Spark SQL在机票数据处理中的实践

机票-战略发展-大数据-数据挖掘

主讲人: 赵法宪 2017.08.21

目录

Hadoop MapReduce简介 基于google论文的大数据计算开源先驱。 Spark SQL vs Hive 螺旋式上升,相辅相成。

Hive vs Hadoop MR SQL替代Java MR coding , 提升工作效率。

一个数据处理的小例子 用编程来代替大段重复性SQL。

Spark Core vs Hadoop MR 更高的抽象, 更快的速度。

01.

Hadoop MR简介

Google MapReduce

MapReduce

- 基于google MapReduce论文
- 只有map, reduce两个基本算子
- 只能按map -> reduce的逻辑单元执行
- 不同的MR任务之间,数据必须落地
- 不能在一个Job中进行较复杂的操作,例如: reduce -> map, reduce -> reduce, map-> map -> reduce

MapReduce简要流程

input HDFS output HDFS sort split 0 map copy merge **HDFS** reduce part 0 replication split 1 map **HDFS** reduce part 1 replication map

MR Word Count 示例

MR Word Count 示例

```
public static class TokenizerMapper
      extends Mapper<Object, Text, Text, IntWritable>{
    private final static IntWritable one = new IntWritable(1);
    private Text word = new Text();
    public void map(Object key, Text value, Context context
                    ) throws IOException, InterruptedException {
      StringTokenizer itr = new StringTokenizer(value.toString());
      while (itr.hasMoreTokens()) {
        word.set(itr.nextToken());
        context.write(word, one);
public static class IntSumReducer
     extends Reducer<Text,IntWritable,Text,IntWritable> {
 private IntWritable result = new IntWritable();
 public void reduce(Text key, Iterable<IntWritable> values,
                     Context context
                     ) throws IOException, InterruptedException {
   int sum = 0;
   for (IntWritable val : values) {
     sum += val.get();
   result.set(sum);
    context.write(key, result);
```

```
public static void main(String[] args) throws Exception {
 Configuration conf = new Configuration();
 String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
  if (otherArgs.length < 2) {</pre>
   System.err.println("Usage: wordcount <in> [<in>...] <out>");
   System.exit(2);
 Job job = Job.getInstance(conf, "word count");
  job.setJarByClass(WordCount.class);
 job.setMapperClass(TokenizerMapper.class);
  job.setCombinerClass(IntSumReducer.class);
 job.setReducerClass(IntSumReducer.class);
  job.setOutputKeyClass(Text.class);
  job.setOutputValueClass(IntWritable.class);
  for (int i = 0; i < otherArgs.length - 1; ++i) {
   FileInputFormat.addInputPath(job, new Path(otherArgs[i]));
 FileOutputFormat.setOutputPath(job,
   new Path(otherArgs[otherArgs.length - 1]));
 System.exit(job.waitForCompletion(true) ? 0 : 1);
```


02.

Hive

SQL & MR

Hive

- SQL -> MapReduce解释器
- 支持大部分常用查询语句、SQL2011标准
 - 聚合函数
 - Partition by
 - Window
 - Explode
- 支持很多内嵌函数
 - 字符串操作
 - 集合操作
 - 日期操作
 - JSON操作
 - UDF
- Cost-based decision
- Predicate pushdown

Hive vs 关系型数据库

	Hive	关系型数据库-mysql
范式	列类型支持Array, Map, Struct	默认基于第一范式
业务场景	离线数据统计	一般用于OLTP,也可用于 OLAP
存储	元数据一般在关系型数据库中 (MySQL)。自己没有数据存储 功能,数据在HDFS中,依赖 元数据库存储hdfs路径。支持 的文件格式较多。	自己管理数据
常用操作	批量增,全量删,查	增删改查
事务	默认无事务	默认有事务

Hive vs MR

	Hive	MapReduce
工作效率	书写SQL	Coding + Unit Test
异常处理	SQL监测	靠个人对数据的理解程度
算子	支持大部分SQL查询,可以 自定义UDF,UDAF,UDTF	主要支持Map和Reduce,其 他算法都要先转化为 MapReduce的逻辑去实现
运行效率	依赖HQL编写水平 自带执行计划、CBO、谓 词下推等	依赖Coding水平,以及对业务 逻辑的抽象能力。(可能会 造成可读性下降)
计算复杂度	只要SQL可以实现即可,其 他不需要关心	需要Coding处理各个MR之间 的数据逻辑
数据管理	有元数据管理	手动管理数据逻辑

Hive Word Count 示例

SELECT word, count(1) **FROM** (SELECT EXPLODE(SPLIT(text,' ')) AS word **FROM** document) AS t **GROUP BY word;**

03.

Spark Core

比MR更高的抽象

Spark Core

基于RDD[T]这一抽象概念进行运算

- RDD的两个核心抽象属性
 - dependencies_(父依赖的RDD)
 - partitions_(数据的位置信息)
- RDD有多种算子
 - Transformation (几十种)
 - Map, filter, join, groupBy, mapPartitions
 - Action (至少十多种)
 - Collect, first, reduce, Count

Spark Core

- RDD是不可变的
 - Transformation -> 产生新的RDD实例
 - Action -> 得到基本类型等非RDD实例 例如数组、每行数据实例(Int, String, Tuple, Class等)
- RDD可以cache在缓存中
- Lazy Execution
 - 把RDD组合成DAG(有向无环图)
 - 只有action会触发计算

Spark Core Transformation

	Arguments	Source	Return
map	f: T => U	RDD[T]	RDD[U]
filter	f: T => Boolean	RDD[T]	RDD[T]
flatMap	F: T => Seq[U]	RDD[T]	RDD[U]
groupByKey		RDD[(K,V)]	RDD[(K,Seq[V])]
reduceByKey	F: (V, V) => V	RDD[(K,V)]	RDD[(K,V)]
union		(RDD[T], RDD[T])	(RDD[T])
join		(RDD[K,V], RDD[K,W])	RDD[K,(V,W)]

Spark Core Action

	Arguments	Source	Return
count		RDD[T]	Long
collect		RDD[T]	Seq[T]
reduce	F: (T, T) => T	RDD[T]	Т
saveAsTextFile	Path	RDD[T]	Unit
max		RDD[T]	Т
first		RDD[T]	Т

Spark Core vs MR

	Spark Core	MapReduce
代码书写	Scala(主要)、Java、Python	Java
算子	几十种不同算子	主要支持Map和Reduce,其 他算法都要先转化为 MapReduce的逻辑去实现
运行效率	Lazy 执行,一般比MR数据 落地情况少,IO时间少	不同MR之间,必须数据落地
计算复杂度	只要可以关联成DAG图, 就可以计算	需要Coding处理各个MR之间 的逻辑
重复计算	如果有Cache,则可避免重 复计算。	必须重新运行所需数据之前 所有的MR

Spark Core Word Count 示例(1)

```
def main(args: Array[String]) {
  val spark = SparkSession
    .builder()
    .appName("Word Count")
    .config("spark.some.config.option", "some-value")
    .getOrCreate()
  val rowRdd = spark.sparkContext.textFile(args(1))
  val wcRdd = rowRdd.flatMap(line => line.split("\\s+")).
    map(word => (word,1)).reduceByKey((x,y) => x+y)
  /*
  val\ wc1Rdd = rowRdd.flatMap(\_.split("\\s")).
    map((\_, 1)).reduceByKey(\_+\_)
  */
  wcRdd.saveAsTextFile(args(2))
```


Spark Core Word Count 示例(2)

Spark DAG Shuffle

Spark DAG Shuffle

Details for Job 4

Status: SUCCEEDED Completed Stages: 22 Skipped Stages: 4

- ▶ Event Timeline
- DAG Visualization

04.

Spark SQL

SQL & RDD

Spark SQL

Spark社区对待Spark SQL和Spark Core的态度

Spark SQL

基于Dataset、Column这两个抽象概念进行运算

Dataset = RDD[Row] + Schema

Schema = Array[] (name, dataType, nullable, metadata)

目前的Spark SQL是SQL和Coding的混合态

Spark SQL 数据源

- 1. 从hive中读取表 val hiveDS = spark.table("dbname.tablename")
- 2. 从csv文件中读取 val csvDS = spark.read.csv("csv_file_path_1",...)
- 3. 从json文件中读取 val jsonDS = spark.read.json("json_file_path_1",...)
- 4. 通过jdbc读取
 val jdbcDS = spark.read.jdbc(url, tableName, properties)
 (参数可以只选取部分列,或者增加where条件。)
- 5. 从parquet文件、orc文件中读取
- 6. 从HBase、ES中读取
- 7. 从RDD转换(非结构化数据)

只要Hadoop支持读取的文件/数据,Spark都可以读取

Spark SQL 基本操作 Dataset(SQL)

- Sql()
 - 可以从表、临时表中通过sql语句,形成新的 Dataset。
- createTempView(), createOrReplaceTempView ()
 - Dataset可以通过这两个方法,注册成临时表。 然后通过sql()方法操作临时表,形成新的Dataset
- 常用情景:
 - 复用之前已有的SQL脚本,减少操作量。

Spark SQL 基本操作 Dataset(Code)

- Spark SQL也可以"强行"分为Transformation(返回结果并不都是Dataset)和Action。
- 常用的Transformation就是各种Sql运算符,以及部分RDD的Transformation。
- join, sort, select, where(filter), groupBy, limit, union(unionAll), intersect, expect, sample, randomSplit, withColumn, dropDuplicates, drop, describe等
- Window.partitionBy().orderBy(),
- 常用的Action一般只使用show, count, first等

Spark SQL 基本操作 Column(Code)

- Column每一列的抽象 \$"cName", 'cName, col("cName")
- 常用操作: avg(), count(), max(), cast(), as()等
- 比较操作: ===, =!=, >, <, >=, <=等
- 条件判断: when().otherwise(), &&, ||, or, and等
- 空值判断: isnull()等
- 数字操作: +,plus(), -, minus(), *, /, %, rand(), sin()等
- 字符串操作,日期操作,数组操作,JSON操作等

Spark SQL 基本操作演示

1. 通过SQL操作

```
spark.sql("SELECT a, b FROM TABLE_A")
  .cache().createOrReplaceTempView("tmp 1")
spark.sql(
  """SELECT b, c
    FROM tmp_tbl_1 t1
    |LEFT JOIN TABLE_B t2
    |ON t1.a = t2.a
    |""".stripMargin)
  .cache().createOrReplaceTempView("tmp 2")
spark.sql(
  11 11 11
    |CREATE TABLE final_table AS
    |SELECT * FROM tmp_2|
     """.stripMargin).show()
```


Spark SQL 基本操作演示

2. 通过纯Coding操作

```
val tblADS = spark.table("TABLE_A").
  select("a","b").cache()
val tblBDS = spark.table("TABLE_B").cache()
val tmpDS = tblADS.as("t1").join(
  tblBDS.as("t2"),
  $"t1.a" === $"t2.a",
  "left").select($"t2.b".as("b"), $"t2.c".as("c"))
tmpDS.write.mode(SaveMode.Append).
  partitionBy("b").saveAsTable("final_table")
```


Spark SQL vs Hive执行性能

问题1:

现有A, B, C, D共4张表,需要分别得到A join B join C的结果,和A join B join D的结果。

问题2:

现有A(id, type), B(id, gender)共两张表,分别需要得到A JOIN B GROUP BY type的结果和A JOIN B GROUP BY gender的结果。


```
问题1:
```

表A有一百列,存在如"null"的脏数据(数据分析中,标准形式应该是null)。

Hive:

SELECT

CASE WHEN col1 = 'null' THEN null ELSE col1 END AS col1

• • •

FROM A;


```
def replaceEmptyAsNull(ds: Dataset[Row]) = {
  val replaceEmpty =
    for (StructField(name, dataType, _, _) <- ds.schema)</pre>
      yield {
    if(dataType.isInstanceOf[StringType]){
      (when(trim(col(name)) === "", null).
        otherwise(trim(col(name)))).as(name)
    }else{
      col(name)
  ds.select(replaceEmpty : _*)
```


问题2:

表A有一百列,找到所有null值率大于等于0.9的列名。

Hive:

每个列对is null进行聚合,除以count(1),再挑出>=0.9的列。


```
def getNullCols(ds:Dataset[Row], lower:Double) = {
  val totalCnt = ds.cache().count()
  val aggCols =
    for (name <- ds.schema.fieldNames) yield {</pre>
    (sum(when(isnull(col(name)), 1).otherwise(0)) / totalCnt).
      as(name)
 val agg = ds.agg(aggCols.head, aggCols.tail : _*)
  val aggVals = agg.first()
  for(col <- agg.schema.fieldNames</pre>
      if (aggVals.getAs[Double](col)) >= lower) yield col
```



```
问题3:
   Json数据操作。
Hive:
Get_json_object()
Json_tuple()
Spark:
val jsonDS = spark.read.json(
spark.table("table_name").select("json_col").
map(_.getString(0)).rdd)
```


Hive vs Spark SQL

	Hive	Spark SQL
代码书写	写SQL 复制粘贴一大堆SQL	可以根据schema等信息进行coding,减少sql量。 因为是Lazy计算,所以很轻松可以把一个大SQL 拆成很多小的Dataset。逻辑清晰。注释更方便 (变量名是注释的一部分)。
算子	主要hive自带函数以 及udf, udaf	Hive支持的基本都支持,还可以转换成rdd进行 计算。
UDF,UDAF,UDTF	需要写jar包加载	可以直接在代码中注册。本身就是代码。
数据源	只能读取元数据中有 的数据	多种多样,对部分数据源可以直接读取元数据,或自适应数据类型。 也可以从通过Spark Core的RDD把非结构化数据 转化为Dataset。
计算效率	必须重新运行所需数 据之前所有的SQL脚 本。	同一个SparkSession中,如果有Cache,则可避免 重复计算。 Spark Core比MR快。

Performance

TPC-DS v2.4 on Spark 3.0

Runtime total on 62 queries (secs - lower is better)

Presto无法支持全部语句

FAQ

1. Spark SQL 存储数据到新表时,如何指定压缩格式与存储形式?

```
format(存储格式)
option(格式相关配置,比如压缩,比如csv的header,比如json的日期格式等)
```

举例:

```
ds.write.format("parquet").option("compression", "SNAPPY").saveAsTable("tbl")
```


FAQ

Dataset使用parquet格式,snappy压缩

```
scala> val df1 = Seq((1, 2)).toDF("a", "b")
df1: org.apache.spark.sql.DataFrame = [a: int, b: int]
scala> df1.write format("parquet").option("compression", "SNAPPY") saveAsTable("algorithm.tmptbl")
scala> spark.sql("desc formatted algorithm.tmptbl").show(100,false)
 col_name
                                  data_type
                                                                                                                  comment
                                                                                                                  nu11
                                  int
                                  int
                                                                                                                  nu11
 # Detailed Table Information
                                  algorithm
 Database:
 Owner:
                                  Tue Aug 22 11:03:50 CST 2017
 Create Time:
 Last Access Time:
                                  Thu Jan 01 08:00:00 CST 1970
                                  hdfs://qunarcluster/user
                                                                         /hive/warehouse/algorithm.db/tmptbl
 Location:
 Table Type:
                                  MANAGED
 Table Parameters:
   rawDataSize
                                  -1
   numFiles
   transient_lastDdlTime
                                  1503371030
   totalSize
                                  496
   COLUMN_STATS_ACCURATE
                                  false
                                  -1
 # Storage Information
 SerDe Library:
                                  org.apache.hadoop.hive.ql.io.parquet.serde.ParquetHiveSerDe
org.apache.hadoop.hive.ql.io.parquet.MapredParquetInputFormat
 InputFormat:
 OutputFormat:
                                  org.apache.hadoop.hive.gl.io.parguet.MapredParguetOutputFormat
 Compressed:
 Storage Desc Parameters:
   serialization.format
                                  SNAPPY
   compression
```


FAQ

2. Spark SQL该怎么学?

想要系统、深入的学习的话,一般可以按照我PPT的顺序,前面的MR, hive打基础。然后基于Spark RDD之上的Spark SQL。

只是平时使用的话,推荐从spark.sql()这个方法开始用,因为这个方法可以适配基本上所有的hive sql语句(我还没见过不能用的hql逻辑)。

然后慢慢用一部分coding代替重复的sql逻辑。

如果不想coding , 只是单纯拿来代替hive就用 可以使用cache关键字。

当然,大家可以根据个人情况,混合上面三种方法一起用。

最后, spark官网是重点: Spark SQL 不会的可以qtalk找我沟通。

THANKS

