$C3\frac{1}{2}$. Uspořádání i neuspořádání – appendix

Úloha 1. Kolik různých (kladných) dělitelů má číslo $2^5 \cdot 3^6 \cdot 5^3$, které

- (a) jsou dělitelné 6?
- (b) nejsou dělitelné 24?
- (c) jsou dělitelné alespoň dvěma z prvočísel?

Úloha 2. Identifikátor každého videa na YouTube je řetězec jedenácti znaků z množiny a–z, A–Z, 0–9 a - nebo _ (celkem 64 možností). Kolik existuje takovýchto identifikátorů, které neobsahují souvislý podřetězec youtube (s jakoukoliv velikostí písmen)? Tedy např. 12y0uTube34 nebo yYouTubeou nejsou povolené identifikátory, ale youX_Xtube ano.

- **Úloha 4.** Proces výběru vlajky pro Tramtárii nakonec proběhne následovně: ve všelidovém hlasování se všechen lid rozhodne pro trojici různých barev (z osmi). Posléze expertní komise tyto barvy seřadí do vlajky.
 - (a) Kolik voleb bude v hlasování?
 - (b) Kolik možností sestavení vlajky bude potom mít komise?

Úloha 8. Alice nakonec nebude mít tolik času, kolik plánovala, a ze dvanácti památek stihne jenom šest. Chce si tedy nejprve vybrat oněch šest bez ohledu na to, v jakém pořadí je potom navštíví.

- (a) Kolika způsoby to může provést?
- (b) Co když chce navštívit tři (ze čtyř) v Čechách a pak tři (z osmi) na Moravě?
- (c) Co když chce navštívit aspoň tři na Moravě?

1. (a) $5 \cdot 6 \cdot 4 = 120$ (b) $6 \cdot 7 \cdot 4 - 3 \cdot 6 \cdot 4 = 96$ (c) $6 \cdot 7 \cdot 4 - 5 - 6 - 3 - 1 = 153$

2. $64^{11} - 5 \cdot 2^7 \cdot 64^4 = 73\,786\,976\,284\,100\,788\,224$

4. (a) $\frac{8\cdot7\cdot6}{3!} = 56$ (b) 3! = 6 **8.** (a) $\frac{12\cdot11\cdot10\cdot9\cdot8\cdot7}{6!} = 924$ (b) $4\cdot\frac{8\cdot7\cdot6}{3!} = 224$ (c) 224+420+224+28=896