Teplota	Tlak	Vlhkost
[°C]	[hPa]	[% RH]
23,8	1004,0	21,4

Tabulka 1: Podmínky měření

Úkol 1

Hodnota zobrazená na stupnici zrcátkem při základním zatížení drátu byla

$$n_0 = (147, 0 \pm 0, 5) \text{ mm}$$

Pomocí postupu popsaném v [?] se získaly hodnoty na svislé stupnici v závislosti na hmotnosti závaží, napínající drát. Hodnoty v následující tabulce mají chybu $\pm 0,5$ mm.

m[g]	$n[\mathrm{mm}]$	m[g]	$n[\mathrm{mm}]$
1,1	144,8	1,8	129,0
1,2	142,3	1,9	126,8
1,3	140,0	2,0	124,8
1,4	137,8	2,1	122,5
1,5	$135,\!8$	2,2	120,3
1,6	133,3	2,3	118,0
1,7	131,3	2,4	116,0

Tabulka 2: Hodnota na stupnici v závislosti na hmotnosti závaží

Poloměr kladky r byl měřen posuvným měřidlem jako průměr, následně vydělený dvěma.

$$r = (19.28 \pm 0.01) \text{ mm}$$

Délka drátu od upevnění ke kladce l_0 byla měřena pásovým měřidlem, k naměřené hodnotě byla poté přičtena $\frac{1}{8}$ obvodu kladky.

$$l_0 = (1156.1 \pm 1.2) \text{ mm}$$

Délka L od zrcátka ke stupnici byla ěřena pásovým měřidlem.

$$L = (810 \pm 1) \text{ mm}$$

Průměr drátu d byl měřen na třech místech mikrometrem.

$$d = (0.51 \pm 0.01) \text{ mm}$$

Prodloužení drátu po přidání závaží s celkovou hmotností 1400g spočítáme podle (??):

$$\Delta l = (0.369 \pm 0.008) \text{ mm}$$

Modul pružnosti v tahu poté je z (??)

$$E = (2, 1 \pm 0, 1) \times 10^5 \text{ Pa}$$