Datenstrukturen, Algorithmen und Programmierung 2

Amin Coja-Oghlan
June 20, 2022

Lehrstuhl Informatik 2 Fakultät für Informatik

Worum geht es?

- ein binärer Suchbaum ist eine Datenstruktur zur Speicherung von Objekten, die durch einen Schlüssel gekennzeichnet sind
- die Schlüssel sind total geordnet
- wir nehmen an, daß alle Schlüssel verschieden sind
- Operationen: Insert, Delete, Search, Minimum, Maximum, Predecessor, Successor
- die Laufzeit jeder Operation ist *O*(Höhe des Baums)

Binärbäume

- ein Binärbaum ist ein gewurzelter Baum, d.h. ein Baum T mit einer ausgezeichneten Wurzel $r \in V(T)$
- die Wurzel hat Grad $d_T(r) \le 2$
- jeder andere Knoten $v \in V(T) \setminus \{r\}$ hat Grad ≤ 3
- die Kinder eines Knotens v sind die Nachbarn $w \in \partial v$, die nicht auf dem kürzsten Pfad von v nach r liegen; jeder Knoten hat also höchstens zwei Kinder
- \blacksquare der Elternknoten von v ist der Nachbar auf dem kürzesten Pfad zu r, bzw. \varnothing falls

Suchbäume

- \blacksquare die Knoten tragen vergleichbare Schlüssel s(v)
- sei *v* ein Knoten
- dann hat v höchstens ein Kind x mit s(x) < s(v)
- ferner hat v höchstens ein Kind y mit s(y) > s(v)
- wir nennen x das linke Kind von v und y das rechte Kind

Suchbäumeigenschaft

- der Knoten x und seine Kinder bilden den linken Unterbaum von v
- der Knoten y und seine Kinder bilden den rechten Unterbaum von v
- Suchbaumeigenschaft: für alle Knoten u im linken Unterbaum von v gilt s(u) < s(v); für alle Knoten w im rechten Unterbaum von v gilt s(v) < s(w)

Implementation

- jeder Knoten des Suchbaums enthält den Schlüssel und ggf. einen Zeiger auf das Objekt, das dieser Knoten repräsentiert
- jeder Knoten enthält einen Zeiger auf seinen Elternknoten (evtl. ∅)
- jeder Knoten enthält einen Zeiger auf das linke und einen auf das rechte Kind (ggf. Ø)

Geordnete Ausgabe

- wir können die Elemente des Suchbaums ausgeben, indem wir von der Wurzel aus den Baum in Tiefensuchordnung durchlaufen
- dabei wird immer zuerst das linke Kind aufgesucht, wenn eines existiert

Minimum finden

- um das Element mit minimalem Schlüssel zu finden, folgen wir von der Wurzel aus stets dem Zeiger auf das linke Kind
- lacktriangle der erste Knoten, dessen linkes Kind \varnothing ist, ist das Minimum

Maximum finden

- um das Element mit maximalem Schlüssel zu finden, folgen wir von der Wurzel aus stets dem Zeiger auf das rechte Kind
- der erste Knoten, dessen rechtes Kind Ø ist, ist das Maximum

Element mit einem gegebenem Schlüssel suchen

- lacktriangle die Operation Search erhält als Eingabe einen Schlüssel σ und sucht das Element mit diesem Schlüssel
- von der Wurzel v = r aus wiederhole folgendes Verfahren

Element mit einem gegebenem Schlüssel suchen

- falls $s(v) = \sigma$, gib v aus
- falls $s(v) > \sigma$, setze v auf das linke Kind u von v; falls $u = \emptyset$, gib "nicht vorhanden" aus
- falls $s(v) < \sigma$, setze v auf das rechte Kind w von v; falls $w = \emptyset$, gib "nicht vorhanden" aus

Successor: gegeben v finde z mit minimalem s(z) > s(v)

- falls v ein rechtes Kind w hat, finde das Minimum im rechten Teilbaum
- sonst setze w auf den Elternknoten von v
- solange $w \neq \emptyset$ und v das rechte Kind von w ist, setze v = w und w =Elternknoten von v
- gib schließlich w aus

Predecessor: gegeben v finde z mit maximalem s(z) < s(v)

- falls v ein linkes Kind w hat, finde das Maximum im linken Teilbaum
- sonst setze w auf den Elternknoten von v
- solange $w \neq \emptyset$ und v das linke Kind von w ist, setze v = w und w =Elternknoten von v
- gib schließlich w aus

Laufzeiten

- die Höhe H(T) von T ist der maximale Abstand von r zu einem Blatt
- lacktriangle alle vorgenannten Operationen haben Laufzeit O(H(T))

Einfügen

- \blacksquare um ein Element e mit einem gegeben Schlüssel s(e) einzufügen, gehen wir so vor, als würden wir den Baum nach e durchsuchen
- lacktriangle weil wir annehmen, daß s(e) nicht im Baum vorkommt, finden wir dabei schließlich einen \varnothing -Zeiger
- diesen ersetzen wir durch das neue Element

Entfernen eines Knotens v

- falls *v* kein Kind hat, wird *v* einfach gelöscht
- falls v nur ein Kind hat, nimmt dieses Kind die Position von v ein

Entfernen eines Knotens v

- \blacksquare falls v zwei Kinder hat, finde den Nachfolger w von z; w hat nur ein Kind x
- w nimmt die Stelle von v ein, und x tritt an die Stelle von w

Laufzeit einfügen/entfernen

lacktriangle beide Operationen haben Laufzeit O(H(t))

Zusammenfassung

- binäre Suchbäume erlauben effiziente Operationen, wenn H(T) "klein" ist
- die optimale Höhe bei n Knoten ist $H(T) = O(\log n)$
- mit den beschriebenen Operationen kann jedoch der Baum zu einem Pfad "degenerieren"
- dann sind die Operationen nicht effizienter als bei einer verketteten Liste