Probability Theory Final preparation

0712238 林彥彤

https://scholar.harvard.edu/files/charlescywang/files/basic_statistics_and_probability_for_econometrics_econ_270a.pdf

Table of Common Distributions

taken from $Statistical\ Inference$ by Casella and Berger

Discrete Distriutions

distribution	pmf	mean	variance	mgf/moment	
Bernoulli(p)	$p^x(1-p)^{1-x}; x=0,1; p \in (0,1)$	p	p(1-p)	$(1-p) + pe^t$	
Beta-binomial (n, α, β)	$\binom{n}{x} \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \frac{\Gamma(x + \alpha)\Gamma(n - x + \beta)}{\Gamma(\alpha + \beta + n)}$	$\frac{n\alpha}{\alpha+\beta}$	$\frac{n\alpha\beta}{(\alpha+\beta)^2}$		
Notes: If $X P$ is bin	omial (n, P) and P is $beta(\alpha, \beta)$, then X is	is beta-binomial(n	(α, β) .		
Binomial(n, p)	$\binom{n}{x}p^x(1-p)^{n-x}; \ x=1,\ldots,n$	np	np(1-p)	$[(1-p)+pe^t]^n$	
Discrete $Uniform(N)$	$\frac{1}{N}; \ x = 1, \dots, N$	$\frac{N+1}{2}$	$\frac{(N+1)(N-1)}{12}$	$\frac{1}{N} \sum_{i=1}^{N} e^{it}$	
Geometric(p)	$p(1-p)^{x-1};\ p\in (0,1)$	$\frac{1}{p}$	$\frac{1-p}{p^2}$	$\frac{pe^t}{1-(1-p)e^t}$	
Note: $Y = X - 1$ is	negative binomial $(1, p)$. The distribution i	is memoryless: P(.	X > s X > t) = P(X > s - t)).	
Hypergeometric (N, M, K)	$\left(\frac{\binom{M}{x}\binom{N-M}{K-x}}{\binom{N}{K}}; \ x=1,\dots,K\right)$	$\frac{KM}{N}$	$\frac{KM}{N}\frac{(N\!-\!M)(N\!-\!k)}{N(N\!-\!1)}$?	
	$M-(N-K) \leq x \leq M; \ N,M,K>0$				
Negative Binomial (r, p)	$({r+x-1 \atop x})p^r(1-p)^x; \ p \in (0,1)$	$\frac{r(1-p)}{p}$	$\frac{r(1-p)}{p^2}$	$\left(\frac{p}{1-(1-p)e^t}\right)^r$	
	$\binom{y-1}{r-1}p^r(1-p)^{y-r}; Y = X + r$				
$Poisson(\lambda)$	$\frac{e^{-\lambda}\lambda^x}{x!}; \ \lambda \geq 0$	λ	λ	$e^{\lambda(e^t-1)}$	
Notes: If Y is gamm	$\operatorname{na}(\alpha, \beta)$, X is $\operatorname{Poisson}(\frac{x}{\beta})$, and α is an inte	ger, then $P(X \ge a)$	$\alpha = P(Y \le y).$		

Continuous Distributions

distribution	pdf	mean	variance	mgf/moment
$Beta(\alpha, \beta)$	$\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}x^{\alpha-1}(1-x)^{\beta-1}; x \in (0,1), \alpha, \beta > 0$	$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$	$1 + \sum_{k=1}^{\infty} \left(\prod_{r=0}^{k-1} \frac{\alpha+r}{\alpha+\beta+r} \right) \frac{t^k}{k!}$
$Cauchy(\theta, \sigma)$	$\frac{1}{\pi\sigma}\frac{1}{1+(\frac{x-\theta}{2})^2}$; $\sigma > 0$	does not exist	does not exist	does not exist
Notes: Special case o	f Students's t with 1 degree of freedom. Also, i	if X, Y are iid N	$(0,1), \frac{X}{Y}$ is Cauchy	
χ_p^2 Notes: Gamma($\frac{p}{2}$, 2).	$\frac{1}{\Gamma(\frac{p}{2})2^{\frac{p}{2}}}x^{\frac{p}{2}-1}e^{-\frac{x}{2}};\ x>0,\ p\in N$	p	2p	$\left(\frac{1}{1-2t}\right)^{\frac{p}{2}},\ t<\frac{1}{2}$
Double Exponential (μ, σ)	$\frac{1}{2\sigma}e^{-\frac{ x-\mu }{\sigma}}; \sigma > 0$	μ	$2\sigma^2$	$\frac{e^{\mu t}}{1-(\sigma t)^2}$
Exponential(θ)	$\frac{1}{\theta}e^{-\frac{x}{\theta}}; \ x \ge 0, \ \theta > 0$	θ	θ^2	$\frac{1}{1-\theta t}$, $t<\frac{1}{\theta}$
Notes: $Gamma(1, \theta)$.	Memoryless. $Y = X^{\frac{1}{\gamma}}$ is Weibull. $Y = \sqrt{\frac{2X}{\beta}}$ is	s Rayleigh. Y =	$\alpha - \gamma \log \frac{X}{\beta}$ is Gumbel.	
$F_{ u_1, u_2}$	$\frac{\Gamma(\frac{\nu_1+\nu_2}{2})}{\Gamma(\frac{\nu_1}{2})\Gamma(\frac{\nu_2}{2})} \left(\frac{\nu_1}{\nu_2}\right)^{\frac{\nu_1}{2}} \frac{x^{\frac{\nu_1-2}{2}}}{\left(1+(\frac{\nu_1}{\nu_2})x\right)^{\frac{\nu_1+\nu_2}{2}}}; \ x>0$			$EX^n = \frac{\Gamma(\frac{\nu_1+2n}{2})\Gamma(\frac{\nu_2-2n}{2})}{\Gamma(\frac{\nu_1}{2})\Gamma(\frac{\nu_2}{2})} \left(\frac{\nu_2}{\nu_i}\right)^n, \ n <$
Notes: $F_{\nu_1,\nu_2} = \frac{\chi^2_{\nu_1}/\nu}{\chi^2_{\nu_2}/\nu}$	$\frac{r_1}{r_2}$, where the χ^2 s are independent. $F_{1,\nu} = t_{\nu}^2$.			
$Gamma(\alpha, \beta)$	$\frac{1}{\Gamma(\alpha)\beta^{\alpha}}x^{\alpha-1}e^{-\frac{x}{\beta}}; \ x>0, \ \alpha,\beta>0$	$\alpha\beta$	$\alpha \beta^2$	$\left(\frac{1}{1-\beta t}\right)^{\alpha}, t < \frac{1}{\beta}$
Notes: Some special	cases are exponential $(\alpha = 1)$ and χ^2 $(\alpha = \frac{p}{2}, \beta)$	= 2). If $\alpha = \frac{2}{3}$,	$Y = \sqrt{\frac{X}{\beta}}$ is Maxwell. $Y = \frac{1}{X}$	is inverted gamma.
$Logistic(\mu, \beta)$	$\frac{1}{\beta} \frac{e^{-\frac{x-\mu}{\beta}}}{\left[1+e^{-\frac{x-\mu}{\beta}}\right]^2}; \ \beta > 0$	μ	$\frac{\pi^2 \beta^2}{3}$	$e^{\mu t}\Gamma(1+\beta t), t <\frac{1}{\beta}$
Notes: The cdf is $F($:	$x \mu, \beta) = \frac{1}{1 - \frac{x - \mu}{x}}$.			
	$\frac{1}{\sqrt{2\pi\sigma}} \frac{1}{x} e^{-\frac{(\log x - \mu)^2}{2\sigma^2}}; x > 0, \sigma > 0$	$e^{\mu + \frac{\sigma^2}{2}}$	$e^{2(\mu+\sigma^2)}-e^{2\mu+\sigma^2}$	$EX^n=e^{n\mu+\frac{n^2\sigma^2}{2}}$
$Normal(\mu, \sigma^2)$	$\frac{1}{\sqrt{2\pi\sigma}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}; \sigma > 0$	μ	σ^2	$e^{\mu t + \frac{\sigma^2 t^2}{2}}$
$Pareto(\alpha, \beta)$	$\frac{\beta \alpha^{\beta}}{x^{\beta+1}}$; $x > \alpha$, $\alpha, \beta > 0$	$\frac{\beta\alpha}{\beta-1}$, $\beta > 1$	$\frac{\beta \alpha^2}{(\beta-1)^2(\beta-2)}$, $\beta > 2$	does not exist
$t_{ u}$	$\frac{\Gamma(\frac{\nu+1}{2})}{\Gamma(\frac{\nu}{2})} \frac{1}{\sqrt{\nu\pi}} \frac{1}{(1+\frac{x^2}{2})^{\frac{\nu+1}{2}}}$	$0, \ \nu > 1$	$\frac{\nu}{\nu - 2}, \nu > 2$	$EX^n = \frac{\Gamma(\frac{\nu+1}{2})\Gamma(\nu-\frac{n}{2})}{\sqrt{\pi}\Gamma(\frac{\nu}{2})}\nu^{\frac{n}{2}}, n \text{ even}$
Notes: $t_{\nu}^2 = F_{1,\nu}$.	$(1+\frac{2}{p})^{-2}$			V127
Uniform(a, b)	$\frac{1}{b-a}$, $a \le x \le b$	$\frac{b+a}{2}$	$\frac{(b-a)^2}{12}$	$\frac{e^{bt}-e^{at}}{(b-a)t}$
Notes: If $a = 0$, $b = 0$	1, this is special case of beta ($\alpha = \beta = 1$).		The second second second second	
$Weibull(\gamma, \beta)$	$\frac{\gamma}{\beta}x^{\gamma-1}e^{-\frac{x^{\gamma}}{\beta}}; \ x>0, \ \gamma, \beta>0$	$\beta^{\frac{1}{\gamma}}\Gamma(1+\frac{1}{\gamma})$	$\beta^{\frac{2}{\gamma}} \left[\Gamma(1 + \frac{2}{\gamma}) - \Gamma^2(1 + \frac{1}{\gamma}) \right]$	$EX^n = \beta^{\frac{n}{\gamma}} \Gamma(1 + \frac{n}{\gamma})$
Notes: The mgf only	exists for $\gamma \geq 1$.			

5.5 Geometric random variable

A Geometric (p) random variable X counts the number trials required for the first success in independent trials with success probability p.

Properties:

- 1. Probability mass function: $P(X = n) = p(1 p)^{n-1}$, where n = 1, 2, ...
- 2. $EX = \frac{1}{p}$.
- 3. $Var(X) = \frac{1-p}{p^2}$.
- 4. $P(X > n) = \sum_{k=n+1}^{\infty} p(1-p)^{k-1} = (1-p)^n$.
- 5. $P(X > n + k | X > k) = \frac{(1-p)^{n+k}}{(1-p)^k} = P(X > n).$

5.4 Poisson random variable

A random variable is $Poisson(\lambda)$, with parameter $\lambda > 0$, if it has the probability mass function given below.

Properties:

1.
$$P(X = i) = \frac{\lambda^i}{i!} e^{-\lambda}$$
, for $i = 0, 1, 2, ...$

2.
$$EX = \lambda$$
.

3.
$$Var(X) = \lambda$$
.

Here is how we compute the expectation:

$$EX = \sum_{i=1}^{\infty} i \cdot e^{-\lambda} \frac{\lambda^i}{i!} = e^{-\lambda} \lambda \sum_{i=1}^{\infty} \frac{\lambda^{i-1}}{(i-1)!} = e^{-\lambda} \lambda \, e^{\lambda} = \lambda,$$

and the variance computation is similar (and a good exercise!).

6.2 Exponential random variable

A random variable is Exponential(λ), with parameter $\lambda > 0$, if it has the probability mass function given below. This is a distribution for the waiting time for some random event, for example, for a lightbulb to burn out or for the next earthquake of at least some given magnitude.

Properties:

1. Density:
$$f(x) = \begin{cases} \lambda e^{-\lambda x} & \text{if } x \ge 0, \\ 0 & \text{if } x < 0. \end{cases}$$

2.
$$EX = \frac{1}{\lambda}$$
.

3.
$$Var(X) = \frac{1}{\lambda^2}$$
.

4.
$$P(X \ge x) = e^{-\lambda x}$$
.

5. Memoryless property:
$$P(X \ge x + y | X \ge y) = e^{-\lambda x}$$
.

Conditional distributions

The conditional p. m. f. of X given Y = y is, in the discrete case, given simply by

$$p_X(x|Y = y) = P(X = x|Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)}.$$

This is trickier in the continuous case, as we cannot divide by P(Y = y) = 0.

For a jointly continuous pair of random variables X and Y, we define the conditional density of X given Y = y as follows:

$$f_X(x|Y = y) = \frac{f(x, y)}{f_Y(y)},$$

where f(x, y) is, of course, the joint density of (X, Y).

$$E(\alpha_1 X_1 + \alpha_2 X_2) = \alpha_1 E X_1 + \alpha_2 E X_2,$$

om variables X_1 and X_2 and nonrandom constants α_1 and α_2 . This proper and discussed in more detail later. Then

$$Var(X) = E[(X - \mu)^{2}]$$

$$= E[X^{2} - 2\mu X + \mu^{2}]$$

$$= E(X^{2}) - 2\mu E(X) + \mu^{2}$$

$$= E(X^{2}) - \mu^{2} = E(X^{2}) - (EX)^{2}$$

To summarize, the most useful formula is

$$Cov(X, Y) = E(XY) - EX \cdot EY.$$

Note immediately that, if X and Y are independent, then Cov(X,Y) = 0, but the converse is false.

Let X and Y be indicator random variables, so $X = I_A$ and $Y = I_B$, for two events A and B. Then, EX = P(A), EY = P(B), $E(XY) = E(I_{A \cap B}) = P(A \cap B)$, and so

$$Cov(X, Y) = P(A \cap B) - P(A)P(B) = P(A)[P(B|A) - P(B)].$$

If P(B|A) > P(B), we say the two events are positively correlated and, in this case, the covariance is positive; if the events are negatively correlated all inequalities are reversed. For general random variables X and Y, Cov(X,Y) > 0 intuitively means that, "on the average," increasing X will result in larger Y.

Variance of sums of random variables

Theorem 8.4. Variance-covariance formula:

$$E(\sum_{i=1}^{n} X_i)^2 = \sum_{i=1}^{n} EX_i^2 + \sum_{i \neq j} E(X_i X_j),$$
$$Var(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} Var(X_i) + \sum_{i \neq j} Cov(X_i, X_j).$$

1.3 變異數性質

- 1. 變異量數不會是負的
- 2. 當一個資料集的變異量數為零時, 其內所有項目皆為相同數值
- 3. 一個常數被加至一個數列中的所有變數值,此數列的變異量數不會改變:Var(X + a) = Var(X.)
- 4. 如果所有數值被放大一個常數倍,變異量數會放大此常數的次方倍: $Var(aX) = a^2 Var(X)$
- 5. 兩個隨機變數合的變異量數為: $Var(aX + bY) = a^2 Var(X) + b^2 Var(Y) + 2ab Cov(X, Y)$,
- 6. 對於N個隨機變數 $\{X_1,\ldots,X_N\}$ 的總和:

$$\operatorname{Var}\left(\sum_{i=1}^{N} X_{i}\right) = \sum_{i,j=1}^{N} \operatorname{Cov}(X_{i}, X_{j}) = \sum_{i=1}^{N} \operatorname{Var}(X_{i}) + \sum_{i \neq j} \operatorname{Cov}(X_{i}, X_{j})$$

$$\mu_{a+bX} = a + b\mu_X \quad \sigma_{a+bX}^2 = b\sigma^2$$

$$egin{array}{lll} \sigma_{X+Y}^2 &=& \sigma_X^2 + \sigma_Y^2 \ \sigma_{X-Y}^2 &=& \sigma_X^2 + \sigma_Y^2 \end{array}$$

FOR INDEPENDENT X Y(Cov(X,Y)=E(XY)-E(X)*E(Y)=0)

m 7 5 5

Theorem 8.7. Markov Inequality. If $X \ge 0$ is a random variable and a > 0, then

$$P(X \ge a) \le \frac{1}{a}EX.$$

Example 8.15. If EX = 1 and $X \ge 0$, it must be that $P(X \ge 10) \le 0.1$.

Proof. Here is the crucial observation:

$$I_{\{X \ge a\}} \le \frac{1}{a}X$$
.

Indeed, if X < a, the left-hand side is 0 and the right-hand side is nonnegative; if $X \ge a$, the left-hand side is 1 and the right-hand side is at least 1. Taking the expectation of both sides, we get

 $P(X \geq a) = E(I_{\{X \geq a\}}) \leq \frac{1}{a}EX.$

Theorem 8.8. Chebyshev inequality. If $EX = \mu$ and $Var(X) = \sigma^2$ are both finite and k > 0, then

 $P(|X - \mu| \ge k) \le \frac{\sigma^2}{k^2}.$

Example 8.16. If EX = 1 and Var(X) = 1, $P(X \ge 10) \le P(|X - 1| \ge 9) \le \frac{1}{81}$.

Example 8.17. If EX = 1, Var(X) = 0.1,

$$P(|X - 1| \ge 0.5) \le \frac{0.1}{0.5^2} = \frac{2}{5}.$$

If X, X_1, X_2, \ldots are independent and identically distributed random variables with finite expectation and variance, then $\frac{X_1 + \ldots + X_n}{n}$ converges to EX in the sense that, for any fixed $\epsilon > 0$,

$$P\left(\left|\frac{X_1 + \ldots + X_n}{n} - EX\right| \ge \epsilon\right) \to 0,$$

as $n \to \infty$.

Central Limit Theorem

Theorem 8.9. Central limit theorem.

Assume that $X, X_1, X_2, ...$ are independent, identically distributed random variables, with finite $\mu = EX$ and $\sigma^2 = Var(X)$. Then,

$$P\left(\frac{X_1 + \ldots + X_n - \mu n}{\sigma \sqrt{n}} \le x\right) \to P(Z \le x),$$

as $n \to \infty$, where Z is standard Normal.

6. Let X_1, X_2, \ldots be the numbers on successive rolls and $S_n = X_1 + \ldots + X_n$ the sum. We know that $EX_i = \frac{7}{2}$, and $Var(X_i) = \frac{35}{12}$. So, we have

$$P(S_{24} \ge 100) = P\left(\frac{S_{24} - 24 \cdot \frac{7}{2}}{\sqrt{24 \cdot \frac{35}{12}}} \ge \frac{100 - 24 \cdot \frac{7}{2}}{\sqrt{24 \cdot \frac{35}{12}}}\right) \approx P(Z \ge 1.85) = 1 - \Phi(1.85) \approx 0.032.$$

Theorem 9.1. Connection between variance and convergence in probability.

Assume that Y_n are random variables and that a is a constant such

$$EY_n \rightarrow a$$
,

$$Var(Y_n) \to 0,$$

 $Y_n \to a,$

$$Y_n \rightarrow a$$
.

10 Moment generating functions

If X is a random variable, then its moment generating function is

$$\phi(t) = \phi_X(t) = E(e^{tX}) = \begin{cases} \sum_x e^{tx} P(X = x) & \text{in the discrete case,} \\ \int_{-\infty}^{\infty} e^{tx} f_X(x) \, dx & \text{in the continuous case.} \end{cases}$$

$$\begin{array}{lcl} E(e^{tX}) & = & E[1+tX+\frac{1}{2}t^2X^2+\frac{1}{3!}t^3X^3+\ldots] \\ \\ & = & 1+tE(X)+\frac{1}{2}t^2E(X^2)+\frac{1}{3!}t^3E(X^3)+\ldots \end{array}$$

Moment Generating Functions: $M_X(t) = E\left(e^{tX}\right)$ and $E\left[X^{(n)}\right] = M_X^{(n)}(0)$ where $M_X^{(n)} = \frac{\partial^{(n)}}{\partial t}M_X(t)$

Useful Properties of MGF: If X,Y independent $M_{aX+b}(t) = \exp(bt)M_X(at)$ $M_{X+Y}(t) = M_X(t)M_Y(t)$

MGF of a Sample Average (of a random sample):
$$M_{\overline{X}}(t) = M_{\frac{1}{N}\left(\sum X_i\right)}(t) = \prod M_X\left(\frac{t}{N}\right)$$

USE OF INDICATOR!!!!

USE OF RECURSION!!!!

11 Computing probabilities and expectations by conditioning

Conditioning is the method we encountered before; to remind ourselves, it involves two-stage (or multistage) processes and conditions are appropriate events at the first stage. Recall also the basic definitions:

- Conditional probability: if A and B are two events, $P(A|B) = \frac{P(A \cap B)}{P(B)}$;
- Conditional probability mass function: if (X, Y) has probability mass function p, p_X(x|Y = y) = \frac{p(x,y)}{p_Y(y)} = P(X = x|Y = y);
- Conditional density: if (X,Y) has joint density $f,\, f_X(x|Y=y)=\frac{f(x,y)}{f_Y(y)}.$
- Conditional expectation: E(X|Y = y) is either ∑_x xp_X(x|Y = y) or ∫ xf_X(x|Y = y) dx depending on whether the pair (X, Y) is discrete or continuous.

Bayes' formula also applies to expectation. Assume that the distribution of a random variable X conditioned on Y = y is given, and, consequently, its expectation E(X|Y = y) is also known. Such is the case of a two-stage process, whereby the value of Y is chosen at the first stage, which then determines the distribution of X at the second stage. This situation is very common in applications. Then,

$$E(X) = \begin{cases} \sum_{y} E(X|Y=y)P(Y=y) & \text{if } Y \text{ is discrete,} \\ \int_{-\infty}^{\infty} E(X|Y=y)f_{Y}(y) \, dy & \text{if } Y \text{ is continuous.} \end{cases}$$

Note that this applies to the probability of an event (which is nothing other than the expectation of its indicator) as well — if we know $P(A|Y = y) = E(I_A|Y = y)$, then we may compute $P(A) = EI_A$ by Bayes' formula above.

Example 8.6. Coupon collector problem, revisited. Sample from n cards, with replacement, indefinitely. Let N be the number of cards you need to sample for a complete collection, i.e., to get all different cards represented. What is EN?

Let N_i be the number of additional cards you need to get the *i*th new card, after you have received the (i-1)st new card.

Then, N_1 , the number of cards needed to receive the first new card, is trivial, as the first card you buy is new: $N_1 = 1$. Afterward, N_2 , the number of additional cards needed to get the second new card is Geometric with success probability $\frac{n-1}{n}$. After that, N_3 , the number of additional cards needed to get the third new card is Geometric with success probability $\frac{n-2}{n}$. In general, N_i is geometric with success probability $\frac{n-i+1}{n}$, $i=1,\ldots,n$, and

$$N = N_1 + \ldots + N_n,$$

so that

$$EN = n\left(1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n}\right).$$

Now, we have

$$\sum_{i=2}^{n} \frac{1}{i} \le \int_{1}^{n} \frac{1}{x} dx \le \sum_{i=1}^{n-1} \frac{1}{i},$$

by comparing the integral with the Riemman sum at the left and right endpoints in the division of [1, n] into [1, 2], [2, 3], ..., [n - 1, n], and so

$$\log n \le \sum_{i=1}^{n} \frac{1}{i} \le \log n + 1,$$

which establishes the limit

$$\lim_{n\to\infty}\frac{EN}{n\log n}=1.$$

USE OF CONDITIONING

Example 11.2. Let T_1, T_2 be two independent Exponential(λ) random variables and let $S_1 = T_1, S_2 = T_1 + T_2$. Compute $f_{S_1}(s_1|S_2 = s_2)$.

First,

$$P(S_1 \le s_1, S_2 \le s_2) = P(T_1 \le s_1, T_1 + T_2 \le s_2)$$

= $\int_0^{s_1} dt_1 \int_0^{s_2-t_1} f_{T_1,T_2}(t_1, t_2) dt_2.$

If $f = f_{S_1,S_2}$, then

$$\begin{split} f(s_1, s_2) &= \frac{\partial^2}{\partial s_1 \partial s_2} \, P(S_1 \le s_1, S_2 \le s_2) \\ &= \frac{\partial}{\partial s_2} \int_0^{s_2 - s_1} f_{T_1, T_2}(s_1, t_2) \, dt_2 \\ &= f_{T_1, T_2}(s_1, s_2 - s_1) \\ &= f_{T_1}(s_1) f_{T_2}(s_2 - s_1) \\ &= \lambda e^{-\lambda s_1} \lambda \, e^{-\lambda (s_2 - s_1)} \\ &= \lambda^2 e^{-\lambda s_2}. \end{split}$$

Therefore,

$$f(s_1, s_2) = \begin{cases} \lambda^2 e^{-\lambda s_2} & \text{if } 0 \le s_1 \le s_2, \\ 0 & \text{otherwise} \end{cases}$$

and, consequently, for $s_2 \ge 0$,

$$f_{S_2}(s_2) = \int_0^{s_2} f(s_1, s_2) ds_1 = \lambda^2 s_2 e^{-\lambda s_2}.$$

Therefore,

$$f_{S_1}(s_1|S_2 = s_2) = \frac{\lambda^2 e^{-\lambda s_2}}{\lambda^2 s_2 e^{-\lambda s_2}} = \frac{1}{s_2},$$

for $0 \le s_1 \le s_2$, and 0 otherwise. Therefore, conditioned on $T_1 + T_2 = s_2$, T_1 is uniform on $[0, s_2]$.

Imagine the following: a new lightbulb is put in and, after time T_1 , it burns out. It is then replaced by a new lightbulb, identical to the first one, which also burns out after an additional time T_2 . If we know the time when the second bulb burns out, the first bulb's failure time is uniform on the interval of its possible values.

Example 11.7. Bold Play. Assume that the only game available to you is a game in which you can place even bets at any amount, and that you win each of these bets with probability p. Your initial capital is $x \in [0, N]$, a real number, and again you want to increase it to N before going broke. Your bold strategy (which can be proved to be the best) is to bet everything unless you are close enough to N that a smaller amount will do:

- 1. Bet x if $x \leq \frac{N}{2}$.
- 2. Bet N-x if $x \ge \frac{N}{2}$.

We can, without loss of generality, fix our monetary unit so that N = 1. We now define

$$P(x) = P(\text{reach 1 before reaching 0}).$$

By conditioning on the outcome of your first bet,

$$P(x) = \begin{cases} p \cdot P(2x) & \text{if } x \in [0, \frac{1}{2}], \\ p \cdot 1 + (1-p) \cdot P(2x-1) & \text{if } x \in [\frac{1}{2}, 1]. \end{cases}$$

For each positive integer n, this is a linear system for $P(\frac{k}{2^n})$, $k = 0, ..., 2^n$, which can be solved. For example:

- When n = 1, $P(\frac{1}{2}) = p$.
- When n = 2, $P(\frac{1}{4}) = p^2$, $P(\frac{3}{4}) = p + (1-p)p$.
- When n = 3, $P\left(\frac{1}{8}\right) = p^3$, $P\left(\frac{3}{8}\right) = p \cdot P\left(\frac{3}{4}\right) = p^2 + p^2(1-p)$, $P\left(\frac{5}{8}\right) = p + p^2(1-p)$, $P\left(\frac{5}{8}\right) = p + p(1-p) + p(1-p)^2$.

It is easy to verify that P(x) = x, for all x, if $p = \frac{1}{2}$. Moreover, it can be computed that $P(0.9) \approx 0.8794$ for $p = \frac{9}{19}$, which is not too different from a fair game. The figure below displays the graphs of functions P(x) for p = 0.1, 0.25, $\frac{9}{19}$, and $\frac{1}{2}$.

Assume that $X, X_1, X_2, ...$ is an i. i. d. sequence of random variables with finite $EX = \mu$ and $Var(X) = \sigma^2$. Let N be a nonnegative integer random variable, independent of all X_i , and let

$$S = \sum_{i=1}^{N} X_i.$$

Then

$$ES = \mu EN$$
,
 $Var(S) = \sigma^2 EN + \mu^2 Var(N)$.

MARKOV 12 IS TRIVIAL
COUPON x1+x2+...xk<s Ganble Bold Bet etc0

Gambler's ruin
$$px_{j+1} - (p+q)x_j + qx_{j-1} = 0$$
, $x_0 = 0, x_N = 1$

With $x_j = \alpha^j$ we find the quadratic equation

$$p\alpha^2 - (p+q)\alpha + q = 0$$

with solutions

$$\alpha \, = \, \frac{-p \pm \sqrt{(p+q)^2 - 4pq}}{2p} \, = \, \frac{-p \pm \sqrt{p^2 + q^2 - 2pq}}{2p} \, = \, \frac{-p \pm \sqrt{(p-q)^2}}{2p} \, = \, \left\{ \begin{array}{l} 1 \\ q/p \end{array} \right.$$

If $p \neq$ we have two solutions and and so the general solution is given by

$$x_n = C_1 \mathbf{1}^n + C_2 \left(\frac{q}{p}\right)^n$$

...