EE6302 Control System Design

Unit 3: Dynami	ic Response and	Transient A	Analysis
----------------	-----------------	-------------	----------

3.3	Time	Domain	Specif	ications	of a	Step	Resi	oonse

For the step response of a system, there are four parameters which are very important in designing the control system.

- Rice time (t_r)
- Settling time (t_s)
- Overshoot (M_p)
- Peak time (t_p)

Rice time (t_r)

The rice time is the time it takes the system to reach the vicinity of the new set point. The rise time of a second order system can be approximated as follows.

Even for higher order systems, expression for t_r can be used as a rough approximation.

Settling time (t_s)

Settling time is the time it takes the system transients to decay.

By differentiating y(t), w.r.t t and equating to zero, an expression for M_p can be derived.

Peak time (tp)

Peak time is the time taken by the system to reach the maximum point.

Example-1

Find the allowable region for the poles of the system if the system step response requirements are as follows

 $t_{\rm r} \leq 0.6~{\rm s}$, $t_{\rm s} \leq 3$ and $M_p \leq 10\%$