

Estadística aplicada en R *T-test*

-Febrero 2021-

Carlota Solano Álvaro Arredondo

1. ¿Qué es?

T-test es una prueba estadística que permite determinar si existe una diferencia estadísticamente significativa entre la media de dos grupos.

$$t = \frac{(\widehat{\beta_a} - \widehat{\beta_b}) - (\beta_a - \beta_b)}{s. e. (\widehat{\beta_a}) + s. e. (\widehat{\beta_b})} \qquad t = \frac{observado - esperado (si \beta_a = \beta_b)}{precisión de la media calculada respecto a la media real}$$

2. ¿Cuándo se puede utilizar?

Cuando quieres comparar una variable continua entre dos niveles.

E.g.: Comparar la evapotranspiración de eucalipto en ladera de solana y umbría. Comparar la cantidad de sal que echan griegos e italianos en la comida.

3. ¿Qué tipo de datos se necesitan?

Variable respuesta (dep.; y) → Numérica continua Variable explicativa (indep.; x) → Categórica con dos niveles

4. ¿Qué asunciones tiene?
 Independencia de las observaciones → Muestreo aleatorio
 Distribución normal de la variable respuesta
 Igualdad de varianza en los grupos a comparar (Homocedasticidad)

5. Matemáticamente, ¿cuál es la hipótesis? H0: La media de dos grupos no difiere $\rightarrow \mu 1 = \mu 2$

Ha: La media de dos grupos difiere $\rightarrow \mu 1 \neq \mu 2$

6. ¿Cómo se corre en R?

R >t.test(

>t.test(respuesta ~ explicativa)

7. ¿Cómo se interpreta el resultado de R?

E.g.:

¿Cómo afecta la vitamina C en el crecimiento de dientes de cobayas?

Cobayas son tratadas con un suplemento (supp) de zumo de naranja (OJ) o con pastillas de vitamina C (VC), y se mide la longitud de sus dientes (len).

>t.test(ToothGrowht\$len~ToothGrowth\$supp)

t: diferencia entre grupos representado en unidades de error estándar (s.e.).

Welch Two Sample t-test

2.1. T-test (test	cum. prob one-tail two-tails	0.50 1.00	0.25 0.50	0.20 0.40	t.85 0.15 0.30	0.10 0.20	t.95 0.05 0.10	t.975 0.025 0.05	0.01 0.02	t.995 0.005 0.01	<i>t</i> .999 0.001 0.002	t.9995 0.0005 0.001	
6. ¿Cómo se cor	df 1 2	0.000 0.000 0.000 0.000	1.000 0.816 0.765 0.741	1.376 1.061 0.978 0.941	1.963 1.386 1.250 1.190	3.078 1.886 1.638 1.533	6.314 2.920 2.353 2.132	12.71 4.303 3.182 2.776	31.82 6.965 4.541 3.747	63.66 9.925 5.841 4.604	318.31 22.327 10.215 7.173	636.62 31.599 12.924 8.610	$=\frac{\hat{eta}-eta_0}{\hat{\beta}}$
7. ¿Cómo se inte	8 9	0.000 0.000 0.000 0.000 0.000	0.727 0.718 0.711 0.706 0.703	0.920 0.906 0.896 0.889 0.883	1.156 1.134 1.119 1.108 1.100	1.476 1.440 1.415 1.397 1.383	2.015 1.943 1.895 1.860 1.833	2.571 2.447 2.365 2.306 2.262	3.365 3.143 2.998 2.896 2.821	4.032 3.707 3.499 3.355 3.250	5.893 5.208 4.785 4.501 4.297	6.869 5.959 5.408 5.041 4.781	$\mathrm{s.e.}(\hat{\beta})$
¿Cómo afecta la Cobayas son tra mide la longituc	11 12 13	0.000 0.000 0.000 0.000 0.000	0.700 0.697 0.695 0.694 0.692	0.879 0.876 0.873 0.870 0.868	1.093 1.088 1.083 1.079 1.076	1.372 1.363 1.356 1.350 1.345	1.812 1.796 1.782 1.771 1.761	2.228 2.201 2.179 2.160 2.145	2.764 2.718 2.681 2.650 2.624	3.169 3.106 3.055 3.012 2.977	4.144 4.025 3.930 3.852 3.787	4.587 4.437 4.318 4.221 4.140	tamina C (VC), y se
>t.test(Too	15 16	0.000 0.000 0.000 0.000 0.000	0.691 0.690 0.689 0.688 0.688	0.866 0.865 0.863 0.862 0.861	1.074 1.071 1.069 1.067 1.066	1.341 1.337 1.333 1.330 1.328	1.753 1.746 1.740 1.734 1.729	2.131 2.120 2.110 2.101 2.093	2.602 2.583 2.567 2.552 2.539	2.947 2.921 2.898 2.878 2.861	3.733 3.686 3.646 3.610 3.579	4.073 4.015 3.965	representado en ar (s.e.).
Welch data: ToothG	20 21 22	0.000 0.000 0.000 0.000	0.686 0.686 0.685	0.860 0.859 0.858 0.858	1.064 1.063 1.061 1.060	1.325 1.325 1.323 1.321 1.319	1.725 1.725 1.721 1.717 1.714	2.086 2.080 2.074 2.069	2.528 2.518 2.508 2.500	2.845 2.831 2.819 2.807	3.552 3.527 3.505 3.485	3.850 3.819 3.792 3.768	
t = 1.9153, d alternative h	24 25 26	0.000 0.000 0.000 0.000	0.685 0.684 0.684 0.684	0.857 0.856 0.856 0.855	1.059 1.058 1.058 1.057	1.318 1.316 1.315 1.314	1.711 1.708 1.706 1.703	2.064 2.060 2.056 2.052	2.492 2.485 2.479 2.473	2.797 2.787 2.779 2.771	3.467 3.450 3.435 3.421	3.745 3.725 3.707 3.690	
95 percent co -0.1710156 sample estima	29 30 40	0.000 0.000 0.000 0.000	0.683 0.683 0.683	0.855 0.854 0.854 0.851	1.056 1.055 1.055 1.050	1.313 1.311 1.310 1.303	1.701 1.699 1.697 1.684	2.048 2.045 2.042 2.021	2.467 2.462 2.457 2.423	2.763 2.756 2.750 2.704	3.408 3.396 3.385 3.307	3.674 3.659 3.646 3.551	
mean in group 20.66	100 1000	0.000 0.000 0.000 0.000	0.679 0.678 0.677 0.675	0.848 0.846 0.845 0.842	1.045 1.043 1.042 1.037	1.296 1.292 1.290 1.282	1.671 1.664 1.660 1.646	2.000 1.990 1.984 1.962	2.390 2.374 2.364 2.330	2.660 2.639 2.626 2.581	3.232 3.195 3.174 3.098	3.460 3.416 3.390 3.300	
Z 0.000 0.674 0.842 1.036 1.282 1.645 1.960 2.326 2.576 3.090 3.291 0% 50% 60% 70% 80% 90% 95% 98% 99% 99.8% 99.9% Confidence Level													

6. ¿Cómo se corre en R?

R

>t.test(respuesta ~ explicativa)

$$t_{\hat{eta}} = rac{\hat{eta} - eta_0}{ ext{s. e.}(\hat{eta})}$$

7. ¿Cómo se interpreta el resultado de R?

E.g.:

¿Cómo afecta la vitamina C en el crecimiento de dientes de cobayas?

Cobayas son tratadas con un suplemento (supp) de zumo de naranja (OJ) o con pastillas de vitamina C (VC), y se mide la longitud de sus dientes (len).

>t.test(ToothGrowht\$len~ToothGrowth\$supp)

t: diferencia entre grupos representado en unidades de error estándar (s.e.).

Welch Two Sample t-test

df: grados de libertad: cantidad de valores independientes que tenemos para calcular el modelo.

data: ToothGrowth\$len by ToothGrowth\$supp

t = 1.9153, df = 55.309, p-value = 0.06063
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:

-0.1710156 7.5710156

sample estimates:

mean in group OJ mean in group VC 20.66333 16.96333

6. ¿Cómo se corre en R?

>t.test(respuesta ~ explicativa)

$$t_{\hat{eta}} = rac{\hat{eta} - eta_0}{ ext{s. e.}(\hat{eta})}$$

7. ¿Cómo se interpreta el resultado de R?

E.g.:

¿Cómo afecta la vitamina C en el crecimiento de dientes de cobayas?

Cobayas son tratadas con un suplemento (supp) de zumo de naranja (OJ) o con pastillas de vitamina C (VC), y se mide la longitud de sus dientes (len).

>t.test(ToothGrowht\$len~ToothGrowth\$supp)

Welch Two Sample t-test

data: ToothGrowth\$len by ToothGrowth\$supp t = 1.9153, df = 55.309, p-value = 0.06063 \ alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: -0.1710156 7.5710156

sample estimates:

mean in group OJ mean in group VC 20.66333 16.96333

t: diferencia entre grupos representado en unidades de error estándar (s.e.).

df: grados de libertad: cantidad de valores independientes que tenemos para calcular el modelo.

obtenido siendo H0 cierta

6. ¿Cómo se corre en R?

>t.test(respuesta ~ explicativa)

$$t_{\hat{eta}} = rac{\hat{eta} - eta_0}{ ext{s. e.}(\hat{eta})}$$

7. ¿Cómo se interpreta el resultado de R?

E.g.:

¿Cómo afecta la vitamina C en el crecimiento de dientes de cobayas?

Cobayas son tratadas con un suplemento (supp) de zumo de naranja (OJ) o con pastillas de vitamina C (VC), y se mide la longitud de sus dientes (len).

>t.test(ToothGrowht\$len~ToothGrowth\$supp)

t: diferencia entre grupos representado en unidades de error estándar (s.e.).

Welch Two Sample t-test

df: grados de libertad: cantidad de valores independientes que tenemos para calcular el modelo. data: ToothGrowth\$len by ToothGrowth\$supp

t = 1.9153, df = 55.309, p-value = 0.06063 \ alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-0.1710156 7.5710156

sample estimates:

mean in group OJ mean in group VC 20.66333 16.96333

✓ P-value: Probabilidad de haber obtenido el resultado obtenido siendo HO cierta

95%CI: el rango de valores posibles de diferencia entre las medias de los grupos. \rightarrow ¿Si contiene valor cero?

6. ¿Cómo se corre en R?

>t.test(respuesta ~ explicativa)

$$t_{\hat{eta}} = rac{\hat{eta} - eta_0}{ ext{s. e.}(\hat{eta})}$$

7. ¿Cómo se interpreta el resultado de R?

E.g.:

¿Cómo afecta la vitamina C en el crecimiento de dientes de cobayas?

Cobayas son tratadas con un suplemento (supp) de zumo de naranja (OJ) o con pastillas de vitamina C (VC), y se mide la longitud de sus dientes (len).

>t.test(ToothGrowht\$len~ToothGrowth\$supp)

t: diferencia entre grupos representado en unidades de error estándar (s.e.).

Welch Two Sample t-test

df: grados de libertad: cantidad de valores independientes que tenemos para calcular el modelo.

data: ToothGrowth\$len by ToothGrowth\$supp t = 1.9153, df = 55.309, p-value = 0.06063 alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval:

-0.1710156 7.5710156

✓ P-value: Probabilidad de haber obtenido el resultado obtenido siendo H0 cierta

sample estimates:

95%CI: el rango de valores posibles de diferencia entre las medias de los grupos. \rightarrow ¿Si contiene valor cero?

mean in group OJ mean in group VC 16.96333 20.66333

La **media** de la variable respuesta del grupo OJ y del grupo VC

8. ¿Cómo se puede representar?

>data_summary()
>ggplot(data,aes(x,y))+
geom_bar(stat="identity")+
geom_errorbar(aes(ymin,ymax))

Base de datos con medidas de arrendajo azul (*Cyanocitta cristata*).

¿Difiere la masa de hembras y machos de arrendajo azul?

H0: La masa de hembras y machos no difiere

Ha: La masa de hembras y machos difiere

1º Entender la base de datos

```
> str(db)
'data.frame':
                123 obs. of 9 variables:
 $ BirdID
             : Factor w/ 123 levels "0000-00000", "1142-05901", ...: 1 2 3 4 5 6 7 8 9 10 ....
 $ KnownSex : Factor w/ 2 levels "F", "M": 2 2 2 1 2 1 2 2 1 1 ...
                   8.26 8.54 8.39 7.78 8.71 7.28 8.74 8.72 8.2 7.67 ...
 $ BillWidth : num
                    9.21 8.76 8.78 9.3 9.84 9.3 9.28 9.94 9.01 9.31 ...
 $ BillLength: num
 $ Head
             : num
 $ Mass
                   73.3 75.1 70.2 65.5 74.9 ...
             : num
 $ Skull
                   30.7 31.4 31.2 30.3 31.9 ...
 $ Sex
             : int
```

Base de datos con medidas de arrendajo azul (*Cyanocitta cristata*). ¿Difiere la masa de hembras y machos de arrendajo azul?

H0: La masa de hembras y machos no difiere

Ha: La masa de hembras y machos difiere

R

2º Asunciones

- Normalidad:

>hist(db\$Mass)

>qqnorm(db\$Mass)
>qqline(db\$Mass)

>shapiro.test(db\$Mass)

Shapiro-Wilk normality test

data: db\$Mass W = 0.98599, p-value = 0.2366

H0: datos con distribución normal

Base de datos con medidas de arrendajo azul (*Cyanocitta cristata*). ¿Difiere la masa de hembras y machos de arrendajo azul?

H0: La masa de hembras y machos no difiere

Ha: La masa de hembras y machos difiere

R

2º Asunciones

- Homocedasticidad:
- > library(car)
- > leveneTest(db\$Mass~db\$KnownSex)

```
Levene's Test for Homogeneity of Variance (center = median)

Df F value Pr(>F)

group 1 4.4591 0.03677 *

121
```

```
Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
```


H0: varianzas de ambos grupos son semejantes

Base de datos con medidas de arrendajo azul (*Cyanocitta cristata*). ¿Difiere la masa de hembras y machos de arrendajo azul?

H0: La masa de hembras y machos no difiere

Ha: La masa de hembras y machos difiere

R

3º Test estadístico

```
> t.test(db$Mass~db$KnownSex)

Welch Two Sample t-test

data: db$Mass by db$KnownSex
t = -4.2179, df = 111.05, p-value = 5.051e-05
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
    -5.024846 -1.812646
sample estimates:
mean in group F mean in group M
    69.80633     73.22508
```

Base de datos con medidas de arrendajo azul (*Cyanocitta cristata*). ¿Difiere la masa de hembras y machos de arrendajo azul?

H0: La masa de hembras y machos no difiere

Ha: La masa de hembras y machos difiere

4º Graficar

Base de datos con medidas de arrendajo azul (*Cyanocitta cristata*). ¿Difiere la masa de hembras y machos de arrendajo azul?

H0: La masa de hembras y machos no difiere

Ha: La masa de hembras y machos difiere

5º Interpretar matemática y biológicamente

> t.test(db\$Mass~db\$KnownSex)

Welch Two Sample t-test

```
data: db$Mass by db$KnownSex
t = -4.2179, df = 111.05, p-value = 5.051e-05
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
    -5.024846 -1.812646
sample estimates:
mean in group F mean in group M
    69.80633    73.22508
```


Effect size (Tamaño del efecto)

Sexo

75

60

Base de datos con medidas de arrendajo azul (*Cyanocitta cristata*). ¿Difiere la masa de hembras y machos de arrendajo azul?

H0: La masa de hembras y machos no difiere

Ha: La masa de hembras y machos difiere

6º Conclusión y comprobación de hipótesis

Las hembras (F) presentan una masa de 69.81 g, frente a los machos (M) que muestran una masa de 73.23g.

Estadísticamente, esta diferencia es significativa (t=-4.2179, df=111.05, p-value <0.01), por lo que podemos **rechazar la H0 y aceptar la Ha**, i.e. la masa de hembras y machos de arrendajo azul difiere significativamente, con las hembras presentando aproximadamente 3 gramos de masa menos que los machos.

2.3. T-test ejercicio

Ejercicios: 2.Ejer_Ttest