/home/nicole/Jupyter/JG3/Data/0.5a0/M/1

```
In [4]: ;ls
```

Correlation.G5.M.C*.txt Correlation.G5.M.JC*.txt Correlation.G5.M.JC.txt Correlation.G5.M.N.txt G0.Genotype.ID G0.ID G0.noGenotype.ID G1.Genotype.ID G1.ID G1.noGenotype.ID G2.Genotype.ID G2.ID G2.noGenotype.ID G3.Genotype.ID G3.ID G3.noGenotype.ID G4.Genotype.ID G4.ID G4.noGenotype.ID G5.Genotype.ID G5.ID G5.noGenotype.ID MarNF.txt MarNFCenter.txt PedAll.txt Phe.txt PheAll.txt Regression.G5.M.C*.txt Regression.G5.M.JC*.txt Regression.G5.M.JC.txt Regression.G5.M.N.txt all.ID alphaEstimatesJ alphaEstimatesJC alphaEstimatesLeggaraC alphaEstimatesLeggaraJC alphaEstimatesN epsiEstimatesJ epsiEstimatesJC epsiEstimatesLeggaraC epsiEstimatesLeggaraJC epsiEstimatesN genotype.ID meanOfSNPMAll meanOfSNPMG0 meanOfSNPMG1 meanOfSNPMG2 meanOfSNPMG3 meanOfSNPMG4 meanOfSNPMG5 noGenotype.ID sim.bv sim.phenotype

```
In [5]: ;awk '{print $1}' PedAll.txt | sort -b > all.ID
 In [6]:
         ;awk '{print $1}' MarNF.txt | sort -b > genotype.ID
 In [7]:
         ; join -v1 all.ID genotype.ID > noGenotype.ID
         ;awk '{print $1,$2}' Phe.txt > sim.phenotype
 In [8]:
         ;awk '{print $1,$3}' PheAll.txt > sim.bv
 In [9]:
In [10]:
         ; awk 'NR >=1 && NR <=8000 {print $1}' PedAll.txt | sort -b > G0.ID
         ; awk 'NR >=8001 && NR <=16000 {print $1}' PedAll.txt | sort -b > G1.ID
In [11]:
In [12]:
         ; awk 'NR >=16001 && NR <=24000 {print $1}' PedAll.txt | sort -b > G2.ID
         ; awk 'NR >=24001 && NR <=32000 {print $1}' PedAll.txt | sort -b > G3.ID
In [14]: ; awk 'NR >=32001 && NR <=40000 {print $1}' PedAll.txt | sort -b > G4.ID
         ; awk 'NR >=40001 && NR <=48000 {print $1}' PedAll.txt | sort -b > G5.ID
In [15]:
         ; join G0.ID genotype.ID > G0.Genotype.ID
In [16]:
In [17]:
         ; join G1.ID genotype.ID > G1.Genotype.ID
In [18]:
         ;join G2.ID genotype.ID > G2.Genotype.ID
In [19]:
         ; join G3.ID genotype.ID > G3.Genotype.ID
In [20]:
         ; join G4.ID genotype.ID > G4.Genotype.ID
In [21]:
         ; join G5.ID genotype.ID > G5.Genotype.ID
In [22]:
         ;join -v1 G0.ID genotype.ID > G0.noGenotype.ID
In [23]:
         ;join -v1 G1.ID genotype.ID > G1.noGenotype.ID
         ;join -v1 G2.ID genotype.ID > G2.noGenotype.ID
In [24]:
In [25]:
         ;join -v1 G3.ID genotype.ID > G3.noGenotype.ID
         ;join -v1 G4.ID genotype.ID > G4.noGenotype.ID
In [26]:
In [27]: |;join -v1 G5.ID genotype.ID > G5.noGenotype.ID
```

```
;wc G0.Genotype.ID;wc G1.Genotype.ID;wc G2.Genotype.ID;wc G3.Genotype.ID;wc (
In [28]:
               200 1200 GO.Genotype.ID
          200 200 1200 G1.Genotype.ID
          200 200 1200 G2.Genotype.ID
          200 200 1200 G3.Genotype.ID
          200 200 1200 G4.Genotype.ID
          8000 8000 48000 G5.Genotype.ID
In [29]: ;wc G0.noGenotype.ID;wc G1.noGenotype.ID;wc G2.noGenotype.ID;wc G3.noGenotype
                7800 46800 G0.noGenotype.ID
          7800
                7800 46800 Gl.noGenotype.ID
          7800
                7800 46800 G2.noGenotype.ID
          7800 7800 46800 G3.noGenotype.ID
          7800 7800 46800 G4.noGenotype.ID
         0 0 0 G5.noGenotype.ID
         ped,A Mats,numSSBayes = calc Ai("PedAll.txt", "genotype.ID", calculateInbreedia
In [30]:
         nothing
         df
                = read_genotypes("MarNF.txt",numSSBayes)
         M Mats = make MMats(df, A Mats, ped, center=true);
                                                                                  # with
         y Vecs = make yVecs("sim.phenotype",ped,numSSBayes);
         Z_Mats = make_ZMats(ped,y_Vecs,numSSBayes)
         X_Mats, W_Mats = make_XWMats(Z_Mats,M_Mats,numSSBayes)
                                                                                  # no
         nothing
                = 1.408
In [31]:
         vRes
                = 1.408
         vG
         nIter = 50000
         @time aHat1,alphaHat,betaHat,epsiHat =
         ssGibbs(M_Mats,y_Vecs,Z_Mats,X_Mats,W_Mats,A_Mats, numSSBayes,vRes,vG,nIter,
         nothing
         This is iteration 5000
         This is iteration 10000
         This is iteration 15000
         This is iteration 20000
         This is iteration 25000
         This is iteration 30000
         This is iteration 35000
         This is iteration 40000
         This is iteration 45000
         This is iteration 50000
         2402.323093 seconds (23.05 G allocations: 724.011 GB, 7.78% gc time)
In [32]: betaHat
Out[32]: 1-element Array{Float64,1}:
          2.44378
```

```
alphaHat
In [33]:
Out[33]: 150-element Array{Float64,1}:
           0.0458526
          -7.44678e-5
          -0.0409431
           0.190672
           0.0035739
          -0.139528
           0.220509
           0.019125
          -0.0436085
          -0.0144302
           0.0992628
          -0.0682927
          -0.0141091
           0.0641949
          -0.0874388
          -0.287953
          -0.123949
           0.00780839
           0.11647
          -0.00343125
          -0.0198521
           0.350309
            0.117083
          -0.242183
            0.164087
In [34]: writedlm("alphaEstimatesC",alphaHat)
```

```
In [35]: epsiHat
Out[35]: 45950-element Array{Float64,1}:
           0.775147
          -0.119267
           0.112464
          -0.223011
           0.253438
          -0.366535
           0.290331
          -0.275177
           0.797796
          -0.895354
           0.0238647
          -0.237334
          -0.843063
           0.0514126
           0.179711
           0.305186
           0.247249
           1.28724
           0.414253
           0.075491
          -0.347353
           0.351585
          -0.194067
          -0.0178594
           0.111275
In [36]: writedlm("epsiEstimatesC",epsiHat)
In [37]: using DataFrames
In [38]: df = readtable("sim.bv", eltypes =[UTF8String, Float64], separator = ' ',head
         a = Array(Float64, numSSBayes.num ped)
         for (i,ID) in enumerate(df[:,1])
              j = ped.idMap[ID].seqID
             a[j] = df[i,2]
         end
In [39]: IDs = readtable("all.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor1 = cor(a[posAi],aHat1[posAi])[1,1]
         reg1 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - all.ID : correlation = %6.3f\n", cor1 ) # with 
         @printf("SSBRJC from Gibbs - all.ID : regression of TBV on GEBV = %6.3f\n",
         JCAll = cor1
         SSBRJC from Gibbs - all.ID : correlation = 0.903
         SSBRJC from Gibbs - all.ID : regression of TBV on GEBV = 0.986
Out[39]: 0.9029210180185023
```

```
In [40]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[40]: 0.19375107452525428
In [41]: IDs = readtable("genotype.ID", eltypes =[UTF8String], separator = ' ',header:
         posAi = getPos(ped,IDs)
         cor2 = cor(a[posAi],aHat1[posAi])[1,1]
         reg2 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - genotype.ID : correlation = %6.3f\n", cor2 ) # |
         @printf("SSBRJC from Gibbs - genotype.ID : regression of TBV on GEBV = %6.3:
         JCAll = cor2
         SSBRJC from Gibbs - genotype.ID : correlation = 0.827
         SSBRJC from Gibbs - genotype.ID : regression of TBV on GEBV = 0.916
Out[41]: 0.8272307027097024
In [42]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[42]: 1.6426367642744983
In [43]: IDs = readtable("noGenotype.ID", eltypes =[UTF8String], separator = ' ',heade
         posAi = getPos(ped,IDs)
         cor3 = cor(a[posAi],aHat1[posAi])[1,1]
         reg3 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - noGenotype.ID : correlation = %6.3f\n", cor3 );
         @printf("SSBRJC from Gibbs - noGenotype.ID : regression of TBV on GEBV = %6
         JCAll = cor3
         SSBRJC from Gibbs - noGenotype.ID : correlation = 0.879
         SSBRJC from Gibbs - noGenotype.ID : regression of TBV on GEBV = 0.983
Out[43]: 0.8787503253193799
In [44]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[44]: -0.14060716157072514
In [45]: IDs = readtable("G0.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor4 = cor(a[posAi],aHat1[posAi])[1,1]
         reg4 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G0.ID : correlation = %6.3f\n", cor4 ) # with ep
         @printf("SSBRJC from Gibbs - G0.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor4
         SSBRJC from Gibbs - G0.ID : correlation = 0.793
         SSBRJC from Gibbs - G0.ID: regression of TBV on GEBV = 1.085
Out[45]: 0.7933238255640096
```

```
In [46]: | GEBV = aHat1[posAi]
         G1GEBV=mean(GEBV)
Out[46]: -1.6942292816382165
In [47]: IDs = readtable("G1.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor4 = cor(a[posAi],aHat1[posAi])[1,1]
         reg4 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G1.ID : correlation = %6.3f\n", cor4 ) # with e;
         @printf("SSBRJC from Gibbs - G1.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor4
         SSBRJC from Gibbs - G1.ID : correlation = 0.773
         SSBRJC from Gibbs - G1.ID: regression of TBV on GEBV = 1.006
Out[47]: 0.7729653104382505
In [48]: GEBV = aHat1[posAi]
         G1GEBV=mean(GEBV)
Out[48]: -0.7014898594320004
In [49]: IDs = readtable("G2.ID", eltypes =[UTF8String], separator = ' ', header=false
         posAi = getPos(ped,IDs)
         cor5 = cor(a[posAi],aHat1[posAi])[1,1]
         req5 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G2.ID : correlation = %6.3f\n", cor5 ) # with ei
         @printf("SSBRJC from Gibbs - G2.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor5
         SSBRJC from Gibbs - G2.ID : correlation = 0.744
         SSBRJC from Gibbs - G2.ID: regression of TBV on GEBV = 0.964
Out[49]: 0.7442445634055977
In [50]: GEBV = aHat1[posAi]
         G2GEBV=mean(GEBV)
Out[50]: 0.020679363721341524
In [51]: IDs = readtable("G3.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor6 = cor(a[posAi],aHat1[posAi])[1,1]
         reg6 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G3.ID : correlation = %6.3f\n", cor6 ) # with ei
         @printf("SSBRJC from Gibbs - G3.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor6
         SSBRJC from Gibbs - G3.ID : correlation = 0.735
         SSBRJC from Gibbs - G3.ID: regression of TBV on GEBV = 0.963
Out[51]: 0.7349555678768225
```

```
In [52]: | GEBV = aHat1[posAi]
         G3GEBV=mean(GEBV)
Out[52]: 0.6542869182895008
In [53]: IDs = readtable("G4.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor7 = cor(a[posAi],aHat1[posAi])[1,1]
         reg7 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G4.ID : correlation = %6.3f\n", cor7 ) # with e;
         @printf("SSBRJC from Gibbs - G4.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor7
         SSBRJC from Gibbs - G4.ID : correlation =
         SSBRJC from Gibbs - G4.ID : regression of TBV on GEBV = 0.954
Out[53]: 0.739633474987644
In [54]: GEBV = aHat1[posAi]
         G4GEBV=mean(GEBV)
Out[54]: 1.1948620743105003
In [55]: IDs = readtable("G5.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor8 = cor(a[posAi],aHat1[posAi])[1,1]
         reg8 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G5.ID : correlation = %6.3f\n", cor8 ) # with ep
         @printf("SSBRJC from Gibbs - G5.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor8
         SSBRJC from Gibbs - G5.ID : correlation = 0.807
         SSBRJC from Gibbs - G5.ID : regression of TBV on GEBV = 0.885
Out[55]: 0.8068871469655572
In [56]: GEBV = aHat1[posAi]
         G5GEBV=mean(GEBV)
Out[56]: 1.6883972319003997
In [57]: GEBVG5G1=G5GEBV-G1GEBV
Out[57]: 2.3898870913324
In [58]: GEBVG1G5=[G1GEBV;G2GEBV;G3GEBV;G4GEBV;G5GEBV]
Out[58]: 5-element Array{Float64,1}:
          -0.70149
           0.0206794
           0.654287
           1.19486
           1.6884
```

```
In [59]: reg8 = linreg(aHat1[posAi], a[posAi])
Out[59]: 2-element Array{Float64,1}:
          2.66922
          0.885015
In [60]: VarGEBV=var(aHat1[posAi])
Out[60]: 0.5993247311569381
In [61]: VarTBV=var(a[posAi])
Out[61]: 0.7210049007563287
In [62]: Cov=cov(aHat1[posAi], a[posAi])
Out[62]: 0.5304115903517512
In [63]: b=Cov/VarGEBV
Out[63]: 0.8850153560789045
In [64]: IDs = readtable("G0.Genotype.ID", eltypes =[UTF8String], separator = ' ',head
         posAi = getPos(ped,IDs)
         cor9 = cor(a[posAi],aHat1[posAi])[1,1]
         reg9 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G0.Genotype.ID : correlation = %6.3f\n", cor9 )
         @printf("SSBRJC from Gibbs - G0.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor9
         SSBRJC from Gibbs - G0.Genotype.ID : correlation = 0.836
         SSBRJC from Gibbs - G0.Genotype.ID : regression of TBV on GEBV = 0.902
Out[64]: 0.8356421531307214
In [65]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[65]: 0.4007559994283524
In [66]: IDs = readtable("G1.Genotype.ID", eltypes =[UTF8String], separator = ' ', head
         posAi = getPos(ped,IDs)
         cor9 = cor(a[posAi],aHat1[posAi])[1,1]
         reg9 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G1.Genotype.ID : correlation = %6.3f\n", cor9 )
         @printf("SSBRJC from Gibbs - G1.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor9
         SSBRJC from Gibbs - G1.Genotype.ID : correlation =
                                                              0.873
         SSBRJC from Gibbs - G1.Genotype.ID : regression of TBV on GEBV = 0.908
Out[66]: 0.8734577550306901
```

```
In [67]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[67]: 0.8092738069899832
In [68]: IDs = readtable("G2.Genotype.ID", eltypes =[UTF8String], separator = ' ',head
         posAi = getPos(ped,IDs)
         cor10 = cor(a[posAi],aHat1[posAi])[1,1]
         reg10 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G2.Genotype.ID : correlation = %6.3f\n", cor10
         @printf("SSBRJC from Gibbs - G2.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor10
         SSBRJC from Gibbs - G2.Genotype.ID : correlation =
         SSBRJC from Gibbs - G2.Genotype.ID: regression of TBV on GEBV = 0.900
Out[68]: 0.8433776684374678
In [69]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[69]: 1.316431723771146
In [70]: IDs = readtable("G3.Genotype.ID", eltypes =[UTF8String], separator = ' ',head
         posAi = getPos(ped,IDs)
         cor11 = cor(a[posAi],aHat1[posAi])[1,1]
         reg11 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G3.Genotype.ID : correlation = %6.3f\n", cor11
         @printf("SSBRJC from Gibbs - G3.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor11
         SSBRJC from Gibbs - G3.Genotype.ID : correlation = 0.823
         SSBRJC from Gibbs - G3.Genotype.ID : regression of TBV on GEBV = 0.987
Out[70]: 0.822582962642199
In [71]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[71]: 1.727454702590153
In [72]: IDs = readtable("G4.Genotype.ID", eltypes =[UTF8String], separator = ' ', head
         posAi = getPos(ped,IDs)
         cor12 = cor(a[posAi],aHat1[posAi])[1,1]
         reg12 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G4.Genotype.ID : correlation = %6.3f\n", cor12
         @printf("SSBRJC from Gibbs - G4.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor12
         SSBRJC from Gibbs - G4.Genotype.ID : correlation = 0.704
         SSBRJC from Gibbs - G4.Genotype.ID: regression of TBV on GEBV = 0.703
Out[72]: 0.7040072156930179
```

```
GEBV = aHat1[posAi]
In [73]:
         mean(GEBV)
Out[73]: 2.128848883556812
In [74]: IDs = readtable("G5.Genotype.ID", eltypes =[UTF8String], separator = ' ',heac
         posAi = getPos(ped,IDs)
         cor13 = cor(a[posAi],aHat1[posAi])[1,1]
         reg13 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G5.Genotype.ID : correlation = %6.3f\n", cor13
         @printf("SSBRJC from Gibbs - G5.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor13
         SSBRJC from Gibbs - G5.Genotype.ID : correlation =
         SSBRJC from Gibbs - G5.Genotype.ID: regression of TBV on GEBV = 0.885
Out[74]: 0.8068871469655572
In [75]: writedlm("Correlation.G5.M.C.txt",cor13)
In [76]: | writedlm("Regression.G5.M.C.txt",reg13)
In [77]: GEBVG5Gall = aHat1[posAi]
         GEBVG5G=mean(GEBVG5Gall)
Out[77]: 1.6883972319003997
In [78]: IDs = readtable("G0.noGenotype.ID", eltypes =[UTF8String], separator = ' ',he
         posAi = getPos(ped,IDs)
         cor14 = cor(a[posAi],aHat1[posAi])[1,1]
         reg14 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G0.noGenotype.ID : correlation = %6.3f\n", corl
         @printf("SSBRJC from Gibbs - G0.noGenotype.ID : regression of TBV on GEBV = '
         JCAll = cor14
         SSBRJC from Gibbs - G0.noGenotype.ID : correlation = 0.784
         SSBRJC from Gibbs - G0.noGenotype.ID: regression of TBV on GEBV = 1.136
Out[78]: 0.7840344632734764
In [79]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[79]: -1.7479468529476154
```

```
In [80]: IDs = readtable("G1.noGenotype.ID", eltypes =[UTF8String], separator = ' ',he
         posAi = getPos(ped,IDs)
         cor14 = cor(a[posAi],aHat1[posAi])[1,1]
         reg14 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G1.noGenotype.ID : correlation = %6.3f\n", corl
         @printf("SSBRJC from Gibbs - G1.noGenotype.ID : regression of TBV on GEBV = '
         JCAll = cor14
         SSBRJC from Gibbs - G1.noGenotype.ID : correlation = 0.759
         SSBRJC from Gibbs - G1.noGenotype.ID : regression of TBV on GEBV = 1.013
Out[80]: 0.7588611170577221
In [81]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[81]: -0.7402273893402563
In [82]: IDs = readtable("G2.noGenotype.ID", eltypes =[UTF8String], separator = ' ',he
         posAi = getPos(ped,IDs)
         cor15 = cor(a[posAi],aHat1[posAi])[1,1]
         reg15 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G2.noGenotype.ID : correlation = %6.3f\n", cor1!
         @printf("SSBRJC from Gibbs - G2.noGenotype.ID : regression of TBV on GEBV = '
         JCAll = cor15
         SSBRJC from Gibbs - G2.noGenotype.ID : correlation = 0.730
         SSBRJC from Gibbs - G2.noGenotype.ID: regression of TBV on GEBV = 0.965
Out[82]: 0.7297675935999719
In [83]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[83]: -0.012545055767114966
In [84]: IDs = readtable("G3.noGenotype.ID", eltypes =[UTF8String], separator = ' ',he
         posAi = getPos(ped,IDs)
         cor16 = cor(a[posAi],aHat1[posAi])[1,1]
         reg16 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G3.noGenotype.ID : correlation = %6.3f\n", cor1
         @printf("SSBRJC from Gibbs - G3.noGenotype.ID : regression of TBV on GEBV = '
         JCAll = cor16
         SSBRJC from Gibbs - G3.noGenotype.ID : correlation = 0.722
         SSBRJC from Gibbs - G3.noGenotype.ID : regression of TBV on GEBV = 0.956
Out[84]: 0.7220062122016694
In [85]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[85]: 0.6267697956151251
```

```
In [86]: IDs = readtable("G4.noGenotype.ID", eltypes =[UTF8String], separator = ' ',he
    posAi = getPos(ped,IDs)
    cor17 = cor(a[posAi],aHat1[posAi])[1,1]
    reg17 = linreg(aHat1[posAi], a[posAi])[2,1]
    @printf("SSBRJC from Gibbs - G4.noGenotype.ID : correlation = %6.3f\n", cor1'
    @printf("SSBRJC from Gibbs - G4.noGenotype.ID : regression of TBV on GEBV = '
    JCAll = cor17

    SSBRJC from Gibbs - G4.noGenotype.ID : correlation = 0.730
    SSBRJC from Gibbs - G4.noGenotype.ID : regression of TBV on GEBV = 0.950

Out[86]: 0.7299070948553302

In [87]: GEBV = aHat1[posAi]
    mean(GEBV)

Out[87]: 1.1709136945862362

In [88]: numSSBayes

Out[88]: SSBR.NumSSBayes(54950,45950,9000,40000,39000,1000,150)
```