Package 'IVPP'

February 11, 2025

Type Package	
Title Invariance Partial Pruning Test	
Version 1.0.0	
Description An implementation of the Invariance Partial Pruning (IVPP) approach described in Du, X., Johnson, S. U., Epskamp, S. (in prep)to comparing idiographic and panel network models. IVPP is a two-step method that first test for global network structural difference with invariance test and then inspect specific edge difference with partial pruning.	
License MIT + file LICENSE	
Encoding UTF-8	
Depends R ($>= 4.3.0$)	
Imports bootnet, clusterGeneration, dplyr, mvtnorm, psychonetrics, graphicalVAR, lifecycle	
<pre>BugReports https://github.com/xinkaidupsy/IVPP/issues</pre>	
<pre>URL https://github.com/xinkaidupsy/IVPP</pre>	
RoxygenNote 7.3.2	
NeedsCompilation no	
Author Xinkai Du [aut, cre, cph] (https://orcid.org/0000-0002-4158-7878)	
Maintainer Xinkai Du <xinkai.du.xd@gmail.com></xinkai.du.xd@gmail.com>	
Repository CRAN	
Date/Publication 2025-02-11 17:00:09 UTC	
Contents	
gen_panelGVAR gen_tsGVAR IVPP_panelgvar IVPP_tsgvar sim_panelGVAR sim_tsGVAR	3 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Index	11

gen_panelGVAR

gen_panelGVAR Generate a (multi-group) panelGVAR model
--

Description

This function generates a (multi-group) panel GVAR model. Currently generating temporal and contemporaneous networks

Usage

```
gen_panelGVAR(n_node = 6, p_rewire = 0.5, n_group = 1)
```

Arguments

n_node an integer denoting the number of nodes

p_rewire a numeric value between 0-1 denoting the extent of group difference

n_group an integer denoting the number of groups

Details

beta can be transposed to obtain the temporal network; PDC is the partial directed correlation matrix, which is a standardized version of temporal network; kappa is the precision matrix denoting conditional (in)dependence, which is a inverse of covariance matrix denoting the (dependence) among variables; kappa can be further standardized to the contemporaneous networks (omega_zeta_within)

Value

A list of beta, PDC, kappa and contemporaneous networks

gen_tsGVAR 3

gen_tsGVAR Generate time-series G viduals	VAR model for multiple (heterogeneous) indi-
---	--

Description

This function generates time-series GVAR model for multiple individuals that demonstrates difference or simularity. Currently generating temporal and contemporaneous networks

Usage

```
gen_tsGVAR(n_node = 6, p_rewire = 0.5, n_persons = 1)
```

Arguments

n_node	an integer denoting the number of nodes

p_rewire a numeric value between 0-1 denoting the extent of individual difference n_persons an integer denoting the number of individuals to generate tsGVAR for

Details

beta can be transposed to obtain the temporal network; PDC is the partial directed correlation matrix, which is a standardized version of temporal network; kappa is the precision matrix denoting conditional (in)dependence, which is a inverse of covariance matrix denoting the (dependence) among variables; kappa can be further standardized to the contemporaneous networks (omega_zeta_within)

Value

A list of beta, PDC, kappa and contemporaneous networks

4 IVPP_panelgvar

IVPP_panelgvar	The invariance partial pruning (IVPP) algorithm for panel GVAR models
----------------	---

Description

This function implements the IVPP algorithm to compare networks in the multi-group panelGVAR models. The IVPP algorithm is a two-step procedure that first conducts an global invariance test of network difference and then performs partial pruning for the specific edge-level differences. Currently supports the comparison of temporal and contemporaneous networks.

Usage

```
IVPP_panelgvar(
   data,
   vars,
   idvar,
   beepvar,
   groups,
   test = c("both", "temporal", "contemporaneous"),
   net_type = c("saturated", "sparse"),
   partial_prune = FALSE,
   prune_net = c("both", "temporal", "contemporaneous"),
   prune_alpha = 0.01,
   p_prune_alpha = 0.01,
   estimator = "FIML",
   standardize = c("none", "z", "quantile"),
   ...
)
```

Arguments

data	A data frame containing the long-formatted panel data
vars	A character vector of variable names
idvar	A character string specifying subject IDs
beepvar	A character string specifying the name of wave (time) variable
groups	A character string specifying the name of group variable
test	A character vector specifying the network you want to test group-equality on in the global invariance test. Specify "both" if you want to test on both temporal or contemporaneous networks. Specify "temporal" if you want to test only on the temporal network. Specify "contemporaneous" if you want to test only on the contemporaneous network. See the Details section for more information.
net_type	A character vector specifying the type of networks to be compared in the global test. Specify "saturated" if you want to estimate and compare the saturated networks. Specify "sparse" if you want to estimate and compare the pruned networks.

IVPP_panelgvar 5

partial_prune A logical value specifying whether to conduct partial pruning test or not. A character vector specifying the network you want to partial prune on. Only prune_net works when partial prune = TRUE. A numeric value specifying the alpha level for the pruning (if net_type = "sparse"). prune_alpha A numeric value specifying the alpha level for the partial pruning (if partial_prune p_prune_alpha = TRUE).estimator A character string specifying the estimator to be used. Must be "FIML" A character string specifying the type of standardization to be used. "none" (destandardize fault) for no standardization, "z" for z-scores, and "quantile" for a non-parametric transformation to the quantiles of the marginal standard normal distribution. Additional arguments to be passed to the dlvm1 function

Details

The comparison between the fully unconstrained (free) model and tempEq model is a test for group equality in temporal networks. The comparison between fully constrained model (bothEq) and tempEq is a test for group equality in contemporaneous networks. Similarly, the comparison between the free model and contEq model is a test for group equality in contemporaneous networks, and the comparison between bothEq and contEq is a test for group equality in temporal networks.

Value

A list containing the results of IVPP and networks of all groups.

```
# Generate the network
net_ls <- gen_panelGVAR(n_node = 6,</pre>
                         p_rewire = 0.5,
                          n_{group} = 2
# Generate the data
data <- sim_panelGVAR(temp_base_ls = net_ls$temporal,</pre>
                       cont_base_ls = net_ls$omega_zeta_within,
                       n_{person} = 250,
                       n_{time} = 3,
                       n_{group} = 2,
                       n_node = 6
# IVPP test on the temporal network
ivpp <- IVPP_panelgvar(data,</pre>
                         vars = paste0("V", 1:6),
                         idvar = "subject",
                         beepvar = "time"
                         groups = "group",
                         test = "temporal",
                         net_type = "saturated";
                         prune_net = "temporal",
                         partial_prune = TRUE,
```

6 IVPP_tsgvar

```
estimator = "FIML",
standardize = "z")
```

IVPP_tsgvar

The invariance partial pruning (IVPP) algorithm for idiographic GVAR models

Description

This function implements the IVPP algorithm to compare networks in the multi-group panelGVAR models. The IVPP algorithm is a two-step procedure that first conducts an global invariance test of network difference and then performs partial pruning for the specific edge-level differences. Currently supports the comparison of temporal and contemporaneous networks.

Usage

```
IVPP_tsgvar(
  data,
  vars,
  idvar,
  dayvar,
  beepvar,
  test = c("both", "temporal", "contemporaneous"),
  net_type = c("saturated", "sparse"),
  partial_prune = FALSE,
  prune_net = c("both", "temporal", "contemporaneous"),
  prune_alpha = 0.01,
  p_prune_alpha = 0.01,
  estimator = "FIML",
  standardize = c("none", "z", "quantile"),
  ...
)
```

Arguments

data	A data frame containing the long-formatted panel data
vars	A character vector of variable names
idvar	A character string specifying the IDs of subjects you want to compare
dayvar	A character string specifying the name of day variable
beepvar	A character string specifying the name of variable indicating the measurement number at each day
test	A character vector specifying the network you want to test group-equality on in the global invariance test. Specify "both" if you want to test on both temporal or contemporaneous networks. Specify "temporal" if you want to test only on the temporal network. Specify "contemporaneous" if you want to test only on the contemporaneous network. See the Details section for more information.

IVPP_tsgvar 7

A character vector specifying the type of networks to be compared in the global test. Specify "saturated" if you want to estimate and compare the saturated networks. Specify "sparse" if you want to estimate and compare the pruned networks.
A logical value specifying whether to conduct partial pruning test or not.
A character vector specifying the network you want to partial prune on. Only works when partial_prune = TRUE.
A numeric value specifying the alpha level for the pruning (if net_type = "sparse").
A numeric value specifying the alpha level for the partial pruning (if partial_prune = TRUE).
A character string specifying the estimator to be used. Must be "FIML"
A character string specifying the type of standardization to be used. "none" (default) for no standardization, "z" for z-scores, and "quantile" for a non-parametric transformation to the quantiles of the marginal standard normal distribution.

Details

The comparison between the fully unconstrained (free) model and tempEq model is a test for group equality in temporal networks. The comparison between fully constrained model (bothEq) and tempEq is a test for group equality in contemporaneous networks. Similarly, the comparison between the free model and contEq model is a test for group equality in contemporaneous networks, and the comparison between bothEq and contEq is a test for group equality in temporal networks.

Additional arguments to be passed to the dlvm1 function

Value

A list containing the results of IVPP and networks of all groups.

```
# Generate the network
net_ls <- gen_tsGVAR(n_node = 6,</pre>
                      p_rewire = 0.5,
                      n_persons = 2)
# Generate the data
data <- sim_tsGVAR(beta_base_ls = net_ls$beta,</pre>
                    kappa_base_ls = net_ls$kappa,
                    \# n_person = 2,
                    n_{time} = 50
# IVPP test on
ivpp_ts <- IVPP_tsgvar(data = data,</pre>
                        vars = paste0("V",1:6),
                        idvar = "id",
                        test = "temporal",
                        net_type = "saturated",
                        prune_net = "temporal",
                        partial_prune = TRUE,
```

8 sim_panelGVAR

```
estimator = "FIML",
standardize = "z")
```

sim_panelGVAR

Simulate data for a (multi-group) panelGVAR model

Description

This function generates data for the input (multi-group) panelGVAR model

Usage

```
sim_panelGVAR(
  temp_base_ls,
  beta_base_ls,
  cont_base_ls,
  n_node,
  n_person = 500,
  n_time = 3,
  n_group,
  mean_trend = 0,
  p_rewire_temp = 0,
  p_rewire_cont = 0,
  save_nets = FALSE
)
```

to FALSE

Arguments

temp_base_ls a list of temporal networks of all groups beta_base_ls a list of beta matrices of all groups cont_base_ls a list of contemporaneous networks of all groups number of nodes n_node n_person an integer denoting the sample size of each group, default to 500 n_time number of waves, default to 3 n_group number of groups mean_trend a numeric value indicating the extent of mean trends in data, default to 0 a numeric value between 0 and 1 indicating the extent of non-stationarity in p_rewire_temp temporal networks, default to 0 p_rewire_cont a numeric value between 0 and 1 indicating the extent of non-stationarity in contemporaneous networks, default to 0 save_nets a logical value indicating whether to save the data-generating networks, default sim_tsGVAR 9

Value

A list of temporal and contemporaneous networks

Examples

sim_tsGVAR

Simulate data for a (multi-group) N = 1 GVAR model

Description

This function generates data for the input (multi-group) N = 1 GVAR model

Usage

```
sim_tsGVAR(
  temp_base_ls,
  beta_base_ls,
  cont_base_ls,
  kappa_base_ls,
  n_node,
  n_time = 50,
  n_person,
  save_nets = FALSE
)
```

Arguments

```
temp_base_ls a list of temporal networks of all individuals
beta_base_ls a list of beta matrices of all individuals
cont_base_ls a list of contemporaneous networks of all individuals
kappa_base_ls a list of precision matricies of all individuals
n_node number of nodes
```

10 sim_tsGVAR

n_time number of measurements per person, default to 50

n_person number of individuals to generate data for

save_nets a logical value indicating whether to save the data-generating networks, default

to FALSE

Value

A list of temporal and contemporaneous networks

Index

```
dlvm1, 5, 7
gen_panelGVAR, 2
gen_tsGVAR, 3

IVPP_panelgvar, 4
IVPP_tsgvar, 6

sim_panelGVAR, 8
sim_tsGVAR, 9
```