COMPLEMENTOS de MATEMÁTICA

Aula Teórico-Prática - Ficha 6

SUPERFÍCIES

1. Parametrize as seguintes superficies:

a)
$$2x^2 + 4y^2 + z^2 = 16$$
, $z \ge 0$.

b)
$$x^2 + y^2 = 9$$
, $z \in [-1,3]$.

- c) A região da superfície $x^2 + y^2 + z^2 = 4$ situada acima do plano $z = -\sqrt{2}$.
- d) A região do plano z = x 1 que é limitada pela superfície $x^2 + y^2 = 1$.
- 2. Identifique as seguintes superficies e defina-as através das respectivas equações cartesianas:

a)
$$\vec{r}(u,v) = \cos(u)\cos(v)\vec{i} + 2\sin(u)\cos(v)\vec{j} + 3\sin(v)\vec{k}$$
, $u \in [0,2\pi]$, $v \in [-\pi/2,\pi/2]$.

b)
$$\vec{r}(u,v) = au\cos(v)\vec{i} + bu\sin(v)\vec{j} - u^2\vec{k}$$
, $u \ge 0$, $v \in [0,2\pi]$ $(a,b \in \mathbb{R}^+)$.

c)
$$\vec{r}(u,v) = \frac{a}{2}(u+v)\vec{i} + \frac{b}{2}(u-v)\vec{j} + uv\vec{k}$$
, $(u,v) \in \mathbb{R}^2$ $(a,b \in \mathbb{R}^+)$.

- **3.** Seja a superficie parametrizada por $\vec{r}(u,v) = (u^2 v^2)\vec{i} + (u^2 + v^2)\vec{j} + 2uv\vec{k}$, $(u,v) \in \mathbb{R}^2$. Calcule:
 - a) O seu produto vectorial fundamental.
 - **b**) A equação cartesiana do plano tangente à superfície no ponto R = (0,2,2).
- **4.** Considere a superficie parametrizada por $\vec{r}(u,v) = \cos(u) \sin(v) \vec{i} + \sin(u) \cos(v) \vec{j} + u \vec{k}$, $(u,v) \in \mathbb{R}^2$. Calcule:
 - a) O seu produto vectorial fundamental.
 - b) A equação cartesiana do plano que passa no ponto Q = (1,2,1) e é paralelo ao plano tangente à superfície no ponto $R = (0,0,\pi)$.

- 5. Considere a superficie, S, definida por $z = x^2 + y^2$, $z \in [0,4]$.
 - a) Esboce a superfície.

- b) Determine a sua área.
- **6.** Seja a superfície, S, parametrizada por $\vec{r}(u,v) = u\cos(v)\vec{i} + u\sin(v)\vec{j} + u\vec{k}$, tal que $u \in [0,1]$ e $v \in [0,2\pi]$.
 - a) Esboce a superficie.

- b) Calcule a sua área.
- 7. Confirme o resultado obtido no exercício da alínea b) do exercício 6., considerando uma parametrização da superfície em coordenadas cartesianas.
- **8.** Seja a superficie, S, definida por $2-2x^2-2y^2-z=0$, $z \ge 0$.
 - a) Esboce a superfície.

- b) Determine a sua área.
- 9. Seja a superficie, S, definida por $z = 5 (x^2 + y^2)$, $z \ge 4$.
 - a) Esboce a superficie.

- b) Obtenha a sua área.
- 10. Considere a superficie, S, definida por $z^2 = x^2 + y^2$, $z \in [-4, -1]$.
 - a) Esboce a superficie.

- b) Calcule a sua área.
- 11. Seja a superficie, S, definida por $y = \sqrt{x^2 + z^2}$, tal que $x \ge 0$, $z \ge 0$ e $x + z \le 1$.
 - a) Esboce a superfície.

- b) Calcule a sua área.
- 12. Seja a superficie, S, definida por $x^2 + y^2 = (z 4)^2$, tal que $x \ge 0$, $y \ge 0$ e $0 \le z \le 2$.
 - a) Esboce a superfície.

b) Calcule a sua área.

- 13. Determine a área da região, S, do plano x + y + z = a situada no interior da superfície cilíndrica $x^2 + y^2 = b^2$.
- 14. Seja o plano bcx + acy + abz = abc, em que $a,b,c \in \mathbb{R}^+$. Calcule a área da região, S, do plano situada no primeiro octante.
- 15. Determine a área das superfícies, S, definidas por:

a)
$$3z = x^{3/2} + y^{3/2}$$
, tal que $0 \le x \le 1$ e $0 \le y \le x$.

b)
$$z^2 = 2xy$$
, tal que $x \in [0, a]$, $y \in [0, b]$ e $z \ge 0$.

c)
$$z = a^2 - (x^2 + y^2)$$
, tal que $0 \le z \le \frac{3}{4}a^2$.

d)
$$3z^2 = (x+y)^3$$
, tal que $x \ge 0$, $y \ge 0$ e $x+y \le 2$.

e)
$$z = y^2$$
, tal que $x \in [0,1]$ e $y \in [0,1]$.

f)
$$x^2 + y^2 + z^2 - 4z = 0$$
, tal que $z \ge \sqrt{3(x^2 + y^2)}$.

g)
$$x^2 + y^2 + z^2 - 2az = 0$$
, tal que $z \ge \frac{1}{b}(x^2 + y^2)$ e $a, b \in \mathbb{R}^+$.

Soluções: Consultar o manual "Noções sobre Análise Matemática", Efeitos Gráficos, 2019. ISBN: 978-989-54350-0-5.

50. a)
$$L = \int_C ds = \int_C \|\vec{r}'(u)\| du = 2\pi \sqrt{a^2 + b^2}$$
 m.

b) O seu centro de massa é $C_M = (x_M, y_M, z_M) = (0, 0, \pi b)$.

c)
$$I_x = \frac{M}{6} (3a^2 + 8\pi^2 b^2) \text{ Kgm}^2$$
.

d)
$$I_y = \frac{M}{6} (3a^2 + 8\pi^2 b^2) \text{ Kgm}^2$$
.

e)
$$I_z = Ma^2 \text{ Kgm}^2$$
.

51.
$$M = \int_C \rho(x, y) ds = \int_C \rho(u) \|\vec{r}'(u)\| du = \frac{2k\pi}{3} \sqrt{a^2 + b^2} (3a^2 + 4\pi^2 b^2) \text{ Kg}.$$

Superfícies

1. a) $\vec{r}(u,v) = 2\sqrt{2}\cos(u)\cos(v)\vec{i} + 2\sin(u)\cos(v)\vec{j} + 4\sin(v)\vec{k}$, $u \in [0,2\pi]$, $v \in [0,\pi/2]$.

b)
$$\vec{r}(u,v) = 3\cos(u)\vec{i} + 3\sin(u)\vec{j} + v\vec{k}$$
, $u \in [0,2\pi]$, $v \in [-1,3]$.

c)
$$\vec{r}(u,v) = 2\cos(u)\cos(v)\vec{i} + 2\sin(u)\cos(v)\vec{j} + 2\sin(v)\vec{k}$$
, $u \in [0,2\pi]$, $v \in (-\pi/4,\pi/2]$.

d)
$$\vec{r}(r,v) = r\cos(v)\vec{i} + r\sin(v)\vec{j} + (r\cos(v) - 1)\vec{k}$$
, $r \in [0,1]$, $v \in [0,2\pi]$.

2. a) Elipsoide com a equação cartesiana $x^2 + \frac{y^2}{4} + \frac{z^2}{9} = 1$.

b) Paraboloide elíptico com a equação cartesiana
$$z = -\frac{x^2}{a^2} - \frac{y^2}{b^2}$$
.

c) Paraboloide hiperbólico com a equação cartesiana $z = \frac{x^2}{a^2} - \frac{y^2}{b^2}$.

3. a)
$$\vec{N}(u,v) = 4(u^2 - v^2)\vec{i} - 4(u^2 + v^2)\vec{j} + 2uv\vec{k}$$
. **b)** $y - z = 0$.

4. a)
$$\vec{N}(u,v) = \text{sen}(u)\text{sen}(v)\vec{i} + \cos(u)\cos(v)\vec{j} + \left(\text{sen}^2(u) - \cos^2(v)\right)\vec{k}$$
.

b)
$$y + z = 3$$
.

b)
$$A(S) = \frac{\pi}{6} (17\sqrt{17} - 1) \text{ m}^2$$
.

b)
$$A(S) = \sqrt{2}\pi \text{ m}^2$$
.

7. Pode ser usada a seguinte parametrização: $\vec{r}(x,y) = x\vec{i} + y\vec{j} + \sqrt{x^2 + y^2}\vec{k}$, $(x,y) \in \Omega$, em que $\Omega = \{(x, y) : 0 \le x^2 + y^2 \le 1\}.$

b)
$$A(S) = \frac{\pi}{24} (17\sqrt{17} - 1) \text{ m}^2$$
.

b)
$$A(S) = \frac{\pi}{6} (5\sqrt{5} - 1) \text{ m}^2$$
.

b)
$$A(S) = 15\sqrt{2}\pi \text{ m}^2$$
.

b)
$$A(S) = \frac{\sqrt{2}}{2} \text{ m}^2$$
.

b)
$$A(S) = 3\sqrt{2}\pi \text{ m}^2$$
.

13.
$$A(S) = \sqrt{3}\pi b^2 \text{ m}^2$$
.

14.
$$A(S) = \frac{1}{2} \sqrt{a^2 b^2 + a^2 c^2 + b^2 c^2}$$
 m².

15. a)
$$A(S) = \frac{1}{15} (32 + 36\sqrt{6} - 50\sqrt{5}) \text{ m}^2$$
.

b)
$$A(S) = \frac{2\sqrt{2ab}}{3}(a+b) \text{ m}^2$$
.

c)
$$A(S) = \frac{\pi}{6} \left[\left(4a^2 + 1 \right)^{3/2} - \left(a^2 + 1 \right)^{3/2} \right] \text{ m}^2$$
. d) $A(S) = \frac{16\sqrt{6}}{15} \text{ m}^2$.

d)
$$A(S) = \frac{16\sqrt{6}}{15} \text{ m}^2$$

e)
$$A(S) = \sqrt{5} + \frac{1}{2} \ln(\sqrt{5} + 2) \text{ m}^2$$
.

f)
$$A(S) = 4\pi \text{ m}^2$$
.

g)
$$A(S) = 2\pi ab \text{ m}^2$$
.

16. ----

17.
$$A(S) = \frac{\sqrt{2}\pi}{4} \left[\sqrt{6} + \frac{1}{2} \ln(\sqrt{2} + \sqrt{3}) \right] \text{ m}^2.$$

18.
$$A(S) = \frac{a^2}{2} \left[\sqrt{1 + 2e^{4\pi}} - \sqrt{3} + 2\pi + \ln(1 + \sqrt{3}) - \ln(\sqrt{1 + 2e^{4\pi}} + 1) \right] \text{ m}^2.$$

Integrais de Superfície

1.
$$\iint_{S} h(x, y, z) dS = \left\| \vec{a} \times \vec{b} \right\| \left[\frac{1}{3} a_{1} a_{2} + \frac{1}{4} (a_{1} b_{2} + b_{1} a_{2}) + \frac{1}{3} b_{1} b_{2} \right].$$

2.
$$\frac{2}{3}(2\sqrt{2}-1)$$
.

3.
$$\sqrt{2} + \ln(\sqrt{2} + 1)$$
.

4.
$$\pi \left[3\sqrt{2} - \ln(\sqrt{2} + 1) \right].$$

5.
$$\frac{\sqrt{3}}{120}$$
.

7.
$$28\sqrt{2}\pi$$
.

8.
$$\frac{\pi}{60} \Big[10a^2 (1+4a^2)^{3/2} - (1+4a^2)^{5/2} + 1 \Big].$$
 9. $\frac{4}{3}\pi a^4 + \pi a^3.$

9.
$$\frac{4}{3}\pi a^4 + \pi a^3$$

10. a)
$$\sqrt{6}$$
 m².

$$\mathbf{b})\left(1,0,\frac{1}{2}\right).$$

c)
$$\frac{\sqrt{6}k}{2}$$
 Kg.

$$\mathbf{d})\left(\frac{7}{6},\frac{1}{6},\frac{2}{3}\right).$$

e)
$$I_x = \frac{\sqrt{6}k}{3} \text{ Kgm}^2$$
, $I_y = \sqrt{6}k \text{ Kgm}^2$ e $I_z = \frac{5\sqrt{6}k}{6} \text{ Kgm}^2$.

11. a)
$$\frac{\sqrt{3}a^2}{2}$$
 m².

$$\mathbf{b})\left(\frac{a}{3},\frac{a}{3},\frac{a}{3}\right).$$