Instituto Federal de Educação, Ciência e Tecnologia de Santa Catarina

Departamento Acadêmico de Eletrônica

Curso de Graduação em Engenharia Eletrônica

INSTITUTO FEDERAL SANTA CATARINA

Revisão de Eletromagnetismo

Prof. Joabel Moia.

Florianópolis, agosto de 2018.

Bibliografia para esta aula

Introdução comparativa

- 1. Conceitos iniciais;
- 2. Grandezas eletromagnéticas;
- 3. Perdas magnéticas;
- 4. Tipos de núcleos;
- 5. Lei de Lenz e Lei de Faraday;
- 6. Indutores e transformadores.

http://www.ti.com

Duration	1 Day
Price	Free
Course Documents/ Reference Material	Ref. Design Sect. R5-1: Coupled Filter Inductors Yield Improved Performance
	Introduction and Basic Magnetics (Magnetics Design for Sw. Power Supplies)
	Magnetic Core Characteristics
	Windings
	Power Transformer Design
	Inductor and Flyback Transformer Design
	Ref. Design Sect. R1-1: Magnetic Core Properties
	Ref. Design Sect. R2-1: Eddy Current Losses in X-former Windings
	Ref. Design Sect. R3-1: Deriving the Equivalent Electrical Circuit
	Ref. Design Sect. R4-1: The Effect of Leakage Inductance on Performance
	Ref. Design Sect. R6-1: How to Design a Transformer with Fractional Turns
	Ref. Design Sect. R7-1: Winding Data
	All 2001 Magnetics Design Handbook Sections in a single compressed zip file

Cap. 11, 12 e 21.

História

Eletricidade (eletrostática)

Fenômeno já conhecido na Grécia antiga. Ao serem atritados, determinados materiais (âmbar, em particular), adquiriam a propriedade de atrair pequenos objetos (ação de uma força elétrica).

Magnetismo (magnetostática)

Os gregos também sabiam que determinadas pedras (chamadas de magnetita) atraíam limalhas de ferro (ação de uma força magnética).

Eletromagnetismo

No século XIX, após os trabalhos de Oersted e Faraday, Maxwell escreveu as equações que unificaram a eletricidade e o magnetismo, mostrando assim que ambos eram manifestações de um mesmo fenômeno, o eletromagnetismo.

História

1820 – **Hans Christian Ørsted**: descobriu que uma corrente elétrica gera um campo magnético.

1831 – **Michael Faraday**: descobriu que variando um campo magnético gera uma corrente em caminho fechado.

1831 – **Heinrich Lenz**: mostrou que a corrente gera um campo que se opõe ao campo gerado.

1865 – **James Clerk Maxwell** : unificou as relações elétricas e magnéticas.

*1777 - †1851

*1791 - †1867

*1831 - †1879

*1775 - †1836

*1804 - †1865

História

Campo elétrico (E)

- Devido a cargas elétricas*
- Carga isolada
- Linhas de campos da carga + para carga -

Campo magnético (B)

- Devido correntes*
- Pares de polos (norte e sul)
- Linhas de campos norte até o sul (fechadas)

Nunca foram observados monopolos magnéticos

Quando se quebra um imã, sempre se obtêm dois novos polos

* Obs: campos elétricos (magnéticos) também podem ser produzidos por campos magnéticos (elétricos) variáveis no tempo.

Campo magnético

Linhas de campo em um condutor retilíneo percorrido por corrente:

Campo magnético

Linhas de campo em uma bobina percorrida por corrente:

Densidade de fluxo magnético

Fluxo magnético:

- Fluxo (φ) é o conjunto de todas as linhas de campo que atingem perpendicularmente uma área.
- Unidade é weber [Wb];
- Um Weber corresponde a 1 x 108 linhas de campo.

Densidade de fluxo magnético:

- Densidade de fluxo (B) é número de linhas de campo por unidade de área.
- Unidade é Tesla [T];
- Um Tesla é igual a 1 Weber por metro quadrado de área.

Densidade de fluxo magnético

$$B = \frac{\Phi}{A}$$

- \cdot B = teslas (T)
- $\cdot \Phi = \text{webers (Wb)}$
- \cdot A = metros quadrados (m²)

Força magnetizante

O campo eletromagnético depende basicamente de:

- Da intensidade da corrente;
- Da forma do condutor (reto, espira ou solenóide);
- Do meio (permeabilidade magnética);
- Das dimensões;
- Do número de espiras.

Perdas magnéticas

Correntes parasitas:

- Induzidas no núcleo, devido ao mesmo ser, normalmente, de material ferromagnético.

Perdas por histerese:

- Trabalho realizado pelo campo (H) para obter o fluxo (B);
- Expressa a dificuldade que o campo (H) terá para orientar os domínios de um material ferromagnético.

Figura 1: Curva representativa da histerese medida à 1Hz.

Efeito de proximidade e efeito pelicular

Efeito de proximidade:

-Relaciona um aumento na resistência em função dos campos magnéticos produzidos pelos demais condutores colocados nas adjacências.

Efeito pelicular (efeito skin):

- -Restringe a secção do condutor para frequências elevadas.
- -Em altas frequências, a tensão oposta induzida se concentra no centro do condutor, resultando em uma corrente maior próxima à superfície do condutor e uma rápida redução próxima do centro.

Profundidade de penetração
$$\Delta = \frac{7,5}{\sqrt{f_s}} [cm]$$

Permeabilidade versus temperatura

Onde B é a indução magnética e H é a intensidade de campo magnético

 $B = \mu_I \times H$

μ_| => permeabilidade magnética a grandeza que exprime a diferença magnética entre os diversos materiais. Materiais ferromagnéticos apresentam valores grandes.

Perdas magnéticas:

- Por correntes de Foucault;
- Perda por histerese.

Perdas dependem de:

- Metalurgia do material;
- Porcentagem de silício;
- Freqüência;
- Espessura do material;
- Indução magnética máxima.

Perdas nos componentes magnéticos

Equação de Steinmetz: é normalmente utilizada para calcular a perda total no núcleo magnético para uma alimentação senoidal.

$$P_{fe} = K_c f^{\alpha} B^{\beta}_{\text{max}}$$

 P_{fe} = perda no núcleo por unidade de volume

 B_{max} = valor máximo da densidade de fluxo magnético para uma excitação senoidal K_c , α , β = constantes do núcleo fornecidas pelos fabricantes

Núcleos:

- Laminados
 - Ferro silício de grão não orientado;
 - Ferro silício de grão orientado.
- Compactados
 - Ferrites;
 - Pós metálicos.

Tipo de materiais magnéticos

- Ferrites
- Nanocristalinos
- Amorfos
- Ferro silício (Si-Fe)
- Níquel ferro (Ni-Fe)
- Pó de ferro

Materials	Ferrites	Nanocrystalline	Amorphous Metglas 2605	
Model	Epcos N87	Viroperm 500 F		
Permeability, μ_i	2200	15 000	10 000-150 000	
B_{peak} , T	0.49	1.2	1.56	
$\rho, \mu\Omega$ m	10×10^{6}	1.15	1.3	
Curie temp. T_c , °C	210	600	399	
$P_{\rm fe} {\rm mW/cm^3}$	288 at 0.2 T	312 at 0.2 T	294 at 0.2 T	
	50 kHz	$100\mathrm{kHz}$	25 kHz	
K_c	16.9	2.3	0.053	
α	1.25	1.32	1.81	
β	2.35	2.1	1.74	

Materials	Si iron	Ni-Fe (permalloy)	Powdered iron	
Model	Unisil 23M3	Magnetics Permalloy 80	Micro-metals 75 μ	
Permeability, μ_i	5000-10000	20 000-50 000	75	
$B_{\rm peak}$, T	2.0	0.82	0.6-1.3	
$\rho, \mu\Omega$ m	0.48	0.57	10^{6}	
Curie temp. T_c , °C	745	460	665	
$P_{\rm fe} {\rm mW/cm^3}$	5.66 at 1.5 T	12.6 at 0.2 T 5 kHz	1032 at 0.2 T 10 kHz	
	50 Hz			
K_c	3.388	0.448	1798	
α	1.70	1.56	1.02	
β	1.90	1.89	1.89	

http://www·magmattec·com·br

MAGNETICS	POT CORES	DOUBLE SLAB, RM CORES	EP CORES	PQ CORES	E CORES	EÇ ETD, EER, ER CORES	TOROID
See Catalog Section	6	7-8	9	10	11	12	13

TABLE 1: FERRITE CORE COMPARATIVE GEOMETRY CONSIDERATIONS

###### ®	POT CORES	DOUBLE SLAB, RM CORES	EP CORES	PQ CORES	E CORES	EC, ETD, EER, ER CORES	TOROIDS
See Catalog Section	6	7-8	9	10	11	12	13
Core Cost	High	High	Medium	High	Low	Medium	Very Low
Bobbin Cost	Low	Low	High	High	Low	Medium	None
Winding Cost	Low	Low	Low	Low	Low	Low	High
Winding Flexibility	Good	Good	Good	Good	Excellent	Excellent	Fair
Assembly	Simple	Simple	Simple	Simple	Simple	Medium	None
Mounting Flexibility**	Good	Good	Good	Fair	Good	Fair	Poor
Heat Dissipation	Poor	Good	Poor	Good	Excellent	Good	Good
Shielding	Excellent	Good	Excellent	Fair	Poor	Poor	Good

http://www·mag-inc·com

CARACTERÍSTICAS DOS MATERIAIS THORNTON						
Material	IP 6	IP 12R	IP12E			
Permeabilidade Inicial μι	2000 ± 25%	2100± 25%	2300 ± 25%			
Fator de Dissipação (Rel.)						
tan δ/μι .10- ⁶						
Temperatura de Curie	[°C]	<u>≥</u> 165	≥ 210	≥210		
Coercividade	[A/m]	18.0	18.0	18.0		
Densidade de Fluxo (*B) a 1	5 Oe, 23 °C [10 -3 T]	480	510	510		
Constante de Histerese (η	_B) [10-3/T]	<u><</u> 8.0				
Fator de desacomodação (D	_) [ppm]	10.0				
Densidade (ρ) [Kg/m³]	4800	4800	4800		

Auto-Indutância

A propriedade de uma bobina de se opor a qualquer variação de corrente é medida pela sua auto-indutância (L). A unidade de medida é o Henry (H).

$$L = \frac{N^2 \cdot \mu \cdot A}{l}$$

Circuito equivalente de um indutor

Circuito equivalente prático de um indutor

Indutores na prática

Tensão induzida

Considerando variações lineares:

$$v_{_{Lmed}} = L \frac{\Delta i}{\Delta t}$$

Indutância mútua – fluxo mútuo

O enrolamento no qual a fonte é aplicada é denominado primário, e o enrolamento no qual a carga é conectada é chamado de secundário.

Acoplamento magnético

$$k = \frac{\phi_m}{\phi_p}$$

O maior valor possível para k (coeficiente de acoplamento) é 1.

Circuito equivalente de transformadores

Circuito equivalente completo de um transformador de núcleo de ferro real:

