Rounding and estimation

- Rounding numbers appropriately for the question
- Writing numbers to a given number of significant figures
- Using rounding to make estimates

Keywords

You should know

explanation 1a

explanation 1b

- 1 Round each number to the degree of accuracy given.
 - **a** 342 (nearest 10)
- **b** 5387 (nearest 100)
- **c** 4098 (nearest 10)

- **d** 86495 (nearest 1000)
- **e** 5000 (nearest 10000)
- 398 999 (nearest 10)
- **2** Copy and complete this table of world population data.

Always work with the original population numbers.

Country	Rounded to nearest 1000	Rounded to nearest 100 000	Rounded to nearest 1 000 000
Australia 21 007 310			
Canada 33 21 2 696			
France 64057792			
India 1 147 995 904			
World 6706993152			

- **3** Glenn had these number cards.
 - 3
- 5
- 7
- 0
- 2
- 8
- a What is the closest number that he could make to 570 000 using all the cards?
- **b** Glenn made the number 275 308. He rounded it to 275 000. What degree of accuracy might he have used in his rounding?
- c Glenn was given another card: 5. He made the number 5 275 308.

He said that he had made a number just bigger than five million.

What degree of accuracy was he using?

- 4 Round these decimals to the nearest whole number.
 - **a** 34.8
- **b** 103.2
- c 134.62
- d 1005.56

- **e** 4419.652
- f 4805.993
- **g** 2989.57
- h 369 999.56
- **5** When Vicky checked her online bank statement she had these totals in her different accounts.

Cheque £132.56

Savings £1084.37

Visa statement £245.86

Round each amount to the nearest pound sterling (£).

6 The cost of a twin pack of tennis balls is £6, rounded to the nearest pound.

- **a** What is the smallest amount of money that the twin pack could cost?
- **b** What is the largest amount?

explanation 2a

explanation 2b

explanation 2c

- **7** Round each number to the degree of accuracy given.
 - **a** 24.35 (1 d.p.)
- **b** 609.604 (2 d.p.)
- **c** 90.899 (2 d.p.)

- **d** 207.806 (1 d.p.)
- **e** 0.0877 (3 d.p.)
- **f** 9.03563 (4 d.p.)

- **g** 455.987 (1 d.p.)
- **h** 340.4704 (3 d.p.)
- i 1.000 654 (4 d.p.)

- j 3.33333... (3 d.p.)
- **k** 67.6767 (2 d.p.)
- l 0.999 (1 d.p.)

- **8** Use a calculator to work these out.
 - Round each answer to the number of decimal places given.
 - **a** 82 ÷ 11 (1 d.p.)

b $2.7 \div 31 (2 \text{ d.p.})$

c $1.8 \times 2.6 \times 1.3$ (1 d.p.)

- **d** $84.3 \times 3.67 (1 \text{ d.p.})$
- **e** $0.23 \times 4.6 \div 0.4 (1 \text{ d.p.})$
- **f** $52.7 \div 2.6 (2 \text{ d.p.})$
- **9** The value of the number pi (π) to 10 d.p. is 3.141 592 653 5.

Round this number to these numbers of decimal places.

- **a** 1 d.p.
- **b** 2 d.p.
- **c** 3 d.p.
- **d** 4 d.p.
- **e** 5 d.p.

10 Calculate the area of each shape. Round each answer to two decimal places.

3.78 cm

11 At the National Swimming Competition, Sally was recorded as swimming 100 m in 58.7 seconds, rounded to one decimal place.

What are her fastest and slowest possible times to get this result?

explanation 3a

explanation 3b

explanation 3c

12 How many significant figures does each of these numbers have?

a 628

b 0.0042

c 90.43

d 0.000504

e 4.00

f 23.0302

g 34066.04

h 1.00000003

13 Round these numbers to **i** one significant figure, **ii** two significant figures.

a 0.234

b 0.3615

c 0.4368

d 0.0288

e 0.00562

f 0.02054

g 0.604

h 0.0004555

i 563

j 3607

k 2005

I 5564

m 44 355

n 10 543

o 48 704

14 Round these numbers to three significant figures.

a 36.15

b 204.99

c 3.562

d 550.606

e 203.9

f 10.6505

g 56.037

h 40.943

i 45.606

j 67.988

15 Round these numbers to the degree of accuracy given.

a 0.21023 (3 s.f.)

b 0.004 003 02 (4 s.f.)

c 450.43 (3 s.f.)

d 35.0055 (3 s.f.)

e 0.07777 (2 s.f.)

f 0.000 007 0 (2 s.f.)

16 The mass of a car and trailer is 1370.056 kg. Round this mass to these numbers

of significant figures.

a 1 s.f.

b 2 s.f.

c 3 s.f.

d 4 s.f.

e 5 s.f.

17 Use your calculator to find the answers to these.

Round each answer to two significant figures.

c
$$2600 \times 88$$
 d $3 \div 21$

$$0.0055 \div 0.18$$
 f $\frac{2}{3}$ of 140 **g** 1.25^2

$$g 1.25^2$$

h
$$2.34 \times 1.6 \div 8.4$$

explanation 4

18 Estimate the answers to these calculations. Do not use a calculator.

a
$$684 \times 24$$

d
$$923.03 \div 29.4$$

e
$$(23.2 + 43.8) \times 4.8$$
 f $52.1 \div (3.2 + 1.92)$

$$\mathbf{f}$$
 52.1 ÷ (3.2 + 1.92)

19 Estimate answers to these calculations. Do not use a calculator.

Show your working.

a
$$\frac{147 + 54}{38 + 59}$$

b
$$\frac{62 \times 19}{9 \times 32}$$

$$\frac{18.9 + 11.42}{52.6 - 39.9}$$

a
$$\frac{147 + 54}{38 + 59}$$
 b $\frac{62 \times 19}{9 \times 32}$ **c** $\frac{18.9 + 11.42}{52.6 - 39.9}$ **d** $\frac{29.05 \times 37.4}{101.2 \div 4.6}$

20 Twelve customers spent these amounts at a local corner shop.

£12.45

£16.83

£21.52

£9.03

£14.67

£6.78

£7.86

£24.79

£32.81

£11.23

£3.77

£18.30

- **a** Estimate the average amount spent per customer.
- **b** On average, the shop has 863 customers each week.

About how much is spent in the shop each week?

21 The population density (population/km²) of a region is found using this formula.

Population				
Area of re	gion (km²)			

Estimate the population density of the places listed in the table.

Country	Population	Area in km ²
Austria	8 205 533	83 870
Germany	82 369 552	357 021
UK	60943912	244 820

22 The surface area of a sphere is found using the formula $A = 4\pi r^2$.

$$\pi = 3.1416 (4 \text{ d.p.})$$

Estimate the surface area of a sphere with each radius.

- a 2.92 cm
- **b** 9.43 cm
- c 21.05 m
- 113.2 mm