PREDICTIVE MAINTENANCE

By Tan Bao Lin

A Data Mining Case Study

Introduction and Data Preprocessing

- Predictive maintenance minimizes downtime, reduces costs, improves safety, and boosts productivity by preventing machine failures.
- This dataset has 10000 rows and 14 columns.

Outlier removal via Z-score: 168 rows removed → 9832 rows remaining

Features: air temperature [K], process temperature [K], rotational speed [rpm], torque [Nm], tool wear [min] \rightarrow Remove Target \rightarrow Remove Type, UDI and Product ID

 \rightarrow 6 columns \rightarrow Discretization of continuous values

→ 12 columns

Data Distribution: No Failure: 9488, Heat Dissipated Failure: 109, Overstrain Failure: 95,

Power Failure: 78, Random Failures: 44, Tool Wear Failure: 18 → SMOTE

 \rightarrow 45612 rows

Failure Type: No Failure: 0, Heat Dissipated Failure: 1, Overstrain Failure: 2, Power

Failure: 3, Random Failures: 4, Tool Wear Failure: 5

Machine Learning Models

- Logistic Regression
- K-Nearest Neighbor
- Support Vector Machine
- Decision Tree

These models were found commonly in AzureML

Common ML Algorithm

- **Splitting** \rightarrow 80% train; 20% test
- **Training** → This is where the difference lies
- **Validation** → 10-Fold cross validation, with StratifiedKFold to help maintain class distribution in each fold
- **Evaluation** → Accuracy, standard deviation, confusion matrix, ROC curve, precision recall curve, learning curve

ML Model Differences

Linear

- Fits mathematical equation to the data
- Not flexible for complex, nonlinear patterns

Nonlinear

- Stores the entire dataset and evaluates during prediction
- Scales poorly with large datasets

Nonlinear

- Maximizes margin between data points and decision boundary
- Takes long time to run due to complexity

Nonlinear

- Build hierarchical tree based on feature splits
- Risk of overfitting

Most Hardworking

Laziest

Hardworking

Lazy

Results - Train and Test

Accuracy

- Logistic Regression 90.04%
- · KNN 98.81%
- · SVM 97.92%
- Decision Tree 100%

Time taken

- Logistic Regression 11s
- KNN 2s
- SVM 3 min 26 s
- Decision Tree 2s

ROC Score Class 0

- Logistic Regression 0.94
- KNN 0.99
- · SVM 0.99
- Decision Tree 0.99

Results - Logistic Regression

Class 0 (No Failure)

- Precision 0.7522
- Recall 0.6615
- All data seem significant, hard to determine which feature

Class 4 (Random Failure)

- Precision 0.7595
- Recall 0.7742
- No correlation due to the failure cause being unknown

Results - Learning Curve

- · kNN show consistent gap between training score and cross-validation score, which indicates less noise at the environment
- The high range between 0.95 to 0.99 and similarity of pattern between training score and cross validation score shows a suitable choice of k is used
- · Decision Tree show signs of overfitting
- Despite overfitting, the cross-validation score for Decision Tree is still highest (0.975 to 0.995)
- SVM shows very close training score to cross-validation score, indicating well-generalized data and high adaptability to new data

Results - Prediction

Sample	Logistic Regression	KNN	SVM	Decision Tree
sample1.csv:	No Failure: 5/5	No Failure: 4/5	No Failure: 4/5	No Failure: 5/5
5 No Failure	Failure: 5/5	Failure: 5/5	Failure: 5/5	Failure: 5/5
1 for each Failure				
Туре				
sample2.csv:	Heat Dissipation	Heat Dissipation	Heat Dissipation	Heat Dissipation
2 for each Failure	Failure: 2/2	Failure: 2/2	Failure: 2/2	Failure: 2/2
Туре	Power Failure: 2/2	Power Failure: 2/2	Power Failure: 2/2	Power Failure: 2/2
	Overstrain Failure: 2/2	Overstrain Failure: 2/2	Overstrain Failure: 2/2	Overstrain Failure: 2/2
	Random Failures: 2/2	Random Failures: 2/2	Random Failures: 2/2	Random Failures: 2/2
	Tool Wear Failure: 2/2	Tool Wear Failure: 2/2	Tool Wear Failure: 2/2	Tool Wear Failure: 2/2
sample3.csv:	No Failure: 9/10	No Failure: 9/10	No Failure: 9/10	No Failure: 10/10
10 No Failure				

Based on prediction results, dataset size and effort required, Decision Tree is the suitable model for this case study.

THANK YOU