Class Information SCC0251 – Image Processing

Prof. Moacir A. Ponti www.icmc.usp.br/~moacir

Instituto de Ciências Matemáticas e de Computação – USP

2023/1

Agenda

- Course
 - Objectives
 - Contents
- 2 History and typical image sources
 - Programming language
- Grading
- Contents repository

Objectives

 Provide the student with the knowledge necessary to manipulate digital images, presenting relater application areas and major techniques in the field.

Contents

- Image processing fundamentals: acquisition and modelling
- Gray-level transformations and image filtering
- Image enhancement
- Fourier Transform and frequency domain operations
- Image restoration
- Image segmentation
- Colour images
- Mathematical morphology
- Image analysis: feature extraction and classification
- Convolutional neural networks

Agenda

- Course
 - Objectives
 - Contents
- 2 History and typical image sources
 - Programming language
- Grading
- 4 Contents repository

History

1970 1980 1990 2000 Learning Digital image processing Blocks world, line labeling Generalized cylinders Pictorial structures Stereo correspondence Intrinsic images Optical flow Structure from motion Image pyramids Scale-space processing Shape from shading, texture, and focus Physically-based modeling Regularization Markov Random Fields Kalman filters 3D range data processing Projective invariants Factorization Physics-based vision Graph cuts Particle filtering Energy-based segmentation Face recognition and detection Subspace methods Image-based modeling and rendering Texture synthesis and inpainting Computational photography Feature-based recognition MRF inference algorithms Category recognition

Electromagnetic Spectrum

THE ELECTROMAGNETIC SPECTRUM

Natural images

Scientific images

Medical imaging

Remote sensing

Programming language

• python with numpy, imageio, scipy.

Grading

- Exams for each module (Moodle/eDisciplinas) E
- Programming assignments (run.codes) A

Grading

Harmonic mean considering:

• The arithmetic mean within each grading item:

$$\frac{3}{\frac{1}{E+5} + \frac{2}{A+5}} - 5$$

Grading

Assignments

• Developed **individually** using python + numpy, imageio, scipy. No other library is allowed.

Contents repository

Course contents, schedule, slides, announcements and quizzes

• https://edisciplinas.usp.br

Communication

• Discord (see link at the eDisciplinas page)

Bibliography I

GONZALEZ, R.C.; WOODS, R.E. Processamento Digital de Imagens, 3.ed
Pearson, 2010.

PETROU, M. Image Processing: the fundamentals, 2.ed Wiley, 2010.

Bibliography II

JAIN, A.K. The fundamentals of Digital Image Processing Prentice-Hall. 1988.

SZELISKI, R. Computer Vision: algorithms and applications Springer, 2011.

http://szeliski.org/Book/drafts/SzeliskiBook_20100903_draft.pdf

