TRANSFORMATIONS **CHIMIQUES**

Cours ET2 - J. Joubert

- ▶ Plan du cours
- 1. Transformation vs. réaction
 - 1.1. Définitions
 - 1.2. Équation de réaction
 - 1.3. Constante d'équilibre
- 2. Évolution vers l'équilibre
 - 2.1. Critère d'évolution
 - 2.2. Composition à l'équilibre

- ► Compétences spécifiques
 - ▶ Écrire une équation de réaction modélisant une transformation donnée.
 - ▶ Déterminer une constante d'équilibre
 - ▶ Décrire qualitativement et quantitativement un système chimique dans un état d'avancement quelconque
 - ► Exprimer l'activité d'une espèce chimique pure ou dans un mélange
 - ► Exprimer le quotient réactionnel
 - ▶ Prévoir le sens de l'évolution spontanée d'un système chimique
 - ▶ Identifier un état d'équilibre chimique
 - ▶ Déterminer la composition d'un système

1. Transformation vs. réaction	
1.1. Définitions	La transformation d'un système peut être modélisée par une ou plusieurs équations de réaction.
<u>Définition</u> : une transformation est définie par le changement d'un état initial (quelconque) à un état final (quelconque) et des conditions appliquées au système. En chimie, le terme est le plus souvent utilisé pour un	Une équation de réaction précise la nature des constituants physico-chimiques modifiés par la transformation et les proportions de ces constituants. <u>Exemple</u> :
phénomène macroscopique.	
<u>Exemple</u> :	
Combustion du graphite dans l'air:	
J. JOUBERT – COURS <i>ET</i> 2 – 1. TRANSFORMATION V	S. RÉACTION 3
1.2. Équation de réaction L'équation de réaction indique les proportions des constituants physico-chimiques qui sont transformés. Les proportions sont indiquées par les nombres stæchiométriques. Sxemple:	Plusieurs possibilités existent pour les nombres stæchiométriques : on peut multiplier ou diviser l'équation de réaction. Il faut toujours conserver les proportions. <u>Exemple</u> : ATTENTION! Les nombres stæchiométriques doivent être ajustés. <u>Exemple</u> :

J. JOUBERT – COURS *ET2* – 1. TRANSFORMATION VS. RÉACTION

1	2	Éai	ıation	de	réaction	(suite)
1	.Z.	LUI	JUIIOIT	uе	reaction	1201161

L'équation de réaction permet de prévoir les quantités de matière des constituants physicochimiques transformés par cette réaction.

<u>Définition</u>: pour une réaction quelconque $0 = \sum_k v_k A_k$, on définit l'avancement de la réaction ξ :

$$\xi =$$

Unité de ξ :_____

 $\underline{\mathcal{R}_{emarque}}$: la définition de ξ est indépendante du constituant $A_k.$

L'avancement maximum ξ_{\max} est limité par le **réactif** en défaut.

$$\xi_{max} = \min_{k \in \{r \in actifs\}} \left| \frac{n_{k,0}}{v_k} \right|$$

Exemples:

J. JOUBERT – COURS ET2 – 1. TRANSFORMATION VS. RÉACTION

5

<u>Définition</u>: on appelle **état d'équilibre** l'état du système pour lequel il n'y a pas d'évolution spontanée des grandeurs intensives.

(définition incomplète qui sera précisée plus tard)

 $\underline{\textit{Propriété}}$: à l'équilibre, ξ peut être quelconque. Il dépend des conditions de la transformation.

$$0 \le \xi_{eq} \le \xi_{max}$$

Exemple:

Transformation de 100 mL de solution aqueuse de $\rm CH_3CO_2H$ 1,0.10-2 mol.L-1 à 25°C sous 1 bar Équation de réaction :

<u>Définition</u>: on appelle **avancement volumique** la grandeur $x = \frac{\xi}{V}$ (en mol.L⁻¹).

Cette grandeur est utilisée pour les transformations à volume constant (transformations isochores) en phase liquide.

<u>Définition</u>: on appelle **taux d'avancement** de la réaction la grandeur $\tau = \frac{\xi}{\xi_{max}}$ (sans unité)

Comment déterminer ξ , x ou τ ?

J. JOUBERT – COURS ET2 – 1. TRANSFORMATION VS. RÉACTION

1.3. Constante d'équilibre

 $\underline{\mathcal{D}\textit{efinition}}$: à une température donnée, une équation de réaction est associée à une grandeur sans dimension appelée **constante thermodynamique d'équilibre**, noté $K^{\circ}(T)$. La constante $K^{\circ}(T)$ détermine la position de l'équilibre (ξ_{eq}).

<u>Propriété</u>: pour une réaction $0 = \sum_k v_k A_k$

$$K^{\circ} =$$

La grandeur a_k est appelée **activité** du constituant physico-chimique A_k .

L'expression de l'activité dépend de la nature du constituant physico-chimique.

Expression de l'activité de quelques constituants physico-chimiques :

Constituant A _k	Activité a _k
Gaz parfait pur	<u>P</u>
Gaz parfait dans un mélange idéal	$rac{\overline{P}^{\circ}}{P^{\circ}}$
Soluté	$\frac{C_k}{C^{\circ}}$
Solvant	1
Corps condensé seul dans sa phase	1
Corps condensé dans un mélange idéal	x_k

J. JOUBERT – COURS ET2 – 1. TRANSFORMATION VS. RÉACTION

7

1.3. Constante d'équilibre (suite)

<u> Exemples</u> :		

Quelques cas particuliers:

Produit ionique de l'eau:

Constante d'acidité:

Évolution de K° avec la température :

Exemple:
$$N_{2(g)} + 3 H_{2(g)} = 2 NH_{3(g)}$$

Remarque:

- ▶ si K° augmente quand T augmente, la réaction est endothermique;
- ▶ si K° diminue quand T augmente, la réaction est exothermique.

J. JOUBERT - COURS ET2 - 1. TRANSFORMATION VS. RÉACTION

1.3. Constante d'équilibre (suite)

<u> $\mathcal{G}_{ropriété}$ </u>: la constante d'équilibre $K^{\circ}_{(R)}$ d'une équation de réaction (R) , combinaison linéaire de k équations

$$(R) = \sum_{i=1}^{k} \alpha_i(i)$$

s'exprime sous la forme :

 $\underline{\mathcal{R}_{\textit{emarque}}}$: cette propriété sera démontrée plus tard dans le cours de thermodynamique

Exemples:

- (R) $CH_3CH_2OH_{(I)} + 3 O_{2(g)} = 2 CO_{2(g)} + 3 H_2O_{(g)}$
- (1) $H_2O_{(I)} = H_2O_{(g)}$
- (2) $2 C_{(gr)} + \frac{1}{2} O_{2(g)} + 3 H_{2(g)} = CH_3CH_2OH_{(I)}$
- (3) $C_{(gr)} + O_{2(g)} = CO_{2(g)}$
- (4) $H_{2(g)} + \frac{1}{2} O_{2(g)} = H_2 O_{(1)}$

J. JOUBERT - COURS ET2 - 1. TRANSFORMATION VS. RÉACTION

9

2. Évolution vers l'équilibre

2.1. Critère d'évolution

Les transformations sont **renversables** : elles peuvent se produire dans les deux sens. Le sens dépend des conditions initiales.

La transformation évolue en direction de l'équilibre.

Exemple:

Le sens réactif → produit est appelé sens direct.

Le sens produit \rightarrow réactif est appelé **sens inverse** (ou indirect).

<u>Remarque</u> : le sens de la transformation dépend du sens d'écriture de l'équation de réaction.

Définition: Pour une équation de réaction de la forme

$$0 = \sum_{k} \nu_k A_k$$

On appelle **produit de réaction** (ou quotient de réaction) la grandeur sans dimension

ATTENTION! En général Q ≠ K°

J. JOUBERT – COURS ET2 – 2. ÉVOLUTION VERS L'ÉTAT D'ÉQUILIBRE

2.1. Critère d'évolution

Propriélés:

- ▶ Si $Q < K^{\circ}$, il y a une évolution dans le sens direct.
- ▶ Si $Q > K^{\circ}$, il y a une évolution dans le sens inverse.
- ▶ Q_{eq} = K°

$Q_{0,A}$ Évolution	$Q_{0,B}$
	1 0
	K°
ÉQ	JILIBRE

<u>Justification</u> :	ÉQUILIBRE	
	 	

Cas particuliers:

Pour une équation de réaction avec des nombres stœchiométriques entiers les plus petits possibles,

- ▶ si K° est très grand ($K^\circ > 10^3$), on a en général $Q \ll K^\circ$: $\xi \to \xi_{max}$. On dit que la réaction est **quantitative**.
- ▶ si K° est très petit (K° < 10⁻³), $\xi_{ea} \ll \xi_{max}$

Exemples:

$$CH_3CO_2H_{(aq)} = CH_3CO_2^{-}_{(aq)} + H^{+}_{(aq)}$$
 $K^{\circ} = K_A = 10^{-4.8}$

$$[CH_3CO_2H_{(aq)}]_0 = 0.1 \text{ mol.L}^{-1} \Rightarrow x_{eq} = 1.25.10^{-3} \text{ mol.L}^{-1}$$

$$Ag^{+}_{(aq)} + 2 NH_{3(aq)} = Ag(NH_3)_{2}^{+}_{(aq)}$$
 $K^{\circ} = 1,6.10^{7}$

$$[Ag^{+}_{(qq)}]_0 = \frac{1}{2}.[NH_{3(qq)}]_0 = 0.1 \text{ mol.L}^{-1}$$

 $\Rightarrow x_{eq} = 0.0988 \text{ mol.L}^{-1}$

J. JOUBERT - COURS ET2 - 2. ÉVOLUTION VERS L'ÉTAT D'ÉQUILIBRE

11

2.2. Composition à l'équilibre

Les quantités de matière des constituants physicochimiques sont reliées à l'avancement. On peut représenter ceci par un tableau d'avancement (ou bilan de matière).

<u>Oxemples</u> :		
	· · · · · · · · · · · · · · · · · · ·	
·		

Méthode pour trouver la composition d'un système à l'équilibre:

- ▶ Écrire l'équation de la réaction qui modélise la transformation:
- Évaluer sa constate d'équilibre ;
- Écrire un tableau d'avancement :
- ▶ Reporter les expressions du tableau d'avancement dans l'expression de la constante K° ;
- ▶ Résoudre l'équation mathématique.

<u>Remarque</u>: pour résoudre l'équation mathématique, on peut faire des approximations (si $K^{\circ} \ll 1$ ou $K^{\circ} \gg 1$)

J. JOUBERT - COURS ET2 - 2. ÉVOLUTION VERS L'ÉTAT D'ÉQUILIBRE