

IMPROVING DEEP NEURAL NETWORKS: HYPERPARAMETER TUNING, REGULARIZATION AND OPTIMIZATION

By:

Satish Deshbhratar

BIAS / VARIANCE

- Applied ML: Iterative process to detect the hyperparameters
- *Hyperparameters: learning rate, #iterations, #hidden layers/units...
- \Rightarrow 1,000,000 : 60% training set 20% development (cross validation) set 20% test set
- ❖ 1,000,000+: 98% training set 1% dev set 1% test set
- \diamond PS: Mismatched dev / test distribution is bad. They have to come from the same distribution.
- ❖ PS: dev set is essential, but test set is not.
- \diamond High bias \rightarrow Underfitting \rightarrow High error in train \rightarrow Train: 15% / Test: 16% (linear in a region)
- \diamond High <u>variance</u> \rightarrow <u>Overfitting</u> \rightarrow High error in difference \rightarrow Train: 1% / Test: 11% (flexibility in a region)
- *Bias variance <u>tradeoff</u>: They were used to be related inversely.
- *High bias solutions: Bigger network / More layers / NN architecture / Different model / Longer train
- High variance solutions: More data / Regularization / NN architecture / Different model

REGULARIZATION

- *L2 Regularization: $\frac{\lambda}{2m}||w||_2^2 = \frac{\lambda}{2m}W^T.W$
- *L1 Regularization: $\frac{\lambda}{2m}||w||_1^1$
- *Frobinus Regularization: $\frac{\lambda}{2m} ||W^{[l]}||_F^2 = \frac{\lambda}{2m} \sum_{i=1}^{n^{[l-1]}} \sum_{j=1}^{n^{[l]}} w_{ij}^{[l]_2}$
- \Rightarrow New backpropagation: $dW^{[l]} = Old \ term + \frac{\lambda}{m} w^{[l]}$: $Weight \ decay$
- *Regularization vs overfitting: $\lambda \to +\infty$, $w^{[l]} \to 0$, \Rightarrow Logistic regression (Single NN)
- \diamond Large $\lambda \rightarrow$ smoother decision boundry / smaller weights / remove over fitting

DROPOUT

- Concept: Remove some hidden units each iteration based on probability (inverted dropout)
- d3=np.random.rand(a3.shape[0],a3.shape[1]) < keep_prob #Generate 0's</p>
- \$\alpha a3 = a3*d3 = np.multiply(a3,d3) #Element-wise multiplication
- $*a3=a3/\text{keep_prob}$ #Keep the values on the same scale \rightarrow Shrink weights
- ❖PS: Each layer can have its own keep_prob; keep_prob=1 in first and last layer
- ❖PS: Smaller keep_prob → More weights → Tend to overfit more
- ❖ PS: Dropout is only used in training

MINI-BATCH GRADIENT DESCENT

- ❖ Iterative model = Empiric model = Computational model
- *Batch gradient descent: Mini-batch gradient descent with m #Too long per iteration
- *Stochastic gradient descent: Mini-batch gradient descent with 1 #Lose vectorization speed, never converge
- $X \in (n_x, m)$; $Y \in (1, m)$; $X = [X^{(1)}, ..., X^{(1000)}, X^{(1001)}, ..., X^{(2000)}, ...]$
- •• for t=1,..., number of minimum batches: (each iteration, as if m=1000)
- ❖forward prop on X^[t]
- \diamond compute cost $J^{\{t\}} = \frac{1}{1000}...$
- backward prop
- ❖ Epoch = Pass through training set = Iteration
- ❖ PS: X and Y are similarly split
- ❖PS: Bigger learning rate for stochastic → Less noise
- $^{\diamond}$ m<2000 \rightarrow Batch gradient descent; Typical size for number of batches \rightarrow 2°, 2°, 28... and fit in CPU/GPU
- ♦ Number of batches increase
 → Noise decrease

- 1) Shuffle randomly
- 2) Partition

PS: If it is not divisible by the mini-batch size, the last one will have smaller values

Batch gradient descent
Mini-batch gradient Descent
Stochastic gradient descent

```
permutation = list(np.random.permutation(m))
shuffled_X = X[:, permutation]
shuffled_Y = Y[:, permutation].reshape((1,m))
```

batch mini-batch

OTHER REGULARIZATION TECHNIQUES

*Data augmentation: Flip images horizontally, do random modifications, make distortions

Early stopping:

PS: A=(A<0,5) #Generate 0's and 1's

NORMALIZATION

$$*\mu = \frac{1}{m} \sum_{i=1}^{m} X^{(i)}$$
; $X = X - \mu$ #Substract mean

$$\bullet \sigma^2 = \frac{1}{m} \sum_{i=1}^m X^{(i)^2}$$
; $X = \frac{X}{\sigma^2}$ #Normalize variance

 \diamond PS: It must be the same for the train / test \rightarrow <u>Faster</u> optimization (symmetric distribution)

INITIALIZATION

- Problem of Vanishing / Exploding gradients: Occurs when your derivatives are small/big
- Random initialization for W's to break symmetry; zeros for b's
- Arr He initialization: $W^{[l]} = \text{np.random.randn(shape)*np.sqrt(} \frac{2}{n^{[l-1]}})$ #for RELU
- $Another\ initialization$: $W^{[l]} = np.random.randn(shape)*np.sqrt(<math>\frac{1}{n^{[l-1]}}$) #for Tanh
- * Xavier initialization: $W^{[l]} = \text{np.random.randn(shape)*np.sqrt}(\frac{1}{n^{[l-1]} + n^{[l]}})$

GRADIENT CHECKING

- *Purpose: Find error in backpropagation implementation (gradient calculation) (slower)
- $vert^{[1]}$, $vert^{[1]}$.. \rightarrow Reshape in a big θ vector
- \diamond dw^[1], db^[1].. \rightarrow Reshape in a big d θ vector
- ♦ J(w^[1], b^[1], dw^[1], db^[1]...) → J(θ)
- $\text{for i: } d\theta_{approx}(i) = \frac{J(\theta_{1},...,\theta_{i} + \epsilon,...) J(\theta_{1},...,\theta_{i} \epsilon,...)}{2 \epsilon} = d\theta(i) = \frac{\partial J}{\partial \theta_{i}}$
- $\text{Check: } \frac{\left| \left| d\theta_{approx} d\theta \right| \right|_2}{\left| \left| d\theta_{approx} \right| \right|_2 + \left| \left| d\theta \right| \right|_2} \le \epsilon = 10^{-7}$
- PS: Grad check only in debug (not in train); Run grad check without dropout
- ♦ If grad check fails, look at components db^[1] and dw^[1]
- $*\sum_{k}\sum_{j}w_{j,k}^{[l]^2}\Leftrightarrow \text{np.sum(np.square(w))}; ||x||_2\Leftrightarrow \text{np.linalg.norm(x)}$

EXPONENTIALLY WEIGHTED AVERAGE

- $V_0 = 0$; $V_t = \beta V_{t-1} + (1-\beta)\theta_t$: **Averaging** over last $\frac{1}{1-\beta}$ days' temperature
- $\Leftrightarrow \beta \nearrow$ Average graph becomes smoother and shift slightly to the right
- *Bias correction: $\frac{V_t}{1-\beta^t}$ because V_t will be far from θ_1 at first

GRADIENT DESCENT WITH MOMENTUM

♣For t:

Compute dw, db on current mini-batch

$$v_{dw} = \beta v_{dw} + (1 - \beta)v_{dw}$$

$$v_{db} = \beta v_{db} + (1 - \beta)v_{db}$$

$$w = w - \alpha v_{dw}; b = b - \alpha v_{db}$$

- *We will be averaging on the vertical (around 0) and on the horizontal (straight forward)
- ❖ PS: Bias correction isn't needed because after few iterations we will be okay
- ♦ PS: β =0,9 in practice
- Another formulation:

$$v_{dw} = \beta v_{dw} + v_{dw}$$

$$•w = w - \frac{\alpha}{1-\beta} v_{dw}$$

PS: Momentum can be applied with any GD method

RMSPROP

- *RMSprop = Root Mean Squared Propagation (Same objective as momentum)
- ♣For t:
- Compute dw, db on current mini-batch
- $s_{dw} = \beta s_{dw} + (1 \beta)dw^2$ #Element-wise power
- $s_{db} = \beta s_{db} + (1 \beta)db^2$
- $w = w \alpha \frac{dw}{\sqrt{s_{dw}} + \epsilon}$; $b = b \alpha \frac{db}{\sqrt{s_{db}} + \epsilon}$ #We can get a bigger α now; ϵ to avoid divergence

ADAM

❖ADAM = Momentum + RMSprop

- α needs to be tuned
- $\beta_1 = 0.9$ (Momentum)
- $+\beta_2 = 0.999$ (RMSprop)
- $ightharpoonup \epsilon = 10^{-8}$ (Doesn't matter much)

```
vdW = 0, vdW = 0
sdW = 0, sdb = 0
on iteration t:
 # can be mini-batch or batch gradient descent
 compute dw, db on current mini-batch
 vdW = (beta1 * vdW) + (1 - beta1) * dW
                                            # momentum
 vdb = (beta1 * vdb) + (1 - beta1) * db
                                            # momentum
 sdW = (beta2 * sdW) + (1 - beta2) * dW^2
                                           # RMSprop
 sdb = (beta2 * sdb) + (1 - beta2) * db^2
                                          # RMSprop
 vdW = vdW / (1 - beta1^t)
                                # fixing bias
 vdb = vdb / (1 - beta1^t)
                                # fixing bias
 sdW = sdW / (1 - beta2^t)
                                # fixing bias
 sdb = sdb / (1 - beta2^t)
                                # fixing bias
```

LEARNING RATE DECAY

 \bullet Concept: At first, you can have a bigger value of α and in the end you can make it smaller

$$\alpha = \frac{1}{1 + decay \ rate * epoch \ number} \alpha_0$$

$$\alpha = 0.95^{epoch\ number}$$
 α_0

- Saddle points are not really a problem
- Plateau: Region where the derivate is close to 0 for a long time (slows the algorithm)

HYPERPARAMETERS

- *PS: We try 25 couples of hyperparameters
- 1st priority: α
- $\diamond 2^{\text{nd}}$ priority: β momentum, #hidden units, mini-batch size
- *3rd priority: #layers, learning rate decay

- β =0,9000 \rightarrow 0,9005 \sim Generate 10 values
- β =0,9990 \rightarrow 0,9995 \sim Generate 1000 values
- PS: Another method is: r=np.random.rand(interval)

- → Linear scale is bad
- * Hyperparameters approach: Panda (Train one model at a time) vs Caviar (Train many models in parallel)
- *PS: We use Caviar approach if we have high computational resources

BATCH NORMALIZATION

- For z⁽ⁱ⁾:
- $*Z_{norm}^{(i)} = \frac{Z^{(i)} \mu}{\sqrt{\sigma^2 + \epsilon}} \# \epsilon$ to avoid division by zero
- $\mathring{ullet} ilde{Z}^{(i)} = \gamma Z_{norm}^{(i)} + eta$ #To manipulate the mean and the variance # γ and β are learnable parameters
- riangle Use $\tilde{Z}^{(i)}$ instead of $Z^{(i)}$ to make inputs belong to other distrubtion
- ■We use batch normalization in mini-batches
- □ The parameter b becomes 0, since mean(Z)=0 \rightarrow No need for b parameter
- \square Shape of β and γ is $(n^{[l]}, 1)$
- □ We can use Momentum, RMSprop and ADAM with Batch Normalization

- ■→ BN reduces this problem by guaranteeing that they will have mean 0 and variance 1: Stability
- BN has a slight regularization effects (not recommended). BN adds a slight noise.
- □In test, we use BN of all the layers in the training using exponentially weighted average

MULTICLASS CLASSIFICATION — SOFTMAX REGRESSION

- PS: Usually activation functions take floats and return floats, here operation is on vectors 0.8
- Softmax $0.1 \atop 0.05$ vs Hardmax $0 \atop 0$ Softmax is generalization of sigmoid with C $\neq 2$ 0.05
- New loss function: Likelyhood function: $L(\hat{y}, y) = -\sum_{j=1}^{C} y_j \log \hat{y}_j$
- New backpropagation (gradient descent): $dZ^{[L]} = \hat{y} y$

TENSORFLOW (1)

- Framework = Library that contain DL functions (Caffe, Kera, Tensorflow)
- * Choice: ease of programming (dev and deployment), running speed, truly open (open source + good governance (will stay open source))
- *import tensorflow as tf
- *w=tf.Variable(value,dtype=tf.float32) #Define a parameter to optimize
- cost_function = #Function of w here
- train=tf.train.GradientDescentOptimizer(learning_rate).minimize(cost_function)#Define learning algo
- init=tf.global_variables_initializer()
- session=tf.Session() #Start a tf session
- session.run(init) #Initialize variables
- session.run(w) #Run session to calculate w

<u>Idiomatic lines</u> (Always in your code)

for i in range(numberOflteration): session.run(train) #Calculate grad desc

TENSORFLOW (2)

- PS: We prepare forward for Tensorflow, and it calculates backward for us
- constant=tf.constant(value)
- *x=tf.placeholder(tf.float32,size) #A variable to assign value to, later
- \Rightarrow session.run(train,feed_dict={x:valuesToAssign,y:v}) #Get data in cost_function i.e. in train
- \diamond PS: float 5. \neq int 5 (in Python)
- with tf.Session as session:
- session.run(init)
- Print(session.run(w))

Another way to write the idiomatic lines

- Computation graph: What happens in tensorflow: It can compute backprop thanks to graph
- ❖PS: In tf, we can't print(a+b) just like that, we have to run a session to be able to print it
- *tf.one_hot(Y,numberOfClasses,axis=0) #Turn Y to a classification matrix

TENSORFLOW (3)

- w=tf.get_variable(shape,initializer=tf.typeOfInitialization())
- \diamond PS: [n_x,None] dimensions \Leftrightarrow number of lines = n_x, number of colons = #idc
- tf.nn.activationFunction(A) #Apply activationFunction on A
- *tf.nn.softmax_cross_entropy_with_logits(logits=y,labels=z) #Compute cost
- _, a=#Something that return two outputs here #First return = #idc
- PS: Main classes in tensorflow: Tensors (variables) and operators (functions/methods)