HUY QUYEN NGO

huyquyen@cs.cmu.edu | (734)-881-5422 | linkedin.com/in/ngohuyquyen1997/

SUMMARY

Seeking research-oriented positions in Robotics, Machine Learning and Autonomous Systems

EDUCATION

Doctor of Philosophy, Robotics

Carnegie Mellon University

Master of Science in Engineering, Mechanical Engineering

University of Michigan - Ann Arbor

Bachelor of Engineering, Electrical & Electronic & Information Engineering

Nagoya University

GPA: 4.0/4.0 Sep 2019 - Apr 2021 GPA: 3.865/4.0

Aug 2022 - May 2026

Oct 2015 - Sep 2019 GPA: 3.95/4.3

SKILLS

Programming Languages: C, C++, Python, MATLAB

Technical Skills: ROS, Linux, Machine Learning, Computer Vision, Deep Reinforcement Learning, Embedded Systems (Raspberry Pi, Arduino), Simulation (Gazebo, PyBullet), Robot Design

Relevant Coursework: Computer Vision, Machine Learning, Hand Design and Control for Dextrous Manipulation, Visual Navigation for Autonomous Aerial Vehicles, Advanced Mechatronic Design, Engineering Haptic Interfaces

EXPERIENCE

PhD Candidate, Carnegie Mellon University

Sep 2022 - Present

- Conduct research and literature review on 3D scene generation, spatial completion and NLP for creative AI
- Build 3D space generation and interactive simulation system of buildings and dynamic environments based on point clouds collected by mobile robots with computer vision and machine learning modules
- \bullet Develop algorithms and methods for semantic segmentation and scene understanding for VR/AR supported interactive environments, with applications for gaming, virtual experience and robotic research
- Develop techniques for 3D scene generation and mesh creation from text through natural language processing
- ullet Build and maintain mobile robots with 3D perception and vision infrastructure for 3D space exploration and mapping

Research Assistant, Carnegie Mellon University

Aug 2021 - Aug 2022

- Research title: Human-Robot Interaction with Multimodal Haptic Guidance Robots
- Researched and performed literature study on multimodal and bidirectional haptic interface designs for human-robot interaction and collaboration via nonverbal mechanisms of kinesthesia, skin-stretch, hand squeeze and vibrotactile
- Designed, optimized and programmed an Arduino controlled robotic arm with customized humanoid hand and haptic components incorporated into an exsiting guidance robot for haptic research and human participant testing
- Developed guidance systems based on psychophysical interactions and nonverbal perception of visually-impaired people

Applied Research Scientist Intern, Apriv LLC

May 2021 - Aug 2021

- Research title: Radar-based Map Validation for Autonomous Vehicles
- Researched and performed literature review on data-driven machine learning algorithms for map validation and change detection in autonomous driving systems in real-world settings
- Designed and experimented map validation systems based on open-source code repositories that fuses on-board radar data and detects real-time map changes in driving logs compared to reference maps
- Developed an evaluation framework for map validation systems based on accuracy, robustness, scalability and metrics
- First author of a manuscript on Map Validation for Autonomous Driving Systems

Student Researcher, UMich & Ford Center for Autonomous Vehicles

Aug 2020 - Apr 2021

- Research title: Optimal Sensor Placement in Occlusion-rich Environments for Autonomous Vehicles
- Researched and performed literature review on planning optimization algorithms to improve vision coverage and mitigate accident rate for autonomous vehicles in highly-occluded traffic intersections
- Devised and developed new sensor placement algorithms in point cloud representations using Next-Best-View frontier-prone planning principles

PROJECTS

6-DOF Robotic Manipulator Project (Robotic Systems Lab course)

- Perception: Use traditional computer vision to distinguish block colors for pick-and-place task with arm manipulation
- Acting: Used Forward Kinematics & Inverse Kinematics and PID controllers to control robot end-effector to grasp and manipulate color-coded blocks

Manuscript