OrCAD Download

- http://www.cadence.com/products/orcad/pag es/downloads.aspx
- OrCAD PCB Designer Lite DVD all products.

Tutoring

- Learning Resources Center (LRC)
 - NC 2006
 - **-** 303-556-2802.
 - Tutorialservices@ucdenver.edu
 - www.ucdenver.edu/lrc.
- Where: LWST 830
 - Tuesdays: 1:10 2:50 (Michael D)
 - Wednesdays: 1:10 2:50 (Rob F)

Chapter 1 cont

Using Positional Notation

$$a_n r^n + a_{n-1} r^{n-1} + \dots + a_2 r^2 + a_1 r^1 + a_0 r^0$$
. $a_{-1} r^{-1} + a_{-2} r^{-2} + \dots + a_{-m} r^{-m}$
Where r is the radix or base.

Ex.
$$11_x$$
 and let x =8
Then $a_1(8^1)+a_0(8^0) = 1(8)+1(1) = 9_{10}$

Let
$$x = 2$$

Let
$$x = 10$$

Using Positional Notation

Ex: 1011₂

Ex: A2E₁₆

Ex: 75₈

Ex: 32.14₈

Using Positional Notation Summary

$$a_n r^n + a_{n-1} r^{n-1} + \dots + a_2 r^2 + a_1 r^1 + a_0 r^0$$
. $a_{-1} r^{-1} + a_{-2} r^{-2} + \dots + a_{-n} r^{-n}$

Where r is the radix or base.

Convert a number from any base to decimal.

Base conversion

- Decimal to any base.
- Use division
 - Whole numbers
 - Left of the decimal point
- Use multiplication
 - Fractional part of a number

Decimal to Binary Conversion

Convert 857₁₀ to base 2.

Check the result

Use Positional Notation

2 ⁹	2 ⁸	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰
512	256	128	64	32	16	8	4	2	1
1	1	0	1	0	1	1	0	0	1

$$512 + 256 + 64 + 16 + 8 + 1 = 857_{10}$$

Octal

```
0 r 1

) 1 r 5

) 13 r 3 857<sub>10</sub> = 1531<sub>8</sub>

) 107 r 1

) 857
```

83	8 ²	8 ¹	8 ⁰
512	64	8	1
1	5	3	1

And back again

$$1 \times 512 + 5 \times 64 + 3 \times 8 + 1 \times 1 = 857_{10}$$

Hexadecimal

```
0 r 3

) 3 r 5

) 53 r 9

16 ) 857
```

16 ²	16 ¹	16 ⁰
256	16	1
3	5	9

And back

$$3 \times 256 + 5 \times 16 + 1 \times 9 = 857_{10}$$

Example

324₁₀ to base 5

Ex 1.4

0.6875_{10} to binary

$$.6875 \times 2 = 1.3750 = 1 + .3750$$
 $0.6875_{10} = 0.1011_{2}$
 $.3750 \times 2 = 0.7500 = 0 + .7500$
 $.7500 \times 2 = 1.5000 = 1 + .5000$
 $.5000 \times 2 = 1.0000 = 1 + .0000$

Ex 1.5

• 0.513₁₀ to octal

Powers of 2

- Conversion between binary, octal, and hexadecimal made easy.
- Binary to other powers of two
 - Just regroup and convert
- How to regroup
 - Consider the least number of bits it would take to encode the largest symbol of the new base.

Binary-coded Octal

- 3 bits to encode 7₈
- Why?

Binary	Octal
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

Binary to Octal

```
110110101010<sub>2</sub>
110 110 101 010\frac{4}{2} Binary Coded Octal 6 6 5 2 6652<sub>8</sub>
```

 To convert from Octal to Binary, do the same thing in reverse Binary to Hexadecimal

How many bits are needed to represent the largest single cypher in hexadecimal?

1101101010₂
1101 1010 1010₂
D A A
DAA₁₆

Binary	Hexadecimal
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	А
1011	В
1100	С
1101	D
1110	E
1111	F ¹⁸

Octal to Hexadecimal and vice versa

- Almost the same thing.
- Convert to Binary
- Then regroup as necessary.

Example

```
237<sub>8</sub> to Hex
Convert to binary
     010 011 111
Regroup
      0 1001 1111
```

Complements of Numbers

- Two basic types
 - Diminished radix complement
 - Defined as: (rⁿ -1) N; given a number N in base r having n digits
 - Radix complement
 - Defined as rⁿ N; given a number N ≠ 0 in base r having n digits and 0 if N = 0.

Diminished Radix Complement

AKA R-1's complement

$$(r^{n}-1)-N$$

Ex. 9's complement of 546700

Ex. 9's complement of 012398

1's complement

- Binary numbers
 - r = 2
 - r-1 = 1
 - $-2^{n}-1$ is a binary number represented by n 1's
- Formed by "flipping the bits"
 - Only 2 cyphers in binary 0 or 1.
 - Change each bit to the opposite possibility.
 - 1's to 0's and 0's to 1's

(r-1)'s complement

- Octal
 - Subtract each digit from 7

- Hex
 - Subtract each digit from F (15₁₀)

Radix Complement

- Defined as rⁿ N; given a number N ≠ 0 in base r having n digits and 0 if N = 0.
- Is obtained by adding 1 to the (r-1)'s complement

Complements Summary

- The complement of the complement returns the original number
- If there is a radix point
 - Calculate the complement as if the radix point was not there.
- Used in computers to perform subtraction.

Unsigned math

- Procedure for subtraction of 2 <u>unsigned</u> numbers.
 - 1. Add M to the r's complement of N
 - 2. If M ≥ N, an end carry is produced which can be discarded.
 - The result is positive as indicated by the carry-out
 - 3. If M≤N the result is negative and in r's complement form

Signed Numbers

- There are three basic ways to designate the sign of a number.
 - Sign and magnitude
 - Radix complement
 - Radix-1'scomplement

- What is taught in school.
- A value with a sign in front of it
- How does it work in Binary?
- Pretty much the same way as Decimal
- By convention a sign bit is used.
 - $-0 \rightarrow positive$
 - $-1 \rightarrow$ negative

- Addition of signed numbers
 - May be either positive or negative
 - positive + positive = ? positive
 - negative + negative = ? negative
 - positive + negative = ? it depends

Rules of Addition

Binary addition

$$0_2 + 0_2 = 0_2$$

 $0_2 + 1_2 = 1_2 + 0_2 = 1_2$
 $1_2 + 1_2 = 10_2$

Notice the carry into the next significant bit.

• Example $0100 \ 1111_2 + 0010 \ 0011_2$ Sign bit

Carry								
	O	1	0	0	1	1	1	1
	O	0	1	0	0	0	1	1
Result								

Example

+ 0010 0011₂

	79
	<u>+ 35</u>

Carry	0	0	0	1	1	1	1	
	0	1	0	0	1	1	1	1
	0	0	1	0	0	0	1	1
Result	0	1	1	1	0	0	1	0

114

Another example

Carry					
	1	1	1	1	1
	1	1	0	1	1
Result					

Another example

Ca	irry	1	1	1	1	
		1	1	1	1	1
		1	1	0	1	1
Re	sult	1	1	0	1	0

- 26

And another example

0100 1111₂

+ 0110 00112

Carry								
	0	1	0	0	1	1	1	1
	0	1	1	0	0	0	1	1
Result								

= ?

Sign and Magnitude

Another example

+ 0110 00112

Result

Carry	1	0	0	1	1	1	1	
	0	1	0	0	1	1	1	1
	0	1	1	0	0	0	1	1

1

0

0

1

= 1011 0010₂

0

1

What Happened ??? Should be 178

79

-50

Sign and Magnitude

- The error is due to overflow
- Caused by a carry out of the MSB of the number to the sign bit.
- Signed magnitude works but....
 - Suffers from limitations
 - 2 zeros (positive and negative)
 - Adding positive and negative numbers doesn't always work.

Complement Arithmetic

- What is a complement?
 - Webster's
 - a: something that fills up, completes, or makes perfect.
 - b: the quantity, number, or assortment required to make a thing complete
- A way to represent negative numbers.
 - Makes use of the fact that adding a negative number is the same as subtracting a number.
- Two types
 - R-1's Complement (diminished radix complement)
 - R's Complement (radix complement)

R-1's Complement

- $\overline{N} = (r^n 1) N$
 - where n is the number of bits per word
 - N is a positive integer
 - $-\overline{N}$ is -N in 1's complement notation
 - r is the base
- Word Range:

$$-(r^{n-1}-1)$$
 to $r^{n-1}-1$

Some Terminology

Augend, addend, sum

1 Carry 15 Augend +7 Addend

22 Sum

 Minuend, subtrahend, difference

25 Carry
25 Minuend
- 8 Subtrahend
17 Difference

1's Complement

- Never complement the minuend in a problem.
- Add the 1's complement of the original subtrahend to the original minuend.
 - This will have the same effect as subtracting the original number.
- If there is a carry-out, end around carry and add back in.

How to use 1's complement.

- Step 1: 1's complement the subtrahend.
- Step 2: Do the math.
- Step 3: If there is a carry out, end around carry and add it back in.
- Note: If there is no carry the answer is in 1's complement form.
 - What does this mean?

Examples

$$X = 1000 \quad Y = 0101$$

$$X - Y$$

Things to notice

- Any negative number will have a leading 1.
- There are 2 representations for 0, 00000 and 11111.
 - Not really a problem, but still have to check for it.
- There is a solution.

r's Complemet

- $\overline{N} = (r^n) N$
 - where n is the number of bits per word
 - N is a positive integer
 - $-\overline{N}$ is -N in 1's complement notation
 - r is the base
- Word Range is:

$$-(r^{n-1})$$
 to $r^{n-1}-1$

How to use 2's Complement

- Step 1: 2's complement the subtrahend.
- Step 2: Perform the addition
- Step 3: if there is a carry out, ignore it.

Examples

$$X = 0111 Y = 0101$$

$$X - Y$$