

UNIVERSIDAD DE GRANADA

PRÁCTICA 5: CLASIFICACIÓN CON KNIME

TRATAMIENTO INTELIGENTE DE DATOS

MÁSTER UNIVERSITARIO EN INGENIERÍA INFORMÁTICA

AUTOR

Pablo Valenzuela Álvarez (pvalenzuela@correo.ugr.es)

CONTENIDO

Ejercicio 1. Tipos de Cristal	3
Clasificadores	
Comparativa de métricas	3
Aplicando validación cruzada	4
Ejercicio 2: Accidentes de tráfico	7
Preprocesado	
Modelos de clasificación	8
Resultados	
Visualización	
Conclusión	
Recomendaciones	10

EJERCICIO 1. TIPOS DE CRISTAL

En el primer ejercicio trabajaremos con una base de datos usada para la investigación criminológica. Este conjunto contiene ejemplos de cristales de 7 tipos encontrados en escenas del crimen.

CLASIFICADORES

Empezaremos construyendo varios clasificadores como nos indica el guion de prácticas.

Figura 1: Parte de los clasificadores usados.

COMPARATIVA DE MÉTRICAS

En la siguiente tabla podemos ver la métrica de precisión (accuracy) de cada clasificador usado.

Clasificador	Precisión (accuracy)
MultiLayerPerceptron	58,14%
Decision Tree	67,442%
Naive Bayes	37,209%
Random Forest	79,07%
K Nearest Neighbor	60,465%
K Nearest Neighbor (distance)	55,814%
SVM	60,465%

Tabla 1. Comparativa de métricas de los clasificadores.

El clasificador **Random Forest** es el que destaca seguido de lejos por **Decision Tree**. La ventaja significativa de estos dos clasificadores indica que, al construir y combinar los resultados de sus árboles de decisión, se reduce el sobreajuste y mejora la generalización, lo que ayuda a obtener una mayor precisión.

APLICANDO VALIDACIÓN CRUZADA

Como última parte del ejercicio 1, aplicaremos validación cruzada sobre el conjunto de datos, para ello usaremos los dos mejores clasificadores obtenidos en la parte anterior: **Random Forest** y **Decision Tree**.

Figura 2: Validación cruzada realizada sobre los clasificadores.

El objetivo de realizar esta técnica es, medir el error promedio y calcular la desviación típica respecto a ese error.

Para medir el error promedio usaremos esta fórmula:

$$Error = \frac{1}{10} \sum_{i=1}^{10} Error_i$$

Y para la desviación típica:

$$\sigma = \sqrt{\frac{\sum_{i=1}^{n} (e_i - \bar{e})^2}{n}}$$

(Siendo e_i el valor del error de cada partición y \bar{e} el valor medio del error).

	1	2	3	5	6	7
1	61	7	1	0	0	1
2	10	60	1	3	1	1
3	7	5	5	0	0	0
5	0	2	0	10	0	1
5	0	1	0	0	8	0
7	1	1	0	1	0	26

Figura 3: Random Forest: precisión y error tras la validación cruzada.

Row ID	D Error in %	Size of Test Set	Error Count
fold 0	18.182	22	4
fold 1	23.81	21	5
fold 2	18.182	22	4
fold 3	23.81	21	5
fold 4	14.286	21	3
fold 5	18.182	22	4
fold 6	14.286	21	3
fold 7	31.818	22	7
fold 8	19.048	21	4
fold 9	23.81	21	5

Figura 4: Random Forest: tasa de error de las porciones de la validación cruzada.

53		12	4	0	lo	1
1	2				_	1
	2	54	5	3	1	1
8		3	6	0	0	0
0		2	0	10	0	1
2		2	0	0	5	0
1		3	1	0	1	23

Figura 5: Decision Tree: precisión y error tras la validación cruzada.

Row ID	D Error in 6	% Size of Test Set	Error Count
fold 0	27.273	22	6
fold 1	23.81	21	5
fold 2	31.818	22	7
fold 3	28.571	21	6
fold 4	23.81	21	5
fold 5	27.273	22	6
fold 6	23.81	21	5
fold 7	36.364	22	8
fold 8	38.095	21	8
fold 9	33.333	21	7

Figura 6: Decision Tree: precisión y error tras la validación cruzada.

Resultados tras aplicar validación cruzada				
	Precisión	79,439%		
Random Forest	Media error	20,5414%		
	Desviación típica	5,063630638		
	Precisión	70, 561%		
Decision Tree	Media error	29,4157%		
	Desviación típica	4,988916396		

Tabla 2: Resultados tras aplicar validación cruzada.

Analizando las desviaciones de ambos clasificadores vistas en la tabla 2, podemos decir que son relativamente similares e indican una consistencia equilibrada en los resultados. En este caso, la desviación del clasificador Decision Tree es ligeramente menor, lo que sugiere una coherencia mayor en las predicciones en relación con su media. La elección de un clasificador u otro dependerá de otros factores como: la complejidad del problema, interpretabilidad del modelo, etc.

EJERCICIO 2: ACCIDENTES DE TRÁFICO

En el segundo ejercicio aplicaremos distintas técnicas sobre un conjunto de datos relacionado con accidentes de tráfico. Estas técnicas estás destinadas mejorar la toma de decisiones al predecir si los accidentes tendrán víctimas mortales o no.

PREPROCESADO

La primera medida que vamos a tomar, es arreglar los valores perdidos. La característica *Alcohol_Results* (marcada en rojo en la figura 7) contiene muchos de ellos y la decisión que se tomó fue la de tratar estos valores como **0,0**. Si los hubiese eliminado habríamos perdido casi de 18000 casos y haberlos imputado hubiese "falseado" el resultado de las predicciones. Los demás valores perdidos serán eliminados ya que sólo representan 300 casos de los 28300 totales.

Figura 7. Valores perdidos de la característica Alcohol_Results.

Una exploración de los valores anómalos nos muestra que no hay valores que se salgan de la normalidad. El valor detectado (ver figura 8) en la dimensión *edad* corresponde a una persona de 99 años, y los observados en *Alcohol_Results* equivalen a todos los que no son "0,0". Podríamos determinar que no hay valores anómalos.

Figura 8. Exploración de los valores anómalos.

Por último, vamos a aplicar una técnica de sobre muestreo ya que el enunciado de la práctica nos dice que las clases no están balanceadas. Para ello, con el nodo **SMOTE** solucionamos este problema (ver figura 9).

Figura 9. Antes y después de aplicar SMOTE.

MODELOS DE CLASIFICACIÓN

En esta sección probaremos distintos parámetros en modelos de clasificación sobre los datos ya preprocesados, también se aplicará validación cruzada de 5 splits.

RESULTADOS

Random Forest					
Split criterion	Limit number of levels	Minimun node size	Number of models	Accuracy	
Information gain ratio	10	1	100	82,42%	
Information gain	10	1	100	83,019%	
Gini index	10	1	100	83,024%	
Gini index	100	1	100	83,669%	
Gini index	100	5	100	83,282%	
Gini index	100	1	200	83,607%	
Gini index	100	1	50	83,679%	

Tabla 3: Prueba de parámetros en Random Forest

Naive Bayes				
Default probability	Minimun standard deviation	Threshold standard deviation	Maximun nominal number per atribute	Accuracy
0,0001	0,0001	0,0	20	76,82%
0,001	0,0001	0,0	20	76,732%
0,00001	0,0001	0,0	20	76,815%
0,00001	0,0001	1,0	20	70,18%
0,00001	0,0001	0,0	5	76,688%

Tabla 4: Prueba de parámetros en Naive Bayes

KNN			
Number of neigbours	Weight by distance	Accuracy	
3	No	73,779%	
2	No	73,711%	
5	No	73,438%	
3	Si	57,011%	

Tabla 5: Prueba de parámetros en KNN

KNN (Mahalanobis Distance)			
Number of neigbours	Weight by distance	Accuracy	
3	No	71,4%	
3	Si	66,894%	

Tabla 6: Prueba de parámetros en KNN (Mahalanobis Distance)

VISUALIZACIÓN

Figura 10. Curva ROC de los modelos de clasificación

CONCLUSIÓN

Al ver los resultados obtenidos por los modelos en las tablas del 3 al 6 y analizando la gráfica de la curva ROC de la figura 10, podemos llegar a la conclusión de que el modelo **Random Forest** es el mejor. En precisión supera al resto de modelos usados en el ejercicio y también presenta un área bajo la curva superior, lo que lo lleva a ser una elección correcta para este tipo de problemas y la toma de decisiones informada.

RECOMENDACIONES

Para finalizar el ejercicio, el guion nos insta a dar recomendaciones para evitar futuros incidentes. En la exploración de variables realizada, hemos distinguido las siguientes:

Género: se puede apreciar en la figura 11 una clara discriminación de esta variable hacia el género masculino. La única forma de influir en esta variable es la formación en educación vial de las personas, identificando situaciones en el tráfico y que se puede hacer en cada ocasión.

Figura 11. Curva ROC perteneciente al género

Influencia de drogas: Las drogas provocan situaciones peligrosas al volante, aparte de ser (la mayoría) ilegales, pueden causar disminución de la coordinación motora, aumento del tiempo de reacción, distracciones o somnolencia. Queda demostrado en la gráfica de la figura 12.

Figura 12. Curva ROC perteneciente a la influencia de drogas

Tipo de carretera: Como muestra la figura 13, una parte importante de accidentes mortales se produce en zonas residenciales tanto urbanas como rurales. Una solución a este problema puede ser la de la reducción de velocidad en carretera, mejor señalización de pasos de cebra, mejorar la iluminación en la noche, etc.

Figura 13. Curva ROC perteneciente al tipo de carretera