Министерство науки и высшего образования Российской Федерации федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский университет ИТМО» Факультет программной инженерии и компьютерной техники

Отчёт по лабораторной работе №1

По дисциплине "Программирование" Вариант 31213

Выполнил: Разыграев Кирилл Сергеевич

Группа: Р3115

Преподаватель: Кулинич Ярослав Вадимович

Задание

Написать программу на языке Java, выполняющую указанные в варианте действия.

Требования к программе:

- 1. Программа должна корректно запускаться, выполняться и выдавать результат. Программа не должна выдавать ошибки. Программа должна быть работоспособной именно во время проверки, то, что она работала 5 минут назад, дома или в параллельной вселенной оправданием не является.
- 2. Выражение должно вычисляться в соответствии с правилами вычисления математических выражений (должен соблюдаться порядок выполнения действий и т.д.).
- 3. Программа должна использовать математические функции из стандартной библиотеки Java.
- 4. Вычисление очередного элемента двумерного массива должно быть реализовано в виде отдельного статического метода.
- 5. Результат вычисления выражения должен быть выведен в стандартный поток вывода в виде матрицы с элементами в указанном в варианте формате. Вывод матрицы реализовать в виде отдельного статического метода.
- 6. Программа должна быть упакована в исполняемый јаг-архив.
- 7. Выполнение программы необходимо продемонстрировать на сервере helios.

Примечания:

- 1. В случае, если в варианте будут предложены одинаковые имена массивов, для одного из них к имени добавить "1".
- 2. Если в результате вычислений иногда получается NaN возможно так и должно быть.

Введите вариант: 31213

- 1. Создать одномерный массив z типа short. Заполнить его нечётными числами от 1 до 23 включительно в порядке убывания.
- 2. Создать одномерный массив x типа float. Заполнить его 19-ю случайными числами в диапазоне от -10.0 до 8.0.
- 3. Создать двумерный массив z размером 12x19. Вычислить его элементы по следующей формуле (где x=x[j]):

$$\circ$$
 если $\mathbf{z}[i] = 19$, то $\mathbf{z}[i][j] = \left(2 \cdot \cos(e^x)\right)^3$; \circ если $\mathbf{z}[i] \in \{1, 5, 9, 11, 17, 23\}$, то $\mathbf{z}[i][j] = \left(\frac{\left(\arctan\left(\frac{x-1}{18}\right)\right)^{2 \cdot \arcsin\left(\frac{x-1}{18}\right)} + 1}{3} / 4\right)^2$; \circ для остальных значений $\mathbf{z}[i]$: $\mathbf{z}[i][j] = \arcsin\left(\frac{1}{3} \cdot \frac{1}{e^{\tan^2\left(\sin\left(\arctan\left(\frac{x-1}{18}\right)\right)\right)}}\right)$.

4. Напечатать полученный в результате массив в формате с пятью знаками после запятой.

Исходный код программы

https://github.com/lysmux/itmo/blob/main/1 semestr/labs/lab1/src/Main.java

Результат работы программы

NaN	NaN	0,01478	0,01546	NaN	0,01488	NaN	0,01676	NaN	0,01505	0,02118	NaN	NaN	NaN	NaN	NaN	0,02131	0,01807	0,01770
0,33386	0,29896	0,30053	0,31920	0,26862	0,30496	0,30851	0,33099	0,33980	0,31061	0,33902	0,32643	0,32877	0,32492	0,28180	0,31568	0,33908	0,33554	0,33462
7,23758	7,99995	7,60288	-0,00585	8,00000	7,96561	7,99876	-0,19142	-2,09189	6,42103	7,61254	7,92946	7,86250	7,95301	7,99999	7,99464	7,99862	0,59949	4,90103
NaN	NaN	0,01478	0,01546	NaN	0,01488	NaN	0,01676	NaN	0,01505	0,02118	NaN	NaN	NaN	NaN	NaN	0,02131	0,01807	0,01770
0,33386	0,29896	0,30053	0,31920	0,26862	0,30496	0,30851	0,33099	0,33980	0,31061	0,33902	0,32643	0,32877	0,32492	0,28180	0,31568	0,33908	0,33554	0,33462
0,33386	0,29896	0,30053	0,31920	0,26862	0,30496	0,30851	0,33099	0,33980	0,31061	0,33902	0,32643	0,32877	0,32492	0,28180	0,31568	0,33908	0,33554	0,33462
NaN	NaN	0,01478	0,01546	NaN	0,01488	NaN	0,01676	NaN	0,01505	0,02118	NaN	NaN	NaN	NaN	NaN	0,02131	0,01807	0,01770
NaN	NaN	0,01478	0,01546	NaN	0,01488	NaN	0,01676	NaN	0,01505	0,02118	NaN	NaN	NaN	NaN	NaN	0,02131	0,01807	0,01770
0,33386	0,29896	0,30053	0,31920	0,26862	0,30496	0,30851	0,33099	0,33980	0,31061	0,33902	0,32643	0,32877	0,32492	0,28180	0,31568	0,33908	0,33554	0,33462
NaN	NaN	0,01478	0,01546	NaN	0,01488	NaN	0,01676	NaN	0,01505	0,02118	NaN	NaN	NaN	NaN	NaN	0,02131	0,01807	0,01770
0,33386	0,29896	0,30053	0,31920	0,26862	0,30496	0,30851	0,33099	0,33980	0,31061	0,33902	0,32643	0,32877	0,32492	0,28180	0,31568	0,33908	0,33554	0,33462
NaN	NaN	0.01478	0.01546	NaN	0.01488	NaN	0.01676	NaN	0.01505	0.02118	NaN	NaN	NaN	NaN	NaN	0.02131	0.01807	0.01770

Выводы по работе

Во время выполнения лабораторной работы я познакомился с синтаксисом языка java, научился работать с примитивными типами данных, массивами, циклами, условными операторами, поработал с методами класса Math, а также узнал, как собирать и запускать программы