Killer Yeast Vs. Sensitive Yeast

Evan Cummings - Intizor Aliyorov - Malachi J. Cryder

MATH 445 - Statistical, Dynamical, and Computational Modeling

December 9, 2013

Experiment

An experiment was conducted where an amount of yeast was grown in *chemostat* and allowed to come to equilibrium. The steady-state *optical density* of the yeast were recorded for a given flow rate F.

Chemostat

Optical Density

Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings.

ODE

The differential equation we may use for modeling the growth of yeast is the same as that used for bacterial growth in a chemostat:

$$\begin{split} \frac{dN}{dt} &= k(C)N - \frac{FN}{V}, \\ \frac{dC}{dt} &= -\alpha k(C)N - \frac{FC}{V} + \frac{FC_0}{V}, \end{split}$$

with initial conditions $C(0) = C_i$ and $N(0) = N_i$, N is the unitless optical density of yeast in the chamber, C is the unitless optical density of nutrient in the chamber, C_0 is the unitless optical density of nutrient in the reservoir, F is the in/out volume flow rate with units volume/time, V is the volume of the chamber, α is a unitless inverse of the yield constant, and k(C) is the reproduction rate for yeast in units 1/time.

k(C) and its Simplification

k(C) is the reproduction rate for yeast in units 1/time with possible formula chosen such that $\lim_{C\to\infty} = k_{max}$, and k_{max} represents the maximum possible reproduction rate:

$$k(C) = \frac{k_{max}C}{C_n + C}.$$

where C_n is chosen such that $k(C_n) = k_{max}/2$. Because the concentration in the tank C(t) is related to the concentration in the reservoir by $C(t) \leq C_0$, C_0 may be chosen sufficiently small such that

$$k(C) = \frac{k_{max}C}{C_n + C} \approx \frac{k_{max}C}{C_n} = KC,$$

with K in units 1/time.

New ODE

The equations we need to solve then become

$$\frac{dN}{dt} = KCN - \frac{FN}{V},\tag{1}$$

$$\frac{dN}{dt} = KCN - \frac{FN}{V}, \qquad (1)$$

$$\frac{dC}{dt} = -\alpha KCN - \frac{FC}{V} + \frac{FC_0}{V}. \qquad (2)$$

Steady States

The quantitative measurement for fitness is a unitless measurement of optical density at steady state (N) at a given flow rate (F) in volumes/hr. In order to find the steady states, we have to find the intersections of the null-clines at equilibrium points (\bar{N}, \bar{C}) , i.e. $dN(\bar{N}, \bar{C})/dt = 0$ and $dC(\bar{N}, \bar{C})/dt = 0$:

$dN(\bar{N}, \bar{C})/dt = 0$

$$\begin{split} \frac{dN(\bar{N},\bar{C})}{dt} &= K\bar{C}\bar{N} - \frac{F\bar{N}}{V}, \\ &= \bar{N}\left(K\bar{C} - \frac{F}{V}\right) = 0, \end{split}$$

which is zero for $\bar{N} = 0$ or $K\bar{C} = F/V$.

$$dC(\bar{N}, \bar{C})/dt = 0$$

$$\frac{dC(\bar{N},\bar{C})}{dt} = -\alpha K\bar{C}\bar{N} - \frac{F\bar{C}}{V} + \frac{FC_0}{V} = 0,$$

which is zero for $\alpha K \bar{C} \bar{N} + \frac{F\bar{C}}{V} = \frac{FC_0}{V}$.

Determination of (\bar{N}, \bar{C})

In order to evaluate these null-clines, we need to evaluate the non-trivial cases, here for $\dot{N}=0$,

$$K\bar{C} = \frac{F}{V} \implies \bar{C} = \frac{F}{VK}.$$
 (3)

Likewise, for $\dot{C} = 0$,

$$\alpha K \bar{C} \bar{N} + \frac{F \bar{C}}{V} = \frac{F C_0}{V}$$

$$\implies \bar{N} = \frac{F C_0}{V \alpha K \bar{C}} - \frac{F}{V \alpha K} = \frac{F}{V \alpha K} \left(\frac{C_0}{\bar{C}} - 1\right). \tag{4}$$

This intersects the $\bar{N}=0$ nullcline at $\frac{F}{V\alpha K}=0$ or $\frac{C_0}{\bar{C}}=1$. However, because F is never 0, we can disregard the first equation, and we know that the only trivial steady-state is located at $\bar{N}=0$, $\bar{C}=C_0$.

Determination of (\bar{N}, \bar{C})

Figure: The $\dot{C}=0$ nullcline (dashed red) intersecting with the $\dot{N}=0$ nullcline (dashed black). The trivial and non-trivial steady-states $(0,C_0)$ and (\bar{N},\bar{C}) are shown as red dots.

By placing Eq. (3) inside Eq. (4), we can find the non-trivial steady-state, the intersection of null-clines:

$$\bar{N}(\bar{C}) = \frac{FC_0}{V\alpha K\bar{C}} - \frac{F}{V\alpha K}$$

$$= \frac{FC_0}{V\alpha K\frac{F}{VK}} - \frac{F}{V\alpha K}$$

$$= \frac{C_0}{\alpha} - \frac{F}{V\alpha K} = \frac{1}{\alpha} \left(C_0 - \frac{F}{VK} \right). \quad (5)$$

The unknown parameters in Eq (5) are α and K. We can find these parameters by fitting Eq (5) to the data by non-linear least squares fitting \bar{N}_i at F_i for $i=1,\ldots,n$, where n is the number of observations.

The Data

$$C_0 = 0.02$$

Eq. (5) Fit for Sensitive Yeast

Figure: Sensitive yeast S steady-state best-fit line using Eq. (5).

	Estimates	SE	CI
α_S	0.0325	0.0024	(0.0255, 0.0399)
K_S	20.1818	1.0802	(16.9281, 23.4356)

The results on the left show that there may be a better fit to the data than Eq. (5). Notice that elimination of the last few data points corresponding to high F may be removed; this would reduce the standard error and hence provide a better estimate for α_L and K_L .

Eq. (5) Fit for Killer Yeast

Figure: Killer yeast L steady-state best-fit line using Eq. (5).

	Estimates	SE	CI
α_L	0.1124	0.0053	(0.0969, 0.1279)
K_L	19.0288	0.6367	(17.1526, 20.905)

The best-fit line on the left shows that steady-state data follows a fairly linear relationship with flow, and as such we can be confident our estimates for α_L and K_L are correct.

What-If Scenario

Now that we have obtained estimates of the parameters for both the killer yeast L and sensitive yeast S, (α_L , α_S and K_L , K_S respectively), we model a "what if" scenario whereby we place both species of yeast, sensitive and killer, into one chemostat. The differential equations we use to solve this three-species model is

$$\frac{dL}{dt} = K_L C L - \frac{FL}{V},\tag{6}$$

$$\frac{dS}{dt} = K_S C S - \frac{FS}{V} - \beta S L,\tag{7}$$

$$\frac{dC}{dt} = -\alpha_L K_L C L - \alpha_S K_S C S - \frac{FC}{V} + \frac{FC_0}{V}.$$
 (8)

What-if Scenario

We can run the dynamic model (6), (7), and (8) to equilibrium. By letting β range from 0 to 0.5 (in units 1/time), and F range from 0 to 0.5 (in units volume/time), we can run the model for each β and F to determine the regions in the β , F plane where sensitive yeast S overtakes the killer yeast L and vice versa.

What-if Scenario Results

Figure: 250×250 steady-state optical density solution for killer yeast (left), sensitive yeast (middle) and nutrient (right) for a total run time of 40,000 hours. Equations (6), (7), and (8) were solved with the Dormand-Prince numerical integration algorithm with an absolute tolerance of 1e-6, relative tolerance of 1e-6, and timestep Δt of 500 hours. The timestep was kept high due to the $250 \times 250 = 62,500$ simulations required to complete the figure. In order to keep the total time to complete the simulation minimized, parallel processing was required.

What-if Scenario Results

Figure: 3D solution depicting killer yeast (red) and sensitive yeast (black) steady-states.

Notice that as β increases the killer yeast dominates and sensitive yeast eventually dies off, while as F increases the sensitive yeast dominates and the killer yeast eventually dies out. The sensitive yeast are flushed from the container at around F=0.4 volumes/hr.

Questions?

