

Give Me Some Credit

Classify whether or not somebody will experience financial distress in the next two years

<u>Team:</u>

Akash Chawla Ana Parra Vera Soham Mukherjee Sweta Chowdary

Project Overview

- Based on an individual's credit data, classify whether or not somebody will experience financial distress in the next two years
- Credit scoring algorithms make a guess at the chances of default
- The purpose of building our model is to make it accessible to the borrowers
- Banks play a crucial role in market economies
- Data Source: https://www.kaggle.com/c/GiveMeSomeCredit/data

Data Fields

Variable Name	Description	
SeriousDlqin2yrs	Whether a person will face financial distress in next 2 years or not	
	Total balance on credit cards and personal lines of credit except real estate and no installment debt like	
RevolvingUtilizationOfUnsecuredLines	car loans divided by the sum of credit limits	
age	Age of borrower in years	
NumberOfTime30-59DaysPastDueNotWorse	Number of times borrower has been 30-59 days past due but no worse in the last 2 years.	
DebtRatio	Monthly debt payments, alimony,living costs divided by monthly gross income	
MonthlyIncome	Monthly income	
NumberOfOpenCreditLinesAndLoans	Number of Open loans (installment like car loan or mortgage) and Lines of credit (e.g. credit cards)	
NumberOfTimes90DaysLate	Number of times borrower has been 90 days or more past due.	
NumberRealEstateLoansOrLines	Number of mortgage and real estate loans including home equity lines of credit	
NumberOfTime60-89DaysPastDueNotWorse	Number of times borrower has been 60-89 days past due but no worse in the last 2 years.	
NumberOfDependents	Number of dependents in family excluding themselves (spouse, children etc.)	

Snapshot of Data

150,000 records in dataset

	RevolvingUtilization OfUnsecuredLines		Number Of Time 30- 59 Days Past Due Not Worse	DebtRatio	MonthlyIncome	CreditLinesAnd	Number Of Times 90 Days Late		Number Of Time 60- 89 Days Past Due Not Worse	Number Of Dependents
1	0.766126609	45	2	0.802982129	9120	13	0	6	0	2
0	0.957151019	40	0	0.121876201	2600	4	0	0	0	1
0	0.65818014	38	1	0.085113375	3042	2	1	0	0	0
0	0.233809776	30	0	0.036049682	3300	5	0	0	0	0
0	0.9072394	49	1	0.024925695	63588	7	0	1	0	0
0	0.213178682	74	0	0.375606969	3500	3	0	1	0	1
0	0.305682465	57	0	5710	NA	8	0	3	0	0
0	0.754463648	39	0	0.209940017	3500	8	0	0	0	0
0	0.116950644	27	0	46	NA	2	0	0	0	NA
0	0.189169052	57	0	0.606290901	23684	9	0	4	0	2
0	0.644225962	30	0	0.30947621	2500	5	0	0	0	0
0	0.01879812	51	0	0.53152876	6501	7	0	2	0	2
0	0.010351857	46	0	0.298354075	12454	13	0	2	0	2
1	0.964672555	40	3	0.382964747	13700	9	3	1	1	2
0	0.019656581	76	0	477	0	6	0	1	0	0

Summary and Boxplot of Data Columns

summary(train\$NumberOfDependents)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 0.000 0.000 0.000 0.757 1.000 20.000 3924

summary(train\$NumberRealEstateLoansOrLines)
Min. 1st Qu. Median Mean 3rd Qu. Max

1,000

1.018

2.000 54.000

0.000

0.000

Summary and Boxplot of Data Columns

summary(train\$NumberOfTime30.59DaysPastDueNotWorse)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.000 0.000 0.000 0.421 0.000 98.000

0 20 40 60 80 100

summary(train\$NumberOfOpenCreditLinesAndLoans)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.000 5.000 8.000 8.453 11.000 58.000

Summary and Boxplot of Data Columns

summary(train\$RevolvingUtilizationOfUnsecuredLines)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.00 0.03 0.15 6.05 0.56 50710.00

summary(train\$age)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0 41.0 52.0 52.3 63.0 109.0

Scatter Plot of Age

Histogram of Number Real Estate Loans Or Lines

Outliers

Finding Outliers Numerically

• The Interquartile range (IQR) is a measure of variability that represents the spread of the middle 50% of the data

A data value is an outlier if:

It is located 1.5 (IQR) or more below Q1, or

It is located 1.5 (IQR) or more above Q3

Outliers

- Age =0 (1 record) → Replaced with Median
- Revolving Utilization >3 (292 records) → Deleted
- Monthly Income=0 and Debt Ratio =0 (97 Records) → Deleted
- Debt Ratio = 0 (4016 records) → Deleted
- Number of Real Estate Loans =54 (1 record) → Replaced with Median
- NumberOfTime60.89DaysPastDue, NumberOfTimes90DaysLate,
 NumberOfTime30.59DaysPastDue =98 (269 rows) → No Action

Missing Data

- 29,731 Records with Monthly Income missing
- 3,924 Records with Number of Dependents missing

Handling Missing Data

- Delete rows with missing values
- Predict missing values using KNN
- Replace missing values by Mean or Median
- For Number of Dependents, we replaced the Missing values with Median

Prediction of Missing Values

- Implemented KNN to predict Monthly Income
 - ➤ Using K=5, Error Rate= 73.09%
 - ➤ Using K=10, Error Rate= 71.43%
 - ➤ Using K=20, Error Rate= 69.59%
 - Using K=30, Error Rate= 67.63%
 - ➤ Using K=50, Error Rate= 65.27%
 - ➤ Using K=100, Error Rate= 64.30%
- Replacing Missing values with Median resulted in 72.95% error rate
- Replacing Missing values with Mean resulted in 94.70% error rate

Addition of a new field

Expenditure = Debt Ratio * Monthly Income

- Not a good idea to predict or even replace monthly income with median
- Large values of Debt Ratio where Monthly Income is not available
- To implement the above formula correctly, replace 'NA' and '0' values for Monthly Income with '1'
- Removed Debt Ratio and Monthly Income columns from our dataset
- Added Expenditure column to our dataset

DebtRatio [‡]	MonthlyIncome †
0.351258937	3210
2477.000000000	NA
0.261609907	5813
0.241135663	7783
0.008034280	5600
1720.000000000	NA
1.051397656	3326
0.549877805	4500
0.540983607	3720
0.316416365	7723
0.681045752	764
0.111444278	2000
0.161061760	9455
0.262611807	8384
1824.000000000	NA
0.369590815	6793
3162.000000000	0
0.182881653	10257

Split Data into Train and Test sets

Uniform Division of Data

Classification using ANN

- We tried to implement the Artificial Neural Network.
- Runtime: 15-18 hours for 101916 records

Error:

```
Warning message:
algorithm did not converge in 1 of 1 repetition(s) within the stepmax

plot(net)

Error in plot.nn(net) : weights were not calculated
```

Classification using KNN

25

41

Classification using CART

Classification using C5.0

Importance of Variables

Actual

y x 0 1 0 40392 2336 1 418 533

• Error Rate: 6.30%

Predicted

Classification

After using the most significant variables in our model

	• KNN, k=20	Actual			
•		predict_knn_k20 0 1 Predicted 0 40685 2618 1 160 216			
•	KNN, k=50	Actual predict_knn_k50 0 0 40773 269 Predicted 1 72 14			
•	KNN, k=100	Actual predict_knn_k100 0 Predicted 0 40801 275	 Error Rate: 6.41% 		

78

Classification

After using the most significant variables in our model

Actual

• C5.0 y

x 0 1

Predicted 0 40523 2385
1 315 456

Error Rate: 6.18%

• CART

Actual

CR_No CR_Yes

Predicted CR_No 40482 2347

CR_Yes 356 494

• Error Rate: 6.19%

Conclusions

Best method for our problem: C5.0

Least percent error

Easy to implement

No need to normalize

 Cleaning the data takes usually takes the most time (at least 60% of the time)

Our team spent at least 80% of the time cleaning the data

More effort than implementing the algorithms

Outliers must be analyzed (not just deleted or replaced)

Outliers may be relevant to the dataset