Recommended Critical Pressures. Part I. Aliphatic Hydrocarbons ⊘

Iwona Owczarek; Krystyna Blazej

J. Phys. Chem. Ref. Data 35, 1461-1474 (2006)

https://doi.org/10.1063/1.2201061

Articles You May Be Interested In

Recommended Critical Temperatures. Part I. Aliphatic Hydrocarbons

J. Phys. Chem. Ref. Data (August 2003)

Recommended Critical Temperatures. Part II. Aromatic and Cyclic Hydrocarbons

J. Phys. Chem. Ref. Data (April 2004)

On the Electric Strengths of Aliphatic Hydrocarbons

J. Appl. Phys. (March 1954)

Recommended Critical Pressures. Part I. Aliphatic Hydrocarbons

Iwona Owczarek^{a)} and Krystyna Blazej^{b)}

Institute of Coal Chemistry, Polish Academy of Sciences, Gliwice, Poland

(Received 7 January 2005; revised manuscript received 29 June 2005; accepted 30 July 2005; published online 18 September 2006)

This study presents 95 recommended experimental and 180 calculated values of critical pressures for saturated and unsaturated aliphatic hydrocarbons. This is the third article in a series dealing with recommended critical data for organic compounds. Previously critically evaluated data on normal boiling temperatures based on recommended experimental data base is also given in this study. © 2006 American Institute of Physics. [DOI: 10.1063/1.2201061]

Key words: alkanes; alkenes; critical pressure; evaluation; normal boiling points; prediction; recommended data.

CONTENTS

1.	Introduction	1461
2.	Description of Selected Methods	
	of $P_{\rm c}$ Prediction	1462
	2.1. Ambrose's Method	1464
	2.2. Joback's Method	1464
	2.3. Somayajulu's Method	1465
	2.4. Jalowka–Daubert's Method	1465
	2.5. Constantinou's Method	1465
	2.6. Marrero–Gani's Method	1465
3.	Recommended Experimental Data	
	on Normal Boiling Points	
	and Critical Pressures	1465
	3.1. The Criterion and the Procedure for	
	Selection of Experimental Data	1465
	3.1.1. Statistical Analysis of Selected	
	Data	1468
	3.2. Recommended Experimental Data on	
	Critical Pressures for Aliphatic	
	Hydrocarbons	1468
4.	Testing Calculations	1468
5.	Results of Tests	1469
	5.1. Alkanes	1469
	5.1.1. Unbranched Alkanes	1469
	5.1.2. Branched Alkanes	1469
	5.2. Alkenes, Alkynes	1469
6.	Prediction of Critical Pressures	1471
7.	Conclusions and Recommendations	1471
8.	Acknowledgment	1474
9.	References	1474

List of Tables

1. Recommended experimental values of normal boiling points T_b (taken from Part I^1) and

	critical pressures I c for flydrocarbons, used fil	
	this work for testing the applied prediction	
	methods	1463
2.	Deviations E (%) of predicted critical	
	pressures from recommended experimental	
	values for tested methods	1466
3.	Unbranched alkanes. Absolute percent error	
	for tested methods for different chain length	1467
4.	Branched alkanes. The dependence of absolute	
	percent errors of the tested methods upon the	
	number of C atoms in a molecule	1468
5.	Branched alkanes. The dependence of absolute	
	percent errors of tested methods upon the	
	number of substituted CH ₃ -groups to main	
	chain	1468
6.	The dependence of absolute percent errors of	
	tested methods upon the C_s/C_m ratio	1469
7.	Alkenes, alkynes, Absolute percent errors for	
	tested methods	1469
8.	Branched alkanes. Calculated values of critical	
	pressures (P_{cp}) obtained by the Ambrose ³	
	method. Expected absolute percent error for all	
	$P_{\rm cp}$ -less than 3.3%. Values of critical pressure	
	using Somayajulu ⁵ method-P _{cp1} are given in	
	the second column for comparison purpose. $T_{\rm b}^{\rm l}$	
	=experimental normal boiling temperatures,	
	used for calculation critical pressures	1470
9.	Alkenes and alkynes. Calculated values of	
	critical pressures (P_{cp}) predicted using one of	
	the selected methods, specified below.	
	Expected percent error for all (P_{cp}) -(from	
	1.18% to 3.31%). T_b^1 = experimental normal	
	boiling point temperature. E =expected percent	
	errors for individual cases. Numbers attributed	

critical pressures P_c for hydrocarbons, used in

1. Introduction

Accurate evaluation of pure-substance critical parameters is essential for any calculations in multicomponent mixtures

a)Electronic mail: iwo@guest.com.pl

b) Electronic mail: kb@guest.com.pl © 2006 American Institute of Physics.

and further for many industrial processes designed. Critical constants have been experimentally determined for a limited number of compounds, as the decomposition processes and the necessity of obtaining accurate measurements in extreme conditions of high temperature and pressure constitute the main obstacle in the measurement process. In this case, prediction methods are the only means by which those properties may be determined.

This work is the third part of a general study of determination of critical parameters of the main groups of chemical compounds for which experimental data are not available in world literature. Two previous papers were concerned with the critical temperatures for aliphatic hydrocarbons Part I¹ and the critical temperatures for aromatic and cyclic hydrocarbons Part II.²

The main purpose of this work was the creation of recommended experimental critical pressure $(P_{\rm c})$ data base for aliphatic hydrocarbons, as well as filling the existing lack of $P_{\rm c}$ values, as far as possible, by means of predictive methods.

The preliminary stages of this work were:

- (a) Creation of a recommended experimental data base of P_c values of aliphatic hydrocarbons, named "test substances" for which the satisfactory quantity of experimental data has been found (Table 1). This data base was next used for evaluation of chosen methods.
- (b) Comparative determination of the accuracy of individual predictive methods of calculation of critical pressure P_c values for hydrocarbons according to their different molecular structures; and the final aim was
- (c) Application of the chosen predictive methods for determination of P_c values for aliphatic hydrocarbons for which the experimental data were not available in world literature.

The prediction methods for critical pressures require reliable and accurate values of normal boiling points $T_{\rm b}$. Values of $T_{\rm b}$ needed for test substances as well as for those for which $P_{\rm c}$ values were calculated were taken from the set of recommended data for normal boiling points presented in Part I¹ of this series. For several substances, not mentioned in Part I¹, and for those for which more reliable experimental data have been found—the recommended $T_{\rm b}$ data base was created according to the rules described further in point 3 and in Part I.¹

The experimental data were critically evaluated and statistically examined with the aim of choosing the most reliable $P_{\rm c}$ values for recommended data sets, mentioned in point (a). For evaluation purpose, mentioned in (b), the set of test substances was split into subgroups in order to determine if trends of deviations were reasonable.

Evaluation of applicability of prediction methods was effected by determining the dependence of their accuracy upon:

- (1) a number of carbon atoms in a molecule,
- (2) a number of substituted CH₃ groups,
- (3) C_s/C_m ratio, where C_s is a general number of C atoms

- in side chains, and $C_{\rm m}$ is a number of C atoms in the main chain, and
- (4) type of C-C bond.

A new method of prediction of critical parameters has been tested in this study—the method of Marrero-Gani. ^{9,10}

2. Description of Selected Methods of P_c Prediction

The following methods defined by their authors' names have been chosen for testing purposes as a result of a review and a critical analysis of the main prediction methods of P_c available in the literature: (1) Ambrose,³ (2) Joback,⁴ (3) Somayajulu,⁵ (4) Jalowka-Daubert,^{6,7} (5) Constantinou,⁸ and (6) Marrero–Gani.^{9,10}

The representation by most of these methods^{1,4–8} is based on experimental data available up to 1979, 1984–1989, and 1994, respectively. Only Marrero–Gani^{9,10} (2001) used more updated data. The experimental database, used for this study purpose, is being permanently updated up to 2005.

All tested methods of prediction of critical pressures employ group contribution techniques which determine correction factors for specific groups of atoms composing a molecule of a compound considered. Values of these factors (Δp) are tabulated for every method and their sum $\Delta P = \sum n_i \Delta p_i$ represents the final correction applied to the calculation of critical pressure. Particular methods differ among themselves by various group definitions. Most of them require the knowledge of:

- (1) group contribution models based on molecular structure, and
- (2) molecular weight.

The method of Jalowka–Daubert, ^{6,7} unlike the rest of the methods considered, requires additionally knowing:

- (1) normal boiling point temperature, and
- (2) critical temperature.

Investigated methods represent two distinctive classes:

- (1) The first order group techniques which determine the molecule by means of simple group contribution, neglecting the next-nearest neighbors effects. Ambrose,³ Joback,⁴ and Somayajulu⁵ methods belong to this class.
- (2) The second order group techniques, which additionally take into consideration the influence of first- and second-level neighbors of a considered group. The Jalowka–Daubert, 6,7 Constantinou, and Marrero–Gani enthods belong to this class.

In the short description of investigated methods provided below the following symbols are used: P_c =critical pressure (MPa); T_c =critical temperature (K); T_b =normal boiling point (K); Δp =contributions of single atoms or groups of atoms (tabulated³⁻¹²) compose a molecule; M=molecular weight; n_i =number of occurrences of group i.

TABLE 1. Recommended experimental values of normal boiling points T_b (taken from Part I^1) and critical pressures P_c for hydrocarbons, used in this work for testing the applied prediction methods

Formula	Name of compound	CAS RN	$T_{\rm b}$ (K)	$P_{\rm c}~({\rm kPa})$
		Unbranched alkanes		
CH_4	methane	74-82-8	111.63	4600^{13}
C_2H_6	ethane	74-84-0	184.55	4879 ¹⁴
C_3H_8	propane	74-98-6	231.05	4260^{14}
C_4H_{10}	butane	106-97-8	272.70	3793 ¹⁴
C_5H_{12}	pentane	109-66-0	309.21	3370 ¹⁴
C_6H_{14}	hexane	110-54-3	341.88	2990^{14}
C_7H_{16}	heptane	142-82-5	371.57	2730 ¹⁴
C_8H_{18}	octane	111-65-9	398.82	2490^{14}
C_9H_{20}	nonane	111-84-2	423.96	2280^{14}
$C_{10}H_{22}$	decane	124-18-5	447.30	2110^{14}
$C_{11}H_{24}$	undecane	1120-21-4	469.08	2008^{14}
$C_{12}H_{26}$	dodecane	112-40-3	489.47	1820^{14}
$C_{13}H_{28}$	tridecane	629-50-5	508.60	1680 ¹⁴
$C_{14}H_{30}$	tetradecane	629-59-4	526.70	1570 ¹⁴
$C_{15}H_{32}$	pentadecane	629-62-9	543.83	1480^{14}
$C_{16}H_{34}$	hexadecane	544-76-3	560.01	1400^{14}
$C_{17}H_{36}$	heptadecane	629-78-7	574.25	1340^{14}
$C_{18}H_{38}$	octadecane	593-45-3	590.22	1290^{14}
$C_{19}H_{40}$	nonadecane	629-92-5	603.00	1160 ¹⁴
$C_{20}H_{42}$	eicosane	112-95-8	617.00	1080^{14}
$C_{21}H_{44}$	heneicosane	629-94-7	636.05	1030^{14}
$C_{22}H_{46}$	docosane	629-97-0	641.80	991 ¹⁴
$C_{23}H_{48}$	tricosane	638-67-5	653.30 ^a	915 ^{14b}
$C_{24}H_{50}$	tetracosane	646-31-1	664.50 ^a	866 ^{14b}
$C_{27}H_{56}$	heptacosane	593-49-7	695.4 ^a	795 ^{14b}
$C_{28}H_{58}$	octacosane	630-02-4	704.80 ^a	744 ^{14b}
		Branched alkanes		
C_4H_{10}	2-methylpropane	75-28-5	261.42	3650^{14}
C_5H_{12}	2-methylbutane	78-78-4	301.00	3380^{14}
C_5H_{12}	2,2-dimethylpropane	463-82-1	282.65	3196 ¹⁴
C_6H_{14}	2-methylpentane	107-83-5	333.41	3032^{14}
C_6H_{14}	3-methylpentane	96-14-0	336.41	3124 ¹⁴
C_6H_{14}	2,2-dimethylbutane	75-83-2	322.88	3102^{14}
C_6H_{14}	2,3-dimethylbutane	79-29-8	331.15	3145 ¹⁴
C_7H_{16}	2-methylhexane	591-76-4	363.15	2750 ¹³
C_7H_{16}	3-methylhexane	589-34-4	364.99	2813 ¹⁴
C_7H_{16}	3-ethylpentane	617-78-7	366.64	2891 ¹³
C_7H_{16}	2,2-dimethylpentane	590-35-2	352.35	2773 ¹⁴
C_7H_{16}	2,3-dimethylpentane	565-59-3	362.93	2908 ¹⁴
C_7H_{16}	2,4-dimethylpentane	108-08-7	353.66	2736 ¹⁴
C_7H_{16}	3,3-dimethylpentane	562-49-2	359.21	2946 ^{14b}
C_7H_{16}	2,2,3-trimethylbutane	464-06-2	354.00	2953 ¹⁴
C_8H_{18}	2-methylheptane	592-27-8	390.80	2500^{13}
C_8H_{18}	3-methylheptane	589-81-1	392.09	2550 ^{14b}
C_8H_{18}	4-methylheptane	589-53-7	390.87	2542 ^{14b}
C_8H_{18}	3-ethylhexane	619-99-8	391.70	2610 ^{14b}
C_8H_{18}	2,2-dimethylhexane	590-73-8	380.00	2530 ^{14b}
C_8H_{18}	3,3-dimethylhexane	563-16-6	385.81	2653 ^{14b}
C_8H_{18}	3,4-dimethylhexane	583-48-2	390.88	2692 ^{14b}
C_8H_{18}	2,3-dimethylhexane	584-94-1	388.76	2630 ^{14b}
C_8H_{18}	2,4-dimethylhexane	589-43-5	382.58	2556 ^{14b}
C_8H_{18}	2,5-dimethylhexane	592-13-2	382.27	2488 ^{14b}
C_8H_{18}	2-methyl-3ethylpentane	609-26-7	388.80	2700 ^{14b}
C_8H_{18}	3-methyl-3ethylpentane	1067-08-9	391.43	2807 ^{14b}
C_8H_{18}	2,2,3-trimethylpentane	564-02-3	383.00	2730 ^{14b}
0 10	, ,	20.023		2568 ¹⁴

Table 1. Recommended experimental values of normal boiling points T_b (taken from Part I^1) and critical pressures P_c for hydrocarbons, used in this work for testing the applied prediction methods—Continued

Formula	Name of compound	CAS RN	$T_{\rm b}$ (K)	$P_{\rm c}$ (kPa)
C_8H_{18}	2,3,3-trimethylpentane	560-21-4	387.92	2820 ^{14b}
C_8H_{18}	2,3,4-trimethylpentane	565-75-3	386.62	2730 ^{14b}
C_8H_{18}	2,2,3,3-tetramethylbutane	594-82-1	379.65	2870^{14}
C_8H_{20}	2-methyloctane	3221-61-2	416.43	2310^{14}
C_8H_{20}	2,2-dimethylheptane	1071-26-7	405.99	2349 ^{14b}
C_9H_{20}	2,2,3,3-tetramethylpentane	7154-79-2	413.42	2740^{13}
C_9H_{20}	2,2,3,4-tetramethylpentane	1186-53-4	406.16	2602^{14}
C_9H_{20}	2,2,4,4-tetramethylpentane	1070-87-7	395.43	2480^{13}
C_9H_{20}	2,3,3,4-tetramethylpentane	16747-38-9	414.70	2720^{13}
$C_{10}H_{22}$	3,3,5-trimethylheptane	7154-80-5	428.85	2320^{13}
$C_{10}H_{22}$	2,2,5,5-tetramethylhexane	1071-81-4	410.61	2190^{13b}
$C_{10}H_{22}$	2,2,3,3-tetramethylhexane	13475-81-5	433.46	2510^{13b}
$C_{16}H_{34}$	2,2,4,4,6,8,8-heptamethylnonane	4930-04-9	519.5 ^a	1570 ^{14b}
		Alkenes, Alkynes		
C_2H_2	ethyne	74-86-2	189.55	6138^{14}
C_2H_4	ethylene	74-85-1	169.25	5060 ¹³
C_3H_4	1-propyne	74-99-7	249.92	5628 ^{13b}
C_3H_6	1-propene	115-07-1	225.45	4594 ¹⁴
C_4H_6	1-butyne	107-00-6	281.25	4586 ^{14b}
C_4H_6	1,3-butadiene	106-99-0	268.75	4322 ^{14b}
C_4H_8	trans-2-butene	624-64-6	274.01	3985 ¹⁴
C_4H_8	cis-2-butene	590-18-1	276.82	4245 ¹⁴
C_4H_8	1-butene	106-98-9	266.87	4023 ¹⁴
C_4H_8	2-methylpropene	115-11-7	266.22	4002^{14}
C_5H_{10}	cis-2,pentene	627-20-3	309.78	3690^{14b}
C_5H_{10}	trans-2,pentene	646-04-8	309.49 ^a	3520^{14}
C_5H_{10}	3-methyl-1-butene	563-45-1	293.35	3527 ^{14b}
C_5H_{10}	2-methyl-1-butene	563-46-2	304.30	3850^{14}
C_5H_{10}	2-methyl,2-butene	513-35-9	311.72	3415 ¹⁴
C_5H_{10}	1-pentene	109-67-1	303.15	3592 ¹⁴
C_6H_{12}	1-hexene	592-41-6	336.64	321214
C_7H_{14}	1-heptene	592-76-7	366.80	2921 ^{14b}
C_8H_{16}	1-octene	111-66-0	394.41	2675^{14}
$C_{10}H_{20}$	1-decene	872-05-9	443.75	2218^{14b}
$C_{12}H_{24}$	1-dodecene	112-41-4	486.55	1930 ^{14b}
$C_{13}H_{26}$	1-tridecene	2437-56-1	505.99 ^{a,b}	1730 ^{14b}
$C_{14}H_{28}$	1-tetradecene	1120-36-1	524.32 ^{a,b}	1590 ^{14b}
$C_{15}H_{30}$	1-pentadecene	13360-61-7	541.61 ^{a,b}	1540 ^{14b}
$C_{16}H_{22}$	1-hexadecene	629-73-2	558.02 ^{a,b}	1390 ^{14b}
$C_{18}H_{36}$	1-octadecene	112-88-9	588.08 ^{a,b}	1300 ^{14b}
$C_{20}H_{40}$	1-eicosene	3452-07-1	617.20 ^{a,b}	1140^{14b}

^aValues obtained in present study.

2.1. Ambrose's Method

Critical pressure is calculated as³

$$P_{c} = M(0.339 + \sum_{i} n_{i} \Delta p_{i})^{-2}$$

where 0.339 is a dimensionless regression constant.

The value $\sum n_i \Delta p_i$ is evaluated by summing contributions Δp_i for atoms or groups of atoms. The branching is taken into consideration here by the correction factor called the delta Platt number, used only for branched alkanes.³ The delta Platt number is evaluated on the basis of branch struc-

ture and included in $\Sigma \Delta p_i$ calculation as the n_i factor multiplied by the specific Platt correction factor Δp_i , tabulated together with Δp values.

2.2. Joback's Method

This is Joback's modification⁴ of the Lydersen¹¹ method. The proposed formula for critical pressure is defined as:

$$P_{\rm c} = (0.113 + 0.0032n_{\rm a} - \sum n_i \Delta p_i)^{-2}$$

where 0.113 and 0.0032 are dimensionless regression constants; and n_a is the number of atoms in the molecule.

^bValues from a single investigation.

2.3. Somayajulu's Method

This method⁵ is comprised of procedures provided by the method developed by Kreglewski¹² for the calculation of critical constants of a homologous series of compounds. The proposed formula for T_c calculation is expressed as:

$$P_{\rm c} = \frac{M}{G_n^2},$$

$$Gp = a_p + b_p \Delta P$$
, $\Delta P = \sum n_i \Delta p_i$

where: a_p =0.339 and b_p =0.226 constants, recorded in the Somayajulu⁵ paper, ΔP is obtained by summation of the relevant group contribution indices Δp_i , listed by Somayajulu,⁵ and Δp_i is pressure index of chosen group X, where $X = \Delta p(x)/\Delta p(-\text{CH}_3)$.

The gauche position factor (taking into consideration the degree of branching) for branched alkanes was introduced in this method as an element of Δp tabulated values.

2.4. Jalowka-Daubert's Method

This method employs normal boiling point, critical temperature, and contribution increments Δp .^{6,7} Every type of compound is represented by a number of various groups describing in detail its molecular structure.

Jalowka and Daubert introduced second order groups, taking into account next-nearest neighbors effects. The central carbon atom of the group listed first is followed by a bond which indicates the ligands it is bonded to. All monovalent ligands are then listed followed by any other polyvalent ligands. A cis-correction group, treated as a Δp element, is introduced to take care of isomerization in alkene compounds. The functional form of the proposed model for $P_{\rm c}$ is expressed as:

$$P_{c} = \frac{T_{c}^{3}}{T_{b}^{2} \left(a_{1} + \sum n_{i} \Delta p_{i}\right)}$$

where a_1 =43.387 K/MPa is a regression constant; $T_{\rm c}$ =critical temperature (K); and $T_{\rm b}$ =normal boiling temperature.

2.5. Constantinou's Method

Estimation of critical parameters is performed at two levels. The basic level uses contributions from first-order groups while the next higher level uses a small set of second-order groups having the first-order groups as building blocks. This method provides both first-order group contributions and more accurate second-order prediction for determination of the $\Sigma \Delta p$ pressure correction factor. Conjugation operators have been introduced in this method. It means that the molecular structure of a compound is viewed as a hybrid of a number of conjugate forms (alternative formal arrangements of valence electrons) and the property of a compound is a linear combination of this conjugate form contribution. Proposed correlation can be expressed as:

$$f(P_{c}) = \sum_{i} N_{i}C_{i} + W \sum_{j} M_{j}D_{j}$$

where $f(P_c) = (P_c - p_{c1})^{-0.5} - p_{c2}$, where p_{c1} and p_{c2} are universal constants, equal to 1.3705 bar and 0.100220 bar^{-0.5}, respectively; P_c is estimated critical pressure of a compound; C_i =the contribution of the first-order group of type i which occurs N_i times in a compound; D_j =the contribution of the second-order group of type j that occurs M_j times in a compound; and W=constant assigned to unity in the second level estimation, where both first- and second-order group contributions are involved; and 0 in the basic level, where only the contributions of first-order groups are employed.

2.6. Marrero-Gani's Method

This is the newest contribution method, 9,10 where estimation of critical parameters is performed at three levels. The primary level uses contributions from simple groups that allow describing a wide variety of organic compounds and provide an initial approximation that is improved at the higher levels. The higher levels involve polyfunctional and structural groups that provide more information about molecular fragments whose description through first-order groups is not possible.

The critical pressure estimation model has the form of the following equation:

$$f(P_c) = \sum_{i} N_i P_{c1i} + w \sum_{j} M_j P_{c2j} + z \sum_{k} O_k P_{c3k}$$

where: P_{c1i} is the contribution of the first-order group of type i that occurs N_i times; P_{c2i} is the contribution of the second-order group of type j that occurs M_j times and P_{c3k} is the contribution of the third-order group of type k that has O_k occurrences in a compound. $f(P_c) = (P_c - P_{c1})^{-0.5} - P_{c2}$ where P_{c1} and P_{c2} are the universal constants equal to 5.9827 bar and 0.108998 bar^{-0.5}, respectively.

3. Recommended Experimental Data on Normal Boiling Points and Critical Pressures

3.1. The Criterion and the Procedure for Selection of Experimental Data

The database of the recommended normal boiling point $T_{\rm b}$ and critical pressure $P_{\rm c}$ values for aliphatic hydrocarbons is based on all available experimental data extracted from the data banks in the frame of: Thermodynamics Research Center (NIST-TRC)¹³ and Thermodynamics Data Center (TDC)¹⁴ with the newest publications on $P_{\rm c}$, as in numerous studies. ^{5,15–28}

The data references, attached to every experiment result, allowed us to judge whether specific data are the primary data (that is values were derived from the original observation) and let us know which method and equipment was used in the considered experiment. The short description, attached to every experiment result permitted us to know if the mea-

Table 2. Deviations E (%) of predicted critical pressures from recommended experimental values for tested methods

E (%) Author's name of method

	Audioi s name of method						
Name of compound	Ambrose	Joback	Somayajulu	Daubert	Constantinou	Marrero-Gani	
			Unbra	nched alkanes			
methane	+17.96	+28.24	+9.24	+4.28	+53.63	+46.50	
ethane	+0.35	+3.09	-1.50	-3.53	+0.02	+8.12	
propane	+0.07	+3.50	+0.07	-1.41	+7.21	-2.44	
butane	-0.82	+2.74	-0.82	-0.18	+5.14	+3.53	
pentane	-0.80	+2.91	-0.80	+1.31	+4.69	+2.73	
hexane	+0.33	+3.91	+0.33	+3.41	+5.25	+3.28	
heptane	-0.55	+2.53	-0.55	+2.89	+3.55	+1.94	
octane	-0.48	+1.81	-0.48	+2.85	+2.61	+1.61	
nonane	-0.09	+1.18	-0.13	+2.72	+1.84	+1.71	
decane	-0.19	-0.09	-0.19	+1.80	+0.52	+1.47	
undecane	-2.44	-3.69	-2.44	-1.69	-3.04	-0.95	
dodecane	+0.55	-2.20	+5.71	-0.11	-1.37	+2.09	
tridecane	+2.20	-2.14	+2.20	-0.24	-1.13	+3.87	
tetradecane	+6.43	-2.99	+2.99	-1.34	-1.72	+4.90	
pentadecane	+3.24	-4.39	+3.18	-3.18	-2.84	+5.47	
hexadecane	+3.43	-5.86	+3.43	-5.21	-4.00	+6.07	
heptadecane	+2.69	-8.13	+2.69	-8.66	-8.73	-5.97	
octadecane	+1.55	-10.70	+1.55	-11.47	-8.14	+5.19	
nonadecane	+7.84	-6.81	+7.84	-9.05	-3.71	+12.41	
eicosane	+10.83	-5.93	+10.83	-8.98	-2.31	+16.20	
heneicosane	+11.36	-7.18	+11.36	-8.93	-3.01	+17.67	
docosane	+11.10	-8.98	+11.10	-14.33	-4.34	+18.37	
tricosane	+15.74	-6.89	+15.74	-13.77	-1.53	+24.26	
tetracosane	+17.78	-6.93	+17.78	-15.24	-0.92	+27.60	
heptacosane	+15.47	-13.33	+15.47	-25.79	-5.66	+28.81	
octacosane	+19.35	-11.96	+19.35	-26.34	-3.36	+34.54	
			Bran	ched alkanes			
2-methylpropane	+3.78	+7.84	+0.16	+2.25	+8.49	+8.38	
2-methylbutane	-0.27	+3.58	+0.59	+1.15	+3.37	+3.11	
2,2-dimethylpropane	+9.01	+10.98	+1.35	+4.38	+11.48	+10.14	
2-methylpentane	-0.33	+3.40	+0.36	+1.81	+3.17	+2.47	
3-methylpentane	-0.26	+0.35	+0.99	+0.26	+0.64	-0.19	
2,2-dimethylbutane	+0.23	+2.32	+1.00	+0.81	+2.39	+1.06	
2,3-dimethylbutane	-0.19	+0.57	-1.81	+1.02	-1.14	-0.64	
2-methylhexane	-0.65	+2.65	-0.00	+1.93	+2.18	+1.75	
3-methylhexane	-0.18	+0.36	+0.92	+0.50	+0.39	-0.18	
3-ethylpentane	-0.14	-2.35	+1.42	-1.49	-2.32	-2.87	
2,2-dimethylpentane	+1.05	+3.03	+1.77	+1.98	+2.81	+1.73	
2,3-dimethylpentane	-0.07	-2.10	-1.10	-0.10	-1.20	-0.17	
2,4-dimethylpentane	+0.51	+4.06	+1.83	+1.72	+2.12	+2.81	
3,3-dimethylpentane	+0.58	3.02	+2.21	-0.88	-1.87	-4.01	
2,2,3-trimethylbutane	+0.98	-2.44	+3.35	+0.20	-4.03	-3.93	
2-methylheptane	-0.32	+2.24	+0.28	+2.32	+1.64	+1.72	
3-methylheptane	+0.16	+0.24	+1.14	+0.90	+0.08	+0.04	
4-methylheptane	+0.47	+0.55	+1.46	+0.67	+0.39	+0.35	
3-ethylhexane	+0.31	-2.07	+1.69	-1.57	-2.22	-2.26	
2,2-dimethylhexane	+0.75	+2.17	+1.38	+1.82	+1.78	+1.26	
3,3-dimethylhexane	+0.98	-2.56	-1.36	-0.30	-1.62	-3.20	
3,4-dimethylhexane	+0.30	-4.27	-0.26	-1.56	-3.64	-2.30	
2,3-dimethylhexane	+0.11	-2.02	-0.80	-0.19	-1.37	0.00	
2,4-dimethylhexane	+0.47	+0.82	+2.07	-0.08	-0.70	+0.31	
2,5-dimethylhexane	+0.72	+3.58	+1.89	+2.49	+1.57	+2.73	

TABLE 2. Deviations E (%) of predicted critical pressures from recommended experimental values for tested methods—Continued

 $E~(\%) \label{eq:energy}$ Author's name of method

Name of compound	Ambrose	Joback	Somayajulu	Daubert	Constantinou	Marrero-Gani
2-methyl-3-ethylpentane	-0.00	-4.56	-0.45	-2.74	-0.81	+1.30
3-methyl-3-ethylpentane	+0.43	-7.91	-0.29	-3.42	-7.02	-8.51
2,2,3-trimethylpentane	+1.25	-4.54	+0.73	-0.92	-5.75	-5.38
2,2,4-trimethylpentane	-0.19	+1.48	+1.05	+0.47	-0.27	+0.27
2,3,3-trimethylpentane	+0.57	-7.59	+0.46	-1.99	-2.84	-2.34
2,3,4-trimethylpentane	-0.55	-4.84	-3.33	-1.36	-3.41	-0.62
2-methyloctane	-0.91	+0.65	-0.39	+1.43	-0.00	+0.87
2.2-dimethylheptane	-0.55	+0.04	+0.04	+0.43	+0.43	-0.21
2,2,3,3-tetramethylpentane	+0.62	-12.63	-1.46	-3.18	-0.15	-21.39
2,2,3,4-tetramethylpentane	-0.61	-8.26	-2.81	-2.92	-8.76	-6.57
2,2,4,4-tetramethylpentane	-3.35	-3.47	-2.22	-0.81	-4.92	-4.31
2,3,3,4-tetramethylpentane	-0.33	-12.24	+0.91	-3.79	+9.30	+7.38
3,3,5-trimethylheptane	-0.69	-6.85	+1.34	-2.33	-6.90	-5.91
2,2,5,5-tetramethylhexane	+0.78	-0.27	+1.83	-1.14	-0.55	-0.14
2,2,3,3-tetramethylhexane	-0.16	-12.99	-2.03	-4.94	-1.31	-20.32
2,2,4,4,6,8,8-heptamethylnonane	+0.89	-11.91	+2.93	-8.92	-12.29	-2.99
2,2, 1, 1,0,0,0 першиет уписише	. 0.09	11.71		nes, Alkynes	12.2	2.,,,
ethyne	+10.00	+0.37	+0.13	-1.56	-1.17	+5.02
ethylene	+5.18	+4.07	-0.32	+0.04		
1-propyne	-0.76	-3.64	+0.18	+2.49	0.00	-0.78
1-propene	+1.07	+1.57	+1.68	-1.18	+6.57	+5.70
1-butyne	+2.44	+3.14	+3.23	+2.44	+5.97	+3.60
1.3-butadiene	+1.04	+0.42	+2.06	+0.02	+0.19	+2.98
1-butene	+0.50	+2.14	+0.99	+0.10	+1.44	+4.10
2-methylpropene	+1.02	+1.12	+1.52	-3.17	-1.55	+4.14
trans-2-butene	+1.46	+4.44	+0.03	+2.26	+4.34	+2.74
cis-2-butene	-4.76	-1.96	-0.52	-0.64	-2.05	-3.56
cis-2, pentene	3.58	+0.03	-0.00	+0.08	-0.57	-2.57
3-methyl-1-butene	+1.76	+4.39	-1.25	+1.16	-0.31	+4.42
trans-2-pentene	+1.08	+4.86	-0.14	+2.93	+4.23	+2.13
2-methyl-1-butene	-7.58	-4.70	-7.22	-8.91	-9.38	-5.01
2-methyl,2-butene	+4.19	+8.73	+8.05	+4.16	+2.61	+3.69
1-pentene	-0.95	+1.53	-0.56	-0.00	+0.39	+1.39
1-hexene	-0.93 -1.37	+3.74	-0.36 -1.03	+0.87	-0.00	+0.65
1-heptene	-1.37 -2.43	+0.24	-1.03 -2.12	+0.87	-0.00 -1.37	-0.65
*						
1-octene	-3.21	-1.08	-2.95	-0.34	-2.77	-1.72 -0.32
1-decene	-1.53	-1.17	+0.45	-2.80	-1.30	
1-dodecene	-6.32	-4.40	-2.54	-5.65	-2.02 2.66	-1.04
1-tridecene	+2.14	-1.62	+2.37	-0.17	-2.66	+3.47
1-tetradecene	+4.47	-0.94	+4.65	+0.63	-1.70 5.45	+6.04
1-pentadecene	+1.75	-5.13	+1.95	-3.96	-5.45 2.16	+3.57
1-hexadecene	+6.69	-2.16	+6.83	-1.51	-2.16 7.05	+8.99
1-octadecene	+3.00	-8.77	+3.15	-9.62	-7.85	+6.23
1-eicosene	+7.11	-8.51	+7.19	-10.61	-6.49	+11.84

TABLE 3. Unbranched alkanes. Absolute percent error for tested methods for different chain length

Chain length	Ambrose	Joback	Somayajulu	Daubert	Constantinou	Marrero-Gani
$C_2 - C_{10}$	0.41	2.42	0.54	2.23	3.43	2.98
$C_{11}-C_{20}$	4.12	5.28	4.29	4.99	3.70	6.31
C ₂₁ -C ₂₈	15.13	9.21	15.13	17.4	3.14	25.2

TABLE 4. Branched alkanes. The dependence of absolute percent errors of the tested methods upon the number of C atoms in a molecule

Number of C atoms	Ambrose	Joback	Somayajulu	Daubert	Constantinou	Marrero-Gani
4	3.78	7.84	0.16	2.25	8.49	8.38
5	4.64	7.28	0.97	2.76	7.42	6.62
6	0.25	1.66	1.04	0.97	1.84	1.09
7	0.52	2.50	1.57	1.10	2.10	2.18
8	0.47	3.22	1.16	1.42	2.19	2.03
9	1.06	6.21	1.30	2.09	3.92	6.78
10-16	0.63	8.00	2.03	4.33	5.26	7.34

surement was a principal objective of the experiment, as well as to know the purity of the substance sample used. Moreover the measurement error has been allocated for each experimental value collected in data banks. ^{13,14}

That information allowed us to form verified "subsets" concerning one property for one substance and containing reliable experimental data extracted from data banks mentioned. Any outliers were eliminated from every subset. The accepted data were then examined for their precision and accuracy as stated by the author. For individual cases of single or double data the selection of the reliable $P_{\rm c}$ values was additionally guided by auxiliary information, such as citation in the newest literature or comparison with data from auxiliary sources. ²⁹ In these instances, the recommended values, denoted with asterisks, are those from a single investigation and occur only in Table 1. Secondary data, values that were not derived from the original observation on $P_{\rm c}$, have been rejected.

The same selection has been performed for $T_{\rm b}$ for 12 substances not mentioned in Part I. For those substances, denoted with letter "a" in Table 1, the recommended data set has been created in this study. The rest of 275 (for substances used for testing and calculating purpose) needed $T_{\rm b}$ values were taken from Part I.

3.1.1. Statistical Analysis of Selected Data

The reliable values of $T_{\rm b}$ and $P_{\rm c}$ were selected as the closest to the weighted mean of all measured data included in individual subsets. It was feasible because each experimental value had its measurement error used subsequently for deter-

mination of weights of experimental values. A more detailed description of applied statistical selection is included in Part I ¹

3.2. Recommended Experimental Data on Critical Pressures for Aliphatic Hydrocarbons

Data banks^{13,14} include about 7–10 data values for $P_{\rm c}$ per substances up to C₉ and about 2–3 data values for C₉–C₂₀ substances allocated in Table 1. Critical analysis of the data mentioned reduced those numbers to: 4–6 and 2–3, respectively. The experimental $T_{\rm b}^{-1}$ and $P_{\rm c}^{-13,14}$ values of 95 aliphatic hydrocarbons, mentioned in point 1(a), were used for evaluation of the critical pressure prediction methods. Names of those substances together with recommended experimental data on $T_{\rm b}$ and $P_{\rm c}$ are listed in Table 1.

4. Testing Calculations

The testing calculations, performed for evaluation of accuracy of six predictive methods, were conducted for 95 hydrocarbons including branched and unbranched: alkanes, alkenes, and alkynes.

The chosen prediction methods employ from 20 to 200 specific contribution groups together with attributed pressure correction factors Δp_i . For each hydrocarbon and for each method all contribution groups forming the molecule were specified and their sum $(\Sigma n_i \Delta p_i)$ yield values of final correction factor used for prediction of critical pressure $P_{\rm cp}$.

Most of tested methods require the knowledge of:

(1) group contribution models based on molecular structure, and

Table 5. Branched alkanes. The dependence of absolute percent errors of tested methods upon the number of substituted CH_3 -groups to main chain

Number of Substituted CH ₃ groups	Ambrose	Joback	Somayajulu	Daubert	Constantinou	Merreo-Gani
1	0.73	2.18	1.26	1.32	2.03	1.90
2	1.10	2.97	1.35	1.27	2.44	2.18
3	0.70	4.62	1.71	1.21	3.87	3.07
4	1.95	8.31	1.88	2.78	4.16	10.01

Marrero-Gani C_s/C_m ratio Ambrose Joback Somayajulu Daubert Constantinou 0.12 - 0.160.455 1.11 0.69 1.30 0.78 0.81 0.20 - 0.330.74 2.73 0.93 1.15 2.42 2.20 0.40 - 0.500.43 3.03 1.56 1.29 2.59 2.40 0.60 - 0.751.39 1.30 1.49 2.16 4.27 5.66 0.77 - 0.801.16 9.70 2.01 3.92 7.08 8.52

TABLE 6. The dependence of absolute percent errors of tested methods upon the C_s/C_m ratio

molecular weight.

The method of Daubert^{6,7} required additionally the knowledge of $T_{\rm b}$ and $T_{\rm c}$ values. $T_{\rm c}$ value is being automatically determined during the calculation process of $P_{\rm c}$, as an auxiliary parameter. This auxiliary parameter may be experimentally determined and then used for calculation. It is obvious that the calculated $T_{\rm c}$ value is less accurate than a measured one, but for the purpose of testing, the experimental $T_{\rm c}$ values were not used since only one critical parameter was measured for a substance. That is why there is a rare need to employ any $T_{\rm c}$ value for $P_{\rm c}$ prediction, since experimental data on both of them or none of them are mostly available.

Deviations of calculated critical temperatures $P_{\rm cp}$ from recommended experimental values of $P_{\rm c}$ are shown in Table 2. They were calculated according to:

$$E = [(P_{cp} - P_c)/P_c] \cdot 100$$

where $P_{\rm c}$ =experimental recommended value of critical pressure; and $P_{\rm cp}$ =value of critical pressure obtained from prediction method.

Error E values are listed with accuracy of 0.01%.

5. Results of Tests

5.1. Alkanes

The method of Joback⁴ is not recommended for molecules consisting of CH₂-substituant, since the correction factor for that group equals zero. It leads to significant errors, particularly for substances having long chains, built of -CH₂- groups. This fact is reflected in the results of testing for branched as well as for unbranched alkanes.

5.1.1. Unbranched Alkanes

Deviations of calculated $P_{\rm c}$ from experimental values for the hydrocarbons (C_1-C_{28}) (Tables 2 and 3) increase with the chain length. In the range C_1-C_{10} the Ambrose³ and Somayajulu⁵ methods give deviations below 0.5%. Constantinou⁸ and Ambrose³ yield less deviations below 4% in the region of $C_{11}-C_{20}$. The sudden increase of the error is observed for $C_{21}-C_{28}$ hydrocarbons (Table 3). In this range only the Constantinou⁸ method gives the lowest error of about 3.2% and this method is recommended for high molecular weight aliphatic unbranched hydrocarbons.

5.1.2. Branched Alkanes

The investigation was performed for branched alkanes with methyl substituants, since experimental data on P_c are mainly available for this group. No reliable experimental data for other aliphatic substituants have been found. The influence of the chain length as well as of the number of CH_{3-} groups on the method's errors were examined. All results of the investigation are presented in Tables 4–6.

Most of the methods—except Somayajulu 5 —yield significantly large deviations in the C_2 – C_5 range (Table 4). This maximum may be related to an influence of relatively large substituants on a small molecule. The fluctuation of error value due to the length of the main chain allows one to distinguish the method of Ambrose 3 yielding the lowest errors.

The dependence of error on the number of substituted CH₃– groups was investigated too. The results are presented in Table 5. The considerable increase in error was observed in the case of four substituted CH₃– groups. Ambrose, Daubert, ^{6,7} and Somayajulu⁵ seem to be more accurate than others.

In Table 6 the deviation values due to the C_s/C_m ratio are presented, where C_m is the number of C atoms in a main chain and C_s is the number of all C atoms in side chains. The C_s/C_m ratio reflects the branching extent of molecules, which has a significant influence on the accuracy of selected methods. The results are presented in Table 6. The accuracy of the Joback⁴ and Marrero^{9,10} methods are strongly sensitive to the C_s/C_m ratio, while the Somayajulu⁵ and Ambrose³ methods deviations do not depend on the ratio mentioned and yield a constant error level like: 0.7%-2.0% for Somayajulu⁵ and 0.5%-1.2% for Ambrose.³

Thus these two methods are mainly recommended for calculation of critical pressures for branched alkanes. Both of them take the branching into consideration, employing Platt number³ and gauche position.⁵ In this work the methods mentioned were employed for calculation of missing values of critical pressures of branched alkanes.

5.2. Alkenes, Alkynes

The results of testing (Table 2) proved that no particular method may be generally recommended for all alkenes and

TABLE 7. Alkenes, alkynes, Absolute percent errors for tested methods

Ambrose	Joback	Somayajulu	Daubert	Constantinou	Marrero-Gani
3.27	3.14	2.33	2.50	2.87	3.70

TABLE 8. Branched alkanes. Calculated values of critical pressures $(P_{\rm cp})$ obtained by the Ambrose³ method. Expected absolute percent error for all $P_{\rm cp}$ -less than 3.3%. Values of critical pressure using Somayajulu⁵ method- $P_{\rm cp1}$ are given in the second column for comparison purpose. $T_{\rm b}^{\rm l}$ =experimental normal boiling temperatures, used for calculation critical pressures

CAS RN	Formula	Name	P _{cp} (kPa) Ambrose	$P_{ m cp1}~({ m kPa})$ Somayajulu	$T_{\rm b}$ (1
3074-71-3	C ₉ H ₂₀	2,3-dimethylheptane	2406	2386	413.
2213-23-2	C_9H_{20}	2,4-dimethylheptane	2352	2386	405.
2216-30-0	C_9H_{20}	2,5-dimethylheptane	2352	2386	407.
1072-05-5	C_9H_{20}	2-6-dimethylheptane	2301	2325	408.
4032-86-4	$C_{9}H_{20}$	3,3-dimethylheptane	2444	2475	410.
922-28-1	C_9H_{20}	3,4-dimethylheptane	2461	2449	413.
926-82-8	C_9H_{20}	3,5-dimethylheptane	2406	2449	408.
1067-20-5	C_9H_{20}	3,3-diethylpentane	2558	2611	419.
1068-19-5	C_9H_{20}	4,4-dimethylheptane	2444	2475	407.
16747-33-4	C_9H_{20}	3-ethyl-2,3-dimethylpentane	2513	2640	414.
16747-25-4	C_9H_{20}	2,2,3-trimethylhexane	2513	2502	407.
16747-26-5	C_9H_{20}	2,2,4-trimethylhexane	2456	2437	399.
16747-28-7	C_9H_{20}	2,3,3-trimethylhexane	2572	2570	409.
921-47-1	C_9H_{20}	2,3,4-trimethylhexane	2531	2475	412.
1069-53-0	C_9H_{20}	2,3,5-trimethylhexane	2418	2411	404.
16747-30-1	C_9H_{20}	2,4,4-trimethylhexane	2456	2502	403.
16747-31-2	C_9H_{20}	3,3,4-trimethylhexane	2513	2570	413.
16789-46-1	C_9H_{20}	3-ethyl-2-methylhexane	2406	2449	411.
3074-76-8	C_9H_{20}	3-ethyl-3-methylhexane	2500	2542	413.
3074-70-8	C_9H_{20} C_9H_{20}	3-ethyl-4-methylhexane	2461	2515	413.
3074-77-7	C_9H_{20} C_9H_{20}	4-ethyl-2-methylhexane	2406	2449	406.
15869-80-4	C_9H_{20} C_9H_{20}	3-ethylheptane	2393	2449	416.
2216-32-2		4-ethylheptane	2393	2423	414.
	C_9H_{20}			2361	
2216-33-3	C_9H_{20}	3-methyloctane	2340		417.
2216-34-4	C_9H_{20}	4-methyloctane	2340	2361	415.
16747-32-3	C_9H_{20}	3-ethyl-2,2-dimethylpentane	2513	2570	406.
1068-87-7	C_9H_{20}	2,4-dimethyl-3-ethylpentane	2531	2475	409.
7146-60-3	$C_{10}H_{22}$	2,3-dimethyloctane	2214	2198	437.
15869-89-3	$C_{10}H_{22}$	2,5-dimethyloctane	2169	2198	430.
1072-16-8	$C_{10}H_{22}$	2,7-dimethyloctane	2126	2147	433.
4110-44-5	$C_{10}H_{22}$	3,3-dimethyloctane	2246	2272	434.
15869-93-9	$C_{10}H_{22}$	3,5-dimethyloctane	2169	2198	432.
14720-74-2	$C_{10}H_{22}$	2,2,4-trimethylheptane	2211	2240	422.
1190-83-6	$C_{10}H_{22}$	2,2,6-trimethylheptane	2166	2188	421.
2613-61-8	$C_{10}H_{22}$	2,4,6-trimethylheptane	2180	2219	419.
1189-99-7	$C_{10}H_{22}$	2,5,5-trimethylheptane	2257	2295	425.
4032-94-4	$C_{10}H_{22}$	2,4-dimethyloctane	2169	2198	429.
2051-30-1	$C_{10}H_{22}$	2,6-dimethyloctane	2169	2198	431.
871-83-0	$C_{10}H_{22}$	2-methylnonane	2116	2126	440.
17302-02-2	$C_{10}H_{22}$	3-ethyl-3-methylheptane	2293	2328	437.
5911-04-6	$C_{10}H_{22}$	3-methylnonane	2159	2177	440.
15869-85-9	$C_{10}H_{22}$	5-methylnonane	2159	2177	438.
52987-09-3	$C_{10}H_{22}$	2,2,3,5-tetramethylhexane	2315	2317	422.
52897-10-6	$C_{10}H_{22}$	2,3,3,4-tetramethylhexane	2522	2496	437.
52897-11-7	$C_{10}H_{22}$	2,3,3,5-tetramethylhexane	2365	2375	426.
52897-12-8	$C_{10}H_{22}$	2,3,4,4-tetramethylhexane	2468	2434	434.
52897-15-1	$C_{10}H_{22}$	2,3,4,5-tetramethylhexane	2330	2295	429.
5171-84-6	$C_{10}H_{22}$	3,3,4,4-tetramethylhexane	2619	2586	443.
52896-99-8	$C_{10}H_{22}$	4-ethyl-2,2-dimethylhexane	2257	2295	420.
17301-94-4	$C_{10}H_{22}$	4-methylnonane	2159	2177	441.
15869-96-2	$C_{10}H_{22}$	4,5-dimethyloctane	2260	2250	436.
16747-44-7	$C_{10}H_{22}$	2,2,3,3,4-pentamethylpentane	2574	2548	439.
52897-18-4	$C_{10}H_{22}$	3-ethyl-2,2,4-trimethylpentane	2416	2375	428.
52897-19-5	$C_{10}H_{22}$	3-ethyl-2,3,4-trimethylpentane	2522	2496	442.

Table 8. Branched alkanes. Calculated values of critical pressures ($P_{\rm cp}$) obtained by the Ambrose³ method. Expected absolute percent error for all $P_{\rm cp}$ -less than 3.3%. Values of critical pressure using Somayajulu⁵ method- $P_{\rm cp1}$ are given in the second column for comparison purpose. $T_{\rm b}^{\rm l}$ =experimental normal boiling temperatures, used for calculation critical pressures—Continued

CAS RN	Formula	Name	P _{cp} (kPa) Ambrose	P _{cp1} (kPa) Somayajulu	$T_{\rm b}$ (K)
16747-45-8	$C_{10}H_{22}$	2,2,3,4,4-pentamethylpentane	2464	2423	432.44
13475-79-1	$C_{10}H_{22}$	2,4-dimethyl-3-isopropylpentane	2330	2295	430.19
6975-98-0	$C_{11}H_{24}$	2-methyldecane	1967	1976	462.27
2847-72-5	$C_{11}H_{24}$	4-methyldecane	2004	2019	461.25
61868-46-0	$C_{11}H_{24}$	2,2,4,6-tetramethylheptane	2056	2091	435.05
61198-87-2	$C_{12}H_{26}$	2,2,3,5,6-pentamethylheptane	2064	1960	461.95
13475-82-6	$C_{12}H_{26}$	2,2,4,6,6-pentamethylheptane	1945	1977	450.95
92867-09-9	$C_{15}H_{32}$	6-propyldodecane	1599	1615	524.75
2801-86-7	$C_{16}H_{34}$	7,8-dimethyltetradecane	1516	1512	543.15
2882-96-4	$C_{16}H_{34}$	3-methylpentadecane	1471	1479	539.45
500014-84-6	$C_{20}H_{42}$	3-ethyloctadecane	1226	1233	614.15
630-01-3	$C_{26}H_{54}$	hexacosane	949	949	534.15

alkynes of the range C_2-C_{20} due to significant fluctuation of errors for individual methods and types of compounds. The average deviations are contained in the range 0.04%-11%. No regularity in accuracy due the molecular structure has been observed. That is why every case (that is substance) must be treated individually. For the whole group the authors recommend the methods of Somayajulu, Daubert, and Constantinou, based on the general results presented in Table 7.

When choosing the method for individual substance one should take into consideration that: the Constantinou⁸ method yields significant accuracy (higher than that of Somayajulu⁵ and Daubert^{6,7}) only in cases of hydrocarbons represented in the second-order group contribution; two methods provide corrections for *cis*- (Daubert^{6,7}) and *trans*-(Somayajulu⁵) types of bond; and those methods should be preferred in *cis/trans* cases.

6. Prediction of Critical Pressures

Based on the conclusions from the analysis of the results of examination (Secs. 4 and 5) the proper prediction methods have been applied for calculation of critical pressures for aliphatic hydrocarbons. The Ambrose³ and Somayajulu⁵ methods were chosen for branched alkanes as the most accurate and not sensitive to branching, which is the most universal. The calculated values of $P_{\rm c}$ are listed in Table 8.

Unlike alkanes, no particular method could be applied for all alkenes. In every case, each substance was considered separately (that is the particular method and particular hydrocarbon). Somayajulu, ⁵ Daubert, ^{6,7} and Constantinou⁸ methods were used in every individual case due to the conclusions in point 5.2. The calculated values of critical pressures, $P_{\rm cp}$, of alkenes, alkynes are listed in Table 9. The expected percent errors, noted in the headers of Tables 8 and 9, result from the analysis of the accuracy of applied predictive methods.

7. Conclusions and Recommendations

The main result of this work is the set of critical pressures for 180 aliphatic hydrocarbons for which experimental critical data were not available in the literature (Tables 8 and 9). The other results of this work are the sets of:

- (1) Recommended experimental data on critical pressures of 95 aliphatic hydrocarbons, used for testing purposes (Table 1). Some of presented values, denoted by asterisks, are derived from a reliable source, but from a single investigation (Table 1). Despite this they tally with other literature but not experimental data; their reliability may be lower than that of the rest presented P_c values.
- (2) Recommended experimental data on normal boiling points of 12 aliphatic hydrocarbons (Tables 1 and 9).

A further result is determination of the accuracy of particular prediction methods for specific subgroups of aliphatic hydrocarbons. The analyses of every tested method were performed in 2004 based on the experimental databases (NIST-TRC)¹³ and (TDC).¹⁴ The latter one is being permanently updated up to 2005.

The methods of Ambrose³ and Somayajulu⁵ are recommended for branched alkanes. Mentioned methods yield the lesser deviations (Tables 4 and 5) which are not sensitive to branching ratio (Table 6). Though no particular method is recommended for alkenes and alkynes, the authors suggest employing three methods, giving satisfactory results as shown in Tables 2 and 7: Somayajulu,⁵ Daubert,^{6,7} and Constantinou.⁸ More detailed guidelines regarding application of the mentioned methods are presented in Secs. 5.1 and 5.2

Predictive methods still remain an important source of obtaining critical data as the world literature experimental critical data resources are really poor. The number of substances for which any critical property is measured is relatively low,

Table 9. Alkenes and alkynes. Calculated values of critical pressures (P_{cp}) predicted using one of the selected methods, specified below. Expected percent error for all (P_{cp}) -(from 1.18% to 3.31%). T_b^1 =experimental normal boiling point temperature. E=expected percent errors for individual cases. Numbers attributed to methods: (1) Somayajulu, 5 (2) Daubert, 7 (3) Constantinou 8

CAS RN	Formula	Name	$P_{\rm cp}$ (KPa)	E (%)	Method	$T_{\rm b}$
503-17-3	C_4H_6	2-butyne	5049	2.33	1	300
598-25-4	C_5H_8	3-methyl-1,2-butadiene	3965	2.33	1	313
591-96-8	C_5H_8	2,3-pentadiene	4105	2.33	1	321
646-04-8	C_5H_{10}	trans-2-pentene	3515	2.33	1	309
2206-23-7	C_5H_6	3-penten-1-yne	4556	2.33	1	317
628-16-0	C_6H_6	1,5-hexadiyne	4305	2.33	1	359
592-42-7	$C_{6}H_{10}$	1,5-hexadiene	3378	2.33	1	332
922-59-8	C_6H_{10}	3-methyl-1-pentyne	3609	2.33	1	330
7154-75-8	C_6H_{10}	4-methyl-1-pentyne	3469	2.33	1	334
764-35-2	C_6H_{10}	2-hexyne	3715	2.33	1	357
21020-27-9	C_6H_{10}	4-methyl-2-pentyne	3627	2.33	1	346
513-81-5	C_6H_{10}	2,3-dimethyl-1,3-butadiene	3409	2.50	2	343
760-20-3		3-methyl-1-pentene	3227	2.33	1	327
928-49-4	C_6H_{12}		3715	2.33	1	354
	C_6H_{10}	3-hexyne				
616-12-6	C_6H_{12}	trans-3-methyl-2-pentene	3253	2.33	1	343
674-76-0	C_6H_{12}	trans-4-methyl-2-pentene	3068	2.33	1	331
563-78-0	C_6H_{12}	2,3-dimethyl-1-butene	3227	2.33	1	328
760-21-4	C_6H_{12}	2-ethyl-1-butene	3217	2.50	2	340
763-29-1	C_6H_{12}	2-methyl-1-pentene	3299	2.33	1	335
616-12-6	C_6H_{12}	trans-3-methyl-2-pentene	3253	2.33	1	343
674-76-0	C_6H_{12}	trans-4-methyl-2-pentene	3068	2.33	1	331
558-37-2	C_6H_{12}	3,3-dimethyl-1-butene	3230	2.50	2	314
7688-21-3	C_6H_{12}	cis-2-hexane	3308	2.50	2	342
7642-09-3	C_6H_{12}	cis-3-hexene	3271	2.50	2	339
922-62-3	C_6H_{12}	cis-3-methyl-2-pentene	3205	2.50	2	340
691-38-3	C_6H_{12}	cis-4-methyl-2-pentene	3241	2.50	2	329
4050-45-7	C_6H_{12}	trans-2-hexene	3135	2.33	1	340
922-61-2	C_6H_{12}	3-methyl-2-pentene	3132	2.87	3	340
594-56-9	$C_{6}H_{12}$ $C_{7}H_{14}$	2,3,3-trimethyl-1-butene	2975	2.33	1	350
13269-52-8	$C_{6}H_{12}$	trans-3-hexene	3135	2.33	1	340
2203-80-7	C_6H_{12} C_7H_{12}	5-methyl-1-hexyne	3167	2.50	2	364
21020-26-8	C_7H_{12}	3-ethyl-1-pentyne	3196	2.33	1	360
13361-63-2	C_7H_{12}	4,4-dimethyl-1-pentyne	3288	2.33	1	349
1000-86-8	C_7H_{12}	2,4-dimetyl-1,3-pentadiene	2932	2.50	2	366
20198-49-6	C_7H_{12}	4-methyl-2-hexyne	3324	2.33	1	372
53566-37-3	C_7H_{12}	5-methyl-2-hexyne	3324	2.33	1	375
4049-81-4	C_7H_{12}	2-methyl-1,5-hexadiene	3121	2.33	1	362
999-78-0	C_7H_{12}	4,4-dimethyl-2-pentyne	3189	2.33	1	350
2586-89-2	C_7H_{12}	3-heptyne	3277	2.33	1	380
36566-80-0	C_7H_{12}	2-methyl-3-hexyne	3210	2.33	1	368
2384-90-9	C_7H_{12}	1,2-heptadiene	3017	2.33	1	370
1541-23-7	C_7H_{12}	1,5-heptadiene	3095	2.33	1	366
3404-72-6	C_7H_{14}	2,3-dimethyl-1-pentene	2994	2.33	1	35
10574-37-5	C_7H_{14}	2,3-dimethyl-2-pentene	3029	2.33	1	370
2213-32-3	C_7H_{14}	2,4-dimethyl-1-pentene	2994	2.33	1	354
6094-02-6	C_7H_{14}	2-methyl-1-hexane	2954	2.33	1	364
692-24-0	C_7H_{14}	trans-2-methyl-3-hexene	2771	2.33	1	359
3899-36-3	C_7H_{14} C_7H_{14}	trans-3-methyl-3-hexene	2918	2.33	1	366
3404-71-5		2-ethyl-1-pentene	2954	2.33	1	365
	C_7H_{14}					
7357-93-9	C_7H_{14}	2-ethyl-3-methyl-1-butene	2994	2.33	1	362
3404-73-7	C_7H_{14}	3,3-dimethyl-1-pentene	2975	2.33	1	350
7385-78-6	C_7H_{14}	3,4-dimethyl-1-pentene	3054	2.33	1	353
4038-04-4	C_7H_{14}	3-ethyl-1-pentene	2994	2.33	1	357
3404-61-3	C_7H_{14}	3-methyl-1-hexene	2897	2.33	1	357
762-62-9	C_7H_{14}	4,4-dimethyl-1-pentene	2975	2.33	1	345
3769-23-1	$C_{7}H_{14}$	4-methyl-1-hexene	2994	2.33	1	359
3524-73-0	C_7H_{14}	5-methyl-1-hexene	2897	2.33	1	358

Table 9. Alkenes and alkynes. Calculated values of critical pressures $(P_{\rm cp})$ predicted using one of the selected methods, specified below. Expected percent error for all $(P_{\rm cp})$ -(from 1.18% to 3.31%). $T_{\rm b}^1$ =experimental normal boiling point temperature. E=expected percent errors for individual cases. Numbers attributed to methods: (1) Somayajulu, 5 (2) Daubert, 7 (3) Constantinou 8 —Continued

CAS RN	Formula	Name	P _{cp} (KPa)	E (%)	Method	$T_{\rm b}$ (K
6443-92-1	C ₇ H ₁₄	cis-2-heptene	2946	2.50	2	371.5
15840-60-5	C_7H_{14}	cis-2-methyl-3-hexene	2861	2.50	2	359.8
7642-10-6	C_7H_{14}	cis-3-heptene	2873	2.50	2	368.9
10574-36-4	C_7H_{14}	cis-3-methyl-2-hexene	2863	2.50	2	370.4
4914-89-0	C_7H_{14}	cis-3-methyl-3-hexene	2875	2.50	2	368.4
690-08-4	C_7H_{14}	trans-4,4-dimethyl-2-pentene	2951	2.87	3	349.8
762-63-0	C_7H_{14}	cis-4,4-dimethyl-2-pentene	3021	2.50	2	353.1
14686-13-6	C_7H_{14}	trans-2-heptene	2824	2.33	1	371.0
3683-19-0	C_7H_{14}	cis-4-methyl-2-hexene	2931	2.50	2	359.5
4914-92-5	C_7H_{14}	trans-3,4-dimethyl-2-pentene	2862	2.33	1	364.7
14686-14-7	C_7H_{14}	trans-3-heptene	2824	2.33	1	368.8
20710-38-7	C_7H_{14}	trans-3-methyl-2-hexene	2918	2.33	1	368.3
3683-22-5	C_7H_{14}	trans-4-methyl-2-hexene	2862	2.33	1	360.7
7385-82-2	C_7H_{14}	trans-5-methyl-2-hexene	2862	2.33	1	361.2
2738-19-4	C_7H_{14}	2-methyl-2-hexene	2829	2.50	2	368.2
15870-10-7	C_8H_{16}	2-methyl-1-heptene	2672	2.33	1	392.3
2809-67-8	C_8H_{14}	2-octyne	2931	2.33	1	411.2
764-13-6	C_8H_{14}	2,5-dimethyl-2,4-hexadiene	2850	2.33	1	407.6
627-58-7	C_8H_{14}	2,5-dimethyl-1,5-hexadiene	2894	2.33	1	387.4
32388-99-1	C_8H_{14}	<i>trans</i> -2-ethyl-3-methyl-1,3-pentadiene	2693	2.33	1	381.1
32388-90-2	C_8H_{14}	cis-2-ethyl-3-methyl-1,3-pentadiene	2712	2.50	2	400.1
14850-22-7	C_8H_{16}	cis-3-octene	2676	2.50	2	396.0
14919-01-8	C_8H_{16}	trans-3-octene	2568	2.33	1	396.4
4810-09-7	C_8H_{16}	3-methyl-1-heptene	2626	2.33	1	384.1
13151-05-8	C_8H_{16}	4-methyl-1-heptene	2705	2.33	1	385.6
5026-76-6	C_8H_{16} C_8H_{16}	6-methyl-1-heptene	2632	2.50	2	386.3
16746-86-4	C_8H_{16} C_8H_{16}	2,3-dimethyl-1-hexene	2705	2.33	1	383.6
7145-20-2	C_8H_{16} C_8H_{16}	2,3-dimethyl-2-hexene	2732	2.33	1	395.0
627-97-4	C_8H_{16}	2-methyl-2-heptene	2540	2.87	3	395.7
13151-04-7	C_8H_{16} C_8H_{16}	5-methyl-1-heptene	2626	2.33	1	386.1
1632-16-2	C_8H_{16} C_8H_{16}	2-ethyl-1-hexene	2753	2.33	1	391.8
39761-64-3	C_8H_{16} C_8H_{16}	3,4,4-trimethyl- <i>cis</i> -2-pentene	2735	2.50	2	385.4
560-23-6		2,3,3-trimethyl-1-pentene	2771	2.33	1	381.4
690-92-6	$ C_8H_{16} \\ C_8H_{16} $	2,2-dimehyl- <i>cis</i> -3-hexene	2683	2.50	2	378.9
3404-80-6		2-ethyl-4-methyl-1-pentene	2786	2.33	1	380.6
692-96-6	C_8H_{16}		2524	2.33	1	387.1
7300-03-0	C_8H_{16}	trans-2-methyl-3-heptene	2504		2	394.3
	C_8H_{16}	3-methyl-3-heptene		2.50		374.0
690-93-7	C_8H_{16}	trans-2,2-dimethyl-3-hexene	2511	2.33	1	380.7
61847-78-7	C_8H_{16}	trans-2,4-dimethyl-3-hexene	2524	2.33	1	
37549-89-6	C_8H_{16}	cis-2,4-dimethyl-3-hexene	2490	2.50	2	382.1
3404-75-9	C_8H_{16}	3-methyl-2-heptene	2540	2.87	3	394.6
19550-88-0	C_8H_{16}	trans-3,4-dimethyl-3-hexene	2388	2.33	1	387.9
7116-86-1 500007-01-2	C_8H_{16}	5,5-dimethyl-1-hexene	2690	2.33	1	376.2
	C_8H_{16}	5-methyl-1-heptene	2705	2.33	1	386.6
500015-77-0	C_9H_{16}	2,3,3,4-tetramethyl-1,4-pentadiene	2565	2.33	1	400.8
4588-18-5	C_9H_{18}	2-methyl-1-octene	2439	2.33	1	418.0
20442-63-1	C_9H_{18}	2,3,3,4-tetramethyl-1-pentene	2547	2.33	1	406.3
500001-23-0	C_9H_{18}	2,4-dimethyl-3-ethyl-2-pentene	2515	2.33	1	403.1
53907-59-8	C_9H_{18}	3-ethyl-4,4-dimethyl-2-pentene	2503	2.33	1	407.1
2384-85-2	$C_{10}H_{18}$	3-decyne	2418	2.33	1	448.6
19398-37-9	$C_{10}H_{20}$	cis-3-decene	2247	2.50	2	446.4
2129-95-5	$C_{10}H_{20}$	2-methyl-2-nonene	2113	2.87	3	444.1
53966-53-3	$C_{10}H_{20}$	2-methyl-3-nonene	2121	2.87	3	434.1
39083-38-0	$C_{10}H_{20}$	3,4,5,5-tetramethyl-2-hexene	2318	2.33	1	425.1
5857-68-1	$C_{10}H_{20}$	2,2,4,4-tetramethyl-3-methylene	2322	2.33	1	423.4
500006-47-3	$C_{10}H_{20}$	3-ethyl-2,4,4-trimethyl-2-pentene	2295	2.33	1	419.7

currently just over 400 (including about 180 hydrocarbons as a whole group). Many of these values are quite old, and the accuracy of some of these older values is questionable. The lacks will be complemented by means of the best and most updated methods. This study will be followed by the next one, dealing with critical pressure of aromatic and cyclic hydrocarbons. Further studies will be concerned with critical parameters of oxygen and halogen derivatives of hydrocarbons, as well as with evaluation and employing new predictive methods.

8. Acknowledgment

The authors wish to express their gratitude to Professor A. Bylicki (Institute of Coal Chemistry, Polish Academy of Sciences) for his support for the entire work and for his valuable comments and discussion.

9. References

- ¹I. Owczarek and K. Blazej, J. Phys. Chem. Ref. Data 32, 1411 (2003).
- ²I. Owczarek and K. Blazej, J. Phys. Chem. Ref. Data 33, 541 (2004).
- ³D. Ambrose, "Correlation and Estimation of Vapor-Liquid Critical Properties. 2. Critical pressures and volumes of Organic Compounds," National Physical Laboratory, Teddington, NPL Rep. Chem. 98, 1979.
- ⁴ K. G. Joback, S.M. thesis in Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Mass., June 1984.
- ⁵G. R. Somayajulu, J. Chem. Eng. Data **34**, 106 (1989).
- ⁶J. W. Jalowka and T. E. Daubert, Ind. Eng. Chem. Process Des. Dev. **25**, 139 (1986).
- ⁷T. E. Daubert and R. Bartakovits, Ind. Eng. Chem. Res. **28**, 638 (1989).
- ⁸L. Constantinou and R. Gani, AIChE J. **40**, 1666 (1994).

- ⁹J. Marrero-Morejon and E. Pardillo-Fontdevila, AIChE J. 45, 615 (1999)
- ¹⁰ J. Marrero and R. Gani, Fluid Phase Equilib. **183–184**, 183 (2001).
- ¹¹ A. L. Lydersen, "Estimation of critical properties of organic compounds," University Wisconsin Coll. Eng. Eng. Exp. Stn. Rept. 3, Madison, WI., April 1955.
- ¹² A. Kreglewski and B. J. Zwolinski, J. Phys. Chem. **65**, 1050 (1961).
- ¹³ NIST-TRC-Thermodynamics Research Center, U. S. National Institute of Standards and Technology, Boulder, CO (formerly The Texas A&M University System, College Station, TX).
- ¹⁴TDC-Thermodynamics Data Center, the Institute of Coal Chemistry (Gliwice) and the Institute of Physical Chemistry (Warsaw) of the Polish Academy of Sciences, Poland.
- ¹⁵T. E. Daubert, J. Chem. Eng. Data **41**, 365 (1996).
- ¹⁶D. Ambrose and C. Tsonopoulos, J. Chem. Eng. Data **40**, 531 (1995).
- ¹⁷ A. E. Elhassan and M. A. Barrufet, Fluid Phase Equilib. **78**, 139 (1992).
- ¹⁸G. M. Kontogeorgis and I. Smirlis, Ind. Eng. Chem. Res. **36**, 4008 (1997).
- ¹⁹E. D. Nikitin, P. A. Pavlov, and N. V. Bessonova, J. Chem. Thermodyn. 26, 177 (1994).
- ²⁰C. Tsonopoulos and D. J. Ambrose, J. Chem. Eng. Data 41, 645 (1996).
- ²¹C. Tsonopoulos and Z. Tan, Fluid Phase Equilib. **83**, 127 (1993).
- ²²E. D. Nikitin, P. A. Pavlov, and A. P. Popov, Fluid Phase Equilib. 141, 155 (1997).
- ²³ L. C. Wilson, W. V. Wilding, H. L. Wilson, and G. M. Wilson, J. Chem. Eng. Data 40, 765 (1995).
- ²⁴E. D. Nikitin and A. P. Popov, Fluid Phase Equilib. **166**, 237 (1999).
- ²⁵E. D. Nikitin, P. A. Pavlov, and M. G. Skutin, Fluid Phase Equilib. 161, 119 (1999).
- ²⁶ W. Fang, Q. Lei, and R. Lin, Fluid Phase Equilib. **205**, 149 (2003).
- ²⁷C. Crampon, L. Trassy, L. Avaullee, E. Neau, and L. Coniglio, Fluid Phase Equilib. 216, 95 (2004).
- ²⁸S. Le Roy, Fluid Phase Equilib. **135**, 63 (1997).
- ²⁹ R. C. Reid, J. M. Prausnitz, and B. E. Poling, *The Properties of Gases and Liquids*, 4th ed., (McGraw–Hill, New York, 1989), pp. 656–732.