Week 9

Task 1 Use a weather forecast website, and utilize the psychrometric chart and the formula we went through in the class to determine the absoloute humidity, the wet-bulb temperature and the mass of water vapour in the air in ClassRoom A (Aula A) of Piacenza campus in the moment that you are solving this exercise (provide the inputs that you utilized)

Umidità: Relative humidity, Pressione atmosferica: Air total pressure (1 hPa: 0.1 kPa), Temperatura effettiva: temperature to be utilized.

			oggi in I 02 Dicem					
	13:00	14:00	16:00	18:00	20:00	21:00	22:00	
	*	*	*	*	*	<u>a</u>	*	
	PartlyCloud	PartlyCloud	LightCloud	LightCloud	PartlyCloud	Cloud	PartlyCloud	
Temperatura effettiva	10°C	10°C	9°C	6°C	7°C	7°C	8°C	
Temperatura percepita	10°C	10°C	8°C	5°C	7°C	6°C	7°C	
Precipitazioni	0 mm	0 mm	0 mm	0 mm	0 mm	0 mm	0 mm	
Umidità	79 %	77 %	89 %	90 %	90 %	92 %	91 %	
Pressione atmosferica	1016 hPa	1015 hPa	1016 hPa	1017 hPa	1019 hPa	1019 hPa	1020 hPa	

According to the data The time is 8 pm

Relative humidity is

=90%

Total air pressure =

101.9 kPa

Temperature in kelvin

scale T= 230 K

The absolute humidity W= 0.0055

Bulb temperature T_{wb} =6C

$$W = \frac{0.622xpv}{p-pv} = 0.005$$

Pv≈ 0.823kpa

$$\Phi = \frac{mv}{ma}$$

 $: gas \ge water vapour$

$$Rsp = 0.4615$$

$$mv = \frac{0.883}{0.4615 \times < 230}$$

 $mv \cong 8.41x10^{^{*}}$

$$mg = \frac{mv}{80\%} \cong 8.34x10^{4} - 3$$

ask 2 Utilize the same methodology we went through in the class and determine the sensible and latent load corresponding to internal gains, the ventilation, and the infiltration in a house with a *good* construction quality and with the same geometry as that of the example which is located in Brindisi, Italy

Hottest Hottest Month DB Range DB MCWB DB MCWB DB MCWB DB MCWB MCDB MC		BRINDISI, Italy														WMO#:	163200	
Coldest Heating DB		Lat	40.65N	Long:	17.95E	Elev	: 10	StdP:	101.2		Time Zone:	1.00 (EU	W)	Period	86-10	WBAN:	99999	
Coldest Heating DB 99.6% 99.6% DP HR MCDB DP HR MCDB DP HR MCDB WS MCDB MCWS PCWD	Annual Heating and Humidification Design Conditions																	
Month 99.6% 99% DP HR MCDB DP HR MCDB WS MCDB WS MCDB MCWS PCWD																		
(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m) (n) (o) (o) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m) (n) (o) (o) (p) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m) (n) (o) (p) (e) (f) (g) (h) (i) (j) (k) (l) (m) (n) (o) (p) (p) (p) (p) (p) (p) (p) (p) (p) (p		Month	20.00	99%	np.		MCDB	DP		MCDB								
(1) 2 2.9 4.1 -5.1 2.5 7.2 -3.0 3.0 7.4 13.4 10.2 12.4 10.6 3.4 250 (1) Annual Cooling, Dehumidification, and Enthalpy Design Conditions Hottest Hottest Month Month Month Month Month Month Month Month Max Min Max Mi	'	(a)	0.010.10														1	
Hottest Hottest Month Dame	(1)																	(1)
Hottest Month DB Range DB MCWB DB MCWB DB MCWB DB MCWB MCDB MCB MCDB MCB MCDB MCWB MCDB MCDB MCWB MCDB MC		Appual Co		midification	on and Enth													
Month DB Range DB MCWB MCDB WB MCDB WB MCDB WB MCDB MCWB MCDB M		Allindai CC	Joining, Denic	annonneau.	on, and char	npy besig	ii conditioni	•										1
Month Month Month 0.4% 1% 2% 10.4% DB MCWB DB MCWB DB MCWB WB MCDB WB MCDB WB MCDB MCWS PCWD	- 1	Hottost	Hottest			Cooling	DB/MCWB			Evaporation WB/MCDF				B MCW5			PCWD	1
Book Column Col		Month Month 0																
20 8 7.1 32.8 23.6 31.1 24.3 29.9 24.3 27.2 29.7 26.3 29.0 25.6 28.3 4.2 180 (2)	- 1																	
Dehumidification DP/MCDB and HR Dehumidification DP/MCDB and HR Dehumidification DP/MCDB and HR Dehumidification DP/MCDB Dehumidification Dehumidification DP/MCDB Dehumidification							4 - 7									4 - 7		
0.4%	(2)	8	7.1	32.8	23.6	31.1	24.3	29.9	24.3	27.2	29.7	26.3	29.0	25.6	28.3	4.2	180	(2)
DP HR MCDB DP HR MCDB DP HR MCDB Enth	- 1	Dehumidification DP/MCDB and HR																
(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m) (n) (o) (p) (3) 26.3 21.8 29.2 25.4 20.7 28.5 24.7 19.7 27.9 86.0 30.1 82.2 29.1 78.5 28.3 1236 (3) Extreme Annual Design Conditions Extreme Annual WS																		
(3) 26.3 21.8 29.2 25.4 20.7 28.5 24.7 19.7 27.9 86.0 30.1 82.2 29.1 78.5 28.3 1236 (3) Extreme Annual Design Conditions Extreme Annual WS Extreme Annual WS Max Mean Standard deviation N=5 years n=10 years n=20 years n=20 years n=20 years n=50 years n=50 years n=60 years n=10 years	- 1																	ĺ
Extreme Annual Design Conditions Extreme Annual DB																		
Extreme Annual WS	(3)	26.3	21.8	29.2	25.4	20.7	28.5	24.7	19.7	27.9	86.0	30.1	82.2	29.1	78.5	28.3	1236	(3)
Extreme Annual WS Max Mean Standard deviation n=5 years n=10 years n=20 years n=50 years 1% 2.5% 5% WB Min Max Min Ma	Extreme Annual Design Conditions																	
Extreme Annual WS Max Mean Standard deviation n=5 years n=10 years n=20 years n=50 years 1% 2.5% 5% WB Min Max Min Ma																		
1% 2.5% 5% WB Min Max Min Min Max Min Min Min Max Min		Extreme Annual WS																
(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m) (n) (o) (p)																		
	- 1																	1
- (a) 11.3 MM X7 31.4 H.4 37.3 1.4 3.0 d.)K 39.4 d.14 41.1 d.22 42.8 d.32 44.9 (d.			2															
17 110 010 011 011 011 010 114 010 010 114 111 Tale 1200 012 114 [1]	(4)	11.3	9.9	8.7	31.4	0.4	37.3	1.4	3.0	-0.6	39.4	-1.4	41.1	-2.2	42.8	-3.2	44.9	(4)
g ig = 136 + 2.2 + 22 = 620 w	ı ig:	= 136	5+2.2-	+22 =	620x	7												

q ig = 136 + 2.2 * 22 * 200 + 22 + 2 = 88w

A simple information:

 $Aul=1.4m^2$

Aes=Awall=Aroof=

200+144=344m²

T cooling= 24c = 71k

T heating= 20c = 24k

$$DR = 7.1c = 71k$$

 $DF_{heating} = 0.073$

$$DF_{cooling} = 0.033$$

The rate of air flow:

$$Qi_{heating} = Alx IDf_{heating}$$

 $=481.6 \times 0.033$

$$\cong$$
 35.157 1/s

$$Qi_{cooling} = Al xIDT_{cooling}$$

$$\cong \frac{35.157L}{S}$$

 $\cong 15.8931/s$

Building:

$$Qv - Vcooling = 0.05Acf + 3.5(Nbr + 1)$$

$$0.05x200+3.5(Nbr+1)=17$$

$$Qi-Vheating=Qi\ heating+Qv\cong 35.157=52.157l/s$$

C sensible= 1,2,3Ciatent

qinf -Ve= Cs Qivc ΔT

$$\approx 300x32.893x0.0039$$

$$= 386.13$$
w

qinf -Ve= Cs Qivh ΔT heating

123x52x157x241