

The Listing of Claims

This listing of claims will replace all prior versions and listings of claims in the application.

1. (Currently Amended) A compound of the formula I:

or pharmaceutically acceptable salts thereof, wherein

Z is hydrogen, $(\text{C}_3\text{-}\text{C}_7 \text{ cycloalkyl})_{0-1}(\text{C}_1\text{-}\text{C}_8 \text{ alkyl})$ -, $(\text{C}_3\text{-}\text{C}_7 \text{ cycloalkyl})_{0-1}(\text{C}_2\text{-}\text{C}_6 \text{ alkenyl})$ -, alkoxyalkoxyalkyl, $(\text{C}_3\text{-}\text{C}_7 \text{ cycloalkyl})_{0-1}(\text{C}_2\text{-}\text{C}_6 \text{ alkynyl})$ - or $(\text{C}_3\text{-}\text{C}_7 \text{ cycloalkyl})$ -, wherein each of said groups is optionally substituted with 1, 2, or 3 R_2 groups, wherein 1 or 2 methylene groups within said $(\text{C}_3\text{-}\text{C}_7 \text{ cycloalkyl})_{0-1}(\text{C}_1\text{-}\text{C}_8 \text{ alkyl})$ -, $(\text{C}_3\text{-}\text{C}_7 \text{ cycloalkyl})_{0-1}(\text{C}_2\text{-}\text{C}_6 \text{ alkenyl})$ -, $(\text{C}_3\text{-}\text{C}_7 \text{ cycloalkyl})_{0-1}(\text{C}_2\text{-}\text{C}_6 \text{ alkynyl})$ - or $(\text{C}_3\text{-}\text{C}_7 \text{ cycloalkyl})$ - groups are optionally replaced with $-(\text{C}=\text{O})$ -; wherein R_2 at each occurrence is independently halogen, -OH, -SH, -CN, $-\text{CF}_3$, $-\text{OCF}_3$, $\text{C}_1\text{-}\text{C}_6$ alkoxy, $\text{C}_3\text{-}\text{C}_7$ cycloalkyl, $\text{C}_3\text{-}\text{C}_7$ cycloalkoxy or $-\text{NR}_{100}\text{R}_{101}$; where R_{100} and R_{101} are independently H, $\text{C}_1\text{-}\text{C}_6$ alkyl, phenyl, $\text{CO}(\text{C}_1\text{-}\text{C}_6 \text{ alkyl})$ or $\text{SO}_2\text{C}_1\text{-}\text{C}_6$ alkyl;

X is $-(\text{C}=\text{O})$, $-(\text{C}=\text{S})$, $-(\text{SO}_2)$;

R_1 is $\text{C}_1\text{-}\text{C}_{10}$ alkyl optionally substituted with 1, 2, or 3 groups independently selected from halogen, -OH, =O, -SH, -CN, $-\text{CF}_3$, $-\text{OCF}_3$, $\text{C}_3\text{-}\text{C}_7$ cycloalkyl, $-\text{C}_1\text{-}\text{C}_4$ alkoxy, amino, mono-dialkylamino, aryl, heteroaryl, and heterocycloalkyl, wherein each aryl group is optionally substituted with 1, 2 or 3 R_{50} groups;

R_{50} is selected from halogen, OH, SH, CN, $-\text{CO}-(\text{C}_1\text{-}\text{C}_4 \text{ alkyl})$, $-\text{NR}_7\text{R}_8$, $-\text{S}(\text{O})_{0-2}-(\text{C}_1\text{-}\text{C}_4 \text{ alkyl})$, $\text{C}_1\text{-}\text{C}_6$ alkyl, $\text{C}_2\text{-}\text{C}_6$ alkenyl, $\text{C}_2\text{-}\text{C}_6$ alkynyl, $\text{C}_1\text{-}\text{C}_6$ alkoxy, -O-benzyl, alkenyloxy, alkoxyalkoxyalkoxy, and $\text{C}_3\text{-}\text{C}_8$ cycloalkyl;

wherein the alkyl, alkenyl, alkynyl, alkoxy and cycloalkyl groups are optionally substituted with 1 or 2 substituents independently selected from $\text{C}_1\text{-}\text{C}_4$ alkyl, halogen, OH, $-\text{NR}_5\text{R}_6$, CN, $\text{C}_1\text{-}\text{C}_4$ haloalkoxy, $-\text{NR}_7\text{R}_8$, and $\text{C}_1\text{-}\text{C}_4$ alkoxy;

R_5 and R_6 are independently H or $\text{C}_1\text{-}\text{C}_6$ alkyl; or

R_5 and R_6 and the nitrogen to which they are attached form a 5 or 6 membered heterocycloalkyl ring; and

R_7 and R_8 are independently selected from H; -C₁-C₄ alkyl optionally substituted with 1, 2, or 3 groups independently selected from -OH, -NH₂, and halogen; -C₃-C₈ cycloalkyl; -(C₁-C₄ alkyl)-O-(C₁-C₄ alkyl); -C₂-C₄ alkenyl; and -C₂-C₄ alkynyl;

wherein each heteroaryl is optionally substituted with 1 or 2 R_{50} groups;

wherein each heterocycloalkyl group is optionally substituted with 1 or 2 groups that are independently R_{50} or =O;

R_2 and R_3 are independently selected from

- H;
- F;
- C₁-C₆ alkyl optionally substituted with a substituent selected from -F, -OH, -C≡N, -CF₃, C₁-C₃ alkoxy, and -NR₅R₆;
- (CH₂)₀₋₂-R₁₇;
- (CH₂)₀₋₂-R₁₆;
- C₂-C₆ alkenyl or C₂-C₆ alkynyl, wherein each is optionally substituted with an independent substituent selected from -F, -OH, -C≡N, -CF₃ and C₁-C₃ alkoxy;
- (CH₂)₀₋₂-C₃-C₇ cycloalkyl, optionally substituted an independent substituent selected from -F, -OH, -C≡N, -CF₃, C₁-C₃ alkoxy and -NR₅R₆; or

wherein R_2 , R_3 and the carbon to which they are attached form a carbocycle of three thru seven carbon atoms, wherein one carbon atom is optionally replaced by a group selected from -O-, -S-, -SO₂-, or -NR₇-;

where R_{17} at each occurrence is an aryl group selected from phenyl, 1-naphthyl, 2-naphthyl, indanyl, indenyl, dihydronaphthyl and tetralinyl, wherein said aryl groups are optionally substituted with one or two groups that are independently -C₁-C₃ alkyl; -C₁-C₄ alkoxy; CF₃; or

-C₂-C₆ alkenyl or -C₂-C₆ alkynyl each of which is optionally substituted with one substituent selected from F, OH, C₁-C₃ alkoxy; or

- halogen;
- OH;
- C≡N;
- C₃-C₇ cycloalkyl;

-CO-(C₁-C₄ alkyl);

-SO₂(C₁-C₄ alkyl);

wherein R₁₈ is a heteroaryl group selected from pyridinyl, pyrimidinyl, quinolinyl, indolyl, pyridazinyl, pyrazinyl, isoquinolyl, quinazolinyl, quinoxalinyl, phthalazinyl, imidazolyl, isoxazolyl, oxazolyl, thiazolyl, furanyl, thienyl, pyrrolyl, oxadiazolyl or thiadiazolyl, wherein each of said heteroaryl groups is optionally substituted with one or two groups that are independently

-C₁-C₆ alkyl optionally substituted with one substituent selected from OH, C≡N, CF₃, C₁-C₃ alkoxy, and -NR₅R₆;

wherein R₁₅ is selected from hydrogen, C₁-C₆ alkyl, C₁-C₆ alkoxy, C₁-C₆ alkoxy C₁-C₆ alkyl, hydroxy C₁-C₆ alkyl, halo C₁-C₆ alkyl, benzyl, -C(O)₂-benyl, and alkoxy carbonyl, wherein the alkyl and phenyl portion of each is unsubstituted or substituted with 1, 2, 3, or 4 groups independently selected from halogen, C₁-C₆ alkyl, hydroxy, C₁-C₆ alkoxy, NH₂, and -R₂₆-R₂₇;

wherein R₂₆ is selected from a bond, -C(O)-, -SO₂-, -CO₂-, -C(O)NR₅-, and -NR₅C(O)-,

wherein R₂₇ is selected from C₁-C₆ alkyl, C₁-C₆ alkoxy, aryl C₁-C₆ alkyl, heterocycloalkyl, and heteroaryl, wherein each of the above is unsubstituted or substituted with 1, 2, 3, 4, or 5 groups that are independently C₁-C₄ alkyl, C₁-C₄ alkoxy, halogen, haloalkyl, hydroxyalkyl, -NR₅R₆, -C(O)NR₅R₆;

wherein R_C is selected from

heteroaryl;

heterocycloalkyl;

-heteroaryl-aryl;

-heteroaryl-heterocycloalkyl;

-heteroaryl-heteroaryl;

-heterocycloalkyl-heteroaryl;

-heterocycloalkyl-heterocycloalkyl;

-heterocycloalkyl-aryl;

wherein each aryl group is optionally substituted with 1, 2, 3 or 4 R₂₀₀ groups;

wherein each heteroaryl group is optionally substituted with 1, 2, 3, or 4 R₂₀₀;

wherein each heterocycloalkyl group is optionally substituted with 1, 2, 3, or 4 R₂₁₀;

wherein R₂₀₀ at each occurrence is independently selected from

-C₁-C₆ alkyl optionally substituted with 1, 2, or 3 R₂₀₅ groups;

-OH;
 -NO₂;
 -halogen;
 -C≡N;
 -CHO;
 -(CH₂)₀₋₄-CO-NR₂₂₀R₂₂₅;
 -(CH₂)₀₋₄-CO-(C₁-C₈ alkyl);
 -(CH₂)₀₋₄-CO-(C₂-C₈ alkenyl);
 -(CH₂)₀₋₄-CO-(C₂-C₈ alkynyl);
 -(CH₂)₀₋₄-CO-(C₃-C₇ cycloalkyl);
 -(CH₂)₀₋₄-(CO)₀₋₁-aryl;
 -(CH₂)₀₋₄-(CO)₀₋₁-heteroaryl;
 -(CH₂)₀₋₄-(CO)₀₋₁-heterocycloalkyl;
 -(CH₂)₀₋₄-CO₂R₂₁₅;
 -(CH₂)₀₋₄-SO₂-NR₂₂₀R₂₂₅;
 -(CH₂)₀₋₄-S(O)₀₋₂-(C₁-C₈ alkyl);
 -(CH₂)₀₋₄-S(O)₀₋₂-(C₃-C₇ cycloalkyl);
 -(CH₂)₀₋₄-N(H or R₂₁₅)-CO₂R₂₁₅;
 -(CH₂)₀₋₄-N(H or R₂₁₅)-SO₂-R₂₂₀;
 -(CH₂)₀₋₄-N(H or R₂₁₅)-CO-N(R₂₁₅)₂;
 -(CH₂)₀₋₄-N(-H or R₂₁₅)-CO-R₂₂₀;
 -(CH₂)₀₋₄-NR₂₂₀R₂₂₅;
 -(CH₂)₀₋₄-O-CO-(C₁-C₆ alkyl);
 -(CH₂)₀₋₄-O-(R₂₁₅);
 -(CH₂)₀₋₄-S-(R₂₁₅);
 -(CH₂)₀₋₄-O-(C₁-C₆ alkyl optionally substituted with 1, 2, 3, or 5 -F);
 -C₂-C₆ alkenyl optionally substituted with 1 or 2 R₂₀₅ groups;
 -C₂-C₆ alkynyl optionally substituted with 1 or 2 R₂₀₅ groups;
 and
 -(CH₂)₀₋₄- C₃-C₇ cycloalkyl;

wherein each aryl group included within R₂₀₀ is optionally substituted with 1, 2, or 3 groups that are independently

-R₂₀₅,

-R₂₁₀ or

-C₁-C₆ alkyl substituted with 1, 2, or 3 groups that are independently R₂₀₅ or R₂₁₀; wherein each heterocycloalkyl group included within R₂₀₀ is optionally substituted with 1, 2, or 3 groups that are independently R₂₁₀; wherein each heteroaryl group included within R₂₀₀ is optionally substituted with 1, 2, or 3 groups that are independently

-R₂₀₅,

-R₂₁₀, or

-C₁-C₆ alkyl substituted with 1, 2, or 3 groups that are independently

-R₂₀₅ or

-R₂₁₀;

wherein R₂₀₅ at each occurrence is independently selected from

-C₁-C₆ alkyl,

-C₂-C₆ alkenyl,

-C₂-C₆ alkynyl,

-C₁-C₆ haloalkoxy

-(CH₂)₀₋₃(C₃-C₇ cycloalkyl)

-halogen,

-(CH₂)₀₋₆-OH,

-O-phenyl,

-alkenyl-phenyl,

-SH,

-(CH₂)₀₋₆-C≡N,

-(CH₂)₀₋₆-C(=O)NR₂₃₅R₂₄₀

-CF₃,

-C(O)₂-benzyl,

-C₁-C₆ alkoxy, and

-NR₂₃₅R₂₄₀,

wherein R₂₁₀ at each occurrence is independently selected from

-C₁-C₆ alkyl optionally substituted with 1, 2, or 3 R₂₀₅ groups;

-C₂-C₆ alkenyl optionally substituted with 1, 2, or 3 R₂₀₅ groups;

-C₂-C₆ alkynyl optionally substituted with 1, 2, or 3 R₂₀₅ groups;

-halogen;

-C₁-C₆ alkoxy;
-C₁-C₆ haloalkoxy;
-NR₂₂₀R₂₂₅;
-OH;
-C≡N;
-C₃-C₇ cycloalkyl optionally substituted with 1, 2, or 3 R₂₀₅ groups;
-CO-(C₁-C₄ alkyl);
.SO₂.NR₂₃₅R₂₄₀;
-CO-NR₂₃₅R₂₄₀;
-SO₂-(C₁-C₄ alkyl); and
=O; wherein

wherein R₂₁₅ at each occurrence is independently selected from

-C₁-C₆ alkyl,
-(CH₂)₀₋₂-(aryl),
-C₂-C₆ alkenyl,
-C₂-C₆ alkynyl,
-C₃-C₇ cycloalkyl,
-(CH₂)₀₋₂-(heteroaryl), and
-(CH₂)₀₋₂-(heterocycloalkyl);

wherein the aryl group included within R₂₁₅ is optionally substituted with 1, 2, or 3 groups that are independently

-R₂₀₅ or
-R₂₁₀;

wherein the heterocycloalkyl group included within R₂₁₅ is optionally substituted with 1, 2, or 3 R₂₁₀;

wherein each heteroaryl group included within R₂₁₅ is optionally substituted with 1, 2, or 3 R₂₁₀;

wherein R₂₂₀ and R₂₂₅ at each occurrence are independently selected from

-H,
-C₁-C₆ alkyl,
-hydroxy C₁-C₆ alkyl,
-amino C₁-C₆ alkyl,
-halo C₁-C₆ alkyl,

- $(CH_2)_{0-2}-$ (C₃-C₇ cycloalkyl),
- $(C_1-C_6$ alkyl)-O-(C₁-C₃ alkyl),
- C₂-C₆ alkenyl,
- C₂-C₆ alkynyl,
- aryl,
- heteroaryl, and
- heterocycloalkyl;

wherein the aryl, heteroaryl or heterocycloalkyl group included within R₂₂₀ and R₂₂₅ is optionally substituted with 1, 2, or 3 R₂₇₀ groups,

wherein R₂₇₀ at each occurrence is independently

- R₂₀₅,
- C₁-C₆ alkyl optionally substituted with 1, 2, or 3 R₂₀₅ groups;
- C₂-C₆ alkenyl optionally substituted with 1, 2, or 3 R₂₀₅ groups;
- C₂-C₆ alkynyl optionally substituted with 1, 2, or 3 R₂₀₅ groups;
- halogen;
- C₁-C₆ alkoxy;
- C₁-C₆ haloalkoxy;
- NR₂₃₅R₂₄₀;
- OH;
- C≡N;
- C₃-C₇ cycloalkyl optionally substituted with 1, 2, or 3 R₂₀₅ groups;
- CO-(C₁-C₄ alkyl);
- SO₂-NR₂₃₅R₂₄₀;
- CO-NR₂₃₅R₂₄₀;
- SO₂-(C₁-C₄ alkyl); and
- =O;

wherein R₂₃₅ and R₂₄₀ at each occurrence are independently

- H, or
- C₁-C₆ alkyl; or
- phenyl.

2. (Original) A compound according to claim 1, wherein Z is $(C_3-C_7 \text{ cycloalkyl})_{0-1}(C_1-C_6 \text{ alkyl})$ -, $(C_3-C_7 \text{ cycloalkyl})_{0-1}(C_2-C_6 \text{ alkenyl})$ -, $(C_3-C_7 \text{ cycloalkyl})_{0-1}(C_2-C_6 \text{ alkynyl})$ - or $(C_3-C_7 \text{ cycloalkyl})$ -, wherein each of said groups is optionally substituted with 1, 2, or 3 R₂ groups; wherein, R₂ at each occurrence is independently halogen, -OH, -CN, C₁-C₆ alkoxy, C₃-C₇ cycloalkyl, C₃-C₇ cycloalkoxy, -NR₁₀₀R₁₀₁; where R₁₀₀ and R₁₀₁ are independently H, C₁-C₆ alkyl, phenyl, CO(C₁-C₆ alkyl) or SO₂C₁-C₆ alkyl.

3. (Original) A compound according to claim 1, wherein X is -(C=O)-.

4. (Original) A compound according to claim 3, wherein Z is H.

5. (Original) A compound according to claim 1, wherein R₁ is C₁-C₁₀ alkyl optionally substituted with 1 or 2 groups independently selected from halogen, -OH, =O, -CF₃, -OCF₃, -C₃-C₇ cycloalkyl, -C₁-C₄ alkoxy, amino or aryl, wherein the aryl group is optionally substituted with 1 or 2 R₅₀ groups; wherein R₅₀ is selected from halogen, OH, -CO-(C₁-C₄ alkyl), -NR₇R₈, C₁-C₆ alkyl, C₁-C₆ alkoxy and C₃-C₈ cycloalkyl; wherein the alkyl, alkoxy and cycloalkyl groups are optionally substituted with 1 or 2 substituents independently selected from C₁-C₄ alkyl, halogen, OH, -NR₅R₆, NR₇R₈, and C₁-C₄ alkoxy; wherein R₅ and R₆ are independently H or C₁-C₆ alkyl; or wherein R₅ and R₆ and the nitrogen to which they are attached form a 5 or 6 membered heterocycloalkyl ring; and wherein R₇ and R₈ are independently selected from -H; -C₁-C₄ alkyl optionally substituted with 1, 2, or 3 groups independently selected from -OH, -NH₂, and halogen; -C₃-C₆ cycloalkyl; -(C₁-C₄ alkyl)-O-(C₁-C₄ alkyl).

6. (Original) A compound according to claim 5, wherein R₁ is -CH₂-phenyl where the phenyl ring is optionally substituted with 1 or 2 groups independently selected from halogen, C₁-C₂ alkyl, C₁-C₂ alkoxy and hydroxy.

7. (Original) A compound according to claim 6, wherein R₁ is benzyl, 3-fluorobenzyl or 3,5-difluorobenzyl.

8. (Original) A compound according to claim 1, wherein R₁₅ is H.

9. (Original) A compound according to claim 7, wherein R₁₅ is H.

10. (Currently Amended) A compound according to claim 1 of the formula II:

wherein Z is hydrogen, -C₁-C₆ alkyl, -C₂-C₆ alkenyl, -C₂-C₆ alkynyl or -C₃-C₇ cycloalkyl, where each of said groups is optionally substituted with 1 or 2 R₂ groups, wherein 1 or 2 methylene groups within said -C₁-C₆ alkyl, -C₂-C₆ alkenyl, -C₂-C₆ alkynyl or -C₃-C₇ cycloalkyl groups are optionally replaced with -(C=O)-;

wherein R₂ at each occurrence is independently halogen, -OH, -CN, -CF₃, C₁-C₆ alkoxy, C₃-C₇ cycloalkyl, C₃-C₇ cycloalkoxy or -NR₁₀₀R₁₀₁;

where R₁₀₀ and R₁₀₁ are independently H, C₁-C₆ alkyl, phenyl, CO(C₁-C₆ alkyl) or SO₂C₁-C₆ alkyl;

wherein X is -C(=O)-;

wherein R₁ is C₁-C₁₀ alkyl optionally substituted with 1 or 2 groups independently selected from halogen, -OH, =O, -CN, -CF₃, -OCF₃, -C₃-C₇ cycloalkyl, -C₁-C₄ alkoxy, amino, mono-dialkylamino, aryl, heteroaryl or heterocycloalkyl, wherein the aryl group is optionally substituted with 1 or 2 R₅₀ groups;

where R₅₀ is halogen, OH, CN, -CO-(C₁-C₄ alkyl), -NR₇R₈, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy and C₃-C₈ cycloalkyl;

where R₇ and R₈ are selected from H; -C₁-C₄ alkyl optionally substituted with 1, 2, or 3 groups selected from -OH, -NH₂ and halogen; -C₃-C₆ cycloalkyl; -(C₁-C₄ alkyl)-O-(C₁-C₄ alkyl); -C₂-C₄ alkenyl; and -C₂-C₄ alkynyl; and

wherein R_c is selected from

heteroaryl; or

heterocycloalkyl;

where the heteroaryl group is optionally substituted with 1, 2, 3, or 4 R₂₀₀ groups; and where the heterocycloalkyl group is optionally substituted with 1, 2, 3, or 4 R₂₁₀ groups.

11. (Previously Presented) A compound according to claim 10, wherein Z is -C₁-C₆ alkyl; R₁ is C₁-C₁₀ alkyl substituted with 1 phenyl group, where the phenyl group attached to the alkyl is optionally substituted with 1 or 2 R₅₀ groups, where each R₅₀ is independently halogen, OH, CN, or C₁-C₆ alkyl; and R_C is heteroaryl, where the heteroaryl group is optionally substituted with 1 or 2 R₂₀₀ groups.

12. (Currently Amended) A compound according to claim 1 which is N-((1S,2R)-1-(3,5-difluorobenzyl)-2-hydroxy-3-[(4R)-6-isopropyl-2,2-dioxido-3,4-dihydro-1H-isothiochromen-4-yl]amino}propyl)acetamide; N-((1S,2R)-1-(3,5-difluorobenzyl)-2-hydroxy-3-[(4S)-6-isopropyl-2,2-dioxido-3,4-dihydro-1H-isothiochromen-4-yl]amino}propyl)acetamide; N-((1S,2R)-1-(3,5-difluorobenzyl)-3-[(6-ethyl-2,2-dioxido-3,4-dihydro-1H-isothiochromen-4-yl)amino]-2-hydroxypropyl)acetamide; N-((1S,2R)-1-(3,5-difluorobenzyl)-3-[(6-ethyl-2,2-dioxido-3,4-dihydro-1H-isothiochromen-4-yl)amino]-2-hydroxypropyl)acetamide; N-((1S,2R)-1-(3,5-difluorobenzyl)-3-[(2,2-dioxido-3,4-dihydro-1H-isothiochromen-4-yl)amino]-2-hydroxypropyl)acetamide; N-[1-(3,5-Difluoro-benzyl)-3-(6-ethyl-2,2-dioxo-2^λ⁶-isothiochroman-4-ylamino)-2-hydroxy-propyl]-2-methylamino-acetamide; 2-Amino-N-[1-(3,5-difluoro-benzyl)-3-(6-ethyl-2,2-dioxo-2^λ⁶-isothiochroman-4-ylamino)-2-hydroxy-propyl]-acetamide; N-((1S,2R)-1-(3,5-difluorobenzyl)-3-[[6-ethyl-2-(methylsulfonyl)-1,2,3,4-tetrahydroisoquinolin-4-yl]amino]-2-hydroxypropyl)acetamide; N-[1-(3,5-Difluoro-benzyl)-3-(6-ethyl-2,2-dioxo-2^λ⁶-isothiochroman-4-ylamino)-2-hydroxy-propyl]-3-methyl-butyramide; N-[1-(3,5-Difluoro-benzyl)-3-(6-ethyl-2,2-dioxo-2^λ⁶-isothiochroman-4-ylamino)-2-hydroxy-propyl]-3-hydroxy-2,2-dimethyl-propionamide;

N-((1S,2R)-1-(3,5-difluorobenzyl)-3-[(2,2-dioxido-3,4-dihydro-1,2-benzoxathiin-4-yl)amino]-2-hydroxypropyl)acetamide;

N-((1S,2R)-1-(3,5-difluorobenzyl)-2-hydroxy-3-[(6-iodo-3,4-dihydro-2H-chromen-4-yl)amino]propyl)acetamide;

N-((1S,2R)-1-(3,5-difluorobenzyl)-2-hydroxy-3-[(4S)-6-iodo-3,4-dihydro-2H-chromen-4-yl]amino}propyl)acetamide;

N-((1S,2R)-1-(3,5-difluorobenzyl)-2-hydroxy-3-[(4R)-6-iodo-3,4-dihydro-2H-chromen-4-yl]amino}propyl)acetamide;

N-[1-(3,5-Difluoro-benzyl)-3-(6-ethyl-2,2-dioxo-2 λ^6 -isothiochroman-4-ylamino)-2-hydroxy-propyl]-3-hydroxy-propionamide;

N-((1S,2R)-1-(3,5-difluorobenzyl)-3-[(6-ethyl-2,2-dioxido-3,4-dihydro-1,2-benzoxathiin-4-yl)amino]-2-hydroxypropyl)acetamide;

~~N-((1S,2R)-1-(3,5-difluorobenzyl)-3-[(6-ethyl-2,2-dioxido-3,4-dihydro-1,2-benzoxathiin-4-yl)amino]-2-hydroxypropyl)acetamide;~~

N-((1S,2R)-1-(3,5-difluorobenzyl)-3-[(4-(3-ethylphenyl)tetrahydro-2H-pyran-4-yl)amino]-2-hydroxypropyl)acetamide;

N-((1S,2R)-1-(3,5-difluorobenzyl)-3-[(4S)-6-ethyl-3,4-dihydro-2H-chromen-4-yl]amino}-2-hydroxypropyl)acetamide;

N-((1S,2R)-1-(3,5-difluorobenzyl)-3-[(4R)-6-ethyl-3,4-dihydro-2H-chromen-4-yl]amino}-2-hydroxypropyl)acetamide;

N-[1-(3,5-Difluoro-benzyl)-3-(6-ethyl-2,2-dioxo-2 λ^6 -isothiochroman-4-ylamino)-2-hydroxy-propyl]-3-hydroxy-butyramide;

N-((1S,2R)-1-(3,5-difluorobenzyl)-3-[(6-ethyl-3,4-dihydro-1H-isothiochromen-4-yl)amino]-2-hydroxypropyl)acetamide;

~~N-((1S,2R)-1-(3,5-difluorobenzyl)-2-hydroxy-3-[(1-(3-isobutylisoxazol-5-yl)cyclopropyl)amino]propyl)acetamide;~~

N-[1-(3,5-Difluoro-benzyl)-3-(6-ethyl-2,2-dioxo-2 λ^6 -isothiochroman-4-ylamino)-2-hydroxy-propyl]-2-phenyl-acetamide;

{[1-(3,5-Difluoro-benzyl)-3-(6-ethyl-2,2-dioxo-2 λ^6 -isothiochroman-4-ylamino)-2-hydroxy-propylcarbamoyl]-methyl}-methyl-carbamic acid tert-butyl ester;

N-[1-(3,5-Difluoro-benzyl)-3-(6-ethyl-2,2-dioxo-2 λ^6 -isothiochroman-4-ylamino)-2-hydroxy-propyl]-2-methyl-2-methylamino-propionamide;

N-((1S,2R)-1-(3,5-difluorobenzyl)-3-[(6-ethyl-2,2-dioxido-3,4-dihydro-1H-2,1-benzothiazin-4-yl)amino]-2-hydroxypropyl)acetamide;

N-((1S,2R)-1-(3,5-difluorobenzyl)-3-[(6-ethyl-2,2-dioxido-3,4-dihydro-1H-2,1-benzothiazin-4-yl)amino]-2-hydroxypropyl)acetamide;

N-((1S,2R)-1-(3,5-difluorobenzyl)-3-[(6-ethyl-3-methyl-2,2-dioxido-3,4-dihydro-1H-isothiochromen-4-yl)amino]-2-hydroxypropyl)acetamide;

N-((1S,2R)-1-(3,5-difluorobenzyl)-3-[(6-ethyl-3-methyl-2,2-dioxido-3,4-dihydro-1H-isothiochromen-4-yl)amino]-2-hydroxypropyl)acetamide;

N-((1S,2R)-1-(3,5-difluorobenzyl)-3-[(6-ethyl-1-methyl-1,2,3,4-tetrahydroquinolin-4-yl)amino]-2-hydroxypropyl)acetamide;

N-[1-(3,5-Difluoro-benzyl)-3-(6-ethyl-2,2-dioxo-2 λ⁸-isothiochroman-4-ylamino)-2-hydroxy-propyl]-2-(1H-imidazol-4-yl)-acetamide;

N-[1-(3,5-Difluoro-benzyl)-3-(6-ethyl-2,2-dioxo-2 λ⁸-isothiochroman-4-ylamino)-2-hydroxy-propyl]-propionamide;

N-((1S,2R)-1-(3,5-difluorobenzyl)-3-[(1-(4-ethylpyridin-2-yl)cyclopropyl)amine]-2-hydroxypropyl)acetamide;

N-((1S,2R)-1-(3,5-difluorobenzyl)-2-hydroxy-3-[(4S)-6-(1H-pyrrol-3-yl)-3,4-dihydro-2H-chromen-4-yl]amino]propyl)acetamide;

N-((1S,2R)-1-(3,5-difluorobenzyl)-2-hydroxy-3-[(6-isopropyl-3,4-dihydro-2H-chromen-4-yl)amino]propyl)acetamide;

N-((1S,2R)-1-(3,5-difluorobenzyl)-3-[(1-(3-ethylphenyl)-2-(5-methyl-1,3-oxazol-2-yl)ethyl)amine]-2-hydroxypropyl)acetamide hydrochloride

N-((1S,2R)-1-(3,5-difluorobenzyl)-3-(3,4-dihydro-2H-chromen-4-ylamino)-2-hydroxypropyl)acetamide;

N-((1S,2R)-1-(3,5-difluorobenzyl)-2-hydroxy-3-[(4S)-6-isobutyl-3,4-dihydro-2H-chromen-4-yl]amino]propyl)acetamide;

N-((1S,2R)-3-[(4S)-6-cyano-3,4-dihydro-2H-chromen-4-yl]amino)-1-(3,5-difluorobenzyl)-2-hydroxypropyl)acetamide;

N-((1S,2R)-1-(3,5-difluorobenzyl)-2-hydroxy-3-[(4S)-6-neopentyl-3,4-dihydro-2H-chromen-4-yl]amino]propyl)acetamide;

N-((1S,2R)-1-(3,5-difluorobenzyl)-2-hydroxy-3-[(6-neopentyl-3,4-dihydro-2H-chromen-4-yl)amino]propyl)acetamide;

N-((1S,2R)-1-(3,5-difluorobenzyl)-3-[(4R)-6-(2,2-dimethylpropyl)-3,4-dihydro-2H-

chromen-4-yl]amino}-2-hydroxypropyl)acetamide;

N-[(1S,2R)-3-{[4-(3-tert-butylphenyl)tetrahydro-2H-pyran-4-yl]amino}-1-(3,5-difluorobenzyl)-2-hydroxypropyl]acetamide;

N-((1S,2R)-1-(3,5-difluorobenzyl)-3-{[6-(2,2-dimethylpropyl)-1,2,3,4-tetrahydroquinolin-4-yl]amino}-2-hydroxypropyl)acetamide;

N-[(1S,2R)-3-{[(4S)-6-(2,2-dimethylpropyl)-3,4-dihydro-2H-chromen-4-yl]amino}-1-(3-fluorobenzyl)-2-hydroxypropyl]acetamide;

~~N-((1S,2R)-1-(3,5-difluorobenzyl)-3-{[(5-(2,2-dimethylpropyl)-2-(1H-imidazol-1-yl)benzyl]amino}-2-hydroxypropyl)acetamide;~~

N-((1S,2R)-1-(3,5-difluorobenzyl)-3-{[6-(2,2-dimethylpropyl)-4-methyl-3,4-dihydro-2H-chromen-4-yl]amino}-2-hydroxypropyl)acetamide;

~~N-((1S,2R)-1-(3,5-difluorobenzyl)-2-hydroxy-3-((1-[3-(3-thienyl)phenyl]cyclohexyl)amino)propyl)acetamide;~~

~~N-((1S,2R)-1-(3,5-difluorobenzyl)-3-((1-[4-(2,2-dimethylpropyl)pyridin-2-yl]cyclopropyl)amino)-2-hydroxypropyl)acetamide;~~

or a pharmaceutically acceptable salt thereof.

13. (Previously Presented) A method for preparing a compound or salt of

of claim 1, wherein Z, X, R₁, R₂, R₃, R₁₅ and R_c are as defined in claim 1, said method comprising

a) reacting an epoxide of the formula

where PG is a nitrogen protecting group that is Cbz, Boc, or benzyl, with a compound of formula H(R₁₅)N-R_c, to form a compound of the formula:

b) deprotecting the amine to form a compound of the formula:

c) coupling the deprotected amine with a compound of formula Z-X-LG, where LG is a leaving group, to form a compound of the formula:

14. (Previously Presented) A method of treating a subject who has, Alzheimer's disease (AD); treating subjects with mild cognitive impairment (MCI); treating Down's syndrome; treating subjects who have Hereditary Cerebral Hemorrhage with Amyloidosis of the Dutch-Type; treating cerebral amyloid angiopathy and preventing its potential consequences; treating other degenerative dementias; treating dementia associated with Parkinson's disease, progressive supranuclear palsy, or cortical basal degeneration; treating diffuse Lewy body type AD; and frontotemporal dementias with parkinsonism (FTDP), the method comprising administering a therapeutically effective amount of a compound or salt of claim 1 to a person in need of such treatment.