Multilevel Modeling Day 2

Violet Brown

Standard regression equation:

$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$$

- > grade.mod <- lm(grade ~ skipped_class, data = grade_data)</pre>
- > summary(grade.mod)

Coefficients:

$$grade_i = 0.861 - 0.314X_i$$

$$grade_{i,j} = (0.861 + u_{0j}) + (-0.314 + u_{1j})X_{ij} + \epsilon_{ij}$$
 Intercept

$$grade_{i,j} = \underbrace{(0.861 + u_{0j})}_{ ext{Intercept}} + \underbrace{(-0.314 + u_{1j})X_{ij}}_{ ext{Slope}} + \epsilon_{ij}$$

$$oldsymbol{\hat{eta}}_{0}$$
i

Class 1
$$grade_{i,1} = 0.792 - 0.002X_i$$

Class 3
$$\hat{grade}_{i,3} = 0.964 - 0.664 X_i$$

$$grade_i = 0.861 - 0.314X_i$$

Class 1
$$gr\hat{a}de_{i,1} = 0.792 - 0.002X_i$$

Class 3
$$gr\hat{a}de_{i,3} = 0.964 - 0.664X_i$$

	△ Intercept	∆ Slope
Class 1	-0.069	0.312
Class 3	0.103	-0.350

$$\hat{grade}_i = 0.861 - 0.314X_i$$

$$grade_{i,j} = (0.861 + u_{0j}) + (-0.314 + u_{1j})X_{ij} + \epsilon_{ij}$$
Intercept Slope \hat{eta}_{0j}

$$grade_{i,j} = (0.861 + u_{0j}) + (-0.314 + u_{1j})X_{ij} + \epsilon_{ij}$$

$$grade_{i,1} = (0.861 + -0.069) + (-0.314 + 0.312)X_i + \epsilon_i$$

$$grade_{i,1} = (0.792) + (-0.002)X_i + \epsilon_i$$

	△ Intercept	△ Slope
Class 1	-0.069	0.312
Class 3	0.103	-0.350

$$grade_{i,j} = (0.861 + u_{0j}) + (-0.314 + u_{1j})X_{ij} + \epsilon_{ij}$$

$$grade_{i,1} = (0.861 + -0.069) + (-0.314 + 0.312)X_i + \epsilon_i$$

$$grade_{i,1} = (0.792) + (-0.002)X_i + \epsilon_i$$

$$grade_{i,3} = (0.861 + 0.103) + (-0.314 + -0.350)X_i + \epsilon_i$$

 $grade_{i,3} = (0.964) + (-0.664)X_i + \epsilon_i$

		△ Slope
Class 1	-0.069	0.312
Class 3	0.103	-0.350

$$Y_{ij} = (\gamma_{00} + u_{0j}) + (\gamma_{10} + u_{1j})X_{ij} + \epsilon_{ij}$$

$$Y_{ij}=eta_{0j}+eta_{1j}X_{ij}+\epsilon_{ij}$$
Level 2 $eta_{0j}=\gamma_{00}+u_{0j}$
 $eta_{1j}=\gamma_{10}+u_{1j}$

$$Y_{ij} = (\gamma_{00} + u_{0j}) + (\gamma_{10} + u_{1j})X_{ij} + \epsilon_{ij}$$

$$Y_{ij}=eta_{0j}+eta_{1j}X_{ij}+\epsilon_{ij}$$
Level 2 $eta_{0j}=\gamma_{00}+u_{0j}$
 $eta_{1j}=\gamma_{10}+u_{1j}$

$$Y_{ij} = (\gamma_{00} + u_{0j}) + (\gamma_{10} + u_{1j})X_{ij} + \epsilon_{ij}$$

$$Y_{ij} = (\gamma_{00} + u_{0j}) + (\gamma_{10} + u_{1j})X_{ij} + \epsilon_{ij}$$

Some notes

• Level 1 random effects (residuals), ϵ_{ij} , vary within level 2 units

$$\epsilon_{ij} \sim N(0, \sigma^2)$$

- Constant across level 2 units
- Level 1 coefficients (β_{0j} , β_{1j}) are constant within level 2 units but vary across level 2 units

Some notes

 Level 2 random effects/residuals (u_{0j}, u_{1j}) vary across level 2 units

$$u_{0j} \sim N(0, \tau_{00})$$

 $u_{1j} \sim N(0, \tau_{11})$

- \mathbf{u}_{0j} , \mathbf{u}_{1j} can be correlated! But are uncorrelated with ϵ_{ii}
 - Tau matrix, T, contains variance and covariance for random effects

Tau (T) matrix

Some notes

- Level 2 coefficients (γ_{00} , γ_{10}) are constant across level 2 units
 - Fixed effects!

- > install.packages("lme4")
- > library(lme4)
- Fixed effect: proportion of classes skipped
- Random effects:
 - by-class random intercepts
 - by-class random slopes for proportion of classes skipped

skipped_class [‡]	grade 📤	Class ‡
0.645541354	0.4810248	Class 3
0.158089206	0.5184626	Class 2
0.558733023	0.5245797	Class 3
0.392118288	0.5292537	Class 2
0.544739291	0.5686268	Class 3
0.574664954	0.5766249	Class 3

Fixed effects:

Fixed effects:

```
Estimate Std. Error t value (Intercept) 0.84229 0.05101 16.512 skipped_class -0.25669 0.17380 -1.477
```

Random effects:

Groups	Name	Variance	Std.Dev.	Corr
Class	(Intercept)	0.007011	0.08373	
	skipped_class	0.086015	0.29328	-0.91
Residual		0.004751	0.06893	

Fixed effects:

```
Estimate Std. Error t value (Intercept) 0.84229 0.05101 16.512 skipped_class -0.25669 0.17380 -1.477
```

Random effects:

Groups	Name	Variance	Std.Dev.	Corr
Class	(Intercept)	0.007011	0.08373	
	skipped_class	0.086015	0.29328	-0.91
Residual		0.004751	0.06893	

Fixed effects:

```
Estimate Std. Error t value (Intercept) 0.84229 0.05101 16.512 skipped_class -0.25669 0.17380 -1.477
```

Random effects:

Groups	Name	Variance	Std.Dev.	Corr
Class	(Intercept)	0.007011	0.08373	
	skipped_class	0.086015	0.29328	-0.91
Residual		0.004751	0.06893	

Whew!