Approx-SVP in Ideal lattices with Pre-Processing

Alice Pellet--Mary and Damien Stehlé

LIP, ENS de Lyon

Aric seminar, June 07, 2018

Lattice

A lattice L is a 'vector space' over \mathbb{Z} .

Lattice

A lattice L is a 'vector space' over \mathbb{Z} .

A basis of L is an invertible matrix B such that $L = \{Bx \mid x \in \mathbb{Z}^n\}$.

$$\begin{pmatrix} 3 & 1 \\ 0 & 2 \end{pmatrix}$$
 and $\begin{pmatrix} 17 & 10 \\ 4 & 2 \end{pmatrix}$ are two basis of the above lattice.

Shortest Vector Problem (SVP)

Find a shortest (in Euclidean norm) non-zero vector.

Its Euclidean norm is denoted λ_1 .

Approximate Shortest Vector Problem (approx-SVP)

Find a short (in Euclidean norm) non-zero vector. (of norm $\leq 2\lambda_1$ for instance).

Closest Vector Problem (CVP)

Given a target point t, find a point of the lattice closest to t.

Approximate Closest Vector Problem (approx-CVP)

Given a target point t, find a point of the lattice close to t.

Complexity of SVP/CVP

Applications

SVP and CVP in general lattices are conjectured to be hard to solve both quantumly and classically \Rightarrow used in cryptography

Complexity of SVP/CVP

Applications

SVP and CVP in general lattices are conjectured to be hard to solve both quantumly and classically \Rightarrow used in cryptography

Best Time/Approximation trade-off for general lattices: BKZ algorithm

Structured lattices

Improve efficiency of lattice-based crypto using structured lattices.

- Lattice defined using circulant matrices
- Ideal lattices
- ...

Structured lattices

Improve efficiency of lattice-based crypto using structured lattices.

- Lattice defined using circulant matrices
- Ideal lattices
- ...

RLWE

The Ring Learning with Error (RLWE) problem is at least as hard as approx-SVP in ideal lattices.

Many cryptographic constructions based on RLWE.

Structured lattices

Improve efficiency of lattice-based crypto using structured lattices.

- Lattice defined using circulant matrices
- Ideal lattices
- ...

RLWE

The Ring Learning with Error (RLWE) problem is at least as hard as approx-SVP in ideal lattices.

Many cryptographic constructions based on RLWE.

Is approx-SVP still hard when restricted to ideal lattices?

SVP in ideal lattices

[CDPR16,CDW17]: Better than BKZ in the quantum setting

[[]CDPR16] R. Cramer, L. Ducas, C. Peikert and O. Regev. Recovering Short Generators of Principal Ideals in Cyclotomic Rings. Eurocrypt 2016.

[[]CDW17] R. Cramer, L. Ducas, B. Wesolowski. Short Stickelberger Class Relations and Application to Ideal-SVP. Eurocrypt 2017.

This work

- Heuristic
- Pre-processing $2^{O(n)}$ independent of the choice of the ideal (non-uniform algorithm).

This work

- Heuristic
- Pre-processing $2^{O(n)}$ independent of the choice of the ideal (non-uniform algorithm).

Disclaimer: In this talk, only *principal* ideal lattices

Outline of the talk

Definitions and objective

The CDPR algorithm

This work

First definitions

$$R = \mathbb{Z}[X]/(X^n + 1)$$
 for $n = 2^k$

First definitions

$$R = \mathbb{Z}[X]/(X^n + 1)$$
 for $n = 2^k$

- Units: $R^{\times} = \{ a \in R \mid \exists b \in R, ab = 1 \}$
 - ightharpoonup E.g. $\mathbb{Z}^{ imes}=\{1,-1\}$

First definitions

$$R = \mathbb{Z}[X]/(X^n + 1)$$
 for $n = 2^k$

- Units: $R^{\times} = \{ a \in R \mid \exists b \in R, ab = 1 \}$
 - ▶ E.g. $\mathbb{Z}^{\times} = \{1, -1\}.$
- Principal ideals: $\langle g \rangle = \{ gr \mid r \in R \}$ (i.e. all multiples of g)
 - g is called a generator of $\langle g \rangle$
 - ▶ The generators of $\langle g \rangle$ are exactly the ug for $u \in R^{\times}$
 - ▶ E.g. in \mathbb{Z} : $\langle 2 \rangle = \{\text{even numbers}\} = \langle -2 \rangle$

For all $r \in R$, $r = r_0 + r_1X + \cdots + r_{n-1}X^{n-1}$, with $r_i \in \mathbb{Z}$.

- Euclidean norm: $||r|| = \sqrt{\sum_{i=0}^{n-1} r_i^2}$.
- $R \cong \mathbb{Z}^n$ is a lattice.

For all $r \in R$, $r = r_0 + r_1X + \cdots + r_{n-1}X^{n-1}$, with $r_i \in \mathbb{Z}$.

- Euclidean norm: $||r|| = \sqrt{\sum_{i=0}^{n-1} r_i^2}$.
- $R \cong \mathbb{Z}^n$ is a lattice.
- $\langle g \rangle$ is a sub-lattice of R.
 - ▶ E.g. $\langle 2 \rangle \cong (2\mathbb{Z})^n$.

For all $r \in R$, $r = r_0 + r_1X + \cdots + r_{n-1}X^{n-1}$, with $r_i \in \mathbb{Z}$.

- Euclidean norm: $||r|| = \sqrt{\sum_{i=0}^{n-1} r_i^2}$.
- $R \cong \mathbb{Z}^n$ is a lattice.
- $\langle g \rangle$ is a sub-lattice of R.

Minkowski's embedding

- ullet $\zeta\in\mathbb{C}$ primitive 2n-th root of unity $(\zeta^{2n}=1)$
- $\sigma(r) = (r(\zeta), r(\zeta^3), \cdots, r(\zeta^{n-1})) \in \mathbb{C}^{n/2} \cong \mathbb{R}^n$
- $R \mapsto \sigma(R)$ preserves the geometry (isometry + scaling)

For all $r \in R$, $r = r_0 + r_1X + \cdots + r_{n-1}X^{n-1}$, with $r_i \in \mathbb{Z}$.

- Euclidean norm: $||r|| = \sqrt{\sum_{i=0}^{n-1} r_i^2}$.
- $R \cong \mathbb{Z}^n$ is a lattice.
- $\langle g \rangle$ is a sub-lattice of R.

Minkowski's embedding

- $\zeta \in \mathbb{C}$ primitive 2*n*-th root of unity $(\zeta^{2n} = 1)$
- $\sigma(r) = (r(\zeta), r(\zeta^3), \cdots, r(\zeta^{n-1})) \in \mathbb{C}^{n/2} \cong \mathbb{R}^n$
- $R \mapsto \sigma(R)$ preserves the geometry (isometry + scaling)

Algebraic structure

$$\sigma(r) = (\widetilde{r_1}, \cdots, \widetilde{r_{n/2}}) \in \mathbb{C}^{n/2}$$

- Algebraic norm: $\mathcal{N}(r) = \prod_{i=1}^{n/2} |\widetilde{r_i}|^2 \in \mathbb{R}$.
 - ▶ E.g. in $R: \mathcal{N}(2) = 2^n$.

Algebraic structure

$$\sigma(r) = (\widetilde{r_1}, \cdots, \widetilde{r_{n/2}}) \in \mathbb{C}^{n/2}$$

- Algebraic norm: $\mathcal{N}(r) = \prod_{i=1}^{n/2} |\widetilde{r}_i|^2 \in \mathbb{R}$.
 - ▶ E.g. in $R: \mathcal{N}(2) = 2^n$.
- Properties:
 - $\mathcal{N}(ab) = \mathcal{N}(a) \cdot \mathcal{N}(b)$ for all $a, b \in R$,
 - ▶ $\mathcal{N}(a) \ge 1$ and $\mathcal{N}(a) \in \mathbb{Z}$ for all $a \in R \setminus \{0\}$,

Relations between algebraic/geometric structures

Reminder: $\sigma(r) = (\widetilde{r_1}, \cdots, \widetilde{r_{n/2}})$

- $||r|| = \sqrt{\sum_{i} |\widetilde{r_i}|^2}$
- $\mathcal{N}(r) = \prod_i |\widetilde{r_i}|^2$

Relations between algebraic/geometric structures

Reminder: $\sigma(r) = (\widetilde{r_1}, \cdots, \widetilde{r_{n/2}})$

- $||r|| = \sqrt{\sum_i |\widetilde{r_i}|^2}$
- $\mathcal{N}(r) = \prod_i |\widetilde{r_i}|^2$
- Euclidean/algebraic norm:
 - ▶ ||r|| small $\Rightarrow \mathcal{N}(r)$ relatively small.
 - ▶ $\mathcal{N}(r)$ small $\Rightarrow ||r||$ relatively small (e.g. $(2^{-50}, 2^{50})$).

Relations between algebraic/geometric structures

Reminder:
$$\sigma(r) = (\widetilde{r_1}, \cdots, \widetilde{r_{n/2}})$$

- $||r|| = \sqrt{\sum_i |\widetilde{r_i}|^2}$
- $\mathcal{N}(r) = \prod_i |\widetilde{r_i}|^2$
- Euclidean/algebraic norm:
 - ▶ ||r|| small $\Rightarrow \mathcal{N}(r)$ relatively small.
 - $\blacktriangleright \mathcal{N}(r)$ small $\Rightarrow ||r||$ relatively small (e.g. $(2^{-50}, 2^{50})$).
- $\lambda_1(\langle g \rangle) = \text{poly}(n) \cdot \mathcal{N}(g)^{1/n}$

Objective of this talk

Objective

Given a basis of a principal ideal $\langle g \rangle$ and $\alpha \in (0,1]$, Find $r \in \langle g \rangle$ such that $\|r\| \leq 2^{\widetilde{O}(n^{\alpha})} \cdot \lambda_1 = 2^{\widetilde{O}(n^{\alpha})} \cdot \mathcal{N}(g)^{1/n}$.

Objective of this talk

Objective

Given a basis of a principal ideal $\langle g \rangle$ and $\alpha \in (0,1]$, Find $r \in \langle g \rangle$ such that $\|r\| \leq 2^{\widetilde{O}(n^{\alpha})} \cdot \lambda_1 = 2^{\widetilde{O}(n^{\alpha})} \cdot \mathcal{N}(g)^{1/n}$.

BKZ algorithm can do it in time $2^{\tilde{O}(n^{1-\alpha})}$, can we do better?

Outline of the talk

Definitions and objective

2 The CDPR algorithm

This work

Overview of the CDPR algorithm (on an idea of [CGS14])

Important points

- Large algebraic norm \Rightarrow large Euclidean norm.
- In $\langle g \rangle$, the elements with the smallest algebraic norm are the generators.

 $[[]CGS14]{:}\ P.\ Campbell,\ M.\ Groves,\ and\ D.\ Shepherd.\ Soliloquy{:}\ A\ cautionary\ tale.$

[[]BS16]: J.F. Biasse, F. Song. Efficient quantum algorithms for computing class groups and solving the principal ideal problem in arbitrary degree number fields, SODA.

[[]BEFGK17]: J.F. Biasse, T. Espitau, P.A. Fouque, A. Gélin, P. Kirchner. Computing generator in cyclotomic integer rings, Eurocrypt.

Overview of the CDPR algorithm (on an idea of [CGS14])

Important points

- Large algebraic norm \Rightarrow large Euclidean norm.
- In $\langle g \rangle$, the elements with the smallest algebraic norm are the generators.

The CDPR algorithm: find a generator with a smallest Euclidean norm

 $^{[\}mathsf{CGS14}]{:}\ \mathsf{P.}\ \mathsf{Campbell},\ \mathsf{M.}\ \mathsf{Groves},\ \mathsf{and}\ \mathsf{D.}\ \mathsf{Shepherd}.\ \mathsf{Soliloquy}{:}\ \mathsf{A}\ \mathsf{cautionary}\ \mathsf{tale}.$

[[]BS16]: J.F. Biasse, F. Song. Efficient quantum algorithms for computing class groups and solving the principal ideal problem in arbitrary degree number fields, SODA.

[[]BEFGK17]: J.F. Biasse, T. Espitau, P.A. Fouque, A. Gélin, P. Kirchner. Computing generator in cyclotomic integer rings, Eurocrypt.

Overview of the CDPR algorithm (on an idea of [CGS14])

Important points

- Large algebraic norm \Rightarrow large Euclidean norm.
- In $\langle g \rangle$, the elements with the smallest algebraic norm are the generators.

The CDPR algorithm: find a generator with a smallest Euclidean norm

- ullet Find a generator g_1 of $\langle g
 angle$
 - ▶ [BS16]: quantum time poly(n)
 - ▶ [BEFGK17]: classical time $2^{\widetilde{O}(\sqrt{n})}$
- Find $u \in R^{\times}$ which minimizes $||ug_1||$.

[CGS14]: P. Campbell, M. Groves, and D. Shepherd. Soliloquy: A cautionary tale.

[BS16]: J.F. Biasse, F. Song. Efficient quantum algorithms for computing class groups and solving the principal ideal problem in arbitrary degree number fields, SODA.

[BEFGK17]: J.F. Biasse, T. Espitau, P.A. Fouque, A. Gélin, P. Kirchner. Computing generator in cyclotomic integer rings, Eurocrypt.

The Log unit lattice

Definitions

$$\mathsf{Log}: \sigma(R) \to \mathbb{R}^{n/2}$$

$$(\widetilde{r_1}, \cdots, \widetilde{r_{n/2}}) \mapsto (\mathsf{log}\,|\widetilde{r_1}|, \cdots, \mathsf{log}\,|\widetilde{r_{n/2}}|)$$

Let
$$\mathbf{1}=(1,\cdots,1)$$
 and $H=\mathbf{1}^{\perp}$.

The Log unit lattice

Definitions

$$\mathsf{Log}: \sigma(R) \to \mathbb{R}^{n/2}$$

$$(\widetilde{r_1}, \cdots, \widetilde{r_{n/2}}) \mapsto (\mathsf{log}\,|\widetilde{r_1}|, \cdots, \mathsf{log}\,|\widetilde{r_{n/2}}|)$$

Let
$$\mathbf{1}=(1,\cdots,1)$$
 and $H=\mathbf{1}^{\perp}$.

Theorem (Dirichlet)

 $\Lambda := \mathsf{Log}(R^{\times})$ is a lattice included in H.

The Log unit lattice

Definitions

$$\mathsf{Log}: \sigma(R) \to \mathbb{R}^{n/2}$$

$$(\widetilde{r_1}, \cdots, \widetilde{r_{n/2}}) \mapsto (\mathsf{log}\,|\widetilde{r_1}|, \cdots, \mathsf{log}\,|\widetilde{r_{n/2}}|)$$

Let
$$\mathbf{1}=(1,\cdots,1)$$
 and $H=\mathbf{1}^{\perp}$.

Theorem (Dirichlet)

 $\Lambda := \mathsf{Log}(R^{\times})$ is a lattice included in H.

Write
$$\lceil \mathsf{Log}(r) = h + a\mathbf{1} \rceil$$
, with $h \in H$

- $||r|| \leq \sqrt{n} \cdot 2^a \cdot 2^{||h||}$
- $a = \frac{\log |\mathcal{N}(r)|}{n}$

Reminder (Log(r) = h + a1)

- $||r|| \leq \sqrt{n} \cdot 2^a \cdot 2^{||h||}$
- $a = \frac{\log |\mathcal{N}(r)|}{n}$

- Find a generator g_1 of $\langle g \rangle$.
 - quantum poly time [BS16]

Reminder $(Log(r) = h + a\mathbf{1})$

- $||r|| \leq \sqrt{n} \cdot 2^a \cdot 2^{||h||}$
- $a = \frac{\log |\mathcal{N}(r)|}{n}$

- Find a generator g_1 of $\langle g \rangle$.
 - quantum poly time [BS16]

Reminder $(Log(r) = h + a\mathbf{1})$

- $||r|| \leq \sqrt{n} \cdot 2^a \cdot 2^{||h||}$
- $a = \frac{\log |\mathcal{N}(r)|}{n}$

- Find a generator g_1 of $\langle g \rangle$.
 - quantum poly time [BS16]

Reminder (Log(r) = h + a1)

- $||r|| \leq \sqrt{n} \cdot 2^a \cdot 2^{||h||}$
- $a = \frac{\log |\mathcal{N}(r)|}{n}$

- Find a generator g_1 of $\langle g \rangle$.
 - quantum poly time [BS16]

Reminder $(Log(r) = h + a\mathbf{1})$

- $||r|| \leq \sqrt{n} \cdot 2^a \cdot 2^{||h||}$
- $a = \frac{\log |\mathcal{N}(r)|}{n}$

- Find a generator g_1 of $\langle g \rangle$.
 - quantum poly time [BS16]

Reminder (Log(r) = h + a1)

- $||r|| \leq \sqrt{n} \cdot 2^a \cdot 2^{||h||}$
- $a = \frac{\log |\mathcal{N}(r)|}{n}$

- Find a generator g_1 of $\langle g \rangle$.
 - quantum poly time [BS16]
- Solve CVP in Λ.

Reminder (Log(r) = h + a1)

- $||r|| \leq \sqrt{n} \cdot 2^a \cdot 2^{||h||}$
- $a = \frac{\log |\mathcal{N}(r)|}{n}$

- Find a generator g_1 of $\langle g \rangle$.
 - quantum poly time [BS16]
- Solve CVP in Λ.

Reminder (Log(r) = h + a1)

- $||r|| \leq \sqrt{n} \cdot 2^a \cdot 2^{||h||}$
- $a = \frac{\log |\mathcal{N}(r)|}{n}$

- Find a generator g_1 of $\langle g \rangle$.
 - quantum poly time [BS16]
- Solve CVP in Λ.
 - ▶ Good basis of Λ ⇒ CVP in poly time ⇒ $||h|| \leq \widetilde{O}(\sqrt{n})$

Reminder (Log(r) = h + a1)

- $||r|| \leq \sqrt{n} \cdot 2^a \cdot 2^{||h||}$
- $a = \frac{|\log |\mathcal{N}(r)|}{n}$

- Find a generator g_1 of $\langle g \rangle$.
 - quantum poly time [BS16]
- Solve CVP in Λ.
 - ▶ Good basis of Λ ⇒ CVP in poly time ⇒ $||h|| \leq \widetilde{O}(\sqrt{n})$

$$||ug_1|| \leq \mathcal{N}(ug_1)^{1/n} \cdot 2^{\widetilde{O}(\sqrt{n})}$$

Reminder $(Log(r) = h + a\mathbf{1})$

- $||r|| \leq \sqrt{n} \cdot 2^a \cdot 2^{||h||}$
- $a = \frac{\log |\mathcal{N}(r)|}{n}$
- $\lambda_1 = \operatorname{poly}(n) \cdot \mathcal{N}(g)^{1/n}$

- Find a generator g_1 of $\langle g \rangle$.
 - quantum poly time [BS16]
- Solve CVP in Λ.
 - ► Good basis of Λ ⇒ CVP in poly time ⇒ $||h|| \le \widetilde{O}(\sqrt{n})$

$$||ug_1|| \le \mathcal{N}(ug_1)^{1/n} \cdot 2^{\widetilde{O}(\sqrt{n})}$$

 $\le 2^{\widetilde{O}(\sqrt{n})} \cdot \lambda_1$

Reminder $(Log(r) = h + a\mathbf{1})$

- $||r|| \leq \sqrt{n} \cdot 2^a \cdot 2^{||h||}$
- $a = \frac{\log |\mathcal{N}(r)|}{n}$
- $\lambda_1 = \text{poly}(n) \cdot \mathcal{N}(g)^{1/n}$

- Find a generator g_1 of $\langle g \rangle$.
 - quantum poly time [BS16]
- Solve CVP in Λ.
 - ► Good basis of Λ ⇒ CVP in poly time ⇒ $||h|| \leq \widetilde{O}(\sqrt{n})$

$$||ug_1|| \le \mathcal{N}(ug_1)^{1/n} \cdot 2^{\widetilde{O}(\sqrt{n})}$$

 $\le 2^{\widetilde{O}(\sqrt{n})} \cdot \lambda_1$

Reminder (Log(r) = h + a1)

- $||r|| \leq \sqrt{n} \cdot 2^a \cdot 2^{||h||}$
- $a = \frac{\log |\mathcal{N}(r)|}{n}$
- $\lambda_1 = \text{poly}(n) \cdot \mathcal{N}(g)^{1/n}$

Lower bound [CDPR16]:

$$\forall u \in R^{\times}, ||t - \mathsf{Log}(u)|| \ge \Omega(\sqrt{n}).$$

Reminder $(Log(r) = h + a\mathbf{1})$

- $||r|| \leq \sqrt{n} \cdot 2^a \cdot 2^{||h||}$
- $a = \frac{\log |\mathcal{N}(r)|}{n}$
- $\lambda_1 = \text{poly}(n) \cdot \mathcal{N}(g)^{1/n}$

Lower bound [CDPR16]:

$$\forall u \in R^{\times}, ||t - \mathsf{Log}(u)|| \ge \Omega(\sqrt{n}).$$

Reminder (Log(r) = h + a1)

- $||r|| \leq \sqrt{n} \cdot 2^a \cdot 2^{||h||}$
- $a = \frac{\log |\mathcal{N}(r)|}{n}$
- $\lambda_1 = \text{poly}(n) \cdot \mathcal{N}(g)^{1/n}$

Lower bound [CDPR16]:

$$\forall u \in R^{\times}, \|t - \mathsf{Log}(u)\| \ge \Omega(\sqrt{n}).$$

Reminder (Log(r) = h + a1)

- $||r|| \leq \sqrt{n} \cdot 2^a \cdot 2^{||h||}$
- $a = \frac{\log |\mathcal{N}(r)|}{n}$
- $\lambda_1 = \text{poly}(n) \cdot \mathcal{N}(g)^{1/n}$

Lower bound [CDPR16]:

$$\forall u \in R^{\times}, ||t - \mathsf{Log}(u)|| \ge \Omega(\sqrt{n}).$$

Reminder (Log(r) = h + a1)

- $||r|| \leq \sqrt{n} \cdot 2^a \cdot 2^{||h||}$
- $a = \frac{\log |\mathcal{N}(r)|}{n}$
- $\lambda_1 = \text{poly}(n) \cdot \mathcal{N}(g)^{1/n}$

Lower bound [CDPR16]:

$$\forall u \in R^{\times}, ||t - \mathsf{Log}(u)|| \ge \Omega(\sqrt{n}).$$

$$\exists \langle g
angle$$
 such that, $orall u \in R^ imes$ $\|ug\| \geq 2^{\Omega(\sqrt{n})} \cdot \lambda_1$

Outline of the talk

Definitions and objective

The CDPR algorithm

This work

Difficulties

- We cannot subtract $Log(r_i)$
- We cannot add too many $Log(r_i)$'s
- \Rightarrow This is not a lattice

Difficulties

- We cannot subtract $Log(r_i)$
- We cannot add too many $Log(r_i)$'s
- ⇒ This is not a lattice

We consider the lattice

۸	$h_{\text{Log } r_1}, \ldots, h_{\text{Log } r_n}$
0	1 1
	1

Difficulties

- We cannot subtract $Log(r_i)$
- We cannot add too many $Log(r_i)$'s
- \Rightarrow This is not a lattice

We consider the lattice and CVP target

٨	$h_{\text{Log } r_1}, \ldots, h_{\text{Log } r_n}$
0	1 1

Difficulties

- We cannot subtract $Log(r_i)$
- We cannot add too many $Log(r_i)$'s
- \Rightarrow This is not a lattice

We consider the lattice and CVP target

٨	$h_{\text{Log }r_1},\ldots,h_{\text{Log }r_n}$
0	1 1

Compute r_1, \dots, r_n of small algebraic norms

Compute r_1, \cdots, r_n of small algebraic norms

Compute g_1 a generator of $\langle g \rangle$

Compute r_1, \dots, r_n of small algebraic norms

Compute g_1 a generator of $\langle g \rangle$

Construct
$$L:=egin{bmatrix} \Lambda & h_{\log n},\dots,h_{\log n} \\ \hline & 1 \\ 0 & & \ddots \\ & & & 1 \end{bmatrix}$$
 and $t:=egin{bmatrix} -h_{\log n} \\ c>0 \\ \end{array}$

Compute r_1, \dots, r_n of small algebraic norms

Compute g_1 a generator of $\langle g \rangle$

Construct
$$L:=egin{bmatrix} \Lambda & h_{\log_A,\dots,h_{\log_A}} \\ & & 1 \\ & & & 1 \\ & & & \ddots \\ & & & & 1 \end{bmatrix}$$
 and $t:=egin{bmatrix} -h_{\log_B}, & & & \\ & & -h_{\log_B}, & & \\ & & & c>0 \\ & & & & c>0 \\ & & & & c \end{pmatrix}$

Solve CVP in L with target t (for some $\alpha \in [0,1]$) \Rightarrow get a vector $s \in L$ such that $||s-t|| \leq \widetilde{O}(n^{\alpha})$

Compute r_1, \dots, r_n of small algebraic norms

Compute g_1 a generator of $\langle g \rangle$

Construct
$$L:=egin{bmatrix} \Lambda & h_{\log p_1,\ldots,h_{\log p_s}} \\ & 1 \\ 0 & \ddots \\ & & 1 \end{bmatrix}$$
 and $t:=egin{bmatrix} -h_{\log g_s} \\ & c>0 \end{bmatrix}$

Solve CVP in L with target t (for some $\alpha \in [0,1]$) \Rightarrow get a vector $s \in L$ such that $||s-t|| \leq \widetilde{O}(n^{\alpha})$

Write
$$s = \begin{bmatrix} b_{\log r} \\ * \end{bmatrix}$$
 for some $r \in R$

Compute r_1, \dots, r_n of small algebraic norms

Compute g_1 a generator of $\langle g \rangle$

Construct
$$L:=egin{bmatrix} \Lambda & h_{\log n},\dots,h_{\log n} \ & & & \\ & & 1 \ & & & \\ & & & \ddots \ & & & 1 \end{bmatrix}$$
 and $t:=egin{bmatrix} -h_{\log g_1} \ & & \\ -h_{\log g_1} \ & & \\ & c>0 \ & & \\ & & & \ddots \ & \\ & & & & 1 \ & \\ \end{pmatrix}$

Solve CVP in L with target t (for some $\alpha \in [0,1]$) \Rightarrow get a vector $s \in L$ such that $||s-t|| \leq \widetilde{O}(n^{\alpha})$

Write
$$s = \begin{bmatrix} b_{\text{Log}\,r} \\ \star \end{bmatrix}$$
 for some $r \in R$

$$\|\mathit{rg}_1\| \leq 2^{\widetilde{O}(\mathit{n}^{lpha})} \cdot \lambda_1$$

Compute r_1, \dots, r_n of small algebraic norms

Compute g_1 a generator of $\langle g \rangle$

$$poly(n) / 2^{\widetilde{O}(\sqrt{n})}$$
$$poly(n) / 2^{\widetilde{O}(\sqrt{n})}$$

Solve CVP in L with target t (for some $\alpha \in [0,1]$) \Rightarrow get a vector $s \in L$ such that $||s - t|| \leq \widetilde{O}(n^{\alpha})$

Write
$$s = \begin{pmatrix} b_{\text{Log}\,r} \\ \star \end{pmatrix}$$
 for some $r \in R$

$$\|\mathit{rg}_1\| \leq 2^{\widetilde{O}(\mathit{n}^{lpha})} \cdot \lambda_1$$

Compute r_1, \dots, r_n of small algebraic norms

Compute g_1 a generator of $\langle g \rangle$

 $poly(n) / 2^{\widetilde{O}(\sqrt{n})}$ $poly(n) / 2^{\widetilde{O}(\sqrt{n})}$

Construct
$$L:=egin{bmatrix} \Lambda & h_{\log n},\dots,h_{\log n} \\ & 1 \\ & & 1 \\ & & & \ddots \\ & & & & 1 \end{bmatrix}$$
 and $\mathbf{t}:=egin{bmatrix} -h_{\log g}, \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$

Solve CVP in L with target t (for some $\alpha \in [0,1]$) \Rightarrow get a vector $s \in L$ such that $||s - t|| \leq \widetilde{O}(n^{\alpha})$

Write
$$s = \begin{bmatrix} b_{\text{Log}\,r} \\ \star \end{bmatrix}$$
 for some $r \in R$

poly(n)

$$\|\mathit{rg}_1\| \leq 2^{\widetilde{O}(\mathit{n}^{\alpha})} \cdot \lambda_1$$

Compute r_1, \dots, r_n of small algebraic norms

$$\operatorname{poly}(n) / 2^{\widetilde{O}(\sqrt{n})}$$

Compute g_1 a generator of $\langle g \rangle$

$$poly(n) / 2^{\widetilde{O}(\sqrt{n})}$$
$$poly(n) / 2^{\widetilde{O}(\sqrt{n})}$$

Construct
$$L:=egin{bmatrix} \Lambda & h_{\log_2,\ldots,h_{\log_{r_s}}} \\ & & 1 \\ & & & 1 \\ & & & \ddots \\ & & & & 1 \end{bmatrix}$$
 and $t:=egin{bmatrix} -h_{\log_{g_1}} \\ & -h_{\log_{g_1}} \\ & & c>0 \end{bmatrix}$

Solve CVP in L with target t (for some $\alpha \in [0,1]$) \Rightarrow get a vector $s \in L$ such that $||s - t|| \leq \widetilde{O}(n^{\alpha})$

Write
$$s = \begin{bmatrix} b_{\text{Log}}, \\ \star \end{bmatrix}$$
 for some $r \in R$

$$\operatorname{poly}(n)$$

$$\|\mathit{rg}_1\| \leq 2^{\widetilde{O}(\mathit{n}^{\alpha})} \cdot \lambda_1$$

CDPR	This work
Good basis of Λ	No good basis of L known

[Laa16] T. Laarhoven. Finding closest lattice vectors using approximate Voronoi cells. SAC.

CDPR	This work
Good basis of Λ	No good basis of L known

Key observation

[Laa16] T. Laarhoven. Finding closest lattice vectors using approximate Voronoi cells. SAC.

CDPR	This work
Good basis of Λ	No good basis of L known

Key observation

[Laa16] T. Laarhoven. Finding closest lattice vectors using approximate Voronoi cells. SAC.

CDPR	This work
Good basis of Λ	No good basis of L known

Key observation

[Laa16]:
$$ullet$$
 Find $s\in L$ such that $\|s-t\|=\widetilde{O}(n^{lpha})$

- Time: $2^{\widetilde{O}(n^{1-2\alpha})}$ (query) + $2^{O(n)}$ (pre-processing)
- [Laa16] T. Laarhoven. Finding closest lattice vectors using approximate Voronoi cells. SAC.

Conclusion

Approximation	Query time	Pre-processing
$2^{\widetilde{O}(n^{\alpha})}$	$2^{\widetilde{O}(n^{1-2\alpha})} + (\operatorname{poly}(n) \text{ or } 2^{\widetilde{O}(\sqrt{n})})$	2 ^{O(n)}

 $+2^{O(n)}$ Pre-processing / Non-uniform algorithm

Open problems

- Generalization to other number fields?
- Removing (or testing) the heuristics

Open problems

- Generalization to other number fields?
- Removing (or testing) the heuristics

Questions?