# Premières définitions

Un premier contact avec les mathématiques de MPSI



EUCLIDE d'Alexandrie (vivant vers 300 av. JC)

On sait très peu de choses d'Euclide; par exemple, on ne connaît pas ses dates de naissance et de mort précises.

Il est l'auteur de plusieurs ouvrages de mathématiques, le plus célèbre d'entre eux étant les Éléments, composé de treize livres. Cet ouvrage est remarquable par sa structure hypothético-déductive, enchaînant définitions, axiomes et propositions. De ce fait, il constitue un modèle de la pratique mathématique.

# Soient E et F des ensembles. 1) Inclusion Définition DFN.1 On dit que l'ensemble F est inclus dans E (on dit aussi que F est une partie de E ou que F est un sous-ensemble de E) et on note F ⊂ E ou F ⊆ E ssi 2) Injections, surjections, bijections Soit f: E → F une application. Définition DFN.2 On dit que l'application f: E → F est injective ssi Définition DFN.3 On dit que l'application f: E → F est surjective ssi

I. Théorie des ensembles

| Définition DFN.4                                                    |
|---------------------------------------------------------------------|
| On dit que l'application $f: E \longrightarrow F$ est bijective ssi |
|                                                                     |
|                                                                     |
|                                                                     |
|                                                                     |

Premières définitions 2/8

### II. Suites réelles

Soit  $(u_n)_{n\in\mathbb{N}}$  une suite réelle.

 $D\acute{e}finition \ \mathsf{DFN.11}$ 

On dit que  $(u_n)_{n\in\mathbb{N}}$  est bornée ssi

## 1) Suites croissantes et décroissantes



Premières définitions 3/8

| 3) Limites des | cuitae | ráalla |
|----------------|--------|--------|

4)

**5**)

| Définition DFN.13  On dit que $(u_n)_{n\in\mathbb{N}}$ tend vers $+\infty$ et on note $u_n\longrightarrow +\infty$ ssi  Définition DFN.14  On dit que $(u_n)_{n\in\mathbb{N}}$ tend vers $-\infty$ et on note $u_n\longrightarrow -\infty$ ssi  Définition DFN.15  On dit que $(u_n)_{n\in\mathbb{N}}$ est de Cauchy ssi  uites géométriques et arithmétiques  Définition DFN.16  Soit $r\in\mathbb{R}$ . On dit que $(u_n)_{n\in\mathbb{N}}$ est géométrique de raison $r$ ssi  Définition DFN.17  Soit $a\in\mathbb{R}$ . On dit que $(u_n)_{n\in\mathbb{N}}$ est arithmétique de raison $a$ ssi  ropriétés vraies à partir d'un certain rang  Définition DFN.18  On dit que $(u_n)_{n\in\mathbb{N}}$ est stationnaire ssi  Définition DFN.18  On dit que $(u_n)_{n\in\mathbb{N}}$ est stationnaire ssi                                                                                                                                                                                                                                                        | <b>Définitio</b> Soit $\ell \in \mathbb{R}$                                                                                                                                                        | OFN.12 On dit que $(u_n)_{n\in\mathbb{N}}$ tend vers $\ell$ et on note $u_n \longrightarrow \ell$ ssi                                                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| On dit que $(u_n)_{n\in\mathbb{N}}$ tend vers $+\infty$ et on note $u_n\longrightarrow +\infty$ ssi $\mathbb{R}^n$ Définition DFN.14  On dit que $(u_n)_{n\in\mathbb{N}}$ tend vers $-\infty$ et on note $u_n\longrightarrow -\infty$ ssi $\mathbb{R}^n$ Définition DFN.15  On dit que $(u_n)_{n\in\mathbb{N}}$ est de Cauchy ssi $\mathbb{R}^n$ uites géométriques et arithmétiques  Définition DFN.16  Soit $r\in\mathbb{R}$ . On dit que $(u_n)_{n\in\mathbb{N}}$ est géométrique de raison $r$ ssi $\mathbb{R}^n$ Définition DFN.17  Soit $a\in\mathbb{R}$ . On dit que $(u_n)_{n\in\mathbb{N}}$ est arithmétique de raison $a$ ssi $\mathbb{R}^n$ repriétés vraies à partir d'un certain rang  Définition DFN.18  On dit que $(u_n)_{n\in\mathbb{N}}$ est stationnaire ssi $\mathbb{R}^n$                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                    |                                                                                                                                                                                                             |
| On dit que $(u_n)_{n\in\mathbb{N}}$ tend vers $+\infty$ et on note $u_n\longrightarrow +\infty$ ssi $\begin{array}{l} \mathbf{D}\text{efinition DFN.14} \\ On \ dit \ que \ (u_n)_{n\in\mathbb{N}} \ \text{tend vers} -\infty \ \text{et on note} \ u_n\longrightarrow -\infty \ \text{ssi} \end{array}$ $\begin{array}{l} \mathbf{D}\text{efinition DFN.15} \\ On \ dit \ que \ (u_n)_{n\in\mathbb{N}} \ \text{est de Cauchy ssi} \end{array}$ $\mathbf{D}\text{efinition DFN.16} \\ Soit \ r\in\mathbb{R}. \ On \ dit \ que \ (u_n)_{n\in\mathbb{N}} \ \text{est géométrique de raison} \ r \ \text{ssi} $ $\mathbf{D}\text{efinition DFN.17} \\ Soit \ a\in\mathbb{R}. \ On \ dit \ que \ (u_n)_{n\in\mathbb{N}} \ \text{est arithmétique de raison} \ a \ \text{ssi} $ $\mathbf{D}\text{efinition DFN.17} \\ Soit \ a\in\mathbb{R}. \ On \ dit \ que \ (u_n)_{n\in\mathbb{N}} \ \text{est arithmétique de raison} \ a \ \text{ssi} $ $\mathbf{D}\text{efinition DFN.18} \\ On \ dit \ que \ (u_n)_{n\in\mathbb{N}} \ \text{est stationnaire } \ \text{ssi} $ |                                                                                                                                                                                                    |                                                                                                                                                                                                             |
| On dit que $(u_n)_{n\in\mathbb{N}}$ tend vers $-\infty$ et on note $u_n\longrightarrow -\infty$ ssi  Définition DFN.15 On dit que $(u_n)_{n\in\mathbb{N}}$ est de Cauchy ssi  nites géométriques et arithmétiques  Définition DFN.16 Soit $r\in\mathbb{R}$ . On dit que $(u_n)_{n\in\mathbb{N}}$ est géométrique de raison $r$ ssi  Définition DFN.17 Soit $a\in\mathbb{R}$ . On dit que $(u_n)_{n\in\mathbb{N}}$ est arithmétique de raison $a$ ssi  ropriétés vraies à partir d'un certain rang  Définition DFN.18 On dit que $(u_n)_{n\in\mathbb{N}}$ est stationnaire ssi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                    |                                                                                                                                                                                                             |
| On dit que $(u_n)_{n\in\mathbb{N}}$ tend vers $-\infty$ et on note $u_n\longrightarrow -\infty$ ssi  Définition DFN.15 On dit que $(u_n)_{n\in\mathbb{N}}$ est de Cauchy ssi  nites géométriques et arithmétiques  Définition DFN.16 Soit $r\in\mathbb{R}$ . On dit que $(u_n)_{n\in\mathbb{N}}$ est géométrique de raison $r$ ssi  Définition DFN.17 Soit $a\in\mathbb{R}$ . On dit que $(u_n)_{n\in\mathbb{N}}$ est arithmétique de raison $a$ ssi  ropriétés vraies à partir d'un certain rang  Définition DFN.18 On dit que $(u_n)_{n\in\mathbb{N}}$ est stationnaire ssi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                    |                                                                                                                                                                                                             |
| Définition DFN.15 On dit que $(u_n)_{n\in\mathbb{N}}$ est de Cauchy ssi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Définitio                                                                                                                                                                                          | DFN.14                                                                                                                                                                                                      |
| On dit que $(u_n)_{n\in\mathbb{N}}$ est de Cauchy $\stackrel{\triangle}{\operatorname{si}}$ nites géométriques et arithmétiques  Définition DFN.16  Soit $r\in\mathbb{R}$ . On dit que $(u_n)_{n\in\mathbb{N}}$ est géométrique de raison $r\stackrel{\triangle}{\operatorname{ssi}}$ Définition DFN.17  Soit $a\in\mathbb{R}$ . On dit que $(u_n)_{n\in\mathbb{N}}$ est arithmétique de raison $a\stackrel{\triangle}{\operatorname{ssi}}$ ropriétés vraies à partir d'un certain rang  Définition DFN.18  On dit que $(u_n)_{n\in\mathbb{N}}$ est stationnaire $\stackrel{\triangle}{\operatorname{ssi}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                      | On dit que                                                                                                                                                                                         | $(u_n)_{n\in\mathbb{N}}$ tend vers $-\infty$ et on note $u_n \longrightarrow -\infty$ ssi                                                                                                                   |
| On dit que $(u_n)_{n\in\mathbb{N}}$ est de Cauchy $\stackrel{\triangle}{\operatorname{si}}$ nites géométriques et arithmétiques  Définition DFN.16  Soit $r\in\mathbb{R}$ . On dit que $(u_n)_{n\in\mathbb{N}}$ est géométrique de raison $r\stackrel{\triangle}{\operatorname{ssi}}$ Définition DFN.17  Soit $a\in\mathbb{R}$ . On dit que $(u_n)_{n\in\mathbb{N}}$ est arithmétique de raison $a\stackrel{\triangle}{\operatorname{ssi}}$ ropriétés vraies à partir d'un certain rang  Définition DFN.18  On dit que $(u_n)_{n\in\mathbb{N}}$ est stationnaire $\stackrel{\triangle}{\operatorname{ssi}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                    |                                                                                                                                                                                                             |
| nites géométriques et arithmétiques $\begin{array}{l} \textbf{Définition DFN.16} \\ Soit \ r \in \mathbb{R}. \ On \ dit \ que \ (u_n)_{n \in \mathbb{N}} \ \text{est géométrique de raison} \ r \ \text{s$\hat{s}$i} \\ \\ \textbf{Définition DFN.17} \\ Soit \ a \in \mathbb{R}. \ On \ dit \ que \ (u_n)_{n \in \mathbb{N}} \ \text{est arithmétique de raison} \ a \ \text{s$\hat{s}$i} \\ \\ \textbf{ropriétés vraies à partir d'un certain rang} \\ \textbf{Définition DFN.18} \\ On \ dit \ que \ (u_n)_{n \in \mathbb{N}} \ \text{est stationnaire} \ \text{s$\hat{s}$i} \\ \\ \textbf{Définition DFN.19} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                    |                                                                                                                                                                                                             |
| Définition DFN.16  Soit $r \in \mathbb{R}$ . On dit que $(u_n)_{n \in \mathbb{N}}$ est géométrique de raison $r$ ssi  Définition DFN.17  Soit $a \in \mathbb{R}$ . On dit que $(u_n)_{n \in \mathbb{N}}$ est arithmétique de raison $a$ ssi  ropriétés vraies à partir d'un certain rang  Définition DFN.18  On dit que $(u_n)_{n \in \mathbb{N}}$ est stationnaire ssi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | On dit que                                                                                                                                                                                         | $(u_n)_{n\in\mathbb{N}}$ est de Cauchy ssi                                                                                                                                                                  |
| Définition DFN.16  Soit $r \in \mathbb{R}$ . On dit que $(u_n)_{n \in \mathbb{N}}$ est géométrique de raison $r$ ssi  Définition DFN.17  Soit $a \in \mathbb{R}$ . On dit que $(u_n)_{n \in \mathbb{N}}$ est arithmétique de raison $a$ ssi  ropriétés vraies à partir d'un certain rang  Définition DFN.18  On dit que $(u_n)_{n \in \mathbb{N}}$ est stationnaire ssi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                    |                                                                                                                                                                                                             |
| Soit $a \in \mathbb{R}$ . On dit que $(u_n)_{n \in \mathbb{N}}$ est arithmétique de raison $a$ ssi ropriétés vraies à partir d'un certain rang  Définition DFN.18  On dit que $(u_n)_{n \in \mathbb{N}}$ est stationnaire ssi Définition DFN.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Définitio                                                                                                                                                                                          | . DFN. 16                                                                                                                                                                                                   |
| Soit $a \in \mathbb{R}$ . On dit que $(u_n)_{n \in \mathbb{N}}$ est arithmétique de raison $a$ ssi ropriétés vraies à partir d'un certain rang  Définition DFN.18  On dit que $(u_n)_{n \in \mathbb{N}}$ est stationnaire ssi Définition DFN.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Définitio                                                                                                                                                                                          | . DFN. 16                                                                                                                                                                                                   |
| Définition DFN. 18 On $dit$ $que$ $(u_n)_{n\in\mathbb{N}}$ est stationnaire $s\hat{s}i$ Définition DFN. 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>Définitio</b> $Soit \ r \in \mathbb{R}$                                                                                                                                                         | DFN. 16 $On \ dit \ que \ (u_n)_{n \in \mathbb{N}} \ \text{est g\'eom\'etrique de raison} \ r \ \stackrel{\triangle}{\text{s\'s}} \text{i}$                                                                 |
| On dit que $(u_n)_{n\in\mathbb{N}}$ est stationnaire ssi<br><b>Définition</b> DFN.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Définitio $Soit \ r \in \mathbb{R}$                                                                                                                                                                | DFN. ${f 16}$ On $dit~que~(u_n)_{n\in\mathbb{N}}$ est géométrique de raison $r$ ssi DFN. ${f 17}$                                                                                                           |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Définition $r \in \mathbb{R}$ Définition $r \in \mathbb{R}$ Soit $r \in \mathbb{R}$                                                                                                                | DFN.16 On $dit\ que\ (u_n)_{n\in\mathbb{N}}$ est géométrique de raison $r$ ssi DFN.17 On $dit\ que\ (u_n)_{n\in\mathbb{N}}$ est arithmétique de raison $a$ ssi                                              |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Définitio $Soit \ r \in \mathbb{R}$ Définitio $Soit \ a \in \mathbb{R}$ ropriétés  Définitio                                                                                                       | DFN.16 On $dit\ que\ (u_n)_{n\in\mathbb{N}}$ est géométrique de raison $r$ ssi DFN.17 On $dit\ que\ (u_n)_{n\in\mathbb{N}}$ est arithmétique de raison $a$ ssi $r$ vraies à partir d'un certain rang DFN.18 |
| On dit que $(u_n)_{n\in\mathbb{N}}$ est croissante à partir d'un certain rang ssi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Définitio $Soit \ r \in \mathbb{R}$ Définitio $Soit \ a \in \mathbb{R}$ ropriétés  Définitio                                                                                                       | DFN.16 On $dit\ que\ (u_n)_{n\in\mathbb{N}}$ est géométrique de raison $r$ ssi DFN.17 On $dit\ que\ (u_n)_{n\in\mathbb{N}}$ est arithmétique de raison $a$ ssi $r$ vraies à partir d'un certain rang DFN.18 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Définition $Soit \ r \in \mathbb{R}$ Définition $Soit \ a \in \mathbb{R}$ ropriétés  Définition $Soit \ a \in \mathbb{R}$                                                                          | DFN.16 On $dit$ $que$ $(u_n)_{n\in\mathbb{N}}$ est géométrique de raison $r$ ssi                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Définition $Soit \ r \in \mathbb{R}$ Définition $Soit \ a \in \mathbb{R}$ ropriétés Définition $Soit \ a \in \mathbb{R}$ Définition $Soit \ a \in \mathbb{R}$ Définition $Soit \ a \in \mathbb{R}$ | DFN.16 On $dit\ que\ (u_n)_{n\in\mathbb{N}}$ est géométrique de raison $r$ ssi                                                                                                                              |

Premières définitions 4/8

# III. Parties réelles

Soit  $A \subset \mathbb{R}$  une partie non vide de l'ensemble des nombres réels  $\mathbb{R}$ .

| 1) | Majorants, | minorants |
|----|------------|-----------|
|----|------------|-----------|

| Définition DFN. 21 Soit $M \in \mathbb{R}$ . On dit que $M$ est un majorant de $A$ ssi $ \begin{array}{c} \mathbf{Définition\ DFN. 22} \\ Soit \ m \in \mathbb{R}. \ On \ dit \ que \ m \ \text{est un minorant de } A \ \text{ssi} \end{array} $ Plus grand élément, plus petit élément Soit $a \in \mathbb{R}$ . $ \begin{array}{c} \mathbf{Définition\ DFN. 23} \\ On \ dit \ que \ a \ \text{est le plus grand élément de } A \ \text{ssi} \end{array} $ $ \begin{array}{c} \mathbf{Définition\ DFN. 24} \\ On \ dit \ que \ a \ \text{est le plus petit élément de } A \ \text{ssi} $ Bornes supérieure et inférieure $ \begin{array}{c} \mathbf{Définition\ DFN. 25} \\ Soit \ s \in \mathbb{R}. \ On \ dit \ que \ s \ \text{est la borne supérieure de } A \ \text{ssi} $ $ \mathbf{Définition\ DFN. 26} \\ Soit \ m \in \mathbb{R}. \ On \ dit \ que \ m \ \text{est la borne inférieure de } A \ \text{ssi} $ | _  |                                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----------------------------------------------------------------------------|
| Définition DFN.22 Soit $m \in \mathbb{R}$ . On dit que $m$ est un minorant de $A$ ssi  Plus grand élément, plus petit élément Soit $a \in \mathbb{R}$ .  Définition DFN.23 On dit que $a$ est le plus grand élément de $A$ ssi  Définition DFN.24 On dit que $a$ est le plus petit élément de $A$ ssi  Bornes supérieure et inférieure  Définition DFN.25 Soit $s \in \mathbb{R}$ . On dit que $s$ est la borne supérieure de $A$ ssi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1  |                                                                             |
| Soit $m \in \mathbb{R}$ . On dit que $m$ est un minorant de $A$ ssi   Plus grand élément, plus petit élément  Soit $a \in \mathbb{R}$ .  Définition DFN.23  On dit que $a$ est le plus grand élément de $A$ ssi   Définition DFN.24  On dit que $a$ est le plus petit élément de $A$ ssi   Bornes supérieure et inférieure  Définition DFN.25  Soit $s \in \mathbb{R}$ . On dit que $s$ est la borne supérieure de $a$ ssi   Définition DFN.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |                                                                             |
| Soit $m \in \mathbb{R}$ . On dit que $m$ est un minorant de $A$ ssi   Plus grand élément, plus petit élément  Soit $a \in \mathbb{R}$ .  Définition DFN.23  On dit que $a$ est le plus grand élément de $A$ ssi   Définition DFN.24  On dit que $a$ est le plus petit élément de $A$ ssi   Bornes supérieure et inférieure  Définition DFN.25  Soit $s \in \mathbb{R}$ . On dit que $s$ est la borne supérieure de $a$ ssi   Définition DFN.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |                                                                             |
| Soit $a \in \mathbb{R}$ .  Définition DFN.23  On dit que $a$ est le plus grand élément de $A$ ssi  Définition DFN.24  On dit que $a$ est le plus petit élément de $A$ ssi  Bornes supérieure et inférieure  Définition DFN.25  Soit $s \in \mathbb{R}$ . On dit que $s$ est la borne supérieure de $A$ ssi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |                                                                             |
| On dit que $a$ est le plus grand élément de $A$ ssi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |                                                                             |
| Définition DFN.24         On dit que $a$ est le plus petit élément de $A$ s\$\hat{s}\$i         Bornes supérieure et inférieure         Définition DFN.25         Soit $s \in \mathbb{R}$ . On dit que $s$ est la borne supérieure de $A$ s\$\hat{s}\$i         Définition DFN.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    | Définition DFN. 23                                                          |
| On dit que $a$ est le plus petit élément de $A$ ssi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    | •                                                                           |
| On dit que $a$ est le plus petit élément de $A$ ssi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |                                                                             |
| On dit que $a$ est le plus petit élément de $A$ ssi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |                                                                             |
| $\begin{array}{c} \textbf{D\'efinition DFN.25} \\ Soit \ s \in \mathbb{R}. \ On \ dit \ que \ s \ \text{est la borne sup\'erieure de} \ A \ \stackrel{\Delta}{\text{ssi}} \\ \\ \textbf{D\'efinition DFN.26} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1  |                                                                             |
| $\begin{array}{c} \textbf{D\'efinition DFN.25} \\ Soit \ s \in \mathbb{R}. \ On \ dit \ que \ s \ \text{est la borne sup\'erieure de} \ A \ \stackrel{\triangle}{\text{s\'s}i} \\ \\ \textbf{D\'efinition DFN.26} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |                                                                             |
| Soit $s \in \mathbb{R}$ . On dit que $s$ est la borne supérieure de $A$ ssi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Bo | ornes supérieure et inférieure                                              |
| Définition DFN.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1  |                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    | Soit $s \in \mathbb{R}$ . On dit que $s$ est la borne superieure de $A$ ssi |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |                                                                             |
| Soit $m \in \mathbb{R}$ . On dit que $m$ est la borne inférieure de $A$ ssi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    | Soit $m \in \mathbb{R}$ . On dit que $m$ est la borne inférieure de $A$ ssi |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |                                                                             |

Premières définitions 5/8

| Intérieur, adhérence, accumulation et densité                                   |
|---------------------------------------------------------------------------------|
| Définition DFN.27                                                               |
| Soit $x \in \mathbb{R}$ . On dit que $x$ est un point intérieur à $A$ ssi       |
|                                                                                 |
|                                                                                 |
|                                                                                 |
| Définition DFN. 28                                                              |
| Soit $x \in \mathbb{R}$ . On dit que $x$ est un point adhérent à $A$ ssi        |
|                                                                                 |
|                                                                                 |
| Définition DFN.29                                                               |
| Soit $x \in \mathbb{R}$ . On dit que $x$ est un point d'accumulation de $A$ ssi |
| Soit $x \in \mathbb{R}$ . On all que x est un point a accumulation de A ssi     |
|                                                                                 |
|                                                                                 |
| Définition DFN.30                                                               |
| Soit B une partie de A. On dit que B est dense dans $A$ ssi                     |
|                                                                                 |
|                                                                                 |
|                                                                                 |
| Parties convexes                                                                |
| Définition DFN.31                                                               |
| On dit que $A$ est convexe ssi                                                  |
|                                                                                 |
|                                                                                 |

**5**)

Premières définitions 6/8

| Soit $I$ un intervalle de $\mathbb{R}$ et soit $f: I \longrightarrow \mathbb{R}$ une fonction.          |
|---------------------------------------------------------------------------------------------------------|
| Croissance et décroissance                                                                              |
|                                                                                                         |
|                                                                                                         |
|                                                                                                         |
| De même :                                                                                               |
|                                                                                                         |
|                                                                                                         |
|                                                                                                         |
|                                                                                                         |
| Extrema Soit $a \in I$ .                                                                                |
| Définition DFN.36  On dit que $f$ atteint son maximum en $a$ (sur I) $\stackrel{\triangle}{\text{ssi}}$ |
|                                                                                                         |
| Définition DFN.37       On dit que $f$ atteint son minimum en $a$ (sur I) $\stackrel{\triangle}{ssi}$   |
|                                                                                                         |

### 5) Extrema locaux

Soit a un point intérieur à I.

| Définition DFN.38                                        |
|----------------------------------------------------------|
| Definition DFN.38                                        |
| On dit que $f$ admet un maximum local en $a$ (sur I) ssi |
|                                                          |
|                                                          |
|                                                          |

| Définition DFN.39 On dit que $f$ admet un minimum local en $a$ (sur I) ssi |
|----------------------------------------------------------------------------|
|                                                                            |

Premières définitions 7/8

| Définitio                                   |                                                                                                                       |
|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
|                                             | ${f n}$ DFN. ${f 40}$                                                                                                 |
| Soit $A \subset \mathbb{I}$                 | $\mathbb{R}$ . On dit que A est symétrique par rapport à 0 ssi                                                        |
|                                             |                                                                                                                       |
|                                             |                                                                                                                       |
|                                             |                                                                                                                       |
| Définitio                                   | ${f n}$ DFN. ${f 41}$                                                                                                 |
| On suppos                                   | se I symétrique par rapport à 0. On dit que $f$ est paire $\overset{\triangle}{\text{ssi}}$                           |
|                                             |                                                                                                                       |
|                                             |                                                                                                                       |
|                                             |                                                                                                                       |
| Définitio                                   | ${f n}$ DFN. ${f 42}$                                                                                                 |
| On suppos                                   | se I symétrique par rapport à 0. On dit que $f$ est impaire $\stackrel{\triangle}{ssi}$                               |
|                                             |                                                                                                                       |
|                                             |                                                                                                                       |
|                                             |                                                                                                                       |
| Périodicité                                 |                                                                                                                       |
|                                             |                                                                                                                       |
| Définitio                                   |                                                                                                                       |
| On suppos                                   | se $I = \mathbb{R}$ . Soit $T > 0$ . On dit que $f$ est $T$ -périodique ssi                                           |
|                                             |                                                                                                                       |
| ••••••                                      |                                                                                                                       |
|                                             |                                                                                                                       |
| Définitio                                   | •                                                                                                                     |
| On suppos                                   | se $I = \mathbb{R}$ . On dit que $f$ est périodique ssi                                                               |
|                                             |                                                                                                                       |
|                                             |                                                                                                                       |
|                                             |                                                                                                                       |
| ipschitziar                                 | nité                                                                                                                  |
|                                             | DEN 45                                                                                                                |
| D/C ''                                      | <b>1</b> DFN.45                                                                                                       |
| Définitio                                   |                                                                                                                       |
|                                             | ). On dit que $f$ est $C$ -lipschitzienne ssi                                                                         |
|                                             |                                                                                                                       |
|                                             |                                                                                                                       |
| Soit C > 0                                  | ). On dit que $f$ est $C$ -lipschitzienne ssi                                                                         |
| Soit C > 0                                  | ). On dit que $f$ est $C$ -lipschitzienne s $\overset{\triangle}{\mathrm{si}}$ $\mathbf{n}$ DFN. $46$                 |
| Soit C > 0                                  | ). On dit que $f$ est $C$ -lipschitzienne ssi                                                                         |
| Soit C > 0                                  | ). On dit que $f$ est $C$ -lipschitzienne s $\overset{\triangle}{\mathrm{si}}$ n DFN.46                               |
| Soit C > 0                                  | ). On dit que $f$ est $C$ -lipschitzienne s $\overset{\triangle}{\mathrm{si}}$ n DFN.46                               |
| Soit C > 0  Définitio On dit que            | o. On dit que $f$ est $C$ -lipschitzienne ssi $\mathbf{n}$ DFN. $46$ e $f$ est lipschitzienne ssi                     |
| Soit C > 0  Définitio On dit que  Définitio | o. On dit que $f$ est $C$ -lipschitzienne ssi $\mathbf{n}$ DFN. 46 se $f$ est lipschitzienne ssi $\mathbf{n}$ DFN. 47 |
| Soit C > 0  Définitio On dit que  Définitio | o. On dit que $f$ est $C$ -lipschitzienne ssi $\mathbf{n}$ DFN. $46$ e $f$ est lipschitzienne ssi                     |
| Soit C > 0  Définitio On dit que  Définitio | o. On dit que $f$ est $C$ -lipschitzienne ssi $\mathbf{n}$ DFN. 46 se $f$ est lipschitzienne ssi $\mathbf{n}$ DFN. 47 |

Premières définitions 8/8