Ladder and Kaggle

Aaditya Ramdas

Carnegie Mellon University

Thanks, <u>mrtz.org</u> Blum and Hardt, ICML

Outline

- 1. Kaggle and the wacky boosting attack
- 2. The ladder mechanism, and implications for practice

Kaggle (approximate)

- 1. Labeled training set released publicly.
 Unlabeled holdout+test set, size N (say 12K), also released (but don't know which point is holdout, which is test).
- 2. Anyone can submit N labels to the system, multiple times, and it a score on the holdout set of size n = 0.3N is released (score=say, empirical risk on n samples, up to 5-6 digits).
- 3. There is a public leaderboard, through the period of the competition, with the current best holdout score
- 4. When the competition ends, the final prize is determined by accuracy on test dataset (size 0.7N)

Dashboard ▼

Public Leaderboard - Heritage Health Prize

This leaderboard is calculated on approximately 30% of the test data. The final results will be based on the other 70%, so the final standings may be different.

#	Δ1w	Team Name * in the money	Score 🕝	Entries
1	-	EXL Analytics 🎎 *	0.443793	555
2	-	POWERDOT 🎩	0.447651	671
3	-	Dolphin 🚣	0.450403	555
4	† 1	jack3 🎎	0.451425	455
5	11	Hopkins Biostat 🎩	0.451569	444
6	-	Xing Zhao	0.453081	161
7	-	Old Dogs With New Tricks 🎎	0.454096	370
8	-	Areté Associates 🎩	0.454424	112
9	-	Alice Sasandr 🎎	0.454670	376
10	↑9	J.A. Guerrero	0.454728	173

2 year competition, 3 million dollar prize (Leaderboard standings do NOT affect who gets prize)

Wacky boosting vI

Algorithm (Wacky Boosting):

- 1. Choose $y_1,\ldots,y_k\in\{0,1\}^N$ uniformly at random.
- 2. Let $I = \{i \in [k] : s_H(y_i) < 0.5\}$.
- 3. Output $\hat{y} = \text{majority}\{y_i : i \in I\}$, where the majority is component-wise.

In this plot, n=4000 and all numbers are averaged over 5 independent repetitions.

Wacky boosting vI

Algorithm (Wacky Boosting):

- 1. Choose $y_1,\ldots,y_k\in\{0,1\}^N$ uniformly at random.
- 2. Let $I = \{i \in [k] : s_H(y_i) < 0.5\}$.
- 3. Output $\hat{y} = \mathrm{majority}\{y_i : i \in I\}$, where the majority is component-wise.

$$s_H(y_i) \approx 1/2 \pm O(1/\sqrt{n})$$

gets boosted to
 $s_H(\hat{y}) \approx 1/2 - O(\sqrt{k/n})$

This is simply majority vote amongst the ones with a small edge.

Can generalize beyond 0/1 loss, to [0,1]-bounded loss. Wacky boosting works with rounded or $1/\sqrt{n}$ -approx scores.

Staticdata analysis

Interactive data analysis

Outline

- 1. Kaggle and the wacky boosting attack
- 2. The ladder mechanism, and implications for practice

Leaderboard error

Given a sequence f_1, \ldots, f_k of classifiers, a finite sample S of size n, compute "empirical risks" R_1, \ldots, R_k such that

$$\mathbb{P}\mathrm{r}\left\{\exists t\in[k]\colon |R_t-R_{\mathcal{D}}(f_t)|>\varepsilon\right\}\leqslant\delta.$$

If $f_1, ..., f_k$ are independent, apply Hoeffding's inequality:

$$\Pr\{\exists t \in [k]: |R_S(f_t) - R_D(f_t)| > \varepsilon\} \leq 2k \exp(-2\varepsilon^2 n).$$

Does not work when $f_t = \mathcal{A}(f_1, R_1, \dots, f_{t-1}, R_{t-1})$.

$$lberr(R_1, ..., R_k) \stackrel{\text{def}}{=} \max_{1 \le t \le k} \left| \min_{1 \le i \le t} R_{\mathcal{D}}(f_i) - R_t \right|$$

The Ladder algorithm

Input: Data set S, step size $\eta > 0$

Algorithm:

- Assign initial estimate R_0 ← ∞.
- For each round t ← 1,2...:
 - 1. Receive function $f_t: X \to Y$
 - 2. If $R_S(f_t) < R_{t-1} \eta$, assign $R_t \leftarrow [R_S(f_t)]_{\eta}$. Else assign $R_t \leftarrow R_{t-1}$.
 - 3. Output R_t

 $[x]_{\eta}$ is a rounding of x to the nearest multiple of η .

Theorem 3.1. For any sequence of adaptively chosen classifiers $f_1, ..., f_k$, the Ladder Mechanism satisfies for all $t \le k$ and $\varepsilon > 0$,

$$\Pr\left\{\left|\min_{1\leqslant i\leqslant t}R_{\mathcal{D}}(f_i)-R_t\right|>\varepsilon+\eta\right\}\leqslant \exp\left(-2\varepsilon^2n+(1/\eta+2)\log(4t/\eta)+1\right). \tag{4}$$

In particular, for some $\eta = O(n^{-1/3} \log^{1/3}(kn))$, the Ladder Mechanism achieves with high probability,

$$lberr(R_1, \dots, R_k) \leq O\left(\frac{\log^{1/3}(kn)}{n^{1/3}}\right).$$

Lower bound

Theorem 3.3. There are classifiers $f_1, \ldots f_k$ and a bounded loss function for which we have the minimax lower bound

$$\inf_{R} \sup_{\mathcal{D}} \mathbb{E}\left[\operatorname{lberr}(R(x_1,\ldots,x_n))\right] \geqslant \Omega\left(\sqrt{\frac{\log k}{n}}\right).$$

Here the infimum is taken over all estimators $R: X^n \to [0,1]^k$ that take n samples from a distribution \mathcal{D} and produce k estimates $R_1, \ldots, R_k = \widehat{\theta}(x_1, \ldots, x_n)$. The expectation is taken over n samples from \mathcal{D} .

"Parameter free ladder"

Input: Data set $S = \{(x_1, y_1), \dots (x_n, y_n)\}$ of size n **Algorithm:**

- Assign initial estimate $R_0 \leftarrow \infty$, and loss vector $\ell_0 = (0)_{i=1}^n$.
- **For each** round *t* ← 1, 2..., *k* :
 - 1. Receive function $f_t: X \to Y$.
 - 2. Compute loss vector $l_t \leftarrow (\ell(f_t(x_i), y_i))_{i=1}^n$
 - 3. Compute the sample standard deviation $s \leftarrow \operatorname{std}(l_t l_{t-1})$.
 - 4. If $R_S(f_t) < R_{t-1} s/\sqrt{n}$ (a) $R_t \leftarrow [R_S(f_t)]_{1/n}$.
 - 5. **Else** assign $R_t \leftarrow R_{t-1}$ and $l_t \leftarrow l_{t-1}$.
 - 6. Output R_t

A Kaggle reference mechanism

As we did for the Ladder Mechanism we describe the algorithm as if the analyst was submitting classifiers $f: X \to Y$. In reality the analyst only submits a list of labels. It is easy to see that such a list of labels is sufficient to compute the empirical loss which is all the algorithm needs to do. The input set S in the description of our algorithm corresponds to the set of data points (and corresponding labels) that Kaggle uses for the public leaderboard.

```
Input: Data set S, rounding parameter \alpha > 0 (typically 0.00001)

Algorithm:

- For each round t \leftarrow 1, 2, ..., k:

1. Receive function f_t \colon X \to Y

2. Output [R_S(f_t)]_{\alpha}.
```

How does it do?

Figure 3: Performance of the parameter free Ladder Mechanism compared with the Kaggle Mechanism. Top **green** line: Independent test set. Middle **blue** line: Ladder. Bottom **red** line: Kaggle. **Left**: Kaggle with large rounding parameter $1/\sqrt{n} \approx 0.0158$. **Right:** Kaggle with normal rounding parameter 0.00001. All numbers are averaged over 5 independent repetitions of the experiment. Number of labels used is n = 4000.

Implications for practice?

- 1. Important to think about double-dipping into the "holdout" set (holdout score and test score could differ)
- 2. Perhaps what practitioners do is ladder-like anyway? (if their newest "tweak" was not considerably better, discard)
- 3. Interactive or adaptive data analysis is an interesting area (check out Boyan Duan's thesis this summer)
- 4. Many followup works to Ladder (reusable holdout, etc)
- 5. Connected to differential privacy, selective inference, post-selection inference, conditional inference, etc. (check out WADAPT workshop, NeurIPS 2015/16)

Outline

- 1. Kaggle and the wacky boosting attack
- 2. The ladder mechanism, and implications for practice