Wavelet-Kompression und Multiskalenanalyse

Vortrag zum Thema 'Mathematik in Computerspielen'

Simon Cordes & Niklas Budinger

22. Mai 2018

JGU Mainz

Motivation

Inhalt...

Gliederung

- 1. Multiskalenanalyse
- 2. 2D Haar-Wavelets
- 3. Algorithmen
- 4. Anwendungen

Multiskalenanalyse

am Beispiel der eindimensionalen Haar-Wavelets

Inhalt 2
Inhalt 3

Inhalt 2
Inhalt 3

Inhalt 4 ⇒ Inhalt 5

2D Haar-Wavelets

Bild-Kompression

Algorithmen

1D Haar-Wavelet-Transformation I

	ϕ_0^J	ϕ_1^J			ϕ^{J}_{2i}	ϕ_{2i+1}^{J}		. ¢	J n−2	ϕ_{n-1}^{J}
C :					а	b				
				/		,	¥			
	ϕ_0^{j-1}		ϕ_i^{j-1}		$\phi_{\frac{n}{2}-1}^{j-1}$	ψ_0^{j-1}		ψ_i^{j-1}		$\phi_{\frac{n}{2}-1}^{j}$
<i>C'</i> :			$\frac{a+b}{\sqrt{2}}$					$\frac{a-b}{\sqrt{2}}$		

1D Haar-Wavelet-Transformation II

2D Standard-Haar-Wavelet-Transformation I

	$\phi_0^j(x)$	$\phi_1^j(x)$	$\phi_2^j(x)$			$\phi_0^0(x)$	$\psi_0^0(x)$	$\psi_0^1(x)$	
$\phi_0^j(y)$ $\phi_1^j(y)$					$\phi_0^0(y)$				
$\phi_1^j(y)$				$\overset{?}{\rightarrow}$	$\psi_{0}^{0}(y)$				
$\phi_2^j(y)$					$\psi_0^1(y)$				
:					:				

2D Standard-Haar-Wavelet-Transformation II

$$\begin{array}{c|c} & \psi_{k}^{i}(x) \\ \phi_{0}^{i}(y) & \\ \phi_{1}^{i}(y) & \\ \phi_{2}^{i}(y) & \\ \vdots & \\ \end{array}$$

$$\stackrel{1D}{\longleftrightarrow}$$

$$\begin{array}{c|c} & \psi_{k}^{i}(x) \\ \phi_{0}^{0}(y) & \\ \hline \psi_{0}^{1}(y) & \\ \vdots & \\ \end{array}$$

2D Nicht-Standard-Haar-Wavelet-Transformation I

$\phi^{j}_{2l}(y)$ $\stackrel{!}{\longrightarrow}$ $\phi^{j-1}_{l}(y)$	
Ψ2(U)	
$\phi_{2l+1}^{j}(y)$ $\psi_{l}^{j-1}(y)$	

2D Nicht-Standard-Haar-Wavelet-Transformation II

	$\phi_{2k}^{j}(x)$	$\phi_{2k+1}^{j}(x)$
$\phi_{2l}^{j}(y)$	а	b
$\phi_{2l+1}^j(y)$	С	d

$$\overset{\text{1D}}{\xrightarrow{\text{Schritt}}}$$

	$\phi_k^{j-1}(x)$	$\psi_k^{j-1}(x)$
$\phi_{2l}^{j}(y)$	$\frac{a+b}{\sqrt{2}}$	$\frac{a-b}{\sqrt{2}}$
$\phi_{2l+1}^j(y)$	$\frac{c+d}{\sqrt{2}}$	$\frac{c-d}{\sqrt{2}}$

$$\phi_{l}^{j-1}(y) = \begin{cases} \phi_{k}^{j-1}(x) & \psi_{k}^{j-1}(x) \\ \frac{a+b+c+d}{2} & \frac{a-b+c-d}{2} \\ \frac{a+b-c+d}{2} & \frac{a-b-c+d}{2} \end{cases}$$

2D Nicht-Standard-Haar-Wavelet-Transformation III

Anwendungen

Inhalt Inhalt 3

Inhalt 2

Inhalt Inhalt 3 Inhalt 4 Inhalt 2

 \Rightarrow Inhalt 5

Quelle

Vielen Dank!