- (a) (i) Linear distance between two points in a specific direction --- [B1]
 - (ii) Rate of change of displacement --- [B1]
 - (iii) Rate of change of velocity --- [B1]
- (b) (i) area under graph

$$(1/2 \times 4 \times 10) + (1/2 \times 3 \times 10) + \frac{1}{2}(7 + 4) \times 5 --- [C1]$$

= 62.5 m --- [A1]

(iii) total displacement / total time = 7.5 / 14 --- [C1]

Question 2

- (a) (i) measurement to be consistently shifted in one direction only
 - (ii) results to be scattered about the mean value

(b) (i)
$$1/279 = 0.0036 --- [A1]$$

(b) (iii) Area =
$$279 \times 202 = 56358 \text{ mm}^2 --- [C1]$$

$$\Delta A = (1/279 + 1/202) \times 56358 = 481 = 500 (1 \text{ s.f.}) --- [C1]$$

Area =
$$(56000 \pm 500) \text{ mm}^2 --- [A1]$$

(a) (i) Power =
$$m_{total}gh / t = (75 + 15) \times 9.81 \times 0.25 \times 40 / 10 --- [C1]$$

= 882 W --- [A1]

(a) (ii) Power =
$$m_{bricks}gh / t = 15 \times 9.81 \times 10 / 10 --- [C1]$$

= 147 W --- [A1]

(b) (ii) He is not raising his own body weight this time --- [B1] OR

Lesser power is used to do the work --- [B1]

Question 4

- (a) ratio of stress to strain --- [B1]
- (b) (i) To compensate the sagging of the support OR change in length due to temperature change --- [B1]
- (b) (ii) To allow for large / significant extension OR large strain --- [B1]
- (c) Measure length L, measure radius r and determine area A --- [B1]

Vary the load and measure the individual extension --- [B1]

Tabulate stress = F/A and strain = ext / original length and plot graph of stress vs strain --- [B1]

Gradient of the graph represent the Young Modulus --- [B1]

(a) (i)
$$d = 1 \times 10^{-3} / 455 = 2.20 \times 10^{-6} \text{ m}$$
 --- [A1]

(a) (ii) d sin
$$\theta$$
 = n λ , --- [C1]

$$\lambda_{red} = 5.99 \times 10^{-7} \text{ m} --- [A1]$$

$$\lambda_{violet} = 4.50 \times 10^{-7} \text{ m} --- [A1]$$

(b) (i) d sin
$$\theta = n_{violet}(4.50 \times 10^{-7})$$

d sin $\theta = n_{red}(5.99 \times 10^{-7})$ --- [C1]
 $n_{red} / n_{violet} = 3 : 4 --- [A1]$

(b) (ii)
$$(2.20 \times 10^{-6}) \sin \theta = (4) (4.50 \times 10^{-7}) \text{ OR}$$

 $(2.20 \times 10^{-6}) \sin \theta = (3) (5.99 \times 10^{-7})$ --- [C1]
 $\theta = 54.8 \,^{\circ}$ --- [A1]

Question 6

- (a) The direction / plane of vibration of the particles in the medium --- [B1] is parallel to the direction of propagation of wave --- [B1]
- (b) (i) Maximum intensity at point O --- [A1] Since path difference between waves at O is zero, thus they are in constructive interference. --- [M1]
- (b) (ii) Wavelength is halved --- [B1]

so from $x = \lambda D / a$, the distance between consecutive maxima is halved --- [B1]

Minimum intensity at point O since destructive interference occurs. --- [B1]

Pattern remains the same except that the maxima & minima positions has been swapped --- [B1]

(a)
$$P = V^2 / R = 120^2 / 750 --- [C1]$$

= 19.2 Ω --- [A1]

(b) R =
$$\rho$$
L / A
L = 19.2 x 1.0 x 0.05 x 10⁻⁶ / 1.1 x 10⁻⁶ --- [C1]
= 0.87 m --- [A1]

(c) another element is connected parallel to the 120 V source.

Question 8

- (a) (i) sum of current entering a junction is equals to the sum of current leaving that junction --- [B1]

 Based on conservation of charge --- [B1]
- (a) (ii) for any closed loop, the sum of emfs is equals to the sum of pds --- [B1]

 Based on conservation of energy --- [B1]

(b)
$$4 = 4I + 2I_1 - [B1]$$

 $3 = 4I + I_2 - [B1]$
 $1 = 2I_1 - I_2 - [B1]$
 $I = I_1 + I_2 - [B1]$... (any 3)