

AZ-104

Administer Azure Virtual Machines

About this course: Course Outline

06: Administer Network Traffic Management

Administer Azure Virtual Machines Overview

Configure Virtual Machines

Configure Virtual Machines Introduction

Review Cloud Services Responsibilities

Plan Virtual Machines

Determine Virtual Machine Sizing

Determine Virtual Machine Storage

Demonstration - Creating a VM in the Portal

Connect to Virtual Machines

Connect to Windows Virtual Machines

Connect to Linux Virtual Machines

Summary and Resources

Review Cloud Services Responsibilities

Plan Virtual Machines

Start with the network

Name the virtual machine

Choose a location

- Each region has different hardware and service capabilities
- Locate Virtual Machines as close as possible to your users and to ensure compliance and legal obligations

Consider pricing

Determine Virtual Machine Sizing

Туре	Description
General purpose	Balanced CPU-to-memory ratio.
Compute optimized	High CPU-to-memory ratio.
Memory optimized	High memory-to-CPU ratio.
Storage optimized	High disk throughput and I/O.
GPU	Specialized virtual machines targeted for heavy graphic rendering and video editing.
High performance compute	Our fastest and most powerful CPU virtual machines

Determine Virtual Machine Storage

Each Azure VM has two or more disks:

- OS disk
- Temporary disk (not all SKUs have one, content can be lost)
- Data disks (optional)

OS and data disks reside in Azure Storage accounts:

- Azure-based storage service
- Standard (HDD, SSD) or Premium (SSD), or Ultra (SSD)

Azure VMs use managed disks

Demonstration – Creating a VM in the Portal

Create the virtual machine

Connect to the virtual machine – Bastion, RDP, or SSH

Connect to Virtual Machines

Bastion Subnet for RDP/SSH through the Portal over SSL

Remote Desktop Protocol for Windows-based Virtual Machines

Secure Shell Protocol for Linux based Virtual Machines

Connect to Windows Virtual Machines

Remote Desktop Protocol (RDP) creates a GUI session and accepts inbound traffic on TCP port 3389

WinRM creates a commandline session so you can run scripts

Connect to Linux Virtual Machines

Authenticate with a SSH public key or password

SSH is an encrypted connection protocol that allows secure logins over unsecured connections

There are public and private keys

Summary and Resources - Configure Virtual Machines

workload

Knowledge Check Questions

Microsoft Learn Modules (docs.microsoft.com/Learn)

Choose the right disk storage for your virtual machine

Introduction to Azure virtual machines (Sandbox)

Create a Linux virtual machine in Azure (Sandbox)

Create a Windows virtual machine in Azure (Sandbox)

Connect to virtual machines through the Azure portal by using Azure Bastion

A sandbox indicates a hands-on exercise.

Configure Virtual Machine Availability

Configure Azure Virtual Machine Availability Introduction

Plan for Maintenance and Downtime

Setup Availability Sets

Review Update and Fault Domains

Review Availability Zones

Compare Vertical to Horizontal Scaling

Create Scale Sets (2 student topics)

Configure Autoscale (2 student topics)

Demonstration – Virtual Machine Scaling

Summary and Resources

Plan for Maintenance and Downtime

Unplanned Hardware Maintenance

Unexpected Downtime

Planned Maintenance

When the platform predicts a failure, it will issue an unplanned hardware maintenance event

Action: Live migration

Unexpected Downtime is when a virtual machine fails unexpectedly

Action: Automatically migrate (heal)

Planned Maintenance events are periodic updates made to the Azure platform

Action: No action

Setup Availability Sets

Configure multiple Virtual Machines in an Availability Set Configure each application tier into separate Availability Sets

Combine a Load Balancer with Availability Sets Use managed disks with the Virtual Machines

Review Update and Fault Domains

Update domains allows Azure to perform incremental or rolling upgrades across a deployment. During planned maintenance, only one update domain is rebooted at a time

Fault Domains are a group of Virtual Machines that share a common set of hardware, switches, that share a single point of failure. VMs in an availability set are placed in at least two fault domains

Review Availability Zones

Unique physical locations in a region

Includes datacenters with independent power, cooling, and networking

Protects from datacenter failures

Combines update and fault domains

Provides 99.99% SLA

Compare Vertical to Horizontal Scaling

Vertical scaling (scale up and scale down) is the process of increasing or decreasing power to a single instance of a workload; usually manual

Horizontal scaling (scale out and scale in) is the process of increasing or decreasing the number of instances of a workload; frequently automated

Create Scale Sets

Instance count. Number of VMs in the scale set (0 to 1000)

Instance size. The size of each virtual machine in the scale set

Azure Spot Instance. Unused capacity at a discounted rate

Use managed disks

Enable scaling beyond 100 instances

Configure Autoscale

Define a minimum, maximum, and default number of VM instances

Create more advanced scale sets with scale out and scale in parameters

Demonstration – Virtual Machine Scaling

Configure Virtual Machine Scale Sets

Review manual scaling, scale-in policies, and custom scaling options

Summary and Resources – Configure Virtual Machine Availability

Knowledge Check Questions

Microsoft Learn Modules (docs.microsoft.com/Learn)

Build a scalable application with virtual machine scale sets

----Implement scale and high availability with Windows Server

VM

Lab – Manage Virtual Machines

Lab 08 – Manage Virtual Machines

Lab scenario

You are tasked with identifying different options for deploying and configuring Azure Virtual Machines

Objectives

Task 1:

Deploy zone-resilient Virtual Machines in the Azure portal and with templates

Task 4:

Deploy zone-resilient scale sets by using the Azure portal

Task 2:

Configure Azure Virtual Machines by using virtual machine extensions

Task 5:

Configure Azure virtual machine scale sets by using extensions

Task 3:

Scale compute and storage for Azure Virtual Machines

Task 6:

Scale compute and storage for Azure virtual machine scale sets

Next slide for an architecture diagram (>)

Lab 08 – Architecture diagram

End of presentation

