Introduction to Electrical Engineering

Aakash Jog

2014-15

Contents

1	Lecturer Information Required Reading			2
2				
Ι	Ba	asic D	efinitions and Laws	3
1	Basic Definitions			3
2	Kirchoff's Laws			
	2.1	Kircho	off's Current Law	3
	2.2		off's Voltage Law	4
3	Cor	nponei	nts	5
	3.1	Resist	ors	5
		3.1.1	Linear Time Independent Resistor	5
		3.1.2	Non-linear Resistors (Diodes)	6
	3.2	Indepe		7
			Voltage Sources	7
			Current Sources	8
		3.2.3		9

1 Lecturer Information

Prof. Moshe Tur

Office: Wolfson 413 Telephone: 03-640-8125 E-mail: tur@post.tau.ac.il

2 Required Reading

C.A. Desoer and E.S. Kuh: $Basic\ Circuit\ Theory,\ Mc-Graw-Hill,\ International\ Edition.$

Part I

Basic Definitions and Laws

1 Basic Definitions

Definition 1 (Electrical circuit). A collection of interconnected components.

Definition 2 (Lumped component). An electrical component whose dimensions are very very small compared to the wavelength of the electromagnetic waves passing through it is called a lumped component.

Definition 3 (One port device). An electrical component with two terminals is called a one port device.

Definition 4 (Nodes and branches). In the figure, all the black dots are called nodes. The parts of the circuit between two nodes are called branches.

2 Kirchoff's Laws

2.1 Kirchoff's Current Law

The sum of all currents entering or exiting a node is zero.

$$i_1 + i_3 - i_4 = 0$$

2.2 Kirchoff's Voltage Law

The sum of all branch voltages along a closed loop is zero.

$$v_1 - v_4 - v_5 = 0$$
$$v_2 + v_3 + v_4 = 0$$
$$v_1 + v_2 + v_3 - v_5 = 0$$

3 Components

3.1 Resistors

Definition 5 (Resistor). A two terminal component is called a resistor if the voltage across it at any given time t is a function of the current at the same time t.

3.1.1 Linear Time Independent Resistor

$$v(t) = R \cdot i(t)$$

$$i(t) = G \cdot v(t)$$

R is called the resistance and G is called the conductance.

3.1.2 Non-linear Resistors (Diodes)

$$i(t) = I_s \left(e^{\frac{q \cdot v(t)}{kT}} - 1 \right)$$

 $I_s = \text{reverse current}$

k =Boltzman constant

T = absolute temperature

q =electronic change

$$\frac{kT}{q}=0.026(\text{ at }300\text{K})$$

3.2 Independent Sources

3.2.1 Voltage Sources

Definition 6 (Voltage source). A two terminal component is called a voltage source if the voltage on its terminals is independent of the current through it.

3.2.2 Current Sources

Definition 7 (Current source). A two terminal component is called a current source if it can supply a current $i_s(t)$ independent of the voltage across its terminals.

3.2.3 Real Batteries

$$0 = -V_0 + v_R + v$$
$$v = V_0 - v_R$$
$$\therefore v = V_0 - R_s i$$