HW 2 Solutions

1. (2 points) Convert the decimal number 25.84375 to binary with a maximum of six places to the right of the binary point.

11001.11011.

- 2. (2 points) Convert the hexadecimal number $AC12_{16}$ to binary. 1010 1100 0001 0010₂.
- (6 points) Represent the following decimal numbers in binary using 8-bit signed magnitude, one's complement, and two's complement representations: a) 60 b) -60
- 4. (4 points) What decimal value does the 8-bit binary number 10011110 have if:
 - a) it is interpreted as an unsigned number?
 - b) it is on a computer using signed-magnitude representation?
 - c) it is on a computer using ones complement representation?
 - d) it is on a computer using two complement representation?

$$a)158. b) - 30. c) - 97. d) - 98.$$

- 5. (4 points) Given the following two binary numbers: 11111100 and 01110000.
 - a) Which of these two numbers is the larger unsigned binary number?
 - b) Which of these two is the larger when it is being interpreted on a computer using signed-two's complement representation?
 - c) Which of these two is the smaller when it is being interpreted on a computer using signed-magnitude representation?

Ans.

- a. 111111100
- b. 01110000
- c. 111111100
- 6. (3 points) Using a "word" of 4 bits, list all of the possible signed binary numbers and their decimal equivalents that are representable in:
 - a) Signed magnitude b) One's complement c) Two's complement

Ans.

- 7. (3 points) From the results of the previous two questions, generalize the range of values (in decimal) that can be represented in any given x number of bits using:
 - a) Signed magnitude b) One's complement c) Two's complement

Ans.

a.
$$-(2^{x-1}-1)$$
 to $+(2^{x-1}-1)$
b. $-(2^{x-1}-1)$ to $+(2^{x-1}-1)$
c. $-(2^{x-1})$ to $+(2^{x-1}-1)$

- 8. (3 points) Using arithmetic shifting, perform the following (assume the binary strings are in 2's complement format):
 - a) double the value 000101012
 - b) quadruple the value 011101112
 - c) divide the value 110010102 in half

Ans.

- a. 0010 1010
- b. Error (sign bit changed)

- c. 1110 0101
- (5 points) Decode the following ASCII message, assuming 7-bit ASCII characters and no parity: 1001010 1001111 1001000 1001110 0100000 1000100 1001111 1000101

Ans.

$$100\ 1010 = J$$

$$100\ 1110 = N$$

10. (5 points) Assume we wish to create a code using 3 information bits, 1 parity bit (appended to the end of the information), and odd parity. List all legal code words in this code.

Ans.

The legal code words are:

0001	1000
0010	1011
0100	1101
0111	1110

11. (3 points) Suppose we are given the following subset of codewords, created for a 7-bit memory word with one parity bit: 11100110, 00001000, 10101011, and 11111110. Does this code use even or odd parity? Explain.

Ans.

Each codeword has an odd numbers of pits so odd parity is used.

- 12. (10 points) Perform the following unsigned operations.
 - (a) $100111_2 + 111001_2$,
 - (b) $10110_2 101_2$,
 - (a) $100111_2 + 111001_2$,

(b) $10110_2 - 101_2$,

- 13. (10 points) Let x = 87 and y = 25. Complete 2's complement operations for the following. Use 8 bits for binary numbers.
 - (a) x+y
 - (b) x y
 - (c) -x+y
 - (d) -x-y
 - (a) x+y

The 2's complement representations of x and y are 0101 0111₂ and 0001 1001₂, respectively. x + y, which is 0111 0000₂, is calculated as follows.

carry			1	1	1	1	1	
	0	1	0	1	0	1	1	1
+	0	0	0	1	1	0	0	1
	0	1	1	1	0	0	0	0

(b) x-y

x-y is equivalent to x+(-y). To perform x+(-y), we need to find the 2's complement representations of x and -y, which are 0101 0111₂ and 1110 0111₂, respectively. Then x+(-y), which is 0011 1110₂, is calculated as follows.

carry	1	1				1	1	1	
		0	1	0	1	0	1	1	1
+		1	1	1	0	0	1	1	1
		0	0	1	1	1	1	1	0

(c) -x+y

To perform (-x) + y, we need to find the 2's complement representations of -x and y, which are $1010\ 1001_2$ and $0001\ 1001_2$, respectively. Then (-x) + y, which is $1100\ 0010_2$, is calculated as follows.

carry		1	1	1			1		
	1	0	1	0	1	0	0	1	
+	0	0	0	1	1	0	0	1	
	1	1	0	0	0	0	1	0	

(d) -x-y

-x-y is equivalent to (-x)+(-y). To perform (-x)+(-y), we need to find the 2's complement representations of -x and -y, which are 1010 1001₂ and 1110 0111₂, respectively. Then (-x)+(-y), which is 1001 0000₂, is calculated as follows.

carry	1	1	1		1	1	1	1		
		1	0	1	0	1	0	0	1	
+		1	1	1	0	0	1	1	1	
		1	0	0	1	0	0	0	0	