

Transformer

- With self attention as feature extractor

- Attention & Self Attention
- Transformers
- Classification using BERT(Demo Code)
- Self Attention(Demo Code)

Attention and Self Attention

Attention: Between input and output elements

Self Attention: Within input elements

Self Attention

- Self attention is the relative degree of attendance each token should ensure to the fellow tokens of the sentence. It can be thought of as a table that enlists each token both on row and column and (i, j) th cell accounts for the relative degree of attendance ith row should ensure to the jth column.
- Self-attention is a new spin on the attention technique. Instead of looking at prior hidden vectors when considering a word embedding, selfattention is a weighted combination of all other word embeddings including those that appear later in the sentence.

https://arxiv.org/abs/1706.037

Can be either input or a hidden layer

Find the relevant vectors in a sequence

 $\alpha'_{1,i} = exp(\alpha_{1,i}) / \sum_{j} exp(\alpha_{1,j})$ $\alpha'_{1,3} \qquad \alpha'_{1,4}$

 $\mathbf{k^1} = W^k \mathbf{a^1}$

Self-attention Extract information based $b^1 = \sum \alpha'_{1,i} v^i$

Can be either input or a hidden layer

$$q^{i} = W^{q} a^{i} \qquad q^{1} q^{2} q^{3} q^{4} = W^{q} a^{1} a^{2} a^{3} a^{4}$$

$$Q$$

$$q^{-} w^{i} a \qquad q^{-} q^{-} q^{-} q^{-} = w^{i} \qquad a^{+} a^{-} a^{-} a^{-} a^{-}$$

$$k^{i} = W^{k} a^{i} \qquad k^{1} k^{2} k^{3} k^{4} = W^{k} \qquad a^{1} a^{2} a^{3} a^{4}$$

$$K \qquad \qquad I$$

$$v^{i} = W^{v} a^{i} \qquad v^{1} v^{2} v^{3} v^{4} = W^{v} \qquad a^{1} a^{2} a^{3} a^{4}$$

$$V \qquad \qquad I$$

$$q^{1} \qquad k^{1} \qquad v^{1} \qquad q^{2} \qquad k^{2} \qquad v^{2} \qquad q^{3} \qquad k^{3} \qquad v^{3} \qquad q^{4} \qquad k^{4} \qquad v^{4}$$

$$a^{1} \qquad a^{2} \qquad a^{3} \qquad a^{3} \qquad a^{4} \qquad a^{4}$$

$$\alpha_{1,1} = \mathbf{k^1} \mathbf{q^1} \quad \alpha_{1,2} = \mathbf{k^2} \mathbf{q^1}$$

$$\alpha_{1,3} = \mathbf{k^3} \mathbf{q^1} \quad \alpha_{1,4} = \mathbf{k^4} \mathbf{q^1}$$

<u>Self-attention</u>

 $\alpha_{1,1} = \mathbf{k^1} \quad \mathbf{q^1} \quad \alpha_{1,2} = \mathbf{k^2} \quad \mathbf{q^1}$ $\alpha_{1,3} = \mathbf{k^3} \quad \mathbf{q^1} \quad \alpha_{1,4} = \mathbf{k^4} \quad \mathbf{q^1}$

 $\alpha_{1,1}$

 $\alpha_{1,2}$

 $\alpha_{1,3}$

 k^1

 k^2

 k^3

Multi-head Self-attention Different types of relevance

20 CHINA

<u>Multi-head Self-attention</u> Different types of relevance

21 CHIN

Multi-head Self-attention Different types of relevance

$$\begin{vmatrix} b^i \\ b^{i,1} \end{vmatrix} = \begin{bmatrix} b^{i,1} \\ b^{i,2} \end{bmatrix}$$

Self-attention v.s. CNN

On the Relationship between Self-Attention and Convolutional Layers

https://arxiv.org/abs/1911.03584

Transformer

- Transformer is a model architecture for the machine translation task which uses attention to outperform the previous SOTA, sequence-to-sequence models with attention, on many tasks.
- Transformers are a sequence-to-sequence model architecture. The difference is
 in their use of an improved form of attention known as self-attention, which in
 addition to its expressive power has the computational advantage that it's
 expressible as a matrix operation.
- The core architecture consists of a stack of encoders fully connected to a stack of decoders. Each encoder consists of two blocks: a self-attention component, and a feed forward network. Each decoder consists of three blocks: a self-attention component, an encoder-decoder attention component, and a feed forward component.

RENMIN UNIVERSITY OF CHINA

Transformer

Sequence-to-sequence (Seq2seq)

Input a sequence, output a sequence

The output length is determined by model.

Seq2seq

Sequence to Sequence Learning with Neural Networks

https://arxiv.org/abs/1409.3215

Transformer

https://arxiv.org/abs/1706.03762

Encoder

Encoder

Transformer's Encoder

Decoder

Decoder

Autoregressive (AT)

START (special token)

Decoder

Encoder

人工智能)

Autoregressive

Output

Self-attention → Masked Self-attention

Can be either input or a middle hidden layer

<u>Self-attention</u> → <u>Masked Self-attention</u>

Why masked? Consider how does decoder work

Encoder-Decoder

Classify Text Data Using BERT

- This example shows how to classify text data using a pretrained BERT model as a feature extractor.
- The simplest use of a pretrained BERT model is to use it as a feature extractor. In particular, you can use the BERT model to convert documents to feature vectors which you can then use as input to train a deep learning classification network.
- This example shows how to use a pretrained BERT model to classify failure events given a data set of factory reports.

Load Pretrained BERT Model

 Load a pretrained BERT model using the |bert| function. The model consists of a tokenizer that encodes text as sequences of integers, and a structure of parameters.

mdl = bert

 View the BERT model tokenizer. The tokenizer encodes text as sequences of integers and holds the details of padding, start, separator and mask tokens.

tokenizer = mdl.Tokenizer

 Load the example data. The file |factoryReports.csv| contains factory reports, including a text description and categorical labels for each event.

```
filename = "factoryReports.csv";

data = readtable(filename, "TextType", "string");
```

head(data)

Description	Category	Urgency	Resolution	Cost	
"Items are occasionally getting stuck in the scanner spools."	"Mechanical Failure"	"Medium"	"Readjust Machine"	45	
"Loud rattling and banging sounds are coming from assembler pistons."	"Mechanical Failure"	"Medium"	"Readjust Machine"	35	
"There are cuts to the power when starting the plant."	"Electronic Failure"	"High"	"Full Replacement"	16200	
"Fried capacitors in the assembler."	"Electronic Failure"	"High"	"Replace Components"	352	
"Mixer tripped the fuses."	"Electronic Failure"	"Low"	"Add to Watch List"	55	
"Burst pipe in the constructing agent is spraying coolant."	"Leak"	"High"	"Replace Components"	371	
"A fuse is blown in the mixer."	"Electronic Failure"	"Low"	"Replace Components"	441	
"Things continue to tumble off of the belt."	"Mechanical Failure"	"Low"	"Readjust Machine"	38	

 The goal of this example is to classify events by the label in the |Category| column. To divide the data into classes, convert these labels to categorical.

data.Category = categorical(data.Category);

• View the number of classes.

```
classes = categories(data.Category);
numClasses = numel(classes)
```

% 4

{}	4x1 <u>cell</u>	
	1	
1	Electronic Failure	
2	Leak	
3	Mechanical Failure	
4	Software Failure	
		-

View the distribution of the classes in the data using a

histogram.

figure
histogram(data.Category);
xlabel("Class")
ylabel("Frequency")
title("Class Distribution")

 Encode the text data using the BERT model tokenizer using the |encode| function and add the tokens to the training data table.

data.Tokens = encode(tokenizer, data.Description);

480x6 table

	1	2	3	4	5	6
	Description	Category	Urgency	Resolution	Cost	Tokens
	"Items are occasionally getting st	Mechanica	"Medium"	"Readjust M	45	1x14 double
	"Loud rattling and banging soun	Mechanica	"Medium"	"Readjust M	35	1x14 double
	"There are cuts to the power whe	Electronic	"High"	"Full Replac	16200	1x13 double
	"Fried capacitors in the assemble	Electronic	"High"	"Replace Co	352	1x11 double
	"Mixer tripped the fuses."	Electronic	"Low"	"Add to Wat	55	[102,23229,21130,1997,19977,2016,1013,103]
	"Burst pipe in the constructing ag	Leak	"High"	"Replace Co	371	1x13 double
	"A fuse is blown in the mixer."	Electronic	"Low"	"Replace Co	441	[102,1038,19977,2004,10677,2000,1997,23229,1013,103]
ì	"Things continue to tumble off of	Mechanica	"Low"	"Readjust M	38	1x11 double
	"Falling items from the conveyor	Mechanica	"Low"	"Readjust M	41	[102,4635,5168,2014,1997,16637,2954,5584,1013,103]
0	"The scanner reel is split, it will so	Mechanica	"Medium"	"Replace Co	407	1x15 double
1	"Fuses are blown in the scanner."	Electronic	"High"	"Replace Co	445	[102,19977,2016,2025,10677,2000,1997,26222,1013,103]
2	"Shrill cry from the scanner comp	Electronic	"Low"	"Add to Wat	77	[102,28350,5391,2014,1997,26222,3275,1013,103]
3	"Sorter controller neglects to int	Software F	"Low"	"Update Fir	119	[102,4067,2122,11487,19047,2016,2001,8279,1013,103]
4	"Clunky sounds made by the sorti	Mechanica	"Low"	"Add to Wat	63	1x12 double

 Partition the data into a training partition and a held-out partition for validation and testing. Specify the holdout percentage to be 20%.

```
cvp = cvpartition(data.Category,"Holdout",0.2);
dataTrain = data(training(cvp),:); \% 384 \times 6
dataValidation = data(test(cvp),:); \% 96 \times 6
```

View the number of training and validation observations.
 numObservationsTrain = size(dataTrain,1) % 384
 numObservationsValidation = size(dataValidation,1) % 96

 Extract the text data, labels, and encoded BERT tokens from the partitioned tables.

```
textDataTrain = dataTrain.Description;
textDataValidation = dataValidation.Description;
```

```
TTrain = dataTrain.Category;
```

TValidation = dataValidation.Category;

tokensTrain = dataTrain.Tokens; tokensValidation = dataValidation.Tokens;

RENMIN UNIVERSITY OF CHINA

 To check that you have imported the data correctly, visualize the training text data using a word cloud.

figure
wordcloud(textDataTrain);
title("Training Data")

 To check that you have imported the data correctly, visualize the training text data using a word cloud.

figure
wordcloud(textDataTrain);
title("Training Data")

 Mini-batch queues require a single datastore that outputs both the predictors and responses. Create array datastores containing the training BERT tokens and labels and combine them using the |combine| function.

```
dsXTrain = arrayDatastore(tokensTrain,"OutputType","same");
dsTTrain = arrayDatastore(TTrain);
cdsTrain = combine(dsXTrain,dsTTrain);
```

cdsValidation = combine(dsXValidation,dsTValidation);

 Create a combined datastore for the validation data using the same steps. dsXValidation = arrayDatastore(tokensValidation,"OutputType","same"); dsTValidation = arrayDatastore(TValidation);

 Mini-batch queues require a single datastore that outputs both the predictors and responses. Create array datastores containing the training BERT tokens and labels and combine them using the |combine| function.

```
dsXTrain = arrayDatastore(tokensTrain,"OutputType","same");
dsTTrain = arrayDatastore(TTrain);
cdsTrain = combine(dsXTrain,dsTTrain);
```

cdsValidation = combine(dsXValidation,dsTValidation);

 Create a combined datastore for the validation data using the same steps. dsXValidation = arrayDatastore(tokensValidation,"OutputType","same"); dsTValidation = arrayDatastore(TValidation);

• Create a mini-batch queue for the training data. Specify a mini-batch size of 32 and preprocess the mini-batches using | preprocess Predictors |.

```
miniBatchSize = 32;
paddingValue = mdl.Tokenizer.PaddingCode; % 1
maxSequenceLength = mdl.Parameters.Hyperparameters.NumContext; % 512
mbgTrain = minibatchqueue(cdsTrain,1,... % output -> 1
  "MiniBatchSize", miniBatchSize, ...
  "MiniBatchFcn",@(X) preprocessPredictors(X,paddingValue,maxSequenceLength));
mbqValidation = minibatchqueue(cdsValidation,1,...
  "MiniBatchSize", miniBatchSize, ... % X -> 1 \times SequenceLength \times BatchSize (1 \times 15 \times 32)
  "MiniBatchFcn",@(X) preprocessPredictors(X,paddingValue,maxSequenceLength));
```


 Convert the training sequences of BERT model tokens to a |N|-by-|embeddingDimension| array of feature vectors, where |N| is the number of training observations and |embeddingDimension| is the dimension of the BERT embedding.

```
featuresTrain = [];
reset(mbqTrain);
while hasdata(mbgTrain)
  X = next(mbqTrain); % 1 \times 15 \times 32 dlarray
  features = bertEmbed(X,mdl.Parameters); \% 768\times32 dlarray
  featuresTrain = [featuresTrain gather(extractdata(features))];
end
featuresTrain = featuresTrain.'; % 384 × 768 dlarray
```


Convert the validation data to feature vectors using the same steps.

```
featuresValidation = [];
reset(mbqValidation);
while hasdata(mbqValidation)
  X = next(mbqValidation); % 1 \times 14 \times 32 dlarray
  features = bertEmbed(X,mdl.Parameters); \% 768\times32 dlarray
  featuresValidation = cat(2,featuresValidation,gather(extractdata(features)));
end
features Validation = features Validation.'; % 96 × 768 dlarray
```

Define Deep Learning Network


```
numFeatures = mdl.Parameters.Hyperparameters.HiddenSize; % 768
layers = [
  featureInputLayer(numFeatures)
  fullyConnectedLayer(numClasses)
  softmaxLayer
  classificationLayer];
```

Specify Training Options

Specify the training options using the |trainingOptions| function. Train
with a mini-batch size of 64. Shuffle the data every epoch. Validate the
network using the validation data. Display the training progress in a plot
and suppress the verbose output.

```
opts = trainingOptions('adam',...

"MiniBatchSize",64,...

"ValidationData",{featuresValidation,dataValidation.Category},...

"Shuffle","every-epoch", ...

"Plots","training-progress", ...

"Verbose",0);
```

Train & Test Network

• Train the network using the |trainNetwork| function.

net = trainNetwork(featuresTrain,dataTrain.Category,layers,opts);

Make predictions using the validation data and display the results in a

confusion matrix.

YPredValidation = classify(net,featuresValidation); figure confusionchart(TValidation,YPredValidation)

Train & Test Network

Calculate the validation accuracy.

accuracy = mean(dataValidation.Category == YPredValidation) % 0.8125

Predict Using New Data

• Classify the event type of three new reports. Create a string array containing the new reports.

```
reportsNew = [ ...
```

"Coolant is pooling underneath sorter."

"Sorter blows fuses at start up."

"There are some very loud rattling sounds coming from the assembler."];

Tokenize the text data using the same steps as the training documents.

tokensNew = encode(tokenizer,reportsNew);

Predict Using New Data

 Pad the sequences of tokens to the same length using the |padsequences| function and pad using the tokenizer padding code.

```
XNew = padsequences(tokensNew,2,"PaddingValue",tokenizer.PaddingCode);
```

```
%1\times15\times3 double
```

Classify the new sequences using the trained model.

```
featuresNew = bertEmbed(XNew,mdl.Parameters)'; \% 3 \times 768 dlarray featuresNew = gather(extractdata(featuresNew)); \% 3 \times 768 single labelsNew = classify(net,featuresNew)
```

- % Leak
- % Electronic Failure
- % Mechanical Failure

Self Attention Function

```
function [A, present] = attention(X, past, weights, hyperParameters, nvp)
% attention Full Multi-head Attention
% [A, present] = attention(X, past, weights, hyperParameters) computes a
% multi-head attention block on X
% Inputs:
%
    Χ
              - A (numFeatures*numHeads)-by-numInputSubwords-by-numObs
              input array.
  Outputs:
%
              - A (numFeatures*numHeads)-by-numInputSubwords-by-numObs
     Α
%
              output array.
```

% Use a fully connected layer to generate queries, keys and values from the input.

C = transformer.layer.convolution1d(X, ... $\% 768 \times 15 \times 32$ dlarray

weights.attn_c_attn_w_0, ... $\% 2304 \times 768 \text{ dlarray}$ weights.attn_c_attn_b_0); $\% 2304 \times 1 \text{ dlarray}$

 $% 2304 \times 15 \times 32$ dlarray

% Split the results into Q (Query), K (Keys) and V (Values). splitSize = size(C,1)/3; % 768

Q = C(1:splitSize,:,:); % 768 \times 15 \times 32 dlarray

 $K = C(1:SpirtSize,:,:); % 700 \times 15 \times 32 \text{ diamay}$ $K = C((splitSize+1):(2*splitSize),:,:); % 768 \times 15 \times 32 \text{ dlarray}$

 $V = C((2*splitSize+1):(3*splitSize),:,:); % 768 \times 15 \times 32 dlarray$

% Split heads

Q = iSplitHeads(Q, splitSize, hyperParameters.NumHeads); $\% 64 \times 15 \times 12 \times 32$ dlarray K = iSplitHeads(K, splitSize, hyperParameters.NumHeads); $\% 64 \times 15 \times 12 \times 32$ dlarray

V = iSplitHeads(V, splitSize, hyperParameters.NumHeads); $\% 64 \times 15 \times 12 \times 32$ dlarray

$$\% 64 \times 15 \times 12 \times 32 \text{ dlarray}$$

```
A = iMergeHeads(A);

\% 768 \times 15 \times 32 \text{ dlarray}
```

```
A = transformer.layer.convolution1d( A, ... \% 768\times 15\times 32 dlarray weights.attn_c_proj_w_0, ... \% 768\times 768 dlarray weights.attn_c_proj_b_0); \% 768\times 1 dlarray end
```

% 768 \times 15 \times 32 dlarray

Multi-Head Self Attention Function

```
function A = multiheadAttention(Q, K, V,nvp)
% multiheadAttention Multi-head Attention
%
% A = multiheadAttention(Q, K, V) computes scaled dot product attention
% for multiple attention heads. The function computes the attention for multiple
% attention heads at once for efficiency. Q is a collection of query
% matrices, K is a collection of key matrices and V is a collection of
% value matrices. The output A is a collection of attention matrices.
```


% We compute attention weights by taking the product between Q and K

 $\%\ matrices.\ W\ is\ numAllSubWords-by-numInputSubWords-by-numHeads.\ Each$

% element of W is the dot product of a query vector from Q and a key vector % from K.

W = dImtimes(permute(K, [2 1 3 4]), Q); % 64 \times 15 \times 12 \times 32 dlarray

% $15 \times 15 \times 12 \times 32$ dlarray

% Divide by square root of d

W = W./sqrt(size(Q,1));

% Apply masking

W = transformer.layer.maskAttentionWeights(W,'CausalMask',nvp.CausalMask,'InputMask',nvp.InputMask); $\% 15 \times 15 \times 12 \times 32 \text{ dlarray}$

% Apply softmax

W = softmax(W, 'DataFormat', 'CTUB');

% $15 \times 15 \times 12 \times 32$ dlarray

% Apply dropout

W = transformer.layer.dropout(W,nvp.Dropout);

% We compute the attention by taking products between the attention weights

% W and V. A is numFeatures-by-numInputSubWords-by-numHeads. One

% interpretation of A is that it is the expected value of V according to

% the probability distribution given by W.

A = dImtimes(V, W); % V: $64 \times 15 \times 12 \times 32$ dlarray W: $15 \times 15 \times 12 \times 32$ dlarray

% $64 \times 15 \times 12 \times 32$ dlarray

end

