Lecture 5: Introduction

Amos Ron

University of Wisconsin - Madison

February 03, 2021

Outline

- 1 The Singular Value Decomposition
 - Defining the SVD, 2×2 case
 - Derivation

Outline

- 1 The Singular Value Decomposition
 - Defining the SVD, 2×2 case
 - Derivation

Blank page

SVD

A is any matrix 2×2 .

Definition

The SVD of *A* is a decomposition

$$A = U\Sigma V'$$

where

- U and V are orthogonal 2×2 .
- ullet Σ is diagonal with non-negative diagonal entries.
- The columns of *U* are left singular vectors of *A*.
- The columns of *V* are right singular vectors of *A*.
- The diagonal entries of Σ are singular values of A.

SVD

Definition

The SVD of *A* is a decomposition

$$A = U\Sigma V',$$

where

- U and V are orthogonal 2×2 .
- ullet Σ is diagonal with non-negative diagonal entries.
- The columns of *U* are left singular vectors of *A*.
- The columns of V are right singular vectors of A.
- The diagonal entries of Σ are singular values of A.

Comment: Let R be a diagonal matrix with unit diagonal entries Then, if $A = U\Sigma V'$, then also $A = (UR)\Sigma (RV')$.

SVD

Comment: Let R be a diagonal matrix with unit diagonal entries Then, if $A=U\Sigma V'$, then also $A=(UR)\Sigma(RV')$. Since UR and RV' are still orthogonal, this is another SVD of A. Up to this triviality (i.e., the mulitiplication of the singular vectors by -1), the SVD is unique whenever $\Sigma(1,1)>\Sigma(2,2)$.

Assume that $A = U\Sigma V'$ as before.

First fundamental computation

$$AA' = (U\Sigma V')(U\Sigma V')' = (U\Sigma V')(V\Sigma U') = U\Sigma (V'V)\Sigma U' = U\Sigma^2 U'$$

and

$$A'A = V\Sigma^2 V'.$$

Assume that $A = U\Sigma V'$ as before.

First fundamental computation

$$AA' = (U\Sigma V')(U\Sigma V')' = (U\Sigma V')(V\Sigma U') = U\Sigma (V'V)\Sigma U' = U\Sigma^2 U'$$

and

$$A'A = V\Sigma^2 V'.$$

Conclusion

- The left singular vectors are the eigenvectors of AA'.
- The right singular vectors are the eigenvectors of A'A.
- The squares of the singular values are the eigenvalues of A'A and of AA'.

Assume that $A = U\Sigma V'$ as before.

Second fundamental computation

$$A' = (U\Sigma V')' = V\Sigma U'.$$

So,

- The left singular vectors of A are the right singular vectors of A'.
- The left singular vectors of A' are the right singular vectors of A.
- The singular values of A and A' are the same.

Assume that $A = U\Sigma V'$ as before.

Third fundamental computation

$$AV = U\Sigma(V'V) = U\Sigma,$$

i.e.,
$$Av_1 = \Sigma(1,1)u_1$$
, $Av_2 = \Sigma(2,2)u_2$.

Similarly,

$$A'U = V\Sigma$$
.

What are we really looking for?

The SVD reads as

$$AV = U\Sigma$$
.

It therefore find two vector v_1, v_2 (The columns of V) such that

- v_1, v_2 is an orthonormal basis for \mathbb{R}^2 .
- $(Av_1, Av_2) = 0$.

What are we really looking for?

The SVD reads as

$$AV = U\Sigma$$
.

It therefore find two vector v_1, v_2 (The columns of V) such that

- v_1, v_2 is an orthonormal basis for \mathbb{R}^2 .
- $(Av_1, Av_2) = 0.$

Indeed, if you find such v_1, v_2 , you may define

$$u_i := \frac{Av_i}{||Av_i||_2}.$$

Then, u_1, u_1 is an orthonormal basis, too. U is then their concatenation.

What are we really looking for?

The SVD reads as

$$AV = U\Sigma$$
.

It therefore find two vector v_1, v_2 (The columns of V) such that

- v_1, v_2 is an orthonormal basis for \mathbb{R}^2 .
- $(Av_1, Av_2) = 0$.

Indeed, if you find such v_1, v_2 , you may define

$$u_i := \frac{Av_i}{||Av_i||_2}.$$

Then, u_1, u_1 is an orthonormal basis, too. U is then their concatenation.

We get then

$$AV = U\Sigma,$$

with V, U as above (orthonormal then), and Σ diagonal, with diagonal entries $||Av_i||_2$.

Derviation

We take v_1, v_2 the orthonormal eigenbasis of A'A. We then prove that Av_1, Av_2 are eigenvectors of AA'. If their eigenvalues are different, they must be perpendicular (since AA' is symmetric).

Derviation

We take v_1, v_2 the orthonormal eigenbasis of A'A.

We then prove that Av_1, Av_2 are eigenvectors of AA'. If their eigenvalues are different, they must be perpendicular (since AA' is symmetric).

So, (λ_i, v_i) , is an eigenpair of A'A, and we want Av_i to be an eigenpair of AA':

$$(AA')(Av_i) = A(A'A)v_i = A(\lambda_i v_i) = \lambda_i Av_i.$$

Derviation

We take v_1, v_2 the orthonormal eigenbasis of A'A.

We then prove that Av_1 , Av_2 are eigenvectors of AA'. If their eigenvalues are different, they must be perpendicular (since AA' is symmetric).

So, (λ_i, v_i) , is an eigenpair of A'A, and we want Av_i to be an eigenpair of AA':

$$(AA')(Av_i) = A(A'A)v_i = A(\lambda_i v_i) = \lambda_i Av_i.$$

The above works if A is non-sigular, and $\lambda_1 \neq \lambda_2$

Demo #3