ANALOG ELEKTRONİK DEVRELERİ – Ödev 3

(Yrd.Doç.Dr. Metin YAZGI)

SORU:

Bir işlemsel kuvvetlendiricinin transfer fonksiyonu $A(s) = \frac{1000}{\left(1 + \frac{s}{\pi 10^5}\right)\left(1 + \frac{s}{2.\pi 10^6}\right) \cdot \left(1 + \frac{s}{4.\pi 10^7}\right)}$ olarak verilmiştir. Bu işlemsel kuvvetlendiriciye frekanstan bağımsız geribesleme uygulanmaktadır. Birim geribesleme uygulanması durumunda:

- a) Devreye **birim** geribesleme uygulandığı durumda devrenin kararlılığını, Φ_m faz payını ve kazanç payını inceleyerek belirleyiniz. İşlemsel kuvvetlendiriciye birim g.b. uygulanmış halini gösteriniz.
- b) Devre kararsız ise devreyi kararlı yapacak **sınır** geribesleme değeri ne olmalıdır? Bu geribesleme değerini nasıl gerçeklersiniz, gösteriniz. (İş.Kuv. (IK) + g.b. devresi)
- c) Kutup sayısını değiştirmeden birim g.b. uygulanmış bu devrede eleman değerlerinde değişiklik yapılarak devre mutlak kararlı hale getirilebilir mi?
 - a. Evet ise nasıl? Açıklayınız.
 - b. Hayır ise neden? Açıklayınız.
- d) Frekans eğrisinde tepe olmaması için geribesleme sınır değeri ne olmalıdır.

Ödev son teslim tarihi: 8 Aralık 2010

$$A(s) = \frac{10^{34}}{(1+\frac{5}{10^{5}})} \left(1+\frac{5}{200^{6}}\right) \left(1+\frac{5}{400^{4}}\right)$$

$$2nf = 170^{5} \Rightarrow f_{1} = 5.164 \qquad f_{1} = 10^{6} \qquad f_{3} = 2.16^{3} \qquad V_{0} = 10^{3} = 60 \text{ dB}$$

$$2005 \qquad 100 \qquad 10$$

- ten (a225)

= 179,6

= -89,4" - 77,50 - 12,70

$$|A(fw)| = \frac{10^3}{|1+j|92|.|1+j|4,7|.|1+j|0,235|} = \frac{10^3}{92.4,8.1,03}$$

≥ 2,2 = 6,84 dB

fat 180° oldyunda kerran 15den kvanik dnehder. By derrede kerra 6.8dB olmenheterder. > Karen pay1=-6,84dB < 0 olmenheterder. Karenste.

b)
$$\beta |A(f_{180})| < 1 \Rightarrow \beta < \frac{1}{2.2} = 0.45$$
 almoh)
$$\beta .A = 0.145 \cdot 10^{3} = 450 > 71$$

$$\beta A > 71 \Rightarrow A + 2 \frac{1}{\beta} = \frac{1}{0.45} = 2.2$$

c) Muther toward like 19in F.P.70 ve KP70 olmahder.

Su anda fi = 50kHz fise = 4.7mHz

"a" sillenden somilmeleder let. 13Al = 1 (2) fot < 15ec down

fi atalhlirsen (fy) fiso preleasing ethis degrimez (-50°) the

ethis kalir. (fy; yen fi , fie : esk fi) (fig < fe)

fire y fiso

fig fiso

fig the chira |A(tiso)|) 2.12 = 6.84B1 classition.

Kazana pagi > 0 dichnognicin (cazanum |A(tiso)|) 6.184 dB

Kazana pagi > 0 dichnognicin (cazanum |A(tiso)|) 6.184 dB

atalmali 6.18 dB = 2.2 =) fig =

fig = 2,27 mHz dursa KP 20 ve FP=0 sorti segleris.

fig < 2,27 mHz dursa for ve benzena paya portif dur.

Devre mutlak bererti dur.

d) Tepe dinama kasulu
$$1 - \beta k_0 \leq \frac{[fk_3 (fk_1 + fk_2) + fk_1 - fk_2]^2}{2fk_1 \cdot fk_2 \cdot fk_3 (fk_1 + fk_2 + fk_3)}$$

$$1 - \beta \cdot 10^3 \leq 10,525$$

$$-\beta \cdot 10^3 \leq 9,525 \qquad \Rightarrow -\beta \leq 9.525.10^{-3}$$

