1 Convolution

$$r_{y,x}(k) = y(n) * x(-n)$$
 (1.1)

2 \mathcal{Z} -Transform

Signal, $x(n)$	z-Transform, $X(z)$	ROC
$\delta(n)$	1	All z
$\mathcal{U}(n)$	$\frac{1}{1-z^{-1}}$	z > 1
$a^n \mathcal{U}(n)$	$\frac{1}{1-az^{-1}}$	z > a
$na^n \mathcal{U}(n)$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z > a
$-a^n \mathcal{U}(-n-1)$	$\frac{1}{1-az^{-1}}$	z < a
$-na^n \mathcal{U}(-n-1)$	$\frac{az^{-z}}{(1-az^{-1})^2}$	z < a
$(\cos \omega_0 n) \mathcal{U}(n)$	$\frac{1 - z^{-1}\cos\omega_0}{1 - 2z^{-1}\cos\omega_0 + z^{-2}}$	z > 1
$(\sin \omega_0 n) \mathcal{U}(n)$	$\frac{z^{-1}\sin\omega_0}{1-2z^{-1}\cos\omega_0+z^{-2}}$	z > 1
$(a^n\cos\omega_0 n)\mathcal{U}(n)$	$\frac{1 - az^{-1}\cos\omega_0}{1 - 2az^{-1}\cos\omega_0 + a^2z^{-2}}$	z > a
$(a^n \sin \omega_0 n) \mathcal{U}(n)$	$\frac{az^{-1}\sin\omega_0}{1 - 2az^{-1}\cos\omega_0 + a^2z^{-2}}$	z > a

Table 2.1: Common \mathcal{Z} -Transforms

2.1 Properties of the \mathcal{Z} -Transform

Property	Time Domain	z-Domain	ROC
	x(n)	X(z)	$ROC: r_2 < z < r_1$
Notation	$x_1(n)$	$X_1(z)$	ROC_1
	$x_2(n)$	$X_2(z)$	ROC_2
Linearity	$a_1x_1(n) + a_2x_2(n)$	$a_1 X_1(z) + a_2 X_2(z)$	At least the intersection of ROC_1 and ROC_2
Time Shifting	x(n-k)	$z^{-k}X(z)$	That of $X(z)$, except $z = 0$ if
			$k > 0$ and $z = \infty$ if $k < 0$
Scaling	$a^n x(n)$	$X(a^{-1}z)$	$ a r_2 < z < a r_1$
Time Reversal	x(-n)	$X(z^{-1})$	$\frac{1}{r_1} < z < \frac{1}{r_2}$
Conjugation	$x^*(n)$	$X^*(z^*)$	ROC
Real Part	$\operatorname{Re}\{x(n)\}$	$rac{1}{2}\left[X(z) + X^*(z^*) ight] \ rac{1}{2}j\left[X(z) - X^*(z^*) ight]$	Includes ROC
Imaginary Part	$\operatorname{Im}\{x(n)\}$		Includes ROC
Differentiation	nx(n)	$-z\frac{dX(z)}{dz}$	$r_2 < z r_1$
Convolution	$x_1 * x_2$	$X_1(z) \overset{az}{X_2}(z)$	At least, the intersection of
			ROC_1 and ROC_2
2 Sequence Correlation	$r_{x_1x_2}(l) = x_1(l) * x_2(-l)$	$R_{x_1 x_2}(z) = X_1(z) x_2(z^{-1})$	At least, the intersection of ROC of $X_1(z)$ and $X_2(z^{-1})$
Initial Value Theorem	If $x(n)$ causal	$x(0) = \lim_{z \to \infty} X(z)$	
2 Sequence Multiplication	$x_1(n)x_2(n)$	$\frac{1}{2\pi j} \oint_C X_1(v) X_2(\frac{z}{v}) v^{-1} dv$	At least, $r_{1l}r_{2l} < a < r_{1u}r_{2u}$
Parsevals Relation	$\sum_{n=-\infty}^{\infty} x_1(n) x_2^*(n)$	$= \frac{1}{2\pi j} \oint_C X_1(v) X_2^*(\frac{1}{v^*}) v^{-1} dv$	

Table 2.2: Z-Transform Properties

2.2 One-Sided \mathcal{Z} -Transform

The one-sided z-transform is the same as the \mathbb{Z} -Transform, but is only defined at n values greater than or equal to 0.

$$X(z) \equiv \sum_{n=0}^{\infty} x(n)z^{-n}$$
(2.1)

2.2.1 Time Delay

If

$$x(n) \stackrel{\mathbf{z}^+}{\longleftrightarrow} X^+(z)$$

then

$$x(n-k) \stackrel{z^+}{\longleftrightarrow} z^{-k} \left[X^+(z) + \sum_{n=1}^k x(-n)z^n \right], \quad k > 0$$
 (2.2)

3 DTFT

$$z = e^{j2\pi f}$$

$$z = e^{j\omega}$$
(3.1)

$$X(f) = \sum_{n = -\infty}^{\infty} x(n)e^{-j2\pi fn}$$

$$X(\omega) = \sum_{n = -\infty}^{\infty} x(n)e^{-j\omega n}$$
(3.2)

4 DFT

The N-point DFT is shown as:

$$X_{DFT}(k) = \sum_{n=0}^{N-1} x(n)e^{-j2\pi\frac{k}{N}n} \text{ for } k = 0, 1, 2, \dots, N-1$$
(4.1)

If N is specified, then replace all occurrences of N in Equation (4.1) with that value.

Remark 0.1. If the length, N of the DFT is not specified, it is assumed that N = length of the signal. If the length of the DFT N is greater than the length of the signal, you are sampling the DTFT of the signal.

$$x(n) = A\cos\left(2\pi \frac{k_0}{N}n\right), \ 0 < k_0 \le N - 1$$

$$= \frac{A}{2} \left(e^{j\frac{2\pi k_0}{N}n} + e^{-j\frac{2\pi k_0}{N}n}\right)$$

$$X(k) = \frac{AN}{2} \left[(\delta(k - k_0) \bmod N) + (\delta(k + k_0) \bmod N) \right]$$
(4.2)

$$x_{IDFT}(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) e^{j2\pi \frac{k}{N}n} \text{ for } n = 0, 1, \dots, N-1$$
 (4.3)

$$x_1(n) \circledast x_2(n) = \sum_{k=0}^{N-1} x_1(k) x_2(n-k \bmod N)$$
(4.4)

It is important to remember that the modulus (mod) operator yields 0 when the input is a multiple of the divisor.

Defn 1 (Decimation). Decimation takes an input signal and compresses it. Decimation uses the symbol $D \in \mathbb{Z}^+$.

$$y(m) = x(mD)$$

If decimation occurs later in the system, then if just the input and output are compared, y(m) appears it was sampled at

$$f = \frac{F_S}{D} \tag{4.5}$$

Thus, when we perform sampling on the input signal, then there is folding at

$$f = \frac{F_S}{2D} \tag{4.6}$$

Property	Time Domain $x(n)$	DFT Domain $X(k)$
Notation	x(n), y(n)	X(k), Y(k)
Periodicity	x(n) = x(n+N)	X(k) = X(k+N)
Linearity	$a_1x_1(n) + a_2x_2(n)$	$a_1 X_1(k) + a_2 X_2(k)$
Time Reversal	x(N-n)	X(N-k)
Circular Time Shifting	$x(n-n_0 \bmod N)$	$X(k)e^{-j2\pi\frac{k}{N}n_0}$
Circular Frequency Shift	$x(n)e^{j2\pi ln/N}$	$X(k-l \bmod N)$
Complex Conjugate	$X^*(n)$	$X^*(N-k)$
Circular Convolution	$x(n) \circledast y(n)$	X(k)Y(k)
Circular Correlation	$x(n) \circledast y^*(-n)$	$X(k)Y^*(k)$
2 Sequence Multiplication	$x_1(n)x_2(n)$	$\frac{1}{N}X_1(k) \circledast X_2(k)$
Parsevals Theorem	$\sum_{n=0}^{N-1} x(n)y^*(n)$	$\frac{1}{N} \sum_{k=0}^{N-1} X(k) Y^*(k)$

Table 4.1: Properties of the DFT $\,$