Homework Questions

Circuits and Electronics

Week 2

Q.1 a) Consider the following function $F(A,B,C,D) = \Sigma m(2,3,8,10,13,14)$ that is F(A,B,C,D)=1 for ABCD=0010, 0011, etc...

Implement the above function using <u>ONLY the 8-to-1 multiplexer shown below and any logic gates</u>. Note that in the 8:1 multiplexer shown below, <u>input variables A, B, C have been connected to select lines S2, S1, S0</u>, respectively. Assume variables A, B, C and D <u>are NOT available in their complemented form</u>. Show your working using the truth table drawn below.

A	В	C	D	F	
0	0	0	0		
0	0	0	1		
0	0	1	0		
0	0	1	1		
0	1	0	0		
0	1	0	1		
0	1	1	0		
0	1	1	1		
1	0	0	0		
1	0	0	1		
1	0	1	0		
1	0	1	1		
1	1	0	0		
1	1	0	1		
1	1	1	0		
1	1	1	1		

Q.2

Describe the operation of the JK latch below.

J	K	CLK	Q^{n+1}
X	X	0	
0	0	1	
0	1	1	
1	0	1	
1	1	1	

Q.3

a) Draw a diagram showing how an 8-bit adder can be constructed from 4-bit adders using the CARRY-SELECT principle. Label all multiplexers and signal lines. Indicate the number of bits for every signal line. Use the following representation for each 4-bit adder.

Ą	В		
4-b	it ad	der	C_{in}
Cout	S		-

For the following circuit, complete the timing diagram shown below. **Ensure that you clearly indicate any delays between signals.** Assume all components (gates and flip-flops) have the same propagation delay δ . Assume that δ is significantly shorter than the clock period. Note that Q1 is initially low, and input to D1 is high, and output Z is low.

