Rank-74051 over GF(4)

January 15, 2021

The equation

The equation of the surface is:

$$X_0^2 X_3 + X_1^2 X_2 + X_0 X_3^2 + X_0 X_1 X_2 = 0$$

(0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0) The point rank of the equation over $\mathrm{GF}(4)$ is 1498834265

General information

Number of lines	10
Number of points	33
Number of singular points	1
Number of Eckardt points	2
Number of double points	9
Number of single points	21
Number of points off lines	0
Number of Hesse planes	0
Number of axes	0
Type of points on lines	5^{10}
Type of lines on points	$5, 3^2, 2^9, 1^{21}$

Singular Points

The surface has 1 singular points:

$$0: P_2 = \mathbf{P}(0,0,1,0) = \mathbf{P}(0,0,1,0)$$

The 10 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}_0 = \mathbf{Pl}(1, 0, 0, 0, 0, 0)_0$$

$$\ell_{1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{16} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{16} = \mathbf{Pl}(0,0,1,0,0,0)_{2}$$

$$\ell_{2} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{37} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{37} = \mathbf{Pl}(0,0,1,0,0,1)_{108}$$

$$\ell_{3} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{340} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{340} = \mathbf{Pl}(0,0,0,1,0,0)_{9}$$

$$\ell_{4} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}_{84} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}_{84} = \mathbf{Pl}(1,0,0,1,0,0)_{10}$$

$$\ell_{5} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{356} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{356} = \mathbf{Pl}(0,1,0,0,0,0)_{1}$$

$$\ell_{6} = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{121} = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{121} = \mathbf{Pl}(0,1,1,0,0,1)_{112}$$

$$\ell_{7} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{100} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{100} = \mathbf{Pl}(0,1,1,0,0,0)_{6}$$

$$\ell_{8} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}_{25} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}_{25} = \mathbf{Pl}(1,1,0,0,1,1)_{177}$$

$$\ell_{9} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}_{109} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}_{109} = \mathbf{Pl}(1,1,0,1,1,1)_{189}$$

Rank of lines: (0, 16, 37, 340, 84, 356, 121, 100, 25, 109) Rank of points on Klein quadric: (0, 2, 108, 9, 10, 1, 112, 6, 177, 189)

Eckardt Points

The surface has 2 Eckardt points: $0: P_1 = \mathbf{P}(0, 1, 0, 0) = \mathbf{P}(0, 1, 0, 0),$ $1: P_{26} = \mathbf{P}(0, 1, 0, 1) = \mathbf{P}(0, 1, 0, 1).$

Double Points

The surface has 9 Double points: The double points on the surface are:

$$P_0 = (1,0,0,0) = \ell_0 \cap \ell_1$$

$$P_5 = (1,1,0,0) = \ell_0 \cap \ell_2$$

$$P_8 = (1,0,1,0) = \ell_1 \cap \ell_8$$

$$P_{12} = (1,1,1,0) = \ell_2 \cap \ell_9$$

$$P_3 = (0,0,0,1) = \ell_3 \cap \ell_5$$

$$P_{23} = (1, 0, 0, 1) = \ell_4 \cap \ell_7$$

$$P_4 = (1, 1, 1, 1) = \ell_6 \cap \ell_8$$

$$P_{39} = (1, 0, 1, 1) = \ell_7 \cap \ell_9$$

 $P_{27} = (1, 1, 0, 1) = \ell_4 \cap \ell_6$

Single Points

The surface has 21 single points: The single points on the surface are:

```
0: P_6 = (2, 1, 0, 0) lies on line \ell_0
                                                                      11: P_{53} = (0,0,2,1) lies on line \ell_5
1 : P_7 = (3, 1, 0, 0) lies on line \ell_0
                                                                      12: P_{54} = (1,0,2,1) lies on line \ell_7
2: P_9 = (2, 0, 1, 0) lies on line \ell_1
                                                                      13: P_{58} = (1, 1, 2, 1) lies on line \ell_6
3: P_{10} = (3,0,1,0) lies on line \ell_1
                                                                      14: P_{59} = (2, 1, 2, 1) lies on line \ell_8
                                                                      15: P_{67} = (2, 3, 2, 1) lies on line \ell_9
4: P_{17} = (2, 2, 1, 0) lies on line \ell_2
5: P_{22} = (3, 3, 1, 0) lies on line \ell_2
                                                                      16: P_{69} = (0,0,3,1) lies on line \ell_5
6: P_{30} = (0, 2, 0, 1) lies on line \ell_3
                                                                      17: P_{70} = (1,0,3,1) lies on line \ell_7
7: P_{31} = (1, 2, 0, 1) lies on line \ell_4
                                                                      18: P_{74} = (1, 1, 3, 1) lies on line \ell_6
8: P_{34} = (0, 3, 0, 1) lies on line \ell_3
                                                                      19: P_{76} = (3, 1, 3, 1) lies on line \ell_8
                                                                      20 : P_{80} = (3, 2, 3, 1) lies on line \ell_9
9: P_{35} = (1, 3, 0, 1) lies on line \ell_4
10: P_{38} = (0, 0, 1, 1) lies on line \ell_5
```

The single points on the surface are:

Points on surface but on no line

The surface has 0 points not on any line: The points on the surface but not on lines are:

Line Intersection Graph

	0123456789
0	0111100000
1	1010011110
2	1100011101
3	1000110011
4	1001001100
5	0111001100
6	0110110110
7	0110111001
8	0101001001
9	0011000110

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1	ℓ_2	ℓ_3	ℓ_4
in point	P_0	P_5	P_1	P_1

Line 1 intersects

Line	ℓ_0	ℓ_2	ℓ_5	ℓ_6	ℓ_7	ℓ_8
in point	P_0	P_2	P_2	P_2	P_2	P_8

Line 2 intersects

Line	ℓ_0	ℓ_1	ℓ_5	ℓ_6	ℓ_7	ℓ_9
in point	P_5	P_2	P_2	P_2	P_2	P_{12}

Line 3 intersects

Line	ℓ_0	ℓ_4	ℓ_5	ℓ_8	ℓ_9
in point	P_1	P_1	P_3	P_{26}	P_{26}

Line 4 intersects

Line	ℓ_0	ℓ_3	ℓ_6	ℓ_7
in point	P_1	P_1	P_{27}	P_{23}

Line 5 intersects

Line	ℓ_1	ℓ_2	ℓ_3	ℓ_6	ℓ_7
in point	P_2	P_2	P_3	P_2	P_2

Line 6 intersects

Line	ℓ_1	ℓ_2	ℓ_4	ℓ_5	ℓ_7	ℓ_8
in point	P_2	P_2	P_{27}	P_2	P_2	P_4

Line 7 intersects

Line	ℓ_1	ℓ_2	ℓ_4	ℓ_5	ℓ_6	ℓ_9
in point	P_2	P_2	P_{23}	P_2	P_2	P_{39}

Line 8 intersects

Line	ℓ_1	ℓ_3	ℓ_6	ℓ_9
in point	P_8	P_{26}	P_4	P_{26}

Line 9 intersects

Line	ℓ_2	ℓ_3	ℓ_7	ℓ_8
in point	P_{12}	P_{26}	P_{39}	P_{26}

The surface has 33 points: The points on the surface are:

$0: P_0 = (1,0,0,0)$	$12: P_{17} = (2, 2, 1, 0)$	24: $P_{54} = (1, 0, 2, 1)$
$1: P_1 = (0, 1, 0, 0)$	$13: P_{22} = (3,3,1,0)$	$25: P_{58} = (1, 1, 2, 1)$
$2: P_2 = (0, 0, 1, 0)$	$14: P_{23} = (1,0,0,1)$	$26: P_{59} = (2, 1, 2, 1)$
$3: P_3 = (0,0,0,1)$	$15: P_{26} = (0, 1, 0, 1)$	$27: P_{67} = (2, 3, 2, 1)$
$4: P_4 = (1, 1, 1, 1)$	$16: P_{27} = (1, 1, 0, 1)$	28: $P_{69} = (0,0,3,1)$
$5: P_5 = (1, 1, 0, 0)$	$17: P_{30} = (0, 2, 0, 1)$	$29: P_{70} = (1,0,3,1)$
$6: P_6 = (2, 1, 0, 0)$	$18: P_{31} = (1, 2, 0, 1)$	$30: P_{74} = (1, 1, 3, 1)$
$7: P_7 = (3, 1, 0, 0)$	$19: P_{34} = (0, 3, 0, 1)$	$31: P_{76} = (3,1,3,1)$
$8: P_8 = (1,0,1,0)$	$20: P_{35} = (1, 3, 0, 1)$	$32: P_{80} = (3, 2, 3, 1)$
$9: P_9 = (2,0,1,0)$	$21: P_{38} = (0,0,1,1)$, , , , , , , , , , , , , , , , , , , ,
$10: P_{10} = (3, 0, 1, 0)$	$22: P_{39} = (1,0,1,1)$	
$11: P_{12} = (1, 1, 1, 0)$	$23: P_{53} = (0,0,2,1)$	