Отчёт по лабораторной работе №6

Архитектура компьютера

Сафиуллина Айлина Саяровна

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы	7
4	Выводы	16

Список иллюстраций

3.1	создание каталога	7
3.2	листинг 6.1	7
3.3	создание исполняемого файла	8
3.4	изменение текста программы	8
3.5	создание исполняемого файла	9
3.6	листинг 6.2	9
3.7	создание исполняемого файла	9
3.8	создание исполняемого файла	10
	изменения в тексте программы	10
3.10	создание исполняемого файла	10
3.11	листинг 6.3	11
3.12	Создание исполняемого файла	11
	изменение текста программы	12
3.14	создание исполняемого файла	12
3.15	программа для вычисления варианта	13
3.16	Создание исполняемого файла	13
3.17	результат программы	14
3.18	текст программы для вычисления выражения самостоятельной	
	работы	14

Список таблиц

1 Цель работы

Целью работы является освоение арифметических инструкций языка ассемблера NASM.

2 Задание

- 1. Символьные и численные данные в NASM.
- 2. Выполнение арифметических операций в NASM.
- 3. Выполнение задания для самостоятельной работы.

3 Выполнение лабораторной работы

Я создала каталог для программ лабораторной работы № 6, перешла в него и создала файл lab6-1.asm. (рис. 3.1).

```
assafiullina@dk1n22 ~ $ cd work/arch-pc assafiullina@dk1n22 ~/work/arch-pc $ mkdir lab06 mkdir: невозможно создать каталог «lab06»: Файл существует assafiullina@dk1n22 ~/work/arch-pc $ cp lab05/in_out.asm lab06/assafiullina@dk1n22 ~/work/arch-pc $ cd lab06 assafiullina@dk1n22 ~/work/arch-pc/lab06 $ touch lab06-1.asm assafiullina@dk1n22 ~/work/arch-pc/lab06 $ ls
```

Рис. 3.1: создание каталога

Вводим в файл lab6-1.asm текст программы из листинга 6.1 (рис. 3.2).

```
lab06-1.asm
                                        13/ 13] *(172 / 172b) <EOF>
                   [-M--]
                                   1+12
%include 'in_out.asm'
SECTION .bss
buf1: RESB 80
SECTION .text
GLOBAL _start
_start:
mov eax,'6'
mov ebx,'4'
add eax,ebx
mov [buf1],eax
mov eax,buf1
call sprintLF
call quit
```

Рис. 3.2: листинг 6.1

Создадим исполняемый файл и проверим его работу (рис. 3.3).

```
assafiullina@dk1n22 ~/work/arch-pc/lab06 $ nasm -f elf lab06-1.asm assafiullina@dk1n22 ~/work/arch-pc/lab06 $ ld -m elf_i386 -o lab06-1 lab06-1.o assafiullina@dk1n22 ~/work/arch-pc/lab06 $ ./lab06-1 j assafiullina@dk1n22 ~/work/arch-pc/lab06 $ \square
```

Рис. 3.3: создание исполняемого файла

Изменяю текст программы, вместо символов записывая в eax, ebx числа (рис. 3.4).

Рис. 3.4: изменение текста программы

Создадим исполняемый файл и проверим его работу (рис. 3.5).

Рис. 3.5: создание исполняемого файла

На экране ничего не отображается. Это связано с тем, что символ с кодом 10 это символ перевода строки

Создаю файл lab6-2.asm в каталоге для программ лабораторной №6. Ввожу в него текст программы из листинга 6.2 (рис. 3.6).

Рис. 3.6: листинг 6.2

Создадим исполняемый файл и проверим его работу (рис. 3.7).

```
assafiullina@dk1n22 ~/work/arch-pc/lab06 $ nasm -f elf lab06-2.asm
assafiullina@dk1n22 ~/work/arch-pc/lab06 $ ld -m elf_i386 -o lab06-2 lab06-2.o
assafiullina@dk1n22 ~/work/arch-pc/lab06 $ ./lab06-2
106
assafiullina@dk1n22 ~/work/arch-pc/lab06 $
```

Рис. 3.7: создание исполняемого файла

Аналогично предыдущей программе заменяю символы на числа, затем снова создаю исполняемый файл и получаю результат арифметической операции (рис. 3.8).

```
assafiullina@dk1n22 ~/work/arch-pc/lab06 $ nasm -f elf lab06-2.asm
assafiullina@dk1n22 ~/work/arch-pc/lab06 $ ld -m elf_i386 -o lab06-2 lab06-2.o
assafiullina@dk1n22 ~/work/arch-pc/lab06 $ ./lab06-2
10
assafiullina@dk1n22 ~/work/arch-pc/lab06 $ |
```

Рис. 3.8: создание исполняемого файла

Заменяю функцию iprintLF на iprint (рис. 3.9).

```
lab06-2.asm [-M--] 11 L:[ 1+ 7  8/ 9] *(101 / 111b) 0010 0x00A [*][X]
%include 'in_out.asm'
SECTION .text
GLOBAL _start
_start:
mov eax,6
mov ebx,4
add eax,ebx
call iprint
call quit
```

Рис. 3.9: изменения в тексте программы

Создадим исполняемый файл и проверим его работу (рис. 3.10).

```
assafiullina@dk1n22 ~/work/arch-pc/lab06 $ nasm -f elf lab06-2.asm assafiullina@dk1n22 ~/work/arch-pc/lab06 $ ld -m elf_i386 -o lab06-2 lab06-2.o assafiullina@dk1n22 ~/work/arch-pc/lab06 $ ./lab06-2 lab06-2 lab06-2
```

Рис. 3.10: создание исполняемого файла

Вывод функции iprintLF от вывода функции iprint отличается тем, что в последнем случае после вывода не добавляется переход на новую строку

С помощью функции touch создаю файл lab6-3.asm. Ввожу в него текст программы для вычисления значения указанного выражения (рис. 3.11).

```
lab6-3.asm
                    [----] 13 L:[ 3+ 3 6/ 26] *(198 /1236b) 0010 0x00A [*][X]
div: DB 'Результат: ',0
rem: DB 'Остаток от деления: ',0
SECTION .text
GLOBAL _start
_start:
mov eax,5 ; EAX=5
mov ebx,2 ; EBX=2
mul ebx ; EAX=EAX*EBX
add eax,3 ; EAX=EAX+3
xor edx,edx ; обнуляем EDX для корректной работы div
mov ebx,3 ; EBX=3
div ebx ; EAX=EAX/3, EDX=остаток от деления
mov edi,eax ; запись результата вычисления в 'edi'
mov eax,div ; вызов подпрограммы печати
call sprint ; сообщения 'Результат: '
mov eax,edi ; вызов подпрограммы печати значения
call iprintLF ; из 'edi' в виде символов
mov eax,rem ; вызов подпрограммы печати
call sprint ; сообщения 'Остаток от деления: '
mov eax,edx ; вызов подпрограммы печати значения
1Помощь <mark>2</mark>Сохран <mark>3</mark>Блок — 4Замена <mark>5</mark>Копия — 6Пер~ть 7Поиск — 8Уда~ть 9МенюМС10Выход
```

Рис. 3.11: листинг 6.3

Создадим исполняемый файл и проверим его работу (рис. 3.12).

```
assafiullina@dk1n22 ~/work/arch-pc/lab06 $ nasm -f elf lab6-3.asm assafiullina@dk1n22 ~/work/arch-pc/lab06 $ ld -m elf_i386 -o lab6-3 lab6-3.o assafiullina@dk1n22 ~/work/arch-pc/lab06 $ ./lab6-3 Peзультат: 4
Остаток от деления: 1
```

Рис. 3.12: Создание исполняемого файла

Изменяю текст программы для вычисления нового выражения (рис. 3.13).

```
lab6-3.asm
                   [-M--] 9 L:[ 5+21 26/26] *(1177/1236b) 0032 0x020
SECTION .text
GLOBAL _start
_start:
mov eax,4 ; EAX=5
mov ebx,6 ; EBX=2
mul ebx ; EAX=EAX*EBX
add eax,2 ; EAX=EAX+3
xor edx,edx ; обнуляем EDX для корректной работы div
mov ebx,5 ; EBX=3
div ebx ; EAX=EAX/3, EDX=остаток от деления
mov edi,eax ; запись результата вычисления в 'edi'
mov eax,div ; вызов подпрограммы печати
call sprint ; сообщения 'Результат: '
mov eax,edi ; вызов подпрограммы печати значения
call iprintLF ; из 'edi' в виде символов
mov eax,rem ; вызов подпрограммы печати
call sprint ; сообщения 'Остаток от деления: '
mov eax,edx ; вызов подпрограммы печати значения
call iprintLF ; из 'edx' (остаток) в виде символов
call quit ; вызов подпрограммы завершения
1Помощь 2Сохран 3Блок 4Замена <mark>5</mark>Копия 6Пер~ть 7Поиск 8Уда~ть 9МенюМС<mark>10</mark>Выхо
```

Рис. 3.13: изменение текста программы

Создадим исполняемый файл и проверим его работу (рис. 3.14).

```
assafiullina@dk1n22 ~/work/arch-pc/lab06 $ nasm -f elf lab6-3.asm assafiullina@dk1n22 ~/work/arch-pc/lab06 $ ld -m elf_i386 -o lab6-3 lab6-3.o assafiullina@dk1n22 ~/work/arch-pc/lab06 $ ./lab6-3 Результат: 5
Остаток от деления: 1 assafiullina@dk1n22 ~/work/arch-pc/lab06 $
```

Рис. 3.14: создание исполняемого файла

С помощью функции touch создаю файл variant.asm. Ввожу в него текст программы для вычисления варианта (рис. 3.15).

```
[-M--] 25 L:[ 2+ 2 4/ 27] *(144 / 549b) 0010 0x00A
variant.asm
SECTION .data
msg: DB 'Введите № студенческого билета: ',0
rem: DB 'Ваш вариант: ',0
SECTION .bss
x: RESB 80
SECTION .text
GLOBAL _start
_start:
mov eax, msg
call sprintLF
mov ecx, x
mov edx, 80
call sread
mov eax,х ; вызов подпрограммы преобразования
call atoi ; ASCII кода в число, 'eax=x'
68 Демидова А. В.
Архитектура ЭВМ
xor edx,edx
mov ebx,20
div ebx
inc edx
```

Рис. 3.15: программа для вычисления варианта

Создадим исполняемый файл и проверим его работу (рис. 3.16).

```
assafiullina@dk1n22 ~/work/arch-pc/lab06 $ nasm -f elf variant.asm
assafiullina@dk1n22 ~/work/arch-pc/lab06 $ ld -m elf_i386 -o variant variant.o
assafiullina@dk1n22 ~/work/arch-pc/lab06 $ ./variant
Введите № студенческого билета:
1032241171
Ваш вариант: 12
assafiullina@dk1n22 ~/work/arch-pc/lab06 $ □
```

Рис. 3.16: Создание исполняемого файла

мой вариант - 12.

В соответствии с вариантом выполним задание для самостоятельной работы (рис. 3.17).

```
assafiullina@dk1n22 ~/work/arch-pc/lab06 $ nasm -f elf lab6-4.asm
assafiullina@dk1n22 ~/work/arch-pc/lab06 $ ld -m elf_i386 -o lab6-4 lab6-4.o
assafiullina@dk1n22 ~/work/arch-pc/lab06 $ ./lab6-4
Введите X
1
Ошибка сегментирования (образ памяти сброшен на диск)
```

Рис. 3.17: результат программы

(рис. 3.18).

```
lab6-4.asm
                          10 L:[ 2+19 21/23] *(284 / 303b) 0120 0x078
SECTION .data
msg: DB 'Введите X ',0
rem: DB 'Выражение = : ',0
SECTION .bss
x: RESB 80
SECTION .text
GLOBAL _start
_start:
mov eax, msg
call sprintLF
mov ecx, x
mov edx, 80
call sread
mov eax,x
call atoi
add eax,-6
mov ebx,18
mul ebx
xor edx,edx
mov ebx,2
div ebx
```

Рис. 3.18: текст программы для вычисления выражения самостоятельной работы

Ответы на вопросы: 1. Какие строки листинга отвечают за вывод на экран сообщения 'Ваш вариант:'? • Строка "mov eax, rem" перекладывает в регистр значение переменной с фразой "Ваш вариант:". Строка "call sprint" вызывает подпрограмму вывода строки. 2. Для чего используются следующие инструкции?

• Инструкция "nasm" используется для компиляции кода на языке ассемблера NASM. Инструкция "mov ecx, x" используется для перемещения значения переменной х в регистр есх. Инструкция "mov edx, 80" используется для перемещения значения 80 в регистр edx. Инструкция "call sread" вызывает подпрограмму для считывания значения студенческого билета из консоли. 3. Для чего используется инструкция "call atoi"? • Инструкция "call atoi" используется для преобразования введенных символов в числовой формат. 4. Какие строки листинга отвечают за вычисления варианта? • Строка "xor edx, edx" обнуляет регистр edx. Строка "mov ebx, 20" записывает значение 20 в регистр ebx. Строка "div ebx" выполняет деление номера студенческого билета на 20. Строка "inc edx" увеличивает значение регистра edx на 1. 5. В какой регистр записывается остаток от деления при выполнении инструкции "div ebx"? • Остаток от деления записывается в регистр edx. 6. Для чего используется инструкция "inc edx"? • Инструкция "inc edx" используется для увеличения значения в регистре edx на 1, в соответствии с формулой вычисления варианта. 7. Какие строки листинга отвечают за вывод на экран результата вычислений? • Строка "mov eax, edx" перекладывает результат вычислений в регистр eax. Строка "call iprintLF" вызывает подпрограмму для вывода значения на экран.

4 Выводы

В ходе данной лабораторной работы я изучила работу с арифметическими операциями.