Année 2019/2020 - TD7 Sujet blanc EXAMEN D'OPTIQUE GEOMETRIQUE

19 / 10 / 2018

Durée : 2 heures Un formulaire d'optique géométrique se trouve page 4. Aucun document n'est autorisé. La calculatrice collège est permise.

Questions de cours (3 pts)

- 1) Quelle est la dimension d'une énergie ? C'est ML²T-², hors programme d'optique 2019/2020
- 2) Miroir plan. Un objet est placé à 1 m d'un miroir plan. Où est l'image ? Est-elle réelle ou virtuelle ?
- 3) **Lentilles minces.** Comment est dévié un rayon lumineux à travers une lentille convergente ? une lentille divergente ? Faire un schéma dans les deux cas comprenant le symbole de la lentille et la position des foyers objet F et image F', en indiquant le sens de propagation de la lumière.

Exercice 1. Fibre optique (3 pts)

Un faisceau laser se propageant dans l'air pénètre dans une fibre optique sous une incidence i₁=10°. Voir le schéma ci-dessous.

Cette fibre est constituée d'un cœur et d'une gaine de matériaux différents et d'indices différents.

- 1. L'indice du cœur de la fibre est n_C=1,48. Calculez l'angle de réfraction i₂ après passage du faisceau de l'air dans le cœur.
- 2. Sous quel angle d'incidence le faisceau arrive-t-il ensuite au point M sur la surface de séparation entre le cœur et la gaine ? (Voir schéma).
- 3. L'indice de la gaine est n_G=1,46. Obtient-on un faisceau réfracté dans la gaine ? Justifiez votre réponse et précisez de quel phénomène il s'agit.

Schéma de la fibre optique

Exercice 2. Tintin et Haddock (4 pts)

Dans Le Trésor de Rackham le Rouge, Haddock découvre les lois de l'optique géométrique.

- 1. A l'aide de deux schémas, justifiez les explications de Tintin.
- 2. A travers quel miroir Haddock pourrait-il s'observer la tête en bas et les pieds en l'air ? Faire un schéma.
- 3. En considérant la case dessinée par Hergé, évaluer alors la focale du miroir correspondant.

Exercice 3. (10 pts)

Partie 1. (3pts)

- 1. Soit une **lentille mince convergente** L₁ **de distance focale** f₁' = 10 cm. Quelles sont les caractéristiques (position et grandissement) de l'image faite par L₁ d'un objet de 1 cm placé à 30 cm en avant de la lentille ?
- 2. Soit une lentille mince divergente L_2 de distance focale f_2 ' = 4 cm. Quelles sont les caractéristiques (position et grandissement) de l'image faite par L_2 d'un objet de 1 cm placé à 10 cm en arrière de la lentille ?

Partie 2. Doublet de lentilles (4 pts)

On place sur un même axe ces deux lentilles L_1 et L_2 , de centre O_1 et O_2 , à 16 cm l'une de l'autre. La lumière arrive sur L_1 et émerge par L_2 . On place un petit objet AB perpendiculaire à l'axe devant L_1 .

- 3. Pour que l'image finale A'B' soit à l'infini, où doit se situer l'image intermédiaire A'B'? En déduire les distances algébriques $\overline{O_2A'}$ et $\overline{O_1A'}$.
- 4. En déduire à quelle distance de L₁ on doit placer l'objet pour en obtenir une image à l'infini.
- 5. Faire un schéma (échelle recommandée : 1/4) avec :
- les lentilles, leurs foyers, l'objet AB (de taille quelconque),
- l'image A'B' faite de AB par L1, par construction des rayons.
- L'un des rayons du faisceau de rayons parallèles permettant d'indiquer l'angle sous lequel on peut voir l'image finale.

Partie 3. Principe de la lunette de Galilée (lunettes de théatre) (3pts)

Les deux lentilles sont maintenant distantes de 6 cm.

- 6. Où se trouve, pour un observateur situé en arrière de L_2 , l'image d'un objet à l'infini vu, à l'œil nu, sous un angle α ?
- 7. Faire un schéma. L'objet est vu sous un angle α (par rapport à O_1) et l'image sous un angle α' par rapport à O_2 .
- 8. Déterminer l'expression du grossissement $G = \alpha'/\alpha$ en fonction des distances focales et calculer sa valeur.

Formulaire d'optique géométrique

Le dioptre sphérique

Rayon de courbure : $R = \overline{SC}$

Le dioptre est convexe si R > 0

Le dioptre est **concave** si R < 0

Vergence : $D = \frac{n'-n}{R}$

Distances focales:

$$\overline{HF} = \overline{SF} = f = -\frac{n}{D}$$
 $\overline{H'F'} = \overline{SF'} = f' = \frac{n'}{D}$

Le dioptre est **convergent** si D > 0Le dioptre est **divergent** si D < 0.

Formules de Descartes :

$$\frac{n'}{\overline{SA'}} - \frac{n}{\overline{SA}} = D \qquad \qquad \gamma = \frac{y'}{y} = \frac{n.\overline{SA'}}{n'.\overline{SA}}$$

Formules de Newton : $\overline{F'A'}.\overline{FA} = ff'$

$$\gamma = \frac{y'}{y} = -\frac{f}{\overline{FA}} = -\frac{\overline{F'A'}}{f'}$$

Les lentilles minces

Vergence:
$$D = \frac{n-1}{R_1} + \frac{1-n}{R_2} = \frac{1}{f'} = -\frac{1}{f}$$

Conjugaison (Descartes): $\frac{1}{\overline{OA'}} - \frac{1}{\overline{OA}} = D = \frac{1}{f'}$

Grandissement (Descartes) : $\gamma = \frac{\overline{A'B'}}{AB} = \frac{\overline{OA'}}{\overline{OA}}$

Conjugaison (Newton) : $\overline{F'A'}.\overline{FA} = ff' = -f'^2$

Grandissement (Newton) $\gamma = -\frac{f}{FA} = -\frac{\overline{F'A'}}{f'}$

Miroirs sphériques

miroir **concave** : $R = \overline{SC} < 0$

miroir **convexe** : $R = \overline{SC} > 0$

Les foyers F et F' d'un miroir sphérique sont **confondus** avec le **milieu** de [S; C] cf schéma ci-dessus :

$$\overline{SF} = \overline{SF'} = \frac{\overline{SC}}{2}$$

Conjugaison :

Descartes: $\frac{1}{\overline{SA'}} + \frac{1}{\overline{SA}} = \frac{2}{\overline{SC}}$

Newton: $\overline{F'A'}.\overline{FA} = ff'$

grandissement :

Descartes: $\gamma = -\frac{\overline{SA'}}{\overline{SA}}$

Newton: $\gamma = -\frac{f}{\overline{FA}} = -\frac{\overline{F'A'}}{f'}$

Avec C: $\gamma = \frac{CA'}{\overline{CA}}$