Feuille de TD 5 : Propriétés globales des fonctions continues et dérivables

Exercice 1. Théorème des valeurs intermédiaires

- 1. Soient I un intervalle de \mathbb{R} et $f: I \to \mathbb{R}$ continue telle que $\forall x \in I, f(x)^2 = 1$. Montrer que f = 1 ou f = -1.
- 2. Soit $f:[0,1] \to [0,1]$ une fonction continue. Montrer que f possède un point fixe, *i.e.* il existe x dans [0,1] tel que f(x)=x.
- 3. Une fonction qui vérifie la propriété des valeurs intermédiaires est-elle nécessairement continue ?
- 4. Quelles sont les applications continues $f: [-1,1] \to \mathbb{R}$ telles que : $\forall x \in \mathbb{R}, \ f(x)^2 = 1 x^2$?
- 5. Même question avec $\forall x \in \mathbb{R}, \ f(x)^2 = x^2$

Exercice 2. Vrai faux

Soit f une fonction définie sur un intervalle I.

- 1. Si f est bijective de I sur f(I) alors f est strictement monotone.
- 2. Si f est croissante sur I alors f définit une bijection de I sur f(I).
- 3. Si f est strictement décroissante sur I alors f est bijective de I sur f(I).
- 4. Si f est strictement monotone et continue sur I alors f est bijective de I sur f(I).

Exercice 3. Bijectivité

Parmi les fonctions numériques suivantes, lesquelles sont bijectives sur leur ensemble de définition? Lorsque la fonction n'est pas bijective sur son ensemble de définition, trouver un intervalle I sur lequel celle-ci définit une bijection.

- 1. $f_1(x) = e^x$
- 2. $f_2(x) = \ln(x)$
- 3. $f_3(x) = \sin(x)$
- 4. $f_4(x) = e^x \sin x$

Exercice 4. Théorème de Weierstrass

Donner, dans chacun des cas suivants, une fonction ayant la propriété indiquée.

- 1. Une fonction $[a, b] \to \mathbb{R}$ non bornée.
- 2. Une fonction $a, b \to \mathbb{R}$ continue, non bornée.
- 3. Une fonction $[a, b] \to \mathbb{R}$ continue, bornée, mais qui n'atteint pas ses bornes.
- 4. Une fonction $\mathbb{R} \to \mathbb{R}$ continue, non bornée.
- 5. Une fonction $\mathbb{R} \to \mathbb{R}$ continue, bornée, qui n'atteint pas ses bornes.

Exercice 5. Théorème de Weierstrass

Soit $f, g : [a, b] \to \mathbb{R}$ deux fonctions continues. On suppose que pour tout $x \in [a, b]$, 0 < f(x) < g(x). Montrer qu'il existe 0 < k < 1 tel que $\forall x \in [a, b] \ 0 < f(x) < kg(x)$. Montrer que cela est faux pour des fonctions continues definies sur \mathbb{R}^+ .

Exercice 6. Théorème de Rolle

Soit $a < b \in \mathbb{R}$ et $f : [a, b] \to \mathbb{R}$ une fonction deux fois dérivable. On suppose que f(a) = f(b) = 0 et que f'' ne s'annule pas sur [a, b]. Montrer que f ne s'annule pas sur [a, b].

Exercice 7. Racines d'un polynôme

Soit P un polynôme de degré n possédant n racines distincts. Démontrer que P' possède n-1 racines distincts. (On rappelle qu'un polynôme de degré n a au plus n racines distinctes).

Exercice 8. Accroissement d'une parabole

On rappelle que la formule des accroissements finis peut s'écrire sous la forme :

$$f(x+h) = f(x) + hf'(x+\theta h)$$

avec $\theta \in]0,1[$. Calculer un tel θ pour $f(x)=ax^2+bx+c$ (pour $a\neq 0$). Donner une interprétation géomètrique de ce résultat.

Exercice 9. Inégalité des accroissement finis

1. Montrer que pour tout $(x,y) \in \mathbb{R}_+^*$ tel que x < y:

$$x < \frac{y - x}{\ln y - \ln x} < y$$

2. Montrer que pour tout $x \in \mathbb{R}_+^*$:

$$\left(\frac{1+x}{x}\right)^x < e < \left(\frac{1+x}{x}\right)^{x+1}$$

3. Par application du théorème des accroissements finis à la fonction $\ln \sup [n, n+1]$, montrer que :

$$S_n = \sum_{k=1}^n \frac{1}{k}$$

tend vers l'infini quand n tend vers l'infini.

Exercice 10. Continuité et bornes (plus difficile)

Soit $f: \mathbb{R}^+ \to \mathbb{R}$ continue admettant une limite finie en $+\infty$. Montrer que f est bornée. Atteint-elle ses bornes?

Exercice 11. Extension du théorème de Rolle (plus difficile)

Soit f une fonction définie et continue sur $[a, +\infty[$, dérivable sur $]a, \infty[$ et telle que $\lim_{x\to\infty} f(x) = f(a)$. Montrer qu'il existe x_0 dans $]a, \infty[$ tel que $f'(x_0) = 0$.