

Moving-horizon False Data Injection Attack Design against Cyber-Physical Systems

Yu Zheng, Sridhar Babu Mudhangulla, Olugbenga Moses Anubi

Attack Generation Problem in Literature: Least Square Estimator (LSE), residual – based BDD Inefficient and less Kalman filter with χ^2 detector pragmatic FDIAs Limited access to sensors **Reduced Model** Inefficient but more Incomplete knowledge of system dynamics pragmatic FDIAs Incomplete knowledge of implemented state estimators Learn system model from runtime data Inefficient but most

- ★ How does the attack history affect the feasibility of the FDIA? (Recursive Feasibility)
- ★ Design focus of MHE how to guarantee feasibility, Over the next window?

Generative network

MH - FDIA

pragmatic FDIAs

Model Development

• Maintaining stealthiness (potential to bypass BDD)

Closed-from dynamical model

 $\mathbf{x}_{i+1} = A\mathbf{x}_i$ $\mathbf{y}_i = C\mathbf{x}_i + \mathbf{v}_i,$

where, A = A' + B'K, $\mathbf{v}_t \in \mathbb{R}^{Tm}$ – noise vector. Measurement model on the window I of length T $\mathbf{y}_I = H\mathbf{x}_i + \mathbf{v}_I$

MHE:

Def: Operator $\mathcal{D}: \mathbb{R}^{Tm} \to \mathbb{R}^n$

Returns: estimate of state vector (T-horizon observation)

Stability: $\|\mathcal{D}(\mathbf{y}_I) - \mathbf{x}_i\|_2 \le \tau_0 \|\mathbf{x}_i\|_2 + \varepsilon_0$, where $\tau_0, \varepsilon_0 < \infty$

 ℓ_2 MHE: $\mathcal{D}_2(\mathbf{y}_I) \triangleq \arg \min \| \mathbf{y}_I - H\mathbf{x} \|_2 = H^{\dagger} \mathbf{y}_I$

BDD:

Obj: Monitor state estimate and detect malicious inputs

Designed: Based on residual, $\|\mathbf{y}_I - H\mathcal{D}(\mathbf{y}_I)\|_2$

Problem Formulation

Quantifying Effectiveness:

Estimation error, $\|\mathcal{D}(\mathbf{y}_I) - \mathcal{D}(\mathbf{y}_I + \mathbf{e}_I)\|_2$

Quantifying Stealthiness:

Estimation residual, $\|\mathbf{y}_I + \mathbf{e}_I - H\mathcal{D}(\mathbf{y}_I + \mathbf{e}_I)\|_2$

Definition (Successful FDIA):

Given the estimator-detector pair $(\mathcal{D}(\mathbf{y}_I), \mathrm{BDD}(\mathbf{y}_I))$, the attack vector $\mathbf{e}_l \in \Sigma_k$ is said to be (α, ϵ) -successful if:

$$\|\mathcal{D}(\mathbf{y}_I) - \mathcal{D}(\mathbf{y}_I + \mathbf{e}_I)\|_2 \ge \alpha, \|\mathbf{y}_I + \mathbf{e}_I - H\mathcal{D}(\mathbf{y}_I + \mathbf{e}_I)\|$$

Moving horizon FDIA

Static Successful FDIA

Recursive Feasibility

(Projected Gradient Ascent) The algorithm searches on the gradient

ascent direction of $\alpha(\mathbf{v})$ inside the ellipsoid $S = \{\mathbf{v} | \| N_2 \mathbf{v} + \mathbf{w}_2^- \|_2 \le \tilde{\epsilon} \}.$

When approach the boundary, it will stay on the boundary.

Experiment

Experiment Setup

Experiment Platform

Successful MH-FDIA Algorithm

Experiment Result: Figure-8

Experiment Result: Circle Experiment Result: Circle Target desired path real path Path start attack injection -1 Malicious Path -0.5 0.5 **Under MH-FDIA** -0.5 0.5

Conclusion and Future work

This poster presents a complete framework of MH-FDIA design including attack effectiveness improvement algorithm.

- 1) Based on a formal definition of successful FDIA, the MH-FDIA design is given against ℓ_2 MHE and BDD, and shown to be $(\alpha; \epsilon)$ -successful.
- An adaptive algorithm is proposed to search for the most successful FDIAs while preserving recursive feasibility

Future work: Given a pre-defined malicious trajectory, how to design successful MH-FDIA.

Reference

Paper:

Y. Zheng, S. Mudhangulla and O. Anubi, "Movinghorizon False Data Injection Attack Design against Cyber-Physical Systems ", Control Engineering Practice, 2023, [under review]

Experiment video Link:

(36) Safe Autonomy - YouTube

Contacts

Yu Zheng, IEEE Student Member, Florida State University, Email: <u>yzheng6@fsu.edu</u>

Sridhar Babu Mudhangulla, Florida State University, Email: sm19ch@fsu.edu

Olugbenga Moses Anubi, IEEE Senior Member, Florida State University, Email: oanubi@fsu.edu