Modelo Relacional

Mauri Ferrandin

Modelo Relacional

Estrutura dos Bancos de Dados Relacionais

Álgebra Relacional

Cálculo Relacional de Tuplas

Cálculo Relacional de Domínio

Operações de Álgebra Relacional Estendida

Modificações no Banco de Dados

Visões

Estrutura Básica

Dados conjuntos A₁, A₂, ..., A_n, uma relação r é um subconjunto de

$$\mathbf{A_1} \times \mathbf{A_2} \times ... \times \mathbf{A_n}$$

Assim, uma relação é um conjunto de ntuplas $(a_1,a_2,...,a_n)$ onde $a_i \in A_i$, para cada i de 1 até n

Estrutura Básica

Exemplo: Se

nome_cliente = {Jones, Smith, Curry, Lindsay}
rua_cliente = {Main, North, Park}
cidade_cliente = {Harrison, Rye, Pittsfield}

Então r = {(Jones, Main, Harrison), (Smith, North, Rye), (Curry, North, Rye), (Lindsay, Park, Pittsfield)}

é uma relação sobre **nome_cliente** × **rua_cliente** × **cidade_cliente**

Esquema de Relação

Sejam os atributos A₁, A₂, ..., A_n

 $R = (A_1, A_2, ..., A_n)$ é dito ser um esquema de relação

Esquema_cliente = (nome_cliente, rua_cliente,

cidade_cliente)

r(R) é uma relação no esquema de relação R cliente (Esquema_cliente)

Instância de Relação

Os valores correntes de uma relação (instância da relação) são especificados por uma tabela.

Um elemento t de r é uma tupla; representada por uma linha na tabela.

nome_cliente	rua_cliente	cidade_cliente
Jones	Main	Harrison
Smith	North	Rye
Curry	North	Rye
Lindsay	Park	Pittsfield

cliente

Linguagens de Consulta

Linguagem por meio da qual usuários solicitam informações do banco de dados.

Categoria de linguagens:

Procedural

Não-procedural

Linguagens "Puras":

Álgebra Relacional (procedural)

Cálculo relacional de tupla (não-procedural)

Cálculo relacional de domínio (não-procedural)

Linguagens de Consulta

Linguagens puras (formais, sem a sintaxe agradável das linguagens comerciais) formam a base subjacente das linguagens de consultas usadas comercialmente.

Álgebra Relacional

Linguagem procedural Seis operadores básicos

seleção

projeção

união

diferença

Produto cartesiano

Rename

Os operadores tomam uma ou mais relações como entrada e produzem uma nova relação como resultado.

Operação de Seleção

Notação: $\sigma_P(r)$

Definida como: $\sigma_P(r)=\{t \mid t \in r \text{ and } P(t)\}$

Onde P é uma fórmula do cálculo proposicional, tratando termos da seguinte forma:

```
<atributo> = < atributo > ou <constante>
```

#

>

 \geq

<

 \leq

"conectados por": $^{\land}$ (and), \vee (or), \neg (not)

Operação de Seleção – Exemplo

Relação r:

A	В	C	D
α	α	1	7
α	β	5	7
β	β	1 2	3
β	β	2 3	1 0

$$\sigma_{(A=B ^D > 5)} (r)$$

A	В	C	D
α	α	1	7
β	β	2 3	1 0

Operação de Projeção

Notação:

$$\Pi_{A_1, A_2, \dots, A_k}(\mathbf{r})$$

onde A_1 , A_2 são nomes de atributos e r um nome de relação.

O resultado é definido como a relação de **k** colunas obtida pela remoção das colunas que não estão listadas

Linhas duplicadas são eliminadas do resultado, visto que relações são conjuntos.

Operação de Projeção - Exemplo

Relação r:

A	В	C
α	1 0	1
α	2 0	1
β	3 0	1
β	4 0	2

$$\Pi_{A,c}(r)$$

Operação União

Notação: r ∪ s

Definida como:

$$r \cup s = \{t \mid t \in r \text{ or } t \in s\}$$

Para r ∪ s ser válida,

- r, s devem ter o mesmo grau (aridade mesmo número de atributos e os atributos correspondentes devem ser do mesmo tipo).
- Os domínios dos atributos devem ser compatíveis (ex.: a segunda coluna de r lida com o mesmo tipo de valores da segunda coluna de s).

Operação União - Exemplo

Relações r, s:

•	
A	В
α	1
α	2
β	1

A	В
αβ	2 3

 $r \cup s$

A	В
α	1
α	2
β	1
β	3

Operação Diferença

Notação: r - s

Definida como:

$$r - s = \{t \mid t \in r \text{ and } t \notin s\}$$

A operação de diferença só pode ser realizada entre relações compatíveis.

r e s devem ter o mesmo grau.

Os domínios dos atributos de r e s devem ser compatíveis

Operação Diferença - Exemplo

Relações r, s:

A B α 1 α 2

 S

 A
 B

 α
 2

 β
 3

r - s

A	В
α	1
β	1

Operação Produto Cartesiano

Notação: r × s

Definida como:

$$r \times s = \{t \mid q \mid t \in r \text{ and } q \in s\}$$

Assuma que os atributos de r(R) e s(S) são disjuntos. (Isto é, R \cap S = \emptyset).

Se os atributos de r(R) e s(S) não são disjuntos, então uma renomeação deve ser feita.

Operação Produto Cartesiano - Exemplo

Relações r,s:

<u></u>	
A	В
α	1
β	2

S		
С	D	E
α	10	+
β	10	+
β	20	-
γ	10	-

r	×	S

A	В	C	D	E
α	1	α	1 0	+
α	1	β	10	+
α	1	β	2 0	-
α	1	γ	10	-
β	2 2	α	10	+
β	2	β	10	+
β	2 2	β	2 0	-
β	2	γ	1 0	-

Composição de Operações

Pode-se construir expressões usando múltiplas operações

Exemplo: $\sigma_{A=C}(r \times s)$

Notação: r 🖂 s

Sejam r e s relações sobre esquemas R e S, respectivamente. O resultado é uma relação com esquema R \cup S o qual é obtido considerando cada par de tuplas t_r de r e t_s de s.

Composição de Operações

Se t_r e t_s têm os mesmos valores em cada um dos atributos comuns (i.e., $R \cap S$), então a tupla t é adicionada ao resultado, onde

t tem o mesmo valor como t_r em r t tem o mesmo valor como t_s em s

Composição de Operações (Cont.)

Exemplo:

$$R = (A,B,C,D)$$
$$S = (E,B,D)$$

Esquema resultado = (A,B,C,D,E)

r [⋈] s é definido como:

$$\Pi_{\text{r.A, r.B, r.C, r.D,s.E}}$$
 ($\sigma_{\text{(r.B= s.B) }^{\text{(r.D= s.D)}}}$ ($\mathbf{r} \times \mathbf{s}$))

Operação de Junção Natural – Exemplo

Relações r,s:

A	В	C	D
α	1	α	а
β	2	γ	a
γ	4	β	b
α	1	γ	a
δ	2	β	b

S

В	D	E
1	а	α
3	а	β
1	a	γ
2	b	δ
3	b	ε

 $r \bowtie s$

A	В	C	D	E
α	1	α	a	α
α	1	α	a	γ
α	1	γ	a	α
α	1	γ	a	γ
δ	2	β	b	δ

Operação de Divisão

é interessante para consultas que incluem a frase "para todos".

Sejam r e s relações com esquemas R e S respectivamente, onde

$$R = (A_1, ..., A_m, B_1, ..., B_n)$$

 $S = (B_1, ..., B_n)$

O resultado de r ÷ s é uma relação com esquema

$$R - S = (A_1, ..., A_m)$$
, tal que

$$r \div s = \{t \mid t \in \Pi_{R-s}(r) \land \forall u \in s (tu \in r)\}$$

Operação de Divisão - Exemplo

Relações r,s:

r

A B

α | 1
 α | 2
 α | 3

 β 1

 $\frac{\gamma}{2}$ 1

 δ 3

β

δ 6

ε | 1

ε 2

S

B

1

2

 $\mathbf{r} \div \mathbf{s} \boxed{ \begin{array}{c} \mathbf{A} \\ \mathbf{\alpha} \\ \mathbf{\epsilon} \end{array} }$

Outro Exemplo de Divisão

Relações r,s:

A	В	С	D	Ε
α	а	α	а	1
α	a	γ	a	1
α	a	γ	b	1
β	a		a	1
β	a	$\gamma \\ \gamma$	b	3
γ	a	γ	a	1
γ	a	γ	b	1
γ	а	β	b	1

S D

a 1 b 1

r÷s

A	В	C
α	a	γ
γ	a	γ

Operação de Designação

A operação de designação (←) provê uma maneira conveniente de expressar consultas complexas; escrever uma consulta como um programa seqüencial consiste de uma série de atribuições seguidas por uma expressão cujo valor é apresentado como o resultado da consulta.

A designação deve sempre ser feita a uma variável de relação temporária.

Operação de Designação

Exemplo: Escrever **r** ÷ **s** como

```
\begin{aligned} \textit{temp1} &\leftarrow \Pi_{\text{R-s}}(\textbf{r}) \\ \textit{temp2} &\leftarrow \Pi_{\text{R-s}}((\textit{temp1} \times \textbf{s}) - \Pi_{\text{R-s,s}}(\textbf{r})) \\ \textit{result} &= \textit{temp1} - \textit{temp2} \end{aligned}
```

O resultado da expressão a direita de \leftarrow é atribuído à variável de relação à esquerda de \leftarrow .

Pode-se usar variáveis em expressões subseqüentes.

O Exemplo da Empresa Bancária

agencia (nome_agencia, cidade_agencia, fundos)

cliente (nome_cliente, rua_cliente, cidade_cliente)

conta (nome_agencia, numero_conta, saldo)

emprestimo (nome_agencia, numero_emprestimo,
total)

depositante (nome_cliente, numero_conta)

devedor (nome_cliente, numero_emprestimo)

Encontrar todos os clientes que tenham ao menos uma conta nas agências "Downtown" e "Uptown".

Encontrar todos os clientes que tenham ao menos uma conta nas agências "Downtown" e "Uptown".

$$\Pi_{\text{nome_cliente}}(\sigma_{\text{nome_agencia= 'Downtown'}}(\text{depositante}) \\ \subset \text{conta})) \\ \cap \\ \Pi_{\text{nome_cliente}}(\sigma_{\text{nome_agencia= 'Uptown'}}(\text{depositante}) \\ \subset \text{conta}))$$

Achar todos os clientes que tem uma conta em todas as agências localizadas no Brooklyn.

Achar todos os clientes que tem uma conta em todas as agências localizadas no Brooklyn.

Π cliente_nome, agencia_nome (depositante conta)

 $+ \Pi_{\text{agencia_nome}} (\sigma_{\text{cidade_agencia = 'Brooklyn'}} (\text{agencia}))$

Operações da Álgebra relacional Estendida

Serão vistas:

Projeção generalizada
Junção externa (Outer Join)
Funções Agregadas

Projeção Generalizada

Estende-se a operação de projeção para permitir que funções aritméticas sejam usadas em listas de projeções.

$$\Pi_{F1, F2, ..., Fn}(E)$$

E é uma expressão da álgebra relacional.

Os F₁, F₂, ..., F_n são expressões aritméticas envolvendo constantes e atributos no esquema de E.

Projeção Generalizada

Dada uma relação info_crédito(nome_cliente, limite, saldo_crédito), achar o quanto cada pessoa ainda pode gastar:

 $\Pi_{\text{nome_cliente, (limite - saldo_credito)}}$ (info_credito)

Junção Externa

Uma extensão da operação de junção que evita perda de informações.

Calcula-se a junção e então adiciona-se ao resultado da junção as tuplas de uma relação que não combinam (*match*) com as tuplas da outra relação.

Uso de valores nulos:

Nulo significa que o valor é desconhecido ou não existe.

Todas as comparações envolvendo valores nulos são **falsas** por definição.

Exemplo de Junção Externa

Relação emprestimo

nome_agencia	numero_emprestimo	total
Downtown	L-170	3000
Redwood	L-230	4000
Perryridge	L-260	1700

Relação devedor

nome_cliente	numero_emprestimo
Jones	L-170
Smith	L-230
Hayes	L-155

Exemplo de Junção Externa

emprestimo ⋈ devedor

nome_agencia	numero_empresti mo	total	nome_cliente
Downtown	L-170	3000	Jones
Redwood	L-230	4000	Smith

emprestimo > devedor

nome_agencia	numero_emprestimo	total	nome_cliente	numero_emprestimo
Downtown	L-170	3000	Jones	L-170
Redwood	L-230	4000	Smith	L-230
Perryridge	L-260	1700	nulo	nulo

Exemplo de Junção Externa

emprestimo devedor

nome_agencia	numero_emprestimo	total	nome_cliente
Downtown	L-170	3000	Jones
Redwood	L-230	4000	Smith
null	L-155	null	Hayes

emprestimo devedor

nome_agencia	numero_emprestimo	total	nome_cliente
Downtown	L-170	3000	Jones
Redwood	L-230	4000	Smith
Perryridge	L-260	1700	null
null	L-155	null	Hayes

Funções agregadas

A operação de agregação G tem como entrada uma coleção de valores e retorna um único valor como resultado.

avg: média dos valores

min: valor mínimo

max: valor máximo

sum: soma dos valores

count: número de valores

Funções agregadas

Onde

E expressão da álgebra relacional

 G_1 , G_2 , ..., G_n é uma lista de atributos para agrupar

F_i é uma função de agregação

A_i é um nome de atributo

Relação r:

A	В	C
α	α	7
α	β	7
β	α β β	3
β	β	10

 $G sum_c(r)$

Relação conta agrupada pelo nome_agencia:

nome_agencia	numero_conta	saldo
Perryridge	A-102	400
Perryridge	A-201	900
Brighton	A-217	750
Brighton	A-215	750
Redwood	A-222	700

nome_agencia G sum saldo (conta)

nome_agencia	soma_saldo
Perryridge Brighton	1300 1500
Redwood	700

Modificações no Banco de Dados

O conteúdo do banco de dados pode ser modificado usando as seguintes operações:

Exclusão

Inserção

Atualização

Todas essas operações são expressas usando o operador de designação.

Exclusão

A solicitação de exclusão é expressa de maneira similar a uma consulta. No entanto, ao invés de mostrar as tuplas selecionadas ao usuário, elas são excluídas do banco de dados.

Pode-se excluir apenas tuplas inteiras; não é possível excluir valores de atributos específicos.

Uma exclusão é expressa na álgebra relacional por:

$$r \leftarrow r - E$$

Onde r é uma relação e E é uma consulta da álgebra relacional.

Exemplos de Exclusão

Excluir todos os registros de contas na agência Perryridge.

```
conta ← conta -
```

```
σ<sub>nome_agencia = 'Perryridge'</sub> (conta)
```

Excluir todos os registros de emprestimo com total entre 0 e 50.

```
emprestimo ← emprestimo -
```

```
\sigma_{total \ge 0 \text{ and total} \le 50} (emprestimo)
```

Exemplos de Exclusão

Excluir todas as contas nas agências localizadas em Needham.

```
\begin{array}{l} \textbf{r}_1 \leftarrow \sigma_{\text{cidade\_agencia = 'Needham'}} \text{ (conta} & \textbf{agencia)} \\ \textbf{r}_2 \leftarrow \Pi_{\text{nome\_agencia, numero\_conta, saldo}} \text{ (r}_1) \\ \textbf{r}_3 \leftarrow \Pi_{\text{nome\_cliente, numero\_conta}} \text{ (r}_2 & \textbf{depositante)} \\ \textbf{conta} \leftarrow \textbf{conta - r}_2 \\ \textbf{depositante} \leftarrow \textbf{depositante - r}_3 \end{array}
```

Inserção

Para inserir dados em uma relação, devese:

Especificar uma tupla a ser inserida, ou Escrever uma consulta cujo resultado é um

conjunto de tuplas a ser inserido

Em álgebra relacional, uma inserção é expressa por:

$$r \leftarrow r \cup E$$

Inserção

Onde r é uma relação e E é uma expressão da álgebra relacional.

A inserção de uma única tupla é expressa especificando E como uma relação constante contendo uma tupla.

Exemplos de Inserção

Inserir informação no banco de dados especificando que o cliente Smith tem \$1200 na conta A-973 na agência Perryridge.

conta \leftarrow conta \cup {('Perryridge', A-973, 1200)} depositante \leftarrow depositante \cup {('Smith', A-973)} Incluir, a título de presente para todos os clientes de empréstimos na agência Perryridge, uma conta de poupança de poupança de \$200. Faça o número de empréstimo servir como número de conta para essas novas contas de poupança.

Exemplos de Inserção

$$r_1 \leftarrow (\sigma_{\text{nome_agencia} = 'Perryridge'} (\text{devedor} \bowtie \text{perpertion}))$$

conta \leftarrow conta \cup

 $\Pi_{\text{nome_agencia, numero_emprestimo, 200}} (r_1)$

depositante ← depositante ∪

 $\Pi_{\text{nome_cliente, numero_emprestimo}}$ (r_1)

Atualização

Um mecanismo para mudar um valor em uma tupla sem mudar todos os valores na tupla

Usa-se o operador de projeção generalizada para esta tarefa

$$\mathbf{r} \leftarrow \Pi_{\mathsf{F_1},\mathsf{F_2},...,\mathsf{F_n}}(\mathbf{r})$$

Atualização

Cada F_i ou é o i-ésimo atributo de r, se seu valor não é modificado, ou é uma expressão para o valor do atributo a ser modificado.

F_i é uma expressão, envolvendo somente constantes e os atributos de r, os quais dão o novo valor para o atributo.

Exemplos de Atualização

Fazer pagamento de juros aumentando todos os saldos em 5 por cento.

Fazer pagamentos de juros de 6% para contas com saldo acima de \$10.000 e 5% para as outras contas.

```
 \begin{array}{l} \textbf{conta} \leftarrow \Pi_{\text{nome\_agencia, numero\_conta, saldo} \leftarrow \text{saldo*1.06} \\ \textbf{(}\sigma_{\text{saldo} > 10000} \textbf{(}\textbf{conta}\textbf{)}\textbf{)} \cup \Pi_{\text{nome\_agencia, numero\_conta, saldo} \leftarrow \text{saldo*1.05}} \\ \textbf{(}\sigma_{\text{saldo} < 10000} \textbf{(}\textbf{conta}\textbf{)}\textbf{)} \end{array}
```