# INOVASI TEKNOLOGI

Pertemuan - 2 Konsep Teknologi Informasi

#### **DEFINISI INOVASI**

- Menurut KBBI
  - pemasukan atau pengenalan hal-hal yang baru; pembaharuan:
  - penemu-an baru yang berbeda dari yang sudah ada atau yang sudah dikenal sebelumnya (gagasan, metode, atau alat);
- Everett M. Rogers (1983), Mendefinisikan bahwa inovasi adalah suatu ide, gagasan, praktek atau objek/benda yang disadari dan diterima sebagai suatu hal yang baru oleh seseorang atau kelompok untuk diadopsi.
- Stephen Robbins (1994), Mendefinisikan, inovasi sebagai suatu gagasan baru yang diterapkan untuk memprakarsai atau memperbaiki suatu produk atau proses dan jasa.

#### **DEFINISI INOVASI**

- inovasi merupakan fenomena yang terjadi pada satu atau lebih dari lima hal di bawah ini :
  - Pengenalan Produk Baru
  - Pengenalan Metode Produksi Baru
  - Penetrasi Pasar yang Baru
  - Menemukan Sumber Baru Suplai Bahan Baku atau Produk Antara
  - Implementasi Bentuk Baru Organisasi



- Seluruh kemajuan rekayasa disebabkan oleh adanya proses inovasi dan kreativitas terus menerus tanpa henti yang dilakukan oleh para Teknisi / insinyur.
- Inovasi dan kreativitas di bidang rekayasa selalu berada dalam koridor problem solving.





#### Contoh Invoasi di Industri



Baron von Drais (1817)
"The Walking Machine"



The Velocipede or Boneshaker (1865)



The High-Wheel Bicycle (187





**1898** (ban pompa)



#### Contoh-Contoh inovasi di dunia industri:

#### Mobil masa lampau...



**3.500 BC (Sumeria)** 



Sejak puluhan ribu tahun BC



Nicolas Cugnot (1769)



**1885 - Karl Benz** 

#### Contoh-Contoh inovasi di dunia industri:

Televisi masa kini







#### Contoh-Contoh inovasi di dunia industri:

#### Televisi masa lampau...





1939 General Electric TV -Model HM-275



1950 Bush Model TV22 9" British B&W TV



### Inovasi Teknologi Informasi

- Inovasi: semua jenis tindakan yang bertujuan untuk memperbaiki dan meningkatkan kerja atau kualitas dari produk/sistem baik berupa peranti keras (hardware) maupun peranti lunak (software).
- Peranti keras : segala jenis peralatan/perangkat, benda, dlsb. yang bisa dilihat dan diraba secara kasat mata.
  - Contoh: komputer, mobil, mesin, alat sekolah, alat dapur, sound system, untai elektronika, peralatan laboratorium, dlsb.
- Peranti lunak : segala jenis program, sistem, metoda, cara, dan proses yang pada umumnya tidak bisa diraba secara kasat mata.
  - Contoh: program komputer, sistem perbankan, metoda pengukuran, proses pendidikan, cara belajar-mengajar, dlsb.







Hollerith Tabulator and Sorter Showing details of the mechanical counter and the tabulator press

TK-1013 Sistem Komputer

## Sejarah Komputer

- ALAT PENGOLAH DATA / ALAT HITUNG
- a. Abacus (2600 SM)
- b. Pascal calculator (1642) penambahan, pengurangan
- c. Leibnitz calculator (1694) perkalian, pembagian, penambahan, pengurangan.
- d. Herman Hollerith-Punch Cards (1980)

## Perkembangan Komputer



1941 1948 1967 1997 1957

(b) Transistor

- tabung vakum: memproses dan menyimpan data, cepat panas dan mudah terbakar
- Transistor menggantikan tabung vakum
- Transistor lebih kecil dari tabung vakum

(a) Tabung Vakum

#### Komputer Generasi Pertama



- Menggunakan Vacuum Tube
- Ukuran Raksasa karena butuh vacuum tube banyak
- Memorinya kecil, hanya sekitar 10 kilo byte (=10240 byte)
- Menggunakan Bahasa mesin

**ENIAC** 

#### Intruksi dalam Bahasa Keterangan Mesin B402 atau 1011 0100 000 Muatlah bilangan 2 ke 0010 register AH B22A atau 1011 0010 Muatlah bilangan 2A heksadesimal ke register 0010 1010 DLCD21 atau 1100 1101 Jalankan interupsi 21 heksadesimal 0010 0001

### Komputer Generasi Kedua

- Vacuum Tube digantikan dengan transistor
- Transistor mempunyai kemampuan yang lebih efisien
- Energi yang dibutuhkan sedikit
- Bahasa pemrograman tingkat tinggi: FORTRAN, COBOL





UNIVAC 1107

## Komputer Generasi Kedua



## Komputer Generasi Tiga

- berkembangnya teknologi IC = Integrated Circuit
- Ukuran kecil, kemampuan kerja besar
- Memori sudah jutaan byte
- Sudah mampu multiprocessing
- Mulai ada system operasi



### Komputer Generasi Keempat

- Penggunaan LSI (Large Scale Integration)
- membanjirnya mikrokomputer ke seluruh penjuru dunia.
- Mikro komputer mempunyai "otak" yang disebut mikroprosesor (Microprocessor).
- komputer IBM 370
  - menggunakan Intel 4004 mikroprosesor : Intel Corporation dengan menggunakan chip microprocessor.

### Komputer Generasi Lima

- Harapan: suatu komputer yang mempunyai kemampuan Kecerdasan Buatan (Artifical Intelligence).
- Komputer ini nanti akan mempunyai kepandaian yang menyerupai kepandaian manusia (Thinking Computer).
- Saat computer melakukan suatu proses dan menemukan kesalahan sewaktu memproses, maka dia akan dapat memperbaiki sendiri kesalahan tersebut tanpa perlu dibantu manusia
- Penggunaan Al belum maksimal

### Komputer bersadar ukuran

- Super Computer
- Mainframe computer
- Midrange computer
- Microcomputer (PC)
- Notebook/laptop
- PDA (personal digital assistant)



Supercomputer





Mainframe



Midrange/Server

## Perkembangan Rekayasa



## Perkembangan Rekayasa

| REVOLUSI                                | CIRI                                                                                                                                                                  |
|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pra-revolusi ilmiah                     | banyak ahli bangunan kuno dan insinyur<br>Renaissance seperti Leonardo Da Vinci                                                                                       |
| Revolusi industri (1780an)              | banyak insinyur sipil dan mekanik yang awalnya<br>berangkat dari konsep seniman menjadi<br>profesional                                                                |
| Revolusi industri kedua (abad 19)       | cirinya banyak teknologi berbasis iptek mulai<br>diproduksi massal<br>alat listrik, mobil, telekomunikasi, pesawat<br>terbang                                         |
| Revolusi industri 3.0 (1970an)          | integrasi mikroelektronika, komputer, dan<br>telekomunikasi bersama-sama menghasilkan<br>teknologi informasi.<br>proses produksi yang dikendalikan secara<br>otomatis |
| Revolusi Industri 4.0 (2010 – sekarang) | Artificial Intelligence dan internet of thing sebagai tulang punggung pergerakan dan konektivitas manusia dan mesin                                                   |













Mechanical production. Equipment powered by steam and water 19th Century



Mass production assembly lines requiring labor and electrical energy 20th Century

#### Industry 3.0

Automated production using electronics and IT

#### Today

#### Industry 4.0

Intelligent production incorporated with IoT, cloud technology and big data



## Rekayasa sebelum Revolusi Ilmiah

- Insinyur, seniman dan pengrajin bekerja dengan prinsip trial and error.
- Walau kesannya coba-coba, tetapi dikombinasikan dengan imajinasi dan menghasilkan bangunan monumental yang luar biasa banyak dan mengagumkan.



### Revolusi industry 1.0

- Mulai digunakan analisis struktur, representasi matematis dan desain struktur bangunan.
- Mesin (dimulai dengan mesin uap), mulai menggantikan tenaga manusia untuk berproduksi umumnya.
- Pengrajin tradisional mengubah dirinya menjadi profesional modern.
- Pelatihan teknis menggeser proses magang di dunia industri.



#### Revolusi Industri 2.0

- muncul produksi listrik dan produksi massal
- Teknik listrik dikembangkan dalam kerjasama erat dengan bidang kimia dan fisika dan memainkan peran penting dalam kebangkitan industri kimia, listrik, dan telekomunikasi.
- Insinyur Kelautan mampu menjinakkan bahaya eksplorasi laut.
- Insinyur Aeronautika mewujudkan penerbangan yang nyaman perjalanan bagi orang biasa.
- Insinyur kontrol mempercepat laju otomatisasi.
- Insinyur industri merancang produksi massal dan sistem distribusi yang efisien.

#### Revolusi Industri 3.0

- Rekayasa mikroelektronik, telekomunikasi, dan teknik komputer bergabung menjadi kekuatan baru yang memicu revolusi informasi di mana tugas-tugas intelektual semakin dikurangi dengan mesin.
- Era jaringan Internet telah mengubah banyak sistem informasi menjadi berbasis web.





#### Revolusi Industri 4.0

- Istilah Industri 4.0 lahir di Jerman tepatnya saat diadakan Hannover Fair pada tahun 2011 (Kagermann dkk, 2011).
- Negara Jerman memiliki kepentingan yang besar terkait hal ini karena Industri 4.0 menjadi bagian dari kebijakan rencana pembangunannya yang disebut High-Tech Strategy 2020.
- Beberapa negara lain menggunakan istilah yang berbeda seperti Smart Factories, Industrial Internet of Things, Smart Industry, atau Advanced Manufacturing.
- tujuan yang sama yaitu untuk meningkatkan daya saing industri tiap negara dalam menghadapi pasar global yang sangat dinamis.
- Penyebab : pesatnya perkembangan pemanfataan teknologi digital di berbagai bidang.

## Teknologi dalam Industri 4.0



- Robot
- Mahadata (Big data)
- Augmented Reality
- 3D printing
- Komputasi awan
- Cybersecurity
- IoT (Internet of Things)
- Integrasi sistem
- Simulasi

