

VUES LOGIQUE / GRAPHE DES FAITS ET DES REQUÊTES CONJONCTIVES

HAI933I

Rappels: bases de faits et requêtes conjonctives

- Une base de faits F est généralement vue comme un ensemble d'atomes instanciés (« ground »)
- D'un point de vue logique, F est vue comme la conjonction de ces atomes
- On peut étendre la notion de base de faits pour prendre en compte des valeurs inconnues : variables quantifiées existentiellement
 => une base de faits est alors vue comme une conjonction d'atomes dont toutes les variables sont quantifiées existentiellement

BD relationnelle

Мо	vie	Actor		Play	
m_id		a_id		m_id a_id	
m1		a		а	m1
m2		b		a	m2
?x		С		С	?x

Base de faits

```
{ movie(m1), movie(m2), movie(x), actor(a), actor(b), actor(c), play(a,m1), play(a,m2), play(c,x) }
```

Formule logique associée à une base de faits

```
\exists x \ ( movie(m1) \land movie(m2) \land movie(x) 

actor(a) \land actor(b) \land actor(c)

play(a,m1) \land play(a,m2) \land play(c,x) )
```

Rappels: bases de faits et requêtes conjonctives

Une requête conjonctive (CQ) $Q(x_1 ... x_k)$ est de la forme

$$\exists x_{k+1},...,x_m (A_1 \land ... \land A_p)$$

où $A_1,...,A_p$ sont des atomes ayant pour variables $x_1,...,x_m$

Autrement dit, une requête conjonctive est une conjonction d'atomes quantifiée existentiellement (mais pas forcément close)

Notation simplifiée
$$Q(x_1 ... x_k) = \{ A_1, ..., A_p \}$$

$$q(x) = \exists y (movie(y) \land play(x, y))$$

$$q(x) = \{ movie(y), play(x,y) \}$$

FRAGMENT EXISTENTIEL CONJONCTIF POSITIF: $FOL(\exists, \land)$

Formules construites avec le quantificateur existentiel (\exists) et la conjonction (\land)

Forme normalisée (« prénexe ») :

$$\exists x_1 \dots \exists x_n (A_1 \land \dots A_p)$$
 où les A_i sont des atomes et chaque x_i apparait dans un A_i

- Permettent de représenter des bases de faits (et bases de données relationnelles) et des requêtes conjonctives
- o Pour des formules closes (bases de faits et CQs booléennes) :

 $f1 \models f2$ ssi il existe un homomorphisme de f2 dans f1

Dans ce cours:

- Vision « graphe » de ces formules (=> homomorphisme de graphe)
- Notion de minimalité : peut-on supprimer des atomes en gardant une formule équivalente ? Deux formules équivalentes sont-elles « identiques » ?

- On note G = (V,E) un graphe orienté où V est l'ensemble des sommets (vertices)
 et E est l'ensemble des arcs (edges)
- Un ensemble d'atomes avec un seul prédicat binaire et sans constantes peut être vu comme un graphe orienté

$$\{ p(x,y), p(y,z), p(z,x), p(y,y) \}$$

(et réciproquement pour les graphes sans sommets isolés – ou alors on introduit un prédicat unaire pour typer les sommets)

Etant donné un tel ensemble d'atomes A, on construit un graphe (V,E) tel que :

- V est en bijection avec les termes de A (des variables ici) (soit b cette bijection)
- E est en bijection avec les atomes de A :

E contient un arc (b(x),b(y)) si et seulement si $p(x,y) \in A$

• On étiquette :

les arcs si on a plusieurs prédicats binaires

les sommets si on a des constantes

• On peut ajouter un 2^{ème} type d'étiquette sur les sommets pour représenter les prédicats unaires

movie(m1), movie(m2), movie(x), actor(a), actor(b), actor(c), play(a,m1), play(a,m2), play(c,x)

Et si on a des prédicats d'arité supérieure à 2 ?

Ensemble d'atomes encodé par un graphe

- À un ensemble d'atomes, on associe naturellement un hypergraphe « orienté ».
 La notion d'hyperarc généralise la notion d'arc : n-uplet (n > 0) de sommets
- Il est pratique de considérer le graphe d'incidence associé à l'hypergraphe.
 C'est un multi-graphe biparti non-orienté
 - « biparti » : l'ensemble des sommets est partitionné en 2 classes, tel qu'il n'y a aucun arc entre 2 sommets de la même classe
 - « multi-graphe » : il peut y avoir plusieurs arêtes entre deux sommets

- 1 sommet par terme étiqueté par le terme si c'est une constante
- 1 sommet par atome étiqueté par le prédicat de l'atome
- les arêtes lient chaque sommet atome aux sommets termes qui représentent ses arguments
- les arêtes incidentes à un sommet atome sont totalement ordonnées (ce qu'on peut représenter par une numérotation)

PLUS PRÉCISÉMENT:

À un ensemble d'atomes F, on associe un (multi-)graphe biparti (V_T , V_A , E, label) tel que :

- V_T: ensemble des sommets termes
 (on a une bijection b_T de l'ensemble des termes de F vers V_T)
- V_A: ensemble des sommets atomes
 (on a une bijection b_A de l'ensemble des atomes de F vers V_A)
- E: multi-ensemble des arêtes: pour chaque atome $A = p(t_1, ..., t_k)$ de F, on a k arêtes entre $b_A(A)$ et chacun des $b_T(t_i)$
- label : fonction d'étiquetage qui vérifie :
 - tout sommet terme b_T(t) est étiqueté par t si t est une constante, sinon il n'est pas étiqueté
 - tout sommet atome b_A(A) avec A = p(t₁, ..., t_k) est étiqueté par p et toute arête (b_A(A), b_T(t_i)) est étiquetée par i

movie(m1), movie(m2), actor(a), actor(b), actor(c), play(a,m1), play(a,m2), movie(x), play(c,x)

graphe plus simple (car prédicats d'arité ≤ 2)

graphe biparti associé à la vision « hypergraphe »

GRAPH HOMOMORPHISMS (1)

Let G₁=(V₁,E₁) to G₂=(V₂,E₂) be classical graphs.
 Homomorphism h from G₁ to G₂: mapping from V₁ to V₂ s. t. for every edge (u,v) in E₁, (h(u),h(v)) is in E₂

Find the homomorphisms between these graphs

Here, $F \ge G$ means « F maps to G by homomorphism »

GRAPH HOMOMORPHISMS (2)

- Let $G_1 = (V_1, E_1)$ to $G_2 = (V_2, E_2)$ be classical graphs. Homomorphism h from G_1 to G_2 : mapping from V_1 to V_2 s. t. for every edge (u,v) in E_1 , (h(u),h(v)) is in E_2
- If there are labels: they have to be ``kept" as well

GRAPH HOMOMORPHISMS (3)

- Let G₁=(V₁,E₁) to G₂=(V₂,E₂) be classical graphs.
 Homomorphism h from G₁ to G₂: mapping from V₁ to V₂ s. t. for every edge (u,v) in E₁, (h(u),h(v)) is in E₂
- If there are labels: they have to be ``kept" as well

HOMOMORPHISMS ON GRAPHS ASSOCIATED WITH ATOM SETS

- Let *graph* be the translation from a set of atoms to a bipartite (multi-)graph
- Let F_1 and F_2 be two sets of atoms, and: $G_1 = graph(F_1) = (V_{T1}, V_{A1}, E_1, label_1)$ $G_2 = graph(F_2) = (V_{T2}, V_{A2}, E_2, label_2)$
- A homomorphism from G_1 to G_2 is a mapping h from $V_{T1} \cup V_{A1}$ to $V_{T2} \cup V_{A2}$ such that:
 - for all $v \in V_{T1}$, $h(v) \in V_{T2}$; and for all $v \in V_{A1}$, $h(v) \in V_{A2}$
 - for all $v \in V_{T1} \cup V_{A1}$, label(h(v)) = label(v) [when label(v) is defined]
 - for all e = (a,t) ∈ E₁, h(e) = (h(a),h(t)) ∈ E₂, and label(e) = label(h(e))
- Reminder: a homomorphism from F_1 to F_2 is a mapping h from variables(F_1) to terms(F_2) such that: for all $p(t_1,...,t_k) \in F_1$, $h(p(t_1,...,t_k)) \in F_2$ [where $h(p(t_1,...,t_k)) = p(h(t_1),...,h(t_k))$]

There is a homomorphism from F₁ to F₂

if and only if

there is a [graph] homomorphism from graph(F₁) to graph(F₂)

Here, $F \ge G$ means « F maps to G by homomorphism »

If F maps to G and G maps to F, we say that they are homomorphically equivalent This notion exactly corresponds to logical equivalence

ISOMORPHISM OF SETS OF ATOMS / GRAPHS

• Let f and g be sets of atoms

Isomorphism h from f to g: bijective mapping from variables(f) to variables(g)such that h(f) = g

When f and g are isomorphic: we also say that f and g are ``equal up to a bijective variable renaming''

Let G₁=(V₁,E₁) to G₂=(V₂,E₂) be classical graphs
 Isomorphism h from G₁ to G₂: bijective mapping from V₁ to V₂
 such that for all vertices u,v in V₁,
 (u,v) ∈ E₁ if and only if (h(u),h(v)) ∈ E₂

If the graphs are labeled:

label(u) = label(h(u)) for all $u \in V_1$ label ((u,v)) = label(h(u),h(v)) for all (u,v) $\in E_1$

It may happen that f and g are equivalent but not isomorphic Intuitively, it means that at least one of them contains « redundant » information

REMOVING REDUNDANCIES: GETTING TO THE CORE

- A **core** is a set of atoms that is **not** equivalent to any of its **strict** subsets (i.e., it does not map by homomorphism to one of its strict subsets).
- Given f a (finite) set of atoms,
 the core of f is a minimal subset of f equivalent to f.
 It may happen that f has several cores, but they are all isomorphic.
 Hence, we can say « the » core of f.
- If f and g are equivalent, the core of f is isomorphic to the core of g.

Exercice: find an algorithm to compute the core of an atom set

CONCLUSION

- Le fragment logique existentiel conjonctif est fortement lié aux (hyper)graphes (donc aux modèles de données graphes, comme RDF)
- Les notions d'homomorphisme et de core sont fondamentales pour de nombreux problèmes sur les bases de faits et les requêtes

Par exemple : optimisation de requêtes conjonctives

- Déterminer si deux requêtes sont équivalentes
 - but : exécuter la plus simple pour le SGBD
- Minimiser une requête : supprimer toutes ses redondances
 - > but : accélérer l'évaluation de la requête
- Déterminer si une requête Q₁ est plus spécifique qu'une requête Q₂
 - but : accélérer l'évaluation de Q₁ (connaissant les réponses à Q₂)
 - [On parle de problèmes d'optimisation « statique » de requêtes, au sens où ils sont indépendants d'une base de données (ou base de faits) particulière]