27-10-2014 1

Measure Theory Chapter 9 1.1

1.1 Proposition.

Given $f \in \mathcal{E}^+$. Let $\sum_{j=0}^M y_j 1_{A_j}$ and $\sum_{k=0}^N z_k 1_{B_k}$ be two standard representations of f. Then

$$\sum_{j=0}^{M} y_j \mu(A_j) = \sum_{k=0}^{N} z_k \mu(B_k).$$

Proof.

$$\sum_{j=0}^{M} y_j \mu(A_j) = \sum_{k=0}^{N} z_k \mu(B_k)$$

$$\uparrow$$

$$\sum_{j=0}^{M} y_j \sum_{k=0}^{N} \mu(A_j \cap B_k) = \sum_{k=0}^{N} z_k \sum_{j=0}^{M} \mu(A_j \cap B_k)$$

$$\uparrow$$

$$y_j \mu(A_j \cap B_k) = z_k \mu(A_j \cap B_k) \quad \forall (j, k)$$

$$\uparrow$$

$$\sum_{j=0}^{M} y_j 1_{A_j}(x) = \sum_{k=0}^{N} z_k 1_{B_k}(x) \quad \forall x \in X$$

1.2 Definition.

Let $f = \sum_{j=0}^{M} y_j 1_{A_j} \in \mathcal{E}^+$ be a simple function in standard representation. Then the number

$$I_{\mu}(f) := \sum_{j=0}^{M} y_{j} \mu(A_{j}) \in [0, \infty]$$

is called the $(\mu$ -)integral of f.

1.3 Proposition.

$$I_{\mu}(1_A) = \mu(A) \qquad \forall A \in \mathcal{A}$$

 $I_{\mu}(\lambda f) = \lambda I_{\mu}(f) \qquad \forall \lambda \geq 0$

Proof.

$$I_{\mu}(f) := \sum_{j=0}^{M} y_{j} \mu(A_{j}) \in [0, \infty]$$
 by definition.

1.4 Proposition.

$$f, g \in \mathcal{E}^+ \Longrightarrow I_{\mu}(f+g) = I_{\mu}(f) + I_{\mu}(g)$$

Proof.

$$I_{\mu}(f+g) = I_{\mu}(f) + I_{\mu}(g)$$

$$\uparrow$$

$$I_{\mu}\left(\sum_{j=0}^{M} y_{j} 1_{A_{j}}(x) + \sum_{k=0}^{N} z_{k} 1_{B_{k}}(x)\right) = I_{\mu}\left(\sum_{j=0}^{M} y_{j} 1_{A_{j}}(x)\right) + I_{\mu}\left(\sum_{k=0}^{N} z_{k} 1_{B_{k}}\right)$$

$$\uparrow$$

$$\sum_{j=0}^{M} \sum_{k=0}^{N} (y_{j} + z_{k}) \mu(A_{j} \cap B_{k}) = \sum_{j=0}^{M} y_{j} \mu(A_{j}) + \sum_{k=0}^{N} z_{k} \mu(B_{k})$$

$$\uparrow$$

$$\sum_{j=0}^{M} \sum_{k=0}^{N} (y_{j} + z_{k}) \mu(A_{j} \cap B_{k}) = \sum_{j=0}^{M} y_{j} \sum_{k=0}^{N} \mu(A_{j} \cap B_{k}) + \sum_{k=0}^{N} z_{k} \sum_{j=0}^{M} \mu(A_{j} \cap B_{k})$$

1.5 Proposition.

$$f \leq g \Longrightarrow I_{\mu}(f) \leq I_{\mu}(g)$$

Proof.

$$I_{\mu}(f) \leq I_{\mu}(g)$$

$$\uparrow [g - f \in \mathcal{E}^{+}]$$

$$I_{\mu}(f) \leq I_{\mu}(f) + I_{\mu}(g - f)$$

1.6 Definition.

Let (X, \mathcal{A}, μ) be a measure space. The μ -integral of a positive numerical function $u \in \mathcal{M}_{\mathbb{R}^+}$ is given by

$$\int u \ d\mu := \sup\{I_{\mu}(g) : g \le u, g \in \mathcal{E}^+\} \in [0, \infty].$$

If we need to emphasize the *integration variable*, we also write $\int u(x)\mu(dx)$ or $\int u(x)d\mu(x)$.

1.7 Proposition.

For all $f \in \mathcal{E}^+$ we have $\int f d\mu = I_{\mu}(f)$.

Proof.

$$\int f d\mu = I_{\mu}(f)$$

$$\Leftrightarrow \sup \{I_{\mu}(g) : g \leq f, g \in \mathcal{E}^{+}\} = I_{\mu}(f)$$

$$\Leftrightarrow I_{\mu}(f) \leq \sup \{I_{\mu}(g) : g \leq f, g \in \mathcal{E}^{+}\} \leq I_{\mu}(f)$$

$$\Leftrightarrow g \leq f \Longrightarrow I_{\mu}(g) \leq I_{\mu}(f)$$

1.8 Proposition.

Let (X, A) be a measurable space. Let $\mu = \delta_y$ be the Dirac measure for fixed $y \in X$. Show that

$$\int u \ d\delta_y = u(y) \qquad \forall u \in \mathcal{M}_{\mathbb{R}}^+.$$

Proof.

By theorem 8.8, there exists increasing function $(f_j)_{j\in\mathbb{N}}\subseteq\mathcal{E}^+$ with $f_j\leq u$ and $\lim_{j\to\infty}f_j=u$. Therefore:

$$\int u \ d\delta_y = u(y)$$

$$\uparrow$$

$$\int \lim_{j \to \infty} f_j \ d\delta_y = \lim_{j \to \infty} f_j(y)$$

$$\uparrow$$

$$\lim_{j \to \infty} \int f_j \ d\delta_y = \lim_{j \to \infty} f_j(y)$$

$$\uparrow$$

$$\int f_j \ d\delta_y = f_j(y) \quad \forall j \in \mathbb{N}$$

$$\uparrow$$

$$\sum_{k=0}^{N} y_{k_j} \ \delta_y(A_{k_j}) = f_j(y) \quad \forall j \in \mathbb{N}$$

1.9 Theorem.

Let $(u_j)_{j\in\mathbb{N}}\subseteq\mathcal{M}^+_{\mathbb{R}}$ be a sequence of positive measurable functions. Then $u:=\liminf_{j\to\infty}u_j$ is measurable and

$$\int \lim \inf_{j \to \infty} u_j \ d\mu \le \lim \inf_{j \to \infty} \int u_j \ d\mu$$

Recall that $\liminf_{j\to\infty}u_j=\sup_{k\in\mathbb{N}}\inf_{j\geq k}u_j$. Therefore:

1.10 Theorem.

Let (X, \mathcal{A}, μ) be a measure space. For an increasing sequence of numerical functions $(f_j)_{j \in \mathbb{N}} \subseteq \mathcal{M}_{\mathbb{R}}^+$ where $0 \leq f_j \leq f_{j+1} \leq \ldots$, we have

$$\int \sup_{j \in \mathbb{N}} f_j \ d\mu = \sup_{j \in \mathbb{N}} \int f_j \ d\mu$$

and

$$\int \lim_{j \to \infty} f_j \ d\mu = \lim_{j \to \infty} \int f_j \ d\mu.$$

1.11 Theorem.

Let $(u_j)_{j\in\mathbb{N}}\subseteq\mathcal{M}_{\mathbb{R}^+}$. Then $\sum_{j=1}^\infty u_j$ is measurable and we have

$$\int \sum_{j=1}^{\infty} u_j d\mu = \sum_{j=1}^{\infty} \int u_j \ d\mu.$$

1.2 Measure Theory Chapter 10

1.12 Definition.

A function $u: X \to \mathbb{R}$ on a measure space (X, \mathcal{A}, μ) is said to $(\mu$ -)-integrable, if it is $\mathcal{A}/\bar{\mathcal{B}}$ -measurable and if the integrals $\int u^+ d\mu$, $\int u^- d\mu < \infty$ are finite. In this case we call

$$\int u \ d\mu := \int u^+ d\mu - \int u^- d\mu \in (-\infty, \infty)$$

the μ -integral of u.

1.13 Definition.

We write $\mathcal{L}^1(\mu)$ [$\mathcal{L}^1_{\mathbb{R}}(\mu)$] for the set of all real-valued [numerical] μ -integrable functions.

1.14 Theorem.

Let $u \in \mathcal{M}_{\mathbb{R}}$. Then the following conditions are equivalent:

1.
$$u \in \mathcal{L}^1_{\bar{\mathbb{R}}}(\mu)$$

2.
$$u^+, u^- \in \mathcal{L}^1_{\bar{\mathbb{R}}}(\mu)$$

3.
$$|u| \in \mathcal{L}^1_{\mathbb{R}}(\mu)$$

4.
$$\exists w \in \mathcal{L}^1_{\bar{\mathbb{R}}}(\mu), \ w \geq 0 \ such \ that \ |u| \leq w$$

$$u \in \mathcal{L}_{\mathbb{R}}^{1}(\mu) \iff u^{\pm} \in \mathcal{L}_{\mathbb{R}}(\mu)$$

$$\downarrow u \in \mathcal{M}_{\mathbb{R}}^{+} \wedge \int u^{\pm} d\mu < \infty \iff u^{\pm} \in \mathcal{M}_{\mathbb{R}}^{+} \wedge \int u^{\pm} d\mu < \infty$$

$$u^{\pm} \in \mathcal{L}_{\mathbb{R}}(\mu) \implies |u| \in \mathcal{L}_{\mathbb{R}}(\mu)$$

$$\downarrow u^{\pm} \in \mathcal{L}_{\mathbb{R}}(\mu) \implies u^{+} + u^{-} \in \mathcal{L}_{\mathbb{R}}(\mu)$$

$$\downarrow u^{\pm} \in \mathcal{M}_{\mathbb{R}}^{+} \text{ and } \int u^{\pm} d\mu < \infty \implies u^{+} + u^{-} \in \mathcal{M}_{\mathbb{R}}^{+} \text{ and } \int u^{+} + u^{-} d\mu < \infty$$

 $3 \Rightarrow 4$ is obvious

2 28-10-2014

2.1 Measure Theory Chapter 10

2.1 Proposition.

$$u \in \mathcal{M}_{\bar{\mathbb{R}}} \iff u^{\pm} \in \mathcal{M}_{\bar{\mathbb{R}}}^{+}$$

2.2 Definition.

A function $u: X \to \overline{\mathbb{R}}$ on a measure space (X, \mathcal{A}, μ) is said to be μ -integrable, if

- 1. $u \in \mathcal{M}_{\bar{\mathbb{R}}}$
- 2. $\int u^{\pm} d\mu < \infty$

We write $\mathcal{L}^1_{\bar{\mathbb{R}}}(\mu)$ for the set of all numerical μ -integrable functions.

2.3 Definition.

If $u \in \mathcal{L}^1_{\mathbb{R}}(\mu)$, then we call

$$\int u \ d\mu := \int u^+ d\mu - \int u^- d\mu$$

the μ -integral of u.

2.4 Proposition.

For $u \ge 0$ we have

$$u \in \mathcal{L}^{1}_{\mathbb{R}}(\mu) \iff u \in \mathcal{M}^{+}_{\mathbb{R}} \quad and \quad \int u \ d\mu < \infty$$

2.5 Proposition.

Given $u \in \mathcal{M}_{\bar{\mathbb{R}}}$.

$$\int |u| \ d\mu < \infty \iff \ u \in \mathcal{L}^1_{\mathbb{R}}(\mu)$$

2.6 Theorem.

Let (X, \mathcal{A}, μ) be a measure space and $u, v \in \mathcal{L}^1_{\bar{\mathbb{R}}}(\mu)$ and $\alpha \in \mathbb{R}$. Then

- 1. $\alpha u \in \mathcal{L}^1_{\mathbb{R}}(\mu)$ and $\int \alpha u \ d\mu = \alpha \int u \ d\mu$
- 2. $u + v \in \mathcal{L}^1_{\mathbb{R}}(\mu)$ and $\int (u + v) d\mu = \int u d\mu + \int v d\mu$

3.
$$\min\{u,v\}, \max\{u,v\} \in \mathcal{L}^1_{\bar{\mathbb{R}}}(\mu)$$

4.
$$u \le v \implies \int u \ d\mu \le \int v \ d\mu$$

5.
$$|\int u \ d\mu| \le \int |u| d\mu$$

Proof.

2.7 Proposition.

On $(X, \mathcal{A}, \delta_y)$ where $y \in X$ fixed, we have $\int u(x)\delta_y(dx) = u(y)$ and

$$u \in \mathcal{L}^1_{\bar{\mathbb{R}}}(\delta_y) \iff u \in \mathcal{M}_{\bar{\mathbb{R}}} \ and \ |u(y)| < \infty$$

2.8 Proposition.

Let (Ω, \mathcal{A}, P) be a probability space. Then every bounded measurable function (random variable) $\xi \in \mathcal{M}(\mathcal{A})$ with $S := \sup_{\omega \in \Omega} |\xi(\omega)| < \infty$ is P-integrable.

Proof.

$$\xi \in \mathcal{L}^{1}_{\mathbb{R}}(P)$$

$$\uparrow \qquad \qquad \uparrow$$

$$\int |\xi| \ dP < \infty$$

$$\uparrow \qquad \qquad \downarrow$$

$$S \int 1_{\Omega} \ dP < \infty$$

2.9 Definition.

Let (X, A, μ) be a measure space and $u \in \mathcal{L}^1_{\mathbb{R}}(\mu)$ or $u \in \mathcal{M}^+_{\mathbb{R}}(A)$. Then

$$\int_{A} u \ d\mu := \int 1_{A} u \ d\mu = \int 1_{A} (x) u(x) \mu(dx) \qquad \forall A \in \mathcal{A}$$

2.10 Proposition.

$$\int_X u \ d\mu = \int u \ d\mu$$

2.11 Theorem.

On the measure space (X, \mathcal{A}, μ) let $u \in \mathcal{M}^+$. The set-function

$$\nu: A \mapsto \int_A u \ d\mu = \int 1_A u \ d\mu \qquad A \in \mathcal{A}$$

is a measure on (X, A). It is called the measure with density (function) u with respect to μ and denoted by $\nu = u\mu$.

2.12 Definition.

If ν has a density function w.r.t. μ one writes tradionionally $d\nu/d\mu$ for the density function. This notation is to be understood in a purely symbolical way.

2.13 Definition.

Let (X, \mathcal{A}, μ) be a measure space. A μ -null set $N \in \mathcal{N}_{\mu}$ is a measurable set $N \in \mathcal{A}$ satisfying

$$N \in \mathcal{N}_{\mu} \iff N \in \mathcal{A} \text{ and } \mu(N) = 0.$$

2.14 Definition.

If a property $\Pi(x)$ is true for all $x \in X$ apart from some x contained in a null set $N \in \mathcal{N}_{\mu}$, we say that $\Pi(x)$ holds a.e. (allmost everyhwere).

2.15 Theorem.

Let $u \in \mathcal{L}^1_{\mathbb{R}}(\mu)$ be a numerical integrable function on a measure sapce (X, \mathcal{A}, μ) . Then

1.
$$\int |u| \ d\mu = 0 \iff |u| = 0 \ a.e. \iff \mu(\{u \neq 0\}) = 0$$

2.
$$\int_N u \ d\mu = 0 \quad \forall N \in \mathcal{N}_\mu$$

2.16 Theorem.

Let $u, v \in \mathcal{M}_{\bar{\mathbb{R}}}$ such that u = v μ -a.e. Then

1.
$$u, v \ge 0 \implies \int u \ d\mu = \int v \ d\mu$$

2.
$$u \in \mathcal{L}^{1}_{\mathbb{R}}(\mu) \implies v \in \mathcal{L}^{1}_{\mathbb{R}}(\mu) \quad and \quad \int u \ d\mu = \int v d\mu$$

$$\int u \ d\mu = \int v \ d\mu$$

$$\uparrow$$

$$\int_{\{u=v\}} u \ d\mu + \int_{\{u\neq v\}} u \ d\mu = \int_{\{u=v\}} v \ d\mu + \int_{\{u\neq v\}} v \ d\mu$$

$$\uparrow$$

$$\int_{\{u=v\}} u \ d\mu = \int_{\{u=v\}} v \ d\mu$$

$$\uparrow$$

$$\int v^{\pm} \ d\mu = \int u^{\pm} \ d\mu < \infty$$

$$\uparrow [apply 1]$$

$$u^{\pm} = v^{\pm} \ a.e.$$

$$\uparrow$$

$$u = v \ a.e.$$

2.17 Theorem.

If $u \in \mathcal{M}_{\bar{\mathbb{R}}}$ and $v \in \mathcal{L}^1_{\bar{\mathbb{R}}}(\mu), v \geq 0$ then

$$|u| \le v \quad a.e. \implies u \in \mathcal{L}^1_{\bar{\mathbb{R}}}(\mu).$$

2.18 Proposition.

For all $u \in \mathcal{L}^1_{\mathbb{R}}(\mu)$, $A \in \mathcal{A}$ and c > 0

$$\mu(\{|u| \ge c\} \cap A) \le 1/c \int_A |u| d\mu.$$

2.19 Theorem.

If $u \in \mathcal{L}^1_{\mathbb{R}}(\mu)$, then u is almost everywhere \mathbb{R} -valued. In particular, we can find a version $\tilde{u} \in \mathcal{L}^1(\mu)$ such that $\tilde{u} = u$ a.e. and $\int \tilde{u} d\mu = \int u d\mu$.

2.20 Theorem.

Let $\mathcal{G} \subseteq \mathcal{A}$ be a sub- σ -algebra.

- 1. If $u, v \in \mathcal{L}^1(\mathcal{G})$ and if $\int_G u d\mu = \int_G w d\mu$ for all $G \in \mathcal{G}$, then $u = w \mu$ -a.e.
- 2. If $u, w \in \mathcal{M}^+(\mathcal{G})$ and if $\int_G u d\mu = \int_G w d\mu$ for all $G \in \mathcal{G}$, then u = w μ -a.e. under the additional assumption that $\mu|_{\mathcal{G}}$ is σ -finite.

2.21 Proposition.

$$\int_{N} u \ d\mu = 0 \quad \forall N \in \mathcal{N}_{\mu}$$

Proof.

$$\int_{N} u \ d\mu = 0$$

$$\uparrow \qquad \qquad \qquad \uparrow$$

$$|\int_{N} u \ d\mu| \le 0$$

$$\uparrow \qquad \qquad \qquad \uparrow$$

$$\int 1_{N} |u| \ d\mu \le 0$$

$$\uparrow \qquad \qquad \qquad \uparrow$$

$$\sup_{j \in \mathbb{N}} \int j \ 1_{N} \ d\mu = 0$$

2.22 Proposition.

$$|u| = 0$$
 a.e. $\iff \mu\{u \neq 0\} = 0$

$$|u| = 0 \text{ a.e.}$$

$$\updownarrow$$

$$\{x : |u(x)| \neq 0\} \in \mathcal{N}_{\mu}$$

$$\updownarrow$$

$$\mu\{u \neq 0\} = 0$$

2.23 Proposition.

$$|u| = 0$$
 a.e. $\Longrightarrow \int |u| \ d\mu = 0$

Proof.

2.24 Proposition.

$$\int |u| \ d\mu = 0 \implies \mu\{u \neq 0\} = 0$$

Proof.

2.25 Proposition.

$$\mu(\{u \ge c\} \cap A) \le \frac{1}{c} \int_A |u(x)| \mu(dx)$$

3 29-10-2014

3.1 Measure Theory Chapter 11

3.1 Theorem.

Let (X, \mathcal{A}, μ) be a measure space.

1. Let $(u_j)_{j\in\mathbb{N}}\subseteq\mathcal{L}^1(\mu)$ be an increasing sequence of integrable functions $u_1\leq u_2\leq \ldots$ with limit $u:=\sup_{j\in\mathbb{N}}u_j$. Then $u\in\mathcal{L}^1(\mu)$ if, and only if, $\sup_{j\in\mathbb{N}}\int u_jd\mu<\infty$, in which case

$$\sup_{j\in\mathbb{N}}\int u_jd\mu=\int\sup_{j\in\mathbb{N}}u_jd\mu$$

2. Let $(v_k)_{k\in\mathbb{N}}\subseteq\mathcal{L}^1(\mu)$ be a decreasing sequence of integrable functions $v_1\geq v_2\geq \ldots$ with limit $v:=\inf_{k\in\mathbb{N}}d\mu$. Then $v\in\mathcal{L}^1(\mu)$ if, and only if, $\inf_{k\in\mathbb{N}}\int v_k\ d\mu>-\infty$, in which case

$$\inf_{k \in \mathbb{N}} \int v_k d\mu = \int \inf_{k \in \mathbb{N}} v_k \ d\mu$$

3.2 Theorem.

Let (X, \mathcal{A}, μ) be measure space and $(u_j)_{j \in \mathbb{N}} \subseteq \mathcal{L}^1(\mu)$ be a sequence of functions such that $|u_j| \leq w$ for all $j \in \mathbb{N}$ and some $w \in \mathcal{L}^1_+(\mu)$. If $u(x) = \lim_{j \to \infty} u_j(x)$ exists for almost every $x \in X$ then $u \in \mathcal{L}^1(\mu)$ and we have

- 1. $\lim_{j\to\infty} \int |u_j u| \ d\mu = 0$
- 2. $\lim_{j\to\infty} \int u_j \ d\mu = \int \lim_{j\to\infty} u_j d\mu = \int u d\mu$

3.3 Theorem.

Let $\emptyset \neq (a,b) \subseteq \mathbb{R}$ be a non-degenerate open interval and $u:(a,b) \times X \to \mathbb{R}$ be a function satisfying

- 1. $x \mapsto u(t,x)$ is in $\mathcal{L}^1(\mu)$ for every fixed $t \in (a,b)$.
- 2. $t \mapsto u(t,x)$ is continuous for every fixed $x \in X$
- 3. $|u(t,x)| \le w(x)$ for all $(t,x) \in (a,b) \times X$ and some $w \in \mathcal{L}^1_+(\mu)$.

Then the function $v:(a,b)\to\mathbb{R}$ given by

$$t \mapsto v(t) := \int u(t,x) \ \mu(dx)$$

is continuous.

3.4 Theorem.

Let $\emptyset \neq (a,b) \subseteq \mathbb{R}$ be a non-degenerate open interval and $u:(a,b)\times X\to \mathbb{R}$ be a function satisfying:

- 1. $x \mapsto u(t,x)$ is in $\mathcal{L}^1(\mu)$ for every fixed $t \in (a,b)$.
- 2. $t \mapsto u(t,x)$ is differentiable for every fixed $x \in X$
- 3. $|\partial_t u(t,x)| \leq w(x)$ for all $(t,x) \in (a,b) \times X$ and some $w \in \mathcal{L}^1_+(\mu)$

Then the function $v:(a,b)\to\mathbb{R}$ given by

$$t \mapsto v(t) := \int u(t, x) \ \mu(dx)$$

is differentiable and its derivative is

$$\partial_t v(t) = \int \partial_t u(t, x) \mu(dx).$$

3.5 Definition.

Consider on the finite interval $[a, b] \subseteq \mathbb{R}$ the partitions

$$\pi := \{ a = t_0 < t_1 < \ldots < t_{k(\pi)} = b,$$

define for a given function $u:[a,b]\to\mathbb{R}$

$$m_j := \inf_{x \in [t_{j-1}, t_j]} u(x)$$
 $M_j := \sup_{x \in [t_{j-1}, t_j]} u(x)$ $j = 1, 2, \dots, k(\pi)$

and introduce the lower resp. upper Darboux sums

$$S_{\pi}[u] := \sum_{j=1}^{k(\pi)} m_j(t_j - t_{j-1})$$
 $S^{\pi}[u] := \sum_{j=1}^{k(\pi)} M_j(t_j - t_{j-1})$

3.6 Definition.

A bounded function $u:[a,b]\to\mathbb{R}$ is said to be Riemann integrable, if the values

 $\int_{*} u := \sup_{\pi} S_{\pi}[u] = \inf_{\pi} S^{\pi}[u] := \int_{*}^{*} u$

(sup,inf range over all partitions π of [a,b]) conincide and are finite. Their common value is called the Riemann integral of u and denoted by $(R) \int_a^b u(x) dx$ or $\int_a^b u(x) dx$.

3.7 Proposition.

 $S_{\pi}[u]$ and $S^{\pi}[u]$ correspond to simple functions $\sigma_{\pi}[u]$ and $\Sigma^{\pi}[u]$ given by

$$\sigma_{\pi}[u](x) = \sum_{j=1}^{k(\pi)} m_j 1_{[t_{j-1}, t_j)}(x) \qquad \Sigma^{\pi}[u](x) = \sum_{j=1}^{k(\pi)} M_j 1_{[t_{j-1}, t_j)}(x)$$

which satisfy $\sigma_{\pi}[u](x) \leq u(x) \leq \Sigma^{\pi}[u](x)$ and which increase resp. decrease as π refines.

3.8 Theorem.

Let $u:[a,b] \to \mathbb{R}$ be a measurable function.

1. If u is Riemann integrable, then u is in $\mathcal{L}^1(\lambda)$ and the Lebesgue and Riemann integrals coincide:

$$\int_{[a,b]} u \ d\lambda = (R) \int_a^b u(x) \ dx.$$

2. A bounded function $f:[a,b] \to \mathbb{R}$ is Riemann integrable if, and only if, the points (a,b) where f is discontinuous are a Lebesgue null set.

3.9 Definition.

An improper Riemann integral is defined as

$$(R) \int_0^\infty u(x) \ dx := \lim_{a \to \infty} (R) \int_0^a u(x) \ dx$$

provided that the limit exists.

3.10 Theorem.

Let $u:[0,\infty)\to\mathbb{R}$ be a measurable function which is Riemann integrable for every interval $[0,N], n\in\mathbb{N}$. Then $u\in\mathcal{L}^1[0,\infty)$ if, and only if,

$$\lim_{N \to \infty} (R) \int_0^N |u(x)| dx < \infty.$$

In this case, $(R) \int_0^\infty u(x) dx = \int_{[0,\infty)} u \ d\lambda$.

3.11 Proposition.

The function $s:(0,\infty)\to\mathbb{R}:x\mapsto\frac{\sin x}{x}$ is improperly Riemann integrable but not Lebesgue integrable.

3.12 Proposition.

Let $f_{\alpha}(x) := x^{\alpha}, x > 0$ and $\alpha \in \mathbb{R}$. Then

$$f_{\alpha} \in \mathcal{L}^{1}(0,1) \iff \alpha > -1$$

 $f_{\alpha} \in \mathcal{L}^{1}[1,\infty) \iff \alpha < -1$

3.13 Proposition.

The function $f(x) := x^{\alpha}e^{-\beta x}, x > 0$ is Lebesgue integrable over $(0, \infty)$ for all $\alpha > -1$ and $\beta \geq 0$.

3.14 Proposition.

The parameter-dependent integral

$$\Gamma(t) := \int_{(0,\infty)} x^{t-1} e^{-x} \lambda(dx) \qquad t > 0$$

is called the Gamma function. It has the following properties:

- 1. Γ is continuous
- 2. Γ is arbitrarily often differentiable
- 3. $t\Gamma(t) = \Gamma(t+1)$ in particular $\Gamma(n+1) = n!$
- 4. $\ln \Gamma(t)$ is convex