3. Crittografia

Sicurezza dell'Informazione

Avvertimento

- Questa è una breve introduzione semplificata alla crittografia.
- Presenteremo solo ciò che è necessario per le discussioni sulla sicurezza dei sistemi.
- Nella maggior parte dei casi tratteremo i concetti matematici come delle "scatole nere".

Un cenno storico

Dal greco: kryptós = "nascosto" e gráphein = "scrivere" (ossia "l'arte della scrittura segreta").

Nell'antichità, la scrittura stessa era già una "tecnica segreta".

La crittografia nasce nella società greca, quando la scrittura divenne più comune e si sentì il bisogno di sviluppare forme di scrittura nascosta.

Il cifrario di Cesare (o a rotazione)

m

С	R	Υ	Р	Т	0	G	R	А	Р	Н	Υ
2	17	24	15	19	14	6	17	0	15	7	24

chiave k = 5

12

M

3

D

 7
 22
 3
 20
 24
 19
 11
 22
 5
 20

 H
 W
 D
 U
 Y
 T
 L
 W
 F
 U

Cifrario a sostituzione

\mathcal{A}_{m}	Α	В	С	D	Ε	F	G	Н	I	J	К	L	M	N	0	Р	Q	R	S	Т	U	V	W	Х	Υ	Z	
\mathbf{A}_{c}	t	m	k	æ	0	У	d	S	i	р	е	ι	u	а	٧	С	r	j	W	х	Z	n	h	b	q	f	V

Pigpen

A	В	C
D	E	F
G	Н	I

Cifrario di Vigenère (multi-rotazione)

m

С	R	Υ	Р	T	0	G	R	Α	Р	Н	Υ
2	17	24	15	19	14	6	17	0	15	7	24

chiave k = {5, 12, 7}

5	3	5	18	5	21	9	3	7	18	
F	D	F	S	F	V	ı	D	Н	ς	

C

Kasisky Test

"OTFDWP DZ DJDG IMKDHIG ASSUKOE, NOYBZZVBI ZZRZWYVBXP NDPVZTNI JZMLCO, IN UW RCXVDKRDO NADN IXZOZJB DDDKDU WA UKB EEI, MJ RD UVDSUUA, EMGXDOXMJ, JDL KORABA; VZU CXWPSY EOZDALB DIOUFWI PVHV RD AJYV FQG MQTXWVDLVM Q KZDKJYV MAPJB XMQVVYVZZTN YV OTZB XCZ; QMND BCQ SJHJVDZL, WZVZU XBL FUEPI WA BVPK XGMTRDO OTV CYBGO "CXHL JR **KQU** ECUKN UTZBYJDBN" MSXLM VXC CXMDD FCXMM YRPDQGAHDUVO MJLHQKFZXDA JR UXCQIUFW; QVY FYN CWYQIW AQISJ XV ADMD DDNPDCRDO OTV BOUZ EEXM-ECUKN GCVPIDFMY UE CXM MAPJB AOMEMOZY; MEM JPZ TRWEDZDZJD NGMX KUIMUEP JPZ AEN VOBGIN EN V EEXM-ECUKN SPVDXNH; IIP KQU OMORC OCNFIROV ZYGRHM, XMVBQZDME, QUQM FF XLMMXFATQIS IXCM, CMMRDO AAI CXM DYGNHQVX TXBWM FYN IIHQ ZVFMMURU XCZ; MEM JPJGXO JPDE GAU-MHUENDKZ UE RJ IKBCRUA OA KOU PPYRW HIXO ZCIMGR, XRLOIS KOU ECUKN CII UUNOT HMJCUZNTZY EDZD VEUZT PLBAG ODZKU; IIP KQECBT, SNIQYQJ JBT OTZB, MPDFVWUAN TRB RMZZ VEUV HMUN IQBZZOYKVZK XV OGMUWUAN, RFA QUJZX CXM MADJDA V IYRJM NFFWU UVDBNT I EAPOKT YMP; JDL OTFDWP DZ FCXMM YFAJIG EPVFIOTZNI IIP JHCJJXZIYVBE, KOYA NMDN XCZ UJ VOLZ FYN UUWXVV EN HMEH JWPOYRDO, IASUU BCUEPI- BCQ ZWDWXQELU WA NIRTMN, FYN RMIUXWYBT AW JWM; OTFDWP VYFWW BCQ INT UZZ FO QUZDZLQ BCQ XRLQIS FO JPZ IYRJM WQCC EN RMDYKU RMJ CXM YQVYUAO BCNTOZ AW QEVJD; KQECBT ZW CIIK TUYUZE, NQYBZZVBI BTBZOYMN FYN CIEQJCO WA VLBJQXQ ZW JPZ QIVYVZ AW CXM EGUPU, IIP TXDBMUSDJMN FF CXM YMZUO AOMKN EN FUEPI IIP HDUMIE UAOEI NP VYTF-IYRJM NFVNTA"

Rivelava la lunghezza della chiave

Quando la matematica ha vinto la guerra

- Durante la Seconda Guerra
 Mondiale, Alan Turing lavorò a
 Bletchley Park per decifrare i
 codici delle potenze dell'Asse,
 in particolare il cifrario Enigma.
- La nascita dei primi computer universali fu in parte stimolata proprio da questo sforzo di decrittazione.

Definizione

È la pratica e lo studio delle tecniche che forniscono:

- Confidenzialità: solo le parti autorizzate possono accedere alle informazioni.
- Integrità: i dati non possono essere alterati o modificati senza essere rilevato.
- Autenticazione: verifica dell'identità delle parti coinvolte nella comunicazione.
- Non ripudio: impedisce a una parte di negare di aver inviato o ricevuto un messaggio.

Cosa ci serve

A noi interessa principalmente:

- Funzioni di Hash: per l'integrità dei dati.
- Cifrari
 - simmetrici: per comunicare velocemente con una sola chiave.
 - asimmetrici: per lo scambio di chiavi simmetriche e l'autenticazione.

Funzioni di Hash

Esempio: invio di file

Rumori di diversa natura possono causare alterazioni nei file che inviamo. Come ce ne accorgiamo?

Esempio: acquisizione di una prova digitale

Le fonti di prova (Hard disk e SSD) passano tramite diverse persone prima di arrivare in un tribunale:

- Periti tecnici
- Supervisore delle indagini
- Analisti forensi
- Responsabili della custodia

Come sappiamo se è stata alterata?

Esempio: attacco informatico

Un hacker malevolo ruba le password da un sito. Molti utenti ri-usano le stesse password su altri siti. Possiamo anonimizzarle?

Idea generale

Ci serve uno strumento in grado di **verificare se qualcosa è cambiato**. Le funzioni di hash fanno questo.

Dato un entità digitale (binaria), la **funzione di hash** restituisce un numero (chiamato **digest**), che rappresenta quella specifica entità.

Proprietà

Una funzione di hash deve essere:

- Deterministica: dato un input, restituisce sempre lo stesso digest.
- Produrre un digest di lunghezza fissa (in bit): altrimenti risulterebbe complesso gestire diverse lunghezze.
- Irreversibile: dal digest non si deve poter risalire all'input.
- Resistente alle collisioni: deve essere difficile trovare 2 input con lo stesso digest.
- Veloce da calcolare: per ragioni di performance.

Un esempio di una funzione di hash è una funzione che prende tutti i byte e fa una xor fra di loro:

$$H(x) = x_1 \oplus x_2 \oplus x_3 \oplus \dots \oplus x_n$$

Esempio:

L	а	r	а		
40	61	72	61		

Digest di "Lara" è 0x3E.

E quello di "Enzo"?

Digest di "Lara" è 0x3E.

E quello di "Enzo"?

Questa funzione di hash è:

- Deterministica
- Produce un digest di lunghezza fissa (in bit)
- Irreversibile
- Resistente alle collisioni
- Veloce da calcolare

Resistenza alle collisioni

L'aspetto **più importante** di una funzione di hash è la **resistenza alle collisioni**. Senza questa caratteristica sarebbe facile:

- Non accorgersi di un cambiamento dovuto al rumore
- Manomettere le fonti di prova
- Proteggere le informazioni online

Funzioni di hash moderne

Algoritmo	Lunghezza (bit)	Digest di "ciao"
MD5	$128 (2^{128} \approx 3.4 \times 10^{38})$	6e6bc4e49dd477ebc98ef4046c067b5f
SHA1	$160 (2^{160} \approx 1,46 \times 10^{48})$	1e4e888ac66f8dd41e00c5a7ac36a32a9950d271
SHA256	$256 (2^{256} \approx 1,16 \times 10^{77})$	b133a0c0e9bee3be20163d2ad31d6248db292aa6d cb1ee2d7fc0da29886a2a5d
SHA512	$512 \left(2^{512} \approx 1{,}34 \times 10^{154}\right)$	a0c299b71a9e59d5ebb07917e70601a3570aa103e 99a7b2c92e4b0fef2d8a6a26e2d64cd845c7f0fbc 7b383e4ac2a32d7f49b2911b0a09e301b78a35fd9 d69fc

Resistenza alle collisioni

Per resistenza alle collisioni si intende che è difficile trovare due input **qualsiasi** con lo stesso digest.

Casa	634e888a			
Cucina	<mark>0e9ba298</mark>			
Mobile	a2a86fef			
Garage	d7231f49			
Radio	<mark>0e9ba298</mark>			
Microfono	d64cd845			

Resistenza alla prima pre-immagine

Dato un digest d, deve essere difficile trovare un input i tale che H(i) = h.

Digest: 1e4e888a

Deve essere difficile trovare un input *i*, per esempio "segreto", che da un digest *d* pari a 1e4e888a

Resistenza alla seconda pre-immagine

Dato un input i_1 , deve essere difficile trovare un input diversi i_2 tale che $H(i_1) = H(i_2)$.

Input: "Pippo" -> **Digest**: 4e478089

Deve essere difficile trovare un input i_2 che da lo stesso digest d di "Pippo" (ovvero 4e478089 nell'esempio)

Resistenza e tempi medi

Algoritmo	Collisione	Pre-Immagine
MD5	secondi	10 ¹⁸ anni
SHA1	giorni	10 ²⁸ anni
SHA256	10 ³² anni	10 ⁵⁷ anni
SHA512	10 ⁶⁶ anni	10 ¹³⁴ anni

Resistenza e tempi medi

Algoritmo	Collisione	Pre-Immagine
MD5	secondi	10 ¹⁸ anni
SHA1	giorni	10²⁸ anni
SHA256	10 ³² anni	10 ⁵⁷ anni
SHA512	10 ⁶⁶ anni	10 ¹³⁴ anni

MD5 e SHA1 sono oggi considerati insicuri

GDPR: Password e sicurezza online

Articolo 5, par. 1, lett. f) — Integrità e riservatezza

I dati personali devono essere trattati in modo da garantire un'adeguata sicurezza, compresa la protezione contro il trattamento non autorizzato o illecito e contro la perdita, la distruzione o il danno accidentale, mediante misure tecniche e organizzative adeguate.

GDPR: Password e sicurezza online

Se si vuole essere compliant con il GDPR, occorre proteggere/anonimizzare le password. L'hashing è la soluzione.

Username	Password Hash
Law	1e4e888a
Frank	0e9bee3b
Matteo	2e4b0fef
Rob	32d7f49b
Gab	e2d7fc0d
Tom	d64cd845

GDPR: Password e sicurezza online

Se l'attaccante riesce ad accedere al database le nostre password non sono del tutte compromesse. A meno che...

Username	Password Hash
Law	1e4e888a
Frank	0e9bee3b
Matteo	2e4b0fef
Rob	32d7f49b
Gab	e2d7fc0d
Tom	d64cd845

GDPR: Password e sicurezza online Lookup Table

Username	Password Hash
Law	1e4e888a
Frank	0e9bee3b
Matteo	2e4b0fef
Rob	32d7f49b
Gab	e2d7fc0d
Tom	d64cd845

... l'attaccante non genera i digest di un dizionario di parole. Nel gergo **Lookup Table**.

segreto	634e888a
password	1e4e888a
123456	a2a86fef
asdasd	d7231f49
mamma	0e9ba298
lorenzo	d64cd845
2004	e2d7fc0d
viadei	683dea23
capricorno	54fe1082
rocky	232aedf2
milan	12543dee

Soluzione: salting

Alle password vengono concatenati dei caratteri casuali e poi viene calcolato l'hash.

Username	Salt	Password Hash
Law	3x31LwpZ	1e4e888a
Frank	2WV9q4w8	0e9bee3b
Matteo	iJ9xG2W8	2e4b0fef
Rob	16T8u189	32d7f49b
Gab	94H0L1tV	e2d7fc0d
Tom	3m8HytT5	d64cd845

Soluzione: salting

L'attaccante deve creare una Lookup Table per utente -> Impraticabile

Username	Salt	Password Hash
Law	3x31LwpZ	2e4b0fef
Frank	2WV9q4w8	0e9bee3b
Matteo	iJ9xG2W8	32d7f49b
Rob	16T8u189	34fe7324
Gab	94H0L1tV	e2d7fc0d
Tom	3m8HytT5	d64cd845

Cifrari

Crittosistema

Un crittosistema è un sistema composto da algoritmi crittografici.

Quando il suo obiettivo è garantire la riservatezza, esso prende in ingresso un messaggio (detto testo in chiaro) e lo trasforma in un testo cifrato mediante una funzione reversibile e una chiave.

$$E^{-1} = D$$

Il problema da risolvere: confidenzialità

Il principio di Kerckhoffs

La sicurezza di un sistema crittografico deve basarsi solo sulla segretezza della chiave, e mai sulla segretezza dell'algoritmo.

Auguste Kerckhoffs, "La cryptographie militaire", 1883

Questo significa che:

- In un sistema crittografico sicuro non è possibile ricavare il testo in chiaro dal testo cifrato senza conoscere la chiave.
- Inoltre, non è possibile determinare la chiave analizzando coppie di testo in chiaro e testo cifrato.
- Gli algoritmi devono sempre essere considerati noti all'attaccante.

Il teorema di Shannon (1949)

Shannon definisce una cifratura perfetta come un sistema in cui:

conoscere il testo cifrato non dà alcuna informazione sul testo in chiaro.

In un cifrario perfetto, il numero di chiavi |K| deve essere maggiore o uguale al numero di messaggi possibili |M|

$$|K| \ge |M|$$

Osservazione: se mando due volte lo stesso messaggio con la stessa chiave, rivelo una informazione.

Il cifrario perfetto: One-Time Pad (OTP)

 XOR di un messaggio m con una chiave casuale k della stessa lunghezza di m:

$$lunghezza(k) = lunghezza(m)$$

- La chiave è pre-condivisa e viene consumata durante la scrittura.
 - Non può mai essere riutilizzata!
- L'OTP (One-Time Pad) è un cifrario perfetto minimale:
 - minimale perché |K|=|M|
- ma terribilmente scomodo, usato solo in contesti speciali (es. comunicazioni diplomatiche o militari ad alta sicurezza).