Machine Learning tutorial

Takaya KOIZUMI

Mathematical Science, B4

Applied Mathematics and Physics informal seminor

- 1 機械学習の枠組み
 - 機械学習とは
 - 機械学習の数学的定式化へ
- 2 単回帰と重回帰
 - ■単回帰分析
 - ■重回帰分析
 - 数値実験
- 3 過学習と正則化

- 1 機械学習の枠組み
 - 機械学習とは
 - ■機械学習の数学的定式化へ
- 2 単回帰と重回帰

 - 重回帰分析
 - 数值実験
- 過学習と正則化

機械学習とは

機械学習とは、「関数近似論」である.

世の中で機械学習を使って実現したと言われている技術

- 1 翻訳 ({全ての日本語}→{全ての英語}という関数)
- 2 メール分類 ({全てのメールの文章}→{迷惑メール,非迷惑メール}という関数)
- 3 音声認識 ({音声}→{文章}という関数)

もちろん, 間違いを起こすこともある. (大事なメールが, 迷惑 メールに入ることも...)

数学的には

前スライドの話を集合論を用いて, もう少し数学的にきちんと書くならば, 以下のようになるだろう.

機械学習?

X, Y をそれぞれ \mathbb{R}^n , \mathbb{R}^m の部分集合とする. この時, 良い関数 $f: X \to Y$ を見つけることを機械学習という.

しかし、この定義には以下の問題がある.

上の定義の問題点

- 候補となる関数が多すぎる. (ヒントも何もないのに探せない)
- 2 良い関数とは何か, 定義されていない.

- 1 機械学習の枠組み
 - ■機械学習とは
 - ■機械学習の数学的定式化へ
- 2 単回帰と重回帰
 - 単凹帰分析
 - 重回帰分析
 - ■数値実験
- 3 過学習と正則化

前半の問題解消

では、まず前半の「候補となる関数が多すぎる.」という問題を解決していこう.

この問題の解決方法として、人間がヒント (条件) を与えてあげることで、関数全ての集合ではなく、ある程度絞った集合 $\mathcal H$ にするということを考える。この $\mathcal H$ のことを仮設空間 (Hyposesis space)と呼ぶ。

Definition (仮設空間)

X, Y をそれぞれ \mathbb{R}^n , \mathbb{R}^m の部分集合とする. この時, 集合

$$\mathcal{H} := \{ f_{\theta} : \mathcal{X} \to \mathcal{Y} \mid f_{\theta} \text{ に関する条件 } \}$$

のことを仮設空間と呼び, $\mathcal X$ を特徴量空間, $\mathcal Y$ をラベル空間と呼ぶ.

後半の問題解消

では、後半の「良い関数」というものを定義していこう. 機械学習において、良い関数とは、未知のデータXに対して正しい値Yを返す関数である. そのために、関数fに対してその良さを表す指標である汎化誤差を定義する.

Definition (汎化誤差, 損失関数)

 \mathcal{H} を仮設空間, $(\Omega, \mathcal{F}, \mathbb{P})$ を確率空間, ρ をデータの確率分布とする. この時, 汎化誤差 $\ell: \mathcal{H} \to \mathbb{R}$ を,

$$\ell(f_{\theta}) = \mathbb{E}_{(X,Y) \sim \rho}[I(f_{\theta}(X), Y)]$$

と定義する. ここで, $I: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$ は損失関数と呼ばれる凸関数である.

損失関数の具体例

損失関数

ここで、 よく使われる損失関数の例をいくつか述べておく.

- 1 2 乗損失関数 $I(y_1, y_2) = (y_1 y_2)^2$
- ② 交差エントロピー誤差 $I(y_1, y_2) = -y_1 \log y_2$

これで、「良い関数」を作るためには、汎化誤差 ℓ を最小化させるような仮設空間Hの元fを見つけば良いと言うことになったわけだが、汎化誤差には期待値が含まれるため、直接最適化させることが難しい。そのため、持っているデータを利用して別の関数を用意し、その関数を最小化することを考える。

データと経験損失関数

Definition (データ)

 $(\Omega, \mathcal{F}, \mathbb{P})$ を確率空間, ρ をデータの確率分布とする. $\{(X_n, Y_n)\}_{n=1}^N$ を ρ に従う独立な確率変数列とする. $\{(X_n, Y_n)\}_{n=1}^N$ の観測値 $\{(X_n(\omega), Y_n(\omega))\}_{n=1}^N$ のことをデータ (Data) と呼び, $D = \{(x_n, y_n)\}_{n=1}^N$ と表記する.

Definition (経験損失関数)

 \mathcal{H} を仮設空間, $D=\{(x_n,y_n)\}_{n=1}^N$ をデータ, $I:\mathcal{Y}\times\mathcal{Y}\to\mathbb{R}$ を損失 関数とする. この時, 経験損失関数 $L_D:\mathcal{H}\to\mathbb{R}$ を,

$$L_D(f_{\theta}) = \sum_{n=1}^{N} I(f_{\theta}(x_n), y_n)$$

と定義する.

単回帰と重回帰

- 1 機械学習の枠組み
 - ■機械学習とは
 - ■機械学習の数学的定式化へ
- 2 単回帰と重回帰
 - ■単回帰分析
 - 重回帰分析
 - 数值実験
- 過学習と正則化

test

単回帰と重回帰

- 1 機械学習の枠組み
 - ■機械学習とは
 - ■機械学習の数学的定式化へ
- 2 単回帰と重回帰
 - ■単回帰分析
 - ■重回帰分析
 - 数值実験
- 過学習と正則化

単回帰と重回帰

- 1 機械学習の枠組み
 - ■機械学習とは
 - ■機械学習の数学的定式化へ
- 2 単回帰と重回帰

 - 重回帰分析
 - 数値実験
- 過学習と正則化

非線形データへの対応

Takaya KOIZUMI Mathematical Science, B4