BEST AVAILABLE COPY

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

TARAH BINDARI U BITUK NAN BIND BAND BAND AN IN KU BANDA HIRIT NAN ANAN AN BINDAR HIRI DI DI DI DI DI DI DI DI D

(43) Internationales Veröffentlichungsdatum 20. Oktober 2005 (20.10.2005)

PCT

(10) Internationale Veröffentlichungsnummer WO 2005/098926 A1

(51) Internationals Patentklassifikution7:

H01L 21/331

(21) Internationales Aktenzeichen:

PCT/EP2005/000500

(22) Internationales Anmeldedatum:

19. Januar 2005 (19.01.2005)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Doutsch

(30) Anguben zur Priorität:

10 2004 013 478.2 18. Mirz 2004 (18.03.2004)

(71) Anmelder (für alle Bestimmungsslauten mit Ausnahme von US): AUSTRIAMICROSYSTEMS AG [AT/AT]: Schloss Promstätten, A-8141 Unterpremstätten (AT).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): MEINHARDT, Gerald [All/AT]: Haydingasse 1, A-8010 Graz (AT). KRAFT, Jochen [DE/AT]; Paulahofsiedlung 42, A-8600 Oberaich

- (74) Anwelt: EPPING HERMANN & FISCHER PATEN-TANWALTSGFSELLSCHAFT MBII; Ridlerstr. 55, 80339 München (DB).
- (81) Bestimmungsstaaten (sowelt nicht anders angegeben, für jede verfügbare nationale Schutzrechtsart): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, II, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MU, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PO. PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TI, TZ, UA, UG, US, UZ, VC, VN, YU, ZA.
- (84) Bestimmungsstauten (soweit nicht anders ungegeben, für jede verfügbare regionale Schutzrechtsart): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG,

[Fortsetzung auf der nächsten Seite]

(54) Title: METHOD FOR THE PRODUCTION OF A BIPOLAR TRANSISTOR COMPRISING AN IMPROVED BASE TER-

(54) Bezeichbung: VERFAHREN ZUR HERSTELLUNG BINES BIPOLARTRANSISTORS MIT VERBESSEKTERM BASIS-

(57) Abstract: The invention relates to the production of an improved bipolar transistor provided with a low-ohomic base terminal. According to said method, a dielectric layer is to be deposited on a semi-conductor substrate and high doping is to be carried via an algorithm mask. In a subsequent controlled thermal step, the dopont is the different in the dopont in the plantation mask. In a subsequent controlled thermal step, the dopant is then diffused inside the semi-conductor substrate by the in produced inside the semi-conductor substrate by the diffused inside

ther dem Halbleitersubstrat eine dielektrische Schicht abzuscheiden und über eine Implantationsmuske hoch zu dotieren. In gen daran anschliessenden kontrollierten thermischen Schritt wird der Dotierstoff unschliessend aus der als Dotierstoffdepot dieden dielektrischen Schicht in das Halbleitersubstrat eindiffundiert. Dubei entsteht sien das der als Dotierstoffdepot dieden dielektrischen Schicht in das Halbleitersubstrat eindiffundiert. Dubei entsteht ein niederohmiger Bereich, mit dem die ex-