SSID: zenguest Password: password

WOMEN WHO

Artificial Intelligence Study Group

Twitter: @wwcodemanila FB: fb.com/wwcodemanila

#WWCodeManila #AI #StudyGroup

New Member's Introduction

OUR MISSION

Inspiring women to excel in technology careers.

OUR VISION

A world where women are representative as technical executives, founders, VCs, board members and software engineers.

STUDY GROUP

Study groups are events where women can come together and help each other learn and understand a specific programming language, technology, or anything related to coding or engineering.

GUIDELINES

- If you have a question, just **ask**
- If you have an idea, share it
- Make friends and learn from your study groupmates
- Do not recruit or promote your business

SHOW & TELL

TOPIC FOR TODAY DECISION TREES

REVIEW

Two types of ML Algorithms:

- Supervised

- Data is labelled
- Goal: Predict or classify data

- Unsupervised

- Data is unlabelled
- Goal: Uncover patterns or structure in data

Supervised Learning

Unsupervised Learning

Supervised Learning Workflow

Supervised Learning Workflow

REVIEW: K-Nearest Neighbors (KNN)

DECISION TREES

- A type of supervised learning algorithm
- Interpretable; mimics human decision making

If Salary > \$50,000 and commute is not more than 1 hour and offers free coffee, then accept offer!

Would you survive the sinking of the Titanic?

TERMINOLOGY

- Root Node: represents the entire training set
- **Splitting**: process of dividing a node into two or more subsets/nodes
- Internal/Decision Node: corresponds to an attribute
- Leaf/Terminal Node: corresponds to a class label

ramin	g examples:	9 yes / 5 no		
Day	Outlook	Humidity	Wind	Play
D1	Sunny	High	Weak	No
D2	Sunny	High	Strong	No
D3	Overcast	High	Weak	Yes
D4	Rain	High	Weak	Yes
D5	Rain	Normal	Weak	Yes
D6	Rain	Normal	Strong	No
D7	Overcast	Normal	Strong	Yes
D8	Sunny	High	Weak	No
D9	Sunny	Normal	Weak	Yes
D10	Rain	Normal	Weak	Yes
D11	Sunny	Normal	Strong	Yes
D12	Overcast	High	Strong	Yes
D13	Overcast	Normal	Weak	Yes
D14	Rain	High	Strong	No

Day	Outlook	Humidity	Wind	Play
D1	Sunny	High	Weak	No
D2	Sunny	High	Strong	No
D3	Overcast	High	Weak	Yes
D4	Rain	High	Weak	Yes
D5	Rain	Normal	Weak	Yes
D6	Rain	Normal	Strong	No
D7	Overcast	Normal	Strong	Yes
D8	Sunny	High	Weak	No
D9	Sunny	Normal	Weak	Yes
D10	Rain	Normal	Weak	Yes
D11	Sunny	Normal	Strong	Yes
D12	Overcast	High	Strong	Yes
D13	Overcast	Normal	Weak	Yes
D14	Rain	High	Strong	No

New data:					
D15	Rain	High	Weak	?	

Irainini	g examples:	9 yes / 5 no		
Day	Outlook	Humidity	Wind	Play
D1	Sunny	High	Weak	No
D2	Sunny	High	Strong	No
D3	Overcast	High	Weak	Yes
D4	Rain	High	Weak	Yes
D5	Rain	Normal	Weak	Yes
D6	Rain	Normal	Strong	No
D7	Overcast	Normal	Strong	Yes
D8	Sunny	High	Weak	No
D9	Sunny	Normal	Weak	Yes
D10	Rain	Normal	Weak	Yes
D11	Sunny	Normal	Strong	Yes
D12	Overcast	High	Strong	Yes
D13	Overcast	Normal	Weak	Yes
D14	Rain	High	Strong	No

New da	ata:			
D15	Rain	High	Weak	?

- Hard to guess
- Try to understand *when*John plays tennis

Day	Outlook	Humidity	Wind	Play
D1	Sunny	High	Weak	No
02	Sunny	High	Strong	No
D3	Overcast	High	Weak	Yes
D4	Rain	High	Weak	Yes
D5	Rain	Normal	Weak	Yes
D6	Rain	Normal	Strong	No
D7	Overcast	Normal	Strong	Yes
D8	Sunny	High	Weak	No
D9	Sunny	Normal	Weak	Yes
D10	Rain	Normal	Weak	Yes
D11	Sunny	Normal	Strong	Yes
D12	Overcast	High	Strong	Yes
D13	Overcast	Normal	Weak	Yes
D14	Rain	High	Strong	No

New data: D15 Rain High Weak ?

- Divide and Conquer

- Split into subsets
- Are they all "pure"?
- If yes: stop
- If not: repeat
- See which subset new data falls into

Day	Outlook	Humid	Wind
D1	Sunny	High	Weak
D2	Sunny	High	Strong
D8	Sunny	High	Weak
D9	Sunny	Normal	Weak
D11	Sunny	Normal	Strong

Day	Outlook	Humid	Wind
D1	Sunny	High	Weak
D2	Sunny	High	Strong
D8	Sunny	High	Weak
D9	Sunny	Normal	Weak
D11	Sunny	Normal	Strong

Day	Outlook	Humid	Wind	Day	Outlook	Humid	Wind
D1	Sunny	High	Weak	D4	Rain	High	Weak
D2	Sunny	High	Strong	D5	Rain	Normal	Weak
D8	Sunny	High	Weak	D6	Rain	Normal	Strong
D9	Sunny	Normal	Weak	D10	Rain	Normal	Weak
D11	Sunny	Normal	Strong	D14	Rain	High	Strong

ID3 Algorithm

- ID3 Ross Quinlan, 1986
- Suppose feature A is the **best attribute** to split on.
 - Split entire training set on attribute A
 - For each subset/ child node:
 - If subset is pure: stop
 - Else: split subset

Which attribute to split on?

- Want to measure the "purity" of the split
- More certain about Yes/No after the split
 - Pure set → (4 Yes / 0 No) 100% certain
 - Impure Set → (3 Yes / 3 No) 50 % certain
- **Entropy** a way to measure certainty
 - Higher entropy → more uncertain

Entropy

$$Entropy(S) = -p_{yes}\log_2 p_{yes} - p_{no}\log_2 p_{no}$$

S - subset of training examples

 p_{ves} - proportion of positive (yes) examples

 p_{no} - proportion of negative (no) examples

Entropy, more generally

$$Entropy(S) = -\sum_{c \in Classes} p_c \log_2 p_c$$

S - subset of examples

 p_c - proportion of examples in S belonging to class c

e.g. (3 yes / 3 no)

e.g. (3 yes / 3 no)

Entropy =
$$-\frac{3}{6}\log_2\frac{3}{6} - \frac{3}{6}\log_2\frac{3}{6} = 1$$

e.g. (3 yes / 3 no)

Entropy =
$$-\frac{3}{6}\log_2\frac{3}{6} - \frac{3}{6}\log_2\frac{3}{6} = 1$$

e.g. (4 yes / 0 no)

e.g. (3 yes / 3 no)

Entropy =
$$-\frac{3}{6}\log_2\frac{3}{6} - \frac{3}{6}\log_2\frac{3}{6} = 1$$

e.g. (4 yes / 0 no)

Entropy =
$$-\frac{4}{4}\log_2\frac{4}{4} - \frac{0}{4}\log_2\frac{0}{4} = O$$

e.g. (3 yes / 3 no)

Entropy =
$$-\frac{3}{6}\log_2\frac{3}{6} - \frac{3}{6}\log_2\frac{3}{6} = 1$$

e.g. (4 yes / 0 no)

Entropy =
$$-\frac{4}{4}\log_2\frac{4}{4} - \frac{0}{4}\log_2\frac{0}{4} = O$$

 p_{ves}

exercise: (9 yes / 5 no)

exercise: (9 yes / 5 no)

Answer: 0.940

exercise: (9 yes / 5 no)

Answer: 0.940

exercise: (3 yes / 4 no)

Entropy

- Entropy tells us how pure **one subset** is.
- But we want a measure of the **effectiveness of an attribute** in classifying the training data.
- We actually want to aggregate info on different subsets.
- Simply averaging the entropies don't work. (Why not?)

Information Gain

- Want many items in pure sets
- **Information Gain** expected reduction in entropy after a split on an attribute

$$Gain(S, A) = Entropy(S) - \sum_{v \in Values(A)} \frac{|S_v|}{|S|} Entropy(S_v)$$

A - Attribute

Values(A) – possible values of A

S - subset of training examples

 S_v - subset of S for which attribute A have value v

Information Gain

e.g. Find Gain(S, Wind).

Answer: 0.048

ex. Find Gain(S, Humidity)

Answer: 0.151

ex. Find Gain(S, Outlook).

Answer: 0.246

Day	Outlook	Humidity	Wind	Play
D1	Sunny	High	Weak	No
D2	Sunny	High	Strong	No
D3	Overcast	High	Weak	Yes
D4	Rain	High	Weak	Yes
D5	Rain	Normal	Weak	Yes
D6	Rain	Normal	Strong	No
D7	Overcast	Normal	Strong	Yes
D8	Sunny	High	Weak	No
D9	Sunny	Normal	Weak	Yes
D10	Rain	Normal	Weak	Yes
D11	Sunny	Normal	Strong	Yes
D12	Overcast	High	Strong	Yes
D13	Overcast	Normal	Weak	Yes
D14	Rain	High	Strong	No

Alternative Impurity Metric

CART - Briemanetal, 1984

Gini Index - rate of misclassification

$$Gini(S) = 1 - \sum_{c \in Classes} p_c^2$$

S - subset of training examples

 p_c - proportion of examples in S belonging to class c

Higher Gini index → more likely to misclassify

e.g. (3 yes / 3 no)

e.g. (3 yes / 3 no)

Gini(S) =
$$1 - (\frac{3}{6})^2 - (\frac{3}{6})^2 = 0.5$$

e.g. (3 yes / 3 no)

Gini(S) =
$$1 - (\frac{3}{6})^2 - (\frac{3}{6})^2 = 0.5$$

e.g. (4 yes / 0 no)

e.g. (3 yes / 3 no)

Gini(S) =
$$1 - (\frac{3}{6})^2 - (\frac{3}{6})^2 = 0.5$$

e.g. (4 yes / 0 no)

Gini(S) =
$$1 - (\frac{4}{4})^2 - (\frac{0}{4})^2 = 0$$

Gini(S) =
$$1 - (\frac{3}{6})^2 - (\frac{3}{6})^2 = 0.5$$

Gini(S) =
$$1 - (\frac{4}{4})^2 - (\frac{0}{4})^2 = 0$$

Information Gain

- **Information Gain** – expected reduction in the *misclassification rate* after a split on an attribute

$$Gain(S, A) = Gini(S) - \sum_{v \in Values(A)} \frac{|S_v|}{|S|} Gini(S_v)$$

A - Attribute

Values(A) – possible values of A

S – subset of training examples

 S_v - subset of S for which attribute A have value v

Entropy vs Gini Index

- So which impurity measure should be used:

Entropy or Gini index?

- Resulting trees are very similar in practice.
- Best advice is that it is good practice when building decision tree models to
 - Try out different impurity metrics
 - Compare results to see which suits the dataset

EXERCISE OPTIONS

- 1. Solve by hand / calculator (takes a lot of time!)
- 2. Use python to to write function(s) that compute the entropy, gini index, and information gain.
 - Make sure to handle log₂ 0.
- 3. Advanced: Write a program that builds a decision tree!
 - Requires some knowledge on recursion, ADTs

Partner/Group/Individual Exercise

Predicting virus infection in files:

	WRITABLE	UPDATED	SIZE	CLASS
1	yes	no	small	infected
2	yes	yes	large	infected
3	no	yes	med	infected
4	no	no	med	clean
5	yes	no	large	clean
6	no	no	large	clean

Challenge

Classify the type of vegetation that is likely to grow in areas of land based on descriptive feature.

ID	Stream	Slope	Elevation	Vegetation
1	False	Steep	High	Chapparal
2	True	Moderate	Low	Riparian
3	True	Steep	Medium	Riparian
4	False	Steep	Medium	Chapparal
5	False	Flat	High	Conifer
6	True	Steep	Highest	Conifer
7	True	Steep	High	Chapparal

What type of vegetation would likely grow on terrain with a steep slope and medium elevation and is near a stream?

How about on terrain near a stream with high elevation, moderate slope?

Partner/Group/Individual Presentation

References

Decision Tree Lecture by Victor Lavrenko (Youtube)

T.I.L.

SHARE IT! In front!

On Twitter: @wwcodemanila

Or FB: fb.com/wwcodemanila

Don't forget to tag WWCodeManila so we can retweet or share it.

Feedback Form

https://goo.gl/YzSqcS

Please don't rate the event on meetup.

Not helpful. It is best to just tell your concerns via the feedback form. We are a building a community not a Yelp restaurant.

THANK YOU:)