CSE215 Foundations of Computer Science

Instructor: Zhoulai Fu

State University of New York, Korea

Today

- Some revision missing exercise
- Definitions and facts about numbers
- Direct proof

Revision exercises

Exercise: 2021 midterm-1

Problem 3. [10 points]

Give negations of the following statements. Reasoning is not required.

- (a) [1 point] $p \wedge q$
- (b) [1 point] $p \vee q$
- (c) [1 point] $p \oplus q$
- (d) [1 point] $p \rightarrow q$
- (e) [1 point] $p \leftrightarrow q$

Exercise: 2021 midterm-1

Problem 3. [10 points]

Give negations of the following statements. Reasoning is not required.

- (f) [1 point] $\forall x, \forall y \text{ such that } p(x, y)$
- (g) [1 point] $\forall x, \exists y \text{ such that } p(x, y)$
- (h) [1 point] $\exists x, \forall y \text{ such that } p(x, y)$
- (i) [1 point] $\exists x, \exists y \text{ such that } p(x, y)$
- (j) [1 point] $\exists x, \forall y, \exists z \text{ such that } p(x, y, z)$

Final 2021

Problem 6. [5 points]

Prove that if $n^2 + 8n + 20$ is odd, then n is odd for natural numbers n.

Express the propositions we need to prove here

Final 2021

Problem 5. [5 points]

Prove using contradiction that the cube root of an irrational number is irrational.

Express the propositions we need to prove here

Definitions and facts about numbers

Symbols

- Integers Z
- Natural numbers N
- Real numbers R
- | X |
- sum Σ
- a | b
- b mod a

Formal definitions

- Even/Odd numbers
- Rational/Irrational numbers
- Prime/Composite numbers

Even/odd numbers

We say an integer n is even if: $\exists k \in \mathbf{Z}$ such that n = 2k

How can you define an odd number?

Rational/Irrational numbers

We say a real number r is rational if $\exists m, n \in \mathbb{Z}$ such that r = n/m (and n and m have no common divisor).

Prime/Composite numbers

We say a natural number n is prime if n > 1, and

$$\forall r, s \in \mathbb{N}, n = rs \rightarrow (r = 1 \lor s = 1)$$

d n

We say a non-zero integer d divides an integer n, if

 $\exists k \in \mathbf{Z}, \text{ such that } n = k * d.$

Direct proof

Methods of mathematical proof

Statements	Method of proof
Proving existential statements	Constructive proof
(Disproving universal statements)	Non-constructive proof
Proving universal statements	Direct proof
(Disproving existential statements)	Proof by mathematical induction
	Well-ordering principle
	Proof by exhaustion
	Proof by cases
	Proof by contradiction

- Prove: If p is an even number, then p^2 is an even number
- Proof.
 - Assume p is an even integer. By definition of an even number, p = 2k for some integer k
 - Squaring both sides of "p=2k", we get $p^2 = 4k^2$
 - Thus $p^2 = 2 (2k^2)$ which is twice an integer
 - Thus p^2 is even
- QED.

Skill: Writing a proof

 Writing a proof that is clear, concise, and rigorous is a skill that can be honed with practice and a deep understanding of the subject matter.

How to hone your proof writing skill

- Understand the statement
- Choose a proof method
- Struct your proof
 - Starts with Proof.
 - State assumptions clearly
 - Proceed Step-by-Step: Each step should follow logically from the previous one.
 Every claim you make should either be self-evident, previously proven, or proven within your proof.
 - End with QED.
- Read again your proof. Make it read like an essay.

Even + odd = odd

Proposition

• Sum of an even integer and an odd integer is odd.

- Proof.
 - Suppose n is an even number, and m is an odd number, we need to show n+m is odd
 - since n is an even number, n = 2k for some integer k
 - since m is an odd number, m = 2k'+1 for some integer k'
 - Thus n+m = 2(k+k')+1 which shows n+m is odd.
- QED.

n is odd $\Rightarrow n^2$ is odd

Proposition

• The square of an odd integer is odd.

- Proof.
 - Suppose n is an odd number. We want to show that n^2 is an odd number.
 - Since n is odd, n = 2k+1 for some integer k
 - $n^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$
 - Thus n^2 is odd
- QED.

If a|b and b|c, then a|c

Proposition

ullet (Transitivity) For integers a,b,c, if a|b and b|c, then a|c.

- Proof.
 - Suppose a, b, c are three integers and a|b, b|c.
 - Since a|b, we have b = ak for some integer k
 - Since b|c, we have c = bk' for some integer k'
 - Thus, c = a (k*k')
 - Thus a c.
- QED.

Summary

- Proof techniques direct proof. Commonly used for proving "for all x, P(x) -> Q(x)".
- A proof is an essay of rigorous arguments. Practice your proof-writing skill.