This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 4:		(11) International Publication Number:	WO 86/ 03516
C12N 5/00, 15/00, 1/20 C12N 1/00, C07H 21/00	A1	(43) International Publication Date:	19 June 1986 (19.06.86)

(21) International Application Number: PCT/US85/02488

(22) International Filing Date: 13 December 1985 (13.12.85)

(31) Priority Application Numbers: 681,269 807,798

(32) Priority Dates: 13 December 1984 (13.12.84)

11 December 1985 (11.12.85)

(33) Priority Country:

(71) Applicant: BIOTECHNICA INTERNATIONAL, INC. [US/US]; 85 Bolton Street, Cambridge, MA 02140 (US).

(72) Inventors: BUCHANAN-WOLLASTON, Vicky; 22 Lapham Road, Concord, MA 01742 (US). CANNON, Frank, C.; 40 Prospect Hill Road, Lexington, MA 02173 (US). (74) Agent: HILLMAN, Robert, E.; Fish & Richardson, One Financial Center, Boston, MA 02111 (US).

(81) Designated States: AT (European patent), BE (European patent), CH (European patent), DE (European patent), FR (European patent), GB (European patent), IT (European patent), JP, LU (European patent), NL (European patent), SE (European patent).

Published

US

With international search report. With amended claims.

(54) Title: PLANT TRANFORMATION VECTOR

(57) Abstract

The productivity of modern agriculture is due, in large part, to the development of new and improved crop varieties through cross breeding of related species, which is however inherently imprecise, unpredictable, and slow. This invention permits the development of improved plants, without the limitations of classical breeding methods by providing a vector capable of being integrated into the chromosome of a plant protoplast cell. This vector, which is illustrated in Fig. 1, includes: 1) a DNA region encoding a selectable marker protein, transcription of this DNA region being under the control of a regulatory DNA sequence capable of effecting transcription in plant cells: 2) a polyadenylation site: 3) a desired heterologous gene, or a site for the insertion of such gene: and 4) DNA capable of causing the integration of the above DNA regions into a plant chromosome. The vector lacks sufficient Ti-derived DNA to cause tumor formation or the production of opines in the plant.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

A'	Γ Austria	GA	Gabon	MR	Mauritania
A		GB	United Kingdom	MW	Malawi
В		HU	Hungary	NL	Netherlands
В		π	Italy	NO	Norway.
В		JP	Japan	RO	Romania
В		КР	Democratic People's Republic	SD	Sudan
Č			of Korea	· SE	Sweden
C	•	KR	Republic of Korea	SN	Senegal
	H Switzerland	LI	Liechtenstein	รบ	Soviet Union
	M Cameroon	LK	Sri Lanka	TD	Chad ·
	E Germany, Federal Republic of	LU	Luxembourg	TG	Togo
	K Denmark	MC	Monaco	US	United States of America
F		MG	Madagascar		
F	* *****		Mali		

WO 86/03516 PCT/US85/02488

PLANT TRANSFORMATION VECTOR

5

Background of the Invention

This application is a continuation-in-part of U.S. Pat. Appln. Serial No. 681,269 filed December 13, 1984.

This invention relates to the integration of heterologous genes into the genome of plant cells.

By the term "heterologous gene", we mean a gene which is a non-plant gene, a modified gene, a synthetic gene, a gene from a different plant strain or species, or a homologous gene from a different location in the plant's genome.

The productivity of modern agriculture is in large measure due to the development of improved crop varieties. This has been accomplished through classical plant breeding, where compatible varieties of crops are cross-bred to yield desired improvements. This method suffers from certain limitations, such as imprecision and unpredictability of results; long time frames for breeding programs; and the limitation of the available gene pool to those plants able to cross with each other (i.e., those of the same species).

Certain strains of Agrobacterium cause crown gall disease, a neoplastic transformation, in a broad range of dicotyledonous plants. Upon infection of a wound site, the Agrobacterium transfers at least a part of a large tumor-inducing (Ti) plasmid to the plant cell. A portion of this DNA, encoding the requisite functions for induction of tumor formation (T-DNA) is integrated into the plant cell genome. Also on the T-DNA are genes for the synthesis of opines, e.g., nopaline and octopine, which are produced by plant tissue containing integrated Ti-derived DNA. Ti plasmids are classified by the type of opine synthase

10

15

30

they carry; nopaline synthase (NOS) or octopine synthase (OS). Short sequences flanking the T-DNA (left and right border regions) are important for T-DNA integration.

Lawton et al. Hort. Sci. 19:10-12 (1984) discuss Ti plasmids as potential vectors for genetic engineering. An exogenous gene and selectable marker were integrated into plant cells using a recombinant Ti plasmid. No evidence of normal transcription of the introduced DNA was found.

Zambryski et al. EMBO 2:2143-2150 (1983) report the construction of a recombinant Ti plasmid, the tumorigenic portion of which had been deleted. Plant cells transformed with this vector grew normally and expressed NOS, which was left intact on the plasmid as a transformation marker. Genes, for tumor induction, were subsequently inserted into the recombinant Ti plasmid, and plant cells transformed with this plasmid expressed both NOS and the tumor phenotype.

Herrera-Estrella et al. EMBO 2:987-995 (1983)
report the construction of a recombinant Ti plasmid
containing an antibiotic resistance marker attached to
T-DNA regulatory elements. Progeny cells from tobacco
protoplast transfectants expressed antibiotic
resistance, but yielded only tumor callus.
Morphologically normal plants were not produced.

Horsch et al, Science 223:496-498 (1984) report the regeneration of morphologically normal, fertile plants from cells transformed with an OS Ti plasmid containing an inserted antibiotic resistance marker, and an intact NOS promoter, structural gene, and right border. The resulting plants expressed antibiotic resistance and produced nopaline.

WO 86/03516 PCT/US85/02488

- 3 -

Summary of the Invention

The present invention permits the development of improved plants, without the limitations of classical plant breeding methods, by making possible the direct manipulation of a plant's genome and the introduction into the genome of heterologous genes from any source. The invention thus eliminates the imprecision inherent in classical breeding methods, since any specific gene can be selected, for insertion into the plant's genome, 10 to impart the desired functions. In addition, the invention allows for the development of modified plant varieties in much shorter time periods than is possible using traditional methods. Furthermore, the invention greatly broadens the gene pool from which useful genes 15 can be selected, to include not only genes from other plants, but also genes from fungi, bacteria, and animals, as well as hybrid and synthetic genes.

Accordingly, the invention features, in one aspect, a vector capable of being integrated into the chromosome of a plant protoplast cell; the vector includes 1) a DNA region encoding a selectable marker protein, transcription of this DNA region being under the control of a regulatory DNA sequence capable of effecting transcription in plant cells; 2) a polyadenylation site; 3) a desired heterologous gene, or a site for the insertion thereof in the vector; and 4) DNA capable of causing the integration of (1), (2), and (3) into a chromosome of the plant cell, the vector lacking sufficient Ti-derived DNA to cause tumor formation in the plant or to cause the production of opines in the plant.

For transformation of plant cells in addition to protoplast cells, the invention features a vector having (1)-(4), above, and in addition includes DNA

sufficient to enable the vector to replicate in A.

tumefaciens and to transform a plant cell when A.

tumefaciens containing the vector is cocultivated with
the plant cell; this vector also lacks sufficient

tumorigenic DNA to cause tumor formation in the plant.

In preferred embodiments, the regulatory DNA is derived from a Ti plasmid encoding nopaline synthase or octopine synthase, in which case the vector is incapable of effecting the expression of nopaline or octopine, and 10 the Ti border DNA is derived from a plasmid containing a gene encoding nopaline synthase or octopine synthase.

The vectors of the invention can be used to effect the normal expression in plants of desired proteins, with selection of transformants facilitated by 15 a selectable marker protein, also expressed normally. Normal expression of the marker protein is effected by the regulatory sequence, preferably T-DNA-derived, and the polyadenylation site. Tumor formation is prevented by the exclusion of sufficient T-DNA to cause tumor formation. Furthermore, metabolic energy of the transformed plant is not wasted producing opines, i.e.,

octopine and nopaline, because the vectors of the invention are lacking all or a portion of the structural gene encoding nopaline synthase and octopine synthase.

The vector of the invention can be used in any

suitable plant species. One class of suitable plants are dicotyledenous plants, e.g., tobacco, tomato, and petunia plants, in which Ti plasmids are known in nature to cause tumor formation. Other suitable plants include 30 monocotyledenous plants capable of being transformed by Ti plasmids. Recently it has been shown that monocots, although they do not form A. tumefaciens-induced tumors, are capable of being transformed by the T-DNA of A. tumefasciens. This was demonstrated by Hooykaas-Van

Slogteren et al. (1984) Nature 311, 763, who carried out the infection of Chlorophytum capense and Narcissus, both monocots, and detected in their tissues either nopaline or octopine, depending on the Ti plasmid present in the infecting A. tumefaciens.

Other features and advantages of the invention will be apparent from the following description of the preferred embodiments thereof, and from the claims.

Description of the Preferred Embodiments

We now describe preferred embodiments of the invention, after briefly describing the drawings.

Drawings

Fig. 1 is a diagrammatic representation of two vectors of the invention, containing border regions

15 derived from a NOS-encoding Ti plasmid.

Figs. 2-12 are diagramatic representations of intermediate constructions and steps leading to the vectors of Fig. 1.

Fig. 13 is a diagrammatic representation of a 20 region of one of the vectors of claim 1, and Fig. 14 is a diagrammatic representation of the other.

Fig. 15 is a diagrammatic representation of two vectors of the invention, containing border regions derived from an OS-encoding Ti plasmid.

Figs. 16-23 are diagrammatic representations of intermediate constructions and steps leading to the vectors of Fig. 15.

Fig. 24 is a digrammatic representation of octopine TL border-containing DNA.

Fig. 25 is a diagrammatic representation of the synthetic 25 bp repeat sequence of the octopine TL right border.

Figs. 26-33 are diagrammatic representations of intermediate constructions and steps leading to the .35 vectors of Fig. 33.

WO 86/03516 PCT/US85/02488

- 6 - .

Fig. 34 is a diagrammatic representation of vectors containing a single synthetic border sequence.

Plasmid Components

As is mentioned above, the plasmids of the invention contain several essential DNA regions and sites, now discussed in greater detail.

Selectable Marker .

Because transformation of plant cells with plasmids containing foreign genes is a relatively rare 10 event, plasmids of the invention must contain a DNA region which encodes a selectable marker protein for identification of transformants. This marker protein can be any protein which can be expressed in plant cells and which enables the phenotypic identification of plant 15 cells which express the protein. Preferred marker proteins are proteins which provide resistance to one or more antibiotics; currently most preferred is the. protein aminoglycoside phosphotransferase, which inactivates antibiotics such as kanamycin, neomycin, and 20 G418; transformants are those plant cells able to grow in the presence of antibiotic. Other examples include chloramphenicol acetyl transferase, which provides resistance to chloramphenicol; and dihydrofolate reductase, which provides resistance to methotrexate. 25 Certain genes conferring herbicide resistance can also

Polyadenylation Site

be used as selectable markers.

Eukaryotic (e.g., plant) messenger RNA's must be polyadenylated for efficient translation and processing. Polyadenylation requires a recognition site for polyadenylation enzymes near the 3' end of the DNA region encoding the selectable marker.

DNA Sequences for Integration

DNA derived from or substantially identical to

- 7 -

a border region of T-DNA is used to effect the integration of the plasmids of the invention into the chromosomes of host plant cells. Sequencing of several T-DNA border regions has revealed that each contains a direct repeat sequence 25 base pairs in length. One such sequence is sufficient to cause integration, and the vectors of the invention can include one or two such sequences, which may or may not be flanked by additional T-DNA border sequences.

10 Regulatory Sequences

Transcription of both the selectable marker gene and the desired heterologous gene, in order to lead to efficient expression, is preferably under the control of regulatory sequences normally expressed in plant 15 cells, e.g., T-DNA promoters such as those for the NOS or OS genes. Examples of other suitable promoter sequences include those of the ribulose bisphosphate carboxylase small subunit gene, the nitrate reductase gene, and the glutamine synthase gene. Synthetic, engineered, or altered natural promoters can also be In some instances, it will be desirable to use promoters which are regulated, e.g., promoters active only at certain times in the plant's development. desirable that the plasmid of the invention contain less than the entire structural gene normally under the control of the each promoter used, to ensure that metabolic energy of the transformed plant is not wasted . producing protein encoded by the structural gene.

Site for Desired Heterologous Gene

The site for the insertion of a desired heterologous gene can be any site at which an endonuclease can act to cut the plasmid for insertion of the desired heterologous gene. Preferably the site is unique in the plasmid, so that the endonuclease cuts the

- 8 -

plasmid only in the desired location.

Desired Heterologous Gene

The desired heterologous gene can be any gene which is capable of being expressed in the plant, and which encodes a protein which enhances a beneficial feature of the plant, or provides a new beneficial feature. Examples of such genes are those encoding resistance to herbicides, resistance to diseases such as tomato fusarium wilt, proteins which can be produced to 10 improve the protein content or other nutritive value of the plant, and genes encoding biopesticides. Although the easiest modification to carry out is one involving a biochemical function which is controlled by a single protein, and is thus encoded by a single gene, more than 15 one heterologous gene can be introduced, and the expression of such multiple genes controlled in a coordinate manner so as to introduce more complex biochemical functions into plants. Examples include multi-enzyme pathways, e.g. energy-generating reactions 20 and biosynthetic pathways.

As mentioned above, transcription of the desired heterologous gene, like transcription of the selectable marker gene, is preferably under the control of a regulatory sequence normally expressed in plant cells. The fusion of the heterologous gene to the regulatory sequence can be carried out prior to the insertion of the heterologous gene into the vector, using conventional techniques. Alternatively, the gene can be inserted into the vector by itself, and the regulatory sequence inserted upstream from the gene separately, prior to or following the insertion of the gene, using conventional methods.

Plasmid Construction; Nopaline T-DNA Borders

Referring to Fig. 1, plasmids pJP25 and pJP46

contain the aminoglycoside phosphotransferase gene from Tn5, encoding resistance to the antibiotics kanamycin and G418 (the kan^r gene), under the transcriptional control of the NOS promoter; the nopaline T-DNA left and right border regions; a polyadenylation site; and a unique Bgl II site for insertion of a heterologous gene. These plasmids were constructed as follows (pJP25 and pJP46 differ only in that pJP25 contains a small amount of the NOS structural gene).

- The first step was to insert the left and right T-DNA border regions from a NOS-encoding Ti plasmid into E. coli plasmid pBR327. Referring to Fig. 2, nopaline T-DNA, including the border regions, is present on the Ti plasmid carried by A. tumefaciens strain C58.
- 15Plasmid pGVO369 (Fig. 3) bears the left nopaline T-DNA border, and the Hind III 23 fragment (Fig. 2) of plasmid pGVO329 bears the nopaline T-DNA right border and the NOS structural gene.

Hind III fragment 23 was purified from a Hind ²⁰III digest of pGVO329 and subcloned into pBR327. As shown in Fig. 4, two plasmids were derived from this construction: pJPS18 carries the NOS polyadenylation site, and pJPL19 carries the nopaline T-DNA right border region and the NOS promoter.

- Plasmid pJPL19 (Fig. 5) was cut at the Nco I site and treated with Bal 31 to remove about 400 bp from each end. The DNA was then cut with BamH I, the ends filled in with DNA polymerase, a Sma I linker (CCCGGG) added, and the plasmid recircularized.
- 30 Clones were screened for Sma I and BamH I sites. Those with the Sma I site at a suitable distance from the Sac II site were sequenced to determine the exact position of the Sma I site. Plasmid pE61-8 (Fig. 6) was one of the plasmids obtained. pE61-8 contains

the nopaline T-DNA right border region and the NOS promoter.

The left border region was then inserted by cloning the Bgl II-Pst I fragment from pGVO369 into the BamH I site of pE61-8 to yield pE118 (Fig. 7), which contains the nopaline T-DNA right and left borders and NOS promoter, but still lacks the polyadenylation site and the kan^r gene.

Next, plasmid pVW90 (Fig. 8), carrying the

10 kan^r gene, was constructed as follows. First, the
Hind III-Sal I fragment from Tn5 was cloned in pBR327 to
yield pVW60, as shown in Fig. 9. In pVW60, there is an
ATG upstream from the SD sequence of the kan^r gene
which could result in an incorrect translation start of
the mRNA of this gene in a eukaryotic cell.

To remove this extra ATG sequence, pVW60 was cut at Bgl II and treated with Bal 31 to remove DNA up to the SD sequence. A Sal I linker was inserted and the plasmid religated. Clones resistant and sensitive to kanamycin were obtained. A number of these were sequenced to determine the position of the Sal I linker. The resulting clones, and the portions of the pre-kan^r DNA they contain, are shown in Fig. 10.

pVW61, 62, 63, 64, 65, 70 were all kanamycin 25 resistant.

pVW80, 81, 82, 83, 84, 86, and 87 were all kanamycin sensitive.

pVW61, 63, and 65 still have the extra ATG so are not useful.

pVW62, 64, 70 have lost the extra ATG and have an SD sequence intact enough to give expression.

pvw81, 87, 82, 80, 83, 86, and 84 have lost the extra ATG and the SD sequence, pvw81, 87, and 82 have an intact kan^r gene, and pvw80, 83, 86 and 84 have lost

the first 7 codons of kan^r and can be used to make translational fusions with a gene expressed in plant cells.

Next, pVW86, above, was combined with the NOS polyadenylation site to form pVW90 (Fig. 8), as follows.

Plasmid pJPS18 (Fig. 11), discussed above, carries the 3' end of the NOS gene and the NOS polyadenylation recognition site. The 250 bp Sau 3A fragment, containing the polyadenylation site, was purified and ligated to Sma I linkers (TCCCGGGA); this created a Bgl II site at one end, enabling the orientation of the fragment to be determined. This fragment was cloned into the Sma I site of pACYC177 to produce pVW77. The Xma I fragment was cut out of pVW77 and cloned into the Xma I (Sma I) site at the 3' end of the kan gene of pVW86, to yield pVW90 (Fig. 8). (The pVW77 Xma I fragment was also cloned in pVW82, 84, and 87.)

Plasmid pVW90 was then combined with pEll8

(Fig. 7, discussed above), as follows. pEll8 was cut at the Sma I site and treated with Bal 31 to remove about 25-30 bp. The linearized plasmid was then blunt-end ligated with the Sal I fragment from pVW90 carrying the kan^r gene and polyadenylation site, to yield constructions having the structure shown in Fig. 12.

The fusion junction of several constructions was sequenced to obtain clones in which the kan^r gene was in frame with the ATG of the NOS gene. Two clones were obtained having in-frame gene fusions: pJP125

(Figs. 1 and 13) and pJP46 (Figs. 1 and 14). The Hind III-SalI fragment of plasmid pJP46 was cloned into plasmid pSUP104 in place of the existing Hind III-SalI fragment; pSUP104 is stable in A. tumefaciens and mobilizable from E. coli into Agrobacterium, to yield

plasmid pJP60 (Fig. 1). Plasmid pSUP104 is described in Simon et al. (1983) "Vector Plasmids for in vivo and in vitro Manipulations of Gram-Negative Bacteria" in Molecular Genetics of the Bacterial Plant Interaction (Puhler, ed., Berlin 1983), and is available from Agrigenetics Corporation.

Plasmid Construction; Octopine T-DNA Borders

Referring to Fig. 15, plasmids pVWl25 and pVWl26 contain the right and left border regions of the right T-DNA ("TR DNA") of the octopine T-DNA (the octopine T-DNA also includes left T-DNA, or "TL DNA"); the kan gene, under the transcriptional control of the NOS promoter; a polyadenylation site, and a unique Bgl II site for insertion of a heterologous gene. These plasmids were constructed as follows (pVWl25 and pVWl26 differ only in the orientation of the kan gene.)

The first step was to insert the left and right TR border regions into pBR327. Referring to Fig. 16, octopine TR DNA is present in A. tumefaciens strain B6. BamH I fragment 2 (16.5 kb) from the B6 Ti plasmid was cloned in pBR327 to yield pVW51 (Fig. 17).

The TR left border on pVW51, in an Eco RI-BamH I fragment, was cloned in pBR327 to yield pVW58 (Fig. 17). The TR right border, on an Eco RI fragment of pVW51, was then cloned into the Eco RI site of pVW58 to yield pVW75 (Fig. 18).

In order to clone the kan^r gene between the left and right TR borders, a unique restriction site had to be created between the two borders. To accomplish this, the Eco RI site between the left and right borders was converted to a Sma I site by a partial Eco RI digest, the sticky ends were filled in, and a Sma I linker was then inserted into one or the other Eco RI site, to yield pVW78 (Fig. 19), which bears a unique Sma

20

I site between the borders, and pVW79 (Fig. 20), which bears a unique EcoRI site between the borders.

Next, a plasmid was constructed in which the kan gene was under the transcriptional control of the NOS promoter. This was carried out generally as described above, in the construction of plasmids containing nopaline T-DNA border regions, although the resulting vectors differed slightly in structure from those constructed with the nopaline T-DNA borders. The

first intermediate, containing the NOS promoter, is plasmid pE85-21 (Fig. 21), in which the Sma I site is 2 bp upstream from the NOS ATG. The kan gene-containing intermediate pVW93 (not shown) has a Sal I linker inserted 2 bp upstream from the ATG of the

kan^r gene. To combine the two, pE85-21 was cut with Sma I and treated with Bal 31 to remove a few (5-10) bases. The Sal I fragment from pVW93 carrying the kan^r gene and the polyadenylation site was blunt end ligated into pE85-21 to yield pVWl04 (Fig. 22).

The Bcl I-Bgl II fragment from pVWl04 carries the NOS promoter, the kan^r gene, and the polyadenylation site. This fragment was purified and cloned into the Sma I site of pVW78 between the two TR borders, to yield pVWl21 (Fig. 23).

Plasmid pVWl21 carries the right TL border, which was deleted by cutting with Xho I and BamH I and religating. This yielded plasmids pVWl25 and pVWl26, which bear the kan gene oriented in different directions. BamHI linkers were ligated to the EcoRI-XhoI fragment of pVWl25 and it was cloned into the BamHI site of plasmid pSUPl04 to yield plasmid pVWl30 (Fig..15).

Plasmid Construction; Synthetic borders

Six T-DNA border regions have been sequenced,

i.e., borders of T-DNA (from a nopaline-producing Ti plasmid) and TL and TR DNA borders (from an octopine-producing Ti plasmid). All have a similar direct repeat of 25 base pairs at the border regions. The sequences of the borders derived from different T-DNA are not identical for all 25 base pairs.

The 25 base pair direct repeat of the octopine right TL border was synthesized, using conventional techniques, and is represented in Fig. 25. 10 synthesized DNA was cloned into the E. coli vector pUC8 (Fig. 26) to make it more easily accessible for further cloning. Sal I linkers were ligated on the ends of the synthetic DNA and it was cloned into the Sal I site of pUC8 to yield plasmid pVWl32 (Fig. 27). Sma I linkers 15 were also ligated on the synthetic DNA so that it could be cloned into the Sma I site of pUC8, yielding plasmids pVWl33 (Fig. 28) and pVWl34 (Fig. 29). In the Figures, the orientation of the border fragments relative to each other in the 3 plasmids is indicated by the arrow. The 20 orientations of the border sequences in Ti plasmids are . indicated in Figure 30, A. and B. Thus, the single vector was constructed such that the relative orientations of the synthetic border sequences was the same as the orientation of the border sequences in the 25 naturally occurring Ti plasmid. The Hind III-BamH I fragment from pVWl34 (Fig. 29), containing the synthetic border sequence in the correct orientation, was cloned into the Hind III-BamH I site of pVW132 (Fig. 27) yielding plasmid pVWl36 (Fig. 31). A selectable marker 30 was cloned into the BamH I site between the synthetic border sequences. The Bcl I-Bgl II fragment of plasmid pVWl04 (Fig. 32), containing the kanamycin resistance gene and polyadenylation site attached to the nopaline synthase promoter, was cloned into the BamH I site of

plasmid pVW136 (Fig. 31) to yield plasmid pVW143 (Fig. 33A) and plasmid pVWl42 (Fig. 33B). The two plasmids obtained differ only in the orientation of the Kan^r gene and its regulatory elements relative to the synthetic border fragments. BamHI linkers were ligated to the Hind III-Eco RI fragments of pVWl43 and pVWl42 (Fig 33 A-B) which were cloned into the BamHI site of plasmid pSUPl04 to yield, respectively, plasmids pVWl49 and pVW148, for mobilization to Agrobacterium 10 tumefaciens strain LBA4404 for cocultivation experiments with plant cells.

In addition to the above-described plasmids (pVW142 and pVW143) containing two synthetic border sequences flanking the kanamycin resistance gene, 15 plasmids have been constructed which contain only one such synthetic sequence; this single synthetic sequence is capable of effecting integration of the plasmid DNA into the host plant chromosome. One such plasmid, pVW144 (Fig. 34), was constructed as follows. BclI-BglII fragment of plasmid pVWl04 (Fig. 32), containing the kan gene and polyadenylation site attached to the nopaline synthase promoter, was cloned into the BamHI site of plasmid pVW133 (Fig. 28), containing one synthetic border sequence, to yield plasmid pVW140 (Fig. 34). The HindIII-EcoRI fragment of 25 plasmid pVW140 was then cloned into plasmid pSUP104 to yield plasmid pVWl44 (Fig. 34). Plasmid pVWl45 (not shown) was derived from plasmids pVW104 (Fig. 32) and pVWl34 (Fig. 29) in analogous fashion, and it differs 30 from pVWl44 only in the orientation of the single border sequence relative to the kanamycin resistance gene. Plasmid Construction; Insertion of Heterologous Genes

Plasmids pJP25, pJP46, pVWl25, and pVWl26 all have a unique Bgl II site into which a desired

10

- 16 -

heterologous gene can be inserted, using conventional techniques.

There is a high probability that such a unique site is available on pVW142 and pVW143 as well. If such sites are not available, they can be created using standard methods.

Plant Transformation

The plasmids of the invention can be used to directly transform plant protoplasts, e.g., by packaging the plasmids in liposomes, using conventional techniques.

Alternatively, the plasmids can be used to transform plant protoplasts or non-protoplast cells, using a "binary" cocultivation technique with A. 15 tumefaciens. To use this method, the pSUP104-derived plasmids (pJP60, pVW144, pVW130, pVW148, and pVW145) were transferred to an A. tumefaciens strain, e.g., LBA4404, which carries a Ti plasmid, pLBA4404, deleted of the T-DNA region, so that cocultivation does not 20 result in plant tumor formation. (pLBA4404, and binary cocultivation, are described in Hoekema et al. (1983) Nature 303, 5913.) pLBA4404 does, however, retain the native Ti "vir" (for virulence) functions which are essential for the transfer of the hybrid plasmid of the 25 invention from A. tumefaciens LBA4404 to the host plant cell. The A. tumefaciens containing the hybrid plasmid was then cocultivated with plant cells to insert the hybrid plasmid into the plant cells, where the plasmid DNA, by virtue of the natural or synthetic border DNA, 30 integrated into the plant cell chromosome. Transformants were selected by means of the selectable marker.

Another plant transformation method, known as the "quick-dip" method, involves the dipping of plant

PCT/US85/02488 WO 86/03516

- 17 -

explants in the A. tumefaciens bacterial culture and then incubating the infected plant parts on medium that selects for kanamycin resistance and promotes shoot regeneration; the method is described in Horsch et al. (1985) Science 227, 1229.

5

10

15

20

30

Plant Regeneration

Following selection of transformants, the plant cells (protoplasts or other cells) are cultured under conditions effecting the regeneration of mature plants. Such methods are known, e.g., for the regeneration of tobacco plants from callus culture. The resulting mature plant, the cells of which contain integrated DNA of the vector of the invention, express the desired heterologous gene, fail to express the OS or NOS genes, and do not form tumors.

Deposits

Plasmids pJP46 and pVW125 have been deposited in the American Type Culture Collection, Rockville, MD, and given ATCC Accession Nos., respectively, of 39930 and 39929. Applicants' assignee, Biotechnica International, Inc., acknowledges its responsibility to replace these cultures should they die before the end of the term of a patent issued hereon, and its responsibility to notify the ATCC of the issuance of 25 such a patent, at which time the deposits will be made available to the public. Until that time the deposits will be made available to the Commissioner of Patents under the terms of 37 CFR §1.14 amd 35 USC §112.

Other Embodiments

Other embodiments are within the following claims. For example, the OS TL border regions (contained in A. tumefaciens strain ACH5), rather than the TR border regions, can be used, and the OS rather than NOS promoter used. A plasmid, pOTY8 (described in

10

- 18 -

Hirsch et al. (1984) Mol Gen. Genet. 195, 209; Fig. 24) contains the TL border regions. We have made subclones of pOTY8 containing the left TL border (pVW57) and right TL border (pVW59) have been made. pVW57 contains Hind III fragment 18 carrying the left border of TL cloned in pBR327, and pVW59 contains EcoRI fragment 24 carrying the right border of TL and the promoter of the OS gene cloned in pACYC184. Any of these border regions can be used to construct vectors in the same manner as described above.

PCT/US85/02488

10

15

- 19 -

CLAIMS

- 1. A vector capable of being integrated into the chromosome of a plant protoplast cell, said vector comprising
- 1) a DNA region encoding a selectable marker protein, transcription of said DNA region being under the control of a regulatory DNA sequence capable of effecting the transcription of said DNA region in said plant cell,
 - 2) a polyadenylation site,
 - 3) a desired heterologous gene, or a site for the insertion thereof in said vector, and
 - 4) DNA capable of causing the integration of (1), (2), and (3) into said chromosome of said plant cell,

said vector lacking sufficient Ti-derived DNA to cause tumor formation in said plant or to cause the production of opines in said plant.

- 2. A vector capable of being integrated into the chromosome of a plant protoplast or non-protoplast cell, said vector comprising,
- a DNA region encoding a selectable marker protein, transcription of said DNA region being under the control of a regulatory DNA sequence capable of effecting the transcription of said DNA region in said plant cell,
 - 2) a polyadenylation site,

٠٠,

- 3) a desired heterologous gene, or a site for the insertion thereof in said vector,
- 4) DNA capable of causing the integration of (1), (2), and (3) into said chromosome of said plant cell, and
 - 5) DNA sufficient to enable said vector to replicate in A. tumefaciens and to transform said plant

10

cell when said \underline{A} . $\underline{tumefaciens}$ containing said vector is cocultivated with said plant cell,

said vector lacking sufficient Ti-derived DNA to cause tumor formation in said plant or to cause the production of opines in said plant.

- 3. The vector of claim 1 or claim 2 wherein said regulatory DNA sequence is derived from a Ti plasmid encoding nopaline synthase or octopine synthase, said vector being incapable of effecting the expression of nopaline synthase or octopine synthase.
- 4. The vector of claim 1 or 2, said integration-causing DNA being substantially identical to border T-DNA of a Ti plasmid containing a gene encoding nopaline synthase or octopine synthase.
- 5. The vector of claim 4, having ATCC Accession No. 39929.
 - 6. The vector of claim 4, having ATCC Accession No. 39930.
- 7. A vector capable of being integrated into
 the chromosome of a plant protoplast cell, said vector
 comprising a desired heterologous gene, or a site for
 the insertion thereof in said vector, and DNA capable of
 causing the integration of said desired gene into said
 chromosome of said plant cell, said DNA comprising DNA
 substantially identical to border DNA of the left and
 right TR border regions of a Ti plasmid containing a
 gene encoding octopine synthase.

- 21 -

8. A plant cell transformed with the vector of any of claims 1, 2, or 7.

AMENDED CLAIMS

[received by the International Bureau on 2 May 1986 (02.05.86); original claims 1-8 replaced by new claims 1-9 (2 pages)]

- 1 l. A vector capable of being integrated into the chromosome of a plant protoplast cell, said vector comprising
- 1) a DNA region encoding a selectable marker protein, transcription of said DNA region being under the control of a regulatory DNA sequence capable of effecting the transcription of said DNA region in said plant cell,
 - 2) a polyadenylation site, and
- 3) DNA capable of causing the integration of
 (1) and (2) into said chromosome of said plant cell,
 said vector lacking sufficient Ti-derived DNA
 to cause tumor formation in said plant or to cause the
 production of opines in said plant.
- 2. A vector capable of being integrated into the chromosome of a plant protoplast or non-protoplast cell, said vector comprising,
- a DNA region encoding a selectable marker protein, transcription of said DNA region being under
 the control of a regulatory DNA sequence capable of effecting the transcription of said DNA region in said plant cell,
 - 2) a polyadenylation site,
 - 3) DNA capable of causing the integration of
- 25 (1) and (2) into said chromosome of said plant cell, and
 - 4) DNA sufficient to enable said vector to replicate in A. tumefaciens and to transform said plant cell when said A. tumefaciens containing said vector is cocultivated with said plant cell,
- said vector lacking sufficient Ti-derived DNA to cause tumor formation in said plant or to cause the production of opines in said plant.

- 3. The vector of claim 1 or claim 2, further comprising a desired heterolgous gene, or a site for the insertion thereof in said vector.
- 4. The vector of claim 1 or claim 2 wherein said regulatory DNA sequence is derived from a Ti plasmid encoding nopaline synthase or octopine synthase, said vector being incapable of effecting the expression of nopaline synthase or octopine synthase.
- 5. The vector of claim 1 or 2, said
 10 integration-causing DNA being substantially identical to border T-DNA of a Ti plasmid containing a gene encoding nopaline synthase or octopine synthase.
 - 6. The vector of claim 5, having ATCC Accession No. 39929.
- 7. The vector of claim 5, having ATCC Accession No. 39930.
- 8. A vector capable of being integrated into the chromosome of a plant protoplast cell, said vector comprising a desired heterologous gene, or a site for the insertion thereof in said vector, and DNA capable of causing the integration of said desired gene into said chromosome of said plant cell, said DNA comprising DNA substantially identical to border DNA of the left and right TR border regions of a Ti plasmid containing a gene encoding octopine synthase.
 - 9. A plant cell transformed with the vector of any of claims 1, 2, or 8.

NOS left border

F1G 3

Substitute omeet

SUBSTITUTE SHEET

FIG 12

7/17

CURSTITUTE SHEET

FIG 18

SUBSTITUTE SHEET

pVWI04 > Kan R gene Kan R gene sequence AGTC | TCATATTCACTCTCAATCCTCGACG GC. ATG ATT Sal linker NOS leader sequence promoter NOS

FIG 22

FIG 24

pUC8

FIG 2

SUBSTITUTE SHEET

CIIDCTITITE ---

I. CLASS	IFICATI	ON OF SUBJECT MATTER (if several classi	incation symbols apply, in	ndicate all) \$		
According	to Intern	stional Patent Classification (IPC) or to both Nati	and Classification and I	20		
US. C	LI. 7	C12N 5/00 C12N 15/00	C12N 1/20	C12N 1/	00 C07H	21/00
II. FIELDS		435/172.3, 240, 241 3	1.7			
n. FIELDS	3 SEAR		Askina Consolitati			
Classification	on System	Minimum Documer	Classification Symbols			
			Classification Symbols			
US ————		435/172.3, 240, 241	1, 317			
		Documentation Searched other to the Extent that such Documents				
III. DOCU	MENTS	CONSIDERED TO BE RELEVANT 14				
Category •	CII	ation of Document, 15 with Indication, where app	ropriate, of the relevant p	assages 17	Relevant to Cla	im No. 18
Х	N,	Bevan et al., 1983, "A biotic resistance general marker for plant cell Nature Vol. 304 pages	e as a selec transformat	table	ALL	
Χ.	N,	Fraley et al. 1983 "Ex bacterial genes in pla Natl. Acad. Sci. Vol.	nt cells" P	roe.	ALL	
Y	N,	Dhaese et al. 1983 "Id sequences involved in tion of higher plant n scripts using Agrobact as models" EMBO Journ 419-26	the polyade uclear tran erium T-DNA	ny∙la⊶ s- genes	1-7	
Х	N,	Krens et al. 1982 "In tion of plant protopla DNA" Nature Vol. 296 p	sts with Ti		. 8	
Y	N,	Herrera-Estrella et al genes as dominant sele plant cells" EMBO Jour	ctable marke	ers in	17 5	
	-	es of cited documents: 15	"T" later document p	ublished after th	e international f	iling date
"A" doc con	ument de sidered t	fining the general state of the art which is not be of particular relevance	or priority date a cited to understa			
"E" earl		ent but published on or after the international	Invention "X" document of pa			
"L" dọc	ument wi	sich may throw doubts on priority claim(s) or d to establish the publication date of another	cannot be consi Involve an invent	idered novel or live step	cannot be cons	idered to
cita	tion or ot	her special reason (as specified) erring to an oral disclosure, use, exhibition or	"Y" document of pa	iered to involve a	in inventive step	when the
othe	er wegus		document is con ments, such con in the art.			
"P" doc late	ument pu r than the	blished prior to the international filing date but priority date claimed	"&" document memb	er of the same p	atent family	
IV. CERT	IFICATI	NC				
Date of the	Actual	Completion of the International Search ²	Date of Mailing of this	international-Sec	ch Report 1	-
25 F	ebru	ary 1985	هر ا	F MWV	1300	
		ing Authority 1	Signature of Authorize	d Officer 20	PA. P.	ره.
ISA/U	JS		Stephanie Se	eidman,	Ph. D.,	J.D.

FURTHER INFORMATION CONTINUED FROM THE SECOND SHEET
Y N, Zambryski et al. 1983 "Ti plasmid vector for the introduction of DNA into plant cells without altration of their normal regeneration capacity" EMBO Journal Vol. 2 pages 2143-2150
V. OBSERVATIONS WHERE CERTAIN CLAIMS WERE FOUND UNSEARCHABLE 10
This international search report has not been established in respect of certain claims under Article 17(2) (a) for the following reasons:
1. Claim numbers because they relate to subject matter 12 not required to be searched by this Authority, namely:
· · · · · · · · · · · · · · · · · · ·
2. Claim numbers, because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international sparch can be carried out 13, specifically:
••
And the second s
··
VI. OBSERVATIONS WHERE UNITY OF INVENTION IS LACKING 11
This International Searching Authority found multiple inventions in this international application as follows:
1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claim
of the international application.
of the international application. 2. As only some of the required additional search fees were timely paid by the applicant, this international search report covers on
of the international application. 2. As only some of the required additional search fees were timely paid by the applicant, this international search report covers on those claims of the international application for which fees were paid, specifically claims: 3. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claim numbers: 4. As all searchable claims could be searched without effort justifying an additional fee, the international Searching Authority did no invite payment of any additional fee.
of the international application. 2. As only some of the required additional search fees were timely paid by the applicant, this international search report covers on those claims of the international application for which fees were paid, specifically claims: 3. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claim numbers: 4. As all searchable claims could be searched without effort justifying an additional fee, the international Searching Authority did not the content of the international search report is restricted to the international search report is restricted