計算モデル:ラムダ計算(2) 胡 振江 東京大学計数工学科

• 例 $(\lambda x.xy)zw \to_{\beta} zyw$ $II \equiv (\lambda x.x)I \to_{\beta} I$ $KI(II) \equiv (\lambda xy.x)I(II) \to_{\beta} (\lambda y.I)(II) \to_{\beta} I$ $KI(II) \stackrel{*}{\to}_{\beta} I$

β正規形
 ・ β 正規形: 部分項に β 可簡約項を含まない λ 項
 ・ M = β N かつ N が β 正規形であるとき、M は β 正規形を持つという。
 問題: 次の項はβ正規形を持つか?

 (λ x. x y) z w
 Ω = (λ x. x x) (λ x. x x)
 K I Ω

合流性 (Congrence)

CR性 ←→ 合流性

æ

簡約の方法

どの位置にある簡約項を簡約するかによって、次の簡約方法が考えられる。

- 最左簡約
- 内部簡約

Le

最左簡約 (leftmost reduction)

- 最左可簡約項
 - 最も左にある簡約項
 - 例 (λ x. x) (<u>(λ y. y) u</u>)
- 最左簡約

- M → N

頭部簡約項は最左簡約項である

Ł

内部簡約 (internal reduction)

- 内部可簡約項
 - 例 (λ x. x) ((λ y. y) u)
- 内部簡約
 - M → i N

ip

標準簡約

• **→**s

任意の簡約 $M \stackrel{*}{\to} N$ に対して、 $M \stackrel{*}{\to}_s N$ となるような簡約方法。

最左簡約、内部簡約は標準簡約ではない。

<mark>ф</mark>

どうして?

内部簡約:標準簡約ではない

 $M = (\lambda x y z. z x) (II) \Omega$ $N = \lambda z. z I$

内部簡約

 $M \rightarrow$ i (λ x y z. z x) $I \Omega$

→ i (λ y z. z l) Ω

42

頭部簡約の後内部簡約でOK

最左簡約は標準簡約ではない

 $M = (\lambda x y z. z x) (I I) \Omega$ $N = (\lambda z. z I) \Omega$

最左簡約

 $M \rightarrow_{l} (\lambda y z. z (l l)) \Omega$ $\rightarrow_{l} \lambda z. z (l l)$

Ł

標準簡約の定義

- 1. 可簡約項を左から右へと縮約する
- 2. 左にある可簡約項を縮約しない場合、後で縮約することができない

例: $M = (\lambda x y z. z x) (II) Ω$

- O: M → (λ y z. z (I I)) Ω
 - → (λ y z. z l) Ω
- ×: M → (λ y z. z (I I)) Ω
 - → (λ y z. z l) Ω
 - → λ z. z l

正規化簡約戦略

- 正規化戦略
 - β正規形をもつ任意のλ項Mに対して、有限個の簡約ステップで正規形を求めることができる簡約戦略
- 最左簡約戦略は正規化戦略

L

• 最左簡約戦略例

- $x ((\lambda u \vee w. u w (\vee w)) (|x) (|(|x)) z)$
- \rightarrow x ((λ v w. (| x) w (v w)) (| (| |)) z)
- \rightarrow x ((λ w. (| x) w ((| (| |) w)) z)
- → x ((| x) z ((| (| |)) z))
- → x (x z ((| (| | |)) z))
- → x (x z (<u>(| |</u>) z))
- → x (x z <u>(| z)</u>)
- æ
 - → x (x z z)

λ項による計算のコーディング

- ブール計算
 - true = λ t f. t
 - false = λ t f. f
 - test = λ I m n. I m n
 - and = λ b c. b c false

注: λbc. test bc false

– or = ?

not = ?

新

- pair = λ f s b. b f s
- fst = λ p. p true
- snd = λ p. p false

問題: fst (pair v w) = v を証明せよ。

L

- Church numbers
 - $-0 = \lambda s z. z$
 - $-1 = \lambda s z. s z$
 - $-n = \lambda s z . s (s ... (s z)...)$
 - succ = λ n s z. s (n s z)
 - plus = λ m n s z. m s (n s z)
 - times = λ m n. m (plus n) 0

isZero = λ m. m (λ x. false) true

演習問題

- 1. M[x:=N][x:=L] = M [x:=N[x:=L]] を証明せよ。
- 2. M=(λ y. (λ x. y (x x)) (λ x. y (x x))) a とする。Mを β 簡約して得られる λ 項をすべて求めよ。また、M = β a M であることを示せ。
- 3. (λ x y. (λ w. w w) x y) (S a) (K I)を最左簡約戦略 でβ正規形までの簡約を示せ。
- 4. snd (pair v w) = w を証明せよ。

レポートの提出に関して

- ・ 演習問題を解いて、5月9日までに胡のポ ストに入れてください.
 - 学生証番号を忘れずに記入すること.

