Análisis Matemático I

Tema 4

Sucesiones y series de funciones

Autor: Víctor Gayoso Martínez

Curso: 2024-2025

Versión: 1.0

Centro Universitario U-tad

Doble Grado en Matemática Computacional e Ingeniería del Software

Índice

1	Sucesiones de funciones	1
	1.1 Convergencia puntual	1
	1.2 Convergencia uniforme	1
	1.3 Criterio de Cauchy para la convergencia uniforme de sucesiones $\{f_n\}$	2
2	Series de funciones	3
	2.1 Convergencia puntual	3
	2.2 Convergencia uniforme	3
	2.3 Criterio de Cauchy para la convergencia uniforme de series $\sum_{n=1}^{\infty} f_n \ldots \ldots$	3
	2.4 Criterio mayorante de Weierstrass para la convergencia uniforme \dots	3
3	Serie de potencias	4
	3.1 Definición y propiedades	4
	3.2 Derivación e integración de una serie de potencias	4
	3.3 Desarrollos en series de potencias	
4	Problemas	6

1 Sucesiones de funciones

1.1 Convergencia puntual

Una **sucesión de funciones** es una secuencia de funciones reales $f_1(x), f_2(x), ..., f_n(x), ...$ definidas sobre un mismo conjunto de números reales. Las sucesiones de funciones se suelen representar como $\{f_n\}$ o $\{f_n(x)\}$, donde f_n es el término general de la sucesión.

Ejemplo 1

a)
$$f_n = nx^2$$
 b) $f_n = x^n$ c) $f_n = e^{-nx^2}$ d) $f_n = n \operatorname{sen}\left(\frac{x}{n}\right)$.

Ejemplo 2

La siguiente gráfica muestra los primeros seis elementos de la familia $f_n = nx(1-x)^n$.

Una sucesión de funciones $\{f_n\}$ **converge puntualmente** a una función real f en un punto $x_o \in \mathbb{R}$ si se verifica que la sucesión de números reales $\{f_n(x_0)\}$ converge hacia el valor $f(x_0)$. En la práctica, el estudio de la convergencia puntual en un intervalo $A \subset \mathbb{R}$ se reduce a calcular para cada $x_0 \in A$ el límite

$$\lim_{n\to\infty} f_n(x_0) = f(x_0)$$

Alternativamente, se puede afirmar que la sucesión de funciones $\{f_n\}$ converge puntualmente a la función f en $x_0 \in \mathbb{R}$ si para todo $\epsilon > 0$ existe un valor $n_0 \in \mathbb{N}$ que depende de ϵ , tal que $|f_n(x_0) - f(x_0)| < \epsilon$ siempre que $n \ge n_0$.

Se llama **campo de convergencia** de una sucesión de funciones f_n al conjunto de números reales donde la sucesión converge puntualmente, es decir, al conjunto

$$C = \{x \in A \subset \mathbb{R} \mid \{f_n\} \text{ es puntualmente convergente}\}$$

1.2 Convergencia uniforme

Sea una sucesión de funciones $\{f_n\}$ que converge puntualmente a f en $A \subset \mathbb{R}$. En esta situación, f_n **converge uniformemente** a la función f en $A \subset \mathbb{R}$ si para todo $\epsilon > 0$ existe un valor $n_0 \in \mathbb{N}$ que solamente depende de ϵ , tal que $|f_n(x) - f(x)| < \epsilon$ para todo valor todo $x \in A$ y todo $n \ge n_0$.

Desde un punto de vista gráfico, la sucesión (f_n) converge uniformemente a la función f si, dado un valor $\epsilon > 0$, $\forall n \geq n_0$ la gráfica de las funciones f_n están dentro de la zona sombreada en la figura.

La convergencia uniforme solo tiene sentido en intervalos. Las siguientes propiedades permiten demostrar si una sucesión de funciones converge uniformemente.

- 1) Si la sucesión $\{f_n\}$ converge uniformemente a f en $A \subset \mathbb{R}$ y cada f_n es continua en A, entonces f es continua en A. Como consecuencia de esta propiedad, si las funciones f_n son continuas en A pero no ocurre lo mismo con f, entonces la convergencia en A no puede ser uniforme.
- 2) Si la sucesión $\{f_n\}$ converge uniformemente a f y cada f_n está acotada en A, entonces f está acotada en A. Como consecuencia, si las funciones f_n están acotadas en A pero ese no es el caso de la función f, entonces la convergencia no puede ser uniforme.
- 3) Si la sucesión $\{f_n\}$ converge uniformemente a f en $A \subset \mathbb{R}$ y cada f_n es continua en A, entonces f es integrable en $[a,b] \subset A$ y

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \int_{a}^{b} f_{n}(x)dx$$

Como consecuencia, si cada f_n es continua en A pero la igualdad anterior no se cumple, entonces la convergencia no puede ser uniforme.

4) La sucesión $\{f_n\}$ converge uniformemente a f en $A \subset \mathbb{R}$ si y solo si

$$\lim_{n\to\infty} \sup\{|f_n(x) - f(x)| : x \in A\} = 0.$$

5) Si $\{\alpha_n\}$ es una sucesión de números reales positivos que converge a 0 y $|f_n(x)-f(x)| \le \alpha_n$ para todo $n \in \mathbb{N}$, entonces la sucesión $\{f_n\}$ converge uniformemente.

1.3 Criterio de Cauchy para la convergencia uniforme de sucesiones $\{f_n\}$

La sucesión $\{f_n\}$ es uniformemente convergente en $A\subset\mathbb{R}$ si y solo si para todo $\epsilon>0$ existe un valor $n_0\in\mathbb{N}$ que depende de ϵ tal que $|f_p(x)-f_q(x)|<\epsilon$ para todo $x\in A$ y todo par $p,q\geq n_0$.

2 Series de funciones

2.1 Convergencia puntual

Se llama **serie de funciones**, y se representa como $\sum_{n=1}^{\infty} f_n$ o $\sum_{n=1}^{\infty} f_n(x)$, a la suma de los infinitos términos de una sucesión de funciones $f_1(x) + f_2(x) + \cdots + f_n(x) + \cdots$.

Dada una serie de funciones $\sum_{n=1}^{\infty} f_n$, se llama **sucesión de sumas parciales** a la sucesión $\{S_n(x)\}$,

donde $S_n(x) = \sum_{k=1}^n f_k = f_1(x) + f_2(x) + \dots + f_n(x)$ es la suma de las n primeras funciones.

Se dice que la serie de funciones **converge puntualmente** a la función S(x) en un punto $x_0 \in \mathbb{R}$ si la serie de números reales $\sum_{n=1}^{\infty} f_n(x_0)$ es convergente, lo que equivale a decir que la sucesión de las sumas parciales $S_n(x)$ converge puntualmente a S(x) en x_0 , es decir, $\lim_{n \to \infty} S_n(x_0) = S(x_0)$. Para que exista convergencia puntual, es imprescindible que $\lim_{n \to \infty} f_n(x) = 0$.

2.2 Convergencia uniforme

Se dice que la serie de funciones $\sum_{n=1}^{\infty} f_n$ converge uniformemente a la función S(x) en $A \subset \mathbb{R}$, si es uniforme la convergencia en A de la sucesión de sumas parciales $S_n(x)$.

La convergencia uniforme de series de funciones tiene las siguientes propiedades:

- 1) Una condición necesaria para que una serie de funciones sea uniformemente convergente en un conjunto A es que la sucesión de funciones $\{f_n\}$ converja uniformemente a cero en A.
- 2) Si la serie $\sum_{n=1}^{\infty} f_n$ converge uniformemente a S(x) en $A \subset \mathbb{R}$ y cada f_n es continua en A, entonces S(x) es continua en A. Como consecuencia de esta propiedad, si las funciones f_n son continuas en A pero S(x) no lo es, entonces la convergencia no puede ser uniforme.
- 3) Si la serie converge uniformemente a S(x) en $A \subset \mathbb{R}$, entonces $\lim_{n \to \infty} \sup\{|S_n(x) S(x)|\} = 0$.
- 4) Si la serie converge uniformemente a S(x) en $A \subset \mathbb{R}$, entonces $\lim_{n \to \infty} \sup\{|f_n(x)|\} = 0$.

2.3 Criterio de Cauchy para la convergencia uniforme de series $\sum_{n=1}^{\infty} f_n$

La serie $\sum_{n=1}^{\infty} f_n$ es uniformemente convergente si para todo $\epsilon > 0$ existe un valor $n_0 \in \mathbb{N}$ que depende de ϵ tal que $S_p(x) - S_q(x) = |f_{p+1}(x) + \dots + f_q(x)| < \epsilon$ para todo $x \in A$ y toda pareja $p,q \geq n_0$.

2.4 Criterio mayorante de Weierstrass para la convergencia uniforme

Si $|f_n(x)| \le \alpha_n$ para todo $x \in A$ y para todo $n \ge n_0$, y la serie numérica $\sum_{n=1}^{\infty} \alpha_n$ es convergente, entonces la serie de funciones $\sum_{n=1}^{\infty} f_n$ converge uniformemente en A.

3 Serie de potencias

3.1 Definición y propiedades

Se llama **serie de potencias centrada en** $x_0 \in \mathbb{R}$ a cualquier serie de funciones de la siguiente forma, donde a_n es un término que depende de n y $n \ge 0$:

$$\sum_{n=0}^{\infty} f_n(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n = a_0 + a_1 (x - x_0) + a_2 (x - x_0)^2 + \dots + a_n (x - x_0)^n + \dots$$

Si $x_0 = 0$, consecuentemente se dice que la serie de potencias está centrada en el origen. Cuando no se indica el valor x_0 , se debe asumir que $x_0 = 0$.

Se llama **radio de convergencia** de la serie $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ al número real $R \ge 0$ (que en este caso también puede tomar el valor infinito) que se obtiene tras aplicar el criterio de convergencia del cociente o de la raíz:

$$\left|\lim_{n\to\infty}\left|\frac{f_{n+1}(x)}{f_n(x)}\right|<1\qquad \qquad \lim_{n\to\infty}\sqrt[n]{|f_n(x)|}<1$$

Si el radio de la serie de potencias $\sum_{n=1}^{\infty} a_n (x-x_0)^n$ es R, entonces se cumple lo siguiente:

- La serie converge puntual y absolutamente en el intervalo abierto $(x_0 R, x_0 + R)$.
- La serie es divergente en $(-\infty, x_0 R) \cup (x_0 + R, +\infty)$.
- Cuando $x = x_0 R$ o $x = x_0 + R$ la serie puede ser convergente o divergente (es necesario realizar un estudio adicional).

Se llama **campo de convergencia** de la serie de potencias $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ al conjunto donde la serie converge puntualmente. Por lo expuesto anteriormente, este campo de convergencia solo puede ser una de las siguientes opciones: (x_0-R,x_0+R) , $[x_0-R,x_0+R)$, $[x_0-R,x_0+R]$ o $[x_0-R,x_0+R]$.

Se dice que una función f(x) es desarrollable en serie de potencias de $(x-x_0)$ si existe una serie de potencias de $(x-x_0)$, con radio de convergencia positivo, cuya suma es la función f(x) en un intervalo abierto de centro el punto $x=x_0$.

3.2 Derivación e integración de una serie de potencias

Dada una serie de potencias $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ con radio de convergencia R>0 tal que

$$f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n = a_0 + a_1 (x - x_0) + a_2 (x - x_0)^2 + \dots + a_n (x - x_0)^n + \dots$$

entonces la función f(x) es derivable y la serie de potencias de la derivada se obtiene derivando término a término:

$$f'(x) = \sum_{n=1}^{\infty} n a_n (x - x_0)^{n-1} = a_1 + 2a_2 (x - x_0) + 3a_3 (x - x_0)^2 + \dots + na_n (x - x_0)^{n-1} + \dots$$

De igual forma, en las mismas condiciones la función f(x) es integrable, y su integral se puede obtener integrando término a término:

$$\int f(x)dx = \sum_{n=0}^{\infty} a_n \frac{(x-x_0)^{n+1}}{n+1} + C = a_0(x-x_0) + a_1 \frac{(x-x_0)^2}{2} + a_2 \frac{(x-x_0)^3}{3} + \dots + C$$

El radio de convergencia de las series derivada e integral es el mismo R de la serie original, pero el campo de convergencia puede ser distinto debido al comportamiento en los extremos.

3.3 Desarrollos en series de potencias

Desarrollar una función f(x) en series de potencias de centro x_0 es hallar una serie de potencias tal que

$$f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$$
 para $|x - x_0| < R$

Si f es infinitamente derivable en $x=x_0$ y tiene una serie de potencias que converge a dicha función en un intervalo abierto que contiene a x=c, entonces esa serie de potencias es el polinomio de Taylor para f(x) en x=c de grado infinito:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

Para hallar series de potencias se recurre a la serie de Taylor, a la serie geométrica y a las propiedades de derivación e integración de series de potencias.

La **serie geométrica** de razón x es $\sum_{n=0}^{\infty} x^n$. La serie es convergente si |x| < 1 y divergente en caso contrario. En caso de que sea convergente, su suma es $S = \frac{1}{1-x}$. Otras expresiones útiles asociadas a la serie geométrica cuando |x| < 1 son las siguientes:

$$\sum_{n=0}^{\infty} x^n = \frac{1}{1-x} \qquad \sum_{n=1}^{\infty} x^n = \frac{x}{1-x}$$

$$\sum_{n=0}^{N} x^n = \frac{(1-x^{N+1})}{1-x} \qquad \sum_{n=1}^{N} x^n = \frac{x(1-x^N)}{1-x}$$

Algunos de los desarrollos como serie de Taylor más conocidos son los siguientes:

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!}, \ x \in \mathbb{R}$$

$$\operatorname{Ln}(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}x^{n}}{n}, \ |x| < 1$$

$$\frac{1}{1+x} = \sum_{n=0}^{\infty} (-1)^{n}x^{n}, \ |x| < 1$$

$$\frac{1}{1+x^{2}} = \sum_{n=0}^{\infty} (-1)^{n}x^{2n}, \ |x| < 1$$

$$\operatorname{sen}(x) = \sum_{n=0}^{\infty} \frac{(-1)^{n}x^{2n+1}}{(2n+1)!}, \ x \in \mathbb{R}$$

$$\operatorname{cos}(x) = \sum_{n=0}^{\infty} \frac{(-1)^{n}x^{2n}}{(2n)!}, \ x \in \mathbb{R}$$

4 Problemas

- 1) Dada la familia de funciones $f_n(x) = x^n$ definidas en el intervalo $[0, \infty)$, estudiar el campo de convergencia de la sucesión $\{f_n\}$. ¿Es la sucesión uniformemente convergente en [0, 1]?
- 2) Dada la sucesión de funciones cuyo término general es $f_n(x) = x + n$, estudiar su convergencia.
- 3) Dada la sucesión de funciones cuyo término general es $f_n(x) = e^{-nx}$, determinar su límite puntual y si la sucesión converge uniformemente en el intervalo $[a, \infty)$ con a > 0.
- 4) Dada la sucesión de funciones cuyo término general es $f_n(x) = nxe^{-nx}$, determinar su límite puntual y si la sucesión converge uniformemente en algún intervalo.
- 5) Dada la sucesión de funciones cuyo término general es $f_n(x) = \frac{2nx}{1 + n^4x^2}$, donde $x \in [0, 1]$, determinar su límite puntual y si la sucesión converge uniformemente en dicho intervalo.
- Dada la sucesión de funciones cuyo término general es $f_n(x) = \frac{nx}{1 + nx^2}$, definidas en el intervalo $[0, +\infty)$, calcular su límite puntual. A continuación, estudiar si esa función y las f_n están acotadas en ese intervalo. ¿Es la convergencia uniforme?
- 7) Estudiar la convergencia puntual y uniforme de la sucesión de funciones cuyo término general es $f_n(x) = \arctan(nx)$ en todo \mathbb{R} .
- 8) Dada la sucesión de funciones cuyo término general es $f_n(x) = \frac{x+n}{1+xn}$, calcular su límite puntual en $(0, \infty)$ y determinar si es uniformemente convergente en $(1, \infty)$.
- 9) Demostrar que la sucesión $\{f_n\}$, donde $f_n(x) = \frac{2n^2x}{(n^2x^2+1)^2}$ no es uniformemente convergente en el intervalo [0,1] utilizando integrales.
- 10) Estudiar la convergencia puntual de la serie de funciones $\sum_{n=1}^{\infty} \left(x + \frac{1}{n}\right)^n$ cuando $x \ge 0$.
- 11) Estudiar la convergencia puntual de la serie de funciones $\sum_{n=1}^{\infty} x^{n-1}$ en (0,1) y calcular S(x).
- 12) Determinar si la serie de funciones $\sum_{n=1}^{\infty} (1-x)x^{n-1}$ es uniformemente convergente en [0,1].
- 13) Determinar si la serie de funciones $\sum_{n=1}^{\infty} \frac{\text{sen}(nx)}{n^2}$ es uniformemente convergente en todo \mathbb{R} .
- 14) Determinar si la serie de funciones $\sum_{n=1}^{\infty} \frac{x}{1+n^2x^2}$ es uniformemente convergente en el intervalo $[c,\infty)$, donde c>0.

- 15) Determinar si la serie de funciones $\sum_{n=0}^{\infty} \frac{(-1)^n}{n!} x^n$ es uniformemente convergente en el intervalo [-a,a], donde a>0.
- 16) Demostrar que la serie de funciones $\sum_{n=0}^{\infty} e^{-n^2 \alpha} \operatorname{sen}(nx)$ es uniformemente convergente en \mathbb{R} para cualquier valor $\alpha > 0$.
- 17) Determinar si la serie $\sum_{n=1}^{\infty} \frac{n^2 + x^4}{n^4 + x^2}$ converge uniformemente a una cierta función S(x) en [-a,a], donde a>0. ¿Se puede afirmar que S(x) es continua en [-a,a]?
- 18) Calcular el campo de convergencia de la serie de potencias $\sum_{n=0}^{\infty} x^n$.
- 19) Calcular el campo de convergencia de la serie de potencias $\sum_{n=1}^{\infty} n! x^n$.
- 20) Calcular el campo de convergencia de la serie de potencias $\sum_{n=1}^{\infty} \frac{x^n}{n!}$.
- 21) Calcular el campo de convergencia de la serie de potencias $\sum_{n=0}^{\infty} \frac{1}{2n+1} x^n$.
- 22) Calcular el campo de convergencia de la serie de potencias $\sum_{n=1}^{\infty} 2^n x^n$.
- 23) Calcular el campo de convergencia de la serie de potencias $\sum_{n=1}^{\infty} \frac{x^{2n}}{3^n}$.
- 24) Calcular el campo de convergencia de la serie de potencias $\sum_{n=0}^{\infty} \frac{(x-2)^n}{n^2}$.
- 25) Determinar el desarrollo en serie de la función $f(x) = (1 + e^x)^2$ y calcular su radio de convergencia.
- 26) Determinar el desarrollo en serie de la función $f(x) = \frac{1}{\sqrt{2-x}}$ y calcular su radio de convergencia.
- 27) Hallar el desarrollo en serie de la función $f(x) = \frac{3x+2}{x^2-5x+6}$ y calcular su radio de convergencia.
- 28) Determinar el radio de convergencia de la serie $\sum_{n=1}^{\infty} n^2 x^n$ y calcular su suma derivando la expresión de la serie geométrica.

- 29) Dada la serie $\sum_{n=1}^{\infty} \frac{x^n}{3^{n+1}n!}$, calcular su intervalo de convergencia y sumar la serie utilizando el desarrollo como serie de potencias de la función e^x .
- 30) Dada la serie $\sum_{n=1}^{\infty} x^n (1-x^n)$, determinar el campo de convergencia y calcular su suma utilizando las expresiones de otras series de potencias.

Bibliografía

En la elaboración de estos apuntes se ha utilizado el siguiente material:

- M. Soler Dorda et al. Cálculo infinitesimal e integral. Ed. Madrid.
- M. Bilbao, F. Castañeda y J. C. Peral. *Problemas de Cálculo*. Ed. Pirámide.
- E. Tébar Flores. *Problemas de Cálculo infinitesimal*. Ed. Tébar.
- Tunc Geveci. Calculus II. Ed. Cognella.
- A. Mata y M. Reyes. Apuntes de Análisis Matemático. Departamento de Matemática Aplicada.
 Universidad Politécnica de Madrid.
- J. Pérez. *Apuntes de Cálculo diferencial e integral*. Departamento de Análisis Matemático. Universidad de Granada.
- R. Wrede. E y M. Spiegel. Advanced Calculus. Ed. McGraw-Hill.

Profesor: Víctor Gayoso Martínez U-tad 2024-2025