COMP335, Pumping Lemma

October 27, 2018

Prove that the following languages are not regular:

1.
$$L = \{a^n b^l a^k : k \ge n + l\}$$

2.
$$L = \{a^n : n \text{ is prime number}\}$$

3.
$$L = \{a^n : n = k^3 \text{ for some } k \ge 0\}$$

4.
$$L = \{a^n : n = 2^k \text{ for some } k \ge 0\}$$

5.
$$L = \{a^n : n \text{ is the product of two prime numbers}\}$$

6.
$$L = \{a^n b^l : |n - l| = 2\}$$

7.
$$L = \{ww : w \in \{0, 1\}^*\}$$

(a)
$$L_1 = \{w_1 w_2 : w_1, w_2 \in \{0, 1\}^*, |w_1| = |w_2|\}$$
 (regular?)

8.
$$L = \{ww^R : w \in \{0, 1\}^*\}$$

9.
$$L = \{a^{n!} : n \ge 0\}$$

10.
$$L = \{w : w \text{ has different number of 0s and 1s}\}$$

1 Solutions

Assuming m is pumping length:

- 1. $w = a^m b a^{m+1}$ and you get a contradiction for xy^2z
- 2. $w=a^p$ s.t. p is a prime number and $p\geq m$ and you get a contradiction for $xy^{p+1}z$

- 3. $w=a^{m^3}$ and you get a contradiction for xy^2z hint1: $m<3m<3m^2+3m+1$ hint2: $m^3+r< m^3+3m^2+3m+1<(m+1)^3$
- 4. $w=a^{2^m}$ (m is the power of 2, don't confuse it with a^{2m})and you get a contradiction for xy^2z hint: $m<2^m$
- 5. $w = a^{pq}$ s.t. p and q are prime numbers and $p, q \ge m$ and you get a contradiction for $xu^{pq+1}z$
- 6. $w = a^m b^{m-2}$ and you get a contradiction for xy^2z
- 7. $w = 0^m 10^m 1$ and you get a contradiction for xy^2z
 - (a) L_1 is regular
- 8. $w = 0^m 110^m$ and you get a contradiction for xy^2z
- 9. $w = a^{m!}$ and you get a contradiction for xy^2z hint: get to the contradiction for both cases (a) m = 1, and (b) $m \ge 2$
- 10. prove that \overline{L} is not regular.