Q1

7 A system is monitored using sensors. The sensors output binary values corresponding to physical conditions, as shown in the table:

Parameter	ameter Description of Binary parameter value		Description of condition
P	oil procesure	1	pressure >= 3 bar
P	oil pressure	0	pressure < 3 bar
_	tomporatura	1	temperature >= 200°C
Т	temperature	0	temperature < 200°C
R	rotation	1	rotation <= 1000 revs per minute (rpm)
	Totation	0	rotation > 1000 revs per minute (rpm)

The outputs of the sensors form the inputs to a logic circuit. The output from the circuit, X, is 1 if any of the following three conditions occur:

oil pressure >= 3 bar and temperature >= 200°C

or oil pressure < 3 bar and rotation > 1000 rpm

or temperature >= 200°C and rotation > 1000 rpm

(a) Draw a logic circuit to represent the above system.

(b) Complete the truth table for this system.

			Workspace	
Р	Т	R		Х
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

[4]

Q2

6 (a) Three digital sensors A, B and C are used to monitor a process. The outputs from the sensors are used as the inputs to a logic circuit.

A signal, X, is output from the logic circuit:

Output, X, has a value of 1 if either of the following two conditions occur:

- · sensor A outputs the value 1 OR sensor B outputs the value 0
- · sensor B outputs the value 1 AND sensor C outputs the value 0

Draw a logic circuit to represent these conditions.

(b) Complete the truth table for the logic circuit described in part (a).

А	В	С	Working Space	х
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

[4]

(c) Write a logic statement that describes the following logic circuit.

	l3.

1 (a) A student writes the following logic expression:

 $X ext{ is 1 IF} ext{ (B is NOT 1 AND S is NOT 1)} ext{ OR (P is NOT 1 AND S is 1)}$

Draw a logic circuit to represent this logic expression.

Do not attempt to simplify the logic expression.

[6]

(b) Complete the truth table for the logic expression given in part (a).

В	s	Р	Working space	х
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

[4]

Mark Scheme

Q1 S15

7 (a) Since it is possible to simplify the original conditions, at least 3 possible answers exist for the logic circuit.

Note: input T has 2 cross overs that should not be connections

Note: it is possible to use a 3-input OR gate rather than the two 2-input OR gates on the top right:

Alternative solution 1:

Alternative solution 2:

[5]

Note: other solutions may be possible depending on how simplification of the original statement is done

(D)		-				
	Р	т	R	Workspace	х	
	0	0	0		1	l a monte
	0	0	1		0	} 1 mark
	0	1	0		1	\ 4
	0	1	1		0	} 1 mark
	1	0	0		0	late
	1	0	1		0	} 1 mark
	1	1	0		1	1
	1	1	1		1	} 1 mark

[4]

6 (a)

(b)

					9
Α	В	С	working	х	
0	0	0		1	.
0	0	1		1	} 1 mark
0	1	0		1	14
0	1	1		0	} 1 mark
1	0	0		1	
1	0	1		1	} 1 mark
1	1	0		1	1
1	1	1		1	} 1 mark

[4]

NOTE: all brackets may not be shown – but check answer still correct

Alternatives include:

((NOT A AND B) OR (NOT B OR C)) AND NOT C

NOTE: expressions may be reversed but still OK

(e.g. NOT C AND ((NOT A AND B) OR (NOT B OR C))

Q3 W16

1 (a) ONE mark for each correct gate.

(b) ONE mark for each pair of rows.

			Working space	
В	s	Р		X
0	0	0		1
0	0	1		1
0	1	0		1
0	1	1		0
1	0	0		0
1	0	1		0
1	1	0		1
1	1	1		0

[6]