

Sinais e Sistemas

Licenciatura em Engenharia Informática de Telecomunicações, Redes

1º Trabalho Pratico

Grupo 10

43865 André Alves 43872 Guilherme Calapez 43023 Diogo Soares

2º Semestre letivo 2018/2019 30 de Março de 2019

Índice

1.	EXERCICIO 1	7	
,	A) SINAIS X(T) E Y(T)		7
	I) A=6; B=2; C=8; fo=500 e α=-π.		<i>7</i>
	II) A=-4; B=0,5; C=8; fo=500 e α=	0	<i>7</i>
ı	B)SINC		8
	I e II)		8
2.	FUNÇÃO QUADRADA	9	
	A e B) Sinais par, ímpar e sem simetri <i>i</i>	١	9
	I)Sinal com simetria par		9
	II) Sinal com simetria ímpar		9
	III) Sinal sem Simetria		9
5.	CONCLUSÕES E TRABALHO FUT	URO 17	

1. Exercício 1

a) sinais x(t) e y(t)

I) A=6; B=2; C=8; fo=500 e
$$\alpha$$
=- π

Para se implementar a função my_synusoid criou-se uma função que recebendo o A, B, C, f0 e a fase retornava a função x e a função y.

Como se pode ver o sinal y(t) tem o quadrado da amplitude do x(t) e a sua frequência também aumenta inversamente proporcional ao aumento da variável B. Neste caso a frequência duplicou o que com o quadrado, servindo de modulo, espelhou a componente negativa.

E a variação de fase no sinal x já não é notada no sinal y porque devido ao quadrado o sinal fica todo positivo.

II)
$$A=-4$$
; $B=0.5$; $C=8$; $fo=500$ e $\alpha=0$

Como se pode observar no sinal y e possível ver que a amplitude não é negativa devido a ser o quadrado de x(t) o que também faz com que a expansão provocada por B não seja evidente pois os valores negativos foram espelhados pelo eixo x.

b)Sinc

I e II)

Como se consegue observar o primeiro gráfico e uma sinc que tem um avanço de 8 no eixo do tempo e uma compreçao de 2 o que leva o sinal a estar centrado em -4.

Em contraste a segunda figura tem um avanço de 2 no eixo do tempo mas tem uma expanção de 2, o que leva a estar centrada em -4 mas mais esticado no tempo.

2. Função Quadrada

A e B) Sinais par, ímpar e sem simetria

I)Sinal com simetria par

Como se pode observar o sinal original é espelhado no eixo dos y tornando o um sinal par e como comprovado um sinal par não tem componente ímpar

As energias das suas componentes e do sinal é:

Energia do sinal = 6

Energia do componente par =12

Energia da componente ímpar = 0

II) Sinal com simetria ímpar

Como se pode observar este sinal é um sinal ímpar e como visto anteriormente não possui uma componente par.

As energias das suas componentes e do sinal é:

Energia do sinal = 6

Energia do componente par =0

Energia da componente ímpar = 12

III) Sinal sem Simetria

Um sinal que não tem simetria não tem nem componente par nem componente ímpar o que da para constatar da figura ao lado. Como tal as energias das suas componentes par e impar são ambas nulas.

As energias das suas componentes e do sinal é:

Energia do sinal = 6

Energia do componente par = 0

Energia da componente ímpar = 0

3. Sistema S

d) Foi então implementado em MATLAB o SystemS.m que recebe como valores de entrada os sinais da alínea b deste mesmo exercício.

i.
$$a(t)=2\cos(2\pi 1000t)$$
 e $b(t)=2\cos(2\pi 1000t)$ e $d(t)=0$ ii. $a(t)=2\cos(2\pi 500t-\pi/4)$ e $b(t)=\cos(2\pi 1000t)$ e $d(t)=-1$ iii. $a(t)=2\cos(2\pi 1500t-\pi/4)$ e $b(t)=2\sin(2\pi 200t)$ e $d(t)=1$ e os valores foram os seguintes:

i.

ii)

iii)

4. Exercício 4

a)

Sinal i:

Sinal ii:

b)

Para o sinal i, fizemos as seguintes alterações:

A0 = 10:

Ao aumentar o A0 para o dobro, ocorre uma expansão para o dobro em amplitude.

d=0,25:

Ao diminuir o valor de d, os picos inferiores duram mais tempo e os picos superiores duram menos tempo.

N = 20:

Ao aumentar o valor de N, o sinal vai-se aproximando de uma onda quadrada.

5. Conclusões e trabalho futuro

Não foi possível terminar o exercício 3, a parte teórica não fora realizada mas queremos realizála, bem como a relação da largura de banda e potência do sinal x(t) pedida na alínea b) do exercício 4.

Por fim aprendemos a gerar sinais, bem como ver as suas compenentes par e ímpar. Conseguimos observar como a alteração de certos valores afecta a função e de que forma esta é afectada. Por fim observámos também que o somatório da multiplicação de uma sinc com um cosseno origina uma onda quadrada.