

Artificial Intelligence

Lecture 7. Introduction to Classification

Spring 2022

Prof. Jonghoon Chun, Ph.D.

E-mail : jchun@mju.ac.kr Lecture Note : http://lms.mju.ac.kr

Agenda

- Basic Concept
- Bayes Classification Methods

BASIC CONCEPT

Supervised vs. Unsupervised Learning

Supervised learning (classification)

- Supervision: The training data (observations, measurements, etc.) are accompanied by **labels** indicating the class of the observations
- New data is classified based on the training set

Unsupervised learning (clustering)

- The class labels of training data is unknown
- Given a set of measurements, observations, etc. with the aim of establishing the existence of classes or clusters in the data

Classification vs. Numeric Prediction

Classification

- predicts categorical class labels (discrete or nominal)
- classifies data (constructs a model) based on the training set and the values (class labels) in a classifying attribute and uses it in classifying new data

Numeric Prediction

models continuous-valued functions, i.e., predicts unknown or missing values

Classification—A Two-Step Process

- Model construction: describing a set of predetermined classes
 - Each tuple/sample is assumed to belong to a predefined class, as determined by the class label attribute
 - The set of tuples used for model construction is training set
 - The model is represented as classification rules, decision trees, or mathematical formulae
- Model usage: for classifying future or unknown objects
 - Estimate accuracy of the model
 - The known label of test sample is compared with the classified result from the model
 - Accuracy rate is the percentage of test set samples that are correctly classified by the model
 - Test set is independent of training set (otherwise overfitting)
 - If the accuracy is acceptable, use the model to classify new data
- Note: If the test set is used to select models, it is called validation (test) set!

Process 1: Model Construction

Process 2: Use the Model in Prediction

BAYES CLASSIFICATION METHODS

Probabilistic Model

Inference and conditional probabilities

	Preference:		
	TV	Books	
female	1	2	1+2=3
male	4	3	4+3=7
	1+4=5	2+3=5	3+7=10
			or
			5+5=10

- The probability a randomly sampled person in this group will be female is P(female) = 3/10 = .3
- "Joint" probability
 - *P(female, books) = 2/10 = .2*
 - P(x, y) = P(x / y) P(y)
 - P(female, books) = P(female | books) P(books) = 2/5 * 5/10 = .2
 - $P(x \mid y) \ge P(x, y)$

But ...

- P(x, y) = P(x|y) P(y)
- $\stackrel{\frown}{\frown} P(x, y) \neq P(x) P(y)$
- BUT P(x, y) = P(x) P(y) if x and y are statistically independent!

Baye's Theorem

Baye's rule

$$P(x, y) = P(y, x)$$

$$P(x \mid y) P(y) = P(y \mid x) P(x)$$

$$P(x \mid y) = \frac{P(y \mid x) P(x)}{P(y)}$$

- compute conditional probabilities in terms of other probabilities
- Baye's rule may be thought of as describing evidence (e) and the relative degree of support it provides for a hypothesis (h)

Example of Bayes Theorem

- Given:
 - A doctor knows that meningitis causes stiff neck 50% of the time
 - Prior probability of any patient having meningitis is 1/50,000
 - Prior probability of any patient having stiff neck is 1/20
- If a patient has stiff neck, what's the probability he/she has meningitis?

$$P(M \mid S) = \frac{P(S \mid M)P(M)}{P(S)} = \frac{0.5 \times 1/50000}{1/20} = 0.0002$$

Using Bayes Theorem for Classification

- Consider each attribute and class label as random variables
- Given a record with attributes $(X_1, X_2, ..., X_d)$
 - Goal is to predict class Y
 - Specifically, we want to find the value of Y that maximizes $P(Y \mid X_1, X_2,..., X_d)$
- Can we estimate $P(Y | X_1, X_2,..., X_d)$ directly from data?

Example Data

Given a Test Record:

$$X = (Refund = No, Divorced, Income = 120K)$$

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Can we estimate

Replace

"Evade = Yes" by Yes, and

"Evade = No" by No

Using Bayes Theorem for Classification

Approach:

– Compute posterior probability $P(Y \mid X_1, X_2, ..., X_d)$ using the Bayes theorem

$$P(Y \mid X_1 X_2 ... X_n) = \frac{P(X_1 X_2 ... X_d \mid Y) P(Y)}{P(X_1 X_2 ... X_d)}$$

- Maximum a-posteriori: Choose Y that maximizes $P(Y \mid X_1, X_2, ..., X_d)$
- Equivalent to choosing value of Y that maximizes $P(X_1, X_2, ..., X_d \mid Y) P(Y)$
 - since $P(X_1, X_2, ..., X_d)$ is constant for all classes.
- How to estimate $P(X_1, X_2, ..., X_d \mid Y)$?

Example Data

Given a Test Record:

$$X = (Refund = No, Divorced, Income = 120K)$$

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Using Bayes Theorem:

$$P(Yes \mid X) = \frac{P(X \mid Yes)P(Yes)}{P(X)}$$

$$P(No \mid X) = \frac{P(X \mid No)P(No)}{P(X)}$$

How to estimate P(X | Yes) and P(X | No)?

Naïve Bayes Classifier

- Assume independence among attributes X_i when class is given:
 - $P(X_1, X_2, ..., X_d | Y_j) = P(X_1 | Y_j) P(X_2 | Y_j)... P(X_d | Y_j)$
 - Now we can estimate $P(X_i \mid Y_j)$ for all X_i and Y_j combinations from the training data
 - New point is classified to Y_j if $P(Y_j)$ Π $P(X_i|Y_j)$ is maximal.

Naïve Bayes on Example Data

Given a Test Record:

$$X = (Refund = No, Divorced, Income = 120K)$$

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Estimate Probabilities from Data

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

• Class:
$$P(Y) = N_c/N$$

- e.g., $P(No) = 7/10$, $P(Yes) = 3/10$

For categorical attributes:

$$P(X_i \mid Y_k) = |X_{ik}| / N_c$$

- where |X_{ik}| is number of instances having attribute value X_i and belonging to class Y_k
- Examples:P(Status=Married|No) = 4/7P(Refund=Yes|Yes) = 0

Estimate Probabilities from Data – continuous value

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Gaussian distribution:

Gaussian distribution.
$$P(X_i | Y_j) = \frac{1}{\sqrt{2\pi\sigma_{ij}^2}} e^{-\frac{(X_i - \mu_{ij})^2}{2\sigma_{ij}^2}}$$

- One for each (X_i,Y_i) pair
- For (Income, Class=No): If Class=No.
 - sample mean = 110
 - sample variance = 2975

$$P(Income = 120 \mid No) = \frac{1}{\sqrt{2\pi}(54.54)}e^{\frac{-(120-110)^2}{2(2975)}} = 0.0072$$

Example of Naïve Bayes Classifier

Given a Test Record:

$$X = (Refund = No, Divorced, Income = 120K)$$

```
    P(X | No) = P(Refund=No | No)

Naïve Bayes Classifier:
                                                         × P(Divorced | No)
P(Refund = Yes | No) = 3/7
                                                         × P(Income=120K | No)
P(Refund = No | No) = 4/7
P(Refund = Yes | Yes) = 0
                                                         = 4/7 \times 1/7 \times 0.0072 = 0.0006
P(Refund = No | Yes) = 1
P(Marital Status = Single | No) = 2/7
                                         P(X | Yes) = P(Refund=No | Yes)
P(Marital Status = Divorced | No) = 1/7
P(Marital Status = Married | No) = 4/7
                                                          × P(Divorced | Yes)
P(Marital Status = Single | Yes) = 2/3
                                                          × P(Income=120K | Yes)
P(Marital Status = Divorced | Yes) = 1/3
                                                          = 1 \times 1/3 \times 1.2 \times 10^{-9} = 4 \times 10^{-10}
P(Marital Status = Married | Yes) = 0
For Taxable Income:
                                     Since P(X \mid No) P(No) > P(X \mid Yes) P(Yes)
If class = No: sample mean = 110
                                     Therefore P(No \mid X) > P(Yes \mid X)
            sample variance = 2975
If class = Yes: sample mean = 90
                                                  => Class = No!
            sample variance = 25
```


Issues with Naïve Bayes Classifier

Naïve Bayes Classifier:

```
P(Refund = Yes | No) = 3/7
P(Refund = No | No) = 4/7
P(Refund = Yes | Yes) = 0
P(Refund = No | Yes) = 1
P(Marital Status = Single | No) = 2/7
P(Marital Status = Divorced | No) = 1/7
P(Marital Status = Married | No) = 4/7
P(Marital Status = Single | Yes) = 2/3
P(Marital Status = Divorced | Yes) = 1/3
P(Marital Status = Married | Yes) = 0
```

For Taxable Income:

If class = No: sample mean = 110 sample variance = 2975 If class = Yes: sample mean = 90 sample variance = 25

•
$$P(Yes) = 3/10$$

 $P(No) = 7/10$

P(Yes | Married) = 0 x 3/10 / P(Married)
 P(No | Married) = 4/7 x 7/10 / P(Married)

Issues with Naïve Bayes Classifier

Consider the table with Tid = 7 deleted

Tid	Refund	Marital Status	Taxable Income	Evade	
1	Yes	Single	125K	No	
2	No	Married	100K	No	
3	No	Single	70K	No	
4	Yes	Married	120K	No	
5	No	Divorced	95K	Yes	
6	No	Married	60K	No	
8	No	Single	85K	Yes	
9	No	Married	75K	No	
10	No	Single	90K	Yes	

Naïve Bayes Classifier:

If class = No: sample mean = 90

$$P(X \mid No) = 2/6 \times 0 \times 0.0083 = 0$$

$$P(X | Yes) = 0 X 1/3 X 1.2 X 10^{-9} = 0$$

sample variance = 25

Issues with Naïve Bayes Classifier

- If one of the conditional probabilities is zero, then the entire expression becomes zero
- Need to use other estimates of conditional probabilities than simple fractions
- Probability estimation:

Original:
$$P(A_i \mid C) = \frac{N_{ic}}{N_c}$$

Laplace:
$$P(A_i \mid C) = \frac{N_{ic} + 1}{N_c + c}$$

m - estimate :
$$P(A_i \mid C) = \frac{N_{ic} + mp}{N_c + m}$$

c: number of classes

p: prior probability of the class

m: parameter

 N_c : number of instances in the

class

 N_{ic} : number of instances having attribute value A_i in class c

Example

- Suppose a dataset with 1000 tuples, income=low (0), income= medium (990), and income = high (10)
- Use Laplacian correction (or Laplacian estimator)
 - Adding 1 to each case
 P(income = low) = 1/1003
 P(income = medium) = 991/1003
 P(income = high) = 11/1003
 - The "corrected" prob. estimates are close to their "uncorrected" counterparts

Multinomial Naïve Bayes

- Naïve Bayes algorithm for multinomially distributed data
 - Multinomial data distribution models the probability of counts for rolling a k-sided die n times
 - a generalization of the binomial distribution (k = 2, n > 1)
- Frequently used in text classification
 - Document is represented as term vector counts (or tf-idf vectors)
 - The distribution is parametrized by vectors $\theta_y = (\theta_{y1},...,\theta_{yn})$ for each class y, where n is the number of terms* (BOW size)
 - $-\theta_{yi}$ is the probability P(x_iIy) of term i appearing in a sample belonging to class y.

*term = feature = column = dimension =

Multinomial Naïve Bayes

Probability Estimation for multinomial distribution

$$P(x_i \mid y) = \frac{N_{yi} + \alpha}{N_y + \alpha n}$$

- Where N_{yi} : number of times term* i appears in a sample class y
- $-N_y$: total count of all terms for class y
- n: number of terms*
- α : tuning parameter
 - $-\alpha$ = 1: Laplace smoothing
 - $-\alpha$ < 1: Lidstone smoothing

Naïve Bayes Classifier Summary

- Advantages
 - Easy to implement
 - Good results obtained in most of the cases
- Disadvantages
 - Assumption: class conditional independence, therefore loss of accuracy
 - Practically, dependencies exist among variables
 - E.g., hospitals: patients: Profile: age, family history, etc. Symptoms: fever, cough etc., Disease: lung cancer, diabetes, etc.
 - Dependencies among these cannot be modeled by Naïve Bayes Classifier
- Need to use other techniques such as Bayesian Belief Networks (BBN)

END

