

Факультет компьютерных наук Департамент программной инженерии Курсовая работа

Программа для расчета и визуализации бинарных фазовых диаграмм в системе изоструктурных компонентов

Выполнил студент группы БПИ173 Кожакин Кирилл Геннадьевич Научный руководитель: Профессор департамента программной инженерии, д. т. н. Подбельский Вадим Валериевич

АКТУАЛЬНОСТЬ РАБОТЫ

Одной из основных задач материаловедения является установление зависимости между составом, строением и свойствами материалов. Моя программа позволяет установить некоторые из таких зависимостей путем расчета формул и построения диаграмм, аргументами которых являются различные свойства различных элементов и соединений.

Интерактивная таблица Менделеева

М Таблица Менделеева — □ ×																			
Рабо	а с соедине	Ра	абота с системой соединений																
	la	lla	Illa	IVa	Va	Vla	VIIa		VIIIa		16	116	III6	IV6	Vб	VI6	VII6	VIII6	
																	Н	He	
	Li	Ве											В	С	N	0	F	Ne	
	Na	Mg	М-Металлы									Al	Si	Р	S	Cl	Ar		
	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr	
	Rb	Sr	Υ	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe	
	Cs	Ва	*La	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn	
	Fr	Ra	**Ac															I газ	
			Т-Металлы								В1-Металлы					В2-Металлы			
	*Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	I	R-Лантаноиды			
	**	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	-		TR-Актиноиды			

ЦЕЛЬ И ЗАДАЧИ РАБОТЫ

Цель работы

Создать приложение, которое позволит строить купол распада на основе данных из интерактивной таблицы Менделеева и экспериментальных данных, введенных пользователем.

Задачи работы

- 1. Создать возможность построения термодинамической функции смешения ∆Hsm и купола распада;
- 2. Создать возможность проводить оценку чувствительности функции ∆Hsm к изменению некоторых коэффициентов;
- 3. Разработать метод приближения значения функции ∆Hsm к экспериментальным данным.

ТЕХНОЛОГИИ И ИНСТРУМЕНТЫ РЕАЛИЗАЦИИ

ТЕХНОЛОГИИ И ИНСТРУМЕНТЫ РЕАЛИЗАЦИИ

🙀 Таблица системы NaCl-AgCl										
X, x	$R=x^* R(i)\{Na\} + (1 - x)^*$	dR/R=abs(R(i){Na} - R	dSконф=-1,98716 * 0,0	dSкол=x*(1-x)*2,725*(de=abs(e{NaCl} - e{Ac	dS=dSконф{NaCl-AgC	dH=x * (1 - x)*	(332	
1	2,8300	0,0459	0,0000	0,000	0,0610	0,0000	0,0000			
0,9	2,8430	0,0457	0,0006	0,0113	0,0610	0,0119	0,1359			
0,8	2,8560	0,0455	0,0010	0,0200	0,0610	0,0210	0,2400			
0,7	2,8690	0,0453	0,0012	0,0263	0,0610	0,0275	0,3129			
0,6	2,8820	0,0451	0,0013	0,0300	0,0610	0,0313	0,3553			
0,5	2,8950	0,0449	0,0014	0,0313	0,0610	0,0327	0,3676			
0,4	2,9080	0,0447	0,0013	0,0300	0,0610	0,0313	0,3505			
0,3	2,9210	0,0445	0,0012	0,0263	0,0610	0,0275	0,3047			
0,2	2,9340	0,0443	0,0010	0,0200	0,0610	0,0210	0,2306			
0,1	2,9470	0,0441	0,0006	0,0113	0,0610	0,0119	0,1288	·		
0	2,9600	0,0439	0,0000	0,0000	0,0610	0,0000	0,0000			

Редактировать таблицу

Купол распада

10

ОСНОВНЫЕ ВОЗМОЖНОСТИ ПРОГРАММЫ

- 1. Просмотр и редактирование данных по химическим элементам, соединениям и системам соединений;
- 2. Добавление новых соединений и систем соединений;
- 3. Расчет формул с использованием данных таблиц свойств элементов и соединений;
- 4. Построение термодинамической функции смешения ∆Hsm на основе этих вычислений;
- 5. Приближение данной функции к результатам эксперимента путем изменения некоторых коэффициентов;
- 6. Построение купола распада на основе полученных значений параметров;
- 7. Возможность проводить оценку чувствительности для изменяемых параметров.

ПУТИ ДАЛЬНЕЙШЕЙ РАБОТЫ

1. Добавление возможности приближения теоретических значений графика температуры к экспериментальным данным, с целью получения более точных коэффициентов и графиков.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. [Russian] Руководство по WPF [Электронный ресурс]. URL: https://metanit.com/sharp/wpf/ (дата обращения: 24.02.2020)
- 2. [Russian] Хранилище технической документации, справочных материалов по API, примеров кода, кратких инструкций и руководств для разработчиков и ИТ-профессионалов. [Электронный ресурс]. URL: https://docs.microsoft.com (дата обращения: 24.02.2020)
- 3. Кузьмичева Г.М. Основные кристаллохимические категории: учебное пособие / Г.М. Кузьмичева М.: МИТХТ, 2001. 72 с.

Спасибо за внимание!

Кожакин Кирилл Геннадьевич, kgkozhakin@edu.hse.ru

Москва - 2020