

Continuous Assessment Test (CAT) - II - MARCH 2024

Programme	1	B. Tech.	Semester	:	Winter
Course Code & Course Title	:	BMAT201L & Complex Variables and Linear Algebra	Slot	:	A1+TA1+TAA1
Faculty		Dr. Amit Kumar Rahul, Dr. Ashish Kumar Nandi, Dr. Jaganathan B, Dr. Kalyan Manna, Dr. Manivannan A, Dr. Sagithya, Dr. Somnath Bera.	Class Number		CH2023240500810 CH2023240500806 CH2023240500801 CH2023240500798 CH2023240500816 CH2023240500804 CH2023240500812
Duration	1	90 Minutes	Max. Mark		50

General Instructions:

- Write only your registration number on the question paper in the box provided and do not write other information.
- Use statistical tables supplied from the exam cell as necessary.
- Use graph sheets supplied from the exam cell as necessary.
- Only non-programmable calculator without storage is permitted.

Answer all questions.

		Answer an questions.	
Q. No	Sub Sec.	Description	Marks
1.		Using the contour integration, evaluate $\int_{-\infty}^{\infty} \frac{x^2 - x + 2}{x^4 + 5x^2 + 4} dx.$	10
2.	(a)	Let the circle $\gamma = \{z \in \mathbb{C} : z = 1\}$ be positively oriented. Then, evaluate $\oint_{\gamma} z^2 \sin\left(\frac{1}{z}\right) e^{\frac{1}{z}} dz$.	5
	(b)	Using the Cauchy integral formula, evaluate the integral $\oint_C \frac{z e^{\frac{1}{2}}}{z^2 - 1} dz \text{ where C is the positively oriented circle } z - 1 = \frac{1}{2}.$	5
3.	(a)	Determine the subspace of \mathbb{R}^3 spanned by the vectors $(1, 2, 3)$ and $(3, 1, 0)$. Examine whether $(2, 1, 3)$ and $(-1, 3, 6)$ are in the subspace or not with proper justifications.	5
	(b)	Check if the set of vectors $S = \{(1, 2, 3, 0), (2, 1, 0, 3), (1, 1, 1, 1), (2, 3, 4, 1)\}$ is a linearly dependent set in \mathbb{R}^4 or not. Find a linearly independent subset S_1 of S such that $LS(S_1) = LS(S)$.	5

Find bases for row space and flutt of $A = \begin{pmatrix} 0 & 0 & 2 & 2 & 0 \\ 1 & 3 & 2 & 4 & 1 \\ 2 & 6 & 2 & 6 & 2 \\ 3 & 9 & 1 & 10 & 6 \end{pmatrix}.$	
Also, verify the rank-nullity theorem. Construct the linear transformation from $P_3(\mathbb{R})$ to $M_{2\times 2}(\mathbb{R})$ which maps the standard basis of $P_3(\mathbb{R})$ onto the standard basis of	6
maps the standard basis of $T_3(x)$ $M_{2\times 2}(\mathbb{R})$. Let V be the vector space of polynomials in x over \mathbb{R} , and let $T: V \to V$ be the differential operator: $T(f(x)) = \frac{df(x)}{dx}$. Find the	4