

Fig. 1A

Vcc	1	54	Vss
DQ0	2	53	DQ15
VccQ	3	52	VssQ
DQ1	4	51	DQ14
DQ2	5	50	DQ13
VssQ	6	49	VccQ
DQ3	7	48	DQ12
DQ4	8	47	DQ11
VccQ	9	46	VssQ
DQ5	10	45	DQ10
DQ6	11	44	DQ9
VssQ	12	43	VccQ
DQ7	13	42	DQ8
Vcc	14	41	Vss
DQML	15	40	RP#
WE#	16	39	DQMH
CAS#	17	38	CLK
RAS#	18	37	CKE
CS#	19	36	VccP
BA0	20	35	A11
BA1	21	34	A9
A10	22	33	A8
A0	23	32	A7
A1	24	31	A6
A2	25	30	A5
A3	26	29	A4
Vcc	27	28	Vss

150

152

154

Fig. 1B

Fig. 1C

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

NOTE: Each READ command may be to either bank. DQM is LOW.

DON'T CARE

Fig. 8

NOTE: A CAS latency of three is used for illustration. The READ command may be to any bank, and the WRITE command may be to any bank. If a CAS latency of one is used, then DQM is not required.

DON'T CARE

Fig 9

Fig. 10

Fig. 11

NOTE: A CAS latency of two is used for illustration. The WRITE command may be to any bank and the READ command may be to any bank. DQM is LOW. A READ to the bank undergoing the WRITE ISM operation may output invalid data.

 DON'T CARE

Fig. 12

Coming out of a power-down sequence (active), tCKS (CKE setup time) must be greater than or equal to 3ns.

Fig. 13

NOTE: For this example, CAS latency = 2, burst length = 4 or greater, and DQM is LOW.

DON'T CARE

F, 9 . 14

ADDRESS RANGE

		Bank	Row	Column	
Bank 3	3	FFF	FFH		256K-Word Block 15
	3	C00	00H		256K-Word Block 14
	3	BFF	FFH		256K-Word Block 13
	3	800	00H		256K-Word Block 12
	3	7FF	FFH		256K-Word Block 11
	2	400	00H		256K-Word Block 10
	2	3FF	FFH		256K-Word Block 9
	2	000	00H		256K-Word Block 8
	2	FFF	FFH		256K-Word Block 7
	2	C00	00H		256K-Word Block 6
	2	BFF	FFH		256K-Word Block 5
	1	800	00H		256K-Word Block 4
	1	7FF	FFH		256K-Word Block 3
	1	400	00H		256K-Word Block 2
	1	3FF	FFH		256K-Word Block 1
Bank 0	0	000	00H		256K-Word Block 0
	0	FFF	FFH		
	0	C00	00H		
	0	BFF	FFH		
	0	800	00H		
	0	7FF	FFH		
	0	400	00H		
	0	3FF	FFH		
	0	000	00H		
	0	FFF	FFH		
	0	C00	00H		
	0	BFF	FFH		
	0	800	00H		
	0	7FF	FFH		
	0	400	00H		
	0	3FF	FFH		
	0	000	00H		

~210

~220

Word-wide (x16)

Software Lock = Hardware-Lock Sectors

RP# = V_{HH} to unprotect if either the block protect or device protect bit is set.

Software Lock = Hardware-Lock Sectors

RP# = V_{cc} to unprotect but must be V_{HH} if the device protect bit is set.

See BLOCK PROTECT/UNPROTECT SEQUENCE for detailed information.

Fig. 15

Fig. 16

Start (WRITE completed)

SR4 = 0?

NO

WRITE Error

YES

SR3 = 0?

NO

Invalid WRITE Error

YES

WRITE Successful

Fig. 17

00000000 00000000 00000000 00000000

Fig. 18

Start (ERASE or BLOCK UNPROTECT completed)

SR4, 5 = 1?

YES

Command Sequence Error

NO

SR3 = 0?

NO

Invalid ERASE or
UNPROTECT Error

YES

SR5 = 0?

NO

Block ERASE or
UNPROTECT Error

YES

ERASE or BLOCK UNPROTECT Successful

Fig. 19

Fig. 20

Start (BLOCK or DEVICE PROTECT completed)

010010110000000000000000

Fig. 21

Fig. 22

Fig. 23

Fig. 24

DON'T CARE
 UNDEFINED

Fig. 25

Fig. 26

Fig. 27

Fig. 28

Frg. 29

DON'T CARE
 UNDEFINED

Fig. 30

Fig. 31

DON'T CARE
 UNDEFINED

300 ↗

Fig. 32

Fig. 33

Fig. 34