This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

(30) Priority data:

956,699

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5:	ايما	(11) International Publication Number:	WO 94/08012
C12N 15/31, 15/12, 15/61 C12N 15/62, 15/81, 9/90	AI	(43) International Publication Date:	14 April 1994 (14.04.94)

(21) International Application Number: PCT/US93/09426 (74) Agent: SCOTT, Anthony, C.; Scully, Scott, Murphy & Presser, 400 Garden City Plaza, Garden City, NY 11530 (US).

US

089,997 6 July 1993 (06.07.93) US PT, SE).

(71) Applicant: RESEARCH CORPORATION TECHNOLOGIES, INC. [US/US]; 101 N. Wilmot Road, Suite 600, Tucson, AZ 85711-3335 (US).

Published

With international search report.

Before the expiration of the time limit

(72) Inventors: WITTRUP, Karl, Dane; 6 Florida Court, Urbana, IL 61801 (US). ROBINSON, Anne, Skaja; 1762 Valley Road, Champaign, IL 61820 (US).

2 October 1992 (02.10.92)

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(81) Designated States: CA, FI, JP, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL,

(54) Title: METHODS FOR INCREASING SECRETION OF OVEREXPRESSED PROTEINS

(57) Abstract

The present invention is directed to methods for increasing secretion of an overexpressed gene product present in a host cell, by inducing expression of chaperone proteins within the host cell.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	FR	France	MR	Mauritania
ÄÜ	Australia	GA	Gabon	MW	Malawi
BB	Barbados	GB	United Kingdom	NE	Niger
BÉ	Belgium	GN	Guinea	NL	Netherlands
BF	Burkina Faso	GR	Greece	NO	Norway
BC	Bulgaria	HŪ	Hungary	NZ	New Zealand
	Benin	IE	Ireland	PL	Poland
BJ BR	Brazil	iτ	Italy	PT	Portugal
		jР	Japan	RO	Romania
BY	Belarus	KP	Democratic People's Republic	RU	Russian Federation
CA	Canada	e.r		SD	Sudan
CF	Central African Republic		of Korea		
CG	Congo	KR	Republic of Korea	SE	Sweden
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
C	Côte d'Ivoire	LI	Liechtenstein	SK	Slovak Republic
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LU	Luxembourg	TD	Chad .
cs	Czechoslovakia	LŸ	Latvia	TG	Togo
cz	Czech Republic	MC	Monaco	UA	Ukraine
DE	Germany	MG	Madagascar	US	United States of America
DK	Denmark	ML	Mali	UZ	Uzbekistan
		MN	Mongolia	VN	Vict Nam
ES	Spain	ta 14	turni Paint	***	
FI	Finland				

METHODS FOR INCREASING SECRETION OF OVEREXPRESSED PROTEINS

The present invention relates to methods for increasing protein secretion of overexpressed gene products by enhancing chaperone protein expression within a host cell. Chaperone proteins which can increase protein secretion include protein folding chaperone proteins which bind to and assist in the folding of unfolded polymentides. Such proteins 6.11

- 10 folding of unfolded polypeptides. Such protein folding chaperone proteins include heat shock protein 70 (hsp70) class of proteins such as mammalian or yeast HSP68, HSP70, HSP72, HSP73, clathrin uncoating ATPase, IgG heavy chain binding protein (BiP), glucose-regulated
- proteins 75, 78 and 80 (GRP75, GRP78 and GRP80), HSC70, and yeast KAR2, BiP, SSA1-4, SSB1, SSD1 and the like. Chaperone proteins which can increase protein secretion also include enzymes which catalyze covalent modification of proteins, such as mammalian or yeast
- protein disulfide isomerase (PDI), prolyl-4-hydroxylase ß-subunit, ERp59, glycosylation site binding protein (GSBP) and thyroid hormone binding protein (T3BP).

Many proteins can be reversibly unfolded and refolded in vitro at dilute concentrations since all of the information required to specify a compact folded protein structure is present in the amino acid sequence of a protein. However, protein folding in vivo occurs in a concentrated milieu of numerous proteins in which intermolecular aggregation reactions compete with the intramolecular folding process.

-2-

Moreover, gene products which are highly overexpressed are often poorly secreted even though secretion signals are present on such overexpressed gene products (Biemans et al. 1991 DNA Cell Biol. 10: 191-200; Elliot et al. 1989 Gene 79: 167-180; and Moir et al. 1987 Gene 56: 209-217). The prior art has not provided a clear reason for, or a simple and efficient means to overcome, such poor secretion of overexpressed gene products.

Recently, a class of proteins have been identified which are associated with the intracellular folding of nascently formed polypeptides. Such proteins have been named 'chaperone' proteins (e.g. see reviews by Ellis et al. 1991 Annu. Rev. Biochem. 60: 321-347;

Gething et al. (1992) Nature 355: 33-45; Rothman 1989

Cell 59: 591-601; Horwich et al. 1990 TIBTECH 8: 126-131; and Morimoto et al. (Eds.) 1990 Stress Proteins in Biology and Medicine, Cold Spring Harbor Press: Cold Spring Harbor, NY, pp. 1-450).

At least two classes of chaperone proteins are involved in polypeptide folding in cells. Enzymes such as protein disulfide isomerase (PDI) and peptidyl prolyl isomerase (PPI) can covalently modify proteins by catalyzing specific isomerization steps that may limit the folding rate of some proteins. (Freedman, R.B. 1989 Cell 57: 1067-1072). Another type of chaperone binds to folding intermediates but not to folded proteins and apparently causes no covalent modification of such intermediates. This latter type is referred to herein as a protein folding chaperone.

Chaperone proteins that can covalently modify proteins include PDI and PPI. PDI catalyzes

-3-

thiol/disulfide interchange reactions and promotes disulfide formation, isomerization or reduction, thereby facilitating the formation of the correct disulfide pairings, and may have a more general role in the prevention of premature misfolding of newly translocated chains.

secretory proteins and is required for the folding of nascent polypeptides in the endoplasmic reticulum (ER) of eukaryotic cells. Enzymes found in the ER with PDI activity include mammalian PDI (Edman et al., 1985, Nature 317:267), yeast PDI (Mizunaga et al. 1990, J. Biochem. 108:848), mammalian ERp59 (Mazzarella et al., 1990, J. Biochem. 265:1094), mammalian prolyl-4-hydroxylase (Pihlajaniemi et al., 1987, EMBO J. 6: 643) yeast GSBP (Lamantia et al., 1991, Proc. Natl. Acad. Sci. USA, 88:4453) and mammalian T3BP (Yamauchi et al., 1987, Biochem. Biophys. Res. Commun. 146:1485), and yeast EUG1 (Tachibana et al., 1992, Mol. Cell Biol. 12, 4601).

Two major families of protein folding chaperones have been identified, a heat shock protein 60 (hsp60) class and a heat shock protein 70 (hsp70) class. Chaperones of the hsp60 class are structurally distinct from chaperones of the hsp70 class. In particular, hsp60 chaperones appear to form a stable scaffold of two heptamer rings stacked one atop another which interacts with partially folded elements of secondary structure (Ellis et al. 1991; and Landry et al. 1992 Nature 355: 455-457). On the other hand, hsp70 chaperones are monomers or dimers and appear to interact with short extended regions of a polypeptide (Freiden et al. 1992

-4-

EMBO J. 11: 63-70; and Landry et al. 1992). Hsp70 and hsp60 chaperones may also have sequential and complementary protein folding roles wherein hsp70 proteins bind to extended polypeptide chains to prevent aggregation and hsp60 oligomers complete the folding of the extended polypeptide chain (Langer et al. 1992 Nature 354: 683-689).

While hsp60 homologs appear to exist mainly within mitochondria and chloroplasts of eukaryotic cells, most compartments of eukaryotic cells contain members of the hsp70 class of chaperones. A eukaryotic hsp70 homolog originally identified as the IgG heavy chain binding protein (BiP) is now known to have a more general role in associating with misfolded, unassembled or aberrantly glycosylated proteins. BiP is located in all eukaryotic cells within the lumen of the endoplasmic reticulum (ER). BiP is a soluble protein which is retained in the ER by a receptor-mediated recycling pathway and perhaps by calcium crosslinking (Pelham 1989 Annu. Rev. Cell. Biol. 5: 1-23; Sambrook 1990 Cell 61: 197-199).

Hsp70 chaperones are well conserved in sequence and function (Morimoto et al. 1990). For example, the DnaK hsp70 protein chaperone in Escherichia coli, shares about 50% sequence homology with an hsp70 KAR2 chaperone in yeast (Rose et al. 1989 Cell 57:1211-1221). Moreover, the presence of mouse BiP in yeast can functionally replace a lost yeast KAR2 gene (Normington et al. 19: 1223-1236). Such a high structural and functional conservation for BiP has led to a generic usage for the term BiP as meaning any protein folding chaperone which resides in the endoplasmic reticulum of eukaryotes ranging from yeast to humans.

-5-

pathway is translocation of the nascent polypeptide across the ER membrane in extended form. Correct folding and assembly of a polypeptide occurs in the ER and is a prerequisite for transport from the ER through the secretory pathway (Pelham 1989 Annu. Rev. Cell. Biol. 5: 1-23; Gething et al. 1990 Curr. Op. Cell Biol. 1: 65-72). For example, translocation intermediates which are artificially lodged in microsomal membranes in vitro can be chemically crosslinked with BiP (Sanders et al. 1992 Cell 69: 354-365). Therefore, misfolded proteins are retained in the ER, often in association with BiP (Suzuki et al. 1991 J. Cell Biol. 114: 189-205).

The association of chaperone proteins with misfolded proteins has led some workers to conclude that hsp70 chaperone proteins like BiP act as proofreading proteins, whose chief role is to bind to and prevent secretion of misfolded proteins (Dorner et al. 1988 J. 20 Mol. & Cell. Biol. 8:4063-4070; Dorner et al. 1992 EMBO J. 11: 1563-1571). Dorner et al. (1992) have also suggested that overexpression of the BiP hsp70 chaperone protein can actually block secretion of selected proteins in Chinese hamster ovary cells. Therefore, according to the prior art, the role of BiP is to inhibit protein secretion.

In contrast, the present invention provides methods for increasing protein secretion, unexpectedly, by increasing expression of an hsp70 chaperone protein or a PDI chaperone protein. Moreover, according to the present invention, it has been discovered that soluble forms of PDI and hsp70 chaperone protein are diminished in cells which have been caused to overexpress a gene product. Therefore, the present methods can be used for

-6-

increasing protein secretion by circumventing this dimunition of PDI and/or hsp70 chaperone protein expression.

The present invention provides a method for increasing secretion of overexpressed gene products from a host cell, which comprises expressing at least one chaperone protein in the host cell. In the present context, an overexpressed gene product is one which is expressed at levels greater than normal endogenous expression for that gene product. Overexpression can be effected, for example, by introduction of a recombinant construction that directs expression of a gene product in a host cell, or by altering basal levels of expression of an endogenous gene product, for example, by inducing its transcription.

In one embodiment, the method of the invention comprises effecting the expression of at least one chaperone protein and an overexpressed gene product in a host cell, and cultivating said host cell under 20 conditions suitable for secretion of the overexpressed gene product. The expression of the chaperone protein and the overexpressed gene product can be effected by inducing expression of a nucleic acid encoding the chaperone protein and a nucleic acid encoding the 25 overexpressed gene product wherein said nucleic acids are present in a host cell. In another embodiment, the expression of the chaperone protein and the overexpressed gene product are effected by introducing a first nucleic acid encoding a chaperone protein and a $_{30}$ second nucleic acid encoding a gene product to be overexpressed into a host cell under conditions suitable for expression of the first and second nucleic acids.

35

-7-

In a preferred embodiment, one or both of said first and second nucleic acids are present in expression vectors.

In another embodiment, expression of said chaperone protein is effected by inducing expression of a nucleic acid encoding said chaperone protein wherein said nucleic acid is present in a host cell or by introducing a nucleic acid encoding said chaperone protein into a host cell. Expression of said second protein is effected by inducing expression of a nucleic acid encoding said gene product to be overexpressed wherein said nucleic acid is present in a host cell or by introducing a nucleic acid encoding said second gene product into the host cell.

In a preferred embodiment, the host cell is a yeast cell or a mammalian cell.

In another preferred embodiment, the chaperone protein is an hsp70 chaperone protein or a protein disulfide isomerase. The hsp70 chaperone protein is preferably yeast KAR2 or mammalian BiP. The protein disulfide isomerase is preferably yeast PDI or mammalian PDI.

The present invention further provides a method for increasing secretion of an overexpressed gene product in a yeast host cell by using a yeast KAR2 chaperone protein, or yeast PDI, or yeast KAR2 in combination with yeast PDI, in the present methods.

The present invention also provides a method for increasing secretion of an overexpressed gene product in a mammalian host cell by using a mammalian BiP chaperone protein, or mammalian PDI, or mammalian BiP in combination with mammalian PDI, in the present methods.

-8-

Fig. 1 depicts the amounts of soluble KAR2 protein present in cell extracts of wild type yeast and yeast strains overexpressing human erythropoietin (EPO), human platelet derived growth factor B chain (PDGF), human granulocyte colony stimulating factor (GCSF), Schizosaccharomyces pombe acid phosphatase (PHO) and a fusion between GCSF and PHO (GCSF-PHO) in a constitutive manner.

Fig. 2 depicts a pMR1341 expression vector
which contains the yeast KAR2 gene. As depicted, this vector encodes ampicillin resistance (Amp^R), a pSC101 origin of replication (ori pSC101), a CEN4 centromeric sequence, an ARS1 autonomous replication sequence, a URA3 selectable marker and the PGAL1 promoter is used to effect expression of the KAR2 chaperone protein. In other experiments the URA3 selectable marker was deleted and replaced with HIS and LEU selectable markers.

Fig. 3 depicts the KAR2 expression observed in cell extracts collected from wild type cells (*), cells transformed with the EPO-encoding plasmid only (*, GalEpo) and cells transformed with both the EPO-encoding plasmid and the KAR2-encoding plasmid (*), GalEpo+GalKar2) at 24, 48 and 72 hours after induction of KAR2 and EPO expression.

Fig. 4 depicts the growth of wild type cells (□), cells transformed with the EPO-encoding plasmid only (o, GalEpo) and cells transformed with both the EPO-encoding plasmid and the KAR2-encoding plasmid (Δ, GalEpo+GalKar2). The inset provided in Fig. 4 depicts the amount of EPO secreted into the medium of cells having the EPO-encoding plasmid only (GalEpo) compared with the amount of secreted EPO for cells having both the EPO-encoding plasmid and the KAR2-encoding plasmid

-9-

(GalEpo + GalKar2) during exponential growth of these yeast strains at the indicated time point (arrow).

According to the present invention, it has been discovered that the amount of chaperone proteins can be diminished in cells during overexpression of a gene product and this diminution in chaperone protein levels can lead to depressed protein secretion.

Moreover, in accordance with the present invention it has been found that an increase in chaperone protein expression can increase secretion of an overexpressed gene product.

Therefore, the present invention relates to a method for increasing secretion of an overexpressed gene product present in a host cell, which includes expressing a chaperone protein in the host cell and thereby increasing secretion of the overexpressed gene product.

The present invention also contemplates a method of increasing secretion of an overexpressed gene product from a host cell by expressing a chaperone protein encoded by an expression vector present in or provided to the host cell, thereby increasing the secretion of the overexpressed gene product.

The present invention provides a method for increasing secretion of overexpressed gene products from a host cell, which comprises expressing at least one chaperone protein in the host cell. In the present context, an overexpressed gene product is one which is expressed at levels greater than normal endogenous expression for that gene product. Overexpression can be effected, for example, by introduction of a recombinant construction that directs expression of a gene product

-10-

in a host cell, or by altering basal levels of expression of an endogenous gene product, for example, by inducing its transcription.

In one embodiment, the method of the invention comprises effecting the expression of at least one chaperone protein and an overexpressed gene product in a host cell, and cultivating said host cell under conditions suitable for secretion of the overexpressed gene product. The expression of the chaperone protein and the overexpressed gene product can be effected by inducing expression of a nucleic acid encoding the chaperone protein and a nucleic acid encoding the overexpressed gene product wherein said nucleic acids are present in a host cell.

In another embodiment, the expression of the chaperone protein and the overexpressed gene product are effected by introducing a first nucleic acid encoding a chaperone protein and a second nucleic acid encoding a gene product to be overexpressed into a host cell under conditions suitable for expression of the first and second nucleic acids. In a preferred embodiment, one or both of said first and second nucleic acids are present in expression vectors.

In another embodiment, expression of said

chaperone protein is effected by inducing expression of
a nucleic acid encoding said chaperone protein wherein
said nucleic acid is present in a host cell or by
introducing a nucleic acid encoding said chaperone
protein into a host cell. Expression of said second

protein is effected by inducing expression of a nucleic
acid encoding said gene product to be overexpressed
wherein said nucleic acid is present in a host cell or
by introducing a nucleic acid encoding said second gene
product into the host cell.

-11-

In a preferred embodiment, the host cell is a yeast cell or a mammalian cell.

In another preferred embodiment, the chaperone protein is an hsp70 chaperone protein or a protein disulfide isomerase. The hsp70 chaperone protein is preferably yeast KAR2 or mammalian BiP. The protein disulfide isomerase is preferably yeast PDI or mammalian PDI.

The present invention further provides a method for increasing secretion of an overexpressed gene product in a yeast host cell by using a yeast KAR2 chaperone protein, or yeast PDI, or yeast KAR2 in combination with yeast PDI, in the present methods.

for increasing secretion of an overexpressed gene product in a mammalian host cell by using a mammalian BiP chaperone protein, or mammalian PDI, or mammalian BiP in combination with mammalian PDI, in the present methods.

Chaperone proteins of the present invention include any chaperone protein which can facilitate or increase the secretion of proteins. In particular, members of the protein disulfide isomerase and heat shock 70 (hsp70) families of proteins are contemplated.

An uncapitalized "hsp70" is used herein to designate the heat shock protein 70 family of proteins which share structural and functional similarity and whose expression are generally induced by stress. To distinguish the hsp70 family of proteins from the single heat shock protein of a species which has a molecular weight of about 70,000, and which has an art-recognized name of heat shock protein-70, a capitalized HSP70 is used herein. Accordingly, each member of the hsp70

-12-

family of proteins from a given species has structural similarity to the HSP70 protein from that species.

The present invention is directed to any chaperone protein having the capability to stimulate secretion of an overexpressed gene product. The members of the hsp70 family of proteins are known to be structurally homologous. Moreover, according to the present invention any hsp70 chaperone protein having sufficient homology to the KAR2 polypeptide sequence can be used in the present methods to stimulate secretion of an overexpressed gene product. Members of the PDI family are also structurally homologous, and any PDI which can be used according to the present method is contemplated herein. In particular, mammalian and yeast PDI, prolyl-4-hydroxylase ß-subunit, ERp59, GSBP and T3BP and yeast EUG1 are contemplated.

As used herein, homology between polypeptide sequences is the degree of colinear similarity or identity between amino acids in one polypeptide sequence with that in another polypeptide sequence. Hence, homology can sometimes be conveniently described by the percentage, i.e. proportion, of identical amino acids in the sequences of the two polypeptides. For the present invention sufficient homology means that a sufficient percentage of sequence identity exists between an hsp70 chaperone polypeptide sequence and the KAR2 polypeptide sequence of SEQ ID NO:2, or between a PDI protein and the yeast PDI polypeptide sequence of SEQ ID NO:18 or the mammalian PDI sequence of SEQ ID NO:20 to retain the requisite function of the chaperone protein, i.e. stimulation of secretion.

Therefore a sufficient number, but not necessarily all, of the amino acids in the present hsp70 chaperone polypeptide sequences are identical to the

-13-

KAR2 polypeptide sequence of SEQ ID NO:2, or the yeast PDI polypeptide sequence of SEQ ID NO:18 or the mammalian PDI polypeptide of SEQ ID NO:20. In particular, the degree of homology between an hsp70 chaperone protein of the present invention and the polypeptide sequence of SEQ ID NO:2 need not be 100% so long as the chaperone protein can stimulate a detectable amount of gene product secretion. However, it is preferred that the present hsp70 chaperone proteins have at least about 50% homology with the polypeptide sequence of SEQ ID NO:2. In an especially preferred embodiment sufficient homology is greater than 60% homology with the KAR2 polypeptide sequence of SEQ ID Similarly, the degree of homology between a PDI chaperone protein and the polypeptide sequence or SEQ ID NO:18 or 20 need not be 100% so long as the chaperone protein can stimulate a detectable amount of a gene product secretion. At least about 50% homology is preferred.

The number of positions which are necessary to provide sufficient homology to KAR2 or PDI to retain the ability to stimulate secretion can be assessed by standard procedures for testing whether a chaperone protein of a given sequence can stimulate secretion.

Procedures for observing whether an overexpressed gene product is secreted are readily available to the skilled artisan. For example, Goeddel, D.V. (Ed.) 1990, Gene Expression Technology, Methods in Enzymology, Vol 185, Academic Press, and Sambrook et al.

1989, Molecular Cloning: A Laboratory Manual, Vols. 1-3, Cold Spring Harbor Press, N.Y., provide procedures for detecting secreted gene products.

To secrete an overexpressed gene product the host cell is cultivated under conditions sufficient for

-14-

secretion of the overexpressed gene product. Such conditions include temperature, nutrient and cell density conditions that permit secretion by the cell.

Moreover, such conditions are conditions under which the cell can perform basic cellular functions of transcription, translation and passage of proteins from one cellular compartment to another and are known to the skilled artisan.

Moreover, as is known to the skilled artisan a secreted gene product can be detected in the culture medium used to maintain or grow the present host cells. The culture medium can be separated from the host cells by known procedures, e.g. centrifugation or filtration. The overexpressed gene product can then be detected in the cell-free culture medium by taking advantage of known properties characteristic of the overexpressed gene product. Such properties can include the distinct immunological, enzymatic or physical properties of the overexpressed gene product.

For example, if an overexpressed gene product has a unique enzyme activity an assay for that activity can be performed on the culture medium used by the host cells. Moreover, when antibodies reactive against a given overexpressed gene product are available, such antibodies can be used to detect the gene product in any known immunological assay (e.g. as in Harlowe, et al., 1988, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory Press).

The secreted gene product can also be detected using tests that distinguish proteins on the basis of characteristic physical properties such as molecular weight. To detect the physical properties of the gene product all proteins newly synthesized by the host cell can be labeled, e.g. with a radioisotope. Common

15-

radioisotopes which are used to label proteins synthesized within a host cell include tritium (3H), carbon-14 (14 C), sulfur-35 (35 S) and the like. For example, the host cell can be grown in 35-methionine or $^{35}\mathrm{S}\text{-cysteine}$ medium, and a significant amount of the $^{35}\mathrm{S}$ label will be preferentially incorporated into any newly synthesized protein, including the overexpressed protein. The $^{35}\mathrm{S}$ containing culture medium is then removed and the cells are washed and placed in fresh non-radioactive culture medium. After the cells are maintained in the fresh medium for a time and under conditions sufficient to allow secretion of the 35S radiolabelled overexpressed protein, the culture medium is collected and separated from the host cells. molecular weight of the secreted labeled protein in the culture medium can then be determined by known procedures, e.g. polyacrylamide gel electrophoresis. Such procedures are described in more detail within Sambrook et al. (1989, Molecular Cloning: A Laboratory Manual, Vols. 1-3, Cold Spring Harbor Press, NY).

Thus for the present invention, one of ordinary skill in the art can readily ascertain which chaperone proteins have sufficient homology to KAR2 or PDI to stimulate secretion of an overexpressed gene product.

According to the present invention, hsp70 chaperone proteins include yeast KAR2, HSP70, BiP, SSA1-4, SSB1, SSC1 and SSD1 gene products and eukaryotic hsp70 proteins such as HSP68, HSP72, HSP73, HSC70, clathrin uncoating ATPase, IgG heavy chain binding protein (BiP), glucose-regulated proteins 75, 78 and 80 (GRP75, GRP78 and GRP80) and the like.

Preferred PDI chaperone proteins include yeast and mammalian PDI, mammalian ERp59, mammalian proly1-4-

-16-

hydroxylase B-subunit, yeast GSBP, yeast EUG1 and mammalian T3BP.

Preferred chaperone proteins of the present invention normally reside within the endoplasmic reticulum of the host cell. For example, chaperone proteins which are localized with the endoplasmic reticulum include KAR2, GRP78, BiP, PDI and similar proteins.

Moreover, the polypeptide sequence for the present hsp70 chaperones preferably has at least 50% sequence homology with a yeast KAR2 polypeptide sequence having SEQ ID NO:2. The hsp70 chaperone polypeptide sequences which have at least 50% sequence homology with SEQ ID NO:2 include, for example, any yeast HSP70, BiP, SSD1 and any mammalian or avian GRP78, HSP70 or HSC70.

Preferred hsp70 chaperone polypeptide sequences include, for example:

Saccharomyces cerevisiae KAR2 having a nucleotide sequence corresponding to SEQ ID NO:1 and a polypeptide sequence corresponding to SEQ ID NO:2 (Rose et al. 1989 Cell 57: 1211-1221; Normington et al. 1989 Cell 57: 1223-1236);

Schizosaccharomyces pombe HSP70 having a nucleotide sequence corresponding to SEQ ID NO:3 and a polypeptide sequence corresponding to SEQ ID NO:4 (Powell et al. 1990 Gene 95:105-110);

Kluyveromyces lactis BiP having a polypeptide sequence corresponding to SEQ ID NO:5 (Lewis et al. 1990 Nucleic Acids Res. 18: 6438);

Schizosaccharomyces pombe BiP having a nucleotide sequence corresponding to SEQ ID NO:6 and a polypeptide sequence corresponding to SEQ ID NO:7 (Pidoux et al. 1992 EMBO J. 11: 1583-1591);

-17-

Saccharomyces cerevisiae SSD1 having a nucleotide sequence corresponding to SEQ ID NO:8 and a polypeptide sequence corresponding to SEQ ID NO:9 (Sutton et al. 1991 Mol. Cell. Biol. 11: 2133-2148);

Mouse GRP78 having a polypeptide sequence corresponding to SEQ ID NO:10;

Hamster GRP78 having a polypeptide sequence corresponding to SEQ ID NO:11;

Human GRP78 having a nucleotide sequence corresponding to SEQ ID NO:12 (Ting et al. 1988 DNA 7: 275-286);

Mouse HSC70 having a nucleotide sequence corresponding to SEQ ID NO:13 and a polypeptide sequence corresponding to SEQ ID NO:14 (Giebel et al. 1988 Dev. Biol. 125: 200-207);

Human HSC70 having a nucleotide sequence corresponding to SEQ ID NO:15 (Dworniczak et al. 1987 Nucleic Acids Res. 15: 5181-5197);

Chicken GRP78 having a polypeptide sequence corresponding to SEQ ID NO:16;

Rat GRP78 as in Chang et al. (1987 Proc. Natl. Acad. Sci. USA 84: 680-684);

Saccharomyces cerevisiae SCC-1 as in Craig et al. (1987 Proc. Natl. Acad. Sci. USA 84: 680-684);

Preferred hsp70 proteins of the present invention are normally present in the endoplasmic reticulum of the cell. Preferred hsp70 proteins also include yeast KAR2, BiP, and HSP70 proteins, avian BiP or GRP78 proteins and mammalian BiP or GRP78 proteins.

The polypeptide sequence for the present PDI chaperones preferably has at least 50% homology with the yeast PDI of SEQ ID NO:18 or the rat PDI of SEQ ID NO:20. Preferred PDI chaperone polypeptides include, for example,

-18-

Saccharomyces cerevisiae PDI having a nucleotide sequence corresponding to SEQ ID NO:17 and a polypeptide sequence corresponding to SEQ ID NO:18 (La Mantia et al., 1991, Proc. Natl. Acad. Sci. USA 88: 4453-4457).

Rat PDI having a nucleotide sequence corresponding to SEQ ID NO:19 and a polypeptide sequence corresponding to SEQ ID NO:20 (Edman et al., 1985 Nature, 317:267).

Human prolyl 4-hydroxylase ß-subunit having a nucleotide and amino acid sequence as disclosed by Pihlajaniemi et al., 1987, EMBO, J. 6: 643-649.

Bovine T3BP having a nucleotide and amino acid sequence as disclosed by Yamauchi et al, 1987, Biochem. Biophys. Res. Commun., 146:1485-1492.

Murine ERp59 having a nucleotide and amino acid sequence as disclosed by Mazzarella et al., 1990, J. Biol. Chem. 265: 1094-1101.

amino acid is encoded by different three-nucleotide codons. Such degeneracy in the genetic code therefore means that the same polypeptide sequence can be encoded by numerous nucleotide sequences. The present invention is directed to methods utilizing any nucleotide sequence which can encode the present hsp70 chaperone polypeptides. Therefore, for example, while the KAR2 polypeptide sequence of SEQ ID NO:2 can be encoded by a nucleic acid comprising SEQ ID NO:1 there are alternative nucleic acid sequences which can encode the same KAR2 SEQ ID NO:2 polypeptide sequence. The present invention is also directed to use of such alternative nucleic acid sequences in the present methods.

Moreover when the host cell is a yeast host cell the chaperone protein is preferably a yeast KAR2 or

-19-

BiP protein or PDI protein, e.g. SEQ ID NO:2, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:18 and homologues thereof. Accordingly the present invention also provides a method for increasing secretion of an overexpressed gene product present in or provided to a yeast host cell, which includes expressing at least one KAR2 or BiP or PDI chaperone protein in the host cell and thereby increasing secretion of the gene product. In one embodiment such a method can also include expressing at least one of a KAR2 or BiP or PDI chaperone protein encoded by at least one expression vector present in or provided to the host cell, and thereby increasing secretion of the overexpressed recombinant gene product. Such an expression vector can include a nucleic acid encoding a polypeptide sequence for a yeast KAR2 or BiP or PDI chaperone protein operably linked to a nucleic acid which effects expression of the yeast KAR2 or BiP or PDI chaperone protein.

Yeast as used herein includes such species as

Saccharomyces cerevisiae, Hansenula polymorpha,

Kluyveromyces lactis, Pichia pastoris,

Schizosaccharomyces pombe, Yarrowia lipolytica and the like.

Furthermore, when an avian or mammalian host is used a BiP or GRP78 or mammalian PDI chaperone protein is preferably employed, e.g. any one of SEQ ID NO: 10-12, 16 or 20 and homologues thereof. Therefore, the present invention also provides a method for increasing secretion of an overexpressed gene product in a mammalian host cell, which includes expressing at least one of a BiP or GRP78 or mammalian PDI chaperone protein in the host cell and thereby increasing secretion of the gene product. Such a method can also include expressing a BiP or GRP78 or mammalian PDI

-20-

chaperone protein encoded by an expression vector present in or provided to the host cell and thereby increasing the secretion of the overexpressed gene product. Such an expression vector can include a nucleic acid encoding a polypeptide sequence for the BiP or the GRP78 or the mammalian PDI chaperone protein operably linked to a sequence which effects expression of such a chaperone protein.

In a preferred embodiment the chaperone protein is a mammalian or avian GRP78 protein, or a mammalian PDI.

Mammals as used herein includes mouse, hamster, rat, monkey, human and the like.

The present invention provides methods for increasing secretion of any overexpressed gene product which naturally has a secretion signal or has been genetically engineered to have a secretion signal.

Secretion signals are discrete amino acid sequences which cause the host cell to direct a gene product through internal and external cellular membranes and into the extracellular environment.

Secretion signals are present at the Nterminus of a nascent polypeptide gene product targeted
for secretion. Additional eukaryotic secretion signals
can also be present along the polypeptide chain of the
gene product in the form of carbohydrates attached to
specific amino acids, i.e. glycosylation secretion
signals.

N-terminal signal sequences include a
hydrophobic domain of about 10 to about 30 amino acids
which can be preceded by a short charged domain of about
2 to about 10 amino acids. Moreover, the signal
sequence is present at the N-terminus of gene products
destined for secretion. In general, the particular

-21-

sequence of a signal sequence is not critical but signal sequences are rich in hydrophobic amino acids such as alanine (Ala), valine (Val), leucine (Leu), isoleucine (Ile), proline (Pro), phenylalanine (Phe), tryptophan (Trp), methionine (Met) and the like.

Many signal sequences are known (Michaelis et al. 1982 Ann. Rev. Microbiol. 36: 425). For example, the yeast acid phosphatase, yeast invertase and the yeast α-factor signal sequences have been attached to heterologous polypeptide coding regions and used successfully for secretion of the heterologous polypeptide (Sato et al. 1989 Gene 83: 355-365; Chang et al. 1986 Mol. Cell. Biol. 6: 1812-1819; and Brake et al. 1984 Proc. Natl. Acad. Sci. USA 81: 4642-4646).

Therefore, the skilled artisan can readily design or obtain a nucleic acid which encodes a coding region for an overexpressed gene product which also has a signal sequence at the 5'-end.

Eukaryotic glycosylation signals include
specific types of carbohydrates which are attached to
specific types of amino acids present in a gene product.
Carbohydrates which are attached to such amino acids
include straight or branched chains containing glucose,
fucose, mannose, galactose, N-acetylglucosamine, Nacetylgalactosamine, N-acetylneuraminic acid and the
like. Amino acids which are frequently glycosylated
include asparagine (Asn), serine (Ser), threonine (Thr),
hydroxylysine and the like.

Examples of overexpressed gene products which are preferably secreted by the present methods include mammalian gene products such as enzymes, cytokines, growth factors, hormones, vaccines, antibodies and the like. More particularly, preferred overexpressed gene products of the present invention include gene products

-22-

such as erythropoietin, insulin, somatotropin, growth hormone releasing factor, platelet derived growth factor, epidermal growth factor, transforming growth factor \$\alpha\$, epidermal growth factor, fibroblast growth factor, nerve growth factor, insulin-like growth factor I, insulin-like growth factor II, clotting Factor VIII, superoxide dismutase, \$\alpha\$-interferon, \$\gamma\$-interferon, interleukin-1, interleukin-2, interleukin-3, interleukin-4, interleukin-5, interleukin-6, granulocyte colony stimulating factor, multi-lineage colony stimulating activity, granulocyte-macrophage stimulating factor, macrophage colony stimulating factor, lymphotoxin and the like. Preferred overexpressed gene products are human gene products.

15 Moreover, the present methods can readily be adapted to enhance secretion of any overexpressed gene product which can be used as a vaccine. Overexpressed gene products which can be used as vaccines include any structural, membrane-associated, membrane-bound or secreted gene product of a mammalian pathogen. Mammalian pathogens include viruses, bacteria, singlecelled or multi-celled parasites which can infect or attack a mammal. For example, viral vaccines can include vaccines against viruses such as human immunodeficiency virus (HIV), R. rickettsii, vaccinia, Shigella, poliovirus, adenovirus, influenza, hepatitis A, hepatitis B, dengue virus, Japanese B encephalitis, Varicella zoster, cytomegalovirus, hepatitis A, rotavirus, as well as vaccines against viral diseases like Lyme disease, measles, yellow fever, mumps, rabies, herpes, influenza, parainfluenza and the like. Bacterial vaccines can include vaccines against bacteria such as Vibrio cholerae, Salmonella typhi, Bordetella

-23-

pertussis, Streptococcus pneumoniae, Hemophilus influenza, Clostridium tetani, Corynebacterium diphtheriae, Mycobacterium leprae, Neisseria gonorrhoeae, Neisseria meningitidis, Coccidioides immitis and the like.

Moreover, an overexpressed gene product of the present invention can be overexpressed from its own natural promoter, from a mutated form of such a natural promoter or from a heterologous promoter which has been operably linked to a nucleic acid encoding the gene product. Accordingly, overexpressed gene products contemplated by the present invention include recombinant and non-recombinant gene products. As used herein a recombinant gene product is a gene product expressed from a nucleic acid which has been isolated from the natural source of such a gene product or nucleic acid. In contrast, non-recombinant, or native, gene products are expressed from nucleic acids naturally present in the host cell.

Therefore, the present overexpressed gene 20 products can be native products of the host cell which are naturally produced at high levels, e.g. antibodies, enzymes, cytokines, hormones and the like. Moreover, if the factors controlling expression of a native gene 25 product are understood, such factors can also be manipulated to achieve overexpression of the gene product, e.g. by induction of transcription from the natural promoter using known inducer molecules, by mutation of the nucleic acids controlling or repressing $_{30}$ expression of the gene product to produce a mutant strain that constitutively overexpresses the gene product, by second site mutations which depress the synthesis or function of factors which normally repress the transcription of the gene product, and the like.

-24-

Similarly, the present chaperone proteins can be expressed non-recombinantly, i.e. from the host cell's native gene for that chaperone protein, by manipulating the factors

controlling expression of the native chaperone protein to permit increased expression of the chaperone protein. For example, the native hsp70 chaperone gene or the transcriptional or translational control elements for the hsp70 chaperone can be mutated so that the hsp70 chaperone protein is constitutively expressed.

Alternatively, nucleic acids encoding factors which control the transcription or translation of the chaperone protein can be mutated to achieve increased expression of the chaperone protein. Such mutations can thereby overcome the decrease in native chaperone protein expression which occurs upon overexpression of a gene product.

The overexpressed gene products and the chaperone proteins of the present invention can also be expressed recombinantly, i.e. by placing a nucleic acid encoding a gene product or a chaperone protein into an expression vector. Such an expression vector minimally contains a sequence which effects expression of the gene product or the chaperone protein when the sequence is operably linked to a nucleic acid encoding the gene product or the chaperone protein. Such an expression vector can also contain additional elements like origins of replication, selectable markers, transcription or termination signals, centromeres, autonomous replication sequences, and the like.

According to the present invention, first and second nucleic acids encoding an overexpressed gene product and a chaperone protein, respectively, can be placed within expression vectors to permit regulated

-25-

expression of the overexpressed gene product and/or the chaperone protein. While the chaperone protein and the overexpressed gene product can be encoded in the same expression vector, the chaperone protein is preferably encoded in an expression vector which is separate from the vector encoding the overexpressed gene product. Placement of nucleic acids encoding the chaperone protein and the overexpressed gene product in separate expression vectors can increase the amount of secreted overexpressed gene product.

As used herein, an expression vector can be a replicable or a non-replicable expression vector. A replicable expression vector can replicate either independently of host cell chromosomal DNA or because such a vector has integrated into host cell chromosomal DNA. Upon integration into host cell chromosomal DNA such an expression vector can lose some structural elements but retains the nucleic acid encoding the gene product or the hsp70 chaperone protein and a segment which can effect expression of the gene product or the chaperone protein. Therefore, the expression vectors of the present invention can be chromosomally integrating or chromosomally nonintegrating expression vectors.

In a preferred embodiment of the present invention, one or more chaperone proteins are overexpressed in a host cell by introduction of integrating or nonintegrating expression vectors into the host cell. Following introduction of at least one expression vector encoding at least one chaperone protein, the gene product is then overexpressed by inducing expression of an endogenous gene encoding the gene product, or by introducing into the host cell an expression vector encoding the gene product. In another preferred embodiment, cell lines are established which

-26-

constitutively or inducibly express at least one chaperone protein. An expression vector encoding the gene product to be overexpressed is introduced into such cell lines to achieve increased secretion of the overexpressed gene product.

The present expression vectors can be replicable in one host cell type, e.g., Escherichia coli, and undergo little or no replication in another host cell type, e.g., a eukaryotic host cell, so long as an expression vector permits expression of the present chaperone proteins or overexpressed gene products and thereby facilitates secretion of such gene products in a selected host cell type.

Expression vectors as described herein include DNA or RNA molecules engineered for controlled expression of a desired gene, i.e. a gene encoding the present chaperone proteins or a overexpressed gene product. Such vectors also encode nucleic acid segments which are operably linked to nucleic acids encoding the present chaperone polypeptides or the present overexpressed gene products. Operably linked in this context means that such segments can effect expression of nucleic acids encoding chaperone protein or overexpressed gene products. These nucleic acid sequences include promoters, enhancers, upstream control elements, transcription factors or repressor binding sites, termination signals and other elements which can control gene expression in the contemplated host cell. Preferably the vectors are plasmids, bacteriophages, cosmids or viruses. 30

Sambrook et al. 1989; Goeddel, 1990; Perbal, B. 1988, A Practical Guide to Molecular Cloning, John Wiley & Sons, Inc.; and Romanos et al. 1992, Yeast 8: 423-488, provide detailed reviews of vectors into which

-27-

a nucleic acid encoding the present chaperone polypeptide sequences or the contemplated overexpressed gene products can be inserted and expressed.

function in yeast or mammalian cells. Yeast vectors can include the yeast 2µ circle and derivatives thereof, yeast plasmids encoding yeast autonomous replication sequences, yeast minichromosomes, any yeast integrating vector and the like. A comprehensive listing of many types of yeast vectors is provided in Parent et al. (1985 Yeast 1: 83-138). Mammalian vectors can include SV40 based vectors, polyoma based vectors, retrovirus based vectors, Epstein-Barr virus based vectors, papovavirus based vectors, bovine papilloma virus (BPV) vectors, vaccinia virus vectors, baculovirus vectors and the like. Muzyczka (ed. 1992 Curr. Top. Microbiol. Immunol. 158:97-129) provides a comprehensive review of eukaryotic expression vectors.

Elements or nucleic acid sequences capable of effecting expression of a gene product include promoters, enhancer elements, upstream activating sequences, transcription termination signals and polyadenylation sites. All such promoter and transcriptional regulatory elements, singly or in combination, are contemplated for use in the present expression vectors. Moreover, genetically-engineered and mutated regulatory sequences are also contemplated herein.

Promoters are DNA sequence elements for controlling gene expression. In particular, promoters specify transcription initiation sites and can include a TATA box and upstream promoter elements.

Yeast promoters are used in the present expression vectors when a yeast host cell is used. Such

-28-

yeast promoters include the GAL1, PGK, GAP, TPI, CYC1, ADH2, PHO5, CUP1, MF α 1, MF α 1 and related promoters. Romanos et al. (1992 Yeast 8: 423-488) provide a review of yeast promoters and expression vectors.

Higher eukaryotic promoters which are useful in the present expression vectors include promoters of viral origin, such as the baculovirus polyhedrin promoter, the vaccinia virus hemagglutinin (HA) promoter, SV40 early and late promoter, the herpes simplex thymidine kinase promoter, the Rous sarcoma virus LTR, the Moloney Leukemia Virus LTR, and the Murine Sarcoma Virus (MSV) LTR. Sambrook et al. (1989) and Goeddel (1990) review higher eukaryote promoters.

Preferred promoters of the present invention include inducible promoters, i.e. promoters which direct transcription at an increased or decreased rate upon binding of a transcription factor. Transcription factors as used herein include any factor that can bind to a regulatory or control region of a promoter an thereby affect transcription. The synthesis or the promoter binding ability of a transcription factor within the host cell can be controlled by exposing the host to an inducer or removing an inducer from the host cell medium. Accordingly to regulate expression of an inducible promoter, an inducer is added or removed from the growth medium of the host cell. Such inducers can include sugars, phosphate, alcohol, metal ions, hormones, heat, cold and the like. For example, commonly used inducers in yeast are glucose, galactose, and the like. 30

The expression vectors of the present invention can also encode selectable markers. Selectable markers are genetic functions that confer an identifiable trait upon a host cell so that cells

-29-

transformed with a vector carrying the selectable marker can be distinguished from non-transformed cells.

Inclusion of a selectable marker into a vector can also be used to ensure that genetic functions linked to the marker are retained in the host cell population. Such selectable markers can confer any easily identified dominant trait, e.g. drug resistance, the ability to synthesize or metabolize cellular nutrients and the like.

resistance markers and genetic functions which allow the yeast host cell to synthesize essential cellular nutrients, e.g. amino acids. Drug resistance markers which are commonly used in yeast include chloramphenicol (Cm^r), kanamycin (kan^r), methotrexate (mtx^r or DHFR⁺) G418 (geneticin) and the like. Genetic functions which allow the yeast host cell to synthesize essential cellular nutrients are used with available yeast strains having auxotrophic mutations in the corresponding genomic function. Common yeast selectable markers provide genetic functions for synthesizing leucine (LEU2), tryptophan (TRP1), uracil (URA3), histidine (HIS3), lysine (LYS2) and the like.

Higher eukaryotic selectable markers can include genetic functions encoding an enzyme required for synthesis of a required nutrient, e.g. the thymidine kinase (tk), dihydrofolate reductase (DHFR), uridine (CAD), adenosine deaminase (ADA), asparagine synthetase (AS) and the like. The presence of some of these enzymatic functions can also be identified by exposing the host cell to a toxin which can be inactivated by the enzyme encoded by the selectable marker. Moreover drug resistance markers are available for higher eukaryotic host cells, e.g. aminoglycoside phosphotransferase (APH)

-30-

markers are frequently used to confer resistance to kanamycin, neomycin and geneticin, and hygromycin B phosphotransferase (hyg) confers resistance to hygromycin in higher eukaryotes. Some of the foregoing selectable markers can also be used to amplify linked genetic functions by slowly adding the appropriate substrate for the enzyme encoded by markers such as DHFR, CAD, ADA, AS and others.

Therefore the present expression vectors can encode selectable markers which are useful for identifying and maintaining vector-containing host cells within a cell population present in culture. In some circumstances selectable markers can also be used to amplify the copy number of the expression vector.

After inducing transcription from the present expression vectors to produce an RNA encoding an overexpressed gene product or a chaperone protein, the RNA is translated by cellular factors to produce the gene product or the chaperone protein.

In yeast and other eukaryotes, translation of a messenger RNA (mRNA) is initiated by ribosomal binding to the 5' cap of the mRNA and migration of the ribosome along the mRNA to the first AUG start codon where polypeptide synthesis can begin. Expression in yeast and mammalian cells generally does not require specific number of nucleotides between a ribosomal-binding site and an initiation codon, as is sometimes required in prokaryotic expression systems. However, for expression in a yeast or a mammalian host cell, the first AUG codon in an mRNA is preferably the desired translational start codon.

Moreover, when expression is performed in a yeast host cell the presence of long untranslated leader sequences, e.g. longer than 50-100 nucleotides, can

-31-

diminish translation of an mRNA. Yeast mRNA leader sequences have an average length of about 50 nucleotides, are rich in adenine, have little secondary structure and almost always use the first AUG for initiation (Romanos et al. 1992; and Cigan et al. 1987 Gene 59: 1-18). Since leader sequences which do not have these characteristics can decrease the efficiency of protein translation, yeast leader sequences are preferably used for expression of an overexpressed gene product or a chaperone protein in a yeast host cell. The sequences of many yeast leader sequences are known and are available to the skilled artisan, e.g. by reference to Cigan et al. (1987 Gene 59: 1-18).

In mammalian cells, nucleic acids encoding chaperone proteins or overexpressed gene products generally include the natural ribosomal-binding site and initiation codon because, while the number of nucleotides between transcription and translational start sites can vary, such variability does not greatly affect the expression of the polypeptide in a mammalian host. However, when expression is performed in a mammalian host cell, the first AUG codon in an mRNA is preferably the desired translational start codon.

In addition to the promoter, the ribosomalbinding site and the position of the start codon,
factors which can effect the level of expression
obtained include the copy number of a replicable
expression vector. The copy number of a vector is
generally determined by the vector's origin of
replication and any cis-acting control elements
associated therewith. For example, an increase in copy
number of a yeast episomal vector encoding a regulated
centromere can be achieved by inducing transcription
from a promoter which is closely juxtaposed to the

-32-

centromere (Chlebowicz-Sledziewska <u>et al</u>. 1985 <u>Gene 39</u>: 25-31). Moreover, encoding the yeast FLP function in a yeast vector can also increase the copy number of the vector (Romanos et al.).

The skilled artisan has available many choices of expression vectors. For example, commonly available yeast expression vectors include pWYG-4, pWYG7L and the like. Goeddel (1990) provides a comprehensive listing of yeast expression vectors and sources for such vectors. Commercially available higher eukaryotic expression vectors include pSVL, pMSG, pKSV-10, pSVN9 and the like.

One skilled in the art can also readily design and make expression vectors which include the abovedescribed sequences by combining DNA fragments from available vectors, by synthesizing nucleic acids encoding such regulatory elements or by cloning and placing new regulatory elements into the present vectors. Methods for making expression vectors are well-known. Overexpressed DNA methods are found in any of the myriad of standard laboratory manuals on genetic engineering (Sambrook et al., 1989; Goeddel, 1990 and Romanos et al. 1992).

vector (Goeddel, 1990) which encodes a URA3 selectable marker can be modified to encode an associated inverted sequence which permits high copy number replication in yeast. A galactose inducible promoter, e.g. PGAL1, can be placed within such a vector and a chaperone polypeptide sequence, e.g., SEQ ID NO:2 can be inserted immediately downstream. A pSC101 origin of replication can also be used in such a vector to permit replication at low copy numbers in Escherichia coli. One such replicable expression vector which has such structural

-33-

elements is a pMR1341 vector (Vogel <u>et al</u>. 1990 J. Cell. Biol. <u>110</u>: 1885).

The expression vectors of the present invention can be made by ligating the present chaperone protein coding regions in the proper orientation to the promoter and other sequence elements being used to control gene expression. This juxtapositioning of promoter and other sequence elements with the present hsp70 chaperone polypeptide coding regions allows synthesis of large amounts of the chaperone polypeptide which can then increase secretion of a co-synthesized overexpressed protein.

After construction of the present expression vectors, such vectors are transformed into host cells where the overexpressed gene product and the chaperone protein can be expressed. Methods for transforming yeast and higher eukaryotic cells with expression vectors are well known and readily available to the skilled artisan.

For example, expression vectors can be transformed into yeast cells by any of several procedures including lithium acetate, spheroplast, electroporation and similar procedures. Such procedures can be found in numerous references including Ito et al. (1983, J. Bacteriol. 153: 163), Hinnen et al. (1978 Proc. Natl. Acad. Sci. U.S.A. 75: 1929) and Guthrie et al. (1991 Guide to Yeast Genetics and Molecular Biology, in Methods In Enzymology, vol. 194, Academic Press, New York).

Mammalian host cells can also be transformed with the present expression vectors by a variety of techniques including transfection, infection and other transformation procedures. For example, transformation procedures include calcium phosphate-mediated, DEAE-

-34-

dextran-mediated or polybrene-mediated transformation, protoplast or liposomal fusion, electroporation, direct microinjection into nuclei and the like. Such procedures are provided in Sambrook et al. and the references cited therein.

Yeast host cells which can be used with yeast replicable expression vectors include any wild type or mutant strain of yeast which is capable of secretion. Such strains can be derived from Saccharomyces 10 cerevisiae, Hansenula polymorpha, Kluyveromyces lactis, Pichia pastoris, Schizosaccharomyces pombe, Yarrowia lipolytica and related species of yeast. In general, preferred mutant strains of yeast are strains which have a genetic deficiency that can be used in combination with a yeast vector encoding a selectable marker. Many types of yeast strains are available from the Yeast Genetics Stock Center (Donner Laboratory, University of California, Berkeley, CA 94720), the American Type Culture Collection (12301 Parklawn Drive, Rockville, MD 20852, hereinafter ATCC), the National Collection of Yeast Cultures (Food Research Institute, Colney Lane, Norwich NR4 7UA, UK) and the Centraalbureau voor Schimmelcultures (Yeast Division, Julianalaan 67a, 2628 BC Delft, Netherlands).

Tissue culture cells that are used with eukaryotic expression vectors can include VERO cells, MRC-5 cells, SCV-1 cells, COS-1 cells, CV-1 cells, LCC-MK2 cells, NIH3T3 cells, CHO-K1 cells, mouse L cells, HeLa cells, Antheraea eucalypti moth ovarian cells, Aedes aegypti mosquito cells, S. frugiperda cells and other cultured cell lines known to one skilled in the art. Such host cells can be obtained from the ATCC. For example, Table 1 provides examples of higher eukaryotic host cells which are illustrative of the many

-35-

types of host cells which can be used with the present methods. The subject matter of Table 1 is not intended to limit the invention is any respect.

The following Examples further illustrate the invention. $\ensuremath{\mathbf{5}}$

10

. 15

20

25

30

-36-

1

TABLE 1

	HOST CELL	ORIGIN	SOURCE
	Aedes aegypti	Mosquito Larvae	*ATCC #CCL 125
5	LtK-	Mouse	Exp. Cell. Res 31:297-312
	CV-1	African Green Monkey Kidney	ATCC #CCL 70
	LCC-MK ₂ original	Rhesus Monkey Kidney	ATCC #CCL 7
	$LCC-MK_2$ derivative	Rhesus Monkey Kidney	ATCC #CCL 7.1
	3T3	Mouse Embryo Fibroblasts	ATCC #CCL 92
10	CHO-K1	Chinese Hamster Ovary	ATCC #CCL 61
	293	Human Embryonic Kidney	ATCC #CRL 1573
	Antheraea eucalypti	Moth Ovarian Tissue	ATCC #CCL 80
	HeLa	Human Cervix Epitheloid	ATCC #CCL 2
	C1271	Mouse Fibroblast	ATCC #CRL 1616
15	HS-Sultan	Human Plasma Cell Plasmacytoma	ATCC #CRL 1484
	Saccharomyces cerevisiae DBY746		ATCC #44773

^{20 *} American Type Culture Collection, 1201 Parklawn Drive, Rockville, Maryland

25

-37-

1

EXAMPLE 1

ON NATIVE YEAST CHAPERONE PROTEIN SYNTHESIS

The expression of native yeast chaperone KAR2 protein was observed in yeast cells constitutively overexpressing human gene products erythropoietin, granulocyte colony stimulating factor, platelet derived growth factor or Schizosaccharomyces
pombe acid phosphatase. These non-yeast products have a variety of distinct structural features including different sizes, differences in glycosylation, and different numbers of subunits (Table 2).

TABLE 2: STRUCTURAL FEATURES OF OVEREXPRESSED GENE PRODUCTS

Protein Multiple Subunits? Glycosylated? Size (kd)

EPO = human erythropoietin, PDGF = human platelet derived growth factor B chain, GCSF = human granulocyte colony stimulating factor, PHO = Schizosaccharomyces pombe acid phosphatase, and GCSF-PHO = fusion between GCSF and PHO. Materials and Methods:

Yeast YPH500 (a ura3-52 lys2-801a ade2-101 trp-\(\Delta \) his3-\(\Delta \) leu2-\(\Delta \) cells were transformed with multicopy plasmids encoding one of the overexpressed gene products described in Table 2, using methods provided in Guthrie et al. and then cultured in protein-free Synthetic Complete (SC) media. Extracts from 10 ml cultures of mid-exponential growing cells were prepared by glass bead disruption (Guthrie et al). Serial dilutions were made of protein extracts from strains expressing the different gene products. Equal amounts

-38-

of total protein were loaded onto a BioRad slot blotting apparatus and blots were prepared.

The blots were probed with anti-KAR2 antibody followed by goat anti-rabbit secondary antibody conjugated to alkaline phosphatase. Alkaline phosphatase enzymatic activity was detected by use of a Lumi-Phos 530^R substrate (Boehringer Mannheim) to form a chemi-luminescent product. Quantitation of the amount of KAR2 protein expressed in different cell extracts was by densitometric scanning of X-ray films exposed to blots treated with Lumi-Phos 530^R.

Results:

Fig. 1 depicts the amounts of KAR2 protein in wild type yeast and yeast strains which had been overexpressing human erythropoietin (EPO), human platelet derived growth factor B chain (PDGF), human granulocyte colony stimulating factor (GCSF),

Schizosaccharomyces pombe acid phosphatase (PHO) and a fusion between GCSF and PHO (GCSF-PHO) for 50 or more generations.

Surprisingly, native soluble KAR2 protein levels were at least five-fold lower in cells expressing these foreign genes from multicopy plasmids. Lower levels of expression from a single-copy control plasmid (i.e. single-copy PHO) did not greatly diminish KAR2 protein expression.

Similar results were obtained when using a BJ5464 yeast strain (α ura3-52 trpl leu2Δ1 his3Δ200 pep4::HIS3 prblΔ1.6R canl GAL), which is deficient in vacuolar proteases. Therefore, the differences in KAR2 expression were not due to differences in the levels of vacuolar proteases. Moreover, the addition of other protease inhibitors to the cell extracts did not change the relative amount of KAR2 protein observed. Further,

-39-

mixing experiments of cellular extracts containing and not containing KAR2, confirmed that proteolysis during sample preparation was negligible. Therefore, strain-dependent differences in proteolysis could not account for the observed dimunition of KAR2 protein expression in yeast strains overexpressing proteins from multicopy plasmids.

Accordingly, the amount of native KAR2 protein in cells expressing high levels of a gene product is diminished at least 5-fold.

15

20

25

30

-40-

EXAMPLE 2

1

CONSTRUCTION OF AN INDUCIBLE KAR2 EXPRESSION VECTOR

A pMR1341 expression vector was made from a

pMR568 plasmid which encoded the yeast KAR2 chaperone protein having -55 base pairs (bp) from the ATG start codon (i.e. position 240 of SEQ ID NO: 1) to the terminus of the coding region at bp as provided in SEQ ID NO:1. The PGAL1 promoter encoded within a SalI-AatII fragment from pB622 was placed into SalI-AatII sites within pMR568 to provide a galactose inducible promoter for the KAR2 coding region. Moreover, pMR1341 encodes a URA3 selectable marker which permits selection for this vector in ura deficient yeast host cells. In later experiments the URA3 encoding nucleic acid fragment was deleted and replaced with a fragment encoding both HIS and LEU yeast selectable markers.

Fig. 2 depicts this pMR1341 expression vector for KAR2. As depicted, this vector encodes a pSC101 origin of replication (ori pSC101) and an ampicillin resistance (Amp^R) which permit replication and selection of pMR1341 in <u>Escherichia coli</u>. pMR1341 further encodes a yeast centromeric (CEN4) sequence and a yeast autonomous replication sequence-1 (ARS1) which permit

autonomous replication in yeast host cells. Vogel et al. (1990) describe this vector in greater detail.

30

-41-

EXAMPLE 3

1

INCREASED SECRETION OF OVEREXPRESSED PROTEINS UPON EXPRESSION OF A CHAPERONE PROTEIN

The KAR2 yeast chaperone coding region was placed under the control of a galactose inducible promoter and the plasmid encoding this chimeric gene was transformed into BJ5464 yeast cells which also carried a plasmid encoding erythropoietin (EPO) under a galactose inducible promoter. These BJ5464 cells were then grown overnight in protein-free glucose medium in the absence of galactose. Expression of KAR2 and EPO proteins was induced by transfer of the BJ5464 cells into a galactose medium (SC GAL).

observing the optical absorption of the culture at 600 nm. Cell and supernatant samples were taken at 24, 48 and 72 hours after induction. Cell samples were used for determination of KAR2 protein levels using the slot blot procedure described in Example 1. Supernatant samples were tested for the amount of secreted EPO by using the slot blot procedure with a SY14 monoclonal antibody which is specific for EPO.

Fig. 3 depicts the KAR2 expression observed in cell extracts collected at 24, 48 and 72 hours after induction. The KAR2 immunoassay values provided in Fig. 3 represent a ratio of the amount of KAR2 detected in a given yeast cell type relative to wild type yeast. KAR2 expression in wild type cells (•), cells transformed with the EPO-encoding plasmid only (•, GalEpo) and cells transformed with both the EPO-encoding plasmid and the KAR2-encoding plasmid (A, GalEpo+GalKar2), is depicted. After induction, expression of KAR2 is initially higher in cells with the EPO-encoding plasmid than in wild type

-42-

yeast cells. However, GalEpo cellular expression of
KAR2 drops to almost wild type levels by 48 hours after
induction. If KAR2 expression were monitored for longer
periods of time, the amount of KAR2 in the GalEPO cells
would be less than wild type, as shown in Fig. 1.
However, KAR2 expression at 24 hr is significantly
greater in GalEpo+GalKAR2 cells which have the KAR2encoding plasmid despite the presence of overexpressed
EPO. Moreover, by 48 to 72 hours after induction, KAR2
expression is at least 4- to 5-fold higher in cells
expressing additional amounts of KAR2 recombinantly than
in cells expressing KAR2 from a native, genomic locus.
Therefore, KAR2 expression can be boosted significantly
by recombinant expression.

Fig. 4 depicts the growth of wild type cells (□), cells transformed with the EPO-encoding plasmid only (O, GalEpo) and cells transformed with both the EPO-encoding plasmid and the KAR2-encoding plasmid (Δ, GalEpo+GalKar2) after induction of EPO and KAR2 expression.

The inset provided in Fig. 4 depicts the amount of EPO secreted into the medium of cells which have the EPO-encoding plasmid only (GalEpo) compared with the amount of secreted EPO from cells having both the EPO-encoding plasmid and the KAR2-encoding plasmid (GalEpo+GalKar2). The supernatants tested were collected during exponential growth of these yeast strains at the indicated time point (arrow). As shown in the Fig. 4 inset, the amount of EPO secreted upon induction of KAR2 expression is almost five-fold higher than when no additional KAR2 chaperone protein is present.

Therefore, increasing KAR2 expression causes a substantial increase in protein secretion.

-43-

1

EXAMPLE 4

CONSTRUCTION OF STRAINS OVEREXPRESSING BIP AND PDI

Yeast strains were constructed which overexpress yeast BiP, PDI or both BiP and PDI.

The overexpression system for BiP utilizes the glyceraldehyde-3-phosphate dehydrogenase (GPD) constitutive promoter. A SalI-AatII fragment containing the GPD promoter was ligated into the AatII-SalI site of the pMRI341 expression vector described in Example 2, replacing the galactose (GALI) promoter used for inducible expression of yeast BiP. A single-copy centromere plasmid containing this construct was named pGPDKAR2. BJ5464 cells were transformed with pGPDKAR2.

To construct a yeast strain that overexpresses yeast PDI, an expression cassette containing the yeast PDI gene downstream of the constitutive ADHII promoter was integrated into the chromosomal copy of PDI using LEU2 as a selective marker. Yeast strain BJ5464 with this integrated PDI expression cassette was renamed YVH10 (PDI::ADHII-PDI-Leu2 ura3-52 trp 1 leu2\(^1\)1 his 3\(^2\)200 pep4::H153 prb \(^1\)1.6p can 1 GAL).

YVH10 cells were transformed with pGPDKAR2 to provide cells overexpressing both BiP and PDI.

Cells extracts from mid-exponential phase cultures of BJ5464, BJ5464 transformed with pGPDKAR2, YVH10, and YVH10 transformed with pGPDKAR2 were prepared. Yeast BiP and PDI were detected by chemiluminescence using α-Kar2lgG and α-PDIlgG, respectively. Densitometry was performed with an Apple Optical Scanner and analyzed with the program Image (NIH). Quantitation of band intensity was determined from three dilutions of protein and multiple time

-44-

exposures of the bands within the linear range of the film.

As demonstrated in Table 3, BiP was overexpressed approximately 5-6 fold, and PDI was overexpressed approximately 11-16 fold.

TABLE 3

		BJ5464	BJ5464 +pGPDKAR2	AAH10	YVH10 +GPDKAR2
	BiP overexpressed	-	+	-	+
10	PDI overexpressed	-	-	+	+
	Densitometry scan, αBiP	1	5.9	1.3	5.5
	Densitometry scan, αPDI	1.3	1	16	11

15

20

25

-45-

1

EXAMPLE 5

<u>INCREASED SECRETION OF OVEREXPRESSED PROTEINS</u> <u>UPON EXPRESSION OF A CHAPERONE PROTEIN</u>

The four yeast strains described in Example 4
(BJ5464, BJ5464 + pGPDKAR2, YVH10, and YVH10 + pGPDKAR2)
are grown for several generations in synthetic complete
(S.C.) media to provide strains which overexpress
neither BiP nor PDI, BiP alone, PDI alone, or both BiP
and PDI, respectively. The strains are each transformed
with an expression vector which directs the constitutive
expression of a gene product. Supernatant samples are
collected during exponential growth of the transformed
cells and assayed for the presence of the secreted gene
product.

20

25

30

-46-

SEQUENCE LISTING

- (1) GENERAL INFORMATION:
 - (i) APPLICANT: Research Corporation Technologies, Inc. 101 North Wilmot Road, Suite 600 Tucson, AZ 85711-3335 (602) 748-4400
 - (ii) TITLE OF INVENTION: METHODS FOR INCREASING SECRETION OF RECOMBINANTLY EXPRESSED PROTEINS
 - (iii) NUMBER OF SEQUENCES: 20
 - (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: SCULLY, SCOTT, MURPHY & PRESSER
 - (B) STREET: 400 Garden City Plaza
 - (C) CITY: Garden City
 - (D) STATE: NY
 - (E) COUNTRY: USA
 - (F) ZIP: 11530
 - (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25
 - (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE:
 - (C) CLASSIFICATION:
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Scott, Anthony C.
 - (B) REGISTRATION NUMBER: 25,439
 - (C) REFERENCE/DOCKET NUMBER: 8646Z
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: 516-742-4343
 - (B) TELEFAX: 516-742-4366
 - (C) TELEX: 230 901 SANS UR
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2780 base pairs
 - (B) TYPE: nucleic acid

-47-

(ii) MOLECULE TYPE: DNA (genomic)

(ix) FEATURE:

(A) NAME/KEY: CDS (B) LOCATION: 285..2333

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

C	CGAC	CAAA	GTG	TAGA	TCC	CATT	AGGA	CT C	ATCA	TTCA	т ст	AATT	TTGC	TAT	GTTAGC	T 60
GC	AACI	TTCT	ATT	TTAA	TAG .	AACC	TTCT	GG A	AATT	TCAC	C CG	GCGC	GGCA	ccc	GAGGAA	C 120
TC	GACA	GCGT	GTC	GAAA	AAG '	TTGC	TTTT	et a	TATA	AAGG	A CA	CGAA	AAGG	GTT	CTCTGG	A 180
AG	ATAT	AAAT	ATG	GCTA!	rgt 1	AATT	CTAA	AG A	PTAA(CGTG	TA	CTGT	TTTA	CTT	rtttaa <i>i</i>	A 240
GT	CCCC.	AAGA	GTA	GTCT(CAA (GGA <i>I</i>	AAAA	SC GI	PATC	AAAC <i>I</i>	A TAC				TC AAC ne Asn	296
Ar	A CTA J Let	A AGO	GCT Ala	GGC Gly	AAC Lys	Leu	CTC Lev	GTA Val	CCA Pro	CTC Leu 15	Ser	GTG Val	GTC Val	CTC Leu	TAC Tyr 20	344
GCC	CTT Lev	TTC Phe	GTG Val	GTA Val 25	Ile	TTA Leu	CCT Pro	TTA Leu	Gln 30	Asn	TCT	TTC Phe	CAC His	TCC Ser 35	TCC Ser	392
AAT Asn	GTI Val	TTA Leu	GTT Val 40	Arg	GGT Gly	GCC Ala	GAT Asp	GAT Asp 45	GTA Val	GAA Glu	AAC Asn	TAC	GGA Gly 50	Thr	GTT Val	440
ATC Ile	GGT Gly	ATT Ile 55	GAC Asp	TTA Leu	GGT Glý	ACT Thr	ACT Thr 60	TAT Tyr	TCC Ser	TGT Cys	GTT Val	GCT Ala 65	GTG Val	ATG Met	AAA Lys	488
AAT Asn	GGT Gly 70	AAG Lys	ACT Thr	GAA Glu	ATT Ile	CTT Leu 75	GCT Ala	AAT Asn	GAG Glu	CAA Gln	GGT Gly 80	AAC Asn	AGA Arg	ATC Ile	ACC Thr	536
CCA Pro 85	TCT Ser	TAC Tyr	GTG Val	GCA Ala	TTC Phe 90	ACC Thr	GAT Asp	GAT Asp	GAA Glu	AGA Arg 95	TTG Leu	ATT Ile	GGT Gly	GAT Asp	GCT Ala 100	584
GCA Ala	AAG Lys	AAC Asn	CAA Gln	GTT Val 105	GCT Ala	GCC Ala	AAT Asn	CCT Pro	CAA Gln 110	AAC Asn	ACC Thr	ATC Ile	TTC Phe	GAC Asp 115	ATT Ile	632

A/ Ly	AG A Ys A	GA ! rg I	eu	ATC Ile 120	GGT Gly	TTG Leu	AA! Lys	A TA	yr A	AC sn 25	GAC Asp	AG	A TO	CT G	al G	AG ln 30	AAG Lys	GAT Asp	680
		ys H			CCA Pro				ıl Va					p G					
GT Va	A G/ 1 G/ 15	Lu V	TA A	AGT Ser	GTC Val	AAA Lys	GGA Gly 155	Gl	A AA u Ly	AG 1 /s I	AAG Lys	GTI Val	TT Ph 16	e Ti	or C	CA G	SAA Slu	GAA Glu	776
AT 110 16!	e Se	T G	GT A ly M	ITG .	ATC Ile	TTG Leu 170	GGT Gly	AA Ly:	G AI s Me	G A	AA .ys	CAA Gln 175	Ile	T GC e Al	C G a G	AA G Lu A	AT .sp	TAT Tyr 180	. 824
TT! Leu	A GG 1 Gl	C AC	CT A	ys V	GTT 1 /al 1 185	ACC Thr	CAT His	GCT Ala	r GT a Va	l V	TT al 90	ACT Thr	GTT Val	CC l Pr	T GC o Al	a T	AT yr 95	TTC Phe	872
AAT Asn	GA Asj	C GC P Al	a G	AA A ln A	AGA (AA (GCC Ala	ACC Thr	Ly:	s A	AT (GCT Ala	GGT Gly	AC Th	C AT r Il 21	e Al	CT (GGT Gly	920
TTG Leu	AA(Ası	GT Va 21	l Le	rg A eu A	GA A rg I	TT (/al	AAT Asn 220	Gli	A CO	CA I	ACC Thr	GCA Ala	GC0 Ala 225	a Ala	C AT	TT (GCC Ala	968
TAC Tyr	GGT Gly 230	Le	G GA u As	AT A	AA T ys S	er A	AT sp 35	AAG Lys	GAA Glu	CH Hi	T C	ln	ATT Ile 240	ATT	GT;	TA L Ty	T G	at Sp	1016
TTG Leu 245	GGT Gly	GG!	r GG / Gl	T A	or Pl	TC G ne A 50	AT (GTC Val	TCT Ser	CI Le	u L	TG eu 55	TCT Ser	ATT	GA# Glu	AA AS	n 'G	GT ly 60	1064
GTT Val	TTC Phe	GAA Glu	GT Va	C C2 1 G1 26	AA GO Ln Al	CC A	CT 1 hr s	CT Ser	GGT Gly	GA As 27	P T	CT (hr I	CAT His	TTA Leu	GGT Gly	GG; Gl; 27	y G	AA lu	1112
GAT Asp	TTT Phe	GAC Asp	TA: Ty: 280	. Ly	G AT	C G:	TT C	ırg	CAA Gln 285	TT	GA!	TA A le I	AAA Lys	GCT Ala	TTC Phe 290	Lys	G Ai	AG Ys	1160
AAG (Lys 1	CAT His	GGT Gly 295	ATT	GA As	T GT p Va	G TO 1 Se	er A	AC sp 00	AAC Asn	AA(Asi	C Al	AG G Ys A	la .	CTA Leu 305	GCT Ala	AAA Lys	A TT	rG eu	1208
ys I	AGA Arg 310	GAA Glu	GCT Ala	GA.	A AA u Ly:	G GC S Al 31	a L	AA (ys i	CGT Arg	GCC Ala	TI Le	u S	er 20	AGC Ser	CAA Gln	ATG Met	TC Se	c r	1256

A(T) 32	ır A	GT i	ATT Ile	GAA Glu	AT Il	T GA e As 33	p Se	CC T	TC G	TT (sp	GGT Gly 335	Ile	C GA e As	C TI p Le	ra a eu s	GT er	GAA Glu 340	1	.304
AC Th	C T	TG A	ACC Thr	AGA Arg	GC: Ala 345	a Ly	G TI s Ph	TT GA	AG GA	lu L	TA / eu / 50	AAC Asn	CTA Leu	A GA' 1 Asj	T CI P Le	u Pl	rc he 55	AAG Lys	1	352
AA Ly	G A(CC I	TG eu	AAG Lys 360	CCI	C GT(C GA l Gl	G AA u Ly	G G1 s Va 36	l L	TG (eu (CAA Sln	GAT Asp	Sei	r GG c G1; 37	y Le	rG eu	GAA Glu	14	400
AA: Ly:	G AA s Ly	s A	AT sp 75	GTT Val	GAT Asp	GA1	r AT	C GT e Va 38	l Le	'G G'. u Va	rr c	GT ly	GGT Gly	TCI Ser 385	Th	T AG	A.	ATT Ile	14	148
Pro	A AA Ly 39	s V	TC (CAA Sln	CAA Gln	TTC	TTI Let 395	A GA	A TC. u Se:	A TA	C T	he	GAT Asp 400	GGT Gly	AAC Lys	G AA	G (GCC Ala	14	96
TCC Ser 405	Ly	G G(s G)	GT 1 ly 1	ATT [le	AAC Asn	CCA Pro 410	Asp	GAI Glu	A GC:	r GT a Va	l A	CA la 15	TAC Tyr	GGT Gly	GCA Ala	GC0	a V	GTT /al 120	15	44
CAA Gln	GC:	r Go a Gl	ST G .y V	al :	TTA Leu 425	TCC Ser	GGT Gly	GAA Glu	GAA Glu	43	y Va	rc (GAA Glu	GAT Asp	ATT	Val 435	L	TA .eu	159	€2
TTG Leu	GA1 Asp	GT Va	1 A	AC (sn 1 40	GCT Ala	TTG Leu	ACT Thr	CTT Leu	GGI Gly 445	' Ile	I GA e Gl	A A .u T	ACC . Thr	ACT Thr	GGT Gly 450	GG1 Gly	' G	TC al	164	10
ATG Met	ACT Thr	Pro 45!	o L	TA A eu l	ATT [le	AAG Lys	AGA Arg	AAT Asn 460	ACT Thr	GCT	r AT	T C	ro!	ACA Thr 465	AAG Lys	AAA Lys	S	CC er	168	8
CAA Gln	ATT Ile 470	TT(C TO	CT A	CT (Ala	GTT Val 475	GAC Asp	AAC Asn	CAA Glr	CC Pr	o T	CC (hr \ 80	GTT Val	ATG Met	ATC Ile	A. Ly	AG Ys	173	6
GTA Val 485	TAC Tyr	GA0	G G G G I	et G .y G	lu A	AGA Arg 190	GCC Ala	ATG Met	TCT Ser	AAG Lys	GA: As; 49:	p A	AC A sn A	AAT Asn :	CTA Leu	TTA Leu	G]	GT Ly DO	178	4
AAG Lys	TTT Phe	GAA Glu	TI Le	u T	cc c hr 0 05	GC :	ATT Ile	CCA Pro	CCA Pro	GCA Ala 510	Pro	A A	GA G	GT (Val	CCT Pro 515	GI	ln	183	2
ATT (r Pl				Asp						eu 1					1880)

-50-

GCC ACA GAT AAG GGA ACT GGT AAA TCC GAA TCT ATC ACC ATC ACT AAC Ala Thr Asp Lys Gly Thr Gly Lys Ser Glu Ser Ile Thr Ile Thr Asn 535 540 545	1928
GAT AAA GGT AGA TTA ACC CAA GAA GAG ATT GAT AGA ATG GTT GAA GAG Asp Lys Gly Arg Leu Thr Gln Glu Glu Ile Asp Arg Met Val Glu Glu 550 555 560	1976
GCT GAA AAA TTC GCT TCT GAA GAC GCT TCT ATC AAG GCC AAG GTT GAA Ala Glu Lys Phe Ala Ser Glu Asp Ala Ser Ile Lys Ala Lys Val Glu 565 570 575 580	2024
TCT AGA AAC AAA TTA GAA AAC TAC GCT CAC TCT TTG AAA AAC CAA GTT Ser Arg Asn Lys Leu Glu Asn Tyr Ala His Ser Leu Lys Asn Gln Val 585 590 595	2072
AAT GGT GAC CTA GGT GAA AAA TTG GAA GAA GAA GAC AAG GAA ACC TTA Asn Gly Asp Leu Gly Glu Lys Leu Glu Glu Glu Asp Lys Glu Thr Leu 600 605 610	2120
TTA GAT GCT GCT AAC GAT GTT TTA GAA TGG TTA GAT GAT AAC TTT GAA Leu Asp Ala Ala Asn Asp Val Leu Glu Trp Leu Asp Asp Asn Phe Glu 615 620 625	2168
ACC GCC ATT GCT GAA GAC TTT GAT GAA AAG TTC GAA TCT TTG TCC AAG Thr Ala Ile Ala Glu Asp Phe Asp Glu Lys Phe Glu Ser Leu Ser Lys 630 640	2216
GTC GCT TAT CCA ATT ACT TCT AAG TTG TAC GGA GGT GCT GAT GGT TCT Val Ala Tyr Pro Ile Thr Ser Lys Leu Tyr Gly Gly Ala Asp Gly Ser 645 650 660	2264
GGT GCC GCT GAT TAT GAC GAC GAA GAT GAA GAT GAC GAT GGT GAT TAT Gly Ala Ala Asp Tyr Asp Asp Glu Asp Glu Asp Asp Asp Gly Asp Tyr 665 670 675	2312
TTC GAA CAC GAC GAA TTG TAGATAAAAAT AGTTAAAAAAT TTTTGCTGCT Phe Glu His Asp Glu Leu 680	2360
GGAAGCTTCA AGGTTGTTAA TTTATTGACT TGCATAGAAT ATCTACATTT CTTCTAAAAA	2420
TACATGCATA GCTAATTCAA ACTTCGAGCT TCATACAATT TTCGAGGAGA TTATACTGAG	2480
TATATACGTA AATATATGCA TTATATGTTA TAAAATTAGA AAGATATAGA AATTTCATTG	2540
AAGAGTATAG AGACTGGGGT TAAGGTACTC AGTAACAGTG TCATCAATAT GCTAATTTTG	2600
CGTATTACTT AGCTCTATTG CGCAAATGCA ATTTTTTCTT ACCCTGATAA TGCTTTATTT	2660

-51-

CCCGTTCCGA AAATTTTTCA	стдаааааа	AGTGCTTAAG	CTCATCTCAT	CTCATCTCAT	2720
CCCATCACTA TTGAAATATT	TTGCTAAAAC	ATTATAACAG	AGAGAGTTGA	AAGGCTCGAG	2780
(2) INFORMATION FOR S	EO ID NO:2:				

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 682 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Met Phe Phe Asn Arg Leu Ser Ala Gly Lys Leu Leu Val Pro Leu Ser 1 5 10 15

Val Val Leu Tyr Ala Leu Phe Val Val Ile Leu Pro Leu Gln Asn Ser 20 25 30

Phe His Ser Ser Asn Val Leu Val Arg Gly Ala Asp Asp Val Glu Asn 35 40 45

Tyr Gly Thr Val Ile Gly Ile Asp Leu Gly Thr Thr Tyr Ser Cys Val 50 60

Ala Val Met Lys Asn Gly Lys Thr Glu Ile Leu Ala Asn Glu Gln Gly 65 70 75 80

Asn Arg Ile Thr Pro Ser Tyr Val Ala Phe Thr Asp Asp Glu Arg Leu 85 90 95

Ile Gly Asp Ala Ala Lys Asn Gln Val Ala Ala Asn Pro Gln Asn Thr 100 105 110

Ile Phe Asp Ile Lys Arg Leu Ile Gly Leu Lys Tyr Asn Asp Arg Ser 115 120 125

Val Gln Lys Asp Ile Lys His Leu Pro Phe Asn Val Val Asn Lys Asp 130 135 140

Gly Lys Pro Ala Val Glu Val Ser Val Lys Gly Glu Lys Lys Val Phe 145 150 155 160

Thr Pro Glu Glu Ile Ser Gly Met Ile Leu Gly Lys Met Lys Gln Ile 165 170 175

Ala	Glu	Asp	Tyr	Leu	Gly	Thr	Lys	Val	Thr	His	Ala	Val	Val	Thr	Val
			180					185					190		

- Pro Ala Tyr Phe Asn Asp Ala Gln Arg Gln Ala Thr Lys Asp Ala Gly
 195 200 205
- Thr Ile Ala Gly Leu Asn Val Leu Arg Ile Val Asn Glu Pro Thr Ala 210 215 220
- Ala Ala Ile Ala Tyr Gly Leu Asp Lys Ser Asp Lys Glu His Gln Ile 225 230 235 240
- Ile Val Tyr Asp Leu Gly Gly Gly Thr Phe Asp Val Ser Leu Leu Ser 245 250 255
- Ile Glu Asn Gly Val Phe Glu Val Gln Ala Thr Ser Gly Asp Thr His 260 265 270
- Leu Gly Glu Asp Phe Asp Tyr Lys Ile Val Arg Gln Leu Ile Lys 275 280 285
- Ala Phe Lys Lys Lys His Gly Ile Asp Val Ser Asp Asn Asn Lys Ala 290 295 300
- Leu Ala Lys Leu Lys Arg Glu Ala Glu Lys Ala Lys Arg Ala Leu Ser 305 310 315 320
- Ser Gln Met Ser Thr Arg Île Glu Ile Asp Ser Phe Val Asp Gly Ile 325 330 335
- Asp Leu Ser Glu Thr Leu Thr Arg Ala Lys Phe Glu Glu Leu Asn Leu 340 345 350
- Asp Leu Phe Lys Lys Thr Leu Lys Pro Val Glu Lys Val Leu Gln Asp 355 360 365
- Ser Gly Leu Glu Lys Lys Asp Val Asp Asp Ile Val Leu Val Gly Gly 370 375 380
- Ser Thr Arg Ile Pro Lys Val Gln Gln Leu Leu Glu Ser Tyr Phe Asp 385 390 395 400
- Gly Lys Lys Ala Ser Lys Gly Ile Asn Pro Asp Glu Ala Val Ala Tyr 405 410 415
- Gly Ala Ala Val Gln Ala Gly Val Leu Ser Gly Glu Glu Gly Val Glu 420 425 430
- Asp Ile Val Leu Leu Asp Val Asn Ala Leu Thr Leu Gly Ile Glu Thr 435 440 445

Thr	Gly	Gly	Val	Met	Thr	Pro	Leu	Ile	Lys	Arg	Asn	Thr	Ala	Ile	Pro
	450					455	•				460				

Thr Lys Lys Ser Gln Ile Phe Ser Thr Ala Val Asp Asn Gln Pro Thr 465 470 475 480

Val Met Ile Lys Val Tyr Glu Gly Glu Arg Ala Met Ser Lys Asp Asn 485 490 495

Asn Leu Leu Gly Lys Phe Glu Leu Thr Gly Ile Pro Pro Ala Pro Arg 500 505 510

Gly Val Pro Gln Ile Glu Val Thr Phe Ala Leu Asp Ala Asn Gly Ile 515 520 525

Leu Lys Val Ser Ala Thr Asp Lys Gly Thr Gly Lys Ser Glu Ser Ile 530 535 540

Thr Ile Thr Asn Asp Lys Gly Arg Leu Thr Gln Glu Glu Ile Asp Arg 545 550 555 560

Met Val Glu Glu Ala Glu Lys Phe Ala Ser Glu Asp Ala Ser Ile Lys 565 570 575

Ala Lys Val Glu Ser Arg Asn Lys Leu Glu Asn Tyr Ala His Ser Leu 580 585 590

Lys Asn Gln Val Asn Gly Asp Leu Gly Glu Lys Leu Glu Glu Glu Asp 595 600 605

Lys Glu Thr Leu Leu Asp Ala Ala Asn Asp Val Leu Glu Trp Leu Asp 610 615 620

Asp Asn Phe Glu Thr Ala Ile Ala Glu Asp Phe Asp Glu Lys Phe Glu 625 630 635 640

Ser Leu Ser Lys Val Ala Tyr Pro Ile Thr Ser Lys Leu Tyr Gly Gly 645 650 655

Ala Asp Gly Ser Gly Ala Ala Asp Tyr Asp Asp Glu Asp Glu Asp Asp 660 665 670

Asp Gly Asp Tyr Phe Glu His Asp Glu Leu 675 680

(2) INFORMATION FOR SEQ ID NO:3:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2367 base pairs
 - (B) TYPE: nucleic acid

-54-

(C)	STRANDEDNE	ESS:	double
(D)	TOPOLOGY:	line	ar

- (ii) MOLECULE TYPE: DNA (genomic)
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 (B) LOCATION: 251..2176
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

AAGCTTTTAG GAATTTTGAA TTTTTGATCG AATTTTAGAA AAAACTATTC GCAAGACTAC	60
AATTTTTGAA GGGTGCTATT TGTGAAAAAA TAAAACGTGA AATAAATCGT TTTATAATTT	120
ACGAATTGTC GTTATTCAAA ACTCAAAAAA TATGATCTCG TCGAGATTCA CTAATGTAGT	180
CCGTAGCGGA TTGCGTTTCC AAAGCAAGGG AGCATCGTTC AAGATTGGCG CTTCCTTGCA	240
TGGAAGTCGC ATG ACC GCC CGC TGG AAT TCT AAT GCA AGT GGT AAT GAA Met Thr Ala Arg Trp Asn Ser Asn Ala Ser Gly Asn Glu 1 5 10	289
AAA GTT AAG GGT CCC GTA ATC GGT ATT GAC TTG GGT ACC ACC TCA Lys Val Lys Gly Pro Val Ile Gly Ile Asp Leu Gly Thr Thr Ser 15 20 25	337
TGT TTA GCA ATC ATG GAG GGT CAA ACC CCT AAG GTT ATT GCA AAT GCC Cys Leu Ala Ile Met Glu Gly Gln Thr Pro Lys Val Ile Ala Asn Ala 30 35 40 45	385
GAG GGT ACC CGT ACC ACA CCA TCT GTC GTC GCA TTT ACC AAA GAT GGC Glu Gly Thr Arg Thr Thr Pro Ser Val Val Ala Phe Thr Lys Asp Gly 50 55 60	433
GAG CGT TTG GTG GGT GTT AGC GCT AAA CGC CAA GCC GTC ATT AAC CCG Glu Arg Leu Val Gly Val Ser Ala Lys Arg Gln Ala Val Ile Asn Pro 65 70 75	481
GAA AAC ACA TTT TTT GCT ACT AAG CGT TTA ATC GGT CGT AGA TTT AAA Glu Asn Thr Phe Phe Ala Thr Lys Arg Leu Ile Gly Arg Arg Phe Lys 80 85 90	529
GAG CCT GAA GTC CAA CGT GAT ATT AAG GAA GTT CCT TAC AAA ATT GTC Glu Pro Glu Val Gln Arg Asp Ile Lys Glu Val Pro Tyr Lys Ile Val 95 100 105	577

-55-

	u H				ly A						a Ar				CC TAC nr Tyr 125	
				ln I						u Se					A ACT u Thr O	673
			hr T						l Ly					l Th	T GTT r Val	721
		a Ty						n Ar					Ala		T GGT a Gly	769
		e Al					l Le					Glu			F GCC Ala	817
	Al					y Le									GCA Ala 205	865
					y Gl					Ile					TTA Leu	913
				l Ph					Thr	AAC Asn						961
			As <u>ı</u>					Leu		CGT Arg						1009
Phe							Asp			AAG Lys						1057
										AAG Lys 280						1105
										ATT . Ile						1153
GGC (Ile			Glu					Gln :				1201

-56-

	Val 1				TT CO		g Th					s Ly			
CTT .						n Th					n Gl				
GTC (Val (350					g Me					Gl					r
ATC T				u Pr					L Asn					a Va	
GCC A Ala I			a Al					, Val					Va.		
GAC C Asp L	TT G' eu Va 40	al Le	T TT u Le	G GA! u Asj	r GTC Val	ACC Thr 405	Pro	TTG Leu	TCC Ser	CTC	GGT Gly 410	Ile	GAC Glu	ACT Thr	1489
TTG GG Leu G.	GC GC ly Gl 15	ST GT .y Va	T TT	C ACI	CGT Arg 420	Leu	ATC	AAC Asn	CGT Arg	AAC Asn 425	ACT Thr	ACC Thr	ATT	CCT Pro	1537
ACT CO Thr Ai 430	GC AA	G TC s Se	T CAI	A GTI Val 435	Phe	TCC Ser	ACT Thr	GCT Ala	GCT Ala 440	GAT Asp	GGT Gly	CAA Gln	ACT Thr	GCC Ala 445	1585
GTT GA Val Gl	A AT u Il	c cg: e Arg	T GTC Val 450	Phe	CAG Gln	GGT Gly	GAA Glu	CGT Arg 455	GAG Glu	CTT Leu	GTT Val	CGT Arg	GAC Asp 460	AAC Asn	1633
AAA TT Lys Le	A AT	r GGC e Gly 465	Asn	TTC Phe	CAA Gln	CTT Leu	ACT Thr 470	GGC Gly	ATT Ile	GCT Ala	CCT Pro	GCA Ala 475	CCT Pro	AAG Lys	1681
GGT CA	A CC: n Pro 480	Gln	ATT Ile	GAG Glu	GTT Val	TCT Ser 485	TTT Phe	GAT Asp	GTT (Asp	GCC Ala 490	GAT Asp	GGC Gly	ATT Ile	1729
ATC AAT Ile Ass 495	ı Val	TCT Ser	GCC Ala	CGT Arg	GAC Asp 500	AAG Lys	GCT . Ala	ACC . Thr .	Asn 1	AAG Lys 505	GAT Asp	TCT Ser	TCC Ser	ATC Ile	1777
ACT GTT Thr Val 510								Asp :					Ala		1825

-57-

					Lys					Asp					GAG Glu	187
				Gly					Ser						GAA Glu	1921
			Asp	-		AAA Lys									GAA Glu	1969
						ACC Thr 580										. 2017
						ATT Ile										2065
			Gln			TCT Ser		Lys					Val			2113
		Asn				GAA Glu	Ser					Ser .				2161
GGT (lsp :			TAGA	GTGC.	AC A	CCAC	agta	CGA.	AATG.	ACAT	GTG	CAAT	TTT		2213
CAATT	TTA	GC T	CTATA	ATGT	CAA	AAAA	PTTA	TGT	GGAT	AAT :	rgat'	FATC	CA T	rtac:	ATGTT	2273
SAAAG	AAA	AT G	CTGC	ATTI	TG/	AAAA	GTA	AAC	ratg/	ATA :	rttt:	TTTAT	AA A	rgtt(CTAAA	2333
AAAA	AAA	A A	LAAAA	AAAA	AAA	AAACC	CGGA	ATT	2							2367
2) I	NFOF	TEAMS	ON F	or s	SEQ 1	D NC	:4:									

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 641 amino acids

(B) TYPE: amino acid

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi)	SEQUENCE	DESCRIPTION:	SEQ	ID	NO:4:
------	----------	--------------	-----	----	-------

- Met Thr Ala Arg Trp Asn Ser Asn Ala Ser Gly Asn Glu Lys Val Lys

 1 5 10 15
- Gly Pro Val Ile Gly Ile Asp Leu Gly Thr Thr Thr Ser Cys Leu Ala 20 25 30
- Ile Met Glu Gly Gln Thr Pro Lys Val Ile Ala Asn Ala Glu Gly Thr 35 40 45
- Arg Thr Thr Pro Ser Val Val Ala Phe Thr Lys Asp Gly Glu Arg Leu 50 60
- Val Gly Val Ser Ala Lys Arg Gln Ala Val Ile Asn Pro Glu Asn Thr 65 70 75 80
- Phe Phe Ala Thr Lys Arg Leu Ile Gly Arg Arg Phe Lys Glu Pro Glu 85 90 95
- Val Gln Arg Asp Ile Lys Glu Val Pro Tyr Lys Ile Val Glu His Ser 100 105 110
- Asn Gly Asp Ala Trp Leu Glu Ala Arg Gly Lys Thr Tyr Ser Pro Ser 115 120 125
- Gln Ile Gly Gly Phe Ile Leu Ser Lys Met Arg Glu Thr Ala Ser Thr 130 135 140
- Tyr Leu Gly Lys Asp Val Lys Asn Ala Val Val Thr Val Pro Ala Tyr 145 150 155 160
- Phe Asn Asp Ser Gln Arg Gln Ala Thr Lys Ala Ala Gly Ala Ile Ala 165 170 175
- Gly Leu Asn Val Leu Arg Val Val Asn Glu Pro Thr Ala Ala Ala Leu 180 185 190
- Ala Tyr Gly Leu Asp Lys Lys Asn Asp Ala Ile Val Ala Val Phe Asp 195 200 205
- Leu Gly Gly Gly Thr Phe Asp Ile Ser Ile Leu Glu Leu Asn Asn Gly 210 215 220
- Val Phe Glu Val Arg Ser Thr Asn Gly Asp Thr His Leu Gly Glu 225 230 235 240
- Asp Phe Asp Val Ala Leu Val Arg His Ile Val Glu Thr Phe Lys Lys 245 250 255

-59-

Asn	Glu	Gly	Leu	Asp	Leu	Ser	Lys	Asp	Arg	Leu	Ala	Val	Gln	Arg	Ile
			260					265					270		

- Arg Glu Ala Ala Glu Lys Ala Lys Cys Glu Leu Ser Ser Leu Ser Lys 275 280 285
- Thr Asp Ile Ser Leu Pro Phe Ile Thr Ala Asp Ala Thr Gly Pro Lys 290 295 300
- His Ile Asn Met Glu Ile Ser Arg Ala Gln Phe Glu Lys Leu Val Asp 305 310 315 320
- Pro Leu Val Arg Arg Thr Ile Asp Pro Cys Lys Arg Ala Leu Lys Asp 325 330 335
- Ala Asn Leu Gln Thr Ser Glu Ile Asn Glu Val Ile Leu Val Gly Gly 340 345 350
- Met Thr Arg Met Pro Arg Val Val Glu Thr Val Lys Ser Ile Phe Lys 355 360 365
- Arg Glu Pro Ala Lys Ser Val Asn Pro Asp Glu Ala Val Ala Ile Gly 370 375 380
- Ala Ala Ile Gln Gly Gly Val Leu Ser Gly His Val Lys Asp Leu Val 385 390 395 400
- Leu Leu Asp Val Thr Pro Leu Ser Leu Gly Ile Glu Thr Leu Gly Gly
 405 410 415
- Val Phe Thr Arg Leu Ile Asn Arg Asn Thr Thr Ile Pro Thr Arg Lys
 420 425 430
- Ser Gln Val Phe Ser Thr Ala Ala Asp Gly Gln Thr Ala Val Glu Ile 435 440 445
- Arg Val Phe Gln Gly Glu Arg Glu Leu Val Arg Asp Asn Lys Leu Ile 450 455 460
- Gly Asn Phe Gln Leu Thr Gly Ile Ala Pro Ala Pro Lys Gly Gln Pro 465 470 475 480
- Gln Ile Glu Val Ser Phe Asp Val Asp Ala Asp Gly Ile Ile Asn Val 485 490 495
- Ser Ala Arg Asp Lys Ala Thr Asn Lys Asp Ser Ser Ile Thr Val Ala 500 505 510
- Gly Ser Ser Gly Leu Thr Asp Ser Glu Ile Glu Ala Met Val Ala Asp 515 520 525

-60-

Ala Glu Lys Tyr Arg Ala Ser Asp Met Ala Arg Lys Glu Ala Ile Glu 530 535 540

Asn Gly Asn Arg Ala Glu Ser Val Cys Thr Asp Ile Glu Ser Asn Leu 545 550 555 560

Asp Ile His Lys Asp Lys Leu Asp Gln Gln Ala Val Glu Asp Leu Arg 565 570 575

Ser Lys Ile Thr Asp Leu Arg Glu Thr Val Ala Lys Val Asn Ala Gly 580 585 590

Asp Glu Gly Ile Thr Ser Glu Asp Met Lys Lys Lys Ile Asp Glu Ile 595 600 605

Gln Gln Leu Ser Leu Lys Val Phe Glu Ser Val Tyr Lys Asn Gln Asn 610 620

Gln Gly Asn Glu Ser Ser Gly Asp Asn Ser Ala Pro Glu Gly Asp Lys 625 630 635 640

Lys

- (2) INFORMATION FOR SEQ ID NO:5:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 679 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

Met Phe Ser Ala Arg Lys Ser Ser Val Gly Trp Leu Val Ser Ser Leu 1 5 10 15

Ala Val Phe Tyr Val Leu Leu Ala Val Ile Met Pro Ile Ala Leu Thr 20 25 30

Gly Ser Gln Ser Ser Arg Val Val Ala Arg Ala Ala Glu Asp His Glu 35 40 45

Asp Tyr Gly Thr Val Ile Gly Ile Asp Leu Gly Thr Thr Tyr Ser Cys 50 55 60

-61-

									-01	_							
Va 65		la	۷a	1 Me	et Ly	ys A: 70		ly Ly	ys Ti	hr G	lu I 7		eu A	la A	sn G	lu	Gln 80
G]	.y A	.sn	Ar	g Il	.e Th 85		ro Se	er Ty	r Va	al So 90		he T	hr As	sp As	sp G 9		Arg
Le	u I	le	Gly	y As 10		a Al	.a Ly	s As	n Gl		la Al	la Se	er As	sn Pr 11		ys	Asn
Th	r I	le	Phe 115		p Il	e Ly	s Ar	g Le 12		e Gl	y Le	eu Gl	л Ту 12		in As	sp .	Pro
Th		al 30	Gln	Ar	g As	p Il	e Ly 13	s Hi 5	s Le	u Pr	о Ту	r Th		l Va	l As	n I	Lys
Gl ₃ 149	y As	sn	Lys	Pro	ту:	r Va. 15		u Va	l Thi	r Va	1 Ly 15		y Gl	u Ly	s Ly		31u 160
Phe	e Th	r	Pro	Glu	165		l Sei	r Gly	/ Met	170		u Gl	y Ly:	s Me	t Ly 17		Sln
				180				y Lys	185	5				190)		
		:	195					200	١		•		205	5			
	21	0					215					220)				
225						230		Leu		•	235					2	40
					245			Gly		250					255	,	
				260				Glu	265					270			
		2	75					Asp 280					285				
Gln	Leu 290		he (Gln	Lys	Lys	His 295	Asp	Leu	Asp	Val	Thr 300	Lys	Asn	Asp	Ly	/S

Ala Met Ala Lys Leu Lys Arg Glu Ala Glu Lys Ala Lys Arg Ser Leu

Ser Ser Gln Thr Ser Thr Arg Ile Glu Ile Asp Ser Phe Phe Asn Gly

Ile	Asp	Phe	Ser	Glu	Thr	Leu	Thr	Arg	Ala	Lys	Phe	Glu	Glu	Leu	Ası
			340					345					350		

- Leu Ala Leu Phe Lys Lys Thr Leu Lys Pro Val Glu Lys Val Leu Lys 355 360 365
- Asp Ser Gly Leu Gln Lys Glu Asp Ile Asp Asp Ile Val Leu Val Gly 370 375 380
- Gly Ser Thr Arg Ile Pro Lys Val Gln Gln Leu Leu Glu Lys Phe Phe 385 390 395 400
- Asn Gly Lys Lys Ala Ser Lys Gly Ile Asn Pro Asp Glu Ala Val Ala 405 410 415
- Tyr Gly Ala Ala Val Gln Ala Gly Val Leu Ser Gly Glu Glu Gly Val 420 425 430
- Glu Asp Ile Val Leu Leu Asp Val Asn Ala Leu Thr Leu Gly Ile Glu 435 440 445
- Thr Thr Gly Gly Val Met Thr Pro Leu Ile Lys Arg Asn Thr Ala Ile 450 455 460
- Pro Thr Lys Lys Ser Gln Ile Phe Ser Thr Ala Val Asp Asn Gln Lys 465 470 475 480
- Ala Val Arg Ile Gln Val Tyr Glu Gly Glu Arg Ala Met Val Lys Asp 485 490 495
- Asn Asn Leu Leu Gly Asn Phe Glu Leu Ser Asp Ile Arg Ala Ala Pro 500 505 510
- Arg Gly Val Pro Gln Ile Glu Val Thr Phe Ala Leu Asp Ala Asn Gly
 515 520 525
- Ile Leu Thr Val Ser Ala Thr Asp Lys Asp Thr Gly Lys Ser Glu Ser 530 535 540
- Ile Thr Ile Ala Asn Asp Lys Gly Arg Leu Ser Gln Asp Asp Ile Asp 545 550 555 560
- Arg Met Val Glu Glu Ala Glu Lys Tyr Ala Ala Glu Asp Ala Lys Phe 565 570 575
- Lys Ala Lys Ser Glu Ala Arg Asn Thr Phe Glu Asn Phe Val His Tyr 580 585 590
- Val Lys Asn Ser Val Asn Gly Glu Leu Ala Glu Ile Met Asp Glu Asp 595 600 605

470

							-	63-								
Ası	Lys 610		Thr	Val	Leu	Asp 615		Val	Asn	Glu	Ser 620	Leu	Glu	Trp	Leu	
Glu 625	Asp	Asn	Ser	Asp	Val 630	Ala	Glu	Ala	Glu	Asp 635	Phe	Glu	Glu	Lys	Met 640	
Ala	Ser	Phe	Lys	Glu 645	Ser	Val	Glu	Pro	Ile 650	Leu	Ala	Lys	Ala	Ser 655	Ala	
Ser	Gln	Gly	Ser 660	Thr	Ser	Gly		Gly 665	Phe	Glu	Asp	Glu	Asp 670	Asp	Asp	
Asp	Tyr	Phe 675	Asp	Asp	Glu	Leu										
(2) INFO	RMATI	ON F	OR S	EQ I	D NO	:6:										
(i)	SEQU	ENCE	СНА	RACT	ERIS	TICS	:									
(ii)	(B) (C) (D) MOLE		E: no ANDE	ucle DNES Y: 1	ic ad S: dd inean	cid ouble	е									
(xi)	r eat	URE:		٠												
		LOCA	•			429										
(xi)	SEQUE	ENCE	DESC	RIPI	NOI:	SEQ	ID	NO:6	:							
CACAATATC	ATA	AGTT	CCA	CTCA	CGCT	TT G	TCTT	TCAC	A AT	ATCA	TTTC	AGA	ATTT	ACC		60
AATTTCGATT	TTC	ATTG	TTA	CATT	CATT	GC T	ATGA	AAAC	G TA	AGGT	GGTG	GCG	GCAA	TAG	1	.20
GACTTATCGA	AAT	GTAC	AGA .	ACTC	ACTA	TA G	AATT	GTTG:	r GT	TGAT	GAGC	TTC	AACT	GCA	1	.80
TTCTTCTGGA	AAG	TACT	AGT A	ATTA	ACGA	CG T	GACT	GCTC	C TC	rcgt.	ract	TAG	CTGA:	PTT	2	40
CTGGTACGCT	ATT	AAAC:	rca :	TCCA	AAAC	CA A	CTAT	CTAC	TT.	rggti	LAAT	CTT	AATC	AAA	3	00
AACTATTAAA	ACC	CGTT	rac :	PATT!	TACT'	ra ac	CAGG	TGTI	TTC	CAATA	ATT	GGGI	ATT	CT	3	60
TGTGCCTACG	ATC:	rcttc	STA I	attg/	AACT!	AC AC	CATAI	TAAGO	AT!	TATA	AGT	TGGT	TAAT	TT	4	20

CAAATTCTTG TTTATTGAAA ATG AAG AAG TTC CAG CTA TTT AGC ATT TTA

Met Lys Lys Phe Gln Leu Phe Ser Ile Leu

1 - 10

-64-

 	_			a Lei					Met					T GGT r Gly 5	
			r Th					Thr					e As	T CTT p Leu	5 6 6
 		r Ty					Val					Arg		A GAA l Glu	614
	ala										Ser			G GCC L Ala	662
Thr														GCT Ala 90	710
														GGA Gly	758
			Glu		ACA Thr										806
		Val			AAG Lys										854
					TTT Phe 145				Glu						902
					ACT Thr			Ala							950
 •	_	•			GTC (Val)	_	Ala	_		_	_			_	998
					GGT A	Thr .					Asn				1046
Val					GCG (Ala <i>l</i>					Fyr (1094

Thr A	AT ACA sp Thr 20	GAG A	AG CAT Ys His	ATT GI Ile Va 225	TT GT	r tat l tyr	Asp L	TA GGT eu Gly 30	GGT G(Gly G)	GT ACT Ly Thr	1142
TTT G Phe A 235	AC GTT sp Val	TCT C	TT TTG Eu Leu 240	TCT AT Ser Il	T GAC e Asp	AAT Asn	GGT G Gly Va 245	TT TTC (al Phe (GAA GT Glu Va	T TTG 1 Leu 250	1190
GCT A	CT TCA hr Ser	GGT GA Gly As 25	p Thr	CAT CT	C GGT u Gly	GGT Gly 260	GAG GA Glu As	AC TTT (sp Phe A	GAC AA Asp As 26	n Arg	1238
GTT AT Val II	CC AAC Le Asn	TAC TT Tyr Le 270	A GCC (u Ala A	GT AC	T TAC Tyr 275	AAC Asn	CGC AA Arg Ly	G AAC A s Asn A 2	AT GT Lsn Va 180	C GAT l Asp	1286
GTT AC Val Th	T AAG r Lys 285	GAT CT Asp Le	T AAG O u Lys A	CT ATC la Met 290	Gly	AAA Lys	CTC AA Leu Ly	G CGT G s Arg G 295	AA GTT lu Val	r GAA L Glu	1334
AAA GC Lys Al 30	a Asn	GGT AC' Gly Thi	r Leu S	CC TCC er Ser 05	CAA Gln	AAG !	ICT GT Ser Val	F CGT A' l Arg I	TC GAG le Glu	ATT Ile	1382
GAA TC Glu Se 315	T TTC :	TTT AAC Phe Asr	GGT C Gly G 320	AA GAC ln Asp	TTT Phe	Ser G	AA ACT	TTA TO	CC CGT er Arg	GCT Ala 330	1430
AAG TTO Lys Phe	C GAG (GAG ATT Glu Ile 335	Lys H	AT GGA is Gly	Ser	CTT C Leu G 340	AA GAA	GAC TI Asp Ph	TT GAG ie Glu 345	CCT Pro	1478
GTT GAG Val Glu	Gln V	STA TTA Val Leu 150	AAG GA	C TCC p Ser	AAC (Asn)	CTC A Leu L	AG AAA ys Lys	TCC GA Ser Gl 36	u Ile	GAT Asp	1526
GAT ATO	Val L 365	TT GTC eu Val	GGT GG Gly Gl	T TCT y Ser 370	ACT (CGT A' Arg I	TC CCT le Pro	AAG GT Lys Va 375	T CAA l Gln	GAA Glu	1574
CTT TTG Leu Leu 380	GAG A Glu S	GC TTC er Phe	TTT GG Phe Gl 38	y Lys	AAG (Lys <i>F</i>	SCT TO Ala So	CT AAG er Lys 390	GGT AT	C AAT e Asn	CCC Pro	16 <u>2</u> 2
GAT GAG Asp Glu 395	GCT G	TT GCC al Ala	TAT GG Tyr Gl 400	T GCT y Ala	GCT C Ala V	TT C! al G! 40	n Ala	GGC GT'	l Leu	TCT Ser 410	1670
GGC GAG Gly Glu	GAA GO	GA AGT ly Ser 415	GAT AA Asp As	C ATT	Val L	TC TI eu Le 20	G GAC u Asp	GTT ATO	C CCT Pro 425	CTT Leu	1718

-66-

			ly I						y Va.					u Il	C GGT e Gly	
			ır Pı					Lys					e Se		T GCG r Ala	1814
		p As					Leu					c Gl			A CGT 1 Arg	1862
_	r Le					Asn					Phe				GGT Gly 490	.1910
_					Arg										GAA Glu	1958
				r GGI n Gly										Ser		2006
			Pro	GAG Glu									Gly			2054
		Glu		ATC Ile												2102
				ATT												2150
				TAT Tyr 575												2198
				GTT Val			Glu .									2246
				GCT Ala		Trp :					Gly					2294
Lys				GAA Glu	Asp					Leu .						2342

-67-

CCT ATT ACC CAA AAG TTG TAT TCC GAA GGA GCT GGT GAT GCT GAA Pro Ile Thr Gln Lys Leu Tyr Ser Glu Gly Ala Gly Asp Ala Asp Glu 635 640 645 650	2390
GAG GAT GAT GAT TAC TTC GAT GAT GAG GCC GAT GAA CTT TAAAGTGTTT Glu Asp Asp Asp Tyr Phe Asp Asp Glu Ala Asp Glu Leu 655 660	2439
TAAAATTGCC TGTACTTCA TTTTTTAAGC TTTACTTAGT AATTTTTATT TAGTTCGAAG	2499
TATACGCAAG TCTGACTCGA ATGCTCTCAT GGTTTCATGA CCTTAATCTA AGGGTATTTG	2559
GAAACCAAAT GTTTT	. 2574
(2) INFORMATION FOR SEQ ID NO:7:	

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 663 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

Met Lys Lys Phe Gln Leu Phe Ser Ile Leu Ser Tyr Phe Val Ala Leu

Phe Leu Leu Pro Met Ala Phe Ala Ser Gly Asp Asp Asn Ser Thr Glu

Ser Tyr Gly Thr Val Ile Gly Ile Asp Leu Gly Thr Thr Tyr Ser Cys

Val Ala Val Met Lys Asn Gly Arg Val Glu Ile Ile Ala Asn Asp Gln

Gly Asn Arg Ile Thr Pro Ser Tyr Val Ala Phe Thr Glu Asp Glu Arg

Leu Val Gly Glu Ala Ala Lys Asn Gln Ala Pro Ser Asn Pro Glu Asn

Thr Ile Phe Asp Ile Lys Arg Leu Ile Gly Arg Lys Phe Asp Glu Lys 105

Thr Met Ala Lys Asp Ile Lys Ser Phe Pro Phe His Ile Val Asn Asp 115 120 125

L		sn A 30	ırg	Pro	Le	u Va	l Gl 13		ıl As	in Va	al Gl	y Gl 14	_	s Ly	s Ly	s Ly
Ph 14		ır P	ro	Glu	Gl:	u Il 15		r Al	a Me	t Il	e Le 15	u Se 5	r Ly	s Me	t Ly	s Gl 16
Th	r Al	.a G	lu	Ala	Ty:		u Gl	у Lу	s Pr	o Va 17		r Hi	s Se	r Va	l Va 17	
Va	l Pr	o A	la	Tyr 180		e Ası	n Ası	p Ala	a Gl 18		g Gl	n Ala	a Thi	190		p Al
Gl	y Th		le 95	Ala	Gly	, Le	ı Ası	n Va. 200		e Ar	g Ile	e Val	205		ı Pro	Th:
Ala	a Al 21		la :	Ile	Ala	туг	Gly 215		ı Ası	Lys	s Thi	220		Glu	Lys	s His
11e 225		l Va	al!	Tyr	Asp	230		Gly	Gly	Thr	? Phe 235	a Asp	Val	Ser	Leu	Leu 240
Ser	: Ile	e As	p l	Asn	Gly 245		. Phe	Glu	Val	. Leu 250		Thr	Ser	Gly	Asp 255	
His	: Le	ı Gl		60 31y	Glu	Asp	Phe	Asp	Asn 265		Val	Ile	Asn	Tyr 270	Leu	Ala
Arg	Thr	Ту 27		sn	Arg	Lys	Asn	Asn 280		Asp	Val	Thr	Lys 285	Asp	Leu	Lys
Ala	Met 290		y L	ys	Leu	Lys	Arg 295	Glu	Val	Glu	Lys	Ala 300	Asn	Gly	Thr	Leu
Ser 305	Ser	Gli	n L	ys .	Ser	Val 310		Ile	Glu	Ile	Gļu 315	Ser	Phe	Phe	Asn	Gly 320
				;	325				•	330		Phe			335	
			3	40					345			Glu		350		_
		355	5					360				Ile	365			
	370						375					Leu 380				
31y 185	Lys	Lys	A]	a S		Lys 390	Gly	Ile	Asn		Asp 395	Glu	Ala	Val	Ala	Tyr 400

-69-

Gly	Ala	Ala	Val	Gln	Ala	Gly	Val	Leu	Ser	Gly	Glu	Glu	Gly	Ser	Asp
				405					410				_	415	_

- Asn Ile Val Leu Leu Asp Val Ile Pro Leu Thr Leu Gly Ile Glu Thr 420 425 430
- Thr Gly Gly Val Met Thr Lys Leu Ile Gly Arg Asn Thr Pro Ile Pro 435 440 445
- Thr Arg Lys Ser Gln Ile Phe Ser Thr Ala Val Asp Asn Gln Asn Thr 450 455 460
- Val Leu Ile Gln Val Tyr Glu Gly Glu Arg Thr Leu Thr Lys Asp Asn 465 470 475 480
- Asn Leu Leu Gly Lys Phe Asp Leu Arg Gly Ile Pro Pro Ala Pro Arg
 485 490 495
- Gly Val Pro Gln Ile Glu Val Thr Phe Glu Val Asp Ala Asn Gly Val 500 505 510
- Leu Thr Val Ser Ala Val Asp Lys Ser Gly Lys Gly Lys Pro Glu Lys 515 520 525
- Leu Val Ile Lys Asn Asp Lys Gly Arg Leu Ser Glu Glu Asp Ile Glu 530 535 540
- Arg Met Val Lys Glu Ala Glu Glu Phe Ala Glu Glu Asp Lys Ile Leu 545 550 555 560
- Lys Glu Arg Ile Glu Ala Arg Asn Thr Leu Glu Asn Tyr Ala Tyr Ser 565 570 575
- Leu Lys Gly Gln Phe Asp Asp Glu Gln Leu Gly Gly Lys Val Asp 580 585 590
- Pro Glu Asp Lys Gln Ala Val Leu Asp Ala Val Glu Asp Val Ala Glu 595 600 605
- Trp Leu Glu Ile His Gly Glu Asp Ala Ser Lys Glu Glu Phe Glu Asp 610 620
- Gln Arg Gln Lys Leu Asp Ala Val Val His Pro Ile Thr Gln Lys Leu 625 630 635 640
- Tyr Ser Glu Gly Ala Gly Asp Ala Asp Glu Glu Asp Asp Asp Tyr Phe 645 650 655

Asp Asp Glu Ala Asp Glu Leu 660

-70-

(2) INFORMATION FOR SEQ ID NO:8:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 6030 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(ix) FEATURE:

(A) NAME/KEY: CDS

(B) LOCATION: 1004..4753

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

TTTTATCCTA TGTCACGGAC GACGACTTGT ATCACCTTGA ATTTTCTGAC CAAAGGGGCC 60 GAGTCGCTTC ACGAGGGGAT GAGAAAGGAA AAGAAGGGAA AACTAAACTT ATATAACGCA 120 GGTGTGTCTT TCTACCATTG CCATCAAGTT ATTAAAGGCC ACGAACAGGA ACGCTAGAGA 180 CCTGAGTTTG TCATTTGTTT AGTTCAAGGA TTAAATAAAC AATCCTTCTA CAAATAAGTC 240 CTTTCTTTCA CCATCGTCTT AAGACCACTG CCTCCAACGA AAACTAACCT AAAAGAGTTT 300 AGATCACGAG TATTTTCGCT CTTTCCCTCC TTCCCCTGGT TTTTTCTCGT TAGTTCTTTT 360 CATTTAAAAA CTCTTCTCTT GTCAAGAATT TAAAAGACGA AGAGTCCAAC ACCGACTGAT 420 TTTCTAACAG CAAAGGAACG AAGTTTTGCC GTGCAAACAA TAATTTCTAA ATTATAATTT 480 TGAGCCTAGC TGAGAAATAG GAGAGATTAT ATTTTAGAAA GGTAAGAAGT TTTTCTGTCA 540 TTCCTTTTAG AATATTTGCT ACGTTCTAAC ATTTTTTGTT ACTCAAGCGC ATTTTCTGCA 600 ACTTCCCTTA TAAGCTATTT CCTTTTTTTG GGACCGATCC TTTCTTCTGT CTTTGGTAAC 660 CTAAAAACCG GAATAGTCAA AGTTATCTGC ATAGTCTTCT TGCCAGGCTT ATTTTCGCCA 720 TACCATTTT CTGGTACCCT AAACATTTTG GTCTTATTTT AGAACAGCTG GTGCCTCGTT 780 TTTCCGCATT AGGCGCACTT TTTTCATAGC CACTATTCTA AAAGAAACAA CTTTTTTTCA 840 AAGGGAAATC TAAGTTGCCT GCACGAAGAA TAAGACAAGG GTTCATAAAC GTATAGTATT 900 TGCCAAGTTC CATCTTTTC TTTGTCACTT TAATATCGCA AAACAGAACA CCAAAAACCT 960

-71-

TT	CAGC	GCAA	AGA	TTTG	GCC (CAAT	[ATT(CC A	rctt'	rata(C AC	Me			A AAT s Asn	
Sea						n Arg					Ası				r GTG • Val 20	1063
_					Gly					Lys					GCA L Ala	1111
				Gln					Asn					Gln	TTC Phe	1159
			Lys										Gln		TTG Leu	1207
						TTG Leu 75									TCA Ser	1255
						AAT Asn										1303
						AAT Asn				Met						1351
						AGG Arg	Asn									1399
						AGC Ser										1447
ys '					Ser	AGC . Ser 155				His						1495
				Glu /		AAA i Lys i			Ala .							1543

-72-

				/ Glu					Val				GTT Val	1591
			Gly					Thr				Phe	AAA Lys	1639
		Pro					Glr				Ala		TCA Ser	1687
	Ser					Lys		CCT Pro		Ser				1735
Asp								TCA Ser						1783
								ATT Ile 270						1831
								TCT Ser						1879
								AAT Asn						1927
								GCC Ala						1975
 								GGA Gly						2023
_				_			_	ATT Ile 350	_	 _				2071
								GTT Val						2119
Ala					Asp			CTT Leu						2167

T(C)	ys G	GC I ly S 90	CC 1	AAA Lys	GAT Asp	Arg	AA 1 As: 39:	n Ar	A GC g Al	A CI	PT GA	AA GC Lu Gl 40	y As	AT TI	ra Gr eu Va	C G	CG la	2215
G1 Va 40	1 G	AA C	TA 1 eu I	TA Jeu	GTT Val	GTG Val 410	Ası	C GAS	r GT Va	T TG l Tr	G GA p Gl 41	G TC u Se .5	C AA	G AA s Ly	A GA s Gl	A A/ u Ly 42	/S	2263
GA Gl	A GA u Gl	A A u L	AG A ys L	ys i	AGG Arg 425	AGA Arg	AAC Lys	GAT Asp	GC Al	C TC a Se 43	r Me	G CA t Gl	A CA n Hi	C GA s As	T CT p Le 43	u Il	T .e	2311
CC' Pr	T TT o Le	'G Ai u A:	sn S	GT 1 er 5 40	AGT Ser	GAC Asp	GAT Asp	TAC Tyr	CAC His	s Ası	C GA' n As	T GC. P Ala	A TC	T GT r Va 450	l Th	T GC r Al	T a	2359
GC/ Ala	A AC	A AC r Se 45	r A	AC A	AAT Asn	TTT Phe	CTA Leu	TCT Ser 460	TC1 Ser	CCC Pro	C TCC	C TCC	TC: Sei 465	Ası	TCC Sea	G CT	A	2407
AGC Ser	Lys 470	s As	T GA P As	AT T Sp L	TA eu	TCC Ser	GTC Val 475	AGA Arg	AGA Arg	AAG Lys	AGG Arg	TCZ Ser 480	Ser	ACT Thr	ATC	AA! Asi	r 1	2455
AAT Asn 485	Asp	AG Se	T GA r As	T T p S	er]	TTA Leu 190	TCA Ser	TCT Ser	CCT Pro	ACC	AAA Lys 495	TCA Ser	GGA Gly	GTA Val	AGG Arg	AGA Arg 500	3	2503
AGA Arg	AGI Ser	TC: Se:	A TT r Le	u L	AA (ys (05	CAA Sln	CGT Arg	CCA Pro	ACT Thr	CAA Gln 510	AAG Lys	AAA Lys	AAT Asn	GAC Asp	GAT Asp 515	GTI Val		2551
GAA Glu	GTT Val	GA/ Glu	A GG 1 Gl; 52	y Gi	AG I	CA Ser	TTG Leu	Leu	TTA Leu 525	GTT Val	GAA Glu	GAA Glu	GAA Glu	GAA Glu 530	ATC Ile	AAC Asn		2599
GAT Asp	AAA Lys	TAT Tyr 535	Ly	G CC s Pr	CA C	TT :	lyr	GCA Ala 540	GGC Gly	CAT His	GTC Val	GTT Val	GCT Ala 545	GTT Val	TTG Leu	GAC Asp		2647
CGT Arg	ATC Ile 550	CCI Pro	GG1	r CA 7 Gl	ln L	eu I	TTT . Phe	AGC Ser	GGT Gly	ACA Thr	TTA Leu	GGT Gly 560	TTG Leu	TTG Leu	AGA Arg	CCA Pro		2695
TCC Ser 565	CAA Gln	CAA Gln	GCT Ala	'AA As	n S	GC C er A 70	SAC A	AAT A	AAC Asn	AAA Lys	CCA Pro 575	CCA Pro	CAA Gln	AGC Ser	CCA Pro	AAA Lys 580		2743
ATT Ile	GCT Alā	TGG Trp	TTC Phe	Ly 58	s P	CT A	CT (GAT A	Lys	AAG Lys 590	GTG Val	CCA Pro	TTA Leu	ATT Ile	GCA Ala. 595	ATT Ile		2791

-74-

CCT ACA GAA TTA GCT CCA AAG GAC TTT GTT GAA AAC GCT GAT AAA TAC Pro Thr Glu Leu Ala Pro Lys Asp Phe Val Glu Asn Ala Asp Lys Tyr 600 601 600 605 610 610 605 610 610 605 610 610 605 610 610 605 610 610 605 610 610 605 610 610 615 620 625 625 625 625 625 625 625 625 625 625
Ser Glu Lys Leu Phe Val Ala Ser Ile Lys Arg Trp Pro Ile Thr Ser 615 TIG CAT CCA TTT GGT ATT TTA GTT TCC GAA CTT GGA GAT ATT CAC GAT Leu His Pro Phe Gly Ile Leu Val Ser Glu Leu Gly Asp Ile His Asp 630 635 640 CCT GAT ACT GAA ATT GAT TCC ATT TTA AGG GAT AAC AAT TTT CTT TCG Pro Asp Thr Glu Ile Asp Ser Ile Leu Arg Asp Asn Asn Phe Leu Ser 645 650 665 666 AAT GAA TAT TTG GAT CAA AAA AAT CCG CAA AAA GAA AAA CCA AGT TTT ASN Glu Tyr Leu Asp Gln Lys Asn Pro Gln Lys Glu Lys Pro Ser Phe 665 670 675 CAG CCG CTA CCA TTA ACG GCT GAA AGT CTA GAA TAT AGG AGG AAT TTT Gln Pro Leu Pro Leu Thr Ala Glu Ser Leu Glu Tyr Arg Arg Asn Phe 680 685 685 ACG GAC ACT AAT GAG TAC AAT ATC TTT GCA ATT TCC GAG CTT GGA TGG TTr Asn Glu Tyr Asn Ile Phe Ala Ile Ser Glu Leu Gly Trp 700 705 GTG TCT GAA TTT GCC TTA CAT GTC AGG AAT AAC GGA AAT GGT ACC CTA Val Ser Glu Phe Ala Leu His Val Arg Asn Asn Gly Asn Gly Thr Leu 710 720 GAG CTG GGT TGT CAT GTT GTT GAT GTG ACC AGC CAT ATT GAA GAA GGC GLU Leu Gly Cys His Val Val Asp Val Thr Ser His Ile Glu Gly 725 730 740 TCC TCT GTT GAT AGG CGT GCG AGA AAG AGG TCC TCT GCG GTG TCC ATG Ser Ser Val Asp Arg Arg Arg Ala Arg Lys Arg Ser Ser Ala Val Phe Met 760 775 CCA CAA AAA CTT GTC AAT TTA TTA CCA CAA TCG TTC ACC GAA CTG GTC GTC GCC CTG GGC AGG AAG ACG GTC TTC ATG GTG GCC CTG GCC GCC AGG CTG GTT GTT GAT GTG GCC GTG GTC AGC GAA CTG GTC GCC GCC GCC GCC GTG TTC ATG GTG GCC CTG GCC GCC AGG GAA CTG GTC GCC GCC GCC GCC GCC GTG TTC ATG GCC GTG GCC CTG GCC GCC GCC CTG TCC GCC G
Leu His Pro Phe Gly Ile Leu Val Ser Glu Leu Gly Asp Ile His Asp 630 635 635 636 640 640 CCT GAT ACT GAA ATT GAT TCC ATT TTA AGG GAT AAC AAT TTT CTT TCG Pro Asp Thr Glu Ile Asp Ser Ile Leu Arg Asp Asn Asn Phe Leu Ser 645 650 650 650 650 650 660 AAT GAA TAT TTG GAT CAA AAA AAT CCG CAA AAA GAA AAA CCA AGT TTT Asn Glu Tyr Leu Asp Gln Lys Asn Pro Gln Lys Glu Lys Pro Ser Phe 665 670 675 CAG CCG CTA CCA TTA ACG GCT GAA AGT CTA GAA TAT AGG AGG AAT TTT Gln Pro Leu Pro Leu Thr Ala Glu Ser Leu Glu Tyr Arg Arg Asn Phe 680 680 690 ACG GAC ACT AAT GAG TAC AAT ATC TTT GCA ATT TCC GAG CTT GGA TGG Thr Asn Glu Tyr Asn Ile Phe Ala Ile Ser Glu Leu Gly Trp 705 GTG TCT GAA TTT GCC TTA CAT GTC AGG AAT AAC GGA AAT GGT ACC CTA Val Ser Glu Phe Ala Leu His Val Arg Asn Asn Gly Asn Gly Thr Leu 715 720 730 740 GAG CTG GGT TGT CAT GTT GTT GAT GTG ACC AGC CAT ATT GAA GAA GGC Glu Leu Gly Cys His Val Val Asp Val Thr Ser His Ile Glu Glu Gly 7725 730 740 TCC TCT GTT GAT AGG CGT GCG AGA AAG AGG TCC TCT GCG GTG TTC ATG Ser Ser Val Asp Arg Arg Arg Lys Arg Ser Ser Ala Val Phe Met 745 750 750 750 CCA CAA AAA CTT GTC AAT TTA TTA CCA CAA TCG TCC GCG GTG TTC ATG Ser Ser Val Asp Arg Arg Arg Arg Arg CC ACG CTG TGG GTT GTT TAC ACT 765 760 770 TCG TTG GCC CCT GGC AAG GAA TCA CCC CAC CTG TGG GTT TTA CACT Ser Leu Ala Pro Gly Lys Glu Ser Ala Thr Leu Ser Val Val Tyr Thr 775 780 CTA GAC TCA TCT ACT TTA AGG ATT AAA TCT ACT TGG GTA GGC GAA TCT Leu Arg Ser Ser Thr Leu Arg Ile Lys Ser Thr Trp Val Gly Glu Ser
Pro Asp Thr Glu Ile Asp Ser Ile Leu Arg Asp Asn Asn Phe Leu Ser 645 AAT GAA TAT TTG GAT CAA AAA AAT CCG CAA AAA GAA AAA CCA AGT TTT 3031 Asn Glu Tyr Leu Asp Gln Lys Asn Pro Gln Lys Glu Lys Pro Ser Phe 665 CAG CCG CTA CCA TTA ACG GCT GAA AGT CTA GAA TAT AGG AGG AAT TTT 3079 Gln Pro Leu Pro Leu Thr Ala Glu Ser Leu Glu Tyr Arg Arg Asn Phe 680 ACG GAC ACT AAT GAG TAC AAT ATC TTT GCA ATT TCC GAG CTT GGA TGG Thr Asp Thr Asn Glu Tyr Asn Ile Phe Ala Ile Ser Glu Leu Gly Trp 705 GTG TCT GAA TTT GCC TTA CAT GTC AGG AAT AAC GGA AAT GGT ACC CTA Val Ser Glu Phe Ala Leu His Val Arg Asn Asn Gly Asn Gly Thr Leu 710 GAG CTG GGT TGT CAT GTT GAT GTG ACC ACC CAT ATT GAA GAA GGC 3223 Glu Leu Gly Cys His Val Val Asp Val Thr Ser His Ile Glu Glu Gly 725 TCC TCT GTT GAT AGG CGT GCG AGA AAG AGG TCC TCT GCG GTG TTC ATG Ser Ser Val Asp Arg Arg Arg Arg Arg Ser Ser Ala Val Phe Met 745 CCA CAA AAA CTT GTC AAT TTA TTA CCA CAC CAC CTG TCC GTT GTT TAC ACT 750 TCG TTG GCC CCT GGC AAG GAA TCA GCC ACG CTG TCG GTT GTT TAC ACT 765 CCA GAC TCA CCT ACT TTA AGG ATT AAA TCT ACT TGG GTA GGC GAA TCT 770 TCG TTG GCC CCT GGC AAG GAA TCA GCC ACG CTG TCG GTT GTT TAC ACT 765 CCA GAC TCA TCT ACT TTA AGG ATT AAA TCT ACT TGG GTA GGC GAA TCT 785 CTA GAC TCA TCT ACT TTA AGG ATT AAA TCT ACT TGG GTA GGC GAA TCT 1415 Leu Asp Ser Ser Thr Leu Arg Ile Lys Ser Thr Trp Val Gly Glu Ser
Asn Glu Tyr Leu Asp Gln Lys Asn Pro Gln Lys Glu Lys Pro Ser Phe 665 CAG CCG CTA CCA TTA ACG GCT GAA AGT CTA GAA TAT AGG AGG AAT TTT 3079 Gln Pro Leu Pro Leu Thr Ala Glu Ser Leu Glu Tyr Arg Arg Asn Phe 680 ACG GAC ACT AAT GAG TAC AAT ATC TTT GCA ATT TCC GAG CTT GGA TGG 3127 Thr Asp Thr Asn Glu Tyr Asn Ile Phe Ala Ile Ser Glu Leu Gly Trp 705 GTG TCT GAA TTT GCC TTA CAT GTC AGG AAT AAC GGA AAT GGT ACC CTA 3175 Val Ser Glu Phe Ala Leu His Val Arg Asn Asn Gly Asn Gly Thr Leu 710 GAG CTG GGT TGT CAT GTT GTT GAT GTG ACC AGC CAT ATT GAA GAA GGC 3223 Glu Leu Gly Cys His Val Val Asp Val Thr Ser His Ile Glu Glu Gly 725 TCC TCT GTT GAT AGG CGT GCG AGA AAG AGG TCC TCT GCG GTG TTC ATG Ser Ser Val Asp Arg Arg Ala Arg Lys Arg Ser Ser Ala Val Phe Met 745 CCA CAA AAA CTT GTC AAT TTA TTA CCA CAA TCG TC AGC GTG TT TAC ACT 755 CCA CAA AAA CTT GTC CAT GTA GAA TCA GCC ACG CTG TCG GTT TAC ACT 3319 Pro Gln Lys Leu Val Asn Leu Leu Pro Gln Ser Phe Asn Asp Glu Leu 760 TCG TTG GCC CCT GGC AAG GAA TCA GCC ACG CTG TCG GTT TAC ACT 3367 Ser Leu Ala Pro Gly Lys Glu Ser Ala Thr Leu Ser Val Val Tyr Thr 785 CTA GAC TCA TCT ACT TTA AGG ATT AAA TCT ACT TGG GTA GGC GAA TCT 3415 Leu Asp Ser Ser Thr Leu Arg Ile Lys Ser Thr Trp Val Gly Glu Ser
Gln Pro Leu Pro Leu Thr Ala Glu Ser Leu Glu Tyr Arg Arg Asn Phe 680 685 685 GN Tyr Arg Arg Asn Phe 680 685 685 GN Tyr Arg Arg Asn Phe 680 685 685 GN Tyr Arg Arg Asn Phe 680 685 685 GN Tyr Arg Arg Asn Phe 680 685 GN Tyr Arg Arg Arg Arg Arg Arg Arg Arg Arg Ar
Thr Asp Thr Asn Glu Tyr Asn Ile Phe Ala Ile Ser Glu Leu Gly Trp 700 GTG TCT GAA TTT GCC TTA CAT GTC AGG AAT AAC GGA AAT GGT ACC CTA 3175 Val Ser Glu Phe Ala Leu His Val Arg Asn Asn Gly Asn Gly Thr Leu 710 GAG CTG GGT TGT CAT GTT GTT GAT GTG ACC AGC CAT ATT GAA GAA GGC Glu Leu Gly Cys His Val Val Asp Val Thr Ser His Ile Glu Glu Gly 725 TCC TCT GTT GAT AGG CGT GCG AGA AAG AGG TCC TCT GCG GTG TTC ATG Ser Ser Val Asp Arg Arg Ala Arg Lys Arg Ser Ser Ala Val Phe Met 745 CCA CAA AAA CTT GTC AAT TTA TTA CCA CAA TCG TTC AAC GAC GAA CTG Pro Gln Lys Leu Val Asn Leu Leu Pro Gln Ser Phe Asn Asp Glu Leu 760 TCG TTG GCC CCT GGC AAG GAA TCA GCC ACG CTG TCG GTT GTT TAC ACT Ser Leu Ala Pro Gly Lys Glu Ser Ala Thr Leu Ser Val Val Tyr Thr 775 CTA GAC TCA TCT ACT TTA AGG ATT AAA TCT ACT TGG GTA GGC GAA TCT Leu Asp Ser Ser Thr Leu Arg Ile Lys Ser Thr Trp Val Gly Glu Ser
Val Ser Glu Phe Ala Leu His Val Arg Asn Asn Gly Asn Gly Thr Leu 710 715 720 3223 GAG CTG GGT TGT CAT GTT GTT GAT GTG ACC AGC CAT ATT GAA GAA GGC 3223 Glu Leu Gly Cys His Val Val Asp Val Thr Ser His Ile Glu Gly 740 740 TCC TCT GTT GAT AGG CGT GCG AGA AAG AGG TCC TCT GCG GTG TTC ATG 3271 Ser Ser Val Asp Arg Arg Ala Arg Lys Arg Ser Ser Ala Val Phe Met 745 750 755 CCA CAA AAA CTT GTC AAT TTA TTA CCA CAA TCG TTC AAC GAC GAA CTG 755 CCA CAA AAA CTT GTC AAT TTA TTA CCA CAA TCG TTC AAC GAC GAA CTG 765 765 775 TCG TTG GCC CCT GGC AAG GAA TCA GCC ACG CTG TCG GTT GTT TAC ACT 770 TCG TTG GCC CCT GGC AAG GAA TCA GCC ACG CTG TCG GTT GTT TAC ACT 3367 Ser Leu Ala Pro Gly Lys Glu Ser Ala Thr Leu Ser Val Val Tyr Thr 780 785 CTA GAC TCA TCT ACT TTA AGG ATT AAA TCT ACT TGG GTA GGC GAA TCT 3415 Leu Asp Ser Ser Thr Leu Arg Ile Lys Ser Thr Trp Val Gly Glu Ser
Glu Leu Gly Cys His Val Val Asp Val Thr Ser His Ile Glu Glu Gly 725 730 735 740 TCC TCT GTT GAT AGG CGT GCG AGA AAG AGG TCC TCT GCG GTG TTC ATG Ser Ser Val Asp Arg Arg Ala Arg Lys Arg Ser Ser Ala Val Phe Met 745 750 755 CCA CAA AAA CTT GTC AAT TTA TTA CCA CAA TCG TTC AAC GAC GAA CTG Pro Gln Lys Leu Val Asn Leu Leu Pro Gln Ser Phe Asn Asp Glu Leu 760 765 770 TCG TTG GCC CCT GGC AAG GAA TCA GCC ACG CTG TCG GTT GTT TAC ACT Ser Leu Ala Pro Gly Lys Glu Ser Ala Thr Leu Ser Val Val Tyr Thr 775 780 785 CTA GAC TCA TCT ACT TTA AGG ATT AAA TCT ACT TGG GTA GGC GAA TCT Leu Asp Ser Ser Thr Leu Arg Ile Lys Ser Thr Trp Val Gly Glu Ser
Ser Ser Val Asp Arg Arg Ala Arg Lys Arg Ser Ser Ala Val Phe Met 745 CCA CAA AAA CTT GTC AAT TTA TTA CCA CAA TCG TTC AAC GAC GAA CTG Pro Gln Lys Leu Val Asn Leu Leu Pro Gln Ser Phe Asn Asp Glu Leu 760 TCG TTG GCC CCT GGC AAG GAA TCA GCC ACG CTG TCG GTT GTT TAC ACT Ser Leu Ala Pro Gly Lys Glu Ser Ala Thr Leu Ser Val Val Tyr Thr 775 CTA GAC TCA TCT ACT TTA AGG ATT AAA TCT ACT TGG GTA GGC GAA TCT Leu Asp Ser Ser Thr Leu Arg Ile Lys Ser Thr Trp Val Gly Glu Ser
Pro Gln Lys Leu Val Asn Leu Leu Pro Gln Ser Phe Asn Asp Glu Leu 760 765 770 770 TCG TTG GCC CCT GGC AAG GAA TCA GCC ACG CTG TCG GTT GTT TAC ACT Ser Leu Ala Pro Gly Lys Glu Ser Ala Thr Leu Ser Val Val Tyr Thr 775 780 785 CTA GAC TCA TCT ACT TTA AGG ATT AAA TCT ACT TGG GTA GGC GAA TCT Leu Asp Ser Ser Thr Leu Arg Ile Lys Ser Thr Trp Val Gly Glu Ser
Ser Leu Ala Pro Gly Lys Glu Ser Ala Thr Leu Ser Val Val Tyr Thr 775 780 785 CTA GAC TCA TCT ACT TTA AGG ATT AAA TCT ACT TGG GTA GGC GAA TCT Leu Asp Ser Ser Thr Leu Arg Ile Lys Ser Thr Trp Val Gly Glu Ser
Leu Asp Ser Ser Thr Leu Arg Ile Lys Ser Thr Trp Val Gly Glu Ser

-75-

	Ile					ı Ile					ı Glı				A AAA u Lys 820	3	3463
					Pro					ı Ser					A ATT	3	511
				Tyr					Asr					Thr	TTA Leu	3	559
			Leu					Ser					Lys		AAG Lys	3	607
		Leu										Val			AAT Asn	36	655
						AAC Asn										37	703
AAA Lys						CTT Leu										37	751
ACC .																37	99
TTT (Asp										38	47
AAA (Arg					Ile						38	95
ATG (Met I 965				Arg												39	43
TAT C			Tyr .					Pro					Phe			39	91
CCA A		Arg					His		Val			Gln		Lys		40:	39

-76-

			s As					Gli					a Le		G ATT s Ile	4087
		r Gl					Lys					а Ту			A CAG a Gln	4135
	Gl					Leu					: Ile				G GGA E Gly 1060	4183
AAT Asn	ACT Thr	ACA Thr	A GGA	CAA Gln 106	Leu	TTA Leu	ACA Thr	ATG Met	GCT Ala 107	Thr	GTC Val	TTA Lev	CAA Gln	GTT Val	TAC Tyr 5	4231
				Asp					Glu					Lys	AGA Arg	4279
			Asp					Ile					Asp		ACC	4327
		Val			TTG Leu		Trp					Asp				4375
	Ile				GAA Glu 1130	Lys					Tyr					4423
					TCC Ser					Ile					Leu	4471
				Glu	TCT Ser		Pro		Ile					Ser		4519
			Asp		CAT His	Leu '							Leu			4567
la		Asp			CAA /							Ile				4615
	Thr			Glu .	AAT (Asn 1 1210				Ile (Glu					4663

-77-

CAA AAG ATT CCT ATT CTA TTG AGA GCT GAG GTG GGG ATG GCT TTG CCA Gln Lys Ile Pro Ile Leu Leu Arg Ala Glu Val Gly Met Ala Leu Pro 1225 1230 1235	4711
TGT TTA ACC GTC CGT GCA TTA AAT CCA TTC ATG AAG AGG GTA Cys Leu Thr Val Arg Ala Leu Asn Pro Phe Met Lys Arg Val 1240 1245 1250	4753
TAATCTCTTC TACCAATATC GTCATTGCTG TTTTTCTTGT TTTTCACTTT CGTTCTTTGG	4813
ATTGTGCTTC ACCCCTCAGT ATCCCTTCCC TTTGTTTTTA TTTCCTGCGA ACATTAACAA	4873
CTGCATGAAT TTTGTACTTC TCCTTTTAAT CCACGTTCCG GTAAGGCATC ATCCAAATTT	4933
TTTTATTCGA CCTCGTTAAG TCATATATTT TTTCCCAAAA ATACATAAAA CAATAATGCA	4993
GCCTTCTTTT CAATATTTAC AACTTTTCAA TTTATATTGT CTTTTGTTAT TTATACTCTT	5053
ATATATTAAA TTTATTCCGT TACTAAATAC CCTTTTGCTG TACAAATATC ATCAAAGAGA	5113
AGTACTGAAA GCTTACTTTT TATGCGCTGG GTAATTTTTC CGGAAACAAT AACGAAATCA	5173
TCGTCGAGCA ATTTTGCTCG TACTTCAGAA ACTACTGCGT AAACATTTGA GGTCGTACAA	5233
TAAGTAGATA GAAATAAATA AACCAATTTT TCGTCAGCGT TTAATCTGTA GCCAAAGATT	5293
TGTGGTATTC TCACAGTTTG AATAATATTC AGCTACTTCA TCAAGTAGTT TTTTTCAATA	5353
GGAGATTCAC GGTTCAATAA GTGCATTGAT TATGTTCGAC CAATTAGCAG TCTTTACCCC	5413
TCAAGGTCAA GTACTTTACC AATATAACTG TTTAGGAAAA AAGTTTTCTG AAATACAAAT	5473
TAACAGCTTT ATATCCCAGC TGATTACTTC CCCAGTAACT AGAAAAGAAA	5533
CGCAAATACA GACGGATTTG ATTTCAATCT TTTAACAATC AACAGCGAAC ACAAAAATTC	5593
CCTTCATTT AATGCACTAT TTTATTTGAA TAAGCAACCA GAATTGTATT TCGTAGTGAC	5653
PTTTGCCGAG CAGACTTTAG AGCTTAATCA AGAAACTCAA CAAACACTTG CACTGGTGTT	5713
AAAACTCTGG AACTCATTGC ATTTAAGTGA ATCCATTCTA AAAAATCGTC AGGGCCAAAA	5773
CGAAAAGAAC AAGCATAACT ACGTCGATAT TCTTCAGGGA ATTGAAGACG ACCTGAAGAA	5833
ATTTGAGCAA TATTTTAGGA TAAAATATGA AGAGTCAATA AAACAAGACC ATATCAATCC	5893
GATAATTT ACCAAAAATG GATCAGTACC CCAATCGCAT AATAAAAATA CCAAGAAAAA	5953
TTGAGGGAT ACAAAAGGTA AGAAGCAATC TACAGGAAAT GTTGGTAGTG GGTAGTAAAG	6013
GGGGCCGTG ATGGTGG	6030

-78-

(2) INFORMATION FOR SEQ ID NO:9:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1250 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

Met Ser Lys Asn Ser Asn Val Asn Asn Asn Arg Ser Gln Glu Pro Asn 1 5 10 15

Asn Met Phe Val Gln Thr Thr Gly Gly Gly Lys Asn Ala Pro Lys Gln 20 25 30

Ile His Val Ala His Arg Arg Ser Gln Ser Glu Leu Thr Asn Leu Met 35 40 45

Ile Glu Gln Phe Thr Leu Gln Lys Gln Leu Glu Gln Val Gln Ala Gln
50 55 60

Gln Gln Gln Leu Met Ala Gln Gln Gln Gln Leu Ala Gln Gln Thr Gly
65 70 75 80

Gln Tyr Leu Ser Gly Asn Ser Gly Ser Asn Asn His Phe Thr Pro Gln 85 90 95

Pro Pro His Pro His Tyr Asn Ser Asn Gly Asn Ser Pro Gly Met Ser 100 105 110

Ala Gly Gly Ser Arg Ser Arg Thr His Ser Arg Asn Asn Ser Gly Tyr 115 120 125

Tyr His Asn Ser Tyr Asp Asn Asn Asn Ser Asn Asn Pro Gly Ser 130 135 140

Asn Ser His Arg Lys Thr Ser Ser Gln Ser Ser Ile Tyr Gly His Ser 145 150 155 160

Arg Arg His Ser Leu Gly Leu Asn Glu Ala Lys Lys Ala Ala Ala Glu 165 170 175

Glu Gln Ala Lys Arg Ile Ser Gly Glu Ala Gly Val Thr Val Lys 180 185 190

Ile Asp Ser Val Gln Ala Asp Ser Gly Ser Asn Ser Thr Thr Glu Gln
195 200 205

Ser	Asp	Phe	Lys	Phe	Pro	Pro	Pro	Pro	Asn	Ala	His	Gln	Gly	His	Arg
	210					215					220		-		-

- Arg Ala Thr Ser Asn Leu Ser Pro Pro Ser Phe Lys Phe Pro Pro Asn 225 230 235 240
- Ser His Gly Asp Asp Asp Glu Phe Ile Ala Thr Ser Ser Thr His 245 250 255
- Arg Arg Ser Lys Thr Arg Asn Asn Glu Tyr Ser Pro Gly Ile Asn Ser 260 265 270
- Asn Trp Arg Asn Gln Ser Gln Gln Pro Gln Gln Gln Leu Ser Pro Phe 275 280 285
- Arg His Arg Gly Ser Asn Ser Arg Asp Tyr Asn Ser Phe Asn Thr Leu 290 295 300
- Glu Pro Pro Ala Ile Phe Gln Gln Gly His Lys His Arg Ala Ser Asn 305 310 315 320
- Ser Ser Val His Ser Phe Ser Ser Gln Gly Asn Asn Asn Gly Gly Gly 325 330 335
- Arg Lys Ser Leu Phe Ala Pro Tyr Leu Pro Gln Ala Asn Ile Pro Glu 340 345 350
- Leu Ile Gln Glu Gly Arg Leu Val Ala Gly Ile Leu Arg Val Asn Lys 355 360 365
- Lys Asn Arg Ser Asp Ala Trp Val Ser Thr Asp Gly Ala Leu Asp Ala 370 375 380
- Asp Ile Tyr Ile Cys Gly Ser Lys Asp Arg Asn Arg Ala Leu Glu Gly 385 390 395 400
- Asp Leu Val Ala Val Glu Leu Leu Val Val Asp Asp Val Trp Glu Ser 405 410 415
- Lys Lys Glu Lys Glu Lys Lys Arg Arg Lys Asp Ala Ser Met Gln
 420 425 430
- His Asp Leu Ile Pro Leu Asn Ser Ser Asp Asp Tyr His Asn Asp Ala 435 440 445
- Ser Val Thr Ala Ala Thr Ser Asn Asn Phe Leu Ser Ser Pro Ser Ser 450 455 460
- Ser Asp Ser Leu Ser Lys Asp Asp Leu Ser Val Arg Arg Lys Arg Ser 470 475 480

-80-

Ser	Thr	Ile	Asn	Asn	Asp	Ser	Asp	Ser	Leu	Ser	Ser	Pro	Thr	Lys	Ser
				485					490					495	

- Gly Val Arg Arg Arg Ser Ser Leu Lys Gln Arg Pro Thr Gln Lys Lys
 500 505 510
- Asn Asp Asp Val Glu Val Glu Gly Gln Ser Leu Leu Leu Val Glu Glu 515 520 525
- Glu Glu Ile Asn Asp Lys Tyr Lys Pro Leu Tyr Ala Gly His Val Val 530 540
- Ala Val Leu Asp Arg Ile Pro Gly Gln Leu Phe Ser Gly Thr Leu Gly 545 550 555 560
- Leu Leu Arg Pro Ser Gln Gln Ala Asn Ser Asp Asn Asn Lys Pro Pro 565 570 575
- Gln Ser Pro Lys Ile Ala Trp Phe Lys Pro Thr Asp Lys Lys Val Pro 580 585 590
- Leu Ile Ala Ile Pro Thr Glu Leu Ala Pro Lys Asp Phe Val Glu Asn 595 600 605
- Ala Asp Lys Tyr Ser Glu Lys Leu Phe Val Ala Ser Ile Lys Arg Trp 610 620
- Pro Ile Thr Ser Leu His Pro Phe Gly Ile Leu Val Ser Glu Leu Gly 625 630 635 640
- Asp Ile His Asp Pro Asp Thr Glu Ile Asp Ser Ile Leu Arg Asp Asn 645 650 655
- Asn Phe Leu Ser Asn Glu Tyr Leu Asp Gln Lys Asn Pro Gln Lys Glu 660 670
- Lys Pro Ser Phe Gln Pro Leu Pro Leu Thr Ala Glu Ser Leu Glu Tyr 675 680 685
- Arg Arg Asn Phe Thr Asp Thr Asn Glu Tyr Asn Ile Phe Ala Ile Ser 690 695 700
- Glu Leu Gly Trp Val Ser Glu Phe Ala Leu His Val Arg Asn Asn Gly
 705 710 715 720
- Asn Gly Thr Leu Glu Leu Gly Cys His Val Val Asp Val Thr Ser His
 725 730 735
- Ile Glu Glu Gly Ser Ser Val Asp Arg Arg Ala Arg Lys Arg Ser Ser 740 745 750

- Ala Val Phe Met Pro Gln Lys Leu Val Asn Leu Leu Pro Gln Ser Phe 755 760 765
- Asn Asp Glu Leu Ser Leu Ala Pro Gly Lys Glu Ser Ala Thr Leu Ser 770 775 780
- Val Val Tyr Thr Leu Asp Ser Ser Thr Leu Arg Ile Lys Ser Thr Trp
 785 790 795 800
- Val Gly Glu Ser Thr Ile Ser Pro Ser Asn Ile Leu Ser Leu Glu Gln 805 810 815
- Leu Asp Glu Lys Leu Ser Thr Gly Ser Pro Thr Ser Tyr Leu Ser Thr 820 825 830
- Val Gln Glu Ile Ala Arg Ser Phe Tyr Ala Arg Arg Ile Asn Asp Pro 835 840 845
- Glu Ala Thr Leu Leu Pro Thr Leu Ser Leu Leu Glu Ser Leu Asp Asp 850 855 860
- Glu Lys Val Lys Val Asp Leu Asn Ile Leu Asp Arg Thr Leu Gly Phe 865 870 875 880
- Val Val Ile Asn Glu Ile Lys Arg Lys Val Asn Ser Thr Val Ala Glu 885 890 895
- Lys Ile Tyr Thr Lys Leu GÏy Asp Leu Ala Leu Leu Arg Arg Gln Met 900 905 910
- Gln Pro Ile Ala Thr Lys Met Ala Ser Phe Arg Lys Lys Ile Gln Asn 915 920 925
- Phe Gly Tyr Asn Phe Asp Thr Asn Thr Ala Asp Glu Leu Ile Lys Gly 930 935 940
- Val Leu Lys Ile Lys Asp Asp Val Arg Val Gly Ile Glu Ile Leu 945 950 955 960
- Leu Phe Lys Thr Met Pro Arg Ala Arg Tyr Phe Ile Ala Gly Lys Val 965 970 975
- Asp Pro Asp Gln Tyr Gly His Tyr Ala Leu Asn Leu Pro Ile Tyr Thr 980 985 990
- His Phe Thr Ala Pro Met Arg Arg Tyr Ala Asp His Val Val His Arg 995 1000 1005
- Gln Leu Lys Ala Val Ile His Asp Thr Pro Tyr Thr Glu Asp Met Glu 1010 1015 1020

-82-

Ala Leu Lys Ile Thr Ser Glu Tyr Cys Asn Phe Lys Lys Asp Cys Ala 1025 1030 1035 1040

Tyr Gln Ala Gln Glu Gln Ala Ile His Leu Leu Cys Lys Thr Ile 1045 1050 1055

Asn Asp Met Gly Asn Thr Thr Gly Gln Leu Leu Thr Met Ala Thr Val 1060 1065 1070

Leu Gln Val Tyr Glu Ser Ser Phe Asp Val Phe Ile Pro Glu Phe Gly 1075 1080 1085

Ile Glu Lys Arg Val His Gly Asp Gln Leu Pro Leu Ile Lys Ala Glu 1090 1095 1100

Phe Asp Gly Thr Asn Arg Val Leu Glu Leu His Trp Gln Pro Gly Val 1105 1110 1115 1120

Asp Ser Ala Thr Phe Ile Pro Ala Asp Glu Lys Asn Pro Lys Ser Tyr 1125 1130 1135

Arg Asn Ser Ile Lys Asn Lys Phe Arg Ser Thr Ala Ala Glu Ile Ala 1140 1145 1150

Asn Ile Glu Leu Asp Lys Glu Ala Glu Ser Glu Pro Leu Ile Ser Asp 1155 1160 1165

Pro Leu Ser Lys Glu Leu Ser Asp Leu His Leu Thr Val Pro Asn Leu 1170 1175 1180

Arg Leu Pro Ser Ala Ser Asp Asn Lys Gln Asn Ala Leu Glu Lys Phe 1185 1190 1195 1200

Ile Ser Thr Thr Glu Thr Arg Ile Glu Asn Asp Asn Tyr Ile Gln Glu 1205 1210 1215

Ile His Glu Leu Gln Lys Ile Pro Ile Leu Leu Arg Ala Glu Val Gly
1220 1225 1230

Met Ala Leu Pro Cys Leu Thr Val Arg Ala Leu Asn Pro Phe Met Lys 1235 1240 1245

Arg Val 1250

- (2) INFORMATION FOR SEQ ID NO:10:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 168 amino acids
 - (B) TYPE: amino acid

-83-

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

Ile Pro Pro Ala Pro Arg Gly Val Pro Gln Ile Glu Val Thr Phe Glu 1 5 10 15

Ile Asp Val Asn Gly Ile Leu Arg Val Thr Ala Glu Asp Lys Gly Thr 20 25 30

Gly Asn Lys Asn Lys Ile Thr Ile Thr Asn Asp Gln Asn Arg Leu Thr 35 40 45

Pro Glu Glu Ile Glu Arg Met Val Asn Asp Ala Glu Lys Phe Ala Glu 50 55 60

Glu Asp Lys Lys Leu Lys Glu Arg Ile Asp Thr Arg Asn Glu Leu Glu 65 . 70 75 80

Ser Tyr Ala Tyr Ser Leu Lys Asn Gln Ile Gly Asp Lys Glu Lys Leu 85 90 95

Gly Gly Lys Leu Ser Ser Glu Gly Lys Glu Thr Met Glu Lys Ala Val 100 105 110

Glu Glu Lys Ile Glu Trp Leu Glu Ser His Gln Asp Ala Asp Ile Glu 115 120 125

Asp Phe Lys Ala Lys Lys Lys Glu Leu Glu Glu Ile Val Gln Pro Ile 130 135 140

Ile Ser Lys Leu Tyr Gly Ser Gly Gly Pro Pro Pro Thr Gly Glu Glu 145 150 155 160

Asp Thr Ser Glu Lys Asp Glu Leu 165

- (2) INFORMATION FOR SEQ ID NO:11:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 654 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein

-84-

(xi)	SEQUENCE	DESCRIPTION:	SEQ	ID	NO:11:
------	----------	--------------	-----	----	--------

Met Lys Phe Pro Met Val Ala Ala Ala Leu Leu Leu Cys Ala Val
1 5 10 15

Arg Ala Glu Glu Asp Lys Lys Glu Asp Val Gly Thr Val Val Gly 20 25 30

Ile Asp Leu Gly Thr Thr Tyr Ser Cys Val Gly Val Phe Lys Asn Gly 35 40 45

Arg Val Glu Ile Ile Ala Asn Asp Gln Gly Asn Arg Ile Thr Pro Ser 50 55 60

Tyr Val Ala Phe Thr Pro Glu Gly Glu Arg Leu Ile Gly Asp Ala Ala 65 70 75 80

Lys Asn Gln Leu Thr Ser Asn Pro Glu Asn Thr Val Phe Asp Ala Lys 85 90 95

Arg Leu Ile Gly Arg Thr Trp Asn Asp Pro Ser Val Gln Gln Asp Ile 100 105 110

Lys Phe Leu Pro Phe Lys Val Val Glu Lys Lys Thr Lys Pro Tyr Ile 115 120 125

Gln Val Asp Ile Gly Gly Gln Thr Lys Thr Phe Ala Pro Glu Glu 130 135 140

Ile Ser Ala Met Val Leu Thr Lys Met Lys Glu Thr Ala Glu Ala Tyr 145 150 155 160

Leu Gly Lys Lys Val Thr His Ala Val Val Thr Val Pro Ala Tyr Phe 165 170 175

Asn Asp Ala Gln Arg Gln Ala Thr Lys Asp Ala Gly Thr Ile Ala Gly 180 185 190

Leu Asn Val Met Arg Ile Ile Asn Glu Pro Thr Ala Ala Ala Ile Ala 195 200 205

Tyr Gly Leu Asp Lys Arg Glu Gly Glu Lys Asn Ile Leu Val Phe Asp 210 215 220

Leu Gly Gly Gly Thr Phe Asp Val Ser Leu Leu Thr Ile Asp Asn Gly 225 230 235 240

Val Phe Glu Val Val Ala Thr Asn Gly Asp Thr His Leu Gly Glu 245 250 255

-85-

Asp	Phe	Asp	Gln 260	Arg	Val	Met	Glu	His 265	Phe	Ile	Lys	Leu	Tyr 270	Lys	Lys
Lvs	Thr	Glv	Lvs	Asp	Val	Ara	Lvs	Asp	Asn	Arg	Ala	Val	Gln	Lvs	Leu

Lys Thr Gly Lys Asp Val Arg Lys Asp Asn Arg Ala Val Gln Lys Leu 275 280 285

Arg Arg Glu Val Glu Lys Ala Lys Arg Ala Leu Ser Ser Gln His Gln 290 295 300

Ala Arg Ile Glu Ile Glu Ser Phe Phe Glu Gly Glu Asp Phe Ser Glu 305 310 315 320

Thr Leu Thr Arg Ala Lys Phe Glu Glu Leu Asn Met Asp Leu Phe Arg 325 330 335

Ser Thr Met Lys Pro Val Gln Lys Val Leu Glu Asp Ser Asp Leu Lys 340 345 350

Lys Ser Asp Ile Asp Glu Ile Val Leu Val Gly Gly Ser Thr Arg Ile 355 360 365

Pro Lys Ile Gln Gln Leu Val Lys Glu Phe Phe Asn Gly Lys Glu Pro 370 375 380

Ser Arg Gly Ile Asn Pro Asp Glu Ala Val Ala Tyr Gly Ala Ala Val 385 390 395 400

Gln Ala Gly Val Leu Ser Gly Asp Gln Asp Thr Gly Asp Leu Val Leu
405 410 415

Leu Asp Val Cys Pro Leu Thr Leu Gly Ile Glu Thr Val Gly Gly Val 420 425 430

Met Thr Lys Leu Ile Pro Arg Asn Thr Val Val Pro Thr Lys Lys Ser 435 440 445

Gln Ile Phe Ser Thr Ala Ser Asp Asn Gln Pro Thr Val Thr Ile Lys 450 455 460

Val Tyr Glu Gly Glu Arg Pro Leu Thr Lys Asp Asn His Leu Leu Gly
465 470 475 480

Thr Phe Asp Leu Thr Gly Ile Pro Pro Ala Pro Arg Gly Val Pro Gln
485 490 495

Ile Glu Val Thr Phe Glu Ile Asp Val Asn Gly Ile Leu Arg Val Thr
500 505 510

Ala Glu Asp Lys Gly Thr Gly Asn Lys Asn Lys Ile Thr Ile Thr Asn 515 520 525

Asp Gln Asn Arg Leu Thr Pro Glu Glu Ile Glu Arg Met Val Asn Asp 530 535 540

Ala Glu Lys Phe Ala Glu Glu Asp Lys Lys Leu Lys Glu Arg Ile Asp 545 550 555 560

Thr Arg Asn Glu Leu Glu Ser Tyr Ala Tyr Ser Leu Lys Asn Gln Ile 565 570 575

Gly Asp Lys Glu Lys Leu Gly Gly Lys Leu Ser Ser Glu Asp Lys Glu 580 585 590

Thr Met Glu Lys Ala Val Glu Glu Lys Ile Glu Trp Leu Glu Ser His 595 600 605

Gln Asp Ala Asp Ile Glu Asp Phe Lys Ala Lys Lys Glu Leu Glu 610 615 620

Glu Ile Val Gln Pro Ile Ile Ser Lys Leu Tyr Gly Ser Ala Gly Pro 625 630 635 640

Pro Pro Thr Gly Glu Glu Asp Thr Ser Glu Lys Asp Glu Leu 645 650

(2) INFORMATION FOR SEQ ID NO:12:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 5470 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (ix) FEATURE:
 - (A) NAME/KEY: exon
 - (B) LOCATION: 593..715
- (ix) FEATURE:
 - (A) NAME/KEY: exon
 - (B) LOCATION: 806..1036
- (ix) FEATURE:
 - (A) NAME/KEY: exon
 - (B) LOCATION: 1402..1539
- (ix) FEATURE:
 - (A) NAME/KEY: exon
 - (B) LOCATION: 2175..2289

-87-

(ix) FEATURE:

(A) NAME/KEY: exon

(B) LOCATION: 2378..2764

(ix) FEATURE:

(A) NAME/KEY: exon

(B) LOCATION: 2878..3115

(ix) FEATURE:

(A) NAME/KEY: exon

(B) LOCATION: 3400..3568

(ix) FEATURE:

(A) NAME/KEY: exon

(B) LOCATION: 4535..5095

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

CCCGGGGTCA CTCCTGCTGG ACCTACTCCG ACCCCTAGG CCGGGAGTGA AGGCGGGACT 60 TGTGCGGTTA CCAGCGGAAA TGCCTCGGGG TCAGAAGTCG CAGGAGAGAT AGACAGCTGC 120 TGAACCAATG GGACCAGCGG ATGGGGCGGA TGTTATCTAC CATTGGTGAA CGTTAGAAAC 180 GAATAGCAGC CAATGAATCA GCTGGGGGGG CGGAGCAGTG ACGTTTATTG CGGAGGGGGC 240 CGCTTCGAAT CGGCGGCGC CAGCTTGGTG GCCTGGGCCA ATGAACGGCC TCCAACGAGC 300 AGGGCCTTCA CCAATCGGCG GCCTCCACGA CGGGGCTGGG GGAGGGTATA TAAGCCGAGT 360 AGGCGACGGT GAGGTCGACG CCGGCCAAGA CAGCACAGAC AGATTGACCT ATTGGGGTGT 420 TTCGCGAGTG TGAGAGGGAA GCGCCGCGC CTGTATTTCT AGACCTGCCC TTCGCCTGGT 480 TCGTGGCGCC TTGTGACCCC GGGCCCCTGC CGCCTGCAAG TCGAAATTGC GCTGTGCTCC 540 TGTGCTACGG CCTGTGGCTG GACTGCCTGC TGCTGCCCAA CTGGCTGGCA AGATGAAGCT 600 CTCCCTGGTG GCCGCGATGC TGCTGCTGCT CAGCGCGGGG CGGGCCGAGG AGGAGGACAA 660 GAAGGAGGAC GTGGCCACGG TGGTCGGCAT CGACTTGGGG ACCACCTACT CCTGGTAAGT 720 GGGTTGCGG ATGAGGGGGA CGGGGCGTGG CGCTGGCTGG CGTGAGAAGT GCGGTGCTGA 780 TGTCCCTCTG TCGGGTTTTT GCAGCGTCGG CGTGTTCAAG AACGGCCGCG TGGAGATCAT 840 CGCCAACGAT CAGGGCAACC GCATCACGCC GTCCTATGTC GCCTTCACTC CTGAAGGGGA 900 ACGTCTGATT GGCGATGCCG CCAAGAACCA GCTCACCTCC AACCCCGAGA ACACGGTCTT 960

TGACGCCAAG CGGCTCATCG GCCGCACGTG GAATGACCCG TCTGTGCAGC AGGACATCAA	102
GTTCTTGCCG TTCAAGGTTC GACCGGTTTT CCTCATCCAG TTAGAGAACG GGTGGGTGGT	108
GGGAGTATTT AGAGTTATAA GTCTCTGGAA AAGTGTTGAG ACAACAGTTG AAGGTTATAG	114
ACATGATGTA TGTAATAACT TTAATACTAT TAGTATGTTA CAAAACTTAA GACAGTTGCT	120
GTCGTACTGT CTACGATAGT TTAGGAATAA AAGACCGATT AAAACTGAAC TTTGTAAGAC	126
ACCTATACTC CCTGAAGTAT TTCTAGTCAA TTTGCAGCCC CAAGGGACCA AAATAAACCA	1320
AATTGTGGGG ATGGTAGTGG GTCTTTTAAA CTTTGAGATG TCATTGTATC TGTGTCTGAA	1380
AACAATAATT CTTTAAAATA GGTGGTTGAA AAGAAAACTA AACCATACAT TCAAGTTGAT	1440
ATTGGAGGTG GGCAAACAAA GACATTTGCT CCTGAAGAAA TTTCTGCCAT GGTTCTCACT	1500
AAAATGAAAG AAACCGCTGA GGCTTATTTG GGAAAGAAGG TAAATATTTC TAGAACAATG	1560
TTAAGTATTT TTTGATCATT AGTATTCTCG GTTGGCTGTT ATGTATAGAA GCCTTCGTGA	1620
AGGGTTTCAA AAATTTTAAT CAGAATGGTA TTCATGCTTG TCACGGTTTA ATTATTGAGT	1680
CCCTTTACTA TAAGCCAAAC AAAAATAGAC TTTTCATGTA TTATTTAATG CTTACAATTC	1740
CAGGAACAAT AAAATTTTAT ATGTTGTATT CATCAATAAT TGGCTTAAAA ACTAAAGTGA	1800
TGGTTTGACT GTAATTTTTT TTTTTTGAGA TGGAGTCTTG CTCTGTTGCC CAGGCTGGAC	1860
TGCAGTGGCA CGATCTCAGC TCACTGCAAC CTCTGCCTCC CGGGTTAAGC AGCTCTCCTG	1920
CCTCAGCCTC CAAGTAATGG AACGACAGGC ACACCACCAC AGCTGGCTAA TTTTTTTTT	1980
TTTTTTAAT TTTCAGTAGA GACAGGGTTT CTCCACATTG CCAGGCTGGT CTTGAAATCC	2040
TGCCCTCAGG TTGATCCTCC TGCCTAGCCT CCCAAAGTGC TGGATTATAG GCAGAAGCCA	2100
CCGCCTGGCC AGACTGTAAT TTAAATAAGG GTTAAACTAT GTGACAATAC ACTTAATTAT	2160
CTTTATCCTT TTAGGTTACC CATGCAGTTG TTACTGTACC AGCCTATTTT AATGATGCCC	2220
AACGCCAAGC AACCAAAGAC GCTGGAACTA TTGCTGGCCT AAATGTTATG AGGATCATCA	2280
ACGAGCCGTA AGTATGAAAT TCAGGGATAC GGCATATTTG CCAAATAGTG GAAATGTGAA	2340
GTACTGACAA AACTTTTCCC TTTTTCAATC TAATAGTACG GCAGCTGCTA TTGCTTATGG	2400
CCTGGATAAG AGGGAGGGG AGAAGAACAT CCTGGTGTTT GACCTGGGTG GCGGAACCTT	2460
CGATGTGTCT CTTCTCACCA TTGACAATGG TGTCTTCGAA GTTGTGGCCA CTAATGGAGA	2520

TACTCATCIG GGTGGAGAAG ACTTTGACCA GCGTGTCATG GAACACTTCA TCAAACTGTA	2501
CAAAAAGAAG ACGGGCAAAG ATGTCAGGAA GGACAATAGA GCTGTGCAGA AACTCCGGCG	2640
CGAGGTAGAA AAGGCCAAGG CCCTGTCTTC TCAGCATCAA GCAAGAATTG AAATTGAGTC	2700
CTTCTATGAA GGAGAAGACT TTTCTGAGAC CCTGACTCGG GCCAAATTTG AAGAGCTCAA	2760
CATGGTATGT TCCTTGTTTT CTGCTTTGCT AATGAGATCT CCTTAGACTC TGAATTCAGG	2820
ACATTGCATC TAGATACTTA GATAACAGAC ATCACAGTAA CCATGTCTTT TTTCTAGGAT	2880
CTGTTCCGGT CTACTATGAA GCCCGTCCAG AAAGTGTTGG AAGATTCTGA TTTGAAGAAG	2940
TCTGATATTG ATGAAATTGT TCTTGTTGGT GGCTCGACTC GAATTCCAAA GATTCAGCAA	3000
CTGGTTAAAG AGTTCTTCAA TGGCAAGGAA CCATUUUUTE FIAFRAACUC AGATGAAGCT	3060
GTAGCGTATG GTGCTGCTGT CCAGGCTGGT GTGCTCTGTG GTGATCAAGA TACAGGTAGG	3120
TCATCATCGC AGCATCTTTC TTAGTGATTC ASTAULTIA TARBAAGAGCT CGGTACCCCT	3180
ATTGCTTTAG AAAATACCAG AATATGAGCA ACAAGGTCAC ACAGCTAGTA AAGGGTATAA	3240
GTGAAGACAA GACTGGGGTA GTCTCCAAGA TCATTAGCAA CTGTTTAATT CACTGCCTTT	3300
AAAATGTGTG TGTTAGAACC TAACCAAATG TTAGAGAGAT AAACTTTACA TAGCTCATAG	3360
GGAGAACTTG AATTAAAAGT TAAATAACTT ATCCTTACAG GTGACCTGGT ACTGCTTCAT	3420
STATGTCCCC TTACACTTGG TATTGAAACT GTAGGAGGTG TCATGACCAA ACTGATTCCA	3480
AGTAATACAG TGGTGCCTAC CAAGAACTCT CAGATCTTTT CTACAGCTTC TGATAATCAA	3540
CAACTGTTA CAATCAAGGT CTATGAAGGT AATTACCTTA AGTTTGGTTA ATATCATGGC	3600
TTTTTTTTT AGATGAAGTC TTGCTCTGTT GCCCAGGCTG GACTGCAGTG GCACGATCTC	3660
GCTCACTGC AAATTCTGTC TCCCGGGTTC AAGTGATTCT CCTGCCTCAG CCTCCAGAGT	3720
GCTGGATTA CAGCCTGACC ACCACACCTG GCTAATTTCT GTATTTTTAG TAGAGGATGG	3780
CTTTCACCA TGTTTCCCAG GCTGGTCTCC AACTCCTGAC CTCAGGTCAT CTGCCTGCCT	3840
CACCGTCCC GAAAGTACTG GGATTATAGC GTGAGCCACC ACGCCAGATC TATCTATCAT	3900
GCATATTTT AAAAGAACAT GACTTAATAT GTCCTATTGA AATGGCTAGG GAACTAAGTA	3960
CTGCTGTTT TCAGATGGAG GTCTTAATTT GAATAATGTT GATATTAGAT ATTTAGCATT	4020
TTTTTTTTT TTTTTTAAT.GGAGTCTTGC TCTGTCGCCT AGGCTGGGGT GCAGTGGCAT	4080

GACTTGCAAC CTCTGCCTCC CGAATAGCTG GGATTACAGG TGCCCACCAT CACGCCCGGC	4140
TAAGTTTTGT ATTTTTAGTA GAGGCGAGTT TCGCCATGTT GGCCAGGCTG GTCTTGAACC	4200
CCTAACCTCA GTGATCCCAC GGTCACCGAC CTGGCCTCCC AAAAGTACTG TACCCAGCCA	4260
ATGATTAGCA TTCTCACTAA TAATAGCATC TGAGCTGGCT CCTAGAGTAC AAGAAAAAGG	4320
AGTTCACAGT ACTTTAAAAT AGATAAAATT CAGTTGAGTT AGTAACCTAA CTCATTGTTA	4380
GTACTAGTTG CTGCTCCTTG TAGACCAATA TGAAATTACT TTTAGCTCGA TAAAACCAAA	4440
AGTGTCACTT TATGCTTCAG ACTGAAATGC GGGGATCTAG ATGTGCTAAT GCTTGTCAGT	4500
AACAACTAAC AAGTTTTTCT GTATGTAACT TCTAGGTGAA AGACCCCTGA CAAAAGACAA	4560
TCATCTTCTG GGTACATTTG ATCTGACTGG AATTCCTCCT GCTCCTCGTG GGGTCCCACA	4620
GATTGAAGTC ACCTTTGAGA TAGATGTGAA TGGTATTCTT CGAGTGACAG CTGAAGACAA	4680
GGGTACAGGG AACAAAAATA AGATCACAAT CACCAATGAC CAGAATCGCC TGACACCTGA	4740
AGAAATCGAA AGGATGGTTA ATGATGCTGA GAAGTTTGCT GAGGAAGACA AAAAGCTGAA	4800
GGAGCGCATT GATACTAGAA ATGAGTTGGA AAGCTATGCC TATTCTCTAA AGAATCAGAT	4860
TGGAGATAAA GAAAAGCTGG GAGGTAAACT TTCCTCTGAA GATAAGGAGA CCATGGAAAA	4920
AGCTGTAGAA GAAAAGATTG AATGGCTGGA AAGCCACCAA GATGCTGACA TTGAAGACTT	4980
CAAAGCTAAG AAGAAGGAAC TGGAAGAAAT TGTTCAACCA ATTATCAGCA AACTCTATGG	5040
AAGTGCAGGC CCTCCCCCAA CTGGTGAAGA GGATACAGCA GAAAAAGATG AGTTGTAGAC	5100
ACTGATCTGC TAGTGCTGTA ATATTGTAAA TACTGGACTC AGGAACTTTT GTTAGGAAAA	5160
AATTGAAAGA ACTTAAGTCT CGAATGTAAT TGGAATCTTC ACCTCAGAGT GGAGTTGAAA	5220
CTGCTATAGC CTAAGCGGCT GTTTACTGCT TTTCATTAGC AGTTGCTCAC ATGTCTTTGG	5280
GTGGGGGGG GAAGAAGAT TGGCCATCTT AAAAAGCGGG TAAAAAACCT GGGTTAGGGT	5340
GTGTGTTCAC CTTCAAAATG TTCTATTTAA CAACTGGGTC ATGTGCATCT GGTGTAGGAG	5400
GTTTTTCTA CCATAAGTGA CACCAATAAA TGTTTGTTAT TTACACTGGT CTAATGTTTG	5460
TGAGAAGCTT	5470

-91-

(2) INFORMATION FOR SEQ ID NO:13:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2089 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(ix) FEATURE:

- (A) NAME/KEY: CDS
- (B) LOCATION: 66..2005
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

GAG	GCAG	CTG	CCGG	GCAT	TA G	TGTG	GTCT	C GT	CGTC	AGCG	CAG	CTGG	GCC	TACA	CACAA	3	60
CAA			CT A er L							le A							107
	Ser		GTG Val														155
			GGT Gly														203
			TTA Leu 50														251
			ACA Thr														299
			GTT Val														347
			GCA Ala														395
			TTC Phe														443

-92-

				e Al					ı Gly					r As	C GCT n Ala	
			r Va					Asr					Gl		A ACA a Thr	
		Al.					Gly					Arg			C AAT ASN	587
	Pro					Ile					Asp				GGA Gly 190	635
					Leu										GAT Asp	683
				Thr	ATT Ile										ACA Thr	731
			Thr		TTA Leu											779
					GAG Glu											827
					GTC Val 260											875
					TCC Ser											923
					GAC Asp		Tyr					Arg				971
					GAC Asp	Leu :										1019
Lys					GCC A					Ser						1067

	l Le						Th.					s I				FT CT eu Le 35	eu
				he .							n Ly					CC GA CO As	
			al A							1 G1					u Se	T GG	
			r G						Le					p Va		T CC	
		r Le						Ala					t Th			C ATO	
	Arc				hr :							Glr				Thr 430	•
				n G							Gln					GAA Glu	
AGG Arg	GCC Ala	AT(Th:	r Ly	AG C	AC Asp	AAC Asn	AAC Asn	CTG Leu 455	Leu	GGA Gly	AAG Lys	TTC Phe	GAG Glu 460	Leu	ACA Thr	1451
GGC Gly	ATC Ile	Pro 465	Pro	A GO	CA C	cc ro	CGT Arg	GGG Gly 470	GTT Val	CCT Pro	CAG Gln	ATT Ile	GAG Glu 475	GTT Val	ACT Thr	TTT Phe	1499
Asp	ATC Ile 480	GAT Asp	GCC Ala	C AA	AT G	ly :	ATC Ile 485	CTC Leu	AAT Asn	GTT Val	TCT Ser	GCT Ala 490	GTA Val	GAT Asp	AAG Lys	AGC Ser	1547
					n L									GGC Gly			1595
					e G									AAG Lys			1643
GCT (GAG Glu	GAT Asp	GAG Glu 530	Ly	G CI S G]	AG A	IGA (Asp	AAG Lys 535	GTT Val	TCC Ser	TCC Ser	AAG Lys	AAC Asn 540	TCA Ser	CTG Leu	1691

-94-

			Ala					Ala							CTT Leu	173
		Lys										Leu			TGC Cys	178
						CTG Leu									GAA Glu 590	1835
						AAA Lys										. 1883
						AGT Ser						Gly				1931
						GGA Gly					Gly					1979
Gly					Glu	GTG Val 645		TA A	GTCA	GTCC	A AG	AAGA	AGGT			2025
GTAG	CTTT	GT T	CCAC	AGGG	A CC	CAAA	aagt	AAC	atgg	AAT .	AATA	AAAC	TA T	TTAA	ATTGG	2085
CACC																2089

- (2) INFORMATION FOR SEQ ID NO:14:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 646 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

Met Ser Lys Gly Pro Ala Val Gly Ile Asp Leu Gly Thr Thr Tyr Ser 1 5 10 15

Cys Val Gly Val Phe Gln His Gly Lys Val Glu Ile Ile Ala Asn Asp 20 25 30

-95-

Gln	Gly	Asn 35	Arg	Thr	Thr	Pro	Ser 40	Tyr	Val	Ala	Phe	Thr 45	Asp	Thr	Glu
Arg	Leu 50	Ile	Gly	Asp	Ala	Ala 55	Lys	Asn	Gln	Val	Ala 60	Met	Asn	Pro	Thr

Asn Thr Val Phe Asp Ala Lys Arg Leu Ile Gly Arg Arg Phe Asp Asp

Ala Val Val Gln Ser Asp Met Lys His Trp Pro Phe Met Val Val Asn 85 90 95

Asp Ala Gly Arg Pro Lys Val Gln Val Glu Tyr Lys Gly Glu Thr Lys 100 105 110

Ser Phe Tyr Pro Glu Glu Val Ser Ser Met Val Leu Thr Lys Met Lys 115 120 125

Glu Ile Ala Glu Ala Tyr Leu Gly Lys Thr Val Thr Asn Ala Val Val 130 135 140

Thr Val Pro Ala Tyr Phe Asn Asp Ser Gln Arg Gln Ala Thr Lys Asp 145 150 155 160

Ala Gly Thr Ile Ala Gly Leu Asn Val Leu Arg Ile Ile Asn Glu Pro 165 170 175

Thr Ala Ala Ala Ile Ala Tyr Gly Leu Asp Lys Lys Val Gly Ala Glu 180 185 190

Arg Asn Val Leu Ile Phe Asp Leu Gly Gly Gly Thr Phe Asp Val Ser 195 200 205

Ile Leu Thr Ile Glu Asp Gly Ile Phe Glu Val Lys Ser Thr Ala Gly 210 215 220

Asp Thr His Leu Gly Gly Glu Asp Phe Asp Asn Arg Met Val Asn His 225 230 235 240

Phe Ile Ala Glu Phe Lys Arg Lys His Lys Lys Asp Ile Ser Glu Asn 245 250 255

Lys Arg Ala Val Arg Arg Leu Arg Thr Ala Cys Glu Arg Ala Lys Arg 260 265 270

Thr Leu Ser Ser Ser Thr Gln Ala Ser Ile Glu Ile Asp Ser Leu Tyr 275 280 285

Glu Gly Ile Asp Phe Tyr Thr Ser Ile Thr Arg Ala Arg Phe Glu Glu 290 295 300 -96-

Le: 30!		n Al	a As	p Le	1 Phe 310		g Gly	y Thi	r Le	u Asj 31		o Va	l Gl	ц Ly	s Ala 32
Let	ı Ar	g As	p Ala	a Lys 325	s Leu 5	ı Asp	p Lys	s Sei	Gl: 330		e His	s Ası	p Ile	e Va. 33!	
Va]	l Gly	y Gl	y Sei 340		r Arg	, Il∈	e Pro	Lys 345		e Glr	ı Lys	s Lei	1 Let 350		n Ası
Phe	Phe	35!	_	y Lys	s Glu	Leu	360		Se1	: Ile	Asr	365		Glu	ı Alá
Val	Ala 370	_	Gly	Ala	Ala	Val 375		Ala	Ala	ı Ile	280		Gly	/ Asp	Lys
Ser 385		Asr	val	. Gln	Asp 390		Leu	Leu	Leu	Asp 395		Thr	Pro	Leu	Ser 400
Leu	Gly	Ile	Glu	Thr 405	Ala	Gly	Gly	Val	Met 410		Val	Leu	Ile	Lys 415	_
Asn	Thr	Thr	1le 420		Thr	Lys	Gln	Thr 425	Gln	Thr	Leu	Thr	Thr 430		Ser
Asp	Asn	Gln 435		Gly	Val	Leu	Ile 440	Gln	Val	Tyr	Glu	Gly 445	Glu	Arg	Ala
Met	Thr 450	Lys	Asp	Asn	Asn	Leu 455	Leu	Gly	Lys	Phe	Glu 460	Leu	Thr	Gly	Ile
Pro 465	Pro	Ala	Pro	Arg	Gly 470	Val	Pro	Gln	Ile	Glu 475	Val	Thr	Phe	Asp	Ile 480
Asp	Ala	Asn	Gly	Ile 485	Leu	Asn ·	Val	Ser	Ala 490	Val	Asp	Lys	Ser	Thr 495	Gly
Lys	Glu	Asn	Lys 500	Ile	Thr	Ile	Thr	Asn 505	Asp	Lys	Gly	Arg	Leu 510	Ser	Lys
Glu	Asp	Ile 515	Glu	Arg	Met	Val	Gln 520	Glu	Ala	Glu	Lys	Tyr 525	Lys	Ala	Glu
Asp	Glu 530	Lys	Gln	Arg	Asp	Lys 535	Val	Ser	Ser	Lys	Asn 540	Ser	Leu	Glu	Ser
fyr 545	Ala	Phe	Asn	Met	Lys 550	Ala	Thr	Val	Glu	Asp 555	Glu	Lys	Leu	Gln	Gly 560
ys	Ile	Asn	Asp	Glu 565	Asp	Lys	Gln		Ile 570	Leu	Asp	Lys	Cys	Asn 575	Glu

-97-

Ile Ile Ser Trp Leu Asp Lys Asn Gln Thr Ala Glu Lys Glu Glu Phe 580 585 590

Glu His Gln Gln Lys Glu Leu Glu Lys Val Cys Asn Pro Ile Ile Thr 595 600 605

Lys Leu Tyr Gln Ser Ala Gly Gly Met Pro Gly Gly Met Pro Gly Gly 610 620

Phe Pro Gly Gly Gly Ala Pro Pro Ser Gly Gly Ala Ser Ser Gly Pro 625 630 635 640

Thr Ile Glu Glu Val Asp 645

- (2) INFORMATION FOR SEQ ID NO:15:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 5408 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (ix) FEATURE:
 - (A) NAME/KEY: exon
 - (B) LOCATION: 1040..1244
 - (ix) FEATURE:
 - (A) NAME/KEY: exon
 - (B) LOCATION: 1569..1772
 - (ix) FEATURE:
 - (A) NAME/KEY: exon
 - (B) LOCATION: 2097..2249
 - (ix) FEATURE:
 - (A) NAME/KEY: exon
 - (B) LOCATION: 2337..2892
 - (ix) FEATURE:
 - (A) NAME/KEY: exon
 - (B) LOCATION: 3104..3306
 - (ix) FEATURE:

-98-

(ix) FEATURE:

(A) NAME/KEY: exon

(B) LOCATION: 3881..4113

(ix) FEATURE:

(A) NAME/KEY: exon

(B) LOCATION: 4445..4629

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

GAGCTTGAAA	GTTCCAGAAC	GCTGCGGTG	A GTGCGTTAT	C GTGAGGCGG	C GCGGTGGGGT	60
GGGTGCGGAA	GGGGGGGAGG	CGAGGAGTG	AGCCGCGTT	G TGATTGTGA	T TGGGTCTTGT	120
AAGGGCAGCC	GGACTCTATT	GGCCGGGAAC	CTAATGCAGG	AAGCAGGCG	G ACCCCTTCTG	180
GAAGGTTCTA	AGATAGGGTA	TAAGAGGCAG	GGTGGCGGG	GGAAACCGG	r gctcagttga	240
ACTGCGCTGC	AGCTCTTGGT	TTTTTGTGGC	TTCCTTCGTT	TATTGGAGCC	A GGCCTACACC	300
CCAGGTAAAA	CCTCTGCTCA	AGAGTTGGGT	TGTGGGTCTG	GGAGCGTGC	GCCTCCACAC	360
AGGCCTGTTG	GGCTTGCTGA	GGCTTGGGGG	TTCTGAGAAT	CTCGTCGAGG	G CGAGTGTGCG	420
GCTCCTTCTA	CCGGCTTAAA	GGGCCTCAGT	TTTCGGTGGG	ATGGCAGCGG	TATTTGGTTG	480
CAGCCGGCAG	ACGGAAATGT	AGGGAGTGGG	CCGCATGGCC	CCAGGGGAGG	CTGGGAGACG	540
CCCGGCCGCG	TGGCGGGGGA	GGGTTGCTGC	ATCGGTTTGC	CTGGCGCGCG	GGGAAGTGGA	600
GCCAGCGTTT	TCTTTCACCC	AGTTCCCTGC	TTAGTCCAGT	CCCACCGTGG	TTCTTCAGAG	660
CTGTTCTTGG	CGTGCTTCCA	GTATGGGGGT	ACATTCCGGA	GTAGTTAAAA	GCCCGTTGAC	720
TCCCGGGGGG	CACTGGCACC	TGGCGAGGGA	GGGGAACAGA	CAGTGCTCAG	TTCGGGGTAA	780
GACCACGTGT	TGAGCAACGC	CCCACGCCGT	CTGGGTCGAT	GGGTCCTTCA	TCTAGGGCGT	840
GCTGTGCTGC (GGTTGGCACG (GCAACCTGGA	CTGCAGCACT	AGTTCTGGAC	CTCGCGCGTG	900
CTTAGACAGG	AGGTGATGGG (CACTATTACC	TCTTGGCAGT	GGCCATACGT	TTTTCCTGGT	960
TAAGTGTTCT (GTTAAGGGAT (GAGGGAAATA	TTTTGATTAA	TTGAATTTTT	AAACCAGATT	1020
TTTCTTTTTT 7	rcagcaacca 1	rgtccaaggg	ACCTGCAGTT	GGTATTGATC	TTGGCACCAC	1080
CTACTCTTGT (STGGGTGTTT 1	rccagcacgg .	AAAAGTCGAG	ATAATTGCCA	ATGATCAGGG	1140
AAACCGAACC A	ACTCCAAGCT A	ATGTCGCCTT	TACGGACACT	GAACGGTTGA	TCGGTGATGC	1200

CGCAAAGAAT CAAGTTGCAA TGAACCCCAC CAACACAGTT TTTGGTGAGT TCCTAATTTT	1260
AAATGACAGA ACAAATATAA ACAGGGCTAG GAAGCACAAA AGTTTATGAA ACGTGAGGAG	1320
GGAACTTTTT GATTTTAGAA AAACTGAGCT GAGAGACTTG TTATCAAGTC TGTTATAAAA	1380
CAGGTTGTAG AAACCTTTCA GGCTGAAATC TGGATAACGT AGGAGGTTGA AGTTTGAACC	1440
TTTGCTAGGT ATATGGTAGT TGAATTCACC TACCTATGAA CTGTTAGGTA TTTGAGTAAT	1500
CATGGACTTG AGTTTTATCT GAAGAGCTAT GAAATTGAAA GTGTTTTCAT TTGACACCTT	1560
TTACAGATGC CAAACGTCTG ATTGGACGCA GATTTGATGA TGCTGTTGTC CAGTCTGATA	1620
TGAAACATTG GCCCTTTATG GTGGTGAATG ATGCTGGCAG GCCCAAGGTC CAAGTAGAAT	1680
ACAAGGGAGA GACCAAAAGC TTCTATCCAG AGGAGGTGTC TTCTATGGTT CTGACAAAGA	1740
TGAAGGAAAT TGCAGAAGCC TACCTTGGGA AGGTGAGGTT GGTTTTTCAG TATGGGGTGC	1800
ATTCCGGAGT AGTTAAAAGC CCGATGACTC CCGGGGGCAC TGGCACCTGG CGAGGGAGGG	1860
GAACAGATGG GGCTCAGCTC AGGGTTAAGA CCACGTGCCC AACAGTGCCC TAGGCTCTCT	1920
AGGTAGATGG GTCTGTCAAC ACCAGAAACC AGTGAATCTT GACAATTACA CAGTAATTTA	1980
CATTTTGGTG GGGGGGTGC TCCAGCTGTT GTTTCACCAG CATTAATCCA TTTGCTGGAG	2040
PTTGCATATA TGTAAGTATA ATAGTTACCA ATCTGTGGTC TTTTCCTTAT TCCTAGACTG	2100
TTACCAATGC TGTGGTCACA GTGCCAGCTT ACTTTAATGA CTCTCAGCGT CAGGCTACCA	2160
AGATGCTGG AACTATTGCT GGTCTCAATG TACTTAGAAT TATTAATGAG CCAACTGCTG	2220
TGCTATTGC TTACGGCTTA GACAAAAGG TATGTACCAT TTGTGATGCA AGTTCGGATT	2280
TTTTAAGAT TAATTTGATC CATCGTAAAT TTAAATGAGA TTGTTTTTAA CGGCAGGTTG	2340
AGCAGAAAG AAACGTGCTC ATCTTTGACC TGGGAGGTGG CACTTTTGAT GTGTCAATCC	2400
CACTATTGA GGATGGAATC TTTGAGGTCA AGTCTACAGC TGGAGACACC CACTTGGGTG	2460
AGAAGATTT TGACAACCGA ATGGTCAACC ATTTTATTGC TGAGTTTAAG CGCAAGCATA	2520
GAAGGACAT CAGTGAGAAC AAGAGAGCTG TAAGACGCCT CCGTACTGCT TGTGAACGTG	2580
TAAGCGTAC CCTCTCTCC AGCACCCAGG CCAGTATTGA GATCGATTCT CTCTATGAAG	2640
AATCGACTT CTATACCTCC ATTACCCGTG CCCGATTTGA AGAACTGAAT GCTGACCTGT	2700
CCGTGGCAC CCTGGACCCA GTAGAGAAAG CCCTTCGAGA TGCCAAACTA GACAAGTCAC	2760

-100-

AGATTCATGA TATTGTCCTG GTTGGTGGTT CTACTCGTAT CCCCAAGATT CAGAAGCTTC	282
TCCAAGACTT CTTCAATGGA AAAGAACTGA ATAAGAGCAT CAACCCTGAT GAAGCTGTTG	288
CTTATGGTGC AGGTAACAAT GGTATCTCAA TTAACCCTAA AGGCAGGCAG GCCCAAGGTG	294
ACTCGCTGTG ATGAGTGATT GTTAAACATT CGTAGTTTCC ACCAAAAGCT TGGCTAATGA	300
TGGCAACACC TTCCTTGGAT GTCTGAGCGA GTGATAGTTA AAACAGGAGC TATGTACTGG	3060
GTTTTCTTTT AACTTCTTTT AACGTTAACT TTTTGTTTGC TAGCTGTCCA GGCAGCCATC	3120
TTGTCTGGAG ACAAGTCTGA GAATGTTCAA GATTTGCTGC TCTTGGATGT CACTCCTCTT	3180
TCCCTTGGTA TTGAAACTGC TGGTGGAGTC ATGACTGTCC TCATCAAGCG TAATACCACC	3240
ATTCCTACCA AGCAGACACA GACCTTCACT ACCTATTCTG ACAACCAGCC TGGTGTGCTT	3300
ATTCAGGTAT GTTTCTGTAC TTCTCTTGTT TGGCTTACTG ATAACAGATA AAGGGAAGTC	3360
TTGACTGACT CGCTATGATG ATGGATTCCA AAACCATTCG TAGTTTCCAC CAGAAAGTCT	3420
TATGTTGGCC AGTTCCTTCC TTGGATGTTT GAGCGACCAT TCTTCCTTAG CAGGACCCTA	3480
GCACTGTCAC AGACCTGGAG TCCATTGTAG TAATTTGTTT TATTTCCTAC CAAGGTTTAT	3540
GAAGGCGAGC GTGCCATGAC AAAGGATAAC AACCTGCTTG GCAAGTTTGA ACTCACAGGC	3600
ATACCTCCTG CACCCCGAGG TGTTCCTCAG ATTGAAGTCA CTTTTGACAT TGATGCCAAT	3660
GGTATACTCA ATGTCTCTGC TGTGGACAAG AGTACGGGAA AAGAGAACAA GATTACTATC	3720
ACTAATGACA AGGGTAAGGA GGCACTGTCA TCTGGTCTTG ACAGGGATAA TGGTATTTCA	3780
ATTGAGTTAC TGGTGAATAA GGGCGTCTAG CTAAGAGAAA CTAGAGTTAC ACATACACAG	3840
STAATTTAAG GCTTTTACTT AGAGTTAATT TCTTTCCTAG GCCGTTTGAG CAAGGAAGAC	3900
ATTGAACGTA TGGTCCAGGA AGCTGAGAAG TACAAAGCTG AAGATGAGAA GCAGAGGGAC	3960
AGGTGTCAT CCAAGAATTC ACTTGAGTCC TATGCCTTCA ACATGAAAGC AACTGTTGAA	4020
ATGAGAAAC TTCAAGGCAA GATTAACGAT GAGGACAAAC AGAAGATTCT GGACAAGTGT	4080
ATGAAATTA TCAACTGGCT TGATAAGAAT CAGGTTTGTG TTTTTTTTTT	4140
CCCCACGCA ATGGAGGGGA AGGGGATGGT AAACCAAGCT TGAGCTGGAT TTCAGTGTAG	4200
GTCACAATG ATGAATGGTC CAAAACATTC GCGGTTTCCA CCAGAATTCA AGGTGTTGGC	4260
ACTACCTTC CTTGGATGTC TGAGTGACCC AAGATGTTAA GGAAGAATAA GGCCCTATTT	4320

-101-

TAATGTTGGT ATGGGCCCTC TTGTAAGAGT TTGCTCCAGA CTTTTAGTAT CAGATT	GCGT 4380
CAGGGAGAAA GAAGGGTTAT TAACATTAAA AGAACTTGCA GTAATTCCTT TTTCTC	TTCC 4440
TCAGACTGCT GAGAAGGAAG AATTTGAACA TCAACAGAAA GAGCTGGAGA AAGTTT	GCAA 4500
CCCCATCATC ACCAAGCTGT ACCAGAGTGC AGGAGGCATG CCAGGAGGAA TGCCTGC	GGGG 4560
ATTTCCTGGT GGTGGAGCTC CTCCCTCTGG TGGTGCTTCC TCAGGGCCCA CCATTG	AAGA 4620
GGTTGATTAA GCCAACCAAG TGTAGATGTA GCATTGTTCC ACACATTTAA AACATTT	rgaa 4680
GGACCTAAAT TCGTAGCAAA TTCTGTGGCA GTTTTAAAAA GTTAAGCTGC TATAGTA	AGT 4740
TACTGGGCAT TCTCAATACT TGAATATGGA ACATATGCAC AGGGGAAGGA AATAACA	ATTG 4800
CACTTTATAC ACTGTATTGT AAGTGGAAAA TGCAATGTCT TAAATAAAAC TATTTAA	AAT 4860
TGGCACCATA CAATTGCTTT GAGTCTTTAA ATAATCTCCC AGGCCAGCGG TGGGAGA	AGT 4920
AGGCTTAGGT GATTATGTGA CTCTTACTTT CTCCTTCCTC TTAAGCTTGA GTTAACA	AGG 4980
GCTGGGTGGC AAGTTGCCCT TCAGAGCATG TGGATGGTAC ATTTTGGAAT TCAGAGC	TTT 5040
GAGAAGGGGA GCATAAGAAA TTGGATCTGG ATCAAACTAA CCTTAGTCCT TAGGCTGG	GAG 5100
AGGCAGAAGC TGACTTAATG GTGTTTTCTA AACTTATTCT GTGTGTAAGC CTGCCTAC	GGA 5160
GCAGAGGCTT TCCTGGAGGG TTGTGCTAGA TGAGTAAGAA TTTAGATACA GAATCAAA	ATA 5220
ATGGGCAGTG AATATTAAGC TACATGGCAG AGGTATCTGA ATGTCAATCC CTTATATC	SAG 5280
CCACTGCCCT GTGGGCTTCC ATTTCTTCTG AGTTAAGATT ATTCAGAAGG TCGGGGAT	TG 5340
GAGCTAAGCT GCCACCTGGT TAATTAAGGT CCCAACAGTG AGTTGTGATA GCCTAGGG	GA 5400
GCAGGCTG	5408

(2) INFORMATION FOR SEQ ID NO:16:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 666 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

-102-

(xi) SE	QUE1	NCE I	DESC	RIPTI	ON:	SEQ	ID N	0:16	:					
Gl 1	u Th	r Aı	rg Aı	rg Ph 5	ie Va	l Cy	s As	p Gl	u Ar	g Ar	g Ala	a Gl	y Gl	y Met 15	Arg
Hi	s Le	u Le	u Le 20		a Le	u Le	u Le	u Lei 25	u Gly	y Gly	y Ala	a Ar	Ala 30	a Asp	Asp
Glı	ı Gl	u Ly 35		s Gl	u As	p Vai	1 Gl; 40	y Thi	r Val	l Val	l Gly	/ Ile 45	e Asp	Leu	Gly
Thi	Th: 50	г Ту	r Se	r Cy	s Va	1 Gly 55	y Val	l Ph∈	e Lys	s Asr	Gly 60	Arg	y Val	. Glu	Ile
Ile 65	Ala	a As	n As	p Gl	n Gly 70	y Asr	Arg	J Ile	thr.	75	Ser	Туг	Val	Ala	Phe 80
Thr	Pro	Gl:	u Gl	y Gla 85	ı Arç	g Leu	ı Ile	e Gly	Asp 90	Ala	Ala	Lys	Asn	Gln 95	Leu
Thr	Ser	Ası	n Pro		ı Asr	Thr	· Val	Phe 105	_	Ala	Lys	Arg	Leu 110	Ile	Gly
Arg	Thr	Try 115		n Asp	Pro	Ser	Val 120		Gln	Asp	Ile	Lys 125	Tyr	Leu	Pro
Phe	Lys 130		l Val	Glu	Lys	Lys 135	Ala	Lys	Pro	His	Ile 140	Gln	Val	Asp	Val
Gly 145	Gly	Gly	Glr.	Thr	Lys 150	Thr	Phe	Ala	Pro	Glu 155	Glu	Ile	Ser	Ala	Met 160
Val	Leu	Thr	Lys	Met 165		Glu	Thr	Ala	Glu 170	Ala	Tyr	Leu	Gly	Lys 175	Lys
/al	Thr	His	Ala 180		Val	Thr	Val	Pro 185	Ala	Tyr	Phe	Asn	Asp 190	Ala	Gln
Arg	Gln	Ala 195		Lys	Asp	Ala	Gly 200	Thr	Ile	Ala	Gly	Leu 205	Asn	Val	Met
rg	Ile 210	Ile	Asn	Glu	Pro	Thr 215	Ala	Ala	Ala	Ile	Ala 220	Tyr	Gly	Leu	Asp
ys 25	Arg	Glu	Gly	Glu	Lys 230	Asn	Ile	Leu	Val	Phe 235	Asp	Leu	Gly	_	Gly 240
hr	Phe	Asp	Val	Ser 245	Leu	Leu	Thr		Asp 250	Asn	Gly	Val		Glu 2 5 5	Val

·								•	-103-	-							
Va	1 A1	la T		\sn ?60		y As	p Th	r Hi	s Le 26		y Gl	y Gl	u As	p Ph 27		p Gln	
Ar	g Va		et G 75	lu	His	s Pho	e Il	e Ly 28		u Ty	r Ly	s Ly:	28		r Gl	y Lys	
As		1 A 0 ·	rg L	ys	Asp	Ası	29		a Va	l Gl	n Ly	s Let 300		g Ar	g Gl	u Val	
Gl: 30		s Al	la L	ys	Arg	Ala 310		ı Se:	r Se	r Gla	n His 319		Ala	a Ar	g Il	e Glu 320	
Ile	e Gl	u Se	r P	he	Phe 325		Gl	/ Glu	ı Ası	Phe 330		r Glu	Thr	Let	335	r Arg	
Ala	Ly:	s Ph		Lu 10	Glu	Leu	Asn	Met	: Asp 345		Phe	Arg	Ser	Thr 350		Lys	
Pro	Va]	l G1 35		/S	Val	Leu	Glu	Asp 360		Asp	Leu	Lys	Lys 365		Asp	Ile	
Asp	Glu 370	ı Il	e Va	1	Leu	Val	Gly 375		Ser	Thr	Arg	Ile 380	Pro	Lys	Ile	Gln	
Gln 385		Va.	l Ly	s (Glu	Phe 390	Phe	Asn	Gly	Lys	Glu 395	Pro	Ser	Arg	Gly	Ile 400	
Asn	Pro	Ası	Gl		Ala 405	Val	Ala	Tyr	Gly	Ala 410		Val	Gln	Ala	Gly 415	Val	
Leu	Ser	Gly	42		Sln	Asp	Thr	Gly	Asp 425	Leu	Val	Leu	Leu	Asp 430	Val	Cys	
Pro	Leu	Thr 435		u G	Sly	Ile	Glu	Thr 440	Val	Gly	Gly	Val	Met 445	Thr	Lys	Leu	
Ile	Pro 450	Arg	Ası	n I	hr.	Val	Val 455	Pro	Thr	Lys	Lys	Ser 460	Gln	Ile	Phe	Ser	
Thr 465	Ala	Ser	Asp	A		Gln 470	Pro	Thr	Val	Thr	Ile 475	Lys	Val	Tyr	Glu	Gly 480	
Glu	Arg	Pro	Let		hr : 85	Lys	Asp	Asn	His	Leu 490	Leu	Gly	Thr	Phe	Asp 495	Leu	
Thr	Gly	Ile	Pro		ro i	Ala	Pro	Arg	Gly 505	Val	Pro	Gln		Glu 510	Val	Thr	

Phe Glu Ile Asp Val Asn Gly Ile Leu Arg Val Thr Ala Glu Asp Lys 515 520 525

-104-

Gly	Thr 530		Asn	Lys	Asn	Lys 535		Phi	: Ile	Thr	Asn 540	_	Glr	Asn	Ar
Leu 545		Pro	Glu	Glu	Ile 550		Arg	Met	: Val	. Asn 555	Asp	Ala	Glu	Lys	Pho 560
Ala	Glu	Glu	Asp	Lys 565		Leu	Lys	Glu	Arg 570		Asp	Ala	Arg	Asn 575	
Leu	Glu	Ser	Tyr 580		Tyr	Ser	Leu	Lys 585		Gln	Ile	Gly	Asp 590	Lys	Glu
Lys	Leu	Gly 595	Gly	Lys	Leu	Ser	Ser 600	Glu	Asp	Lys	Glu	Thr 605	Ile	Glu	Lys
	Val 610	Glu	Glu	Lys	Ile	Glu 615	Trp	Leu	Glu	Ser	His 620	Gln	Asp	Ala	Asp
Ile 625	Glu	Asp	Phe	Lys	Ser 630	Lys	Lys	Lys	Glu	Leu 635	Glu	Glu	Val	Val	Gln 640
Pro	Ile	Val	Ser	Lys 645	Leu	Tyr	Gly	Ser	Ala 650	Gly	Pro	Pro	Pro	Thr 655	Gly
Slu (Glu		Ala 660	Ala	Glu	Lys	_	Glu 665	Leu						
VFORI	FORMATION FOR SEO ID NO:17:														

(2) IN

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2403 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

AAGGGGTTGA	CCGTCCGTCG	GCACACCACT	TATAATGCGG	GGTGCAAGCC	CCCCGTCTAA	60
AATTTTTTTT	TTTTCCATTT	TTGTCGTTAT	TGTTATTTCC	CGTTTTTTGT	TTTTTTTGAT	120
TTTTTCGGAG	CGACAAACCT	TTCGAAACAC	GTGTCCTGAA	AATTATCCTG	GGCTGCACGT	180
gataatatgt	TACCCTGTCG	GGCGGCGCCT	CTTTTTCCCT	TTTCTCTCAC	TAGTCTCTTT	240
TTCCAATTTG	CCACCGTGTA	GCATTTTGTT	GTGCTGTTAC	AACCACAACA	AAACGAAAAA	300

-105-

CCCGTATGGA CATACATATA TATATATATA TATATATATA TATATTTTGT TACGCGTGCA	360
TTTTCTTGTT GCAAGCAGCA TGTCTAATTG GTAATTTTAA AGCTGCCAAG CTCTACATAA	420
AGAAAAACAT ACATCTATCC CGTTATGAAG TTTTCTGCTG GTGCCGTCCT GTCATGGTCC	480
TCCCTGCTGC TCGCCTCCTC TGTTTTCGCC CAACAAGAGG CTGTGGCCCC TGAAGACTCC	540
GCTGTCGTTA AGTTGGCCAC CGACTCTTTC AATGAATACA TTCAGTCGCA CGACTTGGTG	600
CTTGCGGAGT TTTTTGCTCC ATGGTGTGGC CACTGTAAGA ACATGGCTCC TGAATACGTT	660
AAAGCCGCCG AGACTTTAGT TGAGAAAAAC ATTACCTTGG CCCAGATCGA CTGTACTGAA	720
AACCAGGATC TGTGTATGGA ACACAACATT CCAGGGTTCC CAAGCTTGAA GATTTTCAAA	780
AACAGCGATG TTAACAACTC GATCGATTAC GAGGGACCTA GAACTGCCGA GGCCATTGTC	840
CAATTCATGA TCAAGCAAAG CCAACCGGCT GTCGCCGTTG TTGCTGATCT ACCAGCTTAC	900
CTTGCTAACG AGACTTTTGT CACTCCAGTT ATCGTCCAAT CCGGTAAGAT TGACGCCGAC	960
TTCAACGCCA CCTTTTACTC CATGGCCAAC AAACACTTCA ACGACTACGA CTTTGTCTCC	1020
GCTGAAAACG CAGACGATGA TTTCAAGCTT TCTATTTACT TGCCCTCCGC CATGGACGAG	1080
CCTGTAGTAT ACAACGGTAA GAAAGCCGAT ATCGCTGACG CTGATGTTTT TGAAAAATGG	1140
TTGCAAGTGG AAGCCTTGCC CTACTTTGGT GAAATCGACG GTTCCGTTTT CGCCCAATAC	1200
GTCGAAAGCG GTTTGCCTTT GGGTTACTTG TTCTACAATG ACGAGGAAGA ATTGGAAGAT	1260
TACAAGCCTC TCTTTACCGA GTTGGCCAAA AAGAACAGAG GTCTAATGAA CTTTGTTAGC	1320
ATCGATGCCA GAAAATTCGG CAGACACGCC GGCAACTTGA ACATGAAGGA ACAATTCCCT	1380
CTATTTGCCA TCCACGACAT GACTGAAGAC TTGAAGTACG GTTTGCCTCA ACTCTCTGAA	1440
GAGGCGTTTG ACGAATTGAG CGACAAGATC GTGTTGGAGT CCAAGGCTAT TGAATCTTTG	1500
GTTAAGGACT TCTTGAAAGG TGATGCCTCC CCAATCGTGA AGTCCCAAGA GATCTTCGAG	1560
AACCAAGATT CCTCTGTCTT CCAATTGGTC GGTAAGAACC ATGACGAAAT CGTCAACGAC	1620
CCAAAGAAGG ACGTTCTTGT TTTGTACTAT GCCCCATGGT GTGGTCACTG TAAGAGATTG	1680
GCCCCAACTT ACCAAGAACT AGCTGATACC TACGCCAACG CCACAACCGA CGTTTTGATT	1740
GCTAAACTAG ACCACACTGA AAACGATGTC AGAGGCGTCG TAATTGAAGG TTACCCAACA	1800
ATCGTCTTAT ACCCAGGTGG TAAGAAGTCC GAATCTGTTG TGTACCAAGG TTCAAGATCC	1860

-106-

TTGGACTCTT	TATTCGACTI	CATCAAGGAA	AACGGTCACT	TCGACGTCGA	CGGTAAGGCC	1920
TTGTACGAAG	AAGCCCAGGA	AAAAGCTGCT	GAGGAAGCCG	ATGCTGACGC	TGAATTGGCT	1980
GACGAAGAAG	ATGCCATTCA	CGATGAATTG	TAATTCTGAT	CACTTTGGTT	TTTCATTAAA	2040
TAGAGATATA	TAAGAAATTT	TCTAGGAAGŤ	TTTTTTAAAA	AAAATCATAA	AAAGATAAAC	2100
GTTAAAATTC	AAACACAATA	GTCGTTCGCT	ATATTCGTCA	CACTGCACGA	ACGCCTTAGG	2160
GAAAGAGAAA	ATTGACCACG	TAGTAATAAT	AAGTGCATGG	CATCGTCTTT	TACTTAAATG	2220
TGGACACTTG	CTTTACTGCT	TAGGAAACTA	CTTATCTCAT	CCTCCTCCAT	TCCCCTCCCT	2280
TTTCCAATTA	CCGTAATAAA	AGATGGCTGT	ATTTACTCCT	CCATCAGGTA	ATAGCAATTC	2340
CGACCATACT	CACACACAAG	ATGACCACGA	CAAAGATGAT	ATGATATCAA	GAAATTCTAT	2400
ACA						2403

(2) INFORMATION FOR SEQ ID NO:18:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 504 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

Met Lys Phe Ser Ala Gly Ala Val Leu Ser Trp Ser Ser Leu Leu Leu 1 5 10 15

Ala Ser Ser Val Phe Ala Gln Glu Ala Val Ala Pro Glu Asp Ser 20 25 30

Ala Val Val Lys Leu Ala Thr Asp Ser Phe Asn Glu Tyr Ile Gln Ser

His Asp Leu Val Lys Ala Ala Glu Thr Leu Val Glu Lys Asn Ile Thr 50 55 60

Leu Ala Gln Ile Asp Cys Thr Glu Asn Gln Asp Leu Cys Met Glu His 65 70 75 80

Asn Ile Pro Gly Phe Pro Ser Leu Lys Ile Phe Lys Asn Ser Asp Val 85 90 95

-107-

								107								
As	sn A	sn S		le As	sp Ty	yr Gl	u G	ly Pr 10		g Th	r Al	a Gl		la Il 10	le Va	1
G1	n P		et I. 15	le Ly	s Gl	n Se	r Gl 12		o Al	a Va	l Al	a Va 12		al Al	a Va	1
Va	1 Al		sp Le	eu Pr	o Al	а Ту: 13!		u Al	a As	n Gl	u Th 14		e Va	l Th	r Pro	>
Va 14		.e Va	al Gl	ln Se	r Gl 15	_	s Il	e Ası	P Ala	a As ₁	-	e As	n Al	a Th	r Phe 160	
Ty:	r Se	r Me	et Al	.a As 16		s His	s Ph	e Ası	170		: Ası	Pho	e Va	1 Se	r Ala 5	ì
Glı	ı As	n Al	a As 18		p Ası	Phe	Ly:	s Leu 185		: Ile	туг	Let	1 Pro		r Ala	
Met	: As	p Gl 19		o Va	l Val	l Tyr	Asr 200		Lys	Lys	Ala	Asp 205		e Ala	a Asp	
Ala	As ₁ 210		l Pho	e Glu	ı Lys	Trp 215		Gln	Val	Glu	Ala 220		Pro	Tyr	Phe	
Gly 225		ı Ile	e Asp	o Gly	Ser 230		Phe	Ala	Gln	Tyr 235		Glu	Ser	Gly	Leu 240	
Pro	Let	Gly	у Туг	245		Tyr	Asn	Asp	Glu 250	Glu	Glu	Leu	Glu	Glu 255	_	
Lys	Pro	Leu	260	Thr	Glu	Leu	Ala	Lys 265		Asn	Arg	Gly	Leu 270		Asn	
Phe	Val	Ser 275		Asp	Ala	Arg	Lys 280	Phe	Gly	Arg	His	Ala 285	Gly	Asn	Leu	
Asn	Met 290		Glu	Gln	Phe	Pro 295	Leu	Phe	Ala	Ile	His 300	Asp	Met	Thr	Glu	
Asp 805	Leu	Lys	Tyr	Gly	Leu 310	Pro	Gln	Leu	Ser	Glu 315	Glu	Ala	Phe	Asp	Glu 320	
eu	Ser	Asp	Lys	Ile 325	Val	Leu	Glu		Lys _. 330	Ala	Ile	Glu	Ser	Leu 335	Val	
ys	Asp	Phe	Leu 340	Lys	Gly	Asp	Ala	Ser 345	Pro	Ile	Val	Lys	Ser 350	Gln	Glu	

Ile Phe Glu Asn Gln Asp Ser Ser Val Phe Gln Leu Val Gly Lys Asn 355 360 365

-108-

His	Asp 370		Ile	Val	Asn	Asp 375		Lys	Lys	Asp	Val 380		Val	Leu	Tyr
Ala 385		Trp	Cys	Gly	His 390	Cys	Lys	Arg	Leu	Ala 395	Pro	Thr	Tyr	Gln	Glu 400
Leu	Ala	Asp	Thr	Tyr 405	Ala	Asn	Ala	Thr	Ser 410	Asp	Val	Leu	Ile	Ala 415	Lys
Leu	Asp	His	Thr 420	Glu	Asn	Asp	Val	Arg 425	Gly	Val	Val	Ile	Glu 430	Gly	Tyr
Pro	Thr	Ile 435	Val	Leu	Tyr	Pro	Gly 440	Gly	Lys	Lys	Ser	Glu 445	Ser	Val	Val
Tyr	Gln 450	Gly	Ser	Arg	Ser	Leu 455	Asp	Ser	Leu	Phe	Asp 460	Pro	Ile	Lys	Glu
Asn 465	Gly	His	Phe	Asp	Val 470	Asp	Gly	Lys	Ala	Leu 475	Tyr	Glu	Glu	Ala	Gln 480
Glu	Lys	Ala		Glu 485	Glu	Ala	Asp		Asp 490	Ala	Glu	Leu		Asp 495	Glu
Glu .	Asp .		Ile 500	His	Asp	Glu	Leu								

(2) INFORMATION FOR SEQ ID NO:19:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2473 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

CCCCGGCGCC	AACCTAGCTG	CCCCGCCCGC	TGCCGACGTC	CGACATGCTG	AGCCGTGCTT	60
TGCTGTGCCT	GCCCTGGCC	TGGGCGGCTA	GGGTGGGCGC	CGACGCTCTG	GAGGAGGAGG	120
ACAACGTCTC	GGTGCTGAAG	AAGAGCAACT	TCGCAGAGCC	GGCGGCGCAC	AACTACCTGC	180
TGGTGGAGTT	CTATGCCCCA	TGGTGTGGCC	ACTGCAAAGC	ATCGGCCCCA	GAGTATGCCA	240
AAGCTGCTGC	AAAACTGAAG	GCAGAAGGAC	TCGAGATCCG	ACTAGCAAAG	GTGGACGCCA	300

-109-

CAGAAGAGTC TGACCTGGCC CAGCAGTATG GTGTCCGTGG CTACCCCACA ATCAAGTTCT	360
TCAAGAATGG AGACACAGCC TCCCCAAAGG AATATACAGC TGGCACGGAA GCTGACGACA	420
TTGTGAACTG GCTGAAGAAA CGCACAGGCC CAGCAGCCAC AACCCTGTCT GACACTGCAG	480
CTGCAGAGTC CTTGCTGGAC TCAAGCGAAG TGACGGCTAT CGGCTTCTTC AAGGACGCAG	540
GGTCAGACTC CGCCAAGCAG TTCTTGCTGG CAGCAGAGGC TGCTGATGAC ATACCTTTTG	600
GAATCACTTC CAATTGCGTG TTTTCCAAGT ACCAGCTGGA CAACGATGGG GTGGTCCTCT	660
TTAAGAAGTT TGATGAAGGC CGCAACAATT TTGAATGGTG AGATCACCAA GGAGAAGCTA	720
TTAGACTTCA TCAAGCACAA CCAGCTGCCT TTGGTCATCG AGTTCACTGA ACAGACAGCT	780
CCAAAGATTT TCGGAGGTGA AATCAAGACA CATATTCTGC TGTTCCTGCC CAAGAGTGTG	840
TCTGACTACG ATGGCAAATT GAGCAACTTT AAGAAAGCGG CCGAGGGCTT TAAGGGCAAG	900
ATCCTGTTCA TCTTCATCGA TAGTGACCAC ACTGACAACC AGCGCATACT TGAGTTCTTT	960
GGCCTGAAGA AGGAGGAATG TCCAGCTGTG CGGCTTATTA CCCTGGAGGA AGAGATGACC	1020
AAGTACAAAC CGGAGTCAGA CGAGCTGACA GCTGAGAAGA TCACACAATT TTGCCACCAC	1080
TTCCTGGAGG GCAAGATCAA GCCCCACCTG ATGAGCCAGG AACTGCCTGA AGACTGGGAC	1140
AAGCAGCCAG TGAAAGTGCT AGTTGGGAAA AACTTTGAGG AGGTTGCTTT TGATGAGAAA	1200
AAGAACGTGT TIGTTGAATT CTATGCTCCC TGGTGTGGTC ACTGCAAGCA GCTAGCCCCG	1260
ATTTGGGATA AACTGGGAGA GACATACAAA GACCATGAGA ATATCGTCAT CGCTAAGATG	1320
SACTCAACAG CCAATGAGGT GGAAGCTGTG AAGCTGCACA CCTTTCCCAC ACTCAAGTTC	1380
TCCCAGCAA GTGCAGACAG AACGGTCATT GATTACAACG GTCAGCGGAC ACTAGATGGT	1440
TTAAGAAAT TCTTGGAGAG CGGTGGCCAG GATGGAGCGG GGGACAATGA CGACCTCGAC	1500
TAGAAGAAG CTTTAGAGCC AGATATGGAA GAAGACGACG ATCAGAAAGC CGTGAAGGAT	1560
AACTGTAGT CGAGAAGCCA GATCTGGCGC CCTGAACCCA AAACCTCGGT GGGCCATGTC	1620
CAGCAGCCC ACATCTCCGG AGCCTGAGCC TCACCCCAGG AGGGAGCGCC ATCAGAACCC	1680
GGGAATCTT TCTGAAGCCA CACTCATCTG ACACACGTAC ACTTAAACCT GTCTCTTCTT	1740
TTTTGCTTT TCAATTTTGG AAAGGGATCT CTGTCCAGGC CAGCCCATCT TGAAGGGCTA	1800
GTTTTGTTT TAATTGGTGG TGTACTTTTT TGTACGTGGA TTTTGTCCCA AGTGCTTGCT	1860

-110-

ACCATATTT	G GGGATTTCAC	ACTGGTAATG	TCTTTCCTGT	TAGAGAGGTT	TATGCTATCA	192
CTTCAGATTT	CGTCTGTGAG	ATCTTTCATC	TTCCTGACAT	GTTCTCATGT	CGAGGTACTT	1980
GTTCCACCAC	GCAGATTCCC	CTGAGACCCC	TTCCTGCCCT	GCGCAGGAGG	CGATCGTTCT	2040
GGGTCGTATG	CTCTCTCTCT	CTCCACCTTG	TACTAGTGTT	GCCATGACAG	CTAGGCTTTT	2100
GTAGTTTGCA	TTTAACCTGG	GGATTTCTGC	ATCCTGTCAG	AGGCTGGGTC	CCCACGTGTG	2160
GAAAAGAGAC	AGTGGTGGCT	TGCTGCCAGG	CACAGGCCAG	GCCTGGACAG	CTCTCACTCT	2220
TCTTAAGCCA	GAACTACCGA	CCAGCCGGCC	GGCTGTCCGC	ACATTACTCT	GGCTCCTGGA	2280
TCCTCTTCCA	GCATGGCATG	TGGCCTGTGT	GAGGCAGAAC	CGGGACCCTT	GATTCCCAGA	2340
CTGGGAGTCA	GCTAAGGACA	CTGGCGCTGA	ATGAAATGCC	CATTCTCAAG	GTCTATTTCT	2400
AAACCATAAT	GTTGGAATTG	AACACATTGG	CTAAATAAAG	TTGAAATTTT	ACTACCATAA	2460
AAAAAAAA	AAA					2473

(2) INFORMATION FOR SEQ ID NO:20:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 510 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

Met Leu Ser Arg Ala Leu Leu Cys Leu Ala Leu Ala Trp Ala Ala Arg

1 10 15

Val Gly Ala Asp Ala Leu Glu Glu Glu Asp Asn Val Leu Val Leu Lys 20 25 30

Lys Ser Asn Phe Ala Glu Pro Ala Ala His Asn Tyr Leu Leu Val Glu 35 40

Phe Tyr Ala Pro Trp Cys Gly His Cys Lys Ala Leu Ala Pro Glu Tyr 50 55 60

Ala Lys Ala Ala Ala Lys Leu Lys Ala Glu Gly Ser Glu Ile Arg Leu 65 70 75 80

-111-

A	la 1	Lys	Va	ıl A	sp A 8		hr G	lu G	lu S	er A 9		eu A	la G	ln G	ln Ty 95	yr Gly
Vá	al A	lrg	Gl		yr Pi 00	ro Tl	hr I	le L		he P) 05	he L	ys A	sn G	ly As 11		ır Ala
Se	er F	ro	Ly 11		u Ty	r Ti	nr Al		ly Ai 20	rg G]	lu A	la As	sp As 12		.e Va	l Asn
Tr		eu 30	Ly	s Ly	s Ar	g Th	r Gl		co Al	.a Al	.a Tì	nr Th		u Se	r As	p Thr
Al 14	a A 5	la	Ala	a Gl	u Se	r Le 15		l As	p Se	r Se	r Gl 15		l Th	r Va	1 11	e Gly 160
Ph	e P	he	Lys	s As	p Al 16		y Se	r As	p Se	r Al 17		's Gl	n Ph	e Le	u Le: 17!	u Ala 5
Ala	a G	lu .	Ala	180		P As	p Il	e Pr	o Ph 18		y Il	e Th	r Se	190		Asp
Va.	L Pł		Ser 195		ту:	c Gli	n Lei	u As _] 200		s Asj	o Gl	y Va	l Val 205		Phe	. Lys
Lys	21	e 1	Asp	Glu	Gly	/ Arg	215		n Phe	e Glu	ı Gl	y Glu 220		Thr	Lys	Glu
Lys 225	Le	u I	Leu	Asp	Phe	230		His	Ası	Glr	Let 235	ı Pro	Leu	Val	Ile	Glu 240
Phe	Th	rG	ilu	Gln	Thr 245		Pro	Lys	: Ile	Phe - 250		y Gly	' Glu	Ile	Lys 255	Thr
His	Il	e L	eu	Leu 260	Phe	Leu	Pro	Lys	Ser 265		Ser	: Asp	Tyr	Asp 270	Gly	Lys
Leu	Sea	2 A	sn 75	Phe	Lys	Lys	Ala	Ala 280		Gly	Phe	Lys	Gly 285	Lys	Ile	Leu
Phe	Ile 290	P P:	he	Ile	Asp	Ser	Asp 295	His	Thr	Asp	Asn	Gln 300	Arg	Ile	Leu	Glu
Phe 305	Phe	G.	ly	Leu	Lys	Lys 310	Glu	Glu	Cys	Pro	Ala 315	Val	Arg	Leu	Ile	Thr 320
Leu	Glu	G.	lu	Glu	Met 325	Thr	Lys	Tyr	Lys	Pro 330	Glu	Ser	Asp	Glu	Leu 335	Thr
Ala	Glu	L		Ile 340	Thr	Gln	Phe	Cys	His 345	His	Phe	Leu	Glu	Gly 350	Lys	Ile ·

-112-

Lys	Pro	His 355		Met	Ser	Glr	360		Leu	ı Pro	Glu	Asp 365	Trp	Asp	Ly:
Gln	9ro 370		. Lys	Val	Leu	Val 375		Lys	Asn	Phe	Glu 380		Val	Ala	Pro
Asp 385		Lys	Lys	Asn	Val 390		Val	Glu	Phe	Tyr 395		Pro	Trp	Cys	Gl ₃ 400
His	Cys	Lys	Gln	Leu 405	Ala	Pro	Ile	Trp	Asp 410		Leu	Gly	Glu	Thr 415	
Lys	Asp	His	Asp 420	Glu	Asn	Ile	Val	Ile 425		Lys	Met	Asp	Ser 430	Thr	Ala
Asn	Glu	Val 435	Glu	Ala	Val	Lys	Val 440	His	Ser	Phe	Pro	Thr 445	Leu	Lys	Phe
Phe	Pro 450	Ala	Ser	Ala	Asp	Arg 455	Thr	Val	Ile	Asp	Tyr 460	Asn	Gly	Glu	Arg
Thr 465	Leu	Asp	Gly	Phe	Lys 470	Lys	Phe	Leu	Glu	Ser 475	Gly	Gly	Gln	Asp	Gly 480
Ala	Gly	Asp	Asn	Asp	Asp	Leu	Asp	Leu	Glu	Glu	Ala	Leu	Glu	Pro	Asp

Met Glu Glu Asp Asp Gln Lys Ala Val Lys Asp Glu Leu

490 ·

505

485

-113-

WHAT IS CLAIMED:

A method for increasing secretion of an overexpressed gene product from a host cell which comprises effecting the expression of at least one chaperone protein capable of increasing secretion of said overexpressed gene product in said host cell.

- 2. The method of Claim 1 wherein said expression of said chaperone protein is effected by inducing expression of a nucleic acid encoding said chaperone protein.
- 3. The method of Claim 2 wherein said nucleic acid is present in an expression vector.
- 4. A method for increasing secretion of an overexpressed gene product from a host cell which comprises a) effecting the expression of at least one chaperone protein and the overexpression of a gene product in a host cell; and
 - b) cultivating said host cell under conditions suitable for secretion of said overexpressed gene product.
- 5. The method of Claim 4 wherein said expression of said chaperone protein is effected by transforming said host cell with an expression vector comprising a nucleic acid encoding said chaperone protein.
 - 6. The method of Claim 5 wherein said overexpression of said gene product is effected by transforming said host cell with an expression vector comprising a nucleic acid encoding said gene product.
- 7. The method of any one of Claims 1-6 wherein said chaperone protein is an hsp70 chaperone protein or a protein disulfide isomerase.
 - 8. The method of Claim 7 wherein said hsp70 chaperone protein is a KAR2 or a BiP chaperone protein.

-114-

- 9. The method of Claim 7 wherein said protein disulfide isomerase is a mammalian protein disulfide isomerase.
- 10. A method for increasing secretion of an overexpressed gene product from a host cell which comprises effecting the expression of an hsp70 chaperone protein and a protein disulfide isomerase protein in said host cell.
- 11. The method of Claim 10 wherein said host cell is a yeast cell.
 - 12. The method of Claim 11 wherein said hsp70 chaperone protein is KAR2 and said protein disulfide isomerase is yeast protein disulfide isomerase.
- overexpressed gene product which comprises transforming a host cell with an expression vector comprising a nucleic acid encoding said gene product under conditions suitable for expression of said gene product, wherein said host cell is overexpressing at least one chaperone protein.
 - 14. The method of Claim 13 wherein said host cell is overexpressing an hsp70 chaperone protein and a protein disulfide isomerase.
- 15. The method of Claim 13 wherein said chaperone protein is an hsp70 chaperone protein or a protein disulfide isomerase.
 - 16. The method of Claims 14 or 15 wherein said hsp chaperone protein is KAR2 and said protein disulfide isomerase is yeast protein disulfide isomerase.
 - 17. The method of Claim 16 wherein said host cell is a yeast cell.

30

SUBSTITUTE SHEET (RULE 26)

2/4

F16.2

Plasmid Name: pMR1341

Host and Markers

HB101

Strain: MR1341

SUBSTITUTE SHEET (RULE 26)

ARSICEN4
JRA3

PGAĽI'-KAR2' Origin:

SUBSTITUTE SHEET (RULE 26)

4/4

SUBSTITUTE SHEET (RULE 26)

Inten anal Application No PCT/US 93/09426

A. CLASSIFICATION OF SUBJECT MATTER IPC 5 C12N15/31 C12N15/12 C12N15/61 C12N15/81 C12N15/62 C12N9/90 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC 5 C12N Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electrome data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Citation of document, with indication, where appropriate, of the relevant passages ABSTR. PAP. AM. CHEM. SOC. 1-17 vol. 203, no. 1-3, 1992, ACS, WASHINGTON, DC, US; page BTECH45 A.S. ROBINSON AND K.D. WITTRUP 'Interaction of KAR/BIP with foreign proteins secreted in yeast' 203rd ACS National Meeting, San Francisco, California, April 5-10, 1992; abstract no. 45 Y 1-17 BIOCHEMISTRY; BY D. VOET/ J.G. VOET 1990 , J. WILEY & SONS, INC., US; see page 49, right column, line 34 - page 50, left column, line 9 see page 419, left column, line 40 - line 47 Further documents are listed in the continuation of box C. Patent family members are listed in annex. Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance invention earlier document but published on or after the international "X" document of particular relevance; the claimed invention filing date cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-"O" document referring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person skilled in the art. document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of mailing of the international search report Date of the actual completion of the international search 24 January 1994 Ŋ2 Name and mailing address of the ISA Authorized officer Ruropean Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Riswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016 Hornig, H

Form PCT/ISA/210 (second sheet) (July 1992)

1

Intern al Application No
PCT/US 93/09426

	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	Relevant to claim No.
Category *	Citation of document, with indication, where appropriate, of the relevant passages	
Y	EMBO JOURNAL vol. 11, no. 4 , April 1992 , IRL PRESS LIM., OXFORD, ENGL.; pages 1573 - 1581 M.R. KNITTLER AND I.G. HAAS 'Interaction of BiP with newly synthesized immunglobulin light chain molecules: cycles of sequential binding and release' see page 1573, left column, line 1 - line 17	1-17
Y	BIO/TECHNOLOGY vol. 10, no. 6 , June 1992 , NATURE AMERICA, INC., NEW YORK, US; pages 682 - 685 J. BUCHNER ET AL. 'Renaturation of a single-chain immunotoxin facilitated by chaperones and protein disulfide isomerase' see page 682, left column, line 1 - page 683, right column, line 7 see page 684, left column, paragraph 3 see page 685, left column, line 4 - line 46	1-17
Y	J. BIOL. CHEM. vol. 264, no. 34, 5 December 1989, AM. SOC. MOL. BIOL., INC., BALTIMORE, US; pages 20602 - 20607 A.J. DORNER ET AL. 'Increased synthesis of secreted proteins induces expression of glucose-regulated proteins in butyrate-treated chinese hamster ovary cells' see page 20606, right column, line 23 - line 26	1-17
Y	J. CELL BIOLOGY vol. 118, no. 3 , August 1992 , ROCKEFELLER UNIV. PRESS, N.Y. , US; pages 541 - 549 P.S. KIM ET AL. 'Transient aggregation of nascent thyroglobulin in the endoplasmic reticulum: relationship to the molecular chaperone, BiP' see page 541, right column, line 13 - line 16 see page 549, right column, line 27 - line 37	1-17
orm PCT/ISA	V210 (continuation of second sheet) (July 1992)	

Intern and Application No
PCT/US 93/09426

DOCUMENTS CONCINEDED TO BE DELEVANT	
	Relevant to claim No.
Ctation of document, with intreasure, where appropriate, of the relevant passages	
MOLECULAR BIOLOGY OF THE CELL vol. 3, no. 2 , February 1992 , AMERICAN SOCIETY FOR CELL BIOLOGY, pages 143 - 155 D.T.W. NG ET AL. 'Analysis in vivo of GRP78-BiP/Substrate interactions and their role in induction of the GRP78-BiP gene' see page 152, right column, line 33 - line 35 see page 152, right column, line 42 - line	1-17
NATURE vol. 337 , 5 January 1989 , MACMILLAN JOURNALS LTD., LONDON, UK; pages 44 - 47 P. GOLOUBINOFF ET AL. 'GroE heat-shock proteins promote assembly of foreign procaryotic ribulose bisphosphate carboxylase oligomers in Escherichia coli' see page 45, left column, line 1 - page 47, left column, line 1-	1-17
TRENDS IN BIOTECHNOLOGY vol. 8, no. 12, December 1990, ELSEVIER SCIENCE PUBLISHERS, LTD., CAMBRIDGE, UK; pages 354 - 358 A.A. GATENBY ET AL. 'Chaperonin assisted polypeptide folding and assembly: implications for the production of functional proteins in bacteria' see page 354, right column, line 1 - line 40	1-17
TRENDS IN BIOTECHNOLOGY vol. 8, no. 5 , May 1990 , ELSEVIER SCIENCE PUBLISHERS, LTD., CAMBRIDGE, UK; pages 126 - 131 A.L. HORWICH ET AL. 'Protein-catalysed protein folding' cited in the application see page 126, left column, line 1 - page 127, left column, line 18; table 1	1-17
WO,A,93 11248 (CIBA-GEIGY AG) 10 June 1993 see page 7, line 14 - line 21; claims 1-24	1-6,13
	vol. 3, no. 2, February 1992, AMERICAN SOCIETY FOR CELL BIOLOGY, pages 143 - 155 D.T.W. NG ET AL. 'Analysis in vivo of GRP78-BiP/Substrate interactions and their role in induction of the GRP78-BiP gene' see page 152, right column, line 33 - line 35 see page 152, right column, line 42 - line 45 NATURE vol. 337, 5 January 1989, MACMILLAN JOURNALS LTD., LONDON, UK; pages 44 - 47 P. GOLOUBINOFF ET AL. 'GroE heat-shock proteins promote assembly of foreign procaryotic ribulose bisphosphate carboxylase oligomers in Escherichia coli' see page 45, left column, line 1 - page 47, left column, line 17 TRENDS IN BIOTECHNOLOGY vol. 8, no. 12, December 1990, ELSEVIER SCIENCE PUBLISHERS, LTD., CAMBRIDGE, UK; pages 354 - 358 A.A. GATENBY ET AL. 'Chaperonin assisted polypeptide folding and assembly: implications for the production of functional proteins in bacteria' see page 354, right column, line 1 - line 40 TRENDS IN BIOTECHNOLOGY vol. 8, no. 5, May 1990, ELSEVIER SCIENCE PUBLISHERS, LTD., CAMBRIDGE, UK; pages 126 - 131 A.L. HORWICH ET AL. 'Protein-catalysed protein folding' cited in the application see page 126, left column, line 1 - page 127, left column, line 18; table 1 WO.A. 93 11248 (CIBA-GEIGY AG) 10 June 1993

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

Information on patent family members

Inter. 12l Application No PCT/US 93/09426

date member(s) date	ш	Idination on pacific taking mense	PCT/US	PCT/US 93/09426		
D-A-9311248 10-06-93 NL-A- 9102009 16-06-93 AU-A- 2946192 28-06-93	Patent document cited in search report	Publication date	Patent mem	family ber(s)	Publication date	
	WO-A-9311248	10-06-93	NL-A- AU-A-	9102009 2946192	16-06-93 28-06-93	
			•			
	•					
					•	
·	,					
·	. .					
					•	