└ Inférence

Tests marginaux

Model Coefficients

Estimate	SE	t	р
0.355	0.331	1.073	0.284
0.089	0.022	4.116	< .001
-0.092	0.013	-6.928	< .001
	0.355 0.089	0.355 0.331 0.089 0.022	0.355 0.331 1.073 0.089 0.022 4.116

$$t(524) = 4.116, p < .001$$

 $t(524) = -6.928, p < .001$

Mes parents et moi

Soutien à l'autonomie

- Généralement, mes parents acceptent d'examiner les choses de mon point de vue.
- Mes parents me permettent de prendre les décisions qui me concernent.
- Mes parents m'aident à choisir ma propre voie dans la vie.

└ Inférence

Mes parents et moi

Contrôle orienté sur la dépendance

- Mes parents expriment leur déception si je ne compte pas sur eux lorsque j'ai un problème.
- Mes parents expriment leur déception si je ne veux pas partager certaines choses avec eux.
- Mes parents me témoignent leur affection uniquement si nous continuons à tout faire ensemble.

└ Inférence

Mes parents et moi

Contrôle orienté sur la performance

- Mes parents sont moins amicaux envers moi si ce que j'accomplis n'est pas absolument parfait.
- Mes parents me témoignent leur affection seulement si j'obtiens de bonnes notes.
- Mes parents sont amicaux envers moi seulement si j'excelle dans tout ce que j'entreprends.

Comparaison de deux modèles emboîtés

Inférence

Comparaison de deux modèles emboîtés

Model Fit Measures

			Overall Model Test			
Model	R	R²	F	df1	df2	р
1	0.268	0.072	38.876	2	1001	< .001
2	0.355	0.126	28.795	5	998	< .001

└ Inférence

Comparaison de deux modèles emboîtés

Model Comparisons

Con	npai	rison					
Model		Model	ΔR²	F	df1	df2	р
1	-	2	0.054	20.556	3	998	< .001

Comparaison de deux modèles emboîtés

Model Coefficients

Predictor	Estimate	SE	t	р
Intercept	-0.135	0.272	-0.498	0.619
AGE	0.107	0.017	6.433	< .001
EST	-0.024	0.011	-2.199	0.028
AUT	-0.051	0.020	-2.487	0.013
DEP	0.064	0.018	3.574	< .001
PER	0.035	0.017	2.046	0.041

Régression multiple

[└] Inférence

− Regression mu ∟_{Inférence}

Comparaison de deux modèles emboîtés

Inférence

Comparaison de deux modèles emboîtés

stand. est: on enlève $\beta 0$ et du coup la droite de rég doit passer par 0.

Model Coefficients

Predictor	Estimate	SE	t	р	Stand. Estimate
Intercept	-0.135	0.272	-0.498	0.619	
AGE	0.107	0.017	6.433	< .001	0.193
EST	-0.024	0.011	-2.199	0.028	-0.069
AUT	-0.051	0.020	-2.487	0.013	-0.092
DEP	0.064	0.018	3.574	< .001	0.127
PER	0.035	0.017	2.046	0.041	0.083

Diagnostic

Diagnostic

Hypothèse d'homoscédasticité

Hypothèse d'homoscédasticité

Hypothèse de normalité

Diagnostic

Hypothèse de normalité

Hypothèse de normalité

Cheminement dans JAMOVI

Analyses

↓
T-Tests
↓
One Sample T-Test

Hypothèse de normalité

Assumption Checks

- Normality (Shapiro-Wilk)
- Normality (Q-Q plot)

Hypothèse de normalité

Test of Normality (Shapiro-Wilk)

	W	р
RSQ.res	0.920	< .001

Note. A low p-value suggests a violation of the assumption of normality

Diagnostic

Colinéarité

Colinéarité

Collinearity Statistics

	VIF	Tolerance
AGE	1.024	0.977
EST	1.111	0.900
AUT	1.573	0.636
DEP	1.440	0.694
PER	1.878	0.533

Régression multiple

Diagnostic