Apprentissage Automatique k-NN. Arbres de décision & méthodes ensemblistes

S. Herbin

stephane.herbin@onera.fr

Rappel du dernier cours

- Principes généraux d'apprentissage : données apprentissage/validation/test, optimisation, évaluation
- Deux familles d'algorithmes élémentaires de classification supervisée : classifieur Bayésien et discrimination linéaire.

Objectifs de ce cours

- Deux nouveaux algorithmes : plus proches voisins et arbre de décision
- ► Un principe de conception : les approches ensemblistes Intuition : « un groupe prend plus souvent de meilleures décisions qu'un individu »

Plus proches voisins

Plus proche(s) voisin(s)

Principe:

- Deux échantillons proches dans l'espace de représentation ont les mêmes prédictions
- Pour prédire, il suffit de trouver l'exemple annoté le plus proche, et d'associer son annotation (étiquette, valeur...)
- Que veut dire « proche »?
 - Nécessite la définition d'une métrique ou mesure de similarité d(x, x')
 - Plusieurs métriques possibles: distance euclidienne (L2), city-block (L1), Minkowski, Mahalanobis...
 - On peut aussi « apprendre » la métrique ou mesure de similarité
- Que veut dire « le plus proche »?
 - Base d'échantillons annotés $\mathcal{L} = \{(x_1, y_1), (x_2, y_2), ... (x_N, y_N)\}$
 - Recherche de l'échantillon le plus proche: $i^* = \arg\min_i d(x, x_i)$
 - Attribue comme prédiction l'annotation du plus proche: $y^* = y_{i^*}$

$$y = R(\mathbf{x})$$

Fonction de classification

Chaque échantillon définit une région homogène de l'espace de représentation

Fonction de classification

Données bruitées → Régions isolées → mauvaise régularité des prédictions

Chaque échantillon définit une région homogène de l'espace de représentation

k-plus proches voisins (« k-NN »)

- Principe: décision à partir de plusieurs exemples de la base de données d'apprentissage
- On ordonne les échantillons d'apprentissage en fonction de leur distance à la donnée à classer:

$$d(\mathbf{x}, \mathbf{x}_{(1)}) \le d(\mathbf{x}, \mathbf{x}_{(2)}) \le \dots \le d(\mathbf{x}, \mathbf{x}_{(N)})$$

- On choisit les k plus proches
- On prédit en choisissant la classe recueillant le plus de votes

$$y^* = \arg\max_{y} \sum_{i=1}^{k} \delta(y, y_{(i)})$$

Où δ est la fonction de Kronecker (elle vaut 1 si égal, 0 sinon)

- Si pas de max (ambiguïté sur la prédiction) on ne décide pas!
- On peut aussi pondérer les votes:

$$y^* = \arg\max_{y} \sum_{i=1}^{\kappa} K(x, x_{(i)}) \delta(y, y_{(i)})$$

Fonction de classification 5 ppv

Données bruitées → Régions isolées → mauvaise régularité des prédictions

Chaque échantillon définit une région homogène de l'espace de représentation

Propriétés statistiques

Bornes statistiques asymptotiques $(N \to \infty)$

$$E \le E_{kNN} \le E \left(2 - \frac{LE}{L - 1} \right)$$

Où E est l'erreur théorique optimale (Bayes), L est le nombre de classes et E_{kNN} est l'erreur des k-ppv.

« L'erreur du k-NN est au plus deux fois moins bonne que l'erreur minimale théorique. »

Coût de la prédiction du k-ppv

 Calcul de la prédiction dépend pour chaque exemple x d'un calcul + tri par rapport aux N exemples de la base:

$$d(\mathbf{x}, \mathbf{x}_{(1)}) \le d(\mathbf{x}, \mathbf{x}_{(2)}) \le \cdots \le d(\mathbf{x}, \mathbf{x}_{(N)})$$

- Pour N et d grands, coût important de la recherche exhaustive O(Nd). Il existe:
 - Des algorithmes efficaces de recherche pour problèmes de tailles moyennes (KDtree)
 - J. Friedman, J. L. Bentley, and R. A. Finkel, "An algorithm for finding best matches in logarithmic expected time," *ACM Transaction on Mathematical Software*, vol. 3, no. 3, pp. 209–226, 1977.
 - Des algorithmes d'approximation pour les grandes bases (>10⁶).
 - Jegou, H., Douze, M., & Schmid, C. (2011). Product quantization for nearest neighbor search. *IEEE transactions on pattern analysis and machine intelligence*, 33(1), 117-128.
- Autre manière: pré-calculer les surfaces de séparation entre classes. La complexité de prédiction est alors liée à la complexité de la surface et/ou de son approximation. On verra comment d'autres approches permettent de l'estimer directement.

La malédiction des grandes dimensions

- Lorsque la dimension *d* de l'espace de représentation augmente, les points sont tous aussi proches ou aussi loin.
- On peut montrer, pour une distribution quelconque de N points tirés de manière indépendante dans $[0,1]^d$, que:

$$\lim_{d \to \infty} E\left[\frac{dmax - dmin}{dmin}\right] = 0$$

- Ce n'est plus vrai si les distributions ont une structure...heureusement!
- On peut interpréter les techniques de Machine Learning comme des moyens de repérer les bonnes corrélations entre données.
- Conséquence pour les approches « plus proches voisins »:
 - Ca ne marche que pour les faibles dimensions
 - Ou il faut réduire les dimensions de représentation avant de calculer les distances → apprentissage non supervisé

Comportement des PPV

- Avantages
 - Schéma flexible, facile à mettre en œuvre, dépendant de la définition d'une similarité entre données.
 - Bonnes propriétés statistiques (N → ∞)
- Mais...
 - Temps de calcul prohibitif pour grandes bases
 - Algorithmes efficaces de recherche optimaux ou sous-optimaux
 - · Régularité dépend des données, pas de l'apprentissage
 - Le k-PPV (« kNN ») pour lisser et réduire le bruit
 - Malédiction des grandes dimensions (« Curse of dimensionality »)
 - Réduire la dimension de représentation

« Plus proches voisins »: résumé

- Hypothèse de régularité = Si observations proches, même comportement
- Deux questions:
 - Que veut dire « proche »?
 - Comment trouver les plus proches?
- Apprentissage
 - Aucun
- Prédiction
 - Tri des distances aux échantillons + vote
- Quand l'utiliser? (limitations)
 - Efficace sur petits problèmes (dimensions & nombre d'exemples)
 - Pb du « curse of dimensionality » + temps de calcul
 - Disposer d'une mesure de similarité adaptée aux données

Arbres de décision

Explicabilité I

Figure 1 - Programm XAI de la Darpa https://www.darpa.mil/program/explainable-artificial-intelligence

Explicabilité II

- Beaucoup de fonctions de prédiction sont opaques (réseaux de neurones) : il est souvent difficile de comprendre la logique de leur calcul.
- Explicabilité: Fournir des éléments de compréhension du fonctionnement des prédicteurs est un des éléments pour construire une Intelligence Artificielle de confiance.

On va décrire un prédicteur plus facilement interprétable : l'arbre de décision.

Jeux de déduction

→ Quelle meilleure question poser? (Comment fait https://fr.akinator.com/?)

Classification hiérarchique

Choisir ma photo de profil

Analyse préliminaire

Qu'y a-t-il de commun à ces exemples?

- Décompose une prédiction globale en une séquence de décisions (questions+réponses) locales pour
- sélectionner une prédiction pré-estimée.

Les séquences de décisions peuvent être représentées globalement par un arbre de décision.

La question du jour : comment construire les séquences de décision (l'arbre) pour une bonne prédiction?

Arbres de décision [3, 9]

Principe

- Prédiction en posant une séquence de questions fermées (= nombre fini de réponses possibles)
- Questions organisées sous forme d'arbre : la question suivante dépend de la réponse à la question précédente

Types de questions

- Sur la valeur d'un attribut caractéristique : « x est rouge? »
- Sur la véracité d'une clause logique : rouge(x) ∧ rond(x) = True?
- lacktriangle Sur l'appartenance à un intervalle ou un sous-ensemble : $1_{x>0.5}$

Prédiction

Estimation de la valeur prédite à partir des données pour lesquelles la séquence de questions est vraie

Exemple d'arbre

Arbres de décision : structure

- ▶ Données codées comme ensemble d'attributs (ex : attributs d'un fruit = couleur, taille forme, goût...)
- Noeud de décision associé à un test ou une question sur un des attributs
- Branches qui représentent les valeurs possibles de l'attribut testé ou des réponses aux questions
- ► Noeud terminal ou feuille définissant la prédiction

Arbres de décision et partition

- Les questions découpent (partitionnent) l'espace des données à chaque étape
- Le noeud terminal code un élément de la partition
- ► Toutes les données codées par le noeud terminal ont la même prédiction

Figure 2 – Partition sur des données symboliques. Les questions portent sur la valeur d'un attribut discret.

Arbres de décision et partition

Figure 3 – Prédiction multi-classe. Les questions sont des tests comparant la valeur d'une dimension à un seuil.

Arbres de décision

Quelles questions se poser pour construire un arbre?

Questions globales:

- ▶ Quelle structure choisir? (profond, équilibré,...)?
- Combien de découpages par noeud? (binaire, plus)
- Quand s'arrêter de découper?

Questions locales:

- Quel attribut choisir, et quel test lui appliquer?
- Si l'arbre est trop grand, comment l'élaguer?
- Si une feuille n'est pas pure, quelle classe attribuer?

Arbres de décision : apprentissage

Soit $D = \{(x_j, y_j)\}_{j \leq N}$ un ensemble d'apprentissage où chaque donnée est caractérisée par ensemble d'attributs $x_j = \{a_i^j\}_{1 \leq j \leq M}$, avec a_i^j à valeurs numériques ou symboliques.

Principes pour construire l'arbre de décision compatible avec D:

- « Rasoir d'Occam » : trouver l'hypothèse explicative la plus simple possible (principe local)
- « Minimum Description Length » : trouver l'ensemble des hypothèses qui produit le plus petit nombre d'opérations (principe global)

Recherche optimale impossible (problème NP-complet) [10]

Heuristique assurant un arbre cohérent avec les données d'apprentissage.

Arbres de décision : algorithme élémentaire

Principe général

Construction incrémentale d'un arbre.

Trois étapes

- 1. Décider si un noeud est terminal
- 2. Si un noeud n'est pas terminal, choisir un attribut, un test et des **branches** possibles
- 3. Si un noeud est terminal, lui associer une **prédiction** (une classe, une valeur, etc.)

Remarques

- ▶ il est courant de n'utiliser que des tests *binaires* (vrai/faux).
- le il existe des formulations non récursives plus globales [8].

Arbres de décision : Formulation récursive

Fonction Construire_arbre(D)

Si les données de *D* ont des valeurs *homogènes* (critère d'arrêt)

 créer une feuille et une prédiction estimée avec la valeur des données

Sinon

- ▶ choisir un attribut a_i et un test T ayant J réponses possibles pour créer un nouveau noeud et une question associée
- ▶ la question partitionne D en J sous-ensembles $\{D_j\}_{j=1...J}$ associés à chaque branche j
- ightharpoonup répéter Construire_arbre (D_j) pour chaque branche j

Arbres de décision : comment choisir la bonne question ?

- ➤ A chaque noeud non homogène, on associe une question = attribut + test sur J valeurs.
- ▶ On dispose d'un critère d'hétérogénéité I(D) caractérisant une population de données D.
- À chaque noeud, on choisit de T* maximisant le gain en homogénéité :

$$T^* = \underset{T}{\operatorname{arg max}} \operatorname{Gain}(D, T)$$

où $Gain(D,T) = I(D) - \sum_{j} p(D_{j}|D,T)I(D_{j})$ et $p(D_{j}|D,T) = |D_{j}|/|D|$ est la proportion de données dans D sélectionnées par la branche j

Remarque : En pratique, le nombre de tests à évaluer peut être très grand. La recherche du arg max peut faire intervenir des heuristiques sous-optimales.

Arbres de décision : critères d'homogénéité

Trois critère usuels

- ► Entropie : $I(D) = -\sum_k p_k(D)log_2(p_k(D))$
- ▶ Indice de Gini : $I(D) = \sum_k p_k(D)(1 p_k(D))$
- Indice d'erreur : $I(D) = 1 \max_k(p_k(D))$

où $p_k(D) = N_k(D)/|D|$ est la probabilité d'avoir une donnée de classe k dans l'ensemble D.

Quand s'arrêter?

Critères structuraux

- Profondeur maximale
- Nombre de feuilles minimal

Critères statistiques

- Indice d'homogénéité minimal
- Nombre minimal de données en chaque noeud (avant ou après répartition)

Que prédire?

On exploite la population de données associée à chaque feuille de l'arbre.

Classification

- Classe la plus probable
- Distribution de classes

Régression

Moyenne, médiane de la population

Exemple simulé

Figure 4 – Distribution simulée et arbre théorique optimal.

Exemple simulé : Recherche du meilleur test

Figure 5 – Recherche sur premier axe avec indice de Gini.

Exemple simulé : Recherche du meilleur test

Figure 6 – Recherche sur deuxième axe avec indice de Gini.

Exemple simulé : résultat (indice de Gini)

Figure 7 – Arbre et partition finale avec probabilité de classe bleue pour chaque région.

Arbres de décision : comportement statistique

Sur-apprentissage

- Un arbre trop précis risque de mal généraliser (cf. k-NN)
- Les arbres peuvent être mal équilibrés
- ➤ On peut utiliser des techniques d'élagage (« pruning ») pour améliorer a posteriori la qualité des arbres

Arbres de décision : comportement statistique

La complexité peut être contrôlée

- en limitant la profondeur
- en minorant le gain en homogénéité
- en ajoutant une pénalisation de complexité dans le coût
- en garantissant une bonne estimation des coûts (par ex. un nombre minimal d'échantillons par noeud)

Arbres de décision : Résumé

Points clés des arbres de décision

- + Interprétabilité
- Apprentissage et classification rapides et efficaces, y compris en grande dimension.
 - Tendance au surapprentissage (mais moyen de contrôle de la complexité)
 - Sensibilité au bruit et aux points aberrants, instabilité

Utilisations

- + Classification ou régression...
- + Capable de traiter des données numériques, mais aussi symboliques

Méthodes ensemblistes

Méthodes ensemblistes

Définition

- Méthodes agrégeant des ensembles de classifieurs;
- Produire une variété de classifieurs : en échantillonnant différemment les données, en modifiant les structures de classifieurs;
- Classe finale = fusion des prédictions.

Principe

- ► L'union fait la force : tirer parti de plusieurs classifieurs peu performants (« faibles ») pour construire un classifieur performant (« fort »)
 - Réduit la variance d'apprentissage et moyenne les erreurs

Méthodes ensemblistes

Deux grandes approches : bagging et boosting

Bagging [1]

Génération de jeux de données multiples

- ▶ Construction de $\tilde{X}_1,...,\tilde{X}_K$ par tirage avec remise sur X.
- \tilde{X}_k similaires, mais pas trop (proba d'un exemple de ne pas être sélectionné $p=(1-1/N)^N$. Quand $N\to\infty$, $p\to0.3679$.)
- ▶ Entraı̂ner K fois le même algorithme f_k (arbre, réseau de neurones, SVM..) sur chaque \tilde{X}_k et agréger par vote majoritaire ou moyenne $f(x) = \frac{1}{K} \sum f_k(x)$

Conséquence

- lacktriangle Chaque classifieur commet des erreurs différentes, liées à $ilde{X}_k$
 - → l'agrégat a une plus faible variance d'apprentissage
- ► Méthode pour *régulariser* le processus de prédiction.

Bagging

bootstrap samples

Random Forests [2]

Forêts aléatoires ou Random forests

- Combiner hasard et bagging pour construire un ensemble d'arbres de décision encore plus varié (=forêt)
 - ► La partie calculatoire des arbres de décision est la construction incrémentale de leur structure (meilleure paire attribut & test)
 - Structure = paramètre de contrôle des arbres (profondeur max, critère de pureté des noeuds, nombre d'échantillons par noeud...) + aléatoire sur attributs/données/tests

Random Forests

Random Forests

Forêts aléatoires ou Random forests

Algorithme:

POUR $k = 1 \dots K$:

- ightharpoonup Bagging : tirage de $ilde{X}_k$ de même taille que X
- ightharpoonup Tirage (avec remise) de q attributs A_i parmi les M possibles
- ightharpoonup Construction de l'arbre G_k avec des seuils aléatoires
- ▶ Construction de f_k la fonction de décision de G_k dont les feuilles sont remplies avec \tilde{X}_k

Agrégation :

- ▶ $f(x) = \frac{1}{K} \sum f_k(x)$ (régression)
- ▶ f(x) = Vote majoritaire($f_1(x), ..., f_K(x)$)

Intérêt des approches ensemblistes

On introduit une source d'aléatoire supplémentaire : choix des splits, du sous ensemble de variables, etc.

Lorsque les prédicteurs individuels sont sans biais (c'est le cas avec les arbres), la variance du prédicteur ensembliste est :

$$\operatorname{var}\left(\hat{f}_D(\mathsf{x})\right) = \rho\sigma^2 + \frac{1-\rho}{K}\sigma^2$$

 σ variance d'un prédicteur individuel et ρ corrélation entre deux prédicteurs.

On voit que l'on a intérêt à construire des prédicteurs individuels indépendants ($\rho \approx 0$), et en grand nombre (K grand).

Random Forests: Résumé

Points clés des forêts aléatoires

- + Bonnes performances
- + Arbres plus décorrélés que par simple bagging
- + Grandes dimensions
- + Robustesse
 - Temps d'entraînement (mais aisément parallélisable).

Utilisation

- Choix d'une faible profondeur (2 à 5), autres hyper-paramètres à estimer par validation croisée
- Classification et régression
- Données numériques et symboliques

Boosting [5]

Principe

- ► $X = \{(x_i, y_i)\}_{i=1}^N$ un ensemble de données où $y_i \in \{-1, 1\}$
- ▶ H un ensemble ou une famille de classifieurs $f \mapsto -1, 1$, pas forcément performants → appelés weak learners

Objectif du boosting :

- ► Construire un classifieur performant $F(x) = \sum_{k=1}^{K} \alpha_k f_k(x)$ → appelé *strong learner*
- Moyenne pondérée des weak learners
- Comment trouver les poids?

AdaBoost

- ► Adaboost = « Adaptive boosting algorithm », algorithme minimisant l'erreur globale de F de manière itérative
- ▶ Principe : à chaque itération k, modifier F^k de manière à donner plus de poids aux données difficiles (mal-classées) qui permettent de corriger les erreurs commises par F^{k-1}

AdaBoost : algorithme

Initialiser les poids liés aux données :

$$d^0 \leftarrow (\frac{1}{K}, \frac{1}{K}, \dots, \frac{1}{K})$$

POUR $t = 1 \dots K$:

- ► Entraı̂ner f_k sur les données X pondérées par d^{k-1} $(f_k = \arg\min_f \sum_i d_i^{k-1} [y_i \neq f(x_i)])$
- ▶ Prédire $\hat{y} = y^i \leftarrow f_k(x_i), \forall i$
- ► Calculer l'erreur pondérée $\epsilon^k \leftarrow \sum_i d_i^{k-1} [y_i \neq \hat{y}_i]$
- lacksquare Calculer les paramètres adaptatifs $lpha^k \leftarrow rac{1}{2} \log \left(rac{1 \epsilon^k}{\epsilon^k}
 ight)$
- ► Re-pondérer les données $d^k = d_i^k \leftarrow d_i^{k-1} \exp(-\alpha^k y_i \hat{y}_i)$

Classifieur (pondéré) final :
$$F(x) = \operatorname{sgn}\left(\sum_{k=1}^{K} \alpha_k f_k(x)\right)$$

Figure 8 – Apprentissage séquentiel des classifieurs et des pondérations.

Source: A Tutorial on Boosting (Freund and Schapire)

Figure 9 – Classifieur final.

Gradient Boosting [6, 7]

Gradient Boosting

Variante : version additive pas-à-pas

- $X = \{(x_i, y_i)\}_{i=1}^N$ un ensemble de données où $y_i \in \{-1, 1\}$
- ▶ H un ensemble de classifieurs $f \mapsto -1, 1$, pas forcément performants → appelés *weak learners*

Objectif du gradient boosting :

- Construire itérativement un classifieur performant $F_T(x) = \sum_{t=1}^T \alpha_t f_t(x) = F_{T-1}(x) + \alpha_T f_T(x)$ où f_t est l'un des weak learners h.
- ▶ Il s'agit à chaque étape de minimiser le risque empirique : $\mathcal{L}(F_T) = \sum_{n=1}^{N} I(y_n, F_T(x_n))$ où I est un coût (loss)

Gradient Boosting

Coûts

- Adaboost \rightarrow gradient boost avec fonction de coût $I(y, f(x)) = \exp(-y.f(x))$
- Adaboost peut être vu comme la construction itérative d'un classifieur optimal par minimisation du risque empirique à chaque pas.
- Cadre plus général : d'autres pénalités sont possibles :
 - ► LogitBoost : $I(y, f(x)) = \log_2 (1 + \exp[-2y.f(x)])$
 - ► L_2 Boost : $I(y, f(x)) = (y f(x))^2/2$
 - ▶ DoomII : $I(y, f(x)) = 1 \tanh(y.f(x))$
 - ► Savage : $I(y, f(x)) = \frac{1}{(1 + \exp(2y.f(x)))^2}$
- DoomII et Savage sont non-convexes → plus robustes aux données bruitées

Gradient Boosting

Pourquoi *Gradient* Boosting?

- ► Chaque étape minimise le risque empirique : $\mathcal{L}(F_T) = \sum_{n=1}^{N} I(y_n, F_T(x_n))$ où I est un coût (loss)
- Lors de la variante additive d'adaboost, α_Tf_T(x) peut donc être vu comme le weak learner qui approxime le mieux le pas d'une descente de gradient dans l'espaces des fonctions de classification
- Une version exacte de la descente de gradient donne les Gradient Boosting Models :

$$F_T(x) = F_{T-1}(x) + \alpha_T \sum_{i=1}^{N} \nabla_{F_{T-1}} I(y_i, f_{T-1}(x_i))$$

Boosting : Résumé

Points clés du boosting

- Agrégation adaptative de classifieurs moyens
- + Résultats théoriques sur la convergence et l'optimalité du classifieur final
- + Très efficace (améliore n'importe quel ensemble de classifieurs)
- Assez facile à mettre en oeuvre (moins vrai pour Gradient Boosting)
 - Sensibilité aux données aberrantes,

Utilisations

- Choix du weak learner : ne doit pas être trop bon, sinon surapprentissage
- Choix de la pénalité en fonction du bruit des données
- Variantes pour la classification et la régression

Cours n°2 : Arbres de décision et méthodes ensemblistes

Notions phares du jour

- Arbres de décision (vote, homogénéité)
- Aggrégation de classifieurs
- Bagging, Random Forests
- Boosting, GradientBoost

Concepts généraux

- Classification / régression
- Bagging et randomisation (Forêts aléatoires)
- Construction adaptative à partir de weak learners et optimisation dans l'espace des classifieurs (Boosting)

Références L

[1] Leo Breiman.

Bagging predictors.

Machine learning, 24(2):123-140, 1996.

[2] Leo Breiman.

Random forests.

Machine learning, 45(1):5-32, 2001.

[3] Leo Breiman, Jerome H Friedman, Richard A Olshen, and Charles J Stone. Classification and regression trees.

Routledge, 2017.

[4] Tiangi Chen and Carlos Guestrin.

Xgboost : A scalable tree boosting system.

In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, pages 785–794, 2016.

[5] Yoav Freund and Robert E Schapire.

A decision-theoretic generalization of on-line learning and an application to boosting.

Journal of computer and system sciences, 55(1):119-139, 1997.

[6] Jerome H Friedman.

Greedy function approximation: a gradient boosting machine.

Annals of statistics, pages 1189-1232, 2001.

[7] Jerome H Friedman.

Stochastic gradient boosting.

Computational statistics & data analysis, 38(4):367-378, 2002.

[8] Donald Geman and Bruno Jedynak.

Model-based classification trees.

IEEE Transactions on Information Theory, 47(3):1075-1082, 2001.

Références II

- Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The elements of statistical learning.
 Springer, 2009.
- [10] Hyafil Laurent and Ronald L Rivest. Constructing optimal binary decision trees is np-complete. Information processing letters, 5(1):15-17, 1976.