Параллельные вычислительные технологии (ПаВТ'2019) 2-4 апреля 2019 г. :: Калининград Балтийский федеральный университет

СРАВНИТЕЛЬНЫЙ АНАЛИЗ ПАРАЛЛЕЛЬНЫХ ВЫЧИСЛИТЕЛЬНЫХ СХЕМ ДЛЯ РЕШЕНИЯ ЗАДАЧ ПРИНЯТИЯ РЕШЕНИЙ

Гергель В.П., д.т.н., директор ИТММ, ННГУ Козинов Е.А., ассистент каф. МОСТ, ИТММ, ННГУ

Содержание

- □Постановка задачи принятия решений
- □Основы предлагаемого подхода к решению задач принятия оптимальных решений
- □Параллельные алгоритмы решения задач принятия решений
- □Результаты вычислительных экспериментов

Актуальность задачи

- □ Задачи принятия оптимальных решений редко можно решить на основе только интуиции и накопленного опыта исследователя.
- □ Задачи принятия оптимальных решений во многих случаях могут быть сведены к задачам многокритериальной оптимизации (МКО).
- □ Решение задачи МКО осложнено следующими факторами:
 - критерии являются многоэкстремальными,
 - критерии могут быть **вычислительно трудоемкими**,
 - в предельном случае необходимо отыскание всей области Парето,
 - постановка задачи МКО может меняться в ходе вычислений.

Математическая постановка задачи принятия оптимальных решений

Объект принятия оптимальных решений

$$w(y) = (w_1(y), w_2(y), ..., w_M(y)),$$

- w (y) вектор характеристик,
- $y = (y_1, y_2, ..., y_s) \in D$ вектор конструктивных параметров,
- $D = \{ y \in \mathbb{R}^N : a_i \le y_i \le b_i, 1 \le i \le N \}.$

$$w_1(y) =$$
Прочность машины $w_2(y) =$ Стоимость машины $w_2(y) =$ Стоимость машины $w_2(y) =$ Стоимость машины $w_3(y) =$ Расход топлива

Математическая постановка задачи принятия оптимальных решений

Требования к оптимальному выбору

$$f(y) = (f_1(y), f_2(y), ..., f_s(y)),$$

- $f_j(y) = w_{i_j}(y) -$ векторный критерий эффективности, $g(y) = (g_1(y), g_2(y), ..., g_m(y))$
- $g_l(y) = w_{j_l}(y) q_l \mathbf{\textit{beктор-функция ограничений}},$
- $q_l \partial$ опуск на значения критериев.

Множество задач многокритериальной оптимизации

Каждое требование задает новую задачу оптимизации $\vec{Z} = \{Z_i : 1 \le i \le v\}. \quad Z_i \in \vec{Z} : f(y) \to \min, y \in Q, Q = \{y \in D : g(y) \le 0\}$

Прочность машины → тах

Вес машины < 1,5 т.

Расход топлива < 11 л.

Основы предлагаемого подхода: Сведение задач МКО к одномерным задачам ГО

- □ В рамках разработанного подхода применяются:
 - Свертка набора частных критериев $f_i(y)$

$$F(\lambda, y) = max(\lambda_i * f_i(y), 1 \le i \le s), \sum_{i=1}^{s} \lambda_i = 1, \lambda_i \ge 0, 1 \le i \le s.$$

— Редукция размерности на основе *кривых* (*разверток*) Пеано y(x) $\min_{x \in [0, 1]} \varphi(x)$, где $\varphi(x) = F(\lambda, y(x))$, $y(x) \in Q$.

– Учет ограничений выполнен на основе использования индексной схемы.

Основы предлагаемого подхода: Базовый алгоритм глобального поиска (АГП*)

- □ Испытание вычисление значений вектор-функции $w(y(x_i))$ в точке x_i .
- □ Общая схема алгоритма поиска глобального минимума:

Первое испытание проводится в произвольной точке $x^1 \in (0,1)$. Далее:

- 1. Отсортировать точки испытаний в порядке возрастания их координат $0 = x_0 < x_1 < \ldots < x_i < \ldots < x_k < x_{k+1} = 1$.
- 2. Для каждого интервала (x_{i+1}, x_i) вычислить значение характеристики R(i).
- 3. Определить интервал (x_{t-1}, x_t) , которому соответствует максимальная характеристика $R(t) = max \; \{R(i) \colon 1 \le i \le k+1\}.$
- 4. Провести очередное испытание в точке интервала $x^{k+1} \in (x_{t-1}, x_t)$.
- 5. Условие остановки $\rho_t \le \varepsilon$, где $\rho_j = \sqrt[N]{x_i x_{i-1}}$.

Основы предлагаемого подхода: Ускорение вычислений на основе повторного использования информации...

- \square Решение задач последовательность испытаний $w^i = w (y^i)$.
 - Вся доступная информация о решаемой задаче оптимизации (*множество поисковой информации*, МПИ):

$$\Omega_k = \left\{ \left(y^i, w^i = w(y^i) \right)^T : 1 \le i \le k \right\}.$$

– МПИ преобразуется к матрице состояния поиска (МСП) :

$$A_k = \{(x_i, z_i, l_i)^T : 0 \le i \le k\}$$

- $x_i = y(y_i)$ редуцированные точки,
- $z_i = max \left(\lambda^j f_i^j, 1 \le j \le s\right)$,
- l_i номера итераций.
- □ Поисковая информация может быть приведена к новой постановке задачи *без дополнительных вычислений значений характеристик*:

$$z'_i = max(\lambda'_j f^j_i, 1 \le j \le s), 1 \le i \le k.$$

Основы предлагаемого подхода: Ускорение вычислений на основе повторного использования информации

- □ Пример решения задачи:
 - Серый точки проведения испытаний.
 - Черный точки проведения испытаний при повторном использовании информации.
 - Черные окружности точки принадлежащие области Парето.
- □ Основной результат применения МАМГП:
 - Первая подзадача решается за равное количество итераций (40 итераций).
 - Вторая подзадача за счет повторного использования информации решается почти в два раза быстрее (34 против 60 итераций).

Параллельные вычисления для вычислительных систем с общей памятью

□ Параллельный многомерный алгоритм многокритериального глобального поиска для общей памяти (ПАМГП-ОП).

Параллельный алгоритм, дополненный возможностью повторного использования информации:

- 1. Отсортировать точки испытаний в порядке возрастания их координат $0 = x_0 < x_1 < \ldots < x_i < \ldots < x_{k*p} < x_{k*p+1} = 1.$
- 2. Для каждого интервала (x_{i-1}, x_i) вычислить характеристики интервалов R(i).
- 3. Отсортировать интервалы по убыванию характеристик, взять p интервалов $R(t_1) \ge R(t_2) \ge ... \ge R(t_p)$.
- 4. Провести p испытаний параллельно $(x_{t_1-1}, x_{t_1}), (x_{t_2-1}, x_{t_2}), ..., (x_{t_p-1}, x_{t_p}).$
- 5. Критерий остановки:

$$\rho_{t_i} \le \varepsilon, 1 \le t_i \le p.$$

Параллельные вычисления для вычислительных систем с распределенной памятью...

 □ Решение задачи МКО может быть сформулировано как проблема решения семейства задач

$$\vec{\Phi}(x) = \begin{cases} \Phi_1(x) \leftarrow (F(\lambda_1, y(x)), g(y)), \\ \Phi_2(x) \leftarrow (F(\lambda_2, y(x)), g(y)), \\ \dots, \\ \Phi_{\tau}(x) \leftarrow (F(\lambda_{\tau}, y(x)), g(y)) \end{cases}.$$

- \square Семейство подзадач $\vec{\Phi}(x)$ можно решать как последовательно, так и параллельно:
 - Семейство подзадач $\vec{\Phi}(x)$ является *информационно-связанным*.
 - Значения оптимизируемых функций, вычисленные для любой подзадачи $\Phi_l(x)$, $1 \le l \le \tau$, *могут быть приведены* к значениям всех остальных задач этого семейства.

Параллельные вычисления для высокопроизводительных вычислительных систем

- □ Параллельный многомерный алгоритм многокритериального глобального поиска (ПАМГП).
 - В начале вычислений подзадачи $\Phi_i(x)$ распределяются по вычислительным процессорам.
 - Перед каждой итерацией происходит проверка на наличие вычисленных значений критериев и ограничений от соседних процессоров.
 - При наличии вычисленных значений обновляется МПИ и МСП.
 - Выполняется итерация глобального поиска согласно ПАМГП-ОП.
 - Вычисленные значения критериев и ограничений рассылаются всем процессорам.

Решаемая задача

□ Решалась серия задач МКО

- Число задач в серии 30
- Каждая задача МКО шестимерная пятикритериальная (N = 6, s = 5)
- Для каждой задачи МКО использовалось 100 различных наборов коэффициентов сверток λ.
- Критерии получены генератором GKLS.
- Пример функций GKLS при размерности равной двум:

Результаты вычислительных экспериментов

□ Оценка эффективности использования одного узла кластера.

Ядер	Информация повторно	Итераций	S1	S2
1	не используется	26 813 722,7	1,0	
1	используется	9 103 069,6	2,9	1,0
8	используется	1 291 720,0	20,8	7,0
16	Используется	609 169,5	44,0	14,9

- -S1 ускорение параллельного алгоритма относительно алгоритма, не использующего МПИ.
- S2 ускорение параллельного алгоритма относительно алгоритма, *использующего* МПИ.

Возможные вычислительные схемы

□ Использование всех процессоров для решении одной задачи

глобальной оптимизации.

Использование множественных разверток.

□ Использование процессоров для решения подзадач, отличающимися

$$\vec{\Phi}(x) = \begin{cases} \Phi_1(x) \leftarrow (F(\lambda_1, y(x)), g(y)), \\ \Phi_2(x) \leftarrow (F(\lambda_2, y(x)), g(y)), \\ \dots, \\ \Phi_{\tau}(x) \leftarrow (F(\lambda_{\tau}, y(x)), g(y)) \end{cases}.$$

□ Использование процессоров для решения множества задач МКО.

$$Z_i \in \vec{Z}: f(y) \to min, y \in Q, Q = \{ y \in D : g(y) \le 0 \}$$

Сравнение различный вычислительных схем

□ В серии 30 задач МКО. На каждом узле используются по 16 ядер.

Z – число параллельно

решаемых задач МКО.

 $-\Phi$ — число подзадач отличающихся набором λ .

- -E число используемых разверток.
- *S1* –ускорение параллельного

Проц.	Z	Φ	E	Итераций	S1	S2
1	1	1	1	609 169,50	44,0	1
10	1	10	1	75 045,80	357,3	8,1
10	1	5	2	77 643,60	345,3	7,8
10	1	1	10	108 700,00	247,7	5,6
10	2	5	1	76 819,00	349,1	7,9
10	2	1	5	81 132,80	331,5	7,5
10	5	2	1	66 618,60	403,5	9,1
10	5	1	2	77 995,00	344,8	7,8
10	10	1	1	73 999,70	362,3	8,2

алгоритма относительно алгоритма, не использующего МПИ.

 S2 – ускорение, полученное в результате использования нескольких процессоров и 16 ядер на каждом процессоре

Спасибо за внимание!

