Attachment to Amendment Under 37 C.F.R. § 1.111 dated November 4, 2002

Marked-up Copy

Page 6, Paragraph Beginning at Line 8

Test liquid

In all cases the test liquid was synthetic urine according to the following recipe: 0,66 g/l MgSO₄, 4,47 g/l KCl, 7,60 g/l NaCl, 18,00 g/l NH₂CONH₂ (urea), 3,54 g/l KH₂PO₄, 0,754 g/l Na₂HPO₄, 1 ml/l of a 0.1 % solution of [Triton X-100] <u>TRITON X-100</u>, which is a surfactant sold by [Aldrich] <u>ALDRICH</u>. The substances were dissolved in deionized water.

Page 6, Paragraph Beginning at Line 13

Absorption rate

The liquid acquisition capacity was measured according to the below described measuring apparatus for determining the absorption rate of a sample. The measuring apparatus is shown in Fig. 1 and comprises a stand 10 with a holder 11 for a glass filter plate (porosity 1, supplier Werner-Glas AB, Stockholm) and holder [3] 13 for a thickness gauge 14. The glass filter plate 12 is provided with a liquid (synthetic urine) from a glass bowl 15 placed on a scale 16. The holder 11 for the glass filter plate 12 is vertically adjustable, which makes the hydrostatic pressure adjustable. The liquid level in the bowl 15 should be only 2 cm below the level of the glass filter plate 12. With this hydrostatic pressure pores up to 250 μ m will be filled with liquid if the contact angle between the sample, which is placed on the glass filter plate 12, and the liquid is supposed to be 70°. The measuring signals from the scale and the thickness gauge are transmitted to a computer with 15 datum/s at measuring periods of up to 60 seconds. At longer measuring periods the signal speed becomes lower. The measurement is started automatically by means of a contact when the

Attachment to Amendment Under 37 C.F.R. § 1.111 dated November 4, 2002

Marked-up Copy

sample reaches the glass filter plate 12. The measurement result is printed by a printer as function of time.

Page 11, Paragraph Beginning at Line 18

CEKOL [Cekol] 50000	Carboxy methyl cellulose from Metsä Chemicals. Highly
	viscous quality with a substitution degree of about 0.8.
CELPOL RX [Celpol RX]	Carboxy methyl cellulose from Metsä Chemicals. Highly
	viscous quality with a substitution degree of about 1.2.
Softwood sulphate	
pulp	SCA Graphic Paper, Sundsvall, Sweden.
Cyanuric chloride	Merck-Schuchardt. Degree of purity: For synthesis.

BEROL [Berol] 048 Nonionic surfactant from Akzo

BEROCELL [Berocell] 451 Anionic surfactant from Akzo Nobel.

Sodium hydroxide EKA Nobel. Degree of purity: min 97%.

Methyl ketone E. Merck. Degree of purity: For synthesis.

Page 12, Paragraph Beginning at Line 6

Attachment to Amendment Under 37 C.F.R. § 1.111 dated November 4, 2002 Marked-up Copy

Example 1

A liquid foam was produced by vigorous mixing with an electric beater of the following mixture: 220 g of a 3% solution of [Celpol RX] <u>CELPOL RX</u> in water, 2.82 g bleached softwood sulphate pulp, 80 g water, 0.13 g NaOH, 1.0 g [Berocell] <u>BEROCELL</u> 451 and 1.0 g [Berol] <u>BEROL</u> 048. The foam was cooled to a temperature of about 2°C after which 0.264 g of cyanuric chloride dissolved in 5 g methyl ethyl ketone was added to the foam mixture.

Page 12, Paragraph Beginning at Line 19

Example 2

Two liquid foams were prepared by vigorous mixing of the two following mixtures: 1.110 g of a 3% solution of [Celpol RX] <u>CELPOL RX</u> in water, 1.41 g bleached softwood sulphate pulp, [40gwater] <u>40 g water</u>, 0.057 g NAOH, 0.5 g [Berocell] <u>BEROCELL</u> 451 and 0.5g [Berol] <u>BEROL</u> 048.

2.110 g of a 3% solution of [Cekol] <u>CEKOL</u> 50000 in water, 1.41 g bleached softwood sulphate pulp, 40g water, 0.091 g NaOH, 0.5 g [Berocell] <u>BEROCELL</u> 451 and 0.5g [Berol] <u>BEROL</u> 048.

Page 13, Paragraph Beginning at Line 11

Example 3

Two liquid foams were manufactured by vigorous mixing of the following mixtures: 1.110 g of a 3% solution of [Celpol RX] <u>CELPOL RX</u> in water, 1.41 g bleached softwood sulphate pulp, 40g water, 0.057 g NaOH, 0.5 g [Berocell] <u>BEROCELL</u> 451 and 0.5g [Berol] <u>BEROL</u> 048.

Attachment to Amendment Under 37 C.F.R. § 1.111 dated November 4, 2002

Marked-up Copy

2.110 g of a 3% solution of [Cekol] <u>CEKOL</u> 50000 in water, 1.41 g bleached softwood sulphate pulp, 40g water, 0.091 g NaOH, 0.5 g [Berocell] <u>BEROCELL</u> 451 and 0.5g [Berol] <u>BEROL</u> 048. Both foams were cooled to a temperature of about 2°C after which 0.264g cyanuric chloride dissolved in l0g methyl ethyl ketone was added to the first mentioned foam mixture. After vigorous mixing for about 3 minutes the foams were mixed carefully during about 2 minutes.

Application No. <u>09/651,130</u> Attorney's Docket No. <u>010315-092</u> Page 1

Attachment to Amendment Under 37 C.F.R. § 1.111 dated November 4, 2002 Marked-up Claims 1-7

- 1. (Amended) A liquid absorbing material comprising an open-cell polymeric foam material, the foam material being suitable for use as an absorbent structure in absorbent articles [such as diapers, pant diapers, sanitary napkins, incontinence guards, wound dressings, bed protections etc.], [characterized in that] the foam material having [has] an absorption rate at wetting of at least 0.4 ml/s for a round sample having [the diameter] a 50 mm diameter, a liquid distribution capacity at an inclination of 30° of at least 15 g/g and a liquid storage capacity of at least 9% measured through [CRC (] centrifuge retention capacity[)], [at which the test liquid in all cases is] for synthetic urine test liquid.
- 2. (Amended) A liquid absorbent foam material as claimed in claim 1, wherein [characterized in that its] the absorption [capacity] rate at wetting is at least 0.5 ml/s, [its] the liquid distribution capacity at an inclination of 30° is at least 16 g/g, and [its] the liquid storage capacity measured through [CRC] centrifuge retention capacity is at least 11%.
- 3. (Twice Amended) A liquid absorbent foam material as claimed in claim 1,[characterized in that the] having a first distribution of pores with a diameter less than 3 μ m for producing a gel liquid absorption determined as the total liquid amount in pores below 3 μ m according to pore volume distribution [(PVD)] measurements[, is] of at least 4 g/g [and preferably at least 5 g/g] synthetic urine, and [the]

Marked-up Claims 1-7

a second distribution of pores with a diameter between 3 and 100 μ m for producing capillary liquid absorption determined as the total liquid amount in pores between 3-100 μ m according to [PVD] pore volume distribution measurement[, is] of at least 8 ml/g[, preferably at least 10 ml/g].

- 4. (Twice Amended) A liquid, absorbent foam material as claimed in claim 1, wherein [characterized in that] the foam material [in its pore system] contains fibers in its pore system.
- 5. (Twice Amended) An absorbent structure in an absorbent article [such as a diaper, pant diaper, sanitary napkin, incontinence guard, wound dressing, bed protection etc.], [characterized in that] wherein the absorbent structure [comprises] comprising a liquid absorbent open-cell foam material according to claim 1.
- 6. (Amended) An absorbent structure as claimed in claim 5, wherein [characterized in that] said [foam material] absorbent structure is comprised [in the absorbent structure as the sole component] solely of said foam material.
- 7. (Twice Amended) An absorbent structure as claimed in claim 5, wherein [characterized in that] the foam material has a three-dimensional anatomic shape.