TICS575 - Técnicas para Big Data

Guía Índices

Considera la relación Personas(pid INT PRIMARY KEY, nombre VARCHAR(100)) cuyo tamaño es de 1 millón de tuplas, en que cada página puede contener 10 tuplas. Inicialmente las tuplas de Persona están ordenadas de forma aleatoria, y además, están presentes todos los valores desde 1 a 1.000.000 (una forma de verlo es pensar que pid es un int auto-incremental). Ahora tienes que calcular el costo I/O para cuatro consultas que veremos más adelante, para los siguientes 5 casos:

- Analizar la tabla Personas sin ningún índice.
- Usar un $B+Tree\ clustered$ sobre el atributo pid. puedes suponer que el árbol es de altura h. Asuma que las páginas están al 100% de capacidad.
- Usar un $B+Tree\ unclustered$ sobre el atributo pid. puedes suponer que el árbol es de altura h y que en una página caben M punteros con M > 10. Asuma que las páginas están al 100% de capacidad.
- Usar un *Hash Index clustered* en donde cada tupla está en un casillero distinto.
- Usar un Hash Index unclustered en donde cada tupla está en un casillero distinto.

Las consultas son:

- 1. Encontrar todas las tuplas de la tabla Personas.
- 2. Encontrar todas las tuplas de la tabla Personas tal que pid < 64.
- 3. Encontrar todas las tuplas de la tabla Personas tal que pid = 2048.
- 4. Encontrar todas las tuplas de la tabla Personas tal que $100000 \le pid < 150000$.

Solución) Los costos son los siguientes:

${f Query}$	Sin índice	B+Tree C	B+Tree U	Hash Índex C	Hash Índex U
Personas	10^{5}	$h + 10^5$	$h + \frac{10^6}{M} + 10^6$	10^{6}	$2 \cdot 10^{6}$
$\mathtt{pid} < 64$	10^{5}	$h + \frac{64}{10}$	$h + \frac{64}{M} + 64$	64	$2 \cdot 64$
$\mathtt{pid} = 2048$	10^{5}	h	h+1	1	$2 \cdot 1$
$100000 \leq {\tt pid} < 150000$	10^{5}	$h + \frac{50000}{10}$	$h + \frac{50000}{M} + 50000$	50000	$2 \cdot 50000$