Машинное обучение

<u>Часть II</u>

Власов Кирилл Вячеславович

Линейные модели

MY HOBBY: EXTRAPOLATING

Линейные модели

Линейная модель - взвешенная сумма признаков и член смещения (bias term), который также называют свободным членом (intercept term)

$$\hat{y} = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \ldots + \theta_n x_n$$

ŷ

Предсказываемое значение

n

Количество признаков

$$x_1, x_2, \ldots, x_n$$

 x_1, x_2, \dots, x_n Значения признаков

 $\theta_0, \theta_1, \theta_2, \dots, \theta_n$ Веса признаков и свободный член

Векторная форма:

$$\hat{y} = h_{\theta}(x) = \theta^T \cdot x$$

 θ

Вектор весов и свободный член

 \mathcal{X}

Вектор значений признаков примера, где $x_0 = 0$

Линейные модели

$$\hat{y} = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \ldots + \theta_n x_n$$

Средняя квадратичная ошибка (Mean Squared Error, MSE):

$$MSE = \frac{1}{l} \sum_{i=1}^{l} (f(x_i) - y_i)^2$$

$$MSE = \frac{1}{l} \sum_{i=1}^{l} (\hat{y}^{(i)} - y_i)^2 \to \frac{1}{l} \sum_{i=1}^{l} (\theta^T \cdot x^{(i)} - y_i)$$

Метод наименьших квадратов

$$\hat{y} = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \ldots + \theta_n x_n$$

Средняя квадратичная ошибка (Mean Squared Error, MSE):

$$MSE = \frac{1}{l} \sum_{i=1}^{l} (f(x_i) - y_i)^2$$

$$MSE = \frac{1}{l} \sum_{i=1}^{l} (\hat{y}^{(i)} - y_i)^2 \to \frac{1}{l} \sum_{i=1}^{l} (\theta^T \cdot x^{(i)} - y_i)^2 \to min$$

Аналитический способ поиска оптимальных весов (нормальное уравнение):

$$\hat{\theta} = \left(X^T \cdot X \right)^{-1} \cdot X^T \cdot y$$

- X Матрица объектов признаков
- У Вектор целевой переменной
- $\widehat{ heta}$ Оптимальный вектор весов, который сводит к минимуму MSE

Подробный и понятный вывод: Открытый курс машинного обучения: Тема 4

Метод наименьших квадратов

$$\hat{y} = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \ldots + \theta_n x_n$$

Средняя квадратичная ошибка (Mean Squared Error, MSE):

$$MSE = \frac{1}{l} \sum_{i=1}^{l} (f(x_i) - y_i)^2$$

$$MSE = \frac{1}{l} \sum_{i=1}^{l} (\hat{y}^{(i)} - y_i)^2 \to \frac{1}{l} \sum_{i=1}^{l} (\theta^T \cdot x^{(i)} - y_i)^2 \to min$$

Аналитический способ поиска оптимальных весов (нормальное уравнение):

$$\hat{\theta} = (X^T \cdot X)^{-1} \cdot X^T \cdot y$$
BLUE (Best Linear Unbiased Estimator)

- X Матрица объектов признаков
- У Вектор целевой переменной
- $\widehat{ heta}$ Оптимальный вектор весов, который сводит к минимуму MSE

Подробный и понятный вывод: Открытый курс машинного обучения: Тема 4

Метод наименьших квадратов

<u>Теорема Гаусса — Маркова</u>

оценки метода наименьших квадратов оптимальны в классе линейных несмещённых оценок

Условия для парной регрессии:

- 1. модель данных правильно специфицирована. Нет лишних переменных, или учтены все важные $Y= heta_0+ heta\cdot X+\epsilon$
- 2. все Х детерминированы и не все равны между собой. Иными словами, переменные не должны быть постоянными.
- 3. Ошибки не носят систематического характера, то есть $E(\epsilon_i) = 0 \, orall i$
- 4. Дисперсия ошибок одинакова (гомоскедастичность) и равна некоторой $\sigma^2 = const$
- 5. Ошибки некоррелированы, то есть $\ cov(\epsilon_i,\epsilon_j)=0\ \forall i,j$

Условия для Множественной регрессии:

- 1. модель данных правильно специфицирована. Нет лишних переменных, или учтены все важные
- 2. rang(X) = m
- 3. $E(\epsilon_i) = 0 \,\forall i$
- 4. $cov(\epsilon_i, \epsilon_j) = 0 \forall i, j$

Реализация в python

Проблемы нормального уравнения

$$\hat{\theta} = \left(X^T \cdot X \right)^{-1} \cdot X^T \cdot y$$

Проблемы нормального уравнения

$$\hat{\theta} = \left(X^T \cdot X \right)^{-1} \cdot X^T \cdot y$$

 $(X^T \cdot X)$ – матрица размером $n \times n$, где n – количество признаков

Вычислительная сложность для обратной матрицы: O(n³)

$$MSE = \frac{1}{l} \sum_{i=1}^{l} (\hat{y}^{(i)} - y_i)^2 \to \frac{1}{l} \sum_{i=1}^{l} (\theta^T \cdot x^{(i)} - y_i)^2 \to min$$

$$MSE = \frac{1}{l} \sum_{i=1}^{l} (\hat{y}^{(i)} - y_i)^2 \to \frac{1}{l} \sum_{i=1}^{l} (\theta^T \cdot x^{(i)} - y_i)^2 \to min$$

Градиент - Вектор указывающий направление наибольшего возрастания функции, компоненты которого равны частным производным по всем её аргументам.

$$\nabla \varphi = \left(\frac{\partial \varphi}{\partial x_1}, \frac{\partial \varphi}{\partial x_2}, \dots, \frac{\partial \varphi}{\partial x_n},\right)$$

$$MSE = \frac{1}{l} \sum_{i=1}^{l} (\hat{y}^{(i)} - y_i)^2 \to \frac{1}{l} \sum_{i=1}^{l} (\theta^T \cdot x^{(i)} - y_i)^2 \to min$$

Градиент - Вектор указывающий направление наибольшего возрастания функции, компоненты которого равны частным производным по всем её аргументам.

$$\nabla \varphi = \left(\frac{\partial \varphi}{\partial x_1}, \frac{\partial \varphi}{\partial x_2}, \dots, \frac{\partial \varphi}{\partial x_n},\right)$$

$$\frac{\partial MSE(\theta)}{\partial \theta_{j}} = \frac{2}{l} \sum_{i=1}^{l} (\theta^{T} \cdot x^{(i)} - y^{(i)}) \cdot x_{j}^{(i)} \qquad \nabla MSE(\theta) = \begin{pmatrix} \frac{\partial MSE(\theta)}{\partial \theta_{0}} \\ \frac{\partial MSE(\theta)}{\partial \theta_{1}} \\ \dots \\ \frac{\partial MSE(\theta)}{\partial \theta_{n}} \end{pmatrix} = \frac{2}{l} X^{T} \cdot (X \cdot \theta - y)$$

$$MSE = \frac{1}{l} \sum_{i=1}^{l} (\hat{y}^{(i)} - y_i)^2 \to \frac{1}{l} \sum_{i=1}^{l} (\theta^T \cdot x^{(i)} - y_i)^2 \to min$$

Градиент - Вектор указывающий направление наибольшего возрастания функции, компоненты которого равны частным производным по всем её аргументам.

$$\nabla MSE(\theta) = \frac{2}{l}X^T \cdot \left(X \cdot \theta - y\right)$$

- 1. Случайно задаем веса
- 2. Считаем градиент в точке
- 3. Изменяем веса путем вычитания градиента
- 4. Повторяем п.2

Hands-On Machine Learning with Scikit-Learn and TensorFlow by Aurélien Géron

^{*} Мы можем контролировать скорость обучения (learning rate) умножая градиент на шаг обучения

Выбор шага обучения градиентного спуска

Слишком маленький шаг обучения рискуем не дойти до минимума

Слишком большой шаг обучения рискуем проскочить минимум

Другие проблемы градиентного спуска

Не все функции потерь одинаково полезны имеют форму чаши (параболоид)

Важно масштабировать данные

Реализация в python

Стохастический градиентый спуск

$$MSE = \frac{1}{l} \sum_{i=1}^{l} (\hat{y}^{(i)} - y_i)^2 \to \frac{1}{l} \sum_{i=1}^{l} (\theta^T \cdot x^{(i)} - y_i)^2 \to min$$

$$\frac{\partial MSE(\theta)}{\partial \theta_j} = \frac{2}{l} \sum_{i=1}^{l} (\theta^T \cdot x^{(i)} - y^{(i)}) \cdot x_j^{(i)}$$

Стохастический градиентый спуск

$$MSE = \frac{1}{l} \sum_{i=1}^{l} (\hat{y}^{(i)} - y_i)^2 \to \frac{1}{l} \sum_{i=1}^{l} (\theta^T \cdot x^{(i)} - y_i)^2 \to min$$

 $\frac{\partial \textit{MSE}(\theta)}{\partial \theta_j} = \frac{2}{l} \sum_{i=1}^l \left(\theta^T \cdot x^{(i)} - y^{(i)}\right) \cdot x_j^{(i)}$ Пакетный градиентный спуск

$$\frac{\partial MSE(\theta)}{\partial \theta_j} = (\theta^T \cdot x^{(i)} - y^{(i)}) \cdot x^{(i)}$$

$$\nabla MSE(\theta) = x_i^T \cdot (x_i \cdot \theta - y)$$

Стохастический градиентый спуск

$$MSE = \frac{1}{l} \sum_{i=1}^{l} (\hat{y}^{(i)} - y_i)^2 \to \frac{1}{l} \sum_{i=1}^{l} (\theta^T \cdot x^{(i)} - y_i)^2 \to min$$

$$\frac{\partial MSE(\theta)}{\partial \theta_j} = \frac{2}{l} \sum_{i=1}^{l} (\theta^T \cdot x^{(i)} - y^{(i)}) \cdot x_j^{(i)}$$

$$\frac{\partial MSE(\theta)}{\partial \theta_j} = (\theta^T \cdot x^{(i)} - y^{(i)}) \cdot x^{(i)}$$

$$\nabla MSE(\theta) = x_i^T \cdot \left(x_i \cdot \theta - y \right)$$

Случайно выбираем объект, и двигаемся к минимуму. Каждый объект выборки может прогоняться несколько раз или быть не выбран вообще

Выбор метода градиентного спуска

Можно скрестить два похода: Стохастический и пакетный и выбирать случайные подборки например из 100 объектов, тогда получится: метод называемый Mini-batch

1. Одно из условий Гауса-Маркова: rang(X) = m

Если оно не выполняется, то решение МНК $\hat{\theta} = \left(X^T \cdot X\right)^{-1} \cdot X^T \cdot y$ не существует

так как Матрица $X^T \cdot X$ сингулярна (вырождена)

Значит нам нужно сделать так, чтобы сделать матрицу вырожденной (регулярной)

2. Мультиколлениарность

Собственные значения будут стремиться к 0, а при обращении матрицы к ∞

L2 - регуляризация, гребневая регрессия, ridge

$$MSE(\theta) + \alpha \frac{1}{2} \sum_{i=1}^{n} \theta_i^2 \to min$$

L2 - регуляризация, гребневая регрессия, ridge

$$MSE(\theta) + \alpha \frac{1}{2} \sum_{i=1}^{n} \theta_i^2 \rightarrow min$$

L1 - регуляризация, Lasso (Least absolute shrinkage and selection operator)

$$MSE(\theta) + \alpha \sum_{i=1}^{n} |\theta_i| \rightarrow min$$

введение ограничений на норму вектора коэффициентов модели приводит к обращению в 0 некоторых коэффициентов модели.

L2 - регуляризация, гребневая регрессия, ridge

$$MSE(\theta) + \alpha \frac{1}{2} \sum_{i=1}^{n} \theta_i^2 \rightarrow min$$

L1 - регуляризация, Lasso (Least absolute shrinkage and selection operator)

$$MSE(\theta) + \alpha \sum_{i=1}^{n} |\theta_i| \rightarrow min$$

введение ограничений на норму вектора коэффициентов модели приводит к обращению в 0 некоторых коэффициентов модели.

ElasticNet

$$MSE(\theta) + \alpha r \sum_{i=1}^{n} |\theta_i| + \alpha \frac{1-r}{2} \sum_{i=1}^{n} \theta_i^2 \rightarrow min$$

L2 - регуляризация, гребневая регрессия, ridge

$$MSE(\theta) + \alpha \frac{1}{2} \sum_{i=1}^{n} \theta_i^2 \rightarrow min$$

L1 - регуляризация, Lasso (Least absolute shrinkage and selection operator)

$$MSE(\theta) + \alpha \sum_{i=1}^{n} |\theta_i| \rightarrow min$$

введение ограничений на норму вектора коэффициентов модели приводит к обращению в 0 некоторых коэффициентов модели.

ElasticNet

$$MSE(\theta) + \alpha r \sum_{i=1}^{n} |\theta_i| + \alpha \frac{1-r}{2} \sum_{i=1}^{n} \theta_i^2 \rightarrow min$$

Реализация в python

Основная идея:

Предполагаем, что существует такая гиперплоскость, которая делит пространство на два полупространства в каждом из которых одно из двух значений целевого класса.

Если существует гиперплоскость которой можно разделить пространство на два класса без ошибок, то обучающая выборка называется линейно разделимой

Дана обучающая выборка:

$$X_l = \{ (x_1, y_1), ..., (x_l, y_l) \}$$

Для задачи классификации - Целевая переменная задана конечным числом меток

$$(\mathbf{x}_1, \mathbf{y}_1) \in \mathbb{R}^m \times \mathbb{Y}, \mathbb{Y} = \{-1, 1\}$$

Простейший классификатор:

$$a(x) = sign(\langle w, x \rangle + x_0) = sign(\overrightarrow{w}^T \cdot x)$$

 \overrightarrow{w} – нормаль гиперплоскости

 $\overrightarrow{w}^T \cdot x_i$ – расстояние от гиперплоскости до x_i , знак показывает отношение к классу

$$a(x) = sign(\langle w, x \rangle + x_0) = sign(\overrightarrow{w}^T \cdot x)$$

доля правильных ответов (accuracy):

$$\mathcal{Q}(a, X) = \frac{1}{l} \sum_{i=1}^{l} \left[a(x_i) = y_i \right]$$

$$a(x) = sign(\langle w, x \rangle + x_0) = sign(\overrightarrow{w}^T \cdot x)$$

доля правильных ответов (accuracy):

$$\mathcal{Q}(a, X) = \frac{1}{l} \sum_{i=1}^{l} \left[a(x_i) = y_i \right] \to max$$

$$a(x) = sign(\langle w, x \rangle + x_0) = sign(\overrightarrow{w}^T \cdot x)$$

доля правильных ответов (accuracy):

$$\mathcal{Q}(a,X) = \frac{1}{l} \sum_{i=1}^{l} \left[a(x_i) = y_i \right] \to max$$

доля неправильных ответов:

$$\mathcal{Q}(a,X) = \frac{1}{l} \sum_{i=1}^{l} \left[a(x_i) \neq y_i \right] = \frac{1}{l} \sum_{i=1}^{l} \left[sign(\langle w, x_i \rangle) \neq y_i \right] \to min$$

Проблемы:

- Функционал дискретный относительно весов ⇒ мы не сможем искать минимум с помощью градиентных методов.
- 2. Функционал может иметь несколько глобальных минимумов ⇒ может быть много способов добиться оптимального количества ошибок.

$$a(x) = sign(\langle w, x \rangle + x_0) = sign(\overrightarrow{w}^T \cdot x)$$

доля правильных ответов (accuracy):

$$\mathcal{Q}(a,X) = \frac{1}{l} \sum_{i=1}^{l} \left[a(x_i) = y_i \right] \to max$$

доля неправильных ответов:

$$\mathcal{Q}(a,X) = \frac{1}{l} \sum_{i=1}^{l} \left[a(x_i) \neq y_i \right] = \frac{1}{l} \sum_{i=1}^{l} \left[sign(\langle w, x_i \rangle) \neq y_i \right] \to min$$

$$\mathcal{Q}(a,X) = \frac{1}{l} \sum_{i=1}^{l} \left[\underbrace{y_i \langle w, x_i \rangle}_{M_i} < 0 \right] \to min$$
 $M_i = y_i \langle w, x_i \rangle$ – отступ (margin)

Знак отступа говорит о корректности ответа классификатора (положительный отступ соответствует правильному ответу, отрицательный неправильному) абсолютная величина М — характеризует степень уверенности классификатора в своём ответе.

$$\mathcal{Q}(a, X) = \frac{1}{l} \sum_{i=1}^{l} \left[\underbrace{y_i \langle w, x_i \rangle}_{M_i} < 0 \right] \to min$$

$$L(M) = [M < 0]$$

$$\mathcal{Q}(a, X) = \frac{1}{l} \sum_{i=1}^{l} \left[\underbrace{y_i \langle w, x_i \rangle}_{M_i} < 0 \right] \to min$$

 $L(M) = [M < 0]\,$ – пороговая функции потерь

$$\mathcal{Q}(a, X) = \frac{1}{l} \sum_{i=1}^{l} \left[\underbrace{y_i \langle w, x_i \rangle}_{M_i} < 0 \right] \to min$$

$$L(M) \leq ilde{L}(M)$$
 – верхняя оценка функции потерь

$$L(M) = [M < 0] \;$$
 – пороговая функции потерь

Если верхнюю оценку удастся приблизить к нулю, то и доля неправильных ответов тоже будет близка к нулю

$$\tilde{L}(M) = (1 - M)^2$$

$$L(M) = [M < 0]\,$$
 – пороговая функции потерь

$$\tilde{L}(M) = e^{-M}$$

$$\tilde{L}(M) = \log(1 + e^{-M})$$

$$\tilde{L}(M) = (1 - M)_{+} = \max(0, 1 - M)$$

$$\tilde{L}(M) = \frac{2}{1 + e^{-M}}$$

$$\tilde{L}(M) = (1 - M)^2$$

$$L(M) = \lfloor M < 0$$

L(M) = [M < 0] – пороговая функции потерь

$$\tilde{L}(M) = e^{-M}$$

$$\tilde{L}(M) = \log(1 + e^{-M})$$

$$\tilde{L}(M) = e^{-M}$$
 $\tilde{L}(M) = \log(1 + e^{-M})$
 $\tilde{L}(M) = (1 - M)_{+} = \max(0, 1 - M)$

$$\tilde{L}(M) = \frac{2}{1 + e^{-M}}$$

$$\tilde{L}(M) = \log(1 + e^{-M})$$

Минимизация эмпирического риска:

$$\mathcal{Q}(a, X) = \frac{1}{l} \sum_{i=1}^{l} \log(1 + e^{-y_i \langle w, x_i \rangle}) \to min$$

$$a(x) = sign(\overrightarrow{w}^T \cdot x)$$

$$\tilde{L}(M) = \log(1 + e^{-M})$$

Минимизация эмпирического риска:

$$\mathcal{Q}(a, X) = \frac{1}{l} \sum_{i=1}^{l} \log(1 + e^{-y_i \langle w, x_i \rangle}) \to min$$

$$a(x) = sign(\overrightarrow{w}^T \cdot x)$$

Как оценить апостериорную вероятность принадлежности к классам, с помощью взвешенной суммы признаков?

$$\overrightarrow{w}^T \cdot x \in R$$

Шансы

$$odds = \frac{p}{1 - p} \in [0; \infty] \quad \ln(odds) \in R$$

Шансы

$$odds = \frac{p}{1 - p} \in [0; \infty] \qquad \ln(odds) \in R$$

$$\overrightarrow{w}^T \cdot x \in R$$

Шансы

$$odds = \frac{p}{1 - p} \in [0; \infty] \quad \ln(odds) \in R$$

$$\overrightarrow{w}^T \cdot x \in R$$

$$\ln(odds_{+}) = \ln(\frac{p}{1-p}) = \ln(p) - \ln(1-p)$$

$$\ln(odds_{-}) = \ln(\frac{1-p}{p}) = \ln(1-p) - \ln(p)$$

$$\ln(odds_+) = -\ln(odds_-) = w^T \cdot x$$

Шансы

$$odds = \frac{p}{1 - p} \in [0; \infty] \quad \ln(odds) \in R$$

$$\overrightarrow{w}^T \cdot x \in R$$

$$\ln(odds_{+}) = \ln(\frac{p}{1-p}) = \ln(p) - \ln(1-p)$$

$$\ln(odds_{-}) = \ln(\frac{1-p}{p}) = \ln(1-p) - \ln(p)$$

$$\ln(odds_{+}) = -\ln(odds_{-}) = w^{T} \cdot x$$

$$odds = e^{w^T x} \quad \Rightarrow \quad p = \frac{e^{w^T x}}{1 + e^{w^T x}}$$

$$p = \frac{e^{w^T x}}{1 + e^{w^T x}} = \frac{1}{1 - e^{-w^T x}}$$

$$f(x_i, w) = \sigma(z) = \frac{1}{1 + e^{-z}} \in [0; 1]$$

Правдоподобие (вероятность наблюдать вектор y при заданных значениях X и w)

Делаем предположение: объекты приходят независимо, из одного распределения

$$P(\overrightarrow{y}|X,w) = \prod_{i=1}^{l} P(y = y_i|x_i, w) \to max$$

Правдоподобие (вероятность наблюдать вектор y при заданных значениях X и w)

<u>Делаем предположение: объекты приходят независимо, из одного распределения</u>

$$P(\overrightarrow{y}|X,w) = \prod_{i=1}^{l} P(y = y_i|x_i, w) \to max$$

Так как логарифм монотонно возрастающая функция, то оценка *w* максимизирующая логарифм, будет максимизировать и само правдоподобие

$$\log P(\overrightarrow{y} \mid X, w) = \sum_{i=1}^{l} \log \sigma(y_i w^T x) = \sum_{i=1}^{l} \log \frac{1}{1 + e^{-y_i \langle w, x_i \rangle}} = -\sum_{i=1}^{l} \log(1 + e^{-y_i \langle w, x_i \rangle})$$

$$\mathcal{Q}(a, X) = \frac{1}{l} \sum_{i=1}^{l} \log(1 + e^{-y_i \langle w, x_i \rangle}) \to min$$

Правдоподобие (вероятность наблюдать вектор y при заданных значениях X и w)

Делаем предположение: объекты приходят независимо, из одного распределения

$$P(\overrightarrow{y}|X,w) = \prod_{i=1}^{l} P(y = y_i|x_i, w) \to max$$

Так как логарифм монотонно возрастающая функция, то оценка *w* максимизирующая логарифм, будет максимизировать и само правдоподобие

$$\log P(\overrightarrow{y} \mid X, w) = \sum_{i=1}^{l} \log \sigma(y_i w^T x) = \sum_{i=1}^{l} \log \frac{1}{1 + e^{-y_i \langle w, x_i \rangle}} = -\sum_{i=1}^{l} \log(1 + e^{-y_i \langle w, x_i \rangle})$$

$$\mathcal{Q}(a, X) = \frac{1}{l} \sum_{i=1}^{l} \log(1 + e^{-y_i \langle w, x_i \rangle}) \to min$$

$$P(\overrightarrow{y} | X, w) = \prod_{i=1}^{l} P(y = y_i | x_i, w) \to max$$

$$P(\overrightarrow{y}|X,w) = \prod_{i=1}^{l} P(y = y_i|x_i, w) = \prod_{i=1}^{l} a_i^{y_i} (1 - a_i)^{(1 - y_i)} \qquad \mathbb{Y} = \{\mathbf{0}; \mathbf{1}\}$$

$$P(\overrightarrow{y} | X, w) = \sum_{i=1}^{l} \log a_i^{y_i} (1 - a_i)^{(1 - y_i)} = \sum_{i=1}^{l} y_i \log a_i + (1 - y_i) \log(1 - a_i) \to max$$

$$Q(a, X) = \frac{1}{l} \sum_{i=1}^{l} -y_i \log a_i - (1 - y_i) \log(1 - a_i) \to min$$

$$\mathcal{Q}(a, X) = \frac{1}{l} \sum_{i=1}^{l} \log(1 + e^{-y_i \langle w, x_i \rangle}) \to min$$

$$-\begin{cases} \log a_i, & y_i = 1, \\ \log(1-a_i), & y_i = 0. \end{cases}$$

если для объекта 1го класса мы предсказываем нулевую вероятность принадлежности к этому классу или, наоборот, для объекта 0го – единичную вероятность принадлежности к классу 1, то ошибка равна бесконечности! Таким образом, грубая ошибка на одном объекте сразу делает алгоритм бесполезным.

Обобщение для многомерного случая

Sigmoid

$$\sigma(z) = \frac{1}{1 + e^{-z}} \in [0; 1]$$

$$\mathcal{L} = \frac{1}{l} \sum_{i=1}^{l} -y_i \log a_i - (1 - y_i) \log(1 - a_i)$$

Softmax

$$\sigma(z)_{j} = \frac{e^{z_{j}}}{\sum_{k=1}^{K} e^{z_{k}}} \in [0; 1] \qquad \sum_{k=1}^{K} \sigma(z)_{k} = 1$$

$$\mathcal{L} = \frac{1}{l} \sum_{i=1}^{l} \sum_{k=1}^{K} y_{ik} \log a_{ik}$$