

- $\bullet \lim_{x \to +\infty} \frac{\ln x}{x^n} = 0$
- $\bullet \lim_{x \to 0, \ x > 0} x^n \ln x = 0$

		/
	1	
	١	

Croiss. com-

parées

Limites de référence

Limites

$\lim f$	$\lim(c \times f)$	
ℓ	$c imes \ell$	
+∞	$\begin{cases} +\infty & \text{si } c > 0 \\ -\infty & \text{si } c < 0 \end{cases}$	
$-\infty$	$\begin{cases} -\infty & \text{si } c > 0 \\ +\infty & \text{si } c < 0 \end{cases}$	

Règles de calcul

$\lim f$	$\lim g$	$\lim(f+g)$	$\lim(f \times g)$	$\lim \frac{f}{g}$
ℓ	ℓ'	$\ell + \ell'$	$\ell imes \ell'$	$\frac{\ell}{\ell'}$ si $\ell' \neq 0$
l	+∞	+∞	$\begin{cases} +\infty & \text{si } \ell > 0 \\ -\infty & \text{si } \ell < 0 \end{cases}$	0
ℓ	$-\infty$	$-\infty$	$\begin{cases} -\infty & \text{si } \ell > 0 \\ +\infty & \text{si } \ell < 0 \end{cases}$	0
$+\infty$	$+\infty$	+∞	+∞	FI
$+\infty$	$-\infty$	FI	$-\infty$	FI
$-\infty$	$-\infty$	$-\infty$	+∞	FI

deux cas particuliers :

$$\bullet " \frac{c}{0+}" = \begin{cases} +\infty & \text{si } c > \\ -\infty & \text{si } c < \end{cases}$$

$$\bullet " \frac{c}{0^{-}} " = \begin{cases} -\infty & \text{si } c > 0 \\ +\infty & \text{si } c < 0 \end{cases}$$

f(x)	$\lim en +\infty$	$\lim en -\infty$
x	+∞	$-\infty$
x^2	+∞	+∞
x^3	+∞	$-\infty$
$\frac{1}{x}$	0	0
$\frac{1}{x^n} \ (n \in \mathbb{N}^*)$	0	0
e^x	+∞	0
e^{-x}	0	+∞
$\ln x$	+∞	aucun sens

f(x)	lim en 0 ⁺	lim en 0 ⁻
$\frac{1}{x}$	+∞	$-\infty$
$\frac{1}{x^2}$	+∞	+∞
$\ln x$	$-\infty$	aucun sens

usuelles Limites de fonctions

Asymptotes

Opérations

sur les limites

> Limite d'une

composée

F.I.

les quatre formes indéterminées sont :

- $\bullet \infty \infty$
 - \bullet $\frac{\infty}{\infty}$
 - $0 \times \infty$

$$\left| \begin{array}{ccc} \lim_{x \to a} u(x) = & b \\ \lim_{X \to b} v(X) = & c \end{array} \right| \implies \lim_{x \to a} v(u(x)) = c$$

$$- \text{id\'e} : X = u(x)$$

- $\lim_{x \to -\infty} f(x) = \ell \iff y = \ell$ asymptote horizontale à C_f en $-\infty$
- $\lim_{x\to a} f(x) = +\infty$ ou $-\infty \iff x=a$ asymptote verticale à C_f (limite en a par valeur supérieure ou inférieure)

Limite et continuité

f continue en $a \iff \lim_{x \to a} f(x) = f(a)$