30

Utiliser des séries entières pour résoudre une équation différentielle

Quand on ne sait pas!

On note \mathbb{K} pour désigner indifféremment \mathbb{R} ou \mathbb{C} .

La résolution des équations différentielles à l'aide de séries entières est basée sur les résultats suivants :

■ (Unicité au problème de Cauchy 1)

Soit a, b des fonctions continues sur un intervalle I de \mathbb{R} , $x_0 \in I$ et $y_0 \in \mathbb{K}$. Alors le système suivant d'inconnue $y \in C^1(I, \mathbb{K})$:

$$\begin{cases} y' + a(x)y &= b(x) \\ y(x_0) &= y_0 \end{cases}$$
 admet une unique solution.

■ (Unicité au problème de Cauchy 2)

Soit a, b, c des fonctions continues sur un intervalle I de \mathbb{R} , $x_0 \in I$ et $(y_0, y_1) \in \mathbb{K}^2$. Alors le système suivant d'inconnue $y \in C^2(I, \mathbb{K})$:

$$\begin{cases} y'' + a(x)y' + b(x)y &= c(x) \\ y(x_0) &= y_0 & \text{admet une unique solution.} \\ y'(x_0) &= y_1 \end{cases}$$

■ (Unicité du développement en série entière)

Soit $R \in \mathbb{R}_+^*$ et $\sum a_n x^n$ et $\sum b_n x^n$ deux séries entières à coefficients dans \mathbb{K} et de rayons de convergence supérieurs ou égaux à R.

$$\operatorname{SI}\left[\ \forall x \in \]-R, R[, \quad \sum_{n=0}^{+\infty} a_n x^n = \sum_{n=0}^{+\infty} b_n x^n \ \right], \text{ alors}: \quad \left[\ \forall n \in \mathbb{N}, \quad a_n = b_n \ \right]$$

■ (Développements en série entière de référence)

Les développements en série entière de référence sont à consulter à la *fiche 28*.

Que faire?

On considère une équation différentielle (E) dont on souhaite déterminer les solutions développables en série entière.

On effectue alors un raisonnement par analyse-synthèse dont la démarche est la suivante :

Lors de la phase d'analyse, on suppose que l'équation différentielle (E) admet une solution f qui soit développable en série entière, disons :

$$f: x \mapsto \sum_{n=0}^{+\infty} a_n x^n$$
, à coefficients dans \mathbb{K} et de rayon de convergence $R \in \overline{\mathbb{R}}_+^*$,

que l'on « injecte » ensuite dans l'équation différentielle pour obtenir des conditions nécessaires sur la suite des coefficients $(a_n)_{n\in\mathbb{N}}\in\mathbb{K}^{\mathbb{N}}$.

Au cours de cette étape, on a généralement besoin d'avoir recours aux dérivées successives de la fonction f que l'on écrira systématiquement sous la forme :

$$f': x \mapsto \sum_{n=\boxed{1}}^{+\infty} n a_n x^{n-1}$$
 , $f'': x \mapsto \sum_{n=\boxed{2}}^{+\infty} n(n-1) a_n x^{n-2}$, etc ...

il est conseillé d'incrémenter la valeur de départ de l'indice de sommation en fonction de l'ordre de dérivation de f

- Lors de la phase de synthèse, on vérifie généralement que le ou les candidats solutions de (E) développables en série entière (obtenus à l'issue de l'analyse) conviennent. Autrement dit, on vérifie que :
 - ces candidats solutions sont effectivement solution de (E) : généralement il n'y a rien à faire puisque l'on a tout fait pour!
 - le ou les rayons de convergence sont bien strictement positifs.
 Insistons sur le fait que la vérification (souvent négligée) de la stricte positivité du ou des rayons de convergence est obligatoire!
- La rubrique *Exemple traité* illustre la méthodologie de manière détaillée.
- Cette technique permet entre autres de déterminer une solution particulière d'une équation différentielle à coefficients polynomiaux.

Conseils

■ Il est vivement conseillé de revoir les techniques calculatoires relatives à la manipulation du symbole ∑, le décalage d'indice et la relation de Chasles étant souvent utilisés.

Exemple traité

Résoudre le système suivant d'inconnue $y \in \mathcal{C}^2(\mathbb{R},\mathbb{K})$:

$$\begin{cases} y'' + xy' + y &= 1\\ y(0) &= 0\\ y'(0) &= 0 \end{cases}$$

SOLUTION

Cherchons les éventuelles solutions développables en série entière au système posé :

■ Analyse. Supposons que le système posé admette une solution f développable en série entière sur un certain intervalle, c'est-à-dire qu'il existe $R \in \overline{\mathbb{R}}_+^*$ et $(a_n)_{n \in \mathbb{N}} \in \mathbb{K}^{\mathbb{N}}$ tels que la fonction f définie sur]-R,R[par :

$$f(x) = \sum_{n=0}^{+\infty} a_n x^n$$

soit solution au système posé.

Cherchons alors des conditions nécessaires sur la suite des coefficients $(a_n)_{n\in\mathbb{N}}$. Sachant que f est solution de y''+xy'+y=1 sur]-R,R[, on peut alors écrire les équivalences suivantes :

$$\forall x \in]-R, R[, \qquad f''(x) + xf'(x) + f(x) = 1$$

$$\iff \forall x \in]-R, R[, \quad \sum_{n=2}^{+\infty} n(n-1)a_n x^{n-2} + \sum_{n=1}^{+\infty} na_n x^n + \sum_{n=0}^{+\infty} a_n x^n = 1$$

$$\iff \forall x \in]-R, R[, \quad \sum_{n=0}^{+\infty} (n+2)(n+1)a_{n+2} x^n + \sum_{n=0}^{+\infty} (n+1)a_n x^n = 1$$

$$\iff \forall x \in]-R, R[, \quad \sum_{n=0}^{+\infty} \left[(n+2)(n+1)a_{n+2} + (n+1)a_n \right] x^n = 1$$

Par unicité du développement en série entière de la fonction constante égale à 1, on en déduit alors :

$$\begin{cases} 2a_2 + a_0 &= 1 \\ \forall n \ge 1, \ (n+2)(n+1)a_{n+2} + (n+1)a_n &= 0 \end{cases} \iff \begin{cases} a_2 &= \frac{1}{2}(1-a_0) \\ \forall n \ge 1, \ a_{n+2} &= -\frac{a_n}{n+2} \end{cases}$$

Or, comme la fonction f est solution du système posé, elle en vérifie nécessairement les conditions initiales :

$$\begin{cases} f(0) = 0 \\ f'(0) = 0 \end{cases} \iff \begin{cases} a_0 = 0 \\ a_1 = 0 \end{cases}$$

Sachant que $a_1=0$ et $(\star\star)$, il vient que : $\forall p\geq 1,\ a_{2p+1}=0$. Sachant que $a_0=0$ et (\star) , il vient que : $a_2=\frac{1}{2}$. Grâce à $(\star\star)$, on en déduit alors que pour tout $p\geq 1$:

$$a_{2p} = -\frac{a_{2p-2}}{2p} = (-1)^2 \times \frac{a_{2p-4}}{2p(2p-2)} = \dots = (-1)^{p-1} \times \frac{a_2}{2p(2p-2) \times \dots \times 4} = \frac{(-1)^{p-1}}{2^p p!}$$

Si le système posé admet une solution développable en série entière sur un certain intervalle, alors il existe $R \in \overline{\mathbb{R}}_+^*$ tel que :

$$\forall x \in]-R, R[, f(x) = \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{2^n n!} x^{2n}$$

- Synthèse. Vérifions que la fonction f précédemment trouvée est bien solution du système posé, c'est-à-dire que :
 - la fonction f vérifie l'équation différentielle et les conditions initiales voulues : c'est bien le cas puisque l'on a tout fait pour!
 - le rayon de convergence R vaut $+\infty$: c'est une conséquence immédiate de la règle de d'Alembert.
- Conclusion. Le système posé admet f comme unique solution développable en série entière. Or ce système est un problème de Cauchy et, par unicité au problème de Cauchy, la fonction f trouvée est l'unique solution de ce système.

Par ailleurs, il est bon de remarquer que f peut s'exprimer à l'aide de fonctions usuelles. En effet :

$$\forall x \in \mathbb{R}, \ f(x) = \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{2^n n!} x^{2n} = -\sum_{n=1}^{+\infty} \frac{1}{n!} \left(-\frac{x^2}{2} \right)^n = 1 - e^{-\frac{x^2}{2}}$$

Exercices

EXERCICE 30.1

On considère l'équation différentielle (E) suivante :

$$x(x+2)y'(x) + (x+1)y(x) = 1$$

Déterminer les solutions de (E) développables en série entière.

Pour vous aider à démarrer

EXERCICE 30.1 Reprendre le raisonnement mené dans la rubrique *Exemple traité*.

Solutions des exercices

......

EXERCICE 30.1

......

Cherchons les éventuelles solutions développables en série entière de l'équation différentielle (E).

■ Analyse. Supposons que l'équation (E) admette une solution f développable en série entière sur un certain intervalle, c'est-à-dire qu'il existe $R \in \overline{\mathbb{R}}_+^*$ et $(a_n)_{n \in \mathbb{N}} \in \mathbb{K}^n$ tels que la fonction f définie sur]-R,R[par :

$$f(x) = \sum_{n=0}^{+\infty} a_n x^n$$

soit solution de l'équation (E).

Cherchons alors des conditions nécessaires sur la suite des coefficients $(a_n)_{n\in\mathbb{N}}$. Sachant que f est solution de (E) sur]-R,R[, on peut écrire les équivalences suivantes :

$$\forall x \in]-R, R[, \qquad x(x+2)f'(x) + (x+1)f(x) = 1$$

$$\forall x \in]-R, R[, \qquad x^2f'(x) + 2xf'(x) + xf(x) + f(x) = 1$$

$$\iff \forall x \in]-R, R[, \qquad \sum_{n=1}^{+\infty} na_n x^{n+1} + 2\sum_{n=1}^{+\infty} na_n x^n + \sum_{n=0}^{+\infty} a_n x^{n+1} + \sum_{n=0}^{+\infty} a_n x^n = 1$$

$$\iff \forall x \in]-R, R[, \qquad \sum_{n=2}^{+\infty} (n-1)a_{n-1}x^n + 2\sum_{n=1}^{+\infty} na_n x^n + \sum_{n=1}^{+\infty} a_{n-1}x^n + \sum_{n=0}^{+\infty} a_n x^n = 1$$

$$\iff \forall x \in]-R, R[, \qquad a_0 + (3a_1 + a_0)x + \sum_{n=2}^{+\infty} [na_{n-1} + (2n+1)a_n]x^n = 1$$

$$\iff \forall x \in]-R, R[, \qquad a_0 + \sum_{n=2}^{+\infty} [na_{n-1} + (2n+1)a_n]x^n = 1$$

Par unicité du développement en série entière de la fonction constante égale à 1, on en déduit alors :

$$\begin{cases} a_0 &= 1 \\ \forall n \geq 1, \ na_{n-1} + (2n+1)a_n &= 0 \end{cases} \iff \begin{cases} a_0 &= 1 \\ (\star) & (\star) \end{cases}$$

$$\forall n \geq 1, \ a_n = -\frac{n}{2n+1} \times a_{n-1}$$

Par applications itérées de $(\star\star)$, on en déduit que pour tout $n\geq 1$:

$$a_n = -\frac{n}{2n+1} \times a_{n-1} = (-1)^2 \times \frac{n(n-1)}{(2n+1)(2n-1)} \times a_{n-2}$$
$$= \cdots = (-1)^n \times \frac{n \times (n-1) \times \cdots \times 1}{(2n+1)(2n-1) \times \cdots \times 3} \times a_0 = \frac{(-2)^n (n!)^2}{(2n+1)!}$$

La formule précédemment établie reste encore vraie pour n=0.

Si l'équation (E) admet une solution f développable en série entière sur un certain intervalle, alors elle est unique et il existe $R \in \overline{\mathbb{R}}_+^*$ tel que :

$$\forall x \in]-R, R[, f(x) = \sum_{n=0}^{+\infty} \frac{(-2)^n (n!)^2}{(2n+1)!} x^n$$

- Synthèse. Vérifions que la fonction f précédemment trouvée est bien une solution de (E) développable en série entière :
 - la fonction f est développable en série entière et vérifie bien l'équation (E) : c'est bien le cas puisque l'on a tout fait pour!
 - -1'application de la règle de d'Alembert permet de trouver que le rayon de convergence R vaut 2. En effet, calculons pour tout $x \neq 0$:

$$\left| \frac{\frac{(-2)^{n+1}((n+1)!)^2}{(2n+3)!} x^{n+1}}{\frac{(-2)^n (n!)^2}{(2n+1)!} x^n} \right| = \frac{2(n+1)^2}{(2n+3)(2n+2)} |x| \underset{n \to +\infty}{\longrightarrow} \frac{|x|}{2}$$

$$ightharpoonup$$
 Si $|x|<2$, alors $rac{|x|}{2}<1$ et $\sumrac{(-2)^n(n!)^2}{(2n+1)!}x^n$ converge absolument. Donc $R\geq 2$.

▶ Si
$$|x| > 2$$
, alors $\frac{|x|}{2} > 1$ et $\sum \frac{(-2)^n (n!)^2}{(2n+1)!} x^n$ diverge grossièrement. Donc $R \le 2$.

Ainsi, le rayon de convergence vaut bien R=2, et il est bien strictement positif.

■ Conclusion. L'équation différentielle (E) admet une unique solution f développable en série entière donnée par :

$$\forall x \in]-2,2[, f(x) = \sum_{n=0}^{+\infty} \frac{(-2)^n (n!)^2}{(2n+1)!} x^n$$