ゼミ資料 待ち行列理論と板の動きへの応用

学籍番号:201311324

百合川尚学

目次

1	$Introduction \ of \ Queueing \ Theory$	3
2	References	4
3	$Poisson \ Arrival$	5
3.1	$Random \ \ Arrival \ \ \ldots \ \ldots \ \ldots \ \ldots \ \ldots \ \ldots \ \ldots$	5
3.2	k-Erlang $distribution$	6
3.3	$Poisson \ \ Arrival \ \ \ldots \ \ldots \ \ \ldots$	
4	$Chapman-Kolmogorov \ \ Equation$	10
4.1	$Markov \hspace{0.2cm} property \hspace{0.1cm} . \hspace{0.1cm} \hspace{0.1cm} . \hspace{0.1cm}$	10
4.2	$Chapman-Kolmogorov \ \ Equation \ \ldots \ \ldots \ \ldots$	10
5	Foward Equations of Kolmogorov	13
6	$Modified \ Bessel \ Function$	17
6.1	$Blank \;\; Time \;\; of \;\; Service \;\; \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	17
6.2	$Modified \;\; Bessel \;\; Function \;\; \ldots \;\;$	18
6.3	$Finite \ Number \ of \ Customers \ in \ the \ System $	19
6.4	$Fluctuation \ of \ Number \ of \ Customers \ in \ the \ System \ \ldots \ \ldots \ \ldots$	20
7	$Transient \ \ Probability$	24
7.1	$Transient \ \ Probability \ \ldots \ \ldots \ \ldots \ \ldots \ \ldots \ \ldots$	24
7.2	$Transient \ \ Solution \ \ \ldots \ldots \ldots \ldots \ldots \ldots$	28

9	$Alignment \ of \ Arrivals$	31
10	Appendix	32
10.1	$Characteristic \ Function \ of \ k-Erlang \ Distribution \ \ldots \ \ldots \ \ldots$	32
10.2	$Distribution \ of \ Sum \ of \ Exponential \ distributed \ Variables$	34
10.3	$Landau \;\; Symbol \;\; \ldots \;\;$	35
10.4	Properties of Modified Bessel Function of the First Kind	35

1 Introduction of Queueing Theory

興味があること

- 観測を始めて t 時間経過した後のシステム内の客数.
- システムにいる客数が初期状態から0になるまでの時間の分布.
- システムを最良気配に見立てると、最良気配にかかる注文の数量の変化の分布を考えることになる.

2 References

参考文献:

- 1. Suzuki, Queueing, Shokabo, 1972, pp. 20-65.
- 2. Endo, Zuo, Kishimoto, Modelling Intra-day Stock Price Changes In Terms of a Continuous Double Auction System, The Japan Society for Industrial and Applied Mathematics, Vol.16, No.3, 2006, pp.305-316.
- 3. Li, Hui, Endo, Kishimoto, A Quantitative Model for Intraday Stock Price Changes Based on Order Flows, J Syst Sci Complex, 2014, 27: 208-224.

上記文献2と3に従い、板は最良気配のみを考え、板が動くことは最良気配値が動くこととする、

注文の種類

上記文献2と3に従い、次の4種類のみを考える、

- 指値買い/売り注文 (最良買い/売り気配の数量を増加する.)
- ・ 成行買い/売り注文 (最良買い/売り気配の数量を減少する.)

確率の表記

本稿では確率は全て文脈に応じた確率変数 Xに対し $\mathbf{P}(\{E\}) \equiv \mathbf{P}\left(\{X^{-1}(E)\}\right), (E \subset \mathbb{R}, X^{-1}(E) \in \mathfrak{D}(\mathbf{P}))$ で表記される。確率空間から厳密に定義して議論を進めるには未だ知識が不足しているが,後学のためと思って,教科書に載っている内容や授業で聞いた事柄,その他で得た知識を思い出しながら,M/M/1の理論体系を自分の頭で再構成して書き出しているのである。

3 Poisson Arrival

或るシステムがあり、そのシステムには或る確率分布に従った時間間隔で客が訪れ、或る確率分布に従った時間だけサービスを受け退場する. 到着の時間間隔およびサービス時間は客ごとに独立であると考える.

到着時間の分布について

観測開始時刻を T_0 ,始めの客が到着する時刻を T_1 ,2番目の客が到着する時刻を T_2 ,・・・,として系列 $\{T_n\}_{n=0}^\infty$ を得る.各時間間隔 $T_n-T_{n-1},n=0,1,2,\cdots$ はどの二つも互いに独立で同一な確率分布(到着分布)に従う.

3.1 Random Arrival

ランダムな到着

- 観測開始時点T₀を0とする.
- 時間間隔(0,T]の間に $A_{(0,T]}$ 人の到着があるとする.
- 客の到着は全て独立に発生し、各々の客の到着時点の選び方は(0,T]上の一様分布に従うとする。即ち一人の客が時間 $(au, au+t]\subset (0,T]$ に到着する確率は $\frac{t}{T}$ である。

この下で任意に考える時間間隔 $(\tau, \tau + t] \subset (0, T]$ での到着数の分布は以下の式で表現される.

$$\mathrm{P}\left(\left\{A_{(au, au+t]} = n \mid (au, au+t] \subset (0,T]
ight\}
ight) = rac{A_{(0,T]}!}{n!(A_{(0,T]}-n)!} \left(rac{t}{T}
ight)^n \left(rac{T-t}{T}
ight)^{A_{(0,T]}-n}.$$

この場合の到着率は $rac{A_{(0,T]}}{T}$. この到着率が $T o\infty$ で或る一定値に収まると考える: $\lim_{T o\infty}rac{A_{(0,T]}}{T}=\lambda<\infty$. つまり十分大きな時間経過を考えて, $A_{(0,T]}=\lambda T+o(T)$ も成立する.到着数の分布は次のように表される.

$$\begin{split} \mathbf{P}\left(\left\{A_{(\tau,\tau+t]}=n\right\}\right) &= \mathbf{P}\left(\left\{(\tau,\tau+t]\subset(0,\infty]\right\}\right) \mathbf{P}\left(\left\{A_{(\tau,\tau+t]}=n\mid(\tau,\tau+t]\subset(0,\infty]\right\}\right) \\ &= \lim_{T\to\infty} \mathbf{P}\left(\left\{(\tau,\tau+t]\subset(0,T]\right\}\right) \lim_{T\to\infty} \mathbf{P}\left(\left\{A_{(\tau,\tau+t]}=n\mid(\tau,\tau+t]\subset(0,T]\right\}\right) \end{split}$$

$$\begin{split} &= \lim_{T \to \infty} \frac{A_{(0,T]}!}{n!(A_{(0,T]} - n)!} \left(\frac{t}{T}\right)^n \left(\frac{T - t}{T}\right)^{A_{(0,T]} - n} \\ &= \lim_{T \to \infty} \frac{t^n}{n!} \left(\frac{T - t}{T}\right)^{A_{(0,T]}} \frac{A_{(0,T]}(A_{(0,T]} - 1)(A_{(0,T]} - 2) \cdots (A_{(0,T]} - n + 1)}{(T - t)^n} \\ &= \lim_{T \to \infty} \frac{t^n}{n!} \left(\left(1 - \frac{t}{T}\right)^{\frac{T}{t}}\right)^{\lambda t + o(1)t} \frac{(\lambda + o(1))(\lambda + o(1) - \frac{1}{T}) \cdots (\lambda + o(1) - \frac{n-1}{T})}{(1 - \frac{t}{T})^n} \\ &= e^{-\lambda t} \frac{(\lambda t)^n}{n!}. \end{split}$$

始めから $A_{(0,T]}$ とTが $\frac{A_{(0,T]}}{T}=\lambda$ を満たすように変化すると仮定しても結果は同じである。客の到着がランダムで均質に発生する場合,或る時間の到着数の分布がPoisson分布の形で表現される。この結果が,Poisson到着がランダム到着であると云われる所以である。

$3.2 \quad k-Erlang \quad distribution$

到着分布の例:k-アーラン分布 $(k-Erlang\ distribution)$ 分布関数を $E_k(x), -\infty < x < \infty$ と表すと、

$$E_k(x) \equiv egin{cases} 1 - e^{-\lambda kx} \left(1 + rac{\lambda kx}{1!} + \cdots + rac{(\lambda kx)^{k-1}}{(k-1)!}
ight) & x \geq 0 \ 0 & x < 0 \end{cases}$$

平均 $\frac{1}{\lambda}$,分散 $\frac{1}{k\lambda^2}$,特性関数 $\phi_{E_k}(t)=\left(1-\frac{it}{\lambda k}\right)^{-k}(i$:虚数単位). (付録1参照)

到着分布の平均の逆数を到着率と云う.これは単位時間当たりの平均到着客数を表す.(上の例だと到着率は 入.)

定理 1 k- アーラン分布の到着率を λ とする。ここで一定到着分布を

$$F(x) \equiv egin{cases} 1 & x \geq rac{1}{\lambda} \ 0 & x < rac{1}{\lambda} \end{cases}$$

とおく. k-アーラン分布は $k \to \infty$ で一定到着分布に分布収束する.

証明 1 k- アーラン分布の特性関数を $\phi_{E_k}(t)$,一定到着の分布の特性関数を $\phi_F(t)$ と表す. $\phi_{E_k}(t)$ が $\phi_F(t)$ に各点収束すれば,Glivenkoの定理により定理が示される.

$$\lim_{k o\infty}\phi_{E_k}(t)=\lim_{k o\infty}\left(1-rac{it}{\lambda k}
ight)^{-k}=e^{rac{it}{\lambda}}.$$

一方、一定到着の特性関数は、一定到着分布が離散分布であるから、

$$\int_{-\infty}^{\infty}e^{itx}dF(x)=e^{itrac{1}{\lambda}}F(rac{1}{\lambda})=e^{rac{it}{\lambda}}.$$

従って定理は証明された. (証明終)

k=1の場合、k-アーラン分布は指数分布 $E_X(\lambda)$ に一致する。後述することであるが、到着時間間隔が指数分布に従うとすると、客はPoisson到着する。この定理は、時間間隔がk-アーラン分布に従う到着がランダム到着と一定到着の中間にあることを示唆している。

k-アーラン分布のk=1のとき、客の到着時間間隔は到着率 λ の指数分布 $E_X(\lambda)$ に従う、指数分布は無記憶性を有つ:

$$X(\omega) \sim E_X(\lambda),$$

$$\mathrm{P}\left(\{X \leq \tau + t \mid X > \tau\}\right) = \frac{e^{\lambda \tau} - e^{\lambda(\tau + t)}}{e^{\lambda \tau}} = \mathrm{P}\left(\{X \leq t\}\right). \quad (\tau, t > 0)$$

この性質から、次の定理が成り立つ.

定理 2 到着時間間隔が独立に同一な指数分布に従うとき、任意の時間区間 $(\tau, \tau + t]$ に到着する客数は同一なPoisson 過程に従い、重ならない時間間隔では独立となる、また逆も成り立つ。

証明 2

観測開始時点を0として,時間 $(\tau, \tau+t]$ の間にシステムに到着する客数の総数を $A_{(\tau, \tau+t]}$ の分布を求める. $G_n(x)$ $(x\geq 0)$ を,Gamma分布 $G_A(n, \frac{1}{\lambda})$ の分布関数であるとする.

$$\begin{split} \mathbf{P}\left(\left\{A_{(\tau,\tau+t]} = n\right\}\right) &= \mathbf{P}\left(\left\{A_{(\tau,\tau+t]} \geq n\right\}\right) - \mathbf{P}\left(\left\{A_{(\tau,\tau+t]} \geq n+1\right\}\right) \\ &= \mathbf{P}\left(\left\{G_{n}(x) \leq t\right\}\right) - \mathbf{P}\left(\left\{G_{n+1}(x) \leq t\right\}\right) \quad (\text{付録2参照}) \\ &= \int_{0}^{t} \frac{\lambda^{n}}{(n-1)!} x^{n-1} e^{-\lambda x} dx - \int_{0}^{t} \frac{\lambda^{n+1}}{n!} x^{n} e^{-\lambda x} dx \\ &= \left[\frac{\lambda^{n}}{n!} x^{n} e^{-\lambda x}\right]_{x=0}^{x=t} + \int_{0}^{t} \frac{\lambda^{n+1}}{n!} x^{n} e^{-\lambda x} dx - \int_{0}^{t} \frac{\lambda^{n+1}}{n!} x^{n} e^{-\lambda x} dx \end{split}$$

$$= \frac{\lambda^n}{n!} t^n e^{-\lambda t}.$$

即ち、到着客数は時間間隔のみに依存する。

(1)任意の時間区間に到着する客数は同一なPoisson過程に従う(2)重ならない時間間隔では独立となる任意の重ならない時間間隔 $(au_1, au_1+t_1],(au_2, au_2+t_2]$ に対して、到着客数をそれぞれ n_1,n_2 と表すと、同時確率は以下のように表される:

$$\begin{split} & \mathbf{P}\left(\left\{A_{(\tau_{1},\tau_{1}+t_{1}]} = n_{1}, A_{(\tau_{2},\tau_{2}+t_{2}]} = n_{2}\right\}\right) \\ & = \mathbf{P}\left(\left\{A_{(\tau_{1},\tau_{1}+t_{1}]} = n_{1}\right\}\right) \mathbf{P}\left(\left\{A_{(\tau_{2},\tau_{2}+t_{2}]} = n_{2} \mid A_{(\tau_{1},\tau_{1}+t_{1}]} = n_{1}\right\}\right) \\ & = \left\{\mathbf{P}\left(\left\{G_{n1}(t_{1}) \leq t_{1}\right\}\right) - \mathbf{P}\left(\left\{G_{n_{1}+1}(t_{1}) \leq t_{1}\right\}\right)\right\} \left\{\mathbf{P}\left(\left\{G_{n_{2}}(t_{2}) \leq t_{2}\right\}\right) - \mathbf{P}\left(\left\{G_{n_{2}+1}(t_{2}) \leq t_{2}\right\}\right)\right\} \\ & = \mathbf{P}\left(\left\{A_{(\tau_{1},\tau_{1}+t_{1}]} = n_{1}\right\}\right) \mathbf{P}\left(\left\{A_{(\tau_{2},\tau_{2}+t_{2}]} = n_{2}\right\}\right). \end{split}$$

(3)逆を示す

任意の時間区間 (au, au+t] に到着する客数は同一なPoisson 過程に従い,重ならない時間間隔では独立となると仮定の下で,時間間隔を表す確率変数 $\{T_n-T_{n-1}\}_{n=1}^\infty$ の分布を導出する.最後に到着が観測されてから次の到着が観測されるまでの時間の分布は,

$$egin{aligned} \mathrm{P}\left(\{T_n - T_{n-1} \leq t\}
ight) &= 1 - \int_0^\infty \mathrm{P}\left(\left\{A_{(au, au + t]} = 0 \mid A_{(0, au]} = n - 1
ight\}
ight) d\,\mathrm{P}\left(\left\{A_{(0, au]} = n - 1
ight\}
ight) \\ &= 1 - \mathrm{P}\left(\left\{A_{(0, t]} = 0
ight\}
ight) \int_0^\infty d\,\mathrm{P}\left(\left\{A_{(0, au]} = n - 1
ight\}
ight) \\ &= 1 - e^{-\lambda t}. \end{aligned}$$

(証明終)

一度にサービスを受ける人数を1として、サービス時間も到着時間間隔と同様に指数分布に従う下での待ち行列をM/M/1 $(Kendall's\ notation)$ と表記する.

到着時間間隔の分布/サービス時間の分布/サーバー数.

$4 \quad Chapman-Kolmogorov \quad Equation$

本稿ではM/M/1のみを考える.

システム内の状態:

観測時点tにて、系内客数がjであるとする、システム内の状態をこの客数jで評価する、客数は、サービスを待っている人とサービスを受けている人の和である。

4.1 Markov property

前節で見てきたとおり、系内客数の変化は、

- 客は或る一定の到着率を有つ指数分布に従ってやってくる. どの二人の客も互いの到着時間に影響を与えることはない.
- 或る一定の平均時間を有つ指数分布に従って客は一人ずつサービスを受け、終わったら退場する. どの二人の客も互いのサービス時間に影響を与えることはない.

の2つの事象に因る。また客の到着時間間隔とサービス時間は独立に動く。任意に観測時刻の始点を置くとき、始点を置く直前までシステムに向かっていた途中である客、またはサービスを受けている最中であった客もいるかもしれないが、指数分布の無記憶性により、観測始点以降に観測する到着時間、サービス時間の分布は観測始点に影響されない。従って、現時点から次に起こる系内客数の変化は、現状のみに依存し過去の影響を受けない。これをマルコフ性 $(Markov\ property)$ と云う。

4.2 Chapman - Kolmogorov Equation

観測始点を0とし、時点0の系内客数をiと表す、この下で、観測時点t>0における系内客数Q(t)の分布を

$$P_{ij}(t) = \mathrm{P}\left(\left\{Q(t) = j \mid Q(0) = i
ight\}
ight) \ P_{ij}(0) = egin{cases} 1 & i = j \ 0 & i
eq j \end{cases}$$

と表記する.

ここで、到着時間間隔の分布を平均 $rac{1}{\lambda}$ の指数分布 $E_X(\lambda)$ 、サービス時間の分布を $E_X(\mu)$ と設定する、状態推移のグラフを10/38

示す.

最後に状態変化した時点から見て、平均 $\frac{1}{\lambda}$ 時間で次に客が到着し状態が上に変化するか、平均 $\frac{1}{\mu}$ 時間で次に客が退場し状態が下に変化する。また到着と退場は独立に動く、従って上グラフの時間軸に平行な線分は全て、その長さは、次の状態変化の方向によって指数分布 $E_X(\lambda)$ か $E_X(\mu)$ に完全に従う確率変数の実現値である。従って、任意に観測始点をおく場合、観測開始から状態変化までの時間の分布は観測始点に影響されない。

観測時点tから時間hだけ経過した後の系内状態をjとする。このとき、 $P_{ij}(t)$ の無記憶性から以下の等式が成立する。

$$egin{aligned} P_{ij}(t+h) &= \sum_{k=0}^{\infty} \mathrm{P}\left(\{Q(t+h) = j \mid Q(t) = k, Q(0) = i\}\right) \mathrm{P}\left(\{Q(t) = k \mid Q(0) = i\}\right) \ &= \sum_{k=0}^{\infty} \mathrm{P}\left(\{Q(t+h) = j \mid Q(t) = k\}\right) \mathrm{P}\left(\{Q(t) = k \mid Q(0) = i\}\right) \ &= \sum_{k=0}^{\infty} \mathrm{P}\left(\{Q(h) = j \mid Q(0) = k\}\right) \mathrm{P}\left(\{Q(t) = k \mid Q(0) = i\}\right) \end{aligned}$$

$$=\sum_{k=0}^{\infty}P_{ik}(t)P_{kj}(h).$$

これが Chapman-Kolmogorovの方程式である.

Chapman-Kolmogorovの方程式

任意の時間間隔t,h>0と状態 $i,j\geq 0$ に対して、

$$P_{ij}(t+h) = \sum_{k=0}^{\infty} P_{ik}(t) P_{kj}(h).$$

先ほど考えた経過時間hの間に、状態が上下に何段変化するのかを記述する、経過時間hの間の状態推移は以下の背反な事象に分割される。

- ullet $lpha_{h1} \equiv \{$ 時間hの間に $n \ (=0,1,2,\cdots)$ 人の客のサービスが終わり、n+1人来る. $\}$
- \bullet $\alpha_{h2} \equiv \{$ 時間hの間に $n (=0,1,2,\cdots)$ 人の客の到着があり、n+1人のサービスが終わる. $\}$
- \bullet $\alpha_{h3} \equiv \{$ 時間hの間に $n (= 0, 1, 2, \cdots)$ 人の客のサービスが終わり、n人来る. $\}$
- ullet $lpha_{h4} \equiv \{$ 時間hの間に $n \ (=0,1,2,\cdots)$ 人の客の到着があり、n人のサービスが終わる。 $\}$
- \bullet $\alpha_{h5} \equiv \{$ 時間hの間に $n (= 0, 1, 2, \cdots)$ 人の客のサービスが終わり、n+2人以上来る. $\}$
- ullet $lpha_{h6} \equiv \{$ 時間hの間に $n \ (=0,1,2,\cdots)$ 人の客の到着があり、n+2人以上のサービスが終わる. $\}$

先ず時間hの間に状態が上に一つだけ変化する事象を確率で表現する.

ここで、最終段第三項を考えると、

$$\mathbf{P}\left(\{\{\ \text{時間}\,h\,\text{の間に}\,n\ (=1,2,\cdots)\,\text{人の客のサービスが終わり},\ n+1$$
人来る. $\}\}\right)$ $\leq \mathbf{P}\left(\{\{\ \text{時間}\,h\,\text{の間に少なくとも2}\,\text{人以上の到着がある}.\ \}\}\right)$ $=e^{\lambda h}-1+\lambda h=o(h).$ 13/38

従って、求めたい確率は次のように表現される.

$$P_{i\ i+1}(h) = \lambda h + o(h).$$

ここで, o(h) とは任意の $\epsilon>0$ に対し或る $\delta>0$ が存在して, $|h|<\delta$ の下 $\frac{|o(h)|}{|h|}<\epsilon$ とできるような量である.(付録3参照)

時間hの間に状態が下に一つだけ変化する事象も、パラメータが違う他は上への移動の場合と変わらないので、

$$P_{i \mid i-1}(h) = egin{cases} \mu h + o(h) & i \geq 1. \ 0 & i = 0. \end{cases}$$

事象 α_{h3} 、 α_{h4} の確率を考えるより先に事象 α_{h5} 、 α_{h6} の確率を考える。事象 $\alpha_{h5}+\alpha_{h6}$ の確率は、時間hの間の状態の変動が2以上となる事象の確率である。つい先ほどの式と同様にして、

$$s.t.$$
 $|i-j|\geq 2$ $P_{ij}(h)=\mathrm{P}\left(\{lpha_{h5}+lpha_{h6}\}
ight)\leq \mathrm{P}\left(\{\{\ ext{時間}h \, ext{の間に少なくとも2人以上の到着がある.}\ \}\}
ight)$ $+\mathrm{P}\left(\{\{\ ext{時間}h \, ext{の間に少なくとも2人以上の退場がある.}\ \}\}
ight)$ $=o(h).$

最後に残ったのは、時間hの間に状態が元に戻る事象の確率の表現である、簡単に書くと、

$$P_{ii}(h) = egin{cases} 1-(\lambda+\mu)h+o(h). & i\geq 1\ 1-\lambda h+o(h). & i=0 \end{cases}$$

変動の大きさの確率をChapman-Kolmogorovの方程式に代入することで、Kolmogorovの前進方程式 $(Foward\ Equations\ of\ Kolmogorov)$ を得る.

$$\begin{split} P_{ij}(t+h) &= \sum_{k=0}^{\infty} P_{ik}(t) P_{kj}(h) \\ &= \begin{cases} P_{i\ j+1}(t) P_{j+1\ j}(h) + P_{ij}(t) P_{jj}(h) + P_{i\ j-1}(t) P_{j-1\ j}(h) + o(h) & j \geq 1 \\ P_{i1}(t) P_{10}(h) + P_{i0}(t) P_{00}(h) + o(h) & j = 0 \end{cases} \\ &= \begin{cases} P_{i\ j+1}(t) \{\mu h + o(h)\} + P_{ij}(t) \{1 - (\lambda + \mu)h + o(h)\} + P_{i\ j-1}(t) \{\lambda h + o(h)\} + o(h) & j \geq 1 \\ P_{i1}(t) \{\mu h + o(h)\} + P_{i0}(t) \{1 - \lambda h + o(h)\} + o(h) & j \geq 0 \end{cases} \\ &= \begin{cases} \mu P_{i\ j+1}(t) h + P_{ij}(t) - (\lambda + \mu) P_{ij}(t) h + \lambda P_{i\ j-1}(t) h + o(h) & j \geq 1 \\ \mu P_{i1}(t) h + P_{i0}(t) - \lambda P_{i0}(t) h + o(h) & j \geq 0 \end{cases} \end{split}$$

後は微分の定義に従うだけである.

$$\begin{cases} \frac{P_{ij}(t+h)-P_{ij}(t)}{h} = \mu P_{i\ j+1}(t) - (\lambda + \mu) P_{ij}(t) + \lambda P_{i\ j-1}(t) + \frac{o(h)}{h}. & j \ge 1\\ \frac{P_{i0}(t+h)-P_{i0}(t)}{h} = \mu P_{i1}(t) - \lambda P_{i0}(t) + \frac{o(h)}{h}. & j = 0 \end{cases}$$

ランダウの記号が利いて、任意の $\epsilon>0$ に対し或る適当な $\delta>0$ が存在し、 $0< h<\delta$ の下で、

$$\begin{cases} \left| \frac{P_{ij}(t+h) - P_{ij}(t)}{h} - \mu P_{i\ j+1}(t) + (\lambda + \mu) P_{ij}(t) - \lambda P_{i\ j-1}(t) \right| = \left| \frac{o(h)}{h} \right| < \epsilon. \quad j \ge 1 \\ \left| \frac{P_{i0}(t+h) - P_{i0}(t)}{h} - \mu P_{i1}(t) + \lambda P_{i0}(t) \right| = \left| \frac{o(h)}{h} \right| < \epsilon. \qquad j = 0 \end{cases}$$

Kolmogorovの前進方程式

$$\begin{cases} \frac{dP_{ij}(t)}{dt} = \mu P_{i\ j+1}(t) - (\lambda + \mu) P_{ij}(t) + \lambda P_{i\ j-1}(t). & j \ge 1\\ \frac{dP_{i0}(t)}{dt} = \mu P_{i1}(t) - \lambda P_{i0}(t). & j = 0 \end{cases}$$

6 Modified Bessel Function

観測開始時点 観測開始時点 T_0 を0とする.

到着時間間隔 平均 $rac{1}{\lambda}$ の指数分布 $E_X(\lambda)$ に従う.

サービス終了時間間隔 平均 $rac{1}{\mu}$ の指数分布 $E_X(\mu)$ に従う.

観測を開始してt時間経過後のシステム内の客数に興味がある。板の動きへの応用では板の移動直後の状態から観測を始めて(上下どちらかの板が消滅するまでの時間内で)t時間経過後の板の厚みが客数に対応する。

6.1 Blank Time of Service

Poisson到着の下,客の到着数 $A_{(0,t]}$ は

$$\mathrm{P}\left(\left\{A_{(0,t]}=n
ight\}
ight)=e^{-\lambda t}rac{(\lambda t)^n}{n!},\quad n=0,1,2,\cdots$$

と表された.

ところで時間(0,t]でのサービス終了数が同様に $P_O(\mu t)$ に従うことは否定される。サービスは、系内客数が0となる空白時間が発生するかも知れないからである。

サービス終了数も同様に *Poisson* 分布の形式で表現可能にするため、システム内の全ての客のサービス終了直後、架空人物のサービスを開始することにする、架空人物のサービスでサービス時間の空白を埋める、架空人物のサービス中に実際に客が到着した場合、架空人物のサービス終了時点を実際の客のサービス終了時点とする、架空人物の登場が実際のシステム稼動に問題がないことは以下のように示される:

実際の客が時刻 r に到着するとき、指数分布の無記憶性により、架空人物の残りサービス時間も同分布に従う、

 $\mathbf{P}\left(\{$ 架空人物のサービス時間 $\leq au + t \mid$ 架空人物のサービス時間 $> au \}
ight)$

- $=1-e^{-\lambda t}$
- $= P({ 到着した客のサービス時間 <math>\leq t}).$

架空サービスを考慮することで、時間(0,t]でのサービス終了数を $L_{(0,t]}$ と表すと、これは以下のように表現される。

$$\mathrm{P}\left(\left\{L_{(0,t]}=n
ight\}
ight)=e^{-\mu t}rac{(\mu t)^n}{n!}, \quad n=0,1,2,\cdots.$$

 $A_{(0,t]}$ と $L_{(0,t]}$ の差は、時間(0,t]での架空人物も含めた状態の変化量を表す、これを $C_{(0,t]}$ と表し、その分布を計算する、架空人物を考慮すると状態変化量が非負である保証は無い、到着数とサービス終了数が独立であることに注意して、以下の計算ができる、

$$\begin{split} &\mathbf{P}\left(\left\{C_{(0,t]}=k\right\}\right) = \mathbf{P}\left(\left\{A_{(0,t]}-L_{(0,t]}=k\right\}\right) \\ &= \sum_{n=\max\{k,\ 0\}}^{\infty} \mathbf{P}\left(\left\{A_{(0,t]}=n\right\}\right) \mathbf{P}\left(\left\{L_{(0,t]}=n-k \mid A_{(0,t]}=n\right\}\right) \quad (k=\cdots,-2,-1,0,1,2,\cdots) \\ &= \sum_{n=\max\{k,\ 0\}}^{\infty} \mathbf{P}\left(\left\{A_{(0,t]}=n\right\}\right) \mathbf{P}\left(\left\{L_{(0,t]}=n-k\right\}\right) \quad (A_{(0,t]} \succeq L_{(0,t]} \natural \pm \Delta \ldots) \\ &= \sum_{n=\max\{k,\ 0\}}^{\infty} e^{-\lambda t} \frac{(\lambda t)^n}{n!} e^{-\mu t} \frac{(\mu t)^{n-k}}{(n-k)!} \\ &= e^{-(\lambda+\mu)t} \sum_{n=\max\{k,\ 0\}}^{\infty} \frac{t^{2n-k} \lambda^{\frac{2n-k}{2}} \mu^{\frac{2n-k}{2}}}{n!(n-k)!} \\ &= e^{-(\lambda+\mu)t} \left(\frac{\lambda}{\mu}\right)^{\frac{k}{2}} \sum_{n=\max\{k,\ 0\}}^{\infty} \frac{t^{2n-k} \lambda^{\frac{2n-k}{2}} \mu^{\frac{2n-k}{2}}}{n!(n-k)!} \\ &= e^{-(\lambda+\mu)t} \rho^{\frac{k}{2}} I_{-k} (2t\sqrt{\lambda\mu}). \quad (\rho \equiv \frac{\lambda}{\mu},\ I_{-k}(x): \hat{\pi}^{-\frac{1}{2}} \mathcal{B}^{\text{Essel}} \otimes \mathcal{B}) \end{split}$$

第一種変形 Bessel 関数 (Modified Bessel function of the first kind)

$$I_{k}(x) = \sum_{n=\max\{-k, 0\}}^{\infty} \frac{\left(\frac{x}{2}\right)^{2n+k}}{n!(n+k)!},$$

$$I_{k}(x) = \sum_{n=\max\{-k, 0\}}^{\infty} \frac{\left(\frac{x}{2}\right)^{2n+k}}{n!(n+k)!}$$

$$= \sum_{m=\max\{k, 0\}}^{\infty} \frac{\left(\frac{x}{2}\right)^{2m-k}}{(m-k)!m!}$$

$$= I_{-k}(x).$$
(1)

Bessel 関数の対称性から、

$$P(\{C_{(0,t]} = k\}) = \rho^k P(\{C_{(0,t]} = -k\}), \quad k = 0, 1, 2, \cdots$$
(2)

が成り立つ.

6.3 Finite Number of Customers in the System

有限時間内での状態の変動量 $C_{(0,t]}$ が無限となる確率が0であることを示す.

確率母関数(Probability generating function)

|z| < 1の下で, $C_{(0,t]}$ の確率母関数は次のように計算される.

$$\mathbf{E}\left[z^{C_{(0,t]}}\right] = \mathbf{E}\left[z^{A_{(0,t]}-L_{(0,t]}}\right]$$
19/38

$$= \mathbf{E} \left[z^{A_{(0,t]}} \right] \mathbf{E} \left[z^{-L_{(0,t]}} \right]$$

$$= \left(\sum_{n=0}^{\infty} e^{-\lambda t} \frac{(\lambda t z)^n}{n!} \right) \left(\sum_{n=0}^{\infty} e^{-\mu t} \frac{\left(\frac{\mu t}{z}\right)^n}{n!} \right)$$

$$= e^{(-\lambda + \lambda z + \frac{\mu}{z} - \mu)t}.$$

確率の和

$$\sum_{k=-\infty}^{\infty} P\left(\left\{C_{(0,t]} = k\right\}\right) = \lim_{z \to 1} E\left[z^{C_{(0,t]}}\right]$$

$$= \lim_{z \to 1} e^{(-\lambda + \lambda z + \frac{\mu}{z} - \mu)t}$$

$$= 1. \quad (t < \infty)$$
(3)

従って、 $C_{(0,t]}=\infty$ 又は $C_{(0,t]}=-\infty$ となる確率は0となる:

$$ext{P}\left(\left\{C_{(0,t]}=\infty
ight\}
ight)+ ext{P}\left(\left\{C_{(0,t]}=-\infty
ight\}
ight)=1-\sum_{k=-\infty}^{\infty} ext{P}\left(\left\{C_{(0,t]}=k
ight\}
ight) \ =0.$$

確率の和の計算で、総和記号に ∞ が入っているからと $\mathbf{P}\left(\left\{C_{(0,t]}=\infty\right\}\right)$ が総和に含まれていると考えてはならない、 ∞ は数ではない、総和は特定の数を指定して計算するものだが、 ∞ とはどの数よりも大きいという概念である。

6.4 Fluctuation of Number of Customers in the System

興味は架空人物の発生を間引いた実際のシステムの系内客数の変化にある.

前章と同じく、観測始点時刻を $T_0=0$ とする、t時間後の系内客数をQ(t)で表し、Q(t)の時間変動を追跡する、

下の図は板の動きを待ち行列に見立てた例である. 待ち行列理論と板の動きは二つの時系列グラフによって繋がる.

Q(t)の初期状態は $Q(0)\geq 0$ と表せる.架空人物を考慮した時間(0,t]での状態変化量の確率変数 $C_{(0,t]}$ を用いて,時間の順を追ってQ(t)の挙動を見る.ここでQ(t)が0になる時点列 $\{Z_n\}_{n=1}^\infty$ と,0になってから初めて増加する時点列 $\{U_n\}_{n=1}^\infty$ を用

意する. 便宜上 $Z_0=U_0=T_0=0,\ C_{(0,U_0-0]}=-Q(0)$ と設定する.

る。授品上
$$Z_0 \equiv U_0 \equiv I_0 \equiv 0, \ C_{(0,U_0-0]} \equiv -Q(0)$$
 と設定する。
$$\begin{cases} Q(0) + C_{(0,t]} & t \in (0,Z_1] \\ 0 & t \in (Z_1,U_1] \\ C_{(0,t]} - C_{(0,U_1-0]} & t \in (U_1,Z_2] \\ 0 & t \in (Z_2,U_2] \\ C_{(0,t]} - C_{(0,U_2-0]} & t \in (U_2,Z_3] \\ 0 & t \in (Z_3,U_3] \\ C_{(0,t]} - C_{(0,U_3-0]} & t \in (U_3,Z_4] \end{cases} = \begin{cases} C_{(0,t]} - C_{(0,U_n-0]}, \ t \in (U_n,Z_{n+1}] \\ 0, \ t \in (Z_{n+1},U_{n+1}] \end{cases}$$
 に
$$Q(t) \equiv C_{(0,t]} - C_{(0,U_n-0]}, \ t \in (U_n,Z_{n+1}] \\ 0 & t \in (Z_{n+1},U_{n+1}] \end{cases}$$
 に
$$T_{n+1} = \frac{1}{2} \frac{2}{3} \times \frac{1}{2} \frac{1}{$$

 $C_{(0,U_n-0]},\; n=1,2,3,\cdots$ について精しく考える。 $C_{(0,t]}$ はQ(0)から出立してQ(t)=0となった後も,時点 U_1 まで単調 非増加な動きを続ける.従って $C_{(0,U_1-0]}\leq 0$ は確率1で起こる.この間Q(t)は状態0を維持する.時点 U_1 後は $C_{(0,U_1-0]}$ を基準として $C_{(0,t]}$ は単調非減少な動きに転じ、Q(t)は再び動き始める、Q(t)の動きは $C_{(0,t]}-C(0,U_1-0]$ に完全に一致 する.再びQ(t)=0となる時点 Z_2 以降も, $C_{(0,t]}$ は時点 U_2 まで単調非増加な動きを続ける.即ち $C_{(0,U_2-0]}\leq C_{(0,U_1-0]}$ が確率1で起こる.帰納的に考えて, $C_{(0,U_{n+1}-0]} \leq C_{(0,U_n-0]},\; n=1,2,3,\cdots$ が成立する.この議論から,先ほどの Q(t) は次の表現に直すことができる。視覚で確認するために最後に図を入れた。

初期状態Q(0). 系内客数Q(t)は時間(0,t]での到着数とサービス終了数の差C(0,t]を用いて以下の表現になる:

$$Q(t) = \max \left\{ C_{(0,t]} - \inf_{ au \in (0,t]} C_{(0, au]}, \; Q(0) + C_{(0,t]}
ight\}.$$

7 Transient Probability

前章では架空人物を入れたシステム内の状態推移と実際の系内客数の状態推移の関係を見た。この章では時間 (0,t] において実際の系内客数の状態推移の確率を計算する。

7.1 Transient Probability

Q(0)=iとする. t時間後に系内客数がQ(t)=jとなっている確率は、Chapman-Kolmogorov方程式の章での表記に倣って $P_{ij}(t)=P\left(\{Q(t)=j\mid Q(0)=i\}\right)$ と表される. Q(t)が状態iからjに推移する間に、 $C_{(0,t]}$ が上昇する回数と下降する回数をそれぞれu,dと表す. 当然、次の関係が成り立つ:

$$egin{aligned} u &= A_{(0,t]}, \ d &= L_{(0,t]}, \ j &= \max \left\{ i + u - d, \; C_{(0,t]} - \inf_{ au \in (0,t]} C_{(0, au]}
ight\}. \end{aligned}$$

Poisson分布に従う到着と退場の下で,一度に到着するまたは退場する客数が二人以上となる確率は0である。 (Kolmogorovの前進方程式の章参照) 従ってQ(t)が一度に2ステップ以上移動することはない.これによりQ(t)が状態iから状態jに行き着くまでのステップ数がu+dで表される. $C_{(0,t]}$ の変化時間間隔を無視してステップ数だけに注目すると,u回の上昇とd回の下降を経て状態jに行き着くまでの経路の数は

$$\frac{(u+d)!}{u!d!}$$

通りある.

表記を簡単に、 $\alpha_t\equiv A_{(0,t]},\ \beta_t\equiv A_{(0,t]},\ \gamma_t\equiv\inf_{\tau\in(0,t]}C_{(0,\tau]}$ とする。Q(t)とは違い、 $C_{(0,t]}$ は状態0から推移を始めて状態u-dに辿り着く、即ち γ_t は0以下且つu-d以下となる:

$$\gamma_t \leq \min\left\{0, \ u-d\right\}.$$

 γ_t の分布を導く、任意の $m>\min{\{0,\ u-d\}}$ については $\Pr(\{\gamma_t\leq m\mid \alpha_t=u,\ \beta_t=d\})=1$ であるから、考えるべきは $m\leq\min{\{0,\ u-d\}}$ の場合でよい、ここで、事象 $\{\gamma_t\leq m\mid \alpha_t=u,\ \beta_t=d\}$ は客の到着/サービス終了"時間"には関 24/38

係せず,到着/サービス終了"数"にのみ関係する事に注意する.即ち, $\{\gamma_t < m \mid \alpha_t = u, \ eta_t = d\}$ とは,状態変動の時点列 が与えられた下で考えられる $\frac{(u+d)!}{u!d!}$ 通りの上下変動の中、 $C_{(0,t]}$ が状態mを取る経路が選ばれる事象のことである。

$$\frac{(u+u)!}{(u-m)!(d+m)!}$$

であるから、 $\{\gamma_t \leq m \mid \alpha_t = u, \beta_t = d\}$ の確率は

$$\Pr\left(\{\gamma_t \leq m \mid \alpha_t = u, \; \beta_t = d\}\right) = \begin{cases} \frac{\frac{(u+d)!}{(u-m)!(d+m)!}}{\frac{(u+d)!}{u!d!}} = \frac{u!d!}{(u-m)!(d+m)!}. & m \leq \min\left\{0, \; u - d\right\} \\ 1. & m > \min\left\{0, \; u - d\right\} \end{cases}$$

これを用いて状態変異の確率 $P_{ij}(t) = P\left(\{Q(t)=j\mid Q(0)=i\}\right)$ を表現する。ただしこれを直接計算するのではなく、先 ずは事象 $\{Q(t)\leq j\mid Q(0)=i, \alpha_t=u, \beta_t=d\}$ と事象 $\{\alpha_t=u, \beta_t=d\mid Q(0)=i\}$ に分解して考える. $Q(t) = \max\left\{C_{(0,t]} - \gamma_t, \; Q(0) + C_{(0,t]}\right\} = \max\left\{u - d - \gamma_t, \; i + u - d\right\}$ であることから、次の関係が出る。

$${Q(t) \le j \mid Q(0) = i, \alpha_t = u, \beta_t = d} = {u - d - j \le \gamma_t, i + u - d \le j}.$$

 $i+u-d\leq j$ は γ_t に関係なく成立するから, $\sum\limits_{< j-i>}$ を $\{u,d\mid u-d\leq j-i,\;u,d\geq 0\}$ を満たすu,dについての総和記号として, $\mathrm{P}\left(\{Q(t)\leq j\mid Q(0)=i\}\right)$ は以下のように表現される.

$$\begin{split} \mathbf{P}\left(\{Q(t) \leq j \mid Q(0) = i\}\right) &= \sum_{\langle j-i \rangle} \mathbf{P}\left(\{\alpha_t = u, \beta_t = d \mid Q(0) = i\}\right) \mathbf{P}\left(\{Q(t) \leq j \mid Q(0) = i, \alpha_t = u, \beta_t = d\}\right) \\ &= \sum_{\langle j-i \rangle} \mathbf{P}\left(\{\alpha_t = u\}\right) \mathbf{P}\left(\{\beta_t = d\}\right) \mathbf{P}\left(\{\gamma_t \geq u - d - j \mid \alpha_t = u, \ \beta_t = d\}\right) \\ &= \sum_{\langle j-i \rangle} \mathbf{P}\left(\{\alpha_t = u\}\right) \mathbf{P}\left(\{\beta_t = d\}\right) \\ &- \sum_{\langle j-i \rangle} \mathbf{P}\left(\{\alpha_t = u\}\right) \mathbf{P}\left(\{\beta_t = d\}\right) \mathbf{P}\left(\{\gamma_t \leq u - d - j - 1 \mid \alpha_t = u, \ \beta_t = d\}\right) \\ &= \sum_{\langle j-i \rangle} e^{-\lambda t} \frac{(\lambda t)^u}{u!} e^{-\mu t} \frac{(\mu t)^d}{d!} \\ &- \sum_{\langle j-i \rangle} e^{-\lambda t} \frac{(\lambda t)^u}{u!} e^{-\mu t} \frac{(\mu t)^d}{d!} \frac{u!d!}{(d+j+1)!(u-j-1)!} \\ &= \sum_{\langle j-i \rangle} e^{-\lambda t} \frac{(\lambda t)^u}{u!} e^{-\mu t} \frac{(\mu t)^d}{d!} \\ &- \left(\frac{\lambda}{\mu}\right)^{j+1} \sum_{\langle j-i \rangle} e^{-\lambda t} \frac{(\lambda t)^{u-j-1}}{(u-j-1)!} e^{-\mu t} \frac{(\mu t)^{d+j+1}}{(d+j+1)!}. \end{split}$$

ここで,

$$\sum_{\langle j-i\rangle} e^{-\lambda t} \frac{(\lambda t)^u}{u!} e^{-\mu t} \frac{(\mu t)^d}{d!} = \sum_{k=-\infty}^{j-i} P\left(\left\{A_{(0,t]} - L_{(0,t]} = k\right\}\right) = \sum_{k=-\infty}^{j-i} P\left(\left\{C_{(0,t]} = k\right\}\right)$$
26/38

が成り立つから、簡略するために

$$K_{j-i}(t) \equiv \sum_{k=-\infty}^{j-i} \mathrm{P}\left(\left\{C_{(0,t]}=k
ight\}
ight)$$

とおくと、 $P({Q(t) \le j \mid Q(0) = i})$ は次のように書き換えられる.

$$P(\{Q(t) \le j \mid Q(0) = i\}) = K_{j-i} - \rho^{j+1} K_{-j-i-2}(t).$$

ようやく $P(\{Q(t)=j\mid Q(0)=i\})$ を導出する準備が整った. 最終結果は以下のようになる.

$$\begin{split} \mathrm{P}\left(\{Q(t)=j\mid Q(0)=i\}\right) &= \mathrm{P}\left(\{Q(t)\leq j\mid Q(0)=i\}\right) - \mathrm{P}\left(\{Q(t)\leq j-1\mid Q(0)=i\}\right) \\ &= K_{j-i}(t) - \rho^{j+1}K_{-j-i-2}(t) - K_{j-i-1}(t) + \rho^{j}K_{-j-i-1}(t) \\ &= \mathrm{P}\left(\left\{C_{(0,t]}=j-i\right\}\right) + \rho^{j}\,\mathrm{P}\left(\left\{C_{(0,t]}=-j-i-1\right\}\right) + (1-\rho)\rho^{j}K_{-j-i-2}(t) \\ &= \mathrm{P}\left(\left\{C_{(0,t]}=j-i\right\}\right) + \rho^{-i-1}\,\mathrm{P}\left(\left\{C_{(0,t]}=j+i+1\right\}\right) + (1-\rho)\rho^{j}K_{-j-i-2}(t). \end{split}$$

最終段は式(2)の関係を使った.

遷移確率 (Transient probability)

実際の系内客数の状態遷移確率 $\mathbf{P}\left(\{Q(t)=j\mid Q(0)=i\}\right)$ は、架空人物のサービスを考慮した状態変動量の確率変数 $C_{(0,t]}$ を用いて次のように表される:

$$egin{aligned} P_{ij}(t) &= \mathrm{P}\left(\{Q(t) = j \mid Q(0) = i\}\right) \ &= \mathrm{P}\left(\left\{C_{(0,t]} = j - i
ight\}\right) +
ho^{-i-1}\,\mathrm{P}\left(\left\{C_{(0,t]} = j + i + 1
ight\}\right) + (1-
ho)
ho^{j}K_{-j-i-2}(t), \ s.t. \quad K_{j-i}(t) &= \sum_{k=-\infty}^{j-i}\,\mathrm{P}\left(\left\{C_{(0,t]} = k
ight\}\right), \quad
ho &= rac{\lambda}{\mu}. \end{aligned}$$

有限時間内での系内客数は有限値であることを示す。初期状態を任意にiとして、

$$\begin{split} \mathbf{P}\left(\left\{Q(t)<\infty\mid Q(0)=i\right\}\right) &= \sum_{j=0}^{\infty}\mathbf{P}\left(\left\{Q(t)=j\mid Q(0)=i\right\}\right) \\ &= \sum_{j=0}^{\infty}\mathbf{P}\left(\left\{C_{(0,t]}=j-i\right\}\right) + \rho^{-i-1}\sum_{j=0}^{\infty}\mathbf{P}\left(\left\{C_{(0,t]}=j+i+1\right\}\right) \\ &+ \sum_{j=0}^{\infty}(1-\rho)\rho^{j}K_{-j-i-2}(t) \\ &= \sum_{l=-i}^{\infty}\mathbf{P}\left(\left\{C_{(0,t]}=l\right\}\right) + \rho^{-i-1}\sum_{l=i+1}^{\infty}\mathbf{P}\left(\left\{C_{(0,t]}=l\right\}\right) \\ &+ (1-\rho)\sum_{j=0}^{\infty}\rho^{j}\sum_{k=-\infty}^{-j-i-2}\mathbf{P}\left(\left\{C_{(0,t]}=k\right\}\right) \\ &= \sum_{l=-i}^{\infty}\mathbf{P}\left(\left\{C_{(0,t]}=l\right\}\right) + \rho^{-i-1}\sum_{l=i+1}^{\infty}\mathbf{P}\left(\left\{C_{(0,t]}=l\right\}\right) \\ &+ (1-\rho)\sum_{k=-\infty}^{-i-2}\mathbf{P}\left(\left\{C_{(0,t]}=k\right\}\right)\sum_{j=0}^{-i-2-k}\rho^{j} \\ &= \sum_{l=-i}^{\infty}\mathbf{P}\left(\left\{C_{(0,t]}=l\right\}\right) + \rho^{-i-1}\sum_{l=i+1}^{\infty}\mathbf{P}\left(\left\{C_{(0,t]}=l\right\}\right) \\ &+ (1-\rho)\sum_{k=-\infty}^{-i-2}\mathbf{P}\left(\left\{C_{(0,t]}=k\right\}\right)\frac{1-\rho^{-i-k-1}}{1-\rho} \end{split}$$

$$\begin{split} &= \left(\sum_{k=-\infty}^{-i-2} \mathbf{P}\left(\left\{C_{(0,t]} = k\right\}\right) + \sum_{l=-i}^{\infty} \mathbf{P}\left(\left\{C_{(0,t]} = l\right\}\right)\right) \\ &+ \rho^{-i-1} \left(\sum_{l=i+1}^{\infty} \mathbf{P}\left(\left\{C_{(0,t]} = l\right\}\right) - \sum_{k=-\infty}^{-i-2} \rho^{-k} \, \mathbf{P}\left(\left\{C_{(0,t]} = k\right\}\right)\right) \\ &= \left(\sum_{k=-\infty}^{-i-2} \mathbf{P}\left(\left\{C_{(0,t]} = k\right\}\right) + \sum_{l=-i}^{\infty} \mathbf{P}\left(\left\{C_{(0,t]} = l\right\}\right)\right) \\ &+ \rho^{-i-1} \left(\sum_{l=i+1}^{\infty} \mathbf{P}\left(\left\{C_{(0,t]} = l\right\}\right) - \sum_{k=i+2}^{\infty} \mathbf{P}\left(\left\{C_{(0,t]} = k\right\}\right)\right) \\ &= 1 - \mathbf{P}\left(\left\{C_{(0,t]} = -i - 1\right\}\right) + \rho^{-i-1} \, \mathbf{P}\left(\left\{C_{(0,t]} = i + 1\right\}\right) \\ &= 1 - \mathbf{P}\left(\left\{C_{(0,t]} = -i - 1\right\}\right) + \mathbf{P}\left(\left\{C_{(0,t]} = -i - 1\right\}\right) \\ &= 1. \end{split}$$

最後の三段の式変形は,式(2)と(3)を使った. 従って,次が成り立つ.

$$P({Q(t) = \infty \mid Q(0) = i}) = 1 - P({Q(t) < \infty \mid Q(0) = i}) = 0.$$

有限時解 (Transient Solution)

有限時間内では系内客数は有限である.ここから,遷移確率は別名有限時解という.

9 Alignment of Arrivals

問題点:到着の整列性はpoisson到着の下では許容か?ただ、サービスは複数同時に行われるべきである.指数分布の無記憶性により、同時到着を整列に直しても、サービス時間分布は同一の指数分布に従ってくれる。その際サービス時間分布に実データから計算される率を適用するとサービス時間を多く見積もりすぎることになるだろう。その点に注意して、サービス時間の平均を適切に計算する下でなら、 $M/M/\infty$ を考えてもよいのではないか?

10.1 Characteristic Function of k-Erlang Distribution

到着分布の例: k-アーラン分布 (k - $Erlang\ distribution$)

$$E_k(x) \equiv egin{cases} 1 - e^{-\lambda kx} \left(1 + rac{\lambda kx}{1!} + \cdots + rac{(\lambda kx)^{k-1}}{(k-1)!}
ight) & x \geq 0 \ 0 & x < 0 \end{cases}$$

平均,分散,特性関数を計算する.密度関数

$$\begin{split} f(x) &= E_k'(x) \\ &= \begin{cases} \lambda k e^{-\lambda k x} \left(1 + \frac{\lambda k x}{1!} + \dots + \frac{(\lambda k x)^{k-1}}{(k-1)!}\right) - \lambda k e^{-\lambda k x} \left(1 + \frac{\lambda k x}{1!} + \dots + \frac{(\lambda k x)^{k-2}}{(k-2)!}\right) & x \geq 0 \\ 0 & x < 0 \end{cases} \\ &= \begin{cases} \lambda k e^{-\lambda k x} \frac{(\lambda k x)^{k-1}}{(k-1)!} & x \geq 0 \\ 0 & x < 0 \end{cases}. \end{split}$$

これはGamma分布 $G_A(k, rac{1}{\lambda k})$ の密度関数である。従って一般のGamma分布 $G_A(lpha, eta)$ について平均、分散、特性関数を計算する方が楽である。特性関数:確率変数 $X \sim G_A(lpha, eta)$ について、

$$\begin{split} \phi(t) &= E[e^{itX}] \\ &= \int_0^\infty e^{itx} \frac{1}{\Gamma(\alpha)\beta^\alpha} x^{\alpha-1} e^{-\frac{x}{\beta}} dx \\ &= \int_0^\infty \frac{1}{\Gamma(\alpha)\beta^\alpha} x^{\alpha-1} e^{-(\frac{1}{\beta} - it)x} dx \\ &= \lim_{R \to \infty} \int_0^R \frac{1}{\Gamma(\alpha)\beta^\alpha} x^{\alpha-1} e^{-(\frac{1}{\beta} - it)x} dx \\ &= \lim_{R \to \infty} \frac{1}{\Gamma(\alpha)\beta^\alpha} (\frac{\beta}{1 - i\beta t})^\alpha \int_0^{\frac{R}{\beta} - itR} z^{\alpha-1} e^{-z} dz. \end{split}$$

ここで

$$\int_0^{\frac{R}{\beta}-itR} z^{\alpha-1} e^{-z} dz$$

について複素積分を考える.

積分路を $\Gamma \equiv \Gamma_1 \cup \Gamma_2 \cup \Gamma_3$ として、被積分関数が $\mathbb C$ の整関数であることから Γ および内部領域に孤立特異点は存在しない。積分の向きは左回りとして、Cauchyの積分定理が成り立つので

$$\oint_{\Gamma} z^{\alpha-1} e^{-z} dz = 0$$

が成り立つ. Γ_2 上の積分は

$$\begin{split} \left| \int_{\Gamma_2} z^{\alpha-1} e^{-z} dz \right| &= \left| \int_{-tR}^0 (\frac{R}{\beta} + iy)^{\alpha-1} e^{-\frac{R}{\beta} - iy} i dy \right| \\ &\leq \int_{-tR}^0 (\frac{R}{\beta} + |y|)^{\alpha-1} e^{-\frac{R}{\beta}} dy. \end{split}$$

任意の $\epsilon>0$ に対しtについて定まる或る $R_1(t)$ が存在して、 $R>R_1(t)$ ならば

$$\int_{-tR}^{0} \left(\frac{R}{\beta} + |y|\right)^{\alpha - 1} e^{-\frac{R}{\beta}} dy < \epsilon$$
33/38

が成り立つ. Γ_3 上の積分は

$$\int_{\frac{R}{G}}^{0} z^{\alpha-1} e^{-z} dz = -\int_{0}^{\frac{R}{G}} z^{\alpha-1} e^{-z} dz.$$

これも広義積分は収束するので、任意の $\epsilon>0$ に対し或る R_2 が存在して、 $R>R_2$ ならば

$$\Gamma(\alpha) - \epsilon < \int_0^{\lambda R} z^{\alpha-1} e^{-z} dx \le \Gamma(\alpha).$$

従って、 $R>max\{R_1(t),R_2\}$ と置いて

$$\left|\int_{\Gamma_1} z^{\alpha-1} e^{-z} dz - \Gamma(\alpha)\right| = \left|-\int_{\Gamma_2} z^{\alpha-1} e^{-z} dz - \int_{\Gamma_3} z^{\alpha-1} e^{-z} dz - \Gamma(\alpha)\right| < 2\epsilon.$$

 ϵ は任意であるから

$$\lim_{R\to\infty}\frac{1}{\Gamma(\alpha)\beta^{\alpha}}(\frac{\beta}{1-i\beta t})^{\alpha}\int_{0}^{\frac{R}{\beta}-itR}z^{\alpha-1}e^{-z}dz=(\frac{1}{1-i\beta t})^{\alpha}$$

が成り立つ. t < 0の場合も同じ結論となる. (証明終)

10.2 Distribution of Sum of Exponential distributed Variables

確率変数 $X(\omega), Y(\omega)$ を、それぞれ Gamma 分布 $G_A(n-1, \frac{1}{\lambda})$ 、指数分布 $E_X(\lambda)$ に独立に従うとする.このとき和 $Z(\omega) = X(\omega) + Y(\omega)$ の分布を求める.

$$P(\{Z \le z\}) = \iint_{x,y \ge 0, x+y \le z} \frac{\lambda^{n-1}}{(n-2)!} x^{n-2} e^{-\lambda x} \lambda e^{-\lambda y} dx dy$$

$$= \int_{0}^{z} \frac{\lambda^{n-1}}{(n-2)!} x^{n-2} e^{-\lambda x} \left[1 - e^{-\lambda y} \right]_{y=0}^{y=z-x} dx$$

$$= \int_{0}^{z} \frac{\lambda^{n-1}}{(n-2)!} x^{n-2} (e^{-\lambda x} - e^{-\lambda z}) dx$$

$$= \left[\frac{\lambda^{n-1}}{(n-1)!} x^{n-1} (e^{-\lambda x} - e^{-\lambda z}) \right]_{x=0}^{x=z} + \int_{0}^{z} \frac{\lambda^{n}}{(n-1)!} x^{n-1} e^{-\lambda x} dx$$

$$= \int_{0}^{z} \frac{\lambda^{n}}{(n-1)!} x^{n-1} e^{-\lambda x} dx.$$

$$34/38$$

よってZがGamma分布 $G_A(n, rac{1}{\lambda})$ に従っていると示された. $G_A(1, rac{1}{\lambda}) = E_X(\lambda)$ であることから、独立に同一の指数分布に従うn 個の確率変数の和の分布は $G_A(n, rac{1}{\lambda})$ であることが帰納的に示される.

10.3 Landau Symbol

Foward Equations of Kolmogorovの章でのランダウの記号 $(Landau\ symbol)$ の扱いを精しく見る. $0 < h \ll 1$ として,

$$\left| \lambda h \left(-\lambda h + \frac{(\lambda h)^2}{2!} - \frac{(\lambda h)^3}{3!} + \cdots \right) \right| \le \lambda h \left(\lambda h + \frac{(\lambda h)^2}{2!} + \frac{(\lambda h)^3}{3!} + \cdots \right)$$

$$= \lambda h^2 \left(\lambda + \frac{\lambda^2 h}{2!} + \frac{\lambda^3 h^2}{3!} + \cdots \right)$$

$$< \lambda h^2 \left(\lambda + \frac{\lambda^2}{2!} + \frac{\lambda^3}{3!} + \cdots \right)$$

$$= \lambda e^{\lambda} h^2$$

従って、任意の $\epsilon>0$ に対して $\delta\equiv rac{\epsilon}{\lambda e^{\lambda}}$ と与えればよい. $e^{\lambda h}-1+\lambda h$ についても同様に.

$$e^{\lambda h} - 1 + \lambda h = \left(\frac{(\lambda h)^2}{2!} + \frac{(\lambda h)^3}{3!} + \cdots\right)$$

$$= h^2 \left(\frac{\lambda^2}{2!} + \frac{\lambda^3 h}{3!} + \cdots\right)$$

$$< h^2 e^{\lambda}$$

任意の $\epsilon>0$ に対して $\delta\equiv \frac{\epsilon}{e^{\lambda}}$ と与えればよい.

10.4 Properties of Modified Bessel Function of the First Kind

定理 3 第一種変形 Bessel 関数について以下の性質がある.

$$(1)$$
 $I_0(0) = 1$, $I_j(0) = 0$, $(j = 1, 2, 3, \cdots)$,

$$(2)$$
 $I_j(x) = I_{-j}(x), (j = 0, 1, 2, 3, \cdots),$

$$(3) x\{I_{j-1}(x) - I_{j+1}(x)\} = 2jI_j(x),$$

$$(4)$$
 $I_j(x) < I_k(x), (0 \le k < j, x > 0),$

$$(\ 5\) \qquad I_j(x) = rac{e^x}{\sqrt{2\pi x}} \left\{ 1 - rac{4j^2 - 1}{8x} + o\left(rac{1}{x^2}
ight)
ight\},$$

$$(\ 6\) \qquad e^{rac{x}{2}\left(y+rac{1}{y}
ight)}=\sum_{j=-\infty}^{\infty}y^{j}I_{j}(x).$$

証明 3

(1)

$$I_{0}(x) = \sum_{n=0}^{\infty} \frac{\left(\frac{x}{2}\right)^{2n}}{n!n!}$$

$$= 1 + x \sum_{n=1}^{\infty} \frac{\frac{1}{2}\left(\frac{x}{2}\right)^{2n-1}}{n!n!}$$

$$\Rightarrow I_{0}(0) = 1.$$

 $j \geq 1$ の場合。

$$egin{align} I_j(x) &= \sum_{n=\max\{-j,\;0\}}^{\infty} rac{\left(rac{x}{2}
ight)^{2n+j}}{n!(n+j)!} \ &= rac{x}{2} \sum_{n=0}^{\infty} rac{\left(rac{x}{2}
ight)^{2n+j-1}}{n!(n+j)!} \ &\Rightarrow I_j(0) = 0. \end{array}$$

(2) 式(1)による.

j=0の場合, $I_{-1}(x)-I_{1}(x)=0$ (対称性)から,左辺は0,右辺はもちろん0である.

 $j \neq 0$ の場合, j-1, j+1は共に非負または共に非正となり, 対称性からj > 1の場合のみを考えればよい.

$$\frac{j}{x}I_{j}(x) = \frac{j}{x} \sum_{n=\max\{-j, 0\}}^{\infty} \frac{\left(\frac{x}{2}\right)^{2n+j}}{n!(n+j)!}$$

$$= \frac{j}{x} \sum_{n=0}^{\infty} \frac{\left(\frac{x}{2}\right)^{2n+j}}{n!(n+j)!}$$

$$= \frac{1}{2} \sum_{n=0}^{\infty} \frac{\left(\frac{x}{2}\right)^{2n+j-1}}{n!(n+j-1)!} \frac{j}{n+j}$$

$$= \frac{1}{2} \sum_{n=0}^{\infty} \frac{\left(\frac{x}{2}\right)^{2n+j-1}}{n!(n+j-1)!} \left(1 - \frac{n}{n+j}\right)$$

$$= \frac{1}{2} \sum_{n=0}^{\infty} \frac{\left(\frac{x}{2}\right)^{2n+j-1}}{n!(n+j-1)!} - \frac{1}{2} \sum_{n=1}^{\infty} \frac{\left(\frac{x}{2}\right)^{2n+j-1}}{(n-1)!(n+j)!}$$

$$= \frac{1}{2} \sum_{n=0}^{\infty} \frac{\left(\frac{x}{2}\right)^{2n+j-1}}{n!(n+j-1)!} - \frac{1}{2} \sum_{m=0}^{\infty} \frac{\left(\frac{x}{2}\right)^{2n+j+1}}{(m)!(n+j+1)!}$$

$$= \frac{1}{2} (I_{j-1}(x) - I_{j+1}(x)).$$

(4)

数学的帰納法による. $I_{k+1}(x) < I_k(x), \ (k \geq 0, x > 0)$ が成り立つことを示せばよい. x > 2の場合:

$$\begin{split} I_k(x) - I_{k+1}(x) &= \sum_{n=0}^{\infty} \frac{\left(\frac{x}{2}\right)^{2n+k}}{n!(n+k)!} - \sum_{n=0}^{\infty} \frac{\left(\frac{x}{2}\right)^{2n+k+1}}{n!(n+k+1)!} \\ &\geq \sum_{n=0}^{\infty} \frac{\left(\frac{x}{2}\right)^{2n+k}}{n!(n+k)!} - \sum_{n=0}^{\infty} \frac{\left(\frac{x}{2}\right)^{2n+k}}{n!(n+k+1)!} \quad (\because \frac{x}{2} \ge 1) \\ &= \sum_{n=0}^{\infty} \frac{\left(\frac{x}{2}\right)^{2n+k}}{n!(n+k)!} \left(1 - \frac{1}{n+k+1}\right) \\ &> 0. \quad (\because n+k+1 > 1, \ s.t. \ n > 0) \end{split}$$

0 < x < 2の場合:

$$\begin{split} I_k(x) - I_{k+1}(x) &= \sum_{n=0}^{\infty} \frac{\left(\frac{x}{2}\right)^{2n+k}}{n!(n+k)!} - \sum_{n=0}^{\infty} \frac{\left(\frac{x}{2}\right)^{2n+k+1}}{n!(n+k+1)!} \\ &= \sum_{n=0}^{\infty} \frac{\left(\frac{x}{2}\right)^{2n+k}}{n!(n+k+1)!} \left(n+k+1 - \frac{x}{2}\right) \\ &> 0. \quad (\because n+k+1 > 1 > \frac{x}{2}, \ s.t. \ n > 0) \end{split}$$

従って、 $I_{k+1}(x) < I_k(x), \; (k \geq 0, x > 0)$ が示された。(5) (証明終)