

Metagenome assembly

The University Of Sheffield.

Format & Schedule

This intro

Bookdown

Theory

Practice

Exercises

Work at your own pace

We are here to help

Time with breaks in betw

- 10:00-11:15
- 11:30-12:30
- 13:30-14:45
- 15:00-16:00

Plan

Assembly approach

Stitch reads, assembly, binning + annotation

Read vs Assembly approach

Visualisation?

Eukaryotic analysis

Short read vs long read

Stitch reads

- FLASH
- Get longer reads
- Only if reads have overlap
- Useful for assembly

Metagenome assembly

- MEGAHIT
- Iterations of assemblies
- Creates k-mer sets from reads
 - o 29-mer
 - 49-mer
 - 69-mer
 - 89-mer
 - o Etc

Genome binning

Clusters contigs

- Coverage
- Composition

Metagenome-Assembled

Genomes (MAGs)

Dark matter

Prokka

- Bacteria, Archaea, & Virus
- GFF3

MinPath

- EC (Enzyme Commission) numbers
- MetaCyc

Read vs Assembly

Read

- Less resources
- Relies on information in databases
- Similar taxonomic annotation as assembly
- More functions retrieved, more over predictions.

Assembly

- Requires large amount of read for good results
- Assembles genes
- Discover microbial dark matter

Visualisation?

No QIIME2
MetaWrap is closest
Dependant on dataset
R
ggplot2, Phyloseq

Eukaryotic analysis

- Taxonomic annotation
 - Kraken2 (reads or metagenome assembly)
 - Custom databases
 - Other methods
- Functional annotation
 - Highly complex
 - Resource intensive
 - DB completeness
 - MetaEuk

Short reads and long reads

Short reads

- Illumina
- Good quality and depth
- One read will only partially cover a gene
- Difficulty in assemblies
- Many tools
- Easier to process

Long reads

- PacBio and ONT
- Lower quality and/or depth
- One read may cover multiple genes or even the majority of a genome
- Massively helps assemblies
- Very few tools

Hybrid approach

- Read approach
 - Just Illumina
- Assembly approach
 - Hybrid using short + long reads
 - Long reads only used for assembly step
- Long read usage still experimental
 - Will improve

Reminders and Tips

Work at your own pace

Typos

Ask questions

Breaks are important

Tab, space, and enter

During sessions

Zoom - Ask via microphone if no question currently being asked/answered Slack - Ask questions via the channel or

ask to go into a zoom breakout room with one of us

WebVNC - We can connect to your webVNC to see and help with issues.

Breakout rooms upon request

Recap

- Assembly approach
 - Stitch reads, assembly, binning + annotation
- Read vs Assembly approach
- Visualisation?
- Eukaryotic analysis
- Short read vs long read

Thank you!

Questions?

