Imperial College London

M4R Project

IMPERIAL COLLEGE LONDON

DEPARTMENT OF MATHEMATICS

Enumerative geometry of lines

Author: Wei Jiang

Supervisor: Dr. Arbesfeld Noah

June 8, 2020

Contents

1	Grassmannian as projective variety	
2	From group of cycles to chow ring	Ę
3	chern classes	,

Introduction

1 Grassmannian as projective variety

How can we parametrized all lines in a projective space \mathbb{P}^n ? We know a line l in \mathbb{P}^n corresponds to a 2-dimensional linear subspace of \mathbb{A}^n . So the the question transfers to parameterising linear subspaces of a vector space.

Definition 1.1. Let V be a vector space of dimension n, define G(k, n) to be the set of all linear k-subspaces of V.

Example 1.2. A first example of such a space is projective spaces \mathbb{P}^n or they can be denoted as G(1, n + 1). Lines in \mathbb{P}^n form G(2, n + 1).

To avoid confusion, if Λ is a k-dimensional subspace of a n-dimension vector space V, then we use $[\Lambda] \in G(k, n)$ to denote the point corresponds to the subspace.

It can be shown that Grassmannian is a projective variety, so we can use all the tools in intersection theory to deal with it. The structure can be seen via a method called Plucker embedding.

Let $\Lambda \subset V$ be a k-dimensional subspace, then $\Lambda^k \Lambda$ is a 1-dimensional subspace of $\Lambda^n V$. More precisely, if $v_1, ..., v_k$ is a basis of Λ , then $\Lambda^k \Lambda$ is the line spanned by $v_1 \wedge ... \wedge v_k$. This corresponds to a point of $\mathbb{P}\Lambda^k V$.

(By $\mathbb{P}V$ we mean the quotient of V by the relation v w iff $v = \lambda w$. This is similar to the construction of projective space)

This gives a map of sets $G(k,n) \longrightarrow \mathbb{P} \wedge^k V \cong \mathbb{P}^{\binom{n}{k}-1}$. This map is called Plucker embedding.

Lemma 1.3. This map $G(k,n) \longrightarrow \mathbb{P} \wedge^k V \cong \mathbb{P}^{\binom{n}{k}-1}$ is injective.

Proof. let $v_1, ..., v_k$ be a basis of $\Lambda \subset V$, we can extend it to a basis of V by adding linear independent vectors $u_{k+1}, ...u_n$. Let $a = v_1 \wedge ... \wedge v_k$, then $\forall v \in V, v \wedge a = 0$ if and only if $(b_1v_1 + ...b_nu_n) \wedge a = 0$ iff $b_{k+1}u_{k+1} \wedge a + ... + b_nu_n \wedge a = 0$ iff $v \in \Lambda$ so a determines Λ . \square

So G(k, n) is isomorphic to its image in $\mathbb{P} \wedge^k V$. Lets call its image G. It left to show that its image is the common zero locus of some homogeneous polynomials. We can show this by express our k-subspace as a matrix.

Let $e_1, e_2, ..., e_n$ is a basis for V, we can identify V as k^n then any k-vector space is the span of k linear independent vectors in this basis. We can write them as a matrix:

$$\begin{pmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n} \\ a_{2,1} & a_{2,2} & \dots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k,1} & a_{k,2} & \dots & a_{k,n} \end{pmatrix}$$

However, just like coordinates of points in a projective space, the matrix A is not unique. Since we can multiply on the left any invertible $k \times k$ matrix Ω without changing the row spaces, because the rows in ΩA are linear combinations of the rows in A. In this setting, $\Lambda^k V$ is given by the set

$$\{e_{i1} \wedge \dots \wedge e_{ik}\}_{1 \leq i1 \leq \dots \leq ik \leq n}$$

After the Plucker embedding, this matrix get sent to the wedge product of row vectors:

$$v_1 \wedge \dots \wedge v_k = \sum_{1 \leq i1 < \dots < ik \leq n} D_{i1,\dots,ik} e_{i1} \wedge \dots \wedge e_{ik}$$

Where $D_{i1,...,ik}$ is the determinant of k minors of the matrix A. However, just like coordinates of points in a projective space, the matrix A is not unique. Since we can multiply on the left any invertible $k \times k$ matrix Ω without changing the row spaces, because the rows in ΩA are linear combinations of the rows in A. If we choose another basis of Λ , then the result is multiply by the determinant of Ω . As Ω invertible, the determinant is never 0, so the product is always the same point in $\mathbb{P}\Lambda^k V$.

Now we try to find these homogeneous polynomials that defines Im(G(k,n)). For any k-subspace, we can find k linearly independent vectors that span it. So $\omega \in \mathbb{P} \wedge^k V$ is in the image if and only if there exits $v_1, ..., v_k$ (linearly independent) such that $\omega = v_1 \wedge ... \wedge v_k$.

Lemma 1.4. $\omega \in \mathbb{P} \wedge^k V$ such that $\omega = v_1 \wedge ... \wedge v_k$ if and only if the map:

$$V \xrightarrow{\wedge \omega} \mathbb{P} \wedge^{k+1} V$$

has kernel of dimension at least k.

Proof. (\Rightarrow) Trivial as v_i is basis of the kernel. (\Leftarrow) If the kernel has dimension at least k, then there exits $v_1, ..., v_k$ (linearly independent), such that $v_i \wedge \omega = 0, 1 \leq i \leq k$.

Lets start from v_1 , if $v_i \wedge \omega = 0$, then there exists $\omega' \in \mathbb{P} \wedge^{k-1} V$ such that $\omega = v_0 \wedge \omega'$. Repeat this process, we can see that $\omega = v_1 \wedge \ldots \wedge v_k$.

Then the image can be expressed as:

$$G = \{ \omega \in \mathbb{P} \wedge^k V \mid \operatorname{rank}(V \xrightarrow{\wedge \omega} \mathbb{P} \wedge^{k+1} V) \le n - k \}$$

This can be interpreted as the zero locus of degree (n-k+1) homogeneous polynomials that are determinant of (n-k+1) minors of the map $\wedge \omega : V \to \mathbb{P} \wedge^{k+1} V$ written as a matrix. So we can conclude that G(k,n) is a variety.

2 From group of cycles to chow ring

A projective space can be covered by Zariski open subsets isomorphic to affine space. So we can define a local coordinates on projective space. Similarly, we can cover a Grassmannian G = G(k, n) by Zariski open subsets as well. Too see this, fix an (n-k)-dimensional subspace $\Gamma \subset V$, and let U_{Γ} be the subset of k-subspaces that do not meet Γ :

$$U_{\Gamma} = \{ L \in G \mid L \cap \Gamma = \emptyset \}$$

Lets show it is Zariski open: let $w_1, w_2, \ldots, w_{n-k}$ be a basis of Γ and let $\gamma = w_1 \wedge \cdots \wedge w_{n-k}$ then we have :

$$U_{\Gamma} = \{ [\omega] \in G \subset \mathbb{P}(\wedge^k V) \mid \omega \wedge \gamma \neq 0 \}$$

3 chern classes

References