Polarization Functions- Extended Basis Sets

Minimum Basis Sets: Just valence orbitals: STO-3G, 3-21G, 6-31G

For H just 1s

For Li-Ne just 2s, 2p_x, 2p_y, 2p_z

For Na-Ar just 3s, 3p_x, 3p_y, 3p_z (note <u>no</u> d's for P, S, Cl)

Polarization Functions: For H add p functions

For Li-Ca add d functions (also MNDO/d)

For transition metals add f functions

Polarization functions give more room for the electrons to get away from each other to minimize electron-electron repulsion.

For H add p functions

For Li-Ca add d functions

H₂ at 6-311G**:

$$\begin{split} \Psi_{MO} = & \ 0.186 \ 1S_A(inner) + 0.288 \ 1S_A(middle) + 0.133 \ 1S_A(outer) + 0.023 \ 2P_{ZA} \\ & + 0.186 \ 1S_B(inner) + 0.288 \ 1S_B(middle) + 0.133 \ 1S_B(outer) - 0.023 \ 2P_{ZB} \end{split}$$

3-21G(*) Good general purpose level for medium to large systems

For Li-F no polarization functions added

For Na-Ca add d functions

3-21G*, 6-31G*

For Li-F add d functions

For Na-Ca add d functions

3-21G**, 6-31G**

For H add p functions

For Li-F add d functions

For Na-Ca add d functions

6-311G**

Needed to get the most benefit out of MP2 calculations Only useful for small molecules