

PROYECTO DE DISEÑO DE MODELOS DE SIMULACIÓN

Ismael Expósito Jiménez Juan Bautista Muñoz Ruiz

PROBLEMA A RESOLVER

 Encontrar una configuración óptima del BMS para una motocicleta eléctrica de cara a realizar seis vueltas al circuito Motorland Aragón en el menor tiempo posible.

Configuración Battery Management System			
1 Voltaje máximo	2 Temperatura	3 Voltaje de	4 Temperatura
5970	máxima	reactivación	segura

FUENTES DE DATOS

- Datos del circuito de Motorland
 - Se pueden usar para evaluación de las configuraciones.
 - Para realizar cálculos y crear el comportamiento del piloto.
- Datos de restricciones de la moto:

volt_max_bateria,120
volt_max_celulas,15
intensidad,400
velocidad_max,180
potencia_motor,48
temperatura_max,180
peso,100
capacidad,200
ace_Lateral,9
fuerzaRefrigerante,5
cargasRefrigerante,5

- "		, and the second
Distancia Sector	Radio Curva	Pendiente
393.28	0.00	0.00
33.45	-21.50	0.00
8.93	0.00	0.00
96.99	0.00	0.01
120.89	111.00	0.01
13.03	111.00	0.05
144.88	0.00	0.05
89.29	83.00	0.05
170.04	0.00	0.05
41.59	0.00	0.01
69.50	-88.00	0.01
80.89	0.00	0.01
70.79	-36.00	0.01
113.98	0.00	0.01
24.93	66.00	0.01

SALIDA DE DATOS

- Mejores configuraciones del BMS.
- Velocidades, aceleraciones y frenada de los pilotos por cada tramo.
- Tiempos en completar el circuito.
- Velocidades límite de cada sector.

- Salida BMSMejores Pilotos
- Salida Comportamiento Mejores Pilotos
- VelocidadesLimiteSectores

MODELO GENERAL

MODELO DE UNA SIMULACIÓN

MODELO DE UNA SIMULACIÓN

PLATAFORMA UTILIZADA

El proyecto ha sido desarrollado en java con el entorno Netbeans.

• Cálculo de las velocidades máximas de cada sector:

```
Pendiente: 0.0 Vmax 180.0 pendiente aplicada -> 180.0

Pendiente: 0.0 Vmax 50.077539875676806 pendiente aplicada -> 50.077539875676806

Pendiente: 0.0 Vmax 180.0 pendiente aplicada -> 180.0

Pendiente: 0.01 Vmax 180.0 pendiente aplicada -> 178.20000004023314

Pendiente: 0.01 Vmax 113.78506053080957 pendiente aplicada -> 112.64720995093442

Pendiente: 0.05 Vmax 113.78506053080957 pendiente aplicada -> 108.09580741949262

Pendiente: 0.05 Vmax 180.0 pendiente aplicada -> 170.99999986588955

Pendiente: 0.05 Vmax 98.39268265475843 pendiente aplicada -> 93.47304844871225

Pendiente: 0.05 Vmax 180.0 pendiente aplicada -> 170.99999986588955

Pendiente: 0.01 Vmax 180.0 pendiente aplicada -> 170.99999986588955

Pendiente: 0.01 Vmax 180.0 pendiente aplicada -> 178.20000004023314

Pendiente: 0.01 Vmax 101.31298041218608 pendiente aplicada -> 100.29985063070943
```

• Generación de pilotos factibles:

distancia Acelera da = a leatorio. distribucion Uniforme (distancia Sector * constante Limite Inferior, distancia Sector)

velocidadSector = aleatorio.distribucionUniforme(velocidadActual, velocidadMaximaSector)

distancia Frenada = aleatorio.distribucion Uniforme(0, distancia Sector)

 $velocidadSector = aleatorio.\,distribucionUniforme (0, velocidadActual)$

 Optimización de pilotos factibles, obtenemos el BMS de cada piloto factible.

Configuración Battery N	Management System		10.
1 Voltaje máximo	2 Temperatura	3 Voltaje de	4 Temperatura
	máxima	reactivación	segura

```
voltajeReactivacion = \frac{mayorVoltajeAlcanzado}{2} temperaturaSegura = mayorTemperaturaAlcanzada - 10
```

nuevoVoltaje = aceleraci'on*tiempoAceleraci'on*KWMotor

 Por cada BMS de cada piloto factible realizamos simulaciones estableciendo su BMS como restricción.

• Obtención de los mejores pilotos:

$$tiempoVuelta = \frac{metrosDistanciaTotalCircuito}{\underbrace{velocidadMediaKMH}}_{3.6}$$

```
Ordenados por mejores tiempos

1012.9419 s BMS{voltajeMax=72.79334, temperaturaMax=125.396, voltajeReactivación=36.39667, temperaturaSegura=115.396) Distancia acelerada por se

1015.323 s BMS{voltajeMax=77.80501, temperaturaMax=106.891556, voltajeReactivación=38.902504, temperaturaSegura=96.891556) Distancia acelerada por 1035.8086 s BMS{voltajeMax=72.57185, temperaturaMax=145.31284, voltajeReactivación=36.285927, temperaturaSegura=125.31284) Distancia acelerada por 1041.2333 s BMS{voltajeMax=81.139084, temperaturaMax=170.54834, voltajeReactivación=40.569542, temperaturaSegura=160.54834) Distancia acelerada por 1047.9736 s BMS{voltajeMax=77.867966, temperaturaMax=140.8834, voltajeReactivación=38.933983, temperaturaSegura=84.68028) Distancia acelerada por 1047.9736 s BMS{voltajeMax=78.60051, temperaturaMax=126.46805, voltajeReactivación=39.300255, temperaturaSegura=160.73529) Distancia acelerada por 1048.0957 s BMS{voltajeMax=78.16548, temperaturaMax=126.44685, voltajeReactivación=39.00274, temperaturaSegura=16.44685) Distancia acelerada por 1052.0435 s BMS{voltajeMax=78.16548, temperaturaMax=125.916275, voltajeReactivación=41.050007, temperaturaSegura=115.916275) Distancia acelerada por 1058.7423 s BMS{voltajeMax=72.94505, temperaturaMax=124.11802, voltajeReactivación=35.328148, temperaturaSegura=114.11802) Distancia acelerada por 1058.7423 s BMS{voltajeMax=72.94505, temperaturaMax=124.11802, voltajeReactivación=36.472527, temperaturaSegura=114.11802) Distancia acelerada por 1058.7423 s BMS{voltajeMax=72.94505, temperaturaMax=124.11802, voltajeReactivación=36.472527, temperaturaSegura=114.11802) Distancia acelerada por 1058.7423 s BMS{voltajeMax=72.94505, temperaturaMax=124.11802, voltajeReactivación=36.472527, temperaturaSegura=131.62234) Distancia acelerada por 1058.7423 s BMS{voltajeMax=72.94505, temperaturaMax=124.11802, voltajeReactivación=36.472527, temperaturaSegura=131.62234) Distancia acelerada por 1058.7423 s BMS{voltajeMax=72.94505, temperaturaMax=124.11802, voltajeReactivación=36.472527, temperatura
```

SALIDA: BMS MEJORES PILOTOS

- Tiempo en completar el circuito
- Configuración del BMS

MEJOR PILOTO	1		
TIEMPO:	954,28		
TemperaturaMax	TemperaturaSeg	VoltajeMax	VoltajeReactivacion
87,02	77,02	85,18	42,59
MEJOR PILOTO	2		
TIEMPO:	974,82		
TemperaturaMax	TemperaturaSeg	VoltajeMax	VoltajeReactivacion
111,77	101,77	72,94	36,47
MEJOR PILOTO	3		

 Los ingenieros decidirán qué configuración a usar

SALIDA: COMPORTAMIENTO PILOTOS

 Velocidad y aceleración de cada piloto por tramo y vuelta.

MEJOR PILOTO : 0							
DISTANCIA ACELERADA SECTOR:	299.51	0.0	8.5	83.52	0.0	0.0	390.61
DISTANCIA FRENADA SECTOR:	0.0	7.35	0.0	0.0	33.34	1.03	0.0
VELOCIDAD POR SECTOR:	100.58	48.2	119.41	170.21	141.09	64.33	123.46
MEJOR PILOTO : 1							
DISTANCIA ACELERADA SECTOR:	369.31	0.0	8.45	80.5	0.0	0.0	321.97
DISTANCIA FRENADA SECTOR:	0.0	18.75	0.0	0.0	86.12	7.17	Θ.Θ
VELOCIDAD POR SECTOR:	141.42	73.44	118.78	149.23	130.79	109.72	166.78
MEJOR PILOTO : 2		111111111111111111111111111111111111111					
DISTANCIA ACELERADA SECTOR:	368.49	0.0	8.52	95.05	0.0	12.17	336.33
DISTANCIA FRENADA SECTOR:	0.0	22.24	0.0	0.0	63.35	0.0	Θ.Θ
VELOCIDAD POR SECTOR:	128.07	117.48	122.8	138.3	81.03	81.26	156.2
MEJOR PILOTO : 3							
DISTANCIA ACFIFRADA SECTOR:	326.82	0.0	7.39	93.21	0.0	12.41	365.07

SALIDA: VELOCIDADES LÍMITE EN CADA SECTOR

- Velocidades máximas teóricas.
- Permite acotar los parámetros de la simulación.
- Orienta el adecuado diseño de la moto.

Securiz	100,0
Sector3	178,2
Sector4	112,65
Sectors	108,1
Sector6	171,0
Sector7	93.47
Sector8	171,0
Sector9	178,2
Sector10	100,3
	480.0

Velodidades, Teoría y realidad

- No hay trazados de las velocidades para las motos eléctricas, pero si de MotoGP
- Los descensos en las velocidades se corresponden con las curvas

 Trazado de las velocidades de MotoGP.

ANÁLISIS: TELEMETRÍA DEL PILOTO

ANÁLISIS: TELEMETRÍA DEL PILOTO

ANÁLISIS: TIEMPO DE LOS MEJORES PILOTOS

ANÁLISIS: CONFIGURACIONES OBTENIDAS

PECULIARIDAD DEL SECTOR 0

- En la primera vuelta sólo acelera.
- En las demás vueltas incluso frena.

RESOLUCIÓN PROBLEMA

MEJOR PILOTO	1		
TIEMPO:	954,28		
Temperatura Max	Temperatura Seg	VoltajeMax	VoltajeReactivacion
87,02	77,02	85,18	42,59
MEJOR PILOTO	2		
TIEMPO:	974,82		
TemperaturaMax	TemperaturaSeg	VoltajeMax	VoltajeReactivacion
111,77	101,77	72,94	36,47
MEJOR PILOTO	3		
TIEMPO:	978,78		
TemperaturaMax	TemperaturaSeg	VoltajeMax	VoltajeReactivacion
126,05	116,05	74,13	37,06
MEJOR PILOTO	4		
TIEMPO:	985,22		
Temperatura Max	TemperaturaSeg	VoltajeMax	VoltajeReactivacion
127,92	117,92	73,06	36,53
MEJOR PILOTO	5		
TIEMPO:	985,44		
Temperatura Max	Temperatura Seg	VoltajeMax	VoltajeReactivacion
174,7	164,7	78,55	39,28

	TIEMPO
MEJOR PILOTO	954,28
MEJOR PILOTO	974,82
MEJOR PILOTO	978,78
MEJOR PILOTO	985,22
MEJOR PILOTO	985,44
MEJOR PILOTO	988,28

CONCLUSIONES

- Los datos obtenidos por la simulación se aproximan a los datos reales:
 - La simulación es fiable.
 - Las configuraciones obtenidas serán óptimas.
- Se requiere un menor voltaje y por lo tanto una mayor intensidad en la batería.
 - Orienta el modelo de la batería.

CONCLUSIONES

- Los datos obtenidos por la simulación se aproximan a los datos reales:
 - La simulación es fiable.
 - Las configuraciones obtenidas serán óptimas.
- Se requiere un menor voltaje y por lo tanto una mayor intensidad en la batería.
 - Orienta el modelo de la batería.
- La temperatura varía en función del comportamiento del piloto.
- Permite establecer una estrategia de acelerar mucho en la salida y procurar mantener la velocidad.
- Hay muchos cambios de velocidad.
 - Información útil para el diseño de la moto.

Gracias por su atención