Lec 9 微分中值定理及应用习题课

9.1 达布定理(Darboux)

定理 9.1 (Darboux 定理)

设 f(x) 在 (a,b) 上可导,则

- 1. f'(x) 在 (a,b) 中无第一类间断点;
- 2. 即使 f'(x) 在 (a,b) 中不连续, f'(x) 在 (a,b) 中仍满足介值性与零值性.

证明 仅需证明介值性,即对于任意 $f'(a) < \gamma < f'(b)$,存在 $\xi \in (a,b)$,使得 $f'(\xi) = \gamma$.

不妨设 f'(a) < f'(b)。首先考虑特殊情况: f'(a) < 0 < f'(b),即

$$\lim_{x \to a^{+}} \frac{f(x) - f(a)}{x - a} = f'(a) < 0, \quad \lim_{x \to b^{-}} \frac{f(x) - f(b)}{x - b} = f'(b) > 0.$$

所以存在在 $\delta_1 > 0$,使得当 $x \in (a, a + \delta_1)$ 时有 f(x) - f(a) < 0,即 f(x) < f(a)。同理,在 δ_2 ,使得当 $x \in (b - \delta_2, b)$ 时有 f(x) - f(b) > 0,注意到此时 $x \in (b - \delta_2, b)$,所以当 $x \in (b - \delta_2, b)$ 时,f(x) < f(b)。因此函数 f(x) 的两个端点 a, b 不是 f(x) 在 [a, b] 上的最小值。也就是说 f(x) 在 [a, b] 内部一点 ξ 取得最小值,依据 Fermat 定理有 $f'(\xi) = 0$ 。

对于一般情况, 任取 $f'(a) < \gamma < f'(b)$, 令 $g(x) = f(x) - \gamma x$, 则 g(x) 在区间 [a,b] 上可导, 且

$$g'(a) = f'(a) - \gamma < 0, \quad g'(b) = f'(b) - \gamma > 0,$$

所以在一点 $\xi \in (a,b)$ 使得 $g'(\xi) = \gamma$.

9.2 例题

例 9.1 证明:

- 1. f(x) 在区间 I 上为常函数 $\Leftrightarrow f'(x) = 0, \forall x \in I$;
- 2. 若 $f'(x) > 0, \forall x \in I, 则 f(x)$ 在 I 上严格单调增加.

证明

1.
$$\Rightarrow f(x) = C \Rightarrow f'(x) = 0;$$

 $\Leftarrow f'(x) = 0 \Rightarrow \frac{f(x) - f(a)}{x - a} = f'(\xi) = 0 \Rightarrow f(x) = f(a), \forall x \in I := [a, b].$

2.
$$f'(x) > 0 \Rightarrow \frac{f(x) - f(y)}{x - y} = f'(\xi) > 0 \Rightarrow f(x) > f(y), \forall x > y.$$

例 9.2 证明:

1. 若 f 在 x_0 处连续, 且 f'(x) 在 x_0 两侧存在, 异号, $f'(x_0)$ 可以不存在, 则 $f(x_0)$ 为 f 的极值点;

- 2. 若 $f'(x_0) = 0$, $f''(x_0) > 0$ (< 0), 则 $f(x_0)$ 必为 f 的极小值 (极大值) 点.
- 3. $f'(x_0) = f''(x_0) = 0, f'''(x_0) \neq 0,$ 则 $f(x_0)$ 不是 f 的极值点.

证明

- 1. 不妨设 $f'(x) < 0, \forall x \in (x_0 \delta_1, x_0), f'(x) > 0, \forall x \in (x_0, x_0 + \delta_2),$ 则由上题结论, f(x) 在 $(x_0 \delta_1, x_0)$ 上严格单调减少, 在 $(x_0, x_0 + \delta_2)$ 上严格单调增加, 所以 $f(x_0)$ 为极小值点.
- 2. $f''(x_0) > 0 \Rightarrow \lim_{\Delta x \to 0} \frac{f'(x_0 + \Delta x) f'(x_0)}{\Delta x} = f''(x_0) > 0 \Rightarrow \exists \delta > 0, \forall x \in (x_0 \delta, x_0), f'(x) < f'(x_0) = 0, \forall x \in (x_0, x_0 + \delta), f'(x) > f'(x_0) = 0 \Rightarrow f(x_0)$ 为极小值点.
- 3. 依次讨论低阶导在邻域内的符号即可.

例 9.3 证明以下不等式:

1.
$$\frac{\beta - \alpha}{\cos^2 \alpha} < \tan \beta - \tan \alpha < \frac{\beta - \alpha}{\cos^2 \beta}, 0 < \alpha < \beta < \frac{\pi}{2};$$

2.
$$\frac{x}{1+x} < \ln(1+x) < x, x > 0$$
.

3.
$$\tan x > x - \frac{x^3}{3}, 0 < x < \frac{\pi}{2}$$
.

4. (a).
$$x - \frac{x^3}{6} < \sin x < x, 0 < x < \frac{\pi}{2};$$

(b). $x - \frac{x^3}{3!} < \sin x < x - \frac{x^3}{3!} + \frac{x^5}{5!}, 0 < x < \frac{\pi}{2};$
(c). $x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} < \sin x < x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \frac{x^9}{9!}, 0 < x < \frac{\pi}{2}.$

证明

1.
$$\exists \xi \in (\alpha, \beta), \frac{\tan \beta - \tan \alpha}{\beta - \alpha} = \tan' \xi = \frac{1}{\cos^2 \xi} \Rightarrow \frac{1}{\cos^2 \alpha} < \frac{\tan \beta - \tan \alpha}{\beta - \alpha} = \frac{1}{\cos^2 \xi} < \frac{1}{\cos^2 \beta} \Rightarrow \frac{\beta - \alpha}{\cos^2 \alpha} < \tan \beta - \tan \alpha < \frac{\beta - \alpha}{\cos^2 \beta}.$$

2. 仅证
$$f(x) = x - \ln(1+x) > 0$$
 即可 (第一个 < 代入 y , $1 + y = \frac{1}{1+x}$ 即证). $f'(x) = 1 - \frac{1}{1+x} = \frac{x}{1+x} > 0 \Rightarrow f(x) > f(0) = 0$.

3.
$$\Leftrightarrow f(x) = \tan x - x + \frac{x^3}{3}$$
. $f'(x) = \sec^2 x - 1 + x^2 = \tan^2 x + x^2 > 0 \Rightarrow f(x) > f(0) = 0$.

例 9.4 求 $f(x) = x^4 - 2x^2 + 5$ 在 [-2, 2] 上的最大值与最小值.

tips: 函数在 R 上连续可微,则最值点要么是极值点要么边界点,极值点处的导数为 0. 解 先求出所有的导数为 0 的点,再求出边界点,再求出这些点的函数值,取最大值与最小值即可.

$$f'(x) = 4x^3 - 4x = 4x(x^2 - 1) = 0 \Rightarrow x = 0, \pm 1.$$
 $f(-2) = 13, f(-1) = 4, f(0) = 5, f(1) = 4, f(2) = 13.$ 所以最大值为 13、最小值为 4.

作业 ex3.3:4(4),17,19(1),21(2),25,26.