

Explicit-state Model Checking

Abhik Roychoudhury Department of Computer Science National University of Singapore

> IISc Summer Course 2007 by Abhik Roychoudhury

Background

- Kripke Structures as models
- Temporal Properties
 - LTL, CTL*, CTL
- This lecture
 - Explicit state model checking algorithm for Computation Tree Logic (CTL)

IISc Summer Course 2007 by Abhik Roychoudhury

CTL Model Checking

- Given
 - Finite state Kripke Structure M = (S,S0,→,L)
 - CTL formula f
- Check whether
 - All initial states of M satisfy f, that is,
 - $\bullet \ S0 \subseteq \{ \ s \mid s \in S \land \ M, s \mid = f \, \}$
- Explicit-state MC in this lecture.

IISc Summer Course 2007 by Abhik Roychoudhury

Checking M |= f

- Define $St_f = \{s \mid s \in S \text{ and } M, s \mid = f\}$
 - Start with computing St_p for each atomic prop. p

 $St_p = \{ s \mid s \in S \text{ and } p \in L(s) \}$
 - Computation of St_f proceeds by a bottom-up parse of the formula f
 - Compute St_a for each sub-formula g of formula f
 - $\bullet \ \, \text{Check whether} \ \, \text{S0} \ \, \in \, \text{St}_{\text{f}}$
 - Details of counter-example construction is not discussed in this lecture.

IISc Summer Course 2007 by Abhik Roychoudhury

CTL syntax

- $f := p | f \wedge f | \neg f | AX f | EX f |$
- AG f | EG f | AF f | EF f |
- A(f U f) | E(f U f) | A(f R f) | E(f R f)
- The ten temporal operators can be expressed in terms of EX, EG, EU
 - We will justify this !
- So, our MC algorithm needs to consider only
 - $f := p | f \wedge f | \neg f | EX f | EG f | E(f \cup f)$

IISc Summer Course 2007 by Abhik Roychoudhury

CTL operators

- AX $\varphi = \neg \neg AX \varphi = \neg EX \neg \varphi$
- $AG\phi = \neg \neg AG\phi = \neg EF \neg \phi$
- $EF_{\phi} = E \text{ (true U }_{\phi} \text{)}$
- AF $\phi = \neg EG \neg \phi$
- $A(\phi R \Psi) = \neg \neg A(\phi R \Psi) = \neg E(\neg \phi U \neg \Psi)$
- Can you derive the above equivalences?

IISc Summer Course 2007 by Abhik Roychoudhury

Class Practice

- $E(\phi R \Psi) = \neg A (\neg \phi U \neg \Psi)$
- What about A (o U Y) ??
- $\varphi R \Psi = (\Psi U (\varphi / \Psi)) \vee G \Psi$
 - Prove this result
 - Use this result to define A(φ U Ψ)

IISc Summer Course 2007 by Abhik Roychoudhury

Structure of MC algorithm

- To check M = (S,S0,→,L) |= f
 - 1. Rewrite f to an equivalent CTL formula f1 where f1 contains only the operators ¬, ^, EX, EG, EU
 - 2. Compute(f1)
 - For all sub-formula g1 of f1 do{
 - if $g1 = atomic prop then <math>St_{g1} := ...$
 - else Compute(g1)
 - Construct St_{f1} from St_{q1} computed above
 - Return St_{f1}
 - $\, \blacksquare \,$ 3. If S0 \subseteq St_{f1} then return "yes" else return "no"

IISc Summer Course 2007 by Abhik Roychoudhury

Computing St_f

- Kripke Structure M = $(S, S0, \rightarrow, L)$
 - Case 1: f = p
 - $St_p = \{s \mid s \in S \text{ and } p \in L(s) \}$
 - Case 2: f = ¬g
 - $St_{g} = S St_{g}$
 - Case 3: f = g1 ∧ g2
 - ${\color{red} \bullet} \; \operatorname{St}_{g1 \,{\scriptstyle \wedge} \, g2} \; = \operatorname{St}_{g1} \, \, \cap \operatorname{St}_{g2}$
 - Case 4: f = EX g
 - St $_{\text{EXg}}$ = $\{s \mid s \in S \land (s,t) \in \rightarrow \land t \in St_g \}$

IISc Summer Course 2007 by Abhik Roychoudhury

Computing St_{f1}

- There are two more cases
 - Case 5: f = E(g1 U g2)
 - Case 6: f = EG f1
- We now give search algorithms for these two
- So, the overall algorithm is

IISc Summer Course 2007 by Abhik Roychoudhury

$Find(M, \varphi)$

- Let M = (S, S0, R, L)
- If φ is true then return S
- Else if φ is false then return null-set;
- Else if ϕ is $\neg \Psi$ then return S Find(M, Ψ)
- Else if ϕ is $\Psi1 \land \Psi2$ then return Find(M, $\Psi1$) \cap Find(M, $\Psi2$)
- Else if ϕ is AX Ψ then return Find(M, \neg EX \neg Ψ)
- Else if ϕ is EX Ψ then call EX algorithm and return results,
- Else if φ is E(Ψ1UΨ2) then call EU algorithm and return results,
- Else if ϕ is A(Ψ 1U Ψ 2) then return ?? [do it yourself now] Else if φ is EGΨ then call EG algorithm and return results,
- Else if [fill up the rest of the cases yourself]

IISc Summer Course 2007 by Abhik Roychoudhury

Class Practice

- We described CTL model checking by developing algorithms for
- EX, EG and EU. Show that it is also possible to express all the ten CTL
- operators using EX, EU and AU. Then, construct a bottom-up checking
- algorithm for AU, that is, given the set of states
 satisfying f and g, an algorithm for constructing the set of states satisfying A(f U g).

IISc Summer Course 2007 by Abhik Roychoudhury