

OSM - Tour final

Premier examen - 13 mars 2015

Temps: 4 heures

Chaque exercice vaut 7 points.

- 1. Soient ABC un triangle aigu avec $AB \neq BC$ et k son cercle circonscrit. Soient P et Q les points d'intersection de k avec la bissectrice intérieure, respectivement extérieure, de $\angle CBA$. Soit D le point d'intersection de AC et PQ. Calculer le rapport $\frac{AD}{DC}$.
- 2. Trouver toutes les paires (m, p) de nombres naturels, telles que p est un nombre premier et que

$$2^m p^2 + 27$$

est le cube d'un nombre naturel.

3. Trouver toutes les fonctions $f: \mathbb{R} \to \mathbb{R}$ telles que pour tout $x, y \in \mathbb{R}$:

$$(y+1)f(x) + f(xf(y) + f(x+y)) = y.$$

- 4. Soient un cercle k et de deux points A et B à l'extérieur du cercle. Donner une construction à la règle et au compas, en la justifiant, d'un cercle ℓ qui passe par A et B et qui est tangent à k.
- 5. Soit m un nombre naturel. Sur le tableau de l'OSM est écrit 2^m fois le nombre 1. À chaque étape, on choisit deux nombres a et b sur le tableau et on les remplace tous deux par a+b. Montrer qu'après $m2^{m-1}$ étapes la somme des nombres vaut au moins 4^m .

Bonne chance!