

Department of CSE Lab Report

Course Code and Name: CSE350 - Data communication Lab: Block Coding Concept	
Section: 02	Date of Submission: 28/11/2022

Source code: https://github.com/IntesarEWU/CSE350-Data-communication-LAB/tree/main/Lab5

Introduction:

4B/5B encoding is a type of 'Block coding'. This processes groups of bits rather than outputting a signal for each individual bit (as in Manchester encoding). A group of 4 bits is encoded so that an extra 5th bit is added. Since the input data is taken 4-bits at a time, there are 2^4, or 16 different bit patterns.

Combining n-bit groups into a stream

4B/5B mapping codes:

Data Sequence	Encoded Sequence
0000	11110
0001	01001
0010	10100
0011	10101
0100	01010
0101	01011
0110	01110
0111	01111
1000	10010
1001	10011
1010	10110
1011	10111
1100	11010
1101	11011
1110	11100

Lab Task:

Creating a sender receiver environment to show how block coding actually works.

Implementation:

sender.cpp: to create the Block coding environment I create one function which will divide binary string in to 4-bit binary and convert that into a 5-bit binary and then combine them together.

sender (function): reads text file or takes user input and send the string to application layer and complete the OSI model and then start the blocking coding part.

```
void sender()
341
342
           string txt:
343
           printf("\nSender : ");
344
           getline(cin,txt);
345
346
         ifstream input("input.txt");
347
           while (getline (input, txt))
348
                   //cout << str << '\n';
349
350
351
           input.close()
352
           */
353
         int txtlen = txt.size();
354
          //cout << txtlen <<'\n';</pre>
         int i=0;
355
356
           while (i!=(txtlen/125)+1)
357
358
              string str = txt.substr(125*i,125);
359
              //cout << str << '\n';
360
               applicationLayer(str);
361
               i++;
362
363
          //nrzL();
364
           //nrzI();
365
           //rz();
           //man();
366
367
          //diffman();
368
           //ami();
369
           //pseudo();
370
371
           S4b5b();
372
373
```

4B/5B function: It reads the full "temp.txt" file which contains binary of sender text and divide the binary string to 4 bits and then convert the 4-bit binary to 5-bit binary correspondingly

```
void Sqbb()

int i=0;
string partxt,txt,str="",state= "+",antiState = "-",t,
bit4[="0000","0001","0100","0101","0100","0111","1000","1011","1100","1101","1111"),
bit5[="(1110","0100","0100","0101","0101","0111","0111","1010","1011","11010","1101","11010","1101","11010","11011","11010","11011","11010","11011","11010","11011","11010","11011","11010","11011","11010","11011","11010","11011","11010","11011","11010","11011","11010","11011","11010","11011","11010","11011","11010","11011","11010","11011","11010","11011","11010","11011","11010","11011","11010","11011","11010","11011","11010","11011","11010","11011","11010","11011","11010","11011","11010","11011","11010","11011","11010","11011","11010","11011","11010","11011","11010","11011","11010","11011","11010","11011","11010","11011","11010","11011","11010","11011","11010","11011","11010","11011","11010","11011","11010","11011","11010","11011","11010","11011","11010","11011","11010","11011","11010","11011","11010","11011","11010","11011","11010","11011","11010","11011","11010","11011","11010","11011","11010","11011","11010","11011","11010","11011","11010","11011","11010","11011","11010","11011","11010","11011","11010","11011","11010","11011","11010","11011","11010","11011","11010","11011","11010","11011","11010","11011","11010","11011","11010","11011","11010","11011","11010","11011","11010","11011","11010","11011","11010","11011","11010","11011","11010","11011","11010","11011","11010","11011","11010","11011","11010","11011","11010","11011","11010","11011","11010","11011","11010","11011","11010","11011","11010","11011","11010","11011","11010","11011","11010","11011","11010","11011","11010","11011","11010","11011","11010","11011","11010","11011","11010","11011","11010","11011","11010","11011","11010","11011","11010","11011","11010","11011","11010","11011","11010","11011","11010","11011","11010","11010","11010","11010","11010","11010","11010","11010","11010","11010","11010","11010","11010","11010","11010","11010","11010","11010","11010","11010","11010","11010","11
```

receiver.cpp: to create the Block coding environment I create one function which will divide binary string in to 5-bit binary and convert that into a 4-bit binary and then combine them together.

Receiver function: it reads the singnal.txt file and send the signal string to the 5B/4B function.

```
380
        void receiver()
381
      □ {
382
            string signal;
383
            ifstream temp("signal.txt");
384
            while (getline (temp, signal))
385
386
                    //cout << str << '\n';
387
388
            temp.close();
389
            //cout << signal;</pre>
390
391
            // signal Types
392
            //RnrzL(signal);
393
            //RnrzI(signal);
394
            //Rrz(signal);
395
            //Rman(signal);
396
            //Rdiffman(signal);
397
            //Rami(signal);
398
            //Rpseudo(signal);
399
        //---Blocking Coding---//
400
401
          R4b5b(signal);
402
403
            //cout << txtlen <<'\n';</pre>
404
            /*int i=0;
405
            //cout << str << '\n';
406
            while (i!=(txtlen/1200)+1)
407
408
                string str = txt.substr(1200*i,1200);
409
                //cout << str << '\n';
                setStringtoASCII(str);
410
411
                i++;
412
413
            //cout << "XX" << '\n';
414
```

4B/5B function: in receiver side the signal string will divide in 5-bit binary string and the converted to 4-bit binary string correspondingly and combine together.

```
void R4b5b (string signal)
346
                                                     bit4[]=("0000","0001","0010","0011","0100","0101","0110","0111","1000","1011","1001","1011","1100","1101","1110","1111",,
bit5[]=("11110","01001","10100","10101","01011","01110","01111","10010","10011","10110","10111","11010","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","1111","11101","1111","11101","1111","1111","1110","1111","1110","1111","1110","1111","1110","1111","1110","1111","1110","1110","1110","1110","1110","1110","11101","1110","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","11101","1110","11101","1110","1110","1110","1110","1110","1110","1110","1110","1110","11
348
 349
350
                                                      int i=0:
 352
                                                     while(i!=signal.size()/5)
 353
 354
                                                                       partxt=signal.substr(5*i,5);
                                                                        for(int j=0;j<16;j++)
356
 357
                                                                                         if(partxt==bit5[j])
 358
                                                                                                           txt = txt+bit4[j];
                                                                                                                    /cout << bit4[j]<<"\n";
360
 361
                                                                                                           break;
 362
 363
364
365
                                                                       i++;
 366
 367
                                                        //cout << txt.size();</pre>
368
369
                                                      int txtlen = txt.size();
 370
 371
                                                      while (i!=(txtlen/1200)+1)
 372
373
                                                                       string str = txt.substr(1200*i,1200);
 374
375
                                                                        setStringtoASCII(str);
 377
```

Outputs:

```
Sender : this is a text

Receiver: this is a text

Process returned 0 (0x0) execution time : 5.915 s

Press any key to continue.
```

temp.txt:

this file contains the binary string which size is now 312

signal.txt:

```
this file contains the 4b/5b signal string which size is now 390 = ((312 / 4) * 5)
```

File Edit Format View Help

Discursion:

This block coding part of this application was not really that hard. I just had to create 2 string arrays for both sender and receiver side and the compare the divided parts of the sting with these arrays and just combine the corresponding binary strings and that's it.