Dual center based intuitionistic fuzzy plane based classifiers

Anuradha Kumari
Department of Mathematics
Indian Institute of Technology Indore
Indore, India
phd2101141007@iiti.ac.in

M. Tanveer

Department of Mathematics

Indian Institute of Technology Indore

Indore, India

mtanveer@iiti.ac.in

TABLE I: AUC with the time required for training of the proposed DC-IFSVM, DC-IFLSTSVM and baseline models over UCI datasets with RBF kernel.

Dataset	(Samples,Dim)	TWSVM [1]	KIFSVM [2]	RFLSTSVM-CIL [3]	IIFTWSVM [4]	IFTWSVM-ID [5]	DC-IFTBLDM [6]	DC-IFSVM	DC-IFLSTSVM
		(AUC,time(sec))	(AUC,time(sec))	(AUC,time(sec))	(AUC,time(sec))	(AUC,time(sec))	(AUC,time(sec))	(AUC,time(sec))	(AUC,time(sec))
d1 (3.2)	(748, 4)	(0.7062, 0.0362)	(0.7001, 0.1727)	(0.6755, 0.0362)	(0.6128, 0.1791)	(0.655, 0.0455)	(0.6643, 0.6029)	(0.6652, 0.1681)	(0.7072 , 0.0139)
d2 (1.9)	(699, 9)	(0.9655, 0.0178)	(0.9662, 0.3709)	(0.9785, 0.0351)	(0.9607, 0.0631)	(0.9525, 0.0322)	(0.9812, 0.2847)	(0.9699, 0.1264)	(0.9812, 0.0073)
d3 (3.21)	(198, 33)	(0.5995, 0.0031)	(0.5301, 0.0139)	(0.5452, 0.0046)	(0.5059, 0.0087)	(0.5008, 0.0047)	(0.49, 0.0244)	(0.5192, 0.0042)	(0.4356, 0.0007)
d4 (1.59)	(435, 16)	(0.5953, 0.0099)	(0.5, 0.0439)	(0.618, 0.0104)	(0.5678, 0.0186)	(0.6356, 0.0092)	(0.6248, 0.1229)	(0.6137, 0.0404)	(0.6178, 0.004)
d5 (1.25)	(690, 15)	(0.8675, 0.0151)	(0.8581, 0.1752)	(0.8533, 0.0251)	(0.8509, 0.0504)	(0.8585, 0.0233)	(0.8623, 0.1294)	(0.8581, 0.0721)	(0.8578, 0.0626)
d6 (2.05)	(131, 10)	(0.7727, 0.0011)	(0.7273, 0.0587)	(0.8003, 0.0022)	(0.6364, 0.0057)	(0.8182, 0.0021)	(0.8182, 0.0166)	(0.7273, 0.0054)	(0.8182, 0.0005)
d7 (2.78)	(306, 3)	(0.6516, 0.0047)	(0.5248, 0.0392)	(0.6547, 0.0046)	(0.5, 0.0109)	(0.7162, 0.0048)	(0.6778, 0.0355)	(0.6333, 0.0196)	(0.6593, 0.0007)
d8 (1.77)	(294, 12)	(0.8271, 0.0024)	(0.8212, 0.0148)	(0.8113, 0.0049)	(0.8212, 0.0182)	(0.7216, 0.006)	(0.858, 0.0264)	(0.8212, 0.0077)	(0.899, 0.0007)
d9 (3.84)	(155, 19)	(0.6875, 0.0015)	(0.8542, 0.0094)	(0.8417, 0.0028)	(0.8417, 0.0078)	(0.8417, 0.0054)	(0.8042, 0.031)	(0.8542, 0.0054)	(0.8042, 0.0003)
d10 (1.71)	(368, 25)	(0.7492, 0.004)	(0.7888, 0.014)	(0.8032, 0.007)	(0.6479, 0.029)	(0.8169, 0.0099)	(0.8032, 0.3061)	(0.7751, 0.0096)	(0.8301, 0.0014)
d11 (1.79)	(351, 33)	(0.9783, 0.0039)	(0.9014, 0.0491)	(0.9283, 0.0081)	(0.8631, 0.0195)	(0.929, 0.0094)	(0.8401, 0.1657)	(0.9085, 0.0221)	(0.9642, 0.005)
d12 (1)	(556, 6)	(0.9765, 0.0112)	(0.8118, 0.2703)	(0.953, 0.0166)	(0.7871, 0.0579)	(0.965, 0.0172)	(0.9828, 0.0776)	(0.878, 0.055)	(0.9688, 0.0465)
d13 (1.08)	(554, 6)	(0.9239, 0.0101)	(0.8657, 0.1623)	(0.9022, 0.0151)	(0.7197, 0.0637)	(0.9063, 0.021)	(0.9158, 1.273)	(0.9119, 0.066)	(0.9185, 0.0461)
d14 (1.3)	(476, 166)	(0.9577 , 0.0066)	(0.821, 0.0124)	(0.9437, 0.0149)	(0.7062, 0.0264)	(0.93, 0.0123)	(0.9098, 0.0807)	(0.821, 0.0076)	(0.9226, 0.0076)
d15 (1.87)	(768, 8)	(0.7365, 0.0386)	(0.707, 0.2337)	(0.7273, 0.0323)	(0.5146, 0.0565)	(0.7428, 0.0285)	(0.7242, 0.2831)	(0.7434 , 0.147)	(0.7402, 0.0339)
d16 (6.29)	(102, 7)	(0.3571, 0.0016)	(0.744 , 0.0106)	(0.4643, 0.0013)	(0.6667, 0.0023)	(0.619, 0.0031)	(0.5, 0.0196)	(0.7083, 0.0051)	(0.6488, 0.0001)
d17 (1.41)	(265, 22)	(0.6223, 0.002)	(0.7118, 0.0183)	(0.6536, 0.0034)	(0.6137, 0.019)	(0.6579, 0.0051)	(0.6416, 0.0245)	(0.7224 , 0.0068)	(0.7055, 0.0008)
d18 (2.11)	(690, 14)	(0.4531, 0.0298)	(0.5247 , 0.0333)	(0.5035, 0.0264)	(0.496, 0.0459)	(0.5015, 0.0241)	(0.5188, 0.0977)	(0.5209, 0.014)	(0.5098, 0.0241)
d19 (2.1)	(2201, 3)	(0.7119, 0.1959)	(0.7117, 1.831)	(0.7298, 0.4686)	(0.7, 2.7331)	(0.7119, 0.3628)	(0.7119, 4.0651)	(0.7119, 0.5962)	(0.7119, 0.0409)
d20 (1.86)	(683, 9)	(0.9598, 0.3757)	(0.9524, 0.465)	(0.9598, 0.1829)	(0.9778, 0.173)	(0.9778 , 0.086)	(0.9778, 0.253)	(0.9667, 0.1696)	(0.9741, 0.0123)
d21 (1.25)	(1372, 4)	(1, 0.0963)	(0.9977, 1.0136)	(0.9977, 0.4604)	(1, 0.7158)	(0.9977, 0.2399)	(0.9977, 0.4304)	(1, 0.546)	(1, 0.2276)
d22 (1.02)	(7400, 20)	(0.9825, 21.6567)	(0.8818, 271.3213)	(0.9846, 21.01)	(0.8451, 31.7247)	(0.9835, 13.4319)	(0.9751, 37.163)	(0.8668, 121.1155)	(0.9864, 2.7862)
d23 (1)	(7400, 20)	(0.9744, 8.8872)	(0.9748, 2.6268)	(0.9263, 27.3189)	(0.974, 14.605)	(0.9748, 18.1506)	(0.9757, 43.9777)	(0.9748, 0.864)	(0.9761, 7.0746)
d24 (1.84)	(19020, 10)	(0.8104, 18.9714)	(0.6098, 25.1728)	(0.8066, 42.2576)	(0.7646, 92.9534)	(0.7876, 57.2607)	(0.804, 123.213)	(0.8364, 40.3638)	(0.7966, 38.5192)
d25 (8.03)	(48842, 14)	(0.6955, 120.2381)	(0.5, 565.7869)	(0.678, 657.9286)	(0.7767, 890.8303)	(0.7487, 318.7236)	*	(0.7705, 525.311)	(0.7816 , 491.0077)
Avg AUC		0.78	0.76	0.79	0.73	0.8	0.79	0.79	0.81
Avg rank		4.28	5.38	4.28	6.5	4.14	4.04	4.1	3.12
* Experiment stopped as the training extended for more than 1 day.									

REFERENCES

- [1] Jayadeva, R. Khemchandani, and S. Chandra, "Twin support vector machines for pattern classification," *IEEE Transactions on Pattern Analysis and Machine Intelligence*, vol. 29, no. 5, pp. 905–910, 2007.
- [2] M. Ha, C. Wang, and J. Chen, "The support vector machine based on intuitionistic fuzzy number and kernel function," *Soft Computing*, vol. 17, pp. 635–641, 2013.
- [3] B. Richhariya and M. Tanveer, "A robust fuzzy least squares twin support vector machine for class imbalance learning," *Applied Soft Computing*, vol. 71, pp. 418–432, 2018.
- [4] M. A. Ganaie, A. Kumari, A. K. Malik, and M. Tanveer, "EEG signal classification using improved intuitionistic fuzzy twin support vector machines," *Neural Computing and Applications*, pp. 1–17, 2022.
- [5] S. Rezvani and X. Wang, "Intuitionistic fuzzy twin support vector machines for imbalanced data," *Neurocomputing*, vol. 507, pp. 16–25, 2022.
- [6] L. Zhang, Q. Jin, S. Fan, and D. Liu, "A novel dual-center based intuitionistic fuzzy twin bounded large margin distribution machines," *IEEE Transactions on Fuzzy Systems*, 2023.