Hypothesis Spaces

 Suppose we have one Boolean feature (X1) with Boolean target class or hypothesis H(X)

X1	h1	h2	h3	h4
0	0	0	1	1
1	0	1	0	1

 Suppose we have two Boolean features (X1 and X2) with Boolean target class or hypothesis H(X)

X1	X2	h1	h2	h3	h4	•••	h16
0	0	0	0	0	0	•••	1
0	1	0	0	0	0	•••	1
1	0	0	0	1	1	•••	1
1	1	0	1	0	1	•••	1

• Suppose we have three Boolean feature (X1, X2 and X3) with Boolean target class or hypothesis H(X)

X1	X2	Х3	h1	H2	h3	h4	•••	h256
0	0	0	0	0	0	0	•••	1
0	0	1	0	0	0	0	•••	1
0	1	0	0	0	0	0	•••	1
0	1	1	0	0	0	0	•••	1
1	0	0	0	0	0	0	•••	1
1	0	1	0	0	0	0	•••	1
1	1	0	0	0	1	1	•••	1
1	1	1	0	1	0	1	•••	1

- For d binary features
 - Truth table has 2^d rows (d is the length of feature vector)
 - For Boolean target variable, there are **2 to the power of 2^d** different Boolean functions (possible hyposthesis) we can define.
 - This is the size of our hypothesis space
- In general, the hypothesis space size is given by:

$$Size = \# of \ classes^{(\# of \ feature \ values)^{\# of \ features}}$$

 As an example, with binary classes, binary features, with three features:

$$Size = 2^{2^3} = 256$$