, x_{9}, x_{12}
<i>X</i> ₄ , <i>X</i> ₇	$X_1, X_3, X_8, X_9, X_{11}$	x_{12}
x_4, x_8	$X_1, X_3 X_{7,}X_{9},X_{12}$	x_{11}
X4,X9	$X_1, X_3 X_{7,}X_{8},X_{12}$	x_{11}
χ_8,χ_9	x_4, x_{12}	$x_1, x_{3,}x_7 x_{11}$
x_8, x_{12}	x_4, x_9, x_{11}	x_1, x_{3,x_7}
x_7, x_{11}	x_3, x_4, x_{12}	x_1, x_{8,x_9}
x_{11}, x_{12}	X_7, X_8, X_9	$x_1, x_{3,}x_4$
x_{9}, x_{12}	x_4, x_8, x_{11}	$x_{1,}x_{3,}x_{7}$

Таблица 1.4 — Таблица отображений и несмежных вершин для двухэлементных подмножеств

Перейдем к формированию новой таблицы отображений и несмежных вершин для трехэлементных подмножеств $\{x_i, x_j, x_k\}$, т.е. $H(x_i, x_j, x_k)$ и $T(x_i, x_j, x_k)$

$\{x_i,x_j,x_k\}$	$H(x_i,x_j,x_k)$	$\neg H(x_i, x_j, x_k)$
x_4, x_8, x_{12}	$x_1, x_3, x_7, x_9, x_{11}$	Ø
x_4, x_9, x_{12}	$x_1, x_3, x_7, x_8, x_{11}$	Ø
<i>X</i> 7, <i>X</i> 4, <i>X</i> 8	$X_1, X_3, X_9, X_{11}, X_{12}$	Ø
		•••

Таблица 1.5 — Таблица отображений и несмежных вершин для трехэлементных подмножеств

В нескольких строках стоят знаки Ø, значит, расчеты закончены.

По итогам анализа таблицы 1.5 можно сформировать множество T потенциальных ядер графаG, т.е.

$$T = \{ \{ x_4, x_8, x_{12} \}, \{ x_4, x_9, x_{12} \}, \{ x_7, x_4, x_8 \} \},$$

где
$$T_1$$
={ x_4, x_8, x_{12} }, T_2 ={ x_4, x_9, x_{12} }, T_3 ={ x_7, x_4, x_8 }.

Тогда
$$\psi(G) = \min_{i} \{ |T_{i}| \} = \min_{i} \{ |T_{i}| \} |_{i=1;\beta} = 3.$$

1. Расчет числа внутренней устойчивости φ (G) графа G

Анализ таблицы 1.3 показывает, что в столбце $\neg H_i$ есть несмежные вершины. В этом случае построим таблицу 1.6 двухэлементных множеств из найдем им образ H_{x_0,x_0}

несмежных вершин,

И H_{x_i,x_i} .

$\{x_i,x_j\}$	H_{x_i,x_j}	
1,7	3,4,11	8,9,12
1,8	3,4,9,12	7,11
1,9	3,4,8,12	7,11
1,11	3,4,7,12	8,9
1,12	3,4,8,9,11	7
3,8	1,4,7,9,12	11
3,9	1,4,7,8,12	11
3,11	1,4,7,12	8,9
3,12	1,4,7,8,9,11	Ø
4,11	1,3,7,8,9,12	Ø
4,12	1,3,7,8,9,11	Ø
7,8	3,4,9,11,12	1
7,9	3,4,8,11,12	1
7,11	3,4,12	1,8,9
7,12	3,4,8,9,11	1
8,11	3,4,7,9,12	1

Таблица 1.6 — Таблица образов H_{x_i,x_i} и T_{x_i,x_i}

Поскольку не во всех строках столбца $_{1}H_{x_{i},x_{j}}$ таблицы 1.6 указаны знаки \varnothing , сформируем таблицу 1.7 трехэлементных множеств $\{x_{i},x_{j},x_{k}\}$ и найдем им образ $H_{x_{i},x_{j},x_{k}}$ и $_{1}H_{x_{i},x_{j},x_{k}}$.

$\{x_i,x_j,x_k\}$	H_{x_i,x_j,x_k}	$ eg H_{x_i,x_j,x_k} $
3,8,12	1,4,7,9,11	Ø
3,8,11	1,4,7,9,12	Ø
3,9,12	1,4,7,8,11	Ø
3,9,11	1,4,7,8,12	Ø
1,7,8	3,4,9,11,12	Ø
1,7,9	3,4,8,11,12	Ø
4,9,11	1,3,7,9,12	Ø
4,9,12	1,3,4,8,11	×

Таблица 1.7 — Таблица образов H_{x_i,x_i,x_k} и T_{x_i,x_i,x_k} .

Поскольку во всех строках таблицы 1.7 указаны знаки \varnothing , процесс вычислений закончен и можно перейти к анализу таблиц 1.6 и 1.7.

По итогам анализа можно сформировать множество S ядер графа G, т.е.

$$S = \{ \{x_3, x_{12}\}, \{x_4, x_{12}\}, \{x_4, x_{11}\}, \{x_3, x_8, x_{12}\}, \{x_3, x_8, x_{11}\}, \{x_3, x_9, x_{12}\}, \{x_3, x_9, x_{11}\}, \{x_1, x_7, x_8\}, \{x_1, x_7, x_9\}, \{x_4, x_9, x_{11}\}, \{x_4, x_9, x_{12}\}\},$$

где
$$S_1 = \{x_3, x_{12}\}$$
, $S_2 = \{x_4, x_{12}\}$, $S_2 = \{x_4, x_{11}\}$, $S_4 = \{x_3, x_8, x_{12}\}$, $S_5 = \{x_3, x_8, x_{11}\}$, $S_6 = \{x_3, x_9, x_{12}\}$, $S_7 = \{x_3, x_9, x_{11}\}$, $S_8 = \{x_1, x_7, x_8\}$, $S_9 = \{x_1, x_7, x_9\}$, $S_{10} = \{x_4, x_9, x_{11}\}$, $S_{11} = \{x_4, x_9, x_{12}\}$

Тогда
$$\varphi(G) = \max_{i} \{ |S_i| \} = \max_{i} \{ |S_i| \} |_{i=1;10} = 3.$$

На этом расчеты числовых характеристик графа G закончены.

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧЕРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

"Калининградский государственный технический университет" (ФГБОУ ВО "КГТУ")

Кафедра систем управления и вычислительной техники Дисциплина: Дискретная математика

Расчетно-графическая работа № 2

«Нахождение кратчайшего остова неориентированного графа по алгоритму Дейкстра» Вариант №70

Работу проверил:	Работу выполнил:
доцент, профессор, к.т.н. Иванов В. Е.	студент группы 18-ВТ Подковыров Д.Р.
с оценкой:	подпись:
подпись:	« <u> </u>
и » 2020г	

Калининград 2020г

Содержание

2	Зада	ние на расчетно-графическую работу №2	3
		асчет по алгоритму Дейкстра	
		Построение таблицы обозначений	
		Шаг «0» расчетов	
		Шаг «1» расчетов	
		Шаги «2 — 8» расчетов	
		Выводы	
		ключение	

2. Задание на расчетно-графическую работу №2

Найти кратчайший остов неориентированного графа G по алгоритму Дейкстра. Протяженность (вес) ребер приведены в таблице 2.1, где ∞ — означает отсутствие ребра (x_i, x_j) , а $\ll 1$ » — его наличие. Начальной вершиной

Рисунок 2.1 – неориентированный граф G

Таблица 2.1 — Данные для формирования графа G

Старший			Инде	ексы ве	ршин, и	инциде	нтных р	ребру		
разряд номера	0,1	0,2	0,3	1,3	1,4	2,3	2,5	3,4	3,5	3,6
варианта		Вес ребра (условных единиц)								
	7	9	12	6	4	6	7	10	7	11
1	1	1	1	1	∞	1	1	1	1	1
Младший			Инде	ексы ве	ршин, и	инциде	нтных р	ребру		
разряд номера	4,6	4,7	5,6	5,8	6,7	6,8	6,9	7,9	8,9	
варианта		Вес ребра (условных единиц)								
	2	6	4	9	8	5	4	3	9	
6	1	1	1	1	1	1	1	1	∞	

2.1. Расчет по алгоритму Дейкстра

Рисунок 2.2 – исходный граф G

2.1.1 Построение таблицы обозначений

Таблица 2.2— Обозначения

Таолица 2.2 Обозна	: Tellilin		
Дуги графа $G\left(x_{i},x_{j}\right)$	Обозначения дуг e_i	Веса дуг графа l_i	Обозначения весов l_i дуг графа
(x_0,x_1)	e_1	7	l_1
(x_0,x_2)	e_2	9	l_2
(x_0,x_3)	e_3	12	l_3
(x_1,x_3)	e_4	6	l_4
(x_2,x_3)	e_5	6	l_5
(x_2,x_5)	e_6	7	l_6
(x_3,x_4)	e_7	10	l_7
(x_3, x_5)	e_8	7	l_8
(x_3, x_6)	e_9	11	l_9
(x_4, x_6)	e_{10}	2	l_{10}
(x_4, x_7)	e_{11}	6	l_{11}
(x_5,x_6)	e_{12}	4	l_{12}
(x_5, x_8)	e_{13}	9	l_{13}
(x_6,x_7)	e_{14}	8	l_{14}
(x_6,x_8)	e_{15}	5	l_{15}
(x_6, x_9)	e_{16}	4	l_{16}
(x_7, x_9)	e_{17}	3	l_{17}

2.1.2 Шаг «0» расчетов

Поскольку в качестве исходной выбрана вершина x_3 , проанализируем множество смежных с ней вершин:

12 6 6 10 7 11
$$\{(x_0,x_3),(x_1,x_3),(x_2,x_3),(x_3,x_4),(x_3,x_5),(x_3,x_6)\}$$

Так как ребра взвешены весами, выберем ребро с минимальным значением веса l_i . В итоге получим подграф кратчайшего остова:

Рисунок 2.3 — Подграф № 1 кратчайшего остова графа G

Обведем пунктиром подграф № 1 графа G на рисунке 2.2. В матрице шагов $\|p\|$ поставим единицы в нулевой строке в столбцах, обозначенных, как x_1 и x_3 . В таблице 2.4 размера кратчайшего остова графа G поставим единицу в нулевой строке, в столбце, обозначенном весом l_4 ребра e_4 . В столбце $\sum l_i$ той же нулевой строки укажем $0+l_4=0+6=6$.

2.1.3 Шаг «1» расчетов

Зададим в правой части таблицы 2.3 множество ребер инцидентных вершинам подграфа \mathbb{N}_2 1 графа G на рисунке 2.3. Таковых будет шесть. Выберем из них ребро с минимальным значением веса $-(x_1,x_3)$, что покажем, заключив его в прямоугольник в таблице 2.3.

Таблица 2.3 — Результаты выбора подграфов графа

Шаг			Be	рш	инь	ы гр	афа	a <i>G</i>			Множество ребер графа G , инцидентных вершинам						
p	<i>x</i> ₀	x_1	<i>x</i> ₂	<i>x</i> ₃	<i>X</i> 4	<i>x</i> ₅	<i>x</i> ₆	<i>X</i> 7	<i>x</i> ₈	<i>x</i> 9	вычисленного подграфа минимального остова графа G						
0	0	1	0	1	0	0	0	0	0	0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
1	0	1	1	1	0	0	0	0	0	0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
2	0	1	1	1	0	1	0	0	0	0							
3	0	1	1	1	0	1	1	0	0	0	7 9 12 7 10 11 2 8 4 5 9 $\{(x_0,x_1), (x_0,x_2), (x_0,x_3), (x_2,x_5), (x_3,x_4), (x_3,x_6), (x_4,x_6), (x_6,x_7), (x_6,x_9), (x_6,x_8), (x_5,x_8)\}$						
4	0	1	1	1	1	1	1	0	0	•	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
5	0	1	1	1	1	1	1	0	0	1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
6	0	1	1	1	1	1	1	1	0	1	7 9 12 7 10 11 6 8 5 9 $\{(x_0,x_1), (x_0,x_2), (x_0,x_3), (x_2,x_5), (x_3,x_4), (x_3,x_6), (x_4,x_7), (x_6,x_7), (x_6,x_8), (X_5,X_8)\}$						
7	0	1	1	1	1	1	1	1	1	1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
8	1	1	1	1	1	1	1	1	1	1							

Таблица 2.4— Размер кратчайшего остова графа G

Шаг	l_{I}	l_2	l_3	l_4	l_5	l_6	l_7	l_8	l_9	l_{10}	l_{11}	l_{12}	l_{13}	l_{14}	l_{15}	l_{16}	l_{17}	$\sum I$
p	7	9	12	6	6	7	10	7	11	2	6	4	9	8	4	3	9	$\sum_{i} \iota_{i}$
0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	6
1	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	12
2	0	0	0	1	1	0	0	1	0	0	0	0	0	0	0	0	0	19
3	0	0	0	1	1	0	0	1	0	0	0	1	0	0	0	0	0	23
4	0	0	0	1	1	0	0	1	0	1	0	1	0	0	0	0	0	25
5	0	0	0	1	1	0	0	1	0	1	0	1	0	0	0	1	0	29
6	0	0	0	1	1	0	0	1	0	1	0	1	0	0	0	1	1	32

7	0	0	0	1	1	0	0	1	0	1	0	1	0	0	1	1	1	37
8	1	0	0	1	1	0	0	1	0	1	0	1	0	0	1	1	1	44
	Суммарная длина ребер минимального остова графа G :										44							

Добавим к подграфу на рисунке 2.3 ребро (x_2,x_3) и получим подграф № 2.

Рисунок 2.4 — Подграф № 2 кратчайшего остова графа G

Обведем пунктиром подграф № 2 графа G на рисунке 2.2. Заполним первые строки матрицы $\|p\|$ в таблице 2.4.

2.1.4 Шаги «2 — 8» расчетов

Результаты расчетов на шагах 2 — 8 сведены в таблицы 2.3, 2.4. На рисунке 2.5 показано изменение по шагам подграфов минимального остова графа G.

Рисунок 2.5 — Изменение по шагам подграфов минимального остова графа G

2.1.5 Выводы

В результате расчетов по алгоритму Дейкстра сформирован минимальный остов графа G с суммарной длиной дуг 44.

2.2 Заключение

В расчетно-графической работе №2 мы построили остов минимального веса. Умение формировать минимальный остов графа играет большую роль в создании вычислительных сетей, в организации грузоперевозок или ремонтных работ на транспортной сети.

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧЕРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ "Калининградский государственный технический университет" (ФГБОУ ВО "КГТУ")

Кафедра систем управления и вычислительной техники Дисциплина: Дискретная математика

Расчетно-графическая работа № 3

«Поиск кратчайших путей на неориентированном графе по алгоритму Флойда» Вариант №70

Работу проверил:	Работу выполнил:					
доцент, профессор,	студент группы 18-ВТ					
к.т.н. Иванов В. Е.	Подковыров Д.Р.					
с оценкой:	подпись:					
подпись:	« <u> </u>					
« » 2020г.						

Калининград 2020г.

Содержание

3. Задание на расчетно-графическую работу № 3	3
3.1.1. Шаг 0 расчетов по алгоритму Флойда	5
3.3.2. Шаг 1 расчетов по алгоритму Флойда	5
3.3.3. Шаг 2 расчетов по алгоритму Флойда	7
3.3.4. Шаг 3 расчетов по алгоритму Флойда	9
3.3.5. Шаг 4 расчетов по алгоритму Флойда	11
3.3.6. Шаг 5 расчетов по алгоритму Флойда	13
3.3.7. Шаг 6 расчетов по алгоритму Флойда	15
3.3.8. Шаг 7 расчетов по алгоритму Флойда	17
3.3.9. Шаг 8 расчетов по алгоритму Флойда	19
3.3.10. Шаг 9 расчетов по алгоритму Флойда	21
3.2. Проверка результатов расчетов по алгоритму Флойда	22
3.3. Вывод	

3. Задание на расчетно-графическую работу № 3

Найти кратчайшие пути на неориентированном графе G (рисунок 3.1) по алгоритму Флойда.

Старший Индексы вершин, инцидентных ребру 0,1 0,2 3,5 3,6 разряд номера 0,3 1,4 2,3 3,4 варианта Вес ребра (условных единиц) 7 9 7 11 12 10 2 1 1 1 1 1 1 1 1 ∞ ∞ Младший разряд Индексы вершин, инцидентных ребру номера варианта 4,6 4,7 5,6 6,7 6,8 6,9 7,9 8,9 Вес ребра (условных единиц) 2 6 4 3 9 6 1 1 1 1 1 1 1 ∞ ∞

Построение матрицы путей и матрицы переходов графа G

Алгоритма Флойда использует две матрицы размера $n \times n$, где n — число вершин графа: $\|l(n,n)\|$ — матрицу кратчайших путей и $\|\mu(n,n)\|$ — матрицу кратчайших переходов. На рисунке 3.2 изображены обе эти матрицы для графа G.

a) 6)

μ^0	X0	X1	X2	X3	X 4	X5	X6	X 7	X8	X 9
X0	X0	X1	X2	X3	X4	X5	X6	X7	X8	X9
X1	X0	X1	X2	X3	X4	X5	X6	X7	X8	X9
X2	X0	X1	X2	X3	X4	X5	X6	X7	X8	X 9
Х3	X0	X1	X2	X3	X4	X5	X6	X7	X8	X 9
X4	X 0	X 1	X 2	X 3	X4	X5	X6	X 7	X8	X 9
X5	X0	X1	X2	Х3	X4	X5	X6	X7	X8	X 9
X6	X 0	X 1	X 2	X 3	X4	X5	X6	X 7	X8	X 9
X 7	X0	X1	X2	Х3	X4	X5	X6	X 7	X8	X 9
X8	X0	X1	X2	X 3	X4	X5	X6	X 7	X8	X 9
X 9	X 0	X 1	X2	X 3	X4	X5	X6	X 7	X8	X 9

10	X0	X 1	X2	X 3	X4	X5	X6	X 7	X8	X 9
X0	0	8	9	8	8	8	8	8	8	8
X 1	8	0	8	6	4	8	8	8	8	8
X2	9	8	0	8	8	7	8	8	8	8
Х3	8	6	6	0	10	7	11	8	8	8
X4	8	4	∞	10	0	8	2	6	8	8
X5	8	8	7	7	8	0	4	8	9	8
X6	8	8	∞	11	2	4	0	8	8	4
X 7	8	8	8	8	6	8	8	0	8	8
X8	8	8	8	8	8	9	8	8	0	9
X 9	8	8	8	8	8	8	4	8	9	0

Рисунок 3.2 — Матрицы кратчайших путей а) и кратчайших переходов б) графа G

3.1.1. Шаг 0 расчетов по алгоритму Флойда

Принимаем p=0. Принимаем в матрице l^0 вершину x_0 за базовую и выделяем базовую строку и базовый столбец (рисунок 3.2).

											-
1^{0}	\mathbf{x}_0	\mathbf{x}_1	\mathbf{X}_2	\mathbf{X}_3	\mathbf{X}_4	X ₅	X ₆	X ₇	\mathbf{x}_8	X 9	
\mathbf{x}_0	0	8	9	8	8	8	8	8	8	8	Б
\mathbf{x}_1	80	0	8	6	4	8	8	8	8	8	
\mathbf{X}_2	9	8	0	8	8	7	8	8	8	8	
X ₃	×	6	6	0	10	7	11	∞	∞	8	
X4	8	4	8	10	0	8	2	6	∞	8	
X5	oo	∞	7	7	8	0	4	∞	9	8	
X ₆	8	8	8	11	2	4	0	8	∞	4	
X ₇	×	8	8	8	6	∞	8	0	∞	8	
X ₈	\omega	8	8	8	8	9	8	8	0	9	
X 9	00	8	8	8	8	∞	4	∞	9	0	
	\wedge										

Базовая строка

Базовый столбец

Рисунок 3.2 —Матрица путей $\,l^0\,$ на нулевом шаге расчетов

На данном шаге изменений нет. Матрица кратчайших переходов также остаётся неизменной.

3.3.2. Шаг 1 расчетов по алгоритму Флойда

Базовый столбец

Рисунок 3.3 — Матрица путей l^1 на нулевом шаге расчетов

Вычеркиваем в матрице l^1 строки столбцы, базовые элементы которых имеют значения ∞ (они на рис. 3.3 показаны более темной штриховкой), так как $(l_{i,p}+\infty)$ и $(\infty+l_{p,j})$ всегда больше конечного значения $l_{i,j}$. В итоге получаем матрицу $\|l_0^1\|$, изображенную на рис. 3.4

l_0^1	\mathbf{x}_1	\mathbf{X}_3	X_4
\mathbf{x}_1	0	6	4
X ₃	6	0	10
X_4	4	10	0

Рисунок 3.4 — Матрица $\|l^1\|$ после вычеркивания строк и столбцов, базовые элементы которых имеют значение ∞

Изобразим на рис. 3.5 граф G_0^1 по матрице $\|l_0^1\|$.

Обозначения: в окружность заключена базовая вершина x_1 ; каждая вершина идентифицирована дважды: переменной х с индексом— цифрой и переменной x с индексом—буквой

Рисунок 3.5— Граф
$$G_0^1$$

Выполним расчеты, для чего будем проверять справедливость соотношения:

$$\left(l^{p}_{i,p}+l^{p}_{p,j}\right)< l^{p}_{i,j}.$$

 $(l^{p}_{i,p}+l^{p}_{p,j})< l^{p}_{i,j}.$ Для графа G^{1}_{0} на рис. 3.5 это означает, что проверяется справедливость соотношения:

$$(l^{p}_{1,3} + l^{p}_{3,4}) < l^{p}_{1,4}$$
,

или иными словами: сравнивается суммарная длина пути из первой вершины x_1 до базовой x_3 , т.е. $l^p{}_{1,3}$ и из нулевой вершины x_3 до вершины x_4 , т.е. $l^p{}_{3,4}$ с длиной пути из первой вершины в третью «напрямую», т.е. $l^{p}_{1,4}$ (см. рис. 3.5).

Итак, проверяем справедливость соотношения:

$$(6+4)<10?$$

Ответ —Нет.

На данном шаге изменений нет. Матрица кратчайших переходов также остаётся неизменной.

3.3.3. Шаг 2 расчетов по алгоритму Флойда

Принимаем p=2. Принимаем в матрице $\|l^2\|$ вершину x_2 за базовую и выделяем базовую строку и базовый столбец (рис. 3.6).

1^2	\mathbf{x}_0	\mathbf{x}_1	\mathbf{X}_2	\mathbf{X}_3	\mathbf{X}_4	X ₅	X ₆	X ₇	X ₈	X 9	
\mathbf{x}_0	0	∞	9	8	∞	∞	∞	8	∞	∞	
\mathbf{x}_1	8	0	∞	6	4	∞	∞	∞	∞	∞	
\mathbf{X}_2	9	∞	0	00	00	7	∞	00	90	96/	← Базовая строка
X ₃	8	6	6	0	10	7	11	∞	∞	∞	
X ₄	8	4	%	10	0	∞	2	6	∞	∞	
X_5	8	8	7	7	8	0	4	8	9	8	
X ₆	8	∞	90	11	2	4	0	8	∞	4	
X ₇	8	∞	90/	8	6	8	8	0	8	8	
X8	8	8	90/	8	8	9	8	8	0	9	
X 9	8	8	(xx)	8	8	8	4	8	9	0	
			\wedge				·	·			-

Базовый столбец

Рисунок 3.6 — Матрица путей l^2 на втором шаге расчетов

Вычеркиваем в матрице $\|l^2\|$ строки и столбцы, базовые элементы которых имеют значение ∞ . В итоге получаем матрицу $\|l_0^2\|$, изображенную на рис. 3.7.

l_0^2	\mathbf{x}_0	\mathbf{x}_2	X ₃	X ₅
\mathbf{x}_0	0	9	8	8
\mathbf{X}_2	9	0	8	7
X ₃	∞	6	0	7
X ₅	8	7	7	0

Рисунок 3.7 — Матрица $\|l^2\|$ после вычеркивания строк и столбцов, базовые элементы которых имеют значение ∞

Изобразим на рис. 3.8 граф G_0^2 по матрице $\left\| l_0^2 \right\|$.

Рисунок 3.8 — Граф G_0^2

Выполним необходимые расчеты:

1) $l_{3,2} + l_{2,0} < l_{0,3}$? T.e. $9 + 6 < \infty$? Да.

Тогда: $l_{0,3}=15; l_{3,0}=15; \; \mu_{0,3}=x_p=x_2; \mu_{3,0}=x_2.$

2) $l_{3,2} + l_{2,5} < l_{3,5}$? T.e. 6 + 7 < 7? **Het.**

Тогда: $l_{3,5} = 7; l_{5,3} = 7; \mu_{3,5} = x_{i,j} = x_5;$

3) $l_{0,2} + l_{2,5} < l_{0,5}$? Т.е $9 + 7 < \infty$? Да.

Тогда: $l_{0,5}=16; l_{5,0}=16; \mu_{0,5}=x_p=x_2; \mu_{5,0}=x_2.$

Вносим изменения в матрицу $\|l^2\|$ и $\|\mu^2\|$ (рис. 3.9).

12	X0	X1	X2	Х3	X4	X 5	X6	X 7	X8	X 9
X0	0	8	9	15	8	16	8	8	8	8
X 1	8	0	90	6	4	8	8	8	8	8
X2	9	90	0	∞	90	7	90	96/	8	90
Х3	15	6	6	0	10	7	11	8	8	8
X4	8	4	∞	10	0	8	2	6	8	8
X5	16	8	7	7	8	0	4	8	9	8
X6	8	8	ø	11	2	4	0	8	8	4
X7	8	8	8	8	6	8	8	0	8	8
X8	8	8	90	8	8	9	8	8	0	9
Х9	8	∞	90	8	∞	∞	4	∞	9	0

μ^2	X0	X 1	X 2	X 3	X4	X5	X6	X 7	X8	X 9
X 0	X0	X 1	X2	X 2	X4	X 2	X6	X 7	X8	X 9
X1	X 0	X 1	X 2	X 3	X4	X5	X6	X 7	X 8	X 9
X 2	X0	X 1	X2	X 3	X4	X5	X6	X 7	X 8	X 9
X 3	X 2	X 1	X 2	X 3	X4	X5	X6	X 7	X8	X 9
X 4	X0	X 1	X2	X 3	X4	X5	X6	X 7	X8	X 9
X5	X 2	X 1	X2	X 3	X4	X5	X6	X 7	X8	X 9
X6	X0	X 1	X2	X 3	X4	X5	X6	X 7	X8	X 9
X 7	X 0	X 1	X 2	X 3	X4	X5	X6	X 7	X 8	X 9
X8	X 0	X 1	X 2	X 3	X4	X5	X6	X 7	X 8	X 9
X 9	X 0	X 1	X 2	X 3	X4	X5	X6	X 7	X8	X 9

Рисунок 3.9 — Матрицы путей и переходов графа G перед началом шага p=3

3.3.4. Шаг 3 расчетов по алгоритму Флойда

13	X0	X 1	X2	Х3	X4	X5	X6	X7	X8	X 9
X0	0	8	9	15	8	16	8	8	8	8
X 1	8	0	8	6	4	8	8	8	8	8
X2	9	8	0	90	8	7	8	8	8	8
Х3	15	6	6	0	10	7	11	90	8	8
X4	8	4	8	10	0	8	2	6	8	8
X5	16	8	7	7	8	0	4	8	9	8
X6	8	8	8	11	2	4	0	8	8	4
X 7	8	8	8	90	6	8	8	0	8	8
X8	8	8	8	80	8	9	8	8	0	9
Х9	8	8	8	60	8	8	4	8	9	0

Рисунок 3.10 — Матрица путей l³ на третьем шаге расчетов

Принимаем p=3. Принимаем в матрице $\|l^3\|$ вершину x_3 за базовую и выделяем базовую строку и базовый столбец (рис. 3.10).

Вычеркиваем в матрице $\|l^3\|$ строки и столбцы, базовые элементы которых имеют значение ∞ . В итоге получаем матрицу $\|l_0^3\|$, изображенную на рис. 3.11.

l_0^3	X0	X1	X2	Х3	X4	X5	X6
X0	0	8	9	15	8	16	8
X1	8	0	8	6	4	8	8
X2	9	8	0	8	8	7	8
Х3	15	6	6	0	10	7	11
X4	8	4	8	10	0	8	2
X5	16	8	7	7	8	0	4
X6	8	∞	∞	11	2	4	0

Рисунок 3.11 — Матрица $\|l_0^3\|$ после вычеркивания строк и столбцов, базовые элементы которых имеют значение ∞

Выполним необходимые расчеты:

1)
$$l_{0.3} + l_{3.1} < l_{0.1}$$
, 15 + 6 < ∞ ? Да. Тогда: $l_{0.1} = l_{1.0} = 21$; $\mu_{0.1} = \mu_{1.0} = x_3$.

2)
$$l_{0.3} + l_{3.2} < l_{0.2}$$
, $15 + 6 < 9$? **Het.**

3)
$$l_{0.3} + l_{3.3} < l_{0.3}$$
, $15 + 0 < 15$? **Het.**

4)
$$l_{0.3} + l_{3.4} < l_{0.4}$$
 , $15 + 10 < \infty$? Да. Тогда: $l_{0.4} = l_{4.0} = 25$; $\mu_{0.4} = \mu_{4.0} = x_3$.

5)
$$l_{0.3} + l_{3.5} < l_{0.5}$$
, 15+7<16? **Het.**

6)
$$l_{0,3}+l_{3,6} < l_{0,6}$$
 , $15+11 < \infty$? Да. Тогда: $l_{0,6}=l_{6,0}=26; \mu_{0,6}=\mu_{6,0}=x_3$.

7)
$$l_{1,3}+l_{3,2}< l_{1,2}$$
, $6+6<\infty$? Да. Тогда: $l_{1,2}=l_{2,1}=12; \mu_{1,2}=\mu_{2,1}=x_3$.

8)
$$l_{1.3} + l_{3.4} < l_{1.4}$$
, $6+10 < 4$? **Het.**

9)
$$l_{1,3}+l_{3,5}< l_{1,5}$$
 , $6+7<\infty$? Да. Тогда: $l_{1,5}=l_{5,1}=13; \mu_{1,5}=\mu_{5,1}=x_3$.

11)
$$l_{\scriptscriptstyle 1,3}+l_{\scriptscriptstyle 3,6} < l_{\scriptscriptstyle 1,6}$$
 , $6+11 < \infty$? Да. Тогда: $l_{\scriptscriptstyle 1,6}=l_{\scriptscriptstyle 6,1}=17; \mu_{\scriptscriptstyle 1,6}=\mu_{\scriptscriptstyle 6,1}=x_{\scriptscriptstyle 3}$.

13)
$$l_{2,3} + l_{3,4} < l_{2,4}$$
, $\infty + 10 < \infty$? **Het.**

14)
$$l_{23} + l_{35} < l_{25}$$
, $\infty + 7 < \infty$? Her.

15)
$$l_{2,3} + l_{3,6} < l_{2,6}$$
 , $\infty + 11 < \infty$? **Het.**

16)
$$l_{3,3} + l_{3,4} < l_{3,4}$$
 , $0+10<10$? **Het.**

17)
$$l_{3,3} + l_{3,5} < l_{3,5}$$
 , $0+7 < 7$? **Het.**

18)
$$l_{3,3} + l_{3,6} < l_{3,6}$$
, $0+11<11$? **Het.**

19)
$$l_{4,3}+l_{3,5} < l_{4,5}$$
 , $10+7 < \infty$? Да. Тогда: $l_{4,5}=l_{5,4}=17; \mu_{4,5}=\mu_{5,4}=x_3$.

20)
$$l_{4,3} + l_{3,6} < l_{4,6}$$
 , $10 + 11 < 2$? **Het.**

21)
$$l_{5,3} + l_{3,6} < l_{5,6}$$
 , $7 + 11 < 18$? **Het.**

Вносим изменения в матрицы $\|l^3\|$ и $\|\mu^3\|$ (рис. 3.12).

13	X0	X1	X2	Х3	X4	X5	X6	X 7	X8	X 9
X0	0	21	9	15	25	16	26	∞	∞	∞
X1	21	0	12	6	4	13	17	8	∞	8
X2	9	12	0	90	∞	7	∞	8	∞	8
Х3	15	6	6	0	10	7	11	∞	90	∞
X4	25	4	8	10	0	17	2	6	8	8
X5	16	13	7	7	17	0	4	8	9	8
X6	26	17	8	11	2	4	0	8	8	4
X 7	∞	8	8	ø	6	8	8	0	8	8

μ^3	X0	X 1	X2	Х3	X4	X5	X6	X 7	X8	X 9
X0	X 0	X 3	X 2	X2	X 3	X2	X 3	X 7	X8	X 9
X 1	X 3	X 1	X 3	X 3	X4	X 3	X 3	X 7	X8	X 9
X2	X0	X 3	X2	X 3	X4	X5	X6	X 7	X8	X 9
X 3	<u>X2</u>	X 1	X 2	X 3	X 4	X5	X6	X 7	X8	X 9
X4	X 3	X 1	X 2	X 3	X 4	X 3	X6	X 7	X8	X 9
X5	<u>X2</u>	X 3	X2	X 3	X 3	X5	X6	X 7	X8	X 9
X6	X 3	X 3	X2	X 3	X 4	X5	X6	X 7	X8	X 9
X 7	X 0	X 1	X 2	X 3	X 4	X5	X6	X 7	X8	X 9
X8	X 0	X 1	X 2	X 3	X 4	X5	X6	X 7	X8	X 9
X 9	X0	X1	X2	X 3	X4	X5	X6	X 7	X8	X 9

X8	8	8	8	96/	∞	9	8	8	0	9
X9	8	8	8		8	8	4	8	9	0

Рисунок 3.12 — Матрицы путей и переходов графа G перед началом шага p=4

3.3.5. Шаг 4 расчетов по алгоритму Флойда

Принимаем p=4. Принимаем в матрице $\|l^4\|$ вершину x_4 за базовую и выделяем базовую строку и базовый столбец (рис. 3.13).

14	X0	X1	X2	Х3	X4	X5	X6	X7	X8	X 9
X0	0	21	9	15	25	16	26	8	8	8
X 1	21	0	12	6	4	13	17	8	8	8
X 2	9	12	0	8	8	7	8	8	8	8
Х3	15	6	6	0	10	7	11	8	8	8
X 4	25	4	8	10	0	17	2	6	80	8
X5	16	13	7	7	17	0	4	8	9	8
X6	26	17	8	11	2	4	0	8	8	4
X 7	8	8	8	8	6	8	8	0	8	8
X8	8	8	8	8	8	9	8	8	0	9
X 9	8	8	8	8	00/	8	4	8	9	0

Рисунок 3.13 — Матрица путей l⁴ на четвертом шаге расчетов

Вычеркиваем в матрице $\|l^4\|$ строки и столбцы, базовые элементы которых имеют значение ∞ . В итоге получаем матрицу $\|l_0^4\|$, изображенную на рис. 3.14.

l_0^4	X0	X ₁	Х3	X4	X5	X6	X 7
X0	0	21	15	25	16	26	∞
X1	21	0	6	4	13	17	8
Х3	15	6	0	10	7	11	8
X4	25	4	10	0	17	2	6
X5	16	13	7	17	0	4	8
X6	26	17	11	2	4	0	8
X7	8	8	8	6	8	8	0

Рисунок 3.14 — Матрица $\|l_0^4\|$ после вычеркивания строк и столбцов, базовые элементы которых имеют значение ∞

Выполним необходимые расчеты:

1)
$$l_{0.4} + l_{4.1} < l_{0.1}$$
, 25 + 4 < 21 ? **Het.**

3)
$$l_{0.4} + l_{4.3} < l_{0.3}$$
, 25 + 10 < 15? **Het.**

5)
$$l_{0.4} + l_{4.5} < l_{0.5}$$
, 25 + 17 < 16 ? **Het.**

6)
$$l_{0,4} + l_{4,6} < l_{0,6}$$
, 25 + 2 < 26? **Het.**

7)
$$l_{0,4}+l_{4,7}< l_{0,7}$$
 , 25+6< ∞ ? Да. Тогда: $l_{0,7}=l_{7,0}=31; \mu_{0,7}=\mu_{7,0}=x_4$.

9)
$$l_{14} + l_{43} < l_{13}$$
, $4+10 < 6$? **Het.**

10)
$$l_{14} + l_{44} < l_{14}$$
, $4+0<4$? **Het.**

11)
$$l_{1,4} + l_{4,5} < l_{1,5}$$
 , $4+17 < 13$? **Het.**

12)
$$l_{\scriptscriptstyle 1,4}+l_{\scriptscriptstyle 4,6} < l_{\scriptscriptstyle 1,6}$$
 , $4+2<17$? Да. Тогда: $l_{\scriptscriptstyle 1,6}=l_{\scriptscriptstyle 6,1}=6; \mu_{\scriptscriptstyle 1,6}=\mu_{\scriptscriptstyle 6,1}=x_{\scriptscriptstyle 4}$.

13)
$$l_{\scriptscriptstyle 1,4}+l_{\scriptscriptstyle 4,7}< l_{\scriptscriptstyle 1,7}$$
 , $4+6<\infty$? Да. Тогда: $l_{\scriptscriptstyle 1,7}=l_{\scriptscriptstyle 7,1}=10; \mu_{\scriptscriptstyle 1,7}=\mu_{\scriptscriptstyle 7,1}=x_{\scriptscriptstyle 4}$.

20)
$$l_{3,4} + l_{4,5} < l_{3,5}$$
 , $10 + 17 < 7$? **Het.**

21)
$$l_{34} + l_{46} < l_{36}$$
, $10 + 2 < 11$? **Het.**

22)
$$l_{3,4}+l_{4,7}< l_{3,7}$$
 , $10+6<\infty$? Да. Тогда: $l_{3,7}=l_{7,3}=16; \mu_{3,7}=\mu_{7,3}=x_4$.

26)
$$l_{5,4} + l_{4,6} < l_{5,6}$$
 , $17 + 2 < 4$? **Het.**

27)
$$l_{5,4}+l_{4,7}< l_{5,7}$$
 , $17+6<\infty$? Да. Тогда: $l_{5,7}=l_{7,5}=23; \mu_{5,7}=\mu_{7,5}=x_4$.

28)
$$l_{6,4} + l_{4,7} < l_{6,7}$$
 , $2 + 6 < 8$? **Het.**

Вносим изменения в матрицы $\|l^4\|$ и $\|\mu^4\|$ (рис. 3.15).

l^4	X0	X1	X2	Х3	X4	X5	X6	X 7	X8	X 9
X0	0	21	9	15	25	16	26	31	8	8
X1	21	0	12	6	4	13	6	10	8	8
X2	9	12	0	8	90	7	8	8	8	8
Х3	15	6	6	0	10	7	11	16	8	8
X4	25	4	ø	10	0	17	2	6	90	00
X5	16	13	7	7	17	0	4	23	9	8
X6	26	6	8	11	2	4	0	8	8	4
X 7	31	10	8	16	6	23	8	0	8	8
X8	8	8	8	8	96/	9	8	8	0	9
X 9	8	8	8	8	%	∞	4	8	9	0

μ^4	X0	X 1	X2	X 3	X4	X5	X6	X 7	X8	X 9
X 0	X0	X 3	X 2	X2	X 3	X2	X 3	X 4	X8	X 9
X 1	X 3	X 1	X 3	X 3	X4	X 3	X 4	X 4	X8	X 9
X2	X0	X 3	X 2	X 3	X4	X5	X6	X 7	X8	X 9
X 3	X2	X 1	X 2	X 3	X4	X5	X6	X 4	X8	X 9
X4	X 3	X 1	X 2	X 3	X4	X 3	X6	X 7	X8	X 9
X5	X2	X 3	X2	Х3	Х3	X5	X6	X 4	X8	X 9
X6	X3	X 4	X2	Х3	X4	X5	X6	X 7	X8	X 9
X 7	X 4	X 4	X 2	X 4	X4	X 4	X6	X 7	X8	X 9
X8	X 0	X 1	X2	Х3	X4	X5	X6	X 7	X8	X 9
X 9	X 0	X 1	X2	X 3	X4	X5	X6	X 7	X8	X 9

Рисунок 3.15 — Матрицы путей и переходов графа G перед началом шага p=5

3.3.6. Шаг 5 расчетов по алгоритму Флойда

Принимаем p=5. Принимаем в матрице $\|l^5\|$ вершину x_5 за базовую и выделяем базовую строку и базовый столбец (рис. 3.16).

15	X0	x1	X2	Х3	X4	X5	X6	X 7	X8	X 9
X0	0	21	9	15	25	16	26	31	8	8
x ₁	21	0	12	6	4	13	6	10	8	8
X2	9	12	0	8	8	7	∞	∞	8	8
Х3	15	6	6	0	10	7	11	16	8	8
X4	25	4	8	10	0	17	2	6	8	8
X5	16	13	7	7	17	0	4	23	9	8
X6	26	6	∞	11	2	4	0	8	∞	4
X7	31	10	8	16	6	23	8	0	8	8
X8	8	8	8	8	8	9	8	8	0	9
X9	8	8	8	8	8	/	4	8	9	0

Рисунок

3.16 — Матрица путей

1⁵ на пятом шаге расчетов

Вычеркиваем в матрице $\|l^5\|$ строки и столбцы, базовые элементы которых имеют значение ∞ . В итоге получаем матрицу $\|l_0^5\|$, изображенную на рис. 3.17.

l_0^5	X0	х1	X2	Х3	X4	X5	X6	X 7	X8
X0	0	21	9	15	25	16	26	31	8
X1	21	0	12	6	4	13	6	10	8
X2	9	12	0	8	8	7	8	8	8
X 3	15	6	6	0	10	7	11	16	8
X4	25	4	8	10	0	17	2	6	8
X5	16	13	7	7	17	0	4	23	9
X6	26	6	8	11	2	4	0	8	8
X 7	31	10	8	16	6	23	8	0	8
X8	8	8	8	8	8	9	8	8	0

Рисунок 3.17 — Матрица $\|l_0^5\|$ после вычеркивания строк и столбцов, базовые элементы которых имеют значение ∞

Выполним необходимые расчеты:

1)
$$l_{0,5} + l_{5,1} < l_{0,1}$$
, $16 + 13 < 21$? **Het.**

2)
$$l_{0.5} + l_{5.2} < l_{0.2}$$
 , $16 + 7 < 9$? **Het.**

3)
$$l_{0.5} + l_{5.3} < l_{0.3}$$
, $16 + 7 < 15$? **Het.**

4)
$$l_{0.5} + l_{5.4} < l_{0.4}$$
 , $16 + 17 < 25$? **Het.**

5)
$$l_{0.5} + l_{5.6} < l_{0.6}$$
 , $16 + 4 < 26$? Да. Тогда: $l_{0.6} = l_{6.0} = 20$; $\mu_{0.6} = \mu_{6.0} = x_5$.

6)
$$l_{0.5} + l_{5.7} < l_{0.7}$$
, $16 + 23 < 31$? **Het.**

7)
$$l_{0.5}+l_{5.8}< l_{0.8}$$
 , $16+9<\infty$? Да. Тогда: $l_{0.8}=l_{8.0}=25; \mu_{0.8}=\mu_{8.0}=x_5$.

8)
$$l_{15} + l_{52} < l_{12}$$
, $13 + 7 < 12$? **Het.**

9)
$$l_{1,5} + l_{5,3} < l_{1,3}$$
, 13+7<6? **Het.**

10)
$$l_{1.5} + l_{5.4} < l_{1.4}$$
, 13+17 < 4? **Het.**

11)
$$l_{1.5} + l_{5.5} < l_{1.5}$$
, 13+0<13? **Het.**

12)
$$l_{1.5} + l_{5.6} < l_{1.6}$$
, 13+4<6? **Het.**

13)
$$l_{1.5} + l_{5.7} < l_{1.7}$$
, 13 + 23 < 10 ? **Het.**

14)
$$l_{1,5}+l_{5,8}< l_{1,8}$$
 , $13+9<\infty$? Да. Тогда: $l_{1,8}=l_{8,1}=22; \mu_{1,8}=\mu_{8,1}=x_5$.

15)
$$l_{2.5} + l_{5.3} < l_{2.3}$$
, $7 + 7 < \infty$? Да. Тогда: $l_{2.3} = 14$; $\mu_{2.3} = x_5$.

16)
$$l_{2,5}+l_{5,4} < l_{2,4}$$
 , $7+17 < \infty$? Да. Тогда: $l_{2,4}=l_{4,2}=24; \mu_{2,4}=\mu_{4,2}=x_5$.

17)
$$l_{2,5}+l_{5,6} < l_{2,6}$$
 , $7+4 < \infty$? Да. Тогда: $l_{2,6}=l_{6,2}=11; \mu_{2,6}=\mu_{6,2}=x_5$.

18)
$$l_{2,5}+l_{5,7}< l_{2,7}$$
 , $7+23<\infty$? Да. Тогда: $l_{2,7}=l_{7,2}=30; \mu_{2,7}=\mu_{7,2}=x_5$.

19)
$$l_{2,5}+l_{5,8} < l_{2,8}$$
 , $7+9 < \infty$? Да. Тогда: $l_{2,8}=l_{8,2}=16; \mu_{2,8}=\mu_{8,2}=x_5$.

20)
$$l_{3,5} + l_{5,4} < l_{3,4}$$
 , $7 + 17 < 10$? **Het.**

21)
$$l_{3,5} + l_{5,6} < l_{3,6}$$
 , $7 + 4 < 11$? **Het.**

22)
$$l_{3,5} + l_{5,7} < l_{3,7}$$
 , $7 + 23 < 16$? **Het.**

23)
$$l_{3,5}+l_{5,8} < l_{3,8}$$
 , $7+9 < \infty$? Да. Тогда: $l_{3,8}=l_{8,3}=16$; $\mu_{3,8}=\mu_{8,3}=x_5$.

24)
$$l_{4.5} + l_{5.6} < l_{4.6}$$
, 17 + 4 < 2? **Het.**

25)
$$l_{4,5} + l_{5,7} < l_{4,7}$$
 , $17 + 23 < 6$? **Het.**

26)
$$l_{4,5}+l_{5,8} < l_{4,8}$$
 , $17+9 < \infty$? Да. Тогда: $l_{4,8}=l_{8,4}=26; \mu_{4,8}=\mu_{8,4}=x_5$.

27)
$$l_{6,5} + l_{5,7} < l_{6,7}$$
 , $4 + 23 < 8$? **Het.**

28)
$$l_{6,5}+l_{5,8} < l_{6,8}$$
 , $4+9 < \infty$? Да. Тогда: $l_{6,8}=l_{8,6}=13; \mu_{6,8}=\mu_{8,6}=x_5$.

29)
$$l_{7.5} + l_{5.8} < l_{7.8}$$
, 23 + 9 < ∞ ? Да. Тогда: $l_{7.8} = l_{8.7} = 32$; $\mu_{7.8} = \mu_{8.7} = x_5$.

Вносим изменения в матрицы $\|l^5\|$ и $\|\mu^5\|$ (рис. 3.18).

15	X0	X 1	X2	Х3	X4	X5	X6	X 7	X8	X 9
X0	0	21	9	15	25	16	<mark>20</mark>	31	25	8
X 1	21	0	12	6	4	13	6	10	22	8
X2	9	12	0	14	24	7	11	30	16	8
Х3	15	6	6	0	10	7	11	16	16	8
X4	25	4	24	10	0	17	2	6	26	8
X5	16	13	7	7	17	0	4	23	9	8
X6	20	6	11	11	2	4	0	8	13	4
X 7	31	10	30	16	6	23	8	0	32	8
X8	25	22	16	16	<mark>26</mark>	9	13	32	0	9
X 9	8	8	8	8	8	90	4	8	9	0

μ^5	X0	X 1	X2	X 3	X4	X 5	X6	X 7	X8	X 9
X 0	X 0	X 3	X 2	X 2	X 3	X2	X 5	X 4	X 5	X 9
X 1	X 3	X 1	X 3	X 3	X4	X 3	X4	X4	X 5	X 9
X 2	X0	X 3	X2	X 5	X 5	X5	X 5	X 5	X 5	X 9
X 3	X2	X 1	X 2	X 3	X4	X5	X6	X 4	X 5	X 9
X4	X 3	X 1	X 5	X 3	X4	X 3	X6	X 7	X 5	X 9
X5	X2	X 3	X 2	X 3	X 3	X5	X6	X 4	X8	X 9
X6	X 5	X 4	X 5	X 3	X4	X5	X6	X 7	X 5	X 9
X 7	X4	X4	X 5	X4	X4	X4	X6	X 7	X 5	X 9
X8	X 5	X5	X 5	X 5	X8	X 9				
X 9	X 0	X 1	X2	X 3	X4	X5	X6	X 7	X8	X 9

Рисунок 3.18 — Матрицы путей и переходов графа G перед началом шага p=6

3.3.7. Шаг 6 расчетов по алгоритму Флойда

Принимаем p=6. Принимаем в матрице $\|l^6\|$ вершину x_6 за базовую и выделяем базовую строку и базовый столбец (рис. 3.19).

16	X0	X1	X2	Х3	X4	X5	X6	X 7	X8	X9
X0	0	21	9	15	25	16	20	31	25	8
X 1	21	0	12	6	4	13	6	10	22	8
X2	9	12	0	14	24	7	11	30	16	8
Х3	15	6	6	0	10	7	11	16	16	8
X4	25	4	24	10	0	17	2	6	26	8
X5	16	13	7	7	17	0	4	23	9	8
X6	20	6	11	11	2	4	0	8	13	4
X 7	31	10	30	16	6	23	8	0	32	8
X8	25	22	16	16	26	9	13	32	0	9
X 9	8	8	8	8	8	8	4	8	9	0

Рисунок 3.19 — Матрица путей l⁶ на шестом шаге расчетов

Поскольку ни один элемент базовой строки и базового столбца не равен ∞ , то в дальнейших расчетах используем $\|l^6\|$.

Выполним необходимые расчеты:

1)
$$l_{0,6} + l_{6,1} < l_{0,1}$$
, $20 + 6 < 21$? **Het.**

2)
$$l_{0,6} + l_{6,2} < l_{0,2}$$
 , $20 + 11 < 9$? **Het.**

3)
$$l_{0,6} + l_{6,3} < l_{0,3}$$
, 20 + 11 < 15? **Het.**

4)
$$l_{0,6}+l_{6,4}< l_{0,4}$$
 , 20+2<25 ? Да. Тогда: $l_{0,4}=l_{4,0}=22; \mu_{0,4}=\mu_{4,0}=x_6$.

5)
$$l_{0.6} + l_{6.5} < l_{0.5}$$
, 20 + 4 < 16? **Het.**

- 6) $l_{0.6} + l_{6.7} < l_{0.7}$, 20 + 8 < 31 ? Да. Тогда: $l_{0.7} = l_{7.0} = 28$; $\mu_{0.7} = \mu_{7.0} = x_6$.
- 7) $l_{0.6} + l_{6.8} < l_{0.8}$, 20 + 13 < 25 ? **Het.**
- 6) $l_{0,6}+l_{6,9}< l_{0,9}$, $20+4<\infty$? Да. Тогда: $l_{0,9}=l_{9,0}=24; \mu_{0,9}=\mu_{9,0}=x_6$.
- 8) $l_{16} + l_{62} < l_{12}$, 6+11<12 ? **Het.**
- 9) $l_{1.6} + l_{6.3} < l_{1.3}$, 6+11<6? **Het.**
- 10) $l_{1.6} + l_{6.4} < l_{1.4}$, 6 + 2 < 4? **Het.**
- 11) $l_{1.6} + l_{6.5} < l_{1.5}$, 6+4<13? Да. Тогда: $l_{1.5} = l_{5.1} = 10; \mu_{1.5} = \mu_{5.1} = x_6$.
- 12) $l_{1.6} + l_{6.7} < l_{1.7}$, 6 + 8 < 10? **Het.**
- 13) $l_{1,6} + l_{6,8} < l_{1,8}$, 6+13 < 22 ? Да. Тогда: $l_{1,8} = l_{8,1} = 19$; $\mu_{1,8} = \mu_{8,1} = x_6$.
- 6) $l_{1.6}+l_{6.9}< l_{1.9}$, $6+4<\infty$? Да. Тогда: $l_{1,9}=l_{9,1}=10; \mu_{1,9}=\mu_{9,1}=x_6$.
- 14) $l_{26} + l_{63} < l_{23}$, 11 + 11 < 14? **Het.**
- 15) $l_{2,6} + l_{6,4} < l_{2,4}$, 11 + 2 < 24 ? Да. Тогда: $l_{2,4} = l_{4,2} = 13$; $\mu_{2,4} = \mu_{4,2} = x_6$.
- 16) $l_{2.6} + l_{6.5} < l_{2.5}$, 11 + 4 < 7? **Het.**
- 17) $l_{2.6} + l_{6.7} < l_{2.7}$, 11+8<30 ? Да. Тогда: $l_{2.7} = l_{7.2} = 19$; $\mu_{2.7} = \mu_{7.2} = x_6$.
- 18) $l_{2.6} + l_{6.8} < l_{2.8}$, 11+13 < 16 ? **Het.**
- 6) $l_{2.6} + l_{6.9} < l_{2.9}$, 11 + 4 < ∞ ? Да. Тогда: $l_{2.9} = l_{9.2} = 15$; $\mu_{2.9} = \mu_{9.2} = x_6$.
- 19) $l_{36} + l_{64} < l_{34}$, 11 + 2 < 10? **Het.**
- 20) $l_{36} + l_{65} < l_{35}$, 11 + 4 < 7? **Het.**
- 21) $l_{36} + l_{67} < l_{37}$, 11 + 8 < 16? **Het.**
- 22) $l_{36} + l_{68} < l_{38}$, 11 + 13 < 16? **Het.**
- 6) $l_{3,6}+l_{6,9}< l_{3,9}$, $11+4<\infty$? Да. Тогда: $l_{3,9}=l_{9,3}=15; \mu_{3,9}=\mu_{9,3}=x_6$.
- 23) $l_{46} + l_{65} < l_{45}$, 2+4<17 ? Да. Тогда: $l_{45} = l_{54} = 6$; $\mu_{45} = \mu_{54} = x_6$.
- 23) $l_{4.6} + l_{6.7} < l_{4.7}$, 2+8<6? **Het.**
- 24) $l_{4.6} + l_{6.8} < l_{4.8}$, 2+13 < 26 ? Да. Тогда: $l_{4.8} = l_{8.4} = 25$; $\mu_{4.8} = \mu_{8.4} = x_6$.
- 6) $l_{4.6} + l_{6.9} < l_{4.9}$, $2 + 4 < \infty$? Да. Тогда: $l_{4.9} = l_{9.4} = 6$; $\mu_{4.9} = \mu_{9.4} = x_6$.
- 25) $l_{56} + l_{67} < l_{57}$, 4 + 8 < 23 ? Да. Тогда: $l_{57} = l_{75} = 12$; $\mu_{57} = \mu_{75} = x_6$.
- 26) $l_{5.6} + l_{6.8} < l_{5.8}$, 4 + 13 < 9? **Het.**
- 6) $l_{56} + l_{69} < l_{59}$, $4 + 4 < \infty$? Да. Тогда: $l_{59} = l_{95} = 8$; $\mu_{59} = \mu_{95} = x_6$.
- 27) $l_{7.6} + l_{6.8} < l_{7.8}$, 8+13 < 32 ? Да. Тогда: $l_{7.8} = l_{8.7} = 21$; $\mu_{7.8} = \mu_{8.7} = x_6$.
- 6) $l_{7.6} + l_{6.9} < l_{7.9}$, 8+4< ∞ ? Да. Тогда: $l_{7.9} = l_{9.7} = 12$; $\mu_{7.9} = \mu_{9.7} = x_6$.
- 6) $l_{8.6} + l_{6.9} < l_{8.9}$, 13+4<9? **Het.**

Вносим изменения в матрицы $\|l^6\|$ и $\|\mu^6\|$ (рис. 3.21).

16	X0	x1	X2	Х3	X4	X5	X6	X7	X8	X9
X0	0	21	9	15	22	16	20	28	25	24
X1	21	0	12	6	4	10	6	10	19	10
X2	9	12	0	14	13	7	11	19	16	15
Х3	15	6	6	0	10	7	11	16	16	15
X4	<mark>22</mark>	4	13	10	0	<u>6</u>	2	6	25	<mark>6</mark>
X5	16	10	7	7	6	0	4	12	9	8
X6	20	6	11	11	2	4	0	8	13	4
X 7	28	10	19	16	6	12	8	0	21	12
X8	25	19	16	16	25	9	13	21	0	9
X9	24	10	15	15	<mark>6</mark>	8	4	12	9	0

μ^6	X 0	X1	X2	X 3	X 4	X5	X6	X 7	X8	X 9
X 0	X 0	X 3	X 2	X 2	X 6	X2	X5	X 6	X5	X 6
X 1	X 3	X 1	X 3	X 3	X4	X 6	X4	X 4	X 6	X 6
X2	X0	X 3	X2	X5	X 6	X5	X5	X 6	X5	X 6
X 3	X2	X 1	X2	X 3	X4	X5	X6	X4	X5	X 6
X4	X 6	X 1	X 6	X 3	X4	X 6	X6	X 7	X 6	X 6
X5	X2	X 6	X 2	X 3	X 6	X5	X6	X 6	X8	X 6
X6	X5	X4	X5	X 3	X4	X5	X6	X4	X8	X 9
X 7	X 6	X4	X 6	X 3	X4	X 6	X4	X 7	X 6	X 6
X8	X5	X 6	X5	X5	X 6	X5	X6	X 6	X8	X 9
X 9	<mark>X</mark> 6	<mark>X6</mark>	X 6	X 6	X 6	X 6	X6	X 6	X8	X 9

Рисунок 3.21 — Матрицы путей и переходов графа G перед началом шага p=7

3.3.8. Шаг 7 расчетов по алгоритму Флойда

Принимаем p=7. Принимаем в матрице $\|l^7\|$ вершину x_7 за базовую и выделяем базовую строку и базовый столбец (рис. 3.22).

17	X0	X1	X2	Х3	X4	X5	X6	X 7	X8	X 9
X0	0	21	9	15	22	16	20	28	25	24
X 1	21	0	12	6	4	10	6	10	19	10
X2	9	12	0	14	13	7	11	19	16	15
Х3	15	6	6	0	10	7	11	16	16	15
X4	22	4	13	10	0	6	2	6	25	6
X5	16	10	7	7	6	0	4	12	9	8
X6	20	6	11	11	2	4	0	8	13	4
X 7	28	10	19	16	6	12	8	0	21	12
X8	25	19	16	16	25	9	13	21	0	9
X 9	24	10	15	15	6	8	4	12	9	0

Рисунок 3.22 — Матрица путей l^7 на седьмом шаге расчетов Вычер киваем в матрице $\|l^7\|$ строки и столбцы, базовые элементы которых имеют значение ∞ .

Поскольку ни один элемент базовой строки и базового столбца не равен ∞ , то в дальнейших расчетах используем $\|l^7\|$.

Выполним необходимые расчеты:

- 1) $l_{0.7} + l_{7.1} < l_{0.1}$, 28 + 10 < 21 ? **Het.**
- 2) $l_{0.7} + l_{7.2} < l_{0.2}$, 28 + 19 < 9? **Het.**
- 3) $l_{0.7} + l_{7.3} < l_{0.3}$, 28+16<15? **Het.**
- 4) $l_{0.7} + l_{7.4} < l_{0.4}$, 28 + 6 < 22 ? **Het.**
- 5) $l_{0.7} + l_{7.5} < l_{0.5}$, 28 + 12 < 16? **Het.**
- 6) $l_{0.7} + l_{7.6} < l_{0.6}$, 28 + 8 < 20 ? **Het.**
- 7) $l_{0.7} + l_{7.8} < l_{0.8}$, 28 + 21 < 25 ? **Het.**
- 7) $l_{0.7} + l_{7.9} < l_{0.9}$, 28 + 12 < 24 ? **Het.**
- 8) $l_{17} + l_{72} < l_{12}$, 10 + 19 < 12? **Het.**
- 9) $l_{17} + l_{73} < l_{13}$, 10 + 16 < 6? **Het.**
- 10) $l_{17} + l_{74} < l_{14}$, 10 + 6 < 4? **Het.**
- 11) $l_{17} + l_{75} < l_{15}$, 10 + 12 < 10? **Het.**
- 12) $l_{17} + l_{7.6} < l_{1.6}$, 10 + 8 < 6? **Het.**
- 13) $l_{17} + l_{78} < l_{18}$, 10 + 21 < 19? **Het.**
- 7) $l_{17} + l_{79} < l_{19}$, 10 + 12 < 10? **Het.**
- 14) $l_{27} + l_{73} < l_{23}$, 19+16<14 ? **Het.**
- 15) $l_{27} + l_{74} < l_{24}$, 19 + 6 < 13 ? **Het.**
- 16) $l_{27} + l_{75} < l_{25}$, 19 + 12 < 7? **Het.**
- 17) $l_{27} + l_{76} < l_{26}$, 19 + 8 < 11? **Het.**
- 18) $l_{27} + l_{78} < l_{28}$, 19 + 21 < 16? **Het.**
- 7) $l_{27} + l_{79} < l_{29}$, 19 + 12 < 15 ? **Het.**
- 19) $l_{3.7} + l_{7.4} < l_{3.4}$, 16 + 6 < 10? **Het.**
- 20) $l_{37} + l_{75} < l_{35}$, 16 + 12 < 7? **Het.**
- 21) $l_{37} + l_{76} < l_{36}$, 16 + 8 < 11? **Het.**
- 22) $l_{37} + l_{78} < l_{38}$, 16 + 21 < 16? **Het.**
- 7) $l_{37} + l_{79} < l_{39}$, 16 + 12 < 15? **Het.**
- 23) $l_{47} + l_{75} < l_{45}$, 6+12 < 6? **Het.**
- 24) $l_{4.7} + l_{7.6} < l_{4.6}$, 6+8<2? **Het.**
- 25) $l_{47} + l_{78} < l_{48}$, 6 + 21 < 25? **Het.**
- 7) $l_{47} + l_{79} < l_{49}$, 6 + 12 < 6? **Het.**
- 25) $l_{5.7} + l_{7.6} < l_{5.6}$, 12 + 8 < 4? **Het.**
- 26) $l_{57} + l_{78} < l_{58}$, 12 + 21 < 9? **Het.**
- 7) $l_{5.7} + l_{7.9} < l_{5.9}$, 12 + 12 < 8? **Het.**

28)
$$l_{6,7} + l_{7,8} < l_{6,8}$$
 , $8 + 21 < 13$? **Het.**

7)
$$l_{6,7} + l_{7,9} < l_{6,9}$$
 , $8 + 12 < 4$? **Het.**

7)
$$l_{8,7} + l_{7,9} < l_{8,9}$$
 , $21 + 12 < 9$? **Het.**

По результатам расчетов никакие изменения в матрицы $\|l^7\|$ и μ^7 не вносятся.

17	X0	X 1	X2	Х3	X4	X5	X6	X 7	X8	X 9
X0	0	21	9	15	22	16	20	28	25	24
X 1	21	0	12	6	4	10	6	10	19	10
X2	9	12	0	14	13	7	11	19	16	15
Х3	15	6	6	0	10	7	11	16	16	15
X4	22	4	13	10	0	6	2	6	25	6
X5	16	10	7	7	6	0	4	12	9	8
X6	20	6	11	11	2	4	0	8	13	4
X 7	28	10	19	16	6	12	8	0	21	12
X8	25	19	16	16	25	9	13	21	0	9
X 9	24	10	15	15	6	8	4	12	9	0

μ^7	X0	X 1	X2	X 3	X4	X5	X6	X 7	X8	X 9
X0	X0	X 3	X2	X2	X6	X2	X5	X6	X5	X6
X 1	X 3	X 1	X 3	X 3	X4	X6	X4	X4	X6	X6
X2	X0	X 3	X2	X5	X6	X5	X5	X6	X5	X6
X 3	X 2	X 1	X 2	X 3	X4	X5	X6	X4	X5	X6
X4	X6	X 1	X6	X 3	X4	X6	X6	X 7	X6	X6
X5	X 2	X6	X 2	X 3	X6	X5	X6	X6	X8	X6
X6	X5	X4	X5	X 3	X4	X5	X6	X4	X8	X 9
X 7	X6	X4	X6	X 3	X4	X6	X4	X 7	X6	X6
X8	X5	X6	X5	X5	X6	X5	X6	X6	X8	X 9
X 9	X6	X6	X6	X6	X6	X6	X6	X6	X8	X 9

Рисунок 3.23 — Матрицы путей и переходов графа G перед началом шага $p{=}8$

3.3.9. Шаг 8 расчетов по алгоритму Флойда

Принимаем p=8. Принимаем в матрице $\|l^8\|$ вершину x_8 за базовую и выделяем базовую строку и базовый столбец (рис. 3.24).

18	X 0	X 1	X 2	Х3	X 4	X5	X6	X 7	X8	X 9
X0	0	21	9	15	22	16	20	28	25	24
X1	21	0	12	6	4	10	6	10	19	10
X2	9	12	0	14	13	7	11	19	16	15
Х3	15	6	6	0	10	7	11	16	16	15
X4	22	4	13	10	0	6	2	6	25	6
X5	16	10	7	7	6	0	4	12	9	8
X6	20	6	11	11	2	4	0	8	13	4
X7	28	10	19	16	6	12	8	0	21	12
X8	25	19	16	16	25	9	13	21	0	9
X 9	24	10	15	15	6	8	4	12	9	0

Рисунок 3.24 — Матрица путей 1⁸ на восьмом шаге расчетов

Поскольку ни один элемент базовой строки и базового столбца не равен ∞ , то в дальнейших расчетах используем $\|l^8\|$.

По результатам расчетов никакие изменения в матрицы $\|l^8\|$ и μ^8 не вносятся.

18	X0	X1	X2	Х3	X4	X 5	X6	X7	X8	X 9
X0	0	21	9	15	22	16	20	28	25	24
X 1	21	0	12	6	4	10	6	10	19	10
X2	9	12	0	14	13	7	11	19	16	15
Х3	15	6	6	0	10	7	11	16	16	15
X4	22	4	13	10	0	6	2	6	25	6
X5	16	10	7	7	6	0	4	12	9	8
X6	20	6	11	11	2	4	0	8	13	4
X7	28	10	19	16	6	12	8	0	21	12
X8	25	19	16	16	25	9	13	21	0	9
X 9	24	10	15	15	6	8	4	12	9	0

X 0	X 1	X 2	X 3	X4	X5	X6	X 7	X8	X 9
X0	X 3	X2	X2	X6	X2	X5	X6	X5	X6
X 3	X 1	X 3	X 3	X4	X6	X4	X4	X6	X6
X0	X 3	X2	X5	X6	X5	X5	X6	X5	X6
X2	X 1	X2	X 3	X4	X5	X6	X4	X5	X6
X6	X 1	X6	X 3	X4	X6	X6	X 7	X6	X6
X2	X6	X 2	X 3	X6	X5	X6	X6	X8	X6
X5	X4	X5	X 3	X4	X5	X6	X 4	X8	X 9
X6	X4	X6	X 3	X4	X6	X4	X 7	X6	X6
X5	X6	X5	X5	X6	X5	X6	X6	X8	X 9
X6	X6	X6	X6	X6	X6	X6	X6	X8	X 9
	X0 X3 X0 X2 X6 X2 X5 X6 X5	X0 X3 X3 X1 X0 X3 X2 X1 X6 X1 X2 X6 X5 X4 X6 X4 X5 X6	X0 X3 X2 X3 X1 X3 X0 X3 X2 X2 X1 X2 X6 X1 X6 X2 X6 X2 X5 X4 X5 X6 X4 X6 X5 X6 X5	X0 X3 X2 X2 X3 X1 X3 X3 X0 X3 X2 X5 X2 X1 X2 X3 X6 X1 X6 X3 X2 X6 X2 X3 X5 X4 X5 X3 X6 X4 X6 X3 X5 X6 X5 X5	X0 X3 X2 X2 X6 X3 X1 X3 X3 X4 X0 X3 X2 X5 X6 X2 X1 X2 X3 X4 X6 X1 X6 X3 X4 X2 X6 X2 X3 X6 X5 X4 X5 X3 X4 X6 X4 X6 X3 X4 X5 X6 X5 X5 X6	X0 X3 X2 X2 X6 X2 X3 X1 X3 X3 X4 X6 X0 X3 X2 X5 X6 X5 X2 X1 X2 X3 X4 X5 X6 X1 X6 X3 X4 X6 X2 X6 X2 X3 X6 X5 X5 X4 X5 X3 X4 X5 X6 X4 X6 X3 X4 X6 X5 X6 X5 X5 X6 X5	X0 X3 X2 X2 X6 X2 X5 X3 X1 X3 X3 X4 X6 X4 X0 X3 X2 X5 X6 X5 X5 X2 X1 X2 X3 X4 X5 X6 X6 X1 X6 X3 X4 X6 X6 X2 X6 X2 X3 X6 X5 X6 X5 X4 X5 X3 X4 X5 X6 X6 X4 X6 X3 X4 X6 X4 X5 X6 X5 X5 X6 X5 X6	X0 X3 X2 X2 X6 X2 X5 X6 X3 X1 X3 X3 X4 X6 X4 X4 X0 X3 X2 X5 X6 X5 X5 X6 X2 X1 X2 X3 X4 X5 X6 X4 X6 X1 X6 X3 X4 X6 X6 X7 X2 X6 X2 X3 X6 X5 X6 X6 X5 X4 X5 X3 X4 X5 X6 X4 X6 X4 X5 X3 X4 X5 X6 X4 X6 X4 X6 X3 X4 X6 X4 X7 X5 X6 X5 X6 X5 X6 X6	X0 X3 X2 X2 X6 X2 X5 X6 X5 X3 X1 X3 X3 X4 X6 X4 X4 X6 X0 X3 X2 X5 X6 X5 X5 X6 X5 X2 X1 X2 X3 X4 X5 X6 X4 X5 X6 X1 X6 X3 X4 X6 X6 X7 X6 X2 X6 X2 X3 X6 X5 X6 X6 X8 X5 X4 X5 X3 X4 X5 X6 X4 X8 X6 X4 X5 X3 X4 X5 X6 X4 X8 X6 X4 X6 X3 X4 X6 X4 X7 X6 X5 X6 X5 X6 X6 X6 X8

Рисунок 3.25 — Матрицы путей и переходов графа G перед началом шага p=9

3.3.10. Шаг 9 расчетов по алгоритму Флойда

Принимаем p=9. Принимаем в матрице $\|l^9\|$ вершину x_9 за базовую и выделяем базовую строку и базовый столбец (рис. 3.26).

19	X0	x1	X2	Х3	X4	X5	X6	X 7	X8	X 9
X0	0	21	9	15	22	16	20	28	25	24
X1	21	0	12	6	4	10	6	10	19	10
X2	9	12	0	14	13	7	11	19	16	15
Х3	15	6	6	0	10	7	11	16	16	15
X4	22	4	13	10	0	6	2	6	25	6
X5	16	10	7	7	6	0	4	12	9	8
X6	20	6	11	11	2	4	0	8	13	4
X7	28	10	19	16	6	12	8	0	21	12
X8	25	19	16	16	25	9	13	21	0	9
X 9	24	10	15	15	6	8	4	12	9	0

Рисунок 3.26 — Матрица путей l^9 на девятом шаге расчетов

Поскольку ни один элемент базовой строки и базового столбца не равен ∞ , то в дальнейших расчетах используем $\|l^9\|$.

По результатам расчетов никакие изменения в матрицы $\|l^9\|$ и μ^9 не вносятся.

19	X0	X 1	X2	Х3	X4	X5	X6	X7	X8	X 9
X0	0	21	9	15	22	16	20	28	25	24
X 1	21	0	12	6	4	10	6	10	19	10
X 2	9	12	0	14	13	7	11	19	16	15
Х3	15	6	6	0	10	7	11	16	16	15
X4	22	4	13	10	0	6	2	6	25	6
X5	16	10	7	7	6	0	4	12	9	8
X6	20	6	11	11	2	4	0	8	13	4
X 7	28	10	19	16	6	12	8	0	21	12
X8	25	19	16	16	25	9	13	21	0	9
X9	24	10	15	15	6	8	4	12	9	0

μ^9	X 0	X 1	X2	X 3	X4	X5	X6	X 7	X8	X 9
X0	X0	X 3	X2	X2	X6	X2	X5	X6	X5	X6
X 1	X 3	X 1	X 3	X 3	X4	X6	X4	X4	X6	X6
X2	X0	X 3	X2	X5	X6	X5	X5	X6	X5	X6
X 3	X2	X 1	X2	X 3	X4	X5	X6	X4	X5	X6
X4	X6	X 1	X6	X 3	X4	X6	X6	X 7	X6	X6
X5	X2	X6	X2	X 3	X6	X5	X6	X6	X8	X6
X6	X5	X4	X5	X 3	X4	X5	X6	X4	X8	X 9
X 7	X6	X4	X6	X 3	X4	X6	X4	X 7	X6	X6
X8	X5	X6	X5	X5	X6	X5	X6	X6	X8	X 9
X 9	X6	X6	X6	X6	X6	X6	X6	X6	X8	X 9

Рисунок 3.27 — Матрицы путей и переходов графа G

Вычисления по алгоритму Флойда завершены.

3.2. Проверка результатов расчетов по алгоритму Флойда

Таким образом, в результате расчетов получены матрицы кратчайших путей и кратчайших переходов графа G.

По матрицам $\|l_9\|$ и $\|\mu_9\|$ можно найти длину кратчайшего пути и соответствующий этому пути переход.

Пусть нас интересует длина кратчайшего пути между вершинами x_0 и x_9 . Обратимся к матрице $\|l_9\|$. На пересечении строки x_0 и столбца x_9 находим, что длина кратчайшего пути равна 24-м единицам.

Для поиска соответствующего перехода будем сочетать анализ матрицы $\|\mu_9\|$ с визуальным анализом графа. По матрице $\|\mu_9\|$ определяем, что кратчайший путь из x_0 в x_9 лежит через вершину x_6 . Из вершины x_2 в вершину x_6 через вершину x_5 . Таким образом, кратчайший переход между вершинами x_0 и x_9 опирается на вершины (x_0, x_2, x_5, x_6).

3.3. Вывод

В расчетно-графической работе № 3 мы нашли кратчайшие пути по алгоритму Флойда.

Алгоритм Флойда — Уоршелла используется очень широко, начиная от поиска транзитивного замыкания графа, заканчивая генетикой и управлением проектами. Но активнее всего при построении транспортных и других сетей.

Скажем если вы возьмете карту города — её транспортная система это граф, соответственно присвоив каждому ребру некую стоимость, рассчитанную скажем из пропускной способности и других важный параметров — вы сможете подвести попутчика по самому короткому/быстрому/дешевому пути.

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧЕРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

"Калининградский государственный технический университет" (ФГБОУ ВО "КГТУ")

Кафедра систем управления и вычислительной техники

Дисциплина: Дискретная математика

Расчетно-графическая работа № 4

«Расчет максимального потока в сети с ограниченной пропускной способностью по алгоритму Форда-Фалкерсона»

Вариант №70

Работу проверил:	Работу выполнил:
доцент, профессор,	студент группы 18-ВТ
к.т.н. Иванов В. Е.	Подковыров Д.Р.
с оценкой:	подпись:
подпись:	«»2020г.
« » 2020г.	

Калининград

2020г.

Содержание

4. Задание	3
4.1. Обозначения	4
4.2. Выполнению расчетов по алгоритму Форда - Фалкерсона	4
4.2.1. Итерация 1 расчетов по алгоритму Форда-Фалкерсона	5
4.2.2. Итерации 2—6 расчетов по алгоритму Форда-Фалкерсона	7
4.3. Заключение	10

4. Задание

«Найти распределение максимального потока в сети (рис. 4.1) по алгоритму Форда-Фалкерсона. Пропускная способность дуг приведена в таблице 4.1, где ∞ — означает отсутствие ребра (x_i, x_j) , а «1» — его наличие, которое необходимо умножить на величину пропускной способности $C_{i,j}$.

Рисунок 4.1 — Граф — сеть G

Таблица 4.1— Варианты заданий

Старший		Индексы вершин, инцидентных ребру								
разряд	0,1	0,2	0,3	1,3	1,4	2,3	2,5	3,4	3,5	3,6
номера		Вес ребра (условных единиц)								
варианта	7	9	12	6	4	6	7	10	7	11
1	1	∞	1	1	1	1	8	1	1	1

Таблица 4.1— (продолжение)

Младший		Индексы вершин, инцидентных ребру								
разряд	4,6	4,7	5,6	5,8	6,7	6,8	6,9	7,9	8,9	
номера		Вес ребра (условных единиц)								
варианта	2	6	4	9	8	5	4	3	9	
5	1	1	1	1	∞	1	1	1	1	

4.1. Обозначения

При выполнении расчетно-графической работы применяются следующие обозначения:

 φ_{ij} — объем информации, энергии вещества, передаваемой от одного узла сети к другому,

 C_{ij} — наибольший поток, который может пропустить дуга,

 x_0 — вершина-исток,

 $arphi_0 = \sum arphi_{0i}$ — величина потока-истока, где $arphi_{0i}$ — величина потока по каждой i--ой дуге, исходящей из x_0 ,

 x_k —вершина-сток,

 $\varphi_k = \sum \varphi_{i_k}$ — величина потока вершины-стока, где φ_{i_k} величина потока по каждой i-ой дуге, входящей в x.

4.2. Выполнению расчетов по алгоритму Форда - Фалкерсона

Рассмотрим граф G, изображенный на рис. 4.1.

Каждая дуга графа—сети G взвешена парой (φ_{ij} , c_{ij}). Так, например, дуга (x_2 , x_3) имеет вес (0;6), означающий, что текущая величина потока по дуге φ_{23} =0, а наибольший поток, который может пропустить дуга равен шести единицам, т.е. c_{23} =6.

На входе величина потока равна нулю, т.е. φ_0 .

4.2.1. Итерация 1 расчетов по алгоритму Форда-Фалкерсона

Присвоим всем вершинам графа индексы $0,1,2,\ldots,k$, где 2— индекс вершины истока графа, k— индекс вершины— стока графа (рис. 4.1). Присвоим начальной вершине метку «0» (табл. 4.1). Все непомеченные вершины x_i , в которые идут ненасыщенные дуги из помеченной вершины $x_0/s=0$, пометим «+S» что свидетельствует о возможности увеличения потока из вершины x_0 по дуге (x_0 , x_i). Результаты сведены в табл. 4.1, итерация 1. В табл. 4.2 сведены приращения потоков по дугам (x_i , x_j). В табл. 4.3 зеленым цветом выделены насыщенные дуги.

Рисунок 4.2 – Исходный граф - сети G

x_i	Итерация p_i = i											
X _i	1	2	3	4	5	6	7					
x ₀	0	0	0	0	0	0	0					
x_1	+0,+3	+0,+3	+0,+3	+0,+3	+0,+3	+0,+3	+0,+3					
x_2	0	0	0	0	0	0	0					
<i>x</i> ₃	+2	+2	+2	+2	+2	+2	-					
<i>x</i> ₄	+1,+3	+1,+3	+1,+3	+1,+3	+3	+3	+3					
x 5	+3,+6	+3,+6	+3,+6	+3,+6	+3,+6	+3,+6	+3,+6					
<i>x</i> ₆	+3,+4	+3,+4	+3	+3	+3	+3	+3					
<i>x</i> ₇	+4	+4	+4	+4	+4	+4	+4					
<i>x</i> ₈	+5,+6	+5,+6	+5,+6	+5,+6	+5,+6	+5,+6	+5,+6					

Таблица 4.2 —Разметка дуг графа-сети G по итерациям

χ_i	c_{ij}	Итерация p_i = i							
	J	1	2	3	4	5	6		
(x_0, x_1)	7	0	0	0	0	0	0		
(x_1, x_4)	4	1	2	3	4	4	4		
(x_2, x_3)	6	1	2	3	4	5	5		
(x_3, x_0)	12	0	0	0	0	0	0		
(x_3, x_1)	6	1	2	3	4	4	4		
(x_3, x_4)	10	0	0	0	0	0	0		
(x_3, x_5)	7	0	0	0	0	0	0		
(x_3, x_6)	11	0	0	0	0	1	2		
(x_4, x_6)	2	1	2	2	2	2	2		
(x_4, x_7)	6	0	0	1	2	2	2		
(x_5, x_8)	9	1	2	2	2	2	2		
(x_6, x_5)	4	1	2	2	2	2	2		
(x_6, x_8)	5	0	0	0	0	0	0		
(x_6, x_k)	4	0	0	0	0	1	2		
(x_7, x_k)	3	0	0	1	2	2	2		
(x_8, x_k)	9	1	2	2	2	2	2		

Таблица 4.3— Величина потока через дугу и насыщенные
дуги графа-сети ${\cal G}$

В результате выполнения первой итерации возможны переходы:

 $V_{1} = \{(x_{2},x_{3},x_{0},x_{1},x_{4},x_{7},x_{k}), (x_{2},x_{3},x_{0},x_{1},x_{4},x_{6},x_{k}), (x_{2},x_{3},x_{0},x_{1},x_{4},x_{6},x_{5},x_{8},x_{k}), (x_{2},x_{3},x_{0},x_{1},x_{4},x_{6},x_{8},x_{k}), (x_{2},x_{3},x_{1},x_{4},x_{7},x_{k}), (x_{2},x_{3},x_{1},x_{4},x_{6},x_{k}), (x_{2},x_{3},x_{1},x_{4},x_{6},x_{8},x_{k}), (x_{2},x_{3},x_{1},x_{4},x_{6},x_{8},x_{k}), (x_{2},x_{3},x_{1},x_{4},x_{6},x_{8}), (x_{2},x_{3},x_{1},x_{4},x_{6},x_{8}), (x_{2},x_{3},x_{4},x_{6},x_{8},x_{k}), (x_{2},x_{3},x_{4},x_{6},x_{8},$

Ниже обозначения для элементов множества V_i вводятся в порядке следования в списке.

Пусть выбран V_1 =(x_2 , x_3 , x_1 , x_4 , x_6 , x_5 , x_8 , x_k), приращение потока на $\Delta \varphi = I$ проходит по маршруту μ =((x_2 , x_3),(x_3 , x_1),(x_1 , x_4),(x_4 , x_6),(x_6 , x_5),(x_5 , x_8),(x_8 , x_k)). Он выделен на рисунке как итерация 1.

Изменим величину потока на выходе графа-сети G, т.е. $\varphi_I = 1$. Снимем прежнюю разметку вершин графа-сети G и выполним её заново.

4.2.2. Итерации 2—6 расчетов по алгоритму Форда-Фалкерсона

Итерация 1

Итерация 2

Итерация 3

Итерация 4

Итерация 6

Рис. 4.3— Преобразование графа—сети G по итерациям алгоритма Форда-Фалкерсона

В результате насыщения дуг возможных переходов больше не осталось. Итерационный процесс завершён.

Расчеты в соответствии с алгоритмом Форда-Фалкерсона завершены. Таким образом, максимальный поток, который может пропустить граф-сеть G, изображенный на рисунке итерация-6, равен шести единицам.

Итерация 5:

 \mathbf{X}_5

(0,9)

X8

В результате насыщения дуг возможных переходов больше не осталось. Итерационный процесс завершён.

Расчеты в соответствии с алгоритмом Форда-Фалкерсона завершены. Таким образом, максимальный поток, который может пропустить граф-сеть G, изображенный на рисунке итерация-6, равен шести единицам.

4.3. Заключение

Задача о максимальном потоке в сети изучается уже более 60 лет. Интерес к ней подогревается огромной практической значимостью этой проблемы. Методы решения задачи применяются на транспортных, коммуникационных, электрических сетях, при моделировании различных процессов физики и химии, в некоторых операциях над матрицами, для решения родственных задач теории графов.

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧЕРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

"Калининградский государственный технический университет" (ФГБОУ ВО "КГТУ")

Кафедра систем управления и вычислительной техники

Дисциплина: Дискретная математика

Расчетно-графическая работа № 5

«Расчеты по алгоритмам управления проектом» Вариант №70

Работу проверил:	Работу выполнил:
доцент, профессор,	студент группы 18-ВТ
к.т.н. Иванов В. Е.	Подковыров Д.Р.
с оценкой:	подпись:
подпись:	« <u>»</u> 2020г.
« » 2020г.	

Калининград 2020г.

Содержание

5. 3	Задание на расчетно-графическую работу № 5	3
5.2.	Обозначения и краткие теоретические сведения	3
5.3.	Расчеты по алгоритмам управления проектом	6
5.4.	Рассчитаем ранние моменты наступления событий	6
5.5.	Рассчитаем поздние моменты наступления событий	8
5.6.	Рассчитаем резерв времени событий	10
5.7.	Расчет фиктивных работ	11
	Рассчитаем полный резерв времени на работы и определим тический путь	11
	Рассчитаем свободный, независимый и гарантированный реземени	
5.10). Анализ полученных результатов	13
5.11	L. Заключение	14

5. Задание на расчетно-графическую работу № 5

Найти критический путь по алгоритмам управления проектом (СПУ), полный, свободный, независимый и гарантированный резервы времени. Продолжительности работ на рисунке 5.1 приведены в условных единицах.

Рисунок 5.1 — Сетевая модель проекта

5.2. Обозначения и краткие теоретические сведения

Введем следующие обозначения: x_0 — событие «Начало проекта»,

 X_k — событие «Окончание проекта»,

 x_i — промежуточные события проекта, фиксирующие начало и окончание работы,

 au_{ii} — работа,

 $t_{p}(x_{i})$ — ранний момент наступления события,

 $t_n(x_i)$ — поздний момент наступления события.

Ниже, на рисунке 5.2, дана схема идентификации вершин графа — сети.

Рисунок 5.2 — Идентификация вершин графа — сети Введем дополнительные обозначения:

 $t_p(x_i) = \max\{(t_p(x_i) + \tau_{ii}\}$ — формула для расчета раннего момента наступления события,

 $t_n(x_j) = \min_{i=1}^{n} \{(t_n(x_i) - \tau_{ji})\}$ — формула для расчета позднего момента наступления события.

 $t_o(x_i) = t_n(x_i) - t_p(x_i)$ — резерв времени события x_i , т.е. максимальное время, на которое можно задержать наступление события x_i без задержки сроков завершения проекта.

Пример расчета ранних и поздних моментов наступления событий приведен на рисунках 5.3 и 5.4 соответственно.

наступления события Таким образом, полная схема идентификации вершин графа—сети показана на рисунке 5.5.

позднего момента

наступления события

Рисунок 5.3 — Расчет

раннего момента

Рисунок 5.5 — Схема идентификации вершин графа—сети

Равенство $t_n(x_i) = t_p(x_i)$ позднего и раннего сроков наступления события x_i обозначает ситуацию недопустимости задержки наступления события x_i .

Введем следующие обозначения:

 $au_{ij}^o = t_n(x_i) - t_p(x_i) - au_{ij}$ — полный резерв времени работы ij.

Если $\tau_{ii}^{o} = 0$, то работа *ij* лежит на критическом пути (рисунок 5.6).

Ниже приведены расчеты, поясняющие рисунок 5.6. Поскольку $\tau_{12}^o=4-2-2=0,\ \tau_{13}^o=8-2-4$ =20, $\tau_{23}^o=8-4-4=0$, то работы 12 и 23 лежат на критическом пути.

Введем следующие обозначения:

$$au_{ij}^{o(csoo)} = t_p(x_j) - t_p(x_i) - au_{ji}$$
 — свободный резерв времени работы ij ,
$$au_{ij}^{o(neзas)} = t_p(x_j) - t_n(x_i) - au_{ji}$$
 — независимый резерв времени работы ij ,
$$au_{ij}^{o(capann)} = t_n(x_j) - t_n(x_i) - au_{ji}$$
 — гарантированный резерв времени работы ij .

Рисунок 5.6 — К понятию критического пути

— критический путь, т.е. последовательность событий, имеющих полный резерв времени нулевым.

5.3. Расчеты по алгоритмам управления проектом

Рис. 5.7 Граф сеть с правильной адресацией вершин

5.4. Рассчитаем ранние моменты наступления событий

Расчет ранних моментов наступления событий для графа-сети приведен в таблице 9.2. При выполнении расчетов принято, что вершина x_0 имеет $t_p(x_0) = t_n(x_0) = 0$.

Таблица 5.1 — Результаты расчета ранних моментов наступления событий

i	j	$t_p(x_j) = t_p(x_i) + \tau_{ij}$	$t_p(x_j) = \max_i \{ (t_p(x_i) + \tau_{ij}) \}$
0	1	$t_p(1) = t_p(0) + \tau_{01} = 2$	$t_p(1) = 2$
	2	0+6=6	
1	2	2+2=4	$t_p(2) = 6$
	3	2+4=6	
	4	2+2=4	
2	7	6+2=8	$t_p(3) = 6$
	8	6+4=10	

3	5	6+2=8	$t_p(4) = 4$
	6	6+6=12	
4	5	4+6=10	$t_p(5) = 10$
	7	4+8=12	
	9	4+4=8	
5	6	10+4=14	$t_p(6) = 14$
	10	10+3=13	
6	11	14+2=16	$t_p(7) = 12$
7	8	12+3=15	$t_{p}(8) = 15$
	12	12+6=18	
8	13	15+8=23	$t_{p}(9) = 11$
9	10	8+4=12	$t_p(10) = 16$
	12	8+6=14	
	14	8+7=15	
10	11	13+6=19	$t_{p}(11) = 19$
	15	13+6=19	
11	16	19+4=23	$t_p(12) = 18$
12	13	18+8=26	$t_p(13) = 26$
	17	18+5=23	
13	18	26+4=30	$t_p(14) = 15$
14	15	15+4=19	$t_p(15) = 19$
	17	15+7=22	
	21	15+5=20	
15	16	19+8=27	$t_p(16) = 27$
16	19	27+6=33	$t_p(17) = 23$
17	18	23+5=28	$t_p(18) = 30$
	20	23+4=27	
18	20	30+4=34	$t_p(19) = 33$
19	21	33+6=39	$t_p(20) = 34$
20	21	34+8=42	$t_p(21) = 42$
	К	34+4=38	
21	К	42+2=44	$t_p(\kappa) = 44$

Результаты расчета отражены на рисунке 5.8.

Рисунок 5.8 — Граф-сеть с ранними моментами наступления событий

5.5. Рассчитаем поздние моменты наступления событий

Расчет поздних моментов наступления событий для графа — сети приведен в таблице 5.2. При выполнении расчетов принято, что вершина x_k имеет $t_n(x_k) = t_p(x_k) = 44$.

Таблица 5.2 — Результаты расчета поздних моментов наступления событий

i	j	$t_n(x_j) = t_n(x_i) - \tau_{ji}$	$t_{n}(x_{j}) = \min_{i} \{ (t_{n}(x_{i}) - \tau_{ji}) \}$
k	21	$t_n(21) = t_n(k) - \tau_{21,k} = 42$	$t_n(21) = 42$
	20	44-4=40	
21	20	42-8=34	$t_n(20) = 34$
	19	42-6=36	
	14	42-5=37	
20	18	34-4=30	$t_n(19) = 36$
	17	34-3=31	
19	16	36-6=30	$t_n(18) = 30$
18	17	30-5=25	$t_n(17) = 25$
	13	30-4=26	
17	14	25-7=18	$t_n(16) = 30$
	12	25-5=20	

16	15	30-8=28	$t_n(15) = 22$
10	11	30-4=26	v _n (13) 22
15	14	22-4=18	$t_n(14) = 18$
	10	22-6=16	<i>n</i> (11)
14	9	18-7=11	$t_n(13) = 26$
13	12	26-8=18	$t_n(12) = 18$
	8	26-8=18	'n ()
12	9	18-6=12	$t_n(11) = 26$
12	7	18-6=12	n v /
11	10	26-6=20	$t_n(10) = 16$
	6	26-2=24	n × 7
10	9	16-4=12	$t_n(9) = 11$
	5	16-3=13	n v /
9	4	11-4=7	$t_n(8) = 18$
8	7	18-3=15	$t_n(7) = 12$
	2	18-4=14	, , ,
7	4	12-8=4	$t_n(6) = 24$
	2	12-2=10	
6	5	24-4=20	$t_n(5) = 13$
	3	24-6=18	
5	4	13-6=7	$t_n(4) = 4$
	3	13-2=11	
4	1	4-2=2	$t_n(3) = 11$
3	1	11-4=7	$t_n(2) = 10$
2	1	10-2=8	$t_n(1) = 2$
	0	10-6=4	
1	0	2-2=0	$t_n(0) = 0$

Результаты расчета отражены на графе – сети (рис. 5.9).

Рисунок 5.9

5.6. Рассчитаем резерв времени событий

Результаты расчетов сведены в таблицу 5.3.

Таблица 5.3 — Результаты расчета резерва времени событий

p	0	1	2	3	4	5	6	7	8	9	10	11
i	0	1	2	3	4	5	6	7	8	9	10	11
$t_o(x_i)$	0	0	4	5	0	3	10	0	3	3	3	7
p	12	13	14	15	16	17	18	19	20	21	22	
i	12	13	14	15	16	17	18	19	20	21	k	
$t_o(x_i)$	0	0	3	3	3	2	0	3	0	0	0	

Результаты расчета отражены на графе – сети (рис. 5.10).

Рисунок 5.10

5.7. Расчет фиктивных работ

Для этого проведем анализ вершин графа-сети с целью проверки выполнения соотношения: $t_p(x_i) = t_p(x_i) = t_n(x_i) = t_n(x_i)$. Таких вершин нет.

5.8. Рассчитаем полный резерв времени на работы и определим критический путь

Результаты расчетов отражены в таблице 5.4.

p	ij	$ au_{ij}^{o}$	p	ij	$ au_{ij}^{o}$	p	ij	$ au_{ij}^{o}$	p	ij	$ au_{ij}^{o}$
1	(0,1)	0	13	(5,6)	0	25	(12,13)	0	37	(20,21)	0
2	(0,3)	0	14	(5,10)	0	26	(12,17)	0	38	(20,k)	6
3	(1,2)	0	15	(6,11)	3	27	(13,18)	0	39	(21,k)	0
4	(1,3)	2	16	(7,8)	0	28	(14,15)	0			
5	(1,4)	0	17	(7,12)	0	29	(14,17)	0			
6	(2,5)	2	18	(8,13)	3	30	(14,21)	22			
7	(2,6)	2	19	(9,10)	1	31	(15,16)	0			
8	(3,7)	4	20	(9,12)	4	32	(16,19)	0			
9	(3,8)	5	21	(9,14)	0	33	(17,18)	2			
10	(4,5)	0	22	(10,11)	0	34	(17,20)	8			
11	(4,7)	0	23	(10,15)	0	35	(18,20)	0			
12	(4,9)	0	24	(11,16)	4	36	(19,21)	3			

Таблица 5.4

Анализ таблицы 5.4 показывает, что на критическом пути лежат работы: 01, 14, 47, 7 12, 12 13, 13 18, 18 20, 20 21, 21 k. Критический путь показан на рисунке 5.11.

Рисунок 5.11

5.9. Рассчитаем свободный, независимый и гарантированный резервы времени

Результаты расчетов сведены в таблицу 5.5.

Таблица 5.5 — Результаты расчета резервов времени

	,	1 1 1	
ij	$ au_{ij}^{0(cso ilde{o})}$	${ au}_{ij}^{0($ незавид $)}$	${ au}_{ij}^{0 (\mathit{гарант})}$
(0,1)	0	0	0
(0,3)	0	0	4
(1,2)	0	0	5
(1,3)	2	2	6
(1,4)	0	0	0
(2,5)	2	0	0
(2,6)	2	0	7
(3,7)	4	0	0
(3,8)	5	1	4
(4,5)	0	0	3
(4,7)	0	0	0

(4,9)	0	0	3
(5,6)	0	0	9
(5,10)	0	0	0
(6,11)	3	0	0
(7,8)	0	0	3
(7,12)	0	0	0
(8,13)	3	0	0
(9,10)	1	0	1
(9,12)	4	1	1
(9,14)	0	0	1
(10,11)	0	0	4
(10,15)	0	0	0
(11,16)	4	0	0
(12,13)	0	0	0
(12,17)	0	0	2
(13,18)	0	0	0
(14,15)	0	0	0
(14,17)	0	0	0
(14,21)	22	19	19
(15,16)	0	0	0
(16,19)	0	0	0
(17,18)	2	0	0
(17,20)	8	6	6
(18,20)	0	0	0
(19,21)	3	0	0
(20,21)	0	0	0
(20,k)	6	6	6
(21,k)	0	0	0

На этом расчеты по алгоритмам управления проектом закончены.

5.10. Анализ полученных результатов

- 1) Особого внимания со стороны руководителя проекта требуют события: x_0 , x_1 , x_4 , x_7 , x_{12} , x_{13} , x_{18} , x_{20} , x_{21} , x_k они имеют нулевой резерв времени.
- 2) Работы, которые лимитируют продолжительность всего проекта, находятся на критическом пути и имеют полный резерв времени равный нулю: 0,1; 1,4; 4,7; 7,12; 12,13; 13,18; 18,20; 20,21; 21,k.
- 3) Работы, имеющие полный, свободный, независимый и гарантированный резерв времени позволяют уменьшить затраты ресурсов и продлить время на эти работы (но не более имеющихся резервов): 1,3; 3,8; 9,12; 14,21; 17,20; 20,k.
- 4) Работы, которые имеют нулевой свободный резерв времени, определяют необходимость контроля за $t_p(x_i)$, предшествующих данной работе и влияющих на начало последующих работ. Это, например, работы: 1,2; 4,7.
- 5) Работы, имеющие нулевой независимый резерв времени, определяют необходимость контроля за $t_n(x_i)$, предшествующих данной работе и влияющих на развитие последующих работ, что является удобным показателем свободы планирования. Это, например, работы: 0,1; 4,5; 6,11; 9,14.

6) Работы, имеющие гарантированный резерв времени равный нулю, не влияют на исполнение всего проекта, но позволяют гарантированно отслеживать исполнение отдельных работ. Это, например, работы: 0,1; 3,7; 4,7; 8,13.

5.11. Заключение

Управление проектом позволит:

- 1) предвидеть возможные задержки каждой работы проекта в целом
- 2) устанавливать последовательность и сроки использования ограниченных ресурсов
- 3) анализировать компромиссные решения по затратам и срокам исполнения

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧЕРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ "Калининградский государственный технический университет" (ФГБОУ ВО "КГТУ")

Кафедра систем управления и вычислительной техники

Дисциплина: Дискретная математика

Расчетно-графическая работа № 6

«Логическое проектирование схемы, реализующей минимальную булеву функцию» Вариант №70

Работу проверил:	Работу выполнил:		
доцент, профессор,	студент группы 18-ВТ		
к.т.н. Иванов В. Е.	Подковыров Д.Р.		
с оценкой:	подпись:		
подпись:	« <u></u> »2020г.		
ω » 2020r			

Калининград 2020г.

Содержание

6. 3	Вадание на расчетно-графическую работу № 6	3
	Выполнения расчетов по конструированию схемы для имизированной булевой функции	3
	Совершенная дизъюнктивная нормальная форма функции, нной таблицей истинности	4
	Совершенная конъюнктивная нормальная форма функции, нной таблицей истинности	4
6.4.	Минимизация булевой функцию методом Квайна	5
6.5.	Минимизация булевой функции методом карт Карно	7
	Сравнение результатов минимизации булевой функцию методами йна и карт Карно	
	Разработка схемы, реализующей минимальную булеву функцию, ользуя элементы на два входа и один выход	
6.8.	Проверка правильности работы схемы устройства1	0
6.9.	Выводы	2

6. Задание на расчетно-графическую работу № 6

По таблице истинности для булевой функции четырех переменных (табл. 6.1) написать ее совершенную дизъюнктивную нормальную форму (СДНФ), совершенную конъюнктивную нормальную форму (СКНФ). Минимизировать булеву функцию методом Квайна и методом карт Карно. Сравнить результаты минимизации. Разработать схему, реализующую минимальную булеву функцию, используя элементы на два входа и один выход. Задавая значения на входе схемы, получить значения на выходе и сверить их с таблицей истинности функции.

6.1. Выполнения расчетов по конструированию схемы для минимизированной булевой функции

Пусть функция четырех переменных задана своей таблицей истинности (табл. 6.1).

Аргумент				Функция
x_1	x_2	x_3	x_4	
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

Таблица 6.1 — Таблица истинности булевой функции четырех переменных

6.2. Совершенная дизъюнктивная нормальная форма функции, заданной таблицей истинности

Для выполнения этого пункта задания по таблице истинности булевой функции определяем строки, в которых функция принимает значение «1». Таких строк семь. Значит, СДНФ будет иметь семь элементарных конъюнкций. Определим их:

6.3. Совершенная конъюнктивная нормальная форма функции, заданной таблицей истинности

Для выполнения этого пункта задания по таблице истинности булевой функции определяем строки в которых функция принимает значение «0». Таких строк девять. Значит СКНФ будет иметь девять элементарных дизъюнкций. Определим их:

$$f(x_1, x_2, x_3, x_4) = (\overline{x_1} \vee \overline{x_2} \vee \overline{x_3} \vee \overline{x_4}) \wedge (\overline{x_1} \vee \overline{x_2} \vee \overline{x_3} \vee x_4) \wedge (\overline{x_1} \vee \overline{x_2} \vee x_3 \vee \overline{x_4})$$

$$\wedge (\overline{x_1} \vee \overline{x_2} \vee x_3 \vee x_4) \wedge (\overline{x_1} \vee x_2 \vee \overline{x_3} \vee \overline{x_4}) \wedge (\overline{x_1} \vee x_2 \vee \overline{x_3} \vee x_4)$$

$$\wedge (x_1 \vee x_2 \vee \overline{x_3} \vee x_4) \wedge (x_1 \vee x_2 \vee x_3 \vee \overline{x_4}) \wedge (x_1 \vee x_2 \vee x_3 \vee x_4)$$

6.4. Минимизация булевой функцию методом Квайна

Расчеты в соответствии с методом Квайна идут в два этапа. На первом этапе итерационно выполняются все возможные операции обобщенного склеивания и операции поглощения по соотношениям из табл. 6.2.

	Склеивание	Поглощение
Для ДНФ	$x \wedge F \vee \overline{x} \wedge F = x \wedge F \vee \overline{x} \wedge F \vee F$	$F_1 \vee F_1 \wedge F_2 = F_1$
Для КНФ	$(x \vee F) \wedge (\overline{x} \vee F) = (x \vee F) \wedge (\overline{x} \vee F) \wedge F$	$F_1 \wedge (F_1 \vee F_2) = F_1$

Таблица 6.2 — Эквивалентные соотношения для склеивания и поглощения

Порядок следования операций:

Склеивание \rightarrow Поглощение \rightarrow Склеивание \rightarrow Поглощение...

При выполнении последовательности операций первого этапа проверяется возможность выполнения операции склеивания. Если на очередной итерации выполнить склеивание нельзя, то значит получена тупиковая ДНФ или КНФ и вычисления первого этапа завершены.

1	$\overline{x_1} \cdot x_2 \cdot x_3 \cdot \overline{x_4}$	1,2	$\overline{x_1} \cdot x_2 \cdot x_3$	3,4- 5,6	$x_1 \cdot \overline{x_2}$
2	$\overline{x_1} \cdot x_2 \cdot x_3 \cdot x_4$	3,4	$x_1 \cdot \overline{x_2} \cdot \overline{x_3}$	3,5- 4,6	$x_1 \cdot \overline{x_2}$
3	$x_1 \cdot \overline{x_2} \cdot \overline{x_3} \cdot \overline{x_4}$	3,5	$x_1 \cdot \overline{x_2} \cdot \overline{x_4}$	1,2	$\overline{x_1} \cdot x_2 \cdot x_3$
4	$x_1 \cdot \overline{x_2} \cdot \overline{x_3} \cdot x_4$	3,7	$x_1 \cdot \overline{x_3} \cdot \overline{x_4}$	3,7	$x_1 \cdot \overline{x_3} \cdot \overline{x_4}$
5	$x_1 \cdot \overline{x_2} \cdot x_3 \cdot \overline{x_4}$	4,6	$x_1 \cdot \overline{x_2} \cdot x_4$		
6	$x_1 \cdot \overline{x_2} \cdot x_3 \cdot x_4$	5,6	$x_1 \cdot \overline{x_2} \cdot x_3$		
7	$x_1 \cdot x_2 \cdot \overline{x_3} \cdot \overline{x_4}$				

Таблица 6.3 — Этап склеивания

Поскольку $x_1 \cdot \overline{x}_2 \lor x_1 \cdot \overline{x}_2 = x_1 \cdot \overline{x}_2$ имеем:

$$f(x_1, x_2, x_3, x_4) = x_1 \cdot \overline{x}_2 \quad \lor \quad x_1 \cdot \overline{x}_3 \cdot \overline{x}_4 \lor \overline{x}_1 \cdot x_2 \cdot x_3$$

Приступим к обработке информации, содержащейся в табл. 6.4. Для этого, прежде всего, необходимо установить отношение включения простых импликант в элементарные конъюнкции СДНФ. Далее необходимо определить, какие из простых импликант являются ядерными для минимальной ДНФ. Для них в соответствующем столбце находится единственная единица. Эта единица заключена в квадратные скобки.

3. Простые		4. Элементарные конъюнкции из СДНФ					
импликанты	$\begin{bmatrix} x_1 \cdot x_2 \cdot x_3 \cdot x_4 \end{bmatrix}$	$X_1 \cdot X_2 \cdot X_2 \cdot X_4$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$X_1 \cdot X_2 \cdot X_2 \cdot X_4$			
ИЗ	1 2 3 4	1 2 3 4	1 2 3 4	1 2 3 4	1 2 3 4	1 2 3 4	1 2 3 4
тупиковой							
СДНФ							
$5. x_1 \cdot \overline{x}_2$	6.	7.	8. 1	9. [1]	10.[1]	11.[1]	12.
13. $x_1 \cdot \overline{x}_3 \cdot \overline{x}_4$	14.	15.	16.1	17.	18.	19.	20.[1]
$\overline{x}_1 \cdot x_2 \cdot x_3$	21.[1]	22.[1]	23.	24.	25.	26.	27.

Таблица 6.4 — Простые импликанты

Таким образом установлено, что ядерные импликаны — $x_1 \cdot \bar{x}_2$ и $x_1 \cdot \bar{x}_3 \cdot \bar{x}_4$ и $\bar{x}_1 \cdot x_3 \cdot x_4$. Они покрывают все элементарные конъюнкции СДНФ.

Отсюда следует, имеем 1 вариант минимальной ДНФ:

$$f_{\min}^{1}(x_{1}, x_{2}, x_{3}, x_{4}) = x_{1} \cdot \overline{x}_{2} \quad \vee \quad x_{1} \cdot \overline{x_{3}} \cdot \overline{x_{4}} \vee \overline{x_{1}} \cdot x_{2} \cdot x_{3}$$
 (1)

6.5. Минимизация булевой функции методом карт Карно

Минимизируем по методу карт Карно СДНФ . Для этого построим специальную таблицу. Поскольку функция — функция четырех переменных, то размерность таблицы — 4 х 4 квадрата. Эти квадраты имеют специальную численную нумерацию. x_1

 χ_3 Рисунок 6.5 — Таблица с информацией о СДНФ булевой функции

Проанализирует таблицу на рисунке 6.1:

- 1) восьми смежных элементов нет;
- 2) четыре смежных элемента есть. Запишем покрывающую их сокращенную конъюнкцию

$$x_1 \cdot \overline{x}_2$$

3) Двух смежных элемента есть. Запишем покрывающую их сокращенную конъюнкцию. $x_1 \cdot \overline{x_3} \cdot \overline{x_4} \vee \overline{x_1} \cdot x_2 \cdot x_3$

По результатам анализа таблицы имеем вариант минимальной ДНФ:

$$f_{\min}^{2}(x_{1}, x_{2}, x_{3}, x_{4}) = x_{1} \cdot \overline{x}_{2} \quad \lor \quad x_{1} \cdot \overline{x_{3}} \cdot \overline{x_{4}} \lor \overline{x_{1}} \cdot x_{2} \cdot x_{3}$$
 (2)

6.6. Сравнение результатов минимизации булевой функцию методами Квайна и карт Карно

Сравнительный анализ (1) и (2) показывает, что результаты совпадают.

6.7. Разработка схемы, реализующей минимальную булеву функцию, используя элементы на два входа и один выход

Выполним проектирование схемы устройства, реализующего минимальную ДН Φ (2). Выберем для этого один из вариантов. Пусть это будет следующая функция:

$$f_{\min}^{2}(x_{1}, x_{2}, x_{3}, x_{4}) = x_{1} \cdot \overline{x}_{2} \quad \lor \quad x_{1} \cdot \overline{x_{3}} \cdot \overline{x_{4}} \lor \overline{x_{1}} \cdot x_{2} \cdot x_{3}$$
(3)

Ниже, на рис. 6. 7 представлена схема устройства, реализующего минимальную ДНФ (3).

Рисунок 6.6— Схема устройства, выполняющего минимизированную булеву функцию

6.8. Проверка правильности работы схемы устройства

С целью проверки правильности работы схемы устройства будем задавать значения векторов-аргументов из таблицы истинности булевой функции (табл. 6.1) на входе схемы (рис. 6.6) и контролировать соответствующие входам выходные значения. Если значения на выходе будут совпадать с таблицей истинности, значит, схема спроектирована правильно.

Аргумент				Функция
x_1	x_2	x_3	x_4	
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

Анализ работы схемы показывает, что спроектированное устройство функционирует правильно.

На этом расчеты закончены.

6.9. Выводы

В результате использования методов минимизации логических выражений, было получено устройство, преобразующее входные сигналы в выходные по заданным правиламт.е комбинационные схема, вариации которых лежат в основе всех ЭВМ.

Проектирование комбинационных схем сводится к ряду задач булевой алгебры (алгебры логики). Одной из основополагающих задач – является задача минимизации логических функций. Решение задач минимизации во многом упрощает конструкцию схемы, позволяет сократить количество используемых логических элементов. Чем меньше в схеме задействовано логических элементов, тем больше её надёжность.

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧЕРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ "Калининградский государственный технический университет" (ФГБОУ ВО "КГТУ")

Кафедра систем управления и вычислительной техники Дисциплина: Дискретная математика

Расчетно-графическая работа № 7

«Нахождение всех гамильтоновых циклов на ориентированном графе» Вариант №70

Работу проверил:	Работу выполнил:		
доцент, профессор,	студент группы 18-ВТ		
к.т.н. Иванов В. Е.	Подковыров Д.Р.		
с оценкой:	подпись:		
подпись:	« <u></u> »2020г.		
« » 2020г.			

Калининград 2020г.

Содержание

7. 3	Вадание на расчетно-графическую работу № 7	3
7.1.	Краткие теоретические сведения	3
	Выполнения расчетов по поиску всех гамильтоновых циклов на	,
ориє	ентированном графе	4
7.3.	Обработка результатов вычисления матриц	10
7.4.	Выволы	11

7. Задание на расчетно-графическую работу № 7

Задан ориентированный граф на пяти вершинах. Построить его модифицированную матрицу смежности. Определить является ли граф гамильтоновым. Используя алгебраический метод, найти все гамильтоновы циклы на графе.

7.1. Краткие теоретические сведения

Простой цикл проходящий через все вершины графа называется гамильтоновым. Простая цепь, проходящая через все вершины графа, называется гамильтоновой. Задача нахождения гамильтоновых циклов актуальна в связи практической значимостью задачи о коммивояжере, в которой из множества гамильтоновых циклов на графе определяется кратчайший.

Существует только достаточные условия существования гамильтоновых циклов на графе. Приведем несколько таких признаков.

Граф, обладающий гамильтоновым циклом, будем называть гамильтоновым.

Теорема Дирака. Граф гамильтонов, если степень любой его вершины удовлетворяет неравенству $\delta(x_i) \ge n/2 | i \in \{1,...n\}$, где п — число вершин графа.

Теорема Оре. Граф гамильтонов, если степень любых двух его несмежных вершин x_i и x_i удовлетворяет неравенству $\delta(x_i) + \delta(x_i) \ge n|i \ne j$.

Для нахождения всех гамильтоновых циклов на гамильтоновом гарфе будем использовать алгебраический подход. Его суть состоит в следующем

Пусть граф G задан своей булевой матрицей смежности H. Заменим малоинформативные единицы в этой матрице на имена соответствующих вершин. Возведение в степень такой модифицированной матрицы даст уже больше информации о маршрутах. Введем, таким образом, модифицированную матрицу В следующим правилом: элемент b_{ii} матрицы В

равен $b_{ij} = x_j$, если существует путь из вершины x_i в вершину x_j . Далее последовательно находим матрицы $P_{k+1}^{'} = B \cdot P_k$; $P_1 = H$; $P_k = \Phi(P_k^{'})$, где под произведением вершин понимается некоммутативная бинарная операция, заданная на множестве слов. Слово — это упорядоченная последовательность вершин (букв). Произведение слова $x_1x_2...x_n$ и слова $y_1y_2...y_m$ есть слово $x_1x_2...x_n$ и слова $y_1y_2...y_m$ есть слово $x_1x_2...x_n$ $y_1y_2...y_m$. Оператор Φ , действующий на элементы p_{ij} матрицы, вычеркивает (обнуляет) те элементы, в которых содержатся вершины x_i или x_j . Такие элементы указывают на контуры, замыкающиеся на x_i или x_j . Для упрощения расчетов можно обнулять главную диагональ матрицы P_k , кроме последней P_n , т.к. ее диагональ и содержит все искомые гамильтоновы циклы, без начальной и конечной вершины, которые необходимо добавить.

7.2. Выполнения расчетов по поиску всех гамильтоновых циклов на ориентированном графе

Рис. 7.1 — Исходный граф G

Первая цифра	Последняя цифра номера зачетной книжки
номера	2
за четной книжки	
1	db
	dc

Таблица 7.1 — Данные по варианту

Определяем гамильтонов или негамильтонов граф G. Для этого рассчитываем степени его вершин и используем теорему Дирака. Результаты расчетов сведены в табл. 7.2.

Характеристика	Вершины графа G					
графа <i>G</i>	а	b	С	d	g	
δ_i^+	4	4	4	2	4	
δ_i^-	4	3	3	4	4	
$\delta_i^+ + \delta_i^-$	8	7	7	6	8	
$\delta(x_i) \ge n/2 ?$	да	да	да	да	да	
$\delta(x_i) \ge 2.5 ?$						

Таблица 7.2 – Определение наличия гамильтоновых

циклов на графе G

Анализ данных из табл. 7.2 позволяет сделать вывод, что граф гамильтонов.

Находим все гамильтоновы циклы на графе G. Матрица H графа G показана на рис. 7.2. На рис. 7.3 показана модифицированная матрица смежности B графа G.

Н	а	b	С	d	g
а	0	1	1	1	1
b	1	0	1	1	1
c	1	1	0	1	1
d	1	0	0	0	1
	1	1	1	1	0
g	1	1	1	1	0

В	а	b	С	d	g
а	0	b	С	d	g
b	0	b	С	d	g
С	а	b	0	d	g
d	а	0	0	0	g
g	а	b	С	d	0

Рисунок 7.2 — Матрица H смежности графа G

Рисунок 7.3 — Модифицированная матрица B смежности графа G

Умножаем матрицу B на матрицу $H = P_1$. Получаем матрицу P_2 (рис. 7.4).

P_2	а	b	c	d	g
а	b+c+d+g	c+g	b+g	b+c+g	b+c+d
b	c+d+g	a+c+g	a+g	<i>a</i> + <i>c</i> + <i>g</i>	<i>a</i> + <i>c</i> + <i>d</i>
с	b+d+g	a+g	<i>a</i> + <i>b</i> + <i>g</i>	<i>a</i> + <i>b</i> + <i>g</i>	<i>a</i> + <i>b</i> + <i>d</i>
d	g	a+g	a+g	a+g	a
g	b+c+d	a+c	a+b	a+b+c	a+b+c+d

Рисунок 7.4 — Матрица $P_{2}^{'}$

Применяем к матрице P_2 оператор Φ . Получаем матрицу P_2 (рис. 7.5).

P_2	а	b	С	d	g
а	0	c+g	<i>b</i> + <i>g</i>	b+c+g	b+c+d
b	c+d+g	0	a+g	a+c+g	a+c+d
С	b+d+g	a+g	0	a+b+g	<i>a</i> + <i>b</i> + <i>d</i>
d	g	a+g	a+g	0	а
g	b+c+d	a+c	a+b	a+b+c	0

Рисунок 7.5 — Матрица *P*₂

Умножаем матрицу B на матрицу P_2 , получаем матрицу $P_3^{'}$ (рис. 7.6).

P_3	а	b	С	d	g
а	bc+bd+bg+cb+c+ +cg+dg+gb+gc+ +gd	ca+cg+da+ +dg+ga+gc	ba+bg+da+ +dg+ga+gb	<i>ba+bc+bg+ca+cb+</i> + <i>cg+ga+gb+gc</i>	ba+bc+bd+ca+ +cb+cd+da
b	cb+cd+cg+dg+ +gb+gc+gd	ac+ag+ca+cg+ +da+dg+ga+g c	ab+ag+da+ +dg+ga+gb	<i>ab+ac+ag+ca+cb+</i> + <i>cg+ga+gb+gc</i>	ab+ac+ad+ca+ +cb+cd+da
c	bc+bd+bg+dg+ +gb+gc+gd	ac+ag+da+ +dg+ga+gc	ab+ag+ba+bg + +da+dg+ga+g b	<i>ab+ac+ag+ba+b+</i> + <i>bg+ga+gb+gc</i>	ab+ac+ad+ba+ +bc+bd+da
d	<i>gb</i> + <i>gc</i> + <i>gd</i>	ac+ag+ga+gc	ab+ag+ga+gb	<i>ab+ac+ag+</i> + <i>ga+gb+gc</i>	ab+ac+ad
g	bc+bd+bg+cb+ +cd+cg+dg	ac+ag+ca+ +cg+da+dg	<i>ab+ag+ba+</i> + <i>bg+da+dg</i>	<i>ab+ac+ag+ba+b+</i> + <i>bg+ca+cb+cg</i>	<i>ab+ac+ad+ba+b+</i> + <i>bd+ca+cb+cd+da</i>

Рисунок 7.6 — Матрица P_3

Применяем к матрице P_3 оператор Φ . Получаем матрицу P_3 (рис. 7.7).

P_3	а	b	C	d	g
а	0	<i>ca+cg+da+</i> + <i>dg+ga+gc</i>	<i>ba+bg+da+</i> + <i>dg+ga+gb</i>	<i>ba+bc+bg+ca+cb+</i> + <i>cg+ga+gb+gc</i>	$ba+bc+bd+ca+\ +cb+cd+da$
b	cb+cd+cg+dg+ +gb+gc+gd	0	<i>ab+ag+da+</i> + <i>dg+ga+gb</i>	<i>ab+ac+ag+ca+cb+</i> + <i>cg+ga+gb+gc</i>	$ab+ac+ad+ca+ \\ +cb+cd+da$
С	bc+bd+bg+dg+ +gb+gc+gd	ac+ag+da+ +dg+ga+gc	0	<i>ab+ac+ag+ba+b+</i> + <i>bg+ga+gb+gc</i>	ab+ac+ad+ba+ +bc+bd+da
d	gb+gc+gd	ac+ag+ga+gc	ab+ag+ga+gb	0	ab+ac+ad
g	bc+bd+bg+cb+ +cd+cg+dg	ac+ag+ca+ +cg+da+dg	ab+ag+ba+ +bg+da+dg	<i>ab+ac+ag+ba+b+</i> + <i>bg+ca+cb+cg</i>	0

Рисунок 7.7 — Матрица P_3

Умножаем матрицу B на матрицу $P_{_{\! 3}}$, получаем матрицу $P_{_{\! 4}}^{'}$ (рис. 7.8).

P_4	а	b	С	d	g
а	bcd+bcg+bdg+bgc +bgd+cbd+cbg+cdg + +cgb+cgd+dgb+dgc + +gbc+gbd+gcb+gcd	cag+cda+cdg+ +cga+dac+dag+ +dga+dgc+gab+ +gba+gda	bag+bda+ +bdg+bga+ +dab+dag+ +dga+dgb	bac+bag+bca+bcg+bga+ +bgc+cab+cba+cbg+ +cga+cgb+gab+gac+ +gba+gbc+gca+gcb	bac+bad+bca+ +bcd+bda+cab+ +cad+cba+cbd+ +cda+dab+dac
b	cbd+cbg+cdg+ +cgb+cgd+dgb+ +dgc+gbc+gbd+ +gcb+gcd	acg+adg+agc+ +cag+cda+cdg+cga + +dac+dag+dga+dgc + +gac+gca+gda	abg+adg+agb+ +dab+dag+dga+ +dgb+gab+gba+ +gda	abc+abg+acb+acg+agb+ +agc+cab+cag+cba+cbg + +cga+cgb+gab+gac+ +gba+gbc+gca+gcb	abc+abd+acb+ +acd+cab+cad+ +cba+cbd+cda+ +dab+dac
С	bcd+bcg+bdg+ +bgc+bgd+dgb+ +dgc+gbc+gbd+ +gcb+gcd	acg+adg+agc+ +dac+dag+dga+ +dgc+gac+ +gca+gda	abg+adg+agb+ +bag+bda+bdg+bga + +dab+dag+dga+dgb + +gab+gba+gda	abc+abg+acb+acg+agb+ +agc+bac+bag+bca+bcg + +bga+bgc+gab+gac+gba + +gbc+gca+gcb	abc+abd+acb+acd + +bac+bad+bca+ +bcd+bda+ +dab+dac
d	gbc+gbd+gcb+gcd	acg+adg+agc+ gac+gca+gda	abg+adg+agb+ +gab+gba+gda	abc+abg+acb+acg+ +agb+agc+gab+gac+ +gba+gbc+gca+gcb	abc+abd+acb+acd
g	bcd+bcg+bdg+ +bgc+bgd+cbd+ +cbg+cdg+cgb+ +cgd+dgb+dgc	acg+adg+agc+ +agc+cag+cda+ +cdg+cga+dac+ +dag+dga+dgc	abg+adg+agb+bag+ +bda+bdg+bga+dab + +dag+dga+dgb	abc+abg+acb+acg+agb+ +agc+bac+bag+bca+bcg + +bga+bgc+cab+cag+cba + +cbg+cga+cgb	abc+abd+acd+acd + +bac+bad+bca+ +bcd+bda+cab+ +cad+cba+ +cbd+cda

Рисунок 7.8 — Матрица P_4

Применяем к матрице P_4 оператор Φ . Получаем матрицу P_4 (рис. 7.9).

P4	а	b	С	d	g
а	0	cag+cda+cdg+ +cga+dac+dag+ +dga+dgc+gab+ +gba+gda	bag+bda+ +bdg+bga+ +dab+dag+ +dga+dgb	bac+bag+bca+bcg+bga+ +bgc+cab+cba+cbg+ +cga+cgb+gab+gac+ +gba+gbc+gca+gcb	bac+bad+bca+ +bcd+bda+cab+ +cad+cba+cbd+ +cda+dab+dac
b	cbd+cbg+cdg+ +cgb+cgd+dgb+ +dgc+gbc+gbd+ +gcb+gcd	0	abg+adg+agb+ +dab+dag+dga+ +dgb+gab+gba+ +gda	abc+abg+acb+acg+agb+ +agc+cab+cag+cba+cbg+ +cga+cgb+gab+gac+ +gba+gbc+gca+gcb	abc+abd+acb+ +acd+cab+cad+ +cba+cbd+cda+ +dab+dac
с	bcd+bcg+bdg+ +bgc+bgd+dgb+ +dgc+gbc+gbd+ +gcb+gcd	acg+adg+agc+ +dac+dag+dga+ +dgc+gac+ +gca+gda	0	abc+abg+acb+acg+agb+ +agc+bac+bag+bca+bcg+ +bga+bgc+gab+gac+gba+ +gbc+gca+gcb	abc+abd+acb+acd + +bac+bad+bca+ +bcd+bda+ +dab+dac
d	gbc+gbd+gcb+gcd	acg+adg+agc+ gac+gca+gda	abg+adg+agb+ +gab+gba+gda	0	abc+abd+acb+acd
g	$bcd+bcg+bdg+\\+bgc+bgd+cbd+\\+cbg+cdg+cgb+\\+cgd+dgb+dgc$	acg+adg+agc+ +agc+cag+cda+ +cdg+cga+dac+ +dag+dga+dgc	abg+adg+agb+ba g+ +bda+bdg+bga+d ab+ +dag+dga+dgb	abc+abg+acb+acg+agb+ +agc+bac+bag+bca+bcg+ +bga+bgc+cab+cag+cba+ +cbg+cga+cgb	0

Рисунок 7.9 — Матрица P_4

Умножаем матрицу B на матрицу P_4 , получаем матрицу P_5 (рис. 7.10).

P_5	а	b	С	d	g
а	bcdg+bcgd+bdgc+ +bgcd+cbdg+cbgd+ +cdgb+cgbd+dgbc+ +dgcb+gbcd+gcbd	cadg+cdag+cdga+ +cgda+dacg+dagc+ +dgac+dgca+gcda+ +gdac	badg+bdag+bdga+ +bgda+dabg+dagb+ +dgab+dgba+gbda+ +gdab	bacg+bagc+bcag+ +bcga+bgac+bgca+ +cabg+cagb+cbag+ +cbga+cgab+cgba+ +gabc+gacb+gbac+ +gbca+gcab+gcba	bacd+bcad+bcda+ +bdac+cabd+cbad+ +cbda+cdab+dabc+ +dacb
b	cbdg+cbgd+cdgb+ +cgbd+dgbc+dgcb+ +gbcd+gcbd	acdg+adgc+cadg+ +cdag+cdga+cgda+ +dacg+dagc+dgac+ +dgca+gcda+gdac	abdg+adgb+dabg+ +dagb+dgab+dgba+ +gbda+gdab	abcg+abgc+acbg+ +acgb+agbc+agcb+ +cabg+cagb+cbag+ +cbga+cgab+cgba+ +gabc+gacb+gbac+ +gbca+gcab+gcba	abcd+acbd+cabd+ +cbad+cbda+cdab+ +dabc+dacb
c	bcdg+bcgd+bdgc+ +bgcd+dgbc+dgcb+ +gbcd+gcbd	acdg+adgc+dacg+ +dagc+dgac+dgca+ +gcda+gdac	abdg+adgb+badg+ +bdag+bdga+bgda+ +dabg+dagb+dgab+ +dgba+gbda+gdab	abcg+abgc+acbg+ +acgb+agbc+agcb+ +bacg+bagc+bcag+ +bcga+bgac+bgca+ +gabc+gacb+gbac+ +gbca+gcab+gcba	abcd+acbd+bacd+ +bcad+bcda+bdac+ dabc+dacb
d	gbcd+gcbd	acdg+adgc+gcda+ +gdac	abdg+adgb+gbda+ +gdab	abcg+abgc+acbg+ +acgb+agbc+agcb+ +gabc+gacb+gbac+ +gbca+gcab+gcba	abcd+acbd
g	bcdg+bcgd+bdgc+ +bgcd+ cbdg+cbgd+ +cdgb+cgbd+dgbc+ +dcbg	acdg+adgc+cadg+ +cdag+cdga+cgda+ +dacg+dagc+dgac+ +dgca	abdg+adgb+badg+ +bdag+bdga+bgda+ +dabg+dagb+dgab+ +dgba	abcg+abgc+acbg+ +acgb+agbc+agcb+ +bacg+bagc+bcag+ +bcga+bgac+bgca+ +cabg+cagb+cbag+ +cbga+cgab+cgba	abcd+acbd+bacd+ +bcad+bcda+bdac+ +cabd+cbad+cbda+ +cdab+dabc+dacb

Рисунок 7.10 — Матрица P_5

Применяем к матрице $P_5^{'}$ оператор Φ . Получаем матрицу $P_5^{'}$ (рис. 7.11).

P_5	а	b	С	d	g
a	bcdg+bcgd+bdgc+ +bgcd+cbdg+cbgd+ +cdgb+cgbd+dgbc+ +dgcb+gbcd+gcbd	0	0	0	0
b	0	acdg+adgc+cadg+ +cdag+cdga+cgda+ +dacg+dagc+dgac+ +dgca+gcda+gdac	0	0	0
С	0	0	abdg+adgb+badg+ +bdag+bdga+bgda+ +dabg+dagb+dgab+ +dgba+gbda+gdab	0	0
d	0	0	0	abcg+abgc+acbg+ +acgb+agbc+agcb+ +gabc+gacb+gbac+ +gbca+gcab+gcba	0
g	0	0	0	0	abcd+acbd+bacd+ +bcad+bcda+bdac+ +cabd+cbad+cbda+ +cdab+dabc+dacb

Рисунок 7.11 — Матрица P_5

7.3. Обработка результатов вычисления матриц

Матрица P_5 получается диагональной, следовательно, процесс вычисления матриц завершен. К полученным слагаемым добавим в начале по вершине x_i :

 $abcdg + abcgd + abdgc + abgcd + acbdg + acbgd + acdgb + acgbd + adgbc + adgcb + agbcd + agcbd; \\ bacdg + badgc + bcadg + bcdag + bcdga + bcgda + bdacg + bdagc + bdgac + bdgca + bgcda + bgdac; \\ cabdg + cadgb + cbadg + cbdag + cbdga + cbgda + cdabg + cdagb + cdgab + cdgba + cgbda + cgdab; \\ dabcg + dabgc + dacbg + dacgb + dagbc + dagcb + dgabc + dgacb + dgbac + dgcab + dgcab + dgcab; \\ gabcd + gacbd + gbacd + gbcad + gbcda + gbdac + gcabd + gcbda + gcdab + gdabc + gdacb. \\$

Выполним круговую перестановку в каждом слагаемом полученных элементов матрицы P_5 с добавленными в начале вершинами x_i (кроме первой строки) по следующему правилу: «Фиксируем в слагаемом положение вершины a. Она должна стоять крайней слева. Берем в слагаемом первую слева вершину от a и переносим ее на место после последней вершины в слагаемом. Если вершина a все еще не крайняя слева, то берем в слагаемом первую вершину слева от a и переносим ее на место после последней вершины в слагаемом и т.д. до тех пор, пока вершина a не станет крайней слева в слагаемом». Получаем список:

 $abcdg + abcgd + abdgc + abgcd + acbdg + acbgd + acdgb + acgbd + adgbc + adgcb + agbcd + agcbd; \\ acdgb + adgcb + adgbc + agbcd + abcdg + abcgd + acgbd + agcbd + acbdg + abdgc + abgcd + acbgd; \\ abdgc + adgbc + adgcb + agcbd + acbdg + acbgd + abgcd + agbcd + abcdg + acdgb + acgbd + abcgd; \\ abcgd + abgcd + acbgd + acgbd + agbcd + agbcd + abcdg + acdgb + adgbc + abdgc + adgcb; \\ abcdg + acbdg + acdgb + adgbc + agbcd + acgbd + abdgc + adgcb + agcbd + abgcd + abcgd + acbgd.$

Удаляем из этого списка одинаковые слагаемые и получаем список гамильтоновых циклов графа G:

abcdg;abcgd;abdgc;abgcd;acbdg;acbgd;acdgb;acgbd;adgbc;adgcb;agdcb;agcbd;agbcd.

На этом расчеты закончены.

7.4. Выводы

- 1) установлено, что исходный ориентированный граф G на пяти вершинах является гамильтоновым;
- 2) построена модифицированная матрица смежности графа G;
- 3) при помощи алгебраического метода найдены все гамильтоновы циклы графа G.
- 4) Нахождение всех гамильтоновых циклов применяется в решении задачи о коммивояжере.

Список используемой литературы

- 1. Колесников А.В. Дискретная математика / Практикум для студентов специальностей 230102.65 «Автоматизированные системы обработки информации и управления» и 230101.65 «Вычислительные машины, комплексы, системы и сети» (учебное пособие). Калининград: Издательство ФГОУ ВПО «КГТУ», 2006.-116 с.
- 2. Колесников А.В. Дискретная математика / Индивидуальные задания и методические указания к курсовой работе для студентов специальностей 230102.65 «Автоматизированные системы обработки информации и управления» и 230101.65 «Вычислительные машины, комплексы, системы и сети». Калининград: Издательство ФГОУ ВПО «КГТУ», 2008 (электронная версия).
- 3. Пономарев. В.Ф. Основы дискретной математики: Учебное пособие. Калининград: КГТУ, 1997, 165 с.