Rechnerarchitektur II – Übung 1

(zwei Doppelstunden)

Inhalte: - Übergang RA I zu RA II

- Definition Rechnerarchitektur

- Moores Law

- Klassifizierung

Übungsaufgabe 1.1

Nennen Sie die Komponenten der von-Neumann-Architektur und beschreiben Sie deren Aufgaben!

Übungsaufgabe 1.2

Worin unterscheidet sich die v. Neumann-Architektur von der Harvard-Architektur?

Übungsaufgabe 1.3

Vergleichen Sie die Rechnerarchitektur-Definition nach Giloi mit den vorhergehenden Definitionen der 60er und 70er Jahre! Geben Sie jeweils ein Beispiel für die Einordnung in die Bestandteile der Definition nach Giloi an.

Übungsaufgabe 1.4

Ordnen Sie folgende Objekte in die Rechnerarchitektur-Definition nach Giloi ein!

- Steuerwerk
- Register
- Speicherbus
- Festkomma-Datenformate nach IEEE754
- Doppelt verkettete Liste
- Cache
- Gleitkomma-Datenformate nach IEEE754
- PC-getriebene Ablaufsteuerung
- Assemblerbefehl: ADD R6, R4, R1
- Verbindungsnetzwerk zwischen den Prozessoren
- Zugriff auf den Cache

Übungsaufgabe 1.5

Diskutieren Sie Moores Law und deren Auswirkungen auf die HW-Struktur!

Übungsaufgabe 1.6

- a) Erklären Sie die Flynnschen Kategorien zur Rechnerklassifizierung und ordnen Sie Rechnerarchitekturen ein!
- b) Klassifizieren Sie die gegebenen Rechnerarchitekturen nach dem Flynnschen Klassifikationsschema:
 - 1. Single-Core PC
 - 2. Cluster von 10 Linux-Rechnern mit Single-Core Prozessoren
 - 3. Multiprozessor Hochleistungsrechner mit 1000 parallelen CPUs
 - 4. Feldrechner, dessen einziges Leitwerk 128 gleichartige 32-Bit Rechenwerke ansteuert
 - 5. PC mit Dual-Core Prozessor
 - 6. Klassischer von-Neumann-Rechner
 - 7. Klassischer Vektorrechner

Übungsaufgabe 1.7

Was sind die Merkmale von MMX, SSE und AVX? Klassifizieren Sie diese Prinzipien nach Flynn und begründen Sie Ihre Aussage!