FONAMENTS MATEMÀTICS D'ELECTRÒNICA DIGITAL

Index de conceptes

- Algebra de Boole: postulats i teoremes
- Funcions de commutació
- Portes lògiques
- Suma de productes i producte de sumes
- Minterms i Maxterms

Matemàtiques bàsiques per al disseny de sistemes digitals o

Formulisme matemàtic per operar les funcions de commutació

Àlgebra de Boole

- Desenvolupada per Georges Boole al 1847 per problemes de lògica matemàtica
- Claude Shannon al 1939 l'aplica per primer cop a funcions de commutació

DEFINICIONS

- Variable lògica: variable que pot assolir únicament dos valors {(0,1), (L,H), (F,V)}
- Funció lògica: funció definida amb variables lògiques el resultat de la qual només pot assolir dos valors {(0,1), (L,H), (F,V)}
- <u>Àlgebra</u>: conjunt d'elements, S, format, com a mínim, per dos elements diferents, amb dues operacions internes, suma (+) i producte (•) (que anomenarem <u>suma lògica</u> i <u>producte lògic</u>). Els elements satisfan el principi de substitució.

Àlgebra de Boole

Satisfà una sèrie de postulats

I. La suma i el producte són operacions internes:

Si a,
$$b \in S$$

- i) (a+b) ∈ S
- ii) $(a \cdot b) \in S$
- II. Existeix un element neutre per a la suma "0" i un element neutre per al producte "1", tals que:
 - i) (a+0) = a
 - ii) (a.1) = a
- III. Les operacions suma i producte són commutatives:
 - i) a+b=b+a
 - ii) $a \cdot b = b \cdot a$
- IV. Cada operació és distributiva respecte l'altra:
 - i) $a \cdot (b+c) = a \cdot b + a \cdot c$
 - ii) $a+(b\cdot c) = (a+b) \cdot (a+c)$
- V. Per a tot element de l'Àlgebra, a, existeix un element, \overline{a} , anomenat complement d'a, tal que:
 - i) $a + \overline{a} = 1$
 - ii) $a \cdot \overline{a} = 0$
- VI. Existeixen almenys dos elements a i b tals que a ≠ b

Comparació amb l'Àlgebra dels nombres reals

Si comparem aquests postulats amb els que defineixen l'Àlgebra dels nombres reals podem observar que:

- La llei associativa no és un postulat de l'Àlgebra de Boole, es pot deduir a partir dels postulats anunciats.
- II. La propietat distributiva de l'operació (+) respecte a l'operació (·) és vàlida en l'Àlgebra de Boole però no en la dels nombres reals
- III. En no haver-hi un element invers additiu o multiplicatiu, no es poden definir les operacions resta lògica i divisió lògica
- IV. El complement d'un element no es pot definir en l'Àlgebra ordinària
- V. Una Àlgebra de Boole pot estar definida per un nombre finit d'elements

Aquí només ens interessa l'exemple més senzill d'Àlgebra de Boole: l'àlgebra de 2 elements S={0,1}, amb els operadors: suma lògica i producte lògic definits com:

A	В	A+B
0	0	0
0	1	1
1	0	1
1	1	1

A	В	A·B
0	0	0
0	1	0
1	0	0
1	1	1

Per tal de satisfer el postulat 'v' resulta que: $\overline{0} = 1$ i $\overline{1} = 0$

L'operador SUMA LÒGICA rep el nom de funció OR L'operador PRODUCTE LÒGIC rep el nom de funció AND L'operador COMPLEMENT rep el nom de funció NOT

Aquest àlgebra satisfà els següents teoremes:

<u>Teorema 0:</u> **Dualitat.** Cada propietat o teorema deduïble a partir dels postulats de l'Àlgebra de Boole continua sent vàlid si intercanviem entre si els operadors (+,•) i els elements neutres {0,1} (exemple : si es compleix que a+0=a, llavors a•1=a)

Teorema 1: (a)
$$x + x = x$$
, (b) $x \cdot x = x$

$$x + x = (x + x) \cdot 1$$
 (Postulat IIb)
 $=(x + x) \cdot (x + \overline{x})$ (Postulat IVa)
 $= x + (x \cdot \overline{x})$ (Postulat IVb)
 $= x + 0$ (Postulat Vb)
 $= x$ (Postulat IIa)

Per dualitat resulta $x \cdot x = x$

(a)
$$x + 1 = 1$$
, (b) $x \cdot 0 = 0$

$$x + 1 = (x + 1) \cdot 1$$

$$= (x + 1) \cdot (x + \overline{x})$$

$$= x + (1 \cdot \overline{x})$$

$$= x + \overline{x}$$

$$= 1$$

(Postulat IIb)

(Postulat Va)

(Postulat IVa)

(Postulat IIb)

(Postulat Va)

Per dualitat resulta $x \cdot 0 = 0$

(a)
$$\overline{x} = x$$

(a)
$$x + (y + z) = (x + y) + z$$

(b) $x \cdot (y \cdot z) = (x \cdot y) \cdot z$

Propietat associativa

(a)
$$(\overline{x + y}) = \overline{x} \cdot \overline{y}$$

(b) $(x \cdot y) = \overline{x} + \overline{y}$

(a)
$$x + x \cdot y = x$$

(b)
$$x \cdot (x + y) = x$$

L'Àlgebra de Boole s'aplica a les funcions de commutació que es poden representar com circuits que contenen *commutadors*, etiquetats amb variables

A=0: Commutador obert

A=1: Commutador tancat

X=0: Circuit obert entre 1 i 2

X=1: Circuit tancat entre 1 i 2

Funció de commutació: aplicació de {0,1}n en {0,1}, representada com (4 possibilitats !!!):

1 Expressió algebraica:

$$F(A,B,C) = A \cdot B + \overline{C}$$

2 <u>Taula de veritat</u>: per una funció de n variables tenim una columna amb les 2ⁿ combinacions d'1 i 0 que es poden formar i un altre columna amb el valor de la funció per aquestes

entrades).

ABC	F
000	1
001	0
010	1
011	0
100	1
101	0
110	1
111	1

2ⁿ entrades valors de la funció

3 Verbalització: expressió lingüística

L'alarma sonarà si no hi ha ningú dins i algú obre la porta o una finestra

Funció = sonar l'alarma

variable A = no hi ha ningú

variable B = s'obre la porta

variable C = s'obre la finestra

M'he de posar l'abric si fa fred o estic constipat i ho diu la meva mare

Funció = posar-se l'abric

variable A = fa fred (en aquest cas o fa fred o no fa fred, no puc dir en fa una mica)

variable B = estic constipat

variable C = ho diu la mama

han de poder-se representar com funcions binàries!!

- Dues funcions diferents tenen taules de veritat diferents.
- Una funció de commutació no té una representació algebraica única
- Per N variables hi ha 2^{2^N} funcions de commutació.
 - Així per a 1 variable tenim 4 funcions possibles
 - Per 2 variables, 16 funcions possibles
 - Per 3 variables, 256 funcions possibles

1 Variable (x)	F ₀ (x)	F ₁ (x)	F ₂ (x)	F ₃ (x)
0	0	0	1	1
1	0	1	0	1

Funcions de dues variables (16 possibles)

АВ	F ₀ 0	F ₁	F ₂	F ₃ A	F ₄	F ₅ B	F ₆	F ₇	F ₈	F ₉ XNOR	F ₁₀ /B	F ₁₁	F ₁₂ /A	F ₁₃	F ₁₄	F ₁₅
0 0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0 1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
10	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
11	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

Funcions més usades:

AND: $F_1(A,B) = A$ and $B = A \cdot B = A \cdot B$

OR: $F_7(A,B) = A \text{ or } B = A + B = A \mid B$

NAND: $F_{14}(A,B) = /(A \cdot B) = \overline{(A \cdot B)}$

NOR: $F_8(A,B) = /(A+B) = \overline{(A+B)}$

XOR: $F_6(A,B) = A \oplus B$ (or exclusiva) (designaltat)

XNOR: $F_0(A,B) = /(A \oplus B) = \overline{(A \oplus B)}$ (igualtat)

Totes les funcions poden ser expressades en termes dels operadors AND, OR, i NOT

Conjunt complet d'operadors:

conjunt d'operadors amb els quals es pot especificar qualsevol funció de commutació.

- 1. AND, OR, NOT
- 2. NAND
- 3. NOR

Portes lògiques digitals: Circuits electrònics que realitzen les funcions bàsiques AND, OR, NAND, NOR, XOR, NOT, ...

Tenen diversos terminals d'entrada i un de sortida.

Aquests terminals poden assolir un dels dos valors específics 0 o 1.

Porta AND: Z=A-B-C

Porta NAND: Z=/(A-B-C)

Porta OR: Z=A+B+C

Porta NOR: Z=/(A+B+C)

INVERSOR: Z=/A

Porta XOR: Z=(A⊕B)

4 Exemple gràfic de funció de commutació

Forma estàndard de les funcions lògiques

<u>Literal:</u> variable lògica o el seu complement (A,Ā,B,B, ...)

Terme producte: una sèrie de literals relacionats per l'operador lògic AND (A·B·C, Ā·D, Ā·B·F, ...).

<u>Terme suma:</u> una sèrie de literals relacionats per l'operador lògic OR (A+B+C, A+D, A+B+F, ...).

Terme normal o canònic: terme producte o suma que conté totes les variables de la funció un sol cop.

Termes adjacents: termes canònics entre els quals només varia el valor d'una variable (A+B+C, A+B+C; A-B-C, A-B-C).

Aquest termes son bàsics per fer simplificacions de funcions.

Suma de productes: tota funció lògica es pot expressar com a suma de termes producte (SOP).

$$f(A, B, C, D) = (A \cdot C + B) \cdot (C \cdot D + \overline{D})$$

$$f = A \cdot C \cdot C \cdot D + A \cdot C \cdot \overline{D} + B \cdot C \cdot D + B \cdot \overline{D} = A \cdot C + B \cdot C \cdot D + B \cdot \overline{D}$$

Producte de sumes: tota funció lògica es pot expressar com a producte de termes suma (POS).

$$f = (A + B) \cdot (C + B) \cdot (C + \overline{D})$$

La implementació de qualsevol funció lògica sempre es pot fer a dos nivells com a suma de termes producte (**SOP**) o com a producte de termes suma (**POS**).

<u>Suma estàndard de productes:</u> suma de termes producte on tots són canònics.

Taula de veritat

$$\begin{split} \mathbf{f} &= \mathbf{A} \cdot \mathbf{C} + \mathbf{B} \cdot \mathbf{C} \cdot \mathbf{D} + \mathbf{B} \cdot \overline{D} = \mathbf{A} \cdot \mathbf{C} \cdot (\mathbf{B} + \overline{B}) \cdot (\mathbf{D} + \overline{D}) + \mathbf{B} \cdot \mathbf{C} \cdot \mathbf{D} \cdot (\mathbf{A} + \overline{A}) + \mathbf{B} \cdot \overline{D} \cdot (\mathbf{A} + \overline{A}) \cdot (\mathbf{C} + \overline{C}) = \\ \mathbf{A} \cdot \mathbf{B} \cdot \mathbf{C} \cdot \mathbf{D} + \mathbf{A} \cdot \overline{B} \cdot \mathbf{C} \cdot \overline{D} + \mathbf{A} \cdot \overline{B} \cdot \mathbf{C} \cdot \overline{D} + \mathbf{A} \cdot \mathbf{B} \cdot \mathbf{C} \cdot \overline{D} + \mathbf{A} \cdot$$

Producte estàndard de sumes: producte de termes suma on tots són canònics.

$$f = (A + B + C + D) \cdot (A + B + \overline{C} + D) \cdot (A + B + C + \overline{D}) \cdot (\overline{A} + B + \overline{C} + \overline{D}) \cdot (\overline{A} + B + C + D) \cdot (\overline{A} + B + C + \overline{D}) \cdot (\overline{A} + \overline{B} + C + \overline{D})$$

Qualsevol funció de commutació de n variables es pot expressar com a suma estàndard de productes o com a producte estàndard de sumes.

ABCD	f
0000	0
0 0 0 1	0
0010	0
0011	0
0 1 0 0	1
0 1 0 1	0
0110	1
0 1 1 1	1
1000	0
1001	0
1010	1
1011	1
1 1 0 0	1
1 1 0 1	0
1110	1
1 1 1 1	1

Minterm: terme producte canònic que dona un 1 lògic a la funció representada com a suma de productes.

Maxterm: terme suma canònica que dona un 0 lògic a la funció expressada com a producte de sumes.

MINTERMS

$$\begin{split} m_{000} &= m_0 & 000 & \overline{X}_2 \cdot \overline{X}_1 \cdot \overline{X}_0 \\ m_{001} &= m_1 & 001 & \overline{X}_2 \cdot \overline{X}_1 \cdot X_0 \\ m_{010} &= m_2 & 010 & \overline{X}_2 \cdot X_1 \cdot \overline{X}_0 \\ m_{011} &= m_3 & 011 & \overline{X}_2 \cdot X_1 \cdot X_0 \\ m_{100} &= m_4 & 100 & X_2 \cdot \overline{X}_1 \cdot \overline{X}_0 \\ m_{101} &= m_5 & 101 & X_2 \cdot \overline{X}_1 \cdot X_0 \\ m_{110} &= m_6 & 110 & X_2 \cdot X_1 \cdot \overline{X}_0 \\ m_{111} &= m_7 & 111 & X_2 \cdot X_1 \cdot X_0 \end{split}$$

Combinació que dóna un 1 en S.O.P.

MAXTERMS

$$\begin{split} M_{111} &= M_7 & 111 & \overline{X}_2 + \overline{X}_1 + \overline{X}_0 \\ M_{110} &= M_6 & 110 & \overline{X}_2 + \overline{X}_1 + X_0 \\ M_{101} &= M_5 & 101 & \overline{X}_2 + X_1 + \overline{X}_0 \\ M_{100} &= M_4 & 100 & \overline{X}_2 + X_1 + X_0 \\ M_{011} &= M_3 & 011 & X_2 + \overline{X}_1 + \overline{X}_0 \\ M_{010} &= M_2 & 010 & X_2 + \overline{X}_1 + X_0 \\ M_{001} &= M_1 & 001 & X_2 + \overline{X}_1 + \overline{X}_0 \\ M_{000} &= M_0 & 000 & X_2 + X_1 + \overline{X}_0 \end{split}$$

Combinació que dóna un 0 en P.O.S.

АВС	f	
0 0 0	1	
0 0 1	0	
010	0	
0 1 1	0	
100	1	
101	1	
110	0	
111	1	

$$f = (A + \overline{B} + C) \cdot (A + \overline{B} + \overline{C}) \cdot (A + B + \overline{C}) \cdot (\overline{A} + \overline{B} + C) =$$

$$0 \cdot 1 \cdot 0 \quad 0 \cdot 1 \quad 1 \cdot 1 \cdot 0$$

$$2 \quad 3 \quad 1 \quad 6 \quad = \prod M(1, 2, 3, 6)$$

Les funcions representades com a suma de productes i com a producte de sumes són complementàries: els nombres que apareixen a la llista de minterms són els que falten a la llista de maxterms.

a	b	c	Y
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

$$A = \overline{a + b} \qquad B = A \bullet c$$

$$C = \overline{a} \bullet b \bullet \overline{c} \qquad D = a \bullet \overline{b} \bullet \overline{c}$$

$$E = \overline{a \bullet b \bullet c} \qquad F = \overline{D \bullet E}$$

$$\Rightarrow Y = B + C + F$$

$$Y = B + C + F = A \cdot c + \overline{a} \cdot b \cdot \overline{c} + \overline{D} \cdot E$$

$$= (\overline{a} + \overline{b}) \cdot c + \overline{a} \cdot b \cdot \overline{c} + \overline{D} + \overline{E} =$$

$$\overline{a} \overline{b} c + \overline{a} \overline{b} \overline{c} + \overline{a} \overline{b} \overline{c} + \overline{a} \overline{b} \overline{c}$$

$$= \overline{a} \overline{b} c + \overline{a} \overline{b} \overline{c} + \overline{a} \overline{b} \overline{c} + a \overline{b} \overline{c} + a \overline{b} \overline{c}$$