Problem 1

Theorem 1. Let $f:(a,b)\to\mathbb{R}$ be such that for all $x_0\in(a,b)$, there is a support line

$$l_{x_0}(x) = f(x_0) + m(x - x_0)$$

for some $m \in \mathbb{R}$ such that

$$f(x) \ge l_{x_0}(x)$$

for all $x \in (a, b)$. Then f is convex on (a, b).

Solution

Proof. Suppose that f is not convex on (a,b). Then, for some $[x_1,x_2] \subset (a,b)$, there exists an $x_0 \in [x_1,x_2]$ such that $f(x_0) > L(x_0)$, where L is the straight line such that $L(x_1) = f(x_1)$ and $L(x_2) = f(x_2)$. We have $l_{x_0}(x_1) \leq f(x_1) = L(x_1)$ and $l_{x_0}(x_2) \leq f(x_2) = L(x_2)$. Since L and l_{x_0} are both straight lines, we have that $l_{x_0}(x) \leq L(x)$ for all $x \in [x_1, x_2]$. However, we have

$$l_{x_0}(x_0) = f(x_0) + m(x_0 - x_0) = f(x_0) > L(x_0),$$

and we have reached a contradiction. Thus, we have proven that f is convex.

Problem 2

Theorem 2. Let $f:[a,b] \to \mathbb{R}$ be absolutely continuous and f'(x) be increasing except on a zero measure subset of [a,b]. Then f is convex on [a,b].

Solution

We will start by proving a lemma which will aid in the proof of this theorem:

Lemma 1. Let $f:[a,b] \to \mathbb{R}$ be continuous and satisfy the midpoint convexity

$$f\left(\frac{x_1+x_2}{2}\right) \le \frac{f(x_1)+f(x_2)}{2}.$$

for any $x_1, x_2 \in [a, b]$. Then f is convex on [a, b].

Proof. We will first prove, that for any $n \in \mathbb{N}$, if $x_1, ..., x_{2^n} \in [a, b]$, then

$$f\left(\frac{x_1 + \dots + x_{2^n}}{2^n}\right) \le \frac{f(x_1) + \dots + f(x_{2^n})}{2^n}.$$

To prove this, we note that the base case (n = 1) is true by midpoint convexity of f. Now, suppose for some $n \in \mathbb{N}$ that if $x_1, ..., x_{2^n} \in [a, b]$, then

$$f\left(\frac{x_1 + \dots + x_{2^n}}{2^n}\right) \le \frac{f(x_1) + \dots + f(x_{2^n})}{2^n}.$$

Let $x_1, ..., x_{2^{n+1}} \in [a, b]$. Then, we have

$$\begin{split} f\left(\frac{x_1+\ldots+x_{2^{n+1}}}{2^{n+1}}\right) &= f\left(\frac{\frac{x_1+\ldots+x_{2^n}}{2^n}+\frac{x_{2^n+1}+\ldots+x_{2^{n+1}}}{2^n}}{2}\right) \\ &\leq \frac{f\left(\frac{x_1+\ldots+x_{2^n}}{2^n}\right)+f\left(\frac{x_{2^n+1}+\ldots+x_{2^{n+1}}}{2^n}\right)}{2} \\ &= \frac{f(x_1)+\ldots+f(x_{2^{n+1}})}{2^{n+1}}, \end{split}$$

and our induction is complete.

March 28, 2023

From elementary analysis, we have that rational numbers of the form $\frac{m}{2^n}$ with $1 \le m \le 2^n$ are dense in [0,1]. Let $[a_1,b_2] \subseteq [a,b]$. Fix some $n \in \mathbb{N}$ and some $1 \le m \le 2^n$. Setting $x_i = a_i$ for $1 \le i \le m$, and $x_i = b_i$ for $m+1 \le i \le 2^n$, we see from the above argument that

$$f\left(\frac{x_1 + \dots + x_{2^n}}{2^n}\right) \le \frac{f(x_1) + \dots + f(x_{2^n})}{2^n}$$

$$= \frac{mf(a_i) + (2^n - m)f(b_i)}{2^n}$$

$$= \frac{m}{2^n}f(a_i) + (1 - \frac{m}{2^n})f(b_i).$$

Finally, let $\theta \in [0,1]$ be a real number. For each $n \in \mathbb{N}$, define $1 \le m_n \le 2^n$ to be the largest number such that $\frac{m_n}{2^n} \ge \theta$. Then, $\frac{m_n}{2^n} \to \theta$, and it follows from the continuity of f that

$$f(\theta a_i + (1 - \theta)b_i) \le \theta f(a_i) + (1 - \theta)f(b_i),$$

and we have shown that f is convex.

Now we are ready to prove the main theorem:

Proof. Let $[x_1, x_2] \subseteq [a, b]$. By the above lemma, it will suffice to show that

$$f\left(\frac{x_1+x_2}{2}\right) \le \frac{f(x_1)+f(x_2)}{2}.$$

Since f is absolutely continuous, we have

$$f\left(\frac{x_1+x_2}{2}\right) - f(x_1) = \int_{x_1}^{\frac{x_1+x_2}{2}} f'(x)dx,$$

and

$$f(x_2) - f\left(\frac{x_1 + x_2}{2}\right) = \int_{\frac{x_1 + x_2}{2}}^{x_2} f'(x)dx.$$

Now, since f' is increasing almost everywhere, we have

$$\int_{x_1}^{\frac{x_1+x_2}{2}} f'(x)dx \le \int_{\frac{x_1+x_2}{2}}^{x_2} f'(x)dx.$$

With this, we have

$$f\left(\frac{x_1+x_2}{2}\right) - f(x_1) \le f(x_2) - f\left(\frac{x_1+x_2}{2}\right)$$
$$f\left(\frac{x_1+x_2}{2}\right) \le \frac{f(x_1) + f(x_2)}{2}$$

and we have proven that f is midpoint-convex, and therefore convex.

Problem 3

Theorem 3. Let $f:[a,b] \to \mathbb{R}$ and let $E \subseteq [a,b]$. Assume that f'(x) exists with a finite value for any $x \in E$. Then,

$$|f(E)|_e \le \int_E |f'(x)| dx.$$

Proof. We start by defining the set of values of f on E as $f(E) = \{f(x) : x \in E\}$. We then define the outer measure of this set as $|f(E)|_e = \inf \sum_{i=1}^{\infty} |I_i| : f(E) \subseteq \bigcup_{i=1}^{\infty} I_i$, where the I_i are intervals. Now, let $A \subseteq E$ be a subset of E. By the mean value theorem, for any $x, y \in A$, there exists a point $c \in A$

Now, let $A \subseteq E$ be a subset of E. By the mean value theorem, for any $x, y \in A$, there exists a point $c \in A$ such that f(x) - f(y) = f'(c)(x - y). Therefore, taking absolute values and using the triangle inequality, we have $|f(x) - f(y)| = |f'(c)||x - y| \le \sup_{x \in A} |f'(x)||x - y|$.

March 28, 2023 2

We can now cover f(A) with intervals of length at most $\sup_{x \in A} |f'(x)|$ as follows: for each $f(x) \in f(A)$, choose an interval I_x centered at f(x) with length ϵ_x , where ϵ_x is such that $2\epsilon_x \sup_{x \in A} |f'(x)| \ge \epsilon_x |A|e$ (such an ϵ_x exists since $\sup x \in A|f'(x)|$ is finite and |A|e is also finite). Then, we have $f(A) \subseteq \bigcup x \in AI_x$ and $\sum_{x \in A} l(I_x) \le 2 \sup_{x \in A} |f'(x)| \sum_{x \in A} \epsilon_x \le 2 \sup_{x \in A} |f'(x)| \cdot |A|_e$.

By the definition of the outer measure of f(E), we have $|f(E)|e \le \sum i = 1^{\infty} l(I_i)$ for any covering of f(E) by intervals I_i , including the one above. Therefore, we obtain $|f(A)|e \le \sum x \in Al(I_x) \le 2 \sup_{x \in A} |f'(x)| \cdot |A|_e$. Taking the infimum over all coverings of f(E) by intervals, we have $|f(A)|e \le \inf 2 \sup x \in A|f'(x)| \cdot |A|_e$.

3 March 28, 2023