Modulador configurable FM-AM

Procesado Digital de la Señal en FPGA

2020/2021

Modulador FM-AM

- Especificaciones de modulador FM-AM
- Bloques implementados en las prácticas:
 - E1. DDS
 - E2. Ruta de datos configurable FM-AM
 - E3. Filtro interpolador CIC
 - E4. Filtros FIR para la compensación de las repuestas en frecuencia del CIC y del DAC
 - E5. Comunicación PC-FPGA vía puerto RS232
 - E6. Modulador completo y verificación

Especificaciones del modulador FM-AM

- Modulador configurable
 - Control de ON-OFF
 - Selección del modo de operación FM-AM
 - Frecuencias portadoras configurables hasta 45 MHz
 - Índices de modulación FM-AM arbitrarios
 - Modula señales con ancho de banda de audio (fs=48 kHz)
 - Fuentes de señal moduladora seleccionable:
 - Señales de test sinusoidal, cuadrada y triangular
 - Señal externa de un codec de audio
 - Compensación de la respuesta en frecuencia del DAC
- Configurable via RS232
 - Escritura y lectura de registros de la FPGA

Modulador configurable AM/FM

E1: Sintetizador de frecuencias (DDS)

E2: Ruta de datos AM/FM configurable

E3: Filtro interpolador CIC

E4: Filtros compensadores CIC y DAC

E5: Comunicación con PC, control

E6: Completar sistema

Sintetizador de frecuencias (DDS)

- DDS parametrizable (M, L y W)
 - \Rightarrow DDS_test
 - ⇒ DDS del modulador AM/FM

Modulador configurable AM/FM

E1: Sintetizador de frecuencias (DDS)

E2: Ruta de datos AM/FM configurable

E3: Filtro interpolador CIC

E4: Filtros compensadores CIC y DAC

E5: Comunicación con PC, control

E6: Completar sistema

Amplitude Modulation (AM)

$$s_{AM}(n) = (1 + m_{AM}x(n))\cos(2\pi f_c n)$$

x(n): modulator signal

mam: modulation index[0,1]

fc: carrier frequency

Frequency Modulation (FM)

$$s_{FM}(n) = \cos\left(2\pi f_c n + 2\pi m_{FM} \sum_{k=0}^{n-1} x(n)\right)$$

x(n): modulator signal

m_{FM}: FM modulation index [0,1]

fc: carrier frequency

E3: Filtro interpolador CIC

E1: Sintetizador de frecuencias (DDS)

E2: Ruta de datos AM/FM configurable

E3: Filtro interpolador CIC

E4: Filtros compensadores CIC y DAC

E5: Comunicación con PC, control

E6: Completar sistema

Filtro CIC Interpolador por 2000

E4.1: Filtro compensador CIC

E1: Sintetizador de frecuencias (DDS)

E2: Ruta de datos AM/FM configurable

E3: Filtro interpolador CIC

E4: Filtros compensadores CIC y DAC

E5: Comunicación con PC, control

E6: Completar sistema

¿Por qué necesitamos un filtro compensador?

Respuesta del CIC

Filtro FIR Compensador del CIC

Filtro FIR secuencial Compensador del CIC

Filtro FIR secuencial Compensador del CIC

Especificaciones

Número de etapas: N=17

Coeficientes h_comp simétricos

Tamaño de la entrada: Win = 16 bits

Tamaño de la salida Wout = 18 bits

FPGA Cyclone IV EP4CE115F29C7

Latencia

El ancho de banda de la señal de entrada será de 15kHz.

Respuesta en frecuencia del DAC

¿Por qué necesitamos un filtro compensador del DAC?

Filtro de 3 coeficientes para compensar la respuesta del DAC

Filtro FIR Paralelo Compensador del DAC

Especificaciones

Número de etapas: N=3

Coeficientes h_comp_dac simétricos Tamaño de la entrada: Win = 16 bits Tamaño de la salida Wout = 16 bits FPGA Cyclone IV EP4CE115F29C7

El ancho de banda de la señal de entrada será de 15kHz.

E1: Sintetizador de frecuencias (DDS)

E2: Ruta de datos AM/FM configurable

E3: Filtro interpolador CIC

E4: Filtros compensadores CIC y DAC

E5: Comunicación con PC, control

E6: Completar sistema

Registros configurables

REGISTRO	TAMAÑO	FUNCIÓN	
R_CONTROL	1 byte	Registro de control	
R_FREC_MOD	3 bytes	Paso del DDS para generar la frecuencia de las señales de test	
R_FREC_POR	3 bytes	Paso del DDS para generar la frecuencia portadora	
R_IM_AM	2 bytes	Índice de modulación de AM	
R_IM_FM	2 bytes	Índice de modulación de FM	

Control de la comunicación

Operaciones:

- ☐ Escritura de los registros de configuración desde el PC
- ☐ Lectura de los registros para comprobar que están bien escritos

Puerto serie RS-232

Puerto serie RS-232

Puerto serie RS-232

Transmisión de datos PC→FPGA y FPGA→PC

R_CONTROL R_IM_FM R_IM_AM R_FREC_POR R_FREC_MOD

Protocolo de comunicación

ESCRITURA

• LECTURA

Control de la comunicación

Circuito de control

Estrategia: 3 FSMs

Main FSM

- Decodifica la instrucción y decide si activa la FSM de escritura o lectura
- Detecta los códigos de instrucción no válidos y genera un aviso de error

- WR CONTROL
 - Gestiona el proceso de escritura
- RD CONTROL
 - Gestiona el proceso de lectura

Verificación de la configuración de registros

Verificación de la configuración de registros

E1: Sintetizador de frecuencias (DDS)

E2: Ruta de datos AM/FM configurable

E3: Filtro interpolador CIC

E4: Filtros compensadores CIC y DAC

E5: Comunicación con PC, control

E6: Completar sistema

Especificaciones del modulador FM-AM

- Modulador configurable via puerto RS232
 - Control de ON-OFF
 - Selección del modo de operación FM-AM
 - Frecuencias portadoras configurables hasta 45 MHz
 - Índices de modulación FM-AM arbitrarios
 - Modula señales con ancho de banda de audio (fs=48 kHz)
 - Fuentes de señal moduladora seleccionable:
 - Señales de test sinusoidal, cuadrada y triangular
 - Señal externa de un codec de audio
 - Compensación de la respuesta en frecuencia del DAC

Ruta de datos completa

Registros configurables

REGISTER	SIZE	FUNCTION	NUM. FORMAT
R_CONTROL	1 byte	Control register	
R_FREC_MOD	3 bytes	DDS frequency configuration for test signals	U[24,24]
R_FREC_POR	3 bytes	DDS frequency configuration for carrier frequency	U[24,24]
R_IM_AM	2 bytes	AM modulation index	U[16,15]
R_IM_FM	2 bytes	FM modulation index	U[16,16]

Control register R_CONTROL

DE2-115 con conversores AD-DA de alta velocidad

RTL-SDR para recibir y demodular la señales con Matlab en el PC

Digital-to-analog converter

Digital-to-analog converter

Dual mode

Two independents DACs

Interleaved mode

Interleaved data → Port 1

WRT1 → IQWRT

CLK1 \rightarrow IQCLK

WRT2 → IQSEL

CLK2 → IQRESET

Figure 26. Dual Mode Timing

Figure 3-1 Interleaved Mode Timing

