Solución Taller 1: Espacios normados, con producto interno, de Banach y de Hilbert

Alejandro Salazar Arango

8 de marzo de 2023

- 1. Considere las normas $\|\cdot\|_1$ y $\|\cdot\|_{\infty}$ en \mathbb{R}^n .
 - a) Pruebe que $||u|| = \frac{1}{3} ||u||_1 + \frac{2}{3} ||u||_{\infty}$ define una norma en \mathbb{R}^n .
 - b) Pruebe que $\|u\|_p \to \|u\|_\infty$ cuando $p \to \infty.$
 - c) Para $0 , la función <math>\|\cdot\|_p$ define una norma para \mathbb{R}^n ?
 - d) Pruebe que $|x_i| \le ||x||_2 \le \sqrt{n} ||x||_{\infty}$.
- 2. Verifique que $||f||_{\infty} = \max_{a \le t \le b} |f(t)|$, es una normal en el espacio vectoria C([a,b]).
- 3. Discutir la posibilidad de que la desigualdad triangular para la noma de la suma en \mathbb{R}^n sea la igualdad, es decir encontrar la condición necesaria y suficiente que deben cumplir los vectores x, y $in\mathbb{R}^n$ para verificar que:

$$||x + y||_1 = ||x||_1 + ||y||_1$$

- 4. Sea X un espacio vectorial y sean $u, v: X \to [0, \infty)$ dos normas en X. En cada uno de los siguientes casos, probar que la función $\|\cdot\|: X \to \mathbb{R}$ definida para todo $x, y \in X$ en la forma que se indica, es una norma en X:
 - a) ||x|| = u(x) + v(x)
 - $b) ||x|| = \max u(x), v(x)$
 - c) $||x|| = (u(x)^2 + v(x)^2)^{1/2}$
- 5. Probar que la función $\rho: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ definida por

$$\rho(x,y) = |y - v|^{1/2}$$

Es una distancia en \mathbb{R} .

6. Sean Y un espacio normado, X un espacio vectorial y $f:X\to Y$ una aplicación lineal e inyectiva. Probar que definiendo

$$||x|| = ||f(x)||, \ \forall x \in X$$

se obtiene una norma en X. Establecer un resultado análogo para espacios métricos.

7. Consideremos en $V = L^2([a,b] \times [a,b])$ la aplicación

$$||f|| = \sqrt{\int_a^b \int_a^b |f(t,s)|^2 dt ds}$$

Mostrar que $(V, \|\cdot\|)$ es un espacio normado.

8. Sea $C^1([0,1])=\{f\in C([0,1]): \exists f'\in C([0,1])\}$. Mostrar que la siguiente función sobre $C^1([0,1])$ es una norma

$$||f|| = \sqrt{||f||_2^2 + ||f'||_2^2}$$

- 9. Sea $(v, \langle \cdot, \cdot \rangle)$ un espacio con producto interno. Demostrar que para $x, y \in V$ se tiene
 - a) La ley del Paralelogramo $\left\|x+y\right\|^2+\left\|x-y\right\|^2=2\left\|x\right\|^2+2\left\|y\right\|^2$
 - b) Teorema de Pitagoras $\langle x, y \rangle = 0 \iff ||x + y||^2 = ||x||^2 + ||y||^2$
 - c) La identidad polar

Caso Real:
$$\langle x, y \rangle = \frac{\|x+y\|^2 - \|x-y\|^2}{4}$$

Caso Complejo:
$$\langle x, y \rangle = \frac{\|x+y\|^2 - \|x-y\|^2 + i\|x+iy\|^2 - i\|x-iy\|^2}{4}$$

d)
$$||x+y|| = ||x|| + ||y|| \iff x = ay$$
 o $y = ax$ para alguna constante $a \ge 0$

- 10. Sea V = C([a, b])
 - a) Prube que V es un espacio de Banach con la norma $||f||_{\infty}$
 - b) Pero no lo es para la norma $||f||_1$
- 11. Sea $x, y \in \mathbb{R}^n$ determine si $\langle x, y \rangle$ es o no es un producto interno, en caso de no serlo indicar cuales propiedades no se cumplen

a)
$$\langle x, y \rangle = \sum_{i=1}^{n} x_i |y_i|$$

b)
$$\langle x, y \rangle = |\sum_{i=1}^{n} x_i y_i|$$

c)
$$\langle x, y \rangle = \left(\sum_{i=1}^{n} x_i^2 y_i^2\right)^{1/2}$$

- 12. Sea V = C([0,1]) determine si $\langle f, g \rangle$ es o no es un producto interno, en caso de no serlo indicar cuales propiedades no se cumplen
 - $a) \langle f, g \rangle = f(1)g(1)$
 - b) $\langle f, g \rangle = \int_0^1 f'(t)g'(t)dt$
 - c) $\langle f, g \rangle = \left(\int_0^1 f(t)dt \right) \left(\int_0^1 g(t)dt \right)$
- 13. En el espacio vectorial V = C([1, e]), se define un producto interno

$$\langle f, g \rangle = \int_0^e ln(t)f(t)g(t)dt$$

- a) Si $f(t) = \sqrt{t}$, calcular ||f||.
- b) Encontrar un polinomio de primer grado g(t)=a+bt que sea ortogonal a la función constante f(t)=1
- 14. En el espacio C(-1,1), sea $\langle f,g\rangle=\int_{-1}^1 f(t)g(t)dt$. Considere las tres funciones

$$u_1(t) = 1, u_2(t) = t, u_3(t) = 1 + t$$

Pruebe que dos de ellas son ortogonales, dos forman entre sí un ángulo de $\pi/3$ y dos forman entre sí un ángulo de $\pi/6$

15. En el espacio vectoria \mathcal{P}_n de todos los polinomios de reales de grado $\leq n$, se define

$$\langle f, g \rangle = \sum_{k=1}^{n} f\left(\frac{k}{n}\right) g\left(\frac{k}{n}\right)$$

- a) Demostrar que $\langle f, g \rangle$ es un producto interno para \mathcal{P}_n .
- b) Calcular $\langle f, g \rangle$ cuando f(t) = t y g(t) = at + b.
- c) Si f(t) = t encontrar todos los polinomios g ortogonales a f.
- 16. Sea H un subespacio de \mathbb{R}^n .
 - a) Pruebe que H^\perp es un sibespacio cerrado de \mathbb{R}^n
 - b) Para $V = \mathbb{R}^3$ y $H = \{(x, y, z) : 4x y + 6z = 0\}$
 - 1) Enceuntre H^{\perp}
 - 2) Muestre que $\mathbb{R}^3 = H \oplus H^{\perp}$
 - 3) Exprese el vector v = (2, 1, 3) como h + u, donde $h \in H, u \in H^{\perp}$

- 17. Sea V = C([-1,1]) y $H = \{f \in V : f(-t) = f(t), \forall t \in [-1,1]\}$, el conjunto de las funciones pares.
 - a) Pruebe que el complemento ortogon
l H^\perp es el conjunto de todas las funciones impares.
 - b) Pruebe que $V = H \oplus H^{\perp}$
- 18. Sean H y K subespacios de \mathbb{R}^n .
 - a) Pruebe que si $H \subset K$, entonces $K^{\perp} \subset H^{\perp}$.
 - b) Pruebe que $(H+K)^{\perp}=K^{\perp}\cap H^{\perp}$
 - c) Pruebe que $H^{\perp \perp} = H$ donde $H^{\perp \perp} = (H^{\perp})^{\perp}$
- 19. Sea $V = M_{n \times n}$ el espacio de las matrices de orden $n \times n$
 - a) Definamos $\langle A, B \rangle = tr(AB^T)$, donde $tr(A) = \sum_{i=1}^n a_{ii}$, es la traza de la matriz $A = (a_{ij})$ y B^T es la transpuesta de B. Pruebe que V es un espacio con producto interno.

Sean $A, B \in V$. Veamos si $\langle A, B \rangle$ es en efecto un producto interno. Primero veamos que $\langle A, A \rangle = 0 \iff A = 0$. Empezemos por probar $\langle A, A \rangle = 0 \implies A = 0$.

$$\langle A, A \rangle = 0 \implies tr(AA^T) = 0$$

$$\implies \sum_{i=1}^n aa_{ii} = 0$$

$$\implies \sum_{i=1}^n \sum_{j=1}^n a_{ij}^2 = 0$$

$$\implies a_{ij}^2 = 0$$

$$\implies a_{i,j} = 0$$

$$\implies A = 0$$

Veamos ahora que $A = 0 \implies \langle A, A \rangle = 0$.

$$A = 0 \implies AA^{T} = 0$$
$$\implies tr(AA^{T}) = 0$$
$$\implies \langle A, A \rangle = 0$$

$$\therefore \langle A, A \rangle = 0 \iff A = 0$$

Ahora, probemos que $\langle A, B \rangle = \langle B, A \rangle$

$$\langle A, B \rangle = Tr(AB^T)$$

$$= Tr((AB^T)^T)$$

$$= Tr(BA^T)$$

$$= \langle B, A \rangle$$

$$\therefore \langle A, B \rangle = \langle B, A \rangle$$

b) Pruebe que tr(AB) = tr(BA).

Sea $A, B \in V$, por al definición de traza tenemos que

$$tr(AB) = \sum_{i=1}^{n} ab_{ii}$$

Sin embargo por la defnición de producto matricial es claro que esto es equivalente a

$$tr(AB) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}b_{ji}$$
$$= \sum_{j=1}^{n} \sum_{i=1}^{n} b_{ji}a_{ij}$$
$$= \sum_{j=1}^{n} ba_{jj}$$
$$= tr(BA)$$

c) Si P es una matriz invertible de orden $n \times n$, pruebe que $tr(P^{-1}AP) = tr(A)$.

$$tr(P^{-1}AP) = tr(P^{-1}(AP))$$

$$= tr((AP)P^{-1})$$

$$= tr(A(PP^{-1}))$$

$$= tr(AI)$$

$$= tr(A)$$

- 20. Sea $x_1, x_2, ...x_n, y_1, y_2, ..., y_n$ números reales, $1 y q definido por <math>\frac{1}{p} + \frac{1}{q} = 1$. Pribar las siguientes desigualdades:
 - a) Desigualdad de Hölder

$$\sum_{k=1}^{n} |x_k y_k| \le \left(\sum_{k=1}^{n} |x_k|^p\right)^{1/p} \left(\sum_{k=1}^{n} |y_k|^q\right)^{1/q}$$

Sean $\alpha, \beta \in \mathbb{R}$ y $\lambda \in (0,1)$. Ahroa sea la función

$$\phi(t) = (1 - \lambda) + \lambda t - t^{\lambda}$$

luego

$$\phi(t)' = \lambda(1 - t^{\lambda - 1})$$

Ahora bien, como $\lambda - 1 < 0$ entonces para t < 1 $\phi(t)' < 0$ y para t > 1 $\phi(t)' > 0$; luego tenemos un mínimo en t = 1 con un valor de $\phi(1) = 0$. Luego $\phi(t) \ge 0$ y reemplazando $t = \alpha/\beta$

$$(1 - \lambda) + \lambda(\alpha/\beta) - (\alpha/\beta)^{\lambda} \ge 0$$

$$(1 - \lambda) + \lambda(\alpha/\beta) \ge \alpha^{\lambda} \beta^{-\lambda}$$

$$(1 - \lambda)\beta + \lambda\alpha \ge \alpha^{\lambda}\beta^{1-\lambda}$$

Sean $c,d\in\mathbb{R}^+$ y $0< p,q<\infty$ definidos como $\frac{1}{p}+\frac{1}{q}=1$ sea ahora $\alpha=c^p,$ $\beta=d^q,$ $\lambda=1/p$ y $1-\lambda=1/q$ luego por la demostración que vimos anteriormente obtenemos

$$cd \le \frac{c}{p} + \frac{d}{q}$$

Ahora, sea $c = \frac{|x_i|}{\left(\sum_{i=1}^n |x_i|^p\right)^{1/p}}$ y $d = \frac{|y_i|}{\left(\sum_{i=1}^n |y_i|^p\right)^{1/p}}$, luego

$$\frac{|x_i||y_i|}{\left(\sum_{i=1}^n |x_i|^p\right)^{1/p} \left(\sum_{i=1}^n |y_i|^q\right)^{1/q}} \le \frac{|x_i|^p}{p\left(\sum_{i=1}^n |x_i|^p\right)} + \frac{|y_i|^q}{q\left(\sum_{i=1}^n |y_i|^q\right)^{1/q}}$$

Ahora evaluando la sumatoria a ambos lados

$$\frac{\sum_{i=1}^{n} |x_i y_i|}{\left(\sum_{i=1}^{n} |x_i|^p\right)^{1/p} \left(\sum_{i=1}^{n} |y_i|^q\right)^{1/q}} \le \frac{\sum_{i=1}^{n} |x_i|^p}{p \sum_{i=1}^{n} |x_i|^p} + \frac{\sum_{i=1}^{n} |y_i|^q}{q \sum_{i=1}^{n} |y_i|^q}
\frac{\sum_{i=1}^{n} |x_i y_i|}{\left(\sum_{i=1}^{n} |x_i|^p\right)^{1/p} \left(\sum_{i=1}^{n} |y_i|^q\right)^{1/q}} \le \frac{1}{p} + \frac{1}{q}$$

$$\frac{\sum_{i=1}^{n} |x_i y_i|}{\left(\sum_{i=1}^{n} |x_i|^p\right)^{1/p} \left(\sum_{i=1}^{n} |y_i|^q\right)^{1/q}} \le 1$$

$$\sum_{i=1}^{n} |x_i y_i| \le \left(\sum_{i=1}^{n} |x_i|^p\right)^{1/p} \left(\sum_{i=1}^{n} |y_i|^q\right)^{1/q}$$

b) Desigualdad de Minkowski

$$\left(\sum_{k=1}^{n} |x_k + y_k|^p\right)^{1/p} \le \left(\sum_{k=1}^{n} |x_k|^p\right)^{1/p} + \left(\sum_{k=1}^{n} |y_k|^p\right)^{1/p}$$

21. Sea $\{v_k\}_{k=1}^{\infty}$ una sucesión de puntos en \mathbb{R}^n . Supongamos que existe $\alpha \in (0,1)$, tal que

$$||v_{k+1} - v_k|| < \alpha ||v_k - v_{k-1}||, \ \forall k \in \mathbb{N}$$

Probar que la sucesión $\{v_k\}_{k=1}^\infty$ es de Cauchy y, por tanto, convergente en \mathbb{R}^n Sea $\epsilon>0$ y $c=\|v_2-v_1\|$. Como

$$||v_{k+1} - v_k|| \le \alpha ||v_k - v_{k-1}||$$

entonces si aplicamos esto de forma recursiva obtenemos.

$$||v_3 - v_2|| \le \alpha ||v_2 - v_1|| = \alpha c$$

$$||v_4 - v_3|| \le \alpha ||v_3 - v_2|| \le \alpha^2 ||v_2 - v_1|| = \alpha^2 c$$

$$\vdots$$

$$||v_{k+1} - v_k|| \le \alpha^{k-1} c$$

Ahora como $\alpha \in (0,1), \epsilon > 0$ y c > 0 siempre es posible encontrar N tal que

$$\frac{\alpha^N c}{1 - \alpha} < \epsilon$$

Ahora bien, sean n, m con m < n y n, m > N

$$||v_n - v_m|| \le \sum_{i=m+1}^n ||v_i - v_{i-1}||$$

$$\le \alpha^{m-1} c \sum_{i=0}^{n-m-1} \alpha^i$$

$$< \alpha^{m-1} c \sum_{i=0}^{\infty} \alpha^i$$

$$= \frac{\alpha^{m-1} c}{1 - \alpha}$$

$$\le \frac{\alpha^N c}{1 - \alpha}$$

$$< \epsilon$$

Luego concluimos que dado $\epsilon > 0, \exists N \in \mathbb{N} : n, m > N \implies ||v_n - v_m|| < \epsilon$ luego la sucesión es de Cauchy y por tal converge en \mathbb{R}^n

22. Pruebe que todo espacio finito-dimensional normado es de Banach

Sea $(V, \|.\|)$ un epacio vectorial finito-dimesnional normado de dimensión n sobre el campo \mathbb{K} . Al ser V un espacio vectorial sobre \mathbb{K} este será a su vez isomorfo a \mathbb{K}^n y por tal existe una isometría $f: V \to \mathbb{K}^n$ continua que nos conserva $d_V(x, y) = d_{\mathbb{K}^n}(f(x), f(y))$ y que acepta inversa $f^{-1}: \mathbb{K}^n \to V$ tambien continua.

Ahora para cada succeión de Cauchy $\{x_n\}_{n\in\mathbb{N}}$ como f es isometría, $\{f(x_n)\}_n\in\mathbb{N}$ será a su vez una sucesión de Cauchy en \mathbb{K}^n y por la definisión de los espacio \mathbb{K}^n , este es completo y por tal $\{f(x_n)\}_{n\in\mathbb{N}} \to v \in K^n$. Ahora bien, como f^{-1} es continua esta debe cumplir que si $x_n \to x \implies f^{-1}(x_n) \to f^{-1}(x)$ y por tal al aplicar esta a la sucesión anterior obtenemos que, dado $f(v_n) \to v$ entonces $\{f^{-1}(f(x_n))\}_{n\in\mathbb{N}} \to f^{-1}(v)$ o lo que es lo mismo $\{x_n\}_{n\in\mathbb{N}} \to f^{-1}(v) \in V$ por definición de f^{-1} y por tal concluimos que $(V, \|.\|)$ es un espacio normado y completo, o lo que es igual, es de Banach.

23. Pruebe que $l_p(\mathbb{R}) = \{x = (x_n)_{n \in \mathbb{N}} : \sum_{i=1}^{\infty} |x_i|^p < \infty \}$ para $p \ge 1$, es un espacio de Banach con la norma definida por:

$$||x|| = \left(\sum_{i=1}^{\infty} |x_i|^p\right)^{1/p}$$

donde $x + y = (x_n) + (y_n)$ y $\alpha x = (\alpha x_n), \ \alpha \in \mathbb{R}$

Sea $\{x_n\}_{n=1}^{\infty}$ una sucesión de Cauchy en l_p , definimos $x_n := \{a_{nk}\}_{k=1}^{\infty}$, luego dado $\epsilon > 0, \exists N \in \mathbb{N}$ tal que $\forall n, m > N$

$$||x_n - x_m||_p = \left(\sum_{k=1}^{\infty} |a_{nk} - a_{mk}|^p\right)^{1/p} < \epsilon$$
 (1)

Ahora bien, es claro que además $\forall k$

$$(|a_{nk} - a_{mk}|^p)^{1/p} < \epsilon$$

$$|a_{nk} - a_{mk}| < \epsilon$$

Luego $\forall k \ \{a_{nk}\}_{n=1}^{\infty}$ es una sucesión de Cauchy en \mathbb{R} . Ahora bien, al ser \mathbb{R} un espacio completo, entonces toda sucesión de Cauchy en ella converge y por tal

$$\forall k \ \exists a_k : \lim_{n \to \infty} a_{nk} = a_k$$

Por lo que la sucesión $a = \{a_k\}_{k=1}^{\infty}$ es candidata a ser el límite de neustra sucesión de Cauchy.

Ahora, saquemos límite con respecto a n en 1

$$\left(\sum_{k=1}^{\infty} |a_k - a_{mk}|^p\right)^{1/p} < \epsilon \tag{2}$$

Veamos ahora si $a \in l_p$

$$\left(\sum_{k=1}^{\infty} |a_k|^p\right)^{1/p} = \left(\sum_{k=1}^{\infty} |-a_k|^p\right)^{1/p}$$

$$= \left(\sum_{k=1}^{\infty} |a_i - a_{mk} + a_{mk}|^p\right)^{1/p}$$

$$= \left(\sum_{k=1}^{\infty} |a_k - a_{mk}|^p\right)^{1/p} + \left(\sum_{k=1}^{\infty} |a_{mk}|^p\right)^{1/p}$$

$$= \left(\sum_{k=1}^{\infty} |a_k - a_{mk}|^p\right)^{1/p} + ||x_m||$$

Y finalmente por 2 y ya que $x_m \in l_p$

$$\left(\sum_{k=1}^{\infty} |a_k|^p\right)^{1/p} \le \infty$$
$$\sum_{k=1}^{\infty} |a_k|^p \le \infty$$

y por tal $a \in l_p$ con lo que queda demostrado que l_p es de Banach

- 24. Sea M un subespacio cerrado de un espacio de Hilbert V. Pruebe que $V=M\oplus M^{\perp}$, es decir, hay que demostrar:
 - a) $V = M + M^{\perp}$
 - b) Todo $v \in V$ se puede expresar como v = m + p de manera única, donde $m \in M$ y $p \in M^{\perp}$
- 25. Sea M un subespacio de un espacio de Hilbert, entonces
 - a) M es completo si y sólo si M es cerrado en V.

Sea M un subespacio de un espacio de Hilbert V completo, luego toda sucesión de cauchy en M es convergente a un punto en M, lo que implica que todos los puntos de acumulación de M pertenecen a su vez a M. Ahora bien, la cerradura \overline{X} de un conjunto X está definida como el conjunto cerrado más pequeño que contiene a X. mas formalmente, se define como:

$$\overline{X} = X \cup X'$$

Donde X' es el conjuntos de todos los puntos de acumulación de X. Como M ya contiene todos sus puntos de acumulación, entonces $\overline{M} = M \cup M' = M$, y por la defnición de cerradura sabemos que esta es un conjunto cerrado, luego

$$\therefore M$$
 completo $\implies M$ cerrado en V

Sea ahora M un subespacio cerrado de un espacio de Hilbert V, como $M \subset V$ y V es completo por ser espacio de Hilbert, entonces M es tambien completo y port al conlcuimos qur M es completo si y sólo si M es cerrado en V.

b) $M^{\perp} = \{0\}$ si y sólo si M es denso en V.

Antes de empezar este ejercicio es importa que recordemos la definición de un subconjunto denso: Dado un espacio topológico (X, \mathcal{T}) , se dice que un conjunto $A \subset X$ es denso en X si y sólo sí $\overline{A} = X$. Donde \overline{A} representa la cerradura de A.

Ahora teniendo en cuenta que todo espacio métrico es a su vez un espacio topológico vamos a realizar la prueba solicitada.

Sea M un subespacio de V tal que $M^{\perp} = \{0\}$ luego por el ejercicio demostración 25.d $M^{\perp \perp}$ es la cerradura de M, sin embargo, es claro que al ser $M^{\perp} = \{0\}$ entonces

$$\overline{M} = M^{\perp \perp} = V$$

Y por la definición de un conjunto denso

$$M^{\perp} \implies M$$
 es denso en V

Sea ahora un subespacio M denso en V, sabemos por definición de conjunto denso que entonces $\overline{M}=V$ y como pudimos ver en la demostración 14.a $H=M^{\perp}$ siempre será cerrado en V por lo que por la proposición 25.e $H^{\perp \perp}=H$. Sabemos por la proposición 25.d que $H^{\perp}=M^{\perp \perp}=\overline{M}$. Luego es facil ver que $\overline{M}^{\perp}=M^{\perp}$. Finalmente como $\overline{M}=V$ entonces $\overline{M}^{\perp}=M^{\perp}=\{0\}$ pues 0 es el único vector que es ortogonal a todo el espacio y finalmente conlcuimos

$$: M^{\perp} \iff M \text{ es denso en } V$$

c) Si M es cerrado y $M^{\perp} = \{0\}$, entonces M = V.

Dado que M es cerrado, entonces por la proposición 25.e $M^{\perp \perp} = M$, y como $M^{\perp} = \{0\}$ por hipótesis, obtenemos que $M = M^{\perp \perp} = V$

- d) $M^{\perp \perp} = \overline{M}$, donde \overline{M} es la clausura de M.
- e) Si M es cerrado, entonces $M^{\perp \perp} = M$.
- 26. Supongamos que $\{v_k\}_{k=1}^{\infty}$ un conjunto ortonormal de un espacio de Hilbert V. Las siguientes afirmaciones son equivalentes:
 - a) $\{v_k\}_{k=1}^{\infty}$ es una base ortonormal para V.
 - b) $\langle u, v \rangle = \sum_{j=0}^{\infty} \langle u, v_j \rangle \overline{\langle v, v_j \rangle}$ para cada $v \in V$.
 - c) La igualdad de Parseval se tiene: $||u||^2 = \sum_{j=0}^{\infty} |\alpha_j|^2$, donde $\alpha_j = \langle u, v_j \rangle$, para todo $u \in V$
 - d) El subespacio generado por $\{v_k\}_{k=1}^{\infty}$ es denso en V.
 - e) Para cada $u \in V$ si $\langle u, v_j \rangle = 0$, $\forall j$ entonces u = 0

Vamos a empezar demostrando que $a \implies b$

sea $\{v_n\}_{n\in\mathbb{N}}$ una base ortonormal para V, sabemos entonces que para todo $u\in V$ podemos escrivir u como

$$u = \sum_{i=0}^{\infty} \langle u, v_i \rangle v_i$$

Ahora sean $u, v \in V$ es claro que $\langle u, v \rangle$ podemos escribirla como

$$\langle u, v \rangle = \langle \sum_{i=0}^{\infty} \langle u, v_i \rangle v_i, \sum_{i=0}^{\infty} \langle v, v_i \rangle v_i \rangle$$
$$= \sum_{j=0}^{\infty} \langle u, v_j \rangle \langle v_j, \sum_{i=1}^{\infty} \langle v, v_i \rangle v_i \rangle$$
$$= \sum_{j=0}^{\infty} \sum_{i=1}^{\infty} \langle u, v_j \rangle \overline{\langle v, v_i \rangle} \langle v_j, v_i \rangle$$

Sin embargo como $\{v_n\}_{n\in\mathbb{N}}$ es una base ortonormal $\langle v_i,v_j\rangle=0$ para $j\neq i$ y $\langle v_i,v_j\rangle=1$ para j=i. Luego

$$\langle u, v \rangle = \sum_{j=0}^{\infty} \langle u, v_j \rangle \overline{\langle v, v_j \rangle} \langle v_j, v_j \rangle$$
$$= \sum_{j=0}^{\infty} \langle u, v_j \rangle \overline{\langle v, v_j \rangle}$$

Con lo que que da demotrado que $a \implies b$

Probemos ahora que $b \implies c$. Como sabemos, por hipotesis

$$\langle u, v \rangle = \sum_{j=0}^{\infty} \langle u, v_j \rangle \overline{\langle v, v_j \rangle}$$

para cada $v \in V$. Veamos ahora a cuanto es igual $||u||^2$

$$||u||^{2} = \langle u, u \rangle$$

$$= \sum_{j=0}^{\infty} \langle u, v_{j} \rangle \overline{\langle u, v_{j} \rangle}$$

$$= \sum_{j=0}^{\infty} |\langle u, v_{j} \rangle|^{2}$$

$$= \sum_{j=0}^{\infty} |\alpha_{j}|^{2} \operatorname{con} \alpha_{j} = \langle u, v_{j} \rangle$$

Luego queda probado que $b\implies c$