

Date Planned : / /	Daily Tutorial Sheet - 4	Expected Duration : 90 Min		
Actual Date of Attempt : / /	Level - 1	Exact Duration :		

ACIU	di Dale	oi Allempi	·_/_/_	_	revei -	• 1	EX	aci Durano)n	
46.	The wave nature of electron is verified by									
	(A)	de-Broglie			(B)	Davisson ar	nd Germer			
	(C)	Rutherford	d		(D)	All of these				
47 .	The uncertainty in momentum of an electron is $1\times10^{-5}\ kg\ m$ / s . The uncertainty in its position will be									
	$(h = 6.62 \times 10^{-34} \text{ kg m}^2 / \text{s})$									
	(A)	$2.36 \times 10^{-}$	⁻²⁸ m		(B)	5.25×10^{-28}	³ m			
	(C) $2.27 \times 10^{-30} \text{ m}$				(D)	$5.27 \times 10^{-30} \text{ m}$				
48.	The two electrons in sub-shell of K-shell will differ in:									
	(A)	Principal quantum number			(B)	Azimuthal quantum number				
	(C)	Magnetic quantum number			(D)	Spin quantum number				
49 .	The number of orbitals and subshells present in the shell with $n = 4$ is:									
	(A)	8, 2	(B)	16, 4	(C)	18, 3	(D)	32, 5		
50 .	The n	The number of electrons in the valence shell of calcium is:								
	(A)	2	(B)	4	(C)	6	(D)	8		
51.	The ground state electronic configuration of nitrogen atom can be represented as:									
	(A)	11 11	1 111		(B)	11 11	1111			
	(C)				(D)	All of the ab	ove			
52 .	How r	nany unpaire	ed electrons	are present in Ni	i ²⁺ catior	n? (At. No. = 28	3)			
	(A)	0	(B)	2	(C)	4	(D)	6		
53 .	An el	ectron, a pr	oton and a	n alpha particle	e have I	KE of 16E. 4	E and E	respectively	. What is the	
		An electron, a proton and an alpha particle have KE of 16E, 4E and E respectively. What is the qualitative order of their de-Broglie wavelengths?								
	(A)	$\lambda_{e} > \lambda_{p} > \lambda_{e}$	α		(B)	$\lambda_p = \lambda_\alpha \! > \! \lambda_e$				
	(C)	$\lambda_p < \lambda_e < \lambda_e$	α		(D)	$\lambda_{\alpha} > \lambda_{e} \! > \! \lambda_{p}$				
54 .	Which	Which of the following sets of quantum number				esents the highest energy of an atom?				
(A) $n = 3, l = 1,$			1, m = 1, s =	m = 1, s = +1/2		n = 3, l = 2, m = 1, s = +1/2				
	(C) $n = 4, l = 0, m = 0, s = +1/2$			+1/2	(D)	n = 3, l = 0, m = 0, s = +1/2				
55 .	The n	umber of rad	lial nodes of	3s and 2s orbita	l are res	pectively:				
	(A)	2, 1	(B)	0, 2	(C)	1, 2	(D)	2, 11		

56. In hydrogen atom an orbit has a diameter of about 16.92 Å, what is the maximum number of electrons that can be accommodated in that orbit.

(C)

50

(D)

72

57. The number of waves in n^{th} orbit are:

(B)

32

8

(A) n^2 **(B)** n **(C)** n-1 **(D)** n-2

(A)

58. The magnitude of the spin angular momentum of an electron is given by:

(A)
$$S = \sqrt{s(s+1)} \frac{h}{2\pi}$$

(B)
$$S = s \frac{h}{2\pi}$$

(C)
$$S = \frac{3}{2} \times \frac{h}{2\pi}$$

(D) None of these

Which of the following sets of quantum number is INCORRECT? **59**.

(I)
$$n = 5, l = 4, m = 0, s = +\frac{1}{2}$$

(II)
$$n = 3, l = 3, m = +3, s = +\frac{1}{2}$$

(III)
$$n = 6, l = 0, m = +1, s = -\frac{1}{2}$$

(IV)
$$n = 4, l = 2, m = +2, s = 0$$

- (D)
- 60. The correct set of four quantum numbers for outermost electron of potassium (Z=19) is:

(A) 4, 1, 0,
$$\frac{1}{2}$$

B) 3, 1, 0,
$$\frac{1}{6}$$

4, 1, 0,
$$\frac{1}{2}$$
 (B) 3, 1, 0, $\frac{1}{2}$ (C) 4, 0, 0, $\frac{1}{2}$ (D) 3, 0, 0, $\frac{1}{2}$