# Probability Theory and Statistics 3, Assignment 4

Jiyeon Kim \*, Younjoo Mo †

November 20, 2020

# **Exercise 1**

a.

$$f(x;\theta) = \frac{\theta}{x^2} I_{(\theta,\infty)}(x) \quad (0 < \theta < \infty)$$
 (1)

$$f(x_1,...,x_n;\theta) = \frac{\theta^n}{\prod_{n=1}^{i=1} x_1^2} \prod_{n=1}^{i=1} I_{(\theta,\infty)}(x_i)$$
 (2)

$$= \frac{\theta^n}{\prod_{n=1}^{i=1} x_1^2} I_{(\theta,\infty)}(x_{1:n})$$
 (3)

 $\prod_n^{i=1} I_{(\theta,\infty)}$  assumes value 1 if and only if in certain domain.

$$\therefore$$
 we could write  $\prod_{n=1}^{i=1} I_{(\theta,\infty)}(x_i) = I_{(\theta,\infty)}(x_{1:n})$ 

Next, let's divide  $f(x; \theta)$  into two parts(in order to use factorisation criterion)

$$f(x_1,\ldots,x_n;\theta)=g(x_{1:n};\theta)h(x_1,\ldots,x_n)$$
 (4)

$$\Longrightarrow g(x_{1:n};\theta) = \theta^n I_{(\theta,\infty)}(x_{1:n})$$
 (5)

$$=h(\vec{x}) = \frac{1}{\prod_{n=1}^{i=1} x_i^2}$$
 (6)

<sup>\*</sup>Student number: 12470236

<sup>†</sup>Studentnumber: 12475440

Random variable  $X_1, ..., X_n$  has joint pdf  $f(x_1, ..., x_n; \theta)$ 

In (5),(6)th line,  $g(x_{1:n}; \theta)$  doesn't depend on  $x_1, \dots, x_n$  except through s ,while  $h(\vec{x})$  doesn't depend on  $\theta$ 

Therefore we can conclude that by theorem 10.2.1(Factorisation criterion),  $x_{1:n}$  is sufficient for  $\theta$ 

Next, to check whether  $x_{1:n}$  is complete , we have to calculate the pdf first

$$F_X(x) = \int_{\theta}^x f(z;\theta) dz \tag{7}$$

$$= \int_{\theta}^{x} \frac{\theta}{z^2} dz \tag{8}$$

$$= \theta(1/\theta - 1/x), \quad (x > 0) \tag{9}$$

$$=1-\frac{\theta}{x}, \quad (x>0) \tag{10}$$

So that the CDF of S is as follows.

$$\Longrightarrow F_S(s) = 1 - \left(\frac{\theta}{s}\right)^n, \quad (s > 0) \tag{11}$$

$$f_S(s) = \frac{n\theta^n}{s^{n+1}}, \quad (0 < s < \infty)$$
 (12)

We use definition 10.4.1

$$E[u(s)] = 0 \quad (\forall s > 0) \tag{13}$$

$$\Longrightarrow \int_{\theta}^{\infty} u(s)n\theta^n s^{-n-1} ds = 0, \quad (\forall s > 0)$$
 (14)

$$\Longrightarrow \int_{\theta}^{\infty} u(s)s^{-n-1}ds = 0, \quad (\forall s > 0)$$
 (15)

$$\Longrightarrow \frac{d}{d\theta} \int_{\theta}^{\infty} u(s)s^{-n-1}ds = \frac{d}{d\theta} 0 \quad , \quad (\forall s > 0)$$
 (16)

$$\Longrightarrow u(\theta)\theta^{-n-1} = 0, \quad (\forall \theta > 0)$$
 (17)

$$\Longrightarrow u(\theta) = 0, \quad (\forall \theta > 0) \tag{18}$$

$$\Longrightarrow u(s) = 0, \quad (\forall \theta > 0) \tag{19}$$

we proved that sufficient statistic we calculated  $x_{1:n}$  is also complete.

b.

From sub-question (b) we calculated the following equation

$$f_S(s) = n \frac{\theta^n}{s^{n+1}} \quad (\theta < s < \infty)$$
 (20)

To find UMVUE we are going to calculate expectation of S

$$E[S] = \int_0^\infty s \frac{n\theta^n}{s^{n+1}} ds \tag{21}$$

$$= n\theta^n \int_0^\infty s^{-n} ds \tag{22}$$

$$=\frac{n\theta^n}{-n+1} \left[ s^{-n+1} \right]_{\theta}^{\infty} \tag{23}$$

$$=\frac{n\theta^n}{-n+1}(-\theta)^{-n+1} \tag{24}$$

$$=\frac{n}{n-1}\theta\tag{25}$$

Therefore,  $T^* = \frac{n-1}{n} s$  is an unbiased estimator of  $\theta$  as  $E[T^*] = \theta$  .

We already proved in previous sub-question (a) that S is a sufficient and complete statistic for  $\theta$  and from the above result that  $T^*$  is a function of S.

Since it satisfies two conditions of theorem 10.4.1(Lehamann-Scheffe'), we can conclude that  $T^*$  is the UMVUE of  $\theta$ 

c. We've got this equation from sub-question (b)

$$f_S(s) = n \frac{\theta^n}{s^{n+1}} \quad (\theta < s < \infty)$$
 (26)

To find UMVUE we are going to calculate expectation of  $1/S\frac{n+1}{n}$  and see if it is unbiased.

$$E[(\frac{n+1}{n})(\frac{1}{s})] = \frac{n+1}{n} \int_0^\infty \frac{1}{s} \frac{n\theta^n}{s^{n+1}} ds$$
 (27)

$$=\frac{n+1}{n}n\theta^n\int_0^\infty s^{-n-2}ds\tag{28}$$

$$= -\frac{n+1}{n} \frac{n\theta^n}{n+1} \left[ s^{-n-1} \right]_{\theta}^{\infty} \tag{29}$$

$$= -\theta^n (-\theta)^{-n-1} \tag{30}$$

$$=\frac{1}{\theta} \tag{31}$$

Therefore, we can conclude that  $T^{**} = \frac{n+1}{n} s^{-1}$  is an unbiased estimator of  $\frac{1}{\theta}$ .

We already proved in previous sub-question (a) that S is a sufficient and complete statistic for  $\frac{1}{\theta}$  and from the above result that  $T^{**}$  is a function of S.

Since the findings satisfies two conditions of theorem 10.4.1(Lehamann-Scheffe') , we can conclude that  $T^{**}$  is the UMVUE of  $\frac{1}{\theta}$ 

d.

In order to show that  $\frac{X_{2:n}}{X_{1:n}}$  and  $X_{1:n}$  are stochastically independent, We have to first find the pdf of Y using transformation method Let's define  $Y = \frac{X}{\theta}$ 

$$f_Y(y) = f_X(x^{-1}(y))|J| = \left[\frac{\theta}{(\theta y)^2} I_{\theta:\infty}(z)\right] \theta = \frac{1}{y^2} I_{1:\infty}(z), \quad (y > 1)$$
 (32)

Here, we substituted  $(\theta y)$  in x place.

$$Z = \frac{X_{2:n}}{X_{1:n}} = \frac{\frac{X_{2:n}}{\theta}}{\frac{X_{1:n}}{\theta}} = \frac{Y_{2:n}}{Y_{1:n}}$$
(33)

 $(Y_1, \dots, Y_n) = Z$  is free of  $\theta$  since pdf of y and joint pdf y is free of  $\theta$ .

In sub-question (a) we proved that  $S = x_{1:n}$  has complete and sufficient statistic for  $\theta$ .

... by Theorem 10.4.7(Basu)  $Z = \frac{X_{2:n}}{X_{1:n}}$  and S are stochastically independent

# Exercise 3

a.

i) Finding S which is a sufficient statistic for  $\mu$ 

$$f(x_1, ..., x_n; \theta) = \prod_{i=1}^{n} \left[ e^{-\mu} \cdot \frac{\mu^{x_i}}{x_i!} \right]$$
 (34)

$$=e^{-n\mu}\cdot\mu^{\sum x_i}\cdot\frac{1}{\prod x_i}\tag{35}$$

By the factorization criterion, (36)

$$f(x_1, \dots, x_n; \theta) = g(s; \mu)h(x_1, \dots, x_n)$$
(37)

$$\Rightarrow \begin{cases} g(s;\mu) = e^{-n\mu} \cdot \mu^{\sum x_i} \\ h(x_1,\dots,x_n) = \frac{1}{\prod x_i} \end{cases}$$
 (38)

$$\therefore S = \sum_{i=1}^{n} X_i \tag{39}$$

ii) Showing that S is also a complete statistic

$$S = X_1 + \ldots + X_n \sim POI(n\mu) \tag{40}$$

Let 
$$n\mu = \theta$$
 (41)

$$\Rightarrow f_S(s) = e^{-\theta} \cdot \frac{\theta^s}{s!} , \quad (\theta > 0, \ s = 0, 1, \ldots)$$
 (42)

Let 
$$u(S)$$
 is a function of  $S$  (43)

$$\Rightarrow E[u(S)] = \sum_{s=0}^{\infty} \left[ u(s) \cdot e^{-\theta} \cdot \frac{\theta^s}{s!} \right]$$
 (44)

Assume that 
$$E[u(S)] = 0$$
 (45)

$$e^{-\theta} \neq 0 \text{ and } \theta^s \neq 0$$
 (46)

$$\Rightarrow \text{all } \frac{u(s)}{s!} = 0 \tag{47}$$

$$\Rightarrow u(S) = 0 \tag{48}$$

$$\Rightarrow E[u(S)] = 0 \text{ implies } u(S) = 0 \tag{49}$$

$$\Rightarrow$$
 By Definition 10.4.1,  $\{f_S(s;\theta) \mid \theta \in \Omega\}$  is complete. (50)

$$\Rightarrow$$
 S is a complete statistic for  $\theta = n\mu$ . (51)

$$\therefore S = \sum_{i=1}^{n} X_i \text{ is a C&S for } \mu.$$
 (52)

b.

$$T \sim BIN(1, p) \tag{53}$$

$$f_T(t) = p^t (1-p)^{1-t}$$
,  $(t=0,1)$  (54)

$$= (1 - p) \exp\left[t \cdot \ln\left(\frac{p}{1 - p}\right)\right] \tag{55}$$

$$\Rightarrow$$
 By Definition 10.4.2, (56)

$$f_T(t)$$
 is a member of  $REC(q_1)$  with  $q_1(p) = \ln\left(\frac{p}{1-p}\right)$  and  $r_1(t) = t$ . (57)

$$\Rightarrow$$
 By Theorem 10.4.2,  $S_1 = \sum_{i=1}^{n} r_1(T_i) = \sum_{i=1}^{n} T_i$  is a C&S for  $p$ . (58)

$$\bar{T}_n$$
 is an unbiased estimator for  $p$ .  $\therefore E[\bar{T}_n] = E[T] = p$  (59)

$$\bar{T}_n$$
 is a function of  $S_1$ .  $\because \bar{T}_n = \frac{S_1}{n}$  (60)

... By Theorem 10.4.1, 
$$\bar{T}_n$$
 is a UMVUE of  $p$ . (61)

c.

In this subquestion, T means the T of the subquestion 3b.

$$Y_n = T_1 + T_2 + \ldots + T_n \tag{62}$$

$$\Rightarrow \hat{p} = \frac{Y_n}{n} = \bar{T}_n \tag{63}$$

We need two things to use Definition 9.4.4 to solve this subquestion.

- 1.  $\{J_n\}$ , an asymptotically unbiased sequence of estimator for p
- 2. CRLB for  $Var[J_n]$
- $\Rightarrow$  Objective :  $ae(J_n)$ , the asymptotic efficiency of  $\{J_n\}$
- i) Finding  $\{J_n\}$

By Definition 9.4.3, 
$$\hat{p} = \bar{T}_n$$
 is asymptotically unbiased for  $p$  (64)

$$: \lim_{n \to \infty} E[\bar{T}_n] = E[E(T)] = p \tag{65}$$

$$\therefore \{J_n\} = \{\bar{T}_n\} \tag{66}$$

## ii) Compute CRLB for $Var[J_n]$

$$Var[J_n] \ge CRLB$$
 (67)

$$\Leftrightarrow Var[\bar{T}_n] \ge \frac{[\tau'(\mu)]^2}{-nE\left[\frac{\partial^2}{\partial \mu^2}\ln f(x;\mu)\right]}, \quad (\tau(\mu) = p = e^{-\mu})$$
 (68)

$$\begin{cases}
 \left[\tau'(\mu)\right]^2 = e^{-2\mu} \\
 E\left[\frac{\partial^2}{\partial \mu^2}\ln f(x;\mu)\right] = E\left[\frac{\partial^2}{\partial \mu^2}\left(-\mu + x\ln\mu - \ln(x!)\right)\right] = E\left[-\frac{X}{\mu^2}\right] = -\frac{1}{\mu}
\end{cases}$$
(69)

$$Var[\bar{T}_n] \ge \frac{\mu e^{-2\mu}}{n} = CRLB \tag{71}$$

If we check if there is a linear relationship between  $\bar{T}_n$  and  $\tau(\mu) = e^{-\mu}$ ,

$$\bar{T}_n \stackrel{?}{=} a \left( \frac{\partial}{\partial \mu} \ln f(x_1, \dots, x_n; \mu) \right) + e^{-\mu}$$
(72)

$$LHS = \exp(-\bar{X_n}) \tag{73}$$

RHS = 
$$a\left(\frac{X_1 + ... + X_n - n\mu}{\mu}\right) + e^{-\mu}$$
 (74)

We can see that LHS  $\neq$  RHS. However, if we take the limit of both sides and let  $n \to \infty$ , LHS becomes equal to RHS. Because  $\bar{X}_n \to \mu$  and  $\sum X_i - n\mu \to 0$  as

 $n \to \infty$ . Therefore,  $Var[\bar{T}_n] = CRLB$  as n approaches to  $\infty$ .

Since 
$$\{J_n\} = \{\bar{T}_n\},$$
 (76)

$$ae(\bar{T}_n)$$
 (77)

$$= are(\bar{T}_n, \bar{T}_n^*) = \lim_{n \to \infty} \frac{Var[\bar{T}_n^*]}{Var[\bar{T}_n]} = \lim_{n \to \infty} \frac{CRLB}{nVar[T]}$$
(78)

$$= \lim_{n \to \infty} \frac{\left(\frac{\mu e^{-2\mu}}{n}\right)}{n e^{-\mu} (1 - e^{-\mu})} = 1 \tag{79}$$

$$\therefore \text{ The asymptotic efficiency of } \{ \overline{T}_n \} = 1$$
 (80)

d.

Among three types of variances required to graph,  $Var[UMVUE in (b)] = Var[\hat{p}]$ . UMVUE in (b) is  $\bar{T}_n = \frac{T_1 + ... + T_n}{n}$ , and its numerator means how many  $x_i = 0$  among n samples, which is same meaning as  $Y_n$ . Therefore,  $\bar{T}_n = \frac{Y_n}{n} = \hat{p} \Rightarrow Var[\bar{T}_n] = Var[\hat{p}] = e^{-\mu}(1 - e^{-\mu})$ . This is illustrated as the red line in the graphs.

On the other hand, It has been shown that  $\bar{T}_n$  is an unbiased estimator of p in (59). Thus, CRLB of  $Var[\bar{T}_n]$  can be 'the CRLB of unbiased estimators of p'. The CRLB of  $Var[\bar{T}_n]$  has been computed as  $\frac{\mu e^{-2\mu}}{n}$  in (71). This is illustrated as the blue line in the graphs.

#### 3 kinds of variances when n = 2



### 3 kinds of variances when n = 10



### 3 kinds of variances when n = 40

