# Решение нелинейных уравнений

Пусть дана некоторая функция f(x) и требуется найти все или некоторые значения x, для которых f(x)=0.

Значение  $x^*$ , при котором  $f(x^*) = 0$ , называется *корнем* (или *решением*) уравнения.

Относительно функции f(x) часто предполагается, что f(x) дважды непрерывно дифференцируема в окрестности корня.

В процессе приближенного отыскания корней уравнения обычно выделяют два этапа: *покализация* (или *отделение*) корня и уточнение корня.

# Локализация корня

Локализация корня заключается в определении отрезка [a, b], содержащего один и только один корень.

Не существует универсального алгоритма локализации корня. В некоторых случаях отрезок локализации может быть найден из физических соображений. Иногда удобно бывает локализовать корень с помощью построения графика или таблицы значений функции y = f(x).

На наличие корня на отрезке [a, b] указывает различие знаков функции на концах отрезка.

# Уточнение корня

На этапе уточнения корня вычисляют приближенное значение корня с заданной точностью.

Приближенное значение корня уточняют с помощью различных итерационных методов.

# Метод половинного деления

Пусть из предварительного анализа известно, что корень уравнения находится на отрезке  $[a_0, b_0]$ , т. е.  $x^*[a_0, b_0]$ , так, что  $f(x^*) = 0$ .

Пусть функция f(x) непрерывна на отрезке  $[a_0, b_0]$  и принимает на концах отрезка значения разных знаков, т.е.

$$f(a_0)f(b_0) < 0.$$

Разделим отрезок  $[a_0, b_0]$  пополам. Получим точку  $x_0 = (a_0 + b_0)/2$ .

Вычислим значение функции в этой точке:  $f(x_0)$ . Если  $f(x_0) = 0$ , то  $x_0$  – искомый корень, и задача решена.

В противном случае находим знаки f(x) на концах отрезков  $[a_0, x_0]$  и  $[x_0, b_0]$ . Тот из них на концах которого f(x) имеет значения разных знаков принимают за новый отрезок  $[a_1, b_1]$ , и вычисляют следующее приближение  $x_1 = (a_1 + b_1)/2$ .



### Погрешность метода

После каждой итерации отрезок, на котором расположен корень, уменьшается вдвое, а после n итераций в  $2^n$  раз:

$$b_{\rm n} - a_{\rm n} = (b_0 - a_0) / 2^n$$

Поскольку корень принадлежит отрезку  $[a_n, b_n]$ , а  $x_n$  — середина этого отрезка, то величина  $|x^*-x_n|$  всегда будет меньше половины длины этого отрезка:  $|x^*-x_n| < (b_n - a_n)/2$ , следовательно  $|x^*-x_n| < (b_0 - a_0)/2^n$ .

## Критерий окончания

При заданной точности приближения  $\varepsilon$  вычисления заканчиваются, когда будет выполнено неравенство  $b_{\rm n}-a_{\rm n}<2\varepsilon$  или неравенство  $n>\log_2((b_0-a_0)/\varepsilon)-1$ .

Таким образом, количество итераций можно определить заранее. За приближенное значение корня берется величина  $x_n$ .

#### Сходимость метода

В отличие от большинства других методов уточнения, метод половинного деления сходится всегда, т.е. обладает безусловной сходимостью.

С каждым шагом погрешность приближенного значения уменьшается в два раза, т.е.  $|x^* - x_n| < |x^* - x_{n-1}|/2$ .

Поэтому данный метод является методом с линейной сходимостью.

# Метод Ньютона (метод касательных)

Пусть корень  $x^* \in [a, b]$ , так, что f(a)f(b) < 0. Предполагаем, что функция f(x) непрерывна и дважды непрерывно дифференцируема на отрезке [a, b]. А ее производные f'(x) и f''(x) сохраняют свой знак на [a, b].

Примем за  $x_0$  тот конец отрезка в котором f(x) имеет тот же знак что и f''(x). Уравнение касательной к f(x) в точке  $(x_0, f(x_0))$  будет иметь вид:  $y = f(x_0) + f'(x_0)(x - x_0)$ .

Первое пересечение получим, взяв абсциссу точки пересечения этой касательной с осью OX:  $x_1 = x_0 - f(x_0) / f'(x_0)$ . Аналогично поступим с точкой  $(x_1, f(x_1))$ , затем с точкой  $(x_2, f(x_2))$ , и т. д. в результате получим последовательность приближений:

$$x_{n+1} = x_n - f(x_n) / f'(x_n)$$
.



Для метода Ньютона справедлива следующая оценка погрешности:

$$\left| x_n - x^* \right| \le \frac{M_2}{2m_1} \left| x_n - x_{n-1} \right|^2$$

где 
$$M_2 = \max_{a \le x \le b} |f''(x)|, m_1 = \min_{a \le x \le b} |f'(x)|$$

## Критерий окончания

При заданной точности  $\varepsilon > 0$  вычисления нужно вести до тех пор, пока не будет выполнено неравенство:

$$\frac{M_2}{2m_1}|x_n-x_{n-1}|^2 < \varepsilon$$
 или  $|x_n-x_{n-1}| < \sqrt{\frac{2m_1\varepsilon}{M_2}}$ 

Можно использовать упрощенное условие:  $|x_n - x_{n-1}| < \varepsilon$ 

#### Сходимость метода

Сходимость метода Ньютона зависит от выбора начального приближения. Если в качестве  $x_0$  выбрать тот из концов отрезка, для которого  $f(x) f''(x) \ge 0$  то итерации сходятся.

# Метод секущих

Метод секущих является модификацией метода Ньютона. Начальное приближение  $x_0$  выбирают также как в методе Ньютона, а значение производной в расчетной формуле заменяют приближением:

$$f'(x_n) \approx \frac{f(x_n) - f(x_{n-1})}{x_n - x_{n-1}}$$

В результате итерационная формула метода имеет вид:

$$x_{n+1} = x_n - \frac{(x_n - x_{n-1})f(x_n)}{f(x_n) - f(x_{n-1})}$$

Это означает, что касательные заменены секущими:



Метод секущих является двухшаговым методом, для вычисления приближения  $x_{n+1}$  необходимо вычислить два предыдущих приближения  $x_n$  и  $x_{n-1}$ , и, в частности, на первой итерации надо знать два начальных значения  $x_0$  и  $x_1$ .

В качестве второго начального приближения  $x_1$  можно выбрать

$$x_1 = x_0 \pm \varepsilon$$

в зависимости от того, какой из концов интервала выбран в качестве  $x_0$  .



#### Сходимость метода

Условия сходимости метода секущих аналогичны условиям сходимости метода Ньютона. Порядок сходимости метода

$$p = \frac{\sqrt{5} + 1}{2} \approx 1.618$$

Это означает, что метод секущих сходится медленнее, чем метод Ньютона, в котором p=2. Но в методе Ньютона на каждой итерации надо вычислять и функцию, и производную, а в методе секущих — только функцию. Поэтому при одинаковом объеме вычислений в методе секущих можно сделать примерно вдвое больше итераций.

## Критерий окончания

При заданной точности  $\varepsilon > 0$  вычисления нужно вести до тех пор, пока не будет выполнено неравенство:  $|x_n - x_{n-1}| < \varepsilon$ 

# Метод хорд (ложного положения)

Метод хорд представляет собой еще одну модификацию метода Ньютона.

Пусть известно, что корень  $x^*$  уравнения f(x) = 0 находится на отрезке [a, b] и выполняется условие  $f(b)f''(b) \ge 0$ , тогда  $x_0 = a$ . Будем проводить из точки (b, f(b)) прямые через расположенные на графике функции точки с координатами  $(x_n, f(x_n))$ .

Абсцисса точки пересечения такой прямой с осью OX есть очередное приближение  $x_{n+1}$ .

## Геометрическая иллюстрация метода



Прямые на этом рисунке заменяют касательные в методе Ньютона. Эта замена основана на приближенном равенстве

$$f'(x_n) \approx \frac{f(b) - f(x_n)}{b - x_n}$$

Заменим в расчетной формуле Ньютона производную  $f'(x_n)$  правой частью приближенного равенства. В результате получим расчетную формулу метода ложного положения:

$$x_{n+1} = x_n - \frac{(b-x_n)f(x_n)}{f(b)-f(x_n)}$$

#### Погрешность метода

Погрешность найденного решения оценивается соотношением:

$$\left|x_{n}-x^{*}\right| \leq \frac{M_{1}-m_{1}}{m_{1}}\left|x_{n}-x_{n-1}\right|,$$

где 
$$M_1 = \max_{a \le x \le b} |f'(x)|, m_1 = \min_{a \le x \le b} |f'(x)|$$

## Сходимость и критерий окончания

Метод ложного положения обладает линейной сходимостью.

Критерий окончания итераций метода ложного положения:

$$\left| x_n - x_{n-1} \right| < \varepsilon$$

# Метод простых итераций

Для применения этого метода исходное нелинейное уравнение f(x) = 0 заменяют эквивалентным:

$$x = \varphi(x)$$

Пусть на отрезке [a, b] расположен единственный корень. Примем за  $x_0$  любое значение из интервала [a, b]. Вычислим значение функции  $\varphi(x)$  при  $x = x_0$  и найдем уточненное значение  $x_1 = \varphi(x_0)$ . Продолжая этот процесс неограниченно, получим последовательность приближений к корню:  $x_{n+1} = \varphi(x_n)$ 

## Сходимость

Если функция  $\varphi(x)$  определена и непрерывна на интервале [a,b] и  $|\varphi'(x)| < 1, x \in [a,b]$ 

то процесс итераций сходится с любой точностью при любом начальном значении  $x_0$  из интервала [a, b].

# Геометрическая иллюстрация метода

Корнем исходного нелинейного уравнения является абсцисса точки пересечения линии  $y=\varphi(x)$  с прямой y=x.

Из графиков можно увидеть, что в методе простых итераций возможны как сходящиеся, так и расходящиеся итерационные процессы. Скорость сходимости зависит от абсолютной величины  $\phi'(x)$ .

Поэтому выбор способа сведения исходного уравнения к виду  $x = \varphi(x)$  является важным.

## сходится





## расходится





# Пример

Привести уравнение  $f(x) = x^3 - x - 1 = 0$ , где  $x \in [1, 2]$  к виду  $x = \varphi(x)$ 

Решение 1

$$x = x^3 - 1$$
;

$$\varphi(x) = x^3 - 1;$$

$$\varphi'(x) = 3x^2;$$

$$\varphi'(1) = 3, \varphi'(2) = 12;$$

$$\varphi'(x) > 1, x \in [1, 2].$$

Метод итераций расходится.

Решение 2

$$x = \sqrt[3]{x+1}$$
;

$$\varphi(x) = (x^3 - 1)^{1/3};$$

$$\varphi(x) = (x^3 - 1)^{1/3};$$

$$\varphi'(x) = \frac{3\sqrt[3]{(x+1)^2}}{3\sqrt[3]{(x+1)^2}};$$

$$\varphi'(1) = \frac{1}{3\sqrt[3]{4}} < 1, \ \varphi'(2) = \frac{1}{3\sqrt[3]{9}} < 1;$$

Метод итераций сходится.

# Для метода простых итераций справедлива следующая оценка погрешности:

$$\left| x_n - x^* \right| \le \frac{q}{1 - q} |x_n - x_{n-1}|,$$
 где  $q = \max_{a \le x \le b} |\varphi'(x)|$ 

## Критерий окончания

При заданной точности  $\varepsilon > 0$  вычисления нужно вести до тех пор, пока не будет выполнено неравенство: 1 \_\_\_\_\_ 1 \_\_\_

$$\left| x_n - x_{n-1} \right| < \frac{1 - q}{q} \varepsilon$$

Если  $q \le 0.5$  можно использовать упрощенное условие:

$$\left| x_n - x_{n-1} \right| < \varepsilon$$

Если функция f(x) непрерывна вместе со своей первой производной на отрезке [a,b] и 0 < m < f'(x) < M на [a,b], то сведение уравнения f(x) = 0 к виду  $x = \varphi(x)$  осуществляют следующим образом:

$$f(x) = 0$$

$$\lambda f(x) = 0$$

$$x = x + \lambda f(x)$$

$$x = \varphi(x), \text{ где } \varphi(x) = x + \lambda f(x),$$

$$\varphi'(x) = 1 + \lambda f'(x)$$

Если в качестве константы  $\lambda$  взять  $\lambda = -\frac{1}{M}$ , то

$$\varphi'(x) = 1 + \lambda f'(x) = 1 - \frac{1}{M} f'(x) < 1 - \frac{m}{M} < 1,$$
  
$$\varphi'(x) = 1 + \lambda f'(x) = 1 - \frac{1}{M} f'(x) > 1 - \frac{M}{M} = 0$$

To есть 
$$0 < \varphi'(x) < k = 1 - \frac{m}{M} < 1$$
.

# Задание

- 1. Локализовать корни (выбрать начальные приближения) заданного нелинейного уравнения f(x)=0 с помощью построения графика f(x) в MathCAD (либо microsoft mathematics и т.п.).
- 2. С использованием современных высокоуровневых языков программирования разработать программную реализацию трех методов уточнения корней:
- Ньютона,
- простых итераций,
- метода заданного в таблице вариантов.
- 3. <u>Произвести вычисления</u> с различной точностью:  $10^{-1}$ ,  $10^{-2}$ ,  $10^{-3}$ . <u>Сравнить</u> количество шагов, которое потребуется каждому методу для достижения заданной точности.

- 4. Подготовить отчет о проделанной работе, включающий:
- график функции,
- начальные приближения (с обоснованием),
- результаты вычислений (значения корней, количество итераций ),
- выводы,
- тексты программ.

## Таблица вариантов

| № вар. | f(x)                                    | Метод                    |
|--------|-----------------------------------------|--------------------------|
| 1      | $x^2 - 20\sin(x) - 5$                   | Половинного деления      |
| 2      | $2^x - 5x^2 + 10$                       | Секущих                  |
| 3      | $-x^4 + 15x^2 + 12x - 10$               | Хорд (ложного положения) |
| 4      | $2x^4 - 24x^2 - x + 8$                  | Половинного деления      |
| 5      | $e^x - 4x^2 - 3x$                       | Секущих                  |
| 6      | $-x^2 + 7x - 4 \cdot \ln(x) - 7$        | Хорд (ложного положения) |
| 7      | $x^3 - x^2 - 7x + 5$                    | Половинного деления      |
| 8      | $x^2 - 5 \cdot x \cdot \sin(x) + x + 1$ | Секущих                  |