Using stigmergy as a computational memory in the design of recurrent neural networks

Federico A. Galatolo

Department of Information Engineering University of Pisa

20 February 2019

 $X_{n-2} | X_{n-1}$ X_0 X_1 X_2 X_3

- MLP
- CNN

Static System

- CNN
- ...

- CNN

...

- MLP
- CNN

- √ You can use any existing ML Architecture
- × Window size choice
- × Long-lived relationships are impossible to infer

 X_0 X_1 X_2 X_3 \cdots X_{n-2} X_{n-1}

- RNN
- LSTM

• ..

Dynamic System

$$Y_0$$
 Y_1 ... Y_{n-1}

 Y_1

 Y_0

 Y_{n-1}

- RNN
- LSTM
- ..

 Y_0

 Y_1

 Y_{n-1}

- RNN
- LSTM
- ..

- RNN
- LSTM
- ..

- √ The system knows the concept of time
- √ Can autonomously decide what to remember and forget
- × Ad-Hoc solutions
- × Highly engineered

$RNN \neq LSTM$

- RNN and LSTM are often used as synonyms in literature
- Has been proven that "Vanilla recursion" performs poorly
- LSTM are the state of the art for Time Series Classification

$RNN \neq LSTM$

- RNN and LSTM are often used as synonyms in literature
- Has been proven that "Vanilla recursion" performs poorly
- LSTM are the state of the art for Time Series Classification

$RNN \neq LSTM$

- RNN and LSTM are often used as synonyms in literature
- Has been proven that "Vanilla recursion" performs poorly
- LSTM are the state of the art for Time Series Classification

•
$$f_t = \sigma(W_f x_t + U_f h_t + b_f)$$

- $f_t = \sigma(W_f x_t + U_f h_t + b_f)$
- $i_t = \sigma(W_i x_t + U_i h_t + b_i)$

•
$$f_t = \sigma(W_f x_t + U_f h_t + b_f)$$

•
$$i_t = \sigma(W_i x_t + U_i h_t + b_i)$$

•
$$i_c = tan^{-1}(W_c x_t + U_c h_t + b_c)$$

- $f_t = \sigma(W_f x_t + U_f h_t + b_f)$
- $i_t = \sigma(W_i x_t + U_i h_t + b_i)$

- $i_c = tan^{-1}(W_c x_t + U_c h_t + b_c)$
- $c_t = f_t \circ c_{t-1}$

- $f_t = \sigma(W_f x_t + U_f h_t + b_f)$
- $i_t = \sigma(W_i x_t + U_i h_t + b_i)$

- $i_c = tan^{-1}(W_c x_t + U_c h_t + b_c)$
- $c_t = f_t \circ c_{t-1} + i_t \circ i_c$

- $f_i = \sigma(W_f x_i + U_f h_{i-1} + b_f)$
- $\bullet \ i_i = \sigma(W_i x_i + U_i h_{i-1} + b_i)$
- $\bullet \ o_i = \sigma(W_o x_i + U_o h_{i-1} + b_o)$
- $c_i = \sigma(f_i \circ c_{i-1} + i_i \circ tan^{-1}(W_cX_i + U_ch_{i-1} + b_c))$
- $h_t = o_i * tan^{-1}(c_i)$

Using

- W_f , W_i , W_o , $W_C \in R^{n \times h}$
- U_f , U_i , U_o , $U_c \in R^{h \times h}$
- b_f , b_i , b_o , $b_c \in R^h$

- $\bullet \ f_i = \sigma(W_f x_i + U_f h_{i-1} + b_f)$
- $\bullet \ i_i = \sigma(W_i x_i + U_i h_{i-1} + b_i)$
- $o_i = \sigma(W_o x_i + U_o h_{i-1} + b_o)$
- $c_i = \sigma(f_i \circ c_{i-1} + i_i \circ tan^{-1}(W_c X_i + U_c h_{i-1} + b_c))$
- $h_t = o_i * tan^{-1}(c_i)$

Using

- W_f , W_i , W_o , $W_C \in R^{n \times h}$
- U_f , U_i , U_o , $U_c \in R^{h \times h}$
- b_f , b_i , b_o , $b_c \in R^h$

Can we do better?

- $f_i = \sigma(W_f x_i + U_f h_{i-1} + b_f)$
- $i_i = \sigma(W_i x_i + U_i h_{i-1} + b_i)$
- $\bullet o_i = \sigma(W_o x_i + U_o h_{i-1} + b_o)$
- $c_i = \sigma(f_i \circ c_{i-1} + i_i \circ tan^{-1}(W_c X_i + U_c h_{i-1} + b_c))$
- $h_t = o_i * tan^{-1}(c_i)$

Using

- W_f , W_i , W_o , $W_C \in R^{n \times h}$
- U_f , U_i , U_o , $U_c \in R^{h \times h}$
- b_f , b_i , b_o , $b_c \in R^h$

Can we do better?

Can we do simpler?

Let's take a step back

Let's take a step back

- Complex behaviors can emerge from simple ones
- Emergence is a key phenomenon in nature
- Stigmergy is one of the tools nature uses to achieve emergence

Let's take a step back

- Complex behaviors can emerge from simple ones
- Emergence is a key phenomenon in nature
- Stigmergy is one of the tools nature uses to achieve emergence

Can we emerge a computational memory using the stigmergy?

Implemented in nature via pheromonic marks

 Mark

Implemented in nature via pheromonic marks

Stimulus

 Mark

Implemented in nature via pheromonic marks

Stimulus

Deposit

Removal

Mark

Implemented in nature via pheromonic marks

Mark

Biological Stigmergy

Implemented in nature via pheromonic marks

Deposit

Removal

Input

Input

Stigmergic Memory

Input

Deposit ML System

Stigmergic Memory

Removal ML System

Experimental Stigmergic ML Systems

Neural Networks used as Deposit, Removal and Classification Systems

Experimental Architectures

- Stigmergic Memory NNs
- LSTMs
- Vanilla RNNs
- FF NNs (only with spatial dataset)

System

Experiments

Experiments

Experiments

Architecture	N. Parameters	Accuracy
Stigmergic Memory	3190	$96.5 \pm 0.5~\%$
Static Feed Forward	328810	$95.1\pm0.02~\%$
LSTM	3360	$94.3 \pm 0.1~\%$
RNN	3482	$76.6\pm0.3~\%$

- Outperforms LSTMs, Vanilla RNNs and FFs
- Best performances, smaller number of parameters

٥...

$\frac{\partial p}{\partial t}$	(0) →	

Architecture	N. Parameters	Accuracy
LSTM	5490	$94.96 \pm 0.2 \%$
Stigmergic Memory	5420	$94.67 \pm 0.7 \%$
RNN	5480	$72.95\pm11~\%$

- Outperforms Vanilla RNNs
- Same performances as LSTMs

Keep in touch

You can find the pytorch implementation on GitHub

https://github.com/galatolofederico/icpram2019

- ✓ federico.galatolo@ing.unipi.it
- @galatolo

- galatolo.me
- @galatolofederico