EI 10c M

MATHEMATIK

GTR

2009-10

Probearbeit zur 5. Arbeit - Pflichtteil

Im Pflichtteil darfst du keinen GTR verwenden! Du entscheidest, wann du ihn abgibst. Danach bekommst du den Pflichteil und kannst diesen mit GTR bearbeiten.

Aufgabe 1

Gegeben ist die ganzrationale Funktion

$$f(x) = x^4 - 2x^2 - 2.$$

Untersuche diese Funktion auf

a) Symmetrien (y-Achsensymmetrie bzw. Punktsymmetrie)

Da nur gerade Exponenten auftreten, ist die Funktion y-Achsen-symmetrisch. Beispielsweise ist für x=1 der y-Wert einfach f(1)=1-2-2=-3 und gleiches gilt für x=-1: f(-1)=1-2-2...

b) Nullstellen. Gib Punkte als Ergebnis an!

Zu lösen ist diese Gleichung:

$$0 = x^4 - 2x^2 - 2$$
.

Da weder Ausklammern noch die abc-Formel weiterhelfen, muss man hier substituieren. Ich setze also $u:=x^2$ und so wird die obige Gleichung zu:

$$0 = u^2 - 2u - 2$$
.

Da nun nur noch die 2 im Exponenten steht, lässt sich die abc-Formel anwenden:

$$u_{1/2} = \frac{-(-2) \pm \sqrt{(-2)^2 - 4 \cdot 1 \cdot (-2)}}{2 \cdot 1} = \frac{2 \pm \sqrt{4 + 8}}{2} = 1 \pm \frac{\sqrt{12}}{2} = 1 \pm \sqrt{3}$$

In der Arbeit werden die Zahlen glatter sein... Nun haben wir in der "u-Welt" also zwei Lösungen; gerundet etwa 2,7 und -0,7. Um zurück in die "x-Welt" zu gelangen, müssen wir noch die u-Lösungen wurzeln. Da -0,7 negativ ist, fallen hier mögliche Lösungen weg und es bleiben nur zwei Lösungen, nämlich plusminus Wurzel aus 2,7. Grob gerundet etwa 1,6 bzw. -1,6. Wie gesagt, in der Arbeit nehme ich bessere Werte, damit ihr das richtig rechnen könnt!

Als Ergebnis sollen Punkte angegeben werden, da die y-Werte bei Nullstellen einfach 0 sind, ist es hier besonders einfach: N1(-1,6|0) und N2(1,6|0), natürlich gerundet.

c) Extremstellen. Gib Punkte als Ergebnis an!

Wir bilden die erste Ableitung und finden:

$$f'(x) = 4x^3 - 4x$$
.

Nun müssen wir f' gleich Null setzen. Hier lassen sich die Nullstellen etwas einfacher finden:

$$0 = 4x^3 - 4x \iff 0 = 4x(x^2-1) \iff x1=0, x2=-1 \text{ und } x3=1.$$

Die letzte Klammer (x^2 -1) ist die dritte binomische Formel. Man kann natürlich auch auflösen.

Unsere Kandidaten sind also 0,-1 und 1. Wir testen mit der 2. Ableitung:

$$f''(x) = 12x^2 - 4.$$

f''(0) = -4 < 0 und somit liegt ein Hochpunkt vor.

f''(-1)=12-4 > 0 und somit liegt ein Tiefpunkt vor. Gleiches gilt für x = 1 (auch wegen der Symmetrie!!!).

Also geben wir die Punkte an und bilden dafür noch f(0), f(-1) und f(1):

HP(0|-2), TP1(-1|-3) und TP2(1|-3).

d) globale Extrema für x-Werte zwischen -2 und 2!

Im Vorgriff auf die kommende Frage sollte schon klar sein, dass der Hochpunkt bei 0 kein globales Extremum sein kann, denn die Funktion "haut" ja für betragsmäßig große x-Werte nach oben "ab".

Für x=-2 bis 2 haben wir bereits das lokale Extremum bei x=0 gefunden. Die Randwerte des Intervalls sind -2 und 2 und wir prüfen auf Randextrema:

f(-2) = 16 - 8 - 2 = 6. Gleiches gilt natürlich wegen der Symmetrie auch für x=2. Die Randwerte "überragen" also das lokale Maximum bei x=0 und sind somit Randextrema. Die globalen Maxima finden sich bei P(-2|6) und Q(2|6).

Wie verhält sich die Funktion für betragsmäßig große x-Werte?

Bereits gesagt, aber noch einmal ausführlich: Es zählt nur der Summand mit dem größten Exponenten. Dieser ist 4 und somit muss man x⁴ anschauen. Das ist aber ziemlich einfach, weil setze ich große x-Werte ein, wird dieser Ausdruck noch viel viel größer und geht gegen plus Unendlich. Setze ich negative Zahlen wie -1000 ein, so "frisst" die 4 im Exponenten das Vorzeichen und auch hier streben die Funktionswerte gegen plus Unendlich.

Skizziere die Funktion mit den oben gewonnenen Erkenntnissen!

Sollte kein Problem sein, ansonsten einfach im GTR nachsehen!

Aufgabe 2

a) Wieviele Nullstellen kann eine Gerade höchstens haben?

Eine Gerade ist ein "Strich" und die x-Achse ist ein "Strich". Zwei "Striche" schneiden sich maximal in einem Punkt. Einzige Ausnahme wäre die Gerade y = 0, die ja die x-Achse darstellt. Dann wären es unendlich viele Nullstellen.

b) Muss eine ganzrationale Funktion 2. Grades immer 2 Nullstellen haben? Gib ein Gegenbeispiel!

Muss sie nicht. Mehr kann sie zwar nicht haben, sehr wohl aber weniger. Die Normalparabel $f(x) = x^2$ ist ein Gegenbeispiel mit nur einer Nullstelle. Verschiebt man diese Kurve durch addieren von 1 um eins nach oben, gibt es sogar gar keine Nullstelle!

c) Nenne eine "hinreichende" (= ausreichende) Bedingung, damit eine Funktion einen Hochpunkt hat.

Für einen Hochpunkt muss zuerst einmal die Steigung Null werden, also f'(x) = 0. Das alleine reicht aber noch nicht, es könnte ja dann auch ein Tiefpunkt oder gar ein Sattelpunkt vorliegen. Wechselt die erste Ableitung aber ihr Vorzeichen von + nach -, liegt auf jeden Fall ein Hochpunkt vor. Gleiches gilt, wenn die zweite Ableitung negativ wäre.

d) Stelle für die in Aufgabe 1 definierte Funktion die Tangente zum x-Wert 2 auf!

Für x = 2 brauchen wir den Funktionswert und die dazugehörende Steigung. f(2) haben wir schon zu 6 berechnet und die Steigung ist einfach f'(2) = 32-8=24. Nun ist die Tangente eine Gerade und es gilt y=mx+c. Mit f'(2)=24 wissen wir bereits, dass y=24x+c gilt. Da der Punkt P(2|6) auf der Geraden liegen muss, finden wir sofort unser c:

$$6 = 48 + c \Leftrightarrow c = -42$$
.

Damit lautet die Tangentengleichung t für x = 2:

t:
$$y = 24x - 42$$
.