PCT

世界知的所有権機関 国際事務局 特許協力条約に基づいて公開された国際出願

(51) 国際特許分類6

C12N 15/80, 15/04, 9/42, 9/24, 1/15 // (C12N 15/04, C12R 1:885) (C12N 9/42, C12R 1:885) (C12N 9/24, C12R 1:885) (C12N 1/15, C12R 1:885) (11) 国際公開番号 A1 WO98/11239

(43) 国際公開日

1998年3月19日(19.03.98)

(21) 国際出願番号

PCT/JP97/03268

(22) 国際出願日

1997年9月16日(16.09.97)

(30) 優先権データ

特願平8/243695

1996年9月13日(13.09.96)

(71) 出願人 (米国を除くすべての指定国について) 明治製菓株式会社(MEIJI SEIKA KAISHA, LTD.)[JP/JP] 〒104 東京都中央区京橋二丁目4番16号 Tokyo, (JP)

(72) 発明者;および

(75) 発明者/出願人(米国についてのみ)

渡辺 学(WATANABE, Manabu)[JP/JP]

守屋達樹(MORIYA, Tatsuki)[JP/JP]

青柳 薫(AOYAGI, Kaoru)[JP/JP]

隅田奈緒美(SUMIDA, Naomi)[JP/JP]

村上 健(MURAKAMI, Takeshi)[JP/JP]

〒250-01 神奈川県小田原市栢山788

明治製菓株式会社 薬品技術研究所内 Kanagawa, (JP)

(74) 代理人

弁理士 佐藤一雄, 外(SATO, Kazuo et al.)

〒100 東京都千代田区丸の内三丁目2番3号 富士ビル323号

協和特許法律事務所 Tokyo, (JP)

(81) 指定国 AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, HU, ID, IL, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL. TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO特許(GH, KE, LS, MW, SD, SZ, UG, ZW), ユーラシア特許(AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), 欧州特許(AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI特許(BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

添付公開書類

国際調査報告書

(54)Title: REGULATORY SEQUENCE OF CELLULASE cbh1 GENES ORIGINATING IN TRICHODERMA VIRIDE AND SYSTEM FOR MASS-PRODUCING PROTEINS OR PEPTIDES THEREWITH

(54)発明の名称 Trichoderma viride由来のセルラーゼcbhl遺伝子の制御配列およびそれを用いたタンパク質またはペプチドの 大量生産系

(57) Abstract

Establishment of a system for mass-producing proteins or peptides, particularly a system for mass-producing cellulase in molds such as *Trichoderma viride*. As the regulatory sequence of cellulase cbhl genes originating in *Trichoderma viride* can highly express objective proteins, objective proteins, particularly cellulase, can be amply expressed with this sequence. Thus an endoglucanase originating in *Humicola insolens* has now been successfully produced in a quantity of 15 g/l.

Patent provided by Sughrue Mion, PLLC - http://www.sughrue.com

(57)要約

タンパク質またはペプチドの大量生産系の確立、とりわけTrichoderma viride のような糸状菌におけるセルラーゼの大量生産系を確立した。Trichoderma viri de由来のセルラーゼcbh1遺伝子の制御配列が目的タンパク質を高発現させる。よってこの制御配列を用いて目的タンパク質特にセルラーゼを大量発現させることができる。特に、この制御配列によってflumicola insolens 由来のエンドグルカナーゼを15g/L 生産させることに成功した。

PCTに基づいて公開される国際出願のパンフレット第一頁に記載されたPCT加盟国を同定するために使用されるコード(参考情報)

AAAAABBBBBBBBCCCCCCCCCDDE	アアオオアボバベブグスカウコスコカウキチドデエアメルルーーゼズルルルルカララナ央ンイーメ国ュェインスルルーーゼズルルルルカララナ央ンイーメロン・ドーナリ カ ポ カ ア アリライ・ス・ア ル リ ジン オ ア ア・ツッツ・ト ガー バー ハッツマト ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・	SIRABEHMNWRUDELSTPEGPRAGCI EFFGGGGGGGGHIIIIIKKKKKHLL P	スフフガ英グガガギギギハイアイアイロケキ朝女がシンン ジナビアアシガメラス ア ア サーシンルン タナビアアシガメルン ア ア サーシンルン タ主 ねジシンド ウ アド ド 人 S タ ト	LRSTUVCDGK LNRWXELOZLT & MMGW MMRWXELOZLT & PRODUCT PR	スリレリルラモモマメニオノニポルイヤロス リベントクトナルダケグリンーラキジラルュール サーニンイ カルコ国 フ カ エブア ナカア共 ニカー アンド・アセグコ ドメドア ルタイコール ージドル マラーション メッテラン メッテラン ボ いっち アンズ が でまる マップ アン・アンズ が でまる マップ アン・アング かまる マップ アンドル できる マップ アン・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・	SSSSSSTTTTTTTUUUUVYZ	スシススシセスチトタトトトウウ米ウヴユジップンプ・ゴキウコニラン ペェゴバーボェアレルラド スメ ダイダ キトスブーボキオ ン タニ 一ナ スナラエデーニキオ ン タ・・ ン ア スシスススシセスチトタトトトウウ米ウブニジンルア・スト レス ド タムビンルア・スト レス ド タムビンルア・スト レス ド タ・・ ン アーカー カーカー カーカー カーカー カーカー カーカー カーカー カー
---------------------------	---	--	--	--	--	----------------------	--

明 細 書

Trichoderma viride由来のセルラーゼcbhl遺伝子の制御配列およびそれを用いたタンパク質またはペプチドの大量生産系

発明の背景

発明の分野

本発明は、タンパク質またはペプチドの大量生産系に関し、更に詳しくはTric hoderma viride由来の制御配列を用いた生産系、さらにこの生産系を用いたタンパク質またはペプチドの生産技術に関する。

背景技術

糸状菌は菌体外にタンパク質、特に酵素を著量分泌することが知られている。 たとえば、Aspergillus 属はアミラーゼやプロテアーゼ、リパーゼ、セルラーゼ といった酵素を分泌し、それらは各種の分野で利用されている。その生産量は、 工業的に利用されるAspergillus niger の場合グルコアミラーゼを培養液1Lあた り20g 以上、Aspergillus oryzaeの場合個体培養で1kg あたり50g 程度生産する といわれている(五味勝也:化学と生物(1994)、32,269)。

さらに、近年これら糸状菌のタンパク質生産性を利用した、目的タンパク質の生産技術についても多くの知見が集積されつつある。たとえば、Aspergillus nidulansを宿主にMucor miehei由来レンニン(G.L.Gray, et.al.: Gene (1986), 48, 41)、Aspergillus niger を宿主にAspergillus ficuum由来フィターゼ(R.F.M. van Gorcom, et. al.: Europian Patent Application(1991), 0420358A1)、Aspergillus oryzaeを宿主にMucor miehei由来レンニン(T.christensen, et. al.: Bio/Technology (1988), 6, 1419)やリパーゼ(B. Huge-Jensen, et.al.: Lipids (1989), 24, 781)、Trichoderma reeseiを宿主にPhlebia radiata

由来ラッカーゼ(M. Saloheimo. et. al.: Bio/Technology (1991), 9, 987)、Trichoderma virideを宿主にAspergillus oryzae由来αーアミラーゼ(C. Cheng, et. al.: Agric. Biol. Chem. (1991), 55, 1817)、Acremonium chrysogenum を宿主にFusarium属由来アルカリプロテアーゼ(森田滋ら:日本農芸化学会大会講演要旨集(1993), p.140)等の糸状菌由来異種タンパク質が生産されてきている。また、Aspergillus nidulans、Aspergillus niger 、Aspergillus oryzaeやTrichoderma reeseiを宿主にしたヒトやウシなどの動物、さらには植物由来のタンパク質生産も確認された。

このように、糸状菌はタンパク質やポリペプチドの優れた生産宿主であることは明らかである。そしてさらに、それを工業的に利用するにあたっては、目的タンパク質の生産性が重要となってくる。この生産性を左右するといわれている要因としては、①宿主内で発現する調節領域(例えばプロモーターやターミネーターなど)が目的タンパク質を有効かつ大量に転写、翻訳の調節をすること、②翻訳産物が目的とする高次構造(活性型)をとること、③更にはそれらが安定に細胞外に分泌される事等があげられる。これらに対してAspergillus 属のアミラーゼ遺伝子のプロモーターやTrichoderma 属のセルラーゼ遺伝子プロモーターなど、有効なプロモーターが開発されてきた。これまでの知見によれば、Aspergillus oryzaeを宿主に、 α -アミラーゼ遺伝子のプロモーターを用いてMucor mieheiのレンニンを培養液1Lあたり3.3g生産できるとされている。

しかしながら、いかに強力なプロモーターを利用しても、一般に、取得したい目的タンパク質は宿主のタンパク質生産量を越えることはない。実際、上述Aspe rgillus oryzaeの例については30% のタンパク質生産能力が利用されているにすぎない。この現象については、利用した遺伝子が宿主に残っている、翻訳領域のコドン使用頻度が種により異なる、分泌のメカニズムが種により異なる等の事が考えられているが、これらを改良する技術はいまだ発見されていない。

そこで宿主のタンパク質生産量自体を向上させることにより、目的タンパク質 の収得量を向上させることが考えられる。

これまで、Trichoderma 属に属する糸状菌は優れたセルラーゼ生産菌であることが知られている。特にTrichoderma reeseiは異種タンパク質の生産に関しても各種検討されており、同菌の分泌タンパク質の約70%を占めるといわれているセロビオハイドロラーゼ1 (cbh1) 遺伝子のプロモーターを用いて、異種タンパク質発現の検討が多く行なわれている (Uusitalo JM, et.al.: J. Biotechnol. (1991). 17. 35. Joutsjoki VV, et. al.: Curr. Genet. (1993). 24, 223. Barnett CC, et. al.: Biotechnology (1991), 9, 562. Berges T, et. al.: Curr. Genet. (1993). 24, 53. Saloheimo M, et. al.: Gene (1989), 85, 343. Saarelainen R. et. al.: Mol. Gen. Genet. (1993). 241, 497.)。しかし、Trichoderma viri deを宿主とした異種タンパク質発現系についてはC. Chengらの報告に見られるだけである。C. Chengらによれば、Trichoderma virideのプロテアーゼ欠損株を宿主にcbh1プロモーター、シグナル配列を用いた α -アミラーゼ遺伝子を導入し、培養液1Lあたり1gの α -アミラーゼが生産されたとしている。これは、Trichoderma virideを用いた異種タンパク質生産の可能性を示すものであるが、生産レベルは実生産スケールにおいてはコスト的に満足するものではない。

発明の概要

本発明者らは、今般、Trichoderma viride由来のセルラーゼ遺伝子の制御配列が目的タンパク質を高発現させるとの知見を得て、この制御配列を用いてHumico la insolens 由来のエンドグルカナーゼを15g/L 生産させることに成功した。このような生産量は、これまでに開示された如何なる糸状菌の異種タンパク質生産系においても確認されていない。本発明は、これら知見に基づくものである。

よって、本発明は、目的タンパク質を高発現させる制御配列およびそれを用いたタンパク質の大量生産系の提供をその目的としている。

また、本発明は、上記生産系を用いたタンパク質またはペプチドの大量生産法の提供をその目的としている。

そして、本発明による目的タンパク質を高発現させる制御配列は、Trichoderm a viride由来のセルラーゼcbhl遺伝子の制御配列である。

また、本発明によるタンパク質の大量生産系は、このTrichoderma viride由来のセルラーゼcbh1遺伝子の制御配列を利用したものである。

図面の簡単な説明

図1はTrichoderma viride 由来のセルラーゼcbhl遺伝子およびその制御配列を含むプラスミドpA01、ならびにその消化断片をクローン化したプラスミドpCB1-H3、pCB1-H4、pCB1-S1、pCB1-S3、pCB1-a1、pCB1-b1、pCB1-c2、pCB1-d1、およびpCB1-e1の制限酵素地図である。

図2はプラスミドpCB1-MX の制限酵素地図である。

図3はプラスミドpCB1-M2 の制限酵素地図である。

図4はプラスミドpCB1-M2XR の制限酵素地図である。

図5はプラスミドpCB1-HEgX の制限酵素地図である。

図6は、プラスミドpCB1-Eg3X の制限酵素地図である。

図7は、プラスミド $pCB-XI^{-}$ の制限酵素地図である。

発明の具体的説明

微生物の寄託

図2に記載の地図で表されるプラスミドpCB1-MX で形質転換された大腸菌JM 109株は、FERM BP-6044の受託番号のもと1996年9月9日 (原寄託日)に通商産業省工業技術院生命工学工業技術研究所(日本国茨城県つくば市東1-1-3、以下「NIBH」と略す)に寄託されている。

図4に記載の地図で表されるプラスミドpCB1-M2XR で形質転換された大腸菌 J M109株は、FERM BP-6045の受託番号のもと1996年9月9日

(原寄託日) にNIBHに寄託されている。

図5に記載の地図で表されるプラスミドpCB1-HEgX で形質転換された大腸菌 J M109株は、FERM BP-6046の受託番号のもと1996年9月9日 (原寄託日) にNIBHに寄託されている。

図 6 に記載の地図で表されるプラスミドpCB1-Eg3X で形質転換された大腸菌は、 FERM BP-6043の受託番号のもと1997年8月11日にNIBHに 寄託されている。

図7に記載の地図で表されるプラスミドpCB-XI^{*} で形質転換された大腸菌は、 FERM BP-6042の受託番号のもと1997年8月11日にNIBHに 寄託されている。

本発明によるcbh1遺伝子およびその制御配列の由来となったTrichoderma viri de MC300-1 株は、FERM BP-6047の受託番号のもと1996年9月9日(原寄託日)にNIBHに寄託されている。

定義

本明細書において、タンパク質およびペプチドは特に断らない限り、同義に用いることとする。また、本明細書において、改変配列とは、塩基配列またはアミノ酸配列において、幾つかの(例えば、1~数個の)塩基またはアミノ酸の挿入、置換または欠失、もしくはその一方または両末端への付加がなされたものを意味する。

Trichoderma viride由来のセルラーゼ cbhl 遺伝子の制御配列

本発明による制御配列は、Trichoderma viride由来の制御配列である。本発明において制御配列とは、プロモーター、シグナル配列、およびターミネーターからなる群から選ばれる少なくとも一つを意味する。

本発明による制御配列とは、より具体的には、図1に記載のプラスミドpAO1内にあるcbh1遺伝子の制御配列である。

本発明において好ましいプロモータ配列の例としては、図1に記載のプラスミドpA01中の、cbh1遺伝子のアミノ末端から上流の約1.5kb までの領域中に存在する配列、例えばプラスミドpA01中のcbh1遺伝子のアミノ末端から上流のHindIIIサイトまでの配列である。

さらに、本発明によるプロモーター配列には、この領域の全配列のみならず、 高プロモーター活性を保持するその改変配列も含まれる。本発明において、高プロモーター活性とは、後記するセルラーゼNCE4遺伝子の発現において、高発現を実現する強いプロモーター活性を意味し、より具体的には、培地1リットルあたり7~8g、好ましくは15g以上のNCE4の発現を実現するプロモーター活性を意味するものとする。後記する実施例に記載の知見、寄託されている菌株、および配列番号1の配列が与えられた当業者であれば、そのような改変配列が存在することは容易に予測でき、また容易に製造することが可能であることは明らかである。

また、本発明において好ましいシグナル配列とは、配列番号1に記載のアミノ酸配列の-17から-1までの配列をコードする塩基配列が挙げられる。更に本発明には、その塩基配列の改変配列であって、シグナル配列活性を保持するアミノ酸配列をコードするものも包含される。このような改変配列についても、後記する実施例に記載の知見、寄託されている菌株、および配列番号1の配列が与えられた当業者であれば、そのような改変配列が存在することは容易に予測でき、また容易に製造することが可能であることは明らかである。

なお、これら配列の実際の利用にあたり上記のシグナル配列に加えてさらにcb h1タンパク質のN末端側のいくつかのアミノ酸が付加されてもよいことは当業者 に明らかである。すなわち、これらシグナル配列の利用にあたり、目的タンパク質が、cbh1タンパク質のN末端側のいくつかのアミノ酸からなるペプチドとの融合タンパク質、さらにはcbh1タンパク質との融合タンパク質として得られてもよ

い。

さらに、本発明において好ましいターミネーター配列としては、プラスミドpA 01中のcbh1遺伝子のカルボキシル末端から下流の約 1kbまでの領域中に存在する配列、例えばcbh1遺伝子のカルボキシル末端から下流のSallサイトまでの配列が挙げられる。

さらに、本発明によるターミネーター配列には、これら領域の全配列のみならず、そのターミネーター活性を保持する改変配列も含まれる。

これら制御配列、とりわけ前記プロモーター配列は、後記するセルラーゼNCE4遺伝子を極めて高効率で発現させる。従って、本発明の好ましい態様によれば、NCE4遺伝子の発現に好ましく用いられる制御配列、とりわけNCE4遺伝子の発現に好ましく用いられるプロモーター配列が提供される。本発明の好ましい態様によれば、セルラーゼNCE4の生産量は培養液1リットルあたり7~8g、好ましくは約15gに達する。

発現ベクターおよび宿主

本発明によれば、上記制御配列を用いて目的タンパク質を発現するための発現ベクターが提供される。

本発明による発現ベクターは、その第一の態様によれば、上記制御配列と、場合によって遺伝子マーカーとを含んでなるものである。さらに、本発明による発現ベクターは、第一の態様の発現ベクターに、さらにその制御配列に作動可能に連結された目的タンパク質をコードする塩基配列を含んでなるものである。従って、上記した本発明によるプロモーター、シグナル配列、およびターミネーターからなる群から選ばれる少なくとも一つを含んでなる発現ベクターは本発明の範囲に包含されるものである。

前記したように、本発明によるプロモーター配列は極めて有用性の高いものであることから、本発明の好ましい態様によれば、本発明によるプロモーター配列

を少なくとも含んでなる発現ベクターが提供される。この発現ベクターにあって、シグナル配列、ターミネーター配列は本発明によるシグナル配列およびターミネーター配列以外のものであってもよいが、上記した本発明によるシグナル配列およびターミネーター配列の利用が好ましい。これらベクターの具体例としては、後記する実施例において構築された発現ベクターpCB1-MX、pCB1-M2XR が挙げられる。

本発明による発現ベクターは、発現ベクターを構築する為の宿主細胞において複製可能なベクター、例えばプラスミドを基本に構築されるのが好ましい。そのようなベタターとして、大腸菌で複製可能なベクターである、pUC Vector、pTV Vector、pBluescript 、pBR322などが挙げられる。本発明によるベクターの構築に必要な手法は、遺伝子組み替えの分野において慣用されている方法を用いることができる。

また遺伝子マーカーは、形質転換体の選択の手法に応じて適宜選択されてよいが、例えば薬剤耐性をコードする遺伝子、栄養要求性を相補する遺伝子等を利用することができる。本発明に用いることができる薬剤耐性遺伝子としては、宿主細胞が感受性を示す薬剤に関するものならば限定されないが、例えば、宿主としてTrichoderma viride を用いる場合、Streptomyces rimofaciens由来のデストマイシン耐性遺伝子、Escherichia coli由来のハイグロマイシンB 耐性遺伝子、Streptococcus hindustanus 由来のブレオマイシン耐性遺伝子を好ましく用いることができる。

本発明の好ましい態様によれば、公知の方法により、Aspergillus nidulans由来trp C 遺伝子のプロモーターとターミネーター (Mullaney, E. J. et al., Mol. Gen. Genet. 199: 37-45,1985) が得られ、これを用いて、ハイグロマイシンB耐性遺伝子を発現可能にしたカセット (Cullen. D. et al., Gene(1987).57, 21) を利用するのが好ましい。

本発明による発現ベクターは、種々の目的タンパク質またはペプチドの発現生産に利用することができる。本発明において目的タンパク質またはペプチドとは、宿主細胞に存在しないいわゆる外来タンパク質のみならず、宿主細胞において発現してはいるがその量が微量であるタンパク質をも意味するものとする。本発明による発現ベクターにおける目的タンパク質をコードする遺伝子としては、セルラーゼ、アミラーゼ、リパーゼ、プロテアーゼ、フィターゼ等産業上有用なタンパク質をコードする遺伝子が挙げられる。また、これらを人為的に改良した遺伝子についても同様に目的タンパク質をコードする遺伝子とすることができる。

本発明による発現ベクターは、Trichoderma viride由来の cbh1 遺伝子が発現可能な宿主細胞ならば特に限定されないが、好ましくは、宿主としてTrichoderma 属に属する微生物と組み合わされて発現系とされる。本発明の好ましい態様によれば、Trichoderma 属に属する微生物としてTrichoderma virideを利用することができる。

更に本発明の好ましい態様によれば、最も好ましい宿主としてTrichoderma viride高セルラーゼ生産株であるTrichoderma viride MC300-1株を利用するのが好ましい。

また、本発明の好ましい態様によれば、宿主細胞としてTrichoderma reeseiを 用いることも可能である。

更に本発明の好ましい態様によれば、本発明による発現系はセルラーゼの発現に極めて有利に利用することができる。セルラーゼの具体例としては、フミコーラ・インソレンス由来のセルラーゼNCE4またはその改変タンパク質、およびWO91/17243号公報(特表平5-509223)に記載の43kDのエンドグルカナーゼ、Trichoderma viride 由来のエンドグルカナーゼSCE3またはその改変タンパク質、または同じくTrichoderma viride 由来のキシラナーゼSXY1またはその改変タンパク質が挙げられる。ここで、フミコーラ・インソレンス

由来のセルラーゼNCE4とは、配列番号3 に記載の1番から284番までの配列を有するタンパク質を意味する。また、エンドグルカナーゼSCE3とは、配列番号5に記載の1番から397番までの配列を有するタンパク質を意味する。さらに、Trichoderma viride 由来のキシラナーゼSXY1とは、配列番号7に記載の1番から190番までの配列を有するタンパク質を意味する。

なおここで、改変タンパク質とは、上記タンパク質のアミノ酸配列において、いくつかの(例えば、1~数個の)アミノ酸の付加、挿入、削除、欠失、または置換などの改変が生じたタンパク質であって、依然としてその酵素活性、とりわけエンドグルカナーゼ活性またはエンドキシラナーゼ活性を保持するものを意味するものとする。

本発明の好ましい態様によれば、セルラーゼNCE4の発現系として好ましいベクターの具体例としては、後記する実施例によって構築された発現ベクターpC B1-HEgX が挙げられる。また、エンドグルカナーゼSCE3またはキシラナーゼSXY1 の発現系として好ましいベクターの具体例としては、後記する実施例によって構築された発現ベクターpCB1-Eg3X またはpCB-XI⁻ が挙げられる。

目的タンパク質の生産

本発明による目的タンパク質の生産は、上記した本発明による発現ベクターで 形質転換された宿主細胞を適当な培地中で培養し、培養物から目的タンパク質ま たはペプチドを採取することによって実施される。

本発明の好ましい態様によれば、極めて効率のよい目的タンパク質の生産系が 提供される。例えば、宿主細胞がTrichoderma virideである場合、その培養液1 リットルあたり7gまたは8g以上、好ましくは15g以上の目的タンパク質を 生産することができる。この量は、従来知られたタンパク質の発現系と比較して、 極めて多量である。このことは、本発明による目的タンパク質の発現系が極めて 高い有用性を有していることを示している。 例えば、目的タンパク質がセルラーゼNCE4である場合、これら酵素は本来的に高活性であるが、それを更に大量に生産することができる。その結果、セルロース含有繊維の毛羽除去、減量加工、およびデニム染めセルロース含有繊維の脱色加工などに有用なセルラーゼ調製物を効率よく生産することが可能となる等の利点が得られる。

本発明による目的タンパク質の生産法において、形質転換体の培養は、慣用の成分、例えば炭素原、窒素原、無機塩、増殖因子成分などを含む培地で、好気的条件での培養法、振盪培養法、電気攪拌培養法または深部培養法により行うことができる。培地のpHは例えば $4\sim8$ 程度である。培養は宿主細胞がTrichoderma virideである場合、Trichoderma virideの培養に慣用される通常の条件、例えば20 ~37 \sim 、好ましくは26\sim28 \sim 、培養時間は $48\sim168$ 時間程度の条件で行うことができる。

本発明によって得られるタンパク質あるいはペプチドの培養物からの回収にあたっては、その性状を利用した通常の分離手段、例えば溶剤抽出法、イオン交換 樹脂法、吸着または分配カラムクロマト法、ゲル濾過法、透析法、沈殿法等を単独で、または適宜組み合わせて用いることができる。

セルラーゼcbh1およびその遺伝子

本発明による制御配列の由来となったセルラーゼcbhl遺伝子は、配列番号1 に記載される配列の一部または全部を有するものである。また、遺伝子工学の慣行法(例えば部位指定変異など)を用いて本遺伝子の各構成(プロモーター、シグナル配列、ターミネーターなど)や翻訳領域の各構成(コア部位、リンカー部位、基質結合部位)を付加、挿入、欠失または置換等の改変を行った配列番号1 に記載されるTrichoderma viride由来のcbh1断片、すなわちその改変配列も本発明に包含される。

配列番号1 に記載される塩基配列は、Trichoderma virideの染色体由来cbh1遺

伝子の塩基配列を表したものである。配列番号1 に記載される塩基配列は、配列番号1438のATG で始まり、配列番号3109の終止コドン(TAA)で終了するオープンリーディングフレーム(読み取り枠)を有する。また、配列番号1489~3108の塩基配列は、497 残基からなる前記成熟cbh1タンパク質に対応する。更に、配列番号1 の塩基配列中には2 つのイントロンが存在することが確認された。

本発明によるcbh1遺伝子はこれまでにクローン化され塩基配列が明らかにされたいかなるセルラーゼ遺伝子のそれと同一のものは確認されない。すなわち、DN A データベースGenBank R96. August, 1996 、に登録されているセルラーゼ遺伝子と比較することによってすでに確認されている。

更に、配列番号2 に示すcbh1タンパク質は、これまでにクローン化され塩基配列が明らかにされたいかなるセルラーゼ遺伝子のそれと同一のものは確認されない。すなわち、アミノ酸データベースProtein Identification Resource R48 March, 1996 、SWISS-PROT R33 February, 1996 に登録されているセルラーゼタンパク質と比較することによってすでに確認されている。

タンパク質のアミノ酸配列が与えられれば、それをコードするDNA 配列は容易に定まり、配列番号1 に記載されるDNA 配列の全部または一部をコードする種々の塩基配列を選択することができる。従って、本発明による配列番号1 に記載されるDNA 配列の一部または全部をコードする配列とは、配列番号2 に記載される一部または全部のアミノ酸配列に加え、同一のアミノ酸をコードする配列であって縮重関係にあるコドンを塩基配列として有する配列も意味するものとする。

本発明によるDNA は、天然由来のものであっても、全合成したものであってもよい。また、天然由来のものの一部を利用して合成を行ったものであってもよい。DNA の典型的な取得方法としてはTrichoderma viride由来の染色体ライブラリーから遺伝子工学の分野で慣用されている方法、例えば部分アミノ酸配列の情報を基にして作成した適当なDNA プローブを用いてスクリーニングを行う方法、が挙

げられる。また寄託菌より得ることも可能である。

なお、本発明によるcbh1遺伝子の配列は、Trichoderma virideとTrichoderma reeseiの菌株の差異を明確に示している。すなわち、cbh1翻訳領域のDNA 配列の相同性は約96%であるものの、非翻訳領域(イントロン)の相同性は66%、さらに、プロモーター、ターミネーターのDNA 配列は翻訳領域からそれぞれ150bp、170bp 以上離れた場合相同性は見受けられない。これは、cbh1遺伝子の起源は同一であっても、それを受け継いだ各菌株の遺伝的多様性が非常に離れていることを示している。

これまでは、糸状菌の分類は形態学的特徴からなされることが一般的であるが、近年多用されるDNA 分析によれば、菌株間の差異は明確である。たとえば、Trichoderma reeseiとTrichoderma longibrachiatum のセロビオハイドロラーゼ (cbh) 2 遺伝子のサザン解析からハイブリダイゼーションパターンの差異を示した (Meyer W, et. al.: Curr. Genet. (1992), 21, 27. Morawez R, et. al.: Curr. Genet. (1992), 21, 31)。

実 施 例

実施例1:cbhl遺伝子のクローン化

(1a) cbh1タンパク質の精製

Trichoderma viride MC300-1 株をP 培地(1.0%グルコース、4.0%ラクトース、2.0%大豆粕、1.0%イーストエキス、0.5%リン酸カリウム、0.2%硫酸アンモニウム、0.2%炭酸カルシウム、0.03% 硫酸マグネシウム)で5 日間、28℃で培養した。本培養液を遠心分離して菌体残渣を除去し、培養上澄をファルマシアバイオテク社製FPLC装置(RESOURCE Q 50mM トリス-塩酸(pH7.8).0—1M 塩化ナトリウムグラディエント)を用いて分画し、塩化ナトリウム濃度約280mM で溶出されるピークを分取した。この画分をSDS-PAGE(テフコ社製 SDS-PAGE mini、8% gel)に供したところ、クマジーブリリアントブルーR250染色において分子量約 67 キロ

ダルトン(KDa.) のcbh1がほぼ単一バンドとして得られた。

(1b) cbh1タンパク質のアミノ酸配列解析

アミノ末端のアミノ酸配列の解析はPodeil, D. N. らの方法(Podell, D. N. et al., Biochem. Biophys. Res. Commun. (1978) 81:176)に従い修飾アミノ末端残基を除去した。即ち、上述のように精製したcbh1画分を脱塩濃縮し、約0.5 μ g/ μ l の濃度に調整した。これを5mM ジチオスレイトール、10mM EDTA 、5%グリセロール、0.1Mリン酸緩衝液(pH 8.0)中ベーリンガーマンハイム社製ピログルタメートアミノペプチダーゼ(シーケンスグレード)を用い、50°C、6 時間反応させ、修飾アミノ末端残基を除去した。これをSDS-PAGEに供し、PVDF膜(ミリポア社製イモビロン—PSQ)にブロット後、水洗して風乾した。

本ブロットはパーキンエルマー社製プロテインシーケンサーModel 492 を用いてアミノ酸配列を解析した。その結果、以下のアミノ末端のアミノ酸配列 (10残基) を解読した。

アミノ末端アミノ酸配列: Ser-Ala-Xaa-Thr-Leu-Gln-Ala-Glu-Thr-His (配列番号9)

(1c) ペプチドマップ

前記(1a)のように精製したcbh1画分を100mM 重炭酸アンモニウム(pH 7.8) 溶液中1/50モル量のV8プロテアーゼ(シグマ社製)で消化し、パーキンエルマー 社製Model 172 μ プレパラティブHPLCシステムでカラムクロマトグラフィーを行い(カラム:RP-300アクアポア C8 、 220×2.1 mm 、0.1% トリフルオロ酢酸ー 0.085% トリフルオロ酢酸/35% アセトニトリルグラディエント)、二種のペプチドを分取し、V8-33 およびV8-34 と名付けた。

これらのアミノ酸配列を解析したところ、以下のような配列であった。

V8-33 : Glu-Phe-Ser-Phe-Asp-Val (配列番号10)

V8-34 : Glu-Thr-His-Pro-Pro-Leu-Thr-Trp-Gln-Lys-Xaa-Ser-Ser-Gly-Gly

-Thr-Xaa-Thr (配列番号11)

これらのアミノ酸配列は、Trichoderma reesei株から得られたcbh-1 タンパク質のアミノ酸配列(S. Shoemaker et al., Bio/Technology (1983). 1 691)と相同性を示した。更にTrichoderma viride株から得られたエキソーセロビオハイドロラーゼ(Cheng Cheng et. al., Nucleic Acids Res., (1990) 18, 5559)と同一のアミノ酸配列を示すことから、同タンパク質をコードする遺伝子のクローニングはTrichoderma viride株由来のエキソーセロビオハイドロラーゼ遺伝子の翻訳領域をPCR を用いて増幅し、これをプローブとして用いた。

(1d) cbh1翻訳領域の増幅

cbh1翻訳領域はTrichoderma viride MC300-1 株由来ゲノムDNA を鋳型にPCR により増幅した。

ゲノムDNA の単離はHoriuchiらの方法(Hiroyuki Horiuchi et al., J. Bacte riol (1988) 170, 272-278)に従った。まず、Trichoderma viride MC300-1 株をS 培地 (3.0%グルコース、0.1%ポリペプトン、1%イーストエキス、0.14% 硫酸アンモニウム、0.2%リン酸カリウム、0.03% 硫酸マグネシウム、pH 6.8)で24時間培養し、遠心分離(3500rpm, 10 分)によって菌体を回収した。得られた菌体を凍結乾燥後、TE (10mMトリス一塩酸、1mM EDTA) 緩衝液に懸濁し、3%SDS 溶液中、60℃、30分間処理後、TE飽和フェノール抽出により、菌体残渣を除去した。抽出液はエタノール沈澱化後、リボヌクレアーゼA (シグマ社製)及びプロテイナーゼK (和光純薬社製)処理し、さらに日立工機社製65P-7 超遠心機で塩化セシウム密度勾配沈降平衡法によりDNA を得た。

PCR は宝酒造社製Takara Taqを用いた。プライマーとして以下に示すcbh1-Nとcbh1-Cを用い、94 C1 分間、50 C2 分間、72 C3 分間のサイクルを40 回繰り返すことにより反応を行った。その結果、約1.7kbpのDNA が増幅された。以下ccbh1-N ccbh1-Cの配列を示す。

cbh1-N: 5´-ATG TAT CAA AAG TTG GCC-3´ (配列番号12)

cbh1-C: 5´-TTA CAA GCA CTG AGA GTA G-3´ (配列番号13)

このPCR 増幅断片はアガロース電気泳動の後、ファルマシア社製バンドプレップキットに従いアガロースから回収し、これをスクリーニング用プローブとした。

実施例2:Trichoderma virideゲノムDNA ライブラリーの作製

Trichoderma viride MC300-1 株ゲノムDNA をSau3AIにより部分消化した。これをファージベクター、 λ EMBL3 クローニングキット(ストラタジーン社製)の BamHI アームにT4リガーゼ(宝酒造社製ライゲーションキットVer. 2)を用いて連結させた。これをエタノール沈澱後、TE緩衝液に溶解した。連結混合物の全量をストラタジーン社製ギガパックIIパッケージングキットに従い、ファージ粒子を形成させた。このファージは大腸菌LE392 株に感染させた。この方法により得られた1.1 $\times 10^4$ 個のファージライブラリーを用いて目的遺伝子のクローニングを行った。

実施例3:cbh1遺伝子のサブクローニング

(3a) プラークハイブリダイゼーションによるスクリーニング

Trichoderma viride株由来のエキソーセロビオハイドロラーゼ遺伝子の翻訳領域約1.7kb のDNA 断片を、あらかじめアマシャム社製ECL ダイレクトシステムに従い、標識化した。

実施例2 において作成したファージプラークを、ハイボンドN $^+$ ナイロントランスファーメンプラン(アマシャム社製)に転写し、アルカリ変性後、5 倍濃度 SSC (SSC: 15mM クエン酸 3 ナトリウム、150mM 塩化ナトリウム)で洗浄し、乾燥させDNA を固定した。キットの方法に従って、1 時間のプレハイブリダイゼーション (42°C) の後、先の標識化したプローブを添加し、4 時間 (42°C) ハイブリダイゼーションを行った。プローブの洗浄は前述キットの方法に従った。

プローブの洗浄を行ったナイロン膜は、添付されている検出溶液に1分間浸し

たあと、同社製ハイパーフィルムECL に感光させ、4 個の陽性クローンを得た。

(3b) ファージDNA の調製

陽性クローンからのDNA 調製はManiatisらの方法(J. Sambrook, E. F. Frits ch and T. Maniatis, "Molecular Cloning", Cold Spring Harbor Laboratory P ress. 1989)に従った。

宿主大腸菌はLE392 を用いた。まず、LE392 をLB-MM 培地(1 %ペプトン、0.5 %イーストエキス、0.5 % 塩化ナトリウム、10mM硫酸マグネシウム、0.2%マルトース)で一晩培養し、これにシングルプラーク由来のファージ溶液を感染させ、LB-MM 培地で一晩培養した。これに、塩化ナトリウムを1M、クロロホルムを0.8%になるよう加え、大腸菌の溶菌を促進させた。遠心分離により、菌体残渣をのぞき、ポリエチレングリコール(PEG)沈澱(10%PEG6000)からファージ粒子を回収した。ファージ粒子はSDS 存在下、プロティナーゼK で消化し、これをフェノール処理、エタノール沈澱化して、ファージDNA を回収した。

以上のように回収したDNA はアマシャム社製ECL ダイレクトシステムに従い、 サザンブロット解析を行った。実施例1 のPCR 増幅断片をプローブにハイブリダ イゼーションを行った結果、7kbpのPstI消化断片が共通にハイブリダイズした (図1)。

この共通にハイブリダイズするPstI断片をpUC118(宝酒造社製)にサブクローンし、プラスミドpAO1を得た。

実施例4:cbh1遺伝子の塩基配列の決定

(4a) ゲノムDNA の塩基配列解析

塩基配列決定は以下の様に行った。塩基配列解析装置は、ファルマシアバイオテク社製A.L.F. DNAシーケンサーIIを用いた。シーケンシングゲルとして、FMC 社製ハイドロリンクロングレンジャーとして市販されているアクリルアミド担体を使用した。ゲル作成用各種試薬 (N, N, N', N'- テトラメチルエチレンジアミ

ン、尿素、過硫酸アンモニウム)はファルマシアバイオテク社製A.L.F グレードの試薬を用いた。

塩基配列解読反応は、ファルマシアバイオテク社製オートリードシーケンシングキットを用いて行った。ゲル作成条件、反応条件、および泳動条件の各々は、 各説明書の詳細を参照し、設定した。

また、塩基配列解読用鋳型プラスミド(以降テンペレートと記す)は、以下のような一本鎖DNA と分断クローンを調製し、テンペレートとした。

まず、pAO1をHindIII で消化し、3.1kb の断片をpUC119にクローン化したもの (pCB1-H3 またはpCB1-H4)、またはSalIで消化し、2.8kb の断片をpUC119にクローン化したもの (pCB1-S1 またはpCB1-S3)をM13 一本鎖DNA として調製し、用いた。更に、3.1kb のHindIII 断片をpUC18 にクローン化し (pCB1-2、pCB1-7)、pCB1-7をEcoRI で消化し、4kb の消化断片を自己閉環したもの (pCB1-b1)、1.3kb の消化断片をpUC118にクローン化したもの (pCB1-a1)、pCB1-7をSalIで消化し、5.4kb の断片を自己閉環したもの (pCB1-c2)、pCB1-2をHindIII およびEcoRV で消化し、2.2kb と0.9kb の断片をそれぞれpUC18 のHindIII-HincIIサイトに連結し、クローン化したもの (pCB1-e1、pCB1-d1)の全9 種類のプラスミドを調製した (図1)。

(4b) -本鎖DNA の調製

pCB1-H3 、pCB1-H4 、pCB1-S1 、pCB1-S3 の各プラスミドを大腸菌JM109 に形質転換し、形質転換されたコロニーを150 μ g/mlのアンピシリンを含むLB培地で一晩前培養した。この培養液に対して 10^9 PFU/mlのヘルパーファージM13K07懸濁液を等量感染させた。これを100 倍量の150 μ g/mlのアンピシリンおよび70 μ g/mlのカナマイシンを含むLB培地中で一晩本培養した。

この培養液30mlを遠心分離(8000rpm、10分間)して菌体を除去し、培養上澄に対して6mlのPEG-NaCl(20%PEG6000、2.5M塩化ナトリウム)を加えM13 粒子を

沈澱化した。M13 のPEG 沈澱は3m1 の100mM トリス一塩酸 (pH 7.5)、10mM塩化 マグネシウム溶液に懸濁し、 $100~\mu g/m1$ のDNaseI (ベーリンガーマンハイム社製)、 $10~\mu g/m1$ のリボヌクレアーゼA 処理により、夾雑する大腸菌の核酸を分解した。これをさらにPEG 沈澱化し、TE緩衝液に懸濁後TE飽和フェノール抽出、フェノール一クロロホルム抽出の後、XE2 により一本鎖XE3 を沈澱化した。

(4c) シーケンス反応および解析

まず、二本鎖プラスミドを2M水酸化ナトリウムでアルカリ変性した後、pCB1-2とキットに添付のUniversal 及びReverse; pCB1-7とUniversal 及びReverse; pCB1-al とUniversal 及びReverse; pCB1-bl とReverse; pCB1-c2とReverse; pCB1-dlとReverse; pCB1-elとReverse のプライマーの各組み合わせによりアニーリングさせ、キットに従い伸長反応を行った。更に、pCB1-2とWVCI-01、WV CI-02、WVCI-03、WVCI-04及びWVCI-06の組み合わせでシーケンス反応を行い、cbh1翻訳領域の塩基配列を決定した。

次に、pCB1-H3 の一本鎖DNA とUniversal 、WVCI-07、WVCI-08、WVCI-09 及びWVCB-11; pCB1-H4 とWVCI-05、WVCI-15、WVCI-16 及びWVCI-17; pCB1-S1とUniversal、WVCI-13、WVCI-14、及びWVCB-12; pCB1-S3とWVCI-06、WVCI-10、WVCI-11、及びWVCI-12 の組み合わせでシーケンス反応を行いたbhl遺伝子のHindIII ~SalI断片の全長4176bpを配列表1の様に決定した。

cbh1特異的シーケンスプライマーの配列は以下に示される通りであった。

WVCI-01: 5^-TCA CTT TCC AGC AGC CCA ACG CC-3~ (配列番号1 4)

WVCI-02: 5´-CAA CTC TCC CAA CGC CAA GGT CG-3´ (配列番号15)

WVCI-03: 5´-CGT CGG GTA GGT AGA GTC CAG CC-3´ (配列番号16)

WVCI-04: 5´-TCT CGA ACT GAG TGA CGA CGG TC-3´ (配列番号17)

WVCI-05: 5´-CTG CCA TGT CAG AGG CGG GTG AG-3´ (配列番号18)

WVCI-06: 5'-ACT CCA ACA TCA AGT TCG GCC CC-3' (配列番号19)

WVCI-07: 5 -AAC TCC CAC TGA GCC TTT ACG TC-3 (配列番号20) WVCI-08: 5 -CAA TTA AGT GGC TAA ACG TAC CG-3 (配列番号21) WVCI-09: 5 -GCA AAA ATA TAG TCG AAT CTG CC-3 (配列番号22) WVCI-10: 5 -GCT GGA ATG CTC GCT AGC TTG GC-3 (配列番号23) WVCI-11: 5 -ACT GTT GGA GAC CAG CTT GTC CG-3 (配列番号24) WVCI-12: 5 -CGC AGT AGG AGA ATA GAA ACC CC-3 (配列番号25) WVCI-13: 5 -CTG CTG TCA ATC CCC GCT ACT GG-3 (配列番号26) WVCI-14: 5 -CCT TCG AGA AAA GGA GAT TCG CG-3 (配列番号27) WVCI-15: 5 -CAG CTC CTT GGC AAA AGC AGT GG-3 (配列番号28) WVCI-16: 5 -AGA TCA TCA GTT GAG GTT AGA CC-3 (配列番号29) WVCI-17: 5 -TGT ATA AAA TTA GGT TCG GGT CC-3 (配列番号30) WVCB-11: 5´-CTA CTC ATC AAC TCA GAT CCT CC-3´ (配列番号 3 1) WVCB-12: 5´-GGA AGC CTC AGA AGT AGA TAC AGC-3´(配列番号32)

(4d) 非翻訳領域(以降「イントロン」と記す)の決定

イントロンの決定には、Trichoderma viride MC300-1 株からmRNAを調製し、 逆転写酵素によりcDNAを合成し、これとゲノムの塩基配列を比較し、同領域を判 定した。

(4d-1) 全RNA の調製

Trichoderma viride MC300-1 株をP 培地で2 日間培養し、菌体を遠心分離 (3500rpm, 10 分)により回収した。この菌体を滅菌水で洗浄し、液体窒素で凍結したままプレンダーで粉砕した。これを4Mグアニジンチオシアン酸塩を含む変性溶液(4Mグアニジンチオシアン酸塩、25mMクエン酸3 ナトリウム、0.5%N-ラウリルサルコシン酸ナトリウム、0.1Mメルカプトエタノール)に懸濁した。室温で数分間攪拌の後、2M酢酸ナトリウム(pH4.5)で中和し、TE飽和フェノールを加えさらに攪拌した。ここにクロロホルムーイソアミルアルコール(24:1)を加

え、攪拌の後、遠心分離 (3500rpm,10分) によりフェノールで変性した菌体成分を除去した。上層(水層)を回収し、イソプロパノールで核酸を沈殿化した。同沈殿を遠心分離 (3500rpm,10分) で回収し、70% エタノール―水で再遠心分離により沈殿を洗浄した。

同沈殿は、1mg/mlの核酸濃度になるようTE緩衝液に溶解の後、2.5M塩化リチウムで沈殿化(5 ℃で2 時間)した。これを遠心分離(12000rpm, 10分)により沈殿を回収し、70% —エタノールで洗い、これを全RNA 画分とした。

(4d-2) ポリA テイル ⁺RNA (=mRNA) の調製

mRNAの調製はファルマシアバイオテク社製mRNAピュアリフィケーションキットを用いた。

まず上記(4d-1)において調製した全RNA のうち、1mg を1ml のエリューションバッファーに溶解し、これに65 $\mathbb C$ 、10 分間の熱変性処理を加え、氷中で急冷の後、0.2ml のサンプルバッファーを加えた。この全量の RNA溶液をオリゴ(dT)セルロースカラムにチャージし、ハイソルトバッファーで3 回、ロウソルトバッファーで3 回カラムを洗浄の後、65 $\mathbb C$ に加温したエリューションバッファーで溶出した。このカラム操作を2 回繰り返し、mRNA 画分とした。

(4d-3) cDNAの合成

cDNA合成はファルマシアバイオテク社製タイムセーバーcDNA合成キットを使用 した。

まず、5 μ g のmRNAを20 μ l のサンプルバッファーに溶解した。65 $^{\circ}$ C、10分間 の熱処理後、ファーストストランド合成ミックスにジチオスレイトール溶液、オリゴ (dT) プライマーと共に添加し、37 $^{\circ}$ C1 時間反応させた。次に、この全量をセカンドストランドミックスに加え、12 $^{\circ}$ C、30分間、次いで22 $^{\circ}$ C、1 時間反応させ、これをcDNAとした。

(4d-4) cbh1cDNAの増幅

cbh1cDNAは全cDNAを鋳型にPCR により増幅した。

PCR は宝酒造社製LA PCRキットを用いた。プライマーはMcbh1-N とMcbh1-C を用い、94°C1 分間、55°C2 分間、72°C2 分間のサイクルを25回繰り返すことにより反応を行った。その結果、約1.6kbpのDNA が増幅された。

Mcbh1-N およびMcbh1-C の配列は以下に示される通りであった。

Mcbh1-N: 5´-TCG ACT ACG GAC TGC GCA TC-3´ (配列番号33)

Mcbhl-C: 5´-CAA GCT TTT GCC ACA GTA CC-3´ (配列番号34)

このPCR 増幅断片はアガロース電気泳動の後、ファルマシア社製バンドプレップキットに従いアガロースから回収し、ノバジェン社製pT7-Blueにクローン化し(pCbhU)、これをイントロン決定用テンペレートとした。

(4d-5) cDNAの塩基配列解析

シーケンシング反応は前述同様オートリードシーケンシングキットを用いた。まず、プラスミドpCbhU を2M水酸化ナトリウムでアルカリ変性し、これをテンペレートとしてT7ポリメラーゼで反応させた。プライマーはキット添付のUniversalとReverse、更に前述WVCI-03 とWVCI-04 を用いた。

その結果、 $1899\sim1965$ bp(Introne I)、 $2663\sim2724$ bp(Introne II)の計2 つのイントロンが存在した。配列表1 において、非翻訳開始配列およびその終了配列、イントロン内部の調整配列は以下に示される通りであった。

Introne I: 1899 ~1904, 1963~1965, 1946~1952

Introne II: 2663 ~2668, 2722~2724, 2705~2711

実施例5: Trichoderma viride用異種タンパク質発現分泌ベクターの構築 cbh1プロモーター、ターミネーター、分泌シグナルを目的タンパク質発現分泌に利用できる形にするため部位指定変異処理を行った。

(5a) 発現ベクターpCB1-MX の構築

部位指定変異処理はアマシャム社製スカルプターインビトロミュータジェネシ

スシステムを用いた。変異点はスタートコドンの上流と終止コドンの下流に導入 した。

まず、変異導入用オリゴヌクレオチドCBn-Stu 、CBc-Xho を $0.90D_{260}$ /ml の 濃度で100mM トリス一塩酸(pH8.0)、10mM塩化マグネシウム、7mM ジチオスレイトール、1mM ATP 中PNK (東洋紡績社製)を用いて37 $\mathbb C$ で15分間反応させ末端をリン酸化した。、更に70 $\mathbb C$ で10分間の熱処理で酵素を失活させた。

前述pCB1-H4 、pCB1-S1 の一本鎖DNA2 μg に対してそれぞれCBn-Stu 、CBc-Xh o を70℃で3 分間、次に55℃の湯約500ml 中で室温になるまで(約2 時間)放置し、オリゴヌクレオチドをアニールさせた。

このアニールミックスにklenowフラグメント、T4リガーゼを反応させ、ヘテロ 二本鎖を合成させた。このヘテロ二本鎖はT5エクソヌクラーゼで未反応の一本鎖 を分解させた。次に制限酵素NciIでニックを入れ、エクソヌクラーゼIII でテン ペレートストランドを分解した。更に、変異ストランドをDNA ポリメラーゼI、 T4リガーゼを用いて二本鎖とし、これを大腸菌TG1 に形質転換した。

変異DNA の検出は、pCB1-H4 由来の変異はStuIで切断されるもの(pCB1H4-19)、pCB1-S1 由来の変異はXhoIで切断されるもの(pCB1S1-17)を選抜した。次にpCB1H4-19 をXbaIおよびXhoIで消化し、約6kb の断片を回収し、これとpCB1S1-17をXbaIで消化後、XhoIで部分的に切断した約1.2kb の断片を連結し、これをpCB1-Mとした。これをXbaIで消化し、PDH25(Cullen, D., Leong, S.A., Wilson, L.J. and Henner, D.J., Gene 57, 21-26, 1987)由来ハイグロマイシンB 耐性カセットを挿入しpCB1-MX を構築した(図2)。

CBn-Stu 、CBc-Xho の配列は以下に示される通りであった。

CBn-Stu: 5´-GAT ACA TGA TGC GCA GGC CTT AGT CGA CTA GAA TGC-3´(配列番号35)

CBc-Xho: 5´-GAT CCT CAA GCT TTT GCT CGA GTA CCT TAC AAG CAC-3´(配列番号

36)

(5b) 分泌ベクターpCB1-M2XR の構築

前述pCB1-MをSallで消化し、約2.7kb の断片をpUC119にクローン化した(pCB1-SalM)。これを更に一本鎖化し、スカルプターインビトロミュータジェネシスシステムを用いて前記(5a)と同様に変異処理を行った。変異点はプロセス残基の上流と下流(CB1-SmSph)、cbh1タンパク質のリンカー構造中(CB1-Bam)、更に終止コドンの上流部(CB1-Pst)に導入した。

一方、変異遺伝子の構築は、pUC118をXbaIおよびEcoRI で切断し、これを宝酒造社製DNA プランチングキットを用いて末端を平滑化した。これを自己閉環し(pUC118-SBN)、SalIおよびHindIII で消化後、cbh1プロモーターHindIII ~SalI断片を連結した。このSalI部位に、変異が導入されたcbh1翻訳領域~ターミネーターを正しい向きで連結し、pCB1-M2 を構築した(図3)。pCB1-M2XR はpCB1-M2 のXbaI部位に前述ハイグロマイシンB 耐性カセットを連結したものである(図4)。

CB1-SmSph、CB1-Bam 、CB1-Pst の配列以下に示される通りであった。
CB1-SmSph: 5´-GGA GGG TGC ATG CCG ACT GAG CCC GGG CAG TAG CC-3´ (配列番号37)

CB1-Bam: 5´-GCC GGG AGA GGA TCC AGT GGA GG-3´ (配列番号38)

CB1-Pst: 5´-GCT CGA GTA CCT TAC TGC AGG CAC TGA GAG-3´(配列番号39)

実施例6:Trichoderma viride用NCE4分泌ベクターの構築

Trichoderma virideにNCE4を強制分泌させるために、Humicola insolens 由来NCE4翻訳領域をPCR により増幅した。

まず、Horiuchiらの方法(Hiroyuki Horiuchi et al., J. Bacteriol., 170:272-278,1988) に従い、Humicola insolens の全DNA を回収した。具体的には、フミコーラ・インソレンスHN200-1を(N)培地(5.0%アビセル、2.0%酵母エキ

ス、0.1%ポリペプトン、0.03% 塩化カルシウム、0.03% 硫酸マグネシウム、pH6.8)中、37℃で培養した。2日間培養の後、遠心分離(3500rpm、10分)によって菌体を回収した。得られた菌体をフェノール処理、プロテイナーゼK、およびリボヌクレアーゼA処理、さらにポリエチレングリコール(PEG) 沈殿化によりゲノムDNA を得た。

得られた全DNA を鋳型として、HEg-mn(Sph) とHEg-c(Sal)の各プライマー $1~\mu$ M 、 $dNTPs200~\mu$ M 存在下Pfu ポリメラーゼ(ストラタジーン社製)を用いてPCR を行った。PCR 反応のサイクルは94°Cで1 分間の熱変性の後、55°Cで2 分間アニーリング、75°Cで5 分間伸張反応を25回行い、目的のDNA 断片を増幅させた。

PCR 増幅断片はファルマシアバイオテク社製マイクロスピンS-400HR カラムに供し、残存するプライマー等を除去した。更に、SphI及びSalIで消化し、アガロースゲル電気泳動に供し、約0.9kb の断片を回収した。

一方pCB1-M2 をSphIおよびXhoIで消化し、7.3kb の断片を回収した。これに0.9kb の消化PCR 断片を連結し、更にXbaI部位に前述ハイグロマイシンB 耐性カセットを挿入し、構築されたベクターをpCB1-HEgX (図5) とした。

なお、上記操作によって得られたNCE4の翻訳領域の塩基配列は配列番号4に記載されるとおりであった。

HEg-mn(Sph) とHEg-c(Sal)の配列は以下に示される通りであった。

HEg-mn(Sph):5´-GGG GCA TGC GCT GAT GGC AAG TCC ACC CG-3´(配列番号40)
HEg-c(Sal):5´-GGG GTC GAC TAC CTT ACA GGC ACT GAT GGT ACC-3´(配列番号4
1)

実施例7:Trichoderma virideの形質転換

Trichoderma viride MC300-1をS 培地中28℃で培養し、24時間後、3000rpm 、10分間遠心分離により集菌した。得られた菌体を0.5 Mシュークロースで洗浄し、0.45μm のフィルターで濾過したプロトプラスト化酵素溶液(5mg/ml ノボザイ

ム234、5mg/mlセルラーゼオノズカR-10、0.5M シュークロース)に懸濁した。30℃で60~90分間振盪し、菌糸をプロトプラスト化させた。この懸濁液を濾過した後、2500rpm 、10分間遠心分離してプロトプラストを回収し、SUTC (0.5M シュークロース、10mM 塩化カルシウム、10mMトリス一塩酸(pH7.5))緩衝液で洗浄した。

以上のように調製したプロトプラストを1ml のSUTC緩衝液に懸濁し、この100 μ l に対し10 μ g のDNA (TE) 溶液($10\,\mu$ l)を加え氷中に5 分間静置した。つぎに、400 μ l のPEG 溶液(60% PEG4000 、10mM 塩化カルシウム、10mMトリス一塩酸(pH7.5))を加え、氷中に20分間静置した後、10mlのSUTC緩衝液を加え、2500rpm 、10分間遠心分離した。集めたプロトプラストを1ml のSUTC緩衝液に懸濁した後、4000rpm で5 分間遠心分離して、最終的に $100\,\mu$ l のSUTC緩衝液に懸濁した。

以上の処理をしたプロトプラストを、ハイグロマイシンB $(20\,\mu\,\mathrm{g/ml})$ 添加ポテトデキストロース (PD) 寒天培地 (3.9%ポテトデキストロースアガー、17.1%シュークロース) 上に、PD軟寒天 (1.3%ポテトデキストロースアガー、17.1%シュークロース) とともに重層し、28 \mathbb{C} 、5 日間培養後、形成したコロニーを形質転換体とした。

実施例8:pCB1-HEgX 形質転換体のNCE4生産性評価

実施例7 の様にプラスミドpCB1-HEgX をTrichoderma viride MC300-1 株に導入し、ハイグロマイシンB に耐性を示す株が1 μg のDNA 当り約25株出現した。この25株をS 培地で前培養後、前述P 培地で本培養した。この培養上澄をSDS-PAGEにより解析したところ、NCE4タンパク質と予想される分子量約43kDのバンドが新たに観測された株が出現した。

その内NCE4生産性がもっとも高いと予測される株の培養上澄をFPLCシステム (ファルマシアバイオテク社製) により分画し、NCE4生産量を測定した。カラム

はRESOURCE RPC 3mlを用い、0.1%トリフルオロ酢酸を含む5 -60% アセトニトリル濃度グラジェントで溶出し、約47% アセトニトリル濃度で溶出されるピークを分取し、脱塩、凍結乾燥後収得量を測定したところ、培養液1Lあたり、15g のNC E4が含まれていることが判明した。

実施例9:SCE3の単離精製

Trichoderma viride MC300-1株をP 培地で培養し、その培養上澄を疎水クロマトグラフィー(Phenyl-Sepharose HP 16/100、ファルマシアバイオテク社製)に供し、50mM酢酸緩衝液(pH 5.5)中、1 -0Mの濃度勾配をかけた硫酸アンモニウム溶液で溶出し、分画した。このうち、0.1 -0Mの濃度勾配のときに得られた画分にジーンズ脱色活性が強く認められたので、その画分を疎水クロマトグラフィー(Resource PHE 30mm I.D.x150mm、ファルマシアバイオテク社製)に供し、50mM酢酸緩衝液(pH 5.5)中1 -0Mの濃度勾配をかけた硫酸アンモニウム溶液で溶出し、活性画分を分取した。

このうち、0Mの濃度勾配のときに得られた画分にジーンズ脱色活性が強く認められた。その画分を疎水クロマトグラフィー(Butyl-Toyopearl 6500S 22mm I.D. x200mm 、東ソー社製)に供し、50mM酢酸緩衝液(pH 5.0)で溶出し、ジーンズ脱色活性の強い画分を精製酵素SCE3として単離した。このSCE3はSDS-PAGEにおいて約50kDの単一なバンドを示した。

実施例10:SCE3遺伝子のクローニング

(10a) SCE3タンパク質のアミノ末端側アミノ酸配列解析

実施例 9 と同様にして得た精製SCE3をSDS-PAGEに供し、ミリポア社製PVDF膜 (Immobilon-PSQ) に転写した。このPVDF膜はクマシーブリリアントブルーで染色し、目的のタンパク質が転写された部分を切り取った。これを0.5 %ポリビニルピロリドン40、100mM 酢酸で37C、30分間処理の後洗浄し、宝酒造社製Pfu ピログルタミン酸アミノペプチダーゼ(50C、5 時間)でアミノ末端修飾残基を除

去した。これをModel 492 アミノ酸シーケンサーに供し、アミノ末端側10残基のアミノ酸配列を解読した。その配列は以下に示される通りであった。

SCE3-N: Gln-Asp-Val-Trp-Gly-Gln-Cys-Gly-Gly-Ile (配列番号42)

(10b) ペプチドマップ

実施例9と同様にして得た精製SCE3画分を、50mM重炭酸アンモニウム (pH 7.8) 溶液中1/50モル量のV8プロテアーゼ (シグマ社製) で消化し、実施例1cと同様の手法を用いてV8-18.5、V8-26、およびV8-42の3種のペプチドを分取した。これらのアミノ酸配列を解析したところ、以下のような配列であった。

V8-18.5 + Thr-Pro-Thr-Gly-Ser-Gly-Asn-Ser-Trp-Thr-Asp (配列番号43)

V8-26 : Ser-Thr-Tyr-Ile-Leu-Thr-Glu (配列番号 4 4)

V8-42: Phe-Ala-Gly-Val-Asn-Ile-Ala-Gly-Phe-Asp-Phe-Gly-Xaa-Thr-Thr (配列番号45)

これらのアミノ酸配列は、Trichoderma reesei株から得られたエンドグルカナーゼIII (EGIII) タンパク質のアミノ酸配列(M. Saloheimo et. al., Gene (1988), 63, 11) と相同性を示したことから、同タンパク質をコードする遺伝子のクローニングはTrichoderma reesei株由来のEGIII 遺伝子の翻訳領域をPCR を用いて増幅し、これをプローブとして用いた。

(10c) SCE3翻訳領域の増幅

SCE3翻訳領域はTrichoderma viride MC300-1株由来ゲノムDNA を鋳型にPCR により増幅した。

増幅は、実施例1dのTrichoderma viride MC300-1株由来染色体DNA を鋳型にTa kara Taqを用いて行った。プライマーとしてSCE3-NとSCE3-Cを用い、94 $^{\circ}C1$ 分間、50 $^{\circ}C2$ 分間、および72 $^{\circ}C3$ 分間のサイクルを20回繰り返すことにより反応を行った。その結果、約1.5kbpのDNA が増幅された。

SCE3-NおよびSCE3-Cの配列は以下に示される通りであった。

SCE3-N: 5 -ATG AAC AAG TCC GTG GCT C-3 (配列番号 4 6)

SCE3-C: 5´-TTA CTT TCT TGC GAG ACA CGA GC-3´ (配列番号47)

このPCR 増幅断片をアガロースゲル電気泳動の後、ゲルから回収し、これをSC E3クローニング用プローブとした。

(10d) Trichoderma viride株由来SCE3遺伝子のクローン化

実施例2と同様の手法を用いて作製した 1.0×10^4 個のファージライブラリーを用いてSCE3遺伝子のクローニングを行った。プラークハイブリダイゼーションの結果、1 種の陽性クローンが得られた。このクローンはサザン解析の結果、約4kb のBamHI 断片、約4kb のEcoRI 断片、および約3.7kb のXbaI断片が染色体DN A と共通のハイブリダイゼーションパターンを示した。このXbaI断片をDUC11Bにクローン化(DUC-Eg3X)した。

実施例11:SCE3発現ベクターpCB1-Eg3X の構築

SCE3をcbhlプロモーターの制御下、大量に発現させるために、SCE3の翻訳領域をcbhlプロモータの下流に連結した。

まず、pUC-Eg3Xを鋳型にSCE3-StuとSCE3-XhoなるプライマーでPCR を行い、約 1.5kb の増幅断片を回収し、pT7-blueにサブクローン化した。このプラスミドを StuIおよびXhoIで切断し、約1.5kb の断片を回収した。更に、実施例5aの様に構築したpCB1-MX をStuIおよびXhoIで切断し、約8.5kb の断片と、約1.5kb のStuI ~XhoI断片とを連結し、これをpCB1-Eg3X とした(図6)。

なお、上記操作によって得られたSCE3の翻訳領域の塩基配列は配列番号6に示される通りであった。

また、SCE3-StuとSCE3-Xhoの配列は以下に示される通りであった。

SCE3-Stu: 5⁻-GGG AGG CCT GCG CAT CAT GGC TCC ATT GCT GCT TGC-3⁻ (配列番号48)

SCE3-Xho: 5'-GGG CTC GAG TAC CTT ACT TCC TGG CGA GAC ACG AGC-3' (配列番

号49)

実施例12:pCB1-Eg3X 形質転換体のSCE3生産性評価

実施例7と同様にしてプラスミドpCB1-Eg3X をTrichoderma viride MC300-1株に導入した。その結果、ハイグロマイシンB に耐性を示す株が1mg のDNA 当り約20株出現した。この20株をS 培地で前培養後、P 培地で本培養した。この培養上. 澄をSDS-PAGEにより解析したところ、SCE3タンパク質と予想される分子量約50kDのバンドが観測された株が出現した。

このうち50kDのバンドがもっとも顕著に観察されるもの(EG3D2 株)のSCE3生産量をデニム染めセルロース含有繊維の脱色活性を指標に算出した。詳細には以下に示す条件で行った。

脱色処理は、糊抜きした12オンスのブルージーンズパンツ(木綿)を下記の条件で脱色処理した。

試験機械;20kgワッシャー(SANYO 社製全自動洗濯機SCW5101)

浴比:1:40

加熱;60℃

時間:30分

pH; 4 (20mM酢酸緩衝液)

脱色度は色差計COLOR ANALYZER TOPSCAN MODEL TC-1800MK2 (東京電色株式会社製)を用い、Lab 表示計のL 値(明度)を測定した。コントロールに対するL 値の増加(白色度の増加) = Δ L 値より、脱色を評価した各試験区につき5 点の Δ L 値を測定し(n=5)、最大値・最小値を棄却した3 点の平均値を採用した。そして、 Δ L 値=4 まで脱色するのに必要なタンパク質濃度を算出した。

タンパク質濃度はバイオラッド社製プロテインアッセイキットに従いγグロブリンをスタンダードとして定量した。

親株であるTrichoderma viride MC300-1株の培養上澄は、ジーンズの脱色に必

要なタンパク質濃度は160mg/L であり、実施例9において単離精製されたSCE3は32mg/Lであった。EG3D2 株の培養上澄のジーンズの脱色に必要なタンパク質濃度は、、精製SCE3を全タンパク質量の30%となるように加えたTrichoderma viride MC300-1株の培養上澄の脱色に必要なタンパク質濃度と一致し、その濃度は80mg/Lであった。このことから、EG3D2 株の培養上澄1L中に含まれる総タンパク質27g 中30% (9g) は (組み換え) SCE3が含まれていると考えられた。

実施例13:SXY1の単離精製

Trichoderma viride MC300-1株をP 培地で培養し、その培養上澄をキシラン分解活性を指標に精製した。まず、Resource Q 6mL(ファルマシアバイオテク社製)に供し、50mMトリス一塩酸(pH 7.5)緩衝液中0 -1Mの塩化ナトリウム濃度勾配で溶出し、塩濃度0Mの溶出画分を回収した。本画分をさらに、ファルマシアバイオテク社製Resource HIC PHE 1mLに供し、25mMトリスー塩酸(pH 7.0)緩衝液中1.5 -0Mの硫酸アンモニウム濃度勾配で溶出し、硫酸アンモニウム濃度約0.3Mで溶出される画分をSXY1画分として回収した。本画分はさらに、ファルマシアバイオテク社製Superdex 75(10/30)ゲルろ過カラムに供し、0.1M塩化ナトリウムを含む0.05M リン酸緩衝液で展開し、SXY1画分を回収した。このSXY1はSDS-PAGEにおいて約20kDの単一なバンドを示した。

実施例14:SXY1遺伝子のクローニング

(14a) SXY1タンパク質のアミノ末端側アミノ酸配列解析

実施例13と同様にして得た精製SXY1をSDS-PAGEに供し、実施例10と同様の方法を用いてアミノ末端修飾残基を除去した。これをModel 492 アミノ酸シーケンサーに供し、アミノ末端側13残基のアミノ酸配列を解読した。その配列は以下に示される通りであった。

SXY1-N: Gln-Thr-Ile-Gly-Pro-Gly-Thr-Gly-Phe-Asn-Asn-Gly-Tyr-Phe (配列番号50)

WO 98/11239 PCT/JP97/03268

このアミノ酸配列は、Trichoderma reesei株から得られたキシラナーゼI (XY LI) タンパク質のアミノ酸配列 (Anneli Torronen et. al., Bio/Technology (1 992), 10, 1461) と相同性を示したことから、同タンパク質をコードする遺伝子のクローニングはTrichoderma reesei株由来のXYLI遺伝子の翻訳領域をPCR を用いて増幅し、用いた。

(14b) SXY1翻訳領域の増幅

SXY1翻訳領域をTrichoderma viride MC300-1株由来ゲノムDNA を鋳型にPCR により増幅した。

増幅は、実施例1dのTrichoderma viride MC300-1株由来染色体DNA を鋳型にTakara Taqを用いて行った。プライマーとしてSXY1-NおよびSXY1-Cを用い、94℃1分間、50℃2分間、72℃3分間のサイクルを20回繰り返すことにより反応を行った。その結果、約0.7kbpのDNA が増幅された。

SXY1-NおよびSXY1-Cの配列は以下に示される通りであった。

SXY1-N: 5´-GGG AGG CCT GCG CAT CAT GGT CTC CTT CAC CTC CC-3´ (配列番号 5 1)

SXY1-C: 5⁻-GGG CTC GAG TAC CTT AGC TGA CGG TGA TGG AAG C-3⁻ (配列番号 5 2)

このPCR 増幅断片をアガロースゲル電気泳動の後、ゲルから回収し以下に用いた。

実施例15:SXY1発現ベクターpCB-XI~の構築

SXY1をcbh1プロモーターの制御下、大量に発現させるために、SXY1の翻訳領域をcbh1プロモータの下流に連結した。

まず、実施例14bと同様にPCR を行い、約0.7kb の増幅断片を回収し、pT7-blu eにサブクローン化した。このプラスミドをStuI及びXhoIで切断し、約0.7kb の断片を回収した。更に、実施例5aの様に構築したpCB1-MX をStuI及びXhoIで切断

し、約8.5kb の断片と、約0.7kb のStuI~XhoI断片とを連結し、これをpCB-XI とした(図7)。

実施例16:pCB1-XI 形質転換体のSXY1生産性評価

実施例7と同様にしてプラスミドpCB-XI´をTrichoderma viride MC300-1株に導入した。その結果、ハイグロマイシンB に耐性を示す株が1mg のDNA 当り約10株出現した。このうち46株をS 培地で前培養後、P 培地で本培養した。この培養上澄をSDS-PAGEにより解析したところ、SXY1タンパク質と予想される分子量約20kDのバンドが観測された株が出現した。

このうち20kDのバンドがもっとも顕著に観察されるもの(S22 株)のSXY1生産量をFPLCシステムを用いて定量した。カラムは前述Resource HIC PHE 1mLを用い、50mMトリス一塩酸(pH 7.5)緩衝液中1 -0M硫酸アンモニウムの濃度勾配で溶出した。SXY1生産量は、対照として実施例13で得られた精製SXY1を用い、硫酸アンモニウム濃度約0.3Mで溶出されるピークの面積比で算出した。その結果、S22株のSXY1生産性は8.1g/Lであり、親株の13倍の生産性であった。

配列表

配列番号:1

配列の長さ:4176

配列の型:核酸

鎖の数:二本鎖

トポロジー:直鎖状

配列の種類:Genomic DNA

起源

生物名:Trichoderma viride MC300-1

配列の特徴:

特徴を表す記号:sig peptide

存在位置 : 1438...1488

特徴を決定した方法:E

特徴を表す記号:mat peptide

存在位置 : 1489...3108

特徴を決定した方法:E

特徴を表す記号:intron

存在位置 : 1899...1965

特徴を決定した方法:E

特徴を表す記号: intron

存在位置 : 2663...2724

特徴を決定した方法:E

配列

AAGCTTCCAT TTGGCGGCTG AATACCCTGA GAATGAAAAC ACATCAGGCT GGGTGATATC 60
CATGAAGACA GGTGGTGAAT ATGTAATCAC GTCCGTTCTC CTGAAGGGAA ACCCCTTGTC 120

GTGGTCACAT GCGGCTCTTT CCATGTAAGT CGGATATTCC TAAGTAGCGA TGGAGCGGC	A 180
GAATCAAATA GGCAATACAG CGAGTGGCTC GAACTTTTTA AATGTCGGGC GGGTTGCTG	C 240
GCTTCGGCAC TAGTAGACAT TGTATTCCAT ACCCCGCCCC TGTTTCCGCG ACCTCTGGG	A 300
TTCCCTTGAA TGATCAAATT CTCGCCTCTA CTACCTAACT CCCACTGAGC CTTTACGTC	T 360
TTTGCCATTC ATCCTGGTGG AAGTTATCGC GGTGTGTAGG GCTACATGCT AGGTCAACT	G 420
GACGTGTTGG GGCCCGGACC CGAACCTAAT TTTATACAAC GACTTTGATT CAGTCTACAC	G 480
TAATGGGACG TCCCCATATA CAGTTGCACG TAGGGCACAA CGGTAGAGTA CGTTGGGTGA	540
ATTCGATATG ATACGAGGAT AACCCCCTGA ATGTAGAGTC TCACGGCAAA CTCTGACCGC	600
GCGGTGCGAE CTCACAAAAC AATACAAACG GATGGCTAAA AGTACATGAG TTAATGCCTA	660
AAGATGTCAT ATACCAGCGG CTAATAATTG TACAATTAAG TGGCTAAACG TACCGTAATT	720
TGCCAATGAC TTGTAGGGTT GCAGAAGCAA CAGTACAGCC CCACTTCCCC ACGTTTGCCC	780
TCTTACACGC AGGTCTAACC TCAACTGATG ATCTCCCATC TAAGTTCTCT TGTTGTTGTT	840
TAGTCTAAGA GGCAAGTGTT TACTTCAGGA TTTTGTAAGG CGTAGCATGT AAGAAATAAA	900
CAGAAAGCAG ACGCCAAGAA GCGAGTTTCT GGATGAAGGC GTTTGAGAGA ACCTTGCAGG	960
GAGTTGTCTG ACAATAGAAA AACAATGGAT TGTCGCTTCT ACTCAGGTGT CTGTAATTAA	1020
ATGTTACTCC GTCCTGTACA GGCAAAAAAT ATAGTCGAAT CTGCCTAAGA TCTCGGGCCT	1080
TCGGGCCTTT AAGTCTACAG GTCAGTTTGG TTATATGGGC ATTTTTGGGT GTGGTAGCAT	1140
TGAGGGAACC ACTGCTTTTG CCAAGGAGCT GAACGTATGC TGTAGGCAAA GCTCTAGGTG	1200
CCACTGCATT TGTGTCGAAC ATAATGTGAT GCTTGGGCAG GCATAATAGC CGCCAAAGAT	1260
AGCCTCATTG AGCGGAAGTC GGCGAACAGG TGAAGAGCAG AATATCACAT ATATATATGG	1320
CCCAAACGCC GTGTCCCCTT CTCCCTTTCC CCATCTACTC ATCAACTCAG ATCCTCCAGA	1380
AGACTTGTAC ATCATCTTTT GGGGCATAGC ATTCTAGTCG ACTACGGACT GCGCATC	1437
ATG TAT CAA AAG TTG GCC CTC ATC TCG GCC TTC TTG GCT ACT GCT CGT	1485
Met Tyr Gln Lys Leu Ala Leu Ile Ser Ala Phe Leu Ala Thr Ala Arg	
-17 -15 -10 -5	

GCT	CAG	TCG	GCC	TGC	ACC	CTC	CAG	GCG	GAA	ACT	CAC	CCG	CC1	CTO	G ACA	1533
Ala	Gln	Ser	Ala	Cys	Thr	Leu	Gln	Ala	Glu	Thr	His	Pro	Pro	Le _u	ı Thr	
	+1				5					10)				15	
TGG	CAG	AAA	TGC	TCA	TCT	GGT	GGC	ACT	TGC	ACC	CAA	CAG	ACA	GGC	TCC	1581
Trp	Gln	Lys	Cys	Ser	Ser	Gly	Gly	Thr	Cys	Thr	Gln	Gln	Thr	Gly	Ser	
				20					25					30		
GTG	GTC	ATC	GAC	GCG	AAC	TGG	CGC	TGG	ACT	CAC	GCC	ACC	AAC	AGC	AGC	1629
Val	Val	Ile	Ásp	Ala	Asn	Trp	Arg	Trp	Thr	His	Ala	Thr	Asn	Ser	Ser	
			35					40					45			
ACG	AAC	TGC	TAC	GAC	GGC	AAT	ACT	TGG	AGC	TCA	ACC	CTG	TGC	CCT	GAC	1677
Thr	Asn	Cys	Tyr	Asp	Gly	Asn	Thr	Trp	Ser	Ser	Thr	Leu	Cys	Pro	Asp	
		50					55					60				
AAT	GAG	ACT	TGC	GCG	AAG	AAC	TGC	TGC	TTG	GAC	GGT	GCT	GCC	TAC	GCG	1725
Asn	Glu	Thr	Cys	Ala	Lys	Asn	Cys	Cys	Leu	Asp	Gly	Ala	Ala	Tyr	Ala	
	65					70					75					
TCC	ACG	TAC-	GGA	GTC	ACC	ACG	AGC	GCT	GAC	AGC	CTC	TCC	TTA	GGC	TTC	1773
Ser	Thr	Tyr	Gly	Val	Thr	Thr	Ser	Ala	Asp	Ser	Leu	Ser	Ile	Gly	Phe	
80					85					90					95	
GTC	ACT	CAG	TCT	GCG	CAA	AAG	AAC	GTC	GGC	GCT	CGT	CTC	TAC	TTG	ATG	1821
Val	Thr	Gln	Ser	Ala	Gln	Lys	Asn	Val	Gly	Ala	Arg	Leu	Tyr	Leu	Met	
				100			ν.		105					110		
GCG	AGT	GAC	ACG	ACC	TAT	CAA	GAA	TTC	ACC	CTG	CTT	GGC	AÄC	GAG	TTC	1869
Ala	Ser	Asp	Thr	Thr	Tyr	Gln	Glu	Phe	Thr	Leu	Leu	Gly	Asn	Glu	Phe	
			115					120					125			

TC	TTC	GAT	r gt	r gan	GT?	TC	G CAC	CTO	CC	GTAA	AGTGA	ACC A	ACT/	ACAC	CT	1918
Ser	Phe	Asp	Va.	l Asp	Val	Ser	Gln	Leu	Pr							
		130)				135	j								
CTT	GATG	CCA	TTCT	CGTA	TT A	GTTC	CTCAG	C TG	ACTA	GCTI	` ATI	TAAC	7 A 1	GT (GC TT	G 1975
													o (Cys (ly Le	u
															14	0
AAC	GGA	GCT	CTI	TAC	TTC	GTG	TCC	ATG	GAC	GCG	GAT	GGT	, GGC	GTG	AGC	2023
Asn	Gly	Ala	Leu	Tyr	Phe	Val	Ser	Met	Asp	Ala	Asp	Gly	Gly	Val	Ser	
				145					150					155		
AAG	TAT	CCC	ACC	AAC	ACT	GCC	GGT	GCC	AAG	TAC	GGC	ACG	GGC	TAC	TGT	2071
Lys	Tyr	Pro	Thr	Asn	Thr	Ala	Gly	Ala	Lys	Tyr	Gly	Thr	Gly	Tyr	Cys	
			160					165					170			
GAC	AGC	CAG	TGC	CCT	CGT	GAT	CTC	AAG	TTC	ATC	AAC	GGC	CAG	GCC	AAT	2119
Asp	Ser	Gln	Cys	Pro	Arg	Asp	Leu	Lys	Phe	Ile	Asn	Gly	Gln	Ala	Asn	
		175					180					185				
GTT	GAG	GGC	TGG	GAG	CCG	TCC	TCT	AAC	AAT	GCC	AAC	ACG	GGC	ATT	GGC	2167
Val	Glu	Gly	Trp	Glu	Pro	Ser	Ser	Asn	Asn	Ala	Asn	Thr	Gly	Ile	Gly	
	190					195					200					
GGA	CAT	GGA	AGC	TGC	TGC	TCT	GAG	ATG	GAT	ATC	TGG	GAG	GCC	AAT	TCC	2215
Gly	His	Gly	Ser	Cys	Cys	Ser	Glu	Met	Asp	Ile	Trp	Glu	Ala	Asn	Ser	
205					210					215					220	
ATC	TCT	GAG.	GCT	CTT	ACT	CCT	CAT	CCT	TGC	ACG	ACC	GTC	GGG	CAG	GAA	2263
Ile	Ser	Glu	Ala	Leu	Thr	Pro	His	Pro	Cys	Thr	Thr	Val	Gly	Gln	Glu	
			•	220					230					235		

ATT	TGC	GAC	GGT	GAC	TCC	TGC	GGT	GGA	ACC	TAC	TCG	GGT	GAC	CGA	TAT	2311
Ιlϵ	Cys	Asp	Gly	Asp	Ser	Cys	Gly	Gly	Thr	Tyr	Ser	Gly	Asp	Arg	Tyr	
			240					245					250			
GGC	GGT	ACT	TGC	GAC	CCT	GAT	GGC	TGC	GAT	TGG	AAC	CCA	TAT	CGC	TTG	2359
Gly	Gly	Thr	Cys	Asp	Pro	Asp	Gly	Cys	Asp	Trp	Asn	Pro	Tyr	Arg	Leu	
	,	255					260					265				
GGC	AAC	ACC	AGC	TTC	TAT	GGC	CCC	GGC	TCC	AGC	TTC	ACG	CTT	GAC	ACC	2407
Gly	Asn	Thr	Ser	Phe	Tyr	Gly	Pro	Gly	Ser	Ser	Phe	Thr	Leu	Asp	Thr	•
	270					275					280					
ACC	AAG	AAG	TTG	ACC	GTC	GTC	ACT	CAG	TTC	GAG	ACT	TCG	GGT	GCC	ATC	2455
Thr	Lys	Lys	Leu	Thr	Val	Val	Thr	Gln	Phe	Glu	Thr	Ser	Gly	Ala	Ile	
285					290					295					300	
AAC	CGA	TAC	TAT	GTC	CAG	AAT	GGC	GTC	ACT	TTC	CAG	CAG	CCC	AAC	GCC	2503
Asn	Arg	Tyr.	Tyr	Val	Gln	Asn	Gly	Val	Thr	Phe	Gln	Gln	Pro	Asn	Ala	
				305					310					315		
GAG	CTC	GGT	GAT	TAC	ŢCT	GGC	AAC	TCG	CTC	GAC	GAT	GAC	TAC	TGC	GCG	2551
Glu	Leu	Gly	Asp	Tyr	Ser	Gly	Asn	Ser	Leu	Asp	Asp	А́sp	Tyr	Cys	Ala	
			320					325	•				330			
GCT	GAA	GAG	GCG	GAG	TTT	GGC	GGC	TCC	TCT	TTC	TCG	GAC	AAG	GGC	GGC	2599
Ala	Glu	Glu	Ala	Glü	Phe	Gly	Gly	Ser	Ser	Phe	Ser	Asp	Lys	Gly	Gly	
		335					340					345				
CTT	ACT	CAA	TTC	AAG	AAG	GCT	ACT	TCC	GGT	GGC	ATG	GTC	CTG	GTC	ATG	2647
Leu	Thr	Gln	Phe	Lys	Lys	Ala	Thr	Ser	Gly	Gly	Met	Val	Leu	Val	Met	
	350					355					360					

AG	C CT	G TG	G GA	T GAC	C GT(GAGT	CAA	GAA'	[AAC	ATT (CACA?	TGT	CA A	CAGA.	ATGAC	2702
Se	r Lei	ı Tr	p Ası	p Asp)											
36	5															
AG	AACTO	GAC 1	rgag/	AGACG	A TA	G TA	C TA	C GC	C AA	AC AT	rg ci	G TO	G C1	rg G	AC TCT	2754
						Ty	r Ty	r Al	a As	sn Me	et Le	u Ti	p Le	eu As	sp Ser	
						37	0				37	5				
ACC	TAC	ccc	ACG	AAC	GAG	ACC	TCC	TCC	ACC	CCC	GGT	GCC	GTG	G CGT	GGA	2802
Thr	Tyr	Pro	Thr	Asn	Glu	Thr	Ser	Ser	Thr	Pro	Gly	Ala	Val	Arg	Gly	
380)				385					390					395	
AGC	TGC	TCC	ACC	AGC	TCC	GGT	GTT	CCT	GCT	CAG	CTC	GAG	TCC	AAC	TCT	2850
Ser	Cys	Ser	Thr	Ser	Ser	Gly	Val	Pro	Ala	Gln	Leu	Glu	Ser	Asn	Ser	
				400					405			•		410		
CCC	AAC	GCC	AAG	GTC	GTA	TAC	TCC	AAC	ATC	AAG	TTC	GGC	CCC	ATC	GGC	2898
Pro	Asn	Ala	Lys	Val	Val	Tyr	Ser	Asn	Ile	Lys	Phe	Gly	Pro	Ile	Gly	
			415					420					425			
AGC	ACC	GGC	AAC	TCT	AGC	GGC	GGA	AAC	CCT	CCT	GGC	GGA	AAC	CCT	CCC	2946
Ser	Thr	Gly	Asn	Ser	Ser	Gly	Gly	Asn	Pro	Pro	Gly	Gly	Asn	Pro	Pro	
		430					435					440				
GGC	ACC	ACA	ACC	ACC	CGC	CGC	CCG	GCT	ACC	TCC	ACT	GGA	AGC	TCT	CCC	2994
Gly	Thr	Thr	Thr	Thr	Arg	Arg	Pro	Ala	Thr	Ser	Thr	Gly	Ser	Ser	Pro	
	445					450					455					
GGC	CCT	ACT	CAG	ACG	CAC	TAT	GGC	CAG	TGC	GGT	GGA	ATT	GGA	TAC	TCG	3042
Gly	Pro	Thr	Gln	Thr	His	Tyr	Gly	Gln	Cys	Gly	Gly	Ile	Gly	Tyr	Ser	
460					465					470					475	

GGC CCC ACC GTC TGC GCG AGT GGC AGC ACT TGC CAG GTC CTG AAC CCC 3090
Gly Pro Thr Val Cys Ala Ser Gly Ser Thr Cys Gln Val Leu Asn Pro
480 485 490

TAC TAC TCT CAG TGC TTG TAA GGTACTGTG GCAAAAGCTT GAGGTACTGC 3140

Tyr Tyr Ser Gln Cys Leu ***

495

TGGCTTATGG ATGAGTTCAT CTCATTATGG ACTAGATGGA GGATTTACTT TGCTGTATCT 3200 ACTTCTGAGG CTTCCAATAT ATACGGTTAT TTCACCTTTG CTGGAATGCT CGCTAGCTTG 3260 GCAAGCACGG CTTTCGAGAG ACGGACTGAT TCTCTGCTAA CTATGCATTA TATAAGACTG 3320 AAATAGACAA AAAAGGAAAA AAGTTGCCAC TCGAATTATC TTGACGGTGT TGATTATATG 3380 TATGGCATTG TAAGGGTTTT TCATTGATAT TTCTCCCGCC AATATGGTTC TACTCCCATC 3440 TCCGCGAATC TCCTTTTCTC GAAGGCCGTA GTGGCACGCC AATTGGCAAC AACCCACAGG 3500 GAGACGAAAA ACATGATGGC GGCAGCCGAA ATCAGTGGCG CAATGATTGA AAACACGGTG 3560 AGACCGTAGC TTGCAGCCTG GAAAGCACTG TTGGAGACCA GCTTGTCCGT TGCGAGGCCG 3620 ACTTGCATTG CTGTCAAGAC GATGGCAATG TAGCCGAGCA CTGTCACCAG GGACGCAAAG 3680 TTGTCGCGGA TAAGGTCTCC GTAGATGGCG TAGCCAGAGA TTCGAGAATA GCCTCTCAAA 3740 AGGTGGCCCT TTCGAAACCG GTAAATCTTG TTCAAGCGTC CTAGGCGCAG CTCGCCGTAC 3800 CAGTAGCGGG GATTGACAGC AGAATAGCAG TGATTCTCCA GGACTTGACT GGACAATATC 3860 TTCCAGTACT CCCAAGATAC AATATCCGGC AAGAGTCCCT TCTCACGTGC GAGGCGAAAG 3920 TCGCTGTAGT GCGCAATGAG AGCGCAGTAG GAGAATAGAA ACCCCCTGGC ACATTGTTCT 3980 ACCTCGGCGT GTAGTGGATG ACTGTCGGGC AGAATGTGCT GTCTCCAGAA TCCGATGTCT 4040 AGTAGATACT CTGGCAGAGG CTTCAGGTGA ATGCCCTTGG GACCCCAGAT GAGATGCAGC 4100 TCCGGATTCT CAGTAACGAC GATCTCGCGG GAGAGCACGA GTTGGTGATG AAGAGGGCGA 4160 GGAGGCATGG GTCGAC 4176

配列番号: 2 配列の長さ:514 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:タンパク質 配列 Met Tyr Gln Lys Leu Ala Leu Ile Ser Ala Phe Leu Ala Thr Ala Arg -17-15-10-5 Ala Gln Ser Ala Cys Thr Leu Gln Ala Glu Thr His Pro Pro Leu Thr 5 +1 10 15 Trp Gln Lys Cys Ser Ser Gly Gly Thr Cys Thr Gln Gln Thr Gly Ser 20 25 30 Val Val Ile Asp Ala Asn Trp Arg Trp Thr His Ala Thr Asn Ser Ser 35 40 45 Thr Asn Cys Tyr Asp Gly Asn Thr Trp Ser Ser Thr Leu Cys Pro Asp 50 55 60 Asn Glu Thr Cys Ala Lys Asn Cys Cys Leu Asp Gly Ala Ala Tyr Ala 65 70 75 Ser Thr Tyr Gly Val Thr Thr Ser Ala Asp Ser Leu Ser Ile Gly Phe 80 85 90 95 Val Thr Gln Ser Ala Gln Lys Asn Val Gly Ala Arg Leu Tyr Leu Met 100 105 110

120

125

Ala Ser Asp Thr Thr Tyr Gln Glu Phe Thr Leu Leu Gly Asn Glu Phe

115

Ser	Phe	Asp	Val	Asp	Val	Ser	Gln	Leu	Pro	Cys	Gly	Leu	Asn	Gly	Ala
		130					135					140			
Leu	Tyr	Phe	Val	Ser	Met	Asp	Ala	Asp	Gly	Gly	Val	Ser	Lys	Tyr	Pro
	145					150					155				
Thr	Asn	Thr	Ala	Gly	Ala	Lys	Tyr	Gly	Thr	Gly	Tyr	Cys	Asp	Ser	Gln
160					165					170					175
Cys	Pro	Arg	Asp	Leu	Lys	Phe	Ile	Asn	Gly	Gln	Ala	Asn	Val	Glu	Gly
				180					185					190	
Trp	Glu	Pro	Ser	Ser	Asn	Asn	Ala	Asn	Thr	Gly	Ile	Gly	Gly	His	Gly
			195					200					205		
Ser	Cys	Cys	Ser	Glu	Met	Asp	Ile	Trp	Glu	Ala	Asn	Ser	Ile	Ser	Glu
		210					215					220			
Ala	Leu	Thr	Pro	His	Pro	Cys	Thr	Thr	Val	Gly	Gln	Glu	Ile	Cys	Asp
	225					230					235				
Gly	Asp	Ser	Cys	Gly	Gly	Thr	Tyr	Ser	Gly	Asp	Arg	Tyr	Gly	Gly	Thr
240					245					250					255
Cys	Asp	Pro	Asp	Gly	Cys	Asp	Trp	Asn	Pro	Tyr	Arg	Leu	Gly	Asn	Thr
				260					265					270	
Ser	Phe	Tyr	Gly	Pro	Gly	Ser	Ser	Phe	Thr	Leu	Asp	Thr	Thr	Lys	Lys
			275					280					285		
Leu	Thr	Val	Val	Thr	Gln	Phe	Glu	Thr	Ser	Gly	Ala	Ile	Asn	Arg	Tyr
		290					295					300			
Tyr	Val	Gln	Asn	Gly	Val	Thr	Phe	Gln	Gln	Pro	Asn	Ala	Glu	Leu	Gly
	305					310					315				

Asp	Tyr	Ser	Gly	Asn	Ser	Leu	Asp	Asp	Asp	Tyr	Cys	Ala	Ala	Glu	Glu
320					325					330					335
Ala	Glu	Phe	Gly	Gly	Ser	Ser	Phe	Ser	Asp	Lys	Gly	Gly	Leu	Thr	Gln
				340					345					350	
Phe	Lys	Lys	Ala	Thr	Ser	Gly	Gly	Met	Val	Leu	Val	Met	Ser	Leu	Trp
			355					360					365		
Asp	Asp	Tyr	Tyr	Ala	Asn	Met	Leu	Trp	Leu	Asp	Ser	Thr	Tyr	Pro	Thr
		370					375					380			
Asn	Glu	Thr	Ser	Ser	Thr	Pro	Gly	Ala	Val	Arg	Gly	Ser	Cys	Ser	Thr
	385					390					395				
Ser	Ser	Gly	Val	Pro	Ala	Gln	Leu	Glu	Ser	Asn	Ser	Pro	Asn	Ala	Lys
400					405					410					415
Val	Val	Tyr	Ser	Asn	Ile	Lys	Phe	Gly	Pro	Ile	Gly	Ser	Thr	Gly	Asn
		,		420					425					430	
Ser	Ser	Gly	Gly	Asn	Pro	Pro	Gly	Gly	Asn	Pro	Pro	Gly	Thr	Thr	Thr
			435	•				440					445		
Thr	Arg	Arg	Pro	Ala	Thr	Ser	Thr	Gly	Ser	Ser	Pro	Gly	Pro	Thr	Gln
		450					455		•			460			
Thr	His	Tyr	Gly	Gln	Cys	Gly	Gly	Ile	Gly	Tyr	Ser	Gly	Pro	Thr	Val
	465					470					475				
Cys	Ala	Ser	Gly	Ser	Thr	Cys	Gln	Val	Leu	Asn	Pro	Tyr	Tyr	Ser	Gln
480		٠			485					490					495
Cys	Leu														

配列番号:3

配列の長さ286

配列の型:アミノ酸

トポロジー:直鎖状

配列の種類:タンパク質

配列

Ala Cys Ala Asp Gly Lys Ser Thr Arg Tyr Trp Asp Cys Cys Lys Pro

-2 1 5 10

Ser Cys Gly Trp Ala Lys Lys Ala Pro Val Asn Gln Pro Val Phe Ser

15 20 25 30

Cys Asn Ala Asn Phe Gln Arg Leu Thr Asp Phe Asp Ala Lys Ser Gly

35 40 45

Cys Glu Pro Gly Gly Val Ala Tyr Ser Cys Ala Asp Gln Thr Pro Trp

50 55 60

Ala Val Asn Asp Asp Phe Ala Phe Gly Phe Ala Ala Thr Ser Ile Ala

65 70 75

Gly Ser Asn Glu Ala Gly Trp Cys Cys Ala Cys Tyr Glu Leu Thr Phe

80 85 90

Thr Ser Gly Pro Val Ala Gly Lys Lys Met Val Val Gln Ser Thr Ser

95 100 105 110

Thr Gly Gly Asp Leu Gly Ser Asn His Phe Asp Leu Asn Ile Pro Gly

115 120 125

Gly Gly Val Gly Ile Phe Asp Gly Cys Thr Pro Gln Phe Gly Gly Leu

130 135 140

Pro Gly Gln Arg Tyr Gly Gly Ile Ser Ser Arg Asn Glu Cys Asp Arg Phe Pro Asp Ala Leu Lys Pro Gly Cys Tyr Trp Arg Phe Asp Trp Phe Lys Asn Ala Asp Asn Pro Ser Phe Ser Phe Arg Gln Val Gln Cys Pro Ala Glu Leu Val Ala Arg Thr Gly Cys Arg Arg Asn Asp Asp Gly Asn Phe Pro Ala Val Gln Ile Pro Ser Ser Ser Thr Ser Ser Pro Val Gly Gln Pro Thr Ser Thr Ser Thr Ser Thr Ser Thr Ser Ser Pro Pro Val Gln Pro Thr Thr Pro Ser Gly Cys Thr Ala Glu Arg Trp Ala Gln Cys Gly Gly Asn Gly Trp Ser Gly Cys Thr Thr Cys Val Ala Gly Ser Thr Cys Thr Lys Ile Asn Asp Trp Tyr His Gln Cys Leu

配列番号: 4

配列の長さ:927

配列の型:核酸

鎖の数:二本鎖

トポロジー:直鎖状

配列の種類:Genomic DNA

起源

生物名:Humicola insolens

配列の特徴

特徴を表す記号: intron

存在位置:297..334

特徴を決定した方法:E

配列

GCA TGC GCT GAT GGC AAG TCC ACC CGC TAC TGG GAC TGC TGC AAG CCT 48

Ala Cys Ala Asp Gly Lys Ser Thr Arg Tyr Trp Asp Cys Cys Lys Pro

-2 1 5 10

TCG TGC GGC TGG GCC AAG AAG GCT CCC GTG AAC CAG CCT GTC TTC TCC 96

Ser Cys Gly Trp Ala Lys Lys Ala Pro Val Asn Gln Pro Val Phe Ser

15 20 25 30

TGC AAC GCC AAC TTC CAG CGT CTC ACT GAC TTC GAC GCC AAG TCC GGC 144 Cys Asn Ala Asn Phe Gln Arg Leu Thr Asp Phe Asp Ala Lys Ser Gly

35 40 45

TGC GAG CCG GGC GGT GTC GCC TAC TCG TGC GCC GAC CAG ACC CCA TGG 192

Cys Glu Pro Gly Gly Val Ala Tyr Ser Cys Ala Asp Gln Thr Pro Trp

50 55 60

GCT GTG AAC GAC GAC TTC GCG TTC GGT TTT GCT GCC ACC TCT ATT GCC 240
Ala Val Asn Asp Asp Phe Ala Phe Gly Phe Ala Ala Thr Ser Ile Ala

65 70 75

GGC AGC AAT GAG GCG GGC TGG TGC TGC GCC TGC TAC GA GTAAGCTTTG 288
Gly Ser Asn Glu Ala Gly Trp Cys Cys Ala Cys Tyr Gl

80 85 90

GTC	CGCGT	TGTG	TAAC	CACTO	STG C	AGGC	CATAC	ic ac	CTAAC	CACC	TCC	CAG	G C	C AC	cc	341
													u Le	eu Th	ır	
TTC	ACA	TCC	GGT	CCT	GTT	GCT	, GGC	AAG	AAG	ATG	GTC	GTC	CAC	TCC	ACC	389
Phe	Thr	Ser	Gly	Pro	Val	Ala	Gly	Lys	Lys	Met	Val	Val	Glr	Ser	Thr	
	95	j				100					105	İ				
AGC	ACT	GGC	GGT	GAT	CTT	GGC	AGC	AAC	CAC	TTC	GAT	CTC	AAC	ATC	ccc	437
Ser	Thr	Gly	Gly	Asp	Leu	Gly	Ser	Asn	His	Phe	Asp	Leu	Asn	Ile	Pro	
110			·		115					120					125	
GGC	GGC	GGC	GTC	GGC	ATC	TTC	GAC	GGA	TGC	ACT	CCC	CAG	TTC	GGC	GGT	485
Gly	Gly	Gly	Val	Gly	Ile	Phe	Asp	Gly	Cys	Thr	Pro	Gln	Phe	Gly	Gly	
				130					135					140		
CTG	CCC	GGC	CAG	CGC	TAC	GGC	GGC	ATC	TCG	TCC	CGC	AAC	GAG	TGC	GAT	533
Leu	Pro	Gly	Gln	Arg	Tyr	Gly	Gly	Ile	Ser	Ser	Arg	Asn	Glu	Cys	Asp	
			145					150					1 5 5			
CGG	TTC	CCC	GAC	GCC	CTC	AAG	CCC	GGC	TGC	TAC	TGG	CGC	TTC	GAC	TGG	581
Arg	Phe	Pro	Asp	Ala	Leu	Lys	Pro	Gly	Cys	Tyr	Trp	Arg	Phe	Asp	Trp	
		160					165	j				170)			
TTC	AAG	AAC	GCC	GAC	AAC	CCG	AGC	TTC	AGC	TTC	CGT	CAG	GTC	CAA	TGC	629
Phe	Lys	Asn	Ala	Asp	Asn	Pro	Ser	Phe	Ser	Phe	Arg	Gln	Val	Gln	Cys	
	175					180					185					
CCA	GCC	GAG	CTC	GTC	GCT	CGC	ACC	GGA	TGC	CGC	CGC	AAC	GAC	GAC	GGC	677
Pro	Ala	Glu	Leu	Val	Ala	Arg	Thr	Gly	Cys	Arg	Arg	Asn	Asp	Asp	Gly	
190					195					200					205	

AAC	TTC	CCT	GCC	GTC	CAG	ATC	CCC	TCC	AGC	AGC	ACC	AGC	TCT	CCG	GTC	725
Asn	Phe	Pro	Ala	Val	Gln	Ile	Pro	Ser	Ser	Ser	Thr	Ser	Ser	Pro	Val	
				210					215					220		
GGC	CAG	CCT	ACC	AGT	ACC	AGC	ACC	ACC	TCC	ACC	TCC	ACC	ACC	TCG	AGC	773
Gly	Gln	Pro	Thr	Ser	Thr	Ser	Thr	Thr	Ser	Thr	Ser	Thr	Thr	Ser	Ser	
			225					230					235			
CCG	CCC	GTC	CAG	CCT	ACG	ACT	CCC	AGC	GGC	TGC	ACT	GCT	GAG	AGG	TGG	821
Pro	Pro	Val	Gln	Pro	Thr	Thr	Pro	Ser	Gly	Cys	Thr	Ala	Glu	Arg	Trp	
		240					245					250				
GCT	CAG	TGC	GGC	GGC	AAT	GGC	TGG	AGC	GGC	TGC	ACC	ACC	TGC	GTC	GCT	869
Ala	Gln	Cys	Gly	Gly	Asn	Gly	Trp	Ser	Gly	Cys	Thr	Thr	Cys	Val	Ala	
	255					260					265					
GGC	AGC	ACC	TGC	ACG	AAG	ATT	AAT	GAC	TGG	TAC	CAT	CAG	TGC	CTG	TAA	917
Gly	Ser	Thr	Cys	Thr	Lys	Ile	Asn	Asp	Trp	Tyr	His	Gln	Cys	Leu	***	
270					275					280						
GGTA	GTCG	AC														927

配列の長さ:418

配列の型:アミノ酸

トポロジー:直鎖状

配列の種類:タンパク質

配列

Met Asn Arg Thr Met Ala Pro Leu Leu Leu Ala Ala Ser Ile Leu Phe

-20

-15

-10

Gly	Gly	Ala	Ala	Ala	Gln	Gln	Thr	Val	Trp	Gly	Gln	Cys	Gly	Gly	Ile
- 5					1				5	j				10	
Gly	Trp	Ser	Gly	Pro	Thr	Ser	Cys	Ala	Pro	Gly	Ser	Ala	Cys	Ser	Thr
			15					20					25		
Leu	Asn	Pro	Tyr	Tyr	Ala	Gln	Cys	Ile	Pro	Gly	Ala	Thr	Ser	Ile	Thr
		30					35					40			
Thr	Ser	Thr	Arg	Pro	Pro	Ser	Gly	Pro	Thr	Thr	Thr	Thr	Arg	Ala	Thr
	45					50					55				-
Ser	Thr	Thr	Ser	Ser	Pro	Pro	Pro	Thr	Ser	Ser	Gly	Val	Arg	Phe	Ala
60					65					70					75
Gly	Val	Asn	Ile	Ala	Gly	Phe	Asp	Phe	Gly	Cys	Thr	Thr	Asp	Gly	Thr
				80					85					90	
Cys	Val	Thr	Ser	Lys	Val	Tyr	Pro	Pro	Leu	Lys	Asn	Phe	Thr	Gly	Ala
			95				٠	100					105		
Asn	Asn	Tyr	Pro	Asp	Gly	Ile	Gly	Gln	Met	Gln	His	Phe	Val	Asn	Asp
		110					115					120		•	
Asp	Gly	Met	Thr	Ile	Phe	Arg	Leu	Pro	Val	Gly	Trp	Gln	Tyr	Leu	Val
	125					130					135				
Asn	Asn	Asn	Leu	Gly	Gly	Thr	Leu	Asp	Ser	Thr	Ser	Ile	Ser	Lys	Tyr
140					145					150					155
Asp	Gln	Leu	Val	Gln	Gly	Cys	Leu	Ser	Leu	Gly	Val	Tyr	Cys	Ile	Ile
				160					165					170	
Asp	Ile	His	Asn	Tyr	Ala	Arg	Trp	Asn	Gly	Gly	Ile	Ile	Gly	Gln	Gly
			175					180					185		

Gly	Pro	Thr	Asn	Ala	Gln	Phe	Thr	Ser	Leu	Trp	Ser	Gln	Leu	Ala	Sei
		190					195					200	İ		
Lys	Tyr	Ala	Ser	Gln	Ser	Arg	Val	Trp	Phe	Gly	Ile	Met	Asn	Glu	Pro
	205				•	210					215				
His	Asp	Val	Asn	Ile	Asn	Thr	Trp	Ala	Ala	Thr	Val	Gln	Glu	Val	Val
220					225					230					235
Thr	Ala	Ile	Arg	Asn	Ala	Gly	Ala	Thr	Ser	Gln	Tyr	Ile	Ser	Leu	Pro
				240					245					250	
Gly	Asn	Asp	Tyr	Gln	Ser	Ala	Ala	Ala	Phe	Ile	Ser	Asp	Gly	Ser	Ala
			255					260					265		
Ala	Ala	Leu	Ser	Gln	Val	Thr	Asn	Pro	Asp	Gly	Ser	Thr	Thr	Asn	Leu
		270					275					280			
Ile	Phe	Asp	Val	His	Lys	Tyr	Leu	Asp	Ser	Asp	Asn	Ser	Gly	Thr	His
	285					290	•				295				
Ala	Glu	Cys	Thr	Thr	Asn	Asn	Ile	Asp	Gly	Ala	Phe	Ala	Pro	Leu	Ala
300					305					310					315
Thr	Trp	Leu	Arg	Gln	Asn	Asn	Arg	Gln	Ala	Ile	Leu	Thr	Glu	Thr	Gly
				320					325					330	
Gly	Gly	Asn	Val	Gln	Ser	Cys	Ile	Gln	Asp	Leu	Cys	Gln	Gln	Ile	Gln
			335					340					345		
Tyr	Leu	Asn	Gln	Asn	Ser	Asp	Val	Tyr	Leu	Gly	Tyr	Ala	Gly	Trp	Gly
		350					355					360			
Ala	Gly	Ser	Phe	Asp	Ser	Thr	Tyr	Ile	Leu	Thr	Glu	Thr	Pro	Thr	Gly
	365					370					375				

Ser Gly Asn Ser Trp Thr Asp Thr Ser Leu Val Ser Ser Cys Leu Ala

380

385

390

395

Arg Lys

配列番号:6

配列の長さ:1463

配列の型:核酸

鎖の数:二本鎖

トポロジー:直鎖状

配列の種類:Genomic DNA

起源

生物名: Trichoderma viride MC300-1

配列の特徴:

特徴を表す記号: sig peptide

存在位置 : 14..76

特徴を決定した方法:E

特徴を表す記号:mat peptide

存在位置 : 77. . 1450

特徴を決定した方法:E

特徴を表す記号: intron

存在位置 : 343..525

特徴を決定した方法:E

-	17-1
1111	-~1

AGG	CCT(GCGC	ATC	ATG	AAC	AGG	ACC	ATG	GCT	CCA	TTG	CTG	CTT	GCA	GCG	49
				Met	Asn	Arg	Thr	Met	Ala	Pro	Leu	Leu	Leu	Ala	Ala	
					-20					-15					-10	
TCG	ATA	CTC	TTC	GGG	GGC	GCT	GCT	GCA	CAA	CAG	ACT	GTO	TGO	G GGA	CAG	97
Ser	Ιlε	Leu	Phe	Gly	Gly	Ala	Ala	Ala	Gln	Glm	Thr	Val	Trp	Gly	Gln	
				-5				-1	1				5	5		
TGT	GGA	GGT	ATT	GGT	TGG	AGC	GGA	CCT	ACG	AGT	TGT	GCT	CCT	GGA	TCA	145
Cys	Gly	Gly	Ile	Gly	Trp	Ser	Gly	Pro	Thr	Ser	Cys	Ala	Pro	Gly	Ser	
		10					15					20				
GCT	TGT	TCT	ACT	CTC	AAT	CCT	TAT	TAT	GCG	CAA	TGC	ATT	CCG	GGG	GCC	193
Ala	Cys	Ser	Thr	Leu	Asn	Pro	Tyr	Tyr	Ala	Gln	Cys	Ile	Pro	Gly	Ala	
	25					30					35					
ACT	AGT	ATC	ACC	ACC	TCG	ACC	CGA	CCC	CCC	TCG	GGT	CCA	ACC	ACC	ACC	241
Thr	Ser	Ile	Thr	Thr	Ser	Thr	Arg	Pro	Pro	Ser	Gly	Pro	Thr	Thr	Thr	
40					45					50					55	
ACC	AGA	GCC	ACC	TCA	ACG	ACC	TCA	TCT	CCG	CCA	CCG	ACC	AGC	TCT	GGA	289
Thr	Arg	Ala	Thr	Ser	Thr	Thr	Ser	Ser	Pro	Pro	Pro	Thr	Ser	Ser	Gly	
				60					65					70		
GTT	CGA	TTT	GCT	GGC	GTT	AAC	ATC	GCG	GGC	TTT	GAC	TTC	GGA	TGT	ACC	337
Val	Arg	Phe	Ala	Gly	Val	Asn	Ile	Ala	Gly	Phe	Asp	Phe	Gly	Cys	Thr	
			75					80					85			
ACA GA GTATGTCTTC ATGTTGCATA GTGTTGCTGG CTGAGTATTC TGGGCGGATG												. 392				
Thr As																
ATTT	'ATAC	CT G	TGCG	GGCT	G CA	AAAC	ACCG	CCG	GTCT	GCC	ACTA	TCAA	.GG (CATAG	TTGAT	452

AGC	CGG	CGGT	GTT7	TTCT	rca A	ATCCC	CTGA	AT TA	CACT	CTCA	A AGA	ATC	ragt	GGC'	TGATGG	A 512
TG1	ATGA	ATTA	CAG	T GO	GC AC	CT TG	C G1	TT AC	A TO	G AA	G GI	T TA	AT CO	CT CO	CG TTG	562
				P G1	ly Th	ır Cy	's Va	l Th	ır Se	r Ly	's Va	ıl Ty	r Pr	o Pi	ro Leu	
				Ş	0				g	5				10	00	
AAG	AAC	TTC	ACT	GGG.	GCA	AAC	AAC	TAC	CCG	GAC	GGT	ATC	GGC	CAC	ATG	610
Lys	Asn	Phe	Thr	Gly	Ala	Asn	Asn	Tyr	Pro	Asp	Gly	Ile	Gly	Glr	Met	
			105	ı				110					115			
CAG	CAC	TTC	GTC	AAC	GAT	GAT	GGG	ATG	ACT	ATT	TTC	CGC	CTA	CCC	GTC	658
Gln	His	Phe	Val	Asn	Asp	Asp	Gly	∦et	Thr	Ile	Phe	Arg	Leu	Pro	Val	
		120					125					130				
GGA	TGG	CAG	TAC	CTC	GTA	AAC	AAC	AAT	CTG	GGT	GGA	ACT	CTC	GAT	TCC	706
Gly	Trp	Gln	Tyr	Leu	Val	Asn	Asn	Asn	Leu	Gly	Gly	Thr	Leu	Asp	Ser	
	135					140					145					
ACC	AGT	ATC	TCG	AAG	TAT	GAT	CAG	CTC	GTT	CAG	GGG	TGC	CTG	TCT	CTC	754
Thr	Ser	Ile	Ser	Lys	Tyr	Asp	Gln	Leu	Val	Gln	Gly	Cys	Leu	Ser	Leu	
150					155					160					165	
GT	GTA	TAC	TGC	ATC	ATC	GAC	ATC	CAC	AAT	TAT	GCT	CGA	TGG	AAC	GGT	802
Gly	Val	Tyr	Cys	Ile	Ile	Asp	Ile	His	Asn	Tyr	Ala	Arg	Trp	Asn	Gly	
				170					175					180		
GA	ATC	ATT	GGC	CAG	GGA	GGC	CCT	ACA	AAT	GCC	CAG	TTT	ACC	AGT	CTT	850
ily	Ile	Ile	Gly	Gln	Gly	Gly	Pro	Thr	Asn	Ala	Gln	Phe	Thr	Ser	Leu	
			185					190					195			
`GG	TCG	CAG	TTG	GCA	TCG	AAG	TAC	GCG	TCT	CAG	TCG	AGG	GTG	TGG	TTC	898
rp	Ser	Gln	Leu	Ala	Ser	Lys	Tyr	Ala	Ser	Gln	Ser	Arg	Val	Trp	Phe	
		200					205					210				

GGA	ATA	AT(G AAT	GAC	CCC	CAC	GAC	GTG	AAC	ATC	CAAC	ACT	TGC	GC1	r GCC	946
Gly	Ile	Met	t Asn	Gli	Pro	His	Asp	Val	Asr	ı Ile	Asn	Thr	Trp	Ala	a Ala	
	215	, ,				220	1				225					
ACG	GTT	CAA	GAG	GTC	GTC	ACT	GCA	ATC	CGC	AAC	GCC	GGT	GCT	ACC	TCG	994
Thr	Val	Gln	Glu	Val	Val	Thr	Ala	Ile	Arg	Asn	Ala	Gly	Ala	Thr	Ser	
230					235					240					245	
CAA	TAC	ATT	TCT	CTG	CCT	GGA	AAT	GAT	TAT	CAA	TCT	GCG	GCA	GCT	TTT	1042
Gln	Tyr	Ile	Ser	Leu	Pro	Gly	Asn	Asp	Tyr	Gln	Ser	Ala	Ala	Ala	Phe	
				250				;	255					260		
ATT	TCC	GAT	GGC	AGT	GCA	GCC	GCC	CTG	TCT	CAG	GTA	ACG	AAC	CCT	GAT	1090
Ìle	Ser	Asp	Gly	Ser	Ala	Ala	Ala	Leu	Ser	Gln	Val	Thr	Asn	Pro	Asp	
			265					270					275			
GGA	TCA	ACA	ACG	AAT	CTA	ATC	TTC	GAT	GTC	CAC	AAG	TAC	TŢĀ	GAC	TCG	1138
Gly	Ser	Thr	Thr	Asn	Leu	Ile	Phe	Asp	Val	His	Lys	Tyr	Leu	Asp	Ser	
		280					285					290				
GAC	AAC	TCC	GGT	ACT	CAC	GCC	GAA	TGC	ACT	ACA	AAC	AAC	ATC	GAC	GGC	1186
Asp	Asn	Ser	Gly	Thr	His	Ala	Glu	Cys	Thr	Thr	Asn	Asn	Ile	Asp	Gly	
	295					300					305					
			CCT													1234
Ala	Phe	Ala	Pro	Leu	Ala	Thr	Trp	Leu	Arg	Gln	Asn	Asn	Arg	Gln	Ala	
310					315					320					325	
ATT	CTG	ACG	GAA	ACC	GGC	GGT	GGC	AAT	GTT	CAG	TCC	TGC	ATC	CAA	GAT	1282
Ile	Leu	Thr	Glu	Thr	Gly	Gly	Gly	Asn	Val	Gln	Ser	Cys	Ile	Gln	Asp	
				330					335					340		

TTG	TGC	CAA	CAG	ATC	CAG	TAC	СТС	AAC	CAG	AAC	TCA	GAT	GTC	TAT	CTT	1330
Leu	Cys	Gln	Gln	Ile	Gln	Tyr	Leu	Asn	Gln	Asn	Ser	Asp	Val	Туг	Leu	
			345					350					355			
GGC	TAT	GCT	GGC	TGG	GGT	GCC	GGT	TCA	TTT	GAT	AGC	ACT	TAT	ATT	CTG	1378
Gly	Tyr	Ala	Gly	Trp	Gly	Ala	Gly	Ser	Phe	Asp	Ser	Thr	Tyr	Ile	Leu	
		360					365					370				
ACG	GAA	ACG	CCT	ACT	GGA	AGC	GGT	AAC	TCG	TGG	ACG	GAC	ACA	TCC	CTA	1426
Thr	Glu	Thr	Pro	Thr	Gly	Ser	Gly	Asn	Ser	Trp	Thr	Asp	Thr	Ser	Leu	
	375					380					385					
GTT	AGC	TCG	TGT	CTC	GCC	AGG	AAG	TAAC	GTAC	CTC (GAG					1463
Val	Ser	Ser	Cys	Leu	Ala	Arg	Lys									
390					395											
	. 	_														
	番号		0.0	0												
	の長															
	の型															
	の種				啠											
配列		·			Ą											
	Val	Ser	Phe	Thr	Ser	Leu	Leu	Ala	Gly	Val	Ala	Pro	Ile	Ser	Gly	
-33			-30					-25	•				-20		•	
	Leu	Ala·	Ala	Pro	Ala	Ala			Glu	Ser	Val	Asp		Glu	Lys	
		-15					-10					-5				
Arg	Gln	Thr	Ile	Gln	Pro	Gly	Thr	Gly	Tyr	Asn .	Asn	Gly	Tyr	Phe	Tyr	
-1	1				5					10					15	

Ser	Tyr	Trp	Asn	Asp	Gly	His	Gly	Gly	Val	Thr	Tyr	Thr	Asn	Gly	Pro
				20					25					30	
Gly	Gly	Gln	Phe	Ser	Val	Asn	Trp	Ser	Asn	Ser	Gly	Asn	Phe	Val	Gly
			35					40					45		
Gly	Lys	Gly	Trp	Gln	Pro	Gly	Thr	Lys	Asn	Lys	Val	Ile	Asn	Phe	Ser
		50					55					60			
Gly	Thr	Tyr	Asn	Pro	Asn	Gly	Asn	Ser	Tyr	Leu	Ser	Val	Tyr	Gly	Trp
	65					70					75				
Ser	Arg	Asn	Pro	Leu	Ile	Glu	Tyr	Tyr	Ile	Val	Glu	Asn	Phe	Gly	Thr
80					85					90					95
Tyr	Asn	Pro	Ser	Thr	Gly	Ala	Thr	Lys	Leu	Gly	Glu	Val	Thr	Ser	Asp
				100					105					110	
Gly	Ser	Val	Tyr	Asp	Ile	Tyr	Arg	Thr	Gln	Arg	Val	Asn	Gln	Pro	Ser
			115					120					125		
Ile	Glu	Gly	Thr	Ser	Thr	Phe	Tyr	Gln	Tyr	Trp	Ser	Val	Arg	Arg	Thr
		130					135					140			
His	Arg	Ser	Ser	Gly	Ser	Val	Asn	Thr	Ala	Asn	His	Phe	Asn	Ala	Trp
	145					150					155				
Ala	Ser	His	Gly	Leu	Thr	Leu	Gly	Thr	Met	Asp	Tyr	Gln	Ile	Val	Ala
160					165					170					175
Val	Glu	Gly	Tyr	Phe	Ser	Ser	Gly	Ser	Ala	Ser	Ile	Thr	Val	Ser	
				180					185					190	

配列番号:8

配列の長さ:822

配列の型:核酸

鎖の数:二本鎖

トポロジー:直鎖状

配列の種類:Genomic DNA

起源

生物名: Trichoderma viride MC300-1

配列の特徴:

特徴を表す記号: sig peptide

存在位置 : 14..112

特徴を決定した方法:E

特徴を表す記号:mat peptide

存在位置 : 113..809

特徴を決定した方法:E

特徴を表す記号: intron

存在位置 : 286..412

特徴を決定した方法:E

配列

AGGCCTGCGC ATC ATG GTC TCC TTC ACC TCC CTC GCC GGC GTC GCG CCC 52

Met Val Ser Phe Thr Ser Leu Leu Ala Gly Val Ala Pro

-33 -30 -25

ATC TCC GGA GTC TTG GCC GCT CCC GCT GCT GAG GTC GAG TCC GTG GAC 100

Ile Ser Gly Val Leu Ala Ala Pro Ala Ala Glu Val Glu Ser Val Asp

-20 -15 -10 -5

GTT	GAA	AAG	CGC	CAG	ACG	ATT	CAG	CCC	GGC	ACG	GGC	TAC	AAC	AAC	GGC	148
Val	Glu	Lys	Arg	Gln	Thr	Ile	Gln	Pro	Gly	Thr	Gly	Tyr	Asn	Asn	Gly	
			-1	1				5					10			
TAC	ŢŢĊ	TAC	TCG	TAC	TGG	AAC	GAC	GGC	CAC	GGC	GGC	GTG	ACG	TAC	ACC	196
Tyr	Phe	Tyr	Ser	Tyr	Trp	Asn	Asp	Gly	His	Gly	Gly	Val	Thr	Tyr	Thr	
		15					20					25				
AAT	GGC	CCC	GGC	GGC	CAG	TTC	TCC	GTC	AAC	TGG	TCC	AAC	TCG	GGC	AAC	244
Asn	Gly	Pro	Gly	Gly	Gln	Phe	Ser	Val	Asn	Trp	Ser	Asn	Ser	Gly	Asn	
	30					35					40					
TTT	GTC	GGC	GGC	AAG	GGA	TGG	CAG	CCC	GGC	ACC	AAG	AAC	AA			285
Phe	Val	Gly	Gly	Lys	Gly	Trp	Gln	Pro	Gly	Thr	Lys	Asn	Ly			
45					50					55						
GTA.	AGAC7	TAT A	TACA	ACCC	C AC	CTTC	CTGAC	CAA	ACCC	CCT	ATCC	CAACO	FAC A	GAAT	ATAAA	345
ACC/	AGGG	GCG 1	GATT	ATCA	T GG	GAGAG	GAGAG	G AGT	GTGT	'GTG	ATCT	AACC	GT 1	TTGT	TCTGA	405
AAAC	CAAG	G GI	C AT	'C AA	C TT	C TO	CG GG	C AC	C TA	.C AA	c cc	CC AA	C GG	C AA	rC	452
		s Va	1 I1	e As	n Ph	ie Se	er Gl	y Th	r Ty	r As	n Pr	o As	n Gl	y As	in	
			6	0				6	5				7	0		
AGC	TAC	CTC	TCC	GTG	TAC	GGC	TGG	TCG	CGC	AAC	CCC	CTG	ATC	GAG	TAC	500
Ser	Tyr	Leu	Ser	Val	Tyr	Gly	Trp	Ser	Arg	Asn	Pro	Leu	Ile	Glu	Tyr	
			75					80					85			
TAC	ATC	GTC	GAG	AAC	TTT	GGC	ACC	TAC	AAC	CCG	TCC	ACC	GGC	GCC	ACC	548
Γyr	Ile	Val	GÌu	Asn	Phe	Gly	Thr	Tyr	Asn	Pro	Ser	Thr	Gly	Ala	Thr	
		90					95					100				

AAG	CTG	GGC	GAG	GTG	ACG	TCG	GAC	GGC	AGC	GTC	TAC	GAC	ATC	TAC	CGC	596
Lys	Leu	Gly	Glu	Val	Thr	Ser	Asp	Gly	Ser	Val	Tyr	Asp	Ile	Tyr	Arg	
	105					110					115					
ACG	CAG	CGC	GTC	AAC	CAG	CCG	TCC	ATC	GAG	GGC	ACC	TCC	ACC	TTT	TAC	644
Thr	Gln	Arg	Val	Asn	Gln	Pro	Ser	Ile	Glu	Gly	Thr	Ser	Thr	Phe	Tyr	
120		n			125					130					135	
CAG	TAC	TGG	TCC	GTC	CGC	CGC	ACC	CAC	CGC	TCC	AGC	GGC	TCC	GTC	AAC	692
Gln	Tyr	Trp	Ser	Val	Arg	Arg	Thr	His	Arg	Ser	Ser	Gly	Ser	Val	Asn	
				140					145					150		
ACG	GCG	AAC	CAC	TTC	AAC	GCG	TGG	GCC	TCG	CAC	GGC	CTG	ACG	CTG	GGC	740
Thr	Ala	Asn	His	Phe	Asn	Ala	Trp	Ala	Ser	His	Gly	Leu	Thr	Leu	Gly	
			155					160					165			
ACC	ATG	GAT	TAC	CAG	ATT	GTT	GCC	GTG	GAG	GGC	TAC	TTT	AGC	TCT	GGC	788
Thr	Met	Asp	Tyr	Gln	Ile	Val	Ala	Val	Glu	Gly	Tyr	Phe	Ser	Ser	Gly	
		170					175					180				
TCT	GCT	TCC	ATC	ACC	GTC	AGC	TAAG	GTAC	TC G	AG						822
Ser	Ala	Ser	Ile	Thr	Val	Ser										
	185					190										

配列番号:9

配列の長さ:10

配列の型:アミノ酸

トポロジー:直鎖状

フラグメント型:N末端フラグメント

起源

生物名:Trichoderma viride MC300-1

配列

Ser Ala Xaa Thr Leu Gln Ala Glu Thr His

1 5

配列番号:10

配列の長さ:6

配列の型:アミノ酸

トポロジー:直鎖状

フラグメント型:中間フラグメント

起源

生物名:Trichoderma viride MC300-1

配列

Glu Phe Ser Phe Asp Val

1 5

配列番号:11

配列の長さ:18

配列の型:アミノ酸

トポロジー:直鎖状

フラグメント型:中間フラグメント

起源

生物名: Trichoderma viride MC300-1

配列

Glu Thr His Pro Pro Leu Thr Trp Gln Lys Xaa Ser Ser Gly Gly Thr

1

5

10

15

Xaa Thr

配列番号:12

配列の長さ:18

配列の型:核酸

トポロジー:直鎖状

配列の種類:他の核酸 合成核酸

配列

ATGTATCAAA AGTTGGCC 18

配列番号:13

配列の長さ:19

配列の型:核酸

トポロジー:直鎖状

配列の種類:他の核酸 合成核酸

配列

TTACAAGCAC TGAGAGTAG 19

配列の長さ:23

配列の型:核酸

トポロジー:直鎖状

配列の種類:他の核酸 合成核酸

配列

TCACTTTCCA GCAGCCCAAC GCC

配列番号:15

配列の長さ:23

配列の型:核酸

トポロジー:直鎖状

配列の種類:他の核酸 合成核酸

配列

CAACTCTCCC AACGCCAAGG TCG

配列番号:16

配列の長さ:23

配列の型:核酸

トポロジー:直鎖状

配列の種類:他の核酸 合成核酸

配列

CGTCGGGTAG GTAGAGTCCA GCC

配列の長さ:23

配列の型:核酸

トポロジー:直鎖状

配列の種類:他の核酸 合成核酸

配列

TCTCGAACTG AGTGACGACG GTC

配列番号:18

配列の長さ:23

配列の型:核酸

トポロジー:直鎖状

配列の種類:他の核酸 合成核酸

配列

CTGCCATGTC AGAGGCGGGT GAG

配列番号:19

配列の長さ:23

配列の型:核酸

トポロジー:直鎖状

配列の種類:他の核酸 合成核酸

配列

ACTCCAACAT CAAGTTCGGC CCC

配列の長さ:23

配列の型:核酸

トポロジー:直鎖状

配列の種類:他の核酸 合成核酸

配列

AACTCCCACT GAGCCTTTAC GTC

配列番号:21

配列の長さ:23

配列の型:核酸

トポロジー:直鎖状

配列の種類:他の核酸 合成核酸

配列

CAATTAAGTG GCTAAACGTA CCG

配列番号: 22

配列の長さ:23

配列の型:核酸

トポロジー:直鎖状

配列の種類:他の核酸 合成核酸

配列

GCAAAAATAT AGTCGAATCT GCC

配列の長さ:23

配列の型:核酸

トポロジー:直鎖状

配列の種類:他の核酸 合成核酸

配列

GCTGGAATGC TCGCTAGCTT GGC

配列番号: 24

配列の長さ:23

配列の型:核酸

トポロジー:直鎖状

配列の種類:他の核酸 合成核酸

配列

ACTGTTGGAG ACCAGCTTGT CCG

配列番号: 25

配列の長さ:23

配列の型:核酸

トポロジー:直鎖状

配列の種類:他の核酸 合成核酸

配列

CGCAGTAGGA GAATAGAAAC CCC

配列の長さ:23

配列の型:核酸

トポロジー:直鎖状

配列の種類:他の核酸 合成核酸

配列

CTGCTGTCAA TCCCCGCTAC TGG

配列番号: 27

配列の長さ:23

配列の型:核酸

トポロジー:直鎖状

配列の種類:他の核酸 合成核酸

配列

CCTTCGAGAA AAGGAGATTC GCG

配列番号:28

配列の長さ:23

配列の型:核酸

トポロジー:直鎖状

配列の種類:他の核酸 合成核酸

配列

CAGCTCCTTG GCAAAAGCAG TGG

配列の長さ:23

配列の型:核酸

トポロジー:直鎖状

配列の種類:他の核酸 合成核酸

配列

AGATCATCAG TTGAGGTTAG ACC

配列番号: 30

配列の長さ:23

配列の型:核酸

トポロジー:直鎖状

配列の種類:他の核酸 合成核酸

配列

TGTATAAAAT TAGGTTCGGG TCC

配列番号:31

配列の長さ:23

配列の型:核酸

トポロジー:直鎖状

配列の種類:他の核酸 合成核酸

配列

CTACTCATCA ACTCAGATCC TCC

配列の長さ:24

配列の型:核酸

トポロジー:直鎖状

配列の種類:他の核酸 合成核酸

配列

GGAAGCCTCA GAAGTAGATA CAGC

配列番号: 33

配列の長さ:20

配列の型:核酸

トポロジー:直鎖状

配列の種類:他の核酸 合成核酸

配列

TCGACTACGG ACTGCGCATC

配列番号: 34

配列の長さ:20

配列の型:核酸

トポロジー:直鎖状

配列の種類:他の核酸 合成核酸

配列

CAAGCTTTTG CCACAGTACC

配列の長さ:36

配列の型:核酸

トポロジー:直鎖状

配列の種類:他の核酸 合成核酸

配列

GATACATGAT GCGCAGGCCT TAGTCGACTA GAATGC

配列番号: 36

配列の長さ:36

配列の型:核酸

トポロジー:直鎖状

配列の種類:他の核酸 合成核酸

配列

GATCCTCAAG CTTTTGCTCG AGTACCTTAC AAGCAC

配列番号: 37

配列の長さ:35

配列の型:核酸

トポロジー:直鎖状

配列の種類:他の核酸 合成核酸

配列

GGAGGGTGCA TGCCGACTGA GCCCGGGCAG TAGCC

配列の長さ:23

配列の型:核酸

トポロジー:直鎖状

配列の種類:他の核酸 合成核酸

配列

GCCGGGAGAG GATCCAGTGG AGG

配列番号: 39

配列の長さ:30

配列の型:核酸

トポロジー:直鎖状

配列の種類:他の核酸 合成核酸

配列

GCTCGAGTAC CTTACTGCAG GCACTGAGAG

配列番号: 40

配列の長さ:29

配列の型:核酸

トポロジー:直鎖状

配列の種類:他の核酸 合成核酸

配列

GGGGCATGCG CTGATGGCAA GTCCACCCG

配列番号: 41

配列の長さ:33

配列の型:核酸

トポロジー:直鎖状

配列の種類:他の核酸 合成核酸

配列

GGGGTCGACT ACCTTACAGG CACTGATGGT ACC

配列番号: 42

配列の長さ:10

配列の型:アミノ酸

トポロジー:直鎖状

フラグメント型:N末端フラグメント

起源

生物名: Trichoderma viride MC300-1

配列

Gin Asp Val Trp Gly Gln Cys Gly Gly Ile

1

5

10

配列番号: 43

配列の長さ:11

配列の型:アミノ酸

トポロジー:直鎖状

フラグメント型:中間フラグメント

起源

PCT/JP97/03268

7 2

生物名: Trichoderma viride MC300-1

配列

Thr Pro Thr Gly Ser Gly Asn Ser Trp Thr Asp

1

5

10

· 配列番号: 44

配列の長さ:7

配列の型:アミノ酸

トポロジー:直鎖状

フラグメント型:中間フラグメント

起源

生物名: Trichoderma viride MC300-1

配列

Ser Thr Tyr Ile Leu Thr Glu

1

5

配列番号: 45

配列の長さ:15

配列の型:アミノ酸

トポロジー:直鎖状

フラグメント型:中間フラグメント

起源

生物名: Trichoderma viride MC300-1

配列

Phe Ala Gly Val Asn Ile Ala Gly Phe Asp Phe Gly Xaa Thr Thr

1

5

10

15

配列番号: 46

配列の長さ:19

配列の型:核酸

トポロジー:直鎖状

配列の種類:他の核酸 合成核酸

配列

ATGAACAAGT CCGTGGCTC

配列番号: 47

配列の長さ:23

配列の型:核酸

トポロジー:直鎖状

配列の種類:他の核酸 合成核酸

配列

TTACTTTCTT GCGAGACACG AGC

配列番号: 48

配列の長さ:36

配列の型:核酸

トポロジー:直鎖状

配列の種類:他の核酸 合成核酸

配列

GGGAGGCCTG CGCATCATGG CTCCATTGCT GCTTGC

配列番号: 49

配列の長さ:36

配列の型:核酸

トポロジー:直鎖状

配列の種類:他の核酸 合成核酸

配列

GGGCTCGAGT ACCTTACTTC CTGGCGAGAC ACGAGC

配列番号:50

配列の長さ:14

配列の型:アミノ酸

トポロジー:直鎖状

フラグメント型:N末端フラグメント

起源

生物名: Trichoderma viride MC300-1

配列

Gln Thr Ile Gly Pro Gly Thr Gly Phe Asn Asn Gly Tyr Phe

1

5

10

配列番号:51

配列の長さ:35

配列の型:核酸

トポロジー:直鎖状

配列の種類:他の核酸 合成核酸

配列

GGGAGGCCTG CGCATCATGG TCTCCTTCAC CTCCC

配列番号:52

配列の長さ:34

配列の型:核酸

トポロジー:直鎖状

配列の種類:他の核酸 合成核酸

配列

GGGCTCGAGT ACCTTAGCTG ACGGTGATGG AAGC

請求の範囲

- 1. Trichoderma viride由来のセルラーゼcbhl遺伝子の制御配列。
- 2. プラスミドpAO1中のcbh1遺伝子のプロモーター配列。
- 3. cbhl遺伝子のアミノ末端から上流の1.5kb までの領域中に存在する配列または高プロモーター活性を保持するその改変配列を含んでなる、請求項2記載のプロモーター配列。
- 4. cbh1遺伝子のアミノ末端から上流の1.5kb 中に存在する配列が、プラスミドpA01中のcbh1遺伝子のアミノ末端から上流のHindIII サイトまでの配列である、請求項3に記載のプロモーター配列。
 - 5. プラスミドpAO1中のcbh1遺伝子のシグナル配列。
- 6. 配列番号1に記載のアミノ酸配列の-17から-1までの配列をコードする塩基配列、またはこれら塩基配列の改変配列であって、シグナル配列活性を保持するアミノ酸配列をコードする塩基配列である、請求項に5記載のシグナル配列。
 - 7. プラスミドpA01中のcbh1遺伝子のターミネーター配列。
- 8. cbh1遺伝子のカルボキシル末端から下流の1kb までの領域中に存在する配列またはターミネーター活性を保持するその改変配列を含んでなる、請求項7記載のターミネーター配列。
- 9. cbh1遺伝子のカルボキシル末端から下流の1kb 中に存在する配列が、プラスミドpA01中のcbh1遺伝子のカルボキシル末端から下流のSalIサイトまでの配列である、請求項8に記載のターミネーター配列。
- 10. 請求項1に記載のTrichoderma viride由来のセルラーゼcbh1遺伝子の 制御配列を含んでなる、発現ベクター。
 - 11. 前記制御配列に作動可能に連結された目的タンパク質またはペプチド

をコードする塩基配列を含んでなる、請求項10に記載の発現ベクター。

- 12. 請求項2~9のいずれか一項に記載のプロモーター配列、シグナル配列、およびターミネータ配列からなる群から選ばれる少なくとも一つの配列を含んでなる発現ベクター。
- 13. 請求項2~4のいずれか一項に記載のプロモータ配列を含んでなる、請求項12記載の発現ベクター。
- 14. 前記配列に作動可能に連結された目的タンパク質またはペプチドをコードする塩基配列を含んでなる、請求項12または13のいずれか一項に記載の発現ベクター。
- 15. 前記目的タンパク質が、Humicola insolens 由来のエンドグルカナー せまたはその改変タンパク質である、請求項 $11\sim14$ のいずれか一項に記載の 発現ベクター。
- 16. Humicola insolens 由来のエンドグルカナーゼがエンドグルカナーゼ NCE4である、請求項15に記載の発現ベクター。
- 17. 前記目的タンパク質が、Trichoderma viride 由来のエンドグルカナーゼまたはその改変タンパク質である、請求項 $11\sim14$ のいずれか一項に記載の発現ベクター。
- 18. 前記Trichoderma viride 由来のエンドグルカナーゼがエンドグルカナーゼSCE3である、請求項17に記載の発現ベクター。
- 19. 前記目的タンパク質が、Trichoderma viride 由来のキシラナーゼまたはその改変タンパク質である、請求項 $11\sim14$ のいずれか一項に記載の発現ベクター。
- 20. 前記Trichoderma viride 由来のキシラナーゼがキシラナーゼSXY1である、請求項19に記載の発現ベクター。
 - 21. 選択マーカーを更に含んでなる、請求項10~20のいずれか一項に

記載の発現ベクター。

- 22. 選択マーカーがハイグロマイシンB 耐性遺伝子である、請求項21に記載の発現ベクター。
- 23. 発現ベクターpCB1-MX、pCB1-M2XR、pCB1-HEgX。pCB1-Eg3X、またはpCB1-XI'。
- 24. 請求項10~23のいずれか一項に記載の発現ベクターによって形質 転換された、宿主細胞。
- 25. 宿主細胞が、Trichoderma 属に属する微生物である、請求項24に記載の宿主細胞。
- 26. Trichoderma 属に属する微生物がTrichoderma virideである、請求項 25に記載の宿主細胞。
- 27. Trichoderma 属に属する微生物がTrichoderma virideのセルラーゼ高生産株であるTrichoderma viride MC300-1株またはその系統である、請求項26に記載の宿主細胞。
- 28. 請求項24~27のいずれか一項に記載の宿主細胞を培養し、培養物から前記目的タンパク質を採取する工程を含んでなる、目的タンパク質の生産方法。
- 29. その培養液1Lあたり7g以上の目的タンパク質を生産する、請求項28 に記載の方法。
- 30. その培養液1Lあたり15g以上の目的タンパク質を生産する、請求項28に記載の方法。
- 31. 請求項28~30のいずれか一項に記載の方法によって生産されたタンパク質またはそれを含んでなる組成物。
- 32. 配列番号2に示される配列またはセルラーゼ活性を保持するその改変配列。

- 33. 請求項32に記載の配列をコードする、塩基配列。
- 34. 配列番号1に示される配列を有する、請求項33に記載の塩基配列。

1/7

F | G. 2

*: mutagenesis introduced.

F | G. 3

FIG. 4

F | G. 5

F | G. 6

F1G. 7

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP97/03268

C12	ASSIFICATION OF SUBJECT MATTER Int N9/42, C12N9/24, C12N1/15 // R1:885), (C12N9/24, C12R1:8 to International Patent Classification (IPC) or to bot	(C12N15/04, C12R1:885), $(C12N9/42,$	
B. FIE	LDS SEARCHED			
Minimum d	ocumentation searched (classification system followed	by classification symbols)		
Int	. C16 C12N1/, C12N9/, C12N	115/		
Documenta	tion searched other than minimum documentation to the	extent that such documents are included in th	ne fields searched	
ł	ata base consulted during the international search (name SIS (DIALOG), WPI (DIALOG), G			
C. DOCU	MENTS CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, where a		Relevant to claim No.	
Х	CHENG, C. et al. "Nucleoti cellobiohydrolase gene fro Nucleic Acids Research (19 p. 5559	m Trichoderma viride",	1, 5-12, 14, 21-22, 24, 31-34	
Y			15-16, 19-20, 25-28	
A			2-4, 13, 17-18, 23, 29-30	
Y	JP, 5-509223, A (Novo Nord December 22, 1993 (22. 12. & WO, 91/17243, A & AU, 91 & FI, 9205079 & EP, 531372	93) 78874, A	15 - 16	
Y	SUNG, W.L. et al. "Express reesei and Trichoderma vir Escherichia coli", Biochem Biology (1995), Vol. 73, No.	ide xylanases in istry and Cell	19 - 20	
X Furthe	r documents are listed in the continuation of Box C.	See patent family annex.		
Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention				
"L" document	ocument but published on or after the international filing date at which may throw doubts on priority claim(s) or which is establish the publication date of another citation or other	considered novel or cannot be considered step when the document is taken alone	ered to involve an inventive	
"O" documen	eason (as specified) nt referring to an oral disclosure, use, exhibition or olber	"Y" document of particular relevance; the considered to involve an inventive sombined with one or more other such d	tep when the document is	
	nt published prior to the international filing date but later than ity date claimed	heing obvious to a nerson skilled in the	e art	
Date of the a	ctual completion of the international search	Date of mailing of the international search	ch report	
	ember 8, 1997 (08. 12. 97)	December 16, 1997	•	
Name and m	ailing address of the ISA/	Authorized officer	· · · · · · · · · · · · · · · · · · ·	
Name and mailing address of the ISA/ Japanese Patent Office Authorized		Administration of the control of the		
Facsimile No. Telephone No.				
PCT/ISA/210 (cocoed cheet) (color legisly Sughrue Mion, PLLG http://www.sughrue.com				

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP97/03268

Category*	tegory* Citation of document, with indication, where appropriate, of the relevant passages		Relevant to claim N
Y			
1	CHENG, C. et al. "Efficient production o amylase A by Trichoderma viride", Agricu and Biological Chemistry (1991) Vol. 55, p. 1817-1822	ltural	25 - 28
A	KIM, D.W. et al. "Purification and characterization of endoglucanase and exoglucanase components from Trichoderma Journal of Fermentation and Bioengineeri (1994), Vol. 77, No. 4, p. 363-369	viride", ng	17 - 18
			·
			··

国際調査報告

国際出願番号 PCT/JP97/03268

- A. 発明の属する分野の分類(国際特許分類(IPC))
- Int. C1* C12N 15/80. C12N 15/04. C12N 9/42. C12N 9/24. C12N 1/15 // (C12N 15/04. C12R 1:885) (C12N 9/42. C12R 1:885). (C12N 9/42. C12R 1:885). (C12N 1/15. C12R 1:885)
- B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. Cl .

C12N 1/, C12N 9/, C12N 15/

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

BIOSIS (DIALOG). WPI (DIALOG), GenBank (Genetyx), EMBL (Genetyx)

引用文献の		関連する
カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	請求の範囲の番号
х	CHENG, C. et al. "Nucleotide sequence of the cellobiohydrolase gene from Trichoderma viride", Nucleic Acids Research (1990) 第18巻, 第18号p. 5559	1, 5-12, 14, 21-22, 24, 31-34
Y		15-16. 19-20. 25-28
Α		2-4, 13, 17-18, 23, 29-30
	,	

区欄の続きにも文献が列挙されている。

□ パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」先行文献ではあるが、国際出願日以後に公表されたも
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「0」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

- の日の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって て出願と矛盾するものではなく、発明の原理又は理 論の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日

08.12.97

国際調査報告の発送日

16.12.97

国際調査機関の名称及びあて先

日本国特許庁 (ISA/JP)

郵便番号100

東京都千代田区霞が関三丁目4番3号

特許庁審査官(権限のある職員) 小暮 道明 4 B

9 3 5 8

電話番号 03-3581-1101 内線 3449

国際調査報告

国際出願番号 PCT/JP97/03268

(続き). 用文献の	N	
テゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	請求の範囲の番号
Y	JP.5~509223.A (ノボ ノルデイスク アクテイーゼルスカプ) 22.12月.1993 (22.12.93) &♥0.91/17243.A &AU.9178874.A &FI.9205079 &EP.531372 &BR,9106435.A	15-16
Y	SUNG. N. L. et al. "Expression of Trichoderma reesei and Trichoderma viride xylanases in Escherichia coli". Biochemistry and Cell Biology (1995) 第73巻,第5-6号 p. 253-259	19-20
Y	CHENG.C. et al. "Efficient production of Taka-amylase A by Trichoderma viride", Agricultural and Biological Chemistry (1991) 第55卷,第7号p. 1817-1822	25-28
A	KIM.D.W. et al. "Purification and characterization of endoglucanase and exoglucanase components from Trichoderma viride". Jurnal of Fermentation and Bioengineering (1994) 第77卷,第4号 p. 363-369	17-18
	·	

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
Потиер.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.