Real Analysis (UG1, Monsoon 2022)

Midsem Exam [15 marks]

A Wednesday!

1 Instructions

- You are allowed to bring at most one A4 sheet with only "handwritten" notes (no xerox, e-print, etc.).
- Give satisfactory reasoning. State clearly which theorem or axioms you are using.
- Please read questions carefully before you begin to answer. Turn both sides of the question paper.

Question A $[3 \times 2.5 = 7.5 \text{ marks}]$

Let C[0,1] be the set of functions $f:[0,1]\to\mathbb{R}$ such that functions f are continuous over [0,1]. In other words, C[0,1] is the set of continuous functions $f:[0,1]\to\mathbb{R}$. Consider the set C[0,1] to be equipped with metric d_p defined for $p\geq 1$ as

$$d_p(f,g) = \left(\int_0^1 |f(x) - g(x)|^p dx\right)^{\frac{1}{p}}.$$

Answer any 3 of the following questions.

- Show that $(C[0,1], d_p)$ is a metric space (for $p \ge 1$).
- Onsider $p, q \ge 1$ and $p \ne q$. Are metrics d_p and d_q equivalent over C[0, 1]? Provide satisfactory justification.
- State a necessary and sufficient condition for a subset $S \subset C[0,1]$ to be compact.
- 4 Consider a mapping $G: C[0,1] \to \mathbb{R}$ defined by

$$G(f) = \int_0^1 |f(x)| \mathrm{d}x.$$

Is G continuous? Provide satisfactory explanation.

Question B $[2.5 \times 3 = 7.5 \text{ marks}]$

Answer any 3 of the following.

- I. Prove that no order can be defined in the complex field $(\mathbb{C}.+,)$ (the set of complex numbers with conventional addition and multiplication rules) that turns it into an ordered field.
- 2. Let A be a nonempty set of real numbers which is bounded from below. Let -A be the set of all numbers -x, where $x \in A$. Prove that

$$\inf A = -\sup(-A).$$

- 3. Construct a bounded set of real numbers with exactly three limit points.
- 4. Prove that the convergence of a series $\sum_{n=1}^{\infty} a_n$, where $a_n \in \mathbb{R}$ for all $n \in \mathbb{N}$, implies the convergence of

$$\sum_{n=1}^{\infty} \frac{\sqrt{a_n}}{n} \quad \text{if} \quad a_n \ge 0.$$

5. If a series $\sum_{n=1}^{\infty} a_n$ of real numbers converges, and if a sequence $\{b_n\}$ of real numbers is monotonic and bounded, prove that the series $\sum_{n=1}^{\infty} a_n b_n$ converges.