1 Answer to Exercise 1.4

To show that $\{\neg, \land\}$ is functionally complete, it suffices to prove that any propositional logic formula φ has a semantically equivalent expression which only contains \neg and \land . We conduct induction on the formula φ .

- $\varphi = a \in AP$. Trivial.
- I.H.: φ has a semantically equivalent expression which only contains \neg and \wedge , namely φ' . Then $\neg \varphi \equiv \neg \varphi'$, and $\neg \varphi'$ only contains \neg and \wedge .
- I.H.: φ and ψ both have a semantically equivalent expression which only contains \neg and \wedge , namely φ' and ψ' . Then $\varphi \to \psi \equiv \varphi' \to \psi' \equiv (\neg \varphi') \lor \psi' \equiv \neg(\varphi' \land (\neg \psi'))$, and $\neg(\varphi' \land (\neg \psi'))$ only contains \neg and \wedge .

Here we complete the proof.

Following a similar method, we can prove that $\{\neg, \lor\}$ is also functionally complete. Naturally, $\{\neg, \to\}$ is functionally complete. Now we claim that $\{\land, \lor\}$ is NOT functionally complete. Let $a \in AP$, and we show that $\neg a$ does not have a semantically equivalent expression which only contains \land and \lor . Let the assignment $\sigma = AP$, and naturally $\sigma(\neg a) = \mathbf{F}$. Then we prove by induction that, for any formula φ which only contains \land and \lor , $\sigma(\varphi) = \mathbf{T}$.

- $\varphi = a' \in AP$. $\sigma(a') = \mathbf{T}$.
- I.H.: $\sigma(\varphi) = \mathbf{T}$ and $\sigma(\psi) = \mathbf{T}$. Then $\sigma(\varphi \wedge \psi) = \mathbf{T}$ and $\sigma(\varphi \vee \psi) = \mathbf{T}$.

Therefore, $\neg a$ does not have a semantically equivalent expression φ which only contains \wedge and \vee

2 Proof of Lemma 1.3.30

(1) If Γ is consistent, and there is some finite subset $\Gamma' \subset \Gamma$ which is not consistent, then there exists a formula φ such that $\Gamma' \vdash \varphi$ and $\Gamma' \vdash \neg \varphi$, and we have $\Gamma \vdash \varphi$ and $\Gamma \vdash \neg \varphi$, which contradicts with the assumption that Γ is consistent.

If every finite subset of Γ is consistent and Γ is not consistent, then there exists a formula φ such that $\Gamma \vdash \varphi$ and $\Gamma \vdash \neg \varphi$. From (**Fin**) we know that there exists finite subsets $\Gamma', \Gamma'' \subseteq \Gamma$ such that $\Gamma' \vdash \varphi$ and $\Gamma'' \vdash \neg \varphi$. Then $\Gamma' \cup \Gamma''$ is also a finite subset of Γ , and it is consistent. However, we can see $\Gamma' \cup \Gamma'' \vdash \varphi$ and $\Gamma' \cup \Gamma'' \vdash \neg \varphi$. Contradiction!

(2) Notice that Γ is consistent if and only if Γ is satisfiable. It is obvious from (1).

In the following is the wrong proof I mentioned in the morning. It does not work because AP is countable (i.e. likely to be infinite) in our settings, and this will make the set $\{\varphi_{\sigma} \mid \sigma \text{ is an assignment}\}$ infinite. However, it is still worth considering how to proof (2) directly without using the fact that Γ is consistent if and only if Γ is satisfiable.

If Γ is satisfiable, then there exists an assignment σ , s.t. $\sigma(\Gamma) = \{T\}$. Then obviously for any finite subset $\Gamma' \subseteq \Gamma$, $\sigma(\Gamma') = \{T\}$, and Γ' is satisfiable.

If every finite subset of Γ is satisfiable and Γ is not satisfiable, then for any assignment σ , there exists a formula $\varphi_{\sigma} \in \Gamma$ such that $\sigma(\varphi_{\sigma}) = \mathbf{F}$. Then $\{\varphi_{\sigma} \mid \sigma \text{ is an assignment}\}$ is a finite subset of Γ , and it is not satisfiable. Contradiction!

3 Proof of Lemma 1.3.34

We prove it by induction on φ .

- $\varphi = a$ or $\varphi = \neg a$, where $a \in AP$. Trivial.
- I.H.: φ is satisfiable iff it has a consistent tableau. We consider $\neg\neg\varphi$.

 $\neg\neg\varphi$ is satisfiable iff φ is satisfiable iff φ has a consistent tableau iff $\neg\neg\varphi$ has a consistent tableau.

• I.H.: φ , as well as ψ , $\neg \varphi$, $\neg \psi$, is satisfiable iff it has a consistent tableau. Then we consider $\varphi \to \psi$.

 $\varphi \to \psi$ is satisfiable iff $\neg \varphi$ is satisfiable or ψ is satisfiable iff $\neg \varphi$ has a consistent tableau or ψ has a consistent tableau iff $\varphi \to \psi$ has a consistent tableau.

Finally we consider $\neg(\varphi \to \psi)$.

 $\neg(\varphi \to \psi)$ is satisfiable iff φ is satisfiable and $\neg \psi$ is satisfiable iff φ has a consistent tableau and $\neg \psi$ has a consistent tableau iff $\neg(\varphi \to \psi)$ has a consistent tableau.

Here we complete the proof.

4 Proof of Lemma 1.3.39

It suffices to show that for any assignment σ , $\sigma \Vdash \varphi$ implies $\sigma \Vdash \varphi \cup \{R\}$, since the other side is trivial. We only need to show that $\sigma \Vdash \varphi$ implies $\sigma \Vdash \{R\}$. Let the assignment σ satisfy $\sigma \Vdash \varphi$. We have $\sigma(C_1 \land C_2) = \mathbf{T}$. Then there exist literals $L_1 \in C_1$ and $L_2 \in C_2$ such that $\sigma(L_1) = \sigma(L_2) = \mathbf{T}$. Notice that $\{L_1, L_2\} \neq \{L, \neg L\}$, so at least one of L_1 and L_2 is in $R = (C_1 \setminus \{L\}) \cup (C_2 \setminus \{\neg L\})$, and we have $\sigma(\{R\}) = \mathbf{T}$.