Correction du TP

III Analyser

III/A Préliminaire sur la solution de permanganate de potassium

- 1 Le permanganate est la seule espèce colorée, permettant de déterminer sa concentration par analyse de l'absorption.
- (2) C'est un **comburant**, une espèce nocive ou irritante, et un polluant dangereux pour l'environnement. Il faut donc l'écarter de substances combustibles, éviter tout contact avec le corps humain (grâce à des lunettes de protection, des gants, une blouse et une hotte), et ne pas la jeter dans n'importe quel évier.

III/B Préparation des solutions aqueuses étalon

(3)

′				
S_i	S_2	S_3	S_4	S_5
$c_i \; (\text{mol} \cdot \mathbf{L}^{-1})$	$c_2 = 2,00 \times 10^{-4}$	$c_3 = 4,00 \times 10^{-4}$	$c_4 = 6,00 \times 10^{-4}$	$c_5 = 8,00 \times 10^{-4}$
$V_i(\mathrm{mL})$	10	20	30	40

 $\overbrace{4}$ On conserve la quantité de matière pendant la dilution, mais le volume change. Pour avoir V_1 et c_2 à partir de c_1 , on aura

$$c_1 V_1 = c_2 V \Leftrightarrow \boxed{V_1 = \frac{C_2 V}{C_1}} \Rightarrow \underline{V_1 = 10 \,\text{mL}}$$

- 1) Verser le contenu du grand récipient de solution S_1 dans le bécher devant.
- 2) En verser une **petite quantité** dans un bécher personnel, labellé S_1 .
- 3) Revenir à la paillasse, et prélever 10 mL de cette solution avec une pipette jaugée.
- 4) Insérer les $10\,\mathrm{mL}$ dans la fiole jaugée de $50\,\mathrm{mL}$.
- 5) Remplir d'eau distillée jusqu'au trait de jauge, puis mélanger.

IV Réaliser et valider

FIGURE 9.1 – Résultat de Regressi.

2 Pour augmenter la précision de l'appareil et limiter l'incertitude sur les mesures, on se place à la longueur d'onde pour laquelle le coefficient d'absorption molaire de la substance est maximum.

 $\overline{{
m IV/B})\,2}$ Tracé de la courbe d'étalonnage

 $\boxed{3}$ On relève $\lambda_{\rm max}\approx 526\,{\rm nm}.$ On rentre cette valeur sur le spectrophotomètre.

Solution	S_2	S_3	S_4	S_5	S_1	S_0
$c(\text{mmol}\cdot\text{L}^{-1})$	0,2	0,4	0,6	0,8	1,0	0,60
A	0,492	0,903	1,313	1,729	2,2	1,391

 $\boxed{4}$

5 Oui, c'est bien une solution avec une unique espèce colorée, et elle est suffisamment peu concentrée pour avoir une absorbance linéaire en fonction de la concentration.

IV/B) 3 Exploitation de la courbe

6 On mesure $A_0 = 1{,}391$. On se reporte alors sur la courbe d'étalonnage, et on relève $c_0 = 637 \times 10^{-6} \,\mathrm{mmol}\cdot\mathrm{L}^{-1}$.

$$m_0 = c_0 MV$$
 avec
$$\begin{cases} c_0 = 637 \times 10^{-6} \,\mathrm{mol \cdot L^{-1}} \\ M = 158 \,\mathrm{g \cdot mol^{-1}} \\ V = 2.5 \,\mathrm{L} \end{cases}$$

A.N. : $m_0 = 0.251 \,\mathrm{g}$

Or, $u(m_0) = u(c_0)VM$ avec $u(c_0) = 57 \times 10^{-5} \,\mathrm{mol \cdot L^{-1}}$ par estimation graphique

A.N. : $u(m_0) = 0.020 \,\mathrm{g}$

Ainsi, $m_0 = (0.251 \pm 0.020) \,\mathrm{g}$

$$E_N = \frac{|m_0 - m_{\text{theo}}|}{u(m_0)}$$

A.N. : $\underline{E_N = 0.05} < 2$ donc la mesure et l'annonce sont cohérentes

$[{f IV/C}]$

Dosage par conductimétrie

IV/C) 1 Tracé de la courbe d'étalonnage

5 On réalise une mesure de la conductivité pour différentes concentrations connues, on réalise la régression linéaire correspondante; on utilise alors l'étalonnage précédent pour déterminer la concentration de la solution voulue en mesurant sa conductivité.

Le mettre en œuvre.

Attention TP9.1: Attention

- ♦ Vous ferez attention à mesurer la conductivité des différentes solutions de la plus diluée à la plus concentrée pour ne pas polluer les solutions avec votre électrode.
- ♦ La cellule du conductimètre doit être conservée dans un grand bécher contenant de l'eau distillée.

9

_							
	Solution	S_2	S_3	S_4	S_5	S_1	S_0
	$c(\text{mmol}\cdot\text{L}^{-1})$	0,2	0,4	0,6	0,8	1,0	0,60
	$\sigma(\mu S \cdot cm^{-1})$	27,04	46,9	72,6	95,0	121,0	75,5

(IV/C) 2 Exploitation de la courbe d'étalonnage

(6) On mesure $\sigma_0 = 75.5 \,\mu\text{S}\cdot\text{cm}^{-1}$. On se reporte alors sur la courbe d'étalonnage, et on relève $c_0 = 613 \times 10^{-3} \,\text{mmol}\cdot\text{L}^{-1}$.

Le mettre en œuvre et imprimer si nécessaire.

10 Comme précédemment, on obtient

$$m_0 = (0.242 \pm 0.020) \,\mathrm{g}$$

11 Idem :

$$E_N=0.4<2$$

Les deux valeurs sont bien compatibles.

\mathbf{V}

Conclure

12 Sur cette mesure, la conductimétrie a donné un résultat moins précis; cependant, il n'est pas clair de conclure quant à la précision de la méthode précisément : une seule expérience ne peut remplacer une étude sérieuse.