Ludwig-Maximilians-Universität München Institut für Informatik Lehrstuhl für Mobile und Verteilte Systeme Prof. Dr. Claudia Linnhoff-Popien Prof. Dr. Thomas Gabor

Probeklausurblatt 9 Rechnerarchitektur im Sommersemester 2024

Zum Modul L

Abgabetermin: 23.06.24, 18:00 Uhr **Besprechung:** 24.06.24 - 28.06.24

Aufgabe P1: Entwurf eines 4-Bit-Addiernetzes

(11 Pkt.)

- a. Nehmen Sie einen Carry-Look-Ahead-Addierer mit einer Größe der Bit-Gruppen von g=3 an. Leiten Sie den logischen Ausdruck her, mit dem der ausgehende Übertrag $U_{\rm out}$ bereits vor Abarbeitung des Addiernetzes bestimmt werden kann. Bezeichnen Sie dabei die beiden eingehenden Binärzahlen als $x_2x_1x_0$ und $y_2y_1y_0$ und den eingehenden Übertrag als $U_{\rm in}$.
- b. Zeichnen Sie das Schaltnetz für einen Carry-Look-Ahead-Addierer für eine Größe von Bit-Gruppen von g=3. Vorkommende Volladdierer können dabei durch ihr entsprechendes Schaltsymbol dargestellt werden. Hierbei können Sie annehmen, dass AND-Gatter und OR-Gatter zur Verfügung stehen, die mehr als zwei Eingaben gleichzeitig verarbeiten können. Achten Sie darauf, die Verbindung von zwei Leitungen explizit zu kennzeichnen.
- c. Gehen Sie nun von der Addition zweier Dualzahlen der Länge 6-Bit aus. Berechnen Sie die Ausführungsdauer der Addition für Carry-Look-Ahead-Addierer mit einer Größe der Bit-Gruppen von g=3, d.h. es werden zwei Carry-Look-Ahead-Addierer aus den vorhergehenden Aufgabenteilen hintereinander geschaltet. Berechnen Sie zudem die Ausführungsdauer für ein angenommenes Ripple-Carry-Addiernetz, das zwei 6-stellige Dualzahlen addieren kann. Verwenden Sie für die Berechnung des Ergebnisses ausschließlich Volladdierer (kein Halbaddierer für die erste Stelle) und für die Berechnung des Übertrags die Basisgatter (AND, OR, NOT). Nehmen Sie hierbei an, dass ein Volladdierer eine Verzögerung von 70 psec, ein AND-Gatter und OR-Gatter jeweils eine Verzögerung von 10 psec verursachen. AND-Gatter und OR-Gatter mit mehr als zwei Eingängen sollen ebenfalls mit einer Verzögerung von 10 psec veranschlagt werden.

Aufgabe P2: Schaltung für Successor-Funktion

(8 Pkt.)

In dieser Aufgabe sollen Sie das Schaltnetz für eine Binärschaltung entwerfen, welche die Successor-Funktion für 2-Bit-Zahlen realisiert.

Sei $i \in \{0,\dots,3\}$ eine Dezimalzahl und d(i) die zweistellige Dualdarstellung von i. Die Successor-Funktion soll die Funktion

$$f_{succ}(d(i)) = d(i+1) \bmod 4$$
 mit $f_{succ}: B^2 \to B^2$

realisieren.

Neben zwei Dateneingänge x_0 und x_1 sowie zwei Datenausgänge y_0 und y_1 soll die Schaltung einen Steuereingang s besitzen. Nur wenn gilt s=1 soll die Schaltung den Wert von $f_{succ}(d(i))$ als Ergebnis an den Datenausgängen liefern. Für s=0 soll die Schaltung die Dateneingänge unverändert an die Datenausgängen weiterleiten.

- a. Stellen Sie zunächst die Funktionstafel für die gewünschte Schaltung auf.
- b. Leiten Sie von der Funktionstafel die beiden Schaltfunktionen f_{y_0} und f_{y_1} für die Datenausgänge y_0 und y_1 ab. Minimieren Sie beide Funktion so weit wie möglich.
- c. Oft ist es billiger eine Schaltung aus komplexeren schon existierenden Bausteinen zusammen zu setzen, anstatt sie von Grund auf neu zu konstruieren.
 - Gehen Sie davon aus, dass Ihnen aus Kostengründen nur Halbaddierer zur Verfügung stehen und konstruieren Sie die Schaltung mittels Halbaddierer.

Aufgabe P3: Carry-Select-Addiernetz

(6 Pkt.)

Im Folgenden sehen Sie ein **Carry-Select-Addiernetz**, welches zwei 8–stellige Dualzahlen $a_7a_6a_5a_4a_3a_2a_1a_0$ und $b_7b_6b_5b_4b_3b_2b_1b_0$ addieren kann. Die niedrigwertigen Hälften der Input-Operanden $(a_3a_2a_1a_0$ und $b_3b_2b_1b_0)$ werden normal mit einem Addiernetz für 4–stellige Dualzahlen (\tilde{A}_4) verarbeitet (mit fest voreingestelltem Übertragseingang = 0). Die obere Hälfte wird dagegen zweimal addiert: Einmal für einen möglicherweise auftretenden Übertrag 0, einmal für einen möglicherweise auftretenden Übertrag 1. Bei der Berechnung entstehen die im großen Rechteck der Zeichnung ersichtlichen Zwischenergebnisse. Steht der Übertrag nach der Berechnung der unteren 4 Stellen fest, müssen die Zwischenergebnisse geeignet selektiert werden. Die Schaltung hierfür verbirgt sich in dem schraffierten Rechteck.

Geben Sie die booleschen Funkionen einzeln für die Ausgänge R_7, R_6, R_5, R_4 sowie des abschließenden Übertrages U an, die sich aus den Zwischenergebnissen $x_3, x_2, x_1, x_0, y_3, y_2, y_1, y_0$ sowie u_2, u_1, u_0 ergeben.

Aufgabe P4: Einfachauswahlaufgabe: Zahlendarstellung und Addiernetze

(5 Pkt.)

Für jede der folgenden Fragen ist eine korrekte Antwort auszuwählen ("1 aus n"). Nennen Sie dazu in Ihrer Abgabe die jeweils ausgewählte Antwortnummer ((i), (ii), (iii) oder (iv)). Eine korrekte Antwort ergibt jeweils einen Punkt. Mehrfache Antworten oder eine falsche Antwort werden mit 0 Punkten bewertet.

a) Wie lautet das dezimale Ergebnis der Addition der folgenden in Zweierkomplementdarstellung gegebenen Binärzahlen?				
101			10001	
+ (001	10100	
Übertrag				
	Ergebnis			
(i) -93	(ii) 67		(iii) 32	(iv) -27
b) Um wie viele Stellen verschiebt sich das Komma der normalisierten Mantisse einer				
32 Bit IEEE 754 Gleitkommazahl, wenn der Exponent 10110011 lautet?				
(i) 3	(ii) 31		(iii) 52	(iv) 17
c) Ein Volladdierer (Addition zweier Binärziffern und eines Übertrags) lässt sich mit				
(i)zwei	(ii)zwei		(iii)zwei	(iv)zwei
Halbaddierern und	Halbaddierern		Halbaddierern und	Halbaddierern und
einem OR-Gatter	realisieren.		einem AND-Gatter	einem NOT-Gatter
realisieren.			realisieren.	realisieren.
d) Welcher Dezimalzahl entspricht die folgende 32-Bit Gleitkommadarstellung nach				
IEEE 754?				
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0				
S Exponent Significand				
(i) -22, 625	(ii) -45,25		(iii) -362,0	(iv) -90,5
e) Wie bezeichnet man ein Addiernetz, bei welchem z.B. bei der Addition einer				
	ein Addiernetz, be	ı weic	chem z.B. bei der Additio	on einer
			chem z.B. bei der Additio n der Input-Operanden z	
8-stelligen Dualzahl die	e 4 höherwertigen S	Stelle		weimal
8-stelligen Dualzahl die addiert werden und zw	e 4 höherwertigen S var für den Fall, das	Stellei s bei (n der Input-Operanden z der Addition der niederv	weimal vertigen Hälfte
8-stelligen Dualzahl die addiert werden und zw	e 4 höherwertigen S var für den Fall, das in Übertrag auftritt	Stellei s bei (n der Input-Operanden z	weimal vertigen Hälfte
8-stelligen Dualzahl die addiert werden und zw der Input-Operanden e	e 4 höherwertigen S var für den Fall, das in Übertrag auftritt	Stellei s bei (n der Input-Operanden z der Addition der niederv	weimal vertigen Hälfte
8-stelligen Dualzahl die addiert werden und zw der Input-Operanden e der Gesamtaddition zu	e 4 höherwertigen S var für den Fall, das in Übertrag auftritt verkürzen?	Stellei s bei (n der Input-Operanden z der Addition der niederw nicht, um damit die Ber	weimal vertigen Hälfte echnungszeit