# Multivariable Calculus

## Aadvik Mohta

#### aadimohta00@gmail.com

#### Contents

| 1 | Functions of Two Variables                                                           | 1 |
|---|--------------------------------------------------------------------------------------|---|
| 2 | Partial Derivatives 2.1 Interpretation of Partial Derivatives 2.2 Higher Derivatives |   |
| 3 | The Chain Rule                                                                       | 3 |
| 4 | Directional Derivatives and the Gradient Vector                                      | 4 |
| 5 | 5.2 Normal Line to a Level Surface of The Form $F(x, y, z) = k$                      | ( |
| 6 | Maximum and Minimum Values         6.1 The Second Partial Derivative Test            |   |
| 7 | Lagrange Multipliers                                                                 | 7 |
| 8 | Approximations for Functions of 2 Variables 8.1 Linear Approximations                |   |

## 1 Functions of Two Variables

**Definition 1.1.** A function of two variables is a rule that assigns to each ordered pair of real numbers (x, y) in a set D a unique real number denoted by f(x, y). The set D is the domain of f and its range is the set of values that f takes on, that is,  $\{f(x, y) | (x, y) \in D\}$ .

**Definition 1.2.** If f is a function of two variables with domain D, then the graph of f is the set of all points (x, y, z) in  $\mathbb{R}^3$  such that z = f(x, y) and  $(x, y) \in D$ .

**Definition 1.3.** The level curves of a function f of two variables are the curves with equations f(x,y) = k, where  $k \in R_f$  is a constant.

**Remark.** A level curve f(x,y) = k is the set of all points in the domain of f at which f takes on a given value k. Loosely speaking, it shows where the graph has height k.

**Remark.** The level curves f(x,y) = k are just the traces of the graph of f in the horizontal plane z = k projected down to the xy-plane.

## 2 Partial Derivatives

**Definition 2.1.** If f is a function of two variables x and y, its partial derivatives are the functions  $f_x$  and  $f_y$  defined by

$$f_x(x,y) = \lim_{h \to 0} \frac{f(x+h,y) - f(x,y)}{h},$$

$$f_y(x,y) = \lim_{h \to 0} \frac{f(x,y+h) - f(x,y)}{h}$$

**Proof.** Suppose f is a function of two variables x and y. If we let only x vary while keeping y fixed, such as y = b where b is a constant, then we are effectively considering a function of a single variable in g(x) = f(x,b). If g has a derivative at x = a, then we call this derivative the partial derivative of f with respect to x at (a,b), denoted by  $f_x(a,b)$ . Thus  $f_x(a,b) = g'(a)$  where g(x) = f(x,b). By the definition of the derivative, we have

$$g'(a) = \lim_{h \to 0} \frac{g(a+h) - g(a)}{h}.$$

Allowing us to conclude that

$$f_x(a,b) = \lim_{h \to 0} \frac{f(a+h,b) - f(a,b)}{h}.$$

A similar argument ensues for the definition of  $f_u(x, y)$ .

**Notation.** If z = f(x, y), we may also write

$$f_x(x,y) = f_x = \frac{\partial f}{\partial x} = \frac{\partial}{\partial x} f(x,y) = \frac{\partial z}{\partial x}$$

$$f_y(x,y) = f_y = \frac{\partial f}{\partial y} = \frac{\partial}{\partial y} f(x,y) = \frac{\partial z}{\partial y}.$$

#### 2.1 Interpretation of Partial Derivatives



Figure 1: Geometric Interpretation of Partial Derivatives

The equation z = f(x, y) represents a surface S. If f(a, b) = c, then the point P(a, b, c) lies on S. By fixing y = b, we are restricted to the curve  $C_1$  in which the vertical plane y = b intersects S. Likewise, the vertical plane x = a intersects S in a curve  $C_2$ . Both the curves  $C_1$  and  $C_2$  pass through the point

P. The curve  $C_1$  is the graph of the function g(x) = f(x,b), so the gradient of its tangent  $T_1$  at P is thus  $g'(a) = f_x(a,b)$ . Also, the curve  $C_2$  is the graph of the function G(y) = f(a,y), so the gradient of its tangent  $T_2$  at P is given by  $G'(y) = f_y(a,b)$ . Therefore, the partial derivatives  $f_x(a,b)$  and  $f_y(a,b)$  can be interpreted geometrically as the gradients of the tangent lines at P(a,b,c) to the traces  $C_1$  and  $C_2$  of S in the planes y = b and x = a respectively.

Alternatively, partial derivatives may also be interpreted as rates of change. If z = f(x, y), then  $\frac{\partial z}{\partial x}$  denotes the rate of change of z with respect to x when y is fixed. A similar definition follows for  $\frac{\partial z}{\partial y}$ .

#### 2.2 Higher Derivatives

**Notation.** If f is a function of two variables, then its partial derivatives are also functions of two variables. We write:

$$(f_x)_x = f_{xx} = \frac{\partial}{\partial x} \left( \frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial x^2} = \frac{\partial^2 z}{\partial x^2}$$

$$(f_x)_y = f_{xy} = \frac{\partial}{\partial y} \left( \frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial y \partial x} = \frac{\partial^2 z}{\partial y \partial x}$$

$$(f_y)_x = f_{yx} = \frac{\partial}{\partial x} \left( \frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 z}{\partial x \partial y}$$

$$(f_y)_x = f_{yy} = \frac{\partial}{\partial y} \left( \frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial y^2} = \frac{\partial^2 z}{\partial y^2}.$$

**Theorem 2.2** (Clairaut's Theorem). Suppose f is defined on a disk D that contains the point (a, b). If the functions  $f_{xy}$  and  $f_{yx}$  are both continuous on D, then

$$f_{xy}(a,b) = f_{yx}(a,b).$$

## 3 The Chain Rule

**Theorem 3.1** (Chain Rule Case 1). Suppose that z = f(x, y) is a differentiable function of two variables x and y, where x = g(t) and y = h(t) are both differentiable functions of t. Then z is a differentiable function of t and

$$\frac{dz}{dt} = \frac{\partial z}{\partial x}\frac{dx}{dt} + \frac{\partial z}{\partial y}\frac{dy}{dt}.$$

**Theorem 3.2** (Chain Rule Case 2). Suppose that z = f(x, y) is a differentiable function of two variables x and y, where x = g(s, t) and y = h(s, t) are differentiable functions of s and t. Then

$$\frac{\partial z}{\partial s} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial s}$$

$$\frac{\partial z}{\partial t} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial t}.$$

The first case of the chain rule can be used to derive an important result in the study of implicit functions, known as the Implicit Function Theorem.

**Theorem 3.3** (Implicit Function Theorem). Suppose that an equation of the form F(x,y) = 0 defines y implicitly as a differentiable function of x. If F is differentiable, then

$$\frac{dy}{dx} = -\frac{F_x}{F_y}.$$

**Proof.** Suppose F(x,y) is differentiable and the equation F(x,y) = 0 defines y implicitly as a differentiable function of x. Let z = F(x,y) = 0. Using the Chain Rule, we have

$$F_x \frac{dx}{dx} + F_y \frac{dy}{dx} = \frac{dz}{dx} = 0.$$

$$F_x + F_y \frac{dy}{dx} = 0$$

$$\therefore \frac{dy}{dx} = -\frac{F_x}{F_y}.$$

## 4 Directional Derivatives and the Gradient Vector

**Definition 4.1.** If f is a differentiable function of x and y, then f has a directional derivative in the direction of any unit vector  $\mathbf{u} = \begin{pmatrix} a \\ b \end{pmatrix}$  and the directional derivative is defined to be

$$D_{\boldsymbol{u}}f(x,y) = \nabla f \cdot \boldsymbol{u}.$$

If the unit vector u makes an angle  $\theta$  with the positive x-axis, then  $u = \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}$  and hence

$$D_{\boldsymbol{u}}f(x,y) = \nabla f \cdot \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}.$$

The directional derivative gives the rate of change of f in any direction u, not just the directions  $\hat{i}$  and  $\hat{j}$  for  $f_x$  and  $f_y$  respectively. The directional derivative thus generalises the notion of a partial derivative. **Note.** u should not have a magnitude lest we scale our rate of change by another quantity.

**Definition 4.2.** If f is a function of two variables x and y, then the gradient of f is the vector function given by

$$\nabla f(x,y) = \begin{pmatrix} f_x(x,y) \\ f_y(x,y) \end{pmatrix} = \frac{\partial f}{\partial x} \hat{\boldsymbol{i}} + \frac{\partial f}{\partial y} \hat{\boldsymbol{j}}.$$

**Theorem 4.3.** Suppose f is a differentiable function of two variables. The maximum value of the directional derivative  $D_{\boldsymbol{u}}f(\mathbf{x})$  is  $|\nabla f(\mathbf{x})|$  and it occurs when  $\boldsymbol{u}$  has the same direction as  $\nabla f(\mathbf{x})$ .

**Proof.** Note that

$$D_{\boldsymbol{u}}f = \nabla f \cdot \boldsymbol{u} = |\nabla f||\boldsymbol{u}|\cos\theta$$

where  $\theta$  is the angle between  $\nabla f$  and  $\boldsymbol{u}$ . The maximum value of  $\cos \theta$  is 1, which occurs when  $\theta = 0$ . Therefore, the maximum value of  $D_{\boldsymbol{u}}f$  is  $|\nabla f|$  and it occurs when  $\theta = 0$  i.e.  $\boldsymbol{u}$  has the same direction as  $\nabla f$ .

**Note.** The function f decreases most rapidly in the direction of  $-\nabla f$ . The directional derivative in this derivative is  $D_{\boldsymbol{u}}f = |\nabla f|\cos \pi = -|\nabla f|$ .

**Note.** Any direction u orthogonal to a gradient  $\nabla f \neq \mathbf{0}$  is a direction of zero change in f because then  $\theta = 0.5\pi$  and

$$D_{\boldsymbol{u}}f = |\nabla f|\cos\theta = 0.$$

## 5 Tangent Planes and Normal Lines

## 5.1 Tangent Plane to a Level Surface of The Form F(x, y, z) = k.

Suppose S is a surface with equation F(x,y,z) = k, so it is a level surface of a function F of 3 variables. Let  $P(x_0, y_0, z_0)$  be a point on S. Then let C be any curve that lies on the surface and passes through the point P. The curve C can be described by the continuous vector function  $\mathbf{r}(t) = \langle x(t), y(t), z(t) \rangle$ . Let  $t_0$  be the parameter value corresponding to P. Therefore  $\mathbf{r}(t_0) = \langle x(t_0), y(t_0), z(t_0) \rangle$ . Since C lies on S, any point (x(t), y(t), z(t)) must satisfy the equation of S. Therefore,

$$F(x(t), y(t), z(t)) = k.$$

Differentiating with respect to t,

$$\frac{\partial F}{\partial x}\frac{dx}{dt} + \frac{\partial F}{\partial y}\frac{dy}{dt} + \frac{\partial F}{\partial z}\frac{dz}{dt} = 0$$
$$\Rightarrow \nabla F \cdot \mathbf{r}'(t) = 0.$$

when  $t = t_0$ ,  $\boldsymbol{r}(t_0) = \langle x_0, y_0, z_0 \rangle$  and thus

$$\nabla F(x_0, y_0, z_0) \cdot \boldsymbol{r}'(t_0) = 0.$$

This allows us to define the tangent vector to the level surface precisely, assuming that

**Definition 5.1.** Suppose  $\nabla F(x_0, y_0, z_0) \neq \mathbf{0}$ . The tangent plane to the level surface F(x, y, z) = k at  $P(x_0, y_0, z_0)$  is the plane that passes through P and has normal vector  $\nabla F(x_0, y_0, z_0)$ .

The equation of the tangent plane to the level surface is thus

$$r \cdot n = a \cdot n$$

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \cdot \begin{pmatrix} F_x(x_0, y_0, z_0) \\ F_y(x_0, y_0, z_0) \\ F_z(x_0, y_0, z_0) \end{pmatrix} = \begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix} \cdot \begin{pmatrix} F_x(x_0, y_0, z_0) \\ F_y(x_0, y_0, z_0) \\ F_z(x_0, y_0, z_0) \end{pmatrix}$$

$$\Rightarrow (x - x_0) F_x(x_0, y_0, z_0) + (y - y_0) F_y(x_0, y_0, z_0) + (z - z_0) F_z(x_0, y_0, z_0) = 0.$$

#### 5.2 Normal Line to a Level Surface of The Form F(x, y, z) = k.

**Definition 5.2.** The normal line to the level surface F(x, y, z) = k at the point  $P(x_0, y_0, z_0)$  is the line that passes through P and is parallel to the gradient vector  $\nabla F(x_0, y_0, z_0)$ .

The equation of the normal line to the level surface is thus

$$r = a + \lambda b, \quad \lambda \in \mathbb{R}$$

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix} + \lambda \begin{pmatrix} F_x(x_0, y_0, z_0) \\ F_y(x_0, y_0, z_0) \\ F_z(x_0, y_0, z_0) \end{pmatrix}$$

$$x - x_0 = \lambda F_x(x_0, y_0, z_0)$$

$$y - y_0 = \lambda F_y(x_0, y_0, z_0)$$

$$z - z_0 = \lambda F_z(x_0, y_0, z_0)$$

$$z - z_0 = \lambda F_z(x_0, y_0, z_0)$$

$$\Rightarrow \frac{x - x_0}{F_x(x_0, y_0, z_0)} = \frac{y - y_0}{F_y(x_0, y_0, z_0)} = \frac{z - z_0}{F_z(x_0, y_0, z_0)}.$$

## 5.3 Tangent Plane and Normal Lineto a Surface z = f(x, y).

Consider the case where z = f(x, y). Then F(x, y, z) = f(x, y) - z = 0. Therefore

$$F_x(x_0, y_0, z_0) = f_x(x_0, y_0)$$
$$F_y(x_0, y_0, z_0) = f_y(x_0, y_0)$$

$$F_z(x_0, y_0, z_0) = -1$$

The equation of the tangent plane thus becomes

$$(x-x_0)f_x(x_0,y_0) + (y-y_0)f_y(x_0,y_0) = z - z_0$$

The equation of the normal line also becomes

$$\frac{x - x_0}{f_x(x_0, y_0)} = \frac{y - y_0}{f_y(x_0, y_0)} = z_0 - z.$$

#### 5.4 Tangent Line to a Level Curve

Consider the level curve f(x,y) = k. Then F(x,y) = f(x,y) - k = 0. By the Implicit Function Theorem, we have

$$\frac{dy}{dx} = -\frac{F_x}{F_y} = -\frac{f_x(x,y)}{f_y(x,y)}.$$

At the point  $(x_0, y_0)$ , the equation of the tangent line to the level curve is given by

$$y - y_0 = m(x - x_0)$$

$$y - y_0 = -\frac{f_x(x_0, y_0)}{f_y(x_0, y_0)}(x - x_0)$$

$$(y - y_0)f_y(x_0, y_0) = -(x - x_0)f_x(x_0, y_0)$$

$$\therefore (y - y_0)f_y(x_0, y_0) + (x - x_0)f_x(x_0, y_0) = 0.$$

#### 6 Maximum and Minimum Values

**Definition 6.1.** A function of two variables has a local maximum at (a,b) if  $f(x,y) \leq f(a,b)$  when (x,y) is near (a,b). The number f(a,b) is called a local maximum value. If  $f(x,y) \geq f(a,b)$  when (x,y) is near (a,b), then f has a local minimum at (a,b) and f(a,b) is called a local minimum value.

**Definition 6.2.** If  $f(x,y) \leq f(a,b)$  for all points  $(x,y) \in D_f$ , then f has an absolute maximum at (a,b). If  $f(x,y) \geq f(a,b)$  for all points  $(x,y) \in D_f$ , then f has an absolute minimum at (a,b).

**Theorem 6.3.** If f has an local maximum or minimum at (a, b) and the first-order partial derivatives of f exist there, then  $\nabla f(a, b) = \mathbf{0}$ .

**Proof.** Let g(x) = f(x, b). If f has a local maximum or minimum at (a, b), then g has a local maximum or minimum at x = a, so g'(a) = 0 by the Interior Extremum Theorem. But  $g'(a) = f_x(a, b)$  and hence  $f_x(a, b) = 0$ . Similarly, let G(y) = f(a, y). If f has a local maximum or minimum at (a, b), then G has a local maximum or minimum at y = b, so G'(b) = 0 by the Interior Extremum Theorem. But  $G'(b) = f_y(a, b)$  and hence  $f_y(a, b) = 0$ . This allows us to conclude that  $\nabla f(a, b) = \begin{pmatrix} f_x(a, b) \\ f_y(a, b) \end{pmatrix} = \begin{pmatrix} f_y(a, b) \\ f_y(a, b) \end{pmatrix}$ 

Theorem 6.3 can be interpreted in a geometrical sense too. Consider the equation of the tangent plane to z = f(x, y) at the point (a, b), that is,

$$z = z_0 + f_x(a,b)(x-a) + f_y(a,b)(y-b).$$

Substituting  $f_x(a,b) = 0$  and  $f_y(a,b) = 0$ , we get  $z = z_0$ . This means that if the graph of f has a tangent plane at a local maximum or minimum, then that tangent plane must be horizontal.

**Definition 6.4** (Critical Point). A point (a, b) is called a critical point if  $f_x(a, b) = 0$  and  $f_y(a, b) = 0$ , or if one of these partial derivatives does not exist. If f has a local maximum or minimum at (a, b), then (a, b) is a critical point of f. At a critical point, a function could have a local maximum, a local minimum, or neither.

#### 6.1 The Second Partial Derivative Test

Suppose the second partial derivatives of f are continuous on a disk with centre (a, b), and suppose that  $\nabla f(a, b) = \mathbf{0}$ . We define the discriminant of f at the point (a, b) to be the determinant of the Hessian at (a, b) i.e.

$$D(a,b) = \det \begin{pmatrix} f_{xx}(a,b) & f_{xy}(a,b) \\ f_{yx}(a,b) & f_{yy}(a,b) \end{pmatrix} = f_{xx}(a,b)f_{yy}(a,b) - [f_{xy}(a,b)]^2.$$

- If D > 0 and  $f_{xx}(a, b) > 0$ , then f(a, b) is a local maximum.
- If D > 0 and  $f_{xx}(a, b) < 0$ , then f(a, b) is a local minimum.
- If D < 0, then f(a, b) is a saddle point i.e it is neither a local maximum nor a local minimum.
- If D = 0, then the Second Partial Derivative Test is inconclusive.

#### 6.2 Absolute Maximum and Minimum Values

**Definition 6.5** (Closed Set and Bounded Set). A closed set in  $\mathbb{R}^2$  is one that contains all its boundary points. A boundary point of D is a point (a,b) such that every disk with centre (a,b) contains points in D and also points not in D. A bounded set in  $\mathbb{R}^2$  is one that is contained within some disk and is finite in extent.

**Theorem 6.6** (Extreme Value Theorem). If f is continuous on a closed, bounded set D in  $\mathbb{R}^2$ , then f attains an absolute maximum value  $f(x_1, y_1)$  and an absolute minimum value  $f(x_2, y_2)$  at some points  $(x_1, y_1)$  and  $(x_2, y_2)$  in D.

Therefore, we can come up with a "brute force" approach to finding maxima and minima.

- 1. Find values of f at critical point of f in D.
- 2. Find extreme values on the boundary,
- 3. The largest of these values found is the absolute maximum, while the smallest is the absolute minimum.

# 7 Lagrange Multipliers

**Theorem 7.1** (Method of Lagrange Multipliers). To find the extreme values of f(x,y,z) subject to the constraint g(x,y,z)=k, assuming such extreme values exist, and that  $\nabla g \neq \mathbf{0}$  on the surface g(x,y,z)=k, first find all  $x,y,z,\lambda$  such that  $\nabla f(x,y,z)=\lambda \nabla g(x,y,z)$ , before evaluating f at all points (x,y,z) found earlier. The largest of these values is the maximum value of f and the smallest is the minimum value of f.

**Proof.** Suppose a function f(x, y, z) has an extreme value at the point  $P(x_0, y_0, z_0)$  on the surface S and let C be a curve with vector equation  $\mathbf{r}(t) = \left\langle x(t), y(t), z(t) \right\rangle$  that lies on S and passes through P. If  $t_0$  is the parameter value corresponding to the point P, then  $\mathbf{r}(t_0) = \left\langle x_0, y_0, z_0 \right\rangle$ . The function h(t) = f(x(t), y(t), z(t)) represents the values f takes on the curve C. Since f has an extreme value at  $P(x_0, y_0, z_0)$ ,  $h'(t_0) = 0$ .

$$\Rightarrow 0 = h'(t_0) = x'(t_0)f_x(x_0, y_0, z_0) + y'(t_0)f_y(x_0, y_0, z_0) + z'(t_0)f_z(x_0, y_0, z_0)$$

$$\Rightarrow \nabla f(x_0, y_0, z_0) \cdot \mathbf{r}'(t_0) = 0$$

Hence  $\nabla f(x_0, y_0, z_0)$  is orthogonal to  $\mathbf{r}'(t_0)$ . But it is also known that  $\nabla g(x_0, y_0, z_0)$  is also orthogonal to  $\mathbf{r}'(t_0)$  for every such curve. Hence  $\nabla f(x_0, y_0, z_0)$  and  $\nabla g(x_0, y_0, z_0)$  are parallel. Therefore, if  $\nabla g(x_0, y_0, z_0) \neq \mathbf{0}$ , then there exists some real  $\lambda$  such that

$$\nabla f(x_0, y_0, z_0) = \lambda \nabla g(x_0, y_0, z_0).$$

In the case where f and g are functions of two variables, the two equations to solve by the method of Lagrange Multipliers are

$$\nabla f(x, y) = \lambda \nabla g(x, y)$$
$$g(x, y) = k.$$



Figure 2: Geometric Intuition for Lagrange Multipliers in the Case of 2 Variables

**Intuition.** We seek to find the extreme values of f(x,y) when the point (x,y) is restricted to lie on the curve g(x,y)=k. To maximise f(x,y) subject to g(x,y)=k is to find the largest value of c such that the level curve f(x,y)=c intersects g(x,y)=k. From the diagram, it appears that this happens when the curves have a common tangent line(otherwise the value of c would be increased further). This means the normal lines at the point  $(x_0,y_0)$ , where the curves touch, are identical i.e. for some scalar  $\lambda$ ,

$$\nabla f(x_0, y_0) = \lambda \nabla g(x_0, y_0).$$

# 8 Approximations for Functions of 2 Variables

#### 8.1 Linear Approximations

The equation of a tangent plane to a function f of two variables at the point (a, b) is given by

$$z = f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b).$$

The linear function L whose graph is this tangent plane

$$L(x,y) = f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b)$$

is the **linearisation** of f at (a,b) and the approximation

$$f(x,y) \approx f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b)$$

is the linear approximation of f at (a, b).

## 8.2 Quadratic Approximations

**Theorem 8.1** (Taylor Series in Two Variables). If f(x,y) is an analytic function of two variables, then

$$f(x,y) = \sum_{n,m=0}^{\infty} \left[ \frac{1}{n!m!} \frac{\partial^{m+n} f}{\partial x^n \partial y^n} (a,b) \right] (x-a)^n (y-b)^m.$$

Expanding up to the second terms, we get the quadratic approximation to a function f(x, y) at a point (a, b), which is given by

$$Q(x,y) = f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b) + 0.5f_{xx}(a,b)(x-a)^2 + f_{xy}(a,b)(x-a)(y-b) + 0.5f_{yy}(y-b)^2.$$