

Pomiary i sterowanie w sieciach sensorowych

Temat: Projekt "Inteligentny System Ostrzegawczy"

Wykonawca: Kamil Markowski

Numer albumu: 64152

Prowadzący przedmiot: Dr inż. Janusz Kolbusz

Przedmiot: Pomiary i sterowanie w sieciach sensorowych

Spis treści

1.	OPIS ZADANIA PROJEKTOWEGO	3
2.	OPIS TECHNOLOGII ZWIĄZANYCH Z ROZWIĄZANIEM ZADANIA	3
	MIKROKONTROLER ARDUINO UNO R3	3
	DIODA LED RGB	3
	DIODA LED	3
	GŁOŚNIK PIEZO	3
	CZUJNIK GAZU	3
	CZUJNIK TEMPERATURY TMP36	3
	REZYSTOR	3
	Przycisk	4
3.	SCHEMAT SYSTEMU	4
4.	PROGRAM SKRYPTU	5
5.	SPOSÓB URUCHAMIANIA	6
	Przypadek I dla zanieczyszczeń	6
	Przypadek II dla zanieczyszczeń	7
	Przypadek III dla zanieczyszczeń	7
	PRZYPADEK IV DLA TEMPERATURY	8
6.	ROZWIĄZANIE Z OPISEM POSZCZEGÓLNYCH LINII SKRYPTU	9
	FUNKCJA VOID SETUP()	9
	FUNKCJA VOID LOOP()	9
7.	PODSUMOWANIE I WNIOSKI	11
	Podsumowanie	11
	WNIOSKI	11
8.	LITERATURA	11

1. Opis zadania projektowego

Projekt "Inteligentny system ostrzegawczy" oparty został o mikrokontroler Arduino Uno R3. Układ na bieżąco monitoruje stan powietrza (gazu, dwutlenku węgla) w pomieszczeniu oraz temperaturę, sygnalizując ich zmianę.

2. Opis technologii związanych z rozwiązaniem zadania

Mikrokontroler Arduino Uno R3

Ma 14 pinów wejścia/wyjścia cyfrowego (z których 6 można używać jako pinów PWM), 6 wejść cyfrowych, rezonator kwarcowy 16 MHz, złącze USB, gniazdo zasilania, listwę ICSP oraz przycisk resetowania.

Dioda LED RGB

To dioda, która umożliwia świecenie w 3 kolorach (red green blue), emituje energię w postaci światła. Konieczne jest używanie rezystorów z diodą LED.

Dioda LED

To dioda, która emituje energię w postaci światła. Konieczne jest używanie rezystorów z diodą LED.

Głośnik piezo

Emituje sygnał dźwiękowy. Elementy piezoelektryczne są przydatne do wykrycia wibracji lub pukania. Można z nich korzystać w łatwy sposób, odczytując napięcie na wyjściu. Mogą być również wykorzystywane do bardzo małych przetworników audio takich jak buzzer.

Czujnik gazu

Czujnik pozwala wykryć butan, propan, metan, LPG, alkohol, wodór i dym.

Czujnik temperatury TMP36

Analogowy termometr w którym napięcie wyjściowe jest proporcjonalne do mierzonej temperatury z zakresu: od -40 °C do +120 °C. Zasilany jest napięciem od 2,7 do 5,5 V.

Rezystor

Ogranicza prąd, tworzone są z materiału niezbyt dobrze przewodzącego prąd ich konduktywność powinna być niska tj. nie przewodzić prądu, to dwójnik posiada dwa zaciski

Jest elementem pasywnym, przemiana energię elektryczną na energię cieplną,

Przycisk

Przycisk monostabilny montowany w sposób przewlekany

3. Schemat systemu

Rys. 1 Schemat inteligentnego systemu ostrzegawczego

Projekt przedstawiony na Rys. 1 składa się z:

- Mikrokontrolera Arduino Uno,
- przewodów,
- sześciu rezystorów
- czerwona diod LED (jedna sztuka),
- dioda LEG RGB (jedna sztuka),
- buzzer,
- przycisk,
- czujnik gazu,
- czujnik temperatury TMP36.

4. Program skryptu

```
void setup()
  pinMode(1, OUTPUT);
  pinMode(A0, INPUT);
  pinMode(2, INPUT);
  pinMode(4, OUTPUT);
  pinMode(5, OUTPUT);
  pinMode(7, OUTPUT);
  pinMode(6, OUTPUT);
  pinMode(A1, INPUT);
  pinMode(9, OUTPUT);
void loop()
  if (analogRead(A0) <= 20 && digitalRead(2) == 0) {</pre>
    digitalWrite(4, HIGH);
    digitalWrite(5, LOW);
    digitalWrite(7, LOW);
  } else {
    if (analogRead(A0) >= 21 && analogRead(A0) <= 29) {</pre>
      digitalWrite(5, HIGH);
      digitalWrite(4, LOW);
      digitalWrite(7, LOW);
    if (analogRead(A0) > 29) {
      digitalWrite(4, LOW);
      digitalWrite(5, LOW);
      digitalWrite(7, HIGH);
      tone(6, 523, 1000); // play tone 60 (C5 = 523 Hz)
    }
  if ((-40 + 0.488155 * (analogRead(A1) - 20)) > 40) {
    digitalWrite(9, HIGH);
  } else {
    digitalWrite(9, LOW);
  delay(10); // Delay a little bit to improve simulation performance
```

5. Sposób uruchamiania

W celu uruchomienia programu należy zalogować / zarejestrować się na platformie thinkercad.com. Następnie należy wczytać projekt i kliknąć lewym przyciskiem myszy na ikonkę "uruchom symulacje". Kliknięcie w czujnik gazu spowoduje powstanie chmury zanieczyszczeń, im bliżej przesunięta zostanie tym większe zanieczyszczenie wykryje czujnik, co przekłada się na sposób ostrzegania. (Rys. 2, Rys. 3, Rys. 4).

Klikając w czujnik temperatury TMP pokazuje się suwak, którym można przesuwać w prawo zwiększając temperaturę lub w lewo zmniejszając. (Rys. 5, Rys. 6).

Przypadek I dla zanieczyszczeń

Zanieczyszczenia są daleko od czujnik – brak alarmu dźwiękowego, dioda RGB świeci na zielono. (Rys. 2).

Rys. 2 Jakość powietrza bardzo dobra

Przypadek II dla zanieczyszczeń

Czujnik wykrywa lekkie zanieczyszczenia – brak alarmu dźwiękowego, dioda RGB świeci na niebiesko. (Rys. 3).

Rys. 3 Jakość powietrza dobra

Przypadek III dla zanieczyszczeń

Czujnik wykrywa duże zanieczyszczenia –uruchamiany jest alarm dźwiękowy, dioda RGB świeci na czerwono. (Rys. 3).

Rys. 4 Jakość powietrza zła

Przypadek IV dla temperatury

Gdy czujnik temperatury wykryje temperaturę poniżej 40 stopni Celsjusza to nie jest uruchamiana dioda.

Rys. 5 Czujnik temperatury dioda wyłączona

Przypadek V dla temperatury

Gdy czujnik temperatury wykryje temperaturę 40 lub więcej stopni Celsjusza to nie jest uruchamiana dioda.

Rys. 6 Czujnik temperatury dioda włączona

6. Rozwiązanie z opisem poszczególnych linii skryptu

Funkcja void setup()

```
1. void setup()
2. {
3. pinMode(1, OUTPUT);
4. pinMode(A0, INPUT);
5. pinMode(2, INPUT);
6. pinMode(4, OUTPUT);
7. pinMode(5, OUTPUT);
8. pinMode(7, OUTPUT);
9. pinMode(6, OUTPUT);
10. pinMode(A1, INPUT);
11. pinMode(9, OUTPUT);
12. }
```

Funkcja void setup() odpowiada za jednorazowe wykonanie instrukcji, ustawienie poszczególnych gniazd pinów:

- analogowy A0, czujnik gazu, (linia 4)
- analogowy A1, czujnik temperatury (linia 10),
- wejście cyfrowe 2, przycisk (symulacja otwarcia, zamknięcia okna) (linia 5),
- wyjścia cyfrowe 4,5,7 są od diody LED RGB (3 stopniowy monitor jakości powietrza) (linie 6,7,8),
- wyjście cyfrowe 6 to buzzer (linia 9),
- wyjście cyfrowe 9 to czerwona dioda LED (sygnalizacja zbyt dużej temperatury 40 lub więcej stopni Celsjusza) (linia 11).

Funkcja void loop()

```
1. void loop()
2. {
     if (analogRead(A0) <= 20 && digitalRead(2) == 0) {</pre>
3.
       digitalWrite(4, HIGH);
4.
       digitalWrite(5, LOW);
5.
       digitalWrite(7, LOW);
6.
7.
     } else {
       if (analogRead(A0) >= 21 && analogRead(A0) <= 29) {</pre>
8.
         digitalWrite(5, HIGH);
9.
10.
               digitalWrite(4, LOW);
               digitalWrite(7, LOW);
11.
12.
             if (analogRead(A0) > 29) {
13.
               digitalWrite(4, LOW);
14.
15.
               digitalWrite(5, LOW);
16.
               digitalWrite(7, HIGH);
17.
               tone(6, 523, 1000); // play tone 60 (C5 = 523 Hz)
18.
             }
19.
           }
```

Funkcja void loop() to pętla nieskończona, odpowiada za logikę wyświetlania alarmów w zależności od wartości odczytanych z czujnika temperatury oraz czujnika zanieczyszczeń.

- Pierwszy if odpowiada za ustawienie diody LED RGB na kolor zielony jeżeli czujnik zanieczyszczeń przyjmuje wartości mniejsze lub równa 20 i jednocześnie wejście cyfrowe 2 jest równe 0 to dioda świeci na zielono. (linie 3-6).
- Następnie występuje dalsza część instrukcji warunkowej if else, która sprawdza czy
 wartość z czujnika zanieczyszczeń jest w przedziale od 21 włącznie do 29 włącznie to
 wtedy ustawia diodę LED RGB na kolor niebieski. (linie 7-12).
- Potem gdy wartość z czujnika zanieczyszczeń jest większa lub równe 29 to ustawia diodę LED RGB na kolor czerwony oraz uruchamia buzzer. (linie 13-18).

```
1. if ((-40 + 0.488155 * (analogRead(A1) - 20)) > 40) {
2.     digitalWrite(9, HIGH);
3.     } else {
4.     digitalWrite(9, LOW);
5.     }
6.     delay(10);
```

Ostatnia instrukcja warunkowa znajduje się poza główną instrukcją warunkową, w funkcji void loop(). Instrukcja ta odpowiada za logikę obsługi czujnika temperatury [TMP36] oraz czerwonej diody LED.

- Instrukcja warunkowa dokonuje obliczeń, z czujnika na stopnie Celsjusza i dla wartości większych niż 40 uruchamiana jest dioda czerwona dioda LED, ostrzegająca przed zbyt wysoką temperaturą. (linie 1-2).
- W przeciwnym wypadku dioda ustawiona jest na pozycji wyłączonej. (linie 3-4).
- Opóźnienie w celu poprawienia wydajności symulacji. (linia 6).

7. Podsumowanie i wnioski

Podsumowanie

Arduino to narzędzie zarówno dla amatorów jak i profesjonalistów. Dzięki platformie tinkercad, która pozwala symulować online stworzony wirtualny schemat. Posiada rozbudowany zestaw komponentów, dający możliwość stworzenia prostych jak i bardziej skomplikowanych projektów. Jedną z największych zalet tej platformy jest to, że przed fizycznym zbudowaniem układu Arduino można sprawdzić i przetestować działanie wirtualnego układu, pozwala to na uniknięcie przepalenia komponentów. Program sam ostrzega, że w przypadku użycia rezystora o zbyt mały oporze istnieje możliwość spalenia diody.

Wnioski

W projekcie występuje zależność między poziomem zanieczyszczenia a rodzajem uruchomieniem sygnałów ostrzegawczych w postaci dźwięki i koloru diody oraz zależność pomiędzy temperaturą a zapaleniem się ostrzegawczej czerwonej diody LED. W Arduino to, można zaprogramować pod własne potrzeby całą logikę obsługi dodatkowych komponentów, takich jak diody, głośniki, wyświetlacze oraz wiele innych.

8. Literatura

- https://pl.wikipedia.org/wiki/Arduino, z dnia 22.11.2022
- https://botland.com.pl/czujniki-nacisku/11152-membrana-piezoelektryczna-z-przewodami-20mm-sparkfun-sen-10293-5903351249775.html, z dnia 22.11.2022
- https://pl.wikipedia.org/wiki/Rezystor, z dnia 22.11.2022
- https://physics.uwb.edu.pl/wf/fi-bot/?p=1184, z dnia 22.11.2022
- https://forbot.pl/blog/kurs-arduino-podstawy-programowania-porty-io-id3648, z dnia 22.11.2022
- https://www.arduino.cc/en/Guide, z dnia 22.11.2022