PERTURBATION AND DYNARE

SIMPLE DSGE MODEL

Tools for Macroeconomists: The essentials

Petr Sedláček

Neoclassical Growth Model

representative household maximizing expected lifetime utility

- representative household maximizing expected lifetime utility
- household owns production technology

- representative household maximizing expected lifetime utility
- household owns production technology
- capital is the only factor of production

- representative household maximizing expected lifetime utility
- household owns production technology
- capital is the only factor of production
- resources spent on consumption and investment into capital

- representative household maximizing expected lifetime utility
- household owns production technology
- capital is the only factor of production
- resources spent on consumption and investment into capital
- · each period existing capital depreciates at certain rate

- representative household maximizing expected lifetime utility
- household owns production technology
- capital is the only factor of production
- · resources spent on consumption and investment into capital
- each period existing capital depreciates at certain rate
- production subject to exogenous fluctuations in productivity

PRODUCTION

$$y_t = Z_t k_t^{\alpha}$$

PRODUCTION

$$y_{t} = Z_{t}k_{t}^{\alpha}$$

$$Z_{t} = 1 - \rho + \rho Z_{t-1} + \epsilon_{t}$$

$$\mathbb{E}\epsilon_{t} = 0$$

$$\mathbb{E}\epsilon_{t}^{2} = \sigma_{z}^{2}$$

HOUSEHOLD DECISION

$$\max_{\{c_t, k_{t+1}\}_{t=0}^{\infty}} \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t u(c_t)$$

HOUSEHOLD DECISION

$$\max_{\{c_t,k_{t+1}\}_{t=0}^{\infty}} \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t u(c_t)$$

s.t.
$$c_t + k_{t+1} = y_t + (1 - \delta)k_t$$

HOUSEHOLD DECISION

$$\max_{\{c_t, k_{t+1}\}_{t=0}^{\infty}} \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t u(c_t)$$
s.t. $c_t + k_{t+1} = y_t + (1 - \delta)k_t$

$$k_0 \quad \text{given}$$

$$Z_0 \quad \text{given}$$

Neoclassical Growth Model

SOLUTION

What is the solution?

What is the solution?

- a sequence $\{c_t, k_{t+1}\}_{t=0}^{\infty}$
- maximizing the expected discounted sum of per-period utilities

Sounds like a tough problem!

What is the solution?

- a sequence $\{c_t, k_{t+1}\}_{t=0}^{\infty}$
- maximizing the expected discounted sum of per-period utilities

Sounds like a tough problem!

- different $k_0 \rightarrow$ optimal sequences different!
- · different realizations of $Z_t \rightarrow$ optimal sequences different!

- \cdot replace sequential problem with 2-period decisions \rightarrow recursiveness
- · must make sure that each 2-period decision is globally optimal

- \cdot replace sequential problem with 2-period decisions o recursiveness
- must make sure that each 2-period decision is globally optimal
 - Principle of Optimality (Bellman)

- \cdot replace sequential problem with 2-period decisions \rightarrow recursiveness
- must make sure that each 2-period decision is globally optimal
 - Principle of Optimality (Bellman)
- decisions depend on state variables

- \cdot replace sequential problem with 2-period decisions \rightarrow recursiveness
- must make sure that each 2-period decision is globally optimal
 - Principle of Optimality (Bellman)
- decisions depend on state variables
 - agents facing the same state variables make the same decisions
 - independent of the time period they are in

- replace sequential problem with 2-period decisions \rightarrow recursiveness
- · must make sure that each 2-period decision is globally optimal
 - Principle of Optimality (Bellman)
- decisions depend on state variables
 - agents facing the same state variables make the same decisions
 - · independent of the time period they are in
 - realizations of exogenous variables, pre-determined variables (e.g. capital stock)

- replace sequential problem with 2-period decisions \rightarrow recursiveness
- must make sure that each 2-period decision is globally optimal
 - Principle of Optimality (Bellman)
- decisions depend on state variables
 - agents facing the same state variables make the same decisions
 - · independent of the time period they are in
 - realizations of exogenous variables, pre-determined variables (e.g. capital stock)
 - not always easy to know what the state variables are!

• what are the state variables?

- · what are the state variables?
 - beginning-of-period capital and productivity
- \cdot what are the policy rules?

- · what are the state variables?
 - · beginning-of-period capital and productivity
- what are the policy rules?

$$c_t = c(k_t, Z_t)$$

$$k_{t+1} = {\color{red}k(k_t, Z_t)}$$

how are they determined?

- · what are the state variables?
 - · beginning-of-period capital and productivity
- · what are the policy rules?

$$c_t = c(k_t, Z_t)$$

$$k_{t+1} = k(k_t, Z_t)$$

how are they determined?

$$u_{c}(c_{t}) = \beta \mathbb{E}_{t} u_{c}(c_{t+1}) \left(\alpha Z_{t+1} k_{t+1}^{\alpha - 1} + 1 - \delta \right)$$
$$c_{t} + k_{t+1} = y_{t} + (1 - \delta) k_{t}$$

Neoclassical Growth Model

USE OF COMPUTATIONAL TOOLS

Neociassical diowili Model

analytical solutions rarely exist

- analytical solutions rarely exist
- $\cdot \rightarrow$ need to approximate the policy functions (perturbation or projection)

- analytical solutions rarely exist
- $\cdot \rightarrow$ need to approximate the policy functions (perturbation or projection)

$$c_t \approx \widetilde{c}(k_t, Z_t; \psi_c)$$

$$k_{t+1} \approx \frac{\widetilde{k}}{k}(k_t, Z_t; \psi_k)$$

- analytical solutions rarely exist
- $\cdot \rightarrow$ need to approximate the policy functions (perturbation or projection)

$$c_t \approx \widetilde{c}(k_t, Z_t; \psi_c)$$

$$k_{t+1} \approx \widetilde{k}(k_t, Z_t; \psi_k)$$

what are we solving for?

- analytical solutions rarely exist
- $\cdot \rightarrow$ need to approximate the policy functions (perturbation or projection)

$$c_t \approx \widetilde{c}(k_t, Z_t; \psi_c)$$

$$k_{t+1} \approx \widetilde{k}(k_t, Z_t; \psi_k)$$

- what are we solving for?
 - \cdot the coefficients of the approximations: $\psi_{\it c}$ and $\psi_{\it k}$

- analytical solutions rarely exist
- $\cdot \rightarrow$ need to approximate the policy functions (perturbation or projection)

$$c_t \approx \widetilde{c}(k_t, Z_t; \psi_c)$$

$$k_{t+1} \approx \widetilde{k}(k_t, Z_t; \psi_k)$$

- what are we solving for?
 - the coefficients of the approximations: $\psi_{ extsf{c}}$ and $\psi_{ extsf{k}}$
 - requires specifying a domain (needs to be bounded)

- analytical solutions rarely exist
- $\cdot \rightarrow$ need to approximate the policy functions (perturbation or projection)

$$c_t \approx \widetilde{c}(k_t, Z_t; \psi_c)$$

$$k_{t+1} \approx \widetilde{k}(k_t, Z_t; \psi_b)$$

- · what are we solving for?
 - · the coefficients of the approximations: ψ_{c} and ψ_{k}
 - requires specifying a domain (needs to be bounded)
 - $\cdot \rightarrow$ consider "stationarized" models (no growth)

$$V(k_{-1}, Z) = \max_{c, k} u(c) + \mathbb{E}\beta V(k, Z_{+1}) \quad \text{s.t.}$$

$$c + k = Zk_{-1}^{\alpha} + (1 - \delta)k_{-1}$$

$$Z_{+1} = 1 - \rho + \rho Z + \epsilon$$

- approximate the value function (Bellman equation evaluated at optimal choices)
- $\cdot \rightarrow$ value function iteration

$$V(k_{-1}, Z) = \max_{c, k} u(c) + \mathbb{E}\beta V(k, Z_{+1}) \quad \text{s.t.}$$

$$c + k = Zk_{-1}^{\alpha} + (1 - \delta)k_{-1}$$

$$Z_{+1} = 1 - \rho + \rho Z + \epsilon$$

- approximate the value function (Bellman equation evaluated at optimal choices)
- $\cdot \rightarrow$ value function iteration
- what are we solving for?

$$V(k_{-1}, Z) = \max_{c, k} u(c) + \mathbb{E}\beta V(k, Z_{+1}) \quad \text{s.t.}$$

$$c + k = Zk_{-1}^{\alpha} + (1 - \delta)k_{-1}$$

$$Z_{+1} = 1 - \rho + \rho Z + \epsilon$$

- approximate the value function (Bellman equation evaluated at optimal choices)
- $\cdot \rightarrow$ value function iteration
- what are we solving for?
 - maximized values of V(.,.) at different points of the state-space

$$V(k_{-1}, Z) = \max_{c, k} u(c) + \mathbb{E}\beta V(k, Z_{+1}) \quad \text{s.t.}$$

$$c + k = Zk_{-1}^{\alpha} + (1 - \delta)k_{-1}$$

$$Z_{+1} = 1 - \rho + \rho Z + \epsilon$$

- approximate the value function (Bellman equation evaluated at optimal choices)
- $\cdot \rightarrow$ value function iteration
- what are we solving for?
 - maximized values of V(.,.) at different points of the state-space
 - requires specifying a domain (needs to be bounded)
 - → consider "stationarized" models (no growth)

SPECIAL CASE OF ANALYTICAL SOLUTION

- assume log utility ($\gamma = 1$)
- and full depreciation ($\delta=1$)
- this is the Brock-Mirman model

SPECIAL CASE OF ANALYTICAL SOLUTION

- assume log utility ($\gamma = 1$)
- and full depreciation ($\delta = 1$)
- · this is the Brock-Mirman model

Turns out that this version has an analytical solution:

SPECIAL CASE OF ANALYTICAL SOLUTION

- assume log utility ($\gamma = 1$)
- and full depreciation ($\delta = 1$)
- · this is the Brock-Mirman model

Turns out that this version has an analytical solution:

$$k_{t+1} = \alpha \beta Z_t k_t^{\alpha}$$
$$c_t = (1 - \alpha \beta) Z_t k_t^{\alpha}$$

Neoclassical Growth Model

TAKING STOCK

TAKING STOCK

Neoclassical growth model

- workhorse DSGE model which we'll encounter throughout the course
- solution consists of policy functions
- computational tools necessary to approximate such policy functions

