

RELASI

Matematika Wiskrit

Relasi

- Relasi biner R antara himpunan A dan B adalah himpunan bagian dari $A \times B$.
- Notasi: $R \subseteq (A \times B)$.
- a R b adalah notasi untuk $(a, b) \in R$, yang artinya a dihubungankan dengan b oleh R
- $a \not\in b$ adalah notasi untuk $(a, b) \not\in R$, yang artinya a tidak dihubungkan oleh b oleh relasi R.
- Himpunan *A* disebut daerah asal (*domain*) dari *R*, dan himpunan *B* disebut daerah hasil (*range*) dari *R*.

Contoh 3. Misalkan

```
A = {Amir, Budi, Cecep}, B = {IF221, IF251, IF342, IF323}

A × B = {(Amir, IF221), (Amir, IF251), (Amir, IF342),

(Amir, IF323), (Budi, IF221), (Budi, IF251),

(Budi, IF342), (Budi, IF323), (Cecep, IF221),

(Cecep, IF251), (Cecep, IF342), (Cecep, IF323) }
```

Misalkan R adalah relasi yang menyatakan mata kuliah yang diambil oleh mahasiswa pada Semester Ganjil, yaitu

```
R = {(Amir, IF251), (Amir, IF323), (Budi, IF221), (Budi, IF251), (Cecep, IF323) }
```

- Dapat dilihat bahwa $R \subseteq (A \times B)$,
- A adalah daerah asal R, dan B adalah daerah hasil R.
- (Amir, IF251) $\in R$ atau Amir R IF251
- (Amir, IF342) $\notin R$ atau Amir \Re IF342.

Contoh 4. Misalkan $P = \{2, 3, 4\}$ dan $Q = \{2, 4, 8, 9, 15\}$. Jika kita definisikan relasi R dari P ke Q dengan

 $(p, q) \in R$ jika p habis membagi q

maka kita peroleh

$$R = \{(2, 2), (2, 4), (4, 4), (2, 8), (4, 8), (3, 9), (3, 15)\}$$

- Relasi pada sebuah himpunan adalah relasi yang khusus
- Relasi pada himpunan A adalah relasi dari $A \times A$.
- Relasi pada himpunan A adalah himpunan bagian dari $A \times A$.

Contoh 5. Misalkan R adalah relasi pada $A = \{2, 3, 4, 8, 9\}$ yang didefinisikan oleh $(x, y) \in R$ jika x adalah faktor prima dari y. Maka

$$R = \{(2, 2), (2, 4), (2, 8), (3, 3), (3, 9)\}$$

Representasi Relasi

1. Representasi Relasi dengan Diagram Panah

. Representasi Relasi dengan Tabel

• Kolom pertama tabel menyatakan daerah asal, sedangkan kolom kedua menyatakan daerah hasil.

Tabel 1

\boldsymbol{A}	В
Amir	IF251
Amir	IF323
Budi	IF221
Budi	IF251
Cecep	IF323

Tabel 2

P	Q
2	2
2	4
4	4
2	8
4	8
3	9
3	15

Tabel 3

A	A
2	2
2	4
2	8
3	3
3	3

3. Representasi Relasi dengan Matriks

- Misalkan R adalah relasi dari $A = \{a_1, a_2, ..., a_m\}$ dan $B = \{b_1, b_2, ..., b_n\}$.
- Relasi *R* dapat disajikan dengan matriks $M = [m_{ij}]$,

$$M = \begin{bmatrix} b_1 & b_2 & \dots & b_n \\ a_1 & m_{11} & m_{12} & \cdots & m_{1n} \\ m_{21} & m_{22} & \cdots & m_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_m & m_{m1} & m_{m2} & \cdots & m_{mn} \end{bmatrix}$$

yang dalam hal ini

$$m_{ij} = \begin{cases} 1, & (a_i, b_j) \in R \\ 0, & (a_i, b_j) \notin R \end{cases}$$

Contoh 6. Relasi R pada Contoh 3 dapat dinyatakan dengan matriks

$$\begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

dalam hal ini, a_1 = Amir, a_2 = Budi, a_3 = Cecep, dan b_1 = IF221, b_2 = IF251, b_3 = IF342, dan b_4 = IF323.

Relasi R pada Contoh 4 dapat dinyatakan dengan matriks

$$\begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 \end{bmatrix}$$

yang dalam hal ini, $a_1 = 2$, $a_2 = 3$, $a_3 = 4$, dan $b_1 = 2$, $b_2 = 4$, $b_3 = 8$, $b_4 = 9$, $b_5 = 15$.

4. Representasi Relasi dengan Graf Berarah

- Relasi pada sebuah himpunan dapat direpresentasikan secara grafis dengan **graf berarah** (*directed graph* atau *digraph*)
- Graf berarah tidak didefinisikan untuk merepresentasikan relasi dari suatu himpunan ke himpunan lain.
- Tiap elemen himpunan dinyatakan dengan sebuah titik (disebut juga simpul atau *vertex*), dan tiap pasangan terurut dinyatakan dengan busur (*arc*)
- Jika $(a, b) \in R$, maka sebuah busur dibuat dari simpul a ke simpul b. Simpul a disebut **simpul asal** (*initial vertex*) dan simpul b disebut **simpul tujuan** (*terminal vertex*).
- Pasangan terurut (a, a) dinyatakan dengan busur dari simpul a ke simpul a sendiri. Busur semacam itu disebut gelang atau kalang (loop).

Contoh 7. Misalkan $R = \{(a, a), (a, b), (b, a), (b, c), (b, d), (c, a), (c, d), (d, b)\}$ adalah relasi pada himpunan $\{a, b, c, d\}$.

R direpresentasikan dengan graf berarah sbb:

Sifat-sifat Relasi Biner

• Relasi biner yang didefinisikan pada sebuah himpunan mempunyai beberapa sifat.

1. **Refleksif** (reflexive)

- Relasi R pada himpunan A disebut **refleksif** jika $(a, a) \in R$ untuk setiap $a \in A$.
- Relasi R pada himpunan A tidak refleksif jika ada $a \in A$ sedemikian sehingga $(a, a) \notin R$.

Contoh 8. Misalkan $A = \{1, 2, 3, 4\}$, dan relasi R di bawah ini didefinisikan pada himpunan A, maka

- (a) Relasi $R = \{(1, 1), (1, 3), (2, 1), (2, 2), (3, 3), (4, 2), (4, 3), (4, 4)\}$ bersifat refleksif karena terdapat elemen relasi yang berbentuk (a, a), yaitu (1, 1), (2, 2), (3, 3), dan (4, 4).
- (b) Relasi $R = \{(1, 1), (2, 2), (2, 3), (4, 2), (4, 3), (4, 4)\}$ tidak bersifat refleksif karena $(3, 3) \notin R$.

Contoh 9. Relasi "habis membagi" pada himpunan bilangan bulat positif bersifat refleksif karena setiap bilangan bulat positif habis dibagi dengan dirinya sendiri, sehingga $(a, a) \in R$ untuk setiap $a \in A$.

Contoh 10. Tiga buah relasi di bawah ini menyatakan relasi pada himpunan bilangan bulat positif **N**.

R: x lebih besar dari y, S: x + y = 5, T: 3x + y = 10

Tidak satupun dari ketiga relasi di atas yang refleksif karena, misalkan (2, 2) bukan anggota R, S, maupun T.

• Relasi yang bersifat refleksif mempunyai matriks yang elemen diagonal utamanya semua bernilai 1, atau $m_{ii} = 1$, untuk i = 1, 2, ..., n,

• Graf berarah dari relasi yang bersifat refleksif dicirikan adanya gelang pada setiap simpulnya.

2. Menghantar (transitive)

• Relasi R pada himpunan A disebut **menghantar** jika $(a, b) \in R$ dan $(b, c) \in R$, maka $(a, c) \in R$, untuk $a, b, c \in A$.

Contoh 11. Misalkan $A = \{1, 2, 3, 4\}$, dan relasi R di bawah ini didefinisikan pada himpunan A, maka

(a) $R = \{(2, 1), (3, 1), (3, 2), (4, 1), (4, 2), (4, 3)\}$ bersifat menghantar. Lihat tabel berikut:

Pasangan berbentuk						
(a,b)	(b, c)	(a, c)				
(3, 2) (4, 2) (4, 3) (4, 3)	(2, 1) (2, 1) (3, 1) (3, 2)	(3, 1) (4, 1) (4, 1) (4, 2)				

- (b) $R = \{(1, 1), (2, 3), (2, 4), (4, 2)\}$ tidak manghantar karena (2, 4) dan $(4, 2) \in R$, tetapi $(2, 2) \notin R$, begitu juga (4, 2) dan $(2, 3) \in R$, tetapi $(4, 3) \notin R$.
- (c) Relasi $R = \{(1, 1), (2, 2), (3, 3), (4, 4)\}$ jelas menghantar
- (d) Relasi $R = \{(1, 2), (3, 4)\}$ menghantar karena tidak ada $(a, b) \in R$ dan $(b, c) \in R$ sedemikian sehingga $(a, c) \in R$.

Relasi yang hanya berisi satu elemen seperti $R = \{(4, 5)\}$ selalu menghantar.

Contoh 12. Relasi "habis membagi" pada himpunan bilangan bulat positif bersifat menghantar. Misalkan bahwa a habis membagi b dan b habis membagi c. Maka terdapat bilangan positif m dan n sedemikian sehingga b = ma dan c = nb. Di sini c = nma, sehingga a habis membagi c. Jadi, relasi "habis membagi" bersifat menghantar.

Contoh 13. Tiga buah relasi di bawah ini menyatakan relasi pada himpunan bilangan bulat positif **N**.

R: x lebih besar dari y, S: x + y = 6, T: 3x + y = 10

- R adalah relasi menghantar karena jika x > y dan y > z maka x > z.
- S tidak menghantar karena, misalkan (4, 2) dan (2, 4) adalah anggota S tetapi (4, 4) $\notin S$.
- $T = \{(1, 7), (2, 4), (3, 1)\}$ menghantar.

- Relasi yang bersifat menghantar tidak mempunyai ciri khusus pada matriks representasinya
- Sifat menghantar pada graf berarah ditunjukkan oleh: jika ada busur dari *a* ke *b* dan dari *b* ke *c*, maka juga terdapat busur berarah dari *a* ke *c*.

3. Setangkup (symmetric) dan tolak-setangkup (antisymmetric)

- Relasi R pada himpunan A disebut **setangkup** jika $(a, b) \in R$, maka $(b, a) \in R$ untuk $a, b \in A$.
- Relasi R pada himpunan A tidak setangkup jika $(a, b) \in R$ sedemikian sehingga $(b, a) \notin R$.
- Relasi R pada himpunan A sedemikian sehingga $(a, b) \in R$ dan $(b, a) \in R$ hanya jika a = b untuk $a, b \in A$ disebut **tolak-setangkup**.
- Relasi R pada himpunan A tidak tolak-setangkup jika ada elemen berbeda a dan b sedemikian sehingga $(a, b) \in R$ dan $(b, a) \in R$.

- Contoh 14. Misalkan $A = \{1, 2, 3, 4\}$, dan relasi R di bawah ini didefinisikan pada himpunan A, maka
 - (a) Relasi $R = \{(1, 1), (1, 2), (2, 1), (2, 2), (2, 4), (4, 2), (4, 4)\}$ bersifat setangkup karena jika $(a, b) \in R$ maka (b, a) juga $\in R$. Di sini (1, 2) dan $(2, 1) \in R$, begitu juga (2, 4) dan $(4, 2) \in R$.
 - (b) Relasi $R = \{(1, 1), (2, 3), (2, 4), (4, 2)\}$ tidak setangkup karena $(2, 3) \in R$, tetapi $(3, 2) \notin R$.
 - (c) Relasi $R = \{(1, 1), (2, 2), (3, 3)\}$ tolak-setangkup karena 1 = 1 dan $(1, 1) \in R$, 2 = 2 dan $(2, 2) \in R$, dan 3 = 3 dan $(3, 3) \in R$. Perhatikan bahwa R juga setangkup.
 - (d)Relasi $R = \{(1, 1), (1, 2), (2, 2), (2, 3)\}$ tolak-setangkup karena $(1, 1) \in R$ dan 1 = 1 dan, $(2, 2) \in R$ dan 2 = 2 dan. Perhatikan bahwa R tidak setangkup.
 - (e) Relasi $R = \{(1, 1), (2, 4), (3, 3), (4, 2)\}$ tidak tolak-setangkup karena $2 \neq 4$ tetapi (2, 4) dan (4, 2) anggota R. Relasi R pada (a) dan (b) di atas juga tidak tolak-setangkup.
 - (f) Relasi $R = \{(1, 2), (2, 3), (1, 3)\}$ tidak setangkup tetapi tolak-setangkup.

Relasi $R = \{(1, 1), (2, 2), (2, 3), (3, 2), (4, 2), (4, 4)\}$ tidak setangkup dan tidak tolak-setangkup. R tidak setangkup karena $(4, 2) \in R$ tetapi $(2, 4) \notin R$. R tidak tolak-setangkup karena $(2, 3) \in R$ dan $(3, 2) \in R$ tetap $2 \neq 3$.

Contoh 15. Relasi "habis membagi" pada himpunan bilangan bulat positif tidak setangkup karena jika a habis membagi b, b tidak habis membagi a, kecuali jika a = b. Sebagai contoh, 2 habis membagi 4, tetapi 4 tidak habis membagi 2. Karena itu, $(2, 4) \in R$ tetapi $(4, 2) \notin R$. Relasi "habis membagi" tolak-setangkup karena jika a habis membagi b dan b habis membagi a maka a = b. Sebagai contoh, 4 habis membagi 4. Karena itu, $(4, 4) \in R$ dan a 4.

Contoh 16. Tiga buah relasi di bawah ini menyatakan relasi pada himpunan bilangan bulat positif **N**.

$$R: x$$
 lebih besar dari y , $S: x + y = 6$, $T: 3x + y = 10$

- R bukan relasi setangkup karena, misalkan 5 lebih besar dari 3 tetapi 3 tidak lebih besar dari 5.
- S relasi setangkup karena (4, 2) dan (2, 4) adalah anggota S.
- *T* tidak setangkup karena, misalkan (3, 1) adalah anggota *T* tetapi (1, 3) bukan anggota *T*.
- S bukan relasi tolak-setangkup karena, misalkan $(4, 2) \in S$ dan $(4, 2) \in S$ tetapi $4 \neq 2$.
- Relasi *R* dan *T* keduanya tolak-setangkup (tunjukkan!).

• Relasi yang bersifat setangkup mempunyai matriks yang elemen-elemen di bawah diagonal utama merupakan pencerminan dari elemen-elemen di atas diagonal utama, atau $m_{ij} = m_{ji} = 1$, untuk i = 1, 2, ..., n:

• Sedangkan graf berarah dari relasi yang bersifat setangkup dicirikan oleh: jika ada busur dari *a* ke *b*, maka juga ada busur dari *b* ke *a*.

• Matriks dari relasi tolak-setangkup mempunyai sifat yaitu jika $m_{ij} = 1$ dengan $i \neq j$, maka $m_{ji} = 0$. Dengan kata lain, matriks dari relasi tolak-setangkup adalah jika salah satu dari $m_{ij} = 0$ atau $m_{ji} = 0$ bila $i \neq j$:

• Sedangkan graf berarah dari relasi yang bersifat tolaksetangkup dicirikan oleh: jika dan hanya jika tidak pernah ada dua busur dalam arah berlawanan antara dua simpul berbeda.

Relasi Inversi

• Misalkan R adalah relasi dari himpunan A ke himpunan B. Invers dari relasi R, dilambangkan dengan R^{-1} , adalah relasi dari B ke A yang didefinisikan oleh

$$R^{-1} = \{(b, a) \mid (a, b) \in R \}$$

Contoh 17. Misalkan $P = \{2, 3, 4\}$ dan $Q = \{2, 4, 8, 9, 15\}$. Jika kita definisikan relasi R dari P ke Q dengan

 $(p, q) \in R$ jika p habis membagi q

maka kita peroleh

$$R = \{(2, 2), (2, 4), (4, 4), (2, 8), (4, 8), (3, 9), (3, 15)\}$$

 R^{-1} adalah *invers* dari relasi R, yaitu relasi dari Q ke P dengan

 $(q, p) \in R^{-1}$ jika q adalah kelipatan dari p

maka kita peroleh

Jika M adalah matriks yang merepresentasikan relasi R,

$$M = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 \end{bmatrix}$$

maka matriks yang merepresentasikan relasi R^{-1} , misalkan N, diperoleh dengan melakukan transpose terhadap matriks M,

$$N = M^{T} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

Mengkombinasikan Relasi

- Karena relasi biner merupakan himpunan pasangan terurut, maka operasi himpunan seperti irisan, gabungan, selisih, dan beda setangkup antara dua relasi atau lebih juga berlaku.
- Jika R_1 dan R_2 masing-masing adalah relasi dari himpuna A ke himpunan B, maka $R_1 \cap R_2$, $R_1 \cup R_2$, $R_1 R_2$, dan $R_1 \oplus R_2$ juga adalah relasi dari A ke B.

Contoh 18. Misalkan $A = \{a, b, c\}$ dan $B = \{a, b, c, d\}$.

Relasi
$$R_1 = \{(a, a), (b, b), (c, c)\}$$

Relasi $R_2 = \{(a, a), (a, b), (a, c), (a, d)\}$
 $R_1 \cap R_2 = \{(a, a)\}$
 $R_1 \cup R_2 = \{(a, a), (b, b), (c, c), (a, b), (a, c), (a, d)\}$
 $R_1 - R_2 = \{(b, b), (c, c)\}$
 $R_2 - R_1 = \{(a, b), (a, c), (a, d)\}$
 $R_1 \oplus R_2 = \{(b, b), (c, c), (a, b), (a, c), (a, d)\}$

• Jika relasi R_1 dan R_2 masing-masing dinyatakan dengan matriks M_{R1} dan M_{R2} , maka matriks yang menyatakan gabungan dan irisan dari kedua relasi tersebut adalah

$$M_{R1 \cup R2} = M_{R1} \vee M_{R2}$$
 dan $M_{R1 \cap R2} = M_{R1} \wedge M_{R2}$

Contoh 19. Misalkan bahwa relasi R_1 dan R_2 pada himpunan A dinyatakan oleh matriks

$$R_1 = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} \quad \text{dan} \quad R_2 = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

maka

$$M_{R1 \cup R2} = M_{R1} \lor M_{R2} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

$$M_{R1 \cap R2} = M_{R1} \wedge M_{R2} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

Komposisi Relasi

 Misalkan R adalah relasi dari himpunan A ke himpunan B, dan S adalah relasi dari himpunan B ke himpunan C.
 Komposisi R dan S, dinotasikan dengan S o R, adalah relasi dari A ke C yang didefinisikan oleh

 $S \circ R = \{(a, c) \mid a \in A, c \in C, \text{ dan untuk beberapa } b \in B, (a, b) \in R \text{ dan } (b, c) \in S \}$

Contoh 20. Misalkan

$$R = \{(1, 2), (1, 6), (2, 4), (3, 4), (3, 6), (3, 8)\}$$

adalah relasi dari himpunan {1, 2, 3} ke himpunan {2, 4, 6, 8} dan

$$S = \{(2, u), (4, s), (4, t), (6, t), (8, u)\}$$

adalah relasi dari himpunan $\{2, 4, 6, 8\}$ ke himpunan $\{s, t, u\}$.

Maka komposisi relasi R dan S adalah

$$S \circ R = \{(1, u), (1, t), (2, s), (2, t), (3, s), (3, t), (3, u)\}$$

Komposisi relasi *R* dan *S* lebih jelas jika diperagakan dengan diagram panah:

• Jika relasi R_1 dan R_2 masing-masing dinyatakan dengan matriks M_{R1} dan M_{R2} , maka matriks yang menyatakan komposisi dari kedua relasi tersebut adalah

$$M_{R2 \text{ o } R1} = M_{R1} \cdot M_{R2}$$

yang dalam hal ini operator "." sama seperti pada perkalian matriks biasa, tetapi dengan mengganti tanda kali dengan "\" dan tanda tambah dengan "\"."

Contoh 21. Misalkan bahwa relasi R_1 dan R_2 pada himpunan A dinyatakan oleh matriks

$$R_1 = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
 dan
$$R_2 = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

maka matriks yang menyatakan R_2 o R_1 adalah

$$M_{R2 \text{ o } R1} = M_{R1} \cdot M_{R2}$$

$$= \begin{bmatrix} (1 \land 0) \lor (0 \land 0) \lor (1 \land 1) & (1 \land 1) \lor (0 \land 0) \lor (1 \land 0) & (1 \land 0) \\ (1 \land 0) \lor (1 \land 0) \lor (0 \land 1) & (1 \land 1) \lor (1 \land 0) \lor (0 \land 0) & (1 \land 0) \\ (0 \land 0) \lor (0 \land 0) \lor (0 \land 1) & (0 \land 1) \lor (0 \land 0) \lor (0 \land 0) & (0 \land 0) \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

Relasi n-ary

- Relasi biner hanya menghubungkan antara dua buah himpunan.
- Relasi yang lebih umum menghubungkan lebih dari dua buah himpunan. Relasi tersebut dinamakan relasi *n-ary* (baca: ener).
- Jika n = 2, maka relasinya dinamakan relasi biner (bi = 2). Relasi n-ary mempunyai terapan penting di dalam basisdata.
- Misalkan $A_1, A_2, ..., A_n$ adalah himpunan. Relasi n-ary R pada himpunan-himpunan tersebut adalah himpunan bagian dari $A_1 \times A_2 \times ... \times A_n$, atau dengan notasi $R \subseteq A_1 \times A_2 \times ... \times A_n$. Himpunan $A_1, A_2, ..., A_n$ disebut daerah asal relasi dan n disebut **derajat**.

Contoh 22. Misalkan

```
NIM = {13598011, 13598014, 13598015, 13598019, 13598021, 13598025}
Nama = {Amir, Santi, Irwan, Ahmad, Cecep, Hamdan}
MatKul = {Matematika Diskrit, Algoritma, Struktur Data, Arsitektur Komputer}
Nilai = {A, B, C, D, E}
```

Relasi MHS terdiri dari 5-tupel (NIM, Nama, MatKul, Nilai):

 $MHS \subseteq NIM \times Nama \times MatKul \times Nilai$

Satu contoh relasi yang bernama MHS adalah

```
MHS = \{(13598011, Amir, Matematika Diskrit, A), \}
          (13598011, Amir, Arsitektur Komputer, B),
          (13598014, Santi, Arsitektur Komputer, D),
          (13598015, Irwan, Algoritma, C),
         (13598015, Irwan, Struktur Data C),
         (13598015, Irwan, Arsitektur Komputer, B),
         (13598019, Ahmad, Algoritma, E),
         (13598021, Cecep, Algoritma, A),
         (13598021, Cecep, Arsitektur Komputer, B),
         (13598025, Hamdan, Matematika Diskrit, B),
         (13598025, Hamdan, Algoritma, A, B),
         (13598025, Hamdan, Struktur Data, C),
         (13598025, Hamdan, Ars. Komputer, B)
```

Relasi MHS di atas juga dapat ditulis dalam bentuk Tabel:

NIM	Nama	MatKul	Nilai
13598011	Amir	Matematika Diskrit	A
13598011	Amir	Arsitektur Komputer	В
13598014	Santi	Algoritma	D
13598015	Irwan	Algoritma	C
13598015	Irwan	Struktur Data	C
13598015	Irwan	Arsitektur Komputer	В
13598019	Ahmad	Algoritma	E
13598021	Cecep	Algoritma	В
13598021	Cecep	Arsitektur Komputer	В
13598025	Hamdan	Matematika Diskrit	В
13598025	Hamdan	Algoritma	A
13598025	Hamdan	Struktur Data	C
13598025	Hamdan	Arsitektur Komputer	В

- Basisdata (*database*) adalah kumpulan tabel.
- Salah satu model basisdata adalah **model basisdata relasional** (*relational database*). Model basisdata ini didasarkan pada konsep relasi *n-ary*.
- Pada basisdata relasional, satu tabel menyatakan satu relasi. Setiap kolom pada tabel disebut **atribut**. Daerah asal dari atribut adalah himpunan tempat semua anggota atribut tersebut berada.
- Setiap tabel pada basisdata diimplementasikan secara fisik sebagai sebuah *file*.
- Satu baris data pada tabel menyatakan sebuah *record*, dan setiap atribut menyatakan sebuah *field*.
- Secara fisik basisdata adalah kumpulan *file*, sedangkan *file* adalah kumpulan *record*, setiap *record* terdiri atas sejumlah *field*.
- Atribut khusus pada tabel yang mengidentifikasikan secara unik elemen relasi disebut **kunci** (*key*).

• Operasi yang dilakukan terhadap basisdata dilakukan dengan perintah pertanyaan yang disebut *query*.

• Contoh query:

- "tampilkan semua mahasiswa yang mengambil mata kuliah Matematika Diskrit"
- "tampilkan daftar nilai mahasiswa dengan NIM = 13598015"
- "tampilkan daftar mahasiswa yang terdiri atas NIM dan mata kuliah yang diambil"
- Query terhadap basisdata relasional dapat dinyatakan secara abstrak dengan operasi pada relasi *n-ary*.
- Ada beberapa operasi yang dapat digunakan, diantaranya adalah seleksi, proyeksi, dan join.

Seleksi

Operasi seleksi memilih baris tertentu dari suatu tabel yang memenuhi persyaratan tertentu.

Operator: σ

Contoh 23. Misalkan untuk relasi MHS kita ingin menampilkan daftar mahasiswa yang mengambil mata kuliah Matematik Diskrit. Operasi seleksinya adalah

σ_{Matkul="Matematika Diskrit"} (MHS)

Hasil: (13598011, Amir, Matematika Diskrit, A) dan (13598025, Hamdan, Matematika Diskrit, B)

Proyeksi

Operasi proyeksi memilih kolom tertentu dari suatu tabel. Jika ada beberapa baris yang sama nilainya, maka hanya diambil satu kali. Operator: π

Contoh 24. Operasi proyeksi

 $\pi_{Nama, MatKul, Nilai}$ (MHS)

menghasilkan Tabel 3.5. Sedangkan operasi proyeksi

 $\pi_{NIM, Nama}$ (MHS)

menghasilkan Tabel 3.6.

Tabel 3.5

Nama	MatKul	Nilai
Amir	Matematika Diskrit	A
Amir	Arsitektur Komputer	В
Santi	Algoritma	D
Irwan	Algoritma	C
Irwan	Struktur Data	C
Irwan	Arsitektur Komputer	В
Ahmad	Algoritma	E
Cecep	Algoritma	В
Cecep	Arsitektur Komputer	В
Hamdan	Matematika Diskrit	В
Hamdan	Algoritma	A
Hamdan	Struktur Data	C
Hamdan	Arsitektur Komputer	В

Tabel 3.6

NIM	Nama
13598011	Amir
13598014	Santi
13598015	Irwan
13598019	Ahmad
13598021	Cecep
13598025	Hamdan

Join

Operasi *join* menggabungkan dua buah tabel menjadi satu bila kedua tabel mempunyai atribut yang sama.

Operator: τ

Contoh 25. Misalkan relasi *MHS1* dinyatakan dengan Tabel 3.7 dan relasi *MHS2* dinyatakan dengan Tabel 3.8.

Operasi join

 $\tau_{NIM,\;Nama}(MHS1,\;MHS2)$

menghasilkan Tabel 3.9.

Tabel 3.7

NIM	Nama	JK
13598001	Hananto	L
13598002	Guntur	L
13598004	Heidi	W
13598006	Harman	L
13598007	Karim	L

Tabel 3.8

NIM	Nama	MatKul	Nilai
13598001	Hananto	Algoritma	A
13598001	Hananto	Basisdata	В
13598004	Heidi	Kalkulus I	В
13598006	Harman	Teori Bahasa	C
13598006	Harman	Agama	A
13598009	Junaidi	Statisitik	В
13598010	Farizka	Otomata	C

Tabel 3.9

NIM	Nama	JK	MatKul	Nilai
13598001	Hananto	L	Algoritma	A
13598001	Hananto	L	Basisdata	В
13598004	Heidi	W	Kalkulus I	В
13598006	Harman	L	Teori Bahasa	C
13598006	Harman	L	Agama	A