Measure Theory

1 probability spaces

Basic definitions. Monotonicity. TEst 2

Theorem 1. $(\Omega, \mathcal{F}, \mu)$

- 1. If $A \subset \bigcup_{i=1}^{\infty} A_i$, then $\mu(A) \leq \sum_{i=1}^{\infty} \mu(A_i)$
- 2. If $A_1 \subset A_2 \subset \cdots$ and $A = \bigcup_{i=1}^{\infty} A_i$ then $\mu(A_i) \uparrow \mu(A)$
- 3. If $A_1 \supset A_2 \supset \cdots$ and $A = \bigcap_{i=1}^{\infty} A_i$ then $\mu(A_i) \downarrow \mu(A)$

Proof. 1. Take $A'_i = A \cap A_i$, $B_1 = A'_1$, $B_n = A'_n - \bigcup_{i=1}^{n-1} A_i$. Then B_i are disjoint, $\bigcup_{i=1}^{\infty} B_i = A$ and $B_i \subset A_i$ which gives

$$\mu(A) = \sum_{i=1}^{\infty} \mu(B_i) \le \sum_{i=1}^{\infty} \mu(A_i)$$

2. Write $B_1 = A_1$, $B_i = A_i - A_{i-1}$. Then the B_i s are disjoint, and $\bigcup_{i=1}^{\infty} B_i = A_i$, so

$$\mu(A) = \sum_{i=1}^{\infty} \mu(B_i) = \lim_{n \to \infty} \mu(B_n) = \lim_{n \to \infty} \mu(A_n)$$

3. $A_1 - A_n \uparrow A_1 - A$ so $\mu(A_1 - A_n) \uparrow \mu(A_1 - A)$. But $\mu(A_1 - A_n) = \mu(A_1) - \mu(A_n)$ and similar for the RHS, so $\mu(A_n) \downarrow \mu(A)$.

Discrete probability spaces. σ -field generated by a collection of subsets.

Definition 1. F is called a Stieltjes measure function if

- 1. F is nondecreasing
- 2. F is continuous from above: $\lim_{y\downarrow x} F(y) = F(x)$

Theorem 2. Given a Stieltjes function F, there is a unique measure μ on $(\mathbb{R}, \mathcal{B}$ such that

$$\mu((a,b]) = F(b) - F(a)$$

Definition 2. S is a semialgebra if

- 1. it is closed under intersections
- 2. If $S \in \mathcal{S}$, then S^c is a finite union of elements in \mathcal{S}

Definition 3. \mathcal{A} is an algebra if it is closed under finite unions and complements