

Macierzowy opis grafu.

dr Anna Beata Kwiatkowska, UMK Toruń

Macierz sąsiedztwa grafu - przypomnienie

Macierz $A=[a_{i,i}]$ o n wierszach i n kolumnach taka, że:

 $\mathbf{a_{i,j}} = \mathbf{1}$ jeśli istnieje krawędź od i-tego do j-tego wierzchołka

 $\mathbf{a_{i,j}} = \mathbf{0}$ w przeciwnym wypadku

Rozumiemy tu, że krawędź {v, u} grafu niezorientowanego prowadzi zarówno od v do u, jak i od u do v.

	1	2	3	4	5	6
1	0	1	1	0	1	6 0
2	1	0	1			0
3	1	0 1		1	0	0
4	0	0		0	1	1
5	1	1	0	1	0	1
6	0	0	0	1	1	0

Macierz sąsiedztwa digrafu - przypomnienie

Macierz $\mathbf{B}=[\mathbf{b_{i,j}}]$ o n wierszach i n kolumnach taka, że:

 $\mathbf{b_{i,i}} = \mathbf{1}$ jeśli istnieje łuk od i-tego do j-tego wierzchołka

 $\mathbf{b_{i,i}} = \mathbf{0}$ w przeciwnym wypadku

Rozumiemy tu, że łuk (v, u) grafu niezorientowanego prowadzi od v do u.

	1	2	3.	4	5	6
1	0	1	-1	0	0	0
2	0	0	0	0	0	0
3	0	1	0	1	0	0
4	0	0	0	0	0	0
5	0	0	0	1	0	1
6	1 0 0 0 0 0	0	0	0	1	0 _

Macierz sąsiedztwa - informacje

Z macierzy sąsiedztwa grafu łatwo jest odczytać niektóre własności grafu:

- Jeśli macierz jest symetryczna, to graf jest niezorientowany.
- Jeśli elementy diagonalne są równe zero, to graf nie ma pętli własnych.
- Jeżeli elementami macierzy sąsiedztwa są liczby 0 lub 1 to graf nie ma krawędzi równoległych.
- Jeśli macierz jest symetryczna o elementach równych 0 lub 1 i zerowych elementach diagonalnych, to jest to macierz grafu prostego.
- Stopień i-tego wierzchołka grafu niezorientowanego jest równy liczbie jedynek w i-tym wierszu (kolumnie), stopień wyjściowy jest równy liczbie jedynek w i-tym wierszu, stopień wejściowy jest równy liczbie jedynek w i-tej kolumnie.

Macierz sąsiedztwa a grafy dwudzielne

 Jeżeli G jest grafem dwudzielnym, to przy odpowiedniej numeracji jego wierzchołków macierz sąsiedztwa można przedstawić w postaci macierzy blokowej

$$\mathbf{A} = \begin{bmatrix} 0 & A_{12} \\ A_{21} & 0 \end{bmatrix}$$

ponadto jeśli jest to graf niezorientowany, to $A_{12} = A_{21}^T$.

Α	0	1	2	3	4
0	0	0	1	1	1
1	0	0	1	1	1
2	1	1	0	0	0
3	1	1	0	0	0
4	1	1	0	0	0

Stopnie wierzchołków i liczba dróg w grafie

Własność 7.1.

Jeśli G jest grafem prostym o macierzy sąsiedztwa A, to element (i, j) macierzy A² jest równy:

- stopniowi i-tego wierzchołka, gdy i = j;
- liczbie dróg o długości 2 łączących wierzchołek i-ty z j-tym, gdy $i \neq j$.

Dowód:

Niech a_{ij}^2 oznacza element (i, j) macierzy A². Wówczas $a_{ij}^2 = \sum_{k=1}^n a_{ik} a_{kj}$. Wiadomo, że A jest macierzą symetryczną.

Jeśli i = j, to element a_{ij}^2 jest równy licznie jedynek i-tego wiersza (kolumny), to znaczy jest równy stopniowi wierzchołka.

Jeśli i \neq j, to element a_{ij}^2 jest równy liczbie pozycji, na których i-ty wiersz i j-ta kolumna mają jednocześnie jedynki, to znaczy istnieje krawędź łącząca wierzchołki i-ty z k-tym i k-ty z j-tym.

Oznacza to, że istnieje ścieżka o długości 2 pomiędzy wierzchołkami i-tym i j-tym. \square

Przykład – graf i drogi długości 2

Α	0	1	2	3	4	Α		0	1	2	3	4	A ²	0	1	2	3	4
0	0	0	1	1	1		0	0	0	1	1	1	0	3	1	1	2	1
1	0	0	1	0	0		1	0	0	1	0	0	1	1	1	0	1	0
2	1	1	0	1	0	*	2	1	1	0	1	0	= 2	1	0	3	1	2
3	1	0	1	0	1		3	1	0	1	0	1	3	2	1	1	3	1
4	1	0	0	1	0		4	1	0	0	1	0	4	1	0	2	1	2

Stopnie wierzchołków i liczba dróg w digrafie

Własność 7.2.

Jeśli D jest digrafem prostym o macierzy sąsiedztwa A, to element (i, j) macierzy A² jest równy liczbie dróg zorientowanych o długości 2 łączących wierzchołek i-ty z j-tym.

Dowód:

Niezerowe elementy i-tego wiersza macierzy A reprezentują łuki wychodzące z i-tego wierzchołka. Niezerowe elementy j-tej kolumny reprezentują łuki dochodzące do j-tego wierzchołka.

Analogicznie do dowodu własności 7.1 można stwierdzić, że a_{ij}^2 jest równy liczbie łuków o długości 2, łączących wierzchołek i-ty z j-tym. \Box

Stopnie wierzchołków i liczba dróg

Twierdzenie 7.1.

Jeśli D jest digrafem prostym o macierzy sąsiedztwa A, to element (i, j) macierzy $A^1 + A^2 + ... + A^{n-1}$

jest równy liczbie wszystkich dróg zorientowanych (marszrut) łączących wierzchołek i-ty z j-tym.

Dowód:

Wystarczy pokazać, że element (i, j) macierzy A^k jest liczbą marszrut z wierzchołka i-tego do j-tego długości k.

Dowód przeprowadzamy indukcyjnie (szkic):

 A^1 jest macierzą sąsiedztwa, co daje prawdziwość twierdzenia dla k=1.

Oczywiście $A^k = A^{k-1}A$.

Z własności 7.2 i z założenia indukcyjnego mamy prawdziwość twierdzenia.

Izomorfizm grafów - przypomnienie

Definicja 2.1.

Grafy proste $G_1=(V_1, E_1)$ i $G_2=(V_2, E_2)$ są izomorficzne, ozn. $G_1 \cong G_2$, gdy istnieje bijekcja

$$f:V_1 \to V_2$$

taka, $\dot{z}e\{u,v\} \in E_1$ wtedy i tylko wtedy, gdy $\{f(v), f(u)\} \in E_2$.

$$G_1 \cong G_2$$
,

$$f(0) = g$$

$$f(1) = a$$

$$f(2) = b$$

$$f(3) = c$$

$$f(4) = d$$

$$f(5) = e$$

$$f(6) = f$$

Izomorfizm grafów a macierz sąsiedztwa

Izomorfizm grafów można wyrazić za pomocą macierzy sąsiedztwa grafu. Jednoczesne przestawienie dwóch wierszy i dwóch kolumn macierzy A o tych samych indeksach jest równoważne zamianie numerów wierzchołków.

Twierdzenie 7.2.

Graf G_1 o macierzy sąsiedztwa A_1 i graf G_2 o macierzy sąsiedztwa A_2 , obydwa o n wierzchołkach, są izomorficzne wtedy i tylko wtedy gdy macierz A_1 jest transformowalna do macierzy A_2 przez permutacje macierzy i kolumn, tzn. istnieje macierz permutacji P rzędu n taka, że

$$\mathbf{P} \mathbf{A}_1 \mathbf{P}^{\mathbf{T}} = \mathbf{A}_2$$

Uzasadnienie:

Lewostronne mnożenie przez macierz P permutuje wiersze macierzy A_1 , a prawostronne mnożenie przez P^T w taki sam sposób permutuje kolumny.

Izomorfizm

A_2	0	1	2	3	4
0	0	1	1	0	1
1	1	0	1	0	1
2	1	1	0	1	0
3	0	0	1	0	0
4	1	1	0	0	0

Macierz incydencji grafu - przypomnienie

Klasyczny sposób reprezentacji grafu - macierz **B** o **n** wierszach odpowiadających wierzchołkom i **m** kolumnach odpowiadających krawędziom.

W przypadku **grafu niezorientowanego**, w kolumnie odpowiadającej krawędzi {v, u} zawiera 1 w wierszach odpowiadających v i u oraz zera w pozostałych wierszach.

						(3,4)			
1	1	1	1	0	0	0	0	0	0 0 0 0 1 1
2	1	0	0	1	1	0	0	0	0
3	0	1	0	1	0	1	0	0	0
4	0	0	0	0	0	1	1	1	0
5	0	0	1	0	1	0	1	0	1
6	0	0	0	0	0	0	0	1	1_

Macierz incydencji digrafu - przypomnienie

Klasyczny sposób reprezentacji grafu - macierz **C** o **n** wierszach odpowiadających wierzchołkom i **m** kolumnach odpowiadających krawędziom.

Dla **digrafu** kolumna odpowiadająca krawędzi (v, u) zawiera -1 w wierszu odpowiadającym wierzchołkowi v, 1 w wierszu odpowiadającym wierzchołkowi u, a zera w pozostałych wierszach.

Macierz incydencji

Na podstawie macierzy incydencji grafu można poczynić następujące spostrzeżenia:

- Ponieważ każda krawędź jest incydentna do dokładnie dwóch wierzchołków, więc każda kolumna macierzy incydencji zawiera dokładnie dwie jedynki.
- Liczba jedynek w każdym wierszu jest równa stopniowi odpowiadającego mu wierzchołka.
- Wiersz z samych zer reprezentuje wierzchołek izolowany (nie ma krawędzi incydentnych do niego)
- Krawędzie równoległe w grafie tworzą identyczne kolumny w jego macierzy incydencji.
- Jeśli graf jest niespójny i składa się z dwóch składowych G1 i G2, to macierz incydencji B grafu G może być zapisana w formie blokowej $B = \begin{bmatrix} 0 & B2 \\ B1 & 0 \end{bmatrix}$, gdzie B1 i B2 są macierzami incydencji składowych G1 i G2.
- Permutacja dowolnych dwóch wierszy lub kolumn w macierzy incydencji odpowiada przeetykietowaniu wierzchołków i krawędzi tego samego grafu.
- W macierzy incydencji C digrafu suma elementów w każdej kolumnie wynosi 0.

Izomorfizm grafów a macierz incydencji

Twierdzenie 7.3.

Graf G_1 o macierzy incydencji B_1 i graf G_2 o macierzy incydencji B_2 są izomorficzne wtedy i tylko wtedy, gdy macierze incydencji B_1 i B_2 różnią się tylko permutacją wierszy i kolumn.

Dowód:

Wynika z definicji macierzy incydencji i izomorfizmu oraz wniosków na poprzednim slajdzie.

Macierz stopni

Definicja 7.2

Niech G=(V,E), gdzie |V|=n, będzie grafem prostym, $v_i \in V$. Macierz D o wymiarze n x n, taką, że

$$d_{ij} = \begin{cases} \deg(v_i) & gdy \ i = j \\ 0 & gdy \ i \neq j \end{cases}$$

nazywamy macierzą stopni grafu G.

Przykład Graf G i jego macierz stopni D.

G

)	0	1	2	3	4
0	3	0	0	0	0
1	0	1	0	0	0
2	0	0	3	0	0
3	0	0	0	3	0
4	0	0	0	0	2

Związek między macierzami grafu

Twierdzenie 7.4

Jeśli G jest grafem prostym oraz macierze A, B, D są odpowiednio jego macierzą sąsiedztwa, macierzą incydencji oraz macierzą stopni to

$$BB^T = D + A$$

Dowód:

Niech mij będzie elementem w i-tym wierszu oraz j-tej kolumnie macierzy $M = BB^T$.

Z definicji wynika, że $m_{ij} = b_{i1}b_{j1} + ... + b_{i|E|}b_{j|E|}$.

Rozważamy dwa przypadki:

- $i \neq j$ wtedy $b_{ik}b_{jk}=1$ jest równoważne temu, że krawędź e_k łączy wierzchołek i-ty z j-tym, więc $m_{ij}=1$ wtedy ii tylko wtedy, gdy wierzchołek i-ty sąsiaduje z j-tym.
- i = j Wtedy $b_{ik}b_{jk} = 1$ jest równoważne temu, że krawędź e_k jest incydentna z wierzchołkiem i-tym. Sumując wartości $b_{ik}b_{ik}$ dla k = 1, ..., |E| uzyskujemy liczb krawędzi incydentnych do wierzchołka i-tego, czyli jego stopień.

Dziękuję z uwagę

dr Anna Beata Kwiatkowska

aba@mat.umk.pl

tel. 602 184 813