

Data Science Graduation Project

KING COUNTY

Data driven insights and predictive modelling tool

Hamza Jahamah

Feras Al-Qirnawi

Abdullah Khader

PROBLEM STATEMENT

HOUSE SALES IN KINGS COUNTY

- Data driven recommendations
- Model to predict house prices

GOAL

• Train and validate a prediction model to accurately predict the sale price of houses in kings county.

APPROACH

DATA EXPLORATION

Week 1 project

DATA ANALYSIS

& MODEL

TRAINING

Appropriate model architecture and learning algorithm

MODEL DEPLOYMENT

Packaging the trained model for user

SELECTED HOUSE FEATURES

- 1- No of bedrooms
- 2- No of bathrooms
- 3- Square-feet living area
- 4- Square-feet lot area
- 5- No of floors
- 6- House waterfront
- 7- No of times viewed

- 8- House condition
- 9- House grade
- 10- Square feet basement area
- 11- Year built
- 12- Year renovated
- 13- Lateral coordinate
- 14- Longitude coordinate

PREDICTING HOUSE PRICES

	Model 1 Linear Regression	Model 2 Decision Tree	Model 3 Random forest	Model 4 CatBoost
Features	14	14	14	14
Score Test score	66%	80%	83%	88%
Mean Error	115,000 USD	88,000 USD	71,000 USD	49,000 USD

PREDICITION MODEL TOOL INTERFACE

Enter the following det	ails of your house to pridect Price:		
No of bedrooms			
No of bathrooms			
Sqft living area			
Sqft lot area			
No of floors			
House waterfront	✓ Yes		
No of times viewed			
House Condition	1		
House Grade	3		
Sqft basement area			
Year built			
Year renovated			
Lateral coordinate			
Longitude coordinate			
Pridect Clear			

FUTURE IMPROVMENTS

INCREASE THE AMOUNT OF DATA USED TO TRAIN THE MODEL

The more data the model has to learn from , the more accurate it will be.

INCORPORATE EXTERNAL DATA

In addition to data on past home sales, it may be useful to incorporate other types of data that could affect house prices, such as economic indicators or natural disasters.

MONITOR AND UPDATE THE MODEL REGULARLY

As the housing market changes over time, it will be important to periodically re-train the model to ensure it remains accurate.

Thank you

Any Questions ??