

Learning Objectives

- 1. What are the differences between supervised and unsupervised learning schemes?
- 2. What is K-means clustering?
- 3. What are Gaussian Mixture Models?
- 4. What are Bernoulli Mixture Models?
- 5. What is the EM learning scheme?
- 6. How to understand EM from the perspective of likelihood?
- 7. How to generalize the EM scheme via decomposition?

Outlines

- Supervised vs Unsupervised Learning
- K-means Clustering
- Gaussian Mixture Model
- Expectation and Maximization
- GMM Revisited
- Bernoulli Mixture Model
- EM Generalization

Supervised vs Unsupervised Learning

- ☐ Supervised learning
 - ✓ Training data have labels (complete data)
 - ✓ To learn the mapping between data and labels
 - ✓ Regression, classification
 - ✓ Detection, semantic/instance segmentation
 - ✓ KNNs, SVMs, decision trees, neural networks
 - ✓ Deep neural networks are good at supervised learning

Supervised vs Unsupervised Learning

- Unsupervised learning
 - ✓ Training data have no labels (incomplete data)
 - ✓ To learn the intrinsic structures of data
 - ✓ Clustering, data dimension reduction
 - ✓ Segmentation, compression
 - ✓ K-means, GMMs, PCA, ICA, NMF
 - ✓ GAN is a kind of unsupervised learning

Unsupervised Learning

Outlines

- Supervised vs Unsupervised Learning
- K-means Clustering
- Gaussian Mixture Model
- Expectation and Maximization
- GMM Revisited
- Bernoulli Mixture Model
- EM Generalization

K-means Clustering (I)

- □ Problem of identifying groups, or clusters, of data points in a multidimensional space
 - ✓ Partitioning the data set into some number K of clusters
 - ✓ Cluster: a group of data points whose inter-point distances are small compared with the distances to points outside of the cluster
 - ✓ Goal: an assignment of data points to clusters such that the sum of the squares of the distances to each data point to its closest vector (the center of the cluster) is a minimum $J = \sum_{k=0}^{N} \sum_{n=0}^{K} r_{nk} \|\mathbf{x}_n \boldsymbol{\mu}_k\|^2$

K-means Clustering (II)

■ Two-stage optimization

✓ In the 1st stage: minimizing \mathcal{J} with respect to the r_{nk} , keeping the μ_k fixed

$$r_{nk} = \begin{cases} 1 & \text{if } k = \arg\min_{j} \|\mathbf{x}_n - \boldsymbol{\mu}_j\|^2 \\ 0 & \text{otherwise.} \end{cases}$$

✓ In the 2nd stage: minimizing \mathcal{J} with respect to the μ_k , keeping r_{nk} fixed

$$\boldsymbol{\mu}_{k} = \frac{\sum_{n} r_{nk} \mathbf{x}_{n}}{\sum_{n} r_{nk}} \qquad \qquad \boldsymbol{\square} \quad 2 \sum_{n=1}^{N} r_{nk} (\mathbf{x}_{n} - \boldsymbol{\mu}_{k}) = 0$$

The mean of all of the data points assigned to cluster k

K-means Clustering (III)

Outlines

- Supervised vs Unsupervised Learning
- K-means Clustering
- Gaussian Mixture Model
- Expectation and Maximization
- GMM Revisited
- Bernoulli Mixture Model
- EM Generalization

Gaussian Mixture Model (I)

☐ Gaussian mixture distribution can be written as a linear superposition of Gaussian

$$p(\mathbf{x}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x} | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

☐ random variable z having a 1-of-K distribution

$$p(\mathbf{z}) = \prod_{k=1}^{K} \pi_k^{z_k} \sum_{k=1}^{K} \pi_k = 1 \quad 0 \leqslant \pi_k \leqslant 1 \qquad p(z_k = 1) = \pi_k$$

$$p(\mathbf{x}|\mathbf{z}) = \prod_{k=1}^{K} \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)^{z_k} \qquad p(\mathbf{x}|z_k = 1) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

$$p(\mathbf{x}) = \sum_{\mathbf{z}} p(\mathbf{z})p(\mathbf{x}|\mathbf{z}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

Gaussian Mixture Model (II)

- ☐ An equivalent formulation of the Gaussian mixture involving an explicit latent variable
 - ✓ Graphical representation of a mixture model
 - The marginal distribution of x is a Gaussian mixture (for every observed data point x_n , there is a corresponding latent variable z_n , that is, the cluster label)

Gaussian Mixture Model (III)

$$\gamma(z_k) \equiv p(z_k = 1|\mathbf{x}) = \frac{p(z_k = 1)p(\mathbf{x}|z_k = 1)}{\sum_{K=1}^{K} p(z_j = 1)p(\mathbf{x}|z_j = 1)}$$
$$= \frac{\pi_k \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{j=1}^{K} \pi_j \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}.$$

 \square $\gamma(z_k)$ can also be viewed as the responsibility that component k takes for explaining the observation \mathbf{x}

Gaussian Mixture Model (IV)

- ☐ Generating random samples distributed according to the Gaussian mixture model
 - ✓ Generating a value for **z**, which denoted as $\widehat{\mathbf{z}}$ from the marginal distribution $p(\mathbf{z})$ and then generate a value for **x** from the conditional distribution $p(\mathbf{x}|\widehat{\mathbf{z}})$

Maximum Likelihood (I)

□ Graphical representation of a Gaussian mixture model for a set of N i.i.d. data points {x_n}, with corresponding latent points {z_n}

☐ The log of the likelihood function

$$\ln p(\mathbf{X}|\boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \sum_{n=1}^{N} \ln \left\{ \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \right\}$$

Maximum Likelihood (II)

☐ For simplicity, consider a Gaussian mixture whose components have covariance matrices given by

$$\Sigma_k = \sigma_k^2 \mathbf{I}$$

- ✓ Suppose that one of the components of the mixture model has its mean μ_j exactly equal to one of the data points so that $\mu_i = \mathbf{x}_n$
- ✓ This data point will contribute a term in the likelihood function of the form

 †

$$\mathcal{N}(\mathbf{x}_n|\mathbf{x}_n, \sigma_j^2 \mathbf{I}) = \frac{1}{(2\pi)^{1/2}} \frac{1}{\sigma_j} \quad ^{p(x)}$$

✓ over-fitting problem

Maximum Likelihood (III)

☐ Over-fitting problem

- ✓ Example of the over-fitting in a maximum likelihood approach
- ✓ This problem does not occur in the case of Bayesian approach.
- ✓ In applying maximum likelihood to a Gaussian mixture models, there should be heuristics to seek local minima of the likelihood function that are well behaved

☐ **Identifiability** problem

- ✓ A K-component mixture will have a total of K! equivalent solutions corresponding to the K! ways of assigning K sets of parameters to K components
- □ Difficulty of maximizing the log likelihood function → the presence of the summation over k that appears inside the logarithm gives no closed form solution as in the single case

Outlines

- Supervised vs Unsupervised Learning
- K-means Clustering
- Gaussian Mixture Model
- Expectation and Maximization
- GMM Revisited
- Bernoulli Mixture Model
- EM Generalization

EM for Gaussian Mixtures (I)

1 Initialization:

Initialize values for means, covariances, and mixing coefficients

② Expectation or E step

Using the current values for the parameters to evaluate the posterior probabilities or *responsibilities*

3 Maximization or M step

Using the results of 2 to re-estimate the means, covariances, and mixing coefficients

- ☐ It is common to run the K-means algorithm in order to find a suitable initial values
 - ✓ The covariance matrices → the sample covariances of the clusters found by the K-means algorithm
 - ✓ Mixing coefficients → the fractions of data points assigned to the respective clusters

EM for Gaussian Mixtures (II)

- Goal: to maximize the likelihood function with respect to the parameters
 - 1. Initialize the means μ_k , covariance Σ_k and mixing coefficients π_k

2. Estep
$$\gamma(z_{nk}) = \frac{\pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{K} \pi_j \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}$$

3. M step

$$\boldsymbol{\mu}_{k}^{\text{new}} = \frac{1}{N_{k}} \sum_{n=1}^{N} \gamma(z_{nk}) \mathbf{x}_{n}$$

$$\boldsymbol{\Sigma}_{k}^{\text{new}} = \frac{1}{N_{k}} \sum_{n=1}^{N} \gamma(z_{nk}) \left(\mathbf{x}_{n} - \boldsymbol{\mu}_{k}^{\text{new}}\right) \left(\mathbf{x}_{n} - \boldsymbol{\mu}_{k}^{\text{new}}\right)^{\text{T}}$$

$$\boldsymbol{\pi}_{k}^{\text{new}} = \frac{N_{k}}{N}$$

4. Evaluate the log likelihood

$$\ln p(\mathbf{X}|\boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi}) = \sum_{n=1}^{N} \ln \left\{ \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \right\}$$

EM for Gaussian Mixtures (III)

 \square Setting the derivatives of likelihood with respect to the means of the Gaussian components to zero \rightarrow

$$0 = -\sum_{n=1}^{N} \frac{\pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{j} \pi_j \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)} \boldsymbol{\Sigma}_k(\mathbf{x}_n - \boldsymbol{\mu}_k) \qquad \boldsymbol{\mu}_k = \frac{1}{N_k} \sum_{n=1}^{N} \gamma(z_{nk}) \mathbf{x}_n$$
$$\gamma(z_{nk}) \qquad \qquad N_k = \sum_{n=1}^{N} \gamma(z_{nk})$$

□ Setting the derivatives of likelihood with respect to the covariance of the Gaussian components to zero →

$$\Sigma_k = \frac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) (\mathbf{x}_n - \boldsymbol{\mu}_k) (\mathbf{x}_n - \boldsymbol{\mu}_k)^{\mathrm{T}}$$

- ✓ Each data point weighted by the corresponding posterior probability.
- ✓ The denominator given by the effective # of points associated with the corresponding component

EM for Gaussian Mixtures (IV)

 \square Setting the derivatives of likelihood with respect to mixing coefficients to zero, subject to their sum equal to 1 \rightarrow

$$\ln p(\mathbf{X}|\boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) + \lambda \left(\sum_{k=1}^{K} \pi_k - 1\right) \qquad N_k = \sum_{n=1}^{N} \gamma(z_{nk})$$

multiply $\boldsymbol{\pi}_k$ and sum over k

$$\implies \boxed{\pi_k = \frac{N_k}{N}}$$

EM for Gaussian Mixtures (V)

