6 Kernel Methods

Pattern Recognition and Machine Learning

Christopher M. Bishop

CC IRML Journal Club Jérôme Kunegis, 2008–03–14

Outline

- Motivation 1: Weighted mean prediction
- Motivation 2: Regression with basis Φ
- Definition: Kernel
- Building kernels
- Gaussian kernel
- Regularized linear regression
- Gaussian processes
- Kernel trick
- Symbolic kernels

Motivation 1: Weighted Mean

- Observed vectors x_i
- Prediction by weighted mean

$$y_{\text{new}} = (\sum_{i} \mathbf{x}_{i} \cdot \mathbf{x}_{\text{new}})^{-1} \sum_{i} \mathbf{x}_{i} \cdot \mathbf{x}_{\text{new}}$$

X ₁	<i>t</i> ₁
X ₂	t_2
X ₃	t_3
X new	?

- Product $\mathbf{x}_i \cdot \mathbf{x}_j$ acts as similarity (correlation)
- Replace $\mathbf{x}_i \cdot \mathbf{x}_j$ with any function $sim(\mathbf{x}_i, \mathbf{x}_j)$.

Similarity Function: Euclidian

Base similarity function on Euclidian distance

$$d^{2} = (\mathbf{x} - \mathbf{y})^{2}$$

$$\sin_{1}(\mathbf{x}, \mathbf{y}) = 1 / d^{2}$$

$$\sin_{2}(\mathbf{x}, \mathbf{y}) = 1 / (d^{2} + \sigma^{2})$$

$$\sin_{2}(\mathbf{x}$$

Gaussian Similarity

Inverse exponential behavior

$$sim(\mathbf{x}, \mathbf{y}) = \exp\{-d^2/2\sigma^2\}$$
"Gaussian" function

Distant objects get weighted exponentially less

d

Motivation 2: Regression

• Instead of x, use $\Phi(x)$ as basis

$$\mathbf{x} \rightarrow \Phi(\mathbf{x})$$

- Examples:
 - Polynomial fitting: $\Phi(x) = (x^0, x^1, x^2, ..., x^k)$
 - Linear regression: $\Phi(\mathbf{x}) = (1, x_1, x_2, ..., x_N)$

$$\mathbf{x} \cdot \mathbf{y} \rightarrow \Phi(\mathbf{x}) \cdot \Phi(\mathbf{y})$$

Definition: Kernel

- $sim(\mathbf{x}, \mathbf{y})$ is a kernel $k(\mathbf{x}, \mathbf{y})$ when
 - $sim(\mathbf{x}, \mathbf{y}) = \Phi(\mathbf{x}) \cdot \Phi(\mathbf{y})$ for some Φ

Definition depends on X

- $K_{ij} = k(\mathbf{x}_i, \mathbf{x}_j)$ is positive semi-definite
- In general, Φ may be infinite dimensional
- K is the Gram[ian] matrix
- Linear kernel: $\Phi(\mathbf{x}) = \mathbf{x}$; $k(\mathbf{x}, \mathbf{y}) = \mathbf{x} \cdot \mathbf{y}$.

Building Kernels

Assemble kernels [:296]

- $f(\mathbf{x}) k(\mathbf{x}, \mathbf{y}) f(\mathbf{y})$
- $p(k(\mathbf{x}, \mathbf{y}))$
- $k_1(\mathbf{x}, \mathbf{y}) + k_2(\mathbf{x}, \mathbf{y})$
- $k_1(x, y) k_2(x, y)$
- $\exp \{k(\mathbf{x}, \mathbf{y})\}$
- $k(\Phi(\mathbf{x}), \Phi(\mathbf{y}))$
- $\bullet x^T A x$
- $k_1(\mathbf{x}_1, \mathbf{y}_1) + k_2(\mathbf{x}_2, \mathbf{y}_2)$
- $k_1(\mathbf{x}_1, \mathbf{y}_1) k_2(\mathbf{x}_2, \mathbf{y}_2)$

[any function f] [polynomial p]

[A pos. sem.-def.] $[x = (x_1, x_2), etc.]$

Gaussian Kernel

$$k(\mathbf{x}, \mathbf{y}) = \exp\{-(\mathbf{x} - \mathbf{y})^2 / 2\sigma^2\}$$

- Φ is infinite dimensional [ex 6.11]
- $\Phi(\mathbf{x})$ has not to be calculated, only $k(\mathbf{x}, \mathbf{y})$
- Gaussian kernel is positive, inner product gets negative

Regularized Linear Regression

Regularized linear regression (6.9):

$$t_{\text{new}} = k(X, \mathbf{x}_{\text{new}})^{T} (k(X, X) + \lambda \mathbf{I})^{-1} t$$

• $\Phi(\mathbf{x})$ is not needed, only $k(\mathbf{x}, \mathbf{y})$

(cf. AL)

Gaussian Processes

- Gaussian prior on weight w for regression
 ⇒Function y(x, w) has Gaussian distribution
 ⇒Joint distribution on y(x_i, w):
 - Gaussian, with covariance K
- Gaussian process, Gaussian random field
- cf. Markov random fields [8.]

'Kernel Trick'

Algorithm that uses only scalar product x · y

$$\mathbf{x} \cdot \mathbf{y} \rightarrow k(\mathbf{x}, \mathbf{y})$$

- Replace scalar product with kernel
- Mapping into higher dimension makes data easier separable for classification, etc.
- Kernel variants of algorithms: kernel regression, kernel PCA, ...

Symbolic Kernels

- Graph kernels: x is a node in a graph, e.g. resistance distance.
- e.g. $\exp\{-d^2/2\sigma\}$ for a distance d.

Conclusion

- Not covered: Nadaraya—Watson model, (Gaussian processes)
- Current IRML research:
 - AL: kernels for filter agent ensembles
 - JK: graph kernels for collaborative filtering
- Next chapters:
 - 7 Support vector machines (Leo)
 - 8 Graphical models (Winfried)
- Other kernels: $\{x \mid Ax = 0\}$

