Code: 15CE55D

Register					
Number					

V Semester Diploma Examination, April/May-2019

IRRIGATION & BRIDGE DRAWING

Time: 4 Hours] [Max. Marks: 100

Instructions: (i) Assume the missing data suitably.

- (ii) Drawing should be neat and fully dimentioned.
- , and a government of the same and a governme
- (iii) Answer any one from Question 1 & Question 2
- (iv) Question No. 3 is compulsory.
- 1. (a) Draw to a suitable scale the cross-section of an earthen bund with core wall for the following data:

Bed level - 200.00

Hard rock level - 198.50

TBL - 205.00

MWL - 204.00

FTL - 203.50

Top width of Bund – 2.5 m

U/s Slope - 1.5:1

D/s slope -2:1

Top width of core wall - 1.2 m

Bottom width of core wall - 2.20 m

Bottom width of core wall at Hard rock level - 1.50 m

Rivetment on U/s is 0.45 m with gravel backing of 0.1 m

Provide rock toe on D/s taking height of rock toe as 1.5 m

Foundation for the rivetment is 1.3 m wide and 1.5 m deep including 0.20 m thick stone spalls.

35

(b) Following are the details of a masonry sluice with Head and Gibbet Wall:

Top width of bund = 2.5 m

Front slope of bund = $1\frac{1}{2}$: 1

Rear slope of bund = 2:1

TBL - 106.00

MWL - 105.00

FTL - 104.50

Sill level at sluice - 100.00

Ground level - 101.00

Width of head wall - 0.60 m

Length of gibbet wall – 0.60 m

Barrel:

Size of barrel = (0.6×0.80) m

Slab thickness = 0.12 m

Wall thickness at top = 0.45 m

Wall thickness at bottom = 0.60 m

Citizen wall thickness = 0.45 m

Top width of head & gibbet wall = 0.45 m

Bottom width of head & gibbet wall = 0.90 m

Clear bell mouth entry = 1.5 m

Provide splayed wind walls, C.C. Bed below barrel, head & gibbet wall; cistern & wind wall is 0.60 m

Size of plug chamber = $(0.6 \times 0.6 \times 0.6)$ m

RCC slab over plug chamber = 0.12 m

Thickness of plug chamber wall = 0.12 m

Provide an opening of (0.3×0.3) m in the plug chamber wall facing the water side.

Top width of wing wall = 0.45 m

Provide 0.4 m thick stone rivetment over 0.1 m thick gravel backing on U/s of tank.

Provide 0.12 m thick C.C. lining for distributory canal.

Bed width of distributory canal – 1.00 m

FSL of distributory canal – 100.50 m

Draw the (i) Longitudinal section

(ii) Half plan at top and Half plan at bottom to a suitable scale.

15

2. Following are the details of a Tank weir with stepped apron.

50

Top width of bund - 3.00 m

Top bund level - 102.50

Maximum water level - 101.50

Full tank level - 101.00

Bed level at waste weir site - 100.00

U/s slope of bund $-1\frac{1}{2}$: 1

D/s slope of bund -2:1

Length of body wall - 15 m

Top width of body wall - 1.00 m

Bottom width of body wall - 2.00 m

Top level of foundation concrete - 98.60

Bottom level of foundation concrete - 98.00

Top level of U/s return wall - 101.80

Top level of D/s return wall and channel bund level - 100.50 OXY ORO

Provide 0.6 m thick stepped apron for a length of 3.0 m at RL + 100.00 and 3.5 m at RL + 99.00 TA CONSOLE

Provide 0.15 thick c.c. lining for D/s channel.

Provide dam stones $(0.15 \times 0.15 \times 0.8)$ m in the body wall @ 0.9 m c/c

Top width of wing wall, abutment and return wall is 0.450 m and vertical water face, Bottom width of these walls may be taken as 0.35 h. (Where 'h' is the height of wall)

Length of return wall on U/s and D/s is 2.20 m

Draw to a suitable scale the following views.

(i) Cross-section across body wall

20

(ii) Half plan at foundation and Half plan at top

30

3. Following are the details of slab culvert with return wing walls.

50

(i) Hydraulic particulars:

Catchment area = 4.00 km^2

Ryves constant = 8.00

Velocity of flow through vent = 1.75 m/sec

Average bed width of stream = 8m

Assume afflux = 0.15 m

20

20

480-	Constructional fedale	
	the of apart = 2	
	Some of cutting = 1 : 1	
	Some of embandament = 342 II	
	Ground level at size = 201.50	
	Set level of stream = 200:00	
	High flows level = 202.50	
	Road formation level = 203.50	
	Hart more evel = (SE.OI)	
	Wadth of mad = 7.50 m (Width between herbs)	
	Walth of foot path = 1.0 m	
	POC paraper wall of 0.10 m thick and 0.9 m height.	
	Guard stones $(0.2 \times 0.2 \times 0.8)$ m at 1.0 m, c/c	
	Thickness of RCC shib = 0.25 m	
	Thickness of weating course = 0.10 m FOXY ORO	
	Bearing siab on abunnem & Pier = 0.30 m as BY BETA CONSOLE TO	
DE	Top and bottom width of pier = 0.9 m	
DE	Top waith of anument = 0.9 m	
	Bottom width of abunment = 1.3 m	
	From face of abunnem, Return wind wall is vertical	
	Top width of return wing wall = 0.50 m	
	Return wall should embed into the embankment with 1.00 m	
	Berm at ground level = 1.00 m	
	Provide cut & case water.	
	Protection works for stream and embankment is to be provided.	
	Calculate the linear waterway and span	10

Draw the following views to a suitable scale?

(ii) Half plan at foundation and Half plan at top

(i) Half longitudinal elevation and Half sectional elevation