Amendments to the Claims

1. (Previously Presented) A compound of formula I

$$(R^{5})_{q} \xrightarrow{\qquad \qquad Y \qquad \qquad \qquad } A \qquad \qquad (CH_{2})_{j} \qquad \qquad (CHR^{6})_{n} \qquad \qquad (R^{2})_{m}$$

wherein

n is 0, 1, 2, or 3;

m is 0, 1, 2, 3, 4, 5 or 6;

i is 1 or 2;

q is 0, 1, or 2;

W, X, Y and Z are each independently CH, C, N, S, or O with appropriate single or double bonds and/or hydrogen atoms to complete valency requirements;

Ring A is a five or six member ring wherein one of W, X, Y or Z may be absent; provided that ring A is not phenyl;

K is a bond, C=O, or S(O)n;

p is 0, 1 or 2;

 R^1 is selected from a group consisting of hydroxy, hydrogen, $C_1\text{-}C_6$ alkyl, $C_2\text{-}C_6$ alkenyl, $C_1\text{-}C_6$ haloalkyl, $C_1\text{-}C_6$ alkylheterocyclic, $C_3\text{-}C_8$ cycloalkyl, $C_1\text{-}C_6$ alkyleycloalkyl; $C_1\text{-}C_6$ alkylaryl, aryl, heterocyclyl, $C_2\text{-}C_6$ alkylalcohol, $\text{-}OC_1\text{-}C_6$ alkyl, -O-aryl, $\text{-}OC_2\text{-}C_6$ alkenyl, $\text{-}OC_1\text{-}C_6$ alkylaryl, aryl, heterocyclic, $\text{-}OC_3\text{-}C_8$ cycloalkyl, $\text{-}OC_1\text{-}C_6$ alkyleycloalkyl, $\text{-}NR^7R^8$, $\text{-}OC_1\text{-}C_6$ alkylaryl, $\text{-}O\text{-}heterocyclic}$, $\text{-}OC_3\text{-}C_8$ cycloalkyl, $\text{-}OC_1\text{-}C_6$ alkyleycloalkyl, $\text{-}NR^7R^8$, $\text{-}OC_1\text{-}C_6$ alkylaryl, $\text{-}O\text{-}heterocyclic}$, $\text{-}OC_1\text{-}C_6$ alkyleO_2R^{11}, $\text{-}OC_2\text{-}C_6$ alkylaryln, $\text{-}OC_1\text{-}C_6$ alkylaryln, $\text{-}O\text{-}C_1\text{-}C_6$ alkylaryln, $\text{-}O\text{-}C_1\text{-}C_6$ alkylaryln, $\text{-}O\text{-}C_1\text{-}C_6$ alkylaryln, $\text{-}O\text{-}C_1\text{-}C_6$ alkylaryln, $\text{-}O\text{-}C_1\text{-}C$

 $C_1-C_3 \ alkylCOR^{11}, C_0-C_6 \ alkylCOOR^{11}, C_0-C_6 \ alkylcyano, -OC_2-C_6 alkylcyano, C_1-C_6 \ alkylcycloalkyl, phenyl, -OC_1-C_6 \ alkylcycloalkyl, -OC_1-C_6 \ alkylaryl, -OC_1-C_6 \ alkylaryl; and \ C_1-C_6 \ alkylaryl;$

 R^2 is independently selected from the group consisting of hydrogen, halo, $C_1\text{-}C_6$ alkyn/l, $C_2\text{-}C_6$ alkyn/l, $C_1\text{-}C_6$ haloalkyl, $OC_1\text{-}C_6$ haloalkyl, $OC_1\text{-}C_6$ alkyl, $C_1\text{-}C_6$ alkylaryl, aryl, $C_0\text{-}C_6$ alkyln/R $^7R^8$, heteroaryl, heterocyclyl, $C_3\text{-}C_8$ cycloalkyl, $C_1\text{-}C_6$ alkylcycloalkyl and $C_1\text{-}C_6$ alkylheterocyclyl; wherein each cycloalkyl, aryl, or heterocyclic is optionally substituted with 1 to 3 groups independently selected from oxo, hydroxy, halo, $C_1\text{-}C_6$ alkyl, $C_2\text{-}C_6$ alkenyl, $C_2\text{-}C_6$ alkynyl, $C_1\text{-}C_6$ alcohol, $C_1\text{-}C_6$ alkoy, $C_1\text{-}C_6$ haloalkyl, $C_1\text{-}C_6$ haloalkoxy, $CONR^{11}R^{12}$, $NR^{11}\text{COR}^{12}$, $C_0\text{-}C_3$ alkylNR^{11}R^{12}, $C_1\text{-}C_3$ alkylCOR^{11}, $C_0\text{-}C_6$ alkylCOOR^{11}, cyano, and phenyl, and wherein two R^2 groups may combine to form a 3,4 or 5 member spirocycle, or a five or six member optionally substituted fused carbocyclic or heterocyclic ring;

 R^3 is hydrogen, C_1 - C_6 alkyl, aryl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_1 - C_6 alkylaryl, C_1 - C_6 alkylheterocyclic, C_3 - C_6 cycloalkyl, or C_1 - C_6 alkylcycloalkyl;

R4 is a group represented by the formula -NR9R10;

 R^5 is selected from the group consisting of hydrogen, halogen, hydroxy, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, -OC₁- C_6 alkyl, C_1 - C_6 haloalkyl, C_3 - C_8 cycloalkyl, C_1 - C_6 alkylaryl, C_1 - C_6 alkylaryl, C_1 - C_6 alkylaryl, C_1 - C_6 alkylaryl, C_1 - C_6 alkylaryl, heteroaryl, -O-aryl, -OC₂- C_6 alkenyl, -OC₁- C_6 haloalkyl, -NR 7 R 8 , and -OC₁- C_6 alkylaryl; and wherein when q is 1, 2 or 3, two adjacent R 5 groups may combine to form a fused 5 or 6 member optionally substituted carbocyclic or heterocyclic ring;

 $R^6 \ is \ independently \ selected \ from \ the \ group \ consisting \ of \ hydrogen, C_{1^-C_6} \ alkyl, C_{2^-C_6} \ alkenyl, \ hydroxy, C_{1^-C_6} \ alkyl, C_{2^-C_6} \ alkenyl, -OC_{1^-C_6} \ alkyl, -O-aryl, -OC_{2^-C_6} \ alkenyl, C_{1^-C_6} \ alkenyl, C_{1^-C_6} \ alkyl, -OC_{1^-C_6} \ alkyl, -OC_{$

R⁷ and R⁸ are independently selected from the group consisting of hydrogen, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₃-C₆ eycloalkyl, C₁-C₆ alkyleycloalkyl, C₁-C₆ alkylheterocyclic, heterocyclic, aryl, C₁-C₆ alkylaryl, hydroxy, oxo, COOH, C(O)OC₁-C₄ alkyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, C₁-C₆ holalkyl, C₁-C₆ alkylacholo, C₁-C₆ alkylarmine, C₂-C₆ alkenylaryl, C₂-C₆ alkynlaryl, C₁-C₆ alkyl-NR¹l-C₁-C₆ alkylaryl, C₁-C₆ alkylaryl, C₁-C₆ alkyl-NR¹l-C₁-C₆ alkylaryl, C₁-C₆ alkyl-NR⁷R⁸, C₁-C₆ alkyl-NR⁷R⁸,

nitrogen containing heterocyclic ring which may have 0, 1, or 2 additional hetero-atoms selected from oxygen, nitrogen or sulfur and may be optionally substituted with oxo. or C₁-C₆ alkyl:

R¹⁰ is selected from the group consisting of aryl, C₁-C₆ alkylaryl, C₂-C₆ alkenylaryl, C₂-C₆ alkynylaryl, C₁-C₆ alkylaryl, C₁-C₆ alkylylectocyclic, C₁-C₆ alkylectocyclic, C₁-C₆ alkylecycloalkyl, C₃-C₈ cycloalkyl, C₁-C₆ alkyl-O-C₁-C₆ alkylaryl, and wherein each cycloalkyl, aryl, or heterocyclic group is optionally substituted with 1-3 groups independently selected from the group consisting of hydroxy, oxo, -SC₁-C₆ alkyl, C₁-C₆ alkyl, C₁-C₆ alkenyl, C₁-C₆ alkynyl, C₁-C₆ alkonyl, C₁-C₆ alkonyl, C₁-C₆ alkonyl, C₁-C₆ alkyl, C₁-C₆ alkyl, C₁-C₆ alkyl, C₁-C₆ alkyl, C₁-C₆ alkylaryl, nitro, cyano, -OC₁-C₆ haloalkyl, C₁-C₆ haloalkylalcohol, and C₁-C₆ alkylalcohol;

 R^{11} and R^{12} are independently selected from the group consisting of hydrogen, $C_1\text{-}C_6$ alkyl, $C_1\text{-}C_6$ alkeyl, $C_3\text{-}C_8$ cycloalkyl, heterocyclic, aryl, and $C_1\text{-}C_6$ alkylaryl, wherein each aryl group is optionally substituted with 1-3 groups independently selected from halogen, $C_1\text{-}C_6$ alkylheterocyclic, and $C_1\text{-}C_6$ haloalkyl, or R^{11} and R^{12} combine to form a nitrogen containing heterocyclic ring which may have 0, 1, or 2 additional heteroatoms selected from oxygen, nitrogen or sulfur and is optionally substituted with oxo, or $C_1\text{-}C_6$ alkyl; or a pharmaceutically acceptable salt, enantiomer, racemate, diastereomer or mixture of diastereomers thereof.

2. (Previously Presented) A compound according to Claim 1, or a pharmaceutically acceptable salt, enantiomer, racemate, diastereomer, or mixture of diastereomers thereof, wherein n is 0, and K is C=O, wherein R¹ is selected from a group consisting of hydroxy, hydrogen, -C₁-C₆ alkyl, -C₀-C₆ alkyleycloalkyl, -C₀-C₆ alkylheterocyclic, -C₁-C₆ haloalkyl -OC₁-C₆ alkoxy, C₁-

 C_6 alkylaryl, $-OC_1$ – C_6 alkyl, $-OC_3$ – C_8 cycloalkyl $-OC_1$ – C_6 alkyleycloalkyl, $-OC_1$ – C_6 alkyleycloalkylNR 7 R 8 , C_1 – C_6 alkoxy, $-OC_0$ – C_6 alkylaryl, $-OC_1$ – C_6 haloalkyl, OC_1 – C_6 alkyleyano, OC_1 – C_6 alkyl OC_2 R 11 , $-OC_1$ – C_6 alkylhydroxy, $-OC_3$ - C_8 cycloalkyl OC_2 R 11 , $-OC_1$ – C_6 alkylNR 7 R 8 and $-OC_1$ – C_6 alkylheterocyclic and wherein each cycloalkyl, aryl, or heterocyclic is optionally substituted with 1 or 2 groups selected from halogen, C_0 – C_3 alkylaclohol, C_0 – C_3 alkylamine, C_0 – C_3 alkylCOOH, $CONH_2$, C_0 – C_3 alkylcyano, and $C(O)OC_1$ – C_3 alkyl.

- 3. (Previously Presented) A compound according to Claim 1, or a pharmaceutically acceptable salt, enantiomer, racemate, diastereomer, or mixture of diastereomers thereof, wherein R⁴ is NR⁹R¹⁰ and R⁹ is a heterocyclic group optionally substituted with one or two groups independently selected from hydroxy, halo, amino, C(O)OC₁-C₄ alkyl, C₁-C₆ haloalkyl, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkynyl, C₁-C₆ alkylalcohol, C₁-C₆ alkylamine, C₃-C₈ cycloalkyl, C₁-C₆ alkylCONR⁷R⁸, C₁-C₆ alkylcyano, C₁-C₆ alkylCO₂R¹¹, C₁-C₆ alkylNR⁷R⁸ and C₁-C₆ alkylcycloalkyl.
- (Previously Presented) A compound of claim 1, or a pharmaceutically acceptable salt, enantiomer, racemate, diastercomer, or mixture of diastercomers thereof, wherein j is 2.
- (Previously Presented) A compound according to Claim 1, or a pharmaceutically acceptable salt, enantiomer, racemate, diastereomer, or mixture of diastereomers thereof, wherein n, m, and q are independently 0, or 1.
- 6. (Previously Presented) A compound according to Claim 1, or a pharmaceutically acceptable salt, enantiomer, racemate, diastereomer, or mixture of diastereomers thereof, wherein the A ring is selected from the group consisting of pyridine, pyrazine, thiophene, pyrazole isoxazole, oxazole, and thiazole.
- 7. (Previously Presented) A compound according to Claim 1, or a pharmaceutically acceptable salt, enantiomer, racemate, diastereomer, or mixture of diastereomers thereof, wherein the A ring is pyridine.
- 8. (Previously Presented) A compound according to Claim 1, or a pharmaceutically acceptable salt, enantiomer, racemate, diastereomer, or mixture of diastereomers thereof, wherein the A ring is thiophene.

9. (Previously Presented) A compound according to Claim 1, or a pharmaceutically acceptable salt, enantiomer, racemate, diastereomer, or mixture of diastereomers thereof, wherein each R³ is hydrogen and R⁴ is NR⁰R¹0 and R⁰ is selected from the group consisting of:

wherein R is independently H, OH, NR^7R^8 or C_1 - C_3 alkyl wherein the C_1 - C_3 alkyl group is optionally substituted with OH, halo, cyano, $CONR^7R^3$, CO_2R^{11} , or NR^7R^8 .

10. (Previously Presented) A compound according to Claim 1, or a pharmaceutically acceptable salt, enantiomer, racemate, diastereomer, or mixture of diastereomers thereof, wherein R³ is hydrogen and R⁴ is NR⁹R¹⁰ selected from the group consisting of:

wherein R^7 is independently selected from the group consisting of C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_3 - C_8 cycloalkyl, C_1 - C_6 alkyleycloalkyl, C_1 - C_6 alkyleterocyclic, heterocyclic, aryl, C_1 - C_6 alkylaryl, C_1 - C_1 alkyl, C_1 - C_2 alkyl, C_1 - C_3 alkyl, wherein each cycloalkyl, heterocyclic or aryl group is optionally substituted with a group selected from hydroxy, C_1 - C_3 alkyl, C_1 - C_3 alkylalcohol, C_1 - C_3 alkyl C_1 - C_3 alkyl, C_1 - C_4 alkoxy, C_1 - C_5 alkylamine, and C_1 - C_5 alkyleycloalkyl.

- 11. (Previously Presented) A compound according to Claim 1, or a pharmaceutically acceptable salt, enantiomer, racemate, diastereomer, or mixture of diastereomers thereof, wherein R^4 is NR^9R^{10} and R^9 is $COOR^7$.
- 12. (Previously Presented) A compound according to Claim 1, or a pharmaceutically acceptable salt, enantiomer, racemate, diastereomer, or mixture of diastereomers thereof, wherein R⁴ is NR⁹R¹⁰ and R⁹ is CONR⁷R⁸.

13. (Previously Presented) A compound according to Claim I, or a pharmaceutically acceptable salt, enantiomer, racemate, diastereomer, or mixture of diastereomers thereof, wherein R⁴ is NR⁹R¹⁰ and R⁹ is S(O)₂NR⁷R⁸.

- (Currently Amended) A compound according to claim 1 selected from the group consisting of:
- 5-[Acetyl-(3,5-bis-trifluoromethyl-benzyl)-amino]-2,3,4,5-tetrahydro-thieno[3,4-b]azepine-1-carboxylic acid isopropyl ester,
- 8-[Acetyl-(3,5-bis-trifluoromethyl-benzyl)-amino]-3-methyl-5,6,7,8-tetrahydro-thieno[3,2-b]azepine-4-carboxylic acid isopropyl ester,
- 8-[Acetyl-(3,5-bis-trifluoromethyl-benzyl)-amino]-2-bromo-5,6,7,8-tetrahydro-thieno[3,2-b]azepine-4-carboxylic acid isopropyl ester,
- 5-[Acetyl-(3,5-bis-trifluoromethyl-benzyl)-amino]-5,6,7,8-tetrahydro-pyrido[2,3-b]azepine-9-carboxylic acid isopropyl ester,
- 5-[Acetyl-(3,5-bis-trifluoromethyl-benzyl)-amino]-2,3,4,5-tetrahydro-pyrido[3,4-b]azepine-1-carboxylic acid isopropyl ester,
- 5-[Acetyl-(3,5-bis-trifluoromethyl-benzyl)-amino]-2,3,4,5-tetrahydro-pyrido[4,3-b]azepine-1-carboxylic acid isopropyl ester,
- 9-[Acetyl-(3,5-bis-trifluoromethyl-benzyl)-amino]-6,7,8,9-tetrahydro-pyrido[3,2-b]azepine-5-carboxylic acid isopropyl ester,
- 9-[Acetyl-(3,5-bis-trifluoromethyl-benzyl)-amino]-2-trifluoromethyl-6,7,8,9-tetrahydropyrido[3,2-b]azepine-5-carboxylic acid isopropyl ester,
- 9-[Acetyl-(3,5-bis-trifluoromethyl-benzyl)-amino]-3-trifluoromethyl-6,7,8,9-tetrahydropyrido[3,2-b]azepine-5-carboxylic acid isopropyl ester,
- 5-[Acetyl-(3,5-bis-trifluoromethyl-benzyl)-amino]-2,3,4,5-tetrahydro-thieno[3,4-b]azepine-1-carboxylic acid isopropyl ester,
- 8-[Acetyl-(3,5-bis-trifluoromethyl-benzyl)-amino]-3-methyl-5,6,7,8-tetrahydro-thieno[3,2-blazepine-4-carboxylic acid isopropyl ester.
- 4-[Acetyl-(3,5-bis-trifluoromethyl-benzyl)-amino]-1-methyl-4,5,6,7-tetrahydro-1H-1,2,8-triaza-azulene-8-carboxylic acid isopropyl ester,
- 9-[acetyl-(3,5-bis-trifluoromethylbenzyl)amino]-2-chloro-6,7,8,9-tetrahydro-pyrido[3,2-b]azepine-5-carboxylic acid isopropyl ester.

9-[acetyl-(3,5-bis-trifluoromethylbenzyl)amino]-2-methoxy-6,7,8,9-tetrahydro-pyrido[3,2-b]azepine-5-carboxylic acid isopropyl ester,

- 9-[acetyl-(3.5-bis-trifluoromethylbenzyl)amino]-2-bromo-6.7.8.9-tetrahydro-pyrido[3.2-
- b]azepine-5-carboxylic acid isopropyl ester,
- 9-[Acetyl-(3,5-bis-trifluoromethylbenzyl)amino]-2-dimethylamino-6,7,8,9-tetrahydro-pyrido[3,2-b]azepine-5-carboxylic acid isopropyl ester.
- $9\hbox{-}[Acetyl\hbox{-}(3,5\hbox{-}bis\hbox{-}trifluoromethylbenzyl)amino}]\hbox{-}2\hbox{-}methyl\hbox{-}6,7,8,9\hbox{-}tetrahydro\hbox{-}pyrido}[3,2\hbox{-}10]$
- b]azepine-5-carboxylic acid isopropyl ester,
- 9-[Acetyl-(3,5-bis-trifluoromethylbenzyl)amino]-2-cyano-6,7,8,9-tetrahydro-pyrido[3,2blazenine-5-carboxylic acid isopropyl ester.
- 9-[Acetyl-(3,5-bis-trifluoromethylbenzyl)amino]-3-chloro-2-methoxy-6,7,8,9-tetrahydro-pyrido[3,2-b]azepine-5-carboxylic acid isopropyl ester,
- 9-[Acetyl-(3,5-bis-trifluoromethylbenzyl)amino]-3-chloro-2-ethoxy-6,7,8,9-tetrahydro-pyrido[3,2-b]azepine-5-carboxylic acid isopropyl ester,
- 9-[Acetyl-(3,5-bis-trifluoromethyl-benzyl)amino]-2-methyl-3-trifluoromethyl-6,7,8,9-tetrahydro-pyrido[3,2-b]azepine-5-carboxylic acid isopropyl ester,
- $9\hbox{-}[(3,5\hbox{-Bis-trifluoromethyl-benzyl})\hbox{-}2\hbox{-methyl-}2H\hbox{-tetrazol-}5\hbox{-yl})\hbox{-amino}]\hbox{-}2\hbox{-methyl-}3\hbox{-}2H\hbox{-tetrazol-}5\hbox{-yl})$
- $trifluoromethyl-6,7,8,9-tetra hydro-pyrido [3,2-b] azepine-5-carboxylic\ acid\ isopropyl\ ester,$
- 9-[(3,5-Bis-trifluoromethyl-benzyl)-2-methyl-2*H*-tetrazol-5-yl)-amino]-2-methyl-3-
- trifluoromethyl-6,7,8,9-tetrahydro-pyrido[3,2-b]azepine-5-carboxylic acid tert-butyl ester, (3,5-Bis-trifluoromethyl-benzyl)-(5-cyclopentylmethyl-2-methyl-3-trifluoromethyl-6,7,8,9-
- tetrahydro-5H-pyrido[3,2-b]azepin-9-yl)-(2-methyl-2H-tetrazol-5-yl)-amine,
- (3.5-Bis-trifluoromethyl-benzyl)-(5-cyclopropylmethyl-2-methyl-3-trifluoromethyl-6,7,8,9-tetrahydro-5H-pyrido[3,2-b]azepin-9-yl)-(2-methyl-2H-tetrazol-5-yl)-amine,
- (3,5-Bis-trifluoromethyl-benzyl)-(2-methyl-5-pyridin-3-ylmethyl-3-trifluoromethyl-6,7,8,9-tetrahydro-5H-pyrido[3,2-b]azepin-9-yl)-(2-methyl-2H-tetrazol-5-yl)-amine,
- (3,5-Bis-trifluoromethyl-benzyl)-(2-methyl-5-pyridin-4-ylmethyl-3-trifluoromethyl-6,7,8,9-tetrahydro-5H-pyrido[3,2-b]azepin-9-yl)-(2-methyl-2H-tetrazol-5-yl)-amine,
- 3-{9-[(3,5-Bis-trifluoromethyl-benzyl)-(2-methyl-2H-tetrazol-5-yl)-amino]-2-methyl-3-trifluoromethyl-6.7,8,9-tetrahydro-pyrido[3,2-blazepin-5-ylmethyl}-benzoic acid,
- 4-{9-[(3,5-Bis-trifluoromethyl-benzyl)-(2-methyl-2H-tetrazol-5-yl)-amino]-2-methyl-3-trifluoromethyl-6.7,8,9-tetrahydro-pyrido[3,2-b]azepin-5-ylmethyl}-benzoic acid,

5-{9-[(3,5-Bis-trifluoromethyl-benzyl)-(2-methyl-2H-tetrazol-5-yl)-amino]-2-methyl-3-trifluoromethyl-6,7,8,9-tetrahydro-pyrido[3,2-b]azepin-5-yl}-3,3-dimethyl-pentanoic acid, (4-{9-[(3,5-Bis-trifluoromethyl-benzyl)-(2-methyl-2H-tetrazol-5-yl)-amino]-2-methyl-3-trifluoromethyl-6,7,8,9-tetrahydro-pyrido[3,2-b]azepin-5-ylmethyl}-cyclohexyl)-acetic acid, (3,5-Bis-trifluoromethyl-benzyl)-(5-ethyl-2-methyl-3-trifluoromethyl-6,7,8,9-tetrahydro-5H-pyrido[3,2-b]azepin-9-yl)-(2-methyl-2H-tetrazol-5-yl)-amine,

- 5-{9-[(3,5-Bis-trifluoromethyl-benzyl)-(2-methyl-2H-tetrazol-5-yl)-amino]-2-methyl-3-trifluoromethyl-6,7,8,9-tetrahydro-pyrido[3,2-b]azepin-5-ylmethyl}-thiophene-2-carboxylic acid, 2-{9-[(3,5-Bis-trifluoromethyl-benzyl)-(2-methyl-2H-tetrazol-5-yl)-amino]-2-methyl-3-trifluoromethyl-6,7,8,9-tetrahydro-pyrido[3,2-b]azepin-5-yl}-ethanol,
- (5-Benzyl-2-methyl-3-trifluoromethyl-6,7,8,9-tetrahydro-5H-pyrido[3,2-b]azepin-9-yl)-(3,5-bis-trifluoromethyl-benzyl)-(2-methyl-2H-tetrazol-5-yl)-amine,
- $\label{prop:control} (3,5-Bis-trifluoromethyl-benzyl)-(2-methyl-2H-tetrazol-5-yl)-(2-methyl-5-thiazol-2-ylmethyl-3-trifluoromethyl-6,7,8,9-tetrahydro-5H-pyrido[3,2-b]azepin-9-yl)-amine,$
- 9-[(3,5-Bis-trifluoromethyl-benzyl)-(2-methyl-2H-tetrazol-5-yl)-amino]-2-methyl-3-trifluoromethyl-6,7,8,9-tetrahydro-pyrido[3,2-b]azepine-5-carboxylic acid tetrahydro-furan-3-yl ester,
- (3,5-Bis-trifluoromethyl-benzyl)-(2-methyl-5-pyridin-4-ylmethyl-3-trifluoromethyl-6,7,8,9-tetrahydro-5H-pyrido[3,2-blazepin-9-yl)-carbamic acid methyl ester.
- N-(3,5-Bis-trifluoromethyl-benzyl)-N-(2-methyl-5-pyridin-4-ylmethyl-3-trifluoromethyl-6,7,8,9-tetrahydro-5H-pyrido[3,2-b]azepin-9-yl)-acetamide
- or a pharmaceutically acceptable salt, enantiomer or diastereomer or mixture thereof.

15-16. (Canceled)

17. (Currently Amended) A method of treating artheroselerosis atheroselerosis comprising administering a compound of formula I according to claim 1, or a pharmaceutically acceptable salt, enantiomer, racemate, diastereomer, or mixture of diastereomers thereof to a patient.

18-20. (Canceled)

21. (Currently Amended) A pharmaceutical composition comprising a compound according to Claim 1, or a pharmaceutically acceptable salt, enantiomer, racemate, diastereomer, or mixture of diastereomers thereof, and at least one of a carrier, diluent and/or excipient.

22-23. (Canceled)

- 24. (Previously Presented) A method of treating cardiovascular diseases comprising administering a compound of formula I according to claim 1, or a pharmaceutically acceptable salt, enantiomer, racemate, diastercomer, or mixture of diastercomers thereof to a patient.
- (New) A method according to claim 24 wherein said treating cardiovascular disease comprises treating dyslipidemia
- (New) A method according to claim 24 comprising increasing plasma HDLcholesterol in said patient.
- (New) A method according to claim 24 comprising raising the ratio of plasma HDLcholesterol to plasma LDL-cholesterol in said patient.
- (New) A method according to claim 24 comprising decreasing plasma LDLcholesterol in said patient.
- 29. (New) A method of raising plasma HDL-cholesterol in a mammal comprising administering a therapeutically effective dose of a compound according to claim 1, or a pharmaceutically acceptable salt, enantiomer, racemate, diastercomer, or mixture of diastercomers thereof to said mammal.
- 30. (New) A pharmaceutical composition of claim 21 comprising one or more cardio protective agents selected from the group consisting of: statins, leptin, and lipid regulating agents.