

# TalkingData AdTracking Fraud Detection Challenge

#### Contents Table

- 0. Overview
- 1. Data Exploration

#### Method1 Method2 Method3

- 2. Data Preprocessing
- 3. Target Variable Prediction
- 4. Conclusion



#### 0. Overview

#### Description

TalkingData, China's largest independent big data service platform, covers over 70% of active mobile device s nationwide. They handle 3 billion clicks per day, of which 90% are potentially fraudulent. The goal of the competition is to create an algorithm that predicts whether a user will download an app after clicking a mobile app ad.

#### **Evalution**

Submissions are evaluated on <u>area under the ROC curve</u> between the predicted probability and the observed target.



#### 0. overview

#### variables

app : app id for marketing

device : device type id of user mobile phone

os version id of user mobile phone

channel : channel id of mobile ad publisher

click time : timestamp of click (UTC)

\* attributed\_time: if user download the app for after clicking an ad, this is the time of the app download

❖ is\_attributed : the target that is to be predicted, indicating the app was download



#### Explore 100,000 data

device : 100000 non-null int64

attributed\_time : 227 non-null object

\* is\_attributed : 100000 non-null int64

#### Check download frequency

**⋄** 0 : 99773

**1** : 227

download proportion: 0.00227



Check the number of download by click time



#### Check click count per hour



#### Check download count per hour



#### Check download rate per hour



Check click count, download count, download rate (by app, device, os, channel)

Don't put the graph here because it is so large.

Please refer to the address below to view it.

https://github.com/MinPinSunHwa/Ad\_Tracking\_Project



#### Check correlation

⋄ os : 0.001630

♦ hour : -0.005629

# Method1



Train all data

preprocessing

Train sample data

preprocessing

#### Make derived variables

Create derived variables in each train all dataset and train sample dataset.

A total of 14 derived variables are created.

hour : hour from click time



Train all data

preprocessing

Train sample data

preprocessing

#### Make derived variables

# : download proportion

ip\_attr\_prop : # by ip

app\_attr\_prop : # by app

device\_attr\_prop : # by device

channel\_attr\_prop : # by channel

hour\_attr\_prop : # by hour

tot\_attr\_ptop : the sum of the above 6 variables



Train all data

preprocessing

Train sample data

preprocessing

#### Make derived variables

#: download proportion

❖ ip\_app\_prop : # by ip and app

ip\_channel\_prop : # by ip and channel

hour\_app\_prop : # by hour and app

hour\_channel\_prop : # by hour and channel

tot vv prop : the sum of the above 5 variables



Train all data

preprocessing

Train sample data

preprocessing

#### Check correlation

device\_attr\_prop : 0.201987

• os\_attr\_prop : 0.226293

channel\_attr\_prop : 0.389942

hour\_attr\_prop : 0.008851

❖ tot\_attr\_ptop : 0.532482



Train all data

preprocessing

Train sample data

preprocessing

#### Check correlation

♦ hour\_app\_prop : 0.457047

hour\_channel\_prop : 0.416602

❖ tot\_vv\_prop : 0.739013





#### Preprocess test data

Based on train all dataset except 'hour' variable, 13 derived variables are created in the test dataset.

Because train all dataset is the most data, the value of the test dataset can be filled without as many blanks as possible, thus creating derived variables in the test dataset using train all dataset.



#### Create functions

Create functions prior to prediction of the target variable.

check\_data : To check data distribution

examine\_outlier : To check for values other then 0 and 1





#### Create features to use a model

- feat1 = ip\_attr\_prop, app\_attr\_prop, device\_attr\_prop, os\_attr\_prop, channel\_attr\_prop,
  hour\_attr\_prop, tot\_attr\_prop
- feat2 = ip\_hour\_prop, ip\_app\_prop, ip\_channel\_prop, hour\_app\_prop, hour\_channel\_prop, tot\_vv\_prop
- feat3 = feat1 + feat2
- feat4 = ip\_attr\_prop, app\_attr\_prop, channel\_attr\_prop, tot\_attr\_prop
- feat5 = feat4 + feat2
- feat6 = app\_attr\_prop, channel\_attr\_prop, hour\_app\_prop, hour\_channel\_prop



#### Predict target variable

- Linear Regression
- Ridge
- Logistic Regression
- Decision Tree
- Random Forest
- Gradient Boosting
- K-Nearest Neighbors
- Support Vector machines
- LightGBM

Skip because it takes too long



#### Predict target variable

Linear Regression

|       | 10m       | 20m       | 30m       |
|-------|-----------|-----------|-----------|
| feat1 | 0.9336475 | 0.3937085 | 0.9396936 |
| feat2 | 0.7903207 | 0.7990348 | 0.8090254 |
| feat3 | 0.6832881 | 0.6891693 | 0.6870306 |
| feat4 | 0.9394377 | 0.9393066 | 0.9394337 |
| feat5 | 0.6786381 | 0.6730954 | 0.6829231 |
| feat6 | 0.9467690 | 0.9468087 | 0.9466697 |

✓ 10m, 20m, 30m : 10, 20, 30 million train data

✓ The value in table : kaggle score (AUC)



#### Predict target variable

Logistic Regression

| С    | 10m       | 20m       | 30m       |
|------|-----------|-----------|-----------|
| 0.01 | 0.9518560 | 0.9518226 | 0.9518260 |
| 0.1  | 0.9517896 | 0.9518113 | 0.9517822 |
| 1    | 0.9517904 | 0.9517846 | 0.9517540 |
| 10   | 0.9517882 | 0.9517830 | 0.9517553 |

✓ feature : feat6



#### Predict target variable

Decision Tree

| max_depth | 10m       | 20m       | 30m       |
|-----------|-----------|-----------|-----------|
| 3         | 0.9039194 | 0.9039806 | 0.9040380 |
| 4         | 0.9068583 | 0.9065484 | 0.9067215 |
| 5         | 0.9379549 | 0.9245333 | 0.9310434 |

✓ feature : feat6



#### Predict target variable

Random Forest

| n_estimators<br>max_depth | 30        | 50        | 70        |
|---------------------------|-----------|-----------|-----------|
| 3                         | 0.9117286 | 0.9325352 | 0.9325768 |
| 4                         | 0.9446114 | 0.9444698 | 0.9481182 |
| 5                         | 0.9511519 | 0.9506940 | 0.9506489 |

✓ feature : feat6

✓ sample : 10m

✓ max\_features : 1



#### Predict target variable

Gradient Boosting

| n_estimators<br>max_depth | 30        | 50        |
|---------------------------|-----------|-----------|
| 3                         | 0.9058254 | 0.9069254 |
| 4                         | 0.9426463 | 0.9432340 |
| 5                         | 0.9477711 | 0.9486383 |

✓ feature : feat6

✓ sample : 10m

✓ learning\_rate : 0.01



#### Predict target variable

#### LightGBM

|       | 10m       | 20m       | 30m       |
|-------|-----------|-----------|-----------|
| feat1 | 0.9426481 | 0.9411704 | 0.9398357 |
| feat2 | 0.8694790 | 0.8232350 | 0.8775217 |
| feat3 | 0.8694790 | 0.8467034 | 0.8577380 |
| feat4 | 0.9410401 | 0.9413678 | 0.9411245 |
| feat5 | 0.8921562 | 0.8471011 | 0.8415991 |
| feat6 | 0.9514271 | 0.9528658 | 0.9526517 |



# Method2



Train all data

Test data

merge

Make and fill a variable 'is\_attributed' in test data

Make a variable 'is\_attributed' in test data, then fill the variable with the proportion of download in train data

Merge train data and test data

Combine train data and test data to make derived variables together.



Train all data

Test data

preprocessing

#### Make derived variables

Create 21 derived variables in merged dataset.

After preprocessing separate dataset, then extract a sample.

❖ 14 derived variables made in method1



Train all data

Test data

preprocessing

#### Make derived variables

#: download proportion among download

app\_attr\_tot prop : # by app

device\_attr\_tot\_prop : # by device

os\_attr\_tot\_prop : # by os

channel\_attr\_tot\_prop : # by channel

hour\_attr\_tot\_prop : # by hour

tot\_attr\_tot\_ptop : the sum of the above 6 variables



Train all data

Test data

preprocessing

#### Check correlation

app\_attr\_prop : 0.442714

device\_attr\_prop : 0.235278

• os\_attr\_prop : 0.226075

channel\_attr\_prop : 0.389457

hour\_attr\_prop : 0.007377

❖ tot\_attr\_ptop : 0.547662



Train all data

Test data

preprocessing

#### Check correlation

app\_attr\_tot\_prop : 0.235278

device\_attr\_tot\_prop : -0.044279

os\_attr\_tot\_prop : -0.001541

channel\_attr\_tot\_prop : 0.264980

hour\_attr\_tot\_prop : 0.007057

tot\_attr\_tot\_ptop : 0.026574



Train all data

Test data

preprocessing

#### Check correlation

♦ hour\_app\_prop : 0.452420

hour\_channel\_prop : 0.413714

❖ tot\_vv\_ptop : 0.739452







- feat1 = ip\_attr\_prop, app\_attr\_prop, device\_attr\_prop, os\_attr\_prop, channel\_attr\_prop,
  hour\_attr\_prop, tot\_attr\_prop
- feat2 = ip\_hour\_prop, ip\_app\_prop, ip\_channel\_prop, hour\_app\_prop, hour\_channel\_prop, tot vv prop
- feat3 = feat1 + feat2
- feat4 = ip\_attr\_prop, app\_attr\_prop, channel\_attr\_prop, tot\_attr\_prop
- feat5 = feat4 + feat2
- feat6 = feat5 + app\_attr\_tot\_prop, channel\_attr\_tot\_prop

- feat7 = app\_attr\_prop, channel\_attr\_prop, hour\_app\_prop, hour\_channel\_prop
- feat8 = feat7 + app\_attr\_tot\_prop, channel\_attr\_tot\_prop
- feat9 = app\_attr\_prop, device\_attr\_prop, os\_attr\_prop, channel\_attr\_prop, hour\_attr\_prop
- feat10 = feat9 + hour\_app\_prop, hour\_channel\_prop
- feat11 = feat10 + app\_attr\_tot\_prop, channel\_attr\_tot\_prop



# Predict target variable

- LightGBM
- LightGBM : add categorical\_feature (app, channel)
- Mean of the highest 3 scores

# Predict target variable

LightGBM

|       | 10m | 20m | 30m | 40m       | 50m |
|-------|-----|-----|-----|-----------|-----|
| feat1 |     |     |     | 0.5688519 |     |
| feat2 |     |     |     | 0.7514380 |     |
| feat3 |     |     |     | 0.5293284 |     |
| feat4 |     |     |     | 0.5320984 |     |
| feat5 |     |     |     | 0.2968826 |     |
| feat6 |     |     |     | 0.6316038 |     |



# Predict target variable

LightGBM

|        | 10m       | 20m       | 30m       | 40m       | 50m       |
|--------|-----------|-----------|-----------|-----------|-----------|
| feat7  | 0.9509782 | 0.9519082 | 0.9505800 | 0.9509782 | 0.9520227 |
| feat8  | 0.9538612 | 0.9527098 | 0.9525610 | 0.9532771 | 0.9525889 |
| feat9  | 0.9572276 | 0.9550265 | 0.9568368 | 0.9532595 | 0.9556014 |
| feat10 | 0.9501722 | 0.9504824 | 0.9508289 | 0.9524248 | 0.9516097 |
| feat11 | 0.9544192 | 0.9564199 | 0.9538744 | 0.9536148 | 0.9525215 |



## Predict target variable

LightGBM : add categorical\_feature

|        | 10m       | 20m       | 30m       | 40m       | 50m       |
|--------|-----------|-----------|-----------|-----------|-----------|
| feat7  | 0.9536391 | 0.9541964 | 0.9543481 |           |           |
| feat8  | 0.9544556 | 0.9544834 | 0.9539668 |           |           |
| feat9  | 0.9592092 | 0.9591456 | 0.9594930 | 0.9569738 | 0.9585332 |
| feat10 | 0.9579120 | 0.9571316 | 0.9572331 | 0.9565375 | 0.9558988 |
| feat11 | 0.9576898 | 0.9583076 | 0.9570422 | 0.9567561 | 0.9542069 |



## Predict target variable

❖ Mean of the highest 3 scores : 0.9601829



# Method3





Train all data

Test data

preprocessing

#### Check correlation

device\_attr\_prop : 0.195802

• os\_attr\_prop : 0.217134

channel\_attr\_prop : 0.361186

hour\_attr\_prop : 0.001310

❖ tot\_attr\_ptop : 0.437112



Train all data

Test data

preprocessing

#### Check correlation

app\_attr\_tot\_prop : 0.058505

device\_attr\_tot\_prop : -0.047266

channel\_attr\_tot\_prop : 0.175313

hour\_attr\_tot\_prop : 0.001170

tot\_attr\_tot\_ptop : -0.013554



Train all data

Test data

preprocessing

#### Check correlation

hour\_app\_prop : 0.394257

hour\_channel\_prop : 0.352294

❖ tot\_vv\_ptop : 0.676771



- feat1 = ip\_attr\_prop, app\_attr\_prop, device\_attr\_prop, os\_attr\_prop, channel\_attr\_prop,
  hour\_attr\_prop, tot\_attr\_prop
- feat2 = ip\_hour\_prop, ip\_app\_prop, ip\_channel\_prop, hour\_app\_prop, hour\_channel\_prop, tot vv prop
- feat3 = feat1 + feat2
- feat4 = ip\_attr\_prop, app\_attr\_prop, channel\_attr\_prop, tot\_attr\_prop
- feat5 = feat4 + feat2
- feat6 = feat5 + app\_attr\_tot\_prop, channel\_attr\_tot\_prop

- feat7 = app\_attr\_prop, channel\_attr\_prop, hour\_app\_prop, hour\_channel\_prop
- feat8 = feat7 + app\_attr\_tot\_prop, channel\_attr\_tot\_prop
- feat9 = app\_attr\_prop, device\_attr\_prop, os\_attr\_prop, channel\_attr\_prop, hour\_attr\_prop
- feat10 = feat9 + hour\_app\_prop, hour\_channel\_prop
- feat11 = feat10 + app\_attr\_tot\_prop, channel\_attr\_tot\_prop



# Predict target variable

- LightGBM : add categorical\_feature (app, channel)
- Mean of the highest 3 scores

# 4. Conclusion

#### Result

- Variables related to app and channel were important.
- The best score: 0.960

#### Realization

❖ It was more important to know which variables to use than which model to use.



# Thank you.