

Fundação CECIERJ - Vice Presidência de Educação Superior a Distância

Curso de Tecnologia em Sistemas de Computação Disciplina: Redes de Computadores II Gabarito da AP1 - 2° semestre de 2010

$1^{\underline{a}}$ questão (2.0 pontos)

Suponha que um roteador da Internet com possua a seguinte tabela de roteamento:

Prefixo	Interface
128.119.121.0/24	0
128.119.121.192/26	1
128.119.121.208/28	2
128.119.121.252/30	3
caso contrário	4

1. (1.5 ponto) Indique para qual porta de saída os pacotes com os seguintes endereços destino serão encaminhados:

128.119.121.254

128.119.121.218

128.119.121.63

128.119.121.200

128.119.121.10

Resposta:

128.119.121.254 – porta 3

128.119.121.218 – porta 2

128.119.121.63 - porta 0

128.119.121.200 – porta 1

128.119.121.10 - porta 0

2. (0.5 ponto) Existe alguma regra na tabela de roteamento acima que possa ser eliminada da tabela sem que haja qualquer alteração no roteamento? Explique sua reposta.

Resposta:

Não. Uma regra (ou entrada) X da tabela de roteamento só pode ser eliminada caso exista uma outra regra (ou entrada) Y que seja mais genérica (ou seja, que tenha um prefixo mais curto) que contenha o mesmo prefixo de X e que encaminhe os pacotes para a mesma porta de saída. No caso acima, apesar das regras terem o mesmo prefixo, elas encaminham os pacotes para diferentes portas de saída. Logo, nenhuma delas pode ser eliminada.

$2^{\underline{a}}$ questão (2.5 pontos)

Considere o problema de acesso ao meio compartilhado e os protocolos de acesso aleatório. Responda às perguntas abaixo.

1. (1.0 ponto) Explique porque colisões podem ocorrer no protocolo **Slotted ALOHA**. Descreva como o protocolo trata uma colisão.

Resposta:

Colisões podem ocorrer pois duas ou mais estações podem decidir transmistir seus respectivos pacotes no mesmo slot de tempo. Isto ocorre, por exemplo, quando duas estações, durante o slot anterior, recebem dados provenientes da aplicação que devem ser transmistidos. Assim, ambas irão transmitir no próximo slot.

O protocolo trata colisão fazendo com que cada estação retransmita o pacote colidido no slot seguinte com probabilidade p. Ou seja, cada estação em colisão sorteia uma moeda viciada com probabilidade p. Caso a moeda seja cara, a estação retransmite o pacote, caso seja coroa, a estação nada transmite. Este procedimento se repete até que o pacote seja transmitido com sucesso, ou seja, até que ocorra a transmissão do pacote sozinho em um slot.

2. (1.0 ponto) Explique (com cuidado) porque colisões podem ocorrer no protocolo **CSMA**. Descreva como o protocolo trata uma colisão.

Resposta:

Colisões podem ocorrer pois o sinal de uma transmissão precisa se propagar do transmissor até todas as outras estações que estão compartinhando o meio. Durante este tempo de propagação, uma outra estação pode escutar o meio, detectá-lo livre, e assim iniciar uma transmissão. Esta certamente irá colidir com a transmissão em curso, que está se propagando pelo meio.

O protocolo trata colisão fazendo com que cada estação escolha um intervalo de tempo aleatório para aguardar antes de tentar iniciar a retransmissão. Ou seja, cada estação sorteia um tempo aleatório (uniformemente distribuído em algum intervalo) e aguarda este tempo. Ao final, a estação inicia o procedimento de transmissão (detecta o meio livre, etc). Caso ocorra uma outra colisão, o procedimento se repete, até que a transmissão seja feita com sucesso.

3. (0.5 pontos) Imagine um meio compartilhado onde a velocidade de propagação é infinita e a velocidade de transmissão é no máximo 1 Gbps. Neste caso, colisões poderiam ocorrer com o protocolo CSMA? Explique sua respota.

Resposta:

Não, neste caso colisões não ocorreriam. A principal razão para colisões no protocolo CSMA é o tempo de propagação. Por causa do tempo de propagação uma estação pode iniciar a transmissão sem saber que existe uma outra transmissão em curso, que ainda se encontra propagando pelo meio. Ao aumentar a velocidade de propagação para o infinito, reduzimos o tempo de propagação a zero. Com isto, não teremos mais colisões, pois uma transmissão chegaria imediatamente a todas as outras estações.

$3^{\underline{a}}$ questão (3.0 pontos)

Suponha a rede da figura acima onde cada enlace está associado com o seu respectivo custo. Considere que o algoritmo de roteamento implementado é o *link state routing*.

1. (1.0 ponto) Explique o funcionamento do algoritmo link state routing. A sua explicação deve conter: (i) o algoritmo usado para cálculo do menor caminho, (ii) as mensagens e o conteúdo das mensagens enviadas pelos nós e (iii) os eventos que ocasionam um novo cálculo da tabela de roteamento.

Resposta:

Cada nó armazena a topologia da rede e executa o algoritmo de Dijkstra para cálculo do menor caminho até todos os destinos da rede.

O nó executa o algoritmo de Dijkstra quando um dos seguintes eventos ocorre: (i) mudança no custo de um dos seus enlaces de saída ou (ii) recebimento de mensagem de um outro nó da rede indicando alteração na topologia (ex: custo de um enlace).

Após a execução do algoritmo, caso o custo ou o enlace de saída para algum destino na rede mude, o nó atualiza a sua tabela de roteamento.

O nó envia mensagem para todos os outros nós usando o algoritmo de flooding caso o custo de algum de seus enlaces de saída se altere. A mensagem contém a identificação do nó e o custo de cada um dos seus enlaces de saída.

2. (1.0 ponto) Construa a tabela de roteamento do nó A. Construa uma tabela igual a mostrada em aula que demonstra o funcionamento do algoritmo de forma iterativa.

Resposta:

O resultado do processo iterativo (algoritmo de Dijkstra) está ilustrado na tabela abaixo:

Passo	N'	d(B),p(B)	d(C),p(C)	d(D),p(D)	d(E),p(E)	d(F),p(F)
0	A	1,A	2,A	∞	∞	∞
1	AB		2,A	6,B	∞	3,В
2	ABC			5,C	5,C	3,B
3	ABCF			4,F	5,C	
4	ABCFD				5,C	
5	ABCFDE					

A tabela de roteamento do nó A é facilmente contruída a partir da tabela acima. Tabela de roteamento do nó A:

3. (1.0 ponto) No algoritmo link state routing, os nós utilizam um algoritmo de broadcast para envio de suas mensagens. Suponha que este algoritmo seja o flooding. Considere que o nó A enviou uma mensagem no instante t=1. Mostre as mensagens que serão enviadas por cada nó da rede, indicando também o instante de transmissão de cada uma delas. Suponha que o tempo de transmissão de uma mensagem é proporcional ao custo do enlace. Por exemplo, $B \to D, t=5$.

Destino	Enlace de Saída
В	AB
С	AC
D	AB
Е	AC
F	AB

Resposta:

$origem \rightarrow destino$	instante de envio	instante de recebimento
$A \rightarrow B$	t = 1	t = 2
$A \to C$	t = 1	t = 3
$B \rightarrow C$	t = 2	t = 4
$B \rightarrow D$	t = 2	t = 7
$B \to F$	t = 2	t = 4
$C \rightarrow B$	t = 3	t = 5
$C \rightarrow D$	t = 3	t = 6
$C \to E$	t = 3	t = 6
$D \rightarrow B$	t = 5	t = 10
$D \to C$	t = 5	t = 8
$D \to E$	t = 5	t = 10
$E \rightarrow D$	t = 6	t = 11
$F \rightarrow D$	t = 4	t = 5

$4^{\underline{a}}$ questão (2.5 pontos)

Considere o cenário abaixo onde ocorre uma atualização nos custos do enlace A-B no instante t0. Suponha que o algoritmo de roteamento desta rede seja o distance vector.

1. (1.2 pontos) Preencha a tabela com os valores dos custos das tabelas dos nós B e C, após o recebimento de cada uma das mensagens indicadas na linha do tempo da figura. Preencha também o conteúdo da mensagem enviada por cada nó.

Resposta:

2. (0.6 pontos) Que problema você observou que ocorre devido a atualização do custo do enlace A-B ?

Resposta:

Existem dois problemas que ocorrem devido ao custo do enlace A-B ter aumentado significativamente. O primeiro é que o algoritmo irá demorar muito para convergir para as rotas corretas. No exemplo acima serão necessárias aproximadamente 50 iterações. O segundo problema é que pacotes que chegarem em B e C com destino para o nó A ficaram em *loop* e não chegarão ao seu destino.

3. (0.7 pontos) Qual uma possível solução para resolver o problema devido a esta atualição ?

Resposta:

Uma possível solução é o *envenenamento reverso*, ou seja o nó C informa ao nó B que passa por ele para alcançar o nó A. Dessa forma o nó B colocará custo infinito para alcançar A via C indicando que não pode usar esta rota.