Orthogonalité dans l'espace Synthèse page 112

Projeté orthogonal

• Projeté orthogonal de M sur une droite dPoint H de d tel que (MH) $\perp d$

• Projeté orthogonal de M sur un plan ${\mathcal P}$ Point H de ${\mathcal P}$ tel que (MH) $\perp {\mathcal P}$

Propriétés du produit scalaire

Si \vec{u} , \vec{v} et \vec{w} sont trois vecteurs de l'espace et \vec{k} est un réel, alors :

- (1) Bilinéarité : $\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$ et $(k\vec{u}) \cdot \vec{v} = \vec{u} \cdot (k\vec{v}) = k(\vec{u} \cdot \vec{v})$.
- (2) Symétrie : $\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$.
- (3) Si $\vec{u} = \overrightarrow{AB}$, $\vec{u} \cdot \vec{u} = \overrightarrow{AB} \cdot \overrightarrow{AB} = AB^2 = ||\vec{u}||^2$.
- (4) \vec{u} et \vec{v} sont orthogonaux si et seulement si $\vec{u} \cdot \vec{v} = 0$.
- (5) Dans un repère orthonormé:

 $\overrightarrow{u} \cdot \overrightarrow{v} = xx' + yy' + zz'$ avec $\overrightarrow{u}(x; y; z)$ et $\overrightarrow{v}(x'; y'; z')$.

Orthogonalité dans l'espace

Produit scalaire de deux vecteurs

Soit $\vec{u} = \overrightarrow{AB}$ et $\vec{v} = \overrightarrow{AC}$.

- Si $\vec{u} = \vec{0}$ ou $\vec{v} = \vec{0}$ alors $\vec{u} \cdot \vec{v} = 0$;
- sinon $\vec{u} \cdot \vec{v} = \overrightarrow{AB} \cdot \overrightarrow{AC} = AB \times AC \times \cos \widehat{BAC}$.

Vecteur normal et équation de plan

 \mathcal{P} plan passant par A et dirigé par les vecteurs \vec{u} et \vec{v} .

- $\cdot \vec{n}$ vecteur normal à \mathcal{P} équivaut à $\vec{n} \cdot \vec{u} = \vec{n} \cdot \vec{v} = 0$.
- \mathcal{P} est l'ensemble des points M de l'espace tels que $\overrightarrow{AM} \cdot \overrightarrow{n} = 0$.
- Dans un repère orthonormé, équation d'un plan \mathcal{P} : ax + by + cz + d = 0 avec $\vec{n}(a;b;c)$ vecteur normal à \mathcal{P} .

Orthogonalité de droites et de plans

d et d' droites de vecteurs directeurs \vec{u} et $\vec{u'}$. \mathcal{P} plan dirigé par \vec{v} et \vec{w} .

(1) $d \perp d'$ équivaut à $\vec{u} \cdot \vec{u}' = 0$

(2)
$$d \perp \mathcal{P}$$
 équivaut à $\begin{cases} \vec{u} \cdot \vec{v} = 0 \\ \vec{u} \cdot \vec{w} = 0 \end{cases}$ équivaut à :

 $\vec{u} \cdot \vec{t} = 0$ pour tout vecteur \vec{t} de la direction de \mathcal{P} .

(3) Plan médiateur de [AB] : plan passant par le milieu de [AB] et orthogonal à (AB).