Algorytmy metaheurystyczne

Problem komiwojażera euklidesowego. Symulowane Wyżarzanie. Tabu Search. Karol Janic $16~{\rm grudnia}~2023$

Spis treści

1	Cel zadania					
2	Opis algorytmów2.1 Symulowane wyżarzanie					
3	Dane testowe					
4	4.2 4.3 4.4	4.1.9 Wpływ zmiany długości epoki i liczby iteracji bez poprawy na średni czas działania heurystyki	2 3 3 4 5 6 7 8 9 10 11 12 13 14 15 15			
5	Dob 5.1 5.2	Symulowane wyżarzanie	15 15 15			
6	11/222	niki	16			

1 Cel zadania

Celem zadania jest sprawdzenie skuteczności heurystyki symulowanego wyżarzania oraz tabu search na przykładzie euklidesowego problemu komiwojażera oraz zbadanie wpływu wyboru parametrów tych heurystyk, rozwiązania początkowego i metody generowania otoczenia na jakość rozwiązania.

2 Opis algorytmów

2.1 Symulowane wyżarzanie

Metaheurystyka polega na przeszukiwaniu przestrzeni rozwiązań w celu znalezienia rozwiązania optymalnego. W każdym kroku algorytmu wybierane jest rozwiązanie z otoczenia aktualnego rozwiązania. Jeżeli rozwiązanie to jest lepsze od aktualnego, to staje się ono aktualnym rozwiązaniem. W przeciwnym wypadku, rozwiązanie to staje się aktualnym rozwiązaniem z pewnym prawdopodobieństwem. Prawdopodobieństwo to maleje wraz z upływem czasu poprzez ustalnie aktualnej temperatury, która zmniejsza się w czasie. Zatem w początkowej fazie algorytmu prawdopodobieństwo wybrania gorszego rozwiązania jest większe, a w końcowej małe.

Początkowa temperatura ustalana jest jako $T := \alpha N$, gdzie N to liczba wierzchołków. Szukanie rozwiązania podzielone jest na epoki o ustalonej liczbie iteracji równej $S := \gamma T$. Po każdej epoce aktualna temperatura jest zmniejszana o ustalony czynnik: $T' := \beta T$. Rozwiązanie szukane jest do momentu gdy od ustalonej liczby iteracji $M := \delta N$ nie udało się znaleźć lepszego rozwiązania.

Rozważane są dwa sposoby generowania otoczenia: pełne(sprawdzenie wszystkich sąsiadów) oraz losowe(sprawdzenie N losowych sąsiadów). Rozważanym otoczeniem jest otoczenie INVERT. Sprawdzane są także dwa sposoby generowania rozwiązania początkowego: losowe oraz oparte o MST.

2.2 Tabu Search

Metaheurystyka polega na przeszukiwaniu przestrzeni rozwiązań w celu znalezienia rozwiązania optymalnego. W każdym kroku algorytmu wybierane jest takie rozwiązanie z otoczenia aktualnego rozwiązania aby było ono najlepsze spośród wszystkich rozwiązań w otoczeniu oraz nie znajdowało się na liście tabu. Jeżeli rozwiązanie to jest lepsze od aktualnego, to staje się ono aktualnym rozwiązaniem. Każde rozwiązanie dodawane jest do listy tabu na określoną liczbę iteracji. W ten sposób algorytm może wyjść z lokalnego minimum.

Maksymalna długość listy tabu ustalana jest jako $L := \alpha N$, gdzie N to liczba wierzchołków. Gdy lista tabu jest pełna, to usuwane jest z niej najstarsze rozwiązanie. Rozwiązanie szukane jest do momentu gdy od ustalonej liczby iteracji $M := \beta N$ nie udało się znaleźć lepszego rozwiązania.

Rozważane są dwa sposoby generowania otoczenia: pełne(sprawdzenie wszystkich sąsiadów) oraz losowe(sprawdzenie N losowych sąsiadów). Rozważanym otoczeniem jest otoczenie INVERT. Sprawdzane są także dwa sposoby generowania rozwiązania początkowego: losowe oraz oparte o MST.

3 Dane testowe

Opisane wyżej metaheurystyki zostały nastrojone oraz testowane na przykładach z https://www.math.uwaterloo.ca/tsp/vlsi/index.html.

4 Strojenie parametrów

Proces strojenia polegał na sprawdzenie wpływu zmiany poszczególnych parametrów na jakość rozwiązania. Został on przeprowadzony na kilku mniejszych przykładach. Wykresy poniżej prezentują minimalną wagę cyklu, średnią wagę cyklu oraz średni czas działania heurystyki dla jednej iteracji w zależności od wyboru parametrów. Zostały one wyznaczone na podstawie 10 uruchomień heurystyki dla każdej kombinacji parametrów.

4.1 Symulowane wyżarzanie

4.1.1 Wpływ zmiany temperatury początkowej na średnią długośc cyklu rozwiązania

4.1.2 Wpływ zmiany temperatury początkowej na minimalną długośc cyklu rozwiązania

Wpływ parametru alpha na najlepszy wynik metaheurystyki

Wpływ parametru alpha na najlepszy wynik metaheurystyki

4.1.3 Wpływ zmiany temperatury początkowej na średni czas działania heurystyki

Wpływ parametru alpha na czas działania metaheurystyki

Wpływ parametru alpha na czas działania metaheurystyki

4.1.4 Wpływ zmiany chłodzenia na średnią długośc cyklu rozwiązania

Wpływ parametru beta na średni wynik metaheurystyki

Wpływ parametru beta na średni wynik metaheurystyki

4.1.5 Wpływ zmiany chłodzenia na minimalną długośc cyklu rozwiązania

Wpływ parametru beta na najlepszy wynik metaheurystyki

Wpływ parametru beta na najlepszy wynik metaheurystyki

4.1.6 Wpływ zmiany chłodzenia na średni czas działania heurystyki

Wpływ parametru beta na czas działania metaheurystyki

Wpływ parametru beta na czas działania metaheurystyki

4.1.7 Wpływ zmiany długości epoki i liczby iteracji bez poprawy na średnią długośc cyklu rozwiązania

Wpływ parametrów gamma i delta na średni wynik metaheurystyki

Wpływ parametrów gamma i delta na średni wynik metaheurystyki

4.1.8 Wpływ zmiany długości epoki i liczby iteracji bez poprawy na minimalną długośc cyklu rozwiązania

Wpływ parametrów gamma i delta na najlepszy wynik metaheurystyki

Wpływ parametrów gamma i delta na najlepszy wynik metaheurystyki

4.1.9 Wpływ zmiany długości epoki i liczby iteracji bez poprawy na średni czas działania heurystyki

Wpływ parametrów gamma i delta na średni czas działania metaheurystyki

Wpływ parametrów gamma i delta na średni czas działania metaheurystyki

4.2 Tabu Search

4.2.1 Wpływ zmiany długości listy tabu oraz liczby iteracji bez poprawy na średnią długośc cyklu rozwiązania

Wpływ parametrów alpha i beta na średni wynik metaheurystyki

4.3 Wpływ zmiany długości listy tabu oraz liczby iteracji bez poprawy na minimalną długośc cyklu rozwiązania

Wpływ parametrów alpha i beta na najlepszy wynik metaheurystyki

Wpływ parametrów alpha i beta na najlepszy wynik metaheurystyki

4.4 Wpływ zmiany długości listy tabu oraz liczby iteracji bez poprawy na średni czas działania heurystyki

Wpływ parametrów alpha i beta na średni czas działania metaheurystyki

Wpływ parametrów alpha i beta na średni czas działania metaheurystyki

$4.4.1\,$ Wpływ rozwiązania początkowego i metody generowania otoczenia na średnią dlugość cyklu

Przykład	Losowe rozwiąz	ania początkowe	Rozwiązanie początkowe bazujące na MST		
1 12yKlad	Otoczenie pełne	Otoczenie losowe	Otoczenie pełne	Otoczenie losowe	
xqf131	610	640	602	620	
xqg237	1116	1166	1089	1132	
pma343	1487	1535	1454	1503	

4.4.2 Wpływ rozwiązania początkowego i metody generowania otoczenia na minimalną dlugość cyklu

Przykład	Losowe rozwiązania początkowe		Rozwiązanie początkowe bazujące na MST		
1 12yKlad	Otoczenie pełne	Otoczenie losowe	Otoczenie pełne	Otoczenie losowe	
xqf131	582	593	594	594	
xqg237	1070	1118	1060	1085	
pma343	1433	1474	1428	1455	

4.4.3 Wpływ rozwiązania początkowego i metody generowania otoczenia na średni czas działania heurystyki

Przykład	Losowe rozwiązania początkowe		Rozwiązanie początkowe bazujące na MST		
1 1ZyKiau	Otoczenie pełne	Otoczenie losowe	Otoczenie pełne	Otoczenie losowe	
xqf131	0.18	0.007	0.06	0.004	
xqg237	1.9	0.03	0.5	0.02	
pma343	7.4	0.13	2.1	0.07	

5 Dobór parametrów

5.1 Symulowane wyżarzanie

 $\bullet\,$ Temperatura początkowa: $\alpha=0.5$

• Chłodzenie: $\beta = 0.95$

• Długość epoki: $\gamma=0.2$

- Liczba iteracji bez poprawy: $\delta=0.1$

• Typ otoczenia: INVERT

• Rozwiązanie początkowe: losowe

5.2 Tabu Search

• Długość listy tabu: $\alpha = 0.1$

- Liczba iteracji bez poprawy: $\beta=0.2$

• Typ otoczenia: INVERT

• Wybór otoczenia: pełne

 $\bullet\,$ Rozwiązanie początkowe: oparte o MST

6 Wyniki

Przykład	Optimum	Local Search		Sumulowane Wyżarzanie		Tabu Search	
1 IZYKIAU		śr. waga	min. waga	śr. waga	min. waga	śr. waga	min. waga
xqf131	564	612	578	580.8	567	602.4	594
xqg237	1019	1115.8	1062	1056	1036	1089	1060
pma343	1368	1484.7	1424	1395.2	1378	1454.0	1428
pka379	1332	1445.9	1399	1380.6	1360	1398.8	1376
bcl380	1621	1817.5	1728	1730.4	1685	1750	1707
pbl395	1281	1429.0	1359	1363.8	1317	1377.8	1352
pbk411	1343	1488.5	1426	1431.9	1397	1433.3	1405
pbn423	1365	1521.6	1454	1457.6	1412	1468.4	1440
pbm436	1443	1612.0	1535	1540.2	1481	1563.5	1535
xql662	2513	2813.3	2707	2682.5	2617	2699.4	2673
xit1083	3558	4021.2	3919	3825.5	3746	3909.11	3768
icw1483	4416	4990.5	4839	4731.1	4628	4739.7	4733
djc1785	6115	6872.1	6697	6545.1	6460	6470.7	6450
dcb2086	6600	7457.8	7313	7129.6	7074	7171.7	7153
pds2566	7643	8701.8	8506	8225	8151	8377	8255

Tabela 1: Porównanie wyników metaheurystyk: Local Search, Symulowane Wyżarzanie oraz Tabu Search.