Autómatas y lenguajes formales. Tarea 2

Fabián Romero Jiménez

October 29, 2013

Problema 1 Minimiza el autómata de tu respuesta a los ejercicios 3 y 5 de la tarea 1.

a,b Transfórmalo en un autómata determinista usando los métodos vistos en clase. Minimiza el resultado.

a1 1 S,2 Respuesta 1,2(2)2 $a\epsilon^{\star}$ $b\epsilon^*$ 1,2 1,2 > S(1, 2)1,2 1,2

Problema 5 Construye un autómata que acepte el lenguaje generado por la expresión (0+1(01*0)*1)*. Aplica el algoritmo de minimalización a tu autómata.

Entonces, tenemos los simbolos 010101 por lo que empezamos poniendo los 6 estados $q_0, q_1, ..., q_5$ que corresponen a los símbolos en la expresión y el estado inicial S, además por cada simbolo + hacemos una bifurcación y por cada \star una transición ϵ a donde empieza, así tenemos inicialmente el NFA

Y lo transformamos en un DFA

	0	1	ϵ^{\star}
(>S)	q_0	q_1	S
(q_0)	-	-	S, q_0
q_1	q_2	-	q_1
q_2	q_4	q_3	q_2
q_3	q_4	q_3	q_3
q_4	-	q_5	q_4, q_1
(q_5)	-	-	q_5, S

	$0\epsilon^*$	$1\epsilon^{\star}$
(>S)	S, q_0	q_1
(S,q_0)	S, q_0	q_1
$ q_1 $	q_2	_
q_2	q_4, q_1	q_3
q_4, q_1	q_2	q_5, S
q_3	q_4, q_1	q_3
$ (q_5, S) $	q_0, S	q_1

Así tenemos el DFA

Minimizando tenemos:

$${q_1, q_2, q_3, (q_4, q_1)}, {S, (q_0, s), (q_5, S)}$$

Separando (q_4,q_1) pues con entrada 1 va a un estado final

$${q_2, q_3}, {(q_4, q_1), q_1}, {S, (q_0, s), (q_5, S)}$$

y finalmente tenemos el DFA minimizado:

${f Problema~2}$. Considera el siguiente sistema de ecuaciones

$$\begin{split} X_0 &= a \cdot (X_1 \wedge X_2) + b \cdot X_o + 0 \\ X_1 &= b \cdot (\bar{X_0} \vee X_2) + a \cdot X_o + \epsilon \\ X_2 &= a \cdot (X_1 \vee \bar{X_2}) + b \cdot (\bar{X_1} \wedge X_2) + \epsilon \end{split}$$

Lo que nos indica que hay 3 estados, s que es testado inicial y (1) y (2) que son de aceptación, debido a que sus ecuaciones X_1 y X_2 tienen constante ϵ , como la ecuación de s tiene como conastante 0, no es un estado de aceptación, y la tabla de transiciones es la siguiente:

Estado	a	b
> s	$1 \wedge 2$	s
(1)	s	$2 \vee \neg s$
(2)	$1 \vee \neg 2$	$\neg 1 \wedge 2$

Problema 3 . Construye el autómata de diccionario para el conjunto $X = \{ab, ba, aba, bab\}$ con el alfabeto $\Sigma = \{a, b, c\}$.

 ${f Problema~4}$. Considera la siguiente descripción de un lenguaje de programación simple:

- Localidades de memoria: $X, Y, Z, X_1, ...$;
- Constantes: 0, 1, -1, ...;
- Expresiones aritméticas: (a) localidades; (b) constantes; (c) si a y b son expresiones aritméticas, también lo son (a + b), $(a \times b)$ y (a b);
- Constantes boolenas: V y F;
- Comparaciones: (X = a) y (X < a), donde X es una localidad y a una expresión aritmética;
- Expresiones booleanas: (a) constantes booleanas; (b) comparaciones; (c) si b y v son expresiones booleanas, también lo son $\neg b$, $(b \lor v)$ y $(b \land v)$;
- Asignaciones: X := a, donde X es una localidad y a una expresión aritmética;

- El programa *skip*;
- Programas: (a) skip; (b) asignaciones; (c) si P y Q son programas y b es una expresión booleana, los siguientes también son programas: (P; Q), (if b then P else Q) y (while b do P).

```
CFG P \to skip|N| if B then P else P| while B do P // Programa N \to A|E|N; N // Predicado B \to v|f|E < E|E = E|\neg B|B \lor B|B \land B // Expresión Booleana A \to L := E // Asignación E \to C|-C|E+E|E-E|E \times E //Expresión L \to x|y|z|LC // Localidad C \to 0|1|2|..|9|CC // Constante
```

Problema 5 Da gramáticas en forma normal de Chomsky y de Greibach del mismo lenguaje

```
CNF IF \rightarrow if
            THEN \rightarrow then
            ELSE \rightarrow else
            W \rightarrow while
            DO \rightarrow do
            A_{:=} \rightarrow :=
            N_{:} \rightarrow ;
            E_+ \rightarrow +
            E_{\times} \to \times
            E_- \rightarrow -
            B_{<} \rightarrow <
            B_{=} \rightarrow =
            B_{\neg} \rightarrow \neg
            B_{\vee} \rightarrow \vee
            B_{\wedge} \to \wedge
            L \to x|y|z|L C
            C \rightarrow 0|1|2|3|4|5|6|7|8|9|CC
            P_0 \to skip|L|N_{asiqn_1}|E|E_{+1}|E|E_{\times 1}|E|E_{-1}|E_{-}|C|NN_{sep_1}|IF|P_{if_1}|W|P_{w_1}
            P \rightarrow skip|L|N_{asign_1}|E|E_{+1}|E|E_{\times 1}|E|E_{-1}|E_{-}|C|NN_{sep_1}|IF|P_{if_1}|W|P_{w_1}
            P_{if_1} \to B P_{if_2}
P_{if_2} \to THEN P_{if_3}
            P_{if_3} \to P \ P_{if_4}
P_{if_4} \to ELSE \ P
            P_{w_1}^{r_{j_4}} \to B \ P_{w_2}
P_{w_2} \to DO \ P
            N_{sep_1} \rightarrow N_1 N
            N_{asign_1} \rightarrow A_{:=} N
            B \to v|f|E \ B_{<1}|E \ B_{=1}|B \ B_{\wedge 1}|B \ B_{\vee 1}|B_{\neg} \ B
            B_{=1} \rightarrow B_{=} E
```

$$\begin{array}{l} B_{<1} \to B_{<} \ E \\ E \to 0 |1|2|3|4|5|6|7|8|9|E \ E|E_{-}E|E \ E_{+1}|E \ E_{-1}|E \ E_{\times 1} \\ E_{+1} \to E_{+} \ E \\ E_{-1} \to E_{-} \ E \\ E_{\times 1} \to E_{\times} \ E \end{array}$$

GNF
$$P \to skip|N|$$
 if B then P else $P|$ while B do P // Programa $N \to A|E|N; N$ // Predicado $B \to v|f|E < E|E = E|\neg B|B \lor B|B \land B$ // Expresión Booleana $A \to L := E$ // Asignación $E \to C|-C|E+E|E-E|E \times E$ //Expresión $L \to x|y|z|LC$ // Localidad $C \to 0|1|2|..|9|CC$ // Constante

Problema 6 Describe un NPDA que acepte este lenguaje de programación.

Problema 7 El teorema de Chomsky-Schützenberger nos dice que hay existen $n \in \mathbb{N}, R \in Reg$ tales que existe un homomorfismo entre $D_n^{\star} \cap R$ y el lenguaje de programación anterior. Da un valor de n y justifica tu respuesta.

Problema 8 Da CFG para los lenguages:

a)
$$\{a^nb^{2n}c^k|1 \le k,n\}$$

 $S \to Ac|Sc$
 $A \to aAbb|abb$

b)
$$\{a^k b^m c^n | 1 \le k, m, n, n \le 2k\}$$

$$S \rightarrow aaAc|aaSc \\ A \rightarrow aA|Ab|b$$

c)
$$\{a,b\}^* - \{palindromas\}$$

$$S \rightarrow aSa|bSb|A$$

$$A \rightarrow aBb|bBa$$

$$B \rightarrow aBa|bBb|a|b|\epsilon$$

Problema 9 Demuestra que los siguientes conjuntos no son CFL:

a)
$$\{a^nb^mc^kd^n|2n=3m\wedge 5k=7m\}$$

si $2n=3m$ y $5k=7m$ tenemos que $2|m$ y $5|m$ asi que $10|m$ por lo que diremos que $m=10m'$ como $2n=3m$ tenemos que $2n=30m'$ y entonces $n=15m'$, análogamente por $5k=7m$ tenemos que $5k=70m'$ y $k=14m'$ así el lenguage lo podemos expresar como $\{a^{15m'}b^{10m'}c^{14m'}d^{15m'}|m\in\mathbb{N}\}$ como a aparece siempre en potencias de 15, sea $a_1=a^{15}$ y análogamente

 $b_1 = b^{10}, c_1 = b^{14}$ y $d_1 = d^{15}$ por lo que tenemos que encontrar si el lenguage descrito como $\{a_1^{m'}b_1^{m'}c_1^{m'}d_1^{m'}\}$ es un CFL. pero por el lema del bombeo sea m' > k donde k es la constante para el CFL.

donde tenemos que $z=a_1^{m'}b_1^{m'}c_1^{m'}d_1^{m'}=\beta\gamma\eta\theta\psi$ donde $\gamma\theta\neq\epsilon$ y $|\gamma\eta\theta|\leq k$ así $\gamma\eta\theta$ puede contener cuando más dos tipos diferentes de simbolos a_1,b_1,c_1,d_1 pues cada simbolo se repite k veces consecutivas. por lo que $\gamma^i\eta\theta^i$ inserta al menos un tipo de simbolo y cuando más dos, pero el lenguage requiere que los cuatro simbolos se agregen en las mismas cantidades, por lo que el lenguage no es CFG

- b) $\{a^ib^jc^kd^l|i=k,j=l\}$ elijamos i,j>k donde k es la constante para el CFL. tenemos que $z=a^ib^jc^id^j=\beta\gamma\eta\theta\psi$ donde $\gamma\theta\neq\epsilon$ y $|\gamma\eta\theta|\leq k$ así $\gamma\eta\theta$ puede contener cuando más dos tipos diferentes de simbolos a,b,c,d pues cada simbolo se repite más de k veces consecutivas. por lo que $\gamma^i\eta\theta^i$ inserta al menos un tipo de simbolo y cuando más dos, pero el lenguage requiere que los cuatro simbolos se agregen por pares en las mismas cantidades, por lo
- **Problema 10** Describe detalladamente la ejecución del algoritmo CKY para decidir si la cadena $((x = 0) \lor f)$ es una expresión booleana:

Primero el subconjunto requerido de la grámatica de evaluación booleana en CNF.

$$\begin{split} S &\to P_a \ S_c | S \ S_{\vee 1} | V \ E_{=1} | v | f \\ P_a &\to (\\ P_c &\to) \\ S_{=} &\to = \\ E_+ &\to + \\ S_c &\to S \ P_c \\ S_{\vee 1} &\to S_{\vee} \ S \\ E_{=1} &\to S_{=} \ S \\ E &\to 0 |1| 2|..|9| E \ E_{+1} \\ E_{+1} &\to E_+ \ E \\ V &\to x |y| z \end{split}$$

que el lenguage no es CFG ■

En este caso, como esta puesta con parentesis elimina rápidamente las opciones. Así

((X	=	0)	V	f)	Cadena Reconocida
P_a	P_a	V	$S_{=}$	E	P_c	S_{\lor}	S	P_C	
-	-	-	-	-	-	-	-		
-	-	S	-	-	-	-	-		x = 0
-	$\mid S \mid$	-	-	-	-	-			x = 0
-	$\mid S \mid$	-	-	-	_				(x=0)
-	-	-	-	-					
-	$\mid S \mid$	-	-						$(x=0) \lor f$
S	-								$((x=0) \lor f$
S									$((x=0) \lor f)$

Solo tiene una producción que genera la cadena deseada y empieza en S, por lo que la parsea de forma no ambigua