Cvičení 11: Zesilovač s bipolárním tranzistorem

C11.1 Zesilovač se společným emitorem – SE

- 1. DC analýza nastavení klidového pracovního bodu P₀ (CP11.1)
- 2. AC analýza NLO, parametry, zesílení, vstupní odpor

C11.2 Měření a simulace zesilovače SE s BJT – M11.1 a S11.1

- 1. DC analýza nastavení klidového pracovního bodu P₀ (výpočet hodnoty R_B)
- 2. AC analýza řešení harmonického ustáleného stavu s NLO
 - Odečet hodnot parametrů NLO
 - ➤ Návrh hodnot C₁, C₂ a C_E
 - > Určení hodnot napěťového zesílení, vstupního a výstupního odporu zesilovače

DC analýza – nastavení P₀

Zjednodušení obvodu:

- odstranění střídavých zdrojů
- odstranění obvodových prvků, které se při DC řešení neuplatní:
 - kapacitory = rozpojené svorky
 - induktory = zkrat

Příklad CP11.1: Nastavení pracovního bodu P_0 **grafickou metodou** Úkolem je nastavit klidový pracovní bod P_0 pro U_{CE} =7V a dále vypočítat hodnotu R_B .

Příklad CP11.1: Nastavení pracovního bodu P_0 **grafickou metodou** Úkolem je nastavit klidový pracovní bod P_0 pro U_{CE} =7V a dále vypočítat hodnotu R_B .

Sestavíme rovnici výstupního obvodu:

$$-U_{CC} + R_C \cdot I_C + U_{CE} + R_E \cdot (I_C + I_B) = 0$$
 $I_C >> I_C$

Převedeme na tvar rovnice zatěžovací přímky:

$$I_C = \frac{U_{CC} - U_{CE}}{R_C + R_E} = 11,3.10^{-3} - 0,75.10^{-3} \cdot U_{CE}$$

Pracovní bod vyneseme na zatěžovací přímce jako bod při kterém platí U_{CE}=7V

Příklad CP11.1: Nastavení pracovního bodu P₀ **grafickou metodou**

Úkolem je nastavit klidový pracovní bod P₀ pro U_{CE}=7V

a dále vypočítat hodnotu R_B.

Na vstupní charakteristice vyneseme P_0 pro I_B =25 μ A a odečteme hodnotu U_{BE} .

Tím máme určeny všechny parametry pracovního bodu tranzistoru:

$$U_{BF} = 0.65V$$
 $I_{B} = 25\mu A$

$$U_{CE} = 7V$$
 $I_{C} = 6mA$

 I_B

Příklad CP11.1: Nastavení pracovního bodu P₀ **grafickou metodou**

Úkolem je nastavit klidový pracovní bod P₀ pro U_{CF}=7V

a dále vypočítat hodnotu R_R.

Výpočet hodnoty R_B:

$$-U_{CC} + R_B \cdot I_B + U_{BE} + R_E \cdot (I_C + I_B) = 0$$

$$R_B = \frac{U_{CC} - U_{BE} - R_E \cdot I_C}{I_B}$$

$$R_B = \frac{15 - 0.65 - 1.98}{25.10^{-6}} = 495 \text{ [k}\Omega\text{]}$$

 I_{B}

AC analýza – linearizace charakteristik pro okolí P₀

$$\Delta u_{BE} = h_{11} \Delta i_B + h_{12} \Delta u_{CE}$$

$$\Delta i_C = h_{21} \Delta i_B + h_{22} \Delta u_{CE}$$

NLO pro změny veličin

$$h_{11} = \left(\frac{\Delta u_{BE}}{\Delta i_{B}}\right)_{P_{0}}^{\Delta u_{CE}=0}$$

$$h_{12} = \left(\frac{\Delta u_{BE}}{\Delta u_{CE}}\right)_{P_0}^{\Delta i_B = 0}$$

$$h_{21} = \left(\frac{\Delta i_C}{\Delta i_B}\right)_{P_0}^{\Delta u_{CE}=0}$$

$$h_{22} = \left(\frac{\Delta i_C}{\Delta u_{CE}}\right)_{P_2}^{\Delta i_B = 0}$$

AC analýza – vstupní diferenciální odpor h₁₁

$$h_{11} = \frac{\partial U_{BE}}{\partial I_B}\bigg|_{P_0}$$

odpor [Ω] – silně nelineární!! typické hodnoty 500 – 2k

Stanovit lze z poměru diferencí Δu_{BE} ku Δi_{B}

$$h_{11} = \left(\frac{\Delta u_{BE}}{\Delta i_{B}}\right)_{P_{0}}^{\Delta u_{CE}=0}$$

$$h_{11} = \frac{690mV - 625mV}{60\mu A - 0\mu A}$$

 $h_{11} = 1083 \ \Omega$

AC analýza – zpětný napěťový přenos h₁₂

$$h_{12} = \frac{\partial U_{BE}}{\partial U_{CE}}\bigg|_{P_0}$$

bezrozměrný typické hodnoty 10⁻³-10⁻⁴ většinou lze zanedbat !!

Stanovit lze z poměru diferencí Δu_{BE} ku Δu_{CE}

$$h_{12} = \left(\frac{\Delta u_{BE}}{\Delta u_{CE}}\right)_{P_0}^{\Delta i_B = 0}$$

$$h_{12} \cong 0$$

Vstupní charakteristika

poloha P₀ se v závislosti na U_{CE} téměř nemění

AC analýza – proudový zesilovací činitel h₂₁ (h_{21E})

bezrozměrný typické hodnoty 10 – 1000

Stanovit lze z poměru diferencí Δi_C ku Δi_B

$$h_{21} = \left(\frac{\Delta i_C}{\Delta i_B}\right)_{P_0}^{\Delta u_{CE}=0}$$

$$h_{21} = \frac{7,4mA - 4,9mA}{30\mu A - 20\mu A}$$

$$h_{21} = 250$$

AC analýza – výstupní diferenciální vodivost h₂₂

vodivost [S] typické hodnoty 10 – 100µS

Stanovit lze z poměru diferencí Δi_C ku Δu_{CE}

$$h_{22} = \frac{1}{r_o} = \left(\frac{\Delta i_C}{\Delta u_{CE}}\right)_{P_0}^{\Delta i_B = 0}$$

$$h_{22} = \frac{7,1mA - 5,4mA}{14,8V - 0V}$$

$$h_{22} = 115 \mu S$$

AC analýza – harmonický ustálený stav s NLO

Napěťové zesílení Vstupní odpor Výstupní odpor

Zjednodušení obvodu

- 1. Odstranění ss zdrojů:
 - ss zdroje napětí zkratovat (dU/dt = 0)
 - ss zdroje proudu odpojit (dl/dt = 0)

AC analýza – harmonický ustálený stav s NLO

Zjednodušení obvodu

2. Náhrada tranzistoru jeho NLO (pozor na správné připojení!)

Napěťové zesílení Vstupní odpor Výstupní odpor

AC analýza – harmonický ustálený stav s NLO

Napěťové zesílení Vstupní odpor Výstupní odpor

Výpočet hodnot vazebních kapacit

(například pro f=1kHz a R_7 =1M Ω)

Blokovací kapacitor C_E střídavě zkratuje odpor R_E

$$X_{CE} = \frac{1}{2.\pi . f. C_E} << R_E$$

$$C_E >> \frac{1}{2.\pi f.R_E} = \frac{1}{2.3,14.1000.330} = 480nF$$
 Zvolíme C_E v rozsahu 10μ F – 100μ F

Odpor R_F za těchto podmínek tedy můžeme nahradit zkratem.

AC analýza – harmonický ustálený stav s NLO

Napěťové zesílení Vstupní odpor Výstupní odpor

Výpočet hodnot vazebních kapacit

(například pro f=1kHz a R_7 =1M Ω)

Pro optimální navázání vstupního signálu musí platit

$$X_{C1} = \frac{1}{2.\pi.f.C_1} << R_B // h_{11}$$

$$C_1 >> \frac{1}{2.3,14.1000.495000/1083} = 150nF$$

Zvolíme C₁ v rozsahu 1μF – 10μF

Pro optimální navázání **výstupního signálu** musí platit
$$X_{C2} = \frac{1}{2.\pi.f.C_2} << R_Z + \frac{1}{h_{22}} // R_C$$

$$C_2 >> \frac{1}{2.3,14.1000.\left(1.10^6 + \frac{1}{115.10^{-6}} // 1000\right)} = 160 pF$$

Zvolíme C₂ v rozsahu 10nF – 100nF

AC analýza – harmonický ustálený stav s NLO

Napěťové zesílení Vstupní odpor Výstupní odpor

Napěťové zesílení zesilovače SE (odpor RE se neuplatňuje)

$$h_{11} = 1083 \ \Omega$$
 $h_{12} \cong 0$
 $h_{21} = 250$
 $h_{22} = 115 \mu S$

$$A_U = \frac{\Delta u_2}{\Delta u_1}$$

$$\Delta u_1 = \Delta u_{be} = h_{11} \cdot \Delta i_b$$

$$\Delta u_2 = -h_{21} \cdot \Delta i_b \cdot \left(\frac{1}{h_{22}} // R_C // R_Z \right)$$

$$A_U = -\frac{h_{21}}{h_{11}} \cdot \left(\frac{1}{h_{22}} // R_C // R_Z\right) \approx -\frac{h_{21} \cdot R_C}{h_{11}}$$

$$A_U = -\frac{250}{1083} \cdot \left(\frac{1}{115.10^{-6}} // 1000 // 1.10^6\right) = -206$$

AC analýza – harmonický ustálený stav s NLO

Napěťové zesílení Vstupní odpor Výstupní odpor

Vstupní a výstupní odpor zesilovače SE

(odpor RE se neuplatňuje)

$$R_{vst} = \frac{\Delta u_1}{\Delta i_1} = \frac{\Delta i_1 \cdot (h_{11} // R_B)}{\Delta i_1} = h_{11} // R_B$$

$$R_{vyst} = \frac{\Delta u_2}{\Delta i_2} = \frac{\Delta i_2 \cdot \left(\frac{1}{h_{22}} // R_C\right)}{\Delta i_2} = \frac{1}{h_{22}} // R_C$$

$$R_{vst} = \frac{1083 \cdot 495k}{1083 + 495k} = 1080\Omega$$

$$R_{vyst} = \frac{\frac{1}{115.10^{-6}} \cdot 1k}{\frac{1}{115.10^{-6}} + 1k} = 897\Omega$$

AC analýza – harmonický ustálený stav s NLO

Napěťové zesílení Vstupní odpor Výstupní odpor

Napěťové zesílení zesilovače SE (odpor RE se uplatňuje)

$$A_U = -\frac{h_{21} \cdot R_C}{h_{11} + R_E \cdot (1 + h_{21})} \approx -\frac{R_C}{R_E}$$

$$A_U = -\frac{1000}{330} = -3$$

AC analýza – harmonický ustálený stav s NLO

Napěťové zesílení Vstupní odpor Výstupní odpor

Vstupní a výstupní odpor zesilovače SE (odpor RE se uplatňuje)

$$R_{vst} = \frac{\Delta u_1}{\Delta i_1} = R_B //(h_{11} + R_E \cdot (1 + h_{21}))$$

$$R_{vyst} = \frac{\Delta u_2}{\Delta i_2} = \left(\frac{1}{h_{22}} + R_E\right) // R_C \approx \frac{1}{h_{22}} // R_C$$

$$R_{vst} = \frac{495k \cdot (1083 + 330 \cdot 251)}{495k + (1083 + 330 \cdot 251)} = 72k\Omega$$

$$R_{vyst} = \frac{\frac{1}{115.10^{-6}} \cdot 1k}{\frac{1}{115.10^{-6}} + 1k} = 897\Omega$$

AC analýza – rekapitulace

Odpor R_E se neuplatňuje:

$$A_U = -\frac{h_{21}}{h_{11}} \cdot \left(\frac{1}{h_{22}} // R_C // R_Z\right) \approx -\frac{h_{21} \cdot R_C}{h_{11}}$$

$$R_{vst} = h_{11} // R_B$$

$$R_{vyst} = \frac{1}{h_{22}} // R_C$$

vstupní odpor dán h₁₁ tranzistoru velký napěťový zisk závislý na parametrech tranzistoru velký výstupní odpor

Odpor R_E se uplatňuje:

$$A_U \approx -\frac{R_C}{R_E}$$
 $R_{vst} = R_B //(h_{11} + R_E \cdot (1 + h_{21}))$
 $R_{vyst} = \frac{1}{h_{22}} //R_C$

vstupní odpor se zvyšuje o (h₂₁+1) R_E nižší napěťový zisk, nezávisí na parametrech tranzistoru velký výstupní odpor

M11.1: Měření zesilovače třídy A s bipolárním tranzistorem (BJT)

Význam jednotlivých obvodových prvků:

U _{CC} =15V	napětí stejnosměrného napájecího zdroje
Δu₁	harmonický signál z RC generátoru, volit <mark>∆u₁≈10mV, f = 1kHz</mark>
C ₁	vazební kapacita pro navázání vstupního signálu
R_{B}	odpor pro nastavení proudu I _B (P₀), votit tak, aby U _{CF} ≈ U _{CC} /2
R_{c}^{-}	zatěžovací odpor tranzistoru
R _E	nastavení zpětné vazby pro stabilizaci P ₀ , příp. nastavení napěťového zisku
CE	blokovací kondenzátor pro střídavé přemostění odporu R _F
C_2	vazební kapacita pro navázání výstupního signálu do zátěže R _z
R_z	zátěž zesilovače – osciloskop R _z = 1MΩ

M11.1: Měření zesilovače třídy A s bipolárním tranzistorem (BJT)

Cíl: změřit napěťové zesílení zesilovače malého signálu třídy A s BJT a porovnat naměřené hodnoty se simulací a analytickým odhadem

Úkol měření:

Změřte dvoukanálovým osciloskopem napěťové zesílení $A_u = \Delta u_2/\Delta u_1$ zesilovače s BJT pro uvedené kombinace hodnot prvků R_C , R_E a C_E .

Experimentální výsledky porovnejte s výsledky simulací a teoretickým odhadem.

M11.1: Měření zesilovače třídy A s bipolárním tranzistorem (BJT)

Přípravek zesilovače s BJT

R _C	1k	1 k	560	560
R_{E}	330	330	100	100
C _E	100 u	0	100 u	0

M11.1: Měření zesilovače třídy A s bipolárním tranzistorem (BJT)

Zapojení pro měření napěťového zisku

R _C	1k	1k	560	560
R_{E}	330	330	100	100
C _E	100 u	0	100 u	0

M11.1: Měření zesilovače třídy A s bipolárním tranzistorem (BJT)

Zapojení přípravku pro měření napěťového zisku

R_{C}	1 k	1 k	560	560
R_{E}	330	330	100	100
C _E	100 u	0	100 u	0

M11.1: Měření zesilovače třídy A s bipolárním tranzistorem (BJT)

Zpracování výsledků – Excel, karta Au BJT SE

S11.1: LTSpice – BJT zesilovač ve třídě A

cv11_BJT_SE.asc

- 1) Nastavení pracovního bodu Uce=7.5V
- 2) Zesilovač SE

S11.1: LTSpice – BJT zesilovač ve třídě A

cv11_BJT_SE.asc

1) Nastavení pracovního bodu Uce=7.5V

2) Zesilovač SE

Pomocí kurzoru odečtěte hodnotu Rb pro Uce=7.5V

S11.1: LTSpice – BJT zesilovač ve třídě A

cv11_BJT_SE.asc

- 1) Nastavení pracovního bodu Uce=7.5V
- 2) Zesilovač SE

S11.1: LTSpice – BJT zesilovač ve třídě A

cv11_BJT_SE.asc

1) Nastavení pracovního bodu Uce=7.5V

2) <mark>Zesilovač SE</mark>

S11.1: LTSpice – BJT zesilovač ve třídě A

cv11_BJT_SE.asc

Spusťte postupně simulace s níže uvedenými hodnotami součástek.

R_{C}	1k	1k	560	560
R_{E}	330	330	100	100
C _E	100 u	0	100 u	0

Pro každou kombinaci odečtěte do Excelu (list Au BJT SE)

- vstupní napětí ∆u₁
- výstupní napětí ∆u₂

Výsledky simulací porovnejte s měřením.

S11.1: LTSpice – BJT zesilovač ve třídě A

Zpracování výsledků – Excel, karta Au BJT SE

