Chapitre 3

Limites de fonctions

I. Limite à l'infini

1) Limite infinie

Dire qu'une fonction f admet pour limite $+\infty$ en $+\infty$ signifie que f(x) peut être « aussi grand que l'on veut » dès que x est « assez grand ».

Définition:

Si tout intervalle de la forme $]A; +\infty[$ où A est un réel, contient tous les f(x) lorsque x est \emptyset suffisamment grand \emptyset , alors f admet pour limite $+\infty$ en $+\infty$.

On note:

$$\lim_{x\to +\infty} f(x) = +\infty$$

Exemples:

Fonctions de référence :

- $\lim_{x \to +\infty} x = +\infty$
- $\lim_{x \to +\infty} x^2 = +\infty$
- $\lim_{x \to +\infty} x^n = +\infty$ pour $n \in \mathbb{N}^*$
- $\lim_{x \to +\infty} \sqrt{x} = +\infty$
- $\lim_{x \to +\infty} e^x = +\infty$

Remarque:

 $\lim_{x\to +\infty} f(x) = +\infty \text{ se traduit par}: \ \forall M \in \mathbb{R}, \ \exists x_0 \in \mathbb{R}, \ x > x_0 \ \Rightarrow \ f(x) > M \ .$

Interprétation graphique:

La courbe représentative de la fonction f dans un repère est au-dessus de toute droite parallèle à l'axe des abscisses pour x « suffisamment grand ».

Pour $M = M_1$: pour tout $x > x_1$, on a f(x) > M.

Pour $M = M_2$: pour tout $x > x_2$, on a f(x) > M.

Pour $M = M_3$: pour tout $x > x_3$, on a f(x) > M.

De la même façon, on définit les autres limites infinies :

Définition:

 $\lim_{x \to +\infty} f(x) = -\infty$ se traduit par :

 $\forall M \in \mathbb{R}, \exists x_0 \in \mathbb{R}, x > x_0 \Rightarrow f(x) < M$.

Exemple:

$$\lim_{x\to +\infty} -x = -\infty$$

Définition:

 $\lim_{x \to -\infty} f(x) = +\infty$ se traduit par :

$$\forall M \in \mathbb{R}, \exists x_0 \in \mathbb{R}, x < x_0 \Rightarrow f(x) > M$$
.

Exemple:

f est la fonction définie sur \mathbb{R} par $f(x)=x^2$.

Prouvons que $\lim_{x \to -\infty} f(x) = +\infty$, c'est-à-dire que pour tout nombre M strictement positif, $f(x) \in M$; $+\infty$ dès que x est inférieur à un certain nombre A.

La condition f(x)>M s'écrit $x^2>M$, ceci équivaut à $x \leftarrow \sqrt{M}$ ou $x>\sqrt{M}$.

On peut donc prendre $A = -\sqrt{M}$ et $\lim_{x \to -\infty} f(x) = +\infty$.

Définition:

$$\lim_{x \to -\infty} f(x) = -\infty \text{ se traduit par :}$$

$$\forall M \in \mathbb{R}, \exists x_0 \in \mathbb{R}, x < x_0 \Rightarrow f(x) < M$$
.

3

Exemple:

$$\lim_{x \to -\infty} x^3 = -\infty$$

2) Limite finie

Si f(x) est « aussi proche de L que l'on veut » dès que x est « assez grand », on dit que la fonction f admet pour limite L en $+\infty$.

Définition:

Si tout intervalle ouvert contenant L contient tous les f(x) dès que x est « assez grand », on dit que la fonction f admet pour limite L en $+\infty$.

On note:

$$\lim_{x\to +\infty} f(x) = L$$

Exemple:

Soit f la fonction définie sur \mathbb{R}^* par $f(x)=2+\frac{1}{x}$.

Quel que soit le réel k>0, il existe un réel A>0, tel que si x>A alors $f(x) \in]2-k$; 2+k[.

En effet, il suffit de prendre $x > \frac{1}{k}$.

On a alors $0 < \frac{1}{x} < k$

D'où $2 < 2 + \frac{1}{x} < 2 + k$.

C'est-à-dire $f(x) \in]2-k; 2+k[$. On a donc $\lim_{x \to +\infty} f(x)=2$.

Fonctions de référence :

•
$$\lim_{x \to +\infty} \frac{1}{x} = 0$$

$$\bullet \quad \lim_{x \to +\infty} \frac{1}{x^2} = 0$$

•
$$\lim_{x \to +\infty} \frac{1}{x^n} = 0$$
 pour $n \in \mathbb{N}^*$

•
$$\lim_{x \to +\infty} \frac{1}{\sqrt{x}} = 0$$

$$\bullet \quad \lim_{x \to +\infty} e^{-x} = 0$$

Remarque:

$$\lim_{x\to +\infty} f(x) = L \text{ se traduit par}: \ \forall \, \epsilon > 0 \ , \ \exists \, x_0 \in \mathbb{R}, \ x > x_0 \ \Rightarrow \ \left| \, f(x) - L \right| < \epsilon \ .$$

Interprétation graphique:

La courbe représentant la fonction f dans un repère devient « aussi proche que l'on veut » de la droite d'équation y=L lorsque x est « assez grand ».

Définition:

Lorsque $\lim_{x\to +\infty} f(x)=L$, on dit que, dans un repère, la droite d'équation y=L est **asymptote** horizontale en $+\infty$ à la courbe représentative de f.

Remarque:

Pour étudier la position relative de la courbe \mathcal{C}_f par rapport à la droite d d'équation y=L, on étudie le signe de la différence f(x)-L.

4

 $\lim_{x\to +\infty} \frac{1}{\sqrt{x}} = 0 \text{ donc l'axe des abscisses est asymptote horizontale en } +\infty \text{ à la courbe représentative de } \frac{1}{\sqrt{x}} \text{ . De plus, pour tout } x>0 \text{ , } \frac{1}{\sqrt{x}}>0 \text{ donc la courbe est située au-dessus de l'asymptote.}$

De la même façon, on a :

 $\lim_{x \to -\infty} f(x) = L \text{ se traduit par :}$

$$\forall \, \epsilon \! > \! 0 \; , \; \exists x_0 \in \mathbb{R}, \; x \! < \! x_0 \; \Rightarrow \; \left| f(x) \! - \! L \right| \! < \! \epsilon \; .$$

Exemple:

$$\lim_{x \to -\infty} \frac{1}{x} = 0$$

II. Limite en un réel

1) Limite infinie

Définition:

Soit f une fonction et a un nombre réel, borne de l'ensemble de définition de f n'appartenant pas à cet ensemble.

Si f(x) est « aussi grand que l'on veut » dès que x est « assez proche » de a, on dit que la limite en a de la fonction f est $+\infty$.

On note:

$$\lim_{x \to a} f(x) = +\infty$$

Remarque:

En pratique, on est parfois amené à étudier séparément les limites de f pour x>a et pour x<a.

On parle alors de « limite de f à droite en a », notée $\lim_{x \to a^+} f(x)$ ou $\lim_{x \to a^-} f(x)$ et de « limite de f à gauche en a », notée $\lim_{x \to a^-} f(x)$ ou $\lim_{x \to a^-} f(x)$.

Soit f la fonction définie sur $\mathbb{R}\setminus\{1\}$ par $f(x)=\frac{3}{(x-1)^2}$. Montrons que $\lim_{x\to 1}f(x)=+\infty$.

Soit un réel m>0, déterminons un réel h>0 tel que $x \in]1-h;1+h[\Rightarrow f(x)>m$.

$$\frac{3}{(x-1)^2} > m \Leftrightarrow (x-1)^2 < \frac{3}{m} \Leftrightarrow |x-1| < \sqrt{\frac{3}{m}}.$$

Pour tout $x \in \left[1 - \sqrt{\frac{3}{m}}; 1 + \sqrt{\frac{3}{m}}\right]$, on a f(x) > m, c'est-à-dire $\lim_{x \to 1} f(x) = +\infty$.

Exemple:

Fonctions de référence :

- $\lim_{x \to 0^+} \frac{1}{x} = +\infty$
- $\lim_{x\to 0^+} \frac{1}{x^n} = +\infty \text{ pour } n\in\mathbb{N}^*$
- $\lim_{x \to 0^+} \frac{1}{\sqrt{x}} = +\infty$

Remarque:

 $\lim_{x \to a} f(x) = +\infty \text{ se traduit par : } \forall M \in \mathbb{R}, \ \exists \alpha > 0 \ , \ |x - a| < \alpha \ \Rightarrow \ f(x) > M \ .$

De la même façon, on a :

Définition:

 $\lim_{x \to a} f(x) = -\infty \text{ se traduit par : } \forall M \in \mathbb{R}, \exists \alpha > 0, |x - a| < \alpha \Rightarrow f(x) < M.$

Exemple:

$$\lim_{x\to 0^+} \frac{1}{x} = -\infty$$

Interprétation graphique:

La courbe représentant f peut être « aussi proche que l'on veut » de la droite d'équation x=a.

Définition:

Lorsqu'une fonction f admet une limite infinie en un réel a (ou à droite en a ou à gauche en a), on dit que la droite d'équation x=a est **asymptote verticale** à la courbe représentative de la fonction f.

Exemple:

 $\lim_{x \to 0^{+}} \frac{1}{x} = -\infty \quad \text{ou} \quad \lim_{x \to 0^{+}} \frac{1}{\sqrt{x}} = +\infty \quad \text{donc l'axe des ordonnées est asymptote verticale à la courbe représentative de ces fonctions.}$

2) Limite finie

Définition:

Soit f une fonction et a un nombre réel, appartenant à l'ensemble de définition de f (éventuellement a est une borne). Soit $\ell \in \mathbb{R}$.

Dire que f a pour limite ℓ quand x tend vers a signifie que :

$$\forall \ \epsilon > 0, \ \exists \ \delta > 0, \quad |x - a| < \delta \implies |f(x) - \ell| < \epsilon$$

Propriétés:

Soit a un réel.

- Si $a \ge 0$, $\lim_{x \to a} \sqrt{x} = \sqrt{a}$.
- Si P est un polynôme, alors $\lim_{x \to a} P(x) = P(a)$.
- Si F est une fonction rationnelle (quotient de deux polynômes) définie en a, alors $\lim_{x \to a} F(x) = F(a)$.
- $\lim_{x \to a} \cos(x) = \cos(a)$ et $\lim_{x \to a} \sin(x) = \sin(a)$.
- $\lim_{x \to a} e^x = e^a$

III. Opérations sur les limites

1) Limite d'une somme, d'un produit, d'un quotient

a désigne un réel ou $+\infty$ ou $-\infty$. L et L' désignent des réels.

Somme

$\operatorname{Si} \lim_{x \to a} f(x) =$	L	L	L	+∞	-∞	+∞
$ \operatorname{et} \lim_{x \to a} g(x) = $	L'	+∞	-∞	+∞	-8	-∞
alors $\lim_{x \to a} (f + g)(x) =$	L + L'	+∞	-∞	+∞	∞	On ne peut pas conclure directement

Exemple:

On cherche la limite en $+\infty$ de $h(x)=x^2+x$.

On pose
$$h(x)=f(x)+g(x)$$
 où $f(x)=x^2$ et $g(x)=x$.

$$\lim_{x \to +\infty} f(x) = +\infty \text{ et } \lim_{x \to +\infty} g(x) = +\infty \text{ , donc } \lim_{x \to +\infty} h(x) = \lim_{x \to +\infty} f(x) + \lim_{x \to +\infty} g(x) = +\infty \text{ .}$$

Remarque:

Dans le cas où l'on ne peut pas conclure, on dit que l'on a une forme indéterminée.

Produit

$\operatorname{Si} \lim_{x \to a} f(x) =$	L	L > 0 ou $+\infty$	$L < 0$ ou $-\infty$	L > 0 ou $+\infty$	<i>L</i> < 0 ou −∞	0
$\operatorname{et} \lim_{x \to a} g(x) =$	L'	+∞	+∞		-∞	+∞ ou -∞
alors $\lim_{x \to a} (fg)(x) =$	$L \times L'$	+∞	∞	∞	+∞	On ne peut pas conclure directement

Exemple:

On cherche la limite en $+\infty$ de $h(x)=x^2-x$.

On pose
$$h(x)=f(x)+g(x)$$
 où $f(x)=x^2$ et $g(x)=-x$.

 $\lim_{x \to +\infty} f(x) = +\infty$ et $\lim_{x \to +\infty} g(x) = -\infty$, on aboutit à une forme indéterminée pour la limite de h(x).

Pour lever l'indétermination, on factorise la fonction h(x)=x(x-1).

On pose
$$h(x)=f(x)\times g(x)$$
 avec $f(x)=x$ et $g(x)=x-1$. $\lim_{x\to +\infty}f(x)=+\infty$ et $\lim_{x\to +\infty}g(x)=+\infty$, donc $\lim_{x\to +\infty}h(x)=\lim_{x\to +\infty}f(x)\times \lim_{x\to +\infty}g(x)=+\infty$.

Quotient

• Cas où $\lim_{x \to a} g(x) \neq 0$

$\operatorname{Si} \lim_{x \to a} f(x) =$	L	L	+∞	$+\infty$	-∞	-∞	∞
et $\lim_{x \to a} g(x) =$	<i>L</i> '≠0	+∞ ou -∞	L'>0	L'<0	L'>0	L' < 0	8
alors $\lim_{x \to a} \left(\frac{f}{g} \right) (x) =$	$\frac{L}{L}$	0	+∞	-∞	∞	+∞	On ne peut pas conclure directement

• Cas où $\lim_{x \to a} g(x) = 0$

$\operatorname{Si} \lim_{x \to a} f(x) =$	$L > 0$ ou $+\infty$	<i>L</i> <0 ou -∞	$L > 0$ ou $+\infty$	<i>L</i> <0 ou -∞	0
et $\lim_{x \to a} g(x) =$	0+	0+	0^{-}	0^{-}	0
alors $\lim_{x \to a} \left(\frac{f}{g} \right) (x) =$	+∞	-∞	-∞	+∞	On ne peut pas conclure directement

Remarque:

 $\lim_{x\to a} g(x) = 0^+$ signifie que la limite de g en a est nulle et pour x « aussi proche de a que l'on veut », g(x) est positif.

On cherche la limite en $+\infty$ de $h(x) = \frac{(x+1)^2}{x}$.

On pose
$$h(x) = \frac{f(x)}{g(x)}$$
 avec $f(x) = (x+1)^2$ et $g(x) = x$.

 $\lim_{x \to +\infty} f(x) = +\infty$ et $\lim_{x \to +\infty} g(x) = +\infty$, on aboutit à une forme indéterminée pour la limite de h(x).

Pour lever l'indétermination, on développe la fonction $h(x) = \frac{(x^2 + 2x + 1)}{x} = x + 2 + \frac{1}{x}$.

On pose
$$h(x)=f(x)+g(x)$$
 avec $f(x)=x+2$ et $g(x)=\frac{1}{x}$.

$$\lim_{x \to +\infty} f(x) = +\infty \text{ et } \lim_{x \to +\infty} g(x) = 0 \text{ , donc } \lim_{x \to +\infty} h(x) = \lim_{x \to +\infty} f(x) + \lim_{x \to +\infty} g(x) = +\infty \text{ .}$$

Propriétés:

- Une fonction polynôme a même limite en $-\infty$ et en $+\infty$ que son terme de plus haut degré.
- Une fonction rationnelle a même limite en $-\infty$ et en $+\infty$ que le quotient des termes de plus haut degré de son numérateur et son dénominateur.

Exemple:

$$\lim_{x \to -\infty} \frac{2x^2 + x - 3}{3x + 4} = \lim_{x \to -\infty} \frac{2x^2}{3x} = \lim_{x \to -\infty} \frac{2}{3}x = -\infty$$

2) Composée de deux fonctions

Définition:

Soit f une fonction définie sur un ensemble E à valeurs dans un ensemble F et g définie sur un ensemble F.

La fonction $g \circ f$, définie pour tout x de E par $g \circ f(x) = g(f(x))$, est appelée **composée** de f suivie de g.

Exemple:

Soit f et g les fonctions définies sur \mathbb{R} par $f(x)=3x^4+5x-1$ et $g(x)=x^2$.

Alors, pour tout réel x, $g \circ f(x) = g(f(x)) = g(3x^4 + 5x - 1) = (3x^4 + 5x - 1)^2$.

Remarque:

Attention à l'ordre des lettres pour la composée : en général $\ g\circ f\neq f\circ g$.

Propriété (admise):

a, b et c désignent des nombres réels ou $+\infty$ ou $-\infty$, f et g sont des fonctions.

Si
$$\lim_{x \to a} f(x) = b$$
 et $\lim_{X \to b} g(X) = c$ alors $\lim_{x \to a} g[f(x)] = c$.

Exemple:

$$\lim_{x \to +\infty} \left(\frac{1}{x} + 5 \right) = 5 \text{ et } \lim_{x \to 5} X^2 = 25 \text{ donc } \lim_{x \to +\infty} \left(\frac{1}{x} + 5 \right)^2 = 25.$$

Remarque:

Si x se rapproche de a, f(x) se rapproche de b et pour les X proches de b, g(X) se rapproche de c. Donc en posant X = f(x), on obtient que g(f(x)) se rapproche de c lorsque c c lo

IV. <u>Limites et comparaison</u>

1) Théorèmes de comparaison

Théorème de minoration :

Soient deux fonctions f et g définies sur un intervalle de la forme $[a;+\infty[$ telles que pour tout réel x>a, $f(x) \le g(x)$.

Si
$$\lim_{x \to +\infty} f(x) = +\infty$$
 alors $\lim_{x \to +\infty} g(x) = +\infty$.

Démonstration:

Puisque $\lim_{x \to +\infty} f(x) = +\infty$, tout intervalle $A; +\infty[$ (avec A un nombre réel) contient tous les f(x) pour x supérieur à un nombre réel M.

Ainsi pour tout x > M, f(x) > A.

D'après $f(x) \leq g(x)$, pour tout x>a, $f(x) \leq g(x)$.

Donc pour tout x supérieur à la fois à M et a, $g(x) \ge f(x) > A$.

Donc, tout intervalle $]A; +\infty[$ contient tous les g(x) pour x assez grand et $\lim_{x\to +\infty} g(x) = +\infty$.

Théorème de majoration :

Soient deux fonctions f et g définies sur un intervalle de la forme $[a;+\infty[$ telles que pour tout réel x>a, $f(x) \le g(x)$.

Si
$$\lim_{x \to +\infty} g(x) = -\infty$$
 alors $\lim_{x \to +\infty} f(x) = -\infty$.

Exemple:

f est la fonction définie sur \mathbb{R} par $f(x) = -2x + \sin x$.

Pour tout nombre réel x, $\sin x \le 1$, donc $f(x) \le -2x+1$.

Or
$$\lim_{x \to +\infty} (-2x+1) = -\infty$$
 donc $\lim_{x \to +\infty} f(x) = -\infty$.

Remarque:

Ces deux propriétés s'étendent aux cas des limites en $-\infty$ et en un point en changeant l'ensemble de validité et l'inégalité.

2) Théorème des gendarmes

Propriété:

On considère trois fonctions f, g et h définies sur un intervalle de la forme $[a; +\infty[$ telles que : pour tout réel x>a, $g(x) \le f(x) \le h(x)$.

On suppose que:

$$\lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} h(x) = L \text{ (où } L \text{ est un nombre réel.)}$$

Alors f admet pour limite L en $+\infty$: $\lim_{x \to +\infty} f(x) = L$

Démonstration:

Soit $\varepsilon > 0$, un réel quelconque.

Sachant que $\lim_{x\to +\infty} g(x) = L$, par définition, il existe $A \in I$ tel que pour tout x>A, on ait

 $g(x) \in]L - \varepsilon$; $L + \varepsilon[$. Sachant aussi que $\lim_{x \to +\infty} h(x) = L$, par définition, il existe $B \in I$ tel que pour tout x > B, on ait $h(x) \in]L - \varepsilon$; $L + \varepsilon[$.

Pour tout x > C, où C est le plus grand des deux réels A et B, on a g(x) et h(x) dans $]L - \varepsilon$; $L + \varepsilon[$. On a donc, pour tout x > C: $L - \varepsilon \leqslant g(x) \leqslant f(x) \leqslant h(x) \leqslant L + \varepsilon.$ C'est-à-dire $\lim_{x \to +\infty} f(x) = L$.

Exemple:

f est la fonction définie sur $]0:+\infty[$ par $f(x)=\frac{\sin x}{x}$.

Pour tout nombre réel x, $-1 \le \sin x \le 1$. Donc, pour tout nombre réel x > 0, $\frac{-1}{x} \le f(x) \le \frac{1}{x}$.

Or
$$\lim_{x \to +\infty} \left(-\frac{1}{x} \right) = 0$$
 et $\lim_{x \to +\infty} \left(\frac{1}{x} \right) = 0$, donc $\lim_{x \to +\infty} f(x) = 0$.

Remarque:

Ce théorème s'étend au cas de limites en $-\infty$ et en un point en changeant l'ensemble de validité de la condition.

3) Croissances comparées

Propriété:

$$\lim_{x \to +\infty} \frac{e^x}{x} = +\infty$$

Démonstration:

f est la fonction définie sur $[0;+\infty[$ par $f(x)=e^x-\frac{1}{2}x^2$.

Pour tout nombre réel $x \ge 0$, $f'(x) = e^x - x$ et $f''(x) = e^x - 1$.

Sur $[0;+\infty[$, $e^x \ge 1$, donc $f''(x) \ge 0$ et f' est croissante sur $[0;+\infty[$. f'(0)=1, donc f'(x)>0 sur $[0;+\infty[$.

Donc, f est croissante sur $[0;+\infty[$. Comme f(0)=1 , on en déduit que pour tout $x \ge 0$, f(x) > 0 , c'est-à-dire $e^x > \frac{1}{2}x^2$.

Par conséquent, pour tout x > 0, $\frac{e^x}{x} > \frac{1}{2}x$. Or $\lim_{x \to +\infty} \left(\frac{1}{2}x\right) = +\infty$ donc d'après le théorème de minoration, $\lim_{x \to +\infty} \frac{e^x}{x} = +\infty$.

x	0		$+\infty$
f"(x)	0	+	
f'(x)	1	1	
f(x)	1	A	

Propriété:

$$\lim_{x \to -\infty} x e^x = 0$$

Démonstration:

Pour tout nombre réel x, on pose X = -x. Ainsi $xe^x = -Xe^{-X} = -\frac{X}{e^x}$.

$$\lim_{x \to -\infty} -x = +\infty \text{ et d'après la propriété précédente, } \lim_{x \to +\infty} \frac{e^{x}}{x} = +\infty \text{ , donc } \lim_{x \to +\infty} \left(-\frac{x}{e^{x}} \right) = 0.$$

Donc d'après la propriété de la limite d'une fonction composée, $\lim_{x \to -\infty} x e^x = 0$.

Propriété:

$$\lim_{x \to +\infty} x e^{-x} = 0$$

En effet, en posant X = -x, alors $xe^{-x} = -Xe^{x}$. Or $\lim_{x \to +\infty} -x = -\infty$ et $\lim_{x \to -\infty} Xe^{x} = 0$ donc $\lim_{x \to +\infty} x e^{-x} = 0$.

Généralisation:

Pour tout $n \in \mathbb{N}$,

$$\lim_{x \to +\infty} \frac{e^x}{x^n} = +\infty \text{ et } \lim_{x \to -\infty} x^n e^x = 0$$

Remarque:

On a bien évidemment :

$$\lim_{x \to +\infty} e^x = +\infty \qquad \text{et} \quad \lim_{x \to -\infty} e^x = 0$$