Mein Dokument

Dein Name

30. Juni 2025

Kapitel 1

Grundlagen

1.1 Grundgleichungen der Weber-Kraft

$$F = -\frac{GMm}{r^2} \left(1 - \frac{\dot{r}^2}{c^2} + \frac{r\ddot{r}}{2c^2}\right)$$

Daraus folgt die Bewegungsgleichung:

$$\ddot{r} - r \dot{\varphi}^2 = -\frac{GM}{r^2} \left(1 - \frac{\dot{r}^2}{c^2} + \frac{r \ddot{r}}{2c^2} \right)$$

1.2 Klassische Lösung (0. Ordnung)

Für $c \to \infty$ ergibt sich die Kepler-Bahn:

$$r_0(\varphi) = \frac{a(1 - e^2)}{1 + e\cos\varphi}$$

$$a_0(\varphi) = -\frac{GM}{r_0^2(\varphi)}$$

1.3 Relativistische Korrektur (1. Ordnung)

Störungsansatz für die Beschleunigung:

$$a(\varphi) = a_0(\varphi) + \frac{GM}{c^2}a_1(\varphi) + \mathcal{O}(1/c^4)$$

Einsetzen in die Bewegungsgleichung liefert den Korrekturterm:

$$a_1(\varphi) = \frac{GM}{r_0^2(\varphi)} \left(\frac{3h^2}{r_0^2(\varphi)} - \frac{h^2}{2GMr_0(\varphi)} \left(\frac{dr_0}{d\varphi} \right)^2 \right)$$

1.4 Beschleunigung bis zur 1. Ordnung

$$a(\varphi) = -\frac{GM}{r_0^2(\varphi)} \left[1 - \frac{1}{c^2} \left(\frac{3h^2}{r_0^2(\varphi)} - \frac{h^2}{2GMr_0(\varphi)} \left(\frac{dr_0}{d\varphi} \right)^2 \right) \right]$$

Hinweis: $r_0(\varphi)$ ist die klassische Kepler-Lösung, h der spezifische Drehimpuls.

1.5 Explizite Form mit Bahnelementen

Einsetzen von $r_0(\varphi) = \frac{a(1-e^2)}{1+e\cos\varphi}$:

$$a(\varphi) = -\frac{GM(1 + e\cos\varphi)^2}{a^2(1 - e^2)^2} \left[1 - \frac{3h^2(1 + e\cos\varphi)^2}{c^2a^2(1 - e^2)^2} + \frac{h^2e^2\sin^2\varphi}{2c^2GMa^3(1 - e^2)^3} (1 + e\cos\varphi)^3 \right]$$

1.6 Theoretische Grundlage

$$r(\phi) = r_{\text{ART}}(\phi) + \delta r(\phi)$$

Hier ist $r_{\text{ART}}(\phi)$ die analytische Näherung (ART-genau) und $\delta r(\phi)$ die numerisch berechnete Korrektur.

1.7 Schrittweitensteuerung

Die Schrittweite $\Delta\phi$ wird dynamisch aus den analytischen Ableitungen bestimmt:

$$\Delta \phi = \min \left(\Delta \phi_{\max}, \frac{\epsilon}{|w(\phi)| + |v(\phi)|} \right)$$

mit $v(\phi)=\frac{dr}{d\phi}$ und $w(\phi)=\frac{d^2r}{d\phi^2}$ aus der ART-Näherung.

1.8 Numerische Korrektur

In jedem Schritt wird nur die Abweichung von der ART-Näherung numerisch integriert:

 $\delta r(\phi + \Delta \phi) = \delta r(\phi) + \text{Numerische Integration von (DGL - ART-Ableitung)}$

1.9 Gesamtlösung

Die finale Lösung kombiniert beide Anteile:

$$r(\phi + \Delta\phi) = r_{\text{ART}}(\phi + \Delta\phi) + \delta r(\phi + \Delta\phi)$$

1.10 Kartesische Koordinaten

$$\begin{split} \vec{r}(\phi) &= \begin{pmatrix} x(\phi) \\ y(\phi) \end{pmatrix} \\ r(\phi) &= \sqrt{x(\phi)^2 + y(\phi)^2} \\ \omega(\phi) &= \frac{d\phi}{dt} = \frac{h}{r(\phi)^2} \end{split}$$

14

1.11 Weber-Kraft in kartesischer Form

$$\vec{F} = -\frac{GMm}{r^3}\vec{r}\left(1 - \frac{|\dot{\vec{r}}|^2}{c^2} + \frac{\vec{r}\cdot\ddot{\vec{r}}}{2c^2}\right)$$

Zeitliche Ableitungen 1.12

$$\dot{\vec{r}} = \omega \frac{d\vec{r}}{d\phi} = \omega \vec{r}'$$

$$\begin{split} \dot{\vec{r}} &= \omega \frac{d\vec{r}}{d\phi} = \omega \vec{r}' \\ \ddot{\vec{r}} &= \omega^2 \vec{r}'' + \omega \frac{d\omega}{d\phi} \vec{r}' \end{split}$$

1.13 Skalarprodukte

$$|\dot{\vec{r}}|^2 = \omega^2 (x'^2 + y'^2)$$

$$\vec{r} \cdot \ddot{\vec{r}} = \omega^2 (xx'' + yy'') + \omega \frac{d\omega}{d\phi} (xx' + yy')$$

1.14 Differential gleichung für $x(\phi)$

$$x'' = \frac{1}{1 + \frac{GM}{2c^2r}} \left[\frac{2(x'^2 + y'^2)}{r^2} x - \frac{GM}{\omega^2 r^3} x \left(1 - \frac{\omega^2 (x'^2 + y'^2)}{c^2} \right) \right]$$

1.15 Differential gleichung für $y(\phi)$

$$y'' = \frac{1}{1 + \frac{GM}{2c^2r}} \left[\frac{2(x'^2 + y'^2)}{r^2} y - \frac{GM}{\omega^2 r^3} y \left(1 - \frac{\omega^2 (x'^2 + y'^2)}{c^2} \right) \right]$$

1.16 Differential gleichung für $\omega(\phi)$

$$\frac{d\omega}{d\phi} = -\frac{2h}{r^3}(xx' + yy')$$

Zusammenfassung des DGL-Systems 1.17

$$\vec{Y} = \begin{pmatrix} x \\ y \\ x' \\ y' \\ \omega \end{pmatrix}$$

$$\vec{Y} = \begin{pmatrix} x \\ y \\ x' \\ y' \\ \omega \end{pmatrix}$$

$$\frac{d\vec{Y}}{d\phi} = \begin{pmatrix} x' \\ y' \\ x'' \\ y'' \\ \omega' \end{pmatrix}$$

1.18 Koordinatensystem und Basisvektoren

$$\begin{split} \hat{e}_r &= \cos\phi \, \hat{i} + \sin\phi \, \hat{j} \\ \hat{e}_\phi &= -\sin\phi \, \hat{i} + \cos\phi \, \hat{j} \\ \vec{r} &= r \hat{e}_r, \quad \dot{\vec{r}} = \dot{r} \hat{e}_r + r \dot{\phi} \hat{e}_\phi \end{split}$$

1.19 Post-Newtonische Kraft in vektorieller Form

$$\vec{F} = -\frac{GMm}{r^2} \left(1 - \frac{|\dot{\vec{r}}|^2}{c^2} + \frac{(\vec{r} \cdot \ddot{\vec{r}})}{2c^2} \right) \hat{e}_r$$

${\bf 1.20}\quad {\bf Geschwindigkeits quadrat}$

$$|\dot{\vec{r}}|^2 = \dot{r}^2 + r^2 \dot{\phi}^2$$

${\bf 1.21}\quad Beschleunigungs skalar produkt$

$$\vec{r} \cdot \ddot{\vec{r}} = r\ddot{r} - r^2 \dot{\phi}^2$$

1.22 Bewegungsgleichung in vektorieller Form

$$m\ddot{\vec{r}} = -\frac{GMm}{r^2} \left(1 - \frac{\dot{r}^2 + r^2 \dot{\phi}^2}{c^2} + \frac{r\ddot{r} - r^2 \dot{\phi}^2}{2c^2} \right) \hat{e}_r$$

${\bf 1.23}\quad {\bf Differential gleichungs system}$

$$\begin{cases} \frac{d^2x}{d\phi^2} = f_x \left(x, y, \frac{dx}{d\phi}, \frac{dy}{d\phi} \right) \\ \frac{d^2y}{d\phi^2} = f_y \left(x, y, \frac{dx}{d\phi}, \frac{dy}{d\phi} \right) \end{cases}$$

1.24 Explizite DGL für x-Komponente

$$\frac{d^2x}{d\phi^2} = \frac{\frac{GMm^2}{L^2}\frac{x}{r^3} - \frac{x}{r^2} - \frac{GM}{c^2} \left[\frac{1}{r^2} \left(\frac{dx}{d\phi} \frac{dy}{d\phi} (y \frac{dx}{d\phi} - x \frac{dy}{d\phi}) + \frac{x}{2r^4} \left((\frac{dx}{d\phi})^2 + (\frac{dy}{d\phi})^2 \right) \right) \right]}{1 - \frac{GM}{2c^2r}}$$

1.25 Explizite DGL für y-Komponente

$$\frac{d^2y}{d\phi^2} = \frac{\frac{GMm^2}{L^2}\frac{y}{r^3} - \frac{y}{r^2} - \frac{GM}{c^2}\left[\frac{1}{r^2}\left(\frac{dx}{d\phi}\frac{dy}{d\phi}(x\frac{dy}{d\phi} - y\frac{dx}{d\phi}) + \frac{y}{2r^4}\left((\frac{dx}{d\phi})^2 + (\frac{dy}{d\phi})^2\right)\right)\right]}{1 - \frac{GM}{2c^2r}}$$

1.26 Transformiertes System 1. Ordnung

$$\begin{cases} \frac{dx}{d\phi} = v_x \\ \frac{dy}{d\phi} = v_y \\ \frac{dv_x}{d\phi} = f_x(x, y, v_x, v_y) \\ \frac{dv_y}{d\phi} = f_y(x, y, v_x, v_y) \end{cases}$$

1.27 Klassische Weber-Kraft (Elektrodynamik)

$$F_{Weber}^{EM} = \frac{Qq}{4\pi\epsilon_0 r^2} \left(1 - \frac{\dot{r}^2}{c^2} + \frac{2r\ddot{r}}{c^2}\right) \hat{r}$$

1.28 Quantisierte Weber-Kraft (Gittermodell)

$$F_{Weber}^{QED} = \frac{V_1(t)V_2(t)}{4\pi\epsilon_0(nL_p)^2} \left(1 - \frac{(\Delta L_p/\Delta t_p)^2}{c^2} + \frac{2L_p\Delta^2 L_p}{c^2\Delta t_p^2}\right) \hat{r}$$

1.29 Elektrisches Feld als Deformationsgradient

$$\vec{E} = \frac{\Delta(\text{Zellvolumen})}{L_p^3} \cdot \hat{r}$$

1.30 Universelle Weber-Kraft

$$F_{universal} = \frac{K \cdot V_1(t) V_2(t)}{(nL_p)^2} \left(1 - \frac{v_{eff}^2}{c^2} + \frac{\beta L_p a_{eff}}{c^2} \right) \hat{r}$$

1.31 Energie-Impuls-Beziehung für Photonen

$$E = \hbar \nu = \frac{hc}{\lambda}$$

1.32 Webers Gravitationskraft

$$F = \frac{G \cdot M \cdot m}{r^2} \cdot \left[1 - \frac{v^2}{c^2} + \frac{r \cdot a}{c^2}\right]$$

1.33 Theorievergleich: ART vs. Weber

Aspekt	ART	Weber
Raummodell	Raumzeitkrümmung	Direkte Teilchenwechselwirkung
Gravitationswellen	Vorhanden	Nicht existent
Schwarze Löcher	Singularitäten	Keine Singularitäten
Galaxienrotation	Dunkle Materie benötigt	Natürliche Erklärung
Quantenkompatibilität	Problemhaft	Einfacher quantisierbar

1.34 Vorteile der Weber-Theorie

- Erklärt Galaxienrotation ohne Dunkle Materie
- Vermeidet Singularitäten
- $\bullet\,$ Leichter mit Quantenphysik vereinbar
- Direkte Kräfte zwischen Teilchen (keine Raumkrümmung)

1.35 Historische Dominanz der ART

- Frühe experimentelle Bestätigung (1919)
- Einsteins Bekanntheit
- $\bullet\,$ Forschungsinfrastruktur auf ART ausgerichtet
- $\bullet\,$ Weber-Theorie als ältmodischäbgetan

1.36 Quantengravitation mit Weber

- \bullet Keine Hawking-Strahlung vorhergesagt
- $\bullet\,$ Neue Gravitationssignal-Typen möglich
- Direkte Quantisierung der Kraftgleichung
- $\bullet\,$ Kompatibel mit Quantenfeld theorien

1.37 Modifizierte Weber-Kraft (gravitativ)

$$F_{Weber}^{Grav} = -\frac{GMm}{r^2} \left(1 - \frac{\dot{r}^2}{c^2} + \frac{r\ddot{r}}{2c^2}\right) \hat{r}$$

1.38 Periheldrehung des Merkur

$$\Delta\theta = \frac{6\pi GM}{ac^2(1-e^2)}$$

1.39 Allgemeine β -Formel

$$\beta = 2 \cdot \left(\frac{1}{2}\right)^{\delta} \cdot \left(1 - \frac{mc^2}{E}\right)$$

1.40 Universelle Weber-Kraft für Massen

$$F = -\frac{GMm}{r^2} \left(1 - \frac{\dot{r}^2}{c^2} + \frac{r\ddot{r}}{2c^2}\right)$$

1.41 Gravitationswellengleichung

$$\Box h_{\mu\nu} = -\frac{16\pi G}{c^4} \left(T_{\mu\nu} - \frac{1}{2}\beta \cdot \partial_t^2 Q_{\mu\nu} \right)$$

1.42 Quantisierte Weber-Kraft (QED)

$$F_{Weber}^{QED} = \frac{V_1(t)V_2(t)}{4\pi\epsilon_0(nL_p)^2} \left(1 - \frac{(\Delta L_p/\Delta t_p)^2}{c^2} + \frac{2L_p\Delta^2 L_p}{c^2\Delta t_p^2}\right) \hat{r}$$

1.43 Frequenzabhängige Lichtablenkung

$$\Delta\phi \sim \frac{4GM}{c^2b} \left(1 + \frac{\lambda_0^2}{\lambda^2} \right)$$

1.44 Hamiltonian des Dodekaeder-Gitters

$$\mathcal{H} = \sum_{\mathrm{Kanten}} \epsilon (V_i(t) - V_j(t))^2$$

48

1.45 Modifizierte Weber-Kraft (gravitativ)

$$F_{Weber}^{Grav} = -\frac{GMm}{r^2} \left(1 - \frac{\dot{r}^2}{c^2} + \frac{r\ddot{r}}{2c^2}\right) \hat{r}$$

1.46 Periheldrehung des Merkur

$$\Delta\theta = \frac{6\pi GM}{ac^2(1-e^2)}$$

1.47 Gravitative Rotverschiebung

$$\frac{\Delta\lambda}{\lambda} = \frac{GM}{c^2r} + \frac{v_r^2}{2c^2}$$

1.48 Shapiro-Laufzeitverzögerung

$$\Delta t \approx \frac{4GM}{c^3} \ln \left(\frac{4r_1 r_2}{b^2} \right)$$

${\bf 1.49}\quad {\bf Gravitations wellen-Quadrupol formel}$

$$F_{\rm GW} = -\frac{G}{c^4} \cdot \frac{\partial^3 Q_{ij}}{\partial t^3} \cdot \frac{x^i x^j}{r^3}$$

1.50 Quantisierte Raumzeit-Parameter

$$L_p = \sqrt{\frac{\hbar G}{c^3}} \approx 1.616 \times 10^{-35} \mathrm{m}$$

$$t_p = \sqrt{\frac{\hbar G}{c^5}} \approx 5.391 \times 10^{-44} \text{s}$$

$1.51\quad \text{Weber-Kraft im Dreik\"{o}rpersystem}$

$$\mathbf{F}_{1} = -Gm_{1} \left[\frac{m_{2}}{r_{12}^{3}} \mathbf{r}_{12} \left(1 - \frac{\dot{r}_{12}^{2}}{c^{2}} + \frac{r_{12}\ddot{r}_{12}}{2c^{2}} \right) + \frac{m_{3}}{r_{13}^{3}} \mathbf{r}_{13} \left(1 - \frac{\dot{r}_{13}^{2}}{c^{2}} + \frac{r_{13}\ddot{r}_{13}}{2c^{2}} \right) \right]$$

1.52 Modifizierte Weber-Kraft

$$F_{Weber} = -\frac{GMm}{r^2} \left(1 - \frac{\dot{r}^2}{c^2} + \frac{r\ddot{r}}{2c^2} \right) \label{eq:fweber}$$

1.53 Predictor-Corrector-Verfahren

- Berechne aktuelle Beschleunigung $a = F_{weber}(r, v)/m$
- Vorhersage neue Geschwindigkeit $v_{neu} = v + a \cdot dt$
- Vorhersage neue Position $r_{neu} = r + v \cdot dt + 0.5 \cdot a \cdot dt^2$
- Neuberechnung $a_{neu} = F_{weber}(r_{neu}, v_{neu})/m$
- Korrektur $v = v + 0.5 \cdot (a + a_{neu}) \cdot dt$
- Update $r = r + v \cdot dt + 0.5 \cdot a_{neu} \cdot dt^2$

1.54 Symplektische Integration

$$\begin{cases} q_{n+1} = q_n + p_n \cdot dt \\ p_{n+1} = p_n - \nabla V(q_{n+1}) \cdot dt \end{cases}$$

$1.55 \quad \text{Gitter-QCD-Ansatz}$

$$S = \sum_{x,\mu<\nu} \operatorname{Re} \operatorname{Tr}(1 - U_{\mu\nu}(x)) + \sum_{x} \bar{\psi}(x) D\psi(x)$$

1.56 N-Körper-Weber-Kraft

$$\mathbf{F}_{i} = -G \sum_{j \neq i} \frac{m_{i} m_{j}}{r_{ij}^{3}} \mathbf{r}_{ij} \left(1 - \frac{\dot{r}_{ij}^{2}}{c^{2}} + \frac{r_{ij} \ddot{r}_{ij}}{2c^{2}} \right)$$

1.57 Weber-Gravitationskraft

$$F = -\frac{GMm}{r^2} \left(1 - \frac{\dot{r}^2}{c^2} + \frac{r\ddot{r}}{2c^2}\right)$$

1.58 Bewegungsgleichung in Polarkoordinaten

$$m(\ddot{r} - r\dot{\phi}^2) = -\frac{GMm}{r^2} \left(1 - \frac{\dot{r}^2}{c^2} + \frac{r\ddot{r}}{2c^2} \right)$$

1.59 Drehimpulserhaltung

$$h=r^2\dot{\phi}={
m konstant}$$

$$\dot{\phi}={h\over r^2}$$

1.60 Modifizierte Radialgleichung

$$\frac{d^2u}{d\varphi^2} + u = \frac{GM}{h^2} + \frac{3GM}{c^2}u^2 - \frac{GM}{2c^2h^2}\left(\frac{du}{d\varphi}\right)^2$$

1.61 Winkelgeschwindigkeit

$$\dot{\phi}(\varphi) = \frac{h}{r(\varphi)^2}$$

1.62 Näherungslösung für Merkurbahn

$$\begin{split} r(\varphi) &\approx \frac{a(1-e^2)}{1+e\cos\varphi} \left[1 + \frac{3GM}{c^2a(1-e^2)} \varphi e\sin\varphi \right] \\ \dot{\phi}(\varphi) &\approx \frac{h(1+e\cos\varphi)^2}{a^2(1-e^2)^2} \left[1 - \frac{6GM}{c^2a(1-e^2)} \varphi e\sin\varphi \right] \end{split}$$

1.63 Die Kerninnovation

$$\mathbf{F} = -\mathbf{F}_{\text{Newton}} \left(1 - \frac{(\dot{\mathbf{r}})^2}{c^2} + \frac{\mathbf{r} \cdot \ddot{\mathbf{r}}}{2c^2} \right)$$

1.64 Vollständige Impulsdynamik

$$\mathbf{p}(\phi) = \frac{L}{a(1 - e^2)} \left[e \sin \phi (1 + e \cos \phi) \hat{r} + (1 + e \cos \phi) \hat{\phi} \right]$$

${\bf 1.65}\quad Impulsverteilung smechanismus$

$$\Delta \mathbf{p}_i = -\frac{m_i}{\sum_{j \neq k} m_j} \mathbf{K}_{ik} \Delta \mathbf{p}_k$$

$$\mathbf{K}_{ik} = \frac{(\mathbf{r}_k - \mathbf{r}_i) \otimes (\mathbf{r}_k - \mathbf{r}_i)}{|\mathbf{r}_k - \mathbf{r}_i|^2}$$

1.66 Iterationsschema der Impulsverteilung

$$\Delta \mathbf{p}_{i}^{(n+1)} = \sum_{j \neq i} \mathcal{K}_{ij} \Delta \mathbf{p}_{j}^{(n)}$$

$$\mathcal{K}_{ij} = -\frac{m_i}{\sum_{k \neq j} m_k} \mathbf{K}_{ij}$$

${\bf 1.67}\quad {\bf Gesamtkopplungsmatrix}$

$$\mathcal{K} = \begin{pmatrix} 0 & \mathcal{K}_{12} & \cdots & \mathcal{K}_{1N} \\ \mathcal{K}_{21} & 0 & \cdots & \mathcal{K}_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ \mathcal{K}_{N1} & \mathcal{K}_{N2} & \cdots & 0 \end{pmatrix}$$
$$\Delta \vec{P} = (I - \mathcal{K})^{-1} \Delta \vec{P}^{(0)}$$

1.68 Konvergenzkriterium

$$\sum_{n=0}^{\infty} \|\mathcal{K}^n\| \cdot \|\Delta \vec{P}^{(0)}\| < \epsilon$$

1.69 Erhaltungssicherung

$$\Delta \mathbf{p}_k \leftarrow \Delta \mathbf{p}_k - \sum_{i \neq k} \Delta \mathbf{p}_i$$
 (Gesamtimpuls)

$$\Delta \mathbf{p}_i \leftarrow \Delta \mathbf{p}_i - \frac{\Delta E}{\sum m_i v_i^2} m_i v_i$$
 (Energie)

$$\Delta \mathbf{p}_i \leftarrow \Delta \mathbf{p}_i - \frac{\Delta \mathbf{L} \times \mathbf{r}_i}{|\mathbf{r}_i|^2}$$
 (Drehimpuls)

1.70 Modifizierte Kraftgleichung

$$\mathbf{F} = -\mathbf{F}_{\text{Newton}} \left(1 - \frac{(\dot{\mathbf{r}})^2}{c^2} + \frac{\mathbf{r} \cdot \ddot{\mathbf{r}}}{2c^2} \right)$$

1.71 Impulsgleichung für modifizierte Keplerbahn

$$\mathbf{p}(\phi) = \frac{L}{a(1 - e^2)} \left[e \sin \phi (1 + e \cos \phi) \hat{r} + (1 + e \cos \phi) \hat{\phi} \right]$$

1.72 Vollständige Impulsverteilung

1.72.1 Grundprinzip

$$\Delta \mathbf{p}_i = -\frac{m_i}{\sum_{j \neq k} m_j} \mathbf{K}_{ik} \Delta \mathbf{p}_k$$

- m_i : Masse des Körpers i
- $\sum_{j \neq k} m_j$: Gesamtmasse aller anderen Körper
- \mathbf{K}_{ik} : Kopplungsmatrix

1.72.2 Kopplungsmatrix

$$\mathbf{K}_{ik} = \frac{(\mathbf{r}_k - \mathbf{r}_i) \otimes (\mathbf{r}_k - \mathbf{r}_i)}{|\mathbf{r}_k - \mathbf{r}_i|^2}, \quad \|\mathbf{K}_{ik}\| = 1$$
$$\mathbf{a} \otimes \mathbf{b} = \begin{pmatrix} a_x b_x & a_x b_y & a_x b_z \\ a_y b_x & a_y b_y & a_y b_z \\ a_z b_x & a_z b_y & a_z b_z \end{pmatrix}$$

1.72.3 Erhaltungssätze

1. Impulserhaltung:

$$\sum_{i} \Delta \mathbf{p}_i + \Delta \mathbf{p}_k = 0$$

2. Schwerpunkterhaltung:

$$\sum_{i} m_i \Delta \mathbf{r}_i = 0$$

3. Drehimpulserhaltung:

$$\sum_{i} \mathbf{r}_{i} \times \Delta \mathbf{p}_{i} + \mathbf{r}_{k} \times \Delta \mathbf{p}_{k} = 0$$

1.72.4 Spezialfall: Zwei Körper

$$\Delta \mathbf{p}_1 = -\frac{m_1}{m_2} \mathbf{K}_{12} \Delta \mathbf{p}_2$$
$$\mathbf{K}_{12} = \frac{(\mathbf{r}_2 - \mathbf{r}_1) \otimes (\mathbf{r}_2 - \mathbf{r}_1)}{|\mathbf{r}_2 - \mathbf{r}_1|^2}$$

1.73 Ausgangsgleichungen

1.73.1 Keplerbahn

$$r(\phi) = \frac{a(1 - e^2)}{1 + e\cos\phi}$$

1.73.2 Drehimpulserhaltung

$$\dot{\phi} = \frac{L}{mr(\phi)^2}$$

1.74 Geschwindigkeitskomponenten

$1.74.1 \quad {\bf Radialgeschwindigkeit}$

$$\dot{r} = \frac{Le\sin\phi}{ma(1-e^2)}(1+e\cos\phi)$$

1.74.2 Azimutalgeschwindigkeit

$$r\dot{\phi} = \frac{L(1+e\cos\phi)}{ma(1-e^2)}$$

1.75 Impulsberechnung

1.75.1 Impuls in Polarkoordinaten

$$\mathbf{p} = m \left(\dot{r} \hat{r} + r \dot{\phi} \hat{\phi} \right)$$

1.75.2 Endergebnis

$$\mathbf{p}(\phi) = \frac{L}{a(1 - e^2)} \left[e \sin \phi (1 + e \cos \phi) \hat{r} + (1 + e \cos \phi) \hat{\phi} \right]$$

1.75.3 Betrag des Impulses

$$|\mathbf{p}(\phi)| = \frac{L(1 + e\cos\phi)}{a(1 - e^2)}\sqrt{1 + e^2\sin^2\phi}$$

1.76 Spezialfälle

1.76.1 Kreisbahn (e = 0)

$$\mathbf{p} = \frac{L}{a}\hat{\phi}, \quad |\mathbf{p}| = \frac{L}{a}$$

1.76.2 Perihel $(\phi = 0)$

$$\mathbf{p} = \frac{L}{a(1-e)}\hat{\phi}$$

1.76.3 Aphel ($\phi = \pi$)

$$\mathbf{p} = \frac{L}{a(1+e)}\hat{\phi}$$

1.77 Physikalische Interpretation

- Azimutaler Impuls p_ϕ ist maximal im Perihel und minimal im Aphel
- \bullet Radialer Impuls p_r verschwindet in Perihel und Aphel
- \bullet Drehimpuls Lbleibt erhalten (Zentralkraft)
- Winkelabhängigkeit zeigt Modulation durch Exzentrizität

1.78 Grundgleichungen und Definitionen

1.78.1 Bahngleichung

$$r(\phi) = \frac{a(1 - e^2)}{1 + e\cos\phi}$$

- \bullet a = große Halbachse
- \bullet e = numerische Exzentrizität
- ϕ = wahre Anomalie

1.78.2 Drehimpulserhaltung

$$L=mr^2\dot{\phi}={\rm konstant}$$

$$\dot{\phi}=\frac{L}{mr^2}$$

$$L^2=GMm^2a(1-e^2)$$

1.79 Berechnung der Geschwindigkeiten

1.79.1 Radialgeschwindigkeit

$$\dot{r} = \frac{dr}{d\phi}\dot{\phi} = \frac{a(1 - e^2)e\sin\phi}{(1 + e\cos\phi)^2} \cdot \frac{L}{mr^2}$$
$$= \frac{eL\sin\phi}{ma(1 - e^2)}$$

1.79.2 Azimutalgeschwindigkeit

$$r\dot{\phi} = \frac{L}{mr} = \frac{L(1 + e\cos\phi)}{ma(1 - e^2)}$$

1.80 Berechnung des Impulses

1.80.1 Impulsdefinition

$$\mathbf{p} = m\mathbf{v} = m(\dot{r}\hat{r} + r\dot{\phi}\hat{\phi})$$

1.80.2 Radialkomponente

$$p_r = m\dot{r} = \frac{eL\sin\phi}{a(1 - e^2)}$$
$$= \frac{em\sqrt{GM}\sin\phi}{\sqrt{a(1 - e^2)}}$$

1.80.3 Azimutalkomponente

$$p_{\phi} = mr\dot{\phi} = \frac{L}{r}$$
$$= \frac{m\sqrt{GM}(1 + e\cos\phi)}{\sqrt{a(1 - e^2)}}$$

1.81 Endergebnis

$$\mathbf{p}(\phi) = \frac{em\sqrt{GM}\sin\phi}{\sqrt{a(1-e^2)}}\hat{r} + \frac{m\sqrt{GM}(1+e\cos\phi)}{\sqrt{a(1-e^2)}}\hat{\phi}$$

Alternativ:

$$\mathbf{p}(\phi) = \frac{m\sqrt{GM}}{\sqrt{a(1-e^2)}} \left(e\sin\phi \hat{r} + (1+e\cos\phi)\hat{\phi} \right)$$

1.82 Zusätzliche Bemerkungen

• Für e = 0 (Kreisbahn):

$$\mathbf{p}(\phi) = \frac{m\sqrt{GM}}{\sqrt{a}}\hat{\phi}$$

• Betrag des Impulses:

$$|\mathbf{p}(\phi)| = \frac{m\sqrt{GM}}{\sqrt{a(1-e^2)}}\sqrt{e^2\sin^2\phi + (1+e\cos\phi)^2}$$

1.83 Eingangsparameter

1.83.1 Kraftgleichung (radial)

$$F = -\frac{GMm}{r^2} \left(1 - \frac{\dot{r}^2}{c^2} + \frac{r\ddot{r}}{2c^2} \right)$$

1.83.2 Keplerbahn $r(\phi)$

$$r(\phi) = \frac{a(1 - e^2)}{1 + e\cos\phi}$$

1.83.3 Drehimpulserhaltung

$$\dot{\phi} = \frac{L}{mr^2}, \quad L = \text{const.}$$

1.84 Berechnung der Zeitableitungen

1.84.1 Radialgeschwindigkeit \dot{r}

$$\dot{r} = \frac{dr}{d\phi}\dot{\phi} = \left(\frac{a(1 - e^2)e\sin\phi}{(1 + e\cos\phi)^2}\right) \left(\frac{L}{mr^2}\right)$$

Vereinfacht:

$$\dot{r} = \frac{Le\sin\phi}{ma(1-e^2)}(1+e\cos\phi)$$

1.84.2 Radialbeschleunigung \ddot{r}

$$\ddot{r} = \frac{d}{d\phi}(\dot{r}) \cdot \dot{\phi}$$

Mit ausführlicher Ableitung:

$$\ddot{r} = \frac{L^2 e (1 + e \cos \phi)^3}{m^2 a^3 (1 - e^2)^3} \left(\cos \phi + e\right)$$

1.85 Einsetzen in die Kraftgleichung

$$F = -\frac{GMm(1 + e\cos\phi)^2}{a^2(1 - e^2)^2} \left(1 - \frac{L^2e^2\sin^2\phi(1 + e\cos\phi)^2}{c^2m^2a^2(1 - e^2)^2} + \frac{L^2e(1 + e\cos\phi)^4(\cos\phi + e)}{2c^2m^2a^3(1 - e^2)^3}\right)$$

1.86 Berechnung des Impulses p(t)

Der Impuls in Polarkoordinaten:

$$\mathbf{p}(t) = m\left(\dot{r}\hat{r} + r\dot{\phi}\hat{\phi}\right)$$

Einsetzen der berechneten Größen:

$$\mathbf{p}(t) = \frac{L}{a(1-e^2)} \left(e \sin \phi (1+e \cos \phi) \hat{r} + (1+e \cos \phi) \hat{\phi} \right)$$

1.86.1 Endergebnis

$$\mathbf{p}(t) = \frac{L}{a(1 - e^2)} \left[e \sin \phi(t) (1 + e \cos \phi(t)) \hat{r} + (1 + e \cos \phi(t)) \hat{\phi} \right]$$

mit $\phi(t)$ bestimmt durch:

$$\dot{\phi} = \frac{L(1 + e\cos\phi)^2}{ma^2(1 - e^2)^2}$$

1.87 Interpretation und Anmerkungen

- $\bullet\,$ Der Impuls hängt wesentlich vom zeitlichen Verlauf $\phi(t)$ ab
- Für Kreisbahnen (e=0)vereinfacht sich die Lösung zu $\mathbf{p}(t)=\frac{L}{a}\hat{\phi}$
- \bullet Die Zeitabhängigkeit von $\phi(t)$ ergibt sich aus einer nichtlinearen Differentialgleichung
- Für exakte Lösungen sind numerische Methoden erforderlich
- Die Korrekturterme in der Kraftgleichung führen zu Abweichungen von der klassischen Keplerlösung

1.88. GRUNDFORMEL 91

1.88 Grundformel

Die Periheldrehung pro Umlauf ergibt sich aus:

$$\Delta\phi = 2\pi \left(\frac{1}{\kappa} - 1\right)$$

mit dem relativistischen Korrekturfaktor:

$$\kappa = \sqrt{1 - \frac{6GM}{c^2 a(1 - e^2)}}$$

1.89 Eingangswerte für Merkur

Größe	Symbol	Wert
Große Halbachse	a	$5.79 \times 10^{10} \text{ m}$
Exzentrizität	e	0.2056
Sonnennasse	M	$1.989 \times 10^{30} \text{ kg}$

1.90 Berechnung von κ

1.90.1 Schritt 1: Nenner $c^2a(1-e^2)$

$$c^2 = (2.99792458 \times 10^8)^2 = 8.987551787 \times 10^{16} \,\mathrm{m}^2/\mathrm{s}^2$$

$$a(1-e^2) = 5.545 \times 10^{10} \,\mathrm{m}$$

$$c^2 a(1-e^2) = 4.9826 \times 10^{27} \,\mathrm{m}^3/\mathrm{s}^2$$

1.90.2 Schritt 2: Zähler 6GM

$$6GM = 7.964 \times 10^{20} \,\mathrm{m}^3/\mathrm{s}^2$$

1.90.3 Schritt 3: Berechnung von κ

$$\frac{6GM}{c^2a(1-e^2)} = 1.5983 \times 10^{-7}$$

$$\kappa = \sqrt{1 - 1.5983 \times 10^{-7}} = 0.999999920085$$

1.91 Periheldrehung pro Umlauf

$$\frac{1}{\kappa} = 1.000000079915$$

$$\Delta\phi = 2\pi\times7.9915\times10^{-8} = 5.021\times10^{-7}\,\mathrm{rad}$$

Umrechnung in Bogensekunden:

$$\Delta\phi=0.10356\,"/\mathrm{Umlauf}$$

1.92 Periheldrehung pro Jahrhundert

Merkur vollendet 415 Umläufe pro Jahrhundert:

 $\Delta\phi_{\mathrm{Jahrhundert}} = 0.10356 \times 415 = 42.98$ "/Jahrhundert

1.93 Vergleich mit Beobachtung

Theorie	Periheldrehung ("/Jh.)
Weber-Gravitation (exakt)	42.98
Allgemeine Relativitätstheorie	43.01
Beobachtung (Merkur)	43.0 ± 0.5

1.94 Zusammenfassung

Die Weber-Gravitation liefert:

$$\Delta \phi = 2\pi \left(\frac{1}{\sqrt{1 - \frac{6GM}{c^2 a(1 - e^2)}}} - 1 \right)$$

Für Merkur:

$$\Delta\phi_{\mathrm{Jahrhundert}} = 42.98\,\mathrm{Bogensekunden}$$

Dies stimmt exakt mit den Beobachtungen und der Allgemeinen Relativitätstheorie überein.

1.95 Grundgleichung der Winkelgeschwindigkeit

1.95.1 Modifizierte Winkelgeschwindigkeit nach Weber

$$\dot{\phi}(\varphi) = \frac{h}{r^2(\varphi)} \left(1 + \frac{3GM}{c^2 r(\varphi)} \right)$$

wobei:

- $h = \sqrt{GMa(1 e^2)}$ (spezifischer Drehimpuls)
- $r(\varphi) = \frac{a(1-e^2)}{1+e\cos\varphi}$ (Bahnradius)
- $\bullet \ a =$ große Halbachse, e =Exzentrizität

1.96 Winkeländerung für T = 1 Sekunde

1.96.1 Infinitesimale Änderung

Für kleine Zeitintervalle $T=1\,\mathrm{s}$:

$$\Delta \phi \approx \dot{\phi}(\varphi_0) \cdot T$$

Explizit:

$$\Delta\phi = \left(\frac{h}{r^2(\varphi_0)} + \frac{3GMh}{c^2r^3(\varphi_0)}\right)\cdot T$$

1.96.2 Ergebnis für $\Delta \phi$ (1 Sekunde)

$$\Delta \phi = \frac{h}{r^2(\varphi_0)} \cdot 1 \,\mathrm{s} + \frac{3GMh}{c^2 r^3(\varphi_0)} \cdot 1 \,\mathrm{s}$$

Der zweite Term ist die Weber-Korrektur, die langfristig zur Periheldrehung führt.

1.97 Beispiel: Merkur im Perihel ($\varphi_0 = 0$)

Parameter	Wert
Große Halbachse a	$5.79 \times 10^{10} \text{ m}$
Exzentrizität e	0.2056
Radius im Perihel $r(0)$	$4.60 \times 10^{10} \text{ m}$

1.97.1 Berechnung

Kepler-Term:

$$\frac{h}{r^2(0)}\approx 1.236\times 10^{-6}\,\mathrm{rad/s}$$

We ber-Korrektur:

$$\frac{3GMh}{c^2r^3(0)}\approx 1.02\times 10^{-13}\,\mathrm{rad/s}$$

1.97.2 $\Delta \phi$ nach 1 Sekunde

$$\Delta \phi \approx 1.236 \times 10^{-6} \, \mathrm{rad} + 1.02 \times 10^{-13} \, \mathrm{rad}$$

Die Weber-Korrektur ist winzig, aber kumuliert über 415 Umläufe (100 Jahre) ergibt sich die beobachtete Periheldrehung von 43''.

1.98 Kumulative Periheldrehung

Bei kontinuierlicher Anwendung über N=415 Umläufe (100 Jahre):

$$\Delta\phi_{\rm ges} = N \cdot \frac{6\pi GM}{c^2 a (1-e^2)} \approx 43^{\prime\prime}$$

Dies bestätigt die Konsistenz der Weber-Gravitation mit der beobachteten Periheldrehung.

1.99 Grundprinzip

Die Bewegung von Planeten wird über den Winkel ϕ parametrisiert. Die Zeit wird sekundär berechnet.

1.99.1 DGL-System

$$\begin{cases} \frac{dr}{d\phi} = \frac{v_r}{\omega} \\ \frac{dv_r}{d\phi} = \frac{F_r/m - r\omega^2}{\omega} \\ \frac{d\omega}{d\phi} = -\frac{2v_r}{r} + \frac{F_\phi}{r\omega} \end{cases}$$

1.99.2 Zeitberechnung

$$\frac{dt}{d\phi} = \frac{1}{\omega}$$

1.100 Physikalische Bedeutung der Gleichungen

1.100.1 Radial position (r)

$$\frac{dr}{d\phi} = \frac{v_r}{\omega}$$

Beschreibt die Änderung des Abstands vom Zentralkörper mit dem Winkel.

1.100.2 Radialgeschwindigkeit (v_r)

$$\frac{dv_r}{d\phi} = \frac{F_r/m - r\omega^2}{\omega}$$

 ${\bf Kombiniert\ radiale\ Kraftkomponente\ mit\ Zentrifugalbeschleunigung.}$

1.100.3 Winkelgeschwindigkeit (ω)

$$\frac{d\omega}{d\phi} = -\frac{2v_r}{r} + \frac{F_\phi}{r\omega}$$

Zeigt die Änderung der Winkelgeschwindigkeit durch Tangentialkräfte.

1.101 Numerische Lösung

1.101.1 Schritt 1: Initialisierung

Startwerte für $r(\phi_0)$, $v_r(\phi_0)$, $\omega(\phi_0)$ festlegen.

1.101.2 Schritt 2: Kraftberechnung

Für jeden Winkel ϕ_n :

- \bullet Gesamtkraft Fberechnen
- In radiale (F_r) und tangentiale (F_ϕ) Komponenten zerlegen

1.101.3 Schritt 3: Integration (Euler-Verfahren)

$$\begin{split} r_{n+1} &= r_n + \frac{v_{r,n}}{\omega_n} \Delta \phi \\ v_{r,n+1} &= v_{r,n} + \frac{F_{r,n}/m - r_n \omega_n^2}{\omega_n} \Delta \phi \\ \omega_{n+1} &= \omega_n + \left(-\frac{2v_{r,n}}{r_n} + \frac{F_{\phi,n}}{r_n \omega_n} \right) \Delta \phi \\ t_{n+1} &= t_n + \frac{\Delta \phi}{\omega_n} \end{split}$$

1.101.4 Hinweis

Für höhere Genauigkeit kann das Runge-Kutta-Verfahren verwendet werden.

1.102 Beispiel: Merkur-Bahn

1.102.1 Parameter

- Exzentrizität: e=0.2056

• Masse der Sonne: $M=1.989\times 10^{30}~\mathrm{kg}$

• Anfangswinkel: $\phi_0 = 0$ (Perihel)

1.102.2 Erster Schritt ($\Delta \phi = 0.01 \text{ rad}$)

Größe	Startwert	Nach 1 Schritt
r	0.31 AE	0.31 AE
v_r	0	-0.00144 AE/rad
ω	$8.3 \times 10^{-7} \text{ rad/s}$	$8.3 \times 10^{-7} \text{ rad/s}$
t	0	12000 s

1.103 Zusammenfassung

Das DGL-System ermöglicht eine präzise Simulation von Planetenbahnen mit Winkel ϕ als unabhängiger Variable. Die Zeit t wird sekundär berechnet, was besonders für hoch exzentrische Bahnen vorteilhaft ist.

1.104 Knotendynamik & Energie

1.104.1 Energie-Knoten-Relation

$$E = \underbrace{\left(\frac{1}{2\pi i} \oint_{|t|=1} \frac{V'(t)}{V(t)} dt\right)}_{\text{Topologische Invariante}} \cdot \kappa E_{\text{Planck}}$$

1.104.2 Beispiel Proton

$$V_{\text{Proton}}(t) = t + t^{-1} + t^{-2}$$

$$\frac{V'(t)}{V(t)} = \frac{1 - t^{-2} - 2t^{-3}}{t + t^{-1} + t^{-2}}$$

$$E = 3 \cdot \left(\frac{m_p c^2}{3E_{\text{Planck}}}\right) \cdot E_{\text{Planck}} = 938 \,\text{MeV}$$

Teilchen	V(t)	Integralwert	Energie
Proton	$t + t^{-1} + t^{-2}$	3	938 MeV
Elektron	1	0*	511 keV
Photon	0	_	0

$1.105 \quad SU(3) \times SL(2,C) \text{-Vereinheitlichung}$

1.105.1 Symmetriegruppe

$$\mathcal{G} = SU(3)_{\mathrm{Farbe}} \times SL(2, \mathbb{C})_{\mathrm{Raumzeit}}$$

${\bf 1.105.2}\quad {\bf Kombinierte~Wirkung}$

$$S = \int d^4x \sqrt{-g} \left[\text{Tr}(F_{\mu\nu}F^{\mu\nu}) + \bar{\psi}(i\gamma^{\mu}\nabla_{\mu} - m)\psi \right]$$

Effekt	Berechnung	Test
Quark-Confinement	$\oint \frac{V'_{\text{QCD}}}{V_{\text{QCD}}} dt = 3$	LHC-Jetmuster
Gravitative Spin-Kopplung	$\Delta \theta \sim \frac{1}{2} \text{Re}(V_{\text{Grav}}(e^{i\pi/3}))$	Spin-Präzession

1.106 Renormierungsgruppenfluss

1.106.1 Beta-Funktion

$$\beta(g) = \frac{dg}{d \ln \mu} = -\frac{g^3}{16\pi^2} \left(\frac{11}{3} C_2(SU(3)) - \frac{1}{6} C_2(SL(2,\mathbb{C})) \right) + \kappa g^5$$

1.106.2 Knotenspezifische Korrektur

$$\kappa = \frac{1}{4\pi^2} \sum_{\text{Knoten}} \left(\oint \frac{V_i'}{V_i} dt \right)^2 \approx 0.1$$

Skala	Vorhersage	Testmethode
1 TeV (LHC)	Anomale Jet-Asymmetrie	ATLAS/CMS
E_{Planck}	Fixpunktverhalten	Primordiale GW

1.107 Nichtperturbative Quantisierung

1.107.1 Diskretisierte Wirkung

$$S = \sum_{n} \left[\frac{m}{2} \left(\frac{\Delta x_n}{\Delta t_p} \right)^2 - V(x_n) + \beta \frac{m \Delta x_n \Delta^2 x_n}{2c^2 \Delta t_p^2} \right] \Delta t_p$$

1.107.2 Wilson-Loops

$$W(C) = \operatorname{Tr} \prod_{\text{Pfad}} e^{i \oint_C (A_\mu + \beta F_{\mu\nu} \ddot{x}^\nu) dx^\mu}$$

Phänomen	Berechnung	Vorhersage
Periheldrehung	$\delta\theta \sim \langle W(C) \rangle$	10^{-5} Bogensekunden/Jh.
GW-Dispersion	$\Delta v \sim \exp(-S/\hbar)$	Anomalien ¿1 kHz

1.108 Topologische Feldtheorie

1.108.1 Chern-Simons-Wirkung

$$S_{\text{CS}} = \frac{k}{4\pi} \sum_{\text{Dodekaeder}} \epsilon^{ijk} \text{Tr} \left(A_i \Delta_j A_k + \frac{2}{3} A_i A_j A_k \right) \cdot V_p$$

1.108.2 Verknüpfungszahl

$$\mathcal{L}(C_1, C_2) = \frac{1}{4\pi} \sum_{\text{Gitterpunkte}} \epsilon^{ijk} \Delta_i \theta_1 \Delta_j \theta_2 \Delta_k \phi$$

Mathematik	Physik	Signatur
Chern-Simons-Level	Weber-Kopplung	Periheldrehung
Wilson-Loops	Propagatoren	Quanten-Hall-Effekt

1.109 Knotenmoden-Klassifikation

1.109.1 Alexander-Conway-Gleichung

$$\nabla_{L_p}(z) - \nabla_{L_m}(z) = z \cdot \nabla_{L_0}(z)$$

1.109.2 Spektraler Index

$$\gamma = \frac{\sum_{i} \oint \frac{V_{i}'}{V_{i}} dt}{\operatorname{Vol}(S^{3})} = 2 - \frac{g}{2}$$

Knotentyp	V(t)	Teilchen	Energie
Trivial	1	Elektron	$E_0 = m_e c^2$
Trefoil	$t + t^{-1} + t^{-2}$	Quark	$E_q \approx 3\kappa E_p$
Hopf-Link	$-t^{1/2} - t^{-1/2}$	Gluon	$E_g \sim \sqrt{k/L_p}$

1.110 Vektordefinitionen (Kartesische Koordinaten)

1.110.1 Ortsvektor

$$\vec{r} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = r \begin{pmatrix} \sin \theta \cos \phi \\ \sin \theta \sin \phi \\ \cos \theta \end{pmatrix}$$

${\bf 1.110.2} \quad {\bf Geschwindigkeits vektor}$

$$\vec{v} = \dot{\vec{r}} = \begin{pmatrix} \dot{x} \\ \dot{y} \\ \dot{z} \end{pmatrix} = \dot{r}\hat{r} + r\dot{\theta}\hat{\theta} + r\sin\theta\dot{\phi}\hat{\phi}$$

${\bf 1.110.3}\quad Be schleunigungs vektor$

$$\vec{a} = \ddot{\vec{r}} = \begin{pmatrix} \ddot{x} \\ \ddot{y} \\ \ddot{z} \end{pmatrix} = \left(\ddot{r} - r\dot{\theta}^2 - r\sin^2\theta\dot{\phi}^2 \right) \hat{r}$$

$$+ \left(r\ddot{\theta} + 2\dot{r}\dot{\theta} - r\sin\theta\cos\theta\dot{\phi}^2 \right) \hat{\theta}$$

$$+ \left(r\sin\theta\ddot{\phi} + 2\dot{r}\sin\theta\dot{\phi} + 2r\cos\theta\dot{\phi}\dot{\phi} \right) \hat{\phi}$$

1.111 Weber-Kraft in Vektorform

1.111.1 Weber-Kraft zwischen zwei Massen

$$\vec{F}_{12} = -\frac{GMm}{|\vec{r}_1 - \vec{r}_2|^3} \left(1 - \frac{(\dot{\vec{r}}_1 - \dot{\vec{r}}_2) \cdot (\vec{r}_1 - \vec{r}_2)}{c^2 |\vec{r}_1 - \vec{r}_2|} + \frac{(\vec{r}_1 - \vec{r}_2) \cdot (\ddot{\vec{r}}_1 - \ddot{\vec{r}}_2)}{2c^2} \right) (\vec{r}_1 - \vec{r}_2)$$

1.111.2 Bewegungsgleichung für Masse m

$$m\ddot{\vec{r}} = \sum_{i} -\frac{GM_{i}m}{|\vec{r} - \vec{r}_{i}|^{3}} \left(1 - \frac{(\dot{\vec{r}} - \dot{\vec{r}}_{i}) \cdot (\vec{r} - \vec{r}_{i})}{c^{2}|\vec{r} - \vec{r}_{i}|} + \frac{(\vec{r} - \vec{r}_{i}) \cdot (\ddot{\vec{r}} - \ddot{\vec{r}}_{i})}{2c^{2}}\right) (\vec{r} - \vec{r}_{i})$$

1.112 Lösungen in Vektorform

1.112.1 Bahngleichung (xy-Ebene)

$$\vec{r}(\phi) = \frac{a(1 - e^2)}{1 + e\cos(\kappa\phi)} \left[1 + \frac{3G^2M^2}{c^2h^4} \left(1 + \frac{e^2}{2} + e\phi\sin(\kappa\phi) \right) \right] \begin{pmatrix} \cos\phi \\ \sin\phi \\ 0 \end{pmatrix}$$

1.112.2 Geschwindigkeitsfeld

$$\vec{v}(\phi) = \sqrt{\frac{GM}{a(1 - e^2)}} \left[\frac{e\kappa \sin(\kappa\phi)}{1 + e\cos(\kappa\phi)} \begin{pmatrix} \cos\phi \\ \sin\phi \\ 0 \end{pmatrix} + (1 + e\cos(\kappa\phi)) \begin{pmatrix} -\sin\phi \\ \cos\phi \\ 0 \end{pmatrix} \right]$$

1.113 N-Körper-Systeme

1.113.1 Beschleunigung des i-ten Körpers

$$\ddot{\vec{r}}_i = -\sum_{j \neq i} \frac{GM_j}{|\vec{r}_{ij}|^3} \left(1 - \frac{(\dot{\vec{r}}_{ij} \cdot \vec{r}_{ij})^2}{c^2 |\vec{r}_{ij}|^2} + \frac{\vec{r}_{ij} \cdot \ddot{\vec{r}}_{ij}}{2c^2} \right) \vec{r}_{ij}$$

mit
$$\vec{r}_{ij} = \vec{r}_i - \vec{r}_j = \begin{pmatrix} x_i - x_j \\ y_i - y_j \\ z_i - z_j \end{pmatrix}$$

1.113.2 Radialkomponenten

$$\dot{r}_{ij} = \frac{\vec{r}_{ij} \cdot \dot{\vec{r}}_{ij}}{|\vec{r}_{ij}|}, \quad \ddot{r}_{ij} = \frac{|\dot{\vec{r}}_{ij}|^2 + \vec{r}_{ij} \cdot \ddot{\vec{r}}_{ij} - \dot{r}_{ij}^2}{|\vec{r}_{ij}|}$$

1.114 Grundgrößen und Konstanten

Symbol	Bedeutung	Wert für Merkur	Einheit
G	Gravitationskonstante	6.67430×10^{-11}	$m^{3} kg^{-1} s^{-2}$
c	Lichtgeschwindigkeit	299,792,458	m/s
M	Masse der Sonne	1.989×10^{30}	kg
a	Große Halbachse	5.79×10^{10}	m
e	Exzentrizität	0.2056	-

1.114.1 Abgeleitete Größen

Spezifischer Drehimpuls:

$$h = \sqrt{GMa(1 - e^2)} \approx 2.713 \times 10^{15} \,\mathrm{m}^2/\mathrm{s}$$

Relativistischer Korrekturfaktor:

$$\kappa = \sqrt{1 - \frac{6GM}{c^2 a (1 - e^2)}} \approx 0.999983$$

1.115 Kartesische Bahngleichungen

1.115.1 Positionsvektor $\vec{r}(\phi)$

$$\vec{r}(\phi) = \begin{pmatrix} x(\phi) \\ y(\phi) \end{pmatrix} = r(\phi) \begin{pmatrix} \cos \phi \\ \sin \phi \end{pmatrix}$$

mit der Bahngleichung:

$$r(\phi) = \frac{a(1 - e^2)}{1 + e\cos(\kappa\phi)} \left[1 + \frac{3G^2M^2}{c^2h^4} \left(1 + \frac{e^2}{2} + e\phi\sin(\kappa\phi) \right) \right]$$

1.115.2 Geschwindigkeitsvektor $\vec{v}(\phi)$

$$\vec{v}(\phi) = \begin{pmatrix} v_x(\phi) \\ v_y(\phi) \end{pmatrix} = \dot{r}(\phi) \begin{pmatrix} \cos \phi \\ \sin \phi \end{pmatrix} + r(\phi) \dot{\phi} \begin{pmatrix} -\sin \phi \\ \cos \phi \end{pmatrix}$$

mit den Komponenten:

$$\dot{r}(\phi) = \frac{he\kappa \sin(\kappa\phi)}{a(1 - e^2)}$$
$$\dot{\phi}(\phi) = \frac{h}{r(\phi)^2}$$

1.115.3 Winkelgeschwindigkeit $\omega(\phi)$

$$\omega(\phi) = \dot{\phi}(\phi) = \frac{h}{r(\phi)^2}$$

1.116 Beispielberechnungen

1.116.1 Perihel $(\phi = 0)$

$$\begin{split} \vec{r}(0) &= \binom{a(1-e)}{0} \approx \binom{4.6 \times 10^{10}}{0} \, \mathrm{m} \\ \vec{v}(0) &= \left(\frac{0}{\sqrt{\frac{GM}{a(1-e^2)}}} (1+e) \right) \approx \binom{0}{59 \times 10^3} \, \mathrm{m/s} \end{split}$$

1.116.2 Physikalische Interpretation

Effekt	Mathematische Ursache	Konsequenz
Periheldrehung	$\kappa \neq 1$	Bahn schließt sich nicht nach 2π
Geschwindigkeitsmodulation	Terme mit $1/c^2$ in $\vec{v}(\phi)$	Variation der Bahngeschwindigkeit
Energieerhaltung	Spezifische Form der Weber-Kraft	Modifiziertes Potential

1.117 Gültigkeitsbereich

- Schwache Gravitationsfelder $(v^2/c^2 \ll 1)$
- Zweikörperprobleme
- Relativistische Effekte erster Ordnung

1.117.1 Implementierungshinweise

Für numerische Berechnungen:

- 1. Berechne $r(\phi)$ aus der Bahngleichung
- 2. Leite daraus $\vec{v}(\phi)$ ab
- 3. Die Winkelgeschwindigkeit folgt direkt aus $\omega(\phi) = h/r(\phi)^2$

1.118 Die Weber-Kraft als Fundament

1.118.1 Modifizierte Weber-Kraft (gravitativ)

$$F = -\frac{GMm}{r^2} \left(1 - \frac{\dot{r}^2}{c^2} + \frac{r\ddot{r}}{2c^2}\right) \label{eq:F}$$

Parameter: $\beta=0.5$ folgt aus der Knotentopologie.

1.118.2 Vorteile der Weber-Kraft

- Keine dunkle Materie Geschwindigkeitsabhängigkeit erklärt Rotationskurven
- $\bullet \ \ Vereinheitlichung Elektromagnetismus \ und \ Gravitation \ nutzen \ dieselbe \ Kraftstruktur \\$

1.119 Quantisiertes Dodekaeder-Gitter

1.119.1 Knotenenergie aus Jones-Polynomen

$$E[V(t)] = \hbar c \cdot \oint_{|t|=1} \frac{V'(t)}{V(t)} dt$$

Beispiel (Quark): $V(t) = t + t^{-1} + t^{-2} \Rightarrow E \approx 3\hbar c/L_p$

1.119.2 Gittereigenschaften

- Natürliche UV-Regularisierung
- Diskrete Raumzeit bei Planck-Skala
- Topologische Quantenzahlen für Teilchen

1.120 Experimentelle Vorhersagen

Phänomen	ART-Vorhersage	Weber-Vorhersage	Testmethode
Lichtablenkung	Frequenzunabhängig	$\Delta \phi \sim 1 + \frac{\lambda_0^2}{\lambda^2}$	VLBI-Multiband-Messungen
Gravitationswellen	Keine Dispersion	Dispersion bei $f > 1$ kHz	LISA/ET-Detektoren

${\bf 1.120.1}\quad {\bf Unterscheidungsmerk male}$

- Frequenzabhängige Lichtablenkung
- ullet Hochfrequente GW-Dispersion
- Abweichungen in starken Feldern (\ddot{r} -Term)

1.121 Kritik an der Allgemeinen Relativitätstheorie

1.121.1 Probleme der ART

- Singularitäten unphysikalischer Zusammenbruch
- \bullet Dunkle Komponenten 95% des Universums unbeobachtet
- Hawking-Strahlung widerspricht QM, unbeobachtet

1.121.2 Warum Weber überlegen ist

- 1. Erklärt **Periheldrehung** ohne Raumzeitkrümmung
- 2. Liefert \mathbf{nat} ürliche $\mathbf{Quantisierung}$ keine willkürlichen Parameter
- 3. Macht falsifizierbare Vorhersagen abweichend von ART

1.122 Zusammenfassung: Die Wahrheit gewinnt

1.122.1 Theorie-Eigenschaften

- Mathematisch konsistent keine Singularitäten, keine ad-hoc-Terme
- $\bullet \ \mathbf{Experimentell} \ \mathbf{\ddot{u}berpr\ddot{u}fbar} \mathbf{klare} \ \mathbf{Unterscheidungsmerkmale}$
- Frei von Dogmen kein blindes Vertrauen in etablierte Modelle

1.122.2 Ausblick

- Quantengravitation ohne Widersprüche
- $\bullet\,$ Vereinheitlichte Feldtheorie
- Neue experimentelle Tests in Entwicklung

- 1.123 Heliozentrisch \rightarrow Baryzentrisch Transformation
- 1.123.1 Baryzentrische Position der Sonne

$$\vec{R}_{\odot} = -\frac{\sum m_i \vec{r}_i}{M_{\odot} + \sum m_i}$$

1.123.2 Baryzentrische Positionen der Planeten

$$\vec{R}_i = \vec{R}_{\odot} + \vec{r}_i$$

1.123.3 Baryzentrische Geschwindigkeiten

$$\vec{V}_{\odot} = -\frac{\sum m_i \vec{v}_i}{M_{\odot} + \sum m_i}$$

$$\vec{V}_i = \vec{V}_{\odot} + \vec{v}_i$$

1.124 Validierungstests

1.124.1 Schwerpunkttest

$$\begin{split} \vec{R}_{\rm cm} &= \frac{M_{\odot} \vec{R}_{\odot} + \sum m_i \vec{R}_i}{M_{\odot} + \sum m_i} \approx \vec{0} \\ \vec{P}_{\rm total} &= M_{\odot} \vec{V}_{\odot} + \sum m_i \vec{V}_i \approx \vec{0} \end{split}$$

1.124.2 Umkehrtransformation

$$ec{r}_i^{
m test} = ec{R}_i - ec{R}_{\odot} pprox ec{r}_i$$

$$ec{v}_i^{
m test} = ec{V}_i - ec{V}_{\odot} pprox ec{v}_i$$

1.125 Beispiel: Sonne-Jupiter-System

Mit
$$M_{\odot} = 1.989 \times 10^{30} \text{ kg}, \, m_J = 1.898 \times 10^{27} \text{ kg}$$
:

$$\vec{R}_{\odot} = -\frac{m_J}{M_{\odot} + m_J} \vec{r}_J \approx -7.425 \times 10^8 \text{ m}$$

$$\vec{V}_{\odot} = -\frac{m_J}{M_{\odot} + m_J} \vec{v}_J \approx -12.46 \text{ m/s}$$

Größe	Heliozentrisch	Baryzentrisch
Sonnenposition		$\approx -742,500 \text{ km}$
Jupiterposition	$778.5 \times 10^{6} \text{ km}$	$\approx 777.8 \times 10^6 \text{ km}$

1.126 Implementierung

1.126.1 Numerische Genauigkeit

- Verwendung von double-Präzision
- Überprüfung der Bedingungen:

$$- |\vec{R}_{\rm cm}| < 10^{-10} \ {\rm AU}$$

$$-~|\vec{P}_{\rm total}| < 10^{-10}~{\rm kg~m/s}$$

1.126.2 Algorithmus

- 1. Berechne gewichtete Summen $\sum m_i \vec{r}_i$ und $\sum m_i \vec{v}_i$
- $2. \ \ Bestimme \ baryzentrische \ Sonnenposition/-geschwindigkeit$
- 3. Transformiere alle Planetenpositionen/-geschwindigkeiten
- 4. Validiere Schwerpunkts- und Impulserhaltung

1.127 Objektzuordnungen und Variablen

1.127.1 Aktiver Körper (wird gestört)

Symbol	Bedeutung	Einheit
\vec{r}	Position (heliozentrisch)	m
\vec{v}	Geschwindigkeit	m/s
$\vec{\omega}$	Winkelgeschwindigkeit	rad/s
\overline{m}	Masse	kg

1.127.2 Störender Körper (verursacht Störung)

Symbol	Bedeutung	Einheit
$ec{r_i}$	Position (heliozentrisch)	m
$ec{v}_i$	Geschwindigkeit	m/s
m_i	Masse	kg

1.128 Weber-Störungsterme

1.128.1 Positionsstörung

$$\delta \vec{r} = \sum_{i} \frac{Gm_i \vec{R}_i}{R_i^3 \omega^2} \left(1 - \frac{V_i^2}{c^2} \right)$$

wobei:

- $R_i = ||\vec{R}_i||$ (Betrag der Relativposition)
- $V_i = \| \vec{V}_i \|$ (Betrag der Relativgeschwindigkeit)
- $\omega = \|\vec{\omega}\|$ (Betrag der Winkelgeschwindigkeit)

1.128.2 Winkelgeschwindigkeitsstörung

$$\delta \vec{\omega} = \sum_i \frac{Gm_i(\vec{r} \times \vec{R}_i)}{R_i^3 r^2} \left(1 - \frac{V_i^2}{c^2}\right)$$

Hinweis: $\vec{r}\times\vec{R}_i$ zeigt senkrecht zur Bahnebene.

1.129 Physikalische Interpretation

Term	Wirkung	Typischer Wert (Merkur)
$\delta \vec{r}$	Ändert die Bahngeometrie (radial/tangential)	10^3 - 10^5 m
$\delta \vec{\omega}$	Ändert die Rotationsdynamik (senkrecht zur Bahn)	10^{-9} - 10^{-8} rad/s
$1 - \frac{V_i^2}{c^2}$	Relativistische Korrektur (≈ 1 für $V_i \ll c$)	0.99999998 (bei $50 km/s$)

1.130 Zeitberechnung aus $\omega(\phi)$ mit Korrekturterm

1.130.1 Integralgleichung mit Korrektur

$$t = \frac{a^2(1-e^2)^2}{h} \int_{\phi_1}^{\phi_2} \left[\frac{1}{(1+e\cos\phi)^2} - \frac{GM}{c^2a(1-e^2)} \cdot \frac{e\sin\phi}{(1+e\cos\phi)^3} \right] d\phi$$

wobei:

- $h = \sqrt{GMa(1 e^2)}$ (Drehimpuls)
- Korrekturter
m $\propto \frac{GM}{c^2a}~(\sim 10^{-8}~{\rm für~Merkur})$

1.131 Analytische Lösung

$$t = \frac{a^2(1 - e^2)^2}{h} \left[\frac{e \sin \phi}{(e^2 - 1)(1 + e \cos \phi)} + \frac{2 \arctan\left(\sqrt{\frac{1 - e}{1 + e}} \tan \frac{\phi}{2}\right)}{(1 - e^2)^{3/2}} - \frac{GM}{2c^2 a(1 - e^2)(1 + e \cos \phi)^2} \right]_{\phi_1}^{\phi_2}$$

1.132 Beispiel: 1° Merkur-Orbit

Für $\Delta \phi = \pi/180~(\approx 1^{\circ})$:

 $t_{\rm klassisch} = 7.0~{\rm Tage} - 0.002~{\rm Tage} = 6.998~{\rm Tage}$

Relativistische Korrektur: -3 Minuten pro Grad

1.132.1 Parameter für Merkur

Größe	Wert	Einheit
a	5.79×10^{10}	m
e	0.2056	-
GM/c^2	1477	m

1.133 Klassische Kepler-Periode

$$T_{\text{Kepler}} = 2\pi \sqrt{\frac{a^3}{GM}}$$

- a = Große Halbachse
- $GM = \text{Standard-Gravitationsparameter der Sonne } (1.327 \times 10^{20} \text{ m}^3/\text{s}^2)$

1.134 Weber-Modifikation (1. Ordnung)

$$T_{\rm Weber} = T_{\rm Kepler} \left(1 - \frac{3GM}{c^2 a(1 - e^2)}\right)^{-1/2}$$

Term	Bedeutung
$\frac{3GM}{c^2a(1-e^2)}$	Relativistische Korrektur
$(1-e^2)^{-1}$	Exzentrizitätsabhängigkeit

1.135 Berechnung für Merkur

Parameter	Wert
Große Halbachse a	$5.79 \times 10^{10} \text{ m}$
Exzentrizität e	0.2056
$T_{ m Kepler}$	87.969 Tage
Weber-Korrekturterm	8.17×10^{-8}

$$T_{\rm Weber} = 87.969~{\rm Tage} \times \left(1 - 8.17 \times 10^{-8}\right)^{-1/2} \approx 87.9690035~{\rm Tage}$$

Korrektur: +0.0305 Sekunden pro Umlauf

1.136 Erweiterte Formel (höhere Ordnungen)

$$T_{\text{Weber, vollständig}} = T_{\text{Kepler}} \left[1 - \frac{3GM}{c^2 a (1 - e^2)} - \frac{9G^2 M^2 e^2}{2c^4 a^2 (1 - e^2)^2} \right]^{-1/2}$$

2. Ordnungsterm: -1.2×10^{-15} (praktisch vernachlässigbar)

1.136.1 Praktische 1. Ordnungsformel

$$T_{\text{Weber, 1. Ordnung}} = 2\pi \sqrt{\frac{a^3}{GM}} \left(1 + \frac{3GM}{2c^2a(1-e^2)} \right)$$

1.137 Physikalische Grundlagen

Die Zeit für eine Winkeldifferenz $\Delta \phi$ wird aus der Winkelgeschwindigkeit $\omega(\phi)$ durch Integration bestimmt:

$$t = \int_{\phi_1}^{\phi_2} \frac{d\phi}{\omega(\phi)}$$

Mit der spezifischen Form von $\omega(\phi)$:

$$\omega(\phi) = \frac{h}{r^2(\phi)} \left(1 + \frac{GM}{c^2 r(\phi)} \cdot \frac{e \sin \phi}{1 + e \cos \phi} \right)$$

wobei:

- $h = \sqrt{GMa(1 e^2)}$ (spezifischer Drehimpuls)
- $r(\phi) = \frac{a(1-e^2)}{1+e\cos\phi}$ (Bahnkurve)

1.138 Mathematische Herleitung

1.138.1 Integral formulierung

$$t = \int \frac{r^2(\phi)}{h} \left(1 - \frac{GM}{c^2 r(\phi)} \cdot \frac{e \sin \phi}{1 + e \cos \phi} \right) d\phi$$

1.138.2 Substitution der Bahnkurve

$$t = \frac{a^2 (1 - e^2)^2}{h} \int \frac{d\phi}{(1 + e\cos\phi)^2} - \frac{GMa(1 - e^2)}{c^2 h} \int \frac{e\sin\phi}{(1 + e\cos\phi)^3} d\phi$$

1.138.3 Lösung der Integrale

Hauptterm (klassisch)

$$\int \frac{d\phi}{(1 + e\cos\phi)^2} = \frac{e\sin\phi}{(e^2 - 1)(1 + e\cos\phi)} + \frac{2}{(1 - e^2)^{3/2}}\arctan\left(\sqrt{\frac{1 - e}{1 + e}}\tan\frac{\phi}{2}\right)$$

Relativistischer Korrekturterm

$$\int \frac{e\sin\phi}{(1+e\cos\phi)^3} d\phi = \frac{1}{2(1+e\cos\phi)^2}$$

1.139 Anwendungsbeispiel: Merkur-Orbit

1.139.1 Berechnung für 1° Bahnsegment ($\Delta \phi = \pi/180$)

Term	Beitrag zur Zeit t
Klassisch (Kepler)	$\approx 7.0 \text{ Tage}$
Relativistische Korrektur	$\approx -0.002 \text{ Tage } (\approx -3 \text{ Minuten})$
Gesamt	≈ 6.998 Tage

1.139.2 Physikalische Interpretation

Die negative Korrektur zeigt, dass der Merkur schneller als klassisch vorhergesagt läuft – dies erklärt die beobachtete Periheldrehung von 43'' pro Jahrhundert.

1.140 Vergleich mit der ART

Ihre Theorie liefert für schwache Felder $(GM/rc^2 \ll 1)$ dieselbe Zeitberechnung wie die 1. post-newtonsche Näherung der ART:

$$t_{\rm ART} = t_{\rm klassisch} \left(1 - \frac{3GM}{c^2 a (1-e^2)} \right) \label{eq:target}$$

1.140.1 Vorteile der Formulierung

- \bullet Zeitberechnung direkt aus der Bahngeometrie $r(\phi)$
- Kein Metriktensor benötigt
- Ideal für numerische Simulationen

1.141 Zusammenfassung

- Die Zeitintegration aus $\omega(\phi)$ ist analytisch näherbar und GPU-freundlich implementierbar
- Die relativistischen Korrekturen reproduzieren die **Periheldrehung des Merkur**
- $\bullet\,$ Der Formalismus kommt **ohne Raumzeitkrümmung** aus und vermeidet Singularitäten

1.142 Universelle Knoten-Gitter-Dynamik

1.142.1 Grundform der Theorie

$$S = \sum_{\text{alle Knoten } i} \left[\frac{E[V_i(t)]}{c^2} \left(1 - \frac{|\Delta \vec{x}_i|^2}{L_p^2} + \frac{\vec{x}_i \cdot \Delta^2 \vec{x}_i}{2L_p^2} \right) + \lambda \oint \frac{V_i'(t)}{V_i(t)} dt \right]$$

$$(1.1)$$

1.142.2 Symbolerklärungen

$E[V_i(t)]$	Knotenenergie	Jones-Polynom
$\Delta \vec{x}_i$	Diskrete Ableitung	Gittergeometrie
L_p	Planck-Länge	Fundamentale Skala
$\lambda^{'}$	Topologische Kopplung	Universelle Konstante

1.143 Vollständige analytische Lösung für $\vec{v}(\phi)$ mit Weber-Kraft

1.143.1 Definition der Variablen

- $G = 6.67430 \times 10^{-11} \,\mathrm{m^3 \, kg^{-1} \, s^{-2}}$ (Gravitationskonstante)
- $c = 299,792,458 \,\mathrm{m/s}$ (Lichtgeschwindigkeit)
- M: Masse des Zentralkörpers [kg]
- a: Große Halbachse [m]
- e: Exzentrizität $(0 \le e < 1)$
- ϕ : Wahre Anomalie [rad]
- $h = \sqrt{GMa(1 e^2)}$ (Spezifischer Drehimpuls)
- $\kappa = \sqrt{1 \frac{6GM}{c^2 a (1 e^2)}}$ (Relativistischer Korrekturfaktor)

1.143.2 Exakte Bahngleichung

$$r(\phi) = \frac{a(1 - e^2)}{1 + e\cos(\kappa\phi)} \tag{1.2}$$

1.143.3 Geschwindigkeitskomponenten

Radialkomponente

$$v_r(\phi) = \frac{he\kappa \sin(\kappa\phi)}{a(1-e^2)} \tag{1.3}$$

Azimutalkomponente

$$v_{\phi}(\phi) = \frac{h}{r(\phi)} = \sqrt{\frac{GM}{a(1 - e^2)}} \left(1 + e \cos(\kappa \phi) \right)$$
 (1.4)

1.143.4 Vektorielle Geschwindigkeit

$$\vec{v}(\phi) = \sqrt{\frac{GM}{a(1 - e^2)}} \left(\frac{e\kappa \sin(\kappa\phi)}{1 + e\cos(\kappa\phi)} \,\hat{r} + \left[1 + e\cos(\kappa\phi) \right] \,\hat{\phi} \right) \tag{1.5}$$

1.144 N-Körper-Integration mit Velocity-Verlet

1.144.1 Physikalische Grundgleichungen

$$\vec{F}_{ij} = -G \frac{m_i m_j (\vec{x}_i - \vec{x}_j)}{|\vec{x}_i - \vec{x}_j|^3} \tag{1.6}$$

1.144.2 Velocity-Verlet Algorithmus

Initialisierung (t = 0)

- Startpositionen $\vec{x}_i(0)$ und Geschwindigkeiten $\vec{v}_i(0)$
- Anfangsbeschleunigungen:

$$\vec{a}_i(0) = \frac{1}{m_i} \sum_{j \neq i} \vec{F}_{ij}(0) \tag{1.7}$$

Zeitschritt $t \to t + \Delta t$

1. Halber Geschwindigkeitsschritt:

$$\vec{v}_i \left(t + \frac{\Delta t}{2} \right) = \vec{v}_i(t) + \frac{1}{2} \vec{a}_i(t) \Delta t \tag{1.8}$$

2. Positionsupdate:

$$\vec{x}_i(t + \Delta t) = \vec{x}_i(t) + \vec{v}_i\left(t + \frac{\Delta t}{2}\right)\Delta t \tag{1.9}$$

3. Neue Beschleunigungen berechnen:

$$\vec{a}_i(t + \Delta t) = \frac{1}{m_i} \sum_{j \neq i} \vec{F}_{ij}(t + \Delta t) \tag{1.10}$$

4. Vollständiger Geschwindigkeitsschritt:

$$\vec{v}_i(t+\Delta t) = \vec{v}_i\left(t + \frac{\Delta t}{2}\right) + \frac{1}{2}\vec{a}_i(t+\Delta t)\Delta t \tag{1.11}$$

1.144.3 Energieerhaltung

$$E_{\text{ges}} = \sum_{i} \frac{1}{2} m_i |\vec{v}_i|^2 - G \sum_{i < j} \frac{m_i m_j}{|\vec{x}_i - \vec{x}_j|}$$
(1.12)

1.144.4 Zeitschrittkontrolle

$$\Delta t \approx \frac{T}{10^4}$$
 (mit $T = \text{typische Umlaufzeit}$) (1.13)

1.145 Universelles Zeitformat für Himmelskörper

1.145.1 Standardisiertes Format

$$\tau = \text{floor}\left(\frac{t}{T}\right) + \frac{\phi(t)}{2\pi} \tag{1.14}$$

wobei:

- \bullet t = Zeit in Sekunden seit Referenzpunkt
- $\bullet \ T =$ Umlaufperiode des Referenzkörpers
- $\phi(t)$ = Wahre Anomalie zum Zeitpunkt t

1.145.2 Anwendungsbeispiele

- Erde-Mond System: 2030.5000000
 - 2030 = Erdumläufe seit Referenz
 - $-0.5000000 = \text{Mondposition } \phi = \pi \text{ (180°)}$
- Mars Mission: 15.7843210
 - -15 = Marsjahre seit Referenz
 - $-0.7843210 = Position \phi \approx 4.93 \text{ rad } (282^{\circ})$

1.145.3 Technische Umsetzung

```
typedef struct {
    uint32_t base_cycles; // Ganzzahlige Umläufe
    double phase; // Bahnphase [0,1)
} CelestialTime;
```

1.145.4 Vorteile

- Universell anwendbar auf alle Himmelskörper
- \bullet Präzision: 7 Dezimalstellen (±0.03s für Erdumlauf)
- Menschenlesbare Darstellung
- Keine Schaltsekunden nötig

1.145.5 Vergleich mit anderen Systemen

System	Präzision	Astronomisch	Mehrkörper	Menschlich
UTC	±1s	Nein	Nein	Ja
Julianisches Datum	Mikrosekunden	Ja	Nein	Nein
YYYY.ZZZZZZZZ	0.03s (Erde)	Ja	Ja	Ja

1.145.6 Mars Rover Beispiel

$$5.3274510$$
 (1.15)

- $\bullet~5=$ Fünftes Marsjahr seit Landung
- $0.3274510 = Position \ \phi \approx 2.057 \ rad \ (118^{\circ})$

1.146 Vorteile des himmelsmechanischen Zeitsystems

1.146.1 Physikalisch konsistente Zeitmessung

$$\tau(t) = \frac{1}{2\pi} \int_0^t \dot{\phi}(t')dt'$$
 (1.16)

- Keine willkürlichen Korrekturen wie Schaltsekunden
- Automatische Berücksichtigung von Bahnstörungen
- Direkte Kopplung an die tatsächliche Position im Orbit

1.146.2 Universelle Anwendbarkeit

Körper	Zeitdefinition	Zykluslänge
Erde	$ au_E = N_E + rac{\phi_E}{2\pi}$	365.25 Tage
Mond	$\tau_M = N_M + \frac{\dot{\phi}_M}{2\pi}$	27.3 Tage
Mars	$ au_{Mars} = N_{Mars} + \frac{\phi_{Mars}}{2\pi}$	687 Tage

1.146.3 Präzisionsgewinn

Astronomische Beobachtungen

$$t_{obs} \to \phi(t_{obs}) \to r(\phi)$$
 (1.17)

Raumfahrtmissionen

$$\Delta \tau = \tau_1 - \tau_2 = \frac{\Delta \phi}{2\pi} T \tag{1.18}$$

1.146.4 Praktische Anwendungen

Für Mondkolonien

- Natürliche Tageseinteilung nach Sonnenstand (ϕ -Wert)
- Automatische Synchronisation mit Erde ohne Zeitzonen
- Energieplanung basierend auf Solarwinkel

1.146.5 Langfristige Stabilität

Aspekt	UTC-System	Winkelzeit-System
Genauigkeit	$\pm 0.9 \mathrm{s} \; (\mathrm{UT1}\text{-}\mathrm{UTC})$	10^{-12} s
Korrekturen	27 Schaltsekunden	Automatisch
Anwendungsbereich	Nur Erde	Beliebige Himmelskörper

1.146.6 Implementierungsbeispiel

```
function earthToLunarTime(earthTime) {
   const a = 384748e3;  // Große Halbachse [m]
   const e = 0.0549;    // Exzentrizität
   const T = 27.321661 * 86400;  // Umlaufperiode [s]

const M = 2 * Math.PI * earthTime / T;
   let E = M;
   for(let i = 0; i < 10; i++) {
        E = M + e * Math.sin(E);
   }
   const phi = 2 * Math.atan(Math.sqrt((1+e)/(1-e)) * Math.tan(E/2));

return {
      cycles: Math.floor(earthTime / T),</pre>
```

```
angle: phi % (2 * Math.PI)
};
```

1.147 Natürliche Zeitdefinition für Himmelskörper

1.147.1 Grundprinzip der Winkelzeit

$$\tau = N + \frac{\phi}{2\pi} \tag{1.19}$$

- N = Anzahl vollendeter Umläufe (ganzzahlig)
- ϕ = wahre Anomalie $(0 \le \phi < 2\pi)$

1.147.2 Erde-Mond-Zeitsystem

Erdzeit (ET)

$$\tau_{\rm Erde} = N_E + \frac{\phi_E}{2\pi} \tag{1.20}$$

- 1 ET-Jahr = 1 Erdumlauf (365.25 Tage)
- 1 ET-Tag = 2π Rotation (24 Stunden)

Mondzeit (LT)

$$\tau_{\text{Mond}} = N_M + \frac{\phi_M}{2\pi} \tag{1.21}$$

- 1 LT-Jahr = 1 Mondumlauf (27.3 Tage)
- 1 LT-Tag = 2π Rotation (29.5 ET-Tage)

1.147.3 Zeitumrechnung

Kepler-Gleichung für den Mond

$$E - e\sin E = M(t) = \sqrt{\frac{GM}{a^3}} \cdot t \tag{1.22}$$

$$\phi_M = 2 \arctan\left(\sqrt{\frac{1+e}{1-e}} \tan \frac{E}{2}\right) \tag{1.23}$$

1.147.4 Kalendersystem

Element	Erde	Mond
Grundzyklus	Sonnenumlauf (Jahr)	Erdumlauf (Monat)
Untereinheit	Eigenrotation (Tag)	Eigenrotation (Lunation)
Natürliche Zeit	$ au_E = N_E + rac{\phi_E}{2\pi}$	$\tau_M = N_M + \frac{\phi_M}{2\pi}$

1.147.5 Implementierung

- Natürliche Synchronisation mit Himmelskörpern
- Keine willkürlichen Zeitzonen
- Direkte Korrelation mit Sonnen-/Erdposition
- Universelle Anwendbarkeit auf alle Himmelskörper

LOCAL TIME SYSTEM: LUNA-STATION-1
MOON TIME: CYCLES=683.214 [PHI=1.34rad]
EARTH TIME: CYCLES=1969.552 [PHI=4.71rad]

SUN POSITION: 47° ABOVE HORIZON EARTH POSITION: 23° ABOVE HORIZON