

ALXC2X

Wireless IoT Controller Datasheet

Version 1.2

2016.03.01

Copyright

©Alinket Electronic Technologies Corp

This document is the property of Alinket Electronic Technologies Corp and is delivered on the express condition that it not be disclosed, reproduced in whole or in part, or used for manufacture for anyone other than Alinket Technologies Corp without its written consent, and that no right is granted to disclose or so use any information contained in said document. This restriction does not limit the right to use information obtained from other sources.

Trademarks

ALXC2X is a registered trademark of Alinket Electronic Technologies Corp. Alinket is a registered trademark of Alinket Technologies Corp. Other products and company names mentioned herein may be the trademarks of their respective owners.

Revision History

Date(Y/M/D)	Revision Content	Revision By	Version
2015/06/12	Revision Content	/	0.1
2016/01/08	Initial Version	Qi Shi	1.0
2016/02/01	Product Pic Update	Qi Shi	1.1
2016/03/01	Ceramic Antenna	Qi Shi	1.2

List of Contents

1.	INTE	RODUCTION	8
1	. 1	ALXC2X Module Overview	8
1	. 2	FEATURES	8
2.	PIN	ASSIGNMENT	10
2	. 1	PIN CONFIGURATION	10
	2. 2	PIN Definitions	
3.	MIC	ROCONTROLLER SUBSYSTEM	12
3	s. 1	ARM CORTEX-M4 WITH FPU CORE WITH EMBEDDED FLASH AND SRAM	12
3	. 2	Embedded Flash Memory	
3	3. 3	EMBEDDED SRAM	12
3	3.4	NRST	
3	5. 5	UART INTERFACE	12
3	. 6	SERIAL PERIPHERAL INTERFACE (SPI)	
3	. 7	Universal series bus (USB)	13
3	. 8	INTER-INTEGRATED SOUND (I2S)	13
3	. 9	INTER-INTEGRATED CIRCUIT INTERFACE (I2C)	14
3	. 10	Analog-to-digital converter (ADC)	14
3	. 11	GENERAL-PURPOSE INPUT/OUTPUTS (GPIOS)	14
3	. 12	JTAG DEBUG PORT (SWJ-DP)	14
4.	SPE	CIFICATION	15
4	. 1	GENERAL SPECIFICATION	
4	. 2	VOLTAGES	15
4	. 3	TEMPERATURE AND HUMIDITY	15
5.	WI-I	FI RF SPECIFICATION	16
5	5. 1	RF SPECIFICATION	16
5	5. 2	WI-FI POWER CONSUMPTION	16
5	5. 3		17
5		WI-FI SENSITIVITY SPECIFICATION	
	5.4	WI-FI RF TX SPECIFICATION	17
6.			
-		WI-FI RF TX SPECIFICATION	18
6	BT S	WI-FI RF TX SPECIFICATION	1 8
6	BT S	WI-FI RF TX SPECIFICATION	1818
6 6 7 .	BT S	WI-FI RF TX SPECIFICATION PECIFICATION RF SPECIFICATION BT Power Consumption	181818
6 6 7 .	BT S 5. 1 6. 2 DIM	WI-FI RF TX SPECIFICATION PECIFICATION RF SPECIFICATION BT POWER CONSUMPTION ENSIONS	
6 6 7. 7	BT S 5. 1 5. 2 DIM 7. 1	WI-FI RF TX SPECIFICATION PECIFICATION RF SPECIFICATION BT POWER CONSUMPTION ENSIONS PHYSICAL DIMENSIONS.	

9.	ROHS DECLARATION	20
10	ORDER INFORMATION	21
	TECHNICAL SUPPORT CONTACT	
ACR (ONYMS AND ARBREVIATIONS	21

List of Figures

Figure 1 ALXC2X PIN Configuration	10
Figure 2 ALXC2X (Ceramic Antenna) Top View	19
Figure 3 ALXC2X Pad Dimensions (Top View)	19
Figure 4 Reflow Profile	20

List of Tables

Table 1 PIN Description	11
Table 2 Comparison of I2C analog and digital filters	14
Table 3 Range of Operation – General Specification	15
Table 4 Range of Operation-temperature	15
Table 5 Range of Operation - Voltages	15
Table 6 Temperature and Humidity	15
Table 7 2.4GHz Wireless Specification	16
Table 8 5GHz Wireless Specification	16
Table 9 Wi-Fi Power Consumption	16
Table 10 Wi-Fi 2.4GHz Receiver Sensitivity Specification	17
Table 11 Wi-Fi 5GHz Receiver Sensitivity Specification	17
Table 12 Wi-Fi 2.4GHz RF TX Power Specification	
Table 13 Wi-Fi 5GHz RF TX Power Specification	17
Table 14 Bluetooth Transmitter RF Specifications	
Table 15 Bluetooth Receiver RF Specifications	18
Table 16 BT Power Consumption	
Table 17 Physical Dimensions	19
Table 18 Order Information	21

1. Introduction

1. 1 ALXC2X Module Overview

ALXC2X module is a low-cost and ultra-low power consumption wireless IoT controller, with integrated IEEE 802.11a/b/g/n functionalities, dual band 5 GHz/2.4 GHz, and Bluetooth 4.0.

The ALXC2X Module series is a family of low-power, self-contained, embedded wireless module solution that addresses the connectivity demands of machine to machine applications. An RF front end and two clocks embeds into a small factor modules.

The ALXC2X module includes various different interfaces to communicate with the Host such as UART, SPI etc. The modules can be purchased with ceramic antennas on-board.

1. 2 Features

Dynamic Efficiency Line

- Core: ARM® 32-bit Cortex®-M4 CPU with FPU, Adaptive real-time accelerator (ART Accelerator™) allowing 0-wait state execution from Flash memory, frequency 100MHz, memory protection unit, 125 DMIPS/1.25 DMIPS/MHz (Dhrystone 2.1), and DSP instructions.

Memories

- 128 KB of SRAM
- 512 KB of Built-in Serial Flash
- 1 MB of additional Serial Flash
- Clock, reset and supply management
 - 3v to 3.6v application supply and I/Os
 - Internal 33kHz± 30% LPO clock
 - Internal 26 MHz crystal oscillator
 - Internal 37.4 MHz crystal oscillator
 - Internal 32.768 kHz LPO clock for the PMU sequencer
- Concurrent Bluetooth, and WLAN operation

Alinket Proprietary & Confidential Information

9

- Dual-band 2.4G/5GHz IEEE802.11a/b/g/n
- ➤ Bluetooth v4.0 with integrated Class 1 PA
- ➤ Bluetooth Low Energy (BLE) support
- Four WLAN power states: Active mode, Doze mode, Deep-sleep mode, Power-down mode
- Integrated WLAN CMOS power amplifier with internal power detector and closed-loop power control
- HCI high-speed UART transport support
- > Transmitter power:
 - 2.4 GHz: +19.5dBm (11b), +18dBm (11g), +16.5dBm (11n)
 - 5GHz: +16.5dBm (11a), +15dBm (11n)
- Receiver sensitivity:
 - 2.4GHz Wi-Fi: -89dBm (11b), -83dBm (11g), -80dBm (11n)
 - 5GHz Wi-Fi: -82dBm (11a), -81.8dBm (11n)
- ► Host interface Options with different module: UART, USBH, USHD, SPI
- Peripheral interface Options: ADC, I2C, I2S, GPIO
- ➤ Operation temperature range: -30 °C to +85 °C
- ➤ RoHS compliant
- Easy for integration into mobile and handheld device with flexible system configuration
- Security:
 - Hardware WAPI acceleration engine
 - Open, WEP, WPA_TKIP_PSK, WPA_AES_PSK, WPA2_AES_PSK, WPA2_Mixed_PSK
 - WPA/WPA2 Enterprise
- ➤ Dimensions: 28mm(L)*14.3mm(W)*2.2mm(H), 36Pins Small size suitable for low volume system integration
- > Antenna configurations: On-board antenna
- > Over-the-air (OTA) upgrade support

2. PIN Assignment

2. 1 PIN Configuration

Figure 1 ALXC2X PIN Configuration

2. 2 PIN Definitions

Table 1 PIN Description

Pin#	Туре	Name (Main function)	Alternate functions	PIN connection(when not using)
1	S	GND		
2	I/O	USART1_TX	PB6	floating
3	I/O	USART1_ RX	PA10, USB_ID	floating
4	S	VIO		
5	I/O	I2C2_SDA	PB3, SPI1_SCK, USART1_RX	floating
6	1/0	I2C2_SCL	PB10	floating
7	1/0	SWCLK	PA14	floating
8	1	воото		floating
9	S	VBAT		floating
10	I/O	USB_ID	PB13	floating
11	I/O	SWDIO	PA13	floating
12	I	NRST	/	floating
13	S	VIO	/	
14	S	GND	<i>(</i>	
15	S	GND	/	
16	I/O	USB_DP	PA12, USART1_RTS, USART6_RX	floating
17	I/O	USB_DM	PA11, USART1_CTS, USART6_TX	floating
18	I/O	SPI1_NSS_EXT	PB12, I2C2_SMBA	floating
19	I/O	SPI1_MOSI	PA7, ADC1_7	floating
20	I/O	SPI1_MISO	PB4	floating
21	I/O	SPI1_SCK	PA5, ADC1_5	floating
22	S	GND		
23	S	GND		
24	I/O	GPIO1(PB1)	ADC1_9	floating
25	I/O	GPIO2(PB0)	ADC1_8	floating
26	NC /	NC	BT_PCM_SYNC	floating
27	NC	NC	BT_PCM_CLK	floating
28	NC	NC	BT_PCM_IN	floating
29	NC	NC	BT_PCM_OUT	floating
30	S	VIO		
31	I/O	EXT_SLEEP_CLK	External 32.768K Clock	floating
32	NC	NC	BT_I2S_DI	floating
33	NC	NC	BT_I2S_WS	floating
34	NC	NC	BT_I2S_SCK	floating
35	NC	NC	BT_I2S_DO	floating
36	S	GND		

3. Microcontroller Subsystem

3. 1 ARM Cortex-M4 with FPU core with embedded Flash and SRAM

The ARM® Cortex®-M4 with FPU processor is the latest generation of ARM processors for embedded systems. It provides a low-cost platform to meet the needs of MCU implementation with a reduced pin count and low-power consumption, while delivering outstanding computational performances and advanced responses to interrupts. The ARM® Cortex®-M4 with FPU 32-bit RISC processor features exceptional code efficiency, delivering the high performance expected from an ARM core in the memory footprint usually associated with 8- and 16-bit devices. The processor supports a set of DSP instructions which allow efficient signal processing and complex algorithm execution. Its single precision FPU (floating point unit) speeds up software development by using meta-language development tools, while avoiding saturation.

3. 2 Embedded Flash Memory

The ALXC2X Controller embeds 512 Kbytes of Flash memory, available for storing programs and data.

3. 3 Embedded SRAM

The ALXC2X embeds 128 Kbytes of system SRAM which can be accessed (read/write) at CPU clock speed with 0 wait states.

3. 4 NRST

NRST is hardware PIN to support built-in reset simultaneously to the MCU and the Wi-Fi chip.

3. 5 UART interface

The ALXC2X embeds 2 universal synchronous/asynchronous receiver transmitters (USART1 and USART6). The UART interfaces are able to communicate at speed of up to 6.25Mbit/s. USART1 provides hardware management of the CTS and RTS signals, Smart Card mode (ISO 7816 compliant) and SPI-like communication capability. All interfaces can be served by the DMA controller

3. 6 Serial peripheral interface (SPI)

The ALXC2X features up to four SPIs in slave or master modes in full-duplex or simplex

Alinket Proprietary & Confidential Information

communication modes. The SPI can communicate at up to 50Mbit/s. The 3-bit pre-scaler gives 8 master mode frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC generation/verification supports basic SD Card/MMC modes. All SPIs can be served by DMA controller.

The SPI interface can be configured to operate in TI mode for communications either in master mode or slave mode.

3. 7 Universal series bus (USB)

The ALXC2X embed an USB OTG full-speed device/host/OTG peripheral with integrated transceivers. The USB OTG FS peripheral is compliant with the USB 2.0 specification and with the OTG 1.0 specification. It has software-configurable endpoint setting and supports suspend/resume. The USB OTG full-speed controller requires a dedicated 48 MHz clock that is generated by a PLL connected to the HSE oscillator. The major features are:

- Combined RX and TX FIFO size of 320 x 35 bits with dynamic FIFO sizing
- Supports the session request protocol (SRP) and host negotiation protocol (HNP)
- ➤ 4 bidirectional endpoints
- > 8 host channels with periodic OUT support
- HNP/SNP/IP inside (no need for any external resistor)
- > For OTG/Host modes, a power switch is needed in case bus-powered devices are connected

3. 8 Inter-integrated Sound (I2S)

Five standard I2S interfaces (multiplexed with SPI1 to SPI5) are available. They can be operated in master or slave mode, in simplex communication modes or full duplex for I2S2 and I2S3, and can be configured to operate with a 16-/32-bit resolution as an input or output channel. All the I2Sx audio sampling frequencies from 8 kHz up to 192 kHz are supported. When either or both of the I2S interfaces are configured in master mode, the master clock can be output to the external DAC/CODEC at 256 times the sampling frequency.

All I2Sx can be served by the DMA controller.

The ALXC2X features an additional dedicated PLL for audio I2S applications. It allows error-free I2S sampling clock accuracy without compromising on the CPU performance.

The PLL I2S configuration can be modified to manage an I2S sample rate change without disabling the main PLL used for the CPU.

The audio PLL can be programmed with very low error to obtain sampling rates ranging from 8 kHz to 192 kHz

In addition to the audio PLL, a master clock input pin can be used to synchronize the I2S flow with an external PLL (or Codec output).

3. 9 Inter-integrated circuit interface (I2C)

Up to three I2C bus interfaces can operate in master or slave modes. They can support standard (up to 100 kHz) and fast (up to 400 kHz) modes. The I2C bus frequency can be increased up to 1 MHz. They also support the 7/10-bit addressing mode and the 7-bit dual addressing mode (as slave). A hardware CRC generation/verification is embedded.

They can be served by DMA and they support SMBus 2.0/PMBus.

The ALXC2X also include programmable analog and digital noise filters

Table 2 Comparison of I2C analog and digital filters

	Analog filter	Digital filter
Pulse width of	>= 50ns	Programmable length from 1 to 15 I2C peripheral clock
suppressed spikes		

3. 10 Analog-to-digital converter (ADC)

One 12-bit analog-to-digital converter is embedded and shares up to 16 external channels, performing conversions in the single-shot or scan mode. In scan mode, automatic conversion is performed on a selected group of analog inputs.

The ADC can be served by the DMA controller. An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.

To synchronize A/D conversion and timers, the ADCs could be triggered by any of TIM1, TIM2, TIM3, or TIM4 timer.

3. 11 General-purpose input/outputs (GPIOs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain, with or without pull-up or pull-down), as input (floating, with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high-current-capable and have speed selection to better manage internal noise, power consumption and electromagnetic emission.

The I/O configuration can be locked if needed by following a specific sequence in order to avoid spurious writing to the I/Os registers.

Fast I/O handling allowing maximum I/O toggling up to 100 MHz

3. 12 JTAG debug port (SWJ-DP)

The ARM SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target. Debug is performed using 2 pins only instead of 5 required by the JTAG (JTAG pins could be re-use as GPIO with alternate function): the JTAG TMS and TCK pins are shared with SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.

Alinket Proprietary & Confidential Information

4. Specification

4. 1 General Specification

The absolute maximum rating are shown in the following table:

Table 3 Range of Operation – General Specification

Symbol	Description		Max	Unit
Tg	General Operating temperature		85	°C
То	Operating temperature	-40	85	°C
Ts	Storage temperature -40 85 °		°C	
VDDIO	O IO Power supply 0 3.6		V	
VDDBAT	Power supply 0		/ 3.6	V
RFi	RF input power 0 df		dBm	
MSL	Moisture Sensitivity Level	3		
RoHS	Restriction of Hazardous Substances	Compliant		

4.2 Voltages

Table 4 Range of Operation-temperature

	•	
Supply Power	Max +3.6 Volt	
Non-Operating Temperature	- 30° to 85° Celsius	
Voltage ripple	+/- 2%	Max. Values not exceeding operating
/		voltage

Power supply for the ALXC2X Controller will be provided by the host via the power pins.

Table 5 Range of Operation - Voltages

Symbol	Min.	Тур.	Max.	Unit
VDD	3.0	3.3	3.6	V

4. 3 Temperature and humidity

Table 6 Temperature and Humidity

Operating Temperature	-20° to 70° Celsius
Humidity range	Max 95%, No condensing, relative humidity

The maximum operating ambient temperature can be up to 85° Celsius, but exposure to absolutemaximum-rated conditions may cause performance degradation and affect device reliability.

Alinket Proprietary & Confidential Information

16

5. Wi-Fi RF Specification

5. 1 RF Specification

The ALXC2X Controller complies with the following features and standards:

Table 7 2.4GHz Wireless Specification

Features	Specification
WLAN Standards	IEEE802.11 b/g/n
Antenna	Ceramic Antenna
Frequency Band	2.412GHz – 2.484 GHz
	ETSI: 2412MHz – 2472MHz
	FCC: 2412Mhz-2462Mhz
Modulation	DSSS, CCK, OFDM, BPSK, QPSK, QAM
Support data rates	802.11b: 1, 2, 5.5, 11 (Mbps)
	802.11g: 6, 9, 12, 18, 24, 36, 48, 54 (Mbps)
	802.11n: 6.5, 13, 19.5, 26, 39, 52, 58.5, 65 (Mbps)

Table 8 5GHz Wireless Specification

Features	Specification	
WLAN Standards	IEEE802.11 a/n	
Antenna	Ceramic Antenna	
Frequency Band	5.17GHz – 5.31GHz, 4.915GHz – 5.825GHz	
	ETSI: 5180Mhz-5240Mhz	
	FCC: 5180Mhz-5240Mhz, 5745Mhz-5825Mhz	
Modulation	OFDM, BPSK, QPSK, QAM	
Supports data rates	802.11a: 6, 9,12, 18,24,36,48,54 (Mbps)	
/	802.11n: 6.5, 13, 19.5, 26, 39, 52, 58.5, 65 (Mbps)	

5. 2 Wi-Fi Power Consumption

WLAN system power consumption shows estimated typical values. Power consumption targets referenced to VBAT @3.3V, 20°C.

Table 9 Wi-Fi Power Consumption

Mode	Conditions	Module Current
		(mA)
Data Transfer Transmit TCP	10kbps data rate @baud rate = 921600 2.4G	66.49
Data Transfer Transmit TCP	10kbps data rate @ baud rate = 921600 5G	88.00
Data Transfer Transmit TCP	100kbps data rate @ baud rate = 921600 2.4G	69.34
Data Transfer Transmit TCP	100kbps data rate @ baud rate = 921600 5G	89.37
Data Transfer Transmit TCP	700kbps data rate @ baud rate = 921600 2.4G	78.31
Data Transfer Transmit TCP	700kbps data rate @ baud rate = 921600 5G	97.56
Idle	Remaining connected to AP, Power-Save mode	16.80
Sleep	Not connected to an AP	9.45

Alinket Proprietary & Confidential Information

17

5. 3 Wi-Fi Sensitivity Specification

Table 10 Wi-Fi 2.4GHz Receiver Sensitivity Specification

Receiver Characteristics	TYP.	Unit
PER <8%, Rx Sensitivity @ 1 Mbps DSSS	-88.1	dBm
PER < 8%, Rx Sensitivity @ 11 Mbps DSSS	-81.6	dBm
PER < 10%, Rx Sensitivity @ 6 Mbps OFDM	-83.4	dBm
PER < 10%, Rx Sensitivity @ 54 Mbps OFDM	-70.0	dBm
PER < 10%, Rx Sensitivity @ MCSO 800ns GI	-82.8	dBm
PER < 10%, Rx Sensitivity @ MCS7 800ns GI	-68.0	dBm

Table 11 Wi-Fi 5GHz Receiver Sensitivity Specification

Receiver Characteristics	TYP.	Unit
PER <10%, Rx Sensitivity @ 6 Mbps OFDM	-81.5	dBm
PER < 10%, Rx Sensitivity @ 18 Mbps OFDM	-77.0	dBm
PER < 10%, Rx Sensitivity @ 36 Mbps OFDM	-72.5	dBm
PER < 10%, Rx Sensitivity @ 54 Mbps OFDM	-66.1	dBm
PER < 10%, Rx Sensitivity @ MCSO 20Mbps 800ns GI	-81.5	dBm
PER < 10%, Rx Sensitivity @ MCS7 20Mbps 800ns GI	-67.5	dBm

5. 4 Wi-Fi RF TX Specification

Table 12 Wi-Fi 2.4GHz RF TX Power Specification

RF Characteristics	TYP.	Unit
RF TX Power@11b,11 Mbps	18.2	dBm
RF TX Power@11g,54 Mbps	16.9	dBm
RF TX Power@11n,65 Mbps	16.8	dBm

Table 13 Wi-Fi 5GHz RF TX Power Specification

RF Characteristics	TYP.	Unit
RF TX Power@11a,54 Mbps	14.5	dBm
RF TX Power@11n,65 Mbps	14.4	dBm

Alinket Proprietary & Confidential Information

6. BT Specification

6. 1 RF Specification

Table 14 Bluetooth Transmitter RF Specifications

Parameter	Conditions	Minimum	Typical	Maximum	Unit
Frequency range	_	2402	_	2480	MHz
Basic rate (GFSK)	-	10	12	_	dBm
QPSK Tx Power at Bluetooth	_	7	9	_	dBm
8PSK Tx Power at Bluetooth	_	7	2	- /	dBm
Power control step	-	2	4	6	dB

Table 15 Bluetooth Receiver RF Specifications

Parameter	Conditions	Minimum	Typical	Maximum	Unit
Frequency range	_	2402	_	2480	MHz
RX sensitivity	GFSK,0.1%BER,1Mbps	- /	-93.5	-	dBm
RX sensitivity	8-DPSK,0.01%BER,3Mbps	- /	-89.5	_	dBm

6. 2 BT Power Consumption

Table 16 BT Power Consumption

Mode	Module Current(mA)	
Power ON	5-8mA	
Advertisement	4.33-10mA	
Connected	3.37-3.44mA	
Download	11mA	
Sleep Mode	270-370uA	
Deep Sleep	175-200uA,hareware HIDOFF 29.6uA	
BR/EDR Data Transfer	16-48mA	

7. Dimensions

7. 1 Physical Dimensions

Table 17 Physical Dimensions

Parameter	Typical	Units
Dimensions (L x W x H)	28.0 x 14.3 x 2.2	mm
Dimensions tolerances (L x W x H)	±0.2	mm

7. 2 Top View

Figure 2 ALXC2X (Ceramic Antenna) Top View

7. 3 PCB Footprint (Top View)

Figure 3 ALXC2X Pad Dimensions (Top View)

Alinket Proprietary & Confidential Information

8. Recommended Reflow Profile

Referred to IPC/JEDEC Standard Peak Temperature < 250 $^{\circ}$ C Number of Times <= 2Times

Figure 4 Reflow Profile

9. RoHS Declaration

To the best of our present knowledge, given our supplier declarations, this product does not contain any substance that is banned by EU RoHS Directive 2011/65/EU and its amendment directives – XRF. RoHS restricted substances are list below.

- Cadmium (Cd)
- ➤ Lead (Pb)
- ➤ Mercury (Hg)
- ➤ Hexavalent Chromium (Cr(VI))
- Polybrominated biphenyls (PBBs)
- Polybrominated diphenylether (PBDEs)

10. Order Information

Table 18 Order Information

ALXC20A 2.4G/5G WiFi + BT/BLE 4.0 Combo Controller, On-Board Antenna

11. Technical Support Contact

For technical support, please mail support@alinket.com, or call 021-61048128. Alinket Electronic Technology (Shanghai) Co., Ltd. Floor 4, No.10, Lane 198, Zhangheng Road, Shanghai, 201204 P. R. China

Acronyms and Abbreviations

The following list of acronyms and abbreviations may appear in this document.

ADC Analog-to-Digital Converter
 AES Audio Engineering Society
 ARM Advanced RISC Machines
 CCK Complementary Code Keying

- CMOS Complementary Metal Oxide Semiconductor

CPU Central Processing Unit
 CRC Cyclic Redundancy Code
 DMA Direct Memory Access

DSS Direct Sequence Spread Spectrum
 EAP Extension Authentication Protocol

- EVK Evaluation Kit

GPIO General-Purpose Input-Output
HNP Host Negotiation Protocol
Inter-Integrated Circuit
Internet of Things

- I2S Inter-IC Sound - IC Integrated Circuit

IEEE Institute of Electrical and Electronics Engineers

- ISM Industrial

- IP Internet Protocol

- JTAG Joint Test Action Group

LQFP Low-profile Quad Flat Package

MAC Medium Access ControlMSL Moisture Sensitivity Level

- OFDM Orthogonal Frequency Division Multiplexing

Alinket Proprietary & Confidential Information

OTG On-The-Go PFR Packet Error Rate PLL Phase Locked Logic PMU Phasor Measurement Unit **PWM** Pulse Width Modulation RC Real Clock RTC Real Time Clock RF Radio Frequency **ROHS** Restriction of Hazardous Substances SKU Stock Keeping Unit SPI Serial Peripheral Interface **SRAM** Static Random Access Memory SRP Session Request Protocol TLS Transport Layer Security **TCP** Transmission Control Protocol TKIP

UDP User Datagram Protocol

UART universal asynchronous receiver/transmitter WAPI WLAN Authentication and Privacy Infrastructure

Temporal Key Integrity Protocol

Universal Serial Bus Host Mode

Universal Serial Bus Device Mode

WiFi Wireless Fidelity

WLAN Wireless Local Area Network

WPA Wi-Fi Protected Access

Notice:

USBH

USBD

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

To satisfy FCC RF Exposure requirements for this transmission devices, a separation distance of 20cm or more should be maintained between the antenna of this device and persons during operation. To ensure compliance, operation at closer than this distance is not recommended. The antenna(s) used for this transmitter must not be co-located or operating in conjunction with any other antenna or transmitter. Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

The modular transmitter must be equipped with either a permanently affixed label or must be capable of electronically displaying its FCC identification number:

(A) If using a permanently affixed label, the modular transmitter must be labeled with its own FCC identification number, and, if the FCC identification number is not visible when the module is installed inside another device, then the outside of the device into which the module is installed must also display a label referring to the enclosed module. This exterior label can use wording such as the following: "Contains Transmitter Module FCC ID:2AELJ-ALXCOMBA." Any similar wording that expresses the same meaning may be used. The Grantee may either provide such a label, an example of which must be included in the application for equipment authorization, or, must provide adequate instructions along with the module which explain this requirement. In the latter case, a copy of these instructions must be included in the application for equipment authorization.