WISKUNDIGE BEWIJSTECHNIEKEN

STELLINGEN VAN HET TYPE P ⇒ Q (ALS ... DAN ...)

Rechtstreeks

- We trachten te bewijzen dat als p waar is dan ook q waar is
 - $ightharpoonup p \Rightarrow q$ correspondeert met de logische implicatie $(p \rightarrow q)$
 - ▶Om de implicatie te bewijzen schakelen we het enige geval waarbij de implicatie onwaar is (p waar en q onwaar) uit

```
Bijv. door p \rightarrow p_1 p_1 \rightarrow p_2 ... p_n \rightarrow q Daaruit volgt p \rightarrow q
```


STELLINGEN VAN HET TYPE $P \Rightarrow Q$ (ALS ... DAN ...)

Rechtstreeks

▶ Voorbeeld : Als n > m > 0, met n en m reele getallen

$$\frac{n}{m} > \frac{n+1}{m+1}$$

Als n > m dan mn + n > mn + m

Als
$$mn + n > mn + m \, dan \, (m + 1) \, n > (n + 1) \, m$$

Als $(m + 1) \, n > (n + 1) \, m \, dan \, \frac{n}{m} > \frac{n+1}{m+1}$ (wegens n en m positief)

STELLINGEN VAN HET TYPE P ⇒ Q (ALS ... DAN ...)

Onrechtstreeks

► Bewijs door contrapositie

BEWIJS DOOR CONTRAPOSITIE

 $p \rightarrow q$ is logisch equivalent met $\neg q \rightarrow \neg p$

Dus i.p.v. $p \rightarrow q$ te bewijzen kunnen we $\neg q \rightarrow \neg p$ bewijzen

Bijvoorbeeld: stel a en b positieve reële getallen

Als $a^2 < b^2$ dan a < b

Te bewijzen door contrapositie, nl

als
$$\neg$$
(a < b) dan \neg (a² < b²) \neg p of nog TB: als a \geq b dan a² \geq b²

Bewijs: als $a \ge b$ dan $a.a \ge a.b$ en $a.b \ge b.b$

BEWIJS UIT HET ONGERIJMDE

Ook genoemd: door contradictie

Stel p is te bewijzen

We gaan nu $\neg p$ aannemen en dan hieruit proberen een eigenschap q af te leiden die in strijd is met axioma's of met gekende eigenschappen.

Omdat $\neg p \rightarrow q$ dan waar is

En q onwaar (volgens onze axioma's of gekende eigenschappen)

Volgt hieruit dat ¬p (onze aanname) onwaar moet zijn, of dus p waar.

Kan toegepast worden voor eender welk type van stelling!

BEWIJS UIT HET ONGERIJMDE TOEGEPAST OP STELLINGEN VAN HET TYPE P \Rightarrow Q

 $p \Rightarrow q$ correspondeert in logica met $(p \rightarrow q)$

We veronderstellen nu $\neg(p \rightarrow q)$ waar

Dit is logisch equivalent met $(p \land \neg q)$

En hieruit proberen we dan een onware bewering t af te leiden

Dus $(p \land \neg q) \rightarrow t$ waar

Maar t is onwaar

Hieruit volgt dat aanname (p $\land \neg q$) onwaar moet zijn, en dus $\neg (p \rightarrow q)$ onwaar, en dus (p $\rightarrow q$) waar.

BEWIJS UIT HET ONGERIJMDE TOEGEPAST OP STELLINGEN VAN HET TYPE P ⇒ Q

Als n is een <u>oneven</u> geheel getal, dan n^2 een <u>oneven</u> geheel getal.

We veronderstellen de negatie is waar, en tonen aan dat dit tot een contractie leidt.

Dus n is een oneven geheel getal en n^2 een even geheel getal.

$$n$$
 oneven, $n = 2k + 1$, met $k \in \mathbb{Z}$

Dan
$$n^2 = (2k + 1)^2 = 4k + 2k + 1$$

Is in contradictie met n^2 is even

BEWIJS UIT HET ONGERIJMDE TOEGEPAST OP STELLINGEN VAN HET TYPE P \Rightarrow Q

x is een rationaal getal, y is een irrationaal getal ,

dan is x + y is een irrationaal getal.

We veronderstellen het omgekeerde

x is een rationaal getal, y is een irrationaal getal en x + y is rationaal

x is een rationaal getal dus x=p/q , x+y is rationaal dus x+y=r/s, met $p,q,r,s\in Z$

x+y=r/s dus ook p/q+y=r/s en dus y=r/s - p/q en ook y=(rq-ps)/sq , maar dit is een contractie met y irrationaal

STELLINGEN VAN HET TYPE P \iff Q

 $p \Leftrightarrow q$ correspondeert in logica met $(p \leftrightarrow q)$

Aangezien

 $(p \leftrightarrow q)$ logisch equivalent is met $(p \rightarrow q) \land (q \rightarrow p)$

kunnen we het bewijs van de equivalentie geven door elke implicatie afzonderlijk te bewijzen, dus

 $p \Rightarrow q en p \leftarrow q bewijzen.$

Een veel voorkomend geval is: $(p \Rightarrow q)$ rechtstreeks bewijzen en $(q \Leftarrow p)$ via contrapositie, dus $\neg p \Rightarrow \neg q$ bewijzen

BEWIJS PER INDUCTIE

Te gebruiken wanneer we iets moeten bewijzen voor een aftelbaar oneindig aantal

Gebaseerd op de volgende **stelling**:

Zij $\{p_n \mid n \in N\}$ een verzameling uitspraken zodat

(a) p_0 waar is (basisstap)

(b) $\forall k \in \mathbb{N}$: als p_k waar is, dan is p_{k+1} waar (inductiestap)

Dan is p_n waar voor alle $n \in N$

BEWIJS PER INDUCTIE

Voorbeeld 1 t.b:
$$1 + 3 + 5 + ... + (2n+1) = (n + 1)^2$$
, $\forall n \in \mathbb{N}$

Bewijs Zij
$$p_n$$
 de bewering $1 + 3 + 5 + ... + (2n+1) = (n + 1)^2$

Voldoet die aan (a) en (b) uit de vorige stelling?

- (a) p_0 is waar, nl. 1 = 12
- (b) Zij $k \in N$ willekeurig. Onderstel p_k waar, dus $1+3+...+(2k+1)=(k+1)^2$

dan is

$$1 + 3 + ... + (2k+1) + (2(k+1) + 1) = (k+1)^2 + 2(k+1) + 1 = ((k+1) + 1)^2$$

en dus ook p_{k+1} waar

Wegens I.H.

Aangezien k willekeurig is, is bewezen dat $\forall k \in \mathbb{N}$: als p_k dan p_{k+1}

Dus dan is p_n waar voor alle $n \in N$ (vorige stelling)

 $(a+b)^2 =$ $a^2 + 2ab + b^2$

som bevat maar één term,

Inductie hypothese (I.H.)

en $(0+1)^2 = 1$

BEWIJS PER INDUCTIE

Voorbeeld 2: t.b. $2^n > n^2$, $\forall n \in \mathbb{N}$, $n \geq 5$

Bewijs Zij p_n de bewering $2^n > n^2$

Voldoet die aan (a) en (b) uit de vorige stelling?

- (a) p_5 is waar, nl. $2^5 > 5^2$ (32 > 25)
- (b) Zij $k \in \mathbb{N}$, $k \ge 5$. Onderstel dat p_k waar is, dus als $2^k \ge k^2$ dan is $2^{k+1} \ge (k+1)^2$

! Soms makkelijker om inductiehypothese te formuleren ifv k-1, i.e. als $2^{k-1} > (k$ -1) 2 dan is $2^k > k^2$

$$2^{k} = 2 \times 2^{k-1} > 2 \times (k-1)^{2} = 2 (k^{2} - 2k + 1) = 2k^{2} - 4k + 2 =$$

$$k^2 + k^2 - 4k + 2 = k^2 + k(k - 4) + 2 > k^2$$
 (wegens $k(k - 4) + 2$ positief, met $k > 5$)

Zo is bewezen dat $\forall k \in \mathbb{N}, k \geq 5$: als p_k dan p_{k+1}

Dus p_n waar voor alle $n \in \mathbb{N}$, $n \geq 5$

ALLE PAARDEN ZIJN WIT ????

Stelling Alle paarden zijn wit

Bewijs per inductie

 (b) Als n paarden dezelfde kleur hebben, dan ook n+1 paarden

• (a) Paard van Sinterklaas is wit

Wat loopt hier fout?

SORITES PARADOXEN

- ▶ 1.000.000 zandkorrels vormen samen een zandhoop.
- ► Als 1.000.000 zandkorrels samen een zandhoop vormen, doen 999.999 zandkorrels dat ook.
- ► Als 999.999 zandkorrels samen een zandhoop vormen, doen 999.998 zandkorrels dat ook.
- **...**
- ▶ Dus 1 zandkorrel vormt ook een zandhoop.

Samengevat:

- ▶ 1.000.000 zandkorrels vormen samen een zandhoop.
- ► Als een x-aantal zandkorrels samen een zandhoop vormen, doen x-1 aantal zandkorrels dat ook.
- Dus 1 zandkorrel vormt ook een zandhoop.

VAAGHEID

VAAGHEID

EINDE BEWIJZEN

