Conceptual Multiple Choice Questions: Partial Fractions (Exercise 5.1)

Class 11 Mathematics (Chapter 5)

Prepared by ExpertBoy

MCQs

- 1. (Low) A proper rational fraction has:
 - (a) Degree of numerator less than degree of denominator
 - (b) Degree of numerator equal to degree of denominator
 - (c) Degree of numerator greater than degree of denominator
 - (d) No common factors between numerator and denominator
- **2. (Low)** The partial fraction form of $\frac{1}{(x-1)(x+1)}$ includes terms with denominators:
 - (a) (x-1), (x+1)
 - **(b)** $(x-1)^2, (x+1)^2$
 - (c) x, (x-1)
 - (d) (x^2-1)
- **3.** (Low) For $\frac{x}{(x-1)(x-2)(x-3)}$, the number of partial fraction terms is:
 - **(a)** 3
 - **(b)** 2
 - **(c)** 4
 - **(d)** 1
- **4.** (Low) To resolve an improper fraction like $\frac{x^4}{x^2-1}$, the first step is:
 - (a) Polynomial division
 - (b) Factor the numerator
 - (c) Set up partial fractions directly
 - (d) Equate coefficients
- **5.** (Medium) The coefficient A in $\frac{1}{(x-1)(x+1)} = \frac{A}{x-1} + \frac{B}{x+1}$ when x = 1 is:
 - (a) $-\frac{1}{2}$
 - (b) $\frac{1}{2}$
 - (c) 1
 - (d) -1
- **6.** (Medium) The partial fraction of $\frac{2}{(x+1)(x-1)}$ is:

- (a) $\frac{-1}{x+1} + \frac{1}{x-1}$
- (b) $\frac{1}{x+1} + \frac{1}{x-1}$
- (c) $\frac{-2}{x+1} + \frac{2}{x-1}$
- (d) $\frac{1}{x+1} \frac{1}{x-1}$
- 7. (Medium) For $\frac{2x+1}{(x-1)(x+2)(x+3)}$, the coefficient A when x=1 is:
 - (a) $\frac{1}{4}$
 - **(b)** 1
 - (c) $-\frac{1}{4}$
 - (d) $\frac{3}{4}$
- **8.** (Medium) The polynomial part of $\frac{6x^3+5x^2-7}{2x^2-x-1}$ after division is:
 - (a) 3x + 4
 - **(b)** 2x + 3
 - (c) x + 1
 - (d) 3x 4
- **9.** (Medium) The coefficient B in $\frac{7x-3}{(x-1)(2x+1)} = \frac{A}{x-1} + \frac{B}{2x+1}$ when $x = -\frac{1}{2}$ is:
 - (a) $\frac{13}{3}$
 - (b) $\frac{4}{3}$
 - (c) $-\frac{13}{3}$
 - (d) $-\frac{4}{3}$
- **10.** (Medium) The partial fraction of $\frac{x}{(x-1)(x-2)(x-3)}$ includes a term:
 - (a) $\frac{3}{2(x-1)}$
 - (b) $\frac{-1}{x-2}$
 - (c) $\frac{1}{x-3}$
 - (d) $\frac{2}{x-1}$
- **11.** (High) The coefficient A in $\frac{x}{(x-a)(x-b)(x-c)} = \frac{A}{x-a} + \frac{B}{x-b} + \frac{C}{x-c}$ is:
 - (a) $\frac{a}{(a-b)(a-c)}$
 - (b) $\frac{a}{(b-a)(c-a)}$
 - (c) $\frac{b}{(a-b)(a-c)}$
 - (d) $\frac{c}{(a-c)(b-c)}$
- **12. (High)** The remainder after dividing $\frac{x^3-9x^2+23x-15}{x^3-12x^2+44x-48}$ is:
 - (a) $3x^2 21x + 33$ (b) $x^2 3x + 5$

- (c) 2x + 3
- (d) x 1
- **13.** (High) The coefficient C in $\frac{3x^2-21x+33}{(x-2)(x-4)(x-6)} = \frac{A}{x-2} + \frac{B}{x-4} + \frac{C}{x-6}$ when x=6 is:
 - (a) $\frac{15}{8}$
 - (b) $\frac{3}{8}$
 - (c) $\frac{3}{4}$
 - (d) $\frac{1}{8}$
- **14.** (High) The partial fraction form of $\frac{1}{(1-2x)(1-3x)(1-4x)}$ includes a term:
 - (a) $\frac{4}{(1-2x)}$
 - (b) $\frac{9}{2(1-3x)}$
 - (c) $\frac{16}{3(1-4x)}$
 - (d) $\frac{1}{(1-2x)}$
- **15.** (High) The coefficient A in $\frac{x^2+1}{(x^2+4)(x^2+9)(x^2+16)}$ after substituting $y=x^2$ is:
 - (a) $\frac{1-4}{(9-4)(16-4)}$

 - (b) $\frac{1-9}{(4-9)(16-9)}$ (c) $\frac{1-16}{(4-16)(9-16)}$
 - (d) $\frac{1}{(4)(9)}$
- **16.** (High) The partial fraction of $\frac{6x^3+5x^2-7}{2x^2-x-1}$ includes:
 - (a) $3x + 4 + \frac{4}{3(x-1)} + \frac{13}{3(2x+1)}$
 - **(b)** $3x + 4 + \frac{1}{x-1} + \frac{1}{2x+1}$
 - (c) $2x + 3 + \frac{2}{x-1} + \frac{3}{2x+1}$
 - (d) $3x + 4 + \frac{13}{3(x-1)} + \frac{4}{3(2x+1)}$
- **17.** (Medium) The denominator factorization for $\frac{3x^2-4x-5}{(x-2)(x^2+7x+10)}$ is:
 - (a) (x-2)(x+2)(x+5)
 - **(b)** (x-2)(x-2)(x+5)
 - (c) (x-2)(x+7)(x+10)
 - (d) (x-2)(x+1)(x+5)
- **18.** (Medium) The coefficient B in $\frac{-2x+3}{x(x-1)(2x+3)} = \frac{A}{x} + \frac{B}{x-1} + \frac{C}{2x+3}$ when x = 1 is:

(d)
$$-1$$

- 19. (Low) An improper fraction example is:
 - (a) $\frac{x^3}{x^2-1}$
 - (b) $\frac{1}{x^2+1}$
 - (c) $\frac{2x-3}{x^3+4}$
 - (d) $\frac{5}{x-2}$
- 20. (Low) The method to solve for constants in partial fractions is:
 - (a) Substitution or equating coefficients
 - (b) Factoring the numerator
 - (c) Synthetic division
 - (d) Completing the square

Answers and Explanations

1. Answer: a

Explanation: A proper rational fraction has the degree of the numerator less than the degree of the denominator (page 343). Option (a) is correct; others describe improper fractions or unrelated properties.

2. Answer: a

Explanation: For $\frac{1}{(x-1)(x+1)}$, partial fractions have denominators (x-1) and (x+1) (Q.1, page 344). Option (a) is correct; others include incorrect or repeated factors.

3. Answer: a

Explanation: Three distinct linear factors (x-1)(x-2)(x-3) yield three partial fraction terms (Q.6, page 349). Option (a) is correct; others are incorrect counts.

4. Answer: a

Explanation: Improper fractions require polynomial division first (Q.2, page 345). Option (a) is correct; others are incorrect initial steps.

5. Answer: b

Explanation: Set x = 1: $1 = 2A \implies A = \frac{1}{2}$ (Q.1, page 344, note sign error in original). Option (b) is correct; others do not match.

6. Answer: a

Explanation: For $\frac{2}{(x+1)(x-1)}$, solve: 2 = A(x-1) + B(x+1). Set x = 1: $2 = 2B \implies B = 1$. Set x = -1: $2 = -2A \implies A = -1$. Result: $\frac{-1}{x+1} + \frac{1}{x-1}$. Option (a) is correct (Q.2, page 345).

7. Answer: a

Explanation: Set x = 1: $3 = 12A \implies A = \frac{1}{4}$ (Q.3, page 346). Option (a) is correct; others do not match.

8. Answer: a

Explanation: Division yields $3x + 4 + \frac{7x - 3}{2x^2 - x - 1}$ (Q.7, page 350). Option (a) is correct; others are incorrect polynomials.

9. Answer: a

Explanation: Set $x=-\frac{1}{2}$: $-\frac{13}{2}=-\frac{3}{2}B \implies B=\frac{13}{3}$ (Q.7, page 351). Option (a) is correct; others do not match.

10. Answer: b

Explanation: Solve: x = A(x-2)(x-3) + B(x-1)(x-3) + C(x-1)(x-2). Set x = 2: $2 = -B \implies B = -1$. Term: $\frac{-1}{x-2}$. Option (b) is correct (Q.6 variant).

11. Answer: a

Explanation: Set x = a: $a = A(a-b)(a-c) \implies A = \frac{a}{(a-b)(a-c)}$ (Q.6, page 349). Option (a) is correct; others are incorrect substitutions.

12. Answer: a

Explanation: Division yields $1 + \frac{3x^2 - 21x + 33}{x^3 - 12x^2 + 44x - 48}$ (Q.9, page 354). Option (a) is correct; others are incorrect remainders.

13. Answer: a

Explanation: Set x=6: $15=8C \implies C=\frac{15}{8}$ (Q.9, page 355). Option (a) is correct; others do not match.

14. Answer: b

Explanation: Solve: 1 = A(1-3x)(1-4x) + B(1-2x)(1-4x) + C(1-2x)(1-3x). Set $x = \frac{1}{3}$: $1 = \frac{2}{9}B \implies B = \frac{9}{2}$. Term: $\frac{9}{2(1-3x)}$. Option (b) is correct (Q.10, page 356).

15. Answer: a

Explanation: Let $y = x^2$: $\frac{y+1}{(y+4)(y+9)(y+16)}$. Set y = -4: $-3 = A(5)(12) \implies A = \frac{-3}{60} = \frac{1-4}{(9-4)(16-4)}$. Option (a) is correct (Q.11, page 357).

16. Answer: a

Explanation: Result is $3x + 4 + \frac{4}{3(x-1)} + \frac{13}{3(2x+1)}$ (Q.7, page 352). Option (a) is correct; others have incorrect coefficients.

17. Answer: a

Explanation: Factor: $x^2 + 7x + 10 = (x + 2)(x + 5)$. Denominator: (x - 2)(x + 2)(x + 5) (Q.4, page 347). Option (a) is correct; others are incorrect factorizations.

18. Answer: a

Explanation: Set x=1: $1=5B \implies B=\frac{1}{5}$ (Q.8, page 353). Option (a) is correct; others do not match.

19. Answer: a

Explanation: $\frac{x^3}{x^2-1}$ has degree 3 in numerator, 2 in denominator (page 344). Option (a) is correct; others are proper fractions.

20. Answer: a

Explanation: Constants are found by substitution or equating coefficients (all questions, e.g., Q.1). Option (a) is correct; others are unrelated methods.