Question 1

a)

Column names should not be empty

The data type that is stored in a data frame can be of numeric, factor or character type Column names shouldn't be empty

Special type of list where every element of the list has same length

b)

We combine the data frames horizontally using rbind

```
df3 < -rbind(df1,df2)
```

```
df3
```

```
df1 <- data.frame (
   Class =c("Male","Female","Total")</pre>
df2 <- data.frame (
 class =c("18","19","37")
df3 <-rbind(df1,df2)
df3
> df3
   class
1 Male
2 Female
3 Total
4
       18
5
       19
6
       37
> |
c)
```

i)

Feisal Hasham 660473 IST3015 END SEM

×	У	x^2	y^2	89			
101	162	10201	26244	16362			
211	173	44521	29929	36503	M	lean x	Meany
322	285	103684	81225	91770		264.44	187
332	294	110224	86436	97608			
451	299	203401	89401	134849			
552	232	304704	53824	128064			
170	144	28900	20736	24480			
70	26	4900	676	1820			
171	68	29241	4624	11628			
2380	1683	839776	393095	543084			
	Ь		a		у		
num	98024		63.796		63.796+0.4	1659x	
den	210398						
0.4658	397473						

63.796+0.4659x

ii)

=63.796+(0.4659*397)

=248.76

iii)

×	У	x^2	y^2	89				
101	162	10201	26244	16362				
211	173	44521	29929	36503		Meanx	Meany	
322	285	103684	81225	91770		264.44	187	
332	294	110224	86436	97608				
451	299	203401	89401	134849				
552	232	304704	53824	128064				
170	144	28900	20736	24480			ı	
70	26	4900	676	1820			num	882216
171	68	29241	4624	11628			den	1E+06
2380	1683	839776	393095	543084			0.763352938	
Ь			a		y			
num	98024		63.796		63.796+0	0.4659x		
den	210398							
0.4658	397473							

0.763 being our r shows us that there's a strong positive linear relationship between variable x and y such that if x increases there's a very strong chance that y will increase too

```
Feisal Hasham 660473
IST3015 END SEM
Question 2
a)
Using Single Bracket [ ]
> my_list <- list(1,2,3,4,5,6,7,8,9, a = "Feisal")
> my_list[1]
[[1]]
[1] 1
Using double Bracket [[ ]]
 > my_list <- list(1,2,3,4,5,6,7,8,9, a = "Feisal")
 > my_list[["a"]]
[1] "Feisal"
```

Using the dollar sign \$ operator

```
> my_list$a
    "Feisal"
[1]
```

b)

> |

```
library(readxl)
library(dplyr)
library(tidyverse)
library(skimr)
BankChurners<-read_excel(file.choose())</pre>
View(BankChurners)
str(BankChurners)
glimpse(BankChurners)
summary(BankChurners)
dim(BankChurners)
skim(df)
```

Feisal Hasham 660473 IST3015 END SEM

The mean customer age is 46.3 meaning on average most of the customers lie around that age

1.11 <u>9</u>089. 815.

9091.

0.219 <u>3</u>397.

<u>u</u>052. <u>1</u>163. <u>7</u>469.

0.760

2555

1324.

0.631 <u>2</u>156.

1438.

11068.

1784 9859

<u>4</u>741

0.859

1276 3474

<u>3</u>899

0.736

34516

34516

```
> sum(is.na(BankChurners))
[1] 0
```

Credit_Limit

credit_Limit
Total_Revolving_Bal
Avg_Open_To_Buy
Total_Amt_Chng_Q4_Q1
Total_Trans_Amt

There are no empty/null spaces meaning the bank has all the details that it needs

C)

```
install.packages('tidyverse')
install.packages('readxl')
library(tidyverse)
library(readxl)
BankChurners<-read_excel(file.choose())

ggplot(BankChurners, aes(x=Months_on_book, y=Total_Amt_Chng_Q4_Q1)) +
    geom_violin()</pre>
```


Question 3

a)

Define the process: Start by defining the process that you want to analyze.

Identify the data sources that contain information about the process.

Collect the relevant data from the identified sources and clean the data to remove any errors, inconsistencies, or duplicates.

Since we went through Tableau in class, we can use it to create visualizations such as graphs that provide insights into the process.

Use the insights from the analysis to identify areas where the process can be improved

Implement the changes we have deemed necessary.

Monitor the process over time to ensure that the changes have resulted in the desired improvements and that the changes have not created any problems.

b)

```
install.packages('tidyverse')
install.packages('readxl')
library(tidyverse)
library(readxl)
BankChurners<-read_excel(file.choose())

ggplot(BankChurners, aes(x = Months_on_book, y = Credit_Limit, color = Education_Level)) +
    geom_point() +
    facet_wrap(~ Marital_Status)</pre>
```


c)

```
install.packages('tidyverse')
install.packages('readxl')
library(tidyverse)
library(readxl)
BankChurners<-read_excel(file.choose())
cont_table <- table(BankChurners$Credit_Limit, BankChurners$Total_Revolving_Bal)
chi_sq_test <- chisq.test(cont_table)
chi_sq_test</pre>
```

> chi_sq_test

Pearson's Chi-squared test

```
data: cont_table
X-squared = 12228088, df = 12240492, p-value = 0.9939
```

The p-value is 0.9939

Since the p-value is very high (close to 1), it suggests that the evidence against the null hypothesis is weak. There is not enough evidence to support the alternative hypothesis and we fail to reject the null hypothesis.

d)

```
install.packages('tidyverse')
install.packages('readxl')
library(tidyverse)
library(readxl)
BankChurners<-read_excel(file.choose())
ggplot(BankChurners, aes(x = "", y = Total_Trans_Amt, fill = Card_Category)) +
    geom_bar(stat = "identity") +
    labs(title = "Total AMount") +
    theme(legend.position = "right")</pre>
```

