a biplex for InvaderTM assay i SNP detection using

(A) Allele discrimination takes place by "structure specific" cleavage of the Probe, releasing a 5' flap which corresponds to a given polymorphism. (B) In the second reaction, the released 5' flap mediates signal assay. The InvaderTM assay allows for the simultaneous detection of two distinct alleles in the same reaction using an isothermal, single addition format. generation by cleavage of the appropriate FRET cassette Figure 1. The principle of the Invader TM

FIGURE 2

Automated primer selection for multiplex PCR using InvaderTM Creator Primer Designer v 1.3.3

Multiplex PCR commonly requires extensive optimization to avoid biased amplification of select amplicons and the amplification of spurious products resulting from the formation of primer-dimers. In order to avoid these problems, we have designed InvaderTM Creator Primer Designer v1.3.3 software for the automated selection of multiplex primers. Beginning with a set of user defined sequences and corresponding SNP locations, Invader TM Creator Primer Designer defines an "Invader TM footprint" (the minimal amplicon required for Invader TM detection) for each sequence. Primers are designed outward from the "Invader TM footprint" and evaluated against several criteria, including the potential for primer-dimer formation with previously designed primers in the current multiplexing set. Invader TM Creator Primer Designer continues through multiple iterations of the same set of sequences until primers against all sequences in the current multiplexing set can be designed.

2A.

29043,FMO1, aagttagaagaaccaagactatettgteaggggtgtattttgagagtggeagactttteagtgeet tteeatteatgacacttettgaatetetggeagaaccageegtgtteacagtgteaaatgaagggatgtett gattgetteeaggtgtteeteageaccaceggagggggatgggtgateageegaatetttgaetegggetaeccatg ggacatggtgtteatgacacgettteagaacatgttgagaaatteeeteecaac[ct] ceaattgtgaettggtgaetggaeggageggaaagataaacaactggeteaateatgeaaattaeggettaataecagaagacaggtaaatatatgtgaetgeeaggettttaggaagaaggageetetgeetgteeageageetataeaageeaggeagtaecaageaacatg getgaatgtgtgggaacaettgatacaaatttgettgataataacagetaactgttettaagtaeteagaaagtgaaattatgtatte

2B.

f,cgggctacccatgggaca,59.38 r,tctggtattaagccgtaatttgcatgattga,60

Figure 2. Creation of 101 primer sets from sequences available for analysis on the InvaderTM Medically Associated Panel using Invader TM Creator Primer Designer v 1.3.3. (A) Sample input file of a single entry. Information includes TWT SNP#, short name identifier, and sequence with the SNP location indicated in brackets. (B) Sample output file of a the same entry. Information includes the sequence of the "Invader footprint" (capital letters flanking SNP site), forward and reverse primer sequences (bold), and their corresponding Tm's.

highly multiplexed PCR using cally Associated Panel (MAP the Invader Medi Basic workflow for

Multiplex PCR (10 ng / template)

Dilute and add directly to Invader

Medically Associated Panel

Incubate at 63°C

and read

ex PCR using the Invader ly Associated Panel Analysis of 101-pl Medical

Using primers designed by the InvaderTM Creator Primer Designer v_1.3.3 software, highly multiplexed PCR was carried out without prior testing of individual "primer sets" in uniplex Po Of the 101 possible amplicons, 94 (~93%) were detected by the InvaderTM assay and made the ratect call corresponding to genomic typing of the same sample.

Figure 5A

```
CYP2D6 PCR amplification:
Primers:
Triplex PCR protocol
Exons 1 & 2 (2036 nt)
2D6L1F1: 5' - CTGGGCTGGGAGCAGCCTC - 3'
2D6L1R1: 5' - CACTCGCTGGCCTGTTTCATGTC - 3'
Exons 3, 4, 5, & 6 (1683 nt)
2D6L2F: 5' ~ CTGGAATCCGGTGTCGAAGTGG - 3'
2D6L2R2: 5' - CTCGGCCCCTGCACTGTTTC - 3'
Exons 7, 8, & 9 (1754 nt)
2D6L3F: 5' - GAGGCAAGAAGGAGTGTCAGGG - 3'
2D6L3R5B: 5' -- AGTCCTGTGGTGAGGTGACGAGG -- 3'
Monoplex PCR protocol
CYP2D6 nucleotides 506 – 856 (*10 & *21)
forward (1221-09-01): 5' - ggtagtgaggcaggt -3'
reverse (1221-09-02): 5' - gcttctggtaggggag - 3'
CYP2D6 nucleotides 1335 – 1616 (*11 & *17)
forward (1221-09-03): 5' - aaataggactaggacctgt -3'
 reverse (1221-09-04): 5' - gggtcccacggaaat - 3'
 CYP2D6 nucleotides 2092 – 2582 (*4, *6 & *37)
 forward (1221-09-05): 5' - catggccacgcg -3'
 reverse (1221-09-06): 5' - ccggcacctctcg - 3'
 CYP2D6 nucleotides 2977 - 3146 (*3 & *33)
 forward (1221-09-07): 5' - ccgtcctcctgcat -3'
```

reverse (1221-09-08): 5' - cactctcaccttctcca - 3'

Figure 5B

CYP2D6 nucleotides 3294 - 3494 (*2 R296C & *7)

forward (1221-09-09): 5' - gttctgtcccgagtatg -3' reverse (1221-09-10): 5' - tgcactgtttcccaga - 3'

CYP2D6 nucleotides 3589 = 3918 (*25, *26 & *29)

forward (1221-09-11): 5' - ctgacctcctccaacat -3' reverse (1221-09-12): 5' - gggctatcaccaggt - 3'

CYP2D6 nucleotides 4316 - 5226 (*2, *27, *31 & *32)

forward (1221-09-13): 5' - ctgacctcctccaacat -3' reverse (1221-09-15): 5' - gggctatcaccaggt - 3'

	Figure 7A			
	Oligo Locus	Oligo Type	Sequence*	
-	Triplex PCR 1	PCR sense PCR anti-sense	CTGGGCTGGCGCCTC	SEQ ID NO:264 SEQ ID NO:265
:	Triplex PCR 2	PCR sense PCR anti-sense	CTGGAATCCGGTGTTTC	SEQ ID NO:266 SEQ ID NO:267
	Triplex PCR 3	PCR sense PCR anti-sense	GAGGCAAGAAGGAGTGTCAGGG	SEQ ID NO:268 SEQ ID NO:269
	CYP2D6-XN (duplication)	PCR sense PCR anti-sense	GCCACCATGGTGTCTTTGCACCGGATTCCACCGGATTCCAGCTGGGAAATG	SEQ ID NO:270 SEQ ID NO:271
	CYP2D6*5 (deletion)	PCR sense PCR anti-sense	ACCGGGCACCTGTACTCCTCA GCATGAGCTAAGGCACCCAGAC	SEQ ID NO:272 SEQ ID NO:273
	CYP2D6 Copy Number assay	2D6 Primary Probe Actin Primary Probe 2D6 Invader oligo Actin Invader oligo	ACGGACGCGGAGTTACAGCACAGGTGC CGCGCCGAGGCAGGTCGGTGAGATC CCCGCCCACCCACACTGAGCC AAGAGTAGCCACCACGGTGAGGATCTTCATT	SEQ ID NO:274 SEQ ID NO:275 SEQ ID NO:276 SEQ ID NO:277
	CYP2D6*10-100 C>T	Invader Oligo Primary Probe 1 Primary Probe 2 Synthetic Target 1 Synthetic Target 2	GCAGTGGCAGGGGCCTGGTGT ATGACGTGGCAGGGTAGCGTGCAGC CGCGCCGAGGAGTAGCGTGCAGCC GCGCCGAGGAGTAGCGTGCAGCC GCTGGGCTGCACGCCACCAGGCCCCTGCCACTGCCC GCTGGGCTGCACGCTACCCAGGCCCCCTGCCACTGCCC	SEQ ID NO:278 SEQ ID NO:279 SEQ ID NO:280 SEQ ID NO:281 SEQ ID NO:282
		* *.		

			*
Figure 7B			
CYP2D6*6-1707	Invader Oligo	CAGGCGCCTCCGGTCACCT	SEQ ID NO:283
T>Deletion	Primary Probe 1	CGCGCGAGGCACTGCTCCAGCGA	SEQ ID NO:284
	Synthetic Target 1	AGAAGTCGCTGGAGCAGTGGCTGACCGAGGGCCGCCTGCC	SEQ ID NO:286
	Synthetic Target 2	AGAAGTCGCTGGAGCGAGGGCCGCCTGCC	SEQ ID NO:287
CYP2D6*4-1846	Invader Oligo	CCTTACCCGCATCTCCCACCCCCAT	SEQ ID NO:288
G>A	Primary Probe 1	CGCGCCGAGGACGCCCCTTTCG	SEQ ID NO:289
	Primary Probe 2	ATGACGTGGCAGACGCCCCTTTCG	SEQ:1D NO:290
	Synthetic Target 1	GGGGCGAAAGGGGGCGTCTTGGGGGGTGGGGAGATGCGGGGTAAGGGGG	SEQ ID NO:291
	Synthetic Target 2	GGGGCGAAAGGGGGCGTCCTGGGGGTGGGGAGATGCGGGTAAGGGGG	SEQ ID NO:292
CYP2D6*3-2549	Invader Oligo	GCTGGGCTGGGTCCAGGTCATCT	SEQ ID NO:293
A>Deletion	Primary Probe 1	CGCGCCGAGGCTGTGCTCAGTTAGCAG	SEQ ID NO:294
	Primary Probe 2	<u>ATGACGTGGCAGACCTCAGTTAGCAG</u>	SEQ ID NO:295
	Synthetic Target 1	ATGAGCTGCTAACTGAGCACAGGATGACCTGGGACCCAGCCCAGCCC	Ω
	Synthetic Target 2	ATGAGCTGCTAACTGAGCACGGATGACCTGGGACCCAGCCCAGCCC	SEQ ID NO:297
CYP2D6*2-2850	Invader Oligo	GGCAGAGACAGGTCAGCCACCACTATGCT	SEQ ID NO:298
C>T	Primary Probe 1	<u>ATGACGTGGCAGAGCAGGTTCTCATTGAA</u>	SEQ ID NO:299
	Primary Probe 2	CGCGCCGAGGACAGGTTCTCATTGAAG	
	Synthetic Target 1	GCAGCTTCAATGATGAGAACCTGCGCATAGTGGTGGCTGACCTGTTCTCTGC	\mathcal{C}
	Synthetic Target 2	GCAGCTTCAATGATGAGAACCTGTGCATAGTGGTGGCTGACCTGTTCTCTGC	CC SEQ ID NO:302
CYP2D6*2-4180	Invader Oligo	GCCACCATGGTGTTTTCCTGGTGAT	SEQ ID:NO:303
O>C	Primary Probe 1	CGCGCCGAGGCCCCTATG	
	Primary Probe 2	<u>ATGACGTGGCAGA</u> CCCCATCCCCCTATG	SEQ ID NO:305
	Synthetic Target 1	AGCTCATAGGGGGATGGGGGTCACCAGGAAAGCAAAGACACCATGGTGGCTG	SEQ ID
	Synthetic Target 2	AGCTCATAGGGGGATGGGCTCACCAGGAAAGCAAAGACACCATGGTGGCTG	G SEQ ID NO:307

.

•

.

CYP206*194125 Invader Oligo CCGGGGCTGTCGAGTGGGCAGTG SEG GTGCCCACT>Duplication Primary Probe 1 CCGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	2D6*18-4125 Invader Oligo CCCACT>Duplication Primary Probe 1 Primary Probe 2 Synthetic Target 1 Synthetic Target 2 Synthetic Target 1 Synthetic Target 1 Primary Probe 2 Synthetic Target 1 Synthetic Target 1 Synthetic Target 2 Synthetic Target 2 Synthetic Target 1 Synthetic Target 2 Synthetic Target 1 Synthetic Target 2	STGCCCACTGGACAGCCCCG SGACAGCCCGGCC SGACAGCCCGGCC SGCTTCGGGGA GCTTCGGGGA GCTTCGGGGA GCTTCGGGGA GCTTCGGGGA GCTTCGGGGA GCTTCGGGGCA GGGCAYCAGTGCTTCTAGCC GGGCAYCAGTGCTTCTAGCC	SEQ ID NO:308 SEQ ID NO:311 SEQ ID NO:312 SEQ ID NO:313 SEQ ID NO:314 SEQ ID NO:315 SEQ ID NO:316 SEQ ID NO:318
CCCACT>Duplication Primary Probe 1 CGGGGCGAGGGAGTGGGGAGCGA Primary Probe 2 ATGACCTTCAGCTTCTCGGTGCCACTGGACGCCCGGGCC Synthetic Target 1 GCAGCACTTCAGCTTCTCGGTGCCCACTGGACGCCCGGGCC Synthetic Target 2 GCAGCACTTCAGCTTCTCGGTGCCCACTGGACGCCCGGCC Synthetic Target 2 GCAGCACTTCAGCTTCTCGGTGCACTGGACGCCCGGCC Synthetic Target 1 CGCGCCGAGGGTGCAGGGGGGCGCCCCTTCGGGGAGGG Synthetic Target 1 CTGACCCTCCCTCTGCAAGTGCGGGCCCCCTTCGGGGA Synthetic Target 2 GTAACCTCCCTCTGCAAGTGCGGGCCCCCTTCGGGGA Synthetic Target 2 GTAACCTCCCTCTTCATGCCCCTCTTCGGCGA Synthetic Target 1 GCAGCAAGTGCCGGCCCTTTCATGCGCCCCTTTCGGGGA Synthetic Target 2 GTAACCTCCTCTTCATGCCCCTTTCTTCGGCCATTCTAGCCCC Synthetic Target 1 GCAGCAAGTGCCCACTATCATGCGGCCACTTCTAGCCCC Synthetic Target 2 GCAGCAAGATGGCCACTATCATGCGCCAGGGCCACGTTCTAGCCCC Synthetic Target 1 GCAGCAAGATGGCCACTATCATGCGCCAGGGCCACGTTCTAGCCCC Synthetic Target 2 GCAGGAAGATGGCCACTATCATGCCAGGGCCACGGGCCACGGGCCACGGGCCACGGGCCACGGGCCACGGGCCACGGGCCACGGGCCACGGGCCACGGCCCCCTTCCAAAGGCTTTCATGCCACGCCTTCCACGCTTCCAAAGGCTTTCATGCCACGCCTTCCAAAGGCTTTCACGCCTTCCAAAGGCTTTCAAGGCTTTCAAGGCCTTTCCAAAGGCTTTCAAGCCCTTCCAAAGGCTTTCAAGGCTTTCAAGGCTTTCAAGGCTTTCAAGGCTTTCAAGGCTTTCAAGGCTTTCAAGGCTTTCAAGGCTTTCCAAAGGCTTTCAAGGCTTAAGTCAAGGCTTTCAAGGCTTAAGGCTTTCAAGGCTTAAGTCAAGGCTTTCAAGGCTTAAGTCAAGGCTTTCAAGGCTTAAGTCAAGGCTTTCAAGGCTTAAGTCAAGGCTTTCAAGGCTTAAGTCAAGGCTTTCAAGGCTTAAGTCAAGGCTTAAGTCAAGGCTTTCAAGGCTTAAGTCAAGGCTTAAGTCAAGGCTTAAGTCAAGGCTTAAGCTAAGGCTTAAGTCAAGGCTTAAGTCAAGGCTTAAGTCAAGGCTTAAGTCAAGGCTTAAGTCAAGGCTTAAGTCAAGGCTTAAGTCAAGGCTTAAGTCAAGGCTTAAGTCAAGGCTTAAGTCAAGGCTTAAGTCAAGGCTTAAGTCAAGGCTTAAGTCAAGGCTTAAGTCAAGGCTTAAGTCAAGGCTTAAGAAGAAGAAGAAGAAGAAGAAGAAGAAGAAGAAGAA	CCCACT>Duplication Primary Probe 1 Primary Probe 2 Synthetic Target 1 Synthetic Target 2 Synthetic Target 1 Primary Probe 2 Synthetic Target 1 Synthetic Target 2 Synthetic Target 2 Synthetic Target 2 Synthetic Target 1 Synthetic Target 1 Synthetic Target 2 Synthetic Target 2 Synthetic Target 2 Synthetic Target 1 Synthetic Target 2 Synthetic Target 3 Invader Oligo Primary Probe 1	SGACAGCCCGGCC SGACAGCCCCGGCC SGACAGCCCCGGCC SGCTTCGGGGA GCTTCGGGGA CTTC GGGCAYCAGTGCTTCTAGCC GGGCAYCAGTGCTTCTAGCC	의의의의 의의의의의의 의의의의
Primary Probe 2 ATGACGTGGCAGAAGCTGGAGGCGCCGCTGGCCCCGGCCCGCG	Synthetic Target 1 Synthetic Target 1 Synthetic Target 1 Synthetic Target 2 Primary Probe 2 Synthetic Target 1 Synthetic Target 2 Synthetic Target 1 Synthetic Target 1 Synthetic Target 1 Synthetic Target 2 Synthetic Target 3 Frimary Probe 1	STGCCCACTGGACAGCCCCG SGACAGCCCCGGCC SGACAGCCCCGGCC SGCTTCGGGGA GCTTCGGGGA GCTTCGGGGA GCTTCGGGGA GCTTCGGGGA GCTTCGGGGA GCTTCGGGCAC GGGCAYCAGTGCTTCTAGCC GGGCAYCAGTGCTTCTAGCC	
Synthetic Target 1 GCAGCACTTCAGCTTCTCGGTGCCCACTGGACAGCCCGGGCC Synthetic Target 2 GCAGCACTTCTGGTTGCCCACTGGACAGCCCGGGCC Synthetic Target 3 GCAGCACTTCTGGTTGCCGCTGTGGACGGGGGGGGGGGCCGTTCGGGGGGGG	Synthetic Target 1 Synthetic Target 2 2D6*11-883 Invader Oligo Primary Probe 1 Primary Probe 2 Synthetic Target 1 Synthetic Target 2 Synthetic Target 1 Primary Probe 2 Synthetic Target 1 Synthetic Target 1 Synthetic Target 1 Synthetic Target 2 Synthetic Target 2 Synthetic Target 2 Synthetic Target 2 Synthetic Target 1 Synthetic Target 1 Synthetic Target 2 Synthetic Target 2 Synthetic Target 2 Synthetic Target 2 Synthetic Target 3 Invader Oligo Primary Probe 1 Synthetic Target 2	STGCCCACTGGACAGCCCGG SGACAGCCCGGCC SGCTTCGGGGA SCTTCGGGGA STTC STTC STTC SGGCAYCAGTGCTTCTAGCC GGGCAYCAGTGCTTCTAGCC	
Synthetic Target 2 GCAGCACTTCAGCTTCTCGGTGCCACTTGGACGCCCCGCCCCGCCCCGCCCCGCCCCCCCC	Synthetic Target 2 2D6*11-883 Invader Oligo Primary Probe 1 Primary Probe 2 Synthetic Target 1 Synthetic Target 1 Primary Probe 2 Synthetic Target 1 Primary Probe 2 Synthetic Target 1 Synthetic Target 1 Synthetic Target 1 Synthetic Target 2 Synthetic Target 2 Synthetic Target 1 Synthetic Target 2 Synthetic Target 1 Synthetic Target 1 Synthetic Target 1 Synthetic Target 1 Synthetic Target 2 Synthetic Target 1 Synthetic Target 1 Synthetic Target 1	GGGCAYCAGTGCTTCTAGCC	
Primary Probe 1 CCCGAGGCTGCAGGGGGGGGGGGGGGGGGGGGGGGGGGG	2D6*11-883 Invader Oligo Primary Probe 1 Primary Probe 2 Synthetic Target 1 Synthetic Target 2 Synthetic Target 1 Primary Probe 2 Synthetic Target 1 Synthetic Target 1 Synthetic Target 1 Synthetic Target 2 Synthetic Target 2 Synthetic Target 1 Synthetic Target 2 Synthetic Target 1 Synthetic Target 1	S GCTTCGGGGA GCTTCGGGGA STTC GGGCAYCAGTGCTTCTAGCC GGGCAYCAGTGCTTCTAGCC	
Primary Probe 2 Primary Probe 2 Primary Probe 2 ATGACGTGGGAGGCTGCAGGGGGGGGGGGGGGGGGGGGG	Primary Probe 1 Primary Probe 2 Synthetic Target 1 Synthetic Target 2 Synthetic Target 1 Primary Probe 2 Synthetic Target 1 Synthetic Target 2 Synthetic Target 1 Synthetic Target 1 Synthetic Target 1 Synthetic Target 1 Synthetic Target 2 Synthetic Target 2 Synthetic Target 2 Synthetic Target 2 Synthetic Target 3 Invader Oligo Primary Probe 1	SCTTCGGGGA GCTTCGGGGA STTC GGGCAYCAGTGCTTCTAGCC GGGCAYCAGTGCTTCTAGCC	일으 으 으 의의 의의
Primary Probe 1 GGGGCGGAGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	Primary Probe 1 Primary Probe 2 Synthetic Target 1 Synthetic Target 2 Synthetic Target 2 Primary Probe 2 Synthetic Target 1 Primary Probe 2 Synthetic Target 1 Synthetic Target 2 Synthetic Target 2 Synthetic Target 2 Synthetic Target 1 Synthetic Target 1	GCTTCGGGGA GCTTCGGGGA STTC GGGCAYCAGTGCTTCTAGCC GGGCAYCAGTGCTTCTAGCC	일의의의 기의의의의
Synthetic Target 1 CTGACCTCCCTCGGGCGCGCTCGGGGA Synthetic Target 1 CTGACCTCCCTCTGCAGTTGCGGCGCTCTCGGGGA Synthetic Target 2 CTGACCTCCCTCTGCAGTTGCGGCGCTTCGGGGA Synthetic Target 2 CTGACCTCCCTTGCAGTTGCGCCTCTTCGGGGAA Synthetic Target 3 ATGACGTGGCAGCAGTGTTCTCTCTCTCTCTCTCTCTCTC	Synthetic Target 1 Synthetic Target 1 Synthetic Target 2 2D6*35-31 Invader Oligo Primary Probe 2 Synthetic Target 1 Synthetic Target 2 Synthetic Target 2 Synthetic Target 1 Synthetic Target 1 Primary Probe 2 Synthetic Target 1	GCTTCGGGGA GCTTCGGGGA STTC GGGCAYCAGTGCTTCTAGCC	의의의 기의의의의
Synthetic Target 1 CTGACCCTCCTCTGCAGTTGCGGCGCCTTCGGGGA Synthetic Target 2 CTGACCCTCCTCTGCACTTGCGGCGCCTTCGGGGA 2D6*35-31 Invader Oilgo GGCTAGAAGCACTGRTGCCCCTGGCCT Primary Probe 1 ATGACGTGGCAGACGTGCCATCTTC Primary Probe 2 CGCGCGAGAGATGATAGTGGCCATCTTC Synthetic Target 1 GCAGGAAGATGATGGCCATCTTC Synthetic Target 1 GCAGGAAGATGGCCACTATCATGGCCCAGGGGCAYCAGTGCTTCTAGCCCC Synthetic Target 1 GCAGGAAGATGGCCACTATCATGGCCAGGGGCAYCAGTGCTTCTAGCCCC Synthetic Target 2 GCAGGAAGATGGCCACTATCATGGCCAGGGGCAYCAGTGCTTCTAGCCCC Primary Probe 2 GCAGGAAGATGGCCAGGGCTGGGATA Primary Probe 2 CGCGCGAGGACCGCTGGGAAA Synthetic Target 1 CTGCATATCCCAGCGCTGGCAAGGTCTTCCAAAAGGCTTT Synthetic Target 2 CTGCATATCCCAGCGCTGTCTCCAAAAGGCTTT Synthetic Target 1 CTGCATATCCCAGCGCTGAGGAAGA Primary Probe 2 CGCGCGAGGCCTGAGGAAGA Primary Probe 2 CGCGCGAGGTCGTCTCTGGCAAGGCTTCCAAAAGGCTTT Synthetic Target 1 TCGAGTAGGGCCTGAGGAAGA Primary Probe 2 CGCGCGAGGTCGTCTCTCCAGGCTTCCAAAAGGCTTT Primary Probe 2 CGCGCCGAGGTCGTCTCTCCAGGCTTCCAAAAGGCTTT Primary Probe 2 CGCGCGAGGCCTGCTCTCCTCGGAAGGCTTCCAGGCTCAGGTCAGGTCAGGTCAGGTCAGGTCAGGTCGTAGGTCA	Synthetic Target 1 Synthetic Target 2 2D6*35-31 Invader Oligo Primary Probe 2 Synthetic Target 1 Synthetic Target 1 Synthetic Target 1 Primary Probe 2 Synthetic Target 1 Synthetic Target 2	GCTTCGGGGA GCTTCGGGGA STTC GGGCAYCAGTGCTTCTAGCC GGGCAYCAGTGCTTCTAGCC	
Synthetic Target 2 CTGACCTCCTCTGCGGCCCCTTGGGGGA Invader Oligo	Synthetic Target 2 2D6*35-31 Invader Oligo Primary Probe 1 Primary Probe 2 Synthetic Target 1 Synthetic Target 1 Synthetic Target 1 Primary Probe 1 Primary Probe 2 Synthetic Target 1	GCTTCGGGGA CTTC GGGCAYCAGTGCTTCTAGCC GGGCAYCAGTGCTTCTAGCC	
Invader Oligo GGCTAGAAGCACTGRTGCCCTGGCCT Primary Probe 1 ATGACGTGGCAGAGTAGTGGCCATCTTC Synthetic Target 2 GCGGCAGGAGTAGTCGCCAGGGGCAYCAGTGCTTCTAGCCCC Synthetic Target 3 GCAGGAAGATGGCCACTATCAGGCCAGGGGCAYCAGTGCTTCTAGCCCC Synthetic Target 4 GCAGGAAGATGGCCACTATCAGGCCAGGGGCAYCAGTGCTTCTAGCCCC Synthetic Target 5 GCAGGAAGATGGCCACTATCAGGCCCAGGGGCAYCAGTGCTTCTAGCCCC Synthetic Target 6 ATGACGTGGCAGCAGCTTGCCAGTA Synthetic Target 7 ATGACGTGGCAGAGCCTGGCAGGAAGATA Synthetic Target 7 CTGCATATCCCAGCGCTGGCAGGCAGGCTTCCAAAGGCTTT Synthetic Target 7 CTGCATATCCCAGCGCTGGCAGGCAGGCAGGCTTCCAAAGGCTTT Synthetic Target 7 CTGCATATCCCAGCGCTGGCAGGCAGGCTCTACGCTTCCAAAGGCTTT Synthetic Target 7 CTGCATATCCCAGCGCTGGCAGGCAGGCTCTACGCTCCAAAGGCTTT Synthetic Target 1 TCGAGTAGGCAGCCTGGCTGCTACGCTCAGGCTC	2D6*35-31 Invader Oligo Primary Probe 1 Primary Probe 2 Synthetic Target 1 Synthetic Target 2 Synthetic Target 1 Primary Probe 1 Primary Probe 2 Synthetic Target 1	STTC GGGCAYCAGTGCTTCTAGCC GGGCAYCAGTGCTTCTAGCC	
Invader Oligo GGCTAGAGCACTGRTGCCCTGGCCT Primary Probe 1 ATGACGTGGCAGAGCTGATAGTGGCCATCTTC Primary Probe 2 GGCGCCGAGGTGATAGTGGCCATCTTC Synthetic Target 1 GCAGGAAGATGGCCACTATCACGCGCAGGGCAYCAGTGCTTCTAGCCCC Synthetic Target 2 GCAGGAAGATGGCCACTATCATGGCCAGGGCAYCAGTGCTTCTAGCCCC Synthetic Target 3 GCAGGAAGATGGCCACTATCATGGCCAGGTGCTTCTAGCCCC Synthetic Target 4 ATGACGTGGCAGAGCCTGGGATA Synthetic Target 5 CTGCATATCCCAGCGCTGGGATA Synthetic Target 6 CTGCATATCCCAGCGCTGGCAGGTCCTACGCTTCCAAAGGCTTT Synthetic Target 7 CTGCATATCCCAGCGCTGGCAGGTCCTACGCTTCCAAAGGCTTT Synthetic Target 7 CTGCATATCCCAGCGCTGGCAGGTCCTACGCTTCCAAAAGGCTTT Synthetic Target 1 CTGCATATCCCAGCGCTGCTAGCTCCAGGGTTT Synthetic Target 1 TCGAGGTGGCAGGGTCGTAGCTCCTAGGCTTCCAAAAGGCTTT Synthetic Target 1 TCGAGTACGACCCTCACTCCTAGGTCCTAGGCTCAGGTTAGCTCAGGTTAGCTCAGGTTAGCTCAGGGTCAGGTCCTAGGTCCTAGGTCAGGCTTAGCTCAGGTTAGCTCAGGCTCAGGTCCTAGGTCAGGCTCAGGTCAGGTCAGGCTCAGGTCAGGCTCAGGCTCAGGTCAGGCTCAGCTCAGGC	2D6*35-31 Primary Probe 1 Primary Probe 2 Synthetic Target 1 Synthetic Target 2 Synthetic Target 2 Primary Probe 1 Primary Probe 1 Primary Probe 2 Synthetic Target 1	STTC GGGCAYCAGTGCTTCTAGCC GGGCAYCAGTGCTTCTAGCC	
Primary Probe 1 ATGACGIGGCAGGATGATAGIGGCCATCTTC	Primary Probe 1 Primary Probe 2 Synthetic Target 1 Synthetic Target 2 Synthetic Target 2 Primary Probe 1 Primary Probe 2 Synthetic Target 1	STTC GGGCAYCAGTGCTTCTAGCC GGGCAYCAGTGCTTCTAGCC	
Primary Probe 2 CGCGCCGAGGATGATAGTGGCCATCTTC Synthetic Target 1 GCAGGAAGATGGCCACTATCACGGCCAGGGGCAYCAGTGCTTCTAGCCCC Synthetic Target 2 GCAGGAAGATGGCCACTATCACGGCCAGGGGCAYCAGTGCTTCTAGCCCC Synthetic Target 2 GCAGGAAGATGGCCACTATCATGGCCAGGGGCAYCAGTGCTTCTAGCCCC Synthetic Target 1 ATGACGTGGCAGGCCTGGGATA Synthetic Target 2 CGCATATCCCAGCGCTGCAGGACCTACGCTTCCAAAAGGCTTT Synthetic Target 2 CTGCATATCCCAGCGCTGCAGGACCTACGCTTCCAAAAGGCTTT Synthetic Target 2 CTGCATATCCCAGCGCTGCTGCAAGGTCTTCCAAAAGGCTTT Primary Probe 1 ATGACGTGGCAGAGGTCGTCGCAAGGTCTTCCAAAAGGCTTT Synthetic Target 1 TCGAGTACGCAGGCTCGTCTCCAAGGCTCAGGTCCAGG Synthetic Target 2 TCGAGTACGACGACCTCCTCCTAGGCTCAGGTCCAGG Synthetic Target 2 TCGAGTACGACGACCTTCCTCAGGCTCAGGTCCAGG Synthetic Target 2 TCGAGTACGACGACCTTCCTCAGGCTCAGGTCAGG Synthetic Target 2 TCGAGTACGACGACCTTCCTCAGGCTCAGGTCAGG Synthetic Target 2 TCGAGTACGACGACCTTCCTCAGGCTCAGGTCAGG Synthetic Target 2 TCGAGTACGACGACCTTCCTCAGGCTAGCTCAGG Synthetic Target 4 TCGAGTACGACGACCTTCCTCAGGCTGCTGGACCTAGGTCAGG Synthetic Target 5 TCGAGTACGACGACCTTCCTCAGGCTGCTGGACCTAGGTCAGG Synthetic Target 6 TCGAGTACGACGACCTTCCTCAGGCTGCTGGACCTAGGTCAGG Synthetic Target 7 TCGAGTACGACGACCTTCCTCAGGCTGCTGGACCTAGGTCAGG Synthetic Target 7 TCGAGTACGACGACCTTCCTCAGGCTGCTGGACCTAGGTCAGG Synthetic Target 7 TCGAGTACGACGACCTCACTTCCTCAGGCTGCTGGACCTAGGTCAGG Synthetic Target 7 TCGAGTACGACGACCCTCACTTCCTCAGGCTGCTGGACCTAGGTCAGG Synthetic Target 7 TCGAGTACGACGACCCTCACTTCCTCAGGCTAGGTCAGG Synthetic Target 7 TCGAGTACGACGACCCTCACTTCCTAGGCTGGACCTAGGTCAGG Synthetic Target 9 TCGAGTACGACGACCTCACTTCCTAGGTCAGGTCAGGTC	Primary Probe 2 Synthetic Target 1 Synthetic Target 2 Synthetic Target 2 Invader Oligo Primary Probe 1 Primary Probe 2 Synthetic Target 1 Synthetic Target 2 Synthetic Target 2 Primary Probe 2 Primary Probe 1	GGGCAYCAGTGCTTCTAGCC	의으
Synthetic Target 1 GCAGGAGATGGCCACTATCACGGCCACGGGCAYCAGTGCTTCTAGCCCC Synthetic Target 2 GCAGGAGATGGCCACTATCATGGCCAGGGCAYCAGTGCTTCTAGCCCC 2D6*33-2483 Invader Oligo AGCTTTTGGAAGCGTAGGACTTGCCAGT Synthetic Target 1 GTGACTTCCCAGCGCTGGGATA Synthetic Target 2 GCAGCTAGGTCCAGCGCTGGGAAG Synthetic Target 2 CTGAGTTCCCAGCGCTGAGGAAGGCTTT Synthetic Target 3 TCGAGTATCCCAGCGCTGAGGAAGG Synthetic Target 1 TCGAGTACCGAGGCCTGAGGAAGG Synthetic Target 2 TCGAGTACGCAGGCCTGAGGAAGG Synthetic Target 2 TCGAGTACGAGGCCTGCTCCAGGCTGCTGGAGGAAG Synthetic Target 1 TCGAGTACGAGGCCTGCTTCCTCAGGCTGCTGGAGGAAGG Synthetic Target 2 TCGAGTACGACGACCTTCCTCAGGCTGCTGGACCTAGGTCAGG Synthetic Target 2 TCGAGTACGACGACCTTCCTCAGGCTGCTGGACCTAGGTCAGG Synthetic Target 2 TCGAGTACGACGACCTTCCTCAGGCTGCTGGACCTAGGTCAGG Synthetic Target 2 TCGAGTACGACGACCTTCCTCAGGCTGCTGGACCTAGGTCAGG Synthetic Target 2 TCGAGTACGACGACCCTCACTTCCTCAGGCTGCTGGACCTAGGTCAGG Synthetic Target 3 TCGAGTACGACGACCCTCACTTCCTCAGGCTGCTGGACCTAGGTCAGG Synthetic Target 4 TCGAGTACGACCCTCACTTCCTCAGGCTGCTGGACCTAGGTCAGG Synthetic Target 4 TCGAGTACGACCCTCACTTCCTCAGGCTGCTGGACCTAGGTCAGGCTAGGTCAGGCTAGGTCAGGCTAGGTCAGGCTGCTAGGTCAGGCTAGGTCAGGCTAGGTCAGGCTAGGTCAGGCTAGGTCAGGCTAGGTCAGGCTAGGTCAGGCTAGGTCAGGCTAGGTCAGGCTAGGTCAGGCTAGGTCAGGCTAGGCTAGGTCAGGCTAGGTCAGGCTAGGTCAGGCTAGGTCAGGCTAGGTCAGGCTAGGTCAGGCTAGGTCAGGCTAGGTCAGGCTAGGTCAGGCTAGGTCAGGCTAGGTCAGGCTAGGTCAGGCTAGGTCAGGCTAGGCTAGGTCAGGCTAGGTCAGGCTAGGTCAGGCTAGGTCAGGCTAGGTCAGGCTAGGTCAGGCTAGGTAGG	Synthetic Target 1 Synthetic Target 2 Synthetic Target 2 Primary Probe 1 Primary Probe 2 Synthetic Target 1 Synthetic Target 2 Synthetic Target 2 Primary Probe 1 Primary Probe 2 Pynthetic Target 2 Pynthetic Target 2	GGGCAYCAGTGCTTCTAGCC GGGCAYCAGTGCTTCTAGCC	9
Synthetic Target 2 GCAGGAAGATGGCCACTATCATGGCCAGGGGCAYCAGTGCTTCTAGCCCC 2206*33-2483	Synthetic Target 2 2D6*33-2483 Invader Oligo Primary Probe 2 Synthetic Target 1 Synthetic Target 2 Synthetic Target 2 Synthetic Target 2 Primary Probe 1	GCAGGAAGATGGCCACTATCATGGCCAGGGGCAYCAGTGCTTCTAGCCCC	1
Invader Oligo AGCCTTTGGAAGCGTAGGACCTTGCCAGT	Primary Probe 1 Primary Probe 2 Primary Probe 2 Synthetic Target 1 Synthetic Target 2 Synthetic Target 2 Synthetic Target 2 Primary Probe 1		SEQ ID NO:322
2D6*33-2483 Invader Oligo AGCCTTTTGGAAGCGTAGGACTTGCCAGT Primary Probe 1 ATGACGTGGCAGACCAGCGCTGGGATAT Synthetic Target 2 CTGCATATCCCAGCGCTGGCAGGACCTCTACGCTTCCAAAAGGCTTT 2D6*37-1943 Invader Oligo CTGAGTAGCTCAGCAGCAGCTGAGGACCTACGCTTCCAAAAGGCTTT Primary Probe 1 ATGACGTGGCAGACCAGCAGCTGAGGACCTCACGCTTCCAAAAGGCTTT Synthetic Target 2 CTGAGTAGCTCAGCAGCCTGAGGACCTACCTCAGGCTTCCAAAAGGCTTT Synthetic Target 1 TCGAGTACGACGACCCTCACTTCCTCAGGCTAGGCTCAGGCTCAGGCTCAGGCTCAGGCTCAGGCTCAGGCTCAGGCTCAGGCTCAGGCTCAGGCTCAGGCTCAGGCTCAGGCTCAGGCTCAGGCTCAGGCTCAGGCTAGGCTAGGCTAGGCTAGGCTA	Primary Probe 1 Primary Probe 2 Primary Probe 2 Synthetic Target 1 Synthetic Target 2 Synthetic Target 2 Invader Oligo Primary Probe 1		
Primary Probe 1 ATGACGTGGCAGACCAGCGCTGGGATAT Primary Probe 2 CGCGCGAGGACAGCGCTGGCAAGGTCTTCCAAAAGGCTTT Synthetic Target 1 CTGCATATCCCAGCGCTGGCAAGGTCCTACGCTTCCAAAAGGCTTT Synthetic Target 2 CTGCATATCCCAGCGCTGTCTGGCAAGGTCCTACGCTTCCAAAAGGCTTT Synthetic Target 2 CTGCATATCCCAGCGCTGTCTGGCAAGGTCTTCCAAAAGGCTTT Primary Probe 1 ATGACGTGGCAGGCTGTCTGTAC Synthetic Target 1 TCGAGTACGACGACCTTCCTCAGGCTGCTGGACCTAGCTCAGG Synthetic Target 2 TCGAGTACGACCACCTTCCTCAGGCTGCTGGACCTAGCTCAGG Synthetic Target 2 TCGAGTACGACGACCCTCACTTCCTCAGGCTGAGCTAGCT	Primary Probe 1 Primary Probe 2 Synthetic Target 1 Synthetic Target 2 Synthetic Target 2 Invader Oligo Primary Probe 1	AGCCTTTTGGAAGCGTAGGACCTTGCCAGT	₽
Primary Probe 2 CGCGCGAGGCTGCTGCCAAGGCTTCCAAAAGGCTTT Synthetic Target 1 CTGCATATCCCAGCGCTGCTGCCAAGGCTTCCAAAAGGCTTT Synthetic Target 2 CTGCATATCCCAGCGCTGTCTGGCAAGGTCCTACGCTTCCAAAAGGCTTT Dimary Probe 1 ATGACTAGGTCCAGCGTCGTAC Synthetic Target 1 TCGAGTACGAGGTCGTTCCTCAGGCTGCTGGACCTAGCTCAGG Synthetic Target 2 TCGAGTACGACGCTCCTCCTCAGGCTGCTGGACCTAGCTCAGG Synthetic Target 2 TCGAGTACGACGACCTTCCTCAGGCTGCTGGACCTAGCTCAGG Synthetic Target 2 TCGAGTACGACGACCTTCCTCAGGCTGCTGGACCTAGCTCAGG Synthetic Target 2 TCGAGTACGACGACCCTCACTTCCTCAGGCTCAGG Synthetic Target 2 TCGAGTACGACGACCCTCACTTCCTCAGGCTCAGG Synthetic Target 2 TCGAGTACGACGACCCTCACTTCCTCAGGCTCAGG Synthetic Target 2 TCGAGTACGACGACCCTCACTTCCTCAGGCTCAGG Synthetic Target 2 TCGAGTACGACGACCCTCACTTCCTCAGGCTCAGGCTCAGG Synthetic Target 2 TCGAGTACGACGACCCTCACTTCCTCAGGCTCAGGCTCAGG Synthetic Target 2 TCGAGTACGACGACCCTCACTTCCTCAGGCTCAGGCTCAGG Synthetic Target 2 TCGAGTACGACGACCCTCACTTCCTCAGGCTCAGGCTCAGG Synthetic Target 3 TCGAGTACGACGACCCTCACTTCCTCAGGCTAGGCTCA	Synthetic Target 1 Synthetic Target 1 Synthetic Target 2 Synthetic Target 2 Invader Oligo Primary Probe 1	<u>ATGACGTGGCAGAC</u> CCAGCGCTGGGATA	SEQ ID NO:324
Synthetic Target 1 CTGCATATCCCAGCGCTGCTGGCAAGGTCCTACGCTTCCAAAAGGCTTT Synthetic Target 2 CTGCATATCCCAGCGCTGTCTGGCAAGGTCCTACGCTTCCAAAAGGCTTT 2D6*37-1943 Invader Oligo CTGAGCTAGGTCCAGCAGCCTGAGGAAGA Primary Probe 1 ATGACGTGGCAGGCTCGTCGTAC Synthetic Target 1 TCGAGTACGACGACCTTCCTCAGGCTGCTGGACCTAGCTCAGG Synthetic Target 2 TCGAGTACGACGACCTTCCTCAGGCTCGTGGACCTAGCTCAGG Invader Invader Oligo CTGAGTACGACGACCTTCCTCAGGCTACTAGCTCAGGCTCAGGCTCAGGCTCAGGCTAGCTCAGGCTCAGGCTCAGGCTCAGGCTCAGGCTCAGGTACGACGACCTTCCTCAGGCTCAGGCTCAGGCTCAGGCTCAGGCTCAGGCTCAGGTACGACGACCTTAGTTCAGGCTCAGGCTCAGGCTCAGGTACGACGACCTTAGTTCAGGCTCAGGCTCAGGCTCAGGCTCAGGCTCAGGCTCAGGTACGACGACCTTAGTTCAGGCTCAGGCTCAGGTACGACGACCTTAGTTCAGGCTCAGGCTCAGGCTCAGGCTCAGGCTCAGGCTCAGGCTCAGGCTCAGGCTCAGGTACGACGACCTTAGTTCAGGCTCAGGCTCAGGTACAGCTCAGGCTAGGCTCAGGCTAGGCTCAGGCTCAGGCTCAGGCTCAGGCTCAGGCTCAGGCTCAGGCTCAGGCTCAGGCTCAGGCTAGGCTCAGGCTCAGGCTCAGGCTCAGGCTCAGGCTCAGGCTCAGGCTCAGGCTCAGGCTCAGGCTAGGCTAGGCTAGGCTAGGCTCAGGCTCAGGCTCAGGCTCAGGCTCAGGCTCAGGCTCAGGCTAGGC	Synthetic Target 1 Synthetic Target 2 Synthetic Target 2 2D6*37-1943 Invader Oligo Primary Probe 1	<u>CGCGCGAGG</u> ACAGCGCTGGGATAT	₽
Synthetic Target 2 CTGCATATCCCAGCGCGTGTCTGGCAAGGTCCTACGCTTCCAAAAGGCTTT Synthetic Target 1 CGAGTAGGTCGAGGGTCGTGGTAC Synthetic Target 2 TCGAGTACGACGACCTCCTCAGGCTGCTGGACCTAGCTCAGGTCAGGTCATCTCTCAGGCTCAGGTAGGACGACCTCAGGCTAGGTCAGGACGTAGGTAG	Synthetic Target 2 2D6*37-1943 Invader Oligo Primary Probe 1	CAAGGTCCTACGCTTCCAAA	SEQ ID NO:326
2D6*37-1943 Invader Oligo CTGAGCTAGGTCCAGCAGCCTGAGGAAGA Primary Probe 1 ATGACGTGGCAGACCGAGGTCGTCGTAC Primary Probe 2 CGCGCCGAGGTCGTCGTAC Synthetic Target 1 TCGAGTACGACGACCTTCCTCAGGCTGCTGGACCTAGCTCAGG Synthetic Target 2 TCGAGTACGACGACCTTCCTCAGGCTGCTGGACCTAGCTCAGG Inderlined sequence represents the Primary Probe Arm or 'Flap'.	2D6*37-1943 Invader Oligo Primary Probe 1	CAAGGTCCTACGCTT	SEQ ID NO:327
2D6*37-1943 Invader Oligo CTGAGCTAGGTCCAGCAGGGTCGTCGTAC Primary Probe 1 ATGACGTGGCAGGTCGTCGTAC Synthetic Target 1 TCGAGTACGACGACCCTCGCTTCCTCAGGCTAGCTCAGG Synthetic Target 2 TCGAGTACGACGACCCTCACTTCCTCAGGCTAGCTCAGG Inderlined sequence represents the Primary Probe Arm or 'Flap'.	2D6*37-1943 Invader Oligo Primary Probe 1		-
Primary Probe 1 ATGACGTGGCAGGGTCGTCGTAC Primary Probe 2 CGCGCCGAGGTGAGGGTCGTCGTAC Synthetic Target 1 TCGAGTACGACGCTCGTTCCTCAGGCTGCTGGACCTAGCTCAGG Synthetic Target 2 TCGAGTACGACGACCTTCCTCAGGCTGCTGGACCTAGCTCAGG Inderlined sequence represents the Primary Probe Arm or 'Flap'.	Primary Probe 1	CTGAGCTAGGTCCAGCCTGAGGAAGA	₽
Primary Probe 2 CGCGCCGAGGTCGTCGTTCCTCAGGCTGGACCTAGCTCAGG Synthetic Target 2 TCGAGTACGACGACCTTCCTCAGGCTGCTGGACCTAGCTCAGG Synthetic Target 2 TCGAGTACGACGACCCTCACTTCCTCAGGCTGCTGGACCTAGCTCAGG Underlined sequence represents the Primary Probe Arm or 'Flap'.		<u>ATGACGTGGCAGACCGAGGGTCGTCGTAC</u>	SEQ ID NO:329
Synthetic Target 1 TCGAGTACGACCCTCGCTTCCTCAGGCTGCTGGACCTAGCTCAGG Synthetic Target 2 TCGAGTACGACGACCTCACTTCCTCAGGCTGCTGGACCTAGCTCAGG TCGAGTACGACGACCCTCACTTCCTCAGGCTGCTAGCTCAGG Underlined sequence represents the Primary Probe Arm or 'Flap'.		CGCGCCGAGGTCGTCGTAC	SEQ ID NO:330
Synthetic Target 2 TCGAGTACGACCCTCACTTCCTCAGGCTGCTGGACCTCAGG Underlined sequence represents the Primary Probe Arm or 'Flap'.		TCGAGTACGACGCCTCGCTTCCTCAGGCTGCTGGACCTAGCTCAGG	SEQ ID NO:331
Underlined sequence represents the Primary Probe Arm or	١	TCGAGTACGACCCTCACTTCCTCAGGCTGCTGGACCTAGCTCAGG	SEQ ID NO:332
Underlined sequence represents the Primary Probe Arm or			
	Underlined seq	Arm or	,

,

.

. .

, -

Figure 8

Position	31	100	: 883	1.707	1846	1943	2483	2549	2850	4125-4133	4180
Allele	*35	*10	*11	9*	*	*37	*33	. *3	*2	*18	*2
PCR product	PCR1	PCR1	PCR1	PCR2	PCR2	PCR2	PCR2	PCR2	PCR2	PCR3	PCR3
Polymorphism	G>A	C>T	. J<5	T>Del	G>A	G>A	L <d< td=""><td>A>Del</td><td>C>T</td><td>duplication</td><td>C>C</td></d<>	A>Del	C>T	duplication	C>C
Effect	VIIM	P34S	splice defect	frameshift	splice defect	R201H	A237S	frameshift	R296C	468VPT470	S486T
=u	172	171	174	174	173	174	173	172	173	174	173
WT frequency	157	97	174	170	102	174	169	164	68	174	41
HET frequency	1.4	99	0	4	. 64	0 .	4	8	09	0	7.6
Mut frequency	1	8	0.	0	7	. 0	0	0	24	0	56
Hardy Weinberg	χ ₂ 1.2	χ20.6		χ ₂ 0:0	x20.6		20.0	χ ₂ 0.1	χ ₂ 6.4		χ ₂ 2.3
	(p=0.28)	(p=0.44)		(p=0.88)	(p=0.4)		(p=0.88)	(p=0.75)	(p=0:011)		(p=0.13)
Rare allele frequency	4.6	24.	0	1.2	22.5	. 0	1.2	2.3	31.2	0	54.3
EM frequency*	4.6	23.8	0	1.2	22.7		1.2	2.3	31.4	0	54.7
Published Freq	6.70%	18(Asi 16)	0.1	1.8	18(Afr 6.3)	0.1(Afr0.01)	9.0	1.7	34(Asi 18)	Asi 0.7	53(Asi 65)

tion Maximisation algorythm implemented in the Arlequin genetic software

EM frequency= Allele frequency as generated by the Expecta

·				•
		G4180 C4180 C4180 G4180 G4180 C4180 C4180		
		DEL4125 DEL4125 DEL4125 DEL4125 DEL4125 DEL4125 DEL4125 DEL4125 DEL4125		
	•	C2850 T2850 C2850 T2850 C2850 C2850 C2850 T2850		
		INS2549		
· · · · · · · · · · · · · · · · · · ·		G2483 G2483 G2483 G2483 G2483 T2483 G2483 G2483		
•		G1943 G1943 G1943 G1943 G1943 G1943 G1943 G1943		
		G1846 G1846 A1846 G1846 G1846 G1846 G1846 A1846		
Figure		INS1707 INS1707 INS1707 INS1707 INS1707 INS1707 INS1707 INS1707 INS1707		
	·	G883 G883 G883 G883 G883 G883		
		C100 C100 C100 C100 T100		
		8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		
	s.d.	0.027 0.024 0.024 0.013 0.007 0.007 0.007 0.007	,	• • • • • • • • • • • • • • • • • • •
	Freq.	0.401 0.262 0.221 0.047 0.012 0.012 0.012 0.006		
	Haplotype	CYP2D6*1 CYP2D6*2 CYP2D6*3 CYP2D6*3 CYP2D6*3 CYP2D6*6 CYP2D6*6 CYP2D6*10 CYP2D6*10 CYP2D6*10		

Figure 11

Number of functional Alleles	Compound Haplotype	Number of Subjects
	*1/*1	31
	*1/*2	26
·	*2/*2	15
	*2/*35	8
	*1/*35	. 3
\mathcal{L}	*1/*33	3
	*1/*10	2
*	*2/*10	1
	*2/*33	1
	*35/*35	1
	*1/*4	35
	*2/*4	22
•	*1/*3	4
1	*2/*3	2
	*4/*35	3
	*1/*6	2
	*4/*10	1
	*2/*6	1
	*4/*4	7
()	*3/*4	2
U	*4/*6	1

Figure 12.

•

. .

		r 1gu	17 17 DI
	SNPName	Oligō-īvjee	SequenceOliga
SEQ ID NO: 1	CYP2D6*10(188C>T)_AS	Invader oligo	CCAACGCTGGACGCTACA .
SEQ ID NO: 2	CYP2D6*10(188C>T) AS	Probe	ACGGACGCGAGCCACCAGGCCCCV
SEQ ID NO: 3	CYP2D6*10(188C>T) AS	Probe	CGCGCCGAGGTCACCAGGCCCCV
SEQ ID NO: 4	CYP2D6*10(188C>T) AS	Target	GCAGGGGCCTGGTGGGTAGCGTGCAGCGTTGGCG
SEQ ID NO: 5	CYP2D6*10(188C>T) AS	Target	GCAGGGGGCCTGGTGGTGCAGCCCAGCGTTGGCG
SEQ ID NO: 6	CYP2D6*14(1846G>A) AS	invader oligo	GCCGCCTTCGCCAACCACTCCT
SEQ ID NO: 7	CYP2D6*14(1846G>A) AS	Probe	<u>ACGGACGCGGAGGGTGGTGGGV</u>
SEQ ID NO: 8	CYP2D6*14(1846G>A) AS	Probe	CGCGCCGAGGAGTGGGTGATGGGCV
SEQ ID NO: 9	CYP2D6*14(1846G>A) AS	Target	TTCTGCCCATCACCCACCGGAGTTGGCGAAGGCGGCAC
SEQ ID NO: 10	CYP2D6*14(1846G>A) AS	Target	TTCTGCCCATCACCCACTGGAGTGGTTGGCGAAGGCGGCAC
SEQ ID NO: 11	CYP2D6*18(insertion) S	Invader oligo	CCGGGGCTGTCCAGTGGCAT
SEQ ID NO: 12	CYP2D6*18(insertion) S	Probe	CGCGCCGAGGCAGCGAV
SEQ ID NO: 13	CYP2D6*18(insertion) S	Probe	<u>ACGGACGCGGAGCCGAGAGCTGAAGTGV</u>
SEQ ID NO: 14	CYP2D6*18(insertion) S	Target	GCAGCACTTCAGCTTCTCGGTGCCCACTGCACTGGACAGCCCCGGCC
SEQ ID NO: 15	CYP2D6*18(insertion) S	Target	GCAGCACTTCAGCTTCTCGGTGCCCACTGGACAGCCCCGGCC
SEQ ID NO: 16	CYP2D6*18(insertion) AS	Invader oligo	CTCCCTGCTGCACCTTCAGCTTCTCT
SEQ ID NO: 17	CYP2D6*18(insertion) AS	Probe	CGCGCGAGGGGTGCCCACTGTGV
SEQ ID NO: 18	CYP2D6*18(insertion) AS	Probe	<u>ACGGACGCGGAGGCTGCCCACTGGAV</u>
SEQ ID NO: 19	CYP2D6*18(insertion) AS	Target	GCTGTCCAGTGGGCACCGAGAAGCTGAAGTGCTGCAGCAGGGAGGT
SEQ ID NO: 20	CYP2D6*18(insertion) AS	Target	GCTGTCCAGTGGCACCCGAGAAGCTGCTGCAGCAGGGGGGGG
SEQ ID NO: 21	CYP2D6*2(2938C>T) AS	Invader oligo	GAACCCTGAGAGCATCAATGATGAGAACCTGA
SEQ ID NO: 22	CYP2D6*2(2938C>T) AS	Probe	ACGGACGCGGAGCGCATAGTGGTGGCV
SEQ ID NO: 23	CYP2D6*2(2938C>T) AS	Probe	CGCGCCGAGGTGCATAGTGGTGGCTV
SEQ ID NO: 24	CYP2D6*2(2938C>T) AS	Target	GGTCAGCCACCACTATGCGCAGGTTCTCATCATTGAAGCTGCTCTCAGGGTTCCC
SEQ ID NO: 25	CYP2D6*2(2938C>T) AS	Target	GGTCAGCCACCACTATGCACAGGTTCTCATCATTGAAGCTGCTCTCAGGGTTCCC
SEQ ID NO: 26	CYP2D6*2(4268G>C) AS	Invader oligo	CCACCATGGTGTCTTTGCTTTCCTGGTGAT
SEQ ID NO: 27	CYP2D6*2(4268G>C) AS	Probe	ACGGACGCGGAGGCCCATCCCCCTATV

. *

	SEQ ID NO: 28 SEQ ID NO: 28 SEQ ID NO: 29 SEQ ID NO: 33 SEQ ID NO: 33 SEQ ID NO: 33 SEQ ID NO: 34 SEQ ID NO: 40 SEQ ID NO: 44 SEQ ID NO: 44 SEQ ID NO: 45 SEQ ID NO: 45 SEQ ID NO: 45 SEQ ID NO: 46 SEQ ID NO: 47 SEQ ID NO: 48	CYP2D6*2(4268G>C) AS CYP2D6*2(4268G>C) AS CYP2D6*2(4268G>C) AS CYP2D6*3(2637A>del) AS CYP2D6*3(2637A>del) AS CYP2D6*3(2637A>del) AS CYP2D6*3(2637A>del) AS CYP2D6*3(2637A>del) AS CYP2D6*3(2637A>del) AS CYP2D6*4(1934G>A) AS CYP2D6*4(1934G>A) AS CYP2D6*4(1934G>A) AS CYP2D6*4(1934G>A) AS CYP2D6*6(1795T>del) AS CYP2D6*7(3023A>C) AS	Frobe Target Invader oligo Probe Target Invader oligo Probe Target Invader oligo Probe Probe Target Invader oligo Probe Target Target Target Target Target Target Probe	CUTE 12B COGGCCGAGGCCCATCCCCTATV GCTCATAGGGGCCCCATCCCCCTATV GCTCATAGGGGCCCCATCCCCCTATV GCTCATAGGGGCCCCATCCCCCTATV GCTCATAGGGGCCCCATCCCCCTATV GCTCATAGGGGCCCCATCCCCTATCCAGGAAAGCAAAGC
	1 3 1 1		Target Target Invader oligo Probe Probe Target	CACGCTGCACATCCGGATGTAGGATCATGAGCAGGAGGCCCCAGGCC CACGCTGCACATCCGGAGGTAGGATCATGAGCAGGAGGCCCCAGGCC GCCGCCTTCGCCAACCACTCCC ACGCACGCGGAGGTGATCGC ACGGACGCGGAGGTGATGGGV CGCGCCGAGGTGTGGGTAGGGCV TTCTGCCCATCACCCACCGGAGTGGTTGGCGAAGGCGGCAC

•			
		4	
		Figu	ire 12C
,			
	SNFName	OligoTybe	SequenceOligo
SEQ ID NO: 55	CYP2D6*8(1846G>T) AS	Target	TTCTGCCCATCACCCACAGGAGTGGTTGGCGAAGGCGGCAC
SEQ ID NO: 56	2D6*2	Invader oligo	GCCACCATGGTGTTTGCTTTCCTGGTGAT
SEQ ID NO: 57	206.2	Probe	CGCGCCGAGGCCCCATCCCCCTATGV
SEQ ID NO: 58	2D6*2	Probe	ACGGACGCGGAGGCCCATCCCCCTATV
SEQ ID NO: 59	2D6*2	Target	AGCTCATAGGGGGATGGGGTCACCAGGAAAGCAAAGACACCATGGTGGCTG
SEQ ID NO: 60	2D6*2	Target	AGCTCATAGGGGATGGGCTCACCAGGAAAGCAAAGACACCATGGTGGCTG
SEQ ID NO: 61	CYP2D6*3 frameshift	Invader oligo	GCTGGGCTCCCAGGTCATCT
SEQ ID NO: 62	CYP2D6*3 frameshift	Probe	CGCGCCGAGGCTGCTCAGTTAGCAGV
SEQ ID NO: 63	CYP2D6*3 frameshift	Probe	ACGGACGCGGAGCGTCCAGTTAGCAGV
SEQ ID NO: 64	CYP2D6*3 frameshift	Target	ATGAGCTGCTAACTGAGCACAGGATGACCTGGGACCCAGCCCAGCCC
SEQ ID NO: 65	CYP2D6*3 frameshift	Target	ATGAGCTGCTAACTGAGCACGGATGACCTGGGACCCAGCCCAGCCC
SEQ ID NO: 66	2D6*4	Invader oligo	CCTTACCCGCATCTCCCACCCCCAT
SEQ ID NO: 67	2D6*4	Probe	CGCGCCGAGGAGGCCCCTTTCGV
SEQ ID NO: 68	2D6*4	Probe	ACGGACGCGGAGGGACGCCCTTTCV
SEQ ID NO: 69	2D6*4	Target	GGGGCGAAAGGGGCGTCTTGGGGGTGGGAATGCGGGTAAGGGG
SEQ ID NO: 70	2D6*4	Target	GGGGCGAAAGGGGCGTCCTGGGGGTGGGAGTGCGGGTAAGGGG
SEQ ID NO: 71	2D6*6	Invader oligo	CAGGCGCCTCCTCGGTCACCT
SEQ ID NO: 72	2D6*6	Probe	CGCGCCGAGGCACTGCTCCAGCGAV
SEQ ID NO: 73	206*6	Probe	ACGGACGCGGAGCTCCAGCGAV
SEQ ID NO: 74	2D6*6	Target	AGAAGTCGCTGGAGCAGGTGACCGAGGAGGCCGCCTGCC
SEQ ID NO: 75	2D6*6	Target	AGAAGTCGCTGGAGGGGGGGCCGCCTGCC
SEQ ID NO: 76	2D6*7	Invader oligo	GGGCTCACGCTGCACATCCGGAC
SEQ ID NO: 77	2D6*7	Probe	CGCGCCGAGGTGTAGGATCATGAGCAGGV
SEQ ID NO: 78	2D6*7	Probe	<u>ACGGACGCGGAGGGTAGGATCATGAGCAGV</u>
SEQ ID NO: 79	206*7	Target	GCCTCCTGCTCATGATCCTACATCCGGATGTGCAGCGTGAGCCCAT
SEQ ID NO: 80	2D6*7	Target	GCCTCCTGCTCATGATCCTACCTCCGGATGTGCAGCGTGAGCCCAT
SEQ ID NO: 81	CYP2D6 P34S	Invader oligo	GCAGTGGCAGGGGCCTGGTGT

-

Figure 12D

*			Figu	re 12D
		SNPName	· OligoType	SequenceOligo
	SEQ ID NO: 82	CYP2D6 P34S	Probe	ACGGACGCGGAGGGTAGCCTGCAGCV
	SEQ ID NO: 83	CYP2D6_P34S	Probe	CGCGCCGAGGAGTAGCGTGCAGCCV
-	- 1	•	Target	
		രി	Target	GCIGGGCIGCACGCIACICACCAGGCCCCCIGCCACIGCCC
	SEO ID NO: 86	CYP2D6*11 splice	Invader oligo Probe	CGCGCCGAGGGTTGCGGCGCCV
	9	1	Probe	
	ID NO:	CYP2D6*11 splice	∓arget	AAGCGGCGCCAACTGCAGAGGGACGGTCAGGGCCTCT
-	SEQ ID NO: 90	CYP2D6*11_splice	Target	AAGCGGCGCCCAAGTGCAGAGGGAGGGTCAGGGGCCTCT
	SEQ ID NO: 91	CYP2D6_H94R	Invader oligo	CGCGAGGCGCTGACCCT
-	SEQ ID NO: 92	CYP2D6 H94R	Probe	-
	SEQ ID NO: 93	CYP2D6 H94R	Probe	CGCGCCGAGGCGCGAGGACAV
	SEQ ID NO: 94	CYP2D6 H94R	Target	GGCGGTGTCCTCGCCGTGGGTCACCAGCGCCTCGCGCA
	SEQ ID NO: 95		Target	GECEGTETCCTCGCGCGCGCCTCGCGCA
	SEQ ID NO: 96		Invader oligo	
	SEO ID NO: 97	•	Probe	<u>ACGGACGCGGAGCGGCCGCGTV</u>
	SEQ ID NO: 98	- 1	Probe	
	SEC ID NO: 99	- 1	Target	
	SEQ ID NO: 100	CYP2D6 1039[CT]	Target	TGGGAACGCGCCCAAAACCCAGGATCTGGGTGATGGGCACAGG
	SEQ ID NO: 101	CYP2D6_1661[GT]	Invader oligo	GCGAGCAGAGGCGCTTCTCCGTT
	SEQ ID NO: 102	1	Probe	
	SEQ ID NO: 103	1	Probe	
•	- 1	1	Target	
	- 1	— į	larget	
	SEC ID NO: 106	CYPZD6*8 G169X	Invader oligo	GCCGCCTTCGCCACTCCCC
			11000	00000
	SECTIONO: 108	CYPZD6-8 G169A	Probe	JUNCUCARGETOT GGG TOAT GGGCV
Œ				
		·		
*				
			. *	
	· «			
·				

.

.

· .

	SNPName	OligoType	SequenceOligo
SEQ ID NO: 109	CYP2D6*8 G169X	Target	TTCTGCCCATCACCCACCGGAGTGGTTGGCGAAGGCGGCACA
SEQ ID NO: 110	CYP2D6*8 G169X	Target	TTCTGCCCATCACCCACAGGAGTGGTTGGCGAAGGCGGCACA
SEQ ID NO: 111	CYP2D6 G212E	Invader oligo	CAGGCTGCTGGCTCAGGAGGT
SEQ ID NO: 112		Probe	CGCGCCGAGGACTGAAGGAGGTCGV
SEQ ID NO: 113	. 1	Probe	ACGGACGCGGAGAACTGAAGGAGGAGTCGV
SEQ 10 NO: 114		Target	AGCCCGACTCCTTCAGTCCCTCCTGAGCTAGGTCCAGCAGCCTGAG
SEQ ID NO: 115	CYP2D6_G212E	Target	AGCCCGACTCCTTCAGTTCCTCCTGAGCTAGGTCCAGCAGCCTGAG
SEQ ID NO: 116	CYP2D6*9_K281del	Invader ofigo	CCTGACTGAGGCCTTCCTGGCAGATGT
SEQ ID NO: 117	CYP2D6*9_K281del	Probe	
SEQ ID NO: 118		Probe	ACGGACGCGGAGGAGTGGCTV
SEQ ID NO: 119	CYP2D6*9_K281del	- Target	
SEQ ID NO: 120	CYP2D6*9_K281del	Target	CGTGGCAGCCACTCTCACCTCTCTGCCAGGAAGGCCTCAGTCAG
SEQ ID NO: 121	CYP2D6_R296C	Invader oligo	GAACCCTGAGGGGGCTTCAATGATGAGCCTGA
SEQ ID NO: 122	CYP2D6_R296C	Probe	CGCGCCGAGGCGCATAGTGGTGGCV
SEQ ID NO: 123	CYP2D6_R296C	Probe	ACGGACGCGGAGTGCATAGTGGTGGCTV
SEQ ID NO: 124		Target	
SEQ ID NO: 125	CYP2D6 R296C	Target	GGTCAGCCACCACTATGCACAGGTTCTCATTGAAGCTGCTCTCAGGGTTCCC
SEQ ID NO: 126	CYP2D6_L421P	Invader oligo	CTTCCGCTTCCACCCCGAACACTTCCA
SEQ ID NO: 127	CYP2D6_L421P	Probe	ACGGACGCGGAGTGCCCAGGGV
SEQ ID NO: 128	CYP2D6 L421P	Probe	CGCGCGAGGCGGATGCCCAGGGV
SEQ ID NO: 129	CYP2D6 L421P	Target	GTGCCCTGGGCATCCAGGAAGTGTTCGGGGTGGAAGCGGAAGGG
SEQ ID NO: 130	CYP2D6 L421P	Target	GTGGCCCTGGGCATCCGGGAAGTGTTCGGGGTGGAAGCGGAAGGG
SEQ ID NO: 131	CYP2D6 1661[GT]	Invader oligo	AGGCCCAAGTTGCGCAAGGTGGAT
SEQ ID NO: 132	CYP2D6 1661[GT]	Probe	CGCGCCGAGGCGCA
SEQ ID NO: 133	CYP2D6 1661[GT]	Probe	ACGGACGCGGAGAGCGCV
SEQ ID NO: 134	СҮР2D6_1661[GT]	Target	AGAGGCGCTTCTCCGTGTCCACCTTGCGCCTGG
SEQ ID NO: 135	CYP2D6_1661[GT]	Target	AGAGGCGCTTCTCCGTCTCCACCTTGCGCCTTGGGCCTGG
	•		
	-		

.

Figure 12G

•

÷. •

·				
	SNRName - Oligorype	- Oligotype	SequenceOligo	
SEQ ID NO: 163	CYP2D6*9 K281del S	Probe	ACGGACGCGGAGTCCATCTCTGCCAGGV	
SEQ ID NO: 164	CYP2D6*9 K281del S	Target	GCCTTCCTGGCAGAGGAGGAGGTGAGAGTGGCTGCCACGGTGGGG	
SEQ ID NO: 165	CYP2D6*9 K281del S	Target	GCCTTCCTGGCAGAGAGAGAGTGGCTGCCACGGTGGGG	٠.
SEQ ID NO: 166	296C_S	Invader oligo	GGCAGAGAACAGGCCACCACTATGCT	
SEQ ID NO: 167	CYP2D6_R296C_S	Probe	CGCGCCGAGGGCAGGTTCTCATTGAV	
SEQ ID NO: 168	CYP2D6 R296C S	Probe	ACGGACGCGGAGACAGGTTCTCATTGAAGV	
SEQ ID NO: 169	R296C S	Target	GCAGCTTCAATGATGAACCTGCGCATAGTGGTGGCTGACCTGTTCTCTGCCGG	• .
SEQ ID NO: 170	S	Target	GCAGCITCAATGATGAACCTGTGCATAGTGGTGGCTGACCTGTTCTCTGCCGG	•
SEQ ID NO: 171	CYP2D6 L421P S	Invader oligo	GCTTCACAAAGTGGCCCTGGGCATCCT	
SEQ ID NO: 172	CYP2D6 L421P S	Probe	CGCGCCGAGGAGGGGTTCGGGGV	
SEQ ID NO: 173		Probe	ACGGACGCGGAGGGGAAGTGTTCGGGV	
SEQ ID NO: 174	CYP2D6 L421P S	Target	TCCACCCGAACACTTCCTGGATGCCCAGGGCCACTTTGTGAAGCCG	,
SEQ ID NO: 175	CYP2D6 L421P S	Target	TCCACCCCGAACACTTCCCGGATGCCCAGGGCCACTTTGTGAAGCCG	
SEQ ID NO: 176	CI S	Invader oligo	AGGCCCAAGTTGCGCAAGGTGGAT	•
SEQ ID NO: 177	CYP2D6 1661[GC] S	Probe.	ACGGACGCGGAGAYGGAAAGCGCCTV	
SEQ 1D NO: 178	CYP2D6 1661[GC] S	Probe	CGCGCCGAGGGAAAGCGCCTV	
SEQ ID NO: 179	1661[GC] S	Target	GCAGAGGCGCTTCTCCRTGTCCACCTTGCGCAACTTGGGCCTGG	
SEQ ID NO: 180	CYP2D6 1661[GC] S	Target	GCAGAGGCGCTTCTCCRTCTCCACCTTGCGCAACTTGGGCCTGG	;
SEQ ID NO: 181	CYP2D6 1661[GC] AS	Invader oligo	GCGCGAGCAGAGGCGCTTCTCCRTT	
SEQ ID NO: 182	CYP2D6 1661[GC] AS	Probe	CGCGCCGAGGGTCCACCTTGCGCV	
SEQ ID NO: 183	CYP2D6 1661[GC] AS	Probe	ACGGACGCGGAGCTCCACCTTGCGCV	
SEQ ID NO: 184	CYP2D6 1661[GC] AS	Target	AGTTGCGCAAGGTGGACAYGGAGAGCGCCTCTGCTCGCGCCA	
SEQ ID NO: 185	CYP2D6 1661[GC] AS	Target	AGTTGCGCAAGGTGGAGAAGCGCCTCTGCTCGCGCCA	
SEQ ID NO: 186	CYP2D6*8 G169X S	Invader oligo	CTTTGTGCCCTTCTGCCCACC	
SEQ ID NO: 187	CYP2D6*8 G169X S	Probe	ACGGACGCGGAGCGGAGTGGTYGGCGV	
SEQ ID NO: 188	CYP2D6*8 G169X S	Probe	CGCGCCGAGGAGTGGTYGGCGAV	
SEQ ID NO: 189	CYP2D6*8 G169X S	Target	GCCTTCGCCRACCACTCCGGTGGTGATGGGCAGAGGGGCACAAGGCG	

ire 12H	Tiype Section SequenceOligo Section Sectio	CTTTGTGCCCTTCTGCCCATCACCCACA	CGCGCCGAGGGGGTGGTYGGCGV			IO GTGCCGCCTTCGCCRACCACTCCT ACGGACGCGGAGGGTGATGGGCV	CGCGCCGAGGAGTGGGCV		TTCTGCCCATCAC	OGCGGCCCRAAACCCAGGATCTGGT ACGGACGCGGAGGTGATGGGCACAGGV	CGCGCCGAGGATGATGGGCACAGGCV	GCCGCCTGTGCCCATCACCCAGATCCTGGGTTTYGGGCCGCGTT		ICACACAGAGACCAGATCCTGGGTTV	ACGGACGCGGAGTCCTGGGTTTYV	GCCCRAAACCCAGGATCTGGGTGATGGGCACAGGCGGGGGGT	GCCCRAAACCCAGGATCTGGATGGGCACAGGCGGGCGGT	GAACCCTGAGAGC	CGCGCCGAGGCGCM1AG1GGC1V	AGGTCAGCCACCACTAKGCGCAGGTTCTCATTGAAGCTGCTCTCAGGGTTCCC	AGGTCAGCCACCACTAKGCACAGGTTCTCATTGAAGCTGCTCTCAGGGTTCCC	o GGCAGAGACAGGTCAGCCACTAKGCT						
	ু তিigoriype Target	Invader oligo	Probe	Target	Target	Invader oligo Probe	Probe	Target	Target	Invader oligo Probe	Probe	Target	Target	Invader oligo Probe	Probe	Target	Target	Invader oligo	Probe	Target	Target	Invader oligo		•		,		
	CYP2D6*8 G169X S	G169XA S	CYP2D6*8 G169XA S	G169XA S	G169XA S	CYP2D6*8 G169XA AS CYP2D6*8 G169XA AS	G169XA AS	G169XA AS	3169XA AS	CYP2D6*17 11071 S CYP2D6*17 T1071 S	T1071 S	T107! S	T1071 S	CYP2D6*17 T1071 AS	T1071 AS	T1071 AS	CYP2D6*17 T1071 AS	R296C S	CYPZU6 RZ96C S	R296C S	R296C S	CYP2D6 R296C S		•				
	SEQ ID NO: 190	1	SEQ ID NO: 192	1		SEQ ID NO: 196 SEQ ID NO: 197	1 1	- 1	1	SEQ ID NO: 201 SEQ ID NO: 202	1 1	i 1	- 1	SEC ID NO: 205	1 7	1 1	SEQ ID NO: 210		SEC ID NO: 212	- 1	1 1	SEQ ID NO: 216						
			-	•		• .							, , , , , , , , , , , , , , , , , , ,												•		•	

Figure 12I

•

*

	A SNIDNISMS	C. Clipotyna	SedilencaOling
SEQ ID NO: 217			ACGGACGCGGAGGCAGGTTCTC
SEQ ID NO: 218	R296C	Probe	CGCGCCGAGGACAGGTTCTCATCATTGAAGV
SEQ ID NO: 219	CYP2D6 R296C S	Target	GCAGCTTCAATGATGAGAACCTGCGCMTAGTGGTGGCTGACCTGTTCTCTGCCGG
SEQ ID NO: 220	CYP2D6 R296C S	Target	GCAGCTTCAATGATGAGAACCTGTGCMTAGTGGTGGCTGACCTGTTCTCTGCCGG
SEQ ID NO: 221	CYP2D6*2B	Invader oligo	GGCAGAGAACAGGTCAGCCACCACTAKGCT
SEQ ID NO: 222	CYP2D6*2B	Probe	ACGGACGCGGAGGCAGGTTCTCATTGAV
SEQ ID NO: 223	CYP2D6*2B	Probe	CGCGCCGAGGACAGGTTCTCATTGAAGV
SEQ ID NO: 224	CYP2D6*2B	Target	GCAGCTTCAATGATGAGAACCTGCGCMTAGTGGTGGCTGACCTGTTCTCTGCCGG
SEQ ID NO: 225	CYP2D6*2B	Target	GCAGCTTCAATGATGAGAACCTGTGCMTAGTGGTGGCTGACCTGTTCTCTGCCGG
SEQ ID NO: 226	CYP2D6 R296C AS	Invader oligo	GAACCCTGAGAGCATCAATGAGAACCTGA
SEQ ID NO: 227	CYP2D6 R296C AS	Probe	ACGGACGCGGAGCGCMTAGTGGTGGCTV
SEQ ID NO: 228	CYP2D6 R296C AS	Probe	CGCGCCGAGGTGCMTAGTGGTGGCTGV
SEQ ID NO: 229	CYP2D6 R296C AS	Target	AGGICAGCCACCACTAKGCGCAGGITCICATCATTGAAGCTGCTCTCAGGGTTCCC
SEQ ID NO: 230	CYP2D6 R296C AS	Target	AGGICAGCCACCACTAKGCACAGGITCICATCATTGAAGCTGCTCTCAGGGITCCC
SEQ ID NO: 231	CYP2D6 H94R S	Invader oligo	CGGTCGGCSGTGTCCTCGCCGA
SEQ ID NO: 232	CYP2D6 H94R S	Probe	ACGGACGCGGAGTGGGTCACCAKCGCV
SEQ ID NO: 233	CYP2D6 H94R S	Probe	CGCGCCGAGGCGGTCACCAKCGCV
SEQ ID NO: 234	CYP2D6 H94R S	Target	CGAGGCGMTGGTGACCCACGGCGACGACCGCCCGCC
SEQ ID NO: 235	CYP2D6 H94R S	Target	CGAGGCGMTGGTGACCCGCGGCGACCGCCGCC
SEQ ID.NO: 236			gcaagaaggagtgtcaggg
SEQ ID NO: 237			aaggotttgcaggottca
SEQ ID NO: 238			gaatccggtgtcgaagtgg
SEQ ID NO: 239			ctgtggtgaggtgacgagg
SEQ ID NO: 240		-	GCTCGGACTACGGTCATCA
SEQ ID NO: 241			ggccctgcactgtttc
SEQ ID NO: 242		FRET probe (FAM)	Y-tct-X-agc-cgg-ttt-tcc-ggc-tga-gac-ctc-ggc-gcg-hex
SEQ ID NO: 243		FRET probe (RED)	Y-tct-X-agc-cgg-ttt-tcc-ggc-tga-gac-tcc-gcg-tcc-gt-hex

ure

.

.

121		SequenceOligo	CCCAGCTGGATGACTGAGCAT	ATGACGTGGCAGACCAGGATGACCTGGGAV	CGCGCCGAGGCGGATGACCTGGGAV					ATGACCTOCACCCCCAAGACGCCCTTTCACCCAACGGTC	_		acqqacqqaqaqaggaaccctgtgacat	ttgaaatgtcacagggttcctaacaggccactcttccctggatggg	aggagtagccacgctcggtgaggatcttcatt	CGCGCCGAGGcaggtagtcggtgagat	cgcgatctcaccgactacctgatgaagatcctcaccgagcgtggctactccttc	5'-CCGGGGCCACCACTGAGCC	5'-ACGGACGCGGAGTTACAGCACAGGTGC	Y-tct-X-agc-cgg-ttt-tcc-ggc-tga-gag-tct-gcc-acg-tca-t-hex										
Figure		OlidoTvne						r oligo		Target CGCA		r oligo			Invader oligo	Probe		r oligo	Probe 5'-ACC	FRET probe (FAM) Y-tct-X			•							
		SNËName	CYP2D6*3					CYP2D6*4				alpha actin (used with 2D6*			alpha actin (used with 2D6*4)			CYP2D6*5									***			
			SEQ ID NO: 244	SEQ ID NO: 245	SEQ ID NO: 246	9	- 1	- 1	- 1	SECTIONO: 251	ÿ	1	1 1		SEQ ID NO: 257	SEQ ID NO: 258		SEQ ID NO: 260	SEQ ID NO: 261	SEQ ID NO: 262						•				
						·					•										•	•						• • •	*	

FIGURE 13

FIGURE 14

Primer Name	Sequence	Size	Oligo TM	Amplicon Size
primer pair 1	AAG GCT TTG CAG GCT TCA	18 bases	64.3	
primer pair 1	GCT CGG ACT ACG GTC ATC A	19 bases	65.3	1460 bp
primer pair 2	TGG AAT CCG GTG TCG AAG	18 bases	63.4	
primer pair 2	GAA ATC TCT GAC GTG GAT AG	20 bases	58.8	942 bp
primer pair 3	GTA CCT CCT ATC CAC GTC A	19 bases	61.7	
primer pair 3	CAC TCC TTG CCT CCT A	19 bases	62.2	866 bp
primer pair 4	GCA AGA AGG AGT GTC AGG G	19 bases	64.1	
primer pair 4	CTG TGG TGA GGT GAC GAG G	19 bases -	66.1	1748 bp

SNP Name CYP2D6 S486T CYP2D6 S486T CYP2D6 S486T CYP2D6 S486T CYP2D6 S486T CYP2D6 1846G>A CYP2D6 1846G>A
--

	CAGGAGGI	AAGGAGGAGI	ATCCCTCCTGAGCTAGGTCCAGCAGCCTGAGT	AGCCCGACTCCTTCAGTCCCTCCTGAGCTAGGTCCAGCAGCCTGAG	ATTCATCACC		AGCGCTTTGGV	TGTCCCCAAAGCGCTGCACACCTCATGAATCACGGCAGTGGTGTAGGGCAT	CTCATGAATCACGGCAGTGGTGTAGGGCAT	GGCCGTCTGGT	AAGCCCTTCCGV	SCCCTTCCGCV	CCAGACGGCCTCATCCTTCAGCACYGATGAC	TCTTCCAGACGGCCTCATCCTTCAGCACYGATGAC		GGCAACV	CAACCV	AGCAGGTTGCCCAGCCGGCCAGTGGCAGGGGCCCTG	SGCAGTGGCAGGGGCCTG		SACCTCT	AGGCTGV	TCCTCAGGCTGCV	TCCAGCAGCCTGAGGAAGCGAGGGTCGTCGTACTCGAAGCGGCGCC	GAGGGTCGTCGTACTCGAAGCGGCGCC	TJ		GCATGCCTV	SCCTGTGGGGGGGGGGGC	CCCGAGGCATGCACGGTGGCCTGTGGGGGGGGGGGGGCC	JOCCT	SGCCATCTTCV	STGGCCATCTTCV	CACGGCCAGGGCACCAGTGCTTCTAG	GCAGGAAGATGGCCACTATCATGGCCAGGGGCACCAGTGCTTCTAG	VTCGACGACT	3GGCAGGTGV	4GGGCAGGTGCV	CGCCGCACCTGCCCTATCACGTCGTCGATCTCCTGTTGGACACGGCCTG	CGCCGCACCTGCCCTATCATGTCGTCGATCTCCTGTTGGACACGGCCTG
Poly- morphis m Assay Oligo Sequence	CAGGC1GC1GGACC17	INS acggacgcggagGcA I CGAAGC			STEUCETOROUGH	INS CACACAGAGATATACAACACTTTAV	1			CATCRGTGCTGAAGGATGAGGCCGTCTGGT	G ACGGACGCGGAGGAGAGG	CGCGCCGAGGAAGAA	GGAAGCGGAAGGGCT	GGAAGCGGAAGGGCT	FOCUETOROCETOCOCOE	G ACGGACGCGGAGGGGCTGGGCAACV		G AGCAGGTTGCCCAGCCCGC				CGCGCCGAGGGCTTC		G TCCAGCAGCCTGAGGAAGC		TOOTOOLOGIC	100000000000000000000000000000000000000	ACGGACGCGGAGACC		A CCCGAGGCATGCACGGTGC	AGAAGCACTGGTGCCCCTGGCCT	G CGCCCGAGGGTGATAGTC	A ACGGACGCGGAGATGATAGTGGCCATCTTCV		-	GGCCGTGTCCAACAGGAGA	G ACGGACGCGGAGGTGATAGGGCAGGTGV		G CGCCGCACCTGCCCTATCA	
	Ш	ביים ביים ביים	T		TINON	T				NONE					HNON	RED	—				Ш			FAM		TINON	1	7			NONE			•	RED	HNCN	Γ			
)uo	Invader	Probe	Target	Target	laboral	Probe	Probe	Target	Target	Invader	Probe	Probe	Target	Target	Invader	Probe	Probe	Target	Target	,	Invader	Probe	Probe	Target	Target	Invador	Dropo	Probe	Target	Target	Invader	Probe	Probe	Target	Target	Invader	Probe	Probe	Target	Target
Nucleotide positi	19/3[insG]	1973[insG]	1973[insG]	1973[insG]	3250ineCT	3259insGT	3259insGT	3259insGT	3259insGT	3853G>A	3853G>A	3853G>A	3853G>A	3853G>A	124G>A	124G>A	124G>A	124G>A	124G>A		1943G>A	1943G>A	1943G>A	1943G>A	1943G>A	40426>4	4045044	4042G>A	4042G>A	4042G>A	31G>A	31G>A	31G>A	31G>A	31G>A	3183G>A	3183G>A	3183G>A	3183G>A	3183G>A
C	- 1	CYPZDO 1973[GINS]		CYP2D6 1973[Gins]	CVP2D6 3259insGT		CYP2D6 3259insGT			CYP2D6 E410K	1	CYP2D6 E410K				CYP2D6_G42R		CYP2D6 G42R			CYP2D6 R201H			ı	CYP2D6_R201H	CVP2NG RAANH	1	1							CYP2D6 V11M	CYP2D6 V338M				CYP2D6 V338M

Assay: Oligo Sequence	CAGGGCCAA	ACGGACGCGAGCCAGTGCTTCTAGCCV	CGCGCCGAGGTCAGTCTTCTAGCCCV	TATGGGGCTAGAAGCACTGGTGCCCTGGCCRTGATAGTGGCCATC	TATGGGGCTAGAAGCACTGATGCCCCTGGCCRTGATAGTGGCCATC	COTOCOTOCOCTOACOTOC	SCIEGE CCAGE CAICE	ACGGACGCGGAGCIGIGCICAGIIAGCAGV	CGCGCCGAGGCGTGCTCAGTTAGCAGV	ATGAGCTGCTAACTGAGCACAGGATGACCTGGGACCCAGCCCAGCCC	ATGAGCTGCTAACTGAGCACGGATGACCTGGGACCCAGCCCAGCCC	CAGGCGTCGTCACCT	CGCGCGAGGCACTGCTCCAGCGAV	ACGGAGCCTGCTCCAGCGACV	AGAAGTCGCTGGAGCAGTGGCTGACCGAGGGGCCGCCTGCC	AGAAGTCGCTGGAGGGGTGACCGAGGGGCCGCCTGCC	CTTGGGGAACGCGGCT	CGCGCCGAGGGAAACCCAGGATCTGGGV	ACGGACGCGGAAAACCCCAGGATCTGGGV	TCACCCAGATCCTGGGTTTCGGGCCGCTTCCCAAGGCAAGCA	TCACCCAGATCCTGGGTTTTGGGCCGCGTTCCCAAGGCAAGCA	CONGACAGACACCACTATATACT	ACGGACGCGGAGGCAGGTTCTCATTGAAGV	CGCGCGAGGACAGGTTCTCATTGAAGCV	GCAGCTTCAATGATGAGAACCTGCGCATAGTGGTGGCTGACCTGTTCTCTGCCGG	GCAGCTTCAATGATGAGAACCTGTGCATAGTGGTGGCTGACCTGTTCTCTGCCGG	TETECCECTTCGCCACTCAC	CGCGCGAGGGGTGGTGATGGGCV	ACGGACGCGGAGTGTGGGCV	TTCTGCCCATCACCCACCIGAGTGGTYGGCGAAGGCGGCACAAA	TTCTGCCCATCACCCACArGAGTGGTYGGCGAAGGCGGCACAAA	TOTOCOCTTO	1616CCGCC11CGCCRACCACICY1	CGCGCCGAGGGG GGG IGAIGGGCV	ACGGACGCGGAGAGIGGIGAIGGCCV TTOTGCCCATCACCCGAGAGGCGGCGCCACAAA	TTCTGCCCATCACCCACTGGTYGGCGAAGGCGGCACAA		TGCGCGAGGCGMTGGTGACCCT	CGCGCCGAGGACGCCACcV	ACGGACGCGGCGGCGACACV	TCGGCSGTGTCCTCGCCGTGGGTCACCAKCGCCTCGCGCACG	TCGGCSGTGTCCTCGCGGGTCACCAKCGCCTCGCGCACG
Poly- morphis		9	A	ပ	4	1.	\top	SN		INS			SNS	DEL	INS	DEL	1.	ပ) -	<u>U</u>	F		1) -	U	H		1) -	ပ	I		\top	ַ פ	۲ () 4			٧	ŋ	V	<u>o</u>
Dye	NONE	RED	FAM	RED	FAM		NON C	7 E	FAM	RED	FAM	HNCN	FAM	RED	FAM	RED	ת ה	FAM	RFD	FAM	RED		RFD	FAM	RED	FAM	A LANCIN	FAM	RED	FAM	RED		NON I	T AM	האאר האאר	MED CHA	3	NONE	FAM	RED	FAM	RED
Oligo Type	Invader	Probe	Probe	Target	Target	100000	Invader	Probe	Probe	Target	Target	Invader	Probe	Probe	Target	Target	Londor	Probe	Prohe	Target	Target	20000	Prohe	Probe	Target	Target	Invader	Probe	Probe	Target	Target	1	Invader	Probe	Frobe	Tarnet	i i	Invader	Probe	Probe	Target	Target
Nucleotide position/ change	19G>A	19G>A	19G>A	19G>A	19G>A			-									1030C-T	1039C>T	1039C>T	1039C>T	1039C>T	2050017	2850C>T	2850C>T	2850C>T	2850C>T	1758C-T	1758G>T	1758G>T	1758G>T	1758G>T	47500. 4	1736G>A	1/58G>A	1758G>A	1758G>A		984A>G	984A>G	984A>G	984A>G	984A>G
	CYP2D6_V7M	CYP2D6_V7M	CYP2D6_V7M	CYP2D6 V7M	CYP2D6 V7M		- 1	- 1	- 1	- 1	CYP2D6_2549A>del	CYP2D6 1707T>del	•	CYP2D6 1707T>del		1 1	CVB3D6 1038C>T V3	1039C>T	1039C>T	1	1039C>T	7/1 J906G 5GCA	R2967	CYP2D6 R296C V4		R296C	CVD2D6*8 C160Y 1/3	7169X	G169X	G169X	G169X	0.00	250	5169K	CYPZD6*14 G169K 1/3	7160R	VISO	H94R		CYP2D6 H94R AS	H94R	CYP2D6 H94R AS

Assay Oligo Sequence	GCTGGGTCCCAGGTCATCCGTGCTT	ונאו			ACCCAGCTGGATGACCTGCTGAGCACGGATGACCTGGGACCCAGCCC			ACCCAGCTGGATGAGCTGCTaactgAGCACAGGATGACCTGGGACCCAGCCC	CCACCGTGGCAGCCACTCTCACCC	COCCCGAGGTTCTCCATCTCTGCAV	ACGGACGCGGAGTCCATCTCTGCCAGGV	GCCTTCCTGGCAGAGGAGGAGGTGAGAGTGGCTGCCACGGTGGGG	CACG	CCCCARGACGCCCTTTCGCCCT			ACCOUNT TO THE PROPERTY		CTTTGTCCAAGAGCCGTTGGGGGCGAAAGGGGGCGTCYTGGGGGGT	THE TOTAL PROPERTY OF THE PROP	OF CIACLAGE AVERABLE AND A SECOND AND A SECOND ASSESSMENT AND A SECOND ASSESSMENT AND ASSESSMENT ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT ASSE	COCCOCACCATOR TO COCACA AND COCACACA AND COCACA AND COC	ATCHTICOTTOTICATES CONTROL OF THE SAME OF	に関する。 しゃくしょうじゅうしょうしゃくしゃくしょうしゃくしょうしょうしょうしょうしょく	A 10 FIRSO MINISTER GOODEAN CONTROL OF THE CONTROL	SCONOCIA CONTRACTOR CO			GGCGGCAGAGGTGCTGAGGCTSCCCYACCAGAAGCAAACATGGATGGTGGGTG	GGCGCCAGAGGTcCTGAGGATSCCCAAACAAGCAAACATGGATGGTGGGTG	The first of the control of the cont	GGAGGGCGGCAGAGGTSCTGAGGMTT	ACGGCCCGCCCAGAGCAAacV	© GC G C G C G C C C C C C C C C C C C C	ATGITH GCTTCT GGT a GG G G G G C T C A G C A C C T C C A G C C C T C C A G C T C A G		ATGITTECTTCTGGT.gGGGCAaCCTCAGGACCTGTGCCGCCCTCCAG		CCACCCATGITTGCTGGTGGTGGTC	ACCCACCATCCATGTTTGCTTCTGGTRGGGT	ACGGACGCGGAGGCTCAGGACCTCV	GGCGCGAGGCTCAGGACCTCTGV	CHE 278 4	GGCGGCAGAGGTGCTGAGGCTCCCCCAGAAGCAACATGGTGGGTG
Poly- morphis			旧	INS	DEL	DEL	INS	SNI		SNS	DEI	INS	DEL		UNI	בובר	100	2 i	DEL		Ć) ×	0		4		C	V	0	AK	10000		ပိ	9	O		9				<u>.</u>	Ø		ပ
Dye	NONE	NONE	FAM	SED SED	FAM	FAM	RED	RED	INC.N	FAM	RFD	FAM	RED	HNCN	EAM			FAM	RED	NONE	T CEG	LAR	628	7 4 4 5	LAM	NONE	EAM	RED	FAM	RED		NONE	RED	FAM	RED		FAM		NONE	NONE	RED	FAM		RED
Oligo Type	Invader		\neg	7	Target	Target	Target	Target	Invader	Probe	Probe	Target	Target	Invader	Prohe		7	\neg	Target		Probe	# Peobo	Famel	Tomos			Probe	Probe	Target	Target	114. Sec. 3 250 5-52 Co. Sec. Manager, Manager, Manager, Sec. 114.	Invader	Probe	Probe	Target	And the state of t	Target		Invader (mutant)	Invader (wild-type)	Probe	Probe		Target
Nucleotide position/ change	2539-2542[delAACT]	2539-2542[delAACT]	2539-2542 delAACT	2539-2542 delAACT	2539-2542[delAACT]	2539-2542[delAACT]	2539-2542[delAACT]	2539-2542[delAACT]	2613_2615delAGA	2613-2615delAGA	2613-2615delAGA	2613-2615delAGA	2613-2615delAGA	1863insTTTCGCCC	1863ine TTTCCCC	1862ine TTTO-CCC	1903 I LOGOCO	Jacob I I Cacco	1863ins[TTTCGCCC			A CONTRACTOR OF THE PROPERTY O	AND AND ADDRESS OF THE PARTY OF											Sales of the Sales								The state of the s		t day
SNP Name	CYP2D6 2539-2542[delAACT]	2539-2542[delAACT]	CYP2D6 2539-2542[delAACT]	2539-2542[delAACT]	CYP2D6 2539-2542[delAACT]	2539-2542[delAACT]	CYP2D6 2539-2542[delAACT]	2539-2542[delAACT]	CYP2D6 2613-2615delAGA	2613-2615delAGA	2613-2615delAGA	2613-2615delAGA	1 1	CYP2D6 172-174FRPren(a) is	172-174FRPren(a)	172-174 EBDren(a)	472 474FRF1ED(a) 18	- 1	172-174FRPrep(a) is	Se Asales and	CYPOPH 22163A ac The	CYPODE 20103A so	OYPODE 224CSA as	THE TO VIOLENCE SUCCESSION		CYPORE 2010 SA	CYP2D6*221C>A S	CYP2D6 221C>A s	CYP2D6 221C>A S	CYP2D6:221C>Ass	10.20 To State Of Co., London C. St. American C. St. American Co., London C. St. Ameri	CYP2D6_223C>G_as	CYP2D6.223C>G as	CYP2D6_223C>G_as	CYP2D6_223C>G_as	The second of th	CYP2D6_223C>G_as		CYP2D6 ±223C>G s	CYP2D6#223C>G s	CYP2D6_223C>G_S	CYP2D6 223C>G.S.	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	CYP2D6*223C>G s

FIGURE 15	Poly- morphis Pye m Assay Oligo Sequence	Target FAM: G - GGCGGCAGAGGTcCTGAGGaTGCCCCACAGAAACATGGTGGGTGA - GGCGGCAGAGGTGGTGGTGGTGA - GGCGGTGA - GGCGGGTGA - GGCGGTGA - GGCGGGTGA - GGCGGTGA - GGCGGGTGA - GGCGGTGA - GGCGGGTGA - GGCGGGTGA - GGCGGGGTGA - GGCGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	Sequence	CCCGCGCCACCACACTGAGCC	AGGAGTAGCCACGCTCGGTGAGGATCTTCATT	ACGGACGCGGAGTTACAGCACAGGTGC	CGCGCGAGGCAGGTAGTCGGTGAGATC	Synthetic Target Alpha Actin GGACCGCACCTGTGCTGTAaGCTCAGTGTGGCGCGGGGC	CGCGATCTCACCGACTACCTGAATGAAGATCCTCACCGAGCGTGGCTACTCCTTC
	Oligo Type	Target	Gene	2D6 Invader	Alpha Actin Invader	Probe Arm3 2D6	Probe Arm1 Alpha Actin	Synthetic Target Alpha Actin	Synthetic Target 2D6
-	Nucleotide position/ change		Сепе	2D6 ·	Alpha Actin	2D6	Alpha Actin	2D6	Alpha Actin
	SNP Name	CYP2D6_223C>G_s	Copy Number Designs	Ш	E	Ų	Э	Ш	Ш

-gcg-hex -tcc-gt-hex FRET SEQUENCES SEQ ID 242 (FRET probe FAM): Y-tct-X-agc-cgg-ttt-tcc-ggc-tga-gac-ctc-ggc

SEQ ID 243 (FRET probe RED): Y-tct-X-agc-cgg-ttt-tcc-ggc-tga-gac-tcc-gcg

FIGURE 16A

FIGURE 16B

<u>.</u>		TIGUIL	. 100		
	SAMPLE NUMBER	ALLELE RATIO	G	ENOTYF	PE
	1	26	R		
·	2	24.74	R		
	3	23.71	R		
<u> </u>	4	26.26	R	1	_ · ·
-	5	27.43	R	-	
}	6	1.55		Н	· · · · · · · · · · · · · · · · · · ·
		1.54		H H	· ·
-			. D	11	
	8	25.89	R		.
-	9	24.82	R	1'1	_
	10	1.53		H	
	11	28.7	R		
· [12	24.53	R		· <u> </u>
<u>_</u>	13	0.05			F
	14	0.05			_ F
	15	1.52		<u> </u>	
· . [16	0.05			F
	17	1.54	<u> </u>	Н	
	18	1.49		H	
	19	27.55	R		
	20	27.81	R		
	21	0.04	· ·		F
	22	1.52		Н	
· •	. 23	26.5	R		(1 7 °) 1
·	24	26.41	R		
-	25	26.62	R	-	
<u> </u>	26	29.62	R		
-	27	1.54	11	H	
· }-	28	27	R	1 .	
-				 	
	29	25.76	R		····
-	30	26.9	R		_
	31	26.42	R		
	32	28.02	R	1	
. }	33	1.53		H	
1	34	1.59		H	
	35	27.49	R	<u> </u>	
	36	26.16	R		
Ĺ	37	26.28	R		
	38	1.56		H	
Γ	39	1.55		H	
Ī	40	19.14	R		
T	41	18.48	R	1	-
·,	42	1.56			
ŀ	43	14.51	R	1	
<u></u>	44	1.54	7	Н	-
F		f		f	
L		<u></u>		1	<u> </u>
•	·				
		•			
		-			

Allele	Signature SNP
*3	2549A>del
*4	1846G>A
*5	CYP2D6 deleted
*6	1707T>del
*7	2935A>C
*8	1758G>T

.

*

FIGURE 18

Allele	Secondary Signature SNPs
*2	18 SNPs
*10	4 SNPs
*17	2 SNPs

.

•

.

•

•

_																·····																			ı				
	Cauca sian Genot ype Freque	0.132	< 0.001	< 0.001	< 0.001	0.002	< 0.001	0.004	0.236	< 0.001	< 0.001	< 0.001	0000	0.00	0.015	< 0.001	< 0.001	< 0.001	0.151	0.151	< 0.001	0.151	0.151	0.001	0.001	0.001	0.007	0.007	0.001	< 0.001	0.013	< 0.001	< 0.001	< 0:001					
	GENOTYPE							2 6						3 6				g				\[\s\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	<u> </u>	X2.	2	7							×						
	GENC	1/1	17.10	*1/*12	*1/*14	*1/*17	614/14	1/1X2	*1/*2	*1/*20	*1/*21	*1/*28	*1 F2X	*1/*2X3	*1/*3	*1/*31	*1/*35	*1/*35X2	11.37	*1/*4	*1/*42	*1/*4.)	*1;*	11.4K	*1/*4X2	*4/r*	11.6	411.6	411*7	*1/*8	6 ₄ /1;*	*10/*10	*10/*11	*10/*12					
	COP Y_NU MBE R_41 80G							0 0	Т				Т	1 K			T	2	Ţ			Т	> *		2 0		\ <u>*</u>												
	COP Y_NU MBE R_10							0 0					c	0			·	0				·	1	2	2 0	7													
	COP Y_NU MBE R_31		-					ω 4					۳.	9				-				٥	,	3	3	2												,	
	G418 0C	*]	het	het	het	het	het	3	het	het	het	het	he to	het	*	het	het	het	het	het	het	3	het	het	het	e et	het	3	*	het	*	٤	m	٤					
	G404	*	3 3	*	3 3	* 3	*	3 3	3	*	>	3	3	3	3	het	3	} :	3 3	3	3	3	: }	3	3	3 3	: ≥	3	*	3	*	*	×	>					
	G385	*	≯ ≯	3	3 3	. ≥	>	3 3	>	*	3	≯ ₹	} ≥	3	*	3	3	} :	3 3	3	3	≱ ;	3	3	3	≱ ≩	: ≥	*	*	3	*	*	×	*					
	INS32 59GT	*	≯ ≯	3	3 3	* *	*	3 3	.3	*	3	3	3	3	3	3	3	} :	3 3	3	het	3	; 3	*	3	3 3	. ≥	*	3	3	*	*	W	*					
	G318 3A	3	≯ ≯	3	3 3	*	3	3 3	3	3	3	≱ å	≦ 3	: ≥	3	3	≯	≥ :	3 3	*	3	} }	: }	3	*	3	: ≥	*	*	*	*	3	W	3					
	A293 5C	*	3 3	3	3 3	3	3	3 3	3	*	` }	3	3	3	3	3	3	≥ ;	3 3	3	3	3 3	: }	3	3.	3	. ≥	≱	het	*	>	*	*	3					
	C285 0T	*	het	het	het	het	het	3 3	het	het	het	het L	1 to	het	>	het	jet	het	3 ≥	3	het	3	het :	het	*	3 3	. ≥	3	*	het	*	*	het	het					
- -	AGA2 613D EL	*	≥ ≥	3	3 3	3	3	3 3	3	*	3	3 3	: 3	3	` }	3	≥	≱ ;	3 3	>	}	3 3	* *	*	` }	3	. ≥	*	*	3	het	*	×	>					
19	INS25 73 or C221 A or C223 G		3 3	3	3 3	: 3	3	3 3	3	*	het	≯ }	3	3	3	≱.	≱	≥	≱ ≥	3	3	≱ ≩	. >	>	``	3	: ≥	*	*	*	*	*	*	*					
	A254 9DEL	≱ :	}	3	3 3	3	3	3 3	3	*	*	≯ 3	3	3	het	3	≯	≱ 3	\$ ≥	≥.	}	≱ 3	. 3	>	≩ :	3	3	3	3	*	*	*	*	3					
FIGURE	AACT 2539 DEL	*	≥ ≥	*	3 3	3	het	≯ ≯	3	*	3	3 3	3	3	>	3	3	≱ 3	* *	3	3	} }	. 3	*	} :	≱ 3	* *	3	}	*	*	*	×	*					
	INS19 73G	>	≯ }	3	3 3	3	3	≯ ≯	3	het	}	3 3	3	. ≥	>	}	≥	} ;	3 3	}	3	3 3	. >	}	3	3	<u>.</u>	3	3	3	3	3	3	3					
	G194 I	*	* *	*	3 3	* *	3	> >	3	*	3	3	3	3	>	3	3	3 3	<u></u> ×	3	3	3 3	: 3	*	3	3 3	* *	>	3	3	*	*	≯	*					
	INS18 63	≱ :	} }	3	3 3	3	3	3 3	3	3	3	3 3	3	3	>	3		≱ ;	3 3	3	3	3 3	3	>	} :	3 3	. ≥	3	>	3	*	*	*	>					
	G184 I	* :	3 3	>	3 3	3	3	3 3	3	*	3	3	3	3	3	3	≥	≱ ;	het	het	3	het Pet	het	het	het	<u>1</u> 3	* *	3	*	*	*	*	*	*					
	G175 8T	3	≯ ≯	3	3 3	3	3	3 3	3	3	3	<u>></u> 3	3	3	3	<u>*</u>	>	≱ 3	3 3	*	3	≥ 3	3	*	≥	3 3	* *	÷ ≯	3	het	3	3	*	*					
	G175	> 3	3 3	3	pet Pet	3	3	> >	*	3	3	3 3	3	3	}	>	*	≱ 3	* 3	*	3	3 3	*	>	≯ :	3 3	* *	3	*	>	*	3	3	3				•	
	٦ ٥	> 3	≯	3	≯	3	3	≯ ≯	3	*	3	3 3	* }	3	*	}	}	} :	3	*	**	3 3	* *	3	≱ ;	3 3	het	het	3	3	3	3	3	*					
	C102	≱ ;	3 ≥	3	3 3	het	3	3 3	3	3	3	3 3	3	3		3	3	≯ ≥	3	3	3	3 3	: ≥	*	≱ :	≥ ≥	*	3	3	3	3	3	*	*					
	A984	3	3 3	3	> ×	3	3	3 3	3	3	> :	3 3	· >	3	}	}	≥ :	} 3	* 3	het	≱ .	het het	>	>	≥ 3	<u></u> ≥	3	*	 ≯	>	3	*	3	*					
	G883	3	het	۶	≯ ≯	3	>	3 3	>	*	3	≥ 3	. ≥	3	>	}	≱ :	≯ 3	* *	*	}	3 3	* *	3	} :	3 3	*	*	3	3	3	≱ .	het	3					
	G124 (3	3 3	het	≯ ≯	3	3	3 3	3	*	3	> > 3	≥	3	}	}	≱ ;	≯ ≥	* *	*	3	3 3	3	3	≱ ;	3 3	*	*	3	3	3	3	*	het					
	C100	≯ †	<u> </u>	3	y het	3	}	3 3	3	*	3	3 3	. ≥	3	3	3	3	≥ 5	het	het	3	het het	het	het	het	<u> </u>	*	3	≥	}		E	het	het					
<u> </u>	G31A	3 3	3 3	3	3 3	3	3	3 3	3	3	3	3 3	3	3	3	3	het	je j	. ≥	3	}	3 3	3	*	} :	* >	*	*	· **	≥	>	3	3	3					
<u></u>	G19A	3	3 3	3	3 3	3	3	3 3	3	}	3 3	<u></u>	}	3	≱	*	≱ :	3 3	. >	3	3	3 3	3	3	≱ ;	3	3	*	3	3	3	3	}	3					
· [GENE_ COPY_ NUMBE R	2 0	2 2	2	~ ~	7	2 0	2 4	2	2	2 0	1 ~	т М	4	7	2 0	70	3 0	2	7	2 0	2 6	2	8	m "	, -	2	2	2	2	2	7	7	7					
Ļ	Ø O Ž			Ц				1				1.	<u>1</u>					1]_]				ا ـِـــــــــــــــــــــــــــــــــــ			<u></u>	ا بيل									•			
																٠.																							

< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0:001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.00.1	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
*10/*14	*10/*14	*10/*17	*10/*19	*10/*20	*10/*21	*10/*28	*10/*29	*10/*31	*10/*35	*10/*35X2	*10/*37	*10/*42	*11/*11	*11/*12	*11/*14	*11/*14	*11/*17	*11/*19	*11/*20	*11/*21	*11/*28	*11/*29	*11/*31	*11/*35	*11/*35X2	*11/*37	*11/*42	*12/*12	*12/*14	*12/*14	*12/*17	*12/*19	*12/*20	*12/*21	*12/*28	*12/*29	*12/*31	*12/*35	*12/*35X2	*12/*37	*12/*42	*14/*14	*14/*14	*14/*14	*14/*17
									<u> </u>			,	-				<u> </u>																												
																L			L					L	L		L													·					
٤	٤	ε	Ε	ε	ε	Ε	٤	٤	٤	Ε	٤	Ε	Ε	Ę	٤	٤	٤	٤	٤	ε	٤	Ε	٤	E	ε	E	ε	E	E	E	ε	Ë	m.	æ	ε	w	æ	Ę	Ε	Ë	· w	E	Ε	Ε	Ε
*	Ж	Ж	≩	≩	3	3	3	het	}	≩	š	≯	≯	>	*	≯	3	≩	≩	≯	≥	≯	het	≥	≥	≩	≯	>	3	3	≱	×	М	*	М	М	het	*	*	*	М	M	*	*	М
M	W	M.	*	М	M	3	*	3	*	*	≯	3	3	Μ.	*	*	≯	*	≯	3	3	≥	≥	₹	≱	3	×	*	*	*	М	*	M	W	W	W	*	×	W	*	W	*	W	W	*
W	W	W	Ж	W	W	3	*	*	3	*	*	het	*	*	*	3	*	3	3	≱	≯	3	3	3	3	3	het	*	3	*	W	W	W	W	W	. W	W	3	*	М	het	W	W	W	*
W.	W	W	3	. м	*	*	het	3	≯	3	3	3	3	3	. 3	3	≱	₹	3	≯	≥	het	≯	3	3	3	3	3	3	*	W	W	W	W	W	het	М	3	*	3	*	W	*	*	3
. W	*	W	3	*	*	≯	3	3	3	≯	3	*	3	₹	*	3	≯	3	3	*	3	3	>	≥	3	3	≯	3	*	*	М	W	. W	W	W	W	*	>	*	*	W	*	.	*	*
het	het	het	het	het	het .	het	het	het	het	het	3	het	٤	Ę	Ę	E	ε	ε	٤	٤	ε	٤	ε	٤	ε	het	٤	٤	٤	Ε	Ε	ε	ε	m	٤	E	ш	Ε	Ε	het	ш	Æ	E	E	Ε
W	×	w	*	М	*	≯	*	*	3	3	3	3	3	*	≯	3	>	3	3	≯	3	3	3	3	3	3	3	*	>	*	M .	. >	W	%	*	%	W	3	Ņ	*	*	w	*	М	*
*	*	*	3	٨	het	3	*	3	3	3	3	3	3	3	3	3	≥	3	3	het	3	3	3	3	3	₹	3	3	*	Ņ	*	*	W	het	W	W	W	3	3	3	W	*	*	*	*
*	٨	Α.	≯	W	W	≯	3	3	. ≥	3	3	₹	`	*	≯	*	≯	₹	≯	3	≩	š	≱	≥	≥	₹	3	>	*	*	A	*	, M	W	*	*	*	3	3	*	*	*	*	*	*
*	*	W	het	М	. M	* 3	*	3	3	*	3	3	3	3	3	3	3	het	*	3	3	3	3	3	≥	3	3	3	*	*	W	het	*	*	*	*	*	*	*	*	W	w	*	*	×.
*	₩.	W	*	het	M.	3	3	3	3	3	3	3	3	*	3	3	≥	>	het	>	>	3	3	3	>	3	. →	*	*	*	W	*	het	*	*	*	Α.	3	*	*	W	W	*	*	3
3	*	*	×	*	3	3	3	₹	3	3	het	3	3	*	>	>	≯	3	>	>	>	≥	≥	3	3	het	3	3	*	*	*	*	*	*	*	٨	*	3	≯	het	М	W	*	*	3
*	*	W	М	W	W	3	*	3	*	3	3	3	3	Α.	Ņ	*	*	3	*	` }	3	3	*	3	≥	3	3	3	3	*	W	*	. w	w	*	W	w	*	*	w	M.	×	*	3	*
3	3	*	3	M	*	3	*	*	3	3	3	3	*	*	≽	*	3	≯	3	3	≥	3	3	3	3	}	3	3	*	*	M.	W	*	*	*	*	W	*	*	*	*	W	*	*	*
*	*	W	3	Ж	W	3	3	3	3	3	3	3	3	3	3	3	≯	3	3	3	≥	3	3	3	3	3	3	3	3	Ŋ	W	%	*	*	*	*	W	*	*	*	*	*	*	3	*
het	het	W	*	*	W	*	3	3	3	3	3	3	3	М	het	het	3	3	3	3	3	3	3	3	}	3	>	>	het	het	W	W	*	*	*	*	*	*	Α.	w	W	٤	Ε	Ε	het
*	3	*	W	*	*	*	*	3	3	3	3	3	*	W	*	3	3	3	*	. ≽	3	3	. >	3	3	3	3	>	*	*	w	W	*	*	*	*	*	W	W	×	×	*	*	3	*
*	*	het	*	М	*	*	*	3	*	3	3	3	>	W	*	M.	het	≱	*	3	3	· }	3	3	3	3	>	*	*	*	het	*	*	*	*	*	*	W	W	*	М	W	*	3	het
3	}	*	W	*	*	3	*	3	*	3	3	3	3	×	*	3	*	*	*	3	3	3	3	3	3	3	3	*	*	×	*	*	3	*	3	3	*	W	W	W	*	W	*	3	3
*	*	*	W	*	*	М	*	3	*	*	*	3	E	het	het	het	het	het	het	het	het	het	het	het	het	het	het	*	*	*	М	*	*	*	*	*	*	*	*	*	W	*	*	3	*
*	*	*	W	W	*	*	*	*	*	3	*	>	*	het	W	*	>	>	*	≯	3	>	`	¥	*	3	>	Ε	het	het	het	het	het	het	het	het	het	het	het	het	het	*	3	3	· *
het	Ε	het	het	het	het	het	het	het	het	het	٤	het	*	*	het	*	*	3	*	3	*	3	3	*	*	het	,	3	het	*	M	3	3	3	3	*	*	W	*	het	Ж	het	٤	3	het
*	3	*	*	*	*	*	*	*	het	het	*	*	W	W	M	*	*	3	W	W	*	3	3	het	het	*	*	M	*	*	*	3	3	*	>	*	*	het	het .	*	*	*	3	3	*
3	3	*	*	Α.	*	het	. M.	*	*	*	×	*	W	W	M	W	*	3	W	*	het	3	3	*	3	×	*	*	*	*	X	*	×	*	het	3	×	W	*	*	*	*	3	*	*
2	2	2	2	2	2	2	2	2	2	3	.2	2	2	2	2	2	2	2	2	2	2	2 ·	2	2	က	2	2	2	2	2	2	2	2	2	2	2	2	2	3	2	. 2	2	2	2	2

v - .				-																						8.													• • •	
																٠																			٠.					
	٠.	< 0.001	× 0.001	< 0.001	< 0.001	v 0.001	< 0.001	< 0.001	< 0.001	< 0.001	× 0.00 ×	< 0.001	< 0.001	0.00	000	< 0.001	< 0:001	× 0.001	0.00	× 000 ×	< 0.001	< 0.001	< 0.001	00.00	× 0.001	< 0.001	< 0.001	× 0.00 ×	< 0.001	< 0.001	v 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	× 0.001		
						V V									1																		П						1	
		*14/*17	*14/*19	*14/*20	*14/*20	14/"21	*14/*28	*14/*28	*14/*29	*14/*29	*14/*31	*14/*35	*14/*35	14/*35	*14/*37	*14/*37	*141*42	*14/*42	*17/*17	*17/*20	*17/*21	*17/*28	*17/*29	*17/*31	*17/*35	*17/*37	*17/*42	19/19	*19/*21	*19/*28	*19/*29	*19/*35	*19/*35X2	*19/*37	*19/*42	-1X2-1X2	"1X2/"10	1X2/*11		
																																			_	0				
																																				0			. ,	-
•																																				4				
		Ε .	ε	٤	٤	E E	٤	٤	٤	٤	E E	٤	٤	E 8	٤	٤	٤	٤	٤	ΕΕ	٤	٤	Ε	E E	Ε	Ε	Ε.	٤ ٤	٤	٤	E 8	ε	ε	E	٤	≱ .	het	het het		
		3	3 3	3	3	3 3	3	*	3	≯]	het Tet	*	3	3	\$ 3	3	>	3	≱ :	≱	≥	≯	≯	ig 3	\$ ≥	* *	3	≥ ≥	>	>	≯ \$	<u>₹</u>	≯	ж	3	*	>	≥ ≥	-	
		≥ :	3 ≥	≱	}	≯ 3	≯	3	≩	3	≥ ≥	3	3	3	\$ \$	≯		*	≱ :	≯	. ≥	3		≯ }	\$ ≥	*	}	3 3	. ≥	}	3 3	3	>	₹	>	}	}	3 3		
		3	\$ }	≯	`	} }	. ≥	×	Н	}	≯	*	3	≱ 3	* *	3	het	het	} :	≱ ≱	. ≥	\vdash	-	≯ 3	≥	*		- -	*	H	≯ }	-	>	*	het	*	≥	≽ ≥		
		≱ 3	≯	3	}	3 3	}	*	het	het	≱ ≱	*	3	≯ 3	≱ ≥	3	>	3	} :	≥ ≥	}	>	het	≯ 3	≱	: ≥	≥	≯ 3	* >	3	ret Fet	* *	≯	*	≱	>	≱	≯	-	
		* 3	\$ \$	3	≯	3 3	* ≥	3	*	} :	≱ ≱	*	3	≱ 3	+	3	Н	3	≯	3	: ≥	3	3	} }	₹	*	}	} }	* *	>	3 3	}	>	\vdash	-	}	_	≯ ≯		
		E 8	EE	٤	Ε	EE	E	٤	ε	Ε	EE	E	Ε	E	i i	het	٤	Ε	E	EE	Ε	Ε	Ε	EE	Ε	het	Ε	E E	٤	٤	E E	E	ε	het	Ε	*	≱ .	het		
		3	\$ \$	3	+	3 3	╂	×	*	}	≱ ≥	*	3	≯	\$ ≥	}	}	3	≯	≯ ≯	-	\vdash	_	≯ ₹	\$ ≥		3	3 3	-	*	>	≥	3	*	*		}	≯ ≯		
	19		≯	H	\dashv	het	-	 	Н		} ≯	<u> </u>	H	+	≱ ≱	-	-	\dashv	} :	╁	-	Н	-	≯ }		+-	\vdash	+	het	\vdash	≱ 3	╁	Н			+	\dashv	≯ ≯	-	
	FIGURE	-		\vdash	+	3 3	╁	\vdash	\vdash	-	+	 		≯ [3	+	_	\vdash	\perp	+	+	╁	3	\dashv	+	+		≱		ļ	\square	+	-	\sqcup			\dashv	-	+	-	
	FIG.		het le	$\vdash \vdash$	4	3 3	\vdash	-	$\left \cdot \right $	+	+	-	\vdash	≯ :	-	\vdash	Н		+	+	-		\dashv	-	+		H	E F	+	┥	het de	+	\vdash	het			+	} }	4	
		H	+	, het	┿	3 3	-	\vdash	H		+	+-		≯ ;	+	╀	Н	\dashv	┽	╀	+	\vdash	-	+	+		≥	┿	3	H	≱ }	╁	≯		_			≯ }	-	
		+	3 3	\vdash	+	+	 		Н	\dashv	+	-	*	-	s te	+	\vdash	-	≯	+	+-		+	+	╁╴	, het	╁┼	≯ ≯	+	\vdash	> ?	-		, het	-	+	+	3 3	-	
			+	3	+	3 3	+	\vdash	\vdash	*	> > ≥ ≥	-	> >	3	* * * *	\vdash	\vdash		+	+	+	3	\dashv	+	+		H	+	+	H	≯ 3	+			\dashv	+	+	≯	-{	
				<i>^</i>	+	3 3	╀	-	Н	> 3	+-	+-	\vdash		^ } }	├	\vdash	+	X	3 3	╁	H	\dashv	≯	3 3	\vdash	╂┼		3	\vdash	≯ 3	`	Н	H	\dashv		+	≥ ≥ ≥ ≥	-	
			het	Н	4	het het	╀	ŀ	Н	het		╂	\sqcup	het	+	lacksquare	Н	+	+	} }	╁	H	-	3 3	+			3 3	+	\vdash	3 3	╀				\dashv	+	> > > >	-	
		+	+	╁┤	\dashv	3 3	+	-	Н	3	+	╁─	H	→ 3	+	H	Н		+	+	╁	H	\dashv	-	+-	\vdash	3	+		\vdash	+	╁	3	-	_	}	+	} }	-	
		het	3 3	>	≯	3 3	. ≥	3	3	}	3 3	}_	$\vdash \mid$	+	3 3	-	H	\dashv	4	het let	het	het	het	Jet Pet Jet	i je	het	het	} ≥	* *	≱	≯ }	 	\vdash		\dashv	3	3	3 3	 :	
			} }	3	≱	3 3	. ≥	3	*	. ≥	3 3		3	> 3	<u> </u>	3	3	3	} :	-	╁	╁╌┨	\dashv	3 3	+	\vdash	╁┼	3 3	: >	3	≯ }	: 3	3	×	3	3	≱	> > >	<u> </u> -	•
		*	} }	3	}	3 3	. ≥	3	3	3	≱ ≱	*	3	} :	} ≥	}	3	}	} :	3 3	: ≥		3	≯ 3	; 3	. *		} ≥	* *	*	≯ 3	: }	3	3	>		≱]	× Net	<u>-</u> :	
	• .	3	3 ≥	3	3	≯ ≯	* *	3		3	3 3	*	3	≱ :	3 3	3	3	3	≯	3 3	: ≥	3	3	3 3	; }	3	3	3 3	3	3	3 3	: >	3	*	*		+	≱ Pet	5	
		≥ 3	<u>≅</u> ≥	het	≱ .	× het	het	3	het	3	ž s	het	3	het	» de	Ε	het	3	≱ :	≱ 3	: ≥	3	3	3 3	} ≥	het	3	≯ ≥	: >	3	≱ 3	: ≥	3	het .	3	≱ .	het 	≯ ≥	- :	
		≥ 3	3 3	3	•		≥	*	*	<u>`</u>	3 3	het	het	het 2	¥ 3	≥	3	}	} :	3 3	3	3	3	> å	i j	>	≱	≯ . ≯	. ≥	*	3 3	het	het	*	}	*	}	≯ ≯		
		3	3 ≥	₹	3	3 3	het	het	>	3	≯ ≯	*	3	≱ :	3 3	3	≥.	3	3	3 3	: ≥	het	3	3 3	; ≥	*	3	≥ ≥	3	het	3 3	: ≥	3	*	3	3	}	≯ ≯	:	ı
		2 6	7 7	2	2	2 2	2	2	2	20	7 ~	2	2	ن د د	2 4	2	2	7	7/0	7 0	1 2	2	2 (2 0	1 က က	2	2	7 2	2	\vdash	2 6	2 2	8	2	71	4 (m (ກຄ		,
		Ш	<u> </u>	Ц				L	Щ					<u> </u>	1	<u> </u>					<u></u>							<u>_</u>	<u></u>				Щ					_	_	

FIGURE 19

•

																					,																-				-				
	× 0.001		1000	2000	30.0	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	V 0 00	0000	000	000	000	2000	2000	20 00 V	2000	0 002	× 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	× 0.001	× 0.001	× 0.001	< 0.001	v 0.00.1	× 0.00 ×	< 0.001	< 0.001	< 0.001	< 0.001	0.003	× 0:001	< 0.001	v 0.001	100.0		00:00	× 0.001]
										5		1		×	į	T				┿	*1X2/*4KX2	Ţ				1					1	1						7				1]
	*1X2/*14	7	11./2XL	*4 \20/2	2 3	"1X2/"20	*1X2/*21	*1X2/*28	*1X2/*29	*1X2	*4X2/#3	*182/*31	*47.9/*25	1 X	*1X2/*37	*1X2/*A	*1X2F*4	*1X2/#42	*1X2/*4.1	*1X2	1,1X2	*1X2/	*1X2	*1X2/*4X2	*1X2/*5	*1X2/*6	*1X2/*6	*1X2/*7	*1X2/*8	*1X2/*9	17.73/710	*1X3/*12	*1X3/*14	*1X3/*14	*1X3/*17	*1X3/*19	*1X3/*2	1X3/-20	1X3/~21	*1X3/*28	175/28	C /CV **	14.V2/#2E	*1X3/*37	
	-	+	+		+	+	-	_	_	2	+	\perp		+	╀		╁	+	c	╁╴		2		0		4	$\frac{1}{1}$	-		-	+	+	 				-	+	1	+	+	+	1	+-	
		+	+	0	+	+	_		_	4	+	+		7 0	+	~	╁	╁	[E	-	-	4 2	\vdash	4 2		+	+	-	+	-	+		+		.,, .		4	+	$\frac{1}{1}$	+	+	-	,	+	-
	het het		nei hot	+	\downarrow	net	het ·	het	het	┡	1	het	-	ם בו	+	╀-	╀	+	╀	+	╀	2:-		, ,	3	het	}		het	3 3	net	pet let	het	het	het	het	1	het	Jet Jet	het	lei .	x 3	ner Pot	4	
		+	- ·	┿	╁	+	3	.w. ↑	\vdash	╀	╁	+	╀	3	+	╀╴	+	╁╴	╁	╁╴	-	╁─	\vdash	*	*	十		-+	<u>≯</u>	7	+	3 3	┼-	Н	*	¥	+	╁	+		+	╁	+	;	+
	3 3	\$:	3 3		\$	≱	}	W	-	-	+-	╀╴	╁╴	3	╀	╀	+	3	╁	╁	╀	╀─		3	*	\dashv	3	\dashv	3		+	3 3	╀	H	>	3	\dashv	+	\dashv	+	+	+	+	\$ ≥	
	3 3	2	≯ ∤ ≆	+	¥ :	≱	}	*	3	3	3	: 3	3	3	: 3	: 3	3	i de	3	3	3	3	3	>	>	3	}	3	}	> ∃	≥ 3	3 3	3		>	≥	≥	≱	≱	} :	3 3	3 3	≱ 3	\$ ≥	
	3 3	3 3	3 3	+ : ;	\$ 3	}	>	*	het	3	3	: 3	3	3 3	: 3	3	: 3	3	3	3	. ≥	≥	3	3	≱	3	}	>	≥	≱ :	≥	3 ≥	≥	*	*	≩	≥	3	}	} }	igi s	3	<u>}</u>	* }	
	3 3	;	≯ }	1	:	≩	3	*	3	3	3	3	13	3	3	3	3	3	3	3	3	≥	*	Ņ	*	*	}	het	3	≥ :	≯	3 3	3	3	*	≩	≱	}	3	} :	≱ }	* 3	≱ }	. ≥	
	het	ğ 4	hot let	3 6	ובן	net	het	het	þet	het	3	غ	ţ	1 4	3	}	3	غ ا	3	je je	het	3	3	*	>	*	>	3	je L	3	> 2) jet	het	het	het	het	jet	ğ.	je .	Jet 1		2 2	200	_ ≥	
•	≯ }		} }	*	:	}	≱	*	≩	3	3	3	3	3	3	3	3	3	3	≥	3	3	*	*	*	*	>	3	}	het	} }	\$ \$	3	⋧	*	≩	≱	≱	≥	} :	3	: :	\$ 3	* 3	
<u> </u>	3		≱ ∋	* >	3	3	het	W	*	*	3	3	3	3	3	3	3	3	3	≥	≯	3	*	*	*	*	>	3	3	≱ :	≱ }	≩ ≩	3	3	W	3	3	≱ .	Jet	≥	3	\$ }	3	3	
ב ב	3 3	: ;	\$	 		≱	3	*	>	3	het.	∮ }	3	3	3	3	3	}	}	≥	≥	3	*	*	3	3	≱	>	≥	3	3	3 3	3	*	*	3	*	≱	≱	≥ :	y y	101	3	* *	
1905	3 3	;	<u>\$</u> ₹	3	: ;	*	}	*	. ≩	3	3	3	3	3	3	. ≥	3	3	3	≥	3	` ≥	*	*	3	3	}	}	≱	} :	≥	≥ ≥	≯	≯	*	het	}	≥	≱	3	3	}	3	*	
-	≥ 3	: 3	≱ 3	: }		Jet	3	*	3	≱	3	3	3	€ 3	₹ 3	} }	₹	} ≥	}	≥	≥	≥	3	≯	}	}	≱	*	*	≱ :	≱ ₹	\$ ≥	≥	≱	*	3	≱ .	je j	≥	≥	3	}	3	: ≥	
	3 3	;	≱ }	<u> </u>	: :	≯	3	Ж	3	3	3	}	3	3) Per	3	3	3	>	≥	3	3	3	3	>	}	>	≯	≯	≱ :	≱	\$ \$	3	`	`	3	}	≥ :	≯	≱ :	3		3	het	
	3	; ;	3	3	; ;	}	≱		*	3	3	: ≥	3	} }	\$	╀	╁┈	╀	-	╁	╀		_		*	}	≯	≩	≩	} :	≱ }	* *	3	≯	>	>	}	≯	≱ :	≯	≯ }	= =	3	. ≥	
	3 3	+	╀	╀	╀	+	+	-		-	╀	╁╌	+	} }	╀	+	╀	╁	\vdash	╁	╁	-	\vdash	het	\dashv		+	>	_	-	╀	\$ \$	╀		\dashv	4	+	╁	+	- -	+-	╀	╁	3	
	3 3	╫	╁╌	十	╁	十	╅	ㅓ	\vdash	╁╴	╁╌	╁	+-	╁	╁╌	╁╴	╁	╁	╁╴	╀	╁	_	-	-	╅	+	\dashv		+	+	+	╁╌	╀	⊦⊣	}	₹	}	+	+	+	╁	╀	+	* *	
	het het	╁	3	╁		+	\dashv	-	*	ļ <u>.</u>	-	╀	╀	. }	+	╀	╀	╀	-	├	3	-		3		+	-	+	+	+	≱ 	╀			`	+	}	╀	+	+	3	╁	+-	. ≥	
	3 3	╀	3	╀	+	} ≥	+	*	w	-	3	╀	╀	3	╁╌	+	+	3	-	\vdash	3		\vdash	>	-	+	+	1	+	+	4	* *	-	*		\dashv	+	+	+	+	+	+	+		
	3 3	╁	+-	-	╁	+	+	4		-	╀	╀╌	╁╌	` : }	╀╌	╁╴	+-	╂	 	╀	3	H		het		+	> }	\dashv	* }	- -	+	s \$			\dashv	≯	3	-	+	+	+	3	+	× ×	
	-	+	3	╀	╁	╁	+	-		-	\vdash	╀	╀	}	 	╀	╁	╁	╁	╁	┼-	H		\dashv	-+	<u>^ </u> ≱	+	+	<u>^</u> ≱		x tag	+			\dashv	\dashv	> >	+	+-	+	+-	╀	╀	*	
	3 3	╀	╂~	╀	+-	╁	\dashv	\dashv		-	-	+	-	; >	 -	├	-	3	┤	-	┢	3	7		4	3	4	+	<u> </u>	-	3 3		*		\dashv		+	-	+	╀	+	+	+-	**	
	≱ het	; ;	3	3	+	*	}	>	*	3	3		3	. ≥	het	het	het	3	het	het	\vdash		\dashv	4	\dashv	≱	+	-	+	> 2	+	+-			-	-	+-	+-	+-	+	╀	1	╁-	het	
	-	: 3	3	3	+	*	≱	3	*	≥			╀	╀	╁┈	╀	-	╀	╁	 	┝	Н	\dashv		-	_	- - -		+	-	┿	: ≥	\vdash		\dashv	-+	+	+	┿	<u> </u>	+		+-	3	
	3 3	: 3	3	3	†- 	>	}	het	*	3	3	3	}	. ≥	3	3	3	3	3	3	3	≱.	3	}	}	3	<u>→</u>	≥ 3	≱	3 3	3	3	3	3	3	>	→	}	2 2		} ≥	3	╁	3	
	m m	6) m	m	0 0	7	m	e	3	4	3	₀	8	4	3	8	8	8	3	3	4	4	4	4	7	m (» (m c	7	» •	1 4	4	4	4	4	4	4 4	, ,	+-		1 4	4	4	4	

	0.002	0.002	< 0.001	0:002	0.002	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0,010	< 0.001	< 0.001	< 0.001	< 0.001	0.002	< 0.001	0.105	< 0.001	< 0.001	< 0:001	0.002	0.008	0.008	0.013	< 0.001	< 0.001	< 0.001	< 0.001	0.134	0.134	< 0.001	0.134	0.001	0.134	0.001	0.001	0.001	0.013	0.006	9000	0.001	< 0.001	0.012
	*1X3/*4	*1X3/*4	*1X3/*42	*1X3/*4J	*1X3/*4K	*1X3/*5	*1X3/*6	*1X3/*6	*1X3/*7	*1X3/*8	*1X3/*9	*1X4/*5	*2/*10	*2/*11	*2/*12	*2/*14	*21*14	*2/*17	*2/*19	*21*2	*2/*20	*2/*21	*2/*28	*2/*29	*2/*2X2	*2/*2X3	*2/*3	*2/*31	*2/*35	*2/*35X2	*2/*37	*21*4	*21*4	*21*42	.2/.4J	2/-4JX2	74-77	*2/*4KX2	-2/-4X2	*2/*4X2	*2/*5	*2/*6	*2/*6	*2/*7	*2/*8	6./2.
	4	-				1	*	1		*	*	*	•	7	*		*	•		_	*	*		-	3	4	*	7		₆		-		+		-	Т	Т	Т	- -		+		Ť		
	+	1		_	+	+	-	\dashv	·									<u>-</u>			-		Н		0	0			\dagger		\dagger	\dagger	1	\dashv	+,	7	1	7 0	710	2	\dagger	_		+	\dagger	
	4	4		4	4		_							- . .					·						3	4	- : : <u>- : - : - : - : - : - : - : - : -</u>	1		_	+	\dashv	+	+	1,	m	1,	e (<u>س</u>	+	+	+	\dagger	+	-
	het	het	het	3	het	3	het	3	3	het	>	*	E	m.	æ	æ	Ε	E	π	٤	Ë	ш	Ë	Ε	٤	٤	het	Ε	Ε	٤	٤	ε	ε	٤	jet	het	E	٤	E	٤	ε	het	٤	het	ε .	het
	*	*	*	}	}	*	≩	*	*	*	*	*	W	w	%	W	W	*	*	≯	3	*	*	3	>	*	3	het	*	3	}	3	3	*	≥	>	*	≱ :	3	3	3	3	3	}	3	}
	3	*	*	3	*	3	3	3	3	*	>	X	W	W	· *	*	*	*	*	≥	3	*	3	*	*	*	3	3	*	3	}	≱	>	3	≥	≥		3	3	3	≯	≱	3	}	3	*
	*	М	het	*	3	3	*	*	3	*	*	*	Ж	W	*	W	%	·W	*	3	*	W	*	*	*	*	3	3	3	3	3	3	>	het	>	>	>	3	3	>	3	`	3	3	3	*
	*	*	3	≥	3	3	3	3	×	3	*	*	Ж	*	· M	*	W	3	*	3	*	*	3	het	*	*	3	``	*	3	3	>	3	3	3	*	*	≥ :	≱	3	3	*	3	>	≥	}
	3	W	*	3	*	*	≩	*	het	*	*	*	W	W	*	М	W	*	3	3	*	>	*	*	*	М	*	3	3	3	3	>	3	ҙ	3	≥	}	3	3	3	`	3	3	het	3	>
,	*	*	het	*	het	>	⋧	>	*	het	*	Α.	het	ω	æ	٤	٤	Ε	٤	Ε	Ε	٤	E	E.	٤	ш	het	٤	ε	٤	het	jet Pet	het ,	E	jet	het	٤	Ε	je	het	E	het	het	het	٤	het
	*	*	*	*	3	· ≱	3	3		*	het	ж	*	W	*	*	Α.	*	*	3	3	3	*	*	*	*	*	*	3	3	*	3	>	*	3	3	>	3	3	3	3	*	3	}	}	het
9	3	W	*	≱	3	3	*		X.	*	*	: M	W	М	*	3	*	3	3	3	*	het	*	w	*	*	*	>	>	3	3	3	3	≩	3	3	≥	3	>	3	*	>	3	3	≥	>
	*	*	*	≯	*	>	≯	*	*	*	*	. м	W	*	3	3	*	≩	3	≥	>	≯	*	W	*	*	het	>	3	3	3	3	>	}	3	≱	≱	>	>	}	}	>	*	3	3	}
FIGURE	3	*	*	≱	3	3	≯	*	*	М	*	W	· ·	*	*	3	Α.	*	het	3	*	3	*	*	М	*	*	>	3	3	3	3	3	`}	3	≱	}	3	}	}	*	≥	*	3	3	*
<u>ц</u>	3	*	*	*	*	3	*	*	*	w	. W	W	; M	*	*	3	W	3	*	≥	het	≯	*	*	*	w	٨	*	≩	*	3	*	3	3	3	≱	≱	3	*	}	3	`	*	*	≩	>
•	3	*	*	>	*	3	.,≽	*	*	*	*	W	*	*	3	. >	3	3	3	≯	.≯	3	*	М	×	М	*	*	3	3	het	3	3	≩	3	3	}	3	3	3	}	}	*	3	3	3
-	3	*	×	*	3	3	*	3	*	М	*	W	*	*	*	3	*	3	3	≯	*	3	3	*	Μ.	*	3	3	3	3	3	3	}	*	3	3	>	3	3	3	*	3	3	≱	3	*
	het	het	*	het	het	3	≯	*	*	*	ж	*	*	*	3	≯	*	3	3	3	3	3	*	W	>	*	*	*	*	3	>	het	het	}	het	het	ig .	het	jet	het	3	≱	≩	*	3	3
	*	*	М	*	*	*	*	*	W	het	W	*	*	*	3	3	3	3	3	≥	≥	≥	*	, M.	*	M	*	*	*	3	3	3	3	}	3	3	≱	3	>	3	*	3	}	*	het	>
	3	*	*	3	≯	}	*	*	*	W	. w	W	*	*	3	het	het	3	3	≥	≯	3	3	*	*	W	٨	*	>	3	3	3	3	3	}	3	≥	>	}	}	3	3	* }	*	3	3
	*	*	×	3	*	>	het	het	W	*	W	W	*	W	3	≩	3	3	3	≩	3	3	*	М	*	Μ.	*	*	¥	3	>	3	3	≩	>	≱	≱	≱ .	*	3	3	het	het	*	3	}
	*	*	W	*	*	3	*	×	Ж	*	W	*	3	*	≯	≯	≯	het	≯	≯	≯	3	*	W	*	W	*	*	3	3	≯	3	>	*	3	≩	*	3	>	≯	3	3	≩	3	3	3
	3	het	*	het	*	3	`	*	*	*	М	M	3	*	*	*	>	3	3	3	3	3	*	М	*	М	*	*	3	*	≯	>	het	*	het	het	≥	3	≱	het	3	≯	*	*	≩	}
	3	*	.	Ж	*	*	W	. W	W	W	W	М	W	het	3	3	3	*	*	≩	*	3	*	*	W	W	M	*	*	3	3	3	3	≩	3	3	>	3	3	*	3	≯	*	3	*	≥
	3	3	W	W	>	3	W	*	W	*	W	*	3	3	het	≯	⋧	≯	3	≥	≯	3	3	W	×	W	*	W	3	3	3	3	`	₹	*	≯	≥	3	>	₹	3	3	3	>	3	3
	het.	het	*	het	het	3	*	M	*	3	М	*	het	Μ.	*	het	*	>	3	3	3	3	3	^	*	, M	М	*	3	3	het	het	het	≩	het	het	het	het	het	het	3	3	≱	3	3	≱
	3	*	*	*	*	3	*	*	М	*	*	*	*	*	3	*	3	3	3	3	3	3	*	M		٨	*	*	het	het	3	≱	3	≩	>	≥	≱	<u>`</u>	3	≩	3	3	≯	3	3	3
	*	*	W	*	≯	*	*	*	*	*	٨	*	W	*	≥	3	≯	≥	≥ .	≯	≱	3	het	*	*	w	*	×	3	*	>	≯	*	≩	≩	≩	3	3	≱	≩	≱	≯	`*	≯	≯	}
, ·	4	4	4	4	4	60	4	4	4	4	4	4	. 2	2	2	2	2	2	2	2	2	2	2	2	3	4	2	7	2	6	7	2	2	~	2	က	~	m (8	က	-	2	2	71	2	2

. .

** *																													* •	w.	-												
																						·					٠		·			•											•
	< 0.001	< 0.001	< 0.001	× 0.001	00.00	0.00	L00.0 V		000	< 0.001	< 0.001	< 0:001	< 0.001	< 0.001	< 0.001	< 0.001	× 0:001	× 0.001	< 0.001 0.001	L00.0 v	00.0	000	× 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	× 0.001	v 0:001	0.00	000	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	× 0.001	\0.00\ \0.00\	1000	v 0.001	< 0.001	
	*20/*20			*20/*29		,	*20/*35XZ				-	*21/*31			T		T	П	Т	T	T					ž			*2X2*2X2	T	*2X2/*11		Τ							*2X2/*3	"2X2/"31	*2X2/*35X2	
	1,2	7	7	1 2	7 5	7 5	2 2	4 5	15	1 5	2	. 2	*2	7	2	12	12	12	1 2	7 5	3 5	1 5	1 5	*2	7	*2	‡		4 2	213	2 5	15	1 2	*2	2	12	2 2	2 3	7 5	4 5		2 4	
				+	+		1.		†	-						1	1	+	1	1	+				3	t.				+	+	\dagger	+				1	1		†	1	0 0	
					1					-					*							T							4	1						\neg		1			,	2	
	٤	٤	٤	٤	ε ;	E	E	E 8	E 8	٤	٤	٤	٤	٤	٤	٤	٤	Ε	٤	٤	E 8	E	٤	٤	٤	Ė	٤	E	٤	٤	E 8	3	ε	٤	٤	٤	٤	٤	Ε.	het	٤	E E	
	3	*	≱	≯	Jet Jet	≯	} :	} :	} }	\$ ≥	≥	het	*	≩	`	3	3	3	þet	≱	≥ 3	3 3	} >	het	3	*	*	3	}	₹	} 3	3	≥	*	3	≩	≱	≩	≱	} }	jet L	× ×	
	3	3	3	}	≱	≱	} :	≱ :	≱ ≩	≱ }	≥	*	*	*	3	≯	≱	}	≥	≥	≥	≱ ≩	≩ 3	*	≯	*	*	*	≱	}	≱ 3	≱ ≥	\$ ≥	3	>	₹	}	*	≥	. ≥	≥ :	3 3	
	3	\dashv	3	4	≱	≱ :	≱ :	≥ 3	iei s	≥ ≥	-	Н	×	·	3	het	}	\dashv	4	+	+	¥ \$	≦ ≥	\vdash	\dashv	· >		-	≥	≩	≱ 3	≥ 3	\$ ≥	*	3		-	+	+	+	≯	* *	
	*	}	3	het	≥	≱	≯ ∃	≯ ∃	≯ }	3	het	3	*	Α	3	≥	>	het	≯	>	≱ 3	≱ ≥	3 8	het	het	het	het	het	}	3	≱	≩ 3	\$ ≥	≯	*	. ≥	3	}	e E	}	} :	≯	
	>	3	}	}	}	≱	-	+	≯ }	3	3	3	*	×	*	≥	>	*	}	}	\bot	3	\$ 3	3	*			_	4	}	≱ :	≱ }	\$	3	3	,3	3	}	+	+	} :	≯	
	Ε	E	Ε	Ë	E	E	E]	Jet	E E	<u>ξ</u> ε	٤	Ε	Ë	Ε	het	Ε	Ε	Ε	Ε	٤	E 3	<u></u>	≣ Ε	Ε	Ε	Ε	het	Ε	Ε	het	E . 8	≣ E	E	٤	٤	٤	Ė	Ε	E	het	E	EE	:
	*	4	≯	}	} :	≯ ∃	} :	≯ :	≱ }	+-	-	3	Щ		*	4	*	3	}	≯	≯	3	\$ ≥	*	*	*	*	*	}	3	≯ 3	3	\$ ≥	3	3		-	}	≱	} :	≯	× ×	
9	*	het L	3	}	≱	≱	≯	≯ ∶	+	+	\vdash	Н	Н	\dashv	\dashv	het	-	}	+	}	+	≯ 3	\$ \$	* *	*	3	*	*	≥	3	≯ ∶	≯ 3	≥ ≥	*	*	×	\dashv	}	+	+	≯	* *	
FIGURE	*		≱(+	+	≯ ∶	+	+	+	* *	-			\dashv		÷	\dashv	\dashv	+	+	+	3 3	╬	-		\vdash	*	\dashv	₹	+	+	3	╁	┝	Н	*	-	+	+	_		≯	
FIG	}	_	\dashv	≯	\perp	+	+	≥ ! د اید	+	+	-	3	\vdash	\sqcup	*	₹	-	-	+	+	+	\perp	\$ 3	 	\dashv	H	*	\dashv	\dashv		+	≯ ³	+	┝			\dashv	+	≯	+	≯		
	Ε	\dashv	,	╅		┿	+	┿	_	\$ \$	-	3	Щ			4	-	-	+	+	+	≱ ≩	+	-	*	\sqcup	Ц	\vdash	-	+	≯	+	+	L	┝╾┥	het	\dashv	-	+	+	-	3 3	
	*		}	+	+	+	+) het	+	\$ \$	╀	-					-	\dashv	+	+	≥ 3	╁	╁	3				*		+	+	+	+	╁╴	Н		\dashv	+	+	+	+	3 3	
	*	\dashv	»	+	+	<i>\$</i>	+	≯ :	+	3 3	-	*	-			\dashv	-{	\dashv	+	+	+	≯ 3	+	. ≥		\vdash		*	\dashv	+	-	╀	+	\vdash		*		+	<i>\$</i> }	+	+	* *	
	3	> *	_	+		-	-	+	+	3 3	╀		w		, w	\dashv	> 3	+	+	+	+	≯	3 3	╁	w v	Н		\dashv	\dashv	≯	╁	3 3	-	\vdash		w	\dashv	+	+	+	-	>	
		\dashv	\dashv	+	\dashv	+	+	+	+	\$\\ \	╀	H				┥	-		\dashv	╁	+	+	+	3	Ц	Ц		*		-	_	+	╁┈	igspace	Н			+	+	+	-	3 3	
	3	\dashv	\dashv	+	+	+	+	+	+	+	-	-	Н			\dashv	-	\dashv	+	+	╬	+	+	+	-		1	*	ᆉ	+	╅	+	╁	\vdash			\dashv	┿	+	+	+	3 3	·
	3			+	+	+	+	+	-	 ≥	╀		\vdash	\vdash	\vdash	\dashv	-		+	+	+	 ≥ ≥		3		H			\dashv	-	+	+	3 3	ļ	\sqcup	-		+	+	+	+	≯ ≯	
		3	3	3	≯	>	≥ :	→	3	\$ \$. ≥	-	Н	-		\dashv	_	+	+	+	+	3 3	+	: ≥				3	┰	+	+	+	╫	_ ≯	H			+	>	+		* *	
	3	3	≱	≱	≱	}	}	≯ :	≯ ≥	\$ \$	3	3	3	3	*	3	4	\dashv	+	+	+	+-	+	3					\dashv	+	+	∔	╂-	-				3	3	≯	≥ :	3 3	
	3	*	}	*	≯	 }	≯	- -	≯ }	} }	≥	>	*	*	*	}	3	>	}	<u>}</u>	→	* 3	3 3	* 3	*	\vdash	.,	3	}	+		+-	╅╴	3	\dashv		\dashv	+	+	+	+	* . *	
	3	3	3	>	≥	<u>}</u>	}]	i jë	≥ 3	\$ \$	≥	3	3	3	het	3	}		3		×]		<u>}</u>	. ≥	*	$\vdash \vdash$		\vdash		┵	+	~ \$	<u></u> ≥	3	3	3	3	3		≯	3	3 3	
	3	*	}	*	≱ .	net	-	≥	≯	\$ ≥	3	*	het	H	*		3	*	≱	<u>=</u>	_	+	3 3	3	het	het	*	\vdash	\dashv	3	+	3 3	╀╌	*	3	*	}	≯	≱	≱ :	≯]	het	
	3	3	het	}	-	}	╁	≥	≱ ≩	het *	≥	-	*		-		3	het	et Pet	+	+-		<u></u> ≥	. ≥	_	H	*	3	>	}	} :	} 3	\$ 3	3	3	*	3	het	*	≯	≥ :	3 3	
	2	2	2	2	2	7 (m (7	7 0	2	2					- 1	7	7	7	2 6	2 (1	\uparrow	2	2	3	2	2	4	8	m .	3 ") m	က	3	3	3	e (E (2) (ι.) (.	0 4	

									-																٠														•						
0.005	0.005	< 0.001	0.005	< 0.001	0.005	× 0.001	V 0.001	< 0.001	0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.001	× 0.001	L00.0 >	< 0.001	0.005	0.005	0.001	0.005	0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.001	0.001	< 0.001	< 0.001		
*2X2/*4	*2X2/*4	*2X2/*42	*2X2/*4J	*2X2/*4JX2	*2X2/*4K	"2XZ/"4KX2	-2X2/-4X2	*2X2/*4X2	*2X2/*5	*2X2/*6	*2X2/*6	*2X2/*7	*2X2/*8	*2X2/*9	*2X3/*10	*2X3/*11	*2X3/*12	*2X3/*14	*2X3/*14	*2X3/*17	*2X3/*19	*2X3/*20	*2X3/*21	*2X3/*28	*2X3/*29	*2X3/*3	*2X3/*31	.2X3/~35	*2X3/*37	.2X3/-4	*2X3/*4	*2X3/*4.	*2X3/*4K	*2X3/*5	*2X3/*6	*2X3/*6	*2X3/*7	*2X3/*8	*2X3/*9	*2X4/*5	*3/*10	11	:12		
3 *2X2F*4	T				\neg	\top		4 *2X	,5X	*2X	*2X	*2×	*2X	*2X	Ş	*2×	*2X	*2×	*2×	*2X	*2X	*2X	*2×	*2X	\ <u>\</u>	2 2	Т	4 .2×	T	П	4 2X	3 2		Γ	2X	*2×	*2×	*2×	*2×	*2X	*37	*3/*11	*3/*12		
•	-		-	7	-	, ,	7 (7	+			-			 	-				. *						+	-	- - -	+	+	-	-	-	\vdash											
3	_{ال}	 	3	4	<u>س</u>	4	4	4					-														۱,	7	1	4	4	-	4			t									
2	E	E	het	het	E	E .	E	٤	٤	het	E	het	Ε	het	ε	E	E	E	ш	ш	m	E	E	E	Ε	het	٤ :	٤	Ę	E	٤	E å	Ε	Ε	het	Æ	het	E	het	E	het	het	het		
*	≥	≥	*	3	3	3	≱	3	≱	*	*	3	3	3	3	3	3	*	М	*	M	*	*	W .	3	3	het	3	3	3	3	3 3	* *	3	≯	3	3	W	М	*	3	w	>		
*	. ≥	*	W	3	3	3	}	≩	3	*	W	3	3	3	3	3	3	3	W	w	W	W	3	. w	*	3	3	*	3	*	≥	≱ .3	. ≥	*	3	3	3	W	W	*	3	*	*		
3	3	het	*	3	3	≥	3	3	3	3	≱.	3	3	3	3	3	3	3	w	w	M	*	*	3	3	3	3	}	≱	*	>	Jet ×	≥	3	≯	*	3	W	*	3	≯	w	3		
3	. ≥	≥	*	>	}	≥	3	3	3	*	3	╀╌	-	3	* ≥	≯	≯	3	*	M.	*	*	*	Α.	het	>	}	>	}	}	≯	≯ ₹	: ≥	≥	≥			_	*	*	≩	*	≥		
3	+	╁ <u>.</u>	*	_	3	_	+	-	≱	_	ļ	 	╀	-	ļ.			≯	*	W	*	×	>	*	4		}	+	+	4	+	≯ 3	-	≥	\vdash	 -	het	ļ	_	\dashv	≯	W	Щ		
ar tot	het	ε	het	het	٤	Ε .	Jet L	het	Ε	het	het	het	E	╁	╁	٤	Ε	٤	٤	ш	E	ω	Ε	Ε	٤	Jet I	٤	٤	ae l	힐	het	E	Ę	Ε	het	het	het	Ε		$\vdash \vdash$	3	het	het		
3	. ≥	* ≥	≯	*	≥	≱	≱	3	≯	×	3	3	3	het	≥	≥	3	3	_		*		*	*	*	≩	≥ .	}	≱	}	≱	≯ 3	+	╀	≥	*	3	*	het	*	3	*	*		
3	+	╀			\dashv	+	≯	-	}		3	┝		3	╀	\vdash	3	_	-	W	M	Н	·het	*	`	\dashv	+	≱	+	+	+	≯ }	+-	╁	╁┈	\vdash	_	_			\dashv				
3	+	+	-	<u></u>	+	+	+	+	≱	*		├	-	-	-	┝	≯	_				_		3	┥	7	+	+	+	+		≱ ∤ ≩	+	-							het				
3	+	. ≥		\dashv	\dashv	+	+	\dashv	≯	<u> </u>	_	┝	╀	}	╁	╀		<u> </u>		*	het		\vdash	3	3	\dashv	+	+	+	\dashv	+	3	+	╁	╁	├	_	_		Н			3		
3	+	+	Н		\dashv	+	+	+	3	_,	_	╀	+	3	╀	\vdash	3				_	_	\dashv	*		}	_	4	4	+	+	≯ }	+	╂	\vdash		_			*			3		
3	╀	+			\dashv	≯	+	\dashv	≯		ļ	╁–	╄	+	≥	\vdash	\vdash		-	, w					≯	+	+	}	十	+	\dashv	≯ }	+	╀	*	├-	*			, w	-				
3	+	-			\dashv	+	≯ 16	4	3		3	╀	+	3	+	\vdash	3	-				Н	*			+	+	+	+	4	4	≯ 3	╀	 	\vdash		_	-	\vdash	3	\dashv	\vdash			
had	╁	+		\dashv	\dashv	+	╌┼	+	3		3	-	╄	3	╁	┝		_	-		w			*	≯	≯	+	+	-	十	+	≥	+	╁╴	╁┈	-	H	et w		Н	3	_	3		
3	╁	╀	\vdash		-	+	+	≯	3 2	γ •		-	1	+	-	-	-		×		w .		Н	۸ ۸	3	<u>}</u>	+	+	+	+	+	≯ }	╀	+-	╀	\vdash		v het		H	»		>	,	
3	+	3			-	+	≱	\dashv	3		et	├-	*	╀	╁╌	┢		v het	┝	Н	w _ w			w .	\dashv	+	+	≯	┽	\dashv	r^	3 3	+	╁	╀	├-	<u> </u>	_		*	\dashv	_	3		
╀	╀	+			\dashv	+	+	>	≯	_	 	╁╴	╀	╀	╀	\vdash	\vdash	-	_		M			w	≯	<u>}</u>	+	+	+	+	+	3 3	+	╀	干	-	-	-			\dashv	_	3		
+	¥ .	<u> </u>		\dashv	+	+	+		3		3	├	╀	3	╀╌	┢		\vdash	-	+	w .		\vdash	w	-	\dashv	-	+	+		_	≯ 3	╀	╀-	1	\vdash				H	3		3		
3	╀	╁	, het		\dashv	+	+	het	*		┝	┝	╀	╀	╀	╁┈	<u> </u>	\vdash	<u> </u>			H		M . ,	\dashv	<u>}</u>	+	+	+	+	_	<u>₹</u>	╀	十	╁-	├	\vdash	-	ļ	*			3		
+	╁	*		\vdash	+	+	<u></u>	\dashv	}		≥	-	-	3	+	F	-	ļ	H	_	*			*	-	\dashv	+	+		+	+	≯ }	╁	\vdash	-	-		-		H	*	het	Н		
3	igapha	+		Н	\dashv	+	+	≯	3			┞	╁╌	╁	╀.	-			<u> </u>		w			*	}	}		4	-	4	+	} }	 	╀	\vdash	-		*			it ¥	w			
ja P	╁	╁╌		\dashv	-	+	+	þet	}	W		-	╀	 	╀	┝	-	het	\vdash		*	$\left[\cdot \right]$		*	}	≥	-	╁	十	+	7	≯ 2	╀	╁	-	_		\vdash	_		het		≩	,	
: 3	+	-			+	+	+	\dashv	3	*	<u> </u>	\vdash	-	╀	╀	╁	-	}	_	<u> </u>	X	Н		it W	-	}	+	7	-	+	+	3 3	-	╀	-	\vdash		-			*	W	H		
3	:	≥	3	3	₹	}	≩	}	3	W	≯	}	}	3	≥	3	3	≥	≩	*	*	3	3	het	≩	}	}	}	≥	≯	≯	≯ 3	. ≥	3	≥	≥	3	*	3	3	≥	*	≥		
,) 	က	၉	4	8	4	4	4	7	က	က	8	ြက	m	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	8	4	4	4	4	4	4	7	2	2		

FIGURE 19

< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.008	0.008	< 0.001	0.008	< 0.001	0.008	< 0.001	< 0.001	<:0:001	0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.006	900.0	< 0.001	< 0.001
+3/*14	*3/*14	*3/*17	*3/*19	*3/*20	*3/*21	*3/*28	*3/*29	+3/+3	+3/+31	*3/*35	*3/*35X2	*3/*37	*3/*4	*3/*4	*3/*42	*3/*4J	*3/*4JX2	*3/*4K	*3/*4KX2	*3/*4X2	*3/*4X2	*3/*5	*3/*6	*3/*6	*3/*7	*3/*8	*3/*9	*31/*31	*31/*35	*31/*35X2	*31/*37	*31/*42	*35/*35	*35/*35X2	*35/*37	*35/*42	*35X2/*35X2	*35X2/*37	*35X2/*42	*37/*37	*37/*42	*4/*10	*4/*10	*4/*11	*4/*11
							_						_																				_	က်			4						Ш		
								L																										٥			0								
																		<u>.</u>																0			0							. !	
het	het	het	het	het	het	het	het	≥	þet	het	het	het	het	het	het	*	М	het	het	:het	het	≥	het	`.	≥	het	≥	٤	Ε	E	E	Ε	Ę	E	Ë	٤	ш	Œ.	Œ.	ш	Ε	Ε	٤	ε	Ε
3	₹	3	3	*	≩	*	≯	≥	het	. ≯	≯	₹	3	≯	*	*	M	W	W	W	≯	≯	≯	3	≯	3	3	æ	het	het	het	het	*	3	×	*	*	*	*	*	*	*	3		≯
3	*	*	*	*	*	>	≯	`	₹	3	≥	3	*	×	W	, W	W	W	W	*	≯	3	3	*	₹	*	₹	W	*	*	W	W	*	*	*	Ж	. W	*	M	M	≩	W	3	W	×
*	3	М	*	M.	3	*	3	3	3	3	3	*	*	*	het	. W	W	Μ.	W	, W	3	3	3	*	*	*	3	W	W	Ŵ	W	het	*	*	, X	het	W	W	het	. W .	het	W	*	*	*
3	≱	≯	3	*	3	3	het	3	3	3	3	3	3	*	*	Ж	W	*	*	*	3	3	3	3	3	3	3	*	М	*	W	*	3	*		, w	*	. W.	W	M.	*	W	3	×	*
3	3	*	≯	3	3	3	3	3	3	*	≥	3	*	*	*	W	w	W	*	*	3	3	3	>	het	*	3	3	*	*	W	*	*	*	*	*	W	*	W	*	*	*	*	*	*
het	het	het	het	het	het	het	het	*	het	het	het	3	3	3	het .	*	· *	het	het	>	3	3	3	3	3	het	3	٤	٤	Ε	het	٤	٤	٤	het	Ε	ш	het	Æ	*	het	· M	3	het.	het
3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	*	*	. *	M	*	3	3	3	3	3	3	3	het	>	Α.	3	М	>	*	*	*	*	%	3	*	*	3	W	3	*	3
3	3	*	3	3	het	≥	>	3	3	≥	3	3	3	3	, *	*	W	*	*	3	3	3	3	3	3	3	3	*	*	*	M	*	*	*	*	*	· *	3	*	M	*	w	*	*	3
het	het	het	jë E	het	het	het	het	E	het	het	het	het	het	het	het	het	het	het	het	het	het	Ε	het	het	het	het	het	*	*	*	w	*	*	*	*	*	W	W	*	*	3	W	>	*	*
3	3	3	het T	*	. ≥	3	3	≥	}	3	3	3	3	*	·	*	*	*	*	*	3	3	3	. ≯	3	3	3	3	*	>	w	*	*	*	*	*	W	*	*	*	3	w	>	*	
3		}	3	het	3	3	≥	≥	3	≥	>	3	. ≥	. ≯	}	}	*	*	}	}	3	3	3	3	3	3	3	>	}	*	*	*	*	. *	*	M.	*	*	*	. *	3	*		*	}
3	3	3	3	┞	3	3	3	≥	}		3	het	3	*	*	*	*	*	*	3	3	>	· ≱	3	}	3	}	*	*	*	het	*	.	*	het	*	w	het	M	ш	het	*	*	*	*
	*	*	3	3		3	3	}	3	3	3	├	 -	3	3	*	3	*	>	≥	3	3	3	3	- 3	3	3	3	*	*		*	*	*	*	*	*		. *	*	*	w	3	*	3
3	3	3	3	3		3	3	≥		3		3	het	het	*	het	het	het	het	het	het	3	3	3	3		} }	*	*	*	w	*	*	*	*	. *	*		*	*	3	het	het	het .	het
		 	3	3	3	3	3		3		3	≥	-	*	*		*			\vdash	┢	3	3	3	3	het	≥	>	*	*	w	*	*	*		W	w	*	*	*	3		Н		*
het	┞	3		 	3	-		\vdash	\vdash		├	}	_		*	*	×	*		_		-	3	3		H		*	*		w	*	*	*	*	*			w	*	*			*	*
3	\vdash			-			_	-	-	\vdash	┝	_				3	*	*	*			-	het	het	_	_	L	_	*	-	w	-	*	*	. w	*	_	_	M	_			\vdash	*	
>	H		_				≥	-	\vdash	-	-	3	-	3	3	*	W	*	*	-		-	} ≥	≯	-	-	-	3	3	*	W	A N	, M	×	× .	W		_	W	\ M	´ }	W	3	*	
3				-		_	-	_	-	\vdash	\vdash	*	-	het	×	het	het	·			het	_	-	_	_	_			· »											_			het		het
-	\vdash	<u></u>	_				_	├			\vdash			┝	_	-	<u> </u>	× /	*	_	-	<u>≯</u>	_	3		_	\vdash	*	L		M , ,	Α,	, w	*		, w			, ,	M /	*		Н	, ,	\dashv
*	_		_	H	\vdash	_		_	 		 	≯	-		*	*	, W	*	M	*	3	3	≯	3				*	Α,	*	, M	*	≯.	*	· /	Α.	W	*	W	W	*		*	\dashv	het
* * * * * * * * * * * * * * * * * * *				_	H	3	3	H			-),	_	it &	*	st W	t· w	it W	} *	} }	*	_	3	3	_	-	_	*	*	*	t	*	*	*	it W	*		it w	*	M	:t &		*	it w	.t
het	≯	*	≱	≯	≯	≯	≯	≩	}	\vdash		het	het	het	*	het	het	het	het	het	het	3	≥	3	≥	*	}	3	t W	\square	het	3	3	3	t het	t «			t W	E.	het	E	Ε	het	het
*	≥	*	`	≯	≥	ļ.,	}	≥	}	het	het	}	≥	*	*	*	W	W	M			≯	*	≱.	≯	*	}	*	het	het	*	*	Ε	Ε	het	het	m	het	het	М	*	ж	*	*	}
≥	₹	3	3	₹	3	het	3	}	≥	≯	3	3	≯	*	*	*	W	Α.	*	≥	3	≯	}	3	}	3	≥	≯	*	≯	*	*	≥	≯	*	Ж	*	*	*	*	*	*	≯	*	}
2	2	2	2	2	2	2	2	2		7	3.	7	2	2	2	2	3	2		ဗ	3	-	7	2	7	2	7	5	2	3	2	.2	7		7		4	3	က	2	2	2	2	2	2

< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.001	0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0:001	0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0:001	< 0.001	< 0.001	< 0.001	0.043	0.043	0.043	< 0.001	< 0.001	0.043	0.043	< 0.001	< 0.001	0.043	0.043	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.008	0.008	0.004
*4/*12	*4/*12	*4/*14	*4/*14	*4/*14	*4/*14	*4/*14	-41.17	*41*17	*4/*19	*4/*19	*4/*20	*4/*20	*4/*21	*4/*21	*4/*28	*4/*28	*4/*29	*4/*29	*4/*31	*4/*31	*4/*35	*4/*35	*4/*35X2	*4/*35X2	*4/*37	*41*37	*41*4	*4/*4	*4/*4	*4/*42	*4/*42	*4/*4J	*4/*4J	*4/*4JX2	*4/*4JX2	*4/*4K	*4/*4K	*4/*4KX2	*4/*4KX2	*4/*4X2	*4/*4X2	*4/*4X2	*41*5	*4/*5	*41*6
											0												3	3						·				-	-	.,		3	દ	3	3	3			
							•											i			·	-	1	1										3	3			3	3	3	3	3			
																							. 1	1										3	က			3	3	3	3	3			
E	٤	het	٦	æ	٤	ш	m	٤	m	٤	٤	Æ	E	E	E	m	m	٤	E	ш	ш	æ	E	:FI	E.	٤	E	m	æ	٤	ın	het	het	het	het	E	٤	٤	m	m	٤	٤	3	٤	het
*	×	Ж	*	W	W	W	W.	*	М	*	, X	М	M.	*	. M	W	*	W	het	het	W	W	М	w	W	W	W	W	*	*	*	W	≯	*	*	*	W	W	W	W	*	*	3	*	*
W	3	*	*	Μ	W	W	W	Ж	м	3	*	*	*	Μ.	W	W	W	W	. W	*	W	W	W	W	М	W	. *	W	٨	*	*	Ν	3	>	>	*	Ж	*	W	W	*	3	3	3	3
3	W	3	*	*	*	M	M	*	*	3	*	%	*	*	٨	*	*	*	*	M	×	М	*	W	M	W	*	X	*	het	het	*	*	>	≯	*	*	М	W	W	*	*	>	3	3
3	*	*	*	W	*	W	*	×	*	≥	*	*	Α	*	*	w	het	het	*	*	*	w	W	W	W	*	*	%	*	W	W	w	*	*	3	*	W	*	W	*	≯	3	*	3	*
*	3	3	3	w	Ж	W	*	*	*	3	3	*	*	*		*	W	W	М	3	W	×	*	*	*	*	×	W	W.	*	W	W	*	3	. >	*	*	*	٨	*	*	3	3	3	3
het	het	het	het	· het	het	u	het	het	het	het	het	het	het	het	het	het	het	het	het	het	het :	het	het	het	W	M.	W	W	Ж	het	het	M.	*	*	*	het	het	het	het .	м	₹	≩	*	3	3
3	*	3	*	W	*	*	≥	3	3	3	3	3	*	*	*	*	*	*	*	*	*	W	М	*	W	W	W	м	*	W	W	W	*	*	*	*	W	*	*	М	*	3	*	*	*
*	*	≯	3	W	*	*	3	3	3	>	3	*	het	het	3	· M	w	*	≯.	3	W	W	W	W	M	w	W	*	Α:	x	. W	W	*	*	*	%	W	W.	W	*	3	3	*	3	*
3	*	3	3	М	*	M :	3	3	3	3	*	3	3	*	*	%	*	*	*	3	W	W	Α.	*	*	*	W	*	*	М	W	W	>	*	*	Ж	*	3	*	*	*	*	×	3	3
*	*	3	3	. M	Ж	*	-≥	*	het	het	3	3	3	*	3	M	М	*	3	3	M	*	W	*	*	%	W	*	*	*	W	М	*	*	*	*	*	*	*	×	3	3	*	3	*
3	3	3	3	*	*	*	3	≥	3	3	het	het	3	3	3	 M	*	3	3	>	*	W	*	*	3	Ņ	*	*	*	М	W	3	*	*	*	*	*	*	*	*	3	3	*	>.	*
3	3	*	3	*	X	%	*	3	3	3	*	3	*	3	3	*	M	*	*	3	*	Α.	М	М	het	het	W.	Μ.	*	W	. w	М	*	*	*	*	м	*	*	*	3	≯	*	3	×
*	3	≩	*	≯	*	*	3	3	3	3	3	3	3	3	3	*	*	3	3	3	3	М	*	*		*	*	3	3	Α.	М	3	*	*	*	w	Μ.	*	*	*	*	≯	*	3	*
het	het	het	het	het	het	het	het	het	het	het	het	het	het	het	het	het	het	het .	het	het	het	het	het	het	het	het	ш	ε	Ε	het	het	æ	٤	ε	٤	E	Ε	m.	Ε	٤	٤	٤	٤	٤	het
3	3	3	3	*	*	*	≯	3	3	3	3	*	3	>	*	*	*	3	3	3	*	W	W	*	W	*	*	*	*	*	W	*	W	*	*	М	*	Ņ	3	3	3	3	3	3	*
3	≯	het	het	het	het	het	3	3	3	3	3	3	3	3	3	*	*	*	3	3	*	W	*	*	*	%	*	*	*	*	w	*	*	*	*	W	*	*	*	, W	3	*	*	3	*
3	3	≥	3	*	*	*	3	3	3	3	3	3	3	3	3	*	*	3	3	*	*	W	*	*	*	3	*	3	*	%	W	*	*	*	*	W	M	*	3	*	3	3	*	3	het
3	3	3	3	*	*	*	het	het	3	3	3	3	3	>	≯	*	*	≯	3	3	>	W	*	3	*	М	. %	*	×	Α.	W	>	*	*	3	W	*	*	3	>	3	3	*	3	>
3	het	3	3	het	*	3	3	het	≯	het	3	het	3	het	3	het	*	het	3	het	3	het	*	het	М	het	het	3	٤	w	het	het	٤	het	Ε	het	М	*	het	*	het	٤	×	٤	3
3	≯	≥	``	3	3	≯	≯	≩	3	3	₹	≯	3	3	3	>	3	3	≯	3	≯	W	*	3	>	*	*	3	3	*	W	>	3	W	*	М	М	≯	₹	3	≥	≩	*	3	*
het	het	3	*	3	*	*	3	3	3	3	3	3	3	>	>	*	*	3	3	3	3	w	*	3.	*	Α.	*	*	*	W	W	3	*	*	*	М	×	*	≯	3	3	3	*	3	*
het	het	٤	het	het	٤	٤	het	het	het	het	het	het	het	het	het	het	het	het	het	het	het	het	het	het	Ė	ε	٤	Ε	Ε	het	het	٤	٤	ε	Ε	٤	٤	Ε	٤	٤	٤	٤	٤	E	het
*	3	3	3	3	*	*	≯	3	3	*	3	3	3	3	>	*	×	3	3	3	het	het	het	het	*	*	*	3	*	W	W	*	*	*	*	W	*	*	*	3	3	3	*	3	3
3	≥	≥	≥	3	*	3	3	3	3	3	3	3	3	3	het	het	*	3	≯	≯	3	W	*	>	3	*	*	. ≯	*	*	W	>	*	*	3	*	*	*	3	3	3	,3	3	*	>
2	2	2	2	2	2	2 .	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	3	3	. 2	2	2	2	2	2	.5	2	2	3	3	2	2	3	3	3	က	က	1	-	2

0.004	0.004	0.004	< 0.001	< 0.001	< 0.001	< 0.001	0.007	0.007	< 0.001	900.0	< 0.001	< 0.001	< 0.001	0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.043	< 0.001	0.043	< 0.001	< 0.001	< 0.001	0.008	0.004	< 0.001	< 0.001	0.007	< 0.001	< 0.001	< 0.001	< 0.001	<-0.001	< 0:001	. < 0.001	< 0.001	< 0.001	< 0.001
*4/*6	*4/*6	*4/*6	L+1+1	*4/*7	*4/*8	*4/*8	*41*9	*41*9	*42/*42	*4.1/*10	*43/*11	*4J/*12	*43/*14	*43/*17	*4J/*19	*4J/*20	*4J/*21	*4J/*28	*43/*29	*4J/*31	*4J/*35	*4J/*35X2	*4J/*37	*4J/*42	*4.1/*4.1	*4J/*4JX2	*4J/*4K	*4J/*4KX2	*4J/*4X2	*4J/*4X2	*43/*5	*4.1/*6	*4.1/*7	*4.1/*8	*4.1/*9	*4JX2/*10	*4JX2/*11	*4JX2/*12	*4JX2/*14	*4JX2/*14	*4JX2/*17	*4JX2/*19	*4JX2/*20	*4JX2/*21	*4JX2/*28
												L										7				O		2	2	2															
												•										-				က်		3	3	3			•											1	
																					-	-				3		3	3	3	-														
het	٤	r.	het.	het	٤	æ	het	het	٤	je T	je Pet	het	het	het	het	het	het	het	het	het	het	het	het	het	≯	3	het	het	het	het	W	*	*	het	*	het	het	het	het	het	het	het	het	het	het
*	*	W	*	W	Α.	*	}	3	}	3	3	3	3	3	3	W	W	*		het	3	3	≯	3	*	>	*	*	W	*	*	*	*	*	*	W	*	*	. w	*	*	*	3	*	3
W	*	W	*	*	3	3	>	3	3	3	3	3	>	· >	3	>	*	>	>	*	≯	3	3	3	*	3	>	3	>	3	*	*	*	Α.	*	M.	3	*	*	*	*	3	3	*	*
*	*	W	*	*	*	>	3	3	E	3	3	3	3	3	3	*	W	3	*	*	3	3	3	het	.	*	*	 *	*	. *	, M	*	W	*	Ж	W.	Α.	*	*	*	*	*	3	*	W
*	*	W	**	*	3	>	3	3	>	3	3	3	3	3	≥.	3	3	3	het	3	3	3	3	3	*	3	3	×	3	≯.	*	*	*	W	W	*	· M	>	W	*	3	3	*	*	*
· *	*	W	het	het	3	>	· }	3	3	3	3	3	3	3	3	3	3	3	>	*	*	3	3	3	3	3	3	3		Ŋ	M	*	het	*	М	. w	*	*	W	*	*	3	>	*	*
Α.	*	. W	3	*	het	het	*	3	٤	3	het	het	je E	het	het	het	het	het	het	het	het	het	3	het	>	3	het	het	*	*	*	*	*	het	M	M	het	het	het	het	het	het	het	het	het
w	W	W	3	3	3	}	het	het	≥		3	3	3	3	}	*	3	3	}	>	3	3	.≯	3	>	3	 ≥	*	. ≥	3	 M	*	*	w	het	м	*	*	W	3	*	≥	3	*	*
W	*	*	3	*	. >	3	3	3	3	3	≥	>	3	3	3	*	het	3	*	3	3	3	3	>	>	3	3	*	*	*	*	*	*	W	W	*	M	*	W	*	3	*	3	het	*
M	W	. M.	3	3		3	3	3	>	3	>	3	3	3	3	3	3	3	3	>	3	3	3	3	3	3	>	3	3	>	*	*	*	W	W	*	М	*	*	*	3	3	*	>	*
W	W	W	3	3	3	≯	3	3	3	3	≥	3	3	3	het	3	3	3	}	3	3	3	3	*	*	*	3	*	3	*	W	*	W	W	М	W	W	*	M.	*	3	het	*	*	*
М	×	*	≥	≯	. ≥	3	3	≥	≥	}	≥	. ≥	3	3	3	het	3	3	3	}	. ≥	3	3	3	3	3	3	3	3	*	W		W	٨	*	.≯.	×	3	*	. *	. ≥	≥	het	≥	3
W	W	*	3	3	3	≯	*	3	3	3	3	3	≥	3	3	-,W	3	3	3	3	3	3	het	3	3	3	3	*	3	*	*	*	*	w	M	*	*	*	W	*	3	3	*	*	*
*	W	*	3	3	≯	3	3	≥	≥	3	3	≥	3	3	3	3	3	3	3	≥	}	3	3	3	3	3	3	3	≥	3	*	Α.	W	w.	*	*	*	3	*	*	3	≯	*	3	*
het	het	het	het	het	het	het	het	het	3	het	het	het	je T	het	het	het	het	het	het	het	het	het	het	het	٤	Ē	٤	٤	Ε	Ε	L W	het	het	het	het	het	het	het	het	het	het	het	het	het	het
W	W	*	3	3	het	het	>	}	3	3	>	≥	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	>	W	*	*	het	*	*	×	3	*	*	3	3	*	*	3
W	W	*	3	3	3	3	*	3	3	3	3	3	het	3	3	3	3	3	>	3	3	3	3	3	3	3	3	3	3	*	Α.	3	*	M.	*	*	3	*	het	het	3	3	3	3	*
het	het	het	≥	*	3	3	≥	3	3	3	. ≥	≥	3	3	3	3	3	3	≯	3	3	3	3	3	3	3	3	3	≯	*	*	het	W	٨	*	*	W	3	M	*	3	3	*	*	*
М	М	*	≥	3	3	3	3	3	3	3	3	3	3	het	3	3	}	3	3	3	3	3	3	3	3	3	3	3		3	W	Μ	W	М	*	*	*	3	*	3	het	3	*	3	*
het	W	het	, -	het	. 3	het	3	het	3	het	je Per	je t	het	het	het	het	het	het	het	het	het	het	het	het	Ε	E	het	het	het	ε	٤	het	het	het	het	het	het	het	het	het	het	het	het	het	het
W	W	3	3	3	3	3	3	≩	3	>	het	≥	3	3	3	>	*	3	3	3	3	3	>	3	3	3	3	3	3	3	*	3	M	А	*	>	.het	`	*	*	3	3	*	3	3
М	%	Ж	≯	3	3	3	3	*	3	3	3	het	3	3	3	3	3	3	3	3	3	3	*	3	3	3	3	3	>	3	W	*	. *	*	*	*	*	het	· M	3	3	3	3	3	*
het	het	het	het	het	het	Jet	je Tj	je	3	E	Ĕ	je	je Te	het Te	het	je Tet	het Tet	het -	het	je E	je j	het	٤	het	Ε	٤	Ε	٤	Ε	Ε	٤	het	het	het	het	٤	het	het	het	ε	het	het	het	het	het
*	W	· M	3	3	3	3	3	≯	3	3	≥	3		3	≥	3	` ≩	3	≯	3	het	het Te	3	3	3	3	3	3	3	3	*	*	*	*	*	*	*	*	W	*	3	3	*	>	3
*	*	*	. ≥	3	3	3	3	3	≥	≥	≥	≥	3	>	≥	3	}	het	3	*	3	3	3	≥	*	3	≯	3	≥	3	X	*	w	٠	*	*	*	*	*	*	3	3	>	3	het
2 .	2	2	2	2	2	2	2	Ci.	2	2	7	2	2	2	2	2	2	2	2	2	7	3	2	2	2	3	2	3	3	3	1	2	2	2	2	3	3	3	3	3	3.	3	3	3	က

	< 0:001	< 0.001	\neg		V 0.00	T	┈┼╴	<u> </u>	< 0.001	v 0.001	V 0.001	× 0.001	< 0.001	0.006	< 0.001	< 0.001	< 0.001	1000	× 0.001	< 0:001	< 0.001	0.001	0.001 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.043	v 0.00 v	< 0.001	0.008	0.004	0.004	× 0.001	0.007	< 0.001	< 0.001	< 0.001	× 0.001	0.00 × 0.001	
	*4JX2/*29	*4JX2/*31	*4JX2/*35	-4JX2/-35X2	*4JX2/*37		*4JX2/*4JX2	4JX2/*4KX2	*4JX2/*5	*4JX2/~6	*4.1X2/*7	*4JX2/*8	*4JX2/*9	*4K/*10	*4K/*11	*4K/*12	*4K/*14	7L.745	*4K/*20	*4K/*21	*4K/*28	*4K/*29	*4K/*31	*4K/*35X2	*4K/*37	*4K/*42	*4K/*4JX2	*4K/*4K	*4K/*4X2	*4K/*4X2	*4K/*5	*4K/*6	*4K/*6	*4K/*8	*4K/*9	*4KX2/*10	*4KX2/*11	*4KX2/*12	*4KX2/*14	*4KX2/*17	
			\neg	2		1	0 0	7																က			-	6		3											
			2	2		1	4	4																-			3	"	n 60	3											
			7	2		1.	₹.	4																-			8	~	, w	3											
	het	het	het	het	net	het	*	het	*	3	net W	het	3	٤	Ε	٤	Ë	E 8	E E	Ε	٤	٤	E 8	Ε	m	ε	het	E 8	Ε	m	E	het	E 3	E	het	ш	٤	Ε	٤	Ε	
	*	het	*	3	≱	×	3	3	3	3	} }	3	3	Ж	3	*	*	3	3 3	*	3	*	het	*	×	*	3	3	3 3	*	3	*	>	≩ ≥	*	W	*	>	≱ :	≩	
	*	٨	*	*	>	*	3	3	3	3	3 3	3	≥	*	*	3	}	} }	} }	≯	>	>	3	3	3	>	3	3 3	3 3	*	3	*	≥ 3	≩ ≥	*	W	*	>	3	} }	
	W	N.	3	*	>]	het	3	≱	≱	>	3	3	3	Ж	Ж	3	>	} }	3 3	3	3	3	3	* 3	3	het	3	3 3	* *	*	*	>	≱ 3	3	,w	. W	Ж	*	} ;	\$ \$	
	het	М	3	*	≱ .	≱	≱	≩	≯	} :	} }	. ≥	3	*	*	*	≱	} :	3 3	3	3	het	≱ .≩	>	*	*	*	} }	\$ }	*	*	*	3	≩ }	*	W	М	M	3	3 3	
	*	*	≱	` }	≱	≱	≱	≯	*	≯	≯	<u> </u>	3	3	¥	3	≱	≱ :	3	≥	3	≱	} }	3	3	*	*	} }	\$ ≥	3	3	3	≥ 5	≨ ≥	*	W	*	*	≱ :	≩	
	het	het	het	het	≥	Jet	}	Jet L	≯	≱ :	≱ 3	het	}	het	Ę	Ė	Ε	E 8	٤	Ε	٤	٤	EE	2	het	٤	het	E 8	het .	het	٤	het	het Fo	<u> </u>	het	het	ε	Ē	E	E	
	≯	*	≱	>	≥	≯	≱	≥	3	>	} }	>	het	М	*	*	}	≥	} }	. ≥	3	≯	3	. ≥	M	>	*	3	3 3	*	>	≯	≱ 3	≯	het	М	M ⁻	≯	≱ :	\$	
19	3	*	3	3	≱	3	≱	≱	≱	>	≥	}	≯	>	*	>	≯	} }	3	je t	>	>	3	3	*	>	>	≱ 3	3 3	₹	>	≥ .	≱ 3	> >	*	*	*	≯	3	≯	
	≯	3	≩	}	≱	≱	≱	≽	≱	≱ :	≩ ≩	≥ ≥	≯	>	≯	≩	≱	} ;	≥ ≥	}	3	≱	} }	} ≥	*	≯	*	≱	>	*	>	≱	≱	≥ ≥	≯	∀	*	≯	≥ 3	\$ \$	
FIGURE	>	3	≱	*	≯	}	≱	}	≱	≥ :	} }	} >	≥	*	>	>	} :	≯	≥ ≥	. ≥	3	`≱	3	}	*	≯	>	≱ }	3 3	≩	>	≯	≥ 3	} >	3	×	>	≯	≱ :	3 3	
Ψ	3	*	3	≱	≩	≩	≱	≱	≱	3	3	3	3	>	*	>	≥ .	} :	y Piet	≯	>	≱	3	}	*	>	≯	≱ 3	\$ \$	₹	>	≯	≱ 3	≥	*	M.	M	≱	≥ :	3 ≥	
	≯	3	≩	≱ .	het	}	}	≩	≱	3	≱ ≩	} ≥	≥	3	≯	≩	≱	≯ ∃	≱	} ≥	>	≱	} }	3	het	3	3	} 3	3 3	≯	*	3	≱ }	\$ ≥	*	M.	*	≩	≥ :	≯	
	*	*	≱	≱ :	≱	≥	*	≩	≩	} :	} }	}	3	≯	>	≩	} :	≱ :	≩	3	3	3	3	3	*	>	3	3	3 3	≩	>	>	} }	3 3	*	*	*	*	} :	\$	
	het	het	þět	jet E	het	je L	Ε	E	Ε.	jet I	net Pet	het let	het	het	het	het	het	Jet 1	het	het	het	het	het	het	het	het	ε	E 8	E	Ε	ε	het	het 1	je je	het	het	het	het	het	het	×
	*	*	≱	≱	>	≱	≱	≯	}	≱	≥ 3	het :	≥	¥	*	₹	≱	≱	≱	₹	3	≱ .	} }	; ≥	≥	≯	≯	≱ 3	\$ \$	3	₹	*	} :	≱ ta	*	W	3	3	≱ :	\$	
	*	*	*	≱ :	≱	≱	≱	}	≱	≥ :	≯ 3	€ ≥	}	≯	3	≱	het	≥	≱ ≥	}	≥	≥	} }	: ≥	*	≯	3	≱ 3	\$ ≥	3	>	>	≯	\$ \$	3	*	≯.	>	het 1	≦ ≥	
,	3	Ж	3	} :	≱	}	≱	≱	≱ .	jet L	ğ ş	3	}	≯	≱	≯	≱	≥	\$. ≥	≯	*	3 3	: 3	*	}	3	} 3	\$ ≥	≯	3	het	het	\$ \$	3	*	*	≩	≱ 3	≱	•
	`	*	≯	≱	≱	≱	≱	≱	}	≩	} }	: ≥	>	≯	≯	*	}]	i jet	\$ 3	}	>	₹	≯ }	: }	*	3	≱	3	≥ ≥	3	≱	3	≱ 3	≱ ≥	¥	*	*	≯	3	het	
	het	het	jet	jet	ig :	ğ	Ε	jet T	Ε	het	het let	het let	het	3	≱	3	}	≥	\$ \$. ≥	≯	≱	3 3	: ≥	≥	≱	het	} }	\$ \$	het	≱	≱	≱	\$ ≥	}	≱	≯	≩	} :	≥	
	*	*	≯	≱ :	≱	}	*	≱	}	} :	} }	>	≥	3	het	3	}	} :	≱	}	3	≯	} }	: ≥	*	≯	*	} }	\$ ≥	≯	₹	3	} }	\$ \$	*	М	het	≩	≱ 3	≩	
	3	*	≩	≱	≥	3	≩	3	3	3	>	3	3	≯	3	het	}	≱ ;	3 3	≥	≯	}	≯ 3	: ≥	*	≯	3	≱ 3	\$ ≥	3	≯	3	≯	\$ ≥	*	*	3	het	≯ ;	≱	
	het	het	iet E	het	Ε .	jet L	٤	E	٤	je j	je je	je je	het	Ε	het	het	je j	i get	pet le	het	het	het	het Pe	het	٤	het	٤	E 8	٤	ε	٤	het	het	je je	het	٤	het	het	het	het	
	3	*	het	het	≥	3	≱	≯	>	≥ :	≯ }	: ≥	3	≯	≱	3	≥ :	> :	* *	. ≥	3	₹	≯ å	je je	*	3	≱	} }	* *	≱	≱	≱	≱ 3	} ≥	≩	*	≯	≯	} :	\$ ≥	
	š	3	≱	} :	≥	}	≱	≩	}	} :	} }	* *	≯	≱	≱	≩	} :	≱	3	}	het	≩	3	. ≥	*	*	}	} }	≩ ≥	*	*	}	≱ 3	≥ ≥	3	М	3	3	≱ ;	≩	1
	က	3	က	4 (اس	₹ .	4	7		~ «	, m	m	24	2	7	7 0	، ار	2 م	7	2	7	2 0	ا _س	2	2	8	7 6	, m	က	-	2	2 0	4 ~	2	3	က	_ص	m .	n m	

•

		< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	× 0.001	× 0:001	× 0.001	× 0.001	× 0.001	<:0.001	< 0.001	<-0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0:001	< 0.001	< 0.001	× 0:001	< 0.001 0.001	0.001	0000	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	× 0.001	× 0.001	< 0.001
·•		7			*4KX2/*28	*4KX2/*29	*4KX2/*31	*4KX2/*35	×	*4KX2/*37	_	<u>8</u>						*4KX2/*9	*4X2/*10	*4X2/*10	*4X2/*11			*4X2/*12	*4X2/*14	*4X2/*14	*4X2/*14	*4X2/*14	*4X2/*17			-4X2/-19	*4X2/*20	*4X2/*21	*4X2/*21		*4X2/*28		*4X2/*29	*4X2/*31	*4X2/*31	*4X2/*35	*4X2/*35	*4X2/*35X2	-4X2/-35X2	*4X2/*37
			**	*	*			*	4	*	*	4	*	*		*	*	*	*	*	*	*	*	*	*	*	*		*	*	* '	•		-	•		4	*	*	*	*		\neg		4	
			-:					7	7		·	4			7							-									\dagger		+	T							7	7	2	2 0	7	
					1			7	~			4				1						\dashv						7			1		+				·	:			1	7	~	2 0	1	-
		Ε	Ε	E	E	Ε	Ė	Ε	Ë	Ε	ε	Ε	ε	het	٤	het L	Ę	het	Ę	٤	Ε	Ε	ε	Ε	E	Ε	٤	٤	٤	ε	٤	E	E E	٤	٤	Ε	æ	٤	E	٤	Ε	E	E	E	E	E
		3	*	*	}	*	het	*	3	*	3	3	3	3	3	3	}	}	*	` *	*	}	*	*	3	3	3	3	3	3	3	3	> 3	₃	3	*	*	3	*	het	het	3	3	≥ :	>	3
		3	. ≯	۶,	3	3	3	3	3	>	3	3	3	3	>	3	3	3	>	>	>	3	>	3	3	3	3	3	3	≱	≯	}	3 3	≥	3	*	*	3	*	*	3	3	3	≱ :	3	*
		. 3	3	3	*	3	· .>	3	3	3	het	3	*	*	*	3	≥	3	*	3	3	3	3	»	3	3	3	}	3	}	}	}	3 3	3	3	*	*	*	W	*	3	3	3	3 3	≱	*
		*	3	3	3	het	3	3	3	3	3	3	3	}	>	≥	>	3	3	3	>	3	3	3	3	≱.	3	≯	3	}	≱	}	3 3	}	3	×.	W	het	het	3	3	3	}	3	≥	>
		.*	*	3	3	*	3	>	>	*	*	*	*	3	3	jet Tet	≯,	3	3	3	3	3	>	*	3	*	}	3	3	>	>	>	3 3	≥	3	*	Α	3	w	*	3	≯ ,	3	} :	≯	*
		٤	٤	Ε	Ε	Ε̈́	٤	٤	٤	het	Ε	Ε	Ε	het	je je	je T	ε	je je	>	3	het	het	het	het	het	het	het	het	het	het	jet .	jet L	je je	jet Jet	het	het	het	het	het	het	het	je F	het	het	ĕ	*
		3	*	3	3	3	*	3	3	>	*	3	3	3	}	*	*	het	>	3	*	*	*	3	3	*	3	3	3	3	3	≱	≱ 3	≥	3	*	/ W:	*	w	*	3	*	3	3	}	3
	<u>0</u>	3	*	het	3	*	*	*	3	>	3	*	*	}	3	3	3	3	3	3	*	3	*	*	3	3	3	3	3	3	3	3	≥ 3	het	het	3	*	*	W	>	3	3	3	≯	3	*
		3	*	*	3	*	*	*	3		}	}	}	}	3	}	}	}	3	3	*	>	*	.3	3	*	}	*	3	}	}	≯	≥ 3		3	*	*	*	W	*	}	>	3	≥ .	≱	≱
	FIGURE	het	*	3	3	3	*	*	3	3	3	3	*	3	3	3	3	3	*	3	*	3	*	*	3	*	3	3	3	3	het	het	≱ 3	}	3	×	W	*	w	*	3	3	3	≱ :	≱	*
	正	*	het	>	3	>	*	*	*	3	3	>	>	3	3	3	3	3	*	*	*	· 3	*	*	3	>	>	3	>	>	}	≱ .	ner Pet	>	3	*	٨	3	М	3	3	3	3	} :	>	*
		3	3	*	3	*	*	*	*	het	3	3	3	3	3	3	3	3	>	3	*	3	*	3	3	3	3	3	3	>	3	>	3 3	3		3	3	3	*	*	>	>	3	}	≱ .	het
		3	Ж	3	3	 *	*	3	3	>	>	>	3	}	`	3	}	3	*	*	*	*	*	>	3	3	3	3	3	3	3	3	3 3	≥	>	×	*	*	*	*	3	3	*		3	3
		het	het	het	het	het	het	het	het	het	het	ε	Ε	het	het	je t	Jet Tet	het	het	het	het	het	het	het	het	het	het	het	het	jet Tet	iet Et	jet	Jet Pet	het	het	het	het	het	het	het	het	het	het	het	ğ	het
		3	*	*	*	*	*	W	3	*	3	*	3	≱	3	3	het	}	>	*	*	>	*	*	`*	*	3	3	3	. ≯	3	}	≥ 3	3	>	3	3	*	M.	*	3	3	3	3	}	*
		3	*	≯	}	}	*	*	3	3	3	3	≯	3	3	3	3	3	3	3	*	3	*	>	het	het	het	pet pet	3	3	≯	≥	≥ 3	} ≥	3	3	*	3	· M	3	3	3	`*	3	>	3
		3	*	3	3	>	3	*	>	*	3	3	3	þet	het	>	3	· *	3	>	*	>	>	*	>	>	3	}	3	>	3	3	3 3	≥	3	3	*	3	*	>	*	*	3	3	>	*
		3	*	3	3	3	*	*	*	*	*	>	>	3	3	>	3	3	>	3	*		*	*	3	*	3	}	het	het	3	3	3 3	3	. ≥	3	*	*	W	*	*	*	3	3	>	
		3	*	3	≱	`	`	*	3	3	3	*	}	}	}	}	}	3	3	het	3	het	*	het	3	3	het	het	3	het	≱ .	jet	×	} ≥	je t	3	het	>	het	*	het	*	het	≥]	jet T	}
		3	*	3	3	3	*	*	*	>	>	>	>	3	3	}	3	3	>	>	het	het	*	*	3	>	3	3	>	}	>	3	} }	≥	3	3	3	>	W	3	3	3	3	3	}	≥
,		*	*	*	3	*	*	. W	3	*	3	3	3	3	3	3	3	3	3	3	*	>	het	het	>	>	3	}	3	>	3	>	≯ 3		3	3	*	3	*	3	3	3	3	3	}	*
		het	het	het	het	het	het	het	het	٤	het	ε	ε	het	het	jet Pet	het	het	Ė	٤	het	het	het	het	het	Ε	het	Ε	Jet Tet	jet Tet	jet	het	je je	het	het	het	het	het	het	het	het	het	het	het	jet jet	Ε
		3	*	3	3	3	*	het	het	*	*	3	*	>	}		3	3	>	3	*	*	*	×	*	3	*	- }	3	3	3	≯	3 3		>	×	*	*	×	*	*	het	het	het	het	*
	•	3	``	3	het	3	3	3	>	3	3	}	>	}	>	}	3	3	``	3	*	3	*	M	3	3	3	۶	3	3		}	3 3	≥	≥	het	het	3	*	}	*	*	*	≥ :	>	
		3	3	С	က	က	3	3	4	3	3	4	2	.თ	٠ ع	3	က	က	က	က	3	က	3	3	3	3	8	8	က	8	m	m (ກຕ	8	က	3	3	3	3	8	3	3	8	4	4	e
		لــا			الا	ل ِـــ		لِـــــ			لبا	_1	I		<i>;</i>	l	_1					1		_	1	i						<u>.</u>	_ļ_	_ _	<u>. </u>	1	<u>.</u>	لب				i				
																	-							•			•																			

FIGURE 19

• •							-																			:							•											
٠.																								-	-				-													-		
		< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	× 0.001	< 0.00 s	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001 0.001	× 0.001	× 0.001	V 0.00 V	V 0.001	× 0 00 1	× 0.001	< 0.001	< 0.001	0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	× 0.001	v 0.001	× 0.00 × 0.00	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001 < 0.001	< 0.00	< 0.001
		*4X2/*37	*4X2/*42	*4X2/*42	*4X2/*4JX2	*4X2/*4JX2	*4X2/*4KX2	-4XZ/-4KXZ	*4X2/*4X2	*4X2/*4X2	*4X2/*4X2	*4X2/*5	*4X2/*5	*4X2/*6	-4X2/-6	-4X2/-6	7.7.7.6 2.6.7.7.6	*4X2/"7	*4X2/*8	*4X2/*8	X2/*9	X2/*9	*5/*10	*5/*11	*5/*12	*5/*14	1-14	11.17	*5/*19	1/20	*5/*21	*5/*28	1.29	15.75. *5.43*	*5/*35X2	*5/*37	*5/*42	7.5	*5/*6	*5/*6	*5/*7	*5/*8 *£/*9	*6/*10	*6/*10
		+	*	\Box	_	2 *		7	\neg		4	\$	*	4		7	<u> </u>	1 2	1 2	1 3	1 2	124	\$	£,	+5	\$	¥27	\$	*	¥7	**	¥ 2	* ;	2 4	, 4	, t	\$	÷5	*	<u> </u>	<u> </u>	7 4	, ,	*
					4	4	4 4	4	4	4	4		7	1	†	+	+	+	1	+				H				1	+	7	_	7	+	+						+	\dagger	+	1	
				·	4	4	4 -	4	4	4	4			\uparrow	1	\dagger	+	\dagger	†	T		-	-						7			1								1		1	-	acksquare
		Ε	ε	٤	het	het	٤١	٤	Ε	Ε	٤	Ε	Ε	het	٤	Jet L	ε <u>]</u>	je je	٤	٤	je E	het	Ε	٤	ш	٤	Ę	ε	ε	٤	Ε	Ε	E	E 1	E E	Ε	Ε	0	Ε	>	3	٤ ۽	≱ ja	E
		3	*	3	. >	*	≱ :	*	*	3	3	3	3	3	3	*	≥	≯ 3	3	: 3	: ≥	3	>	3	W	3	*	*	*	3	*	3	3	E :	3 3	. ≥	3	0	3	} :	≱ :	≱ 3	3 3	3
		*	3	3	*	3	} :	3	≩	3	*	*	3	*	*	}	≯	3	3	3	3	3	3	3	М	≩	}	3	3	≯	≩	}	3	≱ :	3	3	3	0	3	3	}	} :	≥ ≥	>
		*	het	het	≩	3	3	≱	3	3	*	≯	≯	}	3	≥	≥	} }	3	3	>	>	≯	3	*	3	3	3	3	3	3	3	*	> 3	3	>	٤	0	3	≱	}	≱ :	3 3	3
		3	. 3	*	≯	≱	>	≱	≯	3	*	≯	3	3	*	≱	≯	} }	3	3	. ≥	≥	≥	*	W	×	*	*	*	>	*	≯	E	≱	≱ 3	. ≥	*	0	3	3	3	} :	3 3	*
		3	*	3	>	≯	} :	≱	≥	≩	*	3	3	≩	≱	}	≱ .	net Per	3	3	. ≥	≥	≥	>	M.	3	3	3	3	3	≩	3	≯	} :	3	3	3	0	>	3	ε :	} :	≯	3
		3	het	het.	≯	3	het	net	≯	*	3	≱	*	3	≱	≱	≱	≱ 3	i de	ğ	}	3	3	٤	w	ε	٤	Ε	Ę	٤	Ε	٤	Ε	٤	EE	3	٤	0	3	3	}	Ε :	≱ ≱	3
		*	*	*	≯	>	}	≱	≱	≩	*	≱	≯	>	≱	≥	≱	≯	}	: ≥	je	je Pet	≥	≯	W	≯	*	*	≯	≯	≯	3	}	≯	≱ ≱	. ≥	3	>	3	≩	≩	} {	E ≥	*
	19	*	3	×	3	.3	}	}	≯	≥	*	` }	`	}	≥	≯	3	} ;	}	3	: ≥	≥	≥	*	*	≯	*	3	3	3	٤	3	3	≥	≱ ≩	}	≯	0	3	3	}	} :	≱ ≱	≱
		*	3	3	≯	≱	≱ :	≱	>	≩	≯	>	>	≥	3	≱	}	≱	3	3	≥	≥	≥	3	*	3	3	}	3	3	3	3	≱	≥	3	3	3	0	>	>	≥	≱	≱ ≱	≥
	FIGURE	3	3	*	>	3	}	≥	>	≩	*	3	≱	≯	≱	≱	3	≯ 3	3	3	. ≥	≥	≯	X	M	≯	W	3	ε	3	≱	3	}	} :	≥ 3	. ≥	3	0	3	3	≱ :	≱ :	≯ }	3
		≥	3	*	≩	}	≯	≥	}	≱	*	3	≥	≱	}	≥	≱	≱ 3		3	: ≥	≥	3	3	М	≯	*	3	≩	Ε	≱	3	3	}	3	} ≥	}	0	3	≱	3	≱ :	≱ 3	≥
		het	*	*	*	3	≱	≱	≩	≩	*	≩	≯	3	≱	≱	≱	} 3	}	3	. ≥	≥	≩	3	М	*	М	}	}	≱	≯	}	}	} :	3	E	3	0	>	3	≱	≩	} }	≥
		*	3	>	3	``	≱	≱	}	₹	*	≯	>	3	>	≱	>	≯ 3	• •	\$ 3	: ≥	>	≥	3	*	3	*	≯	>	₹	≯	}	}	} :	≱ ≩	3	≥	0	≯	}	≱	≱ .	≥ ≥	. ≥
		het	het	het	ε	Ε	Ε !	٤	ε	ε	Ε	Ε	Ε	het	ğ	je .	jet .	i je		<u> </u>	i je	het l	3	>	Ж	3	×	>	3	3	`	3	>	≯	≱ 3	3	≯	0	≱	≯	}	≱ :	3 3	3
		*	*	*	*	3	≱	≱	. ≥	≩	*	≯	}	₹	≱	≩	≱	≱ 3	1 2	ğ ğ	<u> </u>	≥	≥	3	*	≯	≩	3	≩	≱	≱	3	}	≱ :	≱ 3	. ≥	≯	0	3	}	≱ :	Ε :	≱ 3	≥
		*	*	3	*	}	*	≱	>	₹	*	3	\dashv	-	\dashv	+	4	≯ 3	= =	3	: ≥	≥	3	3	*	Ε	ε	}	3	≥	≱	*	>	≱ :	≱ 3		3	0	3	}	} :	≱	-	. ≥
		*	>	>	*	3	}	≩	}	*	*	3	≥	het	het	je j	je L	≯ 3	\$ }	3	: ≥	≥	≥	*	M.	3	*	}	>	*	}	>	>	≯	≯ 3	: ≥	≥	0	Ε	Ε	≯	≯	× to	het
		*	3	*	*	>	≱ :	4	\dashv	-	*	≯	>	>	≱	≱	≱	≯ 3	: }	\$ ≥	:∫ }	₹	≥	3	W	≯	*	E	≥	*	*	}	}	} :	≯ }	: ≥	≥	0	≯	>		≯	≱ ∫ ≱	. ≥
		het	3	het	het	ε	≱ .	ğ	≯	het	٤	≯	Ε	*	}	jet	je j	₹	2 3	\$ \ \f	<u> </u>	het	≥	*	М	3	*	}	≯	≥	}	3	}	} :	3	: }	3	0	≯	≯	≱	≱ :	3	₹
		*	*	}	*	≯	≱	≱	≯	₹	*	₹	≯	≱	}	}	≱	} }	* *	\$ 3	: ≥	≥	≥	ε	*	≯	≯	≱	≩	≩	≩	}	≱	≱	≱ 3	: ≥	≥	0	₹	₹	≱	≯	≱ ≱	3
		*	_			3	}	≩	}	`	*	*	\dashv	≯	4	+	>	+	+	╀	╀	╀	┞	3	٤	≯	3	>	≯	≯	≯	₹	≯	} :	≯ 3	: ≥	≥	0	≱	}	≱ :	≯	+	* }
		E	het	het	ε	Έ	٤	٤	ε	E	Ε	Ε	Ε	het	het	jet L	e .	Je de		1 4	i i	ğ	E	*	*	Ε	⋧	>	≥	≥	≯	3	≥	≥	≱ 3	E E	≥	0	≥	≥	} :	≯ :	≥ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	het
		3	3	3	*	}	≱	<u>≯</u>	≯	≩	*	≯	3	3	3	≥	}	≱	3	3	: ≥	≥	≥	3	*	`	*	≯	₹	}	≱	}	}	≱	E 8	>	3	0	3	3	≱	≯	≱ ≱	3
		. ≥	3	. ≯	3	3	≱	≯	>	}	*	3	≥	3	}	≱	≱	≱ 3		3	: ≥	} ≥	≥	3	*	≯	*	≱	>	≥	3	Ε	≱	≱	3	: ≥	3	0	≱	≱	≱	} :	≱ ≱	3
		က	3	3	4	4	4	4	4	4	4	1		- 1		- -	- 1	w «	1	1	1	1	1	1 1		1		- 1		-	-	-	-	-	- ~	-	-	o	-	- ,	- -		- ~	5

< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	<:0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
+6/+11	*6/*11	*6/*12	*6/*12	*6/*14	*6/*14	*6/*14	*6/*14	*6/*17	*6/*17	*6/*19	*6/*19	*6/*20	*6/*20	*6/*21	*6/*21	*6/*28	*6/*28	*6/*29	*6/*29	*6/*31	*6/*31	*6/*35	*6/*35	*6/*35X2	*6/*35X2	*6/*37	*6/*37	*6/*42	*6/*42	9,/9,	9*/9*	94/9*	4.6/*7	*e/*7	8,/9,	8-/9-	6,49,	6,/9,	*7/*10	+7/-11	*7/*12	*7/*14	*7/*14	*7/*17	61-//-
																																													-,
het	Ε	het	Ε	het	het	E	E	het	٤	het	٤	het	٤	het	٤	het	u.	het	ш	het	٤	het	Ę	het i	E	het	E	het	ш	het	ш	*	het	*	het	٤	*	het	het	het	het	het	het	het	het
3	*	3	3	3	3	3	3	3	3	3	3	3	3	>	3	W	*	w	*	het	het	3	3	*	3	*	3	*	*	*	*	*	W	>	W	*	*	%	. *	*	*	*	3	*	*
*	*	3	3	3	3	3	3	3	3	≥	≥	>	3	>	≯	*	*	*	3	3	3	3	3	3	*	*	3	3	*	*	*	*	W	*	*	*	3	*	*	*	*	*	3	*	*
*	M.	3	*	≱.	*	*	*	3	*	*	≯	≥	3	*	М	M	М	. M	M	М	*	*	3	*	М	*	. ≱	het	het	*	M	*	*	*	Α.	*	*	М	*	М	W	*	3	*	М
W	*	*	*	*	*	3	≥	≯	≯	. 3	≱	3	3	*	×	M	м	het	het	*	*	≩	≯	3	3	*	*	*	М	*	*	W	*	*	M	*	Μ.	М	А	М	М	*	3	*	*
*	*	*	*	*	≱	3	*	≥	≥	3	≥	3	3	3	3	w	М	M.	*	3	3	3	3	3	3	*	*	*	М	Ж	М	М	het	het	M	*	M:	W	het	het	het	het	het	het	het
het	het	je j	het	het	het	het	het	het	het	het	Pet	Pet Pet	het	het	het	het	het	het	het	3	*	het	het	A	*	*	Ж	*	het	het	*	*	W.	het	het	het	het	het	het						
*	*	3	3	3	3	3	3	3	≯	≯	≯	≥	×	>	3	`	*	*	*	*	≯	₹	3	>	≯	3	≩	*	*	*	W	*	Ж	*	w	*	het	het	*	W	٨	*	3	≯	*
Х	Ж	≯	3	≥	≆	3	3	3	3	≥	3	3	3	het	het	*	*	W	*	>	3	3	3	*	≯	3	3	*	*	*	*	*	*	*	w	3	≯	3	*	W	М	₹	*	W	*
*	· w	≯	>	≯	}	}	≯	≥	≥	≥	}	3	≥	₹	≥	*	3	*	*	*	3	3	≥	>	>	*	≥	3	*	>	W	*	*	≯	*	≯	≯	*	3	*	≯	3	3	≯	*
*	A	}	₹	3	≩	.≱	3	}.	3	het	het	3	3	≩	≯	*	*	М	*	3	}	3	≯	3	3	3	*	*	Α.	*	М	W	м	3	М	*	*	3	*	W	М	*	*	>	het
3	*	≯	≯	3	≯	*	≯	≥	≯	>	≥	het	het	>	*	*	*	*	*	≩	≯	≯	≥	*	≯	*	≩	≯	≯	*	*	*	W	*	W	*	≯	3	*	*	м	*	3	*	*
*	3	≯	3	≥	≥	≯	≯	≥	≥	≯	≯	≥	≯	≯	≯	*	*	*	*	≯	≯	≯	≥	*	≯	het	het	≯	*	3	*	*	*	*	М	≯		*	*	м	Ж	≯	}	, ب	*
*	M	3	≯	≯	3	` ≯	≯	≥	≯	≥	≯	≯	*	≯	≯	*	*	*	*	≯	≯	3	≥	3	≱	3	≯	≯	*	*	W	*	*	*	W	*	*	*	*	М	*	*	≯	≯	*
*	W	3	≥	≯	3	>	≯	≥	*	≯	≯	≯	3	*	≯	*	*	*	*	>	≯	≯	3	3	≥	*	≯	*	*	*	W	*	*	*	Μ.	*	*	*	*	W	*	¥	*	≯	*
*	*	≯	≯	≯	≥	*	*	₹	≯	≥	≥	≯	≯	≥.	≯	≯	3	Α.	≥	3	≯	≯	≯	3	>	3	≯	≯	*	×	М	*	*	W	het	het	}	3	3	*	M	≯.	3	3	Α.
*	*	≯	≯	het	het	het	het	3	≥	≥	≥	≥	≯	3	3	Α.	*	M	*	≯	3	3	3	*	*	*	≯	3	М	*	*	*	*	≯	*	≯	*	≯	X	W	*	het	het	3	M
het	het	het	þet	het	het	het	het	het	het	het	het	þet	þet	het	het	het	het	het	het	het	het	het	het	het	het	het	het	het	het	٤	æ	٤	het	het	het	het	het	het	*	M	*	*	3	ж	*
3	*	3	≯	3	3	3	`	het	het	3	3	3	3	3	3	3	3	*	3	*	3	3	3	3	3	3	3	*	*	*	*	*	W	*	W	*	*	W	*	*	*	*	3	het	*
3	*	3	3	3	3	≩	3	3	₹	₹	≥	3	≥	>	>	≯	≯	*	*	3	3	3	3	3	3	3	3	3	*	3	*	3	*	3	*	3	*	3	3	*	3	≩	3	>	*
het	het	3	≩	3	3	3	≯	3	≯	>	}	≥	≯	3	≥	*	*	W	*	*	3	3	3	3	*	*	3	*	W	3	W	*	3	*	W	3	*	*	*	het	*	3	₹	≯	М
*	*	het	pet	\vdash	3	≯	_	₹	≥	3	≥	3	3	3	3	3	*	М	*	>	3	≯	≥	>	*	3	*	>	Ж	3	M	*	*	*	*	>	*	*	*	*	het	*	>	*	W
3	*	≯	≩	het	≥	het	≥	≥	≥	≥	₹	≥	3	≯	}	*		*	*	*	*	≯		\vdash	≯	het	het	≯	*	≯	* *	*	≯	≯	*	3	*	*	het	*	*	het	}	*	*
*	*	≯	₹	₹	₹	₹	₹	3	3		≥	}	3	¥	}	М	*	М	*	3	`	het	het	het	het	3	≯	*	*	3	*	3	*	≯	*	*	*	*	*	*	М	*	>	*	*
*	M .	≯	3	₹	≯	≥	≩	≩	≱	≱	≱	≥	≥	×	≯	het	het	*	*	>	≩	>	≯	≯	M	3	*	M	М	3	*	3	≩	3	*	*	М	*	≯	, ,	W	*	3	*	*
2	. 2	2	2	2	2	2	2	2	2	2	2	2	2	. 2	2	2	2	2	2	2	2	2	7	3	3	2	2	2	2	2	2	2	2	2	2	2	2 ·	.2	2	2	2	2	2	2	2

:

< 0.001	< 0.001	<.0.001	< 0.001	< 0.001	< 0.001	< 0.001	<:0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0:001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	<-0:001
*7/*20	*7/*21	*7/*28	*7/*29	*7/*31	*7/*35	*7/*35X2	*7/*37	*7/*42	2.12.	8 <i>√1</i> /*	6,12,	*8/*10	*8/*11	*8/*12	*8/*14	*8/*14	*8/*17	*8/*19	*8/*20	*8/*21	*8/*28	*8/*29	*8/*31	*8/*35	*8/*35X2	*8/*37	*8/*42	*8/*8	6*/8*	6,/6,	*9/*10	+9/*11	*9/*12	*9/*14	*9/*14	*9/*17	*9/*19	*91*20	*9/*21	*9/*28	*9/*29	*9/*31	*9/*35	*9/*35X2	*9/*37
										-			-																						-										
het	het	het	het	het	het	het	het	het	w	het	3	٤	E	m	ш	ш	æ	ш	m.	ш	· W	٤	Ε	E	ш	u l	Е	E	het	W	het	het	het	het	het	het	het	het	het	het	het	het	het	het	het
Ж	≱	W	W	het	*	M	W	*	W	≯	3	≱	3	М	*	*	≯	*	≯	3	W	*	het	*	٨	Α.	*	3	W	W	W	М	.≩	*	*	Ж	Ж	*	Ж	W	*	het	≯	*	*
*	3	W	W	×	3	*	М	3	M	3	≥	≥	≥	М	>	>	≯	*	*	*	*	×	*	>	*	*	*	*	Μ	*	W	*	⋧	М	Ж	М	*	M	*	M	*	*	*	W	*
*	3	М	М	*	*	W	W	het	М	*	≯	≯	*	*	*	3	М	· M	*	*	М	*	M	.≽	M	M.	het	*	M	W	*	*	3	*	Α.	W	W	W	*	*	M	*	*	*	` *
>	≥	W	het	*	*	М	. M	*	*	>	3	≯	*	٨	٨	*	*	*	*	М	M	het	M	*	M.	*	M	*	M	· M	W	*	×	W	×	М	W	м	*	. W	het	*	*	*	*
het	het	het	het	het	het	het	het	het	٤	het	het	3	3	M	≯	3	×	Α.	3	М	М	*	M	. W	М	Ж	М	*	М	м	*	W	*	*	*	*	W	M	*	M	. M	*	M	W	*
het	het	het	het	het	het	het.	М	het	*	het	3	·het	٤	٤	٦٤	Æ	٤	æ	٤	ε	٤	٤	E	Ε	٤	het	٤	٤	het	*	*	het	het	het	het	het	het	het	het	het	het	het	het	het	*
*	≱	W	M	Ж	*	М	М	M.	Α	×	het	≥	*	М	*	>	*	٨	*	· M	М	*	M	>	٨	M	М	М	het	w.	het	het	het	het	het	het	het	het	het	het	het	het	het	het	het
>	het	М	*	*	3	, M	М	>	M.	≯	3	3	>	M	*	>	>	٨	>	het	M.	*	М	*	Μ.	M:	M	*	M	M	M.	*	*	W	%	M	W	М	het	M	M	*	×	М	*
*	≱	*	W	>	*	٨	*	≯	*	*	≥	≥	*	М	*	*	*	*	>	W	W	М	M	M	M	M	M	*	M	. M	W	W	≯	*	*	М	*	W	*	M	٨	*	*	М	₹
>	≯	*	М	*	*	Μ.	M	. M	M	*	≯	. ≥	*	М	. M.	M	M	het	· M	· M	M	W	M	м	M	M	M	W	M	М	W	*	*	W	*	*	het	М	*	М	М	*	*	М	*
het	≩	М	*	*	≩	М	٨	*	W	3	3	≥	*	м	*	3	М	М	het	W	. M	Μ.	M	W	м	М	м	М	М	М	Ж	*	*	*	*	*	*	het	*	м	٨	*	*	М	3
3	≱	*	*	*	3	Α.	het	*	Μ.	≯	≥	≥	>	*	М	>	>	*	>	*	M	*	٨	*	*	het	M	*	M	М	*	*	3	*	Μ.	W	W	M	W	М	W	*	*	M	het
*	3	*	ж	×	*	*	*	*	W	М	3	₹	*	N	*	*	٨	W	*	Μ	M	*	М	M	М	M	M	*	M	W	M	*	≯	>	M.	W	*	М	W	М	. M	Ж	*	М	*
*	3	Ж	*	*	≯	М	М	*	W	*	3	≩	*	W	M	*	W	М	М	М	Μ	*	М	М	M	М	M	*	M	W	*	*	≩	*	*	*	>	*	>	M	*	*	*	*	*
*	≯	М	*	*	. ≯	W	W	*	٨	het	*	het	het	het	het	het	het	het	het	het	het	het	het	het	het	het .	het	Ε	het	*	Ж	≯	≩	*	*	*	*	*	*	*	٨	*	*	*	*
*	≯	*	٨	*	М	*	Ж	*	W	W	3	3	*	M.	het	het	W	М	м	≱.	*	Α.	*	W	W	W	М	*	×	×	≯	>	≩	het	het	*	≯	*	≯	*	*	>	*	*	3
≱	3	*	w	М	w	*	· M	*	w	м	3	3	*	М	W	×	Ж	*	М	M	*	*	W	М	М	M.	*	*	*	*	≯	≯	≩	*	3	*	≯	*	≯	*	*	3	*	.8	3
*	≯	W	W	*	*	w	*	*	%	٨	>	≯	>	*	W	*	het	w	*	w	*	≯	W	*	м	*	*	3	М	*	3	3	≩	≯	*	het	≩	W	3	Ж	Μ	3	>	3	*
≯	≩	*	*	≯	*	*	٨	*	Α	*	3	3	*	γ.	*	*	*	M	*	*	*	3	M·	W	W	*	*	*	М	*	≱	≱	≩	≱	≱	3	≱	*	3	3	*	>	*	>	*
*	>	3	*	*	٨	W	Α.	*	*	W	3	₹	het	· M	M.	*	М	М	M.	М	М	Ж	*	м	W	*	W	*	W	>	≯	het	≩	*	*	≱	≯	≯	≩	*	*	*	*	*	3
*	}	*	W	М	W	W	. M	. w	*	М	3	3	*	het	М	W	Ж	*	*	*	*	*	W	*	X	W	w	*	*	>	≯	≯	het	3	*	*	≯	*	≯	*	3	≯	≩	≯	*
>	≥	*	*	8	м	*	het	М	М	М	3	þet	`.	М	het	*	*	*	*	*	*	*	M	*	*	het	M	*	W	*	þet	>	3	3	het	3	3	*	3	₹	*	*	*	≯	het
*	≯	}	W	*	het	het	*	*	*	W	*	3	*	*	W	*	*	*	*	*	. w	Μ.	W	het	het	×	W	Α.	w	*	3	}	3	}	*	3	3	*	>	3	*	*	het	het	*
3	3	het	W	W	*	W	W	W	W	M	*	*	М	W	W	*	М	*	*	*	het	*	W	м	. w	×	w	*	*	*	>	>	*	*	>	*	>	*	*	het	*	*	*	≯	>
2	7	7	2	. 2	2	3	.2	2	2	2	2	2	2	2	2	2	.2	2	2	2	2	2	2	2	3	7	2	2	2	2	5	7	2	2	2	7	2	7	2	7	2	7	2	က	2

			-				-			
	,									
		<-0:001								·
		*9/*42	• .	•	•		•			
		150			· .					· .
,		w he								
		w w het	•		•	•				
		het het								
	FIGURE 19	*					*	î.		
,		w w	•							
		M M								
		*								•
		x								
		*			•			•		
		2 · w				•				

FIGURE 20

