Curve Sketching Techniques

Illustration 7

$$f(x) = x^{\frac{2}{3}}(6-x)^{\frac{1}{3}}$$

Asymptote/s:

VA: none, since f is continuos everywhere

HA: none

$$\lim_{x \to +\infty} x^{\frac{2}{3}} (6 - x)^{\frac{1}{3}} = (+\infty)(-\infty) = -\infty$$

$$\lim_{x \to -\infty} x^{\frac{2}{3}} (6 - x)^{\frac{1}{3}} = (+\infty)(+\infty) = +\infty$$

Illustration 8

$$f(x) = x^3 - 8x^2 + 15x$$

• **Domain:** Dom $f = \mathbb{R}$

Intercept/s:

$$x$$
-intercept/s: $f(x) = x^3 - 8x^2 + 15x = 0$

$$x(x^2 - 8x + 15) = 0$$

$$x(x-5)(x-3)=0$$

$$x = 0, 3, 5$$

y-intercept: f(0) = 0

• Asymptote/s:

VA: none HA: none

• Critical Number/s:

$$f'(x) = 3x^2 - 16x + 15$$

 $f'(x) = 0 \Rightarrow x = \frac{8 - \sqrt{19}}{3}, \frac{8 + \sqrt{19}}{3}$
 $f'(x)$ dne \Rightarrow no solution

$$f''(x) = 6x - 16$$

$$f''(x) = 0 \Rightarrow x = \frac{8}{3}$$

$$f''(x) \text{ dne } \Rightarrow \text{ no solution}$$

Tables of Signs:

x Values	Sign of $f'(x)$	Conclusion for $f(x)$
$x < \frac{8 - \sqrt{19}}{3}$	+	Increasing
$x = \frac{8 - \sqrt{19}}{3}$	0	Relative Maximum
$\frac{8-\sqrt{19}}{3} < x < \frac{8+\sqrt{19}}{3}$	_	Decreasing
$x = \frac{8 + \sqrt{19}}{3}$	0	Relative Minimum
$x > \frac{8 + \sqrt{19}}{3}$	+	Increasing

x Values	Sign of $f''(x)$	Conclusion for $f(x)$
$x < \frac{8}{3}$	_	Concave Downward
$x = \frac{8}{3}$	0	Inflection Point
$x > \frac{8}{3}$	+	Concave Upward

Curve:

Exercises D

1.
$$f(x) = x^{\frac{5}{4}} + 10x^{\frac{1}{4}}$$

- **Domain:** Dom $f = [0, +\infty)$
- Intercept/s:

x-intercept/s:
$$f(x) = x^{\frac{5}{4}} + 10x^{\frac{1}{4}} = 0$$

$$x^{\frac{1}{4}}(x+10) = 0$$

$$x = 0$$
 or $x = -10 \notin \text{Dom } f$

y-intercept: f(0) = 0

• Asymptote/s:

VA: none, since f is continuous on $[0, +\infty)$

HA: none

$$\lim_{x\to+\infty} \left(x^{\frac{5}{4}} + 10x^{\frac{1}{4}}\right)$$

$$=\lim_{x\to+\infty} x^{\frac{1}{4}}(x+10)$$

$$=(+\infty)(+\infty)$$

$$= +\infty$$

$$\lim_{x \to -\infty} \left(x^{\frac{5}{4}} + 10x^{\frac{1}{4}} \right)$$
 dne

Critical Number/s:

$$f'(x) = \frac{5}{4}x^{\frac{1}{4}} + \frac{5}{2}x^{-\frac{3}{4}}$$

$$f'(x) = 0 \Rightarrow \text{no solution}$$

$$f'(x) \text{ dne } \Rightarrow x = 0$$

$$f''(x) = \frac{5}{16}x^{-\frac{3}{4}} - \frac{15}{8}x^{-\frac{7}{4}}$$
$$f''(x) = 0 \Rightarrow x = 6$$
$$f''(x) \text{ dne } \Rightarrow x = 0$$

Tables of Signs:

x Values	Sign of $f'(x)$	Conclusion for $f(x)$
x = 0	d.n.e	
x > 0	+	Increasing

x Values	Sign of $f''(x)$	Conclusion for $f(x)$
x = 0	d.n.e.	
0 < x < 6	_	Concave Downward
x = 6	0	Inflection Point
x > 6	+	Concave Upward

• Curve:

$$3. \ f(x) = \frac{\ln x}{\sqrt{x}}$$

- **Domain:** Dom $f = (0, +\infty)$
- Intercept/s:

x-intercept/s:
$$f(x) = \frac{\ln x}{\sqrt{x}} = 0 \Rightarrow \ln x = 0 \Rightarrow x = 1$$

y-intercept: none

Asymptote/s:

VA:

Candidate/s:

$$\sqrt{x} = 0 \Rightarrow x = 0$$

Checking:

$$\lim_{x \to 0^{+}} \frac{\ln x}{\sqrt{x}} \quad \left(\frac{-\infty}{0^{+}}\right)$$

$$= \lim_{x \to 0^{+}} \ln x \left(\frac{1}{\sqrt{x}}\right)$$

$$= (-\infty)(+\infty)$$

$$= -\infty$$

$$\Rightarrow x = 0 \text{ is a VA}$$

HA:

$$\lim_{x \to +\infty} \frac{\ln x}{\sqrt{x}} \quad \left(\frac{+\infty}{+\infty}\right)$$

$$=_{LH} \lim_{x \to +\infty} \frac{\frac{1}{x}}{\frac{1}{2}x^{-\frac{1}{2}}}$$

$$= \lim_{x \to +\infty} 2 \cdot \frac{1}{x} \cdot x^{\frac{1}{2}}$$

$$= \lim_{x \to +\infty} \frac{2}{x^{\frac{1}{2}}}$$

$$= 0$$

$$\Rightarrow y = 0$$
 is a HA

$$\lim_{x \to -\infty} \frac{\ln x}{\sqrt{x}} dne$$

Critical Number/s:

$$f'(x) = \frac{1 - \frac{1}{2} \ln x}{x^{\frac{3}{2}}}$$

$$f'(x) = 0 \Rightarrow x = e^2$$

$$f'(x)$$
 dne $\Rightarrow x = 0 \notin \text{Dom } f$

$$f''(x) = \frac{-2 + \frac{3}{4} \ln x}{x^{\frac{5}{2}}}$$

$$f^{\prime\prime}(x)=0\Rightarrow x=e^{\frac{8}{3}}$$

$$f''(x)$$
 dne $\Rightarrow x = 0 \notin \text{Dom } f$

Tables of Signs:

x Values	Sign of $f'(x)$	Conclusion for $f(x)$
$0 < x < e^2$	+	Increasing
$x = e^2$	0	Relative Maximum
$x > e^2$	_	Decreasing

x Values	Sign of $f''(x)$	Conclusion for $f(x)$
$0 < x < e^{8/3}$	_	Concave Downward
$x = e^{8/3}$	0	Inflection Point
$x > e^{8/3}$	+	Concave Upward

Curve:

5.
$$f(x) = \cos^2 x - 2\sin x, x \in [0, 2\pi]$$

Domain:

Dom $f = [0, 2\pi]$

• Intercept/s:

x-intercept/s:

$$f(x) = 0 \Rightarrow \cos^2 x - 2\sin x = 0$$

$$(1 - \sin^2 x) - 2\sin x = 0$$

$$\sin^2 x + 2\sin x - 1 = 0$$

$$\sin x = -1 + \sqrt{2} \approx 0.41$$

$$x = \sin^{-1}(-1 + \sqrt{2}), \pi - \sin^{-1}(-1 + \sqrt{2})$$

y-intercept: $y = f(0) = \cos^2 0 - 2 \sin 0 = 1$

Asymptote/s:

VA: none, since f is continuous on $[0, 2\pi]$

HA: none, since Dom $f = [0, 2\pi]$

• Critical Number/s:

$$f'(x) = -2\cos x(\sin x + 1)$$

$$f'(x) = 0 \Rightarrow x = \frac{\pi}{2}, \frac{3\pi}{2} \text{ or } x = \frac{3\pi}{2}$$

f'(x) dne \Rightarrow no solution

$$f''(x) = 2(2\sin x - 1)(\sin x + 1)$$

$$f''(x) = 0 \Rightarrow x = \frac{\pi}{6}, \frac{5\pi}{6} \text{ or } x = \frac{3\pi}{2}$$

f''(x) dne \Rightarrow no solution

Tables of Signs:

x Values	Sign of $f'(x)$	Conclusion for $f(x)$
$0 \le x < \frac{\pi}{2}$	_	Decreasing
$x = \frac{\pi}{2}$	0	Relative Minimum
$\frac{\pi}{2} < x < \frac{3\pi}{2}$	+	Increasing
$x = \frac{3\pi}{2}$	0	Relative Maximum
$\frac{3\pi}{2} < x \le 2\pi$	_	Decreasing

x Values	Sign of $f'(x)$	Conclusion for $f(x)$
$0 \le x < \frac{\pi}{6}$	_	Concave Downward
$x = \frac{\pi}{6}$	0	Inflection Point
$\frac{\pi}{6} < x < \frac{5\pi}{6}$	+	Concave Upward
$x = \frac{5\pi}{6}$	0	Inflection Point
$\frac{5\pi}{6} < x < \frac{3\pi}{2}$	_	Concave Downward
$x = \frac{3\pi}{2}$	0	
$\frac{3\pi}{2} < x < 2\pi$	_	Concave Downward

Curve:

Exercises E

1.

a.
$$f(x) = xe^{-x^2}$$

• Domain:

 $\operatorname{Dom} f = \mathbb{R}$

• Intercept/s:

x-intercept/s:

$$f(x) = xe^{-x^2} = \frac{x}{e^{x^2}} = 0 \Rightarrow x = 0$$

y-intercept:

$$f(0) = 0$$

Asymptote/s:

VA:

Candidate/s: $e^{x^2} = 0 \Rightarrow$ no solution

HA:

$$\lim_{x \to +\infty} \frac{x}{e^{x^2}} \quad \left(\frac{+\infty}{+\infty}\right)$$

$$=_{LH} \lim_{x \to +\infty} \frac{1}{e^{x^2} \cdot 2x} \quad \left(\frac{1}{+\infty}\right)$$

$$= 0$$

$$\Rightarrow y = 0 \text{ is a HA}$$

$$\lim_{x \to -\infty} \frac{x}{e^{x^2}} \quad \left(\frac{-\infty}{+\infty}\right)$$

$$=_{LH} \lim_{x \to -\infty} \frac{1}{e^{x^2} \cdot 2x} \quad \left(\frac{1}{-\infty}\right)$$

$$= 0$$

$$\Rightarrow y = 0 \text{ is a HA}$$

• Critical Number/s:

f'(x) dne $\Rightarrow e^{x^2} = 0$

$$f'(x) = 1 \cdot e^{-x^2} + e^{-x^2}(-2x)x$$

$$= e^{-x^2} - 2e^{-x^2}x^2$$

$$= e^{-x^2}(1 - 2x^2)$$

$$= \frac{1 - 2x^2}{e^{x^2}}$$

$$f'(x) = 0 \Rightarrow 1 - 2x^2 = 0$$

$$x^2 = \frac{1}{2}$$

$$x = \pm \sqrt{\frac{1}{2}} = \pm \frac{1}{\sqrt{2}}$$

 \Rightarrow no solution

$$f''(x) = \frac{-4x \cdot e^{x^2} - e^{x^2}(2x)(1 - 2x^2)}{e^{2x^2}}$$

$$= \frac{xe^{x^2}[-4 - 2(1 - 2x^2)]}{e^{2x^2}}$$

$$= \frac{xe^{x^2}[-6 + 4x^2]}{e^{2x^2}}$$

$$f''(x) = 0 \Rightarrow xe^{x^2}[-6 + 4x^2] = 0$$

$$\Rightarrow x = 0 \text{ or } e^{x^2} = 0 \text{ or } x^2 = \frac{3}{2}$$

$$\Rightarrow x = 0 \text{ or } x = \pm \sqrt{\frac{3}{2}}$$

f''(x) dne $\Rightarrow e^{2x^2} = 0 \Rightarrow$ no solution

• Table of Signs:

x Values	Sign of $f'(x)$	Conclusion for $f(x)$
$X < -\sqrt{\frac{1}{2}}$	_	Decreasing
$X = -\sqrt{\frac{1}{2}}$	0	Relative Minimum
$-\sqrt{\frac{1}{2}} < x < \sqrt{\frac{1}{2}}$	+	Increasing
$X=\sqrt{\frac{1}{2}}$	0	Relative Maximum
$x > \sqrt{\frac{1}{2}}$	_	Decreasing

x Values	Sign of $f''(x)$	Conclusion for $f(x)$
$X < -\sqrt{\frac{3}{2}}$	_	Concave Downward
$X = -\sqrt{\frac{3}{2}}$	0	Inflection Point
$-\sqrt{\frac{3}{2}} < x < 0$	+	Concave Upward
x = 0	0	Inflection Point
$0 < x < \sqrt{\frac{3}{2}}$	_	Concave Downward
$X=\sqrt{\frac{3}{2}}$	0	Inflection Point
$X > \sqrt{\frac{3}{2}}$	+	Concave Upward

• Curve:

3.
$$f(x) = x^3 + ax^2 + b$$
, relative extremum at (2,3)

Solution.

■
$$3 = f(2) = 2^3 + a \cdot 2^2 + b = 8 + 4a + b$$

⇒ $4a + b + 8 = 3$
⇒ $4a + b = -5$
■ $f'(x) = 3x^2 + 2ax$

$$0 = 12 + 4a$$

$$a = -3$$

•
$$4a + b = -5$$
 and $a = -3 \Rightarrow b = -5 - 4a = 7$

$$a = -3, b = 7$$

4.
$$f(x) = ax^3 + bx^2$$
, inflection point at (1, 2)

Solution.

•
$$2 = f(1) = a + b$$

$$\Rightarrow a + b = 2$$

$$f'(x) = a \cdot 3x^2 + b \cdot 2x$$

$$=3ax^2+2bx$$

$$f''(x) = 3a \cdot 2x + 2b \cdot 1$$

$$=6ax + 2b$$

$$f''(1) = 6a + 2b$$

$$0 = 6a + 2b$$

•
$$a + b = 2$$
 and $6a + 2b = 0$:

$$a + b = 2$$

$$a = 2 - b$$

$$6a + 2b = 0$$

$$6(2 - b) + 2b = 0$$

$$12 - 6b + 2b = 0$$

$$b = 3 \Rightarrow a = 2 - 3 = -1$$

$$a = -1, b = 3$$

Other Features of a Graph

- 1. $f(x) = x^2 + \cos x$ is an even function since $x^2 + \cos x = (-x)^2 + \cos(-x)$.
- 2. $f(x) = \sin x + \tan x$ is an odd function since $-[\sin x + \tan x] = \sin(-x) + \tan(-x)$.
- 3. $f(x) = \tan x$ is a periodic function with period π since $\tan x = \tan(x + \pi)$.
- 4. $f(x) = \frac{x^5 + 1}{x^4 1} = x + \frac{x + 1}{x^4 1} \Rightarrow y = x$ is an oblique asymptote:

$$\lim_{x \to \pm \infty} \left[\frac{x^5 + 1}{x^4 - 1} - x \right] = \lim_{x \to \pm \infty} \left[\left(x + \frac{x + 1}{x^4 - 1} \right) - x \right]$$
$$= \lim_{x \to \pm \infty} \left[\frac{x + 1}{x^4 - 1} \right]$$
$$= 0$$

Illustration 9

• Domain:

 $Dom f = \mathbb{R}$

• Intercepts/s:

x-intercepts: x = -4.6, 0

y-intercept: y = 0

Asymptotes:

VA: none

HA: none

Critical Numbers:

$$f'(x) = 0 \Rightarrow x = -3, 2, 4$$

f'(x) dne \Rightarrow no solution

$$f''(x) = 0 \Rightarrow x = -1.25, 2.9$$

f''(x) dne \Rightarrow no solution

• Table of Signs:

x Values	Sign of $f'(x)$	Conclusion for $f(x)$
x < -3	+	Increasing
x = -3	0	Relative Maximum
-3 < x < 2	_	Decreasing
x = 2	0	Relative Minimum
2 < x < 4	+	Increasing
x = 4	0	Relative Maximum
x > 4	_	Decreasing

x Values	Sign of $f''(x)$	Conclusion for $f(x)$
x < -1.25	_	Concave Downward
x = -1.25	0	Inflection Point
-1.25 < x < 2.9	+	Concave Upward
x = 2.9	0	Inflection Point
x > 2.9	_	Concave Downward

• Curve:

Exercises F

1.

• Domain:

$$\operatorname{Dom} f = \mathbb{R}$$

• Intercepts/s:

x-intercept/s: to be assigned later *y*-intercept: to be assigned later

Asymptotes:

VA: none

HA: none

• Critical Numbers:

$$f'(x) = 0 \Rightarrow x = 1$$

 $f'(x)$ dne $\Rightarrow x = 0$
 $f''(x) = 0 \Rightarrow \text{no solution}$

$$f''(x) = 0 \Rightarrow \text{no solution}$$

 $f''(x) \text{ dne } \Rightarrow x = 0$

• Table of Signs:

x Values	Sign of $f'(x)$	Conclusion for $f(x)$
x < 0	+	Increasing
x = 0	dne	
0 < x < 1	+	Increasing
x = 1	0	Relative Maximum
<i>x</i> > 1	_	Decreasing

x Values	Sign of $f''(x)$	Conclusion for $f(x)$
x < 0	+	Concave Upward
x = 0	dne	Inflection Point
x > 0	_	Concave Downward

• Curve:

