

CMPT 825: Natural Language Processing

Constituency Parsing

Spring 2020 2020-03-24

Adapted from slides from Danqi Chen and Karthik Narasimhan (with some content from Chris Manning, Mike Collins, and Graham Neubig)

Project Milestone

- Project Milestone due Tuesday 3/31
- PDF (2-4 pages) in the style of a conference (e.g. ACL/EMNLP) submission
 - https://2020.emnlp.org/files/emnlp2020-templates.zip
- Milestone should include:
 - Title and Abstract motivate the problem, describe your goals, and highlight your findings
 - Approach details on your main approach and baselines. Be specific. Make clear what part is original, what code you are writing yourself, what code you are using
 - Experiment describe dataset, evaluation metrics, what experiments you plan to run, any results you have so far. Also provide training details, training times, etc.
 - Future Work what is your plan for the rest of the project
 - Reference provide references using BibTex
- Milestone will be graded based on progress and writing quality

Overview

- Constituency structure vs dependency structure
- Context-free grammar (CFG)
- Probabilistic context-free grammar (PCFG)
- The CKY algorithm
- Evaluation
- Lexicalized PCFGs
- Neural methods for constituency parsing

Syntactic structure: constituency and dependency

Two views of linguistic structure

- Constituency
 - = phrase structure grammar
 - = context-free grammars (CFGs)

Dependency

Constituency structure

- Phrase structure organizes words into nested constituents
- Starting units: words are given a category: part-of-speech tags

```
the, cuddly, cat, by, the, door
```

Words combine into phrases with categories

```
the cuddly cat, by, the door
```

$$NP \rightarrow DT JJ NN$$
 IN $NP \rightarrow DT NN$

• Phrases can combine into bigger phrases recursively

the cuddly cat, by the door

 $NP PP \rightarrow IN NP$

the cuddly cat by the door

 $NP \rightarrow NP PP$

This Thursday

Dependency structure

• Dependency structure shows which words depend on (modify or are arguments of) which other words.

Why do we need sentence structure?

- We need to understand sentence structure in order to be able to interpret language correctly
- Human communicate complex ideas by composing words together into bigger units
- We need to know what is connected to what

Syntactic parsing

• Syntactic parsing is the task of recognizing a sentence and assigning a structure to it.

Input:

Boeing is located in Seattle.

Output:

Syntactic parsing

• Used as intermediate representation for downstream applications

English word order: subject — verb — object

Japanese word order: subject - object - verb

Image credit: http://vas3k.com/blog/machine_translation/

Syntactic parsing

• Used as intermediate representation for downstream applications

Relation: per:city of death

Benoit B. Mandelbrot, a maverick mathematician who developed an innovative theory of roughness and applied it to physics, biology, finance and many other fields, died Thursday in *Cambridge*, Mass.

Relation: per:employee_of

In a career that spanned seven decades, Ginzburg authored several groundbreaking studies in various fields -- such as quantum theory, astrophysics, radio-astronomy and diffusion of cosmic radiation in the Earth's atmosphere -- that were of "Nobel Prize caliber," said Gennady Mesyats, the director of the *Lebedev Physics Institute* in Moscow, where **Ginzburg** worked.

Relation: *org:founded_by*

Anil Kumar, a former director at the consulting firm McKinsey & Co, pleaded guilty on Thursday to providing inside information to *Raj Rajaratnam*, the founder of the Galleon Group, in exchange for payments of at least \$ 175 million from 2004 through 2009.

Relation Extraction

Image credit: (Zhang et al, 2018)

Context-free grammars (CFG)

- Widely used formal system for modeling constituency structure in English and other natural languages
- A context free grammar $G = (N, \Sigma, R, S)$ where
 - *N* is a set of non-terminal symbols
 - Σ is a set of terminal symbols
 - R is a set of rules of the form $X \to Y_1 Y_2 ... Y_n$ for $n \ge 1, X \in N, Y_i \in (N \cup \Sigma)$
 - $S \in N$ is a distinguished start symbol

A Context-Free Grammar for English

```
N = \{ {\rm S, \, NP, \, VP, \, PP, \, DT, \, Vi, \, Vt, \, NN, \, IN} \} S = {\rm Sleeps, \, saw, \, man, \, woman, \, telescope, \, the, \, with, \, in} \}
```

R =

S	\rightarrow	NP	VP
VP	\rightarrow	Vi	
VP	\rightarrow	Vt	NP
VP	\rightarrow	VP	PP
NP	\rightarrow	DT	NN
NP	\rightarrow	NP	PP
PP	\rightarrow	IN	NP

 $\begin{array}{cccc} Vi & \rightarrow & sleeps \\ Vt & \rightarrow & saw \\ \hline NN & \rightarrow & man \\ NN & \rightarrow & woman \\ NN & \rightarrow & telescope \\ NN & \rightarrow & dog \\ \hline DT & \rightarrow & the \\ \hline IN & \rightarrow & with \\ \hline \end{array}$

Grammar

Lexicon

 \rightarrow in

IN

S:sentence, VP:verb phrase, NP: noun phrase, PP:prepositional phrase, DT:determiner, Vi:intransitive verb, Vt:transitive verb, NN: noun, IN:preposition

Ambiguity

• Some strings may have more than one derivations (i.e. more than one parse trees!).

"Classical" NLP Parsing

• In fact, sentences can have a very large number of possible parses

The board approved [its acquisition] [by Royal Trustco Ltd.] [of Toronto] [for \$27 a share] [at its monthly meeting].

((ab)c)d (a(bc))d (ab)(cd) a((bc)d) a(b(cd))

Catalan number:
$$C_n = \frac{1}{n+1} {2n \choose n}$$

- It is also difficult to construct a grammar with enough coverage
 - A less constrained grammar can parse more sentences but result in more parses for even simple sentences
 - There is no way to choose the right parse!

Statistical parsing

- Learning from data: treebanks
- Adding probabilities to the rules: probabilistic CFGs (PCFGs)

Treebanks: a collection of sentences paired with their parse trees

```
((S
   (NP-SBJ (DT That)
                                    ((S
    (JJ cold) (, ,)
                                       (NP-SBJ The/DT flight/NN )
     (JJ empty) (NN sky) )
                                       (VP should/MD
   (VP (VBD was)
                                         (VP arrive/VB
     (ADJP-PRD (JJ full)
                                           (PP-TMP at/IN
       (PP (IN of)
                                             (NP eleven/CD a.m/RB ))
         (NP (NN fire)
                                            (NP-TMP tomorrow/NN )))))
           (CC and)
           (NN light) ))))
  (. .))
                                                      (b)
               (a)
```

The Penn Treebank Project (Marcus et al, 1993)

Treebanks

- Standard setup (WSJ portion of Penn Treebank):
 - 40,000 sentences for training
 - 1,700 for development
 - 2,400 for testing
- Why building a treebank instead of a grammar?
 - Broad coverage
 - Frequencies and distributional information
 - A way to evaluate systems

Probabilistic context-free grammars (PCFGs)

S	\Rightarrow	NP	VP	1.0
VP	\Rightarrow	Vi		0.4
VP	\Rightarrow	Vt	NP	0.4
VP	\Rightarrow	VP	PP	0.2
NP	\Rightarrow	DT	NN	0.3
NP	\Rightarrow	NP	PP	0.7
PP	\Rightarrow	Р	NP	1.0

Vi	\Rightarrow	sleeps	1.0
Vt	\Rightarrow	saw	1.0
NN	\Rightarrow	man	0.7
NN	\Rightarrow	woman	0.2
NN	\Rightarrow	telescope	0.1
DT	\Rightarrow	the	1.0
IN	\Rightarrow	with	0.5
IN	\Rightarrow	in	0.5

- A probabilistic context-free grammar (PCFG) consists of:
 - A context-free grammar: $G = (N, \Sigma, R, S)$
 - For each rule $\alpha \to \beta \in R$, there is a parameter $q(\alpha \to \beta) \ge 0$. For any $X \in N$,

$$\sum_{\alpha \to \beta: \alpha = X} q(\alpha \to \beta) = 1$$

Probabilistic context-free grammars (PCFGs)

For any derivation (parse tree) containing rules: $\alpha_1 \to \beta_1, \alpha_2 \to \beta_2, ..., \alpha_l \to \beta_l$, the probability of the parse is:

$$\prod_{i=1}^{l} q(\alpha_i \to \beta_i)$$

$$P(t) = q(S \rightarrow NP VP) \times q(NP \rightarrow DT NN) \times q(DT \rightarrow the)$$

 $\times q(NN \rightarrow man) \times q(VP \rightarrow Vi) \times q(Vi \rightarrow sleeps)$
= $1.0 \times 0.3 \times 1.0 \times 0.7 \times 0.4 \times 1.0 = 0.084$

Why do we want
$$\sum_{\alpha \to \beta: \alpha = X} q(\alpha \to \beta) = 1?$$

S	\Rightarrow	NP	VP	1.0
VP	\Rightarrow	Vi		0.4
VP	\Rightarrow	Vt	NP	0.4
VP	\Rightarrow	VP	PP	0.2
NP	\Rightarrow	DT	NN	0.3
NP	\Rightarrow	NP	PP	0.7
PP	\Rightarrow	Р	NP	1.0

Vi	\Rightarrow	sleeps	1.0
Vt	\Rightarrow	saw	1.0
NN	\Rightarrow	man	0.7
NN	\Rightarrow	woman	0.2
NN	\Rightarrow	telescope	0.1
DT	\Rightarrow	the	1.0
IN	\Rightarrow	with	0.5
IN	\Rightarrow	in	0.5

Deriving a PCFG from a treebank

- Training data: a set of parse trees $t_1, t_2, ..., t_m$
- A PCFG (N, Σ, S, R, q) :
 - *N* is the set of all non-terminals seen in the trees
 - Σ is the set of all words seen in the trees
 - *S* is taken to be the start symbol *S*.
 - *R* is taken to be the set of all rules $\alpha \to \beta$ seen in the trees
 - The maximum-likelihood parameter estimates are:

$$q_{ML}(\alpha \to \beta) = \frac{\text{Count}(\alpha \to \beta)}{\text{Count}(\alpha)}$$

If we have seen the rule VP \rightarrow Vt NP 105 times, and the non-terminal VP 1000 times, $q(\text{VP} \rightarrow \text{Vt NP}) = 0.105$

Parsing with PCFGs

• Given a sentence *s* and a PCFG, how to find the highest scoring parse tree for *s*?

$$argmax_{t \in \mathcal{T}(s)}P(t)$$

- The CKY algorithm: applies to a PCFG in Chomsky normal form (CNF)
- Chomsky Normal Form (CNF): all the rules take one of the two following forms:
 - $X \rightarrow Y_1 Y_2$ where $X \in N, Y_1 \in N, Y_2 \in N$ Binary
 - $X \to Y$ where $X \in N, Y \in \Sigma$ Unary
- It is possible to convert any PCFG into an equivalent grammar in CNF!
 - However, the trees will look differently; It is possible to do "reverse transformation"

Converting PCFGs into a CNF grammar

• n-ary rules (n > 2): NP \rightarrow DT NNP VBG NN

- Unary rules: $VP \rightarrow Vi$, $Vi \rightarrow sleeps$
 - Eliminate all the unary rules recursively by adding $VP \rightarrow sleeps$
 - We will come back to this later!

The CKY algorithm

- Dynamic programming
- Given a sentence $x_1, x_2, ..., x_n$, denote $\pi(i, j, X)$ as the highest score for any parse tree that dominates words $x_i, ..., x_j$ and has non-terminal $X \in N$ as its root.
- Output: $\pi(1,n,S)$
- Initially, for i = 1, 2, ..., n, $\pi(i, i, X) = \begin{cases} q(X \to x_i) & \text{if } X \to x_i \in R \\ 0 & \text{otherwise} \end{cases}$

The CKY algorithm

• For all (i,j) such that $1 \le i < j \le n$ for all $X \in N$,

$$\pi(i, j, X) = \max_{X \to YZ \in R, i \le k < j} q(X \to YZ) \times \pi(i, k, Y) \times \pi(k + 1, j, Z)$$

Also stores backpointers which allow us to recover the parse tree

CKY with unary rules

• In practice, we also allow unary rules:

$$X \to Y$$
 where $X, Y \in N$

conversion to/from the normal form is easier

How does this change CKY?

$$\pi(i, j, X) = \max_{X \to Y \in R} q(X \to Y) \times \pi(i, j, Y)$$

- Compute unary closure: if there is a rule chain $X \to Y_1, Y_1 \to Y_2, ..., Y_k \to Y$, add $q(X \to Y) = q(X \to Y_1) \times \cdots \times q(Y_k \to Y)$
- Update unary rule once after the binary rules

Evaluating constituency parsing

Gold standard brackets: **S-(0:11)**, **NP-(0:2)**, VP-(2:9), VP-(3:9), **NP-(4:6)**, PP-(6-9), NP-(7,9), NP-(9:10)

Candidate brackets:

S-(0:11), NP-(0:2), VP-(2:10), VP-(3:10), NP-(4:6), PP-(6-10), NP-(7,10)

Evaluating constituency parsing

- Recall: (# correct constituents in candidate) / (# constituents in gold tree)
- Precision: (# correct constituents in candidate) / (# constituents in candidate)
- Labeled precision/recall require getting the non-terminal label correct
- F1 = (2 * precision * recall) / (precision + recall)

Evaluating constituency parsing

Gold standard brackets: **S-(0:11)**, **NP-(0:2)**, VP-(2:9), VP-(3:9), **NP-(4:6)**, PP-(6-9), NP-(7,9), NP-(9:10)

Candidate brackets:

S-(0:11), **NP-(0:2)**, VP-(2:10), VP-(3:10), **NP-(4:6)**, PP-(6-10), NP-(7,10)

- Precision: 3/7 = 42.9%
- Recall: 3/8 = 37.5%
- F1 = 40.0%
- Tagging accuracy: 100%

Weaknesses of PCFGs

• Lack of sensitivity to lexical information (words)

The only difference between these two parses:

$$q(VP \rightarrow VP PP) \text{ vs } q(NP \rightarrow NP PP)$$

... without looking at the words!

Weaknesses of PCFGs

• Lack of sensitivity to lexical information (words)

Exactly the same set of context-free rules!

Lexicalized PCFGs

• Key idea: add **headwords** to trees

• Each context-free rule has one special child that is the head of the rule (a core idea in syntax)

```
S \Rightarrow NP VP (VP is the head)

VP \Rightarrow Vt NP (Vt is the head)

NP \Rightarrow DT NN NN (NN is the head)
```

Lexicalized PCFGs

If the rule contains NN, NNS, or NNP: Choose the rightmost NN, NNS, or NNP

Else If the rule contains an NP: Choose the leftmost NP

Else If the rule contains a JJ: Choose the rightmost JJ

Else If the rule contains a CD: Choose the rightmost CD

Else Choose the rightmost child

If the rule contains Vi or Vt: Choose the leftmost Vi or Vt

Else If the rule contains a VP: Choose the leftmost VP

Else Choose the leftmost child

Lexicalized PCFGs

- Further reading: Michael Collins. 2003. Head-Driven Statistical Models for Natural Language Parsing.
- Results for a PCFG: 70.6% recall, 74.8% precision
- Results for a lexicalized PCFG: 88.1% recall, 88.3% precision