CS 113 DISCRETE STRUCTURES

Chapter 2: The Language of Mathematics

HOMEWORK

- Section 2.1: 1-10, 25-29, 31, 33, 35, 78, 82
- Section 2.2: 4, 6, 9, 43, 45, 46, 74, 88-92, 96
- Section 2.3: 1-31 odd only

SEQUENCES

- A sequence is a list of things
 - For example
 - 1, 3, 4, 5, 8, 9, -3, -5
- Our sequences will contain only numbers, though they can actually contain anything
- Sequences can be infinite or finite
 - Ours will be finite
- We will refer to a sequence as follows
 - a₁, a₂,a₃, a₄, ..., a_n
- Each item in a sequence is called a term

IDEAS ABOUT SEQUENCES

- If the elements in the sequence satisfy $a_i < a_j$ whenever i < j, the sequence is increasing
 - For example, the sequence 1, 3, 5, 7, 9, 11, ... is increasing
- If the elements in the sequence satisfy $a_i > a_j$ whenever i < j, the sequence is decreasing
 - For example, the sequence 7, 5, 3, 1, ... is decreasing
- Also, if you take some of the terms, it is called a subsequence

COMBINING THE TERMS

- If we add the terms of a sequence, we call it a series
- We can also multiply the terms
- Then we get a product
- It may also be infinite or finite

NOTATION

We will write a series like this

$$\sum_{i=1}^{n} a_i$$

- This will mean $a_1 + a_2 + a_3 + \dots + a_n$
- It's similar for a product
- $\prod_{i=1}^{n} a_i$ will mean $a_1 a_2 a_3 ... a_n$

CHECKING ON THE NOTATION

Let's try #10, 22 on p. 69

RECURSIVE DEFINITIONS

- Sequences and series can also be defined recursively
- For example, p. 69, #44

VOCABULARY

- In the series $\sum_{i=1}^{n} a_i$
- i is the index
- 1 is the lower limit
 - It doesn't have to be 1 of course
- n is the upper limit
- a_i is called the summand
- It's almost exactly the same for a product

SHIFTING THE INDEX

- This is a technique
 - It's often used to make two sequences "match up"
- Suppose we have $\sum_{i=1}^{n} a_i$
- and we want to change the index to i-1
- It's very easy
- The index is i
 - We need a new variable, say j
 - If we want to change the index to i-1, we should let j = i 1
- Solving for i gives i = j+1
- We just substitute j+1 for i—everywhere

COMPLETING THE SHIFTING— AN EXAMPLE

- Suppose the original sequence is $\sum_{i=1}^{\infty} i+3$ This means the sum is (1+3) + (2+3) + (3+3) + (4+3) + (5+3),

 - which is 4 + 5 + 6 + 7 + 8
- The lower limit is 1
 - This means i = 1. Substituting gives j+1 = 1, or j = 0.
- The upper limit is 5
 - Just like above. This means i = 5. Substituting and solving gives j = 4.
- The summand is i + 3. Changing to j gives (j+1) + 3

COMPLETING THE EXAMPLE

• The sum is now
$$\sum_{j=0}^{4} j + 4$$

• This is 4 + 5 + 6 + 7 + 8

· Comparing that to the original series, we see that they are the same

NUMBER SYSTEMS

- Our number system is based on 10
- 8,142 is 8000 + 100 + 40 + 2
- This is $8 \bullet 10^3 + 1 \bullet 10^2 + 4 \bullet 10^1 + 2$
- Notice that our digits go from 0 9
 - 9 is 1 less than the base of our number system
- Computers live in a base 2 number system
 - That means a number can only have 0 and 1 for digits
 - Base 2 numbers are called binary numbers
- Remember, we are not inventing new math here
 - We are only renaming the numbers we already know

THE NEED FOR OTHER BASES

- It's too cumbersome to write numbers in binary
 - For example the base 2 number 10,000,000,000 interpreted as a binary number is 1024
 - This is not good!
- So, we group the digits in 4s and call it hexadecimal or hex for short
 - Hexadecimal means base 16
- This means the digits have to go from 1 to 15, which is 1 less than 16
- Our decimal numbers only have digits from 1 to 9
- We need new digits
- We use A for 10, B for 11, C for 12, D for 13, E for 14, and F for 15

Converting between Bases

- It's not too hard to convert numbers between bases
- Binary to decimal
- Method 1:
 - Expand in powers of 2 and add
- Method 2:
 - Use nested multiplication
- Let's convert 1001₂ to base 10

MORE CONVERSIONS

- Converting binary to hexadecimal
- Memorize this table
 - It's not hard to figure out if you don't have it memorized
- Convert numbers in groups of four digits
- Let's convert 100111010011₂ to hex

Hex	Binary	Hex	Binary
0	0000	8	1000
1	0001	9	1001
2	0010	Α	1010
3	0011	В	1011
4	0100	С	1100
5	0101	D	1101
6	0110	Е	1110
7	0111	F	1111

ONE MORE CONVERSION

- Converting hex to binary is also not too hard
- You just use that table again
- Let's convert BEEF₁₆ to binary

EVEN MORE CONVERSIONS

- To convert from decimal to binary
 - Divide by 2
 - Ignore the result but keep the remainder
- Repeat those steps until you get a quotient of 0
- Read the digits in reverse order
- Let's convert 43 into binary
- Converting to hex uses the same procedure, but this time you divide by 16
- You also have to remember the "unusual digits" in hex
 - For example, if the remainder is 10, the hex digit should be A

ADDITION

- Binary addition is easy
- Initially, the usual rules apply
 - -0+0=0
 - 0+1=1
 - Addition is commutative again, so we also get the other rule: 1+0=1
- But, there is one unusual rule
 - 1 + 1 = 10
 - That is, 1+1=0 and carry 1
- Wait! Is this a new rule?
 - No, 10₂ is really 2
- Let's try to add 10010011 and 01010101

HEX ADDITION

- It's not too different
 - You just have to memorize a new addition table

OCTAL MATH

- We can also do base 8 math
 - This is called octal math
- It's quite similar to what we have seem
- There was a very popular computer company in the late 1960s through the 1990s that used octal
- There are still some of those machines running code

QUESTIONS

Any questions?