

Bambordé Baldé | Co-Founder at Zaiku Group | Twitter: @zaikubalde • zaikugroup.com • December 11, 2020

Lecture Agenda Summary

- 1. Pre-Lecture Comments
- 2. Axiom #1 Recap
- 3. Normalised vectors
- 4. Orthogonal Vectors
- 5. Orthonormal Bases
- 6. Separable Hilbert space

Part A

- 1. LFs Induced by the Inner Product (Bras!)
- 2. The Dual Space
- 3. Riesz Representation Theorem
- 4. Study Material Comments

Part B

Foundation Module Review

Rings and Fields 101 **Matrix Algebra Quantum Operators + Composite Systems** #1 #2 #3 **Finite dim. Hilbert Spaces Group Theory 101 Linear Operators 101** #2 #1 #2 **Complex Vector spaces 101 Matrix Groups 101: U(2) + SU(2) Naive Set Theory Overview** #2 #2 #1

Completed ____

Ongoing | #n is the number of live lectures

January 2021 Calendar

Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
				1	2
4	5	6	7	8	9
11	12	13	14	15	16
18	19	20	21	22	23
25	26 Australia Day	27	28	29	30
	11	4 5 11 12 18 19 25 26	4 5 6 11 12 13 18 19 20 25 26 27	4 5 6 7 11 12 13 14 18 19 20 21 25 26 27 28	4 5 6 7 8 11 12 13 14 15 18 19 20 21 22 25 26 27 28 29

PART A

Complex Hilbert space

Definition (1.0)

A complex Hilbert space is vector space over \mathbb{C} denoted \mathcal{H} with an inner product $\langle \cdot, \cdot \rangle$ that induces a complete norm $\| \cdot \|$.

- Hence, by definition a Hilbert space is a Banach space in respect to the induced norm.
- $ightharpoonup \mathbb{C}^n$ is obvious examples of complex Hilbert spaces! Indeed any finite dimensional complex Hilbert space \mathcal{H} of dimension n is unitarily equivalent (isomorphic) to \mathbb{C}^n !
- ► Hilbert spaces are often presented as the rock stars of quantum formalism. In reality, Banach spaces also play a very important role in the formalism e.g. the C*-algebra of bounded operators is a Banach space.
- Is a Banach space necessarily a Hilbert space?

The Axioms of Quantum Mechanics

Axiom 1: The states of quantum systems are modelled by **normalised vectors** on **separable complex Hilbert spaces**.

- So to understand what the axiom is telling us mathematically, we need to know the meaning of the following Jargons:
- 1. Normalised vectors
- 2. Separable Hilbert space
- As previously mentioned, the axiom is actually referring to what physicists call 'pure states'. There are also the so-called mixed states!
- These normalised vectors representing the states of physical systems are called 'state vectors'.

Normalised Vectors

Definition (1.1)

A vector $\psi \in \mathcal{H}$ is said to be normalised if $\|\psi\| = 1$ where the norm $\|\cdot\|$ is of course induced by the inner product $\langle\cdot,\cdot\rangle$ on \mathcal{H} .

- ▶ Hence, definition demystifies one of the jargons in axiom 1!
- Why the requirement for normalised state vectors? As course break challenge, try research or ask a physicist why the normalised state vectors matter!
- ho $\mathcal{H}=\mathbb{C}^2$ then $|0\rangle=egin{pmatrix}1\\0\end{pmatrix}$ and $|1\rangle=egin{pmatrix}0\\1\end{pmatrix}$ are both normalised?
- Which of the following vectors are normalised? Are they all normalised?

$$\psi_1 = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}$$
, $\psi_2 = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{i}{\sqrt{2}} \end{pmatrix}$, $\psi_3 = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} \end{pmatrix}$ and $\psi_4 = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{-i}{\sqrt{2}} \end{pmatrix}$.

Orthogonal Vectors

Definition (1.2)

Two vectors $\psi_1, \psi_2 \in \mathcal{H}$ are said to be orthogonal if $\langle \psi_1, \psi_2 \rangle = 0$.

- Authors often write $\psi_1 \perp \psi_2$ to denote that ψ_1 and ψ_2 are orthogonal.
- ▶ If $\mathcal{H} = \mathbb{C}^2$ then $|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $|1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ are orthogonal?

Definition (1.3)

Let W be a linear subspace of \mathcal{H} . The orthogonal compliment of W is defined as $W^{\perp} = \{ \psi \in \mathcal{H} \mid \langle \psi, \Phi \rangle = 0 \text{ for all } \Phi \in W \}.$

Proposition (1.0)

Let W be a linear subspace of \mathcal{H} . Then the following is true:

- 1. W^{\perp} is a linear subspace of \mathcal{H} .
- 2. $(W^{\perp})^{\perp} = W$.
- Why do physicists want state vectors that are orthogonal? As course break challenge, try research or ask a physicist why orthogonal state vectors matter!

Orthonormal Bases

Definition (1.4)

A basis $B = \{e_1, e_2, \dots, e_n\}$ of \mathcal{H} is said to be an orthonornal basis in \mathcal{H} if $||e_i|| = 1$ for all $i \in \{1, \dots, n\}$ and $\langle e_i, e_j \rangle = 0$ for all $i \neq j$ i.e. any two distinct elements of B are orthogonal.

- Often authors write 'ON' as abbreviation for the word 'orthonormal' and so you may hear the term 'ON basis'!
- Let $\mathcal{H}=\mathbb{C}^2$ and $B=\left\{|0\rangle,|1\rangle\right\}$. Then B is an orthonormal basis in \mathbb{C}^2 right?
- Are there more orthonormal bases in \mathbb{C}^2 other than B? As homework challenge, you are encouraged to find them!
- Since a Hilbert space has more than just the linear structure, the actual underlying bases are technically known as 'Schauder' bases as oppose to 'Hamel' bases!

Separable Hilbert Space

Definition (1.5)

A Hilbert space \mathcal{H} is said to be separable if it has a countable ON basis $B = \{e_1, e_2, \dots, e_n\}$.

- ightharpoonup Hence, it's trivial to prove that \mathbb{C}^n is a separable Hilbert space!
- ▶ It can be proved that if $B = \{e_1, e_2, ..., e_n\}$ is an ON basis in \mathcal{H} , then the following are equivalent:
- 1. $\psi = \sum_{i=1}^{n} \langle e_i, \psi \rangle e_i$ for all $\psi \in \mathcal{H}$.
- 2. $\langle e_i, \psi \rangle = 0$ for all i iff $\psi = 0_{\mathcal{H}}$.
- 3. $\|\psi\|^2 = \sum_{i=1}^n \|\langle e_i, \psi \rangle\|^2$ for all $\psi \in \mathcal{H}$.
- This marks the end of the axiom 1 jargons that we needed to decode right:
- Normalised vectors
- 2. Separable Hilbert space
- As homework challenge, you are encouraged to research why separable Hilbert spaces are required for the quantum formalism.
- Interestingly, just like any finite dimensional Hilbert space is isomorphic to \mathbb{C}^n . It turns out that any infinite dimensional separable complex Hilbert space is unitarily equivalent to $l^2(\mathbb{N})!$

PART B

Linear Functionals Induced by the Inner Product

Definition (1.6)

For any $\psi \in \mathcal{H}$ we can construct a map $L_{\psi} : \mathcal{H} \longrightarrow \mathbb{C}$ induced by the inner product as $L_{\psi}\Phi = \langle \psi, \Phi \rangle$ for all $\Phi \in \mathcal{H}$.

Proposition (1.1)

For all $\psi \in \mathcal{H}$, $L_{\psi} : \mathcal{H} \longrightarrow \mathbb{C}$ is a linear map (aka linear functional).

Proof: Homework challenge?

- Physicists normally write $\langle \psi |$ to denote L_{ψ} and call it 'bra'!
- Physicists also use the Dirac notation e.g. place Φ inside the ket to get $|\Phi\rangle$. Then the action of the bra $\langle\psi|$ on the ket $|\Phi\rangle$ becomes $\langle\psi||\Phi\rangle$. This is the standard inner product notation for physicists i.e. they replace $\langle\psi,\Phi\rangle$ with $\langle\psi||\Phi\rangle$ which they further abbreviate as $\langle\psi|\Phi\rangle$!
- We know that given an ON basis $B=\{e_1,e_2,\ldots,e_n\}$ in $\mathcal H$, then $\psi=\sum_{i=1}^n\langle e_i,\psi\rangle e_i$ for all $\psi\in\mathcal H$. Using the Dirac notation, the expression becomes: $|\psi\rangle=\sum_{i=1}^n\langle e_i|\psi\rangle|e_i\rangle$
- Which of the above expressions is cleaner for you?
- What is the Kernel of $\langle \psi | ?$ It's a linear subspace of \mathcal{H} of course. But do you notice anything interesting about $\text{Ker}(\langle \psi |)?$

Concrete Representation of Bras

- If $\mathcal{H}=\mathbb{C}^n$ and $|\psi\rangle=\begin{pmatrix}x_1\\x_2\\\vdots\\x_n\end{pmatrix}$. Then the concrete representation
 - of its bra becomes the row matrix $\langle \psi | = \begin{pmatrix} x_1^* & x_2^* & \dots & x_n^* \end{pmatrix}$.
- ► The action $\langle \psi | | \psi \rangle$ is then just the matrix multiplication i.e. multiplication of the row matrix (bra) with the column matrix (ket).

The Dual Space

Definition (1.7)

The set of all linear functionals $L: \mathcal{H} \to \mathbb{C}$ is called the dual space of \mathcal{H} and it's usually denoted \mathcal{H}^* .

Check out the previous session's study material recommendation on dual spaces: **3F: Duality (pages 101 - 113)**.

Theorem (Riesz Representation)

Let \mathcal{H} be a Hilbert space and $L \in \mathcal{H}^*$. Then there exists a unique $\psi \in \mathcal{H}$ such that $L = \langle \psi, \cdot \rangle$ i.e. $L\Phi = \langle \psi, \Phi \rangle$ for all $\Phi \in \mathcal{H}$.

Proof: See study material (188)!

▶ The theorem above is very handy as it establishes a linear isomorphism $\mathcal{H}^* \simeq \mathcal{H}$ and so $\dim(\mathcal{H}^*) = \dim(\mathcal{H})!$

Prof. Sheldon Axler

Where should you focus?

6.B: Orthonormal Bases (180 - 192)

6.C: Orthogonal Complements (193 - 202)

- GitHub (Curated study materials): github.com/quantumformalism
- YouTube: youtube.com/zaikugroup
- Twitter: @ZaikuGroup
- Gitter: gitter.im/quantumformalism/community

