Trabalho Prático 2

Data de Entrega: 18/05/2024

Como será a entrega?

Os alunos poderão escolher se desejam fazer o trabalho prático em C/C++, python ou Julia. Existe 1 tarefa no Moodle para a entrega. Os alunos deverão enviar **UM APENAS UM ARQUIVO .py ou .c ou .cpp ou jl** nesta tarefa. A submissão de qualquer outro formato de arquivo ou de mais de um arquivo implicará em **ZERO**. O arquivo também deve ter uma nomenclatura especifica. Para cada tarefa, o arquivo submetido pelo aluno de matricula xxxxxx deve se chamar tp2_xxxxxx.py ou tp2_xxxxxx.c ou tp2_xxxxxx.cpp ou tp2_xxxxxx.jl, a depender da escolha do aluno.

É proibido o uso de bibliotecas para manipulação de vetores, matrizes ou de álgebra linear e algoritmos, como a **numpy** em python e a **algorithms.h** em c++

O que faremos?

O objetivo deste trabalho é resolver PLs gerais, a serem fornecidas e cujo formato será especificado abaixo. Em outras palavras, vamos fazer uma aplicação do método simplex.

Resolva a programação linear definida por

$$\max \quad \boldsymbol{c}^T \boldsymbol{x}$$
 sujeito a $\mathbf{A} \boldsymbol{x} = \boldsymbol{b}$
$$\boldsymbol{x} \geq 0$$

e encontre o certificado que comprove seu resultado.

$$\mathbf{A} = \left(egin{array}{cccc} a_{1,1} & a_{1,2} & \dots & a_{1,m} \ a_{2,1} & a_{2,2} & \dots & a_{2,m} \ dots & dots & \ddots & dots \ a_{n,1} & a_{n,2} & \dots & a_{n,m} \end{array}
ight) \quad m{b} = \left(egin{array}{c} b_1 \ b_2 \ dots \ b_n \end{array}
ight) \quad m{c} = \left(egin{array}{c} c_1 \ c_2 \ dots \ c_m \end{array}
ight)$$

Entrada

A primeira linha da entrada contem dois inteiros n e m, o número de restrições e variáveis respectivamente.

A segunda linha contem m inteiros, c_i , que formam o vetor de custo.

Cada uma das n linhas seguintes contém m+1 inteiros que representam as restrições. Para a i-ésima linha, os m primeiros números são $a_{i,1}, a_{i,2}, \ldots, a_{i,m}$ enquanto o último é b_i . Repare que esses valores, incluindo b_i , podem ser **negativos**.

Uma entrada genérica é da forma:

```
n
           m
   c_1
           c_2
                 . . .
                          c_m
  a_{1,1} \quad a_{1,2} \quad \dots \quad a_{1,m}
        a_{2,2} \ldots a_{2,m} b_2
  a_{2,1}
                  ·.. :
 a_{n,1} a_{n,2} \dots a_{n,m} b_n
onde
1 \le n \le 100000
1 \le m \le 100000
\forall i, 1 \le i \le n, \forall j, 1 \le j \le m, |a_{i,j}| \le 100000
\forall i, 1 \le i \le m, |b_i| \le 100000
\forall i, 1 \leq i \leq m, |c_i| \leq 100000
```

Saídas

Escreva o resultado da programação linear de acordo com as especificações seguintes:

- Para o caso em que a PL possui valor ótimo, escreva, na primeira linha, **otima**. Na segunda linha, o valor objetivo atingido.
- Para o caso em que a PL é inviável, escreva, na primeira linha, inviavel.
- Para o caso em que a PL é ilimitada, escreva, na primeira linha, ilimitada.

Todos os números devem ser escritos com, no máximo, 3 casas decimais.

Sua resposta será considerada correta se o erro absoluto ou relativo entre o valor calculado pelo seu certificado o valor ideal não ultrapassar 10^{-3} . Em termos práticos, isso significa que, assumindo que o valor calculado seja a e o valor ideal seja b, sua resposta será considerada correta se $\frac{|a-b|}{\max(1,b)} \leq 10^{-3}$.

Exemplos

Para auxiliar na execução do TP estão disponíveis no Moodle alguns exemplos de arquivos de entrada e de saída. Os arquivos de entrada estão nomeados da seguinte forma ENTRADA_exemplo_X e a saída correspondente está nomeada como SAIDA_exemplo_X.

AVISO: as instâncias ótimas de exemplos possuem os valores das variáveis na solução ótima para conferência. Não é preciso fazer isso no programa.

Execução

Os códigos serão executados em uma máquina Ubuntu 20.04. Seu código deve executar nessa configuração, caso ele não execute ou produza uma erro será atribuída a nota 0.

Os códigos escritos em C serão compilados com a seguinte linha de código:

$$|gcc - m - O3| codigo.c - o codigo$$

E executados com a linha

$$./codigo$$
 $ENTRADA.txt$

Os códigos escritos em $\mathbf{C}++$ serão compilados com a seguinte linha de código:

$$g + + -m - O3$$
 $codigo.cpp - o$ $codigo$

E executados com a linha

Os códigos escritos em Python serão executados com a linha

Como será a avaliação?

Serão testadas um total de 10 instâncias, cada uma delas valendo 1 ponto. Se o programa executar corretamente o aluno recebe 1, caso contrário o aluno recebe 0. não existirá pontuação intermediária.

Neste trabalho teremos também uma pontuação extra para os códigos mais $r\'{a}pidos$. Mais precisamente, para cada instância de teste i o código de cada aluno ser\'a executado 3 vezes e ser\'a computada uma média do tempo de execução. Os três códigos com melhor tempo de execução receberão 0.5 pontos e isto ser\'a feito para cada uma das 10 instâncias, possibilitando aos alunos conseguirem até 5 pontos extras.