Retrieval to Reasoning: RAG & AI Agents on Azure Databricks

Hemamalini Nithyanandam Ashwini Mahendran

AGENDA

Retrieval to Reasoning: RAG & Al Agents on Azure Databricks

- 01 | Evolution From Retrieval to Reasoning
- 02 | Context Aware RAG on Azure databricks
- 03 | Agentic RAG
- 04 | Al Agents & RAG in Azure databricks
- 05 | RAG datapipeline
- 06 | Agentic RAG Usecases Demo
- 07 | Best Practices & Future of RAG & Al Agents

Who Am I....

Professional

- Software Designer in HP
- 12+ years IT experience
- AWS Solutions Architect
- Data Engineer&
- AI Enthusiast

Personal

- Punnagai Foundation
- Certified Yoga Trainer
- Blogs

https://www.linkedin.com/in/hemamalini-nithyanandam/

Who Am I

Professional

- Senior Software Engineer at ATMECSAI
- Al researcher & developer
- Embedded and Cloud based full stack AI development

Personal

- Badminton Player
- Mandala Artist

https://www.linkedin.com/in/ashwinimahendiran/

Evolution – From Retrieval to Reasoning

Evolution – From Retrieval to Reasoning

What are LLMs?

- Large Language Models (e.g., GPT-4, BERT) are deep learning models trained on vast amounts of text data.
- They generate human-like text based on input queries or prompts.

Key Characteristics of LLMs:

- Powerful in understanding and generating text.
- Context-dependent: rely on pre-trained knowledge, limited to training data.

Limitations:

- Static, unable to access real-time or updated information.
- Responses are limited to what the model has learned during training.

What is Retrieval-Augmented Generation (RAG)

RAG: A Hybrid AI Model

Combines the power of LLMs with real-time information retrieval.

Two Components:

- Retrieval: Dynamically fetches relevant data from external sources (e.g., databases, APIs).
- Generation: LLM refines and generates context-aware responses using the retrieved data.

Why RAG Matters?

Limitations of Traditional LLMs

- Static and limited knowledge
- Prone to hallucinations (inaccurate responses)
- Lacks real-time context awareness

How RAG Enhances LLMs

- Integrates external and real-time data
- Reduces hallucinations by grounding responses in facts
- Delivers accurate, up-to-date insights
- Improves relevance and precision by incorporating contextspecific knowledge

Enhancing LLMs with Context-Aware Data

Static LLMs vs. Dynamic Knowledge

• LLMs alone are limited by the data they were trained on, lacking the ability to adapt to real-world, real-time situations.

Benefits of RAG:

- **Accuracy**: By retrieving relevant information from up-to-date sources, RAG ensures responses are grounded in reality.
- **Context-Awareness**: Improves understanding of context and generates more precise and relevant responses.
- Adaptability: Handles a wide range of topics with ease by accessing external knowledge on demand.

Context-Aware RAG on Azure Databricks

Key Components:

- **Retriever:** Searches knowledge bases (Vector DBs, SQL, Delta Lake)
- Generator (LLM): Uses retrieved data for contextual responses
- Feedback Loop: Ensures accuracy & relevanceState Machine

Data Sources: Azure Blob, Delta Lake, SQL

Vector DBs: Weaviate, FAISS, ChromaDB

LLMs: OpenAl, MosaicML, Azure OpenAl

Databricks Runtime: Spark, MLFlow, Al Agents

AGENTIC RAG

Agentic RAG: Al That Thinks and Acts

- LLMs + Reasoning + Automation
 - → More than just text generation
- Context-aware Al agents that retrieve, analyze, and take action
- Refine responses with contextual reasoning
- Automate decision-making workflows

Source: Dipanjan Sarkar

Types Of Al Agent

Name of the agent	Key Characteristics	Examples	Best For
Fixed Automation: The Digital Assembly Line	No intelligence, predictable behavior, limited scope	RPA, email autoresponders, basic scripts	Repetitive tasks, structured data, no need for adaptability
LLM-Enhanced: Smarter, but Not Einstein	Context-aware, rule- constrained, stateless	Email filters, content moderation, support ticket routing	Flexible tasks, high- volume/low-stakes, cost- sensitive scenarios
ReAct: Reasoning Meets Action	Multi-step workflows, dynamic planning, basic problem-solving	Travel planners, Al dungeon masters, project planning tools	Strategic planning, multi- stage queries, dynamic adjustments
ReAct + RAG: Grounded Intelligence	External knowledge access, low hallucinations, real-time data	Legal research tools, medical assistants, technical support	High-stakes decisions, domain-specific tasks, real-time knowledge needs
Tool-Enhanced: The Multi-Taskers	Multi-tool integration, dynamic execution, high automation	Code generation tools, data analysis bots	Complex workflows requiring multiple tools and APIs
Self-Reflecting: The Philosophers	Meta-cognition, explainability, self- improvement	Self-evaluating systems, QA agents	Tasks requiring accountability and improvement

ReAct RAG –Reasoning +Action+ knowledge

Feature	Description
Intelligence	Employs a RAG workflow, combining LLMs with external knowledge sources (databases, APIs, documentation) for enhanced context and accuracy.
Behavior	Uses ReAct-style reasoning to break down tasks, dynamically retrieving information as needed. Grounded in real-time or domain-specific knowledge.
Scope	Designed for scenarios requiring high accuracy and relevance, minimizing hallucinations.
Best Use Cases	High-stakes decision-making, domain-specific applications, tasks with dynamic knowledge needs (e.g., real-time updates).
Examples	Legal research tools, medical assistants referencing clinical studies, technical troubleshooting agents.

Fig 1.5: Workflow of a ReAct + RAG agent

Source:https://www.galileo.ai/ebook-mastering-agents

Al Agents & RAG – Working Together

- Query Preprocessing The user query is formatted, templated, or keyword-extracted for vector search.
- 2. **Query Vectorization** Model Serving converts the query into embeddings, aligning with the indexed data.
- 3. **Retrieval Phase** A vector similarity search fetches and ranks the most relevant data chunks
- Prompt Augmentation Retrieved chunks are merged with the query to enhance context before LLM processing.
- LLM Generation The LLM generates a response using the enriched prompt
- **6. Post-processing** The output is refined with business logic, citations, or formatting adjustments.

Source:https://www.galileo.ai/ebook-mastering-agents

Implementing RAG Pipelines & Agents on Azure Databricks

AZURE DATABRICKS

- Unified, open analytics platform for data, Al, and ML for data-driven decision-making
- Built on Apache Spark, optimized for Azure and integrated with cloud storage and security
- Uses Data Lakehouse + AI for optimized performance
- Supports ETL, ML, BI, & Generative AI.
- Data Governance & Security Manage access and compliance effortlessly with Unity Catalog for secure data control.
- Streaming & Real-time Analytics Process live data streams with Structured Streaming for instant insights and automation.

Medallion Architecture

Source:https://learn.microsoft.com/en-us/azure/databricks/lakehouse/medallion

RAG DATA Pipeline

Source: https://www.databricks.com/glossary/retrieval-augmented-generation-rag

Real-time Use Cases & Best Practices

Implementing RAG in Databricks

1.Ingest & Prepare Data: Store in Delta Lake or Azure Blob

2.**Generate Embeddings:** Use FAISS/ChromaDB for vector indexing

3. Retrieve Relevant Context: Query vector DB for relevant documents

4.Generate Responses: Pass retrieved data to LLM

5.Agent Execution: Automate insights & decision-making

Source: https://www.databricks.com/blog/announcing-mosaic-ai-agent-framework-and-agent-evaluation

FinOps Genie in Action

Use Case:

- AWS Cost Analysis & Optimization using RAG-based LLM Agent
- Ingest AWS cost data into Databricks
- Retrieve relevant insights using RAG
- Al Agent suggests cost-saving strategies

Implementing RAG & AI Agents in Databricks

Automated Al Agent driven Development

Al Agents Usecases: Claim Processing

Source: https://www.galileo.ai/ebook-mastering-agents

Al Agents Usecases: Stock Analysis

RAG & Al Agents in Enterprise

- Financial Services: Risk analysis & fraud detection
- Cloud Cost Optimization: Al-powered costsaving recommendations
- Customer Support AI: Context-aware chatbot interactions
- Healthcare AI: Clinical data retrieval & summarization

Databricks, Fabric & Synapse: UseCases

Comparison: Databricks vs. Fabric vs. Synapse

Feature	Azure Databricks 🛑	Microsoft Fabric	Azure Synapse Analytics
Core Focus	Al, ML, Data Engineering & Analytics	Unified Data & Al Platform	Data Warehousing & Big Data Analytics
Architecture	Open Lakehouse (Delta Lake)	SaaS-based Lakehouse	SQL Data Warehouse & Data Lake
Best For	Big Data, ML, Al, Real-time Streaming	End-to-end Data & AI (BI, AI, Governance)	BI, SQL Analytics, ETL
Compute Engine	Apache Spark, Photon	Power BI, Spark	SQL Pools, Apache Spark
Data Processing	Batch, Streaming, ML, Al	Low-code/no-code, Al- powered automation	SQL-based ETL, Data Pipelines
Storage	Delta Lake (open format)	OneLake (Fabric's data lake)	Azure Data Lake Storage (ADLS)
Governance	Unity Catalog (fine- grained access)	Microsoft Purview	Role-based Access Control (RBAC)
BI & Reporting	Connects to Power BI	Deep Power BI integration	Power BI & SQL Reporting
Use Cases	AI/ML, Real-time Analytics, Data Science	Business Intelligence, Al Automation, Governance	Data Warehousing, Structured Data Analytics

Best Practices for Scalable RAG & Al Agents

- Optimize Retrieval Efficiency: Hybrid search (semantic + keyword)
- Fine-tune models for domain-specific knowledge using Azure OpenAl, MosaicML, or Databricks Foundation Models.
- Implement Cohere Reranking for improved relevance in retrieval results.
- Optimize embedding model selection (e.g., OpenAl's ada-002, Cohere embeddings).
- Reduce Hallucinations: Reinforcement learning for feedback loops
- Scalability Considerations: Deploy RAG with Databricks & Azure Al
- Implement AI Agent Evaluation Framework to measure response accuracy and quality.

Future of RAG & Al Agents

- Memory-augmented Agents (Retain past interactions)
- Autonomous Al Decision-Making (Selfimproving models)
- Advanced Multi-Agent Systems (Collaboration between Al agents)

