

考试科目: __线性代数__ 考试时长: 120 分钟

开课单位:

数学系

命题教师:

线性代数教学团队

题号	1	2	3	4	5	6	7
分值	15 分	20 分	20 分	10 分	10 分	15 分	10 分

本试卷共 (7) 大题, 满分 (100) 分. 请将所有答案写在答题本上.

This exam includes 7 questions and the score is 100 in total. Write all your answers on the examination book.

本套试卷为 A 卷 Version A

- (15 points, 3 points each) Multiple Choice. Only one choice is correct.
 (共 15 分, 每小题 3 分) 选择题. 每题只有一个选项是正确的.
 - (1) Let A be an $m \times m$ real symmetric matrix. Which of the following assertions is false? ()
 - (A) If v_1 and v_2 are two m-dimensional real column vectors which satisfy $Av_1 = v_1$ and $Av_2 = 0$, then v_1 and v_2 are orthogonal.
 - (B) There exists a real invertible matrix P such that $P^{-1}AP$ is diagonal.
 - (C) A has m distinct eigenvalues.
 - (D) The sum of algebraic multiplicities of the distinct eigenvalues of A is m.
 - 设 A 为 m 阶实对称矩阵. 则下列说法错误的是

()

- (A) 如果 v_1 和 v_2 为满足 $Av_1=v_1$ 以及 $Av_2=0$ 的 m 维实列向量,则 v_1 和 v_2 正交.
- (B) 存在可逆的实矩阵 P 使得 $P^{-1}AP$ 为对角矩阵.
- (C) A有 m 个互不相同的特征值.
- (D) 矩阵 A 的所有互不相同特征值的代数重数之和为 m.
- (2) Let A be an $m \times n$ real matrix and $U\Sigma V^T$ be a singular value decomposition of A. Which of the following assertions is false?
 - (A) The columns of U are eigenvectors of AA^{T} .
 - (B) The columns of V are eigenvectors of $A^T A$.
 - (C) The eigenvalues of AA^T and A^TA are real and positive.
 - (D) AA^T and A^TA have the same set of positive eigenvalues.
 - 设 A 为一个 $m \times n$ 实矩阵且 $U \Sigma V^T$ 为 A 的一个奇异值分解. 下列说法错误的是 ()
 - (A) U 的列向量为矩阵 AA^T 的特征向量.

- (B) V 的列向量为矩阵 A^TA 的特征向量.
- (C) 矩阵 AA^T 和 A^TA 的特征值都是正实数.
- (D) AA^T 和 A^TA 具有相同的正特征值.
- (3) Let A be an $n \times n$ real matrix. If for any $x \in \mathbb{R}^n$, we have $x^T A x = 0$, then
 - (A) |A| = 0.
 - (B) $A^T = -A$.
 - (C) A = O. Where O denotes the $n \times n$ zero matrix.
 - (D) the eigenvalues of A are all zero.
 - 设 A 为一个 n 阶实矩阵. 如果对任意 $x \in \mathbb{R}^n$, 都有 $x^TAx = 0$, 则' ()
 - (A) |A| = 0.
 - (B) $A^T = -A$.
 - (C) A = O. 这里 O 表示 n 阶零矩阵.
 - (D) 矩阵 A 的所有特征值都为零.
- (4) Which of the following matrices is NOT diagonalizable?

()

$$\begin{array}{cccc}
(A) & \begin{bmatrix}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 2 & 1
\end{bmatrix}$$

(B)
$$\begin{bmatrix} 1 & 2 & -1 \\ 2 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix}$$

(C)
$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 2 & -1 \end{bmatrix}$$

$$\begin{array}{c|cccc}
(D) & 0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 2
\end{array}$$

下列矩阵中不可以对角化的是

()

(A)
$$\begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 2 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & -1 \\ 2 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 2 & -1 \end{bmatrix}$$
(D)
$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 2 \end{bmatrix}$$

- (5) Let A be $\pm 3 \times 3$ permutation matrix. Then $\det(-(A^T)^{2024})$ equals ()
 - (A) 0.
 - (B) 2024.
 - (C) 1
 - (D) -1.

如果 A 为一个 3 阶置换矩阵, 则 $\det(-(A^T)^{2024})$ 等于

- (A) 0.
- (B) 2024.
- (C) 1.
- (D) -1.
- 2. (20 points, 5 points each) Fill in the blanks. (共 20 分, 每小题 5 分) 填空题.
 - (1) ·Suppose

$$A = \left[\begin{array}{ccc} a & b & -\frac{3}{7} \\ -\frac{3}{7} & c & \frac{2}{7} \\ \frac{2}{7} & d & e \end{array} \right]$$

is an orthogonal matrix. Then $a = \underline{\hspace{1cm}}, e = \underline{\hspace{1cm}}$

如果

$$A = \left[\begin{array}{ccc} a & b & -\frac{3}{7} \\ -\frac{3}{7} & c & \frac{2}{7} \\ \frac{2}{7} & d & e \end{array} \right]$$

是正交矩阵,则 $a = _$

(2) Let A and B be two $n \times n$ real matrices = 4, |B| = 3 and $|A^{-1} + B| = 2$, then

(3) Let A be a 3×3 matrix. Suppose |A| = -5 and $A^2 + 4A - 5I = O$, then the three eigenvalues of A are ______. Where I denotes the 3×3 identity matrix and O denotes the 3×3 zero matrix.

设 A 为一个 3 阶矩阵. 假设 |A|=-5 以及 $A^2+4A-5I=O$, 则矩阵 A 的三个特征值为 ______. 这里 I 表示 3 阶单位阵, O 表示 3 阶零矩阵.

(4) Suppose

$$A = \begin{bmatrix} 1 & a & 1 \\ a & b & a \\ 1 & a & 1 \end{bmatrix} \text{ and } B = \begin{bmatrix} 2 & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

are similar, then $a = \underline{\hspace{1cm}}$

如果

$$A = \left[\begin{array}{ccc} 1 & a & 1 \\ a & b & a \\ 1 & a & 1 \end{array} \right] \; \Re \; B = \left[\begin{array}{ccc} 2 & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & 0 \end{array} \right]$$

相似,则 a = __

3. (20 points) Consider the following matrix

$$A = \left[\begin{array}{ccc} 4 & 2 & 2 \\ 2 & 4 & 2 \\ 2 & 2 & 4 \end{array} \right]$$

- a) Find all the eigenvalues of A.
- b) Find an orthogonal matrix Q such that $Q^{-1}AQ$ is diagonal.
- (c) Compute A^k for any positive integer k.

(20 分) 考虑以下矩阵

$$A = \left[\begin{array}{rrr} 4 & 2 & 2 \\ 2 & 4 & 2 \\ 2 & 2 & 4 \end{array} \right].$$

- (a) 求矩阵 A 的所有特征值.
- (b) 求一个正交矩阵 Q 使得 $Q^{-1}AQ$ 为对角矩阵.
- (c) 求 A^k , 其中 k 为任意的正整数.
- 4. (10 points) Find the determinant of the following 7×7 matrix:

$$A = \begin{bmatrix} 5 & 3 & 0 & 0 & 0 & 0 & 0 \\ 2 & 5 & 3 & 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 5 & 3 & 0 & 0 & 0 \\ 0 & 0 & 2 & 5 & 3 & 0 & 0 \\ 0 & 0 & 0 & 2 & 5 & 3 & 0 \\ 0 & 0 & 0 & 0 & 2 & 5 & 3 \\ 0 & 0 & 0 & 0 & 0 & 2 & 5 & 3 \end{bmatrix}$$

(10分) 求以下 7 阶矩阵的行列式:

第4页/共6页

5. (10 points) Let

$$A = \left[\begin{array}{cc} 1 & 1 \\ 2 & 3 \\ 4 & 5 \end{array} \right].$$

- (a) Find all the eigenvalues and their corresponding linearly independent eigenvectors of $P = A(A^TA)^{-1}A^T$.
- (b) Show that P is diagonalizable.

(10分)设

$$A = \left[\begin{array}{cc} 1 & 1 \\ 2 & 3 \\ 4 & 5 \end{array} \right].$$

- (a) 求矩阵 $P = A(A^TA)^{-1}A^T$ 的所有特征值以及与之对应的线性无关的特征向量.
- (b) 证明: P 是可对角化的.
- 6. (15 points) Consider the following quadratic form:

$$Q(x, y, z) = \lambda(x^2 + y^2 + z^2) + 2xy + 2xz - 2yz.$$

- (a) For what values of λ is Q(x, y, z) positive definite?
- (b) For what values of λ is Q(x, y, z) negative definite?
- (c) Find the type of quadric surface defined by the following equation:

$$3(x^2 + y^2 + z^2) + 2xy + 2xz - 2yz = 1.$$

(15 分) 考虑以下二次型:

$$Q(x, y, z) = \lambda(x^2 + y^2 + z^2) + 2xy + 2xz - 2yz.$$

- (a) λ 取何值时, Q(x, y, z) 正定?
- (b) λ 取何值时, Q(x, y, z) 负定?
- (c) 判断以下方程所对应的二次曲面的类型:

$$3(x^2 + y^2 + z^2) + 2xy + 2xz - 2yz = 1.$$

7. (10 points) Let A and B be $n \times n$ real matrices. The trace of A is defined to be the sum of all of its diagonal entries:

$$tr(A) = a_{11} + a_{22} + \cdots + a_{nn}.$$

(a) Suppose A is similar to B, prove that

$$tr(A) = tr(B).$$

- (b) Let A and B be real symmetric positive semidefinite matrices. Show that $tr(AB) \ge 0$.
- (c) Suppose A and B are real symmetric positive semidefinite matrices and tr(AB) = 0. Show that AB = O. Where O denotes the $n \times n$ zero matrix.
- $(10 \, f)$ 设 A 和 B 为 n 阶实矩阵. 矩阵 A 的对角元之和称为它的迹:

$$tr(A) = a_{11} + a_{22} + \cdots + a_{nn}.$$

(a) 如果 A 和 B 相似, 证明:

$$tr(A) = tr(B).$$

- (b) 设 A 和 B 为实对称半正定矩阵. 证明: $tr(AB) \ge 0$.
- (c) 假定 A 和 B 为实对称半正定矩阵, 并且 tr(AB)=0. 证明: AB=O. 这里 O 表示 n 阶 零矩阵.