Cadence 入门教程

2022-11-16

目 录

-,	Cadence 概述	. 1
_,	运行 Cadence	. 1
	2.2 创建个人 VNC 端口	. 1
	2.2 配置 cadence 工作环境	.5
	2.2 建立个人工作库	.8
三、	电路图的输入——Composer	12
	3.1 新建原理图	12
	3.2 添加器件	13
	3.3 连线	15
	3.4 设置元件参数	16
	3.5 放置端口	16
	3.6 检查并存储1	17
四、	创建 Symbol——Composer	18
	4.1 打开 inverter 原理图	18
	4.2 创建 Symbol	18
	4.3 编辑 Symbol 并保存1	19
五、	电路仿真——ADE2	20
	5.1 创建仿真电路	20
	5.2 打开仿真环境	21
	5.3 设计变量	22
	5.4 仿真设置	23
	5.5 选择输出,并保存当前仿真设置2	24
	5.6 进行仿真并查看波形2	25
	5.7 仿真结果分析	26
六、	管子参数仿真2	28
七、	结语	32

一、Cadence 概述

作为流行的 EDA 工具之一, Cadence 一直以来以其强大的功能受到广大 EDA 工程师的 青睐。Cadence 可以完成整个 IC 设计流程的各个方面,如电路图输入(Schematic Input)、电路仿真(Analog Simulation)、版图设计(Layout Design)、版图验证(Layout Verification)、寄生参数提取(Layout Parasitic Extraction)以及后仿真(Post Simulation)。如图 1.1 所示,我们给出了一个简单的模拟集成电路设计流程,以及对应的 Cadence 工具。

图 1.1 Cadence 模拟电路设计流程

本文针对以上流程,通过设计一个简单的反相器的原理图到最终的版图,对 Cadence 的 Composer,Analog Design Environment,Virtuoso,Calibre 等各大功能模块逐一做介绍。

此外再介绍一点关于 Cadence 平台的知识。Cadence 开发了自己的编程语言 skill 以及相应的编译器,整个 Cadence 可以理解为一个搭建在 skill 语言平台上的可执行文件集。初学者对此可以不用理会,当用户深入后,可以用 skill 语言对 Cadence 进行扩展。

二、运行 Cadence

2.1 通过公共账户创建个人 VNC 端口

登陆服务器需要有个人的 vnc 端口用于远程连接,首先连接到服务器,可使用 mobaxterm 或 vncviewer 等 vnc 软件登陆,下面以 mobaxterm 为例,首次打开软件界面,如图 2.1 所示,并点击框中 session 创建新连接。

图 2.1 mobaxterm 主界面

如下图所示选择 VNC,每个账户分配有独立的端口,初次登陆需要登陆公共账户自行创建接入端口,输入 IP 地址与端口,点击 OK,完成配置。5999 端口为公共账户 stu1,密码为 123123。所有同学分组位于两个服务器,具体 IP 查看每个人分配的 IP 与端口。

图 2.2 创建 VNC 界面

图 2.3 服务器登陆界面

首次完成配置后,按提示输入密码,接入服务器登陆界面,再次输入密码 12313 进入桌面,在桌面右键显示如下图选项,选择 Open in Terminal,打开终端。

图 2.4 开启终端

在终端中输入如下命令完成配置,切换至自己的账户,stux 为自己的用户名,如 stu2,stu3等:

su stux

该命令需要输入密码,所有人的初始密码为 111111; 切换完成后命令最左侧显示的用户名会从 stu1 变为对应的用户名:

按照如下的命令创建自己的 vnc 进程,端口号参考分配的端口号:

vncserver:端口号

初次创建 vnc 会提示需要创建密码,输入密码并确认后完成 vnc 创建,关闭所有终端后直接关闭 vnc 界面即可,切勿长时间占用公共账户影响他人使用。下图展示了创建 vnc 界面的命令流程。

图 2.5 创建 vnc 流程

如图 2.6,回到主界面,点击左侧星星符号可以看到已有连接设置,右键点击编辑即可修改刚才创建的 vnc 链接,将端口改为先前创建的端口号加 5900,例如上述端口号为 62,则端口改为 5962。重新输入密码连接,即可进入自己的 vnc 界面。

图 2.6 创建 vnc 流程

2.2 通过 SSH 创建个人 VNC 端口

另外一种方式可以通过 SSH 连接创建个人 VNC 端口,登陆方法如下,首先同样创建 session 连接,此处选择 SSH,输入分配的 IP 和自己的用户名,端口默认为 22。

图 2.7 创建 ssh 连接

创建完成后连接,会进入命令行,登陆会提示需要输入自己的密码,默认为 111111,键入回 第4页,共 23页 车即可进入,密码输入时不可见;进入后输入如下指令创建 vnc

vncserver:端口号

初次创建需要创建密码,流程与 2.1 相同,创建完成界面如图 2.8,若出现 A vnc is already running as:xxx,请确认自己的端口和服务器 IP,若有误请联系管理员。

```
? MobaXterm Personal Edition v21.4 ?
(SSH client, X server and network tools)

> SSH session to stu1@114.212.128.242
? Direct SSH : / ? SSH compression : / ? SSH-browser : / ? X11-forwarding : / (remote display is forwarded through SSH)

> For more info, ctrl+click on help or visit our website.

Last login: Fri Nov 26 16:08:44 2021 from 114.212.131.105
[stu1@dell02 ~]$ vncserver :99

New 'dell02:99 (stu1)' desktop is dell02:99

Starting applications specified in /home/AnalogIC1/stu1/.vnc/xstartup Log file is /home/AnalogIC1/stu1/.vnc/dell02:99.log

[stu1@dell02 ~]$ exit logout

Session stopped
- Press < return> to exit tab
- Press R to restart session
- Press S to save terminal output to file
```

图 2.8 vnc 创建成功界面

创建后输入 **exit** 退出 ssh。避免占用内存,结果如上图,完成后退出即可。随后如 2.1 末尾所属创建 VNC 连接,即可进入自己的账户。

2.3 配置 cadence 工作环境

进入用户个人界面后需要复制部分配置文件到个人目录下,完成配置。 切换至个人端口后,可以查看到/TOOLS/PDK/SMIC/路径下包含了几个文件,其中..bashrc.cdsinit 为隐藏文件

```
[stu2@dell01 Desktop]$ cd /TOOLS/
.bashrc .cdsinit PDK/ smic018/
```

需要将上述两个隐藏文件与文件夹 **smic018** 复制到个人目录下,具体可以在终端中执行下述指令:

cp -a /TOOLS/.bashrc ~/.bashrc

cp -a /TOOLS/.cdsinit ~/.cdsinit

cp -a /TOOLS/smic018 ~/smic018

完成上述三个指令,可以在任意位置重新打开终端,然后执行下述指令:

cd ~/smic018

进入刚刚复制的文件夹,执行下述命令,打开 cadence;

virtuoso &

然后就会打开 Cadence 的主控窗口 CIW(Command Interpreter Window)。如图 2.7 所示:

图 2.9 Cadence 主控窗口

这就是 Cadence 的集成设计环境,Cadence 的大部分工具都可以从这里打开。其中最上方是标题栏,第二行是菜单栏。中间部分是输出区域,许多命令的结果在这里显示。一些出错信息也在这里显示,要学会从输出区域中获取相应的信息。接下来一行是命令输入行。Cadence 的许多操作可以通过鼠标执行,也可以通过输入命令来执行。

2.4 重置 VNC 密码

因为之前已经配置好了服务器及 VNC 的端口号,因此只需要在 SSH 中重置 VNC 的密码即可登入 virtuoso 软件。

打开 MobaXterm 软件, 电极左上角 Session, 输入给自己分配的 IP 及用户名, 如下图 所示。

图 2.10 SSH 设置窗口

打开刚才设置的 SSH 界面,输入密码,初始密码为 111111,若无必要最好不要更改,随后出现下图界面。在 shell 中输入命令 vncpasswd,重设 vnc 的密码,可以设置成 111111,主要,在 ssh 中输入密码界面不会显示,但实际上已经输入。

图 2.11 SSH 终端界面

再次点击左上角的 Session,新建 VNC,输入给自己分配的 IP,端口号 Port 为给自己分配的 (端口+5900),如果端口不对,在 SSH 中输入命令 vncserver 查看自己的端口号

打开新建好的 vnc, 右键打开终端, 输入命令: cd ~/smic018 进入工程目录输入命令 virtuoso &, 打开 cadence 软件

2.5 建立个人工作库

Cadence 是以库来组织文件的。为了使我们的工作和系统自带库区别,我们需要建立自己的工作库。有两种方法来建立新库,一是通过菜单栏 Tools->Library Maneger 打开库管理器,另一种是通过 File->New->Library 来建立新库。这里我们用第二种方法建立新库。Candence 启动完成后,会打开 LM(Library Maneger)窗口,如图 2.8 所示。

图 2.8 LM 窗口

该窗口列出了当前已有的库。点击 File->New->Library,打开 New Library 窗口,如图 2.9 所示。

图 2.9 新建库窗口

图 2.10 Technology File 设置窗口

在 Name 一栏输入要新建的库名,如 mylib,然后单击 OK 确定。出现 Technology File 设置窗口,如图 2.10 所示。这里我们选择第三项 Attach to an exsiting techfile,单击 OK 确定。 出现 Attach Design Library to Technology File 窗口,如图 2.11 所示。

图 2.11 TF 加载窗口

这里我们要选择 tf 文件所在库,例如这里我选择的是 smic18mmrf 库。

确定后,就会建立名为 mylib 的新库,Cadence 会在当前的工作目录下自动生成一个新目录 mylib 以存放和库 mylib 相关的文件。

三、电路图的输入——Composer

本章将通过画一个 CMOS 反相器来简单的介绍电路图设计流程。

3.1 新建原理图

类似于新建一个库,有两种方法可以新建原理图,一是通过库管理器,另一种是通过 CIW 菜单新建。这里我们直接通过 CIW 来新建原理图。

在CIW窗口中,File->New->CellView,底部出现新建对话框,最大化,如图 3.1 所示。

图 3.1 新建原理图

于 Library 栏选择自己的工作库,如 mylib,在 Cell 栏输入原理图名字,如 inverter,于 Type 栏选择 Schematic,此时 View 栏自动变为 schematic。最后单击 OK。这样就会弹出 Composer 主界面。如图 3.2 所示。

图 3.2 Composer 主界面

Composer 主界面包括:标题栏,菜单栏,工具栏,状态栏(第二行),提示区(就是最底下那行)以及最大的那个工作区。标题栏和菜单栏没什么好说的,状态栏会提示当前的命令以及所选择的物体个数,提示区会告诉你当前应该做什么事。作为初学者,在设计电路过程中应该要仔细阅读提示区中的信息。此外,

注意: ①Composer 中的多数命令会一直保持,直到你调用其它命令替代它或者按 Esc 取消,尤其是在执行 delete 命令时,忽视这一点很可能会误删除,一定要多加小心!Composer 的 Undo 操作默认只能进行一次(可以在 CIW 窗口的 Option->User Preferences 中修改,最多可以是 10)。所以每完成一个命令,记着按 ESC 取消当前命令。

- ②点击工具栏的 zoomin 和 zoomout 按钮可以放大缩小电路图。键入快捷键 f 可以使电路图自动缩放到合适大小。
- ③编辑电路图过程中注意要及时保存,保存方法是菜单栏->Design->Save,也可以键入快捷键大写的 S(Shift+s)来保存。

3.2 添加器件

现在,我们要开始画一个标准的 CMOS 反相器。一个反相器包括 PMOS, NMOS, VDD, GND。

添加器件有三种方法,①Create->Instance,②键入快捷键 i,③工具栏 Instance,弹出的对话框如如图 3.3 所示。

图 3.3 添加器件窗口

点击 Browse, 弹出库浏览器, 如图 3.4 所示。选中 Show Categories 可以分类显示器件, 方便我们快速找到所要的器件。

图 3.4 库浏览器

依次点击 smic18mmrf-> mosfets->p18>symbol,再单击 close。刚才的添加器件窗口发生变化,如图 3.5 所示。可以发现 Library,Cell,View 等都自动填上了相应的信息。同时多出了一些参数列表(拖动滚动条可以看到更多)。点击 Hide 隐藏当前窗口,此时鼠标对应有一个 PMOS 的 symbol,此时按 r 键,可以旋转 PMOS。移动 PMOS 到合适的位置点击鼠标左键将其放下。如果要放置更多的 PMOS,继续点击鼠标左键,否则按 ESC 取消当前的放置器件命令。

图 3.5 选择了元件后的添加器件窗口

继续放置 NMOS 晶体管、电源与地。对应的器件名称为 n18, vdd, gnd。放置完所有器件后的原理图如图 3.6 所示。注意, vdd 与 gnd 仅仅是全局电源与地标识,并不是独立电源器件, vdd 并不能提供电源。仿真时必须有 gnd, 否则仿真不收敛。

图 3.6 放置完电源与地

图 3.7 连线

3.3 连线

现在要用导线把器件连起来。画导线的方法有三种,①菜单栏->Add->wire(narrow),② 键入快捷键 w,③工具栏 wire(narrow)。注意区别 wire(narrow)与 wire(wide),wire(narrow)表示普通连接导线,而 wire(wide)表示总线连接。总线连接的快捷键是大写的 W。

进入连线命令后,于起点单击左键,再于终点单击左键。画完一段导线后,此时并没有退出画线命令,可以继续画连接线,直到画完所所有的连接线后,按 ESC 退出画线命令。 连好线的电路图如图 3.7 所示。其中左右两条水平导线是后面连连接端口用的。

还可以对画好的线进行命名,键入快捷键 1,在弹出的对话框中输入线名,比如 a,点击 Hide,然后将字母 a 移动到要命名的线附近点击左键放下,如果名字离线较远,则要求

再单击所要命名的线。

3.4 设置元件参数

现在需要设置元件参数,有三种方法,①菜单栏-> Edit-> Properties-> Objects,再点击要修改参数的元件,②先选中器件,再键入快捷键 q,③选中器件,再点击工具栏 Propertiy。参数可以是以下三种形式的各种数学组合表达式,①变量,②常量,③skill 语言函数。变量作参数会在仿真时用到。常量和 skill 语言函数作参数,在下面就会用到。

例如,单击 PMOS 选中它,这样 PMOS 会被一个白色方框包围。然后键入快捷键 q,会弹出属性编辑对话框。这里我们需要填上 PMOS 的栅长和栅宽。栅长我们设为常量 0.18u(注意 u 是小写!),而栅宽我们设为 1.95u,注意大小写不能错。Composer 会根据数值 大小自动变换单位。如图 3.8 所示。

图 3.8 设置元件参数

图 3.9 设置好元件参数的电路图

同样的方法继续设置 NMOS 参数,只是模型名为 n18,栅长为固定值 0.18u,栅宽设为 600n。设置好参数后的电路图如图 3.9 所示。

注意:①设置参数时不要自己输入单位,系统会自动加上。比如 0.18uM 是错误的写法。如果非要自己写单位,也要和数值之间留一个空格,否则系统会把 M 识别为变量。

②器件的参数也可以在放置时就设置好。

3.5 放置端口

完成以上工作后,还必须放置 I/O 端口以标明电路的输入输出。放置端口有三种方法,①菜单栏->Add->Pin,②键入快捷键 p,③点击工具栏 Pin。

执行放置端口命令后,会弹出如图 3.10 所示对话框。于 Pin Names 栏输入端口名,比如 Vin,于 Direction 栏选择 input,点击 Hide,然后将端口放到反相器的左边输入线上。同样的方法再放置输出端口,端口方向要改为 output,名称为 Vout,将其放在反相器右边的输入线上。最终的完成图如图 3.11 所示。

p18 PMØ
"p18"
w=1.95u
l:18Øn
m:1
vdd

out
"p18"
w=60Øn
l:18Øn
m:1

图 3.10 放置端口

图 3.11 最终的电路图

3.6 检查并存储

设计完成的电路图需要经过检查方能进行仿真。单击菜单栏->Check and Save 或者键入快捷键大写的 X,可以对电路进行检查并存储。

检查后如果有错会在 CIW 窗口上显示错误或警告信息。如果没错,则如图 3.12 所示:

图 3.12 检查电路后 CIW 中的提示信息

检查无误后可以关闭 Composer 了。

四、创建 Symbol——Composer

现在我们要对上一章中画的反相器创建 Symbol,这样做的目的是为了在更大的电路中用到我们前面所画的反相器时,可以用这个 Symbol 来代替。

4.1 打开 inverter 原理图

CIW 窗口菜单栏->Open,弹出打开对话框,选择自己的库,然后选择器件 inverter,再于 viewname 栏选 schematic,点击 OK 打开上一章画好的反相器原理图。

4.2 创建 Symbol

Composer 窗口菜栏->Create->CellView->From Cellview, 弹出 Cellview from Cellview 窗口, 如图 4.1 所示。

图 4.1 创建 Symbol

其中 Library Name、Cell Name 等栏已经自动填好,确认 To View Name 栏是 symbol,点击 OK。弹出创建 Symbol 选项窗口,如图 4.2 所示。

图 4.2 创建 Symbol 选项窗口

我们习惯上认为输入在左,输出在右,将 in 移动到 Left Pins(左端),将 out 移动到 Right Pins(右端),点击 OK。显示出 Symbol 编辑窗口,如图 4.3 所示。

图 4.3 Symbol 编辑窗口

默认生成的反相器 Symbol 是一个绿色矩形框,引脚按刚才编辑好的方式左右排列。红色矩形框代表调用这个模块时点选的区域,也就是说鼠标点到此区域范围内才可以选中这个Symbol。图中所有元素均可修改,但我们一般只改绿色矩形框。

4.3 编辑 Symbol 并保存

默认的 Symbol 是一个比较大的矩形。对于反相器,我们习惯用一个三角形再加小圆圈来表示。

选中绿色矩形框,delete 之,然后 Add->-Shape>Polygon,在刚才矩形框的位置画一个三角形。鼠标在三个端点点 3 次即可。注意在三角形右边留出画圆圈的位置。

再 Add->Shape->Circle,先于圆心位置单击左键,再移动鼠标,得到合适的圆的半径后左键确认。

再把图中的输入输出端口以及 partname 和 instanceName 移动到合适位置。其中, @instance Name 代表以后调用此反相器时的编号, @partName 代表对应的 schematic 的名字, 一般不用改。最后再把红色框大小修改合适(框住三角形和端口)。

最终的 symbol 如图 4.4 所示。

图 4.4 反相器最终的 Symbol

画好的 Symbol 需要检查保存。Design->check and save,检查结果显示在 CIW 窗口中。

五、电路仿真——ADE

现在我们用画好的反相器的 symbol 进行仿真,通过对 Inverter 做瞬态分析、DC 分析、AC 分析,分别得到该 Inverter 的延迟时间、输入输出特性以及小信号频率响应。

对电路进行仿真需要加激励信号,而加激励信号有两种方法,一种是在原理图中直接加入信号源元件,另一种是在仿真环境窗口(ADE)中对输入端口加激励。这里我们介绍的是第一种方法。

5.1 创建仿真电路

现在新建一个电路图,名为 inv_test,注意选为自己的库。画出测试电路,如图 5.2 所示。

图 5.2 inverter 的仿真电路

- ② 独立电源 vdc 也是在 analoglib 库中,将其属性中的 DC voltage 设为 1.8。
- ②另一个激励信号是方波源,对应器件名称为 vpulse, 也位于 analoglib 库中。方波源 的属性设置如图 5.3 所示。方波上升下降时间为 0.1n, 周期为 10n, 脉冲宽度为 4.9n, voltage1 设为 0, voltage2 设为 1.8。因为我们还要作 AC 分析,交流电压幅值为 1(这样测得的输出直接就是小信号增益)。为了得到 inverter 的输入输出特性,我们把直流电压设为变量 vin。

图 5.3 方波信号源的参数设置

对于初学者需要强调的一点,这里<mark>设置的方波电压、直流电压、交流电压是**相互独立**的,分别用于瞬态分析、dc 分析、ac 分析(但某些情况下是有联系的)。</mark>

5.2 打开仿真环境

Composer 菜单栏->Launch->ADE L,打开仿真窗口(简称为 ADE 窗口),如图 5.4 所示。 其中比较重要的常用按钮已经标明。

图 5.4 仿真环境窗口

仿真时需要进行一些诸如仿真库文件路径、结果存储路径、仿真器选择等的设置,相关设置在 setup 中进行设置。这里我们只需要设置仿真库文件路径(仿真库文件记录着不同工艺角的参数,并指明了各元件类型的 model 文件所在路径),其它均为默认设置。

于 ADE 窗口,Setup->Model Libraries,打开 Model 库设置窗口,如图 5.5 所示。

图 5.5 Model Libraries 设置窗口

左 边 方 框 打 上 \checkmark , 在 右 边 三 个 点 处 选 择 路 径:/TOOLS/PDK/SMIC/SPDK18MMRF_1833_CDS_v2.0/smic18mmrf_1P6M_200709151808/mod els/spectre/allModels

选中该文件,点击 OK 即可。

5.3 设计变量

仿真环境菜单栏->Variables->Edit,或者直接点击右侧的工具栏中的 Edit Variables 按钮,弹出如图 5.6 所示窗口。击点按钮 "Copy From",就会列出我们前面在测试电路中添加的变量 vin。选中该变量,我们设置一个初始值 0.9。之所以是 0.9,是因为当反相器的输入为 0.9时两个 MOS 管都会导通,此时反相器实际起的是放大器的作用,而我们作 AC 分析就是要得到 MOS 管处于饱和区时它的频率响应。需要强调的是,AC 分析是建立在一定的工作点上的,而电路的工作点正是由电路图中所设置的电源 DC 值以及这里的变量初始值决定的。

图 5.6 变量初始值设置

5.4 仿真设置

由于我们要做瞬态分析,dc分析,ac分析,所以我们一次弄好所有设置。

①Analyses->choose, 或者点击右侧工具栏的 choose analyses 按钮。弹出如图 5.7 所示窗口。于 Analysis 栏选择不同的仿真。对于瞬态分析,我们选 tran, 然后于 stop time 栏输入仿真时间 10n。

图 5.7 仿真设置窗口, 瞬态分析的设置

②再于该窗口中选取 dc,窗口会有相应变化。于 sweep variable 栏选择 Design Variable,然后输入变量名 vin,并输入变量的扫描范围,从 0 到 1.8。并选择扫描类型为线性,扫描为 0.001。这样仿真时就会对 vin 从 0 到 1.8V 以 0.001 为间隔进行扫描,从而得到输入输出特性。

注意选中 save DC Operating Point 复选框,这样就可以将 AC 分析时所采用的的直流工作点保存下来,以便我们后面查看电路的直流工作点。如图 5.8 所示。

③再于该窗口中选取 ac,窗口会有相应变化。默认是频率扫描。我们只需要输入频率扫描范围。这里输入10到1000M(注意是大写)。其它均为默认值。如图 5.9 所示。

图 5.8 仿真设置窗口, dc 分析的设置

图 5.9 仿真设置窗口, ac 分析的设置

5.5 选择输出,并保存当前仿真设置

接下来要选择我们需要观察的对象,即我们要看哪个节点的电压,或者要看哪一条支路的电流。

于 ADE 窗口, Output->To Be Plotted->Select On Schematic, 这样会弹出我们画的电路图。然后分别单击输入和输出两条线 in 和 out。注意一定要单击导线,而不是元件的 Pin 角! 然后按 ESC 退出选择状态。此时在仿真窗口中已经有了 in、out 两项,如图 5.10 所示。

图 5.10 全部设置完成后的仿真环境窗口

保存当前的仿真设置。Session->Save State, 弹出保存对话框, 填好名称, 点击 OK 确定。这样下次再仿真时,可以直接调用该仿真设置,而不用每次都进行同样的设置。

5.6 进行仿真并查看波形

现在可以进行仿真了。于 ADE 窗口,Simulation->Run,或者点工具栏 Netlist and run 按钮,再点 OK,就可以显示出前边所设置的 output 中指定的信号波形。如图 5.11 所示。

图 5.11 波形显示窗口

默认是将所有仿真波形显示在同一个大窗口中,在上图中,从左到右分别是瞬态分析波形窗口、AC分析波形窗口、DC分析波形窗口。

图中每一个小窗口称为子窗口。子窗口被红色方框包围,表示当前子窗口处于被选中状态。对于选中的窗口,我们可以通过工具栏的按钮改变其显示方式,如将一个子窗口中的多条曲线分行显示等。工具栏各按钮作用如下:

将选中子窗口中的栅格打开或隐藏

将选中子窗口中的曲线分行显示。

新建子窗口

新建波形窗口

我们也可以对波形进行操作。单击窗口中的曲线或者子窗口上方的信号名称,可以选中相应的波形。对于选中的波形,可以对其进行诸如删除、各种数学计算等操作,还可以对波形做任意的拖动操作,详细功能将在后面介绍。

5.7 仿真结果分析

通过对仿真结果的分析,要学会波形测量、查看电路工作点状态、查看电路节点电压、 查找器件参数、计算器的使用以及对波形窗口坐标等各种操作。

① 瞬态结果分析。选中瞬态分析子窗口,右键,Copy to ->New Window->Rectangular 将瞬态波形放大到当前波形窗口中。为了看清缓冲器延时,需要放大波形的特定区域。在波形窗口中按住鼠标右键不放,拖出一个矩形框,框住瞬态波形中输出信号的上升部分,松开右键后,矩形框中的波形就会被放大到整个窗口。如图 5.12 所示。

图 5.12 瞬态分析波形中的上升下降延时测量

于波形窗口点击 ,选择 Horizontal->ok,此时会在当前窗口出现一条水平白线。拖动白线,可以上下移动白线,同时窗口上方会显示出水平白线与图中三条曲线交点的坐标值。我们拖动白线到纵坐标为 0.9V 的位置,然后就可以读出信号 VIN、VOUT 对应的时间,对应时间相减即为反相器延时。

- ② AC 结果分析。对 AC 仿真进行相同的操作,从图中我们可以大致读出反相器作放 大器时小信号增益约为 23,单位增益带宽接近 1G。
- ③DC 分析结果。将 DC 波形放大到当前窗口中,放大 0.9V 附近的波形。可以从中测出 开关阈值电压 V_{M} 。如图 5.13 所示。

图 5.13 反相器的输入输出特性

此外,我们还可以得到 AC 分析中电路的工作点状态。于 ADE 窗口点击 Results->Print,下拉菜单中有 DC Node Voltages,DC operating Points,Model Parameters,Transident Node Voltages,Transident Operaing Points 等选项,可以分别打印出电路的节点电压、工作点状态、模型参数、瞬态节点电压、瞬态工作点状态,如图 5.14 所示。

图 5.14 打印节点电压、工作点状态以及器件参数

同学们可以测试各种宽长比下电路的瞬态、AC、DC 波形,分析对电路性能有什么影响,并思考为什么。另外考虑反相器既然有放大作用,能否用来作放大器,为什么。

对于电路仿真我们就只进行一个简单的介绍,更多的功能将在后续实验中介绍。

5.8MOS 管参数提取

在 smic18 的库中,我们会用到不同的管子,我们需要了解管子的各种参数。在 smicmm18rf 元件库中,n18 代表供电电压为 1.8V 的 NMOS 管,p18 代表供电电压为 1.8V 的 PMOS 管,同样,n33 代表供电电压为 3.3V 的 NMOS 管,p33 代表供电电压为 3.3V 的 PMOS 管。下面以 n33 管为例,进行管子参数的仿真示例:

搭建如图 6.1 所示电路,栅端接入电压,电压值设为变量 Vg (图 6.2),漏端接为 Vdd。

图 6.1 n33 管子参数仿真图

在 Launch->ADE L 处打开仿真界面,点击 Variables->Copy From CellView,ADE 界面 左端会出现所设置的变量,给变量赋予一个定值表示栅端加电压,如 1.65V。

接下来,在 Analyses->choose 处选择 dc 仿真,设置变量 Vg 从 0-3.3V 进行扫描,注意 选中 Save DC Operating Point,如图 6.2 所示。设置好的界面如图 6.3,

图 6.2 管子参数 dc 仿真

图 6.3 管子参数仿真 ADE 界面

点击右侧绿色按钮(Netlist and run)进行仿真。仿真完成后,选择 Results-Print-Model Parameters,选中该 n33 管子,会弹出如图 6.4 的管子参数。在该表中,可以找到电子迁移 率 U0,即 $\mu_n=35*10^{-3}m^2/V\cdot s$,阈值电压 Vth0,即 $v_{t\acute{e}n}=695mV$,等效栅氧厚度 toxe。根据读出的参数,可以计算出管子的参数。

$$Cox = \frac{\varepsilon_{ox}}{t_{oxe}}$$

则
$$K'_n = \mu_n \frac{\varepsilon_{ox}}{t_{oxe}}$$

其中
$$\varepsilon_{ox} = \varepsilon_{Sio_2} = 3.9*8.85*10^{-14} F/cm$$

同理可以对 PMOS 管子的参数进行仿真

图 6.4 管子参数

	Results Display Wind	low ×
Window Express	ions Info <u>H</u> elp	cādence
signal	MP("/M0" "??")	
a0	1.02	
a1	Θ	(a)
a2	990m	
acde	450m	
acm	θ	
acnqsmod	θ	
ad	Θ	
af	1	
agidl	0	
agisl	θ	
ags	170m	
aigbacc	13.8m	
aigbinv	11.1m	
aigc	13.6m	
aigsd	13.6m	
alarm	Θ	
alpha0	-44.76n	
alpha1	899.888m	
apwarn	Θ	
as	θ	
at	22K	
b0	10n	
b1	θ	
beta0	18.8771	
bforward	0	
bgidl	2.3G	
bgisl	2.3G	
bigbacc	1.71m	
bigbinv	949u	
bigc	1.71m	
bigsd	1.71m	-

六、结语

到此,通过 candence 进行的 inverter 的 schematic 的设计和前仿流程基本完成。后续的 Layout,寄生参数提取和后仿真以及 candence 的一些其它扩展功能,感兴趣的同学可以继续探索,这里就不再赘述。