Transistori ad Effetto di Campo Metallo-Ossido-Semiconduttore (MOSFET)

L'elettrodo superiore (gate) del condensatore è realizzato con una materiale metallico. L'altro elettrodo è semiconduttore drogato (substrato o body). Tra i due elettrodi è interposto un sottile strato di isolante, tipicamente biossido di silicio.

Applicando una tensione di gate negativa rispetto al substrato la carica negativa presene sul gate è bilanciata da una carica positiva nella regione superficiale del semiconduttore sottostante.

In questa situazione la concentrazione di lacune superficiale è maggiore rispetto al valore assunto nelle regioni interne del substrato; questa condizione è detta di accumulazione.

Con V_G positiva le lacune del semiconduttore vengono spinte lontano dalla superficie d'interfaccia. Si raggiunge in questo modo la condizione di svuotamento

Raggiunto un determinato valore di tensione (V_{th}, threshold voltage) la concentrazione superficiale degli elettroni diventa superiore a quella delle lacune.

Si forma uno strato superficiale di inversione, nel quale i portatori di carica maggioritari sono gli elettroni invece che le lacune.

Struttura fisica di un NMOS ad arricchimento

MOSFET (Metal Oxide Semiconductor Field Effect Transistor): transistor ad effetto di campo metallo-ossido-semiconduttore

MOSFET ad arricchimento a canale *n*

MOSFET ad arricchimento a canale *n* (sezione)

0.1*mn* £ *L* £ 3*mn*

0.2 mm £ W £ 100 mm

Creazione del canale per il flusso di corrente

Funzionamento di un NMOS ad arricchimento

Funzionamento di un NMOS ad arricchimento

Regioni di funzionamento e simbolo circuitale (NMOS ad arricchimento)

Regione di cut-off

$$v_{GS} < V_t$$

Canale NON indotto

Regione di triodo

Regione di saturazione

$$v_{GS}$$
 v_{t} Canale indotto v_{GS} v_{t}

$$v_{DS} < v_{GS} - V_t$$

 $v_{DS} < v_{GS} - V_t$ « $v_{GD} > V_t$ Canale continuo v_{DS} 3 v_{GS} - V_t « $v_{GD} \not \!\!\!\! \pm V_t$ Canale strozzato

$$v_{DS}$$
 3 v_{GS} -

$$v_{GD}$$
£

Calcolo Corrente di Drain 1(3)

Calcolo Corrente di Drain 2(3)

$$d V(y) = I_{D}olR = I_{D}oly$$

$$W_{Mn} Q_{c}(y)$$

$$\int I_{D}oly = \int w_{Mn} Cox \left[V_{GS} - V_{T} - V(y) \right]olV_{y}$$

$$I_{D} = \frac{1}{2} \mu_{n} Cox \frac{w}{L} \left[2(V_{GS} - V_{T}) V - V^{2}\right]^{V_{DS}}$$

$$I_{D} = k \left[2(V_{GS} - V_{T}) V_{DS} - V_{DS}\right]$$

$$k = \frac{1}{3} \mu_{n} Cox \frac{w}{L}$$

Calcolo Corrente di Drain 3(3)

$$V_{OS} = V_{GS} - V_{T}$$

canali shozzato al drain

 $V_{OS} = V_{GS} - V_{T}$
 $V_{OS} = V_{GS} - V_{T}$

Caratteristiche corrente-tensione (1/2)

Regione di interdizione (cutoff) $(v_{GS} \ \mathbf{\pounds} \ V_t)$

$$i_{D} = 0$$

Regione di triodo $(v_{GS} \,^{3} \, V_{t}; v_{DS} < v_{GS} - V_{t})$

$$i_D = k \not \! c \frac{W}{L} \not \! e (v_{GS} - V_t) v_{DS} - \frac{1}{2} v_{DS}^2 \not \! u$$

$$con k_n' = m_n C_{ox} \quad \text{\'e}A/V^2 \dot{\mathbf{e}}$$

Per piccoli valori di v_{DS} :

$$i_D \otimes k_t v_{GS} - V_t v_{DS}$$

e il dispositivo si comporta come un resistore lineare r_{DS} controllato da v_{GS} :

$$r_{DS} \; \Box \; \frac{v_{DS}}{i_D} \bigg|_{v_{CS} = V_{CS}} \underbrace{\hat{\mathbf{e}}}_{k} \mathbf{f} \underbrace{\frac{W}{L}}_{k} \big(V_{GS} - V_t \big) \mathbf{\mathring{y}}^{-1} = \underbrace{\hat{\mathbf{e}}}_{k} \mathbf{f} \underbrace{\frac{W}{L}}_{k} V_{OV} \mathbf{\mathring{y}}^{-1}$$

con $V_{OV} \ \square \ V_{GS}$ - V_t tensione di overdrive

 $W/L\;$ è detto rapporto d'aspetto del MOSFET

Caratteristiche corrente-tensione (2/2)

Regione di saturazione $(v_{GS} \ ^{3} \ V_{t} \ ; v_{DS} \ ^{3} \ v_{GS} \ ^{-} \ V_{t})$

$$i_D = \frac{1}{2} k_{r} \Phi \frac{W}{L} (v_{GS} - V_t)^2$$

Modello NMOS per grandi segnali (in saturazione)

Valore finito della resistenza di uscita

$$i_D = \frac{1}{2} k_n \mathcal{E} \frac{W}{L} (v_{GS} - V_t)^2 (1 + I v_{DS})$$

dove $\lambda \geq 0$ è un parametro di costruzione del MOSFET, inversamente proporzionale alla lunghezza di canale L

$$I = \frac{1}{V_A}$$

 V_A è detta **tensione di Early**

MOSFET a canale p ad arricchimento (PMOS)

$$v_{DS}^{3} v_{GS} - V_{t}$$

Canale continuo regione di triodo

$$v_{DS} \, \mathfrak{L} \, v_{GS} - V_t$$

Canale strozzato regione di saturazione

$$i_D = \frac{1}{2} k \not c \frac{W}{L} (v_{GS} - V_t)^2 (1 + V_{DS})$$

Tecnologia MOS complementare (CMOS)

MOS a syuotamento

A differenza di quelli ad arricchimento, in questi MOS il canale è già formato anche a $V_{\rm DS}=0$. Tale proprietà si ottiene drogando la zona di canale a tal punto da avere portatori in conduzione.

Come conseguenza si ha che la tensione di soglia (tensione per avere portatori in conduzione) è negativa (n-Type). Quindi generalmente si tende a svuotare il canale piuttosto che alimentarlo ulteriormente di portatori.

MOSFET a syuotamento

Per V_{GS} =0 il canale è già formato

V_t< 0 per NMOS

V_t>0 per PMOS

Field-Effect Transistor

MOSFET	A canale n NMOS	A canale p PMOS		
Ad arricchimento (enhancement-type)		G O D		
A svuotamento (depletion-type)				

Differenza fra le transcaratteristiche

Transcaratteristiche MOSFET

	n-Channel		p-Channel			
	Enhancement MOSFET	Depletion MOSFET	jfet	Enhancement MOSFET	Depletion MOSFET	JFET
Circuit Symbol	مالي الم	صالح) الم	مال		o-irio γiο	الم
· V,	+	· , : ,,			+	+
Κ	½ μ, Cο	x(W/L)	I _{DSS} /V ² _P	$\frac{1}{2} \mu_p C$	ox(W/L)	IDSS/V2
ro turn :		$v_{CS} > V_c$			$v_{GS} < V_r$	
v _{DS} .		+			_	
To operate in the triode region		$v_{DS} \leq v_{GS} - V_{i}$			$v_{DS} \ge v_{GS} - V_{i}$	
To operate in the saturation a region	7	$v_{OS} \ge v_{CS} - V$			$v_{DS} \leq v_{GS} - V$	
$\lambda = 1/V_{\Lambda}$. + /				
In triode region	$i_D = K[2(v_{CS} - V_t)v_{DS} - v_{DS}^2]$					
In saturation region	$i_0 = K(v_{OS} - V_i)^2(1 + \lambda v_{OS})$					
r _a				VA IID		

Aumento della tensione di soglia per l'effetto body

Per un NMOS:

$$V_{t} = V_{t0} + g \acute{e} \sqrt{2F_{f} + V_{SB}} - \sqrt{2F_{f}} \grave{u}$$

 V_{SR} tensione tra source e body

 V_{t0} tensione di soglia per $V_{SB} = 0$ (valori tipici $V_{t0} = 1$, 1.5V)

 $2F_f$ potenziale di equilibrio elettrostatico del materiale tipo p (valori tipici 0.6, 0.8V)

 $g = \frac{\sqrt{2qN_A e_s}}{C_{ox}}$ costante di processo o parametro di effetto *body* (valori tipici g = 0.3, $1\sqrt{V}$)

Retta di carico e punto Q di polarizzazione

dove R_D è detto **resistore di carico**

Caratteristica di trasferimento

Funzionamento come interruttore

Spento se il punto di lavoro è su XA $(v_i < V_t)$ $\triangleright v_O = V_{DD}$ Acceso se il punto di lavoro è in C $(v_i = V_{DD})$ $\triangleright v_O = V_{OC}$ @0

Funzionamento come amplificatore

il punto di lavoro si sceglie in Q (zona lineare)

$$A_{V} \left. \Box \left. \frac{dv_{0}}{dv_{I}} \right|_{v_{I}=V_{IQ}}$$

Time

Circuito di polarizzazione e segnale d'ingresso

Esercizio - Circuito di polarizzazione

Per il seguente circuito calcolare il valore massimo di R_D che mantiene il transistore MOS in zona di saturazione.

Polarizzazione a V_{GS} fissa

Polarizzazione con V_G fissa e resistore R_S

Polarizzazione con resistore di retroazione R_G

$$V_{G} = V_{D}$$

$$V_{GS} = V_{DS} = V_{DD} - R_{D}i_{D}$$

$$V_{DD} = V_{GS} + R_{D}i_{D}$$

Polarizzazione con generatore di corrente costante

Utilizzo del MOSFET come amplificatore (1/2)

Nella regione di saturazione $\triangleright V_D > V_{GS} - V_L$

$$V_D > V_{GS} - V_t$$

Se $v_{gs} = 0$ (assenza di segnale)

$$\begin{cases} I_D = \frac{1}{2} k_B \mathcal{C} \frac{W}{L} (V_{GS} - V_t)^2 & \text{Punto di polarizzazione} \\ V_{DS} = V_D = V_{DD} - R_D I_D \end{cases}$$

Se
$$v_{GS} = V_{GS} + v_{gs}$$
 e

$$v_{gs} \Box 2(V_{GS} - V_t) = 2V_{OV}$$
 condizione per piccoli segnali

$$i_D = I_D + g_m v_{gs} + \frac{1}{2} k_n \Phi \frac{W}{L} v_{gs}^2 \ @I_D + g_m v_{gs}$$

dove:

$$g_m \Box \frac{\P i_D}{\P v_{GS}} \Big|_{v_{GS} = V_{GS}} \otimes k_n \mathcal{C}_L^W (V_{GS} - V_t)$$
 transconduttanza del MOSFET

$$@k_{n} \stackrel{W}{\leftarrow} V_{GS} - V_{t}$$

Modelli del MOSFET per piccoli segnali: modello a p

La **transconduttanza è** data dalle relazioni:

$$g_{m} = k_{n} \mathcal{C} \frac{W}{L} (V_{GS} - V_{t}) = \sqrt{2k_{n}^{2}} \sqrt{\frac{W}{L}} \sqrt{I_{D}} = \frac{2I_{D}}{V_{OV}}$$

• Parametri di progetto per g_m : W/L, V_{OV} e I_D

La **resistenza di uscita**, data dalla relazione:

$$r_0 = V_A | I_D$$

- è inversamente proporzionale alla corrente di polarizzazione ${\cal I}_D$
- è proporzionale alla tensione di Early V_A

Utilizzo del MOSFET come amplificatore (2/2)

Modelli del MOSFET per piccoli segnali in alta frequenza

Calcolare l'amplificazione di transconduttanza i_L/v_S per il seguente circuito:

Dato il circuito amplificatore di figura caratterizzato da un punto di lavoro del transistor in zona di saturazione (I_D =0.446mA, V_{DS} =6.66V), determinare la transresistenza R_M = v_{out} / i_s per piccoli segnali di medio banda

$$\begin{split} & V_{DD} = 10 \; V \\ & \mathbf{Q_1} \; ^{\text{O}} \; \{ k \! = \! 0.3 \text{mA/V}^2, \; V_t \! = \! 1 \text{V}, \qquad I = \! 0 \} \\ & R_1 = \! . \; 40 \; \text{kW}; \; R_2 = \! . \; 20 \; \text{kW}; \; R_3 = \! . \; 0.5 \; \text{kW}; \\ & R_4 = 2 \; \; \text{kW}; \; \; R_5 = \; 5 \; \; \text{kW}; \; \; R_L = \; 15 \; \; \text{kW}; \\ & R_S = \! . \; 80 \; \text{kW}; \\ & C_1 = \; 1 \; \text{mF}; \; C_2 = \; 1 \; \text{mF}; \; C_3 = \; 1 \; \text{mF}; \end{split}$$

Del circuito seguente, con tensione v_{sig} sinusoidale con valor medio nullo, ampiezza picco-picco pari a 0.2 V e frequenza 1 kHz, determinare e graficare l'andamento nel tempo della tensione di uscita V_{out} sia in assenza che in presenza della capacità $C_3 = X$.

 $R_D = 2 \text{ kW}, R_S = 0.5 \text{ kW}, R_L = 10 \text{ kW},$

Amplificatore Operazionale ideale; $L^+ = -L^- = 10 \text{ V}$

$$Q_1: V_T = 1 \text{ V}; K = 0.5 \text{ mA/V2}; I = 0, c = 0$$

$$R_A = 6 \text{ k}^{\text{W}}, \quad R_B = 4 \text{ k}^{\text{W}}, \quad R_{sig} = 50 \text{ W}$$

$$V_{DD} = 10 \text{ V};$$
 $C_{I} = C_{2} = \text{ }$

Del circuito seguente, calcolare lo stato di polarizzazione dei due transistori $(V_{GS}; I_D; V_{DS})$, e l'amplificazione di tensione $A_v = v_{out}/v_{in}$ per piccoli segnali.

Del circuito seguente, calcolare lo stato di polarizzazione del transistore $Q_{I}(V_{GS}; I_{D}; V_{DS})$, la componente continua della tensione di uscita V_{OUT} , e l'amplificazione di tensione $A_v = v_{out}/v_{in}$ per piccoli segnali.

 $V_{OUT} + v_{out}$

Amplificatore Operazionale ideale;
$$L^+ = -L^- = 10 \text{ V}$$

$$\mathbf{Q_1}$$
: $V_{TI} = 1 \text{ V}; K_I = 0.5 \text{ mA/V}^2; / = 0, c = 0$

$$I_1 = 2\text{mA}$$
 $V_{DD} = 5 \text{ V};$ $C = \frac{1}{2}$

Configurazioni di amplificatori FET singolo stadio

Amplificatore universale

Le tre capacità di valore infinito sono usate per accoppiare i tre terminali del Mos a massa, al segnale, al carico.

Tali capacità bloccano la continua, in modo che le connessioni effettuate non influenzino la polarizzazione, mentre sono dei perfetti corto-circuiti per il segnale.

Amplificatore a Source comune

Schema circuitale

X connesso alla sorgente di segnale

Y dinamicamente a massa

Z connesso al carico

Amplificatore a Source comune

Circuito equivalente per piccoli segnali

$$R_{in} = R_G$$

$$R_{out} = R_D // r_O$$

$$R_{in}=R_G$$
 $R_{out}=R_D\,/\!/\,r_O$ $R_{out}=R_D\,/\!/\,r_O$ $R_{out}=R_D\,/\!/\,R_D\,/\!/\,R_O$

$$A_{vo} \circ \frac{v_o}{v_i}\bigg|_{R_t = \frac{1}{2}} = -g_m R_D // r_O \qquad A_v = A_{vo} \frac{R_L}{R_L + R_{out}}$$

$$A_{v} = A_{vo} \frac{R_{L}}{R_{L} + R_{out}}$$

Amplificatore a Gate comune (inseguitore di corrente)

X dinamicamente a massa

Y connesso alla sorgente di segnale

Z connesso al carico

Amplificatore a Gate comune (inseguitore di corrente)

Circuito equivalente per piccoli segnali

$$R_{in} \gg \frac{1}{g_m}$$
 $R_{out} = R_D // r_O$ $A_v \circ \frac{v_o}{v_i} = g_m R_L // R_D$

Amplificatore a Drain comune (inseguitore di Source)

X connesso alla sorgente di segnale

Y connesso al carico

Z dinamicamente a massa

Amplificatore a Drain comune (inseguitore di Source)

$$R_{in} = R_G \qquad A_{vo} \circ \frac{v_o}{v_i} \bigg|_{R_L = \Psi} = \frac{1}{1 + \frac{1}{g_m r_o}} \qquad R_{out} \gg \frac{1}{g_m} \qquad A_v = A_{vo} \frac{R_L // r_o}{R_L // r_o + \frac{1}{g_m}} \gg 1$$

Amplificatore a Drain comune (inseguitore di Source)

Circuito per il calcolo della resistenza d'uscita

$$R_{out} = \frac{v_S}{i_S} = \frac{1}{g_m + \frac{1}{r_o}} = \frac{1}{g_m} // r_o$$

$$i_S = -g_m v_{gs} + \frac{v_S}{r_o} = g_m v_S + \frac{v_S}{r_o}$$

(d)

Dispositivi di carico in tecnologia NMOS

Circuito a source comune (CS)

Dispositivi di carico in tecnologia NMOS

Area occupata da una resistenza da 10kWin tecnologia NMOS

Dispositivi di carico in tecnologia NMOS

$$i = K(v - V_t)^2$$

Nella regione di triodo:

$$i = K(-2V_{tD}v - v^2)$$

$$v = -V_{tD}$$

$$i = KV_{tD}^2 = I_{DSS}$$

$$i = KV_{tD}^{2} \stackrel{\text{C}}{\rightleftharpoons} 1 + \frac{v}{V_{A}} \stackrel{\text{C}}{\rightleftharpoons}$$

Amplificatore NMOS con carico ad arricchimento

Quando i due MOSFET sono in saturazione:

$$v_O = \overset{\mathfrak{S}}{\overset{\bullet}{\mathsf{C}}} V_{DD} - V_t + V_t \sqrt{\frac{K_1}{K_2}} \overset{\ddot{\mathsf{O}}}{\overset{\bullet}{\mathsf{C}}} - v_I \sqrt{\frac{K_1}{K_2}}$$

Anche per grandi segnali l'amplificatore è lineare:

$$A_{v} = -\sqrt{\frac{K_{1}}{K_{2}}} = -\sqrt{\frac{(W/L)_{1}}{(W/L)_{2}}}$$

Fig. 5.51 (a) Amplificatore NMOS con carico ad arricchimento. (b) Metodo grafico per determinare la caratteristica di trasferimento. (c) Caratteristica di trasferimento.

....analisi per piccoli segnali

Fig. 5.52 Circuito equivalente per piccoli segnali dell'amplificatore con carico ad arricchimento di fig. 5.51(a).

$$A_{v} = \frac{v_{o}}{v_{i}} = \frac{-g_{m1}}{g_{m2} + \frac{1}{r_{o1}} + \frac{1}{r_{o2}}} \gg -\frac{g_{m1}}{g_{m2}}$$

Modellizzazione dell'effetto body

$$g_{mb} \circ \frac{\mathcal{I}_{D}}{\mathcal{I}_{N}} \Big|_{\substack{v_{GS} = costante \\ v_{DS} = costante}} = cg_{m}$$

$$V_{t} = V_{t0} + g \left[\sqrt{2f_{f} + V_{SB}} - \sqrt{2f_{f}} \right]$$

$$c \circ \frac{fV_t}{fV_{SB}} = \frac{g}{2\sqrt{2f_f + V_{SB}}} = 0.1, 0.3$$

Circuito equivalente per piccoli segnali di un mosfet il cui substrato (body) non è collegato al source.

...includendo l'effetto body

Fig. 5.54 (a) Amplificatore con carico ad arricchimento in cui sono esplicitamente mostrate le connessioni del substrato. (b) Circuito equivalente per piccoli segnali dell'amplificatore in (a), comprendente l'effetto body che si verifica in Q_2 .

MOS a svuotamento

In questo tipo di connessione $V_{GS} = 0$, $I_D \neq 0$ e $V_{DS} = -V_T$ (con $V_T < 0$)

MOS a svuotamento

MOS a svuotamento

CMOS

Fig. 5.58 (a) The basic current-mirror circuit. (b) The output characteristic of the current mirror for the case of matched transistors Ω_t and $\Omega_{\rm b}$.

Io = Inf
$$\frac{k_1}{\kappa_1}$$

CMOS

CMOS

Espressione analitica della caratteristica di trasferimento

Regione di cut-off $(v_I \, \pounds \, V_t)$

$$V_O = V_{DD}$$

Regione di saturazione $(v_I \,^{\mathbf{3}} \, V_t \,; v_O \,^{\mathbf{3}} \, v_I \, - \, V_t)$

$$v_O = V_{DD} - \frac{1}{2} R_D k_n \mathcal{E} \frac{W}{L} (v_I - V_t)^2$$

$$A_{V} \left. \left. \left. \left. \left. \left. \frac{dv_{O}}{dv_{I}} \right| \right|_{v_{I}=V_{IO}} \right. \right. = -R_{D}k_{B}^{\Phi}\frac{W}{L}\left(V_{IQ}-V_{t}\right)$$

dove A_v è detto **guadagno in tensione**

Regione di triodo $(v_I \circ V_t; v_O \pounds v_I - V_t)$

$$v_O = V_{DD} \frac{r_{DS}}{r_{DS} + R_D} @V_{DD} \frac{r_{DS}}{R_D}$$

$$r_{DS} = 1 / \frac{\acute{e}}{\acute{e}} k_{t} v_{L} (v_{I} - V_{t}) \dot{v}_{t}$$

Modelli del MOSFET per piccoli segnali: modello a T

Modelli del MOSFET per piccoli segnali: modello a T con resistenza r_o

Amplificatore a source comune (CS)

Assumendo $v_i = v_{gs}$ @ v_{sig} valida per $R_G \square R_{sig}$:

$$A_{v} = \frac{v_{O}}{v_{i}} = -g_{m} \left(r_{o} \| R_{D} \| R_{L} \right)$$

$$A_{vo} = \frac{v_O}{v_i} \bigg|_{R_I = \mathbf{Y}} = -g_m \left(r_o \| R_D \right)$$

$$G_{v} = \frac{R_{in}}{R_{in} + R_{sig}} A_{v} = -\frac{R_{G}}{R_{G} + R_{sig}} g_{m} \left(r_{o} \| R_{D} \| R_{L} \right)$$

$$R_{in} = R_G$$

$$R_{out} = r_o \, \Box \, R_D$$

Amplificatore a gate comune (CG)

Amplificatore CS con resistore di source

Amplificatore a guadagno unitario o inseguitore di corrente

$$i_i \otimes i_{sig}$$
 se $R_{sig} \square \frac{1}{g_m}$

Amplificatore a drain comune o inseguitore di source

