

Sensors & Microsystem Electronics: microcontrollers

PART 3: SIMULATOR

- Use the simulator to:
 - o Discover the specific operation of an instruction, block of instructions, macro, or function
 - Verify the flow of execution
 - Find out what causes unintended or erratic behaviour

SIMULATOR

- A program (software) mimics the execution of the instructions and the state of the microcontroller
- Execution of instructions stops at predefined breakpoints
- The simulator updates the emulated registers, settings, memory cells, ...

Simulation time ≠ run time on the microcontroller

! Simulating 1 second of the program can take several minutes!

I/O can be viewed and influenced with the checkboxes in the simulator

DEBUGGER

- The microcontroller itself executes the instructions
- Execution of instructions stops at predefined breakpoints
- The state of registers, settings, memory cells, etc. is communicated to Atmel Studio at breakpoints via serial communication

Peripherals influence the program flow and the state of the microcontroller directly

Select the simulator

Start simulator

Debug toolbar

Processor status

- Program counter
- Stack pointer
- X, Y, and Z register
- Status register (SREG)
 - I: interrupt flag
 - T: T-flag
 - N: zero flag
 - S: sign flag
 - C: carry flag

Cycle counter

Clock frequency

Stop watch [µseconds]

32 registers, including copies of the X, Y, and Z registers

Input/Output window

List of functional units

Check settings of timers, ADC, I/O ports, ...

Unfold sections to view functional units registers

Check their values

Change their values for simulating external pin changes (PINx registers)

Memory overview

End of Part 3: simulator