Ensemble_Learning_MU3D

2022-11-03

load packages

```
library(reshape2)
## Warning: package 'reshape2' was built under R version 4.2.2
library(tidyverse)
## Warning: package 'tidyverse' was built under R version 4.2.2
## -- Attaching packages ------ tidyverse 1.3.2 --
## v ggplot2 3.4.0 v purrr 0.3.5
## v tibble 3.1.8
                    v dplyr 1.0.10
## v tidyr 1.2.1
                   v stringr 1.4.1
## v readr 2.1.3
                    v forcats 0.5.2
## Warning: package 'ggplot2' was built under R version 4.2.2
## Warning: package 'stringr' was built under R version 4.2.2
## Warning: package 'forcats' was built under R version 4.2.2
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                  masks stats::lag()
library(factoextra)
## Warning: package 'factoextra' was built under R version 4.2.2
## Welcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve3WBa
library(psych)
## Warning: package 'psych' was built under R version 4.2.2
##
## Attaching package: 'psych'
## The following objects are masked from 'package:ggplot2':
##
##
      %+%, alpha
```

```
library(corrplot)
## Warning: package 'corrplot' was built under R version 4.2.2
## corrplot 0.92 loaded
library(FactoMineR)
## Warning: package 'FactoMineR' was built under R version 4.2.2
library(devtools)
## Warning: package 'devtools' was built under R version 4.2.2
## Loading required package: usethis
## Warning: package 'usethis' was built under R version 4.2.2
install_github('sinhrks/ggfortify',force = TRUE)
## WARNING: Rtools is required to build R packages, but is not currently installed.
## Please download and install Rtools 4.2 from https://cran.r-project.org/bin/windows/Rtools/ or https:
## Downloading GitHub repo sinhrks/ggfortify@HEAD
## WARNING: Rtools is required to build R packages, but is not currently installed.
## Please download and install Rtools 4.2 from https://cran.r-project.org/bin/windows/Rtools/ or https:
##
            checking for file 'C:\Users\kunbu\AppData\Local\Temp\RtmpaQeabl\remotes216c62736c34\sinhrks
##
         - preparing 'ggfortify':
##
      checking DESCRIPTION meta-information ...
                                                   checking DESCRIPTION meta-information ... v checking DESCRIPTION meta-information ...
##
         - checking for LF line-endings in source and make files and shell scripts
         - checking for empty or unneeded directories
##
         - building 'ggfortify_0.4.15.tar.gz'
##
##
##
library(ggfortify)
library(e1071)
## Warning: package 'e1071' was built under R version 4.2.2
library(caret)
## Warning: package 'caret' was built under R version 4.2.2
```

```
## Loading required package: lattice
##
## Attaching package: 'caret'
## The following object is masked from 'package:purrr':
##
##
       lift
library(randomForest)
## Warning: package 'randomForest' was built under R version 4.2.2
## randomForest 4.7-1.1
## Type rfNews() to see new features/changes/bug fixes.
##
## Attaching package: 'randomForest'
##
## The following object is masked from 'package:psych':
##
##
       outlier
##
## The following object is masked from 'package:dplyr':
##
##
       combine
##
## The following object is masked from 'package:ggplot2':
##
##
       margin
```

import video level dataset

Boxplot for variables

```
#remove veractiy first
MU3D_Video_Level_Data <- MU3D_Video_Level_Data0[,-grep("Veracity",colnames(MU3D_Video_Level_Data0))]
str(MU3D_Video_Level_Data)
## 'data.frame': 320 obs. of 13 variables:
## $ VideoID
                : chr "BF001_1PT" "BF001_2NL" "BF001_3NT" "BF001_4PL" ...
## $ Valence
                 : int 1001100110 ...
## $ Sex
                 : int 0000000000...
## $ Race
                 : int 0000000000...
## $ VidLength_ms : int 38783 37120 38484 38026 36351 36650 29141 36480 36960 29610 ...
## $ VidLength_sec: num 38.8 37.1 38.5 38 36.4 ...
## $ WordCount : int 110 88 120 124 91 73 95 104 91 114 ...
## $ Accuracy
                 : num 0.77 0.4 0.77 0.58 0.59 0.33 0.6 0.64 0.64 0.27 ...
## $ TruthProp
                 : num 0.77 0.6 0.77 0.42 0.59 0.67 0.6 0.36 0.64 0.73 ...
## $ Attractive : num 4.55 3.55 3.27 4.05 4.86 5.05 4.4 4.27 3.09 3 ...
## $ Trustworthy : num 4.32 3.75 3.95 4.05 4.36 4.62 4.5 3.73 4.27 4.55 ...
               : num 3.18 3.05 2.82 3.11 3.32 2.33 3.15 2.91 2.64 2.73 ...
## $ Anxious
## $ Transcription: chr "My best friend is a really nice person. Um. She's always kind to everyone. Si
```

```
colnames(MU3D_Video_Level_Data)
    [1] "VideoID"
                         "Valence"
                                         "Sex"
                                                          "Race"
##
##
    [5] "VidLength_ms"
                        "VidLength_sec" "WordCount"
                                                          "Accuracy"
   [9] "TruthProp"
                         "Attractive"
                                         "Trustworthy"
                                                          "Anxious"
## [13] "Transcription"
MU3D_Video_Level_Data.scaled <- data.frame(scale(MU3D_Video_Level_Data[,-grep("VideoID|Transcription",c
#level veractiy
levels0 <- unique(c(MU3D_Video_Level_Data0$Veracity, MU3D_Video_Level_Data0$Veracity))</pre>
#add veracity back
MU3D_Video_Level_Data.scaled$Veracity <- factor(MU3D_Video_Level_DataO$Veracity, levels = levelsO)
#melt data for boxplot
MU3D_Video_Level_Data.scaled.melt <- melt(MU3D_Video_Level_Data.scaled, id.var = "Veracity")
#plot boxplot
ggplot(data = MU3D_Video_Level_Data.scaled.melt, aes(x=Veracity, y = value))+
  geom_boxplot() +
  facet_wrap(~variable, ncol=4)
```

#scaled

Feature Selection

```
# ensure results are repeatable
set.seed(7)
# load the library
library(mlbench)
## Warning: package 'mlbench' was built under R version 4.2.2
library(caret)
# prepare training scheme
control <- trainControl(method="repeatedcv", number=10, repeats=3)</pre>
# train the model
model <- train(Veracity~., data=MU3D_Video_Level_Data.scaled, method="lvq", preProcess="scale", trContr</pre>
# estimate variable importance
importance <- varImp(model, scale=FALSE)</pre>
# summarize importance
print(importance)
## ROC curve variable importance
##
##
                  Importance
                0.7701
## Accuracy
## TruthProp
                      0.5601
## Trustworthy
                    0.5410
## WordCount
                    0.5333
## Anxious
                     0.5125
## Attractive 0.5104
## VidLength_ms 0.5011
## VidLength_sec 0.5009
## Sex
                      0.5000
## Valence
                     0.5000
## Race
                      0.5000
# plot importance
plot(importance)
```


features <- colnames(MU3D_Video_Level_Data.scaled[,importance\$importance\$X0>=0.51])

Individual learning classifer

Splitting data set into training and test datasets using 80/20 cretira.

```
#split train and test 80/20
set.seed(123)
smp_size_raw <- floor(0.80 * nrow(MU3D_Video_Level_Data.scaled))
train_ind_raw <- sample(nrow(MU3D_Video_Level_Data.scaled), size = smp_size_raw)
train_raw.df <- as.data.frame(MU3D_Video_Level_Data.scaled[train_ind_raw, importance$importance$X0>=0.5
test_raw.df <- as.data.frame(MU3D_Video_Level_Data.scaled[-train_ind_raw, importance$importance$X0>=0.5
train_raw.df$Veracity <- MU3D_Video_Level_Data.scaled[train_ind_raw, 12]
test_raw.df$Veracity <- MU3D_Video_Level_Data.scaled[-train_ind_raw, 12]</pre>
```

SVM

```
##
## Parameter tuning of 'svm':
  - sampling method: 10-fold cross validation
##
   - best parameters:
    degree coef0
##
         4
##
   - best performance: 0.1212308
##
  - Detailed performance results:
##
      degree coef0
                      error dispersion
## 1
           2
               0.1 0.2187692 0.08477778
## 2
           3
               0.1 0.2190769 0.07740091
## 3
           4
               0.1 0.2809231 0.08762541
## 4
           5
               0.1 0.3198462 0.09631050
## 5
               0.1 0.3393846 0.09094493
## 6
           2
               0.5 0.2153846 0.08745958
           3
## 7
               0.5 0.1923077 0.08548889
## 8
           4
               0.5 0.1924615 0.08580960
## 9
               0.5 0.1884615 0.08634975
           6
              0.5 0.1884615 0.09945611
## 10
## 11
           2
              1.0 0.2153846 0.09278226
## 12
              1.0 0.1607692 0.06875716
## 13
              1.0 0.1804615 0.08473511
## 14
           5
               1.0 0.1607692 0.07611974
## 15
           6
               1.0 0.1524615 0.09130639
           2
## 16
               2.0 0.2153846 0.10125316
## 17
               2.0 0.1569231 0.07513827
## 18
           4
               2.0 0.1333846 0.08342141
## 19
           5
               2.0 0.1444615 0.08240134
## 20
               2.0 0.1447692 0.08342267
## 21
           2
               3.0 0.2113846 0.08681432
## 22
           3
               3.0 0.1607692 0.07319963
## 23
           4
               3.0 0.1252308 0.08762841
## 24
               3.0 0.1567692 0.10907886
## 25
           6
              3.0 0.1413846 0.10289805
## 26
           2
               4.0 0.2152308 0.08481081
               4.0 0.1489231 0.06117328
## 27
## 28
               4.0 0.1212308 0.09574182
## 29
           5
               4.0 0.1449231 0.10847530
## 30
               4.0 0.1295385 0.10254051
best.poly <- poly.tune$best.model</pre>
poly.test <- predict(best.poly, newdata = test_raw.df)</pre>
table(poly.test, test_raw.df$Veracity)
##
## poly.test 1 0
##
           1 27 8
##
           0 2 27
```

```
confusionMatrix(poly.test, test_raw.df$Veracity, dnn = c("Prediction", "Reference"))
```

```
## Confusion Matrix and Statistics
##
##
            Reference
## Prediction 1 0
##
            1 27 8
           0 2 27
##
##
##
                  Accuracy: 0.8438
##
                    95% CI: (0.7314, 0.9224)
      No Information Rate: 0.5469
##
##
      P-Value [Acc > NIR] : 4.925e-07
##
##
                     Kappa: 0.6902
##
## Mcnemar's Test P-Value: 0.1138
##
##
              Sensitivity: 0.9310
               Specificity: 0.7714
##
           Pos Pred Value : 0.7714
##
           Neg Pred Value: 0.9310
##
##
                Prevalence: 0.4531
##
           Detection Rate: 0.4219
##
     Detection Prevalence: 0.5469
##
        Balanced Accuracy: 0.8512
##
##
          'Positive' Class: 1
##
```

Random Forest

```
set.seed(123)
rf.fit <- randomForest(Veracity~., data= MU3D_Video_Level_Data.scaled)
##
## Call:
## randomForest(formula = Veracity ~ ., data = MU3D_Video_Level_Data.scaled)
                  Type of random forest: classification
##
##
                        Number of trees: 500
## No. of variables tried at each split: 3
##
          OOB estimate of error rate: 4.06%
## Confusion matrix:
          0 class.error
                0.05625
## 1 151
          9
## 0 4 156
                0.02500
```

plot(rf.fit)

rf.fit


```
which.min(rf.fit\err.rate[,1])
```

```
## [1] 340
```



```
best.m \leftarrow mtry[mtry[,2] == min(mtry[,2]), 1]
print(mtry)
##
         mtry OOBError
## 2.00B
            2 0.078125
## 3.00B
            3 0.040625
## 4.00B
            4 0.040625
print(best.m)
## 3.00B 4.00B
##
       3
set.seed(123)
rf.fit1 <-randomForest(Veracity~.,data=train_raw.df[,-3], mtry=best.m, importance=TRUE,ntree=334)
## Warning in mtry < 1 \mid \mid mtry > p: 'length(x) = 2 > 1' in coercion to 'logical(1)'
## Warning in mtry < 1 \mid \mid mtry > p: 'length(x) = 2 > 1' in coercion to 'logical(1)'
print(rf.fit1)
```

```
## Call:
  Type of random forest: classification
##
##
                    Number of trees: 334
## No. of variables tried at each split: 3
##
         OOB estimate of error rate: 23.05%
## Confusion matrix:
     1 0 class.error
## 1 98 33
           0.2519084
## 0 26 99
           0.2080000
#Evaluate variable importance
importance(rf.fit1)
##
                            O MeanDecreaseAccuracy MeanDecreaseGini
## WordCount
             5.469427 4.019675
                                       6.6861805
                                                       13.62865
            51.273047 55.159668
                                      70.5412102
                                                       43.57648
## Accuracy
## Attractive -1.342833 2.496349
                                       0.7810218
                                                       13.60494
## Trustworthy 24.495995 27.475946
                                       34.4083459
                                                       35.15233
             6.050911 14.959367
## Anxious
                                       15.4323272
                                                       21.47542
varImpPlot(rf.fit1)
```

rf.fit1


```
rf.pred <- predict(rf.fit1, test_raw.df)</pre>
confusionMatrix(rf.pred, test_raw.df$Veracity)
## Confusion Matrix and Statistics
##
             Reference
##
## Prediction 1 0
##
            1 22 7
            0 7 28
##
##
##
                  Accuracy : 0.7812
##
                    95% CI: (0.6603, 0.8749)
       No Information Rate: 0.5469
##
##
       P-Value [Acc > NIR] : 8.469e-05
##
##
                     Kappa: 0.5586
##
   Mcnemar's Test P-Value : 1
##
##
##
               Sensitivity: 0.7586
##
               Specificity: 0.8000
            Pos Pred Value: 0.7586
##
            Neg Pred Value: 0.8000
##
##
                Prevalence: 0.4531
##
            Detection Rate: 0.3438
      Detection Prevalence: 0.4531
##
##
         Balanced Accuracy: 0.7793
##
          'Positive' Class: 1
##
##
set.seed(123)
pred1=predict(rf.fit1, test_raw.df, type = "prob")
library(ROCR)
plot AUC
## Warning: package 'ROCR' was built under R version 4.2.2
perf = prediction(pred1[,1], test_raw.df$Veracity)
# 1. Area under curve
auc = performance(perf, "auc")
auc@y.values[[1]]
## [1] 0.8921182
# 2. True Positive and Negative Rate
pred3 = performance(perf, "tpr", "fpr")
# 3. Plot the ROC curve
```

```
plot(pred3,main="ROC Curve for Random Forest",col=2,lwd=2)
abline(a=0,b=1,lwd=2,lty=2,col="gray")
legend("topleft", c(paste0("AUC = ", round(auc@y.values[[1]],4))))
```

ROC Curve for Random Forest

KNN

```
library(class)
target_category <- train_raw.df$Veracity</pre>
test_category <- test_raw.df$Veracity</pre>
k=sqrt(dim(MU3D_Video_Level_Data)[1])
##run knn function
knn.fit <- knn(train_raw.df,test_raw.df,cl=target_category,k=k)</pre>
##create confusion matrix
confusionMatrix(knn.fit, test_raw.df$Veracity, dnn = c("Prediction", "Reference"))
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction 1 0
##
            1 29 0
            0 0 35
##
```

```
##
##
                  Accuracy: 1
                    95% CI: (0.944, 1)
##
##
       No Information Rate: 0.5469
##
       P-Value [Acc > NIR] : < 2.2e-16
##
##
                     Kappa: 1
##
##
   Mcnemar's Test P-Value : NA
##
##
               Sensitivity: 1.0000
##
               Specificity: 1.0000
            Pos Pred Value: 1.0000
##
            Neg Pred Value: 1.0000
##
##
                Prevalence: 0.4531
##
            Detection Rate: 0.4531
##
      Detection Prevalence: 0.4531
##
         Balanced Accuracy: 1.0000
##
          'Positive' Class: 1
##
##
```

GLM

```
##run glm function
glm.fit <- glm(Veracity~. ,family = binomial(link = "logit"), train_raw.df,)</pre>
outcome <- predict(glm.fit, newdata = test_raw.df, type = 'response')</pre>
outcome1 <- as.factor(ifelse(outcome > 0.5, 1, 0))
##create confusion matrix
confusionMatrix(data = outcome1, test_raw.df$Veracity, dnn = c("Prediction", "Reference"))
## Warning in confusionMatrix.default(data = outcome1, test_raw.df$Veracity, :
## Levels are not in the same order for reference and data. Refactoring data to
## match.
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction 1 0
            1 9 23
##
            0 20 12
##
##
##
                  Accuracy: 0.3281
                    95% CI: (0.2159, 0.4569)
##
##
       No Information Rate: 0.5469
       P-Value [Acc > NIR] : 0.9999
##
##
##
                     Kappa: -0.3438
##
   Mcnemar's Test P-Value: 0.7604
##
##
```

```
##
              Sensitivity: 0.3103
##
              Specificity: 0.3429
##
           Pos Pred Value: 0.2812
##
           Neg Pred Value: 0.3750
##
               Prevalence: 0.4531
##
           Detection Rate: 0.1406
##
      Detection Prevalence: 0.5000
         Balanced Accuracy: 0.3266
##
##
##
          'Positive' Class : 1
##
```

WSRF

160 160

```
#install.packages("wsrf")
library(wsrf)
## Warning: package 'wsrf' was built under R version 4.2.2
## Loading required package: parallel
## Loading required package: Rcpp
## wsrf: An R Package for Scalable Weighted Subspace Random Forests.
## Version 1.7.27
## Use C++ standard thread library for parallel computing
##
## Attaching package: 'wsrf'
## The following objects are masked from 'package:randomForest':
##
##
       combine, importance
## The following object is masked from 'package:dplyr':
##
##
       combine
target <- "Veracity"</pre>
ds <- MU3D_Video_Level_Data.scaled</pre>
vars <- names(ds)</pre>
if (sum(is.na(ds[vars]))) ds[vars] <- na.roughfix(ds[vars])</pre>
ds[target] <- as.factor(ds[[target]])</pre>
(tt <- table(ds[target]))</pre>
## Veracity
## 1 0
```

```
form <- as.formula(paste(target, "~ ."))</pre>
model.wsrf.1 <- wsrf(form, data=train_raw.df, parallel=FALSE)</pre>
print(model.wsrf.1)
## A Weighted Subspace Random Forest model with 500 trees.
##
##
     No. of variables tried at each split: 3
##
           Minimum size of terminal nodes: 2
                    Out-of-Bag Error Rate: 0.05
##
##
                                  Strength: 0.77
                              Correlation: 0.07
##
##
## Confusion matrix:
       1
          0 class.error
                    0.05
## 1 125
           6
                    0.06
## 0
      7 118
wdrf.fit <- predict(model.wsrf.1, newdata=test_raw.df, type="class")$class</pre>
##create confusion matrix
confusionMatrix(wdrf.fit, test_raw.df$Veracity, dnn = c("Prediction", "Reference"))
## Confusion Matrix and Statistics
##
             Reference
##
## Prediction 1 0
            1 29 3
##
            0 0 32
##
##
##
                  Accuracy: 0.9531
##
                    95% CI: (0.8691, 0.9902)
##
       No Information Rate: 0.5469
       P-Value [Acc > NIR] : 4.219e-13
##
##
##
                     Kappa: 0.9062
##
   Mcnemar's Test P-Value: 0.2482
##
##
##
               Sensitivity: 1.0000
##
               Specificity: 0.9143
##
            Pos Pred Value: 0.9062
            Neg Pred Value: 1.0000
##
                Prevalence: 0.4531
##
##
            Detection Rate: 0.4531
##
      Detection Prevalence: 0.5000
##
         Balanced Accuracy: 0.9571
##
          'Positive' Class : 1
##
##
```

GBM

```
#install.packages("gbm")
library(gbm)
## Warning: package 'gbm' was built under R version 4.2.2
## Loaded gbm 2.1.8.1
fit.gbm <- gbm(Veracity~. , data= train_raw.df,</pre>
               distribution = 'multinomial',
               cv.folds = 10,
               shrinkage = .01,
               n.minobsinnode = 10,
               n.trees = 200)
## Warning: Setting 'distribution = "multinomial" is ill-advised as it is
## currently broken. It exists only for backwards compatibility. Use at your own
## risk.
pred <- predict.gbm(object = fit.gbm,</pre>
                   newdata = test_raw.df,
                   n.trees = 200,
                   type = "response")
##create confusion matrix
pred.labels = colnames(pred)[apply(pred, 1, which.max)]
result = data.frame(test_raw.df$Veracity, pred.labels)
caret::confusionMatrix(test_raw.df$Veracity, as.factor(pred.labels))
## Warning in confusionMatrix.default(test_raw.df$Veracity,
## as.factor(pred.labels)): Levels are not in the same order for reference and
## data. Refactoring data to match.
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction 0 1
           0 19 16
            1 7 22
##
##
##
                  Accuracy : 0.6406
##
                    95% CI: (0.511, 0.7568)
       No Information Rate: 0.5938
##
       P-Value [Acc > NIR] : 0.26403
##
##
##
                     Kappa: 0.2937
##
##
  Mcnemar's Test P-Value: 0.09529
##
```

```
##
               Sensitivity: 0.7308
##
               Specificity: 0.5789
##
            Pos Pred Value: 0.5429
##
            Neg Pred Value: 0.7586
##
                Prevalence: 0.4062
            Detection Rate: 0.2969
##
      Detection Prevalence: 0.5469
##
##
         Balanced Accuracy: 0.6549
##
##
          'Positive' Class: 0
##
```

Ensemble Learning

##

20

1.1541

```
library(caretEnsemble)
## Warning: package 'caretEnsemble' was built under R version 4.2.2
## Attaching package: 'caretEnsemble'
## The following object is masked from 'package:ggplot2':
##
##
       autoplot
set.seed(100)
control_stacking <- caret::trainControl(method="repeatedcv", number=5, repeats=2, savePredictions=TRUE,</pre>
algorithms_to_use <- c( 'glm', 'knn', 'svmPoly', 'svmLinear', 'wsrf', 'gbm')</pre>
stacked_models <- caretList(make.names(Veracity) ~., data=MU3D_Video_Level_Data.scaled, trControl=contr
## Warning in trControlCheck(x = trControl, y = target): x$savePredictions == TRUE
## is depreciated. Setting to 'final' instead.
## Warning in trControlCheck(x = trControl, y = target): indexes not defined in
## trControl. Attempting to set them ourselves, so each model in the ensemble will
## have the same resampling indexes.
## Iter
          TrainDeviance
                          ValidDeviance
                                           StepSize
                                                      Improve
##
                 1.3583
                                             0.1000
                                                       0.0133
        1
                                     nan
##
                 1.3382
                                             0.1000
                                                       0.0078
                                     nan
##
        3
                                             0.1000
                                                       0.0074
                 1.3199
                                     nan
##
        4
                 1.2949
                                             0.1000
                                                       0.0115
                                     nan
        5
##
                                             0.1000
                                                       0.0065
                 1.2803
                                     nan
##
        6
                                             0.1000
                                                       0.0080
                 1.2638
                                     nan
        7
                 1.2515
##
                                             0.1000
                                                       0.0048
                                     nan
##
        8
                 1.2403
                                             0.1000
                                                       0.0020
                                     nan
##
        9
                 1.2342
                                             0.1000
                                                       0.0000
                                     nan
##
                                             0.1000
       10
                 1.2277
                                     nan
                                                       0.0008
```

nan

0.1000

-0.0007

##	40	1.0918	nan	0.1000	-0.0013
##	60	1.0528	nan	0.1000	-0.0017
##	80	1.0171	nan	0.1000	-0.0025
##	100	0.9827	nan	0.1000	-0.0034
##	120	0.9603		0.1000	-0.0005
			nan		
##	140	0.9401	nan	0.1000	-0.0003
##	150	0.9265	nan	0.1000	-0.0029
##	T4	T : D :	W-1:4D	Q+ Q ÷	T
##	Iter	TrainDeviance 1.2937	ValidDeviance	StepSize	Improve
##	1		nan	0.1000	0.0447
##	2	1.2243	nan	0.1000	0.0341
##	3	1.1633	nan	0.1000	0.0268
##	4	1.1163	nan	0.1000	0.0191
##	5	1.0525	nan	0.1000	0.0248
##	6	1.0281	nan	0.1000	0.0088
##	7	1.0090	nan	0.1000	0.0054
##	8	0.9547	nan	0.1000	0.0265
##	9	0.9201	nan	0.1000	0.0133
##	10	0.8915	nan	0.1000	0.0108
##	20	0.8319	nan	0.1000	-0.0020
##	40	0.6226	nan	0.1000	-0.0008
##	60	0.4704	nan	0.1000	0.0066
##	80	0.3438	nan	0.1000	0.0006
##	100	0.2657	nan	0.1000	0.0056
##	120	0.2219	nan	0.1000	-0.0007
##	140	0.1809	nan	0.1000	-0.0012
##	150	0.1484	nan	0.1000	-0.0007
##					
## ##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
	Iter 1	TrainDeviance 1.2769	ValidDeviance nan	StepSize 0.1000	Improve 0.0499
##				_	_
## ##	1	1.2769	nan	0.1000	0.0499
## ## ##	1 2	1.2769 1.1186	nan nan	0.1000 0.1000	0.0499 0.0781
## ## ## ##	1 2 3	1.2769 1.1186 1.0262	nan nan nan	0.1000 0.1000 0.1000	0.0499 0.0781 0.0450
## ## ## ##	1 2 3 4	1.2769 1.1186 1.0262 0.9424	nan nan nan nan	0.1000 0.1000 0.1000 0.1000	0.0499 0.0781 0.0450 0.0384
## ## ## ## ##	1 2 3 4 5	1.2769 1.1186 1.0262 0.9424 0.9132	nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000	0.0499 0.0781 0.0450 0.0384 0.0090
## ## ## ## ##	1 2 3 4 5 6	1.2769 1.1186 1.0262 0.9424 0.9132 0.8140	nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0499 0.0781 0.0450 0.0384 0.0090 0.0500
## ## ## ## ## ##	1 2 3 4 5 6 7	1.2769 1.1186 1.0262 0.9424 0.9132 0.8140 0.7505	nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0499 0.0781 0.0450 0.0384 0.0090 0.0500 0.0312
## ## ## ## ## ##	1 2 3 4 5 6 7 8	1.2769 1.1186 1.0262 0.9424 0.9132 0.8140 0.7505 0.6727	nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0499 0.0781 0.0450 0.0384 0.0090 0.0500 0.0312 0.0387
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8	1.2769 1.1186 1.0262 0.9424 0.9132 0.8140 0.7505 0.6727	nan nan nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0499 0.0781 0.0450 0.0384 0.0090 0.0500 0.0312 0.0387 0.0059
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9	1.2769 1.1186 1.0262 0.9424 0.9132 0.8140 0.7505 0.6727 0.6577	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0499 0.0781 0.0450 0.0384 0.0090 0.0500 0.0312 0.0387 0.0059 0.0198
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20	1.2769 1.1186 1.0262 0.9424 0.9132 0.8140 0.7505 0.6727 0.6577 0.6146 0.3466	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0499 0.0781 0.0450 0.0384 0.0090 0.0500 0.0312 0.0387 0.0059 0.0198 0.0153
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40	1.2769 1.1186 1.0262 0.9424 0.9132 0.8140 0.7505 0.6727 0.6577 0.6146 0.3466 0.2001	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0499 0.0781 0.0450 0.0384 0.0090 0.0500 0.0312 0.0387 0.0059 0.0198 0.0153 -0.0009
## ## ## ## ## ## ## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40 60	1.2769 1.1186 1.0262 0.9424 0.9132 0.8140 0.7505 0.6727 0.6577 0.6146 0.3466 0.2001 0.1530	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0499 0.0781 0.0450 0.0384 0.0090 0.0500 0.0312 0.0387 0.0059 0.0198 0.0153 -0.0009 -0.0011
## ## ## ## ## ## ## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40 60 80	1.2769 1.1186 1.0262 0.9424 0.9132 0.8140 0.7505 0.6727 0.6577 0.6146 0.3466 0.2001 0.1530 0.1145	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0499 0.0781 0.0450 0.0384 0.0090 0.0500 0.0312 0.0387 0.0059 0.0198 0.0153 -0.0009 -0.0011 -0.0008
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100	1.2769 1.1186 1.0262 0.9424 0.9132 0.8140 0.7505 0.6727 0.6577 0.6146 0.3466 0.2001 0.1530 0.1145 0.0866	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0499 0.0781 0.0450 0.0384 0.0090 0.0500 0.0312 0.0387 0.0059 0.0198 0.0153 -0.0009 -0.0011 -0.0008 -0.0004
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120	1.2769 1.1186 1.0262 0.9424 0.9132 0.8140 0.7505 0.6727 0.6577 0.6146 0.3466 0.2001 0.1530 0.1145 0.0866 0.0640	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0499 0.0781 0.0450 0.0384 0.0090 0.0500 0.0312 0.0387 0.0059 0.0198 0.0153 -0.0009 -0.0011 -0.0008 -0.0004 0.0003
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	1.2769 1.1186 1.0262 0.9424 0.9132 0.8140 0.7505 0.6727 0.6577 0.6146 0.3466 0.2001 0.1530 0.1145 0.0866 0.0640 0.0498	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0499 0.0781 0.0450 0.0384 0.0090 0.0500 0.0312 0.0387 0.0059 0.0198 0.0153 -0.0009 -0.0011 -0.0008 -0.0004 0.0003 -0.0006
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	1.2769 1.1186 1.0262 0.9424 0.9132 0.8140 0.7505 0.6727 0.6577 0.6146 0.3466 0.2001 0.1530 0.1145 0.0866 0.0640 0.0498	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0499 0.0781 0.0450 0.0384 0.0090 0.0500 0.0312 0.0387 0.0059 0.0198 0.0153 -0.0009 -0.0011 -0.0008 -0.0004 0.0003 -0.0006
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150	1.2769 1.1186 1.0262 0.9424 0.9132 0.8140 0.7505 0.6727 0.6577 0.6146 0.3466 0.2001 0.1530 0.1145 0.0866 0.0640 0.0498 0.0427	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0499 0.0781 0.0450 0.0384 0.0090 0.0500 0.0312 0.0387 0.0059 0.0198 0.0153 -0.0009 -0.0011 -0.0008 -0.0004 0.0003 -0.0006 -0.0001
#######################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150	1.2769 1.1186 1.0262 0.9424 0.9132 0.8140 0.7505 0.6727 0.6577 0.6146 0.3466 0.2001 0.1530 0.1145 0.0866 0.0640 0.0498 0.0427	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0499 0.0781 0.0450 0.0384 0.0090 0.0500 0.0312 0.0387 0.0059 0.0198 0.0153 -0.0009 -0.0011 -0.0008 -0.0004 0.0003 -0.0006 -0.0001 Improve
########################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter	1.2769 1.1186 1.0262 0.9424 0.9132 0.8140 0.7505 0.6727 0.6577 0.6146 0.3466 0.2001 0.1530 0.1145 0.0866 0.0640 0.0498 0.0427 TrainDeviance 1.3562	nan	0.1000 0.1000	0.0499 0.0781 0.0450 0.0384 0.0090 0.0500 0.0312 0.0387 0.0059 0.0198 0.0153 -0.0009 -0.0011 -0.0008 -0.0004 0.0003 -0.0006 -0.0001 Improve 0.0160
#########################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter	1.2769 1.1186 1.0262 0.9424 0.9132 0.8140 0.7505 0.6727 0.6577 0.6146 0.3466 0.2001 0.1530 0.1145 0.0866 0.0640 0.0498 0.0427 TrainDeviance 1.3562 1.3223	nan	0.1000 0.1000	0.0499 0.0781 0.0450 0.0384 0.0090 0.0500 0.0312 0.0387 0.0059 0.0198 0.0153 -0.0009 -0.0011 -0.0008 -0.0004 0.0003 -0.0006 -0.0001 Improve 0.0160 0.0134
########################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter 1 2 3	1.2769 1.1186 1.0262 0.9424 0.9132 0.8140 0.7505 0.6727 0.6577 0.6146 0.3466 0.2001 0.1530 0.1145 0.0866 0.0640 0.0498 0.0427 TrainDeviance 1.3562 1.3223 1.3044	nan	0.1000 0.1000	0.0499 0.0781 0.0450 0.0384 0.0090 0.0500 0.0312 0.0387 0.0059 0.0198 0.0153 -0.0009 -0.0011 -0.0008 -0.0004 0.0003 -0.0006 -0.0001 Improve 0.0160 0.0134 0.0067

##	6	1.2507	nan	0.1000	0.0076
##	7	1.2345	nan	0.1000	0.0052
##	8	1.2265	nan	0.1000	0.0018
##	9	1.2143	nan	0.1000	0.0047
##	10	1.2049	nan	0.1000	0.0032
##	20	1.1338	nan	0.1000	0.0015
##	40	1.0737	nan	0.1000	-0.0015
##	60	1.0487	nan	0.1000	-0.0040
##	80	1.0207	nan	0.1000	-0.0019
##	100	0.9995	nan	0.1000	-0.0027
##	120	0.9691	nan	0.1000	-0.0012
##	140	0.9453	nan	0.1000	-0.0031
##	150	0.9358	nan	0.1000	-0.0040
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.2910	nan	0.1000	0.0431
##	2	1.2202	nan	0.1000	0.0330
##	3	1.1317	nan	0.1000	0.0425
##	4	1.0814	nan	0.1000	0.0226
##	5	0.9961	nan	0.1000	0.0384
##	6	0.9359	nan	0.1000	0.0270
##	7	0.8857	nan	0.1000	0.0238
##	8	0.8759	nan	0.1000	0.0028
##	9	0.8480	nan	0.1000	0.0111
##	10	0.7955	nan	0.1000	0.0239
##	20	0.5915	nan	0.1000	-0.0015
##	40	0.4659	nan	0.1000	-0.0015
##	60	0.3820	nan	0.1000	-0.0015
##	80	0.2680	nan	0.1000	0.0038
##	100	0.1881	nan	0.1000	-0.0008
##	120	0.1379	nan	0.1000	0.0006
##	140	0.1184	nan	0.1000	-0.0004
##	150	0.1120	nan	0.1000	-0.0011
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2731	nan	0.1000	0.0528
##	2	1.1796	nan	0.1000	0.0390
##	3	1.0329	nan	0.1000	0.0719
##	4	0.9220	nan	0.1000	0.0520
##	5	0.8683	nan	0.1000	0.0213
##	6	0.7985	nan	0.1000	0.0302
##	7	0.7104	nan	0.1000	0.0424
##	8	0.6358	nan	0.1000	0.0373
##	9	0.5989	nan	0.1000	0.0147
##	10	0.5428	nan	0.1000	0.0271
##	20	0.2595	nan	0.1000	0.0104
##	40	0.1033	nan	0.1000	0.0001
##	60	0.0669	nan	0.1000	0.0006
##	80	0.0438	nan	0.1000	0.0005
##	100	0.0322	nan	0.1000	-0.0002
##	120	0.0261	nan	0.1000	-0.0001
##	140	0.0194	nan	0.1000	-0.0001
##	150	0.0165	nan	0.1000	-0.0001
##					

##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.3539	nan	0.1000	0.0154
##	2	1.3272		0.1000	0.0134
##	3	1.3051	nan	0.1000	0.0113
	4	1.2835	nan	0.1000	0.0097
## ##	5	1.2661	nan	0.1000	0.0088
	6		nan	0.1000	0.0071
##	7	1.2490	nan		
##		1.2337	nan	0.1000	0.0044
##	8 9	1.2229	nan	0.1000	0.0013
##		1.2141	nan	0.1000	-0.0006
##	10	1.2030	nan	0.1000	0.0022
##	20	1.1416	nan	0.1000	0.0029
##	40	1.0702	nan	0.1000	-0.0015
##	60	1.0323	nan	0.1000	-0.0004
##	80	1.0069	nan	0.1000	-0.0053
##	100	0.9787	nan	0.1000	-0.0023
##	120	0.9597	nan	0.1000	-0.0026
##	140	0.9397	nan	0.1000	-0.0023
##	150	0.9311	nan	0.1000	-0.0011
##	_				_
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2951	nan	0.1000	0.0406
##	2	1.2121	nan	0.1000	0.0339
##	3	1.1778	nan	0.1000	0.0131
##	4	1.0954	nan	0.1000	0.0386
##	5	1.0538	nan	0.1000	0.0161
##	6	0.9830	nan	0.1000	0.0338
##	7	0.9289	nan	0.1000	0.0223
##	8	0.8704	nan	0.1000	0.0283
##	9	0.8325	nan	0.1000	0.0180
##	10	0.7839	nan	0.1000	0.0236
##	20	0.6163	nan	0.1000	-0.0021
##	40	0.4384	nan	0.1000	-0.0001
##	60	0.3764	nan	0.1000	-0.0018
##	80	0.2848	nan	0.1000	-0.0009
##	100	0.2170	nan	0.1000	-0.0016
##	120	0.1841	nan	0.1000	-0.0004
##	140	0.1608	nan	0.1000	-0.0005
##	150	0.1460	nan	0.1000	-0.0009
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	1.2663	nan	0.1000	0.0547
##	2	1.1160	nan	0.1000	0.0761
##	3	1.0325	nan	0.1000	0.0399
##	4	0.9214	nan	0.1000	0.0551
##	5	0.8226	nan	0.1000	0.0494
##	6	0.7612	nan	0.1000	0.0278
##	7	0.7159	nan	0.1000	0.0212
##	8	0.6507	nan	0.1000	0.0314
##	9	0.6098	nan	0.1000	0.0185
##	10	0.5527	nan	0.1000	0.0279
##	20	0.2811	nan	0.1000	0.0035
##	40	0.1553	nan	0.1000	-0.0007
##	60	0.1123	nan	0.1000	-0.0009

##	80	0.0891	nan	0.1000	-0.0009
##	100	0.0698	nan	0.1000	-0.0007
##	120	0.0595	nan	0.1000	-0.0003
##	140	0.0443	nan	0.1000	0.0009
##	150	0.0384	nan	0.1000	-0.0003
	130	0.0304	liali	0.1000	0.0003
##	_				_
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	1.3519	nan	0.1000	0.0167
##	2	1.3199	nan	0.1000	0.0136
##	3	1.2876	nan	0.1000	0.0131
##	4	1.2569	nan	0.1000	0.0082
##	5	1.2359	nan	0.1000	0.0083
##	6	1.2204	nan	0.1000	0.0058
##	7	1.2083	nan	0.1000	0.0066
##	8	1.1980		0.1000	0.0033
			nan		
##	9	1.1847	nan	0.1000	0.0038
##	10	1.1766	nan	0.1000	0.0025
##	20	1.1266	nan	0.1000	-0.0070
##	40	1.0782	nan	0.1000	-0.0053
##	60	1.0272	nan	0.1000	-0.0012
##	80	1.0032	nan	0.1000	-0.0026
##	100	0.9713	nan	0.1000	-0.0044
##	120	0.9513	nan	0.1000	-0.0022
##	140	0.9266	nan	0.1000	-0.0020
##	150	0.9199	nan	0.1000	-0.0012
##	100	0.0100	11411	0.1000	0.0012
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2985		0.1000	0.0440
			nan		
##	2	1.2191	nan	0.1000	0.0368
##	3	1.1532	nan	0.1000	0.0313
##	4	1.0831	nan	0.1000	0.0316
##	5	1.0175	nan	0.1000	0.0286
##	6	0.9506	nan	0.1000	0.0333
##	7	0.9005	nan	0.1000	0.0238
##	8	0.8686	nan	0.1000	0.0129
##	9	0.8166	nan	0.1000	0.0248
##	10	0.7902	nan	0.1000	0.0104
##	20	0.5823	nan	0.1000	0.0007
##	40	0.4651	nan	0.1000	-0.0009
##	60	0.4138	nan	0.1000	-0.0007
##	80	0.3336	nan	0.1000	0.0044
##	100	0.2688		0.1000	-0.0020
			nan		
##	120	0.2221	nan	0.1000	-0.0010
##	140	0.1734	nan	0.1000	-0.0004
##	150	0.1640	nan	0.1000	-0.0011
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	1.2105	nan	0.1000	0.0892
##	2	1.0937	nan	0.1000	0.0554
##	3	0.9982	nan	0.1000	0.0455
##	4	0.9201	nan	0.1000	0.0348
##	5	0.8556	nan	0.1000	0.0310
##	6	0.7615	nan	0.1000	0.0445
##	7	0.7230	nan	0.1000	0.0181
	,	0.1200	nan	3.1000	0.0101

##	8	0.6524	nan	0.1000	0.0358
##	9	0.6075	nan	0.1000	0.0214
##	10	0.5494	nan	0.1000	0.0280
##	20	0.2620	nan	0.1000	0.0087
##	40	0.1381	nan	0.1000	0.0000
##	60	0.1029	nan	0.1000	-0.0004
##	80	0.0834	nan	0.1000	-0.0002
##	100	0.0629	nan	0.1000	-0.0006
##	120	0.0487	nan	0.1000	-0.0002
##	140	0.0396	nan	0.1000	-0.0002
##	150	0.0339	nan	0.1000	-0.0000
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.3533	nan	0.1000	0.0181
##	2	1.3196	nan	0.1000	0.0145
##	3	1.2960	nan	0.1000	0.0111
##	4	1.2695	nan	0.1000	0.0111
##	5	1.2514	nan	0.1000	0.0052
##	6	1.2395	nan	0.1000	0.0044
##	7	1.2220	nan	0.1000	0.0065
##	8	1.2106	nan	0.1000	0.0048
##	9	1.1974	nan	0.1000	0.0033
##	10	1.1862	nan	0.1000	0.0031
##	20	1.1321	nan	0.1000	-0.0031
##	40	1.0673	nan	0.1000	-0.0022
##	60	1.0225	nan	0.1000	-0.0030
##	80	0.9930	nan	0.1000	-0.0064
##	100	0.9647	nan	0.1000	-0.0009
##	120	0.9449	nan	0.1000	-0.0018
##	140	0.9193	nan	0.1000	-0.0027
##	150	0.9068	nan	0.1000	-0.0013
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2663	nan	0.1000	0.0547
##	2	1.1833	nan	0.1000	0.0408
##	3	1.1114	nan	0.1000	0.0367
##	4	1.0585	nan	0.1000	0.0229
##	5	0.9853	nan	0.1000	0.0383
##	6	0.9274	nan	0.1000	0.0285
##	7	0.9037	nan	0.1000	0.0104
##	8	0.8494	nan	0.1000	0.0241
##	9	0.7968	nan	0.1000	0.0248
##	10	0.7710	nan	0.1000	0.0083
##	20	0.5931	nan	0.1000	0.0055
##	40	0.4628	nan	0.1000	0.0006
##	60	0.3454	nan	0.1000	0.0004
##	80	0.2582	nan	0.1000	-0.0005
##	100	0.1920	nan	0.1000	-0.0006
##	120	0.1675	nan	0.1000	-0.0010
##	140	0.1295	nan	0.1000	0.0007
##	150	0.1189	nan	0.1000	0.0002
##	100	0.1100	11311	3.1000	0.0002
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2165	nan	0.1000	0.0833
		1.2100	11011	3.1000	3.0000

##	2	1.1405	nan	0.1000	0.0342
##	3	1.0471	nan	0.1000	0.0415
##	4	0.9261	nan	0.1000	0.0592
##	5	0.8543	nan	0.1000	0.0304
##	6	0.7629	nan	0.1000	0.0449
##	7	0.6850	nan	0.1000	0.0393
##	8	0.6170	nan	0.1000	0.0332
##	9	0.5570	nan	0.1000	0.0285
##	10	0.5063	nan	0.1000	0.0247
##	20	0.2631	nan	0.1000	0.0096
##	40	0.1302	nan	0.1000	-0.0005
##	60	0.0995	nan	0.1000	0.0003
##	80	0.0703	nan	0.1000	-0.0005
##	100	0.0529	nan	0.1000	-0.0008
##	120	0.0404	nan	0.1000	-0.0002
##	140	0.0314	nan	0.1000	0.0002
##	150	0.0293	nan	0.1000	-0.0002
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	1.3554	nan	0.1000	0.0161
##	2	1.3251	nan	0.1000	0.0116
##	3	1.3094	nan	0.1000	0.0047
##	4	1.2825	nan	0.1000	0.0033
##	5	1.2652	nan	0.1000	0.0070
##	6	1.2549	nan	0.1000	0.0015
##	7	1.2338	nan	0.1000	0.0082
##	8	1.2217	nan	0.1000	0.0067
##	9	1.2157	nan	0.1000	-0.0003
##	10	1.2039	nan	0.1000	0.0024
##	20	1.1335	nan	0.1000	0.0014
##	40	1.0678	nan	0.1000	-0.0011
##	60	1.0319	nan	0.1000	-0.0002
##	80	0.9962	nan	0.1000	-0.0034
##	100	0.9724	nan	0.1000	-0.0012
##	120	0.9456	nan	0.1000	-0.0045
##	140	0.9231	nan	0.1000	-0.0008
##	150	0.9179	nan	0.1000	-0.0026
##	- .			a. a.	_
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2862	nan	0.1000	0.0480
##	2	1.2128	nan	0.1000	0.0334
##	3	1.1442	nan	0.1000	0.0327
##	4	1.0929	nan	0.1000	0.0247
##	5	1.0390	nan	0.1000	0.0289
##	6	1.0000	nan	0.1000	0.0188
##	7	0.9630	nan	0.1000	0.0168
##	8	0.9177	nan	0.1000	0.0192
##	9	0.8574	nan	0.1000	0.0289
##	10	0.8144	nan	0.1000	0.0197
##	20	0.5949	nan	0.1000	-0.0005
##	40	0.4647	nan	0.1000	0.0084
##	60	0.3544	nan	0.1000	-0.0007
##	80	0.2892	nan	0.1000	0.0001
##	100	0.2296	nan	0.1000	0.0005

##	120	0.1639	nan	0.1000	-0.0017
##	140	0.1344	nan	0.1000	-0.0007
##	150	0.1224	nan	0.1000	-0.0005
##	т.	m · p ·	17 1 · 10 ·	a. a:	-
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2835	nan	0.1000	0.0474
##	2	1.1702	nan	0.1000	0.0514
##	3	1.0360	nan	0.1000	0.0657
##	4	0.9537	nan	0.1000	0.0377
##	5	0.8822	nan	0.1000	0.0344
##	6	0.8260	nan	0.1000	0.0247
##	7	0.8054	nan	0.1000	0.0043
##	8	0.7506	nan	0.1000	0.0241
##	9	0.6953	nan	0.1000	0.0287
##	10	0.6232	nan	0.1000	0.0355
##	20	0.2917	nan	0.1000	0.0063
##	40	0.1268	nan	0.1000	-0.0011
##	60	0.0898	nan	0.1000	-0.0007
##	80	0.0735	nan	0.1000	-0.0007
##	100	0.0577	nan	0.1000	-0.0003
##	120	0.0435	nan	0.1000	0.0014
##	140	0.0342	nan	0.1000	-0.0001
##	150	0.0323	nan	0.1000	-0.0004
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	1.3515	nan	0.1000	0.0143
##	2	1.3225	nan	0.1000	0.0145
##	3	1.3060	nan	0.1000	0.0110
##	4	1.2858	nan	0.1000	0.0053
##	5	1.2649	nan	0.1000	0.0044
##	6	1.2506	nan	0.1000	0.0060
##	7	1.2338	nan	0.1000	0.0058
##	8	1.2236	nan	0.1000	0.0037
##	9	1.2130	nan	0.1000	0.0049
##	10	1.2088	nan	0.1000	-0.0035
##	20	1.1515	nan	0.1000	-0.0029
##	40	1.0930	nan	0.1000	-0.0025
##	60	1.0591	nan	0.1000	-0.0026
##	80	1.0306	nan	0.1000	-0.0017
##	100	1.0109	nan	0.1000	-0.0021
##	120	0.9929	nan	0.1000	-0.0043
##	140	0.9641	nan	0.1000	-0.0012
##	150	0.9541	nan	0.1000	-0.0021
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2783	nan	0.1000	0.0506
##	2	1.1842	nan	0.1000	0.0446
##	3	1.1201	nan	0.1000	0.0235
##	4	1.0644	nan	0.1000	0.0242
##	5	0.9842	nan	0.1000	0.0412
##	6	0.9231	nan	0.1000	0.0282
##	7	0.9061	nan	0.1000	0.0050
##	8	0.8839	nan	0.1000	0.0115
##	9	0.8320	nan	0.1000	0.0222

##	10	0.8203	nan	0.1000	0.0045
##	20	0.6347	nan	0.1000	0.0223
##	40	0.5379	nan	0.1000	-0.0015
##	60	0.4212	nan	0.1000	-0.0008
##	80	0.3151	nan	0.1000	0.0001
##	100	0.2510	nan	0.1000	-0.0012
##	120	0.2000	nan	0.1000	0.0013
##	140	0.1468	nan	0.1000	0.0021
##	150	0.1223	nan	0.1000	-0.0005
##	100	0.1220	nan	0.1000	0.000
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.3321	nan	0.1000	0.0151
##	2	1.1716	nan	0.1000	0.0777
##	3	1.0262	nan	0.1000	0.0722
##	4	0.9617		0.1000	0.0722
##	5	0.8523	nan	0.1000	0.0554
	6	0.7961	nan	0.1000	
##			nan		0.0309
## ##	7 8	0.7104	nan	0.1000 0.1000	0.0430
		0.6331	nan		0.0370
##	9	0.5697	nan	0.1000	0.0321
##	10	0.5218	nan	0.1000	0.0229
##	20	0.2631	nan	0.1000	0.0031
##	40	0.0963	nan	0.1000	-0.0003
##	60	0.0623	nan	0.1000	0.0004
##	80	0.0397	nan	0.1000	-0.0001
##	100	0.0287	nan	0.1000	0.0001
##	120	0.0219	nan	0.1000	-0.0003
##	140	0.0176	nan	0.1000	0.0003
##	150	0.0158	nan	0.1000	-0.0001
##					
## ##	Iter	TrainDeviance	nan ValidDeviance	StepSize	Improve
##	Iter 1	TrainDeviance 1.3510		StepSize 0.1000	Improve 0.0164
## ##	Iter	TrainDeviance 1.3510 1.3199	ValidDeviance	StepSize 0.1000 0.1000	Improve 0.0164 0.0155
## ## ##	Iter	TrainDeviance 1.3510 1.3199 1.3048	ValidDeviance nan	StepSize 0.1000 0.1000 0.1000	Improve 0.0164 0.0155 0.0044
## ## ## ##	Iter	TrainDeviance 1.3510 1.3199 1.3048 1.2789	ValidDeviance nan nan	StepSize 0.1000 0.1000 0.1000 0.1000	Improve 0.0164 0.0155 0.0044 0.0111
## ## ## ##	Iter 1 2 3 4 5	TrainDeviance 1.3510 1.3199 1.3048 1.2789 1.2602	ValidDeviance nan nan nan	StepSize 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.0164 0.0155 0.0044 0.0111 0.0084
## ## ## ## ##	Iter	TrainDeviance 1.3510 1.3199 1.3048 1.2789 1.2602 1.2452	ValidDeviance nan nan nan nan	StepSize 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.0164 0.0155 0.0044 0.0111
## ## ## ## ##	Iter 1 2 3 4 5 6 7	TrainDeviance 1.3510 1.3199 1.3048 1.2789 1.2602 1.2452 1.2326	ValidDeviance nan nan nan nan nan	StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.0164 0.0155 0.0044 0.0111 0.0084 0.0082 0.0053
## ## ## ## ## ##	Iter	TrainDeviance 1.3510 1.3199 1.3048 1.2789 1.2602 1.2452 1.2326 1.2158	ValidDeviance nan nan nan nan nan nan	StepSize 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.0164 0.0155 0.0044 0.0111 0.0084 0.0082
## ## ## ## ## ##	Iter 1 2 3 4 5 6 7	TrainDeviance 1.3510 1.3199 1.3048 1.2789 1.2602 1.2452 1.2326	ValidDeviance nan nan nan nan nan nan nan	StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.0164 0.0155 0.0044 0.0111 0.0084 0.0082 0.0053
## ## ## ## ## ## ##	Iter	TrainDeviance 1.3510 1.3199 1.3048 1.2789 1.2602 1.2452 1.2326 1.2158	ValidDeviance nan nan nan nan nan nan nan nan	StepSize	Improve 0.0164 0.0155 0.0044 0.0111 0.0084 0.0082 0.0053 0.0052
## ## ## ## ## ## ##	Iter 1 2 3 4 5 6 7 8 9	TrainDeviance 1.3510 1.3199 1.3048 1.2789 1.2602 1.2452 1.2326 1.2158 1.2114	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.0164 0.0155 0.0044 0.0111 0.0084 0.0082 0.0053 0.0052 -0.0006
## ## ## ## ## ## ##	Iter 1 2 3 4 5 6 7 8 9 10	TrainDeviance 1.3510 1.3199 1.3048 1.2789 1.2602 1.2452 1.2326 1.2158 1.2114 1.2016	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.0164 0.0155 0.0044 0.0111 0.0084 0.0082 0.0053 0.0052 -0.0006 0.0038
## ## ## ## ## ## ##	Iter 1 2 3 4 5 6 7 8 9 10 20	TrainDeviance 1.3510 1.3199 1.3048 1.2789 1.2602 1.2452 1.2326 1.2158 1.2114 1.2016 1.1399	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0164 0.0155 0.0044 0.0111 0.0084 0.0082 0.0053 0.0052 -0.0006 0.0038 -0.0034
## ## ## ## ## ## ## ## ## ## ## ## ##	Iter 1 2 3 4 5 6 7 8 9 10 20 40	TrainDeviance 1.3510 1.3199 1.3048 1.2789 1.2602 1.2452 1.2326 1.2158 1.2114 1.2016 1.1399 1.0943	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0164 0.0155 0.0044 0.0111 0.0084 0.0082 0.0053 0.0052 -0.0006 0.0038 -0.0034 -0.0038
## ## ## ## ## ## ## ## ## ## ## ## ##	1ter 1 2 3 4 5 6 7 8 9 10 20 40 60	TrainDeviance 1.3510 1.3199 1.3048 1.2789 1.2602 1.2452 1.2326 1.2158 1.2114 1.2016 1.1399 1.0943 1.0531	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0164 0.0155 0.0044 0.0111 0.0084 0.0082 0.0053 0.0052 -0.0006 0.0038 -0.0034 -0.0038 -0.0018
## ## ## ## ## ## ## ## ## ## ## ## ##	1ter 1 2 3 4 5 6 7 8 9 10 20 40 60 80	TrainDeviance 1.3510 1.3199 1.3048 1.2789 1.2602 1.2452 1.2326 1.2158 1.2114 1.2016 1.1399 1.0943 1.0531 1.0243 1.0018 0.9730	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0164 0.0155 0.0044 0.0111 0.0084 0.0053 0.0052 -0.0006 0.0038 -0.0038 -0.0038 -0.0018 -0.0026
######################################	1ter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100	TrainDeviance 1.3510 1.3199 1.3048 1.2789 1.2602 1.2452 1.2326 1.2158 1.2114 1.2016 1.1399 1.0943 1.0531 1.0243 1.0018	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0164 0.0155 0.0044 0.0111 0.0084 0.0053 0.0052 -0.0006 0.0038 -0.0034 -0.0038 -0.0018 -0.0018 -0.0026 -0.0036
######################################	1ter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120	TrainDeviance 1.3510 1.3199 1.3048 1.2789 1.2602 1.2452 1.2326 1.2158 1.2114 1.2016 1.1399 1.0943 1.0531 1.0243 1.0018 0.9730	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0164 0.0155 0.0044 0.0111 0.0084 0.0053 0.0052 -0.0006 0.0038 -0.0034 -0.0038 -0.0018 -0.0026 -0.0036 -0.0008
######################################	1ter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	TrainDeviance 1.3510 1.3199 1.3048 1.2789 1.2602 1.2452 1.2326 1.2158 1.2114 1.2016 1.1399 1.0943 1.0531 1.0243 1.0018 0.9730 0.9511	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0164 0.0155 0.0044 0.0111 0.0084 0.0052 0.0052 -0.0006 0.0038 -0.0034 -0.0038 -0.0018 -0.0026 -0.0006 -0.0036 -0.0008 -0.0016
######################################	1ter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	TrainDeviance 1.3510 1.3199 1.3048 1.2789 1.2602 1.2452 1.2326 1.2158 1.2114 1.2016 1.1399 1.0943 1.0531 1.0243 1.0018 0.9730 0.9511	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0164 0.0155 0.0044 0.0111 0.0084 0.0052 0.0052 -0.0006 0.0038 -0.0034 -0.0038 -0.0018 -0.0026 -0.0006 -0.0036 -0.0008 -0.0016
######################################	1ter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150	TrainDeviance 1.3510 1.3199 1.3048 1.2789 1.2602 1.2452 1.2326 1.2158 1.2114 1.2016 1.1399 1.0943 1.0531 1.0243 1.0018 0.9730 0.9511 0.9423	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0164 0.0155 0.0044 0.0111 0.0084 0.0053 0.0052 -0.0006 0.0038 -0.0034 -0.0038 -0.0018 -0.0026 -0.0036 -0.0008 -0.0016 -0.0051
##########################	Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter	TrainDeviance	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0164 0.0155 0.0044 0.0111 0.0084 0.0053 0.0052 -0.0006 0.0038 -0.0034 -0.0038 -0.0018 -0.0026 -0.0036 -0.0008 -0.0016 -0.0051 Improve
#########################	Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter 1	TrainDeviance	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0164 0.0155 0.0044 0.0111 0.0084 0.0053 0.0052 -0.0006 0.0038 -0.0038 -0.0018 -0.0026 -0.0036 -0.0008 -0.0016 -0.0051 Improve 0.0406

##	4	1.0547	nan	0.1000	0.0315
##	5	0.9893	nan	0.1000	0.0299
##	6	0.9453	nan	0.1000	0.0204
##	7	0.8863	nan	0.1000	0.0278
##	8	0.8487	nan	0.1000	0.0189
##	9	0.8064	nan	0.1000	0.0198
##	10	0.7643	nan	0.1000	0.0195
##	20	0.5916	nan	0.1000	0.0097
##	40	0.4255	nan	0.1000	0.0029
##	60	0.3512	nan	0.1000	-0.0011
##	80	0.3044	nan	0.1000	-0.0010
##	100	0.2415	nan	0.1000	-0.0005
##	120	0.2136	nan	0.1000	-0.0016
##	140	0.1718	nan	0.1000	-0.0002
##	150	0.1588	nan	0.1000	0.0020
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.2078	nan	0.1000	0.0864
##	2	1.0797	nan	0.1000	0.0624
##	3	0.9563	nan	0.1000	0.0605
##	4	0.8547	nan	0.1000	0.0504
##	5	0.7947	nan	0.1000	0.0304
##	6	0.7243	nan	0.1000	0.0354
##	7	0.6772	nan	0.1000	0.0209
##	8	0.6293	nan	0.1000	0.0240
##	9	0.5716	nan	0.1000	0.0277
##	10	0.5182	nan	0.1000	0.0244
##	20	0.2589	nan	0.1000	0.0087
##	40	0.1297	nan	0.1000	0.0002
##	60	0.0956	nan	0.1000	-0.0004
##	80	0.0765	nan	0.1000	-0.0004
##	100	0.0640	nan	0.1000	-0.0003
##	120	0.0501	nan	0.1000	-0.0004
##	140	0.0419	nan	0.1000	-0.0008
##	150	0.0373	nan	0.1000	-0.0004
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.3475	nan	0.1000	0.0179
##	2	1.3175	nan	0.1000	0.0128
##	3	1.2842	nan	0.1000	0.0124
##	4	1.2637	nan	0.1000	0.0108
##	5	1.2463	nan	0.1000	0.0075
##	6	1.2243	nan	0.1000	0.0057
##	7	1.2111	nan	0.1000	0.0060
##	8	1.1992	nan	0.1000	0.0062
##	9	1.1875	nan	0.1000	0.0036
##	10	1.1781	nan	0.1000	0.0021
##	20	1.1086	nan	0.1000	-0.0018
##	40	1.0456	nan	0.1000	-0.0013
##	60	1.0124	nan	0.1000	-0.0024
##	80	0.9821	nan	0.1000	-0.0036
##	100	0.9524	nan	0.1000	-0.0020
##	120	0.9287	nan	0.1000	-0.0044
##	140	0.9075	nan	0.1000	-0.0034

## ##	150	0.9045	nan	0.1000	-0.0003
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2775	nan	0.1000	0.0583
##	2	1.1865	nan	0.1000	0.0385
##	3	1.1085	nan	0.1000	0.0370
##	4	1.0617	nan	0.1000	0.0200
##	5	1.0070	nan	0.1000	0.0258
##	6	0.9678	nan	0.1000	0.0138
##	7	0.9335	nan	0.1000	0.0160
##	8	0.8985	nan	0.1000	0.0145
##	9	0.8576	nan	0.1000	0.0152
##	10	0.8420	nan	0.1000	0.0049
##	20	0.6234	nan	0.1000	-0.0001
##	40	0.4655	nan	0.1000	0.0021
##	60	0.3536	nan	0.1000	0.0007
##	80	0.2844	nan	0.1000	-0.0012
##	100	0.2451	nan	0.1000	-0.0003
##	120	0.2098	nan	0.1000	-0.0010
##	140	0.1717	nan	0.1000	-0.0007
##	150	0.1674	nan	0.1000	-0.0009
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.2646	nan	0.1000	0.0614
##	2	1.2187	nan	0.1000	0.0174
##	3	1.0767	nan	0.1000	0.0728
##	4	1.0486	nan	0.1000	0.0122
##	5	0.9441	nan	0.1000	0.0509
##	6	0.8712	nan	0.1000	0.0343
##	7	0.8386	nan	0.1000	0.0144
##	8	0.7800	nan	0.1000	0.0257
##	9	0.7374	nan	0.1000	0.0186
##	10	0.6923	nan	0.1000	0.0204
##	20	0.3854	nan	0.1000	0.0176
##	40	0.1881	nan	0.1000	0.0059
##	60	0.1368	nan	0.1000	0.0011
##	80	0.1115	nan	0.1000	-0.0002
##	100	0.0886	nan	0.1000	-0.0010
##	120	0.0703	nan	0.1000	-0.0002
##	140	0.0524	nan	0.1000	-0.0001
## ##	150	0.0473	nan	0.1000	-0.0006
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.3540	nan	0.1000	0.0108
##	2	1.3228	nan	0.1000	0.0121
##	3	1.2968	nan	0.1000	0.0111
##	4	1.2808	nan	0.1000	0.0096
##	5	1.2635	nan	0.1000	0.0070
##	6	1.2617	nan	0.1000	-0.0023
##	7	1.2472	nan	0.1000	0.0052
##	8	1.2317	nan	0.1000	0.0072
##	9	1.2241	nan	0.1000	-0.0008
##	10	1.2115	nan	0.1000	0.0025
##	20	1.1355	nan	0.1000	-0.0017

##	40	1.0758	nan	0.1000	-0.0034
##	60	1.0409	nan	0.1000	-0.0043
##	80	1.0110	nan	0.1000	-0.0020
##	100	0.9871	nan	0.1000	-0.0008
##	120	0.9617	nan	0.1000	-0.0051
##	140	0.9384	nan	0.1000	-0.0019
##	150	0.9329	nan	0.1000	-0.0050
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	1.2972	nan	0.1000	0.0405
##	2	1.2183	nan	0.1000	0.0378
##	3	1.1504	nan	0.1000	0.0340
##	4	1.0883	nan	0.1000	0.0246
##	5	1.0674		0.1000	0.0096
			nan		
##	6	1.0445	nan	0.1000	0.0076
##	7	0.9990	nan	0.1000	0.0199
##	8	0.9224	nan	0.1000	0.0338
##	9	0.9044	nan	0.1000	0.0045
##	10	0.8782	nan	0.1000	0.0088
##	20	0.6760	nan	0.1000	-0.0009
##	40	0.5285	nan	0.1000	0.0001
##	60	0.4527	nan	0.1000	-0.0016
##	80	0.3832	nan	0.1000	-0.0011
##	100	0.3165	nan	0.1000	-0.0008
	120	0.2496		0.1000	
##			nan		0.0040
##	140	0.2136	nan	0.1000	0.0003
##	150	0.1925	nan	0.1000	-0.0007
##					
## ##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
	Iter 1	TrainDeviance 1.2326	ValidDeviance nan	StepSize 0.1000	Improve 0.0748
##				=	_
## ##	1	1.2326 1.1773	nan	0.1000 0.1000	0.0748
## ## ## ##	1 2 3	1.2326 1.1773 1.0755	nan nan nan	0.1000 0.1000 0.1000	0.0748 0.0265 0.0483
## ## ## ##	1 2 3 4	1.2326 1.1773 1.0755 1.0347	nan nan nan nan	0.1000 0.1000 0.1000 0.1000	0.0748 0.0265 0.0483 0.0162
## ## ## ## ##	1 2 3 4 5	1.2326 1.1773 1.0755 1.0347 0.9491	nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000	0.0748 0.0265 0.0483 0.0162 0.0416
## ## ## ## ##	1 2 3 4 5	1.2326 1.1773 1.0755 1.0347 0.9491 0.9037	nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0748 0.0265 0.0483 0.0162 0.0416 0.0191
## ## ## ## ## ##	1 2 3 4 5 6 7	1.2326 1.1773 1.0755 1.0347 0.9491 0.9037 0.8115	nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0748 0.0265 0.0483 0.0162 0.0416 0.0191 0.0442
## ## ## ## ## ##	1 2 3 4 5 6 7 8	1.2326 1.1773 1.0755 1.0347 0.9491 0.9037 0.8115 0.7350	nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0748 0.0265 0.0483 0.0162 0.0416 0.0191 0.0442 0.0377
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8	1.2326 1.1773 1.0755 1.0347 0.9491 0.9037 0.8115 0.7350 0.7111	nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0748 0.0265 0.0483 0.0162 0.0416 0.0191 0.0442 0.0377 0.0094
## ## ## ## ## ##	1 2 3 4 5 6 7 8	1.2326 1.1773 1.0755 1.0347 0.9491 0.9037 0.8115 0.7350	nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0748 0.0265 0.0483 0.0162 0.0416 0.0191 0.0442 0.0377
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8	1.2326 1.1773 1.0755 1.0347 0.9491 0.9037 0.8115 0.7350 0.7111	nan nan nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0748 0.0265 0.0483 0.0162 0.0416 0.0191 0.0442 0.0377 0.0094
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9	1.2326 1.1773 1.0755 1.0347 0.9491 0.9037 0.8115 0.7350 0.7111	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0748 0.0265 0.0483 0.0162 0.0416 0.0191 0.0442 0.0377 0.0094 0.0368
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40	1.2326 1.1773 1.0755 1.0347 0.9491 0.9037 0.8115 0.7350 0.7111 0.6389 0.4444 0.2072	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0748 0.0265 0.0483 0.0162 0.0416 0.0191 0.0442 0.0377 0.0094 0.0368 0.0010
## ## ## ## ## ## ## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40 60	1.2326 1.1773 1.0755 1.0347 0.9491 0.9037 0.8115 0.7350 0.7111 0.6389 0.4444 0.2072 0.1496	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0748 0.0265 0.0483 0.0162 0.0416 0.0191 0.0442 0.0377 0.0094 0.0368 0.0010 -0.0002 -0.0007
## ## ## ## ## ## ## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40 60 80	1.2326 1.1773 1.0755 1.0347 0.9491 0.9037 0.8115 0.7350 0.7111 0.6389 0.4444 0.2072 0.1496 0.1227	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0748 0.0265 0.0483 0.0162 0.0416 0.0191 0.0442 0.0377 0.0094 0.0368 0.0010 -0.0002 -0.0007
## # # # # # # # # # # # # # # # # # #	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100	1.2326 1.1773 1.0755 1.0347 0.9491 0.9037 0.8115 0.7350 0.7111 0.6389 0.4444 0.2072 0.1496 0.1227 0.1009	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0748 0.0265 0.0483 0.0162 0.0416 0.0191 0.0442 0.0377 0.0094 0.0368 0.0010 -0.0002 -0.0007 -0.0010 0.0004
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120	1.2326 1.1773 1.0755 1.0347 0.9491 0.9037 0.8115 0.7350 0.7111 0.6389 0.4444 0.2072 0.1496 0.1227 0.1009 0.0758	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0748 0.0265 0.0483 0.0162 0.0416 0.0191 0.0442 0.0377 0.0094 0.0368 0.0010 -0.0002 -0.0007 -0.0010 0.0004 -0.0005
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	1.2326 1.1773 1.0755 1.0347 0.9491 0.9037 0.8115 0.7350 0.7111 0.6389 0.4444 0.2072 0.1496 0.1227 0.1009 0.0758 0.0601	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0748 0.0265 0.0483 0.0162 0.0416 0.0191 0.0442 0.0377 0.0094 0.0368 0.0010 -0.0002 -0.0007 -0.0010 0.0004 -0.0005 -0.0002
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120	1.2326 1.1773 1.0755 1.0347 0.9491 0.9037 0.8115 0.7350 0.7111 0.6389 0.4444 0.2072 0.1496 0.1227 0.1009 0.0758	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0748 0.0265 0.0483 0.0162 0.0416 0.0191 0.0442 0.0377 0.0094 0.0368 0.0010 -0.0002 -0.0007 -0.0010 0.0004 -0.0005
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150	1.2326 1.1773 1.0755 1.0347 0.9491 0.9037 0.8115 0.7350 0.7111 0.6389 0.4444 0.2072 0.1496 0.1227 0.1009 0.0758 0.0601 0.0541	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0748 0.0265 0.0483 0.0162 0.0416 0.0191 0.0442 0.0377 0.0094 0.0368 0.0010 -0.0002 -0.0007 -0.0010 0.0004 -0.0005 -0.0002 -0.0005
#######################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150	1.2326 1.1773 1.0755 1.0347 0.9491 0.9037 0.8115 0.7350 0.7111 0.6389 0.4444 0.2072 0.1496 0.1227 0.1009 0.0758 0.0601 0.0541	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0748 0.0265 0.0483 0.0162 0.0416 0.0191 0.0442 0.0377 0.0094 0.0368 0.0010 -0.0002 -0.0007 -0.0010 0.0004 -0.0005 -0.0005 Improve
########################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter	1.2326 1.1773 1.0755 1.0347 0.9491 0.9037 0.8115 0.7350 0.7111 0.6389 0.4444 0.2072 0.1496 0.1227 0.1009 0.0758 0.0601 0.0541 TrainDeviance 1.3345	nan	0.1000 0.1000	0.0748 0.0265 0.0483 0.0162 0.0416 0.0191 0.0442 0.0377 0.0094 0.0368 0.0010 -0.0002 -0.0007 -0.0010 0.0004 -0.0005 -0.0005 Improve 0.0165
#######################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter 1 2	1.2326 1.1773 1.0755 1.0347 0.9491 0.9037 0.8115 0.7350 0.7111 0.6389 0.4444 0.2072 0.1496 0.1227 0.1009 0.0758 0.0601 0.0541 TrainDeviance 1.3345 1.2072	nan	0.1000 0.1000	0.0748 0.0265 0.0483 0.0162 0.0416 0.0191 0.0442 0.0377 0.0094 0.0368 0.0010 -0.0002 -0.0007 -0.0010 0.0004 -0.0005 -0.0005 Improve 0.0165 0.0638
########################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter	1.2326 1.1773 1.0755 1.0347 0.9491 0.9037 0.8115 0.7350 0.7111 0.6389 0.4444 0.2072 0.1496 0.1227 0.1009 0.0758 0.0601 0.0541 TrainDeviance 1.3345	nan	0.1000 0.1000	0.0748 0.0265 0.0483 0.0162 0.0416 0.0191 0.0442 0.0377 0.0094 0.0368 0.0010 -0.0002 -0.0007 -0.0010 0.0004 -0.0005 -0.0005 Improve 0.0165
#########################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter 1 2	1.2326 1.1773 1.0755 1.0347 0.9491 0.9037 0.8115 0.7350 0.7111 0.6389 0.4444 0.2072 0.1496 0.1227 0.1009 0.0758 0.0601 0.0541 TrainDeviance 1.3345 1.2072	nan	0.1000 0.1000	0.0748 0.0265 0.0483 0.0162 0.0416 0.0191 0.0442 0.0377 0.0094 0.0368 0.0010 -0.0002 -0.0007 -0.0010 0.0004 -0.0005 -0.0005 Improve 0.0165 0.0638
#########################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter 1 2 3	1.2326 1.1773 1.0755 1.0347 0.9491 0.9037 0.8115 0.7350 0.7111 0.6389 0.4444 0.2072 0.1496 0.1227 0.1009 0.0758 0.0601 0.0541 TrainDeviance 1.3345 1.2072 1.1068	nan	0.1000 0.1000	0.0748 0.0265 0.0483 0.0162 0.0416 0.0191 0.0442 0.0377 0.0094 0.0368 0.0010 -0.0002 -0.0007 -0.0010 0.0004 -0.0005 -0.0005 Improve 0.0165 0.0638 0.0478

```
0.6904
                                                            0.0393
##
        8
                                       nan
                                                 0.1000
        9
##
                                                 0.1000
                                                           0.0225
                   0.6456
                                       nan
##
       10
                   0.5947
                                       nan
                                                 0.1000
                                                           0.0253
##
       20
                   0.3133
                                                 0.1000
                                                           0.0073
                                       nan
##
       40
                   0.1374
                                                 0.1000
                                                           0.0003
                                       nan
##
       50
                   0.1235
                                       nan
                                                 0.1000
                                                          -0.0015
stacking_results <- resamples(stacked_models)</pre>
stacking_summary<- summary(stacking_results)</pre>
stacking summary
##
```

0.1000

0.1000

nan

nan

0.0262

0.0359

```
## Call:
## summary.resamples(object = stacking_results)
## Models: glm, knn, svmPoly, svmLinear, wsrf, gbm
## Number of resamples: 10
##
## Accuracy
##
                        1st Qu.
                                    Median
                                                Mean
                                                        3rd Qu.
## glm
             0.609375 0.6757812 0.7031250 0.7093750 0.7500000 0.812500
             0.640625 0.6914062 0.7421875 0.7375000 0.7656250 0.828125
## knn
## svmPoly
             0.765625 0.7851562 0.8125000 0.8031250 0.8125000 0.843750
                                                                            0
## svmLinear 0.765625 0.7851562 0.7968750 0.8015625 0.8125000 0.843750
                                                                            0
             0.906250\ 0.9375000\ 0.9453125\ 0.9531250\ 0.9648438\ 1.000000
## wsrf
                                                                            0
             0.953125 0.9570312 0.9843750 0.9765625 0.9843750 1.000000
##
  gbm
##
## Kappa
##
                       1st Qu.
                                  Median
                                                    3rd Qu.
                                                                Max. NA's
                Min.
                                             Mean
             0.21875 0.3515625 0.406250 0.418750 0.5000000 0.62500
## glm
             0.28125\ 0.3828125\ 0.484375\ 0.475000\ 0.5312500\ 0.65625
                                                                        0
## knn
             0.53125 0.5703125 0.625000 0.606250 0.6250000 0.68750
## svmPoly
                                                                        0
## svmLinear 0.53125 0.5703125 0.593750 0.603125 0.6250000 0.68750
                                                                        0
## wsrf
             0.81250 0.8750000 0.890625 0.906250 0.9296875 1.00000
                                                                        0
## gbm
             0.90625 0.9140625 0.968750 0.953125 0.9687500 1.00000
                                                                        0
```

Plot results

##

##

7

0.8415

0.7672

```
0.4219, 0.4844, 0.5938, 0.5906, 0.9156, 0.9469),6,4))
row <- c("RF+GLM", "RF+KNNs", "RF+SVM.Poly", "RF+SVM.Linear", "RF+WSRF", "RF+GBM")
col <- c("Accuracy", "Sensitivity", "Specificity", "Kappa")
colnames(data) <- col
data$Method <- row
rownames(data) <- c(1:6)
data1<- data[,c(5,1,2,3,4)]

#write.csv(data, "ensemble_result.csv")
#plotting
library(ggplot2)

data2 <- tidyr::gather(data1, key="Measurement", value="Value", 2:5)

# Grouped
ggplot(data2, aes(fill=Measurement, y=Value, x=reorder(Method, -Value))) +
    geom_bar(position="dodge", stat="identity")+
    xlab("Method")</pre>
```


NLP in Transcription

document summarize

```
# write summerizer function
library(textmineR)
## Warning: package 'textmineR' was built under R version 4.2.2
## Loading required package: Matrix
## Warning: package 'Matrix' was built under R version 4.2.2
## Attaching package: 'Matrix'
## The following objects are masked from 'package:tidyr':
##
##
       expand, pack, unpack
## Attaching package: 'textmineR'
## The following object is masked from 'package:Matrix':
##
##
       update
## The following object is masked from 'package:stats':
##
##
       update
library(igraph)
## Warning: package 'igraph' was built under R version 4.2.2
##
## Attaching package: 'igraph'
## The following object is masked from 'package:wsrf':
##
##
       strength
## The following object is masked from 'package:class':
##
##
       knn
## The following objects are masked from 'package:dplyr':
##
##
       as_data_frame, groups, union
```

```
## The following objects are masked from 'package:purrr':
##
##
       compose, simplify
## The following object is masked from 'package:tidyr':
##
##
       crossing
## The following object is masked from 'package:tibble':
##
##
       as data frame
## The following objects are masked from 'package:stats':
##
##
       decompose, spectrum
## The following object is masked from 'package:base':
##
##
       union
tcm <- CreateTcm(doc_vec = MU3D_Video_Level_Data$Transcription,</pre>
                 skipgram_window = 10,
                 verbose = FALSE,
                 cpus = 2)
## as(<dgTMatrix>, "dgCMatrix") is deprecated since Matrix 1.5-0; do as(., "CsparseMatrix") instead
# use LDA to get embeddings into probability space
# This will take considerably longer as the TCM matrix has many more rows
# than a DTM
embeddings <- FitLdaModel(dtm = tcm,</pre>
                           iterations = 200,
                          burnin = 180,
                           alpha = 0.1,
                           beta = 0.05,
                           optimize_alpha = TRUE,
                          calc likelihood = FALSE,
                           calc_coherence = FALSE,
                           calc_r2 = FALSE,
                           cpus = 2)
summarizer <- function(doc, gamma) {</pre>
  # recursive fanciness to handle multiple docs at once
  if (length(doc) > 1 )
    # use a try statement to catch any weirdness that may arise
    return(sapply(doc, function(d) try(summarizer(d, gamma))))
  # parse it into sentences
  sent <- stringi::stri_split_boundaries(doc, type = "sentence")[[ 1 ]]</pre>
```

```
names(sent) <- seq_along(sent) # so we know index and order</pre>
# embed the sentences in the model
e <- CreateDtm(sent, ngram_window = c(1,1), verbose = FALSE, cpus = 2)
# remove any documents with 2 or fewer words
e \leftarrow e[rowSums(e) > 2,]
vocab <- intersect(colnames(e), colnames(gamma))</pre>
e <- e / rowSums(e)
e <- e[ , vocab ] %*% t(gamma[ , vocab ])</pre>
e <- as.matrix(e)
# get the pairwise distances between each embedded sentence
e_dist <- CalcHellingerDist(e)</pre>
# turn into a similarity matrix
g <- (1 - e_dist) * 100
# we don't need sentences connected to themselves
diag(g) <- 0
# turn into a nearest-neighbor graph
g <- apply(g, 1, function(x){
 x[x < sort(x, decreasing = TRUE)[3]] <- 0</pre>
})
# by taking pointwise max, we'll make the matrix symmetric again
g \leftarrow pmax(g, t(g))
g <- graph.adjacency(g, mode = "undirected", weighted = TRUE)</pre>
# calculate eigenvector centrality
ev <- evcent(g)</pre>
# format the result
result <- sent[ names(ev$vector)[ order(ev$vector, decreasing = TRUE)[ 1:3 ] ]</pre>
result <- result[ order(as.numeric(names(result))) ]</pre>
paste(result, collapse = " ")
```

Summarize text

```
docs <- MU3D_Video_Level_Data$Transcription[1]
sums <- summarizer(docs, gamma = embeddings$gamma)
docs</pre>
```

[1] "My best friend is a really nice person. Um. She's always kind to everyone. She continues to just sums

[1] "She has taught me so much throughout, like I've known her maybe a year and a half and she's tau