BIST Part1 - TPG

- Introduction
- Test Pattern Generation
 - Deterministic: ROM, Algorithm, Counter
 - Pseudo Random
 - Linear Feedback Shift Register, LFSR (1977)
 - Cellular Automata, CA (1984)

Cellular Automata [Wolfram 84]

• F_{CA} is a linear function of Its two immediate neighbors and itself

$$F_{CA,i} = C_{i-1}S_{i-1} \oplus C_{i}S_{i} \oplus C_{i+1}S_{i+1}$$

 C_i =1 means connection exists

- Null Boundary Condition = both ends tied to zero
- Degree = number of FF = 6

Name of CA Cell

CA cell is named by F_{CA} function

K map of F_{CA}

$$Name = \sum_{i=0}^{7} A_i 2^i$$

• Example: F_{CA,i} = S_{i-1}⊕ S_i

S_iS_{i-1}	00	01	11	10
0	0	1	0	1
1	0	1	0	

Name = $2^6+2^5+2^2+2^1 = 102$ This is called a *rule-102 cell*

Quiz

Q1: Given a CA cell $F_{CA,i} = S_{i-1} \oplus S_{i+1}$. What is rule number?

ANS:

K map of F_{CA}

S_iS_{i-1}	00	01	11	10
0	A	A_1	A ₃	A_2
1	A_4	A_5	A_7	A_6

Linear Hybrid CA, LHCA

- Rule-90 CA cell
 - $F_{CA,i} = S_{i-1} \oplus S_{i+1}$
- Rule-150 CA cell
 - $\bullet \quad F_{CA,i} = S_{i-1} \oplus S_i \oplus S_{i+1}$
- 90/150 LHCA with null boundary condition
 - Consist of only rule-90 and rule-150 cells
 - Very popular CA, math model well studied
- Example: 4-degree 90/150 LHCA

State Transition

- Given seed = 1000
- CA generates pseudo random patterns
 - m-sequence of phase difference
 - Periodic
- Why this CA generates m-sequence?
 - to be proved later

state	S ₀	S ₁	S ₂	S ₃
0	1	0	0	0
1	1	1	0	0
2	0	1	1	0
3	1	1	0	1
4	0	1	0	0
5	1	0	1	0
6	1	0	1	1
7	1	0	0	1
8	1	1	1	0
9	0	0	0	1
10	0	0	1	0
11	0	1	1	1
12	1	1	1	1
13	0	0	1	1
14	0	1	0	1
15				

Phase diff. 11

9

1

Quiz

Q1: What is state 15?

ANS:

Q2: What is cycle length of this CA?

ANS:

state	S ₀	S ₁	S ₂	S_3
0	1	0	0	0
1	1	1	0	0
2	0	1	1	0
3	1	1	0	1
4	0	1	0	0
5	1	0	1	0
6	1	0	1	1
7	1	0	0	1
8	1	1	1	0
9	0	0	0	1
10	0	0	1	0
11	0	1	1	1
12	1	1	1	1
13	0	0	1	1
14	0	1	0	1
15				

N-degree 90/150 LHCA

- C_i are coefficients
 - 1= feedback exists; rule-150 cell
 - 0 = no feedback; rule-90 cell

$$F_{\mathit{CA},i} = S_{i-1} \oplus C_i S_i \oplus S_{i+1}$$

Matrix Representation (90/150 LHCA)

$$\begin{bmatrix} S_0^+ \\ S_1^+ \\ \vdots \\ S_{N-3}^+ \\ S_{N-1}^+ \end{bmatrix} = \begin{bmatrix} C_0 & 1 & 0 & \cdots & 0 & 0 & 0 \\ 1 & C_1 & 1 & \cdots & 0 & 0 & 0 \\ \vdots & 1 & C_2 & 1 & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & C_{n-3} & 1 & 0 \\ 0 & 0 & 0 & \cdots & 1 & C_{n-2} & 1 \\ 0 & 0 & 0 & \cdots & 0 & 1 & C_{n-1} \end{bmatrix} \begin{bmatrix} S_0 \\ S_1 \\ \vdots \\ S_{N-3} \\ S_{N-2} \\ S_{N-1} \end{bmatrix}$$

$$S^+ = C S$$
 (mod-2 addition)

S = current state

S+ = next state

Characteristic polynomial:

$$f(\lambda) = \det(C - \lambda I)$$

Quiz

Q1: Given this LHCA, what is matrix C?

ANS:

Q2: What is characteristic polynomial?

NOTE: please use mod-2 addition

ANS:

Determinant

$$\det \begin{bmatrix} a & b \\ c & d \end{bmatrix} = ad - bc$$

$$\det \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = \begin{vmatrix} a & b & c & a & b \\ d & e & f & d & e \\ g & h & i & g & h \end{vmatrix}$$

Determinant = [aei+bfg+cdh]-[gec+hfa+idb]

Determinant (column expansion)

Column expansion (with respect to the jth column)

$$\det(A) = |A| = \sum_{i=1}^{n} a_{ij} C_{ij} = a_{1j} C_{1j} + a_{2j} C_{2j} + \dots + a_{nj} C_{nj}$$

- Cofactor of $a_{ij} = C_{ij} = (-1)^{i+j} \times M_{ij}$
 - M_{ij} is determinant of A by removing i^{th} row and j^{th} column
- Example: *j*=1

$$\det(A) = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11}C_{11} + a_{21}C_{21} + a_{31}C_{31} = a_{11}(-1)^{1+1}M_{11} + a_{21}(-1)^{2+1}M_{21} + a_{31}(-1)^{3+1}M_{31}$$

$$= a_{11}\begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{21}\begin{vmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{vmatrix} + a_{31}\begin{vmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \end{vmatrix}$$

Characteristic Polynomial of CA

$$\det(C - \lambda I) = \det\begin{pmatrix} 1 - \lambda & 1 & 0 & 0 \\ 1 & -\lambda & 1 & 0 \\ 0 & 1 & 1 - \lambda & 1 \\ 0 & 0 & 1 & -\lambda \end{pmatrix}$$

$$C = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

$$C = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

$$= (-1)^{1+1} (1-\lambda) \begin{vmatrix} -\lambda & 1 & 0 \\ 1 & 1-\lambda & 1 \\ 0 & 1 & -\lambda \end{vmatrix} + (-1)^{1+2} (1) \begin{vmatrix} 1 & 0 & 0 \\ 1 & 1-\lambda & 1 \\ 0 & 1 & -\lambda \end{vmatrix}$$

$$= (1 - \lambda)[\lambda^{2}(1 - \lambda) + \lambda + \lambda] + (-1)[-\lambda(1 - \lambda) - 1]$$

$$= \lambda^{2} (1 - \lambda)^{2} + 2\lambda (1 - \lambda) + \lambda (1 - \lambda) + 1$$

$$= \lambda^4 - 2\lambda^3 - 2\lambda^2 + 3\lambda + 1$$

$$= \lambda^4 + \lambda + 1 \pmod{2}$$
 arithmetic

This CA has a primitive polynomial

LFSR ←→ CA *not in exam

- If irreducible characteristic polynomial are equal: $f_{CA}(x) = f_{LFSR}(x)$
 - Then their matrices are similar: $T_{CA} \leftrightarrow T_{LFSR}$
 - i.e. $T_{CA} = V^{-1}T_{LFSR} V$ (aka. isomorphism transformation)
 - [Serra 88][Bardell 90]

- Implications:
- 1. If characteristic polynomial $f_{CA}(x)$ is primitive polynomial
 - It generates m-sequence of length 2^N-1
- 2. CA and LFSR of same polynomial generate same sequence
 - Just phase difference

 $f_{CA}(x) = x^4 + x + 1$ is primitive polynomial so it generates m-sequence

LFSR \leftrightarrow CA, same $f(x)=x^4+x+1$

state	Q_0	Q_1	Q_2	Q_3
0	1	0	0	0
1	0	1	0	0
2	0	0	1	0
3	0	0	0	1
4	1	1	0	0
5	0	1	1	0
6	0	0	1	1
7	1	1	0	1
8	1	0	1	0
9	0	1	0	1
10	1	1	1	0
11	0	1	1	1
12	1	1	1	1
13	1	0	1	1
14	1	0	0	1

	0
0 + S ₀ + S	S_1 S_2 S_3 S_3
	,

	V			
state	S ₀	S ₁	S ₂	S_3
0	1	0	0	0
1	1	1	0	0
2	0	1	1	0
3	1	1	0	1
4	0	1	0	0
5	1	0	1	0
6	1	0	1	1
7	1	0	0	1
8	1	1	1	0
9	0	0	0	1
10	0	0	1	0
11	0	1	1	1
12	1	1	1	1
13	0	0	1	1
14	0	1	0	1

Phase diff. 12 1 1

Phase diff.

11

1

m-sequence

Pros and Cons of CA

- Advantages of CA (over LFSR)
 - More randomness than LFSR
 - ⇒ Large phase shift
 - Potentially faster than LFSR
 - ⇒ short feedback loop
 - + Small XOR
 - ⇒ no more than 3-input XOR
- Disadvantages of CA (over LFSR)
 - No easy design methodology
 - ⇒ No good method to construct LHCA from polynomial

Summary - CA

- CA are named by its function
- 90/150 LHCA very popular
- Polynomial of CA is f(λ) = det (C-λI)
- CA are good but hard to design

Reference

• (BMS 87) P.H. Bardell, W.H. McAnney, J. Savior, *Built-in Test for VLSI: Pseudorandom Techniques*, Wiely Interscience, 1987.

 [Könemann 91] B Könemann, "LFSR-coded test patterns for scan designs," European Test Conference, 1991