Math 20250 Abstract Linear Algebra

Cong Hung Le Tran April 7, 2023 Course: MATH 20250: Abstract Linear Algebra

Section: 44

Professor: Zijian Yao

At: The University of Chicago

Quarter: Spring 2023

Course materials: Linear Algebra by Hoffman and Kunze (2nd Edition), Linear Algebra Done

Wrong by Treil

Disclaimer: This document will inevitably contain some mistakes, both simple typos and serious logical and mathematical errors. Take what you read with a grain of salt as it is made by an undergraduate student going through the learning process himself. If you do find any error, I would really appreciate it if you can let me know by email at conghungletran@gmail.com.

Contents

Lecture 5: Span, Linear Independence, Basis

1

Lecture 5

Span, Linear Independence, Basis

06 Apr 2023

Recall. Linear Combination: Let $V = \mathbb{K}$ -vector space with $v_1, v_2, \ldots, v_r \in V$ then

$$\mathbb{K}\langle v_1, v_2, \dots, v_r \rangle := \{ w \in W \mid = w = a_1v_1 + \dots + a_rv_r; a_i \in \mathbb{K} \} \subseteq V \text{ (is a subspace of } V \text{)}$$

Definition 5.1 (Span).

 $\{v_1, v_2, \ldots, v_r\}$ span V if

$$\mathbb{K}\langle v_1, v_2, \dots, v_r \rangle = V$$

i.e. equality is achieved: every vector in V can be written as linear combinations of $\{v_1, v_2, \dots, v_r\}$

Connecting to the previous lecture, let $\psi : \mathbb{K}^r \to V$ then $\psi \in \operatorname{Hom}_{\mathbb{K}}(\mathbb{K}^r, V) \xrightarrow{\sim} V^{\oplus r}$, i.e. ψ corresponds to (v_1, v_2, \dots, v_r) in V.

In particular, $(v_1, v_2, \dots, v_r) \in V^{\oplus r}$ determines the map:

$$\psi: (1,0,\ldots,0) \in \mathbb{K}^r \to v_1$$

$$(0,1,\ldots,0) \in \mathbb{K}^r \to v_2$$

$$\vdots$$

$$(0,0,\ldots,1) \in \mathbb{K}^r \to v_r$$

$$(\alpha_1,\alpha_2,\ldots,\alpha_r) \in \mathbb{K}^r \to \alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_r v_r$$

Lemma 5.1.

1. Let $\psi : \mathbb{K}^r \to V$ be a linear transformation determined by $v_1, v_2, \ldots, v_r \in V$, i.e. $\psi(\alpha_1, \alpha_2, \ldots, \alpha_r) := \sum_{i=1}^r \alpha_i v_i$, then

$$\operatorname{im}(\psi) = \mathbb{K}\langle v_1, v_2, \dots, v_r \rangle$$

is a subspace of V

2. $\{v_1, v_2, \dots, v_r\}$ span $V \Leftrightarrow \psi$ is surjective i.e. a surjection $\mathbb{K}^r \to V$ corresponds to r vectors $v_1, v_2, \dots, v_r \in V$ that span V

Remark. V is finite dimensional when \exists surjection $\mathbb{K}^d \to V$

 $\Leftrightarrow \exists d \text{ vectors } v_1, v_2, \dots, v_r \text{ that span } V.$

Recall: dim $V = \min\{r \in \mathbb{Z}_{\geq 0} \text{ such that } \exists \text{ surjective } \mathbb{K}^r \to V\}.$

Next, what does it mean for ψ to be injective?

Definition 5.2 (Linear Independence).

 $v_1, v_2, \ldots, v_r \in V$ are linearly independent if

$$a_1v_1 + a_2v_2 + \cdots + a_rv_r = 0; a_i \in \mathbb{K} \Rightarrow a_1 = a_2 = \cdots = a_r = 0$$

i.e. there doesn't exist non-trivial relations between the vectors.

Example. In \mathbb{R}^2 , (0, 1) and (0, 2) are not linearly independent because

$$(-2)(0,1) + (0,2) = (0,0)$$

But (0, 1) and (1,0) are linearly independent.

Consequentially, they are linearly dependent otherwise, i.e.

$$\exists a_i \text{ not all } 0 \text{ such that } \sum a_i v_i = 0$$

Lemma 5.2. Let $\varphi:V\to W$ be a linear transformation then φ is injective if and only if

$$\ker(\psi) = \{0\} \subseteq V$$

Proof (Lemma).

- (\Rightarrow) We assume that φ is injective,
- (\Leftarrow) Suppose $\ker \psi = 0$ then we want to show if

$$a_1v_1 + a_2v_2 + \dots + a_rv_r = 0$$

Lemma 5.3. Given $\psi : \mathbb{K}^r \to V$ corresponds to v_1, v_2, \dots, v_r then v_1, v_2, \dots, v_r are linearly independent if and only if ψ is injective