

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : A61K 31/165	A1	(11) International Publication Number: WO 99/66919 (43) International Publication Date: 29 December 1999 (29.12.99)
(21) International Application Number: PCT/US99/13064		(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).
(22) International Filing Date: 9 June 1999 (09.06.99)		
(30) Priority Data: 09/100,284 19 June 1998 (19.06.98) US		
(71) Applicant: McNEIL-PPC, INC. [US/US]; Grandview Road, Skillman, NJ 08558 (US).		
(72) Inventors: OHANNESIAN, Lena, A.; 490 Mallard Circle, Blue Bell, PA 19422 (US). NADIG, David; 591 Weikel Road, Lansdale, PA 19446 (US). HIGGINS, John, D., III; 10 N. New Street, West Chester, PA 19380 (US). REY, Max; Riedenerstrasse 69, CH-8304 Wallisellen (CH). MARTELLUCCI, Stephen, A.; 216 Whitaker Avenue, Mont Clare, PA 19453 (US).		
(74) Agents: CIAMPORCERO, Audley, A., Jr. et al.; Johnson & Johnson, One Johnson & Johnson Plaza, New Brunswick, NJ 08903-7333 (US).		
(54) Title: PHARMACEUTICAL COMPOSITION CONTAINING A SALT OF ACETAMINOPHEN AND AT LEAST ONE OTHER ACTIVE INGREDIENT		
(57) Abstract		
		<p>Pharmaceutical composition comprising an alkali or alkaline-earth metal salt of acetaminophen and at least one other active ingredient selected from the group consisting of analgesics, decongestants, expectorants, antitussives, antihistamines, gastrointestinal agents, diuretics, bronchodilators and mixtures thereof.</p>

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia						

- 1 -

PHARMACEUTICAL COMPOSITION CONTAINING A SALT OF ACETAMINOPHEN AND AT LEAST ONE OTHER ACTIVE INGREDIENT

This is a continuation-in-part of application Serial No. 08/987,210, filed
5 December 9, 1997, which is a continuation-in-part of application Serial No.
08/771,176, filed December 20, 1996, both of which are hereby incorporated by
reference.

FIELD OF THE INVENTION

10 The present invention relates to salts of acetaminophen and, more particularly, to alkali metal and alkaline-earth metal salts of acetaminophen.

BACKGROUND OF THE INVENTION

15 Acetaminophen (APAP) is a well established therapeutic agent having both analgesic and antipyretic activity. Acetaminophen's relatively poor solubility in water and its bitter taste, however, make it difficult to formulate into consumer acceptable oral dosage forms. Most commercially available acetaminophen oral
20 dosage forms incorporate a taste masking coating on the acetaminophen particles or employ flavors and sweeteners to mask the bitter taste of the drug.

Other approaches for dealing with the solubility and taste of acetaminophen include the formation of amino acid esters of acetaminophen. I. M. Kovach in *Diss. Abstr. Int. B* 1975, 36(2), 734-5 describes the synthesis of p-acetamidophenyl glycinate (APG), α -p-acetamidophenyl aspartate (AAPA) and β -p-acetamidophenyl aspartate (BAPA). These esters are reported to have a less bitter taste than acetaminophen. APG-HBr was five times more water soluble than acetaminophen, whereas BAPA-HCl was four times less water soluble than APAP.

- 2 -

It is also known that the formation of an appropriate salt of a hydrophobic compound, such as a lipophilic carboxylic acid, will usually improve the aqueous solubility of the compound. Sodium ibuprofen and sodium naproxen are examples of pharmaceutically active lipophilic carboxylic acids which have improved aqueous 5 solubility in their salt form. These salts are typically formed by reacting the carboxylic acid with a strong base, such as sodium hydroxide or potassium hydroxide.

USSR Inventor's Certificate No. 629,209, published September 11, 1978, 10 describes a method of preparing bis-[β -(4-acetylaminophenoxy)ethyl] ether by reacting 4-acetylaminophenol with an alkaline agent, such as potassium hydroxide, in a solution of an organic solvent, such as dimethylformamide, followed by reacting the resulting solution of potassium phenolate with chlorex at the boiling point of the reaction mixture. The resulting ether is reported as being useful for the treatment of 15 animals with helminthic diseases.

USSR Inventor's Certificate 1,803,833, published March 23, 1993, describes a method of preparing acetaminophen for fluorescence intensity measurements. The acetaminophen sample was prepared by first dissolving in isopropyl alcohol and 20 then treating with an 8% solution of potassium hydroxide solution and chloroform at a KOH:chloroform volume ratio of 3-4. Heating was then carried out for 15-20 minutes at 70-80°C before the measurement of the sample's fluorescence intensity.

While both of the above-identified USSR Inventor's Certificates report 25 the treatment of acetaminophen with potassium hydroxide, neither document reports the isolation of any potassium salt of acetaminophen.

M.S. Yu et al. in US Patent No. 5,360,615 discusses a pharmaceutical carrier system for enhancing the solubility of acidic, basic or amphoteric pharmaceuticals 30 by partial ionization to produce a highly concentrated primarily non-aqueous

- 3 -

solution suitable for filling softgels or for two-piece encapsulation or tablet formation. The acetaminophen solution comprised 25-40% (wt.) of acetaminophen, 0.4-1.0 moles of hydroxide ion per mole of acetaminophen and 1-20% (wt.) water in polyethylene glycol. An exemplary concentrated solution of acetaminophen suitable
5 for use as a softgel fill contained 1 equivalent APAP (35% by wt.), 1 equivalent potassium hydroxide, and the balance polyethylene glycol 600.

US Patent No. 5,273,759 to D.L. Simmons describes the addition of Mg(OH)₂ in solid form to tablets containing APAP.

10

Both Yu et al. and Simmons fail to report the isolation of any discrete salts of acetaminophen.

15

A need exists for isolated salts of acetaminophen with improved aqueous solubility and taste when compared to the conventional form of acetaminophen.

SUMMARY OF THE INVENTION

20

The present invention provides isolated salts of acetaminophen. The isolated salts are preferably the alkali metal and alkaline-earth metal salts of acetaminophen.

In a further aspect of the invention the isolated salts have the formula:

25

wherein n is 1 or 2, M is alkali metal when n is 1 and M is alkaline-earth metal when n is 2 and x is from 0 to about 10. These salts have been shown to have both improved aqueous solubility and a less bitter taste than the free acid form of acetaminophen. The invention also includes methods of making such salts.

- 4 -

The present invention also provides compositions comprising the isolated salts of acetaminophen and at least one other active ingredient selected from the group consisting of analgesics, decongestants, expectorants, antitussives, antihistamines, diuretics, gastrointestinal agents, diuretics, bronchodilators, sleep-inducing agents, and mixtures thereof.

Another aspect of the invention relates to the method of administering such salts, alone or in combination with other active ingredients, to mammals in the need of an analgesic and/or antipyretic therapeutic agent. The present invention further relates to orally administerable dosage forms containing salts of acetaminophen, alone or in combination with such other active ingredients.

BRIEF DESCRIPTION OF DRAWINGS

Figure 1 is a plot the results of dissolution tests for tablets containing acetaminophen free acid and the isolated salts of acetaminophen.

Figure 2 is a plot of acetaminophen plasma concentrations versus time for the bioequivalency study in dogs described in Example VII.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

Prior to the present invention there has been no reported isolation of any discreet salts (phenolates) of APAP. Furthermore, *in situ* solution characterization of any deprotonated APAP species has not been reported either. As used in the

present invention, the "free acid" of acetaminophen means the protonated phenolic form of APAP.

- 5 -

The lack of discussion on APAP salts in the scientific literature may be due
in part to the fact that the anionic form of APAP is stable in aqueous solution (pH >
11) for only a short period of time (< 24h). If the salt is not quickly isolated after
formation, p-aminophenolate (PAP) can form and result in discoloration of the
5 resulting product.

As used in the present invention, isolated salts of acetaminophen refers to
salts of p-hydroxyacetanilide which are formed by the deprotonation of the phenolic
proton of acetaminophen. The isolated salts are preferably the alkali metal and
10 alkaline-earth metal salts of acetaminophen. In a further aspect of the invention the
isolated salts have the formula:

15 wherein n is 1 or 2, M is alkali metal when n is 1 and M is alkaline-earth metal when
n is 2 and x is from 0 to about 10.

The salts of APAP are prepared via a one step aqueous reaction of APAP
with the desired mono or divalent metal hydroxide. Suitable mono or divalent metal
20 hydroxides include sodium hydroxide, calcium hydroxide, lithium hydroxide,
potassium hydroxide, magnesium hydroxide and cesium hydroxide. The molar ratio
of hydroxide to acetaminophen is about 1:2 to about 10:1, preferably about 1:2 to
about 1:1. The APAP and metal hydroxide are dissolved in water or a mixture of
water and a water-miscible organic solvent, such as acetonitrile, methanol,
25 isopropanol, ethanol or tetrahydrofuran. The crude reaction products are then
recovered or isolated by precipitation upon the addition of a less polar water
miscible solvent such as acetonitrile, ethanol or tetrahydrofuran. Alternatively, the
crude product can be recovered or crystallized by cooling (0°C) or lyophilization of
the reaction mixture. The recovery or isolation should generally be carried out as
30 soon as the reaction product is formed so as to reduce the likelihood of product

- 6 -

discoloration due to the formation of PAP. The final product may be dried under vacuum.

The APAP salts of the present invention are also amenable to cation exchange reactions. For example, an aqueous slurry or solution of a monovalent metal salt of acetaminophen is contacted with a divalent metal cation whereby the anhydrous, divalent metal salt of acetaminophen is formed via a cation exchange reaction. The salt is then immediately recovered. Specifically, C₁₆H₁₆N₂O₄Ca may be prepared by reacting an aqueous solution of C₈H₈NO₂Na with 0.5 equivalent of calcium chloride (CaCl₂). After drying, the resulting C₁₆H₁₆N₂O₄Ca was found to be anhydrous.

In addition to the anhydrous form, various hydration states of APAP salts can be prepared depending on the reaction conditions. These hydrated salts preferably have less than 10 moles of water per mole of APAP salt, and includes, for example, acetaminophen sodium pentahydrate, acetaminophen sodium hexahydrate, acetaminophen sodium heptahydrate, acetaminophen calcium dihydrate and acetaminophen lithium hexahydrate.

The aqueous solubility at 22°C of the APAP salts of the present invention is 490-540, 450-470 and 13 mg/mL for sodium, lithium and calcium, respectively. Accordingly, the sodium, lithium and calcium salts have solubilities equivalent to approximately 260-280, 250-270, and 10 mg/mL, respectively, of APAP free acid.

The APAP salts have significantly increased dissolution rates compared to the conventional free acid form of acetaminophen. In 0.1N hydrochloric acid using USP Dissolution Apparatus 2 (paddle speed: 50 rpm) at 37°C, the concentration of acetaminophen at 30 seconds was as follows:

- 7 -

<u>APAP Form (Powder)</u>	<u>Mg/mL of APAP</u>
Sodium Salt	0.30
Lithium Salt	0.32
Calcium Salt	0.20
Free Acid (control)	0.02

Figure 1 illustrates the tablet dissolution rates of the salts of the present invention. The sodium, lithium and calcium salts of APAP and the conventional form of APAP were each compressed into tablets and the dissolution rates were evaluated 5 using the conditions described above. The dissolution media was assayed for acetaminophen in the free acid form. Figure 1 shows that the salts of the present invention have significantly higher acetaminophen dissolution rates than the conventional free acid.

10 The calcium and sodium salts of acetaminophen have been observed not to have the bitter properties of the conventional free acid form of acetaminophen. The calcium salt was almost tasteless, while the sodium salt was observed to be somewhat salty. The improved taste properties of the salts of the present invention will allow for acetaminophen oral dosage forms with improved taste to be formulated.

15 The onset of action of acetaminophen is believed to be hastened, relative to the free acid form, with the isolated salts of the present invention. The increase solubility of the salts of the present invention, results in faster peak acetaminophen plasma concentration. This property will potentially provide faster onset of action of the 20 analgesic and/or antipyretic activity of acetaminophen.

25 The acetaminophen salts of the present invention may be administered to a mammal in a therapeutically effective amount, which is an amount that produces the desired therapeutic response upon oral administration, and can be readily determined by one skilled in the art. In determining such amounts, the particular compound being

- 8 -

administered, the bioavailability characteristics of the compound, the dose regime, the age and weight of the patient, and other factors must be considered. A typical unit dose orally administered to a human would range from about 80-1000 mg (APAP free acid basis) .

5

The compositions and methods of the present invention may also preferably include at least one other active ingredient selected from the group consisting of analgesics, decongestants, expectorants, antitussives, antihistamines, gastrointestinal agents, diuretics, bronchodilators, sleep-inducing agents and mixtures thereof.

10

When the other active ingredient is selected from the group consisting of decongestants, expectorants, antitussives, antihistamines and mixtures thereof, the compositions are particularly useful for the treatment of cough, cold, cold-like and/or flu symptoms in mammals, such as humans. As used in the present invention, cold-like symptoms include coryza, nasal congestion, upper respiratory infections, allergic rhinitis, otitis, and sinusitis.

15

The analgesics useful in combination with the acetaminophen salts of this invention include acetyl salicylic acid, indomethacin, optically active isomers or racemates of ibuprofen, naproxen, flurbiprofen, carprofen, tiaprofenic acid, 20 cicloprofen, ketoprofen, ketorolac, etodolac, indomethacin, sulindac, fenoprofen, diclofenac, piroxicam, benzydomine, nabumetone, tramadol, codeine, oxycodone, hydrocodone, pharmaceutically acceptable salts thereof and mixtures thereof.

25

Cyclooxygenase-2 (COX-2) inhibitors, such as flosulide, nimesulide, celecoxib, 5-(4-amino sulfonyl-3-fluorophenyl)-4-cyclohexyl-2-methyloxazole, meloxicam, nabumetone, etodolac, pharmaceutically acceptable salts thereof and mixtures thereof, may be used as an analgesic in the present invention..

The decongestants (sympathomimetics) suitable for use in the compositions of the present invention include pseudoephedrine, phenylpropanolamine,

- 9 -

phenylephrine, ephedrine, pharmaceutically acceptable salts thereof and mixtures thereof.

The expectorants (also known as mucolytic agents) preferred for use in the present invention include guaifenesin, glyceryl guaiacolate, terpin hydrate, ammonium chloride, N acetylcysteine, bromhexine, ambroxol, domiodol, 3-iodo-1,2-propanediol, pharmaceutically acceptable salts thereof and mixtures thereof.

The antitussives preferred for use in the present invention include those such as dextromethorphan, chlophedianol, carbetapentane, caramiphen, noscapine, diphenhydramine, codeine, hydrocodone, hydromorphone, fominoben, benzonatate, pharmaceutically acceptable salts thereof and mixtures thereof.

The antihistamines which may be employed include chlorpheniramine, brompheniramine, dexchlorpheniramine, dexbrompheniramine, triprolidine, doxylamine, tripelennamine, cyproheptadine, hydroxyzine, pyrilamine, azatadine, promethazine, acrivastine, astemizole, cetirizine, ketotifen, loratadine, temelastine, terfenadine, norastemizole, fexofenadine, pharmaceutically acceptable salts thereof and mixtures thereof.

20

Examples of gastrointestinal agents preferred for use in the present invention include anticholinergics, including: atropine, clidinium and dicyclomine; antacids, including: aluminum hydroxide, bismuth subsalicylate, bismuth subcitrate, calcium carbonate and magaldrate; anti-gas agents, including simethicone; H₂-receptor antagonists, including: cimetidine, famotidine, nizatidine and ranitidine; laxatives, including: phenolphthalein and casanthrol; gastroprotectants, including: sucralfate and sucralfate humid gel; gastrokinetic agents, including: metoclopramide and eisaprole; proton pump inhibitors, including omeprazole and antidiarrheals, including: diphenoxylate and loperamide; pharmaceutically acceptable salts thereof and mixtures thereof.

- 10 -

The diuretics useful in the invention include caffeine and pamabrom. Also useful are bronchodilators such as terbutaline, aminophylline, pinephrine, isoprenaline, metaproterenol, bitoterol, theophylline, albuterol, pharmaceutically acceptable salts thereof and mixtures thereof.

5

Sleep-inducing agents suitable for use in the invention include melatonin, estazolam, zolpidem, promethazine, pharmaceutically acceptable salts thereof and mixtures thereof.

10 The term "pharmaceutically acceptable salts" refers to salts prepared from pharmaceutically acceptable non-toxic bases including inorganic bases and organic bases. Salts derived from nonorganic bases include sodium, potassium, lithium, ammonia, calcium, magnesium, ferrous, zinc, manganous, aluminum, ferric, manganese salts and the like. Salts derived from pharmaceutically acceptable organic
15 non-toxic bases include salts of primary, secondary, tertiary and quaternary amines, substituted amines including naturally occurring substituted amines, cyclic amines and basic ion exchange resins, such as triethylamine, tripropylamine, 2-dimethylaminoethanol, 2-diethylaminoethanol, lysine, arginine, histidine, caffeine, procaine, N-ethylpiperidine, hydrabamine, choline, betaine, ethylenediamine,
20 glucosamine, methylglycamine, theobromine, purines, piperazine, piperidine, polyamine resins and the like.

As with the acetaminophen salts of the present invention, these other active ingredients are administered to a mammal in a therapeutically effective amount, which
25 is an amount that produces the desired therapeutic response upon oral administration, and can be readily determined by one skilled in the art. In determining such amounts, the particular compound being administered, the bioavailability characteristics of the compound, the dose regime, the age and weight of the patient, and other factors must be considered. Many of these other active ingredients, as well as their acceptable
30 dosage ranges are described in the following: U.S. Pat. No. 4,552,899 to Sunshine et

- 11 -

al., issued Nov. 12, 1985; U.S. Pat. No. 4,783,465 to Sunshine et al., issued Nov. 8, 1988; and U.S. Pat. No. 4,619,934 to Sunshine et al., issued Oct. 28, 1986, which are all incorporated by reference herein. Other antitussives, expectorants, antihistamines, decongestants, and gastrointestinal agents suitable for use in the invention are described in *Remington's Pharmaceutical Sciences*, Mack Publishing Co., Easton, Pa., 18th ed. Chapters 39, 42, 43, 58 and 59 (1990), which is hereby incorporated by reference. These other active ingredients may be administered concomitantly as a combination product with the acetaminophen salt or they may be administered as separate products prior to or after the administration of the APAP salt.

The acetaminophen salts of the present invention, alone or in combination with the other active ingredients, are generally administered orally in a solid dosage form. Suitable solid preparations include as swallowable, chewable or fast dissolving tablets, pills, capsules, caplets, powders, wafers, sachets, gelatin coated tablets, softgels and granules. In preparing solid dosage forms, the salt of acetaminophen, alone in combination with such other active ingredients, can be mixed with conventional solid fillers or carriers, such as corn starch, talc, calcium phosphate, calcium sulphate, calcium stearate, magnesium stearate, stearic acid, sorbitol, microcrystalline cellulose, mannitol, gelatin, natural or synthetic gums, such as carboxymethylcellulose, methylcellulose, alginate, dextran, acacia gum, karaya gum, locust bean gum and other conventional carriers. Additionally, other excipients such as diluents, binders, lubricants, disintegrants, colors and flavoring agents may be employed. The dosage form can also be film coated. It may also be desirable to coat the acetaminophen salt and/or other active ingredients with a conventional, pharmaceutically acceptable polymeric film prior to the preparation of the dosage form.

Conventional methods can be used for preparing the solid dosage forms of the present invention. Suitable techniques are described in *Remington's Pharmaceutical Sciences*, 18th Ed., Chapter 89 (1990) which is hereby incorporated by reference.

- 12 -

The following example illustrates a specific embodiment of the present invention. This invention, however, is not confined to the specific limitations set forth in this example but rather to the scope of the appended claims. Unless otherwise stated, the percentages and ratios given below are by weight.

5

EXAMPLE I

This Example discloses the preparation of acetaminophen sodium ($C_8H_8NO_2Na \cdot 6H_2O$).

10

30 mL 1N NaOH solution (0.030 mol) were added to a stirred suspension of 4.53 g (0.033 mol) acetaminophen in 25 mL water. After all solids dissolved, 200 mL acetonitrile was added while the solution was rapidly stirred. The resulting white precipitate (9.15 g, 99% yield as the 6-hydrate) was collected on a frit, washed with tetrahydrofuran (THF) and dried at room temperature. 1H NMR (DMF d_7) δ 9.4 (s, 1H, NH), 7.1 (m, 2H, Ar-H), 6.3 (m, 2H, Ar-H), 1.96 (s, 3H, CO-CH₃); IR (cm⁻¹, KBr) 3421 (broad, OH), 1635 (sharp, CO), 1594 (sharp), 1534 (sharp), 1500 (sharp), 1279 (sharp); Combustion analysis calculated for $C_8H_8NO_2Na \cdot 6H_2O$: C 34.16, H 7.12, N 4.98; found C 34.05, H 6.96, N 5.00; Water content calculated for $C_8H_8NO_2Na \cdot 6H_2O$: 38%, Found: 38% (Karl Fischer); FAB mass spectral analysis m/e calculated for $C_8H_8NO_2Na \cdot 6H_2O$: 173, found 174 (M + 1). The aqueous solubility at 22°C was 493 mg/mL.

EXAMPLE II

25

This Example discloses the preparation of acetaminophen sodium ($C_8H_8NO_2Na \cdot 7H_2O$).

80g (2.00 mol) NaOH was dissolved in 400 mL water and added dropwise to a flask charged with 302g (2.00 mol) APAP dissolved in 2100 mL *i*-propanol, at 50°C with stirring. The solution was cooled to room temperature, whereupon an off-

- 13 -

white precipitate formed. The solids were filtered, washed with three 200 mL portions of *i*-propanol, and dried under a vacuum (500g, 84 % as the 7-hydrate). The ^1H NMR and IR spectra were identical to that of $\text{C}_8\text{H}_8\text{NO}_2\text{Na} \cdot 6\text{H}_2\text{O}$. Combustion analysis calculated for $\text{C}_8\text{H}_8\text{NO}_2\text{Na} \cdot 7\text{H}_2\text{O}$: C 32.11 H 7.41 N 4.68; 5 Found: C 31.99, H 7.38, N 4.31; Water content calculated for $\text{C}_8\text{H}_8\text{NO}_2\text{Na} \cdot 7\text{H}_2\text{O}$: 42.1%; Found 42.7% (Karl Fischer). The aqueous solubility at 22°C was 541 mg/mL.

EXAMPLE III

10

This Example discloses the preparation of acetaminophen calcium ($\text{C}_{16}\text{H}_{16}\text{N}_2\text{O}_4\text{Ca} \cdot 2\text{H}_2\text{O}$).

5g (0.033 mol) APAP and 1.22g (0.016 mol) $\text{Ca}(\text{OH})_2$ were suspended in 15 200 mL water and the mixture was stirred for 4h, whereupon all solids went into solution. The solution was frozen in a bath of liquid nitrogen and lyophilized, leaving a light microcrystalline off-white solid (5.44g, 100% crude yield based on the hydrate X 2). ^1H NMR (DMF d_7) δ 9.39 (s, 2H, NH), 7.15 (m, 4H, Ar), 6.80 (m, 4H, Ar), 2.10 (s, 6H, CO-CH₃). IR 3287 (broad), 1648 (sharp, C=O), 1594, 1541, 20 1500, 1279 (sharp) Combustion analysis calculated for $\text{C}_{16}\text{H}_{16}\text{N}_2\text{O}_4\text{Ca} \cdot 2\text{H}_2\text{O}$: C 51.05, H 5.36, N 7.45; 9.6, Found: C 51.21, H 5.21, N 7.63. Water content calculated (Karl Fischer) for $\text{C}_{16}\text{H}_{16}\text{N}_2\text{O}_4\text{Ca} \cdot 2\text{H}_2\text{O}$: 9.6%, Found: 9.8%. The aqueous solubility at 22°C was 13 mg/mL.

25 EXAMPLE IV

This Example discloses the preparation of acetaminophen lithium ($\text{C}_8\text{H}_8\text{NO}_2\text{Li} \cdot 6\text{H}_2\text{O}$).

- 14 -

5g (0.033 mol) APAP was dissolved in 30 mL i-propanol/THF (1:3, degassed with argon). This solution was added rapidly to a flask charged with 1.38g of (0.033 mol) LiOH•H₂O dissolved in 20 mL water (argon degassed). The colorless solution was stored at 0° C for 16 h, whereupon white crystals formed. The crystals
5 were filtered under argon, washed with THF and dried under a vacuum for 16 h (4.25g, 6 hydrate). ¹H NMR (DMF-d⁷) δ 9.39 (s, 1H, NH), 7.15 (m, 2H, Ar-H), 6.80 (m, 2H, Ar-H), 2.10 (s, 3H, CO-CH₃); IR 3568 (sharp), 3402, 3243 (broad), 1672, 1618 (sharp), 1533, 1501, 1407, 1267, 1174 (sharp). Combustion analysis calculated for C₈H₈NO₂Li•6H₂O: C 36.23, H 7.60, N 5.28; Found: C 36.67, H 7.68,
10 N 5.23; Water content calculated (Karl Fischer) for C₈H₈NO₂Li•6H₂O: 40.1%, Found: 38.4%. The aqueous solubility at 22°C was 455 mg/mL.

EXAMPLE V

15 This Example discloses an alternative preparation of acetaminophen lithium (C₈H₈NO₂Li•6H₂O).

Acetaminophen (15.1g; 0.1 mol), water, 90 mL and lithium hydroxide 1 N (100 mL, 0.1 mol) were placed in a 2 L beaker. After the solution became clear, 20 acetonitrile (1500 mL) was added. The resulting white solids were filtered, washed with THF (ca. 500 mL) and dried at ambient leaving a dry white solid (23.0 g, 87% based on C₈H₈NO₂Li•6H₂O). ¹H NMR (DMF-d⁷) δ 2.0 (s,3H, CO-CH₃), 6.5 (m, 2H, Ar-H), 7.2 (m, 2H, Ar-H), 9.3 (s,1H, Ac-NH-Ar); IR 3568 (sharp), 3402, 3243 (broad), 1672, 1618 (sharp), 1533, 1501, 1407, 1267, 1174 (sharp). Combustion 25 analysis calculated for C₈H₈NO₂Li•6H₂O: C 36.23, H 7.60, N 5.28; Found: C 36.56, H 7.56, N 5.05. Water content calculated (Karl Fischer) for C₈H₈NO₂Li•6H₂O: 40.1%, Found: 40.0%. The aqueous solubility at 22°C was 472 mg/mL.

- 15 -

EXAMPLE VI

This Example discloses the preparation of an anhydrous acetaminophen calcium ($C_{16}H_{16}N_2O_4Ca$).

5 Acetaminophen (90.6g, 0.60 mol) was suspended in 135 mL water and a solution containing sodium hydroxide (24.0g, 0.6 mol) and 36mL water was added at 18-26°C over 30 min. To the resulting NaAPAP-slurry, a solution containing calcium chloride ($CaCl_2$) (44.1g, 0.3 mol) and 54 mL water was added at 20-25°C
10 over 30 min. at room temperature. The reaction mixture was then heated to 60°C within 60 min. Immediately after reaching 60°C, the slurry was cooled to 20°C within 60 min. and stirred at 20°C for 30 min. The resulting $C_{16}H_{16}N_2O_4Ca$ (79g, 78%) was filtered off, washed with *i*-propyl alcohol (75 mL) and dried overnight at 80°C under vacuum. 1H NMR (D_2O) δ 7.01 (d,8,4H), 6.57 (d,8,4H), 2.06 (s, 6H,
15 CO-CH₃). IR (cm⁻¹): 1651 (sharp, C=O), 1506, 1276, 854 (sharp). Combustion analysis calculated for $C_{16}H_{16}N_2O_4Ca$: C 55.65, H 4.7, N 8.23; Found: C 55.80, H 4.53, N 8.13.

EXAMPLE VII

20 A study was conducted in dogs to determine the bioavailability of acetaminophen sodium. The free acid form of acetaminophen was used as the control. Compressed cylindrical pellets having the following composition were prepared:

25 Acetaminophen Sodium - compressed neat (no excipients).

Control - 150 mg APAP, 30 mg microcrystalline cellulose, and 30 mg dextrates.

- 16 -

Eight male purebred beagles having a body weight at initial dosing of approximately 9 to 14 kg were used in the study. The dogs were fed PMI® Certified Canine Diet Meal No. 5007 and water, both *ab libitum*. The dogs were fasted overnight for approximately 12 hours prior to dosing and food was returned 4 hours 5 after dosing.

The dogs were divided into two groups and each group was dosed with either acetaminophen sodium or the control (free acid APAP) pellets. A single dose equivalent to 300 mg of acetaminophen free acid was administered via an oral 10 gavage using a stomach tube. Each dose was followed by 20 mL of water. After a period of one week, the each group was dosed again, but with the other form of acetaminophen. Twelve blood samples were collected form each dog on each dosing day (1 prior to dosing and 11 thereafter). The plasma was separated and tested for acetaminophen.

15

The following summarizes the pharmacokinetic measurements for acetaminophen:

<u>Parameter</u>	<u>APAP Sodium</u>	<u>Control</u>
AUC (ug·hr/mL)	31.4 ± 5.7	27.4 ± 6.1
C_{max} (ug/mL)	23.6 ± 4.2	19.4 ± 6.9
T_{max} (hr)	0.27 ± 0.1	0.60 ± 0.3

20 AUC = areas under the plasma concentration-time curve to the last quantifiable concentration.

C_{max} = peak plasma concentration.

T_{max} = peak time.

25 Figure 2 is a plot of the acetaminophen plasma concentration-time curve. This Figure demonstrates that the acetaminophen salt of the present invention is absorbed faster than the free acid acetaminophen control. The faster T_{max} for the acetaminophen salt suggests faster onset of action of the analgesic and antipyretic activities relative to the free acid control.

- 17 -

EXAMPLE VIII

This Example discloses the preparation and testing of tablets containing anhydrous calcium acetaminophen (CaAPAP) and one other active ingredient selected 5 from the group of chlorpheniramine maleate (CPM), dextromethorphan hydrobromide (DEX), diphenhydramine hydrochloride (DPH) and pseudoephedrine hydrochloride (PE). The target weight of the tablet (free APAP basis) was 325 mg. The following ingredients were used to make the tablets:

Ingredient	Formulation 1 (mg/Tab)	Formulation 2 (mg/Tab)	Formulation 3 (mg/Tab)	Formulation 4 (mg/Tab)
CaAPAP	368.23	368.23	368.23	368.23
CPM	2.00	-	-	-
DEX	-	15.00	-	-
DPH	-	-	25.00	-
PE	-	-	-	30.00
Microcrystalline Cellulose (Avicel PH 200)	520.77	507.77	497.77	492.77
SiO ₂ (Cab-O-Sil M5)	4.50	4.50	4.50	4.50
Mg Stearate NF	4.50	4.50	4.50	4.50

10 Appropriate amounts of these ingredients were weighed to make a 180 g batch. After sieving, the ingredients were combined and mixed using a PK Blender. The ingredients were then tableted using a single-punch Korsh tablet press. The weight, hardness, thickness and disintegration times were evaluated and are reported below.

15 The dissolution of the CaAPAP was measured using USP Method II apparatus by monitoring the APAP concentration in gastric fluid(GF). The percent dissolution of APAP from the tablet formulations at 2 min. is also reported.

- 18 -

	Formulation 1	Formulation 2	Formulation 3	Formulation 4
Weight Range (mg)	917±6	900±4	907±9	913±4
Thickness range (mm)	5.72±0.02	5.65±0.03	5.72±0.02	5.56±0.02
Hardness range (kP)	7.9±0.1	9.1±0.3	7.1±1.1	8.8±0.5
Disintegration time (sec)	10 to 15	10 to 15	20	15 to 20
% dissolution of CaAPAP at 2 minutes in GF	100%	-	100%	100%

Various modifications can be made from the above-described embodiments without departing from the spirit and scope of the present invention.

- 19 -

WHAT IS CLAIMED IS:

1. A pharmaceutical composition comprising the isolated compound

wherein n is 1 or 2, M is alkali metal when n is 1 and M is alkaline-earth metal when n is 2 and x is from 0 to about 10, and at least one other active ingredient selected from the group consisting of analgesics, decongestants, expectorants, antitussives, 10 antihistamines, gastrointestinal agents, diuretics, bronchodilators and mixtures thereof.

2. The composition of claim 2 wherein the alkali metal is selected from the group consisting of sodium, potassium, cesium and lithium.

15 3. The composition of claim 2 wherein the alkaline-earth metal is selected from the group consisting of calcium and magnesium.

4. The composition of claim 2 wherein the isolated compound is in a hydrated form.

20 5. The composition of claim 2 wherein the isolated compound is in an anhydrous form.

25 6. The composition of claim 2 wherein the analgesic is selected from the group consisting of acetyl salicylic acid, indomethacin, optically active isomers or racemates of ibuprofen, naproxen, flurbiprofen, carprofen, tiaprofenic acid, cicloprofen, ketoprofen, ketorolac, etodolac, indomethacin, sulindac, fenoprofen, diclofenac, piroxicam, benzydomine, nabumetone, tramadol, codeine, oxycodone, hydrocodone, flosulide, nimesulide, celecoxib, 5-(4-amino sulfonyl-3-fluorophenyl)-30

- 20 -

4-cyclohexyl-2-methyloxazole, meloxicam, nabumetone, etodolac, pharmaceutically acceptable salts thereof and mixtures thereof.

7. The composition of claim 2 wherein the decongestant is selected from the
5 group consisting of pseudoephedrine, phenylpropanolamine, phenylephrine and ephedrine, pharmaceutically acceptable salts thereof and mixtures thereof.

8. The composition of claim 2 wherein the expectorant is selected from the
group consisting of guaifenesin, glyceryl guaiacolate, terpin hydrate, ammonium
10 chloride, N acetylcysteine and bromhexine, ambroxol, domiodol, 3-ido-1,2-
propanediol, pharmaceutically acceptable salts thereof and mixtures thereof.

9. The composition of claim 2 wherein the antitussive is selected from the
group consisting of dextromethorphan, chlophedianol, carbetapentane, caramiphen,
15 noscapine, diphenhydramine, codeine, hydrocodone, hydromorphone, fominoben,
benzonatate, pharmaceutically acceptable salts thereof and mixtures thereof.

10. The composition of claim 2 wherein the antihistamine is selected from the
group consisting of chlorpheniramine, brompheniramine, dexchlorpheniramine,
20 dexbrompheniramine, triprolidine, doxylamine, tripelennamine, cyproheptadine,
hydroxyzine, pyrilamine, azatadine, promethazine, acrivastine, astemizole, cetirizine,
ketotifen, loratadine, temelastine, terfenadine, norastemizole, fexofenadine,
pharmaceutically acceptable salts thereof and mixtures thereof.

- 21 -

11. The composition of claim 2 wherein the gastrointestinal agent is selected from the group consisting of atropine, clidinium, dicyclomine, aluminum hydroxide, bismuth subsalicylate, bismuth subcitrate, simethicone, calcium carbonate, magaldrate, cimetidine, famotidine, nizatidine, ranitidine, phenolphthalein,
5 casanthrol, sucralfate, sucralfate humid gel, metoclopramide, eisaprode, omeprazole, diphenoxylate, loperamide, pharmaceutically acceptable salts thereof and mixtures thereof.
12. The composition of claim 2 wherein the diuretic is selected from the group
10 consisting of caffeine and pamabrom.
13. The composition of claim 2 wherein the bronchodilator is selected from the group consisting of terbutaline, aminophylline, epinephrine, isoprenaline, metaproterenol, bitoterol, theophylline, albuterol, pharmaceutically acceptable salts
15 thereof and mixtures thereof.
14. The composition of claim 2 wherein the sleep-inducing agent is selected from the group consisting of melatonin, estazolam, zolpidem, promethazine, pharmaceutically acceptable salts thereof and mixtures thereof.
20
15. A method of eliciting an onset hastened analgesic or antipyretic response in a mammal, comprising the oral administration of the composition of claim 1.
16. The method of claim 15 wherein the alkali metal is selected from the group
25 consisting of lithium, sodium, cesium and potassium.
17. The method of claim 15 wherein the alkaline-earth metal is selected from the group consisting of calcium and magnesium.

- 22 -

18. The method of claim 15 wherein the salt is in a hydrated form.
19. The method of claim 15 wherein the salt is in an anhydrous form.

1 / 2

2 / 2

FIG. 2

INTERNATIONAL SEARCH REPORT

International Application No

PC., US 99/13064

A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 A61K31/165

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 6 A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO 95 23595 A (PROCTER & GAMBLE) 8 September 1995 (1995-09-08) page 6, line 23 -page 7, line 11; claims 1,7 ---	1-14
A	WO 85 04589 A (SUNSHINE ABRAHAM;LASKA EUGENE M; SIEGEL CAROLE E) 24 October 1985 (1985-10-24) page 2 -page 3 ---	1-14
A	EP 0 396 404 A (SCHERRING CORP) 7 November 1990 (1990-11-07) claim 1; examples 1-3 ---	1,7,10
A	US 5 409 709 A (OZAWA KIYOTAKA ET AL) 25 April 1995 (1995-04-25) column 3 -column 4; claims 1,2 ---	1,6,10, 12 -/-

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

5 November 1999

12/11/1999

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Rufet, J

INTERNATIONAL SEARCH REPORT

International Application No

PCT/US 99/13064

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	FR 2 751 875 A (SCR NEWPHARM) 6 February 1998 (1998-02-06) page 3, line 31 -page 4, line 41 -----	1,6
A	PATENT ABSTRACTS OF JAPAN vol. 1997, no. 07, 31 July 1997 (1997-07-31) & JP 09 067256 A (TAISHO PHARMACEUT CO LTD), 11 March 1997 (1997-03-11) abstract -----	1,6
A	FR 2 278 324 A (BOTTU) 13 February 1976 (1976-02-13) page 1, line 5 -page 2, line 9 -----	1
A	CHEMICAL ABSTRACTS, vol. 125, no. 11, 9 September 1996 (1996-09-09) Columbus, Ohio, US; abstract no. 142293w, page 1181; XP002059502 abstract & IN 172 949 A (RAMA, RAO INDIA) -----	1

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT, US 99/13064

Patent document cited in search report	Publication date	Patent family member(s)			Publication date
WO 9523595 A	08-09-1995	US 5510389 A			23-04-1996
		AU 1935795 A			18-09-1995
		CA 2184365 A			08-09-1995
WO 8504589 A	24-10-1985	US 4552899 A			12-11-1985
		AT 72989 T			15-03-1992
		AU 2029195 A			03-08-1995
		AU 589554 B			19-10-1989
		AU 4120085 A			01-11-1985
		AU 7997998 A			22-10-1998
		CA 1258430 A			15-08-1989
		DE 3585495 A			09-04-1992
		EP 0180597 A			14-05-1986
		JP 2848556 B			20-01-1999
		JP 61501913 T			04-09-1986
		US 4749697 A			07-06-1988
		US 4839354 A			13-06-1989
		US 4749722 A			07-06-1988
		US 4749711 A			07-06-1988
		US 4749723 A			07-06-1988
		US 4749720 A			07-06-1988
		US 4749721 A			07-06-1988
		US 4783465 A			08-11-1988
		US 4920149 A			24-04-1990
		US 4840962 A			20-06-1989
		US 4871733 A			03-10-1989
		US 5025019 A			18-06-1991
		US 4619934 A			28-10-1986
		US 4738966 A			19-04-1988
EP 0396404 A	07-11-1990	US 4990535 A			05-02-1991
		AT 101517 T			15-03-1994
		AU 628986 B			24-09-1992
		AU 5664890 A			29-11-1990
		CA 2054752 A,C			04-11-1990
		DE 69006628 D			24-03-1994
		DE 69006628 T			26-05-1994
		DK 396404 T			14-03-1994
		EP 0471009 A			19-02-1992
		ES 2062355 T			16-12-1994
		HK 184896 A			11-10-1996
		JP 6006536 B			26-01-1994
		JP 4501425 T			12-03-1992
		KR 9411246 B			03-12-1994
		MX 9203278 A			01-07-1992
		WO 9013295 A			15-11-1990
		US 5100675 A			31-03-1992
US 5409709 A	25-04-1995	JP 5148139 A			15-06-1993
		JP 5246845 A			24-09-1993
		JP 5294829 A			09-11-1993
FR 2751875 A	06-02-1998	AU 3945197 A			25-02-1998
		CA 2233924 A			12-02-1998
		CZ 9801048 A			16-09-1998
		EP 0858329 A			19-08-1998
		WO 9805314 A			12-02-1998
		HU 9901893 A			28-09-1999

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT, US 99/13064

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
FR 2751875 A		PL	326069 A	17-08-1998
JP 09067256 A	11-03-1997	NONE		
FR 2278324 A	13-02-1976	BE	831161 A	03-11-1975
		CH	595326 A	15-02-1978
		DE	2530535 A	12-08-1976
		GB	1514225 A	14-06-1978
		NL	7508210 A	20-01-1976
IN 172949 A	08-01-1994	NONE		

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US 99/13064

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: 15-19 because they relate to subject matter not required to be searched by this Authority, namely:
Remark: Although claims 15-19 are directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.
2. Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

The additional search fees were accompanied by the applicant's protest.
 No protest accompanied the payment of additional search fees.