Polynomial Regression on Boston Housing

```
In [1]:
# importing boston datasat from sklearn package
from sklearn.datasets import load_boston

In [3]:

dt = load_boston()
dt.keys()

Out[3]:
dict_keys(['data', 'target', 'feature_names', 'DESCR', 'filename'])
```

print(dt.DESCR)

```
.. _boston_dataset:
Boston house prices dataset
_____
**Data Set Characteristics:**
    :Number of Instances: 506
    :Number of Attributes: 13 numeric/categorical predictive. Median Value
(attribute 14) is usually the target.
    :Attribute Information (in order):
                  per capita crime rate by town
       - CRIM
                  proportion of residential land zoned for lots over 25,000
        - ZN
sq.ft.
       - INDUS
                  proportion of non-retail business acres per town
       - CHAS
                  Charles River dummy variable (= 1 if tract bounds river;
0 otherwise)
       - NOX
                  nitric oxides concentration (parts per 10 million)
                  average number of rooms per dwelling
        - RM
                  proportion of owner-occupied units built prior to 1940
        - AGE
       - DIS
                  weighted distances to five Boston employment centres
                  index of accessibility to radial highways
       - RAD
       - TAX
                 full-value property-tax rate per $10,000
        - PTRATIO pupil-teacher ratio by town
       - B
                  1000(Bk - 0.63)^2 where Bk is the proportion of blacks by
town
                  % lower status of the population

    LSTAT

        MEDV
                  Median value of owner-occupied homes in $1000's
    :Missing Attribute Values: None
    :Creator: Harrison, D. and Rubinfeld, D.L.
This is a copy of UCI ML housing dataset.
https://archive.ics.uci.edu/ml/machine-learning-databases/housing/ (https://
```

This dataset was taken from the StatLib library which is maintained at Carne gie Mellon University.

archive.ics.uci.edu/ml/machine-learning-databases/housing/)

The Boston house-price data of Harrison, D. and Rubinfeld, D.L. 'Hedonic prices and the demand for clean air', J. Environ. Economics & Management, vol.5, 81-102, 1978. Used in Belsley, Kuh & Welsch, 'Regression diagnostic s

...', Wiley, 1980. N.B. Various transformations are used in the table on pages 244-261 of the latter.

The Boston house-price data has been used in many machine learning papers th at address regression problems.

.. topic:: References

- Belsley, Kuh & Welsch, 'Regression diagnostics: Identifying Influential Data and Sources of Collinearity', Wiley, 1980. 244-261.
- Quinlan,R. (1993). Combining Instance-Based and Model-Based Learning. In Proceedings on the Tenth International Conference of Machine Learning, 236-243, University of Massachusetts, Amherst. Morgan Kaufmann.

Out[7]:

```
array([[6.3200e-03, 1.8000e+01, 2.3100e+00, ..., 1.5300e+01, 3.9690e+02, 4.9800e+00],
[2.7310e-02, 0.0000e+00, 7.0700e+00, ..., 1.7800e+01, 3.9690e+02, 9.1400e+00],
[2.7290e-02, 0.0000e+00, 7.0700e+00, ..., 1.7800e+01, 3.9283e+02, 4.0300e+00],
...,
[6.0760e-02, 0.0000e+00, 1.1930e+01, ..., 2.1000e+01, 3.9690e+02, 5.6400e+00],
[1.0959e-01, 0.0000e+00, 1.1930e+01, ..., 2.1000e+01, 3.9345e+02, 6.4800e+00],
[4.7410e-02, 0.0000e+00, 1.1930e+01, ..., 2.1000e+01, 3.9690e+02, 7.8800e+00]])
```

In [8]:

dt.target

Out[8]:

```
array([24., 21.6, 34.7, 33.4, 36.2, 28.7, 22.9, 27.1, 16.5, 18.9, 15.,
       18.9, 21.7, 20.4, 18.2, 19.9, 23.1, 17.5, 20.2, 18.2, 13.6, 19.6,
       15.2, 14.5, 15.6, 13.9, 16.6, 14.8, 18.4, 21. , 12.7, 14.5, 13.2,
      13.1, 13.5, 18.9, 20., 21., 24.7, 30.8, 34.9, 26.6, 25.3, 24.7,
      21.2, 19.3, 20., 16.6, 14.4, 19.4, 19.7, 20.5, 25., 23.4, 18.9,
       35.4, 24.7, 31.6, 23.3, 19.6, 18.7, 16., 22.2, 25., 33., 23.5,
       19.4, 22. , 17.4, 20.9, 24.2, 21.7, 22.8, 23.4, 24.1, 21.4, 20. ,
      20.8, 21.2, 20.3, 28., 23.9, 24.8, 22.9, 23.9, 26.6, 22.5, 22.2,
      23.6, 28.7, 22.6, 22. , 22.9, 25. , 20.6, 28.4, 21.4, 38.7, 43.8,
      33.2, 27.5, 26.5, 18.6, 19.3, 20.1, 19.5, 19.5, 20.4, 19.8, 19.4,
       21.7, 22.8, 18.8, 18.7, 18.5, 18.3, 21.2, 19.2, 20.4, 19.3, 22.
       20.3, 20.5, 17.3, 18.8, 21.4, 15.7, 16.2, 18., 14.3, 19.2, 19.6,
      23. , 18.4, 15.6, 18.1, 17.4, 17.1, 13.3, 17.8, 14. , 14.4, 13.4,
       15.6, 11.8, 13.8, 15.6, 14.6, 17.8, 15.4, 21.5, 19.6, 15.3, 19.4,
       17. , 15.6, 13.1, 41.3, 24.3, 23.3, 27. , 50. , 50. , 50. , 22.7,
      25., 50., 23.8, 23.8, 22.3, 17.4, 19.1, 23.1, 23.6, 22.6, 29.4,
      23.2, 24.6, 29.9, 37.2, 39.8, 36.2, 37.9, 32.5, 26.4, 29.6, 50. ,
       32., 29.8, 34.9, 37., 30.5, 36.4, 31.1, 29.1, 50., 33.3, 30.3,
       34.6, 34.9, 32.9, 24.1, 42.3, 48.5, 50., 22.6, 24.4, 22.5, 24.4,
      20., 21.7, 19.3, 22.4, 28.1, 23.7, 25., 23.3, 28.7, 21.5, 23.,
       26.7, 21.7, 27.5, 30.1, 44.8, 50., 37.6, 31.6, 46.7, 31.5, 24.3,
       31.7, 41.7, 48.3, 29., 24., 25.1, 31.5, 23.7, 23.3, 22., 20.1,
      22.2, 23.7, 17.6, 18.5, 24.3, 20.5, 24.5, 26.2, 24.4, 24.8, 29.6,
      42.8, 21.9, 20.9, 44., 50., 36., 30.1, 33.8, 43.1, 48.8, 31.,
      36.5, 22.8, 30.7, 50., 43.5, 20.7, 21.1, 25.2, 24.4, 35.2, 32.4,
       32., 33.2, 33.1, 29.1, 35.1, 45.4, 35.4, 46., 50., 32.2, 22.,
       20.1, 23.2, 22.3, 24.8, 28.5, 37.3, 27.9, 23.9, 21.7, 28.6, 27.1,
      20.3, 22.5, 29., 24.8, 22., 26.4, 33.1, 36.1, 28.4, 33.4, 28.2,
       22.8, 20.3, 16.1, 22.1, 19.4, 21.6, 23.8, 16.2, 17.8, 19.8, 23.1,
      21., 23.8, 23.1, 20.4, 18.5, 25., 24.6, 23., 22.2, 19.3, 22.6,
      19.8, 17.1, 19.4, 22.2, 20.7, 21.1, 19.5, 18.5, 20.6, 19., 18.7,
      32.7, 16.5, 23.9, 31.2, 17.5, 17.2, 23.1, 24.5, 26.6, 22.9, 24.1,
      18.6, 30.1, 18.2, 20.6, 17.8, 21.7, 22.7, 22.6, 25., 19.9, 20.8,
       16.8, 21.9, 27.5, 21.9, 23.1, 50., 50., 50., 50., 50., 13.8,
      13.8, 15., 13.9, 13.3, 13.1, 10.2, 10.4, 10.9, 11.3, 12.3, 8.8,
       7.2, 10.5, 7.4, 10.2, 11.5, 15.1, 23.2,
                                                 9.7, 13.8, 12.7, 13.1,
                   5., 6.3, 5.6, 7.2, 12.1, 8.3, 8.5,
       12.5,
             8.5,
                                                             5., 11.9,
       27.9, 17.2, 27.5, 15., 17.2, 17.9, 16.3,
                                                 7.,
                                                      7.2,
                                                             7.5, 10.4,
       8.8, 8.4, 16.7, 14.2, 20.8, 13.4, 11.7,
                                                8.3, 10.2, 10.9, 11.
       9.5, 14.5, 14.1, 16.1, 14.3, 11.7, 13.4, 9.6, 8.7,
                                                             8.4, 12.8,
       10.5, 17.1, 18.4, 15.4, 10.8, 11.8, 14.9, 12.6, 14.1, 13., 13.4,
      15.2, 16.1, 17.8, 14.9, 14.1, 12.7, 13.5, 14.9, 20., 16.4, 17.7,
       19.5, 20.2, 21.4, 19.9, 19. , 19.1, 19.1, 20.1, 19.9, 19.6, 23.2,
       29.8, 13.8, 13.3, 16.7, 12. , 14.6, 21.4, 23. , 23.7, 25. , 21.8,
       20.6, 21.2, 19.1, 20.6, 15.2, 7., 8.1, 13.6, 20.1, 21.8, 24.5,
       23.1, 19.7, 18.3, 21.2, 17.5, 16.8, 22.4, 20.6, 23.9, 22. , 11.9])
```

```
In [9]:
                                                                                                H
dt.filename
Out[9]:
'C:\\Users\\Jesus\\anaconda3\\lib\\site-packages\\sklearn\\datasets\\data\\b
oston_house_prices.csv'
In [12]:
                                                                                                H
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
In [13]:
                                                                                                H
df = pd.DataFrame(dt.data)
df.head()
Out[13]:
        0
             1
                  2
                      3
                            4
                                  5
                                              7
                                                             10
                                                                    11
                                                                         12
0 0.00632 18.0 2.31
                               6.575
                                     65.2 4.0900 1.0 296.0 15.3 396.90 4.98
                     0.0
                         0.538
1 0.02731
            0.0 7.07 0.0 0.469
                              6.421 78.9 4.9671 2.0 242.0 17.8 396.90 9.14
2 0.02729
            0.0 7.07 0.0
                         0.469
                               7.185 61.1 4.9671 2.0 242.0 17.8 392.83 4.03
3 0.03237
            0.0 2.18 0.0 0.458 6.998 45.8 6.0622 3.0 222.0 18.7
                                                                394.63 2.94
4 0.06905
            0.0 2.18 0.0 0.458 7.147 54.2 6.0622 3.0 222.0 18.7 396.90 5.33
In [14]:
                                                                                                H
df.columns = dt.feature_names
df.head()
Out[14]:
```

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LS
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	4
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	(
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	4
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	1
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	ţ
4													•

```
In [15]:

y = pd.DataFrame(dt.target)

y.columns = ['MEDV']

y.head()
```

Out[15]:

MEDV 24.0 21.6 34.7 33.4 36.2

```
In [16]:

df['MEDV'] = y

df.head()
```

Out[16]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LS
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	2
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	(
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	2
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	1
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	ţ
4													•

In [17]: ▶

corr = df.corr()
corr

Out[17]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS
CRIM	1.000000	-0.200469	0.406583	-0.055892	0.420972	-0.219247	0.352734	-0.379670
ZN	-0.200469	1.000000	-0.533828	-0.042697	-0.516604	0.311991	-0.569537	0.664408
INDUS	0.406583	-0.533828	1.000000	0.062938	0.763651	-0.391676	0.644779	-0.708027
CHAS	-0.055892	-0.042697	0.062938	1.000000	0.091203	0.091251	0.086518	-0.099176
NOX	0.420972	-0.516604	0.763651	0.091203	1.000000	-0.302188	0.731470	-0.769230
RM	-0.219247	0.311991	-0.391676	0.091251	-0.302188	1.000000	-0.240265	0.205246
AGE	0.352734	-0.569537	0.644779	0.086518	0.731470	-0.240265	1.000000	-0.747881
DIS	-0.379670	0.664408	-0.708027	-0.099176	-0.769230	0.205246	-0.747881	1.000000
RAD	0.625505	-0.311948	0.595129	-0.007368	0.611441	-0.209847	0.456022	-0.494588
TAX	0.582764	-0.314563	0.720760	-0.035587	0.668023	-0.292048	0.506456	-0.534432
PTRATIO	0.289946	-0.391679	0.383248	-0.121515	0.188933	-0.355501	0.261515	-0.232471
В	-0.385064	0.175520	-0.356977	0.048788	-0.380051	0.128069	-0.273534	0.291512
LSTAT	0.455621	-0.412995	0.603800	-0.053929	0.590879	-0.613808	0.602339	-0.496996
MEDV	-0.388305	0.360445	-0.483725	0.175260	-0.427321	0.695360	-0.376955	0.249929
4								>

In [18]:

```
plt.figure(figsize=(10,10))
sns.heatmap(corr, annot = True)
```

Out[18]:

<matplotlib.axes._subplots.AxesSubplot at 0x20179b07250>

In [19]:

plt.scatter(df['RM'], df['MEDV'])

Out[19]:

<matplotlib.collections.PathCollection at 0x2017abf9610>

In [20]:

Ы

plt.scatter(df['RM'], df['LSTAT'])

Out[20]:

<matplotlib.collections.PathCollection at 0x2017abc4610>

Y = ax2 + bx + cY = axy3 + bx2 + cx + d

PolyNomial Features

Linea Regression object

```
In [21]:
                                                                                            M
from sklearn.preprocessing import PolynomialFeatures
In [23]:
                                                                                            H
x = df[['LSTAT', "RM"]]
y = df['MEDV']
In [24]:
                                                                                            H
x.head()
                                                                                            M
In [26]:
poly = PolynomialFeatures(degree = 2)
xpoly = poly.fit_transform(x)
xpoly[:, 5]
In [27]:
                                                                                            H
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
In [30]:
x_train, x_test, y_train, y_test = train_test_split(xpoly, y, test_size = 0.25, random_stat
In [31]:
                                                                                            H
poly_reg = LinearRegression()
poly_reg.fit(x_train, y_train)
Out[31]:
LinearRegression()
In [32]:
                                                                                            H
y_pred = poly_reg.predict(x_test)
```

In [33]:
poly_reg.score(x_train, y_train)

Out[33]:
0.7638978047290015

In [34]:
poly_reg.score(x_test, y_test)

Out[34]:

0.7214855654616512