

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

Facultad de Matemáticas

MAT1620 — Cálculo II

Profesor: Maria Gloria Schwarze

Ayudante: Matias Suau (misuau@uc.cl)

Ayudantía 15

Problema 1

a) $\iiint_E x^2 dV$, donde E es el sólido que está dentro del cilindro $x^2 + y^2 = 1$, por encima del plano z = 0 y por debajo del cono $z^2 = 4x^2 + 4y^2$

b) Encuentre el volumen del sólido que está entre el paraboloide $z=x^2+y^2$ y la esfera $x^2+y^2+z^2=2$.

Problema 2

Encuentre el sólido que está dentro de la esfera $x^2 + y^2 + z^2 = 4$ y arriba del plano xy y debajo del cono $z = \sqrt{x^2 + y^2}$.

Problema 3

Calcule la masa de una esfera sólida de radio 5 si su densidad de masa en cada punto es el triple de la distancia del punto al centro de la esfera.

Problema 4

Eavlúe $\iiint_H (9-x^2-y^2) dV$ donde H es la semiesfera $x^2+y^2+z^2 \leq 9$ y $z \geq 0$.

Problema 5

Use coordenadas esféricas para evaluar

$$\int_{-2}^{2} \int_{0}^{\sqrt{4-y^2}} \int_{-\sqrt{4-x^2-y^2}}^{\sqrt{4-x^2-y^2}} y^2 \sqrt{x^2+y^2+z^2} \, dz dx dy$$

Problema 6

Use la transformación $x=u^2,\,y=v^2,\,z=w^2$ para hallar el volumen de la región acotada por la superficie $\sqrt{x}+\sqrt{y}+\sqrt{z}=1$ y planos coordenados.

Problema 7

Evalué la integral $\iiint_E (x^3 + xy^2) dV$, donde E es el sólido en el primer octante $(x, y, z \le 0)$ que se encuentra bajo el paraboloide $z = 1 - x^2 - y^2$.