Python para Matemática

Pedro H A Konzen

22 de março de 2024

Conteúdo

1	Licença						
2	Sobre a Linguagem 2						
	2.1	Instalação e Execução	3				
		2.1.1 Online Notebook	3				
		2.1.2 IDE	3				
	2.2	Utilização	4				
3	Elementos da Linguagem 5						
	3.1	Classes de Objetos Básicos	5				
	3.2	Operações Aritméticas Elementares	7				
	3.3	Funções e Constantes Elementares	8				
	3.4	Operadores de Comparação Elementares	9				
	3.5	Operadores Lógicos Elementares	10				
	3.6	Conjuntos	11				
	3.7	tuple	13				
	3.8	Listas	15				
	3.9	Dicionários	18				
4	Função, ramificação e repetição 19						
	4.1	Definindo funções	19				
	4.2	Ramificação	21				
	4.3	Repetição	22				

		4.3.1	while	22
		4.3.2	for	23
		4.3.3	range	23
5	Elei	mentos	s da computação matricial	24
	5.1	NumP	y array	25
		5.1.1	Inicialização de um array	26
		5.1.2	Manipulação de arrays	
		5.1.3	Operadores elemento-a-elemento	28
	5.2	Eleme	ntos da álgebra linear	29
		5.2.1	Vetores	
		5.2.2	Produto escalar e norma	
		5.2.3	Matrizes	31
		5.2.4	Inicialização de matrizes	32
		5.2.5	Multiplicação de matrizes	33
		5.2.6	Traço e Determinante de uma matriz	
		5.2.7	Rank e inversa de uma matriz	34
		5.2.8	Autovalores e autovetores de uma matriz	
6	Grá	ficos		36

1 Licença

Este trabalho está licenciado sob a Licença Atribuição-Compartilha Igual 4.0 Internacional Creative Commons. Para visualizar uma cópia desta licença, visite http://creativecommons.org/licenses/by-sa/4.0/deed.pt_BR ou mande uma carta para Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

2 Sobre a Linguagem

Python é uma linguagem de programação de alto nível e multiparadigma. Ou seja, é relativamente próxima das linguagens humanas naturais, é desenvolvida para aplicações diversas e permite a utilização de diferentes paradigmas de programação (programação estruturada, orientada a objetos, orientada a eventos, paralelização, etc.).

Site oficial

https://www.python.org/

2.1 Instalação e Execução

Para executar um código Python em seu computador é necessário instalar um **interpretador**. No site oficial, estão disponíveis para download interpretadores gratuitos e com licença livre para uso. Neste minicurso, vamos utilizar Python 3.

2.1.1 Online Notebook

Usar um *Notebook* Python *online* é uma forma rápida e prática de iniciar os estudos na linguagem. Rodam diretamente em nuvem e vários permitem o uso gratuito por tempo limitado. Algumas opções são:

- Deepnote: https://deepnote.com
- Google Colab: https://colab.research.google.com/
- Kaggle: https://www.kaggle.com/
- Paperspace Gradient: https://www.paperspace.com/notebooks
- SageMaker: https://aws.amazon.com/sagemaker

2.1.2 IDE

Usar um **ambiente integrado de desenvolvimento** (IDE, em inglês, *integrated development environment*) é a melhor forma de capturar o todo o potencial da linguagem Python. Algumas alternativas são:

- IDLE: https://docs.python.org/3/library/idle.html
- GNU Emacs: https://www.gnu.org/software/emacs/
- Spyder: https://www.spyder-ide.org/
- VS Code: https://code.visualstudio.com/

2.2 Utilização 4

2.2 Utilização

A execução de códigos Python pode ser feita de três formas básicas:

- em modo interativo em um console/notebook Python;
- por execução de um código arqnome.py em um console/notebook Python;
- por execução de um cógido arqnome.py em um terminal do sistema operacional.

Exemplo 2.1. Consideramos o seguinte pseudocódigo.

```
s = "Ola, mundo!".
imprime(s). (imprime a string s)
```

Vamos escrevê-lo em Python e executá-lo:

a) Em um notebook.

Iniciamos um *notebook* Python e digitamos o seguinte código em uma célula de entrada.

```
1 s = "Olá, Mundo!"
2 #imprime a string s
3 print(s)
```

Ao executarmos a célula, obtemos a saída

```
Olá, Mundo!
```

b) Em modo iterativo no console.

Iniciamos um console Python em terminal do sistema e digitamos

\$ python3

Aqui, \$ é o símbolo de *prompt* de entrada que pode ser diferente a depender do seu sistema operacional. Então, digitamos

```
1 >>> s = "Olá, Mundo!"
2 >>> print(s) #imprime a string s
```

Observamos que >>> é o símbolo de *prompt* de entrada do console Python. A saída

```
101á, Mundo!
```

aparece logo abaixo da última linha de *prompt* executada. Para encerrar o console, digitamos

```
1 >>> quit()
```

c) Escrevendo o código ola.py e executando-o em um console/notebook Python.

Primeiramente, escrevemos o código

```
1 s = "Olá, Mundo!"
2 print(s) # imprime a string s
```

em um IDE (ou em um simples editor de texto) e salvamo-lo em /caminho /ola.py. Então, o executamos no console/notebook Python com

```
1 exec(open('/pasta/codigo.py').read())
```

A saída é impressa logo abaixo do prompt/célula de entrada.

d) Escrevendo o código ola.py e executando-o em terminal do sistema.

Assumindo que o código já esteja salvo no arquivo /caminho/ola.py, podemos executá-lo em um terminal digitando

```
1 $ python3 /caminho/ola.py
```

A saída é impressa logo abaixo do prompt de entrada do sistema.

3 Elementos da Linguagem

3.1 Classes de Objetos Básicos

Python é uma **linguagem** de programação **dinâmica** em que as variáveis são declaradas automaticamente ao receberem um valor (ou dado). Por exemplo, consideramos as seguintes instruções

```
1 \times 2
```

```
2 y = x * 3.0
```

Na primeira instrução, a variável x recebe o valor inteiro 2 e, então, é armazenado na memória do computador como um objeto da classe int (número inteiro). Na segunda instrução, y recebe o valor decimal 6.0 (resultado de 2×3.0) e é armazenado como um objeto da classe float (ponto flutuante de 64-bits). Podemos verificar isso, com as seguintes instruções

```
1 print(x)
2
1 print(y)
6.0
1 print(type(x), type(y))
<class 'int'> <class 'float'>
```

Observação 3.1. (Comentários e Continuação de Linha.) Códigos Python admitem comentários e continuação de linha como no seguinte exemplo

```
1 # isto é um comentário
2 s = "isto é uma \
3 string"
4 print(s)
  isto é uma string
1 type(s)
<class 'str'>
```

Observação 3.2. (Notação científica.) O Python aceita notação científica. Por exemplo 5.2×10^{-2} é digitado da seguinte forma

```
1 >>> 5.2e-2
2 0.052
```

Além de objetos numéricos e *string*, Python também conta com objetos **list** (lista), **tuple** (*n*-upla) e **dict** (dicionário). Estudaremos essas classes de objetos mais adiante no minicurso.

Exercício 3.1.1. Antes de implementar, diga qual o valor de x após as seguintes instruções.

```
1 >>> x = 1
2 >>> y = x
3 >>> y = 0
```

Justifique seu resposta e verifique-a.

Exercício 3.1.2. Implemente um código em que a(o) usuária(o) entra com valores para as variáveis x e y^1 . Então, os valores das variáveis são permutados entre si.

3.2 Operações Aritméticas Elementares

Os operadores aritméticos elementares são:

- + adição
- subtração
- * multiplicação
- / divisão
- ** potenciação
- \% módulo
- // divisão inteira

Exemplo 3.1. Estudamos a seguinte computação

```
1 >>> 2+8*3/2**2-1
2 7.0
```

Observamos que as operações ** tem precedência sobre as operações *, /, \%, //, as quais têm precedência sobre as operações +, -. Operações de mesma precedência seguem a ordem da esquerda para direita, conforme escritas na

 $^{^1\}mathrm{A}$ entrada de valores via console pode ser feita com a função input

linha de comando. Usa-se parênteses para alterar a precedência entre as operações, por exemplo

Observação 3.3. (Precedência das Operações.) Consulte mais informações sobre a precedência de operadores em Python Docs.

Exercício 3.2.1. Compute as raízes do seguinte polinômio quadrático

$$p(x) = 2x^2 - 2x - 4 \tag{1}$$

usando a fórmula de Bhaskara¹.

O operador \% módulo computa o **resto da divisão** e o operador // a **divisão inteira**, por exemplo

```
1 >>> 5 % 2
2 1
3 >>> 5 // 2
4 2
```

Exercício 3.2.2. Use o Python para computar os inteiros não negativos q e r tais que

$$25 = q \cdot 3 + r,\tag{2}$$

sendo r o menor possível.

3.3 Funções e Constantes Elementares

O módulo Python math disponibiliza várias funções e constantes elementares. Para usá-las, precisamos importar o módulo em nosso código

```
1 >>> import math
```

Com isso, temos acesso a todas as definições e declarações contidas neste módulo. Por exemplo

```
1 >>> math.pi
2 3.141592653589793
```

```
3 >>> math.cos(math.pi)
4 -1.0
5 >>> math.sqrt(2)
6 1.4142135623730951
7 >>> math.log(math.e)
8 1.0
```

Observação 3.4. Notemos que math.log é a função logaritmo natural, i.e. $\ln(x) = \log_e(x)$. A implementação Python para o logaritmo de base 10 é math.log(x,10) ou, mais acurado, math.log10.

Exercício 3.3.1. Compute

- a) $\operatorname{sen}\left(\frac{\pi}{4}\right)$
- b) $e^{\log_3(\pi)}$
- c) $\sqrt[3]{-27}$

Exercício 3.3.2. Refaça o Exercício 3.2.1 usando a função math.sqrt para computar a raiz quadrada do discriminante.

3.4 Operadores de Comparação Elementares

Os operadores de comparação elementares são

- == <mark>igual a</mark>
- != diferente de
- > maior que
- < menor que
- >= maior ou igual que
- <= menor ou igual que

Estes operadores retornam os valores lógicos True (verdadeiro) ou False

(falso).

Por exemplo, temos

Exercício 3.4.1. Considere a circunferência de equação

$$c: (x-1)^2 + (y+1)^2 = 1.$$
 (3)

Escreva um código em que a(o) usuária(o) entra com as coordenadas de um ponto P=(x,y) e o código verifica se P pertence ao disco determinado por c.

Exercício 3.4.2. Antes de implementar, diga qual é o valor lógico da instrução

Justifique sua resposta e verifique!

3.5 Operadores Lógicos Elementares

Os operadores lógicos elementares são:

Exemplo 3.2. (Tabela Booleana do and.) A tabela booleana² do and é

Α	В	A and B
True	True	True
True	False	False
False	True	False
False	False	False

Podemos verificar isso no Python como segue

3.6 Conjuntos 11

```
1 >>> True and True
2 True
3 >>> True and False
4 False
5 >>> False and True
6 False
7 >>> False and False
8 False
```

Exercício 3.5.1. Construa as tabelas booleanas do operador or e do not.

Exercício 3.5.2. Use Python para verificar se $1.4 <= \sqrt{2} < 1.5$.

Exercício 3.5.3. Considere um retângulo r: ABDC de vértices A = (1,1) e D = (2,3). Crie um código em que a(o) usuária(o) informa as coordenadas de um ponto P = (x,y) e o código imprime **True** ou **False** para cada um dos seguintes itens:

- 1. $P \in r$.
- 2. $P \in \partial r$.
- 3. $P \notin \overline{r}$.

Exercício 3.5.4. Implemente uma instrução para computar o operador xor (ou exclusivo). Dadas duas afirmações A e B, A xor B é True no caso de uma, e somente uma, das afirmações ser True, caso contrário é False.

3.6 Conjuntos

Python tem conjuntos finitos como um tipo básico de variável. Um conjunto é uma coleção de itens **não ordenada** e **imutável** e **não admite itens duplicados**. Por exemplo,

```
1 >>> a = {1, 2, 3}

2 >>> type(a)

3 <class 'set'>

4 >>> b = set((2, 1, 3, 3))

5 >>> b

6 {1, 2, 3}
```

Pedro H A Konzen - Notas de Aula */* Licença CC-BY-SA 4.0

3.6 Conjuntos 12

```
7 >>> a == b

8 True

9 >>> # conjunto vazio

10 >>> e = set()
```

aloca o conjunto $a = \{1, 2, 3\}$. Note que o conjunto b é igual a a. Observamos que o conjunto vazio deve ser construído com a instrução set() e não com $\{\}^2$.

Observação 3.5. A função Python len retorna o número de elementos de um conjunto. Por exemplo,

```
1 >>> len(a)
2 3
```

Operadores envolvendo conjuntos:

-: diferença entre conjuntos;

l: união de conjuntos;

&: interseção de conjuntos;

~: diferença simétrica;

Exemplo 3.3. Sejam os conjuntos

$$A = \{2, \pi, -0.25, 3, \text{'banana'}\},\tag{4}$$

$$B = \{\text{'laranja'}, 3, \arccos(-1), -1\}$$

$$(5)$$

Compute

- a) $A \setminus B$
- b) $A \cup B$
- c) $A \cap B$
- d) $A\Delta B = (A \setminus B) \cup (B \setminus A)$

²Isso constrói um dicionário vazio, como introduziremos logo mais.

3.7 tuple 13

Resolução. Começamos alocando os conjuntos como segue

```
1 >>> import math
2 >>> A = {2, math.pi, -0.25, 3, 'banana'}
3 >>> B = {'laranja', 3, math.acos(-1), -1}

a) A \ B

1 >>> A - B
2 {-0.25, 2, 'banana'}

b) A \ B

1 >>> A | B
2 {-0.25, 2, 3, 3.141592653589793, \
3 'laranja', 'banana', -1}

c) A \ B
1 >>> A & B
2 {3, 3.141592653589793}

d) A \ B
1 >>> A \ C B
```

Observação 3.6. Python disponibiliza a sintaxe de compreensão de conjuntos. Por exemplo,

```
1 >>> {x for x in A if type(x) == str}
2 {'banana'}
```

Exercício 3.6.1. Considere o conjunto

2 {-0.25, 2, 'laranja', 'banana', -1}

$$Z = \{-3, -2, -1, 0, 1, 2, 3\}. \tag{6}$$

Faça um código Python para extrair o subconjunto dos números pares do conjunto Z.

3.7 tuple

Em Python n-uplas (tuples) é uma sequência de objetos, i.e. **uma coleção** ordenada, indexada e imutável. Por exemplo, na sequência temos um

3.7 tuple 14

par, uma tripla e uma quadrupla

```
1 >>> a = (1, 2)

2 >>> a

3 (1, 2)

4 >>> b = -1, 1, 0

5 (-1, 1, 0)

6 >>> c = (0.5, 'laranja', {2, -1}, 2)

7 >>> c

8 (0.5, 'laranja', {2, -1}, 2)

9 >>> len(c)

10 4
```

Os elementos de um tuple são indexados, o índice 0 corresponde ao primeiro elemento, o índice 1 ao segundo elemento e assim por diante. Desta forma é possível o acesso direto a um elemento de um tuple usando-se sua posição. Por exemplo,

```
1 >>> c[2]
2 {2, -1}
```

Pode-se também extrair uma fatia (um subconjunto) usando-se a notação :. Por exemplo,

```
1 >>> c[1:3]
2 ('laranja', {2, -1})
```

• Operadores básicos:

+: concatenação

```
1 >>> (1, 2) + (3, 4, 5)
2 (1, 2, 3, 4, 5)
```

*: repetição

```
1 >>> (1, 2) * 2
2 (1, 2, 1, 2)
```

in: pertencimento

```
1 >>> 1 in (-1, 0, 1, 2)
2 True
```

Pedro H A Konzen - Notas de Aula */* Licença CC-BY-SA 4.0

3.8 Listas 15

Exercício 3.7.1. Aloque os conjuntos

$$A = \{-1, 0, 2\},\tag{7}$$

$$B = \{2, 3, 5\}. \tag{8}$$

Então, compute o produto cartesiano $A \times B = \{(a, b) : a \in A, b \in B\}$. Qual o número de elementos da $A \times B$? Dica: use a sintaxe de compreensão de conjuntos (consulte a Observação 3.6).

Exercício 3.7.2. Aloque o gráfico discreto da função $f(x) = x^2$ para $x = 0, \frac{1}{2}, 1, 2$. Dica: use a sintaxe de compreensão de conjuntos (consulte a Observação 3.6).

3.8 Listas

O tipo Python list permite alocar em uma única variável uma lista de itens ordenada. Por exemplo, observemos as seguintes listas

```
1 >>> x = [-1, 2, -3, -5]
2 >>> type(x)
3 <class 'list'>
4 >>> y = ['a', 'b', 'a']
5 >>> y
6 ['a', 'b', 'a']
7 >>> vazia = []
8 >>> len(x)
9 4
```

Os elementos de uma lista são indexados, o índice 0 corresponde ao primeiro elemento, o índice 1 ao segundo elemento e assim por diante. Desta forma é possível o acesso direto a um elemento de uma lista usando-se sua posição. Por exemplo,

```
1 >>> x[0]
2-1
3 >>> y[2] = 'c'
4 >>> y
5 ['a', 'b', 'c']
```

 $^{^3{\}rm O}$ gráfico de uma função restrito a um conjunto A é o conjunto ${\rm G}(f)|_A=\{(x,y):\ x\in A, y=f(x)\}.$

3.8 Listas 16

Pode-se fazer um corte de elementos de uma lista usando o operador :. Por exemplo,

```
1 >>> x = [1,2,-1,3,-2]
2 >>> x[2:5]
3 [-1, 3, -2]
```

Operadores básicos:

+: concatenação

```
1 >>> [1, 2] + [3, 4, 5]
2 [1, 2, 3, 4, 5]
```

*: repetição

```
1 >>> [1, 2] * 2
2 [1, 2, 1, 2]
```

in: pertencimento

```
1 >>> 1 in [-1, 0, 1, 2]
2 True
```

Observação 3.7. Listas contam com várias funções prontas para a execução de diversas tarefas práticas como, por exemplo, inserir/deletar itens, contar ocorrências, ordenar itens, etc. Consulte Python Docs.

Observação 3.8. (Alocação versus cópia) Estude o seguinte exemplo

```
1 >>> x = [2, 3, 1]

2 >>> y = x

3 >>> y[1] = 0

4 >>> x

5 [2, 0, 1]
```

Notamos que y aponta para o mesmo endereço de memória de x. Para copiar uma lista e alocá-la em um novo endereço de memória, deve-se usar a função list.copy(), como segue

```
1 >>> x = [2, 3, 1]
2 >>> y = x.copy()
3 >>> y[1] = 0
```

Pedro H A Konzen - Notas de Aula */* Licença CC-BY-SA 4.0

3.8 Listas 17

Exercício 3.8.1. Implemente uma lista para alocar os primeiros 5 elementos da sequência de Fibonacci⁴.

Exercício 3.8.2. Uma aplicação do Método Babilônico⁵ para a aproximação da solução da equação $x^2 - 2 = 0$, consiste na iteração

$$x_0 = 1, (9)$$

$$x_{i+1} = \frac{x_i}{2} + \frac{1}{x_i}, \quad i = 0, 1, 2, \dots$$
 (10)

Implemente uma lista para alocar as quatro primeiras aproximações da solução, i.e. x_0, x_1, x_2, x_3 .

Exercício 3.8.3. Aloque os seguintes vetores como listas no Python

$$x = (-1, 3, -2), \tag{11}$$

$$y = (4, -2, 0). (12)$$

Então, compute

- a) x+y
- b) $x \cdot y$

Dica: use uma compreensão de lista e os métodos Python zip e sum.

Exercício 3.8.4. Uma matriz pode ser alocada como uma lista de listas Python, alocando cada linha como uma lista e a matriz como a lista destas listas. Por exemplo, a matriz

$$M = \begin{bmatrix} 1 & -2 \\ 2 & 3 \end{bmatrix} \tag{13}$$

pode ser alocada como a seguinte lista de listas

⁴Leonardo Fibonacci, 1170 - 1250, matemático italiano. Fonte: Wikipédia.

⁵Matemática Babilônica, matemática desenvolvida na Mesopotâmia, desde os Sumérios até a queda da Babilônia em 539 a.C.. Fonte: Wikipédia.

3.9 Dicionários 18

```
1 >>> M = [[1,-2],[2,3]]
2 >>> M
3 [[1, -2], [2, 3]]
```

Use listas para alocar a matriz

$$A = \begin{bmatrix} 1 & -2 & 1 \\ 8 & 0 & -7 \\ 3 & -1 & -2 \end{bmatrix} \tag{14}$$

e o vetor coluna

$$x = (2, -3, 1), \tag{15}$$

então compute Ax.

3.9 Dicionários

Em Python um dicionário é um mapeamento objeto a objeto, cada par (chave:valor) é separado por uma vírgula. Por exemplo,

```
1 >>> a = {'nome': 'triangulo', 'perimetro': 3.2}
2 >>> a
3 {'nome': 'triangulo', 'perimetro': 3.2}
4 >>> b = {1: 2.71, (1,2): 2, 'a': {1,0,-1}}
5 >>> b
6 {1: 2.71, (1, 2): 2, 'a': {0, 1, -1}}
7 >>> d = {1: 'a', 'b': 2, 1.4: -1, 2: 'b'}
8 >>> d
9 {1: 'a', 'b': 2, 1.4: -1, 2: 'b'}
```

O acesso a um item do dicionário é feito usando-se sua chave. Por exemplo,

```
1 >>> d['b']
2 2
3 >>> d[1.4] = 1
4 >>> d
5 {1: 'a', 'b': 2, 1.4: 1, 2: 'b'}
```

Pode-se adicionar um novo par, simplesmente, atribuindo valor a uma nova chave. Por exemplo,

```
1 >>> d[1.5] = 0
2 >>> d
3 {1: 'a', 'b': 2, 1.4: 1, 2: 'b', 1.5: 0}
```

Observação 3.9. Consulte sobre mais sobre dicionários em Python Docs.

Exercício 3.9.1. Considere a função afim

$$f(x) = 3 - x. \tag{16}$$

Implemente um dicionário para alocar a raiz da função, a interseção com o eixo y e seu coeficiente angular.

Exercício 3.9.2. Considere a função quadrática

$$g(x) = x^2 - x - 2 (17)$$

Implemente um dicionário para alocar suas raízes, vértice e interseção com o eixo y.

4 Função, ramificação e repetição

Nesta seção, vamos introduzir funções e estruturas de ramificação e de repetição. Estes são procedimentos fundamentais na programação estruturada.

4.1 Definindo funções

Em Python, uma função é definida com a palavra-chave def seguida de seu nome e seus parâmetros encapsulados entre parênteses e por dois-pontos : . Suas instruções formam o corpo da função, iniciam-se na linha abaixo e devem estar indentadas. A indentação define o escopo da função. Por exemplo, a seguinte função imprime o valor da função

$$f(x) = 2x - 3 \tag{18}$$

Pedro H A Konzen - Notas de Aula */* Licença CC-BY-SA 4.0

Você pode protestar que f não é uma função e, sim, um procedimento, pois não retorna valor. Para uma função retornar um objeto, usamos a instrução return. Por exemplo,

Observação 4.1. Para funções pequenas, pode-se utilizar a instrução lambda de funções anônimas. Por exemplo,

```
1 >>> f = lambda x: 2*x - 3
2 >>> f(3)
3 3
```

Observação 4.2. Consulte mais informações sobre a definição de funções em Python Docs.

Exercício 4.1.1. Implemente uma função para computar as raízes de um polinômio de grau 1 p(x) = ax + b.

Exercício 4.1.2. Implemente uma função para computar as raízes de um polinômio de grau $2 p(x) = ax^2 + bx + c$.

Exercício 4.1.3. Implemente uma função que computa o produto escalar de dois vetores

$$x = (x_0, x_1, x_2), (19)$$

$$y = (y_0, y_1, y_2). (20)$$

Use listas para representar os vetores no Python.

Exercício 4.1.4. Implemente uma função que computa o determinante de matrizes 2×2 . Use lista de listas para representar as matrizes.

Exercício 4.1.5. Implemente uma função que computa a multiplicação matrixvetor Ax, com A 2 × 2 e x um vetor coluna de dois elementos.

Exercício 4.1.6. (Recursividade) Implemente uma função recursiva para computar o fatorial de um número natural n, i.e. n!.

4.2 Ramificação

Uma estrutura de ramificação é uma instrução para a tomada de decisões durante a execução de um programa. No Python, está disponível a instrução if. Consultemos o seguinte exemplo.

```
1 def paridade(n):
2    if (n%2 == 0):
3         print('par')
```

Aqui, a função paridade recebe o valor n. Se (if) o resto da divisão de n por 2 é igual a zero (condição), então (:) imprime a *string* par.

Observação 4.3. A indentação determina o escopo de cada instrução if.

Também está disponível a instrução if-else. Por exemplo,

```
1 def paridade(n):
2    if (n%2 == 0):
3         print('par')
4    else:
5         print('impar')
```

Agora, se (if) a condição (n%2 == 0) for verdadeira (True), então imprime par, senão (else) imprime impar.

Ainda, é possível ter instruções if-else encadeadas. Por exemplo,

```
1 def paridade(n):
2     if (n%2 == 0):
3         print('eh divisivel por 2')
4     elif (n%3 == 0):
5         print('eh divisivel por 3')
6     else:
7         print('nao eh divisivel por 2 e 3')
```

Observe que elif deve ser utilizado no lugar de else if.

4.3 Repetição 22

Exercício 4.2.1. Implemente uma função que recebe dois números n e m e imprime o maior deles.

Exercício 4.2.2. Implemente uma função que recebe os coeficientes de um polinômio

$$p(x) = ax^2 + bx + c \tag{21}$$

e classifique-o como um polinômio de grau 0, 1 ou 2.

4.3 Repetição

Estruturas de repetição são instruções que permitem que a execução repetida de uma região do código. São duas instruções disponível while e for.

4.3.1 while

A sintaxe da instrução while é

```
1 while expressao:
2     comando 0
3     .
4     .
5     .
6     comando n
```

Isto é, enquanto (while) a expressão (expressao) for verdadeira, os comandos comando 0 a comando n serão repetidamente executados em ordem. Por exemplo, o seguinte código computa a soma dos 10 primeiros números naturais e, então imprime-a.

Observação 4.4. As instruções de controle break, continue são bastante úteis em várias situações. A primeira, encerra as repetições e, a segunda, pula para uma nova repetição. Consulte mais em Python Docs.

Exercício 4.3.1. Use while para imprimir os dez primeiros números ímpares.

Exercício 4.3.2. Uma aplicação do Método Babilônico⁶ para a aproximação da solução da equação $x^2 - 2 = 0$, consiste na iteração

$$x_0 = 1, (22)$$

$$x_{i+1} = \frac{x_i}{2} + \frac{1}{x_i}, \quad i = 0, 1, 2, \dots$$
 (23)

Faça um código com while para computar aproximação x_i , tal que $|x_i - x_{i-1}| < 10^{-5}$.

4.3.2 for

A estrutura for tem a sintaxe

```
for i in iteravel:
2 escopo
```

onde, **iteravel** pode ser qualquer objeto de uma classe iterável (conjunto, *n*-upla, lista, dicionário, *string*). Os comandos dentro do escopo (determinado pela indentação) são repetidos para cada iterada **i**. Por exemplo,

```
1 >>> for i in [0,1,2]:
2 ... print(i)
3 ...
4 0
5 1
6 2
```

4.3.3 range

A função Python range([start,]stop[,sep]) é particularmente útil na construção de instruções for. Ela cria um objeto de classe iterável de start (incluído) a stop (excluído), de elementos igualmente separados por sep. Por padrão, start=0, sep=1 caso omitidos. Por exemplo,

⁶Matemática Babilônica, matemática desenvolvida na Mesopotâmia, desde os Sumérios até a queda da Babilônia em 539 a.C.. Fonte: Wikipédia.

```
1 >>> for i in range(1,6,2):
2 ... print(i)
3 ...
4 1
5 3
6 5
```

```
1 >>> for i in range(3):
2 ... print(i)
3 ...
4 0
5 1
6 2
```

Exercício 4.3.3. Escreva uma função que retorne o n-ésimo termo da função de Fibonacci⁷, $n \ge 1$.

Exercício 4.3.4. Implemente uma função para computar o produto escalar de dois vetores de n elementos. Assuma que os vetores estão alocados em listas.

Exercício 4.3.5. Implemente uma função para computar a multiplicação de uma matriz A $n \times n$ por um vetor coluna x de n elementos. Assuma que o vetor está alocada como uma lista e a matriz como uma lista de listas por linhas.

Exercício 4.3.6. Implemente uma função para computar a multiplicação de uma matriz A $n \times m$ por uma matriz B de $m \times n$. Assuma que as matrizes estão alocadas como listas de listas por linhas de cada matriz.

5 Elementos da computação matricial

Nesta seção, vamos explorar a NumPy (Numerical Python), biblioteca para tratamento numérico de dados. Ela é extensivamente utilizada nos mais diversos campos da ciência e da engenharia. Aqui, vamos nos restringir a

⁷Leonardo Fibonacci, 1170 - 1250, matemático italiano. Fonte: Wikipédia.

introduzir algumas de suas ferramentas para a computação matricial.

Usualmente, a biblioteca é importada como segue

```
1 >>> import numpy as np
```

5.1 NumPy array

Um array é uma tabela de valores (vetor, matriz ou multidimensional) e contém informação sobre os dados brutos, indexação e como interpretá-los. Os elementos são todos do mesmo tipo (diferente de uma lista Python), referenciados pela propriedade dtype. A indexação dos elementos pode ser feita por um tuple de inteiros não negativos, por booleanos, por outro array ou por números inteiros. O rank de um array é seu número de dimensões (chamadas de axes⁸). O shape é um tuple de inteiros que fornece seu tamanho (número de elementos) em cada dimensão. Sua inicialização pode ser feita usando-se listas simples ou encadeadas. Por exemplo,

```
1 >>> a = np.array([1,3,-1,2])
2 >>> print(a)
3 [ 1     3 -1     2]
4 >>> a.dtype
5 dtype('int64')
6 >>> a.shape
7 (4,)
8 >>> a[2]
9 -1
10 >>> a[1:3]
11 array([ 3, -1])
```

temos um array de números inteiros com quatro elementos dispostos em um único axis (eixo). Podemos interpretá-lo como uma representação de um vetor linha ou coluna, i.e.

$$a = (1, 3, -1, 2) \tag{24}$$

vetor coluna ou a^T vetor linha.

Outro exemplo,

⁸Do inglês, plural de *axis*, eixo.

```
1 >>> a = np.array([[1.0,2,3],[-3,-2,-1]])
2 >>> a.dtype
3 dtype('float64')
4 >>> a.shape
5 (2, 3)
6 >>> a[1,1]
7 -2.0
```

temos um array de números decimais (float) dispostos em um arranjo com dois axes (eixos). O primeiro axis tem tamanho 2 e o segundo tem tamanho 3. Ou seja, podemos interpretá-lo como uma matriz de duas linhas e três colunas. Podemos fazer sua representação algébrica como

$$a = \begin{bmatrix} 1 & 2 & 3 \\ -3 & -2 & -1 \end{bmatrix} \tag{25}$$

5.1.1 Inicialização de um array

O NumPy conta com úteis funções de inicialização de array. Vejam algumas das mais frequentes:

• np.zeros(): inicializa um array com todos seus elementos iguais a zero.

```
1 >>> np.zeros(2)
2 array([0., 0.])
```

• np.ones(): inicializa um array com todos seus elementos iguais a 1.

• np.empty(): inicializa um array sem alocar valores para seus elementos⁹.

```
1 >>> np.empty(3)
2 array([4.9e-324, 1.5e-323, 2.5e-323])
```

⁹Atenção! Os valores dos elementos serão dinâmicos conforme "lixo" da memória.

• np.arange(): inicializa um array com uma sequência de elementos¹⁰.

```
1 >>> np.arange(1,6,2)
2 array([1, 3, 5])
```

• np.linspace(a, b[, num=n]): inicializa um array como uma sequência de elementos que começa em a, termina em b (incluídos) e contém n elementos igualmente espaçados.

```
1 >>> np.linspace(0, 1, num=5)
2 array([0. , 0.25, 0.5 , 0.75, 1. ])
```

5.1.2 Manipulação de arrays

Outras duas funções importantes no tratamento de arrays são:

• arr.reshape(): permite a alteração da forma de um array.

O arr.reshape() também permite a utilização de um coringa -1 que será dinamicamente determinado de forma obter-se uma estrutura adequada. Por exemplo,

• arr.transpose(): computa a transposta de uma matriz.

¹⁰Similar a função Python range.

• np.concatenate(): concatena arrays.

5.1.3 Operadores elemento-a-elemento

Os operadores aritméticos disponível no Python atuam elemento-a-elemento nos arrays. Por exemplo,

```
1 >>> a = np.array([1,2])
2 >>> b = np.array([2,3])
3 >>> a+b
4 array([3, 5])
5 >>> a-b
6 array([-1, -1])
7 >>> b*a
8 array([2, 6])
9 >>> a**b
```

Pedro H A Konzen - Notas de Aula */* Licença CC-BY-SA 4.0

```
10 array([1, 8])
11 >>> 2*b
12 array([4, 6])
```

O NumPy também conta com várias funções matemáticas elementares que operam elemento-a-elemento em arrays. Por exemplo,

```
1 >>> a = np.array([np.pi, np.sqrt(2)])
2 >>> a
3 array([3.14159265, 1.41421356])
4 >>> np.sin(a)
5 array([1.22464680e-16, 9.87765946e-01])
6 >>> np.exp(a)
7 array([23.14069263, 4.11325038])
```

Observação 5.1. O NumPy contém um série de outras funções práticas para a manipulação de arrays. Consulte NumPy: the absolute basics for beginners.

5.2 Elementos da álgebra linear

O NumPy conta com um módulo de álgebra linear

```
1 >>> from numpy import linalg
```

5.2.1 Vetores

Um vetor podem ser representado usando um array de um eixo (dimensão) ou um com dois eixos, caso se queira diferenciá-lo entre um vetor linha ou coluna. Por exemplo, os vetores

$$a = (2, -1, 7), \tag{26}$$

$$b = (3, 1, 0)^T (27)$$

podem ser alocados com

```
1 >>> x = np.array([2,-1,7])
2 >>> y = np.array([3,1,0])
```

Caso queira-se que x siga um arranjo em coluna, pode-se modificado como segue

Como já vimos, o NumPy conta com operadores elemento-a-elemento que podem ser utilizados na álgebra envolvendo arrays, logo também aplicáveis a vetores (consulte a Subseção 5.1.3). Vamos, aqui, introduzir outras operações próprias deste tipo de objeto.

Exercício 5.2.1. Aloque cada um dos seguintes vetores como um NumPy array:

- a) x = (1.2, -3.1, 4)
- b) $y = x^T$
- c) $z = (\pi, \sqrt{2}, e^{-2})^T$

5.2.2 Produto escalar e norma

Dados dois vetores,

$$x = (x_0, x_1, \dots, x_{n-1}), \tag{28}$$

$$y = (y_0, y_1, \dots, y_{n-1}) \tag{29}$$

define-se o **produto escalar** por

$$x \cdot y = x_0 y_0 + x_1 y_1 + \dots + x_{n-1} y_{n-1} \tag{30}$$

Com o NumPy, podemos computá-lo com a função np.dot(). Por exemplo,

```
1 >>> x = np.array([-1, 0, 2, 4])
2 >>> y = np.array([0, 1, 1, -1])
3 >>> np.dot(x,y)
4 -2
```

A norma (euclidiana) de um vetor é definida por

$$||x|| = \sqrt{\sum_{i=0}^{n-1} x_i^2}.$$
 (31)

O NumPy conta com a função np.linalg.norm() para computá-la. Por exemplo,

```
1 >>> np.linalg.norm(y)
2 1.7320508075688772
```

Exercício 5.2.2. Faça um código para computar o produto escalar $x \cdot y$ sendo

$$x = (1.2, \ln(2), 4), \tag{32}$$

$$y = (\pi^2, \sqrt{3}, e) \tag{33}$$

5.2.3 Matrizes

Uma matriz pode ser alocada como um NumPy array de dois eixos (dimensões). Por exemplo, as matrizes

$$A = \begin{bmatrix} 2 & -1 & 7 \\ 3 & 1 & 0 \end{bmatrix},\tag{34}$$

$$B = \begin{bmatrix} 4 & 0 \\ 2 & 1 \\ -8 & 6 \end{bmatrix} \tag{35}$$

podem ser alocadas como segue

Como já vimos, o NumPy conta com operadores elemento-a-elemento que podem ser utilizados na álgebra envolvendo arrays, logo também aplicáveis a matrizes (consulte a Subseção 5.1.3). Vamos, aqui, introduzir outras operações próprias deste tipo de objeto.

Exercício 5.2.3. Aloque cada uma das seguintes matrizes como um Numpy array:

a)

$$A = \begin{bmatrix} -1 & 2\\ 2 & -4\\ 6 & 0 \end{bmatrix} \tag{36}$$

b) $B = A^T$

Exercício 5.2.4. Seja

Determine o formato (shape) dos seguintes arrays:

- a) A[:,0]
- b) A[:,0:1]
- c) A[1:3,0]
- d) A[1:3,0:1]
- e) A[1:3,0:2]

5.2.4 Inicialização de matrizes

Além das inicializações de arrays já estudadas na Subseção 5.1.1, temos mais algumas que são particularmente úteis no caso de matrizes.

• np.eye(n): retorna a matriz identidade $n \times n$.

• np.diag(v): retorna uma matriz diagonal formada pela list v.

Exercício 5.2.5. Aloque a matriz escalar $C = [c_{ij}]_{i,j=0}^{99}$, sendo $c_{ii} = \pi$ e $c_{ij} = 0$ para $i \neq j$.

5.2.5 Multiplicação de matrizes

A multiplicação da matriz $A=[a_{ij}]_{i,j=0}^{n-1,l-1}$ pela matriz $B=[b_{ij}]_{i,j=0}^{l-1,m-1}$ e a matriz $C=AB=[c_{ij}]_{i,j=0}^{n-1,m-1}$ tal que

$$c_{ij} = \sum_{k=0}^{l-1} a_{ik} b_{k,j} \tag{37}$$

O NumPy tem a função np.matmul() para computar a multiplicação de matrizes. Por exemplo,

```
1 >>> C = np.matmul(A,B)
2 >>> C
3 array([[-50, 41],
4 [ 14, 1]])
```

Observação 5.2. É importante notar que np.matmul(A,B) é a multiplicação de matrizes, enquanto que * consiste na multiplicação elemento a elemento. Alternativamente a np.matmul(A,B) pode-se usar A @ B.

Exercício 5.2.6. Aloque as matrizes

$$C = \begin{bmatrix} 1 & 2 & -1 \\ 3 & 2 & 1 \\ 0 & -2 & -3 \end{bmatrix} \tag{38}$$

$$D = \begin{bmatrix} 2 & 3 \\ 1 & -1 \\ 6 & 4 \end{bmatrix} \tag{39}$$

$$E = \begin{bmatrix} 1 & 2 & 1 \\ 0 & -1 & 3 \end{bmatrix} \tag{40}$$

Então, se existirem, compute e forneça as dimensões das seguintes matrizes

- a) CD
- b) $D^T E$
- c) D^TC
- d) DE

5.2.6 Traço e Determinante de uma matriz

O NumPy tem a função arr.trace() para computar o **traço** de uma matriz (soma dos elementos de sua diagonal). Por exemplo,

```
1 >>> A = np.array([[-1,2,0],[2,3,1],[1,2,-3]])
2 >>> A.trace()
3 -1
```

Já, o determinante é fornecido no módulo np.linalg. Por exemplo,

```
1 >>> A = np.array([[-1,2,0],[2,3,1],[1,2,-3]])
2 >>> np.linalg.det(A)
3 25.000000000000007
```

Exercício 5.2.7. Compute e verifique os traços e os determinantes das seguintes matrizes

$$C = \begin{bmatrix} -2 & 3\\ 1 & 4 \end{bmatrix} \tag{41}$$

$$D = \begin{bmatrix} 3 & 1 & -1 \\ 1 & 0 & 2 \\ 4 & 2 & -1 \end{bmatrix} \tag{42}$$

5.2.7 Rank e inversa de uma matriz

O rank de uma matriz é o número de linhas ou colunas linearmente independentes. O NumPy conta com a função matrix_rank() para computá-lo. Por exemplo,

```
1 >>> np.linalg.matrix_rank(np.eye(3))
2 3
3 >>> A = np.array([[1,2,3],[-1,1,-1],[0,3,2]])
```

```
4 >>> np.linalg.matrix_rank(A) 5 2
```

A inversa de uma matriz **full rank** pode ser computada com a função np. linalg.inv(). Por exemplo,

Exercício 5.2.8. Compute, se possível, a matriz inversa de cada uma das seguintes matrizes

$$B = \begin{bmatrix} 2 & -1 \\ -2 & 1 \end{bmatrix} \tag{43}$$

$$C = \begin{bmatrix} -2 & 0 & 1\\ 3 & 1 & -1\\ 2 & 1 & 0 \end{bmatrix} \tag{44}$$

Verifique suas respostas.

5.2.8 Autovalores e autovetores de uma matriz

Um auto-par (λ, v) , λ um escalar chamado de autovalor e $v \neq 0$ é um vetor chamado de autovetor, é tal que

$$A\lambda = \lambda v. \tag{45}$$

O NumPy tem a função np.linalg.eig() para computar os auto-pares de uma matriz. Por exemplo,

```
1 >>> np.linalg.eig(np.eye(3))
```

Observamos que a função uma dupla, sendo o primeiro item um array contendo os autovalores (repetidos conforme suas multiplicidades) e o segundo item é a matriz dos autovetores, onde estes são suas colunas.

Exercício 5.2.9. Compute os auto-pares da matriz

$$A = \begin{bmatrix} 1 & 3 & 2 \\ 3 & 2 & -1 \\ 2 & -1 & 1 \end{bmatrix}. \tag{46}$$

Então, verifique se, de fato, $A\lambda = \lambda v$ para cada auto-par (λ, v) computado.

6 Gráficos

Matplotlib é uma biblioteca Python livre e gratuita para a visualização de dados. É muito utilizada para a criação de gráficos estáticos, animados ou iterativos. Aqui, vamos introduzir alguma de suas ferramentas básicas para gráficos.

Para utilizá-la, é necessário instalá-la. Pacotes de instalação estão disponíveis para os principais sistemas operacionais, consule a sua loja de *apps* ou Matplotlib Installation. Para importá-la, usamos

```
1 >>> import matplotlib.pyplot as plt
```

Observação 6.1. Se você está usando um console Python remoto, você pode querer adicionar a seguinte linha de comando para que os gráficos sejam visualizados no próprio console.

```
1 >>> %matplotlib inline
```

Gráficos bidimensionais podem ser criados com a função plt.plot(x,y), onde x e y são arrays que fornecem os pontos cartesianos (x_i, y_i) a serem plotados. Por exemplo,

```
1 >>> import matplotlib.pyplot as plt
2 >>> x = np.linspace(-np.pi, np.pi)
```


Figura 1: Esboço do gráfico da função y = sen(x) no intervalo $[-\pi, \pi]$.

```
3 >>> y = np.cos(x)
4 >>> plt.plot(x,y)
5 [<matplotlib.lines.Line2D object at 0x7f99f578a370
>]
6 >>> plt.show()
```

produz o seguinte esboço do gráfico da função y = sen(x) no intervalo $[-\pi, \pi]$. Consulte a Figura 1.

Observação 6.2. Matplotlib é uma poderosa ferramenta para a visualização de gráficos. Consulte a galeria de exemplos no seu site oficial

https://matplotlib.org/stable/gallery/index.html

Exercício 6.0.1. Crie um esboço do gráfico de cada uma das seguintes funções no intervalo indicado:

a)
$$y = \cos(x), [0, 2\pi]$$

b)
$$y = x^2 - x + 1$$
, $[-2, 2]$

c)
$$y = \operatorname{tg}(\frac{\pi}{2}x), (-1, 1)$$

REFERÊNCIAS 38

Referências

[1] Banin, S.L.. Python 3 - Conceitos e Aplicações - Uma Abordagem Didática, Saraiva: São Paulo, 2021. ISBN: 978-8536530253.

- [2] NumpPy Developers. NumPy documentation, versão 1.26, disponível em https://numpy.org/doc/stable/.
- [3] Ribeiro, J.A.. Introdução à Programação e aos Algoritmos, LTC: São Paulo, 2021. ISBN: 978-8521636410.
- [4] Hunter, J.; Dale, D.; Firing, E.; Droettboom, M. & Matplotlib development team. NumPy documentation, versão 3.8.3, disponível em https://matplotlib.org/stable/.
- [5] Python Software Foundation. Python documentation, versão 3.12.2, disponível em https://docs.python.org/3/.
- [6] Wazlawick, R.. Introdução a Algoritmos e Programação com Python -Uma Abordagem Dirigida por Testes, Grupo GEN: São Paulo, 2021. ISBN 978-8595156968.