Selecting locations for NE Greenlip Timed-swim surveys

Jaime McAllister and Craig Mundy

2023-05-18

Contents

Read in hex layer	1
Add quartile to dataframe	1
randomly sample cells within strata.	2
Examine Nearest Neighbour distances	3
Plot of nnb connections	6
Export to geopackage	7

Read in hex layer

Read in grid wide spatial layer, and transform to GDA2020. This hex cell layer contains the majority of fishing activity in the closed blocks.

Add quartile to dataframe

sf.ab.hex <- st_transform(sf.ab.hex, GDA2020)</pre>

THe input variable is the total catch in Kg for each cell from 2012 - 2019. We use the dplyr ntile() function to calculate five quantiles (0-20, 20-40, etc). based on total catch.

```
# Filter hex layer to required block and add quartile
ts.hex <- sf.ab.hex %>%
  mutate(subblockno = gsub(" ", "", subblockno)) %>%
  filter(subblockno %in% c('31A', '31B', '39A','39B')) %>%
  within({
    cell.ntile <- ntile(GLhexcatch, 5)
})</pre>
```

```
outname.ts.hex <- sprintf("C:/Users/%s/University of Tasmania/IMAS-DiveFisheries - Assessments - Docume.
st_write(ts.hex, dsn = outname.ts.hex, layer = "pointqt", driver = "GPKG", append = F)
Deleting layer `pointqt' using driver `GPKG'
Writing layer `pointqt' to data source
  `C:/Users/jaimem/University of Tasmania/IMAS-DiveFisheries - Assessments - Documents/Assessments/GIS/
Writing 2537 features with 46 fields and geometry type Polygon.
hex.cell.summary <- ts.hex %>%
  st_set_geometry(NULL) %>%
  group_by(cell.ntile) %>%
  summarise(
    mncatch = mean(GLhexcatch, na.rm = T),
    catch = sum(GLhexcatch, na.rm = T),
   n = n()
  ) %>%
  print()
# A tibble: 5 x 4
  cell.ntile mncatch
                       catch
       <int>
              <dbl>
                       <dbl> <int>
1
           1 0.652
                        331.
                               508
2
           2
              4.78
                       2429.
                               508
           3 19.1
3
                       9680.
                               507
4
           4 65.3
                      33107.
                               507
           5 300.
                     152049.
                               507
```

randomly sample cells within strata.

We want to randomly select 150 hex cells across the top three quantile strata. The two lower quantile strata contribute 0.0139696 of a total catch of 1.9759551×10^5 . The top three quantile groups contribute 0.0489877, 0.1675485 and 0.7694941 of the catch, respectively.

```
set.seed(123)
# set sample size required (i.e. n = 150)
samp.size <- 150</pre>
# Exclude oid where a gps was left on while transiting on a motherboat.
oid_exc <- c(1062044, 1062045, 1062604, 1062605, 1062606, 1062607, 1062608, 1062609, 1062610, 1062611,
# randomly select sites (NOTE: manually change dataframe name for each block)
cellqt_NE_GL <- ts.hex %>%
  filter(!oid %in% oid_exc &
           cell.ntile > 2) %>%
  group_by(blockno, cell.ntile) %>%
  st_as_sf() %>%
  subsample.distance(size = samp.size, d = 50) %>%
  st_as_sf() %>%
  ungroup()
  # quick summary of sites x block x strata
table(cellqt_NE_GL$blockno, cellqt_NE_GL$cell.ntile)
```

```
3 4 5
31 24 37 19
39 19 27 24
```

9 |

Examine Nearest Neighbour distances

We find the k=1 Nearest Neighbour and then calculate the distance between a cell and its closest neighbor. Centroids of hex cells are $\sim 107m$ apart.

```
knear <- knearneigh(st_centroid(cellqt_NE_GL), k = 1, longlat = FALSE, use_kd_tree = TRUE)</pre>
neighbors <- knn2nb(knear)</pre>
summary.nb(neighbors, st_coordinates(st_centroid(cellqt_NE_GL)), longlat = NULL, zero.policy=TRUE)
Neighbour list object:
Number of regions: 150
Number of nonzero links: 150
Percentage nonzero weights: 0.6666667
Average number of links: 1
Non-symmetric neighbours list
Link number distribution:
 1
150
150 least connected regions:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 3
150 most connected regions:
1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10 \ 11 \ 12 \ 13 \ 14 \ 15 \ 16 \ 17 \ 18 \ 19 \ 20 \ 21 \ 22 \ 23 \ 24 \ 25 \ 26 \ 27 \ 28 \ 29 \ 30 \ 31 \ 32 \ 33 \ 34 \ 35 \ 36 \ 37 \ 3
Summary of link distances:
  Min. 1st Qu. Median
                           Mean 3rd Qu.
  186.1
                214.9
                          365.5
                                  284.3 10034.1
          186.1
  The decimal point is 3 digit(s) to the right of the |
  0 | 5556667
  1 | 3
   1 l
   2 |
   2 |
   3 |
   3 |
   4 |
   4 1
   5 I
   5 I
   6 | 2
   6 I
  7 |
  7 |
   8 I
   8 |
```

```
9 |
  10 | 0
coords.hex <- st_coordinates(st_centroid(cellqt_NE_GL))</pre>
nc_sp <- as(cellqt_NE_GL, 'Spatial')</pre>
cellqt_NE_GL.Knbdist <- nbdists(neighbors, st_coordinates(st_centroid(cellqt_NE_GL)), longlat = NULL)</pre>
nbdists <- unlist(cellqt_NE_GL.Knbdist) %>% as.tibble()
nbdists %>% filter(nbdists < 125) %>% count()
# A tibble: 1 x 1
      n
  <int>
1
colnames(nbdists) <- "nbDist"</pre>
nbdists %>%
  ggplot(aes(nbDist)) +
  geom_histogram()
nbdists %>%
  filter(nbDist < 2000) %>%
  ggplot(aes(nbDist)) +
  geom_histogram()
```


Plot of nnb connections

```
neighbors_sf <- as(nb2lines(neighbors, coords = st_coordinates(st_centroid(cellqt_NE_GL))), 'sf' )
neighbors_sf <- st_set_crs(neighbors_sf, st_crs(cellqt_NE_GL))

ggplot(cellqt_NE_GL) +
    geom_sf(fill = 'salmon', color = 'white') +
    geom_sf(data = neighbors_sf) +
    geom_sf(data = st_centroid(cellqt_NE_GL)) +
    theme_minimal() +
    ylab("Latitude") +
    xlab("Longitude")</pre>
```


Export to geopackage

Export cells to gpkg

'longitude' = x) %>%

It is much easier to explore the data in QGIS. We export the selected cells as a hex layer and a point layer (centroid of the hex).

```
pointqt <- st_centroid(cellqt_NE_GL)
outname.point <- sprintf("C:/Users/%s/University of Tasmania/IMAS-DiveFisheries - Assessments - Documen
st_write(pointqt, dsn = outname.point, layer = "pointqt", driver = "GPKG", append = F)

Deleting layer `pointqt' using driver `GPKG'
Writing layer `pointqt' to data source
   `C:/Users/jaimem/University of Tasmania/IMAS-DiveFisheries - Assessments - Documents/Assessments/GIS/Writing 150 features with 46 fields and geometry type Point.

# Convert geometry to latitude and longitude to create dataframe
pointqt_df <- pointqt %>%
        st_transform(crs = st_crs(4326)) %>%
        sfheaders::sf_to_df(fill = T) %>%
        select(c(zone, blockno, subblockno, cell.ntile, oid, x, y)) %>%
        dplyr::rename('latitude' = y,
```

```
arrange((oid)) %>%
mutate(site_order = row_number(),
       site = paste('GL', 2023, blockno, site_order, sep = '-'))
pointqt_sf <- pointqt_df %>%
  st_as_sf(coords = c('longitude', 'latitude'), crs = st_crs(4326))
# Export Excel file
write.xlsx(pointqt_df, sprintf("C:/Users/%s/University of Tasmania/IMAS-DiveFisheries - Assessments - D
           sheetName = "Sheet1",
           col.names = TRUE, row.names = TRUE, append = FALSE)
# Export Excel file ready for GPX external file creation for plotter
\# GDAL package for creating GPX files no longer supported in R
pointqt_gpx <- pointqt_df %>%
   select(site, longitude, latitude) %>%
  rename('waypointid' = site)
write.xlsx(pointqt_gpx, sprintf("C:/Users/%s/University of Tasmania/IMAS-DiveFisheries - Assessments - I
           sheetName = "Sheet1",
           col.names = TRUE, row.names = TRUE, append = FALSE)
```