LATEX & Python 环境向导

Guo Jiatong*

2025年夏

摘要

机器视觉授课内容包括四部分,分别为数字图像处理技术、机器视觉技术、机器学习技术、深度学习技术四部分。通过本课学习,希望掌握使用 VSCode 编辑器及 Python 语言在视觉学习方面的应用。同时,通过本课程,希望能够全程使用 IAT_EX 进行笔记记录。

目录

1	\mathbf{Pyt}	hon	2
	1.1	Windows 系统情况下的相关配置	2
	1.2	Mac 系统情况下的相关配置	3
2	ΙΑΤΙ	$_{ m C}$ $ m X$ 使用基础命令	4
	2.1	代码基本结构	4
	2.2	单双栏版式变换	5
	2.3	公式插入	5
		2.3.1 普通公式	6
		2.3.2 矩阵	8
		2.3.3 转义符号	9
	2.4	枚举	10
	2.5	图片插入	10
		2.5.1 单图插入	10
		2.5.2 多图插入	10
	2.6	表格插入	11
	2.7	文本框插入	12
		2.7.1 基于 \fbox 简单文本框	12
		2.7.2 基于 \tcolorbox 复杂文本框	12
	2.8	引用插入	13
		2.8.1 正文引用	13
		282 文献引田	13

^{*}作者,E-mail:guojiatom2006@outlook.com

1 Python 环境配置

1.1 Windows 系统情况下的相关配置

使用Anaconda 作为 Python 内核, 搭配 VSCode 作为编辑器可完成相关设置。具体步骤如下:

1. 在 Anaconda Prompt 中搭建环境,指令为"conda create -n 环境名 python=版本号"。 例如,欲想搭建一个名为myenv的 Python版本为3.11.11的环境,我们可以输入以下指令:

conda create -n myenv python=3.11.11

2. 搭建完虚拟环境后, 要将其激活。

激活指令为"conda activate 环境名"。假设已经以"myenv"搭建好环境,我们可以输入以下指令以进入此虚拟环境。(若不进行此步骤,后续安装包的过程中则会直接安装在 base 基环境下)

conda activate myenv

- 3. 完成环境激活后,则可以安装相应的软件包。
 - 一些较为常见的软件包如下表 1 所示:

表 1: 常见 Python 软件包汇总

Package	Package	Package	Package	
absl-py	cachetools	certifi	charset-normalizer	
cloudpickle	colorama	contourpy	cycler	
et-xmlfile	filelock	fonttools	google-auth	
google-auth-oauthlib	grpcio	gym	gym-notices	
idna	Jinja2	kiwisolver	Markdown	
MarkupSafe	matplotlib	mpmath	networkx	
numpy	oauthlib	opency-python	openpyxl	
packaging	pandas	pathlib	pillow	
\mathbf{pip}	protobuf	pyasn1	pyasn1 _ modules	
pyparsing	python-dateutil	pytz	PyYAML	
requests	requests-oauthlib	rsa	\mathbf{scipy}	
seaborn	setuptools	six	sympy	
tensorboard	tensorboardX	$\mathbf{t}\mathbf{k}$	torch	
torchaudio	torchvision	tqdm	tzdata	
urllib3	Werkzeug	wheel	xlrd	

可以使用"pip install Package"指令安装相关软件包,其中 Package 为表 1中的软件包或其之外的软件包。假设欲安装numpy 软件包,我们可以输入如下指令:

pip install numpy

注意!

上述指令可能安装最新版本的对应的软件包或者是最适配当前 Python 版本的软件包。如果想要安装指定版本的软件包,应当使用"pip install Package == Version"指令。以安装 2.2.6 版本的 numpy 包为例:

pip install numpy==2.2.6

4. 其余的部分有用指令见下表 2.

表 2: 部分其他 conda 指令

指令	代码	
删除环境中的包	pip uninstall Package	
删除环境	conda remove -n Env.name	
退出虚拟环境(回到 base)	detective	
查看虚拟环境中的包库	pip list	
查看 Env 列表(可以用于改环境名)	conda env list	

1.2 Mac 系统情况下的相关配置

对于 Mac 系统,我们可以直接使用系统带有的终端进行配置,而不需要安装 Anaconda。不过我们需要在终端中安装 Homebrew,此插件源为 Github,有时内网可能不灵,解决方案是多试几次或者科学上网(可以使用 Infiniport)。

1. 首先可以使用指令来检测 Mac 是否自带 Python。指令如下:

python -version (对于 Mac 自带 Python 版本为 2.x) python3 -version (对于大部分 Mac Python 版本为 3.x)

2. 若无预置 Python,则需要通过 Homebrew 包管理器来安装最新的 Python 版本。如果还没有安装 Homebrew,应先安装它。(源在 Github,或许需要科学上网 > infiniport.xyz) 在终端中输入:

/bin/bash -c " \$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"

3. Homebrew 安装完成后,使用其安装 Python。指令为:

brew install python

4. 为了避免不同项目之间的冲突,应搭建虚拟环境,并在虚拟环境中搭建对应的包。此步骤大体包含创建虚拟环境、激活虚拟环境、在虚拟环境中安装包、退出虚拟环境 四部分。 首先,创建虚拟环境。以搭建环境名为"myenv"的 Python 环境为例,其代码如下所示。

python3 -m venv myenv

然后,激活虚拟环境,代码如下所示。

source myenv/bin/activate

在所创建的虚拟环境中安装对应的软件包,以安装 numpy 包为例,代码如下所示。

pip install numpy

最后,所有上述步骤完成后,可以使用<u>deactivate</u> 指令退出虚拟环境,并在 IDE 中进行配置,不再过多赘述。

2 IATEX 使用基础命令

2.1 代码基本结构

\documentclass{article} % 定义文档类型

\usepackage $\{amsmath, amssymb, geometry, graphicx, float, caption, subfigure, booktabs, tcolorbox, ctex}$ % 引入宏包

\geometry{a4paper, margin=2.5cm} % 设置页边距

\title{标题} % 设置标题

\author{<u>作者名 1</u> \thanks{<u>通讯作者.</u>} \and <u>作者名 2</u> \and etc.} % **设置作者** \date{日期} % 设置日期

% 正式结构 %

\begin{document}

\maketitle % 忘加此句会导致无标题!

\begin{absract}

摘要部分内容. % 填写摘要内容

\end{absract}

\tableofcontents % 自动创建目录

\newpage % 换页命令

\section{第一部分-标题}

第一部分-正文

\subsection{第一部分第一章-标题}

第一部分 第一章-正文

\subsubsection{第一部分 第一章 第一节-标题}

第一部分 第一章 第一节-正文

\end{document}

上面的代码框即为基本 LATEX 文档结构,掌握基本结构后即可在基本结构的基础上学习细节内容,填充在结构中就可以形成一篇文章了。本章接下来的内容里,将会分类介绍、由简入繁地介绍各个部分的书写办法。

基本步骤为: 公式 \rightarrow 枚举 \rightarrow 图 \rightarrow 表 \rightarrow 文本框 \rightarrow 引用文献

^{*}注:此处\usepackage 使用的宏包已足够 $\leq 90\%$ 的排版场景,在后续表3中将标注各宏包的功能。

表 3: \usepackage 中的宏包及其功能

宏包名	功能	
amsmath	AMS 数学拓展包	
amssymb	数学拓展包	
geometry	页面设置	
float	图表位置设置	
multicol	单双栏页面编辑	
graphicx	插图包	
caption	图表标题	
subfigure	多图拓展包	
booktabs	三线表	
tcolor b o x	文本框拓展包	
makecell	表格内换行	

2.2 单双栏版式变换

这节的出现比较矛盾,它只是一个小点,但是却又有时候很重要。但是将它放到以下任一节都 略显突兀、格格不入。故此处单独拿出一节来说明下它。

这个地方我们将会用到 multicol 宏包, 我将其译为多样栏功能。使用此包你可以既在某些地方使用一栏版式,又可以在某些地方分成两栏、三栏乃至更多。其基础语法很简单,只需在你想要分栏的地方加入 multicols 环境即可。演示如下.

\begin{document}

对于此处不在 multicols 环境内的内容, 都是 单栏 内容。

 $\left\{ \min\{\text{multicols}\} \right\}$

对于此在 multicols 环境内的内容, LATEX 将会自动分为 两栏 显示。

 $\ensuremath{\mbox{end}\{\mbox{multicols}\}}$

\end{document}

对于此处不在 multicols 环境内的内容,都是单栏内容。

IFT_EX 对于此处在 内容, 其将会自动把 multicols 环境内的 内容分为两栏显示。

总结 multicols 语法为:

\begin{multicols}{<u>分栏数</u>目}
分栏内容

\end{multicols}

2.3 公式插入

在此节,将讲述普通公式的插入、公式作为转义字符在文本插入领域的应用等。由于矩阵的插 入具有一定特殊性,故单独拿出一小节梳理。

2.3.1 普通公式

对于普通公式,大致要考虑三个问题:

- 行内公式 or 行间公式
- 编号公式 or 不编号公式
- 单行公式 or 多行公式

可以简单画如下表 4相应的表格, 使得三个问题更加直观。

表 4: 普通公式分类

分类	单行公式	多行公式	
行内公式	不编号公式 (Con.1)		
行间公式	编号公式 (Con.2) 不编号公式 (Con.3)	编号公式 <i>(Con.4)</i> 不编号公式 <i>(Con.5)</i>	

• 对于 Con.1 →

\$ Equation \$ %Equation 处为输入公式

• 对于 Con.2 →

\begin{equation}

Equation %Equation 处为输入公式

\end{equation}

• 对于 *Con.3* →

\begin{equation*} % 只需加入 * 号即可不编号公式.

Equation %Equation 处为输入公式

\end{equation}

另外,还有一种方式可以不编号行间公式。如下所示.

\$Equation\$\$

• 对于 *Con.4* →

 $\left\{ \operatorname{align} \right\}$

 $Equation 1 \setminus$

 $Equation 2 \setminus$

使用 &= 可以在等号处对齐.

 \end{align}

• 对于 Con.5 →

 $\begin*{align} % 只需加入 * 号即可不编号此部分的全部公式.$

 $Equation 1 \setminus$

 $Equation 2 \setminus$

使用 &= 可以在等号处对齐.

 \end{align}

此外,还可以使用多个 \$\$Equation\$\$ 换行叠加来实现。如下所示.

```
\$\$Equation1 \$\$ \setminus \$
\$\$Equation2 \$\$
```

注意!

若只想要对多行行间公式的部分公式不编号,可以采用\notag 对其进行处理。如下所示.

```
\begin{align}

<u>Equation1</u> \\

<u>Equation2</u> \notag \\ % 此行公式不会被编号.

<u>Equation3</u> \\

<u>使用 &= 可以在等号处对齐.</u>
\end{align}
```

对于公式输入这一模块,除了掌握(记忆)基本的运算符之外,还应当多加练习。IATeX 公式的符号有很多,下面列举部分常用的 IATeX 公式符号. (如下表 5所示)除此之外,关于换行与空格的知识如下。

1. 空格符号

- 特殊空格符号~→不间断空格符,通常用于避免在两行之间断开。
- \+ Space 键位 → 较短的不间断空格,可以用在需要较小空格的位置。
- $\backslash hspace\{\underline{\mathsf{K}}\underline{\mathsf{E}}\} \to fall + fall +$

单位: \mathbf{em} (字体大小单位) $/\mathbf{cm}$ (厘米) $/\mathbf{pt}$ (磅) 等。

- \quad $\mathcal{D} \setminus \mathbf{qquad} \to \mathbf{fi}$ 便空格命令,分别插入 1em 和 2em 宽度的空格。

2. 换行符号

• \vspace{长度} → 插入指定长度的垂直空白。

```
第一行内容...... \\
\vspace{1cm}
第二行内容......
```

- \\ → 换行符,常用于表格、公式以及某些环境中强制换行。
- \newline → 与 \\ 类似,但在某些情况下更符合语法规范。

```
第一行内容……\newline
第二行内容……
```

3. 其余功能

- * → 换行并禁止分页,适用于需要将两行内容固定在同一页的情况。
- par 环境 \rightarrow 在 par 环境中的内容会自动根据页面宽带换行。

 $\left\{ \operatorname{par}\right\}$

长文本内容可以自动根据页面宽度换行.

 \end{par}

表 5: 常用的 LATEX 公式符号

符号	语法	符号	语法	符号	语法	符号	语法
α	\alpha	β	\beta	γ	\gamma	θ	\theta
arepsilon	\vert varepsilon	δ	\delta	μ	\mu	ν	\nu
η	\eta	ζ	\zeta	λ	\lambda	ψ	\psi
σ	\sigma	ξ	\xi	au	\tau	ϕ	\phi
φ	\varphi	ρ	$\$	χ	$\$	ω	\omega
π	\ pi						
Σ	\Sigma	П	\Pi	Δ	\Delta	Γ	\Gamma
Ψ	$\backslash \mathrm{Psi}$	Θ	\Theta	Λ	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	Ω	$\backslash \text{Omega}$
Φ	Φ	Ξ	\Xi				
+	+	_	-	×	\times	÷	\div
∂	\partial	∞	$\setminus infty$	\rightarrow	$\backslash to$	←	$\backslash \mathrm{gets}$
\sum	\sum	П	\prod	ſ	\int	∮	\oint
\iint	\iint	\iiint	$\setminus \text{iiint}$	$\frac{a}{b}$	$\frac{a}{b}$	\vec{a}	$\operatorname{\backslash vec}\{a\}$
\sqrt{x}	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$\sqrt[n]{x}$	$\backslash sqrt[n]\{x\}$	\dot{a}	$\det\{a\}$	\ddot{a}	$\backslash ddot\{a\}$
f'(x)	$\{\underline{f}\}'(x)$	f''(x)	$\{\underline{f}\}''(x)$	x^n	$x^{}\{n\}$	x_n	$x_\{n\}$

2.3.2 矩阵

矩阵环境分为 pmatrix、bmatrix、Bmatrix、vmatrix、Vmatrix、matrix 六种,接下来将逐步展开说明各种形式的矩阵形状。对于所有环境的矩阵,一大共性是&表示分割元素,而 \\表示换行。

1. pmatrix 环境下的矩阵

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$

2. bmatrix 环境下的矩阵

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

3. Bmatrix 环境下的矩阵

$$A = \begin{cases} a_{11} & a_{12} \\ a_{21} & a_{22} \end{cases}$$

4. vmatrix 环境下的矩阵

$$A = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$$

5. Vmatrix 环境下的矩阵

$$A = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$$

6. matrix 环境下的矩阵

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$

*注: 所有矩阵必须存在于数学环境下. (即 equation*或 equation 环境)

2.3.3 转义符号

本小节较为简单. 大致将转义字符分为两类:

1. 基本类 → 基本的一些符号,如 #,\$,%,&,{,},_等。

$$\#$$
 , $\$$, $\%$, & , $\{$, $\}$, $_$ \rightarrow $\setminus \#$, $\setminus \$$, $\setminus \%$, $\setminus \&$, $\setminus \{$, $\setminus \}$, $\setminus _$.

- 2. 特殊类 → 比较特殊的符号, 如 ^ ,- , \ 等。
 - ^ 符号 → \^{{}}
 - - 符号 → \--{}
 - \ 符号 → \$\backslash\$ (公式转义) 或 \verb|\| 文本转义

2.4 枚举

枚举主要分为两种,一种为不计数分条枚举,一种为计数分条枚举。

1. 不计数分条枚举

```
\begin{itemize}
\item <u>第一条内容</u>
\item <u>第二条内容</u>
... ...
\item <u>第 n 条内容</u>
\end{itemize}
```

- 第一条内容
- 第二条内容
 -
- 第 n 条内容

2. 计数分条列举

```
\begin{enumerate}
\item 第一条内容
\item 第二条内容
... ...
\item 第 n 条内容
\end{enumerate}
```

- (a) 第一条内容
- (b) 第二条内容

... ...

(c) 第 n 条内容

2.5 图片插入

本小节介绍如何借助 \graphicx 插入单图,以及借助 \graphicx \subfigure 库插入多图。共通之处是都需要借助一个 \begin{figure} 环境。

2.5.1 单图插入

单图插入语法较为简单,如下所示。

2.5.2 多图插入

多图插入的语法在单图插入的基础上,加入 subfigure 语法即可,然后分别对图片进行定义。对 分图片的定义同样有 includegraphics、lable 的步骤,但不一样的是,对于图片的标题,是在 subfigure 函数后以一[]号框起输入。示例语法如下所示。

```
\begin{figure}[H]
\centering % 使得图片居中
\subfigure[图 A 图名]
\lable{图名引用 ID<A>}
\includegraphics[width=0.5\textwidth]{图片路径名}
\subfigure[图 B 图名]
\lable{图名引用 ID<B>}
\includegraphics[width=0.5\textwidth]{图片路径名}
\caption{总图名}
\caption{总图名}
\lable{总图名引用 ID}
\end{figure}
```

2.6 表格插入

表格插入仅介绍两种常用的表格样式,一是常用的三线表,二是常用的正常框线的表格。

• 三线表

```
\begin{table}[H]
% 此处的 [H] 指令为固定位置 (float 宏包)
   \centering
   \caption{表名}
   \label{表名引用 ID}
   \\ \textbf{\tabcolsep}{10pt}
                                                  表 6: 示例表名
   % 列间距调整,默认 6pt.
                                         行1列1
                                                    行1列2
                                                               行1列3
   \begin{tabular}{| @{} | llc @{} |}
   %@{}的作用为取消表格左右间距.
                                         行 2 列 1
                                                   行 2 列 2
                                                               行 2 列 3
   %llc 表示三列对齐方式 LeftLeftCenter
                                                  行 3 列 2
                                                               行 3 列 3
                                         行 3 列 1
   % 除了 [l],[c] 对齐方式外, 还有 [r]→right.
                                                   行 4 列 2
                                         行 4 列 1
                                                               行 4 列 3
       \toprule
                                         行5列1
                                                  行 5 列 2
                                                               行 5 列 3
           xx & xx & xx \\
                                         行 6 列 1
                                                    行 6 列 2
                                                               行 6 列 3
       \midrule
           xx & xx & xx \\
           xx & xx & xx \\
       \bottomrule
   \end{tabular}
\end{table}
```

需要注意的是,我们还可以通过在 llc 之间加入"丨"符号,实现表格竖向线条的添加。这点在全线表中会得到体现。

• 全线表

```
\left\{ \text{table} \right\} [H]
% 此处的 [H] 指令为固定位置 (float 宏包)
    \centering
    \caption{表名}
    \label{表名引用 ID}
    \left[ \left( \frac{10pt}{10pt} \right) \right]
   % 列间距调整,默认 6pt.
    %@{} 的作用为取消表格左右间距.
   %llc 表示三列对齐方式 LeftLeftCenter
   % 除了 [l],[c] 对齐方式外,还有 [r]→right.
        \hline
            xx & xx & xx \\
        \hline
            xx & xx & xx \\
            xx & xx & xx \\
        \hline
    \end{tabular}
\end{table}
```

表 7: 示例表名

行1列1	行1列2	行1列3
行 2 列 1	行2列2	行 2 列 3
行 3 列 1	行 3 列 2	行 3 列 3
行 4 列 1	行 4 列 2	行 4 列 3
行 5 列 1	行 5 列 2	行 5 列 3
行 6 列 1	行 6 列 2	行6列3

2.7 文本框插入

2.7.1 基于 \fbox 简单文本框

• 单行文本框

\fbox{单行内容}

注意,这种语法仅能为单行,且仅能根据键入字符数目来创建对应长度的方框。 且在文本过长时无法换行,文本将溢出文本框。

• 多行文本框

```
\fbox{
\begin\minipage\mathbf{框宽}\
        正文内容,可使用\语法换行
\end\minipage\
% 需要新建一个 minipage(分页) 来实现此功能。
}
```

2.7.2 基于 \tcolorbox 复杂文本框

这种插入方法需要通过\语法进行换行。相关语法如下所示。

2.8 引用插入

2.8.1 正文引用

- 在正文中想要插入引用角标的地方加入 \lable{引用 ID}
- 然后在对应地方插入 \ref{引用 ID}

2.8.2 文献引用

- 在.tex 文件所在文件夹创建一.bib 文件, 内需放置 BiBTex 内容
- 在所需要正文引用的位置插入 \cite{引用 ID}
- 文章末尾引用文献, 键入以下文本:

 $\begin{tabular}{l} \mathbf{bibliographystyle\{nnsrt\}} \end{array}$

\bibliography{xxx(所创建的.bib 文件名)}