

BEKASI-EAST JAKARTA AIRPORT GROUND SIDE

Report

Degree: Master's degree in Aerospace Engineering **Course:** 220304 - Airports design and construction

Delivery date: 10-12-2017

Students: Abiétar Moreno, Sergi; Delgado Chicote, Miguel; Fernández Porta, Sergi;

Fernández Sanz, Sergio; Fontanes Molina, Pol and Vidal Pedrola, Xavier

Contents

Lis	st of	Tables	iii				
Lis	st of	Figures	iv				
1	Prog	Prognosis					
	1.1	Aviation context in Indonesia	1				
		1.1.1 Airport location	1				
		1.1.2 Current traffic	1				
		1.1.3 Ocupation factor	1				
	1.2	Reference aircraft	1				
		1.2.1 Aircraft type	1				
		1.2.2 Conclusions	1				
	1.3	Forecast computation	1				
		1.3.1 Flights on standard day	1				
		1.3.2 Surface distribution	1				
2	Terr	minal building distribution	2				
	2.1	.1 Basic dimensions of the terminal building					
	2.2	Surface distribution	2				
3	Stru	uctural typology description	3				
	3.1	Foundation	3				
	3.2	Vertical elements	3				
	3.3	Forge	3				
4	Indo	oor paving	4				
	4.1	Typology	4				
	4.2	Floor covering	4				
		4.2.1 Structural base	4				
		4.2.2 Intermediate layers without buttress function	4				
		4.2.3 Leveling layer	4				
		4.2.4 Grip layer	4				
	4.3	Design	4				
	4.4	Superficial layer	4				

CONTENTS

9	Bibl	iograph	у	9
		8.1.2	Materials	8
		8.1.1	Building elements	8
	8.1	Fire pr	evention regulations and chosen materials	8
8	Fire	preven	tion regulations	8
		7.2.2	Office access and automatic baggage handling system access doors	7
		7.2.1	Baggage claim hall doors	
	7.2			7
	7.1			7
1		or clos		7
7	- امط	or clas	uros.	7
	6.4	Sewer	system	6
	6.3	Used n	naterials	6
	6.2	Shape	and inclination of the building cover	6
	6.1	Adopte	ed solution	6
6	Buil	ding co	ver	6
		5.3.4	Automatic baggage handling system doors	5
		5.3.3	Emergency doors	5
		5.3.2	_	5
			Main door and other sliding doors	5
	5.5	5.3.1		
	5.3	•	··	5
	J.∠	5.2.1		5
	5.2	•	facade	5
		5.1.4		5
		5.1.2		5
		5.1.1	·	5
	5.1	5.1.1		5
3	5.1		and hack facada	
5	Faca	. d.		5
		4.4.5	Automatic baggage handling system paving	4
		4.4.4	Offices paving	4
		4.4.3	Restroom paving	4
		4.4.2	Stairways	4
		4.4.1	Common areas paving	4

List of Tables

List of Figures

1 | Prognosis

- 1.1 Aviation context in Indonesia
- 1.1.1 Airport location
- 1.1.2 Current traffic
- 1.1.3 Ocupation factor
- 1.2 Reference aircraft
- 1.2.1 Aircraft type
- 1.2.2 Conclusions
- 1.3 Forecast computation
- 1.3.1 Flights on standard day
- 1.3.2 Surface distribution

2 | Terminal building distribution

- 2.1 Basic dimensions of the terminal building
- 2.2 Surface distribution

3 | Structural typology description

- 3.1 Foundation
- 3.2 Vertical elements
- 3.3 Forge

4 Indoor paving

- 4.1 Typology
- 4.2 Floor covering
- 4.2.1 Structural base
- 4.2.2 Intermediate layers without buttress function
- 4.2.3 Leveling layer
- 4.2.4 Grip layer
- 4.3 Design
- 4.4 Superficial layer
- 4.4.1 Common areas paving
- 4.4.2 Stairways
- 4.4.3 Restroom paving
- 4.4.4 Offices paving
- 4.4.5 Automatic baggage handling system paving

5 | Facade

5.1 Front and back facad	5 .1	l F	ront	and	back	facado
--------------------------	-------------	-----	------	-----	------	--------

- 5.1.1 Requirements and adopted solution
- 5.1.2 Glass
- 5.1.3 Spider system with steel pillars
- 5.1.4 Steel and concrete mixed columns
- 5.2 Lateral facade
- **5.2.1** Facade (prefabricated concrete)
- 5.3 Other elements
- 5.3.1 Main door and other sliding doors
- 5.3.2 Access bridges
- 5.3.3 Emergency doors
- 5.3.4 Automatic baggage handling system doors

6 | Building cover

- 6.1 Adopted solution
- 6.2 Shape and inclination of the building cover
- 6.3 Used materials
- 6.4 Sewer system

7 Indoor closures

- **7.1** Walls
- 7.2 Doors
- 7.2.1 Baggage claim hall doors
- 7.2.2 Office access and automatic baggage handling system access doors

8 | Fire prevention regulations

- 8.1 Fire prevention regulations and chosen materials
- 8.1.1 Building elements
- 8.1.2 Materials

9 Bibliography

- [1] DRONE VS LIGHTNING. http://www.mub.eps.manchester.ac.uk/science-engineering/2017/04/10/drone-vs-lightning/. [Accessed: 2017-06-08].
- [2] NASA Airborne Science ER-2 Investigator-Sponsored Instruments. [Accessed: 2017-03-20].
- [3] Plane Home Plane documentation. http://ardupilot.org/plane/index.html. [Accessed: 2017-05-31.
- [4] PX4FMU Autopilot / Flight Management Unit Pixhawk Flight Controller Hardware. https://pixhawk.org/modules/px4fmu. [Accessed: 2017-02-20.
- [5] Stretching Rubber Bands. https://www.quia.com/files/quia/users/taysish/ Physics/Energy/RubberBandLabToModify1617.pdf. [Accessed: 2017-04-11].
- [6] Equivalent conditions for waste electrical and electronic equipment (WEEE) recycling operations taking place outside the European Union Final Report. 2013. [Accessed: 2017-06-05].
- [7] Edmund C. C. Choi. Field measurement and experimental study of wind speed profile during thunderstorms. [Accessed: 2017-04-17].
- [8] CEMEX. Manual del constructor. *Manual del Constructor*, page 203, 2013. [Accessed: 2017-05-19].
- [9] J. Alan Chalmers. *Atmospheric Electricity*. Pergamon p edition, 1967. [Accessed: 2017-02-11].
- [10] System Dr-Ing Hans Kleinwächter. Manual Electro field meter EFM 113B. [Accessed: 2017-03-13].
- [11] EASA. Propuesta para establecer reglas comunes para la operación de drones en Europa. 2015. [Accessed: 2017-06-01].
- [12] Bas Lansdorp and M Sc. Design of a 100 MW laddermill for wind energy generation from 5 km altitude. *Design*, pages 5–10, 2005. [Accessed: 2017-02-27].

- [13] Meteoblue. https://www.meteoblue.com/es/tiempo/pronostico/modelclimate/. [Accessed: 2017-02-23].
- [14] Joan Montanyà Puig. La investigación en rayos. pages 8–38. [Accessed: 2017-02-10].
- [15] Oj. DIRECTIVE 2006/66/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL. *OJ C*, 21(1):29–35, 2004. [Accessed: 2017-06-03].
- [16] Solar-terrestrial Physics, Caesar Consultancy, Millington Roa, and High-frequency VIf. The global atmospheric electric circuit, solar activity and climate change. (April 2014), 2000. [Accessed: 2017-03-03].
- [17] G Roberts, G Cayez, F Lavie, D Tzanos, J L Brenguier, C Ronfle-Nadaud, G Hattenberger, and M Bronz. UAS for Meteorological and Atmospheric Studies. [Accessed: 2017-03-17].
- [18] Ramon Roger Gutiérrez. Study of altitude electric atmospheric potential sensing. 2014. [Accessed: 2017-02-25].
- [19] SAE. Aircraft Lightning Direct Effects Certification. 2002. [Accessed: 2017-05-01].
- [20] SAE International. ARP5416: Aircraft Lightning Test Methods. *Aerospace Recommended Practice*, 2005. [Accessed: 2017-05-23].
- [21] Earle R. Williams. Research. http://web.mit.edu/earlerw/www/Research.html. [Accessed: 2017-03-29].