

AO9926

Dual N-Channel Enhancement Mode Field Effect Transistor

General Description

The AO9926 uses advanced trench technology to provide excellent $R_{\rm DS(ON)},$ low gate charge and operation with gate voltages as low as 1.8V while retaining a 12V $V_{\rm GS(MAX)}$ rating. This device is suitable for use as a uni-directional or bi-directional load switch.

Features

 $V_{DS}(V) = 20V$ $I_{D} = 6 A (V_{GS} = 4.5V)$

 $R_{DS(ON)}$ < 30m Ω (V_{GS} = 4.5V)

 $R_{DS(ON)}$ < 40m Ω (V_{GS} = 2.5V)

Pin Configuration

SOIC-8

Absolute Maximum Ratings T _A =25°C unless the with a noted								
Parameter	Syr.ibol	Maximum	Units					
Drain-Source Voltage	11 ns	20	V					
Gate-Source Voltage	V Co	±12	V					
Continuous Drain T _A =25°C		6						
Current ^A T _A =70°C	I_D	5	Α					
Pulsed Drain Current B	I _{DM}	24						
T ₂ -25 C	P _D	2	W					
Power Dissipation A T. = 70°C		1.3						
Junction and Storage remperature Range	T_J , T_{STG}	-55 to 150	°C					

Thermal Characteristics									
Parameter		Symbol	Тур	Max	Units				
Maximum Junction-to-Ambient A	t ≤ 10s	$R_{\theta JA}$	48	62.5	°C/W				
Maximum Junction-to-Ambient ^A	Steady-State	K _θ JA	74	110	°C/W				
Maximum Junction-to-Lead ^C	Steady-State	$R_{\theta JL}$	35	50	°C/W				

Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units			
STATIC PARAMETERS										
BV _{DSS}	Drain-Source Breakdown Voltage	I _D =250μA, V _{GS} =0V		20			V			
I _{DSS} Zero Gate Voltage Drain Current	V _{DS} =20V, V _{GS} =0V				1	μА				
	Zero Gate Voltage Brain Garrent		T _J =55°C			5	μΛ			
I_{GSS}	Gate-Body leakage current	V _{DS} =0V, V _{GS} =±12V				TUJ	nA			
BV_{GSO}	Gate-Source Breakdown Voltage	V_{DS} =0V, I_{G} =±250uA	±12			V				
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$ $I_{D}=250uA$		0.65	0.79	1	V			
$I_{D(ON)}$	On state drain current	V_{GS} =4.5V, V_{DS} =5V	4	30			Α			
R _{DS(ON)} Static Drain-Source On-Resistance	V _{GS} =10V, I _D =7.6A			18	23	mΩ				
	-	T _J =: <5 ⁻ L;		25	30	0 11122				
	V_{GS} =4.5V, I_D =6A			21	30	mΩ				
	V _{GS} =2.5V, I _D =5.2A			30	40	mΩ				
		V _{GS} =1.8V, I _D =2A			38	52	mΩ			
g FS	Forward Transconductance	V _{DS} =5V, I _D =6 <i>E</i> .			12		S			
V_{SD}	Diode Forward Voltage	I _S =1.7A,V _{GS} =0V			0.8	1	V			
Is	Maximum Body-Diode Continuous Current					1.7	Α			
DYNAMIC	CPARAMETERS									
C _{iss}	Input Capacitance	V _{GS} =0V, V _{DS} =8V, f=1MHz			522.3		pF			
Coss	Output Capacitance				98.48		pF			
C _{rss}	Reverse Transfer Capacitance				74.69		pF			
R_g	Gate resistance	V _{GS} =0V, V _{DS} =0V, f=1MHz			1.5		Ω			
SWITCHI	NG PARAMETERS	•								
Q_g	Total Gate Charge	V _{GS} =4.5V, V _{DS} =10V, I _D =6A			6.24	8.11	nC			
Q_{gs}	Gate Source Charge				1.64	2.13	nC			
Q_{gd}	Gate Drain Charge				1.34	1.74	nC			
t _{D(on)}	Turn-On Delaytime				10.4	20.8	ns			
t _r	Turn-On Ric a Tir le	V_{GS} =4.5V, V_{DS} =10V, R_L =10 Ω , R_{GEN} =6 Ω			4.4	8.8	ns			
t _{D(off)}	Turn-Off DelayTime				27.36	54.72	ns			
t _f	Tun-Off Fa Time				4.16	8.32	ns			
t _{rr}	Body Diode Reverse Recovery Time	I _F =7.6A, dI/dt=100A/μs			15.2		ns			
Q _{rr}	Body Diode Reverse Recovery Charge	I _F =7.6A, dI/dt=100A/μs			6.3		nC			

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

ir ar 22: fransfer Characteristics

Figure 3: On-Resistance vs. Drain Current and Cate Voltage

Figure 4: On-Resistance vs. Junction **Temperature**

Figure 5: On-Resistance vs. Gate-Source Voltage

Package Information

DISCLAIMER

ZHENYANG GROUP CO,LTD RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. ZHENYANG DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF APPLICATION OR USE OF THE APPLICATION OR USE OF THE

