Self Study Sebastián Caballero Week 2

Problem 1.

Let V and W be vector spaces over a field K. Let $\mathcal{B} = \{v_1, v_2, \dots, v_n\}$ be a basis for V and let $\{w_1, w_2, \dots, w_n\}$ be any vectors in W. There is a unique linear map

$$\phi: V \rightarrow W$$

Such that $\phi(v_i) = w_i$ for all $1 \le i \le n$

Solution. Since \mathcal{B} is a basis for V, for any element $v \in V$ there are $a_1, a_2, \ldots, a_n \in K$ such that:

$$v = a_1v_1 + a_2v_2 + \dots + a_nv_n$$

so if we define ϕ such that $\phi(v_i) = w_i$ then for any vector v we would have:

$$\phi(v) = a_1 \phi(v_1) + a_2 \phi(v_2) + \dots + a_n \phi(a_n)$$

= $a_1 w_1 + a_2 w_2 + \dots + a_n w_n$

Problem 2.

Suppose that V is a finite dimensional vector space. Let $\mathcal{B} = \{v_1, v_2, \dots, v_n\}$ be a basis for V then:

- Any set of $w_1, w_2, \ldots, w_n, w_{n+1}$ vectors is linearly dependent
- Any set of $w_1, w_2, \ldots, w_{n-1}$ vectors can't generate V

Solution. For this, we are going to use the facts needed for a basis.

• Let $w_1, w_2, \ldots, w_n, w_{n+1}$ be vectors in V, we can write them in the next way:

$$w_1 = a_{1,1}v_1 + a_{1,2}v_2 + \dots + a_{1,n}v_n$$

$$w_2 = a_{2,1}v_1 + a_{2,2}v_2 + \dots + a_{2,n}v_n$$

$$\dots$$

$$w_n = a_{n,1}v_1 + a_{n,2}v_2 + \dots + a_{n,n}v_n$$

$$w_{n+1} = a_{n+1,1}v_1 + a_{n+1,2}v_2 + \dots + a_{n+1,n}v_n$$

If there is a w_i such that $w_i = 0$ we are done. Suppose then that this is not true, so for each $1 \le i \le n+1$ exists j such that $a_{i,j} \neq 0$. But since there are w_{n+1} there must be i_1, i_2 such that for the same j, we have that $a_{i_1,j} \neq 0 \neq a_{i_2,j}$. So, we can express the vector v_j as:

$$v_j = \frac{w_{i_1}}{a_{i_1,j}} - \frac{a_{i_1,1}v_1 + a_{i_1,2}v_2 + \dots + a_{i_1,n}v_n}{a_{i_1,j}}$$
$$v_j = \frac{w_{i_2}}{a_{i_2,j}} - \frac{a_{i_2,1}v_1 + a_{i_2,2}v_2 + \dots + a_{i_2,n}v_n}{a_{i_2,j}}$$

And so the set is not linearly independent.

• Let $w_1, w_2, \ldots, w_{n-1}$ be vectors of V. Suppose that indeed we can generate V with them, so in particular, we can write:

$$v_1 = a_{1,1}w_1 + a_{1,2}w_2 + \dots + a_{1,n-1}w_{n-1}$$

$$v_2 = a_{2,1}w_1 + a_{2,2}w_2 + \dots + a_{2,n-1}w_{n-1}$$

$$\dots$$

$$v_n = a_{n,1}w_1 + a_{n,2}w_2 + \dots + a_{n,n-1}w_{n-1}$$

And since none of them is zero, we can be fure that for each $1 \le i \le n$ exists j such that $a_{i,j} \ne 0$. But since there are n vectors in \mathcal{B} and just n-1 vectors w_i , there must be i_1, i_2 such that for the same j, we have that $a_{i_1,j} \ne 0 \ne a_{i_2,j}$. So, we can express the vector v_j as:

$$w_j = \frac{v_{i_1}}{a_{i_1,j}} - \frac{a_{i_1,1}w_1 + a_{i_1,2}w_2 + \dots + a_{i_1,n}w_n}{a_{i_1,j}}$$
$$w_j = \frac{v_{i_2}}{a_{i_2,j}} - \frac{a_{i_2,1}w_1 + a_{i_2,2}w_2 + \dots + a_{i_2,n}w_n}{a_{i_2,j}}$$

But then this let us generate two different linear combinations within \mathcal{B} that give us the same result, contradicting the linear independency of \mathcal{B} .

Problem 3.

Let V be a finite vector space. If $A = \{v_1, v_2, \dots, v_n\}$ generates V then some subset of A is a basis for V.

Solution. For that, let declare the next set:

$$S = \{W \in \mathcal{P}(A) | W \text{ is linearly independent} \}$$

We can assure that at least there is a maximal element $\{v_1, v_2, \dots, v_m\}$ in S since we can assure the existence of $\{v_1\}$ and at most it can be A. Suppose then that it is not A, so m < n, and we can assure that any set $\{v_1, \dots, v_m, v_i\}$ is linearly dependent, with $m < i \le n$. Therefore we have:

$$a_1v_1 + \dots + a_nv_n + a_iv_i = 0$$

has more than the trivial solution, so we can suppose that

Problem 4.

Let $A = \{v_1, v_2, \dots, v_n\}$ be a subset of a vector space V. Prove that A is linearly independent if and only if the equation $a_1v_1 + a_2v_2 + \dots + a_nv_n = 0$ has the trivial solution.

Solution. We prove a double implication:

- \Rightarrow) If A is linearly independent then by definition the equation $a_1v_1 + a_2v_2 + \cdots + a_nv_n = 0$ has only one solution, the trivial one.
- \Leftarrow) Suppose that A is not linearly independent, so that there are two combinations of scalars a_1, a_2, \ldots, a_n and b_1, b_2, \ldots, b_n such that for a v in V:

$$a_1v_1 + a_2v_2 + \dots + a_nv_n = v$$

$$b_1v_1 + b_2v_2 + \dots + b_nv_n = v$$

And if we use the transitivity we have:

$$a_1v_1 + a_2v_2 + \dots + a_nv_n = b_1v_1 + b_2v_2 + \dots + b_nv_n$$
$$(a_1 - b_1)v_1 + (a_2 - b_2)v_2 + \dots + (a_n - b_n)v_n = 0$$

But note that $a_1 \neq b_1$, $a_2 \neq b_2$ and so on, so $a_1 - b_1 \neq 0$, $a_2 - b_2 \neq 0$ and so on, so the equation has another solution apart to the trivial one.

Problem 5.

Let W be a subspace of a finite dimensional vector space V. Any basis for W can be extended to a basis for V.

Problem 6.

Prove the Rank theorem

Problem 7.

Determine whether or not $\{(1,1,0),(2,0,-1),(-3,1,1)\}$ is basis for \mathbb{R}^3

Problem 8.

Let $\phi: V \to W$ be linear. Suppose that $v_1, \ldots, v_n \in V$ are such that $\phi(v_1), \ldots, \phi(v_n)$ are linearly independent in W. Show that v_1, \ldots, v_n are linearly independent.

Solution. For that, since $\phi(v_1), \ldots, \phi(v_n)$ are linearly independent, we can assure that the equation:

$$a_1\phi(v_1) + a_2\phi(v_2) + \dots + a_n\phi(v_n) = 0$$

has only the trivial solution. Suppose that the equation:

$$b_1v_1 + b_2v_2 + \cdots + b_nv_n = 0$$

has a solution that is not trivial. That this, we can assure that at least b_1 is not 0. And if we apply to both sides the linear map ϕ we get:

$$\phi(b_1v_1 + b_2v_2 + \dots + b_nv_n) = \phi(0)$$

$$\phi(b_1v_1) + \phi(b_2v_2) + \dots + \phi(b_nv_n) = 0$$

$$b_1\phi(v_1) + b_2\phi(v_2) + \dots + b_n\phi(v_n) = 0$$

But this is a contradiction since this equation can only have the trivial solution. So we can conclude that $v_1, \ldots v_n$.

Problem 9.

Let V be a vector space over a field k and let U, W be finite dimensional subspaces of V. Prove that U + W and $U \cap V$ are finite dimensional subspaces of V and:

$$\dim(U+W) + \dim(U\cap W) = \dim U + \dim W$$

Problem 10.

Show that the set of real numbers \mathbb{R} is a vector space over the rational numbers \mathbb{Q} . Show that this is not a finite-dimensional vector space over \mathbb{Q} .

Problem 11.

If $\{v_1, \ldots, v_n\}$ is a basis for V and $\{w_1, \ldots, w_m\}$ is a basis for W then:

$$\{(v_1,0),\ldots,(v_n,0),(0,w_1),\ldots,(0,w_n)\}$$

is a basis for $V \oplus W$

Solution. We need to prove two things:

• First, to prove that this set is linearly independent, we need to show that the homogeneous equation has only the trivial solution. So we have:

$$a_1(v_1,0) + a_2(v_2,0) + \dots + a_n(v_n,0) + b_1(0,w_1) + b_2(0,w_2) + \dots + b_n(0,w_n) = (0,0)$$

$$(a_1v_1,0) + (a_2v_2,0) + \dots + (a_nv_n,0) + (0,b_1w_1) + (0,b_2w_2) + \dots + (0,b_nw_n) = (0,0)$$

$$(a_1v_1 + a_2v_2 + \dots + a_nv_n, b_1w_1 + b_2w_2 + \dots + b_nw_n) = (0,0)$$

And this means that:

$$a_1v_1 + a_2v_2 + \dots + a_nv_n = 0$$

 $b_1w_1 + b_2w_2 + \dots + b_nw_n = 0$

And since those vectors are basis for each vector space $a_1 = a_2 = \cdots = a_n = b_1 = b_2 = \cdots = b_n$.

• For an element $(v, w) \in V \oplus W$, we know that v can be expressed as a linear combination $a_1v_1 + a_2v_2 + \cdots + a_nv_n = v$, and also w can be expressed as $b_1w_1 + b_2w_2 + \cdots + b_nv_n = w$, so the combination of the vectors in our set will rise:

$$a_1(v_1,0) + a_2(v_2,0) + \dots + a_n(v_n,0) + b_1(0,w_1) + b_2(0,w_2) + \dots + b_n(0,w_n) = (v,w)$$

Problem 12.

Let V be a vector space over K and let W a subspace of V. With the operations induced over V/W, this becomes a vector space.

Problem 13.

Generalize the notions of external and internal direct sums to three or more summands.

Solution. For a set V_1, V_2, \ldots, V_n of vector spaces defined over the same field K, we define the external direct sum as:

$$\bigoplus_{i=1}^{n} V_i = \prod_{i=1}^{n} V_I$$

With the operations defined as:

$$(v_1, v_2, \dots, v_n) + (w_1, w_2, \dots w_n) = (v_1 + w_1, v_2 + w_2, \dots, v_n + w_n)$$

 $c(v_1, v_2, \dots, v_n) = (cv_1, cv_2, \dots, cv_n)$

which also produce a vector space. And let V be a vector space, $\mathcal{V} = \{V_1, V_2, \dots, V_n\}$ a collection a subspaces of V. We define that V is the internal sum of the elements of \mathcal{V} if and only if there is a function $\eta: \bigoplus_{i=1}^n V_i \to V$ such that:

- $\eta(v_1, v_2, \dots, v_n) = v_1 + v_2 + \dots + v_n$
- η is monic
- η is epic

Problem 14.

Let W be a subspace of the finite-dimensional vector space V. Show that there is a subspace U of V such that $V \cong U \oplus W$.

Solution. For this, define U as follows:

$$U := V \setminus W \cup \{0\}$$

First, we need to prove that this is a subspace of V:

Note that for any $v \in U$ different from 0 and any $c \in K$, if $cv \in W$ then $c^{-1}cv = v \in W$ which contradicts the definition of U. If $u, w \in U$ are not both 0, and if $u + w \in W$ then that means that $u, w \in W$ since W is closed over the operations, which again, contradicts the definition for U, so $u + w \in U$.

Now, we want to prove that this is an internal sum of V, so we have:

• If $w \in W$ and $u \in U$ are such that w + u = 0, then we would have w = -u, which means that $w \in U$ and also that $u = -w \in V$, which means that since its only common element is 0, u = w = 0.

• For any element $v \in V$, there are two alternatives. If $v \in W$ then we can express v as v + 0 and $0 \in U$. If $v \notin W$ then $v \in U$ by definition and so v = 0 + v with $0 \in W$.

And so we conclude that $U \oplus W$ is an internal sum of V.

Problem 15.

Prove that every vector space has a basis.

Problem 16.

Prove that the set of all infinite sequences of 0's and 1's with component-wise addition and scalar multiplication modulo 2.

Problem 17.

Can \mathbb{C} be isomorphic to a subspace of \mathbb{R} ?

Problem 18.

Prove the binomial and the multinomial theorem for rings