编程作业三——火焰杯试炼问题报告

2023011004 自 35 夏弘宇 xiahy23@mails.tsinghua.edu.cn

2025年5月20日

1 强化学习建模

1.1 状态空间

• **定义**: 所有可能的迷宫格子坐标, 共 $5 \times 5 = 25$ 个状态

$$S = \{(x,y) \mid x,y \in \{0,1,2,3,4\}\}$$
 (1)

1.2 动作集合

• 定义: 上下左右四个移动方向:

$$A = \{ \bot, \top, \pm, \pm \} \tag{2}$$

• 边界处理: 若移动导致出界, 则保持原状态

1.3 状态转移概率

对于状态 s = (x, y) 和动作 a,计算目标位置 $s'_0 = (x', y')$

- 若 s'_0 是陷阱或火焰杯,则转移到起点 s' = (0,0),概率为 1,游戏结束。
- 若 s_0' 不是陷阱或火焰杯,则转移到 $s' = s_0'$,概率为 1。

数学表示为: P(s' | s, a) = 1

1.4 Reward 函数

虽然作业模板中给了一些默认值,但我觉得-1,0,1 的 reward 差异性不够大,就设计了如下比较激进的 reward 函数:

- 每移动一步施加 -2 惩罚,减少无效探索
- 撞墙惩罚 -5, 减少步数浪费
- 陷阱惩罚 -10, 避免重复触发
- 火焰杯奖励 +100, 激励快速找到目标

2 Q-learning 算法实现

2.1 Q-table 定义与状态编码

- 状态空间建模:
 - 状态索引公式: $state = y \times maze_width + x$
 - 其中 (x,y) 为网格坐标 (范围 0-4)
- 动作空间设计:
 - 0: 向上移动
 - 1: 向下移动
 - 2: 向右移动
 - 3: 向左移动

• 初始化策略:

- Q-table 维度为 25 × 4 矩阵
- 初始值设为 0

2.2 核心参数设置与使用

对于这个比较简单的迷宫问题,训练轮数应该不用很多,设置了 100 轮,相应地,学习率就要大一些,取了 $\alpha=0.1$;由于这个问题的确定性很强,所以折现因子设置得大一点 $\gamma=0.9$,看看效果;初始探索率 $\epsilon=0.1$ 是一个比较经典的取值,由于知识不断积累,需要探索的内容会变少,所以需要进行探索率的衰减,这里使用比较经典的衰减: $\epsilon_{new}=\max(0.01,0.995\epsilon)$ 。

Q table 更新公式: $Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma \max_{a \in A} Q(S_{t+1}, a) - Q(S_t, A_t) \right]$ $\epsilon - greedy$ 策略的公式:

$$\pi(a|s) = \begin{cases} 1 - \epsilon + \frac{\epsilon}{|A|} & \text{if } m = \arg\max_{a \in A} Q(s, a) \\ \frac{\epsilon}{|A|} & \text{if } m \end{cases}$$

$$(4)$$

2.3 智能体训练流程

如下伪代码展示了训练过程(忽略了可视化的部分)

Algorithm 1 Q-learning 训练过程

```
输人: 迷宫环境 M, 最大训练轮数 E = 100, 最大步数 T = 100
输出: 最优 Q-table Q*
  初始化 Q-table Q(s,a) \leftarrow 0, \forall s \in \mathcal{S}, a \in \mathcal{A}
  设置初始探索率 \epsilon \leftarrow 0.1
  for  \Box c d b d e = 1  to  E  do
       重置环境获得初始状态 s<sub>0</sub>
       初始化累计奖励 G \leftarrow 0
       for 时间步 t = 0 to T - 1 do
           动作选择:
              a_t \leftarrow  随机选择,
                      \operatorname{arg\,max}_a Q(s_t, a), 概率1 - \epsilon
           执行动作: (s_{t+1}, r_t, \text{done}) \leftarrow \text{EnvStep}(a_t)
           Q 值更新:
              Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha \left[ r_t + \gamma \max_a Q(s_{t+1}, a) - Q(s_t, a_t) \right]
           路径记录: \mathcal{P} \leftarrow \mathcal{P} \cup \{(s_t, a_t)\}
           奖励累计: G \leftarrow G + r_t
           if done = True then
               退出循环
           end if
       end for
       探索率衰减: \epsilon \leftarrow \max(0.01, 0.995\epsilon)
       奖励记录: \mathcal{R} ← \mathcal{R} ∪ {G}
  end for
```

2.4 核心代码解释

本项目的核心代码由三部分组成: Q-learning 智能体、训练框架和迷宫环境。以下是关键代码的解释:

2.4.1 Q-learning 智能体 (agent.py)

• Q 表初始化

```
self.q_table = np.zeros((self.n_states, self.n_actions))
```

创建状态-动作价值矩阵,维度为(迷宫格子总数×4个动作)。每个元素表示在特定状态下采取某动作的预期收益。

• 状态编码

```
x = int((coords[0] - 50) / 100)
y = int((coords[1] - 50) / 100)
return y * self.maze width + x
```

将像素坐标 (如 [150,250]) 转换为网格坐标 (y=2, x=1),再编码为状态索引 ($2\times5+1=11$)。这是连接 GUI 环境与算法的关键转换。

• 动作选择

```
if random.uniform(0, 1) < self.epsilon:
    return random.randint(0, 3)
max_actions = np.where(...)
return np.random.choice(max_actions)</pre>
```

采用 -greedy 策略:以概率 ϵ 随机探索,以 $1-\epsilon$ 概率选择当前最优动作。随机选择 Q 值并列情况确保探索多样性。

• Q 值更新 (learn 方法)

```
q_target = r + self.gamma * np.max(self.q_table[next_state])
self.q_table[state, a] += self.alpha * (q_target - ...)
```

实现 Q-learning 更新规则: 新 Q 值 = 旧值 + 学习率 ×(即时奖励 + 折扣因子 × 下状态最大 Q 值 - 旧值)

2.4.2 训练框架

• **训练循环** (train 函数)

```
for episode in range(n_episodes):
   observation = env.reset()
   for step in range(max_steps):
        action = agent.choose_action(observation)
        observation_, reward, done = env.step(action)
        agent.learn(observation, action, reward, observation_)
```

包含完整的"选择动作 \rightarrow 执行动作 \rightarrow 获得反馈 \rightarrow 更新 Q 表"循环。每个 episode 最多执行 100 步,动态调整探索率。

• 探索率衰减

```
agent.epsilon = max(0.01, agent.epsilon * 0.995)
```

随着训练进行逐步降低探索率,平衡探索与利用。设置下限 0.01 防止完全停止探索。

• 路径可视化

```
visualize_path(episode + 1, path, success)
```

调用可视化函数保存路径图像,如图 1 所示。处理终端状态时推断最终位置(到达目标或最近陷阱)。

2.4.3 迷宫环境

• 状态转移逻辑(step 方法)

```
if s_ == self.canvas.coords(self.goal):
    reward = 100
```

elif s_ in trap_coords:

reward = -10

elif hit_wall:

reward = -5

else:

reward = -2

定义强化学习的关键反馈机制:到达目标 +100,触碰陷阱-10,撞墙-5,正常移动-2。负奖励加速收敛。

• 动作空间限制

实现网格世界的运动约束,防止移出迷宫边界。每个动作对应 100 像素的位移。

3 训练结果分析

3.1 训练过程指标

表 1: 训练阶段关键指标

训练回合	单回合奖励	探索率 (ϵ)	最近 10 回合成功率
10	-38.0	0.096	10%
20	52.0	0.091	60%
30	78.0	0.086	70%
40	90.0	0.082	80%
50	90.0	0.078	100%
60	90.0	0.074	90%
100	90.0	0.061	100%

收敛性分析:

- reward 提升: 平均单回合奖励从-38 (第 10 轮) 提升至 +90 (第 40 轮后)
- 稳定期: 60 回合后保持接近 100% 成功率,表明策略收敛

为了方便分析, 我将成功率绘制成曲线图。可以发现成功率曲线呈现三阶段增长:

• 探索期 (1-30 回合): 成功率 < 60%

• 过渡期 (30-50 回合): 成功率快速提升

• 稳定期 (50+ 回合): 几乎保持 100% 成功率

3.2 路径演化

3.3 Q-table 特征分析

完整学习后的 Q-table 如下 (状态编码为 5×5 网格的行优先排列):

表 2: 最终 Q-table 示例 (按网格坐标索引)

坐标 (x, y)	上	下	右	左
(0,0)	-0.83	-4.08	40.60	-1.03
(1,0)	-3.76	-2.95	52.83	0.38
(2,0)	-2.40	-2.71	64.73	1.24
(3,0)	10.88	76.25	-0.74	2.99
(4,0)	-0.50	-0.54	-0.50	-0.42
(0,1)	-0.43	-3.32	-3.31	-3.40
(1,1)	4.97	-3.44	-3.44	-3.01
(2,1)	0.00	0.00	0.00	0.00
(3,1)	5.72	87.78	-0.20	-1.00
(4,1)	-0.22	-0.38	-0.50	-0.14
(0,2)	-2.81	-2.80	-2.71	-2.93
(1,2)	0.00	0.00	0.00	0.00
(2,2)	0.00	0.00	0.00	0.00
(3,2)	-0.08	5.68	0.28	99.98
(4,2)	-0.22	-0.40	0.00	14.02
(0,3)	-2.30	-2.23	-2.71	-2.42
(1,3)	0.00	0.00	0.00	0.00
(2,3)	0.00	-0.22	-0.14	-1.00
(3,3)	34.61	0.00	-0.32	0.00
(4,3)	-0.20	-0.20	-0.50	4.07
(0,4)	-1.78	-1.97	-1.73	-2.33
(1,4)	-1.90	-1.44	-1.03	-1.15
(2,4)	-0.54	-0.50	-0.54	-0.44
(3,4)	0.40	-0.50	-0.20	-0.20
(4,4)	-0.20	-0.50	-0.50	-0.20

由于 Q 值的表看着非常抽象, 我把每一个单元格中最大值提取出来进行了热力图可视化:

主要特征:

1. 目标导向:火焰杯右侧格子 (3,2) 向左的 Q 值达 99.94,形成明显梯度引导

2. **陷阱规避**: 陷阱周围状态(如 (0,2))所有动作 Q 值均 < 0,使得最大值竟然是指向陷阱的,这是不好的,可能是因为学习过程中探索到这一块的次数太少导致的。如果有需要,可以提升其探索率 ϵ

3. **最优路径**: 很明显从起点开始有一条颜色很深的路径指向火焰杯,这条路径就是最优路径,引导得很到位

4 思考题: 2-step Q-learning 算法设计

哈利提出的 2-step Q-learning 算法更新规则为:

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma R_{t+2} + \gamma^2 \max_{a \in A} Q(S_{t+2}, a) - Q(S_t, A_t) \right]$$

表 3: 公式符号定义

•	
符号	含义
S_t	时刻 t 的状态
A_t	时刻 t 选择的动作
α	学习率 $(0 < \alpha \le 1)$
γ	折扣因子 $(0 \le \gamma < 1)$
R_{t+1}	执行 A_t 获得的即时奖励
R_{t+2}	执行 A_{t+1} 获得的次级奖励
$\max_{a \in A} Q(S_{t+2}, a)$	两步后的最大预期价值

Algorithm 2 2-step Q-learning 更新流程

在 t 时刻: 执行 A_t , 观测 (S_{t+1}, R_{t+1})

在 t+1 时刻: 执行 A_{t+1} , 观测 (S_{t+2}, R_{t+2}) 更新历史记录: $\mathcal{H} \leftarrow (S_t, A_t, R_{t+1}, S_{t+1}, A_{t+1}, R_{t+2}, S_{t+2})$ 计算 TD 目标: $target \leftarrow R_{t+1} + \gamma R_{t+2} + \gamma^2 \max_a Q(S_{t+2}, a)$ 更新 Q 值: $Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha[target - Q(S_t, A_t)]$

这一设计,相比标准 Q-learning 的 1 步回溯,能识别跨越两个状态的因果关系,比较适合火焰杯试 炼等需要预测多步之后情况的场景。