

Летние учебно-тренировочные сборы по астрономии

Теоретический тур — ІОАА

28 июня – 12 июля 2016 года

Короткие задачи

Задача 1. Багровый ужас

«Расстояния до звёзд столь велики, что никакие астрономические инструменты не дают возможности наблюдать непосредственно их диски. Лишь у некоторых звёзд угловые размеры диска превышают разрешающую способность крупных телескопов, что дает возможность фотографированием с очень короткими экспозициями "восстановить" изображение звезды.» (По материалам Astronet.ru)

Тем не менее, какие-то разведданные у нас есть. Для некоторой яркой звезды ($m_{\rm bol}=0.9$) измерения углового диаметра дали значение $\gamma\approx 10$ mas. Какого она цвета?

Задача 2. Циклотрон

Циклотронной частотой f называют частоту обращения заряженной частицы в постоянном однородном магнитном поле с индукцией \vec{B} в плоскости, перпендикулярной \vec{B} .

- а) Запишите соотношение между f, \vec{B} , зарядом частицы q и её массой m.
- b) Найдите модуль индукции магнитного поля $B_{\rm MW}$, при которой циклотонная частота свободных электронов совпадает с используемой в микроволновых печах $f_{\rm MW}=2.45~\Gamma\Gamma$ ц.

Задача 3. День Луны

В последний день XLVI Международной физической олимпиады, 17 июля 2016 года Луна пересекает меридиан Цюриха в 23:46 (центральноевропейского времени). В августе 2016 года произойдёт полутеневое лунное затмение продолжительностью около получаса. Найдите его дату и охарактеризуйте условия наблюдения в Цюрихе. Орбиты Луны и Земли считать круговыми, рефракцией и угловыми размерами Луны, уравнением времени пренебречь.

Город	Цюрих	
Страна	Швейцария	
Кантон	Цюрих	
Округ	Цюрих	
Координаты	N $47^{\circ} 23' E 8^{\circ} 32'$	
Часовой пояс	UTC+1	
Площадь 92 км ²		
Высота центра	а центра 408 м	
Население	400 тыс.	
Англомерация	1.2 млн	
Летнее время	Да, +1	
Автомобильный код	ZH	

Задача 4. Аккреция на нейтронную звезду

На нейтронную звезду радиусом R=10 км и массой $M=1.4M_{\odot}$ происходит аккреция холодного междвездного газа с темпом 10^{15} г/с. Из-за магнитного поля, искажающего сферическую аккрецию, вещество выпадает на две площадки в районе полюсов нейтронной звезды, суммарная площадь которых составляет 2 км 2 . Считая, нагрев и свечение полюсов нейтронной звезды происходят благодаря полной передаче энергии аккрецирующего вещества поверхности нейтронной звезды, определите температуру её полярных областей.

Задача 5. Dolce Vita

Оцените, во сколько раз отличаются количества видимых звёзд на квадратный градус в зените при наблюдениях в чистом поле и лёжа на дне бассейна глубиной в два метра в *алмазных* очках для плавания?

Показатель преломления $n_w=1.33$, алмаза $n_d=2.42$, температура воздуха $t_a=+26\,^{\circ}\mathrm{C}$. Поглощением, дисперсией и поляризацией света в средах можно пренебречь, границы раздела сред гладкие, звёзды распределены в пространстве равномерно.

 ${\it Подсказка}.$ В случае нормального падения света на границу раздела двух сред с показателями преломления n_1 и n_2 энергетический коэффициент отражения

$$R = \left| \frac{n_1 - n_2}{n_1 + n_2} \right|^2.$$

Задача 6. Предел ГЗК

В 1966 году Георгием Зацепиным и Вадимом Кузьминым, и независимо от них Кеннетом Грайзеном было предсказано, что протоны с энергией выше определённого порога взаимодействуют с фотонами, рождая пионы:

$$\gamma + p \rightarrow \Delta^+ \rightarrow p + \pi^0$$
 или $n + \pi^+$.

Эта реакция приводит к тому, что космическое пространство, заполненное реликтовым излучением, становится непрозрачным для ультрарелятивистских протонов, поэтому они не могут наблюдаться в космических лучах.

Оцените пороговую энергию протона, при которой возможен описанный процесс. Массы протона и нейтрона $M \simeq 1.67 \cdot 10^{-27}$ кг, заряженного и нейтрального пионов $m \simeq 2.4 \cdot 10^{-28}$ кг.

 Π одсказка. Энергия, импульс и масса частицы связаны соотношением $E^2 = (pc)^2 + (mc^2)^2$.

Задача 7. Вращающийся наблюдатель

Спутник движется в обратном направлении по круговой экваториальной орбите на высоте h = 5000 км. Определите видимые угловые скорости спутника в моменты, когда он находится в зените и на горизонте для наблюдателя на экваторе Земли. Ответ выразите в угловых минутах в секунду.

Задача 8. Северная столица

Определите длину тени на горизонтальной поверхности от вертикальной мачты с высотой H=8 м и диаметром D=20 см в местный солнечный полдень в день зимнего солнцестояния в Петербурге $(\varphi=60^\circ)$. Угловой размер Солнца равен $\rho_\odot=32'$.

Задача 9. Энергия вакуума

Определите отношение плотности энергии реликтового излучения (температура $T \approx 3$ K) к плотности энергии покоя протонов в межгалактическом веществе (концентрация $n \sim 1$ м $^{-3}$).

Задача 10. Мегамазер

В туманности Клеймана-Лоу наблюдают компактный радиоисточник в мазерной линии водяного пара $\lambda=1.35$ см. Известно, что источник имеет радиус около 0.05 а.е., а его яркостная температура на данной длине волны достигает 10^{17} К. Оцените расстояние до источника, если измеренная плотность потока излучения от него составила 1.7 МЯн.

Задача 11. Две фамилии

Межгалактический маяк представляет собой изотропный, компактный и яркий источник. Для земного наблюдателя его болометрическая звёздная величина m=5.2. Какую болометрическую величину маяка m' измерят на ракете «Нейтрон», пролетающей мимо солнечной системы со скоростью v=0.7c в сторону маяка?

Задача 12. Pas de deux

В момент захода Солнца азимут центра его диска был равен $A_0 = 98.0^{\circ}$, а скорость изменения этой величины составляла b = 12.87'/мин. Найдите дату наблюдения. Уравнение времени было положительным. Рефракцией пренебречь.

Задача 13. Нейтрино

В 1938 году Бете предположил, что ядерная реакция синтеза гелия из водорода, происходящая в ядре Солнца, — это его источник энергии. Результирующее уравнение ядерной реакции:

$$4^{1}\text{H} \rightarrow {}^{4}\text{He} + 2e^{+} + 2\nu_{e} + 25 \text{ M} \Rightarrow \text{B}.$$

Электронные нейтрино ν_e , которые получаются в этой реакции, можно считать безмассовыми. Они вылетают из Солнца и их обнаружение на Земле подтверждает то, что внутри Солнца происходят ядерные реакции.

а) Рассчитайте плотность потока нейтрино Φ_{ν} , достигающих Земли. Считайте, что энергия, излучаемая Солнцем, полностью получается в реакции, приведенной выше. Вы можете пренебречь энергией, уносимой нейтрино.

На пути к Земле часть электронных нейтрино превращается в нейтрино других типов ν_* . Эффективность детектирования ν_* составляет 1/6 эффективности детектирования ν_e .

Если бы не происходило превращения нейтрино, мы бы детектировали N_1 нейтрино в год. Однако из-за этих превращений детектируется N_2 нейтрино в год (ν_e и ν_* вместе).

b) Какая доля f частиц ν_e превращается в ν_* , если $N_1/N_2 = 2.25$?

Задача 14. Быть, а не казаться

Производится фотографирование области неба размером 10.0' по высоте и 10.0' по азимуту на высоте 2.7° над горизонтом. Определите истинные угловые размеры этой области. Зависимость

величины атмосферной рефракции R от ucmunhoй высоты светила h имеет следующий приближённый вид (график соответствует приведённому ниже выражению):

$$R = \frac{1.02'}{\tan\left(h + \frac{(3.21^\circ)^2}{h + 5.11^\circ}\right)}.$$

Задача 15. Истина в Вине

В радиодиапазоне наблюдаются два абсолютно чёрных объекта с совпадающими физическими характеристиками. Один находится в нашей галактике, а другой — в галактике с красным смещением Z=0.1. Их температуры больше эффективной температуры Солнца.

Найдите отношение "наблюдаемых" светимостей данных объектов в узкой полосе длин радиоволн. "Наблюдаемая" светимость = освещённость $\times 4\pi$ (расстояние до объекта в момент приёма)².

Летние учебно-тренировочные сборы по астрономии

Теоретический тур — ІОАА

28 июня – 12 июля 2016 года

Длинные задачи

Задача 1. Звёздное трио

Цивилизация, живущая на далёкой планете, построила и запустила устойчивый к высоким температурам звездолёт. Их целью было за одну экспедицию изучить сразу две близлежащие звезды. Траектория движения должна была выглядеть примерно так:

Рис. 1: Инопланетяне обитают на планете около звезды с массой \mathfrak{M}_1 ; её большая полуось составляет 0.5 a.e.

Вам дан фрагмент звёздного каталога жителей этой планеты, в котором представлены прямые восхождения, склонения и параллаксы звёзд 2 и 3, все величины переведены в земные единицы, однако параллакс определён аналогично нашему для их системы.

$N_{\overline{0}}$	α	δ	π
2	$12^{h}34^{m}$	80°12′	0.05''
3	$8^{h}6^{m}$	12°27′	0.04''

Считая, что прицельные расстояния пролёта мимо всех звёзд одинаковы и равны q=0.1 а.е., а скорость звездолёта на бесконечности была бы $v_{\infty}=70$ км/с:

- а) Найдите расстояния d_{12} , d_{23} , d_{31} и соответствующие им углы треугольника α_1 , α_2 , α_3 .
- b) Оцените время перелёта.
- с) Оцените массы звёзд \mathfrak{M}_1 , \mathfrak{M}_2 и \mathfrak{M}_3 .
- d) Выясните, к какой из звёзд аппарат приблизится сильнее всего и оцените это расстояние. Зацепит ли он её поверхность, если она лежит на главной последовательности?

Относительные движения звёзд не учитывать.

Задача 2. Коронадо

Одна из разновидностей спектральных фильтров основана на эталоне Фабри – Перо. Такой фильтр представляет собой два соосных, параллельно расположенных и обращенных друг к другу зеркала, между которыми формируется резонансная стоячая оптическая волна:

Если оба зеркала имеют коэффициент отражения R, функция пропускания фильтром света с длиной волны λ имеет вид

$$T = rac{1}{1 + F \sin^2 \delta},$$
 где $F \equiv rac{4R}{(1 - R)^2},$ $\delta \equiv rac{2\pi n l \cos heta}{\lambda}.$

Рассмотрим фильтр нормального падения, целевой максимум пропускания которого приходится на линию Бальмера H_{α} (длина волны $\lambda_0=6562.8$ Å). Пространство между зеркалами заполнено газообразным гелием (показатель преломления n=1.0000), длина l=120.0 µм, (1-R)=0.018.

- а) Рассчитайте FSR фильтра расстояние $\Delta \lambda$ между двумя соседними максимумами пропускания в окрестности λ_0 .
- b) Рассчитайте FWHM фильтра ширину $\delta\lambda$ спектрального диапазона, включающего λ_0 , пропускание на котором составляет не менее половины от максимального.
- c) Оцените добротность фильтра $Q = \Delta \lambda / \delta \lambda$.
- d) Найдите ширину диапазона скоростей δv , соответствующих целевой полосе пропускания этого фильтра.

Задача 3. Годограф

Тело движется в центральном гравитационном поле звезды массы M. Плоскость орбиты разбита на секторы с общей вершиной в центре звезды и одинаковыми малыми углами раствора $\Delta \varphi$. Удельный орбитальный момент импульса тела \vec{l} .

а) Найдите изменение скорости спутника $|\Delta \vec{v}|$ при прохождении каждого сектора.

Годографом называют кривую, соединяющую концы вектора переменной величины, отложенного в разные моменты времени от одной точки. Так, известно, что годограф совершающего кеплерово движение тела представляет собой окружность или дугу окружности.

Рис. 2: Вид эллиптической орбиты (a) и *примерного* годографа скорости (b). Масштабы по осям x и y, v_x и v_y попарно совпадают.

- b) Уточните годограф скорости для эллиптической орбиты, изображённой на рис. 2a, с учётом её геометрических параметров.
- с) Укажите на годографе точки, соответствующие отмеченным (1-6) на орбите.
- d) Изобразите качественно годограф скорости для гиперболической орбиты с эксцентриситетом e=2. Укажите на рисунке характерные элементы и соотношения между ними.

Летние учебно-тренировочные сборы по астрономии

Теоретический тур — IAO

28 июня – 12 июля 2016 года

Задача 1. «Беглянка»

Звезду Барнарда — одиночную звезду в созвездии Змееносца ($\alpha=18.0^h,~\delta=+4.7^\circ$) — часто называют «летящей», поскольку она обладает самым большим из известных собственных движений: $\mu_{\alpha}=-798~{\rm mas/rod},~\mu_{\delta}=10327~{\rm mas/rod}.$ Кроме того, её лучевая скорость составляет $v_r=-111~{\rm km/c}$ при параллаксе $\pi=547~{\rm mas}!$

Найдите полную пространственную скорость звезды Барнарда относительно Солнечной системы.

Задача 2. Марсианская высота

В решениях задач по астрономии часто можно встретить так называемую высоту однородной атмосферы для Земли, которая составляет примерно 8 км. Эта величина показывает, какой была бы высота атмосферы, если бы она имела всюду одинаковую плотность, равную плотности воздуха у поверхности, а давление у поверхности оставалось бы неизменным. Оцените аналогичное значение для Марса, если температура у его поверхности $T_0 \approx -30$ °C, а в атмосфере нет почти ничего, кроме углекислого газа. Считайте, что искомая высота значительно меньше радиуса Марса.

Задача 3. Довесть до белого каленья

Находясь на вершине горы над морем (широта — 35° с.ш., высота h=963 м), наблюдатель видит в морской бинокль небольшой корабль у горизонта. На корабле установлена сигнальная лампа. На какую электрическую мощность P она рассчитана, если её можно перепутать с восходящей Вегой? Относительная световая отдача лампы $\eta=2\%$. Болометрическими поправками пренебречь. Зенитное поглощение на уровне моря примите равным $\zeta=0.2^m$.

Задача 4. Псевдомеркурий

В 2016 году Полярник Вася обыкновенно отмечал 9 мая, находясь на Северном полюсе и наблюдая, как маленькое небесное тело долго и печально проходит по диску Солнца. Василий предполагал, что наблюдает транзит американского секретного спутника, обращающегося вокруг Земли по круговой орбите.

Найдите радиус и наклонение орбиты такого спутника, а также его диаметр.

Геоцентрические расстояния Солнца и Меркурия во время прохождения составляли 1.010 и 0.557 а. е. соответственно.

Задача 5. Псевдомарс

Как известно, самые успешные астрологи астрологией не занимаются. Некоторые же прочие в

своих расчётах заменяют планету Марс на воображаемый Псевдомарс. Положим, Псевдомарс существует на самом деле, и большая полуось его орбиты на 4.00% меньше, чем у орбиты Марса при равных эксцентриситетах. Орбиту Земли считайте круговой.

- а) Оцените, как часто происходят великие противостояния Псевдомарса.
- b) Исходя из предположения о совпадении физических характеристик Псевдомарса и Марса, оцените разницу их блесков во времена соответствующих великих противостояний.

Задача 6. А зори там тихие...

Рыжая панда Миру устала от всеобщего внимания и улетела на Уран. Там, конечно, холодно, зато спокойно. И восходы красивые. В каких пределах может изменяться продолжительность восхода Солнца для Миру, находящейся на условной «поверхности» этого газового гиганта? Ураноцентрическая широта места наблюдения — 10° с.ш. Орбиту Урана считайте круговой. Атмосферой, конечно, следует пренебречь.

Задача 7. Полночь

В течение года некоторое удалённое светило описывает на небе Земли параллактический эллипс, эксцентриситет которого e=0.987. В ночь с 6 на 7 апреля можно наблюдать, как оно пересекает меридиан в полночь. На какой высоте над горизонтом это происходит? Широта пункта наблюдения 75.3° с. ш.