Завдання для самостійної роботи з РМФ для групи ΠA -20-1з

2022/11/30

Зміст

T	Канонічний вид лінійного рівняння в частинних похідних	
	другого порядка з двома незалежними змінними	3
2	Задачі $\mathcal{L}ipix$ ле для рівняння $\mathcal{L}an$ ласа	4
3	Крайова задача для рівняння теплопроводності	6
4	Крайова задача для рівняння коливань струни	8

	Варіант
Квятковська Катерина Михайлівна	1
Кондик Єлизавета Олександрівна	2
Мовсісян Лаура Ростомівна	3
Moiceєнков Данило Валерійович	4
Розенко Єгор Дмитрович	5

1 Канонічний вид лінійного рівняння в частинних похідних другого порядка з двома незалежними змінними

Для однорідного лінійного рівняння з частинними похідними другого порядка

$$a_{1,1} \frac{\partial^2 u}{\partial x \partial x} + 2a_{1,2} \frac{\partial^2 u}{\partial x \partial y} + a_{2,2} \frac{\partial^2 u}{\partial y \partial y} + a_1 \frac{\partial u}{\partial x} + a_2 \frac{\partial u}{\partial y} + a_{\star} u = 0,$$

де коефіцієнти $a_{1,1},\ a_{1,2},\ a_{2,2},\ a_1,\ a_2$ та a_\star суть відомі функції декартових ортогональних координат x,y на площині, знайти області, в яких рівняння зберігає тип, та привести рівняння до канонічного виду в кожній такій області.

1.
$$\frac{\partial^2 u}{\partial x \partial x} - 4 \frac{\partial^2 u}{\partial x \partial y} + x \frac{\partial^2 u}{\partial y \partial y} + 5 \frac{\partial u}{\partial x} + 3 \frac{\partial u}{\partial y} + 2u = 0$$

2.
$$x^{2} \frac{\partial^{2} u}{\partial x \partial x} + 6x \frac{\partial^{2} u}{\partial x \partial y} + 2 \frac{\partial^{2} u}{\partial y \partial y} + 2 \frac{\partial u}{\partial x} + 5 \frac{\partial u}{\partial y} + 3u = 0$$

3.
$$\frac{\partial^2 u}{\partial x \partial x} + 6 \frac{\partial^2 u}{\partial x \partial y} + x \frac{\partial^2 u}{\partial y \partial y} - 7 \frac{\partial u}{\partial x} + 3 \frac{\partial u}{\partial y} + 3u = 0$$

4.
$$x \frac{\partial^2 u}{\partial x \partial x} + y \frac{\partial^2 u}{\partial y \partial y} + 2 \frac{\partial u}{\partial x} + 5 \frac{\partial u}{\partial x} - 3 \frac{\partial u}{\partial y} + 6u = 0$$

5.
$$x \frac{\partial^2 u}{\partial x \partial x} + 6 \frac{\partial^2 u}{\partial x \partial y} + \frac{\partial^2 u}{\partial y \partial y} + 8 \frac{\partial u}{\partial x} - 3 \frac{\partial u}{\partial y} - 4u = 0$$

6.
$$\frac{\partial^2 u}{\partial x \partial x} + 2 \frac{\partial^2 u}{\partial x \partial y} - x \frac{\partial^2 u}{\partial y \partial y} + 8 \frac{\partial u}{\partial x} - 3 \frac{\partial u}{\partial y} - 2u = 0$$

7.
$$x^{2} \frac{\partial^{2} u}{\partial x \partial x} - 8xy \frac{\partial^{2} u}{\partial x \partial y} + y^{2} \frac{\partial^{2} u}{\partial y \partial y} + 6 \frac{\partial u}{\partial x} - 8 \frac{\partial u}{\partial y} + 2u = 0$$

8.
$$\frac{\partial^2 u}{\partial x \partial x} + y \frac{\partial^2 u}{\partial x \partial y} - xy^2 \frac{\partial^2 u}{\partial y \partial y} - 3 \frac{\partial u}{\partial x} + 4 \frac{\partial u}{\partial y} - 5u = 0$$

$$9. \ \operatorname{sign} y \, \frac{\partial^2 u}{\partial x \partial x} + 2 \, \frac{\partial^2 u}{\partial x \partial y} + \operatorname{sign} x \, \frac{\partial^2 u}{\partial y \partial y} + 3 \, \frac{\partial u}{\partial x} - 5 \, \frac{\partial u}{\partial y} + 7u = 0$$

10.
$$y \frac{\partial^2 u}{\partial x \partial x} - 2y \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y \partial y} - 7 \frac{\partial u}{\partial x} + 3 \frac{\partial u}{\partial y} + 3u = 0$$

2 Задачі Діріхле для рівняння Лапласа

1. Розв'язати внутрішню задачу Діріхле для рівняння Лапласа

$$\begin{cases} \Delta u(x,y) = 0, & (x,y) \in \mathcal{D} = \left\{ (x,y) \mid (x-x_0)^2 + (y-y_0)^2 < c^2 \right\}, \\ u(x,y) = g_{0,k}(x,y), & (x,y) \in \mathcal{C} = \left\{ (x,y) \mid (x-x_0)^2 + (y-y_0)^2 = c^2 \right\}. \end{cases}$$

Розв'язки подати в полярній та декартовій системах координат. Обгрунтувати розв'язки, для чого показати, що вони задовільняють: 1) рівнянню \mathcal{I} апласа в декартовій та полярній системах координат; 2) умови на колі \mathcal{C} в декартовій системі координат.

2. Розв'язати зовнішню задачу Діріхле для рівняння Лапласа

$$\begin{cases} \Delta u(x,y) = 0, & (x,y) \in \mathcal{D} = \left\{ (x,y) \mid (x-x_0)^2 + (y-y_0)^2 > c^2 \right\}, \\ u(x,y) = g_{0,k}(x,y), & (x,y) \in \mathcal{C} = \left\{ (x,y) \mid (x-x_0)^2 + (y-y_0)^2 = c^2 \right\}, \end{cases}$$

Розв'язки подати в полярній та декартовій системах координат. Обгрунтувати розв'язки, для чого показати, що вони задовільняють: 1) рівнянню $\mathcal{J}annaca$ в полярній системі координат; 2) умови на колі \mathcal{C} в декартовій системі координат.

Умови на колі C наведені в табл. 2.1.

Табл. 2.1. Варіанти умов

№	$g_{0,1}(x,y)$	$g_{0,2}(x,y)$	$g_{0,3}(x,y)$	$g_{0,4}(x,y)$	С
01	x^2	$x^3 + y^3 + x^2y + xy^2$	$\int x^4$	x^5	$x^{2} + y^{2} + x + 3y - \frac{3}{2} = 0$
02	$\int y^2$	$x^3 + y^3 + x^2y + xy^2$	$\left y^4 ight $	y^5	$x^2 + y^2 + x + 5y - \frac{5}{2} = 0$
03	$\left \begin{array}{c} xy \end{array} \right $	$x^3 + y^3 + x^2y + xy^2$	x^3y	x^4y	$x^{2} + y^{2} + 3x - 2y - \frac{3}{4} = 0$
04	$x^2 + x$	$x^3 + y^3 + x^2y$	xy^3	xy^4	$x^{2} + y^{2} - 3x - 3y + \frac{1}{2} = 0$
05	$y^2 + x$	$x^3 + y^3 + xy^2$	x^2y^2	x^3y^2	$x^{2} + y^{2} + 3x + 4y + \frac{9}{4} = 0$
06	xy + x	$x^3 + x^2y + xy^2$	$\int x^4$	x^2y^3	$x^{2} + y^{2} - 4x + y + \frac{1}{4} = 0$
07	$x^2 + y$	$y^3 + x^2y + xy^2$	y^4	x^5	$x^{2} + y^{2} + 5x - 3y + \frac{9}{2} = 0$
08	$y^2 + y$	$x^3 + y^3 + x^2y$	x^3y	y^5	$x^2 + y^2 - x - 2y - 1 = 0$
09	xy + y	$x^3 + y^3 + xy^2$	xy^3	x^4y	$x^2 + y^2 + x + 6y + 7 = 0$
10	$x^2 + xy$	$x^3 + x^2y + xy^2$	x^2y^2	xy^4	$x^2 + y^2 - 2x + 3y + 1 = 0$

3 Крайова задача для рівняння теплопроводності

Розв'язати крайову задачу для рівняння теплопроводності

$$\begin{cases} \frac{\partial u(t,x)}{\partial t} = a^2 \frac{\partial^2 u(t,x)}{\partial x^2} + f(t,x) \,, & 0 < x < \ell \,, \quad 0 < t \leqslant T \,, \\ u(0,x) = u_0(x) \,, & 0 \leqslant x \leqslant \ell \,, \\ u(t,0) = \psi_1(t) \\ u(t,\ell) = \psi_2(t) \end{cases}, \qquad 0 \leqslant t \leqslant T \,,$$

де $f(t,x) \equiv 0$, а початкова умова є такою (побудувати графік!)

$$u_0(x) = \begin{cases} & 0\,, \quad x \in [\ 0,x_1]\,, \\ & h_1 \, \frac{x-x_1}{x_2-x_1}\,, \quad x \in [x_1,x_2]\,, \\ & h_1 + (h_2-h_1) \, \frac{x-x_2}{x_3-x_2}\,, \quad x \in [x_2,x_3]\,, \\ & h_2 \, \frac{x_4-x}{x_4-x_3}\,, \quad x \in [x_3,x_4]\,, \\ & 0\,, \quad x \in [x_4,\,\ell]\,, \end{cases}$$

а функції $\psi_1(t),\,\psi_2(t)$ та значення параметрів $a,\,\ell,\,x_{1-4},\,h_{1,2}$ наведені в табл. 3.1.

Довести, що розкладання початкової умови $u_0(x)$ в тригонометричний ряд $\Phi ypb'e$ є правильним, побудувавши на графіку початкової умови скінчений ряд $\Phi ypb'e$ цієї умови.

Табл. 3.1. Варіанти умов

Nº	a	ℓ	x_1	x_2	x_3	x_4	h_1	h_2	$\psi_1(t)$	$\psi_2(t)$	T
1	2	5	2	3	4	5	+1	-1	0	0	8
2	4	7	2	3	5	6	+3	+1	0	0	9
3	1	5	2	3	4	5	-1	+1	0	0	7
4	3	6	1	3	4	6	-2	-1	0	0	8
5	2	5	1	2	3	5	+2	0	0	0	6
6	3	7	2	3	4	6	-2	-2	0	0	8
7	1	5	1	2	3	4	+3	+1	0	0	5
8	2	6	0	1	2	3	0	+2	0	0	7
9	4	6	1	2	3	4	+2	+3	0	0	9
10	2	5	1	2	3	5	+2	0	0	0	6

4 Крайова задача для рівняння коливань струни

Розв'язати крайову задачу для рівняння коливань струни

$$\begin{cases}
\frac{\partial^2 u(t,x)}{\partial t^2} = a^2 \frac{\partial^2 u(t,x)}{\partial x^2} + f(t,x), & 0 < x < \ell, & 0 < t \leqslant T, \\
u(0,x) = u_0(x) \\
\frac{\partial u(0,x)}{\partial t} = u_1(x)
\end{cases}, & 0 < x < \ell, & 0 < t \leqslant T.$$

$$\begin{cases}
u(t,0) = \psi_1(t) \\
u(t,\ell) = \psi_2(t)
\end{cases}, & 0 \leqslant t \leqslant T.$$

$$(4.1)$$

де $f(t,x) \equiv 0$, $u_1(x) \equiv 0$, а функції $u_0(x)$, $\psi_1(t)$, $\psi_2(t)$ та значення параметрів a, ℓ , x_{1-4} , $h_{1,2}$ суть такі ж самі, як в крайовій задачі для рівняння теплопроводності.