Data Structures and Algorithms

Spring 2008-2009

- Abstract Data Types (ADTs)
 - Trees
 - Implementing Trees
 - Tree Traversals
 - Binary Trees
 - Binary Search Trees

- Abstract Data Types (ADTs)
 - Trees
 - Implementing Trees
 - Tree Traversals
 - Binary Trees
 - Binary Search Trees

Introduction

- A tree is defined recursively as follows:
 - A tree is a (possibly empty) collection of nodes
 - If non-empty, the tree has one special node, r, the root, and
 - Zero or more subtrees, T_1, T_2, \ldots, T_k
 - Subtrees T₁,..., T_k are connected to r by a directed edge (from r to T_i)
- The root node of a subtree is a child of r and r is the parent of each subtree root

Introduction (contd.)

- A tree of n nodes has n − 1 edges since each node except r has a parent node (denoted by an edge)
- Nodes may have an arbitrary number of children
- Nodes with no children are called leaf nodes
- Leaf nodes over are E, F, K, H, I, L and M
- Nodes with the same parent are called siblings
- A path, p, from node n₁ to node n_k is the sequence of nodes n₁, n₂,..., n_k such that n_i is the parent of n_{i+1}, where 1 < i < k
- The length of p is k-1
- The length of the path from a node to itself is 0

Introduction (contd.)

- There is exactly one path from r to every node
- The *depth* of a node, *n*, is the length of the path from *r* to *n*
- The height of n is the length of longest path from n to a (descendant) leaf
- Node D (above) is at depth 1 and height 2
- If there is a path from n_1 to n_2 then n_1 is a (proper) ancestor of n_2 and n_2 is a (proper) descendant of n_1 (if $n_1 \neq n_2$)

A Possibility

Could think of earlier tree as follows

This suggests the following struct

```
struct TreeNode
{
   Object el;
   TreeNode* firstChild;
   TreeNode* nextSibling;
}
```

No need for anything more than two pointers

A Better Implementation

- A struct can be thought of as an impotent C++ object
- This struct requires a linked list class but is more natural

```
struct TreeNode
{
   Object el;
   list<TreeNode> children;
}
```

Systematically Processing a Tree

- Since a tree is defined recursively, to traverse a tree we can traverse each of its subtrees using the same algorithm
- We can "process" or "visit" the root node of each (sub)tree either before or after we traverse its children
- Processing the root node before (after, respectively)
 traversing the children is called a preorder (post-order)
- To "describe" or print out the names of the nodes of a tree using preorder traversal, the code on the following slide is a rough cut at it
- What's important is the position of the recursive call: colours match up with above

Systematically Processing a Tree (contd.)

```
// assuming we're using the second
// representation of a tree node
void describe tree (const tree node& root,
                  const int depth = 0)
  // use depth as indentation!!
  print_name(root.el, depth);
  for (root.children.first(); // get first child
       !root.children;
                          // more children?
      ++root.children) // get next child
   describe_tree(root.children(), depth+1);
   // print name(root.el, depth);
```

- Abstract Data Types (ADTs)
 - Trees
 - Implementing Trees
 - Tree Traversals
 - Binary Trees
 - Binary Search Trees

When We Limit the Number of Children...

- In a binary tree a node can have at most two children
- These are referred to as the nodes *left* and *right* children
- On ith level of a binary tree can have at most 2i nodes
- Over entire tree, number of nodes on k levels, N(k), is

$$N(k) = \sum_{i=0}^{k-1} 2^i = 2^k - 1$$

• So, at most $2^k - 1$ nodes can be stored on k levels

$$n \leq 2^k - 1$$

• What about the other way? How many levels do we need to store n nodes?

When We Limit the Number of Children... (contd.)

- From above, $n \le 2^k 1 \Rightarrow 2^k \ge n + 1 \Rightarrow k \ge \log(n + 1)$
- So putting 7 nodes in a binary tree cannot be done with fewer than log₂ 8 = 3 levels; putting 8 nodes in a tree requires minimum of log₂ 9 = 3.1699 levels!
- ...must round up if necessary to next highest integer
- Need at least $k \ge \lceil \log(n+1) \rceil$ levels to store n nodes
- Therefore the path length to the furthest node in a binary tree can be O(log n)
- This makes a binary tree a useful candidate for storing information
- Common mistake: an n-node binary tree does not have depth O(log n) in general
- ✓ We want it to have depth O(log n) but we will need to do some work to achieve it

Binary Tree Examples

Tree seen earlier

A binary tree with height, h = n

- Abstract Data Types (ADTs)
 - Trees
 - Implementing Trees
 - Tree Traversals
 - Binary Trees
 - Binary Search Trees

A Third Type of Tree Traversal

- With a binary tree we have a third type of traversal: inorder
- An inorder traversal of a tree recursively traverses the left subtree, "visits" or "processes" the tree root and traverses the right subtree
- A binary tree is a binary search tree if an inorder traversal of the tree visits the nodes in sorted order

A Third Type of Tree Traversal (contd.)

Binary Search Tree

Binary Tree

 Traversals of left and right trees above (assuming that we process siblings left to right):

	left	right
Preorder	MDBGHN	MDBGHN
Inorder	BDGHMN	BDHGMN
Postorder	BHGDNM	BHGDNM

A bad and good BST

