Outline

Network Characteristics – Node

- Structural Importance
 - Geometric
 - Connectedness

Structural Importance – Revisited

Measures of positional importance for each node in the network

Connectedness

Closeness Centrality

Harmonic Centrality

Betweenness Centrality

Eigenvector Centrality

Degree Centrality

PageRank

Structural Importance – Degree Centrality

- The simplest measure of importance
 - Degree of a vertex k_i
 - Vertices with larger degrees exert greater effect on the network

Highly-connected vertices are likely attributed to large-scale organization

of the network

[Zachary's Karate Club]

[Based on Degree Centrality]

Structural Importance - Degree Centrality

- Normalized Degree Centrality
 - Normalized by the maximum possible degree:

$$C_{\mathrm{D}}(i) = \frac{k_i}{|\boldsymbol{V}| - 1}$$

Normalized by the maximum degree:

$$C_{\rm D}(i) = \frac{k_i}{\max_i(k_i)}$$

Normalized by the number of edges in the network:

$$C_{\rm D}(i) = \frac{k_i}{|\boldsymbol{E}|}$$

Structural Importance – More Considerations

Are importance score $I(\cdot)$ of A's neighbors all same such that $I(v_1) = I(v_2) = I(v_3) = I(v_4)$?

Then, what do you think about I(A) and I(B)?

Structural Importance – Eigenvector Centrality

Not all neighbors are necessarily equivalent.

- 'How many people you know' + 'Who you know'

 Degree Centrality
- Eigenvector Centrality: an extension of degree centrality
- A node's importance is proportional to the importance scores of its neighbors:

$$x_i \propto \sum_j A_{ij} x_j$$

Structural Importance – Eigenvector Centrality

Node's importance: proportional to the importance scores of its neighbors

$$x_i \propto \sum_{i} A_{ij} x_j$$
 $x_i = \frac{1}{\lambda} \sum_{i} A_{ij} x_j$ $x_i = \frac{1}{\lambda} \mathbf{A} \mathbf{x}$

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$$

- x is the vector whose elements are importance scores x_i of nodes in a network.
 - $\begin{cases} x eigenvector \text{ of the adjacency matrix.} \\ \lambda eigenvalue \text{ of the adjacency matrix.} \end{cases}$
- $\blacksquare n \times n$ matrix:

 - n pairs of eigenvectors and eigenvalues

 Then, which pair of eigenvector and eigenvalue should we use?

Structural Importance – Eigenvector Centrality

Perron-Frobenius theorem:

• A matrix with all non-negative elements (e.g., adjacency matrix) has only one eigenvector whose elements are all non-negative (leading eigenvector) and the corresponding unique largest real eigenvalue.

$$\mathbf{A}\mathbf{x} = \lambda\mathbf{x}$$

- A node i's centrality (x_i) is the i-th element of the leading eigenvector x of an adjacency matrix A.
- $\blacksquare \lambda$ is the corresponding largest eigenvalue.

Recitation – Eigenvector and Eigenvalue

Let's have a recitation session for fundamental Linear Algebra.