IPSIA G. Ceconi

WORKSHOP DI ROBOTICA

ROBOT

ROBOT

Dal ceco robota, lavoro pesante.

ROBOT

Dal ceco robota, lavoro pesante.

Introdotto dallo scrittore ceco Karel Čapek in un dramma teatrale del 1920 per indicare degli umanoidi biologici artificiali creati per svolgere i lavori più faticosi.

DEFINIZIONE

Apparato meccanico ed elettronico programmabile, impiegato nell'industria, in sostituzione dell'uomo, per eseguire automaticamente e autonomamente lavorazioni e operazioni ripetitive, o complesse, pesanti e pericolose.

By Manfred Werner - Tsui - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=4762533

 $By \ Maggie \ Bartlett, National \ Human \ Genome \ Research \ Institute-http://www.genome.gov/dmd/img.cfm?node=Photos/Technology/Research%20laboratory&id=79299, Public \ Domain, https://commons.wikimedia.org/w/index.php?curid=37410189$

By Robobotics - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=56206814

By فاطمه در ستى - https://www.franciscanhealth.org/health-care-services/robotic-assisted-surgery-334, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php? curid=70874369

By NASA - http://photojournal.jpl.nasa.gov/catalog/PIA14309, Public Domain, https://commons.wikimedia.org/w/index.php?curid=17465432

mBot

SENSORI

ATTUATORI

CONTROLLO

ARDUINO

mCore

ALIMENTAZIONE

INTERRUTTORE

SPIA ACCENSIONE

PRESA PACCO BATTERIE

PRESA BATTERIA AL LITIO

MODULO Bluetooth/WiFi

Accendo il computer...

Accendo il computer Collego il cavo USB al computer...

Accendo il computer Collego il cavo USB al computer Collego il cavo USB a mCore...

Accendo il computer Collego il cavo USB al computer Collego il cavo USB a mCore Porto l'interruttore su ON...

Accendo il computer Collego il cavo USB al computer Collego il cavo USB a mCore Porto l'interruttore su ON

... la spia di accensione si accende!

PROGRAMMAZIONE

mBlock

PROGRAMMA n. 1

Accendere i due led di rosso

LIGHT-EMITTING DIODE

Collego mCore al computer...

Collego mCore al computer Avvio il programma mBlock...

Collego mCore al computer Avvio il programma mBlock Connetto la scheda al programma...

Demo!

PROGRAMMA n. 1

Accendere i led di rosso

PROGRAMMA n. 1

Demo!

Spengo mCore...

Spengo mCore Riaccendo mCore...

Spengo mCore Riaccendo mCore

... i LED si accendono!

Spengo mCore Riaccendo mCore

... i LED si accendono!

Il programma è salvato in mCore.

ATTENZIONE!

Quando spengo (o scollego) mCore...

ATTENZIONE!

Quando spengo (o scollego) mCore...

...devo riconnettere mCore a mBlock!

Spegnere i LED dopo 1 secondo

Spegnere i LED dopo 1 secondo Fare lampeggiare i LED

Spegnere i LED dopo 1 secondo Fare lampeggiare i LED

accendere i LED attendere 1 secondo spegnere i LED attendere 1 secondo

Spegnere i LED dopo 1 secondo Fare lampeggiare i LED

accendere i LED
attendere 1 secondo
spegnere i LED
attendere 1 secondo

Spegnere i LED dopo 1 secondo Fare lampeggiare i LED Fare lampeggiare i LED alternativamente

Spegnere i LED dopo 1 secondo Fare lampeggiare i LED Fare lampeggiare i LED alternativamente

accendere il LED sx, spegnere il LED dx attendere 1 secondo spegnere il LED sx, accendere il LED dx attendere 1 secondo

COLORI RGB

ROSSO/R

VERDE/G

BLU /B

SINTESI CROMATICA

Realizzare un semaforo

Realizzare un semaforo

il verde dura 5 secondi

il giallo dura 2 secondi

il rosso dura 4 secondi

Realizzare un semaforo Replicare il lampeggiante della polizia

Realizzare un semaforo Replicare il lampeggiante della polizia

4 lampeggi blu "stroboscopici" (LED accesi per 20ms, spenti per 80ms) alternati sui due LED sinistro/destro

PROGRAMMAZIONE

IL PROGRAMMATORE

LINGUAGGIO NATURALE

Accendi i LED di rosso!

IL CIRCUITO

PROGRAMMAZIONE

Accendi i LED di rosso?!

IL CIRCUITO

IL MICROCONTROLLORE

100101000110101000000100...

100101000110101000000100...

UN DIALOGO DIFFICILE

Accendi i LED di rosso!

UN INTERPRETE IN AIUTO

LINGUAGGI DI ALTO LIVELLO

LINGUAGGI DI BASSO LIVELLO

PROGRAMMA n. 2

Far suonare il cicalino

CICALINO

PROGRAMMA n. 2

Far suonare il cicalino

PROGRAMMA n. 2

Demo!

Suonare la scala diatonica

Suonare la scala diatonica

C4 D4 E4 F4 G4 A4 B4 C5

Suonare la scala diatonica

Suonare la scala diatonica Simulare la sirena della polizia

Suonare la scala diatonica Simulare la sirena della polizia

G4 per un secondo
E5 per un sesto di secondo
G4 per un sesto di secondo
E5 per un sesto di secondo

Suonare la scala diatonica Simulare la sirena della polizia

G4 per un secondo
E5 per un sesto di secondo
G4 per un sesto di secondo
E5 per un sesto di secondo
E5 per un sesto di secondo

Suonare la scala diatonica Simulare la sirena della polizia Suonare la melodia di "Tanti auguri"

Melodia di "Tanti auguri"

Melodia di "Tanti auguri"

Melodia di "Tanti auguri"

```
G4 G4 A4 G4 C5 B4 G4 G4 A4 G4 D5 C5 G4 G4 1/8 1/8 1/4 1/4 1/2 1/8 1/8 1/4 1/4 1/2 1/8 1/8
```

```
G5 E5 C5 B4 A4 F5 F5 E5 C5 D5 C5
1/4 1/4 1/4 1/4 1/8 1/8 1/8 1/4 1/4 1/2
```

Si possono far lampeggiare i LED...

Si possono far lampeggiare i LED... ... mentre suona la sirena della polizia?

Si possono far lampeggiare i LED... ... mentre suona la sirena della polizia?

No, la scheda non è abbastanza potente.

PROGRAMMA n. 3

Controllare un pulsante

PULSANTE

PULSANTE DI RESET

PROGRAMMA n. 3

Controllare un pulsante

PROGRAMMA n. 3

Demo!

Quando si preme il pulsante...

Quando si preme il pulsante:

suona la sirena della polizia

Quando si preme il pulsante:

- suona la sirena della polizia
- i LED si accendono...

Quando si preme il pulsante:

- suona la sirena della polizia
- i LED si accendono per spegnersi quando si rilascia il pulsante.

MONTAGGIO

COMPONENTI

MOTORI E RUOTE

VITI E BULLONI

Fissaggio dei motori Fissaggio delle ruote

Fissaggio dei sensori

SENSORI ESTERNI

GUSCIO mCore

PACCO BATTERIE

VERIFICA CONNESSIONI

Far muovere mBot

Demo!?

PRUDENZA!

mBot comincerà a muoversi non appena il trasferimento del programma sarà completato.

PRUDENZA!

mBot comincerà a muoversi non appena il trasferimento del programma sarà completato.

Attenzione a non farsi prendere di sorpresa!

PRUDENZA!

mBot continuerà a muoversi finché non lo spegneremo (o si esauriranno le batterie).

Far muovere mBot...

Far muovere mBot:

quando si preme il pulsante

Far muovere mBot:

- quando si preme il pulsante
- per tre secondi, dopodiché si ferma

```
forever
 wait until < ₩ when on-board button | pressed ▼ ?
     move forward ▼ at power 100
         seconds
 stop moving
```

Muoversi a caso cambiando direzione ogni secondo...

Muoversi a caso cambiando direzione ogni secondo, usando i LED come indicatori:

entrambi verdi per "avanti" entrambi rossi per "indietro" giallo (solo il LED interno) per "gira".

Scansare gli ostacoli

SENSORE DI PROSSIMITÀ

SENSORE DI PROSSIMITÀ

By Powerresethdd - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=15009646

APPLICAZIONE

Campo di misura: da 3 a 400cm

Campo di misura: da 3 a 400cm

Risoluzione: 1cm

Campo di misura: da 3 a 400cm

Risoluzione: 1cm

Non particolarmente stabile.

Campo di misura: da 3 a 400cm

Risoluzione: 1cm

Non particolarmente stabile.

Soggetto a interferenze: attendere almeno 50ms tra una lettura e l'altra.

TEST DEL SENSORE

TEST DEL SENSORE

Indicare la distanza con il colore dei LED.

TEST DEL SENSORE

Indicare la distanza con il colore dei LED.

oltre 45 cm: LED verdi

tra 15 e 45 cm: LED gialli

meno di 15 cm: LED rossi

Leggere il valore registrato dal sensore.

Leggere il valore registrato dal sensore. Se l'ostacolo si trova a più di 40cm...

Leggere il valore registrato dal sensore. Se l'ostacolo si trova a più di 40cm allora si prosegue diritti;

Leggere il valore registrato dal sensore. Se l'ostacolo si trova a più di 40cm allora si prosegue diritti; altrimenti...

```
Leggere il valore registrato dal sensore. Se l'ostacolo si trova a più di 40cm allora si prosegue diritti; altrimenti ci si ferma.
```

DIAGRAMMA DI FLUSSO

Accendere i LED:

di giallo durante l'attesa iniziale, di verde quando il robot avanza, di rosso quando il robot è fermo.

Leggere il valore registrato dal sensore. Se l'ostacolo si trova a più di 40cm allora si prosegue diritti; altrimenti...

Leggere il valore registrato dal sensore. Se l'ostacolo si trova a più di 40cm allora si prosegue diritti; altrimenti si ruota verso una direzione a caso.

DIAGRAMMA DI FLUSSO

CONTROLLO DEI MOTORI

CONTROLLO DEI MOTORI

I due motori di mBot sono indipendenti.

CONTROLLO DEI MOTORI

CONTROLLO DEI MOTORI

QUIZ

ESERCITAZIONE

ESERCITAZIONE

A scelta:

- percorrere una traiettoria a C
- percorrere una traiettoria a S
- percorrere una traiettoria a U

PROGRAMMA n. 6

Inseguire una linea

SENSORE DI LINEA

APPLICAZIONE

By Mukeshhrs - Own work, Public Domain, https://commons.wikimedia.org/w/index.php?curid=7608081

SENSORE DI LINEA

SENSORE DI LINEA

SENSORE RIFLETTIVO IR

SENSORE RIFLETTIVO IR

SENSORE RIFLETTIVO IR

Risposta del sensore: 0, nessuna riflessione

Risposta del sensore: 0, nessuna riflessione

FUNZIONAMENTO

Risposta del sensore: 1, c'è riflessione!

Mettiamo alla prova il sensore...

Mettiamo alla prova il sensore:

sul bianco/nero

Mettiamo alla prova il sensore:

- sul bianco/nero
- con varie tinte

Mettiamo alla prova il sensore:

- sul bianco/nero
- con varie tinte
- con differenti materiali

Mettiamo alla prova il sensore:

- sul bianco/nero
- con varie tinte
- con differenti materiali
- su diverse superfici

S1

S2

S1 sulla linea S2 sulla linea

valore del sensore: 0

S1 sulla linea S2 fuori dalla linea

valore del sensore: 1

S1 fuori dalla linea S2 sulla linea

valore del sensore: 2

S1 fuori dalla linea S2 fuori dalla linea

valore del sensore: 3

Leggere il valore registrato dal sensore.

Se il valore è zero...

Se il valore è zero allora si prosegue diritti;

Se il valore è zero

allora si prosegue diritti;
altrimenti, se il valore è uno...

```
Se il valore è zero

allora si prosegue diritti;
altrimenti, se il valore è uno
allora si sterza verso sinistra;
```

```
Se il valore è zero

allora si prosegue diritti;

altrimenti, se il valore è uno

allora si sterza verso sinistra;

altrimenti, se il valore è due...
```

```
Se il valore è zero

allora si prosegue diritti;
altrimenti, se il valore è uno

allora si sterza verso sinistra;
altrimenti, se il valore è due

allora si sterza verso destra;
```

```
Se il valore è zero
 allora si prosegue diritti;
altrimenti, se il valore è uno
 allora si sterza verso sinistra;
altrimenti, se il valore è due
 allora si sterza verso destra;
altrimenti, se il valore è tre...
```

```
Se il valore è zero
 allora si prosegue diritti;
altrimenti, se il valore è uno
 allora si sterza verso sinistra;
altrimenti, se il valore è due
 allora si sterza verso destra;
altrimenti, se il valore è tre
 allora ci si ferma...
```

```
Se il valore è zero
 allora si prosegue diritti;
altrimenti, se il valore è uno
 allora si sterza verso sinistra;
altrimenti, se il valore è due
 allora si sterza verso destra;
altrimenti, se il valore è tre
 allora ci si ferma oppure si arretra
```

DIAGRAMMA DI FLUSSO

ESERCITAZIONE

ESERCITAZIONE

Realizzare un inseguitore di linea che effettua una frenata di sicurezza se il robot che lo precede è troppo vicino.

ESERCITAZIONE

Realizzare un inseguitore di linea che effettua una frenata di sicurezza se il robot che lo precede è troppo vicino.

Se la distanza è maggiore di 10cm si segue la linea, in caso contrario ci si ferma.

DIAGRAMMA DI FLUSSO

fotoresistore

- fotoresistore
- uso del telecomando

- fotoresistore
- uso del telecomando
- modulo Bluetooth/WiFi

- fotoresistore
- uso del telecomando
- modulo Bluetooth/WiFi
- modalità "rover" da mBlock

- fotoresistore
- uso del telecomando
- modulo Bluetooth/WiFi
- modalità "rover" da mBlock
- comunicazione mBot mBot

LEGGI DELLA ROBOTICA

- 1. Un robot non può recar danno a un essere umano, né permettere che, a causa della propria negligenza, un essere umano patisca danno.
- 2. Un robot deve sempre obbedire agli ordini degli esseri umani, a meno che contrastino con la Prima Legge.
- 3. Un robot deve proteggere la propria esistenza, purché questo non contrasti con la Prima o la Seconda Legge.