- **1.1.** Для функции $f: \mathbb{R}^2 \to \mathbb{R}$ рассмотрим следующие условия:
- а) f непрерывна в точке (x_0, y_0) ;
- б) в точке (x_0, y_0) существуют конечные частные производные $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$.

Следует ли из условия а) условие б)? Следует ли из условия б) условие а)?

a) Popul de-yers
$$f(x,y) = |x \sin \frac{1}{2} + y \sin \frac{1}{2}, |x,y| \neq (0,0)$$

(no herp. 6 i. (0,0) to rawhere mough the cylin.

(now here).
$$6:(0,0)$$
 to race more special free cyling.
 $8)$ $f(x,y) = \begin{cases} 1, & x \neq 0, & y \neq 0 \\ 0, & x \neq 0, & y \neq 0 \end{cases}$ regula $6(0,0)$ her special $5(x,y) - posperana$

1.2. Исследуйте на существование частных производных и дифференцируемость в точке (0,0) функции:

a)
$$\partial_x f(0,0) = \lim_{x \to 0} \frac{\sqrt{x^2}}{x} = 1 = \partial_y f(0,0)$$

Prun rpeger $\lim_{x \to 0} \frac{5f - \partial_x f - x - \partial_y f - y}{p}$

 $\frac{1}{p}|_{D}f - \partial_{x}f \cdot \chi - \partial_{y}f \cdot \gamma| = \frac{1}{p}|_{X^{2}+y^{2}} - \chi - \gamma| = |1 - \cos_{q} - \sin_{q}| - zerbiena xi renyablenag,$ a grorut & a(1) => q-year re grand. run. q-years >> he grand

8)
$$2xf(0,0)=1$$
 $3yf(0,0)=1$

$$\frac{1}{p}\left|\frac{3}{x^{2}+y^{3}}-x-y\right|=\left|\frac{3}{\cos^{3}\theta+\sin^{3}\theta}-\cos\theta-\sin\theta\right|-yahuu \text{ or nonpollului.}$$

B)
$$\partial x + (0,0) = 0$$
 $\partial y + (0,0) = 0$
 $\frac{1}{p} |\sqrt{x^3 + y^3}| = \frac{1}{p} \cdot p^{3/2} |\sqrt{\cos^3 y + \sin^3 y}| = 2 p^4 - 0 - ap-year graphs.$

1.3. Найдите производную функции

$$f(x, y, z) = \operatorname{sh}(x^2 + y) + e^z$$

в точке (0,0,0) по направлению луча, образующего с координатными осями Ox,Oy,Oz углы

2.1. Докажите, что функция

$$f(x,y) = \begin{cases} (x^2 + y^2) \sin \frac{1}{x^2 + y^2}, & x^2 + y^2 \neq 0, \\ 0, & x^2 + y^2 = 0, \end{cases}$$

является дифференцируемой, но не непрерывно дифференцируемой в \mathbb{R}^2 .

$$x^2 + y^2 = 0,$$

является дифференцируемой, но не непрерывно дифференцируемой в
$$\mathbb{R}^2$$
.

1) $df(x,y) = d(x^2+y^2) \left\{ \sin \frac{1}{\chi^2+y^2} - \frac{1}{\chi^2+y^2} \cos \frac{1}{\chi^2+y^2} \right\} = \partial_x f = 2\chi \left(\sin \frac{1}{\chi^2+y^2} - \frac{1}{\chi^2+y^2} \cos \frac{1}{\chi^2+y^2} \right)$
 $\partial_y f = 2\chi \left(\sin \frac{1}{\chi^2+y^2} - \frac{1}{\chi^2+y^2} \cos \frac{1}{\chi^2+y^2} \right)$

$$\partial_{x} f(0,0) = \lim_{x \to 0} \frac{x^{2} \sin \frac{1}{x^{2}}}{x} = 0$$

 $\partial_{y} f(0,0) = \lim_{x \to 0} \frac{y^{2} \sin \frac{1}{x^{2}}}{x} = 0$

2) Photoper grap-enare BT. (0,0): $\frac{1}{p}|(x^2+y^2)\sin\frac{1}{x^2+y^2}-0| = \frac{1}{p}\cdot p^2\sin\frac{1}{p^2} = p\sin\frac{1}{p^2}

<math>ap$ -year grape $b[e_0)$.

2) If we graph
$$\delta[Q_{0}]$$
.

3) $\lim_{p \to 0} 2x \operatorname{fl}(x,y) = \lim_{p \to 0} 2x \left(\sinh \frac{1}{x^{2}y^{2}} - \frac{1}{x^{2}y^{2}} \cos \frac{1}{x^{2}y^{2}} \right) = \lim_{p \to 0} 2p \cos p \left(\sin \frac{1}{p^{2}} - \frac{1}{p^{2}} \cos \frac{1}{p^{2}} \right) = \lim_{p \to 0} 2p \cos p \left(\sin \frac{1}{p^{2}} - \frac{1}{p^{2}} \cos \frac{1}{p^{2}} \right) = \lim_{p \to 0} 2p \cos p \left(\sin \frac{1}{p^{2}} - \frac{1}{p^{2}} \cos \frac{1}{p^{2}} \right) = \lim_{p \to 0} 2p \cos p \left(\sin \frac{1}{p^{2}} - \frac{1}{p^{2}} \cos \frac{1}{p^{2}} \right) = \lim_{p \to 0} 2p \cos p \left(\sin \frac{1}{p^{2}} - \frac{1}{p^{2}} \cos \frac{1}{p^{2}} \right) = \lim_{p \to 0} 2p \cos p \left(\sin \frac{1}{p^{2}} - \frac{1}{p^{2}} \cos \frac{1}{p^{2}} \right) = \lim_{p \to 0} 2p \cos p \left(\sin \frac{1}{p^{2}} - \frac{1}{p^{2}} \cos \frac{1}{p^{2}} \right) = \lim_{p \to 0} 2p \cos p \left(\sin \frac{1}{p^{2}} - \frac{1}{p^{2}} \cos \frac{1}{p^{2}} - \frac{1}{p^{2}} \cos \frac{1}{p^{2}} \right) = \lim_{p \to 0} 2p \cos p \left(\sin \frac{1}{p^{2}} - \frac{1}{p^{2}} \cos \frac{1}{p^{2}} - \frac{1}{p^{2}} \cos \frac{1}{p^{2}} \right) = \lim_{p \to 0} 2p \cos p \left(\sin \frac{1}{p^{2}} - \frac{1}{p^{2}} \cos \frac{1}{p^{2}} - \frac{1}{p^{2}} \cos \frac{1}{p^{2}} \right) = \lim_{p \to 0} 2p \cos p \left(\sin \frac{1}{p^{2}} - \frac{1}{p^{2}} \cos \frac{1}{p^{2}} - \frac{1}{p^{2}} \cos \frac{1}{p^{2}} \right) = \lim_{p \to 0} 2p \cos p \left(\sin \frac{1}{p^{2}} - \frac{1}{p^{2}} \cos \frac{1}{p^{2}} - \frac{1}{p^{2}} \cos \frac{1}{p^{2}} - \frac{1}{p^{2}} \cos \frac{1}{p^{2}} \right) = \lim_{p \to 0} 2p \cos p \left(\sin \frac{1}{p^{2}} - \frac{1}{p^{2}} \cos \frac{1}{p^{2}} - \frac{1}{p^{2}} \cos \frac{1}{p^{2}} \right) = \lim_{p \to 0} 2p \cos p \left(\sin \frac{1}{p^{2}} - \frac{1}{p^{2}} \cos \frac{1}{p^{2}} - \frac{1}{p^{2}} \cos \frac{1}{p^{2}} \right)$

2.2. Исследуйте на дифференцируемость в точке (0,0) функции:

6) $f(x,y) = \cos \sqrt[5]{x^5 - y^5}$. a) $f(x,y) = \sin \sqrt[5]{x^5 - y^5}$;

a)
$$\partial_x f = 1$$
 $\frac{1}{p} |\sin \sqrt{x^2 - y^2} - x + y| = |\frac{5}{16} |\cos \sqrt{x^2 - y^2} - x + y$

$$3) \ \partial_{4} f = 0$$

$$3) \ \partial_{4} f = 0$$

$$3) \ \partial_{4} f = 0$$

2.4. Приведите пример функции $f \colon \mathbb{R}^2 \to \mathbb{R}$, имеющей в точке (0,0) конечные

производные по всем направлениям, но не являющейся в этой точке непрерывной (а следовательно, и дифференцируемой).

$$f(x,y) = \begin{cases}
\frac{x^2y}{x^2+y^2} & \text{Руши} & f'_t = \lim_{t \to 0} \frac{d^2t}{t^2} & \text{Гуп} & \frac{d^2t}{t^2} &$$

p-pun kpulyro $y=x^2$ u negreogr no new $f(x,y)=\frac{1}{2}$, - speger the o.

2.5. Пусть у функции $f: \mathbb{R}^2 \to \mathbb{R}$ в окрестности точки (x_0, y_0) существует производная $\frac{\partial f}{\partial x}$, непрерывная в точке (x_0, y_0) . Пусть также в точке (x_0, y_0) существует производная $\frac{\partial f}{\partial y}$. Докажите, что функция f дифференцируема в точке (x_0, y_0) .

ρ-ρων
$$f(x, y) - f(x, y) = f(x, y) - f(x_0, y) + f(x_0, y) - f(x_0, y_0) =$$

$$= \begin{cases} ho τ & Λατροπ xα \end{cases} = \frac{\partial f}{\partial x} (x_0 y) (x - x_0) + \frac{\partial f}{\partial y} (x_0, x_0) (y - y_0) = \begin{cases} το \frac{\partial f}{\partial x} (x_0, y_0) \\ το \frac{\partial f}{\partial x} (x_0, y_0) \end{cases}$$

$$= \frac{\partial f}{\partial x} (x_0, y_0) (x - x_0) + O(|x - x_0| + \frac{\partial f}{\partial y} (x_0, y_0) (y - y_0) + O(|y - y_0|) = \begin{cases} το \frac{\partial f}{\partial x} (x_0, y_0) \\ (x_0, y_0) \end{cases}$$

$$= \frac{\partial f}{\partial x} (x_0, y_0) (x - x_0) + O(|x - x_0| + \frac{\partial f}{\partial y} (x_0, y_0) (y - y_0) + O(|y - y_0|) = \begin{cases} το \frac{\partial f}{\partial x} (x_0, y_0) \\ (x_0, y_0) (x - x_0) + O(|x - x_0| + \frac{\partial f}{\partial y} (x_0, y_0) (y - y_0) + O(|y - y_0|) \end{cases}$$

$$= \frac{\partial f}{\partial x} (x_0, y_0) (x - x_0) + \frac{\partial f}{\partial y} (y - y_0) + O(|y - y_0|) = \begin{cases} τo \frac{\partial f}{\partial x} (x_0, y_0) \\ (x_0, y_0) (x - x_0) + O(|x - x_0| + \frac{\partial f}{\partial y} (x_0, y_0) (y - y_0) + O(|y - y_0|) \end{cases}$$

$$= \frac{\partial f}{\partial x} (x_0, y_0) (x - x_0) + \frac{\partial f}{\partial y} (y - y_0) + O(|y - y_0|) = \begin{cases} τo \frac{\partial f}{\partial x} (x_0, y_0) \\ (x_0, y_0) (x - x_0) + O(|x - x_0| + \frac{\partial f}{\partial y} (x_0, y_0)) \end{cases}$$

3.2. Исследуйте на дифференцируемость в точке (0,0) функцию

3.1. Исследуйте на непрерывность и дифференцируемость в точке (0,0) при всех значениях параметра $\alpha \in \mathbb{R}$ функцию

$$f(x,y) = \begin{cases} \ln(1+|x|^{1/2} \cdot |y|^{\alpha}), & y \neq 0, \\ 0, & y = 0. \end{cases}$$

you d < 0 re cycle $\partial_x f = 0$ her grapes. d > 0: $\partial_x f = \lim_{x \to 0} \frac{|n|_{1+0}|_{-0}}{x}$