1. Carothers 2.21 Show that any ternary decimal of the form $0.a_1a_2...a_n11$ (base 3) i.e., any finite-length decimal ending in two (or more) 1s, is not an element of Δ .

Proof. Let x be a ternary decimal of the form $0.a_1a_2...a_n11$ (base 3). Recall that Δ was defined by the following recurrence relation,

$$A_0 = [0, 1]$$

$$A_{k+1} = \frac{1}{3} A_k \cup \left(\frac{2}{3} + \frac{1}{3} A_k\right)$$

$$\Delta := \bigcap A_k$$

We also can describes x in base 10 via,

$$x = \sum_{i=1}^{n+2} \frac{a_i}{3^i} = \sum_{i=1}^{n} \frac{a_i}{3^i} + \frac{1}{3^{n+1}} + \frac{1}{3^{n+2}}.$$

Written in this form it is clear that x lies in middle third of A_{n+1} , more specifically x is $\frac{1}{3^{n+1}}$ greater than the right most endpoint of $\frac{1}{3}A_n$. Hence $x \notin \Delta$.

2. Carothers 2.22 Show that Δ contains no (nonempty) open interval. In particular, show that if $x, y \in \Delta$ with x < y, then there is some $z \in [0, 1] \setminus \Delta$ with x < z < y.

Proof. Suppose that $x, y \in \Delta$ with x < y. Let x_n and y_n be a sequence of 0 and 2 (the ternary decimal form) such that the following equations satisfy x < y,

$$x = \sum_{i=1}^{\infty} \frac{x_i}{3^i}, \qquad y = \sum_{i=1}^{\infty} \frac{y_i}{3^i}.$$

Since x < y there exists some i in the both series where $x_i \ne y_i$ and $x_i = 2$ and $y_1 = 0$. This entry describes how both $x, y \in A_i$ but $x \in \left(\frac{2}{3} + \frac{1}{3}A_{i-1}\right)$ and $y \in \frac{1}{3}A_{i-1}$. Simply choose $z \in \left(\frac{1}{3} + \frac{1}{3}A_{i-1}\right)$ and note that by definition $z \in [0, 1] \setminus \Delta$ and x < z < y.

3. Carothers 2.25 Define $g : \mathbb{R} \to \mathbb{R}$ by g(x) = 1 if $x \in \Delta$, and g(x) = 0 otherwise. At which points of \mathbb{R} is g continuous?

Proof. I assert that the function is not continuous on Δ . Suppose the contrary and let $a \in \mathbb{R}$, Δ and with $x_n \in \Delta$ such that $x_n \to a$ and by continuity $g(x_n) \to g(a)$. We apply the previous result to produce a new sequence of $z_n \in \Delta^c$ such that $x_n < z_n < x_{n+1}$ and clearly by sandwich theorem it follows that $z_n \to a$ however by construction we know that $f(z_n) \not\to a$, a contradiction.

I assert that the function is continuous on Δ^c . Let $a \in \mathbb{R}$, Δ^c and consider some $x_n \to a$. By definition we can describe Δ^c as an arbitrary union of open sets and therefore it is open.

Thus for some $\epsilon > 0$ we can construct a $B_{\epsilon}(a) \subseteq \Delta^{c}$. Now note that since $x_{n} \to a$ there exists some N such that for all $n \geq N$ we know that $(x_{n}) \subseteq B_{\epsilon}(a)$. Therefore by definition of G it must follow that for all $n \geq N$, $g(x_{n}) = 0$.

4. Carothers 2.16 The algebraic numbers are those real or complex number that are the roots of polynomials having integer coefficients. Prove that the set of algebraic numbers is countable. [Hint: First show that the set of polynomials having integer coefficients is countable.]

Proof. Let P_n be the set of all polynomials of degree n. Note that there $|P_n| = \mathbb{Z}^{n+1}$ polynomials of such degree, a countable set. Recall that a countable union of countable sets is countable, hence the set of all polynomials having integer coefficients, $P = \bigcup_{n=1}^{\infty} P_n$ is countable.

Let $p \in P_i$ and note that by the fundamental theorem of algebra P has exactly i roots, a countable number. We define the set of algebraic numbers, A with,

$$A = \bigcup_{P_i \subset P} \bigcup_{p \in P_i} \{x \in \mathbb{R}, \mathbb{C} : p(x) = 0\}$$

Since the number of roots in p is countable, the number of polynomials in P_i is countable and the number of P_i in P is countable, A is also countable.

- **5. Carothers 3.7** Here is a generalization of Exercises 5 and 6. Let $f:[0,\infty) \to [0,\infty)$ be increasing and satisfy f(0)=0 and f(x)>0 for all x>0. If f also satisfies $f(x+y) \le f(x) + f(y)$ for all $x,y \ge 0$, then $f \circ d$ is a metric whenever d is a metric. Show that each of the following conditions is sufficient to endure that $f(x+y) \le f(x) + f(y)$ for all $x,y \ge 0$:
 - (a) f has a second derivative satisfying $f'' \le 0$;
 - **(b)** f has a decreasing first derivative;
 - (c) f(x)/x is decreasing for x > 0.

Proof. Let $f:[0,\infty)\to [0,\infty)$ be increasing and satisfy f(0)=0 and f(x)>0 for all x>0. Suppose f has a second derivative satisfying $f''\leq 0$. Let $[a,b]\subseteq [0,\infty)$. By the mean value theorem it follows that for some $x\in (a,b)$,

$$f''(x) = \frac{f'(b) - f'(a)}{b - a}$$
$$(b - a)f''(x) = f'(b) - f'(a).$$

Since $f''(x) \le 0$ and b > a it follows that $f'(b) - f'(a) \le 0$ and therefore f' is decreasing.

Proof. Let $f:[0,\infty)\to [0,\infty)$ be increasing and satisfy f(0)=0 and f(x)>0 for all x>0. Suppose f has a decreasing first derivative.

Let $x, y \in (0, \infty)$ such that $x \leq y$. Note that for some $a \in (0, x)$ the mean value theorem applies,

$$f'(a) = \frac{f(x) - f(0)}{x - 0}.$$

Similarly for some $b \in (x, y)$ the mean value theorem applies,

$$f'(b) = \frac{f(y) - f(x)}{y - x}.$$

Since f' is decreasing we know that $f'(a) \ge f'(b)$. By substitution it follows that for all $0 < x \le y$,

$$\frac{f(x) - f(0)}{x - 0} \ge \frac{f(y) - f(x)}{y - x},$$

$$\frac{f(x)}{x} \ge \frac{f(y) - f(x)}{y - x},$$

$$(y - x)\frac{f(x)}{x} \ge f(y) - f(x),$$

$$y\frac{f(x)}{x} - f(x) \ge f(y) - f(x),$$

$$y\frac{f(x)}{x} \ge f(y),$$

$$\frac{f(x)}{x} \ge \frac{f(y)}{y}.$$

Proof. Let $f:[0,\infty)\to [0,\infty)$ be increasing and satisfy f(0)=0 and f(x)>0 for all x>0. Suppose f(x)/x is decreasing for x>0. Let $x,y\geq 0$ and note that,

$$\frac{f(x)}{x} \ge \frac{f(x+y)}{x+y},$$

$$f(x) \ge f(x+y)\frac{x}{x+y}.$$

Similarly we find that,

$$\frac{f(y)}{y} \ge \frac{f(x+y)}{x+y},$$

$$f(y) \ge f(x+y) \frac{y}{x+y}.$$

Summing both inequalities we get the following,

$$f(x) + f(y) \ge f(x+y) \left(\frac{x}{x+y} + \frac{y}{x+y} \right),$$

$$f(x) + f(y) \ge f(x+y).$$

6. Carothers 3.15 We define the *diameter* of a nonempty subset A of M by $diam(A) = \sup\{d(a,b); a,b \in A\}$. Show that A is bounded if and only if diam(A) is finite.

Proof. Suppose that A is a bounded nonempty subset of M. Then there exists an $x_0 \in M$ and some $C < \infty$ such that $d(a, x_0) \le C$ for all $a \in A$. let $a, b \in A$ and note that by the triangle inequality,

$$d(a, b) \le d(a, x_0) + d(x_0, b) \le 2C$$
.

Therefore it follows that

$$diam(A) \le 2C < \infty$$
.

Now let diam(A) is finite, and for the sake of contradiction suppose A is not bounded. Therefore by definition there exists an $a \in A$ such that for all $x_0 \in M$ we know $d(a, x_0) = \infty$.

Clearly this is a contradiction, the supremum on the set of all distances between points can't be both finite and infinite. \Box