MACHINE LEARNING PROJECT

Done By: Zeinelabdin Salih

Instructor: Giti. Saikia

January 25, 2021

About Project

- Analyze and comparing models results to predict the net hourly electrical energy output (PE) of Combined Cycle Power Plant (MLRegression) and Actions for Internet Firewall (Classification)
- Applying machine learning technicians in both datasets to understand dataset, preprocessing, fitting and measurement prediction models using python
- Project visualize accuracy scores for models and discuss all procedures and outcomes in two main parts:
 - Multi Linear Regression Model CCPP Dataset
 - Classification Model Internet Firewall datasets
- Source of dataset is UCI web site

Part I: Combined Cycle Power Plant Dataset - MLR

- Dataset for CCPP data
- Contains 9568 datapoints (rows) and 4 variables (columns)
- Features consist of hourly average ambient variables:
 - Temperature (AT) in the range 1.81°C and 37.11°C
 - Ambient Pressure (AP) in the range 992.89-1033.30 milibar
 - Relative Humidity (RH) in the range 25.56% to 100.16%
 - Exhaust Vacuum (V) in teh range 25.36-81.56 cm Hg
 - Net hourly electrical energy output (PE) 420.26-495.76 MW

(9568, 5)

	AT	V	AP	RH	PE
0	14.96	41.76	1024.07	73.17	463.26
1	25.18	62.96	1020.04	59.08	444.37
2	5.11	39.40	1012.16	92.14	488.56
3	20.86	57.32	1010.24	76.64	446.48
4	10.82	37.50	1009.23	96.62	473.90

- ❖ Dataset exploration and description
- No missing value detected

❖ Visualized Features Relationship

		AT	V	AP	RH	PE
	count	9568.000000	9568.000000	9568.000000	9568.000000	9568.000000
	mean	19.651231	54.305804	1013.259078	73.308978	454.365009
AT Ø	std	7.452473	12.707893	5.938784	14.600269	17.066995
/ 0	min	1.810000	25.360000	992.890000	25.560000	420.260000
AP Ø	25%	13.510000	41.740000	1009.100000	63.327500	439.750000
RH Ø	50%	20.345000	52.080000	1012.940000	74.975000	451.550000
PE 0	75%	25.720000	66.540000	1017.260000	84.830000	468.430000
dtype: int6	4 max	37.110000	81.560000	1033.300000	100.160000	495.760000

The graph shows relations between attributes and target variable energy output "PE" - (Example: PE VS. AT)

& Correlation: Figured out the values and linear correlation between

Visualized Correlation by Heatmap

P-values of independent variables

Find R2 and RMSE

❖ Adjusted R2

❖ Linear R Model scores

* K-fold cross validation for Linear Regression model

Variable Name : AP Variable = 5.5071088524993335e-11

const

CONST	0.000000000
AT	0.000000e+00
V	4.375305e-215
AP	5.507109e-11
RH	3.104584e-293
dtype:	float64

0.000000=100

OLS Regression Results ______ PE R-squared: Model: OLS Adj. R-squared: 0.929 Method: Least Squares F-statistic: 3.114e+04 Mon, 25 Jan 2021 Prob (F-statistic): 09:19:01 Log-Likelihood: -28088 No. Observations: AIC: 5.619e+04 Df Residuals: 9563 5.622e+04 Df Model: Covariance Type: nonrobust ______ coef 454.6093 9.749 473.718 const -1.9775 0.015 -129.342 -1.948 -0.2339 0.007 -32.122 0.000 -0.220 0.0621 6.564

-37.918

R Squared(R^2): 0.9325315554761302

-0.1581

Mean Squared Error(MSE): 19.73369930349765

Root Mean Squared Error (RMSE): 4.442262858442491

Adjusted R2: 0.9323901862890713

Model Test Accuracy Score: 0.9325315554761302 Model Train Accuracy Score: 0.9277253998587902

K-fold cross validation: 0.9286022473864548

- Prediction of Linear Regression
- Par graph visualized the tail of predicted PE compering with actual PE

* KNN Model Results

	Actual	Predicted
0	431.23	431.427616
1	460.01	458.561246
2	461.14	462.752647
3	445.90	448.595962
4	451.29	457.870777
5	432.68	429.693839
6	477.50	473.041853
7	459.68	456.508363
8	477.50	474.340491
9	444.99	446.343029
10	444.37	441.939224

The Optimal K: 7

[0.9278570994010462,
0.9415964487881785,
0.9465799596457154,
0.9485892847930293,
0.9494328692798186,
0.9591293765220572,
0.9592690899715831,
0.9590072763083849,
0.9497800555809164,
0.949573764007427,
0.9493010348669653,
0.94850349780055,
0.948644178754568,
0.9483670422687198,
0.9483670422687198,

KNN Train Score : 1.0

KNN Test Score: 0.952585973183326

KNN K-fold cross validation: 0.948028250440295

Random Forest Model

❖ AdaBoost Model

SVR Model

```
GridSearchCV(cv=4, estimator=RandomForestRegressor().
           param grid={'n estimators': [80, 100, 120, 140, 160, 180]})
                                          {'n estimators': 160}
              Random Forest Best Score: 0.9577770879560168
              Random Forest test Score: 0.9647282858380863
 Random forest K-fold cross validation: 0.957838922107113
GridSearchCV(cv=4, estimator=AdaBoostRegressor(),
          param grid={ 'base estimator': [DecisionTreeRegressor(max depth=10),
                                     DecisionTreeRegressor(max depth=12),
                                     DecisionTreeRegressor(max depth=14)],
                     'n estimators': [120, 140, 160, 180, 200]})
{'base estimator': DecisionTreeRegressor(max depth=12), 'n estimators': 160}
 AdaBoost Best Score: 0.9604046155915316
 ABaBoost test Score: 0.9683430877291839
  AdaBoost K-fold cross validation: 0.9612818979351534
    GridSearchCV(cv=4, estimator=SVR(),
               param_grid={'C': [500, 1000, 1500], 'degree': [2, 3, 4],
                          'kernel': ['linear', 'poly', 'rbf', 'sigmoid']})
                     {'C': 1500, 'degree': 4, 'kernel': 'poly'}
                            SVR(C=1500, degree=4, kernel='poly')
                 SVR Best Score: 0.9320940716055818
                 SVR test Score: 0.9368176216620794
                 SVR K-fold cross validation: 0.9332599537923512
```

Regression Part-Conclusion

- According to all previous analysis and models scores, the best model is AdaBoost Model.
- Overall, all models are doing great and scored more than (Avg 95%), so that means the prediction here is perfect, and we can use it in the future.

	Test Score	Train Score	Cross Validation	Average
Linear Regression	0.932532	0.927725	0.928602	0.930342
KNN	0.952586	1.000000	0.948028	0.975087
Random Forest	0.964979	0.957711	0.961044	0.962171
AdaBoost	0.968453	0.960198	0.961981	0.964761
SVR	0.936818	0.932094	0.933260	0.934742

Model Score Maximum Average : KNN = 0.9750872987216542

The Model Who Scored the Maximum:

Test Score AdaBoost
Models Average Score: 0.953420627262316
Train Score KNN

Cross Validation AdaBoost

Part II: Internet Firewall-Classification

- Dataset for Internet Firewall data
- Contains 65532 datapoints (rows) and 12 variables (columns)
- Dataset Attributes :
 - Source Port
 - Destination Port
 - NAT Source Port
 - NAT Destination Port
 - Action
 - Bytes,
 - Bytes Sent,
 - Bytes Received
 - Packets
 - Elapsed Time (sec)
 - pkts_sent,
 - pkts_received

	Source Port	Destination Port	NAT Source Port	NAT Destination Port	Action	Bytes	Bytes Sent	Bytes Received	Packets	Elapsed Time (sec)	pkts_sent	pkts_received
0	57222	53	54587	53	allow	177	94	83	2	30	1	1
1	56258	3389	56258	3389	allow	4768	1600	3168	19	17	10	9
2	6881	50321	43265	50321	allow	238	118	120	2	1199	1	1
3	50553	3389	50553	3389	allow	3327	1438	1889	15	17	8	7
4	50002	443	45848	443	allow	25358	6778	18580	31	16	13	18

❖ Dataset exploration and description

- No missing value detected
- Unique values for Target Variable "Actions"

❖ Visualized classes of "Actions"

Pa		Bytes Received	ıt	Bytes Sen	Bytes	n			AT Source Port		Destination Port	Source Port	
20	4 6.55	553200e+04	4 (6.553200e+0	.553200e+04	2	65532	65532.000000	32.000000	65	65532.000000	65532.000000	count
	1	NaN	N	Nal	NaN	4	4	NaN	NaN	I	NaN	NaN	unique
	1	NaN	N	Nal	NaN	N	allow	NaN	NaN		NaN	NaN	top
	1	NaN	N	Nal	NaN	0	37640	NaN	NaN		NaN	NaN	freq
66	4 1.02	473815e+04	4	2.238580e+0	.712395e+04	N	NaN	2671.049930	82.972761	19	10577.385812	49391.969343	mean
00	5.13	463208e+06	6 2	3.828139e+0	.618439e+06	N	NaN	9739.162278	70.689669	21	18466.027039	15255.712537	std
00	1.00	000000e+00	1 (6.000000e+0	.000000e+01	N	NaN	0.000000	0.000000)	0.000000	0.000000	min
00	1.00	000000e+00	1 (6.600000e+0	.600000e+01	N	NaN	0.000000	0.000000)	80.000000	49183.000000	25%
00	1 2.00	900000e+01	1	9.000000e+0	.680000e+02	N	NaN	53.000000	20.500000	8	445.000000	53776.500000	50%
00	2 6.00	490000e+02	2 4	2.100000e+0	.522500e+02	N	NaN	443.000000	66.250000	38	15000.000000	58638.000000	75%
11	3 1.03	208818e+08	8 :	9.484772e+0	.269359e+09	N	NaN	65535.000000	35.000000	65	65535.000000	65534.000000	max

array(['allow', 'drop', 'deny', 'reset-both'], dtype=object)

❖ Visualised the relationship between "Action" classes and some Features

Visualized dataset variables Correlation by Heatmap graph

- Logistic Regions Model scores
- ❖ K-fold cross validation for Logistic Regression model
- Classification Report

Confusion Matrix

❖ Heatmap visualized the Confusion Matrix

The Testing Accuracy is: 0.9317158770122835 The Training Accuracy is: 0.928621840724845

K-fold cross validation: 0.9294801409814402

	precision	recall	f1-score	support	
allow	1.00	0.93	0.96	7522	
deny	0.98	0.87	0.92	2989	
drop	0.76	1.00	0.87	2589	
reset-both	0.00	0.00	0.00	7	
accuracy			0.93	13107	
macro avg	0.68	0.70	0.69	13107	
weighted avg	0.94	0.93	0.93	13107	

[[70	928	58	436	0]
[31	2595	363	0]
[0	0	2589	0]
[1	6	0	0]

* Tested Prediction of L Regression by showing the comparison between actual and predicted "Action"

	Actual	Predicted
0	allow	allow
1	drop	drop
2	allow	allow
3	deny	deny
4	drop	drop
5	allow	deny
6	deny	drop
7	allow	allow
8	drop	drop
9	deny	deny

KNN Confusion Matrix

[[7470	46	6	0]
[19 2	960	9	1]
[0	1 2	588	0]
[2	5	0	0]]

KNN Classification Report

	precision	recall	f1-score	support
allow	1.00	0.99	1.00	7522
deny	0.98	0.99	0.99	2989
drop	0.99	1.00	1.00	2589
reset-both	0.00	0.00	0.00	7
accuracy			0.99	13107
macro avg	0.74	0.75	0.74	13107
weighted avg	0.99	0.99	0.99	13107

The Optimal K : 9

[0.9907526094121956, 0.9906915705304279, 0.9925227369834585, 0.9929500091558322, 0.9933620216077641, 0.9933467618873222, 0.9933315021668803, 0.9933467618873222, 0.9934230604895318. 0.9933772813282061, 0.9933315021668804 0.9933467618873223, 0.9933620216077642, 0.9933315021668804, 0.9931026063602515. 0.9930263077580419. 0.9929957883171581, 0.9929347494353903, 0.9928279313922969, 0.9927211133492034]

KNN Train Score : 0.9997329518359561 KNN Test Score : 0.9932097352559701

KNN K-fold cross validation: 0.9927211133492034

* KNN Model Results

Random Forest Model

❖ AdaBoost Model

SVM Model

SVC test Score: 0.9249785407725322 SVC test Score: 0.9268329900053407

SVC K-fold cross validation: 0.920084844045657

Classification Part-Conclusion

- According to all previous analysis and models scores, the best model in this part compering with others is KNN (according to current results)
- Generally, most of models are doing great and scores exceeding 98% so that means the prediction it is perfect, and also, we can use it in the future
- On the last but not least, we can say, classification model is the best vs Multi linear regression model

The Testing Accuracy is: 0.9317158770122835 The Training Accuracy is: 0.928621840724845

K-fold cross validation: 0.9294801409814402

KNN Train Score : 0.9997329518359561 KNN Test Score : 0.9932097352559701

KNN K-fold cross validation: 0.9927211133492034

Random Forest Best Score: 0.9978636132299701 Random Forest test Score: 0.9987029831387808

Random Forest K-fold cross validation: 0.9829243728254898

Adaboost Best Score: 0.9980925189332781 Adaboost test Score: 0.9974059662775616

AdaBoost K-fold cross validation: 0.9946743575657695

THANKS

Any questions?

