

 előadás | Rendezett halmazok. A valós számok halmaza. Függvények.

Dr. Veres Antal

Magyar Agrár- és Élettudományi Egyetem Matematika és Természettudományi Alapok Intézet

HALMAZOK, RELÁCIÓK, DESCARTES-SZORZAT 1/24. (OPCIONÁLIS) SPECIÁLIS RELÁCIÓK: EKVIVALENCIA

Definíció. Legyen A halmaz. A $\varrho \subset A \times A$ relációt ekvivalencia-relációnak nevezzük, ha

- 1. $\forall a \in A \text{ eset\'en } (a, a) \in \varrho$,
- 2. ha $(a,b) \in \varrho$, akkor $(b,a) \in \varrho$,
- 3. ha $(a,b),(b,c) \in \varrho$, akkor $(a,c) \in \varrho$.

Példa.

- 1. Osztálytársnak lenni egy iskolában,
- 2. hasonló háromszögnek lenni a síkon,
- 3. $\varrho \in \mathbb{Z} \times \mathbb{Z}$, $(a, b) \in \varrho$, ha $3 \mid b a$.

Megjegyzés. Legyen $\varrho \subset A \times A$ ekvivalencia
reláció. Ekkor $a \in A$ esetén az

$$[a] := \{ x \in A \mid (a, x) \in \varrho \}$$

halmazt az a elemhez tartozó ekvivalencia-osztálynak nevezzük.

RENDEZETT HALMAZOK 2/24. SPECIÁLIS RELÁCIÓK: RENDEZÉS

- 1. bármely $a \in \varrho$ esetén $(a, a) \in \varrho$,
- 2. $(a,b) \in \varrho$ és $(b,a) \in \varrho$, akkor a=b,
- 3. $(a,b), (b,c) \in \varrho$, akkor $(a,c) \in \varrho$.

Példa. Példák rendezésre:

- 1. a racionális számok halmazán a \leq reláció,
- 2. adott halmaz hatványhalmazán a ⊂ reláció,
- 3. az egész számok halmazán a | (oszthatóság) reláció.

Definíció. Az A halmazt rendezett halmaznak nevezzük, ha megadható rajta rendezés.

Definíció. Legyen A rendezett halmaz. Ha van olyan $a \in A$, hogy bármely $x \in A$ esetén $x \leq a$, akkor a-t A maximális elemének nevezzük, jelölése $a = \max A$.

Definíció. Legyen A rendezett halmaz. Ha van olyan $a \in A$, hogy bármely $x \in A$ esetén $a \leq x$, akkor a-t A minimális elemének nevezzük, jelölése $a = \min A$.

Definíció. Legyen A rendezett halmaz, $E \subset A$. Ha van olyan $\alpha \in A$, hogy bármely $x \in E$ esetén

- 1. $x \leq \alpha$, akkor a-t E egy felső korlátjának nevezzük;
- 2. $\alpha \leq x$, akkor a-t E egy alsó korlátjának nevezzük.

Definíció. Legyen A rendezett halmaz, $E \subset A$. Ha van olyan $\gamma \in A$, hogy

- 1. γ az Ehalmaz felső korlátja,
- 2. bármely $s<\gamma$ esetén s nem felső korlátja E-nek, akkor γ -t E legkisebb felső korlátjának (felső határának) nevezzük. Jelölése: $\gamma=\sup E$.

Példa. Legyen
$$A := \{0, 1, 2, 3\}$$
. Ekkor
$$\max A = 3, \quad \min A = 0, \quad \inf A = 3.$$

Példa. Legyen
$$B:=\left\{\frac{1}{n}\mid n\in\mathbb{N}\right\}$$
. Ekkor
$$\max B=1,\quad \text{minimuma nem létezik},\quad \text{inf }B=0.$$

(OPCIONÁLIS) A VALÓS SZÁMOK HALMAZA 5/24. DEDEKIND-SZELETEK

Emlékeztető. Nem létezik olyan p racionális szám, amelyre $p^2 = 2$.

Megjegyzés. Legyen

$$A := \left\{ q \in \mathbb{Q} \mid q^2 < 2, q \ge 0 \right\}$$

és

$$B := \left\{ q \in \mathbb{Q} \mid q^2 > 2 \right\}.$$

Ekkor

- ▶ a B halmaz minden eleme felső korlátja az A halmaznak,
- ▶ a B halmaznak nincs legkisebb eleme, így
- ▶ az A halmaznak nincs felső határa.

Éppen ez a felső határ hiányzik a racionális számokból.

Definíció. Legyen A rendezett halmaz. Az A halmazt felsőhatár tulajdonságúnak nevezzük, ha bármely nemüres, felülről korlátos részhalmazának létezik legkisebb felső korlátja.

(OPCIONÁLIS) A VALÓS SZÁMOK HALMAZA 6/24. A VALÓS SZÁMOK HALMAZA

Tétel. Létezik olyan felsőhatár tulajdonságú, rendezett halmaz, amely tartalmazza a racionális számok halmazát.

Megjegyzés. Konstruktív bizonyítás.

Definíció. A tételben szereplő halmazt a valós számok halmazának nevezzük, jele: \mathbb{R} .

Tétel. Legyen $x, y \in \mathbb{R}$.

1. Ha x>0, akkor létezik olyan $n\in\mathbb{N}$, amelyre

$$nx > y$$
.

2. Ha x < y, akkor létezik olyan $p \in \mathbb{Q}$, amelyre

$$x .$$

Megjegyzés. A Tétel első állítását archimédeszi-tulajdonságnak nevezzük. A második része pedig a racionális számok sűrű elhelyezkedéséről szól valós számok között.

A VALÓS SZÁMOK HALMAZA 7/24. A VALÓS SZÁMOK SPECIÁLIS RÉSZHALMAZAI

Definíció. A valós számok kiterjesztett rendszere az \mathbb{R} halmazból és a $+\infty$ és $-\infty$ szimbólumokból áll. Az eredeti rendezését megtartva, legyen minden $x \in \mathbb{R}$ esetén

$$-\infty < x < \infty$$
.

Definíció. Legyen $a, b \in \mathbb{R}$, a < b, ekkor a

$$(a;b) =]a;b[:= \{x \in \mathbb{R} \mid a < x < b\}$$

halmazokat nyílt intervallumoknak, a

$$[a;b] := \{x \in \mathbb{R} \mid a \le x \le b\}$$

halmazokat pedig zárt intervallumoknak nevezzük.

Megjegyzés. Vegyes végpontú intervallumok is definiálhatóak. A végtelen szimbólum is felhasználható:

$$[a; \infty[:= \{x \in \mathbb{R} \mid a \le x\}.$$

A VALÓS SZÁMOK HALMAZA 8/24. A VALÓS SZÁMOK SPECIÁLIS RÉSZHALMAZAI, PONTJAI

Definíció. A $p\in\mathbb{R}$ pont δ (> 0)-sugarú környezetén a $]p-\delta,p+\delta[$ intervallumot érjük. Jelölése

$$K_{\delta}(p) := \{x \in \mathbb{R} \mid |x - p| < \delta \}.$$

Definíció. Legyen $E \subset \mathbb{R}$, a p pontot az E halmaz belső pontjának nevezzük, ha van olyan K(p) környezete, hogy $K(p) \subset E$.

Definíció. Legyen $E \subset \mathbb{R}$, a p pontot az E halmaz torlódási pontjának nevezzük, ha p bármely környezete tartalmaz olyan $q \in E$ pontot, amelyre $q \neq p$.

FÜGGVÉNY, FÜGGVÉNYMŰVELETEK 9/24. SPECIÁLIS RELÁCIÓK: FÜGGVÉNYEK

Definíció. Az frelációt függvénynek nevezzük, ha bármely $(x,y),\,(x,z)\in f$ esetény=z.

Példa. Az

- 1. $\{(1,2),(1,3),(2,3),(3,5)\}$ reláció nem függvény,
- 2. $\{(1,2),(4,3),(2,3),(3,5)\}$ reláció függvény.

Definíció. Legyen f függyvény $x \in D_f$. Ekkor az (egyetlen) y elemet, amelyre $(x, y) \in f$, az f függvény x elemen vett helyettesítési értékének nevezzük. Jelölése: f(x).

Definíció. Az f függvényt valósnak nevezzük, ha $R_f \subset \mathbb{R}$, valósvalósnak, ha $D_f, R_f \subset \mathbb{R}$.

FÜGGVÉNYEK, FÜGGVÉNYMŰVELETEK 10/24. FÜGGVÉNYEK MEGADÁSA

Függvények megadási módjai.

- 1. Szöveges formában: az f függvény álljon az összes olyan rendezett párból, amelynek első komponense nemnegatív valós szám, második pedig az első négyzetgyöke.
- 2. Relációknál megismert alakban:

$$f := \{(x, y) \in \mathbb{R}^2 \mid x \in \mathbb{R}_0^+, y = \sqrt{x} \}.$$

3. Hozzárendeléses módon:

$$f: x \in \mathbb{R}_0^+, \ x \mapsto \sqrt{x}.$$

4. Helyettesítési érték megadásával:

$$x \in \mathbb{R}_0^+, \ f(x) := \sqrt{x}.$$

Megjegyzés. Ha $D_f = \mathbb{R}$, akkor a függvény megadásánál az értelmezési tartomány felírásától eltekintünk.

FÜGGVÉNYEK, FÜGGVÉNYMŰVELETEK 11/24. (OPCIONÁLIS) FÜGGVÉNYEK MEGADÁSA

Definíció. Legyen A és B nemüres halmaz, $f \subset A \times B$. Ekkor az f függvényt az A halmazból a B halmazba képező függvénynek nevezzük.

Definíció. Legyen A és B nemüres halmaz, $f \subset A \times B$. Ha $A = D_f$, akkor azt mondjuk, hogy az f függvény az A halmazt a B halmazba képez. Jelölése: $f : A \to B$.

FÜGGVÉNYEK, FÜGGVÉNYMŰVELETEK 12/24. ALGEBRAI FÜGGVÉNYMŰVELETEK

Definíció. Legyen f tetszőleges függvény. Ekkor bármely $c \in \mathbb{R}$ esetén a cf függvény

$$D_{cf} := D_f, \quad (cf)(x) := c \cdot f(x), \quad \forall x \in D_{cf}.$$

Definíció. Legyen f és g függvény, amelyre $D_f \cap D_g \neq \emptyset$. Ekkor az f+g összegfüggvény

$$D_{f+g} := D_f \cap D_g, \quad (f+g)(x) := f(x) + g(x), \quad \forall x \in D_{f+g}.$$

Definíció. Legyen f és g függvény, amelyre $D_f \cap D_g \neq \emptyset$. Ekkor az fg szorzatfüggvény

$$D_{fg} := D_f \cap D_g, \quad (fg)(x) := f(x) \cdot g(x), \quad \forall x \in D_{fg}.$$

FÜGGVÉNYEK, FÜGGVÉNYMŰVELETEK 13/24. FÜGGVÉNYMŰVELETEK

Definíció. Bármely f függvény esetén az 1/f függvény

$$D_{1/f} := \{ x \in D_f \mid f(x) \neq 0 \},$$

 $\left(\frac{1}{f}\right)(x) := \frac{1}{f(x)}, \quad \forall x \in D_{1/f}.$

Feladat. Legyen

$$D_f := \mathbb{R}_0^+, f(x) := \sqrt{x}$$
 és $g(x) := 3x - 2$.

Adjuk meg az 5f, f + g, fg és $\frac{f}{g}$ függvényeket.

Megjegyzés. Két függvény hányadosa az előbbi függvényműveletek alapján reciprok-képzés és szorzás formájában is megkapható, azonban egyben is értelmezhető.

FÜGGVÉNYEK, FÜGGVÉNYMŰVELETEK 14/24. FÜGGVÉNYEK KOMPOZÍCIÓJA

Definíció. Legyenek f és g olyan függvények, amelyekre $R_g \cap D_f \neq \emptyset$. Ekkor az $f \circ g$ összetett függvény értelmezési tartománya $D_{f \circ g} := \{x \in D_g \mid g(x) \in D_f\}$, és

$$(f \circ g)(x) := f(g(x)), \quad \forall x \in D_{f \circ g}.$$

Megjegyzés. Az f függvényt az $f \circ g$ összetett függvény külső függvényének, g-t pedig belső függvényének nevezzük.

FÜGGVÉNYEK, FÜGGVÉNYMŰVELETEK 15/24. (OPCIONÁLIS) KÖLCSÖNÖS EGYÉRTELMŰSÉG

Definíció. Legyen A és B nemüres halmaz. Az $f:A\to B$ függvényt kölcsönösen egyértelműnek (bijektívnek) nevezzük, ha

- 1. $B = R_f$,
- 2. bármely $x, y \in D_f$ esetén az f(x) = f(y) egyenlőségből következik, hogy x = y.

Feladat. Legyen $f: \mathbb{R} \to \mathbb{R}$, f(x) := 5x + 3. Igazoljuk, hogy f bijektív.

FÜGGVÉNYEK, FÜGGVÉNYMŰVELETEK 16/24. FÜGGVÉNYEK INVERZE

Definíció. Az f függvény invertálható, ha az inverze is függvény. Jelölése: f^{-1} .

Megjegyzés. Legyen f invertálható függvény. Ekkor

$$D_{f^{-1}} = R_f$$
 és $R_{f^{-1}} = D_f$.

 ${\sf T\acute{e}tel}.$ Az f függvény akkor és csak akkor invertálható, ha kölcsönösen egyértelmű.

Feladat. Adjuk meg az f(x) := 5x + 3 és $g(x) := x^3 - x^2 + 1$ függvények inverzét.

NEVEZETES FÜGGVÉNYEK 17/24. HATVÁNYFÜGGVÉNYEK

Definíció. Bármely $n \in \mathbb{N}$ esetén a

$$D_f := \mathbb{R}, \ f(x) := x^n$$

függvényt hatványfüggvénynek nevezzük.

Megjegyzés. Egyéb $r \in \mathbb{Q}$ kitevőkre a hatványfüggvények az inverzfüggvény képzéssel, illetve a műveleti szabályok felhasználásával előállíthatóak.

Megjegyzés. Az $f(x):=x^2$ függvénynek nem létezik az inverze. Azonban a $[0,\infty]$ halmazra való leszűkítésének van, nevezetesen a négyzetgyökfüggvény.

Példa. Bármely $r=\frac{p}{q}\in\mathbb{Q}^+\setminus\mathbb{N}$ esetén a megfelelő hatványfüggvények inverzének, reciprokának megadása, majd azok szorzása alapján

$$D_f := \mathbb{R}_0^+, \ f(x) := x^r = x^{\frac{p}{q}} = \sqrt[q]{p}.$$

NEVEZETES FÜGGVÉNYEK 18/24. AZ ABSZOLÚTÉRTÉK-FÜGGVÉNY

Definíció. Azt a függvényt, amelynek az értelmezési tartománya a valós számok halmaza, és bármely $x \in \mathbb{R}$ esetén

$$x \mapsto |x| := \begin{cases} x, & \text{ha } x \le 0, \\ -x, & \text{ha } x < 0 \end{cases}$$

abszolútérték-függvénynek nevezzük. Jelölése: abs.

Definíció. Azt a függvényt, amelynek értelmezési tartománya a valós számok halmaza, és bármely $x \in \mathbb{R}$ esetén

$$x \mapsto [x] := y, \ y \in \mathbb{Z}, \ y \le x < y + 1,$$

egészrész függvénynek nevezzük. Jelölése: ent.

Definíció. Azt a függvényt, amelynek értelmezési tartománya a valós számok halmaza, és bármely $x \in \mathbb{R}$ esetén

$$x \mapsto \{x\} := x - [x],$$

egészrész függvénynek nevezzük. Jelölése: frac.

Definíció. Legyen $D \subset \mathbb{R} \times \mathbb{R}$. Az $f: D \to \mathbb{R}$ függvényt kétváltozós függvénynek nevezzük.

Példa.

$$f(x,y) := x^2 + y^2 + xy.$$

Példa. R. Stone munkája alapján ¹ Anglia sörkeresletét a

$$D(x_1, x_2, x_3, x_4) := 1,058x_1^{0,136}x_2^{-0,727}x_3^{0,914}x_4^{0,816}$$

függvény írja le, ahol

- $ightharpoonup x_1$ a fogyasztó jövedelme,
- $ightharpoonup x_2$ a sör ára,
- $ightharpoonup x_3$ egy, a többi jószágra vonatkozó árindex
- $ightharpoonup x_4$ a sör alkoholtartalma.

The Measurement of Consumers' Expenditure and Behaviour in the United Kingdom, 1920-1938

TÖBBVÁLTOZÓS FÜGGVÉNYEK 20/24. A MÁTRIXOK ÉRTELMEZÉSE

Definíció. Az $(m \times n)$ típusú (röviden $(m \times n)$ -es) mátrixok halmazán az

$$\mathbf{A}: \{1, 2, ..., m\} \times \{1, 2, ..., n\} \to \mathbb{R}, \quad (i, j) \mapsto a_{ij}$$

típusú, véges értelmezési tartományú, a valós számok halmazába képező függvényeket értjük.

Megjegyzés.

- A mátrix mennyiségek téglalap alakú elrendezése (táblázat formába).
- ► A mátrixot () vagy [] zárójelek között adjuk meg.
- ightharpoonup Az $(m \times n)$ -es mátrixnak m sora és n oszlopa van.
- ▶ A mátrixban az *i*-edik sor *j*-edik eleme: $a_{ij} = (\mathbf{A})_{ij}$.
- ▶ Ha a mátrix típusát hangsúlyozni szeretnénk, akkor használjuk az $\mathbf{A}_{m \times n}$ jelölést.

21/24. MÁTRIXOK MEGADÁSA, SOR- ÉS OSZLOPVEKTOROK

alábbiak szerint adjuk meg:

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \dots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} \end{bmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \dots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} \end{pmatrix}$$

Definíció. A fenti jelölések mellett az A mátrix i-edik $(1 \le i \le m)$ sorvektorának a

$$\left[\begin{array}{cccc} a_{i1} & a_{i2} & \dots & a_{in} \end{array}\right]$$

mátrixokat nevezzük.

Megjegyzés. Az oszlopvektor fogalma hasonlóan értelmezhető.

(OPCIONÁLIS) HALMAZOK SZÁMOSSÁGA 22/24. HALMAZOK SZÁMOSSÁGA

Definíció. Legyen A és B tetszőleges halmazok. Ha megadható

$$f:A\to B$$

bijektív függvény, akkor azt mondjuk, hogy A és B számossága ugyanaz, jelölése: $A \sim B$. Az A halmaz számosságát |A| jelöli.

Megjegyzés. A \sim reláció ekvivalencia, azaz

- 1. $A \sim A$,
- 2. ha $A \sim B$, akkor $B \sim A$,
- 3. ha $A \sim B$ és $B \sim C$, akkor $A \sim C$.

Definíció. Legyen $\mathbb{N}_m = \{1, 2, 3, \dots, m\}$. Azt mondjuk, hogy az A halmaz

- 1. véges, ha van olyan $m \in \mathbb{N}$, hogy $A \sim \mathbb{N}_m$, ekkor |A| = m,
- 2. megszámlálhatóan végtelen, ha $A \sim \mathbb{N}$, ekkor $|A| = \aleph_0$,

Megjegyzés. Megszámlálhatónak nevezzük, ha véges, vagy megszámlálhatóan végtelen.

(OPCIONÁLIS) HALMAZOK SZÁMOSSÁGA 23/24. MEGSZÁMLÁLHATÓAN VÉGTELEN HALMAZOK

Példa. A pozitív páros számok halmaza megszámlálhatóan végtelen:

$$f: \mathbb{N} \to \mathbb{N}, \quad f(n) := 2n.$$

Tétel. A természetes és racionális számok számossága megegyezik, azaz $\mathbb{N} \sim \mathbb{Q}$.

0					
$\frac{1}{1}$	$-\frac{1}{1}$	$-\frac{2}{1}$	$-\frac{2}{1}$	$\frac{3}{1}$	
$\frac{1}{1}$ $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{4}$	$-\frac{1}{2}$	$ \begin{array}{c} \frac{2}{1} \\ \frac{2}{2} \\ \frac{2}{3} \\ \frac{2}{4} \end{array} $	$-\frac{1}{1}$ $-\frac{2}{2}$ $-\frac{2}{3}$ $-\frac{2}{4}$	$ \begin{array}{c} \overline{1} \\ 3 \\ \overline{2} \\ 3 \\ \overline{3} \\ 4 \end{array} $	• • •
$\frac{1}{3}$	$-\frac{1}{3}$	$\frac{2}{3}$	$-\frac{2}{3}$	$\frac{3}{3}$	
$\frac{1}{4}$	$-\frac{1}{4}$	$\frac{2}{4}$	$-\frac{2}{4}$	$\frac{3}{4}$	

(OPCIONÁLIS) HALMAZOK SZÁMOSSÁGA 24/24. KONTINUUM-SZÁMOSSÁG

Tétel. A valós számok halmaza nem megszámlálható.

Definíció. A valós számok számosságát kontinuum számosságnak nevezzük, jelölése $\mathfrak c.$

Tétel. Bármely véges A halmaz hatványhalmaza véges, és

$$|\mathcal{P}(A)| = 2^{|A|}.$$

Tétel. Legyen A tetszőleges halmaz, ekkor

$$|A| < |\mathcal{P}(A)| = 2^{|A|}.$$

Tétel. A természetes számok hatványhalmazának számossága megegyezik \mathbb{R} számosságával $(\mathcal{P}(\mathbb{N}) \sim \mathbb{R})$, azaz $\mathfrak{c} = 2^{\aleph_0}$.

Kontinuumhipotézis. Nincs olyan halmaz, amelynek számossága a valós számok számossága (kontinuum-számosság) és a természetes számok számossága (megszámlálhatóan végtelen) közé esne.