1

1. T 关于 \mathbb{R}^3 中标准基 (e_1, e_2, e_3) 的矩阵为

$$T(e_1 \quad e_2 \quad e_3) = \begin{pmatrix} e_1 & e_2 & e_3 \end{pmatrix} \begin{pmatrix} 5 & -\sqrt{3} & -2\sqrt{3} \\ -\sqrt{3} & 7 & -2 \\ 2\sqrt{3} & 2 & 4 \end{pmatrix} := \begin{pmatrix} e_1 & e_2 & e_3 \end{pmatrix} A.$$

由于 p_1, p_2, p_3 是 e_1, e_2, e_3 的对偶基,因此 T' 在 (p_1, p_2, p_3) 下的矩阵为

$$B = A^{\top} = \begin{pmatrix} 5 & -\sqrt{3} & 2\sqrt{3} \\ -\sqrt{3} & 7 & 2 \\ -2\sqrt{3} & -2 & 4 \end{pmatrix}.$$

- 2. 容易得到 $f = p_1 + p_2 + p_3$,因此 $T'(f) = T'(p_1) + T'(p_2) + T'(p_3) = (5 + \sqrt{3})p_1 + (9 \sqrt{3})p_2 + (2 2\sqrt{3})p_3$ ·
- 3. T^* 在 (e_1, e_2, e_3) 下的矩阵为 A^{T} , 因此 T^*T 在 (e_1, e_2, e_3) 下的矩阵为

$$C = A^{\top} A = \begin{pmatrix} 40 & -8\sqrt{3} & 0 \\ -8\sqrt{3} & 56 & 0 \\ 0 & 0 & 32 \end{pmatrix}.$$

通过计算容易得到 T^*T 的特征值为 $\lambda_1 = 64$, $\lambda_2 = \lambda_3 = 32$, 相应的规范特征向量分别为 $v_1 = (\frac{1}{2}, -\frac{\sqrt{3}}{2}, 0)^{\top}$, $v_2 = (\frac{\sqrt{3}}{2}, \frac{1}{2}, 0)^{\top}$, $v_3 = (0, 0, 1)^{\top}$ 。于是 T 的奇异值为 $s_1 = 8$, $s_2 = s_3 = 4\sqrt{2}$ 。同时,由奇异值分解可得, $\frac{Tv_j}{s_i}$, j = 1, 2, 3 构成了 \mathbb{R}^3 的另一组规范正交基,定义算子

$$S: \mathbb{R}^3 \to \mathbb{R}^3, \quad S(v_j) = \frac{Tv_j}{s_j}, j = 1, 2, 3,$$

从而 S 是等距同构,因此 T 的极分解为 $T = S\sqrt{T*T}$ 。

4. TT^* 在 (e_1, e_2, e_3) 下的矩阵为

$$D = AA^{\top} = \begin{pmatrix} 40 & -8\sqrt{3} & 0 \\ -8\sqrt{3} & 56 & 0 \\ 0 & 0 & 32 \end{pmatrix}.$$

注意到 D=C, 即 $TT^*=T^*T$ 。由平方根的唯一性, R_1 可由下式

$$R_1 v_j = \sqrt{\lambda_j} v_j, \quad j = 1, 2, 3$$

确定。

5. 通过计算可以得到 $T_{\mathbb{C}}$ 特征值为 $\mu_1 = 8, \mu_2 = 4 + 4i, \mu_3 = 4 - 4i$,相应的的特征向量分别为 $f_1 = (1, -\sqrt{3}, 0)^{\mathsf{T}}, f_2 = (\sqrt{3}, 1, -2i)^{\mathsf{T}}, f_3 = (\sqrt{3}, 1, 2i)^{\mathsf{T}}$ 。从而 $T_{\mathbb{C}}$ 具有平方根 R,且

$$R(f_1 \quad f_2 \quad f_3) = \begin{pmatrix} f_1 & f_2 & f_3 \end{pmatrix} \begin{pmatrix} \sqrt{\mu_1} & 0 & 0 \\ 0 & \sqrt{\mu_2} & 0 \\ 0 & 0 & \sqrt{\mu_3} \end{pmatrix} := \begin{pmatrix} f_1 & f_2 & f_3 \end{pmatrix} S.$$

为说明 T 在 \mathbb{R} 上具有平方根,需要验证 R 关于标准基 (e_1, e_2, e_3) 的矩阵为实矩阵。容易计算 (e_1, e_2, e_3) 到 (f_1, f_2, f_3) 的过渡矩阵为

$$P = \begin{pmatrix} 1 & \sqrt{3} & \sqrt{3} \\ -\sqrt{3} & 1 & 1 \\ 0 & -2i & 2i \end{pmatrix}.$$

于是, R 关于标准基 (e_1, e_2, e_3) 的矩阵

$$Q = PSP^{-1} \approx \begin{pmatrix} 2.3551 & -0.2733 & -0.7882 \\ -0.2733 & 2.6707 & -0.4551 \\ 0.7882 & 0.4551 & 2.1974 \end{pmatrix}$$

为实矩阵。因此,T 在 \mathbb{R} 上具有平方根 R_2 ,且 R_2 关于标准基 (e_1, e_2, e_3) 的矩阵为 Q。

- 6. 由于 dim $E(\mu_1, T) = 1 < 3$,因此 T 在 \mathbb{R} 上不能对角化。
- 7. 由 (5) 可以得到 $T_{\mathbb{C}}$ 关于 μ_1, μ_2, μ_3 的特征向量组成的一组规范正交基 $w_1 = (\frac{1}{2}, -\frac{\sqrt{3}}{2}, 0)^{\top}, w_2 = (\frac{\sqrt{3}}{2}, \frac{1}{2}, 0)^{\top}, w_3 = (0, 0, 1)^{\top}$,使得 T 在 (w_1, w_2, w_3) 下的矩阵为准对角矩阵

$$\begin{pmatrix} 8 & 0 & 0 \\ 0 & 4 & -4 \\ 0 & 4 & 4 \end{pmatrix}.$$

8. $T_{\mathbb{C}}$ 的极小多项式为 $(z-\mu_1)(z-\mu_2)(z-\mu_3)$, 因此 T 的极小多项式为

$$p(z) = (z - 8)(z^2 - 8z + 32).$$

9. 由 (7) 计算结果可得 T 的不变子空间分别为

$$U_1 = \text{span}(w_1), \quad U_2 = \text{span}(w_2, w_3).$$

10. $T_{\mathbb{C}}$ 的特征多项式为 $q(z)=p(z)=(z-8)(z^2-8z+32)$ 。 $\forall v=v_1+v_2\in\mathbb{R}^3=U_1\oplus U_2$,容易验证

$$q(T)v = 0,$$

即 q(T) = 0,满足凯莱-哈密顿定理。

注 1. 对于内积空间 V 上给定的一个正算子 T, 求其平方根的一般方法如下:

- 计算 T 的所有特征值 $\lambda_1, \dots, \lambda_n$ 和相应特征子空间 $E(\lambda_1, T), \dots, E(\lambda_n, T)$;
- 在每个特征子空间内做 Gram-Schmidt 正交化,从而得到由 T 的特征向量组成的 V 的一组规范正交基 e_1, \cdots, e_n (命题 7.22 已经暗含了不同特征值对应的特征子空间是相互正交的)。
- 根据平方根的唯一性, 平方根由 $Re_k = \sqrt{\lambda_k} e_k$, $k = 1, \dots, n$ 唯一确定。

2

证明. 考虑内积 $\langle p,q\rangle=\int_{-\pi}^{\pi}p(x)q(x)dx$,记 $U=\mathcal{P}_3(\mathbb{R})$ 。对 U 中一组基 $1,x,x^2,x^3$ 进行 Gram-Schmidt 正交化,得到一组规范正交基

$$e_1 = \frac{1}{\sqrt{2\pi}}, \quad e_2 = \sqrt{\frac{3}{2\pi^3}}x, \quad e_3 = -\frac{1}{2}\sqrt{\frac{5}{2\pi^5}}(\pi^2 - 3x^2), \quad e_4 = -\frac{1}{2}\sqrt{\frac{7}{2\pi^7}}(3\pi^2x - 5x^3).$$

5.26 小测解答 2025年6月3日

为最小化
$$\|\sin x - p\|^2 = \int_{-\pi}^{\pi} |\sin x - p(x)|^2$$
, 应取 $p = P_U(\sin x)$,即

$$p = \langle p, e_1 \rangle e_1 + \langle p, e_2 \rangle e_2 + \langle p, e_3 \rangle e_3 + \langle p, e_4 \rangle e_4.$$

(具体结果比较复杂就不算了。)

QED

Exercise 6.B.14

证明. 设存在 a_1, \dots, a_n , 使得 $\sum_{k=1}^n a_k v_k = 0$ 。注意到

$$\sum_{k=1}^{n} |a_k|^2 = \|\sum_{k=1}^{n} a_k e_k\|^2$$

$$= \|\sum_{k=1}^{n} a_k (e_k - v_k)\|^2$$

$$\leq (\sum_{k=1}^{n} |a_k| \|e_k - v_k\|)^2$$

$$\leq (\sum_{k=1}^{n} |a_k|^2) (\sum_{k=1}^{n} \|e_k - v_k\|^2),$$

并且 $\sum_{k=1}^{n} \|e_k - v_k\|^2 < n \cdot \frac{1}{n} = 1$,因此 $\sum_{k=1}^{n} |a_k|^2 = 0$,从而 $\forall k \in \{1, \dots, n\}, a_k = 0$,即 v_1, \dots, v_n 是线性无关 **QED**

注 2. 若将 < 改为
$$\leq$$
, 则结论不成立。 考虑 $v_k=e_k-\frac{e_1+\cdots+e_N}{n}$, 则 $v_1+\cdots+v_n=0$, 即 v_1,\cdots,n 是线性相关的。同时,注意到

$$||e_k - v_k|| = ||\frac{e_1 + \dots + e_n}{n}|| = \frac{1}{n}\sqrt{n} = \frac{1}{\sqrt{n}}.$$

Exercise 3.F.37

证明. (a) 显然 π 是满射,从而 π' 是单射 (或者按定义证明)。

(b) 注意到 $U^0 = \{ \varphi \in V' : U \subseteq \text{null } \varphi \}$ 。根据 Exersise 3.E.18 的结论,令 $W = \mathbb{F}$,可得 $\varphi \in U^0 \iff U \subseteq \text{null } \varphi \iff \exists S \in (V/U)', s.t.\pi'(S) = \varphi \iff \varphi \in \text{range } \pi'.$

(c) 由 (a) 和 (b) 可得 π' 为单射和满射,从而是 (V/U)' 到 U^0 的同构。

QED

5 Exercise 3.F.30

证明. 定义映射 $\Phi: V \to \mathbb{F}^m$:

$$\Phi(v) = (\varphi_1(v), \cdots, \varphi_m(v)),$$

从而

$$\operatorname{null}\Phi = \{v \in V | \varphi_1(v) = \dots = \varphi_m(v) = 0\} = (\operatorname{null}\varphi_1) \cap \dots \cap (\operatorname{null}\varphi_m).$$

5.26 小测解答 2025 年 6 月 3 日

又因为 $\varphi_1, \cdots, \varphi_m$ 线性无关,因此 Φ 关于 V 的一组基的矩阵是行满秩的,即 $\dim \mathrm{range}\Phi = m$ 。根据线性映射基本定理,有

$$\dim ((\mathrm{null}\varphi_1) \cap \cdots (\mathrm{null}\varphi_m)) = \dim \mathrm{null}\Phi = \dim V - \dim \mathrm{range}\Phi = \dim V - m.$$

QED