

#### **Power Block**

#### **Features**

- Dual asymmetric N-channel OptiMOS™5 MOSFET
- Logic level (4.5V rated)
- Optimized for high performance buck converters
- Qualified according to JEDEC<sup>1)</sup> for target applications
- Pb-free lead plating; RoHS compliant
- Halogen-free according to IEC61249-2-21

#### **Product Summary**

|                                  |                              | Q1 | Q2  |    |
|----------------------------------|------------------------------|----|-----|----|
| $V_{	t DS}$                      |                              | 25 | 25  | >  |
| $R_{	extsf{DS(on)},	extsf{max}}$ | <i>V</i> <sub>GS</sub> =10 V | 3  | 0.8 | mΩ |
|                                  | V <sub>GS</sub> =4.5 V       | 4  | 1.1 |    |
| I <sub>D</sub>                   |                              | 50 | 50  | Α  |









| Туре      | Package     | Marking |
|-----------|-------------|---------|
| BSG0811ND | PG-TISON8-4 | 0811ND  |

**Maximum ratings,** at  $T_{\rm j}$ =25 °C, unless otherwise specified <sup>2)</sup>



| Parameter                           | Symbol                  | Conditions                                                     | Va      | lue   | Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------------------------------|-------------------------|----------------------------------------------------------------|---------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tarameter                           | Joynibor                | Conditions                                                     | Q1      |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Continuous drain current            | I <sub>D</sub>          | T <sub>C</sub> =70 °C, V <sub>GS</sub> =10 V                   | 50      | 50    | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                     |                         | T <sub>C</sub> =70 °C, V <sub>GS</sub> =4.5 V                  | 50      | 50    | Maria A A Maria Mania Maria Ma |
|                                     |                         | T <sub>A</sub> =25 °C,<br>V <sub>GS</sub> =4.5 V <sup>3)</sup> | 31      | 50    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                     |                         | T <sub>A</sub> =25 °C,<br>V <sub>GS</sub> =4.5 V <sup>4)</sup> | 19      | 41    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Pulsed drain current                | I <sub>D,pulse</sub>    | T <sub>C</sub> =70 °C                                          | 160     | 160   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Avalanche energy, single pulse      | E <sub>AS</sub>         | Q1: $I_D$ =10 A,<br>Q2: $I_D$ =20 A,<br>$R_{GS}$ =25 $\Omega$  | 30      | 160   | mJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Gate source voltage                 | $V_{GS}$                |                                                                | ±16     |       | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Power dissipation                   | $P_{\text{tot}}$        | T <sub>A</sub> =25 °C <sup>3)</sup>                            | 6.25    | 6.25  | W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                     |                         | T <sub>A</sub> =25 °C <sup>4)</sup>                            | 2.5     | 2.5   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Operating and storage temperature   | $T_{\rm j},T_{\rm stg}$ |                                                                | -55 150 |       | °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| IEC climatic category; DIN IEC 68-1 |                         |                                                                | 55/1    | 50/56 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1) LSTD20 and JESD22                |                         |                                                                |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

<sup>1)</sup> J-STD20 and JESD22



| Parameter                                            |          | Symbol        | Conditions                                   | Values |      |      | Unit |
|------------------------------------------------------|----------|---------------|----------------------------------------------|--------|------|------|------|
|                                                      |          |               |                                              | min.   | typ. | max. |      |
| Thermal characteristics                              |          |               |                                              |        |      |      |      |
| Thermal resistance, junction - case                  | Q1       | $R_{ m thJC}$ |                                              | -      | -    | 4.3  | K/W  |
|                                                      | Q2       |               |                                              | -      | -    | 1.8  | ]    |
| Thermal resistance, junction - ambient <sup>2)</sup> | Q1<br>Q2 | -             | application specific board <sup>3)</sup>     | -      | -    | 20   |      |
|                                                      | Q1       |               | 6 cm <sup>2</sup> cooling area <sup>4)</sup> | _      | _    | 50   | 1    |
|                                                      | Q2       |               | o cini cooling area                          |        | _    | 30   |      |

# **Electrical characteristics,** at $T_j$ =25 °C, unless otherwise specified

#### Static characteristics

| Drain-source breakdown voltage  | Q1<br>Q2 | $V_{(BR)DSS}$         | $V_{\rm GS}$ =0 V, $I_{\rm D}$ =1 mA                       | 25 <sup>6)</sup> | -   | -   | V  |
|---------------------------------|----------|-----------------------|------------------------------------------------------------|------------------|-----|-----|----|
| Gate threshold voltage          | Q1<br>Q2 | $V_{GS(th)}$          | $V_{\rm DS} = V_{\rm GS}, I_{\rm D} = 250  \mu {\rm A}$    | 1.2              | 1.6 | 2   |    |
| Zero gate voltage drain current | Q1<br>Q2 | I <sub>DSS</sub>      | $V_{\rm DS}$ =25 V, $V_{\rm GS}$ =0 V, $T_{\rm j}$ =25 °C  | -                | -   | 1   | μА |
|                                 | Q1<br>Q2 |                       | $V_{\rm DS}$ =25 V, $V_{\rm GS}$ =0 V, $T_{\rm j}$ =150 °C | -                | -   | 100 |    |
| Gate-source leakage current     | Q1<br>Q2 | I <sub>GSS</sub>      | V <sub>GS</sub> =20 V, V <sub>DS</sub> =0 V                | -                | -   | 100 | nA |
| Drain-source on-state           | Q1       | $R_{\mathrm{DS(on)}}$ | V <sub>GS</sub> =4.5 V, I <sub>D</sub> =20 A               | -                | 3.2 | 4.0 | mΩ |
| resistance                      | Q2       |                       | V <sub>GS</sub> =4.5 V, I <sub>D</sub> =20 A               | 1                | 0.9 | 1.1 |    |
|                                 | Q1       |                       | V <sub>GS</sub> =10 V, I <sub>D</sub> =20 A                | 1                | 2.4 | 3.0 |    |
|                                 | Q2       |                       | V GS=10 V, 7D=20 A                                         | ı                | 0.7 | 0.8 |    |
| Gate resistance                 | Q1       | $R_{G}$               |                                                            | 1                | 0.7 | 1.2 | Ω  |
|                                 | Q2       |                       |                                                            | 1                | 0.7 | 1.2 |    |
| Transconductance                | Q1       | $g_{fs}$              | $ V_{\rm DS}  > 2 I_{\rm D} R_{\rm DS(on)max}$             | 46               | 93  | -   | S  |
|                                 |          |                       | I <sub>D</sub> =20 A                                       | 90               | 180 | -   |    |

<sup>&</sup>lt;sup>2)</sup> Only one of both transistors active

<sup>&</sup>lt;sup>3)</sup> 8 Layers copper 70μm thickness. PCB in still air.

<sup>&</sup>lt;sup>4)</sup> Device on 40 mm x 40 mm x 1.5 mm epoxy PCB FR4 with 6 cm<sup>2</sup> (one layer, 70 μm thick) copper area for drain connection. PCB is vertical in still air.



| Parameter                    |    | Symbol               | Conditions                                          | Values |      | Uni  |    |
|------------------------------|----|----------------------|-----------------------------------------------------|--------|------|------|----|
|                              |    |                      |                                                     | min.   | typ. | max. |    |
| Dynamic characteristics      |    |                      |                                                     |        |      |      |    |
| Input capacitance            | Q1 | $C_{iss}$            |                                                     | -      | 780  | 1100 | рF |
|                              | Q2 |                      |                                                     | -      | 2700 | 3700 |    |
| Output capacitance           | Q1 | Coss                 | V <sub>GS</sub> =0 V,                               | -      | 390  | 520  |    |
|                              | Q2 |                      | $V_{DS}$ = 12 V, $f$ =1 MHz                         | -      | 1400 | 1900 |    |
| Reverse transfer capacitance | Q1 | C <sub>rss</sub>     |                                                     | -      | 38   | -    |    |
|                              | Q2 |                      |                                                     | -      | 130  | -    |    |
| Turn-on delay time           | Q1 | $t_{d(on)}$          |                                                     | -      | 4.3  |      | ns |
|                              | Q2 |                      |                                                     | -      | 5.6  | -    |    |
| <del>-</del>                 | Q1 | t <sub>r</sub>       | V <sub>IN</sub> =12 V,                              | -      | 4.7  | -    |    |
|                              | Q2 |                      | V <sub>DRV</sub> =5 V,<br>F <sub>SW</sub> =500 KHz, | -      | 4.3  | -    |    |
| Turn-off delay time          | Q1 | $t_{d(off)}$         | I <sub>OUT</sub> =30 A <sup>5)</sup>                | -      | 4.3  | -    |    |
|                              | Q2 |                      |                                                     | -      | 8.8  | -    |    |
| Fall time                    | Q1 | t <sub>f</sub>       |                                                     | -      | 1.4  | -    |    |
|                              | Q2 |                      |                                                     | -      | 2.6  | -    |    |
| Gate Charge Characteristics  |    |                      |                                                     |        |      |      |    |
| Gate to source charge        | Q1 | $Q_{gs}$             |                                                     | -      | 2.0  | -    | nC |
| Gate to drain charge         |    | $Q_{gd}$             |                                                     | -      | 1.4  | -    | 1  |
| Gate charge total            |    | $Q_{g}$              |                                                     | -      | 5.6  | 8.4  | 1  |
| Gate plateau voltage         |    | V <sub>plateau</sub> | V <sub>DD</sub> =12 V,<br>V <sub>D</sub> =30 A,     | -      | 2.6  | -    | ٧  |
| Gate to source charge        | Q2 | $Q_{gs}$             | $V_{\rm GS} = 0 \text{ to } 4.5 \text{ V}$          | -      | 6.4  | -    | nC |
| Gate to drain charge         |    | $Q_{gd}$             |                                                     | -      | 4.7  | -    |    |
| Gate charge total            |    | $Q_{g}$              |                                                     | -      | 20   | 29   |    |
| Gate plateau voltage         |    | V <sub>plateau</sub> |                                                     | -      | 2.3  | -    | ٧  |
| Output charge                | Q1 | $Q_{\rm oss}$        | V 10 V V 0 V                                        | -      | 8    | -    | nC |
|                              | Q2 | 1                    | $V_{\rm DD}$ =12 V, $V_{\rm GS}$ =0 V               | -      | 27   | -    |    |

<sup>5)</sup> For more information see application note n° TBD

The device can withstand a pulse of not more than 30 V for a duration of up to 2 ns at a frequency of 600 kHz with maximum buck converter input voltage  $V_{\rm IN}$ =16 V.



| Parameter                        | s           | Symbol                                                                                                | Conditions                                  | Values |      | Unit |   |
|----------------------------------|-------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------|--------|------|------|---|
|                                  |             |                                                                                                       |                                             | min.   | typ. | max. |   |
| Reverse Diode                    |             |                                                                                                       |                                             |        |      |      |   |
| Diode continuous forward current | Q1 /s       | S                                                                                                     |                                             | -      | -    | 29   | Α |
|                                  | Q2          |                                                                                                       | . T <sub>c</sub> =25 °C                     | -      | -    | 50   |   |
| Diode pulse current              | Q1 /        | S,pulse                                                                                               | 7 <sub>C</sub> =23 0                        | -      | -    | 160  |   |
|                                  | Q2          |                                                                                                       |                                             | -      | -    | 160  |   |
| Diode forward voltage            | Q1 <i>V</i> | / <sub>SD</sub>                                                                                       | V <sub>GS</sub> =0 V, I <sub>F</sub> =20 A, | -      | 0.84 | 1    | ٧ |
|                                  | Q2          |                                                                                                       | T <sub>j</sub> =25 °C                       | -      | 0.77 | 1    |   |
| Reverse recovery charge          | Q1 C        | $Q_{\rm rr}$ $V_{\rm R}=12 \text{ V}, I_{\rm F}=I_{\rm S},$ $di_{\rm F}/dt=100 \text{ A/}\mu\text{s}$ | -                                           | 10     | -    | nC   |   |
|                                  | Q2          |                                                                                                       | -                                           | 20     | -    |      |   |



## 1 Power dissipation (Q1)

# $P_{\text{tot}} = f(T_A)^{4)}$

# 2 Power dissipation (Q2)

$$P_{\text{tot}} = f(T_A)^{4)}$$





## 3 Drain current (Q1)

 $I_{D}$ =f( $T_{C}$ )

parameter: V<sub>GS</sub>≥10 V

## 4 Drain current (Q2)

 $I_{D}$ =f( $T_{C}$ )

parameter: V<sub>GS</sub>≥10 V







## 5 Safe operating area (Q1)

 $I_{D}=f(V_{DS}); T_{C}=25 \text{ °C}; D=0$ 

parameter: t<sub>p</sub>



# 7 Max. transient thermal impedance (Q1)

 $Z_{\text{thJC}} = f(t_{p})$ 

parameter:  $D=t_p/T$ 



#### 6 Safe operating area (Q2)

 $I_{D}=f(V_{DS}); T_{C}=25 \text{ °C}; D=0$ 

parameter:  $t_p$ 



#### 8 Max. transient thermal impedance (Q2)

 $Z_{\text{thJC}} = f(t_p)$ 

parameter:  $D=t_p/T$ 





## 9 Typ. output characteristics (Q1)

 $I_D=f(V_{DS}); T_j=25 \text{ °C}$ 

parameter:  $V_{\rm GS}$ 



#### 10 Typ. output characteristics (Q2)

 $I_D=f(V_{DS}); T_i=25 \text{ °C}$ 

parameter: V<sub>GS</sub>



## 11 Typ. drain-source on resistance (Q1)

 $R_{DS(on)}=f(I_D); T_j=25 °C$ 

parameter: V<sub>GS</sub>



## 12 Typ. drain-source on resistance (Q2)

 $R_{DS(on)}=f(I_D); T_j=25 \text{ °C}$ 

parameter: V<sub>GS</sub>





## 13 Typ. transfer characteristics (Q1)

 $I_{D}=f(V_{GS}); |V_{DS}|>2 |I_{D}| R_{DS(on)max}$ 

parameter: T<sub>i</sub>



# 14 Typ. transfer characteristics (Q2)

 $I_{D}=f(V_{GS}); /V_{DS} > 2 | I_{D}/R_{DS(on)max}$ 

parameter: T<sub>i</sub>



#### 15 Drain-source on-state resistance (Q1)

 $R_{DS(on)}$ =f( $T_j$ );  $I_D$ =20 A;  $V_{GS}$ =10 V



$$R_{DS(on)}=f(T_j); I_D=20 A; V_{GS}=10 V$$







## 17 Typ. gate threshold voltage (Q1)

## $V_{GS(th)} = f(T_i); V_{GS} = V_{DS}; I_D = 250 \mu A$

## 18 Typ. gate threshold voltage (Q2)

$$V_{GS(th)} = f(T_i); V_{GS} = V_{DS}; I_D = 250 \mu A$$





## 19 Typ. capacitances (Q1)

$$C=f(V_{DS}); V_{GS}=0 V; f=1 MHz$$

## 20 Typ. capacitances (Q2)

$$C=f(V_{DS}); V_{GS}=0 V; f=1 MHz$$







#### 21 Forward characteristics of reverse diode (Q1) 22 Forward characteristics of reverse diode (Q2)

## $I_{\mathsf{F}} = \mathsf{f}(V_{\mathsf{SD}})$

parameter: T<sub>i</sub>



 $I_{\mathsf{F}} = \mathsf{f}(V_{\mathsf{SD}})$ 

parameter: T<sub>i</sub>



#### 23 Avalanche characteristics (Q1)

 $I_{AS}$ =f( $t_{AV}$ );  $R_{GS}$ =25  $\Omega$ 

parameter: T<sub>j(start)</sub>



#### 24 Avalanche characteristics (Q2)

 $I_{AS}$ =f( $t_{AV}$ );  $R_{GS}$ =25  $\Omega$ 

parameter:  $T_{j(start)}$ 





## 25 Typ. gate charge (Q1)

 $V_{GS}$ =f( $Q_{gate}$ );  $I_D$ =20 A pulsed

parameter:  $V_{\rm DD}$ 



## 26 Typ. gate charge (Q2)

 $V_{\text{GS}}$ =f( $Q_{\text{gate}}$ );  $I_{\text{D}}$ =20 A pulsed

parameter:  $V_{\rm DD}$ 



#### 27 Drain-source breakdown voltage (Q1)

 $V_{BR(DSS)}=f(T_j); I_D=1 \text{ mA}$ 



 $V_{BR(DSS)}=f(T_j); I_D=1 \text{ mA}$ 







#### **Package Outline**

#### PG-TISON8-4









| DIM   | MILLIN | IETERS | INC   | HES   |
|-------|--------|--------|-------|-------|
| DIIVI | MIN    | MAX    | MIN   | MAX   |
| Α     | 0.90   | 1.15   | 0.035 | 0.045 |
| b     | 0.31   | 0.51   | 0.012 | 0.020 |
| b1    | 0.00   | 0.05   | 0.000 | 0.002 |
| С     | 0.10   | 0.30   | 0.004 | 0.012 |
| D     | 4.90   | 5.10   | 0.193 | 0.201 |
| D2    | 4.12   | 4.32   | 0.162 | 0.170 |
| D3    | 1.99   | 2.19   | 0.078 | 0.086 |
| D4    | 2.69   | 2.89   | 0.106 | 0.114 |
| E     | 5.90   | 6.10   | 0.232 | 0.240 |
| E2    | 2.22   | 2.42   | 0.087 | 0.095 |
| E3    | 1.35   | 1.55   | 0.053 | 0.061 |
| E4    | 0.10   | 0.30   | 0.004 | 0.012 |
| E5    | 0.20   | 0.40   | 0.008 | 0.016 |
| E6    | 1.29   | 1.49   | 0.051 | 0.059 |
| E7    | 0.90   | 1.10   | 0.035 | 0.043 |
| е     | 1.27   | (BSC)  | 0.05  | (BSC) |
| N     |        | 8      | 1     | В     |
| L     | 0.38   | 0.58   | 0.015 | 0.023 |
| L1    | 1.38   | 1.58   | 0.054 | 0.062 |
| K1    | 1.38   | 1.58   | 0.054 | 0.062 |
| K2    | 0.35   | 0.55   | 0.014 | 0.022 |
| K3    | 0.50   | 0.70   | 0.020 | 0.028 |
| K4    | 0.29   | 0.49   | 0.011 | 0.019 |





## **Boardpads & Apertures**

#### PG-TISON8-4



## copper



stencil apertures
All the dimensions in mm

# 25V OptiMOS™5 Power MOSFET

#### **BSG0811ND**



#### **Revision History**

BSG0811ND

Revision: 2017-08-25, Rev. 2.2

**Previous Revision** 

| Revision | Date       | ubjects (major changes since last revision) |  |  |  |
|----------|------------|---------------------------------------------|--|--|--|
| 2.0      | 2015-03-17 | Release of final version                    |  |  |  |
| 2.1      | 2016-03-24 | Update package drawing                      |  |  |  |
| 2.2      | 2017-08-25 | Update package outline                      |  |  |  |

#### Trademarks of Infineon Technologies AG

 $AURIX^{\intercal}, C166^{\intercal}, CanPAK^{\intercal}, CIPOS^{\intercal}, CoolGaN^{\intercal}, CoolMOS^{\intercal}, CoolSet^{\intercal}, CoolSet^{\intercal}, CoolSet^{\intercal}, CoolSet^{\intercal}, Corecontrol^{\intercal}, Crossave^{\intercal}, Dave^{\intercal}, Di-Pol^{\intercal}, DrBlade^{\intercal}, EasyPIM^{\intercal}, EconoBRIDGE^{\intercal}, EconoDual^{\intercal}, EconoPlol^{\intercal}, EconoPlol^{$ 

Trademarks updated August 2015

#### Other Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

#### We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: **erratum@infineon.com** 

Published by Infineon Technologies AG 81726 München, Germany © 2017 Infineon Technologies AG All Rights Reserved.

#### **Legal Disclaimer**

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

#### Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

#### Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

The Infineon Technologies component described in this Data Sheet may be used in life-support devices or systems and/or automotive, aviation and aerospace applications or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support, automotive, aviation and aerospace device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.