Martin Bezděka, souhrné poznámky z PV131

Poznámky jsou vypracované ze slidů, není zde uplně všechno ale to duležité tu je. Neručím za správnost, určitě jsou zde chyby, proto užívejte zodpovědně! Hodně štěstí u zkoušky.

Degradace obrazu, konvoluce, rozmazání, šum,...

- Poznámka: Je důležité znát druh poškození obsaženého v obraze před začátkem zpracování obrazu nebo analýzy
- BLUR (rozmazání)
 - Prakticky každý obraz je rozmazaný
 - O Důvod vzniku:
 - Např. atmosférickými poruchami, rozostřením, nepřesnostmi optického systému nebo pohnutím během získávání obrazu
 - Může být považováno jako vážené průměrování šedých hodnot v určitém sousedctví
 - Matematicky popsatelné konvolucí
 - o Tvorba rozmazání (Modelling blur):
 - Aditivní lineární systém
 - Takový systém, který doržuje pravidlo aditivního skládání
 - V takových systémech je degradace celého obrazu rovna součtu degradací individuálních bodů originálního obrazu
 - Impulzní odezda systému (impuls response):
 - Odezva systému na nekonečně malý (Diracův) impuls
 - POINT SPREAD FUNCTION (PSF) rozptylová funkce
 - Rozptylová funkce optického systému
 - Obraz ideálního bodového zdroje světla
 - Nezaostřený optický systém
 - Může být napodoben konvolucí s jádrem ve tvaru disku (circular averaging)
 - Atmosférické poruchy
 - Napodobení pomocí konvoluce s 2D gaussiánem.
 - Motion blur rozmazání pohybem
 - Napodobení pomocí konvoluce s "čárou" jádro podél směru rozmazání
- ŠUM
 - Obsažen prakticky v každém obraze
 - Jedná se o náhodnou změnu hodnot pixelů
 - Způsoben např.:
 - Podmínkami prostředí při získávání obrazu
 - Kvalitou snímacího zařízení
 - Interferencí během přenosu obrazu
 - Typy šumu:
 - Aditivní
 - Nejdůležitější typ!!
 - Ovlivňuje všechny pixely
 - Různé druhy distribucí:
 - Gaussian velmi častý
 - Kruhový šum způsobený sílou signálu
 - o Rayleigh (radar)
 - o Exponenciální (laser)
 - o Gamma (laser)
 - Impulsní
 - Degraduje obraz v jednotlivých pixelech, kde vytváří chybné šedé hodnoty, narozdíl od aditivního, terý ovlivňuje všechny pixely...
 - Např. defekty pixelů v CCD čipu digitálního fotoaparátu
 - Jednopólový implusní šum degraduje pixely jednou stejnou šedou hodnotou
 - Dvoupólový impulsní šum degraduje 2 šedými hodnotami

- Speciální případ, kdy je šum tvořen maximální-bílá a minimální-černá se nazývá SůL A PEPŘ (Salt-and-pepper noise)
- Poissonův
 - Důležitý druh šumu v CCD snímání obrazu
 - Např. photon-shot noise
 - o Termální šum
 - Doplnit!!!!
- Odhadování parametrů šumu
 - Informace můžeme získat ze specifikace senzoru
 - Nebo měřením:
 - Zachycení snímku "plochého" prostředí
 - Získání obrazů malých kuliček v mikroskopii
 - Studiem histogramu malých konstantních oblastí
- o Průměrná šedá hodnota (mean) a její rozptyl
 - Mean = suma přes všechny hodnoty v obraze / rozměr obrazu (MxN)
 - Rozptyl se spočítá tak, že místo hodnot v obraze sčítáme rozdíl hodnoty od MEAN
 - Druhá odmocnina rozptylu se nazývá SMĚRODATNÁ ODCHYLKA
- O SNR (Signal-to-Noise Ratio) poměr signálu a šumu
 - Měří zhoršení kvality obrazu šumem
 - Porovnává se rozptyl obrazu a rozptyl šumu
 - Jednotkou jsou dB, ČÍM VĚTŠÍ HODNOTA, TÍM LÉPE
 - Šum s SNR >= 30 dB je prakticky neviditelný
 - Výpočet SNR pro poissonův šum je mírně odlišný, ale smysl je stejný
 - Může se lišit v pixelech

- KONVOLUCE

- Vlastnosti:
 - Komutativní, Asociativní, Distributivní
- o Při použití konvolučního jádra ho musíme překlopit vodorovně a svisle!!!!
- o 1D
- Konvoluce dvou 1D signálů, kde f = f_i je funkce a w=w_i je konvoluční jádro
- Diskrétní: $(f * w)_i = \sum_k f_{i-k} w_k$
- Spojitá: $(f * w)(x) = \int f_{x-x} w_{x} dx'$
- o 2D
- Konvoluce dvou 2D signálů, kde f= f_{ii} je funkce a w = w_{ii}
- Diskrétní: $(f * w)(i,j) = \sum_{k,l} f(i-k,j-l)w(k,l)$
- Spojitá: $(f * w)(i,j) = \int f(i-i',j-j')w(i',j')di'dj'$

Image enhancement – Zlepšování kvality obrazu

Filtry

- Bodová transformace
 - Pozičně nezávislá
 - LUT (look-up-table)
 - Z matematického hlediska se dá říci, že vyhledávací tabulka funguje jako funkce (jedné či více proměnných) s omezeným definičním oborem.Linearní bodová transofrmace (definovaná funkcí t(x) = ax + b)
 - Každé vstupní hodnotě přiřadí výstupní hodnotu
 - Obvykle předpočítána
 - Vytvoření nejlépe podle histogramu
 - Jedná se o jednorozměrné pole hodnot
 - Velikost pole je určena bitovou hloubkou obrazu pro 8-bit, 256 hodnot
 - Použití:

- o Reverze(negativ), změna jasu, kontrastu, linear stretch
- Nelineární bodová transformace
 - Logaritmická, eponenciální, mocninná (power), odmocniná (root), gamma korekce
 - PRAHOVÁNÍ!
 - Inverze
 - Percentile stretch
 - Ekvalizace histogramu
 - o Transformuje obraz tak, aby hodnoty intenzity byly zhruba stejne zastoupeny
 - Zlepšuje subjektivní kvalitu obrazu
- Pozičně závislá

Lineární filtry

- = operátory jejichž vstupem a výstupem jsou obrazy
- LSI (Linear shift invariant) filtry mají ekvivalent v konvoluci a naopak
- VYHLAZOVACÍ
 - Gaussův filtr nejlepší vyhlazovací filtr
- o DIFERENČNÍ
 - Sobelův 1. Derivace obrazu, generuje edge map (hrany)
 - Často používán po Gaussově filtru derivative of Gaussian(DoG)

$$\begin{pmatrix}
1 & 2 & 1 \\
0 & 0 & 0 \\
-1 & -2 & -1
\end{pmatrix}, \begin{pmatrix}
0 & 1 & 2 \\
-1 & 0 & 1 \\
-2 & -1 & 0
\end{pmatrix}, \begin{pmatrix}
-1 & 0 & 1 \\
-2 & 0 & 2 \\
-1 & 0 & 1
\end{pmatrix}$$

- Laplacův 2. Derivace obrazu
 - Často po Gaussově filtru Laplacian of Gaussian (LoG), také mexican hat filter

• Např::
$$\begin{pmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{pmatrix}$$

- OSTŘÍCÍ (SHARPENING)
 - Vytáhne hrany pomocí Laplacian filter a přičte k výsledku původní hodnoty pixelů, $\begin{pmatrix} -1 & -1 & -1 \\ -1 & 9 & -1 \\ -1 & -1 & -1 \end{pmatrix}$

$$\begin{bmatrix} f*\begin{pmatrix} -1 & -1 & -1 \\ -1 & 9 & -1 \\ -1 & -1 & -1 \end{bmatrix} + \begin{bmatrix} f*\begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \end{bmatrix}$$

- * značí konvoluci
- o Problémy
 - Okraje obrazů nejsou definovány pro konv. Jádra řešení:
 - Speciální jádra pro okraje
 - Za okrajem je vždy nula (zero padding)
 - Zrcadlový obraz (Mirror image padding)
 - Výpočetní čas řešení
 - Rozklad na separabilní jádra (pokud lze)
 - Použití fourierovy transformace
- Vlastnosti: komutativní, asociativní, distributivní (f . (g + h)) = (f . g) +(f.h)

Nelineární filtry

- 2 kategorie
 - Na pozici v masce záleží
 - Difůzní filter (navrzen Perona-Malik)
 - o Redukujeme účinek dufůze na hránách, aby jsme je zachovaly
 - Typická implementace:
 - Šedé hodnoty považovány za koncentrace
 - Pozičně závislé
 - Iterativní proces míra difuze záleží na počtu cyklů
 - Nelineární detekce hran (edge detection)
 - o Doplnit!!!!
 - Na pozici v masce nezáleží
 - Minimum (maximum) filter
 - Vezme max/min hodnotu v masce a tu uloží do pixelu
 - Medián filter
 - o Seřadí hodnoty pixelů v masce a vybere prostřední, ten pak dá místo pixelu

- Odstraňuje defekty kamery (hot pixels), dobré na sůl a pepř šum
- o Zachovává hrany, ale odstraňuje tenké čáry a ostré rohy
- Rank-k filter
 - Seřadí podle velikosti a vrátí k-tý prvek
 - o Pro určité hodnoty k bud medián, min, nebo max... k=1,size,size/2
- MaxMin 5x5 filter
 - Pokud je rozdíl mezi max a min vnejších 16 pixelů větší než předdefinovaný práh,
 potom je daný pixel nahrazen maximem nebo minimem vnějších 16 pixelů
 - Jinak je nahrazen průměrem sousedících 8 pixelů

Lokální ekvalizace histogramu

- Rozdíly:
 - o Globální používá stejnou funkci pro všechny pixely
 - ∩ Lokální:
 - Vytvoření lokálního histogramu (napr. 3x3)
 - Ekvalizujeme ho, tj. Vytvoříme LUT
 - LUT aplikujeme na centrální pixel
- Vlastnosti:
 - Zachovává hrany
 - o Zachovává průměrnou šedou hodnotu
 - Potlačení šumu

Fourierova transformace (FT)

- Dekompozice signálu (1D/2D/3D) do frekvenčních komponent
- Možnost rekonstrukce signal z frekvenčních component
- Nepostradatelný nástorj pro pochopení a navrhování lineárních filtrů
- Důležité pro rychlý výpočet konvoluce
- Reprezentace pomocí komplexního čísla
- Vlastnosti:
 - o Linearita
 - Shift posun
 - Scaling
 - Konvoluce pravidla:
 - FT { f ® g} = FT {f} * FT {g}
 - DFT { f ® g} = DFT {f} * DFT {g}
 - o Rotation invariance (neměnnost) u diskrétních pouze aproximace
 - Diskrétní nebo spojitá u diskrétních pouze aproximace
- Výsledkem jsou 2 obrazy:
 - Magnitude(velikost) viditelný
 - Phase fáze
- Vysoký dynamický contrast
 - Skutečné hodnoty musíme transformovat do 8-bitových čísel
 - Řešením logaritmická bodová transformace
- FAST FOURIER TRANSFORM
 - o Algoritmus pro rychlý výpočet DFT

Filtry ve frekvenční doméně

- Definice: Filtr
 - o Pozičně nezávislý operátor, který transformuje obraz, všechny jeho části podle stejného pravidla
- Typy

- Nízkofrekvenční
 - Zachovává nízké frekvence a potlačuje ty vysoké
 - Smoothing vyhlazování
 - Typy:
 - Nevážené průměrování (Non-weighted averaging)
 - Vážené průměrování (Gaussian low-pass filter)
 - Butterworth low-pass filter
- Vysokofrekvenční
 - Zachovává vysoké frekvence a potlačuje ty nízké
 - (Detekce hran diferenční)
 - Typy:
 - Ideal high-pass filter
 - Butterworth high-pass filter
 - Gaussian high-pass filter
 - Sobel
 - \circ 1. Derivace v prostorové, násobení –(i * w $_d$) ve frekvenční
 - Laplace
 - \circ 2. Derivace v prostorové, násobení – $(w_x^2 + w_x^2)$ ve frekvenční
- Pásmové
 - Zachovává určitý pás frekvencí
 - Rovná se rozdílu mezi 2 vysokofrekvenčími filtry
 - Druhy:
 - Narrow-band-pass (úzkopásmový), tj. úzký pás frekvencí
 - Broad-band-pass (širokopásmový)
 - Band-stop (band-reject) (s pásmovou zádrží)
 - O Doplněk k pásmovému filtru, vynechá určitý pás frekvencí
 - Rovná se součtu nízkofrekvenčního a vysokofrekvenčního filtru
 - Typy:
 - Ideal band-pass filter
- PROBLÉM PERIODICITY DFT
 - o **Řešení**:
 - Věřit pouze centrální části obrazu, ne okrajům
 - Zero padding
 - Mirror image padding
- Sampling theorém
 - Nyquistovo pravidlo
 - "Přesná rekonstrukce spojitého, frekvenčně omezeného, signálu z jeho vzorků je možná tehdy, pokud byl vzorkován frekvencí alespoň dvakrát vyšší než je maximální frekvence rekonstruovaného signálu."
 - Frekvence je počet opakování za minutu, tzn. Musíme najít nejhustější frekvenci a zdvojnásobit
 - V praxi se tedy vzorkovací frekvence volí dvakrát větší plus ještě nějaká rezerva než je maximální požadovaná přenášená frekvence. V telekomunikacích je to např. 8 kHz neboť je třeba přenášet pouze signály ve standardním telefonním pásmu (od 0,3 do 3,4 kHz zaokrouhleno směrem nahoru 4 kHz). Například u záznamu na CD je to zas 44,1 kHz neboť zdravé lidské ucho slyší maximálně cca do 20 kHz a tudíž vzorkovací frekvence 44,1 kHz byla zvolena s velkou rezervou.
 - Největší přenesená frekvence se nazývá cut-off frekvence
 - Nyquist rate = 2*cut-off frekvence
 - Podvzorkování
 - Sampling frekvence < Nyquist rate
 - Převzorkování
 - Sampling frekvence > Nyquist rate
 - V případě použití nižší vzorkovací frekvence může dojít k tzv. aliasingu, kdy rekonstruovaný signál je výrazně odlišný od původního vzorkovaného signálu.
 - Alias
- Nová nízkofrekvenční informace (neobsažena v původním obraze) vzniká při podvzorkování
- Nové informace (též artefakty) se také nazývají moiré effect
 - U některých hodně proužkatých obrazů se jakoby začnou přímky stáčet..., to je moire effect, nebyly vzorkovány s dostatečnou frekvencí

- Důvody vzniku aliasu:
 - o Originální obrázek není omezený nemá žádnou cut-off frekvenci
 - Originální obrázek je sice omezený, ale použitá vzorkovací frekvence je menší než nyquist rate
- Omezení aliasu:
 - (Úplné odstranění bohužel není možné)
 - Převzorkování k-krát
 - o Rozdělit převzorkovaný obraz do k x k superpixelů
 - Spočítat průměrné hodnoty superpixelů
 - Vytvořit nový obraz s normální samplovací frekvencí tak, aby každý pixel nového obrazu byl roven průměru pixelů uvnitř korespondujícího superpixelu...
- DALŠÍ TRANFORMACE
 - Diskrétní kosínová/sínová transformace
 - Wavelet transformace
- Důležitý fakt:
 - Každý lineární filtr v prostorové doméně (proveden konvolucí) má korespondující filter ve frekvenční doméně (proveden násobením) a naopak
 - f ® g = IFT { FT {f} * FT {g} }

Restaurování (rekonstrukce) obrazu - Dekonvoluce

- Proces restaurování obrazu
- Kroky při restaurování:
 - Sestavíme model degradace..
 - Na základě tohoto modelu sestavíme inverzní(obrácený) proces
 - Inverzní proces aplikujeme na degradovaný obraz za účel ho obnovit
 - Poznámky
 - Většinou se nepodaří získat původní obraz, ale pouze určité přiblížení
- Techniky
 - Bodové techniky restaurování obrazu
 - Předpokladem je, že obraz byl degradován bodovou transformací O_D
 - Vytvoříme inverzní proces O_R, aby platilo: O_R (O_D(x)) = x
 - Realizováno pomocí LUT (look-up table)
 - Napr. U Gamma korekce
 - o Prostorové techniky restaurování obrazu Dekonvoluce
 - Předpokladem je optický systém s LSI implusní odezvou??
 - Inverzní proces navržen použitím lineárních filtračních technik = DEKONVOLUCE
- DEKONVOLUCE
 - Iterativní proces odhadování původního obrazu z již "zkonvolvovaného" obrazu použitím lineárních filtračních technik
 - Tvar (prostorová doména):
 - Vstupni_obraz = Original ® Konvolucni_jadro + Aditivni_sum
 - Tvar (frekvenční):
 - $G(w_x, w_y) = F(w_x, w_y) \cdot H(w_x, w_y) + N(w_x, w_y)$
 - Velká písmena značí obrazy prevedene do frekvencni domeny, pokud bysme chteli ziskat Vstupni obraz museli bysme udelat inverzni fourierku
 - Typy dekonvoluce:
 - Non-Blind (neslepá☺)
 - Vstup: Vstupni obraz, Konvolucni jadro
 - Výstup: odhad puvodniho obrazu
 - Slepá
 - Vstup: Vstupni obraz,
 - Výstup: odhad puv. obrazu, odhad konvoluc. jádra
 - NON-BLIND dekonvoluce

- Pokud není přítomen šum, tak je to jednoduché:
 - G vstupni obraz, F puvodní originál, H-konvoluční jádro
 - $G(w_x, w_y) = F(w_x, w_y) \cdot H(w_x, w_y)$
 - $G(w_x, w_y) / H(w_x, w_y) = F(w_x, w_y)$
 - f = InverFourTransf (G(w_x, w_y) / H(w_x, w_y))
 - → obraz dostaneme podělením vstupního obrazu ve four. Domene konvolučním jádrem ve fourierově doméně následovaném inverzní fourierovou transformací
- Jinak musíme upravovat
 - ILPF inverse low-pass filtering, jinak také: filtering with cut-off
- o BLIND dekonvoluce
 - Ne příliš dobré výsledky
 - Založeno na faktu že PSF (point spread function = impulsní odezva zaměřovacího optického systému) je protažený ve směru osy z v optických systémech
 - Snižuje SNR, čož je blbé, protože čim větší SNR, tím lépe
 - Vymyšleno pro pomalé počítače
 - Techniky:
 - WIENER FILTERING
 - Tento filtr byl navržen tak, aby dokázal zpětně rekonstruovat obrázek, který byl poničen šumem nebo špatnou impulzní odezvou snímacího zařízení.
 - CONSTRAINED LEST SQUARES FILTERING
 - MAXIMUM-LIKELIHOOD ESTIMATION (MLE Approach) odhad max. pravděpod.
 - o Non-blind i blind
 - Nejčastěji používaný přístup k dekonvoluci, provede opakovaný odhad nejpravděpodobnějších původní funkcí

Segmentace obrazu

- Rozdělení obrazu do segmentů oblasti, spojenné množiny s podobnými vlastnostmi
- Základní definice:
 - Spojené body
 - 2 body jsou spojeny v S pokud existuje cesta mezi nimi sestávající se pouze z pixelů v S
 - Souvislá komponenta
 - •
 - o Souvislá množina
 - Hranice oblasti
- Označení regionů
 - Fáze 1:
 - Výpočet binárního obrazu
 - Z šedotónního, bílé obsahují objekty, černé obsahují pozadí
 - o Fáze 2
 - Označení regionů
 - Oblasti v binárním obraze jsou nalezeny a označkovány, každý pixel má přiřazeno identifikační číslo oblasti do které patří
- Přístupy:
 - o Prahování thresholding
 - Region-based metody
 - o Detekce hran
 - Segmentace textury
 - o ...
- Prahování
 - Pixely jsou rozděleny do oblastí podle jejich intenzity
 - o Globální
 - Práh je stejný pro všechny pixely v obraze
 - Nezáleží na jejich pozici v obraze
 - Lokální
 - Práh závisí na poloze pixelu v obraze
 - Určení prahu

- Manuální uživatelem
- Automatické použití analýzy intenzity histogramu
- DVOUÚROVŇOVÉ PRAHOVÁNÍ
 - Práh je zvolen v "údolí" mezi 2 kopci histogramu
 - Pokud histogram neobsahuje 2 vrcholy, někdy pomůže spočítat histogram jenom těch pixelů, jejichž velikost
 Laplaciánu je velká
 - Pokud histogram obsahuje pouze 1 zřetelný kopec, říkáme o takovém obrazu že je s jednomodulovou distribucí (unimodal distribution)
 - Prahování lze např. Tak, že řekneme že X% nejvíce/nejméně intenzivních pixelů budou objekty a zbytek pozadí
- VÍCEÚROVŇOVÉ PRAHOVÁNÍ
 - Pracuje přímo s šedotóním histogramem
 - Předpokládá rovnoměrné světlo a bimodální rozložení histogramu
 - Dá se upravit aby pracoval lokálně (adaptivně)
- PRAHOVÁNÍ BAREVNÝCH OBRAZŮ
 - Pro každý barevný kanál zvlášť
- LOKÁLNÍ (ADAPTIVNÍ) PRAHOVÁNÍ
 - Použití:
 - 1. Nestejná intenzita světla na pozadí
 - 2. Stejná intenzita pozadí, ale nestejné intenzity objektů, které netvoří samostatné kopce na histogramu
 slévají se do širěího kopce)
 - o Řešení:
 - Rozdělení obrazu do pravidelných sub-regionů a práh je spočítán individuálně pro každý region použitím analýzy histogramu
 - Nepříliš dobré výsledky na okrajích regionů
 - Doplnit!!!
 - Nejprve uděláme globální prahování, které oddělí pozadí od objektů, potom pro každý objekt spočítáme lokální histogram a určíme práh. Všechny objekty jsou přesegmentovány s individuálními prahy
 - Problém pokud se 2 objekty různých intenzit dotýkají a jsou považovány za jeden objekt po úvodním globálním prahování
- SEGMANTACE: metody založené na regionech (oblastech)
 - lterativní metody založené na slučování a/nebo dělení na základě míry podobnosti vlastností regionů
 - NARŮSTÁNÍ OBLASTÍ (REGION GROWING)
 - Initializace:
 - Obraz je rozdělen do velkého množství segmentů (oblastí)
 - Počáteční segmenty můžou být dokonce tvořeny jednotlivými pixely
 - Iterace:
 - Sousední oblasti jsou spojovány pokud mají podobné vlastnosti (většinou intenzitu)
 - Poznámky:
 - Je vhodné vytvořit určité omezení na spojování oblastí, může být velmi složité
 - SPLIT AND MERGE (štěpení a slučování)
 - Vstup:
 - Originální obraz
 - Individuální pixely mnoho oblastí
 - Průměrný počet oblastí
 - Iterace:
 - Oblasti, které nejsou homogenní jsou rozděleny do menších oblastí
 - Sousedící oblasti s podobnými vlastnostmi jsou slepeny dohromady
 - Poznámky:
 - Podmínky pro dělení a slučování mohou být složité
 - Často používaná metoda:
 - QUAD-TREE METHOD
 - Nehomogenní oblasti jsou rozděleny do 4 podoblastí(kvadrantů)
 - 4 sousedící oblasti s podobnými vlastnostmi jako jejich společný rodič jsou spojeny dohromady pokud je to možné
 - Aplikace slučování oblastní potom pokračuje na oblastech v jiných úrovních pyramidy (kvadratického stromu) nebo s jiným rodičem

- LARGEST CONTOUR SEGMENTATION (LCS)
 - Doplnit!!!

DETEKCE HRAN

- Šedotónní obraz hran
 - o Konstrukce Sobelem (1.derivace) nebo Laplacem (2. Derivace)
- Binární obraz z hran
 - o Vytvoření obrazu kde jedničky znázorňují hrany a nuly pozadí například prahováním
- PROBLÉM:
 - o Hranice v prahovaném obraze nejsou spojité!!!
- Definice: HRANA
 - Významná a náhlá změna síly signálu
 - o Může bát reprezentována jako normálový vektor k hraně
 - o Hrany mají směr a velikost (magnitude)
- ŠUM PROBLÉMY
 - o Vytvořením šedotóního obrazu s vytaženými hranami se zvednul šum
 - Šum by měl být potlačen vyhlazením
 - Např DoG
- DETEKCE HRAN VE VÍCE SMĚRECH
 - Hrany jsou obvykle detekovány ve více různých směrech a výsledky jsou zkombinovány pomocí různých technik

CANNY EDGE DETECTION

- Optimalizace s ohledem na následující kritéria:
 - Error rate detektor by měl detekovat pouze hrany a najít všechny, žádná by neměla chybět
 - Lokalizace místo by mělo být co nejpřesnější
 - Response detektor by neměl detekovat více hran kde je pouze jedna
- Předpoklady:
 - Detektor bude konvoluční filtr, který vyhladí šum a najde hranu
- Výsledek:
 - Použití first derivatie of Gaussian DoG
 - Jsou kombinovány horizontální a vertikální směry derivace jako odmocnina součtu druhých mocnin
 - Tímto jsme získali šedotónní obraz s hranami
- o Post-processing šedotónního obrazu
 - Cílem je ztenčení hran na šířku jednoho pixelu
 - U každého hranového pixelu zvážíme mřížkový směr(4 směry), tj. Který je nejvíce kolmý k hraně
 - Jestliže jeden ze dvou sousedů v tomto směru má větší velikost úhlu, odstraníme centrální pixel
 z obrazu hran
- Tvorba binárního obrazu
 - Používá dvouúrovňové prahování
 - Cílem je vynést pouze relevantní hrany
 - Body nad horním prahem dáme jako seeds relevantních hran
 - Přidáme všechny sousedy, kteří jsou pod horní hranicí prahu, ale nad spodní hranicí
- o PROBLÉM NESPOJITOSTI HRAN řešení:
 - Prokládání bodů křivkou
 - Předpoklad: Objekty v obraze jsou jednoduché, hrany se nevětví
 - Heuristické spojování hran
 - Předpoklad: Objekty v obraze nejsou příliš komplikované
 - Hraniční body jsou spojeny čárami použitím určitých heuristických algoritmů, potom jsou vícenásobné spojení a větve vymazány a nakonec jsou finální "fragmenty" napojeny tzv. Mosty (bridges)

HOUGH TRANSFORM

- Předpoklad: Objekty v obraze nejsou příliš komplikované
- Houghova transformace je transformace čáry z kartézských souřadnic do bodu v polárních souřadnicích podle rovnice:
 - $p = x \cos O + y \sin O$
 - o kde p je vzdálenost normály čáry od počátku a O je úhel od osy x
- Základní fakta:

- Čára je převedena na bod
- Soubor čar procházející skrz společný bod je převeden na spojenou množinu bodů (křivku)
- Skupina čar, které procházení skrz 3 kolineární body (ty body se dají spojit přímkou) jsou převedeny na 3 křivky, které mají všechny společný jediný bod, který koresponduje s čárou v kartézských souřadnicích procházející těmito 3 body
- Diskétní Houghova transformace (transofrmace binárního obrazu)
 - Každá nenulový bod v originálním obraze je převeden na křivku v polární doméně, která je kvantována? do buněk(cells) (pixelů)
 - Jestliže křivka splňuje danou buňku v polárních souřadnicích, buňka je zvýšena o iedničku
 - Při transformaci šedotíního obrazu je buňka zvýšena o hodnotu korespondující velikosti úhlu, tzn. silnější hrany mají větší vliv naž slabé.
- Napojení hran
 - Každá buňka v Houghově obraze jejíž velikost je úměrně velká definuje čáru v originálním obraze
 - Pokud čára překrývá původní hranu v obraze, tak může zakrýt chybějící napojení rovných čar hranových segmentů
 - O Jinak musí být chybějící napojení vyplněny určitou heuristickou metodou, viz. výše
- Generalizovaná Houghova transformace
 - Houghova transformace pro libovolné tvary
 - o Kruhová (circular) Houghova transformace
- TEXTURE SEGMENTATION segmentace podle textury
 - Rozdělení obrazu do oblastí podle charakteristiky textury
 - Metoda 1: ROSENFELD a spol.
 - Nevýhoda: hranice textur jsou rozmazané
 - Metoda 2: THOMPSON
 - Idea: Detekujeme přechody mezi oblastmi s lišící se texturou, takže vytvoříme mapu hran
 - Nevýhoda: hrany nejsou spojité
 - PROBLÉM: různé měřítko textury
 - Pokud se obraz sestává z textur různých měřítek, je nezbytné provést "multiscale texture analysis", tj. Analyzovat textury pro různá měřítka"
- CLUSTERING METHODS, TEMPLATE MATCHING
 - o Doplnit!!!

Matematická morfologie

- Teorie pro analýzu prostorových struktur
- Použití:
 - o Filtrování šumu
 - Korekce nestejného osvětlení
 - Odstranění drobných kapek, kuliček,...
 - o Vynesení hran
 - Separování spojených blobs(kuliček, kapek)
 - Klasifikace textur
 - o Interpolaace obrysových dat?
 - Adaptivní uzavření (closing)
- STRUKTURNÍ ELEMENT
 - Musí mít def. počátek
 - Počátek má souř. (0,...,0), od něj se odvozují ostatní části SE
- SLOŽENÝ SE (composite SE)
 - Pár nespojených množin se stejným počátkem
 - Můžeme rozdělit na popředí (vyplněné) a pozadí (prázdné)
 - Používá se u Hit-or-miss transformací
- EROZE
 - Pravidlo:
 - Pokud se CELÉ vejde do množiny, tak započítáme **počátek** SE

- DILATACE
 - o Pravidlo:
 - Pokud se alespon část SE vejde do množiny, pak započítáme celý SE
 - Dilatace může mazat některé pixely pouze a jenom pouze pokud SE neobsahuje svůj počátek!
- OPENING (otevření)
 - o Idea: zachovat co nejvíc z erodovaného obrázku
 - o Pravidlo
 - Pasuje celý SE do množiny? Pokud ano, započítáme celý SE.
 - Je to EROZE následovaná DILATACÍ
- CLOSING (uzavření)
 - o Idea: obnovit původní tvar struktury, která byla dilatována
 - Pravidlo: Doplnit!!
 - Je to DILATACE následovaná EROZÍ
- HIT-OR-MISS transoformace
 - Používá složený SE
 - Pravidlo:
 - Pokud první množina SE (popředí) pasuje CELÁ do objektu a zároveň druhá množina SE (pozadí) pasuje
 CELÁ do pozadí, tak zahrneme počátek SE do výsledku
 - Využití HMT:
 - Thinning ztenčování
 - Shrinking zcvrkávání
 - Skeletoning vytváření kostry
- Matematická morfologie šedotňních obrázků
 - o TOP-HAT
 - White Top-hat
 - = rozdílu mezi originálním obrázkem a jeho OTEVŘENÍM
 - Tzn.: Originál Opening = white top-hat
 - Black Top-hat
 - = rozdílu mezi UZAVŘENÍM a originálním obrazem
 - Tzn.: Closing Original = black top-hat
 - Může být použito na korekci nerovnoměrného osvětlení
 - White top-hat na tmavé pozadí
 - Balck top-hat na světlé pozadí
- WATER-SHAD transformace (záplavová)
 - Výpočet:
 - Určíme maximální (Maxl) a minimální (Minl) intenzitu celého obrazu
 - Určíme tzv. Značky, tj semínka budoucích objektů
 - Vytvoříme prázdný binární obraz (BinImg) všechny pixely nastavíme na nulu
 - FOR CurIntensity = MinI to MaxI do
 - Necháme růst regiony z jejich značek (nebo z už existujících regionů Binlmg) tak, že že všechny pixely s intenzitou nižší nebo stejnou jako CurIntensity jsou započítány
 - Nesmíme nechat regiony spojit!
 - BinImg nyní obsahuje teritória objektů. Počet objektů je roven počtu značek