Interface Definitions Table

outside_surge_acpwr	120V AC, 2A Peak inputNominal 5% tolerance
surge_conversion_acpwr	 Voltage is protected so that AC power cannot surge above 140V AC 120V AC, 2A Peak input 5% tolerance
conversion_robot_dcpwr	 Regulated DC power is inductively transferred to robot. 13-15V DC
conversion_tx_dcpwr	 DC power will be used to power the location transmitter. 3-7V DC.
station_robot_dcpwr	 DC power will be inductively received from the charging station. 13-15V DC
station_outside_envin	 RF signal (visible light) sent from docking station Robot can detect light from 25 feet away in a dimly lit room
robot_outside_envin	 Surfaces include: tile, short carpet, concrete Obstacles include: walls, chair legs, cords, clothing
robot_outside_motion	 Speed on all surfaces within 10% Max speed > 0.3 m/s 10 min or greater time in motion
capacity/reg_lcd_dsig	 Digital signal representing battery life within + or - 10% Digital value between 0 and 255 representing percentage
battery_capacity/reg_dcpwr	5 V DCCurrent sensing, 3 A Max
capacity/reg_return_dcpwr	5 V DC5% tolerance
capacity/reg_motors_dcpwr	 5-12 V DC 10% tolerance
battery_robot_mech	 Sensor leads securely connected to battery terminals No exposed wiring
LCD →robot_mech	 Securely bolted to robot housing Connections inside the housing Display flush with robot exterior
LCD_outside_envin	LCD of percentage clearly visible from 3 feet away

	LCD to represent remaining battery life
motors_robot_mech	 Motors must remain stationary in the housing while traversing rough terrain such as tile. Should withstand a drop from 4 inches above ground
motors_movement/sensing_dsig	 PWM DC signal powering 2 motors .26 Nm .7-1W .052A 8-12V Limit switch input signaling a bump 2 sensors, one on each corner 5V high
return_movement/sension_dsig	 RF sensor input 3 sensors, 3 sides 5V high