Компонентные классы моделей

Компонентные схемы – технология, предполагающая создание, посредством рекурсивного расширения, подмножества определяемых элементов, ориентированных на некоторое подмножество (класс) объектов предметной области.

- -Модель в виде компонентной схемы.
- Описание модели на входном языке и ввод в ЭВМ.
- Автоматическое формирование системы АДУ в машинной форме.
- Исследование модели в соответствии с директивами пользователя.

Потоковые схемы

(Электрические схемы замещения)

$$U_c = \frac{1}{C} \int idt$$

$$U = Ri$$

$$U_L = L \frac{di}{dt}$$

$$U = \varphi(A)$$

$$i = \varphi(A)$$

Схема замещения сопротивления

Схема замещения диода

ОПРЕДЕЛЯЕМЫЕ ЭЛЕМЕНТЫ

No	Тип	Графический знак	Уравнение	
1	Y	•—	$f_{ij} = 0$	Y
2	D	•——	$d_i - d_j = A$	E
3	P	•	$d_i - d_j = P \int f dt$	1/C
4	R	•———	$d_i - d_j = Rf$	R
5	K	•	$d_i - d_j = Kdf / dt$	L
6	F	•——	$f_{ij} = A$	I
7	Z	•	$d_i - d_j = 0$	Z

Правила композиции:

- 1. Все элементы соединяются в узлах, значение разностной переменной для всех соединяемых в узле переменных одинаково.
- 2. Каждый элемент присоединяется к двум узлам; соответственно, схема содержит только замкнутые контуры.
- 3. Для каждого узла выполняется условие $\sum f_i = 0$ (алгебраическая сумма, с учетом знака)
- 4. Для каждого замкнутого контура выполняется условие $\sum (d_i d_j) = 0$
 - 5. Запрещено последовательное соединение элементов типа F и параллельное соединение элементов типа D!

Язык описания потоковых схем

Тип	Nº	Параметр	Исток	Сток	Нач знач
D	1	10	2	1	-
R	2	100	2	4	-
Р	3	10	2	3	0
K	4	1	3	4	0
R	5	1000	3	1	-
Р	6	10	4	1	0

Формирование уравнений: дерево графа

См. правила Кирхгофа (а также help к пакету Stream)

Формирование уравнений

$$i6+i4+i2=0$$

$$i1+i5+i4+i2=0$$

n: число ветвей;

т: число узлов;

т-1: число ребер;

n-m+1: число хорд;

m-1+n-m+1=n

Моделирование потоковых схем в AnyLogic без использования stream

Пакет StreamNew

Пакет StreamNew

Пакет StreamNew

Сохраняем файл и открываем в AnyLogic

Запускаем эксперимент, отслеживаем изменение токов и напряжений