10.1 Radical Expressions and Functions

Definition 10.1.1 (Principal Square Root). If \mathfrak{a} is a non-negative real number, then the non-negative number \mathfrak{b} such that $\mathfrak{b}^2 = \mathfrak{a}$, denoted by $\mathfrak{b} = \sqrt{\mathfrak{a}}$, is the principal square root of \mathfrak{a} .

Example 10.1.1. Evaluate each of the following square roots.

1.
$$\sqrt{64}$$

3.
$$\sqrt{\frac{16}{25}}$$

5.
$$\sqrt{9+16}$$

2.
$$-\sqrt{49}$$

4.
$$\sqrt{0.0081}$$

6.
$$\sqrt{9} + \sqrt{16}$$

Functions with Square Roots

We can define the square root as a function with $f(x) = \sqrt{x}$. Both the domain and range of this function are the non-negative numbers - $[0, \infty)$.

To evaluate square root functions, we treat them the same as anything - make the substitution for the independent variable and simplify.

Example 10.1.2. Find the indicated value for each given function:

1.
$$f(3)$$
 when $f(x) = \sqrt{12x - 20}$

2.
$$g(-5)$$
 when $g(x) = -\sqrt{9-3x}$

Math 0098

The square root function is only defined when the radicand - the portion under the radical - is non-negative. If we need to find the domain of a square root function, set the radicand greater than or equal to 0 and solve for x. State the domain using whichever method is specified.

Example 10.1.3. Find the domain of each of the following functions:

1.
$$f(x) = \sqrt{9x - 27}$$

2.
$$g(x) = -3\sqrt{2(3x-4)} + 4$$

Simplifying $\sqrt{\mathfrak{a}^2}$

For any real value of \mathfrak{a} , we have

$$\sqrt{a^2} = |a|$$

Example 10.1.4. Simplify:

1.
$$\sqrt{(-7)^2}$$

Math 0098 Page 2 of 5

2.
$$\sqrt{(x+8)^2}$$

3.
$$\sqrt{49x^{10}}$$

4.
$$\sqrt{x^2 - 6x + 9}$$

Cube Roots

Similar to a square root, a cube root is given as $\sqrt[3]{a} = b$ where $b^3 = a$. The 3 is the *index* of the radical. Unlike the square root, however, the cube root has negative numbers in its domain. Both the domain and range of $f(x) = \sqrt[3]{x}$ are $(-\infty, \infty)$.

Example 10.1.5. Find the indicated value for each given function:

1.
$$f(127)$$
 when $f(x) = \sqrt[3]{x-2}$

2.
$$g(-7)$$
 when $g(x) = \sqrt[3]{8x-8}$

Simplifying $\sqrt[3]{\mathfrak{a}^3}$

For any real number a, we have

$$\sqrt[3]{a^3} = a$$

.

Example 10.1.6. Simplify the following:

$$\sqrt[3]{-27x^3}$$

Simplifying Odd or Even Roots

For any real number \mathfrak{a} :

- If n is even, $\sqrt[n]{a^n} = |a|$.
- If n is odd, $\sqrt[n]{a^n} = a$.

Example 10.1.7. Find each of the following:

1.
$$\sqrt[4]{(x+6)^4}$$

2.
$$\sqrt[5]{(3x-2)^5}$$

3.
$$\sqrt[6]{(-8)^6}$$