1. There are suppose to be 3 many-to-many relations between Nucleotide and Codon.

2.

i) Gene, Isoform, Exon

ii)

iii)

Gene

#Gene_id Nam	ne Chrom_name	Start_coord	Stop_coord
--------------	---------------	-------------	------------

Isoform

#Isoform_id	Isoform_name	Gene_id*
-------------	--------------	----------

Exon

#Exon_id	Start_coor	Stop_coor	Gene_id*

Exon isoform

#Isoform_	_id*	#Exon_	_id*

3.

i) Gene, Chromosome, Publication

ii)

iii) Gene

_						
#Symbol	Name	Synonyms	Start_coordinate	Stop_coordinate	Chromosome	Chromosome
					_name	_length

Publication

#Reference_id	Authors	Title	Journal	Year_published	Gene_symbol*

iv)

Gene

#Symbol Name Start_coordinate Stop_coordinate	#Symbol	Name	Start_coordinate	Stop_coordinate
---	---------	------	------------------	-----------------

Gene_synonym

#Synonyms	Gene_name*

Chromosome

113 T	▼ .1	0 1 14
#Name	Length	Gene symbol*
π 1 value	LCIIZIII	Oche Symbol

Publication

#Reference id	Authors	Title	Journal	Year published	Gene symbol*

Gene_reference

#Reference_id*	#Gene_symbol*
----------------	---------------

4. We consider that there are some ports that aren't on any route and there are some ships that don't have any route.

5.

- i) The Truck table doesn't have any primary key. Registration_number could be the primary key.
- ii) Maximum weight is depended on the model of the truck, so only by looking at the model we can find out how much weight a truck tolerates.
- iii) Registration_number and Assignment_number is the candidate key.

iv)

Container _type

#Type_id Type_name Max_weight Cubic_quantity Nightly_rate

Container

#Container_nr	Type_id*

Customer

#Telephone	Address

Container_assignment

#Container_nr*	#Assignment_nr*

Assignment

#Assignment nr	Telephone*	Container nr*	Start date	End date

Truck_assignment

#Reg_nr*	#Assignment_nr*
----------	-----------------

Truck

#Registration_number	Registration_year	Model	Assignment_nr*
----------------------	-------------------	-------	----------------

Model

#Model* Maximum_weight