

Преносна среда: Общ преглед

- Физически път между предавателя и приемника
 - Кабелна/жична среда
 - Твърда среда (кабел, жица)
 - Средата е по-важна!
 - Безжична среда
 - Атмосфера, космическо пространство, вода, плазма.
 - Честотната лента, осигурена от антената е по-важна!
- Основният акцент е върху осигурената скорост на предаване и покриваното разстояние
 - В реципрочна зависимост

Кабел с усукани двойки проводници: Предимства и недостатъци • Предимства - Евтин - Гъвкав - Удобен за работа • Недостатъци - Ниска скорост на предаване (поради ограничената честотна лента) - Малък обсег (покритие) - Податлив на смущения и шум

Коаксиален кабел: Приложения

- ТВ разпространение
 - Кабелна телевизия (CATV)
- Междуселищни телефонни трасета
 - Може да пренася десетки хиляди телефонни разговори едновременно
 - Повсеместно заместване с оптичен кабел
- Комуникационни линии между компютърни системи на къси разстояния
- LANs
 - 10 Mb/s Ethernet (10 Base 2/5)

Оптичен кабел: Характеристики

- Използва пълно вътрешно отражение за предаване на светлинни сигнали
 - Честотна лента: 10¹⁴÷10¹⁵ Hz
 - Части от инфрачервения и видимия спектри
- Използвани източници на светлина:
 - Светодиоди (LED)
 - Евтини
 - Широк температурен диапазон на работа
 - Висока толерантност към влажност
 - Ниска консумация на ел. енергия
 - Минимално топлинно излъчване
 - Дълъг живот
 - Инжекционни лазерни диоди (ILD)
 - По-ефективни
 - По-голяма скорост на предаване

Оптичен кабел: Предимства и недостатъци

Предимства:

- Широка честотна лента
- Висока скорост на предаване стотици Gb/s
- Малки размер и тегло
 - Намалява изискванията за структурно окабеляване
- Слабо затихване на сигнала
- Електромагнитна изолация
 - Неуязвим към смущения, импулсен шум и прослушване.
 - Висока степен на защита от подслушване
- Голямо разстояние м/у регенераторите/повторителите
 - Десетки километри (и повече)
- По-ниска себестойност и по-малко източници на грешки

Недостатъци:

- Висока цена
 - Особено на терминаторите и мрежовите карти
- Сравнително трудна инсталация и поддръжка
- Чупливост!

Оптичен кабел: Приложения

- Комуникационни трасета на дълги разстояния
- Абонатни линии (FTTx)
- LANs

366 to 333		Multimode	LAN
234 to 222	S	Single mode	Various
196 to 192	С	Single mode	WDM
192 to 185	L	Single mode	WDM
	234 to 222 196 to 192	234 to 222 S 196 to 192 C	234 to 222 S Single mode 196 to 192 C Single mode

Безжична среда

- Безжично предаване
 - Предаване и приемане чрез антена
- 2 вида
 - Насочено
 - Фокусиран лъч
 - Изисква внимателно насочване/подравняване
 - Многопосочно (omnidirectional)
 - Сигналът се разпространява във всички посоки
 - Може да бъде приет от много антени

Радиоразпръскване (broadcast radio)

- Например:
 - FM радио
 - -UHF and VHF телевизия
- 30 MHz ÷ 1 GHz
- Многопосочно предаване
- Ограничено предаване до обсега на "пряко виждане" (line of sight)
- Страда от многольчеви смущения (multipath interference)
 - -Отразяване от земни или водни повърхности, изкуствени обекти и пр.

- <u>Параболични антени</u> (с фокусиран <u>тесен лъч</u> върху приемната антена)
- Разположени на значителна височина над земята с цел увеличаване на обхвата и преодоляване на препятствия
- "Пряко виждане" (line of sight)
- За по-големи разстояния са нужни множество релейни кули, изп. съединения тип "от точка до точка", напр. за предаване на глас или ТВ.
- По-високите честоти са предпоставка за по-големи скорости

Forouzan, B.A., Data Communications and Networking, 2nd ed., McGraw-Hill, 2001

Инфрачервено предаване

- Постига се с помощта на приемопредаватели, които модулират некохерентна инфрачервена светлина.
- "Пряко виждане" (line of sight) или с отражение
- Блокира се от стени и плътни прегради
- НЕ се изисква лиценз!
- НЯМА проблеми с разпределението на честотите!
- Приложения
 - Дистанционно управление на прибори и устройства
 - IRD портове на PC
 - Инфрачервени WLAN

Инфрачервени WLAN

- Отделна клетка, ограничена до 1 стая.
- Защото инфрачервените лъчи НЕ проникват през плътни стени
- Предимства
 - Инфрачервеният спектър е почти неограничен
 - Възможност за високи скорости
 - Инфрачервеният спектър е нерегулиран по света
 - Защитена комуникация срещу външно подслушване
 - Няма смущения между инфрачервени WLAN клетки в съседни
 - Просто и евтино оборудване

Недостатъци

- Интензивни инфрачервени фонови излъчвания въздействат като шум
 - От слънчева светлина и вътрешно осветление
 - Ограничават обхвата
 - Изисква по-висока мощност на предаване
 - Проблеми с безопасността на очите
 - Прекомерна консумация на енергия

Инфрачервени WLAN: Конфигурации

- Насочено излъчване (direct-beam)
 - За комуникации тип "от точка до точка"
 - Изисква фокусиране (тесен лъч от система от лещи)
 - Обхват от порядъка на километри
 - За свързване м/у сгради
- Многопосочно излъчване
 - Базова станция, монтирана на тавана.
 - Действа активно като многопортов повторител (ретранслатор)
 Разпръсква сигнала към мобилните станции (broadcast)

 - Мобилни станции предават насочен лъч към базовата станция
- Дифузно излъчване
 - Всички инфрачервени предаватели са фокусирани и насочени към точка на дифузно отражение на тавана
 - Инфрачервените лъчи, достигащи до тази точка, се отразяват пасивно от нея във всички посоки и достигат до всички приемници в същата зона.

Yectothu Jehtu Band Frequency Range Free-Space Propagation Typical Use							
		Wavelength Range	Characteristics				
ELF (extremely low frequency)	30 to 300 Hz	10,000 to 1000 km	GW	Power line frequencies; used by some home control systems.			
VF (voice frequency)	300 to 3000 Hz	1000 to 100 km	GW	Used by the telephone system for analog subscriber lines.			
VLF (very low frequency)	3 to 30 kHz	100 to 10 km	GW; low attenuation day and night; high atmospheric noise level	Long-range navigation; submarine communication			
LF (low frequency)	30 to 300 kHz	10 to 1 km	GW; slightly less reliable than VLF; absorption in daytime	Long-range navigation; marine communication radio beacons			
MF (medium frequency)	300 to 3000 kHz	1,000 to 100 m	GW and night SW; attenuation low at night, high in day; atmospheric noise	Maritime radio; direction finding; AM broadcasting.			
HF (high frequency)	3 to 30 MHz	100 to 10 m	SW; quality varies with time of day, season, and frequency.	Amateur radio; military communication			
VHF (very high frequency)	30 to 300 MHz	10 to 1 m	LOS; scattering because of temperature inversion; cosmic noise	VHF television; FM broadcast and two-way radio, AM aircraft communication; aircraft navigational aids			
UHF (ultra high frequency)	300 to 3000 MHz	100 to 10 cm	LOS; cosmic noise	UHF television; cellular telephone; radar; microwave links; personal communications systems			
SHF (super high frequency)	3 to 30 GHz	10 to 1 cm	LOS; rainfall attenuation above 10 GHz; atmospheric attenuation due to oxygen and water vapor	Satellite communication; radar; terrestrial microwave links; wireless local loop			
EHF (extremely high frequency)	30 to 300 GHz	10 to 1 mm	LOS; atmospheric attenuation due to oxygen and water vapor	Experimental; wireless local loop; radio astronomy			
Infrared	300 GHz to 400 THz	1 mm to 770 nm	LOS	Infrared LANs; consumer electronic applications			
Visible light	400 THz to 900 THz	770 nm to 330 nm	LOS	Optical communication			