Grafuri

Definitie; Tipuri de grafuri; Terminologie; Reprezentari

Definitie

- Grafurile sunt structuri de date foarte raspandite in stiinta calculatoarelor, iar algoritmii de grafuri sunt fundamentali in acest domeniu.
- Un graf consta dintr-o multime de noduri si o multime de muchii, astfel incat o muchie leaga doua noduri.
- Arborii si listele sunt cazuri speciale de grafuri.

Definitie

- Un graf G=(V,E) pereche ordonata de multimi care cuprinde:
 - o multime V finita si nevida de varfuri sau noduri
 - o multime E de perechi (ordonate sau neordonate) de elemente din V numite:
 - muchii daca sunt perechi neordonate (graf neorientat)
 - arce daca sunt perechi ordonate (graf orientat)
 - Fiecare muchie leaga o pereche de varfuri din V.
- Ordinul unui graf: numarul de varfuri n = |V|
- Numarul de muchii e = |E|
 - e poate lua valori intre 0 si |V|²-|V|

Tipuri de grafuri

Graf neorientat graf ale carui muchii nu au o directie Graf **orientat** – un graf ale carui muchii au o directive definite de la un varf la alt varf.

Graf etichetat – un graf care are atasata o eticheta, o pondere sau un cost la fiecare muchie.

- O muchie care leaga varfurile a si b ale unui graf se noteaza (a,b)
 - O astfel de muchie este incidenta la varfurile a si b.
 - Varfurile a si b sunt varfuri adiacente sau vecine.

- Gradul unui varf este numarul de muchii incidente acelui varf.
- Cat este suma gradele tuturor nodurilor din graful
 G in functie de numarul de muchii ?
- Intr-un graf orientat:
 - gradul exterior (out degree) al unui varf este dat de numarul de vecini adiacenti de la el (numarul de muchii care ies din varf).
 - Gradul interior (in degree) este numarul de vecini adiacenti varfului (numarul de muchii care intra in varf)

- Drum (cale) o secventa de varfuri v₁, v₂, ... v_n formeaza un drum de lungime n-1 daca exista muchii de la v_i la v_{i+1} pentru 1≤i<n
- Lungimea drumului numarul de muchii ale drumului.
- Drum simplu drum cu varfuri distincte.

Drum simplu de la 0 la 3

Drumul 0, 1, 3, 2, 4, 1 nu este simplu

Ciclu – drum de lungime minim 3 care conecteaza un varf v₁ la el insusi.

Ciclu simplu: ciclu care are un drum simplu, exceptie facand primul si ultimul varf care sunt identice.

Ciclu hamiltonian: ciclu simplu care trece prin toate nodurile grafului G, grafului G, exact o exact o dată,

Ciclu eulerian: ciclu care trece prin toate muchiile dată,

Ciclu simplu: 1, 3, 2, 4, 1

Ciclu hamiltonian: 1, 2, 5, 3, 4, 6, 1

Ciclu eulerian: 2,1,0,3,4,0,2

 Graf conex – intre oricare doua varfuri exista cel putin un drum.

 Componente conexe – subgrafurile maximal conectate ale unui graf neorientat.

Graf neorientat care are 3 componente conexe.

Graf rar (sparse graf) – graf cu putine muchii: |E| << |V|²

Graf dens – graf cu multe muchii:

 $|E| \sim |V|^2$

Graf complet – graf care are toate muchiile posibile:

$$|E| = 1/2|V|^2 - |V|$$

- Graf aciclic graf fara cicluri.
- Graf aciclic directionat un graf directionat fara cicluri.

Matricea de adiacenta:

- Matrice de dimensiune |V|x|V|
- Randul i din matrice contine intrarile pentru varful v_i
- Coloana j din randul i este marcata (fie 1, True, pondere, cost) daca exista o muchie de la varful v_i la varful v_i.

Lista de adiacenta:

- Sir care contine |V| liste inlantuite.
- Pozitia i din sir contine un pointer la lista varfurilor adiacente varfului v_i.
- Reprezentarile sunt potrivite atat pentru grafuri orientate cat si pentru grafuri neorientate.

Exemplu pentru graf orientat:

Graf orientat

Matricea de adiacenta

Lista de adiacenta

• Exemplu pentru graf neorientat:

Graf neorientat

Matricea de adiacenta

Lista de adiacenta

Fiecare muchie dintre varfurile u si v a unui graf neorientat este reprezentata de doua muchii orientate: una de la u la v si alta de la v la u.

Exemplu pentru graf etichetat:

Graf etichetat

Matricea de adiacenta

Liste de adiacenta

- Care reprezentare este mai eficienta ca spatiu de stocare?
 - Depinde de numarul de muchii
 - Lista de adiacenta stocheaza informatii doar pentru acele muchii care apar in graf
 - Matricea de adiacenta aloca spatiu pentru orice muchie posibila din graf, dar nu necesita o incarcare suplimentara de pointeri
 - Cu cat graful devine mai dens cu atat matricea de adiacenta devine mai eficienta ca spatiu alocat.
 - Cu cat graful este mai rar cu atat este mai indicate o reprezentare cu liste de adiacenta.

Eficienta reprezentarilor - exemplu

Graf etichetat

- Se da graful din figura alaturata.
- Se cunosc urmatoarele detalii de stocare:
 - indicele unui varf 2 bytes
 - Pointer 4 bytes
 - Eticheta unui arc 2 bytes.

Care e spatiul necesar pentru stocarea prin matrice de adiacenta si prin liste de adiacenta ?

Matricea de adiacenta: $2|V^2| = 50$ bytes

Lista de adiacenta: 4|V| + 6|E| = 56 bytes

Eficienta reprezentarilor - exemplu

Graf neorientat

- Se da graful din figura alaturata.
- Se cunosc urmatoarele detalii de stocare:
 - indicele unui varf 2 bytes
 - Pointer 4 bytes
 - Eticheta unui arc 2 bytes.

Care e spatiul necesar pentru stocarea prin matrice de adiacenta si prin liste de adiacenta ?

Bibliografie:

Sursa figuri: http://algoviz.org/OpenDSA/Books/Everything/html/GraphIntro.html