数学建模实例:人口预报问题

1.问题

人口问题是当前世界上人们最关心的问题之一.认识人口数量的变化规律,作出较准确的预报,是有效控制人口增长的前提.下面介绍两个最基本的人口模型,并利用表 1 给出的近两百年的美国人口统计数据,对模型做出检验,最后用它预报 2000 年、2010 年美国人口.

年(公元)	1790	1800	1810	1820	1830	1840	1850
人口(百万)	3.9	5.3	7.2	9.6	12.9	17.1	23.2
年(公元)	1860	1870	1880	1890	1900	1910	1920
人口(百万)	31.4	38.6	50.2	62.9	76.0	92.0	106.5
年(公元)	1930	1940	1950	1960	1970	1980	1990
人口(百万)	123.2	131.7	150.7	179.3	204.0	226.5	251.4

表 1 美国人口统计数据

2.指数增长模型(马尔萨斯人口模型)

英国人口学家马尔萨斯(Malthus1766~1834)调查了英国一百多年的人口统计资料,得出了人口增长率不变的假设,并于 1798 年建立了著名的人口指数增长模型。.

- [1] 假设:人口增长率 r 是常数(单位时间内人口的增长量与当时的人口成正比).
- [2] 建立模型: 记时刻 t=0 时人口数为 x_0 ,时刻 t 的人口为 x(t),由于量大,x(t) 可视为连续、可微函数.t 到 $t+\Delta t$ 时间内人口的增量为:

$$x(t + \Delta t) - x(t) = rx(t)\Delta t$$

于是x(t)满足微分方程:

$$\begin{cases} \frac{dx}{dt} = rx\\ x(0) = x_0 \end{cases} \tag{1}$$

[3] 模型求解: 解微分方程(1)得

$$x(t) = x_0 e^{rt} \tag{2}$$

表明人口将按指数规律无限增长 (r>0): 且 $t \to \infty$ 时, $x(t) \to \infty$.

[4] 模型的参数估计:

要用模型的结果(2)来预报人口,必须对其中的参数 r 进行估计,这可以用表 1 的数据通过拟合得到.拟合的具体方法以后再讲。

通过表中 1790-1980 的数据拟合得: r=0.307.

[5] 模型检验:

将 x_0 =3.9, \mathbf{r} =0.307 代入公式 (2),求出用指数增长模型预测的 1810-1920 的人口数,见表 2.

表 2 美国实际人口与按指数增长模型计算的人口比较

	实际人口	指数增长模型		
年	(百万)	预测人口 (百万)	误差(%)	
1790	3.9			
1800	5.3			
1810	7.2	7.3	1.4	
1820	9.6	10.0	4.2	
1830	12.9	13.7	6.2	
1840	17.1	18.7	9.4	
1850	23.2	25.6	10.3	
1860	31.4	35.0	10.8	
1870	38.6	47.8	23.8	
1880	50.2	65.5	30.5	
1890	62.9	89.6	42.4	
1900	76.0	122.5	61.2	
1910	92.0	167.6	82.1	
1920	106.5	229.3	115.3	

从表 2 可看出,1810-1870 间的预测人口数与实际人口数吻合较好,但 1880 年以后的误差越来越大.

分析原因,该模型的结果说明人口将以指数规律无限增长.而事实上,随着人口的增加,自然资源、环境条件等因素对人口增长的限制作用越来越显著.如果当人口较少时人口的自然增长率可以看作常数的话,那么当人口增加到一定数量以后,这个增长率就要随着人口增加而减少.于是应该对指数增长模型关于人口净增长率是常数的假设进行修改.下面的模型是在修改的模型中著名的一个.

3. 阻滯增长模型(Logistic 模型)

由荷兰生物学家 Verhulst 19 世纪中叶提出的.

[1]假设:

- (a)人口增长率 \mathbf{r} 为人口 $\mathbf{x}(t)$ 的函数 $\mathbf{r}(\mathbf{x})$ (减函数),最简单假定 $\mathbf{r}(\mathbf{x}) = \mathbf{r} \mathbf{s}\mathbf{x}, \ \mathbf{r}, \mathbf{s} > 0$ (线性函数), \mathbf{r} 叫做固有增长率.
- (b) 自然资源和环境条件年容纳的最大人口容量 x_m . [2]建立模型:

当 $X = X_m$ 时,增长率应为 $\mathbf{0}$,即 $r(x_m) = \mathbf{0}$,于是 $s = \frac{r}{x_m}$,代入r(x) = r - sx

得:

$$r(x) = r\left(1 - \frac{x}{x_m}\right) \tag{3}$$

将(3)式代入(1)得:

模型为:

$$\begin{cases} \frac{dx}{dt} = r \left(1 - \frac{x}{x_m} \right) x \\ x(0) = x_0 \end{cases} \tag{4}$$

[3] 模型的求解:可用分离变量法求解方程组(4)得

$$x(t) = \frac{x_m}{1 + \left(\frac{x_m}{x_0} - 1\right)}e^{-rt}$$

$$(5)$$

根据方程(4)作出 $\frac{dx}{dt}$ ~ x 曲线图,见图 1-1,由该图可看出人口增长率随人口数的变化规律.根据结果(5)作出 x~t 曲线,见图 1-2,由该图可看出人口数随时间的变化规律.

[4] 模型的参数估计:

利用表 1 中 1790-1980 的数据对 r 和 xm 拟合得: r=0.2072, xm=464.

[5] 模型检验:

将 r=0.2072, $x_m=464$ 代入公式 (5), 求出用指数增长模型预测的 1800-1990 的人口数, 见表 3 第 3、4 列.

也可将方程(4)离散化,得

$$x(t+1) = x(t) + \Delta x = x(t) + r(1 - \frac{x(t)}{x_m})x(t)$$
 t=0,1,2,... (6)

用公式(6)预测1800-1990的人口数,结果见表3第5、6列.

表 3 美国实际人口与按阻滞增长模型计算的人口比较

	实际人	阻滯增长模型				
年	口					
		公司	犬 (5)	公式 (6)		
	(百万)	预测人口(百	误差 (%)	预测人口(百	误差(%)	
		万)		万)		

1790	3.9				
1800	5.3	5.9025	0.1137	3.9000	0.2642
1810	7.2	7.2614	0.0085	6.5074	0.0962
1820	9.6	8.9332	0.0695	8.6810	0.0957
1830	12.9	10.9899	0.1481	11.4153	0.1151
1840	17.1	13.5201	0.2094	15.1232	0.1156
1850	23.2	16.6328	0.2831	19.8197	0.1457
1860	31.4	20.4621	0.3483	26.5228	0.1553
1870	38.6	25.1731	0.3478	35.4528	0.0815
1880	50.2	30.9687	0.3831	43.5329	0.1328
1890	62.9	38.0986	0.3943	56.1884	0.1067
1900	76.0	46.8699	0.3833	70.1459	0.0770
1910	92.0	57.6607	0.3733	84.7305	0.0790
1920	106.5	70.9359	0.3339	102.4626	0.0379
1930	123.2	87.2674	0.2917	118.9509	0.0345
1940	131.7	107.3588	0.1848	137.8810	0.0469
1950	150.7	132.0759	0.1236	148.7978	0.0126
1960	179.3	162.4835	0.0938	170.2765	0.0503
1970	204.0	199.8919	0.0201	201.1772	0.0138
1980	226.5	245.9127	0.0857	227.5748	0.0047
1990	251.4	302.5288	0.2034	250.4488	0.0038

[6] 模型应用:

现应用该模型预测人口.用表 1 中 1790-1990 年的全部数据重新估计参数,可得 r=0.2083, $x_m=457.6$. 用公式(6)作预测得:

x(2000)=275; x(2010)=297.9.

注: 美国 2000 年的实际人口为 281.4 (单位: 百万) 2009 年人口约为 305 (单位: 百万)

当然也可以用公式(5)预测.