

001/ 힙

002/ 우선순위큐

003/ 0x00

004/ null

005/ '₩0'

알고가자 알고리즘 입(Heap)

• 잘 알아보도록 합시다

힙

힙

- 완전이진트리를 기본으로 한 자료구조
- 최소힙 : 부모노드.value <= 자식노드.value
- 최대힙 : 부모노드.value >= 자식노드.value
- 최댓값 및 최솟값을 찿아내는 연산을 빠르게 하기 위해 고안

힙

최소 힙과 최대 힙

힙

최대 힙의 삽입

- 1. 트리의 마지막 원소로 값을 삽입한다.
- 2. 부모가 나보다 작다면 두 값을 교환
- 3. root까지 가거나, 부모가 자식보다 크면 끝

힙

최대 힙의 삽입

- 1. 트리의 마지막 원소로 값을 삽입한다.
- 2. 부모가 나보다 작다면 두 값을 교환
- 3. root까지 가거나, 부모가 자식보다 크면 끝

힙

최대 힙의 삭제

- 1. root노드를 heap의 마지막 노드와 교환
- 2. 교환된 마지막 노드를 삭제
- 3. 새로운 root노드를 적합한 위치로 내려보낸다.
 - 두 자식 모두 자신보다 크면 더 큰 값의 자식을 선택해서 교환

힙

최대 힙의 삭제

- 1. root노드를 heap의 마지막 노드와 교환
- 2. 교환된 마지막 노드를 삭제
- 3. 새로운 root노드를 적합한 위치로 내려보낸다.
 - 두 자식 모두 자신보다 크면 더 큰 값의 자식을 선택해서 교환

힙

최대 힙의 삭제

- 1. root노드를 heap의 마지막 노드와 교환
- 2. 교환된 마지막 노드를 삭제
- 3. 새로운 root노드를 적합한 위치로 내려보낸다.
 - 두 자식 모두 자신보다 크면 더 큰 값의 자식을 선택해서 교환

알고가자 알고리즘 **우선순위** 큐

• 잘 알아보도록 합시다

우선순위 큐

우선순위 큐

- 큐 : 들어간 데이터가 먼저 나오는 자료구조

- 우선순위 큐 : 들어간 순서에 상관없이 우선순위가 높은 데이터가 먼저 나옴

- 1. 배열을 기반으로 구현
- 데이터 삽입 및 삭제과정에서 데이터를 한 칸씩 당기거나 밀어야 하는 연산이 계속됨
- 삽입의 위치를 찾기 위해 배열에 저장된 모든 데이터와 우선순위를 비교
- 2. 연결리스트를 기반으로 구현
- 삽입의 위치를 찿기 위해 첫번째 노드에서부터 시작해 마지막 노드에 저장된 데이터 와 우선순위를 비교할 지도 모른다.
- 3. 힙을 이용해 구현
- 일반적으로 사용하는 방식
- 삽입과 삭제에 있어서 일정한 logn 시간이 걸림

간단하게 시간복잡도로 확인하자

우선순위큐 표현방식	삽입	삭제
순서 없는 배열	O(1)	O(n)
순서 없는 연결 리스트	O(1)	O(n)
정렬된 배열	O(n)	O(1)
정렬된 연결 리스트	O(n)	O(1)
힙	O(logn)	O(logn)

Thank You for Listening

