Injectively Time-Changed Stationary Processes

Definition 1. An injectively time-changed stationary process is a stochastic process $\{X(t)\}_{t\in\mathbb{R}}$ with spectral representation

$$X(t) = \int_{-\infty}^{\infty} e^{i\lambda\theta(t)} dZ(\lambda)$$
 (1)

where $\theta: \mathbb{R} \to \mathbb{R}$ is strictly increasing, $\theta \in C^1(\mathbb{R})$, and $\{Z(\lambda)\}_{\lambda \in \mathbb{R}}$ is an orthogonal increment process with $E[|dZ(\lambda)|^2] = F(d\lambda)$.

Proposition 2.
$$X(t) = \int_{-\infty}^{\infty} A(t,\lambda) e^{i\lambda t} dZ(\lambda)$$
 (2)

where

$$A(t,\lambda) = e^{i\lambda(\theta(t)-t)} \tag{3}$$

Proof.
$$X(t) = \int_{-\infty}^{\infty} e^{i\lambda\theta(t)} dZ(\lambda)$$
(4)

$$= \int_{-\infty}^{\infty} e^{i\lambda(\theta(t)-t)} e^{i\lambda t} dZ(\lambda)$$
 (5)

Theorem 3. 1. $E[|X(t)|^2] = \int_{-\infty}^{\infty} F(d\lambda) < \infty$

2.
$$Cov(X(s), X(t)) = \int_{-\infty}^{\infty} e^{i\lambda(\theta(s) - \theta(t))} F(d\lambda)$$

Proof. $E[|X(t)|^{2}] = \int_{-\infty}^{\infty} |e^{i\lambda\theta(t)}|^{2} F(d\lambda) = \int_{-\infty}^{\infty} F(d\lambda)$ (6)

$$Cov(X(s), X(t)) = \int_{-\infty}^{\infty} e^{i\lambda\theta(s)} \overline{e^{i\lambda\theta(t)}} F(d\lambda)$$
 (7)

$$= \int_{-\infty}^{\infty} e^{i\lambda(\theta(s) - \theta(t))} F(d\lambda)$$
 (8)

Theorem 4. X(t) is stationary if and only if $\theta(t) = t + c$ for some $c \in \mathbb{R}$.

Proof. (\Leftarrow) If $\theta(t) = t + c$:

$$Cov(X(s), X(t)) = \int_{-\infty}^{\infty} e^{i\lambda c} e^{-i\lambda c} F(d\lambda) = \int_{-\infty}^{\infty} F(d\lambda)$$
(9)

(⇒) Stationarity requires $\theta(s) - \theta(t) = g(s - t)$. Differentiating: $\theta'(s) = g'(s - t)$. Both sides constant implies $\theta'(t) = k$, so $\theta(t) = kt + c$. Covariance depending only on s - t requires k = 1.

Definition 5. $\Delta(t) := \theta(t) - t$

Proposition 6. 1. $\Delta'(t) = \theta'(t) - 1$

- 2. $A(t,\lambda) = e^{i\lambda\Delta(t)}$
- 3. Instantaneous frequency: $\frac{d}{dt} [\lambda \theta(t)] = \lambda \theta'(t)$

Theorem 7. If θ has inverse ψ and $F(d\lambda) = f(\lambda) d\lambda$:

$$f(\lambda) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} X(\psi(u)) e^{-i\lambda u} \frac{du}{\psi'(u)}$$
(10)

Proof. Substitution $u = \theta(t)$:

$$X(\psi(u)) = \int_{-\infty}^{\infty} e^{i\mu u} dZ(\mu) \tag{11}$$

Standard inversion formula applies with measure transformation factor $\frac{1}{\psi'(u)}$.

Theorem 8. If $|\theta(s) - \theta(t)| \to \infty$ as $|t - s| \to \infty$ and F is absolutely continuous:

$$\lim_{|t-s|\to\infty} Cov(X(s), X(t)) = 0 \tag{12}$$

Proof. Riemann-Lebesgue lemma applied to

$$Cov(X(s), X(t)) = \int_{-\infty}^{\infty} e^{i\lambda(\theta(s) - \theta(t))} F(d\lambda)$$
(13)

Corollary 9. [Band-Limited Case] When F has support in [-B, B]:

$$X(t) = \int_{-B}^{B} e^{i\lambda\theta(t)} dZ(\lambda)$$
 (14)