5.Inception V2 V3

2015年由google团队提出,论文地址Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, Rethinking the Inception Architecture for Computer Vision

问题: representatial bottleneck,特征描述瓶颈是指中间某层对特征空间维度进行较大比例的压缩(比如使用pooling),导致很多特征丢失,虽然pooling是CNN结构中必须的功能,但我们可以通过一些优化方法来减少pooling造成的损失。特征数目越多收敛的越快。

一些特征的结构

1.卷积分解

将5×5的卷积分解成2个3×3的卷积运算以提升计算速度。 在本文中,作者将n×n的卷积核尺寸分解为1×n和n×1两个卷积。

图8卷积分解

模块中的滤波器组被扩展(变得更宽而不是更深),以解决特征瓶颈。如果该模块没有被扩展宽度,而是变得更深,那么维度会过多减少,造成信息损失。

图9特征扩展

2.辅助分类器的效用

辅助分类器在训练前期并没有起什么作用,到了训练的后期才开始在精度上超过没有辅助分类器的网络,并达到稍微高的平稳期。并且,在去除这两个辅助分类器后并没有不利的影响,因此在Inception V1中提到的帮助低层网络更快的训练是有问题的。如果这两个分支有BN或Dropout住分类器的效果会更好,这是BN可充当正则化器的一个微弱证据。

3.高效降低Grid Size

有两种方式: (1) 先池化再Inception, (2) 先Inception再池化

图10 降低Grid Size

左边特征先减少的话容易造成特征丢失,即bottleneck问题;右边会极大增加计算量

图11 降低Grid Size

并行操作,一边减小特征图尺寸,一边增加特征图数量

辅助分类器:

图12辅助分类器

type	patch size/stride or remarks	input size
conv	$3\times3/2$	$299 \times 299 \times 3$
conv	$3\times3/1$	$149 \times 149 \times 32$
conv padded	$3\times3/1$	$147 \times 147 \times 32$
pool	$3\times3/2$	$147 \times 147 \times 64$
conv	$3\times3/1$	$73 \times 73 \times 64$
conv	$3\times3/2$	$71 \times 71 \times 80$
conv	3×3/1	$35 \times 35 \times 192$
3×Inception	As in figure 5	$35 \times 35 \times 288$
5×Inception	As in figure 6	$17 \times 17 \times 768$
2×Inception	As in figure 7	$8\times8\times1280$
pool	8×8	$8 \times 8 \times 2048$
linear	logits	$1 \times 1 \times 2048$
softmax	classifier	$1 \times 1 \times 1000$

图13 Inception V2 V3 结构

pytorch实现

Inception模块

InceptionA

图14 InceptionA

InceptionB

图15 InceptionB

InceptionC

图16 InceptionC

InceptionD

图17 InceptionD

图18 InceptionE