

# **Brain Board – Robot Protocol**

System Design Innovation & Application Research Center

- 1. 로보노바, 메탈파이터
- Ⅱ. 바이올로이드
- III. 호비스 라이트
- IV. SoC Drone

## 로보노바, 메탈파이터



Excellence in Intelligent Robot, Wearable Computer, and Bio/Health!















### • 로보노바, 메탈파이터

- UART 통신
- baud rate: 9,600bps/4,800bps (Robotbasic 코딩에 따라 선택)
- Decimal Code
- 1. 명령어 코드 전송
  - Brain Board → Robot Controller
- 2. 시작코드 전송
  - Robot Controller → Brain Board
- 3. 로봇동작
  - Robot Controller → Brain Board
- 4. 종료코드 전송
  - Robot Controller → Brain Board

| 명령어코드     |              |      |           |      |                                            |
|-----------|--------------|------|-----------|------|--------------------------------------------|
| (decimal) | 명령           | 시작코드 | 동작코드      | 종료코드 | 설명                                         |
| 1         | 반보전진         | 1d   | 30d(기본자세) | 48d  |                                            |
| 2         | 한보전진         | 2d   | 30d(기본자세) | 48d  |                                            |
| 3         | 한보반전진        | 3d   | 30d(기본자세) | 48d  |                                            |
| 4         | 이보전진         | 4d   | 30d(기본자세) | 48d  |                                            |
| 5         | 연속전진         | 5d   | 30d(기본자세) | 48d  | 반걸음마다 5d가 전송되고 정지시<br>점에 nul값을 전송하면 정지한다.  |
| 6         | 반보후진         | 6d   | 30d(기본자세) | 48d  |                                            |
| 7         | 한보후진         | 7d   | 30d(기본자세) | 48d  |                                            |
| 8         | 한보반후진        | 8d   | 30d(기본자세) | 48d  |                                            |
| 9         | 이보후진         | 9d   | 30d(기본자세) | 48d  |                                            |
| 10        | 연속후진         | 10d  | 30d(기본자세) | 48d  | 반걸음마다 10d가 전송되고 정지<br>시점에 nul값을 전송하면 정지한다. |
| 11        | 왼쪽옆으로        | 11d  | 30d(기본자세) | 48d  |                                            |
| 12        | 오른쪽옆으로       | 12d  | 30d(기본자세) | 48d  |                                            |
| 13        | 왼쪽턴          | 13d  | 30d(기본자세) | 48d  |                                            |
| 14        | 오른쪽턴         | 14d  | 30d(기본자세) | 48d  |                                            |
| 15        | 앞으로 일어나기     | 15d  | 30d(기본자세) | 48d  |                                            |
| 16        | 뒤로 일어나기      | 16d  | 30d(기본자세) | 48d  |                                            |
| 17        | 머리왼쪽 30도     | 17d  | 17d       | 48d  |                                            |
| 18        | 머리왼쪽 60도     | 18d  | 18d       | 48d  |                                            |
| 19        | 머리왼쪽 90도     | 19d  | 19d       | 48d  |                                            |
| 20        | 머리오른쪽 30도    | 20d  | 20d       | 48d  |                                            |
| 21        | 머리오른쪽 60도    | 21d  | 21d       | 48d  |                                            |
| 22        | 머리오른쪽 90도    | 22d  | 22d       | 48d  |                                            |
| 23        | 머리좌우중앙       | 23d  | 23d       | 48d  |                                            |
| 24        | 머리아래30도      | 24d  | 24d       | 48d  |                                            |
| 25        | 머리상하정면       | 25d  | 30d(기본자세) | 48d  |                                            |
| 26        | 세레모니1        | 26d  | 30d(기본자세) | 48d  |                                            |
| 27        | 인사           | 27d  | 30d(기본자세) | 48d  |                                            |
| 28        |              |      |           |      |                                            |
| 29        |              |      |           |      |                                            |
| 30        | 기본자세         | 30d  | 30d(기본자세) | 48d  |                                            |
| 31        | 차렷자세         | 31d  | 31d(차렷자세) | 48d  |                                            |
| 32        | <u></u> 앉은자세 | 32d  | 32d(앉은자세) | 48d  |                                            |
| 33        | 방어자세         | 32d  | 33d(방어자세) | 48d  |                                            |
| 34        |              |      |           |      |                                            |
|           | •            |      |           | •    |                                            |

## 바이올로이드 프리미엄, GP



Excellence in Intelligent Robot, Wearable Computer, and Bio/Health!















### · 바이올로이드 프리미엄키트, GP

- UART 통신
- baud rate: 57,600bps
- hex Code

#### **Packet Format**

FF, 55, Data\_L, ~Data\_L, Data\_H, ~Data\_H

- 0xff, 0x55: Packet Header
- Data\_L: 보낼 data의 Low 2byte
- ~Data L: 보낼 data의 Low 2byte에 대한 1의 퇴수
- Data\_H: 보낼 data의 High 2byte
- ~Data H: 보낼 data의 High 2byte에 대한 1의 보수

Ex) Data = 1(Decimal) = 0001 (HEX)
Packet Data: FF, 55, 01, FE, 00, FF



www.socrobotwar.org



Excellence in Intelligent Robot, Wearable Computer, and Bio/Health!















### http://hovis.co.kr/guide

- Motor Torque ON (로봇 초기화)
- Oxff, Oxff, Ox0a, Oxfe, Ox03, Oxa2, Ox5c, Ox34, Ox01, Ox60
- Play\_Motion

#### 구조

| 구분    | Packet Size | pID    | CMD  | Data[0]    | Data[1]           |  |
|-------|-------------|--------|------|------------|-------------------|--|
| Value | 7+2         | 0∼0xFE | 0x16 | Motion No. | Motion Ready Flag |  |

#### 예시

■ r(ID)가 253인 DRC에서 모션 1번을 실행하는 패킷

| 구분    | Header |      | Packet<br>Size | pID  | CMD  | CS1  | CS2  | Data[0] | Data[1] |
|-------|--------|------|----------------|------|------|------|------|---------|---------|
| Value | 0xFF   | 0xFF | 0x09(9)        | 0xFD | 0x16 | 0xE2 | 0x1C | 0x01    | 0x00    |

모션 번호가 1번이므로 Motion No.에는 1이 들어가며 Motion Ready Flag은 0입니다.

## **SoC Drone**



Excellence in Intelligent Robot, Wearable Computer, and Bio/Health!















- 5Byte 통신

- Baud rate: 9600bps

Start: 0x00
Throttle: 0x01 ~ 0xff
Roll: 0x01 ~ 0xff
Pitch: 0x01 ~ 0xff
Yaw: 0x01 ~ 0xff



www.socrobotwar.org