Introduction to Statistical Method

Descriptive Statics

- population: a large group of objects about which inferences are to be made.
- sample: a subset of the population
- at least one **random variable** whose behavior is to be studied relative to the population

Random Samples

Definition

Random sample of size n from the distribution of X is a collection of n independent random variables X_1, \dots, X_n , each with the same distribution as X.

 X_1, \dots, X_n are independent identically distributed random variables.

Remark

In order to guarantee that the random variables in a random sample are indeed independently distributed, the size of random sample should be not exceed 5% of population.

Sample Statistics

- ullet sample range: $\max_{1 \leq k \leq n} X_k \min_{1 \leq k \leq n} X_k$
- ullet sample mean: $\overline{X}:=rac{1}{n}\sum_{k=1}^n X_k$
- sample median: $ilde{x} = egin{cases} rac{1}{2}(x_{n/2} + x_{n/2+1}) & ext{n even} \ x_{(n+1)/2} & ext{n odd} \end{cases}$
- upper-case letters for statistics (random variables)
- lower-case letters for observed values of statistics (numbers)
- sample variance: $S^2 = \frac{1}{n-1} \sum_{k=1}^n (X_k \overline{X})^2$
- sample standard deviation: $S := \sqrt{S^2}$

Rounding of Statistics

- For the mean we give **one more decimal place** than the original data has.
- For the variance we give **two more decimal places** than the original data has.
- For the standard deviation we give **one more decimal place** than the original data has.
- The range and median are not rounded.

Histogram

Four Main Properties

- The number of categories should be suitable for the amount of data. According to Sturges's rule.
- Each datum should fall into exactly one category.
- The categories should have the same width.
- No datum should assume a boundary value.

Histogram Creation Steps

• The desired number of categories (Sturges's rule)

	Data Set Size	Number of Categories	
)	< 16	Insufficient data	
	16 - 31	5	
	2^{n-1} to $2^n - 1$	n	

- Calculate data (sample) range.
- Divide **data range** by number categories
- Round up to the accuracy of the data or add a smallest decimal unit at accuracy of data.
- The lower boundary for first category lies 1/2 smallest decimal unit below smallest datum.

Percentile and Quartiles

- **percentile**: xth percentile is defined as the value d_x of the data such that x% of the value of the data are less than or equal to d_x .
- quartile:
 - 25% of the data are no greater than first quartile q_1 .
 - 50% of the data no greater than the **second quartile** q_2 , equal to the medium \tilde{x} .
 - 75% are no greater than the **third quartile** q_3 .
- quartile calculate method
 - \circ **n** is even, then first quartile is the median of the smallest n/2 elements of the list.
 - o n is odd, then first quartile is the average of the median of the smallest (n-1)/2 and the median of the smallest (n+1)/2 elements of the list.
 - the third quartile can be derived in similar method.

Boxplot

- q_1, \tilde{x}, q_3 and interquartile range $iqr := q_3 q_1$
- Inner fences: $f_1=q_1-rac{3}{2}iqr$, $f_3=q_3+rac{3}{2}iqr$
- Outer fences: $F_1=q_1-3iqr$, $F_3=q_3+3iqr$
- ullet Adjacent values: $a_1 = \min\{xk: x_k \geq f_1\}$ and $a_3 = \max\{x_k: x_k \leq f_3\}$
- If the whisker lines are of different length, then the max or min is inside inner fences.
- Data point lying between inner and outer fences are **near outliers**, with o to indicate.
- Data point lying outside outer fences are **far outliers**, with * to indicate.
- If outlier seems to be from error in measurement or data collecting, it may be discarded from the data.
- If outlier seems to come from a random measurement, it is recommended that statistics are reported twice: with the outlier included and without the outlier.
- Of 100 random sample of a normally distributed population, it can be expected that 7 be outliers.