DFA 4

Руслан Кутдусов А-13а

April 2022

1

$$L = \{(aab)^n b (aba)^m \mid n \ge 0, m \ge 0\}$$

Язык является регулярным.

2

$$L = \{uaav | u \in \{a, b\}^*, v \in \{a, b\}^*, |u|_b \ge |v|_a\}$$

Лемма о накачке является необходимым условием регулярности языка. Используем отрицание леммы для доказательства нерегулярности заданного языка.

Зафиксируем $p \in \mathbb{N}$, возьмем $w = b^p aaa^p, |w| \ge p$. Разобьем w = xyz так, что $|xy| \le p, y \ne \lambda$. Пусть $x = b^{\alpha}, |x| = \alpha$ и $y = b^{\beta}, |y| = \beta$, причем $\alpha + \beta \le p, \beta \ne 0$. Тогда $z = b^{p-\alpha-\beta}aaa^p$, поэтому $w = b^{\alpha}b^{\beta}b^{p-\alpha-\beta}aaa^p$. При i = 0 имеем $w = b^{\alpha}b^0b^{p-\alpha-\beta}aaa^p \notin L$.

3

$$L = \{a^m w | w \in \{a,b\}^*, 1 \le |w|_b \le m\}$$

По теореме о замкнутости регулярных языков относительно различных операций, отрицание регулярного языка также является регулярным языком. Используем отрицание леммы о разрастании для доказательства нерегулярности отрицания заданного языка:

$$\overline{L} = \{a^m w | w \in \{a, b\}^*, m \ge 0, |w|_b > m\}$$

Зафиксируем $p \in \mathbb{N}$, возьмем $w_1 = a^p b^{p+1}, |w_1| \geq p$. Разобьем $w_1 = xyz$ так, что $|xy| \leq p, y \neq \lambda$. Пусть $x = a^{\alpha}, |x| = \alpha$ и $y = a^{\beta}, |y| = \beta$, причем $\alpha + \beta \leq p, \beta \neq 0$. Тогда $z = a^{p-\alpha-\beta}b^{p+1}$, поэтому $w_1 = a^{\alpha}a^{\beta}a^{p-\alpha-\beta}b^{p+1}$. При i > 1 (допустим, i = 2) имеем $w_1 = a^{\alpha}(a^{\beta})^2a^{p-\alpha-\beta}b^{p+1} = a^{p+\beta}b^{p+1} \notin \overline{L}$ (у нас $\beta > 0$).

4

$$L = \{a^k b^m a^n | k = n \lor m > 0\}$$

1. k = n

Используем отрицание леммы о накачке для доказательства нерегулярности языка $L_1 = \{a^k b^m a^n | k=n\}$.

Зафиксируем $p \in \mathbb{N}$, возьмем $w = a^p b^m a^p$, $|w| \ge p$. Разобьем w = xyz так, что $|xy| \le p, y \ne \lambda$. Пусть $x = a^{\alpha}, |x| = \alpha$ и $y = a^{\beta}, |y| = \beta$, причем $\alpha + \beta \le p, \beta \ne 0$. Тогда $z = a^{p-\alpha-\beta}b^m a^p$, поэтому $w = a^{\alpha}a^{\beta}a^{p-\alpha-\beta}b^m a^p$. При $i \ne 1$ (допустим, i = 2) имеем $w = a^{\alpha}(a^{\beta})^i a^{p-\alpha-\beta}b^m a^p = a^{p+\beta}b^m a^p \notin L$ (у нас $\beta \ne 0$).

2. m > 0

Язык $L_2 = \{a^k b^m a^n | m > 0\}$ является регулярным.

Можно сделать вывод о том, что язык L яляется регулярным.

5

$$L = \{ucv|u \in \{a,b\}^*, v \in \{a,b\}^*, u \neq v^{Reverse}\}$$

По теореме о замкнутости регулярных языков относительно различных операций, отрицание регулярного языка также является регулярным языком. Используем отрицание леммы о разрастании для доказательства нерегулярности отрицания заданного языка:

$$\overline{L} = \{ucv | u \in \{a, b\}^*, v \in \{a, b\}^*, u = v^{Reverse}\}$$

Зафиксируем $p \in \mathbb{N}$, возьмем $w = a^pbcba^p, |w| \ge p$. Разобьем w = xyz так, что $|xy| \le p, y \ne \lambda$. Пусть $x = a^{\alpha}, |x| = \alpha$ и $y = a^{\beta}, |y| = \beta$, причем $\alpha + \beta \le p, \beta \ne 0$. Тогда $z = a^{p-\alpha-\beta}bcba^p$, поэтому $w = a^{\alpha}a^{\beta}a^{p-\alpha-\beta}bcba^p$. При i = 0 имеем $w = a^{\alpha}(a^{\beta})^0a^{p-\alpha-\beta}bcba^p = a^{p-\beta}bcba^p \notin \overline{L}$ (у нас $\beta \ne 0$).