ELEC-H-310 Digital electronics

Lecture04 Synthesis & optimisation of synchronous logic circuits

Dragomir MILOJEVIC

Today

- 1. Sequential systems: classes et representation
- 2. State encoding
- 3. Sequential system output
- 4. Example of a very simple sequential system (1st example)
- 5. Optimisation of primitive state tables
- D flip-flop synthesis (2nd example)
- 7. Different memory elements

1. Sequential systems: classes et representation

Sequential systems — why and how?

- Combinatorial systems can't be used to control certain process
- Last time we have seen the reservoir problem: level of the liquid in the tank can not be used alone to control the valve that will bring the liquid (we can not make a difference between the state of a "full tank being emptied" and/or "empty tank being filled")
- So, to compute the system output (i.e. the control of the valve) using the **inputs only** is not enough; we need something more ...
- Sequential systems introduce the notion of system state
- Current system state is somehow "stored", "kept", "remembered" in the system – there is a notion of memory in sequential digital logic systems
- In the example we need to remember if tank was full or empty (there are 2 distinct states)

Memory: present & future

- State of the system is materialised using a feedback loop which allows us to make a difference between the present and the future
- Feedback loop = time difference
- Time difference = delay in the wire, necessary to distinguish between
 y (present state variable) and Y (future state variable)

ULB/BEAMS

States & sequential logic systems

- System state (internal state) is not necessarily seen by the observer outside of the system
- After all, what counts is what the systems does, or what it produces at the output
- In sequential systems the output is computed as a function of the current state AND eventually of the system inputs
- Here "eventually" means that we have two different classes of sequential logic circuits:
 - Moore machine (not Gordon from Intel!) &
 - Meally Machine
- Today let's just point the difference between the two & focus on Moore
- We will see later what the other really mean, and why it is useful

Moore Machine

Output (combinatorial) is function of state variables only; (we focus on this type of machines for a moment)

Meally machine

Output (combinatorial) is function of state variables and INPUT; (we will see these machines later on)

Sequential circuits — representation & synthesis

- Representing sequential systems using:
 - 1. State graphs for fun, not that useful, but nice to look at
 - 2. State tables we will used these extensively
 - 3. Logic equations important to build the circuit
- All these provide a formal specification of the automata evolution in time
- Note that the time here is seen more as an event, rather than some absolute value ...
- One can easily switch from one to another representation (you need one formal representation that is good) – this is an easy part
- Hard one is to derive the initial system specification from verbal description of the system behaviour (needs practice)

2. State encoding

State encoding

		ab				
	00	01	11	10	Z	
1	1	2	1	ı		
2	1	2	3	1		
3	-	2	3	4		
4	1	1	1	4		

- State table showed last time used decimal numbers to represent states
- But it could be anything: letters, symbols, etc.
- As long as the future predicted exists as the present (whatever we find in the table should exist in the column representing present state)
- Logic circuits use binary: {0,1,-}
- To go from one (initial state table) to the other we need to encode states (encoded table)

To perform state encoding we need to encode *n* states:

log₂n

each bit is a state variable

State encoding example

- System has 4 states
- To each state we attribute a binary code
- Let's pick an arbitrary (first to come) code first:

$$1 \rightarrow 00$$
; $2 \rightarrow 01$; $3 \rightarrow 11$; $4 \rightarrow 10$

State table

ab

	00	01	11	10	Z
1	1	2	1	ı	0
2	1	2	3	ı	0
3	ı	2	3	4	1
4	1	ı	ı	4	1

Encoded state table

	00	01	11	10	Z
00	00	01	00	1	0
01	00	01	11	ı	0
11	ı	01	11	10	1
10	00	-	-	10	1

Encoded state table

		F			ab	
	Y_2Y_1	00	01	11	10	Z
	00	00	01	00	1	0
	01	00	01	11	ı	0
	11	-	01	11	10	1
	10	00	ı	ı	10	1
\	У 2 У 1					

- States are encoded: each bit of a code is a separate, dedicated logic function to become a dedicated feedback loop
- For the example: 4 states, 2 state variables (y2y1), 2 logic functions, 2 different circuits (with 2 different feedback loops)
- Note the difference between y₂y₁
 et Y₂Y₁ (lower & upper case)
- Lower case refers to present
- Upper case to the future

State table is like a crystal ball!

(give it present and inputs and it will tell you the future)

State table with 4 states gives 2 logic equations

			_	ab	
Y_2Y_1	00	01	11	10	Z
00	00	01	00	1	0
01	00	01	11	1	0
11	1	01	11	10	1
10	00	_	_	10	1

Y ₂	00	01	11	10
00	0	0	0	1
01	0	0	1	1
11	1	0	1	1
10	0	_	_	1

Y2Y1

Y ₁	00	01	11	10
00	0	1	0	ı
01	0	1	1	ı
11	ı	1	1	0
10	0	_	_	0

ULB/BEAMS

Logic optimisation & final expressions

	_		_	ab
Y ₂	00	01	11	10
00	0	0	0	1
01	0	0	1	-
11	ı	0	1	1
10	0	_	-	1

У2**У**1

$$Y_2=ab' + y_1a$$

		_		ab
Y_1	00	01	11	10
00	0	1	0	ı
01	0	1	1	ı
11	-	1	1	0
10	0		_	0

У2**У**1

$$Y_1=a'b + y_1b$$

3. Sequential system output

Simple decoder

We look only at states that generate Z=1

		ab				
	00	01	11	10	Z	
00	00	01	00	ı	0	
01	00	01	11	ı	0	
11	-	01	11	10	1	
10	00	1	1	10	1	

$$z = y_1y_2 + y_1'y_2$$

Y2**Y**1

- This is not great: what will happen if we have arbitrary number of transitions?
- Decoder will follow transitions ... this will generate glitches on output!

Output of a sequential system

- Two types of outputs: for stable states and transitions
- For stable states we have this information in the state table itself, we know what the output value should be: we simply copy those
- For transitions (grey cells in the tables below): we decide on the value, but we want to minimise the total number of transitions to only one

		ab				
	00	01	11	10	Z	
00	00	01	00	ı	0	
01	00	01	11	ı	0	
11	ı	01	11	10	1	
10	00	ı	ı	10	1	

Z	00	01	11	10
00	0		0	1
01		0		ı
11	ı		1	
10		_	-	1

ab

y2**y**1

ULB/BEAMS 18

Output function: rule on transitions

- In other words: if there should be a transition at the output, we can allow only one such change at a time!
- We can analyse all possibilities for a single transition between 2 stable states
- One state is called departure (from where), the other is destination

Departure state	0	1	0	1
Transition	0	1	l	
Arrival state	0	1	1	0

Same:

We need to maintain same value

Different:

We can put a don't care

Output function: final synthesis

- Presence of extra transitions enables better output logic function simplification (presence of don't cares)
- Output values for transitions (grey in the table below) have been fixed applying the rule from the previous slide

		ab				
	00	01	11	10	Z	
00	00	01	00	1	0	
01	00	01	11	ı	0	
11	_	01	11	10	1	
10	00	_	_	10	1	

Z	00	01	11	10
00	0	0	0	ı
01	0	0	1	ı
11	-	ı	1	1
10	_	_	_	1

Logic diagram of a sequential circuit

With all Boolean expressions, we can now draw the circuit; Attention! Feedback logic functions: make a difference between the present state (y_i) and future states (y_i)

$$Y_2=ab' + y_1a$$

$$Y_1=a'b + y_2b$$

$$z=y_2$$

4. Complete example of a (very simple) sequential system

Synthesis steps

For the example of the reservoir:

- 1. Write state table
- 2. Draw state graph
- 3. Encode the states
- 4. Derive K-Maps corresponding to feedback logic functions
- 5. Derive the output for transitions
- 6. Enumerate all logic functions
- 7. Draw the circuit diagram

1. State table

- We suppose for initial state a full reservoir (state 1 with ab=11)
- From there the system can be only emptied (input ab=01) to go in 2
- From 2 the system could either become full again, or further be emptied (this i a new state 3); note that instantaneous inversion of inputs is not possible in this case (ab=01 to become ab=10)
 ab

2. State graph

ULB/BEAMS 25

3. State encoding

We make the following choice: $1\rightarrow00$; $2\rightarrow01$; $3\rightarrow11$; $4\rightarrow10$ (more on this later on ... take the choice free for now)

			_	ab	_					ab	_
	00	01	11	10	Z		00	01	11	10	Z
1	1	2	1	_	0	00	_	01	00	_	0
2	3	2	1	_	0	01	11	01	00	_	0
3	3	4	_	_	1	11	11	10	_	ı	1
4	3	4	1	_	1	10	11	10	00	_	1

4. Feedbacks logic functions

ab

				01.10
Y ₂	00	01	11	10
00	1	0	0	ı
01	1	0	0	-
11	1	1	ı	-
10	1	1	0	-

				ab	
	00	01	11	10	Z
00	ı	01	00	ı	0
01	11	01	00	ı	0
11	11	10	ı	ı	1
10	11	10	0	ı	1

Y_1	00	01	11	10
00	ı	1	0	ı
01	1	1	0	ı
11	1	0	ı	ı
10	1	0	0	1

$$Y_2=a'b'+y_2a'$$

$$Y_1 = a'b' + y_2'a'$$

5. Outputs

Values of the outputs are fixed for stable states; for transitions: **one change only is allowed!**

		ab				
	00	01	11	10	Z	
1	ı	2	1	ı	0	
2	3	2	1	ı	0	
3	3	4	ı	ı	1	
4	3	4	1	ı	1	

Z	00	01	11	10
0	ı	0	0	ı
1	ı	0	0	ı
11	1	1	ı	ı
10	1	1		_

6. All logic functions (feedback & output)

				ab
Y ₂	00	01	11	10
00	-	0	0	-
01	1	0	0	ı
11	1	1	-	-
10	1	1	0	-

$$Y_2=a'b'+y_2a'$$

\mathbf{Y}_1	00	01	11	10
00	ı	1	0	ı
01	1	1	0	ı
11	1	0	ı	-
10	1	0	0	_

$$Y_1 = a'b' + y_2'a'$$

				ab
Z	00	01	11	10
00	ı	0	0	ı
01	ı	0	0	ı
11	1	1	ı	ı
10	1	1	ı	ı

$$z=\lambda$$

7. Final logic circuit

ULB/BEAMS

3. Optimisation of primitive state tables

Optimisation & implementation

Sequential system synthesis in three steps:

1. Primitive state table (Huffman Table)

- Using verbal system specification (or state graphs for example) we first derive
 Primitive State Table (AKA Huffman table)
- → Primitive State Table we expect one stable state per line of the table

2. State encoding

- Chose unique binary code per state in the system
- Few codes are possible, for now we pick the first code that we could imagine
- ◆ Code choice arbitrary for a moment; not going to be the case in the future!

3. Logic Equations

 From encoded state table we derive logic expression in their optimised form (using K-Maps or Quine-Mc.Cluskey)

Optimisation & implementation

- Final logic circuit complexity after synthesis will be influenced by the complexity (i.e. size) of the initial state table
- Encoding: mapping of log₂ n bits of the binary code to n states
- Each bit here represents:
 - one logic function,
 - one memory element (delay)
- By reducing the number of states in the system we can simplify the corresponding logic circuit (save resources means cheeper, faster, less power hungry circuit)
- This is similar to optimisation of logic functions used for combinatorial systems

Reducing the number of states

- Optimising the state table is possible thanks to the notion of state equivalence
- Two (stable) states are equivalent iff:
 - 1. they produce the **same output** (we are in the case of Moore Machine, output depends on the state only)

AND

- 2. for **all** combinations of inputs, all **future** states are the same or **equivalents** (two states will have the same future)
- This can be extended to three and more states; in that case all pairs of states need to be equivalents

Equivalence: identical states and state fusion

 Identical states — then 2 (or more) stable states are at the same place (for the same input combination)

		ab			
	00	01	11	10	Z
1	1	2	3	5	0
6	6	2	3	5	0

• Sate fusion — stable states are found at different input combinations, but will generate the same future

			ab 			
	00	01	11	10		
1	1	2	3	7	1	
7	1	2	3	7	1	

State table after optimisation

Identical state

				C.D	
	00	01	11	10	Z
1	1	2	3	5	0
6	6	2	3	5	0

ab

ab

	00	01	11	10	Z
1	1	2	3	5	0

ab

ab

State fusion

	00	01	11	10	Z
1	1	2	3	7	1
7	1	2	3	7	1

	00	01	11	10	Z
1	1	2	3	1	1

In a given state table, finding all identical states and performing state fusion will yield state table **OPTIMISATION**

Fusing more than 2 states

- It is possible to fuse two or more states, if we can fuse all pairs of states, two-by-two; this can be verified using fusion graphs
- These graphs show fusion conditions that need to be checked before
- Let's take an example:

_		ab						
	00	01	11	10	Z			
1	1	2	8	7	1			
7	1	4	8	7	1			
8	1	4	8	8	1			

- To be able to fuse 1,7 and 8: we need to fuse 7-8 and 2-4!
- These other states are not shown here

Systematic search of equivalences

- Draw a table with (n)(n-1)/2 cells; where n is the number of states in the initial state table; we call this table: equivalences conditions table
- We consider that each state is equivalent to itself combination of n elements without repetitions
- Each table cell contains the condition of the potential equivalence between two stable states, and could have three options:
 - Not equivalent we note this with and x; in the case of Moore machine any two pair of states with different outputs will be marked as such; 1st pass is always only about comparing the output value
 - Equivalent we mark this OK; these two states can be fused without any conditions (this does not necessarily mean that we do fuse them)
 - Conditional some other pair of states need to be equivalent in order for these two to be equivalent

Systematic search of equivalences

Example – For 11 state table the **equivalences conditions table**:

As for use & applications let's see a concrete example

4. D flip-flop synthesis (2nd example)

Problem

Establish **primitive state table**, find **optimised state table**, write encoded state table & derive logic equations for **D** – **memory element**

D – memory

- Two inputs: D (data) & C (control)
- One output Q
- Output value controlled by D and C

- Two variants:
 - Latches sensitive to the level of C (we don't like these)
 - Flip-flop sensitive to the transition of C (0 to 1 or inverse)

Specification of the edge triggered D-FF

- Assume we have a periodic control signal for C clock that controls the D-FF device
- Output Q takes the value of D only when rising edge of Clock
- Rising edge is the transition from 0 to 1 (falling edge from 1 to 0)
- In between two rising edges, the old value of D is maintained in the memory (any variation of the input is ignored)
- If there is a simultaneous variation of the C and D (rising edge of C and value of D that switch from 0 to 1 or inverse), Q is taking the old value of D, the one just before the rising edge
- Whatever else happens at the input is ignored, the output maintains the previous value (memorisation)

D Flip-Flop behaviour— timing diagram

Write to memory only at rising edge of a clock signal

(input values outside these moments are ignored)

D Flip-Flop — Primitive state table

Let's consider the evolution that will set the output to 0

1. Let's start with an **initial state** — we can do that, and make it so that the system always "wakes up" in this initial state — we call this state **1** (note the bold): we already saved 0 (Q=0) and there is no change in inputs (CD=00 and remains as such)

2. We consider that D is first set to 1 (D moves from 0 to 1) and before C is switched on — state 2
Output is kept to 0

3. And then C switches on — state 4

Output is set to 1 when the following input sequence is seen for CD: CD=00,01,11

(i.e. machine moves between states 1,2 et 4)

	00	01	11	10	Q
1	1	2	7		0
2	1	2	4		0
3					0
4			4		1
5					0
					0

CD

D Flip-Flop — Primitive state table

Another evolution is possible from state 1

- Imagine that C switched on before D from state 1 (we have CD=00,10) → this is a new situation (state) that we call 3
 - C could switch back to (and again), this is ignored as long as D doesn't change (red loop)
- 2. If D turns on now, FF should ignore this input change since it arrived **after** the rising edge of C (this already occurred)
- 3. We created state **5**, different from **4** because the output should be kept to 0, since the input sequence is not good

				CD	
	00	01	11	10	Q
1	1	2		3	0
2	1	2	4	3	0
თ			5	3	0
4			4		1
5			5		0
					0

Complete primitive state table

Memorising (and keeping memorised) value of 1

- 1. Initially CD=00
- 2. CD input sequence is: 00,01,11
- 3. Output Q set to 1 (system in state 4)
- 4. Then imagine C=0
- 5. Then whatever comes at input D, output Q will keep the value of 1 succession of states 7,9,7,9,...

		CD						
	00	01	11	10	Q			
1	1	2	5	3	0			
2	1	2	4	3	0			
3	6	2	5	3	0			
4	9	7	4	8	1			
5	6	2	5	3	0			
6	6	2	5	3	0			
7	9 🗸		4	8	1			
8	9	7	4	8	1			
9	9	7	5	10	1			
10	6	2	5	10	0			

DFF – State equivalence table 1st pass

Primitive state table opt. – Moore Machine, conditions on outputs

	CD						
	00	01	11	10	Q		
1	1	2	5	3	0		
2	1	2	4	3	0		
3	6	2	5	3	0		
4	9	7	4	8	1		
5	6	2	5	3	0		
6	6	2	5	3	0		
7	9	7	4	8	1		
8	9	7	4	8	1		
9	9	7	5	10	1		
10	6	2	5	10	0		

5

6

4

ULB/BEAMS

X

9

DFF – State equivalence table 2nd pass

_		CD					
	00	01	11	10	Q		
1	1	2	5	თ	0		
2	1	2	4	8	0		
3	6	2	5	3	0		
4	9	7	4	8	1		
5	6	2	5	3	0		
6	6	2	5	3	0		
7	9	7	4	8	1		
8	9	7	4	8	1		
9	9	7	5	10	1		
10	6	2	5	10	0		

2	4-5 3-8			We add							
3	1-6	1-6 4-5 3-8						s for	•		
4	Х	Х	X		st	ate	fusi	on			
5	1-6	1-6 4-5 3-8	OK	X		_					
6	OK	1-6 4-5 3-8	OK	X	OK						
7	X	X	X	OK	X	X					
8	X	X	X	OK	X	X	OK				
9	X	Х	X	8-10 4-5	X	X	4-5 8-10	4-5 8-10			
10	1-6 3-10	1-6 4-5 3-10	OK	X	3-10	3-10	X	X	X		
	1	2	3	4	5	6	7	8	9		

DFF – State equivalence table 3rd pass

New state table after removing equivalent states

Equivalent states

CD

$$1,6 \rightarrow 1$$

 $3,10 \rightarrow 3$

	00	01	11	10	Q
1	1	2	5	3	0
2	1	2	4	8	0
3	6	2	5	3	0
4	9	7	4	8	1
5	6	2	5	3	0
6	6	2	5	3	0
7	9	7	4	8	1
8	9	7	4	8	1
9	9	7	5	10	1
10	6	2	5	10	0

	_				
	00	01	11	10	Q
1	1	2	5	3	0
2	1	2	4	8	0
3	1	2	5	3	0
4	9	7	4	8	1
5	1	2	5	3	0
7	9	7	4	8	1
8	9	7	4	8	1
9	9	7	5	3	1

CD

State fusion graphs

Re-writing state table after optimisation

Equivalent states

$$1,6 \rightarrow 1$$

$$3,10 \rightarrow 3$$

State fusion

$$1,3,5 \rightarrow 1$$

$$2 \rightarrow 2$$

$$4,7,8 \rightarrow 4$$

	00	01	11	10	Q
1	1	2	5	3	0
2	1	2	4	8	0
3	1	2	5	3	0
4	9	7	4	8	1
5	1	2	5	3	0
7	9	7	4	8	1
8	9	7	4	8	1
9	9	7	5	3	1

CD

Final state table

Final state table

We pick new codes (ordered): 1,2,3 et 4

Optimisation: we moved from 10 to 4 states, meaning 2 state variables instead of 4. This is a **significantly less** resources to do exactly the same thing!

Encoded state table

We can (still!) chose codes arbitrarily, so say:

$$1 \rightarrow 00$$
, $2 \rightarrow 01$, $3 \rightarrow 11$, $4 \rightarrow 10$

CD Q

	00	01	11	10	Q
00	00	01	00	00	0
01	00	01	11	11	0
11	10	11	11	11	1
10	10	11	00	00	1

CD

K-Maps & logic equations

Optimised state table implementation

CD

	00	01	11	10
00	00	01	00	00
01	00	01	11	11
11	10	11	11	11

00

10 | 11

CD

Υ2	00	01	11	10
00	0	0	0	0
01	0	0	1	1
11	1	1	1	1
10	1	1	0	0

y2**y**1

$$Y_2=y_1C'+y_2C$$

y2**y**1

$$Y_1=C'D+y_1C$$

5. Different memory elements

Flip-flops

- One or two inputs that control the value stored in the FF
- Presence (or not) of a periodic control signal (Clock)
- Normal output (Q) and inverted output (Q')
- Depending on the FF type
 - **SR (Set/Reset)** When S=1, then output Q=1, no matter the previous state. Combination SR=11 is forbidden. Output Q=0, when R=1, no matter the previous state
 - JK (Jack Kilby not sure if coincidence ...); same as in SR, except that forbidden input is now allowed and produces flipped system state (if in state 0 then 1, and inversely)
 - D (Data) is following the input
 - T (Toggle) input changes (flips) the system state (when T=1, Q inverses)
- Different way of specifying behaviour of different FFs
 - Functional table (similar to state table) or Excitation tables
 - Logic equations
- You don't need to know by heart these, but you will have to learn how to switch from one to another

Possible outputs for any flip-flops

- Output Q can have one of the two values (0 or 1)
- There is:
 - the present state of and there is
 - the future state Q+
- Between present and future we can have only 4 possible combinations for any FF, and these combinations are codified as follows:

Q	Q ⁺	Operation	Code
0	0	Maintain 0	μ_0
0	1	Enable (turn on)	3
1	0	Disable (turn off)	δ
1	1	Maintain 1	μ_1

SR

SR

Q ⁺	00	01	11	10
0	0	0	ı	1
1	1	0	ı	1

State table

S	R	Q ⁺
0	0	Q
0	1	0
1	0	1
1	1	_

Operation table

State graph

	Q	Q+	S	R
μ_0	0	0	0	ı
3	0	1	1	0
δ	1	0	0	1
μ_1	1	1	-	0

Excitation table

JK

				JK
Q ⁺	00	01	11	10
0	0	0	1	1
1	1	0	0	1

State table

J	K	Q ⁺
0	0	Q
0	1	0
1	0	1
1	1	Q ′

Operation table

State graph

	Q	Q ⁺	J	K
μ_0	0	0	0	ı
ε	0	1	1	1
δ	1	0	0	1
μ_1	1	1	-	0

Excitation table

		D
Q ⁺	0	1
0	0	1
1	0	1

State table

D	Q ⁺
0	0
1	1

Operation table

State graph

	Q	Q+	D
μ_0	0	0	0
ε	0	1	1
δ	1	0	0
μ_1	1	1	1

Excitation table

		Т
Q ⁺	0	1
0	0	1
1	1	0

State table

Т	Q+	
0	0	
1	1	

Operation table

State graph

	Q	Q+	Т
μ_0	0	0	0
3	0	1	1
δ	1	0	1
μ1	1	1	0

Excitation table

Schematic representation of FFs

With and without control signal (clock) Clk (small triangle)

