Probabilistic Encryption

CS 5158/6058 Data Security and Privacy
Spring 2018

Instructor: Boyang Wang

CPA Security Game

Def. A symmetric-key encryption Π is indistinguishable under chosen-plaintext attacks, or is CPA-secure, if for all PPT adversaries \mathcal{A} there is a negligible function s.t.

$$\Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\Pi}(n) = 1] \leq \frac{1}{2} + \mathsf{negl}(n)$$

- Is CPA model really necessary?
 - U.S. knew AF was the target, suspected Midway
 - U.S. sent "Midway is low on water."
 - Japan sent "AF is low on water."
 - Practice: Who was Adversary in CPA?

Deterministic v.s. Probabilistic

- Deterministic enc. is not secure under multiple ciphertexts or under CPA
 - $M_0 = (m_{0,1}, m_{0,2})$ and $M_1 = (m_{1,1}, m_{1,2})$
 - $m_{0,1} == m_{0,2}$ and $m_{1,1} != m_{1,2}$
 - Return $C_b = (c_{b,1}, c_{b,2})$
 - If $c_{b,1} == c_{b,2}$, b' = 0 = b; else b' = 1 = b
- Need <u>probabilistic encryption</u>
 - Output different ciphertexts from a same message

Pseudorandom Function

- Func(m,n): a function family includes all the mappings from $\mathcal{D}=\{0,1\}^m \longrightarrow \mathcal{R}=\{0,1\}^n$
 - E.g., m = 3 and n = 2, one f(d) from Func(3,2)

d	000	001	010	011	100	101	110	111
f(d)	10	11	11	00	10	01	11	01

- $|\operatorname{Func}(\mathsf{m},\mathsf{n})| = 2^{n \cdot 2^m}$
 - 2ⁿ outputs, each output has 2^m inputs

Keyed Function

• A <u>keyed function</u> F mapping from $\mathcal{D}=\{0,1\}^m$ —> $\mathcal{R}=\{0,1\}^n$:

$$F: \mathcal{K} \times \mathcal{D} \to \mathcal{R}$$
$$\mathcal{K} = \{0, 1\}^l, \mathcal{D} = \{0, 1\}^m, \mathcal{R} = \{0, 1\}^n$$

- First input is called the key k
- k is chosen uniformly from ${\mathcal K}$

$$F_k(x) = F(k, x) = y$$

- F is efficient (i.e., polynomial time)
- Given a key k, F_k is deterministic

Pseudorandom Function

- F is a PRF: if F_k is indistinguishable from f
 - k is chosen uniformly from K
 - f is chosen uniformly from Func(m, n)

Def. Let $F: \{0,1\}^l \times \{0,1\}^m \to \{0,1\}^n$ be an efficient keyed function. F is a PRF is for all PPT adversary \mathcal{A} , there is a negligible function s.t

$$|\Pr[\mathcal{A}^{F_k(\cdot)}(1^l) = 1] - \Pr[\mathcal{A}^{f(\cdot)}(1^l) = 1]| \le \mathsf{negl}(l)$$

PRF v.s. Func(m,n)

$$F_k: \{0,1\}^m \to \{0,1\}^n, \quad k \in \{0,1\}^l$$

- PRF F is not even close to Func(m, n)
 - $|F| = 2^{|}$
 - $|Func(m, n)| = 2^{n \cdot 2^m}$
- <u>Practice</u>: if m = 4, I = 2, and n = 2
 - What is |F|? and what is |Func(m, n)|?
 - $|F| = 2^2 = 4$; $|Func(4, 2)| = 2^{32} = 4,294,967,296$

4 v.s. 4,294,967,296

Pseudorandom Generator

- Pseudorandom Generator (PRG)
 - Efficient (polynomial-time), deterministic function
 - Use a <u>short</u> random string to generate a <u>long</u> pseudorandom string
 - Polynomial-time adversary can only negligibly distinguish PRG's output from random

- Build a PRF from PRG (GGM method, 1984)
 - Goldreich, Goldwasser & Micali (Turing Award'12)
- PRG: G: $\{0,1\}^n \longrightarrow \{0,1\}^{2n}$
 - $G(x) = G_0(x) ||G_1(x)|$
 - $G_0(0)$ is the left half of G(0), $G_1(0)$ is the right half
 - E.g., G(x) = 0010 $G_0(x) = 00$, $G_1(x) = 10$
 - E.g., G(x) = 111000, $G_0(x) = 111$, $G_1(x) = 000$
 - $G(x) = 010111111, G_0(x) = ?? G_1(x) = ??$

- PRG: G: $\{0,1\}^n \longrightarrow \{0,1\}^{2n}$
 - $G(x) = G_0(x) ||G_1(x)||$
- PRF: F: $\{0,1\}^m \longrightarrow \{0,1\}^n$
 - Recursively call G m rounds
 - Given x₁x₂...x_m and k as input, each x_i is 0 or 1
 - R1: Compute $G_{x1}(k)$
 - R2: Compute G_{x2}(G_{x1}(k))
 - R3: Compute $G_{x3}(Gx_2(G_{x1}(k)))$
 - Recursively run G, after m rounds, get PRF's output

- PRG: G: $\{0,1\}^n \longrightarrow \{0,1\}^{2n}$
 - $G(x) = G_0(x) ||G_1(x)||$
- PRF: F: $\{0,1\}^m \longrightarrow \{0,1\}^n$
 - Given x₁x₂...x_m and k as input, each x_i is 0 or 1
 - Recursively call G m rounds
 - Each call use previous output as next input
 - $F_k(x_1x_2...x_m) = G_{x_m}(G_{x_{m-1}}(...G_{x_2}(G_{x_1}(k))...))$
 - E.g., m = 2, $F_k(01) = G_1(G_0(k))$
 - E.g., m = 2, $F_k(10) = G_0(G_1(k))$

- PRG, G: $\{0,1\}^n \longrightarrow \{0,1\}^{2n}$, PRF, F: $\{0,1\}^m \longrightarrow \{0,1\}^n$
 - n=1, $G(0) \longrightarrow 10$, $G(1) \longrightarrow 01$
 - if m = 2 & k = 0, $x_1x_2 = 10$, what's output $F_k(x_1x_2)$?
 - $F_k(x_1x_2) = F_k(10) = G_0(G_1(k))$
 - 1. $G_1(k)$ is the right half of G(k)
 - 2. Given k = 0, G(0) = 10, $G_1(0) = 0$
 - 3. $G_0(G_1(k)) = G_0(0)$
 - 4. $G_0(0)$ is the left half of G(0)
 - 5. G(0) = 10, $G_0(0) = 1$
 - 6. $F_k(10) = G_0(G_1(k)) = 1$

- A binary tree, each node is a PRG
- Output's left half is input of left child
- An output of PRF is a leaf's left/right half of the output
- Inputs of PRF decide the path in the tree

$$F_k(100) = G_0(G_0(G_1(k)))$$

- Practice: GGM Method
- PRG, G: $\{0,1\}^n \longrightarrow \{0,1\}^{2n}$, PRF, F: $\{0,1\}^m \longrightarrow \{0,1\}^n$
 - n=1, $G(0) \longrightarrow 10$, $G(1) \longrightarrow 01$
 - $F_k(x_1x_2x_3) = G_{x_3}(G_{x_2}(G_{x_1}(k)))$
 - k = 1, $x_1x_2x_3 = 110$, What is the output of $F_k(110)$?
- G(k) = G(1) = 01, $G_{x1}(k) = G_1(1) = 1$;
- $G(G_{x1}(k)) = G(1) = 01$, $G_{x2}(G_{x1}(k)) = G_1(1) = 1$;
- $G(G_{x2}(G_{x1}(k))) = G(1) = 01$, $G_{x3}(G_{x2}(G_{x1}(k))) = G_0(1) = 0$
- $F_k(110) = G_{x3}(G_{x2}(G_{x1}(k))) = 0$

Permutation Family

- Perm(n,n): a permutation family includes all the permutations from $\mathcal{D}=\{0,1\}^n \longrightarrow \mathcal{R}=\{0,1\}^n$
 - E.g., n = 3, one f(d) from Perm(3,3)

d	000	001	010	011	100	101	110	111
f(d)	100	110	111	001	101	011	000	010

- $|Perm(n,n)| = (2^n)!$
 - 2ⁿ outputs, each permutation is a <u>bijection</u>

Permutation Family

- $|Perm(n,n)| = (2^n)!$
- Example: n = 2, then |Perm(2,2)| = 4! = 24
 - 4 of 24 permutations are listed below

d	00	01	10	11
f1(d)	00	01	10	11
f2(d)	11	00	01	10
f3(d)	10	11	00	01
f4(d)	01	10	11	00

Keyed Permutation

• A keyed permutation F from $\mathcal{D}=\{0,1\}^n \rightarrow \mathcal{R}=\{0,1\}^n$:

$$F: \mathcal{K} \times \mathcal{D} \to \mathcal{R}$$

$$\mathcal{K} = \{0, 1\}^l, \mathcal{D} = \{0, 1\}^n, \mathcal{R} = \{0, 1\}^n$$

- First input is key, k is chosen uniformly from ${\mathcal K}$
- F is efficient (i.e., polynomial time)
- F_k is deterministic
- F_k is efficiently invertible

$$F_k(x) = y, \quad F_k^{-1}(y) = x$$

Keyed Permutation

$$F: \mathcal{K} \times \mathcal{D} \to \mathcal{R}$$

$$\mathcal{K} = \{0, 1\}^l, \mathcal{D} = \{0, 1\}^n, \mathcal{R} = \{0, 1\}^n$$

Example of keyed permutation F: I = 2, n = 2

d	00	01	10	11
k=00,f(d)	11	00	01	10
k=01,f(d)	10	11	00	01
k=10,f(d)	01	10	11	00
k=11,f(d)	00	01	10	11

Keyed Permutation

$$F: \mathcal{K} \times \mathcal{D} \to \mathcal{R}$$
$$\mathcal{K} = \{0, 1\}^l, \mathcal{D} = \{0, 1\}^n, \mathcal{R} = \{0, 1\}^n$$

- |F|: the no. of permutations in keyed permutation F:
 - Given each key, F_k is <u>deterministic</u>
 - |F| is equal to the number of keys 2^{1}
 - E.g., n = 2, l = 2, then $|F| = 2^{l} = 2^{2} = 4$
- Permutation family: Perm(n,n) $\mathcal{D}=\{0,1\}^n \rightarrow \mathcal{R}=\{0,1\}^n$
 - $|Perm(n,n)| = (2^n)!$
 - E.g., n = 2, then |Perm(2, 2)| = 4! = 24

Pseudorandom Permutation

- Adversary A interacts with a <u>black-box</u> (either function F_k or a permutation f)
 - A cannot tell which one it is, if F is a PRP

Pseudorandom Permutation

- PRP F is not even close to Perm(n, n)
 - $|F| = 2^n$ and $|Perm(n, n)| = (2^n)!$
 - Practice: n=3, |F| = ?? and |Perm(n, n)| = ??

8 v.s. 40320

 A PRP is a PRF, if n is large: a random permutation is indistinguishable from a random function

Secure Enc. from PRF

A straightforward solution from PRF (PRP)

- $\mathsf{KeyGen}(1^n): k \stackrel{u}{\leftarrow} \{0,1\}^n$
- $\operatorname{Enc}_k(m): c \leftarrow F_k(m)$
- $\operatorname{Dec}_k(c) \ m \leftarrow F_k^{-1}(c)$
- Efficient to compute
- Ciphertext c does not directly reveal plaintext m
- But still deterministic, not CPA-secure

CPA-Secure Enc. from PRF

- Add a random, and send it in ciphertext
 - KeyGen $(1^n): k \stackrel{u}{\leftarrow} \{0,1\}^n$
 - $\operatorname{Enc}_k(m): c \leftarrow \langle r, F_k(r) \oplus m \rangle, r \stackrel{u}{\leftarrow} \{0, 1\}^n$
 - $\operatorname{Dec}_k(c)$ given $c = \langle r, s \rangle, m \leftarrow F_k(r) \oplus s$
- E.g., n = 2, r = 00, $F_k(r) = 10$, m = 01, c = (00, 11)
- Practice: r = 10, $F_k(r) = 11$, m = 01 what is c = ??
- c = (r, s) = (10, 10)

• $\operatorname{Enc}_k(m): c \leftarrow \langle r, F_k(r) \oplus m \rangle, r \stackrel{u}{\leftarrow} \{0, 1\}^n$

• $\operatorname{Dec}_k(c)$ given $c = \langle r, s \rangle, m \leftarrow F_k(r) \oplus s$

X	00	01	10	11
k=00,F(x)	11	00	01	10
k=01,F(x)	10	11	00	01
k=10,F(x)	01	10	11	00
k=11,F(x)	00	01	10	11

• Practice: given m=01, r=10, k=10, what is c=??

• $\operatorname{Enc}_k(m): c \leftarrow \langle r, F_k(r) \oplus m \rangle, r \stackrel{u}{\leftarrow} \{0, 1\}^n$

• $\operatorname{Dec}_k(c)$ given $c = \langle r, s \rangle, m \leftarrow F_k(r) \oplus s$

X	00	01	10	11
k=00,F(x)	11	00	01	10
k=01,F(x)	10	11	00	01
k = 10, F(x)	01	10	11	00
k=11,F(x)	00	01	10	11

- Practice: given m=01, r=10, k=10, what is c=??
- $F_k(r) = F_{10}(10) = 11$, $F_k(r)$ xor m = 10, c = (10, 10)

• $\operatorname{Enc}_k(m): c \leftarrow \langle r, F_k(r) \oplus m \rangle, r \stackrel{u}{\leftarrow} \{0, 1\}^n$

• $\operatorname{Dec}_k(c)$ given $c = \langle r, s \rangle, m \leftarrow F_k(r) \oplus s$

X	00	01	10	11
k=00,F(x)	11	00	01	10
k=01,F(x)	10	11	00	01
k=10,F(x)	01	10	11	00
k=11,F(x)	00	01	10	11

Practice: given m=01, k=10, what is c=??

X	00	01	10	11
k=00,F(x)	11	00	01	10
k=01,F(x)	10	11	00	01
k = 10, F(x)	01	10	11	00
k=11,F(x)	00	01	10	11

- Practice: given m=01, k=10, what is c=??
 - if r = 00, $F_k(r) = 01$, $F_k(r)$ xor m = 00, c = (00, 00)
 - if r = 01, $F_k(r) = 10$, $F_k(r)$ xor m = 11, c = (01, 11)
 - if r = 10, $F_k(r) = 11$, $F_k(r)$ xor m = 10, c = (10, 10)
 - if r = 11, $F_k(r) = 00$, $F_k(r)$ xor m = 01, c = (11, 01)
 - Probabilistic: same message, different ciphertexts

• $\operatorname{Enc}_k(m): c \leftarrow \langle r, F_k(r) \oplus m \rangle, r \stackrel{u}{\leftarrow} \{0, 1\}^n$

• $\operatorname{Dec}_k(c)$ given $c = \langle r, s \rangle, m \leftarrow F_k(r) \oplus s$

X	00	01	10	11
k=00,F(x)	11	00	01	10
k=01,F(x)	10	11	00	01
k=10,F(x)	01	10	11	00
k=11,F(x)	00	01	10	11

• <u>Practice</u>: given c = (11, 00), k = 01, what is m=??

• $\operatorname{KeyGen}(1^n): k \stackrel{u}{\leftarrow} \{0,1\}^n$

• $\operatorname{Enc}_k(m): c \leftarrow \langle r, F_k(r) \oplus m \rangle, r \stackrel{u}{\leftarrow} \{0, 1\}^n$

• $\operatorname{Dec}_k(c)$ given $c = \langle r, s \rangle, m \leftarrow F_k(r) \oplus s$

X	00	01	10	11
k=00,F(x)	11	00	01	10
k=01,F(x)	10	11	00	01
k=10,F(x)	01	10	11	00
k=11,F(x)	00	01	10	11

- <u>Practice</u>: given c = (11, 00), k = 01, what is m=??
- $F_k(r) = F_{01}(11) = 01$, $m = F_k(r) \times s = 01$

CPA-Secure Enc. from PRF

- KeyGen $(1^n): k \stackrel{u}{\leftarrow} \{0,1\}^n$
- $\operatorname{Enc}_k(m): c \leftarrow \langle r, F_k(r) \oplus m \rangle, \ r \stackrel{u}{\leftarrow} \{0,1\}^n$
- $\operatorname{Dec}_k(c)$ given $c = \langle r, s \rangle, m \leftarrow F_k(r) \oplus s$
- Probabilistic encryption, CPA-secure
- Message length is fixed
 - n=2, can encrypt 2 bits, what if m = 1 or m = 101
- · We need a scheme for arbitrary message size

Additional Reading

Chapter 3, Introduction to Modern Cryptography, Drs. J. Katz and Y. Lindell, 2nd edition