# Final Project (CoWorking Space in Los Angeles, CA)

# The Battle of the Neighborhoods - Week 2 By Oleksiy Lomakin

#### Table of contents

- 1. Business Problem
- 2. Description of the data
- 3. Methodology
- 4. Analysis
- 5. Results
- 6. Discussion
- 7. Conclusion

#### 1. Business Problem:

#### Looking for a place for a new COWORKING space in Los Angeles County, CA

The coworking industry is becoming a lucrative worldwide phenomenon, so now is the perfect time to break into the business. There needs to be a niche for a new collaborative workspace business, and thankfully there are plenty. Perhaps the area has a high demand for coworking spaces beyond coffee shops and libraries. Maybe the existing spaces in the area are too focused on one type of worker. On the other hand, maybe the other spaces are too broad.

We need to envision our target market's coworking environment. Should we consider a space in a premium facility for companies or an affordable solution for freelancers? Is our primary audience big business or small teams? Will our future facility integrate with the city's business environment?

#### 2. Description of the data:

- 1. Los Angeles Times Mapping Los Angeles County Neighborhoods
- 2. Foursqure City Guide
- 3. Census Tract Locations (LA)
- 4. Latlong.net

## 2.1 Los Angeles Times Mapping Los Angeles County Neighborhoods

This regional view is your portal to indvidual maps and statistics for 158 cities and unincorporated places and 114 neighborhoods within the city of Los Angeles. In addition, there are maps of 42 unincorporated areas that we have collapsed inside of adjacent cities. With this source we can analyze LA County Neighborhoods depending on their locations and population features such as average income, education, diversity, age e.t.c.

#### 2.2 Foursqure City Guide

We will need to work with Foursquare City Guide in order to get information regarding operating coworking spaces and nearby venues.

#### 2.3 Census Tract Locations (LA)

The Neighborhood Data for Social Change (NDSC) platform is a project of the USC Price Center for Social Innovation. NDSC is a free, publicly available online resource for civic actors to learn about their neighborhoods. The platform helps tell the stories of neighborhoods through maps, charts, data analysis, and storytelling; helping community stakeholders track measurable change, improve local policies and programs, and ultimately advocate for a better quality of life within their communities.

#### 2.4 Lat Long

We will use this saurce in case we need to get latitude and longitude of some geographical objects. Latlong.net is an online geographic tool that can be used to lookup latitude and longitude of a place, and get its coordinates on map. You can search for a place using a city's or town's name, as well as the name of special places, and the correct lat long coordinates will be shown at the bottom of the latitude longitude finder form. At that, the place you found will be displayed with the point marker centered on map. Also the gps coordinates will be displayed below the map.

#### 3. Methodology

In this project we will direct our efforts on detecting neighborhoods of Los Angeles County that have good conditions to open a new Coworking Space, particularly those with high number of currently operating ones.

In first step we have collected the required neighborhood data with features such as locations, population features, average income, diversity, age e.t.c. We will perform exploratory data analysis.

Second step in our analysis will be identifying currently operating Coworking Spaces (according to Foursquare categorization). We will use Folium maps to identify and analyze the Neighborhoods with Coworking Spaces information. We will try to find Correlations between neighborhood features.

In third step we will need data preparation Clustering for futere neighborhood segmentation. After, we will perform clustering using K-Means method with a certain number of clusters. Then, we will analyze the data based on cluster segmentation and compare it with the data of neighborhoods that have the highest number of currently operating Coworking Spaces.

In fourth step, by selecting important and meaningful information of features, we will narrow down the neighborhood list to only promising locations. We will be able evaluate our analysis by comparing promising location list the neighborhood list with currently operating Coworking Spaces.

## 4. Analysis

## Import csv file with basic features constracted in 'Data Collection.ipynb'

|   | NEIGHBORHOOD   | POPULATION PER SQMI | AVERAGE HOUSEHOLD SIZE | DIVERSITY INDEX | FOREIGN BORN POPULATION | MEDIAN INCOME | MEDIAN AGE |
|---|----------------|---------------------|------------------------|-----------------|-------------------------|---------------|------------|
| 0 | Koreatown      | 42611               | 2.7                    | 0.602           | 68.0                    | 30558.0       | 30.0       |
| 1 | Westlake       | 38214               | 3.0                    | 0.430           | 67.6                    | 26757.0       | 27.0       |
| 2 | East Hollywood | 31095               | 3.0                    | 0.578           | 66.5                    | 29927.0       | 31.0       |
| 3 | Pico-Union     | 25352               | 3.3                    | 0.264           | 64.6                    | 26424.0       | 27.0       |
| 4 | Maywood        | 23638               | 4.1                    | 0.069           | 55.2                    | 41203.0       | 23.0       |

# 4.3 Exploring the data

|       | POPULATION PER SQMI | AVERAGE HOUSEHOLD SIZE | DIVERSITY INDEX | FOREIGN BORN POPULATION | MEDIAN INCOME | MEDIAN AGE |
|-------|---------------------|------------------------|-----------------|-------------------------|---------------|------------|
| count | 265.000000          | 265.000000             | 265.000000      | 265.000000              | 265.000000    | 264.000000 |
| mean  | 7571.471698         | 2.972075               | 0.492234        | 31.817358               | 68647.022642  | 33.178030  |
| std   | 6925.987567         | 0.643715               | 0.160948        | 14.401015               | 31740.466505  | 5.942255   |
| min   | 2.000000            | 1.500000               | 0.065000        | 4.400000                | 15003.000000  | 21.000000  |
| 25%   | 1601.000000         | 2.500000               | 0.380000        | 20.300000               | 48518.000000  | 28.000000  |
| 50%   | 6459.000000         | 2.900000               | 0.526000        | 31.800000               | 63039.000000  | 33.500000  |
| 75%   | 11266.000000        | 3.400000               | 0.628000        | 42.400000               | 81279.000000  | 37.000000  |
| max   | 42611.000000        | 4.600000               | 0.755000        | 72.400000               | 207938.000000 | 48.000000  |

With info function we can see the types of values and NaNs

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 265 entries, 0 to 264
Data columns (total 7 columns):

NEIGHBORHOOD 265 non-null object
POPULATION PER SQMI 265 non-null int64
AVERAGE HOUSEHOLD SIZE 265 non-null float64
DIVERSITY INDEX 265 non-null float64
FOREIGN BORN POPULATION 265 non-null float64
MEDIAN INCOME 265 non-null float64
MEDIAN AGE 264 non-null float64

dtypes: float64(5), int64(1), object(1)

memory usage: 14.6+ KB

# 4.4 Searching Coworking Spaces in LA County with Foursquare

|   | name                     | categories         | address                   | СС | city            | country          | crossStreet                               | distance | formattedAddress                                        | labeledLatLngs                                 | lat       | Ing         | neighbo |
|---|--------------------------|--------------------|---------------------------|----|-----------------|------------------|-------------------------------------------|----------|---------------------------------------------------------|------------------------------------------------|-----------|-------------|---------|
| 0 | FlipWork<br>CoWorking    | Fair               | 448 S Hill<br>St          | US | Los<br>Angeles  | United<br>States | 5th St                                    | 781      | [448 S Hill St (5th<br>St), Los Angeles,<br>CA 90013    | [{'label': 'display', 'lat': 34.049073, 'lng': | 34.049073 | -118.251249 |         |
| 1 | Kleverdog<br>Coworking   | Coworking<br>Space | 418<br>Bamboo<br>Ln Ste A | US | Los<br>Angeles  | United<br>States | between Hill<br>St and<br>Broadway<br>Ave | 1640     | [418 Bamboo Ln<br>Ste A (between Hill<br>St and Broa    | [{'label': 'display', 'lat': 34.06600345686554 | 34.066003 | -118.237353 |         |
| 2 | Beach House<br>Coworking | Coworking<br>Space | 2219 Main<br>St           | US | Santa<br>Monica | United<br>States | NaN                                       | 23001    | [2219 Main St,<br>Santa Monica, CA<br>90405, United     | [{'label': 'display', 'lat': 34.005062, 'lng': | 34.005062 | -118.486420 | Ocea    |
| 3 | Coworking<br>Plus        | Coworking<br>Space | 2293 W<br>190th St        | US | Torrance        | United<br>States | Western                                   | 22661    | [2293 W 190th St<br>(Western),<br>Torrance, CA<br>90504 | [{'label': 'display', 'lat': 33.85869110821988 | 33.858691 | -118.319778 |         |
| 4 | Ofis<br>Coworking        | Coworking<br>Space | NaN                       | US | Los<br>Angeles  | United<br>States | NaN                                       | 18130    | [Los Angeles, CA,<br>United States]                     | [{'label': 'display', 'lat': 34.002665, 'lng': | 34.002665 | -118.430875 |         |
| 5 | LAUNCH<br>Coworking      | Coworking<br>Space | 3525<br>Eastham<br>Dr     | US | Culver<br>City  | United<br>States | NaN                                       | 12719    | [3525 Eastham Dr,<br>Culver City, CA<br>90232, Unite    | [{'label': 'display', 'lat': 34.025877, 'lng': | 34.025877 | -118.377853 |         |

Plotting Coworking Space locations on a map to visualize for better understanding.



Combining this information to a dataframe including columns: NEIGHBORHOOD and Number Of Coworking places

## 4.5 Analyzing Neighborhoods with Coworking Spaces information

Let's go back to our exploratory data analysis with the information. We need to add a new column to our dataset with the number of Coworking current operating locations in each neighborhood. We will set other values as zero.

#### 4.6 Correlations

Performing a dataframe with Features Correlations

|                            | Unnamed:<br>0 | POPULATION PER<br>SQMI | AVERAGE<br>HOUSEHOLD SIZE | DIVERSITY<br>INDEX | FOREIGN BORN POPULATION | MEDIAN<br>INCOME | MEDIAN<br>AGE | CW_N      |
|----------------------------|---------------|------------------------|---------------------------|--------------------|-------------------------|------------------|---------------|-----------|
| Unnamed: 0                 | 1.000000      | -0.941971              | 0.228393                  | 0.532824           | -0.188778               | -0.043282        | -0.074942     | -0.039431 |
| POPULATION PER SQMI        | -0.941971     | 1.000000               | -0.011151                 | -0.590618          | 0.060270                | 0.266449         | -0.083081     | 0.130123  |
| AVERAGE HOUSEHOLD SIZE     | 0.228393      | -0.011151              | 1.000000                  | -0.048903          | 0.243529                | 0.097772         | -0.395829     | -0.233369 |
| DIVERSITY INDEX            | 0.532824      | -0.590618              | -0.048903                 | 1.000000           | 0.181470                | -0.454514        | 0.430113      | 0.124096  |
| FOREIGN BORN<br>POPULATION | -0.188778     | 0.060270               | 0.243529                  | 0.181470           | 1.000000                | -0.874109        | 0.435546      | -0.127935 |
| MEDIAN INCOME              | -0.043282     | 0.266449               | 0.097772                  | -0.454514          | -0.874109               | 1.000000         | -0.585762     | 0.067016  |
| MEDIAN AGE                 | -0.074942     | -0.083081              | -0.395829                 | 0.430113           | 0.435546                | -0.585762        | 1.000000      | 0.412021  |
| CW_N                       | -0.039431     | 0.130123               | -0.233369                 | 0.124096           | -0.127935               | 0.067016         | 0.412021      | 1.000000  |

#### Features distribution visualization



## 4.7 Visualizing neighborhoods based on median income

Using the url in order to to get GEO information about the neighborhoods in LA County Generating a choropleth map using the NEIGHBORHOOD and MEDIAN INCOME information.



## 4.8 Clustering data preparation

What are the similar neighborhoods? Also, we add a column with numerical value with the number of Coworking places

|   | NN | MEDIAN INCOME | MEDIAN AGE | POPULATION PER SQMI | AVERAGE HOUSEHOLD SIZE | DIVERSITY INDEX | FOREIGN BORN POPULATION |
|---|----|---------------|------------|---------------------|------------------------|-----------------|-------------------------|
| 0 | 0  | 83983.0       | 37.0       | 166.0               | 3.0                    | 0.316           | 7.1                     |
| 1 | 1  | 29606.0       | 26.0       | 21848.0             | 3.2                    | 0.545           | 46.7                    |
| 2 | 2  | 117608.0      | 37.0       | 2495.0              | 3.0                    | 0.304           | 13.5                    |
| 3 | 3  | 106078.0      | 40.0       | 99.0                | 2.9                    | 0.282           | 4.4                     |
| 4 | 4  | 53224.0       | 35.0       | 11275.0             | 2.8                    | 0.631           | 50.8                    |

Preprocessing scaling. Checking how the dataframe looks

|   | NN | MEDIAN INCOME | MEDIAN AGE | POPULATION PER SQMI | AVERAGE HOUSEHOLD SIZE | DIVERSITY INDEX | FOREIGN BORN POPULATION |
|---|----|---------------|------------|---------------------|------------------------|-----------------|-------------------------|
| 0 | 0  | 0.479693      | 0.644407   | -1.067935           | 0.049670               | -1.095225       | -1.715863               |
| 1 | 1  | -1.239629     | -1.210258  | 2.074514            | 0.361884               | 0.327607        | 1.034063                |
| 2 | 2  | 1.542867      | 0.644407   | -0.730385           | 0.049670               | -1.169784       | -1.271431               |

# 4.8 Clustering data preparation

Let's perform clustering using K-Means method with number of clusters 3. Also, we will need to add a column with clusters labels to our dataset

Visualize clustering decomposition



## 4.9 Analyzing clusters

## Clusters median information

NN MEDIAN INCOME MEDIAN AGE POPULATION PER SQMI AVERAGE HOUSEHOLD SIZE DIVERSITY INDEX FOREIGN BORN POPULATION

| Clu | ster |            |               |           |              |          |          | 49        |
|-----|------|------------|---------------|-----------|--------------|----------|----------|-----------|
|     | 0    | 131.229730 | 43446.621622  | 26.283784 | 14130.378378 | 3.674324 | 0.393297 | 45.368919 |
|     | 1    | 131.173333 | 102893.200000 | 39.000000 | 2921.200000  | 2.500000 | 0.398000 | 17.333333 |
|     | 2    | 132.069565 | 62906.608696  | 33.817391 | 6298.747826  | 2.819130 | 0.617443 | 32.524348 |

## Visualizing clusters with pie plot.

# **Coworking Locations in Neighborhood Clusters**





# Plotting all clusters on the map



# Features distribution by clusters



# Plotting the Neighborhoods selected by Clusters and key features



#### 5. Results

Here is the list of promising locations in Los Angeles County for a new Coworking Space. Some of them already have currently operating collaborative work space businesses, some of them not. The similarity of these neighborhoods features is high. The list has been narrowed down to top 10 promising locations.

|   | NEIGHBORHOOD   | POPULATION PER SQMI | AVERAGE HOUSEHOLD SIZE | DIVERSITY INDEX | FOREIGN BORN POPULATION |
|---|----------------|---------------------|------------------------|-----------------|-------------------------|
| 0 | Westwood       | 13036.0             | 2.0                    | 0.543           | 31.3                    |
| 1 | Venice         | 11891.0             | 1.9                    | 0.534           | 22.3                    |
| 2 | Carthay        | 9642.0              | 2.1                    | 0.615           | 25.1                    |
| 3 | San Pasqual    | 8036.0              | 2.3                    | 0.601           | 32.6                    |
| 4 | Culver City    | 7475.0              | 2.3                    | 0.681           | 26.6                    |
| 5 | Rancho Park    | 7169.0              | 2.2                    | 0.598           | 28.5                    |
| 6 | South Pasadena | 7114.0              | 2.3                    | 0.651           | 24.4                    |
| 7 | Torrance       | 6701.0              | 2.5                    | 0.628           | 27.6                    |
| 8 | Burbank        | 5785.0              | 2.4                    | 0.581           | 31.1                    |
|   |                |                     |                        |                 |                         |

The main neighborhoods features are: High Median Income, Average household size, Foreign Born Population, Diversity, and Density. The Age Median value and Population Density will require extra attention.

#### 6. Discussion

Our analysis shows that some features of Los Angeles County Neighborhoods are important and meaningful and some can cause a false positive correlations. We discovered that High Median Income neighborhood feature should be one of the first to be considered. According to over observations the value should be higher than average or in our case more than 62000 as in cluster "1". Average household size correlates very well Median Income and the suggested value should be less than 2.6 as in Pasadena. Population Diversity Index value was almost same in some cluster segments, but higher in all Neighborhoods with the big numbers of Coworking places. The value should be set to at least higher than average. There was correlation in Foreign Born Population feature and the value may be set as low. The Population per SqMi feature may cause false positive conclusions. The best suggestion would to narrow down the neighborhood list by Median Income first and eliminate the neighborhoods with low median income that may have a high population density. Then from the narrowed data we can drop wealthy suburbs that may have a low population density. It would be a good idea to compare this information with the Average household size. The median Age feature can be set higher in some cases. However, it requires a specific analysis for university campuses with the high number of foreign born people, high density and low median age.

Also, we can consider adding some information and data to our analysis such as residential and commercial real estate rates, office space availability, libraries and coffee shops nearby.

#### 7. Conclusion

The main purpose of this project was to identify the best neighborhoods to open a new Coworking Space. We have created a list of the most promising locations for this business by collecting the data from multiple sources, providing exploratory data analysis, data cleaning and preparation, performed clustering segmentation using K-Means method, analyzed important neighborhood features and provided suggested values for them. There is a room for a deeper analysis using other methods and adding new information data.

Final decision on optimal Coworking Space location will be made by stakeholders based on specific characteristics of neighborhoods and locations in every recommended zone. Taking into consideration additional factors.