# Stochastic Models for blockchain analysis

Pierre-O. Goffard

Université de Strasbourg goffard@unistra.fr

May 17, 2023

### **Blockchain**

Introduction

A decentralized data ledger made of blocks maintained by achieving consensus in a P2P network.

- Decentralized
- Public/private
- Permissionned/permissionless
- Immutable
- Incentive compatible



### Consensus protocol

Introduction

#### Definition

Algorithm to allows the full nodes to agree on a common data history

It must rely on the scarce resources of the network

- bandwidth
- computational power
- storage (disk space)

### Types of consensus protocols

Introduction

#### 1 Voting based



L. Lamport, R. Shostak, and M. Pease, "The byzantine generals problem," ACM Transactions on Programming Languages and Systems, pp. 382-401, July 1982.

#### 2 Leader based

- Proof-of-Work (computational power)
- Proof-of-Capacity and Proof-of-Spacetime (storage)
- Proof-of-Interaction (bandwidth)
- Proof-of-Stake (tokens)

### Conflict resolution in blockchain

Introduction

#### Fork

A fork arises when there is a disagreement between the nodes resulting in several branches in the blockchain.

#### **LCR**

The Longest Chain Rule states that if there exist several branches of the blockchain then the longest should be trusted.

#### In practice

- A branch can be considered legitimate if it is  $k \in \mathbb{N}$  blocks ahead of its pursuers.
- Fork can be avoided when

block appending time > propagation delay

### **Blockastics project**

Introduction

#### Stochastic models to assess

- 1 Efficiency (Queueing models)
  - Average number of transactions processed per time units
- 2 Decentralization (Stochastic process with reinforcement)
  - Distribution of the decision power accross the nodes
- 3 Security (Risk theory)
  - Resistance to attacks

<sup>.</sup> https://pierre-olivier.goffard.me/BLOCKASTICS/

### What's inside a block?

Examples of consensus protocol

#### A block consists of

- a header
- a list of "transactions" that represents the information recorded through the blockchain.

#### The header usually includes

- the date and time of creation of the block,
- the block height which is the index inside the blockchain,
- the hash of the block
- the hash of the previous block.

#### Question

What is the hash of a block?

# Cryptographic Hash function

#### Examples of consensus protocol

A function that maps data of arbitratry size (message) to a bit array of fixed size (hash value)

$$h: \{0,1\}^* \mapsto \{0,1\}^d$$
.

A good hash function is

- deterministic
- quick to compute
- One way
  - $\hookrightarrow$  For a given hash value  $\overline{h}$  it is hard to find a message m such that

$$h(m) = \overline{h}$$

- Colision resistant
  - $\rightarrow$  Impossible to find  $m_1$  and  $m_2$  such that

$$h(m_1) = h(m_2)$$

Chaotic

$$m_1 \approx m_2 \Rightarrow h(m_1) \neq h(m_2)$$

### **SHA-256**

#### Examples of consensus protocol

The SHA-256 function which converts any message into a hash value of 256 bits.

#### Example<sup>1</sup>

The hexadecimal digest of the message

Blockastics is fantastic

is

60 a 147 c 28568 d c 925 c 347 b c e 20 c 910 e f 90 f 3774 e 2501 a c 63344 f 3411 b 6a6b f 79

### Mining a block

#### Examples of consensus protocol

```
Block Hash: 1fc23a429aa5aaf04d17e9057e03371f59ac8823b1441798940837fa2e318aaa
Block Height: 0
Time:2022-02-25 12:42:04.560217
Nonce:0
Block data: [{'sender': 'Coinbase', 'recipient': 'Satoshi', 'amount': 100, 'fee': 0}, {'sender': 'Satoshi', 'recipient': 'Pierre-O', 'amount': 5, 'fee': 2}]
Previous block hash: 0
Mined: False
```

Figure - A block that has not been mined yet.

## Mining a block

Examples of consensus protocol

The maximum value for a 256 bits number is

$$T_{\text{max}} = 2^{256} - 1 \approx 1.16e^{77}$$
.

Mining consists in drawing at random a nonce

Nonce 
$$\sim \text{Unif}(\{0,...,2^{32}-1\}),$$

until

$$h(Nonce|Block info) < T$$
,

where T is referred to as the target.

Difficulty of the cryptopuzzle

$$D = \frac{T_{\text{max}}}{T}.$$

### Mining a block

Examples of consensus protocol

# If we set the difficulty to $D=2^4$ then the hexadecimal digest must start with at least 1 leading 0

```
Block Hash: 0869032ad6b3e5b86a53f9dded5f7b09ab93b24cd5a79c1d8c81b0b3e748d226
Block Height: 0
Time:2022-02-25 13:41:48.039980
Nonce:2931734429
Block data: [{'sender': 'Coinbase', 'recipient': 'Satoshi', 'amount': 100, 'fee': 0}, {'sender': 'Satoshi', 'recipient': 'Pierre-O', 'amount': 5, 'fee': 2}]
Previous block hash: 0
Mined: True
```

Figure - A mined block with a hash value having on leading zero.

#### The number of trial is geometrically distributed

- Exponential inter-block times
- Lenght of the blockchain = Poisson process

### Bitcoin protocol

Examples of consensus protocol

- One block every 10 minutes on average
- Depends on the hashrate of the network
- Difficulty adjustment every 2,016 blocks (≈ two weeks)

Check out https://www.bitcoinblockhalf.com/

## Mining equipments

Examples of consensus protocol

#### How it started

■ CPU, GPU

#### How it is going

- Application Specific Integrated Chip (ASIC)
  - Increase of the network electricity consumption
    https://digiconomist.net/bitcoin-energy-consumption
  - F-Waste
  - Centralization issue https://www.bitmain.com/
    - Mining pool ranking at https://btc.com/
      - Mining equipment profitability at <a href="https://v3.antpool.com/minerIncomeRank">https://v3.antpool.com/minerIncomeRank</a>

### **Proof of Stake**

Examples of consensus protocol

PoW is slow and ressource consuming. Let  $\{1,...,N\}$  be a set of miners and  $\{\pi_1,...,\pi_N\}$  be their share of cryptocoins.

#### PoS

**1** Node  $i \in \{1,...,N\}$  is selected with probability  $\pi_i$  to append the next block

Nodes are chosen according to what they own.

- Nothing at stake problem
- Rich gets richer?
- https://www.peercoin.net/



F. Saleh, "Blockchain without waste: Proof-of-stake," *The Review of Financial Studies*, vol. 34, pp. 1156–1190, jul 2020.

### Using bandwidth

Examples of consensus protocol

#### Proof-of-Interaction

- The node receives a list of node they must get in touch with
- The first one who is able to complete the task gets a reward and share it with the responding nodes



J.-P. Abegg, Q. Bramas, and T. Noël, "Blockchain using proof-of-interaction," in *Networked Systems*, pp. 129–143, Springer International Publishing, 2021.

For an up-to-date list of consensus protocol

https://tokens-economy.gitbook.io/consensus/

# Double spending attack

Stochastic Models: Security of PoW blockchain

- 1 Mary transfers 10 BTCs to John
- 2 The transaction is recorded in the public branch of the blockchain and John ships the good.
- 3 Mary transfers to herself the exact same BTCs
- 4 The malicious transaction is recorded into a private branch of the blockchain
  - Mary has friends among the miners to help her out
  - The two chains are copycat up to the one transaction

#### Fact (Bitcoin has only one rule)

The longest chain is to be trusted

## Double spending in practice

Stochastic Models: Security of PoW blockchain

Vendor are advised to wait for  $\alpha \in \mathbb{N}$  of confirmations so that the honest chain is ahead of the dishonest one.



In the example, vendor awaits  $\alpha = 4$  confirmations, the honest chain is ahead of the dishonest one by z = 2 blocks.

#### Fact (PoW is resistant to double spending)

- Attacker does not own the majority of computing power
- Suitable α

Double spending is unlikely to succeed.



S. Nakamoto, "Bitcoin: A peer-to-peer electronic cash system." Available at https://bitcoin.org/bitcoin.pdf, 2008.

### Mathematical set up

Stochastic Models: Security of PoW blockchain

#### Assume that

- $Z_0 = z \ge 1$  (the honest chain is z blocks ahead)
- at each time unit a block is created
  - → in the honest chain with probability p
  - $\rightarrow$  in the dishonest chain with probability q = 1 p

The process  $(Z_n)_{n\geq 0}$  is a random walk on  $\mathbb{Z}$  with

$$Z_n=z+Y_1+\ldots+Y_n,$$

where  $Y_1, ..., Y_n$  are the **i.i.d.** steps of the random walk.

### Double spending rate of success

Stochastic Models: Security of PoW blockchain

Double spending occurs at time

$$\tau_z = \inf\{n \in \mathbb{N} \; ; \; Z_n = 0\}.$$



#### Double spending theorem

If p > q then the double-spending probability is given by

$$\phi(z) = \mathbb{P}(\tau_z < \infty) = \left(\frac{q}{p}\right)^z.$$

### Proof of the double spending theorem I

Stochastic Models: Security of PoW blockchain

Analogy with the gambler's ruin problem. Using a first step analysis, we have

$$\phi(z) = p\phi(z+1) + (1-p)\phi(z-1), \ z \ge 1. \tag{1}$$

We also have the boundary conditions

$$\phi(0) = 1 \text{ and } \lim_{z \to +\infty} \phi(z) = 0$$
 (2)

Equation (1) is a linear difference equation of order 2 associated to the following characteristic equation

$$px^2 - x + 1 - p = 0$$

which has two roots on the real line with

$$r_1 = 1$$
, and  $r_2 = \frac{1-p}{p}$ .

The solution of (1) is given by

$$\phi(z) = A + B\left(\frac{1-p}{p}\right)^{z},$$

# Proof of the double spending theorem II

Stochastic Models: Security of PoW blockchain

where A and B are constant. Using the bouldary conditions (2), we deduce that

$$\phi(z) = \left(\frac{1-p}{p}\right)^z$$

as announced.

### Refinements of the double spending problem

Stochastic Models: Security of PoW blockchain

The number of blocks M found by the attacker until the honest miners find  $\alpha$  blocks is a negative binomial random variable with **pmf** 

$$\mathbb{P}(M=m) = \binom{\alpha+m-1}{m} p^{\alpha} q^{m}, \ m \ge 0.$$

The number of block that the honest chain is ahead of the dishonest one is given by

$$Z = (\alpha - M)_+$$
.

Applying the law of total probability yields the probability of successful double spending with

$$\mathbb{P}(\mathsf{Double Spending}) = \mathbb{P}(M \ge \alpha) + \sum_{m=0}^{\alpha-1} \binom{\alpha+m-1}{m} q^{\alpha} p^{m}.$$



M. Rosenfeld, "Analysis of hashrate-based double spending," arXiv preprint arXiv:1402.2009, 2014.



C. Grunspan and R. Perez-Marco, "Double spend race," *International Journal of Theoretical and Applied Finance*, vol. 21, p. 1850053, dec 2018.

## Refinements of the double spending problem

Stochastic Models: Security of PoW blockchain

Let the length of honest and dishonest chain be driven by counting processes

- Honest chain  $\Rightarrow z + N_t$ ,  $t \ge 0$ , where  $z \ge 1$ .
- Malicious chain  $\Rightarrow M_t$ ,  $t \ge 0$
- Study the distribution of the first-rendez-vous time

$$\tau_Z = \inf\{t \ge 0 , M_t = z + N_t\}.$$

If  $N_t \sim \text{Pois}(\lambda t)$  and  $M_t \sim \text{Pois}(\mu t)$  such that  $\lambda > \mu$  then

$$\phi(z) = \left(\frac{\mu}{\lambda}\right)^z, \ z \ge 0.$$



P.-O. Goffard, "Fraud risk assessment within blockchain transactions," *Advances in Applied Probability*, vol. 51, pp. 443–467, jun 2019.



https://hal.archives-ouvertes.fr/hal-01716687v2.



R. Bowden, H. P. Keeler, A. E. Krzesinski, and P. G. Taylor, "Modeling and analysis of block arrival times in the bitcoin blockchain," *Stochastic Models*, vol. 36, pp. 602–637, jul 2020.

### **Perspectives**

Stochastic Models: Security of PoW blockchain

#### Include network delay



A. Dembo, S. Kannan, E. N. Tas, D. Tse, P. Viswanath, X. Wang, and O. Zeitouni, "Everything is a race and nakamoto always wins," in *Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security*, ACM, oct 2020.

#### Double spending in block-DAGS



E. Anceaume, A. Guellier, R. Ludinard, and B. Sericola, "Sycomore: A permissionless distributed ledger that self-adapts to transactions demand," in 2018 IEEE 17th International Symposium on Network Computing and Applications (NCA), IEEE, nov 2018.

### Proof of Stake protocol

Stochastic Models: Decentralization in PoS blockchain

PoS is the most popular alternative to PoW.

- A block validator is selected according to the number of native coins she owns
- Update the blockchain and receive a reward or do nothing

Two problems

Nothing at stake ⇒ Consensus postponed

∧ Rich gets richer ⇒ Risk of centralization

#### Risk of centralization?

Stochastic Models: Decentralization in PoS blockchain

#### Block appending process

- Draw a coin at random
- The owner of the coin append a block and collect the reward
- The block appender is more likely to get selected during the next round

# Similar to Polya's urn



- Consider an urn of N balls of color in  $E = \{1, \dots, p\}$
- Draw a ball of color  $x \in E$
- Replace the ball together with r balls of color x

p is the number of peers and r is the size of the block reward.

#### Theorem

The proportion of coins owned by each peer is stable on average over the long run



I. Roşu and F. Saleh, "Evolution of shares in a proof-of-stake cryptocurrency," *Management Science*, vol. 67, pp. 661–672, feb 2021.

Consider the balls of some color  $x \in E$ , and denote by

- $\blacksquare$   $N_X$  the number of balls of color X initially in the urn
- $\blacksquare$   $Y_n$  the number of balls of color x in the urn after n draws
- $\blacksquare$   $Z_n$  the corresponding proportion of balls of color x.

We show that  $(Z_n)_{n\geq 0}$  is a  $\mathscr{F}_n$ -Martingale where  $\mathscr{F}_n = \sigma(Y_1,...,Y_n)$ . We have

$$\mathbb{E}\big(Z_{n+1}|\mathcal{F}_n\big) = Z_n \frac{Y_n + r}{N + r(n+1)} + \big(1 - Z_n\big) \frac{Y_n}{N + r(n+1)} = Z_n$$

It follows that

$$\mathbb{E}(Z_n) = \mathbb{E}(Z_0) = \frac{N_{\times}}{N}$$
, for  $n \ge 0$ .

hence the stability. Furthermore, because  $|Z_n| < 1$ , then  $\lim_{n \to \infty} Z_n = Z_\infty$  exists and it holds that  $\mathbb{E}(Z_\infty) = \mathbb{E}(Z_0)$ .

## What is the limiting distributions of the shares?

Stochastic Models: Decentralization in PoS blockchain

#### Dirichlet distribution

A random vector  $(Z_1,...,Z_p)$  has a Dirichlet distribution  $Dir(\alpha_1,...,\alpha_p)$  with **pdf** 

$$f(z_1,\ldots,z_p;\alpha_1,\ldots,\alpha_p)=\frac{1}{B(\alpha)}\prod_{i=1}^p z_i^{\alpha_i-1},$$

for  $\alpha_1, \dots, \alpha_p > 0$ ,  $0 < z_1, \dots, z_p < 1$  and  $\sum_{i=1}^p z_i = 1$ , where

$$B(\alpha) = \frac{\prod_{i=1}^{p} \Gamma(\alpha_i)}{\Gamma(\sum_{i=1}^{p} \alpha_i)}.$$

#### Theorem (Convergence toward a Dirichlet distribution)

Suppose that r = 1 and let  $X_n$  be the color of the ball drawn at the  $n^{th}$  round then

$$\{\mathbb{P}(X_{\infty} = x), x \in E\} \sim \text{Dir}(\{N_x, x \in E\}).$$

# **Extensions and perspectives**

Stochastic Models: Decentralization in PoS blockchain

- How to include more peers along the way?
- What if the peers are not simply buy and hold investors?
- Find ways to monitor decentralization and take action if necessary



I. Roşu and F. Saleh, "Evolution of shares in a proof-of-stake cryptocurrency," *Management Science*, vol. 67, pp. 661–672, feb 2021.

### **Efficiency**

Stochastic Models: Blockchain efficiency

Efficiency is characterized by

- Throughputs : Number of transaction being processed per time unit
- Latency : Average transaction confirmation time

We focus on a PoW equipped blockchain and study the above quantities using a queueing model.









# Queueing setting

Stochastic Models: Blockchain efficiency

- Poisson arrival with rate  $\lambda > 0$  for the transactions
- Poisson arrival with rate  $\mu > 0$  for the blocks
- Block size  $b \in \mathbb{N}^* \Rightarrow Batch service$



This is somekind of  $M/M^b/1$  queue.



Y. Kawase and S. Kasahara, "Transaction-confirmation time for bitcoin: A queueing analytical approach to blockchain mechanism," in *Queueing Theory and Network Applications*, pp. 75–88, Springer International Publishing, 2017.



N. T. J. Bailey, "On queueing processes with bulk service," *Journal of the Royal Statistical Society : Series B* (Methodological), vol. 16, pp. 80–87, jan 1954.



D. R. Cox, "The analysis of non-markovian stochastic processes by the inclusion of supplementary variables," *Mathematical Proceedings of the Cambridge Philosophical Society*, vol. 51, pp. 433–441, jul 1955.

#### Queue length distribution

Stochastic Models: Blockchain efficiency

The queueuing process eventually reaches stationarity if

$$\mu \cdot b > \lambda. \tag{3}$$

We denote by  $N^q$  the length of the queue upon stationarity.

#### The blockchain efficiency theorem

Assume that (3) holds then  $N^q$  is geometrically distributed

$$\mathbb{P}(N^q = n) = (1 - p) \cdot p^n,$$

where  $p = 1/z^*$  and  $z^*$  is the only root of

$$-\frac{\lambda}{\mu}z^{b+1}+z^b\left(\frac{\lambda}{\mu}+1\right)-1,$$

such that  $|z^*| > 1$ .

# Proof of the efficiency theorem I

Stochastic Models: Blockchain efficiency

Let  $N_t^q$  be the number of transactions in the queue at time  $t \ge 0$  and  $X_t$  the time elapsed since the last block was found. Further define

$$P_n(x,t)dx = \mathbb{P}[N_t^q = n, X_t \in (x,x+dx)]$$

If  $\lambda < \mu \cdot b$  holds then the process admits a limiting distribution given by

$$\lim_{t\to\infty} P_n(x,t) = P_n(x).$$

We aim at finding the distribution of the queue length upon stationarity

$$\mathbb{P}(N^q = n) := \alpha_n = \int_0^\infty P_n(x) dx. \tag{4}$$

Consider the possible transitions over a small time lapse h during which no block is being generated. Over this time interval, either

- no transactions arrives
- one transaction arrives

#### Proof of the efficiency theorem II

Stochastic Models: Blockchain efficiency

We have for  $n \ge 1$ 

$$P_n(x+h) = e^{-\mu h} \left[ e^{-\lambda h} P_n(x) + \lambda h e^{-\lambda h} P_{n-1}(x) \right]$$

Differentiating with respect to h and letting  $h \rightarrow 0$  leads to

$$P'_{n}(x) = -(\lambda + \mu)P_{n}(x) + \lambda P_{n-1}(x), \ n \ge 1.$$
 (5)

Similarly for n = 0, we have

$$P_0'(x) = -(\lambda + \mu)P_0(x). \tag{6}$$

We denote by

$$\xi(x)dx = \mathbb{P}(x \le X < x + dx | X \ge x) = \mu dx$$

the hazard function of the block arrival time (constant as it is exponentially distributed). The system of differential equations (5), (6) admits boundary conditions at x = 0 with

$$\begin{cases} P_n(0) = \int_0^{+\infty} P_{n+b}(x)\xi(x)dx = \mu\alpha_{n+b}, & n \ge 1, \\ P_0(0) = \mu\sum_{n=0}^{b} \alpha_n, & n = 0, \dots, b \end{cases}$$
 (7)

### Proof of the efficiency theorem III

Stochastic Models: Blockchain efficiency

Define the probability generating function of  $N^q$  at some elapsed service time  $x \ge 0$  as

$$G(z;x) = \sum_{n=0}^{\infty} P_n(x)z^n.$$

By differentiating with respect to x, we get (using (5) and (6))

$$\frac{\partial}{\partial x}G(z;x) = -\left[\lambda(1-z) + \mu\right]G(z;x)$$

and therefore

$$G(z;x) = G(z;0) \exp\left\{-\left[\lambda(1-z) + \mu\right]x\right\}$$

We get the probability generating function of  $N^q$  by integrating over x as

$$G(z) = \frac{G(z;0)}{\lambda(1-z) + \mu}$$
 (8)

### Proof of the efficiency theorem IV

Stochastic Models: Blockchain efficiency

Using the boundary conditions (7), we write

$$G(z;0) = \sum_{n=0}^{\infty} P_n(0)z^n$$

$$= P_0(0) + \sum_{n=1}^{+\infty} P_n(0)z^n$$

$$= \mu \sum_{n=0}^{b} \alpha_n + \mu \sum_{n=1}^{+\infty} \alpha_{n+b}z^n$$

$$= \mu \sum_{n=0}^{b} \alpha_n + \mu z^{-b} \left[ G(z) - \sum_{n=0}^{b} \alpha_n z^n \right]$$
(9)

Replacing the left hand side of (9) by (8), multiplying on both side by  $z^b$  and rearranging yields

$$\frac{G(z)}{M(z)}[z^b - M(z)] = \sum_{n=0}^{b-1} \alpha_n (z^b - z^n),$$
(10)

where  $M(z) = \mu/(\lambda(1-z) + \mu)$ . Using Rouche's theorem, we find that both side of the equation shares b zeros inside the circle  $\mathscr{C} = \{z \in \mathbb{C} \; | \; |z| < 1 + \epsilon \}$  for some epsilon.

### Proof of the efficiency theorem V

Stochastic Models: Blockchain efficiency

#### Rouche's theorem

Let  $\mathscr{C} \in \mathbb{C}$  and f and g two holomorphic functions on  $\mathscr{C}$ . Let  $\partial \mathscr{C}$  be the contour of  $\partial \mathscr{C}$ . If

$$|f(z)-g(z)|<|g(z)|, \ \forall z\in\partial\mathscr{C}$$

then  $Z_f - P_f = Z_g - P_g$ , where  $Z_f$ ,  $P_f$ ,  $Z_g$ , and  $P_g$  are the number of zeros and poles of f and g respectively.

We have  $\partial \mathcal{C} = \{z \in \mathbb{C} : |z| = 1 + \epsilon\}$ . The left hand side can be rewritten as

$$G(z)\left[-\frac{\lambda}{\mu}z^{b+1}+\left(1+\frac{\lambda}{\mu}\right)z^{b}-1\right].$$

Define  $f(z)=-\frac{\lambda}{\mu}z^{b+1}+\left(1+\frac{\lambda}{\mu}\right)z^{b}-1$  and  $g(z)=\left(1+\frac{\lambda}{\mu}\right)z^{b}.$  We have

$$|f(z)-g(z)|=|-\frac{\lambda}{\mu}z^{b+1}-1|<\frac{\lambda}{\mu}(1+\epsilon)^{b+1}+1\to\frac{\lambda}{\mu}+1, \text{ as } \epsilon\to 0.$$

#### Proof of the efficiency theorem VI

Stochastic Models: Blockchain efficiency

and

$$|g(z)| = \left(1 + \frac{\lambda}{\mu}\right) (1 + \epsilon)^b \to \frac{\lambda}{\mu} + 1$$
, as  $\epsilon \to 0$ .

Regarding the right hand side, define  $f(z) = \sum_{n=0}^{b-1} \alpha_n (z^b - z^n)$  and  $g(z) = \sum_{n=0}^{b-1} \alpha_n z^b$ . We have

$$|f(z)-g(z)|<|\sum_{n=0}^{b-1}\alpha_nz^n|<\sum_{n=0}^{b-1}\alpha_n\big(1+\varepsilon\big)^n\to\sum_{n=0}^{b-1}\alpha_n,\text{ as }\varepsilon\to0.$$

and

$$|g(z)| = (1+\epsilon)^b \sum_{n=0}^{b-1} \alpha_n \to \sum_{n=0}^{b-1} \alpha_n$$
, as  $\epsilon \to 0$ .

One of them is 1, and we denote by  $z_k$ , k = 1,...,b-1 the remaining b-1 zeros. Given the polynomial form of the right hand side of (10), the fundamental theorem of algebra indicates that the number of zero is b. Given the left hand side

$$G(z)\left[-\frac{\lambda}{\mu}z^{b+1}+\left(1+\frac{\lambda}{\mu}\right)z^{b}-1\right].$$

# Proof of the efficiency theorem VII

Stochastic Models: Blockchain efficiency

we deduce that there is one zeros outside  $\mathscr{C}$ , we can further show that it is a real number  $z^*$ . Multiplying both side of (10) by  $(z-1)\prod_{k=1}^{b-1}(z-z_k)$ , and using G(1)=1 yields

$$G(z) = \frac{1-z^*}{z-z^*}.$$

 $N^q$  is then a geometric random variable with parameter  $p = \frac{1}{z^*}$ .

## Latency and throughputs

Stochastic Models: Blockchain efficiency

#### Little's law

Consider a stationary queueing system and denote by

- $1/\lambda$  the mean of the unit inter-arrival times
- L be the mean number of units in the system
- W be the mean time spent by units in the system

We have

$$L = \lambda \cdot W$$



J. D. C. Little, "A proof for the queuing formula :L=  $\lambda$ W," *Operations Research*, vol. 9, pp. 383–387, jun 1961.

Latency is the confirmation time of a transaction

$$Latency = \frac{p}{(1-p)\lambda} + \frac{1}{\mu}$$

Throughput is the number of transaction confirmed per time unit

Throughput = 
$$\mu \mathbb{E}(N^q \mathbb{I}_{N^q \leq b} + b \mathbb{I}_{N^q > b}) = \mu \sum_{n=0}^b n(1-p)p^n + bp^{b+1}$$
.

#### Perspective

Stochastic Models: Blockchain efficiency

1 Include some priority consideration to account for the transaction fees



Y. Kawase, , and S. Kasahara, "Priority queueing analysis of transaction-confirmation time for bitcoin," *Journal of Industrial & Management Optimization*, vol. 16, no. 3, pp. 1077–1098, 2020.

2 Go beyond the Poisson process framework



Q.-L. Li, J.-Y. Ma, and Y.-X. Chang, "Blockchain queue theory," in *Computational Data and Social Networks*, pp. 25–40, Springer International Publishing, 2018.



Q.-L. Li, J.-Y. Ma, Y.-X. Chang, F.-Q. Ma, and H.-B. Yu, "Markov processes in blockchain systems," Computational Social Networks, vol. 6, jul 2019.

### Blockchain as a research topic

Stochastic Models: Blockchain efficiency

- Computer science
  - Peer-to-peer networks and consensus algorithm
  - Cryptography and security
- Economics
  - Game theory to study the incentive mechanism at play
  - Nature of the cryptoassets
- Operations research
  - Optimization of complex system
- Financial math
  - Valuation models for cryptoassets
- Machine learning and statistics
  - Open data
  - Interaction between blockchain users
  - (Social) network analysis
  - Clustering of public keys and addresses in the bitcoin blockchain.

#### Two generals problem

Two nodes who must agree are communicating through an unreliable link.

Analogy with two generals besieging a city

The generals exchange messages through enemy territory

G1

"I will attack tomorrow at dawn, if you confirm"

G2

"I will follow your lead, if you confirm"



Figure – Message and confirmation loop

## Byzantine General problem

n generals must agree on a common battle plan, to either

- Attack (A)
- Retreat (R)

#### Problem

There are m < n traitors among the generals

- 1 message m(i,j) is sent to general j by general i
- 2 Consensus is reached as general j applies

$$f\big(\{m\big(i,j\big);\ i=1,\ldots,n\}\big) = \begin{cases} A, & \text{if } \sum_{i=1}^n \mathbb{I}_{m(i,j)=A} > n/2, \\ R, & \text{else.} \end{cases}$$



#### **Commanders and Lieutenants**

One general is the commander while the others are the lieutenants

#### Objective

Design an algorithm so that the following conditions are met:

- C1 All the loyal lieutenants obey the same order
- C2 If the commanding general is loyal, then every loyal lieutenants obey the order he sends

#### Byzantine Fault Tolerance Theorem (Lamport et al.)

There are no solution to the Byzantine General problem for n < 3m+1 generals, where m is the number of traitors.



Figure - Majority vote with or without a traitor

#### **Algorithm** The Oral message algorithm OM(m)

```
if m=0 then;
   for i = 1 \rightarrow n-1 do
       Commander sends v_i = v to lieutenant i
       Lieutenant i set their value to v
   end for
end if
if m > 0 then:
   for i = 1 \rightarrow n-1 do
       Commander sends v_i to lieutenant i
       Lieutenant i uses OM(m-1) to communicate v_i to the n-2 lieute-
nants
   end for
   for i = 1 \rightarrow n-1 do
       Lieutenant i set their value to f(v_1,...,v_{n-1})
   end for
end if
```

### n=4 and m=1: Step 1



Figure – Illustration of the OM(m) algorithm in the case where n = 4 and m = 1.

### n = 4 and m = 1: Step 2



Figure – Illustration of the OM(m) algorithm in the case where n = 4 and m = 1.

### n = 4 and m = 1: Step 3



(a) Commander is loyal, C1 and C2

(b) Commander is a traitor, C1

Figure – Illustration of the OM(m) algorithm in the case where n = 4 and m = 1.

# The problem with majority vote

The OM algorithm requires to send  $n^{m+1}$ 

- ↑ Communication overhead
- ♠ Denial of service

#### Solution

Leader based protocols!

#### Proof-of-Work

#### Objective

Elect a leader based on computational effort to append the next block.