(Subgrupos B) CUESTIONARIO PREVIO PARA ENTREGAR ANTES DE LA SESIÓN SESIÓN PRÁCTICA 8: Jerarquía de Memoria IV — Cachés unificadas y separadas

Apellidos	Nombre	DNI	Fecha (dd/mm/aaaa)	Hora	Grupo

1. Dado el siguiente programa en ensamblador para MIPS con direcciones de 16 bits y sabiendo que las instrucciones están siempre almacenadas de forma consecutiva en memoria

Realice los siguientes apartados teniendo en cuenta su número de DNI:

Dirección de la primera instrucción	0x1420
Valor de la contante V	0x02A0

Sea un computador con un procesador <u>secuencial</u> con cachés <u>separadas</u> de correspondencia directa CB-WA de 32 Bytes con líneas de 8 Bytes cada una.

a) Represente la decodificación de la dirección que realiza el controlador de caché:

<i>ETIQUETA</i>	ÍNDICE	DESPLAZAMIENTO
BITS	BITS	BITS

b) Muestre la memoria principal una vez cargada las instrucciones y los datos en memoria. Detalle aquellos bloques que contienen instrucciones o elementos del vector. En su parte derecha muestre de forma simplificada la estructura de ambas cachés y utilícela en el apartado siguiente para indicar la carga de bloques que se realiza.

Memoria Principal	Memoria Caché de Instrucciones
	Memoria Caché de Datos

c) Realice la traza de accesos de las <u>2 primeras</u> iteraciones y simultáneamente rellene la caché del apartado anterior según los bloques a los que se acceden:

	Instrucción o Elemento del Vector	Dirección de Memoria	Dirección de Bloque	Línea	Acierto o Tipo de Fallo
	addi \$2, \$0, V				
	addi \$3, \$2, 20				
	addi \$5, \$0, 0				
	lw \$10, 0(\$2)				
	v[0]				
Iteración 1	add \$5, \$5,\$10				
[tera	addi \$2,\$2,4				
	slt \$4, \$2,\$3				
	bne \$4,\$0, loop				
	lw \$10, 0(\$2)				
2	v[1]				
ción	add \$5, \$5,\$10				
Iteración 2	addi \$2,\$2,4				
	slt \$4, \$2,\$3				
	bne \$4,\$0, loop				

2. Calcule la frecuencia de fallos que se obtendría tras la ejecución completa del programa.