312. Carbon monoxide will burn in air to produce CO₂ according to the following equation:

$$2CO(g) + O_2(g) \rightarrow 2CO_2(g)$$

What volume of oxygen at STP will be needed to react with 3500. L of CO measured at 20.°C and a pressure of 0.953 atm?

313. Silicon tetrafluoride gas can be produced by the action of HF on silica according to the following equation:

$$SiO_2(s) + 4HF(g) \rightarrow SiF_4(g) + 2H_2O(l)$$

1.00 L of HF gas under pressure at 3.48 atm and a temperature of 25° C reacts completely with SiO_2 to form SiF_4 . What volume of SiF_4 , measured at 15° C and 0.940 atm, is produced by this reaction?

314. One method used in the eighteenth century to generate hydrogen was to pass steam through red-hot steel tubes. The following reaction takes place:

$$3Fe(s) + 4H_2O(g) \rightarrow Fe_3O_4(s) + 4H_2(g)$$

- **a.** What volume of hydrogen at STP can be produced by the reaction of 6.28 g of iron?
- **b.** What mass of iron will react with 500. L of steam at 250.°C and 1.00 atm pressure?
- c. If 285 g of Fe₃O₄ are formed, what volume of hydrogen, measured at 20.°C and 1.06 atm, is produced?
- **315.** Sodium reacts vigorously with water to produce hydrogen and sodium hydroxide according to the following equation:

$$2Na(s) + 2H_2O(l) \rightarrow 2NaOH(aq) + H_2(g)$$

If 0.027 g of sodium reacts with excess water, what volume of hydrogen at STP is formed?

316. Diethyl ether burns in air according to the following equation:

$$C_4H_{10}O(l) + 6O_2(g) \rightarrow 4CO_2(g) + 5H_2O(l)$$

If 7.15 L of CO_2 is produced at a temperature of $125^{\circ}C$ and a pressure of 1.02 atm, what volume of oxygen, measured at STP, was consumed and what mass of diethyl ether was burned?

317. When nitroglycerin detonates, it produces large volumes of hot gases almost instantly according to the following equation:

$$4C_3H_5N_3O_9(l) \rightarrow 6N_2(g) + 12CO_2(g) + 10H_2O(g) + O_2(g)$$

- **a.** When 0.100 mol of nitroglycerin explodes, what volume of each gas measured at STP is produced?
- **b.** What total volume of gases is produced at 300.°C and 1.00 atm when 10.0 g of nitroglycerin explodes?
- **318.** Dinitrogen monoxide can be prepared by heating ammonium nitrate, which decomposes according to the following equation:

$$NH_4NO_3(s) \rightarrow N_2O(g) + 2H_2O(l)$$

What mass of ammonium nitrate should be decomposed in order to produce 250. mL of N_2O , measured at STP?

319. Phosphine, PH₃, is the phosphorus analogue to ammonia, NH₃. It can be produced by the reaction

between calcium phosphide and water according to the following equation:

$$\operatorname{Ca_3P_2}(s) + 6\operatorname{H_2O}(l) \rightarrow \operatorname{3Ca(OH)_2}(s \text{ and } aq) + 2\operatorname{PH_3}(g)$$

What volume of phosphine, measured at 18°C and 102.4 kPa, is produced by the reaction of 8.46 g of Ca₃P₂?

320. In one method of producing aluminum chloride, HCl gas is passed over aluminum and the following reaction takes place:

$$2Al(s) + 6HCl(g) \rightarrow 2AlCl_3(g) + 3H_2(g)$$

What mass of Al should be on hand in order to produce 6.0×10^3 kg of AlCl₃? What volume of compressed HCl at 4.71 atm and a temperature of 43°C should be on hand at the same time?

321. Urea, (NH₂)₂CO, is an important fertilizer that is manufactured by the following reaction:

$$2NH_3(g) + CO_2(g) \rightarrow (NH_2)_2CO(s) + H_2O(g)$$

What volume of NH $_3$ at STP will be needed to produce 8.50×10^4 kg of urea if there is an 89.5% yield in the process?

322. An obsolete method of generating oxygen in the laboratory involves the decomposition of barium peroxide by the following equation:

$$2\text{BaO}_2(s) \rightarrow 2\text{BaO}(s) + \text{O}_2(g)$$

What mass of BaO₂ reacted if 265 mL of O₂ is collected by water displacement at 0.975 atm and 10.°C?

323. It is possible to generate chlorine gas by dripping concentrated HCl solution onto solid potassium permanganate according to the following equation:

$$2\text{KMnO}_4(aq) + 16\text{HCl}(aq) \rightarrow 2\text{KCl}(aq) + 2\text{MnCl}_2(aq) + 8\text{H}_2\text{O}(l) + 5\text{Cl}_2(g)$$

If excess HCl is dripped onto 15.0 g of KMnO₄, what volume of Cl_2 will be produced? The Cl_2 is measured at 15°C and 0.959 atm.

324. Ammonia can be oxidized in the presence of a platinum catalyst according to the following equation:

$$4NH_3(g) + 5O_2(g) \rightarrow 4NO(g) + 6H_2O(l)$$

The NO that is produced reacts almost immediately with additional oxygen according to the following equation:

$$2NO(g) + O_2(g) \rightarrow 2NO_2(g)$$

If 35.0 kL of oxygen at STP react in the first reaction, what volume of NH_3 at STP reacts with it? What volume of NO_2 at STP will be formed in the second reaction, assuming there is excess oxygen that was not used up in the first reaction?

325. Oxygen can be generated in the laboratory by heating potassium chlorate. The reaction is represented by the following equation:

$$2KClO_3(s) \rightarrow 2KCl(s) + 3O_2(g)$$

What mass of KClO₃ must be used in order to generate 5.00 L of O₂, measured at STP?

326. One of the reactions in the Solvay process is used to make sodium hydrogen carbonate. It occurs when car-