Indian Institute of Technology Kharagpur Department of Mathematics

MA11004 - Linear Algebra, Numerical and Complex Analysis Hints and answers - Problem Sheet - 4 Spring 2021

Q.1 **ANS**: (0.99919, 3.0001, 0.00101)

HINT: Follow the algorithm of Gauss-Seidel Method.

Q.2 **ANS:** (0.186, 0.331, -0.423)

HINT: Follow the algorithm of Jacobi Method and Gauss-Seidel Method.

Q.3 **ANS**: (-1,0), (0,1), (1,2)

HINT: Calculate the value of f(x) at -1,0,1,2 and check the signs of f(x) at these points.

Q.4 ANS: 0.1875.

HINT: Calculate the value of f(x) at 0 and 1, and check the signs of f(x) at these points and then follow the algorithm.

Q.5 **ANS:** 0.5625.

HINT: Calculate the value of f(x) at 0 and 1 and check the signs of f(x) at these points and then follow the algorithm.

Q.6 **ANS:** 5.71875.

HINT: Follow the algorithm of Newton-Raphson Method.

Q.7 **ANS**: 0.77001784.

HINT: Take initial point equal to 1, and then follow the algorithm.

Q.8 **ANS:** 1.0017.

HINT: Choose $\phi(x) = \frac{\sin(x) + 10}{10}$.

Q.9 **ANS:** $x_{n+1} = \frac{x_n + \frac{N}{x_n}}{2}$, $x_1 = 1.416666$, $x_2 = 1.414215$

HINT: Take $f(x) = x^2 - N = 0$ and then follow the algorithm.

Q.10 **ANS:** $x_1 = 7.6666$, $x_2 = 5.1508$.

HINT: Take $f(x) = x^3 - 7 = 0$ and then follow the algorithm.

Q.11 **ANS**: 1.85558.

HINT: Take $g(x) = (x+10)^{\frac{1}{4}}$.

Q.12 **ANS:** $\phi(x) = x + \alpha(3x^3 + 4x^2 + 4x + 1); \frac{-8}{9} < \alpha < 0.$ **HINT:** Take $x = x + \alpha(3x^3 + 4x^2 + 4x + 1) = \phi(x).$