Sales Amount Forecasting

by Al Masters Group

Why is it important to solve the problems?

- Global retail enterprises require detailed data analysis to understand market dynamics, optimize inventory, enhance customer satisfaction, and develop effective marketing strategies.
- Forecasting can help businesses optimize inventory improve supply chain management, and stay ahead of market trends.
- Machine learning can further improve forecast accuracy, driving more informed and effective decisions.

Project Goals

- Our project is designed to assist Walmart with accurate daily sales forecasting.
- Our goal is to create models to predict the sales of individual items over the next 28 days.

Code

Learn

More

VIEWED

EDITED

Your Work

M5 Forecasting - Acc...

Kaggle Dataset for Tra...

American Express - D...

Tesla Stock Forecastin...

Russian Financial News

Stock Market Analy...

Discussions

Q Search

Late Submission

M5 Forecasting - Accuracy

Estimate the unit sales of Walmart retail goods

Overview Data Code Models Discussion Leaderboard Rules Submissions Team

Overview

Description

Start Close Mar 3, 2020 Jul 1, 2020 Merger & Entry

Prizes & Awards

Competition Host University of Nicosia

\$50,000 Awards Points & Medals

Participation

31,968 Entrants 7,022 Participants 5,558 Teams 88,741 Submissions

Tags

G

Time Series Analysis

Custom Metric

Table of Contents

Description

Note: This is one of the two complementary competitions that together comprise the M5 forecasting challenge. Can you estimate, as precisely as possible, the point forecasts of the unit sales of various products sold in the USA by Walmart? If you are interested in estimating the uncertainty distribution of the realized values of the same series, be sure to check out its companion competition

How much camping gear will one store sell each month in a year? To the uninitiated, calculating sales at this level may seem as difficult as predicting the weather. Both types of forecasting rely on science and historical data. While a wrong weather forecast may result in you carrying around an umbrella on a sunny day, inaccurate business forecasts could result in actual or opportunity losses. In this competition, in addition to traditional forecasting methods you're also challenged to use machine learning to improve forecast accuracy.

Columns in the dataset

Our Dataset recorded order data of Walmart's USA markets across 1969 days since 29/1/2011.

sales_train_validation.csv
sales_train_evaluation.csv

sell_prices.csv

calendar.csv

- id
- item_id
- dept_id
- cat_id
- store_id
- state_id
- d_1 to d_1941

- store_id
- item_id
- wm_yr_wk
- sell_price

- date
- wm_yr_wk
- month
- year
- d
- event_name_1 and event_name_2
- event_type_1 and event_type_2
- snap_CA, snap_TX, snap_WI

Data & Deep Learning

Analysis & Findings

Conclusion

Data & Deep Learning

Analysis & Findings

Conclusion

calendar.csv

sales_train_evaluation.csv

sales_train_validation.csv

sell_prices.csv

Shape: (58327370, 19)

Total_data_with_price.csv

id	item_id	dept_id	cat_id	store_id	state_id	d	num_sold	date	wm_yr_wk	weekday	month year	event_name_1	event_type_1	event_name_2	event_type_2	snap	sell_price
0 HOBBIES_1_001_CA_1_validation	HOBBIES_1_001	HOBBIES_1	HOBBIES	CA_1	CA	d_1	0	2011- 01-29	11101	Saturday	1 2011	NaN	NaN	NaN	NaN	0	9.58
1 HOBBIES_1_001_CA_1_validation	HOBBIES_1_001	HOBBIES_1	HOBBIES	CA_1	CA	d_2	0	2011- 01-30	11101	Sunday	1 2011	NaN	NaN	NaN	NaN	0	9.58
2 HOBBIES_1_001_CA_1_validation	HOBBIES_1_001	HOBBIES_1	HOBBIES	CA_1	CA	d_3	0	2011- 01-31	11101	Monday	1 2011	NaN	NaN	NaN	NaN	0	9.58
3 HOBBIES_1_001_CA_1_validation	HOBBIES_1_001	HOBBIES_1	HOBBIES	CA_1	CA	d_4	0	2011- 02-01	11101	Tuesday	2 2011	NaN	NaN	NaN	NaN	1	9.58
4 HOBBIES_1_001_CA_1_validation	HOBBIES_1_001	HOBBIES_1	HOBBIES	CA_1	CA	d_5	0	2011- 02-02	11101	Wednesday	2 2011	NaN	NaN	NaN	NaN	1	9.58
5 HOBBIES_1_001_CA_1_validation	HOBBIES_1_001	HOBBIES_1	HOBBIES	CA_1	CA	d_6	0	2011- 02-03	11101	Thursday	2 2011	NaN	NaN	NaN	NaN	1	9.58
6 HOBBIES_1_001_CA_1_validation	HOBBIES_1_001	HOBBIES_1	HOBBIES	CA_1	CA	d_7	0	2011- 02-04	11101	Friday	2 2011	NaN	NaN	NaN	NaN	1	9.58
7 HOBBIES_1_001_CA_1_validation	HOBBIES_1_001	HOBBIES_1	HOBBIES	CA_1	CA	d_8	0	2011- 02-05	11102	Saturday	2 2011	NaN	NaN	NaN	NaN	1	9.58
8 HOBBIES_1_001_CA_1_validation	HOBBIES_1_001	HOBBIES_1	HOBBIES	CA_1	CA	d_9	0	2011- 02-06	11102	Sunday	2 2011	SuperBowl	Sporting	NaN	NaN	1	9.58
9 HOBBIES_1_001_CA_1_validation	HOBBIES_1_001	HOBBIES_1	HOBBIES	CA_1	CA	d_10	0	2011- 02-07	11102	Monday	2 2011	NaN	NaN	NaN	NaN	1	9.58

Data & Deep Learning

Analysis & Findings

Conclusion

Shape: (58327370, 19)

Total_data_with_price.csv

id	item_id	dept_id	cat_id	store_id	state_id	d	num_sold	date	wm_yr_wk	weekday	month yea	ar event_name_1	event_type_1	event_name_2	event_type_2	snap	sell_price
HOBBIES_1_001_CA_1_validation HOL	BBIES_1_001	HOBBIES_1	HOBBIES	CA_1	CA	d_1	0	2011- 01-29	11101	Saturday	1 201	1 NaN	NaN	NaN	NaN	0	9.58
1 HOBBIES_1_001_CA_1_validation HO	BBIES_1_001	HOBBIES_1	HOBBIES	CA_1	CA	d_2	0	2011- 01-30	11101	Sunday	1 201	1 NaN	NaN	NaN	NaN	0	9.58
2 HOBBIES_1_001_CA_1_validation HO	BBIES_1_001	HOBBIES_1	HOBBIES	CA_1	CA	d_3	0	2011- 01-31	11101	Monday	1 201	1 NaN	NaN	NaN	NaN	0	9.58
3 HOBBIES_1_001_CA_1_validation HO	BBIES_1_001	HOBBIES_1	HOBBIES	CA_1	CA	d_4	0	2011- 02-01	11101	Tuesday	2 201	1 NaN	NaN	NaN	NaN	1	9.58
4 HOBBIES_1_001_CA_1_validation HO	BBIES_1_001	HOBBIES_1	HOBBIES	CA_1	CA	d_5	0	2011- 02-02	11101	Wednesday	2 201	1 NaN	NaN	NaN	NaN	1	9.58
5 HOBBIES_1_001_CA_1_validation HO	BBIES_1_001	HOBBIES_1	HOBBIES	CA_1	CA	d_6	0	2011- 02-03	11101	Thursday	2 201	1 NaN	NaN	NaN	NaN	1	9.58
6 HOBBIES_1_001_CA_1_validation HO	BBIES_1_001	HOBBIES_1	HOBBIES	CA_1	CA	d_7	0	2011- 02-04	11101	Friday	2 201	1 NaN	NaN	NaN	NaN	1	9.58
7 HOBBIES_1_001_CA_1_validation HO	BBIES_1_001	HOBBIES_1	HOBBIES	CA_1	CA	d_8	0	2011- 02-05	11102	Saturday	2 201	1 NaN	NaN	NaN	NaN	1	9.58
8 HOBBIES_1_001_CA_1_validation HO	BBIES_1_001	HOBBIES_1	HOBBIES	CA_1	CA	d_9	0	2011- 02-06	11102	Sunday	2 201	1 SuperBowl	Sporting	NaN	NaN	1	9.58
9 HOBBIES_1_001_CA_1_validation HO	BBIES_1_001	HOBBIES_1	HOBBIES	CA_1	CA	d_10	0	2011- 02-07	11102	Monday	2 201	1 NaN	NaN	NaN	NaN	1	9.58

FOODS

training + validation + testing

HOBBIES

training + validation + testing

HOUSEHOLD

training + validation + testing

Method: Regression Model

```
top_200_ids = data.groupby('id')['sell_price'].sum().sort_values(ascending=False).head(200).index
filtered_data = data[data['id'].isin(top_200_ids)]
```

```
preprocessor = ColumnTransformer(
    transformers=[
        ('num', StandardScaler(), numerical_features),
        ('cat', OneHotEncoder(handle_unknown='ignore'), categorical_features)
])
```

```
        Model performance comparison:

        MSE
        MAE
        R2

        Linear Regression
        0.562677
        0.475336
        0.115883

        Random Forest
        0.567984
        0.408385
        0.107543

        XGBoost
        0.505545
        0.404256
        0.205653
```

```
models = {
    'Linear Regression': LinearRegression(),
    'Random Forest': RandomForestRegressor(random_state=42),
    'XGBoost': XGBRegressor(random_state=42)
```


Feature importance ranking: XGBoost: store id CA 3 0.149199 state id WI 0.076547 weekday Sunday 0.073919 sell price 0.050889 store id CA 2 0.044574 0.044465 year dept id HOUSEHOLD 1 0.042428 event_name_1_Pesach End 0.035372 weekday Saturday 0.034380 store id TX 3 0.021790

Method: LSTM Model

```
LOOKBACK_MAX = 28 #28? 14?

LOOKBACK_ARR = np.array([0,1,2,3,4,5,6,7,8,9,10,11,12,13,14])
```

```
model = Sequential()
model.add(Input(shape=(LOOKBACK_ARR.shape[0], x_data.shape[1])))
model.add(LSTM(64, activation='relu', return_sequences=True))
model.add(LSTM(64, activation='relu'))
model.add(Dense(1, activation='relu'))
model.compile(optimizer='adam', loss='mse')
model.summary()
```

```
def create_xy_data(df, pre_type = ""): # for one item at once
    x_train_id = (df['id'] + "_" + pre_type).values
    idx = np.unique(x_train_id, return_index=True)[1]
    idx.sort()
    x_train_id = x_train_id[idx]
    y_train = df['num_sold'].values
    df = df.drop(['id','num_sold','item_id', 'dept_id', 'year'],axis=1)
    return df, y_train, x_train_id
```

```
train_dummy = pd.get_dummies(item_train_data, columns=['store_id','state_id', 'weekday', 'snap'], drop_first=True)
train_columns = train_dummy.columns
val_dummy = pd.get_dummies(item_val_data, columns=['store_id','state_id', 'weekday', 'snap'], drop_first=True)
eval_dummy = pd.get_dummies(item_eval_data, columns=['store_id','state_id', 'weekday', 'snap'], drop_first=True)
```

Layer (type)	Output Shape	Param #
lstm_458 (LSTM)	(None, 15, 64)	20,736
lstm_459 (LSTM)	(None, 64)	33,024
dense_229 (Dense)	(None, 1)	65

```
ings
         Conclusion
```

```
LOOKBACK MAX
             = 28 #28? 14?
LOOKBACK ARR = np.array([0,1,2,3])
```

```
history = model.fit(x = x_ti
```

shuf

verb

model = Sequential() model.add(Input(shape=(LOOKBACK ARR model.add(LSTM(64, activation='relu model.add(LSTM(64, activation='relu model.add(Dense(1, activation='relu

model.compile(optimizer='adam', los:

model.summary()

```
= pd.get_dummi
train dummy
               = train dummy.
train columns
val dummy
               = pd.get dummi
eval dummy
               = pd.get dummi
```

```
Total params: 53,825 (210.25 KB)
```

```
Trainable params: 53,825 (210.25 KB)
```

```
Non-trainable params: 0 (0.00 B)
```

```
Epoch 1/10
batc 106/106
                                   - 7s 45ms/step - loss: 6403.7334 - val loss: 30.7428
       Epoch 2/10
       106/106
                                    - 4s 42ms/step - loss: 30.1137 - val_loss: 6.5796
       Epoch 3/10
                                    5s 43ms/step - loss: 5.2300 - val loss: 2.8025
       106/106
       Epoch 4/10
       106/106
                                    4s 42ms/step - loss: 3.7690 - val loss: 5.0772
       Epoch 5/10
                                    5s 42ms/step - loss: 4.8840 - val_loss: 2.1489
       106/106
       Epoch 6/10
                                   - 5s 43ms/step - loss: 2.4137 - val_loss: 1.1928
       106/106
       Epoch 7/10
       106/106
                                   - 4s 41ms/step - loss: 1.7161 - val loss: 2.0740
       Epoch 8/10
       106/106
                                    4s 42ms/step - loss: 2.8033 - val loss: 0.8048
       Epoch 9/10
                                   - 5s 43ms/step - loss: 1.2330 - val_loss: 0.9527
       106/106
       Epoch 10/10
       106/106
                                   - 5s 44ms/step - loss: 1.6963 - val_loss: 0.8504
                                 - 1s 12ms/step
       Sample raw predictions (after inverse transform and clipping): [1.7399429 1.7189262 0.
                                                                                                      0.6741688 0.61744451
       RMSE = 2.818309
       52/52 -
                                 - 0s 8ms/step
       Predicted y val range (after inverse transform and clipping): min=0.0, max=20.72597885131836
       True y_val range (after inverse transform): min=1.6727970120200553e-08, max=14.999999046325684
```

```
sv')
test size=0.2, random state=42)
size=0.5, random state=42)
dex=False)
ex=False)
 , index=False)
```

```
e item at once
)[1]
t id', 'year'],axis=1)
```

```
rue)
rue)
rue)
```

Data & Deep Learning

Analysis & Findings

Conclusion

RMSE = 3.220477

RMSE = 0.6024017

RMSE = 0.3962133

RMSE = 0.5926977

RMSE = 0.6189017

RMSE = 0.83067185

RMSE = 3.69305

RMSE = 0.83738977

id	F1	F2	F3	F4	F5	F6	F7	F8	F9
HOUSEHOLD_1_225_TX_3_validation_validation_	0	3.72288	4.534193	4.33041	4.519439	2.604469	2.497672	2.368856	1.387462
HOUSEHOLD_1_225_CA_3_validation_validation	0	3.535536	3.322803	1.300174	2.751408	2.178629	2.16878	3.503257	3.282847
HOUSEHOLD_1_225_CA_1_validation_validation	2.466105	0	0	0	0.765515	0	0.213705	5.03897	4.606165
HOUSEHOLD_1_225_WI_3_validation_validation	1.855766	2.683368	2.310402	4.024885	2.446894	2.747065	1.522343	3.720071	6.292375
HOUSEHOLD_1_225_TX_1_validation_validation	2.323509	1.735151	0.417039	2.290968	0.455946	1.840039	5.295066	0	2.805219
HOUSEHOLD_1_225_CA_2_validation_validation	3.481088	3.279253	5.707238	4.124717	0.669165	0.11039	0	0	0
HOUSEHOLD_1_225_CA_4_validation_validation	2.007461	0.484292	0	1.308338	4.12614	5.661965	6.220965	7.118368	5.453558
HOUSEHOLD_1_225_TX_2_validation_validation	2.123508	0.528142	0	0	2.963317	2.916285	4.533968	3.459332	1.35537
HOUSEHOLD_1_225_WI_1_validation_validation	5.875822	3.22357	2.05704	4.083245	3.909307	0	0.150121	5.48372	0
HOUSEHOLD_1_225_WI_2_validation_validation	4.582798	4.208896	3.86248	2.276813	4.016234	2.651427	3.431772	4.245406	2.546614
HOUSEHOLD_1_523_TX_2_validation_validation	1.81948	0	0	1.752077	2.862362	1.934778	1.356793	1.839065	1.779787
HOUSEHOLD_1_523_WI_3_validation_validation	3.338043	4.79628	3.746939	3.690301	2.230604	0	6.561465	1.911261	1.780798
HOUSEHOLD_1_523_CA_2_validation_validation	1.495045	4.189199	6.664817	5.608717	5.129328	4.170701	4.721668	5.257751	1.365893
HOUSEHOLD_1_523_CA_3_validation_validation	3.786464	3.04364	3.837278	1.232246	1.378999	1.226985	2.878689	1.715567	4.240127
HOUSEHOLD_1_523_CA_4_validation_validation	7.713728	6.778467	7.217938	5.837289	4.645896	4.134191	0.838498	0	0.287175
HOUSEHOLD_1_523_WI_2_validation_validation	4.436346	4.70757	4.557447	2.692693	2.482768	2.044702	2.014089	3.197657	2.050824
HOUSEHOLD_1_523_TX_3_validation_validation	1.516539	3.260791	2.988107	2.749986	4.340445	3.378036	4.764133	4.539492	5.326109
HOUSEHOLD_1_523_CA_1_validation_validation	7.061749	6.165058	4.898921	2.698347	2.773127	3.730743	2.140677	2.704451	1.444567
HOUSEHOLD_1_523_WI_1_validation_validation	5.899937	6.2181	2.882358	0.356787	1.092459	2.266328	3.21638	2.954967	1.040783
HOUSEHOLD_1_523_TX_1_validation_validation	4.92723	5.423319	2.416975	1.008654	0.656621	0	1.381058	1.267484	0
HOUSEHOLD_1_248_TX_1_validation_validation	3.79107	3.503519	2.860939	3.247947	1.966682	1.508264	2.110701	2.03768	2.048465
HOUSEHOLD_1_248_CA_1_validation_validation	2.655284	2.4955	0.552819	0	2.198925	3.913032	5.33371	3.917039	3.732728
HOUSEHOLD_1_248_TX_2_validation_validation	0	3.21155	1.700251	0.993301	1.18278	3.807396	5.113151	5.870467	6.238527
HOUSEHOLD_1_248_TX_3_validation_validation	2.353503	1.329495	2.902355	2.312949	2.255469	2.232514	2.041126	4.823241	5.74225
HOUSEHOLD_1_248_WI_3_validation_validation	4.083938	4.745503	3.549803	1.558816	0.464858	0.117243	1.00783	0	0
HOUSEHOLD_1_248_WI_1_validation_validation	0.734884	1.614836	1.263439	0.677703	2.485352	0	0	1.601468	3.167662
HOUSEHOLD_1_248_WI_2_validation_validation	0	1.627643	1.922533	1.224383	1.826408	2.322872	5.013169	5.571832	1.505792
HOUSEHOLD_1_248_CA_4_validation_validation	1.946424	3.008403	0.806818	3.194249	3.219413	1.534663	3.363657	0.601724	1.0206

Analysis & Findings

Conclusion

Training Method

1. Regression Model

Linear Regression Random Forest XGBoost

2. LSTM Model

Lookback: 28 days

Epochs: 10

Batch Size: 128

Neurons: 64

No. of Layers: 2

Activation: ReLU

Data Convert: One Hot Encoding

Future Improvements

- 1. Now we only judge if there is an event or holiday of the day. Different events as different values will be better.
- 2. Adjust model's configs for higher accuracy.

Conclusion

1. Model Implementation:

Regression models and Long Short-Term Memory (LSTM) networks aims to extract meaningful patterns from historical sales data, facilitating accurate sales.

2. Predictions Performance Metrics:

The evaluation of the LSTM model, demonstrates promising results with reduced forecasting errors, indicating its ability to learn from historical data and optimize inventory and supply chain management.

3. Strategic Importance of Machine Learning:

The project enabling retailers to better anticipate consumer behavior, align inventory with demand, and enhance overall operational efficiency.