PMAP 8131 Applied Research Methods Statistical Review

Matteo Zullo

Georgia State University & Georgia Institute of Technology

June 6, 2022

Outline

- Probability
 - Conditional Probability
 - Probability Distributions
- OLS
 - Estimation
- **3** GLM
 - Logit
 - MLE
 - Output Interpretation

Table of Contents

- Probability
 - Conditional Probability
 - Probability Distributions
- OLS
 - Estimation
- **3** GLM
 - Logit
 - MLE
 - Output Interpretation

Probability recap

- Sampling space: Ω
 - Collection of events
- Probability: P(Y = 1)
 - Frequency of event Y in Ω
- Conditional probability: P(Y = 1|X)
 - Frequency of event Y in subset of Ω identified by X

Example: F1 2021 World Championship

GP	Pole	Winner	GP	Pole	Winner
Bahrain	Verstappen	Hamilton	Belgian	Verstappen	Verstappen
Emilia Romagna	Hamilton	Verstappen	Dutch	Verstappen	Verstappen
Portuguese	Bottas	Hamilton	Italian	Verstappen	Ricciardo
Spanish	Hamilton	Hamilton	Russian	Norris	Hamilton
Monaco	Leclerc	Verstappen	Turkish	Bottas	Bottas
Azerbaijan	Leclerc	Pérez	United States	Verstappen	Verstappen
French	Verstappen	Verstappen	Mexico City	Bottas	Verstappen
Styrian	Verstappen	Verstappen	São Paulo	Bottas	Hamilton
Austrian	Verstappen	Verstappen	Qatar	Hamilton	Hamilton
British	Verstappen	Hamilton	Saudi Arabian	Hamilton	Hamilton
Hungarian	Hamilton	Ocon	Abu Dhabi	Verstappen	Verstappen

• Probability of Hamilton winning a race:

Probability of Verstappen winning a race:

Probability of other driver winning a race:

Probability of Hamilton winning a race:

$$P(HAM) = \frac{\text{HAM wins}}{\text{\# races}} = \frac{8}{22} \approx 0.36$$

Probability of Verstappen winning a race:

$$P(VER) = \frac{VER \text{ wins}}{\# \text{ races}} = \frac{10}{22} \approx 0.45$$

Probability of other driver winning a race:

$$P(\neg VER \lor HAM) = \frac{\text{other driver wins}}{\# \text{ races}} = \frac{4}{22} \approx 0.18$$

• Probability of Verstappen winning from pole:

• Probability of Verstappen winning from pole:

GP	Pole	Winner	GP	Pole	Winner
Bahrain	Verstappen	Hamilton	Belgian	Verstappen	Verstappen
Emilia Romagna	Hamilton	Verstappen	Dutch	Verstappen	Verstappen
Portuguese	Bottas	Hamilton	Italian	Verstappen	Ricciardo
Spanish	Hamilton	Hamilton	Russian	Norris	Hamilton
Monaco	Leclerc	Verstappen	Turkish	Bottas	Bottas
Azerbaijan	Leclerc	Pérez	United States	Verstappen	Verstappen
French	Verstappen	Verstappen	Mexico City	Bottas	Verstappen
Styrian	Verstappen	Verstappen	São Paulo	Bottas	Hamilton
Austrian	Verstappen	Verstappen	Qatar	Hamilton	Hamilton
British	Verstappen	Hamilton	Saudi Arabian	Hamilton	Hamilton
Hungarian	Hamilton	Ocon	Abu Dhabi	Verstappen	Verstappen

Bayes Rule

• Conditional probabilities P(Y|X) and P(X|Y):

$$P(Y|X) = \frac{P(X \cap Y)}{P(X)} \tag{1}$$

$$P(X|Y) = \frac{P(X \cap Y)}{P(Y)} \tag{2}$$

Bayes Rule

• From (1) and (2) follows:

$$P(X|Y) = \frac{P(Y|X)P(X)}{P(Y)}$$
$$= \frac{P(Y|X)P(X)}{P(Y|X)P(X) + P(Y|\neg X)P(\neg X)}$$

• For *K* partitions of the sampling space:

$$P(X|Y) = \frac{P(Y|X)P(X)}{\sum_{x_k=1}^{K} P(Y|X = x_k)P(X = x_k)}$$

Probability of Verstappen starting on pole if winning:

$$P(\textit{pole}|\textit{VER}) = \frac{P(\textit{VER}|\textit{pole})P(\textit{pole})}{P(\textit{VER}|\textit{pole})P(\textit{pole}) + P(\textit{VER}|\neg\textit{pole})P(\neg\textit{pole})}$$

Probability of Verstappen starting on pole if winning:

$$P(pole|VER) = \frac{P(VER|pole)P(pole)}{P(VER|pole)P(pole) + P(VER|\neg pole)P(\neg pole)}$$

$$= \frac{P(VER|pole)P(pole) + P(VER|\neg pole)P(\neg pole)}{P(VER|pole)P(pole) + P(VER|\neg pole)P(\neg pole)}$$

$$= \frac{\frac{7}{10} \times \frac{10}{22}}{\left(\frac{7}{10} \times \frac{10}{22}\right) + \left(\frac{3}{12} \times \frac{12}{22}\right)}$$

$$= \frac{7}{10}$$

Probability distributions

- Gaussian
- Standard Gaussian
- Lognormal
- Exponential
- Chi-square
- Bernoulli
- Binomial
- Geometric
- Poisson
- etc.

Probability Distributions: Functions

Probability Distribution Function (PDF)

$$PDF_Y = f_Y(y) = P(Y = y)$$

Cumulative Distribution Function (CDF)

$$CDF_Y = F_Y(y) = P(Y \le y) = \int_Y f_Y(y) dy$$

Distributions

Probability Distributions: Moments

Mean

$$\mu_Y = E[Y] = \int_Y \underbrace{y}_{\text{value of function PDF evaluated at value}} dy$$

Variance

$$\sigma_Y^2 = E[(Y - \mu_Y)^2] = \int_Y \underbrace{(Y - \mu_Y)^2}_{\text{delta from mean PDF evaluated at value}} dy$$

Distributions

• Example: $PDF_{Income} \sim \mathcal{N}(\mu = \$50,000, \sigma = \$20,000)$

Figure: Probability distribution function of income

Distributions

• Example: $PDF_{Income} \sim \mathcal{N}(\mu = \$50,000, \sigma = \$20,000)$

Figure: Cumulative distribution function of income

Policy example

 A policy analyst run the numbers on two high school coursework policies. What would the preferred policy be?

Policy	Scenario	Probability	Earnings (\$)
A	Worst-case	0.1	40,000
	Most-common	0.7	50,000
	Best-case	0.2	100,00
В	Worst-case	0.2	30,000
	Most-common	0.5	60,000
	Best-case	0.3	80,000

Table: Expected student outcomes for coursework policies I and II

Calculate expected outcomes:

$$\mu_A = E[A] = $59,000$$

 $\mu_B = E[B] = $60,000$

Calculate variances:

$$\sigma_A^2 = E[(A - \mu_A)^2] = $429,000$$

 $\sigma_B^2 = E[(B - \mu_B)^2] = $300,000$

 Conclusion: Choose policy B because its has higher expected payoff and lower variance than policy A

 PDF question: What is the probability of a graduate from Policy B making \$60,000?

$$P(B = \$60,000) = F_B(\$60,000) = 0.5$$

 CDF question: What is the probability of a graduate from Policy B making \$60,000 or less?

$$P(B \le \$60,000) = F_B(\$60,000) = 0.5 + 0.2 = 0.7$$

Table of Contents

- Probability
 - Conditional Probability
 - Probability Distributions
- OLS
 - Estimation
- **3** GLM
 - Logit
 - MLE
 - Output Interpretation

Linear regression problem

1 Express Y as a weighted combination of covariates X:

$$Y = \beta X + \epsilon$$

2 Minimize sum of squared errors SSE:

$$\min_{\beta} SSE = \epsilon^2 = (Y - \hat{Y})^2 = \sum (Y - \beta X)^2$$

- Obtain closed-form expression for parameters:
 - Bivariate regression

$$\beta_X = \frac{(Y - \overline{Y})(X - \overline{X})}{\sum (X - \overline{X})^2} = \frac{S_{XY}}{S_{XX}}$$

Multivariate regression

$$\beta_{X|Z} = \frac{S_{ZZ}S_{XY} - S_{XZ}S_{ZY}}{S_{XX}S_{ZZ} - S_{XZ}}$$

• where
$$S_{ZZ} = (Z - \overline{Z})^2$$
, $S_{XZ} = (X - \overline{X})(Z - \overline{Z})$, and $S_{ZY} = (Z - \overline{Z})(Y - \overline{Y})$

• When $\rho(X, Z) = 0$, then $S_{XZ} = 0$:

$$\beta_{X|Z} = \frac{S_{XY}S_{ZZ} - 0 \cdot S_{ZY}}{S_{XX}S_{ZZ} - 0} = \frac{S_{XY}}{S_{XX}}$$

- Multivariate coefficient reduces to bivariate coefficient!
- In general, multivariate coefficients capture:
 - Partial correlation (i.e., variation left between X and Y after removing variation shared with other predictors)

- Standardized regression coefficients
 - Bivariate regression

$$\beta_X = \beta_X \left(\frac{\sigma_X}{\sigma_Y} \right) = \rho(X, Y)$$

Multivariate regression

$$\beta_{X|Z} = \beta_{X|Z} \left(\frac{\sigma_X}{\sigma_Y} \right) \neq \rho(X, Y)$$

Error terms

$$\hat{\sigma}^2 = MSE = \frac{SSE}{n-p} \sim \chi_{n-p}$$

- where p is the # of parameters (must include intercept!)
- Standard errors of estimate
 - Bivariate regression: $\hat{\sigma}_{\beta_X}^2 = \frac{\hat{\sigma}^2}{S_{XX}}$
 - Multivariate regression: $\hat{\sigma}_{\beta_{X|Z}}^2 = \frac{\hat{\sigma}^2}{S_{XX}(1-\hat{\rho}_{XZ}^2)}$

Sum of squares

Model	Total	Regression	Error
df	df _T	df _R	df _E
	n	р	n-p
Total	SST	SSR	SSE
	$\sum (Y - \overline{Y})$	$\sum (\hat{Y} - \overline{Y})$	$\sum (\hat{Y} - Y)$
Mean	MST	MSR	MSE
	SST/df_T	SSR/df_R	SSE/df _E

Sum of squares

$$SST = SSR + SSE$$

Overall Significance: F-statistic (F)

$$F = \frac{MSR}{MSE} \sim F_{df_R, df_E = n-p}$$

• Parameter significance: t-statistic (t) and p-value (p)

$$t=rac{\hat{eta}-0}{\hat{\sigma}_{eta}}=rac{\hat{eta}}{\hat{\sigma}_{\hat{eta}}}$$

$$p = 2 \cdot PDF_{t_{df_F}}(t)$$

Assumptions

- Linearity
- Independence
- Homoskedasticity
- Normality

Assumptions

- Linearity
 - The outcome is linearly related to the predictors
- Independence
 - Observations are i.i.d.
- Homoskedasticity
 - Error terms are homoskedastic
- Normality
 - Errors terms are normally distributed

Table of Contents

- Probability
 - Conditional Probability
 - Probability Distributions
- OLS
 - Estimation
- **3** GLM
 - Logit
 - MLE
 - Output Interpretation

• Nonlinear link function $h(\cdot)$:

$$Y = h(\beta X + \epsilon)$$

Model	Link function	Coefficient	Application
Normal	μ	Units change	Measures
Logit	$\log\left(\frac{\mu}{1-\mu}\right)$	Log-Odds change	Responses
Probit	$\phi^{-1}(\mu)$	Z-score change	Responses
Poisson	$\log(\mu)$	Incidence Rate Ratio	Counts
Negative Binomial	$\log\left(\frac{\mu}{k(1-m/k)}\right)$	Incidence Rate Ratio	Counts

Logistic regression

Canonical form

$$y_i = \frac{1}{1 + e^{-\beta X}} = \frac{e^{\beta X}}{1 + e^{\beta X}}$$

Linear form

$$\ln\left(\frac{p}{1-p}\right) = \beta X$$

Log-odds to probabilities

- STATA's margins
 - Average Partial Effect (APE)
 - Average derivative across the logistic curve
 - Marginal Effect at the Mean (MEM)
 - Derivative at the mean of the logistic curve

Maximum Likelihood Estimation (MLE)

Likelihood function

$$\mathcal{L} = \prod_{i=1}^N p_i^{y_i} (1-p_i)^{1-y_i}$$

Maximum Likelihood Estimation (MLE)

Likelihood function

$$\mathcal{L} = \prod_{i=1}^N p_i^{y_i} (1-p_i)^{1-y_i}$$

Substitute probabilities and take natural log:

$$\log(\mathcal{L}) = \log \prod_{i=1}^{N} \left(\frac{1}{1 + e^{-\beta X}} \right)^{y_i} \left(1 - \frac{1}{1 + e^{-\beta X}} \right)^{1 - y_i}$$

$$= \sum_{i=1}^{N} y_i \log \left(\frac{1}{1 + e^{-\beta X}} \right) + (1 - y_i) \log \left(1 - \frac{1}{1 + e^{-\beta X}} \right)$$

• Maximize log-Likelihood with respect to coefficients:

$$\frac{\partial \log(\mathcal{L})}{\partial \beta} = 0$$

Closed-form solution unavailable

Likelihood-Ratio test: Base vs new model

$$G = -2\log\left(\frac{\mathcal{L}(\beta_{\textit{new}})}{\mathcal{L}(\beta_{\textit{base}})}\right) = -2\bigg(\log\mathcal{L}(\beta_{\textit{new}}) - \log\mathcal{L}(\beta_{\textit{base}})\bigg)$$

• Overall significance: Full vs intercept-only model (G)

$$G = -2\log\left(\frac{\mathcal{L}(\beta_{\textit{full}})}{\mathcal{L}(\beta_{\textit{null}})}\right) = -2\bigg(\log\mathcal{L}(\beta_{\textit{full}}) - \log\mathcal{L}(\beta_{\textit{null}})\bigg)$$

• Predictor significance: z-statistic (z) and p-value (p)

$$z = \frac{\hat{eta}_k}{\hat{\sigma}_{eta_k}} \sim \mathcal{N}(0, 1)$$

 $p = 1 - 2\phi(z)$

Regression equation

$$y_i = \beta_1 x_i + \beta_2 x_i^2 + \beta_3 z_i + \beta_4 (x_i \times z_i) + \epsilon_i$$

• where x_i continuous, z_i binary (1 = group A, 0 = B)

Regression equation

$$y_i = \beta_1 x_i + \beta_2 x_i^2 + \beta_3 z_i + \beta_4 (x_i \times z_i) + \epsilon_i$$

- where x_i continuous, z_i binary (1 = group A, 0 = B)
- Effects
 - β_1, β_3 : Main effects
 - β₂: Quadratic effect
 - β₄: Interaction effect

Quadratic effect

$$\frac{\partial \hat{y}_i}{\partial x_i} = \beta_1 + 2x_i\beta_2$$

- Interpretation: Marginal rate
 - $\beta_2 > 0$: Increasing rate
 - $\beta_2 < 0$: Decreasing rate
 - $-\frac{1}{2}\frac{\beta_1}{\beta_2}$: Max/Min

- Interaction effect
 - Group A: $\frac{\partial \hat{y}_i}{\partial x_i} = \beta_2$
 - Group B: $\frac{\partial \hat{y}_i}{\partial x_i} = \beta_2 + \beta_4$
- Interpretation: Differential rate
 - $\beta_4 > 0$: Group A has higher rate than group B
 - $\beta_4 < 0$: Group A has lower rate than group B

• OLS: Athletics and SAT (Bremmer & Kesselring, 1993)

VARIABLES	COEFFICIENTS	t-scores		
Constant	966.734 ^a	11.588		
Sports	11.003	0.659		
Tuition	0.010^{a}	2.705		
Volumes	-0.001	-0.215		
Salary	0.353 ^a	3.096		
Age	-0.007	-0.047		
Students/faculty	1.782	1.095		
Enrollment	-0.001	-0.275		
Endowment/Students	5.036 ^c	1.862		
Ph.D.'s/Students	-0.191	-0.453		
State SAT	0.016	0.340		
Accept Percent	-310.133 ^a	-7.530		
Football	0.802	0.280		
Basketball	0.030	0.013		
F	41.44	13		
R^2	0.83	37		
Adjusted R ²	0.817			
Chow test F	6.305			
n	119			

Figure: Predictors of freshman cohort average SAT

• OLS: Returns to education (Heckman et al., 2006)

		Whites		Blacks	
		Coefficient	Std. Error	Coefficient	Std. Error
1940	Intercept	4.4771	0.0096	4.6711	0.0298
	Education	0.1250	0.0007	0.0871	0.0022
	Experience	0.0904	0.0005	0.0646	0.0018
	Experience-squared	-0.0013	0.0000	-0.0009	0.0000
1950	Intercept	5.3120	0.0132	5.0716	0.0409
	Education	0.1058	0.0009	0.0998	0.0030
	Experience	0.1074	0.0006	0.0933	0.0023
	Experience-squared	-0.0017	0.0000	-0.0014	0.0000
1960	Intercept	5.6478	0.0066	5.4107	0.0220
	Education	0.1152	0.0005	0.1034	0.0016
	Experience	0.1156	0.0003	0.1035	0.0011
	Experience-squared	-0.0018	0.0000	-0.0016	0.0000
1970	Intercept	5.9113	0.0045	5.8938	0.0155
	Education	0.1179	0.0003	0.1100	0.0012
	Experience	0.1323	0.0002	0.1074	0.0007
	Experience-squared	-0.0022	0.0000	-0.0016	0.0000
1980	Intercept	6.8913	0.0030	6.4448	0.0120
	Education	0.1023	0.0002	0.1176	0.0009
	Experience	0.1255	0.0001	0.1075	0.0005
	Experience-squared	-0.0022	0.0000	-0.0016	0.0000
1990	Intercept	6.8912	0.0034	6.3474	0.0144
	Education	0.1292	0.0002	0.1524	0.0011
	Experience	0.1301	0.0001	0.1109	0.0006
	Experience-squared	-0.0023	0.0000	-0.0017	0.0000

Figure: Predictors of earnings (log)

• OLS: Democracy and GDP (Saha et al., 2009)

	(1)	(2)	(3)
DEMO	0.463*** (0.061)	0.435*** (0.055)	0.104* (0.061)
EF	-0.721*** (0.036)	-0.465***(0.039)	-0.471*** (0.040)
DEMO*EF	-0.098***(0.009)	-0.085*** (0.008)	-0.019** (0.011)
Log(RGDP)		-0.884***(0.079)	-0.825*** (0.089)
Gini index		0.028*** (0.005)	0.045*** (0.006)
Unemployment		0.017*** (0.005)	0.019*** (0.004)
Literacy rate		0.029*** (0.003)	-0.004(0.004)
Latin America			1.005*** (0.378)
Middle East			0.39 (0.372)
East Asia			1.924*** (0.419)
South East Asia			1.067*** (0.385)
South Asia			1.113*** (0.399)
Eastern Europe			2.076*** (0.394)
Central Asia			1.426*** (0.422)
Africa			-0.213(0.372)
Western Europe			0.844** (0.421)
Northern Europe			-0.419(0.443)
North America			-0.032(0.483)
Australasia			-0.56 (0.496)
Constant	9.563*** (0.145)	11.91*** (0.659)	12.523*** (0.866)
Number of observations	981	978	978
Adj R-squared	0.72	0.78	0.84

Figure: Predictors of GDP growth rate

• Logit: Gambling Laws (Richard, 2010)

	β	SE	$Exp(\beta)$	Significance
Constant	-20.162**	8.030	0.000	0.012
INCOME	0.201*	0.111	1.223	0.071
FISCAL	-0.004	2.725	0.996	0.883
UNEMPL	0.683***	0.246	1.981	0.005
TOURISM	0.185*	0.095	1.203	0.051
RELIGION	-0.115***	0.042	0.891	0.006
Nagelkerke R	2	0.398		
-2 Log likelihood		37.345		Significance
χ^{2} (6)		20.767***		0.002

Figure: Predictors of casino legalizations in the world

• Negative binomial: Juvenile crime rates (Osgood, 2000)

Figure: Probability distribution of juvenile arrests in non-metropolitan areas

• Negative binomial: Juvenile crime rates (Osgood, 2000)

	Statistical method					
Explanatory variable	OLS, rate/100,000	OLS, log(rate + 1)	OLS, log(rate + 0.2)	Basic Poisson	Negative binomial	
Log population at risk						
b	11.220	0.749	1.102	1.501^{a}	1.718^{a}	
SE	3.838	0.128	0.177	0.061	0.188	
t	2.923	5.852	6.226	8.213	3.819	
P	0.004	0.000	0.000	0.000	0.000	
Residential instability						
b	35.573	3.017	4.366	1.567	0.162	
SE	48.790	1.628	2.255	0.567	2.026	
t	0.729	1.853	1.936	2.764	0.080	
P	0.467	0.065	0.054	0.005	0.936	
Ethnic heterogeneity						
b	63.839	2.461	3.325	2.069	2.861	
SE	32.711	1.091	1.512	0.419	1.156	
t	1.952	2.256	2.199	4.938	2.475	
P	0.052	0.025	0.029	0.000	0.013	
Female-headed household	is					
b	22.765	0.533	0.192	3.919	3.739	
SE	71.679	2.391	3.313	1.030	2.937	
t	0.318	0.223	0.058	3.805	1.273	
P	0.751	0.824	0.954	0.000	0.203	
Poverty rate						
b	39.474	1.405	2.181	0.499	0.021	
SE	81.162	2.708	3.752	1.009	3.381	
t	0.486	0.519	0.581	0.495	0.006	
P	0.627	0.604	0.561	0.621	0.995	

Figure: Predictors of juvenile arrests in non-metropolitan areas