Lecture 4: Trees

Let *A* be a set. The set of all finite sequences over *A* is denoted by $A^{\leq \mathbb{N}}$.

Definition 4.1: A **tree** on *A* is a set $T \subseteq A^{<\mathbb{N}}$ that is *closed under prefixes*, that is

$$\forall \sigma, \tau \ [\tau \in T \& \sigma \subseteq \tau \Rightarrow \sigma \in T]$$

We call the elements of *T nodes*.

A sequence $\alpha \in A^{\mathbb{N}}$ is a **infinite path through** or **infinite branch of** T if for all n, $\alpha \upharpoonright_n = (\alpha_0, \alpha_1, \dots, \alpha_{n-1}) \in T$. We denote the set of infinite paths through T by [T].

An important criterion for a tree to have infinite paths is the following.

Theorem 4.2 (König's Lemma): *If T is* finite branching, *i.e.* each node has at most finitely many immediate extensions, then

T infinite \Rightarrow T has an infinite path.

Proof sketch. We construct an infinite path inductively. Let T_{σ} denote the tree "above" σ , i.e. $T_{\sigma} = \{ \tau \in A^{<\mathbb{N}} : \sigma ^{\smallfrown} \tau \in T \}$. If T is finite branching, by the *pigeonhole principle*, at least one of the sets T_{σ} for $|\sigma| = 1$ must be infinite. Pick such a σ and let $\alpha \upharpoonright_1 = \sigma$. Repeat the argument for $T = T_{\sigma}$ and continue inductively. This yields a sequence $\alpha \in [T]$.

If $[T] = \emptyset$, we call T well-founded. The motivation behind this is that T is well-founded if and only if the *inverse prefix* relation

$$\sigma \preceq \tau : \Leftrightarrow \sigma \supseteq \tau$$

is well-founded, i.e. it does not have an infinite descending chain.

If $T \neq \emptyset$ is well-founded, we can assign T an ordinal number, its **rank** $\rho(T)$.

- If σ is a terminal node, i.e. σ has no extensions in T, then let $\rho_T(\sigma) = 0$.
- If σ is not terminal, and $\rho_T(\tau)$ has been defined for all $\tau \supset \sigma$, we set $\rho_T(\sigma) = \sup{\{\rho_T(\tau) + 1 : \tau \in T, \tau \supset \sigma\}}$.
- Finally, set $\rho(T) = \sup\{\rho_T(\sigma) + 1 \colon \sigma \in T\} = \rho_T(\emptyset) + 1$, where \emptyset denotes the empty string.

Orderings on trees

If A itself is linearly ordered, we can extend the inverse prefix ordering to a total ordering on $A^{<\mathbb{N}}$ So suppose \leq is a linear ordering of A. The (partial) **lexicographical ordering** \leq_{lex} of $A^{<\mathbb{N}}$ is defined as

$$\sigma \leq_{\text{lex}} \tau$$
 iff $\sigma = \tau$ or $\exists i < \min\{|\sigma|, |\tau|\}, [(\forall j < i) \sigma_i = \tau_i \& \sigma_i < \tau_i]$

This ordering extends to $A^{\mathbb{N}}$ in a natural way.

Proposition 4.3: *If* \leq *is a well-ordering of A and T is a tree on A with* $[T] \neq \emptyset$ *, then* [T] *has* $a \leq_{\text{lex}}$ -minimal element, the *leftmost branch*.

Proof. We *prune* the tree T by deleting any node that is not on an infinite branch. This yields a subtree $T' \subseteq T$ with [T'] = [T]. Let $T'_n = \{\sigma \in T' : |\sigma| = n\}$. Since \leq is a well-ordering on A, T'_1 must have a \leq_{lex} -least element. Denote it by $\alpha \upharpoonright_1$. Since T' is pruned, $\alpha \upharpoonright_1$ must have an extension in T, and we can repeat the argument to obtain $\alpha \upharpoonright_2$. Continuing inductively, we define an infinite path α through T', and it is straightforward to check that α is a \leq_{lex} -minimal element of [T'] and hence of [T].

We can combine the \leq_{lex} -ordering with the inverse prefix order to obtain a linear ordering of $A^{<\mathbb{N}}$. This ordering has the nice property that if A is well-ordered and T is well-founded, then the ordering restricted to T is a well-ordering.

Definition 4.4: The **Kleene-Brouwer ordering** \leq_{KB} of $A^{<\mathbb{N}}$ is defined as follows.

$$\sigma \leq_{\mathsf{KR}} \tau$$
 iff $\sigma \supseteq \tau$ or $\sigma \leq_{\mathsf{lex}} \tau$

This means σ is smaller than τ if it is a proper extension of τ or "to the left" of τ .

We now have

Proposition 4.5: Assume (A, \leq) is a well-ordered set. Then for any tree T on A,

T is well-founded \iff \leq_{KB} restricted to *T* is a well-ordering.

Proof. Suppose T is not well-founded. Let $\alpha \in [T]$. Then $\alpha \upharpoonright_0, \alpha \upharpoonright_1, \ldots$ is an infinite descending sequence with respect to \leq_{KB} .

Conversely, suppose $\sigma_0 >_{KB} \sigma_1 >_{KB} \dots$ is an infinite descending sequence on T. Then $\sigma_1(0) \ge \sigma_2(0) \ge \dots$ as a sequence in A. Since A is well-ordered, this

sequence must eventually be constant, say $\sigma_n(0)=a_0$ for all $n\geq n_0$. Since the σ_n are descending, by the definition of $\leq_{\rm KB}$ it follows that $|\sigma_n|\geq 2$ for $n>n_0$. Hence we can consider the sequence $\sigma_{n_0+1}(1)\geq \sigma_{n_0+2}(1)\geq \ldots$ in A. Again, this must be constant $=a_1$ eventually. Inductively, we obtain a sequence $\alpha=(a_0,a_1,a_2,\ldots)\in [T]$, i.e. T is not well-founded. \square

Note however that the order type of a well-founded tree under \leq_{KB} is not the same as its rank $\rho(T)$.

Of course we can also define an ordering on $A^{<\mathbb{N}}$ via an injective mapping from $A^{<\mathbb{N}}$ to some linearly ordered set A. We will use this repeatedly for the case $A = \mathbb{N}$ and $A = \{0, 1\}$.

For $A = \mathbb{N}$, we can use the standard coding mapping

$$\pi:(a_0,a_1,\ldots,a_n)\mapsto p_0^{a_0+1}p_1^{a_1}\cdots p_n^{a_n},$$

where p_k is the kth prime number. This embeds $\mathbb{N}^{<\mathbb{N}}$ into \mathbb{N} , and we can well-order $\mathbb{N}^{<\mathbb{N}}$ by letting $\sigma < \tau$ if and only if $\pi(\sigma) < \pi(\tau)$.

For $A = \{0, 1\}$ we set

$$\pi:(b_0,b_1,\ldots,b_n)\mapsto \sum_{i=0}^n 2^{b_i}.$$

These two embedding allows us henceforth to see *trees as subsets of the natural numbers*. If we optimize the coding suitably, we can make it onto, and henceforth also assume that every subset of \mathbb{N} codes a tree (on $\{0,1\}$ or \mathbb{N} , depending on the circumstances). This will be an important component in exploring the relation between *topological and arithmetical complexity*.

Trees and closed sets

Let *A* be a set with the discrete topology. Consider $A^{\mathbb{N}}$ with the product topology defined in Lecture 2.

Proposition 4.6: A set $F \subseteq A^{\mathbb{N}}$ is closed if and only if there exists a tree T on A such that $F = \lceil T \rceil$.

Proof. Suppose *F* is closed. Let

$$T_F = \{ \sigma \in A^{\leq \mathbb{N}} : \sigma \subset \alpha \text{ for some } \alpha \in F \}.$$

Then clearly $F \subset [T_F]$. Suppose $\alpha \in [T_F]$. This means for any $n, \alpha \upharpoonright_n \in T_F$, which implies that there exists $\beta_n \in F$ such that $\alpha_n \subset \beta_n$. The sequence (β_n) converges to α , and since F is closed, $\alpha \in F$.

For the other direction, suppose F = [T]. Let $\alpha \in A^{\mathbb{N}} \setminus F$. Then there exists an n such that $\alpha \upharpoonright_n \notin T$. Since a tree is closed under prefixes, since implies that no extension of $\alpha \upharpoonright_n$ can be in T. This in turn implies $N_{\alpha \upharpoonright_n} \subseteq A^{\mathbb{N}} \setminus F$, and hence $A^{\mathbb{N}} \setminus F$ is open.

Trees and continuous mappings

Let $f:A^{\mathbb{N}}\to A^{\mathbb{N}}$ be continuous. We define a mapping $\varphi:A^{<\mathbb{N}}\to A^{<\mathbb{N}}$ by setting

$$\varphi(\sigma)$$
 = the longest τ such that $N_{\sigma} \subseteq f^{-1}(N_{\tau})$.

This mapping has the following properties:

- (1) It is monotone, i.e. $\sigma \subseteq \tau$ implies $\varphi(\sigma) \subseteq \varphi(\tau)$.
- (2) For any $\alpha \in A^{\mathbb{N}}$ we have $\lim_n |\varphi(\alpha \upharpoonright_n)| = \infty$. This follows directly from the continuity of f: For any neighborhood N_{τ} of $f(\alpha)$ there exists a neighborhood N_{σ} of α such that $f(N_{\sigma}) \subseteq N_{\tau}$. But τ has to be of the form $\tau = f(\alpha) \upharpoonright_m$, and σ of the form $\alpha \upharpoonright_n$. Hence for any m there must exist an n such that $\varphi(\alpha \upharpoonright_n) \supseteq f(\alpha) \upharpoonright_m$.

On the other hand, if a function $\varphi:A^{<\mathbb{N}}\to A^{<\mathbb{N}}$ satisfies (1) and (2), it induces a function $\varphi^*:A^{\mathbb{N}}\to A^{\mathbb{N}}$ by letting

$$\varphi^*(\alpha) = \lim_n \varphi(\alpha \upharpoonright_n) = \text{ the unique sequence extending all } \varphi(\alpha \upharpoonright_n).$$

This φ^* is indeed continuous: The preimage of N_{τ} under φ^* is given by

$$(\varphi^*)^{-1}(N_\tau) = \bigcup \{N_\sigma : \varphi(\sigma) \supseteq \tau\},$$

which is an open set.

We have shown

Proposition 4.7: A mapping $f: A^{\mathbb{N}} \to A^{\mathbb{N}}$ is continuous if and only if there exists a mapping φ satisfying (1) and (2) such that $f = \varphi^*$.

Again, note that we can completely describe a topological concept, continuity, through a relation between finite strings.