(08) Graphs Part 2: Topological Sorting

Video (12 mins): https://youtu.be/JfRAzuqyHZ0

Precedence or Dependency Relationship

- → Directed graph can be used to model dependency relationship
 - directed edges indicate the direction of dependency
 - A-to-B edge means B depends on A
- ★ Examples of dependency relationships:
 - Course prerequisites
 - Task scheduling
 - Causal or temporal relationships

- ◆ Cycles in such settings might be problematic:
 - Say IS200 is prerequisite for IS201, and IS201 is prerequisite for IS103, and IS103 is prerequisite for IS200.

Directed "Acyclic" Graph (DAG)

Adjacency List

A DAG does not contain any cycle

Topological Ordering

- → A sequence or permutation of all vertices in a graph G, such that all edges "point forward".
- → For every edge in G, the source vertex appears before the target vertex in a topological ordering.
- ◆ Any DAG always contains at least one topological ordering.
- Some DAGs contain more than one.
- Application:
 - Finding a course schedule that satisfies the prerequisite requirements.
 - Scheduling tasks such that when a task is ready to execute, all the tasks it depends on have already completed.
 - Finding a chain of cause and effect that may lead to a particular event.

Example: Topological Ordering

Figure 14-14 A DAG

Figure 14-15

The graph in Figure 14-14 arranged according to the topological orders:

- a) a, g, d, b, e, c, f and
- b) a, b, g, d, e, f, c

SINGAPORE MANAGEMENT

Prichard and Carrano, "Data Abstraction & Problem Solving with Java", 3rd edition SMU Pearson.

Topological Sort

- → How to find a topological ordering of vertices in a DAG?
- ◆ For any path in the graph, the vertices will appear in the same order as in any valid topological ordering.
 - There may be some other interleaving vertices.
- → The traversal that explores the graph by following paths is DFS.
- ◆ In DFS traversal, by the time the recursive call on the current vertex v is completed, any vertex reachable from v through some path will already be visited.
 - All other reachable vertices should follow v in a topological ordering.
- ◆ Strategy: add v into a stack as the recursive call completes.

Topological Sort Algorithm

```
def topsort(graph):
    s = Stack()
    for i in range(len(graph.vertices)):
        vi = graph.vertices[i]
        if not vi.isVisited():
            topsort_dfs(vi, s)
    return s
```

Run DFS from every vertex to ensure that all vertices are included in a topological ordering.

Topological Sort Algorithm

Add vertex into a stack at the end of DFS traversal on this vertex.

- Vertices at the end of a path will be pushed first into the stack.
- When a vertex is pushed into the stack, all vertices depending on it are already in the stack.

Example: Topological Sort

Adjacency List

Example: Topological Sort

Start from A

TO Stack

Example: Topological Sort

TO Stack

School of **Information Systems**

Confirming the Topological Order

Adjacency List

A B C
B C D E
C D
F
E D
F

Practice Topological Sort

Weighted Edges

- → Binary value (0 or 1) only allows us to model existence of edges.
 - Path length measured in terms of number of edges.
- ◆ Continuous values are more flexible to model varying "importance" of edges.
 - In a road network, edges may have other information such as the distance travelled, the time taken, the cost.
 - Path length measured in terms of aggregating the values (e.g., summation):
 - ► Total distance travelled.
 - ► Total time taken.
 - Total cost.

Weighted Graph

Adjacency List

Α	(B, 0.9)	(C, 0.1)	
В	(C, 0.3)	(D, 0.2)	(E, 0.5)
С	(D, 0.1)	(C, 0.1) (D, 0.2) (A, 0.9) (F, 0.8)	
D	(B, 0.2)	(F, 0.8)	
E	(D, 1)		
F			

Adjacency Matrix

	Α	В	С	D	Ε	F
Α	∞	0.9	0.1	∞	∞	∞
В	∞	∞	0.3	∞ 0.2 0.1	0.5	∞
С	0.9	∞	∞	0.1	∞	∞
D	∞	0.2	∞	∞	∞	8.0
E	∞	∞	∞	1	∞	∞
F	∞	∞	∞	∞	مَکِرَ	SMU SINGAPORE MANAGEMENT UNIVERSITY

Shortest Path

- → In a weighted graph, assuming non-negative weights of edges.
- → Find the shortest path from a vertex v1 to another vertex v2.
 - "Path length" is a sum of the edge weights in the path.
- ◆ In an unweighted graph, the shortest path has fewest number of edges.
- ◆ In a weighted graph, the shortest path may not have the fewest edges, but have the lowest aggregate weight.
 - (A, B) has length 1, but weight of 0.9
 - ♦ (A, C, D, B) has length 3, but weight of 0.4

shortest_path(graph, start, end)

Returns a tuple in the format of (distance, sequence)

Example: Routing

→ Finding shortest (or least-cost) path:

- Very useful in logistic planning, transportation, network communication, etc.
- ◆ Any problem with state space graph can be solved by routing (shortest path from initial state to goal).

Summary

- → Graphs are data structures that can represent network relationships
- → Edge direction:
 - Directed graph: a graph may have directed edges
 - Undirected graph: a graph with undirected (bidirectional) edges
- → Edge weights:
 - Binary: edges are either present or absent
 - Weighted: edges can have continuous values as weights
- → Traversal:
 - depth-first search (DFS)
 - breadth-first search (BFS)
- → Algorithm:
 - Topological sorting to find topological ordering in a DAG

Road Map

Algorithm Design and Analysis

(Weeks 1 - 5)

Fundamental Data Structures

(Weeks 6 - 9)

Computational Intractability and Heuristic Reasoning

Next week → + Week 10: Heuristics

→ Week 11: Limits of Computation

→ Week 13: Review

The following slides (DFS with stacks) are not covered in the video, and will be covered in class.

DFS (with Stack)

- ★ List of candidate nodes stored in a stack: last-in-first-out (LIFO).
 - ❖ Get operation returns the newest item.

→ Always expand the deepest node.

DFS (with Stack)

```
def dfs(vertex):
  s = Stack()
  s.push(vertex)
  while s.count() > 0:
    v = s.pop()
    if not v.isVisited():
      visit(v)
    for i in range(len(v.adjList)):
      n = v.adjList[len(v.adjList) - 1 - i]
      if not n.isVisited():
         s.push(n)
                                     To pop according to alphabetic order.
```


Example: DFS (with Stack)

Adjacency List

Α	В	С	
В	С	D	Ε
С	D	Α	
D	В	F	
Ε	D		
F			

step	popped	visited	pushed	stack: [BT]
0			А	[A]
1	А	А	СВ	[C B]
2	В	В	E D C	[C E D C]
3	С	С	D	[C E D D]
4	D	D	F	[C E D F]
5	F	F		[C E D]
6	D			[C E]
7	E	E		[C]
8	С			

Practice DFS (with Stack)

step	popped	visited	pushed	stack
0			S	[S]
1				
2				
3				
4				
5				
6				
7				
8				

Complexity of DFS/BFS

