Criterios de convergencia

Comisión B3 - Matemática B

Criterio de la divergencia

Si
$$\lim_{n\to\infty} a_n \neq 0$$
 entonces $\sum_{n=1}^{\infty} a_n$ diverge.

Criterio de la integral

Sea f una función continua, decreciente y positiva para $x \in [1, \infty)$ y sea $a_n = f(n)$, entonces

$$\sum_{n=1}^{\infty} a_n \text{ converge si y sólo si } \int_1^{\infty} f(x) \, dx \text{ converge.}$$

Criterio de comparación

Si
$$\sum_{n=1}^{\infty} a_n$$
 y $\sum_{n=1}^{\infty} b_n$ son tales que $0 \le a_n \le b_n$ para todo n :

Criterio de comparación
$$\operatorname{Si} \sum_{n=1}^{\infty} a_n \operatorname{y} \sum_{n=1}^{\infty} b_n \text{ son tales que } 0 \leq a_n \leq b_n \text{ para todo } n : \\ \circ \operatorname{Si} \sum_{n=1}^{\infty} b_n \text{ converge entonces } \sum_{n=1}^{\infty} a_n \text{ converge.} \\ \circ \operatorname{Si} \sum_{n=1}^{\infty} a_n \text{ diverge entonces } \sum_{n=1}^{\infty} b_n \text{ diverge.}$$

$$\circ$$
 Si $\sum_{n=1}^{\infty} a_n$ diverge entonces $\sum_{n=1}^{\infty} b_n$ diverge.

Criterio del cociente

Criterio del cociente Sea $\{a_n\}$ tal que $a_n > 0$ para todo n y $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = L$, entonces:

o Si L < 1 la serie $\sum_{n=1}^{\infty} a_n$ converge.

$$\circ$$
 Si $L < 1$ la serie $\sum_{n=0}^{\infty} a_n$ converge

• Si
$$L > 1$$
 la serie $\sum_{n=1}^{\infty} a_n$ diverge.

• Si
$$L = 1$$
 el criterio no decide.

Criterio de comparación en el límite

Si
$$a_n > 0$$
 y $b_n > 0$ para todo n y $\lim_{n \to \infty} \frac{a_n}{b_n} = L > 0$ entonces $\sum_{n=1}^{\infty} a_n$ converge si y sólo si $\sum_{n=1}^{\infty} b_n$ converge.

Convergencia absoluta

Si la serie
$$\sum_{n=1}^{\infty} |a_n|$$
 converge, entonces la serie $\sum_{n=1}^{\infty} a_n$ también converge.

1

Criterio de Leibniz

Sea $\{a_n\}$ tal que $a_n > 0$ para todo n, si $\{a_n\}$ es decreciente y $\lim_{n \to \infty} a_n = 0$, entonces la serie alternada $\sum_{n=1}^{\infty} (-1)^{n+1} a_n \text{ converge.}$

$$\sum_{n=1}^{\infty} (-1)^{n+1} a_n \text{ converge}$$