TÌM SỐ

Cho dãy số nguyên dương $A=(a_1,a_2,\dots,a_n)$. Gọi M là tích của tất cả các phần tử trong dãy A:

$$M = \prod_{i=1}^{n} a_i = a_1 \times a_2 \times \dots \times a_n$$

Yêu cầu: tìm số nguyên dương d nhỏ nhất thỏa mãn: d không phải là ước của M.

Dữ liệu: Vào từ file văn bản FINDNUM.INP

• Dòng 1 chứa số nguyên dương $n \le 10^5$

• Dòng thứ i trong n dòng tiếp theo chứa số nguyên dương a_i ($a_i \le 10^7$)

Kết quả: Ghi ra file văn bản FINDNUM. OUT một số nguyên duy nhất là số d tìm được **Ví dụ**

FINDNUM.INP	FINDNUM.OUT
5	8
2	
3	
5	
6	
7	

Giải thích: $2 \times 3 \times 5 \times 6 \times 7 = 1260$ số nhỏ nhất không phải ước số của 1260 là 8.

VÒNG TRÒN

Cho dãy số nguyên $A=(a_1,a_2,\dots,a_n)$ là một hoán vị của dãy $(1,2,\dots,n)$ viết quanh một vòng tròn, người ta viết vào bên cạnh mỗi số a_i một giá trị b_i là tổng của a_i với hai số đứng cạnh nó trên vòng tròn.

Yêu cầu: Cho biết dãy b_1, b_2, \dots, b_n . Hãy tìm dãy A (nếu có nhiều dãy A tương ứng với dãy B chỉ đưa ra 1 dãy nhỏ nhất theo thứ tự từ điển)

Dữ liệu: Vào từ file văn bản CIRCLE.INP

Dòng 1 chứa số nguyên dương $n \le 10^5$

 \bullet Dòng 2 chứa n số nguyên $b_1, b_2, ..., b_n$

Kết quả: Ghi ra file văn bản CIRCLE. OUT lần lượt các số nguyên a_1, a_2, \dots, a_n trên một dòng

Ví dụ

CIRCLE.INP	CIRCLE.OUT
6	162354
11 9 11 10 12 10	

RÚT GỌN DÃY SỐ

Cho dãy n số nguyên dương $A=(a_0,a_1,\dots,a_{n-1})$. Với mỗi chỉ số i, người ta định nghĩa phép rút gọn R(i) như sau:

- Nếu i < n-1, phép rút gọn R(i) sẽ thay $a_i \coloneqq a_i a_{i+1}$ rồi xóa phần tử a_{i+1} .
- Nếu i=n-1, phép rút gọn R(i) sẽ thay $a_{n-1}\coloneqq a_{n-1}-a_0$ rồi xóa phần tử a_0 .

Sau mỗi lần rút gọn, số phần tử của dãy (n) giảm đi 1 và các phần tử của dãy A được đánh số lại từ 0 bắt đầu từ phần tử mang chỉ số nhỏ nhất.

Sau n-1 lần rút gọn dãy A, ta sẽ thu được duy nhất một số nguyên...

Ví dụ:
$$(12,10,4,3,5) \xrightarrow{R(2)} (12,10,1,5) \xrightarrow{R(3)} (10,1,-7) \xrightarrow{R(0)} (9,-7) \xrightarrow{R(0)} (16)$$

Yêu cầu: Cho số nguyên V, hãy tìm thứ tự thực hiện n-1 phép rút gọn đối với dãy đã cho để số cuối cùng thu được là V.

Dữ liệu: Vào từ file văn bản REDUCE.INP

- Dòng 1 chứa hai số nguyên n và V, $(1 \le n \le 200; 1 \le V \le 10^9)$
- \bullet Dòng 2 chứa n số nguyên $a_0, a_1, ..., a_{n-1}, (1 \le a_i \le 200, \forall i)$

Dữ liệu vào luôn đảm bảo có thể tìm ra phương án theo yêu cầu

Kết quả: Ghi ra file văn bản REDUCE.OUT n-1 số tương ứng với vị trí thực hiện n-1 phép rút gọn theo đúng thứ tư thi hành.

Các số trên một dòng của Input/Output files được/phải ghi cách nhau ít nhất một dấu cách.

Ví dụ:

REDUCE.INP	REDUCE.OUT
5 16	2 3 0 0
12 10 4 3 5	

CẦU CẢNG

Một cảng biển có m cầu cảng để tiếp nhận các tàu cập bến. Tại một thời điểm, mỗi cầu cảng chỉ có thể tiếp nhận không quá 1 tàu. Ban đầu các cầu cảng đều trống và có n tàu xin đăng ký cập bến, tàu thứ i muốn đậu ở cảng từ ngay sau thời điểm s_i tới hết thời điểm f_i . Có thể coi thời gian tàu thứ i muốn đậu ở cảng là một khoảng $(s_i, f_i]$ trên trục thời gian. Tàu đã vào cầu cảng nào thì sẽ đậu ở đó trong suốt thời gian nằm cảng.

Yêu cầu: Hãy cho biết với m cầu cảng đã cho, có thể tiếp nhận tối đa bao nhiều tàu và chỉ ra lịch trình tiếp nhận tại mỗi cầu cảng.

Dữ liệu: Vào từ file văn bản SEAPORTS.INP

- Dòng 1: Chứa hai số nguyên dương $m, n \le 10^5$
- n dòng tiếp theo, dòng thứ i chứa hai số nguyên s_i , f_i ($0 \le s_i < f_i \le 10^5$).

Kết quả: Ghi ra file văn bản SEAPORTS.OUT

- Dòng 1: Ghi số lượng tàu được tiếp nhận phục vụ
- Dòng 2: Ghi n số nguyên, số thứ i là số hiệu cầu cảng sẽ tiếp nhận tàu thứ i trong trường hợp tàu thứ i được tiếp nhận, còn nếu tàu thứ i không được tiếp nhận thì số thứ i là 0.

Các số trên một dòng của Input/Output files được/phải ghi cách nhau ít nhất một dấu cách.

Ví dụ

SEAPORTS.INP	SEAPORTS.OUT
2 5	4
0 3	11220
3 5	
0 2	
2 5	
1 4	