Name: Rushikesh Jyoti

Divison: A

Roll no: 27

SRN: 201901139

Question

- Read the dataset "protein.csv" that is provided to you.
- Build a suitable clustering model using R/Python based on k-means clustering approach.
- Plot the clusters and show how the model varies with different values of k.
- Develop some metrics to determine the accuracy of your clustering model

In [202]:

```
import pandas as pd
import seaborn as sb
from matplotlib import pyplot as plot
import random

from sklearn import metrics
from sklearn.preprocessing import LabelEncoder
from sklearn.cluster import KMeans
from sklearn.model_selection import train_test_split
```

```
In [203]:
```

```
df = pd.read_csv("./protein.csv")
df.head()
```

Out[203]:

	Country	RedMeat	WhiteMeat	Eggs	Milk	Fish	Cereals	Starch	Nuts	Fr&Veg
0	Albania	10.1	1.4	0.5	8.9	0.2	42.3	0.6	5.5	1.7
1	Austria	8.9	14.0	4.3	19.9	2.1	28.0	3.6	1.3	4.3
2	Belgium	13.5	9.3	4.1	17.5	4.5	26.6	5.7	2.1	4.0
3	Bulgaria	7.8	6.0	1.6	8.3	1.2	56.7	1.1	3.7	4.2
4	Czechoslovakia	9.7	11.4	2.8	12.5	2.0	34.3	5.0	1.1	4.0

Dataset Splitting

```
In [204]:
```

```
xtrain, xtest, ytrain, ytest = train_test_split(df.drop(["Country"], axis=1), df["Countr
y"], train_size=0.8)
print(xtrain.shape, xtest.shape, ytrain.shape, ytest.shape)
```

```
(20, 9) (5, 9) (20,) (5,)
```

Clustering Model (k-3)

olastellis model (v-o)

```
In [205]:
model = KMeans(3)
model.fit(df.drop(["Country"], axis=1), df["Country"])
model
Out[205]:
KMeans(n_clusters=3)
In [206]:
colors = list(sb.colors.crayons.values())
colors = random.sample(colors, k=model.cluster_centers_.shape[0])
colors
Out[206]:
['#FD7C6E', '#CD9575', '#1A4876']
```

Plotting the scatter plot

Clustering Model (k=7)

```
In [208]:
model = KMeans(7)
```

```
model.fit(df.drop(["Country"], axis=1), df["Country"])
model

Out[208]:

KMeans(n_clusters=7)

In [209]:

colors = list(sb.colors.crayons.values())
colors = random.sample(colors, k=model.cluster_centers_.shape[0])
colors

Out[209]:
['#E6A8D7', '#FAA76C', '#F0E891', '#DEAA88', '#6DAE81', '#FCE883', '#FD7C6E']

Plotting

In [210]:

plot.figure(1, (15, 7))
sb.scatterplot(x='RedMeat', y='WhiteMeat', hue=model.labels_, data=df, legend="full", pa lette=colors)
```

