Universidade de São Paulo Instituto de Matemática e Estatística ${\rm MAC0210}$

Relatório: Exercício-Programa 2

Alunos:

Gustavo Silva No USP: 9298260 Leonardo Padilha No USP: 9298295

Professor: Ernesto G. Birgin

Índice

1	Objetivo	2
2	Interpolação Bilinear por partes 2.1 Resultados no Zoológico	
	2.2 Resultados na Selva	٠
3	Interpolação Bicúbica por partes	•
	3.1 Resultados no Zoológico	4
	3.2 Resultados na Selva	4

1 Objetivo

Nosso objetivo nesse Exercício-Programa é gerar um programa que comprima e descomprima uma dada imagem.

Para comprimir, basta remover alguns pixels da imagem, mais precisamente, dado um número real k, e considerando que a imagem é uma matriz de pixels, então removemos as linhas e as colunas i tais que $i \equiv 1 \mod(k+1)$.

Para fazer a descompressão, assumimos que a imagem é, basicamente, uma função que vai do \mathbb{R}^2 para o \mathbb{R}^3 (\mathbb{R}^3 pois estamos considerando a paleta RGB, logo, uma coordenada para cada cor da paleta) e, dessa forma, cada pixel vira um ponto no plano \mathbb{R}^2 (devemos considerar também que o espaçamento entre dois pixels adjacentes h foi definido por nós). Agora, para inserirmos os novos pixels de coordenadas $(x,y) \in \mathbb{R}^2$ basta interpolarmos a função nessa região.

Para fazer a interpolação, usamos dois métodos diferentes que são extensões para \mathbb{R}^2 dos métodos vistos em sala de aula. Vamos explicar e avaliar os resultados obtidos com cada um deles.

2 Interpolação Bilinear por partes

Esse método é uma extensão para \mathbb{R}^2 da interpolação linear de uma função de \mathbb{R} para $\mathbb{R}.$

Vamos considerar 4 pixels conhecidos adjacentes: Q_0 , Q_1 , Q_2 e Q_3 . Esses pixels podem ser representados como pontos do plano \mathbb{R}^2 de coordenadas $(x_i, y_j), (x_{i+1}, y_j), (x_i, y_{j+1}), (x_{i+1}, y_{j+1})$, respectivamente onde $x_i, x_{i+1}, y_j, y_{j+1} \in \mathbb{R}$. Supondo que a imagem é uma amostra de uma função f tal que $f: \mathbb{R}^2 \to \mathbb{R}$, então, para gerar um pixel que está em uma coordenada (x_0, y_0) tal que $x_0 \in [x_i, x_{i+1}]$ e $y_0 \in [y_j, y_{j+1}]$, podemos criar uma função interpoladora v, que interpola os valores no intervalo, dada por:

$$v(x,y) = c_0 + c_1(x - x_i) + c_2(y - y_i) + c_3(x - x_i)(y - y_i)$$
(1)

Para interpolar no ponto (x_0, y_0) , basta encontrarmos c_0 , c_1 , c_2 e c_3 . Como a distância de dois pixels adjacentes é definida por um número real h, ou seja, $x_i - x_{i+1} = h$, então, temos o seguinte sistema:

$$\begin{split} f(x_i, y_j) &= c_0 \\ f(x_i, y_{j+1}) &= c_0 + hc_2 \\ f(x_{i+1}, y_j) &= c_0 + hc_1 \\ f(x_{i+1}, y_{j+1}) &= c_0 + hc_1 + h^2c_2 + h^3c_3 \end{split}$$

Fazendo as manipulações necessárias, chegamos que os coeficientes da função \boldsymbol{v}

são:

$$c_{0} = f(x_{i}, y_{j})$$

$$c_{1} = \frac{f(x_{i+1}, y_{j}) - f(x_{i}, y_{j})}{h}$$

$$c_{2} = \frac{f(x_{i}, y_{j+1}) - f(x_{i}, y_{j})}{h}$$

$$c_{3} = \frac{f(x_{i+1}, y_{j+1}) - f(x_{i}, y_{j})}{h^{3}} - \frac{f(x_{i}, y_{j+1}) - f(x_{i}, y_{j})}{h^{2}}$$

Assim, conseguimos calcular facilmente os pixels que serão inseridos entre quatro pixels adjacentes da imagem original, basta que apliquemos a função intepoladora para cada pixel que queremos inserir na imagem.

2.1 Resultados no Zoológico

2.2 Resultados na Selva

3 Interpolação Bicúbica por partes

A ideia desse método é um pouco mais sofisticado que o anterior, pois aqui exigimos que a função seja suave e que a função interpoladora também o seja em todo o domínio da interpolação.

Para entender o funcionamento, vamos considerar novamente os quatro pixels adjacentes Q_0, Q_1, Q_2, Q_3 com as mesmas coordenadas vistas anteriormente. Para interpolar um pixel que possui coordenadas (x_0, y_0) tal que $x_0 \in [x_i, x_{i+1}]$ e $y_0 \in [y_j, y_{j+1}]$, vamos interpolar a função f geradora da imagem por uma função v que terá como condições de interpolação as seguintes propriedades:

$$\frac{\partial v}{\partial x}(x_i,y_j) = \frac{\partial f}{\partial x}(x_i,y_j), \quad \frac{\partial v}{\partial y}(x_i,y_j) = \frac{\partial f}{\partial x}(x_i,y_j), \quad \frac{\partial^2 v}{\partial xy}(x_i,y_j) = \frac{\partial^2 f}{\partial xy}(x_i,y_j)$$

$$\frac{\partial v}{\partial x}(x_{i+1},y_j) = \frac{\partial f}{\partial x}(x_{i+1},y_j), \quad \frac{\partial v}{\partial y}(x_{i+1},y_j) = \frac{\partial f}{\partial x}(x_{i+1},y_j), \quad \frac{\partial^2 v}{\partial xy}(x_{i+1},y_j) = \frac{\partial^2 f}{\partial xy}(x_{i+1},y_j)$$

$$\frac{\partial v}{\partial x}(x_i,y_{j+1}) = \frac{\partial f}{\partial x}(x_i,y_{j+1}), \quad \frac{\partial v}{\partial y}(x_i,y_{j+1}) = \frac{\partial f}{\partial x}(x_i,y_{j+1}), \quad \frac{\partial^2 v}{\partial xy}(x_i,y_{j+1}) = \frac{\partial^2 f}{\partial xy}(x_i,y_{j+1})$$

$$\frac{\partial v}{\partial x}(x_{i+1},y_{j+1}) = \frac{\partial f}{\partial x}(x_{i+1},y_{j+1}), \quad \frac{\partial v}{\partial y}(x_{i+1},y_{j+1}) = \frac{\partial f}{\partial x}(x_{i+1},y_{j+1}),$$

$$\frac{\partial^2 v}{\partial xy}(x_{i+1},y_{j+1}) = \frac{\partial^2 f}{\partial xy}(x_{i+1},y_{j+1})$$

Em nossa implementação, porém, não tinhamos acesso as derivadas da função geradora da imagem f, por isso, para obte-la, usamos fórmulas que permitem aproximar esses valores. Nas bordas da imagem, utilizamos uma aproximação que leva em conta apenas um pixel a frente, a taxa de erro sendo $\mathcal{O}(h)$. No meio da imagem, usamos a fórmula centrada, que permite um erro de $\mathcal{O}(h^2)$, ou seja, uma aproximação melhor que nas bordas, entretanto, ficamos limitados com o erro das bordas. Vale lembrar que quanto menor for h, melhor será nossa aproximação e, consequentemente, nossa interpolação. Devemos apenas ficar atentos para escolha de um h que seja suficientemente pequeno e que continue mantendo o erro de aproximação do método dominando o erro de arredondamento. Para o nosso algoritmo, percorremos todos os pixels da imagem e verificamos onde deverá ser introduzido um novo pixel, e lá, fazemos a interpolação usando todas

as fórmulas vistas aqui e pegando como Q_0,Q_1,Q_2,Q_3 os pixels conhecidos que estão mais próximos dele.

- 3.1 Resultados no Zoológico
- 3.2 Resultados na Selva