Circuit for batching Groth16 proofs

April 25, 2019

For reference, recall the Groth16 verification equation.

$$e(\pi_A, \pi_B) = \epsilon(\pi_C, [\delta]_2) \cdot \mathsf{PI}$$

Where PI is an element in \mathbb{G}_t derived by the verifier from the public input. We move the second pairing to the LHS to receive

$$e(\pi_A, \pi_B) \cdot \epsilon(-\pi_C, [\delta]_2) = \mathsf{PI}$$

We use ML to denote a miller loop and FE to denote a multiexponetiation The private input for the circuit is a set of m Groth16 proofs $S:=\{\pi_{\mathsf{A},\mathsf{i}},\pi_{\mathsf{B},\mathsf{i}},\pi_{\mathsf{C},\mathsf{i}}\}_{i\in[m]}$ The public inputs of the circuit are

- 1. P the alleged pedersen hash of all proof elements
- $2.\ F$ the alleged correct randomized combination of pairings of proof elements
- 3. and $r = \mathsf{Blake}(\mathsf{P})$ interperted as an element of \mathbb{F} .

The verifier computes r from P outside of the circuit, and checks outside of the circuit that

$$F = \prod_{i \in m} \mathsf{Pl}_i^{r^i}$$

The circut computes

- 1. $M := \prod_{i \in [m]} \mathsf{ML}(\pi_{\mathsf{A},\mathsf{i}}, \pi_{\mathsf{B},\mathsf{i}}).$
- 2. $C' := -\sum_{i \in [m]} r^i \cdot \pi_{\mathsf{C},\mathsf{i}}$
- $3. \ C = \mathsf{ML}(C', [\delta]_2)$

The circuit checks that

- 1. $F = \mathsf{FE}(M \cdot C)$.
- 2. P = ped(S).

References