Advanced Python Programming

LESSON 2: Iterators, Generators & Coroutines

Learning Objectives:

By the end of this lesson, participants will be able to:

- Implement custom iterators using the iter and next protocols.
- Create and compose generators with yield and yield from.
- Build coroutines that consume values using .send() method.
- Understand the differences between iterators, generators, and coroutines.

Lesson Outline:

I. Understanding the Iterator Protocol (10 min)

Python's iteration system is built on a simple protocol that you can implement in your own classes.

The Iterator Protocol:

- Iterable: An object that implements __iter__() method
- Iterator: An object that implements both __iter__() and __next__() methods
- StopIteration: Exception raised when iteration is complete

Basic iterator example:

```
class CountDown:
    def __init__(self, start):
        self.start = start
    def __iter__(self):
       return self
    def __next__(self):
        if self.start <= 0:
            raise StopIteration
        self.start -= 1
        return self.start + 1
# Usage
countdown = CountDown(3)
for num in countdown:
    print(num) # Prints: 3, 2, 1
# Manual iteration
countdown2 = CountDown(2)
iterator = iter(countdown2)
print(next(iterator)) # 2
print(next(iterator)) # 1
# print(next(iterator)) # Would raise StopIteration
```

Commentary:

The iterator protocol is fundamental to Python's for loops, comprehensions, and many built-in functions. Understanding it helps you create memory-efficient custom iteration patterns.

II. Custom Iterators for Complex Data Structures (15 min)

Let's build more sophisticated iterators for real-world scenarios.

Tree traversal iterator:

```
class TreeNode:
    def __init__(self, value, left=None, right=None):
        self.value = value
        self.left = left
        self.right = right
    def iter__(self):
        return TreeIterator(self)
class TreeIterator:
    def __init__(self, root):
        self.stack = [root] if root else []
    def iter (self):
        return self
    def __next__(self):
        if not self.stack:
            raise StopIteration
        node = self.stack.pop()
        # Add children to stack (right first for left-to-right traversal)
        if node.right:
            self.stack.append(node.right)
        if node.left:
            self.stack.append(node.left)
        return node.value
# Usage
root = TreeNode(1,
                TreeNode(2, TreeNode(4), TreeNode(5)),
                TreeNode(3, TreeNode(6), TreeNode(7)))
for value in root:
    print(value) # Prints: 1, 2, 4, 5, 3, 6, 7
```

Pagination iterator for APIs:

```
class PagedData:
    def __init__(self, data, page_size=3):
        self.data = data
        self.page_size = page_size
    def __iter__(self):
        return PageIterator(self.data, self.page size)
class PageIterator:
    def __init__(self, data, page_size):
        self.data = data
        self.page_size = page_size
        self.current_page = 0
    def __iter__(self):
        return self
    def __next__(self):
        start = self.current_page * self.page_size
        end = start + self.page size
        if start >= len(self.data):
            raise StopIteration
        page = self.data[start:end]
        self.current_page += 1
        return page
# Usage
data = list(range(10))
paged = PagedData(data, page_size=3)
for page in paged:
    print(f"Page: {page}")
# Output: Page: [0, 1, 2], Page: [3, 4, 5], Page: [6, 7, 8], Page: [9]
```

Commentary:

Custom iterators allow you to define exactly how objects should be traversed. They're particularly useful for complex data structures and external data sources.

III. Generators: Simplified Iterator Creation (10 min)

Generators provide a much simpler way to create iterators using the yield keyword.

Basic generator functions:

```
def countdown_generator(start):
    """Generator version of the CountDown class."""
    while start > 0:
       yield start
        start -= 1
# Much simpler than the class-based approach
for num in countdown_generator(3):
    print(num) # Prints: 3, 2, 1
def fibonacci_generator(limit):
    """Generate Fibonacci sequence up to limit."""
    a, b = 0, 1
    while a < limit:
       yield a
        a, b = b, a + b
# Usage
fib_nums = list(fibonacci_generator(20))
print(fib_nums) # [0, 1, 1, 2, 3, 5, 8, 13]
```

Generator expressions for concise iteration:

```
# Generator expression (like list comprehension but lazy)
squares_gen = (x**2 for x in range(10))
print(type(squares_gen)) # <class 'generator'>

# Memory efficient processing
large_dataset = range(1000000)
filtered_data = (x for x in large_dataset if x % 1000 == 0)
squared_filtered = (x**2 for x in filtered_data)

# Only computes values when needed
first_five = [next(squared_filtered) for _ in range(5)]
print(first_five) # [0, 1000000, 4000000, 90000000, 160000000]
```

Stateful generators:

```
def running_average():
    """Generator that maintains running average of sent values."""
    total = 0
    count = 0

while True:
    value = yield total / count if count > 0 else 0
    if value is not None:
        total += value
```

```
# Usage
avg_gen = running_average()
next(avg_gen) # Prime the generator

print(avg_gen.send(10)) # 10.0
print(avg_gen.send(20)) # 15.0
print(avg_gen.send(30)) # 20.0
```

Commentary:

Generators are memory-efficient and perfect for processing large datasets or infinite sequences. They maintain state between yields automatically.

IV. Advanced Generator Composition with yield from (10 min)

The yield from syntax allows generators to delegate to other iterables, enabling powerful composition patterns.

Basic yield from usage:

```
def inner_generator():
    yield 1
    yield 2
    yield 3

def outer_generator():
    yield 'start'
    yield from inner_generator() # Delegate to another generator
    yield 'end'

# Usage
for value in outer_generator():
    print(value) # Prints: start, 1, 2, 3, end
```

Tree traversal with yield from:

```
class TreeNode:
    def __init__(self, value, children=None):
        self.value = value
        self.children = children or []

def traverse(self):
    """Generator for depth-first traversal."""
    yield self.value
```

```
for child in self.children:
    yield from child.traverse()

# Usage
root = TreeNode('A', [
    TreeNode('B', [TreeNode('D'), TreeNode('E')]),
    TreeNode('C', [TreeNode('F')])
])

for node_value in root.traverse():
    print(node_value) # Prints: A, B, D, E, C, F
```

Flattening nested structures:

```
def flatten(nested_list):
    """Recursively flatten nested lists using yield from."""
    for item in nested list:
        if isinstance(item, list):
           yield from flatten(item)
        else:
           yield item
# Usage
nested = [1, [2, 3], [4, [5, 6]], 7]
flat = list(flatten(nested))
print(flat) # [1, 2, 3, 4, 5, 6, 7]
def read_files(*filenames):
    """Generator that reads multiple files sequentially."""
    for filename in filenames:
        try:
            with open(filename, 'r') as file:
                vield from file
        except FileNotFoundError:
            print(f"Warning: {filename} not found")
# Usage (if files existed)
# for line in read_files('file1.txt', 'file2.txt', 'file3.txt'):
      print(line.strip())
```

Commentary:

yield from is essential for composing generators and handling recursive data structures elegantly. It properly handles exceptions and return values from delegated generators.

V. Coroutines: Generators That Consume Data (10 min)

Coroutines use the same yield syntax but focus on consuming data rather than producing it.

Basic coroutine pattern:

```
def data_processor():
    """Coroutine that processes incoming data."""
    processed_count = 0
    while True:
       data = yield processed_count
        if data is not None:
            # Process the data
            processed_data = data.upper() if isinstance(data, str) else
str(data)
            print(f"Processed: {processed_data}")
            processed_count += 1
# Usage
processor = data_processor()
next(processor) # Prime the coroutine
processor.send("hello")
                         # Processed: HELLO
processor.send("world") # Processed: WORLD
count = processor.send(42) # Processed: 42
print(f"Total processed: {count}") # Total processed: 3
```

Pipeline of coroutines:

```
def logger(target=None):
    """Coroutine that logs messages and forwards them."""
    while True:
        message = yield
        print(f"LOG: {message}")
        if target:
            target.send(message)
def validator(target=None):
    """Coroutine that validates data and forwards valid items."""
    while True:
        data = yield
        if data and len(str(data)) > 2: # Simple validation
            print(f"VALID: {data}")
            if target:
                target.send(data)
        else:
            print(f"INVALID: {data}")
def database_writer():
    """Coroutine that simulates writing to database."""
    while True:
        data = yield
```

```
print(f"SAVED TO DB: {data}")

# Create pipeline: logger -> validator -> database_writer
db_writer = database_writer()
next(db_writer)

validator_stage = validator(db_writer)
next(validator_stage)

log_stage = logger(validator_stage)
next(log_stage)

# Send data through the pipeline
log_stage.send("hello")  # LOG -> VALID -> SAVED
log_stage.send("hi")  # LOG -> INVALID (too short)
log_stage.send("python")  # LOG -> VALID -> SAVED
```

Coroutine with exception handling:

```
def robust processor():
    """Coroutine with proper exception handling and cleanup."""
    try:
         while True:
              try:
                  data = yield
                   if data == 'error':
                       raise ValueError("Simulated error")
                  print(f"Processing: {data}")
              except ValueError as e:
                   print(f"Error handled: {e}")
                  # Continue processing after error
    except GeneratorExit:
         print("Coroutine is shutting down")
    finally:
         print("Cleanup completed")
# Usage
processor = robust_processor()
next(processor)
processor.send("data1") # Processing: data1
processor.send("error")  # Error handled: Simulated error
processor.send("data2")  # Processing: data2
processor.close()  # Coroutine is shutting down, Cle
processor.close()
                               # Coroutine is shutting down, Cleanup
completed
```

Commentary:

Coroutines enable powerful data processing pipelines where each stage can transform, filter, or route data. They're particularly useful for stream processing and event-driven architectures.

VI. Practical Applications and Patterns (10 min)

Let's explore real-world scenarios where these concepts shine.

Data pipeline for CSV processing:

```
def csv_reader(filename):
    """Generator that reads CSV file line by line."""
    import csv
    with open(filename, 'r') as file:
        reader = csv.DictReader(file)
        for row in reader:
            yield row
def data_transformer(data_stream):
    """Generator that transforms data as it flows through."""
    for record in data stream:
        # Transform the data
        if 'price' in record:
            record['price'] = float(record['price'])
        if 'date' in record:
            # Simulate date parsing
            record['processed_date'] = f"parsed_{record['date']}"
        yield record
def data_filter(data_stream, min_price=0):
    """Generator that filters data based on criteria."""
    for record in data_stream:
        if record.get('price', 0) >= min_price:
            yield record
# Example usage (with sample data)
sample_data = [
    {'name': 'item1', 'price': '10.50', 'date': '2023-01-01'},
    {'name': 'item2', 'price': '5.00', 'date': '2023-01-02'},
    {'name': 'item3', 'price': '25.75', 'date': '2023-01-03'}
]
def mock_csv_reader():
    """Mock CSV reader for demonstration."""
    for row in sample_data:
        vield row
# Build processing pipeline
pipeline = data_filter(
    data_transformer(mock_csv_reader()),
    min_price=10.0
```

```
for processed_record in pipeline:
    print(processed_record)
# Output: Records with price >= 10.0, transformed
```

State machine using generators:

```
def state_machine():
    """Generator-based state machine for order processing."""
    state = 'pending'
    while True:
        action = yield state
        if state == 'pending':
            if action == 'pay':
                state = 'paid'
            elif action == 'cancel':
                state = 'cancelled'
        elif state == 'paid':
            if action == 'ship':
                state = 'shipped'
            elif action == 'refund':
                state = 'refunded'
        elif state == 'shipped':
            if action == 'deliver':
                state = 'delivered'
        # Terminal states: cancelled, refunded, delivered
# Usage
order = state_machine()
print(next(order))
                           # pending
print(order.send('pay')) # paid
print(order.send('ship')) # shipped
print(order.send('deliver')) # delivered
```

Commentary:

These patterns demonstrate how iterators, generators, and coroutines enable elegant solutions for data processing, state management, and pipeline architectures common in production systems.

VII. Recap & Best Practices (5 min)

Key Takeaways:

- Iterators provide the foundation for Python's iteration protocol.
- · Generators simplify iterator creation and provide memory-efficient data processing.
- yield from enables powerful generator composition and delegation.
- Coroutines allow data consumption and processing in pipeline architectures.
- These tools are essential for handling large datasets and stream processing.

Best Practices:

- Use generators for memory-efficient data processing and lazy evaluation.
- Implement custom iterators only when generators aren't sufficient.
- Leverage yield from for recursive data structures and generator composition.
- Use coroutines for data processing pipelines and event-driven systems.
- Always prime coroutines with next() before sending data.
- Handle exceptions and cleanup properly in long-running generators/coroutines.

Performance Considerations:

- Generators have minimal overhead compared to lists for large datasets.
- Iterator protocol allows for infinite sequences with constant memory.
- Coroutine pipelines can process data with minimal memory footprint.

Final Multiple-Choice Question:

What is the PRIMARY advantage of using generators over lists for processing a large dataset?

A. Generators are faster than lists B. Generators use constant memory regardless of dataset size C. Generators can only be iterated once D. Generators automatically handle exceptions

(Answer: B. Generators use constant memory regardless of dataset size - they produce values on-demand rather than storing everything in memory.)