BASICS OF INFORMATION SYSTEM SECURITY

Wireless, IoT, and Cloud Security

Video summary

- Layering in Wireless Networks
- What is IMTS? 3G?
- 3G Security Principles
- 3G Network Access Security
- 4G LTE Network

Layering in Wireless Networks

- Below a certain point, things can be designed for wireless communication
- Above that point, the medium doesn't matter...
 - Or does it?
 - Or should it?

Universal Mobile Telecommunications Service (UMTS) 3G

UMTS is a 3G broadband, packet-based transmission of text, digitized voice, video, and multimedia at data rates up to 2 megabits per second (Mbps).

3.5

UMTS specifies a complete network system, which includes the radio access network (UMTS Terrestrial Radio Access Network, or UTRAN), the core network and the authentication of users via SIM cards.

3G Security Principles

• Reuse of 2G (GSM) Security principales:

• Removable hardware security module, SIM based Authentication

• In GSM: SIM card

• In 3GPP: USIM (User Services Identity Module)

Radio interface encryption

Protection of the identity of the end user (especially on the radio interface)

3GPP Security Principles (Cont.)

- Correction of the weaknesses of 2G:
 - Possible attacks from a fake base station → Mutual Authentication
- Data integrity not provided → Integrity protection of signalling message
 - Weak encryption (short key) → Use of stronger encryption
 - Assurance that authentication information and keys are not being re-used → key freshness

Network Access Security

- User identity confidentiality
 - User identity confidentiality (GSM)
 - User location confidentiality
 - User intractability
- Entity authentication
 - User authentication (GSM)
 - Network authentication

Confidentiality

- Cipher Alg. agreement
- Cipher key agreement
- · Confidentiality of user data

Data Integrity

- Integrity Alg. agreement
- Integrity key agreement
- Data integrity and origin authentication of signaling data

User Identity Confidentiality

- Permanent user identity IMSI, user location, and user services cannot be determined by eavesdropping
- Achieved by use of temporary identity (TMSI) which is assigned by VLR
- IMSI is sent in clear text when establishing TMSI

Basic Access Security Services

UMTS Security Abbreviations

```
Authentication Vector = AV
                                    Pseudo-random number, challenge data;
    RAND : 128-bit;
                                    Expected Response, answer to challenge;
    XRES :
               32-128 bit; ---
    CK : 128-bit;
IK : 128-bit;
                                    Cipher Key;
                                  Integrity Key;
  > IK
    AUTN :
               128-bit;
                                    Authentication Token, challenge data;
Authentication Token = AUTN
    SON
                                    Sequence Number;
         : 48-bit;
    AMF
               16-bit;
                              --- Authentication Management Field;
    MAC-A :
                                    MAC value used for Authentication;
                 64-bit;
```

AK: Anonymity key

UMTS Security Algorithms

Algorithm	Purpose/usage	O: Operator-specific S: Fully standardized	Location
f0	Random challenge generating function	0	AuC
f1	Network authentication function	O – (MILENAGE)	USIM and AuC
f1*	Resynchronization message authentication function	O – (MILENAGE)	_
f2	User challenge-response authentication function	O – (MILENAGE)	
f3	Cipher key derivation function	O – (MILENAGE)	-
f4	Integrity key derivation function	O – (MILENAGE)	:
f5	Anonymity key derivation function for normal operation	O – (MILENAGE)	-
f5*	Anonymity key derivation function for resynchronization	O – (MILENAGE)	-
f6	MAP encryption algorithm	S	MAP nodes
f7	MAP integrity algorithm	S	
f8	UMTS encryption algorithm	S – (KASUMI)	MS and RNC
f9	UMTS integrity algorithm	S – (KASUMI)	-

UMTS Authentication

UMTS Authentication

Mutual Authentication in 3G

- Subscriber can authenticate the network by the secret K using f1(K, SQN, AMF, RAND)
- SQN is introduced to prevent replay attacks
- Cipher Key and Integrity Key are generated after the authentication (Key Agreement)

Data Integrity in 3GPP

FRESH: Connection Nonce

COUNT-I: Integrity Sequence Number

Fresh: One value per user throughout the duration of a single connection. It is to protect the network against replay of signaling messages by the user.

Problems with 3G Security

- IMSI is sent in clear text when allocating TMSI to the user
- Hijacking outgoing/incoming calls in networks with disabled encryption is possible. The intruder poses as a man-in-the-middle and drops the user once the call is set-up

Long Term Evolution 4G

- Long Term Evolution (LTE)
 - Long-Term Evolution (LTE) is an emerging radio access network technology standardized by 3GPP and it is evolving as an evolution of 3G.
 - It aims to provide seamless IP connectivity between user equipment (UE) and the packet data network (PDN) without any disruption to the end users' applications during mobility.

The Core Network

• EPC is responsible for the overall control of the establishment of the bearers and the UE

HIR

- The main logical nodes in the EPC:
 - Home Subscriber Server (HSS) holds
 - users subscription data,
 - information about the PDNs,
 - dynamic information the identity of the MME
 - PDN Gateway (P-GW) is responsible for
 - IP address allocation for the UE,
 - filtering of downlink user IP packets into the different QoS-based bearers,
 - QoS enforcement for guaranteed bit rate bearers

Long Term Evolution

Video summary

- Layering in Wireless Networks
- What is IMTS? 3G?
- 3G Security Principles
- 3G Network Access Security
- 4G LTE Network