

Applying
Causality toolkit
to Real-world
datasets

Arun Gaonkar

Mentored by: Roger Dev

Contents

What is Causality?

Importance of Causality

Causality Toolkits

Causal Analysis – steps

Causal Analysis

Verify

- 1. HPCC Causality
- 2. Because

- 1. Dataset
- 2. Pre-processing
- 3. Analyze & Interpret
- 4. Causal Model
- 5. Verify

- 1. Causal Analysis on Synthetic Dataset
- 2. Causal Analysis on CDC-LLCP Dataset
- 1. Verifying the Model
- 2. Verifying the Hypothesis

What is Causality?

- Cause Responsible for effects
- Effect Dependent on the Cause
- Is cause-effect relationship Universal?
- The Domino Effect
- Does Correlation imply Causation?

Importance of Causality

- Each person makes 35,000 conscious decisions everyday
- Helps in making Good decisions
- Time series analysis & Strategic Planning
- Medical Diagnostic analysis
- E.g.: COVID19 vaccination Effects

Causality Toolkits – HPCC_Causality Bundle

- Toolkit developed by HPCC systems for Causal Analysis
- Parallelized on HPCC clusters

- Built on top of 'Because' module
- ECL programming language to implement

Causality Toolkits – Because

- HPCC Systems Causality Framework
- Python module for causal analysis
- Includes 4 sub-packages :
 - 1. Synthetic Data Generator For synthetic data generation
 - 2. Probability Statistical and Probabilistic analysis
 - 3. Visualization For graphical representation and analysis
 - 4. Causality For causal methods

Causal Analysis - Steps

Dataset	Pre- processing	Analyze	Interpret & Model	Verify
 Find a dataset Analyze the dataset 	1. Find interesting variables2. Pre-processing the dataset	1. Find individual relationships between these variables	1. Draw a causal model using from above observations	1. Verify the causal model
Cleaning preparing the dataset		2. Analyze pairwise relations among these variables	2. Draw a causal model with testDirection & Independence	
		3. Analyze these relations with conditionalization	tests	

Causal Analysis

on Synthetic Dataset

Dataset

- Synthetic Data Generation Using HPCC_Causality Synth & Gen
- Based on Structural Equation Models (SEM)
- Generated Test Data for analysis

	CONTROL DE LA CONTROL DE L	
id	number	value
1	1	0.896642972931573
1	2	1.227285474143171
1	3	0.3716197319805742
1	4	-1.047257989481993
1	5	0.9470346507322929
1	6	0.534259202809647
1	7	-2.041073115309538
2	1	0.6408760999717116
2	2	-0.3660806211582063
2	3	0.6669649434036274
2	4	-2.924519924312789
2	5	0.6991835864092881
2	6	1.930282018205498
2	7	-4.925629162182375
3	1	-0.3548787600754421
3	2	1.395481996679391
3	3	-0.2872605014751051
3	4	1.170128088317976
3	5	-0.1271693932238411
3	6	-2.653658076468372
3	7	2.860091776444442
4	1	0.4120367667014634
4	2	-1.288768856928463
4	3	-0.6082476435350309
4	4	-0.4237578960614893
4	5	0.7414302774501271

```
semRow := ROW({
    ['A', 'B', 'C', 'D', 'E', 'F', 'G'], // Variable names
    ['B = logistic(0,1)']
    F = logistic(0,1)',
    'G = logistic(0,1)'.
    'A = (B + F) / 2.0 + logistic(0, .4)',
    'C = (B + A + D) / 3.0 + logistic(0, .4)',
   11, SEM);
mySEM := DATASET([semRow], SEM);
testDat := HPCC Causality.Synth(mySEM).Generate(nTestRecs);
// Note: The order of variables in the model much match the order of varNames in the SEM.
RVs := DATASET(
                {'A', ['B', 'F']},
                ['C', ['B', 'A', 'D']],
                 ['D', ['A', 'G']],
                {'E', ['C']},
                 , Types.RV);
mod := DATASET([{'M8', RVs}], Types.cModel);
```


Causal Model & Discovery

Model Validation & Result

Error (Type 3 -- Incorrect Causal Direction) between A and C. Direction appears to be reversed..

Rho = -0.0005730759083272894

Error (Type 3 -- Incorrect Causal Direction) between D and C. Direction appears to be reversed.. Rho = -0.0013527315938702844

Warning (Type 3 -- Incorrect Causal Direction) between C and E. True direction could not be verified.. Rho = -3.0427271323660705e-05

Model Confidence is 93.75%

Causal Analysis

on CDC-LLCP Dataset

Dataset & Preprocessing

- Survey from CDC's Population Health Surveillance Branch
- Questionnaire to collect uniform state-specific data on health, disease, disability, care & cause in US
- Dataset contains 401,958 records for 279 different types of questions
- After filtering and preprocessing, dataset now has 279,922 records and 31 different variables
- Using Python Because module

Analysis & Interpretation

The correlation between
 Gender-Male and Employment

 The correlation between Height and Diabetes

Analysis & Interpretation

More analysis in Jupyter Notebook

N

Causal Model

Verifying the Model

- Most of the relations are practically and analytically correct
- Some relations are unexpected. like,
 - 1. Gender causing Age
 - 2. Weight causing Income
 - 3. Income causing BMI
 - 4. Income causing Physical Activity

Even though they are unexpected, a probable valid proof can be generated.

- There are some other relations, such as,
 - 1. BMI causing Gender
 - 2. Employment causing Gender
 - 3. Employment causing Age
 - 4. Income causing Height

For which, any explanation is rationally invalid.

Verifying the Hypothesis

- What are all the factors that can influence the likelihood of a person having Diabetes?
 - 1. Age Direct
 - 2. Gender Indirect
 - 3. Weight Indirect
 - 4. Height Direct
 - 5. BMI Direct
 - 6. Income Direct
 - 7. Employment Direct
 - 8. Physical Activity Direct

Conclusion

- Causality toolkit can be applied to analyze real-world datasets
- Hidden variable and their cause-effects can be observed
- In Real-world, variables are inter-related, causing complexities
- Not 100% effective yet for complex datasets

Thank You

Special Thanks to:
Roger Dev
Lorraine Chapman
Zheyu Shen