Valentin Haddad

Zhiguo He Paul Huebner Peter Kondor Erik Loualiche

UCLA, Stanford, SSE, LSE, Minnesota

April 2025

Traditional asset pricing empirical methods

- equilibrium relations + fully specified models
- all about joint determination: factor models, Euler equations

Traditional asset pricing empirical methods

- equilibrium relations + fully specified models
- all about joint determination: factor models, Euler equations

Causal inference methods

- natural experiments + treatment & control + inference w/o strong stand on mechanism
- examples: index inclusions, Fed asset purchases, mutual fund reclassifications, ...
- often assume no spillovers (SUTVA)

Traditional asset pricing empirical methods

- equilibrium relations + fully specified models
- all about joint determination: factor models, Euler equations

Causal inference methods

- natural experiments + treatment & control + inference w/o strong stand on mechanism
- examples: index inclusions, Fed asset purchases, mutual fund reclassifications, ...
- often assume no spillovers (SUTVA) ⇒ "This is incompatible with asset pricing!"

Traditional asset pricing empirical methods

- equilibrium relations + fully specified models
- all about joint determination: factor models, Euler equations

Causal inference methods

- natural experiments + treatment & control + inference w/o strong stand on mechanism
- examples: index inclusions, Fed asset purchases, mutual fund reclassifications, ...
- often assume no spillovers (SUTVA) ⇒ "This is incompatible with asset pricing!"

This paper: a causal inference framework that is compatible with finance ideas

OUTLINE

- 1 Main Ideas Through An Example
- 2 Homogeneous substitution conditional on observables
- 3 Cross-Sectional Causal Inference
- 4 ESTIMATING SUBSTITUTION
- 5 ESTIMATING MULTIPLIERS

■ Prices have moved (no other news) and CalPERS adjusts its bond portfolio:

	Initial position	Price change	New position
1. 10-yr Ford	1,000	+ 5%	= 1,000
2. 10-yr GM	1,000	- 5%	↑ 1,100
3. 5-yr First Solar	2,000	+10%	↓ 1,500
:	:	:	:

■ Prices have moved (no other news) and CalPERS adjusts its bond portfolio:

	Initial position	Price change	New position
1. 10-yr Ford	1,000	+ 5%	= 1,000
2. 10-yr GM	1,000	- 5%	↑ 1,100
3. 5-yr First Solar	2,000	+10%	↓ 1,500
:	:	:	:
•	•		

- Naive approach: to get $D_i(P_i)$, relate position changes ΔD_i to price changes ΔP_i
- **Portfolio choice:** holdings decided as a portfolio D(P)
 - When price of First Solar increases, CalPERS sells some of it ... and likely, replaces by investing disproportionately more in other green bonds than brown bonds
 - **Asset demand system**: How does demand *i* depends on price *j*:

$$\mathcal{E} = \left[\frac{\partial D_i}{\partial P_j}\right]_{ij}$$

	Initial position	Price change	New position
1. 10-yr Ford	1,000	+ 5%	1,000
2. 10-yr GM	1,000	- 5%	1,100
3. 5-yr First Solar	2,000	+10%	1,500
:	:	:	:

$$\Delta D_1 = \underbrace{\mathcal{E}_{11} \Delta P_1}_{\text{became more expensive}} + \underbrace{\mathcal{E}_{12} \Delta P_2}_{\text{substitutes from GM}} + \underbrace{\sum_{k \geq 3} \mathcal{E}_{1k} \Delta P_k}_{\text{substitutes from First Solar, ...}}$$

Initial position	Price change	New position
1,000	+ 5%	1,000
1,000	- 5%	1,100
2,000	+10%	1,500
:	:	:
	1,000 1,000	1,000 + 5% 1,000 - 5%

$$\Delta D_1 = \mathcal{E}_{11} \Delta P_1 + \mathcal{E}_{12} \Delta P_2 + \sum_{k \geq 3} \mathcal{E}_{1k} \Delta P_k$$

$$\Delta D_2 = \mathcal{E}_{22} \Delta P_2 + \mathcal{E}_{21} \Delta P_1 + \sum_{k \geq 3} \mathcal{E}_{2k} \Delta P_k$$

$$\vdots$$

	Initial position	Price change	New position
1. 10-yr Ford	1,000	+ 5%	1,000
2. 10-yr GM	1,000	- 5%	1,100
3. 5-yr First Solar	2,000	+10%	1,500
:	:	:	:
•	•		•

$$\Delta D_1 = \mathcal{E}_{11} \Delta P_1 + \mathcal{E}_{12} \Delta P_2 + \sum_{k \ge 3} \mathcal{E}_{1k} \Delta P_k$$
$$\Delta D_2 = \mathcal{E}_{22} \Delta P_2 + \mathcal{E}_{21} \Delta P_1 + \sum_{k \ge 3} \mathcal{E}_{2k} \Delta P_k$$
$$\vdots$$

Stuck without making assumptions

MAKING PROGRESS

- Key identifying assumption: homogeneous substitution conditional on observables
 - When CalPERS substitutes, does so differentially for bonds with different observables (e.g. greenness, duration), but does not distinguish between bonds with the same observables
 - E.g.: portfolio replacing First Solar has equal quantity of Ford and GM: $\mathcal{E}_{13} = \mathcal{E}_{23}$

Making Progress

- Key identifying assumption: homogeneous substitution conditional on observables
 - When CalPERS substitutes, does so differentially for bonds with different observables (e.g. greenness, duration), but does not distinguish between bonds with the same observables
 - E.g.: portfolio replacing First Solar has equal quantity of Ford and GM: $\mathcal{E}_{13} = \mathcal{E}_{23}$
- Focus on comparison of bonds with same observables: Ford vs. GM

$$\Delta D_1 = \mathcal{E}_{11} \Delta P_1 + \mathcal{E}_{12} \Delta P_2 + \sum_{k \geq 3} \frac{\mathcal{E}_{1k} \Delta P_k}{\Delta P_2}$$
$$\Delta D_2 = \mathcal{E}_{22} \Delta P_2 + \mathcal{E}_{21} \Delta P_1 + \sum_{k \geq 3} \frac{\mathcal{E}_{2k}}{=\mathcal{E}_{1k}} \Delta P_k$$

Making Progress

- Key identifying assumption: homogeneous substitution conditional on observables
 - When CalPERS substitutes, does so differentially for bonds with different observables (e.g. greenness, duration), but does not distinguish between bonds with the same observables
 - E.g.: portfolio replacing First Solar has equal quantity of Ford and GM: $\mathcal{E}_{13}=\mathcal{E}_{23}$
- Focus on comparison of bonds with same observables: Ford vs. GM

$$\Delta D_1 = \mathcal{E}_{11}\Delta P_1 + \mathcal{E}_{12}\Delta P_2 + \sum_{k\geq 3} \underbrace{\mathcal{E}_{1k}}\Delta P_k$$

$$\Delta D_2 = \mathcal{E}_{22}\Delta P_2 + \mathcal{E}_{21}\Delta P_1 + \sum_{k\geq 3} \underbrace{\mathcal{E}_{2k}}_{=\mathcal{E}_{1k}}\Delta P_k$$
 Diff-in-diff:
$$\Delta D_1 - \Delta D_2 = (\mathcal{E}_{11} - \mathcal{E}_{21})\Delta P_1 - (\mathcal{E}_{22} - \mathcal{E}_{12})\Delta P_2$$

Making Progress

- Key identifying assumption: homogeneous substitution conditional on observables
 - When CalPERS substitutes, does so differentially for bonds with different observables (e.g. greenness, duration), but does not distinguish between bonds with the same observables
 - E.g.: portfolio replacing First Solar has equal quantity of Ford and GM: $\mathcal{E}_{13} = \mathcal{E}_{23}$
- Focus on comparison of bonds with same observables: Ford vs. GM

$$\begin{split} \Delta D_1 &= \mathcal{E}_{11} \Delta P_1 + \mathcal{E}_{12} \Delta P_2 + \sum_{k \geq 3} \underbrace{\mathcal{E}_{1k}} \Delta P_k \\ \Delta D_2 &= \mathcal{E}_{22} \Delta P_2 + \mathcal{E}_{21} \Delta P_1 + \sum_{k \geq 3} \underbrace{\mathcal{E}_{2k}}_{=\mathcal{E}_{1k}} \Delta P_k \\ \text{Diff-in-diff:} \quad \Delta D_1 - \Delta D_2 &= (\mathcal{E}_{11} - \mathcal{E}_{21}) \, \Delta P_1 - (\mathcal{E}_{22} - \mathcal{E}_{12}) \, \Delta P_2 \\ &= \hat{\mathcal{E}} (\Delta P_1 - \Delta P_2) \text{ if same relative elasticity} \end{split}$$

RELATIVE ELASTICITY

	Initial position	Price change	New position
1. 10-yr Ford	1,000	+ 5%	1,000
2. 10-yr GM	1,000	- 5%	1,100
3. 5-yr First Solar	2,000	+10%	1,500
:	:	:	:
	•	•	

How does the relative demand for 10-yr Ford and 10-yr GM respond to a change in their relative price?

$$\hat{\mathcal{E}} = \frac{\Delta D_1 - \Delta D_2}{\Delta P_2 - \Delta P_1} = \frac{0 - 100}{+5 - -5} = -10$$

RELATIVE ELASTICITY AND EXOGENOUS VARIATION (IV)

■ Recover **relative elasticity**: How does the relative demand for two bonds with the same greenness and duration respond to a change in their relative price?

RELATIVE ELASTICITY AND EXOGENOUS VARIATION (IV)

- Recover relative elasticity: How does the relative demand for two bonds with the same greenness and duration respond to a change in their relative price?
- In practice, there are always other news
 - Shifts in demand curve ϵ : news about the assets, change in CalPERS financial health, ...

$$\Delta \mathbf{D} = \mathcal{E} \Delta \mathbf{P} + \epsilon$$

- Might correlate with prices (e.g. Ford price up because the new F150 is amazing)
- Classic demand estimation challenge
- \blacksquare Solution: **instrument** that moves prices in uncorrelated way to ϵ
 - E.g.: Fed randomly buys more Ford than GM, ...
 - IV regression: compare changes in demand and changes in prices for all such pairs

WHAT IS MISSING?

Under our assumption:

- 1. **Cross-sectional causal inference** identifies the *relative elasticity* between assets with the same observables
- 2. Impossible to recover substitution between different observables with cross-section alone
- A small set of time series regressions identifies substitution across observables
 - Intuition: look at portfolios based on observables, then focus on meso and macro elasticity
 - Meso: How does the demand for green bonds relative to brown bonds respond to the price of the green-minus-brown portfolio and the market portfolio?
 - Macro: How does the demand for bonds responds to the price of the market portfolio and the green-minus-brown portfolio?
 - Need simultaneous instruments over time for the price of all portfolios

Related Literature

Asset pricing using causal inference methods

Shleifer (1986); Harris, Gurel (1986); Chang, Hong, Liskovich (2014); Pavlova, Sikorskaya (2023); Greenwood, Sammon (2024); Gompers, Metrick (2001); Coval, Stafford (2007); Lou (2012); Ben-David, Li, Rossi, Song (2022); Hartzmark, Solomon (2022); Krishnamurthy, Vissing-Jorgensen (2011); Haddad, Moreira, Muir (2021, 2025); Selgrad (2024); Du, Tepper, Verdelhan (2018); Greenwood, Vissing-Jorgensen (2018); Haddad, Muir (2021); Chen, Chen, He, Liu, Xie (2023); ...

Structural approach and demand systems

- Koijen, Yogo (2019, 2024); Koijen, Richmond, Yogo (2024); Haddad, Huebner, Loualiche (2024); van der Beck (2024); Lu, Wu (2023); Gabaix,
 Koijen (2024); Bretscher, Schmid, Sen, Sharma (2024); Jansen, Li, Schmid (2024); Fang (2023); Fang, Xiao (2024); ...
- Li, Lin (2024); Chaudhary, Fu, Li (2023); Aghaee (2024); An, Huber (2025); Peng, Wang (2023); Fuchs, Fukuda, Neuhann (2025); ...

■ What we don't do:

- Strategic responses (Haddad, Huebner, Loualiche, 2024)
- Dynamics (Greenwood, Hanson, Liao, 2018; An, 2024, Huebner, 2024; Gabaix, Koijen, 2024; Davis, Kargar,
 Li, 2025; He, Kondor, Li, 2025)
- State-contingent shocks (Haddad, Moreira, Muir, 2025)

■ Spillovers/substitution outside asset pricing:

- Berry, Levinsohn, Pakes (1995), Berry, Haile (2014) ...

OUTLINE

- 1 Main Ideas Through An Example
- 2 Homogeneous substitution conditional on observables
- 3 Cross-Sectional Causal Inference
- 4 ESTIMATING SUBSTITUTION
- 5 ESTIMATING MULTIPLIERS

AN ASSUMPTION

FOR DEMAND IN ASSET PRICING

THE DEMAND FUNCTION FOR ASSETS

- Investor chooses portfolio ... taking prices are given: D(P,...)
 - Similar structure with market power or learning from prices: post a demand curve
- In changes, linearize:

$$\Delta D = \underset{\text{elasticity}}{\mathcal{E}} \Delta P + \underset{\text{shifts}}{\epsilon}$$

- could be logs, levels, portfolio weights, yields: flexibly chosen to give regularity to ${\cal E}$
- Markowitz: $D=\frac{1}{\gamma}\Sigma^{-1}(\mu-P)\Rightarrow \mathcal{E}=\frac{1}{\gamma}\Sigma^{-1}$
- lacktriangle Multipliers or price impact: effect of demand shifts on equilibrium prices ${\cal M}=-{\cal E}_{agg}^{-1}$

Framework: what if you want to figure \mathcal{E} out from data without assuming much?

AN ELEMENTARY ASSUMPTION

A1. Homogeneous substitution conditional on observables

ightarrow Any pair of assets in the estimation sample $\mathcal S$ with the same observables shares the same cross-price elasticity with respect to any third asset, within or outside the estimation sample:

$$m{\mathcal{E}}_{il} = m{\mathcal{E}}_{jl} ext{ if } X_i = X_j \quad ext{ for all } i,j \in \mathcal{S}, ext{ and } l
eq i,j,$$

- When substituting, the investor differentiates with respect to \boldsymbol{X} only

AN ELEMENTARY ASSUMPTION

A1. Homogeneous substitution conditional on observables

 \rightarrow Any pair of assets in the estimation sample $\mathcal S$ with the same observables shares the same cross-price elasticity with respect to any third asset, within or outside the estimation sample:

$$m{\mathcal{E}}_{il} = m{\mathcal{E}}_{jl}$$
 if $X_i = X_j$ for all $i, j \in \mathcal{S}, \ ext{and} \ l
eq i, j,$

- When substituting, the investor differentiates with respect to X only
- X_i : $K \times 1$ vector of observables for asset i (e,g. greenness, duration)
- And, add **linearity** to handle continuous observables

$$\mathcal{E}_{il} = \mathcal{E}_{\mathsf{cross}}(X_i, X_l) = X_i' \underbrace{\mathcal{E}_{X}}_{K \times K} X_l$$

– Can apply everywhere, or just to a sample of assets ${\cal S}$

REGULARIZING A BIT MORE

A2. Constant relative elasticity

 \rightarrow Assets in the estimation sample have the same value of relative elasticity $\mathcal{E}_{relative}$ with respect to other assets with the same characteristics:

$$oxed{\mathcal{E}_{ii}-\mathcal{E}_{ji}=\mathcal{E}_{relative}}$$
 if $X_i=X_j$ for all $i,j\in\mathcal{S}$

- How does the relative demand for two assets with the same observables respond to a change in their relative price?
 - * In our example, GM 10-year bonds to the price of Ford 10-year bonds
- Similar local behavior across assets \rightarrow homogeneous treatment effect
- Can relax a lot for cross-sectional results (function of characteristics, LATE)

Using the Assumptions: Local Experiments

- With few close assets: ignore observables & assume full homogeneity
 - Demand for 10-yr bonds of Ford and GM responds in same way to price of 5-year First Solar bond

Using the Assumptions: Local Experiments

- With few close assets: ignore observables & assume full homogeneity
 - Demand for 10-yr bonds of Ford and GM responds in same way to price of 5-year First Solar bond
- Risk-based models: assets with common variance/covariance + identical covariance with outside assets

Using the Assumptions: Local Experiments

- With few close assets: ignore observables & assume full homogeneity
 - Demand for 10-yr bonds of Ford and GM responds in same way to price of 5-year First Solar bond
- Risk-based models: assets with common variance/covariance + identical covariance with outside assets
- Diagnostic: balance between treated (high Z_i) and control (low Z_i) on covariance with broad factors

Using the Assumptions: Rich Cross-Sections

Key question: What do investors consider when substituting between assets?

- Investor manages portfolio statistic, so substitution depends on asset i's contribution

Using the Assumptions: Rich Cross-Sections

Key question: What do investors consider when substituting between assets?

- Investor manages portfolio statistic, so substitution depends on asset i's contribution

This matters for what observables X_i to include

- Broad categories: X_i are group dummies say on durations or industries
- Risk based motives: care about portfolio-level factor exposure, so X_i are factor loadings or characteristics that proxy for them
- Non-risk motives: X_i is asset weight in this objective

$$\max_{D} \quad D'(M-P) - \frac{\gamma}{2}D'\Sigma D - \frac{\kappa}{2}\left(D'X^{(1)}\right)^2$$
 such that
$$D'X^{(2)} \leq \Theta$$

- Binding constraints (e.g. leverage)
- Manages a regulatory score (e.g. capital ratio,...)
- Stakeholders pressure (e.g. greenness, ...)

Cross-Sectional

Causal Inference

CROSS-SECTIONAL IDENTIFICATION

lacktriangle Data-Generating-Process: Elasticity matrix $m{\mathcal{E}}$ + CalPERS cares about greenness (X)

$$\Delta \mathbf{D} = \mathbf{\mathcal{E}} \Delta \mathbf{P} + \epsilon$$

lacksquare Run an IV regression, with Z_i instrument for prices $(Z_i \perp \epsilon_i | X_i)$

$$\Delta D_i = \hat{\mathcal{E}} \Delta P_i + \theta' X_i + e_i$$
$$\Delta P_i = \lambda Z_i + \eta' X_i + u_i$$

CROSS-SECTIONAL IDENTIFICATION

lacktriangle Data-Generating-Process: Elasticity matrix \mathcal{E} + CalPERS cares about greenness (X)

$$\Delta \mathbf{D} = \mathbf{\mathcal{E}} \Delta \mathbf{P} + \epsilon$$

lacksquare Run an IV regression, with Z_i instrument for prices $(Z_i \perp \epsilon_i | X_i)$

$$\Delta D_i = \widehat{\mathcal{E}} \Delta P_i + \theta' X_i + e_i$$
$$\Delta P_i = \lambda Z_i + \eta' X_i + u_i$$

■ Proposition 1. Under A1 & A2, and the usual exclusion and relevance restrictions, the IV estimator identifies the relative elasticity $\widehat{\mathcal{E}} = \mathcal{E}_{relative} = \mathcal{E}_{ii} - \mathcal{E}_{ji}$ for $X_i = X_j$

CROSS-SECTIONAL IDENTIFICATION

lacktriangledown Data-Generating-Process: Elasticity matrix $m{\mathcal{E}}$ + CalPERS cares about greenness (X)

$$\Delta \mathbf{D} = \mathbf{\mathcal{E}} \Delta \mathbf{P} + \epsilon$$

lacksquare Run an IV regression, with Z_i instrument for prices $(Z_i \perp \epsilon_i | X_i)$

$$\Delta D_i = \widehat{\mathcal{E}} \Delta P_i + \theta' X_i + e_i$$
$$\Delta P_i = \lambda Z_i + \eta' X_i + u_i$$

- **Proposition 1.** Under A1 & A2, and the usual exclusion and relevance restrictions, the IV estimator identifies the **relative elasticity** $\widehat{\mathcal{E}} = \mathcal{E}_{relative} = \mathcal{E}_{ii} \mathcal{E}_{ji}$ for $X_i = X_j$
- lacktriangle In literature, some researchers switch the sides of P-D in regression, and find IV for ΔD
 - Commonly used in empirical asset pricing (exploiting fund flows)
 - Under A1 & A2 the identified coefficient is $-1/\widehat{\mathcal{E}}$

GETTING RID OF SUBSTITUTION

 \blacksquare Key step: coefficient on observables θ absorbs substitution from other assets

$$\begin{split} \Delta D_i &= \mathcal{E}_{ii} \Delta P_i + \sum_{j \neq i} X_i' \mathcal{E}_X X_j \Delta P_j + \epsilon_i \\ &= \left(\mathcal{E}_{ii} - X_i' \mathcal{E}_X X_i\right) \Delta P_i + \sum_j X_i' \mathcal{E}_X X_j \Delta P_j + \epsilon_i \\ &= \underbrace{\left(\mathcal{E}_{ii} - X_i' \mathcal{E}_X X_i\right)}_{\text{relative elasticity}} \Delta P_i + X_i' \underbrace{\sum_j \mathcal{E}_X X_j \Delta P_j}_{\text{constant across assets, } \theta} + \epsilon_i \end{split}$$

GETTING RID OF SUBSTITUTION

■ Key step: coefficient on observables θ absorbs substitution from other assets

$$\begin{split} \Delta D_i &= \mathcal{E}_{ii} \Delta P_i + \sum_{j \neq i} X_i' \mathcal{E}_X X_j \Delta P_j + \epsilon_i \\ &= \left(\mathcal{E}_{ii} - X_i' \mathcal{E}_X X_i\right) \Delta P_i + \sum_j X_i' \mathcal{E}_X X_j \Delta P_j + \epsilon_i \\ &= \underbrace{\left(\mathcal{E}_{ii} - X_i' \mathcal{E}_X X_i\right)}_{\text{relative elasticity}} \Delta P_i + X_i' \underbrace{\sum_j \mathcal{E}_X X_j \Delta P_j}_{\text{constant across assets, } \theta} + \epsilon_i \end{split}$$

Absorbing substitution \neq Estimating substitution

- In cross-section, some aggregate variables do not change across assets
- "Missing intercept" (here, **coefficient** actually) problem: don't know how θ would change when prices change

WHAT ABOUT EQUILIBRIUM PRICE ADJUSTMENT?

In the data, there are always changes in price

- Just like in our model so there is no notion of "separately moving each price"
 - If the Fed doesn't buy a bond, its price might move as Fed bought its substitutes
- In standard demand system, prices can be off- or on-equilibrium

WHAT ABOUT EQUILIBRIUM PRICE ADJUSTMENT?

In the data, there are always changes in price

- Just like in our model so there is no notion of "separately moving each price"
 - If the Fed doesn't buy a bond, its price might move as Fed bought its substitutes
- In standard demand system, prices can be off- or on-equilibrium

Two important issues for applying IV methodology in our framework

- Equilibrium price adjustment per se is not an issue for exogeneity
 - **Exclusion restriction**: $Z_i \perp \epsilon_i | X_i$, that is, "Fed buying a bond or not" uncorrelated to demand shifts of CalPERS
 - In a dynamic setting, this could fail (Haddad, Moreira, Muir 2024; He Kondor, Li 2025)
- If equilibrium is such that the two prices cannot deviate at all from each other (so law of one price holds strictly), **Relevance** condition might fail
 - You can assess this empirically!

WHAT ABOUT LOGIT?

- Koijen Yogo (2019), Koijen Richmond Yogo (2024):
 - ∃ factor models where volatility and expected returns depend non-linearly of prices which yield asset demand in the logit form
 - Logit has non-zero substitution and can be estimated from the cross-section alone

WHAT ABOUT LOGIT?

- Koijen Yogo (2019), Koijen Richmond Yogo (2024):
 - ∃ factor models where volatility and expected returns depend non-linearly of prices which yield asset demand in the logit form
 - Logit has non-zero substitution and can be estimated from the cross-section alone

- An arbitrary factor model is not equivalent to logit

- Logit: when the price of any bond increases, CalPERS replaces it proportionally to its existing portfolio
- Simple factor model: when the price of a bond increases, CalPERS replaces it dispoportionately with bonds with similar factor loadings

WHAT ABOUT LOGIT?

- Koijen Yogo (2019), Koijen Richmond Yogo (2024):
 - ∃ factor models where volatility and expected returns depend non-linearly of prices which yield asset demand in the logit form
 - Logit has non-zero substitution and can be estimated from the cross-section alone
- An arbitrary factor model is not equivalent to logit
 - Logit: when the price of any bond increases, CalPERS replaces it proportionally to its existing portfolio
 - Simple factor model: when the price of a bond increases, CalPERS replaces it dispoportionately with bonds with similar factor loadings
- All those models (with proper units) satisfy our assumptions and hence can have relative elasticity estimated from the cross-section
 - Imposing logit structure $(\mathcal{E}_{ij} \propto D_i \cdot D_j)$ allows researchers back out substitution lacktriangle
 - To the extreme, if assuming no substitution, cross-section is enough for ${\cal E}$

ESTIMATING SUBSTITUTION

WITH THE TIME SERIES

SUBSTITUTION AND ITS ESTIMATION

More interesting questions about how portfolio responds to prices:

- Will CalPERS maintain its green tilt if the price of green bonds become very expensive relative to red bonds? How much to size down?
- Answer to these questions relies on knowing substitution (across red and green assets)!

SUBSTITUTION AND ITS ESTIMATION

More interesting questions about how portfolio responds to prices:

- Will CalPERS maintain its green tilt if the price of green bonds become very expensive relative to red bonds? How much to size down?
- Answer to these questions relies on knowing substitution (across red and green assets)!

High-level idea:

- $\mathbf{E} = \hat{\mathcal{E}} \mathbf{I}_N + X' \mathcal{E}_X X$ so we need to estimate \mathcal{E}_X which is $K \times K$
- Recall that

$$\Delta D_i = \underbrace{\left(\mathcal{E}_{ii} - X_i' \mathcal{E}_X X_i\right)}_{\text{relative elasticity, } \hat{\mathcal{E}}} \Delta P_i + X_i' \\ \underbrace{\sum_j \mathcal{E}_X X_j \Delta P_j}_{\text{constant across assets but time-varying}} + \epsilon_i$$

■ To estimate \mathcal{E}_X , construct X-based portfolio $X_i\Delta P_i$ and finding IV for it

SIMPLIFYING SUBSTITUTION

Under A1 & A2, replace the asset-level problem of substitution with a portfolio-level problem:

- Say X_i (which is normalized) captures greenness
- Re-package prices and demand:

$$\Delta P_{agg} = \frac{1}{N} \sum_{i} \Delta P_{i}, \qquad \Delta D_{agg} = \frac{1}{N} \sum_{i} \Delta D_{i}$$

$$\Delta P_{X} = \frac{1}{N} \sum_{i} X_{i} \Delta P_{i} \qquad \Delta D_{X} = \frac{1}{N} \sum_{i} X_{i} \Delta D_{i}$$

$$\Delta P_{idio,i} = \Delta P_{i} - \Delta P_{agg} - X_{i} \Delta P_{X} \qquad \Delta D_{idio,i} = \Delta D_{i} - \Delta D_{agg} - X_{i} \Delta D_{X}$$

SIMPLIFYING SUBSTITUTION

Under A1 & A2, replace the asset-level problem of substitution with a portfolio-level problem:

- Say X_i (which is normalized) captures greenness
- Re-package prices and demand:

$$\Delta P_{agg} = \frac{1}{N} \sum_{i} \Delta P_{i}, \qquad \Delta D_{agg} = \frac{1}{N} \sum_{i} \Delta D_{i}$$

$$\Delta P_{X} = \frac{1}{N} \sum_{i} X_{i} \Delta P_{i} \qquad \Delta D_{X} = \frac{1}{N} \sum_{i} X_{i} \Delta D_{i}$$

$$\Delta P_{idio,i} = \Delta P_{i} - \Delta P_{agg} - X_{i} \Delta P_{X} \qquad \Delta D_{idio,i} = \Delta D_{i} - \Delta D_{agg} - X_{i} \Delta D_{X}$$

Decompose the response of demand to prices into three univariate components:

Relative:	$\Delta D_{idio,i} = \mathcal{E} \Delta P_{idio,i}$
Meso:	$\Delta D_X = \tilde{\mathcal{E}}_{agg} \Delta P_{agg} + \tilde{\mathcal{E}}_X \Delta P_X$
Macro:	$\Delta D_{agg} = \bar{\mathcal{E}}_{agg} \Delta P_{agg} + \bar{\mathcal{E}}_X \Delta P_X$

ESTIMATING THE MESO AND MACRO ELASTICITIES

Meso: $\Delta D_X = \tilde{\mathcal{E}}_{agg} \Delta P_{agg} + \tilde{\mathcal{E}}_X \Delta P_X$ Macro: $\Delta D_{agg} = \bar{\mathcal{E}}_{agg} \Delta P_{agg} + \bar{\mathcal{E}}_X \Delta P_X$

- Substitution boils down to relation between aggregate and observable based portfolios
 - Response of overall demand and green portfolio tilt to aggregate bond price and price of green-minus-brown portfolio (but low dimensional)
- Need joint instruments for prices in time series:
 - To estimate macro elasticity, need to account for simultaneous change in price of green-minus-brown
 - Only controlling for portfolio prices is generally a bad control (in particular if demand shocks are correlated)

(ATTEMPT) OF ESTIMATING MULTIPLIERS:

AN EMPIRICAL EXAMPLE

EXAMPLE: CORPORATE BOND RELATIVE MULTIPLIER

- U.S. investment-grade corporate bonds (following Chaudhary Fu Li, 2024)
- Steps to go through when conducting causal inference in asset pricing:
 - choose a source of variation
 - 2 assess exogeneity
 - 3 assess assumptions A1 and A2 and select observables + units
 - implement the regression analysis
- Step 1: flow-induced demand shock Z_{it} : fund flow in mutual funds × portfolio composition (Coval Stafford 2007, Lou 2012)
- Step 2: assess exogeneity, i.e., $Z_{it} \perp \epsilon_{it} | X_{it}$
 - example threat to identification: another investor type (e.g., insurance companies) buying the same bonds held by mutual funds that receive a lot of inflows

STEP 3: DIAGNOSTIC FOR A1 – BALANCE ON COVARIANCES

Do treated bonds comove the same way with broad portfolios as the control bonds?

- At each date t, form a long-short portfolio based on whether Z_{it} is above ("treated") or below ("control") the median
- f Z Compute the eta of the long-short return on broad indices in a window around t (here: 2y)
- eta different from zero \Rightarrow substitution likely not homogeneous

STEP 3: DIAGNOSTIC FOR A1 – BALANCE ON COVARIANCES

Do treated bonds comove the same way with broad portfolios as the control bonds?

- At each date t, form a long-short portfolio based on whether Z_{it} is above ("treated") or below ("control") the median
- f Z Compute the eta of the long-short return on broad indices in a window around t (here: 2y)
- eta different from zero \Rightarrow substitution likely not homogeneous
- Treated and control bonds may differ systematically based on the observables, which may drive differences in β
 - ightarrow natural if investors choose their flows along dimensions like duration and credit risk
- Do the treated and control comove the same way conditional on observables?
- $Z_{idio,it}$: residual of instrument regressed on a date fixed effect, **duration** × date fixed effects and **credit rating** × date fixed effects

STEP 3: DIAGNOSTIC FOR A1 – BALANCE ON COVARIANCES

Do treated bonds comove the same way with broad portfolios as the control bonds?

- II At each date t, form a long-short portfolio based on whether Z_{it} is above ("treated") or below ("control") the median
- f Z Compute the eta of the long-short return on broad indices in a window around t (here: 2y)
- Treated and control bonds may differ systematically based on the observables, which may drive differences in β
 - ightarrow natural if investors choose their flows along dimensions like duration and credit risk
- Do the treated and control comove the same way conditional on observables?
- $Z_{idio,it}$: residual of instrument regressed on a date fixed effect, **duration** × date fixed effects and **credit rating** × date fixed effects
- Alternative unit to bond returns: yield changes ► Al yield changes ► Multiplier yield changes
- Similar diagnostic for A2: balance on idiosyncratic volatility A2 diagnostic

A. Corporate Bond Index

C. Long-Short Term Bonds

B. High-Low Credit Rating

D. Stock Index

STEP 4: IMPLEMENT THE REGRESSION Relative multiplier $\widehat{\mathcal{M}} \approx 0$

Demand shock:

Date Fixed Effects

Duration × Date Fixed Effects

Credit Rating × Date Fixed Effects

 Z_{it}

N

 R^2

 $Z_{idio,it}$

1.541*

(0.637)

646.335

0.010

-0.254

(0.229)

Yes

646.335

0.415

Return $\Delta P_{it}/P_{i,t-1}$ (1)(2) (3) (4) (5)

0.019

Yes

Yes

Yes

646,335

0.632

0.019

Yes

Yes

Yes

(0.065)

646.335

0.632

0.019

Yes

(0.065)

646,335

0.415

(0.065)

Extra Step: Meso- And Macro Multipliers

	Return $\Delta P_{agg,t}/P_{agg,t-1}$		Return $\Delta P_{X,t}/P_{X,t-1}$	Return $\Delta P_{it}/P_{i,t-1}$	
	(1)	(2)	(3)	(4)	(5)
$Z_{agg,t}$	14.231***	12.347**	7.294**	12.347**	12.347**
337	(3.643)	(3.985)	(2.423)	(3.959)	(3.958)
$Z_{X,t}$		-6.170	0.817	-6.170	-6.170
		(7.810)	(4.591)	(7.757)	(7.757)
$Z_{agg,t} \times X_{it}$					7.294**
					(2.407)
$Z_{X,t} \times X_{it}$					0.817
					(4.558)
$Z_{idio,it}$				0.090	0.090
				(0.055)	(0.054)
Duration X_{it}				0.001	-0.001
				(0.001)	(0.001)
\overline{N}	150	150	150	646,335	646,335
\mathbb{R}^2	0.242	0.250	0.135	0.101	0.12

CONCLUSION

- Key challenge for causal inference in asset pricing: substitution across assets
- An elementary condition for valid inference: homogenous substitution conditional on observables
 - difference in substitution driven by a known set of observables
- Standard cross-sectional causal inference identifies relative elasticity or its inverse, relative multiplier
 - Guidance on designing settings such that assumptions are plausible
 - Compatible with usual covariance matrix assumptions
- Time series identification with observable-based portfolios reveals substitution
 - Need to consider all dimensions of substitution jointly

Diagnostics for A2 – Balance on idiosyncratic volatility

■ Average idiosyncratic volatility among treated versus control bonds

A. Corporate Bond Index

C. Long-Short Term Bonds

B. High-Low Credit Rating

D. Stock Index

Relative multiplier $\widehat{\mathcal{M}} = -0.072$

	Yield change ΔY_{it}				
	(1)	(2)	(3)	(4)	(5)
Demand shock:					
Z_{it}			-0.072**		
$Z_{idio,it}$	(0.166)	(0.047)	(0.027)	-0.072**	-0.072**
$Z_{idio,it}$				-0.072 (0.027)	-0.072 (0.027)

Z_{it}	0.00.	-0.104* (0.047)	0.0		
$Z_{idio,it}$,	,	,	-0.072** (0.027)	-0.072** (0.027)
Date Fixed Effects		Yes	Yes	Yes	Yes
$Duration imes Date \ Fixed \ Effects$			Yes	Yes	
Credit Rating × Date Fixed Effects			Ves	Ves	

Credit Rating × Date Fixed Effects res N630,255 630,255 630,255 630,255 630,255

 R^2 0.004 0.071 0.089 0.089 0.070

ASSET DEMAND SYSTEM WITH LOGIT FORM VS OUR PAPER

■ In Koijen Yogo 2019, Mean-variance optimization + factor structure + **certain** assumptions (especially on the share of outside asset) \Rightarrow

$$D_i = w(p_i, x_i, \boldsymbol{p}, \boldsymbol{x}) = \frac{\exp(-\alpha p_i + \beta' x_i)}{1 + \sum_l \exp(-\alpha p_l + \beta' x_l)}$$

■ The key substitution pattern of logit system is

$$\mathcal{E}_{ij} = \frac{dD_i}{dp_j} = \frac{\exp(-\alpha p_i + \beta' x_i) \cdot \alpha \exp(-\alpha p_j + \beta' x_j)}{(1 + \sum_l \exp(-\alpha p_l + \beta' x_l))^2} = \alpha D_i D_j$$

- Implied substitution matrix $\mathcal{E}_{sub} = \alpha DD'$, with Rank 1
 - Any non-linear transformation of D will not affect the rank of this matrix
- \blacksquare In our setting, this substitution matrix has a rank K

$$\mathcal{E}_{sub} = \left[X_i' \mathcal{E}_X X_j \right] = \underbrace{X'}_{N \times K} \underbrace{\mathcal{E}_X}_{K \times K} \underbrace{X}_{K \times N}$$

