

Universidad de Granada

FACULTAD DE INGENIERÍA INFORMÁTICA Y TELECOMUNICACIONES

PRÁCTICA 2: DIVIDE Y VENCERÁS

Doble Grado Ingeniería Informática y Matemáticas

Autores:

Adolfo Martínez Olmedo, Pablo Delgado Galera, Marcos Baena Solar

Marzo 2025

Índice

1.	Pro	blema 1. Buque mercante
	1.1.	Elementos
		Diseño del algoritmo
		Estudio de optimalidad
	1.4.	Ejemplo
2.	Pro	blema 2. Pixel mountain
	2.1.	Elementos
	2.2.	Diseño del algoritmo
	2.3.	Estudio de optimalidad
	2.4.	Ejemplo
3.		blema 3. Circuito de Euler
	3.1.	Elementos
	3.2.	Diseño del algoritmo
	3.3.	Estudio de optimalidad
		Eiemplo

1. Problema 1. Buque mercante

1.1. Elementos

Para este problema los elementos que pertenecen al mismo son los siguientes:

- Conjuntos de candidatos: los n contenedores.
- Conjunto de candidatos elegidos: la solución es un vector (x_1, x_2, \dots, x_n) que indica los contenedores que se meten en el buque mercante.
- Función solución: Comprueba que el buque esté completamente lleno:

$$\sum_{i=1}^{n} x_i p_i = \mathcal{P}$$

- Función de factibilidad: el peso de los contenderos metidos en el buque hasta el momento más el peso del objeto más prometedor que no supero el peso total del buque.
- Función objetivo: beneficio total de los objetos introducidos en el buque:

$$\sum_{i=1}^{n} x_i b_i$$

- 1.2. Diseño del algoritmo
- 1.3. Estudio de optimalidad
- 1.4. Ejemplo

2. Problema 2. Pixel mountain

2.1. Elementos

Para este problema los elementos que pertenecen al mismo son los siguientes:

- Conjuntos de candidatos: los n contenedores.
- Conjunto de candidatos elegidos: la solución es un vector (x_1, x_2, \dots, x_n) que indica los contenedores que se meten en el buque mercante.
- Función solución: Comprueba que el buque esté completamente lleno:

$$\sum_{i=1}^{n} x_i p_i = \mathcal{P}$$

- Función de factibilidad: el peso de los contenderos metidos en el buque hasta el momento más el peso del objeto más prometedor que no supero el peso total del buque.
- Función objetivo: beneficio total de los objetos introducidos en el buque:

$$\sum_{i=1}^{n} x_i b_i$$

- 2.2. Diseño del algoritmo
- 2.3. Estudio de optimalidad
- 2.4. Ejemplo
- 3. Problema 3. Circuito de Euler

3.1. Elementos

Para este problema los elementos que pertenecen al mismo son los siguientes:

- Conjuntos de candidatos: los n contenedores.
- Conjunto de candidatos elegidos: la solución es un vector (x_1, x_2, \dots, x_n) que indica los contenedores que se meten en el buque mercante.
- Función solución: Comprueba que el buque esté completamente lleno:

$$\sum_{i=1}^{n} x_i p_i = \mathcal{P}$$

- Función de factibilidad: el peso de los contenderos metidos en el buque hasta el momento más el peso del objeto más prometedor que no supero el peso total del buque.
- Función objetivo: beneficio total de los objetos introducidos en el buque:

$$\sum_{i=1}^{n} x_i b_i$$

- 3.2. Diseño del algoritmo
- 3.3. Estudio de optimalidad
- 3.4. Ejemplo