Name: Ch- Keerthana

Reg no: 22BCE9635

slot: G1

Construct Decision tree ving ID: Algorithm.

|             |        |         |               | . 9             |
|-------------|--------|---------|---------------|-----------------|
| age         | income | Student | credit rating | Computer        |
| √ = 30      | high   | 20      | fair          | no              |
| <=30        | high   | סמ      | excellent     | <b>1</b> ND     |
| ટા-૫૦       | high   | mo      | tair          | yes             |
| >40         | medium | 20      | factor        | yes             |
| >40         | low    | Yes     | fair          | Hec             |
| 740         | ιοω    | yes     | excellent     | no              |
| 31-40       | low    | yes     | excellent     | AGZ             |
| Z=30        | Medium | NO      | fair          | $\sigma \sigma$ |
| <b>८=30</b> | low    | yes     | fair          | Aer             |
| >40         | medium | Her     | falr          | Aer             |
| ∠=30        | medeum | yes     | excerient     | yes             |
| 31-40       | medium | no      | excellenf     | AG7             |
| 31-40       | high   | 462     | 4017          | Aci             |
| >40         | medium | 200     | excellent     | no              |

A tiribute: Age

り

£ntropy (S) = 
$$-\frac{9}{14} \log_2^{(9|14)} - \frac{5}{14} \log_2^{(5|14)}$$

"Yes" probability "No" probability

(for Buys Computer)

- · age L = 30 ( 2 yes and 3 no)
- . age 31-40 ( 4 yes and 0 no)
- · age >40 (8 yes & 2 no)

Entropy (Age):

(i) L=30

Entropy = 
$$\frac{5}{14} \left[ -\frac{1}{5} \log_2^{(2/5)} - \frac{3}{5} \log_2^{(8/5)} \right]$$
  
=  $\frac{5}{14} \left( 0.9709 \right)$ 

(ii) age: 31-40

Entropy = 14 (0) become, for age 31-40 only 'yes' was there so, Entropy value will be 0:

(iii) age: 740

£mtropy = 
$$\frac{5}{14} \left[ -\frac{3}{5} \log_2^{(3/5)} - \frac{2}{5} \log_2^{(2/5)} \right]$$
  
=  $\frac{5}{14} \left( 0.9709 \right)$ 

Attribute: Income

- . Income (high) -> 2 yes & 2 NO
- . Income (medium) → 4 yes & 2 No
- · Income (100) -> Byes & INO

Entropy (Income) = 
$$\frac{4}{14} \left[ -\frac{2}{4} \log^{(2)}(4) - \frac{2}{4} \log^{(2)}(4) \right]$$
 thigh)   
  $+\frac{6}{14} \left[ -\frac{4}{6} \log^{(4)}(6) - \frac{2}{6} \log^{(2)}(6) \right] + \frac{14}{14} \left[ -\frac{2}{4} \log^{(2)}(4) - \frac{1}{4} \log^{(1)}(4) \right]$   
  $\hookrightarrow \text{ (medium)}$ 

Attribute: Student

£mtropy (student) = 
$$\frac{1}{14} \left[ -\frac{6}{7} \log_2(617) - \frac{1}{7} \log_2(17) \right] +$$

$$\frac{1}{14} \left[ -\frac{3}{7} \log_2(317) - \frac{1}{7} \log_2(417) \right]$$

$$= \frac{1}{14} \left( 0.5916 \right) + \frac{1}{14} \left( 0.9852 \right)$$

$$= 0.2958 + 0.4926 = 0.7884$$

Entropy (credit - 
$$\frac{8}{14} \left[ -\frac{6}{8} \log_{12}^{6} \right] - \frac{2}{8} \log_{12}^{14} \right] + \frac{6}{14} \left[ -\frac{2}{8} \log_{16}^{316} \right] - \frac{2}{8} \log_{16}^{316} \right]$$

$$= \frac{8}{14} \left[ 0.8112 \right] + \frac{6}{14} \left[ 1 \right] = 0.4635 + 0.4285$$

By Comparing Information Garn for Age, Student, Income and credit-rating, Age is having more Goin so, we consider Age as root node and start constructing the tree.

under age (root rode) we have 2 more conditions i.e, 2=20, 31-40 & 740 10, we construct Subjets for those.

|                                 |                  | <b>てニ</b> ヲ                             | 0/                       | orb | e     | >4                             | Ō                       |                                        |                 |
|---------------------------------|------------------|-----------------------------------------|--------------------------|-----|-------|--------------------------------|-------------------------|----------------------------------------|-----------------|
| Irrane F                        | tudent           | credit - rating                         | class                    |     | 31-40 | Income                         | Mudent                  | Credit_ratt                            | ng clau         |
| high                            | 800              | fair                                    | NO                       |     |       | medium                         | ho                      | fair                                   | Yes             |
| high<br>medrum<br>low<br>medium | Aer<br>Aer<br>vo | excellent<br>folly<br>fair<br>excellent | 767<br>168<br>170<br>170 |     |       | low<br>low<br>medium<br>medium | ью<br>Ася<br>Ася<br>Ася | fair<br>excellent<br>fair<br>excellent | no<br>Yei<br>No |

| Income | student | credit_rating | class |
|--------|---------|---------------|-------|
| hrgh   | no      | tair          | 4CS   |
| 1000   | yes     | exculent      | Yes   |
| medium | no      | excellent     | Yes   |
| hrgh   | મુલ     | fall          | Yes   |

# Attributé: Income

$$E \left( \frac{1}{2} \log(215) \right) = \frac{1}{2} \left( \frac{1}{2} \right) = \frac{1}{2} \log(215) - \frac{3}{2} \log(215) = 0.97$$

$$E \left( \frac{1}{2} \log(215) \right) = \frac{1}{2} \left( \frac{1}{2} \right) + \frac{1}{2} \left( \frac{1}{2} \right) = \frac{1}{2} \log(215) = 0.97$$

$$E \left( \frac{1}{2} \log(215) \right) = \frac{1}{2} \left( \frac{1}{2} \right) + \frac{1}{2} \left( \frac{1}{2} \right) = \frac{1}{2} \log(215) = 0.97$$

gain ( Income) = 0.97-0.4 = 0.57

Attribute: (Student)

Hiribute: (Grudent)  

$$E(Sagec=30) = E(2/3) = -\frac{2}{5}(og(2/5) - \frac{3}{5}(og(2/5)) = 0.97$$

Entropy(student) = 45(0)+315(0)=0

Gain ( student ) = (0.97-0) = 0.97.

Atterbute (credit\_rating)

for Eige >40)

$$E(Sager40) = E(3)^2 = -\frac{3}{5} log(3|5) - \frac{2}{5} log(2|5) = 0.97$$

Entropy (Income) = 
$$\frac{3}{5} \left( -\frac{2}{3} \log_2(43) - \frac{1}{3} \log(13) \right) + \frac{2}{5} (1)$$
  
=  $\frac{3}{5} \left( 0.9182 \right) + \frac{2}{5} = 0.95$ 

Gain (Income) - (0.97-0.95) = 0.02

Entropy (credit rating) = 
$$\frac{3}{5}(0) + \frac{2}{5}(0) = 0$$

## final pecision tree:



| Construct | Decision | tree | using | CART | algorithm |
|-----------|----------|------|-------|------|-----------|
|-----------|----------|------|-------|------|-----------|

| INCY<br>active | practical<br>knowledge                       | Common<br>SKIIIs                                                                                            | Joh                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 167            | very good                                    | 9009                                                                                                        | Yes                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| No             | 6009                                         | Moderate                                                                                                    | yes                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| MO             | Average                                      | boar                                                                                                        | No                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| No             | Average                                      | Good                                                                                                        | No                                                                                                                                            | l                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Ye2            | 6009                                         | Moderate                                                                                                    | Yes                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Yes            | 9009                                         | Moderate                                                                                                    | Yes                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Yes            | Good                                         | 4007                                                                                                        | No                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| No             | very good                                    | Good                                                                                                        | yes                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ker            | Good                                         | Good                                                                                                        | Yes                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Yes            | Average                                      | Good                                                                                                        | yes                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                | AGING AGI AGI AGI AGI AGI AGI AGI AGI AGI AG | Her Good  Hery Good | No Good Hoderate  Yes Good Good  Yes Good Good | Active knowledge skills offer  Yes yery good Good yes  No food traderate yes  No food traderate yes  No food traderate yes  Yes Good traderate yes |

Itcp-1: calculate the Ging-index for dataset.

( Gini-Index (T) = 
$$1 - \left(\frac{\pi}{10}\right)^2 - \left(\frac{3}{10}\right)^2 = 1 - 0.49 - 0.09 = 1 - 0.58$$
  
(70botter) = 0.42 ( whole data set )

step-2: compute Gini-Index for each attribute and each of the subset in the attribute.

possible subsets

calculation of best spirtting subjet:

Gini- Index 
$$(T_1A) = \left| \frac{S_1}{T} \right| Gini(S_1) + \left| \frac{S_2}{T} \right| Gini(S_2)$$

$$Gini- Index(T_1 CGPPE \{ >= 1,28\}) = 1-(7|8)^2 - (1|8)^2 = 1-0.7806 = 0.2194$$

$$Gini- Index(T_1 CGPPE \{ <8\}) = 1-(2|2)^2 - (2|2)^2 = 1-1=0$$

Gint\_sindex (T, CGPD of >= q, 204), 1284 }) = (810) (0.2194) + (410)(0)
(11)

Gmi- Index (7, CAPA E [29, 28]) = 1.(36)2-(36)3 = (1-0.5) = 0.5

Gini-Index (T) CGPAE (28) = 1-(4/4)2- (0/4)2-(1-1) =0

GFM- Index (7, CGPA) (29,28), (29,28)) = (6/10) 0.5 + (4/0) 0 = 0.3

GTni-Index (T, CUPA E \$28, CE)) = 1-(416)2-(26)2 = 1-0.555 = 0.445

Gini-Index (T, CGPA = (>9)) = 1-(3/4)2-(44)2= 1-0.625 = 0.375

Gini-Index (T, CGPAC / 128, 48), 729) = (6/10)0.445 + (4/10) 0.375

Step-3: = 0.417

In the above scages 1st case subject is having minimum Gim\_ Index value, so, 1st subject is the best spritting subject —) The subject (GPP) = \{\dagger\} >= \( \dagger\} \) = \( \dagger\} \) \( \dagger\} \) has low \( \tau\) value \( \dagger\} \)

compute ( DGini / best splitting subset ) of that attribute.

 $\Delta Gini(CGPA) = Gini(T) - Gini(T, CGPA)$ = (0.42-0.1456) = 0.2445

Repeat the same process for remaining attributes in dartavet such as for interactiveness, practical knowledge and Communication skills.

Categories for interactiveness:

Gini-Index (T, interactiveness ( ) yes) = 1-(5/6)2-(1/6)2=(1-0-72)=0-28

Gini- Index (7, intre ( NO)) = 1- (24)2- (24)2= (1-0.5) = 0.5

Gini - Index (T, intr & f yes, NO) = 6/10 (0.28) + 4/10 (0.5)

= 0-168+0.2 = 0.368

16 (Intera = Ginf(T) - GINT(T, TH) = (0.42-0.368) = 0.052

```
Categories for practical knowledge
 (i) Gini- Indy (T, proce knows e query good, Good) = 1- (4)2- (4)2
                                             = 0.2456
Gini- andex (7) prad know + (Aug)) = 1- (1/3)2-(2/5)2= 1-0.555 = 0.445
Grni-Index (T, Pract knows E ( (46, 6), Aug ) = (7/10) 0.2456 + (3/00) 0.445
(ii) G-I(T, prad knowed 46, Aug) = 1-(2/5)2- (2/5)2=1-0.62=0.46
   G-I(T, Pract know ∈ ( 6000) = 1-(4/6)2-(15)2=1-068 = 0.32
 G-I(T, pract knows ( (46, Aug), G)) = 5/10 (0.48) + 5/10 (0.32) = 0.40
(iii)
 G-I(T, pract knowf (G, Aug )) = 1-(5/6)2-(2/8)2=1-0.5312=0.4688
G-I(T, Pract know E $16}) = 1-(2/2)=(0/2)=(1-1)=0
9-I(T, practkrow c) (9, Aug), vo) = (8/10)0.4688+(2/10)0 = 0-3750
 case-i) is having low sini-index value so, ist subset
 11 best splitting subset
  DEINE ( pract know) = Gine (T) - Gine (T) pract know)
                      = 0.42 - 0.3054 = 0.1146
 Categories for Common Common
 (1) G-I(T, COMSKE &G, HOd) = 1- (318)2 = 1-0-7806 = 0-2194
    G-I(T, comike { poor}) = 1-(2/2)2-(0/2)2=(1-1)=0
  G-I(T, comike (19, Hod), P) = (810)0, 2194 + (210)0 = 0.1955
(i) G-I (T, COMSKE of, P) = 1- (41A)2- (31A)2= 1-0.0101 = 0.4899
  G-I (TICOMIKE (HOd)) = 1-(213)= (013)= (1-1) =0
 G-I(7, comoke / (1)P), Hod)) = (7100)0.4899 + (2/10)0
                                 = 0.3429
```

(iii)

$$G-I(T, com; k \in \{ Hod_{3}P_{f} \}) = 1-(3|6)^{2} - (2|6)^{3} = 1-0.64 = 0.32$$

$$G-I(T, com; k \in \{ G_{f} \}) = 1-(4|6)^{2} - (4|6)^{3} = 1-0.64 = 0.32$$

$$G-I(T, com; k \in \{ Hod_{3}P_{f} \}, G_{f} \}) = (6|10)^{3} \circ 4 = 4(6|10)^{3} \circ 42 = 0.40$$

$$\Delta Gin!(com; k) = Gin!(T) - Gin!(T, com; k)$$

$$= 0.42 - 0.1766 = 0.2448$$

$$Ipitting subset)$$

### Step- 5:

After calculating Gini-index and Agini for all attributes be need to consider highest Agini value attribute as root node there, for CAA & commer having highest Agini value. so, let us consider CAPA as root node

From subset  $\frac{1}{2}9$ ,  $\frac{1}{2}8$  frave both yes and no values so, for deleting that again calculate 6101-11000 value 6101-1000 =  $1-(918)^2-(118)^2=1-0.466-0.0156=0.2184$ (i) Interactiveness

 $G = I(\tau, \text{im} \tau \in \{\text{Ves}\}) = 1 - (\text{BIB})^2 - (\text{OIB})^2 = 0$   $G = I(\tau, \text{in} \tau \in \{\text{NO}\}) = 1 - (\text{SIB})^2 - (\text{IS})^2 = 1 - 0 \cdot 44 - 0 \cdot 111 = 0 \cdot 449$   $G = I(\tau, \text{in} \tau \in \{\text{NO}\}) = 16(0) + 16(0 \cdot 449) = 0 \cdot 056$   $\Delta Gine(Intr) = Gini(\tau) - Gini(\tau, \text{intr})$  = (0.2184 - 0.056) = 0.1624

(ii) practical knowledge

G-I (T, 1147( (16,6), 6)) = 0-125 DGINI( Pract Know) = GINI(T) - GINI(T, pract Know) = 0.2144 -0.125 = 0.0934



.. Communication skills having highest Dains value (high priority)

# Delizion ties:



# Construct peasion tree using CLT.5 Algorithm

| CGPN | Interactive | Practical<br>Knowledge | Common   | Job offer |
|------|-------------|------------------------|----------|-----------|
| >=9  | Yes         | neud Booy              | Good     | yes       |
| >=8  | Но          | Good                   | Hoderate | yes       |
| >=9  | No          | ·nueraye               | poor     | No        |
| 7.8  | ИО          | Average                | Good     | NO        |
| >=8  | Yes         | 9009                   | Moderate | Yes       |
| >=9  | yes         | Good                   | Hoderate | yec       |
| <8   | yes         | Good                   | poor     | ЙD        |
| >=9  | No          | very Good              | 9009     | yes       |
| >=8  | yes         | Good                   | Good     | ЛGZ       |
| >=8  | yes .       | Average                | Good     | Yes       |

#### Step-1:

calculate class- Entropy for target class tob offer).

### step- 2:

calculate the Entropy-into, Gain (Into-gain), split\_Into, Gain\_ratio

### (1) CGPA

Entropy-Into (T) CGPA) = 
$$\frac{1}{10}\left(-3|4|\log^{\frac{1}{2}|4|}-1|4|\log^{\frac{1}{2}|4|})\right)+\frac{1}{10}\left(-4|4|\log^{\frac{1}{2}|4|}\right)$$
  
 $+\frac{1}{10}\left(-6|2|\log^{\frac{1}{2}|2|}-\frac{2}{5}|\log^{\frac{1}{2}|2|}\right)=\frac{1}{10}\left(-3|4|\log^{\frac{1}{2}|4|}-1|4|\log^{\frac{1}{2}|4|}\right)+6+0$ 

```
Infa Gam (A) = fintropy-Info (T) - fintropy-info (T,A)
    Gain ( CAPA) = (0.8607 - 0.3243) = 0.5564
  Self = Info(T_1H) = -\frac{1}{5} \frac{|A_1|}{|T|} \times log_2(\frac{|A_1|}{|T|})
 2914-1100 (COPA) = -4 100(4110) - 4 108(4110) - 5 100(5/10)
                     = (0.5285 +0.5285 +0.4641) = (-5211
Gain ratio (CGPA) = 0.55GY = 0.3658
Interactiveners:
Intropy_into (7, intr) = 6/10 (-5/6 log(5/6)-1/6 log(1/6)) + 4/10-24/109(2/4)=100(2/4)
          interactive
                        = 6 [0.2191+0.4306] +4 [0.4997+0.4997]
                        =(0.3898+0.3998) = 0.7896
Fair (Int8) = (0.8807-0.7896) = 0.0911
2018t -info (T, intr) = -6 109(6/10) - 4 109(4/10) = 0.9704
Gain vatio (intr) = 0.0911 = 0.0939
practical knowledge:
\pm \text{ritropy-info}(7) \text{ practkn} = \frac{1}{10} \left[ -2/2 \log_2^{1/2} \right] + \frac{3}{10} \left[ -1/3 \log_2^{1/3} - 2/3 \log_2^{1/3} \right]
                               -4 10 (-4/2 100 (A/2) - 1/2 100 (A/2)
       practical
           Know ledge
                          = 2/10(0) + 3/10 (0.5280 +0.3897) + 5/10(0.2574+
                          = 0+0.25 73+0.3608 = 0.6361
Eqain( +ract kn) = 0, 1807 - 0, 6361 = 0, 2448
 Spirt into (7, pract Kn) = - = 10 109(2110) - 5/10 109(5/10) 3/10 109(3/10)
```

Gain-rato (Pract Kno) = 0-2448 = 0-1648

(5)

(3)

```
(4)
```

Communication skills

$$\frac{3}{3} \left[ -3|3|0d_{[3]3)} \right] + \frac{10}{2} \left[ -3|3|0d_{[3]3} \right] + \frac{$$

$$spi1t = info(7) com sK) = -5/10 log(5/10) - 3/10 log(5/10) - 3/10 log(5/10)$$

Gain-ratio (comsk) = 
$$\frac{0.5202}{1.4853}$$
 = 0.3502

CELA is soot stope

for CAPA (7,9)

Gain- ratio

| Attributes           | Gam-ratio |
|----------------------|-----------|
| interactiveness      | 0.8117    |
| practical Knowledge  | 0.5408    |
| Communication skills | 0.5408    |

## Decision tree :



Implement KNN classifier (only for classification)

#### Example:

Givendata oury => 
$$x = (naths = 6, cs = 8)$$
  
and  $k = 3 - nearest neighbour$ 

classification - pais fail

| S.40 | Mouths | <u>cs</u> | Result |
|------|--------|-----------|--------|
| り    | 4      | 3         | F      |
| 2)   | 6      | +         | P      |
| 3)   | F      | 8 -       | P      |
| 4)   | 5      | 5         | F      |
| 5)   | 8      | 8         | 7      |

#### step-1:

(alculate Euclidiean distance (d)

$$d = \sqrt{(\chi_{01} - \chi_{01})^2 + (\chi_{02} - \chi_{02})^2} \qquad 0 \rightarrow \text{observed value}$$

$$d_1 = \sqrt{(6 - 4)^2 + (8 - 3)^2} = \sqrt{4 + 25} = \sqrt{29} = 5.38$$

$$d_2 = \sqrt{(6 - 6)^2 + (8 - 7)^2} = \sqrt{0 + 1} = 1$$

$$d_3 = \sqrt{(6 - 7)^2 + (8 - 8)^2} = \sqrt{1 + 0} = 1$$

$$d_4 = \sqrt{(6 - 8)^2 + (8 - 8)^2} = \sqrt{1 + 9} = \sqrt{10} = 3.16$$

$$d_5 = \sqrt{(6 - 8)^2 + (8 - 8)^2} = \sqrt{4 + 0} = \sqrt{4} = 2$$

step-9: The distances that are closer and less than k
value are 1, 1, 2 ie, d2, d3 and d5 their, result
values are Pass

Implement Linear discrittinant analysis (LDA) for suitable Example.

$$\alpha_2 = \left\{ (4,1), (2,4), (2,3), (3,6), (4,4) \right\}$$

$$\alpha_2 = \left\{ (4,10), (3,8), (4,6), (8,3), (10,8) \right\}$$

#### Step- 1:

Calculate means

$$|A| = \begin{bmatrix} 4+2+3+3+4 \\ 5 \\ 1+4+3+6+4 \end{bmatrix} = \begin{bmatrix} 3 \\ 3.6 \end{bmatrix}$$

$$J_{12} = \begin{bmatrix} 9 + 6 + 9 + 8 + 10 \\ 5 \\ 10 + 8 + 5 + 7 + 8 \\ 5 \end{bmatrix} = \begin{bmatrix} 8.4 \\ 7.6 \end{bmatrix}$$

#### step-2:

Scatter Matrix

$$S_i = \frac{n}{s} (\alpha_i - mean \gamma_i) (\alpha_i - mean \gamma_i)^T$$

$$S_{1} = \left[ (4-3, 1-3\cdot6) (4-3, 1-3\cdot6)^{T} + (2-3)4 - 3\cdot6 \right] (2-3, 4-3\cdot6)^{T} + (-1)(-0\cdot6)(2-3)(3-3\cdot6)^{T} + (3-3)(6-3\cdot6)(6-3\cdot6)^{T} + (4-3)(4-3\cdot6)^{T} + (4-3)(4-3\cdot6)^{T} + (4-3)(4-3\cdot6)^{T} \right]$$

$$S_1 = \begin{bmatrix} 0.8 - 0.4 \\ -0.4 & 3.6 \end{bmatrix}$$

$$S_{2} = \left[ (9-8-4)(10-3-6)(9-8-4)(10-3-6) + (6-8-4)(8-3-6)(6-8-4) \right]$$

$$(8-8-8)^{T} + (9-8-4)(10-3-6)(10-8-4)(10-8-4) + (8-8-4)(10-8-8) + (8-8-6)(10-8-8) + (10-8-8)(10-8-8) + (10-8-8)(10-8-8) + (10-8-8)(10-8-8) + (10-8-8)(10-8-8) + (10-8-8)(10-8-8) + (10-8-8)(10-8-8) + (10-8-8)(10-8-8) + (10-8-8)(10-8-8) + (10-8-8)(10-8-8) + (10-8-8)(10-8-8) + (10-8-8)(10-8-8) + (10-8-8)(10-8-8) + (10-8-8)(10-8-8) + (10-8-8)(10-8-8) + (10-8-8)(10-8-8) + (10-8-8)(10-8-8) + (10-8-8)(10-8-8) + (10-8-8)(10-8-8) + (10-8-8)(10-8-8) + (10-8-8)(10-8-8) + (10-8-8)(10-8-8) + (10-8-8)(10-8-8) + (10-8-8)(10-8-8) + (10-8-8)(10-8-8) + (10-8-8)(10-8-8) + (10-8-8)(10-8-8) + (10-8-8)(10-8-8) + (10-8-8)(10-8-8) + (10-8-8)(10-8)(10-8) + (10-8-8)(10-8)(10-8) + (10-8)(10-8)(10-8) + (10-8)(10-8)(10-8)(10-8) + (10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10-8)(10$$

$$S_2 = \begin{bmatrix} 1.84 & -0.04 \\ -0.04 & 2.64 \end{bmatrix}$$

$$S\omega = \begin{bmatrix} 0.8 & -0.4 \\ -0.4 & 8.6 \end{bmatrix} + \begin{bmatrix} -0.04 & 8.64 \\ 1.84 & -0.04 \end{bmatrix}$$

## Step -3:

Scatter matrix SB

$$S_{B} = (\mu_{1} - \mu_{2}) (\mu_{1} - \mu_{2})^{T}$$

$$= \begin{bmatrix} 3 - 8 \cdot 4 \\ 3 \cdot 6 - 7 \cdot 6 \end{bmatrix} \begin{bmatrix} 3 - 8 \cdot 4 \\ 3 \cdot 6 - 7 \cdot 6 \end{bmatrix}^{T}$$

$$= \begin{bmatrix} -5 \cdot 4 \\ -4 \end{bmatrix} \begin{bmatrix} -6 \cdot 4 \\ -4 \end{bmatrix}$$

$$= \begin{bmatrix} 29 \cdot 16 \\ 21 \cdot 6 \end{bmatrix}$$

$$\frac{(\omega^2) \text{ ibA}}{|\omega^2|} = \frac{1}{\omega^2}$$

$$S_{-1}^{\infty} S_{B} = \frac{13.\pm3}{1} \left[ \begin{array}{ccc} -51.6 & 50.19 \\ 16 & -51.6 \end{array} \right] \left[ \begin{array}{ccc} 51.6 & 17.9 \\ 50.16 & 51.6 \end{array} \right]$$

$$\frac{5.08 \text{ sol}}{5.08 \text{ sol}} = \left(\frac{10.89 \text{ sol}}{5.08 \text{ sol}}\right)$$

step- 4:

The LDA projection is then obtained as the solution of the generalized eigenvalue problem.

$$S_{0}^{-1}S_{B}V = \lambda y$$

$$|S_{0}^{-1}S_{B} - \lambda I| = 0$$

$$|(8.8 (\lambda - 98.1))| = 0$$

$$|(\lambda - 64.8) = 0$$

$$(1.89-4)(3.46-4)-(8.81)(5.08)=0$$

$$A = (5.85,0)$$

$$\omega^* = \begin{bmatrix} \omega_1 \\ \omega_2 \end{bmatrix}$$

$$\begin{bmatrix} \omega_1 \\ \omega_2 \end{bmatrix} = s\overline{\omega} \begin{bmatrix} \mu_1 - \mu_2 \end{bmatrix}$$

$$= \begin{bmatrix} 16 & -21.6 \\ -21.6 & 29.16 \end{bmatrix} \begin{bmatrix} -5.4 \\ -4 \end{bmatrix} = \begin{bmatrix} -0.91 \\ -0.39 \end{bmatrix}$$

$$\begin{cases} ... & \omega_1 = -0.91 \\ \omega_2 = -0.39 \end{cases}$$