Министерство образования Российской Федерации

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Н.Э. БАУМАНА

Факультет: Информатика и системы управления Кафедра: Информационная безопасность (ИУ8)

ЭЛЕКТРОНИКА И СХЕМОТЕХНИКА

Лабораторная работа №1 на тему: «Синхронные двухступенчатые триггеры»

Вариант 4

Преподаватель:

Ковынев Н.В.

Студент:

Девяткин Е.Д.

Группа:

ИУ8-54

Репозиторий работы: https://github.com/ledibonibell/Module05-ECE

Москва 2024

Цель работы

Изучение принципов построения схем и режимов работы синхронных двухступенчатых триггеров.

Входные данные

Задание 1:

Вариант	Содержимое ячеек памяти генератора слова XWG1			
4	110, 001, 100, 101, 010, 011, 000, 001, 000, 101, 110, 011, 100, 101, 010, 101			

Задание 2:

Вариант	Содержимое ячеек памяти генератора слова XWG1
4	00, 00, 01, 01, 00, 10, 11, 11, 00, 00,

Задание 3:

Вариант	Содержимое ячеек памяти генератора слова XWG1
4	0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1

Задание 4:

Вариант	Содержимое ячеек памяти генератора слова XWG1
4	000, 001, 010, 011, 000, 111, 110, 111, 110, 111, 000, 101, 000, 011

Перечень приборов

Генератор слова XWG1;

Логический анализатор XLA1;

Четырехканальный осцилограф;

Ход работы

Задание 1. Собрать на рабочем поле среды Multisim схему для испытания синхронного двухступенчатого RS-триггера (рис. 1).

Рис. 1 - Схема двухступенчатого RS-триггера.

С	R	S	Q	Выход 3	Выход 4	Выход 9
0	-	-	0	0	-	-
0	-	-	1	1	-	-
1	0	0	0	1	1	1
1	0	0	1	1	1	1
1	0	1	0	0	0	1
1	0	1	1	0	0	1
1	1	0	0	1	1	0
1	1	0	0	1	1	0
1	1	1	-	-	-	-
1	1	1	-	-	-	-

Табл. 1 - Таблица истинности RS-триггера.

Рис. 2 - Временная диаграмма логического анализатора.

Рис. 3 - Временная диаграмма осциллографа.

Задание 2. Собрать на рабочем поле среды Multisim схему для испытания синхронного двухступенчатого D-триггера (рис. 4).

Рис. 4 - Схема двухступенчатого D-триггера.

С	D	Q	Q(t+1)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Табл. 2 - Таблица истинности D-триггера.

Рис. 5 - Временная диаграмма логического анализатора.

Рис. 6 - Временная диаграмма осциллографа.

Задание 3. Собрать на рабочем поле среды Multisim схему для испытания синхронного двухступенчатого Т-триггера (рис. 7).

Рис. 7 - Схема двухступенчатого Т-триггера.

T	Q	Q(t+1)
0	0	0
0	1	1
1	0	1
1	1	0

Табл. 3 - Таблица истинности Т-триггера.

Рис. 8 - Временная диаграмма логического анализатора.

Рис. 9 - Временная диаграмма осциллографа.

Задание 4. Собрать на рабочем поле среды Multisim схему для испытания синхронного двухступенчатого JK-триггера (рис. 10).

Рис. 10 - Схема двухступенчатого ЈК-триггера.

J	K	Q	Q(t+1)
0	0	0	0
1	0	0	1
0	1	0	0
1	1	0	1
0	0	1	1
1	0	1	1
0	1	1	0
1	1	1	0

Табл. 4 - Таблица истинности ЈК-триггера.

Рис. 11 - Временная диаграмма логического анализатора.

Рис. 12 - Временная диаграмма осциллографа.

Вывод

В ходе лабораторной работы были исследованы основные типы триггеров: RS, D, T и JK. Каждый из этих триггеров имеет свои уникальные характеристики и области применения, что делает их важными элементами в цифровой электронике.

1. Триггер RS:

- Работает на основе двух входов: Set (S) и Reset (R).
- Позволяет устанавливать и сбрасывать состояние выхода.
- Таблица истинности показала, что выход может находиться в двух состояниях: установленном (1) и сброшенном (0), в зависимости от комбинации входных сигналов.

2. Триггер D:

- Имеет один вход данных (D) и управляется тактовым сигналом.
- Состояние выхода копирует состояние входа D на момент перехода тактового сигнала.
- Это позволяет избежать неопределенности состояний, что делает D-триггер особенно полезным в регистрах и схемах хранения данных.

3. Триггер Т:

- Имеет один вход управления (T) и переключает состояние выхода при каждом тактовом импульсе, если T=1.
 - Используется для создания счетчиков и делителей частоты.
- Таблица истинности продемонстрировала простоту работы триггера: переключение происходит только при активном сигнале Т.

4. Триггер ЈК:

- Сочетает функции RS и T-триггера, имея два входа: J и K.
- Позволяет более гибкое управление состояниями выхода, включая возможность переключения, установки и сброса.
- Это делает JK-триггер универсальным элементом для построения сложных цифровых схем.