Aprendizado de Máquina

Medidas de Distância

Prof. Regis Pires Magalhães

regismagalhaes@ufc.br - http://bit.ly/ufcregis

Medidas de similaridade / distância

Similaridade

- Mede quão parecidos 2 objetos são.
- Similarity are measured in the range o to 1 [0,1].
- Similarity = 1 if X = Y
- Similarity = o if $X \neq Y$
 - where X, Y are two objects.

Manhattan Distance

Sum of the absolute differences of their Cartesian coordinates.

Total sum of the difference between the x-coordinates and y-coordinates.

@dataaspirant.com

In a plane with p_1 at (x_1, y_1) and p_2 at (x_2, y_2) .

Manhattan distance = $|\mathbf{x}_1 - \mathbf{x}_2| + |\mathbf{y}_1 - \mathbf{y}_2|$

Also known as Manhattan length, rectilinear distance, L1 distance or L1 norm, city block distance, Minkowski's L1 distance, taxi-cab metric, or city block distance.

Generalized metric form of Euclidean distance and Manhattan distance.

Distance functions

Euclidean
$$\sqrt{\sum_{i=1}^{k} (x_i - y_i)^2}$$

Manhattan

$$\sum_{i=1}^{k} |x_i - y_i|$$

$$\left(\sum_{i=1}^{k} \left(\left|x_{i}-y_{i}\right|\right)^{q}\right)^{1/q}$$

Euclidean distance =
$$\sqrt{(5-1)^2 + (4-1)^2} = 5$$

Manhattan distance =
$$|5-1| + |4-1| = 7$$

Chebyshev distance

also chessboard is best defined as a distance metric "where the distance between two vectors is the greatest of their differences along any coordinate dimension."

5

$$ChebyshevDistance [\{a,b\},\{x,y\}] = Max[Abs(a-x),Abs(b-y)]$$

No jogo de Xadrez:

Torres → Distância Manhatan

Reis e Rainhas → Distância Chebyshev

Bispos → Distância Manhatan (tabuleiro rotacionado 45°)

Canberra distance is a weighted version of Manhattan distance, which "has been used as a metric for comparing ranked lists and for intrusion detection in computer security."

$$d(\mathbf{p},\mathbf{q}) = \sum_{i=1}^n rac{|p_i-q_i|}{|p_i|+|q_i|}$$

where p and q are vectors and

$$\mathbf{p} = (p_1, p_2, \dots, p_n) \text{ and } \mathbf{q} = (q_1, q_2, \dots, q_n)$$

Hamming Distance

$$D_H = \sum_{i=1}^k \left| x_i - y_i \right|$$

$$x = y \Rightarrow D = 0$$
$$x \neq y \Rightarrow D = 1$$

$$x \neq y \Longrightarrow D = 1$$

In the case of categorical variables you must use the Hamming distance.

Number of symbol changes necessarily to transform one to the other.

X	Υ	Distance
Male	Male	0
Male	Female	1

Inverted index (índice analítico)

doc1:"I like football"

doc2:"John likes football"

doc3:"John likes basketball"

→	doc1	
like →	doc1	
football →	doc1	doc2
John →	doc2	doc3
likes →	doc2	doc3
football →	doc1	doc2
basketball →	doc3	

Consulta

- Who likes basketball?
 - Who:1 likes:1 basketball:1

Result: doc2, doc3 (without any order... or no?)

Boolean model

- Boolean Model: represents only presence or absence of query words and ranks document according to how many query words they contains
- Result: doc3, doc2 (with this prcise order)

Vector Space Model

	doc1	doc2	doc3
1	1	0	0
like	1	0	0
football	1	1	0
John	0	1	1
likes	0	1	1
football	1	1	0
basketball	0	0	1

Similarity between docs and queries

Cosine Distance / Similarity

Two vectors with the same orientation have a cosine similarity of 1, two vectors at 90° have a similarity of 0, and two vectors diametrically opposed have a similarity of -1, independent of their magnitude.

The posine of 0% is 1, and it is

 $cos(\theta) = \frac{A.B}{\|A\| \|B\|}$

The cosine of 0° is 1, and it is less than 1 for any other angle.

CosineDistance
$$\left[\left\{a,b\right\},\left\{x,y\right\}\right] = 1 - \frac{ax + by}{\sqrt{a^2 + b^2}\sqrt{x^2 + y^2}}$$

Cosine Distance/Similarity

Cosine = Pearson

Pearson correlation is a measure of the correlation (linear dependence) between two variables X and Y, giving a value between +1 and −1 inclusive

$$r = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{\sqrt{\sum_{i=1}^{n} (X_i - \bar{X})^2} \sqrt{\sum_{i=1}^{n} (Y_i - \bar{Y})^2}}.$$

For uncentered data, the Pearson correlation coefficient corresponds with the the cosine of the angle φ between both possible regression lines $y=g_x(x)$ and $x=g_y(y)$.

Cosine similarity

- As the vectors represents documents and queries, the cosine is a measure of similarity of how similar is a document with respect to the query
- The documents obtained from the inverted index are ranked accordin to their cosine similarity wrt the query

Union(A,B) =
$$\left|\begin{array}{c} & & & \\ & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

Jaccard Similarity J (A,B) = I Intersection (A,B) I / I Union (A,B) I
$$= 2 / 7$$
$$= 0.286$$

