ECSE-2410 SIGNALS AND SYSTEMS FALL 2010 Rensselaer Polytechnic Institute

EXAM #1 (2 hours)	October 05, 2010
NAME: SOLUTIONS	SECTION 8:30 am
Do all work on these sheets.	10:00am
NO crib notes.	
NO Calculators.	
Label and Scale axes on all sketches and indicate all key values Show all work for full credit	

Total Grade for Exam #1:

Problem	Points	Grade
1	6	
2	5	
3	5	
4	15	
5	6	
6	8	
7	8	
8	16	
9	5	
10	5	
11	11	
12	10	
TOTAL	100	

1(6). The signal

When flipped about the vertical line t = 1 results in

where y(t) = x(at + b). Find a and b.

·′.

$$Y(t) = \chi_1(-t) = \chi(-t+z)$$

$$\begin{vmatrix} a = -1 \\ b = 2 \end{vmatrix}$$

2(5). Express the signal shown in terms of step functions.

$$\begin{array}{ll} \sqrt{2} & & \\ \sqrt{2} & \times \\ \sqrt{2} & = \\ + \left(\frac{1}{2} - \frac{1}{2} \right) & -\left(\frac{1}{2} - \frac{3}{2}\right) & \left(\frac{1}{2} - \frac{3}{2}\right) & -\left(\frac{1}{2} - \frac{3}{2}\right) & \left(\frac{1}{2} - \frac{3}{2}\right) & \left(\frac{1}{$$

3(5). Sketch the running integral
$$a(t) = \int_{-\infty}^{t} x(\tau) d\tau$$
 of the signal

$$ad = \int u(t+2)d\tau - u(t+1)d\tau + \int u(t-1)d\tau - \int u(t-2)d\tau$$

$$= \int u(t+2)d\tau - \int u(t+1)d\tau + \int u(t-1)d\tau + \int u(t-1)d\tau - \int u(t-2)d\tau$$

$$= \int d\tau - \int d\tau + 2u(t) + \int d\tau - \int d\tau$$

4(15). Evaluate and simplify the following:

(a)
$$y(t) = \int_{-\infty}^{t} \sin\left(\frac{\pi}{2}\tau\right) \delta(\tau-1) d\tau = \int_{-\infty}^{t} \sin\left(\frac{\pi}{2}\tau\right) d\tau = \int_{-\infty}^{t} \sin$$

(b)
$$y(t) = \int_{-\infty}^{\infty} \tau \, \delta(\tau - 1) d\tau = \int_{-\infty}^{\infty} 1 \cdot S(\Gamma - 1) d\Gamma = 1$$

(c)
$$y(t) = \int_{-\infty}^{t} e^{-\tau} u(\tau) d\tau = \int_{0}^{t} e^{-\tau} u(\tau) d\tau = -e^{-\tau} \left[e^{-\tau} u(\tau) d\tau - e^{-\tau} u(\tau) d\tau - e^{-\tau} \left[e^{-\tau} u(\tau) d\tau - e^{-\tau} u(\tau) d\tau - e^{-\tau} \left[e^{-\tau} u(\tau) d\tau - e^{-\tau} u$$

(d)
$$y[n] = \sum_{k=-\infty}^{\infty} \left(\frac{1}{2}\right)^k u[k] u[n-k] = \sum_{K=0}^{\infty} \left(\frac{1}{2}\right)^K = \frac{1-\left(\frac{1}{2}\right)^{N+1}}{1-\frac{1}{2}} = 2\left(1-\left(\frac{1}{2}\right)^{N+1}\right) u[n]$$

(e)
$$y[n] = \sum_{k=-\infty}^{\infty} a[k]b[n-k] = \begin{bmatrix} \underbrace{2 \ l, \ Q, \ Z, \ 0, \ l \end{bmatrix}}$$

where $a[n] = \{\underline{1}, 0, 1\}, \ b[n] = \{\underline{1}, \underline{0}, 1\}$

5(6). The step response of an LTI system is

Sketch the system impulse response h(t).

$$\frac{t}{ds+ep} = \int \frac{t}{t} u(t)dt - \int \frac{t}{u(t-z)}dt - \int \frac{t}{u(t-z)}dt$$

$$=\int_{0}^{\infty} d\tau - \int_{0}^{\infty} (\tau - 1)d\tau - \int_{0}^{\infty} d\tau$$

$$=(tro) (tr) (trz)$$

$$= \frac{T^{2}}{z} \Big|_{0}^{t} - \frac{(T-1)^{2}}{z} \Big|_{1}^{t} - \frac{t}{z} \Big|_{2}^{t} = \frac{t^{2}}{z} u(t) - \left(\frac{(t-1)^{2}}{z}\right) u(t-1) - \left(\frac{($$

For
$$0, $y_{44p}(t)=\frac{t^2}{2}$ $t^2=2t+1$

For $1, $y_{54p}(t)=\frac{t^2}{2}-\frac{|t|^2}{2}=t-\frac{t}{2}$

For $t>2$, $y_{54p}(t)=\frac{t^2}{2}-\frac{|t|^2}{2}=\frac{3}{2}$$$$

7(8). The impulse response of a LTI system is $h[n] = \{0,1,2,2,2,0,...\}$. Sketch the step response, $y_{step}[n]$, $0 \le n \le 6$.

8a(7). Find the convolution $y_1(t) = x_1(t) * h(t)$, where $x_1(t) = e^{-t} u(t)$.

$$y_{t} = \int e^{i\tau} e^{-(t\tau)} d\tau = e^{-t} \int e^{i\tau} d\tau = e^{-t} \int e^{(t+i)\tau} d\tau$$

$$= e^{-t} \left[\frac{1}{1+j} e^{(t+i)\tau} \right]^{\frac{1}{2}} = e^{-t} \left[\frac{1}{1+j} \left(e^{-t} e^{-t} - e^{-t} e^{-t} \right) \right]$$

$$= \frac{1}{1+j} e^{-t}$$

$$= \frac{1}{1+j} e^{-t}$$

8b(5). Find the convolution $y_2(t) = x_2(t) * h(t)$, where $x_2(t) = e^{-jt}$ and $h(t) = e^{-t}u(t)$.

8c(4). Using the results from 8a and 8b above, form $x(t) = x_1(t) + x_2(t)$ so that $y(t) = y_1(t) + y_2(t)$, since h(t) is an LTI system. Express y(t) in terms of sines and cosines.

$$y(t) = \frac{1}{1+j} e^{jt} + \frac{1}{1-j} e^{-jt}$$

$$= \frac{(1-j)e^{jt} + (1+j)e^{-jt}}{(1+j)(1+j)e^{-jt}} = \frac{e^{jt} - e^{jt}}{2}$$

$$= \frac{e^{jt} + e^{jt}}{2} + \frac{e^{jt} - e^{-jt}}{2}$$

$$= \frac{e^{jt} + e^{jt}}{2} + \frac{e^{jt} - e^{-jt}}{2}$$

$$= \cos(t) + \sin(t)$$

9(5). Given
$$H(\omega) = \frac{e^{j\frac{\pi}{4}}}{(j\omega)(2+j\omega)}$$
, find the value of ω so that $arg(H(\omega)) = \angle H(\omega) = -\frac{\pi}{2}$.

$$\angle H(\omega) = \frac{\pi}{4} - \frac{\pi}{2} - \tan^{-1} \frac{\omega}{2} = -\frac{\pi}{2}$$

$$\tan^{-1} \frac{\omega}{2} = \frac{\pi}{4}$$

$$\frac{\omega}{2} = \tan(\frac{\pi}{4}) = 1$$

$$|\omega = 2|$$

10(5). Express $Y(\omega) = \frac{2(1-j\omega)}{(j\omega)(1+\omega^2)}$ in polar form.

$$\frac{Y(w)}{jw(1+jw)(1-jw)} = \frac{z}{we^{j\frac{R}{2}}\sqrt{1+w^2}} e^{j\frac{ton^{-1}w}{2}}$$

$$= \frac{z}{w\sqrt{1+w^2}} e^{-j(\frac{R}{2} + \frac{ton^{-1}w}{2})}$$

11a(4). Sketch a(t) = u(t+2) + u(t+1) - 2u(t), and b(t) = 2u(t) - u(t-1) - u(t-2).

11b(7). Find and sketch c(t) = a(t) * b(t), where

$$\Delta(H) = p(t+z) + 2p(t+1)$$

$$\Delta(H) = 2p(H) + p(t-1)$$

$$B(H) = T(H)$$

$$P(H) \times p(H) = 1$$

:
$$c(t) = a(t) * b(t) = (p(t+z) + 2p(t+i)) * (2p(t) + p(t+i))$$

 $= 2p(t+z) * p(t) + p(t+z) * p(t-i) + * p(t+i) * p(t) + j$
 $= 2p(t+z) + p(t+i) + p(t+i) + 2p(t+i) +$

12(10). Using classical techniques, solve the differential equation, $\frac{dy}{dt} + y = x(t)$, where the input is $x(t) = 1 + e^{-2t}$, $t \ge 0$, and the initial condition is $y(0) = \alpha$.

$$-2K_{2}e^{-2t} + K_{1} + K_{2}e^{-2t} = 1 + e^{-2t}$$

$$-2K_{2} + K_{2} = 1 = 7 \quad K_{2} = -1$$

$$K_{1} = 1$$

$$Tc's$$

$$Tc's$$

$$y(y) = y(y) + y(y) = Ac' + 1 - e^{-2t}$$

$$y(y) = A(1) + 1 - 1 = 7 A = x$$

$$x$$

$$x$$

$$x$$

$$y(y) = xe' + 1 - e^{-2t}, t \ge 0$$