Interfejsy dla sterowników PLC

Opis wyprowadzeń

www.inteco.com.pl 2015

Wstęp

W dokumencie opisano złącza sygnałowe umieszczone na frontowych panelach interfejsów będących konwerterami sygnałów pomiędzy sterownikami mocy systemów Inteco, a sterownikiem PLC (nazywany dalej interfejsem PLC). W ostatnim rozdziale przedstawiono sposób podłączenia interfejsów PLC do sterownika PLC i interfejsów mocy.

W każdym interfejsie PLC, na panelu frontowym, udostępniono 3 końcówkowe złącze zasilające: +24V, GND_IN i GND_OUT.

Do prawidłowej pracy urządzenia wymagane są wszystkie trzy sygnały zasilające.

GND_IN to poziom masy dla cyfrowych sygnałów wejściowych.

GND_OUT to poziom masy dla cyfrowych sygnałów wyjściowych.

GND_IN i GND_OUT muszą zostać połączone razem przy podłączaniu sterownika PLC (wewnątrz interfejsu są one rozdzielone).

Dodatkowo dla systemów TRAS i Servo wymagane jest doprowadzenie sygnału masy analogowej sterownika PLC.

Cyfrowe sygnały wyjściowe (pomiarowe) i wejściowe (sterujące) pracują w standardzie napięciowym wymuszonym przez napięcie zasilające doprowadzone do złącza zasilającego. W praktyce napięcie zasilające powinno mieścić się w zakresie (+13.5 V÷36 V), przy czym zalecana wartość wynosi +24V.

Wyprowadzenie oznaczone, jako NC oznacza brak połączenia wewnątrz interfejsu i nie powinno być wykorzystywane.

Rys. 1. Panel frontowy interfejsu PLC dla systemu 3D-Crane

Tabela 1. Opis sygnałów I/O dla systemu 3D-Crane

Wyprowadzenie	Opis
EncA1_X	Enkoder inkrementalny, fala A, oś X
EncB1_X	Enkoder inkrementalny, fala B, oś X
EncA2_Y	Enkoder inkrementalny, fala A, oś Y
EncB2_Y	Enkoder inkrementalny, fala B, oś Y
EncA4_AX	Enkoder inkrementalny, fala A, kąt AX
EncB4_AX	Enkoder inkrementalny, fala B, kąt AX
EncA5_AY	Enkoder inkrementalny, fala A, kąt AY
EncB5_AY	Enkoder inkrementalny, fala B, kąt AY
EncA3_Z	Enkoder inkrementalny, fala A, oś Z
EncB3_Z	Enkoder inkrementalny, fala B, oś Z
Switch1_Z	Wyłącznik krańcowy, oś Z
Switch3_X	Wyłącznik krańcowy, oś X
Switch2_Y	Wyłącznik krańcowy, oś Y
Therm_Z	Flaga limitu temperatury, oś Z
Therm_Y	Flaga limitu temperatury, oś Y
Therm_X	Flaga limitu temperatury, oś X
+24V	Napięcie zasilające doprowadzone ze sterownika PLC
	(typowo +24V).
GND_IN	Poziom masy dla sygnałów wejściowych sterownika PLC
GND_OUT	Poziom masy dla sygnałów wyjściowych sterownika PLC
PWM_Z	Sygnał sterujący typu PWM dla silnika DC, oś Z. Zalecana
	częstotliwość tego sygnału mieści się w przedziale
	(5÷15) kHz.
Brake_Z	Sygnał zatrzymujący pracę silnika DC, oś Z
Dir_Z	Sygnał zmiany kierunku obrotów silnika DC, oś Z
PWM_Y	Sygnał sterujący typu PWM dla silnika DC, oś Y.
	Zalecana częstotliwość tego sygnału mieści się w
	przedziale (5÷15) kHz.
Brake_Y	Sygnał zatrzymujący pracę silnika DC, oś Y
Dir_Y	Sygnał zmiany kierunku obrotów silnika DC, oś Y
PWM_X	Sygnał sterujący typu PWM dla silnika DC, oś X.
	Zalecana częstotliwość tego sygnału mieści się w
	przedziale (5÷15) kHz.

Brake_X	Sygnał zatrzymujący pracę silnika DC, oś X
Dir_X	Sygnał zmiany kierunku obrotów silnika DC, oś X

Rys. 2. Panel frontowy interfejsu PLC dla systemu Tower-Crane

Tabela 2. Opis sygnałów I/O dla systemu Tower-Crane

Wyprowadzenie	Opis
EncA1_X	Enkoder inkrementalny, fala A, oś X
EncB1_X	Enkoder inkrementalny, fala B, oś X
EncA2_Z	Enkoder inkrementalny, fala A, oś Z
EncB2_Z	Enkoder inkrementalny, fala B, oś Z
EncA4_AY	Enkoder inkrementalny, fala A, kąt AY
EncB4_AY	Enkoder inkrementalny, fala B, kąt AY
EncA5_AX	Enkoder inkrementalny, fala A, kąt AX
EncB5_AX	Enkoder inkrementalny, fala B, kąt AX
EncA3_Th	Enkoder inkrementalny, fala A, kąt Theta
EncB3_Th	Enkoder inkrementalny, fala B, kąt Theta
Switch1_Th	Wyłącznik krańcowy, kąt Theta
Switch3_X	Wyłącznik krańcowy, oś X
Switch2_Z	Wyłącznik krańcowy, oś Z
Therm_Z	Flaga limitu temperatury, oś Z
Therm_Th	Flaga limitu temperatury, kąt Theta
Therm_X	Flaga limitu temperatury, oś X
+24V	Napięcie zasilające doprowadzone ze sterownika PLC
	(typowo +24V).
GND_IN	Poziom masy dla sygnałów wejściowych sterownika PLC
GND_OUT	Poziom masy dla sygnałów wyjściowych sterownika PLC
PWM_Z	Sygnał sterujący typu PWM dla silnika DC, oś Z. Zalecana
	częstotliwość tego sygnału mieści się w przedziale
	(5÷15) kHz.
Brake_Z	Sygnał zatrzymujący pracę silnika DC, oś Z
Dir_Z	Sygnał zmiany kierunku obrotów silnika DC, oś Z
PWM_Th	Sygnał sterujący typu PWM dla silnika DC, kąt Theta.
	Zalecana częstotliwość tego sygnału mieści się w
	przedziale (5÷15) kHz.
Brake_Th	Sygnał zatrzymujący pracę silnika DC, kąt Theta
Dir_Th	Sygnał zmiany kierunku obrotów silnika DC, kąt Theta
PWM_X	Sygnał sterujący typu PWM dla silnika DC, oś X.
	Zalecana częstotliwość tego sygnału mieści się w
	przedziale (5÷15) kHz.

Brake_X	Sygnał zatrzymujący pracę silnika DC, oś X
Dir_X	Sygnał zmiany kierunku obrotów silnika DC, oś X

Rozdzielczość fizyczna enkoderów inkrementalnych użytych w osiach X i Z wynosi 1024 impulsy/obrót, natomiast w osi Th: 512 impulsów/obrót.

Rys. 3. Panel frontowy interfejsu PLC dla systemu ABS

Tabela 3. Opis sygnałów I/O dla systemu ABS

Wyprowadzenie	Opis
EncA2_Wh	Enkoder inkrementalny, fala A, koło z hamulcem
EncA1_Car	Enkoder inkrementalny, fala A, koło napędowe
EncB2_Wh	Enkoder inkrementalny, fala B, koło z hamulcem
EncB1_Car	Enkoder inkrementalny, fala B, koło napędowe
Temper	Sygnał z czujnika temperatury, typu PWM
Voltage	Sygnał z czujnika napięcia, typu częstotliwościowego
+24V	Napięcie zasilające doprowadzone ze sterownika PLC
	(typowo +24V).
GND_IN	Poziom masy dla sygnałów wejściowych sterownika PLC
GND_OUT	Poziom masy dla sygnałów wyjściowych sterownika PLC
PWM_Road	Sygnał sterujący typu PWM dla silnika DC, koło
	napędowe. Zalecana częstotliwość tego sygnału mieści
	się w przedziale (10÷20) kHz.
PWM_Brake	Sygnał sterujący typu PWM dla silnika DC, hamulec.
	Zalecana częstotliwość tego sygnału to 20 kHz.
Relay1	Sygnał sterujący przekaźnikiem 1, typu włącz/wyłącz ⁽¹⁾
Relay2	Sygnał sterujący przekaźnikiem 2, typu włącz/wyłącz ⁽¹⁾

⁽¹⁾ Styki przekaźników 1 i 2 połączone są równolegle do rezystora rozruchowego dla koła napędowego. Powinny być załączane po osiągnięciu przez silnik DC koła napędowego prędkości obrotowej wynoszącej około 900-1000 RPM. W praktycznych zastosowaniach przekaźniki nie muszą być załączane.

W sterownik mocy dla systemu ABS wykorzystuje się półprzewodnikowy układ do pomiaru temperatury TMP03 lub TMP04 (wyprowadzenie "Temper"). Czujnik ten posiada jedno wyjście cyfrowe typu PWM, które informuje o aktualnej wartości temperatury. Wartość temperatury zależy od czasu trwania stanów wysokiego i niskiego, zgodnie z zależnościami (1) i (2).

$$T(^{\circ}C) = 235 - \frac{400 * T_{_{1}}}{T_{_{2}}} \tag{1}$$

$$T(^{\circ}F) = 455 - \frac{720 * T_{_{1}}}{T_{_{2}}} \tag{2}$$

gdzie: T_1 – czas trwania stanu wysokiego,

 T_2 – czas trwania stanu niskiego.

W większości przypadków można założyć, że czas T_1 jest stały i wynosi 10ms (w najgorszym przypadek 12ms).

Do budowy czujnika napięcia w systemie ABS (wyjście "Voltage") wykorzystano półprzewodnikowy układ do konwersji analogowego sygnału napięciowego na cyfrowy sygnał o stałym współczynniku wypełnienia i zmiennej częstotliwości. Zakres zmian częstotliwości to przedział od 0.0 Hz dla wartości napięcia 0.0 V do około 10 kHz dla wartości napięcia 24 V.

Rys. 4. Panel frontowy interfejsu PLC dla systemu Pendulum & Cart

Tabela 4. Opis sygnałów I/O dla systemu Pendulum & Cart

Wyprowadzenie	Opis
Therm_Y	Flaga limitu temperatury
EncA4_Cart	Enkoder inkrementalny, fala A, wózek
EncB4_Cart	Enkoder inkrementalny, fala B, wózek
EncA5_Pd	Enkoder inkrementalny, fala A, wahadło
EncB5_Pd	Enkoder inkrementalny, fala B, wahadło
+24V	Napięcie zasilające doprowadzone ze sterownika PLC
	(typowo +24V).
GND_IN	Poziom masy dla sygnałów wejściowych sterownika PLC
GND_OUT	Poziom masy dla sygnałów wyjściowych sterownika PLC
PWM_Y	Sygnał sterujący typu PWM dla silnika DC. Zalecana
	częstotliwość tego sygnału mieści się w przedziale
	(10÷20) kHz.
Brake_Y	Sygnał zatrzymujący pracę silnika DC
Dir_Y	Sygnał zmiany kierunku obrotów silnika DC

Rys. 5. Panel frontowy interfejsu PLC dla systemu TRAS

Tabela 5. Opis sygnałów I/O dla systemu TRAS

Wyprowadzenie	Opis
AGND	Poziom masy analogowej sterownika PLC dla sygnałów
	wejściowych (pomiarowych)
Tacho_Pt	Analogowy sygnał pomiarowy z tachoprądnicy, śmigło -
_	oś pionowa (Pitch). Współczynnik przetwarzania
	tachoprądnicy wynosi 0.5 [V]/1000 [obr/min] przy
	założeniu, że napięcie mierzone jest bezpośrednio na
	tachoprądnicy.
Tacho_Az	Analogowy sygnał pomiarowy z tachoprądnicy, śmigło -
	oś pozioma (Azimuth) . Współczynnik przetwarzania
	tachoprądnicy wynosi 0.5 [V]/1000 [obr/min] przy
	założeniu, że napięcie mierzone jest bezpośrednio na
	tachoprądnicy.
EncA2_Pt	Enkoder inkrementalny, fala A, oś pionowa
EncB1_Az	Enkoder inkrementalny, fala B, oś pozioma
EncB2_Pt	Enkoder inkrementalny, fala B, oś pionowa
EncA1_Az	Enkoder inkrementalny, fala A, oś pozioma
Therm1_Az	Flaga limitu temperatury, oś pozioma
Therm0_Pt	Flaga limitu temperatury, oś pionowa
+24V	Napięcie zasilające doprowadzone ze sterownika PLC
	(typowo +24V).
GND_IN	Poziom masy dla sygnałów wejściowych sterownika PLC
GND_OUT	Poziom masy dla sygnałów wyjściowych sterownika PLC
Brake1_Az	Sygnał zatrzymujący pracę silnika DC, oś pozioma
Dir1_Az	Sygnał zmiany kierunku obrotów silnika DC, oś pozioma
PWM1_Az	Sygnał sterujący typu PWM dla silnika DC, oś pozioma.
	Zalecana częstotliwość tego sygnału mieści się w
	przedziale (5÷15) kHz.
PWM0_Pt	Sygnał sterujący typu PWM dla silnika DC, oś pionowa.
	Zalecana częstotliwość tego sygnału mieści się w
	przedziale (5÷15) kHz.
Brake0_Pt	Sygnał zatrzymujący pracę silnika DC, oś pionowa
Dir0_Pt	Sygnał zmiany kierunku obrotów silnika DC, oś pionowa

Zakres wartości napięcia pojawiający się na wyprowadzeniach "Tacho_Pt" i "Tacho_Az" wynosi ±10 V.

Rys. 6. Panel frontowy interfejsu PLC dla systemu Modular Servo

Tabela 6. Opis sygnałów I/O dla systemu Modular Servo

Wyprowadzenie	Opis
AGND	Poziom masy analogowej sterownika PLC dla sygnałów wejściowych (pomiarowych)
Potentiometer	Analogowy sygnał pomiarowy z potencjometru
	(zadajnik położenia, prędkości kątowej itp.)
Tacho	Analogowy sygnał pomiarowy prędkości obrotowej z
	tachoprądnicy
Therm	Flaga limitu temperatury
EncB1	Enkoder inkrementalny, fala B, oś pozioma
EncA1	Enkoder inkrementalny, fala A, oś pozioma
+24V	Napięcie zasilające doprowadzone ze sterownika PLC
	(typowo +24V).
GND_IN	Poziom masy dla sygnałów wejściowych sterownika PLC
GND_OUT	Poziom masy dla sygnałów wyjściowych sterownika PLC
PWM	Sygnał sterujący typu PWM dla silnika DC. Zalecana
	częstotliwość tego sygnału mieści się w przedziale
	(5÷15) kHz.
Brake	Sygnał zatrzymujący pracę silnika DC
Dir0	Sygnał zmiany kierunku obrotów silnika DC

Rozdzielczość fizyczna użytego enkodera inkrementalnego wynosi 1024 impulsy/obrót.

Zakres wartości napięcia pojawiający się na wyprowadzeniach "Potentiometer" i "Tacho" wynosi $\pm 10 \, \text{V}$.

Rys. 7. Panel frontowy interfejsu PLC dla systemu Multi Tank

Tabela 7. Opis sygnałów I/O dla systemu Multi Tank

Wyprowadzenie	Opis
Level1	Cyfrowy sygnał pomiarowy z czujnika poziomu cieczy,
	typu częstotliwościowego, zbiornik górny
Level2	Cyfrowy sygnał pomiarowy z czujnika poziomu cieczy,
	typu częstotliwościowego, zbiornik środkowy
Level3	Cyfrowy sygnał pomiarowy z czujnika poziomu cieczy,
	typu częstotliwościowego, zbiornik dolny
+24V	Napięcie zasilające doprowadzone ze sterownika PLC
	(typowo +24V).
GND_IN	Poziom masy dla sygnałów wejściowych sterownika PLC
GND_OUT	Poziom masy dla sygnałów wyjściowych sterownika PLC
Pump	Sygnał sterujący typu PWM dla pompy wody. Zalecana
	częstotliwość tego sygnału mieści się w przedziale
	(5÷15) kHz.
Valve1	Sygnał sterujący typu PWM dla zaworu
	proporcjonalnego, zbiornik górny
Valve2	Sygnał sterujący typu PWM dla zaworu
	proporcjonalnego, zbiornik środkowy
Valve3	Sygnał sterujący typu PWM dla zaworu
	proporcjonalnego, zbiornik dolny

Zgodnie z zaleceniami producenta zaworów proporcjonalnych, zalecana częstotliwość sygnału sterującego typu PWM (wyprowadzenia "Valve1", "Valve2" i "Valve3") powinna wynosić 300 Hz.

Do budowy czujnika poziomu cieczy w systemie 3-Tanks (wyjścia "Level1", "Level2" i "Level3") wykorzystano czujnik ciśnienia wraz z półprzewodnikowym układem do konwersji U/f (napięcie na częstotliwość). Zakres zmian częstotliwości to przedział od 300 kHz dla wartości poziomu cieczy 0.0 cm do około 600 kHz dla wartości poziomu cieczy 25 cm. Tak wysoka częstotliwość wynika z założonej 11-bitowej rozdzielczości pomiaru dla 10 ms okna pomiarowego.

Połączenie pomiędzy sterownikami mocy a interfejsami PLC

Każdy z interfejsów PLC musi zostać prawidłowo podłączony do interfejsu mocy wybranego systemu Inteco. Połączenie realizowane jest poprzez płaskie taśmy 20- lub 40- przewodowe z wykorzystaniem złącz typu IDC znajdujących się na tylnych panelach interfejsów PLC oraz panelach frontowych poszczególnych sterowników mocy (szczegółowy opis można znaleźć w dokumentacji technicznej dotyczącej danego systemu).

Przy realizacji połączenia należy zwracać uwagę na oznaczenia poszczególnych gniazd IDC oraz dostarczonych płaskich kabli. Szczególnie dotyczy to przypadków, w których dokonuje się połączenia zarówno sygnałów cyfrowych jak i analogowych. Pomyłka w połączeniu może doprowadzić do uszkodzenia interfejsu PLC lub kanałów I/O sterownika mocy.

Na rysunkach 8-10 przedstawiono wygląd tylnych paneli interfejsów PLC dla poszczególnych systemów. Szczególną uwagę należy zwrócić na rysunek 10, który przedstawia tylny panel dla systemów TRMS i serwonapędu. Złącze 40- końcówkowe jest podzielone na dwie części. Pierwsza z nich (wyprowadzenia 1-20) stanowi interfejs analogowy, natomiast druga (wyprowadzenia 21-40) interfejs cyfrowy.

Rys. 8. Panel tylny systemów: 3D-Crane, Tower-Crane i Pendulum & Cart

Rys. 9. Panel tylny systemów: ABS i 3-Tanks

Rys. 10. Panel tylny systemów TRMS i Modular Servo

Na rysunkach 11-15 przedstawiono sposób podłączenia interfejsów PLC dla poszczególnych systemów do odpowiadających im sterowników mocy. Przy łączeniu należy zwrócić uwagę na czerwony marker płaskiej taśmy łączeniowej, który oznacza wyprowadzenie nr 1. Jest to szczególnie istotne dla systemów TRAS i Servo, gdzie płaska 40-kablowa taśma rozdziela się na dwie 20-kablowe części (analogową i cyfrową).

Rys. 11. Podłączenie interfejsów PLC systemów 3D-Crane i Tower-Crane do interfejsów mocy

Rys. 12. Podłączenie interfejsu PLC systemu Pendulum & Cart do interfejsu mocy

Rys. 13. Podłączenie interfejsów PLC systemów TRAS i Modular Servo do interfejsów mocy

Rys. 14. Podłączenie interfejsu PLC systemu Multi Tank do interfejsu mocy

Rys. 15. Podłączenie interfejsu PLC systemu ABS do interfejsu mocy