

ANÁLISIS SINTÁCTICO

Comprueba si la secuencia de tokens que va recibiendo tiene una sintaxis correcta

¿Cómo?

Construyendo el árbol sintáctico, usando las reglas de la Gramática de Contexto Libre

IF x THEN a := 0

Comprueba si la secuencia de tokens que va recibiendo tiene una sintaxis correcta

¿Cómo?

Construyendo el árbol sintáctico, usando las reglas de la Gramática de Contexto Libre

Aurora Pérez Pérez

IF x ELSE a := 0

Comprueba si la secuencia de tokens que va recibiendo tiene una sintaxis correcta

¿Cómo?

Construyendo el árbol sintáctico, usando las reglas de la Gramática de Contexto Libre

Gramática formal

$$G = (N, T, P, S)$$

N: conjunto de símbolos no terminales

T: conjunto de símbolos terminales

P: conjunto de reglas de producción

S: axioma $(S \in N)$

Lenguaje Generado por una Gramática

$$L(G) = \{ \omega \mid \omega \in T^* \qquad S \Rightarrow^+ \omega \}$$

$$\omega \in \mathsf{T}^*$$

$$S \Rightarrow^{+} \omega$$

Formas Sentenciales

$$F(G) = \{ \sigma \mid$$

$$F(G) = \{ \sigma \mid \sigma \in (N \cup T)^* \}$$

$$S \Rightarrow^{+} \sigma$$

Gramática Tipo 2 o Gramática de Contexto Libre (GCL)

Sus reglas son de la forma: $A \rightarrow \alpha$ $A \in \mathbb{N}$

$$A \in N$$

$$\alpha \in (N \cup T)^*$$

Clasificación de gramáticas de Chomsky

$$GR \subseteq GCL \subseteq G_Tipo1 \subseteq G_Tipo0$$

Ejemplo de Gramática G

$$P = D \rightarrow TL$$

$$T \rightarrow integer$$

$$T \rightarrow real$$

$$L \rightarrow id, L$$

$$L \rightarrow id$$

Cadenas de entrada correctas

(se puede construir su árbol con G)

$$\omega_1$$
 = real id , id

$$\omega_2$$
 = real id , id , id

$$\omega_3$$
 = integer id

Cadenas de entrada incorrectas

(no se puede construir su árbol con G)

$$\omega_4$$
 = real id,

$$\omega_5$$
 = real, id, id

$$\omega_6$$
 = integer id;

$$N = \{ D, T, L \}$$

$$P = D \rightarrow TL$$

$$T \rightarrow integer$$

$$T \rightarrow real$$

$$L \rightarrow id, L$$

$$L \rightarrow id$$

El Analizador Sintáctico ha de obtener siempre el mismo árbol para una misma cadena de entrada, y aplicando la misma secuencia de pasos

- → Ha de ser determinista
- → La GCL no puede ser ambigua

TIPOS DE ANALIZADORES SINTÁCTICOS:

Descendente o Ascendente

Descendente. Construye el árbol desde la raíz hacia las hojas

Ascendente. Construye el árbol desde las hojas hacia la raíz

Con retroceso o Sin retroceso

Con retroceso. Si hay varias reglas candidatas para expandir un nodo del árbol, se elige una; si no se consigue terminar el árbol, se retrocede hasta ese nodo y se elige otra regla, y así hasta terminar el árbol o agotar las reglas candidatas \rightarrow Ineficientes

Sin retroceso. Utiliza algún criterio para saber con certeza cuál es la siguiente regla a aplicar en cada instante \rightarrow ¿Cómo?? Gramáticas LL y LR

Ejemplo de construcción del árbol

Parse: 13445

- 1. D \rightarrow T L
- 2. T \rightarrow integer
- 3. T \rightarrow real
- 4. L \rightarrow id , L
- 5. L \rightarrow id

 $\omega =$ real id , id , id

A. St. Ascendente

Parse: 35441

90