Problem set 3

Continuous-time optimal control problems

Optimal control and reinforcement learning, TU/e, 2022-2023

Outline

Linear quadratic regulation

Linear systems with terminal state constraints

Pontryagin's maximum principle, minimum time optimal control problems

Linear quadratic control, separation principle

Root square locus and loop transfer recovery

Linear quadratic regulation

Problem 1.1 Consider a first order linear differential equation

$$\dot{x}(t) = -\alpha x(t) + u(t), \quad x(0) = x_0, \quad t \in \mathbb{R}_{\geq 0},$$

where x(t) denotes the state and u(t) denotes the control input. Performance is measured by the following cost

$$\int_0^T x(t)^2 + \gamma u(t)^2 dt$$

to be minimized. Suppose that $\alpha = 1$ and $\gamma = 0.1$.

- (i) Provide the optimal policy for the control input u(t), $t \in [0, T]$, when T = 10.
- (ii) Provide the optimal policy for the control input u(t), $t \in \mathbb{R}_{\geq 0}$, when $T = \infty$.

Problem 1.2 Consider the following system

$$\dot{x}(t) = -\frac{3}{2}x(t) + 3u(t), \quad t \in \mathbb{R}_{\geq 0}.$$

Provide the optimal policy for u(t) in the interval [0,1] that minimizes the cost

$$\int_0^1 4x(t)^2 + 9u(t)^2 dt$$

for every initial condition x(0) by solving the continuous-time Riccati equations.

[Hint: Use the fact that the solution to the differential equation $\dot{p}=k(p+\alpha_1)(p+\alpha_2)$ for real constants $k,\,\alpha_1,\,\alpha_2$ takes the general form $p(t)=\frac{\alpha_2ce^{k(\alpha_2-\alpha_1)t}-\alpha_1}{1-ce^{k(\alpha_2-\alpha_1)t}}$ where c is a constant.]

Problem 1.3 Consider the following system

$$\dot{x}(t) = Ax(t) + Bu(t), \quad t \in \mathbb{R}_{>0}$$

where $x = \begin{bmatrix} x_1 & x_2 \end{bmatrix}^\mathsf{T}, u = \begin{bmatrix} u_1 & u_2 \end{bmatrix}^\mathsf{T}$ and

$$A = \begin{bmatrix} \frac{5}{2} & \alpha \\ 0 & -1 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}.$$

Performance is measured by the following cost

$$\int_0^\infty 12x_1(t)^2 + x_2(t)^2 + \frac{1}{2}u_1(t)^2 + 3u_2(t)^2 dt$$

to be minimized.

- (i) Provide the optimal policy for the control input $u(t), t \in \mathbb{R}_{\geq 0}$, when $\alpha = 0$.
- (ii) Provide the optimal policy for the control input u(t), $t \in \mathbb{R}_{\geq 0}$, when $\alpha = 2$, using Matlab. [Hint: use lqr.m or care.m]

Problem 1.4 Consider the following problem

$$\min_{u} \int_{0}^{\infty} x(t)^{2} + u(t)^{2} dt$$

where

$$\dot{x}(t) = x(t) + u(t), \quad t \in \mathbb{R}_{\geq 0}.$$

- (i) Provide the optimal policy and the optimal cost (as a function of x_0).
- (ii) Suppose that

$$u(t) = u_k, \quad t \in [k\tau, (k+1)\tau).$$

Approximate the dynamic model by the Euler's method, and the cost using a zero-order approximation. Provide the optimal policy for $\{u_k\}_{k\in\mathbb{N}_0}$ for the resulting state decision problem as a function of τ .

(iii) Let $\tau \to 0$ and show that the optimal solution obtained in (i) is recovered.

Problem 1.5 Consider an optimal control problem with cost function (to be minimized)

$$\int_0^T x(t)^{\mathsf{T}} Q x(t) + u(t)^{\mathsf{T}} R u(t) dt + x(T)^{\mathsf{T}} Q(T) x(T) \tag{1}$$

for Q > 0, R > 0, and dynamic model

$$\dot{x}(t) = Ax(t) + Bu(t), \quad x(0) = x_0, \quad t \in [0, T],$$

where $x(t) \in \mathbb{R}^n$, $u(t) \in \mathbb{R}$. The optimal policy for this problem is given by

$$u(t) = K(t)x(t), \quad t \in [0, T].$$
 (2)

where

$$K(t) = -R^{-1}B^{\mathsf{T}}P(t) \tag{3}$$

and P(t) is a symmetric matrix for every $t \in [0, T]$ such that

$$-\dot{P}(t) = A^{\mathsf{T}} P(t) + P(t)A + Q - P(t)BR^{-1}B^{\mathsf{T}} P(t)$$

$$P(T) = Q_T$$
(4)

(i) Suppose that n=2 and consider the following notation

$$P(t) = \begin{bmatrix} p_1(t) & p_2(t) \\ p_2(t) & p_3(t) \end{bmatrix}, \quad Q = \begin{bmatrix} q_1 & q_2 \\ q_2 & q_3 \end{bmatrix}, \quad Q_T = \begin{bmatrix} w_1 & w_2 \\ w_2 & w_3 \end{bmatrix}, \quad A = \begin{bmatrix} a_1 & a_2 \\ a_3 & a_4 \end{bmatrix}, \quad B = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}, \quad R = r_1.$$

Show that for $t \in [0, T]$

$$\begin{bmatrix} \dot{p}_1(t) \\ \dot{p}_2(t) \\ \dot{p}_3(t) \end{bmatrix} = \begin{bmatrix} -\left(2a_1p_1(t) + 2a_3p_2(t) + q_1 - \frac{1}{r_1}(p_1(t)b_1 + p_2(t)b_2)^2\right) \\ -\left((a_1 + a_4)p_2(t) + a_3p_3(t) + p_1(t)a_2 + q_2 - \frac{1}{r_1}(p_1(t)b_1 + p_2(t)b_2)(p_2(t)b_1 + p_3(t)b_2)\right) \\ -\left(2a_2p_2(t) + 2a_4p_3(t) + q_3 - \frac{1}{r_1}(p_2(t)b_1 + p_3(t)b_2)^2\right) \end{bmatrix}$$

$$\begin{bmatrix} p_1(T) \\ p_2(T) \\ p_3(T) \end{bmatrix} = \begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix}$$

(ii) Consider the kronecker product between two matrices

$$A \otimes B = \begin{bmatrix} a_{11}B & a_{12}B & \dots & a_{1n}B \\ a_{21}B & a_{22}B & \dots & a_{2n}B \\ \vdots & \ddots & \ddots & \vdots \\ a_{n1}B & a_{n2}B & \dots & a_{nn}B \end{bmatrix}$$

and let ν denote the operator that transforms a matrix into a column vector $\nu(A) = \nu([a_1 \ \dots \ a_n]) = [a_1^\intercal \ \dots \ a_n^\intercal]^\intercal$. Show that for $t \in [0,T]$

$$\nu(\dot{P}(t)) = -(I \otimes A^\intercal + A^\intercal \otimes I)\nu(P(t)) - \nu(Q) + \frac{1}{r_1}(P(t)B) \otimes (P(t)B)$$

$$\nu(P(T)) = \nu(Q_T)$$

[Hint: Use the fact that $\nu(ABC) = (C^{\intercal} \otimes A)\nu(B)$ for matrices wih compatible dimension.]

(iii) Confirm (i) specializing the conclusions obtained in (ii).

Linear systems with terminal constraints

Problem 2.1 Suppose that we wish to move a mass from position x = 0 to position x = 1 in 1 seconds while minimizing the control effort measured by

$$\int_0^1 u(t)^2 dt,$$

where u(t) denotes the force applied to the mass. The position of the mass evolves according to

$$\ddot{x}(t) = -\alpha \dot{x}(t) + u(t)$$

where $-\alpha \dot{x}(t)$, $\alpha > 0$, models friction. The initial velocity $v(t) = \dot{x}(t)$ at time zero is assumed to be v(0) = 0.

- (i) Suppose that $\alpha = 0$. Compute the optimal control input u(t) and the corresponding position x(t) and velocity v(t) in the interval [0,1] when the desired terminal velocity equals zero (v(1) = 0) and when it equals one (v(1) = 1).
- (ii) Consider now that $\alpha = \frac{1}{2}$. Compute the optimal control input and the corresponding position and velocity in the interval [0, 1] when the desired terminal velocity equals zero.
- (iii) Consider again that $\alpha = 0$ and that the desired terminal velocity is v(1) = 0.
 - (a) Compute the optimal control input in the interval [0,1] as a function of (x(0),v(0)).
 - (b) Compute the optimal control input in the interval [s,1] as a function of (x(s),v(s)).
 - (c) Based on your answer to (iii).(b) provide the optimal control policy.

[Note: You can use the Matlab functions inv.m, expm.m and to compute inverses and matrix exponentials. In particular these functions can be applied to obtain symbolic expressions (e.g. $syms\ t$; inv(A*t); computes the inverse of a matrix as a function of t)]

Problem 2.2 Provide the optimal control input for the following problem

$$\min_{u} \int_{0}^{5} x_{1}(t)^{2} + 2x_{2}(t)^{2} + 10u(t)^{2} dt + 10x_{1}(5)^{2}$$

where

$$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t), \quad t \in [0,T]$$

and $x(0) = \begin{bmatrix} 1 & 2 \end{bmatrix}^{\mathsf{T}}$ (you can use Matlab to compute matrix exponentials and inverses).

Problem 2.3 Consider the following dynamic model

$$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} -3 & 1 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t), \quad t \in \mathbb{R}_{\geq 0},$$

where $x(0) = \begin{bmatrix} 1 & 1 \end{bmatrix}^{\mathsf{T}}$. Find the control input $u(t), t \in [0, 2]$ which minimizes

$$\int_0^2 u(t)^2 dt + 10x_1(2)^2$$

and achieves $x_2(2) = 0$.

[Hint: if you decide to follow the approach which requires computing the exponential of matrices, the following facts may be convenient:

$$e^{\begin{bmatrix} X & Y \\ 0 & Z \end{bmatrix}^t} = \begin{bmatrix} e^{Xt} & e^{Xt} \int_0^t e^{-Xs} Y e^{Zs} ds \\ 0 & e^{Zt} \end{bmatrix}$$
$$e^{X^{\mathsf{T}}t} = (e^{Xt})^{\mathsf{T}}$$
$$e^{-Xt} = e^{Xs}|_{s=-t}$$

for matrices X,Y,Z with compatible dimension.]

Problem 2.4 Consider the following optimal control problem

$$\min \frac{1}{2} (\int_0^T 7x(t)^2 + u(t)^2 dt)$$

where

$$\dot{x}(t) = 3x(t) + u(t), \quad x(0) = 1, \quad t \in \mathbb{R}_{\geq 0}.$$

- (i) Suppose that T=1. Provide the optimal control input $u(t), t \in [0,1]$, which minimizes the cost and achieves x(1)=0.
- (ii) Suppose that $T = \infty$. Provide the optimal control policy.

Pontryagin's maximum principle, minimum time optimal control problems

Problem 3.1 The Pontryagin's maximum principle extends to time-varying systems

$$\dot{x}(t) = f(t, x(t), u(t)), \quad t \in \mathbb{R}_{>0}, \quad x(0) = x_0$$

with cost

$$\int_0^T g(t, x(t), u(t)) dt + g_T(x(T))$$

to be minimized. The necessary conditions for $x(t) = (x_1(t), \dots, x_n(t)) \in \mathbb{R}^n$ and $u(t) \in \mathbb{R}^m$ to be an optimal solution for the problem are

$$\begin{split} \dot{\lambda}(t) &= -[\frac{\partial}{\partial x} H(t, x(t), u(t), \lambda(t))]^\mathsf{T} \\ \dot{x}(t) &= [\frac{\partial}{\partial \lambda} H(t, x(t), u(t), \lambda(t))]^\mathsf{T} \\ &\frac{\partial}{\partial u} H(t, x(t), u(t), \lambda(t)) = 0 \end{split}$$

with boundary condition

$$\lambda(T) = \left[\frac{\partial g_T(x)}{\partial x}\right]_{x=x(T)}^{\mathsf{T}} \tag{5}$$

where $H(t, x(t), u(t), \lambda(t)) = \lambda(t)^{\intercal} f(t, x(t), u(t)) + g(t, x(t), u(t))$ and $\lambda(t) = (\lambda_1(t), \dots, \lambda_n(t)), t \in [0, T]$ is the co-state. Moreover, if some (or all) of the components of the state are constrained at the terminal time $x_i(T) = c_i$, for $i \in \mathcal{C} \subseteq \{1, 2, \dots, n\}$, then the variables $\lambda_i(T)$ are free whereas the constraint (5) still holds for the remaining variables $\lambda_j(T)$, for $j \in \{1, 2, \dots, n\} \setminus \mathcal{C}$, i.e.,

$$\lambda_j(T) = \left[\frac{\partial g_T(x)}{\partial x_j}\right]_{x=x(T)}^{\mathsf{T}}, \quad j \in \{1, 2, \dots, n\} \setminus \mathcal{C}.$$

Apply the Pontryagin's maximum principle to establish that the optimality conditions for the problem

$$\min \frac{1}{2} \Big(\int_0^T x(t)^\intercal Q(t) x(t) + u(t)^\intercal R(t) u(t) dt + x(T)^\intercal Q_T x(T) \Big)$$

for positive definite R(t) and Q(t) and diagonal $Q_T = \text{diag}(q_1, q_2, \dots, q_n)$, subject to

$$\dot{x}(t) = A(t)x(t) + B(t)u(t), \quad t \in \mathbb{R}_{>0}, \quad x(0) = x_0$$

with inital constraint $x(0) = x_0$ and terminal constraints $x_i(T) = c_i$, for $i \in \mathcal{C} \subseteq \{1, 2, ..., n\}$ are

and

$$u(t) = -R(t)^{-1}B(t)^{\mathsf{T}}\lambda(t)$$

with terminal constraints

$$x_i(T) = c_i$$
, for $i \in \mathcal{C}$

and

$$\lambda_i(T) = q_i x_i(T), \text{ for } i \in \{1, \dots, n\} \setminus \mathcal{C}.$$

Problem 3.2 ¹ Consider a particle of mass m, acted upon by a thrust force of magnitude ma. We assume planar motion and use an inertial coordinate system x, y to locate the particle; the velocity components

¹adapted from Applied Optimal Control, Bryson, Ho, 1975, Sec 2.4

of the particle are u, v. The thrust-direction angle $\beta(t)$ is the control variable for the system. The equations of motion are

$$\begin{split} \dot{u} &= a \cos(\beta) \\ \dot{v} &= a \sin(\beta) \\ \dot{x} &= u \\ \dot{y} &= v \end{split}$$

where the thrust acceleration a is assumed to be a known function of time.

(i) Using the Pontryagin's maximum principle, show that if we wish to optimize a function that depends only on the state at the terminal time T, then the optimal control input $\beta(t)$ takes the form

$$\beta(t) = \operatorname{atan}(\frac{-c_2t + c_4}{-c_1t + c_3})$$

for some constants c_i , $i \in \{1, 2, 3, 4\}$.

(ii) Suppose that the initial position of the particle at time t = 0 is (y(0), x(0)) = (0, 0) and the initial velocity is zero. We wish to transfer the particle to a path parallel to the x-axis, a distance h away, in a given time T, arriving with the maximum value of u(T). We do not care what the final x coordinate is. Compute the optimal control input and corresponding state.

Problem 3.3 ² Consider a particle of mass m, acted upon by a thrust force $u = (u_x, u_y) = m(a_x, a_y)$, where m = 1 is the mass, and described by the equations of motion

$$\begin{aligned} \dot{x} &= v_x \\ \dot{y} &= v_y \\ \dot{v}_x &= a_x \\ \dot{v}_y &= a_y \end{aligned}$$

where v_x, v_y are the velocity components of the particle and x, y are the coordinates of the particle's position in an inertial coordinate system. The initial position of the particle at time t = 0 is (x(0), y(0)) = (0,0) and the initial velocity is zero. We wish to transfer the particle to a path parallel to the x-axis, a distance h = 1 away, in a given time T, arriving with the maximum value of x(T), i.e., we are interested in the problem

$$\min -x(T). \tag{7}$$

The final velocity along x, $v_x(T)$, is not specified (it is free). Figure 1 illustrates the problem setting. Consider T=3.

Figure 1: Particle acted by a thrust force

²Suggestion: Solve Problems 3.1 and 3.2 before solving Problem 3.3.

(i) Suppose that the energy of the control input should satisfy, at least approximately, the constraint

$$\int_{0}^{T} \|u(t)\|^{2} dt = T. \tag{8}$$

(a) We start by penalizing violations of the constraint in the cost function, i.e., considering the problem

$$\min \gamma (\int_0^T ||u(t)||^2 dt - T) - x(T). \tag{9}$$

Solve this problem for $\gamma=a$ and $\gamma=b,\ a=\frac{1}{2},\ b=1$ and conclude that for $\gamma=a,$ $\int_0^T\|u(t)\|^2dt>T$ and for $\gamma=b,$ $\int_0^T\|u(t)\|^2dt< T$.

- (b) Find γ such that the solution to the problem (9) satisfies $\int_0^T \|u(t)\|^2 dt = T$ and provide the value of x(T) corresponding to the optimal solution. [Note: Both an analytical exact solution and a numerical approximate solution will be considered correct.] ³
- (ii) Suppose now that instead of the constraint (8), the magnitude of the control input must satisfy the constraint

$$||u(t)||^2 = 1. (10)$$

(a) Let $-x_C^*(T)$ be the optimal value achieved for the problem of minimizing (7) subject to (10) and let $-x_I^*(T)$ be the optimal value achieved for the problem of minimizing (7) subject to (8), which was obtained in (i).(b). Argue that

$$x_C^*(T) \le x_I^*(T).$$

(b) Consider the following parameterization of the control input in terms of the angle $\beta(t) \in [-\pi, \pi)$,

$$u(t) = (\cos(\beta(t)), \sin(\beta(t))).$$

Find the optimal function $\beta(t)$ in the interval $t \in [0,T]$ for the problem (7) using the Pontryagin's maximum principle as in Problem 3.2. Provide the value of x(T) corresponding to the optimal solution.

(c) Find a time-varying penalty $\gamma(t)$ such that the solution to the problem

$$\min \int_0^T \gamma(t) (\|u(t)\|^2 - 1) dt - x(T).$$

meets the constraint $||u(t)||^2 = 1$, in which case x(T) must coincide with the optimal solution obtained in (ii).(b) (and therefore this is an alternative method to obtain the optimal solution). [Hint: Write the optimality conditions as in Problem 3.1 and find $\gamma(t)$ such that $||u(t)||^2 = 1$ and such that all the constraints in the problem are met].

Problem 3.4 We wish to find the curve y(x) of length $L = \frac{5}{2}$ with fixed end points y(0) = y(2) = 0 with maximal area

$$\int_0^2 y(x)dx.$$

The length of the curve is given by $\int_0^2 \sqrt{1+(y'(x))^2} dx$ and if y(x) is an optimal curve for this problem it is also an optimal curve for the following problem

$$\int_{0}^{2} y(x)dx + \gamma \left(\int_{0}^{2} \sqrt{1 + (y'(x))^{2}} dx - L\right),$$

³For a numerical approach you can consider the function $\phi:[a,b]\to\mathbb{R}$ mapping γ into $\int_0^T u(t)^2 dt - T$ where u(t) is the solution to the problem (9) considered in (i).(a). From (i).(a) we have $\phi(a)>0$, $\phi(b)<0$. Assume that ϕ is continuous and monotone. Apply three iterations of the bisection method (https://en.wikipedia.org/wiki/Bisection_method) to find approximations $\gamma_1=\frac{a+b}{2}, \gamma_2, \gamma_3$ to the solution $\bar{\gamma}$ such that $\phi(\bar{\gamma})=0$. Alternatively you can solve the problem with Matlab for a dense grid of values $\gamma_k\in[a,b]$, plot the function ϕ and obtain an accurate approximation $\bar{\gamma}$ such that $\phi(\bar{\gamma})=0$.

for some constant γ . Find the optimal curve and the corresponding γ .

Problem 3.5 Consider the following minimal time problem

 $\min T$

for the system

$$\dot{x}(t) = Ax(t) + Bu(t), \quad t \in \mathbb{R}_{>0}, x(0) = x_0$$

with $u(t) \in [-2, 2]$ and terminal constraint

$$x(T) = 0,$$

where

$$A = \begin{bmatrix} -2 & 0 \\ 1 & -2 \end{bmatrix}, \quad B = \begin{bmatrix} 1 \\ 0 \end{bmatrix}.$$

Explain how to compute the optimal control input u(t) given an initial condition x_0 .

Problem 3.6 Suppose that we wish to drive to rest $(p(0), \dot{p}(0)) = (0, 0))$ a mass-spring system

$$\ddot{p}(t) = -p(t) + \frac{1}{2}u(t), \quad t \in \mathbb{R}_{\geq 0}$$

in minimal time, where the control input is constrained to the set $u(t) \in [-2,2]$. Explain how to compute the optimal control input u(t) given an initial position p(0) and an initial velocity $\dot{p}(0)$ in the set $\{(p(0),\dot{p}(0))\in\mathbb{R}^2:\|(p(0),\dot{p}(0))\|\leq 2\}$.

Linear quadratic control, separation principle

Problem 4.1 Consider the following system

$$\dot{x}(t) = -\frac{3}{2}x(t) + 3u(t) + 2w(t), \quad x(0) = x_0, \quad t \in \mathbb{R}_{\geq 0}.$$

with output

$$y(t) = x(t) + v(t)$$

where v and w are zero-mean Gaussian white noise processes with $\mathbb{E}[v(t)v(t+\tau)] = 3\delta(\tau)$, $\mathbb{E}[w(t)w(t+\tau)] = 1\delta(\tau)$. Assume that the initial state is unknown and follows a Gaussian distribution with mean $\bar{x}_0 = -1$, and variance $\mathbb{E}[(x_0 - \bar{x}_0)^2] = \frac{1}{2}$.

- i) Provide the Kalman filter to estimate the state in the interval $t \in [0, 1]$. [Hint: use the hint given for Problem 1.2]
- ii) Provide the stationary Kalman filter to estimate the state.

Problem 4.2 Provide the stationary Kalman filter to estimate the state of

$$\dot{x}(t) = Ax(t) + B_w w(t), \quad t \in \mathbb{R}_{>0},$$

where

$$A = \begin{bmatrix} 3 & -1 \\ 0 & -2 \end{bmatrix}, \quad B_w = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$$

given the measurements

$$y(t) = Cx(t) + v(t)$$

where $C = \begin{bmatrix} 1 & 0 \end{bmatrix} v$ and w are zero-mean Gaussian white noise processes with $\mathbb{E}[v(t)v(t+\tau)] = 3\delta(\tau)$, $\mathbb{E}[w(t)w(t+\tau)] = I\delta(\tau)$ [Hint: use Kalman.n or care.m]

Problem 4.3 Consider the following system

$$\dot{x}(t) = -\frac{3}{2}x(t) + 3u(t) + 2w(t), \quad t \in \mathbb{R}_{\geq 0}.$$

with output

$$y(t) = x(t) + v(t)$$

where v and w are zero-mean Gaussian white noise processes with $\mathbb{E}[v(t)v(t+\tau)] = 3\delta(\tau)$, $\mathbb{E}[w(t)w(t+\tau)] = 1\delta(\tau)$. Assume that the initial state is unknown and follows a Gaussian distribution with mean $\bar{x}_0 = -1$, and variance $\mathbb{E}[(x_0 - \bar{x}_0)^2] = \frac{1}{2}$. Provide the optimal policy for u(t) in the interval [0,1] that minimizes

$$\mathbb{E}[\int_{0}^{1} 4x(t)^{2} + 9u(t)^{2} dt].$$

[Hint: Use the fact that the solution to the differential equation $\dot{p}=k(p+\alpha_1)(p+\alpha_2)$ for real constants $k,\,\alpha_1,\,\alpha_2$ takes the general form $p(t)=\frac{\alpha_2ce^{k(\alpha_2-\alpha_1)t}-\alpha_1}{1-ce^{k(\alpha_2-\alpha_1)t}}$ where c is a constant.]

Problem 4.4 Provide the optimal policy for the following problem

$$\min_{u} \lim_{T \to \infty} \frac{1}{T} \mathbb{E} \left[\int_{0}^{T} x(t)^{\mathsf{T}} x(t) + 0.1 u(t)^{2} \right]$$

$$\dot{x}(t) = Ax(t) + Bu(u) + w(t), \quad t \in \mathbb{R}_{\geq 0},$$

where

$$A = \begin{bmatrix} -1 & 3 \\ 0 & 2 \end{bmatrix}, \quad B = \begin{bmatrix} 0 \\ 1 \end{bmatrix},$$

given the measurements

$$y(t) = Cx(t) + v(t)$$

where $C = \begin{bmatrix} 1 & 0 \end{bmatrix}$, v and w are zero-mean Gaussian white noise processes with $\mathbb{E}[v(t)v(t+\tau)] = 0.1\delta(\tau)$, $\mathbb{E}[w(t)w(t+\tau)] = I\delta(\tau)$ [Hint: Use Matlab function kalman.m and lqr.m]

Root square locus and loop transfer recovery

Problem 5.1 Consider the following problem

$$\min \int_0^\infty y(t)^2 + \rho u(t)^2 dt$$

for

$$\dot{x} = Ax + Bu$$
$$y = Cx$$

where

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 6 & -1 & -4 \end{bmatrix} \quad B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

and C and ρ can be seen as tunning knobs to shape the eigenvalues of the closed-loop system $\dot{x}(t) = (A + BK)x(t)$ where K are the optimal gains of the optimal policy u = Kx for the problem.

- 1. Suppose that $C = \begin{bmatrix} \frac{1}{2} & 1 & 0 \end{bmatrix}$. Plot the closed-loop eigenvalues in the complex plane as a function of $\rho \in (0, \infty)$ (root locus) and indicate the values of the closed-loop eigenvalues for $\rho \in \{1, 1/10, 1/100\}$.
- 2. Pick C such that two closed-loop eigenvalues converge to $-2 \pm i$ when $\rho \to 0$ and the third closed-loop eigenvalue approaches minus infinity along the real axis. Are the values C and -C the only values that meet these specifications? Why?

Problem 5.2 Consider a process described by the transfer function

$$t(s) = \frac{s^2 + 3s + 2}{s^3 + 7s^2 - 48s - 180}$$

which can be written in the standard state-space form

$$\dot{x}(t) = Ax(t) + Bu(t) + w(t)$$
$$y(t) = Cx(t) + v(t)$$

where A, B, C, are such that $t(s) = C(sI - A)^{-1}B$ and w(t), v(t) are Gaussian white noise model process disturbances and output noise. Design an LQG controller, by picking the matrices Q, R of the cost

$$\lim_{T \to \infty} \int_0^\infty \frac{1}{T} \mathbb{E}[x(t)^\intercal Q x(t) + u(t)^\intercal R u(t)] dt$$

and the matrices $W = \mathbb{E}[w(t)w(t)^{\intercal}]$, $V = \mathbb{E}[n(t)n(t)^{\intercal}]$, to guarantee the downward and upward gain margins $GM^{-} = 3/5$, $GM^{+} = 2$, respectively and the negative and positive phase margins $PM^{-} = -40$, $PM^{+} = 40$, respectively.