19 | Quotient Spaces

19.1 Definition. Let X be a set. An *equivalence relation on* X is a binary relation \sim satisfying three properties:

- 1) $x \sim x$ for all $x \in X$ (reflexivity)
- 2) if $x \sim y$ then $y \sim x$ (symmetry)
- 3) if $x \sim y$ and $y \sim z$ then $x \sim z$ (transitivity)

19.4 Definition. Let X we a set with an equivalence relation \sim and let $x \in X$. The *equivalence class* of x is the subset $[x] \subseteq X$ consisting of all elements that are in the relation with x:

$$[x] = \{ y \in X \mid x \sim y \}$$

19.7 Proposition. Let X be a set with an equivalence relation \sim , and let $x, y \in X$.

- 1) If $x \sim y \ then [x] = [y]$.
- 2) If $x \not\sim y$ then $[x] \cap [y] = \emptyset$.

19.9 Definition. Let X be a set with an equivalence relation \sim . The <i>quotient set</i> of X is the set X/\sim whose elements are all distinct equivalence classes of \sim . The function
$\pi\colon X\to X/\!\!\sim$
given by $\pi(x) = [x]$ is called the <i>quotient map</i> .

19.11 Definition. Let X be a topological space and let \sim be an equivalence relation on X. The *quotient topology* on the set X/\sim is the topology where a set $U\subseteq X/\sim$ is open if the set $\pi^{-1}(U)$ is open in X. The set X/\sim with this topology is called the *quotient space* of X taken with respect to the relation \sim .

19.12 Proposition. Let X be a topological space and let \sim be an equivalence relation on X. A set $A \subseteq X/\sim$ is closed if and only the set $\pi^{-1}(A)$ is closed in X.

Proof. Exercise. □

function $f: X/\sim \to Y$ is continuous if and only if the function $f\pi: X \to Y$ is continuous.	
<i>Proof.</i> Exercise.	

19.13 Proposition. Let X, Y be a topological spaces and let \sim be an equivalence relation on X. A

19.17 Example. Take the square $[0,1] \times [0,1]$ with the equivalence relation defined as in Example 19.2: $(0,t) \sim (1,t)$ for all $t \in [0,1]$. Using arguments similar as in Example 19.15 we can show that the quotient space is homeomorphic to the cylinder $S^1 \times [0,1]$:

19.18 Example. Take the square $[0,1] \times [0,1]$ with the equivalence relation given by $(0,t) \sim (1,1-t)$ for all $t \in [0,1]$. The space obtained as a quotient space is called the *Möbius band*:

19.19 Example. Take the square $[0,1] \times [0,1]$ with the equivalence relation given by $(0,t) \sim (1,t)$ for all $t \in [0,1]$ and $(s,0) \sim (s,1)$ for all $s \in [0,1]$. Using arguments similar to these given in Example 19.15 one can show that the quotient space in this case is homeomorphic to the torus:

19.20 Example. Take the square $[0,1] \times [0,1]$ with the equivalence relation given by $(0,t) \sim (1,t)$ for all $t \in [0,1]$ and $(s,0) \sim (1-s,1)$ for all $s \in [0,1]$. The resulting quotient space is called the *Klein bottle*. One can show that the Klein bottle is a two dimensional manifold.

19.21 Example. Following the scheme of the last two examples we can consider the square $[0,1] \times [0,1]$ with the equivalence relation given by $(0,t) \sim (1,1-t)$ and $(s,0) \sim (1-s,1)$ for all $s,t \in [0,1]$:

Disjoint unions

19.25 Proposition. For any family of continuous functions $\{f_i \colon X_i \to continuous function f \colon \bigsqcup_{i \in I} X_i \to Y \text{ such that } k_j f = f_j \text{ for each } j \in I.$	Y _{$i \in I$} , there exists a unique
Proof. Exercise.	