PATENT ABSTRACTS OF JAPAN

(11)Publication number:

07-225389

(43) Date of publication of application: 22.08.1995

(51)Int.Cl.

G02F 1/1343 G02F 1/1337 G02F 1/1337

(21)Application number : 06-019321

(71)Applicant: MATSUSHITA ELECTRIC IND CO LTD

(22)Date of filing:

16.02.1994

(72)Inventor: WAKITA HISAHIDE

, / Z/IIIVericor

TSUDA KEISUKE KUBOTA HIROSHI WAKEMOTO HIROBUMI

KATO NAOKI

(54) LIQUID CRYSTAL DISPLAY ELEMENT AND ITS MANUFACTURE

(57)Abstract:

PURPOSE: To widen the visual field angle of twisted nematic liquid crystal, etc., of this liquid display element.

CONSTITUTION: A common electrode is partially cut at right angles to the orientation direction of liquid crystal molecules of a center layer of TN oriented liquid crystal including spray deformation to form an electrode cut part 11. Consequently, spray TN is generated in the same rise direction at a pixel electrode end and the electrode cut part 11, and the directions of the orientation of liquid crystal molecules on both pixel electrode parts which are symmetrical about a plane that passes the electrode cut part 11 and crosses an opening plane 17 at right angles become symmetrical, so the visual field angle is made symmetrical and also widened.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

BEST AVAILABLE COPY

公報(A) 盐 华 噩 (<u>S</u>)

特開平7-225389 (11) 特許出國公開每号

(43)公開日 平成7年(1895)8月22日

女婚表示值所

F 广内极用部户 **使知识中**

525 1/1337

1/1343

G02F

(51) Int Q.

(季 11 更) 9 整査請求 未開次 請求項の数20

(21) 出版器号	特醒平 6—19321	(71) 出版人 000005821	000005821	
(22) 出版日	平成6年(1994) 2月16日		松下電器商業株式会社 大阪府門真市大学門第1006番地	
		(72) 免职者	野田 高林	
			大阪府門真市大学門東1008番炮 松下電器	整
			商業株式会社内	
		(72) 発明者	第四 电小	
			大阪府門真市大学門真1006番地 松下電器	聯
			商業体式会社内	
		(72) 発明者	(72)発明者 人保田 洛史	
			大阪府門其市大学門第1006番地 松下電器	聯
			施業株式会社内	
		(20代理人	井理士 小銀治 明 (外2名)	
,			お本質に続く	聚

(54) [発明の名称] 被品表示辞子とその叙述方法

(57) [聚粒]

【目的】 本発明の液晶表示案子は、ねじれネマチック 液晶等の視野角を広げることにある。

と、画楽覧極端と電極欠如部11の端部とで同じ立ち上 【構成】 スプレイ変形を含むTN配向液晶の、中央圏 の液晶分子の配向方位と直交する方向に、共通電極を一 部削除して配極欠如部11を入れる。この構成による

がり方向のスプレイTNが発生し、配極欠如部11を通 り関ロ西17と直交する面を対称面として両画紫鷺極部 上で筱晶分子が配向する方向が対称方向となるため、視 野角を対称にし、しかも視野角を広げられる効果があ

有する液晶層を介して相対向して画素を形成する表示素 子であって、電圧無印加時において前配液晶分子が前配 両電価の主要面にほぼ平行でから所定の方向に配向する 前配液晶層のほぼ中央部に存在する中央層を有し、前配 所定の方向と概ね道交し、かつ前配配極御甲の主面の軸方 向に平行な方向に前記電極甲の面積をほぼ2分する電界 【開水項1】電極甲及び電極乙の両電極が液晶分子を含 **函発生部位を設けたことを特徴とする液晶表示案子。**

【欝水項2】電橋甲及び2間に電圧を印加したとき、前 記憶界査発生部位周辺の液晶層の等電位線が前記電極乙 関に膨らんだ凸形状に蚤ませる位置に電界蚤発生部位を 致けることを特徴とする、請求項1記載の液晶表示案

「請求項3」電界登発生部位が、筋状に散けた電極乙の **大加部である酵水項1または2何れかに記載の液晶表示**

の短辺方向を所定の方向とし、前記電極甲の面積をほぼ 2分する位置に、電極乙の電界登発生部位を配した請求 【請求項4】電極甲の形状が長方形であり、前記電極甲 類1~3何れかに記載の液晶表示案子。

な方向で画案を形成する一対の外周線との距離が、10 【請求項5】艦界盈発生部位と、電極甲の軸方向と平行 0 μ 田以下である請求項1~4何れかに記載の液晶表示 【請求項6】電界蚕発生部位が、液晶分子または液晶層 の何れかより誘電率の大きな材質で電揺甲上に設けた筋 状の突起であることを特徴とする、請求項1配載の液晶 「請求項1」材質が、酸化チタンまたは酸化タンタルの 少なくとも何れか一方を主成分とする無機酸化物であ る、請求項6配載の液晶表示業子。 【請求項8】電界盈発生部位が、少なくとも表面が導電 **電体が前記電極甲と導通していることを特徴とする、請** 体の材料で電極甲上に散けた筋状の突起であり、前配導 **枚項1記載の液晶表示案子。**

費った前記誘電膜の欠如部であることを特徴とする、請 「精水項9」電界盃発生部位が、液晶分子または液晶層 の何れかより誘電率の小さい誘電体の誘電膜で電極甲を **枚項1 記載の液晶表示繋子。** 【請求項10】酵虹膜が、ポリイミド配向膜である請求 頃9 記載の液晶表示報子。

【請求項11】電界盃発生部位が、液晶分子または液晶 脅より誘電率の小さい材質で電極乙上に設けた筋状の突 **紀であることを特徴とする請求項1記載の液晶表示案**

が、画楽よりも十分小さく、かつプレチルト角の異なる 数小領域に分かれていることを特徴とする請求項1配載 【静水項12】 電極甲及び乙上に設けた高分子配向膜 の液晶表示案子。

梅開平7-225389

ଷ

記載極乙に向かったスプァイ変形を合むよう、前記載極 甲及び前記電極乙上のプレチルト角を設定することを格 【開水項13】液晶分子が、電圧無印加時の中央層にお ける液晶分子が両電橋の主要面にほぼ平行で所定の方向 **に配向し、電極甲から電極乙へ向かう方向に沿って前記** 所定の方向を中心に概ね90度結れ、前配電極甲から前 数とする糖水項1記載の液晶表示業子。

【静水項14】 電橋甲及び電橋乙上での液晶分子のプレ チルト角が3度以下である請求項1配載の液晶投示器

邸をエッチングにより直線状に除去して共通配植欠如部 を形成する工程を含み、これらの工程の後に、前配基板 前配基板A及び基板Bの間に挿入する液晶分子の捻れの る直交面を対称面としてほぼ90度になるように前配基 板A及び基板Bをラピングし、前配基板Aに形成した画 案電極の面積を前記共通電極欠如部がほぼ2分するよう **筑を介して対向させ組み合わせる工程と、液晶分子を含** む液晶層を前配閒隙に注入する工程とを有することを特 し、前記複数の画案の各々を駆動するアクティブ祭子を 向きが、前配共通電機欠如部を通り前配基板Aと直交す に前配基板A及び基板Bに各々形成した電極を所定の間 形成する工程、基板Bの一方の面に前配面素電権を複数 【精水項15】2枚の基板A及びBの内の基板Aの一大 に時る共通電極膜を形成する工程、前配共通電極膜の-の面にマトリクス状に配置した複数の画紫電極を形成 A及び基板Bに各々形成した配価を対向させたときに、 **数とする液晶表示案子の製造方法。** 20

【静水項16】2枚の基板A及びBの内の基板Aの一方 の面にマトリクス状に配置した複数の画索蟷種を形成

に跨る共通電極膜を形成する工程、前配基板A及び前記 し、前配複数の画案の各々を駆動するアクティブ案子を **基板日を各々に形成した電極を対向させるように組み合** わせたときに、前配画楽電極各々の面積をほぼ2分する 位置に、直線状の形状を有する電解盃発生構造物を、前 ちに形成する工程、少なくとも何れか一方に前配構造物 を有する前配基板 A 及び前配基板 B に各々形成した電極 上に光感光性高分子膜を形成する工程、しかる後、前記 5度をなす個向業外線を照射し前配感光性高分子を重合 直交する偏向紫外線を照射し前記感光性高分子を重合す なるように前配基板Aと前配基板Bとを各々に形成した 形成する工程、基板Bの一方の面に前記画客電権を複数 構造物を形成した基板には、前記主動方向と偏向軸が4 し、前記構造物を形成していない基板には前記偏向軸と る工程を含み、前記2つの偏向紫外線を照射した方向と 電極が所定の関隊を介して対向するように組み合わせる 工程の後に、液晶分子を含む液晶層を前配関際に注入す 配画寮電極または前配共通電極膜の少なくとも何れか る工程を含むことを特徴とする液晶表示案子の製造方 5 8

【簡末項17】2枚の基板A及びBの内の基板Aの一方

20

+

€

存留平7-225389

の前配画業電極の各々の面積をほぼ2分する位置に筋状 中央付近の前配液晶分子の枯れ方向と逆になるように配 向処理を施す工程、前配配向処理の向き方向になるよう 【請水項18】2枚の基板A及びBの内の基板Aの一方 **グ楽子並びに前配突起部を有する面側に複数の前配画業** 前記基板Bの一方の面上に前配面寮電極が複数個跨る共 通電極を形成する工程、前配画素電極及び前配共通電極 を所定の閻骸を介して対向させたときに、卣配館と平行 で前配突起部の中央部を通り前配基板Aと直交する面を に被晶分子を含む液晶層を注入したとき、前配液晶層の に前配基板A及び前配基板Bを前配間隙を介して組み合 わせた後前配液晶層を注入する工程を含むことを特徴と の面に菌素電極を駆動するアクティブ素子を形成するエ **騒、前記アクティブ楽子を形成した面倒に形成する複数** 対称面としてほぼ90度枯れる向きであって、 哲配関緊 の突起部を形成させる工程、前配基板Aの前配アクティ 国極を前配突起部上も含む所定の位置に形成する工程、 する液晶表示器子の製造方法。

前記アクティブ楽子上も含み誘電体膜を形成し、しかる 後前記誘電体膜をエッチングにより除去して散けること を怜徴とする、請水項18記載の液晶表示案子の製造方 【醋水項19】 突起部が、基板Aのアクティブ楽子側に

【酵水項20】液晶分子が、カイラルネマチック液晶で あることを特徴とする、請求項15~18何れかに配載 の液晶表示案子の製造方法。

[発明の詳細な説明]

[産業上の利用分野] 本発明は、液晶、特にネマチック 夜島を用いた液晶表示業子に関する。 [0001]

8 とも普及しているのは、枯れネマチック(TN)液晶で 液晶分子の配向によっていくつかのモードがある。 もっ 【徒来の技術】ネマチック液晶を用いた、投示案子は、

f

あり、その色にホメオトロピック(無道)配向、または ホモジニアス (木平) 配向の複屈折モードやゲストホス [0003] TN液晶は、誘電異方性が正の液晶を、水 平配向処理した電極付き基板の間に挟んで、90度禁っ た状態を安定状態とし、このとき液晶の配向に沿って偏 **数面が90度回転し、偏光子と検光子を直交させている** 入射偏光はそのまま液晶層を遊むので、検光子により吸 と、白表示となる。電圧印加により液晶分子が立つと、 収されて黒表示となる。 【0004】水平配向処理は、通常、ポリイミドをラビ ング処理するが、このとき、数度程度のプレチルトが生 じる。従来、TN液晶では、ねじれの向きと分子の立ち 上がる方向を描えるために、液晶に微量のカイラルネマ チック液晶を過ぜ、これのねじれ方向が安定になり、液 レチルトの向きを図10のように決めていた。図10は 5を強布してラピング処理することで、基板上の分子9 2が基板面から数度起き上がる(プレチルト)。 セルは 晶層の中央部の分子が少し傾くように、上下基板でのフ セルの断面図で、画森電極2と共通電極7上に配向膜1 偏光板12、13に挟む。このセルに電圧を印加する

と、ネマチック液晶では基板上の液晶分子 9 2 は界面に 固定されており、中間層の液晶分子93があらかじめ傾 いた方向へ図11のように立っていく。 パネルに対して 斜めから見ると、液晶分子の頭方向90からでは複屈折 が小さいために暗く、分子の腹方向91から見ると被屈 所が大きいために明るくなって、視野角によってコント ラストが異なり、表示の視野角を小さくするという問題

の向きをカイラル液晶の捻れ方向と逆にすると、図12 【0005】特関平4-148410号公報は、TN按晶での視 野角佐存性を軽減する方法を開示している。 プレチルト のように中央層の液晶分子18は水平に配向し、電圧印 る。このため、画案を形成する電極端における電場の函 立ち上がり方向の違う領域(ドメイン)に図13のよう に分かれて、従来のような視野角の非対称性が解消され による、電界の傾斜の影響を受けて、画楽の両端から、 加時の分子の立ち上がり方向が一意的に決まらなくな るとしている。

概録方向を制御する試みは、ホメオトロピック配向でも 行われている(例えば、Jean Frederic Clerc, "Vertica の垂直配向からではどちらに向くか決まらないので、通 常は弱いラピング処理を垂直配向膜に施して、ほんのわ ずか (1度程度) の傾きを付けていた。クラークは、ラ 【0006】また、電極端の電場に蚤を利用して分子の が、電圧印加により液晶分子が倒れて複屈折が生じるよ うにする。電圧印加時に分子が倒れる方向は、まったく 758頁から761頁)。ホメオトロピック配向では、 llyAligned Liquid-Crystal Displays", SID91 DIGEST, 誘電異方性が負の液晶を用いて、無電界時の垂直配向

ピングしていない垂直配向膜でも、電極の中央に小さな (東西南北) に分かれて倒れることを利用して、視野角 スリットを設けることで、液晶分子がほぼ4つの方向

[000]

いるが、本発用者もの実数では、パネル内の場所により 【発明が解決しようとする課題】 特関平4-149410号公報 は、立ち上がり方向が逆の2つのドメインが、画味内で ほぼ同じ大きさになり、視野角が対称になると配述して 斜め方向からこのようなパネルを見ると、ドメインの函 **漬比率のむらが表示ムラとなってしまうという問題が生** 200ドメインの面積比率は異なっていた。このため、

枯れ方向が逆の従来TNと同じ配向が発生し、だんだん 【0008】また、高い電圧を印加して液晶分子を立た せると、2つのドメインの境界であるドメイン翳から、 その不良配向領域が大きくなるという問題もあった。

が、TN配向や水平配向は配向方向が固定されているこ 全に配向を制御することは難しい。また、ホメオトロピ とや、捻れていることなど条件が全く異なっており、完 や、セル厚を特定の値にしないと色が付くことなど、T N液晶に比べると樹限が多く、使いにくい点が多いとい [0009] また、クラークの方法は、分子のどの方向 ック配向は、誘電異方性が負の液晶が必要であること にも倒れ得るホメオトロピック配向では有効であった

[0010] 本発明は、表示ムラがなく、視野角を表示 面に対して対称にしかっ広げた液晶表示紫子並びに液晶 **表示索子の製造方法を提供することを目的とする。**

0011]

形成する表示案子であって、配圧無印加時において前記 ち向に配向する前配液晶層のほぼ中央部に存在する中央 層を有し、前配所定の方向と概ね直交し、かつ前配電極 「映題を解決するための手段」上記の課題を解決するた **カ本発明の液晶表示案子は、電極甲及び電極乙の両電極** が液晶分子を含有する液晶層を介して相対向して画業を 液晶分子が前配両電極の主要面にほぼ平行でかつ所定の 甲の主面の軸方向に平行な方向に前記電極甲の面積をほ ぽ2分する電界蚤発生部位を散ける構成により、上配課

[0012] また、本発明の液晶表示案子は、複数の画 韓電極の面積をほぼ2分する位置に、電界鱼部位を設け 国森電極をエッチング等の手段で所定の位置に欠除部を 作成する、画森電極上または共通電極上の所定の位置に る製造方法によって達成され、その電界登発生部位は、 突起部を散ける等の手段がある。

がり方向が決まることは、倫関平4-149410号公報の通り [作用] 中央層の液晶分子の向きと交差する画案電極端 の電界の傾斜により、画楽電極端部付近の分子の立ち上

であるが、2 つのドメインの境界の位置は、上下の基板 のプフケケトの独移な違いや西向職士の独移な回凸とい った偶然に左右されてしまう。 [0014] 本発明は、画案内部に線状の電界盃発生部 インの境界が電界函発生部分上に固定でき、ドメインの 分を所定の条件を満たすように散けることにより、ドメ 面積を必ず等しくできる。

と、画案電極端の電界の傾斜方向と、同じ方向の傾斜電 傾斜電界に挟まれた倒壊は、その幅が広すぎなければ均 【0015】本発明でいう所定の条件とは、簡単にいう 森電極端と同方向の傾斜電界を発生させると、同方向の 界を電界査発生部分の両側に発生させることである。画 一なドメインになることが分かった。 9

させて近傍の分子の立ち上がり方向を固定するだけでは な応答過程の制御も担っている。すなわち、臨界虽発生 部分の電位は、その周辺の画楽電極上の電位とは不連続 [0016] 電界盃発生部分の役割は、傾斜電界を発生 なく、仮斜電界に挟まれた領域を均一化するための動的 または急激な変化になっている。この様な、気位が急激 に変化するような部分の近傍では、亀界強度が強くな

まり、内部が均一化されていくのである。また、線状の 【0017】そのため、他の画案部より、先に応答が始 対向基板倒での電界の傾斜が小さくなるが、傾斜の大き い電界盃発生部分側基板の近傍が先に広答するために、 電界盃発生部分の幅が数μ四程度と非常に狭い場合は、 このときでもドメインかね一代できる。

[0018]

の実施例の液晶表示素子の平面図及び筋面図である。図 2は図1の一点鏡線部22の断面図である。下基板1上 ある。上基板20上には、クロムからなるプラックマト リクス遮光層4とカラーフィルター5、二酸化珪素から なるオーパーコート層6、ITOの共通電極7を形成し 国業館極2を駆動する薄膜トランジスター3が形成して 【0019】 (奥施姆1) 図1、図2は、本発用の第1 には、酸化インジウム錫(1 TO)の函数配摘2及び、 (契施例】以下、具体例について詳細に述べる。

面図では図示しにくいので選光層のない関ロ部17に左 【0020】ブラックマトリクス磁光幅4は、図1の平 上がり斜線を描いており、遮光層4は開口部以外をすべ て扱っている。

[0021] それぞれの電極上にはポリイミドAからな る配向膜15を塗布し、下基板は方向8~、上基板は方 向9ヘラピングし、直径5ミクロンの球形スペーサを散 **布して間隙を散け、セル厚 5 μmの空セルを組み立て** [0022] そして、ネマチック液晶に左回りのカイラ **ル殻甘煙S-811を模指して、カイラルピッチを50** ピッチとした液晶14を空セルに注入した。

20

で、面禁電極と重なる部分にだけ開けてあり、画業内の り、図12に示したようなスプレイ変形を含んだTN配 【0023】このとき、セル厚方向の中間付近の中央層 オトリングラフィーと、ヨウ化水薬によるエッチングに より1丁〇を直線状に除去し、電極欠如部11を開けて る。そして、図2に示したように偏光板12、13を上 職権の対的11は方向10に直交し、その幅は約4μπ 下の基板の外側に、方向8、9に偏光軸を合わせて配置 向(以下ではスプレイTN町向と呼ぶ)になっている。 ある。共通電極7は電極欠如部11以外を覆っている。 の液晶分子18は基板に水平で、方向10を向いてお 液晶層の電界を査ませる電界蚕発生部位として機能す 【00.24】共通電極7は、配向膜を塗布する前に、

【0025】なお、下基板上のTFT3、及びソース及 びゲート配線16、21は、液晶への直流電圧印加をさ ける為の保護酸化膜19で覆われている。 【0026】図3 (B)~ (c) は、統米の格阻14-14 立ち上がり、方向の異なる例えば図13に示したような 9410号公報に記載されているような構成の画楽に、電圧 【0027】被晶分子が立ち上がると、まず電極端から 2種のスプレイTN配向が発生し、この時の上面図では を印加したときの表示状態を示した平面図である。 **例えば図3(a)に示したような状態になる。**

20

【0028】次に、やや遅れて画案内部にいずれかの微 少なスプレイTNドメイツが発生し、上面図では倒えば 図3 (b) に示したような状態を呈する。

て、上面図でみると例えば図3(c)に示したような状 [0029] これらのドメインは成長または吸収され 値となり、2つのドメインに分かれる。

【0030】しかし、ドメインの境界のドメイン闘32 は、少し斜めから観察すれば激淡として見えるので確認 できるが、纸米の筱晶パネルでは分かれたドメインの面 積比率のむらのため、パネル内で最終むらが非常に目立 一方のドメインの面積が他方より非常に大きくなる画珠 の位置は、実験を繰り返す度に少しづつ異なり、また、 も多い。さらに、これらのドメインの立ち上がり方向

ば5V程度)をしばらく印加すると、右ねじれの配向が ドメイン職32の一部が切れて発生し、徐々に大きくな **したスプレイTNの価板がなくなってしまう場合がわっ** た。この右ねじれ配向は電圧を下げてもすぐには消失せ 【0031】また、表示が十分黒くなる飽和電圧(例え ず、好めから見たときに表示欠陥回案のように見えてし

\$

に、例えば図4 (b) に示したように中間部に小さなド 上がり方向のスプレイTN30a、30bが発生し、衣 に、画案電極端と電極欠如即11の端部とで、同じ立ち 【0032】これに対して、図1に示したような本発明 の篏晶表示案子では、例えば図4 (a) に示したよう

/33は食えば図4 (c) に示したように、絡問と同じ ドメイン30で包一行され、回路に、鶴橋久首部11の 反対国际街の立ち上がり方向のドメイン31 か占められ メイン33が始生しなけるが、すぐにいの小さなドメイ

[0033] このように、従来例と異なり、2種のスプ レイTN間のドメイン職32は、必ず配極久如部11上 **に固定され、2つのドメイン30、31の面積は正確に 等しくなり、大面積の液晶パネルでもむらなく視野角を** 対称にできる。 [0034]また、対称になるだけでなく、通常のドメ く、かつ、路両が反転しない視野角が、分子の立ち上が インに分かれないTNでは、コントラスト5以上と高 り方向では10度、逆からは20度程度であったのが、 t40度まで広がった。 [0035]また、図2に示した本発明の液晶表示案子 に電圧を印加した時に、液晶層14~印加される電場の すなわち、毎電位線が曲線群40で、画楽電極2上と共 通電極7上に配向膜15があり、液晶を挟んでいる。但 **等電位銀分布を計算すると、およそ図5のようになる。** し、上下基板1と20はガラスである。

中部11個に膨らんが山形(凸形状)に強む。 監極欠如 [0036] 電極欠如部11近傍の毎電位線は、電極欠 第11の協部及び画案電極2の協部の両脇の、 毎電位線 の間隔が狭い部分(+印で図示部)は、電界強度が画案 上よりも強くなっている。

[0:037] 電極欠如部11の方向は、図1または図2 直交に近い程よい。 直交方向からはずれると、電極欠如 的11の個を太くしないとドメインが2つに別れ難くな **率が小さくなって暗い表示になってしまう。45度方向** のように液晶層の中央付近の中央層の分子の配向方向と り、70度方向で10μm以上の幅が必要となり、関ロ では、一方のドメインの比率が大きくなってしまう協合

[0038]また、本実施例の液晶表示案子では、電圧 0号公報記載の構成のパネルのように、右ねじれTNが 発生するという問題は生じなかった。これは、本実施例 では、ドメイン壁32は電極のない電極欠如部11にあ を10ポルト以上にあげても従来の例えば特別平4-1494 **めため、ドメイン類32に亀圧が円加されないためため** ると思われる。

を印加して他の部分が黒くなっても、ほぼ初期の白い状 **数ままで光抜けが生じている。すなわち、欠陥部は導改 络として被信しているので、ドメイン戦32部の液晶分** 子はあまり立ち上がらず捻れた状態を保っているはずで 【0039】さらに、本発明の液晶表示繋子の2種のス プレイTN間のドメイン闘32をよく観察すると、虹圧

[0040] このようなスプレイTN間ドメイン戦32 内の寝た分子に亀圧を印加することで、ドメイン殴32

8

自身の安定性が悪くなり、逆ねじれTNが生じたやすく

【0041】與際、遊替れTNとスプレイTNの間の配 向欠陥は、電圧無印加でも複屈折がほとんどなく、垂直 配向に近い状態となっており、このことからも、スプレ とが逆捻れTNを発生させている原因であることが窺え イTN間のドメイン翳32の分子が、鴨田により立つい

[0042] また、通常プラックマトリクス遮光層は画 森外を覆うだけであるが、本実施例では、電圧を印加し ても電極欠如即11から光が溺れてくるので、図1のよ うに電極欠如即11の下にもブラックマトリクス遊光層 4を散けている。 【0043】次に、本発明の液晶表示案子の図1の構成 で、画楽館飯のサイズ、画楽館極端と電極欠如部との間 の距離Dを変え、電圧広答性を聞べた。 [0044] 距離Dが100μmでは、上記の実施例の 場合と同様に、電極端の応答に続いて、中間部に小さな ドメインが生じてから速やかに均一化するが、口が50 c成長する。逆に、Dを200μmと大きくした場合で **1、0 Vから5 Vのステップ電圧を印加したときに、小** さなドメインができてから均一化するまでに敷百ミリ秒 タゥカゥウ、応答速度上の問題があった。

20

発長の長方形の画案の場合は、電極欠如部は短辺と交差 【0045】 距離Dは小さい方が応答速度が速いので、 **广るようにした方が応答速度の面からは望ましい。**

【0046】また、ポリイミドAは基板面と界面液晶分 子の長軸とがなすプレチルト角が約2度から3度の配向 膜であったが、プレチルト角が約9度と大きいポリイミ 9ーな配向膜を用いる場合は、プレチルトは 3 度以下が FBを用いると、距離Dが100μmでも小さなドメイ ンが取り、私一なドメインに分せさながられ。結らた、

アニアチーメトキシシンナメートのよっな紫外線原化樹 盲を基板上に塗布し、偏光紫外線を照射して重合させる 【0047】本発明の液晶表示業子に適した配向方法と したは、ポリイミドなラピングする以外に、倒えばボリ ち法でも確成できる。 [0048] この方法では、偏光軸に直交した方向に液 晶分子は配向し、プレチルトは無くなる。従って、亀田 無印加の状態では基板界面から中央層まで、すべて水平 に配向する。図1の構成で、方向8及び9と偏光軸が平 行な個光紫外線を上下の基板にそれぞれ照射すれば、捻 れの向きはカイラル液晶の始れ方向で決まる。

【0049】さらに、回繋が大きい場合では、ドメイン ミドの混合溶液を塗布することが有効であった。すなわ チルーピロリドン) 辞後と、 旭プレチルトポリイミドB 5、低ブレチルトのポリイミドAの5%NMP(Nーメ が均一化する迄の時間を減少させるため、2種のポリイ

梅関平7-225389

9

ナーで上下基板上に盤布し、焼成したところ、配向膜に 首径数ミクロンの微小な動状のむらができた。 この配向 質を成分分析した結果、微小部が主にポリイミドB、背 長部がポリイミドAであり、混合溶液が盤布・焼成中に の5%NMP溶液をを8:2で混合した溶液を、スピン **田分離した既らあった。**

画楽中に出現する小ドメインのサイズが小さくなり、数 が非常に増え、2つのドメインに均一化する迄の時間が 【0050】このような、相分離配向膜を図1の構成で **距離Dが200μmのパネルで用いると、電圧印加時に** 均一な膜の場合の半分以下になった。 2

&により、視野角が完全に左右対称で広くなり、従来の [0051]以上のように、本発明の第1の実施例の構 ようなむらを生じることがなくなった。 [0052] (実施例2) 図6は、本発明の第2の実施 ることにより傾斜電界を発生させたが、図6では二酸化 イー法を用いて散けた。共通電極7にスリットが無くな Nの液晶表示案子の断面図である。図1または図2に示 った事以外の構成はすべて図1と同じである。 土手の萬 した本発明の第1の実施例では、共通電極を一部除去す 図1の電極欠如部11と同じ位置に、フォトリソグラブ **珪葉からなる筋状(形状的には土手状)の突起50を、** さは約14円、幅が64円である。 【0053】このときの、等電位線の分布を有限要素法 で計算すると、実施例1の場合と同様に、土手近傍の等 電位線は土手の中点上をピークとする土手側 (電界蚕発 **王部位)に膨らんだ凸形状に強むことが強靱された。**

ろ、距離Dが50μmの場合は実施例1と同様に、速や かにドメインが2つに分離し、視野角を対称にし広げる 【0054】図6の液晶パネルに電圧を印加したとこ ことがつみた。 【0055】土手の材料としては、液晶分子(長軸方向 の比跡電率は8前後)または液晶層より誘電率が小さけ ハ。 液晶への溶け出しがないようなフォトレジストなど れば同様の電界分布となるので、二酸化珪素に限らな

【0056】また、土手上に発生するドメイン壁に印加 される亀圧が弱いので、実施例1で述べた、通常TNの

ではTFT茶子側基板の画茶電極上に散けた。但し、図 【0057】 (実施例3) 図7は本発明の第3の実施例 は、共通電極側に電界査発生部位を散けたが、本実施例 **・の曲線群61は、画業上の毎覧位線の様子を概念的に** の液晶投示繋子の断面図である。 奥施例 1 または 2 で 発生が抑えられる効果もある。

Ş

[0058] 國茶電極側に散ける場合は、電界通路生部 位を散けることで等電位線の密度、すなわち電界強度が 増すようにすることで、画茶電極と逆側に毎電位線を膨

【0059】 紡って、倒えば図1の土年の材料として

20

は、実施例2と逆に、液晶より誘虹率の大きな材料、あ るいは、導電体で突起を作って電極間距離を減らして電 界強度を上げればよい。誘電体材料としては、酸化チタ ン、酸化タンタル、もしへはチタン酸くリウムなどが適

る。こうして、國衆臨伍上に、福8μm、恵さ0.5μ [0060] 画案電極を先に散けた後に、TFT及びソ **ース、ドレイン配摘を作成した後、誘電体階として二酸** 化チタンをスパッターにより約500mm積み、土手と なる部分以外の国業関ロ部をエッチングにより除去す mの土手60を作成した。

ポリイミドAの配向膜15を数布し、図1と同様の方向 【0061】このとき、保護酸化廃19も同じ二酸化チ タン膜を残すことで同時に形成するとよい。その上に、 にラピング、パネル組立をし液晶を注入した。

【0062】この場合も、実施例2と同様に距離Dが5 0 〃mの場合は、土手を境に2つにドメインが明確に分

ン電極の後に付ける場合は、図8の構成がよい。クロム スパッターで約400mm積み、土手10となる部分以 外の面案閉口部をエッチングにより取り去る。その上か 【0063】國際電極2を、TFT及びソース、ドレイ からなるソース、ドワイン価値上に、二酸化珪鞣の膜を **ら、ITOを成膜、エッチングして画案電極~1を形成** すれば、電極が土手状に突起して電界亜発生部位とな

る、誘電体の場合と同様に、ドメインの明確な分離が見 【0064】この場合も、同様にパネルを作成したとこ

【0065】 (実施例4) 本発明の第4の実施例の液晶 投示業子の斯西図を図りに示す。 画葉鵯橋上に戯光性が ↑80の平面的な位置、方向は、図2の平面図における し、靍光・現像し、中央部の溝80の部分を除去する。 臨極欠対部11と同じである。 群の幅は約6 μ 日であ リイミド (乗り動ひギドニース律) か500m日衛作

[0066] このポリイミド瞑81を、実施例1と同方 向にラピングし、パネルにして液晶を注入、配向させ

\$ [0067] この場合も、実施例3と同様に、距離Dが 50 μ田では積を境にドメインが分かれて、視野角を広

【0068】本実施倒では、ポリイミドの比較臨時は約 4 程度と液晶より小さいので、ポリイミドが付いている **部分は電界強度が弱く、構部上の液晶層にかかる電界強** 度の方が強くなり、実施例3の場合と同様に、電界函発 生部位(律)により共通電極側に膨らんだ凸形状に等電

8 **列で挙げたフォトニースの代わりに、例えば有機溶剤に** [0069] また、溝状の虹解強発生部位には上記実施

容ける可溶性ポリイミド (日本合成ゴム製:AL105 1 等)を強布し、フォトリングラフィーによりパターン

は、具体的な構成は様々であったが、画珠内の電界函発 生部分を、ねじれネマチック液晶に適した、所定の方向 に散けることにより、異なる配向のドメインのサイズを 圧確に関御でき、視野角を対称化し、広げることができ [0010]以上のように、本発明の液晶表示案子で

配向(水平配向)の場合でも本発明は有効である。この 【0071】なお、上記の4つ実施例では、ねじれネマ チック配向を用いているが、ねじれのないホモジニアス 場合でも、液晶層の中央層の分子がほぼ水平となるよ

07

ひ、プレチルトなスプレイ疫形を生じるよう逆向きでも 9、中央層の分子の配向方向とほぼ直交する方向に電解 **番発生部位を散けるのがよい。**

ライブ電極からなる単純マトリスクの場合でも本発明は 【0072】また、上記4つの実施例では、アクティブ マトリクス型の液晶パネルであったが、上下基板がスト

有効であり、この場合は、中央層の分子の方向と交登す る電極の辺を有する基板と、逆側の基板上の電極に電解 **蚕発生部位を入れるとよい。**

20

離が明確なこと、及び、大きな画器では相分離膜を用い [0013] なむに、実施図1や記載したプレチルトが 低い方 (3度以下) がより大きな画繋でもドメインの分 た方が応答速度が速くなる効果は、実施例2から4の場 合でも同じである。

[0074]また、実施例1から4の電界亜発生部分の うち、散置する基板が互いに異なるいずれか2つの構造

8

を両方散けてもよい。 [0075]

30

きのムラを生じることなく、視野角を対称に、かつ、広 位を設けることにより、電圧を印加したときに、分子の ック等で、電圧無印加時に液晶層の中央層の分子が水平 の配向方位にほぼ直交する方向に、線状の電界函発生部 **つのドメインが、配界函発生部位を境に、正確に画案を** 配向している液晶案子の画案中に、基板間中央層の分子 立ち上がる方向が逆で、従って視野角方向が逆になる2 2分する。このため、従来のように斜め方向から見たと [発明の効果] 本発明の液晶表示素子は、ねじれネマチ げることがことができる。

する構造の場合、スプレイ変形を含むTN配向から、逆 ねじれのTNが出現するという問題が生じないという効 【0076】また、特に、電界盃発生部位が電極を削除

【図面の簡単な説明】

[図1] 本発明の第1の実施例の液晶袋示案子の平面図 [図2] 本発明の第1の実施例の液晶表示素子の断面図 [図3] 従来の液晶表示素子の拡大平面図で

(a) は電圧印加直後の液晶が配向する様子を説明する

13

梅開平7-22538.9

8

[図10] 従来の液晶表示素子の断面図 【図11】 従来の液晶表示紫子の断面図 [図12] 従来の液晶表示案子の断面図 【図13】従来の液晶表示素子の断面図

> (b) は低圧印加過渡期の液晶が配向する様子を説明す 5外面平面図

(c) は電圧印加時の液晶が配向する様子を説明する平

(符号の説明) 回数色色 下基板

> 【図4】本発明の第1の実施例の液晶表示薬子に電圧を 印加した時の応答を示す中国図で

(a) は虹圧印加直後の液晶が配向する様子を脱明する

ブラックマトリスク遊光層

辞膜トランジスター カラーフィルター

(b) は低圧印加過渡期の液晶が配向する様子を説明す

2

(c) は低圧印加時の液晶が配向する様子を説明する平 5外面平面図

【図5】本発明の第1の実施例の液晶表示素子に毎電位

中央層の液晶分子の配向方向

10 40 20 9 8 0

スリット 每電位換

下基板のラピング方向 上基板のラピング方向

> 【図6】本発明の第2の実施例の液晶装示案子の断面図 泉分布を示す断面図

[図9] 本発明の第4の実施例の液晶表示案子の断面図 [図8] 本発明の第3の実施例の液晶表示案子の断面図 【図7】本発明の第3の実施例の液晶表示案子の断面図

(図2)

[<u>図</u>]

[図3]

3

હ

4

8

-10-

フロントページの概念

(12)発明者 分元 博文 太阪府門真市大宇門真1006番地 松下電器 産業株式会社内

(72)発射者 加藤 直樹 大阪府門莫市大学門英1006番地、松下電器 産業株式会社内

-11-

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record.

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.