struct BS_Structure bs_data;

Miembro	Offset	Contenido
uint16_t bytesPerSector	0x0B	0x0200 (512 bytes)
uint8_t sectorPerCluster	0x0D	0x08 (8 sectores)
uint16_t reservedSectorCount	0x0E	0x0020 (32 sectores)
uint8_t numberofFATs	0x10	0x02 (2 FATs)
uint8_t FATsize_F32	0x24	0xC8 (200 sectores)
uint32_t rootCluster	0x2C	0x02 (cluster 2)
uint8_t fileSystemType[8]	0x52	0x4641543332202020 (FAT32)
uint32_t bootEndSignature	0x1FE	0xAA55

¿Dónde comienza la FAT?

fat_begin_offset = bs_data.reservedSectorCount * bs_data.bytesPerSector

¿Y la copia de la FAT?

(bs_data.reservedSectorCount + bs_data.FATsize_F32) * bs_data.bytesPerSector

¿Dónde se ubica el directorio raíz?

En bs_data.rootCluster = 2

¿Dónde comienza el clúster 2?

(bs_data.reservedSectorCount + bs_data.numberofFATs * bs_data.FATsize_F32) * bs_data.bytesPerSector

¿Dónde comenzaría cualquier clúster?

(bs_data.reservedSectorCount * bs_data.bytesPerSector)

- + (bs_data.numberofFATs * bs_data.FATsize_F32 * bs_data.bytesPerSector)
- + ((cluster 2) * bs_data.sectorPerCluster * bs_data.bytesPerSector)

directory_info[0], offset = 0x36000

Miembro

Offset uint8_t DIR_name[11] 0x534F412D46532020202020 (SOA-FS) 0x00 uint8_t DIR_attrib 0x08 (ATTR_VOLUME_ID) 0x0B 0x0000

Contenido

uint16_t firstClusterHI 0x14 uint16_t firstClusterLO 0x1A 0x0000

0x0000000 uint32_t fileSize 0x1C

1	Nombre	Atributo	ClusterHI	ClusterLO	Tamaño
0	SOA_FS	0x08	0x0000	0x0000	0x00000000
		(ATTR_VOLUME_ID)			
1	Al	0x0F	0x0074	0x0000	0xFFFFFFF
		(ATTR_LONG_NAME)			
2	LEEME TXT	0x20 (ATTR_ARCHIVE)	0x0000	0x0004	0x00000032
3	UD4	0x10	0x0000	0x0003	0x00000000
		(ATTR_DIRECTORY)			
4	0xE5 Indica	0x0F	0xFFFF	0x0000	0xFFFFFFF
	entrada borrada.				
	Es la última del				
	directorio				

Offset	Contenidos			
00004000	Nº clúster: 0	ster: 0 1 2		3
	0x0FFFFFF8	0x0FFFFFF8	0x0FFFFFF8	0x0FFFFFF
00004010	4	5 6		7
	0x0FFFFFF	0x00000006	0x0FFFFFF	0xFFFFFF07
00004020	8	9	Α	В
	0xFFFFFF07	0xFFFFFF07	0xFFFFFF07	0xFFFFFF07

Por tanto, la información que se mantiene es la siguiente:

Clúster 2, directorio raíz (0x0FFFFF8)

Clúster 3, directorio UD4 (0x0FFFFFF)

Clúster 4, archivo LEEME.TXT (0x0FFFFFFF)

Contenido del archivo LEEME.TXT:

Clúster 4: LBA2Offset(4) = 0x38000

"Este es un fichero de texto en el directorio raíz\n"

Contenido del archivo FAT32.H:

Clúster 5: LBA2Offset(5) = 0x39000 y clúster 6: LBA2Offset(6) = 0x3A000

Analice el código y responda por qué a la hora de visualizar el contenido de un directorio se compara el primer carácter del nombre de cada entrada de directorio con el valor 0xE5 y en caso de que coincida no se visualiza. ¿Qué significa este valor?

Ese valor significa que es una entrada borrada, por lo tanto, no se mira para visualizar el contenido de un directorio.

Preguntas cortas P3

1. ¿De qué tipo es una variable que contiene un descriptor de fichero?

De tipo entero (int)

2. Sea la siguiente invocación de Iseek(fd, 0, SEEK_END) ¿Dónde se posiciona el puntero de acceso al fichero?

Al final del fichero.

3. Se la siguiente declaración C, donde fd contiene el descriptor de un archivo abierto:

```
char buffer[100];
read(fd, buffer, sizeof(buffer));
```

¿Cuántos caracteres se leerían del fichero?

100 caracteres

4. Se la siguiente declaración C, donde fd contiene el descriptor de un archivo abierto:

```
char *pmap = (char *)mmap( NULL, TAM, PROT_READ, MAP_PRIVATE, fd, 0 );
```

¿Qué operación realiza esta llamada?

proyecta el contenido del archivo cuyo descriptor es fd en posiciones de memoria con números de TAM bytes a proyectos, con protección de memoria de lectura (PROT_READ), la zona de memoria es privada (MAP_PRIVATE), y posición 0 del archivo desde la que se va a realizar la proyección (offset)

¿Qué significa NULL en el primer parámetro?

Le indica al sistema operativo que busque y asigne una dirección válida.

5. En un sistema de fichero FAT32, ¿qué significa que el primer octeto del nombre de una entrada de directorio tenga el valor 0xE5?

Indica entrada borrada.

6. ¿En qué número de cluster se encuentra el directorio raíz "/"?

En el 2.

- 7. Si el número de sectores por cluster es 8, ¿Cuál es el tamaño en octetos de un cluster?
- 8 * 512 = 4096 bytes
- 8. Si el número de sectores reservados especificados en BPB es 32, ¿Calcule el desplazamiento desde el comienzo de la imagen donde comienza la FAT?

32 * 512 = 16384

9. ¿Calcule el desplazamiento desde el comienzo de la imagen donde comienza la zona de clusters?

(bs_data.reservedSectorCount * bs_data.bytesPerSector) + (bs_data.numberofFATs * bs_data.FATsize_F32 * bs_data.bytesPerSector)

10. ¿Qué significa que una entrada de la FAT tenga un valor 0x0FFFFFF7?

Clúster defectuoso (FAT_BAD_CLUSTER)