Cálculo del p-valor

En lo que sigue ilustraremos el cálculo del p-valor en tres situaciones típicas. Supongamos que tenemos una muestra aleatoria simple (X_1, X_2, \dots, X_n) de una población normal (varianza desconocida) y queremos realizar uno de los siguientes contrastes:

A	В	С
$H_0: \mu = \mu_0$	$H_0: \mu \leq \mu_0$	$H_0: \mu \geq \mu_0$
$H_1: \mu \neq \mu_0$	$H_1: \mu > \mu_0$	$H_1: \mu < \mu_0$

Si bien las regiones de rechazo en estos contrastes son diferentes, el estadístico de contraste, t_c , es el mismo: $t_c = \frac{\bar{x} - \mu_0}{\frac{s}{\sqrt{n}}}$ y sabemos que t_c bajo la hipótesis nula distribuye como una t_{n-1} . El p-valor en cada uno de los contrastes anteriores se obtiene de:

A	В	С
$\Pr\{ t_{n-1} > t_c \}$	$\Pr\left\{t_{n-1} > t_c\right\}$	$\Pr\left\{t_{n-1} < t_c\right\}$

Ejemplo: Supongamos que tenemos la siguiente muestra $x_1 = 1,5, x_2 = 2,0, x_3 = 2,5$ y queremos calcular el p-valor en el contraste: $\begin{cases} H_0: \mu=1,75 \\ H_1: \mu\neq 1,75 \end{cases}$ Tenemos que $\bar{x}=2,0,\ s=0,5,$ de manera que el estadístico de contraste es $t_c=\frac{\bar{x}-\mu_0}{\frac{s}{\sqrt{n}}}=$

 $\frac{2,0-1,75}{\frac{0.5}{\sqrt{3}}} \approx 0.8660$, entonces:

$$p - \text{valor} = \Pr\{|t_2| > 0.8660\}$$

Para calcular la probabilidad anterior, es conveniente dividirla en las siguientes probabilidades: $\Pr\{t_2 > 0.8660\} + \Pr\{t_2 < -0.8660\}$. Notemos que por la simetría de la distribución t de Student ambas probabilidades son iguales, es decir:

$$p - \text{valor} = 2 \Pr\{t_2 > 0.8660\} = 2(1 - \Pr\{t_2 < 0.8660\}).$$

En la tabla de la t-student, en la fila que corresponde a 2 grados de libertad veremos que podemos acotar 0,8660 por 0,816 y 1,061. A 0,816 le corresponde una probabilidad igual a 0.75 y a 1.061 le corresponde 0.8. Por tanto $0.75 < \Pr\{t_2 < 0.8660\} < 0.8$ y finalmente, 0.4 = 2 * (1 - 0.8)

Podemos realizar el cálculo exacto del *p*-valor, utilizando algún programa o usando alguna aplicación para encontrar el área de la distribución t-Student con 2 grados de libertad a la izquierda de 0,8660:

$$P-Valor = 0.477767$$

por lo tanto no se rechaza la hipótesis nula con alfa igual a 0,05.