Examenul de bacalaureat național 2014 Proba E. c)

Matematică *M_pedagogic*

Barem de evaluare și de notare

Varianta 7

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$2014^0 = 1$, $\sqrt{9} = 3$	2p
	Scrise în ordine crescătoare, numerele sunt 2014^0 , 2 , $\sqrt{9}$	3 p
2.	$f(x) = 0 \Rightarrow 2x - 4 = 0$	2p
	Coordonatele punctului de intersecție cu axa Ox sunt $x = 2$ și $y = 0$	3 p
3.	2x+1=-1	3p
	x = -1	2p
4.	Cifra unităților poate fi aleasă în 5 moduri	1p
	Cum cifrele sunt distincte, cifra zecilor poate fi aleasă în 4 moduri, iar cifra sutelor poate fi	2n
	aleasă în 3 moduri	2 p
	Se pot forma $5 \cdot 4 \cdot 3 = 60$ de numere	2p
5.	AB=3	2p
	$AC = 3 \Rightarrow AB = AC$, deci $\triangle ABC$ este isoscel	3p
6.	AC = 12	2p
	$\mathcal{A}_{\Delta ABC} = \frac{5 \cdot 12}{2} = 30$	3p

SUBIECTUL al II-lea (30 de puncte)

1.	$0*1=0\cdot 1-0-1+5=$	3 p
	= 4	2p
2.	x * y = xy - x - y + 5	2p
	y*x = yx - y - x + 5 = x*y pentru orice numere reale x și y	3 p
3.	x * y = xy - x - y + 1 + 4 =	2p
	= x(y-1) - (y-1) + 4 = (x-1)(y-1) + 4 pentru orice numere reale x şi y	3 p
4.	x*1=(x-1)(1-1)+4=	3 p
	=0+4=4 pentru orice număr real x	2 p
5.	$(x-1)^2 + 4 = 8$	2p
	$\left(x-1\right)^2 = 4 \Leftrightarrow x_1 = -1 \text{ si } x_2 = 3$	3p
6.	$m * n = 5 \Leftrightarrow (m-1)(n-1) = 1$	2p
	$m, n \in \mathbb{Z} \Rightarrow m = n = 0$ sau $m = n = 2$, deci sunt două perechi de numere întregi care verifică cerinta	3p
	Comia	1

SUBIECTUL al III-lea

1.	$\det A = \begin{vmatrix} 1 & 1 \\ 2 & 0 \end{vmatrix} = 1 \cdot 0 - 1 \cdot 2 =$	3 p
	=-2	2 p

(30 de puncte)

	Central Naponal de Evaluate și Examinate	
2.	$A \cdot A = \begin{pmatrix} 3 & 1 \\ 2 & 2 \end{pmatrix}$	2p
	$A \cdot A + I_2 = \begin{pmatrix} 3 & 1 \\ 2 & 2 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 4 & 1 \\ 2 & 3 \end{pmatrix} = B$	3 p
3.	$A \cdot B = \begin{pmatrix} 6 & 4 \\ 8 & 2 \end{pmatrix}$	2p
	$B \cdot A = \begin{pmatrix} 6 & 4 \\ 8 & 2 \end{pmatrix} = A \cdot B$	3 p
4.	$A \cdot C = \begin{pmatrix} 1 & 1 \\ 2 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & \frac{1}{2} \\ 1 & -\frac{1}{2} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I_2$	2p
	$C \cdot A = \begin{pmatrix} 0 & \frac{1}{2} \\ 1 & -\frac{1}{2} \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 \\ 2 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I_2$	3р
5.	$\det(A + aI_2) = \begin{vmatrix} a+1 & 1 \\ 2 & a \end{vmatrix} = a^2 + a - 2$	2p
	$a^2 + a - 12 = 0 \Leftrightarrow a_1 = -4 \text{ si } a_2 = 3$	3p
6.	$A \cdot X = B \Leftrightarrow X = A^{-1} \cdot B$	2p
	$X = \begin{pmatrix} 1 & \frac{3}{2} \\ 3 & -\frac{1}{2} \end{pmatrix}$	3p