Regressão Linear & Otimização Numérica

Prof. Danilo Silva

EEL7514/EEL7513 - Tópico Avançado em Processamento de Sinais EEL410250 - Aprendizado de Máquina

EEL / CTC / UFSC

Tópicos

- Regressão linear: revisão
- Introdução à otimização numérica
- Método do gradiente
- Normalização de atributos
- Extensões

Regressão Linear: Revisão

Regressão Linear

Modelo de regressão linear:

$$\hat{y} = f(\mathbf{x}) = w_0 + w_1 x_1 + \dots + w_n x_n = \mathbf{w}^T \mathbf{x}$$

onde

- $y \in \mathbb{R}$ é o valor-alvo do qual $\hat{y} \in \mathbb{R}$ é uma predição
- $\mathbf{x} = \begin{bmatrix} 1 & x_1 & \cdots & x_n \end{bmatrix}^T \in \mathbb{R}^{n+1}$ é o vetor de atributos
- $\mathbf{w} = egin{bmatrix} w_0 & w_1 & \cdots & w_n \end{bmatrix}^T$ é o vetor de parâmetros (ou pesos)
- ▶ Conjunto de treinamento $\mathcal{D} = \{(\mathbf{x}^{(1)}, y^{(1)}), \dots, (\mathbf{x}^{(m)}, y^{(m)})\}$ organizado em uma matriz de projeto e um vetor de rótulos/alvos

$$\mathbf{X} = \begin{bmatrix} - (\mathbf{x}^{(1)})^T - \\ \vdots \\ - (\mathbf{x}^{(m)})^T - \end{bmatrix} \qquad \mathbf{e} \qquad \mathbf{y} = \begin{bmatrix} y^{(1)} \\ \vdots \\ y^{(m)} \end{bmatrix}$$

Regressão Linear com Funções de Base

ightharpoonup De maneira geral, os atributos x_i podem ser escolhidos como uma transformação não-linear de uma ou mais variáveis de entrada

$$x_i = \varphi_i(x), \quad \text{ou} \quad x_i = \varphi_i(u_1, \dots, u_N)$$

onde $\varphi_i(\cdot)$ são chamadas de funções de base

Um exemplo é regressão polinomial de ordem n:

$$\hat{y} = w_0 + w_1 x + w_2 x^2 + \dots + w_n x^n$$

onde $\varphi_i(x) = x^i$.

Nesse caso, embora o modelo continue linear em relação aos atributos x_i (e também em relação aos parâmetros w_i), um ajuste mais flexível pode ser feito com relação à variável original x

Mínimos quadrados

Função custo:

$$J(\mathbf{w}) = \frac{1}{m} \sum_{i=1}^{m} (\mathbf{w}^T \mathbf{x}^{(i)} - y^{(i)})^2 = \frac{1}{m} ||\mathbf{X} \mathbf{w} - \mathbf{y}||^2$$

Gradiente:

$$\nabla J(\mathbf{w}) = \frac{2}{m} \mathbf{X}^T (\mathbf{X} \mathbf{w} - \mathbf{y})$$

Solução ótima (equação normal):

$$\mathbf{w} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

Mínimos quadrados com regularização ℓ_2

Função custo:

$$J(\mathbf{w}) = \frac{1}{m}\|\mathbf{X}\mathbf{w}-\mathbf{y}\|^2 + \lambda \frac{1}{m}\mathbf{w}^T\mathbf{L}\mathbf{w}$$
 onde $\mathbf{L}=\mathrm{diag}(0,1,\dots,1)$

Gradiente:

$$\nabla J(\mathbf{w}) = \frac{2}{m} \mathbf{X}^T (\mathbf{X} \mathbf{w} - \mathbf{y}) + \lambda \frac{2}{m} \mathbf{L} \mathbf{w}$$

Solução ótima (equação normal):

$$\mathbf{w} = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{L})^{-1} \mathbf{X}^T \mathbf{y}$$

Limitações da solução analítica

- Nem todas as funções custo admitem solução analítica
 - Ex: regularização ℓ_1 , perda ℓ_1 (MAE), outras perdas
- ▶ Calcular $\mathbf{X}^T\mathbf{X}$ pode ser computacionalmente custoso para n muito grande: a ordem de complexidade (em número de operações) é $O(mn^2)$
- Solução: métodos iterativos de otimização

Introdução à Otimização

Numérica

Introdução à otimização numérica

Problema (otimização sem restrições):

$$\min_{\mathbf{w}}\ J(\mathbf{w})$$

A solução do problema (mínimo global) é denotada por w*

► Condição necessária de 1ª ordem para otimalidade:

$$\nabla J(\mathbf{w}) = \mathbf{0}$$

Todo ponto que satisfaz essa condição é um ponto estacionário

 Nem todo ponto estacionário é um mínimo local, mas a maioria dos métodos de otimização satisfaz-se em encontrar um ponto estacionário

Convexidade

▶ Se $J(\mathbf{w})$ é uma função convexa, então todos os pontos estacionários são mínimos globais (i.e., a condição de 1ª ordem é suficiente)

 Uma função é convexa se todo segmento de reta conectando dois pontos no gráfico da função situa-se inteiramente acima da função

Métodos de otimização

- ▶ Em geral, produzem uma sequência de pontos $\mathbf{w}^{[0]}$, $\mathbf{w}^{[1]}$, ..., $\mathbf{w}^{[t]}$ que reduzem o valor da função $J(\mathbf{w})$ a cada iteração
- Algoritmo genérico:

```
\begin{split} &\text{initialize } \mathbf{w}^{[0]} \\ &\text{for } t = 1, \dots, \texttt{max\_iter:} \\ &\quad \text{update } \mathbf{w}^{[t]} \\ &\quad \text{if } \|\nabla J(\mathbf{w}^{[t]})\| < \texttt{tol:} \quad \texttt{break} \end{split}
```

- lacktriangle A diferença entre os métodos está na atualização de $\mathbf{w}^{[t]}$
- \blacktriangleright Se a função é não-convexa, o ponto estacionário encontrado depende do ponto inicial $\mathbf{w}^{[0]}$

Métodos de otimização

- lacktriangle Constroem uma aproximação local para $J(\mathbf{w}^{[t]})$ em torno de $\mathbf{w}^{[t-1]}$
- ▶ Métodos de 1ª ordem:

$$J(\mathbf{w}) \approx J(\mathbf{w}^{[0]}) + \nabla J(\mathbf{w}^{[0]})^T (\mathbf{w} - \mathbf{w}^{[0]})$$

Métodos de 2ª ordem:

$$J(\mathbf{w}) \approx J(\mathbf{w}^{[0]}) + \nabla J(\mathbf{w}^{[0]})^T (\mathbf{w} - \mathbf{w}^{[0]})$$

+ $\frac{1}{2} (\mathbf{w} - \mathbf{w}^{[0]})^T \nabla^2 J(\mathbf{w}^{[0]}) (\mathbf{w} - \mathbf{w}^{[0]})$

onde a matriz hessiana é dada por

$$\nabla^2 J(\mathbf{w}) = \begin{bmatrix} \frac{\partial^2}{\partial w_0 \partial w_0} J(\mathbf{w}) & \frac{\partial^2}{\partial w_0 \partial w_1} J(\mathbf{w}) & \cdots & \frac{\partial^2}{\partial w_0 \partial w_n} J(\mathbf{w}) \\ \frac{\partial^2}{\partial w_1 \partial w_0} J(\mathbf{w}) & \frac{\partial^2}{\partial w_1 \partial w_1} J(\mathbf{w}) & \cdots & \frac{\partial^2}{\partial w_1 \partial w_n} J(\mathbf{w}) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2}{\partial w_n \partial w_0} J(\mathbf{w}) & \frac{\partial^2}{\partial w_n \partial w_1} J(\mathbf{w}) & \cdots & \frac{\partial^2}{\partial w_n \partial w_n} J(\mathbf{w}) \end{bmatrix}$$

- O gradiente indica a tangente, enquanto a hessiana indica a curvatura
- Ex:

$$J(\mathbf{w}) = \frac{1}{m} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2 + \lambda \frac{1}{m} \|\mathbf{w}\|^2$$
$$\nabla J(\mathbf{w}) = \frac{2}{m} \mathbf{X}^T (\mathbf{X}\mathbf{w} - \mathbf{y}) + \lambda \frac{2}{m} \mathbf{w}$$
$$\nabla^2 J(\mathbf{w}) = \frac{2}{m} \mathbf{X}^T \mathbf{X} + \lambda \frac{2}{m} \mathbf{I}$$

- O gradiente fornece direção e taxa de maior subida:
 - A direção é a direção de subida mais rápida
 - A magnitude é a taxa de subida nessa direção

$$J(\mathbf{w}) = \frac{1}{2}\mathbf{w}^T \mathbf{Q} \mathbf{w}, \quad \mathbf{Q} = \mathbf{Q}^T \implies \nabla^2 J(\mathbf{w}) = \mathbf{Q}$$

Os autovalores da hessiana estão associados ao grau de curvatura

Método do Gradiente

Método do gradiente (*gradient descent / steepest descent*)

- ▶ Método de 1ª ordem
- Percorre o espaço de busca escolhendo sempre a direção de maior declive na função objetivo
- Atualização de pesos:

$$\mathbf{w}^{[t]} = \mathbf{w}^{[t-1]} - \alpha^{[t]} \nabla J(\mathbf{w}^{[t-1]})$$

onde $\alpha^{[t]}$ é o tamanho do passo ($step\ length$), também chamado de taxa de aprendizado ($learning\ rate$)

- A taxa de aprendizado pode ser escolhida fixa ($\alpha^{[t]}=\alpha$) ou adaptativamente

Método de Newton

- Método de 2^a ordem
- Encontra o ponto de mínimo da aproximação quadrática
- Atualização de pesos:

$$\mathbf{w}^{[t]} = \mathbf{w}^{[t-1]} - \left[\nabla^2 J(\mathbf{w}^{[t-1]}) \right]^{-1} \nabla J(\mathbf{w}^{[t-1]})$$

- Converge mais rapidamente que o método do gradiente, mas tem a desvantagem de exigir o cálculo da hessiana
- ightharpoonup Ex: se $J(\mathbf{w})$ é uma função quadrática, o método de Newton converge em um único passo—a solução é exatamente a equação normal

- · Newton's direction: pointing to a local minimum
- Gradient direction : pointing to maximum direction of change

Método do Gradiente para Regressão Linear

- ▶ Complexidade reduzida de $O(mn^2)$ para $O(mn \cdot max_iter)$
- Sem regularização:

$$\mathbf{w}^{[t]} = \mathbf{w}^{[t-1]} - \alpha \frac{2}{m} \mathbf{X}^T (\mathbf{X} \mathbf{w}^{[t-1]} - \mathbf{y})$$

▶ Com regularização ℓ₂ (sobre todo o vetor w):

$$\mathbf{w}^{[t]} = \left(1 - \lambda \alpha \frac{2}{m}\right) \mathbf{w}^{[t-1]} - \alpha \frac{2}{m} \mathbf{X}^{T} (\mathbf{X} \mathbf{w}^{[t-1]} - \mathbf{y})$$

- Por isso a regularização ℓ_2 também é chamada de weight decay
- ▶ Com regularização ℓ_2 (sem regularizar w_0):

$$\mathbf{w}^{[t]} = \left(\mathbf{I} - \lambda \alpha \frac{2}{m} \mathbf{L}\right) \mathbf{w}^{[t-1]} - \alpha \frac{2}{m} \mathbf{X}^T (\mathbf{X} \mathbf{w}^{[t-1]} - \mathbf{y})$$

Método do Gradiente: Escolha da Taxa de Aprendizado

- Uma das desvantagens do método do gradiente é ter de escolher a taxa de aprendizado
- ightharpoonup Se lpha é muito pequeno, a convergência pode ser lenta
- Se α é muito grande, pode ocorrer overshoot. Nesse caso, o método pode não convergir ou até mesmo divergir
- ▶ Sempre é possível encontrar um valor de α (suficientemente pequeno) que garante convergência. No entanto, para acelerar a convergência na prática, também é possível usar um valor de α selecionado adaptativamente de acordo com a iteração, $\alpha^{[t]}$.

Gradient Descent

Exemplo: Custo em função da iteração

Exemplo: Custo em função da iteração

Exemplo: Custo em função da iteração

Escolha da taxa de aprendizado

- Importante: para analisar a convergência e escolher a taxa de aprendizado, deve ser usada a função objetivo da otimização, $J(\mathbf{w})$, mesmo que regularizada—ao invés de usar o erro de treinamento, $J_{\text{train}}(\mathbf{w})$
- Afinal, dependendo de λ , da função objetivo, e do ponto inicial, o erro $J_{\mathrm{train}}(\mathbf{w})$ pode até aumentar em algumas iterações, mas $J(\mathbf{w})$ deve sempre diminuir se a taxa de aprendizado for escolhida adequadamente

Normalização de Atributos

Convergência do Método do Gradiente

- ▶ Se a matriz hessiana $\nabla^2 J(\mathbf{w}) = \frac{2}{m} \mathbf{X}^T \mathbf{X}$ for mal condicionada (isto é, com valor elevado da razão entre os autovalores máximo e mínimo), então o método do gradiente apresentará dificuldades de convergir (comportamento em "zig-zag")
- Exemplo:

$$J(\mathbf{w}) = \lambda_0 w_0^2 + \lambda_1 w_1^2$$

$$\nabla J(\mathbf{w}) = \begin{bmatrix} \lambda_0 w_0 \\ \lambda_1 w_1 \end{bmatrix}, \quad \nabla^2 J(\mathbf{w}) = \begin{bmatrix} \lambda_0 \\ \lambda_1 \end{bmatrix}$$

$$\mathbf{w}^{[t]} = \mathbf{w}^{[t-1]} - \alpha \begin{bmatrix} \lambda_0 w_0^{[t-1]} \\ \lambda_1 w_1^{[t-1]} \end{bmatrix}$$

▶ Se $|\lambda_0/\lambda_1|\gg 1$ ou $|\lambda_1/\lambda_0|\gg 1$, então não existe uma taxa de aprendizado igualmente boa para os dois parâmetros

Exemplo (bem condicionado)

Exemplo (mal condicionado)

Normalização de Atributos

- lacksquare O melhor condicionamento ocorre quando ${f X}^T{f X}\propto {f I}$
- ▶ Uma solução é normalizar todos os atributos (exceto $x_0 = 1$) para que tenham média nula e variância unitária:

$$x_j' = \frac{x_j - \bar{x}_j}{\sigma_{x_j}}$$

onde
$$\bar{x}_j = \frac{1}{m} \sum_{i=1}^m x_j^{(i)}$$
 e $\sigma_{x_j}^2 = \frac{1}{m} \sum_{i=1}^m (x_j^{(i)} - \bar{x}_j)^2$

$$\mathbf{X} = \begin{bmatrix} 1 & x_1^{(1)} \\ 1 & \vdots \\ 1 & x_1^{(m)} \end{bmatrix} \implies \frac{1}{m} \mathbf{X}^T \mathbf{X} = \begin{bmatrix} 1 & \bar{x}_1 \\ \bar{x}_1 & \sigma_{x_1}^2 + \bar{x}_1^2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

se
$$\bar{x}_1 = 0$$
 e $\sigma_{x_1} = 1$

Normalização de Atributos

A normalização de atributos resulta no modelo linear:

$$\hat{y} = f(\mathbf{x}) = \mathbf{w}^T \mathbf{x}' = w_0 + w_1 \left(\frac{x_1 - \bar{x}_1}{\sigma_{x_1}} \right) + \dots + w_n \left(\frac{x_n - \bar{x}_n}{\sigma_{x_n}} \right)$$

- ightharpoonup Os parâmetros \bar{x}_j e σ_{x_j} devem ser estimados exclusivamente a partir do conjunto de treinamento e guardados para serem usados na predição
- Alternativamente, o modelo pode ser reexpresso como:

$$\hat{y} = f(\mathbf{x}) = \mathbf{w'}^T \mathbf{x}$$

onde
$$w_j' = w_j/\sigma_{x_j}$$
 e $w_0' = w_0 - \sum_j w_j \bar{x}_j/\sigma_{x_j}$

- Obs: normalização é essencial quando os atributos possuem faixas de valores bastante diferentes (ex: regressão polinomial)
 - ► Também auxilia na interpretação do modelo (importância de cada atributo)

Extensões

Regressão Não-Linear

Modelo:

$$\hat{y} = f(\mathbf{x}) = g(\mathbf{w}^T \mathbf{x})$$

onde g(z) é uma função não-linear

Função custo (perda quadrática):

$$J(\mathbf{w}) = \frac{1}{m} \sum_{i=1}^{m} (g(\mathbf{w}^T \mathbf{x}^{(i)}) - y^{(i)})^2$$

Gradiente:

$$\nabla J(\mathbf{w}) = \frac{2}{m} \sum_{i=1}^{m} (g(\mathbf{w}^T \mathbf{x}^{(i)}) - y^{(i)}) g'(\mathbf{w}^T \mathbf{x}^{(i)}) \mathbf{x}^{(i)}$$

onde
$$g'(z) = \frac{d}{dz}g(z)$$