These packages come with ABSOLUTELY NO WARRANTY; for details type Disclaimer[]. This is free software, and you are welcome to redistribute it under certain conditions. See the General Public License for details.

PSALTer Calibration for the WGTE cases based on Lin's draft

About xPlain and formatting

Welcome to the calibration file for the PSALTer package. Commentary is provided in this green text throughout by virtue of the xPlain package.

Key observation: Occasionally, more important points will be highlighted in boxes like this.

The xPlain package is not part of PSALTer, so the output from PSALTer itself will contrast with this formatting and be quite distinctive.

The structure of this file

The calibration file runs PSALTer on a very long list of theories, whose particle spectra are already known.

The first step is to load the PSALTer package.

Package xAct`PSALTer` version 1.0.0-developer, {2024, 1, 11}

CopyRight © 2022, Will E. V. Barker, Stephanie Buttigieg, Carlo Marzo, Cillian Rew, Claire Rigouzzo, Zhiyuan Wei, Haoyang Ye and David Yallup, under the General Public License.

These packages come with ABSOLUTELY NO WARRANTY; for details type Disclaimer[]. This

is free software, and you are welcome to redistribute it under certain conditions. See the General Public License for details.

Great, so PSALTer is now loaded and we can start to do some science.

Weyl gauge theory extended (eWGT)

Key observation: We will test the WeylGaugeTheoryExtended module. This is an extension to test eWGT [Lasenby and Hobson 2016].

(2)

Key observation: This section is still under development by Zhiyuan.

Preamble: setting out the fields

We present the tetrad,

••• ValidateSymbol: Symbol WeylTetrad is already used as a tensor.

and the inverse tetrad.

••• ValidateSymbol: Symbol WeylInvTetrad is already used as a tensor.

We present the tetrad in terms of perturbation tetrad f,

 $\delta_{\alpha}^{\chi} + f_{\alpha}^{\chi}$

and the inverse tetrad in terms of perturbation tetrad f.

 $\delta^{\alpha}_{\chi} + f^{\alpha\beta} f_{\beta\chi} - f_{\chi}^{\alpha}$

••• ValidateSymbol: Symbol WeylDaggerA is already used as a tensor.

\cdots General: Further output of ValidateSymbol::used will be suppressed during this calculation. 🕖

We present and expand the eWGT (dagger) field strengths:

T+:

$$\mathcal{T}^{\alpha}_{\beta\chi} - \frac{1}{3} \delta^{\alpha}_{\chi} \mathcal{T}^{\delta}_{\beta\delta} + \frac{1}{3} \delta^{\alpha}_{\beta} \mathcal{T}^{\delta}_{\chi}$$

$$-\frac{1}{3} \partial_{\alpha} \mathcal{T}^{\chi}_{\beta \chi} + \frac{1}{3} \partial_{\beta} \mathcal{T}^{\chi}_{\alpha \chi} + h_{\alpha}^{\chi} h_{\beta}^{\delta} \partial_{\chi} \mathcal{B}_{\delta} - h_{\alpha}^{\chi} h_{\beta}^{\delta} \partial_{\delta} \mathcal{B}_{\chi}$$

CovD+(Phi):

$$\frac{1}{3} \phi \mathcal{T}^{\beta}_{\alpha\beta} b^{\alpha}_{i} - \phi \mathcal{B}_{i} + \partial_{i} \phi$$

$$\mathcal{A}^{\dagger}{}^{\alpha\gamma}{}_{\phi} \ \mathcal{A}^{\dagger}{}^{\beta}{}_{\chi\chi} \ h_{\delta}^{\ \chi} \ h_{\epsilon}^{\ \phi} - \mathcal{A}^{\dagger}{}^{\alpha\gamma}{}_{\chi} \ \mathcal{A}^{\dagger}{}^{\beta}{}_{\gamma\phi} \ h_{\delta}^{\ \chi} \ h_{\epsilon}^{\ \phi} + h_{\delta}^{\ \chi} \ h_{\epsilon}^{\ \phi} \ \partial_{\chi} \mathcal{A}^{\dagger}{}^{\alpha\beta}{}_{\phi} - h_{\delta}^{\ \chi} \ h_{\epsilon}^{\ \phi} \ \partial_{\phi} \mathcal{A}^{\dagger}{}^{\alpha\beta}{}_{\chi}$$

I want to check the outputs for Einstein Gauge expansion

(9)

(16)

Here is the non-linear expansion of A+ to level of perturbation field f:

$$\mathcal{A}^{\alpha\beta}_{\ \theta} - \delta^{\beta}_{\ \theta} \mathcal{B}^{\alpha} - f^{\beta\chi}_{\ \chi\theta} f_{\chi\theta} \mathcal{B}^{\alpha} + f^{\beta}_{\ \theta} \mathcal{B}^{\alpha} + \delta^{\alpha}_{\ \theta} \mathcal{B}^{\beta} + f^{\alpha\chi}_{\ \chi\theta} f_{\chi\theta} \mathcal{B}^{\beta} - f^{\alpha}_{\ \theta} \mathcal{B}^{\beta} + \delta^{\beta}_{\ \theta} f^{\chi\alpha} \mathcal{B}_{\chi} - \delta^{\alpha}_{\ \theta} f^{\chi\beta} \mathcal{B}_{\chi} + f^{\chi\beta}_{\ \theta} f^{\alpha}_{\ \theta} \mathcal{B}_{\chi} - f^{\chi\alpha}_{\ \theta} f^{\beta}_{\ \theta} \mathcal{B}_{\chi} - f^{\alpha}_{\ \theta} \mathcal{B}_{\chi} - f^{\alpha}_{\ \theta} f^{\beta}_{\ \theta} \mathcal{B}_{\chi} - f^{\alpha}_{\ \theta} f^{\beta}_{\ \theta} \mathcal{B}_{\chi} - f^{\alpha}_{\ \theta} f^{\beta}_{\ \theta} \mathcal{B}_{\chi} - f^{\alpha}_{\ \theta} \mathcal{B}_{\chi} - f^{\alpha}_{\ \theta} \mathcal{B}_{\chi} - f^{\alpha}_{\ \theta} f^{\beta}_{\ \theta} \mathcal{B}_{\chi} - f^{\alpha}_{\ \theta} \mathcal{B}_{\chi} - f^{\alpha}_{\ \theta} f^{\beta}_{\ \theta} \mathcal{B}_{\chi} - f^{\alpha}_{\ \theta} \mathcal{B}_{\chi} - f$$

Here is the linearised expansion:

$$\mathcal{A}^{\alpha\beta}_{\theta} - \delta^{\beta}_{\theta} \mathcal{B}^{\alpha} + \delta^{\alpha}_{\theta} \mathcal{B}^{\beta}$$

We present and expand A+ and T into PGT field strengths:

A+:

$$\mathcal{A}^{\alpha\beta}_{\theta} - \delta^{\beta}_{\theta} \mathcal{B}^{\alpha} + \delta^{\alpha}_{\theta} \mathcal{B}^{\beta}$$

T:

$$\mathcal{A}_{\chi\delta}^{\alpha} h_{\beta}^{\delta} - \mathcal{A}_{\beta\delta}^{\alpha} h_{\chi}^{\delta} + h_{\beta}^{\delta} h_{\chi}^{\epsilon} \partial_{\delta} b_{\epsilon}^{\alpha} - h_{\beta}^{\delta} h_{\chi}^{\epsilon} \partial_{\epsilon} b_{\delta}^{\alpha}$$

Check two expressions for A+ are the same:

Here is the non-linear expansion of A+ to level of perturbation field f:

$$\mathcal{A}^{\alpha\beta}_{\theta} - \delta^{\beta}_{\theta} \mathcal{B}^{\alpha} - f^{\beta\chi}_{\chi} f_{\chi\theta} \mathcal{B}^{\alpha} + f^{\beta}_{\theta} \mathcal{B}^{\alpha} + \delta^{\alpha}_{\theta} \mathcal{B}^{\beta} + f^{\alpha\chi}_{\chi} f_{\chi\theta} \mathcal{B}^{\beta} - f^{\alpha}_{\theta} \mathcal{B}^{\beta} + \delta^{\beta}_{\theta} f^{\chi\alpha}_{\theta} \mathcal{B}_{\chi} - \delta^{\alpha}_{\theta} f^{\chi\beta}_{\theta} \mathcal{B}_{\chi} - f^{\chi\alpha}_{\theta} f^{\beta}_{\theta} \mathcal{B}_{\chi} - f^{\chi\alpha}_{\theta} \mathcal{B}_{\chi} - f^{\chi\alpha$$

Here is the linearised expansion:

$$\mathcal{A}^{\alpha\beta}_{\ \theta} - \delta^{\beta}_{\ \theta} \mathcal{B}^{\alpha} + \delta^{\alpha}_{\ \theta} \mathcal{B}^{\beta}$$

Λ

Key observation: Now we have defined all the fields we need.

In eqn 15 of Lin's draft, we check that the T+ contraction = 0. Here we expand T+ to PGT T.

0 (17)

In Eq. (18) this is the non-linear Lagrangian as given in eqn 13 of Lin's draft paper.

$$\frac{1}{2} \stackrel{\mathbf{v}}{\cdot} \mathcal{D}^{\dagger} \phi_{i} \mathcal{D}^{\dagger} \phi^{i} + \xi \stackrel{\mathbf{v}}{\cdot} \mathcal{H}^{\dagger}_{\alpha\beta} \mathcal{H}^{\dagger\alpha\beta} + \lambda \stackrel{\mathbf{v}}{\cdot} \phi^{2} \mathcal{R}^{\dagger\alpha\beta}_{\alpha\beta} + \left(\frac{r}{3} + \frac{r}{6}\right) \mathcal{R}^{\dagger}_{\alpha\beta\chi\delta} \mathcal{R}^{\dagger\alpha\beta\chi\delta} + \left(\frac{2r}{3} - \frac{2r}{3}\right) \mathcal{R}^{\dagger}_{\alpha\chi\beta\delta} \mathcal{R}^{\dagger\alpha\beta\chi\delta} - c \stackrel{\mathbf{v}}{\cdot} \mathcal{H}^{\dagger\alpha\beta}_{\alpha\beta} \mathcal{R}^{\dagger\alpha\chi\beta}_{\alpha\beta} + \left(\frac{2r}{3} - \frac{2r}{3}\right) \mathcal{R}^{\dagger}_{\alpha\chi\beta\delta} \mathcal{R}^{\dagger\alpha\beta\chi\delta} - c \stackrel{\mathbf{v}}{\cdot} \mathcal{H}^{\dagger\alpha\beta}_{\alpha\beta} \mathcal{R}^{\dagger\alpha\chi\beta}_{\alpha\beta} + \left(\frac{2r}{3} - \frac{2r}{3}\right) \mathcal{R}^{\dagger}_{\alpha\chi\beta\delta} \mathcal{R}^{\dagger\alpha\beta\chi\delta} - c \stackrel{\mathbf{v}}{\cdot} \mathcal{H}^{\dagger\alpha\beta}_{\alpha\beta} \mathcal{R}^{\dagger\alpha\chi\beta}_{\alpha\beta} + \left(\frac{2r}{3} - \frac{2r}{3}\right) \mathcal{R}^{\dagger\alpha\beta\chi\delta}_{\alpha\beta} \mathcal{R}^{\dagger\alpha\beta\chi\delta} - c \stackrel{\mathbf{v}}{\cdot} \mathcal{H}^{\dagger\alpha\beta}_{\alpha\beta} \mathcal{R}^{\dagger\alpha\gamma\beta}_{\alpha\beta} + \left(\frac{2r}{3} - \frac{2r}{3}\right) \mathcal{R}^{\dagger\alpha\gamma\beta}_{\alpha\beta} \mathcal{R}^{\dagger\alpha\beta\chi\delta}_{\alpha\beta} + \left(\frac{2r}{3} - \frac{2r}{3}\right) \mathcal{R}^{\dagger\alpha\gamma\beta}_{\alpha\beta} \mathcal{R}^{\dagger\alpha\beta\gamma\delta}_{\alpha\beta} + \left(\frac{2r}{3} - \frac{2r}{3}\right) \mathcal{R}^{\dagger\alpha\beta\gamma\delta}_{\alpha\beta} \mathcal{R}^{\dagger\alpha\beta\gamma\delta}_{\alpha\beta} + \left(\frac{2r}{3} - \frac{2r}{3}\right) \mathcal{R}^{\dagger\alpha\gamma\beta}_{\alpha\beta} \mathcal{R}^{\dagger\alpha\beta\gamma\delta}_{\alpha\beta} + \left(\frac{2r}{3} - \frac{2r}{3}\right) \mathcal{R}^{\dagger\alpha\gamma\beta}_{\alpha\beta} \mathcal{R}^{\dagger\alpha\beta\gamma\delta}_{\alpha\beta} + \left(\frac{2r}{3} - \frac{2r}{3}\right) \mathcal{R}^{\dagger\alpha\gamma\beta}_{\alpha\beta} \mathcal{R}^{\dagger\alpha\gamma\beta}_{\alpha\beta} + \left(\frac{2r}{3} - \frac{2r}{3}\right) \mathcal{R}^{\dagger\alpha\gamma\beta}_{\alpha\beta} + \left(\frac{2r}{3} - \frac{2r}{3}\right) \mathcal{R}^{\dagger\alpha\gamma\beta}_{\alpha\beta} \mathcal{R}^{\dagger\alpha\gamma\beta}_{\alpha\beta} + \left(\frac{2r}{3} - \frac{2r}{3}\right) \mathcal{R}^{\dagger\alpha\gamma}_{\alpha\beta} + \left(\frac{2r}{3} - \frac{2r}{3}\right) \mathcal{R}^{\dagger\alpha\gamma}_{\alpha\beta} + \left(\frac{2r}{3} - \frac{2r}{3$$

$$\left(\begin{matrix} r_{\text{.}} + r_{\text{.}} \\ 4 + 5 \end{matrix}\right) \mathcal{R}^{\dagger}_{\alpha\delta\beta} \mathcal{R}^{\dagger}_{\alpha\delta\beta} \mathcal{R}^{\dagger}_{\lambda} \mathcal{R}^{\dagger}_{\lambda} + \left(\begin{matrix} r_{\text{.}} - r_{\text{.}} \\ 4 - r_{\text{.}} \end{matrix}\right) \mathcal{R}^{\dagger}_{\beta\delta\alpha} \mathcal{R}^{\dagger}_{\lambda} \mathcal{R}^{\dagger}_{\beta\delta\alpha} \mathcal{R}^{\dagger}_{\lambda} \mathcal{R}^{\dagger}_{\beta\delta\alpha} \mathcal{R}^{\dagger}_{\lambda} \mathcal{R}^{\dagger}_{\lambda} \mathcal{R}^{\dagger}_{\beta\delta\alpha} \mathcal{R}^{\dagger}_{\lambda} \mathcal{R}^{\dagger}_{\lambda}$$

Diagnostic: Now the non-linear Lagrangian has been expanded to PGT quantities. This is now stored for linearisation.

Test case 1: E--H action.

We test the case of the modified Einstein-Hilbert action, and the code will give only 2 propagating graviton modes.

$$\lambda. \phi^2 \mathcal{R}^{\dagger \alpha \beta}_{\alpha \beta}$$

Here, we perform rescalings after application of Einstein Gauge: $\phi_-0^2*\lambda \rightarrow \lambda$, $\phi_-0^2*v \rightarrow v$, $\phi_-0^2*t_-i \rightarrow t_-i$. Also

 $\phi_{-}0 \rightarrow 1$, i.e. here I am making the compensator dimensionless, any possible masses order 1. I do this to prevent any denominators phi/phi0.

Here is the linearised Lagrangian before feeding into ParticleSpectrum[].

$$\lambda. \mathcal{A}_{\alpha\chi\beta} \mathcal{A}^{\alpha\beta\chi} + \lambda. \mathcal{A}_{\alpha\beta}^{\alpha\beta} \mathcal{A}_{\beta\chi}^{\chi} + 4\lambda. \mathcal{A}_{\alpha\beta}^{\beta} \mathcal{B}^{\alpha} - 6\lambda. \mathcal{B}_{\alpha\beta}^{\beta} \mathcal{B}^{\alpha} - 6\lambda. \partial_{\alpha}\mathcal{B}^{\alpha} + 2\lambda. f^{\alpha\beta} \partial_{\beta}\mathcal{A}_{\alpha\chi}^{\chi} - 2\lambda. \partial_{\beta}\mathcal{A}_{\alpha\beta}^{\alpha\beta} - 4\lambda. f^{\alpha\beta} \partial_{\beta}\mathcal{B}_{\alpha} + 4\lambda. f^{\alpha}_{\alpha} \partial_{\beta}\mathcal{B}^{\beta} - 2\lambda. f^{\alpha\beta} \partial_{\chi}\mathcal{A}_{\alpha\beta}^{\chi} + 2\lambda. f^{\alpha}_{\alpha} \partial_{\chi}\mathcal{A}_{\beta\beta}^{\chi}$$

(19)

TaskRemove: A string or a TaskObject is expected instead of CellObject 58808c55-75f1-4216-8386-296cebfad10c

PSALTer results panel

$$S = \iiint (\phi \, \rho + \, \sigma^{\alpha \beta \chi} \, \, \mathcal{R}_{\alpha \beta \chi} + \, \mathcal{J}^{\alpha \beta} \, \, f_{\alpha \beta} + \, \mathcal{J}^{\alpha} \, \, \mathcal{B}_{\alpha} + \, \lambda \cdot (\, \mathcal{R}_{\alpha \chi \beta} \, \, \mathcal{R}^{\alpha \beta \chi} + \, \mathcal{R}^{\alpha \beta}_{\alpha \beta} \, \, \mathcal{R}^{\chi} + \, 4 \, \, \mathcal{R}^{\beta}_{\alpha \beta} \, \, \mathcal{B}^{\alpha} - \, 6 \, \, \mathcal{B}_{\alpha} \, \, \mathcal{B}^{\alpha} + \, 2 \, \, f^{\alpha \beta}_{\alpha \beta} \, \, \partial_{\beta} \mathcal{R}^{\chi}_{\alpha \beta} - \, 4 \, \, f^{\alpha \beta}_{\alpha \beta} \, \partial_{\beta} \mathcal{B}_{\alpha} + \, 4 \, \, f^{\alpha}_{\alpha \beta} \, \, \partial_{\beta} \mathcal{B}^{\beta}_{\alpha} - \, 2 \, \, f^{\alpha \beta}_{\alpha \beta} \, \, \partial_{\beta} \mathcal{B}^{\beta}_{\alpha} - \, 4 \, \, f^{\alpha \beta}_{\alpha \beta} \, \partial_{\beta} \mathcal{B}^{\beta}_{\alpha} - \, 4 \, \, f^{\alpha \beta}_{\alpha \beta} \, \partial_{\beta} \mathcal{B}^{\beta}_{\alpha} - \, 4 \, \, f^{\alpha \beta}_{\alpha \beta} \, \partial_{\beta} \mathcal{B}^{\beta}_{\alpha} - \, 4 \, \, f^{\alpha \beta}_{\alpha \beta} \, \partial_{\beta} \mathcal{B}^{\beta}_{\alpha} - \, 4 \, \, f^{\alpha \beta}_{\alpha \beta} \, \partial_{\beta} \mathcal{B}^{\beta}_{\alpha} - \, 4 \, \, f^{\alpha \beta}_{\alpha \beta} \, \partial_{\beta} \mathcal{B}^{\beta}_{\alpha} - \, 4 \, \, f^{\alpha \beta}_{\alpha \beta} \, \partial_{\beta} \mathcal{B}^{\beta}_{\alpha} - \, 4 \, \, f^{\alpha \beta}_{\alpha \beta} \, \partial_{\beta} \mathcal{B}^{\beta}_{\alpha} - \, 4 \, \, f^{\alpha \beta}_{\alpha \beta} \, \partial_{\beta} \mathcal{B}^{\beta}_{\alpha} - \, 4 \, \, f^{\alpha \beta}_{\alpha \beta} \, \partial_{\beta} \mathcal{B}^{\beta}_{\alpha} - \, 4 \, \, f^{\alpha \beta}_{\alpha \beta} \, \partial_{\beta} \mathcal{B}^{\beta}_{\alpha} - \, 4 \, \, f^{\alpha \beta}_{\alpha \beta} \, \partial_{\beta} \mathcal{B}^{\beta}_{\alpha} - \, 4 \, \, f^{\alpha \beta}_{\alpha \beta} \, \partial_{\beta} \mathcal{B}^{\beta}_{\alpha} - \, 4 \, \, f^{\alpha \beta}_{\alpha \beta} \, \partial_{\beta} \mathcal{B}^{\beta}_{\alpha} - \, 4 \, \, f^{\alpha \beta}_{\alpha \beta} \, \partial_{\beta} \mathcal{B}^{\beta}_{\alpha} - \, 4 \, \, f^{\alpha \beta}_{\alpha \beta} \, \partial_{\beta} \mathcal{B}^{\beta}_{\alpha} - \, 4 \, \, f^{\alpha \beta}_{\alpha \beta} \, \partial_{\beta} \mathcal{B}^{\beta}_{\alpha} - \, 4 \, \, f^{\alpha \beta}_{\alpha \beta} \, \partial_{\beta} \mathcal{B}^{\beta}_{\alpha} - \, 4 \, \, f^{\alpha \beta}_{\alpha \beta} \, \partial_{\beta} \mathcal{B}^{\beta}_{\alpha} - \, 4 \, \, f^{\alpha \beta}_{\alpha \beta} \, \partial_{\beta} \mathcal{B}^{\beta}_{\alpha} - \, 4 \, \, f^{\alpha \beta}_{\alpha \beta} \, \partial_{\beta} \mathcal{B}^{\beta}_{\alpha} - \, 4 \, \, f^{\alpha \beta}_{\alpha \beta} \, \partial_{\beta} \mathcal{B}^{\beta}_{\alpha} - \, 4 \, \, f^{\alpha \beta}_{\alpha \beta} \, \partial_{\beta} \mathcal{B}^{\beta}_{\alpha} - \, 4 \, \, f^{\alpha \beta}_{\alpha \beta} \, \partial_{\beta} \mathcal{B}^{\beta}_{\alpha} - \, 4 \, \, f^{\alpha \beta}_{\alpha \beta} \, \partial_{\beta} \mathcal{B}^{\beta}_{\alpha} - \, 4 \, \, f^{\alpha \beta}_{\alpha \beta} \, \partial_{\beta} \mathcal{B}^{\beta}_{\alpha} - \, 4 \, \, f^{\alpha \beta}_{\alpha \beta} \, \partial_{\beta} \mathcal{B}^{\beta}_{\alpha} - \, 4 \, \, f^{\alpha \beta}_{\alpha \beta} \, \partial_{\beta} \mathcal{B}^{\beta}_{\alpha} - \, 4 \, \, f^{\alpha \beta}_{\alpha \beta} \, \partial_{\beta} \mathcal{B}^{\beta}_{\alpha} - \, 4 \, \, f^{\alpha \beta}_{\alpha \beta} \, \partial_{\beta} \mathcal{B}^{\beta}_{\alpha} - \, 4 \, \, f^{\alpha \beta}_{\alpha \beta} \, \partial_{\beta} \mathcal{B}^{\beta}_{\alpha} - \, 4 \, \, f^{\alpha \beta}_{\alpha \beta} \, \partial_{\beta} \mathcal{B}^{\beta}_{\alpha} - \, 4 \, \, f^{\alpha \beta}_{\alpha \beta} \, \partial_{\beta} \mathcal{B}^{\beta}_{\alpha} - \, 4 \, \, f^{\alpha \beta}_{\alpha \beta} \, \partial_{\beta} \mathcal{B}^{\beta}_{\alpha} - \, 4 \, \, f^{\alpha \beta}_{\alpha \beta} \, \partial_{\beta} \mathcal{B}^{\beta}_{\alpha} - \, 4 \, \, f^{\alpha \beta}_{\alpha \beta} \, \partial_{\beta} \mathcal{B}^{\beta}_{\alpha}$$

Wave operator

$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$0^{+}\mathcal{J} + \begin{array}{ c c c c c c c c c c c c c c c c c c c$											
0° \rho + 0 0 0 0 0 0 0											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
•											
$0^+\tau^{\parallel} + \begin{vmatrix} \frac{i\sqrt{3}}{7k\lambda} & 0 & -\frac{i}{7\sqrt{2}k\lambda} & \frac{1}{2k^2\lambda} & 0 \end{vmatrix} = 0$											
0.7 τ^{\perp} \uparrow 0 0 0 0 0 0											
$[\cdot, \sigma] + \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & -\frac{1}{\lambda} \end{bmatrix}$	1. σ αβ	$^{1^+}\sigma^{\scriptscriptstyle\perp}_{\alpha\beta}$	$^{1^+}\tau^{\parallel}_{\alpha\beta}$	$^{1}\mathcal{J}_{lpha}$	$^{1.}\sigma^{\parallel}{}_{\alpha}$	$^{1}\sigma_{\alpha}^{\perp}$	$^{1.}\tau^{\parallel}_{\alpha}$	$^{1.}\tau^{\perp}_{\alpha}$			
	0	$-\frac{\sqrt{2}}{\lambda.+k^2\lambda.}$	$-\frac{i\sqrt{2}k}{\lambda + k^2\lambda}.$	0	0	0	0	0			
1. σ₁ 1	$\frac{1}{\lambda + k^2 \lambda}$	$\frac{1}{(1+k^2)^2 \lambda}.$	$\frac{ik}{(1+k^2)^2 \lambda}.$	0	0	0	0	0			
1.° r " †	$\frac{i \sqrt{2} k}{\lambda + k^2 \lambda}.$	$-\frac{ik}{(1+k^2)^2\lambda}.$	$\frac{k^2}{(1+k^2)^2 \lambda}.$	0	0	0	0	0			
1: <i>g</i>	- ^α 0	0	0	$-\frac{2(3+8k^2)}{(7+10k^2)^2\lambda}.$	$\frac{2(-1+6k^2)}{(7+10k^2)^2\lambda}.$	$\frac{\sqrt{2} (1+20 k^2)}{(7+10 k^2)^2 \lambda}.$	0	$\frac{2 i (k+20 k^3)}{(7+10 k^2)^2 \lambda}.$			
1. ol	-α 0	0	0	$\frac{2(-1+6k^2)}{(7+10k^2)^2\lambda}.$	$\frac{16 (2+k^2)}{(7+10 k^2)^2 \lambda}.$	$\frac{\sqrt{2} (33+10 k^2)}{(7+10 k^2)^2 \lambda}$	0	$\frac{2 i k (33+10 k^2)}{(7+10 k^2)^2 \lambda}.$			
1. σ ^L	0	0	0	$\frac{\sqrt{2} (1+20 k^2)}{(7+10 k^2)^2 \lambda}$	$\frac{\sqrt{2} (33+10 k^2)}{(7+10 k^2)^2 \lambda}$	$\frac{65}{(7+10 k^2)^2 \lambda}$	0	$\frac{65 i \sqrt{2} k}{(7+10 k^2)^2 \lambda}.$			
1'τ"	-α 0	0	0			0		0			
1,1,1	-α 0	0	0	$-\frac{2 i (k+20 k^3)}{(7+10 k^2)^2 \lambda}$	$-\frac{2ik(33+10k^2)}{(7+10k^2)^2\lambda}.$	$-\frac{65 i \sqrt{2} k}{(7+10 k^2)^2 \lambda}.$	0	$\frac{130 k^2}{(7+10 k^2)^2 \lambda}.$	$^{2^{+}}\sigma^{\parallel}_{\alpha\beta}$ $^{2^{+}}\tau^{\parallel}$	αβ 2	$\sigma^{\parallel}_{\alpha\beta\chi}$
			_					$^{2^{+}}\sigma^{\parallel}$ † $^{\alpha\beta}$	$0 - \frac{i}{k}$	√ <u>2</u>	0
								$2^+\tau^{\parallel} \uparrow^{\alpha\beta}$	$\frac{i\sqrt{2}}{k\lambda}$ $-\frac{1}{k^2}$	<u>1</u> λ.	0
								$\mathcal{E}^{\sigma} \sigma^{\parallel} \uparrow^{\alpha\beta\chi}$	0 0)	<u>2</u> λ.

Source constraints

Spin-parity form	Covariant form	Multiplicitie			
$0^+\tau^{\perp}=0$	$\partial_{\beta}\partial_{\alpha}\mathcal{J}^{\alpha\beta}$ == 0	1			
$2^{0^{+}}\sigma^{\parallel} + {}^{0^{+}}\mathcal{J} == 0$	$\partial_{\alpha} \mathcal{J}^{\alpha} == 2 \partial_{\beta} \sigma^{\alpha}_{\alpha}^{\beta}$	1			
0÷ρ == 0	$\rho == 0$	1			
$2ik!\sigma^{\parallel}^{\alpha} + 1\tau^{\perp}^{\alpha} - ik!\sigma^{\perp}$		3			
$1.\tau^{\alpha} = 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\mathcal{J}^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\mathcal{J}^{\beta\alpha}$	3			
$\frac{1}{2} \cdot \int_{0}^{\alpha} d^{\alpha} = 2 \cdot \int_{0}^{\alpha} d^{\alpha} + \int_{0}^{\alpha} \int_{0}^{\alpha} d^{\alpha}$	$\partial_{\beta}\partial^{\alpha}\mathcal{J}^{\beta} == \partial_{\beta}\partial^{\beta}\mathcal{J}^{\alpha} + 2\left(\partial_{\chi}\partial^{\alpha}\sigma^{\beta}_{\beta}^{\chi} + \partial_{\chi}\partial^{\chi}\sigma^{\beta\alpha}_{\beta}\right)$	3			
$i k \cdot \dot{\tau}^{+} \sigma^{\perp}^{\alpha\beta} + \dot{\tau}^{+} \tau^{\parallel}^{\alpha\beta} == 0$	$\partial_{\chi}\partial^{\alpha}\mathcal{J}^{\beta\chi} + \partial_{\chi}\partial^{\beta}\mathcal{J}^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\mathcal{J}^{\alpha\beta} + 2\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\chi\alpha\beta} = \partial_{\chi}\partial^{\alpha}\mathcal{J}^{\chi\beta} + \partial_{\chi}\partial^{\beta}\mathcal{J}^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\mathcal{J}^{\beta\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta}$	3			
Total expected gauge generators:					

Massive spectrum

(No particles)

Massless spectrum

Massless particle

Pole residue: $\left| -\frac{1}{\lambda} \right| > 0$ Polarisations: 2

Unitarity conditions

λ. < 0

Key observation: This marks the completion of the particle spectrum analysis for the modified E--H action.

Test case 2: E--H action with propagating compensator.

We test the case of the modified Einstein-Hilbert action, with propagating compensator.

$$\frac{1}{2} v. \mathcal{D}^{\dagger} \phi_{\alpha} \mathcal{D}^{\dagger} \phi^{\alpha} + \lambda. \phi^{2} \mathcal{R}^{\dagger \alpha \beta}_{\alpha \beta}$$

Here, we perform rescalings after application of Einstein Gauge: $\phi_-0^{\circ}2*\lambda \rightarrow \lambda$, $\phi_-0^{\circ}2*\nu \rightarrow \nu$, $\phi_-0^{\circ}2*t_-i \rightarrow t_-i$. Also

 ϕ_{-0} -> 1, i.e. here I am making the compensator dimensionless, any possible masses order 1. I do this to prevent any denominators phi/phi0.

Here is the linearised Lagrangian before feeding into ParticleSpectrum[].

$$\lambda. \mathcal{A}_{\alpha\chi\beta} \mathcal{A}^{\alpha\beta\chi} + \left(\lambda. - \frac{v.}{18}\right) \mathcal{A}_{\alpha}^{\alpha\beta} \mathcal{A}_{\beta\chi}^{\chi} + \left(4\lambda. - \frac{v.}{3}\right) \mathcal{A}_{\alpha\beta}^{\beta} \mathcal{B}^{\alpha} + \left(-6\lambda. + \frac{v.}{2}\right) \mathcal{B}_{\alpha} \mathcal{B}^{\alpha} + \frac{1}{3} v. \mathcal{B}^{\alpha} \partial_{\alpha}f^{\beta}_{\beta} - 6\lambda. \partial_{\alpha}\mathcal{B}^{\alpha} + 2\lambda. f^{\alpha\beta} \partial_{\beta}\mathcal{A}_{\alpha\chi}^{\chi} - 2\lambda. \partial_{\beta}\mathcal{A}^{\alpha\beta}_{\alpha} - \frac{1}{2} v. \partial_{\beta}f^{\alpha\beta}_{\alpha} - \frac{1}{2} v. \partial_{\beta}f^{\alpha\beta}_{\alpha} - \frac{1}{2} v. \partial_{\beta}f^{\alpha\beta}_{\alpha} - \frac{1}{2} v. \partial_{\beta}f^{\alpha\beta}_{\alpha} - 2\lambda. f^{\alpha\beta} \partial_{\chi}\mathcal{A}_{\alpha\beta}^{\chi} + 2\lambda. f^{\alpha\beta} \partial_{\chi}\mathcal{A}_{\beta\beta}^{\chi} + \frac{1}{18} v. \partial_{\beta}f^{\alpha\beta}_{\alpha} \partial_{\chi}f^{\chi}_{\beta} - \frac{1}{2} v. \partial_{\beta}f^{\alpha\beta}_{\alpha} \partial_{\chi}f^{\chi}_{\beta} - \frac{1}{2} v. \partial_{\beta}f^{\alpha\beta}_{\alpha} \partial_{\chi}f^{\gamma}_{\beta} - \frac{1}{2} v. \partial_{\gamma}f^{\gamma}_{\beta} \partial_{\chi}f^{\gamma}_{\alpha} - \frac{1}{2$$

TaskRemove: A string or a TaskObject is expected instead of CellObject 411dc298-2bf7-4bef-8b28-04a82801708c

PSALTer results panel

 ${}^{2^{+}}\mathcal{H}^{\parallel} \dagger^{\alpha\beta}$

 $^{2^{+}}f^{\parallel}\dagger^{\alpha\beta}$

 $^{2}\mathcal{H}^{\parallel}$ † $^{\alpha\beta\chi}$

0

Wave operator

	$\overset{0^{+}}{\cdot}\mathcal{B}$	0÷ φ	${}^{0^{\scriptscriptstyle +}}_{\cdot}\mathcal{A}^{\scriptscriptstyle \parallel}$	$0^{+}f^{\parallel}$	$\overset{0^+}{\cdot}f^{\scriptscriptstyle \perp}$	${}^{0}\mathcal{A}^{\parallel}$	_								
0⁺. ₿†	$-6 \lambda. + \frac{v}{2}$	0	12 λν. 2 √6	$-\frac{i k (12 \lambda - v.)}{2 \sqrt{3}}$	0	0									
0 ⁺ φ †	0	0	0	0	0	0									
^{0⁺} Æ †	12 λν. 2 √6	0	$-\lambda$. $+\frac{v}{12}$	$\frac{i k (12 \lambdav.)}{6 \sqrt{2}}$	0	0									
0 ⁺ <i>f</i> [∥] †		0	$-\frac{i k (12 \lambdav.)}{6 \sqrt{2}}$	$\frac{k^2 v}{6}$	0	0									
0 ⁺ f [⊥] †	0	0	0	0	0	0									
º.º A∥ †	0	0	0	0	0	-λ.	$^{1.}\mathcal{A}^{\parallel}_{lphaeta}$	${}^{1,\dagger}\mathcal{H}^{\perp}{}_{lphaeta}$	$f^{\dagger}f^{\parallel}_{\alpha\beta}$	$^{1}\mathcal{B}_{lpha}$	${}^{1}\mathcal{A}^{\parallel}{}_{\alpha}$	¹ . A [±] α	f^{\parallel}_{α}	f_{α}^{\perp}	
						$^{1}\mathcal{A}^{\parallel}\dagger^{lphaeta}$	λ. - <u>-</u> 2	$-\frac{\lambda}{\sqrt{2}}$	$-\frac{i k \lambda}{\sqrt{2}}$	0	0	0	0	0	
						$^{1^{+}}\mathcal{A}^{\perp}\dagger^{\alpha\beta}$	$-\frac{\lambda}{\sqrt{2}}$	0	0	0	0	0	0	0	
						$\dot{f}^{\dagger}f^{\parallel} \dagger^{\alpha\beta}$	$\frac{i k \lambda}{\sqrt{2}}$	0	0	0	0	0	0	0	
						¹.'Β† ^α	0	0	0	$-6 \lambda. + \frac{v}{2}$	$-2\lambda.+\frac{v.}{6}$	$\frac{12 \lambda - v}{6 \sqrt{2}}$	0	$\frac{1}{6} ik (12 \lambda v.)$	
						${}^{1}\mathcal{A}^{\parallel}\dagger^{\alpha}$	0	0	0	$-2\lambda.+\frac{v}{6}$	$\frac{1}{18} \left(-9 \lambda_{\cdot} + v_{\cdot} \right)$	$\frac{18 \lambdav.}{18 \sqrt{2}}$	0	$\frac{1}{18} i k (18 \lambda v.)$	
						¹. ℋ† ^α	0	0	0	$\frac{12 \lambda \cdot v}{6 \sqrt{2}}$	$\frac{18 \lambdav.}{18 \sqrt{2}}$	v. 36	0	$\frac{ikv.}{18\sqrt{2}}$	
						$f^{\parallel} \uparrow^{\alpha}$	0	0	0	0	0	0	0	0	
						$f^{\perp}f^{\perp}$	0	0	0	$k\left(-2i\lambda.+\frac{i\nu.}{6}\right)$	$k\left(-i\lambda.+\frac{i\nu.}{18}\right)$	$-\frac{i k v}{18 \sqrt{2}}$	0	$\frac{k^2 v}{18}$	^{2†} .Æ

Saturated propagator

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	τ [⊥] 0. σ									
6 v. √6 v. : √3	0									
√6 v v. ;	0									
$0^{+}\sigma^{\parallel} + \frac{7}{588\lambda^{2}-49\lambda \cdot \nu} 0 \frac{7}{49\lambda \cdot (-12\lambda \cdot + \nu)} \frac{7}{7} \sqrt{2} k\lambda.$	0									
$0^+\tau^{\parallel} + \frac{i\sqrt{3}}{7k\lambda} \qquad 0 \qquad -\frac{i}{7\sqrt{2}k\lambda} \qquad \frac{1}{2k^2\lambda}$	0									
	0									
°. σ † 0 0 0 0	1	1⁺a∥ .	$\dot{\sigma}^{\perp}_{\alpha\beta}$	1, ,	$^{1}\mathcal{J}_{lpha}$	1. σ α	$1.\sigma_{\alpha}$	$^{1} \tau^{\parallel}_{\alpha}$	1 τ^{\perp}_{α}	
	•		$-\frac{\sqrt{2}}{\lambda \cdot + k^2 \lambda \cdot}$							Ì
	$^{1^{+}}\sigma^{\parallel}$ † $^{\alpha\beta}$				0	0	0	0	0	
	$1.^{+}\sigma^{\perp} \uparrow^{\alpha\beta}$	$-\frac{\sqrt{2}}{\lambda.+k^2\lambda.}$	$\frac{1}{(1+k^2)^2 \lambda}.$	$\frac{i k}{(1+k^2)^2 \lambda}.$	0	0	0	0	0	
	$1.\tau^{\parallel} + \alpha\beta$	$\frac{i \sqrt{2} k}{\lambda . + k^2 \lambda .}$	$-\frac{ik}{(1+k^2)^2\lambda}.$	$\frac{k^2}{(1+k^2)^2 \lambda}.$	0	0	0	0	0	
	1. σ. ι α			0	8 (9 (3+8 k²) λ.+4 k⁴ v.)	8 ((9-54 k²) λ.+k² (7+2 k²) v.)	4 √2 (9 (1+20 k²) λ14 k² v.)	0	8 i (9 k λ.+2 k³ (90 λ7 v.))	
	! <i>J</i> † ^a	0	0	0	$3(7+10 k^2)^2 \lambda. (12 \lambdav.)$	$3 (7+10 k^2)^2 \lambda. (12 \lambdav.)$	3 $(7+10 k^2)^2 \lambda$. $(12 \lambdav.)$	0	$3 (7+10 k^2)^2 \lambda. (12 \lambdav.)$	
	$\frac{1}{2}\sigma^{\parallel} + \alpha$	0	0	0	$-\frac{8 \left(\left(9-54 k^2\right) \lambda.+k^2 \left(7+2 k^2\right) v.\right)}{3 \left(7+10 k^2\right)^2 \lambda. \left(12 \lambdav.\right)}$	$\frac{576 (2+k^2) \lambda \cdot -2 (7+2 k^2)^2 v \cdot}{3 (7+10 k^2)^2 \lambda \cdot (12 \lambda \cdot -v \cdot)}$	$\frac{2\sqrt{2}(18(33+10k^2)\lambda7(7+2k^2)v.}{3(7+10k^2)^2\lambda.(12\lambdav.)}$) - 0	$\frac{4 i k (18 (33+10 k^2) \lambda7 (7+2 k^2) v.)}{3 (7+10 k^2)^2 \lambda. (12 \lambdav.)}$	
						$2 \sqrt{2} (18 (33+10 k^2) \lambda7 (7+2 k^2) v.)$	4 (585 λ49 v.)		4 i √2 k (585 λ49 v.)	
	$!\sigma^{\perp}\uparrow^{\alpha}$	0	0	0	$3(7+10 k^2)^2 \lambda. (12 \lambdav.)$	$3 (7+10 k^2)^2 \lambda. (12 \lambdav.)$	$3(7+10 k^2)^2 \lambda. (12 \lambdav.)$	0	$\frac{1}{3(7+10 k^2)^2 \lambda. (12 \lambdav.)}$	
	$1.\tau^{\parallel} + \alpha$	0	0	0	0	0	0	0	0	
	1. τ [⊥] † α	0	0	0	8 i (9 k λ.+2 k³ (90 λ7 v.))	4 i k (18 (33+10 k²) λ7 (7+2 k²) v.)	4 i √2 k (585 λ49 v.)	0	8 k ² (585 λ49 v.)	
	:τ Τ	U	0	U	$3(7+10 k^2)^2 \lambda. (12 \lambdav.)$	3 (7+10 k ²) ² λ. (12 λν.)	$\frac{1}{3} (7+10 k^2)^2 \lambda. (12 \lambdav.)$	0	$3 (7+10 k^2)^2 \lambda. (12 \lambdav.)$	
									$\overset{2^{+}}{\cdot}\sigma^{\parallel}\uparrow^{lphaeta}$	
									2 [*] τ † ^{αβ}	
									$\frac{2}{3}\sigma^{\parallel} + \frac{\alpha\beta\chi}{3}$	
										L
Source constraints										

Spin-parity form	Covariant form	Multiplicities				
0 ⁺ τ [⊥] == 0	$\partial_{eta}\partial_{lpha}\mathcal{J}^{lphaeta}=0$	1				
$\frac{1}{2 \cdot 0^{\cdot} \sigma^{\parallel} + 0^{\cdot} \mathcal{J}} = 0$	$\partial_{\alpha} \mathcal{J}^{\alpha} = 2 \partial_{\beta} \sigma^{\alpha}_{\alpha}{}^{\beta}$	1				
0 ⁺ ρ == 0	ρ == 0	1				
$2ik!\sigma^{\parallel}^{\alpha} + i\tau^{\perp}^{\alpha} - ik!\sigma^{\alpha}$	$==0 \left[\partial_{\chi} \partial^{\chi} \partial_{\beta} \mathcal{J}^{\alpha\beta} + \partial_{\chi} \partial^{\chi} \partial_{\beta} \partial^{\alpha} \mathcal{J}^{\beta} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial_{\beta} \sigma^{\beta\alpha\chi} = \partial_{\chi} \partial_{\beta} \partial^{\alpha} \mathcal{J}^{\beta\chi} + \partial_{\chi} \partial^{\chi} \partial_{\beta} \partial^{\beta} \mathcal{J}^{\alpha} + 2 \left(\partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta}_{\beta}^{\chi} + \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \sigma^{\beta\alpha}_{\beta} \right) \right]$	3				
1. T a == 0	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\mathcal{J}^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\mathcal{J}^{\beta\alpha}$	3				
$\frac{1}{2} \int_{0}^{1} d^{\alpha} = 2 \int_{0}^{1} \sigma^{\perp} + \int_{0}^{1} \sigma^{\alpha}$	$\partial_{\beta}\partial^{\alpha}\mathcal{J}^{\beta} = \partial_{\beta}\partial^{\beta}\mathcal{J}^{\alpha} + 2\left(\partial_{\chi}\partial^{\alpha}\sigma^{\beta}_{\beta}{}^{\chi} + \partial_{\chi}\partial^{\chi}\sigma^{\beta\alpha}_{\beta}\right)$	3				
$i k \stackrel{1^+}{\cdot} \sigma^{\perp}^{\alpha\beta} + 1^+_{\cdot} \tau^{\parallel}^{\alpha\beta} == 0$	$\partial_{\chi}\partial^{\alpha}\mathcal{J}^{\beta\chi} + \partial_{\chi}\partial^{\beta}\mathcal{J}^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\mathcal{J}^{\alpha\beta} + 2\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\chi\alpha\beta} = \partial_{\chi}\partial^{\alpha}\mathcal{J}^{\chi\beta} + \partial_{\chi}\partial^{\beta}\mathcal{J}^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\mathcal{J}^{\beta\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta}$	3				
Total expected gauge generators:						

Massive spectrum

(No particles)

Massless spectrum

Massless particle

Pole residue: Polarisations: 2

Unitarity conditions

λ. < 0

Key observation: This marks the completion of the particle spectrum analysis for the modified E--H action with propagating compensator.

Test case 3: E--H action with propagating compensator and vector.

We test the case of the modified Einstein-Hilbert action, with propagating compensator and vector B.

$$\frac{1}{2} v. \mathcal{D}^{\dagger} \phi_{\alpha} \mathcal{D}^{\dagger} \phi^{\alpha} + \xi. \mathcal{H}^{\dagger}_{\alpha\beta} \mathcal{H}^{\dagger^{\alpha\beta}} - c. \mathcal{H}^{\dagger^{\alpha\beta}} \mathcal{R}^{\dagger^{\alpha\beta}}_{\alpha\beta\chi} + \lambda. \phi^{2} \mathcal{R}^{\dagger^{\alpha\beta}}_{\alpha\beta}$$

Here is the linearised Lagrangian before feeding into ParticleSpectrum[].

$$\lambda. \mathcal{A}_{\alpha\chi\beta} \mathcal{A}^{\alpha\beta\chi} + \left(\lambda. - \frac{v.}{18}\right) \mathcal{A}^{\alpha\beta}_{\alpha} \mathcal{A}^{\chi}_{\beta\chi} + \left(4\lambda. - \frac{v.}{3}\right) \mathcal{A}_{\alpha\beta}^{\beta}_{\beta} \mathcal{B}^{\alpha} + \left(-6\lambda. + \frac{v.}{2}\right) \mathcal{B}_{\alpha} \mathcal{B}^{\alpha}_{\beta} + \frac{1}{3}v. \mathcal{B}^{\alpha}_{\alpha}\partial_{\beta}\mathcal{B}^{\beta}_{\beta} - 6\lambda. \partial_{\alpha}\mathcal{B}^{\alpha}_{\beta} + 2\lambda. f^{\alpha\beta}_{\beta}\partial_{\beta}\mathcal{A}^{\chi}_{\alpha} - 2\lambda. \partial_{\beta}\mathcal{A}^{\alpha\beta}_{\alpha} - \frac{1}{3}v. \mathcal{B}^{\alpha}_{\beta}\partial_{\beta}\mathcal{B}^{\alpha}_{\alpha} + 4\lambda. f^{\alpha\beta}_{\alpha}\partial_{\beta}\mathcal{B}^{\alpha}_{\alpha} + 4\lambda. f^{\alpha\beta}_{\alpha}\partial_{\beta}\mathcal{B}^{\beta}_{\alpha} + 4\lambda. f^{\alpha\beta$$

TaskRemove: A string or a TaskObject is expected instead of CellObject

General: Further output of TaskRemove::taskid will be suppressed during this calculation.

PSALTer results panel

$$S = \iiint (\phi \, \rho + \, \sigma^{\alpha \beta \chi} \, \mathcal{A}_{\alpha \beta \chi} + \, \mathcal{J}^{\alpha \beta} \, f_{\alpha \beta} + \, \mathcal{J}^{\alpha} \, \mathcal{B}_{\alpha} + \lambda . \, (\mathcal{A}_{\alpha \chi \beta} \, \mathcal{A}^{\alpha \beta \chi} + \, \mathcal{A}^{\alpha \beta}_{\alpha} \, \mathcal{A}^{\chi}_{\beta \chi} + 4 \, \mathcal{A}^{\beta}_{\alpha \beta} \, \mathcal{B}^{\alpha} - 6 \, \mathcal{B}_{\alpha} \, \mathcal{B}^{\alpha} - 6 \, \partial_{\alpha} \mathcal{B}^{\alpha} + 2 \, f^{\alpha \beta}_{\alpha \beta} \, \partial_{\beta} \mathcal{A}^{\chi}_{\alpha \chi} - 2 \, \partial_{\beta} \mathcal{A}^{\alpha \beta}_{\alpha \chi} - 4 \, f^{\alpha \beta}_{\alpha \beta} \, \partial_{\beta} \mathcal{B}^{\alpha} - 4 \, f^{\alpha \beta}_{\alpha \alpha} \, \partial_{\beta} \mathcal{B}^{\beta} - 2 \, f^{\alpha \beta}_{\alpha \alpha} \, \partial_{\gamma} \mathcal{A}^{\chi}_{\alpha \beta} + 2 \, f^{\alpha \beta}_{\alpha \alpha \chi} \, \partial_{\beta} \mathcal{A}^{\alpha \chi}_{\alpha \chi} - 2 \, \partial_{\beta} \mathcal{A}^{\alpha \beta}_{\alpha \chi} - 4 \, f^{\alpha \beta}_{\alpha \alpha} \, \partial_{\beta} \mathcal{B}^{\alpha} - 4 \, f^{\alpha \beta}_{\alpha \alpha} \, \partial_{\beta} \mathcal{B}^{\beta} - 2 \, f^{\alpha \beta}_{\alpha \alpha} \, \partial_{\gamma} \mathcal{A}^{\chi}_{\alpha \beta} + 2 \, f^{\alpha \beta}_{\alpha \alpha \chi} \, \partial_{\beta} \mathcal{A}^{\alpha \chi}_{\alpha \chi} - 2 \, \partial_{\beta} \mathcal{A}^{\alpha \beta}_{\alpha \chi} - 4 \, f^{\alpha \beta}_{\alpha \alpha} \, \partial_{\beta} \mathcal{B}^{\beta}_{\alpha} - 4 \, f^{\alpha \beta}_{\alpha \alpha} \, \partial_{\beta} \mathcal{B}^{\beta}_{\alpha \gamma} - 2 \, f^{\alpha \beta}_{\alpha \alpha \beta} \, \partial_{\gamma} \mathcal{A}^{\alpha \chi}_{\alpha \gamma} - 4 \, f^{\alpha \beta}_{\alpha \alpha \chi} \, \partial_{\beta} \mathcal{B}^{\alpha}_{\alpha \gamma} - 4 \, f^{\alpha \beta}_{\alpha \alpha \chi} \, \partial_{\beta} \mathcal{B}^{\alpha}_{\alpha \gamma} - 4 \, f^{\alpha \beta}_{\alpha \alpha \chi} \, \partial_{\beta} \mathcal{B}^{\alpha \gamma}_{\alpha \gamma} - 4 \, f^{\alpha \beta}_{\alpha \alpha \chi} \, \partial_{\beta} \mathcal{B}^{\alpha \gamma}_{\alpha \gamma} - 4 \, f^{\alpha \beta}_{\alpha \alpha \chi} \, \partial_{\beta} \mathcal{B}^{\alpha \gamma}_{\alpha \gamma} - 4 \, f^{\alpha \beta}_{\alpha \alpha \chi} \, \partial_{\beta} \mathcal{B}^{\alpha \gamma}_{\alpha \gamma} - 4 \, f^{\alpha \beta}_{\alpha \alpha \chi} \, \partial_{\beta} \mathcal{B}^{\alpha \gamma}_{\alpha \gamma} - 4 \, f^{\alpha \beta}_{\alpha \alpha \chi} \, \partial_{\beta} \mathcal{B}^{\alpha \gamma}_{\alpha \gamma} - 4 \, f^{\alpha \beta}_{\alpha \alpha \chi} \, \partial_{\beta} \mathcal{B}^{\alpha \gamma}_{\alpha \gamma} - 4 \, f^{\alpha \beta}_{\alpha \alpha \chi} \, \partial_{\beta} \mathcal{B}^{\alpha \gamma}_{\alpha \gamma} - 4 \, f^{\alpha \beta}_{\alpha \alpha \chi} \, \partial_{\beta} \mathcal{B}^{\alpha \gamma}_{\alpha \gamma} - 4 \, f^{\alpha \beta}_{\alpha \alpha \chi} \, \partial_{\beta} \mathcal{B}^{\alpha \gamma}_{\alpha \gamma} - 4 \, f^{\alpha \beta}_{\alpha \alpha \chi} \, \partial_{\beta} \mathcal{B}^{\alpha \gamma}_{\alpha \gamma} - 4 \, f^{\alpha \beta}_{\alpha \alpha \chi} \, \partial_{\beta} \mathcal{B}^{\alpha \gamma}_{\alpha \gamma} - 4 \, f^{\alpha \beta}_{\alpha \alpha \chi} \, \partial_{\beta} \mathcal{B}^{\alpha \gamma}_{\alpha \gamma} - 4 \, f^{\alpha \beta}_{\alpha \alpha \chi} \, \partial_{\beta} \mathcal{B}^{\alpha \gamma}_{\alpha \gamma} - 2 \, \partial_{\beta} \mathcal{B}^{\alpha \gamma}_{\alpha \gamma} \, \partial_{\beta} \mathcal{B}^{\alpha \gamma}_{\alpha \gamma} - 2 \, \partial_{\beta} \mathcal{B}^{\alpha \gamma}_{\alpha \gamma} \, \partial_{\beta} \mathcal{B}^{\alpha \gamma}_{\alpha \gamma} - 2 \, \partial_{\beta} \mathcal{B}^{\alpha \gamma}_{\alpha \gamma} \, \partial_{\beta} \mathcal{B}^{\alpha \gamma}_{\alpha \gamma} - 2 \, \partial_{\beta} \mathcal{B}^{\alpha \gamma}_{\alpha \gamma} \, \partial_{\beta} \mathcal{B}^{\alpha \gamma}_{\alpha \gamma} - 2 \, \partial_{\beta} \mathcal{B}^{\alpha \gamma}_{\alpha \gamma} \, \partial_{\beta} \mathcal{B}^{\alpha \gamma}_{\alpha \gamma} - 2 \, \partial_{\beta} \mathcal{B}^{\alpha \gamma}_{\alpha \gamma} \, \partial_{\beta} \mathcal{B}^{\alpha \gamma}_{\alpha \gamma} - 2 \, \partial_{\beta} \mathcal{B}^{\alpha \gamma}_{\alpha \gamma} \, \partial_{\beta} \mathcal{B}^{\alpha \gamma}_{\alpha \gamma} \, \partial_{\beta} \mathcal{B}^{\alpha \gamma}_{\alpha \gamma} - 2 \, \partial_{\beta} \mathcal{B}^{\alpha \gamma}_{\alpha \gamma} \, \partial_{\beta} \mathcal{B}^{\alpha \gamma}_{\alpha \gamma} - 2 \, \partial$$

Wave operator

$0^{\circ}\mathcal{B}$ $0^{\circ}\phi$ $0^{\circ}\mathcal{A}^{\parallel}$ $0^{\circ}f^{\parallel}$ $0^{\circ}f^{\perp}$ $0^{\circ}\mathcal{A}^{\parallel}$									
$^{+}\mathcal{B}\dagger -6\lambda . + \frac{v}{2} 0 \frac{12\lambdav}{2\sqrt{6}} -\frac{ik(12\lambdav)}{2\sqrt{3}} 0$									
$ \phi \uparrow $ 0 0 0 0 0 0									
$\mathcal{A}^{\parallel} + \begin{vmatrix} \frac{12 \lambda - \nu}{2 \sqrt{6}} & 0 & -\lambda \cdot + \frac{\nu}{12} & \frac{i k (12 \lambda - \nu)}{6 \sqrt{2}} & 0 \end{vmatrix} = 0$									
$ik(12\lambda-\nu)$ $ik(12\lambda-\nu)$ $k^2\nu$.									
$f^{\perp} + \begin{bmatrix} 2\sqrt{3} & 0 & -\frac{1}{6\sqrt{2}} & \frac{1}{6} \\ 0 & 0 & 0 & 0 \end{bmatrix}$									
$\mathcal{A}^{\parallel} \dagger \begin{array}{ccccccccccccccccccccccccccccccccccc$	1. A αβ	$^{1^{+}}\mathcal{H}^{\perp}{}_{lphaeta}{}^{1}$	$\dot{f}^{\parallel}_{\alpha\beta}$	$^{1}\mathcal{B}_{lpha}$	${}^{!}\mathcal{A}^{\parallel}{}_{lpha}$	${}^{1}\mathcal{A}^{\perp}{}_{lpha}$	f^{\parallel}_{α}	f^{\perp}_{α}	
1.* All + c			ikλ. - √2	0	0	0	0	0	
¹˙ <i>'</i> ⁄⁄⁄⁄⁄⁄⁄//////////////////////////////	$\beta = \frac{\lambda}{\sqrt{2}}$	0	0	0	0	0	0	0	
1.* <i>f</i> † ^c		0	0	0	0	0	0	0	
! <i>B</i> †		0	0	$-6 \lambda_{\cdot} + \frac{\sqrt{2}}{2} + 2 k^2 (-c_{\cdot} + \xi_{\cdot})$	$\frac{1}{6} \left(-12 \lambda_{\cdot} + v_{\cdot} + k^2 \left(-5 c_{\cdot} + 4 \xi_{\cdot} \right) \right)$	$\frac{12 \lambda - v + 2 k^2 (c - 2 \xi)}{6 \sqrt{2}}$	0	$\frac{1}{6} ik (12 \lambda v.)$	
!' <i>Я</i> " †	α 0	0	0)) $\frac{1}{18} \left(-9 \lambda. + v. + k^2 \left(-6 c. + 4 \xi. \right) \right)$				
!' <i>Я</i> ² †	α 0	0	0	$\frac{12 \lambda - v + 2 k^2 (c - 2 \xi)}{6 \sqrt{2}}$	$\frac{18 \lambda - \nu + k^2 (3 c - 4 \xi)}{18 \sqrt{2}}$	$\frac{1}{36} (v. + 4 k^2 \xi.)$	0	ikv. 18 √2	
¹.´f [∥] †	0	0	0	0	0	0	0	0	
¹.'f* †	σ 0	0	0	$k\left(-2i\lambda.+\frac{i\nu.}{6}\right)$	$k\left(-i\lambda.+\frac{i\nu}{18}\right)$	$-\frac{i k v}{18 \sqrt{2}}$	0	$\frac{1}{18} k^2 (v_1 + 4 k^2 \xi_2)$	${}^{2^{+}}\mathcal{A}^{\parallel}_{\alpha\beta} {}^{2^{+}}f^{\parallel}_{\alpha\beta} {}^{2^{-}}\mathcal{A}^{\parallel}_{\alpha\beta\chi}$
								²∹ <i>Я</i> [∥] † ^{αβ}	$\frac{\lambda}{2} - \frac{ik\lambda}{\sqrt{2}}$ 0
								$^{2^{+}}f^{\parallel}$ † lphaeta	$\frac{ik\lambda}{\sqrt{2}}$ 0 0
								$^{2}\mathcal{H}^{\parallel}$ † $^{lphaeta\chi}$	$0 0 \frac{\lambda}{2}$
aturated propagator									

Source constraints

Spin-parity form	Covariant form	Multiplicities			
$0^+_{\cdot} \tau^{\perp} == 0$	$\partial_{\beta}\partial_{\alpha}\mathcal{J}^{\alpha\beta} == 0$	1			
$2^{0^{+}}\sigma^{\parallel} + {}^{0^{+}}\mathcal{J} == 0$	$\partial_{\alpha} \mathcal{J}^{\alpha} == 2 \partial_{\beta} \sigma^{\alpha \beta}_{\alpha}$	1			
$0^+ \rho == 0$	$\rho = 0$	1			
$1 \tau^{\parallel^{\alpha}} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\mathcal{J}^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\mathcal{J}^{\beta\alpha}$	3			
$2 \cdot \left[\sigma^{\parallel} \right]^{\alpha} = 2 \cdot \left[\sigma^{\perp} \right]^{\alpha} + \left[\sigma^{\perp} \right]^{\alpha}$	$\partial_{\beta}\partial^{\alpha}\mathcal{J}^{\beta} = \partial_{\beta}\partial^{\beta}\mathcal{J}^{\alpha} + 2\left(\partial_{\chi}\partial^{\alpha}\sigma^{\beta}_{\beta}^{\chi} + \partial_{\chi}\partial^{\chi}\sigma^{\beta\alpha}_{\beta}\right)$	3			
$i k \cdot 1^+ \sigma^{\perp} \alpha^{\beta} + 1^+ \tau^{\parallel} \alpha^{\beta} == 0$	$\partial_{\chi}\partial^{\alpha}\mathcal{J}^{\beta\chi} + \partial_{\chi}\partial^{\beta}\mathcal{J}^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\mathcal{J}^{\alpha\beta} + 2\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\chi\alpha\beta} = \partial_{\chi}\partial^{\alpha}\mathcal{J}^{\chi\beta} + \partial_{\chi}\partial^{\beta}\mathcal{J}^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\mathcal{J}^{\beta\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta}$	3			
Total expected gauge generators:					

Massive spectrum

Massive particle

Pole residue:	$ \left(6\left(21c_{.}^{8}v_{.}^{2}+1008c_{.}^{.7}\lambda_{.}v_{.}\xi_{.}-4320c_{.}^{.6}\lambda_{.}^{2}v_{.}\xi_{.}-672c_{.}^{.6}\lambda_{.}v_{.}^{2}\xi_{.}-28c_{.}^{.6}v_{.}^{.3}\xi_{.}^{.2}+207360c_{.}^{.5}\lambda_{.}^{.3}\xi_{.}^{.2}+1008c_{.}^{.6}\lambda_{.}v_{.}^{2}\xi_{.}^{.2}-2688c_{.}^{.5}\lambda_{.}v_{.}^{2}\xi_{.}^{.2}+1755648c_{.}^{.4}\lambda_{.}^{.3}\xi_{.}^{.3}-19584c_{.}^{.4}\lambda_{.}^{.2}v_{.}\xi_{.}^{.3}-1344c_{.}^{.4}\lambda_{.}v_{.}^{.2}\xi_{.}^{.3}+1658880c_{.}^{.3}\lambda_{.}^{.3}k_{.}^{.2}$
	$3096576 \lambda.^{3} \xi.^{7} + 21 c.^{6} v. \sqrt{384 c.^{2} \lambda. (-12 \lambda. + v.) \xi.^{2} + (c.^{2} v. + 48 c. \lambda. \xi 48 \lambda. \xi.^{2})^{2}} - 4320 c.^{4} \lambda.^{2} \xi. \sqrt{384 c.^{2} \lambda. (-12 \lambda. + v.) \xi.^{2} + (c.^{2} v. + 48 c. \lambda. \xi 48 \lambda. \xi.^{2})^{2}} - 672 c.^{4} \lambda. v. \xi. \sqrt{384 c.^{2} \lambda. (-12 \lambda. + v.) \xi.^{2} + (c.^{2} v. + 48 c. \lambda. \xi 48 \lambda. \xi.^{2})^{2}} - 28 c.^{4} \lambda. v. \xi. \sqrt{384 c.^{2} \lambda. (-12 \lambda. + v.) \xi.^{2} + (c.^{2} v. + 48 c. \lambda. \xi 48 \lambda. \xi.^{2})^{2}} - 28 c.^{4} \lambda. v. \xi. \sqrt{384 c.^{2} \lambda. (-12 \lambda. + v.) \xi.^{2} + (c.^{2} v. + 48 c. \lambda. \xi 48 \lambda. \xi.^{2})^{2}} - 28 c.^{4} \lambda. v. \xi. \sqrt{384 c.^{2} \lambda. (-12 \lambda. + v.) \xi.^{2} + (c.^{2} v. + 48 c. \lambda. \xi 48 \lambda. \xi.^{2})^{2}} - 28 c.^{4} \lambda. v. \xi. \sqrt{384 c.^{2} \lambda. (-12 \lambda. + v.) \xi.^{2} + (c.^{2} v. + 48 c. \lambda. \xi 48 \lambda. \xi.^{2})^{2}} - 28 c.^{4} \lambda. v. \xi. \sqrt{384 c.^{2} \lambda. (-12 \lambda. + v.) \xi.^{2} + (c.^{2} v. + 48 c. \lambda. \xi 48 \lambda. \xi.^{2})^{2}} - 28 c.^{4} \lambda. v. \xi. \sqrt{384 c.^{2} \lambda. (-12 \lambda. + v.) \xi.^{2} + (c.^{2} v. + 48 c. \lambda. \xi 48 \lambda. \xi.^{2})^{2}} - 28 c.^{4} \lambda. v. \xi. \sqrt{384 c.^{2} \lambda. (-12 \lambda. + v.) \xi.^{2} + (c.^{2} v. + 48 c. \lambda. \xi 48 \lambda. \xi.^{2})^{2}} - 28 c.^{4} \lambda. v. \xi. \sqrt{384 c.^{2} \lambda. (-12 \lambda. + v.) \xi.^{2} + (c.^{2} v. + 48 c. \lambda. \xi 48 \lambda. \xi.^{2})^{2}} - 28 c.^{4} \lambda. v. \xi. \sqrt{384 c.^{2} \lambda. (-12 \lambda. + v.) \xi.^{2} + (c.^{2} v. + 48 c. \lambda. \xi 48 \lambda. \xi.^{2})^{2}} - 28 c.^{4} \lambda. v. \xi. \sqrt{384 c.^{2} \lambda. (-12 \lambda. + v.) \xi.^{2} + (c.^{2} v. + 48 c. \lambda. \xi 48 \lambda. \xi.^{2})^{2}} - 28 c.^{4} \lambda. v. \xi. \sqrt{384 c.^{2} \lambda. (-12 \lambda. + v.) \xi.^{2} + (c.^{2} v. + 48 c. \lambda. \xi 48 \lambda. \xi.^{2})^{2}} - 28 c.^{4} \lambda. v. \xi. \sqrt{384 c.^{2} \lambda. (-12 \lambda. + v.) \xi.^{2} + (c.^{2} v. + 48 c. \lambda. \xi 48 \lambda. \xi.^{2})^{2}} - 28 c.^{4} \lambda. v. \xi. \sqrt{384 c.^{2} \lambda. (-12 \lambda. + v.) \xi.^{2} + (c.^{2} v. + 48 c. \lambda. \xi 48 \lambda. \xi.^{2})^{2}} - 28 c.^{4} \lambda. v. \xi. \sqrt{384 c.^{2} \lambda. (-12 \lambda. + v.) \xi.^{2} + (c.^{2} v. + 48 c. \lambda. \xi.^{2})^{2}} - 28 c.^{4} \lambda. v. \xi. \sqrt{384 c.^{2} \lambda. (-12 \lambda. + v.) \xi.^{2} + (c.^{2} v. + 48 c. \lambda. \xi.^{2})^{2}} - 28 c.^{4} \lambda. v. \xi. \sqrt{384 c.^{2} \lambda. (-12 \lambda. + v.) \xi.^{2} + (c.^{2} v. + 48 c. \lambda. \xi.^{2})^{2}} - 28 c.^{4} \lambda. v. \xi. \sqrt{384 c.^{2} \lambda. (-12 \lambda$
	$1344 c.^3 \lambda. v. \xi.^2 \sqrt{384 c.^2 \lambda. (-12 \lambda. + v.) \xi.^2 + (c.^2 v. + 48 c. \lambda. \xi 48 \lambda. \xi.^2)^2} + 146304 c.^2 \lambda.^2 \xi.^3 \sqrt{384 c.^2 \lambda. (-12 \lambda. + v.) \xi.^2 + (c.^2 v. + 48 c. \lambda. \xi 48 \lambda. \xi.^2)^2} + 2688 c.^2 \lambda. v. \xi.^3 \sqrt{384 c.^2 \lambda. (-12 \lambda. + v.) \xi.^2 + (c.^2 v. + 48 c. \lambda. \xi 48 \lambda. \xi.^2)^2} - 19356 c.^2 \lambda. v. \xi.^3 \sqrt{384 c.^2 \lambda. (-12 \lambda. + v.) \xi.^2 + (c.^2 v. + 48 c. \lambda. \xi 48 \lambda. \xi.^2)^2} - 19356 c.^2 \lambda. v. \xi.^3 \sqrt{384 c.^2 \lambda. (-12 \lambda. + v.) \xi.^2 + (c.^2 v. + 48 c. \lambda. \xi 48 \lambda. \xi.^2)^2} - 19356 c.^2 \lambda. v. \xi.^3 \sqrt{384 c.^2 \lambda. (-12 \lambda. + v.) \xi.^2 + (c.^2 v. + 48 c. \lambda. \xi 48 \lambda. \xi.^2)^2} - 19356 c.^2 \lambda. v. \xi.^3 \sqrt{384 c.^2 \lambda. (-12 \lambda. + v.) \xi.^2 + (c.^2 v. + 48 c. \lambda. \xi 48 \lambda. \xi.^2)^2} - 19356 c.^2 \lambda. v. \xi.^3 \sqrt{384 c.^2 \lambda. (-12 \lambda. + v.) \xi.^2 + (c.^2 v. + 48 c. \lambda. \xi 48 \lambda. \xi.^2)^2} - 19356 c.^2 \lambda. v. \xi.^3 \sqrt{384 c.^2 \lambda. (-12 \lambda. + v.) \xi.^2 + (c.^2 v. + 48 c. \lambda. \xi 48 \lambda. \xi.^2)^2} - 19356 c.^2 \lambda. v. \xi.^3 \sqrt{384 c.^2 \lambda. (-12 \lambda. + v.) \xi.^2 + (c.^2 v. + 48 c. \lambda. \xi 48 \lambda. \xi.^2)^2} - 19356 c.^2 \lambda. v. \xi.^3 \sqrt{384 c.^2 \lambda. (-12 \lambda. + v.) \xi.^2 + (c.^2 v. + 48 c. \lambda. \xi 48 \lambda. \xi.^2)^2} - 19356 c.^2 \lambda. v. \xi.^3 \sqrt{384 c.^2 \lambda. (-12 \lambda. + v.) \xi.^2 + (c.^2 v. + 48 c. \lambda. \xi 48 \lambda. \xi.^2)^2} - 19356 c.^2 \lambda. v. \xi.^3 \sqrt{384 c.^2 \lambda. (-12 \lambda. + v.) \xi.^2 + (c.^2 v. + 48 c. \lambda. \xi.^2)^2} - 19356 c.^2 \lambda. v. \xi.^3 \sqrt{384 c.^2 \lambda. (-12 \lambda. + v.) \xi.^2 + (c.^2 v. + 48 c. \lambda. \xi.^2)^2} - 19356 c.^2 \lambda. v. \xi.^3 \sqrt{384 c.^2 \lambda. (-12 \lambda. + v.) \xi.^2 + (c.^2 v. + 48 c. \lambda. \xi.^2)^2} - 19356 c.^2 \lambda. v. v. \xi.^3 \sqrt{384 c.^2 \lambda. (-12 \lambda. + v.) \xi.^2 + (c.^2 v. + 48 c. \lambda. \xi.^2)^2} - 19356 $
	$(7c.^{2}(c.^{6}v.^{3} + 144c.^{5}\lambda.v.^{2}\xi. + 2304c.^{4}\lambda.^{2}v.\xi.^{2} + 240c.^{4}\lambda.v.^{2}\xi.^{2} + 240c.^{4}\lambda.v.^{2}\xi.^{2} - 110592c.^{3}\lambda.^{3}\xi.^{3} + 4608c.^{3}\lambda.^{2}v.\xi.^{3} - 110592c.^{2}\lambda.^{3}\xi.^{4} - 11520c.^{2}\lambda.^{2}v.\xi.^{4} + 331776c.\lambda.^{3}\xi.^{5} - 110592\lambda.^{3}\xi.^{6} + c.^{4}v.^{2}\sqrt{384c.^{2}\lambda.(-12\lambda.+v.)}\xi.^{2} + (c.^{2}v. + 48c.\lambda.\xi.^{-2})^{4}$
	$96c.^2\lambda.v.\xi.^2\sqrt{384c.^2\lambda.(-12\lambda.+v.)\xi.^2+(c.^2v.+48c.\lambda.\xi.-48\lambda.\xi.^2)^2}-4608c.\lambda.^2\xi.^3\sqrt{384c.^2\lambda.(-12\lambda.+v.)\xi.^2+(c.^2v.+48c.\lambda.\xi.-48\lambda.\xi.^2)^2}+2304\lambda.^2\xi.^4\sqrt{384c.^2\lambda.(-12\lambda.+v.)\xi.^2+(c.^2v.+48c.\lambda.\xi.-48\lambda.\xi.^2)^2}))>0$
Square mass:	$\frac{c.^{2} v.+48 c. \lambda. \xi48 \lambda. \xi.^{2} + \sqrt{384 c.^{2} \lambda. (-12 \lambda. + v.) \xi.^{2} + (c.^{2} v.+48 c. \lambda. \xi48 \lambda. \xi.^{2})^{2}}{1 \cdot 1 \cdot$

Massless spectrum

Odd

Spin: Parity:

Key observation: This marks the completion of the particle spectrum analysis for the modified E--H action with propagating compensator and vector.

Test case 4: Only propagating compensator and vector.

We test the case of preserving only the propagating compensator and vector B.

$$\frac{1}{2} v. \mathcal{D}^{\dagger} \phi_{\alpha} \mathcal{D}^{\dagger} \phi^{\alpha} + \xi. \mathcal{H}^{\dagger}_{\alpha\beta} \mathcal{H}^{\dagger^{\alpha\beta}}$$
(25)

Here, we perform rescalings after application of Einstein Gauge: $\phi_-0^2 \times \lambda - \lambda$, $\phi_-0^2 \times \nu - \nu$, $\phi_-0^2 \times t_-i$ -> t_i. Also ϕ_-0 -> 1, i.e. here I am making the compensator dimensionless, any possible masses order 1. I do this to prevent any denominators phi/phi0.

Here is the linearised Lagrangian before feeding into ParticleSpectrum[].

$$-\frac{1}{18} v. \mathcal{A}^{\alpha\beta}_{\alpha} \mathcal{A}^{\chi}_{\beta} - \frac{1}{3} v. \mathcal{A}^{\beta}_{\alpha} \mathcal{B}^{\alpha} + \frac{1}{2} v. \mathcal{B}_{\alpha} \mathcal{B}^{\alpha} + \frac{1}{3} v. \mathcal{B}^{\alpha}_{\alpha} \partial_{\alpha} f^{\beta}_{\beta} - \frac{1}{3} v. \mathcal{B}^{\alpha}_{\alpha} \partial_{\beta} f^{\beta}_{\alpha} + \frac{1}{9} v. \mathcal{A}^{\chi}_{\alpha} \partial_{\beta} f^{\alpha\beta} - \frac{1}{9} v. \mathcal{A}^{\chi}_{\beta} \partial^{\beta}_{\alpha} f^{\alpha}_{\alpha} + \frac{1}{18} v. \partial_{\beta} f^{\chi}_{\alpha} \partial^{\beta}_{\beta} f^{\alpha}_{\alpha} + \frac{4}{3} \xi. \partial_{\alpha} \mathcal{A}^{\chi}_{\beta} \partial^{\beta}_{\alpha} f^{\alpha}_{\alpha} + \frac{4}{3} \xi. \partial_{\alpha} \mathcal{A}^{\chi}_{\beta} \partial^{\beta}_{\alpha} f^{\alpha}_{\alpha} + \frac{4}{3} \xi. \partial^{\beta}_{\alpha} \mathcal{A}^{\alpha}_{\beta} \partial^{\beta}_{\alpha} \partial^{\beta}_{\alpha} f^{\alpha}_{\alpha} + \frac{4}{3} \xi. \partial^{\beta}_{\alpha} \partial^{\beta}_{\alpha} \partial^{\beta}_{\alpha} \partial^{\beta}_{\alpha} \partial^{\beta}_{\alpha} f^{\alpha}_{\alpha} - \frac{2}{9} \xi. \partial^{\beta}_{\alpha} \partial^{\beta}_{\alpha} \partial^{\beta}_{\alpha} f^{\alpha}_{\alpha} - \frac{4}{3} \xi. \partial^{\beta}_{\alpha} \partial^{\beta}_{\alpha} \partial^{\beta}_{\alpha} \partial^{\beta}_{\alpha} f^{\alpha}_{\alpha} - \frac{2}{9} \xi. \partial^{\beta}_{\alpha} \partial^{\beta}_{\alpha} \partial^{\beta}_{\alpha} \partial^{\beta}_$$

PSALTer results panel

Wave operator

Total expected gauge generators:

Massive spectrum

Massive particle

Pole residue:	$\left \frac{9}{2 v} - \frac{3}{14 \xi} \right > 0$				
Square mass:	$-\frac{v}{2\xi} > 0$				
Spin:	1				
Parity:	Odd				

Massless spectrum

Massless particle

Pole residue: Polarisations: 2

Unitarity conditions

 ξ . < 0 && v. > 0

Key observation: This marks the completion of the particle spectrum analysis for action with only propagating compensator and vector.

Killing off the quartic pole

We will kill the quartic pole.

$$\frac{1}{2} \stackrel{\mathbf{v}}{\cdot} \mathcal{D}^{\dagger} \phi_{\alpha} \mathcal{D}^{\dagger} \phi^{\alpha} - c_{1} \mathcal{H}^{\dagger \alpha \beta} \mathcal{R}^{\dagger \chi}_{\alpha \beta \chi} + \lambda \stackrel{\mathbf{v}}{\cdot} \phi^{2} \mathcal{R}^{\dagger \alpha \beta}_{\alpha \beta} + \frac{1}{6} \left(2 \stackrel{\mathbf{r}}{\cdot} + \stackrel{\mathbf{r}}{\cdot} \right) \mathcal{R}^{\dagger}_{\alpha \beta \chi \delta} \mathcal{R}^{\dagger \alpha \beta \chi \delta} + \frac{2}{3} \left(\stackrel{\mathbf{r}}{\cdot} - \stackrel{\mathbf{r}}{\cdot} \right) \mathcal{R}^{\dagger \alpha \beta \chi \delta} + \left(\stackrel{\mathbf{r}}{\cdot} \stackrel{\mathbf{r}}{\cdot} - \stackrel{\mathbf{r}}{\cdot} \right) \mathcal{R}^{\dagger \alpha \beta \chi \delta} \mathcal{R}^{\dagger \alpha \beta \chi \delta} + \left(\stackrel{\mathbf{r}}{\cdot} - \stackrel{\mathbf{r}}{\cdot} \right) \mathcal{R}^{\dagger \alpha \beta \chi \delta} \mathcal{R}^{\dagger \alpha \beta \chi \delta} + \frac{1}{6} \left(3 \stackrel{\mathbf{r}}{\cdot} - \stackrel{\mathbf{r}}{\cdot} \right) \mathcal{R}^{\dagger \alpha \beta \chi \delta} \mathcal{R}^{\dagger \alpha \beta \chi \delta} + \left(\stackrel{\mathbf{r}}{\cdot} - \stackrel{\mathbf{r}}{\cdot} \right) \mathcal{R}^{\dagger \alpha \beta \chi \delta} \mathcal{R}^{\dagger \alpha \delta \chi \delta} + \frac{1}{12} \left(3 \stackrel{\mathbf{r}}{\cdot} - \stackrel{\mathbf{r}}{\cdot} \right) \phi^{2} \mathcal{T}^{\dagger \alpha \beta \chi} \mathcal{T}^{\dagger \alpha \gamma \chi} \mathcal{T}^{\dagger \alpha \beta \chi} \mathcal{T}^{\dagger \alpha \gamma \chi} \mathcal{T}^$$

Out[4]= \$Aborted