Laboratorium Podstaw Fizyki

Nr ćwiczenia: 29a

Temat ćwiczenia: Wyznaczanie współczynnika lepkości cieczy na podstawie prawa Stokesa

Nazwisko i imię prowadzącego kurs: mgr Paulina Kamyczek

Wykonawca:	
Imię i nazwisko	Tymon Tobolski 181037
nr indeksu, wydział	Jacek Wieczorek 181043
	Wydział Elektroniki
Termin zajęć: dzień tygodnia, godzina	10.11.2010 środa 9.15-11.00
Numer grupy ćwiczeniowej	5
Data oddania sprawozdania:	
Ocena końcowa	

Zatwierdzam wyniki pomiarów.
Data i podpis prowadzącego zajęcia:

Adnotacje dotyczące wymaganych poprawek oraz daty otrzymania poprawionego sprawozdania

1. Cel ćwiczenia

Celem ćwiczenia jest wyznaczenie wsółczynnika rozszerzlaności liniowej metali metodą elektryczną.

2. Przyrządy

Stanowisko nr 3:

- zasilacz MCP
- termometr YF-160A TYPE-K

3. Wykonane pomiary

L0[m]	dL0[m]	t0[C]	∆ t0[C]	t[C]	∆ t[C]	∆ T[C]	∆ L[m]	Δ (Δ	L/L0
								L)[m]	
				25,2	1,1	4,3	0	_	0
				34,1	1,2	13,2	0,00013		0,000144
			49,8	1,2	28,9	0,00036		0,000398	
0.005	0.005	20.0	1 1	65,4	1,2	44,5	0,0006	0.00001	0,000663
0,905	0,004	20,9	1,1	82,3	1,3	61,4	0,00086	0,00001	0,00095
			103,2	1,4	82,3	0,00118		0,001304	
				125,5	1,4	104,6	0,00145		0,001602
				140,1	1,5	119,2	0,00177		0,001956

Przykładowe obliczenia:

$$\Delta t = 0.3\% * rdg + 1C$$

$$t0 = 20.9C \quad \Delta t0 = 0.003 * 20.9 + 1 = 1.0629 \approx 1.1 C$$

$$t = 25.2C \quad \Delta t = 0.003 * 25.2 + 1 = 1.0756 \approx 1.1C$$

$$\Delta T = t - to = 25.2 - 20.9 = 4.3 C$$

$$\frac{\Delta L}{Lo} = \frac{0.00013}{0.905} = 0.000144$$

∆ T[C]	∆ L/L0	Δ(Δ	△(△ L/L0)
		T)[C]	
4,3	0,00000	2,2	0,000000
13,2	0,00015	2,3	0,000012
28,9	0,00040	2,3	0,000013
44,5	0,00070	2,3	0,000014
61,4	0,00100	2,4	0,000016
82,3	0,00140	2,5	0,000017
104,6	0,00170	2,5	0,000019
119,2	0,00200	2,6	0,000020

$$y = \frac{\Delta L}{Lo}$$

$$x = \Delta T$$

$$y = A * x + b$$

$$\Delta(\Delta T) = \Delta t + \Delta t0 = 1,2 + 1,1 = 2,3 C$$

$$\Delta \frac{\Delta L}{L0} = \left(\frac{\Delta(\Delta L)}{\Delta L} + \frac{\Delta L0}{L0}\right) * \frac{\Delta L}{L0}$$

$$\Delta \frac{\Delta L}{L0} = \left(\frac{0,00001}{0,00013} + \frac{0,004}{0,905}\right) * 0,000144 = 0,000116846 \approx 0,0000012$$

Odczytując z wykresu (wzór wygenerowany za pomocą arkusza kalkulacyjnego Excel) wartość wsółczynnika α = 1,7*10 ^(-5) 1/K

Za pomocą regresji liniowej odczytujemy wartość współczynnika α oraz jego błąd

$$\alpha = 1,73181 * 10^{-5} \approx 1,637 * 10^{-5} \frac{1}{K}$$

$$\Delta \alpha = 2,328 * 10^{-7} \approx 3 * 10^{-7} \frac{1}{K}$$

4. Wnioski

Wartość współczynnika rozszerzalności liniowej metalu, z jakiego wykonany był badany drut, obliczona za równo za pomocą regresji liniowej, jak i odczytana z wykresu jest zbliżona. Wykres przedstawiający dL/LO jako funkcję od dT jest funkcją liniową, co dowodzi poprawności zjawiska.