Amendments to the Specification

1. Page 27, after the last paragraph [0111], please add the following new paragraphs:

Figures 25A and 25B are flowchart diagrams showing a possible procedure for converting a single asynchronous process into a corresponding new periodic process.

Figure 26 is a flowchart diagram showing a possible procedure for converting a set of asynchronous processes into a set of corresponding new periodic processes.

Figures 27A and 27B are flowchart diagrams showing a possible procedure for scheduling process executions during run-time.

Figure 28 shows an example of adjusting lengths of periods of a set of periodic processes.

Figures 29, 30, and 31 show examples of tables of safe start time intervals for asynchronous processes.

Figure 32 is a flowchart diagram showing a possible procedure for generating a feasible pre-run-time schedule for periodic processes with hard deadlines and periodic processes with soft deadlines.

2. Page 39, after paragraph [0160], please add the following new paragraph:

See Figures 25A and 25B for flowchart diagrams of the procedure.

3. Page 45, please replace the paragraph numbered [0175] with the following rewritten paragraph:

Above, the permitted range of the offset for each new periodic process newp_i, o_{newp_i} is $[0, prd_{newp_i} - 1]$.

4. Page 45, after paragraph [0175], please add the following new paragraph:

See Figure 26 for a flowchart diagram of the procedure.

5. Page 58, after paragraph [0204], please add the following new paragraph:

Figure 28 illustrates sorted lists of reference periods and the adjusted lengths of the periods of the processes in this example.

6. Page 79, after paragraph [0264], please add the following new paragraph:

See Figure 32 for a flowchart diagram of the procedure.

7. Page 62, please replace the paragraph numbered [0218] with the following rewritten paragraph:

As shown in Figure 17, the periodic process $p_D = (o_{PD}, r_{PD}, c_{PD}, d_{PD}, prd_{PD})$ where $r_{PD} = 2$, $c_{PD} = 1$, $d_{PD} = 4$, $prd_{PD} = 12$, $0 \le o_{PD} \le 4$, where the offset of p_D is set to a fixed value $o_{PD} = 2$ by the by the procedure for constructing a feasible pre-run-time schedule for a given set of periodic processes with offsets when it attempts to construct a feasible pre-run-time schedule for newp_A, p_B , p_C , p_D .

8. Page 116, please replace the paragraph numbered [0355] with the following rewritten paragraph:

When a_A is not converted into a new periodic process, and the pre-run-time schedule is as shown in Figure 22, but without the time slots for newp_{A0}, newp_{A1}, newp_{A2}, ..., and without the time slot for a_E in Figure 22, the safe start time table for a_A should preferably contain the following "safe start time intervals":

on processor 1: $\frac{f(k*6) + 2}{f(k*6) + 2}$ $\frac{f(k*6) + 2}{f(k*6) + 2}$

on processor 1: $\frac{(k*6) + 2}{(k*6) + 2}$ $\frac{(k*6) + 2}{(k*6) + 2}$, k = 0, 1, 2, ...on processor 1: $\frac{(k*6) + 12}{(k*6) + 12}$ $\frac{(k*6) + 12}{(k*6) + 12}$, k = 0, 1, 2, ...

9. Page 116, please replace the paragraph numbered [0356] with the following rewritten paragraph:

When a_A is not converted into a new periodic process, and the pre-run-time schedule is as shown in Figure 22, but without the time slots for $newp_{A0}$, $newp_{A1}$, $newp_{A2}$, ..., and without the time slot for a_E in Figure 22, the safe start time table for a_E should preferably contain the following "safe start time intervals":

on processor 1: empty; on processor 1: empty;

10. Page 116, after paragraph [0356], please add the following new paragraph:

Figures 29, 30 and 31 illustrate tables of safe start time intervals in this example.