Towards Trusted Temporal Databases Using Blockchain

By Amin Beirami MSc student, UOIT

Supervisors: Dr. Ken Pu and Dr. Ying Zhu

Trusting data

(Big) Data supports important decision making.

It is increasingly important to manage *trust* in database and data analytics

Motivation

Data is stored as facts in relational databases.

The question is are they trustworthy?

Name	Date	Amount	
John Williams	1915-07-23	442,340	
Burger Ville	2009-09-15	11.28	
Burger Ville	2009-09-15	6.33	

(John Williams, 1915-07-23, \$442,340)

(BurgerVille, 2009-09-15, \$11.28) (BurgerVille, 2009-09-15, \$6.33)

Existing methods in establishing (un)trusted data in practice.

Reimbursement for travel expenses.

Hand written receipt with pencil on paper.

Scheme A

Database technology

- 1. Easy to create
- 2. Easy to alter (Mutable)
- 3. Easy to duplicate with forgery
- 4. Not verifiable

SQLite database file

Printed receipt on business ledger

BEST DEAL	STORES
COOKIES MILK 65 Fl oz	5.00 3.78
SUBTOTAL TAX 5% TOTAL CASH TEND CASH DUE	8.78 0.44 9.22 10.00 0.78
# ITEMS SOLD 2 11/03/13 19:53:17	

Scheme B

Database technology

- 1. Less easy to create
- 2. Hard to alter (almost immutable)
- 3. Easy to duplicate with forgery
- 4. Not verifiable

SQL server with login credentials

Printed receipt on business ledger with

1. Signature and Serial number.

Scheme C

Database technology

- 1. Harder to create
- 2. Immutable
- 3. Hard to duplicate with forgery
- 4. Verifiable (but difficult) using replicated storage

Distributed SQL server (in the cloud)

Only business executives can submit expense claims for reimbursement.

NORECEIPT

Scheme D

Database technology -

(implicit trust in data)

- 1. Creation doesn't matter
- 2. Mutability doesn't matter
- 3. Difficulty in forgery N/A
- 4. Verifiability N/A

SQL Server with authentication and access control

Our research interest is

Scalable and Open Trusted Databases

Our research interest is

Scalable and Open

& Trusted Databases

Computational complexity in creating the perfect В forgery Trust (intuitive) В Verification of a forgery candidate

Trust (intuitive)

Our research

Research

A *trusted* transaction logfile to support:

- 1. Provide auditable data provenance.
- 2. Temporal relational snapshots at user defined timestamps.

Part 1 Providing trusted data provenance

Logfile to support data provenance

We need all the historic transactions on the table.

Logfile = temporal relations

Logfile to support data provenance

Definition: temporal relations

Given a relation r, with attributes attr(r), its temporal relation, written, r^T , is relation with schema:

$$attr(r^T) = attr(r) \cup \{timestamp, deleted\}$$

Temporal tables

id	Part Name	Manufacturer	Price
010	Console	Nintendo	399
012	Keyboard	Microsoft	89

Relational Table

id	Part Name	Manufacturer	Price	timestamp	deleted
010	Console	Nintendo	200	21-05-2018	False
011	Monitor	Asus	499	23-05-2018	False
012	Keyboard	Microsoft	119	23-05-2018	False
010	Console	Nintendo	300	24-05-2018	False
011	_	-	_	25-05-2018	True
012	Keyboard	Microsoft	89	25-05-2018	False
010	Console	Nintendo	450	27-05-2018	False
010	Console	Nintendo	399	31-05-2018	False
	·			·	

Temporal Table

Untrusted provenance

Rec_id	Part Name	Manufacturer	Price	timestamp	deleted		
010	Console	Nintendo	200	21-05-2018	False		
011	Monitor	Asus	499	23-05-2018	False		
012	Keyboard	Microsoft	119	23-05-2018	False		
010	Console	Nintendo	300	24-05-2018	False		
011	-	-	-	25-05-2018	True		
012	Keyboard	Microsoft	89	25-05-2018	False		
010	Console	Nintendo	450	27-05-2018	False		
010	0 Console Nintendo		399	31-05-2018	False		
				·			
•		•		·	·		

Who committed the transactions?

How can we trust the transactions?

price(Nintendo) = \$399

Untrusted provenance

Console				
	Nintendo	200	21-05-2018	False
Monitor	Asus	499	23-05-2018	False
Keyboard	Microsoft	119	23-05-2018	False
Console	Nintendo	300	24-05-2018	False
-	-	-	25-05-2018	True
Keyboard	Microsoft	89	25-05-2018	False
Console	Nintendo	450	27-05-2018	False
Console	Nintendo	470	31-05-2018	False
·	·			
_	Keyboard Console - Keyboard Console	Keyboard Microsoft Console Nintendo Keyboard Microsoft Console Nintendo	KeyboardMicrosoft119ConsoleNintendo300KeyboardMicrosoft89ConsoleNintendo450	Keyboard Microsoft 119 23-05-2018 Console Nintendo 300 24-05-2018 - - - 25-05-2018 Keyboard Microsoft 89 25-05-2018 Console Nintendo 450 27-05-2018

The temporal relation supports data manipulation expressions.

Adversarial attack by super-user.

We need the data to be immutable and verifiable.

$$price(Nintendo) = $399$$

Temporal database with security information

Given a temporal relation r^T , the trusted version of the relation written, r^{T*} , is relation with schema:

 $attr(r^{T*}) = attr(r^{T}) \cup \{username, signature\}$

Digital Signature

Mathematical scheme for presenting the authenticity of a digital information

Adds verification to the records

It is unique for user and data

Hash functions

Assume m to be a message of an arbitrary size

 $hash(m) \rightarrow sketch$

The function maps *m* from a larger domain to a fixed-size string in a smaller domain

Asymmetric encryption

To encode information such that only authorized parties could read.

Given $\langle K_{private}, K_{public} \rangle \in R^+$ $K_{private}$ is known to the owner, K_{public} is shared with public

```
cipher = encrypt(m, K_{public})
m = decrypt(cipher, K_{private})
```

```
Function generateKeys(keySize):

| randomVal ← Random.new()
| publicKey, privateKey = RSA.generate(keySize, randomVal)
| return publicKey, privateKey
```

```
Function encrypt (m,publicKey):
    publicKeyObj = RSA.importKey(publicKey)
    randomParam ← random.choice()
    return publicKey.encrypt(m,randomparam)
```

```
Function decrypt(enc_message,privateKey):
    privateKeyObj = RSA.importKey(privateKey)
    return privateKey.decrypt(enc_message)
```

Digital signature

```
sig = encrypt(hash(m), K_{private})
```

```
isValid = verify(m, sig, K_{public})
```

Function digitalSignature(*m,privateKey*):

```
hashVal = hash(m)
randomVal = random.choice()
privateKeyObj = RSA.importKey(privateKey)
return privateKey.encrypt(hashVal,randomVal)
```

Function verifySign(*m,signature,publicKey*):

```
publicKeyObj = RSA.importKey(publicKey)
hashVal = hash(m)
signHash = publicKey.decrypt(signature)
if hashVal == signHash then
    return valid
return invalid
```

Signing transactions

Rec_id **Part Name** Manufacturer Price timestamp deleted 010 Console 21-05-2018 False Nintendo 200 011 Monitor Asus 499 23-05-2018 False 012 Keyboard Microsoft False 119 23-05-2018 010 Console Nintendo 300 24-05-2018 False 011 25-05-2018 True 012 Keyboard Microsoft 89 25-05-2018 False 010 Console Nintendo 450 27-05-2018 False 010 Console Nintendo 399 31-05-2018 False

Each user is given a unique ID, and RSA signing key-pairs.

Verifiable without revealing users' secrets

Temporal relations with digital signature

Rec_id	Part Name	Manufacturer	Price	timestamp	deleted	user	sign
010	Console	Nintendo	200	21-05-2018	False	clerk1	6AE2BTN
011	Monitor	Asus	499	23-05-2018	False	manager	NT89RE7
012	Keyboard	Microsoft	119	23-05-2018	False	manager	04P5KM9
010	Console	Nintendo	300	24-05-2018	False	clerk1	YUI9T35
011	_	-	-	25-05-2018	True	manager	09RTF15
010	Console	Nintendo	450	27-05-2018	False	manager	J3I0GLS
012	Keyboard	Microsoft	89	31-05-2018	False	clerk2	78PP00L

We know who committed the transactions

Authenticity of the records are verifiable

price(Nintendo) = \$450

Temporal relations with digital signature

Rec_id	Part Name	Manufacturer	Price	timestamp	deleted	user	sign
010	Console	Nintendo	200	21-05-2018	False	clerk1	6AE2BTN
011	Monitor	Asus	499	23-05-2018	False	manager	NT89RE7
012	Keyboard	Microsoft	119	23-05-2018	False	manager	04P5KM9
010	Console	Nintendo	300	24-05-2018	False	clerk1	YUI9T35
011	-	-	-	25-05-2018	True	manager	09RTF15
010	Console	Nintendo	450	27-05-2018	False	manager	J3I0GLS
010	Console	Nintendo	399	29-05-2018	False	clerk2	SDN0PLT
012	Keyboard	Microsoft	89	31-05-2018	False	clerk2	78PP00L
•		·		·			

Adversarial attack is more difficult now, but still possible with committing malicious transactions.

→ Clerk2 is a superuser

price(Nintendo) = \$399

Blockchain

Set of blocks chained together by digital signatures.

Each block contains its previous block's digital signature

Temporal database with security information

Given a temporal relation with security information r^{T*} , the relation with chained records, written as, r^{T+} has the schema:

$$attr(r^{T+}) = attr(r^{T*}) \cup \{previous_signature\}$$

	_sgn	sign	user	deleted	timestamp	Price	Manufacturer	Part Name	Rec_id
	0	6AE2BTN	clerk1	False	21-05-2018	200	Nintendo	Console	010
	2BTN	NT89RE7	manager	False	23-05-2018	499	Asus	Monitor	011
\ 0	9RE7	04P5KM9	manager	False	23-05-2018	119	Microsoft	Keyboard	012
	°5KM9	YUI9T35	clerk1	False	24-05-2018	300	Nintendo	Console	010
\	.9T35	09RTF15	manager	True	25-05-2018	-	-	-	011
	TF15	J3IOGLS	manager	False	25-05-2018	89	Microsoft	Keyboard	012
	OGLS .	78PP00L	clerk2	False	27-05-2018	450	Nintendo	Console	010
	PP00L	ZNTP67W	manager	False	31-05-2018	399	Nintendo	Console	010
					•	•	•		

Rec_id	Part Name	Manufacturer	Price	timestamp	deleted	user	sign	pre_sgn
010	Console	Nintendo	200	21-05-2018	False	clerk1	6AE2BTN	0
011	Monitor	Asus	499	23-05-2018	False	manager	NT89RE7	6AE2BTN
012	Keyboard	Microsoft	119	23-05-2018	False	manager	04P5KM9	NT89RE7
010	Console	Nintendo	300	24-05-2018	False	clerk1	YUI9T35	04P5KM9
011	-	-	-	25-05-2018	True	manager	09RTF15	YUI9T35
012	Keyboard	Microsoft	89	25-05-2018	False	manager	J3I0GLS	09RTF15
010	Console	Nintendo	450	27-05-2018	False	clerk2	78PP00L	J3I0GLS
010	Console	Nintendo	399	31-05-2018	False	manager	ZNTP67W	78PP00L

Adversarial attack by clerk2.

Rec_id	Part Name	Manufacturer	Price	timestamp	deleted	user	sign	pre_sgn
010	Console	Nintendo	200	21-05-2018	False	clerk1	6AE2BTN	0
011	Monitor	Asus	499	23-05-2018	False	manager	NT89RE7	6AE2BTN
012	Keyboard	Microsoft	119	23-05-2018	False	manager	04P5KM9	NT89RE7
010	Console	Nintendo	100	24-05-2018	False	Clerk 2	OPNJNP3	04P5KM9
011	_	-	-	25-05-2018	True	manager	09RTF15	YUI9T35
012	Keyboard	Microsoft	89	25-05-2018	False	manager	J3I0GLS	09RTF15
010	Console	Nintendo	450	27-05-2018	False	clerk2	78PP00L	J3I0GLS
010	Console	Nintendo	399	31-05-2018	False	manager	ZNTP67W	78PP00L
•		•	•	•	•			

Adversarial attack by clerk2.

Rec_id	Part Name	Manufacturer	Price	timestamp	deleted	user	sign	pre_sgn
010	Console	Nintendo	200	21-05-2018	False	clerk1	6AE2BTN	0
011	Monitor	Asus	499	23-05-2018	False	manager	NT89RE7	6AE2BTN
012	Keyboard	Microsoft	119	23-05-2018	False	manager	04P5KM9	NT89RE7
010	Console	Nintendo	100	24-05-2018	False	Clerk 2	OPNJNP3	04P5KM9
011	-	-	-	25-05-2018	True	Clerk 2	NYT0903	OPNJNP3
012	Keyboard	Microsoft	89	25-05-2018	False	Clerk 2	YUI89PY	NYTO903
010	Console	Nintendo	450	27-05-2018	False	Clerk 2	09SSTER	YUI89PY
010	Console	Nintendo	399	31-05-2018	False	Clerk 2	IOP7TU8	09SSTER
•	·		·	•	•			

Adversarial attack by clerk2.

Adding records to the Blockchain

Adding blocks could be done with O(1)

Verifying Blockchain

```
Function blockchainVerification(last id):
   for i \leftarrow 1 to last\_id do
      publicKey ← SELECT publicKey FROM USERS WHERE user = username;
       validity = verifySign(rec<sub>i</sub>,signature,publicKey)
      if validity != valid then
          return Broken chain
          Break
      if rec_i[prev\_sgn] != rec_{i-1}[signature] then
          return Broken chain
          Break
   end
   return Valid Chain
```

Part 2 Query Evaluation Over Trusted Temporal Relation

Rec_id	Part Name	Manufacturer	Price	timestamp	deleted	user	sign	pre_sgn
010	Console	Nintendo	200	21-05-2018	False	clerk1	6AE2BTN	0
011	Monitor	Asus	499	23-05-2018	False	manager	NT89RE7	6AE2BTN
012	Keyboard	Microsoft	119	23-05-2018	False	manager	04P5KM9	NT89RE7
010	Console	Nintendo	300	24-05-2018	False	clerk1	YUI9T35	04P5KM9
011	-	-	-	25-05-2018	True	manager	09RTF15	YUI9T35
012	Keyboard	Microsoft	89	25-05-2018	False	manager	J3I0GLS	09RTF15
010	Console	Nintendo	450	27-05-2018	False	clerk2	78PP00L	J3I0GLS
010	Console	Nintendo	399	31-05-2018	False	manager	ZNTP67W	78PP00L
		·						
•	·	•	·	•	·			

What did the relation/record look like in 25-05-2018?

Are the records/ snapshots until then trustworthy?

We can generate snapshots using relational database windowing functions

```
\begin{array}{l} \operatorname{snapshot}(r,t) = \\ \operatorname{With}\ T \ \operatorname{As}\ (\\ \operatorname{SELECT}\ \operatorname{id},\ \{\operatorname{last\_value}(x)\ \operatorname{as}\ x : x \in \operatorname{attr}(r)\}\ \operatorname{OVER}\ W \\ \operatorname{FROM}\ r^T \\ \operatorname{WHERE}\ \operatorname{updates} \le t \\ \operatorname{WINDOW}\ W \ \operatorname{As}\ \operatorname{PARTITION}\ \operatorname{BY}\ \operatorname{id}\ \operatorname{ORDER}\ \operatorname{BY}\ \operatorname{updates}\ ) \\ \operatorname{SELECT}\ \operatorname{id},\ \{x : x \in \operatorname{attr}(r)\}\ \operatorname{FROM}\ T \\ \operatorname{WHERE}\ \operatorname{NOT}\ T.\operatorname{deleted} \end{array}
```

Rec_id	Part Name	Manufacturer	Price	timestamp	deleted	user	sign	pre_sgn
010	Console	Nintendo	200	21-05-2018	False	clerk1	6AE2BTN	0
011	Monitor	Asus	499	23-05-2018	False	manager	NT89RE7	6AE2BTN
012	Keyboard	Microsoft	119	23-05-2018	False	manager	04P5KM9	NT89RE7
010	Console	Nintendo	300	24-05-2018	False	clerk1	YUI9T35	04P5KM9
011	-	-	-	25-05-2018	True	manager	09RTF15	YUI9T35
012	Keyboard	Microsoft	89	25-05-2018	False	manager	J3I0GLS	09RTF15
010	Console	Nintendo	450	27-05-2018	False	clerk2	78PP00L	J3I0GLS
010	Console	Nintendo	399	31-05-2018	False	manager	ZNTP67W	78PP00L

Records to be processed.

The snapshot creation and blockchain verification take linear time.

$$\mathcal{O}(|\{x: x \in r^T \text{ and } x.\text{updates} \le t\}|) \simeq \mathcal{O}(t)$$

Recomputing snapshots and blockchain verification is expensive.

Runtime of creating 1-100 snapshots

Lowering the cost of snapshot generation

We propose to *precompute* snapshots for *materialization* to lower the cost of snapshot generation.

Lowering the cost of snapshot generation

We propose to *precompute* snapshots for *materialization* to lower the cost of snapshot generation.

$$\mathcal{O}(|\{x:x\in r^T ext{ and } x. ext{ updates} \in [s,t]\}|) \simeq \mathcal{O}(|s-t|)$$

Overall cost of query using a materialized snapshot

Cost of query using single materialized snapshot is

$$\mathrm{cost}(T_q|s) = \sum_{q \in T_q} |q-s|$$

Lowering the cost of snapshot generation

Our goal is to precompute multiple optimal snapshots for materialization

Single snapshot materialization

Where is the optimal timestamp for snapshot placement?

Single snapshot materialization

Theorem. The median of queries minimizes the sum of absolute deviation

If the snapshot was in the median of the performed queries, it was in the optimal timestamp.

Lowering the cost of snapshot generation

We suggest to store the timestamp of previous queries

It gives us insight into the pattern of queries and hotspots of the timeline

time

Lowering the cost of snapshot generation

How can we create optimal segmentations in which if a snapshot is placed for materialization, the overall cost of query answering is minimum?

Multiple optimal snapshot placement: possible solutions

The segmentations could be computed with:

- 1. Recursive algorithm
- 2. Dynamic programming
- 3. Heuristic method

Which one is better?

Optimal query segmentation: Recursive Algorithm

We try all the last segment of the queries and we choose the one with the lowest cost.

Benefits:

The optimal solution is guaranteed

Drawbacks:

Inefficiency in computation for large number of queries

```
Function computeOPT(Q, m):

\begin{array}{c|c}
n = |Q| \\
\mathbf{OPT}[i,0] = \infty \\
\mathbf{for} \ k \leftarrow 1 \ \mathbf{to} \ m \ \mathbf{do} \\
& for \ i \leftarrow 1 \ \mathbf{to} \ n \ \mathbf{do} \\
& j^* = \underset{j \in [1,i]}{\operatorname{argmin}} (\operatorname{cost}(\mathbf{OPT}[j,k-1]) + \operatorname{cost}(Q[j+1,n])) \\
& OPT[i,k] = \mathbf{OPT}[j^*,k-1] \cup \{\operatorname{median}(Q[j+1],n)\} \\
& end \\
end
```

The recursive algorithm requires $\mathcal{O}(2^m)$

Optimal query segmentation: Dynamic Programming

The result of expensive function calls are stored in a table, and retrieved when the same input is given to the function.

Benefits:

The optimal solution is guaranteed and has lower cost than recursion.

Drawbacks:

Inefficiency in computation for larger number of queries

```
Function computeOPT(Q, m):

\begin{array}{c|c}
n = |Q| \\
minVal = \infty \\
\text{for } i \leftarrow 1 \text{ to } m \text{ do} \\
& \text{for } j \leftarrow 1 \text{ to } n+1 \text{ do} \\
& \text{for } k \leftarrow 1 \text{ to } j \text{ do} \\
& & minVal = \min(\min \text{Val}, \text{Table}[i, k] + \cos(Q[j-k:])) \\
& \text{end} \\
& \text{Table}[i, j] = \min Val \\
& \text{end} \\
& \text{end} \\
& \text{end} \\
& \text{end} \\
\end{array}
```

The dynamic programming requires $\mathcal{O}(mn^2)$

Optimal query segmentation: Heuristic method

Random timestamps are chosen and partitions are created. Then the random timestamps are moved on the timeline until the within cluster sum of squares is minimized.

Benefits:

Low time complexity

Drawbacks:

The optimal solution not guaranteed.

The K-means clustering algorithm is given as Algorithm 9.

```
Function K-Means (T_q^*\{q_1,...,q_n\}, m, maxIteration):

iteration \leftarrow 0

repeat

\{\mu_1,...,\mu_m\} \leftarrow SelectRandomSeeds(\{q_i \in T_q^*\}, m)

for i \leftarrow 1 to n do

J \leftarrow argmin_{J^*}||\mu_{J^*} - q_i||^2

\mathcal{L}_j \leftarrow \mathcal{L}_j \cup \{q_i\}

end

for j \leftarrow 1 to m do

\mu_j \leftarrow \frac{1}{\mathcal{L}_j} \sum_{q \in \mathcal{L}_j} q

end

iteration + +

until convergence and iteration \leq maxIteration

return \{\mu_1,...,\mu_m\}
```

The K-Means clustering requires O(m * k * n)

Performance of optimal snapshot computation: experiment

Experiment 1:

Fixed number of queries: 140 variable number of snapshots: 1 - 40

Objective:

Evaluate performance of algorithms with respect to our project

Snapshots	Recursive	Dynamic	Clustering
1	0.0002	0.01	0.01
2	0.01	0.17	0.02
3	0.32	0.34	0.03
4	7.39	0.52	0.04
5	183.18	0.69	0.06
10	N/A	1.52	0.08
15	N/A	2.33	0.12
20	N/A	4.33	0.12
25	N/A	5.46	0.14
30	N/A	8.81	0.17
35	N/A	10.74	0.21
40	N/A	21.09	0.24

Snapshots	Dynamic	Clustering
1	0.01	0.01
2	0.17	0.02
3	0.34	0.03
4	0.52	0.04
5	0.69	0.06
10	1.52	0.08
15	2.33	0.12
20	4.33	0.12
25	5.46	0.14
30	8.81	0.17
35	10.74	0.21
40	21.09	0.24

Experiment 1. Effectiveness of snapshot materialization

Case: The optimal segmentations computed using dynamic programming

Objective: To see how increasing number of materialized snapshot affects the cost

Performance of optimal snapshot computation: experiment

Experiment 2:

Fixed number of snapshots: 4 variable number of queries: 12 - 190

Objective:

Evaluate performance of algorithms with respect to our project

Queries	Dynamic	Clustering
13	0.01	0.02
43	0.13	0.03
73	0.39	0.03
103	1.60	0.03
133	2.71	0.04
163	4.35	0.04
187	5.96	0.04

Snapshots	Dynamic	Clustering
1	29439.26	29439.26
3	9141.55	9159.13
5	4626.77	4630.08
7	2867.74	2867.74
9	2410.46	2412.62
11	1972.14	1980.95
13	1664.14	1673.32
15	1471.58	1509.57
17	1300.32	1351.44
19	1162.25	1194.61
21	1051.97	1079.711
23	951.06	970.72
25	867.35	907.30
27	810.01	836.97
29	759.69	787.86
31	713.04	731.61
33	670.39	684.13
35	629.69	640.58
37	591.08	608.96
39	557.81	575.97

Runtime for variable number of snapshots but fixed number of queries

Runtime for fixed number of queries but variable number of snapshots

Comparison between the overall cost of query answering using optimal segmentations made by heuristic method in different iterations

Performance of optimal snapshot computation: experiment

Experiment 3:

40 snapshots with multiple segmentation strategy on a timeline with 1000 queries.

Objective:

To see if finding optimal segmentations worth it.

Experiment 1. Effectiveness of snapshot materialization

Case 1: Segmentations created randomly

Case 2: Fixed segmentations were created

Case 3: Optimal segmentation was computed using dynamic programming

Objective: Does optimal segmentation computation make any difference? YES

Further remarks

Lowering the cost of blockchain verification

We propose to *digitally sign* the *precompute* snapshots.

Materialized snapshot generation

How can we reduce the cost of snapshot generation?

For the first snapshot, computation is done manually.

For the subsequent snapshots, previous snapshots are materialized.

Materialized Blockchain verification

How can we reduce the cost of snapshot signing?

For the first snapshot, Blockchain verification is done manually.

For the subsequent snapshots, previous snapshots are materialized.

Conclusion

- Using the temporal relation that utilizes Blockchain we can provide trusted data provenance.
- Snapshot materialization has promising results in reducing the cost of query answering.
- With storing the timestamp of performed queries we can find the hotspots on the timeline and we can create optimal segmentations that materialize their exclusive snapshot
- Optimal snapshot placement has more impact in reducing cost than random or fixed interval snapshot placement.

Conclusion

- Dynamic programming, recursion and heuristic methods could be used for optimal segmentation computation.
- In this project, the heuristic method is favorable because of efficient cost and satisfactory results.
- To reduce the cost of multiple snapshot placement as well as chain verification, previous snapshots could be materialized.
- Snapshots could be dynamically repositioned as the new queries performed on the system.

Towards Trusted Temporal Databases Using Blockchain

By Amin Beirami MSc student, UOIT

Supervisors: Dr. Ken Pu and Dr. Ying Zhu