1. Sea dada la sucesión $\{a_n\}$, tal que $a_n > 0$ y $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = p < 1$.

- a) Analice la monotonía de $\{a_n\}$.
- b) Demuestre que $\{a_n\}$ converge y calcule su límite.
- c) Calcule $\lim_{n \to \infty} \frac{3^n}{n!}$

2. Calcule los siguientes límites:

a)
$$\lim_{n \to \infty} \frac{5n^2 - 3n + \sin(2n^3)}{\sqrt{n^4 + n} - \sqrt{n^4 + n^3}}$$
b)
$$\lim_{n \to \infty} \left(\frac{8^n + 6}{5 + 2^{3n}}\right)^{8^{n-2} + 1}$$

b)
$$\lim_{n \to \infty} \left(\frac{8^n + 6}{5 + 2^{3n}} \right)^{8^{n-2} + 1}$$

3. Diga Verdadero o Falso. Justifique en cada caso:

- a) La sucesión $\{n^{(-1)^n n}\}$ es infinitesimal.
- b) La sucesión $\left\{ \left(\cos\frac{n\pi}{3}\right)^n \right\}$ es convergente.

ANÁLISIS MATEMÁTICO I Curso 2011-2012 BAT B

1. Sea dada la sucesión $\{b_n\}$, tal que $b_n > 0$ y $\lim_{n \to \infty} \frac{b_{n+1}}{b_n} = q < 1$.

- a) Analice la monotonía de $\{b_n\}$.
- b) Demuestre que $\{b_n\}$ converge y calcule su límite.
- c) Calcule $\lim_{n\to\infty} \frac{4^n}{n!}$

2. Calcule los siguientes límites:

$$a) \lim_{n \to \infty} \sqrt{n} \cos n! \left(\sqrt{n^3 + 1} - \sqrt{n^3 - 2} \right)$$

$$b) \lim_{n \to \infty} \left(\frac{2^{2n} + 3}{2 + 4^n} \right)^{4^{n-3} + 7}$$

3. Diga Verdadero o Falso. Justifique en cada caso.

- a) La sucesión $\{n^{(-1)^n n}\}$ es infinitamente grande.
- b) La sucesión $\left\{\sqrt[n]{4^{(-1)^n}+2}\right\}$ es convergente.