Behauptung:

Ein vollständiger Binärbaum der Tiefe n hat $2^{n}-1$ innere Knoten.

Beweis durch Induktion:

Induktionsverankerung:

n=0:

Ein Binärbaum der Tiefe 0 ist ein einziges Blatt, hat also keinen inneren Knoten. Es gilt:

$$2^{n}-1 = 2^{0}-1 = 1-1 = 0$$

Die Behauptung ist wahr.

Induktionsvorraussetzung:

Sei nun n > 0 und gelte die Behauptung für alle vollständigen Binärbäume der Tiefe x < n.

Induktionsschritt:

Ein vollständiger Binärbaum B der Tiefe n besteht aus einer Wurzel mit zwei Teilbäumen T_1 und T_2 als Kinder.

Jeder innere Knoten in einem der Teilbäume ist auch innerer Knoten in B. Jedes Blatt in einem der Teilbäume ist auch Blatt in B. Ein Knoten aus T_i $(i \in \{1,2\})$, der den Abstand k zur Wurzel aus B hat, hat den Abstand k-1 zur Wurzel von T_i .

Deshalb sind T_1 und T_2 selbst vollständig und haben die Tiefe n-1. Also gilt für sie die Induktionsvorraussetzung; sie haben jeweils $2^{n-1}-1$ innere Knoten.

Die inneren Knoten in B sind die inneren Knoten in T_1 und T_2 sowie die Wurzel. Insgesamt also

$$(2^{n-1}-1)+(2^{n-1}-1)+1 = 2*2^{n-1}-1 = 2^n-1$$

q.e.d.