Numerical Exercise

		<u></u>
Observation	1st sibling age	2nd sibling age
1	20 20-195=0.5	18 18-17 = 53
2	18 18-195=-1.5	$16 \frac{16-19}{24\pi} = -\frac{\sqrt{3}}{2}$
3	20 20-19.5 = 015	$16 \frac{16-11}{3403} = -\frac{13}{2}$
4	20 20-17.5 = 0,5	$18 \frac{ \delta - 1 }{2\sqrt{5}} = \frac{\sqrt{3}}{2}$

z-score of
$$\mathbf{x}_i = \frac{x_i - \bar{x}}{S_x}$$

correlation(x, y) =

$$\frac{1}{n-1}\sum_{i=1}^{n} (z\text{-score of } x_i \times z\text{-score of } y_i)$$

5 the use of n-1 will be discussed next week.

> z-score(1st sibiling age)

$$\pi = \frac{(20+18+20+26)}{4} = \frac{19.5}{4-1} \left(\frac{(20+9.5)^{2}+(18-19.5)^{2}+(20+9.5)^{2}+(20+9.5)^{2}}{4-1} \right)$$

z-score(2nd sibiling age)

$$y = \frac{(18 + 16 + 16 + 16 + 18)}{4} = \frac{17}{4}$$

$$y = \frac{(18 + 16 + 16 + 16 + 18)}{4} = \frac{17}{4}$$

$$y = \frac{(18 + 16 + 16 + 18)}{4} = \frac{17}{4}$$

$$y = \frac{(18 + 16 + 16 + 18)}{4} = \frac{17}{4}$$

$$y = \frac{(18 + 16 + 16 + 18)}{4} = \frac{(18 - 17)^{2}}{4}$$

$$y = \frac{(18 + 16 + 16 + 18)}{4} = \frac{(18 - 17)^{2}}{4}$$

$$y = \frac{(18 + 16 + 16 + 18)}{4} = \frac{(18 - 17)^{2}}{4}$$

$$y = \frac{(18 + 16 + 16 + 18)}{4} = \frac{(18 - 17)^{2}}{4} = \frac{(18 - 17)$$