WHAT IS CLAIMED IS:

1. A glycopeptide compound having at least one substituent of the formula:

$$-R^{a}-Y-R^{b}-(Z)_{v}$$

wherein

5

10

15

20

25

each R^a is independently alkylene, substituted alkylene, alkenylene, substituted alkenylene, alkynylene, substituted alkynylene, cycloalkylene, substituted cycloalkylene, substituted cycloalkenylene, arylene, heteroarylene, heterocyclene, -C(O)-alkylene, substituted -C(O)-alkylene, -C(O)-alkenylene, substituted -C(O)-alkynylene, substituted -C(O)-alkynylene, -C(O)-cycloalkylene, substituted -C(O)-cycloalkylene, substituted -C(O)-cycloalkenylene, substituted -C(O)-cycloalkenylene, -C(O)-heteroarylene, or -C(O)-heterocyclene;

each R^b is independently a covalent bond, alkylene, substituted alkylene, alkenylene, substituted alkenylene, alkynylene, substituted alkynylene, cycloalkylene, substituted cycloalkylene, cycloalkenylene, or substituted cycloalkenylene; provided R^b is not a covalent bond when Z is hydrogen;

each Y is independently selected from the group consisting of oxygen, sulfur, $-S-S-, -S-C(=O)-, -C(=O)-S-, -NR^c-, -S(O)-, -SO_2-, -NR^cC(O)-, -OSO_2-, \\ -OC(O)-, -NR^cSO_2-, -C(O)NR^c-, -C(O)O-, -SO_2NR^c-, -SO_2O-, -P(O)(OR^c)O-, \\ -P(O)(OR^c)NR^c-, -OP(O)(OR^c)O-, -OP(O)(OR^c)NR^c-, -OC(O)O-, -NR^cC(O)O-, \\ -NR^cC(O)NR^c-, -OC(O)NR^c-, C(=O), and -NR^cSO_2NR^c-;$

each Z is independently selected from hydrogen, aryl, cycloalkyl, cycloalkenyl, heteroaryl and heterocyclic;

each R^c is independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, substituted alkynyl, cycloalkyl,

10

15

20

substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl, heterocyclic and $-C(O)R^d$;

each R^d is independently selected from the group consisting of alkyl, substituted alkyl, alkenyl, substituted alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkyl, substituted cycloalkenyl, aryl, heteroaryl and heterocyclic; and x is 1 or 2;

or a pharmaceutically acceptable salt, stereoisomer, or prodrug thereof; provided that at least one Y is -S-S- or -S-C(=O)-; and

provided the glycopeptide is not substituted at the carboxy terminus with a substituent that comprises more than one carboxy group; and

provided the glycopeptide is not substituted at the carboxy terminus with a substituent that comprises one or more saccharide groups and a carboxy group; and provided the glycopeptide is not substituted on a saccharide nitrogen that corresponds to N^{van} with a substituent that comprises two or more hydroxy groups.

- 2. The glycopeptide of claim 1 wherein each R^a is selected from the group consisting of alkylene, substituted alkylene, alkenylene, substituted alkynylene and substituted alkynylene.
 - 3. The glycopeptide of claim 1 wherein each R^b is independently selected from the group consisting of a covalent bond, alkylene, substituted alkylene, alkenylene, substituted alkenylene, alkynylene and substituted alkynylene, provided R^b is not a covalent bond when Z is hydrogen.
 - 4. The glycopeptide of claim 1 which is a compound of formula I:

wherein:

5

10

 R^{1} is hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl, heterocyclic, $-R^{a}-Y-R^{b}-(Z)_{x}$; or a saccharide group optionally substituted with $-R^{a}-Y-R^{b}-(Z)_{x}$;

 $R^2 \text{ is hydrogen or a saccharide group optionally substituted with} \\ -R^a-Y-R^b-(Z)_x, R^f, -C(O)R^f, \text{ or } -C(O)-R^a-Y-R^b-(Z)_x; \\ R^3 \text{ is } -OR^c, -NR^cR^c, -O-R^a-Y-R^b-(Z)_x, -NR^c-R^a-Y-R^b-(Z)_x, -NR^cR^e, \text{ or } -O-R^e; \\ \end{array}$

 R^4 is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, $-R^a-Y-R^b-(Z)_x$, $-C(O)R^d$ and

10

15

20

25

a saccharide group optionally substituted with $-R^a-Y-R^b-(Z)_x$, R^f , $-C(O)R^f$, or $-C(O)-R^a-Y-R^b-(Z)_x$;

 R^5 is selected from the group consisting of hydrogen, halo, $-CH(R^c)-NR^cR^c$, $-CH(R^c)-NR^cR^c$, $-CH(R^c)-NR^c-R^a-Y-R^b-(Z)_x$, $-CH(R^c)-R^x$, and $-CH(R^c)-NR^c-R^a-C(=O)-R^x$;

 R^6 is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, $-R^a-Y-R^b-(Z)_x$, $-C(O)R^d$ and a saccharide group optionally substituted with $-NR^c-R^a-Y-R^b-(Z)_x$, or R^5 and R^6 can be joined, together with the atoms to which they are attached, form a heterocyclic ring optionally substituted with $-NR^c-R^a-Y-R^b-(Z)_x$;

 R^7 is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, $-R^a-Y-R^b-(Z)_x$, and $-C(O)R^d$;

R⁸ is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl and heterocyclic;

R⁹ is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkyl, substituted cycloalkenyl, aryl, heteroaryl and heterocyclic;

R¹⁰ is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkyl, substituted cycloalkenyl, aryl, heteroaryl and heterocyclic; or R⁸ and R¹⁰ are joined to form -Ar¹-O-Ar²-, where Ar¹ and Ar² are independently arylene or heteroarylene;

R¹¹ is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl and heterocyclic, or

R¹⁰ and R¹¹ are joined, together with the carbon and nitrogen atoms to which they are attached, to form a heterocyclic ring;

 R^{12} is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkyl, substituted cycloalkenyl, aryl, heteroaryl, heterocyclic, $-C(O)R^d$, $-C(NH)R^d$, $-C(O)NR^cR^c$, $-C(O)OR^d$, $-C(NH)NR^cR^c$ and $-R^a-Y-R^b-(Z)_x$, or R^{11} and R^{12} are joined, together with the nitrogen atom to which they are attached, to form a heterocyclic ring;

 R^{13} is selected from the group consisting of hydrogen or $-OR^{14}$; R^{14} is selected from hydrogen, $-C(O)R^d$ and a saccharide group;

each R^a is independently selected from the group consisting of alkylene, substituted alkylene, alkenylene, substituted alkynylene and substituted alkynylene;

each R^b is independently selected from the group consisting of a covalent bond, alkylene, substituted alkylene, alkenylene, substituted alkynylene and substituted alkynylene, provided R^b is not a covalent bond when Z is hydrogen;

each R^c is independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl, heterocyclic and -C(O)R^d;

each R^d is independently selected from the group consisting of alkyl, substituted alkyl, alkenyl, substituted alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl and heterocyclic;

Re is a saccharide group;

each R^f is independently alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl, or heterocyclic;

10

5

15

25

20

15

R^x is a nitrogen-linked amino saccharide or a nitrogen-linked heterocycle; X¹, X² and X³ are independently selected from hydrogen or chloro; each Y is independently selected from the group consisting of oxygen, sulfur, -S-S-, -S-C(=O)-, -C(=O)-S-, -NR^c-, -S(O)-, -SO₂-, -NR^cC(O)-, -OSO₂-,

each Z is independently selected from hydrogen, aryl, cycloalkyl, cycloalkenyl, heteroaryl and heterocyclic;

10 $n ext{ is } 0, 1 ext{ or } 2; ext{ and}$

x is 1 or 2;

or a pharmaceutically acceptable salt, stereoisomer, or prodrug thereof; wherein the glycopeptide is substituted with one or more groups wherein Y is -S-S-, or -S-C(=O)-;

provided R³ is not a substituent that comprises more that one carboxy group.

- 5. The glycopeptide of claim 4 wherein R¹ is an amino saccharide group substituted on the amine with a substituent that comprises one or more disulfide or thioester bonds.
- 6. The glycopeptide of claim 4 wherein R¹ is an amino saccharide group substituted on the amine with a group of formula -R^a-W-R^h wherein: W is -S-S- or -S-C(=O)- and R^h is alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkyl, aryl, heteroaryl, or heterocyclic.

- 7. The glycopeptide of claim 4 wherein R^a is alkylene, substituted alkylene, alkenylene, substituted alkenylene, alkynylene, substituted alkynylene, -C(O)-alkylene, substituted -C(O)-alkylene, -C(O)-alkynylene, or substituted -C(O)-alkynylene.
- 5 8. The glycopeptide of claim 4 wherein R^b is alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, or substituted alkynyl.
 - 9. The glycopeptide of claim 4 wherein R^1 is a saccharide group of formula (III):

wherein R¹⁵ is -R^a-W-R^h; and R¹⁶ is hydrogen or methyl.

- 10. The glycopeptide of claim 4 wherein R², R⁴, R⁶, and R⁷ are each hydrogen.
- 10 11. The glycopeptide of claim 4 wherein R³ is -OH.
 - 12. The glycopeptide of claim 4 wherein R^5 is hydrogen, $-CH_2$ -NHR°, $-CH_2$ -NR°R° or $-CH_2$ -NH-R°-Y-R°-(Z)_x.

13. The glycopeptide of claim 4 which is a compound of formula II:

wherein:

R¹⁹ is hydrogen;

 R^{20} is $-R^a-W-R^h$;

Ra is alkylene, substituted alkylene, alkenylene, substituted alkenylene, alkynylene, substituted alkynylene, cycloalkylene, substituted cycloalkylene, cycloalkenylene, substituted cycloalkenylene, arylene, heteroarylene, heterocyclene, -C(O)-alkylene, substituted -C(O)-alkylene, substituted -C(O)-alkynylene, substituted -C(O)-alkynylene, -C(O)-alkynylene, -C(O)-cycloalkylene, substituted -C(O)-cycloalkylene, -C(O)-cycloalkenylene, substituted -C(O)-cycloalkenylene, -C(O)-heteroarylene, or -C(O)-heterocyclene;

R^h is alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl, or heterocyclic;

W is -S-S- or -S-C(=O)- and

- 5 R³, and R⁵ have the values defined in claim 4; or a pharmaceutically acceptable salt, stereoisomer, or prodrug thereof.
 - 14. The glycopeptide of claim 13 wherein R^a is alkylene, substituted alkylene, alkenylene, substituted alkenylene, alkynylene, substituted alkynylene, -C(O)-alkylene, substituted -C(O)-alkylene, -C(O)-alkenylene, substituted -C(O)-alkenylene, -C(O)-alkynylene, or substituted -C(O)-alkynylene; and R^h is alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, or substituted alkynyl.
 - 15. The glycopeptide of claim 13 wherein R^{20} is $-(CH_2)_3S-S(CH_2)_7CH_3$
- 16. A pharmaceutical composition comprising a pharmaceutically acceptable carrier and a therapeutically effective amount of a compound of claim 1.
 - 17. The pharmaceutical composition of claim 16, which comprises a cyclodextrin.
 - 18. A method of treating a mammal having a bacterial disease, the method comprising administering to the mammal a therapeutically effective amount of a glycopeptide of claim 1
- 20 19. A method of treating a mammal having a bacterial disease, the method comprising administering to the mammal a therapeutically effective amount of a glycopeptide of claim 4.

- 20. A method of treating a mammal having a bacterial disease, the method comprising administering to the mammal a therapeutically effective amount of a glycopeptide of claim 13.
- A method of treating a mammal having a bacterial disease, the method
 comprising administering to the mammal a therapeutically effective amount of a pharmaceutical composition of claim 16.