Научно-исследовательский институт ядерной физики имени Д. В. Скобельцына федерального государственного бюджетного образовательного учреждения высшего профессионального образования «Московский Государственный Университет имени М. В. Ломоносова»

Распределение масс осколков деления ^{238}U

Кузнецов Александр Александрович

Методика проведения эксперимента

Мишень

Алюминиевый диск диаметром 100мм, толщиной 0.2мм с напыленным на него ураном массой 0.3 г.

Энергия ускорителя 19.5, 29.1, 48.3, 67.7 МэВ

Тормозная мишень Вольфрам 2.5 мм

Детектор Canberra, GC3019

Параметры проводимых облучений и измерений. Т — энергия электронов ускорителя.

Т, МэВ	Время облучения, часы	Время измерения, сутки	Число измеренных спектров
19.5	3.6	8.7	458
29.1	3	5.6	352
48.3	7.5	16.5	821
67.7	5.1	10.7	542

Методика проведения эксперимента

Характеристики ускорителя электронов РТМ – 70.

Энергия на выходе ускорителя	$14.9 - 67.7 \ \mathrm{MэB}$
Прирост энергии за оборот	4.79 МэВ
Ширина энергетического спектра электронов	200 КэВ
Нормализованный поперечный эмиттанс	20 - 30 мрад
Импульсный ток выведенного пучка	До 40 мА
Длительность импульса	2-20 мксек
Коэффициент заполнения рабочего цикла	0.004
Рабочая частота	2856 МГц
Мощность клистрона	импульсная (средняя 6 МВт) 25 кВт
Напряжение клистрона	54 кВ
Индукция поля в поворотных магнитах	0.956 Тл

Характеристики детектора Canberra GC3019.

Эффективность 30%

Энергетическое разрешение при энергии 122 кэВ – 0.9 кэВ,

Энергетическое разрешение при энергии 1.33 МэВ – 1.9 кэВ.

Спектры остаточной активности

Критерии расшифровки гамма-пиков:

- по энергетическому спектру остаточной активности и периоду полураспада
- в спектрах должны быть видны наиболее интенсивные гамма кванты распада искомого изотопа. Выходы изотопа, определенные по разным гамма переходам должны быть одинаковыми
- в спектре должны наблюдаться гамма переходы от родительских и дочерних изотопов

Выход реакции деления

$$Y(T) = \alpha \int_{-\infty}^{\infty} \sigma(E) N(T, E) dE$$

, где $\sigma(E)$ — эффективное сечение исследуемой фотоядерной реакции, выраженное в см² , N(T,E) — число фотонов энергии E, в единичном интервале энергий тормозного спектра с верхней границей T, отнесенное к единице дозы, α — количество исследуемых ядер, отнесенное к 1 см² мишени.

$$N_{10} = \frac{S}{k_1(e^{-\lambda_1(t_2-t_1)} - e^{-\lambda_1(t_3-t_1)})}$$

$$y_1 = \frac{N_{10} \cdot \lambda_1}{(1 - e^{-\lambda_1 t_1})}$$

$$^{134}Te(T_{1/2} = 41.8$$
мин)

	T, МэВ	E_{γ} , КэВ	I_{γ}	N_{10}	$\pm \sigma N_{10}$	Y	$\pm \sigma Y$	$Y_{\rm CP}$	$\pm \sigma Y_{\rm CP}$	
$^{134}_{52}Te$	29.1	79.445	20.9	439	31	0.128	0.009	0.124	0.005	CY
	29.1	180.891	18.3	414	24	0.121	0.007			
	29.1	565.992	18.6	431	39	0.125	0.011			
	29.1	712.97	4.7	439	98	0.128	0.029			

Независимый выход

$$N_{20} = \frac{S(t_2, t_3)}{k_2(e^{-\lambda_2(t_2 - t_1)} - e^{-\lambda_2(t_3 - t_1)})} + \frac{N_{10}\lambda_1}{\lambda_2 - \lambda_1} - \frac{N_{10}\lambda_2}{\lambda_2 - \lambda_1} \cdot \frac{(e^{-\lambda_1(t_2 - t_1)} - e^{-\lambda_1(t_3 - t_1)})}{(e^{-\lambda_2(t_2 - t_1)} - e^{-\lambda_2(t_3 - t_1)})}$$

$$y_2 = \frac{\lambda_2 N_{20}}{1 - e^{-\lambda_2 t_1}} - y_1 \frac{\lambda_2 (1 - e^{-\lambda_1 t_1}) - \lambda_1 (1 - e^{-\lambda_2 t_1})}{(\lambda_2 - \lambda_1)(1 - e^{-\lambda_2 t_1})}$$

 λ_1, λ_2 - постоянные распада,

 y_1 , - накопленный выход образования ядра **1** $\binom{134}{52}Te$),

 y_2 , - независимый выход образования ядра $2 \binom{134}{53}I$) в результате деления, N_{10}, N_{20} количество ядер 1 и 2 на момент окончания облучения.

$$^{134}I(T_{1/2}=52.5$$
мин)

	T, МэВ	E_{γ} , КэВ	I_{γ}	N_{10}	$\pm \sigma N_{10}$	Y	$\pm \sigma Y$	$Y_{\rm CP}$	$\pm \sigma Y_{\rm CP}$	
$^{134}_{53}I$	19.5	847.025	60.64	683	42	0.028	0.002	0.026	0.003	IY
	19.5	884.09	39.13	652	36	0.021	0.002			IY
$^{134}_{53}I$	29.1	847.025	60.64	533	18	0.028	0.001	0.030	0.003	IY
	29.1	884.09	39.13	553	24	0.033	0.002			IY
$^{134}_{53}I$	67.7	847.025	60.64	335	29	0.016	0.002	0.016	0.002	IY

Зарядовое распределение ядер-изобар

$$IY(A,Z) = \frac{MY(A)}{\sqrt{\pi C}} \exp[-(Z - Z_P)^2/C]dZ,$$

где IY(A,Z) - независимый выход продукта фотоделения с данными A и Z, MY(A) - полный выход изотопов с данным массовым числом, Z_p - наиболее вероятный заряд в зарядовом распределении, C - ширина зарядового распределения.

$$Z_p = Z_{UCD} \pm \Delta Z_p$$
, $Z_{UCD} = (Z_F/A_F)(A + \nu_{L,H})$,

где Z_F и A_F заряд и масса делящейся системы, Z_{UCD} - наиболее вероятный заряд, основанный на предположении, что соотношение числа протонов и нейтронов в легком и тяжелом осколках деления такое же, как и в делящемся ядре ΔZ_p - поляризация заряда рассчитывалась на основе систематики выходов осколков деления

Учет запаздывающих нейтронов при фотоделении

$$\Delta MY(A) = \sum_{i} IY_i(A+1,Z_i) \cdot W_d(A+1,Z_i) - \sum_{i} IY_i(A,Z_i) \cdot W_d(A,Z_i)$$

, где $W_d(A,Z_i)$ — вероятность вылета запаздывающего нейтрона при распаде изотопа $(A,Z_i),\,IY_i(A,Z_i)$ — независимый выход образования изотопа (A,Z_i) при фотоделении.

Средняя энергия возбуждения ядра

$$\langle E^* \rangle = \frac{\int_0^T EN(T, E) \sigma_{\gamma, F}(E) dE}{\int_0^T N(T, E) \sigma_{\gamma, F}(E) dE}$$

, где N(T,E) - число тормозных γ -квантов с энергией E при энергии электронов ускорителя T, $\sigma_{\gamma,F}(E)$ - сечение фотоделения при энергии γ -квантов E. Сечение было взято из оцененных ядерных данных. Тормозной спектр был рассчитан с помощью программы GEANT4.

Средняя энергия возбуждения $\langle E^* \rangle$ ядра ^{238}U в зависимости от энергии ускорителя электронов T.

T, МэВ	$\langle E^* \rangle$, MəB
19.5	11.9 ± 0.3
29.1	13.7 ± 0.3
48.3	14.4 ± 0.3
67.7	15.6 ± 0.3

Массовое распределение продуктов фотоделения 238U

Отношение несимметричного и симметричного деления.

Отношение несимметричного и симметричного деления (p/v) для фотоделния ^{238}U в зависимости от средней энергии возбуждения ядра.

Отношение несимметричного и симметричного деления.

Отношение несимметричного и симметричного деления p/v для фотоделения ^{238}U (\spadesuit) и деления ядер $^{235}U(\Box)$ и ^{238}U (\triangle) под действием моноэнергетических нейтронов в зависимости от средней энергии возбуждения ядра $\langle E^* \rangle$.

_{гіу(134))}Независимый выход 134I.

Фракционный независимый выход образования ядра йода $^{134}_{53}I$: \triangle , \square – полученный в работах [1,2] и • – в настоящей работе, \circ – фракционный независимый выход образования ядра йода $^{134}_{53}I$ рассчитанный по систематике [3] в зависимости от средней энергии возбуждения ядра ^{238}U .

- [1] Isotopic distributions and elemental yields for the photofission of ^{235,238}U with 12-30- MeV bremsstrahlung / D. De Frenne, H. Thierens, B. Proot et al. // Phys. Rev. C. 1984. Vol. 29. P. 1908–1911.
- [2] Fragment characteristics for the photofission of ²³⁸U with 6.1–13.1 MeV bremsstrahlung / S. Pomme, E. Jacobs, M. Piessens et al. // Nucl. Phys. A. 1994. Vol. 572. P. 237—
- [3] Systematics of Fission-Product Yields / Ed. by Arthur C. Wahl. Los Alamos National Laboratory., 2002.

Нейтроны деления.

Среднее число мгновенных нейтронов при фотоделении $<\nu_T>$ определятся как разность между массовым числом составного делящегося ядра A_F и средних масс легкого $< M_L>$ и тяжелого $< M_H>$ продуктов деления:

$$<\nu_T> = A_F - < M_H> - < M_L>$$

Средняя масса продуктов деления определяется как:

$$< M_{H,L} > = \frac{\sum M_{H,L} \cdot Y(M_{H,L})}{\sum Y(M_{H,L})}$$

, где M и Y(M) массовое число и соответствующий полный выход с данным массовым числом для тяжелой и легкой группы осколков деления.

Средние массы для легкого $< M_L >$ и тяжелого $< M_H >$ продуктов деления, среднее число мгновенных нейтронов деления $< \nu_T >$ в зависимости от средней энергии возбуждения делящегося ядра $\langle E^* \rangle$.

T , Мэ B	$\langle E^* angle$, МэВ	$< M_L >$	$< M_H >$	$< u_T>$
19.5	11.94	97.0	137.6	3.37 ± 0.07
29.1	13.69	97.2	137.4	3.43 ± 0.09
48.3	14.45	97.2	137.1	3.68 ± 0.09
67.7	15.60	97.2	137.2	3.63 ± 0.09

Нейтроны деления.

- [1] Fragment characteristics for the photofission of ²³⁸U with 6.1–13.1 MeV bremsstrahlung / S. Pomme, E. Jacobs, M. Piessens et al. // Nucl. Phys. A. 1994. Vol. 572. P. 237—
- [2] Product yields for the photofission of 238 U with 12-, 15-, 20-, 30-, and 70-MeV bremsstrahlung / E. Jacobs, H. Thierens, D. De Frenne et al. // Phys. Rev. C.— 1979.- Vol. 19.- P. 422-432.
- [3] Giant resonance for the actinide nuclei: Photoneutron and photofission cross sections for 235 U, 236 U, 238 U, and 232 Th / J. T. Caldwell, E. J. Dowdy, B. L. Berman et al. // Phys. Rev. C. 1980. Vol. 21. P. 1215–1231.

Сечение реакции фотоделения.

Сечение реакции фотоделения.

$$\frac{Y({}^{238}_{92}U(\gamma,F))}{Y({}^{238}_{92}U(\gamma,n){}^{237}_{92}U)} = \frac{\int\limits_{0}^{T}N(T,E)\sigma_{\gamma,F}(E)dE}{\int\limits_{0}^{T}N(T,E)\sigma_{\gamma,n}(E)dE}$$

, где N(T,E) - число тормозных γ -квантов с энергией E при энергии электронов ускорителя T, $\sigma_{\gamma,F}(E)$ - сечение фотоделения $^{238}_{92}U$ при энергии γ -квантов E, $\sigma_{\gamma,n}(E)$ - сечение фотоядерной реакции с вылетом одного нейтрона из ядра $^{238}_{92}U$ при энергии γ -квантов E

Сечение реакции фотоделения 238U.

Средние энергии возбуждения ядра $\langle E^* \rangle$,отношения интегральных выходов фотоделения $^{238}_{~92}U$ и реакции с вылетом одного нейтрона из оцененных данных $Y_{\gamma,F}/Y_{\gamma,n}$ полученные в данной работе $Y_{\gamma,F}/Y_{\gamma,n}$ (наст. работа) в зависимости от верхней границы тормозного спектра T

T , Мэ B	$\langle E^* angle$, МэВ	$Y_{\gamma,F}/Y_{\gamma,n}$	$Y_{\gamma,F}/Y_{\gamma,n}$ (наст. работа)
19.5	11.9 ± 0.3	0.583	0.547 ± 0.034
29.1	13.7 ± 0.3	0.743	0.748 ± 0.046
48.3	$14.4 \pm 0.$	0.789	0.724 ± 0.046
67.7	15.6 ± 0.3	0.836	0.838 ± 0.047

Scission-point model of nuclear fission based on deformed-shell effects*

B. D. Wilkins, E. P. Steinberg, and R. R. Chasman

Chemistry Division, Argonne National Laboratory, Argonne, Illinois 60439

(Received 1 June 1976)

M.C. Duijvestijn, A.J. Koning, F.-J. Hambsch. Mass distributions in nucleon-induced fission at intermediate energies. Phys. Rev. C. 64, 014607 (2001)

$$Y(A) = Y_{SL}(A) + Y_{STI}(A) + Y_{STII}(A) = K_{SL}exp \left[-\frac{(A - A_{SL}^{-})^{2}}{2\sigma_{SL}^{2}} \right] + K_{STI}exp \left[-\frac{(A - A_{SL}^{-} - D_{STI})^{2}}{2\sigma_{STI}^{2}} \right] + K_{STII}exp \left[-\frac{(A - A_{SL}^{-} + D_{STI})^{2}}{2\sigma_{STI}^{2}} \right] + K_{STII}exp \left[-\frac{(A - A_{SL}^{-} - D_{STII})^{2}}{2\sigma_{STII}^{2}} \right] + K_{STII}exp \left[-\frac{(A - A_{SL}^{-} + D_{ST2})^{2}}{2\sigma_{STII}^{2}} \right],$$

где параметры гауссиан K_{SL} , K_{STI} , K_{STII} , σ_{SL} , σ_{STI} , σ_{STII} — амплитуды и ширины симметричной (SL) и несимметричных мод (STI, STII) деления, $\bar{A_{SL}}$ — наиболее вероятное значение массы для симметричной моды деления, $\bar{A_{SL}} - D_{STI}$, $\bar{A_{SL}} + D_{STI}$ — наиболее вероятные значения масс для легкого и тяжелого осколка несимметричной моды деления STI, $\bar{A_{SL}} - D_{STII}$, $\bar{A_{SL}} + D_{STII}$ — наиболее вероятные значения масс для легкого и тяжелого осколка несимметричной моды деления STII.

Brosa U., Grossmann S., Moller A. Nuclear scission // Physics Reports. — 1990. — Vol. 197, no. 4. — P. 167 - 262.

Duijvestijn M. C., Koning A. J., Hambsch F.-J. Mass distributions in nucleon-induced fission at intermediate energies // Phys. Rev. C. -2001.- Vol. 64.- P. 014607.

Аппроксимация массового распределения 5-ю гауссовыми кривыми при фотоделении ^{238}U тормозными γ -квантами с верхней границей спектра 29.1МэВ. Точками показаны экспериментальные данные. Компоненты массового распределения - STI(штриховая линия), STII(штрих-пунктирная линия), SL(линия). Полные массовые выходы FMY(A), нормированные на 100 делений, показаны жирной линией.

Демехина Н., Карапетян Г. Мультимодальное приближение для фотоделения 238 U в области промежуточных энергий // Ядерная физика. — 2008. — Т. 71, № 1. — С. 28—

Вклады различных мод деления Y_{mode} в массовое распределения фотоделения ^{238}U в зависимости от энергии возбуждения делящегося ядра $\langle E^* \rangle$. \triangle , \circ , \square — Вклады мод деления STII, STI, SL, рассчитанные на основе массового распределения из работы[1] в зависимости от энергии возбуждения делящегося ядра ^{238}U . \blacktriangle , \bullet , \blacksquare — вклады мод деления рассчитанные на основе массового распределения в настоящей работы. Выходы мод нормированы на 100 делений: $Y_{SL} + Y_{STI} + Y_{STII} = 200\%$.

[1] Fragment mass and kinetic energy distributions for the photofission of ²³⁸U with 12-, 15-, 20-, 30-, and 70-MeV bremsstrahlung / E. Jacobs, A. De Clercq, H. Thierens et al. // Phys. Rev. C. — 1979. — Vol. 20. — P. 2249–2256.

Systematics of fission-channel probabilities / U. Brosa, H.-H. Knitter, Tie-shuan Fan et al. // Phys. Rev. C. — 1999. — Vol. 59. — P. 767-775.

Systematics of Fission–Product Yields / Ed. by Arthur C. Wahl. — Los Alamos National Laboratory., 2002.

A. Gook, M. Chernykh, C. Eckardt et. al. Fragment characteristics from fission of 238U and 234U induced by 6.5–9.0 MeV bremsstrahlung. Nucl. Phys. A. 851, 1 (2011)

Schematic picture of 2D fission potentialenergy surface for ²³⁶U

Теоретический расчет. TALYS.

Koning A., Hilaire S., Duijvestijn M. Talys - 1.0 // Proceedings of the International Conference on Nuclear Data for Science and Technology - ND2007 / Ed. by O.Bersillon, F.Gunsing, E.Bauge et al. — EDP Sciences, 2008. — P. 211-214.

Основные результаты.

- 1. Получены массовые распределения осколков фотоделения ^{238}U под действием тормозного гамма излучения при четырех энергиях ускорителя электронов 19.5, 29.1, 48.3 и 67.7 МэВ.
- 2. Впервые проведен совместный анализ и сравнение симметричной и несимметричных мод деления под действием гамма квантов. Проведено сравнение полученных результатов с предсказанием мультимодальной модели деления зависимости отдельных мод деления от энергии возбуждения делящегося ядра. Показано, что вклад моды симметричного деления растет при увеличении энергии возбуждения ядра ^{238}U . Показано, что несимметричные моды ведут себя поразному. Вклад несимметричной моды STI, связанной со сферической нейтронной оболочкой N=82, быстро падает. Вклад несимметричной моды STII, связанной с деформированной нейтронной оболочкой N=86-88, практически не изменяется.
- 3. Впервые выполнено сравнение мод деления изотопов урана под действием гамма квантов и нейтронов. Показано, что отношение несимметричного и симметричного деления для фотоделения ^{238}U и деления составного ядра ^{238}U , образованного под действием нейтронов, а также поведение отдельных мод деления совпадают, что отражает статистическую природу деления.

Основные результаты.

- 4. Обоснован метод сравнения полученных результатов на пучках гамма квантов на основе анализа энергии возбуждения делящегося ядра.
- 5. Показано, что симметричная компонента массового распределения увеличивается в 3-4 раза относительно несимметричной при увеличении средней энергии возбуждения ядра ^{238}U от 12 до 16 МэВ.
- 6. Определено среднее число нейтронов, образующихся в результате фотоделения ^{238}U . Показано, что зависимость от энергии возбуждения ядра среднего числа нейтронов деления совпадает с результатами, полученными на пучках квазимонохроматических фотонов.
- 7. Получена оценка отношения выходов реакции фотоделения и фотонейтронной реакции под действием тормозных гамма квантов. Показано, что эти отношения совпадают с оцененными ядерными данными.

Спасибо за внимание.