

GT - MÉTODOS QUANTITATIVOS APLICADOS À ECONOMIA

ANÁLISE DA CURVA DE PHILLIPS NOVO-KEYNESIANA PARA O **BRASIL NO PERÍODO ENTRE 2012.3 E 2023.4**

Guilherme de Almeida¹

RESUMO

Este trabalho tem como obietivo principal analisar a Curva de Phillips Novo-Kevnesiana para o Brasil entre os períodos de 2012.3 a 2023.4, dada a sua importância em diversas economias ao redor do mundo que utilizam do sistema de metas de inflação, alguns com metas mais rígidas e de longo prazo e outros com um grau de tolerância maior. Para isso, é utilizado o Método dos Mínimos Quadrados Ordinários, além do auxílio bibliográfico para a sustentação teórica. O método econométrico utilizado por este trabalho para estimar a curva de phillips novo-kevnesiana apresentou bom resultado em alguns de seus coeficientes, ademais, o trabalho traz outra abordagem da curva de Phillips que explicita melhor a relação de 'trade-off' entre inflação e desemprego. Apesar da regressão mostrar uma robustez razoável em seus resultados, pode-se concluir que este trabalho teve suma importância para observar a dinâmica inflacionária do Brasil nos últimos dez anos, inclusive, mediante ao cenário da pandemia.

Palavras-chave: Inflação. Desemprego. Mínimos Quadrados Ordinários.

1 INTRODUÇÃO

A famosa curva de Phillips é uma das principais dentre as teorias macroeconômicas, ela fala sobre umas das maiores preocupações nas economias capitalistas modernas em todo o mundo, o 'trade-off' entre a inflação (inicialmente a dos salários, não a do preço dos bens/serviços) e desemprego, assim, alegando a existência de uma relação inversamente proporcional, ou seja, quando a taxa de desemprego cai, a taxa de inflação tende a subir, coeteris paribus, segue a lógica de que o aumento da circulação de moeda nacional dentro do país tende a aumentar a demanda por determinados bens e serviços e, por conseguinte, encarecendo os preços no mercado interno, a tão temida inflação. Surge a NAIRU, como forma de achar o

¹ Graduando em Ciências Econômicas pela Universidade Federal do Rio Grande do Norte.

"equilíbrio" entre as taxas de desemprego e de inflação, inibindo, assim, a necessidade de políticas monetárias e fiscais.

Ao se deparar com o cenário dos Estado Unidos da América (EUA) nos anos de 1975 e 1979-1981, onde o mesmo apresentava uma "estagflação", caracterizada por um aumento da taxa de desemprego e um aumento da taxa de inflação, não foi preciso de muito para constatar que um aumento do desemprego não garante uma baixa inflação ou vice-versa (MENDONÇA; SACHSIDA, 2012), mesmo antes desse acontecimento, Sachsida (2012), afirma que essa constatação já tinha sido sugerida por Edmund Phelps (1967) e Milton Friedman (1968), ou seja, a taxa de desemprego pode diminuir temporariamente devido a um aumento da taxa de inflação, todavia, o desemprego não acompanha a tendência caso haja uma persistência de mais inflação, isso porque, com um choque inflacionário os trabalhadores, temporariamente, aceitam os dados níveis de salário, as empresas aumentam seu lucros e contratam mais mão de obra, quando os trabalhadores percebem que o seu poder de compra diminuiu (queda do salário real), se mobilizam para um aumento dos salários nominais (MENDONÇA; SACHSIDA, 2012). Os modelos novo-keynesiano, defendem então, que, ao não haver ajuste instantâneo entre os preços e os salários, é criado um espaço onde é possível a existência de políticas macroeconômicas.

No Brasil, a política econômica que é feita para tentar estabilizar os preços internos é a implementação da meta de inflação, em 1999, que é definida pelo Conselho Monetário Nacional (CMN), assim, cabe ao Banco Central (BACEN) adotar medidas necessárias para atingir a meta inflacionária. Hoje, essa meta está em torno de 3%. O problema se encontra na política utilizada pelo BACEN para alcançar a meta, ao aumentar a Taxa de Juros para tentar diminuir a inflação brasileira, que está à 4.18% no último IPCA ocorrido, o nível de endividamento de pequena/médias empresas e de "pessoas comuns" também aumenta e como consequência tende em aumentar o nível de inadimplência, tendo como maioria dos beneficiários dessa política, os investidores improdutivos.

A análise da curva de Phillips novo-keynesiana para o Brasil no período de 2012.3 a 2023.4 tem o intuito de avaliar a maneira de como as políticas macroeconômica dos últimos governos têm afetado a economia nacional.

2.1. Modelo econométrico

Para calcular a regressão da curva de Phillips novo-keynesiana (NKPC) para o Brasil este trabalho fez uso da equação:

$$\pi_t = \beta_1 \pi_{t-1} + \beta_2 E_t \pi_{t+1} + \beta_3 x_t + \beta_4 z_t + \varepsilon_t \tag{1}$$

Onde, π_t é taxa de inflação no período t; π_{t-1} é a taxa de inflação ocorrida; $E_t\pi_{t+1}$ é a esperança da taxa de inflação para o período (expectativa de inflação), onde $E_t\pi_{t+1}={\it E}[\pi_{t+1}\,|\,I_t]$, I_t é o conjunto de informação; x_t é a variável que representa o custo marginal de uma empresa; z_t é a variável que representa um choque de oferta; ε_t é o erro.

2.2. Base de dados

Podem ser utilizadas algumas *proxies* para as variáveis do modelo, no caso brasileiro, depois da adoção da meta de inflação a variável mais comum utilizada para representar a inflação ocorrida é o IPCA (SACHSIDA, 2013), mas também são encontrados artigos que utilizam do Índice Nacional de Preços ao Consumidor (INPC), para a expectativa de inflação pode ser utilizado a estimativa do modelo autorregressivo integrado de média móvel (Arima), como também a média das expectativas mensais da inflação do relatório da Focus (BACEN²), para a *proxy* do custo marginal da empresa geralmente é utilizado a taxa de desemprego do IBGE, Dieese ou do PME, há a possibilidade de se utilizar o hiato do produto ou a capacidade instalada da indústria, e para a *proxy* do choque de oferta, geralmente, é utilizado o choque cambial.

A escolha das *proxies* que foram utilizadas por esse trabalho segue o padrão utilizado por alguns econometristas, de consenso comum. Para representar a inflação ocorrida foi utilizado a taxa de variação do núcleo de médias aparadas do IPCA, para a

-

² Banco Central do Brasil.

expectativa de inflação foi utilizado a expectativa média do IPCA, para o custo marginal da empresa foi utilizado a taxa de desemprego do IBGE e PNADc, e para o choque de oferta foi escolhida a taxa média de câmbio (venda). Os dados foram coletados no *site* do IPEAdata no período entre 2012.3 e 2023.4, série histórica.

Tabela 1 - Variáveis da Regressão

Variáveis	Descrição	Fonte
IPCA	Inflação Ocorrida	IPEAdata
ExpIPCA	Inflação Futura	IPEAdata
TxDes	Custo Marginal das Empresas	IPEAdata
TxCambio	Choque de Oferta	IPEAdata

Fonte: elaborado pelo autor.

Foram realizados testes com regressão da curva de Phillips utilizando dados para a variável de inflação da taxa geral de inflação e do Sistema Nacional de Índice de Preços ao Consumidor (SNIPC). Para a taxa de desemprego utilizou-se, também, dados da Pesquisa Mensal de Desemprego (PME), para isso, o período analisado foi alterado devido à ausência de dados pós 2015, as pesquisas realizadas pela PME foram encerradas em 2016, também foi feita uma estimação com a taxa de desemprego calculada pelo modelo recíproco ($\beta_2(\frac{1}{x})$). Além da introdução de uma variável *dummy*, na qual, diz respeito à pandemia do COVID-19, antes da pandemia = 0, durante e depois da pandemia = 1 (período 2020.3-2023.4).

Tabela 2 - Variáveis das Regressões Extras

Variáveis	Descrição	Fonte		
IPCAsnipc	Inflação Ocorrida	SNIPC/IBGE/IPEAdata		
IPCAg	Índice geral do IPCA Ocorrido	SNIPC/IBGE/IPEAdata		
TxIPCA	Inflação Ocorrida	SNIPC/IBGE/IPEAdata		
TxDes 1	Taxa de Desemprego $(\frac{1}{TxDes})$ com Choque de Oferta	SNIPC/IBGE/IPEAdata		
TxDes 2	Taxa de Desemprego $(\frac{1}{TxDes})$ sem Choque de Oferta	SNIPC/IBGE/IPEAdata		
TxDesemp	Taxa de Desemprego	PME		

TxDesemprego	Taxa de Desemprego	PME
ExpInfla	Inflação Futura	BACEN/IPEAdata
ExpecMediaIPCA	Expectativa Média da Inflação	BACEN/IPEAdata
TxC	Choque de Oferta	IPEAdata
TxC TxCV	Choque de Oferta Choque de Oferta	IPEAdata IPEAdata

Nota: Variável *Dummy*: 0= pré-pandemia; 1= pandemia/pós-pandemia.

Fonte: elaborado pelo autor.

Nos artigos que falam sobre a curva de Phillips novo-keynesiana, são utilizadas estratégias econométricas mais sofisticadas, como a utilização do método de variáveis instrumentais e o método de momentos generalizados. Aqui, neste trabalho, será utilizado o MQO, podendo gerar resultados que não condizem com a teoria.

3 RESULTADOS E DISCUSSÕES

Nesta seção é feito uma análise dos resultados obtidos para a NKPC no Brasil do período entre 2012.3 e 2023.4.

3.1 Análise do resultado da NKPC

A tabela a seguir mostra os resultados obtidos para a estimação principal da NKPC:

Tabela 3 - Variável dependente: Inflação (IPCA) (2012.3-2023.4)

Variáveis	Estimação	Erro padrão	T Valor	Pr(>t)
IPCA (intercepto)	-0.698505	0.133510	-5.232	0.0000006538 ***
TxDes	0.002138	0.007490	0.285	0.776
ExpIPCA	0.166267	0.014937	11.131	<0.0000000000000 002 ***
TxCambio	0.070925	0.012091	5.866	0.0000000349 ***
EP residual: 0.1301 com 130gl	R ² : 0.6315	R² ajustado: 0.623	F-estatístico: 74.25 com 3 e 130 gl	P-valor: <0.0000000000000000 0022

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Fonte: elaborado pelo autor.

Ao olhar o resultado da estimação, feita por MQO, constata-se que, primeiro, não apresenta o resultado da taxa de desemprego (TxDes) estatisticamente significante e nem o seu valor negativo, como é esperado de acordo com a teoria. Esse resultado pode ter duas explicações válidas, a primeira seria o fato de que o método MQO para fazer a estimação da NKPC não é suficiente, a segunda entra numa questão mais teórica, de que a não significância estatística do impacto da taxa de desemprego pode acontecer devido à dificuldade de captar o seu efeito no longo prazo, o que acaba dando uma impressão nula, ou de pouca relevância, na formação do processo inflacionário (MENDONÇA; SACHSIDA, 2012). Segundo, a taxa de inflação ocorrida (IPCA) apresenta um sinal negativo de ~ 0,70, na qual também não é esperado pela teoria, mas, é estatisticamente significante. Além disso, não apresenta a soma dos coeficientes de inflação passada e futura iguais à um $(\Sigma \pi_{t-1} + E \pi_{t+1} = 1)$. A taxa da expectativa de inflação (ExpIPCA), obteve tanto o sinal esperado, quanto foi estatisticamente significante. A análise que pode ser feita é que a inflação futura tem maior relevância na dinâmica do processo inflacionário, do que a inflação passada. Terceiro, a taxa de câmbio (TxCambio), se mostra estatisticamente significante, e como esperado pela teoria, mostrando, assim, que um choque de oferta cambial tem efeito sobre a inflação, nesse caso, positivo e de aproximadamente 7,1%.

A tabela abaixo mostra os resultados da curva de Phillips sem o choque de oferta e com a expectativa de inflação:

Tabela 4 - Variável dependente: Inflação (IPCA) (2012.3-2023.4)

Variáveis	Estimação	Erro Padrão	T Valor	Pr(>t)	
IPCA (intercepto)	-0.709199	0.149554 -4.742		0.00000544***	
TxDes	0.024514	0.007221	3.395	0.000909***	
ExpIPCA	0.173874	0.016670	10.430	<0.000000000000 0002***	
EP residual: 0.1457 com 131gl	R ² : 0.5339	R² ajustado: 0.5268	F-estatístico: 75.03 com 2 e 131 gl	P-valor: <0.0000000000000000000000000000022	

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Fonte: elaborado pelo autor.

Ao obter o resultado da regressão sem o choque de oferta, primeiro se constata a significância de todas as *proxies* adotadas para a estimativa, embora não apresente o efeito negativo da taxa de desemprego sobre a taxa de inflação e o intercepto com sinal negativo, é possível observar como as variáveis impactam a dinâmica inflacionária. Mesmo não apresentando significância estatística na *proxy* TxDes a regressão com o choque de oferta ainda apresenta uma qualidade melhor do R^2 ajustado do que a regressão sem o choque de oferta, de $\simeq 0.62$ e $\simeq 0.52$, respectivamente.

3.2 Análise de diagnóstico

Para o teste T foram adotadas as hipóteses de que: H_0 : $\beta_1 = 0$; H_1 : $\beta_1 \neq 0$, sendo $\alpha = 0.05$ com gl = 130. Os coeficientes, exceto TxDes, são estatisticamente significantes à 5%. O *p-value* sendo extremamente próximo a zero corrobora para tal afirmação. O $R^2 \simeq 0.63$ mostrou que há um bom ajuste entre as variáveis.

O teste VIF mostrou que as variáveis não apresentam correlação/multicolinearidade pois seus valores estão, relativamente, próximos a um e muito distante de dez.

Tabela 5 - Teste VIF

TxDes	ExpIPCA	TxCambio
2.983463	2.226329	1.622052

Fonte: elaborado pelo autor.

Para o teste de autocorrelação *Durbin-Watson*, com a hipótese nula (H_0) sendo a não existência de autocorrelação e a hipótese alternativa (H_1) sendo a existência de autocorrelação, o resultado obtido foi de aproximadamente 0,97, assim, mostrando que o valor de d se encontra na região de evidência de autocorrelação positiva, rejeitando H_0 .

Tabela 6 - Teste de Durbin-Watson

DW	0.97294
-value	0.000000004017

Fonte: elaborado pelo autor.

Tabela 7 - Teste de Breusch-Godfrey (BG) 1ª e 2ª ordem

	LM test	df	P-value
1ª Ordem	35.014		0.000000003274
2ª Ordem	37.773	2	0.00000001706

Fonte: elaborado pelo autor.

O teste de autocorrelação de BG mostra que os valores obtidos para a 1ª e a 2ª ordem de 35.014 e 37.773, respectivamente, reafirmam a existência de autocorrelação, pois, a 5% de significância os valores estão inclusos na área de rejeição, com H_0 : $\rho_i = 0$ (não há correlação serial) e H_1 : $\rho_i \neq 0$.

É importante frisar que, a estimativa de MQO na presença de autocorrelação, onde o termo de erro estocástico (ε_t) apresenta: $E(\varepsilon_t) = 0$; $var(\varepsilon_t) = \sigma_{\varepsilon}^2$; e $cov(\varepsilon_t, \varepsilon_{t+s}) = 0, com(s \neq 0)^3$, sendo autorregressivo de primeira ordem (AR(1)), é linear e não tendencioso, mas não é eficiente (relativamente) na existência de heterocedasticidade, o que não é o caso deste artigo. O teste de Breusch-Godfrey não permite valores defasados do regressando e esquemas autorregressivos, como o AR(1) (GUJARATI; PORTER, 2011), sendo assim, embora comprove a existência de autocorrelação, não é adequado para tal.

O teste de heterocedasticidade de Breusch-Pagan (BP) apresentou um valor de aproximadamente 2.45. As hipóteses adotadas foram de que H_0 : homocedasticidade; H_1 : heterocedasticidade, com $\alpha = 0.05$, com isso, chega-se à conclusão de que não rejeita a hipótese nula, ou seja, não se rejeita que há

³ t: valor do termo de erro no período t; s: s períodos.

homocedasticidade, implicando que a variância do termo de erro (u_i) é constante. Pois, 2.45 é menor que o valor crítico de χ^2 (7.815) a 5% de significância (2.45 < 7.815).

Tabela 8 - Teste de Breusch-Pagan

BP	df	P-value
2.4507	3	0.4843

Fonte: elaborado pelo autor.

Para o teste de normalidade dos resíduos foi feito o teste de Jarque-Bera. Para analisar se a hipótese nula (normalidade dos resíduos) é rejeitada, ou não, foi observado o resultado do *p-value*, com isso, tem-se que não é rejeitado a hipótese de normalidade dos resíduos.

Tabela 9 - Teste de Jarque-Bera

χ^2	df	P-value
1.7394	2	0.4191

Fonte: elaborado pelo autor.

3.3 Análise das Regressões Extras

Foram realizados outros testes com a utilização de outros dados e adição de outras variáveis para chegar à melhor regressão da curva de Phillips novo-keynesiana para o período selecionado, com isso foram estimadas as seguintes regressões:

- com a taxa de inflação geral;
- com a taxa de inflação calculada pelo SNIPC;
- sem o choque de oferta;
- modelo recíproco, com e sem o choque de oferta;
- com dummy, com e sem choque de oferta;
- com a taxa de desemprego calculada pela PME (até 2015).

Para fazer a comparação entre os modelos é utilizado o R^2 ajustado. A regressões com a taxa de inflação com os novos dados apresentaram resultados com a taxa de desemprego significante, mas, traziam valores para o R^2 ajustado muito baixo

(>0,50), ou seja, não mostravam qualidade de ajuste dos dados. Os modelos sem o choque de oferta não são considerados NKPC, mas foram testados para saber a qualidade dos dados, todos as variáveis foram estatisticamente significantes, e com um R^2 ajustado aceitável (pouco <0,50), mas como o foco não era esse, foram descartados. O modelo recíproco com o choque de oferta não apresentou a taxa de emprego significativa, já o modelo sem o choque de oferta foi significante, mas, o sinal reverso esperado não apareceu. Para todas as regressões calculadas com a variável dummy pós-pandemia (2020.3-2023.4), ela se mostrou significante, mostrando que o efeito que a pandemia teve sobre a taxa de inflação é positivo. Para o cálculo com a taxa de emprego com os dados da PME foi feito uma readequação do período analisado para 2002-2015, pois as pesquisas da PME foram encerradas no último ano analisado, não tendo como fazer a regressão com o período entre março de 2012 e abril de 2023, embora tivesse ocorrido a troca de período com todas as variáveis para que pudesse ser feito o cálculo, o modelo também não se mostrou significante.

Apesar de algumas estimações terem tido bons resultados, ou, uma boa qualidade de ajuste entre as variáveis, foi mantida a decisão de levar como regressão principal, a que consta as *proxies* mais comuns entre os estudos dessa área, por mais que não tivesse o resultado totalmente esperado.

A despeito, foi considerado os impactos que as demais *proxies* adotadas apresentaram sobre o processo inflacionário. Como por exemplo a *proxy* da pandemia/pós-pandemia e seu efeito sobre toda a dinâmica da inflação, contribuindo no aumento dos preços internos. Esse efeito da pandemia não foi somente constatado no Brasil, ao redor de todo o mundo se viu o mesmo, claro que em escalas diferentes. A tabela 10 mostra os resultados obtidos para todas as regressões feitas com o intuito de teste, para captar os efeitos das *proxies* escolhidas.

Tabela 10 - Variável dependente: Inflação

NKPC Results

				Dep	pendent var	iable:			
	<u>a</u>		IP	CA			IPCAsnipc	IPCAg	TxIPCA
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
TxDes	0.023 (-1.358, 1.405)	-2.229*** (-3.529, -0.930)		50095		C 1007			
TxDes1			0.010 (-0.006, 0.025)	0.013** (0.0002, 0.026)	**	0.025*** (0.010, 0.039)			
TxDes2					-1.274** (-2.438, -0.111)		Table at a str	Sale at a se	
TxDesemp							0.823**** (0.392, 1.253)	0.066*** (0.032, 0.099)	
TxDesemprego									0.002 (-0.013, 0.018)
ExpIPCA	0.163*** (0.135, 0.191)	0.170**** (0.139, 0.202)	0.167*** (0.139, 0.196)	0.168*** (0.140, 0.197)	0.168*** (0.141, 0.195)	0.174*** (0.141, 0.207)			
ExpInfla							3.956*** (3.097, 4.814)	0.311*** (0.244, 0.379)	
ExpecMediaIPCA	e e								0.140*** (0.114, 0.166)
TxCambio	0.073*** (0.049, 0.097)		0.017 (-0.028, 0.063)						,
TxC							0.790 ^{**} (0.095, 1.485)	0.058 ^{**} (0.003, 0.113)	
TxCV									-0.074 (-0.175 0.026)
Pan			0.136**** (0.035, 0.236)	0.169*** (0.118, 0.219)	0.169**** (0.119, 0.219)				
Constant	-0.670*** (-0.855, -0.484)	-0.208*** (-0.323, -0.092)	-0.625*** (-0.887, -0.364)	-0.608**** (-0.866, -0.351)	-0.341*** (-0.448, -0.233)	-0.709*** (-1.002, -0.416)	-25.307*** (-32.980, -17.633)	-1.978*** (-2.583, -1.373)	-0.178** (-0.288, -0.068)
Observations	134	134	134	134	134	134	134	134	132
R^2	0.631	0.533	0.650	0.649	0.651	0.534	0.419	0.416	0.618
Adjusted R ²	0.623	0.526	0.640	0.641	0.643	0.527	0.406	0.403	0.609
Residual Std. Error	= 130)	0.146 (df = 131)	= 129)	= 130)	= 130)	= 131)	3.815 (df = 130)	= 130)	= 128)
F Statistic	74.174*** (df = 3; 130)	74.813*** (df = 2; 131)	60.017*** (df = 4; 129)	80.111*** (df = 3; 130)	80.685*** (df = 3; 130)	75.032*** (df = 2; 131)	31.261*** (df = 3; 130)	30.900*** (df = 3; 130)	69.090** (df = 3; 128)

Fonte: elaborado pelo autor.

A partir da análise dos resultados, estimados por MQO, podemos chegar à conclusão de que a dinâmica inflacionária do Brasil entre março de 2012 e abril de 2023, teve impacto mais significativo da inflação futura e da taxa de câmbio, do que a taxa de desemprego em si, isso, considerando a hipótese que no longo prazo o impacto da taxa de desemprego sobre a dinâmica da inflação é muito difícil de ser captada. Na regressão da curva de Phillips somente com a expectativa de inflação, é possível observar o efeito da taxa de desemprego sobre a inflação, mesmo que inversa, a cada aumento médio da taxa de desemprego em 1p.p., a taxa de inflação aumenta em média 0.0245p.p., o que acaba não fazendo sentido, já que apresentam relação negativa entre si. Para as demais *proxies* adotadas, podemos dizer que a cada aumento médio da taxa de câmbio em 1 p.p., a inflação teve um aumento de aproximadamente 0,071 pontos percentuais, e, a cada aumento médio da expectativa de inflação em 1 p.p., a inflação teve um aumento de cerca de 0,17 pontos percentuais, sendo esta a variável que teve maior impacto na dinâmica de inflação durante o período analisado. As regressões calculadas com a variável dummy pandemia/pós-pandemia no período entre março de 2020 e abril de 2023, se mostrou significante em todas, mostrando que a pandemia teve um impacto na taxa de inflação, no qual, esse efeito já era esperado (MENDONÇA; SACHSIDA, 2012).

A maioria dos estudos sobre a NKPC, sugerem que há uma certa sensibilidade das *proxies* utilizadas para com a curva de Phillips. Em estudos com estratégias econométricas mais sofisticadas, utilizando outros métodos além do MQO, parece ser comum que, primeiro, a taxa de desemprego tenha maior impacto no curto prazo, segundo, a inflação passada e a expectativa de inflação futura têm maior relevância no processo inflacionário, terceiro, o choque de oferta também parece ter impacto na dinâmica da inflação (MENDONÇA; SACHSIDA, 2012).

MENDONÇA, Mário Jorge Cardoso de; SACHSIDA, Adolfo; MEDRANO, Luis Alberto Toscano. Inflação versus desemprego: novas evidências para o Brasil. Economia Aplicada, v. 16, p. 475-500, 2012.

SACHSIDA, Adolfo. Inflação, desemprego e choques cambiais: uma revisão da literatura sobre a curva de Phillips no Brasil. Revista Brasileira de Economia, v. 67, p. 549-559, 2013.

GUJARATI, Damodar N.; PORTER, Dawn C. Econometria básica-5. Amgh Editora, 2011.

http://www.ipeadata.gov.br/Default.aspx Acesso em: 20 de junho de 2023.

```
#Dados
View(DadosCurvaPhillips)
#Curva de Phillps 2012-2023 (1)
options(scipen=30)
CP <- lm(IPCA ~ TxDes + ExpIPCA + TxCambio, data = DadosCurvaPhillips)</pre>
summary(CP)
##### teste vif
install.packages("car")
library(car)
vif(CP)
## teste de autocorrelação
 #Durbin Watson
dwtest(CP, alternative="two.sided", data = DadosCurvaPhillips)
bgtest(CP, order = 2, order.by = NULL, type = c("Chisq", "F"), data =
DadosCurvaPhillips)
#Teste de Breusch-Godfrey
bgtest(CP, order = 1, order.by = NULL, type = c("Chisq", "F"), data =
DadosCurvaPhillips)
bgtest(CP, order = 2, order.by = NULL, type = c("Chisq", "F"), data =
DadosCurvaPhillips)
## teste de heterocedasticidade
library(lmtest)
bptest(CP)
#teste de normalidade
install.packages("tseries")
library(tseries)
jarque.bera.test(residuals(CP))
#### Curva de Phillips sem choque de oferta
options(scipen = 30)
```

```
CPex <- lm(IPCA ~ TxDes + ExpIPCA, data = DadosCurvaPhillips)</pre>
summary(CPex)
### Curva de Phillips com 1/TxDes com o choque de oferta
DadosCurvaPhillips["TxDes1"]<- 1/DadosCurvaPhillips$`TxDes`</pre>
View(DadosCurvaPhillips)
options(scipen=30)
CP1 <- lm(IPCA ~ TxDes1 + ExpIPCA + TxCambio, data = DadosCurvaPhillips)
summary(CP1)
### Curva de Phillips com 1/TxDes sem choque de oferta
CP2 <- lm(IPCA ~ TxDes1 + ExpIPCA, data = DadosCurvaPhillips)</pre>
summary(CP2)
### Curva de Phillips com variável dummy Pan
## Com TxCambio
View(DadosCurvaPhillips 1 )
CPd1 <- lm(IPCA ~ TxDes + ExpIPCA + Pan + TxCambio,
                                                                      data =
DadosCurvaPhillips 1 )
summary(CPd1)
## Sem TxCambio
CPd2 <- lm(IPCA ~ TxDes + ExpIPCA + Pan, data = DadosCurvaPhillips 1 )</pre>
summary(CPd2)
## Sem TxCambio e com 1/TxDes
DadosCurvaPhillips 1 ["TxDes2"]<- 1/DadosCurvaPhillips 1 $`TxDes`</pre>
View(DadosCurvaPhillips 1 )
CPd3 <- lm(IPCA ~ TxDes2 + ExpIPCA + Pan, data = DadosCurvaPhillips 1 )
summary(CPd3)
#### Estimando a curva de phillips com os novos dados para o IPCA
### primeiro com a taxa geral do IPCA
options(scipen=30)
CPipcaG <- lm(IPCAg ~ TxDesemp + ExpInfla + TxC, data = DCP)</pre>
```

```
summary(CPipcaG)
### segundo com o IPCA - edgardo
options(scipen=30)
CPipca <- lm(IPCAsnipc ~ ExpInfla + TxDesemp + TxC, data = DCP)</pre>
summary(CPipca)
# Curva de Phillps
options(scipen=30)
CPpme <- lm(TxIPCA ~ ExpecMediaIPCA + TxDesemprego + TxCV, data =
DadosCurvaPhillipsPME)
summary(CPpme)
###Criando a tabela com as regressões extras
```{r}
stargazer (CP1, CP2, CPd1, CPd2, CPd3, CPex, CPipca, CPipcaG, CPpme,
 title="NKPC Results",
 align=TRUE,
 order=c("TxDes", "TxDes1", "TxDes2",
 "TxDesemp", "TxDesemprego",
 "ExpIPCA", "ExpInfla", "ExpecMediaIPCA",
 "TxCambio", "TxC", "TxCV", "Pan"),
 covariate.labels=c("TxDes", "TxDes1", "TxDes2",
 "TxDesemp", "TxDesemprego",
 "ExpIPCA", "ExpInfla", "ExpecMediaIPCA",
 "TxCambio", "TxC", "TxCV", "Pan"),
 type = "html",
 no.space=TRUE,
 ci=TRUE,
 ci.level=0.95,
 single.row=TRUE)
```