MULTIPLE COMPARISONS AND CONTRASTS

RECAP

- Oneway ANOVA with model comparison approach
 - $E_r E_f = SS_{Between}$
 - SS_{Between} = differences in means
 - SS_{Within} = individual differences + random error
- Effect sizes
 - Eta-squared rules of thumb:
 - .01 .059 = small
 - .06 .139 = medium
 - >.14 = large
 - PRE rules of thumb:
 - 0 .1 = small/weak
 - .1 .4 = medium/moderate
 - >.4 = large/strong

INTRODUCTION TO MULTIPLE COMPARISONS

WHEN COMPARING MORE THAN TWO GROUPS...

• $H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4$ •

Omnibus

- The alternative hypothesis is NOT...
 - $H_A: \mu_1 \neq \mu_2 \neq \mu_3 \neq \mu_4$
 - H_A : $\mu_1 \neq \mu_2 = \mu_3 = \mu_4$

T-TESTS VERSUS ONE-WAY ANOVA

You could run separate t-tests comparing any two of the four groups

$\mu_1 \neq \mu_2$	$\mu_{2} \neq \mu_{3}$	$\mu_3 \neq \mu_4$
$\mu_1 \neq \mu_3$	$\mu_2 \neq \mu_4$	
$\mu_1 \neq \mu_4$		

Number of tests would be a(a-1)/2

FAMILY-WISE ERROR

- Estimate the Type I error rate across all tests
- I (I α)^{a(a-1)/2} = the family wise error rate
- $1 (.95)^6 = 1 .735 = .265$

WE ARE FAMILY

• Here we have chosen an "obvious" family of tests

$\mu_1 \neq \mu_2$	$\mu_{2} \neq \mu_{3}$	$\mu_{3} \neq \mu_{4}$
$\mu_1 \neq \mu_3$	$\mu_2 \neq \mu_4$	
$\mu_1 \neq \mu_4$		

WE ARE FAMILY

• Here we have chosen an "obvious" family of tests

$\mu_{\mathbf{l}} \neq \mu_{2}$	
$\mu_1 \neq \mu_3$	
$\mu_1 \neq \mu_4$	

WE ARE FAMILY

• Here we have chosen an "obvious" family of tests

$\mu_1 \neq \mu_2$	$\mu_2 \neq \mu_3$	$\mu_3 \neq \mu_4$
$\mu_1 \neq \mu_3$	$\mu_2 \neq \mu_4$	
$\mu_1 \neq \mu_4$		
μ _ι Mean(μ		

MORE BROADLY...

- Some contend that the "family" of tests could mean...
 - All tests related to a specific research question, within a single study
 - All tests using the same data
 - All tests related to a specific research question, across all studies
 - All tests reported in a paper
 - Any of the above plus the tests that were run for that topic but not reported

- Thanksgiving is one of the bigger box office weekends of the year
- Far more important a research question than anything we have considered yet

Adam West	Michael Keaton	Christian Bale	Ben Affleck
2	3	I	4
3	I	2	4
4	3	ſ	2
4	3	I	2
2	3	I	4

Adam West	Michael Keaton	Christian Bale	Ben Affleck
2	3	I	4
3	I	2	4
4	3	I	2
4	3	I	2
2	3	I	4
Ybar = 3	2.6	1.2	3.2

	Value	Prediction	Error	Squared Error	
	2	2.5	5	0.25	
E_R	3	2.5	.5	0.25	
_K	4	2.5	1.5	2.25	
	4	2.5	1.5	2.25	
	2	2.5	5	0.25	
	3	2.5	.5	0.25	
	Į	2.5	-1.5	2.25	
	3	2.5	.5	0.25	E _R = 25
	3	2.5	.5	0.25	
	3	2.5	.5	0.25	
	l l	2.5	-1.5	2.25	
	2	2.5	5	0.25	
	I I	2.5	-1.5	2.25	
	I	2.5	-1.5	2.25	
	1	2.5	-1.5	2.25	
	4	2.5	1.5	2.25	
	4	2.5	1.5	2.25	
	2	2.5	5	0.25	
	2	2.5	5	0.25	
4/	4	2.5	1.5	2.25	

	V alue	Prediction	Error	Squared Error	
	2	3	-1	I	
	3	3	0	0	
	4	3	I	I	
	4	3	I	I	
	2	3	-1	I	
	3	2.6	0.4	0.16	
	I	2.6	-1.6	2.56	
	3	2.6	0.4	0.16	$E_{F} = 12.8$
	3	2.6	0.4	0.16	
	3	2.6	0.4	0.16	
	I	1.2	-0.2	0.04	
	2	1.2	0.8	0.64	
	1	1.2	-0.2	0.04	
	I	1.2	-0.2	0.04	
	l l	1.2	-0.2	0.04	
	4	3.2	0.8	0.64	
	4	3.2	0.8	0.64	
	2	3.2	-1.2	1.44	
	2	3.2	-1.2	1.44	
1	4	3.2	0.8	0.64	

 E_F

$$F = (E_R - E_F) / (df_R - df_F)$$
$$E_F / df_F$$

$$F = (25 - 12.8) / (19 - 16)$$

$$12.8 / 16$$

$$F = 5.083$$

Critical F(3, 16) = 2.462

WHAT DOES THIS TELL US?

- It doesn't answer the question the Internet was build for
- A priori versus post hoc comparisons

A PRIORIVS. POST HOC

- If a priori (planned ahead):
 - You could use a whole bunch of t-tests. But that doesn't limit the # of tests that you're running! So you get an inflated family wise error rate, and increase your chances of making a Type I error.
 - Rather than running a lot of t-test, you could use a planned contrast (see end of lecture)
 - Another option is to reduce your alpha for each comparison that you make (to compensate)
 - T-test + Bonferonni correction
 - Contrats (and maybe some bonferonni correction, but mostly contrasts alone) is the ideal
- What if you really don't know the outcome? Post-hoc tests!
 - Tukey
 - Scheffe

PAIRWISE VERSUS OTHER CONTRASTS

PAIRWISE

- Is Christian Bale ranked higher than Adam West?
- Is Ben Affleck ranked lowest of all Batmen?

CONTRAST

- Do Batmen from over 20 years ago rank lower than recent Batmen?
- Do people rank Michael Keaton as better than the average Batman?

IF YOU HAVE A SET OF TESTS...

- Bonferroni Correction
- If you have 6 planned tests, divide .05 evenly amongst the tests

T-TESTS

Batman I	Batman 2	T-test	P-value
Adam West	Michael Keaton	0.667	.524
	Christian Bale	3.674	.006
	Ben Affleck	-0.302	.771
Michael Keaton	Christian Bale	3.130	.014
	Ben Affleck	-0.949	.371
Christian Bale	Ben Affleck	-3.780	.005

Alpha level = .05 / 6 = .0083

IF YOU DIDN'T CORRECT FOR FAMILYWISE ERROR

Batman I	Batman 2	T-test	P-value
Adam West	Michael Keaton	0.667	.524
	Christian Bale	3.674	.006
	Ben Affleck	-0.302	.771
Michael Keaton	Christian Bale	3.130	.014
	Ben Affleck	-0.949	.371
Christian Bale	Ben Affleck	-3.780	.005

WHAT ISSUES MIGHT PRESENT WITH THE BONFERRONI ADJUSTMENT?

Perneger (1998; BMJ)

WHAT ISSUES MIGHT PRESENT WITH THE BONFERRONI ADJUSTMENT?

Perneger (1998, doi: 10.1136/bmj.316.7139.1236)

Summary points

- Adjusting statistical significance for the number of tests that have been performed on study data
 —the Bonferroni method—creates more problems than it solves
- The Bonferroni method is concerned with the general null hypothesis (that all null hypotheses are true simultaneously), which is rarely of interest or use to researchers
- The main weakness is that the interpretation of a finding depends on the number of other tests performed
- The likelihood of type II errors is also increased, so that truly important differences are deemed non-significant
- Simply describing what tests of significance have been performed, and why, is generally the best way of dealing with multiple comparisons

IF YOU ONLY CARE ABOUT PAIRWISE...

- Tukey's HSD (Honestly significant difference)
- What is the minimal difference between two means needed to declare something significantly different?

CALCULATING THE TUKEY

- What is the minimal difference between two means needed to declare something significantly different?
- Usually, we're looking for the q statistic, but we can rearrange the equation!

•
$$q = \frac{Mean \ 1 - Mean \ 2}{\sqrt{\frac{MS \ within}{N \ per \ group}}}$$

• Mean 1 – Mean 2 =
$$q\sqrt{\frac{MS \text{ within}}{N \text{ per group}}}$$

CALCULATING THE TUKEY

• Mean 1 – Mean 2 =
$$q\sqrt{\frac{MS \text{ within}}{N \text{ per group}}}$$

- MS within = .8
- N per group = 5
- Q = 4.05...get this from a table based on your df and number of groups (or me)
- Mean I Mean 2 = 1.62
- "the minimal difference between 2 means to declare something significantly different needs to be 1.62"

BACK TO THE DATA

Adam West	Michael Keaton	Christian Bale	Ben Affleck
Ybar = 3	2.6	1.2	3.2

BACK TO THE DATA

Adam West	Michael Keaton	Christian Bale	Ben Affleck
Ybar = 3	2.6	1.2	3.2

WHEN ALL ELSE FAILS...

- Scheffe test
- Benefits: Can be used for pairwise and/or other contrasts; often used with unequal sample sizes
- Downside: Ridiculously conservative
- Howell (2007)
 - "I can't imagine when I would ever use it, but I include it here because it is such a standard test"

GENERAL FORMULA FOR A CONTRAST

$$F = \frac{\psi^2}{MS_W \Sigma(c_j^2 / n_j)}$$

 ψ is our contrast c reflects the coefficients for that contrast

IS THERE A RECENCY EFFECT IN OUR DATA?

- Are current Batmen rated as better than past Batmen?
- H_0 : Average(Adam West and Michael Keaton) = Average(Christian Bale and Ben Affleck)
- H_A : Average(Adam West and Michael Keaton) \neq Average(Christian Bale and Ben Affleck)

DEFINING THE CONTRASTS

- First rule of contrasts: Coefficients must equal 0
- -.5(Adam West and Michael Keaton) vs. .5(Christian Bale and Ben Affleck)
- c's for the contrast: -.5 -.5 .5

CALCULATING ψ

Adam West	Michael Keaton	Christian Bale	Ben Affleck
Ybar = 3	2.6	1.2	3.2

- -.5(3) + -.5(2.6) + .5(1.2) + .5(3.2)
- ψ = -0.6

CALCULATING ψ

Adam West	Michael Keaton	Christian Bale	Ben Affleck
Ybar = 3	2.6	1.2	3.2
-0.5	-0.5	0.5	0.5

- ψ = -0.6
- 2.2 2.8

$$F = \frac{\psi^2}{MS_W \Sigma(c_j^2 / n_j)}$$

$$F = \frac{\psi^2}{MS_W \Sigma(c_j^2 / n_j)}$$

$$F = \frac{-0.6^2}{0.8 \Sigma[(-0.5^2 / 5) + (-0.5^2 / 5) + (0.5^2 / 5) + (0.5^2 / 5)]}$$

$$F = \frac{\psi^2}{MS_W \Sigma(c_j^2 / n_j)}$$

$$F = \frac{-0.6^2}{0.8 \Sigma[(-0.5^2 / 5) + (-0.5^2 / 5) + (0.5^2 / 5) + (0.5^2 / 5)]}$$

$$F = 2.25 \qquad \text{Critical F(1, 16)} = 4.49$$

Cannot reject H_0 that the average of $(\mu_3$ and $\mu_4)$ is different from average of $(\mu_1$ and $\mu_2)$

NEXT TIME

Twoway (factorial) ANOVA

- If your work is with neuroimaging, this is required reading for why multiple comparisons are a problem:
 - Bennett, C. M., Baird, A.A., Miller, M. B., & Wolford, G. L. (2010). Neural Correlates of Interspecies Perspective Taking in the Post-Mortem Atlantic Salmon: An Arugment For Proper Multiple Comparisons Correction. *Journal of Serendipitous and Unexpected Results*, *I*(1), 1–5.
 - https://teenspecies.github.io/pdfs/NeuralCorrelates.pdf