CP-414 Winter 2025, Due: Monday, February 24

Assignment 2

- **1.** Give regular expressions generating the following languages over the alphabet $\Sigma = \{0,1\}$:
 - a) L1 =the set of all strings that start with 1 or have odd length
 - b) L2 = the set of all strings that start with **0** and have even length
 - c) L3 =the set of all strings that end with 1 and have even length
 - d) L1 ∩ L2
 - e) L2UL3
 - f) L2 ∩ L3
 - g) The set of all strings such that every occurrence of 1 is followed by at least two 0s, e.g., 0001000100, 100, 0, 000000001000000100100 are in this language, but 1011, 1, 101 are not.
 - h) The set of all strings that does not contain pattern **0110**.
 - i) The set of all strings except 100 and 01.
- **2.** Use the procedure described in Lemma 1.60 to convert the following NFAs to regular expressions:

(a) start state q₁, accepting state q₂

	0	1	3
-> q ₁	$\{ q_2 \}$	$\{q_1,q_2\}$	Ø
* q2	{q ₁ }	Ø	Ø

(b) start state q₁, accepting state q₂

	0	1	3
-> q ₁	Ø	Ø	{q ₃ }
* q2	$\{q_2, q_3\}$	{q ₃ }	Ø
q ₃	$\{q_3\}$	$\{q_2\}$	{q ₃ }

Show your work (including GNFA and intermediate results after each state removal).

- 3. Convert the following regular expressions to NFAs using procedure given in Theorem 1.54. In all parts $\Sigma = \{0,1\}$.
- a) 1(110)* U 010
- b) **110**⁺ \bigcup (**010**)*
- c) $(1 \bigcup 0*)0*1^+$

- **4 (a).** Consider language $L = \{10^n10^n \mid n > 0\}$ over alphabet $\Sigma = \{0,1\}$. Using Pumping Lemma prove that this language is not regular.
- (b) Using result of (a) prove that language $\mathbf{B} = \{\mathbf{ww} \mid \mathbf{w} \text{ from } \Sigma^*\}$ is not regular. DO NOT USE PUMPING LEMMA! Use **closure** properties of regular languages instead.

5. Variation of Problem 1.53

Let
$$\Sigma = \{0, 1, 2, 3, ..., 9, -, =\}$$
 and

SUB = $\{x-y=z \mid x, y, z \text{ are unsigned integers, and } z \text{ is the difference of } x \text{ and } y\}$.

For example, string "99-21=78" is in SUB, while string "99-21=77" is not in SUB.

Prove that **SUB** is not a regular language.

Submit single PDF file to A2 drop box on MyLearningSpace.