

Olimpiada Națională de Matematică Etapa Județeană și a Municipiului București, 14 martie 2015

CLASA a VIII-a

Problema 1. Dacă a,b,c sunt lungimile laturilor unui triunghi, arătați că are loc inegalitatea:

$$\sqrt{\frac{a}{-a+b+c}} + \sqrt{\frac{b}{a-b+c}} + \sqrt{\frac{c}{a+b-c}} \ge 3.$$

Problema 2. Pentru orice număr natural a definim mulțimea

$$A_a = \left\{ n \in \mathbb{N} \left| \sqrt{n^2 + an} \in \mathbb{N} \right. \right\}.$$

- a) Arătați că mulțimea A_a este finită dacă și numai dacă $a \neq 0$.
- b) Determinați cel mai mare element al mulțimii A_{40} .

Gazeta Matematică

Problema 3. Determinați numărul de elemente ale mulțimii

$$M = \left\{ (x, y) \in \mathbb{N}^* \times \mathbb{N}^* \middle| \frac{1}{\sqrt{x}} - \frac{1}{\sqrt{y}} = \frac{1}{\sqrt{2016}} \right\}.$$

Problema 4. Se consideră paralelipipedul dreptunghic ABCDA'B'C'D' și $\{O\} = AB' \cap A'B$. Pe muchia [BC] se consideră un punct N astfel încât $AC' \parallel (B'AN)$. Știind că $D'O \perp (B'AN)$ demonstrați că ABCDA'B'C'D' este cub.