

SIT718 – Introduction to Linear Programming- Week 1

Delaram Pahlevani

Introduction

- non linear programming
- mixed integer programming
- quadratic programming
- stochastic modelling
- convex optimisation

Linear Programming

Linear form:

$$2x + 3y - 4z \ge 120$$

$$2x + y \le 52$$

$$3y + 5z > 75$$

Non-linear form

$$x^2 + 7y \ge 24$$

Linear Programming

Linear form:

$$2x + 3y - 4z \ge 120$$

$$2x + y \le 52$$

$$3y + 5z > 75$$

Non-linear form

$$x^2 + 7y \ge 24$$

Elements of Linear Programming

decision variables

objective function

constraint satisfaction

Toy Company

We are in charge of a toy company currently producing two types of toys: soldiers and trains:

Soldier	Train
sells for \$27 and uses \$10 worth of raw materials	sells for \$21 and uses \$9 worth of raw materials
costs \$14 for labour per unit	costs \$10 for labour per unit
requires 2 hours of finishing labour per unit	requires 1 hour of finishing labour per unit
requires 1 hour of carpentry labour per unit	requires 1 hour of carpentry labour per unit

Constraints

100 hours of available finishing labour every week

80 hours of available carpentry labour every week

previous data shows that at least 40 soldiers are bought each week

Toy Company - Continued

	Finishing Labour	Carpentry Labour	Profit
Soldier	2	1	\$27 - \$10 - \$14 = \$3
Trains	1	1	\$21 - \$9 - \$10 = \$2
Labour Limits	100	80	

Objective function (profit) Z = Price - cost

$$(27s + 21t) - (10s-9t) - (14s+10t) = (27-10-14)s + (21-9-10)t = 3s+2t$$

Max z = 3s+2t

Toy Company – Constraint Translation

Constraints

100 hours of available finishing labour every week

80 hours of available carpentry labour every week

previous data shows that at least 40 soldiers are bought each week

Equivalence mathematical equation

2s+t≤100

 $S+t \leq 80$

s≥ 40

S,t ≥0

The solution to this LP is to build 40 soldiers and 20 trains, resulting in \$160 total profit.

Assembly line

 An assembly line consists of three consecutive stations producing our toy soldiers and toy trains. The assembly times of the three workstations are listed below.

Workstation	Time to Produce Soldiers (minutes)	Time to Produce Trains (minutes)
1	3	6
2	5	5
3	.4	8

Each station can operate up to 600 minutes per day, and each single toy produced must go through all three workstations.

The estimated daily maintenance times for Workstations 1, 2, 3 are 10%, 25% and 20% respectively.

What we want to do this time is to optimise the production plan i.e. find the numbers of each product to be produced such that the total idle time in the three workstations are minimised.

Assembly line

Workstation	Time to Produce Soldiers (minutes)	Time to Produce Trains (minutes)
1	3	6
2	5	5
3	4	8
	12	19

The maximum number of minutes available for each of the workstations are:

Workstation 1
$$600 \times (1-10\%) = 540$$
 minutes
Workstation 2 $600 \times (1-25\%) = 450$ minutes
Workstation 3 $600 \times (1-20\%) = 480$ minutes

Total = 540+450+180 = 1470 minutes

Objective function:

Min Z= 1470-12s - 19t

Assembly line

Workstation	Time to Produce Soldiers (minutes)	Time to Produce Trains (minutes)
1	3	6
2	5	5
3	4	8
	12	19

Objective function: Z= 1470-12s - 19t

$$3s + 6t \le 540$$

 $5s + 5t \le 450$
 $4s + 8t \le 480$
 $5, t \ge 0$

Solving LPs with graphical Method

Max z =3x +2y= 3(40)+2(20)= 160

$$2x + y \le 100$$

 $x+y \le 80$
 $x \ge 40$
 $x, y \ge 0$

Follow these steps:

- 1. Draw each line only for constraints (using two points)
- 2. Find the area satisfies the equation
- 3. Find the feasible region

Sensitivity Analysis

Max z =
$$3x + 2y$$

 $2x + 2y \le 100$
 $x+y \le 80$
 $x \ge 40$
 $x, y \ge 0$

$$160 = 3x + 2y \implies y = -\frac{3}{2}x + 160$$
$$2x + y \le 100 \implies y \le -2x + 100$$
$$x + y \le 80 \implies y \le -x + 80$$

$$Z = cx + 2y: y = -\frac{c}{2} x + z$$
$$-2 \le -\frac{c}{2} \le 0$$
$$0 \le c \le 4$$