

Introduction

Predict 1st year college grades from high school SAT and GPA scores.

sat_sum	hs_gpa	fy_gpa	Targe
727	3.40	3.18	
722	4.00	3.33	
716	3.75	3.25	

Input Layer

Hidden Layer

Output Layer

Nodes in Input and Hidden layer = 2 Each

Connections = 2*2 = 4

4 Weights

 $\mathbf{w_{11}^1}, \mathbf{w_{12}^1}, \mathbf{w_{21}^1}, \mathbf{w_{22}^1}$

Connections = 2*2 = 4

Nodes = 2

Biases = 4 + 2

6 Dependent Parameters

 $\mathbf{w_{11}^{1}}, \mathbf{w_{12}^{1}}, \mathbf{w_{21}^{1}}, \mathbf{w_{22}^{1}}, \mathbf{b_{11}^{1}}, \mathbf{b_{12}^{1}}$

6 Dependent Parameters
+

3 New Parameters

9 Dependent Parameters

1. Calculate the weighted sum of the inputs

$$\mathbf{I} = \begin{bmatrix} I_1 \\ I_2 \end{bmatrix} \qquad \mathbf{b} = \begin{bmatrix} b_{11} \\ b_{12} \end{bmatrix}$$

$$\mathbf{w}_1 = \begin{bmatrix} \mathbf{w}^1_{11} \\ \mathbf{w}^1_{11} \end{bmatrix}$$

$$\mathbf{b} = \begin{bmatrix} b_{11} \\ b_{12} \end{bmatrix}$$

$$\mathbf{w_2} = \left[\begin{array}{c} \mathbf{w^1}_{21} \\ \mathbf{w^1}_{22} \end{array} \right]$$

$$\mathbf{w} = \begin{bmatrix} \mathbf{w}_{11} & \mathbf{w}_{21} \\ \mathbf{w}_{12} & \mathbf{w}_{22} \end{bmatrix}$$

2. Apply activation function to get outputs

$$O_1 = Sigmoid (w_{11}^1 * i_1 + w_{21}^1 * i_2 + b_{11})$$

$$O_2 = Sigmoid (w_{12}^1 * i_1 + w_{22}^1 * i_2 + b_{12})$$

3. Outputs act as input for the next layer

$$O_1 = Sigmoid (w_{11}^1 * i_1 + w_{21}^1 * i_2 + b_{11})$$

$$O_2 = Sigmoid (w_{12}^1 * i_1 + w_{22}^1 * i_2 + b_{12})$$

4. Calculate weighted sum of outputs

$$W_{21}^2 * O_1 + W_{22}^2 * O_2 + b_{21}$$

5. Apply Activation Function to get Output

Y = Activation Function
$$(W_{21}^2 * O_1 + W_{22}^2 * O_2 + b_{21})$$

Activation Function of Last Layer: Regression Problems

$$Y = Activation Function (W_{21}^2 * O_1 + W_{22}^2 * O_2 + b_{21})$$

Linear Activation Function

Regression Problems with negative output

Example: Temperature Prediction

ReLu Activation Function

Regression Problems with positive output

Example: House price Prediction

Activation Function of Last Layer: Classification Problems

$$Y = Activation Function (W_{21}^2 * O_1 + W_{22}^2 * O_2 + b_{21})$$

Sigmoid Function

Softmax Function

Multi Classification Problems