Wahadło fizyczne – wstęp teoretyczny

1 Definicje i podstawowe zależności dla wielkości kinetycznych opisujących ruch obrotowy

Ruch obrotowy bryły sztywnej to taki ruch, w którym wszystkie punkty bryły poruszają się po okręgach o środkach leżących na jednej prostej zwanej osią obrotu.

1.1 Położenie kątowe

Położeniem kątowym ciała θ nazywamy kąt, jaki tworzy linia odniesienia z pewnym stałym kierunkiem. Jeśli ten kąt wyrażony jest w mierze łukowe (radianach), to:

$$\theta = \frac{s}{r}$$

gdzie s jest długością odpowiadającą kątowi θ łuku okręgu o promieniu r.

1.2 Przemieszczenie kątowe

Jeśli ciało obracające się wokół osi zmienia swoje położenie kątowe z θ_1 na θ_2 , to doznaje ono przemieszczenia kątowego:

$$\Delta\theta = \theta_2 - \theta_1$$
.

Jeśli obrót odbywa się w kierunku przeciwnym do kierunku ruchu wskazówek zegara, to $\delta\theta$ jest dodatnie, a ujemne, jeśli obrót odbywa się w kierunku zgodnym z kierunkiem ruchu wskazówek zegara.

1.3 Prędkość katowa

Jeśli ciała doznaje przemieszczenia kątowego $\delta\theta$ w przedziale czasu Δt , to jego średnia prędkość kątowa wynosi:

$$\omega_{sr} = \frac{\Delta\theta}{\Delta t},$$

a predkość chwilowa tego ciała jest równa:

$$\omega_{sr} = \frac{d\theta}{dt}$$
.

Obie te wielkości ω_{sr} i ω są wektorami, których kierunek wyznacza się regułą prawej dłoni.

1.4 Przyspieszenie katowe

Jeśli prędkość kątowa ciała zmienia się z ω_1 na ω_2 w przedziale czasu $\Delta t = t2 - \theta_1$, to średnie przyspieszenie kątowe wynosi:

$$\epsilon_{sr} = \frac{\Delta\omega}{\Delta t},$$

a przyspieszenie kątowe chwilowe jest równe:

$$\epsilon = \frac{d\omega}{dt}.$$

1

1.5 Jednostajny i niejednostajny ruch obrotowy

Ruch obrotowy jednostajny to ruch obrotowy ze stałą prędkością kątową $\omega=\frac{2\pi}{T}$. Ruch obrotowy niejednostajny to ruch po torze o kształcie okręgu ze zmienną wartością prędkości. W zależności od charakteru tej zmiany, można wyróżnić ruch jednostajnie zmienny po okręgu (wartość przyspieszenia kątowego jest stała) oraz ruch niejednostajnie zmienny po okręgu – wartość przyspieszenia kątowego opisana jest funkcją w czasie.

2 Definicje i podstawowe zależności dla wielkości dynamicznych opisujących ruch obrotowy.

2.1 Moment bezwładności

Moment bezwładności to miara bezwładności ciała w ruchu obrotowym względem ustalonej osi obrotu. Im większy moment, tym trudniej zmienić ruch obrotowy ciała.

2.2 Moment pędu

Moment pędu punktu materialnego o pędzie \vec{p} , którego położenie opisane jest wektorem wodzącym \vec{r} względem danego układu odniesienia definiuje się jako wektor będący rezultatem iloczynu wektorowego wektora położenia i pędu:

$$\vec{L} = \vec{r} \times \vec{p}$$
.

Z własności iloczynu wektorowego wynika, że wartość bezwzględna momentu pędu jest równa

$$L = |r| \cdot |p| \cdot sin\theta,$$

gdzie θ oznacza kąt między wektorami \vec{r} i \vec{p} . Dla ciała o momencie bezwładności I obracającego się wokół ustalonej osi z prędkością kątową ω moment pędu można wyrazić wzorem

$$L = I \cdot \omega$$
.

2.3 Moment sily

Moment siły \vec{F} względem punktu O to iloczyn wektorowy promienia wodzącego \vec{r} , o początku w punkcie O i końcu w punkcie przyłożenia siły, oraz siły \vec{F} :

$$\vec{M} = \vec{r} \times \vec{F}$$
.

co możemy zapisać jako:

$$M = m \cdot q \cdot a \cdot \sin\theta$$
,

gdzie a jest odległością środka masy S od osi obrotu, a θ odchyleniem od pionu.

2.4 Druga zasada dynamiki dla ruchu obrotowego

Jeśli na pewne ciało, o momencie bezwładności względem tej osi równym I, działają zewnętrzne siły, które wywierają na to ciało wypadkowy moment siły M, to w wyniku tego ciało będzie obracać się z przyspieszeniem kątowym takim, że:

$$\vec{M} = I \cdot \vec{\epsilon}$$
.

3 Definicja momentu bezwładności. Wyprowadzenie momentu bezwładności dla jednorodnego pręta o długości l i masie m względem osi prostopadłej do pręta i przechodzącej przez jego środek masy.

Dla układu oddzielnych cząstek moment bezwładności ciała zdefiniowany jest jako:

$$I = \sum m_i r_i^2,$$

a dla ciała o ciągłym rozkładzie masy jako:

$$I = \int r^2 dm,$$

gdzie wielkości r i r_i są odległościami elementów ciała od osi obrotu.

Pręt to walec o promieniu zbiegającym do zera, więc można go traktować jako figurę jednowymiarową. Gęstość liniowa pręta to $\lambda=\frac{m}{l}$, wobec tego $dm=\lambda dx=\frac{m}{l}dx$. Moment bezwładności takiego elementu pręta to $dI=\frac{m}{l}x^2dx$. Środek układu współrzędnych pokrywa się ze środkiem masy pręta, co daje nam:

$$I = \frac{m}{l} \int_{-\frac{l}{2}}^{\frac{l}{2}} x^2 dx = \frac{m}{l} \left(\frac{l^3}{24} + \frac{l^3}{24} \right) = \frac{1}{12} m l^2$$

4 Twierdzenie Steinera dla momentu bezwładności i przykłady jego zastosowania.

Twierdzenie to mówi, że jeśli znamy moment bezwładności I_S danego ciała względem pewnej osi przechodzącej przez środek masy tego ciała, to aby obliczyć moment bezwładności I_0 względem dowolnej innej osi równoległej do niej, należy do momentu I_S dodać iloczyn masy ciała i kwadratu odległości a między tymi osiami:

$$I_0 = I_S + ma^2$$

Na przykład znając moment bezwładności kuli względem osi przechodzącej przez środek jej masy $I_S=rac{2}{5}mR^2$, możemy wyliczyć moment bezwładności kuli względem osi stycznej do tej kuli:

$$I_0 = I_S + ma^2 = \frac{2}{5}mR^2 + mR^2 = \frac{7}{5}mR^2$$

5 Ruch harmoniczny, równanie ruchu i parametry opisujące ruch.

Ruch harmoniczny – drgania opisane funkcją sinusoidalną (harmoniczną). Jest to najprostszy w opisie matematycznym rodzaj drgań. Z prawa Hook'a mamy:

$$\vec{F} = -k\vec{x}$$
.

gdzie F to siła, k to współczynnik sprężystości, a x to wychylenie z położenia równowagi. Stosując drugą zasadę dynamiki Newtona (F=ma) i rozwiązując równanie różniczkowe drugiego stopnie otrzymujemy równanie ruchu harmonicznego:

$$x(t) = Asin(\omega t + \varphi),$$

gdzie $\omega=\sqrt{\frac{k}{m}}$ to częstość kołowa drgań, A to amplituda (wychylenie maksymalne), φ to faza początkowa ruchu, a cały argument funkcji sinus to faza ruchu. Czas wykonania jednego pełnego drgania to okres i wynosi $T=\frac{2\pi}{\omega}$, a ilość drgań wykonanych w określonej jednostce czasu to częstotliwość $\nu=\frac{\omega}{2\pi}[Hz]$.

6 Wahadło matematyczne. Opis ruchu wahadła matematycznego dla małych drgań. Okres drgań tego wahadła.

Rysunek 1: Wahadło matematyczne

Wahadło matematyczne to ciało o masie punktowej zawieszone na cienkiej, nierozciągliwej nici. Kiedy ciało wytrącimy z równowagi, zaczyna się ono wahać w płaszczyźnie pionowej pod wpływem siły ciężkości ruchem okresowym. Aby wyprowadzić wzór na okres zapisujemy drugą zasadę dynamiki dla wahadła:

$$ml^2 \frac{d^2\theta}{dt^2} = -mgl\sin\theta.$$

Stosując przybliżenie małych kątów $\sin\theta\approx\theta$ otrzymujemy:

$$\frac{d^2\theta}{dt^2} = -\frac{g}{l}\theta.$$

Mamy równanie różniczkowe drugiego rzędu, z którego otrzymujemy:

$$\theta = A\sin(\omega t + \varphi)$$

gdzie $\omega=\sqrt{\frac{g}{l}}$ to częstość kołowa drgań, A to amplituda (wychylenie maksymalne), φ to faza początkowa ruchu, a cały argument funkcji sinus to faza ruchu. Aby wyliczyć okres wahadła dokonujemy podstawienia:

$$\frac{2\pi}{T} = \sqrt{\frac{g}{l}}$$

$$T = 2\pi \sqrt{\frac{l}{q}}$$

Wahadło fizyczne. Przybliżony opis ruchu wahadła fizycznego za pomocą równania ruchu harmonicznego. Okres drgań wahadła fizycznego w przybliżeniu harmonicznym.

Wahadło fizyczne to bryła sztywna mogąca poruszać się swobodnie względem osi obrotu O nie przechodzącej przez środek ciężkości tej bryły S. W polu grawitacyjnym wahadło fizyczne wykonuje ruch drgający – jest to ruch obrotowy względem poziomej osi przechodzącej przez punkt O. Przyczyną tego ruchu jest moment siły ciężkości prostopadły do płaszczyzny poniższego rysunku.

Zgodnie z drugą zasadą dynamiki dla ruchu obrotowego ruch ten opisuje równanie:

$$I_o \frac{d^2 \theta}{dt^2} = -mga \sin \theta,$$

gdzie:

 I_o – moment bezwładności bryły względem osi obrotu,

 θ – kąt wychylenia od położenia równowagi,

t – czas,

m – masa bryły,

g – przyspieszenie ziemskie,

a – odległość osi obrotu od środka ciężkości.

Równanie to opisuje ruch drgający, który nie jest ruchem harmonicznym. Zakładając, że amplituda drgań (kąt maksymalnego wychylenia) nie przekracza kilku stopni, możemy skorzystać z przybliżenia:

Rysunek 2: Wahadło fizyczne

$$\sin \theta \approx \theta = \frac{x}{a},$$

gdzie x to długość łuku wychylenia środka ciężkości z położenia równowagi. Wstawiając taką zależność do powyższego równania otrzymujemy:

$$\frac{d^2x}{dt^2} = -\frac{mga}{I_o}x,$$

jest to równanie ruchu harmonicznego z okresem:

$$T = 2\pi \sqrt{\frac{I_o}{mga}}$$