Exercice 1. /4

Calculer les limites suivantes :

$$0 \lim_{x \to -\infty} 3x^2 - 3x + 1$$

$$\lim_{\substack{x \to 4 \\ x > 4}} \frac{1 - 2x}{4 - x}$$

$$\bullet \lim_{x \to +\infty} \frac{5x^2}{1 + 9x^2}$$

$$\bullet \lim_{x \to -\infty} 3x + 1 - \sin(x)$$

$$\mathbf{6} \lim_{x \to +\infty} \mathrm{e}^{-\sqrt{x}}$$

$$\mathbf{9} \lim_{\substack{x \to 0 \\ x < 0}} e^{-\frac{1}{x^2}}$$

Exercice 2. /3

Calculer la dérivées des fonctions suivantes :

1.
$$f_1(x) = (2x^3 + 5x^2 + 2x + 1)^4$$
 sur $I = \mathbb{R}$.

2.
$$f_2(x) = \sqrt{3x^2 + e^x}$$
 sur sur $I = \mathbb{R}$.

3.
$$f_3(x) = e^{x^3 + x^2 + x + 1}$$
 sur sur $I = \mathbb{R}$.

Exercice 3.

Soit une fonction f dont le tableau de variation est donné ci-après :

x	$-\infty$	-3		$5 + \infty$
signe de $f'(x)$	_	0	+	+
Variations de f	$+\infty$		+∞	-∞ ⁶

Déterminer, en justifiant, si la courbe représentative de la fonction f admet des asymptotes. Si oui, préciser leurs équations.

Exercice 4. /2

Soit f une fonction définie sur]0; $+\infty[$ telle que pour tout réel x>0,

$$1 - \frac{1}{x^2} \leqslant f(x) \leqslant 1 + \frac{1}{x^2}$$

- 1. Calculer $\lim_{x \to +\infty} f(x)$.
- 2. Interpréter graphiquement le résultat précédent.

Exercice 5. /8

Soit la fonction f définie sur l'intervalle [0; 2] par $: f(x) = \frac{2x+1}{x+1}$.

- 1. Démontrer que f est strictement croissante sur l'intervalle [0; 2].
- 2. En déduire que si $x \in [1; 2]$ alors $f(x) \in [1; 2]$.
- 3. (u_n) et (v_n) sont deux suites définies sur \mathbb{N} par :
 - $u_0 = 2$ et pour tout entier naturel n, $u_{n+1} = f(u_n)$.
 - $v_0 = 1$ et pour tout entier naturel n, $v_{n+1} = f(v_n)$.
 - Le graphique donné ci-dessous représente la fonction f sur l'intervalle [0; 2].
 - (a) Construire sur l'axe des abscisses les trois premiers termes de chacune des suites (u_n) et (v_n) en laissant apparents tous les traits de construction.
 - (b) À partir de ce graphique, que peut-on conjecturer concernant le sens de variation et la convergence des suites (u_n) et (v_n) ?

Dans la suite de l'exercice, on se consacre à l'étude de la suite (u_n) .

(c) Montrer à l'aide d'un raisonnement par récurrence que pour tout entier naturel n,

$$1 \leqslant u_{n+1} \leqslant u_n \leqslant 2.$$

- (d) En déduire que la suite (u_n) converge.
- (e) Soit ℓ la limite de la suite (v_n) . Démontrer l'égalité : $\ell = \frac{2\ell+1}{\ell+1}$.
- (f) En déduire la valeur de ℓ .

