

M.Sc. Computer Science and Engineering Data Analysis for Smart Agriculture

Data Analysis On An Eggs Farm

Davide Canali - 10674880 - davide1.canali@polimi.it Matteo Cordioli - 00000000 - matteo.cordioli@polimi.it Federico Camilletti - 10619856 - federico.camilletti@polimi.it Shakiba Shahidiani - 00000000 - shakiba.shahidiani@polimi.it

December 10, 2022

Contents

1	Introduction					
2	Data Collection	2				
3	Data Cleaning	2				
4	Analysis of Each Cycle 4.1 Cycle A	2				
	4.2 Cycle B					
	4.4 Cycle X1	5				
	4.6 Cycle Y	7				
5	Common features	9				
6	Organic vs non-organic cycles	11				
7	Death-season correlation	11				
8	Economic results	11				

1 Introduction

In this study, we are going to analyze data from an eggs farm near Mantova to see if it's possible to improve both animal welfare and farmer revenue.

The farm under analysis is [//TODO INSERT NAME] and has around 40'000 chickens that produce organic eggs. We have the data starting from 2014, the production of eggs is divided into cycles lasting about 13 - 15 months each. We have 5 complete cycles and the current 2022 cycle. The first 2 cycles (called X and Y) are non-organic which means the chickens are treated differently from the last 4 cycles (Z, A, B, C) which are organic.

Upon talking with the farmer we focus our attention on 3 main topics which involve:

- Understanding the mortality between different cycles and organic with non-organic.
- Improve the welfare of the chickens.
- Quantify the monetary loss when a chicken dies at the start of the cycle.

2 Data Collection

The farmer collected the data thanks to sensors and by inspecting the barns each day. Before cycle A the data were only collected in paper spreadsheets and had to be imported in a digital format.

3 Data Cleaning

Before starting to analyze the data we cleaned them. In all the cycles we performed these next steps:

- Removed tail and head (20 rows each more or less).
- Adjusted feed and water consumption to correct typos and switchboard errors.
- Adjusted eggs production when % of laid when above 100%, distributed in the days before assuming that those eggs were not collected.
- Adjusted death count to match the delta of death at the end of the cycle.
- Checked that the difference between the total amount of eggs produced and the number of eggs sold was less than 0.6%.

Specifically, in cycle A we also adjust a series of missing data regarding the water consumption adding them following the cycle distribution.

//TODO Teo add what u did in cycles Y and X

4 Analysis of Each Cycle

4.1 Cycle A

Arrival date	#Chickens	Frist Laid	End of cycle	Organic	#Eggs
19/7/2018	42.009	1/9/2018	19/5/2020	Yes	20.208.086

Significant features:

 \bullet Average Percentage of Laid Eggs each day: $83{,}8\%$

• Average Percentage of Death each day: 0,044%

• Average Temperature during the cycle: 12,99 °C

• Average Humidity during the cycle: 74,55%

Cluster:

4.2 Cycle B

Arrival date	#Chickens	Frist Laid	End of cycle	Organic	#Eggs
09/08/2020	42.098	24/09/2020	02/05/2022	Yes	18.392.640

Significant features:

• Average Percentage of Laid Eggs each day: 81,39%

• Average Percentage of Death each day: 0,0494%

• Average Temperature during the cycle: 11,81 °C

• Average Humidity during the cycle: 73,24%

Cluster:

4.3 Cycle C

Arrival date	#Chickens	Frist Laid	End of cycle	Organic	#Eggs
20/06/2022	42.098	08/08/2022	In progress	Yes	In progress

Significant features:

 \bullet Average Percentage of Laid Eggs each day: $55{,}85\%$

• Average Percentage of Death each day: 0,043%

 \bullet Average Temperature during the cycle: 18,61 °C

 \bullet Average Humidity during the cycle: $70{,}05\%$

4.4 Cycle X1

Arrival date	#Chickens	Frist Laid	End of cycle	Organic	#Eggs
20/01/2014	33.743	18/03/2014	08/07/2015	No	12.375.840

Significant features:

• Average Percentage of Laid Eggs each day: 80,69%

 \bullet Average Percentage of Death each day: $0{,}032\%$

 \bullet Average Temperature during the cycle: 15,34 °C

 \bullet Average Humidity during the cycle: $72,\!83\%$

4.5 Cycle X2

Arrival date	#Chickens	Frist Laid	End of cycle	Organic	#Eggs	
26/05/2014	23.898	15/07/2014	21/06/2015	No	7.558.799	

Significant features:

• Average Percentage of Laid Eggs each day: 95,36%

 \bullet Average Percentage of Death each day: $0{,}021\%$

• Average Temperature during the cycle: 13,76 °C

 \bullet Average Humidity during the cycle: $76{,}04\%$

4.6 Cycle Y

	Arrival date	#Chickens	Frist Laid	End of cycle	Organic	#Eggs
Ì	11/08/2015	57.346	05/10/2015	27/09/2016	No	16.759.240

Significant features:

 \bullet Average Percentage of Laid Eggs each day: 83.70%

 \bullet Average Percentage of Death each day: $0{,}022\%$

 \bullet Average Temperature during the cycle: 14,20 °C

 \bullet Average Humidity during the cycle: $74{,}54\%$

4.7 Cycle Z

	Arrival date	#Chickens	Frist Laid	End of cycle	Organic	#Eggs
Ī	17/11/2016	42.130	08/01/2017	27/05/2018	Yes	17.721.240

Significant features:

- Average Percentage of Laid Eggs each day: 87,78%
- \bullet Average Percentage of Death each day: $0{,}021\%$
- Average Temperature during the cycle: 13,07 °C
- \bullet Average Humidity during the cycle: $74{,}27\%$

5 Common features

In this section, we will discuss what we discovered by comparing all the cycles together. After seeing that each cycle can be clustered in two parts, those clusters also divide the cycle into two distinct sections in a plot based on date. We tried to apply the same idea in a dataset composed of all the cycles together.

Looking at the clusters we find that indeed the division of each cycle is respected. We find also that the only one that didn't respect this division is cycle C, which could be expected since it just started, but the interesting thing is that the whole cycle C is clustered as cluster 1 which is the one that identifies the end of every other cycle so we can see how bad is performing this new cycle both in death and laid rate. This can show how the ban on beak-cutting affected the welfare of the chickens, with the beak the violence between animals increased a lot and not only increase the death rate but increased a lot the stress of the chickens reducing their productivity.

To better compare the different cycles we made a spider plot with 4 features:

- Average Percentage of Laid Eggs each day
- Average Percentage of Death each day
- Average Temperature during the cycle
- Average Humidity during the cycle

- 6 Organic vs non-organic cycles
- 7 Death-season correlation
- 8 Economic results