Problem Solving Homework (Week 5)

161180162 Xu Zhiming

April 10, 2018

JH Chapter 3

3.6.1.3

Proof. According to the definition, we can verify the following three conditions:

- 1. Suppose $\alpha \in M(x)$, then $\alpha \in f_x(\alpha)$ because, if we flip no variable in α , α is mapped to itself
- 2. $\alpha \in M(x)$ and $\beta \in f_x(\alpha)$. Then we have α and β have at most one variable that is not the same. If $\alpha = \beta$, from 1. we have $\alpha \in f_x(\beta)$. If they are not the same, flipping the only different variable will transform α to β , therefore, $\alpha \in f_x(\beta)$
- 3. k can be the number of all variables in Max-Sat, γ_1 and α have one different variable. γ_k and β have one different variable. γ_i and γ_{i+1} have one different variable for $i = 1, 2, \dots, k-1$. These assignments satisfy the definition.

TSP

2-exchange

Proof. The following graph servers as a counterexample. If the original solution is $\{1, 2, 3, 4, 5, 1\}$, 2-exchange will never lead to $\{1, 3, 5, 2, 4, 1\}$, which is optimal.

(n-1)-exchange

Proof. The former graph can also serve as a counterexample, i.e., (n-1)-exchange is still not accurate, which means the problem itself is wrong.

Accurate local search

(1) No, it is not accurate.

Suppose the cut generated by this algorithm is S. Let v be a vertex in S. Consider the set E_v of edges incident to v. If we move v from S to $S' = V \setminus S$ Since S is a local optimum, moving v to S' does not increase the cut value. Therefore:

$$\sum_{u \in S', (u,v) \in E} w_{u,v} \ge \sum_{u \in S', (u,v) \in E} w_{u,v} \ge \sum_{u \in S', (u,v) \in E} w_{u,v} + \sum_{u \in S', (u,v) \in E} w_{u,v} + \sum_{u \in S', (u,v) \in E} w_{u,v} + \sum_{u \in S', (u,v) \in E} w_{u,v} \ge \frac{1}{2} \sum_{u : (u,v) \in E} w_{u,v}$$

$$\sum_{u \in S, (u,v') \in E} w_{u,v'} \ge \frac{1}{2} \sum_{u : (u,v') \in E} w_{u,v}$$

$$\therefore 2c(S) = 2 \sum_{u \in S, v \in S', (u,v) \in E} w_{u,v} \ge \sum_{e \in E} w_e \ge OPT$$

That is, this algorithm generates a solution that is no smaller than half the optimal one(s).

(2) The worst case time complexity is exponential.