

по госту обозначение диода — ...

Значения по оси времени откладываются в угловых единицах  $\omega t$ .  $\frac{1}{50}$ сек – период.  $1msec=18^\circ$ 



Обмотки трехфазных трансформаторов могут быть включены звездой

Все одноименные точки соеденины или началами или концами в одну точку. Звезда может быть прямой или обратной.







Другой способ соединения обмоток – теругольник. Треугольник тоже бывает прямой и обратный.



Рассмотрим изображение звезду как векторную диаграмму.

– зигзаг, результирующий будет сдвинут по фазе относительно фазы А. На рисунке равноплечный зигзаг, бывает неравноплечный зигзаг. Зигзаги бывают также обратными

Сдвиг фазы 30% — равноплечный зигзаг, если зигзаг неравноплечный, то сдвиг фаз может быть от  $0^\circ$  до  $60^\circ$ 

Треугольники бывают правые и левые. > <

Существует соединение обмоток по схеме шестиугольника

Звезда и треугольник энергетически эквивалентны друг другу. Никакими

силами не определить разницу между 🖊 🛆



← 6-фазная звезда

Был 4-й провод "нулевой", но оборвался. Если на трансформаторе написано 6кВт это фазное или линейное напряжение. 380В напряжение меряют по междуфазному. Терминология – трансформаторы называют по большему напряжению. "0" может быть физический, а может быть искусственно созданный.



это искусственно созданный "0"

Так же искусственный ноль можно сделать в 6-ти фазной сети, подключив

6 чайников, чего хотите.

Как получить 9 фаз?



это и есть эквивалентная ЭДС. Здесь картина симметричная. Если делать 4 фазы, получится несимметричная ЭДС.

 $r_{\phi}$  — эквивалентное фазное — это сопротивление К.З., учитывающее индуктивность рассеяния первичной и вторичной обмоток трансформатора.





Какая полярность нагрузки считается положительной?



положительная,согласная с током на нагрузке.

И называют её противоЭДС



Если среднее, то  $U_d$ , если на осциллографе, то  $u_d$ .

$$L_{ ext{ iny H}}$$
 — противоЭДС  $+$  —  $I_d \ i_d$ 

Пульсирующий постоянный ток — это плохой ток. Чтобы уменьшать пульсации в основном применяют индуктивные фильтры. Обычно индуктивности в обмотке мотора может быть достаточно. Переменная составляющая может быть мала.

$$-\frac{L_{\Phi}}{\chi}$$

Индуктивность может насыщаться, со стальным сердечником можно  $\frac{\Psi}{I},$  а большой поток, когда есть L фильтра.

$$R_d = (R_{\rm H} + R_{\Phi})$$
  
$$L_d = (L_{\rm H} + L_{\Phi})$$

Допущения: В самой сети фазы одинаковы, симметричныю Доказываем:



Если пренебречь сопротивлениями  $L_{\phi}$  и  $r\phi$  то должен закрыться вентиль.

## 0.0.1 нулевая однофозная однополупериодная схема



Сеть пришла с m проводами.

Как считать  $\chi$  пока не говорим. В нашем случае m=1. У неё неи ни предыдущей ни последующей фазы. Фильтрация здесь невозможна потому что нет постоянной ЭДС, нет постоянного тока. Обязательно будет перерыв в токе. <положительная больше отрицательного>



Схема, вообще говоря, двухфазная. Называется однофазная двухполупериодная. m=2! — эквивалентное число фаз равно двум.

Несимметричная двухфазная система

Симметричная, когда модули одинаковые. В трехфазной системе симметричных не одна , а три "нулевая", "прямая" и "обратная". У 5-фазных 5 штук симметрий.

Симметричная фазная система это такая, модули составляющих одинаковые и углы между составляющими одинаковы.

 $rac{2\pi}{m}$  — "прямая" симметрия.  $-rac{2\pi}{m}$  — "обратная" симметрия. 0 - нулевая.





Рис. 1: трехфазная нулевая схема

ЭДС – если хотя бы на части периода сохраняет напряжение, то это ЭДС. 1 работник, 2е курят в коридоре. производительность используется на  $\frac{1}{3}$ . Если включил активную нагрузку, то получил бы  $P \sim \frac{1}{3} <$ там среднеквадратичное>.

Если все вентили вывернем, то на нагрузке количественно ничего не

изменится если повернуть . Изменится полярность.

Исторически жидкий ртутный катод <так и здесь>.

Для сети немного изменится



Вентили принадлежат двум группам: Группа ОК и группа ОА.

Прежде был курс ТОЭ –теоретическая часть. Силовая электроника – практическая часть, будем требовать качественно оформление отчёта. Продукция – это техническая документация.

 $U_{d'}$  и  $U_{d''}$  по величине одинаковые, по фазе отличаются:



Примем допущение, что  $L_\Phi$  большая а пульсации маленькие по направлению не меняются.

Постоянное  $\frac{U}{R} = i$  (ток).

В нагрузке сумма  $U_{\text{пост}} + U_{\text{перем}}$ . Для средних  $u_{d^{\,\prime}} = u_{d^{\,\prime\prime}}$ .

## Значит токи будут одинаковыми

Токи одинаковые, но я оторвал: сколько втекает столько вытекает при условии что переменные пульсации равны. Пульсации равны, но сдвинуты по фазе.



последнее, вместо двух нагрузок включаем одну

## 0.0.2 мостовая схема

Мостовая схема представляет собой последовательное соединение двух нулевых схем, одна из которых с ОК, другая с ОА. Но так как нет соединения с нулём трансформатора, то у трансформатора "0" не нужен, и вместо звезды у трансформатора может быть треугольник.

Нулевая схема выпрямления предполагает, что все обмотки трансформатора соединены в m-фазную звезду с выведенным нулём и все концы в звезде (либо все с точкой, либо все без точки) объединены, а нагрузка включена между ... При этом на нагрузке напряжение больше



3-х пульсная кривая, <название> некрасивое, но правильное. Например:

3-х фазная нулевая - 3-х пульсная

3-х фазная мостовая - 6-ти пульсная

Амплитуде пульсаций уменьшилась.



ГОСТ требует нумеровать столбцами, здесь пронумеровано по смыслу: вентили проводят в порядке  $V_5-V_6,\ V_1-V_6,\ V_1-V_2,\ V_3-V_2,\ V_3-V_4,\ V_5-V_4$ . Это нужно запомнить.

Уменьшилась амплитуда  $\Rightarrow$  улучшились условия подавления пульсаций.

апплитуда 
$$\nearrow$$
  $\Rightarrow$  L  $\searrow$   $\omega$   $\nearrow$   $\Rightarrow$  L  $\searrow$ 

Размах <пульсаций нулевой схемы> - 0.5

Сумма двух синусоид, также синусоида

Размах <пульсаций ... схемы> - 0.13

При той же индуктивности ...

3-х фазная схема самая распространенная схема выпрямления.

Достоинства: в 2 раза возрастает частота пульсации. примерно в 2 раза, почему, потому что мы считали для  $\alpha=0$ , при  $\alpha\neq 0$  будет другая форма кривой напряжения. Примерно в два раза возрастет продолжительность протекания тока вентильных обмоток. Вентили раборают 1/6 периода, обмотки – 1/3. Ток течёт по двум обмоткам. В 2 раза по среднеквадратичному. При том же выпрямленном напряжении в 2 раза уменьшается напряжение, прикладываемое к вентилям.

К вентилю прикладывается междуфазное линейное напряжение. В худшем случае прикладывается амплтуда.

Для высоковольтной преоьразовательной техники важно

⇒ Преобразуем энергию в ⇒

330кВ,1000кВ (Экибастуз-центр)

ПУЭ – правила цстройства электроустановок.

Есть разные категории потребителей. Доменная печь высотой с Исаакиевский собор. Задули электрическую печь кокс+уголь+флюс. Если электроснабжение прекратилось чугун стал в "козел" – нужно выбрасывать.

больницы.

8 мостов – управляемые

один мост закорачивают.

140 вольт.

Мостовые схемы могут быть с роазным числом фаз.

С пульсациями может быть не так. Амплитуда и число пульсаций уменьшаются если число фаз нечётное.



3-х фазная — 6-ти пульсная 4-х фазная — 4-ти пульсная 2-х фазная — 2-х <фазная?>

Вентили работают 1/6 периода. 9 обмоток – вентили работают 1/9, 2/9 периода работают вентильные обмотки. Рост числа фаз уменьшает коэффициэнт использования вентиля и трансформатора.

192 фазном выпрямлении эквивалентное

2/3 периода работает обмотка

Весь период



Грузится однофазным током



Оптимальное 2.7 между 2 и 3

$$\Rightarrow$$
 12 пульсов  $\Rightarrow$  12+12  $\Rightarrow$  24  $\Rightarrow$  48  $\Rightarrow$  96  $\Rightarrow$  192

32 моста

Можно последовательно, можно параллельно, параллельно через реактор.

32 ванны (4 параллельных 8 штук)

Кроме улучшения гармонического состава выпрямленного напряжения и тока повышение числа фаз улучшает гармонический состав тока потребляемого из сети.



Гармоники не 50 Герц, не передают мощности, искажают ток. Это главный недостаток выпрямителей.