假定各旋翼性能参数都一致,则可认为 $c_{yy}=c_{fa}=c_{ta}=c$,上式可简化为:

$$\gamma = \frac{c(F_{\pm} + F_{\pm} - F_{\widehat{\mathbb{M}}} - F_{\widehat{\mathbb{M}}})}{I_{*}}$$

2.5.4 飞行器飞行速度与升力之间的关系

根据牛顿第二定律:

$$\sum F = m_t z$$

$$F_{\overline{n}} + F_{\overline{n}} + F_{\overline{n}} + F_{\overline{n}} + F_{\overline{n}} - m_t g = m_t z$$

$$z = \frac{F_{\overline{n}} + F_{\overline{n}} + F_{\overline{n}} + F_{\overline{n}} - m_t g}{m_t}$$

2.6 四桨碟形飞行器各旋翼升力测试

2.6.1 测试装置介绍

四桨碟形飞行器是一个非常发散的系统,对稳定性提出了更高的要求,必须事先对飞行器进行了各旋翼的特性测定,以更好更合理的设定飞行器参数提高飞行稳定性。

该升力测试装置就是为了测定相同状态下各旋翼的特性而设计的。

整个装置主要由电源、电子天平、塑料支撑架、大力夹、重物等部分组成, 装置如图 2-14 所示。

2-14 升力测试装置

电源为旋翼提供能源:

电子天平用来测量显示旋翼所产生的升力,本装置采用精度为 0.5g 的高精度多功能 JY2001F 电子天平;

塑料支撑架用来支撑旋翼,同时安放重物,由于塑料具有减震的功能因此在设计时采用塑料;

大力夹用来固定旋翼, 以方便升力测试。

对前后左右四个旋翼分别进行升力测试,测试的电压点为 2.6、3.0、3.4、3.8、4.0、4.3、4.5 和 5.0V 共 8 个点,每个点记录旋翼的升力值四次再取平均值,并记录各点所耗的电流值,以计算电机所消耗的功率。

2.6.2 前桨升力测试结果

电压(V)	电流 (A)	测量值(g)					T = (11)
		第一次	第二次	第三次	第四次	平均值	- 功率(W)
2.6	1.8	61.5	57.5	61.0	62.0	60.5	4.68
3.0	2.1	75.5	77.0	74.5	75.5	75.6	6.3
3.4	2.5	91.0	90.0	89.5	90.0	90.1	8.5
3.8	2.8	108.0	109.0	111.0	108.5	109.1	10.64
4.0	3.0	117.5	120.5	118.5	117.0	118.4	12.0
4.3	3.3	131.5	135.0	130.0	127.5	131.0	14.19
4.5	3.4	140.5	136.5	142.5	137.0	139.2	15.3
5.0	3.9	154.0	157.5	162.5	155.5	157.4	19.5

图 2-15 前桨功率和升力之间的关系曲线