

CS1: Selected Topics in Computer Science

(COVER SHEET)

Project Name: Diabetes prediction using logistic regression

Team ID: 51

Team Information:

	ID	Full Name	Attendance	Final
	[Ordered by ID]	[In Arabic]	[Handwritten Signature]	Grade
1	201901009	أحمد عيد فوزي سيد		
2	202000223	تسنيم سامح سليمان محمود		
4	202000945	منة الله محمد سيد عيسوى		
6	202001066	يمنى محمد عبد القادر عبد الغني		

Table of Contents:

Dataset Description Image Dataset: Numerical Dataset:	3 3 4
Implementation & Results	5
SVM MODEL (Image Dataset)	5
Implementation	5
Results:	5
ANN MODEL (Image Dataset)	7
Implementation	7
Results:	7
Logistic Regression Model (Numerical Dataset)	10
Implementation	10
Results:	10
SVM Model (Numerical Dataset)	12
Implementation	12
Results:	12

Project Description Document:

Dataset Description

Image Dataset:

Name: Plant Pathology

https://www.kaggle.com/c/plant-pathology-2020-fgvc7/data

Brief: Identify the category of foliar diseases in apple trees

Description: Given a photo of an apple leaf, can you accurately assess its health? This competition will challenge you to distinguish between leaves which are healthy, those which are infected with apple rust, those that have apple scab, and those with more than one disease.

Train.csv

image_id: the foreign key combinations: one of the target labels healthy: one of the target labels rust: one of the target labels scab: one of the target labels images

A folder containing the train and test images, in jpg format.

test.csv

image_id: the foreign key

sample_submission.csv

image_id: the foreign key combinations: one of the target labels healthy: one of the target labels rust: one of the target labels scab: one of the target labels

Total number of samples: 3640 Samples for Training: 1820 Samples for Testing: 1820

Numerical Dataset:

Name: Diabetics prediction

https://www.kaggle.com/datasets/kandij/diabetes-dataset?select=diabetes2.csv

Brief: Predicting whether the person is having diabetes or not.

Description: The data was collected and made available by "National Institute of Diabetes and Digestive and Kidney Diseases" as part of the Pima Indians Diabetes Database. Several constraints were placed on the selection of these instances from a larger database. In particular, all patients here belong to the Pima Indian heritage (subgroup of Native Americans), and are females of ages 21 and above.

diabetes2.csv

Pregnancies: Integer Glucose: Integer

BloodPressure: Integer SkinThickness: Integer

Insulin: Integer BMI: Decimal

DiabetesPedigreeFunction: Decimal

Age: Integer

Outcome: Target Label

Total number of samples: 768

Implementation & Results

SVM MODEL (Image Dataset)

Implementation

Size of Image: 100

Samples for Training: 1456

Samples for Validation: 365

Samples for Testing: 1820

Features:

Number of extracted Features: 30000 features

The dimension of resulted features: [1456, 30000]

Cross Validation:

Training/Validation Ratio: 0.20

Hyperparameters used:

Kernel = 'linear' Gamma = 0.001 Probability = True

Results:

Accuracy:

```
from sklearn.metrics import accuracy_score
print(f"The model is {accuracy_score(y_pred,y_test)*100}% accurate")

✓ 0.5s
Python
```

The model is 40.0% accurate

Confusion Matrix:

AUC:

Area Under Curve (auc): 0.6136

	precision	recall	f1-score	support
	0.26	0.42	0.20	100
0	0.36	0.42	0.39	103
1	0.00	0.00	0.00	18
2	0.41	0.36	0.38	125
3	0.46	0.49	0.48	119
accuracy			0.40	365
macro avg	0.31	0.32	0.31	365
weighted avg	0.39	0.40	0.40	365

ANN MODEL (Image Dataset)

Implementation

Size of Image: 224

Samples for Training: 1092

Samples for Validation: 729

Samples for Testing: 1820

Features:

Number of extracted Features: 150528 features

The dimension of resulted features: [1092, 15052]

Cross Validation:

Training/Validation Ratio: 0.40

Hyperparameters used:

Losses = Catogorical_crossentropy Optimizer = Adam Learning Rate = 0.001 Catogorical_accuracy = 'accuracy' Epochs = 50 Batch_Size = 128

Results:

Loss curve

Accuracy Curve

Logistic Regression Model (Numerical Dataset)

Implementation

Samples for Training: 576 Samples for Testing: 192

Results:

Loss Function:

```
# Running Log loss on training
print("The Log Loss on Training is: ", log_loss(Y_train, pred_proba))

# Running Log loss on testing
pred_proba_t = model.predict_proba(X_test)
print("The Log Loss on Testing Dataset is: ", log_loss(Y_test, y_pred_proba))

$\square 0.1s$
```

The Log Loss on Training is: 0.4843136805007716

The Log Loss on Testing Dataset is: 0.44402298946278146

Accuracy:

Accuracy for test set is 0.7917.

Precision for test set is 0.7115.

Recall for test set is 0.5968.

	precision	recall	f1–score	support
0	0.82	0.88	0.85	130
1	0.71	0.60	0.65	62
accuracy			0.79	192
macro avg	0.77	0.74	0.75	192
weighted avg	0.79	0.79	0.79	192

Confusion Matrix

ROC Curve

SVM Model (Numerical Dataset)

Implementation

Samples for Training: 768 Samples for Testing: 154

Cross Validation

Training/Validation Ratio: 0.20

Hyperparameters used:

Kernel = 'linear'

Results:

Accuracy:

Testing Metrics

Accuracy for test set is 0.7727.

Precision for test set is 0.7568.

Recall for test set is 0.5185.

F1: 0.6153846153846154

Area Under Curve (auc): 0.7142592592592593

	precision	recall	f1-score	support
0	0.78	0.91	0.84	100
U	0.70	0.91	0.04	100
1	0.76	0.52	0.62	54
accuracy			0.77	154
macro avg	0.77	0.71	0.73	154
weighted avg	0.77	0.77	0.76	154

ROC Curve

