Q1.	Two points on a progressive wave are one-eighth of a wavelength apart. The distance between them is 0.5 m, and the frequency of the oscillation is 10 Hz. What is the minimum speed of the wave?						
	Α	0.2 r	m s ⁻¹				
	В	10 m	n s ⁻¹				
	С	20 m	n s ⁻¹				
	D	40 m	n s ⁻¹	>			
						(Total 1 mark)	
Q2.	waveler	ngth of f the ob	the radiation is λ	ી, the slit separation	w and the distance	aration is s when the e between the slits and the would the fringe separation	
			wavelength	slit separation	distance between slits and fringes		
		Α	2λ	2 <i>w</i>	2 <i>D</i>		
		В	2λ	4w	2D		
		С	2λ	2 <i>w</i>	4 <i>D</i>		
		D	4λ	2 <i>w</i>	2 <i>D</i>		
						(Total 1 mark)	
Q 3.	Whi	ich of th	ne following wav	res cannot be polar	ised?		
	Α	radio	0]			
	В	ultra	sonic]			
	С	micr	owave]			
	D	ultra	violet]			
						(Total 1 mark)	

Q1.

Q4.					mproved by ad this improvem	justing the orientation ent?	on of the aerial.
	Α	The radio v	waves from t	he transmitter	are polarised.		
	В	The radio	waves from t	the transmitter	are unpolarise	d.	
	С	The radio	waves becor	me polarised as	s a result of adj	usting the aerial.	
	D	The radio	waves becor	me unpolarised	l as a result of a	adjusting the aerial.	(Total 1 mark)
Q5.			nd 2 each sho		t incident on a	water-air boundary.	A, B, C and D
				air water B		D W	air ater
			Figure 1			Figure 2	
			_			•	
	(a)	Circle the I	_	hat correspond	ds to a directior	n in which a ray can	not occur.
	(a)	Circle the I	_	hat correspond	ds to a directior	n in which a ray can D	not occur.
	(a) (b)		letter below t	В	С	•	(1)
			letter below t	В	С	D	(1)
			A letter below t	B hat correspond	C ds to the direction	D on of the faintest ray	(1)
			A letter below t	B hat correspond	C ds to the direction	D on of the faintest ray	(1) y.
Q6 .	(b)	Circle the I	A letter below t A	B hat correspond B	C ds to the direction	D on of the faintest ray	(1) y. (1) (Total 2 marks)
Q 6.	(b)	Circle the I	letter below t A letter below t A	B hat correspond B en two points o	C ds to the direction C	D on of the faintest ray	(1) y. (1) (Total 2 marks) which have a
Q6.	(b)	Circle the I	letter below to $\bf A$ letter below to $\bf A$ stance between $\bf A$ and is	B hat correspond B en two points o	C ds to the direction C	D on of the faintest ray D e transverse wave w	(1) y. (1) (Total 2 marks) which have a
Q6.	(b) The phase of the content of the	Circle the I The least dis se difference e wave?	letter below to $\bf A$ letter below to $\bf A$ stance between $\bf A$ and is	B hat correspond B en two points o	C ds to the direction C	D on of the faintest ray D e transverse wave w	(1) y. (1) (Total 2 marks) which have a

D

1666 m s⁻¹

Q7.	Young's two slit interference pattern with	red light of wavelength	$7.0 \times 10^{-7} \text{n}$	n gives a fringe
	separation of 2.0 mm.			

What separation, in mm, would be observed at the same place using blue light of wavelength 45×10^{-7} m?

- **A** 0.65
- **B** 1.3
- **C** 2.6
- **D** 3.1

(Total 1 mark)

- **Q8.** Which one of the following statements about stationary waves is true?
 - A Particles between adjacent nodes all have the same amplitude.
 - **B** Particles between adjacent nodes are out of phase with each other.
 - **C** Particles immediately on either side of a node are moving in opposite directions.
 - **D** There is a minimum disturbance of the medium at an antinode.

(Total 1 mark)

Q9. In a double slit interference arrangement the fringe spacing is w when the wavelength of the radiation is λ , the distance between the double slits is s and the distance between the slits and the plane of the observed fringes is s. In which one of the following cases would the fringe spacing also be s?

	wave length	distance between slits	distance between slits and fringes
A	2λ	2s	2 <i>D</i>
В	2λ	4.5	2 <i>D</i>
С	2λ	2s	4 <i>D</i>
D	4λ	2s	2 <i>D</i>

(Total 1 mark)

Q10. A progressive wave in a stretched string has a speed of 20 m s⁻¹ and a frequency of 100 Hz.

What is the phase difference between two points 25 mm apart?

- A zero
- $\mathbf{B} \qquad \frac{\pi}{4} \text{rad}$
- $\mathbf{C} \qquad \frac{\pi}{2} \text{ rad}$
- **D** π rad

Q11. Two waves with amplitudes a and 3a interfere.

The ratio $\frac{\text{amplitude at an interference maximum}}{\text{amplitude at an interference minimum}}$ is

- **A** 2
- **B** 3
- **C** 4
- **D** infinity

(Total 1 mark)

- Q12. A stationary wave is formed by two identical waves of frequency 300 Hz travelling in opposite directions along the same line. If the distance between adjacent nodes is 0.60 m, what is the speed of each wave?
 - **A** 180 m s⁻¹
 - **B** 250 m s^{-1+}
 - **C** 360 m s⁻¹
 - **D** 500 m s⁻¹

(Total 1 mark)

Q13.

The diagram above shows a stationary wave on a stretched string at a time t = 0. Which one of the diagrams, **A** to **D**, correctly shows the position of the string at a time t = 0.010 s?

- **Q14.** A wave motion has period T, frequency f, wavelength λ and speed v. Which one of the following equations is **incorrect**?
 - A 1 = Tf
 - $\mathbf{B} \qquad T = \frac{\upsilon}{\lambda}$
 - $\mathbf{C} \qquad \lambda = \frac{\upsilon}{f}$
 - **D** $Tv = \lambda$

(Total 1 mark)

- **Q15.** Light of wavelength λ is incident normally on a diffraction grating of slit separation 4λ . What is the angle between the second order maximum and third order maximum?
 - **A** 14.5°
 - **B** 18.6°
 - **C** 48.6°
 - **D** 71.4°

- Q16. Interference maxima produced by a double source are observed at a distance of 1.0 m from the sources. In which one of the following cases are the maxima closest together?
 - A red light of wavelength 700 nm from sources 4.0 mm apart
 - **B** sound waves of wavelength 20 mm from sources 50 mm apart
 - C blue light of wavelength 450 nm from sources 2.0 mm apart
 - **D** surface water waves of wavelength 10 mm from sources 200 mm apart

Q17.

In a double slit system used to produce interference fringes, the separation of the slits is s and the width of each slit is s. L is a source of monochromatic light. Which one of the following changes would **decrease** the separation of the fringes seen on the screen?

- A moving the screen closer to the double slits
- **B** decreasing the width, x, of each slit, but keeping s constant
- **C** decreasing the separation, s, of the slits
- ${\bf D}$ exchanging L for a monochromatic source of longer wavelength

- Q18. In a Young's double slit interference experiment, monochromatic light placed behind a single slit illuminates two narrow slits and the interference pattern is observed on a screen placed some distance away from the slits. Which one of the following **decreases** the separation of the fringes?
 - A increasing the width of the single slit
 - **B** decreasing the separation of the double slits
 - **C** increasing the distance between the double slits and the screen
 - **D** using monochromatic light of higher frequency

Q19. A microwave transmitter is used to direct microwaves of wavelength 30 mm along a line XY. A metal plate is positioned at right angles to XY with its mid-point on the line, as shown.

When a detector is moved gradually along XY, its reading alternates between maxima and minima. Which one of the following statements is **not** correct?

- A The distance between two minima could be 15 mm.
- **B** The distance between two maxima could be 30 mm.
- **C** The distance between a minimum and a maximum could be 30 mm.
- **D** The distance between a minimum and a maximum could be 37.5 mm.

Q20. Electrons and protons in two beams are travelling at the same speed. The beams are diffracted by objects of the same size.

Which correctly compares the de Broglie wavelength $\lambda_{\rm e}$ of the electrons with the de Broglie wavelength $\lambda_{\rm p}$ of the protons and the width of the diffraction patterns that are produced by these beams?

	comparison of de Broglie wavelength	diffraction pattern	
Α	$\lambda_{\rm e} > \lambda_{\rm p}$	electron beam width > proton beam width	0
В	$\lambda_{\rm e} < \lambda_{\rm p}$	electron beam width > proton beam width	0
С	$\lambda_{\rm e} > \lambda_{ ho}$	electron beam width < proton beam width	0
D	$\lambda_{\rm e} < \lambda_{ ho}$	electron beam width < proton beam width	0

(Total 1 mark)

Q21. The diagram shows two pulses on a string travelling towards each other.

Which of the following diagrams shows the shape of the string when the pulses have passed through each other?

QZZ.		_		ensed by its speed, frequi conochromatic light passe	•	
	A	Speed only.		0		
	В	Speed and wavelength	only.	0		
	С	Speed and frequency o	nly.	0		
	D	Wavelength and freque	ncy only.	0		(Total 1 mark)
Q23.	incide	ent on a diffraction gratin	g it is found t	nixture of two wavelength hat the fifth order of light tof wavelength λ_2 . If λ_1 is	of wavelength $\lambda_{_1}$ occu	
	A	400 nm	0			
	В	480 nm	0			
	С	600 nm	0			
	D	750 nm	0			
						(Total 1 mark)
Q24.		Monochromatic light of v lines per metre. Which	_	90 nm falls normally on a llowing is correct?	diffraction grating tha	at has 6
	A	The first order is observ	ed at angle o	of diffraction of 17°.	0	
	В	The second order is obs	served at ang	gle of diffraction of 34°.	0	
	С	The third and higher ord	lers are not p	produced.	0	
	D	A grating with more line	s per metre o	could produce more orde	rs.	(Total 1 mark)

Q25.	Sound waves cross a boundary between two media X and Y. The frequency of the waves in
	X is 400 Hz. The speed of the waves in X is 330 m s ⁻¹ and the speed of the waves in Y is 1320 m
	s ⁻¹ . What are the correct frequency and wavelength in Y?

	Frequency / Hz	Wavelength / m	
A	100	0.82	0
В	400	0.82	0
С	400	3.3	0
D	1600	3.3	0

							(Total 1 mark)
Q26.	incide	A light source emits lighent on a diffraction gration angle as the fourth	ng it is four	nd that the fifth orde	r of light of w	avelength $\lambda_{_1}$	occurs at
	Α	400 nm	0				
	В	480 nm	0				
	С	600 nm	0				
	D	750 nm	0				
							(Total 1 mark)
Q27.		Which one of the follow motion rather than a lo			tal evidence t	that light is a	transverse
,	A	Two light waves that a	re coheren	t can be made to in	terfere.	0	
	В	Light can be diffracted.				0	
	С	Light can be polarised.				0	
	D	The intensity of light fro square of the distance			rsely as the	0	
							(Total 1 mark)

M1.	D		[1]
M2.	В		[1]
М3.	В		[1]
M4.	A		[1]
M5. (b)	(a) A D	B1	[2]
M6.	C		[1]
M7.	В		[1]
M8.	C		[1]
М9.	В		[1]
M10.	В		[1]
M11.	A		[1]

M12.	С	[1]
M13.	С	[1]
M14.	В	[1]
M15.	В	[1]
M16.	A	[1]
M17.	A	[1]
M18.	D	[1]
M19.	C	[1]
M20.	A	[1]
M21.	С	[1]
M22.	В	[1]
M23.	С	[1]
M24.	A	[1]

M25.	C	[1]
M26.	C	[1]
M27.	C	[1]