Isogenies of Oriented Elliptic Curves

Doron L Grossman-Naples (he/she/they)

University of Illinois, Urbana-Champaign

August 23rd, 2025

Some Preliminary Notes

Conventions/Terminology

- Stack = étale sheaf of ∞ -groupoids on CAlg_R
- DM-stack (algebraic space) = spectral Deligne-Mumford stack (spectral algebraic space), not necessarily connective
- Formal DM-stack = formal filtered colimit of DM-stacks along closed immersions; called "honest" if actual DM-stack.
 Formal algebraic spaces defined similarly
- Isogeny = strict abelian variety map which is finite, flat, and locally almost of finite presentation

Some Preliminary Notes

Conventions/Terminology

- Stack = étale sheaf of ∞ -groupoids on CAlg_R
- DM-stack (algebraic space) = spectral Deligne-Mumford stack (spectral algebraic space), not necessarily connective
- Formal DM-stack = formal filtered colimit of DM-stacks along closed immersions; called "honest" if actual DM-stack.
 Formal algebraic spaces defined similarly
- Isogeny = strict abelian variety map which is finite, flat, and locally almost of finite presentation

Related Work

Xuecai Ma and Yifei Zhu have a paper in the works ([MZ25]) which approaches this from a different perspective, defining level structures in terms of classical divisors. It isn't clear whether this is equivalent to my definition. A draft can be found on Professor Zhu's website.

Over $\mathbb C$

$$\left\{ \begin{array}{c} \mathcal{M}(\Gamma) \\ \downarrow_{\text{\'et}} \\ \mathcal{M}_{ell} \end{array} \right\} \longleftrightarrow \left\{ \text{Congruence subgroups } \Gamma \subset GL_2(\mathbb{Z}) \right\}$$

Over $\mathbb C$

$$\left\{\begin{array}{c} \mathcal{M}(\Gamma) \\ \downarrow_{\text{\'et}} \\ \mathcal{M}_{ell} \end{array}\right\} \longleftrightarrow \left\{ \text{Congruence subgroups } \Gamma \subset GL_2(\mathbb{Z}) \right\}$$

 $\mathcal{M}(\Gamma)=$ "moduli stack of elliptic curves with $\Gamma\text{-structure}$ (i.e. isogeny with prescribed kernel)

Over $\mathbb C$

$$\left\{\begin{array}{c} \mathcal{M}(\Gamma) \\ \downarrow_{\text{\'et}} \\ \mathcal{M}_{ell} \end{array}\right\} \longleftrightarrow \left\{ \text{Congruence subgroups } \Gamma \subset GL_2(\mathbb{Z}) \right\}$$

 $\mathfrak{M}(\Gamma)=$ "moduli stack of elliptic curves with $\Gamma\text{-structure}$ ' (i.e. isogeny with prescribed kernel)

Over \mathbb{Z}

 $\mathcal{M}(\Gamma)$ and the reduction map exist in the category of algebraic stacks, but

Over $\mathbb C$

$$\left\{\begin{array}{c} \mathfrak{M}(\Gamma) \\ \downarrow_{\mathrm{\acute{e}t}} \\ \mathfrak{M}_{\mathrm{ell}} \end{array}\right\} \longleftrightarrow \left\{\mathsf{Congruence\ subgroups\ }\Gamma \subset GL_2(\mathbb{Z})\right\}$$

 $\mathfrak{M}(\Gamma)=$ "moduli stack of elliptic curves with $\Gamma\text{-structure}$ ' (i.e. isogeny with prescribed kernel)

Over \mathbb{Z}

 $\mathfrak{M}(\Gamma)$ and the reduction map exist in the category of algebraic stacks, but

ullet $\mathcal{M}(\Gamma)$ may not be Deligne-Mumford (e.g. $\mathcal{M}_0(N)$)

Over $\mathbb C$

$$\left\{ \begin{array}{c} \mathfrak{M}(\Gamma) \\ \downarrow_{\mathrm{\acute{e}t}} \\ \mathfrak{M}_{\mathrm{ell}} \end{array} \right\} \longleftrightarrow \left\{ \mathsf{Congruence\ subgroups\ } \Gamma \subset GL_2(\mathbb{Z}) \right\}$$

 $\mathfrak{M}(\Gamma)=$ "moduli stack of elliptic curves with $\Gamma\text{-structure}$ ' (i.e. isogeny with prescribed kernel)

Over \mathbb{Z}

 $\mathfrak{M}(\Gamma)$ and the reduction map exist in the category of algebraic stacks, but

- $\mathcal{M}(\Gamma)$ may not be Deligne-Mumford (e.g. $\mathcal{M}_0(N)$)
- The reduction map is never étale (unless we invert the level)

Over $\mathbb C$

$$\left\{ \begin{array}{c} \mathcal{M}(\Gamma) \\ \downarrow_{\text{\'et}} \\ \mathcal{M}_{\text{ell}} \end{array} \right\} \longleftrightarrow \left\{ \text{Congruence subgroups } \Gamma \subset GL_2(\mathbb{Z}) \right\}$$

 $\mathfrak{M}(\Gamma)=$ "moduli stack of elliptic curves with $\Gamma\text{-structure}$ ' (i.e. isogeny with prescribed kernel)

Over \mathbb{Z}

 $\mathfrak{M}(\Gamma)$ and the reduction map exist in the category of algebraic stacks, but

- $\mathfrak{M}(\Gamma)$ may not be Deligne-Mumford (e.g. $\mathfrak{M}_0(N)$)
- The reduction map is never étale (unless we invert the level)

So we can't use the usual methods to lift to spectral AG.

Over $\mathbb C$

$$\left\{ \begin{array}{c} \mathcal{M}(\Gamma) \\ \downarrow_{\text{\'et}} \\ \mathcal{M}_{\text{ell}} \end{array} \right\} \longleftrightarrow \left\{ \text{Congruence subgroups } \Gamma \subset GL_2(\mathbb{Z}) \right\}$$

 $\mathcal{M}(\Gamma)=$ "moduli stack of elliptic curves with $\Gamma\text{-structure}$ ' (i.e. isogeny with prescribed kernel)

Over \mathbb{Z}

 $\mathfrak{M}(\Gamma)$ and the reduction map exist in the category of algebraic stacks, but

- $\mathcal{M}(\Gamma)$ may not be Deligne-Mumford (e.g. $\mathcal{M}_0(N)$)
- The reduction map is never étale (unless we invert the level)

So we can't use the usual methods to lift to spectral AG.

Definition

The moduli stack of isogenies over R is the functor $\operatorname{Isog}:\operatorname{CAlg}_R\to\operatorname{S}$ given by

Definition

The moduli stack of isogenies over R is the functor $\operatorname{Isog}:\operatorname{CAlg}_R\to\operatorname{S}$ given by

$$A \mapsto \left\{ i : E \to E' \middle| E, E' \in \mathcal{M}_{\mathrm{ell}}^{\mathrm{or}}(A), \right\}$$
 (1)

Definition

The moduli stack of isogenies over R is the functor $\operatorname{Isog}:\operatorname{CAlg}_R\to\operatorname{S}$ given by

$$A \mapsto \left\{ i : E \to E' \middle| \begin{array}{l} E, E' \in \mathcal{M}_{\mathrm{ell}}^{\mathrm{or}}(A), \\ i \text{ isogeny.} \end{array} \right\}$$
 (1)

(The isogenies are not required to preserve the orientation.)

Definition

The moduli stack of isogenies over R is the functor $\operatorname{Isog}:\operatorname{CAlg}_R\to\operatorname{S}$ given by

$$A \mapsto \left\{ i : E \to E' \middle| \begin{array}{l} E, E' \in \mathcal{M}_{\mathrm{ell}}^{\mathrm{or}}(A), \\ i \text{ isogeny.} \end{array} \right\}$$
 (1)

(The isogenies are not required to preserve the orientation.)

Then $\mathcal{M}^{or}_{ell}(\Gamma)$ can be built from Isog.

Definition

The moduli stack of isogenies over R is the functor $\operatorname{Isog}:\operatorname{CAlg}_R\to\operatorname{S}$ given by

$$A \mapsto \left\{ i : E \to E' \middle| \begin{array}{l} E, E' \in \mathcal{M}_{\mathrm{ell}}^{\mathrm{or}}(A), \\ i \text{ isogeny.} \end{array} \right\}$$
 (1)

(The isogenies are not required to preserve the orientation.)

Then $\mathcal{M}^{or}_{ell}(\Gamma)$ can be built from Isog.

Main Theorem (GN)

Isog is a formal DM-stack.

Definition

The moduli stack of isogenies over R is the functor $\operatorname{Isog}:\operatorname{CAlg}_R\to\operatorname{S}$ given by

$$A \mapsto \left\{ i : E \to E' \middle| \begin{array}{l} E, E' \in \mathcal{M}_{\mathrm{ell}}^{\mathrm{or}}(A), \\ i \text{ isogeny.} \end{array} \right\}$$
 (1)

(The isogenies are not required to preserve the orientation.)

Then $\mathcal{M}_{ell}^{or}(\Gamma)$ can be built from Isog.

Main Theorem (GN)

Isog is a formal DM-stack.

Warning

It is not known whether Isog is an honest DM-stack.

Factorization Theorem (GN)

There is an orthogonal factorization system $(\mathscr{C}onn, \mathscr{E}t)$ on $\mathrm{Ell}^{\mathrm{or}}_{\mathrm{Isog}}$ such that

- ullet $\mathscr{C}onn$ is the class of connected isogenies, and
- \bullet $\mathscr{E}t$ is the class of étale isogenies.

This factorization system is natural with respect to change of base.

Factorization Theorem (GN)

There is an orthogonal factorization system $(\mathscr{C}onn, \acute{\mathscr{E}}t)$ on $\mathrm{Ell}^{\mathrm{or}}_{\mathrm{Isog}}$ such that

- ullet $\mathscr{C}onn$ is the class of connected isogenies, and
- $\acute{\mathcal{E}}t$ is the class of étale isogenies.

This factorization system is natural with respect to change of base.

Factorization Theorem (GN)

There is an orthogonal factorization system $(\mathscr{C}onn, \acute{\mathscr{E}}t)$ on $\mathrm{Ell}^{\mathrm{or}}_{\mathrm{Isog}}$ such that

- ullet $\mathscr{C}onn$ is the class of connected isogenies, and
- $\acute{\mathcal{E}}t$ is the class of étale isogenies.

This factorization system is natural with respect to change of base.

$$E \xrightarrow{i} E'$$

Factorization Theorem (GN)

There is an orthogonal factorization system $(\mathscr{C}onn, \acute{\mathscr{E}}t)$ on $\mathrm{Ell}^{\mathrm{or}}_{\mathrm{Isog}}$ such that

- ullet $\mathscr{C}onn$ is the class of connected isogenies, and
- $\acute{\mathcal{E}}t$ is the class of étale isogenies.

This factorization system is natural with respect to change of base.

Factorization Theorem (GN)

There is an orthogonal factorization system $(\mathscr{C}onn, \acute{\mathscr{E}}t)$ on $\mathrm{Ell}^{\mathrm{or}}_{\mathrm{Isog}}$ such that

- \bullet $\mathscr{C}onn$ is the class of connected isogenies, and
- $\mathscr{E}t$ is the class of étale isogenies.

This factorization system is natural with respect to change of base.

Factorization Theorem (GN)

There is an orthogonal factorization system $(\mathscr{C}onn, \acute{\mathscr{E}}t)$ on $\mathrm{Ell}^{\mathrm{or}}_{\mathrm{Isog}}$ such that

- ullet $\mathscr{C}onn$ is the class of connected isogenies, and
- $\mathscr{E}t$ is the class of étale isogenies.

This factorization system is natural with respect to change of base.

Factorization Theorem (GN)

There is an orthogonal factorization system $(\mathscr{C}onn, \acute{\mathscr{E}}t)$ on $\mathrm{Ell}^{\mathrm{or}}_{\mathrm{Isog}}$ such that

- \bullet $\mathscr{C}onn$ is the class of connected isogenies, and
- $\mathscr{E}t$ is the class of étale isogenies.

This factorization system is natural with respect to change of base.

Factorization Theorem (GN)

There is an orthogonal factorization system $(\mathscr{C}onn, \acute{\mathscr{E}}t)$ on $\mathrm{Ell}^{\mathrm{or}}_{\mathrm{Isog}}$ such that

- ullet $\mathscr{C}onn$ is the class of connected isogenies, and
- $\pounds t$ is the class of étale isogenies.

This factorization system is natural with respect to change of base.

Elliptic Rigidity Theorem, classical version ([KM85])

Zariski-locally on the base, every morphism of classical elliptic curves is either 0 or an isogeny.

Elliptic Rigidity Theorem, spectral version (GN)

Zariski-locally on the base, every morphism of strict elliptic curves is either 0 or an isogeny.

Elliptic Rigidity Theorem, spectral version (GN)

Zariski-locally on the base, every morphism of strict elliptic curves is either 0 or an isogeny.

Proof sketch.

Elliptic Rigidity Theorem, spectral version (GN)

Zariski-locally on the base, every morphism of strict elliptic curves is either 0 or an isogeny.

Proof sketch.

Elliptic Rigidity Theorem, spectral version (GN)

Zariski-locally on the base, every morphism of strict elliptic curves is either 0 or an isogeny.

Proof sketch.

Elliptic Rigidity Theorem, spectral version (GN)

Zariski-locally on the base, every morphism of strict elliptic curves is either 0 or an isogeny.

Proof sketch.

Elliptic Rigidity Theorem, spectral version (GN)

Zariski-locally on the base, every morphism of strict elliptic curves is either 0 or an isogeny.

Proof sketch.

Elliptic Rigidity Theorem, spectral version (GN)

Zariski-locally on the base, every morphism of strict elliptic curves is either 0 or an isogeny.

Proof sketch.

Elliptic Rigidity Theorem, spectral version (GN)

Zariski-locally on the base, every morphism of strict elliptic curves is either 0 or an isogeny.

Proof sketch.

f factors through R

Elliptic Rigidity Theorem, spectral version (GN)

Zariski-locally on the base, every morphism of strict elliptic curves is either 0 or an isogeny.

Proof sketch.

Main idea: 0 map deforms uniquely through square-zero extensions \Rightarrow through Postnikov tower.

f factors through $R \Rightarrow R$ is retract of A

Digression: Why are the components isogenies?

Elliptic Rigidity Theorem, spectral version (GN)

Zariski-locally on the base, every morphism of strict elliptic curves is either 0 or an isogeny.

Proof sketch.

Main idea: 0 map deforms uniquely through square-zero extensions \Rightarrow through Postnikov tower.

f factors through $R\Rightarrow R$ is retract of A $\Rightarrow B\otimes_A L_{A/R} \text{ vanishes}$

Digression: Why are the components isogenies?

Elliptic Rigidity Theorem, spectral version (GN)

Zariski-locally on the base, every morphism of strict elliptic curves is either 0 or an isogeny.

Proof sketch.

Main idea: 0 map deforms uniquely through square-zero extensions \Rightarrow through Postnikov tower.

$$f$$
 factors through $R\Rightarrow R$ is retract of A
$$\Rightarrow B\otimes_A L_{A/R} \text{ vanishes}$$

$$\Rightarrow \operatorname{Def}_{R}^{\widetilde{R}}(f) = 0.$$

Connected-Étale Factorization

Corollary

We have a pullback of functors

$$\begin{array}{ccc} \operatorname{Isog} & \longrightarrow & \operatorname{Isog}^{\operatorname{\acute{e}t}} \\ \downarrow & & \downarrow^s \\ \operatorname{Isog}^{\operatorname{conn}} & \xrightarrow{t} & \mathcal{M}_{\operatorname{ell}}^{\operatorname{or}}. \end{array}$$

Connected-Étale Factorization

Corollary

We have a pullback of functors

$$\begin{array}{ccc} \operatorname{Isog} & \longrightarrow & \operatorname{Isog^{\text{\'et}}} \\ \downarrow & & \downarrow^s \\ \operatorname{Isog^{\text{conn}}} & \xrightarrow{t} & \mathcal{M}_{\text{ell}}^{\text{or}}. \end{array}$$

Just need to show that $Isog^{\acute{e}t}, Isog^{conn}$ are formal DM-stacks.

$\overline{\mathsf{Identifying}}\ \overline{\mathsf{Isog}}^{\mathrm{\acute{e}t}}$

Theorem (GN)

 $\rm Isog^{\acute{e}t}$ is a DM-stack.

Identifying Isogét

Theorem (GN)

 $\mathrm{Isog}^{\mathrm{\acute{e}t}}$ is a DM-stack.

Identifying ${ m Isog}^{ m \acute{e}t}$

Theorem (GN)

Isogét is a DM-stack.

Proof sketch.

 $\textbf{0} \ \ [\mathsf{KM85}] \colon \{(E,K) \mid E \ \mathsf{elliptic} \ \mathsf{curve}, K \subset E \ \mathsf{finite}\} \to (\mathcal{M}_{\mathrm{ell}}^{\mathrm{or}})^{\heartsuit} \\ \mathsf{relative} \ \mathsf{scheme}.$

Identifying Isogét

Theorem (GN)

Isogét is a DM-stack.

- $\bullet \text{ [KM85]: } \{(E,K) \mid E \text{ elliptic curve}, K \subset E \text{ finite}\} \rightarrow (\mathcal{M}_{\mathrm{ell}}^{\mathrm{or}})^{\heartsuit}$ relative scheme.
- $\textbf{ 2} \ \{(E,K) \mid E \ \text{elliptic curve}, K \subset E \ \text{finite \'etale} \} \ \text{open substack}.$

Identifying Isogét

Theorem (GN)

Isogét is a DM-stack.

- **①** [KM85]: $\{(E,K) \mid E \text{ elliptic curve}, K \subset E \text{ finite}\} \rightarrow (\mathcal{M}_{ell}^{or})^{\heartsuit}$ relative scheme.
- $\ \ \, \textbf{ ($E,K$)} \mid E \text{ elliptic curve}, K \subset E \text{ finite \'etale} \textbf{) open substack}.$
- Leverage étaleness and use ([Lur18c], Theorem 18.1.0.2) to lift from classical to spectral.

Theorem (GN)

Isog^{conn} is a formal algebraic space.

Theorem (GN)

 $\rm Isog^{conn}$ is a formal algebraic space.

Theorem (GN)

Isog^{conn} is a formal algebraic space.

$${E \xrightarrow{\operatorname{conn}} E'}$$

Identifying $\mathrm{Isog}^{\mathrm{conn}}$

Theorem (GN)

Isog^{conn} is a formal algebraic space.

Proof sketch.

$$\{E \xrightarrow{\operatorname{conn}} E'\}$$

 $\{K \subset E \text{ closed, proper, connected}\}$

Theorem (GN)

Isog^{conn} is a formal algebraic space.

$$\{E \xrightarrow{\mathrm{conn}} E'\}$$

$$\updownarrow$$

$$\{K \subset E \text{ closed, proper, connected} \qquad \}$$

$$\updownarrow$$

$$\{K \subset \widehat{\mathbb{G}}_R^Q \text{ honest subgroup} \qquad \}$$

Identifying Isogconn

Theorem (GN)

Isog^{conn} is a formal algebraic space.

$$\{E \xrightarrow{\mathrm{conn}} E'\}$$

$$\updownarrow$$

$$\{K \subset E \text{ closed, proper, connected AND equiv } \widehat{E/K} \simeq \widehat{\mathbb{G}}_R^Q\}$$

$$\updownarrow$$

$$\{K \subset \widehat{\mathbb{G}}_R^Q \text{ honest subgroup AND equiv } \widehat{\mathbb{G}}_R^Q/K \simeq \widehat{\mathbb{G}}_R^Q\}$$

Theorem (GN)

Isog^{conn} is a formal algebraic space.

$$\{E \xrightarrow{\mathrm{conn}} E'\}$$

$$\updownarrow$$

$$\{K \subset E \text{ closed, proper, connected AND equiv } \widehat{E/K} \simeq \widehat{\mathbb{G}}_R^Q\}$$

$$\updownarrow$$

$$\{K \subset \widehat{\mathbb{G}}_R^Q \text{ honest subgroup AND equiv } \widehat{\mathbb{G}}_R^Q/K \simeq \widehat{\mathbb{G}}_R^Q\}$$

$$\Rightarrow \mathrm{Isog}^{\mathrm{conn}} \simeq \mathcal{M}_{\mathrm{oll}}^{\mathrm{or}} \times \mathrm{QuilIsog}$$

Theorem (GN)

 $\operatorname{Isog^{conn}}$ is a formal algebraic space.

Proof sketch (ctd).

QuilIsog $\downarrow \\ \operatorname{Sub}^h(\widehat{\mathbb{G}}_R^Q)$

Identifying Isogconn

Theorem (GN)

Isog^{conn} is a formal algebraic space.

Proof sketch (ctd).

Identifying Isogconn

Theorem (GN)

Isog^{conn} is a formal algebraic space.

Proof sketch (ctd).

Theorem (GN)

Isog^{conn} is a formal algebraic space.

Proof sketch (ctd).

$$\begin{array}{ccc} \operatorname{OrDat}(\widehat{\mathbb{G}}_R^Q/K) & \longrightarrow & \operatorname{QuilIsog} \\ & & & \downarrow & & \downarrow \\ & * & \stackrel{K}{\longrightarrow} & \operatorname{Sub}^h(\widehat{\mathbb{G}}_R^Q) \end{array}$$

[Lur18b]: $OrDat(\widehat{\mathbb{G}}_R^Q/K)$ is an affine DM-stack.

Theorem (GN)

Isog^{conn} is a formal algebraic space.

Proof sketch (ctd).

[Lur18b]: $\operatorname{OrDat}(\widehat{\mathbb{G}}_R^Q/K)$ is an affine DM-stack.

 \Rightarrow Enough to show that $\mathrm{Sub}^h(\widehat{\mathbb{G}}_R^Q)$ is formal algebraic space.

Theorem (GN)

Isog^{conn} is a formal algebraic space.

Proof sketch (ctd).

We have a retract:

Identifying Isogconn

Theorem (GN)

Isog^{conn} is a formal algebraic space.

Proof sketch (ctd).

We have a retract:

Theorem (GN)

Isog^{conn} is a formal algebraic space.

Proof sketch (ctd).

We have a retract:

[Lur04]: Hilb of separated algebraic space is algebraic space.

Theorem (GN)

Isog^{conn} is a formal algebraic space.

Proof sketch (ctd).

We have a retract:

[Lur04]: Hilb of separated algebraic space is algebraic space.

 $\Rightarrow \operatorname{Hilb}^h(\widehat{\mathbb{G}}_R^Q)$ is formal algebraic space.

Theorem (GN)

Isog^{conn} is a formal algebraic space.

Proof sketch (ctd).

We have a retract:

$$\operatorname{Hilb}^h(\widehat{\mathbb{G}}_R^Q) \qquad \operatorname{Sub}^h(\widehat{\mathbb{G}}_R^Q)$$
 generated subgroup

[Lur04]: Hilb of separated algebraic space is algebraic space.

- $\Rightarrow \operatorname{Hilb}^h(\widehat{\mathbb{G}}_R^Q)$ is formal algebraic space.
- $\Rightarrow \operatorname{Sub}^h(\widehat{\mathbb{G}}_R^{\widehat{Q}})$ is formal algebraic space.

Thank you!

References [KM85] Nicholas M. Katz and Barry Mazur. Arithmetic Moduli of Elliptic Curves. 108. Princeton University Press, 1985. [Lur04] Jacob Lurie. "Derived Algebraic Geometry". PhD thesis. Massachusetts Institute of Technology, 2004, URL: http://oastats.mit.edu/handle/1721.1/30144. [Lur18a] Jacob Lurie. Elliptic Cohomology. 2018. URL: https://www.math.ias.edu/~lurie/papers/Elliptic-I.pdf. Pre-published. [Lur18b] Jacob Lurie. Elliptic Cohomology II: Orientations. Apr. 2018. URL: https://www.math.ias.edu/~lurie/papers/Elliptic-II.pdf. Pre-published. [Lur18c] Jacob Lurie. Spectral Algebraic Geometry. 2018. URL: https://www.math.ias.edu/~lurie/papers/SAG-rootfile.pdf. [MZ25] Xuecai Ma and Yifei Zhu. Spectral Moduli Problems for Level Structures and an Integral Jacquet-Langlands Dual of Morava E-theory. 2025. URL: https://vifeizhu.github.io/sagreal.pdf. Pre-published.

