## UNIVERSIDADE FEDERAL DO PARANÁ

## SETOR DE TECNOLOGIA

Curso de Informática Biomédica

ANNA CAROLINE BOZZI

**CNN** 

#### Curitiba 2020

## 1.Introdução

Esse trabalho apresenta os resultados da classificação de uma base de imagens, com manuscrito referente aos doze meses do ano, utilizando duas redes neurais convolucionais:

- CNN
- LeNet5

Foi feita a implementação em python de ambas, e também de técnicas para aumentar a base de treinamento, *Data Augmentation*.

A base de dados consistia em 1979 imagens, das quais 1578 foram pré determinadas para treinamento e 401 para teste.

Foi ainda utilizando duas redes pré-treinadas da *ImageNet, Transfer Learning* e o *Fine-Tuning,* para gerar vetores de características para classificar em um SVM.

## 2.Implementações:

#### 2.1 CNN:

### Carregamento de dados

Para o carregamentos dos dados foi utilizado o Keras.

### Pré processamento

Para esse passo foi utilizado as funções de resize e reshape.

#### **Particionamento**

O particionamento de dados foi determinado em 80% para treinamento e 20% para teste/validação, e ainda foi realizado teste com técnicas de Data Augmentation para aumento da base de treinamento.

#### Rede

São três camadas convolucionais. Para as primeiras camadas da rede utiliza-se *Conv2D()*. Em seguida é adicionado a camada de pooling máximo *MaxPooling2D()*. É utilizado também *Dropout()* para evitar *overfitting*.

#### **Treinamento**

Assim que compilado o modelo, é realizado o treinamento utilizando a função *fit()* do *Keras*.

#### 2.2 LeNte 5

### Carregamento de dados

Para o carregamentos dos dados foi utilizado o Keras.

#### Pré processamento

Para esse passo foi utilizado as funções de *resize* e *reshape*.

#### **Particionamento**

O particionamento de dados foi determinado em 80% para treinamento e 20% para teste/validação, e ainda foi realizado teste com técnicas de Data Augmentation para aumento da base de treinamento.

#### Rede

A diferença do CNN é nas camadas, para esse modelo foram 5 camadas de convoluções.

#### **Treinamento**

Assim que compilado o modelo, é realizado o treinamento utilizando a função fit() do Keras.

### 2.3 Data Augmentation

Foram utilizadas três técnicas combinadas para o aumento da base de treinamento:

- Rotação, em 8 graus apenas
- Zoom de 20%
- e Variações de brilho entre 0.5 e 1.5

A rotação faz com que a imagem seja levemente inclinada para ambos os lados. O zoom foi aplicado centralizado de forma que não houvesse "corte" na palavra. E o brilho foi aplicado de forma que apresentasse pequena variação na intensidade dos pixels.

Com essas técnicas foram geradas 3 novas imagens para cada uma disponível para teste. Ou seja, no total a base de treinamento com Data Augmentation foi de 6312 imagens

## 3. Resultados e análise

### 3.1 CNN

3.1.1 Com Data Augmentation, epochs = 65, learning\_rate = 0.01, batch = 64.

É possível ver nos gráficos a seguir que a validation loss e a validation accuracy estão sincronizadas com a training loss e training accuracy. Mesmo que as linhas de accuracy não sejam lineares, mostra que o modelo por volta da época 30 não está em overfitting, a validation loss está diminuindo e não aumentando, e a lacuna entre a accuracy do training e da validation é sutil, porém a partir da época 30 o modelo dirige-se a um overfitting. O ideal, observando esse caso, seria ter parado por volta da época 30.





| [[2 | 28 | 5  | 0  | 0  | 0  | 2  | 3  | 0  | 0  | 0  | 0  | 1]   |
|-----|----|----|----|----|----|----|----|----|----|----|----|------|
| [   | 4  | 25 | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 2  | 0  | 0]   |
| 1   | 0  | 0  | 35 | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0]   |
| 1   | 0  | 0  | 1  | 32 | 4  | 0  | 0  | 1  | 1  | 0  | 0  | 0]   |
| [   | 0  | 0  | 1  | 3  | 34 | 0  | 0  | 0  | 0  | 0  | 0  | 0]   |
| [   | 7  | 0  | 0  | Θ  | Θ  | 19 | 2  | 1  | 0  | 0  | Θ  | 0]   |
| [   | 5  | 0  | 0  | 0  | 2  | 0  | 25 | Θ  | 0  | 0  | 0  | 0]   |
| 1   | 0  | 0  | 0  | 0  | 0  | 1  | 0  | 24 | 0  | 0  | 1  | 2]   |
| 1   | 0  | 0  | 0  | 1  | Θ  | 0  | 0  | 0  | 20 | 5  | 2  | 3]   |
| [   | 0  | 0  | 1  | 1  | Θ  | 0  | 0  | Θ  | 0  | 28 | 0  | 0]   |
| [   | 0  | 0  | 0  | 0  | Θ  | 0  | 0  | Θ  | 1  | 2  | 31 | 0]   |
| [   | 0  | 0  | 0  | 0  | 0  | 2  | 0  | 2  | 4  | 3  | 2  | 20]] |

A matriz de confusão para esse classificador demonstra bons resultado em relação às classificações, é possível verificar confusão relativamente baixa. A frequência maior de confusão é entre os meses Janeiro Junho e Julho.

# 3.1.2 Com Data Augmentation, epochs = 90, learning\_rate= 0.02, batch = 64.

Conforme foi demonstrado, a *CNN* para 60 épocas apresentou uma tendência a *overfitting*, realizado agora o teste para 90 épocas é possível afirmar que a partir de 30 épocas há *overfitting*.







A respectiva matriz de confusão dessa execução demonstra pouca variação em relação a com 60 épocas. Apresenta as mesmas confusões mais aparentes, entre os meses de janeiro, junho e julho.

# 3.1.2 Sem Data Augmentation, epochs = 90, learning\_rate = 0.02, batch = 64.

Como foi visto anteriormente, com 60 épocas a classificação com Data Augmentation apresentou algumas dúvidas, será portanto apresentado de forma direta a classificação sem Data Augmentation para 90 épocas. Conforme é possível verificar abaixo nos gráficos, o mesmo desempenho geral pode ser observado, também a partir de 30 épocas há uma tendência a *overfitting*, salientando que seria o ideal parar.







A matriz de confusão resultante apresenta no geral as mesmas confusões das já demonstradas pela classificação com Data Augmentation.

### 3.2 LeNet5

Como os testes de classificação feito previamente com o CNN indicaram que um maior número de épocas seria o ideal para apresentar uma análise mais precisa, foi iniciado diretamente esse classificador para 90 épocas.

## 3.2.1 Com Data Augmentation, epochs = 90, learning\_rate = 0.01, batch = 64.

É possível ver nos gráficos a seguir que a *validation loss* e a *validation* accuracy começam sincronizadas com a *training loss* e *training accuracy*, porém converge bem rápido para uma accuracy de 0.89 e logo entra em overfitting.





| [[: | 30 | 8  | 0  | 0  | 0  | 0  | 1  | 0  | 0  | 0  | 0  | 0]   |
|-----|----|----|----|----|----|----|----|----|----|----|----|------|
| ]   | 2  | 26 | 0  | 0  | 0  | 0  | 0  | 0  | 2  | 0  | 1  | 1]   |
| [   | 1  | 0  | 32 | 0  | 1  | 1  | 0  | 0  | 1  | 0  | 0  | 0]   |
| [   | 0  | 0  | 0  | 31 | 3  | 0  | 0  | 0  | 1  | 3  | 1  | 0]   |
| [   | Θ  | 1  | 1  | 3  | 30 | 1  | Θ  | Θ  | 1  | 1  | Θ  | 0]   |
| [   | 2  | 1  | 0  | 1  | 0  | 19 | 4  | 0  | 1  | 0  | 1  | 0]   |
| [   | 3  | 1  | Θ  | Θ  | 0  | Θ  | 28 | 0  | 0  | 0  | 0  | 0]   |
| ]   | Θ  | 0  | Θ  | 0  | 1  | 0  | 0  | 22 | 0  | 1  | 1  | 3]   |
| ]   | 0  | 0  | Θ  | 0  | Θ  | 1  | 0  | 0  | 24 | 3  | 2  | 1]   |
| 1   | 0  | 0  | Θ  | 0  | 0  | Θ  | 0  | 0  | 2  | 27 | 0  | 1]   |
| [   | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 34 | 0]   |
| [   | 0  | 1  | 0  | 0  | 0  | 1  | 0  | 0  | 6  | 0  | 4  | 21]] |

A matriz de confusão para esse modelo apesar de como na CNN apresentar as mesmas confusões, o desempenho geral em relação às confusões foi maior.

# 3.2.1 Com Data Augmentation, epochs = 16, learning\_rate = 0.01, batch = 64.

Para melhor visualização dos dados no momento em que entra em overfitting, segue a seguir a representação para 16 épocas, é possível visualizar

com mais precisão que o desempenho máximo chega em 0.89 com duas épocas e entra em overfitting, esse modelo convergiu bem rápido.





| [[: | 36 | 1  | 0  | 0  | 0  | 1  | 1  | 0  | 0  | 0  | 0  | 0]   |
|-----|----|----|----|----|----|----|----|----|----|----|----|------|
| [   | 2  | 28 | 0  | Θ  | Θ  | Θ  | Θ  | Θ  | 1  | Θ  | 1  | 0]   |
| 1   | 0  | 0  | 35 | 0  | 1  | Θ  | 0  | 0  | 0  | 0  | 0  | 0]   |
| [   | 1  | Θ  | 0  | 33 | 1  | Θ  | 1  | 3  | 0  | 0  | Θ  | 0]   |
| 1   | 1  | 1  | 0  | 3  | 32 | Θ  | 0  | 0  | 0  | 1  | Θ  | 0]   |
| 1   | 1  | 0  | 0  | 0  | 0  | 26 | 1  | 1  | 0  | 0  | 0  | 0]   |
| 1   | 1  | Θ  | 0  | Θ  | Θ  | Θ  | 31 | Θ  | Θ  | Θ  | Θ  | 0]   |
| 1   | 0  | Θ  | 0  | Θ  | 0  | 1  | 0  | 27 | 0  | 0  | 0  | 0]   |
| [   | 1  | 0  | 0  | 1  | 0  | 0  | 0  | 0  | 26 | 1  | 1  | 1]   |
| 1   | 0  | Θ  | Θ  | Θ  | Θ  | Θ  | Θ  | Θ  | 1  | 28 | Θ  | 1]   |
| ]   | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 33 | 1]   |
| [   | 1  | 0  | 0  | 0  | 0  | 2  | 0  | 1  | 0  | 0  | 3  | 26]] |

A matriz de confusão para o LeNet 5 com 16 épocas se mostra ainda melhor em desempenhos gerais que todas as outras ja apresentadas, em geral apresentando ainda as mesmas confusões, porém bem menos frequentes.

### 3.2.1 Sem Data Augmentation, epochs = 90, learning\_rate = 0.01

Esse caso apresentou também um desempenho bem parecido com o modelo que usou Data Augmentation, ele ainda converge bem rápido para uma *accuracy* de 0.89 e logo entra em *overfitting*.







A matriz de confusão apresenta o ja esperado conforme observado em todos os outros anteriormente.

# 3.2.1 Com Data Augmentation, epochs = 16, learning\_rate = 0.01, batch = 64.

Para melhor visualização dos dados no momento em que entra em overfitting, segue a seguir a representação para 16 épocas, é possível visualizar com mais precisão que o desempenho máximo chega em 0.89 com três épocas e

entra em overfitting, esse modelo convergiu bem rápido, assim como no anterior, porém uma época depois.





```
[[35 3 0 0 0 0 0 0 0 0 0 1 0]
[4 24 0 0 0 0 0 0 0 0 0 0 2 2]
[0 0 34 0 2 0 0 0 0 0 0 0 0 0]
[0 0 1 28 5 0 1 1 1 2 0 0]
[0 0 0 4 31 0 2 0 0 0 1 0]
[2 1 0 0 0 22 4 0 0 0 0 0 0]
[3 0 0 0 0 3 26 0 0 0 0 0]
[0 0 0 0 2 2 0 22 0 0 0 2]
[0 0 0 1 0 1 0 1 0 0 19 4 2 4]
[0 0 0 0 0 0 0 0 0 0 29 0 1]
[0 1 0 0 0 0 1 1 0 1 1 0 2 27]]
```

Os resultados obtidos com a classificação através da *SVM* foram bastante controversos, sem tempo para refazer e verificar, optei por não apresentar os dados.

## 4.ImageNet e SVM

- 4.1Fine-Tuning
- 4.2Transfer-learning