A modified attention mechanism for node classification

严汀沄 张驰

Node classification in citation networks

× To do

 Find good node embeddings, then doing classification based on the learned embedding

× Before GNN

- + DeepWalk (Perozzi et al., 2014)
- + LINE (Tang et al., 2015)
- Node2vec (Grover & Leskovec, 2016)

× GNN based

- + Spectral domain methods
- Spatial domain methods

Related work

Spectral domain methods

Design different filters to approximate
$$h(\Lambda) = diag([h(\lambda_0), \ldots, h(\lambda_{n-1})])$$
 For improving

- localization
- computation efficiency

$$h(L)x = h(U\Lambda U^{H})x = Uh(\Lambda)U^{H}x = Uh(\Lambda)\hat{x}$$

- + pros
 - Theoreticaly supported
- + cons
 - depend on graph structure to calculate Laplacian eigenbasis
- representative works
 - Chebyshev filters [Hammond et al 2011]
 - · Lanczaos filters [Liao et al 2019]
 - Cayley filters[Levie et al 2017]
 - ARMA filters[Bianchi et al 2019]
 - Feedback-Looped Filters[Asiri et al 2019]

Related work

- × Spatial domain methods
 - Message passing framework(iteratively one-step gcn)

- + pros
 - effeciency
 - generality
 - flexibility
- + cons
 - deep layers may resulting converged node embedding, make it hard to be distinguished

How to better utilize information from (higher-order) neighbor node?

Related work

- Spatial domain methods
 - + representive works
 - Monet [Monti et al 2017]
 - MPNN [Gilmer 2017]
 - Graph SAGE [Hamilton et al 2017]
 - Graph attention networks [Velickovic et al 2018]
 - Jump knowledge networks [Xu et al 2018]
 - AdaGCN[Sun et al 2019]

Basic neiborhood aggregation

Neiborhood aggregation with directional biases

Feature Aggregation from different order neighbors

Graph Attention Network

 $MultiHead(Q, K, V) = Concat(head_1, \dots, head_h)W^O$

 $head_i = Attention(QW_i^Q, KW_i^K, VW_i^V)$

attention coefficients $e_{ij} = a(\mathbf{W}\vec{h}_i, \mathbf{W}\vec{h}_j)$

$$\mathsf{softmax} \quad \ \alpha_{ij} = \frac{\exp\left(\mathsf{LeakyReLU}\left(\vec{\mathbf{a}}^T[\mathbf{W}\vec{h}_i\|\mathbf{W}\vec{h}_j]\right)\right)}{\sum_{k \in \mathcal{N}_i} \exp\left(\mathsf{LeakyReLU}\left(\vec{\mathbf{a}}^T[\mathbf{W}\vec{h}_i\|\mathbf{W}\vec{h}_i]\right)\right)}$$

$$ext{aggregate} \quad ec{h}_i' = \sigma(\sum_{j \in {\cal N}_i} lpha_{ij} {f W} ec{h}_j)$$

multi-head attention
$$\vec{h}_i' = \sigma(\frac{1}{K}\sum_{k=1}^K\sum_{j\in\mathcal{N}_i} \alpha_{ij}^k \mathbf{W}^k \vec{h}_j)$$

Difference:

- self-attention—a shared attentional mechanism
- masked attention—only compute e_{ij} for nodes $j \in N_i$, where N_i is some neighborhood of node i in the graph.

Graph Attention Network

Method	Cora	Citeseer	Pubmed
MLP	55.1%	46.5%	71.4%
ManiReg (Belkin et al., 2006)	59.5%	60.1%	70.7%
SemiEmb (Weston et al., 2012)	59.0%	59.6%	71.7%
LP (Zhu et al., 2003)	68.0%	45.3%	63.0%
DeepWalk (Perozzi et al., 2014)	67.2%	43.2%	65.3%
ICA (Lu & Getoor, 2003)	75.1%	69.1%	73.9%
Planetoid (Yang et al., 2016)	75.7%	64.7%	77.2%
Chebyshev (Defferrard et al., 2016)	81.2%	69.8%	74.4%
GCN (Kipf & Welling, 2017)	81.5%	70.3%	79.0 %
MoNet (Monti et al., 2016)	$81.7\pm0.5\%$	_	$78.8 \pm 0.3\%$
GCN-64*	$81.4 \pm 0.5\%$	$70.9 \pm 0.5\%$	79.0 \pm 0.3%
GAT (ours)	83.0 \pm 0.7%	72.5 \pm 0.7%	79.0 \pm 0.3%

a two-layer GAT model

- The first layer consists of K = 8 attention heads computing F = 8 features each + ELU
- The second layer is used for classification: a single attention head computing F = 7 classes

Training = 140

Val = 200-500

Test = 500-1500

1. 对GAT特征参数的选择进行对比实验:研究Head, Feature, 激活函数等特征参数的在cora数据集上的影响

Sparse: Head数量对测试精度的影响

sparse 5head+6hidden	0.848
sparse 6head+6hidden	0.849
sparse 3head+3hidden	0.845
sparse 4head+12hidden	0.838
sparse relu	0.847

结论:

- 1. head的数量对测试精度的影响相对其它特征更高
- 2. head和hidden参数数量太大会造成过拟合,性能下降

2. 训练集为140,验证集200——500,测试集500——1500, baseline的数据集设置是否合理?

训练集

sparse Baseline	0.847(3次相同结果)
sparse 训练集(140-200)	0.850
sparse 训练集(140-500)	0.855

Baseline	0.850
Baseline 训练集(140——200)	0.861
Baseline 训练集(140——500)	0.866

结论:训练集的大小对GAT结果影响较大

测试集

sparse Baseline 训练集(140,200-500,500——1500)	0.847
sparse 训练集(140,200-500,1708——2707)	0.7648
sparse 训练集(140,200-500,500——2707)	0.8006

Baseline 训练集(140,200-500,500—1500)	0.850
Baseline 训练集(140,200-500,1708—2707)	0.7638

结论: Tranductive训练模式下,测试集的选择对GAT影响巨大,不同模型在baseline的测试集下效果好,不能说明在其它测试集上效果也好

2. 训练集为140,验证集200——500,测试集500——1500, baseline的数据集比例是否合理?

公记	F隹
沙丛	L朱

sparse 训练集(140,200-500,1708——2707)	0.7648
sparse 训练集(140,140-640,1708——2707)	0.7618
sparse 训练集(140,1000-1500,1708——2707)	0.7618

Baseline 训练集(140,200-500,1708—2707)	0.7638
Baseline 训练集(140,140-640,1708——2707)	0.7578
Baseline 训练集(140,1000-1500,1708——2707)	0.7578

结论:验证集的选择对GAT结果影响不大

全数据集

sparse Baseline 训练集(140,200-500,500——1500)	0.847
sparse 训练集(140,200-500,500——2707)	0.8006
sparse 训练集(1895,1895-2400,2400——2707)	0.8111

- baseline的数据集应该包括所有数据
- baseline的训练集,验证集和测试集的比例存在问题

3. 共享权重的线性变换是适合中心节点与邻居节点是相同类型的,对于中心点与邻居节点异构的情况,中心点和邻居节点需单独学习对应的线性变换。

中心点的学习规律与邻居点的学习规律不同

$$MultiHead(Q,K,V) = Concat(head_1,\ldots,head_h)W^O$$
 $head_i = Attention(QW_i^Q,KW_i^K,VW_i^V)$ $Attention(Q,K,V) = softmax(rac{QK^T}{\sqrt{d_k}})V$

模型\数据集	Cora	Citeseer
Sparse Baseline	0.85	0.708
Sparse QKV	0.85	0.708

Baseline的节点分类数据集中心点和邻居点规律相同如何提高QKV的对实验的效果需进一步探索