Gautier Poursin & Luca Micciche

Correlation for Tmax

Bias correction of numerical prediction model

temperature forecast Data Set

Methodology - The Methods?

About the Algorithm

Linear/Stepwise

Lasso

All the data

About the models

Per years

K-Nearest Neighboor

Ridge

Per stations

Statistical indicators

$$BIAS = \frac{\sum_{i=1}^{n} (\widehat{yi} - yi)}{n}$$

$$MAE = \frac{\sum_{i=1}^{n} |\widehat{y}_i - y_i|}{n}$$

$$MAE = \frac{\sum_{i=1}^{n} |\widehat{y}_i - y_i|}{n}$$

$$R^2 = 1 - \frac{\sum_{i=1}^{n} (y_i - \widehat{y}_i)^2}{\sum_{i=1}^{n} (y_i - \overline{y}_i)^2}$$

$$RMSE = \sqrt{\frac{\sum_{i=1}^{n} (\widehat{y}_i - y_i)^2}{n}}$$

$$RMSE = \sqrt{\frac{\sum_{i=1}^{n} (\widehat{y_i} - y_i)^2}{n}}$$

Models without clusters

With all the data

- Bias and RMSE are very low for all
- give a first impression of the results

Per year

2013 - 2014 - 2015 - 2016 - 2017

- lot of disparity on the bias
- reducing the generality of the model

Per stations

- the bias is very scattered
- there is a lost of informations

Results are not relevant: new idea => computing clusters

Bias correction of numerical prediction model temperature forecast Data Set The chosen methods - Cluster

How many clusters?

Choice: 2 clusters

Bias correction of numerical prediction model temperature forecast Data Set Variable selection with cluster 1

Selection of variables:

Bias correction of numerical prediction model temperature forecast Data Set Variable selection with cluster 2

Selection of variables:

How to choose a method and how to validate a model?

Model with all variables

Selection of variables

- Similarities between Bias, RMSE, R2 and MAE
- Medians are closer

We can validate the model

- KNN_Scale has the best RMSE and R2. His MAE is smaller than 1.
- All bias are close to 0

KNN_Scale is the best regression method

Cross-Validation

To summarize

