Microcomputer Engineering TMIK13 Lecture 4

INTERRUPTS

ANDREAS AXELSSON (ANDREAS.AXELSSON@JU.SE)

Simple Scheduling – Super Loop


```
int main()
    System_Init();
    // Begin round robin scheduling
    while (1)
        Task_1();
        Task_2();
    return 0;
```

Simple Scheduling – Interrupts

Simple Scheduling – Interrupts

Cooperative Scheduling

State Machines

Polling vs Interrupt

Polling

Interrupt

ARM Cortex-M Interrupts

Microcontroller Cortex-M processor Peripheral NMI Processor Core **NVIC** Peripherals **IRQs** System Exceptions I/O port SysTick timer I/O port

STM32F4 Interrupts – Vector table

Exception number	IRQ number	Offset	Vector
255	239 2 1 0 -1	Offset 0x03FC 0x004C 0x0048 0x0044 0x0040 0x003C 0x003S	IRQ239
14 13 12 11 10 9 8 7	-2 -5		PendSV Reserved Reserved for Debug SVCall Reserved
6 5 4 3 2 1	-10 -11 -12 -13 -14	0x0018 0x0014 0x0010 0x000C 0x0008 0x0004 0x0000	Usage fault Bus fault Memory management fault Hard fault NMI Reset Initial SP value

STM32F4 Interrupts – NVIC

STM32F4 contains a Nested Vectored Interrupt Controller (NVIC)

- Low latency interrupt management
- 16 programmable priority levels
- Interrupt tail chaining

GPIO - EXTI / NVIC

startup_stm32f401xe.s

```
TOT
     .woru
                                                  / · Keserveu
               EXTI9 5 IRQHandler
                                                 /* External Line[9:5]s
182
     .word
     .word
               TIM1 BRK TIM9 IRQHandler
                                                 /* TIM1 Break and TIM9
183
               TIM1 UP TIM10 IRQHandler
     .word
                                                 /* TIM1 Update and TIM10
184
               TIM1_TRG_COM_TIM11_IRQHandler
                                                 /* TIM1 Trigger and Commutation and TIM11 */
185
     .word
               TIM1 CC IRQHandler
                                                 /* TIM1 Capture Compare
186
     -word
               TIM2 IRQHandler
                                                 /* TIM2
     .word
187
    .word
               TIM3 IRQHandler
                                                 /* TIM3
188
               TIM4 IRQHandler
189 .word
                                                 /* TIM4
               I2C1 EV IRQHandler
190 .word
                                                 /* I2C1 Event
     -word
               I2C1 ER IRQHandler
191
                                                 /* I2C1 Error
               I2C2 EV IRQHandler
192
     .word
                                                 /* I2C2 Event
193
     .word
               I2C2 ER IRQHandler
                                                 /* I2C2 Error
               SPI1 IRQHandler
194
     .word
                                                 /* SPI1
               SPI2 IRQHandler
195
     .word
                                                 /* SPI2
               USART1 IRQHandler
196
     .word
                                                 /* USART1
               USART2 IRQHandler
197
     .word
                                                 /* USART2
198
     .word
                                                 /* Reserved
               EXTI15 10 IRQHandler
199
     .word
                                                /* External Line[15:10]s
               RTC Alarm IR Handler
                                                /* RTC Alarm (A and B) through EXTI Line */
200
     .word
               OTG FS WKUP IROHandler
                                                 /* USB OTG FS Wakeup through EXTI line */
201
     .word
                                                                                  */
                                                 /* Reserved
202
     .word
203
                                                  /* Reserved
     .word
```

stm32f4xx it.c

```
/* STM32F4xx Peripheral Interrupt Handlers
/* Add here the Interrupt Handlers for the used peripherals.
/* For the available peripheral interrupt handler names,
/* please refer to the startup file (startup_stm32f4xx.s).
* @brief This function handles EXTI line[15:10] interrupts.
void EXTI15 10 IRQHandler(void)
 /* USER CODE BEGIN EXTI15 10 IRQn 0 */
 /* USER CODE END EXTI15 10 IRQn 0 */
 HAL GPIO EXTI IRQHandler(GPIO PIN 13);
 /* USER CODE BEGIN EXTI15 10 IRQn 1 */
  /* USER CODE END EXTI15 10 IRQn 1 */
```

Create callback to handle GPIO interrupt

```
void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin)
{
  if (GPIO_Pin == GPIO_PIN_13)
  {
    /* DO the job when EXTI was detected on pin 13 */
  }
}
```

State Machines


```
{
    __disable_irq();
    Put New event into event queue
    __enable_irq();
}
```

What about contact bounces???

STM32F4 Interrupts

Interrupts can be generated for:

- External pin changes (EXTI)
- Timer events (Timer overflow etc)
- USART
- SPI
- DMA
- Etc

Correctly implemented these events can drive a state machine

Concurrent HW and SW operation

Microcomputer Engineering

Questions?

Contact information

Andreas Axelsson

Email: andreas.axelsson@ju.se

Mobile: 0709-467760