Package 'HyperCube'

June 5, 2015

·
Type Package
Title Hypercube estimator
Version 0.1-0
Date 2015-05-08
Author Chi Po Choi, Amy T. Kim
Maintainer Chi Po Choi <cpchoi@ucdavis.edu>, Amy Kim <atykim@ucdavis.edu></atykim@ucdavis.edu></cpchoi@ucdavis.edu>
Description Hypercube estimator, Penalized least square and more.
Imports expm, Matrix, MASS
LazyData true
License GPL
Suggests knitr
VignetteBuilder knitr

R topics documented:

Index

bye	2
canonicalForm	2
dental	3
diffMatrix	3
estRisk	4
estRiskCanonical	4
estSigma	5
hello	5
hypercube	6
hypercubeEst	7
hypercubeOp	7
hypercubeOptimization	8
litter	8
modelMatrix	9
monkey	9
motor	10
plsW2V	10
polyRegMatrix	11
subX2V	11
vineyard	11
	13

2 canonicalForm

bye

Bye world

Description

Bye world

Usage

bye(name)

Arguments

name

characters string

Examples

```
## Say Bye!
bye("Taeyen")
```

canonicalForm

Canonical Form

Description

Canonical Form

Usage

```
canonicalForm(x, y, V)
```

Arguments

x vector

y observations

V a symmetrix matrix whoes eigenvalues all lie in [0, 1]

dental 3

dental

The hardness of 120 dental fillings

Description

A dataset containing the response measures the hardness of dental filling obtained by 5 Dentists using 8 Gold alloys and 3 Condensation methods. The objective of the experiment was to find a dental gold filling with greater hardness.

Usage

dental

Format

A data frame with 120 rows and 4 variables:

- y response mesures the hardness of dental fillings
- **G** the indice of 8 Gold alloys
- C the indice of 3 Condensation methods
- **D** the indice of 5 Dentists

Details

Seheult and Tukey (2001) analyzed a three-factor layout in which the response measures the hardness of dental fillings obtained by 5 Dentists (D) using 8 Gold alloys (G) and 3 Condensation methods (C). The objective of the experiment was to find a dental gold lling with greater hardness. Condensation, properly carried out, was known to increase the hardness of a filling. The three condensation techniques used in the experiment were: (1) electromalleting, in which blows are delivered mechanically at a steady frequency; (2) hand malleting, in which a small mallet is used to deliver blows; and (3) hand condensation. The reported hardness observations are each averages of ten measurements that are not available. It was reported anecdotally that dentist 5 appeared to be physically tired before the experiment.

Source

Seheult and Tukey (2001)

diffMatrix

Difference Matrix

Description

Difference Matrix

Usage

diffMatrix(p, dth)

4 estRiskCanonical

Arguments

p number of coefficients
dth order of difference matrix

estRisk

Estimate Risk

Description

Estimate Risk

Usage

```
estRisk(X, y, A, estsig)
```

Arguments

X design matrix y observation

A hypercuber operator estsig estimated variance

Value

The estimated risk

References

Beran, Rudolf. "Hypercube estimators: Penalized least squares, submodel selection, and numerical stability." Computational Statistics & Data Analysis 71 (2014): 654-666.

estRiskCanonical

Estimate Risk Canonical

Description

Estimate Risk Canonical

Usage

```
estRiskCanonical(canonicalform, estsig)
```

Arguments

canonical form canonical form esting estimated variance

estSigma 5

estSigma

Estimate Variance

Description

Estimate Variance

Usage

estSigma(mf)

Arguments

mf

model frame

Value

The estimated variance

References

Beran, Rudolf. "Hypercube estimators: Penalized least squares, submodel selection, and numerical stability." Computational Statistics & Data Analysis 71 (2014): 654-666.

hello

Hello world

Description

Hello world

Usage

hello(name)

Arguments

name

characters string

Examples

```
## Say hello!
hello("Po")
```

6 hypercube

hypercube

Hypercube generic

Description

```
Hypercube generic
```

Hypercube Estimate

Usage

```
hypercube(...)
## Default S3 method:
hypercube(X, y, V, ...)
## S3 method for class 'formula'
hypercube(formula, data, V, ...)
```

Arguments

Object to be hypercubedesign matrixobservation

V sysmmetric matrix whose eigenvalues all lie in [0,1]

formula formula to get estimate
data data you want to analysis
... other optional arguments

Methods (by class)

- default:
- formula:

References

Beran, Rudolf. "Hypercube estimators: Penalized least squares, submodel selection, and numerical stability." Computational Statistics & Data Analysis 71 (2014): 654-666.

hypercubeEst 7

hv	ner	cuh	eEs	+
117	ושט	Cub	CLS	L

Hypercube Estimate

Description

Hypercube Estimate

Usage

```
hypercubeEst(X, y, V, ...)
```

Arguments

X	design matrix
У	observation

V sysmmetric matrix whose eigenvalues all lie in [0,1]

.. other optional arguments

References

Beran, Rudolf. "Hypercube estimators: Penalized least squares, submodel selection, and numerical stability." Computational Statistics & Data Analysis 71 (2014): 654-666.

hypercube0p

Hypercube Operator

Description

Hypercube Operator

Usage

```
hypercubeOp(X, V)
```

Arguments

X design matrix

V sysmmetric matrix whose eigenvalues all lie in [0,1]

References

Beran, Rudolf. "Hypercube estimators: Penalized least squares, submodel selection, and numerical stability." Computational Statistics & Data Analysis 71 (2014): 654-666.

8 litter

hypercubeOptimization Hypercube Optimization

Description

give the component which minimizing the risk

Usage

hypercubeOptimization(formula, data, sigma = NULL)

Arguments

formula formula data

sigma estimated variance

References

Beran, Rudolf. "Hypercube estimators: Penalized least squares, submodel selection, and numerical stability." Computational Statistics & Data Analysis 71 (2014): 654-666.

litter

Weigth gain of 61 infant rat litters

Description

A dataset containing the (average) wight gain of an infant rat litter when the infants in the litter are nursed by a rat foster-mother

Usage

litter

Format

A data frame with 61 rows and 3 variables:

weight the (averge) weight gain of an infant rat litter mother the genotype of the foster-mother nursing the infants infant the genotype of the infant litter

Details

The rat litter data treated by Scheffe (1959) form an unbalnced two-way layout Each response recorded is the average weight-gain of a rat litter when the infants in the litter are nursed by a rat foster-mother. Factor1 with four levels, is the genotype of the foster-moather. Factor2 with the same levels, in the genotype of the infant litter.

The response measured in the experiment is the (average) weight gain of an infant rat litter when the infants in the litter are nursed by a rat foster-mother. Factor 1 is the genotype of the foster-mother nursing the infants. Factor 2 is the genotype of the infant litter.

modelMatrix 9

Source

printed on p. 140 of H. Scheffe'ss text,comes from a Ph.D. thesis The Inheritance of Maternal Influences on the Growth of the Rat by D. W. Bailey (1953).

modelMatrix

Generate model matrix

Description

generate model matrix given formula and data

Usage

```
modelMatrix(formula, data)
```

Arguments

formula formula data

monkey

Response of 5 different monkey-pairs

Description

A dataset containing reports responses to a certain stimulus that were measured for 5 different monkey-pairs (the subjects) in 5 different periods under 5 different conditions

Usage

monkey

Format

A data frame with 25 rows and 4 variables:

cond the condition

monkeys the monkey pair

period the monkey pair

response responses to a certain stimulus

Source

p. 189 of Scheffes text and reformatted in monkey.RData

plsW2V

motor

Accelations over time

Description

A dataset containing 133 observation of motorsycle acceleration against time in a simulated motorcycle accident. The p=277 possible observation times constitute the vector $t=(1,\,2,\,\ldots\,,\,277)$ Accelerations were observed at only q < p of these equally spaced time, sometimes with replication.

Usage

motor

Format

A data frame with 133 rows and 2 variables:

t possible observation times

accel acceleration against time

Source

adapted from Silverman (1985)

plsW2V

Generate V matrix

Description

covert W matrix to V matrix

Usage

plsW2V(W)

Arguments

W

a matrix, penalized least square

polyRegMatrix 11

polyRegMatrix

Polynomial Regression

Description

Create V to fit polynomial submodel

Usage

```
polyRegMatrix(deg, x)
```

Arguments

deg the highest order of polynomial

x covariates

subX2V

Submodel function

Description

submodel fitting

Usage

```
subX2V(X, L)
```

Arguments

X design matrix

L coefficients of linear combination of columns of X

vineyard

Prices of 50,000 round cut diamonds.

Description

A dataset containing records the grape yield harvested in each row of a vinyard in three succes years

Usage

vineyard

12 vineyard

Format

A data frame with 52 rows and 4 variables:

row the vineyard row numberyear1 reporting the harvest yield in first yearyear2 reporting the harvest yield in second yearyear3 reporting the harvest yield in third year

Source

vineyard

Index

```
*Topic datasets
     dental, 3
     litter, 8
     monkey, 9
     \quad \text{motor, } \textcolor{red}{10}
     vineyard, 11
bye, 2
canonicalForm, 2
dental, 3
diffMatrix, 3
estRisk, 4
estRiskCanonical, 4
\verb"estSigma", 5
hello, 5
hypercube, 6
hypercubeEst, 7
hypercube0p, 7
\verb|hypercubeOptimization|, 8|
litter, 8
modelMatrix, 9
monkey, 9
motor, 10
plsW2V, 10
{\tt polyRegMatrix}, {\tt 11}
subX2V, 11
vineyard, 11
```