

U.S. Airport Network

By Alan Wang,

Brenden Cheung,

Kun Xu

Introduction

Literature Review

 "A study of the U.S. domestic air transportation network: temporal evolution of network topology and robustness from 2001 to 2016", by Siozos-Rousoulis, L., Robert, D. & Verbeke, W.

Main Goal

- Measure the airport development in terms of:
 - Flight Route Map
 - Relative importance among airports
 - Resilience of air transportation network
- With a span of 10 years

Table of Contents

- Flight Route Map
- Centrality
- Assortativity
- Small-World Effect
- Scale Free Property
- Targeted Attack Tolerance

Dataset, Cleaning, EDA

- Data Set: all domestic flights from 2009 to 2018
- Source: "Airline Delay and Cancellation Data, 2009 -2018"

Data Cleaning

Original dataset: ~ 800 MB / Year; we have 10 years; that's 8GB

We only want the 'ORIGIN', 'DESTINATION', 'AIRLINE', 'Date', and 'DELAY'.

We group everything together by `AIRLINE`, `ORIGIN`, and `DESTINATION` and compute the total number of flights and average delay.

Through SQL => Reduced the dataset to ~10MB / Year

Centrality

Node Degree (k)

- the number of nodes that a node is pointing to
- $k_i = \sum_{j=1}^N A_{ij}$
 - k_i = the degree of node i
 - A_{ij} = the adjacency matrix of the network
- As the node degree increases, the importance of a node increases as well

Betweenness Centrality (B)

•
$$B_i = \frac{1}{(N-1)(N-2)} \sum_{i \neq j \neq k} \frac{g_{jk}(i)}{g_{jk}}$$

- $g_{jk}(i)$ = the number of binary shortest paths passing through node i
- g_{jk} = the number of binary shortest paths between two nodes
- As the number of shortest paths through node i increases, B_i will increase accordingly
- measures the relative importance of an airport to the aviation system

Number of Nodes & Edges

Mean Degree over Years Smaller airports are constructed

Topeka Regional Airport

Airport

Airline

Assortativity

Gini Coefficient (G)

$$\bullet G = \frac{\sum_{i=1}^{N} \sum_{j=1}^{N} |k_i - k_j|}{2MN},$$

- k_i = weighted degree of node i
- M = total weights
- N = total number of nodes
- Commonly used to quantify the level of inequality in economics
- Assortativity: the tendency for nodes to connect to other nodes with similar properties within a network

Small-World Effect

Clustering Coefficient (C)

 measures the possibility that two neighbors of a node are connected and is thus is computed to determine the small-world property of a given network

$$\bullet \ C_i = \frac{2m_i}{k_i(k_i-1)}$$

- m_i = the number of edges that connect the neighbors of node i
- Large C_i → small-world property exists → nodes in the network can be reached by a small number of connections

Scale-Free

Power Law with Exponential Cutoff

$$f(x) \propto x^{-lpha} e^{-eta x}$$

Target Attack Tolerance

Network Resilience (R)

•
$$R = \frac{1}{N^2} \sum_{i \neq j} m(i, j)$$

- m(i,j) = minimum number of nodes needed to be removed from the network such that j is unreachable from i.
- N = total number of nodes
- Use Resilience to quantify the robustness of the network

Proportion of Nodes in GCC (S)

•
$$S = \frac{size(GCC)}{N}$$

 Removing highly centralized nodes will split the network up → smaller S

Conclusions

- Trend of Small Airports:
 - 2009 2014: Following the end of recession, an expansion of smaller regional airports
 - 2014 2017: Smaller airports were shutdown due to the saturation of market
 - 2017 : A reinforcement of the Hub-and-Spoke system; network more interconnected

Limitations / Improvements

- Shortest air distance between airports were not provided; could talk about efficiency otherwise
- Could do an in-depth research into different airlines to see the expansion of major carriers
- Observe seasonal/monthly/holiday/major events changes
- When studying targeted attacks, cluster airports into large and small first, as terrorists are more likely attack on major hubs

Roles

Alan Wang

- literature review
- data cleaning
- coding simulations

Brenden Cheung

- literature review
- data cleaning
- coding simulations

Kun Xu

- literature review
- make slides
- write paper

Delay Analysis

Average Delay of LAX Arrival by Airline

Reference

- Measuring resilience. Packt. (n.d.).
 https://subscription.packtpub.com/book/cloud-and-networking/9781789955316/6/ch06lvl1sec41/measuring-resilience.
 Accessed December 8, 2022.
- Siozos-Rousoulis, L., Robert, D. & Verbeke, W. A study of the U.S. domestic air transportation network: temporal evolution of network topology and robustness from 2001 to 2016. *J Transp Secur* **14**, 55–78 (2021). https://doi.org/10.1007/s12198-020-00227-x. Accessed October 27, 2022.