A guide to the literature on handling dynamic systems with ASP and alike

KRR@UP

May 20, 2022

README

The following aims at giving a survey of the literature.

The idea is that first level references constitute common literature that anyone working on the subject should be aware of. Accordingly, next levels go more and more in detail and become thus less relevant for people not on the very same subject.

Notes can be posted in the folder notes using the bib-key as the file name (plus .tex). The inclusion of notes can be switched on and off in the IATEX source.

1 Linear temporal logic

1. degola16a

2 Linear temporal logic over finite traces

- 1. giavar13a
 - (a) gimamo14a; giavar15a; giavar16a

3 Automata for temporal logic

- 1. degola16a
- 3.1 Linear Temporal logic
- 3.1.1 Infinite traces
 - 1. vardi95a; vardi97a

Susana This old paper explains in more detail concepts used in the newer papers by Vardi for Automata and temporal logics.

(a) helnie03a

Susana Does bounded LTL model checking by computing stable models with a Petri net in ASP using Smodels.

(b) pursah21a

Susana Uses an SMT-based algorithm and Büchi Automaton for the *LTL path planning problem*, considering obstacles that are dynamically introduced. Agents must complete a task in a cycle as many times as possible.

(c) bogigeparu20a

Susana Synthesizes a finite-state controller from a LTL specification, which is then translated it into a Python program.

3.1.2 Finite traces

1. giavar13a

Susana They define a finite version of LDL and LTL, namely LDL_f and LTL_f, and show their translation to Alternating Automata.

Susana Even though it is not intuitive, the set of final states of the AWF in the translation is really \emptyset . Note that when *last* is in the trace, then all transitions are *true* or *false*, so there will be no states in the last level of the tree (run).

Susana There is an error in the transition function of LDL_f to AFW. A case analysis is missing, to check if it is the last time point of the trace. This is corrected in **giavar15a**.

2. hejejoklparasa95a

Susana Tool to translate Monadic Second Order Formulas into finite state automata called MONA. See also the system LTLf2DFA 1 where they use MONA to translate LTL_f formulas to DFAs.

- (a) gimamo14a; giavar15a; giavar16a
- (b) zhpuva19a
- (c) zhtapuva20

Susana Investigates DFA-minimization algorithms adapted to start from temporal logic formulas in LTL_f and Past LTL_f .

(d) baimci06a

Susana Explores planning with temporally extended goals by transforming LTL_f with FO Quantifiers to parameterized NFAs.

(e) rozvar07a

Susana Approaches LTL_f satisfisability problem using Boolean SAT solvers based on a transition system.

(f) balitava20a

 $^{^{1} \}rm https://github.com/whitemech/LTLf2DFA$

Susana Hybrid approach for the conversion of LTL_f formulas into DFAs using explicit and symbolic representations.

(g) cabamumc18a

Susana Reduces LTL_f synthesis to finding a strong plan for a (FOND) planning problem using a NFA. They improve efficiency by exploiting techniques of symbolic automata decomposition, lazy determinization, certificates of unrealizability, and state abstraction.

3.2 Linear Dynamic logic

- 1. giavar13a
 - (a) giafav21a

Susana Constructs a DFA of an LDL_f formula by applying composition of previously computed DFAs. For the Kleen Star they use the translation to AWF **giavar13a** instead.

(b) sobanamc03a

Susana Represents temporal an procedural knowledge in ASP by encoding temporal formulas and GOLOG programs as predicates. The semantics are directly encoded in a logic program. They include the constraints $\leftarrow not \ htf(\phi, 0)$ and $\leftarrow not \ trans(\rho, 0, n)$ to work in the classical case.

(c) ryan14a

Susana Compares different ASP encodings for GOLOG. The best performance was the representation as Finite State Machine previously compiled from a regular expression (Thompson 1968).

4 Dynamic temporal logic

- 1. hatiko00a
 - (a) fislad79a

5 Dynamic temporal logic over finite traces

- 1. giavar13a
 - (a) giavar15a; giavar16a
- 2. cadilasc20a
- 3. See also:
 - (a) Section ??
 - (b) sobanamc03a

6 Temporal Equilibrium Logic

1. agcadipevi13a

Klaus Good introduction on temporal here and there and temporal equilibrium logic. It also provides translations of TEL programs into logic programs. Finally, they also consider an automata based method to compute models.

7 Temporal Equilibrium Logic on Finite Traces

1. cakascsc18a

Klaus Explains TEL for finite traces. Translates the TEL_f program into a logic program using a Tseitin-style reduction. It also goes into a translation for incremental solving(implemented in telingo). This translation only uses what they call "present-centered rules".

(a) cakamosc19a

Klaus This is about the telingo implementation. Most importantly, it explains how a temporal formula(in past-future format) can be translated into a logic program.

8 Metric temporal logic

1.

9 Metric temporal logic over finite traces

1.

10 Temporal logic in general

1.

11 Splitting

1. liftur94a

Francois Original paper on splitting logic programs. Parts 3 and 6 introducing splitting set and splitting sequence are a must read.

12 Module Theory

1. oikjan06a

Francois Great introduction on modules and their composition. Must read for anyone interested in incremental solving.

13 Incremental ASP solving

- 1. gekakasc17a
 - (a) gekakaosscth08a
 - (b) gekasc12a

14 Action languages

- 1. gellif98a
 - (a) gilelimctu03a
 - (b) leelif03b
- 2. leliya13a
 - (a) khyalelist14a
 - (b) bablee15a

15 ASP planning

1. lifschitz02a

Torsten The seminal paper on using ASP for planning. Things may have evolved meanwhile but it still gives the basic intuitions in the admirable style of Vladimir.

- (a) gellif93a
- (b) bargel00a
- 2. sobanamc03a

16 ASP scheduling

(This is meant to include actions with durations.)

- 1. sobatu04a
- 2. baboge05a
- 3. See also
 - (a) leelif03b; khyalelist14a

17 SAT planning

1. rintanen09a

18 Temporal planning

- 1. backab00a
- 2. kvhedo08a

1 T2F: Is this the best reference, or just a specialized one...?

19 Agent programming

- 1. lereleli97a
- 2. gilele00a
 - (a) honiclla16a
 - (b) **ryan14a**

20 Planning in general

1.

This article was processed using the comments style on May 20, 2022. There remain 1 comments to be processed.