Understanding Sparse JL for Feature Hashing

Meena Jagadeesan (Harvard University)

NeurIPS 2019

Feature Hashing

Feature hashing [8] is a commonly used technique to reduce the dimensionality of feature vectors.

Goal: Map vectors in \mathbb{R}^n into \mathbb{R}^m for $m \ll n$ while preserving Euclidean (ℓ_2 -norm) distances.

- Hash function $h:[n] \to [m]$ on coordinates
- Random signs to handle collisions

A Generalization: Sparse JL

Idea: Use several (mildly anti-correlated) hash functions h_1, \ldots, h_s ; use random signs for collisions [4].

Sparse JL distributions are state-of-the-art, near-optimal [7] sparse random projections.

Our contribution (Informal)

Analyze the performance of sparse JL on feature vectors for a general number of hash functions.

Mathematical Framework

The dimensionality reduction scheme \mathcal{F} is a distribution over linear maps $f: \mathbb{R}^n \to \mathbb{R}^m$. For $x \in \mathbb{R}^n$, the goal is: $\mathbb{P}_{f \in \mathcal{F}}[\|f(x)\|_2 \in (1 \pm \epsilon) \|x\|_2] > 1 - \delta$, for error ϵ and failure probability δ .

Model for feature vectors

Feature vectors may have "well-spread" mass. Consider vectors with small ℓ_{∞} -to- ℓ_2 norm ratio:

$$S_v = \{x \in \mathbb{R}^n \mid ||x||_{\infty} \le v ||x||_2 \}.$$

Definition [8]

 $v(m, \epsilon, \delta, s)$ is the supremum over $v \in [0, 1]$ such that sparse JL has error $\leq \epsilon$ and failure probability $\leq \delta$ on the ℓ_2 -norms of $x \in S_v$.

 $v(m, \epsilon, \delta, s)$ captures the performance of sparse JL.

Our contribution

Tight bounds on $v(m, \epsilon, \delta, s)$ for a general s.

Main Result: Performance of Sparse JL on Feature Vectors

We analyze how sparse JL (a state-of-the-art dimensionality reduction scheme) performs on feature vectors.

Theorem (Informal)

Sparse JL has **four regimes** in terms of how it performs on norm preservation. For error ϵ and failure probability δ , sparse JL with projected dimension m and s hash functions has performance $v(m, \epsilon, \delta, s)$ equal to:

$$\begin{cases} 1 \text{ (full performance)} & \text{High } m \\ \sqrt{s}B_1 \text{ (partial performance)} & \text{Middle } m \\ \sqrt{s}\min\left(B_1,B_2\right) \text{ (partial performance)} & \text{Middle } m \\ 0 \text{ (poor performance)} & \text{Small } m, \end{cases}$$
 where B_1,B_2 are functions of m,ϵ,δ .

Shows sparse JL with > 1 hash function can perform much better on feature vectors than feature hashing!

Formal Statement of Main Result

Theorem

Consider a uniform sparse JL distribution with dimension m and s hash functions. For $s \leq m/e$ and for small enough ϵ and δ , the function $v(m, \epsilon, \delta, s)$ is equal to $f'(m, \epsilon, \ln(1/\delta), s)$, where:

$$f'(m, \epsilon, p, s) = \begin{cases} 1 & \text{if } m \geq \min\left(2\epsilon^{-2}e^{p}, \epsilon^{-2}pe^{\Theta\left(\max\left(1, \frac{p\epsilon^{-1}}{s}\right)\right)}\right) \\ \Theta\left(\sqrt{\epsilon s} \frac{\sqrt{\ln(\frac{m\epsilon^{2}}{p})}}{\sqrt{p}}\right) & \text{else, if } \max\left(\Theta(\epsilon^{-2}p), s \cdot e^{\Theta\left(\max\left(1, \frac{p\epsilon^{-1}}{s}\right)\right)}\right) \leq m \leq \epsilon^{-2}e^{\Theta(p)} \\ \Theta\left(\sqrt{\epsilon s} \min\left(\frac{\ln(\frac{m\epsilon}{p})}{p}, \frac{\sqrt{\ln(\frac{m\epsilon^{2}}{p})}}{\sqrt{p}}\right)\right) & \text{else, if } \Theta(\epsilon^{-2}p) \leq m \leq \min\left(\epsilon^{-2}e^{\Theta(p)}, s \cdot e^{\Theta\left(\max\left(1, \frac{p\epsilon^{-1}}{s}\right)\right)}\right) \\ 0 & \text{if } m \leq \Theta(\epsilon^{-2}p). \end{cases}$$

Relationship with Previous Bounds

Sparse JL on full space \mathbb{R}^n [4, 1]

- ① Can set $m \approx \epsilon^{-2} \log(1/\delta)$, $s \approx \epsilon^{-1} \log(1/\delta)$ [4].
- A lower s is possible with a higher m, which enables faster projection. That is, m can be set to $\min(2\epsilon^{-2}/\delta, \epsilon^{-2}\log(1/\delta)e^{\Theta(\epsilon^{-1}\log(1/\delta)/s)}$ [1].

Bounds on $v(m, \epsilon, \delta, s)$ [8, 2, 3]

- $\mathbf{o}v(m,\epsilon,\delta,1)$ understood [8, 2, 3]
- $v(m, \epsilon, \delta, s)$ lower bound for multiple hashing [8]

Our tight bound on $v(m, \epsilon, \delta, s)$ for sparse JL for s > 1 significantly generalizes these results.

Evaluation on Real-World Data

Sparse JL with ≥ 4 hash functions can perform much better on feature vectors than feature hashing.

Avg failure probability on News20 dataset

Proof Approach: Moment Bounds

Analyze moments of "error" random variable:

$$R(x_1, \dots, x_n) = \frac{1}{s} \sum_{r=1}^m \left(\sum_{1 \le i \ne j \le n} \eta_{r,i} \eta_{r,j} \sigma_{r,i} \sigma_{r,j} x_i x_j \right)$$
$$=: \frac{1}{s} \sum_{r=1}^m Z_r(x_1, \dots, x_n).$$

We show tight bounds on $\mathbb{E}[R(x_1,\ldots,x_n)^p]$ on $x \in S_v$ at every threshold v value (which are much more general than known bounds [4, 3, 1]).

Our key ingredient is a non-combinatorial approach with Rademacher-specific bounds.

Lower bound: Pick "worst" vector in each S_v

- View $Z_r(v, \ldots, v, 0, \ldots, 0)$ as a quadratic form of ± 1 rvs. Apply moments bounds in [6].
- Carefully combine over $r \in [m]$.

Upper bound: $R(x_1, \ldots, x_n)$ for every $x \in S_v$

- Create tractable versions of estimates in [6, 5]; Structure of $Z_r(x_1, \ldots, x_n)$ is helpful.
- Combine over $r \in [m]$ using bound in [5].

Challenges: Correlations between $\eta_{r,i}$; asymmetry imposed by the x_i values; need "tightness" to get matching upper and lower bounds.

Acknowledgements

I would like to thank Prof. Jelani Nelson for advising this project.

Selected References

- [1] M. B. Cohen. "Nearly tight oblivious subspace embeddings by trace inequalities". In: SODA. 2016, 278–287.
- [2] S. Dahlgaard, M. Knudsen, and M. Thorup. "Practical Hash Functions for Similarity Estimation and Dimensionality Reduction". In: *NIPS*. 2017, pp. 6618–6628.
- [3] C. Freksen, L. Kamma, and K. G. Larsen. "Fully Understanding the Hashing Trick". In: *NeurIPS*. 2018, pp. 5394–5404.
- [4] D. M. Kane and J. Nelson. "Sparser Johnson-Lindenstrauss transforms". In: *SODA*. 2012, 16872–16876.
- [5] R. Latała. "Estimation of moments of sums of independent real random variables". In: *Annals of Probability* 25.3 (1997), pp. 1502–1513.
- [6] R. Latała. "Tail and moment estimates for some types of chaos". In: *Studia Mathematica* 135.1 (1999), pp. 39–53.
- [7] J. Nelson and H.L. Nguyen. "Sparsity Lower Bounds for Dimensionality Reducing Maps". In: *STOC*. 2013, pp. 101–110.
- [8] K. Weinberger et al. "Feature Hashing for Large Scale Multitask Learning". In: *ICML*. 2009, pp. 1113–1120.