Print to PDF

MLX

MLX is a NumPy-like array framework designed for efficient and flexible machine learning on Apple silicon, brought to you by Apple machine learning research.

The Python API closely follows NumPy with a few exceptions. MLX also has a fully featured C++ API which closely follows the Python API.

The main differences between MLX and NumPy are:

- Composable function transformations: MLX has composable function transformations for automatic differentiation, automatic vectorization, and computation graph optimization.
- Lazy computation: Computations in MLX are lazy. Arrays are only materialized when needed.
- Multi-device: Operations can run on any of the supported devices (CPU, GPU, ...)

The design of MLX is inspired by frameworks like <u>PyTorch</u>, <u>Jax</u>, and <u>ArrayFire</u>. A notable difference from these frameworks and MLX is the *unified memory model*. Arrays in MLX live in shared memory. Operations on MLX arrays can be performed on any of the supported device types without performing data copies. Currently supported device types are the CPU and GPU.

Install

Build and Install

Usage

Quick Start Guide

Lazy Evaluation

Unified Memory

Indexing Arrays

Saving and Loading Arrays

Function Transforms

Compilation

Conversion to NumPy and Other Frameworks

Distributed Communication

Using Streams

Examples

Linear Regression

Multi-Layer Perceptron

LLM inference

Python API Reference

Array

Data Types

Devices and Streams

Operations

Random

Transforms

Fast

FFT

Linear Algebra

Metal

Neural Networks

Optimizers

Distributed Communication

Tree Utils

C++ API Reference

Operations

Further Reading

Custom Extensions in MLX

Metal Debugger

Custom Metal Kernels