Math 733 - Fall 2020

Midterm Exam (PM version)

1. Suppose that X_1, X_2, \ldots are independent random variables with $E[X_i] = 1$ and $E[X_i^2] = 2$ for all $i \geq 1$. Show that $\sum_{i=1}^n \frac{1}{i} X_i \stackrel{P}{\to} \infty$ as $n \to \infty$.

Note that $Y_n \stackrel{P}{\to} \infty$ as $n \to \infty$ if for any K > 0 we have $\lim_{n \to \infty} P(Y_n < K) = 0$.

2. Let Y and U be independent random variables, where U is uniform on [0,1]. (We do not assume anything about the distribution of Y.) Show that the random variable $Z = \{Y + U\}$ has uniform distribution on [0,1].

Note that $\{x\}$ denotes the fractional part of x: this is the difference between x and the largest integer that is at most as large as x. E.g. $\{5.3\} = 5.3 - 5 = 0.3$, $\{-4.6\} = -4.6 - (-5) = 0.4$.

Hint: you could try this with a specific Y distribution first.

3. Suppose $\{p_k\}_{k\geq 1}$ is a sequence in [0,1], and X_1,X_2,\ldots are independent random variables with $P(X_k=1)=p_k,\,P(X_k=0)=1-p_k.$

Show that $X_n \stackrel{a.s.}{\to} 0$ if and only if $\sum_{n=1}^{\infty} p_n < \infty$.