DISCIPLINE SPECIFIC CORE COURSE – 5: ELECTRICITY AND MAGNETISM

Course title	Credits	Credit distribution of the course			Eligibility	Pre-requisite of
& Code		Lecture	Tutorial	Practical	Criteria	the course
Electricity and Magnetism	4	3	0	1	Class XII Pass	
DSC – 5						

LEARNING OBJECTIVES

This course reviews the concepts of electromagnetism learnt at school from a more advanced perspective and goes on to build new concepts. The course covers static and dynamic electric and magnetic fields due to continuous charge and current distributions respectively.

LEARNING OUTCOMES

After completing this course, student will be able to,

- Apply Coulomb's law to line, surface, and volume distribution of charges.
- Apply Gauss's law of electrostatics to distribution of charges
- Solve boundary value problems using method of images
- Understand the concept of electric polarization and bound charges in dielectric materials
- Understand and calculate the vector potential and magnetic field of arbitrary current distribution
- Understand the concept of bound currents and magnetic susceptibility in magnetic materials
- Understand the impact of time-varying magnetic and electric fields in order to comprehend the formulation of Maxwell's equations.

SYLLABUS OF DSC – 5

UNIT – I (15 Hours)

Electric Field and Electric Potential for continuous charge distributions: Electric field due to a line charge, surface charge and volume charge, Divergence of electric field using the Dirac Delta function, Curl of electric field, Electric field vector as negative gradient of scalar potential, Ambiguities of electric potential, Differential and integral forms of Gauss's Law, Application of Gauss's law to various charge distributions having spherical, cylindrical and planar symmetries.

Boundary Value Problems in Electrostatics: Formulation of Laplace's and Poisson equations, First and second uniqueness theorems, Solutions of Laplace and Poisson equations in one

dimension using spherical and cylindrical coordinate systems and solutions in threedimensional using Cartesian coordinates applying separable variable technique, Electrostatic boundary conditions for conductors and capacitors.

UNIT – II (11 Hours)

Special techniques for the calculation of Potential and Field: The Method of Images is applied to a system of a point charge and finite continuous charge distribution (line charge and surface charge) in the presence of (i) a plane infinite sheet maintained at constant potential, and (ii) a sphere maintained at constant potential.

Electric Field in Matter: Polarization in matter, Bound charges and their physical interpretation, Field inside a dielectric, Displacement vector **D**, Gauss' law in the presence of dielectrics, Boundary conditions for **D**, Linear dielectrics, electric susceptibility and dielectric constant, Idea of complex dielectric constant due to varying electric field, Boundary value problems with linear dielectrics

UNIT – III (19 Hours)

Magnetic Field: Divergence and curl of magnetic field **B**, Magnetic field due to arbitrary current distribution using Biot-Savart law, Integral and differential forms of Ampere's law, Vector potential and its ambiguities, Coulomb gauge and possibility of making vector potential divergence less, Vector potential due to line, surface and volume currents using Poisson equations for components of vector potential.

Magnetic Properties of Matter: Magnetization vector, Bound currents, Magnetic intensity, Differential and integral form of Ampere's Law in the presence of magnetised materials, Magnetic susceptibility and permeability of diamagnetic, paramagnetic and ferromagnetic materials.

Electrodynamics: Faraday's law, Lenz's law, Inductance and electromotive force, Ohm's law $(\vec{J} = \sigma \vec{E})$, Energy stored in a magnetic field, Continuity equation, Displacement current and displacement current density, Basic introduction to Maxwell's equations in electromagnetism.

References:

Essential Readings:

- 1) Introduction to Electrodynamics, D. J. Griffiths, 3rd Edn., 1998, Benjamin Cummings
- 2) Schaum's Outlines of Electromagnetics by J. A. Edminister and M. Nahvi
- 3) Fundamentals of Electricity and Magnetism, Arthur F. Kip, 2nd Edn. 1981, McGraw-Hill.
- 4) Electromagnetic Fields and Waves, Paul Lorrain and Dale Corson, 1991, W. H. Freeman.
- 5) Electricity and Magnetism, Edward M. Purcell, 1986 McGraw-Hill Education
- 6) Electricity and Magnetism, Tom Weideman, University of California Davis. [url: https://zhu.physics.ucdavis.edu/Physics9C-
 - C 2021/Physics%209C EM%20by%20Tom%20Weideman.pdf]

Additional Readings:

1) Feynman Lectures Vol. 2, R. P. Feynman, R. B. Leighton, M. Sands, 2008, Pearson Education

- 2) Electricity, Magnetism and Electromagnetic Theory, S. Mahajan and Choudhury, 2012, Tata McGraw
- 3) Electricity and Magnetism, J. H. Fewkes and J. Yarwood, Vol. I, 1991, Oxford Univ. Press.
- 4) Problems and Solutions in Electromagnetics (2015), Ajoy Ghatak, K Thyagarajan and Ravi Varshney.

PRACTICAL -30 Hours

Every student must perform at least five experiments.

- 1) Magnetic field variation along the axis of a circular coil and in a Helmholtz coil ((r > a, r = a and r < a)). Here, 'a' is radius of coil and 'r' is distance between the coils).
- 2) **B-H** curves for soft and hard ferromagnetic materials and comparison of their coercivity, retentivity and saturation magnetization for same applied magnetic field.
- 3) Measurement of field strength **B** and its variation in a solenoid (determine $d\mathbf{B}/d\mathbf{x}$)
- 4) Measurement of current and charge sensitivity of ballistic galvanometer
- 5) Measurement of critical damping resistance of ballistic galvanometer
- 6) Determination of a high resistance by leakage method using ballistic galvanometer
- 7) Measurement of self-inductance of a coil by Anderson's Bridge
- 8) Measurement of self-inductance of a coil by Owen's Bridge
- 9) To determine the mutual inductance of two coils by the Absolute method

References (for Laboratory Work):

- 1) Advanced Practical Physics for students, B. L. Flint and H. T. Worsnop, 1971, Asia Publishing House
- 2) A Text Book of Practical Physics, I. Prakash and Ramakrishna, 11th Ed., 2011, Kitab Mahal
- 3) Advanced Level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers
- 4) Engineering Practical Physics, S. Panigrahi and B. Mallick, 2015, Cengage Learning
- 5) Practical Physics, G. L. Squires, 2015, 4th Edition, Cambridge University Press