

(

(

Date Planned ://	Daily Tutorial Sheet - 8	Expected Duration : 90 Min
Actual Date of Attempt : / /	Level - 2	Exact Duration :

- **96.** Which of the following transitions are not allowed in the normal electronic emission spectrum of an atom?
 - (A) $1s \rightarrow 2s$
- **(B)**

 $2p \to ls$

- (C)
- $5d \rightarrow 4p$
- **(D)** $5p \rightarrow 3s$

- *97. Select the correct set (s) of quantum numbers
 - (A) $n = 3, l = 0, m_1 = -1$

(B) $n = 3, l = 3, m_l = -2$

(C) $n = 3, l = 2, m_1 = -2$

(D) $n = 3, l = 1, m_l = 0$

***98.** Select the correct curve(s):

If v= velocity of electron in Bohr's orbit

r = Radius of electron in Bohr's orbit

P.E. = Potential energy of electron in Bohr's orbit

K.E. = Kinetic energy of electron in Bohr's orbit

(B)

*99. Which is/are correct graph with respect to photoelectric effect?

(B)

(D)

*100. Select the correct statement (s):

- (A) Radial function [R(r)] is a part of wave function which depends upon quantum number n only
- **(B)** Angular function depends only on the direction, and is independent to the distance from the nucleus
- (C) $\Psi^2(r,\theta,\phi)$ is the probability density of finding the electron at a particular point in space
- (D) Radial distribution function $(4\pi r^2 R^2)$ gives the probability of the electron being present at a distance r from the nucleus
- ***101.** Select the correct statement(s):

- (A) An orbital with l = 0 is symmetrical about the nucleus
- **(B)** An orbital with l = 1 is spherically symmetrical about the nucleus
- (C) $3d_{2}$ is spherically symmetrical about the z-axis
- **(D)** All are correct
- *102. In a sample of H-atoms electrons are de-excited from 4th excited state to ground state. Which is/are correct statement?
 - (A) No line observed in P-fund series
 - **(B)** Total ten lines observed in spectrum
 - (C) 4 line in UV-region and 3 line in visible region are observed
 - **(D)** One line observed in Brackett series
- *103. Select incorrect statement(s).
 - **(A)** If the value of l = 0, the electron distribution is spherical
 - **(B)** The shape of the orbital is given by magnetic quantum number
 - (C) Angular momentum of 1s, 2s, 3s orbit electrons are equal
 - **(D)** In an atom, all the electrons travel with the same velocity
- *104. Hydrogen has:
 - (A) half filled subshell

- (B) half filled shell
- (C) one electron in valence shell
- (D) half filled orbital
- *105. Select the correct statement(s):

- (A) In wave mechanical model the energy of electron in the orbital remains constant
- **(B)** d_{xy} orbital lies in yz plane
- (C) Nodal planes are yz and xy in $d_{x^2-v^2}$ orbital
- **(D)** None of the above