Task 1: (CLO 1) [10]

There is a garage where the access road can accommodate any number of trucks at one time. The garage is built such a way that only the last truck entered can be moved out. Each of the trucks is identified by a positive integer (a truck_id). Write a program to handle truck moves, allowing for the following commands:

- a) On_road(truck_id);
- b) Enter_garage (truck_ id);
- c) Exit_garage(truck_id);
- d) Show trucks (garage or road);

If an attempt is made to get out a truck which is not the closest to the garage entry, the error message Truck is not near garage door

Input:	Output:
On_road(2)	Road Vehicle: 2_5_10_9_22
On_road(5)	Garage Vehicle: Empty
On_road(10)	Road Vehicle: 5_10_9_22
On_road(9)	Garage Vehicle: 2
On_road(22)	Error: 10 NO. Vehicle cannot
Show trucks (road)	enter into garage.
Show trucks (garage)	Error: 2 No. Vehicle cannot
Enter garage(2)	exit garage.
Show trucks (road)	5 No. vehicle leaving garage
Show_trucks(garage)	Garage Vehicle: 2
Enter garage(10)	
Enter garage(5)	
Exit garage(2)	
Exit garage (5)	
show trucks (garage)	

Task 2: (CLO 2) [10]

Consider there are 10 persons. They would like to choose a leader. The way they decide is that all 10 sit in a circle. They start a count with person 1 and go in clockwise direction and skip every Mth person until the one person left.

Task 3: (CLO 4) [10]

Farey fraction of level one are defined as sequence $\left(\frac{0}{1},\frac{1}{1}\right)$. This sequence is extended in level two to form a sequence $\left(\frac{0}{1},\frac{1}{2},\frac{1}{1}\right)$, sequence $\left(\frac{0}{1},\frac{1}{3},\frac{1}{2},\frac{2}{3},\frac{1}{1}\right)$ at level three, sequence $\left(\frac{0}{1},\frac{1}{4},\frac{1}{3},\frac{1}{2},\frac{2}{3},\frac{3}{4},\frac{1}{1}\right)$ at level four, so that at each level \mathbb{N} , a new fraction $\frac{a+b}{c+d}$ is inserted between neighbor fractions $\frac{a}{c}$ and $\frac{b}{d}$ only if $c+d \leq N$. Write a program which takes an input number \mathbb{N} entered by the user then you have to generate the sequence of series of level \mathbb{N} using link list and then display them.