Exercices sur les variables aléatoires

Exercice 40 p. 158

On peut compléter l'arbre avec, au bout de chaque branche, la valeur de X suivant les choix effectués :

X = 0

1. X peut ainsi prendre les valeurs 0, 1 ou 2.

2.
$$P(X=2) = \frac{1}{4} \times \frac{1}{4} = \frac{1}{16}$$

Il y a deux chemins qui mènent à X=1,

donc
$$P(X = 1) = \frac{1}{4} \times \frac{3}{4} + \frac{3}{4} \times \frac{1}{4} = \frac{3}{16} + \frac{3}{16} = \frac{3}{8}$$
.

3. Pour construire la loi de X, il faut également calculer P(X=0). Or ici $P(X=0)=\frac{3}{4}\times\frac{3}{4}=\frac{9}{16}$

Or ici
$$P(X=0) = \frac{3}{4} \times \frac{3}{4} = \frac{9}{16}$$

Loi de X:

x_i	0	1	2
$p(X=x_i)$	$\frac{9}{16}$	$\frac{3}{8}$	$\frac{1}{16}$

On vérifie que la somme des probabilités présentes dans le tableau vaut bien 1.

Exercice 27 p. 157

1. Dans cet exercice, il faut faire attention aux valeurs de X. En effet, on propose les différents gains $(600 \in 100 \in 50 \in -100)$ quand les billets sont remboursés - et $0 \in -100$ quand il perd), mais il ne faut pas oublier de déduire la mise de départ.

Donc X peut prendre les valeurs 600 - 10 = 590; 100 - 10 = 90; 0 (quand il est remboursé) et -10lorsqu'il perd.

2. Il y a 500 billets au total.

La probabilité que X soit égal à 590 vaut $\frac{1}{500} = 0,002$ car il n'y a qu'un seul billet permettant de gagner cette somme.

P(X = 90) vaut $\frac{10}{500} = 0.02$ car il y a 10 tickets permettant de gagner cette somme.

Il y a ensuite 50 billets qui permettent de rembourser la mise, ainsi $P(X=0) = \frac{50}{500} = 0.1$.

Il ne reste plus qu'à déterminer la probabilité qu'il perde. Sachant que la somme de toutes les probabilités vaut 1, on obtient P(X = -10) = 1 - 0.002 - 0.02 - 0.1 = 0.878.

La loi de probabilité de X est ainsi :

x_i	590	90	0	-10
$p(X=x_i)$	0,002	0,02	0,1	0,878

3. $E(X) = 590 \times 0.002 + 90 \times 0.2 + 0 \times 0.1 - 10 \times 0.878 = -5.8$. Donc en moyenne un joueur perd 5,80 € lorsqu'il joue à cette tombola.