Esame di Ricerca Operativa del 24/07/18

	(Cognome)		(Nome)		(Numero di Matr	icola)
Esercizio 1. Eff	fettuare due	iterazioni dell'a	lgoritmo del simplesso	primale per il pro	blema	
			$\begin{cases} \max 7 x_1 + 4 x_2 \\ -x_1 + 3 x_2 \le 6 \\ -2 x_1 + x_2 \le 2 \\ 3 x_1 + x_2 \le 12 \\ x_1 - x_2 \le 4 \\ -2 x_1 - 3 x_2 \le x_1 - 2 x_2 \le 14 \end{cases}$	2		
	Base	x	y	Indice uscente	Rapporti	Indic entrar
1° iterazione	{2,5}					
2° iterazione						
materiale usato. variabili decision modello:	nali:					
c=			COMANDI DI MAT	LAB ntcon=		
c= A=			i			

ub=

1b=

Esercizio 3. Effettuare due iterazioni dell'algoritmo del simplesso su reti per il problema (su ogni nodo è indicato il bilancio e su ogni arco sono indicati, nell'ordine, il costo e la capacità).

	1° iterazione	2° iterazione
Archi di T	(1,2) (1,5) (2,3) (4,5) (4,6)	
Archi di U	(3,4)	
x		
π		
Arco entrante		
ϑ^+,ϑ^-		
Arco uscente		

Esercizio 4. Si consideri il seguente problema di programmazione lineare intera:

$$\begin{cases} & \min \ 8 \ x_1 + 12 \ x_2 \\ & 17 \ x_1 + 13 \ x_2 \ge 60 \\ & 11 \ x_1 + 13 \ x_2 \ge 51 \\ & x_1 \ge 0 \\ & x_2 \ge 0 \\ & x_1, x_2 \in \mathbb{Z} \end{cases}$$

a) Calcolare una valutazione inferiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento = $v_I(P)$ =

b) Calcolare una valutazione superiore del valore ottimo.

sol. ammissibile = $v_S(P) =$

c) Calcolare un taglio di Gomory.

r = taglio:

Esercizio 5. a) Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.

	ite	iter 1		iter 2		r 3	ite	r 4	ite	r 5	ite	r 6
	π	p	π	p	π	p	π	p	π	p	π	p
nodo												
visitato												
nodo 2												
nodo 3												
nodo 4												
nodo 5												
nodo 6												
$\stackrel{\text{insieme}}{Q}$												

b) Applicare l'algoritmo FFEK per trovare il flusso massimo tra il nodo 1 ed il nodo 6 sulla seguente rete.

cammino aumentante	δ	x	v

Taglio di capacità minima: $N_s =$

Esercizio 6. Si consideri il problema di trovare il ciclo hamiltoniano di costo minimo su una rete di 5 città, le cui distanze reciproche sono indicate in tabella:

città	2	3	4	5
1	30	25	29	47
2		18	94	61
3			54	26
4				20

a) Trovare una valutazione inferiore del valore ottimo calcolando il 5-albero di costo minimo.

5-albero:	$v_I(P) =$

b) Trovare una valutazione superiore applicando l'algoritmo del nodo più vicino a partire dal nodo 5.

ciclo: $v_S(P) =$

c) Applicare il metodo del *Branch and Bound*, utilizzando il 5-albero di costo minimo come rilassamento di ogni sottoproblema, istanziando, nell'ordine, le variabili x_{24} , x_{14} , x_{23} e dicendo se a questo punto é stato trovato l'ottimo o si dovrebbe proseguire.

Esercizio 7. Trovare massimi e minimi della funzione $f(x_1, x_2) = x_1 + 3x_2$ sull'insieme

$${x \in \mathbb{R}^2 : -x_1^2 - x_2^2 + 4 \le 0, -x_1 + x_2 \le 0}.$$

Soluzioni del sistema Ll	Massimo		Minimo		Sella		
x	λ	μ	globale	locale	globale	locale	
$\left(-\frac{\sqrt{2}\sqrt{5}}{5},\ -\frac{3\sqrt{2}\sqrt{5}}{5}\right)$							
$\left(-\sqrt{2},\ -\sqrt{2}\right)$							
$\left(\sqrt{2},\ \sqrt{2}\right)$							

Esercizio 8. Si consideri il seguente problema:

$$\begin{cases} \min 2 x_1^2 - 6 x_1 x_2 + 3 x_1 - 7 x_2 \\ x \in P \end{cases}$$

e i vertici di P sono (-4,-5) , (0,5) , (-5,2) e (2,4). Fare un passo del metodo del gradiente proiettato.

Punto	Matrice M	Matrice H	Direzione	Max spostamento possibile	Passo	Nuovo punto
(-2, -2)				-		

SOLUZIONI

Esercizio 1.

	Base	x	y	Indice	Rapporti	Indice
				uscente		entrante
1° iterazione	$\{2, 5\}$	(-1, 0)	$\left(0, -\frac{13}{8}, 0, 0, -\frac{15}{8}, 0\right)$	2	$\frac{120}{7}$, 8, $\frac{120}{7}$	4
2° iterazione	$\{4, 5\}$	(2, -2)	$\left(0,\ 0,\ 0,\ \frac{13}{5},\ -\frac{11}{5},\ 0\right)$	5	35, 10	3

Esercizio 2.

 $\begin{array}{l} x_A = \text{percentuale di materiale A} \\ x_B = \text{percentuale di materiale B} \\ x_C = \text{percentuale di materiale C} \\ \min \ 0.025 \ x_A + 0.03 \ x_B + 0.018 \ x_C \\ x_A + x_B + x_C = 1 \\ 0.04 \ x_A + 0.01 \ x_B + 0.006 \ x_C \leq 0.055 \\ 0.04 \ x_A + 0.01 \ x_B + 0.006 \ x_C \geq 0.03 \\ 0.0045 \ x_A + 0.005 \ x_B + 0.004 \ x_C \geq 0.0045 \\ x_A \geq 0 \\ x_B \geq 0 \\ x_C \geq 0 \end{array}$

Esercizio 3. Effettuare due iterazioni dell'algoritmo del simplesso su reti.

	1° iterazione	2° iterazione
Archi di T	(1,2) (1,5) (2,3) (4,5) (4,6)	(1,2) (1,5) (2,3) (3,4) (4,6)
Archi di U	(3,4)	
x	(2, 0, 3, 4, 0, 8, 0, 4, 0)	(2, 0, 3, 4, 0, 8, 0, 4, 0)
π	(0, 8, 16, 1, 5, 8)	(0, 8, 16, 25, 5, 32)
Arco entrante	(3,4)	(1,4)
ϑ^+,ϑ^-	5, 0	8,2
Arco uscente	(4,5)	(1,2)

Esercizio 4.

a) Calcolare una valutazione inferiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento = $\left(\frac{51}{11}, 0\right)$ $v_I(P) = 38$

b) Calcolare una valutazione superiore del valore ottimo.

sol. ammissibile = (5,0) $v_S(P) = 40$

c) Calcolare un taglio di Gomory.

 $\begin{vmatrix} r = 1 \\ r = 3 \end{vmatrix}$ $10 x_1 + 12 x_2 \ge 47$ $5 x_1 + 6 x_2 \ge 24$

Esercizio 5.

	iter	1	iter	2	ite	r 3	ite	r 4	ite	r 5	ite	r 6
	π	p	π	p	π	p	π	p	π	p	π	p
nodo												
visitato	1		2		4	1	1.5	ó	9	}	6	\mathbf{j}
nodo 2	5	1	5	1	5	1	5	1	5	1	5	1
nodo 3	$+\infty$	-1	13	2	13	2	13	2	13	2	13	2
nodo 4	12	1	8	2	8	2	8	2	8	2	8	2
nodo 5	17	1	17	1	12	4	12	4	12	4	12	4
nodo 6	$+\infty$	-1	$+\infty$	-1	23	4	22	5	22	5	22	5
$\begin{matrix} \text{insieme} \\ Q \end{matrix}$	2, 4	, 5	3, 4	, 5	3, 5	5, 6	3,	6	(5	Q)

cammino aumentante	δ	x	v
1 - 4 - 6	11	(0, 11, 0, 0, 0, 0, 0, 11, 0)	11
1 - 5 - 6	11	(0, 11, 11, 0, 0, 0, 0, 11, 11)	22
1 - 2 - 4 - 6	5	(5, 11, 11, 0, 5, 0, 0, 16, 11)	27

Taglio di capacità minima: $N_s = \{1, 5\}$ $N_t = \{2, 3, 4, 6\}$

Esercizio 6.

a) Trovare una valutazione inferiore del valore ottimo calcolando il 5-albero di costo minimo.

5-albero:
$$(1,3)(1,4)(2,3)(3,5)(4,5)$$
 $v_I(P)=118$

b) Trovare una valutazione superiore applicando l'algoritmo del nodo più vicino a partire dal nodo 5.

ciclo:
$$5 - 4 - 1 - 3 - 2$$
 $v_S(P) = 153$

c) Applicare il metodo del *Branch and Bound*, utilizzando il 5-albero di costo minimo come rilassamento di ogni sottoproblema ed istanziando, nell'ordine, le variabili x_{24} , x_{14} , x_{23} e dicendo se a questo punto é stato trovato l'ottimo o si dovrebbe proseguire.

Esercizio 7.

Soluzioni del sistema LKT				Massimo		Minimo	
x	λ	μ	globale	locale	globale	locale	
$\left(-\frac{\sqrt{2}\sqrt{5}}{5}, -\frac{3\sqrt{2}\sqrt{5}}{5}\right)$	$\left(-\frac{\sqrt{2}\sqrt{5}}{4},0\right)$		NO	NO	NO	NO	SI
$\left(-\sqrt{2},\ -\sqrt{2}\right)$	$\left(-\frac{\sqrt{2}}{2}, -1\right)$		NO	SI	NO	NO	NO
$\left(\sqrt{2},\ \sqrt{2}\right)$	$\left(\frac{\sqrt{2}}{2},-1\right)$		NO	NO	NO	NO	SI

Esercizio 8.

Punto	Matrice M	Matrice H	Direzione	Max spostamento	Passo	Nuovo punto
				possibile		
(-2, -2)	(3, -2)	$\begin{pmatrix} 4/13 & 6/13 \\ 6/13 & 9/13 \end{pmatrix}$	$\left(-\frac{58}{13}, -\frac{87}{13}\right)$	$\frac{13}{29}$	$\frac{13}{29}$	(-4, -5)