I/O Systems

http://inst.eecs.berkeley.edu/~cs162

Goals for Today

- I/O Systems
 - Hardware Access
 - Device Drivers

Note: Some slides and/or pictures in the following are adapted from slides ©2005 Silberschatz, Galvin, and Gagne. Many slides generated from my lecture notes by Kubiatowicz.

The Requirements of I/O

- · So far in this course:
 - We have learned how to manage CPU, memory
- What about I/O?
 - Without I/O, computers are useless (disembodied brains?)
 - But... thousands of devices, each slightly different
 - » How can we standardize the interfaces to these devices?
 - Devices unreliable: media failures and transmission errors » How can we make them reliable???
 - Devices unpredictable and/or slow
 - » How can we manage them if we don't know what they will do or how they will perform?
- Some operational parameters:
 - Byte/Block
 - » Some devices provide single byte at a time (e.g. keyboard)
 - » Others provide whole blocks (e.g. disks, networks, etc)
 - Sequential/Random
 - » Some devices must be accessed sequentially (e.g. tape)
 - » Others can be accessed randomly (e.g. disk, cd, etc.)
 - Polling/Interrupts
 - » Some devices require continual monitoring
 - » Others generate interrupts when they need service

Example Device-Transfer Rates (Sun Enterprise 6000)

- · Device Rates vary over many orders of magnitude
 - System better be able to handle this wide range
 - Better not have high overhead/byte for fast devices!
 - Better not waste time waiting for slow devices

The Goal of the I/O Subsystem

- Provide Uniform Interfaces, Despite Wide Range of Different Devices
 - This code works on many different devices:

```
FILE fd = fopen("/dev/something","rw");
for (int i = 0; i < 10; i++) {
   fprintf(fd,"Count %d\n",i);
}
close(fd);</pre>
```

- Why? Because code that controls devices ("device driver") implements standard interface.
- We will try to get a flavor for what is involved in actually controlling devices in rest of lecture
 - Can only scratch surface!

Want Standard Interfaces to Devices

- Block Devices: e.g. disk drives, tape drives, DVD-ROM
 - Access blocks of data
 - Commands include open(), read(), write(), seek()
 - Raw I/O or file-system access
 - Memory-mapped file access possible
- Character Devices: e.g. keyboards, mice, serial ports, some USB devices
 - Single characters at a time
 - Commands include get(), put()
 - Libraries layered on top allow line editing
- · Network Devices: e.g. Ethernet, Wireless, Bluetooth
 - Different enough from block/character to have own interface
 - Unix and Windows include socket interface
 - » Separates network protocol from network operation
 - » Includes select() functionality
 - Usage: pipes, FIFOs, streams, queues, mailboxes

How Does User Deal with Timing?

- Blocking Interface: "Wait"
 - When request data (e.g. read() system call), put process to sleep until data is ready
 - When write data (e.g. write() system call), put process to sleep until device is ready for data
- · Non-blocking Interface: "Don't Wait"
 - Returns quickly from read or write request with count of bytes successfully transferred
 - Read may return nothing, write may write nothing
- Asynchronous Interface: "Tell Me Later"
 - When request data, take pointer to user's buffer, return immediately; later kernel fills buffer and notifies user
 - When send data, take pointer to user's buffer, return immediately; later kernel takes data and notifies user

How does the processor actually talk to the device?

- Regardless of the complexity of the connections and buses, processor accesses registers in two ways:
 - I/O instructions: in/out instructions
 - » Example from the Intel architecture: out 0x21,AL
 - Memory mapped I/O: load/store instructions
 - » Registers/memory appear in physical address space
 - » I/O accomplished with load and store instructions

Example: Memory-Mapped Display Controller

- · Memory-Mapped:
 - Hardware maps control registers and display memory into physical address space
 - » Addresses set by hardware jumpers or programming at boot time
 - Simply writing to display memory (also called the "frame buffer") changes image on screen
 - » Addr: 0x8000F000—0x8000FFFF
 - Writing graphics description to command-queue area
 - » Say enter a set of triangles that describe some scene
 - » Addr: 0x80010000—0x8001FFFF
 - Writing to the command register may cause on-board graphics hardware to do something
 - » Say render the above scene
 - » Addr: 0x0007F004
- Can protect with page tables

Transfering Data To/From Controller

- · Programmed I/O:
 - Each byte transferred via processor in/out or load/store
 - Pro: Simple hardware, easy to program
 - Con: Consumes processor cycles proportional to data size
- Direct Memory Access:
 - Give controller access to memory bus
 - Ask it to transfer data to/from memory directly
- · Sample interaction with DMA controller (from book):

A Kernel I/O Structure

Device Drivers

- Device Driver: Device-specific code in the kernel that interacts directly with the device hardware
 - Supports a standard, internal interface
 - Same kernel I/O system can interact easily with different device drivers
 - Special device-specific configuration supported with the ioctl() system call
- · Device Drivers typically divided into two pieces:
 - Top half: accessed in call path from system calls
 - » Implements a set of standard, cross-device calls like open(), close(), read(), write(), ioctl(), strategy()
 - » This is the kernel's interface to the device driver
 - » Top half will start I/O to device, may put thread to sleep until finished
 - Bottom half: run as interrupt routine
 - » Gets input or transfers next block of output
 - » May wake sleeping threads if I/O now complete

Life Cycle of An I/O Request

I/O Device Notifying the OS

- · The OS needs to know when:
 - The I/O device has completed an operation
 - The I/O operation has encountered an error

• I/O Interrupt:

- Device generates an interrupt whenever it needs service
 Handled in bottom half of device driver
- - » Often run on special kernel-level stack
- Pro: handles unpredictable events well
- Con: interrupts relatively high overhead

· Polling:

- -OS periodically checks a device-specific status register

 - I/O device puts completion information in status register
 Could use timer to invoke lower half of drivers occasionally
- Pro: low overhead
- -Con: may waste many cycles on polling if infrequent or unpredictable I/O operations
- · Actual devices combine both polling and interrupts
 - For instance: High-bandwidth network device:
 - » Interrupt for first incoming packet
 - » Poll for following packets until hardware empty

Summary

- I/O Devices Types:
 - Many different speeds (0.1 bytes/sec to GBytes/sec)
 - Different Access Patterns:
 - » Block Devices, Character Devices, Network Devices
 - Different Access Timing:
 - » Blocking, Non-blocking, Asynchronous
- · I/O Controllers: Hardware that controls actual device
 - Processor Accesses through I/O instructions, load/store to special physical memory
 - Report their results through either interrupts or a status register that processor looks at occasionally (polling)
- Device Driver: Device-specific code in kernel