Philosophy 148 — In-Class Quiz Answer Key

02/14/08

(1) Write the three (Kolmogorov) probability axioms we are using in this class: A: If $Pr(\bullet)$ is defined over a language \mathcal{L} , then for all $p, q \in \mathcal{L}$:

- 1. $Pr(p) \ge 0$.
- 2. If $p = \top$, then Pr(p) = 1.
- 3. If $p \& q \Rightarrow \perp$, then $Pr(p \lor q) = Pr(p) + Pr(q)$.
- (2) Write our definition of the conditional probability $Pr(X \mid Y)$:

A:
$$Pr(X | Y) \stackrel{\text{def}}{=} \frac{Pr(X \& Y)}{Pr(Y)}$$

$$(3) \sim (X \to Y) \Rightarrow \models X \& \sim Y$$

A: T. $X \to Y$ is true on every interpretation but the one in which X is true and Y is false. So $\sim (X \to Y)$ is true just in case $X \& \sim Y$.

- (4) Consider these two statements: $p \equiv q$ and $p \& \sim q$.
 - (a) These two statements are inconsistent (mutually exclusive).

T/F

(b) These two statements are contradictory.

T/F

A: T, F. Consider the truth-table below. There is no line on which both statements are true; therefore, they are inconsistent. However, they do not always have opposite truth-values — see line 3. So they are not contradictory.

p	q	$p \equiv q$	p & ~q
Т	Т	Т	F
Т	F	F	Т
F	Т	F	F
F	F	Т	F

- (5) Consider a monadic predicate-logical language \mathcal{L} with two constants a and b (think: a universe of discourse containing two objects) and two predicates F and G. Which of the following state descriptions of \mathcal{L} is entailed by the universal claim $(\forall x)(Fx \& \sim Gx)$? Circle the correct answer. (Exactly one is correct.)
 - (i) Fa & Ga & Fb & Gb

- (iii) $Fa \& \sim Ga \& Fb \& \sim Gb$
- (ii) $Fa \& Ga \& \sim Fb \& \sim Gb$
- (iv) $\sim Fa \& \sim Ga \& \sim Fb \& \sim Gb$

A: (iii). The universal quantification says that for any object in the universe of discourse, F is true of that object and G is false of it.

(6) Consider the probability model \mathcal{M} described in this stochastic truth-table:

X	Y	State	$Pr(s_i)$
Т	Т	s_1	0.1
Т	F	<i>s</i> ₂	0.2
F	Т	<i>s</i> ₃	0.3
F	F	<i>S</i> 4	0.4

Solve the following problems, concerning this model:

(*a*) Calculate the value of Pr(X) in \mathcal{M} .

A: 0.3.
$$Pr(X) = Pr(X \& Y) + Pr(X \& \sim Y) = 0.1 + 0.2 = 0.3$$

(*b*) Calculate the value of Pr(X | Y) in \mathcal{M} . A: $\frac{1}{4}$.

$$\Pr(X \mid Y) = \frac{\Pr(X \& Y)}{\Pr(Y)} = \frac{\Pr(X \& Y)}{\Pr(X \& Y) + \Pr(\sim X \& Y)} = \frac{0.1}{0.1 + 0.3} = \frac{1}{4}$$

- (c) \mathcal{M} provides a counter-example to $\Pr[\sim(X \& Y)] > \Pr(\sim X \to Y)$. T/ F **A:** F. $\Pr(X \& Y) = 0.1$, so $\Pr[\sim(X \& Y)] = 0.9$. $\sim X \to Y$ is false just in case $\sim X \& \sim Y$. $\Pr(\sim X \& \sim Y) = 0.4$, so $\Pr(\sim X \to Y) = 0.6$. Thus *for this model* $\Pr[\sim(X \& Y)] > \Pr(\sim X \to Y)$, so *this model* does *not* provide a counter-example to the inequality. Note that this does not show the inequality is true for *every* model.
- (7) Consider the probability model \mathcal{M}' depicted by the following Stochastic Venn Diagram (note: the diagram IS drawn to scale, with areas of regions proportional to probabilities of corresponding propositions in \mathcal{M}'):

Circle true or false for each of the following, as they pertain to \mathcal{M}' :

- (a) $X \models Y$ A: F. There are points in the X region where Y is not true.
- (*b*) $Y \models X$ **A:** T. At every point in the *Y* region, *X* is true.
- (c) Pr(X | Y) > 0.5 **A:** T. Because Y = X, Pr(X | Y) = 1.
- (*d*) Pr(Y | X) > 0.5 **A:** F. The *Y* region occupies less than half of the *X* region.
- (*e*) X and Y are correlated. A: T. As we just saw, $Pr(X \mid Y) = 1$. But Pr(X) < 1 (because X does not occupy the entire rectangle). So $Pr(X \mid Y) > Pr(X)$; X and Y are correlated.
- (8) Suppose I roll a fair six-sided die (equal chance of any face coming up) and then flip a fair coin (equal chance of each side coming up), with the outcome of the die roll independent of the outcome of the coin flip. Define statements *A*, *B*, and *C* as follows:

A = 'The coin came up heads' B = 'The die roll came up 3' C = 'The die roll came up with an odd number'

Assuming Pr is a probability function in some probability model compatible with the above description of the situation, answer the following questions:

- (a) What is $\Pr(A \& B)$? **A:** $\frac{1}{12}$. A and B are independent, so $\Pr(A \& B) = \Pr(A) \cdot \Pr(B) = \frac{1}{2} \cdot \frac{1}{6} = \frac{1}{12}$.
- (*b*) What is $Pr(A \vee C)$? **A:** $\frac{3}{4}$. By the general additivity theorem, $Pr(A \vee C) = Pr(A) + Pr(C) Pr(A \& C)$. By independence, $Pr(A \& C) = Pr(A) \cdot Pr(C)$. So

$$Pr(A \lor C) = Pr(A) + Pr(C) - Pr(A) \cdot Pr(C) = \frac{1}{2} + \frac{1}{2} - \frac{1}{2} \cdot \frac{1}{2} = \frac{3}{4}$$

- (c) What is $Pr(B \mid C)$? A: $\frac{1}{3}$. $Pr(B \mid C) = \frac{Pr(B \& C)}{Pr(C)} = \frac{1/6}{1/2} = \frac{1}{3}$
- (*d*) What is $Pr(C \mid A)$? A: $\frac{1}{2}$. By independence, $Pr(C \mid A) = Pr(C) = \frac{1}{2}$.