1 Circuits

1.1 single-supply, inverting, avec référence

$$U_{out} = -\frac{R_2}{R_1} \left(U_{in} - U_{ref} \right) + U_{ref}$$

$\begin{array}{ccc} \textbf{1.2} & \textbf{single-supply}, & \textbf{non-inverting}, & \textbf{sans} \\ & \textbf{r\'ef\'erence} \end{array}$

$$U_{out} = \left(1 + \frac{R_2}{R_1}\right) (U_{in} + U_{ref}) + U_{ref}$$

1.3 Single supply, differential, avec 1.5 référence

$$U_{out} = (U_{in} - U_{ref}) + \frac{R_1 + R_2}{R_2} U_{ref}$$

Ou, équivalent :

$$U_{out} = \frac{U_{in}R_2 + U_{ref}R_1}{R_2}$$

.5 Single supply, inverseur, avec référence

$$U_{out} = \frac{U_{ref}R_1 - U_{in}R_2}{R_1}$$

2 Autres

2.1 Statistiques

2.1.1 Bruit

Si un bruit est **aléatoire** (gaussienne), on peut estimer que le 99.9 % est compris entre $\pm 3.3\sigma$, il est donc possible de passer de pic-pic à rms en multipliant par $2 \cdot 3.3$. La valeur rms est 1σ

$$U_{\text{noise}_{nk-nk}} = 6.6U_{\text{noise}_{rms}}$$