Combined likelihood analysis of (dwarf galaxy) dark matter searches

Björn Opitz¹

Allgemeines Gruppenmeeting, 11. Oktober 2012

DM & HESS

¹hrbjoern@gmail.com

Overview

DM & HESS 0.

Preliminaries

Poissonian probability mass function:

$$P_p(x|\mu) = \frac{\mu^x}{x!} e^{-\mu} \tag{1}$$

— probability to observe x events, when the expectation value is μ .

Likelihood function \mathcal{L} of a model, given some data:

$$\mathcal{L}(\mu|x) = P(x|\mu),\tag{2}$$

The *likelihood* of a model expectation μ , given the data point x, is equal to the *probability* of the data point x, given the expectation value μ .

DM & HESS 1.

Profile likelihood analyses

Simple (1D) case: Assuming

$$\mathcal{L}\left(\vec{\pi} = (p, \vec{n})|\vec{d}\right) \tag{3}$$

with the parameter of interest p and nuisance parameters \vec{n} , the *profile likelihood* is defined as:

$$\mathcal{PL}(p_0|\vec{d}) = \frac{\max(\mathcal{L}(p = p_0, \vec{n}))}{\max(\mathcal{L}(p, \vec{n}))},$$
(4)

where the maximization is performed over the *complete* parameter range $(\forall \pi)$ for the denominator, but only for the subrange with $p = p_0$ for the numerator. (\longrightarrow "likelihood ratio test statistic")

▶ Wilks & Co.: $-2 \ln(\mathcal{PL})$ approaches $\chi^2(1) \longrightarrow$ possibility to infer parameter ranges / limits.

DM & HESS 2

\mathcal{L} for ACT observations

Two Poisson processes:

- signal
- background

DM & HESS

DM & HESS 4/

DM & HESS 5/

DM & HESS 6/

DM & HESS 7/