Bases de Datos

Control de Concurrencia: Ejercicios

Andrea Manna

2025

Enunciado 1: Control de Concurrencia Pesimista

Parte 1 (sin lock):

```
Dadas las siguientes transacciones:
```

```
T_1 = r_1(A); w_1(A); r_1(B); w_1(B); c_1

T_2 = r_2(A); w_2(A); c_2

T_3 = r_3(B); r_3(A); w_3(A); w_3(B); c_3

Y la historia:

H_1 = r_1(A); w_1(A); r_2(A); r_1(B); w_1(B); c_1; r_3(B); w_2(A); r_3(A); c_2; w_3(A); w_3(B); c_3
```

- Se pide:
 - Construir el $SG(H_1)$ (grafo de precedencia).
 - Indicar si H_1 es SR (serializable) y en caso afirmativo indicar las historias seriales equivalentes.
 - Dar una historia H₂ equivalente a la ejecución serial T₂, T₁, T₃, que sea SR y RC (recuperable) pero no ACA (ACA: evita aborts en cascada).

• Dibujarlo en forma columna para visualizar mejor.

• $H_1 = r_1(A)$; $w_1(A)$; $r_2(A)$; $r_1(B)$; $w_1(B)$; c_1 ; c_3 ; c_4 ; c_5 ; c_7 ; c_8 ;

73	$3(A), C_2,$	w3(A),
T_1	<i>T</i> ₂	<i>T</i> ₃
$r_1(A)$		
$w_1(A)$		
	$r_2(A)$	
$r_1(B)$		
$w_1(B)$		
<i>c</i> ₁		
		$r_3(B)$
	$w_2(A)$	
		$r_3(A)$
	<i>C</i> ₂	
		$w_3(A)$
		w ₃ (B)
		C ₃

•	,,,,, -2,	
T_1	<i>T</i> ₂	<i>T</i> ₃
$r_1(A)$		
$W_1(A)$		
	$r_2(A)$	
$r_1(B)$		
$W_1(B)$		
<i>C</i> ₁		
		<i>r</i> ₃ (<i>B</i>)
	$w_2(A)$	
		$r_3(A)$
	<i>C</i> ₂	
		<i>w</i> ₃(<i>A</i>)
		w ₃ (B)
		C ₃

	$S(\mathcal{H}), C_2,$	
T_1	<i>T</i> ₂	<i>T</i> ₃
$r_1(A)$		
$W_1(A)$		
	$r_2(A)$	
$r_1(B)$		
$W_1(B)$		
<i>C</i> ₁		
		r ₃ (B)
	$w_2(A)$	
		$r_3(A)$
	C ₂	
		$w_3(A)$
		w ₃ (B)
		C ₃

	,,,,, -2,	
T_1	<i>T</i> ₂	<i>T</i> ₃
$r_1(A)$		
$W_1(A)$		
	$r_2(A)$	
$r_1(B)$		
$W_1(B)$		
<i>C</i> ₁		
		$r_3(B)$
	$w_2(A)$	
		$r_3(A)$
	<i>C</i> ₂	
		<i>w</i> ₃(<i>A</i>)
		w ₃ (B)
		C ₃

	(, (), C2,	
T_1	<i>T</i> ₂	<i>T</i> ₃
$r_1(A)$		
$w_1(A)$		
	$r_2(A)$	
$r_1(B)$		
$w_1(B)$		
<i>c</i> ₁		
		$r_3(B)$
	$w_2(A)$	
		$r_3(A)$
	C ₂	
		$w_3(A)$
		w ₃ (B)
		C ₃

	S(, t), CZ,	
T_1	<i>T</i> ₂	<i>T</i> ₃
$r_1(A)$		
$W_1(A)$		
	$r_2(A)$	
$r_1(B)$		
$W_1(B)$		
<i>C</i> ₁		
		<i>r</i> ₃(<i>B</i>)
	$w_2(A)$	
		$r_3(A)$
	<i>C</i> ₂	
		$w_3(A)$
		w ₃ (B)
		C ₃

• $H_1 = r_1(A)$; $w_1(A)$; $r_2(A)$; $r_1(B)$; $w_1(B)$; c_1 ; $r_3(B)$; $w_2(A)$; $r_3(A)$; c_2 ; $w_3(A)$; $w_3(B)$; c_3

-	, ,, - 2,	3 (//
T_1	T ₂	<i>T</i> ₃
$r_1(A)$		
$w_1(A)$		
	$r_2(A)$	
$r_1(B)$		
$w_1(B)$		
<i>c</i> ₁		
		r ₃ (B)
	$w_2(A)$	
		$r_3(A)$
	<i>C</i> ₂	
		$W_3(A)$
		w ₃ (B)
		C ₃

Es un grafo sin ciclos => H es serializable: T_1, T_2, T_3

Dar una historia H_2 equivalente a la ejecución serial T_2 , T_1 , T_3 , que sea SR y RC (recuperable) pero no ACA (ACA: evita aborts en cascada).

Dar una historia H_2 equivalente a la ejecución serial T_2 , T_1 , T_3 , que sea SR y RC (recuperable) pero no ACA (ACA: evita aborts en cascada).

Empecemos por escribir la historia serial:

Dar una historia H_2 equivalente a la ejecución serial T_2 , T_1 , T_3 , que sea SR y RC (recuperable) pero no ACA (ACA: evita aborts en cascada).

Empecemos por escribir la historia serial:

```
H_2 = r_2(A); w_2(A); c_2; r_1(A); w_1(A); r_1(B); w_1(B); c_1; r_3(B); r_3(A); w_3(A); w_3(B); c_3
```

Dar una historia H_2 equivalente a la ejecución serial T_2 , T_1 , T_3 , que sea SR y RC (recuperable) pero no ACA (ACA: evita aborts en cascada).

Empecemos por escribir la historia serial:

$$H_2 = r_2(A); w_2(A); c_2; r_1(A); w_1(A); r_1(B); w_1(B); c_1; r_3(B); r_3(A); w_3(A); w_3(B); c_3$$

Esta historia es SR, RC y ACA. Como hacemos para "romper" la propiedad ACA?

Dar una historia H_2 equivalente a la ejecución serial T_2 , T_1 , T_3 , que sea SR y RC (recuperable) pero no ACA (ACA: evita aborts en cascada).

Empecemos por escribir la historia serial:

$$H_2 = r_2(A); w_2(A); c_2; r_1(A); w_1(A); r_1(B); w_1(B); c_1; r_3(B); r_3(A); w_3(A); w_3(B); c_3$$

Esta historia es SR, RC y ACA. Como hacemos para "romper" la propiedad ACA?

```
Alternativa 1: H_2 = r_2(A); w_2(A); c_2; r_1(A); w_1(A); r_1(B); w_1(B); r_3(B); c_3; c_3; c_4; c_4; c_5; c_7; c_8; c_8;
```

Dar una historia H_2 equivalente a la ejecución serial T_2 , T_1 , T_3 , que sea SR y RC (recuperable) pero no ACA (ACA: evita aborts en cascada).

Empecemos por escribir la historia serial:

```
H_2 = r_2(A); w_2(A); c_2; r_1(A); w_1(A); r_1(B); w_1(B); c_1; r_3(B); r_3(A); w_3(A); w_3(B); c_3
```

Esta historia es SR, RC y ACA. Como hacemos para "romper" la propiedad ACA?

```
Alternativa 1: H_2 = r_2(A); w_2(A); c_2; r_1(A); w_1(A); r_1(B); w_1(B); r_3(B); c_1; r_3(A); w_3(A); w_3(B); c_3
Alternativa 2: H_2 = r_2(A); w_2(A); r_1(A); w_1(A); r_1(B); w_1(B); r_3(B); r_3(A); w_3(A); w_3(B); c_2; c_1; c_3
```

Enunciado 2: Control de Concurrencia Pesimista

Parte 2 (con lock):

Dada la siguiente historia H_3 en el modelo ReadLock /WriteLock / UnLock (ternario):

```
H_3=rl_1(A); rl_2(B); u_2(B); u_1(A); wl_2(A); u_2(A); rl_3(A); c_1; u_3(A); wl_3(B); c_2; u_3(B); c_3
```

- ¿H₃ es legal?
- ¿Se respeta el protocolo 2PL (two phase locking)?
- Dibujar el Grafo de Precedencia y dar todas las historias seriales equivalentes

Parte 2 (con lock):

Dada la siguiente historia H_3 en el modelo ReadLock /WriteLock / UnLock (ternario):

```
H_3 {=} rl_1({\sf A}); \, rl_2({\sf B}); \, u_2({\sf B}); \, u_1({\sf A}); \, wl_2({\sf A}); \, u_2({\sf A}); \, rl_3({\sf A}) \; ; \, c_1; \, u_3({\sf A}); \, wl_3({\sf B}); \, c_2 \; ; \, u_3({\sf B}); \, c_3
```

¿H₃ es legal?

Parte 2 (con lock):

Dada la siguiente historia H_3 en el modelo ReadLock /WriteLock / UnLock (ternario):

```
H_3=rl_1(A); rl_2(B); u_2(B); u_1(A); wl_2(A); u_2(A); rl_3(A); c_1; u_3(A); wl_3(B); c_2; u_3(B); c_3
```

¿H₃ es legal?

Si! Una H ilegal podría ser:

```
H_3' = rl_1(A); rl_2(B); u_2(B); wl_2(A); u_1(A); u_2(A); rl_3(A); c_1; u_3(A); wl_3(B); c_2; u_3(B); c_3
```

Parte 2 (con lock):

Dada la siguiente historia H_3 en el modelo ReadLock /WriteLock / UnLock (ternario):

```
H_3=rl_1(A); rl_2(B); u_2(B); u_1(A); wl_2(A); u_2(A); rl_3(A); c_1; u_3(A); wl_3(B); c_2; u_3(B); c_3
```

¿Se respeta el protocolo 2PL (two phase locking)?

Parte 2 (con lock):

Dada la siguiente historia H_3 en el modelo ReadLock /WriteLock / UnLock (ternario):

```
H_3=rl_1(A); rl_2(B); u_2(B); u_1(A); wl_2(A); u_2(A); rl_3(A); c_1; u_3(A); wl_3(B); c_2; u_3(B); c_3
```

• ¿Se respeta el protocolo 2PL (two phase locking)?

No se respeta el protocolo, por ejemplo:

```
....rl_2(B); u_2(B); u_1(A); wl_2(A)....
```

Parte 2 (con lock):

Dada la siguiente historia H_3 en el modelo ReadLock /WriteLock / UnLock (ternario):

```
H_3=rI_1(A); rI_2(B); u_2(B); u_1(A); wI_2(A); u_2(A); rI_3(A); c_1; u_3(A); wI_3(B); c_2; u_3(B); c_3
```

¿Se respeta el protocolo 2PL (two phase locking)?

No se respeta el protocolo, por ejemplo:

```
....rI_2(B); u_2(B); u_1(A); wI_2(A)....
```

• ¿Se podrá lograr una historia equivalente que sea 2PL?

Parte 2 (con lock):

Dada la siguiente historia H_3 en el modelo ReadLock /WriteLock / UnLock (ternario):

```
H_3=rl_1(A); rl_2(B); u_2(B); u_1(A); wl_2(A); u_2(A); rl_3(A); c_1; u_3(A); wl_3(B); c_2; u_3(B); c_3
```

• ¿Se respeta el protocolo 2PL (two phase locking)?

No se respeta el protocolo, por ejemplo:

```
....rI_2(B); u_2(B); u_1(A); wI_2(A)....
```

¿Se podrá lograr una historia equivalente que sea 2PL?

Parte 2 (con lock):

Dada la siguiente historia H_3 en el modelo ReadLock /WriteLock / UnLock (ternario):

```
H_3=rl_1(A); rl_2(B); u_2(B); u_1(A); wl_2(A); u_2(A); rl_3(A); c_1; u_3(A); wl_3(B); c_2; u_3(B); c_3
```

¿Se respeta el protocolo 2PL (two phase locking)?

No se respeta el protocolo, por ejemplo:

```
....rI_2(B); u_2(B); u_1(A); wI_2(A)....
```

¿Se podrá lograr una historia equivalente que sea 2PL?

$$T_1 = rI_1(A); u_1(A); c_1$$

Parte 2 (con lock):

Dada la siguiente historia H_3 en el modelo ReadLock /WriteLock / UnLock (ternario):

```
H_3=rI_1(A); rI_2(B); u_2(B); u_1(A); wI_2(A); u_2(A); rI_3(A); c_1; u_3(A); wI_3(B); c_2; u_3(B); c_3
```

¿Se respeta el protocolo 2PL (two phase locking)?

No se respeta el protocolo, por ejemplo:

```
....rI_2(B); u_2(B); u_1(A); wI_2(A)....
```

• ¿Se podrá lograr una historia equivalente que sea 2PL?

```
T_1 = rl_1(A); u_1(A); c_1

T_2 = rl_2(B); u_2(B); wl_2(A); u_2(A); c_2
```

Parte 2 (con lock):

Dada la siguiente historia H_3 en el modelo ReadLock /WriteLock / UnLock (ternario):

```
H_3=rI_1(A); rI_2(B); u_2(B); u_1(A); wI_2(A); u_2(A); rI_3(A); c_1; u_3(A); wI_3(B); c_2; u_3(B); c_3
```

¿Se respeta el protocolo 2PL (two phase locking)?

No se respeta el protocolo, por ejemplo:

```
....rI_2(B); u_2(B); u_1(A); wI_2(A)....
```

¿Se podrá lograr una historia equivalente que sea 2PL?

```
T_1 = rl_1(A); u_1(A); c_1

T_2 = rl_2(B); u_2(B); wl_2(A); u_2(A); c_2

T_3 = rl_3(A); u_3(A); wl_3(B); u_3(B); c_3
```

Parte 2 (con lock):

Dada la siguiente historia H_3 en el modelo ReadLock /WriteLock / UnLock (ternario):

```
H_3=rI_1(A); rI_2(B); u_2(B); u_1(A); wI_2(A); u_2(A); rI_3(A); c_1; u_3(A); wI_3(B); c_2; u_3(B); c_3
```

¿Se respeta el protocolo 2PL (two phase locking)?

No se respeta el protocolo, por ejemplo:

```
....rl_2(B); u_2(B); u_1(A); wl_2(A)....
```

¿Se podrá lograr una historia equivalente que sea 2PL?

Una manera de verlo, es desglosar cada transaccion:

```
T_1 = rl_1(A); u_1(A); c_1

T_2 = rl_2(B); u_2(B); wl_2(A); u_2(A); c_2

T_3 = rl_3(A); u_3(A); wl_3(B); u_3(B); c_3
```

Conclusión: T_1 es 2PL, pero ni T_2 , ni T_3 lo son, por lo tanto no se podrá lograr una historia 2PL

Parte 2 (con lock):

Dada la siguiente historia H_3 en el modelo ReadLock /WriteLock / UnLock (ternario):

```
H_3=rl_1(A); rl_2(B); u_2(B); u_1(A); wl_2(A); u_2(A); rl_3(A); c_1; u_3(A); wl_3(B); c_2; u_3(B); c_3
```

 Dibujar el Grafo de Precedencia y dar todas las historias seriales equivalentes

Parte 2 (con lock):

Dada la siguiente historia H_3 en el modelo ReadLock /WriteLock / UnLock (ternario):

```
H_3=rl_1(A); rl_2(B); u_2(B); u_1(A); wl_2(A); u_2(A); rl_3(A); c_1; u_3(A); wl_3(B); c_2; u_3(B); c_3
```

 Dibujar el Grafo de Precedencia y dar todas las historias seriales equivalentes

```
H_3 = rl_1(A); rl_2(B); u_2(B); u_1(A); wl_2(A); u_2(A); rl_3(A); c_1; u_3(A); wl_3(B); c_2; u_3(B); c_3
```

 $H_3=rl_1(A); rl_2(B); u_2(B); u_1(A); wl_2(A); u_2(A); rl_3(A); c_1; u_3(A);$ $wl_2(B); c_2: u_2(B); c_2$

$W13(D), C_2, U_3(D), C_3$		
T_1	T_2	<i>T</i> ₃
$rI_1(A)$		
	$rI_2(B)$	
	$u_2(B)$	
$u_1(A)$		
	$WI_2(A)$	
	$u_2(A)$	
		$rI_3(A)$
<i>C</i> ₁		
		$u_3(A)$
		$WI_3(B)$
	C ₂	
		u ₃ (B)
		C ₃

 $H_3 = rl_1(A); rl_2(B); u_2(B); u_1(A); wl_2(A); u_2(A); rl_3(A); c_1; u_3(A);$

 $wI_3(B); c_2; u_3(B); c_3$

$w_{13}(D), C_2, U_3(D), C_3$			
T_1	T ₂	<i>T</i> ₃	
$rI_1(A)$			
	$rI_2(B)$		
	u ₂ (B)		
$u_1(A)$			
	$WI_2(A)$		
	$u_2(A)$		
		$rI_3(A)$	
<i>C</i> ₁			
		$u_3(A)$	
		$wI_3(B)$	
	C ₂		
		u ₃ (B)	
		C ₃	

 $H_3 = rl_1(A); rl_2(B); u_2(B); u_1(A); wl_2(A); u_2(A); rl_3(A); c_1; u_3(A);$

 $wI_3(B); c_2; u_3(B); c_3$

W13(D	,, c ₂ , u ₃	3(D), C3
T_1	T ₂	<i>T</i> ₃
$rI_1(A)$		
	$rI_2(B)$	
	u ₂ (B)	
$u_1(A)$		
	$wI_2(A)$	
	$u_2(A)$	
		$rI_3(A)$
c_1		
		<i>u</i> ₃(<i>A</i>)
		$wI_3(B)$
	C ₂	
		u ₃ (B)
		C 3

 $H_3 = rl_1(A); rl_2(B); u_2(B); u_1(A); wl_2(A); u_2(A); rl_3(A); c_1; u_3(A);$ $wl_2(B); c_2 : u_2(B); c_2$

$WI_3(B); C_2; U_3(B); C_3$		
T_1	T ₂	<i>T</i> ₃
$rI_1(A)$		
	$rI_2(B)$	
	u ₂ (B)	
$u_1(A)$		
	$wI_2(A)$	
	$u_2(A)$	
		$rI_3(A)$
<i>C</i> ₁		
		<i>u</i> ₃ (<i>A</i>)
		$wI_3(B)$
	C ₂	
		u ₃ (B)
		C ₃

 $H_3=rl_1(A)$; $rl_2(B)$; $u_2(B)$; $u_1(A)$; $wl_2(A)$; $u_2(A)$; $rl_3(A)$; c_1 ; $u_3(A)$;

$wI_3(B)$); <i>c</i> ₂	; U3	(B);	C 3
T ₁	To		T ₃	

W13(D), C2, U3(D), C3					
T_1	T ₂	<i>T</i> ₃			
$rI_1(A)$					
	$rI_2(B)$				
	u ₂ (B)				
$u_1(A)$					
	$wI_2(A)$				
	$u_2(A)$				
		$rI_3(A)$			
<i>C</i> ₁					
		<i>u</i> ₃ (<i>A</i>)			
		$wI_3(B)$			
	<i>C</i> ₂				
		u ₃ (B)			
		C ₃			

 $H_3 = rl_1(A); rl_2(B); u_2(B); u_1(A); wl_2(A); u_2(A); rl_3(A); c_1; u_3(A);$

$wI_3(B)$);	C ₂	;	<i>u</i> ₃ ((B)	<i>C</i> ₃

$W13(D), C_2, U_3(D), C_3$					
T_1	<i>T</i> ₂	<i>T</i> ₃			
$rI_1(A)$					
	$rI_2(B)$				
	u ₂ (B)				
$u_1(A)$					
	$wI_2(A)$				
	$u_2(A)$				
		$rI_3(A)$			
<i>C</i> ₁					
		<i>u</i> ₃(<i>A</i>)			
		$wI_3(B)$			
	C ₂				
		u ₃ (B)			
		C 3			

Es un grafo sin ciclos => H es serializable: T_1, T_2, T_3

Se podrán realizar una mímina cantidad de cambios en las transacciones para convertirlas a 2PL?

 Se podrán realizar una mímina cantidad de cambios en las transacciones para convertirlas a 2PL?

Teniamos las transacciones:

$$T_1 = rl_1(A); u_1(A); c_1$$

$$T_2 = rl_2(B); u_2(B); wl_2(A); u_2(A); c_2$$

$$T_3 = rl_3(A)$$
; $u_3(A)$; $wl_3(B)$; $u_3(B)$; c_3

 Se podrán realizar una mímina cantidad de cambios en las transacciones para convertirlas a 2PL?

Teniamos las transacciones:

 $T_1 = rI_1(A); u_1(A); c_1$

 $T_2 = rl_2(B); u_2(B); wl_2(A); u_2(A); c_2$

 $T_3 = rI_3(A)$; $u_3(A)$; $wI_3(B)$; $u_3(B)$; c_3

Convierto T_2 y T_3 a 2PL. Ojo!! Estamos cambiando las operaciones!!!!

Se podrán realizar una mímina cantidad de cambios en las transacciones para convertirlas a 2PL?

```
Teniamos las transacciones:
```

```
T_1 = rl_1(A); u_1(A); c_1
```

$$T_2 = rl_2(B); u_2(B); wl_2(A); u_2(A); c_2$$

$$T_3 = rI_3(A)$$
; $u_3(A)$; $wI_3(B)$; $u_3(B)$; c_3

Convierto T_2 y T_3 a 2PL. Ojo!! Estamos cambiando las operaciones!!!!

$$T_1 = rl_1(A); u_1(A); c_1$$

 Se podrán realizar una mímina cantidad de cambios en las transacciones para convertirlas a 2PL?

```
Teniamos las transacciones:
```

```
T_1 = rI_1(A); u_1(A); c_1
```

$$T_2 = rl_2(B); u_2(B); wl_2(A); u_2(A); c_2$$

$$T_3 = rI_3(A)$$
; $u_3(A)$; $wI_3(B)$; $u_3(B)$; c_3

Convierto T_2 y T_3 a 2PL. Ojo!! Estamos cambiando las operaciones!!!!

$$T_1 = rl_1(A); u_1(A); c_1$$

$$T_2' = rl_2(B); wl_2(A); u_2(B); u_2(A); c_2$$

 Se podrán realizar una mímina cantidad de cambios en las transacciones para convertirlas a 2PL?

```
Teniamos las transacciones:
```

 $T_3' = rl_3(A)$; $wl_3(B)$; $u_3(A)$; $u_3(B)$; c_3

```
T_1 = rl_1(A); u_1(A); c_1

T_2 = rl_2(B); u_2(B); u_2(A); u_2(A); c_2

T_3 = rl_3(A); u_3(A); wl_3(B); u_3(B); c_3

Convierto T_2 y T_3 a 2PL. Ojo!! Estamos cambiando las operaciones!!!!

T_1 = rl_1(A); u_1(A); c_1

T_2' = rl_2(B); wl_2(A); u_2(B); u_2(A); c_2
```

 Se podrán realizar una mímina cantidad de cambios en las transacciones para convertirlas a 2PL?

```
Teniamos las transacciones:
```

 $T_3' = rl_3(A)$; $wl_3(B)$; $u_3(A)$; $u_3(B)$; c_3

```
T_1 = rl_1(A); u_1(A); c_1

T_2 = rl_2(B); u_2(B); u_2(A); u_2(A); c_2

T_3 = rl_3(A); u_3(A); wl_3(B); u_3(B); c_3

Convierto T_2 y T_3 a 2PL. Ojo!! Estamos cambiando las operaciones!!!!

T_1 = rl_1(A); u_1(A); c_1

T_2' = rl_2(B); wl_2(A); u_2(B); u_2(A); c_2
```

```
T_1 = rl_1(A); u_1(A); c_1

T'_2 = rl_2(B); wl_2(A); u_2(B); u_2(A); c_2

T'_3 = rl_3(A); wl_3(B); u_3(A); u_3(B); c_3
```

```
\begin{split} T_1 &= rl_1(\mathsf{A}); \, u_1(\mathsf{A}); \, c_1 \\ T_2' &= rl_2(\mathsf{B}); \, wl_2(\mathsf{A}); \, u_2(\mathsf{B}); \, u_2(\mathsf{A}); \, c_2 \\ T_3' &= rl_3(\mathsf{A}); \, wl_3(\mathsf{B}); \, u_3(\mathsf{A}); \, u_3(\mathsf{B}); \, c_3 \\ H_4 &= rl_1(\mathsf{A}); \, rl_2(\mathsf{B}); \, u_1(\mathsf{A}); \, wl_2(\mathsf{A}); \, u_2(\mathsf{B}); \, u_2(\mathsf{A}); \, rl_3(\mathsf{A}); \, c_1; \, wl_3(\mathsf{B}); \, u_3(\mathsf{A}); \, c_2; \, u_3(\mathsf{B}); \, c_3 \end{split}
```

```
T_1 = rl_1(A); u_1(A); c_1

T'_2 = rl_2(B); wl_2(A); u_2(B); u_2(A); c_2

T'_3 = rl_3(A); wl_3(B); u_3(A); u_3(B); c_3

H_4 = rl_1(A); rl_2(B); u_1(A); wl_2(A); u_2(B); u_2(A); rl_3(A); c_1; wl_3(B); u_3(A); c_2; u_3(B); c_3

H_4 ahora es 2PL!!
```

```
T_1 = rl_1(A); u_1(A); c_1

T'_2 = rl_2(B); wl_2(A); u_2(B); u_2(A); c_2

T'_3 = rl_3(A); wl_3(B); u_3(A); u_3(B); c_3

H_4 = rl_1(A); rl_2(B); u_1(A); wl_2(A); u_2(B); u_2(A); rl_3(A); c_1; wl_3(B); u_3(A); c_2; u_3(B); c_3

H_4 ahora es 2PL!!

H_4 es 2PL estricto?
```

```
T_1 = rl_1(A); u_1(A); c_1

T'_2 = rl_2(B); wl_2(A); u_2(B); u_2(A); c_2

T'_3 = rl_3(A); wl_3(B); u_3(A); u_3(B); c_3

H_4 = rl_1(A); rl_2(B); u_1(A); wl_2(A); u_2(B); u_2(A); rl_3(A); c_1; wl_3(B); u_3(A); c_2; u_3(B); c_3

H_4 ahora es 2PL!!

H_4 es 2PL estricto?

No!!!
```

```
T_1 = rl_1(A); u_1(A); c_1

T'_2 = rl_2(B); wl_2(A); u_2(B); u_2(A); c_2

T'_3 = rl_3(A); wl_3(B); u_3(A); u_3(B); c_3

H_4 = rl_1(A); rl_2(B); u_1(A); wl_2(A); u_2(B); u_2(A); rl_3(A); c_1; wl_3(B); u_3(A); c_2; u_3(B); c_3

H_4 ahora es 2PL!!

H_4 es 2PL estricto?

No!!!

H_4 es 2PL riguroso?
```

```
T_1 = rl_1(A); u_1(A); c_1

T'_2 = rl_2(B); wl_2(A); u_2(B); u_2(A); c_2

T'_3 = rl_3(A); wl_3(B); u_3(A); u_3(B); c_3

H_4 = rl_1(A); rl_2(B); u_1(A); wl_2(A); u_2(B); u_2(A); rl_3(A); c_1; wl_3(B); u_3(A); c_2; u_3(B); c_3

H_4 ahora es 2PL!!

H_4 es 2PL estricto?

No!!!

H_4 es 2PL riguroso?

No!!!
```