

Pflicht: Sie bearbeiten pro Teil jeweils eine Aufgabe.

Wahl: Zur Vertiefung und Festigung stehen ihnen die übrigen Aufgaben zur Verfügung.

Teil 1: Skizzieren Sie den Funktionsgraphen einer ganzrationalen Funktion 3. Grades mit folgenden Eigenschaften:

- (I) Der Graph hat in H(-2|1) einen Hochpunkt und in T(2|-3) einen Tiefpunkt.
- (II) Der Graph ist punktsymmetrisch und hat den Tiefpunkt T(-2|-4).
- (III) Der Graph besitzt keine Extremstelle und schneidet die y-Achse bei 5.

Teil 2: Die Abbildungen zeigen jeweils die Graphen f' und f'' zu einer ganzrationalen Funktion f. Argumentieren Sie mit Hilfe der Graphen, an welchen Stellen f eine Extremstelle hat. Treffen Sie zudem eine Aussage darüber, ob es sich um einen Hoch- oder einen Tiefpunkt handelt.

Teil 3: An welchen Stellen hat der Graph der reellen Funktion f mit $f(x) = \frac{2}{3}x^3 - 2x^2 - 1$

- (I) eine waagrechte Tangente
- (II) eine Tangente mit der Steigung -2
- (III) eine Tangente mit der Steigung 6

Teil 4: Untersuchen Sie die Funktion f auf Extrempunkte des Graphen. Skizzieren Sie den Graphen.

(I)
$$f(x) = x^2 - 5x + 5$$

(II)
$$f(x) = x^4 - 4x^2 + 3$$

(III)
$$f(x) = 3x^5 - 10x^3 - 45x$$

Zusatzaufgabe

Teil 5: Die Steighöhe h eines im luftleeren Raum senkrecht nach oben geworfenen Gegenstandes lässt sich angenähert durch die Funktion $h(t) = v_0 \cdot t - \frac{1}{2}g \cdot t^2$ mit v_0 in $\frac{m}{s}$; t in s, $g = 9, 81\frac{m}{s^2}$ beschreiben. Dabei ist v_0 die Abwurfgeschwindigkeit.

- a) Berechnen Sie die maximal erreichte Höhe des Gegenstandes, wenn $v_0=12\frac{m}{s}$ ist.
- b) Wie Lange dauert es, bis der Gegenstand wieder die Ausgangshöhe erreicht?