```
In [24]: import numpy as np
         import pandas as pd
         import seaborn as sns
         import matplotlib.pyplot as plt
         from sklearn import preprocessing,svm
         from sklearn.model_selection import train_test_split
         from sklearn.linear model import LinearRegression
```

```
In [3]: df=pd.read_csv(r"C:\Users\hp\Downloads\bottle.csv.zip")
df
```

C:\Users\hp\AppData\Local\Temp\ipykernel_11820\1559421767.py:1: DtypeWarning: Columns (47,73) have mixed types. Spec
ify dtype option on import or set low_memory=False.
 df=pd.read csv(r"C:\Users\hp\Downloads\bottle.csv.zip")

Out[3]:

	Cst_Cnt	Btl_Cnt	Sta_ID	Depth_ID	Depthm	T_degC	Salnty	O2ml_L	STheta	O2Sat	 R_PHAEO	R_PRES	R_SAMP	DIC1	DIC2
	D 1	1	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0000A-3	0	10.500	33.4400	NaN	25.64900	NaN	 NaN	0	NaN	NaN	NaN
	1 1	2	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0008A-3	8	10.460	33.4400	NaN	25.65600	NaN	 NaN	8	NaN	NaN	NaN
	2 1	3	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0010A-7	10	10.460	33.4370	NaN	25.65400	NaN	 NaN	10	NaN	NaN	NaN
	3 1	4	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0019A-3	19	10.450	33.4200	NaN	25.64300	NaN	 NaN	19	NaN	NaN	NaN
,	4 1	5	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0020A-7	20	10.450	33.4210	NaN	25.64300	NaN	 NaN	20	NaN	NaN	NaN
	•										 				
86485	3 34404	864859	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0000A-7	0	18.744	33.4083	5.805	23.87055	108.74	 0.18	0	NaN	NaN	NaN

	Cst_Cnt	Btl_Cnt	Sta_ID	Depth_ID	Depthm	T_degC	Salnty	O2ml_L	STheta	O2Sat	 R_PHAEO	R_PRES	R_SAMP	DIC1	DIC2
864859	34404	864860	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0002A-3	2	18.744	33.4083	5.805	23.87072	108.74	 0.18	2	4.0	NaN	NaN
864860	34404	864861	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0005A-3	5	18.692	33.4150	5.796	23.88911	108.46	 0.18	5	3.0	NaN	NaN
864861	34404	864862	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0010A-3	10	18.161	33.4062	5.816	24.01426	107.74	 0.31	10	2.0	NaN	NaN
864862	34404	864863	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0015A-3	15	17.533	33.3880	5.774	24.15297	105.66	 0.61	15	1.0	NaN	NaN

864863 rows × 74 columns

```
In [6]: df=df[['Salnty','T_degC']]
```

In [13]: df.head(10)

Out[13]:

	Sal	Temp
0	33.440	10.50
1	33.440	10.46
2	33.437	10.46
3	33.420	10.45
4	33.421	10.45
5	33.431	10.45
6	33.440	10.45
7	33.424	10.24
8	33.420	10.06
9	33.494	9.86

In [14]: sns.lmplot(x="Sal",y="Temp",data=df,order=2,ci=None)

Out[14]: <seaborn.axisgrid.FacetGrid at 0x287c9759630>


```
In [15]: df.describe()
Out[15]:
                         Sal
                                    Temp
          count 817509.000000 853900.000000
                    33.840350
                                 10.799677
           mean
                     0.461843
                                  4.243825
            std
                    28.431000
                                  1.440000
            min
            25%
                    33.488000
                                  7.680000
            50%
                    33.863000
                                 10.060000
           75%
                    34.196900
                                 13.880000
                                 31.140000
                    37.034000
           max
In [16]:
         df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 864863 entries, 0 to 864862
         Data columns (total 2 columns):
               Column Non-Null Count
                                         Dtype
               Sal
                       817509 non-null float64
               Temp
                       853900 non-null float64
         dtypes: float64(2)
         memory usage: 13.2 MB
         df.fillna(method='ffill',inplace=True)
In [20]:
         C:\Users\hp\AppData\Local\Temp\ipykernel 11820\4116506308.py:1: SettingWithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#returnin
         g-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#returning-a-view-versu
         s-a-copy)
            df.fillna(method='ffill',inplace=True)
```

```
In [21]: x=np.array(df['Sal']).reshape(-1,1)
y=np.array(df['Temp']).reshape(-1,1)

In [22]: df.dropna(inplace=True)
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25)
regr=linearRegression()
regr.fit(x_train,y_train)
print(regr.score(x_test,y_test))

C:\Users\hp\AppData\Local\Temp\ipykernel_11820\693062840.py:1: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returnin
g-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versu
s-a-copy)
df.dropna(inplace=True)
0.20447179626481982
```

```
In [25]: y_pred=regr.predict(x_test)
    plt.scatter(x_test,y_pred,color='b')
    plt.plot(x_test,y_pred,color='k')
    plt.show()
```



```
In [27]: df500=df[:][:500]
sns.lmplot(x="Sal",y="Temp",data=df500,order=1,ci=None)
x=np.array(df500['Sal']).reshape(-1,1)
y=np.array(df500['Temp']).reshape(-1,1)
df500.dropna(inplace=True)
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25)
```



```
In [28]: regr=LinearRegression()
regr.fit(x_train,y_train)
print("Regression:",regr.score(x_test,y_test))
```

Regression: 0.8528244252312662

```
In [30]: y_pred=regr.predict(x_test)
    plt.scatter(x_test,y_test,color='b')
    plt.plot(x_test,y_pred,color='k')
    plt.show()
```



```
In [31]: from sklearn.linear_model import LinearRegression
    from sklearn.metrics import r2_score
    model=LinearRegression()
    model.fit(x_train,y_train)
    y_pred=model.predict(x_test)
    r2=r2_score(y_test,y_pred)
    print("R2 Score:",r2)
```

R2 Score: 0.8528244252312662

CONCLUSION:- Dataset we have taken is poor for Linear Model but Similar data can be used for this model

```
In [8]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn import preprocessing,svm
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
```

In [4]: df=pd.read_csv(r"C:\Users\hp\Downloads\fiat500_VehicleSelection_Dataset.csv")
 df

0	u	t	[4]	1:
			Li.	

	ID	model	engine_power	age_in_days	km	previous_owners	lat	lon	price
0	1	lounge	51	882	25000	1	44.907242	8.611560	8900
1	2	pop	51	1186	32500	1	45.666359	12.241890	8800
2	3	sport	74	4658	142228	1	45.503300	11.417840	4200
3	4	lounge	51	2739	160000	1	40.633171	17.634609	6000
4	5	pop	73	3074	106880	1	41.903221	12.495650	5700
1533	1534	sport	51	3712	115280	1	45.069679	7.704920	5200
1534	1535	lounge	74	3835	112000	1	45.845692	8.666870	4600
1535	1536	pop	51	2223	60457	1	45.481541	9.413480	7500
1536	1537	lounge	51	2557	80750	1	45.000702	7.682270	5990
1537	1538	pop	51	1766	54276	1	40.323410	17.568270	7900

1538 rows × 9 columns

In [6]: df.head(10)

Out[6]:

	age	km
0	882	25000
1	1186	32500
2	4658	142228
3	2739	160000
4	3074	106880
5	3623	70225
6	731	11600
7	1521	49076
8	4049	76000
9	3653	89000

In [9]: sns.lmplot(x="age",y="km",data=df,order=2,ci=None)

Out[9]: <seaborn.axisgrid.FacetGrid at 0x20f1c55f820>


```
In [10]: df.describe()
Out[10]:
                       age
                                     km
          count 1538.000000
                             1538.000000
                1650.980494
           mean
                             53396.011704
                1289.522278
                             40046.830723
                 366.000000
                             1232.000000
            25%
                 670.000000
                            20006.250000
                1035.000000
                            39031.000000
                2616.000000
                            79667.750000
           max 4658.000000 235000.000000
         df.info()
In [11]:
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 1538 entries, 0 to 1537
          Data columns (total 2 columns):
               Column Non-Null Count Dtype
                       1538 non-null
                                       int64
               age
               km
                       1538 non-null
                                       int64
          dtypes: int64(2)
          memory usage: 24.2 KB
         df.fillna(method='ffill',inplace=True)
In [12]:
         C:\Users\hp\AppData\Local\Temp\ipykernel 14192\4116506308.py:1: SettingWithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame
          See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#returnin
          g-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#returning-a-view-versu
          s-a-copy)
            df.fillna(method='ffill',inplace=True)
```

```
In [15]: y_pred=regr.predict(x_test)
    plt.scatter(x_test,y_pred,color='b')
    plt.plot(x_test,y_pred,color='k')
    plt.show()
```



```
In [17]: df500=df[:][:500]
    sns.lmplot(x="age",y="km",data=df500,order=1,ci=None)
    x=np.array(df500['age']).reshape(-1,1)
    y=np.array(df500['km']).reshape(-1,1)
    df500.dropna(inplace=True)
    x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25)
```



```
In [18]: regr=LinearRegression()
regr.fit(x_train,y_train)
print("Regression:",regr.score(x_test,y_test))
```

Regression: 0.6673169580454327

```
In [19]: y_pred=regr.predict(x_test)
    plt.scatter(x_test,y_test,color='b')
    plt.plot(x_test,y_pred,color='k')
    plt.show()
```



```
In [23]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sns
   from sklearn import preprocessing,svm
   from sklearn.model_selection import train_test_split
   from sklearn.linear_model import LinearRegression
```

In [24]: df=pd.read_csv(r"C:\Users\hp\Downloads\data.csv")
 df

Out[24]:

:	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view	condition	sqft_above	sqft_basement	yr_built
0	2014- 05-02 00:00:00	3.130000e+05	3.0	1.50	1340	7912	1.5	0	0	3	1340	0	1955
1	2014- 05-02 00:00:00	2.384000e+06	5.0	2.50	3650	9050	2.0	0	4	5	3370	280	1921
2	2014- 05-02 00:00:00	3.420000e+05	3.0	2.00	1930	11947	1.0	0	0	4	1930	0	1966
3	2014- 05-02 00:00:00	4.200000e+05	3.0	2.25	2000	8030	1.0	0	0	4	1000	1000	1963
4	2014- 05-02 00:00:00	5.500000e+05	4.0	2.50	1940	10500	1.0	0	0	4	1140	800	1976
4595	2014- 07-09 00:00:00	3.081667e+05	3.0	1.75	1510	6360	1.0	0	0	4	1510	0	1954
4596	2014- 07-09 00:00:00	5.343333e+05	3.0	2.50	1460	7573	2.0	0	0	3	1460	0	1983
4597	2014- 07-09 00:00:00	4.169042e+05	3.0	2.50	3010	7014	2.0	0	0	3	3010	0	2009
4598	2014- 07-10 00:00:00	2.034000e+05	4.0	2.00	2090	6630	1.0	0	0	3	1070	1020	1974
4599	2014- 07-10 00:00:00	2.206000e+05	3.0	2.50	1490	8102	2.0	0	0	4	1490	0	1990

4600 rows × 18 columns

In [25]: df=df[['sqft_living','sqft_lot']]
 df.head(10)

Out[25]:

	sqft_living	sqft_lot
0	1340	7912
1	3650	9050
2	1930	11947
3	2000	8030
4	1940	10500
5	880	6380
6	1350	2560
7	2710	35868
8	2430	88426
9	1520	6200

In [26]: sns.lmplot(x='sqft_living',y='sqft_lot',data=df,order=2,ci=None)

Out[26]: <seaborn.axisgrid.FacetGrid at 0x1e0ec7051e0>


```
df.describe()
In [5]:
Out[5]:
                 bedrooms
                            bathrooms
         count 4600.000000 4600.000000
                  3.400870
                             2.160815
          mean
                  0.908848
                             0.783781
           std
                  0.000000
                             0.000000
           min
          25%
                  3.000000
                             1.750000
          50%
                  3.000000
                             2.250000
          75%
                  4.000000
                             2.500000
                  9.000000
                             8.000000
          max
        df.info()
In [6]:
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 4600 entries, 0 to 4599
        Data columns (total 2 columns):
                         Non-Null Count Dtype
              Column
                         4600 non-null
                                         float64
              bedrooms
              bathrooms 4600 non-null
                                         float64
        dtypes: float64(2)
        memory usage: 72.0 KB
        df.fillna(method='ffill',inplace=True)
In [7]:
        C:\Users\hp\AppData\Local\Temp\ipykernel 17392\4116506308.py:1: SettingWithCopyWarning:
        A value is trying to be set on a copy of a slice from a DataFrame
        See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#returnin
        g-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#returning-a-view-versu
        s-a-copy)
          df.fillna(method='ffill',inplace=True)
```

```
In [27]: x=np.array(df['sqft_living']).reshape(-1,1)
y=np.array(df['sqft_lot']).reshape(-1,1)

In [28]: df.dropna(inplace=True)
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25)
regr=linearRegression()
regr.fit(x_train,y_train)
print(regr.score(x_test,y_test))

0.04892389884768433

C:\Users\hp\AppData\Local\Temp\ipykernel_17392\693062840.py:1: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returnin
g-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versu
s-a-copy)
df.dropna(inplace=True)
```

```
In [29]: y_pred=regr.predict(x_test)
    plt.scatter(x_test,y_pred,color='b')
    plt.plot(x_test,y_pred,color='k')
    plt.show()
```



```
In [30]: df500=df[:][:500]
    sns.lmplot(x="sqft_living",y="sqft_lot",data=df500,order=1,ci=None)
    x=np.array(df500['sqft_living']).reshape(-1,1)
    y=np.array(df500['sqft_lot']).reshape(-1,1)
    df500.dropna(inplace=True)
    x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25)
```



```
In [32]: regr=LinearRegression()
regr.fit(x_train,y_train)
print("Regression:",regr.score(x_test,y_test))
```

Regression: 0.22602089337703057

```
In [33]: y_pred=regr.predict(x_test)
    plt.scatter(x_test,y_test,color='b')
    plt.plot(x_test,y_pred,color='k')
    plt.show()
```

