Bike Share Toronto Data Analysis & Predictions with Machine Learning & Power Bl

Mohit Rathod | Data Analyst Humber Polytechnic, Toronto, ON, Canada

2nd International Data Science and Analytics Students Conference Hosted by the University of Calgary

Saturday, March 22nd, 2025

Introduction

Bike Share Toronto is a public bicycle-sharing system serving the city of Toronto, Canada. It is operated by the Toronto Parking Authority and aims to promote sustainable urban mobility by providing an affordable, eco-friendly transportation alternative.

Launched: 2011

Operator: Toronto Parking Authority

Stations: Over 625 docking stations across the city

Bicycles Available: More than 7,000 bikes

Service Area: Covers downtown Toronto and expanding suburban areas

Pricing: Includes pay-as-you-go, monthly, and annual membership plans

Technology: Features GPS tracking, mobile app integration, and real-time bike

availability updates

Key Challenges & Objectives

Issue

Toronto's Bikeshare system has growing demand but lacks an optimized approach for demand forecasting.

Significance

Helps city planners, bikeshare operators, and policy makers optimize services.

Objectives

Analyze user trends, predict future demand, and visualize key insights.

Key Questions:

Which stations are busiest? What are peak hours? Can we predict demand?

Methodology (Data & Tools Used)

Data Source

- Ridership Data
- Station Information

Tools & Techniques

- Python
- Power BI
- Google Colab

Visualization

- Power BI
- Seaborn/Matplotlib

Machine Learning

- Machine Learning Algorithm
- Encoding Techniques
- Feature Scaling & Selection

Feature Engineering

- Time-Based Features
- Station & Demand Features
- User Behavior Features

Station Demand Forecasting

Goal: Predict trip demand for better inventory management & station optimization.

Algorithm Used: LightGBM (Light Gradient Boosting Machine)

Model Accuracy: $R^2 = 0.70$, RMSE = 3.89%

Feature Importance: Starting station, starting hour of the day, starting month, day of

the week

	start_station_id	start_hour	start_day_of_week	start_month	rfg_predictions	xgb_predictions	lgb_predictions
0	7211	7	2	9	4.0	1.0	2.0
1	7276	12	6	10	2.0	1.0	2.0
2	7297	11	3	10	2.0	1.0	2.0
3	7200	7	4	2	4.0	5.0	6.0
4	7076	5	2	1	60.0	39.0	56.0
5	7151	0	5	5	3.0	3.0	3.0

User Classification & Predictions

Goal: Predict trip demand for better inventory management & station optimization.

Algorithm Used: Random Forest Classifier

Model Accuracy: Accuracy = 96.08%, F1 Score = 0.9796

Feature Importance: Trip Duration, Starting Station, Ending Station, Hour of the Day,

Day of the Week, Starting Month

User Type Segmentation:

Casual Users: Prefer weekends, longer trips, and leisure-oriented routes.

Annual Members: Ride on weekdays, shorter trips, and use bikes for daily commutes.

d	uration_minutes	start_station_id	end_station_id	start_hour	start_day_of_week	start_month	logreg_predictions	rf_predictions	xgb_predictions
0	647	7042	7082	21	2	10	0	0	0
1	75	7284	7139	4	0	8	0	0	0
2	856	7207	7003	19	2	12	0	0	0
3	325	7094	7020	10	2	4	0	0	1

Station Clustering & Classification

Goal: Group stations based on demand patterns to optimize bike redistribution and infrastructure planning

Algorithm Used: K-Means Clustering

Feature Importance: Total rides per station, proximity to transit hubs, peak hour demand, seasonal variation in demand

Clusters Name: Downtown Core (142), West End (73), Uptown (63), East End (55), East York (26)

Potential Cluster Categories:

- High-Demand Stations (Frequent rentals/returns, e.g., downtown hubs)
- Moderate-Demand Stations (Balanced inflow and outflow)
- Low-Demand Stations (Used occasionally, mostly off-peak hours)

Yearly Overview Dashboard

User Behaviour Dashboard

Station Popularity Dashboard

Project Resources & Data Sources

Ridership Data:

https://open.toronto.ca/dataset/bike-share-toronto-ridership-data/

Station Info Data:

https://tor.publicbikesystem.net/ube/gbfs/v1/en/station_information

Project Folder:

https://drive.google.com/drive/folders/1kU3_DJn3UNOTw2EQle_JFQ_fbSdcoPjS

Detailed Report:

https://www.linkedin.com/posts/mohit-rathod_bike-share-toronto-prediction-and-classification-activity-7262117039157178368-GvsM

Thank You!

Do you have any questions?

Mohitrathod.ca@gmail.com

Maven Analytics Portfolio

Find me on LinkedIn!

