Proposed solution for target performance

1. 总体概览

参数	目标指标	方案一	方案二
像素填充率	64GPixel/s	86.4GPixel/s	64.8GPixel/s
纹理填充率	128GTexel/s	172.8GTexel/s	129.6GTexel/s
浮点性能FP32	14TFLOPs	22TFLOPs	16.588TFLOPs
GPU频率	1.8GHz	1.8GHz	1.35GHz
FP32(训练)	14TFLOPs	22TFLOPs	16.588TFLOPs
INT8(推理)	62TOPs	88.4736TOPs	66.355TOPs

2. 方案描述

2.1 方案一

引入GPC的概念,共6个GPC,每个GPC有8个TPC,2个PA和2个RAST,每个TPC有2个SM,1个ROP和2个TEXT,每个SM有4个SP,每个SP有16个ALU,16个MAC和16个LDST。

基于该架构,各个单元的数量如下:

GPC: 6 TPC: 48 SM: 96 SP: 384

FP32 unit(MAC): 6144

PA: 12 RAST: 12 ROP: 48 TEXT: 96

像素填充率

一个Cycle完成一个Pixel情况下, 48x1.8GHz=86.4。反过来推算: GPU min freq >= 1.33GHz(64GPixel/48)

纹理填充率

一个Cycle完成一个Texel情况下,96x1.8GHz=172.8。反过来推算:GPU min freq >= 1.33GHz(128GTexel/96)

单精度浮点

FP32性能=6144x2x1.8=22.1184TFLOPs. 反过来推算可知: GPU min freq >= 1.14GHz

GPU频率

在该配置下,GPU的频率大于1.33GHz即可满足所有性能指标

FP32(训练)

同单精度浮点

INT8(推理)

把INT32 unit改进为支持4个INT8 unit, INT8性能=6144x4x2x1.8=88.4736TOPs. 反过来推算: GPU min freq >= 1.261GHz

2.2 方案二

跟方案一相比,只有GPU频率的差异,除了频率不能满足要求,性能指标均可满足。如果GPU频率不是硬性要求,那么方案二对时序要求更低一些,功耗更低,相对更优。

3. 人力

主要任务	人力 (人月)
前期分析及方案讨论	3
将SP内4条流水线扩展为16条流水线	2
OCC/DCC/ICC	3
SP Scheduler	2

主要任务	人力 (人月)
FE/IS/RF	3
Register/L1I/L1D/Local Memory	3
SP内联调及问题定位	3
实现SM-Dispather	2
实现TPC-Dispatcher	2
GPC-Dispatcher	2
给GPC分配任务的Scheduler	3
PA的扩展及分配策略,优化	4
RAST的扩展及分配策略	4
ROP的扩展及分配策略	4
TEXT的扩展及分配策略	4
整体性能仿真调试	4
GPU时钟,时序调式	3
解决Bug	5
总计	56

4. 开发时间

5. 关键突破技术

- 1. INT32 unit可以变为 4个INT8 unit同时计算,将会影响INT8推理的性能
- 2. SP中Exe阶段的ALU和MAC单元优化甚至重构(是否将int和float计算分开)
- 3. PA/RAST/ROP/TEXT/SP等各个关键模块结构和性能优化提升
- 4. Memory子系统须确保384个SP的访存效率
- 5. 固定管线中PA/RAST/ROP/TEXT的访存效率

6. 风险评估(可能的技术盲区)

1. 评估GPU核心频率做到1.8GHz的可行性(考量工艺、RTL时序)