Question Number	Answer		Mark
13(a)	Use of $pV = NkT$	(1)	
	Temperature converted to kelvin	(1)	
	$V = 6.9 \text{ m}^3$	(1)	3
	Example of calculation		
	$\frac{pV}{T}$ = a constant		
	$\frac{8.4 \times 10^4 \text{ Pa} \times V}{(273 - 48) \text{ K}} = \frac{1.02 \times 10^5 \text{ Pa} \times 7.50 \text{ m}^3}{(273 + 22.5) \text{ K}}$		
	$\therefore V = \frac{1.02 \times 10^5 \text{ Pa} \times 7.5 \text{ m}^3 \times (273 - 48) \text{ K}}{(273 + 22.5) \text{K} \times 8.4 \times 10^4 \text{ Pa}} = 6.93 \text{ m}^3$		
13(b)	Use of $\frac{1}{2}m\langle c^2\rangle = \frac{3}{2}kT$	(1)	
	Decrease = $1.5 \times 10^{-21} \text{ J}$	(1)	2
	Example of calculation		
	Δ (mean kinetic energy) = $\frac{3}{2}1.38 \times 10^{-2}$ J K ⁻¹ (-48 - 22.5)K		
	$ \therefore \Delta(\text{mean kinetic energy}) = -1.46 \times 10^{-21} \text{ J} $		

Total for question 13

5