MCDA 5540 – Assignment 1

Date assigned: Sep. 17 <u>Time due</u>: Sep. 30 at 11:59pm

(how to submit: see comments further below)

PROBLEM 1 (25 marks)

Consider the following relational database schema (suppliers-parts):

Prepare a text file question1.sql containing SQL expressions for each of the following queries (Also, attach sample screenshot of all queries in question1.pdf – DO NOT include any extra files such as output file or docx. You don't require to give any explanation):

- (a) Get the names and locations of the suppliers who have shipped part with pno = 3.
- (b) Get the part numbers and names of parts that have been shipped by suppliers located in Paris with status at least 20.
- (c) For each part, show the part number, name, and the number of suppliers who have supplied the part.
- (d) For each London supplier who has shipped at least 1000 parts, show the name of the supplier and the total number of parts he/she has shipped.
- (e) Get the names and cities of the suppliers who have supplied all parts that weigh less than 4 grams.

PROBLEM 2 (25 marks)

Consider the University database schema in the last page of this assignment. Write relational algebra expressions for each of the following queries. Write your answers in question2.txt file (DO NOT include any extra files).

- (a) Get the names of courses in the CS department.
- (b) Get the names of students who got an 'A' in CS3380.
- (c) Get the instructors who have taught CS1310 and CS3380.
- (d) Get the instructors who have taught all courses of the CS department.

PROBLEM 3 (50 marks)

Create 6 tables as shown below and load data into the tables from the given data .csv files. (Note: Choose appropriate data types and size for the columns). Write sql queries (prepare question3.sql) for the following questions (Also, attach sample screenshot of output in question3.pdf – DO NOT include any extra files such as output file or docx. You don't require to give any explanation):

Database/ Schema Name: samplecompany

Table Name	.csv file	Description
customer	customer.csv	It contains company's
		customer information
order_fact	order_fact.csv	It contains order information
product_dim	product_dim.csv	It contains information
		related to products provided
		by suppliers
employee_payroll	employee_payroll.csv	It contains payroll
		information for all company
		employees
employee_addresses	employee_addresses.csv	It contains employee's
		address
staff	staff.csv	It contains confidential
		employee data for both
		existing and past employees

(a) Goal: Summarizing Data in Groups

Table: customer

Query: Write a query that displays the following statistics for each country:

- Total number of customers
- Total number of male customers
- Total number of female customers
- Percent of all customers that are male (Percent Male).

Display the result by value of Percent Male so that the country with the lowest value is listed first, with the remaining countries following in ascending order.

(b) Goal: Summarizing Data in Groups

Table: product_dim, order_fact

Query: Create a result by combining two tables.

- Include columns Product_ID, Product_Name from product_dim table.
- Include a column with the label Total Sold. Use a summary function to create this column, which displays the quantity sold for each product.
- Specifies the tables product_dim, with the alias p and order_fact with the alias o.
- Join the tables by matching the values of the appropriate columns in each table.
- Groups the results by Product_ID from product_dim table and Product_Name.
- Orders the rows so that products with the highest number sold appear at the top of the report and then by Product_Name.

Note: DO NOT use nested queries

(c) Goal: Create a result with a self-join.

Table: employee_addresses, staff

Query: Display result of all trainees and workers at company. For each trainee or temporary worker, the report should include the employee ID, name and job title, and manager ID and name. The report should be ordered by Employee_ID.

(d) Goal: LEAD and LAG functions

Table: employee_payroll

Query: 1) Calculate the difference between the salary of the current row and the previous row. 2) Calculate the difference between the salary of current row and the following row.

IMPORTANT COMMENTS

- 1. <u>Late</u> submissions will not be accepted (not even a single minute!).
- 2. <u>How to submit</u>: Make a zip file Axx.zip, where Axx is your A-number. Submit it on Brightspace. Email submission will not be considered.
- 3. This is an <u>individual</u> assignment. While you are permitted to discuss the problems, you are not supposed to take notes during such discussions. The submitted solutions must consist entirely of your individual work.

STUDENT

Name	Student number	Class	Major	
Smith	17	1	CS	
Brown	8	2	CS	

COURSE

Course_name	Course_number		С	Credit_hours		Department	
Intro to Computer Science	•	CS131	4		4		CS
Data Structures		CS3320	,		4		CS
Discrete Mathematics	7	MATH2410	$\sqrt{}$		3		MATH
Database	/	CS3380	1	\	3		CS

SECTION

Section_identifier	Course_number		Semester		Year		Instructor
85 🔖	N	1ATH2410	Fall	\setminus	60		King
92	C	S1310	Fall		07	ackslash	Anderson
102	C	S3320	Spring		08		Knuth
112	N	1ATH2410	Fall		08		Chang
119	\ c	S1310	Fall		08	1	Anderson
135	/c	CS3380	Fall		80		Stone

GRADE_REPORT

Student_number	Section_identifier	Grade
17	112	/ B
17	119	C
8	85	Α /
8	92	Α /
8	102	В
8	135	A/

PREREQUISITE

Course_number	Prerequisite_number
CS3380	CS3320
CS3380	MATH2410
CS3320	CS1310