# 

FIGURE 1

|                                 |              |     | ······································ |     |     |     |     |     |     |      |      |     |     |     |     |      |      |      |      |
|---------------------------------|--------------|-----|----------------------------------------|-----|-----|-----|-----|-----|-----|------|------|-----|-----|-----|-----|------|------|------|------|
| size<br>(bp)                    | 173          | 176 | 180                                    | 184 | 188 | 192 | 196 | 200 | 204 | 208  | 212  | 216 | 220 | 224 | 228 | 230  | 234  | 238  | 242  |
| allelic<br>designa<br>tion<br>n | 16.1         | 17  | 18                                     | 19  | 20  | 21  | 22  | 2.3 | 24  | 25   | 26   | 27  | 28  | 29  | 30  | 30.2 | 31.2 | 32.2 | 33.2 |
| loci                            | FGA<br>(LMW) |     |                                        |     |     |     |     |     |     |      |      |     |     |     |     |      |      |      |      |
| size<br>(bp)                    | 266          | 270 | 274                                    | 278 | 282 | 286 | 290 | 294 | 298 | 302  | 306  | 310 | 314 | 318 | 322 | 326  | 330  | 334  | 338  |
| allelic<br>designat<br>10n<br>n | æ            | 6   | 10                                     | 11  | 12  | 13  | 14  | 15  | 16  | 17   | 18   | 19  | 20  | 21  | 22  | 23   | 24   | 25   | 26   |
| locı                            | D18          |     |                                        |     |     |     |     |     |     |      |      |     |     |     |     |      |      |      |      |
| size<br>(bp)                    | 157          | 161 | 165                                    | 169 | 173 | 177 | 181 | 185 | 189 | 193  | 197  | 201 | 205 | 122 | 126 | 130  | 134  | 138  | 142  |
| allelic<br>designat<br>ion      | 7            | 8   | 6                                      | 10  | 11  | 12  | 13  | 14  | 15  | 16   | 1.7  | 18  | 19  | 10  | 11  | 12   | 13   | 14   | 15   |
| loci                            | D8           |     |                                        |     |     |     |     |     |     |      |      |     |     | VWA |     |      |      |      |      |
| size<br>(bp)                    | 150          | 154 | 158                                    | 162 | 166 | 170 | 173 | 174 | 178 | 189  | 203  | 205 | 209 | 211 | 215 | 219  | 223  | 227  | 231  |
| allelic<br>designat<br>ion      | 4            | 5   | 9                                      | 7   | 8   | 6   | 9.3 | 10  | 11  | 13.3 | 53   | 54  | 56  | 57  | 59  | 61   | 63   | 65   | 67   |
| loci                            | THO1         |     |                                        |     |     |     |     |     |     |      | D2.1 |     |     |     |     |      |      |      |      |

# HE CHICE THE FIRST OF THE THE THE THE THE STATE OF THE THE STATE OF TH

|          |         |      |      |      |      |      |      | <del></del> 1 |
|----------|---------|------|------|------|------|------|------|---------------|
| 246      | 278     | 282  | 286  | 290  | 294  | 298  | 302  | 310           |
| 34.2 246 | 42.2    | 42.3 | 44.2 | 45.2 | 46.2 | 47.2 | 48.2 | 50.2 310      |
|          |         |      |      |      |      |      |      |               |
| 342      | 105     | 111  |      |      |      |      |      |               |
| 27       | ×       | ¥    |      |      |      |      |      |               |
|          | AMELO X |      |      |      |      |      |      |               |
| 146      | 150     | 154  | 158  | 162  | 166  |      |      |               |
| 16       | 17      | 18   | 19   | 2.0  | 21   | 1    |      |               |
|          |         |      |      |      |      |      |      |               |
| 233      | 237     | 241  | 245  | 247  | 257  | 755  | 250  | (67           |
| 89       | 7.0     | 7.2  | 7.4  | 75   | 0,   | 1    | 2/20 | 10            |
|          |         |      |      |      |      |      |      |               |



Fig 2a



Tig 26



Fig 2c



Fig 2d





Fig2e





Fig 2g

# HUMVWAF31/A sequences

- 10 TCTA TCTG TCTA (TCTG)4 (TCTA)5
- 12 TCTA (TCTG)<sub>4</sub> (TCTA)<sub>7</sub>



# Fig 3a

# HUMTHO1 sequences

13.3 (TCAT), CAT (TCAT), TCGT TCAT

Fig3b

# D8S1179 sequences

7 (TCTA) 8;

19 (TCTA)<sub>2</sub> TCTG(TCTA)<sub>16</sub>;

Fig3c

## HUMFIBRA(FGA) Repeat Sequences

- 16.1 (TTTC), TTTT TTCT (CTTT), T (CTTT), CTCC (TTCC).
- 27 (TTTC)<sub>3</sub> TTTT TTCT (CTTT)<sub>13</sub> CCTT (CTTT)<sub>5</sub> CTCC (TTCC)<sub>2</sub>.
- 30 (TTTC)<sub>3</sub> TTTT TTCT (CTTT)<sub>16</sub> CCTT (CTTT)<sub>5</sub> CTCC (TTCC)<sub>2</sub>.
- 31.2 (TTTC), TTTT TT (CTTT), (CTTC), (CTTT), CTCC (TTCC),
- 32.2 (TTTC)<sub>4</sub> TTTT TT (CTTT)<sub>16</sub> (CTTC)<sub>5</sub> (CTTT)<sub>7</sub> CTCC (TTCC)<sub>4</sub>
- 33.2 (TTTC)<sub>4</sub> TTTT TT (CTTT)<sub>17</sub> (CTTC)<sub>3</sub> (CTTT)<sub>5</sub> CTCC (TTCC)<sub>4</sub>
- 42.2 (TTTC), TTTT TT (CTTT)8 (CTGT), (CTTT)13 (CTTC), (CTTT)3 CTCC (TTCC)  $_4$
- 43.2 (TTTC)<sub>4</sub> TTTT TT (CTTT)<sub>8</sub> (CTGT)<sub>5</sub> (CTTT)<sub>13</sub> (CTTC)<sub>4</sub> (CTTT)<sub>3</sub> CTCC
- 44.2 (TTTC), TTTT TT (CTTT), (CTGT), (CTTT), (CTTC), (CTTT), CTCC (TTCC),
- 45.2 (TTTC)<sub>4</sub> TTTT TT (CTTT)<sub>10</sub> (CTGT)<sub>5</sub> (CTTT)<sub>13</sub> (CTTC)<sub>4</sub> (CTTT)<sub>3</sub> CTCC (TTCC)<sub>4</sub>
  - 47.2 (TTTC), TTTT TT (CTTT), (CTGT), (CTTT), (CTTC), (CTTT), CTCC (TTCC),
  - 48.2 (TTTC), TTTT TT (CTTT), (CTGT), (CTTT), (CTTT), (CTTC), (CTTC), (CTTC), (CTTC),

Fig 3d

## D21S11 alleles

- 53 (TCTA)<sub>4</sub> (TCTG)<sub>6</sub> (TCTA)<sub>5</sub> TA (TCTA)<sub>5</sub> TCA (TCTA)<sub>2</sub> TCCATA (TCTA)
  6 TCGTCT
- 54 (TCTA)<sub>5</sub> (TCTG)<sub>6</sub> (TCTA)<sub>3</sub> TCA (TCTA)<sub>2</sub> TCCATA (TCTA)<sub>9</sub> TCGTCT
- 56 (TCTA)<sub>5</sub> (TCTG)<sub>6</sub> (TCTA)<sub>3</sub> TCA (TCTA)<sub>2</sub> TCCATA (TCTA)<sub>10</sub> TCGTCT
- 57 (TCTA)<sub>4</sub> (TCTG)<sub>6</sub> (TCTA)<sub>5</sub> TA (TCTA)<sub>5</sub> TCA (TCTA)<sub>2</sub> TCCATA (TCTA)<sub>8</sub> TCGTCT
- 59 (TCTA)<sub>5</sub> (TCTG)<sub>5</sub> (TCTA)<sub>5</sub> TA (TCTA)<sub>3</sub> TCA (TCTA)<sub>2</sub> TCCATA (TCTA)

  , TCGTCT
- 61 (TCTA)<sub>4</sub> (TCTG)<sub>6</sub> (TCTA)<sub>3</sub> TA (TCTA)<sub>5</sub> TCA (TCTA)<sub>2</sub> TCCATA (TCTA)
  20 TCGTCT
- 63 (TCTA)<sub>4</sub> (TCTG)<sub>6</sub> (TCTA)<sub>5</sub> TA (TCTA)<sub>5</sub> TCA (TCTA)<sub>2</sub> TCCATA (TCTA)<sub>11</sub> TCGTCT
- 65 (TCTA)6 (TCTG)5 (TCTA)3 TA (TCTA)3 TCA (TCTA)2 TCCATA (TCTA)
  11 TCGTCT
- 67 (TCTA); (TCTG); (TCTA); TA (TCTA); TCA (TCTA); TCCATA (TCTA); TCGTCT
- 68 (TCTA)<sub>5</sub> (TCTG)<sub>6</sub> (TCTA)<sub>5</sub> TA (TCTA)<sub>5</sub> TCA (TCTA)<sub>2</sub> TCCATA (TCTA)<sub>11</sub> TA TCTA TCGTCT.
- 70 (TCTA)<sub>5</sub> (TCTG)<sub>6</sub> (TCTA)<sub>5</sub> TA (TCTA)<sub>5</sub> TCA (TCTA)<sub>2</sub> TCCATA (TCTA)<sub>22</sub> TA TCTA TCGTCT
- 72 (TCTA)<sub>5</sub> (TCTG)<sub>6</sub> (TCTA)<sub>3</sub> TA (TCTA)<sub>3</sub> TCA (TCTA)<sub>2</sub> TCCATA (TCTA)<sub>13</sub> TA TCTA TCGTCT
- 74 (TCTA) $_5$  (TCTG) $_6$  (TCTA) $_5$  TA (TCTA) $_5$  TCA (TCTA) $_2$  TCCATA (TCTA) $_4$  TATCTA TCGTCT
- 75 (TCTA); (TCTG); (TCTA); TA (TCTA); TCA (TCTA); TCCATA (TCTA); TCGTCT
- 77 (TCTA)  $_{11}$  (TCTG)  $_{5}$  (TCTA)  $_{5}$  TA (TCTA)  $_{5}$  TCA (TCTA)  $_{72}$  TCGTCT
- 79 (TCTA)11 (TCTG)5 (TCTA)3 TA (TCTA)3 TCA (TCTA)2 TCCATA (TCTA)15 TCGTCT
- 81 (TCTA) $_5$  (TCTA) $_5$  TA (TCTA) $_5$  TCA (TCTA) $_2$  TCCATA (TCTA) $_2$  TCGTCT

### D18S51 sequences

8 (AGAA)8

Fig3e

Fig3F