

CONCRETE STRENGTH PREDICTION

VISHAL
ZEESHAN
ISHIKA
AJINKYA
HARDEEP

DATASET SIZE

```
[ ] #Check dataset size
    df.shape
    (1030, 9)
```

Check column types and describe which columns are numerical, or categorical

```
#Check column types and describe which columns are numerical, or categorical
df.dtypes
                     float64
cement
slag
                     float64
                    float64
flyash
                    float64
water
                    float64
superplasticizer
coarseaggregate
                    float64
fineaggregate
                    float64
                      int64
age
                     float64
csMPa
dtype: object
```

Perform Univariate analysis Calculate mean, median, std. dev and quartiles of numerical data

	cement	slag	flyash	water	superplasticizer	coarseaggregate	fineaggregate	age	csMPa
count	1030.000000	1030.000000	1030.000000	1030.000000	1030.000000	1030.000000	1030.000000	1030.000000	1030.000000
mean	281.167864	135.948932	120.899417	181.567282	9.663495	972.918932	773.580485	45.662136	35.817961
std	104.506364	53.279837	22.595744	21.354219	3.645923	77.753954	80.175980	63.169912	16.705742
min	102.000000	11.000000	24.500000	121.800000	1.700000	801.000000	594.000000	1.000000	2.330000
25%	192.375000	129.800000	121.400000	164.900000	8.200000	932.000000	730.950000	7.000000	23.710000
50%	272.900000	135.700000	121.400000	185.000000	9.400000	968.000000	779.500000	28.000000	34.445000
75%	350.000000	142.950000	121.400000	192.000000	10.200000	1029.400000	824.000000	56.000000	46.135000
max	540.000000	359.400000	200.100000	247.000000	32.200000	1145.000000	992.600000	365.000000	82.600000

df.median()

cement	272.900
slag	135.700
flyash	121.400
water	185.000
superplasticizer	9.400
coarseaggregate	968.000
fineaggregate	779.500
age	28.000
csMPa	34.445
dtype: float64	

DISTRIBUTION OF NUMERICAL VARIABLES

```
#Check the distribution of numerical variables and comment on it
columns = ['cement', 'slag', 'water', 'superplasticizer','coarseaggregate','fineaggregate','csMPa']
df[columns].hist()
array([[<AxesSubplot:title={'center':'cement'}>,
        <AxesSubplot:title={'center':'slag'}>,
        <AxesSubplot:title={'center':'water'}>],
        [<AxesSubplot:title={'center':'superplasticizer'}>,
        <AxesSubplot:title={'center':'coarseaggregate'}>,
        <AxesSubplot:title={'center':'fineaggregate'}>],
       [<AxesSubplot:title={'center':'csMPa'}>, <AxesSubplot:>,
        <AxesSubplot:>]], dtype=object)
                        slag
       cement
                                       water
                                200
 100
    supemplasticizer
                   coarseaggregate
                                    fineaggregateso
 500
                                200
 250
       10<sup>CSM</sup>200 30
                   800
                         1000
 200
 100
```

PERFORM BIVARIATE ANALYSIS

```
sb.regplot(x="cement", y="slag", data=df)
<AxesSubplot:xlabel='cement', ylabel='slag'>
   350
   300
   250
£ 200 €
  150
   100
   50
                                              500
                          300
                                    400
       100
                 200
                           cement
```

```
#Perform Bivariate analysis
#Plot pair plots
sb.pairplot(df[['cement','slag']])
<seaborn.axisgrid.PairGrid at 0x217b5bcd3a0>
   500
 cement
  300
   200
  100
  300
  100
          200
                  400
                                     200
                                           300
                                100
                                     slag
              cement
```

Perform Chi - square to check whether there is a relationship between age and csMPa


```
#Perform Chi-square analysis to check whether there is a relationship between
#age and csMPa
# create contingency table
data_crosstab = pd.crosstab(df['age'],
                          df['csMPa'],
                          margins=True, margins name="Total")
# significance level
alpha = 0.05
# Calcualtion of Chisquare
chi square = 0
rows = df['age'].unique()
columns = df['csMPa'].unique()
for i in columns:
    for j in rows:
        0 = data_crosstab[i][j]
        E = data crosstab[i]['Total'] * data crosstab['Total'][j] / data crosstab['Total']['Total']
        chi square += (O-E)**2/E
# The p-value approach
print("Approach 1: The p-value approach to hypothesis testing in the decision rule")
p value = 1 - stats.chi2.cdf(chi square, (len(rows)-1)*(len(columns)-1))
conclusion = "Failed to reject the null hypothesis."
if p value <= alpha:</pre>
    conclusion = "Null Hypothesis is rejected."
print("chisquare-score is:", chi square, " and p value is:", p value)
print(conclusion)
# The critical value approach
print("Approach 2: The critical value approach to hypothesis testing in the decision rule")
critical_value = stats.chi2.ppf(1-alpha, (len(rows)-1)*(len(columns)-1))
conclusion = "Failed to reject the null hypothesis."
if chi square > critical value:
    conclusion = "Null Hypothesis is rejected."
print("chisquare-score is:", chi_square, " and critical value is:", critical_value)
```

Approach 1: The p-value approach to hypothesis testing in the decision rule chisquare-score is: 11462.206895002948 and p value is: 0.0005460933550068825 Null Hypothesis is rejected.

Approach 2: The critical value approach to hypothesis testing in the decision rule chisquare-score is: 11462.206895002948 and critical value is: 11216.79223246852

Null Hypothesis is rejected.

PEARSON CORRELATION AND HEATMAP

#Calculate Pearson correlation, and plot their heatmap
sb.heatmap(df.corr(),annot=True)


```
[ ] X=df.iloc[:,:-1].values
Y=df.iloc[:,-1].values
```

Linear regression

```
from sklearn.model_selection import train_test_split
X_train,X_test,Y_train,Y_test=train_test_split(X,Y,test_size=0.2,random_state=4)
```

```
[ ] from sklearn.preprocessing import StandardScaler
sc= StandardScaler()
X_train=sc.fit_transform(X_train)
X_test=sc.fit_transform(X_test)
```

```
[ ] from sklearn.linear_model import LinearRegression
    reg=LinearRegression()
    reg.fit(X_train,Y_train)
```

```
[ ] reg.coef_
    array([12.30190986, 8.78353068, 4.64335288, -3.12030687, 2.8808571,
            1.43649627, 1.49727268, 7.05030577])
    reg.intercept_
    35.61218673218672
[ ] Y_pred=reg.predict(X_test)
    from sklearn import metrics
    metrics.mean_squared_error(Y_test,Y_pred)
    104.74182502079691
[ ] import numpy as np
    np.sqrt(metrics.mean_squared_error(Y_test,Y_pred))
    10.234345363568542
    metrics.r2_score(Y_test,Y_pred)
    0.6194861626865971
```

DECISION TREE

```
from sklearn.model_selection import train_test_split
X_train, X_test, Y_train, Y_test=train_test_split(X,Y,test_size=0.3, random_state=42)
from sklearn.preprocessing import StandardScaler
sc= StandardScaler()
X_train=sc.fit_transform(X_train)
X_test=sc.fit_transform(X_test)
from sklearn.tree import DecisionTreeClassifier
dtc=DecisionTreeClassifier()
dtc.fit(X_train, Y_train)
DecisionTreeClassifier()
Y pred=dtc.predict(X test)
from sklearn.metrics import confusion_matrix
confusion_matrix(Y_test,Y_pred)
array([[0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, \ldots, 0, 0, 0],
       [0, 0, 0, \ldots, 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, \ldots, 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0]], dtype=int64)
from sklearn.metrics import accuracy_score
accuracy_score(Y_test, Y_pred)
0.0392156862745098
```

```
from sklearn.svm import SVR
regressor=SVR(kernel='linear',degree=1)
import matplotlib.pyplot as plt
plt.scatter(df['age'],df['csMPa'])
<matplotlib.collections.PathCollection at 0x217b8de4430>
80
70
60
50
40
30
20
10
         50
              100
                    150
                         200
                               250
                                    300
                                         350
```

```
df.head()
   cement slag flyash water superplasticizer coarseaggregate fineaggregate age csMPa
                    0.0 162.0
     540.0
             0.0
                                                           1040.0
                                             2.5
                                                                           676.0 28
                                                                                      79.99
 0
                        162.0
     540.0
             0.0
                    0.0
                                             2.5
                                                           1055.0
                                                                           676.0
                                                                                  28
                                                                                      61.89
     332.5 142.5
                    0.0
                         228.0
                                             0.0
                                                            932.0
                                                                           594.0 270
                                                                                      40.27
     332.5 142.5
                         228.0
                                             0.0
                    0.0
                                                            932.0
                                                                           594.0 365
                                                                                      41.05
     198.6 132.4
                    0.0 192.0
                                             0.0
                                                            978.4
                                                                           825.5 360
                                                                                      44.30
from sklearn.model_selection import train_test_split
X_train, X_test, Y_train, Y_test=train_test_split(X,Y,test_size=0.3, random_state=42)
                                                                        + Code
                                                                                   + Text
regressor.fit(X_train,Y_train)
SVR(degree=1, kernel='linear')
pred=regressor.predict(X_test)
print(regressor.score(X_test,Y_test))
0.5250593257385956
```

```
from sklearn.metrics import r2 score
print(r2_score(Y_test,pred))
 0.5250593257385956
 regressor=SVR(kernel='rbf',epsilon=1.0)
 regressor.fit(X_train,Y_train)
 pred=regressor.predict(X_test)
 print(regressor.score(X_test,Y_test))
 print(r2_score(Y_test,pred))
 0.03040995084259679
 0.03040995084259679
```

FINDINGS

- Accuracy of linear regression 0.619
- degree 2: 0.746
- degree 3: 0.813
- Accuracy of decision tree 0.049
- svm 0.525

CHALLENGES

- Data consisted of many zero values
- there were no categorical values

THANK YOU