1 第一题 1

1 第一题

1.1

记 \mathbb{R} 上的开集族为 A, 显然 $\mathcal{F} \subset A$, 且 σ 代数一定是 σ 环, 故 $\Sigma(\mathcal{F}) \subset \Sigma(A) \subset \mathcal{B}(\mathbb{R})$. 另一方面,由 $\mathbb{R} = \bigcup_{n=-\infty}^{+\infty} (n,n+1)$ 知 $\mathbb{R} \in \Sigma(\mathcal{F})$, 故 $\forall A \in \Sigma(\mathcal{F})$, $A^c = \mathbb{R} - A \in \Sigma(\mathcal{F})$, 所以 $\Sigma(\mathcal{F})$ 实际上是一个 σ 代数. 又熟知 \mathbb{R} 上开集是至多可数个开集的并,故一定属于 $\Sigma(\mathcal{F})$, 从而 $\mathcal{B}(\mathbb{R}) \subset \Sigma(\mathcal{F})$.

1.2

 $\mathbf{2}$

2.1

 $\mu(E) = \lim_{n \to \infty} \mu_n(E) \ge 0. \quad \mbox{设} \ E \cap F = \varnothing, \ \mbox{则} \ \forall n, \mu_n(E \cup F) = \mu_n(E) + \mu_n(F). \quad \mbox{所以} \ \mu(E \cup F) = \lim_{n \to \infty} \mu_n(E \cup F) = \lim_{n \to \infty} (\mu_n(E) + \mu_n(F)) = \lim_{n \to \infty} \mu_n(E) + \lim_{n \to \infty} \mu_n(F) = \mu(E) + \mu(F). \ \mbox{反例:}$

2.2

由测度定义只用证对两两不交的 $\{A_n\}$ 有另一边的不等式成立. 而对任意正整数 N 有:

$$\sum_{n=1}^{N} \mu(A_n) = \mu(\bigcup_{n=1}^{N} A_n) \le \mu(\bigcup_{n=1}^{+\infty} A_n)$$

上式令 $N \to \infty$ 即证.

3

设 $\liminf_{n\to\infty}\mu(A_n)=\alpha$, 则 $\forall \epsilon>0,\exists\{A_{k_n}\}$ 使得 $\mu(A_{k_n})<\alpha+\epsilon,\forall n$. 显然 $k_n\geq n$, 故

$$\cap_{i>n} A_k \subset \cap_{i>n} A_{k_i}$$

,进一步

3

3.1

两两不交时由测度的可列可加性知成立. 反过来,设 $B_n = A_n - \bigcup_{k>n} A_k$,则易知 B_n 满足:

- $(1)B_i \cap B_j = \varnothing, \forall i \neq j$
- $(2)\cup_n B_n = \cup_n A_n$

则 $\mu(\cup_n A_n) = \mu(\cup_n B_n) = \sum_n \mu(B_n) \leq \sum_n \mu(A_n)$, 结合条件知上式的不等号实际上是等号. 故 $\sum_n \mu(A_n - B_n) = 0$, 从而每一项都为 0. 所以 $A_n - B_n = A_n \cap (\cup_{k>n} A_k)$ 是零测集, 所以 A_n 两两相交为零测集.