Started on Thursday, 6 October 2016, 10:25 AM
State Finished

Completed on Thursday, 6 October 2016, 11:40 AM

Time taken 1 hour 15 mins

Grade 100.00 out of 100.00

Question 1

Correct

Mark 15.00 out of 15.00

Q1c

Consider the sinusoidal voltage $v(t) = 300 \cos(200 \pi t - 60^\circ) V_{rms}$.

a) What is the maximum amplitude of the voltage?

$$V_{\rm m} = \boxed{424.26}$$

٧

b) What is the frequency of v(t) in hertz?

Hz

c) What is the frequency of v(t) in radians per second?

rad/sec

d) What is the phase angle in radians?

$$\varphi \text{ (phi)} = \boxed{-1.05}$$

radians

e) What is the period in milliseconds?

$$T = \begin{bmatrix} 10 \end{bmatrix}$$

ms (milli sec)

Numeric Answer

a)
$$V_m = 424.2641 \text{ V}$$

b) f = 100 Hz

- c) $\omega = 628.3185 \text{ rad/sec}$
- d) φ (phi) = -1.0472 radians
- e) T = 10.0 ms (milli sec)

Correct

Correct

Mark 5.00 out of 5.00

Q2e

Given: $x(t) = 120 \cos(300 t + 55^{\circ}) + 415 \cos(300 t - 25^{\circ})$

Use the concept of the phasor to combine this sinusoidal function into a single trigonometric expression in the form similar to $x(t) = A \cos{(\omega t + \theta^{\circ})}$.

Magnitude A of
$$x(t) = 451.6$$

Angle
$$\theta$$
 of $x(t) = \begin{vmatrix} -9.8 \end{vmatrix}$

° (Degree)

Numeric Answer

 $x(t) = 451.5754 \cos(300 t - 9.8291^{\circ})$

Correct

Marks for this submission: 5.00/5.00.

Question 3

Correct

Mark 15.00 out of 15.00

Q3c

Assume the operational amplifier is ideal.

Given $v_g(t) = -38.0 \text{ V}$ (a constant voltage)

Find the steady-state output $v_0(t)$.

$$v_0(t) = \begin{bmatrix} -10 \end{bmatrix}$$

Volts

Numeric Answer

 $v_0(t) = -10 \text{ V}$ since the opamp is in saturation at the negative power supply rail.

Correct

Correct

Mark 10.00 out of 10.00

Q4a

Find the phasor voltages \mathbf{V}_0 and \mathbf{V}_1 . I suggest you use the Node Method.

✓° (Degrees) Volts

$$V_0 = 15.8$$
at angle 18.4 \checkmark (Degrees) Volts
$$V_1 = 49.9$$

Express your answer as a positive magnitude and then the angle in the appropriate quadrant.

Numeric Answer

at angle -53.1

 $V_0 = 15.811$ at angle 18.43° Volts

 $V_1 = 50.0$ at angle -53.13° Volts

Correct

Correct

Mark 15.00 out of 15.00

Q5a

Given:

$$i_s = 20 \cos(100,000 t + 6.12^\circ) \text{ Amps}$$

The equivalent admittance of the circuit is $Y_{Eq} = 0.2166$ at angle 6.12° (Degrees) Siemens

Calculate the average power absorbed/delivered by the 10 Ω (Ohm) resistor.

$$P_{10\Omega} = 426.89$$

W

Numeric Answer

 $P_{10\Omega} = 426.2295 \text{ W}$

Correct

Correct

Mark 10.00 out of 10.00

Q6c

Given:

The voltage source $V_g = 160$ at angle 0° V_{rms} and the voltage $V_0 = 150.9165$ at angle -1.08° V_{rms} .

Find the average and reactive power for the voltage source $\mathbf{V}_{\mathbf{g}}$.

$$S_g = \boxed{-583.42}$$

+ j \bigsim 182.16 \lor VA

"+" = absorbed and "-" = delivered

Numeric Answer

 $S_g = -583.0605 + j 182.2064 VA$

Correct

Marks for this submission: 0.00/10.00.

Comment:

Your answers are correct.

Due to error in answer guide the answers will be accepted a full points.

Correct

Mark 5.00 out of 5.00

Q7a

Find the Laplace Transform of $\left\{ rac{d}{dt} \cos \omega \, t \,
ight\}$

Select one:

$$\bullet$$
 a. $\frac{-\omega^2}{s^2+\omega^2}$

$$\circ$$
 b. $\frac{-s^2}{s^2+\omega^2}$

$$\circ$$
 c. $\frac{1}{s^2+\omega^2}$

$$\circ$$
 d. $rac{\omega}{s^2+\omega^2}$

Your answer is correct.

$$L\left\{\frac{d}{dt}\cos\omega t\right\} = \frac{-\omega^2}{s^2 + \omega^2}$$

The correct answer is: $\frac{-\omega^2}{s^2+\omega^2}$

Correct

Marks for this submission: 5.00/5.00.

Question 8

Correct

Mark 15.00 out of 15.00

Q8a

$$^{\text{Given}}\,F(s) = \frac{100(s^2+69)}{(s+10)(s^2+10s+169)} = \frac{100(s^2+69)}{(s+10)(s+5-j12)(s+5+j12)}$$

Find the partial fraction expansion of F(s) and then use the Laplace transform tables to find f(t).

$$f(t) = \begin{bmatrix} 100 \\ -10 \end{bmatrix} + \begin{bmatrix} 83.33 \\ 4 \end{bmatrix} + \begin{bmatrix} -5 \\ 12 \end{bmatrix} + \begin{bmatrix} 90 \\ 4 \end{bmatrix} = \begin{bmatrix} 100 \\ 4 \end{bmatrix}$$

$$f(t) = \left[100e^{-10t} + 83.33e^{-5t}\cos(12t + 90^{\circ})u(t)\right]$$

Correct

Correct

Mark 10.00 out of 10.00

Q9c

Given:
$$F(s) = \frac{45(s+3)}{(s+6)(s^2+6s+25)}$$
 which has an inverse transform f(t).

a) Find the initial value of f(t = 0).

$$f(t=0) = \boxed{0}$$

b) Find the final value of $f(t \rightarrow \infty)$

$$f(t \to \infty) = \begin{bmatrix} 0 & & \end{bmatrix}$$

Numeric Answer

a)
$$f(t = 0) = 0$$

b)
$$f(t \rightarrow \infty) = 0$$

Correct