

ZÁPADOČESKÁ UNIVERZITA V PLZNI

1. SEMESTRÁLNÍ PRÁCE - KKY/TOD

Odhad stavu lineárního systému

Tomáš Honzík

Obsah

Zadání					
1	Značen	ní	2		
2	Odhad stavu lineárního systému				
	2.1 Ka	almanův filr	3		
	2.2 Us	stálený Kalmanův filtr	3		
	2.3 De	eterministický rekonstruktor	4		
3	Porovnání filtrů				
4	Chyby odhadů				
5	Inovač	ní posloupnosti	7		
6	Odhad	y kovariancí inovací	8		
7	Středn	í kvadratické chyby filtračních odhadů	9		
	7.1 De	eterministický rekonstruktor	9		
	7.2 Ka	almanův filtr	9		
	7.3 Us	stálený Kalmanův filtr	10		
	7.4 Sir	mulace	10		
Zá	ávěr		12		

Odhad stavu lineárního systému

Zadání semestrální práce č. 3

Obecná formulace úlohy:

Nechť se zkoumaný objekt pohybuje po přímce s náhodným zrychlením. S danou periodou T je měřena poloha objektu. Hlavním úkolem je průběžně odhadovat polohu a rychlost objektu.

Podrobné zadání:

Uvažujte lineární dynamický systém

$$\boldsymbol{x}_{k+1} = \begin{bmatrix} 1 & T \\ 0 & 1 \end{bmatrix} \cdot \boldsymbol{x}_k + \boldsymbol{w}_k, \qquad \boldsymbol{w}_k \sim \mathcal{N}(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \frac{1}{40} \begin{bmatrix} \frac{T^3}{3} & \frac{T^2}{2} \\ \frac{T^2}{2} & T \end{bmatrix}), \ \boldsymbol{x}_0 \sim \mathcal{N}(\begin{bmatrix} 10 \\ 1 \end{bmatrix}, \begin{bmatrix} 10 & 0 \\ 0 & 1 \end{bmatrix}),$$
$$\boldsymbol{z}_k = \begin{bmatrix} 1 & 0 \end{bmatrix} \cdot \boldsymbol{x}_k + \boldsymbol{v}_k, \qquad \boldsymbol{v}_k \sim \mathcal{N}(0, 10),$$

kde T=1 a \boldsymbol{w}_k, v_k jsou nezávislé bílé šumy nekorelované s \boldsymbol{x}_0 .

Úkoly: Vygenerujte 1000 trajektorií stavu a měření pro $k = 0, \dots, 25$.

- (i) Pro každou trajektorii měření použijte Kalmanův filtr k nalezení odhadu stavu a určete ustálenou hodnotu Kalmanova zisku K_{∞} . Dále také odhadněte stav pomocí ustáleného Kalmanova filtru a pomocí optimálního deterministického rekonstruktoru (filtru s nulovými póly ve tvaru $\hat{\mathbf{x}}_k = (\mathbf{I} \mathbf{K}\mathbf{H})\mathbf{F}\hat{\mathbf{x}}_{k-1} + \mathbf{K}\mathbf{z}_k)$.
- (ii) Vykreslete první trajektorii stavu a porovnejte ji s příslušnými filtračními odhady a měřením. Pro první trajektorii dále vykreslete chyby filtračních odhadů a inovační posloupnosti.
- (iii) Pro dané filtry porovnejte odhady variancí inovací v časech $k=0,\,k=1,\,k=5$ a k=25. Dále pro oba filtry proveď te odhady kovariancí mezi inovacemi v daných časech.
- (iv) Odhadněte střední hodnoty kvadratických chyb filtračních odhadů v závislosti na čase. Získané křivky porovnejte s teoretickými hodnotami.

Obrázek 1: Zadání

1 Značení

Úvodem si zavedeme značení pro obecné výpočty:

$$\mathbf{A} = \begin{bmatrix} 1 & T \\ 0 & 1 \end{bmatrix}$$

$$\mathbf{C} = \begin{bmatrix} 1 & 0 \end{bmatrix}$$

$$\mathbf{Q} = \operatorname{Var}[\mathbf{w_k}] = \frac{1}{40} \begin{bmatrix} \frac{T^3}{3} & \frac{T^2}{2} \\ \frac{T^2}{2} & T \end{bmatrix}$$

$$R = \operatorname{Var}[v_k] = 10$$

$$\bar{\mathbf{x}}_0 = \operatorname{E}[x_0] = \begin{bmatrix} 10 \\ 1 \end{bmatrix}$$

$$\operatorname{Var}[x_0] = \begin{bmatrix} 10 & 0 \\ 0 & 1 \end{bmatrix}$$

$$(1)$$

 $\boldsymbol{K_k} \triangleq \operatorname{Kalmanův}$ zisk

2 Odhad stavu lineárního systému

Dle zadání bylo vygenerováno 1000 simulací zadaného lineárního systému. V první části se budeme věnovat jednou z vygenerovaných simulací, pro kterou provedeme odhad pomocí Kalmanova filtru, ustáleného Kalmanova filtru a deterministického rekonstruktoru stavu (filtru s nulovými póly).

2.1 Kalmanův filr

Jako první se budeme zabývat odhadem pomocí Kalmanova filtru. Použijeme Kalmanův filtr ve tvaru prediktor-korektor, nenž se celkem skládá ze dvou fází:

Predikce:

$$\bar{x}'_{k+1} = A\hat{x}_k
P'_{k+1} = AP_kA^T + GQG^T$$
(2)

Korekce:

$$K_{k} = P_{k}'C^{T}(R + CP_{k}'C^{T})^{-1}$$

$$P_{k} = (I - K_{k}C)P_{k}'(I - K_{k}C)^{T} + K_{k}RK_{k}^{T}$$

$$\hat{x}_{k} = \bar{x}_{k}' + P_{k}C^{T}R^{-1}(z_{k} - C\bar{x}_{k}')$$
(3)

A pro odstartování algoritmu je zapotřebí ještě inicializace:

$$\hat{\boldsymbol{x}}_0 = \bar{\boldsymbol{x}}_0 \tag{4}$$

Poznámka: V jednotlivých odhadech nebudeme uvažovat znalost měření v prvním kroku z_0 (prezentace 7 strana 31).

2.2 Ustálený Kalmanův filtr

Ustálený kalmanův filtr je ekvivalentní s předchozím Kalmanovým filtrem, s výjimkou hodnoty kalmanova zisku K_k , která se nemění dynamicky, ale je konstantní. Tuto konstantu určíme jako tzv. ustálený Kalmanův zisk:

$$K_{\infty} \triangleq \lim_{k \to \infty} K_k \tag{5}$$

Tuto hodnotu spočteme numericky pomocí rekurentních vztahů (3):

$$\boldsymbol{K_{\infty}} \simeq [0.2711 \quad 0.0427]^T \tag{6}$$

2.3 Deterministický rekonstruktor

Nakonec určíme odhad stavu pomocí deterministického rekonstruktoru (filtru s nulovými póly). Tento odhad má dle zadání tvar:

$$\hat{\mathbf{x}}_k = (\mathbf{I} - \mathbf{KC})\mathbf{A}\hat{\mathbf{x}}_{k-1} + \mathbf{K}\mathbf{z}_k) \tag{7}$$

Nyní nalezneme takové K, pro které bude splněn požadavek na filtr s nulovými póly. Toho docílíme vyřešením rovnice pro získání nulových vlastních čísel charakteristického polynomu matice $(\mathbf{I} - \mathbf{KC})\mathbf{A}$:

$$\det[\lambda \mathbf{I} - (\mathbf{I} - \mathbf{KC})\mathbf{A}] = 0 = \lambda^2 + (k_1 + Tk_2 - 2)\lambda + (1 - k_1)$$
(8)

$$\boldsymbol{K} = \begin{bmatrix} 1 & \frac{1}{T} \end{bmatrix}^T = \begin{bmatrix} 1 & 1 \end{bmatrix}^T \tag{9}$$

$$\hat{\boldsymbol{x}}_{k+1} = \begin{bmatrix} 0 & 0 \\ -1 & 0 \end{bmatrix} \hat{\boldsymbol{x}}_k + \begin{bmatrix} 1 \\ 1 \end{bmatrix} z_k \tag{10}$$

3 Porovnání filtrů

Následuje porovnání všech třech odvozených filtrů. Dle zadání jsou pro jednu ze simulací srovnány samotné odhady se skutečnou trajektorií.

Obrázek 2: Porovnání odhadu polohy

Obrázek 3: Porovnání odhadu rychlosti

4 Chyby odhadů

Na následující dvojici grafů je průběh chyb odhadů:

Obrázek 4: Porovnání chyb odhadu polohy

Obrázek 5: Porovnání chyb odhadu rychlosti

Jako nejlepší z porovnaných estimátorů se dle očekávání jeví Kalmanův filtr a jako nejhorší deterministický rekostruktor, jenž nevyužívá informace o vlastnostech šumů. Dále můžeme pozorovat, že ustálený Kalmanův filtr postupně konverguje ke "klasickému" Kalmanovu filtru.

5 Inovační posloupnosti

Označme inovaci:

$$\tilde{z}_k = z_k - C\hat{x}_k \tag{11}$$

Zde je srovnání inovačních posloupností pro oba Kalmanovy filtry:

Obrázek 6: Inovační posloupnosti

Opět pozorujeme o něco lepší odhad ze strany "klasického" Kalmanova filtru a vzájemné konvergenci obou inovačních posloupností.

6 Odhady kovariancí inovací

Z tisíce simulací byly odhadnuty kovariance obou Kalmanových filtrů pro vybrané časové okamžiky, zde je tabulka získaných odhadů:

Kalmanův filtr								
$\operatorname{Cov}[\tilde{z}_k, \tilde{z}_n]$	k=0	k=1	k=6	k=25				
n=0	20.6951	9.8184	-0.9102	0.3658				
n=1	9.818	19.7162	0.2150	-0.7098				
n=6	-0.9102	0.2150	17.2217	0.8591				
n=25	0.3658	-0.7098	0.8591	14.0331				

Ustálený Kalmanův filtr								
$\operatorname{Cov}[\tilde{z}_k, \tilde{z}_n]$	k=0	k=1	k=6	k=25				
n=0	20.6951	9.8184	0.7623	0.3576				
n=1	9.8184	19.7162	1.5177	-0.7580				
n=6	0.7623	1.5177	18.7574	0.6135				
n=25	0.3576	-0.7580	0.6135	14.0137				

Jednotlivé variance jsou rovny prvkům na diaognálách tabulek a zde je jejich grafické znázornění:

Obrázek 7: Odhady variancí inovací

Variance v časových okamžicích 0 a 1 jsou shodné pro oba filtry, jelikož uvažujeme neznalost měření v prvním okamžiku a prediktivní odhady se tedy shodují. V čase 5 se již filtry rozchází s tím, že Kalmanův filtr má pochopitelně varianci inovace menší nežli ustálený Kalmanův filtr. Po určité době je variance opět shodná kvůli vzájemné konvergenci filtrů (viz časový okamžik 25).

7 Střední kvadratické chyby filtračních odhadů

Cílem tohoto úkolu je porovnat časový vývoj střední kvadratické chyby odhadů:

$$\mathbf{E}[\tilde{\boldsymbol{x}}_{k+1}\tilde{\boldsymbol{x}}_{k+1}^T] = ? \tag{12}$$

7.1 Deterministický rekonstruktor

Potřebné vztahy:

$$x_{k+1} = Ax_k + w_{k+1}$$

$$z_{k+1} = CAx_k + Cw_{k+1} + v_k$$

$$\hat{x}_{k+1} = A\hat{x}_k - KCA\hat{x}_k + KCAx_k + KCw_{k+1} + Kv_{k+1}$$

$$\tilde{x}_{k+1} = (A - KCA)\tilde{x}_k + (I - KC)w_{k+1} - Kv_{k+1}$$
(13)

Dosazením dostaneme rekurentní vztah pro střední kvadratickou chybu deterministického rekonstruktoru:

$$E[\tilde{\boldsymbol{x}}_{k+1}\tilde{\boldsymbol{x}}_{k+1}^T] = (\boldsymbol{A} - \boldsymbol{K}\boldsymbol{C}\boldsymbol{A})E[\tilde{\boldsymbol{x}}_{k}\tilde{\boldsymbol{x}}_{k}^T](\boldsymbol{A}^T - \boldsymbol{A}^T\boldsymbol{C}^T\boldsymbol{K}^T) + (\boldsymbol{I} - \boldsymbol{K}\boldsymbol{C})\boldsymbol{Q}(\boldsymbol{I} - \boldsymbol{C}^T\boldsymbol{K}^T) + \boldsymbol{K}\boldsymbol{R}\boldsymbol{K}^T$$
(14)

Pro který potřebujeme ještě určit počáteční podmínku:

$$\hat{\boldsymbol{x}}_{0} = \bar{\boldsymbol{x}}_{0}$$

$$\tilde{\boldsymbol{x}}_{0} = \boldsymbol{x}_{0} - \bar{\boldsymbol{x}}_{0}$$

$$\mathbf{E}[\tilde{\boldsymbol{x}}_{0}\tilde{\boldsymbol{x}}_{0}^{T}] = \mathbf{E}[\boldsymbol{x}_{0}\boldsymbol{x}_{0}^{T}] - \bar{\boldsymbol{x}}_{0}\bar{\boldsymbol{x}}_{0}^{T} = \mathbf{Var}[\boldsymbol{x}_{0}] = \begin{bmatrix} 10 & 0\\ 0 & 1 \end{bmatrix}$$
(15)

7.2 Kalmanův filtr

V případě Kalmanova filtru je střední kvadratická chyba shodná s kovarianční maticí estimátoru.

$$E[\tilde{\boldsymbol{x}}_{k+1}\tilde{\boldsymbol{x}}_{k+1}^T] = \left[\left(\boldsymbol{A}E[\tilde{\boldsymbol{x}}_k\tilde{\boldsymbol{x}}_k^T]\boldsymbol{A}^T + \boldsymbol{Q} \right)^{-1} + \boldsymbol{C}^T R^{-1} \boldsymbol{C} \right]^{-1}$$
(16)

Počáteční podmínka:

$$E[\tilde{\boldsymbol{x}}_{0}\tilde{\boldsymbol{x}}_{0}^{T}] = Var[\boldsymbol{x}_{0}] \tag{17}$$

7.3 Ustálený Kalmanův filtr

$$E[\tilde{\boldsymbol{x}}_{k+1}\tilde{\boldsymbol{x}}_{k+1}^T] = (\boldsymbol{I} - \boldsymbol{K}\boldsymbol{C})(\boldsymbol{A}E[\tilde{\boldsymbol{x}}_{k}\tilde{\boldsymbol{x}}_{k}^T]\boldsymbol{A}^T + \boldsymbol{Q})(\boldsymbol{I} - \boldsymbol{K}\boldsymbol{C})^T + \boldsymbol{K}R\boldsymbol{K}^T$$
(18)

Počáteční podmínka:

$$E[\tilde{\boldsymbol{x}}_{0}\tilde{\boldsymbol{x}}_{0}^{T}] = Var[\boldsymbol{x}_{0}] \tag{19}$$

7.4 Simulace

Vypočtené teoretické průběhy středních kvadratických chyb byly porovnány se simulačními výsledky. V rámci simulací byly spočteny střední kvadratické chyby zvlášť pro polohu a pro rychlost, tzn. hodnoty odpovídající prvkům na diagonále teoretických výsledků.

Obrázek 8: Střední kvadratické chyby polohy

Obrázek 9: Střední kvadratické chyby rychlosti

Pro střední kvadratickou chybu ve smyslu $\mathrm{E}[\tilde{x}_0^T\tilde{x}_0]$ nám vyjde skalární výsledek, který je roven stopě předešlého maticového výsledku:

Obrázek 10: Střední kvadratické chyby

Pro ověření shody teoretických a simulovaných výsledků bylo provedeno navyšování počtu simulací, kdy byla pozorována čím dál větší shoda teoretických a simulovaných hodnot. Zde je pro ilustraci graf střední kvadratické chyby pro 10^6 spuštěných simulací:

Obrázek 11: Střední kvadratické chyby polohy (10⁶ simulací)

Závěr

Pro zadaný systém byli odvozené odhady stavů (trajektorií) pomocí Kalmanova filtru, ustáleného Kalmanova filtru a deterministického rekonstruktoru stavu s nulovými póly. Bylo ukázáno, že Kalmanův filtr je nejlepším estimátorem, že odhad dle ustáleného Kalmanova filtru konverguje k odhadu dle "klasického" Kalmanova filtru a že oba dokáží zásadně zlepšit odhad ve srovnání s deterministickým rekonstruktorem nepracujícím s informací o přítomných šumech.

Jednotlivé estimátory byly navzájem důkladně porovnány. Rovněž proběhlo srovnání teoretických výsledků se simulacemi. Simulované hodnoty vždy odpovídali hodnotám teoretickým.