Adventures in sparsity and shrinkage with the normal means model

Matthew Stephens

November, 2019

The Normal Means problem

$$x_j|\theta_j,s_j\sim N(\theta_j,s_j^2)$$

MLE:
$$\hat{\theta}_j = x_j$$
.

Surprise: you can do better than the mle! (Stein, 1956)

The Normal Means problem

$$x_j|\theta_j,s_j\sim N(\theta_j,s_j^2)$$

MLE:
$$\hat{\theta}_j = x_j$$
.

Surprise: you can do better than the mle! (Stein, 1956)

¹http://varianceexplained.org/r/empirical_bayes_baseball/

¹http://varianceexplained.org/r/empirical_bayes_baseball/❷ → ← ፮ → ← ፮ → ◆ ◇ ○

¹http://varianceexplained.org/r/empirical_bayes_baseball/

¹http://varianceexplained.org/r/empirical_bayes_baseball/❷ → ← ፮ → ← ፮ → ◆ ◇ ○

Empirical Bayes Normal Means (EBNM)

$$x_j | \theta_j, s_j \sim N(\theta_j, s_j^2)$$

 $\theta_j \sim g \in \mathcal{G}$

Fit this model in two steps:

1. Estimate g by maximizing (marginal) log-likelihood:

$$\widehat{g} = \operatorname{arg\,max} \sum_{j} \log \int p(x_j | \theta_j, s_j) g(d\theta_j)$$

2. Compute posterior distributions $\theta_j \mid \widehat{g}, x_j, s_j$.

"Sparsity-inducing" choices for $\mathcal G$

- Point-normal: $\pi_0 \delta_0 + (1 \pi_0) N(0, \sigma^2)$.
- Zero-centered scale mixtures of normals (non-parametric; includes point-normal, t, Laplace, horseshoe, ...).

"Sparsity-inducing" choices for ${\cal G}$

- ▶ Point-normal: $\pi_0 \delta_0 + (1 \pi_0) N(0, \sigma^2)$.
- Zero-centered scale mixtures of normals (non-parametric; includes point-normal, t, Laplace, horseshoe, ...).

Surprise: computations for latter are easier than former! ("convex relaxation")

Simple non-parametric computations

Key idea: approximate non-parametric family by finite mixture with many components:

$$g(\cdot) = \sum_{k}^{K} \pi_{k} N(\cdot; 0, \sigma_{k}^{2})$$

with K big; $\sigma_1, \ldots, \sigma_K$ fixed on a "dense grid".

So estimating g comes down to estimating π .

Illustration: scale mixture of normals

Illustration: scale mixture of normals

Simple non-parametric computations

This yields simple marginal distribution:

$$p(x_j|\pi) = \sum_{k}^{K} \pi_k N(x_j; 0, s_j^2 + \sigma_k^2).$$

And estimating $\pi = (\pi_1, ..., \pi_K)$, is a convex optimization problem (Koenker + Mizera, 2015; S. 2017; Kim et al, 2018).

Bayesian shrinkage operators

Shrinkage obviously depends on prior g (and standard error s_j).

One way to summarize shrinkage behavior is to focus on how posterior mean changes with *x*:

$$S_{g,s}(x) := E(\theta_j|x_j = x, g, s_j = s)$$

Call this the "shrinkage operator" for prior g.

Bayesian shrinkage operators

Example shrinkage operators for different priors (scale mixtures of normals, s=1):

Shrinkage operators via penalized likelihood

Another way to induce shrinkage/sparsity is penalized log-likelihood:

$$\hat{\theta}_j = S_{h,\lambda}(x) := \arg\min_{\theta} \left[0.5(x - \theta)^2 + \lambda h(\theta) \right]$$

where h a penalty function, and λ a tuning parameter.

[Can think of these as posterior mode under some prior, but I don't recommend it!]

Penalty-based shrinkage operators

Bayesian vs Penalty-based shrinkage operators

Key features of EB shrinkage

- 1. Shrinkage determined by g, which is estimated by maximum likelihood, rather than CV.
- 2. Very flexible: can mimic a range of penalty functions.
- 3. Posterior distribution $\theta_j \mid \widehat{g}, x_j, s_j$ gives not only shrunken point estimates but also "shrunken" interval estimates.

...despite this, until recently little attention paid to EB shrinkage in practical applications.

Key features of EB shrinkage

- 1. Shrinkage determined by g, which is estimated by maximum likelihood, rather than CV.
- 2. Very flexible: can mimic a range of penalty functions.
- 3. Posterior distribution $\theta_j \mid \widehat{g}, x_j, s_j$ gives not only shrunken point estimates but also "shrunken" interval estimates.

...despite this, until recently little attention paid to EB shrinkage in practical applications.

Example Applications

- Multiple testing
- ► Linear Regression
- Matrix factorization

Multiple Testing

Typical set-up (e.g. Benjamini and Hochberg, 1995):

- ▶ Large number of tests j = 1, ..., n.
- ► Test j yields p value p_j .
- ▶ Reject all tests with $p_j < \gamma$ with $\gamma(p)$ chosen to control FDR.

Multiple Testing via EBNM

In many applications p values are derived from effect estimates, $\hat{\beta}_j$, and standard errors s_j , satisfying:

$$\hat{\beta}_j \sim N(\beta_j, s_j^2).$$

Aim: identify β_j that are different from zero.

Ideally suited to EBNM!

Multiple Testing via EBNM

$$\hat{\beta}_j | \beta_j \sim N(\beta_j, s_j^2)$$

$$\beta_j \sim g() \in \mathcal{G}$$

Estimate \hat{g} by maximum likelihood; compute posterior 90% interval for each β_j ; reject if interval does not contain 0.

Details: S. (2017); see also Thomas (1985), Efron (200x).

EBNM vs BH for multiple testing

- EBNM slightly more powerful.
- ▶ BH more robust to correlated tests (but see Sun + S. (2019)).
- ► EBNM provides shrinkage interval estimates! (e.g. address winner's curse)

But real benefit of EBNM maybe comes in multivariate extensions...

Multivariate multiple testing (Urbut et al, 2018)

$$\hat{eta}_j | eta_j \sim N_r(eta_j, V_j)$$
 $eta_j \sim g(\cdot) = \sum_k \pi_k N_r(0, \Sigma_k)$

Multivariate multiple testing (Urbut et al, 2018)

Eg: eQTL effect sizes across 44 tissues (GTEx Consortium, 2017).

Multivariate multiple testing

Eg: eQTL effect sizes across 44 tissues (GTEx Consortium, 2017).

Multivariate multiple testing

a) Data

b) Posterior

Multivariate multiple testing

a) Data

b) Posterior

Linear regression

$$\mathbf{y}_{n \times 1} = X_{n \times p} \mathbf{b}_{p \times 1} + \mathbf{e}_{n \times 1}$$
 $\mathbf{e} \sim N_n(0, \sigma^2 I_n)$
 $b_1, \dots, b_p \sim g() \in \mathcal{G}$

Challenge: how to apply EBNM ideas here?

An analogy: Penalized regression

Penalized linear regression solves:

$$\hat{\mathbf{b}} = \arg\min_{\mathbf{b}} 0.5 ||\mathbf{y} - X\mathbf{b}||_2^2 + \lambda \sum_j h(b_j)$$

E.g. $h(b) = b^2$ gives ridge regression; h(b) = |b| gives lasso.

Coordinate Ascent Iterative Shrinkage Algorithm (CAISA)

For each coordinate j, update b_i as follows:

- ightharpoonup Compute residuals $\mathbf{r}_j := \mathbf{y} X_{-j}\mathbf{b}_{-j}$
- $\qquad \qquad \textbf{Compute } \hat{b_j} = (\mathbf{x}_j^T \mathbf{x}_j)^{-1} \mathbf{x}_j^T \mathbf{r}_j$
- ► Shrink: $b_j := S_{h,\lambda}(\hat{b}_j)$

where S is a shrinkage operator for h, λ :

$$S_{h,\lambda}(b) := \arg\min_{a} (b-a)^2 + \lambda h(a).$$

g-CAISA:

For each coordinate j, update b_j as follows:

- ightharpoonup Compute residuals $\mathbf{r}_j := \mathbf{y} X_{-j}\mathbf{b}_{-j}$
- $\qquad \qquad \mathsf{Compute} \ \hat{b_j} := (\mathbf{x}_j^T \mathbf{x}_j)^{-1} \mathbf{x}_j^T \mathbf{r}_j$
- ightharpoonup Shrink: $b_j := S_{g,s_j}(\hat{b}_j)$

where S is the posterior mean shrinkage operator determined by prior g.

What is this doing?

Define:

$$F(q) := -KL(q \rightarrow p(b|X, \mathbf{y}, g, \sigma^2))$$

$$Q := \{q : q(\mathbf{b}) = \prod_{i=1}^{p} q_i(b_i)\}$$

Proposition (Kim et al, in prep): The g-CAISA algorithm is a coordinate ascent algorithm for maximizing F(q) (i.e. minimizing KL) over $q \in \mathcal{Q}$, with \mathbf{b} the expectation of q.

Estimating g?

Recall algorithm:

- ightharpoonup Compute residuals $\mathbf{r}_j := \mathbf{y} X_{-j}\mathbf{b}_{-j}$
- ▶ Compute $\hat{b}_j := (\mathbf{x}_j^T \mathbf{x}_j)^{-1} \mathbf{x}_j^T \mathbf{r}_j$
- ► Compute $s_j := (\mathbf{x}_j^T \mathbf{x}_j)^{-1} \sigma^2$
- ightharpoonup Shrink: $b_j := S_{g,s_j}(\hat{b}_j)$

Idea: after computing b_j, s_j for j = 1, ..., p, apply EBNM to estimate g.

Estimating g?

Recall algorithm:

- ightharpoonup Compute residuals $\mathbf{r}_j := \mathbf{y} X_{-j}\mathbf{b}_{-j}$
- ► Compute $\hat{b}_j := (\mathbf{x}_j^T \mathbf{x}_j)^{-1} \mathbf{x}_j^T \mathbf{r}_j$
- ► Compute $s_j := (\mathbf{x}_j^T \mathbf{x}_j)^{-1} \sigma^2$
- $\blacktriangleright \text{ Shrink: } b_j := S_{g,s_j}(\hat{b}_j)$

Idea: after computing $\hat{b_j}, s_j$ for $j=1,\ldots,p$, apply EBNM to estimate g.

Simulation Results

Simulation Results

Simulation Results - more penalties

Matrix factorization

$$Y_{n\times p} = L_{n\times K} F_{K\times p}^T + E_{n\times p}$$

Common Assumption: F and/or L are sparse.

But how sparse?

Empirical Bayes Matrix Factorization: rank K=1

$$Y = If^T + E$$

$$l_1, \ldots, l_n \sim g^l(\cdot) \in \mathcal{G}$$

 $f_1, \ldots, f_p \sim g^f(\cdot) \in \mathcal{G}$

Algorithm, in outline, iterates:

- ▶ Given f, estimate g^I , I by solving EBNM problem.
- \triangleright Given I, estimate g^f , f by solving EBNM problem.

Optimizes a variational approximation to the posterior.

Empirical Bayes Matrix Factorization: rank K=1

$$Y = If^T + E$$

$$l_1, \ldots, l_n \sim g^I(\cdot) \in \mathcal{G}$$

 $f_1, \ldots, f_p \sim g^f(\cdot) \in \mathcal{G}$

Algorithm, in outline, iterates:

- ▶ Given f, estimate g^I , I by solving EBNM problem.
- ▶ Given *I*, estimate g^f , f by solving EBNM problem.

Optimizes a variational approximation to the posterior.

Empirical Bayes Matrix Factorization: rank K > 1

$$Y = \sum_{k=1}^{K} I_k f_k^T + E$$

$$l_{k1}, \dots, l_{kn} \sim g_k^f(\cdot) \in \mathcal{G}$$

 $f_{k1}, \dots, f_{kp} \sim g_k^f(\cdot) \in \mathcal{G}$

Iterative solution, updating k = 1, ..., K using rank 1.

Details: Wang + S. (2018)

GTEx data: first 6 factors

GTEx data: next 6 factors

Comparison: softImpute (nuclear norm penalty)

Summary

EBNM provides a flexible and convenient way to induce shrinkage and sparsity in a range of applications.

More Details

http://stephenslab.uchicago.edu/publications.html

- Multiple Testing: Efron (200x); S. (2017); Urbut et al (2017), Gerard + S. (2018).
- Linear Regression: Wang (2018); Kim et al (in prep).
- Matrix factorization: Wang and S. (2018).
- Wavelets: Johnstone + Silverman (2004); Xing, Carbonetto + S. (2017).
- Correlation: Dey and S. (2018).

