

신경망(Neural Network)

맥컬록-피츠(MCP) 뉴런

■ 1943년 신경 생리학자 워런 맥컬록(Warren McCulloch) 과 수학자 월터 피츠 (Walter Pitts) 가

맥컬록-피츠(MCP) 뉴런

■ 명제논리를 사용하여 동물 뇌의 생물학적 뉴런이 복잡한 계산을 위해 어떻게 상호작용하는지에 대한 간단한 계산 모델 제공

퍼셉트론(Perceptron)

1957년 프랑크 로젠플라트(Frank Rosenblatt)가 제안한 간단한 인공신경망 구조로 TLU(Threshold logi unit)라고 부르는 인공 뉴런을 기반으로 합니다.

퍼셉트론(Perceptron)

퍼셉트론(Perceptron)

■ 완전 연결층의 출력 계산

$$h_{w,b}(X) = \emptyset(XW + b)$$

■ 퍼셉트론 학습규칙(가중치 업데이트)

$$w_{i,j}^{\text{(next step)}} = w_{i,j} + \eta \left(y_j - \hat{y}_j \right) x_i$$

퍼셉트론의 한계

■ 선형 분류

■ 비선형 분류

다층 퍼셉트론(MLP, Multi Layer Perceptron)

입력층 하나와 은닉층(hidden layer)이라 불리는 하나 이사의 TLU층과 출력으로 구성됩니다.

다층 퍼셉트론 훈련

■ 신경망 순전파

■ 신경망 역전파

인공 뉴런 모델의 수학적 표현

심층신경망(Deep Neural Network, DNN)

- 딥러닝은 여러 층(layer)을 가진 인공신경망(Artificial Neural Network)을 사용하여 학습을 수행하는 것입니다.
- 심층신경망은 입력층과 출력층사이에 다수의 은닉층(hidden layer)을 포함하는 인공신경망입니다.
- 머신러닝에서는 비선형 분류를 위해 여러 trick을 사용하지만, DNN은 다수의 은닉층으로 비선형 분류가 가능

심층신경망(Deep Neural Network, DNN)

Input Layer(입력층)

신경망의 첫 번째 레이어로서 입력 데이터를 수신합니다.

■ Hidden Layer(은닉층)

신경망에서 입력 레이어(특성)와 출력 레이어(예측) 사이에 위치하는 합성 레이어입니다. 신경망에 하나 이상의 히든 레이어가 포함될 수 있습니다.

■ Output Layer(출력층)

신경망의 '최종' 레이어입니다. 이 레이어에 답이 포함됩니다.

■ Dense Layer(밀집층)

Fully Connected Layer(완전 연결층) 이나 Dense Layer(밀집층)라고 불리는 밀집 연결 층(Densely Connected Layer)

뉴런 Neuron

신경망은 뉴런을 기본 단위로 하며, 이를 조합하여 복잡한 구조를 이룬다.

출처: https://heung-bae-lee.github.io/2019/12/08/deep_learning_03/

얕은 신경망 Shallow Neural Network

가장 단순하고 얕은(은닉 계층이 1개인) 신경망 구조를 얕은 신경망이라고 한다.

출처: https://heung-bae-lee.github.io/2019/12/08/deep_learning_03/

심층 신경망 Deep Neural Network (DNN)

• 얕은 신경망보다 은닉 계층이 많은 신경망을 DNN이라고 부른다.

출처: https://heung-bae-lee.github.io/2019/12/08/deep_learning_03/

가중치(Weight)

가중치는 입력값이 연산결과에 미치는 영향도를 조절하는 요소입니다.

활성화 함수(Activation function)

입력값들의 수학적 선형결합을 다양한 형태의 비선형(또는 선형) 결합으로 변환하는 역할

렐루 (ReLU)

입력이 양수일때는 x, 음수일 때는 0을 출력

시그모이드 (Sigmoid)

0~1까지의 비선형 형태로 변경

하이퍼볼릭 탄젠트 (Hyperbolic Tangent)

선형함수의 결과를 -1~1까지의 비선형 형태로 변경하는 함수

소프트맥스 (Softmax)

입력값을 0~1 사이 출력이 되도록 정규화, 출력값들의 총합은 항상 1

$$\phi(z) = \frac{e^i}{\sum_{j=0}^k e^j}$$
 where i=0,1,....k

출처: https://muzukphysics.tistory.com/165

활성화 함수(Activation function)

```
def sigmoid(z):
    return 1 / (1 + np.exp(-z))

def relu(z):
    return np.maximum(0, z)

def derivative(f, z, eps=0.000001):
    return (f(z + eps) - f(z - eps))/(2 * eps)
```


손실함수(Loss Function)

인공신경망 학습의 목적함수로 출력값(예측값)과 정답(실제값)의 차이를 계산합니다.

■ 회귀예측(Regression)

torch.nn.MSELoss

■ 이진분류(Binary Classification)

torch.nn.BCELoss

■ 다중분류(Binary Classification)

torch.nn.CrossEntropyLoss

원핫벡터(One-Hot Vector, One-Hot Encoding)

고유 값에 해당하는 칼럼에만 1을 표시하고 나머지 칼럼에는 0을 표시하는 방법

Human-Readable

Machine-Readable

Pet	Cat	Dog	Turtle	Fish
Cat	1	0	0	0
Dog	0	1	0	0
Turtle	0	0	1	0
Fish	0	0	0	1
Cat	1	0	0	0

딥러닝 학습방법

- 딥러닝 학습의 목표는 모델에 입력값을 넣었을 때의 출력값이 최대한 정답과 일치하게 하는 것입니다.
- 딥러닝 학습은 손실(Loss, Error)를 최소화 하는 가중치(weight)와 편향(bias)을 찾는 과정입니다.
- 모델 파라미터(weight, bias)를 무작위로 부여한 후, 반복학습(순전파-오차역전파)을 통해 모델의 출력값을 정답과 가깝게 되도록 매개변수(weight, bias)를 조금씩 조정합니다.
- 순전파(Forward Propagation)와 오차역전파(Error Back Propagation)의 반복으로 진행이 됩니다.

딥러닝 학습방법

■ 순전파(Forward Propagation)

딥러닝 모델에 값을 입력해서 출력을 얻는 과정 순전파는 뉴럴 네트워크의 입력층부터 출력층까지 순서대로 변수들을 계산하고 저장

■ 오차역전파(Error Backpropagation)

실제값과 모델 결과값에서 오차를 구해서, 오차를 입력(input) 방향으로 보내서 가중치를 재업데이트 하는 과정

경사하강법(Gradient Descent)

- 손실함수 J(w)는 가중치(w)의 함수로, 볼록함수 형태라면 미분으로 손실이 가장 작은 가중치를 찾을 수 있습니다.
- 하지만, 딥러닝에서는 손실함수가 복잡하고 계산량이 매우 크고, 미분이 0이 되는 값이 여러 개 존재하므로 미분만으로 최소값을 찾기 어려워 경사하강법(Gradient Descent)을 사용합니다.
- 경사하강법은 손실함수의 현 가중치에서 기울기를 구해서 손실(Loss)을 줄이는 방향으로 업데이트 해 나갑니다.

참고: https://angeloyeo.github.io/2020/08/16/gradient_descent.html

옵티마이저(Optimization Algorithm)

손실함수를 최소화하는 방향으로 가중치를 갱신하는 알고리즘입니다.

25

옵티마이저(Optimization Algorithm)

■ 손실함수(Loss Function)

손실함수는 신경망 학습의 목적으로(목적함수) 모델의 출력값(예측값)과 정답(실제값)의 차이를 계산합니다.

■ 최적화(Optimization)

딥러닝 모델의 파라미터(weight, bias)를 조절해서 손실함수의 값을 최저로 만드는 과정 경사하강법(Gradient Descent)이 대표적입니다.

■ 경사하강법(gradient descent)

학습 데이터의 조건에 따라 모델의 매개변수를 기준으로 손실의 경사를 계산하여 손실을 최소화하는 기법입니다. 경사하강법은 매개변수를 반복적으로 조정하면서 손실을 최소화하는 가중치와 편향의 가장 적절한 조합을 점진적 으로 찾는 방식입니다.

■ 경사(gradient)

모든 독립 변수를 기준으로 한 편미분의 벡터입니다. 머신러닝에서 경사는 모델 함수의 편미분의 벡터입니다.

드롭아웃(Dropout)

Hidden Layer의 일부 유닛이 동작하지 않게 하여 overfitting(과적합)을 막는 방법

일반 심층신경망

Dropout이 적용된 심층신경망

■ 과적합(overfitting)

생성된 모델이 학습 데이터와 지나치게 일치하여 새 데이터를 올바르게 예측하지 못하는 경우입니다.

■ 일반화(generalization)

모델학습에 사용된 데이터가 아닌 이전에 접하지 못한 새로운 데이터에 대해 올바른 예측을 수행하는 능력을 의미합니다.

Thank you