The Polynomial Abacus

David I. Spivak

Workshop on Polynomial Functors 2021 March 15 – 19

Outline

- 1 Introduction
 - The abacus
 - Plan
- 2 Theory
- 3 Applications
- 4 Conclusion

Abacus for the Glass Bead Game

There is a story by Herman Hesse, called *The Glass Bead Game*.

- It depicts a monastic community of thinkers, led by a "game master".
- The game is played on an instrument involving strings of glass beads.

Like a rap battle or poetry slam, the game is played to express deep ideas.

- Players represent connections between math, music, philosophy, etc.
- The moving glass beads weave these subjects together in harmony.
- To play well is to contemplate and communicate profound insights.

Abacus for the Glass Bead Game

There is a story by Herman Hesse, called *The Glass Bead Game*.

- It depicts a monastic community of thinkers, led by a "game master".
- The game is played on an instrument involving strings of glass beads.

Like a rap battle or poetry slam, the game is played to express deep ideas.

- Players represent connections between math, music, philosophy, etc.
- The moving glass beads weave these subjects together in harmony.
- To play well is to contemplate and communicate profound insights.

I loved the idea of the book, but something was missing.

- Hesse only roughly describes the instrument—the abacus—itself.
- What sort of combinatorial object is capable of this grand scope?

To my lights, Poly can serve as an abacus; I hope to justify that to you.

Approximate plan for tutorial

Today:

- Introduce Poly and its combinatorics (how the abacus works);
- Discuss its pleasing properties and monoidal structures;
- Present the framed bicategory \mathbb{P} .

Wednesday:

- lacktriangle Recall $\mathbb P$ and discuss some properties of it;
- Consider applications: dynamical systems, data, and deep learning;
- Conclude with a summary.

Outline

- 1 Introduction
- 2 Theory
 - Poly as a category
 - A quick tour of Poly
 - Comonoids in Poly
 - lacktriangle The framed bicategory ${\mathbb P}$
 - lacksquare Monads in $\mathbb P$
- **3** Applications
- 4 Conclusion

Poly for experts

What I'll call the category **Poly** has many names.

- The free completely distributive category on one object;
- The free coproduct completion of Set^{op};
- The full subcategory of [Set, Set] spanned by functors that preserve connected limits;
- The full subcategory of [Set, Set] spanned by coproducts of repr'bles;

Poly for experts

What I'll call the category **Poly** has many names.

- The free completely distributive category on one object;
- The free coproduct completion of Set^{op};
- The full subcategory of [Set, Set] spanned by functors that preserve connected limits;
- The full subcategory of [Set, Set] spanned by coproducts of repr'bles;
- The category of *typed sets* and colax maps between them.
 - Objects: pairs (I, τ) , where $I \in \mathbf{Set}$ and $\tau: I \to \mathbf{Set}$.
 - Morphisms $(I, \tau) \xrightarrow{\varphi} (I', \tau')$: pairs $(\varphi_1, \varphi^{\sharp})$, where

But let's make this easier.

What is a polynomial?

Algebraic

Bundle

Corolla forest

What is a polynomial?

One could repurpose this machine to represent $15y^{5\times2} \in \mathbf{Poly}$.

Terminology woes

Issue: prior terminology from computer science doesn't fit my conception.

$$p \coloneqq y^3 + y^2 + y^2 + 1$$

- Container terminology from Abbott: "shapes and positions".
 - data p Y = Foo Y Y Y | Bar Y Y | Baz Y Y | Qux
 - Container p has four "shapes", e.g. Foo has three "positions".

Terminology woes

Issue: prior terminology from computer science doesn't fit my conception.

$$p \coloneqq y^3 + y^2 + y^2 + 1$$

- Container terminology from Abbott: "shapes and positions".
 - data p Y = Foo Y Y Y | Bar Y Y | Baz Y Y | Qux
 - Container p has four "shapes", e.g. Foo has three "positions".
 - We prefer to think of these "positions" as projection arrows.

Terminology woes

Issue: prior terminology from computer science doesn't fit my conception.

$$p := y^3 + y^2 + y^2 + 1$$

- Container terminology from Abbott: "shapes and positions".
 - data p Y = Foo Y Y Y | Bar Y Y | Baz Y Y | Qux
 - Container *p* has four "shapes", e.g. Foo has three "positions".
 - We prefer to think of these "positions" as projection arrows.

- Hard decision but I'll say positions and directions. Reasons:
 - Dynamical systems: position = point, direction = vector.
 - Categories: position = object, direction = morphism.
 - Terminal coalgebra trees: position = label, direction = arrow.

Combinatorics of polynomial morphisms

Let $p := y^3 + 2y$ and $q := y^4 + y^2 + 2$

A morphism $p \xrightarrow{\varphi} q$ delegates each *p*-position to a *q*-position, passing back directions:

Example: how to think of

- $y^2 + y^6 \rightarrow y^{52}$?
- $p \rightarrow y$ for arbitrary p ?

The category of polynomials

Easiest description: Poly = "sums of representables functors $Set \rightarrow Set$ ".

- For any set S, let $y^S := \mathbf{Set}(S, -)$, the functor *represented* by S.
- Def: a polynomial is a sum $p = \sum_{i \in I} y^{p[i]}$ of representable functors.
- Def: a morphism of polynomials is a natural transformation.

Notation

We said that a polynomial is a sum of representable functors

$$p \cong \sum_{i \in I} y^{p[i]}.$$

But note that $I \cong p(1)$. So we can write

$$p\cong \sum_{i\in p(1)}y^{p[i]}.$$

Notation

We said that a polynomial is a sum of representable functors

$$p \cong \sum_{i \in I} y^{p[i]}.$$

But note that $I \cong p(1)$. So we can write

$$p \cong \sum_{i \in p(1)} y^{p[i]}.$$

Here's a derivation of the combinatorial formula for morphisms:

$$\begin{aligned} \mathsf{Poly}(p,q) &= \mathsf{Poly}\left(\sum_{i \in p(1)} y^{p[i]}, \sum_{j \in q(1)} y^{q[j]}\right) \cong \prod_{i \in p(1)} \mathsf{Poly}\left(y^{p[i]}, \sum_{j \in q(1)} y^{q[j]}\right) \\ &\cong \prod_{i \in p(1)} \sum_{j \in q(1)} \mathsf{Set}(q[j], p[i]) \end{aligned}$$

"For each $i \in p(1)$, a choice of $j \in q(1)$ and a function $q[j] \to p[i]$."

For any polynomial $p \in \mathbf{Poly}$, I'll use the following sort of notation

$$p[-]$$
 $p(1)$

For any polynomial $p \in \mathbf{Poly}$, I'll use the following sort of notation

$$p[-]$$
 $p(1)$ i

■ The bottom part is filled by indicating a position, say $i \in p(1)$.

For any polynomial $p \in \mathbf{Poly}$, I'll use the following sort of notation

$$\begin{array}{c|c}
\rho[-] & \hline d \\
\rho(1) & i
\end{array}$$

- The bottom part is filled by indicating a position, say $i \in p(1)$.
- Only then can the top part be filled by a direction, say $d \in p[i]$.

For any polynomial $p \in \mathbf{Poly}$, I'll use the following sort of notation

$$p[-]$$
 d
 $p(1)$ i

- The bottom part is filled by indicating a position, say $i \in p(1)$.
- Only then can the top part be filled by a direction, say $d \in p[i]$.

This gets more interesting for maps. A map $\varphi \colon p \to q$ is shown:

The map φ is a formula saying "however you fill blue's, I'll fill whites."

For any polynomial $p \in \mathbf{Poly}$, I'll use the following sort of notation

$$p[-]$$
 d
 $p(1)$ i

- The bottom part is filled by indicating a position, say $i \in p(1)$.
- Only then can the top part be filled by a direction, say $d \in p[i]$.

This gets more interesting for maps. A map $\varphi \colon p \to q$ is shown:

The map φ is a formula saying "however you fill blue's, I'll fill whites."

■ For any $i \in p(1)$ you choose,

For any polynomial $p \in \mathbf{Poly}$, I'll use the following sort of notation

$$p[-]$$
 d $p(1)$ i

- The bottom part is filled by indicating a position, say $i \in p(1)$.
- Only then can the top part be filled by a direction, say $d \in p[i]$.

This gets more interesting for maps. A map $\varphi \colon p \to q$ is shown:

The map φ is a formula saying "however you fill blue's, I'll fill whites."

■ For any $i \in p(1)$ you choose, I'll return $\varphi_1(i) \in q(1)$, and

For any polynomial $p \in \mathbf{Poly}$, I'll use the following sort of notation

$$p[-]$$
 d $p(1)$ i

- The bottom part is filled by indicating a position, say $i \in p(1)$.
- Only then can the top part be filled by a direction, say $d \in p[i]$.

This gets more interesting for maps. A map $\varphi \colon p \to q$ is shown:

The map φ is a formula saying "however you fill blue's, I'll fill whites."

- For any $i \in p(1)$ you choose, I'll return $\varphi_1(i) \in q(1)$, and
- for any $e \in q[\varphi_1(i)]$ you choose,

For any polynomial $p \in \mathbf{Poly}$, I'll use the following sort of notation

$$p[-]$$
 d $p(1)$ i

- The bottom part is filled by indicating a position, say $i \in p(1)$.
- Only then can the top part be filled by a direction, say $d \in p[i]$.

This gets more interesting for maps. A map $\varphi \colon p \to q$ is shown:

The map φ is a formula saying "however you fill blue's, I'll fill whites."

- lacksquare For any $i\in p(1)$ you choose, I'll return $arphi_1(i)\in q(1)$, and
- for any $e \in q[\varphi_1(i)]$ you choose, I'll return $\varphi_i^{\sharp}(e) \in p[i]$.

For any polynomial $p \in \mathbf{Poly}$, I'll use the following sort of notation

$$p[-]$$
 d $p(1)$ i

- The bottom part is filled by indicating a position, say $i \in p(1)$.
- Only then can the top part be filled by a direction, say $d \in p[i]$.

This gets more interesting for maps. A map $\varphi \colon p \to q$ is shown:

The map φ is a formula saying "however you fill blue's, I'll fill whites."

- For any $i \in p(1)$ you choose, I'll return $\varphi_1(i) \in q(1)$, and
- for any $e \in q[\varphi_1(i)]$ you choose, I'll return $\varphi_i^{\sharp}(e) \in p[i]$.

But this notation will really come in handy later in handling composition.

Pleasing aspects of Poly

Here are some properties enjoyed by **Poly**:

- Poly contains two copies of Set and one copy of Set^{op}.
 - Sets A can be represented as a constant or linear: $A, Ay \in \mathbf{Poly}$.
 - Sets A can be op-represented as representables $y^A \in \mathbf{Poly}$.
 - Each of these inclusions is full and has at least one adjoint.

Pleasing aspects of Poly

Here are some properties enjoyed by **Poly**:

- Poly contains two copies of Set and one copy of Set^{op}.
 - Sets A can be represented as a constant or linear: $A, Ay \in \mathbf{Poly}$.
 - Sets A can be op-represented as representables $y^A \in \mathbf{Poly}$.
 - Each of these inclusions is full and has at least one adjoint.
- Poly has all coproducts and limits (extensive), and is Cartesian closed;
 - These agree with coproducts, limits, closure in "Set^{Set}".
 - lacksquare 0 is initial, 1 is terminal, + is coproduct, \times is product.
 - y^A is internal hom between $A, y \in \textbf{Poly}$. For fun: $y^y \cong y + 1$.
- Poly has coequalizers, though these differ from coeq's in "Set^{Set}".

Pleasing aspects of Poly

Here are some properties enjoyed by **Poly**:

- Poly contains two copies of Set and one copy of Set^{op}.
 - Sets A can be represented as a constant or linear: $A, Ay \in \mathbf{Poly}$.
 - Sets A can be op-represented as representables $y^A \in \mathbf{Poly}$.
 - Each of these inclusions is full and has at least one adjoint.
- **Poly** has all coproducts and limits (extensive), and is Cartesian closed;
 - These agree with coproducts, limits, closure in "Set^{Set}".
 - lacksquare 0 is initial, 1 is terminal, + is coproduct, \times is product.
 - y^A is internal hom between $A, y \in \textbf{Poly}$. For fun: $y^y \cong y + 1$.
- Poly has coequalizers, though these differ from coeq's in "Set^{Set}".
- **Poly** has two factorization systems: epi-mono, vertical-cartesian.

Monoidal structures on Poly

There are many monoidal structures on **Poly**.

- It has a coproduct (0, +) structure.
- Day convolution can be applied to any SMC structure (I, \cdot) on **Set**.
 - The result is a distributive monoidal structure (y^I, \odot) on **Poly**.
 - In the case of (0,+), the result is the product $(1,\times)$.
 - In the case of $(1, \times)$, the result is (y, \otimes) .

$$p imes q \cong \sum_{i \in p(1)} \sum_{j \in q(1)} y^{p[i] + q[j]}$$
 and $p \otimes q \cong \sum_{i \in p(1)} \sum_{j \in q(1)} y^{p[i] imes q[j]}.$

Monoidal structures on Poly

There are many monoidal structures on Poly.

- It has a coproduct (0, +) structure.
- Day convolution can be applied to any SMC structure (I, \cdot) on **Set**.
 - The result is a distributive monoidal structure (y^I, \odot) on **Poly**.
 - In the case of (0, +), the result is the product $(1, \times)$.
 - In the case of $(1, \times)$, the result is (y, \otimes) .

$$p \times q \cong \sum_{i \in p(1)} \sum_{j \in q(1)} y^{p[i]+q[j]}$$
 and $p \otimes q \cong \sum_{i \in p(1)} \sum_{j \in q(1)} y^{p[i] \times q[j]}$.

■ The \otimes product has a closure (internal hom) [-,-] given by

$$[p,q] \coloneqq \sum_{\varphi \colon p \to q} y^{\sum_{i \in p(1)} q[\varphi_1(i)]}$$

Monoidal structures on Poly

There are many monoidal structures on **Poly**.

- It has a coproduct (0, +) structure.
- **D**ay convolution can be applied to any SMC structure (I, \cdot) on **Set**.
 - The result is a distributive monoidal structure (y^I, \odot) on **Poly**.
 - In the case of (0,+), the result is the product $(1,\times)$.
 - In the case of $(1, \times)$, the result is (y, \otimes) .

$$p \times q \cong \sum_{i \in p(1)} \sum_{j \in q(1)} y^{p[i]+q[j]}$$
 and $p \otimes q \cong \sum_{i \in p(1)} \sum_{j \in q(1)} y^{p[i] \times q[j]}$.

■ The \otimes product has a closure (internal hom) [-,-] given by

$$[p,q] \coloneqq \sum_{\varphi \colon p \to q} y^{\sum_{i \in p(1)} q[\varphi_1(i)]}$$

There's one more monoidal product, which will be of great interest.

Composition monoidal structure (Poly, y, \triangleleft)

The composite of two polynomial functors is again polynomial.

- Let's denote the composite of p and q by $p \triangleleft q$.
- **Example:** if $p := y^2$, q := y + 1, then $p \triangleleft q \cong y^2 + 2y + 1$.
- This is a monoidal structure, but not symmetric. $(q \triangleleft p \cong y^2 + 1)$
- The identity functor y is the unit: $p \triangleleft y \cong p \cong y \triangleleft p$.

Composition monoidal structure (Poly, y, \triangleleft)

The composite of two polynomial functors is again polynomial.

- Let's denote the composite of p and q by $p \triangleleft q$.
- Example: if $p := y^2$, q := y + 1, then $p \triangleleft q \cong y^2 + 2y + 1$.
- This is a monoidal structure, but not symmetric. $(q \triangleleft p \cong y^2 + 1)$
- The identity functor y is the unit: $p \triangleleft y \cong p \cong y \triangleleft p$.

Why the we weird symbol ⊲ rather than ∘?

- We want to reserve o for morphism composition.
- The notation $p \triangleleft q$ represents trees with p under q.

Composition given by stacking trees

Suppose $p := y^2 + y$ and $q := y^3 + 1$.

Draw the composite $p \triangleleft q$ by stacking q-trees on top of p-trees:

You can also read it as q feeding into p, which is how composition works.

Maps to composites

The abacus pictures are most useful for maps $p o q_1 ext{ } ext{$

lacksquare A map $\varphi\colon p o q \triangleleft r$ is an element of

$$\varphi \in \mathbf{Poly}(p,q \triangleleft r) \cong \prod_{i \in p(1)} \sum_{j \in q(1)} \prod_{e \in q[j]} \sum_{k \in r(1)} \prod_{f \in r[k]} \sum_{d \in p[i]} 1.$$

We could write it with our abacus pictures:

The abacus pictures are most useful for maps $p o q_1 ext{ } ext{$

lacksquare A map $\varphi\colon p o q \triangleleft r$ is an element of

$$\varphi \in \mathsf{Poly}(p,q \triangleleft r) \cong \prod_{i \in p(1)} \sum_{j \in q(1)} \prod_{e \in q[j]} \sum_{k \in r(1)} \prod_{f \in r[k]} \sum_{d \in p[i]} 1.$$

 $i \in p(1)$ $j \in q(1)$ $e \in q[j]$ $k \in r(1)$ $f \in r[k]$ $d \in p[i]$

Maps to composites

The abacus pictures are most useful for maps $p o q_1 riangledown q_k$.

The abacus pictures are most useful for maps $p \to q_1 \triangleleft \cdots \triangleleft q_k$.

■ A map φ : $p \to q \triangleleft r$ is an element of

$$\varphi \in \mathsf{Poly}(p,q \triangleleft r) \cong \prod_{i \in p(1)} \sum_{j \in q(1)} \prod_{e \in q[j]} \sum_{k \in r(1)} \prod_{f \in r[k]} \sum_{d \in p[i]} 1.$$

The abacus pictures are most useful for maps $p \to q_1 \triangleleft \cdots \triangleleft q_k$.

A map $\varphi \colon p \to q \triangleleft r$ is an element of $\varphi \in \mathbf{Poly}(p, q \triangleleft r) \cong \prod_{i \in p(1)} \sum_{j \in q(1)} \prod_{e \in q[j]} \sum_{k \in r(1)} \prod_{f \in r[k]} \sum_{d \in p[i]} 1.$

The abacus pictures are most useful for maps $p \to q_1 \triangleleft \cdots \triangleleft q_k$.

A map $\varphi \colon p \to q \triangleleft r$ is an element of $\varphi \in \mathsf{Poly}(p, q \triangleleft r) \cong \prod_{i \in p(1)} \sum_{j \in q(1)} \prod_{e \in q[j]} \sum_{k \in r(1)} \prod_{f \in r[k]} \sum_{d \in p[i]} 1.$

The abacus pictures are most useful for maps $p o q_1 ext{ } ext{$

■ A map $\varphi : p \to q \triangleleft r$ is an element of $\varphi \in \mathsf{Poly}(p, q \triangleleft r) \cong \prod_{i \in p(1)} \sum_{j \in q(1)} \prod_{e \in a[i]} \sum_{k \in r(1)} \prod_{f \in r[k]} \sum_{d \in p[i]} 1.$

We could write it with our abacus pictures:

These will come in handy when asking if two such φ, ψ are equal.

Comonoids in $(Poly, y, \triangleleft)$

In any monoidal category (M, I, \otimes) , one can consider comonoids.

- A comonoid is a triple (m, ϵ, δ) satisfying certain rules, where
 - $m \in \mathcal{M}$ is an object, the *carrier*,
 - lacksquare $\epsilon \colon m \to I$ is a map, the *counit*, and
 - δ : $m \to m \otimes m$ is a map, the *comultiplication*.

In (**Poly**, y, \triangleleft), comonoids are exactly categories!¹

¹Ahman-Uustalu. "Directed Containers as Categories". MSFP 2016.

Comonoids in $(Poly, y, \triangleleft)$

In any monoidal category (M, I, \otimes) , one can consider comonoids.

- A comonoid is a triple (m, ϵ, δ) satisfying certain rules, where
 - $m \in \mathcal{M}$ is an object, the *carrier*,
 - lacksquare $\epsilon \colon m \to I$ is a map, the *counit*, and
 - δ : $m \to m \otimes m$ is a map, the *comultiplication*.

In (**Poly**, y, \triangleleft), comonoids are exactly categories!¹

 $lue{}$ If $\mathcal C$ is a category, the corresponding comonoid has carrier

$$\mathfrak{c} \coloneqq \sum_{i \in \mathsf{Ob}(\mathcal{C})} y^{\mathcal{C}[i]}$$

where C[i] is the set of morphisms in C that emanate from i.

- The counit ϵ : $\mathfrak{c} \to y$ assigns to each object an identity.
- The comult δ : $\mathfrak{c} \to \mathfrak{c} \triangleleft \mathfrak{c}$ assigns codomains and composites.

¹Ahman-Uustalu. "Directed Containers as Categories". MSFP 2016.

We can understand the Ahman-Uustalu result combinatorially.

■ Let (c, ϵ, δ) be a comonoid, where $\epsilon : c \to y$ and $\delta : c \to c \triangleleft c$.

Here's the first unitality law, $(id_c \triangleleft \epsilon) \circ \delta = id_c$:

We can understand the Ahman-Uustalu result combinatorially.

■ Let (c, ϵ, δ) be a comonoid, where $\epsilon : c \to y$ and $\delta : c \to c \triangleleft c$.

Here's the first unitality law, $(id_c \triangleleft \epsilon) \circ \delta = id_c$:

Equation: $\forall i \in c(1)...$

We can understand the Ahman-Uustalu result combinatorially.

■ Let (c, ϵ, δ) be a comonoid, where $\epsilon : c \to y$ and $\delta : c \to c \triangleleft c$.

Here's the first unitality law, $(id_c \triangleleft \epsilon) \circ \delta = id_c$:

Equation: $\forall i \in c(1), \delta_1(i) = i \land ...$

We can understand the Ahman-Uustalu result combinatorially.

■ Let (c, ϵ, δ) be a comonoid, where $\epsilon : c \to y$ and $\delta : c \to c \triangleleft c$.

Here's the first unitality law, $(id_c \triangleleft \epsilon) \circ \delta = id_c$:

Equation: $\forall i \in c(1), \delta_1(i) = i \land \forall f \in c[i],$

We can understand the Ahman-Uustalu result combinatorially.

■ Let (c, ϵ, δ) be a comonoid, where $\epsilon : c \to y$ and $\delta : c \to c \triangleleft c$.

Here's the first unitality law, $(id_c \triangleleft \epsilon) \circ \delta = id_c$:

Equation: $\forall i \in c(1), \delta_1(i) = i \land \forall f \in c[i], \delta_i^{\sharp}(f, \epsilon^{\sharp}(\delta_2(f))) = f$.

Making sense of the results

We want to make sense of the set-theoretic equations from the abacus.

■ For example, we found out that $\delta_1(i) = i$ for all $i \in c(1)$, so...

■ To make sense of the other equations, let's rename ϵ^{\sharp} , δ_2 , and δ^{\sharp} .

Making sense of the results

We want to make sense of the set-theoretic equations from the abacus.

■ For example, we found out that $\delta_1(i) = i$ for all $i \in c(1)$, so...

- To make sense of the other equations, let's rename $\epsilon^{\sharp}, \delta_2$, and δ^{\sharp} .
- Namely, let's write idy := ϵ^{\sharp} , cod := δ_2 , and $\S := \delta^{\sharp}$.
 - Then the previous equation says: $f \circ idy(cod(f)) = f$.

Making sense of the results

We want to make sense of the set-theoretic equations from the abacus.

■ For example, we found out that $\delta_1(i) = i$ for all $i \in c(1)$, so...

- To make sense of the other equations, let's rename ϵ^{\sharp} , δ_2 , and δ^{\sharp} .
- Namely, let's write idy := ϵ^{\sharp} , cod := δ_2 , and $\S := \delta^{\sharp}$.
 - Then the previous equation says: $f \circ idy(cod(f)) = f$.
 - The other unitality eq'n gives: cod(idy(i)) = i and $idy(i) \stackrel{\circ}{,} f = f$.
 - The associativity eq'n gives: $cod(f \circ g) = cod(g)$ and $(f \circ g) \circ h = f \circ (g \circ h)$.

A brief glance at associativity

Let's fill it in and read off the abacus:

A brief glance at associativity

Let's fill it in and read off the abacus:

$$\begin{aligned} &\forall i \in c(1), i = i \land \\ &\forall f \in c[i], \operatorname{cod} f = \operatorname{cod} f \land \\ &\forall g \in c[\operatorname{cod} f], \operatorname{cod} g = \operatorname{cod} (f \circ g) \land \\ &\forall h \in c[\operatorname{cod} g], f \circ (g \circ h) = (f \circ g) \circ h. \end{aligned}$$

Comonoid maps are "cofunctors"

In **Poly**, comonoids are categories, but their morphisms aren't functors.

- A comonoid morphism $\varphi \colon \mathcal{C} \nrightarrow \mathcal{D}$ is called a *cofunctor*.
- It includes a **Poly** map on carriers. For each object $i \in \mathfrak{c}(1)$, we get:
 - lacksquare an object $j \coloneqq \varphi_1(i) \in \mathfrak{d}(1)$ and
 - for each emanating $f \in \mathfrak{d}[j]$, an emanating $\varphi_i^{\sharp}(f) \in \mathfrak{c}[i]$.
 - Rules: φ^{\sharp} preserves ids and comps, and φ_1 preserves cods.
- Denote this by $Cat^{\sharp} := Comon(Poly) = (cat'ys and cofunctors)$.

Comonoid maps are "cofunctors"

In **Poly**, comonoids are categories, but their morphisms aren't functors.

- A comonoid morphism $\varphi \colon \mathcal{C} \nrightarrow \mathcal{D}$ is called a *cofunctor*.
- It includes a **Poly** map on carriers. For each object $i \in \mathfrak{c}(1)$, we get:
 - lacksquare an object $j:=arphi_1(i)\in \mathfrak{d}(1)$ and
 - for each emanating $f \in \mathfrak{d}[j]$, an emanating $\varphi_i^{\sharp}(f) \in \mathfrak{c}[i]$.
 - Rules: φ^{\sharp} preserves ids and comps, and φ_1 preserves cods.
- Denote this by $\mathbf{Cat}^{\sharp} := \mathbf{Comon}(\mathbf{Poly}) = (\mathsf{cat'ys} \text{ and cofunctors}).$

Example: what is a cofunctor $C \stackrel{\varphi}{\nrightarrow} y^{\mathbb{Q}}$?

- It is trivial on objects $i \in Ob(C)$. Passing back morphisms gives:
- lacksquare ... a map $arphi_i^\sharp(q)\colon i o i_{+q}$ emanating from i for each $q\in\mathbb{Q}$, s.t....
- ... $\varphi_i^{\sharp}(0) = \mathrm{id}_i$, so $i_{+0} = i$, and $\varphi_i^{\sharp}(q) \, \S \, \varphi_{i+q}^{\sharp}(q') = \varphi_i^{\sharp}(q+q')$.

Comonoid maps are "cofunctors"

In **Poly**, comonoids are categories, but their morphisms aren't functors.

- A comonoid morphism $\varphi \colon \mathcal{C} \nrightarrow \mathcal{D}$ is called a *cofunctor*.
- It includes a **Poly** map on carriers. For each object $i \in \mathfrak{c}(1)$, we get:
 - lacksquare an object $j \coloneqq \varphi_1(i) \in \mathfrak{d}(1)$ and
 - for each emanating $f \in \mathfrak{d}[j]$, an emanating $\varphi_i^{\sharp}(f) \in \mathfrak{c}[i]$.
 - Rules: φ^{\sharp} preserves ids and comps, and φ_1 preserves cods.
- Denote this by $\mathbf{Cat}^{\sharp} := \mathbf{Comon}(\mathbf{Poly}) = (\mathsf{cat}'\mathsf{ys} \ \mathsf{and} \ \mathsf{cofunctors}).$

Example: what is a cofunctor $C \stackrel{\varphi}{\to} y^{\mathbb{Q}}$?

- It is trivial on objects $i \in Ob(C)$. Passing back morphisms gives:
- lacksquare ... a map $arphi_i^\sharp(q)\colon i o i_{+q}$ emanating from i for each $q\in\mathbb{Q}$, s.t....
- ... $\varphi_i^{\sharp}(0) = \mathrm{id}_i$, so $i_{+0} = i$, and $\varphi_i^{\sharp}(q) \, \S \, \varphi_{i_+q}^{\sharp}(q') = \varphi_i^{\sharp}(q+q')$.

"That's a strange sort of structure to put on a category!"

- Cofunctors offer a whole new world to explore. Think "vector fields".
- The natural co-transformations between them are even wilder.

Cat[‡]: examples and facts

Here are some examples of the polynomial $\mathfrak c$ carrying a category $\mathcal C$.

- c never has constant part: every object needs an outgoing arrow.
- $\mathfrak{c} = Oy$ is linear iff \mathcal{C} is a discrete category, with $\mathsf{Ob}(\mathcal{C}) = O$.
- $\mathbf{c} = y^M$ is representable iff $M \in \mathbf{Set}$ carries a monoid.
- If $C = \begin{bmatrix} 1 & 2 \\ \bullet & \to \end{bmatrix} \rightarrow \cdots \rightarrow \begin{bmatrix} N \\ \bullet \end{bmatrix}$ then $\mathfrak{c} = y^N + y^{N-1} + \cdots + y$.

Cat[‡]: examples and facts

Here are some examples of the polynomial $\mathfrak c$ carrying a category $\mathcal C$.

- c never has constant part: every object needs an outgoing arrow.
- $\mathfrak{c} = Oy$ is linear iff C is a discrete category, with $\mathsf{Ob}(C) = O$.
- $\mathfrak{c} = y^M$ is representable iff $M \in \mathbf{Set}$ carries a monoid.
- If $C = \begin{bmatrix} 1 & 2 & N \\ \bullet & \to \bullet & \to \cdots & \to \bullet \end{bmatrix}$ then $\mathfrak{c} = y^{N} + y^{N-1} + \cdots + y$.

Other facts about **Cat**[‡]:

- Coproducts in Cat^{\sharp} and in Cat agree; carrier is $\mathfrak{c} + \mathfrak{d}$.
- Cat[#] has finite products (Niu), and they're very interesting.
- \mathbf{Cat}^{\sharp} inherits \otimes from \mathbf{Poly} , and $\mathfrak{c} \otimes \mathfrak{d}$ is the usual categorical product.

Cofree comonoids

To any polynomial p, we can associate the *cofree comonoid* on p.

- That is, the forgetful functor $\mathbf{Cat}^{\sharp} \to \mathbf{Poly}$ has a right adjoint.
- I'll give an explicit description on the next slide.
- There's a standard construction for this type of thing.

We need a polynomial \mathfrak{c}_p and maps $\mathfrak{c}_p \to y$ and $\mathfrak{c}_p \to \mathfrak{c}_p \triangleleft \mathfrak{c}_p$.

Cofree comonoids

To any polynomial p, we can associate the *cofree comonoid* on p.

- That is, the forgetful functor $\mathbf{Cat}^{\sharp} \to \mathbf{Poly}$ has a right adjoint.
- I'll give an explicit description on the next slide.
- There's a standard construction for this type of thing.

We need a polynomial \mathfrak{c}_p and maps $\mathfrak{c}_p \to y$ and $\mathfrak{c}_p \to \mathfrak{c}_p \triangleleft \mathfrak{c}_p$.

- Starting with $p \in \mathbf{Poly}$, we first copoint it by multiplying by y.
- \blacksquare That is, py is the universal thing mapping to p and y.
- We get \mathfrak{c}_p by taking the limit of the following diagram in **Poly**:

$$\mathfrak{c}_p := \lim \left(y \longleftarrow py \longleftarrow py \triangleleft py \Longleftarrow py \triangleleft py \triangleleft py \longleftarrow \right)$$

Cofree comonoids

To any polynomial p, we can associate the *cofree comonoid* on p.

- That is, the forgetful functor $\mathbf{Cat}^{\sharp} \to \mathbf{Poly}$ has a right adjoint.
- I'll give an explicit description on the next slide.
- There's a standard construction for this type of thing.

We need a polynomial \mathfrak{c}_p and maps $\mathfrak{c}_p \to y$ and $\mathfrak{c}_p \to \mathfrak{c}_p \triangleleft \mathfrak{c}_p$.

- Starting with $p \in \mathbf{Poly}$, we first copoint it by multiplying by y.
- \blacksquare That is, py is the universal thing mapping to p and y.
- We get c_p by taking the limit of the following diagram in **Poly**:

$$\mathfrak{c}_p := \lim \left(y \longleftarrow py \longleftarrow py \triangleleft py \Longleftarrow py \triangleleft py \triangleleft py \longleftarrow \right)$$

For us, a main use of \mathfrak{c}_p is an equivalence $\mathfrak{c}_p\text{-Set}\cong p\text{-Coalg}$.

- A coalgebra $S \to p(S)$ corresponds to $\mathfrak{c}_p \to \mathbf{Set}$ with elements S.
- For example, the object set $c_p(1)$ is the terminal *p*-coalgebra.

The cofree comonoid \mathfrak{c}_p via p-trees

Comonoids in **Poly** are categories, so \mathfrak{c}_p is a category; which one?

- It's actually free on a graph, but the graph is very interesting.
- The vertex-set $c_p(1)$ of the graph is the set of *p*-trees.
 - A *p*-tree is a possibly infinite tree *t*, where each node...
 - ...is labeled by a position $i \in p(1)$ and has p[i]-many branches.
 - Example object $t \in \mathfrak{c}_p(1)$, where $p = \{ ullet, ullet \} y^2 + \{ ullet \} \cong 2y^2 + 1$:

The cofree comonoid c_p via p-trees

Comonoids in **Poly** are categories, so \mathfrak{c}_p is a category; which one?

- It's actually free on a graph, but the graph is very interesting.
- The vertex-set $c_p(1)$ of the graph is the set of p-trees.
 - \blacksquare A *p*-tree is a possibly infinite tree *t*, where each node...
 - ...is labeled by a position $i \in p(1)$ and has p[i]-many branches.
 - Example object $t \in \mathfrak{c}_p(1)$, where $p = \{ \bullet, \bullet \} y^2 + \{ \bullet \} \cong 2y^2 + 1$:

- For any vertex $t \in \mathfrak{c}_p(1)$, an arrow $a \in \mathfrak{c}_p[t]$ emanating from t is...
- ...a finite path from the root of t to another node in t.
- Its codomain is the *p*-tree sitting at the target node (its root).
- Identity arrow = length-0 path; composition = path concatenation.

Imagine the whole graph c_p : every possible "destiny" is included.

Bicomodules in (Poly, y, \triangleleft)

categories

Given comonoids C, \mathcal{D} , a (C, \mathcal{D}) -bicomodule is another kind of map.

■ It's a polynomial m, equipped with two morphisms in **Poly**

$$\mathfrak{c} \triangleleft m \stackrel{\lambda}{\longleftarrow} m \stackrel{\rho}{\longrightarrow} m \triangleleft \mathfrak{d}$$

each cohering naturally with the comonoid structure ϵ, δ for $\mathfrak{c}, \mathfrak{d}$.

Bicomodules in $(Poly, y, \triangleleft)$

categories

Given comonoids C, \mathcal{D} , a (C, \mathcal{D}) -bicomodule is another kind of map.

 \blacksquare It's a polynomial m, equipped with two morphisms in **Poly**

$$\mathfrak{c} \triangleleft m \stackrel{\lambda}{\longleftarrow} m \stackrel{\rho}{\longrightarrow} m \triangleleft \mathfrak{d}$$

each cohering naturally with the comonoid structure ϵ, δ for $\mathfrak{c}, \mathfrak{d}$.

■ I denote this (C, \mathcal{D}) -bicomodule m like so:

$$\mathfrak{c} \stackrel{m}{\triangleleft} \mathfrak{d}$$
 or $\mathcal{C} \stackrel{m}{\triangleleft} \mathfrak{D}$

- The d's at the ends help me remember the how the maps go.
- Maybe it looks like it's going the wrong way, but hold on.

Bicomodules are parametric right adjoints

Garner explained² that bicomodules $m \in e \mathbf{Mod}_{\mathcal{D}}$, which we've denoted

$$C \stackrel{m}{\triangleleft} \mathcal{D}$$
 or $C \stackrel{m}{\triangleleft} \mathfrak{d}$

$$\mathfrak{c} \triangleleft \stackrel{m}{\longrightarrow} \mathfrak{d}$$

can be identified with parametric right adjoint functors (prafunctors)

$$\mathscr{D}$$
-Set $\xrightarrow{M} \mathscr{C}$ -Set.

²Garner's HoTTEST video, https://www.youtube.com/watch?v=tW6HYnqn6eI

Bicomodules are parametric right adjoints

Garner explained² that bicomodules $m \in {}_{\mathcal{C}}\mathbf{Mod}_{\mathcal{D}}$, which we've denoted

$$C \triangleleft \stackrel{m}{\longrightarrow} \mathcal{D}$$
 or $\mathfrak{c} \triangleleft \stackrel{m}{\longrightarrow} \mathfrak{d}$

$$\mathfrak{c} \triangleleft \stackrel{m}{\longrightarrow} \triangleleft i$$

can be identified with parametric right adjoint functors (prafunctors)

$$\mathscr{D}$$
-Set \xrightarrow{M} \mathscr{C} -Set.

- From this perspective the arrow points in the expected direction.
- Assuming Garner's result, check: $_{\mathcal{C}}\mathbf{Mod}_{0}\cong \mathcal{C}\text{-}\mathbf{Set}.$

²Garner's HoTTEST video, https://www.youtube.com/watch?v=tW6HYnqn6eI

Bicomodules are parametric right adjoints

Garner explained² that bicomodules $m \in {}_{\mathcal{C}}\mathbf{Mod}_{\mathfrak{D}}$, which we've denoted

$$C \stackrel{m}{\triangleleft} \mathcal{D}$$
 or $C \stackrel{m}{\triangleleft} \mathfrak{d}$

can be identified with parametric right adjoint functors (prafunctors)

$$\mathscr{D}$$
-Set \xrightarrow{M} \mathscr{C} -Set.

- From this perspective the arrow points in the expected direction.
- Assuming Garner's result, check: $_{\mathcal{C}}\mathbf{Mod}_0 \cong \mathcal{C}\text{-}\mathbf{Set}$.

Prafunctors $\mathcal{C} \longleftarrow \mathcal{D}$ generalize profunctors $\mathcal{C} \rightarrow \mathcal{D}$:

- A profunctor $\mathcal{C} \to \mathcal{D}$ is a functor $\mathcal{C} \to (\mathcal{D}\text{-Set})^{op}$
- A prafunctor $\mathcal{C} \longleftarrow \mathcal{D}$ is a functor $\mathcal{C} \rightarrow \mathbf{Coco}((\mathcal{D}\text{-}\mathbf{Set})^{\mathsf{op}})...$
- ...where **Coco** is the free coproduct completion.

²Garner's HoTTEST video, https://www.youtube.com/watch?v=tW6HYnqn6eI

Let's ask the abacus

To prove that bicomodules $\mathfrak{c} \triangleleft \stackrel{m}{\longleftarrow} \mathfrak{d}$ are prafunctors $\mathfrak{d} \mathbf{Mod}_0 \rightarrow \mathfrak{c} \mathbf{Mod}_0$:

■ Write out the bicomodule equations and run the abacus.

$$m \stackrel{\wedge}{\underset{m}{\longrightarrow}} m = m \stackrel{\downarrow}{\underset{id}{\longrightarrow}} m \quad \text{and} \quad m \stackrel{\wedge}{\underset{m}{\longrightarrow}} d \stackrel{\downarrow}{\underset{m}{\longrightarrow}} d = m \stackrel{\wedge}{\underset{id}{\longrightarrow}} m \stackrel{\wedge}{\underset{m}{\longrightarrow}} d \stackrel{\longrightarrow}{\underset{m}{\longrightarrow}} d \stackrel{\wedge}{\underset{m}{\longrightarrow}} d \stackrel{\wedge}{\underset{m}{\longrightarrow}} d \stackrel{\wedge}{\underset{m}{\longrightarrow}} d \stackrel{\longrightarrow$$

Interpreting the abacus

By running the abacus and interpreting the results, we find the following.

■ A left comodule $\mathfrak{c} \triangleleft m \stackrel{\lambda}{\leftarrow} m$ can be identified with a functor $\mathfrak{c} \to \mathbf{Poly}$.

$$m \cong \sum_{i \in \mathfrak{c}(1)} \sum_{x \in m_i} y^{m[x]}$$

- The right comodule conditions on $m \stackrel{\rho}{\rightarrow} m \triangleleft d$ say that each m[x] ...
- ... is not just a set, it's the set of elements for a copresheaf on 0!

Interpreting the abacus

By running the abacus and interpreting the results, we find the following.

■ A left comodule $\mathfrak{c} \triangleleft m \stackrel{\lambda}{\leftarrow} m$ can be identified with a functor $\mathfrak{c} \rightarrow \mathbf{Poly}$.

$$m \cong \sum_{i \in \mathfrak{c}(1)} \sum_{x \in m_i} y^{m[x]}$$

- The right comodule conditions on $m \stackrel{\rho}{\rightarrow} m \triangleleft d$ say that each m[x] ...
- $lue{}$... is not just a set, it's the set of elements for a copresheaf on $\mathfrak{d}!$

When we add the coherence condition, it all falls into place.

- The idea is that each $i \in \mathfrak{c}(1)$ functorially gets a set m_i and...
- ... each $x \in m_i$ gets a \mathfrak{d} -set with elements m[x].
- The prafunctor ϑ -**Set** \to \mathfrak{c} -**Set** associated to m takes any ϑ -set N, ...
- ... hom's in the m[x]'s, and adds them up to get a \mathfrak{c} -set.

We'll understand this better semantically when we get to applications.

Getting acquainted with bicomodules

Here are some facts, just to get you acquainted with $\mathfrak{c} \triangleleft \stackrel{m}{\longrightarrow} \mathfrak{d}$.

- If $\mathfrak{d} = 0$ then carrier $m \in \mathbf{Poly}$ is constant, i.e. m = M for $M \in \mathbf{Set}$.
- If carrier m = M is constant, then m factors as $\mathfrak{c} \triangleleft M \triangleleft 0 \triangleleft M \triangleleft 0$.

Getting acquainted with bicomodules

Here are some facts, just to get you acquainted with $\mathfrak{c} \triangleleft \stackrel{m}{\longrightarrow} \mathfrak{d}$.

- If $\mathfrak{d} = 0$ then carrier $m \in \mathbf{Poly}$ is constant, i.e. m = M for $M \in \mathbf{Set}$.
- If carrier m = M is constant, then m factors as $\mathfrak{c} \triangleleft M \triangleleft 0 \triangleleft M \triangleleft 0$.
- The following cat'ies are isomorphic and all are equivalent to c-Set:
 - Cartesian cofunctors over $\mathfrak{c} = \mathsf{Discrete}$ opfibrations over \mathfrak{c} .
 - The constant left c-comodules, i.e. with constant carrier m = M.
 - The linear left c-comodules, i.e. with linear carrier m = My.
 - The representable right c-comodules, i.e. with carrier y^M .

Bicomodule composition

If you've ever tried to compose prafunctors; this might look familiar.

But in **Poly**, it's just given by the usual bicomodule composition.

- The composite of $\mathfrak{c} \triangleleft \stackrel{m}{\longrightarrow} \mathfrak{d} \triangleleft \stackrel{n}{\longrightarrow} \mathfrak{e}$, is carried by the equalizer: $m \triangleleft_{\mathfrak{d}} n \xrightarrow{eq} m \triangleleft n \Longrightarrow m \triangleleft \mathfrak{d} \triangleleft n$
- This has a natural $(\mathfrak{c}, \mathfrak{e})$ -structure, because \triangleleft preserves conn. limits.
- It's amazing to see the combinatorics handle all this complexity.

The framed bicategory \mathbb{P}

Poly comonoids, cofunctors, and bicomodules form a framed bicategory \mathbb{P} .

$$\begin{array}{ccc}
\mathfrak{c} & \stackrel{m}{\longrightarrow} \mathfrak{d} \\
\varphi \downarrow & \downarrow_{\alpha} & \downarrow_{\psi} \\
\mathfrak{c}' & \stackrel{m}{\longrightarrow} \mathfrak{d}'
\end{array}$$

- It's got a ton of structure, e.g. two monoidal structures, $+, \otimes$.
- It's actually not too hard to describe.

Here are some facts about $_{\mathcal{C}}\mathbf{Mod}_{\mathcal{D}}$ for categories \mathcal{C},\mathcal{D} .

- $_{\mathcal{C}}$ Mod₀ \cong \mathcal{C} -Set, copresheaves on \mathcal{C} .
- $_1\mathsf{Mod}_{\mathscr{D}} \cong \mathsf{Coco}((\mathscr{D}\text{-Set})^{\mathsf{op}}).$

The framed bicategory \mathbb{P}

Poly comonoids, cofunctors, and bicomodules form a framed bicategory \mathbb{P} .

$$\begin{array}{ccc}
\mathbf{c} & \stackrel{m}{\longrightarrow} & \mathfrak{d} \\
\varphi \downarrow & & \downarrow \alpha & \downarrow \psi \\
\mathbf{c}' & \stackrel{m}{\longrightarrow} & \mathfrak{d}'
\end{array}$$

- It's got a ton of structure, e.g. two monoidal structures, $+, \otimes$.
- It's actually not too hard to describe.

Here are some facts about ${}_{\mathcal{C}}\mathbf{Mod}_{\mathcal{D}}$ for categories ${\mathcal{C}},{\mathcal{D}}$.

- $_{\mathcal{C}}$ Mod₀ \cong \mathcal{C} -Set, copresheaves on \mathcal{C} .
- $_1\mathsf{Mod}_{\mathscr{D}} \cong \mathsf{Coco}((\mathscr{D}\text{-Set})^{\mathsf{op}}).$
- $\mathbb{E}_{\mathcal{C}}\mathsf{Mod}_{\mathfrak{D}} \cong \mathsf{Cat}(\mathcal{C}, {}_{\mathbf{1}}\mathsf{Mod}_{\mathfrak{D}}).$

There's a factorization system on \mathbb{P} :

■ Every $m \in {}_{\mathfrak{c}}\mathbf{Mod}_{\mathfrak{d}}$ can be factored as $m \cong f \circ p$,

$$\mathfrak{c} \triangleleft \stackrel{f}{\longleftarrow} \triangleleft \mathfrak{c}' \triangleleft \stackrel{p}{\longleftarrow} \triangleleft \mathfrak{d}$$

where f "is" a discrete optibration and p "is" a profunctor.

Gambino-Kock's framed bicategory Poly

In Gambino-Kock, the authors construct a framed bicategory \mathbb{P} oly_{Set}.

- Its vertical category is Set.
- A horizontal map $I \rightarrow J$ is J-many polynomials in I-many variables.
- 2-cells are natural transformations between polynomial functors.

Gambino-Kock's framed bicategory Poly

In Gambino-Kock, the authors construct a framed bicategory Poly_{Set}.

- Its vertical category is **Set**.
- A horizontal map $I \rightarrow J$ is J-many polynomials in I-many variables.
- 2-cells are natural transformations between polynomial functors.

This is a full subcategory \mathbb{P} **oly** $\subseteq \mathbb{P}$.

- Objects in \mathbb{P} are categories; those in \mathbb{P} **oly** are the discrete categories.
- Verticals in \mathbb{P} are cofunctors; $\mathbf{Set}(I, I') \cong \mathbf{Cat}^{\sharp}(Iy, I'y)$.
- lacktriangle Horizontals in $\mathbb P$ are prafunctors; between discretes, these are poly's.
- In both, 2-cells are the natural transformations.

The comonoid theory \mathbb{P} of (one-variable) **Poly** includes all of \mathbb{P} **oly**.

Adjunctions in \mathbb{P}

The map $-\mathbf{Mod}_0 \colon \mathbb{P}^{op} \to \mathbb{C}\mathbf{at}$ is locally fully faithful; i.e....

- ...for categories C, \mathcal{D} , only some functors $m: \mathcal{D}\text{-Set} \to C\text{-Set}$ count...
- ... as bimodules $C \triangleleft \stackrel{m}{\longleftarrow} \circlearrowleft \mathcal{D}$, but for those m, n that do...
- ... the bimodule maps $m \Rightarrow n$ are exactly the natural transformations.

Thus it is easy to say when $C \Leftrightarrow^{m} \mathcal{D}$ has an adjoint in \mathbb{P} , namely if...

- ...the induced \mathcal{D} -Set \xrightarrow{m} \mathcal{C} -Set has an adjoint \mathcal{C} -Set $\xrightarrow{m'}$ \mathcal{D} -Set and...
- \blacksquare ... m' is in \mathbb{P} ! (i.e. the adjoint m' needs to preserve connected limits).

Adjunctions in \mathbb{P}

The map $_\mathbf{Mod}_0 \colon \mathbb{P}^{\mathsf{op}} \to \mathbb{C}\mathbf{at}$ is locally fully faithful; i.e....

- ...for categories C, \mathcal{D} , only some functors $m: \mathcal{D}\text{-Set} \to C\text{-Set}$ count...
- ... as bimodules $C \triangleleft \stackrel{m}{\longrightarrow} \emptyset$, but for those m, n that do...
- ... the bimodule maps $m \Rightarrow n$ are exactly the natural transformations.

Thus it is easy to say when $C \triangleleft \stackrel{m}{\longrightarrow} \emptyset$ has an adjoint in \mathbb{P} , namely if...

- ...the induced \mathcal{D} -Set \xrightarrow{m} \mathcal{C} -Set has an adjoint \mathcal{C} -Set $\xrightarrow{m'}$ \mathcal{D} -Set and...
- \blacksquare ... m' is in \mathbb{P} ! (i.e. the adjoint m' needs to preserve connected limits).

Both functors $C \xrightarrow{\mathcal{F}} \mathcal{D}$ and cofunctors $C \xrightarrow{\varphi} \mathcal{D}$ induce adjunctions in \mathbb{P}^{op} .

- The pullback and right Kan extension along F are adjoint $\Delta_F \dashv \Pi_F$.
- The companion and conjoint of φ are adjoint $\Sigma_{\varphi} \dashv \Delta_{\varphi}$.
- A dopf F is both a functor and a cofunctor, and the Δ 's coincide.

Note that cofunctors $\mathcal{C} \nrightarrow \mathcal{D}$ induce interesting maps between toposes:

- Whereas geometric morphisms C-Set $\leftrightarrows \mathcal{D}$ -Set preserve finite limits...
- ... cofunctors induce adjunctions that preserve connected limits.

Operads as monads in \mathbb{P}

In any framed bicategory, notation from \mathbb{P} , a monad $(\mathcal{C}, m, \eta, \mu)$ consists of

- An object *C*, the *type*
- \blacksquare a bicomodule $\mathcal{C} \triangleleft \stackrel{m}{\longleftarrow} \triangleleft \mathcal{C}$, the *carrier*
- a 2-cell η : id_c \Rightarrow m, the unit
- a 2-cell μ : $m \circ m \Rightarrow m$, the multiplication
- satisfying the usual laws.

Operads as monads in \mathbb{P}

In any framed bicategory, notation from \mathbb{P} , a monad $(\mathcal{C}, m, \eta, \mu)$ consists of

- An object *C*, the *type*
- \blacksquare a bicomodule $C \triangleleft \stackrel{m}{\longleftarrow} \triangleleft C$, the *carrier*
- \blacksquare a 2-cell η : id_c \Rightarrow m, the unit
- **a** 2-cell μ : $m \circ m \Rightarrow m$, the multiplication
- satisfying the usual laws.

In \mathbb{P} , these generalize operads in a number of ways:

- When $C \cong I$ is discrete, η, μ are cartesian, you get colored operads.³
- \blacksquare Relaxing discreteness of \mathcal{C} , the domain of a morphism can be...
- ... a diagram, rather than a mere set, of objects.
- Relaxing "iso" condition, composites and ids can have "weird" arities.

 $^{^3}$ Not quite the standard definition of operad, but no less elegant: the input to a morphism is a set, rather than a list of objects. You can also talk about standard (list-based) operads and their generalizations within the $\mathbb P$ setting; see Gambino-Kock.

"Categories = monads in \mathbb{S} pan" in \mathbb{P}

It is well-known that "categories are monads in \mathbb{S} **pan**." Let O be a set.

- A prafunctor Oy
 ightharpoonup Oy acts as a span iff it's a left adjoint.
- If a monad m has a right adjoint $Oy \Leftrightarrow^{c} Oy$, then c is a comonad.
- Now, since the vertical part of \mathbb{P} is already **Comon(Poly)**,
- lacksquare ... c has a canonical comonoid structure \mathfrak{c} , equipped with $\mathfrak{c} \nrightarrow Oy$.
- This map $\mathfrak{c} \nrightarrow Oy$ is identity on objects because c was right adjoint.
- Thus we see internally how m induces a category $\mathfrak c$ with object-set O.

"Categories = monads in \mathbb{S} pan" in \mathbb{P}

It is well-known that "categories are monads in \mathbb{S} **pan**." Let O be a set.

- A prafunctor Oy > m > Oy acts as a span iff it's a left adjoint.
- If a monad m has a right adjoint $Oy \Leftrightarrow^{c} Oy$, then c is a comonad.
- Now, since the vertical part of \mathbb{P} is already **Comon(Poly)**,
- $lue{}$... c has a canonical comonoid structure \mathfrak{c} , equipped with $\mathfrak{c} \nrightarrow Oy$.
- This map $\mathfrak{c} \nrightarrow Oy$ is identity on objects because c was right adjoint.
- Thus we see internally how m induces a category \mathfrak{c} with object-set O.

Here's how functors and cofunctors look in this perspective:

Grothendieck sites give P**-monads**

Every Grothendieck site (\mathcal{C}^{op}, J) has an associated monad m_J in \mathbb{P} .

- A J-sheaf is an m_J -algebra, but not all m_J -algebras are J-sheaves.
- An m_J -algebra gives formula for gluing, but no uniqueness guarantee.

Grothendieck sites give P**-monads**

Every Grothendieck site (C^{op}, J) has an associated monad m_J in \mathbb{P} .

- A *J*-sheaf is an m_J -algebra, but not all m_J -algebras are *J*-sheaves.
- An m_J -algebra gives formula for gluing, but no uniqueness guarantee.

To each Grothendieck top'y J, we need (m, η, μ) where $C \triangleleft \stackrel{m}{\smile} C$.

- The topology J assigns to each $V \in C$ a set J_V , "covering families"...
- ... and each $F \in J_V$ is assigned a subfunctor $S_F \subseteq C[V]$.
- From this data we define $m \in \mathbf{Poly}$:

$$m := \sum_{V \in \mathsf{Ob}(\mathcal{C})} \sum_{F \in J_V} y^{S_F}.$$

The Grothendieck top'y axioms endow the bimodule and monad structure.

Grothendieck sites give P**-monads**

Every Grothendieck site (C^{op}, J) has an associated monad m_J in \mathbb{P} .

- A *J*-sheaf is an m_J -algebra, but not all m_J -algebras are *J*-sheaves.
- An m_J -algebra gives formula for gluing, but no uniqueness guarantee.

To each Grothendieck top'y J, we need (m, η, μ) where $C \triangleleft \stackrel{m}{\longrightarrow} C$.

- The topology J assigns to each $V \in C$ a set J_V , "covering families"...
- ... and each $F \in J_V$ is assigned a subfunctor $S_F \subseteq C[V]$.
- From this data we define $m \in \mathbf{Poly}$:

$$m := \sum_{V \in \mathsf{Ob}(\mathcal{C})} \sum_{F \in J_V} y^{S_F}.$$

The Grothendieck top'y axioms endow the bimodule and monad structure.

An algebra structure $m \circ P \xrightarrow{h} P$ assigns a section $h_V(F,s) \in P_V$ to each V-covering family F and matching family s of sections.

Outline

- 1 Introduction
- 2 Theory
- **3** Applications
 - Interacting Moore machines
 - Mode-dependence
 - Databases
 - Cellular automata
 - Deep learning
- 4 Conclusion

Bringing the abacus out of the monastery

I hope it's now clear that we've got a well-oiled machine:

- **Poly** and \mathbb{P} have excellent formal properties, and
- we can see how they work using very concrete calculations.

Our next job is to take this shiny abacus out for a spin.

- How do I see **Poly** as appropriate for the Glass Bead Game?
- We can use this instrument to talk about many aspects of the world.

Moore machines

Definition

Given sets A, B, an (A, B)-Moore machine consists of:

- a set S, elements of which are called *states*.
- \blacksquare a function $r: S \to B$, called *readout*, and
- **a** a function $u: S \times A \rightarrow S$, called *update*.

It is *initialized* if it is equipped also with

an element $s_0 \in S$, called the *initial state*.

We refer to A as the *input set*, B as the *output set* of the Moore machine.

Moore machines

Definition

Given sets A, B, an (A, B)-Moore machine consists of:

- a set S, elements of which are called states,
- a function $r: S \to B$, called *readout*, and
- a function $u: S \times A \rightarrow S$, called *update*.

We refer to A as the input set, B as the output set of the Moore machine.

Dynamics: an (A, B)-Moore machine (S, r, u, s_0) is a "stream transducer":

- Given a list/stream $[a_0, a_1, \ldots]$ of A's...
- let $s_{n+1} := u(s_n, a_n)$ and $b_n := r(s_n)$.
- We thus have obtained a list/stream $[b_0, b_1, \ldots]$ of B's.

Moore machines as maps in Poly

We can understand Moore machines A - S - B in terms of polynomials.

- A Moore machine $r: S \to B$ and $u: S \times A \to S$ is:
 - A function $S \to B \times S^A$, i.e. a By^A -coalgebra.
 - lacktriangle (It can also be phrased as a polynomial map $Sy^S o By^A$.)

Moore machines as maps in Poly

We can understand Moore machines $A^{-\{S\}}B$ in terms of polynomials.

- A Moore machine $r: S \to B$ and $u: S \times A \to S$ is:
 - A function $S \to B \times S^A$, i.e. a By^A -coalgebra.
 - (It can also be phrased as a polynomial map $Sy^S o By^A$.)

A *p-coalgebra* allows different input-sets at different positions.

- For arbitrary $p \in \textbf{Poly}$ we can interpret a map $\varphi \colon S \to p \triangleleft S$ as:
 - a readout: every state $s \in S$ gets a position $i := \varphi_1(s) \in p(1)$
 - an update: for every direction $d \in p[i]$, a next state $\varphi_2(s,d) \in S$.

Moore machines as maps in Poly

We can understand Moore machines $A^{-(S)-B}$ in terms of polynomials.

- A Moore machine $r: S \to B$ and $u: S \times A \to S$ is:
 - A function $S \to B \times S^A$, i.e. a By^A -coalgebra.
 - (It can also be phrased as a polynomial map $Sy^S \to By^A$.)

A *p-coalgebra* allows different input-sets at different positions.

- For arbitrary $p \in \textbf{Poly}$ we can interpret a map $\varphi \colon S \to p \triangleleft S$ as:
 - a readout: every state $s \in S$ gets a position $i := \varphi_1(s) \in p(1)$
 - an update: for every direction $d \in p[i]$, a next state $\varphi_2(s,d) \in S$.

Even more general: a functor $S: \mathcal{C} \to \mathbf{Set}$ for any category \mathcal{C} .

- This generalizes the above, because p-Coalg $\cong \mathfrak{c}_p$ -Set.
- Imagine its elements (c,s) as states; each reads out its object $c \in \mathcal{C}$...
- ... and for any morphism $f: c \to c'$, it can be updated to (c', s.f).

We'll call any of these things dynamical systems.

Wiring diagrams

We can have a bunch of dynamical systems interacting in an open system.

Each box represents a monomial, e.g. $p_3 = Cy^{AB} \in \mathbf{Poly}$.

- The whole interaction, p_1 sending outputs to p_2 and p_3 , etc....
- ... is captured by a map of polynomials φ : $p_1 \otimes \cdots \otimes p_5 \rightarrow q$.
 - Given the positions (outputs) of each p_i , we get an output of q...
 - \blacksquare ... and when given an input of q, each p_i gets an input.

Wiring diagrams

We can have a bunch of dynamical systems interacting in an open system.

 (φ)

Each box represents a monomial, e.g. $p_3 = Cy^{AB} \in \mathbf{Poly}$.

- The whole interaction, p_1 sending outputs to p_2 and p_3 , etc....
 - ... is captured by a map of polynomials φ : $p_1 \otimes \cdots \otimes p_5 \to q$.
 - Given the positions (outputs) of each p_i , we get an output of q...
 - \blacksquare ... and when given an input of q, each p_i gets an input.
 - Now each subsystem can be endowed with a coalgebra $S_i \rightarrow p_i \triangleleft S_i$.
 - We tensor and compose to give $S \rightarrow q \triangleleft S$, where $S := S_1 \times \cdots \times S_5$.

So φ applied to dynamics in p_1, \ldots, p_5 gives dynamics in q.

More general interaction

The whole picture above represents one morphism in **Poly**.

- Let's suppose the company chooses who it wires to; this is its *mode*.
- Then both suppliers have interface Wy for $W \in \mathbf{Set}$.
- Company interface is $2y^W$: two modes, each of which is W-input.
- The outer box is just y, i.e. a closed system.

So the picture represents a map $Wy \otimes Wy \otimes 2y^W \rightarrow y$.

- That's a map $2W^2y^W \rightarrow y$.
- **E**quivalently, it's a function $2W^2 o W$. Take it to be evaluation.
- In other words, the company's choice determines which $w \in W$ it receives.

Other sorts of dynamical systems

Dynamical systems are usually defined as actions of a monoid T.

- Discrete: \mathbb{N} , reversible: \mathbb{Z} , real-time: \mathbb{R} .
- If T is a monoid and S is a set, a T-action on S is equivalently...
- \blacksquare ... a functor $S: T \to \mathbf{Set}$, as in our general definition above.

Other sorts of dynamical systems

Dynamical systems are usually defined as actions of a monoid T.

- Discrete: \mathbb{N} , reversible: \mathbb{Z} , real-time: \mathbb{R} .
- If T is a monoid and S is a set, a T-action on S is equivalently...
- ... a functor $S: T \rightarrow \mathbf{Set}$, as in our general definition above.

Summary: Poly can encode dynamical systems and rewiring diagrams.

One view on databases is that they're basically just copresheaves.

$$C := \begin{bmatrix} \mathsf{Mngr} & \xrightarrow{\mathsf{Employee}} & \xrightarrow{\mathsf{WorksIn}} & \mathsf{Department} \\ & & & \mathsf{Admin} \\ & & & \mathsf{Department}. \mathsf{Admin.WorksIn} = \mathsf{id}_{\mathsf{Department}} \end{bmatrix}$$

A functor $I: C \to \mathbf{Set}$ (i.e. $C \hookleftarrow 0$) can be represented as follows:

Employee	WorksIn	Mngr
Q	P9	0
T****	bLue	orca
orca	blue	orca

Department	Admin
bLue	T****
P9	\Diamond

One view on databases is that they're basically just copresheaves.

$$C := \begin{bmatrix} \mathsf{Mngr} & \xrightarrow{\mathsf{Employee}} & \xrightarrow{\mathsf{WorksIn}} & \mathsf{Department} \\ & & & \mathsf{Admin} & & \\ & & & \mathsf{Department.Admin.WorksIn} = \mathsf{id}_{\mathsf{Department}} \end{bmatrix}$$

A functor $I: \mathcal{C} \to \mathbf{Set}$ (i.e. $\mathcal{C} \hookleftarrow 0$) can be represented as follows:

Employee	WorksIn	Mngr
\triangle	P9	Ø
T****	bLue	orca
orca	bLue	orca

Department	Admin
bLue	T****
P9	\Diamond

But where's the data? What are the employees names, etc.?

One view on databases is that they're basically just copresheaves.

$$C := \begin{bmatrix} \mathsf{Mngr} & \xrightarrow{\mathsf{Employee}} & \xrightarrow{\mathsf{WorksIn}} & \mathsf{Department} \\ & & & \mathsf{Admin} \end{bmatrix}$$

$$\mathsf{Department.Admin.WorksIn} = \mathsf{id}_{\mathsf{Department}}$$

More realistically, data should include attributes and look like this:

Employee	FName	WorksIn	Mngr
Q	Alan	P9	\triangle
T****	Dani	bLue	orca
orca	Sara	bLue	orca

Department	DName	Secr
bLue	Sales	T****
P9	IT	\Diamond
	1	,

One view on databases is that they're basically just copresheaves.

$$C := \boxed{ \begin{array}{c} \mathsf{Mngr} & \overset{\mathsf{Employee}}{\longrightarrow} & \overset{\mathsf{WorksIn}}{\longleftarrow} & \mathsf{Department} \\ & & & \mathsf{Admin} \end{array}} \\ \\ \mathsf{Department.Admin.WorksIn} & = \mathsf{id}_{\mathsf{Department}} \\ \end{array}}$$

More realistically, data should include attributes and look like this:

Employee	FName	WorksIn	Mngr
G	Alan	P9	Δ
T****	Dani	bLue	orca
orca	Sara	bLue	orca

Department	DName	Secr
bLue	Sales	T****
P9	IT	\Diamond
	I	

- Assign a copresheaf $T: \mathsf{Ob}(\mathcal{C}) \to \mathbf{Set}$, e.g. $T(\mathsf{Employee}) = \mathsf{String}$.
- Using the canonical cofunctor $\mathcal{C} \nrightarrow \mathsf{Ob}(\mathcal{C})$, attributes are given by α :

$$\begin{array}{ccc}
C & & \downarrow & \downarrow & \downarrow \\
\downarrow & & \downarrow & \alpha & \downarrow \\
Ob(C) & & & \uparrow & \bullet
\end{array}$$

Data migration

The framed bicategory structure of \mathbb{P} is very useful in databases.

- We hinted at this in the last slide, adding attributes via a cofunctor.
- But so-called *data migration functors* are precisely prafunctors.

Data migration

The framed bicategory structure of \mathbb{P} is very useful in databases.

- We hinted at this in the last slide, adding attributes via a cofunctor.
- But so-called *data migration functors* are precisely prafunctors.

A prafunctor $C \triangleleft \stackrel{P}{\longleftarrow} \varnothing$ in $C Mod_{\varnothing}$ can be understood as follows.

- First, it's a functor $C \to {}_{\mathbf{1}}\mathbf{Mod}_{\mathcal{D}}$, so what's an object in ${}_{\mathbf{1}}\mathbf{Mod}_{\mathcal{D}}$?
- We said it's a formal coproduct of formal limits in 𝒯.
- **A** formal limit in \mathcal{D} is called a *conjunctive query* on \mathcal{D} .
- So a prafunctor $\mathbf{1} \overset{Q}{\longleftrightarrow} \mathcal{D}$ is a disjoint union of conjunctive queries.
- Let's call Q a duc-query on \mathcal{D} .

Data migration

The framed bicategory structure of \mathbb{P} is very useful in databases.

- We hinted at this in the last slide, adding attributes via a cofunctor.
- But so-called data migration functors are precisely prafunctors.

A prafunctor $C \triangleleft \stackrel{P}{\longleftarrow} \varnothing$ in $C Mod_{\varnothing}$ can be understood as follows.

- First, it's a functor $\mathcal{C} \to {}_{\mathbf{1}}\mathbf{Mod}_{\mathcal{D}}$, so what's an object in ${}_{\mathbf{1}}\mathbf{Mod}_{\mathcal{D}}$?
- lacktriangle We said it's a formal coproduct of formal limits in \mathcal{D} .
- **A** formal limit in \mathcal{D} is called a *conjunctive query* on \mathcal{D} .
- So a prafunctor $\mathbf{1} \triangleleft \bigcirc \bigcirc \bigcirc$ is a disjoint union of conjunctive queries.
- Let's call Q a duc-query on \mathcal{D} .

Example: if
$$\mathcal{D} = \begin{pmatrix} \mathsf{City} & \mathsf{in} & \mathsf{State} & \mathsf{in} & \mathsf{County} \\ \bullet & \bullet & \bullet & \bullet \end{pmatrix}$$
, a duc-query might be...

$$(\mathsf{City} \times_{\mathsf{State}} \mathsf{City}) + (\mathsf{City} \times_{\mathsf{State}} \mathsf{County}) + (\mathsf{County} \times_{\mathsf{State}} \mathsf{County})$$

A general bimodule $P \in {}_{\mathcal{C}}\mathbf{Mod}_{\mathcal{D}}$ is a ${}_{\mathcal{C}}$ -indexed duc-query on ${}_{\mathcal{D}}$.

Cellular automata

Cellular automata are like Moore machines, except with no internal state.

■ Here's a picture of a *glider* from Conway's Game of Life:

Cellular automata

Cellular automata are like Moore machines, except with no internal state.

■ Here's a picture of a *glider* from Conway's Game of Life:

- GoL takes place on a grid, a set $V := \mathbb{Z} \times \mathbb{Z}$ of "squares"
- Each square has neighbors; think of the grid as a graph $A \rightrightarrows V$.
- Each square can be in one of two states: white or black.

Cellular automata

Cellular automata are like Moore machines, except with no internal state.

■ Here's a picture of a *glider* from Conway's Game of Life:

- GoL takes place on a grid, a set $V := \mathbb{Z} \times \mathbb{Z}$ of "squares"
- Each square has neighbors; think of the grid as a graph $A \rightrightarrows V$.
- Each square can be in one of two states: white or black.
- The state at any square is updated according to a formula, e.g.
 If the square is and has 2 or 3 neighbors, it stays ■.
 If the square is □ and has 3 neighbors, it turns ■.
 Otherwise it turns / remains □.

Cellular automata as algebras in ${\mathbb P}$

How do we encode this in \mathbb{P} ?

- We encode the graph $A \rightrightarrows V$ as a prafunctor $Vy \stackrel{g}{\longleftarrow} \bigvee Vy$
 - Each $v \in V$ queries its neighbors (and itself).
 - The carrier of the prafunctor for GoL is $g := Vy^9$.
 - In fact, g's a profunctor: it preserves the terminal, $(g \circ V) \cong V$.

Cellular automata as algebras in ${\mathbb P}$

How do we encode this in \mathbb{P} ?

- lacktriangle We encode the graph A
 ightrightarrows V as a prafunctor Vy
 ightharpoonup Vy
 - Each $v \in V$ queries its neighbors (and itself).
 - The carrier of the prafunctor for GoL is $g := Vy^9$.
 - In fact, g's a profunctor: it preserves the terminal, $(g \circ V) \cong V$.
- We encode the color-set for each node as a prafunctor $Vy \triangleleft \stackrel{\mathcal{C}}{\longleftarrow} 0$
 - In GoL, each $v \in V$ gets the set 2; i.e. C := 2V.
- We encode the update formula as a map u of prafunctors

Cellular automata as algebras in ${\mathbb P}$

How do we encode this in \mathbb{P} ?

- We encode the graph $A \rightrightarrows V$ as a prafunctor $Vy \hookleftarrow Vy$
 - Each $v \in V$ queries its neighbors (and itself).
 - The carrier of the prafunctor for GoL is $g := Vy^9$.
 - In fact, g's a profunctor: it preserves the terminal, $(g \circ V) \cong V$.
- We encode the color-set for each node as a prafunctor $Vy \triangleleft \stackrel{\mathcal{C}}{\longleftarrow} 0$
 - In GoL, each $v \in V$ gets the set 2; i.e. C := 2V.
- \blacksquare We encode the update formula as a map u of prafunctors
- And we encode the initial color setup as a point $V \stackrel{i}{\rightarrow} C$:

From here you can iteratively "run" the cellular automaton.

Running the cellular automaton

Use that $Vy \triangleleft \stackrel{V}{\smile} \triangleleft$ 0 is terminal and $Vy \triangleleft \stackrel{g}{\smile} \triangleleft$ Vy preserves terminals.

What is deep learning?

In Backprop as functor⁴ "deep learning" is expressed in terms of SMCs.

- Objects are Euclidean spaces \mathbb{R}^n ; monoidal product is \times .
- A morphism $\mathbb{R}^m \leadsto \mathbb{R}^n$ consists of
 - Another Euclidean space \mathbb{R}^p , parameter space,
 - A function $I: \mathbb{R}^p \times \mathbb{R}^m \to \mathbb{R}^n$, implement
 - A function $U: \mathbb{R}^p \times \mathbb{R}^m \times \mathbb{R}^n \to \mathbb{R}^p \times \mathbb{R}^m$, update and backprop
- Explanation:
 - The update takes an (inp, outp) pair and updates the parameter.
 - Without backprop, morphism composition cannot be defined.

⁴Fong, B; Spivak, DI; Tuyéras, R. "Backprop as functor". *LICS 2019*.

What is deep learning?

In Backprop as functor⁴ "deep learning" is expressed in terms of SMCs.

- Objects are Euclidean spaces \mathbb{R}^n ; monoidal product is \times .
- A morphism $\mathbb{R}^m \leadsto \mathbb{R}^n$ consists of
 - Another Euclidean space \mathbb{R}^p , parameter space,
 - A function $I: \mathbb{R}^p \times \mathbb{R}^m \to \mathbb{R}^n$, implement
 - A function $U: \mathbb{R}^p \times \mathbb{R}^m \times \mathbb{R}^n \to \mathbb{R}^p \times \mathbb{R}^m$, update and backprop
- Explanation:
 - The update takes an (inp, outp) pair and updates the parameter.
 - Without backprop, morphism composition cannot be defined.
- \blacksquare Typically, I and U have very particular forms.
 - *I* is usu. a composite of linear maps and logistic-like maps.
 - U is usu. gradient descent along a "loss covector" $\ell \in T^*(\mathbb{R}^n) \cong \mathbb{R}^n$.

⁴Fong, B; Spivak, DI; Tuyéras, R. "Backprop as functor". LICS 2019.

Deep learning in Poly

The best-known methods use calculus, but the structure is set-theoretic.

$$\mathbf{Learn}(A,B) \coloneqq \{(P,I,U) \mid P \in \mathbf{Set}, I \colon P \times A \to B, U \colon P \times A \times B \to P \times A\}$$

We can see this inside of **Poly**:

Learn
$$(A, B) \cong [Ay^A, By^B]$$
-Coalg

That is, it's the cat'y of dynamical systems in $[Ay^A, By^B]$, where recall

$$[Ay^A, By^B] \cong \sum_{\varphi \colon Ay^A \to By^B} y^{AB}$$

An (A, B)-learner is thus a set P and a map $P \to [Ay^A, By^B] \triangleleft P$.

Learners' languages

For any polynomial p, the category p-Coalg forms a topos.

- Indeed, letting \mathfrak{c}_p be the cofree comonoid on p,...
- ...there is an equivalence p-Coalg $\cong \mathfrak{c}_p$ -Set.
- Since c_p is free on a graph, c_p -**Set** is about as easy as toposes get.

Learners' languages

For any polynomial p, the category p-Coalg forms a topos.

- Indeed, letting \mathfrak{c}_p be the cofree comonoid on p,...
- ...there is an equivalence p-Coalg $\cong \mathfrak{c}_p$ -Set.
- Since \mathfrak{c}_p is free on a graph, \mathfrak{c}_p -**Set** is about as easy as toposes get.

In particular, the topos p-Coalg has an internal type theory and logic.

- The logic describes constraints on dynamical systems.
- A proposition ϕ is any subobject of the terminal *p*-coalgebra:
- **a** a set ϕ of *p*-trees where if $t \in \phi$ then so is the subtree at any node.

Learners' languages

For any polynomial p, the category p-Coalg forms a topos.

- Indeed, letting \mathfrak{c}_p be the cofree comonoid on p,...
- ...there is an equivalence p-Coalg $\cong \mathfrak{c}_p$ -Set.
- Since \mathfrak{c}_p is free on a graph, \mathfrak{c}_p -**Set** is about as easy as toposes get.

In particular, the topos *p*-**Coalg** has an internal type theory and logic.

- The logic describes constraints on dynamical systems.
- A proposition ϕ is any subobject of the terminal p-coalgebra:
- **a** a set ϕ of *p*-trees where if $t \in \phi$ then so is the subtree at any node.

Gradient descent-backprop is a proposition in $[\mathbb{R}^m y^{\mathbb{R}^m}, \mathbb{R}^n y^{\mathbb{R}^n}]$ -Coalg.

- That is, it is a constraint on $(\mathbb{R}^m, \mathbb{R}^n)$ -learners.
- It has a very particular flavor: it can be checked in one timestep.

But the logic is much more expressive. We'll leave that for a later time.

Outline

- **1** Introduction
- 2 Theory
- **3** Applications
- **4** Conclusion
 - Summary

Summary

Poly is a category of remarkable abundance.

- It's completely combinatorial.
 - Calculations using "the abacus" are concrete.
 - Much is already familiar, e.g. $(y+1)^2 \cong y^2 + 2y + 1$.
- It's theoretically beautiful.
 - Comonoids are categories.
 - Coalgebras are copresheaves.
- It's got a wide scope of applications.
 - Databases and data migration.
 - Dynamical systems and cellular automata.
 - Deep learning and its generalizations.

Thank you for your time; questions and comments welcome.