

Elixir では Flow を用いた簡潔な表現で マルチコア CPU の並列性を活用できる Flow によるプログラム記述が GPGPU にも容易に適用できると着想

Hastega として実装

Hastega アーキテクチャ

性能に関する比較と評価

整数演算で負荷のかかる計算として、素体のロジスティック写像を用いたベンチマークプログラムを開発し評価した。

本手法で求めた値をグラフにプロットしても図のようにならない。 本手法はオリジナルの方法と幾何学的性質が異なるためである。

評価環境 Mac Pro (Mid 2010) Processor: 2.8 GHz Quad-Core Intel Xeon (プロセッサ数 1、物理コア数 4、論理コア数 8) Memory: 16 GB 1066 MHz DDR3 Graphics: ATI Radeon HD 5770 1024MB GCE Machine type: custom (8 vCPUs、16GBメモリ) CPU platform" Intel Broadwell GPU: NVIDIA Tesla K80 (x1) Zone: us-west1-b

参考文献: Miyazaki, T. et al.: A Study of an Automorphism on the Logistic Maps over Prime Fields, Proc. of ISITA2014.

	Mac Pro (Mid 2010)	GCE
OS	macOS Sierra 10.12.6	ubuntu 16.04
Elixir	1.6.6 (OTP 21)	1.6.6 (OTP 21)
Flow	0.14	0.14
Rust	1.27.0	1.27.0
OpenCL	1.2	1.2
Rustler	0.17.1	0.17.1
ocl	0.18	0.18
rayon	1.0	1.0
scoped-pool	1.0.0	1.0.0
Python	3.6.0 (Anaconda 4.3.0)	3.5.2
CUDA	N/A	9.0 (CuPy), 9.2 (その他)
NumPy	1.11.3	1.14.3
CuPy	N/A	4.1.0

Elixir からの速度向上

提案手法は Elixir 単体のコードと比べて 4.43~8.23 倍高速になった

	Mac Pro	GCE
Elixir_recursive	12.177	9.674
Elixir_inline	10.579	8.075
Rustler_GPU (Hastega)	2.388	1.176

ネイティブコードとの比較

提案手法は GPU を使用するネイティブコードと 比べ, 1.48~1.54 倍遅くなっただけである

	Mac Pro	GCE
Rustler_GPU (Hastega)	2.388	1.176
Rust GPU	1.546	0.797

Python からの速度向上

提案手法は GPU を使用する Python の コードと比べ, 3.67 倍高速である

	GCE
Rustler_GPU (Hastega)	1.176
Python_GPU	4.316

まとめと将来課題

機械学習のデファクトスタンダードである Python と比べて Elixir の潜在的優位性が示された。 今後、提案手法を用いて Python より性能優位な機械学習のライブラリと新しい処理系 ZEAM を開発したい。