

CSI 3105 - Design and Analysis of Algorithms

Fall 2022 Section A

Professor Jean-Lou De Carufel

Assignment 3

Kien Do (ID: 300163370)

1. Answer

Below is the recursion definition that is filled in,

Below is the justification (for my own reference).

- 1. No object, therefore the optimal value is 0.
- 2. Max weight is 0, and since $w_i > 0$, no such w_i can satisfy the condition.
- 3. The optimal value is the maximum of the following two cases:
- The value of the current item v_i _plus the existing optimal value for the remaining weight after including item i, and
- the existing optimal value from the previous calculation.
- 4. The optimal value is simply the existing optimal value from the previous calculation.

2. Answer

Following the recursive algorithm proposed in question 1, we can solve the knapsack problem with the given values using the matrix method of dynamic programming.

We are given,

$$W = 11, n = 6$$

as well as the weight of each item,

$$w_1 = 2, w_2 = 3, w_3 = 2, w_4 = 9, w_5 = 3, w_6 = 2$$

and the value of each item,

$$v_1 = 7, v_2 = 1, v_3 = 6, v_4 = 18, v_5 = 22, v_6 = 28$$

The following matrix can be produced.

		\W \ i \	0	1	2	3	4	5	6	7	8	9	10	11
p_i	w_i	0	0	0	0	0	0	0	0	0	0	0	0	0
7	2	1	0	0	7	7	7	7	7	7	7	7	7	7
1	3	2	0	0	7	7	7	8	8	8	8	8	8	8
6	2	3	0	0	7	7	13	13	13	14	14	14	14	14
18	9	4	0	0	7	7	13	13	13	14	14	18	18	25
22	3	5	0	0	7	22	22	29	29	35	35	35	36	36
28	2	6	0	0	28	28	35	50	50	57	57	63	63	<mark>63</mark>

Green represents the backtracking (equivalent to arrows).

Bold represents the item that is selected to be in the knapsack.

Result:

- The items included in the knapsack are items 6, 5, 3, and 1.
- The total weight is 2 + 3 + 2 + 2 = 9, which is less than the maximum weight, W = 11.
- The total value is 63.