Нужны ли нам альтернативные пути введения антимикробных препаратов?

В.Б. Белобородов

Российская медицинская академия последипломного образования

Продленная инфузия β-лактамов

Основные фармакодинамические показатели

Киллинг бактерий:

- время-зависимый \rightarrow часть интервала дозирования (%) когда концентрация свободного препарата в плазме превышает МПК целевого микроба (%fT>МПК) [β -лактамы]
- концентрационно-зависимый → зависит от отношения AUC₂₄ (или C_{max}) свободного препарата к МПК целевого микроба (fAUC/MПК) [фторхинолоны, аминогликозиды]

Оптимизированная ФД время-зависимого βлактама (цефтаролин 600 мг через 12 часов)

Mean free drug serum concentration-time profile¹

Adapted from 1. Keel RA et al. Antimicrob Agents Chemother. 2011;55:4028–4032; 2. Flamm RK et al. Clin Microbiol Infect. 2012;18(suppl S3):419; 3. Farrell DJ et al. Clin Microbiol Infect. 2012;18(suppl S3):424.

Оптимизированная ФД время-зависимого β-лактама (цефтаролин 600 мг через 12 часов)

Mean free drug serum concentration-time profile¹

Adapted from 1. Keel RA et al. *Antimicrob Agents Chemother*. 2011;55:4028–4032; 2. Flamm RK et al. *Clin Microbiol Infect*. 2012;18(suppl S3):419. 3. Farrell DJ et al. *Clin Microbiol Infect*. 2012;18(suppl S3):424.

Angus BJ, Smith MD, Suputtamongkol Y, Mattie H, Walsh AL, Wuthiekanun V, Chaowagul W, White NJ: **Pharmacokineticpharmacodynamic evaluation of ceftazidime continuous infusion vs intermittent bolus injection in septicaemic melioidosis.**

Br J Clin Pharmacol 2000, **50**(2):18491.

PMC full text: Br J Clin Pharmacol. May 2000; 49(5): 445–452.

doi: <u>10.1046/j.1365-2125.2000.00179.x</u>

Copyright/License ► Request permission to reuse

Figure 2

Efficacy and safety of intravenous infusion of doripenem versus imipenem in ventilator-associated pneumonia: A multicenter, randomized study*

Jean Chastre, MD; Richard Wunderink, MD; Philippe Prokocimer, MD; Michael Lee, PhD; Koné Kaniga, PhD; Ian Friedland, MD Crit Care Med 2008 Vol. 36, No. 4

Дорипенем: 500 мг через 8 часов в виде 4-часовой инфузии Имипенем: 500 мг через 6 часов 30-минутная инфузия или 1000 мг через 8 часов 60-минутная инфузия

Dosing Nomograms for Attaining Optimum Concentrations of Meropenem by Continuous Infusion in Critically III Patients with Severe Gram-Negative Infections: a Pharmacokinetics/Pharmacodynamics-Based Approach

Fig 4

RESEARCH ARTICLE

Open Access

Does prolonged β -lactam infusions improve clinical outcomes compared to intermittent infusions? A meta-analysis and systematic review of randomized, controlled trials

Pranita D Tamma^{1*}, Nirupama Putcha², Yong D Suh³, Kyle J Van Arendonk⁴ and Michael L Rinke⁵

Table 4 Summary of subgroup and sensitivity analysis of eligible studies included in a meta-analysis of prolonged infusion versus intermittent infusion of β -lactams in hospitalized patients†

Sub-group analysis	Studies Included	Mortality Risk Ratio (95% CI)	l ² %	Studies Included	Clinical Cure Risk Ratio (95% CI)	l ² %
β-lactam subclasses						
Penicillins	2	0.62 (0.19-2.03)	0	3	0.77 (0.46-1.30)	0
Cephalosporins	4	0.95 (0.35-2.63)	50	8	1.04 (0.92-1.18)	35
Carbapenems	2	1.08 (0.64-1.82)	0	2	1.00 (0.69-1.44)	0
Continuous infusion	6	0.80 (0.42-1.50)	22	10	1.01 (0.92-1.10)	16
Not funded by pharmaceutical industry	5	0.80 (0.37-1.73)	26	5	1.15 (0.85-1.57)	57
Equivalent daily dose of β -lactam antibiotic	5	1.30 (0.59-2.87)	0	6	1.06 (0.90-1.25)	48
Sensitivity-analysis						
Intention-to-treat analysis	8	1.10 (0.75-1.60)	0	8	1.05 (0.93-1.19)	21

[†] Reference group is intermittent β -lactam infusion.

Figure 4.

Resolution: standard / high

Clinical cure comparing prolonged infusion and intermittent infusion of β -lactam antibiotics in hospitalized patients.

Tamma et al. BMC Infectious Diseases 2011 11:181 doi:10.1186/1471-2334-11-181 Download authors' original image

Figure 3.

	Prolonged		Intermittent			Risk Ratio	Risk Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI	
Angus 2000	3	10	9	11	14.6%	0.37 [0.14, 0.98]	- • -	
Georges 2005	3	26	3	24	6.7%	0.92 [0.21, 4.14]		
Kojika 2005	1	5	0	5	1.8%	3.00 [0.15, 59.89]		
Lagast 1983	5	20	4	25	10.6%	1.56 [0.48, 5.06]		
Lau 2006	1	128	3	130	3.1%	0.34 [0.04, 3.21]		
Merchant 2008	32	249	31	252	47.4%	1.04 [0.66, 1.66]	-	
Rafati 2006	5	20	6	20	13.9%	0.83 [0.30, 2.29]		
Roberts 2007	3	29	0	28	1.9%	6.77 [0.37, 125.32]	-	
Total (95% CI)		487		495	100.0%	0.92 [0.61, 1.37]	•	
Total events	53		56					
Heterogeneity: Tau2 =	0.03; Ch	$ni^2 = 7$.	66, df =	7 (P = 0)).36); I ² =	9%	0.01 0.1	
Test for overall effect	Z = 0.43	(P = 0)	0.67)				0.01 0.1 1 10 100 Favors Prolonged Favors Intermitten	

Mortality comparing prolonged infusion and intermittent infusion of β -lactam antibiotics in hospitalized patients.

Tamma et al. BMC Infectious Diseases 2011 11:181 doi:10.1186/1471-2334-11-181 Download authors' original image

Выводы

- Имеются очень привлекательные данные ФК/ФД
 моделирования оптимизации введения β-лактамов,
 указывающие на возможность подавления флоры, которая
 по данным микробиологического исследования
 интерпретируется как «резистентная» к данному
 препарату
- Клинические данные, до настоящего времени, не смогли подтвердить преимущества медленной инфузии перед обычным дозированием

Ингаляционное применение антибиотиков

Актуальность

Неэффективность системной АБТ:

- Низкая пенетрация АБ в консолидированные пневмонические очаги [Kiem S et al. Antimicrob Agents Chemother 2008; 52:24–36]
- Очаг селекции, рост распространенности MDR ~ 20% [Sievert DM et al. Infect Control Hosp Epidemiol 2013; 34:1–14]
- Аэрозольная АБТ:
- Привлекательна, теоретически, из-за прямой доставки АБ в очаг инфекции
- Часто применяется, но не стандартизована [Ehrmann S et al. Intensive Care Med 2013; 39:1048–1056.]

Наиболее изученные АБ:

- Колистин
- Аминогликозиды
- βлактамы
- Фосфомицин

Оптимизация аэрозольного введения

- Требования к препарату:
 - Чистота, отсутствие гиперосмолярности, рН,
 - Отрицательно заряженный анион (> 30 мэкв) предпочтительно Cl⁻ не вызывает кашля
 - Водный раствор цефтазидима требует седации пропофолом
- Одобрены ингаляционные формы азтреонама, тобрамицина, колистина

Эффективность доставки и размер частиц

- Доставка АБ в дыхательные пути, но не в паренхиму легких
- Зависит от величины частиц (ММАD аэродинамический диаметр медианы массы)
 - 5 мкм MMAD дыхательные пути
 - 3 мкм MMAD легкие (таких небулайзеров нет)
- Доставке в паренхиму препятствует влажность в контуре аппарата ИВЛ, гидроскопический рост и размывающий эффект эндотрахеальной трубки

Общее заключение по результатам клинических исследований и метаанализов

Аэрозольное введение антибиотиков является дополнением к системному, особенно у пациентов с инфекциями вызванных MDR или при неэффективности лечения НПивл

Arnold HM et al. Respir Care 2012; 57:1226–1233. Lu Q et al. Am J Respir Crit Care Med 2011; 184:106–115. Lu Q et al. Anesthesiology 2012; 117:1335–1347. Niederman MSK et al. Intensive Care Med 2012; 38:263–271. Montgomery AB et al. Am J Respir Crit Care Med 2013; 187:A3236 Пиковые концентрации амикацина в трахеальном аспирате после AB 50 мг/мл (с фосфомицином 20 мг/мл) с помощью PARI Investigational eFlow Inline Nebulizer System в 1 фазе КИ, возрастание дозы у 7 пациентов с НПивл. БП для Enterobacteriaceae, *Pseudomonas aeruginosa, Acinetobacter* spp. = 16 мкг/мл.

Montgomery AB *et al.* A randomized doubleblind placebocontrolled doseescalation phase 1 study of aerosolized amikacin and fosfomycin delivered via the PARI investigational eFlow Inline nebulizer system in mechanically ventilated patients (abstract 42767 and poster 42767). Am J Respir Crit Care Med 2013; 187:A3236.

Пиковые концентрации фосфомицина в трахеальном аспирате после AB 20 мг/мл (с амикацином 50 мг/мл) с помощью PARI Investigational eFlow Inline Nebulizer System в 1 фазе КИ, возрастание дозы у 7 пациентов с НПивл. МПК для MRSA = $32 \, \text{мкг/мл}$.

Montgomery AB *et al.* A randomized doubleblind placebocontrolled doseescalation phase 1 study of aerosolized amikacin and fosfomycin delivered via the PARI investigational eFlow Inline nebulizer system in mechanically ventilated patients (abstract 42767 and poster 42767). Am J Respir Crit Care Med 2013; 187:A3236.

Выводы

- С помощью небулайзеров можно обеспечивать правильное, хорошо переносимое аэрозольное введение антибиотиков, форма препаратов для внутривенного введения не подходит для аэрозольной терапии
- По сравнению с В/В, при аэрозольном введении достигается более высокая локальная концентрация и быстрый клиренс АБ, которые позволяют повысить эффективность лечения и снизить риск микробной резистентности
- Дополнительная аэрозольная терапия вероятно необходима для обеспечения активности против различных резистентных Гр+ и Гр- возбудителей

Clin J Am Soc Nephrol. 2008 Jul; 3(4): 1048–1056. doi: 10.2215/CJN.04931107

PMCID: PMC2440277

Comparison of Early *versus* Late Use of Antibiotic Locks in the Treatment of Catheter-Related Bacteremia

Ali Mirza Onder, * Jayanthi Chandar, † A. A. Billings, ‡ Nancy Simon, § Rosa Diaz, † Denise Francoeur, † Carolyn Abitbol, † and Gaston Zilleruelo †

Infect Drug Resist. 2014; 7: 343-363.

Published online 2014 Dec 12. doi: 10.2147/IDR.S51388

Antibiotic lock therapy: review of technique and logistical challenges

Julie Ann Justo and P Brandon Bookstaver

Medwave. 2015 Jan 22;;15(1):e6069. doi: 10.5867/medwave.2015.01.6069.

Does antibiotic lock therapy prevent catheter-associated bacteremia in hemodialysis?

[Article in English, Spanish] Jiménez M¹, Madrid T².

Ann Pharmacother. 2015 Feb 17. pii: 1060028015570466. [Epub ahead of print]

at SAGE Publications

Adjunctive Intraventricular Antibiotic Therapy for Bacterial Central Nervous System Infections in Critically III Patients With Traumatic Brain Injury.

McClellan N¹, Swanson JM², Magnotti LJ³, Griffith TW⁴, Wood GC¹, Croce MA³, Boucher BA¹, Mueller EW⁵, Fabian TC³.

Ann Pharmacother. 2014 Oct;;48(10):1376-9. doi: 10.1177/1060028014542634. Epub 2014 Jul

Successful treatment of ventriculostomy-associated meningitis caused by multidrug resistant coagulase-negative Staphylococcus epidermidis using low-volume intrathecal daptomycin and loading strategy.

Denetclaw TH¹, Suehiro I², Wang PK², Tolliver GL³.

Int J Nanomedicine. 2015; 10: 885–891.

Электронная фотография нановолокон, импрегнированных ванкомицином

Nanoscale Res Lett. 2014; 9(1): 2.

<u>J Control Release.</u> 2014 Jul 10;;185:12-21. doi: 10.1016/j.jconrel.2014.04.018. Epub 2014 Apr 22.

Electrospinning of polymeric nanofibers for drug delivery applications. $\underline{\text{Hu X}^1}$, $\underline{\text{Liu S}^2}$, $\underline{\text{Zhou G}^3}$, $\underline{\text{Huang Y}^4}$, $\underline{\text{Xie Z}^5}$, $\underline{\text{Jing X}^1}$. Curr Pharm Des. 2015 Mar 2. [Epub ahead of print]

Nanofibers Based Antibacterial Drug Design, Delivery and Applications.

<u>Ulubayram K¹</u>, <u>Calamak S</u>, <u>Shahbazi R</u>, <u>Eroglu I</u>.

- Быстрая доставка лекарств:
 - Подавление резистентности бактерий
 - Снижение дозы и побочных эффектов
- Заряд:
 - Контролируемая доставка препарата (антибиотика)
 - Создание высокой локальной концентрации
- Возможности доставки
 - Антисептики
 - Антибиотики
 - Триклозан
 - Наночастицы металлов (серебро, диоксид титана, окись цинка
 - Антибактериальные полимеры (хитозан, полиэтиленамин)