

2a. Grundlagen Existenz von Lösungen

Optimierung SoSe 2020 Dr. Alexey Agaltsov

Plan

- Satz von Weierstrass
- Entspannung von Bedingungen
- Unterhalbstetigkeit
- Fortgeschrittener Existenzsatz

Existenz von Lösungen

Wir betrachten das Minimierungsproblem:

Minimiere
$$f(x)$$
 über $x \in K$

$$K \subseteq \mathbb{R}^n$$

• Zunächst werden wir die Bedingungen auf K und f herleiten, die Existenz von Lösungen garantieren

Wann gibt es keine Lösung?

Minimiere
$$\frac{1}{x}$$
 über $x \in [1, \infty)$

 $K = [1, \infty)$ ist nicht beschränkt

Wann gibt es keine Lösung?

Minimiere
$$\frac{1}{x}$$
 über $x \in [1,2)$

 $K = [1, \infty)$ ist nicht abgeschlossen

Wann gibt es keine Lösung?

Minimiere $\lfloor x \rfloor - x + 2$ über $x \in [1,2]$ $\lfloor x \rfloor = \max\{k \in \mathbb{Z}: k \le z\}$ Abrungungsfunktion

 $f = \lfloor x \rfloor - x + 1$ ist nicht stetig

2.1. Satz von Weierstrass

Wir nehmen an:

- 1. $K \subseteq \mathbb{R}^n$ ist nichtleer und kompakt
- 2. $f \in C(K)$

Dann
$$\exists x_* \in K \text{ mit } f(x_*) = \inf_{x \in K} f(x)$$

Beweis

Nach Definition des Infimums \exists Folge $(x_k) \subseteq K$, so dass $f(x_k) \to \inf_{x \in K} f(x)$

Da K kompakt ist, gibt es eine Teilfolge (x_{k_l}) mit $x_{k_l} \to x_* \in K$

Da f stetig ist, $f(x_{k_l}) \to f(x_*)$

Daher gilt
$$f(x_*) = \inf_{x \in K} f(x)$$

Plan

- Satz von Weierstrass
- Entspannung von Bedingungen
- Unterhalbstetigkeit
- Fortgeschrittener Existenzsatz

- Wir haben gesehen, dass man auf die Bedingungen der Stetigkeit, Abgeschlossenheit und Beschränktheit nicht verzichten kann
- Jedoch kann man diese Bedingungen entspannen

Minimiere x über $x \in [1, \infty)$

K ist beschränkt $f(x) \to \infty$ für $x \to \infty$

Minimiere x über $x \in [1,2)$

K ist abgeschlossen $\exists c : \{x \in K : f(x) \le c\}$ ist kompakt

Minimiere $x - \lfloor x \rfloor + 1$ über $x \in [1,2]$

Erweiterte Funktionen

- Weiterhin werden wir Funktionen definiert auf dem ganzen \mathbb{R}^n und mit Werten in $\overline{\mathbb{R}}=\mathbb{R}\cup\{\infty\}$ betrachten
- Erweiterte Funktionen vereinfachen Notation durch implizite Angabe des Definitionsbereichs

Erweiterte Funktionen

• Jeder Funktion $g: K \to \mathbb{R}, K \subseteq \mathbb{R}^n$, ordnen wir eine erweiterte Funktion zu:

$$f: \mathbb{R}^n \to \overline{\mathbb{R}}, \quad f(x) \coloneqq \begin{cases} g(x) & x \in K \\ \infty & sonst \end{cases}$$

• Jeder erweiterten Funktion $f: \mathbb{R}^n \to \overline{\mathbb{R}}$ ist hingegen eine gewöhnliche Funktion $g: K \to \mathbb{R}$ zugeordnet:

$$K = \{x \in \mathbb{R}^n : f(x) < \infty\},\$$
$$g(x) \coloneqq f(x), \ x \in K$$

Effektiver Bereich und Epigraph

$$f: \mathbb{R}^n \to \overline{\mathbb{R}}$$

Als effektiver Bereich von f bezeichnen wir:

$$\mathbf{dom}(f) = \{x \in \mathbb{R}^n \colon f(x) < \infty\}$$

Als Epigraph von *f* bezeichnen wir:

$$\mathbf{epi}(f) = \{(x, z) \in \mathbb{R}^n \times \mathbb{R}: f(x) \le z\}$$

Lemma 2.2. Epigraph von Supremum

Seien
$$f_{\alpha} : \mathbb{R}^n \to \overline{\mathbb{R}}$$
, $\alpha \in I$, $f = \sup_{\alpha \in I} f_{\alpha}$. Dann gilt: $\operatorname{epi}(f) = \cap_{\alpha \in I} \operatorname{epi}(f_{\alpha})$

Beweis

$$(x,z) \in \mathbf{epi}(f) \iff \sup_{\alpha \in I} f_{\alpha} \le z$$

 $\iff f_{\alpha}(x) \le z \ \forall \alpha \in I$
 $\iff (x,z) \in \mathbf{epi}(f_{\alpha}) \ \forall \alpha \in I$
 $\iff (x,z) \in \cap_{\alpha \in I} \mathbf{epi}(f_{\alpha})$

Plan

- Satz von Weierstrass
- Entspannung von Bedingungen
- Unterhalbstetigkeit
- Fortgeschrittener Existenzsatz

Halbstetigkeit

• $f: \mathbb{R}^n \to \overline{\mathbb{R}}$ heißt unterhalbstetig falls:

$$\liminf_{x \to x_*} f(x) \ge f(x_*) \quad \forall x_* \in \mathbb{R}^n$$

Satz 2.3. Äquivalente Definitionen der Unterhalbstetigkeit

Sei $f: \mathbb{R}^n \to \overline{\mathbb{R}}$. Die folgenden Aussagen sind äquivalent:

1. *f* ist unterhalbstetig:

$$\liminf_{x \to x_*} f(x) \ge f(x_*) \quad \forall x_* \in \mathbb{R}^n$$

- 2. $\{x: f(x) \le c\}$ ist abgeschlossen $\forall c \in \mathbb{R}$
- 3. epi(f) ist abgeschlossen

Beweis: $1 \Rightarrow 2$

• f ist unterhalbstetig $\Rightarrow \{x: f(x) \le c\}$ abgeschlossen $\forall c \in \mathbb{R}$

Seien
$$(x_k) \subseteq \mathbb{R}^n$$
: $f(x_k) \le c, x_k \to x_*$

$$f(x_*) \le \liminf_{k \to \infty} \underline{f(x_k)} \le c$$

Also ist $\{x: f(x) \le c\}$ abgeschlossen

Beweis: $\neg 1 \Rightarrow \neg 2$

• f nicht unterhalbstetig $\Rightarrow \exists c \in \mathbb{R}$: $\{f(x) \leq c\}$ nicht abgeschlossen

$$\begin{array}{c|c}
f(x_*) \\
c \\
b \\
\hline
\\
x_k \\
\hline
\\
x_*
\end{array}$$

$$\exists (x_* \in \mathbb{R}^n, (x_k) \subseteq \mathbb{R}^n) \colon x_k \to x_*, f(x_k) \to b < f(x_*)$$

$$\exists c, k_0 \colon f(x_k) \le c < f(x_*) \ \forall k \ge k_0 \iff$$

$$\Rightarrow \{x \colon f(x) \le c\} \text{ ist nicht abgeschlossen}$$

Beweis: $1 \Rightarrow 3$

• f ist unterhalbstetig \Rightarrow **epi**(f) abgeschlossen

Seien
$$(x_k, z_k) \in \mathbf{epi}(f), x_k \to x_*, z_k \to z_*$$

$$\lim_{k \to \infty} \inf_{k \to \infty} \underbrace{f(x_k)} \ge f(x_*)$$

$$\le z_k$$

$$z_* \ge f(x_*)$$
Also $(x_*, z_*) \in \mathbf{epi}(f)$

Beweis: $3 \Rightarrow 2$

• **epi**(f) abgeschlossen $\Rightarrow \{x: f(x) \le c\}$ abgeschlossen $\forall c$

Seien
$$x_k \in \mathbb{R}^n$$
 mit $f(x_k) \le c$, $x_k \to x_*$

Also
$$(x_k, c) \in \mathbf{epi}(f)$$

Also
$$(x_*, c) \in \mathbf{epi}(f)$$
, d.h. $f(x_*) \le c$

Erweiterungen stetiger Funktionen

- Oft ist die Zielfunktion in Optimierungsproblemen stetig
- Die Definitionsbereich ist dabei oft offen oder abgeschlossen
- Wann ist die zugehörige erweiterte Funktion halbstetig von unten?

Beispiele

$$f(x) = x \log x \text{ mit } \mathbf{dom}(f) = \mathbb{R}_{>0}$$

$$f(0^{-}) = \infty$$
, $f(0^{+}) = 0$, $f(0) = \infty$

Da $f(0^+) < f(0)$, ist f nicht unterhalbstetig

Beispiele

$$f(x) = \begin{cases} x \log x & x > 0 \\ 0 & x = 0 \end{cases} \text{ mit } \mathbf{dom}(f) = \mathbb{R}_{\geq 0}$$

$$f(0^{-}) = \infty, \ f(0^{+}) = 0, \ f(0) = 0$$

$$f(0^{-}) \geq f(0), f(0^{+}) \geq f(0)$$

$$f \text{ ist unterhalbstetig}$$

Beispiele

Lemma 2.4: Halbstetigkeit Erweiterungen stetiger Funktionen

Sei $f: \mathbb{R}^n \to \overline{\mathbb{R}}$ stetig auf $\operatorname{\mathbf{dom}}(f)$

2. Ist dom(f) offen, so ist f unterhalbstetig gdw.

$$\lim_{\mathbf{x} \to \mathbf{x}_*} f(\mathbf{x}) = \infty \ \forall \mathbf{x}_* \in \partial \mathbf{dom}(f)$$

Beweis

Behauptung: Ist dom(f) abgeschlossen, so ist f unterhalbstetig

Seien
$$(x_k, z_k) \in \mathbf{epi}(f), (x_k, z_k) \to (x_*, z_*)$$

also $f(x_k) \le z_k$
 $f(x_*) \le z_*$
 f stetig auf $\mathbf{dom}(f)$
also $(x_*, z_*) \in \mathbf{epi}(f)$

epi(f) ist abgeschlossen, also ist f halbstetig von unten

Beweis

Behauptung: Ist dom(f) offen, so ist f unterhalbstetig gdw.

$$\lim_{\mathbf{x} \to \mathbf{x}_*} f(\mathbf{x}) = \infty \ \forall \mathbf{x}_* \in \partial \mathbf{dom}(f)$$

$$\lim_{\mathbf{x} \to \mathbf{x}_*} f(\mathbf{x}) = f(\mathbf{x}_*) \ \forall \mathbf{x}_* \in \mathbf{dom}(f)$$

f ist unterhalbstetig gdw.

$$\lim_{x \to x_*} f(x) = \underline{\infty} \, \forall x_* \in \partial \mathbf{dom}(f)$$
$$f(x_*)$$

Plan

- Satz von Weierstrass
- Entspannung von Bedingungen
- Unterhalbstetigkeit
- Fortgeschrittener Existenzsatz

Satz 2.5. Existenz von Lösungen

Sei $f: \mathbb{R}^n \to \overline{\mathbb{R}}$ unterhalbstetig mit $\mathbf{dom}(f) \neq \emptyset$

Es gelte eine (oder mehrere) der folgenden Voraussetzengen:

- 1. $\exists c \in \mathbb{R}: \{x: f(x) \leq c\}$ ist nichtleer und beschränkt
- 2. $\mathbf{dom}(f)$ ist beschränkt
- 3. $f(x) \to \infty$ für $|x| \to \infty$

Dann ist Argmin(f) nichtleer und kompakt

Beweis: zu 1

Angenommen, $\exists c \colon L = \{x \colon f(x) \le c\}$ ist nichtleer und beschränkt Nach Satz 2.3 ist L abgeschlossen, also kompakt

Seien
$$x_k \in L$$
 mit $x_k \to x_*$, $f(x_k) \to f_* = \inf f(x)$

$$\lim f(x_k) \ge f(x_*) \quad \text{(Halbstetigkeit)}$$

$$f_*$$
Also ist $f(x_*) = f_*$

$$\operatorname{Argmin} f = \{x : f(x) \le f_*\} \subseteq L \quad \text{also kompakt}$$

$$\operatorname{abgeschlossen} \quad \operatorname{beschränkt}$$

Beweis: $2 \Rightarrow 1$

• $\mathbf{dom}(f)$ ist beschränkt $\Rightarrow \exists c \in \mathbb{R}$: $\{x: f(x) \leq c\}$ ist nichtleer und beschränkt

Sei dom(f) beschränkt

Sei $x_0 \in \mathbf{dom}(f)$ und setze:

$$L = \{x : f(x) \le f(x_0)\}$$

 $L \subseteq \mathbf{dom}(f)$, also ist L beschränkt

Beweis: $3 \Rightarrow 1$

• $f(x) \to \infty$ für $|x| \to \infty \Rightarrow \exists c \in \mathbb{R}$: $\{x: f(x) \le c\}$ ist nichtleer und beschränkt

Es gelte
$$f(x) \to \infty$$
 für $|x| \to \infty$

Sei
$$x_0 \in \mathbf{dom}(f)$$
 und setze $L = \{x : f(x) \le f(x_0)\}$

$$L \text{ ist beschränkt} \longleftarrow f(x_0) < \infty$$

Zusammenfassung

- Satz von Weierstrass
- Entspannung von Bedingungen
- Unterhalbstetigkeit
- Fortgeschrittener Existenzsatz

Nächstes Video

• 2b. Grundlagen: Konvexe Mengen