Exam revision

1.1 Simple Learning Framework

The simplest learning task is to *classify* features in two classes, in the case where there exists a unique and deterministic map between them.

- Domain set (Instance space) \mathcal{X} , where elements $x \in \mathcal{X}$ are vectors of features.
- Label set \mathcal{Y}
- Training data: sequence (order matters, there can be repetitions) of elements in $\mathcal{X} \times \mathcal{Y}$: $S = ((x_1, y_1), \dots, (x_m, y_m))$. m denotes the number of training samples.
- The ML algorithm A, given S, outputs a **hypothesis function** (prediction rule, or predictor) $A(S) = h_S \colon \mathcal{X} \to \mathcal{Y}$ that represents the mapping between \mathcal{X} and \mathcal{Y} learned by the algorithm.
- We assume a **simple data generation model** for constructing S. \mathcal{X} is generated by sampling a distribution (pdf) \mathcal{D} which is not known by the learning model, and are then labelled by a function $f: \mathcal{X} \to \mathcal{Y}$ (labelling function, representing the ground truth). \mathcal{D} allows to assign probabilities to events, i.e. subsets $A \subset \mathcal{X}$. We introduce the following notation:

$$\mathcal{D}(A) = \mathbb{P}[x \in A] \qquad A \subset \mathcal{X}$$

Equivalently, we can denote subsets A using their characteristic function $\pi_A(x): \mathcal{X} \to \{0,1\}$:

$$\pi_A(x) = \begin{cases} 1 & x \in A \\ 0 & x \notin A \end{cases} \qquad A = \{x \in A \colon \pi(x) = 1\}$$

And so $\mathcal{D}(A) = \mathbb{P}_{x \sim \mathcal{D}}[\pi_A(x)].$

• We define the **generalization error** (or **risk**, **true error**) of h_S as the probability of randomly choosing a sample from \mathcal{D} so that $h_S(x) \neq f(x)$:

$$L_{\mathcal{D},f}(h_S) \equiv \underset{x \sim \mathcal{D}}{\mathbb{P}}[h_S(x) \neq f(x)] \equiv \mathcal{D}(\{x \colon h_S(x) \neq f(x)\})$$

Note that $L_{\mathcal{D},f}$ depends on the *data generation* (\mathcal{D}, f) , and so cannot be known by the learner. For simplicity, we denote $L_{\mathcal{D}} \equiv L_{\mathcal{D},f}$.

• The **empirical risk** (or **training error**) is defined as:

$$L_S(h) \equiv \frac{|\{1 \le i \le m \colon h(x_i) \ne y_i\}|}{m}$$

(Recall that $|\{...\}|$ denotes the cardinality, i.e. the number of elements, of the set $\{...\}$).

• Empirical Risk Minimization (ERM): the paradigm for choosing A so that it minimizes $L_S(h)$, hoping that this will translate to a minimum $L_D(h)$ as well. Formally, this is written as:

$$ERM(S) \in arg \min L_S(h)$$

Note that there could be many possible choiches for h so that $L_S(h)$ is minimum, and the algorithm simply returns one of them.

- Overfitting: when $L_S(h) \sim 0$, but $L_D(h) \gg 0$. This happens if the ERM search is not limited, meaning that the algorithm can simply *memorize* the training set S, leading to a performance on a different dataset which is no better than chance.
- Hypothesis class: set of predictors $h \in \mathcal{H}$ that are available for the ERM search (meaning that the final h_S must be $\in \mathcal{H}$). We denote a *constrained* ERM algorithm with ERM_{\mathcal{H}}, so that:

$$\mathrm{ERM}_{\mathcal{H}}(S) \in \arg\min_{h \in \mathcal{H}} L_S(h)$$

The choice of \mathcal{H} introduce a *inductive bias* in the learner, and should be made according to some prior knowledge about the problem.

• PAC learnability. A hypothesis class \mathcal{H} is PAC learnable if, given a sufficient number of examples, an ERM algorithm will output an hypothesis which is probably approximately correct, meaning that with probability $1 - \delta$ it is ϵ -accurate. We require the existence of a sufficient m for any choice of ϵ and δ , meaning that the model can be made more robust and accurate with more training samples.

More formally, a hypothesis class \mathcal{H} is PAC learnable if there exist a function (sample complexity) $m_{\mathcal{H}}$: $(0,1) \times (0,1) \to \mathbb{N}$, $(\epsilon, \delta) \mapsto m_{\mathcal{H}}(\epsilon, \delta)$, and a learning algorithm that $\forall \epsilon, \delta \in (0,1)$ and every distribution \mathcal{D} over \mathcal{X} , and

for every labelling function $f: \mathcal{X} \to \{0, 1\}$, assuming realizability, when running over $m \geq m_{\mathcal{H}}(\epsilon, \delta)$ i.i.d. samples generated by \mathcal{D} and labelled by f, the algorithm returns a hypothesis h such that, with probability $\geq 1 - \delta$ (over the choice of the samples) satisfies $L_{\mathcal{D},f}(h) \leq \epsilon$. We also require $m_{\mathcal{H}}$ to be the minimum integer that guarantees the last property.

1.1.1 Theorems

PAC for finite hypothesis classes

The idea is to find a minimum number of samples m that are needed to construct an S so that the model h_S learned by the ERM algorithm will be ϵ -accurate, i.e. satisfying:

$$L_{\mathcal{D},f}(h_S) \leq \epsilon$$

with probability $\geq 1 - \delta$ (confidence) over the choice of an i.i.d. sample S of size m from the \mathcal{D} distribution.

Hypotheses

- 1. Finite hypothesis class: $h_S \in \mathcal{H}$, with $|\mathcal{H}| < \infty$.
- 2. Realizability. There exists a "perfect" $h^* \in \mathcal{H}$, such that $L_{\mathcal{D},f}(h^*) = 0$. By the definition of generalization error, this means that $h^*(x) = f(x)$ with probability 1 for a random sample $x \in \mathcal{X}$, implying that $L_S(h^*) = 0$.
- 3. i.i.d. assumption. The examples in the training dataset S are independently and identically distributed according to \mathcal{D} , meaning that $S \sim \prod_{i=1}^{m} \mathcal{D} = \mathcal{D}^{m}$.

Proof. δ is the maximum probability of the learner failing, that is of not being ϵ -accurate:

$$\mathcal{D}^m(\{S \colon L_{\mathcal{D},f}(h_S) > \epsilon\}) \le \delta$$

The learner fails only for certain "bad hypotheses", that are inside a set \mathcal{H}_B :

$$\mathcal{H}_B = \{ h \in \mathcal{H} \colon L_{\mathcal{D},f}(h) > \epsilon \}$$

The ERM_{\mathcal{H}} algorithm will choose an h_S that verifies $L_S(h_S) = 0$, due to realizability (generally $h_S \neq h^*$, because there could be many h_S with a 0 training error). So, it may choose a *bad hypothesis* only if it "appears good" on S, that is if S is an element of the set of *misleading training sets*:

$$M = \{S \colon \exists h \in \mathcal{H}_B, L_S(h) = 0\}$$

Note that any set S that results in the learner failing must be in M (because it contains all sets that $may\ be\ chosen$ and result in failing), and so:

$${S: L_{\mathcal{D},f}(h_S) > \epsilon} \subseteq M$$

The converse is not necessarily true: maybe there are certain sets in M that, even if misleading, result nonetheless in a good performing h_S , because they are compatible with more than one hypothesis.

We can now rewrite M as the union of misleading sets:

$$\{S \colon L_{\mathcal{D},f}(h_S) > \epsilon\} \subseteq M = \bigcup_{h \in \mathcal{H}_B} \{S \colon L_S(h) = 0\}$$
 (1.1)

Applying the probability measure to (??) leads to:

$$\mathcal{D}^{m}(\{S \colon L_{\mathcal{D},f}(h_S) > \epsilon\}) \le \mathcal{D}^{m}(M) = \mathcal{D}^{m}\left(\bigcup_{h \in \mathcal{H}_B} \{S \colon L_S(h) = 0\}\right)$$
(1.2)

Recall the **union bound**, that is the measure of the union of two sets is less or equal to the sum of the measure of each set (because there could be a non-empty intersection):

$$\mathcal{D}(A \cup B) \le \mathcal{D}(A) + \mathcal{D}(B)$$

Applying it to the right hand side of (1.2) we have:

$$\mathcal{D}^{m}(\{S \colon L_{\mathcal{D},f}(h_S) > \epsilon\}) \le \sum_{h \in \mathcal{H}_B} \mathcal{D}^{m}(\{S \colon L_S(h) = 0\})$$

Fix a certain bad hypothesis $h \in \mathcal{H}_B$. The event $L_S(h) = 0$ is equivalent to $\forall i$ $h(x_i) = f(x_i)$, and so:

$$\mathcal{D}^{m}(\{S: L_{S}(h) = 0\}) = \mathcal{D}^{m}(\{S: \forall i, h(x_{i}) = f(x_{i})\})$$

which is just the product of probabilities that each $h(x_i) = f(x_i)$, as x_i are i.i.d:

$$= \prod_{i=1}^{m} \mathcal{D}(\{x_i \colon h(x_i) = f(x_i)\})$$

The probability of a good prediction is 1– the probability of error, which is $L_{\mathcal{D},f}$. As $h \in \mathcal{H}_B$, $L_{\mathcal{D},f} > \epsilon$, and so:

$$\mathcal{D}(\{x_i \colon h(x_i) = y_i\}) = 1 - L_{\mathcal{D},f}(h) \le 1 - \epsilon$$

Substituting back leads to:

$$\mathcal{D}^m(\{S \colon L_S(h) = 0\}) \le (1 - \epsilon)^m \le e^{-\epsilon m}$$

And finally:

$$\mathcal{D}^{m}(\{S \colon L_{\mathcal{D},f}(h_S) > \epsilon\}) \le \sum_{h \in \mathcal{H}_B} \mathcal{D}^{m}(\{S \colon L_S(h) = 0\}) \le |\mathcal{H}_B|e^{-\epsilon m} \le |\mathcal{H}|e^{-\epsilon m}$$

We now want to choose m so that the red term is $\leq \delta$. So we impose:

$$|\mathcal{H}|e^{-\epsilon m} \le \delta \Rightarrow m \ge \frac{\log(|\mathcal{H}|/\delta)}{\epsilon}$$

This means that every finite hypothesis class is PAC learnable with sample complexity:

$$m_{\mathcal{H}}(\epsilon, \delta) \le \frac{\log(|\mathcal{H}|/\delta)}{\epsilon}$$

1.2 Agnostic Simple Learning

We consider now a binary classification task where features are not sufficient to uniquely predict labels. In other words, a couple of exactly equal features can lead to opposite labels.

• Data generation. Consider a distribution \mathcal{D} over $\mathcal{X} \times \mathcal{Y}$, with $\mathcal{Y} = \{0, 1\}$. The probability of sampling a certain datapoint (x, y) is given by:

$$\mathbb{P}(x,y) = \mathbb{P}(x)\mathbb{P}(y|x)$$

For example x = 4 can be associated to y = 0 in 75% of the cases, and to y = 1 in the other 25%. In such a case realizability cannot hold, as the learner is deterministic, and must choose one output or the other, meaning that it is bound to make a certain error.

• True error. The risk of a predictor h is given by the probability of sampling $(x,y) \sim \mathcal{D}$ so that $h(x) \neq y$:

$$L_{\mathcal{D}}(h) \equiv \underset{(x,y) \sim \mathcal{D}}{\mathbb{P}}[h(x) \neq y] \equiv \mathcal{D}(\{(x,y) \colon h(x) \neq y\})$$

• Empirical risk maintains the same formula as before:

$$L_S(h) \equiv \frac{|\{1 \le 1 \le m \colon h(x_i) \ne y_i\}|}{m}$$

• Bayes Optimal Predictor Given any probability distribution \mathcal{D} over $\mathcal{X} \times \{0,1\}$, the best label predicting function $\mathcal{X} \to \{0,1\}$ is:

$$f_{\mathcal{D}}(x) = \begin{cases} 1 & \mathbb{P}[y=1|x] \ge 1/2\\ 0 & \text{otherwise} \end{cases}$$

That is, predict 1 if the probability of x being y = 1 is greater than chance (1/2), and 0 otherwise.

• Agnostic PAC learnability. A hypothesis class \mathcal{H} is agnostic PAC learnable if there exists a function $m_{\mathcal{H}} \colon (0,1)^2 \to \mathbb{N}$ and a learning algorithm with the following property: for every $\epsilon, \delta \in (0,1)$ and every distribution \mathcal{D} over $\mathcal{X} \times \mathcal{Y}$, when running the algorithm on $m \geq m_{\mathcal{H}}(\epsilon, \delta)$ i.i.d. samples generated by \mathcal{D} , the algorithm returns an hypothesis h such that, with probability $\geq 1 - \delta$ it satisfies:

$$L_{\mathcal{D}}(h) \le \min_{h' \in \mathcal{H}} L_{\mathcal{D}}(h') + \epsilon$$

1.3 Agnostic PAC learnable

Finally, we generalize the previous case to a *general* learning task, i.e. classification with a larger number of classes, or regression.

- Generalized Loss Functions. A loss function $\ell \colon \mathcal{H} \times Z \to \mathbb{R}_+$, with Z being a certain domain, is a function that *evaluates* the performance of a model $h \in \mathcal{H}$ on the domain Z.
- Risk function is defined just as the expected value of the loss:

$$L_{\mathcal{D}}(h) \equiv \mathbb{E}_{z \sim \mathcal{D}}[\ell(h, z)]$$

• The **empirical risk** is the average loss over the training set:

$$L_S(h) \equiv \frac{1}{m} \sum_{i=1}^{m} \ell(h, z_i)$$

• Agnostic PAC learnability with generalized loss function. A hypothesis class \mathcal{H} is agnostic PAC learnable with respect to a domain Z and a loss function $\ell \colon \mathcal{H} \times Z \to \mathbb{R}_+$ if there exist a function $m_{\mathcal{H}} \colon (0,1)^2 \to \mathbb{N}$ and a learning algorithm with the following property: for every $\epsilon, \delta \in (0,1)$, and every distribution \mathcal{D} over Z, running the algorithm over $m \geq m_{\mathcal{H}}$ i.i.d. samples S generated by \mathcal{D} results in a hypothesis $h_S \in \mathcal{H}$ that, with probability $1 - \delta$, satisfies:

$$L_{\mathcal{D}}(h_S) \leq \min_{h' \in \mathcal{H}} L_{\mathcal{D}}(h') + \epsilon$$

where $L_{\mathcal{D}}(h_S) = \mathbb{E}_{z \sim \mathcal{D}}[\ell(h_S, z)].$

1.4 Uniform Convergence

ERM algorithm minimizes the empirical risk, hoping that this will result in a low true risk as well. So, we want to prove which conditions are needed so that L_S is close to L_D .

• ϵ -representative: A training set S is called ϵ -representative (with respect to a distribution \mathcal{D} over a domain Z, a hypothesis class \mathcal{H} , and a loss ℓ) if:

$$\forall h \in \mathcal{H}, \quad |L_S(h) - L_D(h)| \le \epsilon$$

• Uniform convergence: A hypothesis class \mathcal{H} has the uniform convergence property (with respect to a domain Z and a loss function ℓ) if there exists a function $m_{\mathcal{H}}^{\text{UC}}: (0,1)^2 \to \mathbb{N}$ such that for every ϵ , $\delta \in (0,1)$ and for every probability distribution \mathcal{D} over Z, if S is a sample of at least $m \geq m_{\mathcal{H}}^{\text{UC}}(\epsilon, \delta)$ examples drawn i.i.d. from \mathcal{D} , then, with probability of at least $1 - \delta$, S is ϵ -representative.

1.4.1 Theorems

• Learned hypotheses on representative sample. If a training set S is $\epsilon/2$ representative, then any output of the learner $ERM_{\mathcal{H}}(S)$, i.e. any:

$$h_S \in \arg\min_{h \in \mathcal{H}} L_S(h)$$

satisfies:

$$L_{\mathcal{D}}(h_S) \le \min_{h \in \mathcal{H}} L_{\mathcal{D}}(h) + \epsilon$$

Proof. By the definition of $\epsilon/2$ -representative we have:

$$-\frac{\epsilon}{2} \le L_S(h) - L_{\mathcal{D}}(h) \le \frac{\epsilon}{2} \tag{1.3}$$

Rearranging to isolate $L_{\mathcal{D}}(h)$:

$$-\frac{\epsilon}{2} - L_S(h) \le -L_D(h) \le \frac{\epsilon}{2} - L_S(h) \Rightarrow \frac{\epsilon}{2} + L_S(h) \ge L_D(h) \ge -\frac{\epsilon}{2} + L_S(h)$$

This inequality holds for any $h \in \mathcal{H}$, and in particular for the h_S outputted by the learner:

$$L_{\mathcal{D}}(h_S) \le L_S(h_S) + \frac{\epsilon}{2}$$

 h_S is a minimum point for L_S (by the definition of ERM algorithm) and so $L_S(h_S) \leq L_S(h)$, leading to:

$$L_{\mathcal{D}}(h_S) \le L_S(h_S) + \frac{\epsilon}{2} \le L_S(h) + \frac{\epsilon}{2}$$
 (1.4)

We can now reuse (1.3) to get an inequality for $L_S(h)$:

$$L_S(h) \le L_{\mathcal{D}}(h) + \frac{\epsilon}{2}$$

That can be applied in (1.4) completing the chain:

$$L_{\mathcal{D}}(h_S) \le L_S(h_S) + \frac{\epsilon}{2} \le L_S(h) + \frac{\epsilon}{2} \le L_{\mathcal{D}}(h) + \frac{\epsilon}{2} + \frac{\epsilon}{2} = L_{\mathcal{D}}(h) + \epsilon$$

This holds for any $h \in \mathcal{H}$, and so we can pick the *minimum* $L_{\mathcal{D}}(h)$ to get the stronger condition:

$$L_{\mathcal{D}}(h_S) \le \min_{h \in \mathcal{H}} L_{\mathcal{D}}(h) + \epsilon$$

In other words, if S is ϵ -representative, then the true risk and the empirical risk are close to each other.

• Uniform convergence implies PAC learnability. If a class \mathcal{H} has the uniform convergence property with a sample complexity $m_{\mathcal{H}}^{\text{UC}}$ then the class is agnostically PAC learnable with the sample complexity $m_{\mathcal{H}}(\epsilon, \delta) \leq m_{\mathcal{H}}^{\text{UC}}(\epsilon/2, \delta)$.

Proof. Thanks to uniform convergence, we are certain that we can use the ERM algorithm to get *nice* results, meaning empirical risks that are close to true risks, and so, using the previous theorem, we reach the PAC learning condition.

• Finite Classes are agnostic PAC learnable. We want to prove that uniform convergence holds for finite classes, implying that they are agnostic PAC learnable.

Fix some accuracy ϵ and confidence δ . We need to find a sufficient m = |S| so that:

$$\mathcal{D}^{m}(\{S \colon \forall h \in \mathcal{H}, |L_{S}(h) - L_{\mathcal{D}}(h)| \leq \epsilon\}) \geq 1 - \delta$$

That is, if we pick m samples from \mathcal{D} to generate S, then with probability $1 - \delta$, uniformly for any hypothesis $h \in \mathcal{H}$, the empirical risk and true risk are ϵ -close: $L_S(h) - L_{\mathcal{D}}(h)| \leq \epsilon$.

If the probability of an event p is $\geq 1-\delta$, then the probability of the opposite event \bar{p} is $< 1-(1-\delta)=\delta$:

$$\mathcal{D}^{m}(\{S \colon \exists h \in \mathcal{H}, |L_{S}(h) - L_{\mathcal{D}}(h)| > \epsilon\}) < \delta$$

(Note how $\forall \to \exists$).

Consider now the argument of \mathcal{D}^m . This is the set of all samples sets S for which there is an hypothesis that satisfies some property. Equivalently, we could select all samples with that property on a *fixed* h, do the same for every other h, and join all the results:

$$\{S \colon \exists h \in \mathcal{H}, |L_S(h) - L_{\mathcal{D}}(h)| > \epsilon\} = \bigcup_{h \in \mathcal{H}} \{S \colon |L_S(h) - L_{\mathcal{D}}(h)| > \epsilon\}$$

Applying \mathcal{D}^m to both sides along with the union bound leads to:

$$\mathcal{D}^{m}(\{S \colon \exists h \in \mathcal{H}, |L_{S}(h) - L_{\mathcal{D}}(h)| > \epsilon\}) \leq \sum_{h \in \mathcal{H}} \mathcal{D}^{m}(\{S \colon |L_{S}(h) - L_{\mathcal{D}}(h)| > \epsilon\})$$

We now consider a generic element of the sum, and search for a upper bound. The idea is that $L_S(h)$ is an *estimator* of $L_D(h)$ (it is a sample mean vs an expected value), and so it should be *closer to it* if we increase the sample size m. In fact:

$$L_{\mathcal{D}}(h) = \mathbb{E}_{z \sim \mathcal{D}}[\ell(h, z)]$$
 $L_{S}(h) = \frac{1}{m} \sum_{i=1}^{m} \ell(h, z_{i})$

meaning that $L_{\mathcal{D}}(h) = \mathbb{E}_{z \sim \mathcal{D}}[L_S(h)]$. The gap between averages (over i.i.d. samples) and their expected value can be quantified through **Hoeffding** inequality.

Hoeffding inequality. Let $\theta_1, \ldots, \theta_m$ be a sequence of i.i.d. random variables and assume that for all i, $\mathbb{E}[\theta_i] = \mu$ and $\mathbb{P}[a \leq \theta_i \leq b] = 1$ (i.e. the support of the probability distribution lies in [a, b]). Then, for any $\epsilon > 0$:

$$\mathbb{P}\left[\left|\frac{1}{m}\sum_{i=1}^{m}\theta_{i}-\mu\right|>\epsilon\right]\leq2\exp\left(-\frac{2m\epsilon^{2}}{(b-a)^{2}}\right)$$

In our case, this means that:

$$\mathcal{D}^{m}(\{S: |L_{S}(h) - L_{\mathcal{D}}(h)| > \epsilon\}) \le 2 \exp\left(-\frac{2m\epsilon^{2}}{(b-a)^{2}}\right)$$

We assume $\ell \in [0,1]$, meaning that b-a=1. Then, computing the sum:

$$\mathcal{D}^{m}(\{S \colon \exists h \in \mathcal{H}, |L_{S}(h) - L_{\mathcal{D}}(h)| > \epsilon\}) \le \sum_{h \in \mathcal{H}} 2 \exp(-2m\epsilon^{2}) = 2|\mathcal{H}| \exp(-2m\epsilon^{2})$$

For our thesis, we want the red term to be $< \delta$, and so we impose:

$$2|\mathcal{H}|\exp(-2m\epsilon^2) < \delta \Rightarrow m \ge \frac{1}{2\epsilon^2}\log\left(\frac{2|\mathcal{H}|}{\delta}\right)$$

So, let \mathcal{H} be a finite hypothesis class, let Z be a domain, and let $\ell \colon \mathcal{H} \times Z \to [0,1]$ be a loss function. Then \mathcal{H} enjoys the uniform convergence property with sample complexity:

$$m_{\mathcal{H}}^{\mathrm{UC}}(\epsilon, \delta) \le \left[\frac{1}{2\epsilon^2} \log \left(\frac{2|\mathcal{H}|}{\delta} \right) \right]$$

(Note that previously we found a general sufficient condition for the minimum size of m needed for uniform convergence. In a specific case, it is probable that a much lower m would allow the same property.)

1.5 Bias-complexity tradeoff

• Error decomposition. The true risk $L_{\mathcal{D}}(h_S)$ of an output h_S of the ERM_{\mathcal{H}} algorithm is a combination of the *bias* contained in the choice of \mathcal{H} (which could be not optimal) - the **approximation error** - and the inefficiency of the ERM algorithm in minimizing the true risk (as it minimizes the empirical risk) - the **estimation error**:

$$L_{\mathcal{D}}(h_S) = \epsilon_{\text{approximation}} + \epsilon_{\text{estimation}}$$
$$\epsilon_{\text{app}} = \min_{h \in \mathcal{H}} L_{\mathcal{D}}(h); \qquad \epsilon_{\text{est}} = L_{\mathcal{D}}(h_S) - \epsilon_{\text{app}}$$

- $-\epsilon_{\rm app}$ usually decreases when enlarging $|\mathcal{H}|$, and does not depend on m. If realizability holds, it is 0, otherwise it includes always the error of the Bayes optimal predictor.
- $-\epsilon_{\rm est}$ increases logarithmically with $|\mathcal{H}|$ (because it is easier to overfit) and decreases with m.

 $|\mathcal{H}|$ too large makes ϵ_{est} dominate (overfitting), while $|\mathcal{H}|$ too small makes ϵ_{app} dominate (underfitting).

1.5.1 Theorems

- No free lunch. Let A be any learning algorithm for the task of binary classification with respect to the 0-1 loss over a domain \mathcal{X} . Let m be any number smaller than $|\mathcal{X}|/2$, representing a training set size (so the algorithm knows less than half the elements). Then, there exists a distribution \mathcal{D} over $\mathcal{X} \times \{0,1\}$ such that:
 - 1. There exists a function $f: \mathcal{X} > \{0, 1\}$ with $L_{\mathcal{D}}(f) = 0$
 - 2. With probability of at least 1/7 over the choice of $S \sim \mathcal{D}^m$ we have that $L_{\mathcal{D}}(A(S)) \geq 1/8$.
- No prior knowledge implies not PAC learnable. Let \mathcal{X} be an *infinite* domain set and let \mathcal{H} be the set of all functions $\mathcal{X} \to \{0,1\}$ (no bias, no prior knowledge). Then \mathcal{H} is not PAC learnable.

Proof. Just pick $\epsilon < 1/8$ and $\delta < 1/7$, suppose (by absurdity) that \mathcal{H} is PAC learnable, and apply the no-free-lunch theorem to get a contradiction (no amount of m, as $|\mathcal{H}| = \infty$ is $> |\mathcal{H}|/2$, and so with probability $> \delta > 1/7$, $L_{\mathcal{D}}(A(S)) > 1/8 > \epsilon$).

1.6 VC-Dimension

• Restriction of a hypothesis class to a set of samples. Let \mathcal{H} be a class of functions $\mathcal{X} \to \{0,1\}$ and let $C = \{c_1,\ldots,c_m\} \subset \mathcal{X}$. The restriction of \mathcal{H} to C is the set of functions $C \to \{0,1\}$ that can be derived from \mathcal{H} .

We can identify these functions by their outcomes on the elements of C:

$$\mathcal{H}_C = \{(h(c_1), \dots, h(c_m)) \colon h \in \mathcal{H}\}$$

Note that if two h result in the same outcomes on C, then they are effectively the same function on the restricted class. So \mathcal{H}_C is the intersection between the set of all functions $C \to \{0, 1\}$ and $\mathcal{H}^{|C|}$.

• Shattering. A hypothesis class \mathcal{H} shatters a finite set $C \subset \mathcal{X}$ if the restriction of \mathcal{H} to C is the set of all functions $C \to \{0,1\}$. That is, $|\mathcal{H}_C| = 2^{|C|}$.

Example. Let \mathcal{H} be the hypothesis class of threshold functions $h_a \colon \mathbb{R} \to \{0,1\}$:

$$\mathcal{H} \ni h_a(x) = \begin{cases} 1 & x > a \\ 0 & x \le a \end{cases}$$

Consider $C = \{c_1\}$. If we take $a = c_1 - 1$, then $h_a(c_1) = 1$, but for $b = c_1 + 1$ we have $h_b(c_1) = 0$. As the set of all functions $C \to \{0, 1\}$ is just $\{0, 1\}$, this means that \mathcal{H} shatters C.

However, consider $D = \{c_1, c_2\}$ with $c_1 < c_2$. Here the set of all functions $D \to \{0, 1\}$ is $\{(0, 0), (0, 1), (1, 0), (1, 1)\}$. By correctly choosing a, we can construct only $\{0, 0\}, \{1, 1\}$ or $\{0, 1\}$, meaning that \mathcal{H} does not shatter D.

1.6.1 Theorems

• Shattering and No-Free-Lunch. Let \mathcal{H} be a hypothesis class of functions $\mathcal{X} \to \{0,1\}$. Let m be a training set size. Assume that there exists a set $C \subset \mathcal{X}$ of double the size (|C| = 2m) that is shattered by \mathcal{H} . Then, for any learning algorithm A, there exist a distribution \mathcal{D} over $\mathcal{X} \times \{0,1\}$ and a predictor $h \in \mathcal{H}$ such that $L_{\mathcal{D}}(h) = 0$ but with probability of at least 1/7 over the choice of $S \sim \mathcal{D}^m$ we have that $L_{\mathcal{D}}(A(S)) \geq 1/8$.

1.7 Linear predictors

• Affine Functions

$$L_d = \{h_{\boldsymbol{w},b} \colon \boldsymbol{w} \in \mathbb{R}^d, b \in \mathbb{R}\} \qquad h_{\boldsymbol{w},b}(\boldsymbol{x}) = \langle \boldsymbol{w}, \boldsymbol{x} \rangle + b = \left(\sum_{i=1}^d w_i x_i\right) + b_i$$

An affine function returns the dot product of the argument \boldsymbol{x} by a weight vector \boldsymbol{w} , and sums a bias b to the result. These can be written in a more compact way by defining $\boldsymbol{w}' = (b, \boldsymbol{w}) \in \mathbb{R}^{d+1}$ and $\boldsymbol{x}' = (1, \boldsymbol{x})$, so that:

$$h_{\boldsymbol{w},b} = \langle \boldsymbol{w}', \boldsymbol{x}' \rangle = \langle \boldsymbol{w}, \boldsymbol{x} \rangle + b$$

So an affine function of dimension d can be written as a linear function in dimension d+1 (homogeneous coordinates).

ullet Linear functions. Just a dot product with a weight $oldsymbol{w}$ vector:

$$L'_d = \{h_{oldsymbol{w}} \colon oldsymbol{w} \in \mathbb{R}^d\} \qquad h_{oldsymbol{w}}(oldsymbol{x}) = \langle oldsymbol{w}, oldsymbol{x}
angle$$

• Linear predictor. The hypothesis class \mathcal{H} of linear predictors contains all the functions $\Phi \circ L_d$, where $\Phi \colon \mathbb{R} \to \mathcal{Y}$ "connects" the output of the affine functions in L_d to the desired set of labels \mathcal{Y} .

- Halfspaces. If $\mathcal{Y} = \{-1, +1\}$ (binary classification), and $\mathcal{X} = \mathbb{R}^d$, we define the class of halfspaces as follows:

$$HS_d = \operatorname{sign} \circ L_d = \{ \boldsymbol{x} \mapsto \operatorname{sign}(h_{\boldsymbol{w},b}(\boldsymbol{x})) \colon h_{\boldsymbol{w},b} \in L_d \}$$

That is, we classify an element $\boldsymbol{x} \in \mathcal{X}$ as +1 if $h_{\boldsymbol{w},b}(\boldsymbol{x}) > 0$, and to -1 otherwise. Geometrically, $\boldsymbol{w} \cdot \boldsymbol{x} + b = 0$ is the hyperplane in \mathbb{R}^d that is $\perp \boldsymbol{w}$, and is $b/\|\boldsymbol{w}\|$ away from the origin. Consider \boldsymbol{w} as an affine vector "starting" from $\boldsymbol{w}b/\|\boldsymbol{w}\|^2$. Then any point that lies at an acute angle with respect to \boldsymbol{w} is classified as +1, and all the others as -1.

The distance between a point $\mathbf{x_0}$ and an hyperplane $\mathbf{w} \cdot \mathbf{x} + b = 0$ can be computed by considering the vector $\mathbf{x_0} - \mathbf{X}$, where \mathbf{X} is a generic point on the hyperplane (i.e. such that $\mathbf{X} \cdot \mathbf{w} + b = 0$), and projecting it on the perpendicular unit vector $\mathbf{w}/\|\mathbf{w}\|$, leading to:

$$\operatorname{dist} = \left| (oldsymbol{x_0} - oldsymbol{X}) \cdot rac{oldsymbol{w}}{\|oldsymbol{w}\|}
ight|$$

Then using $\mathbf{X} \cdot \mathbf{w} = -b$ (as it is in the hyperplane), leads to:

$$dist = \frac{|\boldsymbol{x}_0 \cdot \boldsymbol{w} + b|}{\|\boldsymbol{w}\|} \tag{1.5}$$

The **realizability** assumption holds if the points to be classified are *linearly separable*, meaning that there exist an halfspace that perfectly separates the ones labelled as +1 from the other ones.

• Linear regression. Take $\mathcal{H}_{reg} = L_d$, with L_2 loss $\ell(h, (\boldsymbol{x}, y)) = (h(\boldsymbol{x}) - y)^2$. This leads to the Mean Squared Error as empirical risk:

$$L_S(h) = \frac{1}{m} \sum_{i=1}^{m} (h(\mathbf{x}_i) - y_i)^2$$

- **Polynomial regression**. Find the one dimensional polynomial of degree n that better predicts the data. $p(x) = a_0 + a_1 x + a_2 x^2 + \cdots + a_n x^n$. The idea is to produce nonlinear features with the mapping $\psi \colon \mathbb{R} \to \mathbb{R}^{n+1}$, $x \mapsto (1, x, x^2, \dots, x^n) = \psi(x)$, and then note that $p(x) = \langle \boldsymbol{a}, \psi(x) \rangle$, and find \boldsymbol{a} with least squares.
- Logistic regression. Choose $\mathcal{H} \colon \Phi_{\text{sig}} \circ L_d$, where $\Phi_{\text{sig}} \colon \mathbb{R} \to [0,1]$ is the sigmoid function:

$$\Phi_{\rm sig}(z) = \frac{1}{1 + e^{-z}}$$

Output is probability of being in class +1.

Use loss: $\ell(h_{\boldsymbol{w}},(\boldsymbol{x},y)) = \log(1 + e^{-y\langle \boldsymbol{w},\boldsymbol{x}\rangle})$. Note that $y\langle \boldsymbol{w},\boldsymbol{x}\rangle > 0$ for correctly classified samples, meaning that in this case the loss is low.

1.7.1 Theorems

• ERM for halfspaces is a linear program. A linear program is a way to maximize a linear function subject to linear inequalities, that is finding w such that:

$$\max_{\boldsymbol{w} \in \mathbb{R}^d} \langle \boldsymbol{u}, \boldsymbol{w} \rangle \wedge A \boldsymbol{w} \geq \boldsymbol{v}$$

with A is a $m \times d$ matrix and $\boldsymbol{v} \in \mathbb{R}^m$, $\boldsymbol{u} \in \mathbb{R}^d$ are vectors.

Assume a **realizable**, **homogeneous** case, meaning that we take b = 0 (hypotheses are from L'_d , or from L_{d-1} with homogeneous coordinates). Let $S = \{(\boldsymbol{x}_i, y_i)\}_{i=1}^m$ be the training dataset. From realizability, $L_S(h_S) = 0$.

We search for a $\boldsymbol{w} \in \mathbb{R}^d$ so that:

$$sign(\langle \boldsymbol{w}, \boldsymbol{x}_i \rangle) = y_i \qquad \forall i = 1, \dots, m$$

This is equivalent to:

$$y_i \langle \boldsymbol{w}, \boldsymbol{x_i} \rangle > 0 \qquad \forall i = 1, \dots, m$$

In fact, if $y_i = +1$ then a correct \boldsymbol{w} will lead to $\langle \boldsymbol{w}, \boldsymbol{x_i} \rangle > 0$, and so $y_i \langle \boldsymbol{w}, \boldsymbol{x_i} \rangle > 0$. On the other hand, if $y_i = -1$, then we will have $\langle \boldsymbol{w}, \boldsymbol{x_i} \rangle < 0$, and so again $y_i \langle \boldsymbol{w}, \boldsymbol{x_i} \rangle > 0$.

We now show that there exist a $\bar{\boldsymbol{w}}$ so that $y_i\langle \boldsymbol{w}, \boldsymbol{x_i}\rangle \geq 1$, and that this inequality can be mapped to the LP case.

We construct $\bar{\boldsymbol{w}}$ starting from any \boldsymbol{w}^* for which $y_i \langle \boldsymbol{w}^*, \boldsymbol{x}_i \rangle$ (which exists due to realizability). Then consider the minimum value of that expression:

$$\gamma \equiv \min_{1 \le i \le m} y_i \langle \boldsymbol{w}^*, \boldsymbol{x_i} \rangle$$

Then:

$$y_i \langle \boldsymbol{w}^*, \boldsymbol{x}_i \rangle \ge \gamma \Rightarrow y_i \langle \frac{\boldsymbol{w}^*}{\gamma}, \boldsymbol{x}_i \rangle \ge 1$$

and so $\bar{\boldsymbol{w}} = \boldsymbol{w}^*/\gamma$. We can now rewrite the previous inequality in vector form:

$$y_i \langle \bar{\boldsymbol{w}}, \boldsymbol{x_i} \rangle \ge 1 \Rightarrow y_i \sum_{j=1}^d w_j(\boldsymbol{x_i})_j = \sum_{j=1}^d y_i(\boldsymbol{x_i})_j w_j \ge 1 \Rightarrow X \boldsymbol{w} \ge 1$$

where X is the $m \times d$ matrix with $X_{ij} = y_i(\boldsymbol{x_i})_j$ ($(\boldsymbol{x_i})_j$ is the j-th component of the i-th sample $\boldsymbol{x_i}$). So, if we take $\boldsymbol{v} = (1, \dots, 1) \in \mathbb{R}^d$ we got the linear inequality needed for the linear program. As any \boldsymbol{w} that satisfy that constraint is a valid solution, we do not need to maximize any function, and so we can set $\boldsymbol{u} = \boldsymbol{0} \in \mathbb{R}^d$.

• Perceptron algorithm for halfspaces. Let $S = \{(\boldsymbol{x_i}, y_i)\}_{i=1,...,m}$. Initialize $\boldsymbol{w}^{(1)} = \boldsymbol{0}$. At every step t, pick a misclassified sample, that is a i such that $y_i \langle \boldsymbol{w}^{(t)}, \boldsymbol{x_i} \rangle \leq 0$. Then update:

$$\boldsymbol{w}^{(t+1)} = \boldsymbol{w}^{(t)} + y_i \boldsymbol{x_i}$$

Note that:

$$y_i \langle \boldsymbol{w}^{(t+1)}, \boldsymbol{x}_i \rangle = y_i \langle \boldsymbol{w}^{(t)} + y_i \boldsymbol{x}_i, \boldsymbol{x}_i \rangle = \underbrace{y_i \langle \boldsymbol{w}^{(t)}, \boldsymbol{x}_i \rangle}_{\leq 0} + \|\boldsymbol{x}_i\|^2$$

So now it is closer to being > 0 (correct). The algorithm stops when there are no more misclassified samples (in the realizable case).

Stopping condition. Let $R = \max_i \|\mathbf{x}_i\|$ (maximum norm of samples), and $B = \min\{\|\mathbf{w}\| : \forall i \in [m], y_i \langle \mathbf{w}, \mathbf{x}_i \rangle \geq 1\}$ (minimum norm of a correct weight). Then the algorithm stops after at most $(RB)^2$ iterations.

Proof. We show that if T is the minimum number of iterations needed to reach the stopping condition, then $T \leq (RB)^2$. Let \boldsymbol{w}^* be the solution with the smaller norm, meaning that:

$$y_i \langle \boldsymbol{w}^*, \boldsymbol{x}_i \rangle \ge 1 \qquad \|\boldsymbol{w}^*\| = B$$
 (1.6)

We expect $\boldsymbol{w}^{(t)}$ to be pointing closer and closer to the direction of \boldsymbol{w}^* as t increases. Recall that the cosine of the angle α between two vectors \boldsymbol{a} and \boldsymbol{b} is:

$$1 \ge \cos(\alpha) = \frac{\langle \boldsymbol{a}, \boldsymbol{b} \rangle}{\|\boldsymbol{a}\| \|\boldsymbol{b}\|}$$

In our case we examine:

$$1 \geq \frac{\langle \boldsymbol{w}^*, \boldsymbol{w}^{(t)} \rangle}{\|\boldsymbol{w}^*\| \|\boldsymbol{w}^{(t)}\|}$$

We expect this quantity to increase at every iteration, reaching a certain threshold after T iterations, after which the algorithm stops. We want to know what is this threshold.

Let's examine how $\langle \boldsymbol{w}^*, \boldsymbol{w}^{(t)} \rangle$ changes at every iteration. We start from:

$$\langle \boldsymbol{w}^*, \boldsymbol{w}^{(1)} \rangle = 0$$

At iteration t, if the update sample is $(\boldsymbol{x_i}, y_i)$, that scalar product increases by:

$$\langle \boldsymbol{w}^*, \boldsymbol{w}^{(t+1)} \rangle - \langle \boldsymbol{w}^*, \boldsymbol{w}^{(t)} \rangle = \langle \boldsymbol{w}^*, \boldsymbol{w}^{(t+1)} - \boldsymbol{w}^{(t)} \rangle =$$

$$= \langle \boldsymbol{w}^*, \boldsymbol{w}^{(t)} + y_i \boldsymbol{x}_i - \boldsymbol{w}^{(t)} \rangle =$$

$$= \langle \boldsymbol{w}^*, y_i \boldsymbol{x}_i \rangle = y_i \langle \boldsymbol{w}^*, \boldsymbol{x}_i \rangle \underset{(1.6)}{\geq} 1$$

So $\langle \boldsymbol{w}^*, \boldsymbol{w}^{(t)} \rangle$ increases by more than 1 at every iteration, meaning that if the algorithm stops at T iterations, we have:

$$\langle \boldsymbol{w}^*, \boldsymbol{w}^{(T+1)} \rangle = \sum_{t=1}^{T} \left(\langle \boldsymbol{w}^*, \boldsymbol{w}^{(t+1)} \rangle - \langle \boldsymbol{w}^*, \boldsymbol{w}^{(t)} \rangle \right) \geq T$$

Let's now examine how $\|\boldsymbol{w}^{(t)}\|$ changes. If at iteration t the sample $(\boldsymbol{x_i}, y_i)$ is selected, then:

$$\begin{aligned} \left\| \boldsymbol{w}^{(t+1)} \right\|^2 &= \left\| \boldsymbol{w}^{(t)} + y_i \boldsymbol{x}_i \right\|^2 = \\ &= \left\| \boldsymbol{w}^{(t)} \right\|^2 + 2 \underbrace{y_i \langle \boldsymbol{w}^{(t)}, \boldsymbol{x}_i \rangle}_{\leq 0} + \underbrace{y_i^2}_{1} \left\| \boldsymbol{x}_i \right\|^2 \\ &\leq \left\| \boldsymbol{w}^{(t)} \right\|^2 + (\max_i \| \boldsymbol{x}_i \|)^2 = \left\| \boldsymbol{w}^{(t)} \right\|^2 + R^2 \end{aligned}$$

As $\|\boldsymbol{w}^{(1)}\| = 0$, then $\|\boldsymbol{w}^{(T+1)}\|^2 \leq TR^2$ and so $\|\boldsymbol{w}^{(T+1)}\| \leq \sqrt{T}R$. This means that:

$$1 \ge \frac{\langle \boldsymbol{w}^*, \boldsymbol{w}^{(T+1)} \rangle}{\|\boldsymbol{w}^*\| \|\boldsymbol{w}^{(T+1)}\|} \ge \frac{T}{\sqrt{T}RB} = \frac{\sqrt{T}}{RB} \Rightarrow T \le (RB)^2$$

• Least squares. An algorithm that solves the ERM problem for linear regression with respect to the L_2 loss. It outputs the \boldsymbol{w} weight that satisfies:

$$\arg\min_{\boldsymbol{w}\in\mathbb{R}^d} L_S(h_{\boldsymbol{w}}) = \arg\min_{\boldsymbol{w}} \frac{1}{m} \sum_{i=1}^m (\langle \boldsymbol{w}, \boldsymbol{x_i} \rangle - y_i)^2$$

To solve this, compute the gradient of the empirical risk and set it to 0:

$$\nabla_{\boldsymbol{w}} L = \frac{2}{m} \sum_{i=1}^{m} (\langle \boldsymbol{w}, \boldsymbol{x}_i \rangle - y_i) \boldsymbol{x}_i \stackrel{!}{=} \mathbf{0}$$

$$= \frac{2}{m} \sum_{i=1}^{m} \boldsymbol{x}_i (\boldsymbol{x}_i^T \boldsymbol{w} - y_i) = \frac{2}{m} \left[\underbrace{\left(\sum_{i=1}^{m} \boldsymbol{x}_i \boldsymbol{x}_i^T \right)}_{A} \boldsymbol{w} - \underbrace{\sum_{i=1}^{m} y_i \boldsymbol{x}_i}_{b} \right] = \frac{2}{m} \left[A \boldsymbol{w} - \boldsymbol{b} \right] = 0$$

$$\Rightarrow \boldsymbol{w} = A^{-1} \boldsymbol{b}$$

(assuming A is invertible).

• Logistic regression and MLE

1.8 Validation

• Cross-validation.

1.8.1 Theorems

• Bound for model selection. Let $\mathcal{H} = \{h_1, \dots, h_r\}$ be an arbitrary set of predictors and assume that the loss function is in [0, 1]. Assume that a validation set V of size m_v is sampled independent of \mathcal{H} . Then, with probability $\geq 1 - \delta$ over the choice of V we have:

$$\forall h \in \mathcal{H}, |L_{\mathcal{D}}(h) - L_{V}(h)| \leq \sqrt{\frac{\log(2|\mathcal{H}|/\delta)}{2m_{v}}}$$

1.9 Regularization

• Regularized Loss Minimization (RLM): learning paradigm that generalizes ERM to make it more stable, by adding a regularization function $R: \mathbb{R}^d \to \mathbb{R}$ (where d is the number of parameters to be optimizes) to the empirical risk:

Select
$$h_S$$
 as $\arg\min_{\boldsymbol{w}}(L_S(\boldsymbol{w}) + R(\boldsymbol{w}))$

• Tikhonov Regularization. Use L_2 norm for R:

$$R(\boldsymbol{w}) = \lambda \|\boldsymbol{w}\|^2 = \lambda \sum_{i=1}^d w_i^2 \qquad R \colon \mathbb{R}^d \to \mathbb{R}_+$$

 $\|\boldsymbol{w}\|^2$ measures the *complexity* of the hypothesis defined by \boldsymbol{w} , and λ controls the trade-off between *empirical risk* and *complexity*. Generally, a higher $\|\boldsymbol{w}\|^2$ can reach a lower L_S , at the risk of overfitting (high $L_D(h)$).

• Ridge regression. Linear regression with L_2 loss (least squares) and Tikhonov Regularization

$$\boldsymbol{w} = \arg\min_{\boldsymbol{w}} \left(\lambda \|\boldsymbol{w}\|^2 + \frac{1}{2m} \sum_{i=1}^{m} (\langle \boldsymbol{w}, \boldsymbol{x}_i \rangle - y_i)^2 \right)$$

The 2 is added for convenience (it will go away when computing the gradient).

• Small perturbation. Let $S = (z_1, \ldots, z_m)$ be a training set of m samples. A *small perturbation* of S is denoted as $S^{(i)}$, and corresponds substituting the i-th element of S with another arbitrary sample $z' \notin S$:

$$S^{(i)} = (z_1, \dots, z_{i-1}, z', z_{i+1}, \dots, z_m)$$

- Overfitting. Let A be a learning algorithm and S a training set. We say that A is overfitting if the difference $L_{\mathcal{D}}(A(S)) L_S(A(S))$ is very large.
- On-Average-Replace-One-Stable (OAROS). Intuitively, an algorithm is stable if by replacing an element in S it's prediction does not change much, that is if $\ell(A(S^{(i)}), z_i) \ell(A(S), z_i)$ is small (note that $A(S^{(i)})$) does not

see z_i in training, as $z_i \notin S^{(i)}$, and so it will be likely higher). Moreover, we expect this difference to decrease with increasing m, because the perturbation becomes "diluted" in a large S (i.e. changing a single sample on a large S should have a negligible impact).

So, we say that an algorithm is OAROS if that difference is bounded by a decreasing function in m. More precisely, let $\epsilon \colon \mathbb{N} \to \mathbb{R}$ be a monotonically decreasing function. We say that a learning algorithm A is on-average-replace-one-stable with rate $\epsilon(m)$ if, for every distribution \mathcal{D} :

$$\underset{(S,z')\sim\mathcal{D}^{m+1},i\sim U(m)}{\mathbb{E}}[\ell(A(S^{(i)}),z_i)-\ell(A(S),z_i)]\leq \epsilon(m)$$

Here we take the expected value over $S \sim \mathcal{D}^m$ and $z' \sim \mathcal{D}$, choosing uniformly the index i to perturb.

• Convex functions. Recall that a function $f: \mathbb{R}^d \to \mathbb{R}$ is *convex* if it stays under every segment drawn between two points of its graph:

$$f(\alpha \boldsymbol{x} + (1 - \alpha)\boldsymbol{y}) \le \alpha g(\boldsymbol{x}) + (1 - \alpha)g(\boldsymbol{y}) \qquad \forall \boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^d, \alpha \in [0, 1] \quad (1.7)$$

The right hand side is the *segment* joining $(\boldsymbol{x}, f(\boldsymbol{x}))$ and $(\boldsymbol{y}, f(\boldsymbol{y}))$. Equivalently, a convex function is greater than its tangents:

$$f(y) \ge f(x) + \nabla f(x) \cdot (y - x)$$

• Strongly convex function. A function $f: \mathbb{R}^d \to \mathbb{R}$ is λ -strongly convex if it remains convex even after subtracting a quadratic term:

$$g(\boldsymbol{x}) = f(\boldsymbol{x}) - \frac{\lambda}{2} \|\boldsymbol{x}\|^2 \text{ is convex}$$
 (1.8)

That is:

$$g(\mathbf{y}) \ge g(\mathbf{x}) + \nabla g(\mathbf{x}) \cdot (\mathbf{y} - \mathbf{x})$$

$$\Rightarrow f(\mathbf{y}) - \frac{\lambda}{2} ||\mathbf{y}||^2 \ge f(\mathbf{x}) - \frac{\lambda}{2} ||\mathbf{x}||^2 + (\nabla f(\mathbf{x}) - \lambda \mathbf{x}) \cdot (\mathbf{y} - \mathbf{x})$$

$$\Rightarrow f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla f(\mathbf{x}) \cdot (\mathbf{y} - \mathbf{x}) + \frac{\lambda}{2} ||\mathbf{y}||^2 - \frac{\lambda}{2} ||\mathbf{x}||^2 + \lambda ||\mathbf{x}||^2 - \lambda \mathbf{x} \cdot \mathbf{y}$$

$$\Rightarrow f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla f(\mathbf{x}) \cdot (\mathbf{y} - \mathbf{x}) + \frac{\lambda}{2} ||\mathbf{y} - \mathbf{x}||^2$$
(1.9)

In the one-dimensional case this means that $f''(x) \ge \lambda$. In fact, by comparison with the second-order Taylor expansion with the Lagrange remainder we get:

$$f(y) = f(x) + f'(x)(y - x) + \frac{1}{2}f''(x)(y - x)^{2} + \frac{1}{3!}f^{(3)}(z)(y - x)^{3} \qquad z \in (x, y)$$

$$\geq f(x) + f'(x)(y - x) + \frac{\lambda}{2}(y - x)^{2}$$

$$\Rightarrow f''(x) + \frac{1}{3! \cdot 2}f^{(3)}(z)(y - x) \geq \lambda \xrightarrow{y \to x} f''(x) \geq \lambda$$

This generalizes to Hess $f - \lambda \mathbb{I}$ is positive definite.

Applying (1.7) to (1.8) leads to an equivalent definition:

$$f(\alpha \boldsymbol{x} + (1 - \alpha)\boldsymbol{y}) \le \alpha f(\boldsymbol{x}) + (1 - \alpha)f(\boldsymbol{y}) - \frac{\lambda}{2}\alpha(1 - \alpha)\|\boldsymbol{x} - \boldsymbol{y}\|^2 \quad \forall \boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^d, \alpha \in [0, 1]$$
(1.10)

• Lipschitzness. Let $C \subset \mathbb{R}^d$. A function $f: \mathbb{R}^d \to \mathbb{R}^k$ is ρ -Lipschitz over C if:

$$||f(w_1) - f(w_2)|| \le \rho ||w_1 - w_2||$$

If f is differentiable, this means that its derivative is bounded by ρ .

• Fitting-Stability tradeoff. The expected risk of a learning algorithm can be written as:

$$\underset{S \sim \mathcal{D}^m}{\mathbb{E}}[L_{\mathcal{D}}(A(S))] = \underset{S \sim \mathcal{D}^m}{\mathbb{E}}[L_S(A(S))] + \underbrace{\underset{S \sim \mathcal{D}^m}{\mathbb{E}}[L_{\mathcal{D}}(A(S)) - L_S(A(S))]}_{<\epsilon(m)}$$

where $\epsilon(m)$ is the bounding function for an OAROS algorithm, that, in the case of RLM is:

$$\epsilon(m) = \frac{2\rho^2}{\lambda m}$$

So increasing λ decreases the overfitting, but at the same time reduces the relative importance of $L_S(A(S))$ in the optimization, meaning that $L_S(A(S))$ will be larger. The following bound can be proven:

$$\mathbb{E}_{S \sim \mathcal{D}^m}[L_{\mathcal{D}}(A(S))] \le L_{\mathcal{D}}(\boldsymbol{w}^*) + \lambda \|\boldsymbol{w}^*\|^2 + \frac{2\rho^2}{\lambda m}$$

where w^* is an hypothesis with low risk.

1.9.1 Theorems

• Ridge regression solution. The function being optimized is:

$$f(\boldsymbol{w}, S) = \lambda \|\boldsymbol{w}\|^2 + \frac{1}{2m} \sum_{i=1}^{m} (\langle \boldsymbol{w}, \boldsymbol{x}_i \rangle - y_i)^2$$

Computing the gradient and setting it to 0:

$$\nabla_{\boldsymbol{w}} f(\boldsymbol{w}, S) = 2\lambda \boldsymbol{w} + \frac{1}{m} \sum_{i=1}^{m} \boldsymbol{x}_{i} (\langle \boldsymbol{w}, \boldsymbol{x}_{i} \rangle - y_{i}) \stackrel{!}{=} \boldsymbol{0}$$

$$= 2\lambda \boldsymbol{w} + \frac{1}{m} \underbrace{\left(\sum_{i=1}^{m} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{T}\right)}_{A} \boldsymbol{w} - \frac{1}{m} \underbrace{\left(\sum_{i=1}^{m} y_{i} \boldsymbol{x}_{i}\right)}_{b} = 0$$

$$= 2\lambda \boldsymbol{w} + \frac{1}{m} (A\boldsymbol{w}) - \frac{1}{m} \boldsymbol{b} = \frac{1}{m} (2\lambda m \mathbb{I}_{d} + A) \boldsymbol{w} - \frac{1}{m} \boldsymbol{b} = 0$$

$$\Rightarrow \boldsymbol{w} = (2\lambda m \mathbb{I}_{d} + A)^{-1} \boldsymbol{b}$$

• OAROS and overfitting. Let \mathcal{D} be a distribution, and $S = (z_1, \ldots, m)$ an i.i.d. sequence of examples and let z' be another i.i.d. example. Let U(m) be the uniform distribution over [m]. Then, for any learning algorithm:

$$\mathbb{E}_{S \sim \mathcal{D}^m}[L_{\mathcal{D}}(A(S)) - L_S(A(S))] = \mathbb{E}_{(S,z') \sim \mathcal{D}^{m+1}, i \sim U(m)}[\ell(A(S^{(i)}), z_i) - \ell(A(S), z_i)]$$
(1.11)

That is, the *response* from a perturbation tells us the *distance* between empirical and true risk.

Proof. Recall that the true risk of A(S) is the expected value of the loss over \mathcal{D} . So:

$$\underset{S \sim \mathcal{D}^m}{\mathbb{E}}[L_{\mathcal{D}}(A(S))] = \underset{(S,z') \sim \mathcal{D}^{m+1}}{\mathbb{E}}[\ell(A(S),z')] = \underset{(S,z_i) \sim \mathcal{D}^{m+1}}{\mathbb{E}}[\ell(A(S^{(i)}),z_i)]$$

Note that here we evaluate the loss over samples that are not in the training set $(z' \notin S, z_i \notin S^{(i)})$. If we were to use samples from the training set we would get the expectation of the empirical risk:

$$\mathbb{E}_{S}[L_{S}(A(S))] = \mathbb{E}_{S \sim \mathcal{D}^{m}, i \sim U(m)}[\ell(A(S), z_{i})]$$

Substituting in the left hand side of (1.11) and using the linearity of \mathbb{E} we get the thesis.

- Strongly convex functions. The following conditions hold:
 - 1. The function $f(\boldsymbol{w}) = \lambda ||\boldsymbol{w}||^2$ is 2λ -strongly convex.
 - 2. If f is λ -strongly convex and g is convex, then f+g is λ -strongly convex.
 - 3. If f is λ -strongly convex and \boldsymbol{u} minimizes f, then:

$$f(\boldsymbol{w}) - f(\boldsymbol{u}) \ge \frac{\lambda}{2} \|\boldsymbol{w} - \boldsymbol{u}\|^2$$

Proof. For (1) and (2) just use the definition (1.10), and for (3) the definition (1.9) and the fact that $\nabla f(\mathbf{u}) = \mathbf{0}$ by hypothesis.

• RLM is stable. The RLM rule is:

$$A(S) = \arg\min_{\boldsymbol{w}} (L_S(\boldsymbol{w}) + \lambda ||\boldsymbol{w}||^2)$$

Assuming that L_S is convex, then as $\lambda \|\boldsymbol{w}\|^2$ is 2λ -strongly convex:

$$f_S(\boldsymbol{w}) = L_S(\boldsymbol{w}) + \lambda \|\boldsymbol{w}\|$$
 is 2λ -strongly convex

A(S) by definition minimizes f_S , and so:

$$f_S(\mathbf{v}) - f_S(A(S)) \ge \lambda \|\mathbf{v} - A(S)\|^2 \qquad \forall \mathbf{v} \in \mathbb{R}^d$$

Then note that:

$$f_S(v) - f_S(u) = L_S(v) + \lambda ||v||^2 - (L_S(u) + \lambda ||u||^2)$$

Recall that $S^{(i)}$ is obtained from S by removing z_i and adding z' in its place, meaning that:

$$L_S(\boldsymbol{v}) = L_{S^{(i)}}(\boldsymbol{v}) + \frac{\ell(\boldsymbol{v}, z_i) - \ell(\boldsymbol{v}, z')}{m}$$

And so, if \boldsymbol{u} minimizes f_S :

$$\begin{split} f_{S}(\boldsymbol{v}) - f_{S}(\boldsymbol{u}) &= L_{S^{(i)}}(\boldsymbol{v}) + \lambda \|\boldsymbol{v}\|^{2} - (L_{S^{(i)}}(\boldsymbol{u}) - \lambda \|\boldsymbol{u}\|^{2}) + \\ &+ \frac{\ell(\boldsymbol{v}, z_{i}) - \ell(\boldsymbol{u}, z_{i})}{m} + \frac{\ell(\boldsymbol{u}, z') - \ell(\boldsymbol{v}, z')}{m} \geq \lambda \|\boldsymbol{v} - A(S)\|^{2} \end{split}$$

Let $\mathbf{v} = A(S^{(i)})$ and $\mathbf{u} = A(S)$, leading to:

$$\underbrace{f_{S}(A(S^{(i)})) - f_{S}(A(S))}_{A} = \underbrace{L_{S^{(i)}}(A(S^{(i)})) + \lambda \|A(S^{(i)})\|^{2}}_{f_{S^{(i)}}(A(S^{(i)}))} - \underbrace{(L_{S^{(i)}}(A(S)) - \lambda \|A(S)\|^{2})}_{f_{S^{(i)}}(A(S))} + \underbrace{\frac{\ell(A(S^{(i)}), z_{i}) - \ell(A(S), z_{i})}{m} + \frac{\ell(A(S), z') - \ell(A(S^{(i)}), z')}{m}}_{B}$$

Note that $A(S^{(i)})$ minimizes $f_{S^{(i)}}$ by definition, and so $f_{S^{(i)}}(A(S^{(i)})) \leq f_{S^{(i)}}(A(S))$, meaning that the red term is < 0, i.e. $= -|\epsilon|$. So we have $A = B - |\epsilon|$, implying $A \leq B$:

$$f_S(A(S^{(i)})) - f_S(A(S)) \le \frac{\ell(A(S^{(i)}), z_i) - \ell(A(S), z_i)}{m} + \frac{\ell(A(S), z') - \ell(A(S^{(i)}), z')}{m}$$

And from before we have:

$$\lambda \|A(S^{(i)}) - A(S)\|^2 \le f_S(A(S^{(i)})) - f_S(A(S))$$

Meaning that:

$$\lambda \|A(S^{(i)}) - A(S)\|^2 \le \frac{\ell(A(S^{(i)}), z_i) - \ell(A(S), z_i)}{m} + \frac{\ell(A(S), z') - \ell(A(S^{(i)}), z')}{m}$$
(1.12)

Suppose that the loss as a function of the model $(h \mapsto \ell(h, z_i))$ is ρ -Lipshitz. This means that the loss over a sample *outside* the training dataset can't grow too much compared to that of an element inside the sample:

$$\ell(A(S^{(i)}), z_i) - \ell(A(S), z_i) \le \rho ||A(S^{(i)}) - A(S)||$$

Similarly, as $z' \notin S$, but $z' \in S^{(i)}$:

$$\ell(A(S), z') - \ell(A(S^{(i)}), z') \le \rho ||A(S^{(i)}) - A(S)||$$

Substituting in (1.12):

$$\lambda \|A(S^{(i)}) - A(S)\|^2 \le \frac{2\rho \|A(S^{(i)}) - A(S)\|}{m}$$

Rearranging:

$$||A(S^{(i)}) - A(S)|| \le \frac{2\rho}{m\lambda}$$

And so:

$$\ell(A(S^{(i)}), z_i) - \ell(A(S), z_i) \le \frac{2\rho^2}{m\lambda}$$

Taking the expected value, this is equivalent to:

$$\underset{S \sim \mathcal{D}^m}{\mathbb{E}} [L_{\mathcal{D}}(A(S)) - L_S(A(S))] \le \frac{2\rho^2}{\lambda m}$$

1.10 Gradient Descent

• Find minimum of $f: \mathbb{R}^d \to \mathbb{R}$ by moving in the opposite direction of the gradient. Start with $\boldsymbol{w}^{(0)} = \boldsymbol{0} \in \mathbb{R}_d$, and then apply:

$$\boldsymbol{w}^{(t+1)} = \boldsymbol{w}^{(t)} - \eta \nabla f(\boldsymbol{w}^{(t)})$$

where $\epsilon \in \mathbb{R}$ is the learning rate.

• If f is a **convex** ρ -**Lipschitz** function, and the minimization domain is $\|\boldsymbol{w}\| \leq B$, then after T steps with $\eta = \sqrt{B^2/(\rho^2 T)}$ GD produces a $\bar{\boldsymbol{w}}$ so that:

$$f(\bar{\boldsymbol{w}}) - f(\boldsymbol{w}^*) \le \frac{B\rho}{T}$$

where \boldsymbol{w}^* is the minimum point.

- Cons: Needs all the training set at each iteration (high computational time)
- Pros: stable.

1.11 Stochastic Gradient Descent

• Instead of computing $\nabla f(\boldsymbol{w})$, pick a random $\boldsymbol{v_t}$ so that $\mathbb{E}[\boldsymbol{v_t}|\boldsymbol{w}^{(t)}] = \nabla f(\boldsymbol{w}^{(t)})$ (i.e. with expected value equal to the real gradient of f). Then apply the rule as before:

$$\boldsymbol{w}^{(t+1)} = \boldsymbol{w}^{(t)} - \eta \boldsymbol{v_t}$$

• Can be used to minimize directly $L_{\mathcal{D}}$ (true risk). Recall that:

$$L_{\mathcal{D}}(\boldsymbol{w}) = \underset{z \sim \mathcal{D}}{\mathbb{E}}[\ell(\boldsymbol{w}, z)]$$

And so:

$$\mathbb{E}[\boldsymbol{v}_t|\boldsymbol{w}^{(t)}] = \underset{z \sim \mathcal{D}}{\mathbb{E}}[\nabla \ell(\boldsymbol{w}^{(t)},z)] = \nabla \underset{z \sim \mathcal{D}}{\mathbb{E}}[\ell(\boldsymbol{w}^{(t)},z)] = \nabla L_{\mathcal{D}}(\boldsymbol{w}^{(t)})$$

• Pros: Faster, can jump out local minima

• Cons: Noisy (can be alleviated with adaptive step size)

• In the case of regularization. We want to minimize:

$$f(\boldsymbol{w}) = \frac{\lambda}{2} \|\boldsymbol{w}\|^2 + L_S(\boldsymbol{w})$$

At every step, choose $\boldsymbol{v_t} = \nabla \ell(\boldsymbol{w}^{(t)}, z)$ for some $z \sim \mathcal{D}$. Then the full gradient of f is $\lambda \boldsymbol{w}^{(t)} + \boldsymbol{v_t}$. Choosing $\eta = 1/(\lambda t)$ (useful for 2λ -strongly convex functions) leads to:

$$\begin{split} \boldsymbol{w}^{(t+1)} &= \boldsymbol{w}^{(t)} - \frac{1}{\lambda t} \left(\lambda \boldsymbol{w}^{(t)} + \boldsymbol{v}_{t} \right) = \\ &= \left(1 - \frac{1}{t} \right) \boldsymbol{w}^{(t)} - \frac{1}{\lambda t} \boldsymbol{v}_{t} = \\ &= \frac{t-1}{t} \boldsymbol{w}^{(t)} - \frac{1}{\lambda t} \boldsymbol{v}_{t} = \\ &= \frac{t-1}{t} \left(\frac{t-2}{t-1} \boldsymbol{w}^{(t-1)} - \frac{1}{\lambda (t-1)} \boldsymbol{v}_{t} \right) - \frac{1}{\lambda t} \boldsymbol{v}_{t} = \\ &= \frac{t-1}{t} \frac{t-2}{t-1} \boldsymbol{w}^{(t-1)} - \frac{1}{\lambda t} (\boldsymbol{v}_{t} + \boldsymbol{v}_{t-1}) = \\ &= \frac{(t-1)!}{t!} \underbrace{\boldsymbol{w}^{(0)}}_{0} - \frac{1}{\lambda t} (\boldsymbol{v}_{t} + \cdots + \boldsymbol{v}_{0}) = -\frac{1}{\lambda t} \sum_{i=1}^{t} \boldsymbol{v}_{i} \end{split}$$

where in (a) we reiterated the last row with $t \to t-1$ to express $\boldsymbol{w}^{(t)}$.

SVM

• Hard-SVM. Consider a separable training set. The algorithm picks the ERM solution with the largest margin, i.e. the one where the halfspace boundary is furthest away from the samples. Let \boldsymbol{w} be the unit vector \perp to the separating hyperplane. The distance between a sample $\boldsymbol{x_i}$ and the hyperplane is $|\langle \boldsymbol{w}, \boldsymbol{x_i} \rangle + b|$ (1.5). The margin is the minimum distance between a sample and the hyperplane:

$$Margin = \min_{i \in [m]} |\langle \boldsymbol{w}, \boldsymbol{x_i} \rangle + b|$$

The hard-SVM problem chooses (\boldsymbol{w}, b) so to maximize the margin (while still classificating correctly all the examples), i.e.:

$$\underset{(\boldsymbol{w},b): \|\boldsymbol{w}\|=1}{\operatorname{argmax}} \min_{i \in [m]} |\langle \boldsymbol{w}, \boldsymbol{x_i} \rangle + b| \text{ such that } \forall i, \ y_i(\langle \boldsymbol{w}, \boldsymbol{x_i} \rangle + b) > 0$$
 (2.1)

In the separable case, if w^* is a solution, note that:

$$|\langle \boldsymbol{w}^*, \boldsymbol{x}_i \rangle + b| = y_i(\langle \boldsymbol{w}^*, \boldsymbol{x}_i + b \rangle)$$
(2.2)

And so the *constraint* can be integrated in the optimization:

$$\underset{(\boldsymbol{w},b): \|\boldsymbol{w}\|=1}{\operatorname{argmax}} \min_{i \in [m]} y_i(\langle \boldsymbol{w}, \boldsymbol{x_i} + b \rangle)$$
 (2.3)

In fact, by separability we know that there exist a \mathbf{w}^* that satisfies $\forall i, y_i(\langle \mathbf{w}^*, \mathbf{x}_i \rangle + b) > 0$, and in particular:

$$\min_{i \in [m]} y_i(\langle \boldsymbol{w}^*, \boldsymbol{x}_i \rangle + b) > 0$$

Then:

$$\max_{(\boldsymbol{w},b): \, \|\boldsymbol{w}=1\|} \min_{i \in [m]} y_i(\langle \boldsymbol{w}, \boldsymbol{x_i} + b \rangle) \geq \min_{i \in [m]} y_i(\langle \boldsymbol{w^*}, \boldsymbol{x_i} \rangle + b) > 0$$

Meaning that (2.3) indeed generates a \boldsymbol{w} that separates the data, justifying the use of (2.2) and thus the equivalence with (2.1).

The hard-SVM problem is also equivalent (see theorem below) to:

$$\boldsymbol{w_0} = \arg\min_{\boldsymbol{w}} \|\boldsymbol{w}\|^2 \text{ s.t. } \forall i, y_i(\langle \boldsymbol{w}, \boldsymbol{x_i} \rangle + b_i) \geq 1$$

We can always use homogeneous coordinates, including the bias in \boldsymbol{w} , arriving to:

$$\boldsymbol{w_0} = \arg\min_{\boldsymbol{w}} \|\boldsymbol{w}\|^2 \text{ s.t. } \forall i, y_i \langle \boldsymbol{w}, \boldsymbol{x_i} \rangle \geq 1$$

There is some difference as now the bias appears in the $\|\boldsymbol{w}\|^2$, which proves to be not much significant in practice.

• Soft SVM. Allow some violation of the inequalities $y_i(\langle \boldsymbol{w}, \boldsymbol{x_i} \rangle + b) \geq 1$, by instead requiring:

$$y_i(\langle \boldsymbol{w}, \boldsymbol{x_i} \rangle + b) \ge 1 - \xi_i$$

The $\boldsymbol{\xi}$ are called *slack variables*, and measure how much each inequality is violated (i.e. how much misclassified samples are far from the separating hyperplane). We now minimize both $\|\boldsymbol{w}\|^2$ (as before) and the average of $\boldsymbol{\xi}$ (reduce the average violation), controlling the trade-off between the two with a λ hyper-parameter:

$$\min_{\boldsymbol{w},b,\boldsymbol{\xi}} \left(\lambda \|\boldsymbol{w}\|^2 + \frac{1}{m} \sum_{i=1}^m \xi_i \right) \text{ s.t. } \forall i, \ y_i(\langle \boldsymbol{w}, \boldsymbol{x_i} \rangle + b) \ge 1 - \xi_i, \quad \xi_i \ge 0$$

This can be rewritten using the **hinge loss**:

$$\ell^{\text{hinge}}((\boldsymbol{w}, b), (\boldsymbol{x}, y)) = \max(0, 1 - y(\langle \boldsymbol{w}, \boldsymbol{x} \rangle + b))$$

For a correctly classified sample, $y(\langle \boldsymbol{w}, \boldsymbol{x} \rangle + b) \geq 1$, and so the loss is 0. If the sample is misclassified it is > 0, and increases with the distance from the hyperplane. Note that $\xi_i = \ell^{\text{hinge}}((\boldsymbol{w}, b), (\boldsymbol{x}_i, y_i))$ (to prove this, fix $\boldsymbol{w}, \boldsymbol{x}$ and i in the soft-sym rule and minimize for ξ_i) and so:

$$\min_{\boldsymbol{w},b} \left(\lambda \|\boldsymbol{w}\|^2 + \underbrace{\frac{1}{m} \sum_{i=1}^{m} \ell^{\text{hinge}}((\boldsymbol{w},b),(\boldsymbol{x_i},y_i))}_{L_S^{\text{hinge}}(\boldsymbol{w},b)} \right)$$

2.1 Theorems

• Hard-SVM is equivalent to a quadratic program. A quadratic program solves an optimization problem in which the objective is a convex quadratic function and the constraints are linear inequalities.

Start from the Hard-SVM formulation in the separable case:

$$\underset{(\boldsymbol{w},b):\ \|\boldsymbol{w}\|=1}{\operatorname{argmax}} \min_{i \in [m]} y_i(\langle \boldsymbol{w}, \boldsymbol{x_i} \rangle + b)$$

Let (\boldsymbol{w}^*, b^*) be a solution, and let γ^* be the margin of that solution, i.e.:

$$\gamma^* = \min_{i \in [m]} y_i(\langle \boldsymbol{w}^*, \boldsymbol{x}_i \rangle + b^*) \Rightarrow y_i(\langle \boldsymbol{w}^*, \boldsymbol{x}_i \rangle + b) \ge \gamma^*$$

And dividing by γ^* :

$$y_i\left(\langle \frac{{m w}^*}{\gamma^*}, {m x}_i \rangle + \frac{b^*}{\gamma^*}\right) \ge 1$$

So, the pair $(\boldsymbol{w}^*, b^*)/\gamma^*$ is one of the solutions in the constraints of quadratic programming, which solves:

$$(\boldsymbol{w_0}, b_0) = \arg\min_{(\boldsymbol{w}, b)} \|\boldsymbol{w}\|^2 \text{ s.t. } \forall i, \ y_i(\langle \boldsymbol{w}, \boldsymbol{x_i} + b \rangle) \ge 1$$

As $\|\boldsymbol{w}\|^2$ is minimized, the final solution will have $\|\boldsymbol{w_0}\| \leq \|\boldsymbol{w}^*\|/\gamma^* = 1/\gamma^*$.

To prove the equivalence, we need also to show that any normalized output $\hat{\boldsymbol{w}} = \boldsymbol{w_0}/\|\boldsymbol{w_0}\|$, $\hat{b} = b_0/\|\boldsymbol{w_0}\|$ of the quadratic problem is a solution. To do this, we evaluate the main condition:

$$y_i(\langle \hat{\boldsymbol{w}}, \boldsymbol{x_i} \rangle + \hat{b}) = \frac{1}{\|\boldsymbol{w_0}\|} \underbrace{y_i(\langle \boldsymbol{w_0}, \boldsymbol{x_i} \rangle + b_0)}_{\geq 1} \geq \frac{1}{\|\boldsymbol{w_0}\|} \geq \gamma^*$$

Which proves that it is indeed a solution.

Note that the quadratic paradigm is just a linear predictor with "regularization".

• SGD for Soft SVM. Recall the hinge loss:

$$\ell^{\text{hinge}}(\boldsymbol{w}, (\boldsymbol{x}, y)) = \max\{0, 1 - y\langle \boldsymbol{w}, \boldsymbol{x}\rangle\}$$

(Here we assume the homogeneous case). The gradient becomes:

$$v = \begin{cases} \mathbf{0} & (1 - y \langle \boldsymbol{w}, \boldsymbol{x}) \leq 1 \\ -y \boldsymbol{x} & \text{otherwise} \end{cases}$$

For the update rule we can use the one found for λ -strongly convex functions (i.e. with regularization):

$$\boldsymbol{w}^{(t+1)} = -rac{1}{\lambda t} \sum_{i=1}^{t} \boldsymbol{v}^{(t)}$$

• Duality.

2.2 Clustering

• Clustering: Divide a set of objects (N-dimensional vectors) into groups (clusters), such that similar objects end up in the same group and dissimilar objects are separated into different groups.

There are two main problems:

- These two requirements may **contradict** each other, because similarity is not transitive (imagine a chain of similar elements, where x_i is similar to x_{i+1} , but the first element x_0 is very different from the last x_n). In such cases, one of the two objectives *dominates* over the other.
- In general there is no unique solution (ground truth) to the problem: several alternatives are acceptable following different *implicit* notions of similarity. This means that it's difficult to evaluate the performance
- Clustering Model. Let's formalize the clustering problem and introduce a common notation.
 - **Input**: set of elements to be grouped \mathcal{X} , and a distance function $d: \mathcal{X} \times \mathcal{X} \to \mathbb{R}_+$ (symmetric d(x,y) = d(y,x), definite positive $d(x,y) \geq 0$, d(x,x) = 0, satisfies the triangle inequality $d(x,z) \leq d(x,y) + d(y,z)$).
 - **Output**: a partition of \mathcal{X} into k disjoint clusters: $C = (C_1, C_2, \dots, C_k)$ such that $\bigcup_{i=1}^k C_i = \mathcal{X}, \ \forall i \neq j \colon C_i \cap C_j = \emptyset$.
- Linkage-based clustering. All points are initially clusters. At every step, merge two clusters A and B that are the closest according to some condition, i.e. minimize D(A, B). Some examples of D:
 - Single linkage: minimum distance between an element of A and one of B:

$$D(A,B) = \min\{d(\boldsymbol{x},\boldsymbol{x'}) \colon \boldsymbol{x} \in A, \boldsymbol{x'} \in B\}$$

- Max linkage: maximum distance between an element of A and one of B:

$$D(A,B) = \max\{d(\boldsymbol{x},\boldsymbol{x'}) \colon \boldsymbol{x} \in A, \boldsymbol{x'} \in B\}$$

- Average linkage: average distance between elements of A and elements of B:

$$D(A,B) = \frac{1}{|A||B|} \sum_{\boldsymbol{x} \in A} \sum_{\boldsymbol{x'} \in B} d(\boldsymbol{x}, \boldsymbol{x'})$$

Reiterate until a terminating condition (e.g. k clusters, all clusters are > r apart, all points are a cluster (output the total tree - dendrogram))

• Cost-based clustering. Define an objective function $G: (\mathcal{X}, d), C \mapsto \mathbb{R}_+$, such that it evaluates a clustering C of \mathcal{X} using the distance d.

• **K-Means**. The k-means objective function measures the squared distance between each point in \mathcal{X} to the centroid of its cluster (assume that $\mathcal{X} \subseteq \mathcal{X}'$, with (\mathcal{X}', d) a metric space, otherwise it would not make sense to consider centroids that are $\notin \mathcal{X}$). The centroid $\mu_i(C_i)$ of C_i is defined as:

$$\mu_i(C_i) = \arg\min_{\boldsymbol{\mu} \in \mathcal{X}'} \sum_{\boldsymbol{x} \in C_i} d(\boldsymbol{x}, \boldsymbol{\mu})^2 = \frac{1}{|C_i|} \sum_{\boldsymbol{x} \in C_i} \boldsymbol{x}$$

That is, it's the point $\in \mathcal{X}'$ that lies at the minimum square distance from all the other points in C_i .

The *loss* of every cluster is the value at that minimum, and the objective is the sum of that loss over all the clusters:

$$G_{\mathrm{k-means}}((\mathcal{X},d),(C_1,\ldots,C_k)) = \sum_{i=1}^k \sum_{\boldsymbol{x}\in C_i} d(\boldsymbol{x},\boldsymbol{\mu_i}(C_i))^2$$

Algorithm.

- 1. Select k random centroids, each representing a cluster.
- 2. Assigning each point to the closest centroid

$$\forall i : C_i = \{ \boldsymbol{x} \in \mathcal{X} : i = \arg\min_{j \in [k]} \| \boldsymbol{x} - \boldsymbol{\mu}_j \| \}$$

3. Compute new centroids for the newly created clusters:

$$\forall i : \boldsymbol{\mu_i} = \frac{1}{|C_i|} \sum_{\boldsymbol{x} \in C_i} \boldsymbol{x}$$

4. Reiterate 2-3 until convergence (e.g. if ΔG is lower than a certain threshold).

2.2.1 Theorems

• Each iteration of k-means does not increase the objective function. Fix \mathcal{X} and $d = \|\cdot, \cdot\|^2$. The objective function of k-means becomes:

$$G(C_1, \dots, C_k) = \min_{\boldsymbol{\mu}_1, \dots, \boldsymbol{\mu}_k \in \mathbb{R}^n} \sum_{i=1}^k \sum_{\boldsymbol{x} \in C_i} \left\| \boldsymbol{x} - \boldsymbol{\mu}_i \right\|^2$$

Note that:

$$\min_{\boldsymbol{\mu_i} \in \mathbb{R}^n} \sum_{\boldsymbol{x} \in C_i} \|\boldsymbol{x} - \boldsymbol{\mu_i}\|^2 = \sum_{\boldsymbol{x} \in C_i} \|\boldsymbol{x} - \boldsymbol{\mu}(C_i)\|^2 \qquad \boldsymbol{\mu}(C_i) = \frac{1}{|C_i|} \sum_{\boldsymbol{x} \in C_i} \boldsymbol{x}$$

Denote the partition at step t with $C_i^{(t)}$. So we have:

$$G(C_1^{(t)}, \dots, C_k^{(t)}) = \min_{\mu_1, \dots, \mu_k \in \mathbb{R}^n} \sum_{i=1}^k \sum_{x \in C_i^{(t)}} \left\| x - \mu_i^{(t)} \right\|^2 \le \sum_{i=1}^k \sum_{x \in C_i^{(t)}} \left\| x - \mu_i^{(t-1)} \right\|^2$$

By definition of minimum. The new partition $C_i^{(t)}$ is chosen by assigning each points to the closest $\mu_i^{(t-1)}$, meaning that:

$$\sum_{i=1}^{k} \sum_{\boldsymbol{x} \in C_i^{(t)}} \left\| \boldsymbol{x} - \boldsymbol{\mu_i^{(t-1)}} \right\|^2 = \min_{\{C_i\}} \sum_{i=1}^{k} \sum_{\boldsymbol{x} \in C_i} \left\| \boldsymbol{x} - \boldsymbol{\mu_i^{(t-1)}} \right\|^2 \leq \sum_{i=1}^{k} \sum_{\boldsymbol{x} \in C_i^{(t-1)}} \left\| \boldsymbol{x} - \boldsymbol{\mu_i^{(t-1)}} \right\|^2$$

Putting it all together:

$$G(C_1^{(t)}, \dots, C_k^{(t)}) \le \sum_{i=1}^k \sum_{\boldsymbol{x} \in C_i^{(t-1)}} \left\| \boldsymbol{x} - \boldsymbol{\mu}_i^{(t-1)} \right\|^2 = G(C_1^{(t-1)}, \dots, C_k^{(t-1)})$$

2.3 PCA

• Principal Component Analysis. Let x_1, \ldots, x_m be vectors in \mathbb{R}^d . The idea is to convert them to a *lower dimensionality representation* and then back again, trying to lose the least information possible.

Consider a $n \times d$ matrix W with n < d (compression matrix), representing a linear transformation $\boldsymbol{x} \mapsto W\boldsymbol{x}$, so that $W\boldsymbol{x} \in \mathbb{R}^n$ is the lower dimensionality representation of \boldsymbol{x} . Then consider a recovering matrix $d \times n$ U that recovers the vectors, i.e. $\mathbb{R}^n \ni \boldsymbol{y} \mapsto U\boldsymbol{y} \in \mathbb{R}^d$. We want to choose W and U so that $\boldsymbol{x_i}$ and the compressed-recovered vector $UW\boldsymbol{x_i}$ are close, i.e.:

$$\underset{W \in \mathcal{M}_{n \times d}(\mathbb{R}), U \in \mathcal{M}_{d \times n}(\mathbb{R})}{\arg \min} \sum_{i=1}^{m} \|\boldsymbol{x}_{i} - UW\boldsymbol{x}_{i}\|^{2}$$
(2.4)

There exists a solution (U^*, W^*) such that U^* is orthogonal $((U^*)^T U^* = \mathbb{I})$ and $W^* = (U^*)^T$. To see this, let (U, V) be generic. Then note that $\boldsymbol{x} \mapsto W \boldsymbol{x} \in \mathbb{R}^n$, and so the range R of $U(W \boldsymbol{x})$ is " $U\mathbb{R}^n$ ", which is a n-dimensional linear subspace of \mathbb{R}^d . So $UW \boldsymbol{x} \in \mathbb{R} \forall \boldsymbol{x} \in \mathbb{R}^d$.

Now choose a ON basis of R, which consists of n vectors of d dimension, that can be arranged as columns in a matrix $V \ d \times n$, with $V^T V = \mathbb{I}$. We can write any vector $\mathbf{y} \in \mathbb{R}^n$ "in coordinates" with respect to that basis, i.e. $\forall \mathbf{r} \in R$, $\exists \mathbf{y} \in \mathbb{R}^n$ s.t. $\mathbf{r} = V \mathbf{y}$, where \mathbf{y} are the *coordinates* of \mathbf{r} in the V basis. Now pick any $\mathbf{x} \in \mathbb{R}^d$ and consider its distance with an arbitrary element $V \mathbf{y}$ of R:

$$\|x - Vy\|^2 = \|x\|^2 + (Vy) \cdot V(y) - 2(Vy) \cdot x$$

And by writing dot products as matrix multiplications $\mathbf{a} \cdot \mathbf{b} = \mathbf{a}^T \mathbf{b}$ we arrive to:

$$\|\boldsymbol{x} - V\boldsymbol{y}\|^2 = \|\boldsymbol{x}\|^2 + (V\boldsymbol{y})^T V \boldsymbol{y} - 2(V\boldsymbol{y})^T \boldsymbol{x} =$$

$$= \|\boldsymbol{x}\|^2 + \boldsymbol{y}^T \underbrace{V^T V}_{\mathbb{I}} \boldsymbol{y} - 2\boldsymbol{y}^T V^T \boldsymbol{x} =$$

$$= \|\boldsymbol{x}\|^2 + \|\boldsymbol{y}\|^2 - 2\boldsymbol{y}^T (V^T \boldsymbol{x})$$

Call $V \boldsymbol{y} = \tilde{\boldsymbol{x}} \in R$. For a fixed $\boldsymbol{x} \in \mathbb{R}^d$, the closest $\tilde{\boldsymbol{x}} \in R$ is given by:

$$\tilde{\boldsymbol{x}} = \arg\min_{\boldsymbol{y} \in \mathbb{R}^n} \|\boldsymbol{x} - V\boldsymbol{y}\|^2 = \arg\min_{\boldsymbol{y} \in \mathbb{R}^n} \left(\|\boldsymbol{x}\|^2 + \|\boldsymbol{y}\|^2 - 2\boldsymbol{y}^T(V^T\boldsymbol{x}) \right)$$

We can minimize this expression by computing the gradient ∇_y and setting it to 0:

$$\nabla_{\boldsymbol{y}} (\|\boldsymbol{x}\|^2 + \|\boldsymbol{y}\|^2 - 2\boldsymbol{y}^T (V^T \boldsymbol{x})) = 2\boldsymbol{y} - 2V^T \boldsymbol{x} \stackrel{!}{=} 0 \Rightarrow \boldsymbol{y}_0 = V^T \boldsymbol{x}$$

And so the solution is $\tilde{\boldsymbol{x}} = V \boldsymbol{y}_0 = V V^T \boldsymbol{x}$. We can compute the $\tilde{\boldsymbol{x}}_i$ closest to \boldsymbol{x}_i for $1 \leq i \leq m$, resulting in:

$$\sum_{i=1}^{m} \|\boldsymbol{x}_i - UW\boldsymbol{x}_i\|^2 \ge \sum_{i=1}^{m} \|\boldsymbol{x}_i - VV^T\boldsymbol{x}_i\|^2$$

for any generic U and W. So $(U, W) = (V, V^T)$ is a solution of (2.4), meaning that we can rewrite it as:

$$\underset{U \in \mathcal{M}_{d \times n}, U^{T}U = \mathbb{I}}{\arg \min} \sum_{i=1}^{m} \left\| \boldsymbol{x_i} - UU^{T} \boldsymbol{x_i} \right\|^{2}$$

Let's simplify the distance expression a bit more:

$$\|\mathbf{x} - UU^{T}\mathbf{x}\|^{2} = \|\mathbf{x}\|^{2} + (UU^{T}\mathbf{x})^{T}UU^{T}\mathbf{x} - 2(UU^{T}\mathbf{x})^{T}\mathbf{x} =$$

$$= \|\mathbf{x}\|^{2} + \mathbf{x}^{T}U\underbrace{U^{T}U}_{\mathbb{I}}U^{T}\mathbf{x} - 2\mathbf{x}^{T}UU^{T}\mathbf{x} =$$

$$= \|\mathbf{x}\|^{2} + \mathbf{x}^{T}UU^{T}\mathbf{x} - 2\mathbf{x}^{T}UU^{T}\mathbf{x} =$$

$$= \|\mathbf{x}\|^{2} - \mathbf{x}^{T}UU^{T}\mathbf{x} =$$

$$= \|\mathbf{x}\|^{2} - (U^{T}\mathbf{x})^{T}U^{T}\mathbf{x} = \|\mathbf{x}\|^{2} - (U^{T}\mathbf{x}) \cdot (U^{T}\mathbf{x}) =$$

$$= \|\mathbf{x}\|^{2} - \sum_{i=1}^{d} \sum_{j,k=1}^{d} (U^{T})_{ij}x_{j}(U^{T})_{ik}x_{k} =$$

$$= \|\mathbf{x}\|^{2} - \sum_{i=1}^{d} \sum_{j,k=1}^{d} (U^{T})_{ij}x_{j}x_{k}U_{ki} = \|\mathbf{x}\|^{2} - \sum_{i=1}^{d} (U^{T}[\mathbf{x}\mathbf{x}^{T}]U)_{ii} =$$

$$= \|\mathbf{x}\|^{2} - \operatorname{trace}(U^{T}\mathbf{x}\mathbf{x}^{T}U)$$

Note that $\|\boldsymbol{x}\|^2$ is constant, and so can be removed from the optimization. The trace is linear and so:

$$\sum_{i=1}^{m} \operatorname{Trace}(U^{T} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{T} U) = \operatorname{Trace}\left(U^{T} \sum_{i=1}^{m} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{T} U\right)$$

And finally the - sign transforms a min into a max, leading to the reformulation:

$$\underset{U \in \mathcal{M}_{d \times n}(\mathbb{R}), U^{T}U = \mathbb{I}}{\operatorname{arg max}} \operatorname{Trace}\left(U^{T} \underbrace{\sum_{i=1}^{m} \boldsymbol{x_{i}} \boldsymbol{x_{i}}^{T}}_{A} U\right)$$
(2.5)

Now A is symmetric and so (spectral theorem) can be orthogonally diagonalized into $A = VDV^T$ with D diagonal and $V^TV = VV^T = \mathbb{I}$ with the columns of V being the eigenvectors of eigenvalue the elements of D.

The solution to the PCA is to set U to the matrix with columns equal to the n eigenvectors with highest eigenvalues, and $W = U^T$.

In fact, let $A = VDV^T$ be the spectral decomposition. Let's compute (2.5). Let U be a generic $d \times n$ matrix with $U^TU = \mathbb{I}$. We start by evaluating:

$$U^T A U = U^T V D V^T U = \underbrace{(V^T U)^T}_{B^T} D \underbrace{(V^T U)}_{B} = B^T D B$$

and so as B is $d \times n$ and D is $d \times d$:

$$\operatorname{Trace}(U^{T}AU) = \operatorname{Trace}(B^{T}DB) = \sum_{i=1}^{n} \sum_{k,j=1}^{d} B_{ki} D_{kj} \delta_{kj} B_{ji} = \sum_{i=1}^{n} \sum_{j=1}^{d} D_{jj} B_{ji}^{2} = \sum_{j=1}^{d} D_{jj} \sum_{\substack{i=1 \ \beta_{i}}}^{n} B_{ji}^{2}$$

 β_j is the norm of the j-th row of B. We now show that it's ≤ 1 .

Note that the columns of B are orthonormal, in fact:

$$B^T B = (V^T U)^T V^T U = U^T V V^T U = \mathbb{I}$$

this implies that the columns of B have unit-norm:

$$\sum_{j=1}^{d} B_{ji}^2 = 1$$

Then, as B is $d \times n$ with n < d, the norm of its rows must be ≤ 1 . In fact, we can extend the ON basis of \mathbb{R}^n (the columns of B) to a ON basis of \mathbb{R}^d , constructing a $d \times d$ \tilde{B} that is equal to B for the first n columns. Then:

$$\sum_{i=1}^{d} \tilde{B}_{ji}^{2} = 1 \ge \sum_{i=1}^{n} B_{ji}^{2}$$

For the maximization, consider that $\sum_{j=1}^{d} B_j = n$, because they are rows of a $d \times n$ matrix with orthonormal columns. So:

$$Trace(U^{T}AU) = \sum_{j=1}^{d} D_{jj}\beta_{j} \le \max_{\beta_{j} \in [0,1]; \|\beta\| \le n} \sum_{j=1}^{d} D_{jj}\beta_{j} = \sum_{j=1}^{n} D_{jj}$$

For the last part, consider D_{jj} ordered so that D_{11} is maximum and D_{dd} is minimum. To maximize the sum, choose $B_j = 1$ for $j \leq n$, and $\beta_j = 0$ for j > n (as $\sum_j B_j$ must be n).

Finally, note that the inequality is saturated by choosing U to be the matrix whose columns are the n leading eigenvectors of A, and this concludes the proof.