The Lack of Fit Test

Review: use the General Linear Test (GLT) approach to test the linear impact

Ho: $\beta_1 = 0$ versus Ha: $\beta_1 \neq 0$

Full model: $Y_i = \beta_0 + \beta_1 X_1 + \epsilon_i$

Under Ha

 $SSE(F) = \Sigma (Y_i - \hat{Y}_i)^2 = SSE$, $df_F = n - 2$

Reduced model: $Y_i = \beta_0 + \epsilon_i = \overline{Y}_{grand\ mean} + \epsilon_i$

Under Ho

 $SSE(R) = \Sigma (Y_i - \overline{Y}_{grand\ mean})^2 = SSTO, \quad df_R = n - 1$

"Significant reduction in SSE?" $\longrightarrow \frac{SSE(R) - SSE(F)}{df_R - df_F} = \frac{MSR}{MSE} \sim F(1, n-2)$

In SLR, the global test (the significance of a model test), the ANVOA F test or the T test for the linear impact are equivalent.

The F test for Lack of Fit

- Formal test for determining whether a specific type of regression function adequately fits the data.
- Assumptions (usual):
 - observations Y|X are
 - 1. i.i.d.
 - 2. normally distributed
 - 3. same variance σ^2
- Requires: repeat observations at one or more X levels (called replicates)

The Bank example

- 11 similar branches of a bank offered gifts for setting up money market accounts
- Minimum initial deposits were specific to qualify for the gift
- Value of gift was proportional to the specified minimum deposit
- Interested in: relationship between specified minimum deposit and number of new accounts opened

Notation

Minimum	Number of
deposit	new accounts
75	28
75	42
100	112
100	136
125	160
125	150
150	152
175	156
175	124
200	124
200	104

- Y_{11} denotes the first measurement (28)made at the first X level (75).
- Y_{12} denotes the second measurement (42)made at the first X level (75).
- \bar{Y}_1 denotes the average $\left(\frac{28+42}{2}=35\right)$ of all y values at the first X level (75).
- \hat{Y}_{11} denotes the predicted response $(b_0 + b_1 X = 87.5)$ for the first measurement at the first X level (75).
- \hat{Y}_{12} denotes the predicted response $(b_0 + b_1 X = 87.5)$ for the second measurement at the first X level (75).
- \hat{Y}_{ij} denotes the predicted response for the jth measurement at the ith X level. $\hat{Y}_{ij} = b_0 + b_1 X_i = \hat{Y}_i$ is the same for all j at the same X_i value.
- \overline{Y}_i denotes the average of all y values at the ith X level, or the group mean.
- \overline{Y} denotes the average of all y values at all X levels, or the grand mean.
- *C* denotes the number of distinct X levels. $c = 6, X_1 = 75 X_2 = 100, X_3 = 125, X_4 = 150, X_5 = 175, X_6 = 200$
- Most Xi has two replicates except X₄

$$X_4 = 150, Y_4 = 152 = \overline{Y}_4 = 152, \hat{Y}_4 = 51 + 0.5(150) = 126$$

 $X_3 = 125, Y_{31} = 160, Y_{32} = 150, \overline{Y}_3 = 155, \hat{Y}_3 = 51 + 0.5(125) = 114$

The F test of ANOVA for Ho: $\beta_1 = 0$ versus Ha: $\beta_1 \neq 0$

Q: Does X have significant linear impact on Y?

Source of Variation	SS	df	MS	F	Conclusion
Regression	$SSR = \Sigma (\widehat{Y}_i - \overline{Y})^2$	1	$MSR = \frac{SSR}{1}$	MSR / MSE ~F(1, n-2)	Reject Ho means X has significant Linear impact on Y
Error	$SSE = \Sigma (Y_i - \widehat{Y}_i)^2$	n-2	$MSE = \frac{SSE}{n-2}$		
Total	$SSTO = \Sigma (Y_i - \overline{Y})^2$	n-1			

The bank example

Response: y

Df Sum Sq Mean Sq F value Pr(>F)

x 1 5141.3 5141.3 3.1389 0.1102

Residuals 9 14741.6 1638.0

There is no evidence to reject $\beta_1=0$, X seems to have no significant linear impact on Y.

The lack-of-fit property

- The linear line is rather flat. But there seems to be more issue found in the scatter plot
- The predictor value $\widehat{Y}_i = b_0 + b_1 X_i$ is systematically off from the actual sample mean \overline{Y}_i . Such model has a poor fit on the data, or lack of fit.
- This linear model shows X has little impact on Y, and has a lack of fit.

• This model demonstrates X has little impact on Y, but doesn't have a lack of fit issue.

The lack of fit test Ho: $E\{Y\}(=\mu)=\beta_0+\beta_1X$, Ha: $E\{Y\}(=\mu)\neq\beta_0+\beta_1X$

Q: Does the linear model fit the data, or is the predicted mean response value the same as the actual mean response value?

Reduced model (Ho):
$$\widehat{Y}_{ij} = \beta_0 + \beta_1 X_i$$

$$SSE(Reduced) = \Sigma \Sigma (Y_{ij} - \hat{Y}_i)^2 = SSE, \quad dfE_{Reduced} = n - 2$$

Full model (Ha): $\hat{Y}_{ii} = \mu_i + \varepsilon_{ii}$

$$\widehat{Y}_{1j} = \overline{Y}_1$$
, the residual $= Y_{1j} - \overline{Y}_1$ for $j = 1$ or 2

$$\hat{Y}_{2j} = \overline{Y}_2$$
, the residual = $Y_{2j} - \overline{Y}_2$ for $j = 1$ or 2

$$\hat{Y}_{3j} = \bar{Y}_3$$
, the residual $= Y_{3j} - \bar{Y}_2$ for $j = 1$ or 2

$$\hat{Y}_{4j} = \bar{Y}_4$$
, the residual $= Y_{4j} - \bar{Y}_4 = 0$ for no replicate

$$\hat{Y}_{5j} = \bar{Y}_5$$
, the residual $= Y_{5j} - \bar{Y}_5$ for $j = 1$ or 2

$$\hat{Y}_{6j} = \bar{Y}_6$$
, the residual $= Y_{6j} - \bar{Y}_6$ for $j = 1$ or 2

$$SSE(Full)$$
 = Total residuals summing up i and j

$$= \Sigma \Sigma (Y_{ij} - \overline{Y}_i)^2,$$

$$df E_{full} = n - 1 + \cdots (n - 1) = n - 6 = n - c$$

The lack of fit test Ho: $E\{Y\}(=\mu) = \beta_0 + \beta_1 X$, Ha: $E\{Y\}(=\mu) \neq \beta_0 + \beta_1 X$

Q: Does the linear model fit the data, or is the predicted mean response value the same as the actual mean response value?

Reduced model (Ho):
$$\widehat{Y}_{ij} = \beta_0 + \beta_1 X_i$$

$$SSE(Reduced) = \Sigma \Sigma (Y_{ij} - \hat{Y}_i)^2 = SSE, df_R = n - 2$$

Full model (Ha):
$$Y_{ij} = \mu_i + \varepsilon_{ij}$$

$$SSE(Full) = \Sigma \Sigma (Y_{ij} - \bar{Y}_i)^2$$
, $df_F = n - c$

$$F = \frac{\frac{SSE(R) - SSE(F)}{df_R - df_F}}{\frac{SSE(F)}{df_F}} = \frac{\frac{SSE(R) - SSE(F)}{n - 2 - (n - c)}}{\frac{SSE(F)}{n - c}}$$

$$^{\sim}F(c-2,n-c)$$

Partition the variances

Partition the residual errors for lack of fit

Partition the residual errors for lack of fit, SSPE and SSLF

 $(Y_{ij} - \hat{Y}_i)$ measures the total error deviation in one observation.

 $(Y_{ij} - \bar{Y}_i)$ measure the pure error deviation, which is the randomness result from the data, not from the choice of model.

 $(\bar{Y}_i - \hat{Y}_{ij})$ measure the lack of fit deviation, which is the error result from the choice of model and could be improved with a better model.

Do this for every data point, and sum, we have

$$\Sigma\Sigma(Y_{ij} - \widehat{Y}_{ij})^{2} = \Sigma\Sigma(Y_{ij} - \overline{Y}_{j})^{2} + \Sigma\Sigma(\overline{Y}_{j} - \widehat{Y}_{ij})^{2}$$

$$SSE = SSPE + SSLF$$

Partition the previous ANOVA table on the SSE term further into SSLF and SSPE

Source of Variation	SS	df	MS	F	Conclusion
Regression	$SSR = \Sigma \Sigma (\widehat{Y}_{ij} - \overline{Y})^2$	1	$MSR = \frac{SSR}{1}$	MSR /MSE ~F(1, n-2)	Reject Ho means X has significant Linear impact on Y
Error	$SSE = \Sigma \Sigma (Y_{ij} - \widehat{Y}_{ij})^2$	n-2	$MSE = \frac{SSE}{n-2}$		
Lack of fit (in Error)	$SSLF = \Sigma \Sigma (\overline{Y}_i - \widehat{Y}_{ij})^2$	<i>c</i> − 2	$MSLF = \frac{SSLF}{c-2}$	MSLF /MSPE ~F(c-2, n-c)	Reject Ho means the current model does not fit the data
Pure error (in Error)	$SSPE = \Sigma \Sigma (Y_{ij} - \overline{Y}_i)^2$	n-c	$MSPE = \frac{SSPF}{n-c}$		
Total	$SSTO = \Sigma \Sigma (Y_{ij} - \overline{Y})^2$	n-1			

Example 1, the R output on the linear impact, or the model significance test

Source of Variation	SS	df	MS	F	Conclusion
Regression	5141	1	5141	?	?
Error	14742	11-2=9	1638		
Lack of fit(in Error)	13594	6-2=4	3398.5		
Pure error(in Error)	1148	11-6=5	229.6		
Total	19883	10			

bankR.mod<-lm(y~x, bank)
anova(bankR.mod)</pre>

```
Response: y

Df Sum Sq Mean Sq F value Pr(>F)

x 1 5141.3 5141.3 3.1389 0.1102

Residuals 9 14741.6 1638.0
```

Example 2, the R output on the lack of fit test

Source of Variation	SS	df	MS	F	Conclusion
Regression	5141	1	5141	3.14 (p=0.11)	X does not have significant linear impact on Y
Error	14742	n-2=11-2=9	1638		
Lack of fit(in Error)	13594	c-2=6-2=4	3398.5	?	?
Pure error(in Error)	1148	N-c=11-6=5	229.6		
Total	19883	10			

```
Build the reduced model under Ho: \hat{Y} = \beta_0 + \beta_1 X bankR.mod<-lm(y~x, bank) anova(bankR.mod)
```

Build the full model under Ha: $\hat{Y} = \mu$ bankF.mod<-lm(y~as.factor(x),bank) anova(bankR.mod, bankF.mod)

```
Response: y

Df Sum Sq Mean Sq F value Pr(>F)

X 1 5141.3 5141.3 3.1389 0.1102

Residuals 9 14741.6 1638.0

Model 1: y ~ x

Model 2: y ~ as.factor(x)

Res.Df RSS Df Sum of Sq F Pr(>F)

1 9 14742
2 5 1148 4 13594 14.801 0.005594 **
```

Fs= MSLF/MSPE = $\frac{13594}{4} \div \frac{1148}{5} = 14.801$, this model has a lack of fit issue.

The lack of fit test is not valid without replicates. But we can manually create replicates by grouping.

• SSPE = $\Sigma\Sigma(Y_{ij} - \overline{Y}_{ij}) = 0$

size	hour
20	113
30	121
40	160
50	221
60	224
70	361
80	399
90	376
100	353
110	435
120	546

		y ~ x y ~ fa	acto	or(x))			
Res.	. Df	R55	DΕ	Sum	of	Sq	F	Pr(>F)
1	9	16602				_		
2	0	0	9		160	502		

Solution: grouping

```
g<-c(30,30,30,60,60,60,90,90,90,115,115)
tolucanr$g<-g
tolucanrgR.mod<-lm(y~g, data=tolucanr)
tolucanrgF.mod<-lm(y~factor(g),data=tolucanr)
summary(tolucanrgR.mod)
anova(tolucanrgR.mod)
anova(tolucanrgR.mod,tolucanrgF.mod)</pre>
```

```
Model 1: y ~ g

Model 2: y ~ factor(g)

Res.Df RSS Df Sum of Sq F Pr(>F)

1 9 21775

2 7 21276 2 498.74 0.082 0.9221
```