Complex Analysis

 ${\bf Martin~Azpillaga}$

February 14, 2014

unit name

Contents

Ι	Definitions	5			
1	The field of complex numbers	5			
	The field of complex numbers	7			
	Conjugation	7			
	Norm	7			
	Polar form	8			
	Unit sphere projection	8			
	Roots of unity	8			
	Disk	9			
	Propositions The field of complex numbers	9 11			
III Examples					
1	Holomorphic functions	15			
I	7 Problems	17			
1	Holomorphic functions	22			
\mathbf{V}	Tasks	23			

I Definitions 5

Block I

Definitions

1. The field of complex numbers

introduction

I Definitions 7

The field of complex numbers

Let:

$$\begin{array}{cccc}
 & + : \mathbb{R}^2 \times \mathbb{R}^2 & \longrightarrow & \mathbb{R}^2 \\
 & ((a,b),(c,d)) & \longmapsto & (a+c,b+d) \\
 & : \mathbb{R}^2 \times \mathbb{R}^2 & \longrightarrow & \mathbb{R}^2 \\
 & ((a,b),(c,d)) & \longmapsto & (ac-bd,ad+bd)
\end{array}$$

We name the field of complex numbers to:

$$\cdot (\mathbb{R}^2, +, \cdot)$$

We denote:

$$\cdot (\mathbb{R}^2, +, \cdot) : \mathbb{C}$$

$$\cdot (0,1) \in \mathbb{C} : i$$

$$(a,b) \in \mathbb{C} : a+bi$$

$$\cdot \pi_1(\mathbb{C}) : Re$$

$$\cdot \pi_2(\mathbb{C}) : Im$$

Conjugation

We name complex conjugation to:

$$\begin{array}{cccc} f:\mathbb{C} & \longrightarrow & \mathbb{C} \\ (a,b) & \longmapsto & (a,-b) \end{array}$$

We denote:

$$\cdot f((a,b)) : \overline{(a,b)}$$

Norm

We name complex norm to:

$$f: \mathbb{C} \longrightarrow \mathbb{R}$$
$$(a,b) \longmapsto a^2 + b^2$$

We denote:

$$f((a,b)):|(a,b)|$$

Polar form

We name polar form to:

$$\begin{array}{cccc} \cdot & f : \mathbb{C} & \longrightarrow & \mathbb{R}^+ \times [0, 2\pi) \\ \cdot & (a, b) & \longmapsto & (\sqrt{|(a, b)|}, \arctan(\frac{b}{a})) \end{array}$$

We denote:

$$\cdot f((a,b))$$
: polar form of (a,b)

Unit sphere projection

We name unit sphere projection to:

$$\begin{array}{cccc} \cdot & f : \mathbb{C} & \longrightarrow & S^1 \\ & z & \longmapsto & \frac{z}{|z|} \end{array}$$

We denote:

$$\cdot f(z) : \pi(z)$$

Roots of unity

Let:

$$\cdot z \in \mathbb{C}$$

Then, z is a root of unity if:

$$\cdot \exists n \in \mathbb{N} \mid z^n = 1$$

We denote:

$$\cdot \{z \in \mathbb{C} \mid z \text{ root of unity }\} : S^1$$

\mathbf{Disk}

Let:

$$p \in \mathbb{C}$$

$$r \in \mathbb{R}^+ \setminus \{0\}$$

We name $\,$ Disk centered in p and radius r $\,$ to:

$$\cdot \left\{ z \in \mathbb{C} \mid |z - p| < r \right\}$$

We denote:

$$\cdot \{z \in \mathbb{C} \mid |z - p| < r\} : D^1$$

Block II

Propositions

1. The field of complex numbers

introduction

III Examples 13

go

III Examples 15

Block III

Examples

1. Holomorphic functions

introduction

IV Problems 17

go

IV Problems 19

Block IV

Problems

PROBLEMES D'ANÀLISI COMPLEXA 2n quadrimestre del curs 2013-2014.

Llista 1: Els nombres complexos

B.2. Si z=x+iy trobeu les parts real i imaginària de les expressions següents: (b) z(z+1) (c) $\frac{1}{z}$

(e) \sqrt{i} (g) $\sqrt{9i}$ (f) $\sqrt{-i}$ (h) $\sqrt{1+i}$

(d) $\frac{1}{z-3}$.

(d) -1 - i

B.1. Expresseu en la forma a + ib els següents nombres:

B.4. Trobeu la forma polar dels nombres següents i dibuixeu-los. (a) $3(1+\sqrt{3}i)$ (b) $2\sqrt{3}-2i$ (c) -2+2i

(a) (2+3i)(4+i) (c) $\frac{1}{4+i}$ (b) $(4+2i)^2$ (d) $\frac{i}{4+i}$

a) $\operatorname{Re}(z+w) = \operatorname{Re} z + \operatorname{Re} w$? b) $\operatorname{Re}(zw) = (\operatorname{Re} z)(\operatorname{Re} w)$?

c) $\operatorname{Re}(\frac{z}{w}) = \frac{\operatorname{Re} z}{\operatorname{Re} w}$?

(a) z^2

B.3. És cert que

			()	()		
	B.5. Sigui $(x + iy)/(x - iy) = a + ib$. Proveu que $a^2 + b^2 = 1$.					
	 B.6. Proveu que si p(z) és un polinomi amb coeficients reals i z és un zero de p llav també ho és. B.7. Descriviu els conjunts del pla que satisfan (recordeu que C* = C \ {0}.) 					
		(a) $\operatorname{Im} \frac{z-a}{z} = 0, a \in \mathbb{C}^*$ (b) $ z $	$=\operatorname{Re}z+1$	(c) $ z-2 > z-3 $		
	SOL. B.1. a) $5+14i$; b) $12+16i$; c) $4/17-i/17$; d) $1/17+4i/17$; e) $\pm\sqrt{2}/2(1+i)$; f) $\pm\sqrt{2}/2(1-i)$; g) $\pm3\sqrt{2}/2(1+i)$; h) $\pm2^{1/4}(\cos(\pi/8)+i\sin(\pi/8))$. B.2 a) x^2-y^2+2ixy ; b) $x^2-y^2+x+i(y+2xy)$; c) $(x-iy)/(x^2+y^2)$; d) $(x-3-iy)/((x-3)^2+y^2+2ixy)$; b) $(x-3-iy)/((x-3)^2+y^2+2ixy)$; d) $(x-3-iy)/((x-3)^2+y^2+2ixy)$; e) $(x-iy)/(x^2+y^2)$; d) $(x-3-iy)/((x-3)^2+2ixy)$; e) $(x-iy)/(x^2+y^2)$; e) $(x-iy)/(x^2+y^2)$; d) $(x-3-iy)/((x-3)^2+2ixy)$; e) $(x-iy)/(x^2+y^2)$; d) $(x-3-iy)/((x-3)^2+2ixy)$; e) $(x-iy)/(x^2+y^2)$; d) $(x-3-iy)/((x-3)^2+2ixy)$; e) $(x-iy)/(x^2+y^2)$;					
1.	. Expresseu en la forma $a+ib$ els següents nombres:					
	(a) (b)	$ \frac{1}{i} \qquad (c) \frac{1}{2+i} + \frac{1}{2-i} \frac{1+i}{1-i} \qquad (d) \frac{1}{2+i} + \frac{4-2i}{3+i} $	(e) $\left(\frac{2+i}{3-2i}\right)^2$ (f) $(1+i)^{100} + (1-i)^{100}$			
2.	Si z =	$= x + iy$ on $x, y \in \mathbb{R}$, trobeu les parts	real i imaginària de:			

PROBLEMES D'ANLISI COMPLEXA 2n quadrimestre del curs 2013-2014

Llista 2: Funcions de variable complexa i equacions de Cauchy-Riemann

- **B.1.** Trobeu els punts on la funció f és derivable (en el sentit complex), en els següents casos, i calcula'n la derivada.
 - (a) $\cos |z|^2$

(c) e^{iz}

(e) $\frac{1}{(z-1)^2(z^2+2)}$

(b) $|z|^4$

- (d) $z + \frac{1}{z}$
- (f) $\frac{1}{(z+\frac{1}{z})^2}$

 $\textbf{Solució:} \hspace{0.1cm} \textbf{(a)} \hspace{0.2cm} \emptyset; \hspace{0.1cm} \textbf{(b)} \hspace{0.2cm} \emptyset \hspace{0.1cm} ; \hspace{0.1cm} \textbf{(c)} \hspace{0.2cm} \mathbb{C}; \hspace{0.1cm} f'(z) = ie^{iz}; \hspace{0.1cm} \textbf{(d)} \hspace{0.2cm} \mathbb{C} \hspace{0.1cm} \setminus \hspace{0.1cm} \{0\}; \hspace{0.1cm} f'(z) = 1 - |\frac{1}{z^2}; \hspace{0.1cm} \textbf{(e)} \hspace{0.1cm} \mathbb{C} \hspace{0.1cm} \setminus \hspace{0.1cm} \{1, \pm \sqrt{2}i\}; \hspace{0.1cm} \textbf{(f)} \hspace{0.1cm} \mathbb{C} \hspace{0.1cm} \setminus \hspace{0.1cm} \{0\}; \hspace{0.1cm} f'(z) = 1 - |\frac{1}{z^2}; \hspace{0.1cm} \textbf{(e)} \hspace{0.1cm} \mathbb{C} \hspace{0.1cm} \setminus \hspace{0.1cm} \{1, \pm \sqrt{2}i\}; \hspace{0.1cm} \textbf{(f)} \hspace{0.1cm} \mathbb{C} \hspace{0.1cm} \setminus \hspace{0.1cm} \{1, \pm \sqrt{2}i\}; \hspace{0.1cm} \textbf{(f)} \hspace{0.1cm} \mathbb{C} \hspace{0.1cm} \setminus \hspace{0.1cm} \{1, \pm \sqrt{2}i\}; \hspace{0.1cm} \textbf{(f)} \hspace{0.1cm} \mathbb{C} \hspace{0.1cm} \setminus \hspace{0.1cm} \{1, \pm \sqrt{2}i\}; \hspace{0.1cm} \textbf{(f)} \hspace{0.1cm} \mathbb{C} \hspace{0.1cm} \setminus \hspace{0.1cm} \{1, \pm \sqrt{2}i\}; \hspace{0.1cm} \textbf{(f)} \hspace{0.1cm} \mathbb{C} \hspace{0.1cm} \setminus \hspace{0.1cm} \{1, \pm \sqrt{2}i\}; \hspace{0.1cm} \textbf{(f)} \hspace{0.1cm} \mathbb{C} \hspace{0.1cm} \setminus \hspace{0.1cm} \{1, \pm \sqrt{2}i\}; \hspace{0.1cm} \textbf{(f)} \hspace{0.1cm} \mathbb{C} \hspace{0.1cm} \setminus \hspace{0.1cm} \{1, \pm \sqrt{2}i\}; \hspace{0.1cm} \textbf{(f)} \hspace{0.1cm} \mathbb{C} \hspace{0.1cm} \setminus \hspace{0.1cm} \{1, \pm \sqrt{2}i\}; \hspace{0.1cm} \textbf{(f)} \hspace{0.1cm} \mathbb{C} \hspace{0.1cm} \setminus \hspace{0.1cm} \{1, \pm \sqrt{2}i\}; \hspace{0.1cm} \textbf{(f)} \hspace{0.1cm} \mathbb{C} \hspace{0.1cm} \setminus \hspace{0.1cm} \{1, \pm \sqrt{2}i\}; \hspace{0.1cm} \mathbb{C} \hspace{0.1cm} \setminus \hspace{0.1cm} \mathbb{C} \hspace{0.1cm} \setminus \hspace{0.1cm} \{1, \pm \sqrt{2}i\}; \hspace{0.1cm} \mathbb{C} \hspace{0.1cm} \setminus \hspace{0.1cm} \mathbb{C} \hspace{0.1cm} \setminus \hspace{0.1cm} \mathbb{C} \hspace{0.1cm} \setminus \hspace{0.1cm} \mathbb{C} \hspace{0.1cm} \setminus \hspace{0.1cm} \mathbb{C} \hspace{0.1cm} \setminus$

- B.2. Determineu si aquestes funcions poden ser la part real d'una funció holomorfa, i en cas que ho siguin calculeu la part imaginària.
 - (a) $e^x \cos y$
- (b) $x^3 + 6xy^2$
- (c) $\log(x^2 + y^2)$

Solució: (a) $e^x \sin y$; $f(z) = e^z$; (b) No ho és; (c) $2\arctan(y/x)$; $(f(z) = \log(z^2)$.

- **B.3.** Sigui f una funció holomorfa en un obert $\Omega \subset \mathbb{C}$ i $z_0 \in \Omega$ tal que $f'(z_0) \neq 0$. Quin angle formen les corbes $\operatorname{Re} f(z) = \operatorname{Re} f(z_0)$ i $\operatorname{Im} f(z) = \operatorname{Im} f(z_0)$ en un punt z_0 ? Solució: $\pi/2$.
- 1. Trobeu els punts on la funció f és derivable (en el sentit complex), en els següents casos:
 - (a) f(z) = |z|

- (d) $f(z) = z + z\bar{z}$
- (b) $\cosh x \cos y + i \sinh x \sin y$
- (c) $f(z) = \operatorname{Re} z$

- (e) $f(z) = \operatorname{Im} e^{\overline{z}} + i \operatorname{Re} e^{z}$
- 2. Sigui $\Omega \subset \mathbb{C}$ un obert, $z_0 \in \Omega$ i $f: \Omega \to \mathbb{C}$ una funció.
 - a) Identificant \mathbb{R}^2 amb \mathbb{C} de la forma habitual, demostreu que si f és diferenciable en z_0 , llavors

$$Df(z_0)(z) = \frac{\partial f}{\partial z}(z_0) \cdot z + \frac{\partial f}{\partial \overline{z}}(z_0) \cdot \overline{z} \qquad (z \in \mathbb{C}),$$

on

$$\frac{\partial f}{\partial z} = \frac{1}{2} \left(\frac{\partial f}{\partial x} - i \frac{\partial f}{\partial y} \right), \ \ \frac{\partial f}{\partial \overline{z}} = \frac{1}{2} \left(\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} \right).$$

- b) Proveu que f és holomorfa en Ω si, i només si, f és diferenciable i $\frac{\partial f}{\partial \overline{z}}=0$ en Ω . En tal cas, $f'=\frac{\partial f}{\partial z}$.
- 3. Demostreu que si f és diferenciable en un obert de \mathbb{C} , llavors

$$\frac{\overline{\partial f}}{\partial z} = \frac{\partial \overline{f}}{\partial \overline{z}} \quad \text{i} \quad \frac{\overline{\partial f}}{\partial \overline{z}} = \frac{\partial \overline{f}}{\partial z}.$$

1. Holomorphic functions

introduction

V Tasks 23

go

V block name 25

Block V

Tasks