第4章作业参考答案

P162/1(1):

原问题: $\begin{cases} \max 4x_1 - 3x_2 + 5x_3 \\ s.t. & 3x_1 + x_2 + 2x_3 \le 5 \\ x_1 - 2x_2 + 7x_3 \le -3 \text{, 对偶问题:} \end{cases} \begin{cases} \min 5w_1 - 3w_2 + w_3 \\ s.t. & 3w_1 + w_2 + w_3 \ge 4 \\ w_1 - 2w_2 & \ge -3 \\ 2w_1 + 7w_2 + w_3 \ge 5 \\ w_1, w_2 \ge 0 \end{cases}$

P162/1(2):

原问题: $\begin{cases} \min -4x_1 - 5x_2 - 7x_3 + & x_4 \\ s.t. & x_1 + & x_2 + 2x_3 - & x_4 \geq 1 \\ & -2x_1 + 6x_2 - 3x_3 - & x_4 \geq 3 \\ & x_1 + 4x_2 + 3x_3 + 2x_4 = -5 \end{cases}$,对偶问题: $\begin{cases} \max w_1 + 3w_2 - 5w_3 \\ s.t. & w_1 - 2w_2 + & w_3 \leq -4 \\ w_1 + 6w_2 + 4w_3 \leq -5 \\ 2w_1 - 3w_2 + 3w_3 = -7 \\ -w_1 - & w_2 + 2w_3 \leq 1 \\ w_1, w_2 \geq 0 \end{cases}$

P162/2:

对偶问题: $\begin{cases} \max w_1 + 2w_2 \\ s.t. & w_1 + w_2 \le 4 \\ -w_1 + 2w_2 \le 3 \\ w_1 - 3w_2 \le 1 \\ w_1, w_2 \ge 0 \end{cases}$

最优解 $\mathbf{w}^* = (5/3,7/3)^T$,第3约束松,并且 $\mathbf{w}^* > 0$,因此

 $\begin{cases} x_3 = 0 \\ x_1 - x_2 + x_3 = 1 \end{cases} \Rightarrow \mathbf{x}^* = (4/3, 1/3, 0)^T$ 可行,因此 $\mathbf{x}^* = (4/3, 1/3, 0)^T$ 是原问题最优解, $x_1 + 2x_2 - 3x_3 = 2$

最优值 $z^* = 19/3$ 。

P162/3:

 $\begin{cases} \min -2w_1 - 7w_2 \\ s.t. & w_1 + w_2 = 10 \\ & w_2 \le 7 \\ -6w_1 + 5w_2 \le 30 \\ & w_1 - w_2 \le 2 \\ & w_1, w_2 \ge 0 \end{cases}$

(2)最优解 $\mathbf{w}^* = (3,7)^T$,最优值 $z^* = -55$ 。在 $\mathbf{w}^* = (3,7)^T$,第 3、4 约束松,并且 $\mathbf{w}^* = (3,7)^T > 0$,

因此
$$\begin{cases} x_3 = 0, x_4 = 0 \\ x_1 - 6x_3 - x_4 = -2 \Rightarrow \boldsymbol{x}^* = (-2, -5, 0, 0)^T \ \text{可行, 因此} \ \boldsymbol{x}^* = (-2, -5, 0, 0)^T \ \text{是原问} \\ x_1 + x_2 + 5x_3 - x_4 = -7 \end{cases}$$

题最优解,最优值 $z^* = -55$ 。

P164/4:

对偶问题:
$$\begin{cases} \max b_1 w_1 + w_2 \\ s.t. & w_1 + w_2 \le 5 \\ -w_1 + w_2 \le 0 \\ 6w_1 + 2w_2 \le 21 \\ w_1, w_2 \ge 0 \end{cases}$$

因为
$$x_1^*, x_3^* > 0$$
,因此 $\begin{cases} w_1 + w_2 = 5 \\ 6w_1 + 2w_2 = 21 \end{cases}$ $\Rightarrow \mathbf{w}^* = (1 \frac{1}{4}, 9/4)^T$ 是可行解,因此 $\mathbf{w}^* = (1 \frac{1}{4}, 9/4)^T$ 是对偶问题最优解。

P164/5: (c 改为 c^T)

变化后原问题为
$$\begin{cases} \min \boldsymbol{c}^T \boldsymbol{x} \\ s.t. \ \overline{A} \boldsymbol{x} = \overline{\boldsymbol{b}} \end{cases}, \text{ 变化后对偶问题为} \begin{cases} \max \overline{\boldsymbol{b}}^T \boldsymbol{w} \\ s.t. \ \overline{A}^T \boldsymbol{w} \leq \boldsymbol{c} \end{cases}, \text{ 即} \begin{cases} \max \boldsymbol{b}^T (E^T \boldsymbol{w}) \\ s.t \ A^T (E^T \boldsymbol{w}) \leq \boldsymbol{c} \end{cases}$$

其中 $\overline{A} = EA, \overline{b} = Eb$,变化后对偶问题最优解 \mathbf{w}^* 满足: $E^T\mathbf{w}^* = \mathbf{w}^0$,即 $\mathbf{w}^* = E^{-T}\mathbf{w}^0$ 。

$$\mathbf{w}^* = E^{-T} \mathbf{w}^0 = (w_1^0, \dots, w_k^0 / \mu, \dots, w_m^0)^T$$

$$\mathbf{w}^* = E^{-T} \mathbf{w}^0 = (w_1^0, \dots, w_k^0 - \mu w_r^0, \dots, w_m^0)^T$$

P164/6: (c 改为 c^T , c^T 改为 c)

原问题
$$\begin{cases} \min \boldsymbol{c}^T \boldsymbol{x} \\ s.t. \ A\boldsymbol{x} = \boldsymbol{b} \end{cases}, \quad \mathbb{D} \begin{cases} \max \boldsymbol{b}^T \boldsymbol{x} \\ s.t. \ A^T \boldsymbol{x} = \boldsymbol{b} \end{cases}, \quad \forall \mathbf{A} \mathbf{B} \mathbf{D} \mathbf{B} \begin{cases} \max \boldsymbol{b}^T \boldsymbol{w} \\ s.t. \ A^T \boldsymbol{w} \leq \boldsymbol{b} \end{cases}$$

 x^0 是原问题的可行解,则 x^0 是对偶问题的可行解,并且原问题和对偶问题在 x^0 的目标值均为 b^Tx^0 。由对偶理论, x^0 是原问题的最优解。

7/(1)

$$\begin{cases} \min 4x_1 + 6x_2 + 18x_3 \\ s.t. & x_1 + 3x_3 \ge 3 \\ 6x_2 + 2x_3 \ge 5 \end{cases} \Leftrightarrow \begin{cases} \min 4x_1 + 6x_2 + 18x_3 \\ s.t. & -x_1 - 3x_3 + x_4 = -3 \\ -6x_2 - 2x_3 - x_5 = -5 \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

	x_1	x_2	x_3	x_4	x_5	
x_4	-1	0	-3	1	0	-3
x_5	0	<mark>-1</mark>	-2	0	1	-5
	-4	-6	-18	0	0	0

	x_1	x_2	x_3	X_4	x_5	
\mathcal{X}_4	-1	0	<mark>-3</mark>	1	0	-3
x_2	0	1	2	0	-1	5
	-4	0	-6	0	-6	30

	x_1	x_2	x_3	X_4	x_5	
X_4	1/3	0	1	-1/3	0	1
x_2	-2/3	1	0	2/3	-1	3
	-2	0	0	-2	-6	36

原问题 $x^* = (0,3,1)^T$, $z^* = 36$ 。