OpenIntro Statistics

Rodrigo Dias Martins 11 de mar??o de 2015

CHAPTER 1 - INTRODUCTION TO DATA

Exercise 1.1

Of the 224 patients in the treatment group, 45 had a stroke by the end of the first year. Using these two numbers, compute the proportion of patients in the treatment group who had a stroke by the end of their first year.

Table 1: Events - 0 to 30 days period

	no event	stroke
control	214	13
treatment	191	33
TOTAL	405	46

```
pander(s365, "Eventsp - 0 to 365 days period", emphasize.strong.rows = 3)
```

Table 2: Eventsp - 0 to 365 days period

	no event	stroke
control	199	28
${f treatment}$	179	45
TOTAL	378	73

ANSWER:

[1] "20.1%"

• Proportion of patientes who had a stroke in treatment group:

```
round(45/224,3); paste((round(45/224,3)*100),'%',sep="")
## [1] 0.201
```

• Proportion of patientes who had no stroke in treatment group :

```
round(179/224,3); paste((round(179/224,3)*100),'%',sep="")
```

- ## [1] 0.799
- ## [1] "79.9%"
 - Proportion of patientes who had stroke in control group :

```
round(28/227,2); paste((round(28/227,3)*100),'%',sep="")
```

- ## [1] 0.12
- ## [1] "12.3%"
 - Proportion of patientes who had no stroke in control group:

```
round(199/227,2); paste((round(199/227,3)*100),'%',sep="")
```

- ## [1] 0.88
- ## [1] "87.7%"

Exercise 1.2

We consider a publicly available data set that summarizes information about the 3,143 counties in the United States, and we call this the county data set. This data set includes information about each county: its name, the state where it resides, its population in 2000 and 2010, per capita federal spending, poverty rate, and five additional characteristics. How might these data be organized in a data matrix?

ANSWER:

```
setwd("/Volumes/E-Books and articles/e-Books & articles/R/OpenIntro Statistics/openintroData")
load("county.rda")
library(pander)
panderOptions("table.split.table", 110)
pander(summary(county), "county summary")
```

Table 3: county summary (continued below)

name	state	pop2000	pop2010	fed_spend
Length:3143	Length:3143	Min. : 67	Min.: 82	Min.: 0.000
Class:character	Class :character	1st Qu.: 11210	1st Qu.: 11104	1st Qu.: 6.964
Mode :character	Mode :character	Median: 24608	Median: 25857	Median: 8.669
NA	NA	Mean: 89623	Mean: 98233	Mean: 9.991
NA	NA	3rd Qu.: 61766	3rd Qu.: 66699	3rd Qu.: 10.857
NA	NA	Max. :9519338	Max. :9818605	Max. :204.616
NA	NA	NA's :3	NA	NA's :4

poverty	homeownership	multiunit	income	med_income	smoking_ban
Min.: 0.0	Min.: 0.00	Min.: 0.00	Min.: 7772	Min.: 19351	Length:3143
1st Qu.:11.0	1st Qu.:69.50	1st Qu.: 6.10	1st Qu.:19030	1st Qu.: 36952	Class :character

poverty	homeownership	multiunit	income	med_income	smoking_ban
Median:14.7	Median :74.60	Median: 9.70	Median :21773	Median : 42445	Mode :character
Mean $:15.5$	Mean : 73.26	Mean $:12.33$	Mean $:22505$	Mean: 44270	NA
3rd Qu.:19.0	3rd Qu.:78.40	3rd Qu.:15.90	3rd Qu.:24814	3rd Qu.: 49142	NA
Max. $:53.5$	Max. :91.30	Max. $:98.50$	Max. :64381	Max. :115574	NA
NA	NA	NA	NA	NA	NA

```
panderOptions("table.split.table", 100)
panderOptions("round", 4)
panderOptions("keep.trailing.zeros", TRUE)
pander(head(cbind(entry = 1:nrow(county), county), 5), "How to organize it in a data matrix")
```

Table 5: How to organize it in a data matrix (continued below)

entry	name	state	pop2000	pop2010	fed_spend	poverty
1	Autauga County	Alabama	43671	54571	6.068	10.6
2	Baldwin County	Alabama	140415	182265	6.140	12.2
3	Barbour County	Alabama	29038	27457	8.752	25.0
4	Bibb County	Alabama	20826	22915	7.122	12.6
5	Blount County	Alabama	51024	57322	5.131	13.4

homeownership	$\operatorname{multiunit}$	income	med _income	smoking_ban
77.5	7.2	24568	53255	none
76.7	22.6	26469	50147	none
68.0	11.1	15875	33219	none
82.9	6.6	19918	41770	none
82.0	3.7	21070	45549	none

• Types of variables in county

str(county)

```
'data.frame':
                   3143 obs. of 11 variables:
                          "Autauga County" "Baldwin County" "Barbour County" "Bibb County" ...
##
   $ name
                   : chr
                          "Alabama" "Alabama" "Alabama" ...
##
                   : chr
   $ state
   $ pop2000
                          43671 140415 29038 20826 51024 11714 21399 112249 36583 23988 ...
##
   $ pop2010
                          54571 182265 27457 22915 57322 10914 20947 118572 34215 25989 ...
                   : int
   $ fed spend
                   : num
                          6.07 6.14 8.75 7.12 5.13 ...
##
   $ poverty
                          10.6 12.2 25 12.6 13.4 25.3 25 19.5 20.3 17.6 ...
                   : num
   $ homeownership: num
                          77.5 76.7 68 82.9 82 76.9 69 70.7 71.4 77.5 ...
                          7.2 22.6 11.1 6.6 3.7 9.9 13.7 14.3 8.7 4.3 ...
   $ multiunit
##
                  : num
##
   $ income
                   : num
                          24568 26469 15875 19918 21070 ...
   $ med income
                          53255 50147 33219 41770 45549 ...
                   : num
   $ smoking_ban : chr
                          "none" "none" "none" "none" ...
```

Exercise 1.3

Data were collected about students in a statistics course. Three variables were recorded for each student: number of siblings, student height, and whether the student had previously taken a statistics course. Classify each of the variables as continuous numerical, discrete numerical, or categorical.

ANSWER:

- Number of siblings = mumerical, discrete.
- Student height = numerical, continuous.
- Statistics course (Y/N) = categorical.

Exercise 1.4

Consider the variables group and outcome (at 30 days) from the stent study in Section 1.1. Are these numerical or categorical variables?

ANSWER: Categorical.

Table 7: Events - 0 to 30 days period

	no event	stroke
control	214	13
treatment	191	33
TOTAL	405	46

```
pander(head(cbind(entry = 1:nrow(stent), stent), 5), "Head of stent data")
```

Table 8: Head of stent data

entry	group	outcome	period
1	treatment	stroke	$0-30 \mathrm{\ days}$
2	treatment	stroke	0-30 days
3	treatment	stroke	0-30 days
4	treatment	stroke	0-30 days
5	treatment	stroke	$0-30 \mathrm{\ days}$