Section 11: GMM

ARE 210

November 14, 2017

The section notes are available on the section Github at github.com/johnloeser/are210 in the "section11" folder.

1 Definitions

- Math tricks
 - ULLN (defined below) used repeatedly for convergence of functions, when we want to apply LLN but don't satisfy requirements
 - **MVT**: $h: \mathbf{R}^p \to \mathbf{R}^q$ continuously differentiable, then $h(b) = h(\theta) + \frac{\partial h(\tilde{b})}{\partial b}(b \theta)$, where $\tilde{b} = \alpha b + (1 \alpha)\theta$ for $\alpha \in (0, 1)$
- GMM: $\hat{\theta}_n = \arg\max_{b \in \Theta} -\frac{1}{2} \left[\frac{1}{n} \sum_{i=1}^n m(W_i, b) \right]^T S_n(W) \left[\frac{1}{n} \sum_{i=1}^n m(W_i, b) \right]$
 - **Identification**: Let $Q_0(b) = -\frac{1}{2}\mathbf{E}[m(W,b)]^{\mathrm{T}}S\mathbf{E}[m(W,b)]$. Suppose $\mathbf{E}[m(W,b)] = 0 \Leftrightarrow b = \theta$. Then if S is strictly positive definite, $\theta = \arg\max_b Q_0(b)$.
 - Consistency 1: Suppose (i) Θ is a compact subset of \mathbf{R}^d , (ii) m(W, b) is continuous in b, (iii) m(W, b) is measurable in W, and (iv) $S_n(W) \stackrel{p}{\to} S$, where S is symmetric positive definite. Suppose further (1) assumptions made above for identification, and (2) $\mathbf{E}[\sup_{b\in\Theta} |m(W, b)|] < \infty$. Then $\hat{\theta}_n \stackrel{p}{\to} \theta$.
 - Consistency 2: Replace (i), (ii), and (2) with $Q_n(b)$ is concave and $\mathbf{E}[m(W,b)]$ exists and is finite
 - Asymptotic normality: Let $m_n(b) = \sum_{i=1}^n m(W_i, b)$, $M_n(b) = \frac{\partial m_n(b)}{\partial b}$, and $M(b) = \mathbf{E}[\frac{\partial m(W,b)}{\partial b}]$. Then assuming 1) $M_n(\hat{\theta}_n)W_nM_n(\tilde{b}_n)'$ is invertible, for $\tilde{b}_n = \alpha\hat{\theta}_n + (1-\alpha)\theta$ for $\alpha \in [0,1]$, 2) $M_n(\hat{\theta}_n) \stackrel{p}{\to} M(\theta)$, and 3) assumptions made above for consistency, $\sqrt{n}(\hat{\theta}_n \theta) \stackrel{d}{\to} N(0, V)$ where $V = (M(\theta)SM(\theta)^T)^{-1}M(\theta)SV[m(W,\theta)]SM(\theta)^T(M(\theta)SM(\theta)^T)^{-1}$
 - **Efficient GMM**: $W = V[m(W, \theta)]^{-1}$ minimizes the variance of the GMM estimator.
 - * Two step estimation : 1) Estimate $\hat{\theta}$ using simple weighting matrix W_0 , e.g. identity matrix. 2) Estimate $W_e = V[m(W, \hat{\theta})]^{-1}$. 3) Estimate $\hat{\theta}_e$ using W_e .

* For inference, use
$$\frac{1}{n} \sum_{i=1}^{n} \begin{bmatrix} M(X_i, \hat{\theta}) W_0 m(X_i, \hat{\theta}) \\ m_1(x_i, \hat{\theta}) m_1(x_i, \hat{\theta}) - W_{e,11} \\ m_2(x_i, \hat{\theta}) m_1(x_i, \hat{\theta}) - W_{e,21} \\ \vdots \\ m_d(x_i, \hat{\theta}) m_d(x_i, \hat{\theta}) - W_{e,dd} \\ M(X_i, \hat{\theta}_e) W_e m(X_i, \hat{\theta}_e) \end{bmatrix} = 0$$
* . . . or bootstrap (which we haven't defined yet)

* ... or bootstrap (which we haven't define

Some useful bits 2

1. Estimation strategies (fancier than OLS/2SLS) we saw in class that you'll see most frequently "in the wild" are GMM, NLLS, and MLE (in no particular order), so we'll spend a little more time on GMM.

Practice questions 3

1)

- a) Suppose we draw a random sample of individuals from a large population to estimate the average income. We have two unbiased observations of individual i's income μ_i - $X_i^T = (x_{1i}, x_{2i})$. Construct the efficient GMM estimator of the population average income μ . Interpret the optimal weighting matrix and the estimator.
- b) (Random effects) Now assume for simplicity $V[X_i] = \mathbf{I}$. Also assume $\mu_i \sim$ $N(\mu, \sigma^2)$, and assume for simplicity μ and σ^2 are known. What is $\hat{\mu}_{i,RE} \equiv$ $\mathbf{E}[\mu_i|X_i]$? Compare this estimator to $\hat{\mu} = \overline{X}$.
- 2) (Overidentified linear IV) Consider the linear instrumental variable model from class. $\{y_i, x_i, z_i\}$ are independently and identically distributed, where y_i and x_i are scalars and z_i is a 2x1 vector, and we impose the moment restriction $\mathbf{E}[z_i(y_i-x_i\beta)]=0$, and assume that y_i , x_i , and z_i are all mean 0.
 - a) Show that the GMM estimator using the weighting matrix $W = \hat{V}[z_i]^{-1}$ is just β_{2SLS} . Justify this choice of weights.

Hint: See your answer to 1).

Note: This is called "Mahalanobis distance", which may seem weird but makes sense when we think of GMM as a minimum distance estimator, with the choice

- of weights allowing us to calculate the distance between the moments and 0.
- b) Show how to construct the efficient GMM estimator. Interpret the weighting matrix used here. Compare it to the weighting matrix in part a).