UNIVERSIDADE DE BRASÍLIA / INSTITUTO DE CIÊNCIAS EXATAS DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃO

117315 - Introdução à Programação Paralela - Programa 2013/2

OBJETIVO

A disciplina Introdução à Programação Paralela tem como metas principais dar ao aluno uma compreensão das arquiteturas básicas envolvidas no processamento paralelo de informações, introduzir algoritmos e paradigmas de computação paralela e familiarizar o aluno com projetos básicos de programação paralela.

METODOLOGIA

A estrutura de créditos da disciplina Introdução à Programação Paralela é 4-0-4, ou seja, quatro horas semanais de atividades em sala de aula, zero créditos de laboratório e quatro horas semanais recomendadas para estudo complementar extra-classe. O conteúdo da disciplina é abordado através de aulas expositivas, exercícios, programas e testes de avaliação.

CRITÉRIO DE AVALIAÇÃO

A menção será obtida por conversão ao sistema de menções da UnB do resultado da soma ponderada das notas dos programas e trabalhos realizados durante o semestre (75%) e freqüência (25%), desde que o aluno tenha freqüentado pelo menos 75% do curso (caso contrário, a menção é automaticamente **SR**):

```
NotaFinal = 0.75*\SigmaRelatórios/10 + 0.25*Freqüência

Relatórios = 0.6*Conteúdo + 0.3*Forma + 0.1*Timing

Freqüência = 10 - (5/8)*NúmeroFaltas | Freqüência < 5 \Rightarrow SR

Timing = 10 - DiasPósDeadline

SS = [ 10,0...9,0 ] ; MS = [ 8,9...7,0 ] ; MM = [ 6,9...5,0 ]; MI = [ 4,9...3,0 ] ; II = [ 2,9...0,1];

SR = [ freqüência < 75\% ]
```

PROGRAMA

1. Arquiteturas paralelas

- 1.1. Notações e convenções.
- 1.2. Granulosidade e partição.
- 1.3. Evolução das arquiteturas.
- 1.4. Escalabilidade.
- 1.5. Modelos de computadores paralelos.

2. Modelo PRAM e algoritmos

- 2.1. PRAM EREW, ERCW, CREW e CRCW.
- 2.2. Múltiplos acessos em EREW.
- 2.3. Análise de algoritmos paralelos.
- 2.4. Somas e somas parciais, multiplicação de matrizes, classificação, busca, inserção, árvore geradora mínima.

3. Troca de mensagens e algoritmos

- 3.1. Modelos de troca de mensagens.
- 3.2. Eleição de líder.
- 3.3. Eleição de líder em anéis síncronos.
- 3.4. Modelo assíncrono para eleição de líder .
- 3.5. Broadcast e converge-cast.
- 3.6. Tolerância a falhas.

4. Modelos físicos

- 4.1. SIMD, PVP, SMP, MPP, COW e DSM
- 4.2. Redes de interconexão.
- 4.3. *Clustering*.
- 4.4. Pricípios de projeto escalonável.

5. Clustering

- 5.1. Conceituação.
- 5.2. Disponibilidade.
- 5.3. Imagem do sistema.
- 5.4. Gerenciamento de carga.

6. Desempenho

- 6.1. Benchmarks.
- 6.2. Desempenho e métricas.
- 6.3. Desempenho de máquinas paralelas.
- 6.4. Desempenho de programas paralelos.
- 6.5. Escalabilidade e speedup.

7. Programação paralela

- 7.1. Visão geral.
- 7.2. Processos, tarefas e threads.
- 7.3. Paralelismo.
- 7.4. Interação e comunicação.
- 7.5. Finalização.

8. Algoritmos de escalonamento

- 8.1. Modelo.
- 8.2. Escalonamento sem comunicação.
- 8.3. Modelo de comunicação.
- 8.4. Escalonamento com comunicação.
- 8.5. Algoritmos heurísticos.
- 8.6. Alocação de tarefas.
- 8.7. Ambientes heterogêneos.

9. Paradigmas e modelos de programação

- 9.1. Paradigmas e programabilidade.
- 9.2. Modelos de programação paralela.
- 9.3. Programação com memória compartilhada.

10. Programação por troca de mensagens

10.1.MPI.

CRONOGRAMA

Aula	Data		Assunto	Lab
1	20/08/13	T	Apresentação.	
2	22/08/13	Q	Programação Paralela com MPI.	Capítulo 03
3	27/08/13	T		
4	29/08/13	Q	Programação Paralela com MPI. Aplicação numérica.	Capítulo 04
5	03/09/13	T		
6	05/09/13	Q	Comunicação coletiva. Árvores. <i>Broadcast</i> . Redução. <i>Gather</i> . <i>Scatter</i>	Capítulo 05
7	10/09/13	T		
8	12/09/13	Q	Empacotamento de dados para comunicação. Tipos de dados MPI.	Capítulo 06
9	17/09/13	T		
10	19/09/13	Q	Comunicadores e Topologias.	Capítulo 07
11	24/09/13	T		
12	26/09/13	Q		
13	01/10/13	T	Entradas e saídas.	Capítulo 08
14	03/10/13	Q		
15	08/10/13	T	Depuração de código sequencial e paralelo.	Capítulo 09
16	10/10/13	Q		
17	15/10/13	T		
18	17/10/13	Q	Projeto e codificação de programas paralelos.	Capítulo 10
19	22/10/13	T		
20	24/10/13	Q		
21	29/10/13	T	Análise de desempenho. Custos de comunicação. Medidas de tempos.	Capítulo 11
22	31/10/13	Q		
23	12/11/13	T	Desempenho e Lei de Amdahl. Sobrecarga. Escalabilidade. Ferramentas de avaliação.	Capítulo 12
24	14/11/13	Q		
25	19/11/13	T	Comunicação ponto-a-ponto. Hipercubos. Anéis. Comunicação não bloqueante. Modos de comunicação.	Capítulo 13
26	21/11/13	Q		
27	26/11/13	T		
28	28/11/13	Q		
29	03/12/13	T	Algoritmos paralelos. Projeto de algoritmos paralelos. Ordenação. Busca.	Capítulo 14
30	05/12/13	Q		
31	10/12/13	T		
32	12/12/13	Q		

BIBLIOGRAFIA

Schmidt, B., Editor, (2011) *Bioinformatics. High Performance Parallel Computer Architectures*, CRC Press.

Rauber, T., Rünger, G., (2010) Parallel Programming For Multicore and Cluster Systems, Springer-Verlag.

Lastovetsky, A., Dongarra, J., (2009) *High-Performance Heterogeneous Computing*, John Wiley & Sons.

Quinn, M., (2008) Parallel Programming in C with Mpi and Openmp, McGraw-Hill.

Chapman, B., Jost, G., van der Pas, R., (2007) *Using OpenMP: Portable Shared Memory Parallel Programming*, MIT Press.

Culler, D.E., Singh, J.P., Gupta, A., (1998) *Parallel Computer Architecture: A Hardware/ Software Approach.* Morgan Kaufman Publishers.

Pacheco, P. S., (1997) Parallel Programming with MPI. Morgan Kaufmann.

Lynch, N. A., (1996) Distributed Algorithms. Morgan Kaufmann.

Formato dos relatórios

- 1. Título do capítulo
- 2. Objetivo do capítulo
- 3. Resumo do capítulo
- 4. Solução dos exercícios
- 5. Trabalho de programação
- 6. Conclusão
- 7. Referências consultadas

Material disponível (notas de aula, livros, etc.) em

http://br.groups.yahoo.com/group/progparalela/

Conta para envio dos relatórios

programa.paralelo@gmail.com

Brasília, 17/08/13