

Direct CP violation in the decay $B^+ \to K^+ \pi^0$ at LHCb

Zishuo Yang

University of Maryland

on behalf of LHCb Collaboration

CP Violation in B System

 The breaking of charge-parity symmetry arises from the interference between two contributing amplitudes with different strong and weak phases

Direct CP violation: interference in decay amplitudes

$$A_{CP} = \frac{\Gamma(\bar{B}^0 \to \bar{f}) - \Gamma(B^0 \to f)}{\Gamma(\bar{B}^0 \to \bar{f}) + \Gamma(B^0 \to f)}.$$

- CP violation in mixing: interference in mixing amplitudes
- Indirect CP violation: interference between mixing and decay amplitudes

 Because CKM matrix is the only CPV source in SM, any deviation could indicate new physics

The $B \rightarrow K \pi$ System

- There are four $B \rightarrow K \pi$ decays: $B^0 \rightarrow K^+ \pi^-$, $B^+ \rightarrow K^+ \pi^0$, $B^0 \rightarrow K^0 \pi^0$, $B^+ \rightarrow K^0 \pi^+$
- Particularly interesting because:
 - Tree amplitudes are suppressed by the CKM matrix element $V_{ub} = A\lambda^3(\rho i\eta)$.
 - Leading contribution is from QCD penguin amplitudes

(d) $B \to K\pi^0$ electroweak penguin diagrams

The $B \rightarrow K \pi$ System

- $B^0 \to K^0 \pi^0$ and $B^+ \to K^0 \pi^+$
 - dominated by QCD penguin amplitude
- $B^+ \to K^+\pi^0$ and $B^0 \to K^+\pi^-$
 - leading contribution is QCD penguin, non-negligible tree amplitudes

 interesting to see if the pattern of decays follow SM predictions -- extensive studies done at B factories and now LHCb

Origin of the $B \rightarrow K \pi$ Puzzle

• The current status of A_{CP} measurements:

decay	BaBar	Belle	LHCb
$B^0 \to K^+\pi^-$	$-0.107 \pm 0.016^{+0.006}_{-0.004}$	$-0.069 \pm 0.014 \pm 0.007$	$-0.080 \pm 0.007 \pm 0.003$
$B^+ \to K^+ \pi^0$	$+0.030 \pm 0.039 \pm 0.010$	$+0.043 \pm 0.024 \pm 0.002$	n/a
$B^0 \to K^0 \pi^0$	$-0.13 \pm 0.13 \pm 0.03$	$+0.14 \pm 0.13 \pm 0.06$	n/a
$B^+ \to K^0 \pi^+$	$-0.029 \pm 0.039 \pm 0.010$	$+0.043 \pm 0.024 \pm 0.002$	$-0.022 \pm 0.025 \pm 0.010$

- $B^+ \to K^+\pi^0$ and $B^0 \to K^+\pi^-$
 - Both penguin and tree diagrams differ only in the spectator quark (u or d)

$$\rightarrow$$
 $A_{CP}^{K^+\pi^-} \sim A_{CP}^{K^+\pi^0}$

(a) $B \rightarrow K \pi$ penguin diagrams

(b) $B \rightarrow K^+ \pi$ color-allowed tree diagrams

Origin of the $B \rightarrow K \pi$ Puzzle

• The current status of A_{CP} measurements:

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	decay	BaBar	Belle	LHCb
$B^0 \to K^0 \pi^0$ $-0.13 \pm 0.13 \pm 0.03$ $+0.14 \pm 0.13 \pm 0.06$ n/a	$B^0 o K^+\pi^-$	$-0.107 \pm 0.016^{+0.006}_{-0.004}$	$-0.069 \pm 0.014 \pm 0.007$	$-0.080 \pm 0.007 \pm 0.003$
7 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$B^+ \to K^+ \pi^0$	$+0.030 \pm 0.039 \pm 0.010$	$+0.043 \pm 0.024 \pm 0.002$	n/a
$B^+ \to K^0 \pi^+$ $-0.029 \pm 0.039 \pm 0.010$ $+0.043 \pm 0.024 \pm 0.002$ $-0.022 \pm 0.025 \pm 0.010$	$B^0 \to K^0 \pi^0$	$-0.13 \pm 0.13 \pm 0.03$	$+0.14 \pm 0.13 \pm 0.06$	n/a
	$B^+ \to K^0 \pi^+$	$-0.029 \pm 0.039 \pm 0.010$	$+0.043 \pm 0.024 \pm 0.002$	$-0.022 \pm 0.025 \pm 0.010$

- $B^+ \to K^+\pi^0$ and $B^0 \to K^+\pi^-$
 - Both penguin and tree diagrams differ only in the spectator quark (u or d)

$$\rightarrow$$
 $A_{CP}^{K^+\pi^-} \sim A_{CP}^{K^+\pi^0}$

Not as expected (disagreement above 5σ)

(a) $B \rightarrow K \pi$ penguin diagrams

(b) $B \rightarrow K^+ \pi$ color-allowed tree diagrams

Broader Picture of the $B \rightarrow K \pi$ Puzzle

Guided by isospin symmetry, a sum rule was derived:

$$\left[A_{CP}^{K^0\pi^+} \frac{\mathcal{B}^{K^0\pi^+}}{\mathcal{B}^{K^+\pi^-}} - A_{CP}^{K^+\pi^0} \frac{2\mathcal{B}^{K^+\pi^0}}{\mathcal{B}^{K^+\pi^-}} \right] \frac{\tau_{B^0}}{\tau_{B^{\pm}}} + \left[A_{CP}^{K^+\pi^-} - A_{CP}^{K^0\pi^0} \frac{2\mathcal{B}^{K^0\pi^0}}{\mathcal{B}^{K^+\pi^-}} \right] = 0$$

arXiv:0508.047 arXiv:0608.040 arXiv:1712.02323

- $B^0 \to K^0 \pi^0$ is least precisely measured among all decay modes:
 - Sum rule predicts $A_{CP}(K_S^0\pi^0) = -0.150 \pm 0.032$
 - Measured $A_{CP}(K_S^0\pi^0) = 0.01 \pm 0.10$
- Global study of $B \rightarrow K \pi$ system indicates need for significant enhancement of color-suppressed tree or EW penguin arXiv:1812.02672

 $B \rightarrow K \pi$ system need to be measured more precisely (room to probe for new physics)

$B^+ \to K^+ \pi^0$ at LHCb

- LHCb is designed to study CP violation and search for new physics in the heavy flavor sector
- Challenging mode with no secondary vertex (1 track + 1 calorimeter cluster)
 - Run1 software triggers relied on secondary vertex
 - Dedicated trigger developed for Run2

Key Variables

- No secondary vertex, but still take advantage of LHCb's precision tracking
 - initial $S/B \sim 10^{-7}$
- K⁺ should be originating from the trajectory of B
 - Cut on distance of closest approach
- K⁺ should be inconsistent with originating from any primary vertex
 - Cut on impact parameter w.r.t. PV, when K⁺ is included in primary vertex fit

$$A(p_T) \equiv \frac{p_T(B) - p_T(cone)}{p_T(B) + p_T(cone)}$$

Multivariate Analysis

- Using discriminant variables including
 - impact parameters
 - kinematics
 - isolation variables

• Train Boosted Decision Trees to optimize $\frac{\in_{MC}}{\sqrt{S+R}}$

Invariant Mass Fit

- Two more background categories:
 - $B^+ \to \pi^+ \pi^0$ where π^+ is misidentified as K
 - Peaking partial reconstructed, e.g.
 - $B^{+/0} \to (K^{*+/0} \to K^+ \pi^{0/-})\pi^0$
- Total N($B^{\pm} \rightarrow K^{\pm}\pi^0$) ≈ 16500
- Raw $A_{cp}(B^+ \to K^+ \pi^0) = 0.005 \pm 0.022$ (Magnet Up), 0.019 ± 0.021 (Magnet Down)

- Apply corrections due to B production asymmetry and K detection asymmetry
 - directly measured using $B^{\pm} \to J/\psi \ K^{\pm}$ data
- Raw $A_{cp}(B^+ \to J/\psi \ K^+) = -0.009 \pm 0.002$ (Magnet Up), -0.012 ± 0.002 (Magnet Down)

Invariant Mass Fit

- Two more background categories:
 - $B^+ \to \pi^+ \pi^0$ where π^+ is misidentified as K
 - Peaking partial reconstructed, e.g.
 - $B^{+/0} \to (K^{*+/0} \to K^+ \pi^{0/-})\pi^0$
- Total N($B^{\pm} \rightarrow K^{\pm}\pi^0$) \approx 16500
- Raw $A_{cp}(B^+ \to K^+\pi^0) = 0.005 \pm 0.022$ (Magnet Up),

Results

After corrections, the measurement result is

$$A_{CP}(B^+ \to K^+\pi^0) = 0.025 \pm 0.015_{stat} \pm 0.006_{syst} \pm 0.003_{ext}$$

decay	BaBar	Belle	LHCb
$B^0 \to K^+\pi^-$	$-0.107 \pm 0.016^{+0.006}_{-0.004}$	$-0.069 \pm 0.014 \pm 0.007$	$-0.080 \pm 0.007 \pm 0.003$
$B^+ \to K^+ \pi^0$	$+0.030 \pm 0.039 \pm 0.010$	$+0.043 \pm 0.024 \pm 0.002$	$0.025 \pm 0.015 \pm 0.006 \pm 0.003$
$B^0 \to K^0 \pi^0$	$-0.13 \pm 0.13 \pm 0.03$	$+0.14 \pm 0.13 \pm 0.06$	n/a
$B^+ \to K^0 \pi^+$	$-0.029 \pm 0.039 \pm 0.010$	$+0.043 \pm 0.024 \pm 0.002$	$-0.022 \pm 0.025 \pm 0.010$

- Consistent with current world average, the most precise to date
- $A_{CP}(B^+ \to K^+\pi^0) A_{CP}(B^0 \to K^+\pi^-) = 0.115 \pm 0.014$, non-zero at 8.2 σ
 - previously 0.124 \pm 0.021, 5.9 σ
- Updated sum rule prediction for $A_{CP}(K^0\pi^0) = -0.138 \pm 0.025$, non-zero at 5.5 σ

Conclusion

• We have measured the direct CP violation in $B^+ \to K^+ \pi^0$,

$$A_{CP}(B^+ \to K^+\pi^0) = 0.025 \pm 0.015_{stat} \pm 0.006_{syst} \pm 0.003_{ext}$$

Most precise measurement to date

	decay	BaBar	Belle	LHCb
	$B^0 \to K^+\pi^-$	$-0.107 \pm 0.016^{+0.006}_{-0.004}$	$-0.069 \pm 0.014 \pm 0.007$	$-0.080 \pm 0.007 \pm 0.003$
	$B^+ \to K^+ \pi^0$	$+0.030 \pm 0.039 \pm 0.010$	$+0.043 \pm 0.024 \pm 0.002$	$0.025 \pm 0.015 \pm 0.006 \pm 0.003$
Ī	$B^0 \to K^0 \pi^0$	$-0.13 \pm 0.13 \pm 0.03$	$+0.14 \pm 0.13 \pm 0.06$	n/a
	$B^+ \to K^0 \pi^+$	$-0.029 \pm 0.039 \pm 0.010$	$+0.043 \pm 0.024 \pm 0.002$	$-0.022 \pm 0.025 \pm 0.010$

- Confirms and strengthens the $B \rightarrow K \pi$ puzzle
- PRL paper recently published: Phys. Rev. Lett. 126, 091802
- After Run3, LHCb would finish collecting $50~fb^{-1}$: projected statistical uncertainty $\sim \pm 0.005$
- Highlights LHCb's potential in modes with neutral particles ($B^0 \to K^0 \pi^0$ and beyond)

Backup slides

The CKM Mechanism

- In the Standard Model (SM), the Cabibbo-Kobayashi-Maskawa (CKM) mechanism describes the weak interactions between the three generations of quarks:
 - one universal weak coupling strength for quarks and leptons, but
 - the quarks' weak eigenstates differ from their mass eigenstates,
 - related by the 3x3 unitary CKM matrix V_{CKM} ,

$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

The CKM Mechanism

In the Wolfenstein parametrization, the CKM matrix is written in terms of four real parameters, λ , A, ρ , and η :

$$V_{\rm CKM} = \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$

- $\lambda = \sin \theta_C \approx 0.225$, where θ_C is the Cabibbo angle
- η is associated with the *single irreducible phase* in the CKM matrix \longrightarrow of CP violation in the SM

CP Violation

- Three possible CP-violating effects:
 - CP violation in decay (direct CPV)
 - CP violation in mixing
 - CP violation in the interference between mixing and decay

• can be measured in the decay rate difference between a process and its charge conjugate

e.g.
$$|A(\bar{B}^0 \to \bar{f})| \neq |A(B^0 \to f)|$$
.

$$M = |M_1|e^{i heta_1}\,e^{i\phi_1} + |M_2|e^{i heta_2}\,e^{i\phi_2} \ ar{M} = |M_1|e^{i heta_1}\,e^{-i\phi_1} + |M_2|e^{i heta_2}\,e^{-i\phi_2} \ |M|^2 - |ar{M}|^2 = -4|M_1||M_2|\sin(heta_1- heta_2)\sin(\phi_1-\phi_2)$$

CP Violation

- Three possible CP-violating effect:
 - CP violation in decay
 - CP violation in mixing
 - CP violation in the interference between mixing and decay

seen in the transition rate difference between a neutral meson to and from its antiparticle,

e.g.
$$|A(B^0 \to \bar{B}^0)| \neq |A(\bar{B}^0 \to B^0)|$$
.

Figure 1: One-loop box diagrams for B^0 - \bar{B}^0 mixing

CP Violation

- Three possible CP-violating effect:
 - CP violation in decay
 - CP violation in mixing
 - CP violation in the interference between mixing and decay
- arises from the interference between decays with and without mixing.

The Broader Picture of the $B \rightarrow K \pi$ Puzzle

- Uniquely, $B^0 \to K^0 \pi^0$ allows CP violation in the interference between mixing and decay.
- The observable $S_{CP}^{K_S^0\pi^0}$ can be measured in the time-dependent decay rate asymmetry,

$$\frac{\Gamma(\bar{B}^{0}(t) \to K_{S}^{0}\pi^{0}) - \Gamma(B^{0}(t) \to K_{S}^{0}\pi^{0})}{\Gamma(\bar{B}^{0}(t) \to K_{S}^{0}\pi^{0}) + \Gamma(B^{0}(t) \to K_{S}^{0}\pi^{0})} = A_{CP}^{K_{S}^{0}\pi^{0}}\cos(\Delta m \, t) + S_{CP}^{K_{S}^{0}\pi^{0}}\sin(\Delta m \, t)$$

- Because a single penguin amplitude is expected to dominate,
 - $S_{CP}^{K_S^0\pi^0}$ should arise mostly from the phase 2 β of B^0 - \bar{B}^0 mixing ($\beta \equiv arg(V_{td}^*)$)
 - sin(2β) has been precisely measured
 - new physics at loop level will deviate $S_{CP}^{K_S^0\pi^0}$ from $\sin(2\beta)$
- Precise measurement of $S_{CP}^{K_S^0\pi^0}$ can probe for new physics at loop level

The Broader Picture of the $B \rightarrow K \pi$ Puzzle

• More importantly, the correlation between $S_{CP}^{K_S^0\pi^0}$ and $A_{CP}^{K_S^0\pi^0}$ can be derived as:

$$S_{CP}^{K^0\pi^0} = \sin(\phi_d - \phi_{00}) \sqrt{1 - (A_{CP}^{K^0\pi^0})^2}$$

- ϕ_{00} is the angle between amplitude $A(B^0 \to K^0 \pi^0)$ its charge conjugate
- $\phi_d=(43.2\pm 1.8)^\circ$ is the B^0 - \bar{B}^0 mixing phase

• The correlation, the sum rule prediction, and the current experimental values are shown on

the $S_{CP}^{K_S^0\pi^0}$ - $A_{CP}^{K_S^0\pi^0}$ plane:

(2.5σ discrepancy)

R. Fleischer, R. Jaarsma, E. Malami, K. K. Vos, Probing New Physics in $B\to\pi K$ Decays, PoS LHCP2018 (2018) 176.

π^0 reconstruction

• π^0 identified by decay to two photons

- At higher pT, two photon showers merge into a single cluster
- Reconstructed as two subclusters centered on highest energy deposits according to expected transverse profile
- Despite wider mass resolution, use only merged pi0 to reduce combinatorial background and preserve bandwidth

Isolation Variables

- Events with other tracks pointing back to B candidate are unlikely to be signal
- Combine each track in the event individually with K to form vertices

- Consider tracks within cone $\Delta R = 1.7$ around B momentum
- Define cone pT asymmetry $A(p_T) \equiv \frac{p_T(B) p_T(cone)}{p_T(B) + p_T(cone)}$

