principled simplicial neural networks for trajectory prediction

T. Mitchell Roddenberry,* Nicholas Glaze,* Santiago Segarra mitch@rice.edu mitch.roddenberry.xyz

Electrical and Computer Engineering Rice University ICML 2021

^{*}equal contribution

graph neural networks

Sequence of local aggregations and activation functions

graph neural networks

- Sequence of local aggregations and activation functions
- Permutation-equivariance

graph neural networks

- Sequence of local aggregations and activation functions
- Permutation-equivariance

Enforcing appropriate symmetries helps with generalization

(2)

• Start with a set of nodes X_0

3

1

4)

- Start with a set of nodes X_0
- Take finite subsets of X_0

- Start with a set of nodes X_0
- Take finite subsets of X_0
- Abstract simplicial complex: a collection X of finite subsets of X₀ that is closed under restriction

- Start with a set of nodes X_0
- Take finite subsets of X_0
- Abstract simplicial complex: a collection X of finite subsets of X₀ that is closed under restriction
- X_k : collection of elements of X with cardinality k + 1

 Graph neural networks act on graph signals: nodal data

- Graph neural networks act on graph signals: nodal data
- What kind of data lives on a simplicial complex?

- Graph neural networks act on graph signals: nodal data
- What kind of data lives on a simplicial complex?
- k-chains are elements of the vector space C_k

- Graph neural networks act on graph signals: nodal data
- What kind of data lives on a simplicial complex?
- k-chains are elements of the vector space C_k
- Attach real numbers to the oriented k-simplices

- Graph neural networks act on graph signals: nodal data
- What kind of data lives on a simplicial complex?
- k-chains are elements of the vector space C_k
- Attach real numbers to the oriented k-simplices
- Enforce skew-symmetry: $[i_0, i_1] = -[i_1, i_0]$

• Consider a *flow* of resources over a graph (C_1)

- Consider a **flow** of resources over a graph (C_1)
- Blue indicates positive flow (+1)

- Consider a *flow* of resources over a graph (C_1)
- Blue indicates positive flow (+1)
- Red indicates negative flow (-1)

- Consider a *flow* of resources over a graph (C_1)
- Blue indicates positive flow (+1)
- \circ Red indicates negative flow (-1)

- Consider a *flow* of resources over a graph (C_1)
- Blue indicates positive flow (+1)
- \circ Red indicates negative flow (-1)

Skew-symmetry: flow does not depend on chosen orientation

 \circ Graph neural networks are maps: $\mathcal{C}_0 o \mathcal{C}_0$

- \circ **Graph neural networks** are maps: $\mathcal{C}_0 \to \mathcal{C}_0$
- \circ We want to understand fancier maps: $\mathcal{C}_k o \mathcal{C}_\ell$

- o **Graph neural networks** are maps: $C_0 o C_0$
- \circ We want to understand fancier maps: $\mathcal{C}_k \to \mathcal{C}_\ell$
- Guiding questions:

- \circ Graph neural networks are maps: $\mathcal{C}_0 \to \mathcal{C}_0$
- \circ We want to understand fancier maps: $\mathcal{C}_{\textit{k}}
 ightarrow \mathcal{C}_{\ell}$
- Guiding questions:
 - Symmetries/invariances?
 - Natural operations available to us?
 - Fully leverage the simplicial structure?

• **Q**: What is the most important operator on a graph?

- **Q**: What is the most important operator on a graph?
- A: The Laplacian!

- **Q**: What is the most important operator on a graph?
- A: The Laplacian!
- \circ L = D A

- **Q**: What is the most important operator on a graph?
- A: The Laplacian!
- $\circ L = D A$
- \circ Or even better: $\mathbf{L} = \mathbf{B}_1 \mathbf{B}_1^{\top}$

 For a simplicial complex, what are the B matrices?

- For a simplicial complex, what are the B matrices?
- B₁ is as usual: node/edge incidence
 B₁[1, 2] = [2] - [1]

- For a simplicial complex, what are the B matrices?
- B₁ is as usual: node/edge incidence
 B₁[1, 2] = [2] - [1]
- \mathbf{B}_2 is not too hard: edge/triangle incidence $\mathbf{B}_2[1,2,3] = [1,2] + [2,3] - [1,3]$

- For a simplicial complex, what are the B matrices?
- B₁ is as usual: node/edge incidence
 B₁[1, 2] = [2] - [1]

• \mathbf{B}_k follows: k-simplex/k + 1-simplex incidence

- For a simplicial complex, what are the B matrices?
- B₁ is as usual: node/edge incidence
 B₁[1, 2] = [2] - [1]
- B₂ is not too hard:
 edge/triangle incidence
 B₂[1, 2, 3] = [1, 2] + [2, 3] [1, 3]
- \mathbf{B}_k follows: k-simplex/k + 1-simplex incidence

$${\sf B}_k {\sf B}_{k+1} = 0$$

We ask that a neural network satisfy...

We ask that a neural network satisfy...

1. Permutation equivariance: ordering of simplices doesn't matter

We ask that a neural network satisfy...

1. **Permutation equivariance**: ordering of simplices **doesn't** matter

2. **Orientation equivariance**: orientation of simplices **doesn't** matter

We ask that a neural network satisfy...

1. **Permutation equivariance**: ordering of simplices **doesn't** matter

2. **Orientation equivariance**: orientation of simplices **doesn't** matter

3. Simplicial awareness: total simplicial structure does matter

We ask that a neural network satisfy...

1. **Permutation equivariance**: ordering of simplices **doesn't** matter

2. **Orientation equivariance**: orientation of simplices **doesn't** matter

3. **Simplicial awareness**: total simplicial structure **does** matter

A map $\mathcal{C}_k \to \mathcal{C}_\ell$ that satisfies all of these is what we call **admissible**

• Observe an agent moving along a path

- Observe an agent moving along a path
- Predict next step *locally*

- Observe an agent moving along a path
- Predict next step *locally*
- o Discrete space: a 2-dim. simplicial complex

- Observe an agent moving along a path
- Predict next step *locally*
- Discrete space: a 2-dim. simplicial complex
- Trajectory: a 1-chain

- Observe an agent moving along a path
- Predict next step *locally*
- Discrete space: a 2-dim. simplicial complex
- Trajectory: a 1-chain
- Predict: a node (0-simplex)

SCoNe: simplicial complex net

SCoNe: simplicial complex net

$$egin{aligned} \mathbf{c}_1^{\ell+1} \leftarrow \phi(\mathbf{B}_2\mathbf{B}_2^{ op}\mathbf{c}_1^{\ell}\mathbf{W}_\ell^2 \ &+ \mathbf{c}_1^{\ell}\mathbf{W}_\ell^1 \ &+ \mathbf{B}_1^{ op}\mathbf{B}_1\mathbf{c}_1^{\ell}\mathbf{W}_\ell^0) \end{aligned}$$

SCoNe: simplicial complex net

SCoNe: simplicial complex net

$$\begin{aligned} \mathbf{c}_1^{\ell+1} \leftarrow \phi(\mathbf{B}_2\mathbf{B}_2^{\top}\mathbf{c}_1^{\ell}\mathbf{W}_{\ell}^2 \\ + \mathbf{c}_1^{\ell}\mathbf{W}_{\ell}^1 \\ + \mathbf{B}_1^{\top}\mathbf{B}_1\mathbf{c}_1^{\ell}\mathbf{W}_{\ell}^0) \end{aligned}$$

• After L such layers, **project**: $\mathbf{c}_0^{L+1} = \mathbf{B}_1 \mathbf{c}_1^L \mathbf{W}_I^0$

SCoNe: simplicial complex net

SCoNe: simplicial complex net

$$\begin{split} \mathbf{c}_1^{\ell+1} \leftarrow \phi(\mathbf{B}_2 \mathbf{B}_2^\top \mathbf{c}_1^\ell \mathbf{W}_\ell^2 \\ + \mathbf{c}_1^\ell \mathbf{W}_\ell^1 \\ + \mathbf{B}_1^\top \mathbf{B}_1 \mathbf{c}_1^\ell \mathbf{W}_\ell^0) \end{split}$$

- After L such layers, **project**: $\mathbf{c}_0^{L+1} = \mathbf{B}_1 \mathbf{c}_1^L \mathbf{W}_L^0$
- Softmax over candidate nodes

permutation equivariance

$$\mathcal{P} \operatorname{SCN}_{\boldsymbol{W}}(\boldsymbol{x}; \{\boldsymbol{B}_j\}) = \operatorname{SCN}_{\boldsymbol{W}}(\mathcal{P}\boldsymbol{x}; \{\mathcal{P}\boldsymbol{B}_j\})$$

- Similar lines to graph neural networks
- Ordering the nodes, edges, triangles, etc. does not affect the output
- Composition of permutation equivariant operations:
 - Boundary maps
 - o *Elementwise* activation function

orientation equivariance

$$\mathcal{D} \operatorname{SCN}_{\mathbf{W}}(\mathbf{x}; \{\mathbf{B}_j\}) = \operatorname{SCN}_{\mathbf{W}}(\mathcal{D}\mathbf{x}; \{\mathcal{D}\mathbf{B}_j\})$$

- One step higher: orientation of all simplices
- Reorienting the edges, triangles, etc. does not affect the output
- Not a concern for GNNs: nodes only have one orientation
- Composition of orientation equivariant operations:
 - Boundary maps
 - Odd activation function

simplicial awareness

$$SCN_{\boldsymbol{W}}(\boldsymbol{x}; \{\boldsymbol{B}_1, \dots, \boldsymbol{B}_K\}) \neq SCN_{\boldsymbol{W}}(\boldsymbol{x}; \{\boldsymbol{B}_1, \dots, \boldsymbol{B}'_{\ell}, \dots, \boldsymbol{B}_K\})$$

- \circ There *exists* an input **x**, weights **W**, and alternative boundary map \mathbf{B}'_{ℓ} such that the two maps are not the same
- Sensitivity to structure of ℓ -simplices
- ∘ For *SCoNe* : $C_1 \rightarrow C_0$, we must kill homology!
 - **Recall**: $B_1B_2 = 0$
 - o Get around this with nonlinear activation function
 - $\circ \ \mathbf{B_1} \circ \phi \circ \mathbf{B_2} \neq 0$

simplicial awareness

that is to say...

Assume the activation function ϕ is **continuous** and **elementwise**.

that is to say...

Assume the activation function ϕ is **continuous** and **elementwise**.

SCoNe is admissible only if ϕ is **odd** and **nonlinear**.

a synthetic example

o Synthetic dataset: random edge orientation

a synthetic example

- Synthetic dataset: random edge orientation
- Trajectories: walks between corners

results - disjoint regions

	SCoNe tanh	SCoNe tanh, no tri.					Bunch et. al. (2020)
Test Acc.	0.61	0.58	0.56	0.53	0.44	0.42	0.57

Training set

Testing set

results - orientation (in)sensitivity

		SCoNe ReLU		
Train Acc.	0.65	0.65	0.66	0.27

Training set

Testing set

results - orientation (in)sensitivity

	SCoNe tanh	SCoNe ReLU		SCoNe Id
Train Acc.	0.65	0.65	0.66	0.27
Test Acc.	0.63	0.24	0.10	0.31

Training set

Testing set

• Graph neural networks process nodal data using intrinsic graph operators

- Graph neural networks process nodal data using intrinsic graph operators
- Use operators on simplicial complexes to extend this to *k*-chain maps

- Graph neural networks process nodal data using intrinsic graph operators
- Use operators on simplicial complexes to extend this to k-chain maps
- Demand that the architecture obeys symmetries of the system

- Graph neural networks process nodal data using intrinsic graph operators
- Use operators on simplicial complexes to extend this to k-chain maps
- Demand that the architecture obeys symmetries of the system
- Yields better generalization