1.

matriz con coeficientes reales:

$$A = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & a & 1 \\ 0 & 1 & a \end{array}\right).$$

Sea g la métrica de \mathbb{R}^3 cuya matriz en la base usual es A. Sea f el endomorfismo de \mathbb{R}^3 cuya matriz en la base usual es A.

- (a) Calcular la signatura y clasificar la métrica g según los valores de a.
- (b) Para a=1 obtener una base conjugada (= ortogonal) para la métrica g.
- (c) ¿Para qué valores de a es f autoadjunto en (\mathbb{R}^3, g_u) ? Para a=2 calcular, si es posible, una base ortogonal de (\mathbb{R}^3, g_u) formada por vectores propios de f.
- (d) ¿Existen valores de a para los que f es una isometría en (\mathbb{R}^3, g_u) ? Para dichos valores, describir las isometrías obtenidas.
- 2. (3p) Se considera el espacio vectorial euclídeo $(S_2(\mathbb{R}), g)$. donde $S_2(\mathbb{R})$ es el espacio de las matrices simétricas de orden 2 con coeficientes reales y g(M, N) = traza(M N).
 - (a) Calcular la proyección ortogonal de la matriz $A=\begin{pmatrix}1&2\\2&1\end{pmatrix}$ sobre el subespacio dado por $U=\{M\in S_2(\mathbb{R})/traza(M)=0\}$.
 - (b) Determinar el giro de ángulo $\pi/4$ y eje $L(I_2)$.
- 3. (3p) Resolver de forma razonada las siguientes cuestiones:
 - (a) Sea A una matriz antisimétrica de orden 3. ¿Es siempre $\lambda=0$ un valor propio de A?
 - (b) ¿Es cierto que si dos matrices cuadradas son congruentes, entonces sus determinantes son iguales?
 - (c) Sea g una métrica sobre V y $u,v\in V$ vectores tales que $g(u,v)=0,\ g(u,u)\neq 0$ y $g(v,v)\neq 0$. Probar que u y v son linealmente independientes.
 - (d) ¿Es cierto que toda matriz ortogonal de orden 3 con determinante positivo es diagonalizable?