FORMAL LANGUAGES AND AUTOMATA Homework-2

- 1. Reduce the states of the incompletely specified Mealy machine below using:
 - a. Complete cover
 - b. Minimal closed cover

	00	01	10	11
Α	A/0	-	F/1	-
В	E/0	-	C/0	D/1
C	-	B/1	E/0	-
D	-	C/0	-	B/1
Е	C/0	C/1	-	D/0
F	A/0	E/0	A/1	-

Also, draw the state transition table of the reduced machine in Moore model.

SOLUTION:

We start by building the dependency table:

/		X	×	(E-C) 🗸	×	F
(A-C)	X	X	(B-C) ✓	×	Е	_
/		V	×	D	_	
X		(E-C) ✓	C	_		
×		В	_			
A						

Note: (E-C) and (B-C) pairs depend on each other. We can consider them as compatible.

Now we need to draw relation graph:

a. Complete Cover: We need to use the maximal compatibility class which is: $\{(A,D,F),(B,D),(B,C),(C,E)\}$

New states are: $S_1=(A,D,F)$ $S_2=(B,D)$ $S_3=(B,C)$ $S_4=(C,E)$

New state transition table is as follows:

	00	01	10	11
S_1	S ₁ /0	S ₄ /0	$S_1/1$	S ₂ /1
S_2	S ₄ /0	S ₃ /0	S ₃ /0	S ₂ /1
S_3	S ₄ /0	S ₂ /1	S ₄ /0	S ₂ /1
S_4	S ₄ /0	S ₃ /1	S ₄ /0	S ₁ /0

An example: when the transition from some compatible states is to only B we can choose either S_2 or S_3 . But when it is to both B and D we have to choose S_2 .

b. Minimum closed cover: We need to draw the dependency graph.

We need to cover all states and obey dependency rules.

For example, $\{(A,D,F),(C,E),(B,D)\}$ is not a solution. It covers all the states but it disobeys a dependency (We included (E,C) but (E,C) depends on (B,C) so we have to include (B,C) as well.).

{(A,D,F), (B,C), (C,E)} is the minimum closed cover. Let's name our states:

$$\hat{S}_1 = (A,D,F) \hat{S}_2 = (B,C) \hat{S}_3 = (C,E)$$

State transition table is as follows:

	00	01	10	11
\hat{S}_1	$\hat{S}_1/0$	$\hat{S}_3/0$	$\hat{S}_1/1$	$\hat{S}_2/1$
$\hat{\mathrm{S}}_2$	$\hat{S}_3/0$	$\hat{S}_2/1$	$\hat{S}_3/0$	$\hat{S}_1/1$
$\hat{\mathbf{S}}_3$	$\hat{S}_3/0$	$\hat{S}_2/1$	$\hat{S}_3/0$	$\hat{S}_1/0$

Moore model:

Let's consider the minimum closed cover and name the states as follows:

$$\alpha = \hat{S}_1/0$$

$$\beta = \hat{S}_1/1$$

$$\gamma = \hat{S}_2/1$$

$$\dot{\delta} = \hat{S}_3/0$$

Moore state transition table:

	00	01	10	11	Output
α	α	δ	β	γ	0
β	α	δ	β	γ	1
γ	δ	γ	δ	β	1
δ	δ	γ	δ	α	0

2. Define the set of Fibonacci numbers F, using induction (recursion). What is the height of the element 13?

SOLUTION:

- i. $F_1=1$ and $F_2=1$ $F_1, F_2 \in F$
- ii. $F_{n-1}, F_{n-2} \in F = > (F_n = F_{n-1} + F_{n-2}) \in F$
- iii. No other number can be identified as a Fibonacci number, apart from the ones generated by the rule number (ii).

$$\begin{split} S_0 &= \{1,1\} \ S_1 = \{1,1,2\} \ S_1 = \{1,1,2\} \ S_2 = \{1,1,2,3\} \ S_3 = \{1,1,2,3,5\} \ S_4 = \{1,1,2,3,5,8\} \\ S_5 &= \{1,1,2,3,5,8,13\} \ \text{so its height is 5}. \end{split}$$

3. Let A be a language defined over Σ . What is the minimum possible value of X in the statement below:

$$(AA^+)^* \cup X = A^*$$

SOLUTION:

$$AA^{+} = \{AA, AAA, AAAA ...\}$$

 $(AA^{+})^{*} = \{\Lambda, AA, AAA, AAAA ...\}$
 $A^{*} = \{\Lambda, A, AA, AAA, AAAA ...\}$
 $A^{*} \setminus (AA^{+})^{*} = \{A\}$
 $X = A$