$4 \qquad A = \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \\ 0 & 1 \end{pmatrix} \text{, } B = \begin{pmatrix} 1 & 0 \\ -\frac{1}{2} & \frac{1}{2} \end{pmatrix}$ とおく.xy 平面において,(1,1) を座標とする点 P_0 から始めて,点列 P_0, P_1, P_2, \cdots をつぎのような手続きで作っていく. P_n の座標を (x_n, y_n) とするとき,

(イ)
$$x_n+y_n\geqq \frac{1}{100}$$
 のときは, (x_{n+1},y_{n+1}) を $\begin{pmatrix} x_{n+1} \\ y_{n+1} \end{pmatrix}=A\begin{pmatrix} x_n \\ y_n \end{pmatrix}$ または $\begin{pmatrix} x_{n+1} \\ y_{n+1} \end{pmatrix}=B\begin{pmatrix} x_n \\ y_n \end{pmatrix}$ のどちらかが成りたつように決める.

(ロ)
$$x_n+y_n<rac{1}{100}$$
 のときは, (x_{n+1},y_{n+1}) を $\begin{pmatrix} x_{n+1} \\ y_{n+1} \end{pmatrix}=A\begin{pmatrix} x_n \\ y_n \end{pmatrix}$ によって決める.

このようにするといろいろな点列ができるが,それらについてつぎの問に答えよ.

- (1) P_2 として可能な点をすべて求め,図示せよ.
- (2) $x_n + y_n$ を n で表わせ.
- (3) P_{10} として可能な点は何個あるか.