Gerência de I/O no Linux - Kernel 6

Sistemas Operacionais - Engenharia de Software e Ciência da Computação

Stéfani Arnold e Nicolas Hass

Módulo 02/2024

Introdução e Definição

Gerência de I/O no Linux:

- Responsável pela comunicação entre software e dispositivos de entrada/saída.
- Garantir desempenho, eficiência e suporte a diversos dispositivos.

Kernel 6:

 Última versão do Linux, trazendo otimizações em I/O, como suporte a novos dispositivos e aprimoramento no escalonamento.

Classes de dispositivos suportados

1. Orientados a Bloco:

- Processam dados em blocos (ex.: discos rígidos, SSDs).
- Operações otimizadas para leitura e gravação.

2. Orientados a Caractere:

- Processam dados sequencialmente (ex.: teclados, terminais).
- Operações mais simples e diretas.

3. Outros:

Dispositivos como GPUs, webcams e controladores de rede.

Interação entre kernel e driver

Estratégias de Comunicação:

1. Controlada por Programa:

- O software controla diretamente os dispositivos.
- Exemplo: transferências síncronas.

2. Controlada por Eventos:

- O hardware gera interrupções tratadas pelo kernel.
- Exemplo: teclas pressionadas ou dados recebidos.

Interação entre kernel e driver

Estratégias de Comunicação:

3. DMA (Direct Memory Access):

- Transferência direta entre dispositivo e memória.
- Reduz carga da CPU, ideal para discos e redes.

Escalonamento de E/S:

• O que é?

- Técnica para organizar e priorizar requisições de dispositivos.
- Exemplo no Kernel 6:
 - CFQ (Completely Fair Queueing): Mantém balanceamento entre processos.
 - NOOP Scheduler: Para dispositivos rápidos como SSDs.
 - Deadline Scheduler: Garante tempo máximo de atendimento.

Limite de dispositivos suportados

• Por que existem limites?

- Gestão de recursos do kernel.
- Evita sobrecarga em sistemas de alto desempenho.

• Exemplo prático:

 Kernel 6 suporta milhões de dispositivos virtuais e físicos em grandes servidores.

Diferenciais e curiosidades

1. Melhorias no Kernel 6:

- Novo suporte para dispositivos NVMe.
- Redução de latência em sistemas com alta carga de I/O.
- Melhor uso de threads para paralelismo em operações de leitura/gravação.

2. Curiosidade:

 O Kernel Linux é usado por 97% dos supercomputadores, mostrando a eficiência de sua gerência de I/O.

Vantagens da Gerência de I/O no Linux

- Suporte a uma vasta gama de dispositivos.
- Arquitetura modular para drivers.
- Eficiência em sistemas embarcados e servidores de alta performance.

Desafios Atuais

- Gerenciar a complexidade de novos dispositivos (ex.: GPUs modernas).
- Garantir segurança e isolamento entre processos em operações de E/S.
- Otimizar operações para dispositivos NVMe e redes de alta velocidade.

Referências

- GARRELS, M. The Linux Documentation Project. Disponível em: https://tldp.org/. Acesso em: 24 nov. 2024.
- LINUX NETWORK. Linux kernel 6.7 unveiled: A comprehensive look at new features and enhancements. Disponível em:

https://www.youtube.com/watch?v=Ece_xtPh470. Acesso em: 26 nov. 2024.

Referências

- Man7.org (Michael kerrisk) Linux/UNIX programming training. Disponível em: https://man7.org/training/. Acesso em: 26 nov. 2024.
- The Linux Kernel documentation The Linux Kernel documentation.
 Disponível em: https://www.kernel.org/doc/html/latest/index.html. Acesso em: 26 nov. 2024.

Perguntas?

nicolas.soares@sou.unijui.edu.br stefani.camargo@sou.unijui.edu.br