n	div 3	mod 3
0	0	0
1	0	1
2	0	2
3	1	0
4	1	1
5	1	2
2 3 4 5 6 7	2	О
7	2	1
8	2 2 2 3	2
9	3	0

	1	l
n	div 2	mod 2
0	0	0
1	0	1
2	1	О
3	1	1
4	2	О
2 3 4 5 6 7	2	1
6	3	О
7	3	1
8	2 2 3 3 4 4	О
9	4	1

 $\forall n \in \mathbb{N}_0 : \forall k \in \mathbb{N}_+ : n - (n \mod k) \text{ ist durch } k \text{ teilbar.}$

 $\rightarrow n$ durch k teilbar bzw. k teilt $n \iff \exists m \in \mathbb{N}_0 : km = n$.

 $\forall n \in \mathbb{N}_0 : \forall k \in \mathbb{N}_+ : n - (n \mod k)$ ist durch k teilbar. $\forall n, m \in \mathbb{N}_0 : \forall k \in \mathbb{N}_+ : n \mod k = m \mod k \Rightarrow n - m$ ist durch k teilbar.

 $\rightarrow n$ durch k teilbar bzw. k teilt $n \iff \exists m \in \mathbb{N}_0(\mathbb{Z}) : km = n$.

Vergleiche: $\forall n \in \mathbb{N}_0 : \forall k \in \mathbb{N}_+ : k \cdot (n \operatorname{div} k) + (n \operatorname{mod} k) = n.$

k heißt Teiler von n falls gilt: $\exists m \in \mathbb{N}_0(\mathbb{Z}) : km = n$.

k ist gemeinsamer Teiler von a, b: k teilt a und k teilt b.

Jede natürliche Zahl teilt 0.

k ist größter gemeinsamer Teiler von a, b(ggt(a, b)):

• k ist gemeinsamer Teiler von a und b und jeder gemeinsame Teiler k' von a und b erfüllt $k' \leq k$

ODER

• k ist gemeinsamer Teiler von a und b und jeder gemeinsame Teiler k' von a und b erfüllt k' teilt k.

Formal für k = ggt(a, b):

- $(\exists m_1, m_2 \in \mathbb{N}_0 : m_1 k = a \land m_2 k = b) \land \forall k' \in \mathbb{N}_0 : ((\exists m'_1, m'_2 \in \mathbb{N}_0 : m'_1 k' = a \land m'_2 k' = b) \Rightarrow k' \leq k.$
- $(\exists m_1, m_2 \in \mathbb{N}_0 : m_1 k = a \land m_2 k = b) \land \forall k' \in \mathbb{N}_0 :$ $((\exists m'_1, m'_2 \in \mathbb{N}_0 : m'_1 k' = a \land m'_2 k' = b) \Rightarrow \exists m_3 \in \mathbb{N}_0 :$ $m_3 k' = k.$

a	b	ggt(a,b)
5	5	5
4	4	4
3	3	3
2	2	2
1	1	1
O	0	?

8

$$\forall n \in \mathbb{N}_+ : ggt(0,n) = ggt(n,0) = n.$$

ggt(0,0) undefiniert nach Definition 1.

ggt(0,0) = 0 nach Definition 2.

 \rightarrow Darum auf Übungsblatt: $a + b \ge 1$.

Frage: "Ginge das nicht viel einfacher mit while-Schleifen"?"

Antwort: "Natürlich, aber while-Schleifen hatten wir noch nicht!"

Idee:

Anfang:	n	0	0	1	1
	x	y	z	e	v
$\stackrel{\longrightarrow}{\longrightarrow}$	$x \operatorname{div} 2$	$y + e(x \mod 2)$	$z + v(x \mod 2)$	2e	$\overline{-v}$

Wiederhole $1 + \lceil \log_2 n \rceil$ mal.

n = 5:

Anfangsbelegung:		0	0	1	1
Nach 1. Schleife	2	1	1	2	-1
Nach 2. Schleife	1	1	1	4	1
Nach 3. Schleife	0	5	2	8	-1
Nach 4. Schleife	0	5	2	16	1

n = 9:

Anfangsbelegung:	9	0	0	1	1
Nach 1. Schleife	4	1	1	2	-1
Nach 2. Schleife	2	1	1	4	1
Nach 3. Schleife	1	1	1	8	-1
Nach 4. Schleife	0	9	0	16	1
Nach 5. Schleife	0	9	0	32	-1

n = 16:

Anfangsbelegung:	16	0	0	1	1
Nach 1. Schleife	8	0	0	2	-1
Nach 2. Schleife	4	0	0	4	1
Nach 3. Schleife	2	0	0	8	-1
Nach 4. Schleife	1	0	0	16	1
Nach 5. Schleife	0	16	1	32	-1
Nach 6. Schleife	0	16	1	64	1

n = 21:

Anfangsbelegung:	21	0	0	1	1
Nach 1. Schleife	10	1	1	2	-1
Nach 2. Schleife	5	1	1	4	1
Nach 3. Schleife	2	5	2	8	-1
Nach 4. Schleife	1	5	2	16	1
Nach 5. Schleife	0	21	3	32	-1
Nach 6. Schleife	0	21	3	64	1

Was fällt auf?

lacktriangle

Was fällt auf?

• Am Ende gilt y = n.

Was fällt auf?

• Am Ende gilt y = n.

 \bullet x wird in jedem Schritt halbiert, e wird in jedem Schritt verdoppelt.

Was fällt auf?

- Am Ende gilt y = n.
- \bullet x wird in jedem Schritt halbiert, e wird in jedem Schritt verdoppelt.
- Schleifeninvariante 1: $x \cdot e + y = n$.

Was fällt auf?

Was fällt auf?

• $y \mod 3 = z \mod 3$

lacktriangle

Was fällt auf?

• $y \mod 3 = z \mod 3$

ullet Schleifeninvariante 2: y-z ist durch 3 teilbar.

Skizze Beweis Schleifeninvariante 2:

$$y + e(x \mod 2) - (z + v(x \mod 2)) =$$

 $y - z + (x \mod 2)(e - v)$

Skizze Beweis Schleifeninvariante 2:

$$y + e(x \mod 2) - (z + v(x \mod 2)) =$$

 $y - z + (x \mod 2)(e - v)$

Schön wäre, wenn e-v immer durch 3 teilbar ist.

Schleifeninvariante:

•
$$x \cdot e + y = n \wedge$$

- ullet e-v ist durch 3 teilbar \wedge
- y-z ist durch 3 teilbar.

```
x \leftarrow n
y \leftarrow 0
z \leftarrow 0
e \leftarrow 1
v \leftarrow 1
for i \leftarrow 0 to \lceil \log_2 n \rceil do
      x \leftarrow x \operatorname{div} 2
      y \leftarrow y + e \cdot x \mod 2
      z \leftarrow z + v \cdot x \mod 2
      e \leftarrow 2 \cdot e
      v \leftarrow -v
od
```

```
x \leftarrow n
y \leftarrow 0
z \leftarrow 0
e \leftarrow 1
v \leftarrow 1
for i \leftarrow 0 to \lceil \log_2 n \rceil do
      y \leftarrow y + e \cdot x \mod 2
      z \leftarrow z + v \cdot x \mod 2
      x \leftarrow x \operatorname{div} 2
      e \leftarrow 2 \cdot e
      v \leftarrow -v
od
```

• Aussage S_i : Aussage der Schleifeninvariante gilt zu **Be**ginn des i-ten Schleifendurchlaufs.

• Aussage R_i : Aussage der Schleifeninvariante gilt am **Ende** des i-ten Schleifendurchlaufs.

28

• Aussage S_i : Aussage der Schleifeninvariante gilt zu **Be**ginn des i-ten Schleifendurchlaufs.

• Aussage R_i : Aussage der Schleifeninvariante gilt am **Ende** des i-ten Schleifendurchlaufs.

• Wenn es i+1-ten Schleifendurchlauf gibt, gilt $R_i=S_{i+1}$.

Vorgehen:

• Zeige S_0 .

• Zeige für zulässige $i: S_i \Rightarrow R_i$.

Vorgehen:

• Zeige S_0 .

• Zeige für zulässige $i: S_i \Rightarrow R_i$.

Dazu: Belegung der Variable V zu Anfang des i-ten Schleifendurchlaufs: V_i , am Ende des i-ten Schleifendurchlaufs: V_{i+1} .

SI 1:
$$x_i \cdot e_i + y_i = n$$

IA:
$$i = 0$$
: $x_0 \cdot e_0 + y_0 = n \cdot 1 + 0 = n$. $\sqrt{ }$

IV: Für beliebiges, aber festes $i \in \mathbb{N}_0$ gilt:

$$i < \lceil \log_2 n \rceil \Rightarrow x_i \cdot e_i + y_i = n.$$

IS: Es ist zu zeigen, dass dann auch $x_{i+1} \cdot e_{i+1} + y_{i+1} = n$:

$$x_{i+1} \cdot e_{i+1} + y_{i+1} =$$
 $(x_i \operatorname{div} 2) \cdot (e_i \cdot 2) + (y_i + e_i \cdot x_i \operatorname{mod} 2)$
 $= y_i + e_i((x_i \operatorname{div} 2) \cdot 2 + x_i \operatorname{mod} 2) = y_i + e_i x_i \stackrel{IV}{=} n$

SI 2: $e_i - v_i$ ist durch 3 teilbar.

IA:
$$i = 0$$
: $e_0 - v_0 = 1 - 1 = 0$ ist durch 3 teilbar. $\sqrt{}$

IV: Für beliebiges, aber festes $i \in \mathbb{N}_0$ gilt: $i < \lceil \log_2 n \rceil \Rightarrow e_i - v_i$ ist durch 3 teilbar.

IS: Es ist zu zeigen, dass dann auch $e_{i+1} - v_{i+1}$ durch 3 teilbar ist:

$$e_{i+1} - v_{i+1} = 2 \cdot e_i - (-v_i) = 2 \cdot e_i + v_i = 2(e_i - v_i) + 3v_i$$

Nach IV ist $e_i - v_i$ durch 3 teilbar, und damit auch $2(e_i - v_i) + 3v_i$.

SI 3: $y_i - z_i$ ist durch 3 teilbar.

IA:
$$i = 0$$
: $y_0 - z_0 = 0 - 0 = 0$ ist durch 3 teilbar. $\sqrt{}$

IV: Für beliebiges, aber festes $i \in \mathbb{N}_0$ gilt: $i < \lceil \log_2 n \rceil \Rightarrow y_i - z_i$ ist durch 3 teilbar.

IS: Es ist zu zeigen, dass dann auch $y_{i+1} - z_{i+1}$ durch 3 teilbar ist:

$$y_{i+1} - z_{i+1} = y_i + e_i(x_i \mod 2) - (z_i + v_i(x_i \mod 2)) = (y_i - z_i) + (e_i - v_i)(x_i \mod 2)$$

Nach IV beziehungsweise SI 2 sind beide Summanden durch 3 teilbar, also auch $y_{i+1} - z_{i+1}$.

Am Ende gilt:

•
$$x = 0$$

$$\bullet$$
 $y = n$

• $y \mod 3 = z \mod 3$.

•
$$|z| \leq 1 + \log_2 n$$

Am Ende gilt:

•
$$x = 0$$

$$\bullet$$
 $y = n$

• $y \mod 3 = z \mod 3$.

•
$$|z| \leq 1 + \log_2 n$$

Algorithmus neu initialisieren mit $x \leftarrow z, y \leftarrow 0, \ldots$, wiederholen

 \rightarrow liefert schnell $n \mod 3$ in z.

Fragen zu Übungsblatt 2? (Für nächste Woche)