Урок 42 Сила струму. Одиниця сили струму. Амперметр Мета уроку:

Навчальна. увести фізичну величину, що характеризує електричний струм, та одиницю її виміру; розглянути прилад для вимірювання сили електричного струму – амперметр.

Розвивальна. Розвивати вміння стисло та грамотно висловлювати свої міркування та обґрунтовувати їхню правильність;

Виховна. Формування таких якостей особистості, як відповідність, організованість, дисциплінованість, обов'язок.

Тип уроку: комбінований урок

Обладнання: навчальна презентація, комп'ютер, амперметр.

План уроку:

І. ОРГАНІЗАЦІЙНИЙ ЕТАП

II. ПЕРЕВІРКА ДОМАШНЬОГО ЗАВДАННЯ

III. АКТУАЛІЗАЦІЯ ОПОРНИХ ЗНАНЬ ТА ВМІНЬ

IV. ВИВЧЕННЯ НОВОГО МАТЕРІАЛУ

V. РОЗВ'ЯЗУВАННЯ ЗАДАЧ

VI. ПІДБИТТЯ ПІДСУМКІВ УРОКУ

VII. ДОМАШНЄ ЗАВДАННЯ

Хід уроку

І. ОРГАНІЗАЦІЙНИЙ ЕТАП

II. ПЕРЕВІРКА ДОМАШНЬОГО ЗАВДАННЯ

Проведення фронтального опитування.

- 1. Назвіть основні елементи електричного кола.
- 2. Наведіть приклади споживачів електричної енергії.
- 3. З якою метою в електричних колах використовують ключ?
- 4. Що називають електричною схемою?
- 5. Як на електричних схемах зображують гальванічний елемент? батарею гальванічних елементів? електричний дзвінок? ключ?
 - 6. Який напрямок прийнято за напрямок струму в електричному колі?

ІІІ. АКТУАЛІЗАЦІЯ ОПОРНИХ ЗНАНЬ ТА ВМІНЬ

Ми вже знаємо, що таке електричний струм.

Електричний струм – це напрямлений рух заряджених частинок.

Як кількісно описати процес проходження електричного струму в провіднику?

IV. ВИВЧЕННЯ НОВОГО МАТЕРІАЛУ

1. Сила струму

Досліди показали, що більше електричних зарядів проходить через провідник за певний час, то більше проявляються дії електричного струму — теплова, хімічна, магнітна та світлова.

Для оцінювання й порівняння електричних зарядів, що протікають через провідник, була введена спеціальна фізична величина – сила струму.

Сила струму – це фізична величина, що характеризує електричний струм і чисельно дорівнює заряду, який проходить через поперечний переріз провідника за одиницю часу.

$$I=\frac{q}{t}$$

q — заряд, який проходить через поперечний переріз провідника t — час

2. Одиниця сили струму

Одиниця сили струму в СІ – ампер:

$$[I] = 1 \, \text{A}$$

Ця одиниця названа на честь французького вченого Андре-Марі Ампера. Ампер – одна з основних одиниць СІ.

Кратні й частинні одиниці сили струму:

 $1 \text{ MKA} = 1 \cdot 10^{-6} \text{ A}$ $1 \text{ MA} = 1 \cdot 10^{-3} \text{ A}$

 $1 \text{ } \kappa A = 1.10^3 \text{ } A$

Щоб уявити, що означає велика чи мала сила струму, розглянемо декілька прикладів:

- сила струму в каналі блискавки сягає 500 кА
- сила струму в аксоні під час передачі нервового імпульсу становить лише 0,004 мкА
 - середня сила струму в ході лікування електрофорезом 0,8 мА
 - сила струму, яка менше 1 мА безпечна для людини
 - сила струму 100 мА може призвести до серйозних уражень

При роботі з електричним струмом не можна:

- торкатись оголеного проводу, особливо стоячи на землі, сирій підлозі тощо;
- користуватися несправними електротехнічними пристроями;
- збирати, розбирати, ремонтувати електротехнічні пристрої, не від'єднавши їх від джерела струму.

3. Одиниця електричного заряду

$$I = \frac{q^{1}}{t} = > \qquad q = It$$
1 Кл = 1 А · с

 $1\ K\pi$ — це заряд, який проходить через поперечний переріз провідника за $1\ c$ при силі струму в провіднику $1\ A$.

4. Вимірювання сили струму

Амперметр – прилад для вимірювання сили струму.

 \bigcirc

– умовне позначення амперметра на електричних схемах.

Правила, яких необхідно дотримуватися під час вимірювання сили струму амперметром

- 1. Амперметр вмикають у коло послідовно
- 2. Клему амперметра, біля якої стоїть знак «+», потрібно з'єднувати з проводом, що йде від позитивного полюса джерела струму, клему зі знаком «—» із проводом, що йде від негативного полюса.
- 3. Не можна приєднувати амперметр до кола, в якому відсутній споживач струму.

V. РОЗВ'ЯЗУВАННЯ ЗАДАЧ

1. Яку силу струму показують амперметри, зображені на рисунках?

a)
$$C_{\Pi} = \frac{2 \text{ MA} - 1 \text{ MA}}{10} = 0,1 \text{ MA}; \qquad I = 1,4 \text{ MA}$$

6) $C_{\Pi} = \frac{1 \text{ MKA} - 0,5 \text{ MKA}}{10} = 0,05 \text{ MKA}; \qquad I = 0,3 \text{ MKA}$
B) $C_{\Pi} = \frac{4 \text{ A} - 2 \text{ A}}{10} = 0,2 \text{ A}; \qquad I = 5 \text{ A}$

2. Через спіраль електроплитки за 12 хв пройшло 3000 Кл електрики. Яка сила струму в спіралі?

Дано:

$$t = 12 \text{ xB} = 720 \text{ c}$$

 $q = 3000 \text{ Кл}$
 $I - ?$

Розв'язання

$$I = \frac{q}{t}$$

$$I = \frac{3000 \text{ K} \pi}{720 \text{ c}} \approx 4,17 \text{ A}$$

Відповідь: $I \approx 4,17$ А.

3. Струм в електричному паяльнику 500 мА. Яка кількість електрики пройде через паяльник за 2 хв?

Дано:

$$I = 500 \text{ мA}$$

 $= 500 \cdot 10^{-3} \text{A}$
 $t = 2 \text{ xB} = 120 \text{ c}$
 $q - ?$

Розв'язання

$$I = \frac{q}{t}$$
 => $q = It$ $q = 500 \cdot 10^{-3} \text{A} \cdot 120 \text{ c} = 60 \text{ Кл}$

Відповідь: q = 60 Кл.

4. Скільки часу триває перенесення заряду 7,7 Кл при силі струму 0,5 А?

Розв'язання

$$I = \frac{q}{t}$$
 => $t = \frac{q}{I}$
 $t = \frac{7.7 \text{ K} \pi}{0.5 \text{ A}} = 15.4 \text{ c}$

Відповідь: t = 15,4 с.

5. Скільки електронів пройде за 1 год через поперечний переріз спіралі лампи, якщо сила струму в спіралі дорівнює 5 мА?

Дано:

$$t = 1 \text{ год} = 3600 \text{ c}$$

 $I = 5 \text{ мA}$
 $= 5 \cdot 10^{-3} \text{A}$
 $e = -1.6 \cdot 10^{-19} \text{Кл}$
 $N - ?$

Розв'язання

$$q = N|e| => N = \frac{q}{|e|}$$

$$I = \frac{q}{t} => q = It$$

$$N = \frac{It}{|e|}; [N] = \frac{A \cdot c}{K\pi} = \frac{K\pi}{K\pi} = 1$$

$$N = \frac{5 \cdot 10^{-3} \cdot 3600}{1.6 \cdot 10^{-19}} = \frac{18}{1.6 \cdot 10^{-19}} = 11.25 \cdot 10^{19}$$

$$= 1125 \cdot 10^{17}$$

Відповідь: $N = 1125 \cdot 10^{17}$.

6. При ввімкненні лампи розжарювання в електричне коло через її нитку розжарення за 0,5 хв проходить 9 Кл електрики, а після того як спіраль максимально нагріється 12 Кл за 1 хв. Як змінюється сила струму в лампі?

Дано:

$$t_1 = 0.5 \text{ xB} = 30 \text{ c}$$

 $q_1 = 9 \text{ Кл}$
 $t_2 = 1 \text{ xB} = 60 \text{ c}$
 $q_2 = 12 \text{ Кл}$
 $\frac{I_1}{I_2} = 7$

Розв'язання

$$I_1 = \frac{q_1}{t_1};$$
 $I_2 = \frac{q_2}{t_2}$
$$\frac{I_1}{I_2} = \frac{\frac{q_1}{t_1}}{\frac{q_2}{t_2}} = \frac{q_1 t_2}{q_2 t_1}$$

$$\frac{I_1}{I_2} = \frac{9 \text{ Kn} \cdot 60 \text{ c}}{12 \text{ Kn} \cdot 30 \text{ c}} = \frac{9 \text{ Kn} \cdot 60 \text{ c}}{12 \text{ Kn} \cdot 30 \text{ c}} = \frac{18}{12} = 1,5$$

Відповідь: Зменшилась в 1,5 рази.

VI. ПІДБИТТЯ ПІДСУМКІВ УРОКУ

Бесіда за питаннями

- 1. Що називають силою струму?
- 2. За якою формулою визначають силу струму?
- 3. Яка одиниця сили струму? На честь кого її названо?
- 4. Яке значення сили струму безпечне для людини?
- 5. Яких основних правил безпеки необхідно дотримуватися під час роботи з електротехнічними пристроями?
 - 6. Дайте означення кулона.
 - 7. Яким приладом вимірюють силу струму?
 - 8. Які правила необхідно виконувати, вимірюючи силу струму?

VII. ДОМАШНЄ ЗАВДАННЯ

Вивчити § 27, Вправа № 27 (2 – 5)

Виконане д/з відправте на Нитап,

Або на елетрону адресу Kmitevich.alex@gmail.com