Energieversorgung

EV-V1+2 Einleitung und Motivation Grundlagen der Energieversorgung

Hinweis: Diese Unterlagen finden ausschließlich im Rahmen der Lehre an der TU Wien Anwendung und dürfen nicht anderweitig verwendet werden.

Informationen zur Vorlesung

- Energieversorgung
 - Montag, 08:30 (s.t.) bis 10:00 Uhr
- Skriptum zur Vorlesung im TISS
- Ausdruck im Sekretariat E370-1, Zimmer Nr. CF0349
- Fragen, Fehler, Feedback: Wolfgang Gawlik
 - gawlik@ea.tuwien.ac.at

Information zur Prüfung

- Ab Jänner 2015: Nur mehr schriftliche Prüfung
- Der schriftliche Teil muss positiv absolviert werden, es findet dann keine mündliche Prüfung mehr statt.
- Wer bereits bis Dezember 2014 eine schriftliche Prüfung absolviert hat, kann die mündliche Prüfung innerhalb von drei Jahren nachholen – Terminvereinbarung individuell
- Ehemalige Prüfungsaufgaben unter http://www.ea.tuwien.ac.at

Themenübersicht

- Grundlagen der Energieversorgung
- Grundlagen der Berechnung
- Betriebsmittel in Energiesystemen
- Betriebsvorgänge und Störungen
- Energiewandlung
- Netzführung und Netzregelung
- (Strommarkt Grundprinzipien und –prozesse)
- Wirtschaftlichkeit in der Energieversorgung

Energiebedarf des Menschen

Mitochondrium

Quelle: Wikimedia Commons / Sterilgutassistentin

Energiebedarf des Menschen

- Mitochondrien sind die "Energiekraftwerke" der Zelle
- Grundumsatz nach der "Harris-Benedict-Formel,."
 - ♂: Grundumsatz [kcal/24 h] = 66,47 + (13,7 *
 Körpergewicht [kg]) + (5 * Körpergrösse [cm]) (6,8 *
 Alter [Jahre])
 - ♀: Grundumsatz [kcal/24 h] = 655,1 + (9,6 *
 Körpergewicht [kg]) + (1,8 * Körpergrösse [cm]) (4,7 * Alter [Jahre])
- 1 kcal = 4,186 kJ = 4,186 kWs

Energiebedarf des Menschen

2.000 kcal = 8.373 kJ

•
$$P = \frac{8.373 \, kJ}{24 \cdot 60 \cdot 60 s} = \frac{8.373 \cdot 10^3 \, Ws}{24 \cdot 60 \cdot 60 s} = 96,9W$$

Weltweiter Energiebedarf

- Primärenergieverbrauch 2009:
 12.150 Mio t Erdöläquivalent (toe)
- 1 toe = 41,9 GJ
- Weltbevölkerung 2009:
 6,79 Mrd Menschen (inzwischen: > 7 Mrd)

Weltweiter Energiebedarf

$$P_{Welt} = \frac{12150 \cdot 10^{6} toe}{365 \cdot 24 \cdot 60 \cdot 60s} =$$

$$= \frac{12150 \cdot 10^{6} \cdot 41,9 \cdot 10^{9} Ws}{365 \cdot 24 \cdot 60 \cdot 60s} = 16,14 \cdot 10^{12} W$$

$$P_{per\,capita\,2009} = \frac{16,14\cdot10^{12}\,W}{6,79\cdot10^9} = 2377W$$

Pro-Kopf-Energieverbrauch 2008: Österreich

3,99 toe/a

4,08 toe/a (Deutschland)

4,16 toe/a (Frankreich)

Pro-Kopf-Energieverbrauch 2008: Qatar

Pro-Kopf-Energieverbrauch 2008: Eritreia

Pro-Kopf-Energieverbrauch 2008

Energieversorgung ohne elektrisches Verbundsystem

Nutzung nachwachsender Rohstoffe zum Kochen

Quelle: Modi, 2011 and Yumkella, 2013

Aufgaben der Energieversorgung

Energie ist die Grundlage für die moderne Industriegesellschaft. Aufgaben:

- Primärenergieträger verfügbar machen (Kohle, Gas, Wasserkraft, Wind, Sonne)
- Umwandlung in verschiedene andere Energieformen (Elektrizität, Wärme)
- Transport der Energie zu den Endkunden (Strom-, Gas-, Wärmenetze)
- Verteilung der Energie bei den Endkunden (Hausanschluss für Strom, Gas, Wärme)

Geforderte Eigenschaften von Energiesystemen

- Sicherheit und Zuverlässigkeit: Jederzeit Versorgung mit Energie, Unterbrechungen nur so kurz wie möglich
- Wirtschaftlichkeit: Bezahlbarer, langfristig stabiler Preis
- Umweltfreundlichkeit:
 Belastung der Umwelt durch Gewinnung,
 Umwandlung, Übertragung und Verteilung so gering wie möglich

Nichterneuerbare Energieträger

- Energieversorgung der Welt verwendet heute vielfach noch fossile Energieträger
- Kohle (Braun- und Steinkohle), Erdgas und Erdöl, Uran
- Vorkommen der nichterneuerbaren Energierohstoffe sind zwangsläufig begrenzt
- Verfügbarkeit kann zum heutigen Zeitpunkt noch als gesichert gelten
- Umweltauswirkungen kritisch

Reserven, Ressourcen und Reichweiten

- Reserven sind nachgewiesene und wirtschaftlich gewinnbare Vorkommen
- Ressourcen sind Vorkommen, die noch nicht sicher nachgewiesen oder wirtschaftlich förderbar sind → ggf. später Reserven
- Statische Reichweite stellt Reserven bzw.
 Ressourcen mit Primärenergiebedarf in Beziehung

Reichweite = $\frac{\text{Weltvorräte}}{\text{Jahresbedarf}}$

Reichweiten fossiler Energieträger (2006)

	Welt-	Welt-	Welt-	Reichweite
	reserven in	ressourcen	verbrauch	der Reserven
	Mrd. t	in Mrd. t	in Mio. t	in Jahren
Erdöl	160	82		42
(konventionell)			3.789,2	
Erdöl (nicht-	66	250	3.769,2	17
konventionell*)				
Erdgas	176**	207**	2,79**	63
Steinkohle	785	4.060	4.646	169
Braunkohle	204	923	898	227
Uran	0,00474	ca. 0,010	0,070	68

^{*} Schwerstöl, Ölschiefer, Ölsande, ** in 1000 Mrd. m³

Fossile Energieträger

- Steinkohle: Große Lagerstättenpotentiale, zunehmende Bedeutung prognostiziert
- Braunkohle: Einsatz auf Stromerzeugung am Ort der bergbaulichen Gewinnung begrenzt
- Erdöl: nur noch wenige Jahrzehnte verfügbar
- Erdgas: noch viele Jahrzehnte verfügbar.
 Pipeline-Transport und LNG
- Uran: CO₂-frei, Endlagerproblematik
- Neue Technologieentwicklungen

Erneuerbare Energien

- Früher (bis 19. Jhd) dominierende Energiequelle
- Heute wieder steigende Bedeutung

Erneuerbare Energien (2)

- Wasserkraft: Laufwasser-, Speicher- und Pumpspeicherkraftwerke. In vielen Ländern sind Potentiale zur Wasserkraftnutzung bereits weitgehend erschlossen
- Gezeitenkraft: Besondere Form der Wasserkraft aus dem Tidenhub (Staudamm oder Strömung)
- Windenergie: Früher Windmühle, heute Windkraftanlage. Stromerzeugung dargebotsgeführt

Institut für Energiesysteme und Elektrische Antriebe

Erneuerbare Energien (3)

- Solarthermie: Erzeugung von technisch nutzbarer Wärme, z.B. in Dampfturbine → dargebotsgeführt, durch Wärmespeicher in Grenzen entkoppelbar
- Photovoltaik: Direkte Umwandlung in elektrische Energie → dargebotsgeführt
- Geothermie: Nutzung von Wärme aus Erdkruste zu Heizzwecken und Erzeugung elektrischer Energie

Erneuerbare Energien (4)

- Biomasse: Nachwachsender Rohstoff, fest, flüssig oder gasförmig zur Erzeugung von Nutzenergie verwendbar
- Müll: Mit Einschränkungen als nachwachsendem Rohstoff zu betrachten. Emissionsschutz aufwendig

Energieversorgung in Europa und weltweit

 Energieverbrauch bestimmt durch lokale Verfügbarkeit der Energieträger

• N, S, CH, A: Wasser

F, S: Kernenergie

• CN, PL, EST: Kohle

RUS: Gas

• M, CY: Öl

Relative

Verbrauchsminderung durch

Bruttoinlandsverbrauch pro Kopf

(2009)

in toe

Bruttoinlandsverbrauch pro Bruttoinlandsprodukt

Entwicklung der Rohölpreise

 Effizienz und erneuerbare Energien werden immer wichtiger

Institut für Energiesysteme und Elektrische Antriebe

Energetischer Endverbrauch in Österreich

Energetischer Endverbrauch in Österreich

Q.: BMWA 2008, Ch.Fridrich 2009.

Energetischer Endverbrauch nach Sektoren (2010)

Energetischer Endverbrauch nach Einsatzzwecken (2010)

Entwicklung der Energiepreise im Haushalt (AT)

Versorgung mit Kohle (AT)

- Keine inländische Förderung
- 3,1 Mio t Import pro Jahr (PL, CZ, AU)

Versorgung mit Erdöl und Erdölprodukten (AT)

- gut 1 Mio t inländische Förderung (2010)
- Reserven noch f
 ür ca. 10 Jahre

Import ca. 6,77 Mio t (2010)

u.a. Kasachstan, Lybien, Nigeria

Rohöl- und Produktenpipelines und Firmen in Österreich

Versorgung mit Erdgas (AT)

- ca. 1,716 Mrd. m³ inländische Förderung (2010)
- Reserven noch f
 ür ca. 14 Jahre
- Import ca. 7,06 Mrd. m³ (2010)

u.a.

Russland, Norwegen

Erdgasspeicher in AT

Standort	Arbeitsgasvolumen	Entnahmekapazität	Technischer
	[Mio. m³]	[m³/h]	Betreiber
Schönkirchen	1.780	960.000	OMV
Tallesbrunn	400	160.000	OMV
Thann	250	130.000	OMV
Puchkirchen und	1.114	540.000	RAG
Haidach 5			
Aigelsbrunn	100	50.000	RAG
Haidach	800	334.000	Wingas
Haidach	1.600	666.000	Gazprom
7fields	1.165	405.000	E.ON Gas
			Storage
Summe	7.209	3.245.000	

Gaswirtschaft in AT

Erneuerbare Energien in AT

Kraftwerk	Leistung [MW]	Fertig- stellung	Betreiber
Malta-Hauptstufe	730,0	1979	VERBUND Hydro Power AG
Silz	500,0	1981	Tiroler Wasserkraft AG
Kaprun Oberstufe	480,0	2011/	VERBUND Hydro Power AG
Limberg II	400,0	2012	VERDUND HYUIU PUWEI AG
Kopswerk II	450,0	2008	Vorarlberger Illwerke AG
Kaunertal	392,0	1964	Tiroler Wasserkraft AG
Häusling	360,0	1988	VERBUND Hydro Power AG
Mayrhofen	345,0	1977	VERBUND Hydro Power AG
Kühtai	289,0	1981	Tiroler Wasserkraft AG
Rodundwerk II	276,0	1976	Vorarlberger Illwerke AG
Kopswerk I	247,0	1969	Vorarlberger Illwerke AG
Lünerseewerk	232,0	1958	Vorarlberger IIIwerke AG
Roßhag	231,0	1972	VERBUND Hydro Power AG
Kaprun Hauptstufe	220,0	1952	VERBUND Hydro Power AG

Pumpspeicherkraftwerk Malta Oberstufe, Kärnten

[Quelle: Verbund.com]

Kraftwerk Kaprun, Oberstufe

[Quelle: Verbund.com]

Laufwasserkraftwerke in AT

Kraftwerk	Leist. [MW]	Fertig- stellung	Fluss	Betreiber
Altenwörth	328,0	1976	Donau	VERBUND Hydro Power AG
Aschach	324,0	1964/ 2010	Donau	VERBUND Hydro Power AG
Greifenstein	293,0	1985	Donau	VERBUND Hydro Power AG
Ybbs-Persenbeug	236,5	1959	Donau	VERBUND Hydro Power AG
Wallsee- Mitterkirchen	210,0	1968	Donau	VERBUND Hydro Power AG
Melk	187,0	1982	Donau	VERBUND Hydro Power AG
Ottensheim- Wilhering	179,0	1974	Donau	VERBUND Hydro Power AG
Freudenau	172,0	1998	Donau	VERBUND Hydro Power AG
Abwinden-Asten	168,0	1979	Donau	VERBUND Hydro Power AG
Jochenstein	132,0	1956	Donau	Donaukraft Jochenstein AG

Laufkraftwerk Ybbs-Persenbeug, Niederösterreich

[Quelle: Verbund.com]

Elektrische Energie in AT

- Stromerzeugung von Wasserkraft dominiert (>60% Bruttostromerzeugung aus Lauf- und Speicherkraftwerken)
- Wasserkraftpotenzial zu rund 70 % ausgebaut
- > 650 Laufkraftwerke an Donau, Donau-Zubringern und Drau
- > 100 Speicherkraftwerke in (hoch-)alpinen Regionen im Westen und Süden

Bruttostromerzeugung in AT

Stromerzeugung mit fossilen Energieträgern

- Anteil der fossilen Wärmekraftwerke an Gesamtstromerzeugung liegt um die 30 %
- Konzentriert auf großen Anlagen im Wiener Raum und in den Landeshauptstädten Linz, Graz und Salzburg sowie der energieintensiven Industrie
- Durch Kraft-Wärme-Kopplung (KWK) wird dabei oft neben elektrischer Energie auch Wärme für Heizzwecke erzeugt und hoher Gesamtwirkungsgrad der Brennstoffausnutzung erreicht

Ökostromanlagen in AT

Spannungs- und Netzebenen in AT

Ebene	Nennspannung	Bezeichnung
1	380 o. 220 kV	Übertragungsnetz, europäisches Verbundnetz
		UCTE-Netz, Höchstspannungsnetz
2	380 o. 220/110 kV	Haupt-Umspanner zum Hochspannungsnetz
3	110 kV	Übertragungsnetze der regionalen Versorger
		Hochspannungsnetz
4	110/10 o. 20 o. 30 kV	Umspanner zum Mittelspannungsnetz
5	10 o. 20 o. 30 kV	Mittelspannungsnetz
6	10 o. 20 o. 30/0,4 kV	Umspanner zum Niederspannungsnetz
7	0,4 kV	Niederspannungsnetz

Hoch- und Höchstspannungsnetz der APG

Fernwärme in AT

- Erzeugung in Kraft-Wärme-Kopplungs (KWK)-Anlagen → höherer Gesamtwirkungsgrad
- Temperaturabhängige Wärmenachfrage
- Wassergeführtes Wärmeverteilsystem
- Fernwärmeversorgung vorwiegend durch kommunale Unternehmen
- Schwerpunkte der Fernwärmeversorgung Wien, Graz, Linz, Salzburg, Klagenfurt, St. Pölten und Wels, aber auch kleinere Gemeinden

Netzlängenentwicklung Fernwärme in AT in km

Elektrische Energieversorgung

Elektrische Energiesysteme haben die folgenden Aufgaben:

- Energie verlustfrei übertragen und verteilen
- Spannungsschwankungen gering halten bei Beund Entlastungen
- Ausreichende Überlastbarkeit bei Ausfällen von Komponenten
- Schnelle Wiederversorgung nach Spannungsunterbrechungen

Elektrische Energieversorgung (2)

Elektrische Energiesysteme bestehen aus den Bereichen:

- Erzeugung (Kraftwerke, Energiekonverter)
- Übertragung mit Spannungen über 60 kV
- Verteilung mit Spannungen unter 60 kV
- Speicher (zentral, dezentral)

Elektrische Energieversorgung (3)

Die physikalischen Einheiten der elektrischen Energieversorgung sind:

- Spannung in Kilovolt (kV)
- Strom in Kiloampere (kA)
- Wirkleistung in Megawatt (MW)
- Blindleistung in Megavoltampere reaktiv (MVAr)
- Scheinleistung in Megavoltampere (MVA)

Spannung und Frequenz im Haushalt

Ausblick

• Berechnung von elektrischen Energiesystemen

Vielen Dank für Ihre Aufmerksamkeit

- Energieversorgung
 - Montag, 08:30 (s.t.) 10:00 Uhr

- Wolfgang Gawlik
 - gawlik@ea.tuwien.ac.at