Introduction to Language Models

Large Language Models: Introduction and Recent Advances

ELL881 · AlL821

Tanmoy Chakraborty
Associate Professor, IIT Delhi
https://tanmoychak.com/

Mistral Large 2 drops!

Mistral AI announces the release of its 123B model.

Released yesterday July 24, 2024

https://mistral.ai/news/mistrallarge-2407/

Mistral Large 2 supports 11 languages
(French, German, Spanish, Italian,
Portuguese, Arabic, Hindi, Russian,
Chinese, Japanese, and Korean), along
with 80+ coding languages (including
Python, Java, C, C++, JavaScript, and
Bash).

Its performance in **code generation**, **mathematics** and **reasoning** tasks is **comparable to larger LLMs** like GPT4o, Claude 3.5 Sonnet and Llama 3.1(405B).

Mistral Large 2 has a context window of **128k**!

Introduction to Statistical Language Models

Next Word Prediction

P(cheese| I like pizza with loads of) > P(corn| I like pizza with loads of) >> P(tree| I like pizza with loads of)

Probabilistic language models can be used to determine the **most plausible sentence** by assigning a probability to sentences.

Probabilistic language models can be used to determine the **most plausible sentence** by assigning a probability to sentences.

Speech Recognition

- P(I bought fresh mangoes from the market) >> P(I bot fresh man goes from the mar kit)
- P(I love eating spicy samosas) >> P(eye love eat tin spy sea some o says)

Probabilistic language models can be used to determine the **most plausible sentence** by assigning a probability to sentences.

Speech Recognition

- P(I bought fresh mangoes from the market) >> P(I bot fresh man goes from the mar kit)
- P(I love eating spicy samosas) >> P(eye love eat tin spy sea some o says)

Machine Translation

- P(Heavy rainfall) >> P(Big rainfall)
- P(The festival of lights) >> P(the festival of lamps)
- P(Family gatherings) > P(Family meetings)

Probabilistic language models can be used to determine the **most plausible sentence** by assigning a probability to sentences.

Speech Recognition

- P(I bought fresh mangoes from the market) >> P(I bot fresh man goes from the mar kit)
- P(I love eating spicy samosas) >> P(eye love eat tin spy sea some o says)

Machine Translation

- P(Heavy rainfall) >> P(Big rainfall)
- P(The festival of lights) >> P(the festival of lamps)
- P(Family gatherings) > P(Family meetings)
- Context Sensitive Spelling Correction
- Natural Language Generation
- •

Language Models Are Everywhere

Language Models Are Everywhere

Large Language Models S

Large Language Models (LLMs) hav revolutionized the field of natural language processing. LLMs, such as GPT-3, have demonstrated impressive capabilities in understanding and generate human-like text across various natural language

applications.

Language Models Are Everywhere

Large Language Models (LLMs) hav revolutionized the field of natural language processing. LLMs, such as GPT-3, have demonstrated impressive capabilities in understanding and generate human-like text across various natural language

applications.

Probabilistic Language Models

• **Goal:** Calculate the probability of a sentence or sequence consisting of *n* words

$$P(W) = P(W_1, W_2, W_3, ..., W_n)$$

or

 Related Task: Calculate the probability of the next word conditioned on the preceding words

$$P(W_6 | W_1, W_2, W_3, W_4, W_5)$$

Probabilistic Language Models

Goal: Calculate the probability of a sentence or sequence consisting of n words

$$P(W) = P(W_1, W_2, W_3, ..., W_n)$$

or

 Related Task: Calculate the probability of the next word conditioned on the preceding words

$$P(W_6 | W_1, W_2, W_3, W_4, W_5)$$

A model that calculates either of these is referred to as a **Language Model (LM).**

Probability of a Sentence

Let's consider the following sentence:

The monsoon season has begun

How to compute the probability of the sentence?

```
P(W) = P("The monsoon season has begun")
```

= P(The, monsoon, season, has, begun)

Probability of a Sentence

Let's consider the following sentence:

The monsoon season has begun

How to compute the probability of the sentence?

```
P(W) = P("The monsoon season has begun")
```

= P(The, monsoon, season, has, begun)

We compute the above joint probability by using the principles of

Chain Rule of Probability.

Chain Rule of Probability

• Definition of conditional probability:

$$P(A|B) = P(A,B) / P(B)$$

Rewriting: P(A, B) = P(A|B)P(B)

Chain Rule of Probability

Definition of conditional probability:

$$P(A|B) = P(A,B) / P(B)$$

Rewriting: P(A, B) = P(A|B)P(B)

• More variables: $P(A,B,C,D) = P(A) \cdot P(B \mid A) \cdot P(C \mid A,B) \cdot P(D \mid A,B,C)$

Chain Rule of Probability

Definition of conditional probability:

$$P(A|B) = P(A,B) / P(B)$$

Rewriting: P(A, B) = P(A|B)P(B)

- More variables: P(A,B,C,D) = P(A) . P(B | A) . P(C | A,B) . P(D | A,B,C)
- The **Chain Rule** in general:

$$P(x_1, x_2, x_3, ..., x_n) = P(x_1) P(x_2 | x_1) P(x_3 | x_1, x_2) ... P(x_n | x_1, ..., x_{n-1})$$

Probability of a Sequence

$$P(w_1w_2...w_n) = \prod_i P(w_i | w_1w_2...w_{i-1})$$

- P(W) = P("The monsoon season has begun")
 - = P(The, monsoon, season, has, begun)
 - = P(The) x P(monsoon | The) x P(season | The monsoon) x P(has | The monsoon season) x P(begun | The monsoon season has)

Estimate Conditional Probabilities

P(begun | The monsoon season has) = $\frac{\text{Count (The monsoon season has begun)}}{\text{Count (The monsoon season has)}}$

Estimate Conditional Probabilities

P(begun | The monsoon season has) = $\frac{\text{Count (The monsoon season has begun)}}{\text{Count (The monsoon season has)}}$

• **Problem:** Enough data is not available to get an accurate estimate of the above quantities.

Estimate Conditional Probabilities

P(begun | The monsoon season has) = $\frac{\text{Count (The monsoon season has begun)}}{\text{Count (The monsoon season has)}}$

- **Problem:** Enough data is not available to get an accurate estimate of the above quantities.
- Solution: Markov Assumption

Markov Assumption

Every next state depends only the previous k states

Markov Assumption

Every next state depends only the previous k states

Chain Rule:

$$P(w_1w_2...w_n) = \prod_i P(w_i | w_1w_2...w_{i-1})$$

Applying Markov Assumption we condition on only the preceding k words:

$$P(w_1w_2...w_n) = \prod_i P(w_i|w_{i-k}...w_{i-1})$$

Markov Assumption

Every next state depends only the previous k states

Chain Rule:

$$P(w_1w_2...w_n) = \prod_i P(w_i | w_1w_2...w_{i-1})$$

Applying Markov Assumption we condition on only the preceding k words:

$$P(w_1w_2...w_n) = \prod_i P(w_i|w_{i-k}...w_{i-1})$$

 Probabilistic Language Models exploit the Chain Rule of Probability and Markov Assumption to build a probability distribution over sequences of words.

N-gram Language Models

• Let's consider the following conditional probability:

P(begun | the monsoon season has)

• An N-gram model considers only the preceding N -1 words.

N-gram Language Models

Let's consider the following conditional probability:

P(begun | the monsoon season has)

- An N-gram model considers only the preceding N −1 words.
 - Unigram: P(begun)
 - Bigram: P(begun | the)
 - Trigram: P(begun | the monsoon)

N-gram Language Models

• Let's consider the following conditional probability:

P(begun | the monsoon season has)

- An N-gram model considers only the preceding N −1 words.
 - Unigram: P(begun)
 - Bigram: P(begun | the)
 - Trigram: P(begun | the monsoon)

Relation between Markov model and Language Model:

An N-gram Language Model ≡ (N -1) order Markov Model

Raw bigram counts (absolute measure)

	i	want	to	eat	chinese	food	lunch	spend
i	5	827	0	9	0	0	0	2
want	2	0	608	1	6	6	5	1
to	2	0	4	686	2	0	6	211
eat	0	0	2	0	16	2	42	0
chinese	1	0	0	0	0	82	1	0
food	15	0	15	0	1	4	0	0
lunch	2	0	0	0	0	1	0	0
spend	1	0	1	0	0	0	0	0

Raw unigram counts (absolute measure)

i	want	to	eat	chinese	food	lunch	spend
2533	927	2417	746	158	1093	341	278

Unigram and bigram counts for eight of the words (out of V = 1446) in the Berkeley Restaurant Project corpus of 9332 sentences. Previously-zero counts are in gray.

Raw bigram counts (absolute measure)

		i	want	to	eat		chin	nese f		od	lunch	sp	end		
	i	5	827	0	9		0	0			0 2				
	want	i			want	to		eat chine		se food		lunc	h	spend	
	to	i	0.0	02	0.33	0.66		0.0020				0			0.00079
	eat	want	0.0	022	0							.0065	0.0054		0.0011
	chinese	to	0.0	0083	0	0.0	0.0017			0.00083			0.00	25	0.087
	food	eat	0		0	0.00		0	0.021		0	.0027	0.05	6	0
	lunch	chine	ese 0.0	063	0	0		0		0	0	.52	0.0063		0
	spend	food 0.0		14	0	0.0	14	0	0.0009		92 0	0.0037 0			0
Raw unigram counts		luncl	o .0	059	0	0		0		0	0	.0029	0		0
		spen	d 0.0	036	0	0.0	036	0		0	0		0		0
i	want	to	e	at	chine	se	fc	ood 1		lunch		end			
2533	927	241	7 7	46	158		10)93	341		27	78			

Unigram and bigram counts for eight of the words (out of V = 1446) in the Berkeley Restaurant Project corpus of 9332 sentences. Previously-zero counts are in gray.

Limitation of N-gram Language Models

• An insufficient model of language since they are **not effective in capturing long-range dependencies present in language**.

Limitation of N-gram Language Models

 An insufficient model of language since they are not effective in capturing long-range dependencies present in language.

Example:

The **project**, which he had been working on for months, was finally **approved** by the committee.

The above example highlights the long-distance dependency between "project" and "approved", where the context provided by earlier words affects the interpretation of later parts of the sentence.

Estimate N-gram Probabilities

- Maximum Likelihood Estimate (MLE):
 - Used to estimate the parameters of a statistical model
 - Determine the most likely values of the parameters that would make the observed data most probable

Estimate N-gram Probabilities

- Maximum Likelihood Estimate (MLE):
 - Used to estimate the parameters of a statistical model
 - Determine the most likely values of the parameters that would make the observed data most probable
- For example, bigram probabilities can be estimated as follows:

$$P(w_{i} | w_{i-1}) = \frac{count(w_{i-1}, w_{i})}{count(w_{i-1})} = \frac{c(w_{i-1}, w_{i})}{c(w_{i-1})}$$

Limitations with MLE Estimation

Problem: N-grams only work well for word prediction if the test corpus looks like the training corpus. It is often not the case in real scenarios (data sparsity problem).

Limitations with MLE Estimation

Problem: N-grams only work well for word prediction if the test corpus looks like the training corpus. It is often not the case in real scenarios (data sparsity problem).

Training set:

- ... enjoyed the movie
- ... enjoyed the food
- ... enjoyed the game
- ... enjoyed the vacation

Test set:

- ... enjoyed the concert
- ... enjoyed the festival
- ... enjoyed the walk

Zero probability n-grams:

- P(concert | enjoyed the) = P(festival | enjoyed the) = P(walk | enjoyed the) = 0
- As a result, the probability of the test set will be 0.
- Perplexity cannot be computed (Cannot divide by 0).

Limitations with MLE Estimation

	i	want	to	eat	chinese	food	lunch	spend
i	5	827	0	9	0	0	0	2
want	2	0	608	1	6	6	5	1
to	2	0	4	686	2	0	6	211
eat	0	0	2	0	16	2	42	0
chinese	1	0	0	0	0	82	1	0
food	15	0	15	0	1	4	0	0
lunch	2	0	0	0	0	1	0	0
spend	1	0	1	0	0	0	0	0

Solution: Various smoothing techniques

Laplace Smoothing (Add-One Estimation)

- Imagine that we encountered each word (N-gram) one more time than its actual occurrence.
- Simply increase all the counts by one!

Laplace Smoothing (Add-One Estimation)

- Imagine that we encountered each word (N-gram) one more time than its actual occurrence.
- Simply increase all the counts by one!
- MLE estimate (in case of bigram model)

$$P_{MLE}(W_i \mid W_{i-1}) = \frac{C(W_{i-1}, W_i)}{C(W_{i-1})}$$

Add-1 estimate:

$$P_{Add-1}(W_i \mid W_{i-1}) = \frac{C(W_{i-1}, W_i) + 1}{C(W_{i-1}) + |V|}$$

Laplace Smoothing (Add-One Estimation)

- Imagine that we encountered each word (N-gram) one more time than its actual occurrence.
- Simply increase all the counts by one!
- MLE estimate (in case of bigram model)

$$P_{MLE}(W_i \mid W_{i-1}) = \frac{C(W_{i-1}, W_i)}{C(W_{i-1})}$$

Add-1 estimate:

$$P_{Add-1}(W_i \mid W_{i-1}) = \frac{C(W_{i-1}, W_i) + 1}{C(W_{i-1}) + |V|}$$

Effective bigram count (c*(w_{n-1}w_n)):

$$\frac{C^*(W_{n-1}W_n)}{C(W_{n-1})} = \frac{C(W_{n-1},W_n) + 1}{C(W_{n-1}) + |V|}$$

	i	want	to	eat	chinese	food	lunch	spend
i	6	828	1	10	1	1	1	3
want	3	1	609	2	7	7	6	2
to	3	1	5	687	3	1	7	212
eat	1	1	3	1	17	3	43	1
chinese	2	1	1	1	1	83	2	1
food	16	1	16	1	2	5	1	1
lunch	3	1	1	1	1	2	1	1
spend	2	1	2	1	1	1	1	1

Add-one smoothed bigram counts for eight of the words (out of V = 1446) in the Berkeley Restaurant Project corpus of 9332 sentences. Previously-zero counts are in gray.

	i	want	to	eat	chinese	food	lunch	spend
i	0.0015	0.21	0.00025	0.0025	0.00025	0.00025	0.00025	0.00075
want	0.0013	0.00042	0.26	0.00084	0.0029	0.0029	0.0025	0.00084
to	0.00078	0.00026	0.0013	0.18	0.00078	0.00026	0.0018	0.055
eat	0.00046	0.00046	0.0014	0.00046	0.0078	0.0014	0.02	0.00046
chinese	0.0012	0.00062	0.00062	0.00062	0.00062	0.052	0.0012	0.00062
food	0.0063	0.00039	0.0063	0.00039	0.00079	0.002	0.00039	0.00039
lunch	0.0017	0.00056	0.00056	0.00056	0.00056	0.0011	0.00056	0.00056
spend	0.0012	0.00058	0.0012	0.00058	0.00058	0.00058	0.00058	0.00058

Add-one smoothed bigram probabilities for eight of the words (out of V = 1446) in the BeRP corpus of 9332 sentences. Previously-zero probabilities are in gray.

	i	want	to	eat	chinese	food	lunch	spend
i	3.8	527	0.64	6.4	0.64	0.64	0.64	1.9
want	1.2	0.39	238	0.78	2.7	2.7	2.3	0.78
to	1.9	0.63	3.1	430	1.9	0.63	4.4	133
eat	0.34	0.34	1	0.34	5.8	1	15	0.34
chinese	0.2	0.098	0.098	0.098	0.098	8.2	0.2	0.098
food	6.9	0.43	6.9	0.43	0.86	2.2	0.43	0.43
lunch	0.57	0.19	0.19	0.19	0.19	0.38	0.19	0.19
spend	0.32	0.16	0.32	0.16	0.16	0.16	0.16	0.16

Add-one reconstituted counts for eight words (of V = 1446) in the BeRP corpus of 9332 sentences. Previously-zero counts are in gray.

	i	want	to	eat	chinese	food	lunch	spend
i	5	827	0	9	0	0	0	2
want	2	0	608	1	6	6	5	1
to	2	0	4	686	2	0	6	211
eat	0	0	2	0	16	2	42	0
chinese	1	0	0	0	0	82	1	0
food	15	0	15	0	1	4	0	0
lunch	2	0	0	0	0	1	0	0
spend	1	0	1	0	0	0	0	0

	i	want	to	eat	chinese	food	lunch	spend
i	3.8	527	0.64	6.4	0.64	0.64	0.64	1.9
want	1.2	0.39	238	0.78	2.7	2.7	2.3	0.78
to	1.9	0.63	3.1	430	1.9	0.63	4.4	133
eat	0.34	0.34	1	0.34	5.8	1	15	0.34
chinese	0.2	0.098	0.098	0.098	0.098	8.2	0.2	0.098
food	6.9	0.43	6.9	0.43	0.86	2.2	0.43	0.43
lunch	0.57	0.19	0.19	0.19	0.19	0.38	0.19	0.19
spend	0.32	0.16	0.32	0.16	0.16	0.16	0.16	0.16

More General Smoothing Techniques

Add-k smoothing:

$$P_{Add-k}(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i) + k}{c(w_{i-1}) + k|V|}$$

$$P_{Add-k}(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i) + m(\frac{1}{|V|})}{c(w_{i-1}) + m}$$

More General Smoothing Techniques

Add-k smoothing:

$$P_{Add-k}(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i) + k}{c(w_{i-1}) + k|V|}$$

$$P_{Add-k}(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i) + m(\frac{1}{|V|})}{c(w_{i-1}) + m}$$

Unigram prior smoothing:

$$P_{\text{UnigramPrior}}(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i) + m P(w_i)}{c(w_{i-1}) + m}$$

More General Smoothing Techniques

Add-k smoothing:

$$P_{Add-k}(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i) + k}{c(w_{i-1}) + k|V|}$$

$$P_{Add-k}(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i) + m(\frac{1}{|V|})}{c(w_{i-1}) + m}$$

Unigram prior smoothing:

$$P_{\text{UnigramPrior}}(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i) + m P(w_i)}{c(w_{i-1}) + m}$$

An optimal value for k or m can be determined using a held-out dataset.

• As N grows larger, the N-gram model becomes more powerful. However, its capability to accurately estimate parameters decreases due to data sparsity problem.

- As N grows larger, the N-gram model becomes more powerful. However, its capability to accurately estimate parameters decreases due to data sparsity problem.
- When we have limited knowledge about larger contexts, it can be helpful to consider less context.

- As N grows larger, the N-gram model becomes more powerful. However, its capability to accurately estimate parameters decreases due to data sparsity problem.
- When we have limited knowledge about larger contexts, it can be helpful to consider less context.
- Back-off:
 - Opt for a trigram when there is sufficient evidence, otherwise use bigram, otherwise unigram

- As N grows larger, the N-gram model becomes more powerful. However, its capability to accurately estimate parameters decreases due to data sparsity problem.
- When we have limited knowledge about larger contexts, it can be helpful to consider less context.

Back-off:

• Opt for a trigram when there is sufficient evidence, otherwise use bigram, otherwise unigram

Interpolation:

- Mix unigram, bigram, trigram
- Interpolation generally results in improved performance

Interpolation

Linear interpolation

$$\hat{P}(w_n|w_{n-2}w_{n-1}) = \lambda_1 P(w_n|w_{n-2}w_{n-1}) + \lambda_2 P(w_n|w_{n-1}) + \lambda_3 P(w_n)$$

$$\sum_{i} \lambda_i = 1$$

Context-dependent interpolation

$$\hat{P}(w_n|w_{n-2}w_{n-1}) = \lambda_1(w_{n-2}^{n-1})P(w_n|w_{n-2}w_{n-1})
+ \lambda_2(w_{n-2}^{n-1})P(w_n|w_{n-1})
+ \lambda_3(w_{n-2}^{n-1})P(w_n)$$

Advanced Smoothing Algorithms

• Naïve smoothing algorithms have limited usage and are not very effective. Not frequently used for N-grams.

However, they can be used in domains where the number of zeros isn't so huge.

Advanced Smoothing Algorithms

• Naïve smoothing algorithms have limited usage and are not very effective. Not frequently used for N-grams.

However, they can be used in domains where the number of zeros isn't so huge.

- Popular Algorithms:
 - Good-Turing
 - Kneser-Ney

Advanced Smoothing Algorithms

• Naïve smoothing algorithms have limited usage and are not very effective. Not frequently used for N-grams.

However, they can be used in domains where the number of zeros isn't so huge.

- Popular Algorithms:
 - Good-Turing
 - Kneser-Ney

Use the count of things we've **seen once** to help estimate the count of things we've **never seen**

• N_C = Frequency of frequency of c

- N_C = Frequency of frequency of c
- Rohan I am I am Rohan I like to play

- N_C = Frequency of frequency of c
- Rohan I am I am Rohan I like to play

```
I 3
```

Rohan 2

Am 2

like 1

to 1

play 1

- N_C = Frequency of frequency of c
- Rohan I am I am Rohan I like to play

1 3

Rohan 2

Am 2

like 1

to 1

play 1

$$N_1 = 3$$
, $N_2 = 2$, $N_3 = 1$

- You are birdwatching in the Keoladeo National Park and you have observed the following birds: 10 Flamingos, 3 Kingfishers, 2 Indian Rollers, 1 Woodpecker, 1 Peacock, 1 Crane = 18 birds
- How likely is it that the next bird you see is a woodpecker?

- You are birdwatching in the Keoladeo National Park and you have observed the following birds: 10 Flamingos, 3 Kingfishers, 2 Indian Rollers, 1 Woodpecker, 1 Peacock, 1 Crane = 18 birds
- How likely is it that the next bird you see is a woodpecker?
 - 1/18

- You are birdwatching in the Keoladeo National Park and you have observed the following birds: 10 Flamingos, 3 Kingfishers, 2 Indian Rollers, 1 Woodpecker, 1 Peacock, 1 Crane = 18 birds
- How likely is it that the next bird you see is a woodpecker?
 - 1/18
- How likely is it that the next bird you see is a new species (i.e., a bird species you haven't observed yet, such as a Purple Heron or a Painted Stork)?

- You are birdwatching in the Keoladeo National Park and you have observed the following birds: 10 Flamingos, 3 Kingfishers, 2 Indian Rollers, 1 Woodpecker, 1 Peacock, 1 Crane = 18 birds
- How likely is it that the next bird you see is a woodpecker?
 - 1/18
- How likely is it that the next bird you see is a new species (i.e., a bird species you haven't observed yet, such as a Purple Heron or a Painted Stork)?
 - We will use our estimate of things we saw once to estimate the new things.

- You are birdwatching in the Keoladeo National Park and you have observed the following birds: 10 Flamingos, 3 Kingfishers, 2 Indian Rollers, 1 Woodpecker, 1 Peacock, 1 Crane = 18 birds
- How likely is it that the next bird you see is a woodpecker?
 - 1/18
- How likely is it that the next bird you see is a new species (i.e., a bird species you haven't observed yet, such as a Purple Heron or a Painted Stork)?
 - We will use our estimate of things we saw once to estimate the new things.
 - 3/18 (because $N_1 = 3$)

- You are birdwatching in the Keoladeo National Park and you have observed the following birds: 10 Flamingos, 3 Kingfishers, 2 Indian Rollers, 1 Woodpecker, 1 Peacock, 1 Crane = 18 birds
- How likely is it that the next bird you see is a woodpecker?
 - 1/18
- How likely is it that the next bird you see is a new species (i.e., a bird species you haven't observed yet, such as a Purple Heron or a Painted Stork)?
 - We will use our estimate of things we saw once to estimate the new things.
 - 3/18 (because $N_1 = 3$)
- Assuming so, how likely it is that the new species is Woodpecker?

- You are birdwatching in the Keoladeo National Park and you have observed the following birds: 10 Flamingos, 3 Kingfishers, 2 Indian Rollers, 1 Woodpecker, 1 Peacock, 1 Crane = 18 birds
- How likely is it that the next bird you see is a woodpecker?
 - 1/18
- How likely is it that the next bird you see is a new species (i.e., a bird species you haven't observed yet, such as a Purple Heron or a Painted Stork)?
 - We will use our estimate of things we saw once to estimate the new things.
 - 3/18 (because $N_1 = 3$)
- Assuming so, how likely it is that the new species is Woodpecker?
 - Must be less than 1/18

• P_{GT}^* (things with zero frequency) = $\frac{N_1}{N}$

- P_{GT}^* (things with zero frequency) = $\frac{N_1}{N}$
- Unseen (Purple Heron or Painted Stork)
 - C = 0
 - MLE p = 0/18 = 0
 - P_{GT}^* (unseen) = $N_1/N = 3/18$

• P_{GT}^* (things with zero frequency) = $\frac{N_1}{N}$

$$c^* = \frac{(c+1)N_{c+1}}{N_c}$$

- Unseen (Purple Heron or Painted Stork)
 - C = 0
 - MLE p = 0/18 = 0
 - P_{GT}^* (unseen) = $N_1/N = 3/18$

- P_{GT}^* (things with zero frequency) = $\frac{N_1}{N}$
- Unseen (Purple Heron or Painted Stork)
 - C = 0
 - MLE p = 0/18 = 0
 - P_{GT}^* (unseen) = $N_1/N = 3/18$

$$c^* = \frac{(c+1)N_{c+1}}{N_c}$$

- Seen once
 - C = 1
 - MLE p = 1/18
 - c^* (Woodpecker) = 2 * N_2/N_1 = 2 * 1/3 = 2/3
 - P_{GT}^* (Woodpecker) = $\frac{\frac{2}{3}}{18}$ = 1/27

Good Turing Estimation

- Numbers from Church and Gale (1991)
- 22 million words of AP Newswire

Count c	Good Turing c*
0	.0000270
1	0.446
2	1.26
3	2.24
4	3.24
5	4.22
6	5.19
7	6.21
8	7.24
9	8.25

Good Turing Estimation

- Numbers from Church and Gale (1991)
- 22 million words of AP Newswire

It looks like $c^* = (c - 0.75)$

Count c	Good Turing c*
0	.0000270
1	0.446
2	1.26
3	2.24
4	3.24
5	4.22
6	5.19
7	6.21
8	7.24
9	8.25

Absolute Discounting Interpolation

 Adjusts the probability estimates for n-grams by discounting each count by a fixed amount (usually a small constant) before computing probabilities

$$P_{\text{AbsoluteDiscounting}}(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i) - d}{c(w_{i-1})} + \lambda(w_{i-1})P(w_i)$$

Absolute Discounting Interpolation

 Adjusts the probability estimates for n-grams by discounting each count by a fixed amount (usually a small constant) before computing probabilities

$$P_{\text{AbsoluteDiscounting}}(w_i | w_{i-1}) = \frac{c(w_{i-1}, w_i) - d}{c(w_{i-1})} + \lambda(w_{i-1})P(w_i)$$
unigran

 But considering the regular unigram probability has some limitations, as we will see in the upcoming slides.

- Intuition: Shannon game
 - My breakfast is incomplete without a cup of ...: coffee/ Angeles?
 - Say, in the corpus "Angeles" more prevalent than "coffee"
 - However, it is important to note that "Angeles" mostly comes after "Los"
- Instead of regular unigram probability, use continuation probability.

- Intuition: Shannon game
 - My breakfast is incomplete without a cup of ...: coffee/ Angeles?
 - Say, in the corpus "Angeles" more prevalent than "coffee"
 - However, it is important to note that "Angeles" mostly comes after "Los"
- Instead of regular unigram probability, use continuation probability.
 - Regular Unigram probability: P(w): "How likely is w?"
 - P_{continuation}(w): "How likely is w to appear as a novel continuation?"

- Intuition: Shannon game
 - My breakfast is incomplete without a cup of ...: coffee/ Angeles?
 - Say, in the corpus "Angeles" more prevalent than "coffee"
 - However, it is important to note that "Angeles" mostly comes after "Los"
- Instead of regular unigram probability, use continuation probability.
 - Regular Unigram probability: P(w): "How likely is w?"
 - P_{continuation}(w): "How likely is w to appear as a novel continuation?"
- How to compute continuation probability?

- Intuition: Shannon game
 - My breakfast is incomplete without a cup of ...: coffee/ Angeles?
 - Say, in the corpus "Angeles" more prevalent than "coffee"
 - However, it is important to note that "Angeles" mostly comes after "Los"
- Instead of regular unigram probability, use continuation probability.
 - Regular Unigram probability: P(w): "How likely is w?"
 - P_{continuation}(w): "How likely is w to appear as a novel continuation?"
- How to compute continuation probability?
 - Count how many different bigram types each word completes => Normalize by the total number of word bigram types

$$P_{\text{continuation}}(w) = \frac{|\{w_{i-1}; c(w_{i-1}, w) > 0\}|}{|\{(w_{i-1}, w_i) : c(w_{i-1}, w_i) > 0\}|}$$

- Intuition: Shannon game
 - My breakfast is incomplete without a cup of ...: coffee/ Angeles?
 - Say, in the corpus "Angeles" more prevalent than "coffee"
 - However, it is important to note that "Angeles" mostly comes after "Los"
- Instead of regular unigram probability, use continuation probability.
 - Regular Unigram probability: P(w): "How likely is w?"
 - P_{continuation}(w): "How likely is w to appear as a novel continuation?"
- How to compute continuation probability?
 - Count how many different bigram types each word completes => Normalize by the total number of word bigram types

$$P_{\text{continuation}}(w) = \frac{|\{w_{i-1}; c(w_{i-1}, w) > 0\}|}{|\{(w_{i-1}, w_i) : c(w_{i-1}, w_i) > 0\}|}$$

A common word (Angeles)
appearing in only one context
(Los) is likely to have a low
continuation probability.

Kneser-Ney Smoothing

$$P_{KN}(w_i | w_{i-1}) = \frac{\max(c(w_{i-1}, w_i) - d, 0)}{c(w_{i-1})} + \lambda(w_{i-1})P_{continuation}(w_i)$$

where, λ is a normalizing constant

$$\lambda(w_{i-1}) = \frac{d}{c(w_{i-1})} | \{w : c(w_{i-1}, w) > 0\} |$$

Evaluation of a Language Model

Evaluation of a Language Model

• Does our language model prefer good sentences over bad ones?

Evaluation of a Language Model

- Does our language model prefer good sentences over bad ones?
 - Assign higher probability to "real" or "frequently observed" sentences than "ungrammatical" or "rarely observed" sentences

- Terminologies:
 - We optimize the parameters of our model based on data from a training set.
 - We assess the model's performance on unseen **test data** that is disjoint from the training data.
 - An evaluation metric provides a measure of the performance of our model on the test set.

Extrinsic Evaluation

 Measure the effectiveness of a language model by testing their performance on different downstream NLP tasks, such as machine translation, text classification, speech recognition.

Extrinsic Evaluation

 Measure the effectiveness of a language model by testing their performance on different downstream NLP tasks, such as machine translation, text classification, speech recognition.

- Let us consider two different language models: A and B
 - Select a suitable evaluation metric to assess the performance of the language models based on the chosen task.
 - Obtain the evaluation scores for A and B
 - Compare the evaluation scores for A and B

Intrinsic Evaluation: Perplexity

Intuition: The Shannon Game

- How well can we predict the next word?
 - I always order pizza with cheese and ...
 - The president of India is ...
 - I wrote a ...

Intrinsic Evaluation: Perplexity

Intuition: The Shannon Game

- How well can we predict the next word?
 - I always order pizza with cheese and ...
 - The president of India is ...
 - I wrote a ...
- Observation: The more context we consider, the better the prediction.

Intrinsic Evaluation: Perplexity

Intuition: The Shannon Game

- How well can we predict the next word?
 - I always order pizza with cheese and ...
 - The president of India is ...
 - I wrote a ...
- Observation: The more context we consider, the better the prediction.

A better text model is characterized by its ability to assign a higher probability to the correct word in a given context.

The best language model is one that best predicts an unseen test set.

Perplexity is the inverse probability of the test data, normalized by the number of words.

• Given a sentence W consisting of *n* words, the perplexity is calculated as follows:

$$PP(W) = P(w_1 w_2 ... w_n)^{-\frac{1}{n}}$$

Thus, for the sentence W, perplexity is:

$$PP(W) = P(w_1 w_2 ...wn)^{-\frac{1}{n}}$$

Thus, for the sentence W, perplexity is:

$$PP(W) = P(w_1 w_2 ...wn)^{-\frac{1}{n}}$$

Applying Chain Rule:

$$PP(W) = \left(\prod \frac{1}{P(W_i | W_1 W_2 ... W_{i-1})} \right)^{\frac{1}{n}}$$

Thus, for the sentence W, perplexity is:

$$PP(W) = P(w_1 w_2 ...wn)^{-\frac{1}{n}}$$

Applying Chain Rule:

$$PP(W) = \left(\prod \frac{1}{P(W_i | W_1 W_2 ... W_{i-1})} \right)^{\frac{1}{n}}$$

Applying Markov Assumption (n = 2), i.e. for bigram LM:

$$PP(W) = \left(\prod \frac{1}{P(W_i | W_{i-1})}\right)^{\frac{1}{n}}$$

Thus, for the sentence W, perplexity is:

$$PP(W) = P(w_1 w_2 ...wn)^{-\frac{1}{n}}$$

Applying Chain Rule:

$$PP(W) = \left(\prod \frac{1}{P(W_i | W_1 W_2 ... W_{i-1})} \right)^{\frac{1}{n}}$$

Applying Markov Assumption (n = 2), i.e. for bigram LM:

Minimizing perplexity is the same as maximizing probability.

$$PP(W) = \left(\prod \frac{1}{P(W_i | W_{i-1})}\right)^{\frac{1}{n}}$$

- Let's consider a sequence of random digits.
- What is the perplexity of this sequence according to a model that assigns a probability of $p = \frac{1}{10}$ to each digit?

- Let's consider a sequence of random digits.
- What is the perplexity of this sequence according to a model that assigns a probability of $p = \frac{1}{10}$ to each digit?

PP(W) = P(w₁w₂ ... w_n)<sup>-
$$\frac{1}{n}$$</sup>
= $((\frac{1}{10})^n)^{-\frac{1}{n}}$ = 10

- Let's consider a sequence of random digits.
- What is the perplexity of this sequence according to a model that assigns a probability of $p = \frac{1}{10}$ to each digit?

PP(W) = P(w₁w₂ ... w_n)<sup>-
$$\frac{1}{n}$$</sup>
= $((\frac{1}{10})^n)^{-\frac{1}{n}} = 10$

Perplexity is weighted equivalent branching factor (number of possible children).

- Let's consider a sequence of random digits.
- What is the perplexity of this sequence according to a model that assigns a probability of $p = \frac{1}{10}$ to each digit?

PP(W) = P(w₁w₂ ... w_n)<sup>-
$$\frac{1}{n}$$</sup>
= $((\frac{1}{10})^n)^{-\frac{1}{n}} = 10$

Perplexity is weighted equivalent branching factor (number of possible children).

Lower perplexity ≡ Better model

- N-gram LMs suffer from data sparsity and limited context.
 - Predicting the next word using a fixed window of previous words.
 - Fixed Context Size: Limited to a fixed window of previous words.

- N-gram LMs suffer from data sparsity and limited context.
 - Predicting the next word using a fixed window of previous words.
 - Fixed Context Size: Limited to a fixed window of previous words.
- Smoothing techniques address data sparsity.

- N-gram LMs suffer from data sparsity and limited context.
 - Predicting the next word using a fixed window of previous words.
 - Fixed Context Size: Limited to a fixed window of previous words.
- Smoothing techniques address data sparsity.
 - But even with smoothing, rare n-grams are hard to predict.

- N-gram LMs suffer from data sparsity and limited context.
 - Predicting the next word using a fixed window of previous words.
 - Fixed Context Size: Limited to a fixed window of previous words.
- Smoothing techniques address data sparsity.
 - But even with smoothing, rare n-grams are hard to predict.
- Large vocabulary leads to high memory requirements.

- N-gram LMs suffer from data sparsity and limited context.
 - Predicting the next word using a fixed window of previous words.
 - Fixed Context Size: Limited to a fixed window of previous words.
- Smoothing techniques address data sparsity.
 - But even with smoothing, rare n-grams are hard to predict.
- Large vocabulary leads to high memory requirements.
- High computational cost for large n-grams.

- N-gram LMs suffer from data sparsity and limited context.
 - Predicting the next word using a fixed window of previous words.
 - Fixed Context Size: Limited to a fixed window of previous words.
- Smoothing techniques address data sparsity.
 - But even with smoothing, rare n-grams are hard to predict.
- Large vocabulary leads to high memory requirements.
- High computational cost for large n-grams.
- Lack of generalization to unseen word combinations.

The Need for Richer Representations

Requirements:

- Contextual Understanding: Need for models that understand context beyond fixed windows.
- Semantic Similarity: Ability to capture relationships between words (e.g., synonyms).
- Scalability: Models that can scale to large datasets and handle vast vocabularies efficiently.

Moving to Word Embeddings & Neural LM

In the successive lectures, we will see how representing words (actually, tokens) as vectors and transition to neural LMs solve many of those problems.

Moving to Word Embeddings & Neural LM

In the successive lectures, we will see how representing words (actually, tokens) as vectors and transition to neural LMs solve many of those problems.

- Move from discrete to continuous representations.
- Capture richer semantic information.
- Enable generalization to unseen data.
- Scale to large datasets.

Timeline in Language Modelling

Distributional Hypothesis:

A word is characterized by the company it keeps

Word2Vec:

Distributed word representation in NLP models

Transformers: Uses attention and positional encoding to learn context-aware representations

1948

1954

1986

2013

2014

2017

N-gram Model:

Predict the next word based on the previous N-1 words **Recurrent Neural Networks:**

Processes sequential data by using the output from previous steps as inputs for the current step

Attention: At each time step, the model selectively focuses on relevant words in the sequence

