Object detection and segmentation

ISTD 50.035

Computer Vision

Object detection / segmentation

Finding different objects in an image and classify them

Object detection: challenge

This is a chair

Find the chair in this image

Output of normalized correlation

Template matching: correlation of template with the image

Object detection: challenge

Find the chair in this image

Object detection: challenge

viewpoint

illumination

intra-class variation

occlusion

clutter

Approaches to be discussed

- Regional CNN (R-CNN)
- Fast R-CNN
- Faster R-CNN
- Mask R-CNN
- YOLO

Learning objectives

Understand object detection problem

Understand SOTA object detection approaches

 Understand the principles and ideas behind these approaches

R-CNN

R-CNN: Regions with CNN features

[Ross Girshick et al.; 2014]

Propose many bounding boxes (region proposals), check if any of them correspond to an object by classifying them

- Many techniques to generate categoryindependent region proposals
- Selective search [Uijlings et al.; 2013]

- Sliding window approach
 - Slide a window over the image
 - Classify each image patch
 - Exhaustive search: search all possible locations, scale, aspect ratio
 - Computationally very expensive

- Selective search [Uijlings et al.; 2013]
- Generate region proposal: Output bounding boxes corresponding to all patches that most likely contain objects
- Region proposals can be noisy, overlapped, and may not contain objects prefectly
- Some will be close to the actual objects -> use object classification to identify them
- Need high recall: RP includes regions with objects (true positives), even
 - there are many false positives
- FP are rejected by classification

Blue Boxes: False Positives; Green Boxes: True Positives

- Selective search [Uijlings et al.; 2013]
- Hierarchical grouping of similar regions based on color, texture, size and shape
- SS starts by over-segmentation based on pixel intensity (graph based segmentation)

- Selective search [Uijlings et al.; 2013]
 - A) add all bounding boxes corresponding to segmented parts to the list of region proposals
 - B) Merge adjacent segments based on similarity
 - C) Go to (A)
- Bottom up approach: create RP from smaller segments to larger segments

- Similarity on color, texture, size and shape
- Color similarity based on histogram intersection
 - Color histogram of 25 bins => 25x3 = 75-dim color descriptor
 - Color similarity of two regions:

$$s_{color}(r_i, r_j) = \sum_{k=1}^{n} min(c_i^k, c_j^k)$$

Histogram value for the k-th bin of region i

Step 2: Compute CNN features

- Challenge: Labeled data in detection is not sufficient to train a large CNN
- Discriminative pre-training on a large auxiliary dataset
 - Imagenet
 - Image level annotation
- Domain-specific fine-tuning
 - Warped proposal windows

Step 2: Compute CNN features

- Domain specific fine-tuning:
 - Replace specific 1000-way classification layer with a randomly initialized (N+1)-way classification layer
 - N is the number of object classes, plus 1 for background
 - Smaller learning rate in stochastic gradient descent so that not to significantly deviate from initialization

Step 2: Compute CNN features

- Extract 4096-dim feature vector for each region proposal
- Robust, discriminative and low-dimensional representation of the input region proposal
- View the network as feature extraction + classification

Step 3: Classify regions

One linear binary SVM per class

Why not use the 21-way softmax classifier?

R-CNN: Regions with CNN features

- The original bounding-box from selective search may not be very accurate
- Predict a new bounding box: 4 parameters

- Predict a new bounding box: 4 parameters
- Given Px, Py, Pw, Ph, learn to predict Gx, Gy, Gw, Gh

Scale invariant translation

• Assume each function is a linear function of the the pool5 features of the proposal P: $\Phi_5(P)$ Regression target

$$d_{\star}(P) = \mathbf{w}_{\star}^{\mathsf{T}} \boldsymbol{\phi}_{5}(P)$$

$$\hat{G}_x = P_w d_x(P) + P_x$$

$$\hat{G}_y = P_h d_y(P) + P_y$$

$$\hat{G}_w = P_w \exp(d_w(P))$$

$$\hat{G}_h = P_h \exp(d_h(P)).$$

• Why exp(.)?

-

Region to regress