

Multimodal User Interfaces Introduction - 2019

19th February, 2019

What is this Course About?

Challenge: How to combine modalities ??

What is Human Computer Interaction?

- "Human Computer Interaction is a discipline concerned with
 - > the design, evaluation and implementation of interactive computing systems
 - > for human use
 - > with the study of the major phenomena surrounding them."

-- ACM SIGCHI

The Machine in Human-Machine Interaction

What is a Machine, anyway?

- Common features:
 - > Can be interacted with
 - > Have some form of input and/or output
 - > Have some form of processing power
- Human Computer Interaction vs. Human Machine Interaction
 - > "Machine" is more generic. However, both are synonyms

The Human in Human-Machine Interaction

- What is a Human, anyway?
 - > Senses
 - > Cognition
 - > Emotions
 - > Social skills
 - > Experience
 - > Specific needs
 - >

Evolution of human computer Interfaces

	Original Macintosh	MacPook Pro	
year	1984	MacBook Pro 2014	+ 30 years
	\$2500	\$2000	•
price	·	•	x 0.8
CPU	68000 Motorola 0.7 MIPS	i5 Turbo Boost > 50'000 MIPS	x 70'000
memory	128KB	16GB	x 128'000
storage monitor	400KB floppy drive 512x342 68 dpi	1 Tera flash 2880x1800 220 dpi	x 2'500'000 x 30 x 4
	mouse	mouse	same
devices	keyboard	keyboard	same
GUI	Desktop WIMP	Desktop WIMP	same

Improvement of the integration in the real world

1960 2030

Natural, smart and simple interfaces

Natural:

- > As in the real world
- > Depends on effort, learning, accuracy, speed, and ability to remember (Norman, 2010)

■ Smart:

- > the machine knows what we want
- > relying on machine learning

Simple:

- > Complexity is hidden
- > Less is more

UNI FR MMI2019 Intro

Natural?

Multimodal Interaction

Multimodal

 Means at least 2 input modalities (speech, gesture, tangible, emotion, movement, etc.)

- If possible complementary:
 - > Need both of them to trigger a command
 - > They refer to each other
 - ➤ E.g. "Put that there"
 - \checkmark F(M1, M2) \rightarrow 1 command
 - ✓ For instance, 1 can be the function, the other the parameter

Multimodal interfaces: important features

Synchronization

- > Interpretation might change depending on sequence of events
- > Delay might be due to recognition processing or hardware

Error-handling

- > There are sometimes recognition errors (e.g. speech)
- Mechanisms to correct or manage these errors should be well thought in advance
- > Use visual or sound feedback (so that user can understand the machine interpretation)
- Software architecture

W	Course	Date	What
1	MMI_01	19.02	Introduction (DL)
2	MMI_02	26.02	Multimodal Interaction (DL)
3	MMI_03	05.03	Multimodal Fusion (DL)
4	MMI_04	12.03	Tangibles + Gestures + Voice (DL)
5	MMI_05	19.03	Wearable & ubiquitous Computing (AL)
6	MMI_06	26.03	Virtual Reality + Augmented Reality (AL)
7	MMI_07	02.04	Ambient computing (HA)
8	MMI_08	09.04	User Evaluations of MMI (DL)
9		16.04	Intermediary presentations (ALL)
10		24.04	Easter
11	MMI_09	30.04	Affective & Brain interfaces (DL)
12	MMI_10	07.05	Information Visualization (FE)
13	MMI_11	14.05	CSCW (HA)
14	MMI_12	21.05	Wrap Up (DL)
15		28.05	Final presentations (ALL)

Objectives of the class

- Theoretical (60% written exam of 2h):
 - Learn fundamental mechanisms to build multimodal interactive systems
 - ✓ fusion of multimodal inputs, fission of outputs
 - ✓ error handling,
 - ✓ knowledge about specific recognizers for gesture, voice, etc.
 - ✓ Interaction styles and paradigms
 - ✓ Important aspects for design and evaluation
- Practical (mini-project 40%):
 - > Develop and evaluate a multimodal interface

Mini projects (40% of the final grade)

- Create a fully multimodal application
- Combining eye tracking + speech + gesture
 - > To control a video streaming application
- Focus on interface, not on the application!
- Performances and satisfaction can equally considered
- Position your work according to CARE/CASE models
- In group of 3

Schedule of mini-project

- For next week... (week 2)
 - create groups!
- Week 3: Decide topic and discuss it in class
- Week 9: Mid-term presentation of project ideas and positioning according to CASE/CARE
- Week 15: Final presentation of the project

.. And hopefully regular discussion in class about novel HCI.

Mini-project: Evaluation criteria

- 1. Idea / design
- 2. Quality and amount of work
- 3. Multimodality
 - > In respect to CASE/CARE models
 - Both inputs (fusion) and outputs (fission)
- 4. Interaction quality
 - Dialog
 - Error handling
- 5. Report
- 6. Presentation (oral presentation, demo, video)
- 7. User evaluation

Hardware...

UNI FR MMI2019

Phidgets

- simple devices easy to program
- « Phidgets", or physical widgets, are building blocks that help a develope construct physical user interfaces.
- https//www.phidgets.com/

Sphinx 4:0

- Target: speech recognition
 « state-of-the-art say on recognition sylve a written entirely in Jav.
- Language ways / Platform : all
- cmusphirsc sourceforge, net's phirovi

Vista ASR

Kinect SDK

Praat

WiiMote + Kinect

Wiigee MS Kinect Open NI

- Target gesture recognition
- « The Wii Remote, sometimes unofficially nicknamed "Wiimote", is the primary controller for Nintendo's Wii console. A main feature of the Wii Remote is its motion sensing capability through the use of accelerometer and optical sensor technology. »
- · Platform: All (nearly)

FestVox

- Target: speech synthesis
- « The Festvox project aims to make the building of new synthotic voices more systemic and better documented, making it possible for anyone to build a new voice.»
- Language : C++ / Platform : "nix
- https://festvox.org/

d-touch

Target : tangible interaction

ReacTiVision

Target : tangible interaction

http://mtg.upf.es/reactable/?software

Platform : All (nearly)

(TUI). »

- « d-touch is a software framework for building inexpensive tangible user interfaces and mixed reality systems. »
- http://web.media.mit.edu/~enrico/research/research.php?projectTitle=d-touch

« open source, cross-platform computer vision framework for the fast and robust

tracking of fiducial markers in a real-time video stream. It was mainly designed

as a toolkit for the rapid development of table-based tangible user interfaces

EyesWeb

- Target: multimodal toolkit
- « EyesWeb consists of a number of integrated hardware and software modules which can be easily interconnected and extended, »
- Plate-forme : Windows
- http://www.infornus.org/EywMain.html

HandVu

- Target: gesture recognition
- Detects the hand in a standard posture, then tracks it and recognizes key postures - all in real-time and without the need for camera or user calibration.
- Language : C / Platform : Linux, Win32
- http://www.movesinstitute.org/-kolsch/Hand/Az/Hand/Auhtmi
- + Igesture
- + Mudra

ARToolkit +jARToolkit

- Target: augmented reality
- « Software library for building Augmented Reality (AR) applications. These are applications that involve the overlay of virtual imagery on the real world. »
- Language: C / Platform: all
- http://www.hitl.washington.edu/artoolkit/
- http://sourceforge.net/projects/jartoolkit

Most recent

- Interactive wall
- OpenEar
- Affectiva mobile SDK (we also have bracelets available)
- Leap motion
- Paralinguistic: http://daisukesakamoto.jp/project/vam/
- Makey makey
- HTC Vive
- Thermal camera
- Optitrack system
- ... others? suggestions?

Previous years

XPaint (Zingg, Della Bruna et Thiessoz)

ShareDesk (Yerly, Palme et Bodmer)

http://human-ist.unifr.ch/courses

Admin information

- Professor
 - ➤ Denis Lalanne (A429)
- Teaching material
 - ➤ Master JMCS: Ilias (key: slides4MMI19)
 - ✓ https://ilias.unibe.ch/

SF movies

