FORMATTING AND BASEBAND MODULATION

Text

Digital Communications

Bernard Sklar

Publisher: Pearson Education

Formatting and transmission of baseband signals

Formatting textual data

Character	Т	Н	I	N	K	
6-bit ASCII	001 010	000 100	100 100	011 100	110 100	
8-ary symbols	1 2	0 4	4 4	3 4	6 4	
8 -ary waveforms	S1(t) S2(t)	SO(t) S4(t)	S4(t) S4(t)	S3(t) S4(t)	S6(t) S4(t)	

ASCII TABLE

Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char
0	0	[NULL]	32	20	[SPACE]	64	40	@	96	60	`
1	1	[START OF HEADING]	33	21	!	65	41	A	97	61	a
2	2	[START OF TEXT]	34	22	II	66	42	В	98	62	b
3	3	[END OF TEXT]	35	23	#	67	43	C	99	63	C
4	4	[END OF TRANSMISSION]	36	24	\$	68	44	D	100	64	d
5	5	[ENQUIRY]	37	25	%	69	45	E	101	65	e
6	6	[ACKNOWLEDGE]	38	26	&	70	46	F	102	66	f
7	7	[BELL]	39	27	1	71	47	G	103	67	g
8	8	[BACKSPACE]	40	28	(72	48	Н	104	68	h
9	9	[HORIZONTAL TAB]	41	29)	73	49	1	105	69	i
10	Α	[LINE FEED]	42	2A	*	74	4A	J	106	6A	j
11	В	[VERTICAL TAB]	43	2B	+	75	4B	K	107	6B	k
12	С	[FORM FEED]	44	2C	,	76	4C	L	108	6C	1
13	D	[CARRIAGE RETURN]	45	2D	-	77	4D	M	109	6D	m
14	Е	[SHIFT OUT]	46	2E		78	4E	N	110	6E	n
15	F	[SHIFT IN]	47	2F	1	79	4F	0	111	6F	0
16	10	[DATA LINK ESCAPE]	48	30	0	80	50	P	112	70	р
17	11	[DEVICE CONTROL 1]	49	31	1	81	51	Q	113	71	q
18	12	[DEVICE CONTROL 2]	50	32	2	82	52	R	114	72	r
19	13	[DEVICE CONTROL 3]	51	33	3	83	53	S	115	73	S
20	14	[DEVICE CONTROL 4]	52	34	4	84	54	T	116	74	t
21	15	[NEGATIVE ACKNOWLEDGE]	53	35	5	85	55	U	117	75	u
22	16	[SYNCHRONOUS IDLE]	54	36	6	86	56	V	118	76	V
23	17	[ENG OF TRANS. BLOCK]	55	37	7	87	57	W	119	77	w
24	18	[CANCEL]	56	38	8	88	58	X	120	78	X
25	19	[END OF MEDIUM]	57	39	9	89	59	Y	121	79	у
26	1A	[SUBSTITUTE]	58	3A		90	5A	Z	122	7A	Z
27	1B	[ESCAPE]	59	3B	;	91	5B	[123	7B	{
28	1C	[FILE SEPARATOR]	60	3C	<	92	5C	\	124	7C	
29	1D	[GROUP SEPARATOR]	61	3D	=	93	5D	1	125	7D	}
30	1E	[RECORD SEPARATOR]	62	3E	>	94	5E	^	126	7E	~
31	1F	[UNIT SEPARATOR]	63	3F	?	95	5F	_	127	7F	[DEL]

Data rates(Analog Information)

- Analog signal
 Sampling rate = fs samples/sec
 Time between samples = Ts = 1/fs
 N bits per sample
 Data rate in bits/sec (bps) = Nfs
- Symbol ratek bits are grouped to form a symbolData rate in symbols/sec = bps/k
- Number of possible symbols
 M = 2^k
 M'ary waveforms

Data rate (Textual information)

- Data rate in characters/Sec = fch
 Time between two characters = Tch = 1/fch
 N bits /Character
 Data rate in bps = Nfch
- Symbol ratek bits are grouped to form the symbolSymbol rate = bps/k
- Number of possible symbols
 M = 2^k
 M'ary waveforms

Data rate (Digital information)

Data rates in bits /sec = bps
 k bits are grouped to form the symbol
 Symbol rate = bps/k

Problem 2.1

- Encode the word "HOW" using 8 bit ASCII along with even parity for "1"
- How many total bits in the message?
- Partition the bit stream into k = 3 bit segments. Code each segment using an octal number. How many octal numbers?
- For 16'ary system how many symbols?
- For 256'ary system how many symbols?

Solution P2.1

Letter	Hex	7 bit ASCII	8 bit with		
			even		
			parity		
Н	48	1001000	01001000		
0	4F	1001111	11001111		
W	57	1010111	11010111		

Binary	010	010	001	100	111	111	010	111
Octal	2	2	1	4	7	7	2	7

Solution to 2.1

- (c) Total umber of bits = 24Number of bits per symbol = 4Total number of symbols = 24/4 = 6
- (d) Number of bits per symbol = 8 Total number of symbols = 24/8 = 3

P 2.3

- A 100 character message is transmitted in 2 seconds with 8 bit ASCII.
- □ A multilevel waveform with M = 32 is used
- □ Calculate the effective transmitted bit rate and the symbol rate. Repeat for M=16,8,4 and 2.

Solution

```
\square Total number of bits in 2 seconds = 8 \times 100 = 800
  Bit rate = 800/2 = 400 bits/sec
  M = 32
  Number of bits/symbol = 5
  Symbols/sec = 400/5 = 80 symbols/sec
M = 16 : Rate = 400/4 = 100 symbols/sec
\square M = 8 : Rate = 400/3 = 133.3 symbols/sec
\square M = 4 :Rate = 400/2 = 200 \text{ symbols/sec}
           Rate = 400/1 = 400 symbols/sec
□ M=2
```

Sampling theorem

Frequency spectrum of sampled signal

$$\overline{g}(t) = \frac{1}{T_s} \sum_{n=-\infty}^{\infty} g(t) e^{jn2\pi f_s t}$$

$$\overline{G}(f) = \frac{1}{T_s} \sum_{n=-\infty}^{\infty} G(f - nf_s)$$

$$\overline{G}(f)$$

$$\overline{G}(f)$$

$$\overline{G}(f)$$

$$F_s \ge 2B$$

$$B \quad \text{fs-B} \quad \text{fs}$$

Formatting Analog Data

- Sampling
 - Sampling frequency ≥ 2 fm fm is the highest frequency in the spectrum of analog signal
- □ If fs< 2fmAliasing occurs

Quantization

Quantization error(Noise)

$$x(t)_{\min} = -V_p$$
 $x(t)_{\max} = V_p$
 $L : Number of quantization levels$
 $Quantization step = q = \frac{2V_p}{L}$
 $Previous Example q = \frac{2x4}{8} = 1$
 $quantization error : e = x(t) - \hat{x}(t)$
 $e ranges from - \frac{q}{2} to \frac{q}{2}$

Probability density function of e

Mean square error

$$\sigma^{2} = \int_{-\frac{q}{2}}^{+\frac{q}{2}} e^{2} p(e) de = \int_{-\frac{q}{2}}^{+\frac{q}{2}} e^{2} \frac{1}{q} de = \frac{q^{2}}{12}$$

Ratio of peak signal power to mean square quantization noise

Peak signal power =
$$V_p^2$$

$$\frac{S}{N} = \frac{12V_p^2}{q^2}$$

$$\frac{2V_p}{L} = q \therefore V_p = \frac{qL}{2}$$

$$V_p^2 = \frac{q^2L^2}{4}$$

$$\left(\frac{S}{N}\right) = \frac{q^2L^2/4}{q^2/12} = 3L^2$$

P 2.6

If signal to quantization noise ratio is 50 dB, find the required number of levels for binary coding.

Solution to P2.6

```
10 \log (3L^2) = 50
3L^2 = 10^5
L = 182.57
For binary coding L = 256
```

P2.5

 An analog signal is sampled at its Nyquist rate Ts and quantized using L quantization levels. Show that the bit time T must satisfy the condition

$$T \le Ts/Log_2L$$

Solution P2.5

- □ Suppose L is an integer power of 2 Then $k = log_2L$ is the number of bits per sample Bit time $T = Ts/k = Ts/log_2L$
- If L is not an integer power of 2 then log₂L is not an integer and you chose the next higher integer say k' such that k' > log₂L
- \Box T = Ts/k'
- \square T < Ts/ $\log_2 L$

Non-uniform quantization

- Speech signals are low most of the time.
- \square S/N ratio will be low.

Quantization

Non-Uniform Quantization

Why non-uniform

- For a given number of bits outputted the quantization levels are fixed. For 8 bit --- 256 levels
- If we use small step size for all levels the number of bits required will increase.
- So more steps for smaller amplitudes and less number of steps for larger amplitudes

Compressor

□ High gain for low amplitudes

Exponential functions

$$x=e^y$$

$$y = \log_e x$$

Characteristics passing through origin

$$y = \log_e(1+x)$$

$$y = \log_e(1 + \mu x) : \mu = 10$$

Normalized characteristics

$$y = \frac{\log_e(1 + \mu x)}{\log_e(1 + \mu)}$$

Max values

$$y = \frac{\log_e(1 + \mu x)}{\log_e(1 + \mu)}$$

$$when \ x = x_{\text{max}} : y = y_{\text{max}}$$

$$\int_{y=y_{\text{max}}} \frac{\log_e\left(1 + \mu \frac{x}{x_{\text{max}}}\right)}{\log_e(1 + \mu)}$$

For negative values

$$y = -y_{\text{max}} \frac{\log_e \left(1 + \mu \frac{|x|}{x_{\text{max}}}\right)}{\log_e (1 + \mu)}$$

μ-law characteristic

Output

$$y = y_{\text{max}} \frac{\log_e [1 + \mu(|x|/x_{\text{max}})]}{\log_e (1 + \mu)} \operatorname{sgn} x$$

where

$$\operatorname{sgn} x = \begin{cases} +1 & \text{for } x \ge 0 \\ -1 & \text{for } x < 0 \end{cases}$$

Used in North America and Japan. Another law called A law is used in Europe and the rest

Types of Pulse modulation

□ When k = 1

$$M = 2$$

The resulting binary waveform is called Pulse code modulation waveform

□ When k > 1: 2,3,4 etc

$$M = 4, 8, 16$$
 etc

The resulting waveform is called

M-ary pulse- modulation waveform

PCM waveforms(line codes)

Important parameters of line codes

- D.C.Component
- Clock component
- Error detection
- Bandwidth
- Noise immunity

