PDR-OPS-010 BATTERY	PERFORMANCE	TESTING IN E	EXTREME (CONDITIO	NS

PDR-OPS-010 BATTERY PERFORMANCE TE

Standard Operating Procedure & Testing Protocol

Version 2.4 - Effective Date: January 15, 2024

Document Classification: Confidential

1. PURPOSE AND SCOPE

- 1. This document establishes mandatory procedures and protocols fo
- 2. This protocol applies to all battery systems utilized in PDR-Series r

2. DEFINITIONS

- 1. "BlueCore(TM) Battery System" refers to Polar Dynamics Robotics
- 2. "Extreme Conditions" means operational environments with ambier
- 3. "Testing Cycle" means a complete sequence of charge-discharge of

3. TESTING REQUIREMENTS

1. Environmental Chamber Specifications

Temperature range capability: -40 C to +25 C

Humidity control: 20% to 80% RH

- -2-

Temperature stability: 0.5 C

-

Chamber volume: Minimum 2m

2. Required Test Equipment

-

Calibrated voltage meters (accuracy 0.1%)

-

Current measurement devices (accuracy 0.5%)

-

Temperature sensors (accuracy 0.2 C)

-

Data logging system with 1-second sampling rate

Load bank rated for maximum discharge current

4. TESTING PROCEDURES

1. Pre-Test Preparation
a) Document initial battery condition including:
-
Serial number
-
Manufacturing date
-
Cycle count
-
Initial voltage

Internal4esistance measurement

b) Visual inspection for:

_

Physical damage

-

Terminal condition

_

Casing integrity

-

Thermal sensor placement

- 2. Standard Test Sequence
- a) Temperature Stabilization

Place battery in chamber at test temperature)
-	
Allow 4-hour minimum stabilization period	
-	
Verify core temperature sensors reach targe	t
b) Capacity Testing	
-	
Full charge at specified temperature	
-	
Rest period: 1 hour	
-	
Discharge at C/2 rate to cutoff voltage	
-	
Record voltage every 60 seconds	

- 6 -

Monitor temperature at 5 points

5. PERFORMANCE CRITERIA

1. Minimum Performance Requirements

_

Capacity retention: 80% of rated capacity at -30 C

-

Maximum internal resistance increase: 200% of room temperature va

-

Voltage sag under load: 12% at 50% depth of discharge

-

Self-discharge rate: 5% per month at -20 C

2. Safety Parameters
Maximum cell temperature deviation: 5 C
Maximum cell temperature deviation. 3 C
-
Maximum voltage imbalance: 50mV between cells
-
BMS cutoff response: 500ms
-
Thermal runaway protection activation: 2s

6. DOCUMENTATION REQUIREMENTS

1. Test Reports shall include:

_

Complete test parameters

- 8-

Raw data logs

_

Temperature profiles

-

Voltage/current curves

-

Capacity calculations

-

Anomaly documentation

-

Testing engineer certification

2. Data Retention

All test $\operatorname{\mathbf{d}}$ ata maintained for 7 years

-

Backup storage in secure cloud location

-

Monthly verification of data integrity

7. QUALITY CONTROL

1. Testing Personnel Requirements

_

Minimum Level 2 Battery Testing Certification

-

Annual safety training completion

-

Documented proficiency with test equipment

- 10 -

Emergency response training current

2. Equipment Calibration

-

Monthly verification of all measurement devices

-

Quarterly full calibration of environmental chamber

-

Annual third-party certification

8. LEGAL COMPLIANCE

1. This testing protocol complies with:

UL 2580/Standards

UN 38.3 Transportation Testing

IEC 62133 Safety Requirements

ANSI/CAN/UL-2272

2. All testing must be conducted in accordance with applicable federa

9. REVISION HISTORY

Version 2.4 - January 15, 2024

Updated temperature stabilization requirements

- 12 -

Added new safety parameters

_

Revised documentation requirements

Version 2.3 - July 1, 2023

-

Modified capacity testing procedures

-

Updated equipment specifications

10. AUTHORIZATION

This document is authorized by:

/s/ Dr. James Barrett

Chief Reportics Officer

Polar Dynamics Robotics, Inc.

Date: January 15, 2024

/s/ Marcus Chen

Chief Technology Officer

Polar Dynamics Robotics, Inc.

Date: January 15, 2024

CONFIDENTIAL AND PROPRIETARY

This document contains confidential and proprietary information of Po Dynamics Robotics, Inc. and may not be reproduced or disclosed with written authorization.

