Факторизация чисел Ро-методом Полларда

Кузнецова Арина 6373

Ро-алгоритм Полларда

В 1975 году Поллард опубликовал статью, в которой он, основываясь на алгоритме обнаружения циклов Флойда, изложил идею алгоритма факторизации чисел, работающего за время, пропорциональное N^(¼).

С его помощью было разложено на множители число Ферма $F_8 = 2^{(256)} + 1$.

Оригинальная версия алгоритма

Возьмем некоторое случайное отображение

f : Zn → Zn, которое сгенерирует некоторую случайную последовательность x0, x1, x2, . . . где $x_i = f(x_{i-1})$. Обычно берётся многочлен f(x) = x*x + 1. За x0 берётся случайное число, меньшее того, которое мы факторизуем.

Функция f имеет не более, чем n значений, поэтому последовательность зациклится.

 $X_{k+h} = X_h$

h называется индексом вхождения, k - длиной цикла.

Оригинальная версия алгоритма

Рассмотрим теперь алгоритм подробнее.

При выбранном многочлене F(x) = x*x + 1 (mod n) рассматриваем

x_i = f(x_{i-1}). Причём і - индекс элемента перед зацикливанием последовательности.

И для всех j<i вычисляем НОД $d = gcd(|x_i-x_j|, n)$.

Если n> d > 1, то d – нетривиальный делитель n.

Если n/d - составное число, то применяем данный алгоритм ещё раз уже к числу n/d. И так продолжаем до тех пор, пока не получим разложение только из простых чисел.

Особенности использования алгоритма

Следует отметить, что рассматриваемый алгоритм в значительной степени случаен, его эффективность сильно и непредсказуемо зависит от выбора многочлена и начального элемента в последовательности.

Метод эффективен для нахождения небольших простых делителей числа n. Делители большего размера тоже могут быть обнаружены, однако лишь с некоторой вероятностью.

Тест на простоту чисел Миллера-Рабина

Для реализации факторизации чисел любого метода нужен тест на простоту чисел.

Я выбрала вероятностный тест Миллера-Рабина, так как при проверке k чисел на условия простоты вероятность того, что составное число будет принято за простое, будет меньше (¼)^k. В своей программе я проверяла 3 случайных числа, так в этом случае достигается достаточно удовлетворительная вероятность 0.015625.

Тест на простоту чисел Миллера-Рабина

Для проверки числа n (причём n>2) на простоту, во-первых, оно представляется в виде $n-1=t*2^{(s)}$, где t-нечётно.

Дальше проверяются следующие утверждения.

Если n - простое, то для любого а из Zn (a < n) выполняются:

- 1) $a^t = 1 \pmod{n}$
- 2) Существует такое r, что при $0 \le r \le s : a^{t*}(2^s) = -1 \pmod{n}$

Если хотя бы одно из этих условий соблюдается, то число а является свидетелем простоты числа n.

Делая проверку на 3 случайных числах, мы повышаем вероятность того, что число n не псевдопростое.

Использование модуля факторизации числа Ро-методом Полларда

В репозитории с программой лежит отдельный файл factRhoPollard.cpp с примером использования разработанного мной модуля. Также я выделила в него те функции, которые я дополнительного прописывала для реализации поставленного метода. На гитхабе не отображается кириллица, но при копировании репозитория всё должно быть нормально. Но, на всякий случай, размещаю тут, что делают конкретные функции:

1)возведение в степень

LNum power(LNum const&, LNum const&);

2)проверка на простоту числа с помощью теста Миллера-Рабина

bool isPrimeNum(LNum const&);

3)обнаружение простого делителя числа или возвращение самого числа, если оно простое

LNum RhoPollard(LNum const&);

4)полное разложение на простые множители числа и занесение этих значений в массив

vector<LNum> factRhoPollard(LNum const& N);

В связи с использованием достаточно времязатратных алгоритмов производительность программы с четырёхзначных чисел очень падает. Но при проверке небольших чисел выдаётся верный результат. Так как алгоритм вероятностный, то иногда он может выдать неверное разложение, но при перезапуске программы обычно это лечится.

Использование модуля факторизации числа Ро-методом Полларда

(как это всё выглядит)

