Simple Analysis of Sparse, Sign-Consistent JL

Meena Jagadeesan

Harvard University

RANDOM 2019

Linear dimensionality reduction: ℓ_2 -to- ℓ_2

Informal goal: Project vectors in \mathbb{R}^n to \mathbb{R}^m (for m << n) with a linear map while "preserving geometry" (i.e. $||f(x) - f(y)||_2 \approx ||x - y||_2$).

Linear dimensionality reduction: ℓ_2 -to- ℓ_2

Informal goal: Project vectors in \mathbb{R}^n to \mathbb{R}^m (for m << n) with a linear map while "preserving geometry" (i.e. $||f(x) - f(y)||_2 \approx ||x - y||_2$).

Many applications:

- ► Feature hashing (Weinberger et al. '09, Dahlgaard et al. '17, etc.) Freksen et al. '18, etc.)
- Numerical linear algebra (Clarkson and Woodruff '12, Nelson and Nguyen '14, etc.)
- Approximate nearest neighbors (Ailon and Chazelle '09, etc.)
- k-means/k-medians (Makarychev, Makarychev, Razenshteyn '18)

Linear dimensionality reduction: ℓ_2 -to- ℓ_2

Informal goal: Project vectors in \mathbb{R}^n to \mathbb{R}^m (for m << n) with a linear map while "preserving geometry" (i.e. $\|f(x) - f(y)\|_2 \approx \|x - y\|_2$).

Many applications:

- ► Feature hashing (Weinberger et al. '09, Dahlgaard et al. '17, etc.) Freksen et al. '18, etc.)
- Numerical linear algebra (Clarkson and Woodruff '12, Nelson and Nguyen '14, etc.)
- Approximate nearest neighbors (Ailon and Chazelle '09, etc.)
- k-means/k-medians (Makarychev, Makarychev, Razenshteyn '18)
- Compression in the brain (Allen-Zhu, Gelashvili, Micali, Shavit '15)

Mathematical framework

Mathematical framework

Use a probability distribution $\mathcal M$ over linear maps $\mathbb R^n \to \mathbb R^m$ (m << n).

Geometry-preserving property: for each $\vec{x} \in \mathbb{R}^n$

$$\mathbb{P}_{M \in \mathcal{M}}[(1 - \epsilon) \|x\|_2 \le \|Mx\|_2 \le (1 + \epsilon) \|x\|_2] > 1 - \delta.$$

Mathematical framework

Use a probability distribution $\mathcal M$ over linear maps $\mathbb R^n o \mathbb R^m$ (m << n).

Geometry-preserving property: for *each* $\vec{x} \in \mathbb{R}^n$

$$\mathbb{P}_{M \in \mathcal{M}}[(1 - \epsilon) \|x\|_2 \le \|Mx\|_2 \le (1 + \epsilon) \|x\|_2] > 1 - \delta.$$

Fundamental result of linear dimensionality reduction:

Lemma (Distributional Johnson-Lindenstrauss Lemma)

Can obtain $m = \Theta(\epsilon^{-2} \log(1/\delta))$ using \mathcal{M} with i.i.d gaussian entries.

This dimension is actually <u>optimal</u> for any distribution over linear maps (Kane et al. '11, Jayram and Woodruff '11).

Optimality for N-point version (Larsen and Nelson '17)

Application to information compression in the brain

Application to information compression in the brain

Convergent pathways compress information w/o losing the ability to perform computations.

A model (Ganguli, Sompolinsky '12)

- ▶ Source information: $x \in \mathbb{R}^n$
- ▶ Target information: $y \in \mathbb{R}^m$
- Synaptic connections: a random matrix $M \in \mathbb{R}^{m \times n}$

Biological Constraints on $Supp(\mathcal{M})$

(As per Ganguli and Sompolinsky's model)

Biological Constraints on $Supp(\mathcal{M})$

(As per Ganguli and Sompolinsky's model)

Sparsity: every column has $\leq s$ nonzero entries.

 Neurons connected to few post-synaptic neurons

Sign-consistency: in each column, nonzero entries are *all positive* or *all negative*

Neurons are excitatory or inhibitory

JL for sparse matrices

Sparsity is also more generally useful for reducing projection time.

Informal Construction (Sparse JL)

Uniformly choose s nonzero entries per column; i.i.d signs for nonzero entries

Can set $m=\Theta(\epsilon^{-2}\log(1/\delta))$ and $s=\Theta(\epsilon^{-1}\log(1/\delta))$ (Kane and Nelson, J. ACM '12)

Can set
$$m = \min(2\epsilon^{-2}/\delta, \Theta(\epsilon^{-2}\log(1/\delta)B))$$
 and $s = \Theta(\epsilon^{-1}\log(1/\delta)/\log B)$ (Cohen, SODA '16)

Uniformly choose s nonzero entries per column; i.i.d signs for each column:

Uniformly choose s nonzero entries per column; i.i.d signs for each column:

Informal Construction (Sparse, Sign-Consistent JL)

 \mathcal{M} is defined so the (r, i)th entry is $\sigma_i \eta_{r,i} / \sqrt{s}$ where:

- \triangleright σ_i are i.i.d. Rademachers (random signs)
- $\blacktriangleright \eta_{r,i}$ are $\{0,1\}$ rvs s.t. $\sum_{r=1}^{m} \eta_{r,i} = s$ and w/ mild assumptions

Uniformly choose s nonzero entries per column; i.i.d signs for each column:

Informal Construction (Sparse, Sign-Consistent JL)

 \mathcal{M} is defined so the (r, i)th entry is $\sigma_i \eta_{r,i} / \sqrt{s}$ where:

- \triangleright σ_i are i.i.d. Rademachers (random signs)
- $\blacktriangleright \eta_{r,i}$ are $\{0,1\}$ rvs s.t. $\sum_{r=1}^{m} \eta_{r,i} = s$ and w/ mild assumptions

Can set $m = \Theta(\epsilon^{-2} \log^2(1/\delta))$, $s = \Theta(\epsilon^{-1} \log(1/\delta))$ (Allen-Zhu, Gelashvili, Micali, and Shavit, PNAS '15)

Simplify and generalize the analysis of sparse, sign-consistent JL.

Theorem (Informal)

For any $e \le B \le 1/\delta$, can set $m = \Theta(\epsilon^{-2} \log^2(1/\delta)B/\log^2(B))$ and $s = \Theta(\epsilon^{-1} \log(1/\delta)/\log B)$ for sparse, sign-consistent JL.

Simplify and generalize the analysis of sparse, sign-consistent JL.

Theorem (Informal)

For any $e \le B \le 1/\delta$, can set $m = \Theta(\epsilon^{-2} \log^2(1/\delta)B/\log^2(B))$ and $s = \Theta(\epsilon^{-1} \log(1/\delta)/\log B)$ for sparse, sign-consistent JL.

(Bears resemblance to dim/sparsity tradeoffs for sparse JL by Cohen '16.)

Simplify and generalize the analysis of sparse, sign-consistent JL.

Theorem (Informal)

For any $e \le B \le 1/\delta$, can set $m = \Theta(\epsilon^{-2} \log^2(1/\delta)B/\log^2(B))$ and $s = \Theta(\epsilon^{-1} \log(1/\delta)/\log B)$ for sparse, sign-consistent JL.

(Bears resemblance to dim/sparsity tradeoffs for sparse JL by Cohen '16.)

Proof method: Different techniques for analyzing moments of JL error terms which turn to be "needed" for this setting

Simplify and generalize the analysis of sparse, sign-consistent JL.

Theorem (Informal)

For any $e \le B \le 1/\delta$, can set $m = \Theta(\epsilon^{-2} \log^2(1/\delta)B/\log^2(B))$ and $s = \Theta(\epsilon^{-1} \log(1/\delta)/\log B)$ for sparse, sign-consistent JL.

(Bears resemblance to dim/sparsity tradeoffs for sparse JL by Cohen '16.)

Proof method: Different techniques for analyzing moments of JL error terms which turn to be "needed" for this setting

▶ Intuition critical in my follow-up work on analyzing sparse JL for feature hashing (NeurIPS '19, to appear).

Simplify and generalize the analysis of sparse, sign-consistent JL.

Theorem (Informal)

For any $e \le B \le 1/\delta$, can set $m = \Theta(\epsilon^{-2} \log^2(1/\delta)B/\log^2(B))$ and $s = \Theta(\epsilon^{-1} \log(1/\delta)/\log B)$ for sparse, sign-consistent JL.

(Bears resemblance to dim/sparsity tradeoffs for sparse JL by Cohen '16.)

Proof method: Different techniques for analyzing moments of JL error terms which turn to be "needed" for this setting

▶ Intuition critical in my follow-up work on analyzing sparse JL for feature hashing (NeurIPS '19, to appear).

Remainder of the talk will focus on the proof method.

High-level approach

Need to show $\mathbb{P}_{M \in \mathcal{M}}[(1 - \epsilon) \|x\|_2 \le \|Mx\|_2 \le (1 + \epsilon) \|x\|_2] > 1 - \delta$.

High-level approach

Need to show $\mathbb{P}_{M\in\mathcal{M}}[(1-\epsilon)\|x\|_2 \leq \|Mx\|_2 \leq (1+\epsilon)\|x\|_2] > 1-\delta.$

Analyze high moment of $Z := \|Mx\|_2^2 - 1$ for all $x \in B_{\ell_2}$ (like in previous work).

High-level approach

Need to show $\mathbb{P}_{M \in \mathcal{M}}[(1 - \epsilon) \|x\|_2 \le \|Mx\|_2 \le (1 + \epsilon) \|x\|_2] > 1 - \delta$.

Analyze high moment of $Z := \|Mx\|_2^2 - 1$ for all $x \in B_{\ell_2}$ (like in previous work).

For sparse, sign-consistent JL:

$$Z := \|Mx\|_2^2 - 1 = \frac{1}{s} \sum_{i \neq j} \sum_{r=1}^m \sigma_i \sigma_j \eta_{r,i} \eta_{r,j} x_i x_j.$$

$$Z := \|Mx\|_2^2 - 1 = \frac{1}{s} \sum_{i \neq j} \sum_{r=1}^m \sigma_i \sigma_j \eta_{r,i} \eta_{r,j} x_i x_j.$$

$$Z := \|Mx\|_2^2 - 1 = \frac{1}{s} \sum_{i \neq j} \sum_{r=1}^m \sigma_i \sigma_j \eta_{r,i} \eta_{r,j} x_i x_j.$$

$$Z := \|Mx\|_2^2 - 1 = \frac{1}{s} \sum_{i \neq j} \sum_{r=1}^m \sigma_i \sigma_j \eta_{r,i} \eta_{r,j} x_i x_j.$$

Limitations of existing approaches for bounding moments of Z:

1. Combinatorics (Allen-Zhu et al. '15, Kane and Nelson '12, Freksen et al. '18, etc.)

$$Z := \|Mx\|_2^2 - 1 = \frac{1}{s} \sum_{i \neq j} \sum_{r=1}^m \sigma_i \sigma_j \eta_{r,i} \eta_{r,j} x_i x_j.$$

- Combinatorics (Allen-Zhu et al. '15, Kane and Nelson '12, Freksen et al. '18, etc.)
 - ▶ Intricate; unclear how to get dim-sparsity tradeoffs w/ Allen-Zhu et al.

$$Z := \|Mx\|_2^2 - 1 = \frac{1}{s} \sum_{i \neq j} \sum_{r=1}^m \sigma_i \sigma_j \eta_{r,i} \eta_{r,j} x_i x_j.$$

- Combinatorics (Allen-Zhu et al. '15, Kane and Nelson '12, Freksen et al. '18, etc.)
 - ▶ Intricate; unclear how to get dim-sparsity tradeoffs w/ Allen-Zhu et al.
- 2. (Sub)-gaussian quadratic form bounds (Cohen et al. '18, for sparse JL)

$$Z := \|Mx\|_2^2 - 1 = \frac{1}{s} \sum_{i \neq j} \sum_{r=1}^m \sigma_i \sigma_j \eta_{r,i} \eta_{r,j} x_i x_j.$$

- Combinatorics (Allen-Zhu et al. '15, Kane and Nelson '12, Freksen et al. '18, etc.)
 - ▶ Intricate; unclear how to get dim-sparsity tradeoffs w/ Allen-Zhu et al.
- 2. (Sub)-gaussian quadratic form bounds (Cohen et al. '18, for sparse JL)
 - Using the gaussian bound is too weak for this setting!

$$Z := \|Mx\|_2^2 - 1 = \frac{1}{s} \sum_{i \neq j} \sum_{r=1}^m \sigma_i \sigma_j \eta_{r,i} \eta_{r,j} x_i x_j.$$

Limitations of existing approaches for bounding moments of Z:

- Combinatorics (Allen-Zhu et al. '15, Kane and Nelson '12, Freksen et al. '18, etc.)
 - ▶ Intricate; unclear how to get dim-sparsity tradeoffs w/ Allen-Zhu et al.
- 2. (Sub)-gaussian quadratic form bounds (Cohen et al. '18, for sparse JL)
 - Using the gaussian bound is too weak for this setting!

My key ingredient: more precise quadratic form bounds

$$Z = \frac{1}{s} \sum_{i \neq j} \sigma_i \sigma_j x_i x_j \left(\sum_{r=1}^m \eta_{r,i} \eta_{r,j} \right)$$

$$Z = \frac{1}{s} \sum_{i \neq j} \sigma_i \sigma_j x_i x_j \left(\sum_{r=1}^m \eta_{r,i} \eta_{r,j} \right) = \sigma^T A_{\eta} \sigma.$$

$$Z = \frac{1}{s} \sum_{i \neq j} \sigma_i \sigma_j x_i x_j \left(\sum_{r=1}^m \eta_{r,i} \eta_{r,j} \right) = \sigma^T A_\eta \sigma.$$

$$\implies \mathbb{E}[Z^p] = \mathbb{E}_{\eta} \left[\mathbb{E}_{\sigma} \left[\left(\sigma^T A_\eta \sigma \right)^p \right] \right].$$

 $\mathbb{E}_{\sigma}[(\sigma^T A_{\eta} \sigma)^{p}]$ is a moment of a Rademacher quadratic form.

$$Z = \frac{1}{s} \sum_{i \neq j} \sigma_i \sigma_j x_i x_j \left(\sum_{r=1}^m \eta_{r,i} \eta_{r,j} \right) = \sigma^T A_\eta \sigma.$$

$$\implies \mathbb{E}[Z^p] = \mathbb{E}_{\eta} \left[\mathbb{E}_{\sigma} \left[\left(\sigma^T A_\eta \sigma \right)^p \right] \right].$$

 $\mathbb{E}_{\sigma}[(\sigma^T A_{\eta} \sigma)^p]$ is a moment of a Rademacher quadratic form.

CJN '18 (for sparse JL) uses $\mathbb{E}_{\sigma}[(\sigma^T A_{\eta} \sigma)^{\rho}] \lesssim \mathbb{E}_{g}[(g^T A_{\eta} g)^{\rho}].$

$$Z = \frac{1}{s} \sum_{i \neq j} \sigma_i \sigma_j x_i x_j \left(\sum_{r=1}^m \eta_{r,i} \eta_{r,j} \right) = \sigma^T A_{\eta} \sigma.$$

$$\implies \mathbb{E}[Z^p] = \mathbb{E}_{\eta} \left[\mathbb{E}_{\sigma} \left[\left(\sigma^T A_{\eta} \sigma \right)^p \right] \right].$$

 $\mathbb{E}_{\sigma}[(\sigma^T A_{\eta} \sigma)^p]$ is a moment of a Rademacher quadratic form.

CJN '18 (for sparse JL) uses
$$\mathbb{E}_{\sigma}[(\sigma^T A_{\eta} \sigma)^{\rho}] \lesssim \mathbb{E}_{g}[(g^T A_{\eta} g)^{\rho}].$$

But, we show using $\mathbb{E}_{g}[(g^{T}A_{\eta g})^{p}]$ is too weak for this setting!

 $ightharpoonup x = [1/\sqrt{2}, 1/\sqrt{2}, 0, \dots, 0]$ already yields sub-optimal dimension m

Expressing Z as a Rademacher quadratic form

$$Z = \frac{1}{s} \sum_{i \neq j} \sigma_i \sigma_j x_i x_j \left(\sum_{r=1}^m \eta_{r,i} \eta_{r,j} \right) = \sigma^T A_\eta \sigma.$$

$$\implies \mathbb{E}[Z^p] = \mathbb{E}_{\eta} \left[\mathbb{E}_{\sigma} \left[\left(\sigma^T A_\eta \sigma \right)^p \right] \right].$$

 $\mathbb{E}_{\sigma}[(\sigma^T A_{\eta} \sigma)^p]$ is a moment of a Rademacher quadratic form.

CJN '18 (for sparse JL) uses
$$\mathbb{E}_{\sigma}[(\sigma^T A_{\eta} \sigma)^{\rho}] \lesssim \mathbb{E}_{g}[(g^T A_{\eta} g)^{\rho}].$$

But, we show using $\mathbb{E}_{g}[(g^{T}A_{\eta g})^{p}]$ is too weak for this setting!

 $ightharpoonup x = [1/\sqrt{2}, 1/\sqrt{2}, 0, \dots, 0]$ already yields sub-optimal dimension m

Thus, we need a Rademacher-specific bound for $\mathbb{E}_{\sigma}[(\sigma^T A_n \sigma)^p]$.

$$\|Y\|_p := (\mathbb{E}[Y^p])^{1/p}$$
; σ_i i.i.d. Rademachers; g_i i.i.d gaussians; $|a_1| \ge \ldots \ge |a_p|$ scalar coefficients

 $\|Y\|_p := (\mathbb{E}[Y^p])^{1/p}$; σ_i i.i.d. Rademachers; g_i i.i.d gaussians; $|a_1| \geq \ldots \geq |a_n|$ scalar coefficients

Khintchine bound: $\|\sum_{i=1}^n a_i \sigma_i\|_p \lesssim \|\sum_{i=1}^n a_i g_i\|_p \sim \sqrt{p} \sqrt{\sum_{i=1}^n a_i^2}$

$$\|Y\|_p := (\mathbb{E}[Y^p])^{1/p}$$
; σ_i i.i.d. Rademachers; g_i i.i.d gaussians; $|a_1| \geq \ldots \geq |a_n|$ scalar coefficients

Khintchine bound:
$$\|\sum_{i=1}^n a_i \sigma_i\|_p \lesssim \|\sum_{i=1}^n a_i g_i\|_p \sim \sqrt{p} \sqrt{\sum_{i=1}^n a_i^2}$$

$$\lim_{p\to\infty} \left\|\sum_{i=1}^n a_i \sigma_i\right\|_p \le \sum_{i=1}^n |a_i| < \infty$$
, but $\lim_{p\to\infty} \sqrt{p} \sqrt{\sum_{i=1}^n a_i^2} = \infty$.

$$\|Y\|_p := (\mathbb{E}[Y^p])^{1/p}$$
; σ_i i.i.d. Rademachers; g_i i.i.d gaussians; $|a_1| \geq \ldots \geq |a_n|$ scalar coefficients

Khintchine bound:
$$\left\|\sum_{i=1}^n a_i \sigma_i\right\|_p \lesssim \left\|\sum_{i=1}^n a_i g_i\right\|_p \sim \sqrt{p} \sqrt{\sum_{i=1}^n a_i^2}$$

$$\lim_{p\to\infty} \left\|\sum_{i=1}^n a_i \sigma_i\right\|_p \le \sum_{i=1}^n |a_i| < \infty$$
, but $\lim_{p\to\infty} \sqrt{p} \sqrt{\sum_{i=1}^n a_i^2} = \infty$.

Khintchine is *not tight* for Rademachers for large *p*.

$$\|Y\|_p := (\mathbb{E}[Y^p])^{1/p}$$
; σ_i i.i.d. Rademachers; g_i i.i.d gaussians; $|a_1| \geq \ldots \geq |a_n|$ scalar coefficients

Khintchine bound:
$$\|\sum_{i=1}^n a_i \sigma_i\|_p \lesssim \|\sum_{i=1}^n a_i g_i\|_p \sim \sqrt{p} \sqrt{\sum_{i=1}^n a_i^2}$$

$$\lim_{p\to\infty}\left\|\sum_{i=1}^n a_i\sigma_i\right\|_p \le \sum_{i=1}^n |a_i| < \infty$$
, but $\lim_{p\to\infty} \sqrt{p}\sqrt{\sum_{i=1}^n a_i^2} = \infty$.

Khintchine is *not tight* for Rademachers for large *p*.

Turns out
$$\left\|\sum_{i=1}^n a_i \sigma_i\right\|_p \sim \left|\sum_{i=1}^p a_i\right| + \sqrt{p} \sqrt{\sum_{i>p} a_i^2}$$
 (Hitzchenko '93).

Lemma

If $(A_{i,j})$ is a symmetric $n \times n$ matrix with zero diagonal and p even, then

$$\left\| \sum_{i=1}^n \sum_{j=1}^n A_{i,j} \sigma_i \sigma_j \right\|_{p} \lesssim \left(\sum_{i=1}^{\min(p,n)} \sum_{j=1}^{\min(p,n)} |A_{i,j}| \right) + \sqrt{p} \sqrt{\sum_{i=1}^n \left\| \sum_{j>p} A_{i,j} \sigma_j \right\|_{p}^2}.$$

Lemma

If $(A_{i,j})$ is a symmetric $n \times n$ matrix with zero diagonal and p even, then

$$\left\| \sum_{i=1}^n \sum_{j=1}^n A_{i,j} \sigma_i \sigma_j \right\|_{\rho} \lesssim \left(\sum_{i=1}^{\min(\rho,n)} \sum_{j=1}^{\min(\rho,n)} |A_{i,j}| \right) + \sqrt{\rho} \sqrt{\sum_{i=1}^n \left\| \sum_{j>\rho} A_{i,j} \sigma_j \right\|_{\rho}^2}.$$

▶ An interpolation of ℓ_1 and ℓ_2 bounds.

Lemma

If $(A_{i,j})$ is a symmetric $n \times n$ matrix with zero diagonal and p even, then

$$\left\| \sum_{i=1}^n \sum_{j=1}^n A_{i,j} \sigma_i \sigma_j \right\|_{p} \lesssim \left(\sum_{i=1}^{\min(p,n)} \sum_{j=1}^{\min(p,n)} |A_{i,j}| \right) + \sqrt{p} \sqrt{\sum_{i=1}^n \left\| \sum_{j>p} A_{i,j} \sigma_j \right\|_{p}^2}.$$

- ▶ An interpolation of ℓ_1 and ℓ_2 bounds.
- ▶ When $p \to \infty$, bounded by $\sum_{i=1}^{\min(p,n)} \sum_{j=1}^{\min(p,n)} |A_{i,j}| < \infty$.

Lemma

If $(A_{i,j})$ is a symmetric $n \times n$ matrix with zero diagonal and p even, then

$$\left\| \sum_{i=1}^n \sum_{j=1}^n A_{i,j} \sigma_i \sigma_j \right\|_{\rho} \lesssim \left(\sum_{i=1}^{\min(p,n)} \sum_{j=1}^{\min(p,n)} |A_{i,j}| \right) + \sqrt{p} \sqrt{\sum_{i=1}^n \left\| \sum_{j>p} A_{i,j} \sigma_j \right\|_{\rho}^2}.$$

- ▶ An interpolation of ℓ_1 and ℓ_2 bounds.
- ▶ When $p \to \infty$, bounded by $\sum_{i=1}^{\min(p,n)} \sum_{j=1}^{\min(p,n)} |A_{i,j}| < \infty$.

(Tight bound on $\|\sigma^T A \sigma\|_p$ (Latała '99) messy when A a $random\ matrix$.)

Remainder of analysis

Follow-up work that uses intuition from these methods

"Understanding Sparse JL for Feature Hashing" (NeurIPS 2019)

I study sparse JL on feature vectors.

- ▶ Model: limit to vectors x with "small" ℓ_{∞} -to- ℓ_{2} norm ratio
- ▶ s = 1 understood (Weinberger et al '09, Dahlgaard et al. '17, Freksen et al. '18, etc.)

My main result: Generalization to s > 1.

- ▶ Tight tradeoff between ℓ_{∞} -to- ℓ_{2} ratio, s, m, ϵ , and δ for sparse JL
- $\blacktriangleright\implies$ Even (small) s>1 can be much better than s=1.

Follow-up work that uses intuition from these methods

"Understanding Sparse JL for Feature Hashing" (NeurIPS 2019)

I study sparse JL on feature vectors.

- ▶ Model: limit to vectors x with "small" ℓ_{∞} -to- ℓ_{2} norm ratio
- ▶ s = 1 understood (Weinberger et al '09, Dahlgaard et al. '17, Freksen et al. '18, etc.)

My main result: Generalization to s > 1.

- ▶ Tight tradeoff between ℓ_{∞} -to- ℓ_{2} ratio, s, m, ϵ , and δ for sparse JL
- $\blacktriangleright \implies \text{Even (small) } s > 1 \text{ can be much better than } s = 1.$

Similarly unclear how to adapt combinatorics; gaussian bounds too weak.

Tractable Rademacher-specific bounds are the key technical tool.

Conclusion

- Simplified and generalized the analysis of sparse, sign-consistent JL (Allen-Zhu, Gelashvili, Micali, Shavit '15).
- Specifically obtained dimensionality-sparsity tradeoffs $m = \Theta(\epsilon^{-2} \log^2(1/\delta)B/\log^2(B))$ and $s = \Theta(\epsilon^{-1} \log(1/\delta)/\log B)$.
- Introduced a simple moment bound for Rademacher quadratic forms which enables a simpler analysis of sparse, sign-consistent JL, and could be of broader use.

$$\left\| \sum_{i=1}^n \sum_{j=1}^n A_{i,j} \sigma_i \sigma_j \right\|_p \lesssim \left(\sum_{i=1}^{\min(p,n)} \sum_{j=1}^{\min(p,n)} |A_{i,j}| \right) + \sqrt{p} \sqrt{\sum_{i=1}^n \left\| \sum_{j>p} A_{i,j} \sigma_j \right\|_p^2}.$$

$$\left\| \sum_{i=1}^n \sum_{j=1}^n A_{i,j} \sigma_i \sigma_j \right\|_p \lesssim \left(\sum_{i=1}^{\min(p,n)} \sum_{j=1}^{\min(p,n)} |A_{i,j}| \right) + \sqrt{p} \sqrt{\sum_{i=1}^n \left\| \sum_{j>p} A_{i,j} \sigma_j \right\|_p^2}.$$

 $A_{i,j} = x_i x_j \sum_{r=1}^m \eta_{r,i} \eta_{r,j} / \sqrt{s}$ for us; order $|x_1| \ge |x_2| \ge \ldots \ge |x_n|$.

$$\left\| \sum_{i=1}^n \sum_{j=1}^n A_{i,j} \sigma_i \sigma_j \right\|_p \lesssim \left(\sum_{i=1}^{\min(p,n)} \sum_{j=1}^{\min(p,n)} |A_{i,j}| \right) + \sqrt{p} \sqrt{\sum_{i=1}^n \left\| \sum_{j>p} A_{i,j} \sigma_j \right\|_p^2}.$$

$$A_{i,j} = x_i x_j \sum_{r=1}^m \eta_{r,i} \eta_{r,j} / \sqrt{s}$$
 for us; order $|x_1| \ge |x_2| \ge \ldots \ge |x_n|$.

$$\left\| \sum_{i=1}^{n} \sum_{j=1}^{n} A_{i,j} \sigma_{i} \sigma_{j} \right\|_{p} \lesssim \left(\sum_{i=1}^{\min(p,n)} \sum_{j=1}^{\min(p,n)} |A_{i,j}| \right) + \sqrt{p} \sqrt{\sum_{i=1}^{n} \left\| \sum_{j>p} A_{i,j} \sigma_{j} \right\|_{p}^{2}}.$$

$$A_{i,j} = x_{i} x_{j} \sum_{r=1}^{m} \eta_{r,i} \eta_{r,i} / \sqrt{s} \text{ for us; order } |x_{1}| \geq |x_{2}| \geq \ldots \geq |x_{n}|.$$

- 1. Term 1 has $\approx p^2$ terms.
 - Use triangle inequality + binomial moment bounds.

$$\left\| \sum_{i=1}^n \sum_{j=1}^n A_{i,j} \sigma_i \sigma_j \right\|_p \lesssim \left(\sum_{i=1}^{\min(p,n)} \sum_{j=1}^{\min(p,n)} |A_{i,j}| \right) + \sqrt{p} \sqrt{\sum_{i=1}^n \left\| \sum_{j>p} A_{i,j} \sigma_j \right\|_p^2}.$$

$$A_{i,j} = x_i x_j \sum_{r=1}^m \eta_{r,i} \eta_{r,j} / \sqrt{s}$$
 for us; order $|x_1| \ge |x_2| \ge \ldots \ge |x_n|$.

- 1. Term 1 has $\approx p^2$ terms.
 - Use triangle inequality + binomial moment bounds.
- 2. Term 2 only has "small" terms $(|x_j| \le 1/\sqrt{p})$.

$$\left\| \sum_{i=1}^n \sum_{j=1}^n A_{i,j} \sigma_i \sigma_j \right\|_{\rho} \lesssim \left(\sum_{i=1}^{\min(p,n)} \sum_{j=1}^{\min(p,n)} |A_{i,j}| \right) + \sqrt{p} \sqrt{\sum_{i=1}^n \left\| \sum_{j>p} A_{i,j} \sigma_j \right\|_{\rho}^2}.$$

$$A_{i,j} = x_i x_j \sum_{r=1}^m \eta_{r,i} \eta_{r,j} / \sqrt{s}$$
 for us; order $|x_1| \ge |x_2| \ge \ldots \ge |x_n|$.

- 1. Term 1 has $\approx p^2$ terms.
 - Use triangle inequality + binomial moment bounds.
- 2. Term 2 only has "small" terms $(|x_j| \le 1/\sqrt{p})$.
 - ► Turns out to be weak to use Khintchine for $\left\|\sum_{j>p} A_{i,j}\sigma_j\right\|_p$.

$$\left\| \sum_{i=1}^n \sum_{j=1}^n A_{i,j} \sigma_i \sigma_j \right\|_p \lesssim \left(\sum_{i=1}^{\min(p,n)} \sum_{j=1}^{\min(p,n)} |A_{i,j}| \right) + \sqrt{p} \sqrt{\sum_{i=1}^n \left\| \sum_{j>p} A_{i,j} \sigma_j \right\|_p^2}.$$

$$A_{i,j} = x_i x_j \sum_{r=1}^m \eta_{r,i} \eta_{r,j} / \sqrt{s}$$
 for us; order $|x_1| \ge |x_2| \ge ... \ge |x_n|$.

Methods to bound each term:

- 1. Term 1 has $\approx p^2$ terms.
 - Use triangle inequality + binomial moment bounds.
- 2. Term 2 only has "small" terms $(|x_j| \le 1/\sqrt{p})$.
 - ► Turns out to be weak to use Khintchine for $\left\| \sum_{j>p} A_{i,j} \sigma_j \right\|_p$.
 - ▶ Use bound for Rademacher linear forms (Latała '97).

Follow-up work