

ELEVENTH

QUARTERLY PROGRESS REPORT
PRODUCTION ENGINEERING MEASURE (PEM)

MANUFACTURING METHODS AND TECHNOLOGY FOR PIEZOE LECTRIC TRANSFORMERS

> CONTRACT DAAB07-76-C-0008 January 14, 1978 to June 14, 1978

> > PLACED BY:

TECHNICAL SUPPORT ACTIVITY, USAERADCOM FORT MONMOUTH, NEW JERSEY

CONTRACTOR

HONE YWELL INC.
DEFENSE ELECTRONICS DIVISION
CERAMICS CENTER
GOLDEN VALLEY, MINNESOTA

NOV 15 1878

DISTRIBUTION STATEMENT

UNC LASSIFIED: "Approval for public release; distribution unlimited"

78 10 30 024

DISCLAIMER STATEMENT

"The findings in this report are not to be construed as official Department of the Army position unless so designated by other authorized documents."

DISPOSITION INSTRUCTIONS

"Destroy this report when it is no longer needed. Do not return it to the originator."

ACKNOW LEDGEMENT

"This project has been accomplished as part of the U.S. Army Manufacturing and Technology Program, which has as its objective the timely establishment of manufacturing processes, techniques or equipment to ensure the efficient production of current or future defense programs."

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM		
	3. RECIPIENT'S CATALOG NUMBER		
Quarterly Progress Report. No. 11, 14 Jan.			
4. TITLE (and Subtitle)	Quarterly - January 14,		
MANUFACTURING METHODS AND TECHNOL-	1978 - June 14, 1978		
OGY FOR PIEZOELECTRIC TRANSFORMERS	6. PERFORMING ORG. REPORT NUMBER		
(14	46585		
7. AUTHOR(e)	B. CONTRACT OR GRANT NUMBER(+)		
William B. Harrison (15)	DAABØ7-76-C-0008		
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS		
Defense Electronics Division			
Ceramics Center Golden Valley, Minnesota 55422	Project No. 2759525		
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE		
Technical Support Activity USAERADCOM	September 22, 1978/		
Fort Monmouth,	13. NUMBER OF PAGES		
New Jersey 14. MONITORING AGENCY NAME & ADDRESS(11 different from Controlling Office)	15. SECURITY CLASS. (of this report)		
(12) 220. 7	Unclassified		
	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE		
	JOHEOUEE		
Approval for public release; distribution unlimited.			
17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different fro	m Report)		
18. SUPPLEMENTARY NOTES			
19. KEY WORDS (Continue on reverse side if necessary and identify by block number)			
Piezoelectric transformers Transformers			
Lead zirconate-lead titanate ceramics			
Night vision goggles			
Image intensifier tubes			
20. ABSTRACT (Continue on reverse side if necessary and identify by block number)			
This is the final quarterly report on Contract DA			
describes the progress and status of this program to establish a cost-			
effective production capability for piezoelectric, ceramic transformer operating 18 mm night vision image intensifier tubes. The conformatory			
samples were accepted and a pilot production run of 150 18 mm PET's was			
initiated. All parts for the pilot run have been produced and the final			
assembly of these is in progress. These are du			
August 7, 1978.	c to be delivered		

DO I JAN 73 1473 EDITION OF THOU ES IS OBSOLETE

409 443

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

	THIS PAGE(When Data Entered)	

ELEVENTH QUARTERLY REPORT

CONTRACT NO.

DAAB07-76-C-0008

Manufacturing Methods and Technology

for Piezoelectric Transformers

PERIOD COVERED:

January 14, 1978 to June 14, 1978

PREPARED BY:

W. Harrison

OBJECT OF STUDY:

The objective of this contract is to establish a production capability for piezoelectric ceramic transformers with all required manufacturing methods, test procedures and production tooling for high production rates. These transformers are to be used in conjunction with a power supply for operating 18 mm night vision image intensifier tubes.

DISTRIBUTION STATEMENT

UNCLASSIFIED: "Approval for public release; distribution unlimited"

PURPOSE

This Production Engineering Measure (PEM) contract covers all of the tooling, test methods, package designs, mounting techniques, interconnection techniques and other manufacturing methods and techniques required for eventual production of 18 mm piezoelectric transformers. These units are to be used with a power supply to improve the performance and reduce cost for image intensifier tubes used in various 18 mm night vision devices.

TABLE OF CONTENTS

Section		Page
I	APPROACH	1
II	PROCESS REVIEW	2
III	STATUS AND FUTURE WORK	3
IV	CONCLUSIONS	7
V	RECOMMENDATIONS	8
VI	REPORTS	9
VII	IDENTIFICATION OF PERSONNEL	10
APPENDI	X A DISTRIBUTION LIST	A - 1

LIST OF ILLUSTRATIONS

Figure		Page
1	Program Status Against Schedule	4
	LIST OF TABLES	
Table		Page
I	Second Submittal 18mm Piezoelectric Transformer	5
П	June 14 Operation Status	
		6

SECTION I APPROACH

Our approach to the design of piezoelectric transformers, its advantages and the analytical method used to determine performance of these transformers were discussed in the first quarterly report⁽¹⁾. During the engineering sample-build phase of this program it was shown that both of our 18 mm and 25 mm PET designs were feasible. However, during the confirmatory-build phase it was concluded that the assembly techniques for the 25 mm PET were too unreliable and therefore too costly. Thus work on the confirmatory samples was limited to the 18 mm PETs. The pilot production build phase was also limited to the 18 mm PET.

⁽¹⁾ First Quarterly Progress Report, Production Engineering Measures (PEM) Manufacturing Methods and Techniques for Piezoelectric Transformers, Contract Number DAAB07-76-C-0008, July 14, 1975 to October 14, 1975.

SECTION II PROCESS REVIEW

All processing steps used on this program up to this time have been documented previously (1-7).

- (1) First Quarterly Progress Report, p. 1.
- (2) Second Quarterly Progress Report, Production Engineering Measure (PEM) Manufacturing Methods and Techniques for Piezoelectric Transformers, Contract Number DAAB07-76-C-0008, October 14, 1975, to January 14, 1976.
- (3) Third Quarterly Progress Report, Production Engineering Measure (PEM) Manufacturing Methods and Techniques for Piezoelectric Transformers, Contract Number DAAB07-76-C0008, January 14, 1976, to April 14, 1976.
- (4) Fourth Quarterly Progress Report, Production Engineering Measure (PEM) Manufacturing Methods and Techniques for Piezoelectric Transformers, Contract Number DAAB07-76-C-0008, April 14, 1976, to July 14, 1976.
- (5) Fifth Quarterly Progress Report, Production Engineering Measure (PEM) Manufacturing Methods and Techniques for Piezoelectric Transformers, Contract Number DAAB07-76-C-0008, July 14, 1976, to October 14, 1976.
- (6) Sixth Quarterly Progress Report, Production Engineering Measure (PEM) Manufacturing Methods and Techniques for Piezoelectric Transformers, Contract Number DAAB07-76-C-0008, October 14, 1976 to January 14, 1977.
- (7) Seventh, Eighth, Ninth and Tenth Quarterly Progress Report, Production Engineering Measure (PEM) Manufacturing Methods and Techniques for Piezoelectric Transformers, Contract Number DAAB07-76-C-0008, January 14, 1977 to January 14, 1978.

SECTION III STATUS AND FUTURE WORK

This section describes the status of work against the various tasks outlined in Figure 1. Since this is the last quarterly report, it covers those tasks which were active during the period between January 15, 1978 and June 15, 1978.

TASKS 1-19

Work completed previously.

TASK 20 - TEST CONFIRMATORY SAMPLES

Work on the second submittal group of 18 mm PETs was completed on January 26, 1978 with the final evaluation of the life test units. The 500 hour results obtained are reported in Table I with the previous life test data. All units met the required specifications. This was verified by Howard Kessler of Fort Belvoir on February 13, 1978 and by Sol Bremmer of Fort Belvoir on March 7, 1978.

TASKS 22-23

Work completed previously

TASK 24 - TEST REPORT CONFIRMATORY SAMPLES

The data in Table I and other data reported previously⁽⁷⁾ were submitted February 8, 1978 along with a request to start on the pilot production run of 150 18 mm PETs on February 20, 1978.

TASK 21 - PILOT PRODUCTION RUN

Approval of the confirmatory samples and approval to start the pilot production run of 150 - 18 mm PETs was received March 22, 1978. The status of each operation as of June 14, 1978 is given in Table II.

Figure 1. Program Status Against Schedule

Table I. 18 mm Piezoelectric Transformer, Confirmatory Samples, Second Submittal Data

1-3

		V3				
	Dissipation	$\stackrel{\rm V}{\gamma_o}_{\gamma_o}$				
	Dis	Input %	1. 46 833 1. 13 1. 13 78 75 75 75 88			1.22 97 97 65 58 69 69 67 84
		(pd)				8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	apac it ance	$^{V_{12}}_{(pf)}$	0.00.00.00.00.00.00.00.00.00.00.00.00.0			00000000000000000000000000000000000000
	Cap	Input (nf)	14. 510 13. 242 14. 070 13. 022 13. 445 13. 358 12. 667 13. 997			14.307 13.189 13.857 12.893 13.397 13.694 13.747 12.655 14.143
Life Test		Step-Up V ₃	136.0 138.0 160.8 159.2 174.8 167.6 141.6 153.6	132. 0 133. 6 150. 8 156. 8 164. 0 150. 0 130. 1 145. 6 143. 8	130.4 136.0 154.8 154.4 150.8 161.2 132.0 145.2	138.8 142.0 164.0 159.2 175.6 172.0 140.8 154.8
Group III L		Step-Up V12	92.0 90.8 100.4 100.8 112.0 107.6 95.2 91.8 91.8	89.6 88.0 94.4 100.0 106.0 96.0 84.8 86.8	88.0 90.0 97.7.2 97.2.8 104.4 98.0 98.0	94.8 93.2 103.2 102.0 113.2 111.2 95.2 103.6 91.6 99.6
C.		Efficiency $\%$	88 44 44 44 48 80 20 20 20 20 20 20 20 20 20 20 20 20 20	4 4 4 4 4 5 . 2 6 . 0 6 4 4 4 4 5 . 2 6 . 4 4 4 6 . 3 4 5 . 7 5 4 6 . 3 6 . 6	8 4 4 4 4 4 4 8 4 6 0 0 0 8 4 4 4 4 4 8 4 1 2 2 4 4 4 6 8 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8.39.6 6.44.48.10 6.55.44.49.99.00 7.75.89.99.09.09.09.09.09.09.09.09.09.09.09.09
		Resonant Frequency	31. 771 32. 108 32. 108 32. 277 32. 277 32. 232 32. 378 32. 358 32. 358	31. 717 32. 076 31. 949 32. 279 32. 390 32. 130 31. 981 32. 085 32. 085	31. 715 32. 120 32. 289 32. 289 32. 198 32. 265 32. 313 32. 204 32. 314	31.869 32.146 32.034 32.268 32.446 32.312 32.313 32.221
		S/N	44.2 44.4 49.0 50.0 50.0 74.0 74.0 74.0 74.0 74.0 74.0 74.0 7	444400045E	4 4 4 4 4 6 0 0 0 4 5 0 0 7 5 7 ₹ ₩	4444 860 860 860 860 860 860 860 860 860 860
			Post Thermal Shock 1/4/78	During Life (96 Hours) 1/7/78	During Life (240 Hours) 1/16/78	Post Life (500 Hours) 1/26/78

Yield = 9/9

(1) First submittal samples resubmitted with no rework.

Table II. Pilot Production

No.	Operation Description	Yield (%)	Completion Date	Time Required (hours)
010	Press K-9 Slugs	100	3/28	3,0
020	Hot Press Slugs	100	4/5	3.0
030	Grind Slugs	100	4/6	5.0
040	Core Drill Slugs	100	4/7	8.5
050	Hone Slugs	75	4/12	11.0
060	OD Grind Slugs	100	4/15	4.5
070	Mount and Slice	83	5/3	13.0
080	Clean Elements	99	5/8	3.0
090	Insp. Elements	91	5/9	1.0
100	Silver Elements	99	5/11	11.0
110	Silver Fire	95	5/ 1 2	4.0
120	Polarize	92	5/24	24.2
130	Polarity Check	100	5/25	1.0
140A	Top Case Prep	100	6/19	25.0
140B	Base Case Prep	100	6/2	13.5
150	Top Case Assembly			
160	Electrical Check	To be completed		
170	Final Assembly			

SECTION IV CONCLUSIONS

Assembly of the 150 pilot production run 18mm PETs has progressed satisfactorily. We expect to complete the assembly in early July and complete testing and submission by August 7, 1978.

SECTION V RECOMMENDATIONS

We are continuing to construct the pilot lot of 18mm PETs and expect to submit these on August 7, 1978.

SECTION VI REPORTS

During this period an abstract for a paper on piezoelectric transformer design has been submitted to the American Ceramic Society for presentation at the Electronics Division Fall meeting in Dallas, Texas, September 17-20, 1978. This meeting is also being conducted in conjunction with the IEEE Committee on Ferroelectricity. The authors, title and abstract of this paper are given below.

Title:

Relationship of Piezoelectric Properties to High Voltage

Transformer Performance

Authors:

W. B. Harrison and U. Bonne.

Abstract:

The influence of various changes in piezoelectric material parameters on the high voltage step-up, efficiency and applied electrical load behavior of piezoelectric transformers is reviewed. This information is based on a well established math model which is described which can predict transformer

performance.

SECTION VII IDENTIFICATION OF PERSONNEL

During this report period of this program, the following personnel worked the indicated hours in their area of responsibility. No new professional persons, whose backgrounds have not been given previously, (1) (2) were used.

Individual	Responsibility	Hours
W.B. Harrison*	Program Manager	10
W.H. Kammeyer*	Production Engineer	20
L.F. Hiltner*	Quality Engineer	24
M.P. Murphy	Ceramic Technician	78
M.R. Sandberg	Ceramic Technician	14.5
	Ceramic Manufacturing	238.6
R. Ripley	Insp. PET Testing	38

^{*}Backgrounds given in First and Second Quarterly Reports

⁽¹⁾ First Quarterly Progress Report, page 1

⁽²⁾ Second Quarterly Progress Report, page 2

APPENDIX A DISTRIBUTION LIST

	Copies
Commander US Army Electronics Research and Development Command ATTN: DELET-BD (Dr. E. Schlam) Fort Monmouth, NJ 07703	1
Commander US Army Electronics Research and Development Command ATTN: DELET-BD (Mr. E. Crost) Fort Monmouth, NJ 07703	1
US Army Advanced Ballistic Missile Defense Agency ATTN: Mr. William O. Davies Director, Optics Development Division PO Box 1500 Huntsville, AL 38507	1
Commander US Army Electronics Research and Development Command Night Vision Laboratory Systems Development Area ATTN: Mr. P. T. Deepel Fort Belvoir, VA 22060	1
Commander Frankford Arsenal ATTN: Mr. J. L. Helfrich, SARFA-DDS Philadelphia, PA 19137	1
Commander US Army Research Office Chief of Electronics Branch Engineering Science Division ATTN: Dr. Horst Wittmann Box CM, Duke Station, Duke University Durham, NC 27706	1
Naval Research Laboratory ATTN: Dr. D. Barbe, Code 5214 4555 Overlook Avenue, S. W. Washington, D. C. 20375	1
Commander US Army Communications Research and Development Command ATTN: DRDCO-COM-ME (Mr. Samuel DiVita) Fort Monmouth, NJ 07703	1
Commander, RADC ATTN: ISCE/Mr. M. Kesselman Griffiss AFB, NY 13440	1

	Copies
Lincoln Laboratory, MIT ATTN: Dr. Frank L. McNamara PO Box 73 Lexington, MA 02173	1
The Institute for Defense Analysis Science and Technology Division ATTN: Dr. Alvin D. Schnitzler 400 Army - Navy Drive Arlington, VA 22202	1
NASA Headquarters ATTN: Dr. Bernard Rubin, Code RES Washington, D.C. 20546	1
Director, National Security Agency ATTN: Mr. Paul S. Szczepanek, R-4 Fort George G. Mead, MD 20755	1
Director Night Vision Laboratory, USARADCOM ATTN: DELNV-SI (Mr. Howard Kessler) Fort Belvoir, VA 22060	2 plus balance of undistributed copies
Director Night Vision Laboratory, USARADCOM ATTN: DELNV-EV (Mr. Soo Young Shin) Fort Belvoir, VA 22060	1
Commander US Army Electronics Research and Development Command ATTN: DELSD-D-PC (Mr. Edward Mason) Fort Monmouth, NJ 07703	3
Commander US Army Industrial Base Engineering Activity ATTN: DRXIB-MT (Mr. C. E. McBurney) Rock Island, IL 61201	1
Commander US Army Communications Electronics Readiness Command ATTN: DRSEL-LE-SC Fort Monmouth, NJ 07703	1
The Institute For Defense Analysis Science and Technology Division ATTN: Mr. Lucien M. Biberman 400 Army - Navy Drive Arlington, VA 22202	1
Naval Electronics Systems Command ATTN: ELEX-0151431 (Mr. R. Wade) Washington, D.C. 20360	1
Defense Electronics Supply Center Directorate of Engineering and Standardization DESC-ECS/N.A. Mauck 1507 Wilmington Pike Dayton, OH 45401	1

	Copie
Air Force Materials Laboratory Electronics Branch ATTN: Mrs. E. Tarrants Wright Patterson AFB, OH 45433	1
Commander Naval Electronics Laboratory Center Library San Diego, CA	1
ITT, Electron Tube Division ATTN: Mr. A. Hoover PO Box 7065 Roanoke, VA 24019	1
NI-TEC Night Technology Corporation ATTN: Mr. Ferd Fender 7426 Linder Avenue Skokie, IL 60076	1
RCA Main Plant, Electronics Components Division ATTN: Mr. Richard Mangen New Holland Avenue Lancaster, PA 17604	1
Varo, Incorporated ATTN: D. Lipke 2203 Walnut Street Garland, TX 75040	2
Galileo Electro-Optics Corporation ATTN: J. Zaghi Galileo Park Sturbridge, MA 01518	2
Defense Documentation Center ATTN: DDC-IRS Cameron Station (Building 5) Alexandria, VA 22314	12
Director, Electro-Optical Device Laboratory Bell Telephone Laboratories, Incorporated ATTN: Dr. Eugene I. Gordon Murray Hill, NJ 07974	1
Westinghouse Advanced Technology Laboratory ATTN: Dr. James A. Hall 3525 PO Box 1521 Baltimore, Maryland 21203	1
Advisory Group on Electron Devices ATTN: Working Group on Special Devices 201 Varick Street New York, NY 10014	2

	Copies
Xerox Corporation Palo Alto Research Center ATTN: Dr. Benjamen Kazan 3180 Porter Drive Palo Alto, CA 93404	1
General Electric Company Corporate Research & Development ATTN: Dr. Rowland W. Redington PO Box 8 Schenectady, NY 12301	1
RCA Electronic Components ATTN: Dr. Ralph E. Simon New Holland Pike Lancaster, PA 17603	1
Stanford University ATTN: Dr. William E. Spicer Department of Electrical Engineering Stanford, CT 93405	1
Massachusetts Institute of Technology ATTN: Dr. Robert Rediker Building 13-3050 Cambridge, MA 02139	1
Litton Industries ATTN: B. Bedford 960 Industrial Road San Carlos, CA 94070	1
Channel Products Incorporated ATTN: Mr. D. Berlincount 16722 Park Circle Drive West Chagrin Falls, OH	1
Erie Technological Products of Canada, Ltd ATTN: P. Ransom 5 Fraser Avenue Trenton Ontario, Canada	1
Venus Scientific ATTN: F. Galluppi 399 Smith Street Farmingdale, NY 11735	1
Vernitron Piezoelectric Division ATTN: G. Howatt 232 Forbes Road Bedford, OH 44146	1
L&K Industries 3579 Merrick Road Seaford, Long Island, NY 11783	1

	Copies
Gulton Industries	1
Piezo Products Division	
ATTN: D. Herzfeld	
PO Box 4300	
Fullerton, CA 92634	
K&M Electronics	1
59 Interstate Drive	
West Springfield, MA 01089	