

(19) BUNDESREPUBLIK **DEUTSCHLAND**

Offenlegungsschrift ® DE 199 17 330 A 1

(5) Int. Cl.⁷: B 01 J 19/00

DEUTSCHES PATENT- UND MARKENAMT (7) Aktenzeichen: 199 17 330.3 ② Anmeldetag: 16. 4. 1999 (3) Offenlegungstag:

19. 10. 2000

(7) Anmelder:

Institut für Mikrotechnik Mainz GmbH, 55129 Mainz,

(4) Vertreter:

FUCHS, MEHLER, WEISS & FRITZSCHE, 81545 München

(72) Erfinder:

Ehrfeld, Wolfgang, Prof. Dr., 55124 Mainz, DE; Löwe, Holger, Dr., 55276 Oppenheim, DE; Michel, Frank, Dr., 55268 Nieder-Olm, DE; Lohf, Astrid, 64297 Darmstadt, DE; Hofmann, Christian, 55118 Mainz, DE

66 Entgegenhaltungen:

US 55 80 523 A

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

Prüfungsantrag gem. § 44 PatG ist gestellt

(4) Mikroreaktormodul

Ein Mikroreaktormodul (100) mit Reaktorelementen wie Fluidkanälen, Reaktionskammern, Heizvorrichtungen, Mischvorrichtungen und dergleichen, ist zur Ausbildung eines Mikrosystems aus einer Anzahl von Mikroreaktormodulen (100) gleicher und unterschiedlicher Art mit Verbindungselementen (120, 122) versehen, die bei der Verbindung jeweils zweiter Mikroreaktormodule (100) formschlüssig derart miteinander verbinden, daß von einem Modul zum anderen führende Fluidkanäle nach außen abdichtend miteinander verbunden sind.

Beschreibung

Die Erfindung betrifft ein Mikroreaktormodul mit Reaktorelementen wie Fluidkanälen, Reaktionskammern, Heizvorrichtungen, Mischvorrichtungen und dergleichen, wobei eine Anzahl von Mikroreaktormodulen gleicher und unterschiedlicher Art zu einem über Fluidkanäle miteinander in Verbund stehenden Mikroreaktorsystem zusammensetzbar ist

Derartige Systeme können beispielsweise für einzelne 10 Operationen, wie das Durchführen von chemischen, biochemischen und physikochemischen Reaktionen, Destillieren, Mischen, Trennen, etc. verwendet werden oder auch für einen Aufbau einer ganzen Kette von Operationen bis hin zu einer miniaturierten chemischen Fabrik.

Aus der EP-A-0 688 242 ist ein chemischer Mikroreaktor bekannt, der aus einer Anzahl von übereinanderliegenden, dünnen, strukturierten Platten besteht. Die Platten sind miteinander verbunden. Der Mikroreaktor kann eine ganze Anzahl von Operationseinheiten wie Mischer, Verteiler, Wärmetauscher, Separatoren und Reaktionskammern umfassen und mit Sensoren, Ventilen, Pumpen und dergleichen versehen sein. Es können zwar auch mehrere dieser bekannten Mikroreaktoren parallel oder seriell angeordnet werden, der Mikroreaktor stellt jedoch vor allem eine komplette Reaktionseinheit für einen vollständigen Prozeß dar.

Es gibt andererseits in letzter Zeit den Trend, relativ einfach gebaute Module im Baukastenprinzip zu Reaktoren für den gewünschten Prozeß zusammenzufügen. Die einzelnen Bausteine des so aufgebauten modularen Mikrosystems 30 müssen dabei mechanisch, fluidisch, optisch, thermisch und gegebenenfalls auch noch elektrisch leitend an Schnittstellen miteinander verbunden werden. Um einzelne Bausteine auswechseln zu können, sollten die Verbindungen lösbar sein.

Lösbare Verbindungen wie Steckverbindungen, Schraubverbindungen und dergleichen sind zwar auf vielen Gebieten der Technik bekannt. Im allgemeinen werden dabei die zu verbindenden Teile in Axialrichtung aufeinander zugeführt, zueinander ausgerichtet und durch kraftaufbringende 40 Teile zusammengedrückt und zusammengehalten. Der lösbaren Verbindung von Mikroreaktormodulen in Mikrosystemen wurde bisher jedoch wenig Aufmerksamkeit geschenkt.

Aufgabe der Erfindung ist es, die eingangs genannten Mikroreaktormodule so auszugestalten, daß eine Verbindung
der Mikroreaktormodule in einer oder mehreren Dimensionen möglich ist. Vorzugsweise soll die Verbindung wieder
lösbar sein.

Diese Aufgabe wird erfindungsgemäß mit der im Patent- 50 anspruch 1 genannten Anordnung gelöst. Vorteilhafte Ausgestaltungen der erfindungsgemäßen Anordnung sind in den Unteransprüchen definiert.

Das erfindungsgemäße Mikroreaktormodul, das Reaktorelemente wie Fluidkanäle, Reaktionskammern, Heiz- bzw. 55 Kühlvorrichtungen, Misch- bzw. Trennvorrichtungen, optische sowie elektrische Elemente und dergleichen umfaßt, ist zu einem Mikrosystem zusammensetzbar. Hierfür ist es mit einem Verbindungssystem mit Verbindungselementen versehen, die beim Zusammensetzen mindestens zwei Mikroreaktormodule zu einem System derart formschlüssig miteinander verbinden, daß die von einem Modul zum anderen führenden Fluidkanäle, nach außen abdichtend miteinander verbunden sind.

In einer erfindungsgemäßen Ausführungsform sind die 6s Verbindungselemente als männliche und weibliche Elemente ausgebildet. Auf diese Weise kann ein seitenverkehrter Zusammenschluß der Module verhindert werden. In manchen Fällen kann es jedoch erwünscht sein, ein Modul je nach Bedarf sowohl in die eine als auch in die gegenläufige Fließrichtung mit anderen Modulen zu verbinden. In solchen Fällen ist das Verbindungselement geschlechtsneutral ausgebildet.

Es hat sich als besonders zweckmäßig erwiesen, die Module mittels eines Spannelementes miteinander zu verbinden, das auf die Module eine diese aneinanderpressende, verbindende Kraft ausübt. Diese Spannelemente können als separate Elemente von außen auf die Module einwirken. Sie können jedoch zweckmäßigerweise auch im Verbindungselement selbst angeordnet sein.

Vorzugsweise sind die Verbindungselemente an den Mikroreaktormodulen angeordnete haken- oder schwalbenschwanzförmige Elemente, die mit Spiel derart ineinandergreifen, daß eine Relativbewegung der Mikroreaktormodule senkrecht zur Verbindungsachse mit einem Abstand der Mikroreaktoren zueinander möglich ist, wobei das Spiel zwischen den beiden Mikroreaktormodulen durch Spannelemente aufgehoben werden kann, die in eine von Aussparungen in den Verbindungselementen gebildete Öffnung einsetzbar sind. Die Verbindungselemente können sowohl einstückig mit dem Modul verbunden sein oder auch mittels Schrauben oder einem ähnlichen Element oder auch mittels Schweißen und dergleichen am Modul angebracht sein. Alternativ können die Verbindungselemente aus Nuten in den Mikroreaktormodulen bestehen, wobei jeweils zwei Mikroreaktormodule durch Profilstücke verbunden werden, die in den von zwei gegenüberliegenden Nuten gebildeten Hohlraum einsetzbar sind.

Das erfindungsgemäße Verbindungssystem für Mikroreaktormodule hat den Vorteil, daß Einzelmodule aus dem System herausnehmbar sind, ohne daß der gesamte Aufbau zu zerlegen ist. Die erforderlichen Anschlüsse elektrischer, fluidtechnischer und sonstiger Art sind bei einer rechteckoder würfelförmigen Ausgestaltung des Mikroreaktormoduls in allen 6 Raumrichtungen möglich. Prinzipiell sind jedoch auch andere Ausgestaltungen möglich.

Derartige Reaktormodule können sämtliche für den Aufbau einer chemischen Anlage notwendigen Operationselemente enthalten, wie beispielsweise Reaktionsräume, die ggf. heiz- oder auch kühlbar sind, in denen die zu reagierenden Substanzen unter heftiger Agitation miteinander in Kontakt treten, sowie kleine Rührer oder Pumpen, Destillationselemente, mikroskopisch kleine Separationsgele, Zentrifugen, beispielsweise auch fluidisch wirkende Spiralzentrifugen oder auch Lichtquellen, wie z.B. lichtleitende Glasfasern. Auch Elemente zum Steuern, Regeln, Detektieren und Kontrollieren von Prozessen können in solchen Modulen enthalten sein. Auf diese Weise lassen sich Anlagen zur Herstellung der unterschiedlichsten Substanzen zusammenbauen. Da bei solchen Anlagen jeweils nur äußerst geringste Mengen umgesetzt werden, kann beispielsweise das Aufheizen, Kühlen oder Trennen der Substanzen in Sekundenbruchteilen erfolgen. Die Modulreaktoren eignen sich damit sowohl zum Mischen, Wärmen, Kühlen, elektrischinduzierten und optisch mit Licht induzierten Operationen, z. B. auch zum Messen und Kontrollieren von Reaktionen mittels optischer Detektoren, zum Zentrifugieren, Filtrieren sowie zum Verändern von physikalischen und chemischen Zuständen von Substanzen. Dies ist insbesondere auch dadurch der Fall, daß lange Wege zwischen den einzelnen Verfahrensstufen entfallen, da die einzelnen Reaktoren direkt nebeneinander liegen.

Mit derartigen, aus Mikroreaktoren aufgebauten Anordnungen ist es möglich, chemische Reaktionen genau zu steuern, so daß sie beispielsweise kinetisch und/oder thermodynamisch gesteuert ablaufen. Auf diese Weise ergeben sich 3

völlig neue Reaktionstechniken, die bislang bei der chemischen Synthese nicht zugänglich waren. Durch ein Parallelschalten einer Vielzahl solcher Mikroreaktoranlagen ist es möglich, mit diesen auch Substanzen im großtechnischen Maßstab, d. h. im Bereich von mehreren Jahrestonnen, durchzuführen

Das erfindungsgemäße Mikroreaktormodul läßt sich leicht mit einer sogenannten Fluidleiterplatte kombinieren, dem fluidischen Äquivalent für die elektrischen Leiterplatten der Elektrotechnik. In einer besonderen erfindungsgemäßen Ausführungsform sind die Mikroreaktormodule zum Einsatz mit Fluidleiterplatten ausgestaltet. Dabei weist die Fluidleiterplatte entsprechende, zum Reaktormodul passende Verbindungselemente auf. Die Fluidleiterplatte selbst weist Leiterelemente auf, mit denen die Reaktormodule mit 15 Reaktionsfluiden, Kühl- oder Heizfluiden oder auch mechanischen Elementen bzw. auch elektrischen Strom oder Spannung versehen werden können. Sie können auch optische Leitungselemente, wie z. B. Glasfasern, enthalten. In einer weiteren erfindungsgemäßen Ausgestaltung ist die Fluidlei- 20 terplatte derart ausgebildet, daß die Reaktormodule nicht oder nicht ausschließlich miteinander in direktem Kontakt angeordnet sind, sondern auch über die in den Fluidleiterplatten angeordneten Leitungen miteinander kommunizieren.

Im folgenden werden Ausführungsformen der Erfindung anhand der Zeichnung näher erläutert:

Es zeigen:

Fig. 1 eine perspektivische Ansicht eines Mikroreaktormoduls:

Fig. 2(a) bis 2(d) Anordnungsmöglichkeiten für eine Anzahl von Mikroreaktormodulen;

Fig. 3 (a) und 3 (b) ein Mikroreaktormodul mit Verbindungselementen;

Fig. 4(a) und 4(b) schematisch die Verbindung zweier 35 Mikroreaktormodule mit Verbindungselementen nach Fig. 3:

Fig. 5(a) bis 5(e) Spannelemente für die Verbindung nach Fig. 4;

Fig. 6(a) und 6(b) sowie die Fig. 7(a) und 7(b) weitere alternative Spannelemente für die Verbindung nach Fig. 4;

Fig. 8(a) bis 8(c) eine Variante der Verbindung von zwei Mikroreaktormodulen; und

Fig. 9(a) und 9(b) zwei weitere Varianten für die Verbindung von zwei Mikroreaktormodulen.

Die Fig. 1 der Zeichnung zeigt ein Mikroreaktormodul 10 in Würfelform, das für ein aus vielen solcher Module mit zum Teil verschiedenen Funktionen aufgebautes Mikrosystem vorgesehen ist. Die Module können jeweils abgeschlossene Funktionseinheiten für vollständige Prozesse oder Funktionseinheiten für Teilprozesse sein, wie Mischen, Wärmen, Kühlen, Zentrifugieren, Filtrieren für elektrischoptische Operationen oder Detektionen oder auch zu einer Änderung des physikalischen oder chemischen Zustandes. Andere Module wiederum können lediglich Fluidkanäle oder Signalleitungen enthalten oder nur Abschlußmodule sein, die zum Beispiel Fluidleitungen abschließen oder aus dem System herausführen.

Die gezeigte Würfelform ist für die Mikroreaktormodule nicht unbedingt erforderlich; die Module können zum Bei- 60 spiel auch Rechteckform haben.

Das Mikroreaktormodul 10 kann im einfachsten Fall einstückig ausgestaltet sein, es ist jedoch vorzugsweise aus mindestens 2 Teilen 11 zusammengesetzt, die insbesondere lösbar miteinander verbunden sind. In zumindest einem Teil sind die für die jeweilige Funktion des Moduls erforderlichen Strukturen ausgebildet, etwa Fluidkanäle, Hohlräume für Reaktionskammern und dergleichen. Die Teile 11 sind

4

bei der gezeigten Ausführungsform mittels Schrauben 12 miteinander verschraubt. Die Teile können jedoch auch auf jede andere Art miteinander verbunden sein.

Einige der Seitenflächen des Mikroreaktormoduls 10 weisen Fluidkanalöffnungen 14, 16 auf, über die von außen Fluide dem Modul 10 zugeführt oder über die Fluide vom Modul 10 nach außen abgeführt werden. Die Öffnung 14 ist von einer Ringnut 17 umgeben, die ein elastisches Dichtelement wie einen O-Ring oder dergleichen aufnimmt. Die Öffnung 16 ist nicht von einer solchen Ringnut umgeben. Das (nicht gezeigte) Dichtelement in der Ringnut 17 wird zusammengedrückt, wenn an der Seitenfläche des ersten Moduls 10 mit der Öffnung 14 ein anderes, zweites Modul angeordnet und derart angedrückt wird, daß die Seitenflächen beider Module aneinander anliegen. Wenn das zweite Modul gegenüber der Öffnung 14 im ersten Modul 10 eine Fluidkanalöffnung 16 ohne umgebende Ringnut aufweist, ergibt sich dabei eine nach außen abgedichtete Fluidverbindung zwischen den Modulen.

In einer (oder auch mehreren) der Seitenflächen des Mikroreaktormoduls 10 können darüberhinaus Buchsen 18 für elektrische Anschlüsse, optische Sichtfenster zum Überwachen von Reaktionen und/oder auch Zugänge zum Einbringen oder zur Entnahme von Substanzen, beispielsweise auch von Katalysatoren und dergleichen vorgesehen sein. Ein System kann auch Module aufweisen mit reinen Verbindungs- und Anschlußfunktionen mit Meß- und Regeltechnik, mit Stellgliedern, Pumpen und/oder Ventilen.

Aus einer Anzahl solcher und ähnlicher Module, die eindimensional (linear), zweidimensional (in einer Ebene) und dreidimensional (räumlich) angeordnet sein können, ist das Mikrosystem aufgebaut. Die Module können dabei durch Verschrauben der einzelnen Module miteinander, durch Verschraubungen mit durchgehenden Schrauben oder durch Einschrauben oder Einspannen in feste Formen zusammengehalten werden. Die Fig. 2(a) bis 2(c) zeigen einige solcher Anordnungen. Bei der Anordnung der Fig. 2(a) werden die Mikroreaktormodule 10, die sich in einem Rahmen 60 befinden, durch Schrauben 62 zusammengedrückt, die auf Klemmkeile 64 einwirken. Die Fig. 2(b) stellt eine Anordnung dar, bei der die Mikroreaktormodule 10 durch eine Kniehebelvorrichtung 66 in den Rahmen 60 gedrückt werden, und die Fig. 2(c) eine Anordnung, bei der dies durch eine Exzentervorrichtung 68 geschieht. Die Fig. 2(d) schließlich zeigt eine Aufsicht auf ein in zwei Dimensionen angeordnetes Mikrosystem aus einer Anzahl von Mikroreaktormodulen 10, das mit Spannschrauben 70 zusammengehalten wird. Beim Verspannen in der zweiten (oder dritten) Dimension muß grundsätzlich darauf geachtet werden, daß nicht aus den linear verspannten Modulreihen einzelne Würfel quer herausgedrückt werden. Dies kann zum Beispiel durch Stützwürfel geschehen, die nur der mechanischen Abstützung dienen und die ein Verkanten verhindern. Darüber hinaus können auch noch andere Modulwürfel angeordnet sein, die eigene oder die Reaktionen unterstützende Elemente enthalten.

Möglich sind auch Klemmverbindungen zwischen den Modulen an Flanschen über Klemmteile wie etwa Ringschellen und Schnappverbindungen mit ineinander einrastenden Steckelementen.

Solche Schraub-, Klemm- und Steckverbindungen sind jedoch im Aufbau nicht besonders flexibel, und etwa zum Auswechseln eines Moduls ist bereits bei einer linearen Anordnung eine vollständige Demontage des Gesamtsystems erforderlich.

Um dies zu vermeiden, ist daher vorgesehen, das Mikroreaktormodul mit Verbindungselementen zu versehen. Die in der Fig. 3(a) gezeigte erste Ausführungsform eines Mi5

kroreaktormoduls 100 weist ein Verbindungssystem mit hakenförmigen Verbindungselementen 120, 122 am Mikroreaktormodul 100 auf. Die Verbindungselemente 120, 122 können integral bzw. einstückig mit dem Mikroreaktormodul 100 ausgebildet sein. Sie können jedoch auch angeschraubt, angeklebt, verschweißt oder dgl. sein. Das Verbindungselement 122 ist an der Seite des Mikroreaktormoduls 100 angebracht, die der Seite mit dem Verbindungselement 120 gegenüberliegt, und komplementär zum Verbindungselement 120 ausgestaltet.

Fig. 3(b) zeigt eine bevorzugte Ausführungsform der Verbindung von Fig. 3(a), bei denen die hakenförmigen Verbindungselemente 120a, 120b Ausnehmungen 121a, 121b aufweisen sowie eckseitig liegende Aussparungen 124a und 124b. Bei dieser speziellen Ausführungsform sind die eckseitigen Aussparungen 124a, 124b derart angeordnet, daß sie ein Innengewinde zum Eindrehen einer Schraube aufweisen, wobei die Innengewinde für die benachbart liegenden Verbindungselemente 120a und 120b derart angeordnet sind, daß die Schrauben als Spannelemente 128 von gegen- 20 überliegenden Seiten eingedreht werden können.

Für eine mehrdimensionale Verbindung von Mikroreaktormodulen 100 können weitere Verbindungselemente 120, 122 an den anderen gegenüberliegenden Seiten des Mikroreaktormoduls 100 vorgesehen sein.

Wie das Mikroreaktormodul 10 besteht das Mikroreaktormodul 100 aus Teilen 111, die von Schrauben 112 zusammengehalten werden. In den Seitenwänden des Mikroreaktormoduls 100 befinden sich Fluidkanalöffnungen 114 und 116 mit bzw. ohne einer umgebenden Ringnut 117.

Das erste Verbindungselement 120 des Mikroreaktormoduls 100 besteht aus zwei im Abstand voneinander angeordneten, zueinander zeigenden haken- oder L-förmig hinterschnittenen Teilen und das zweite Verbindungselement 122 aus einem T-förmig hinterschnittenen Teil. Beim Zusammensetzen zweier Module 100 wird das T-förmige Verbindungselement 122 durch eine Relativbewegung der beiden Module parallel zu den Seitenwänden der Module, an denen sich die Verbindungselemente 120, 122 befinden, hinter die beiden hakenförmigen Teile des ersten Verbindungselements 120 geschoben, bis sich die beiden Module genau gegenüberliegen und eventuelle Fluidkanalöffnungen 114 bzw. 116 exakt zueinander ausgerichtet sind. Diese Ausrichtung kann durch Anschläge an den Verbindungselementen 120, 122 (nicht gezeigt) erleichtert werden.

Wie in den Fig. 4(a) und 4(b) gezeigt, weist die aus den beiden Verbindungselementen 120, 122 aufgebaute Verbindung ein deutliches Spiel auf, so daß die beiden Verbindungselemente 120, 122 der beiden zu verbindenden Module ineinandergeschoben werden können, während die Module selbst in einem ausreichenden Abstand 130 gehalten werden, damit die Dichtung in der Ringnut 117 um die Fluidkanalöffnung 114 an einem Fluidkanal 115 beim Zusammenbau nicht durch Abscheren beschädigt wird (Fig. 4(a)).

Um wie in der Fig. 4(b) gezeigt den Abstand 130 zwischen den beiden zu verbindenden Modulen 100 auf Null zu bringen und die Fluidkanäle 115 nach außen abdichtend zu verbinden, weisen die Verbindungselemente 120, 122 an ihren Innenseiten Aussparungen 124, 126 (vgl. Fig. 3) auf, die 60 parallel zu den aneinander anliegenden Seitenwänden der Module 100 verlaufen und die sich, wenn zwei Module zusammengesetzt sind, gegenüberliegen.

Wenn die Fluidkanalöffnungen 114, 116 und die Module 100 zueinander ausgerichtet sind, werden Spannelemente 65 128 in die Aussparungen 124, 126 eingebracht, die das Spiel zwischen den beiden Modulen 100 aufheben und die für die Fluidabdichtung erforderliche Dichtkraft aufbringen.

6

Die Spannelemente 128 können unterschiedlich ausgebildet sein. Die Fig. 5(a) zeigt ein zylindrisches Spannelement 128 und die Fig. 5(b) ein kegelförmiges Spannelement 128 in der Form entsprechender Stifte bzw. Keile, die in die von den Aussparungen 124, 126 gebildete, im wesentlichen zylinderförmige Öffnung eingeschlagen werden, wobei das zylindrische Spannelement 128 zum leichteren Einbringen vorzugsweise mit einer Spitze versehen ist. Als Spannelement 128 können, wie in der Fig. 5(c) gezeigt, auch ggf. konisch gestaltete Schrauben verwendet werden. In einer besonders bevorzugten Ausführungsform weist das Spannelement 128 eine zylinderförmige Aussparung mit Innengewinde auf. Dies ermöglicht es eine mit einem entsprechenden Gegengewinde versehene Ziehvorrichtung (nicht dargestellt) in das Spannelement 128 einzuschrauben und dieses damit in Art eines Korkenziehers aus dem Aussparungen 124, 126 der Verbindungselemente 120, 122 herauszuziehen. Schließlich ist es möglich, wie in den Fig. 5(d) und 5(e) gezeigt, in die von den Aussparungen 124, 126 gebildete Öffnung ein Exzenterelement mit zum Beispiel ovaler Querschnittsform einzubringen, das zum Zusammenziehen der beiden Module 100 um seine Längsachse gedreht wird (vgl. Fig. 5(e)).

Die Fig. 6(a) und 6(b) zeigen Spannelemente 128 in der Form von Schrauben, die einen Keil (Fig. 6(a)) oder zwei Keile (Fig. 6(b)) in die von den Aussparungen 124, 126 gebildete Öffnung drücken bzw. ziehen.

Als Spannelemente 128 können, wie in den Fig. 7(a) und 7(b) gezeigt, auch dübelartig geschlitzte Hülsen verwendet werden. Das Spannelement 128 der Fig. 7(a) besteht aus einer am Ende geschlitzten Hülse, die mit einem konischen Innengewinde versehen ist und in die eine Schraube eingedreht wird. Eine solche Hülse läßt sich leicht dadurch fertigen, daß zuerst Vollmaterial geschlitzt wird, in das anschließend ein Innengewinde eingeschnitten wird. Dabei weitet sich die Hülse auf, so daß ein konisches Innengewinde entsteht. Beim Zusammensetzen von Modulen 100 werden die Hülsen in zylinderförmige Aussparungen 124, 126 gesteckt und dann die Schrauben in die Hülsen eingeschraubt.

Die Fig. 7(b) zeigt eine Variante, bei der die Hülse des Spannelementes 128 mittig zum Beispiel vierfach geschlitzt ist. Beim Eindrehen der zugehörigen Schraube weitet sich die Hülse dementsprechend dann in der Mitte auf.

Die Fig. 8 zeigt ein Verbindungssystem für die Mikroreaktormodule 100, bei dem die Verbindungselemente 140,
142 für die Schiebeverbindung schwalbenschwanzförmig
ausgestaltet bzw. hinterschnitten sind (Fig. 8(a)). In die von
Aussparungen 144, 146 in den Verbindungselementen 140,
142 gebildete Öffnung kann dann ein daran angepaßtes
Spannelement 128 wie oben beschrieben eingesetzt werden,
etwa ein Exzenter-Spannelement 128, das zum Zusammenspannen der beiden Module 100 verdreht wird (Fig. 8(b),
Fig. 8(c)).

Bei einer alternativen Ausführungsform ist das Verbindungssystem so ausgestaltet, daß die rechteck- oder würfelförmige Gehäusegeometrie der Mikroreaktormodule 100 im wesentlichen erhalten bleibt. Dazu werden in den Seitenwänden der Mikroreaktormodule 100, das heißt im Würfeloder Rechteckkörper der Module 100, Nuten 150 mit einer Hinterschneidung ausgebildet. In jeder Seitenwand sind vorzugsweise zwei der Nuten 150 vorgesehen.

Bei einer ersten, in der Fig. 9(a) gezeigten Variante hat die Nut 150 in jeder der Seitenwände des Mikroreaktormoduls 100 T-Form. Werden zwei Module 100 aneinandergelegt, liegen die Nuten 150 gegenüber, und es entsteht ein Hohlraum in Doppel-T-Form. Die beiden Module 100 werden verbunden durch ein in den Hohlraum eingesetztes Profilstück 152, dessen Querschnitt dem Querschnitt des Hohl-

an

raums aus den beiden gegenüberliegenden Nuten 150 entspricht. Zum leichteren Einführen kann ein Ende des Profilstücks 152 konisch ausgeformt sein.

Bei einer anderen Variante haben die Nuten 150 Schwalbenschwanzform, so daß beim Zusammensetzen zweier Module 100 ein doppelter Schwalbenschwanz entsteht, in den ein Profilstück 152 mit entsprechendem Querschnitt eingesetzt wird.

Die beschriebenen Mikroreaktormodule weisen vorzugsweise ein Standard-Rastermaß auf, etwa ein Rastermaß von 10 25 mm, das bei Baukastensystemen relativ weit verbreitet ist. Das Material für die Mikroreaktormodule wird nach Bedarf gewählt, etwa Kunststoff, Stahl, Edelstahl oder auch beschichtetes Material oder ein Verbundmaterial.

Die beschriebenen Mikroreaktormodule lassen sich mit 15 Fluidleiterplatten kombinieren. Fluidleiterplatten sind fluidtechnisch das Äquivalent zu den bekannten Leiterplatten für elektrische Schaltungen, und die Mikroreaktormodule entsprechen dabei den auf die Leiterplatten aufgebrachten Bauteilen für bestimmte Funktionen in der Schaltung. Die Mi- 20 kroreaktoren auf den Fluidleiterplatten können so bei bestimmten Verfahrensschritten für definierte Verhältnisse sorgen, etwa exakte Temperatur- und Mischungsverhältnisse sicherstellen und dergleichen. Durch Zusammenführen von Reaktanten können in den Mikroreaktoren auch gezielt be- 25 stimmte Reaktionen herbeigeführt werden, deren Produkte dann wieder in der Fluidleiterplatte weitergeführt werden. Fluidleiterplatten können darüberhinaus dazu verwendet werden, um zum Beispiel mehrere parallele Mikroreaktor-Verfahrenslinien gleichmäßig zu beschicken. Analog lassen 30 sich die Produkte aus einer solchen Anlage über eine Fluidleiterplatte sammeln.

Um ihre Funktion erfüllen zu können, müssen die Mikroreaktormodule mechanisch und fluidisch mit der Fluidleiterplatte verbunden werden. Dies kann über direkte Verbindun- 35 gen zwischen den Modulen und der Leiterplatte oder über separate Leitungen erfolgen. Es besteht auch die Möglichkeit der Verwendung von Verbindungsmodulen, die Kanäle in der Leiterplatte zu bestimmten Reaktormodulen weiterführen.

Bezugszeichenliste

10 Mikroreaktormodul	
11 Teile	45
12 Schrauben	
14, 16 Fluidkanalöffnungen	
17 Ringnut	
18 Buchse	
60 Rahmen	50
62 Schrauben	•
64 Klemmkeile	
66 Kniehebelvorrichtung	
68 Exzentervorrichtung	
70 Spannschrauben	55
100 Mikroreaktormodul	
111 Teile	
112 Schrauben	
114 Fluidkanalöffnung	
115 Fluidkanal	60
116 Fluidkanalöffnung	
117 Ringnut	
120, 122 Verbindungselemente	
121 Ausnehmung	
128 Spannelemente	65
130 Abstand	
140 142 Verhindungselemente	

152 Profilstück

Patentansprüche

- 1. Mikroreaktormodul (100) mit Reaktorelementen wie Fluidkanälen (115), Reaktionskammern, Heizvorrichtungen, Mischvorrichtungen und dergleichen, wobei eine Anzahl von Mikroreaktormodulen (100) gleicher und unterschiedlicher Art zu einem über Fluidkanäle miteinander in Verbund stehenden Mikroreaktorsystem zusammensetzbar ist, gekennzeichnet durch ein Verbindungssystem mit Verbindungselementen (120, 122; 140, 142; 150, 152), die beim Zusammensetzen von mindestens zwei Mikroreaktormodulen (100) zu einem Reaktorsystem diese formschlüssig derart miteinander verbinden, daß von einem Modul zum anderen führende Fluidkanäle (115) nach außen abgedichtet miteinander verbunden sind.
- 2. Mikroreaktormodul nach Anspruch 1, dadurch gekennzeichnet, daß die Verbindungselemente als männlich-weibliche Elemente ausgebildet sind.
- 3. Mikroreaktormodul nach Anspruch 1, dadurch gekennzeichnet, daß die Verbindungselemente geschlechtneutral sind.
- 4. Mikroreaktormodul nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Verbindungselemente ineinandergreifen.
- 5. Mikroreaktormodul nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Mikroreaktorsystem Spannelemente zum Verbinden der Module aufweist.
- 6. Mikroreaktormodul nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Verbindungselemente (120, 122; 140, 142) an den Mikroreaktormodulen (100) angeordnete haken- oder schwalbenschwanzförmige Elemente sind, die mit Spiel derart ineinandergreifen, daß eine Relativbewegung der Mikroreaktormodule (100) senkrecht zur Achse von zu verbindenden Fluidkanälen (115) mit einem Abstand (130) der Mikroreaktoren zueinander möglich ist, wobei das Spiel zwischen den Mikroreaktormodulen (100) durch Spannelemente (128) aufgehoben werden kann, die in eine von Aussparungen (124, 126; 144, 146) in den Verbindungselementen (120, 122; 140, 142) gebildete Öffnung einsetzbar sind.
- 7. Mikroreaktormodul nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Spannelemente (128) zylinderförmige Stifte, konische Schrauben, konische Keile, geschlitzte Hülsen, Schrauben, Schnappverschlüsse und/oder Exzenterelemente umfassen.
- 8. Mikroreaktormodul nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Spannelemente (128) ein Innengewinde aufweisen.
- 9. Mikroreaktormodul nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Verbindungselemente Nuten (150) in den Mikroreaktormodulen (100) umfassen, wobei jeweils zwei Mikroreaktormodule (100) durch Profilstücke (152) verbunden werden, die in den von zwei gegenüberliegenden Nuten (150) gebildeten Hohlraum einsetzbar sind.
- 10. Mikroreaktormodul nach Anspruch 9, dadurch gekennzeichnet, daß die Nuten (150) T-förmig sind, und daß die Profilstücke (152) entsprechend Doppel-T-Form aufweisen.
- 11. Mikroreaktormodul nach Anspruch 9, dadurch gekennzeichnet, daß die Nuten (150) schwalbenschwanzförmig und die Profilstücke (152) entsprechend doppel-

150 Nuten

		~:		
schwa	lbenschv	vanzior	mıø	sind

- 12. Mikroreaktormodul nach Anspruch 11, dadurch gekennzeichnet, daß die Profilstücke ein das Einführen erleichterndes verjüngtes Ende aufweisen.
- 13. Mikroreaktormodul nach einem der vorhergehenden Ansprüche, gekennzeichnet durch die Verbindung eines oder mehrerer Mikroreaktormodule mit einer Fluidleiterplatte.
- 14. Mikroreaktormodul nach Anspruch 13, dadurch gekennzeichnet, daß die Fluidleiterplatte fluidische, 10 elektrische Leiterelemente, optische Leiterelemente, mechanische Elemente, Wärme- und/oder Kühlelemente enthält.

Hierzu 7 Seite(n) Zeichnungen

- Leerseite -

Tip. 1

Nummer: Int. Cl.⁷:

Offenlegungstag:

DE 199 17 330 A1 B 01 J 19/00

19. Oktober 2000

DE 199 17 330 A1 B 01 J 19/00 19. Oktober 2000

Fig. 3 a

DE 199 17 330 A1 B 01 J 19/00 19. Oktober 2000

Fig. 36

DE 199 17 330 A1 B 01 J 19/00 19. Oktober 2000

DE 199 17 330 A1 B 01 J 19/00 19. Oktober 2000

Tip. 8(6)

Fig. 9(a)

Tip. 3 (6)