Theory of Automata Context Free Grammars

Week-9-Lecture-02

Hafiz Tayyeb Javed

Contents

- Examples of Non regular Grammar
- Mapping of CFG into GTG
- Mapping of CFG into FA
- Mapping of GTG into CFG
- Mapping of FA into CFG

```
S \rightarrow aSa \mid aBa
B \rightarrow bB \rightarrow b
```

- First production builds equal number of a's on both sides and recursion is terminated by S→aBa
- Recursion of B→bB may add any number of b's and terminates with
 B→b
- $L(G) = \{a^nb^ma^n n>0, m>0\}$

example

$$L(G) = {a^nb^mc^md^{2n} | n>0, m>0}$$

 Consider relationship between leading a's and trailing d's.

$$S \rightarrow aSdd$$

In the middle equal number of b's and c's

- S→A
- A→bAc
- This middle recursion terminates by A→bc.

• Grammar will be

S→aSdd | aAdd

 $A \rightarrow bAc \mid bc$

Consider another CFG

Language defined is

$$L(G) = \{a^nb^m \mid 0 \le n \le m \le 2n\}$$

- A grammar that generates the language consisting of even-length string over {a, b}
 S → aO | bO | Λ
 O → aS | bS
- S and O work as counters i.e. when an S is in a sentential form that marks even number of terminals have been generated
- Presence of O in a sentential form indicates that an odd number of terminals have been generated.
- The strategy can be generalized, say for string of length exactly divisible by 3 we need three counters to mark 0, 1, 2

$$S \rightarrow aP \mid bP \mid \Lambda$$

 $P \rightarrow aQ \mid bQ$
 $Q \rightarrow aS \mid bS$

Even-Even

• $\Sigma = \{a,b\}$

Productions:

- $S \rightarrow SS$
- $S \rightarrow XS$
- $S \rightarrow \Lambda$
- $S \rightarrow YSY$
- $X \rightarrow aa$
- $X \rightarrow bb$
- $Y \rightarrow ab$
- $Y \rightarrow ba$

Devise a grammar that generates strings with even number of a's and even number of b's

Remarks

- We have seen that some regular languages can be generated by CFGs, and some non-regular languages can also be generated by CFGs.
- In Chapter 13, we will show that ALL regular languages can be generated by CFGs.
- In Chapter 16, we will see that there is some non-regular language that cannot be generated by any CFG.
- Thus, the set of languages generated by CFGs is properly larger than the set of regular languages, but properly smaller than the set of all possible languages.

Regular Grammar

Given an FA, there is a CFG that generates exactly the language accepted by the FA.

In other words, all regular languages are CFLs

Creating a CFG from an FA

<u>Step-1</u> The Non-terminals in CFG will be all names of the states in the FA with the start state renamed S.

Step-2 For every edge

Create productions $X \rightarrow aY$ or $X \rightarrow aX$

Do the same for b-edges

<u>Step-3</u> For every final-state X, create the production

$$X \rightarrow \Lambda$$

$$S \rightarrow aM$$

$$S \rightarrow bS$$

$$M \rightarrow aF$$

$$M \rightarrow bS$$

$$F \rightarrow aF$$

$$F \rightarrow bF$$

$$F \rightarrow \Lambda$$

Note: It is not necessary that each CFG has a corresponding FA. But each FA has an equivalent CFG.

Regular Grammar

Theorem 22:

If all the productions in a given CFG fit one of the two forms: Non-terminal → semiword

or Non-terminal → word

(Where the word may be a Λ or string of terminal), then the language generated by the CFG is Regular.

Proof:

For a CFG to be regular is by constructing a TG from the given CFG.

Proof contd.

Let us consider a general CFG in this form

Where N's are non-terminal and w's are the string of terminal and part $w_v N_z$ are semiwords.

Let N_1 =S. Draw a small circle for each N and one extra circle labelled +, the circle for S we label (-)

Proof contd.

• For each production of the form $N_x \rightarrow w_y N_{z_z}$ draw a directed edge from state N_x to N_z with label w_y .

- If Nx = Nz, the path is a loop
- For every production of the form $N_p \rightarrow W_q$, draw a directed edge from Np to + and label it with W_q even if $W_q = \Lambda$.

• Any path in TG form – to + corresponds to a word in the language of TG (by concatenating symbols) and simultaneously corresponds to sequence of productions on the CFG generating words.

- Conversely every production of the word in the CFG:
- $S \rightarrow wN \rightarrow wwN \rightarrow wwwN \rightarrow \rightarrow wwwww$ Corresponds to a path in this TG.

Consider the CFG S → aaS | bbS | Λ

- The regular expression is given by (aa + bb)*.
- Consider the CFG

 $S \rightarrow aaS \mid bbS \mid abX \mid baX \mid \Lambda$

X→ aaX | bbX | abS | baS

Language accepted?

+ ab, ba

aa,bb

Theory of Automata

ab, ba

X