Inter IIT Tech Meet 11.0

## ISRO CHANDRAYAN MOON MAPPING CHALLENGE

Presentation by **Team 53** 



### Problem Statement

Development of an Al/ML model to generate a HIGH RESOLUTION LUNAR TERRAIN IMAGE(~30 cm) from medium/low (5 m / 10 m) resolution terrain image and to generate a GLOBAL LUNAR ATLAS using the data obtained from the model.

# DATA GENERATION AND PREPROCESSING



## SCRAPING

## DOWNLOAD OHRC DATASET

We download the OHRC
dataset and use this data set
for training and inference

## TMC-OHRC OVERLAP

We systematically search the TMC data base for images that overlap with OHRC images using selenium, based on the coordinates of the OHRC Image

#### NAC

We use the NAC database as an alternative to get high-low resolution image pair for visual comparision of the atlas.

## • PRE-PROCESSING



Full Size OHRC Image ~1,20,000 x 12,000 pixels



256 x 256 Pixel Section

## PRE-PROCESSING

- Remove dark patches and sections with no data.
- Remove images with

Image[i,j]<2% of maximum intensity i,j

- Convert the images to 3-Channel using open CV.
- Down-sample the 256x256 images to 16x16 using bi-cubic interpolation for testing the model.

## PRE-PROCESSING

- ~6,00,000 images(256x256 pixels) for training after removing dark patches.
- We sample 20,000 images based on uniform distribution to train our network.
- Test Set containing 400 images to evaluate the model

EDSR SWINIR SWIN-LTE SR3

~1 MILLION

~15 MILLION

~15 MILLION

~1 BILLION

## LITERATURE SURVEY



### WHY SWINIR-LTE

#### **SOTA**

SWINIR delivers state of the art perfomance on several benchmarks.

#### **Arbitrary Scaling**

Local Texture Estimator(LTE) allows arbitrary scaling factors to be used.

#### **Medium Model Size**

Model size is considerably less than
Diffusion based models.
Hhowever the model is complex
enough to learn from large dataset



## WHY SWINIR-LTE

| Image Super-<br>Resolution | Set14 - 4x upscaling    | SwinIR | PSNR | 29.15  | #4  |
|----------------------------|-------------------------|--------|------|--------|-----|
|                            |                         |        | SSIM | 0.7958 | #8  |
| Image Super-<br>Resolution | Set5 - 4x upscaling     | SwinIR | PSNR | 32.93  | #4  |
|                            |                         |        | SSIM | 0.9043 | #6  |
| Image Super-<br>Resolution | Urban100 - 4x upscaling | SwinIR | PSNR | 27.45  | #4  |
|                            |                         |        | SSIM | 0.8254 | # 5 |

**SWINIR** Reported Metrics

## Architecture



## RESULTS

#### METRICS FOR SWINIR-LTE

| METRIC | VALUE         |
|--------|---------------|
| PSNR   | 49.162236700  |
| FSIM   | 0.42840393111 |
| SSIM   | 0.97565720236 |

## RESULTS



Visual Comparison: (*From left, clockwise*) 16x16 pixel downsampled image, high resolution ground truth, Prediction from model.



## Atlas Generation



We have to generate global lunar atlas of 1 degree x 1 degree from Upscaled images generated from our model

## Our Approach

#### **Intial Grid**

We first defined a region of 1 degree X 1 degree of latitude and longitude

#### Upsacled Images

We find latitude and longitude of upscaled images generated by our model and we paste images on the correct location of the grid

#### Overlapping Images

As of now, we have taken any pixel at a particular latitude and longitude but we can also take median value of pixels

## Other Approaches

**IMAGE MATCHING** 



HOMOGRAPHY MATRIX





IMAGE BLENDING



## ATLAS



NAC Image (Comparable to Upscaled TMC in resolution)



Upscaled TMC 46080x9120



Original TMC (2882x570)

UL=273.4,-55.91 UR=273.5,-55.91 LL=273.59,-56.86 LR=273.49,-56.87



## THANKYOU