

Scanned by CamScanner

		Voutes
ance		thor - 000 = thor p tho) = 6 NO = (0) thor
-		Now It - V DD [1-et/70]
1		Tp = Rp Cout tr - tv-tu
-	1961	17 = 10 (a) Tp = 2.2 Tp
		ten-toni
		Mar freez is given by
	,	frax-
		tmut TCH
	2	Imar:
		tfth
	2	
	=	Piscuss the power dissipation composites of a CMOS
	<i>→</i>	in verten
	-	
1		

-	Consider a process that has an oreal of tax = 9.5mm The particle mobility are given by un = 540cm² /v-sec Ap = 220 cm²/v-sec . An nfil & plet are made book with W= 12 µm / L= 0.35 µm. Both have gate vollage of vg = 3.3 v while Both have gate vollage of vg = 3.3 v vp=0.74v thrushed vollage Vtn= 0.65 v & vtp=0.74v
<u>_</u>	Consider a process of an by un = 3700 1-12
	The particle moving An nfu & pter
	Mp = 2 20 cm / L= 0.35 mm L= 0.35 mm
	Both I got vollage of vg -3.3 V WITTE
	In the standard Notes of the Co.65 v & V+p=0.4
	thrushald solvering
	Fina Rp E. Rn of 2 bransistos
	Fina Rp E. Rn of 2 brownishes Suppose that we keep a Fel of Sam Size, but I want of pFEI to point where Rp=0-6122 Tind required what of pFEI Tind required what of pFEI
11)	Suppose vide to point where kp=0=0
	To a security wheth of pff.
	1 1 2 1 2 1 m L=031
	7/1/2 20 Cm /V Jic V
	μη = 540 cm 1/3 μρ =
	19-3-3
° ₁ \	Rn= 1
	Bn (VDO-VEn)
	(b)
	Rp
	Balvon-Ntph

		THE REAL PROPERTY.
þ	In this process 1st a layer of Silicon di-oxide in applied over a water or Substrale.	SALVE SALVE
2)	Then over the silican water a light sensitive liquid	-
	(photogresser) is applied on it. Photograsset of is of Dypes the resist E - recovert.	N
3)	The	
3)	Then once the photograsist is applied then the excess	/
	solvent in removed to the photovisis days is	/
	by different technique most common is hotplate	/
	dechnique which whose dimp is upto 1000digres	_
4)	After the Prebake process y the Masking process	_ _,
	dates whech is used to print a certain diagram of a circuit on to the photograms of ages. This	_
	mask dayer as placed on a flow quartz glass	_
	to ennere propour emprestation	
.5	Once the mark is aligned property on writer	_
	Swiface with the help of apitical Instruments	_
	Sweface with the help of opitical gratuements then It is exposed under UV madration	_
6	Once After they are exposed to uv rays they are	_
	cogain baked to ensure structure changes. Then	
	cogain bakea to ensure structure changes. Then they are dipped into mild alkalin soln	
	they are dipped the regions of photovierist to dissolves the regions of photovierist which was not not exposed to all recy.	_
101	which was not not	_
	The waller is truated with etchart which	
	Then water is trusted with etchart which only desolves exposed water surface	_
1	Then the photo resist layer as removed.	_
8	Then the photo stesses weight	_
		_