

Formativa 1 (Certamen 1 ICI)

Marcelo Paz Investigación de Operaciones

24 de mayo de 2024

Versión: 1.1.0

Problema 1

La empresa MADERAS C. A. es un fabricante de muebles. Hace tres estilos diferentes de mesas, A, B, C. Cada modelo de mesa requiere de una cierta cantidad de tiempo para el corte de las piezas, su montaje y pintura. MADERAS C.A., puede vender todas las unidades que fabrica. Es más, el modelo B se puede vender sin pintar. Utilizando los datos indicados, obtener el modelo lineal que permita determinar la máxima utilidad mensual que puede obtener la Empresa.

	Requerimie	nto de I	Horas Hombre	por mesa					
Modelo	Utilidad por mesa	Utilidad por mesa Corte Ensamblado Pint							
A	\$17.500	1	2	4					
В	\$20.000	2	4	4					
B sin pintar	\$10.000	2	4	0					
C	\$25.000	3	7	5					
	Disponibilidad mensual de HH	200	298	148					

Variables de Decisión:

- x_1 : Cantidad de mesas A a fabricar.
- x_2 : Cantidad de mesas B a fabricar.
- x_3 : Cantidad de mesas B sin pintar a fabricar.
- x_4 : Cantidad de mesas C a fabricar.

Función Objetivo:

$$\begin{array}{ll} \text{Max} & Z = 17500x_1 + 20000x_2 + 10000x_3 + 25000x_4\\ \text{s.a} & x_1 + 2x_2 + 2x_3 + 3x_4 \leq 200\\ & 2x_1 + 4x_2 + 4x_3 + 7x_4 \leq 298\\ & 4x_1 + 4x_2 + 5x_4 \leq 148\\ & x_1, x_2, x_3, x_4 \geq 0 \end{array}$$

Por método Simplex

• P.3: Agregamos variables de holgura.

$$x_1 + 2x_2 + 2x_3 + 3x_4 + s_1 \le 200$$

$$2x_1 + 4x_2 + 4x_3 + 7x_4 + s_2 \le 298$$

$$4x_1 + 4x_2 + 5x_4 + s_3 \le 148$$

$$x_1, x_2, x_3, x_4, s_1, s_2, s_3 \ge 0$$

• P.6: Iguala las restricciones, y reescribimos la función objetivo.

$$x_1 + 2x_2 + 2x_3 + 3x_4 + s_1 = 200$$

$$2x_1 + 4x_2 + 4x_3 + 7x_4 + s_2 = 298$$

$$4x_1 + 4x_2 + 5x_4 + s_3 = 148$$

$$x_1, x_2, x_3, x_4, s_1, s_2, s_3 \ge 0$$

٠.

$$\begin{array}{ll} \text{Max} & Z = 17500x_1 + 20000x_2 + 10000x_3 + 25000x_4\\ \text{s.a} & x_1 + 2x_2 + 2x_3 + 3x_4 + s_1 = 200\\ & 2x_1 + 4x_2 + 4x_3 + 7x_4 + s_2 = 298\\ & 4x_1 + 4x_2 + 5x_4 + s_3 = 148\\ & x_1, x_2, x_3, x_4, s_1, s_2, s_3 \geq 0 \end{array}$$

• **P.9:** Rellenamos la tabla simplex, con las ecuaciones.

C_j		17500	20000	10000	25000	0	0	0	
	V.B	x_1	x_2	x_3	x_4	s_1	s_2	s_3	RHS
0	s_1	1	2	2	3	1	0	0	200
0	s_2	2	4	4	7	0	1	0	298
0	s_3	4	4	0	5	0	0	1	148
	Z_{j}								
	$C_j - Z_j$								

■ **P.10:** Calculamos Z_j .

$\mid C_j \mid$		17500	20000	10000	25000	0	0	0	
	V.B	x_1	x_2	x_3	x_4	s_1	s_2	s_3	RHS
0	s_1	1	2	2	3	1	0	0	200
0	s_2	2	4	4	7	0	1	0	298
0	s_3	4	4	0	5	0	0	1	148
	Z_{j}	0	0	0	0	0	0	0	0
	$C_j - Z_j$								

■ **P.11:** Calculamos $C_j - Z_j$.

C_j		17500	20000	10000	25000	0	0	0	
	V.B	x_1	x_2	x_3	x_4	s_1	s_2	s_3	RHS
0	s_1	1	2	2	3	1	0	0	200
0	s_2	2	4	4	7	0	1	0	298
0	s_3	4	4	0	5	0	0	1	148
	Z_{j}	0	0	0	0	0	0	0	0
	$C_j - Z_j$	17500	20000	10000	25000	0	0	0	

• P.12: Seleccionamos la variable de entrada.

$$V_{in}$$
 = columna Max $\{C_j - Z_j\} = X_{j^*} \Rightarrow V_{in} = x_4 : 25000$

• P.13: Calculamos el cociente mínimo y seleccionamos la variable de salida, para elegir el pivote.

$$s_1: \frac{200}{3} = 66,67$$
 $s_2: \frac{298}{7} = 42,57$ $s_3: \frac{148}{5} = 29,6$

$$V_{out} = \text{Min}\left\{\frac{RHS}{coef_{ij^*}}\right\} = i^* \Rightarrow V_{out} = s_3: 29,6$$

C_j		17500	20000	10000	25000	0	0	0	
	V.B	x_1	x_2	x_3	x_4	s_1	s_2	s_3	RHS
0	s_1	1	2	2	3	1	0	0	200
0	s_2	2	4	4	7	0	1	0	298
0	s_3	4	4	0	5	0	0	1	148
	Z_{j}	0	0	0	0	0	0	0	0
	$C_j - Z_j$	17500	20000	10000	25000	0	0	0	

Pivote =
$$a_{i^*j^*} = a_{34} = 5$$

• P.14: Calculamos la nueva tabla simplex.

$$x_4:$$
 N.E.P $=$ $\frac{\mathbf{E.P.A}}{P} \Rightarrow \frac{4 \ 4 \ 0 \ 5 \ 0 \ 0 \ 1 \ 148}{5} = \frac{4}{5} \frac{4}{5} \ 0 \ 1 \ 0 \ 0 \frac{1}{5} \frac{148}{5}$

$$s_1: 1 2 2 3 1 0 0 200 \\ -(3) 4/5 4/5 0 1 0 0 1/5 148/5$$

$$-7/5$$
 $-2/5$ 2 0 1 0 $-3/5$ $556/5$

$$-18/5$$
 $-8/5$ 4 0 0 1 $-7/5$ 454/5

• P.10.R y P.11.R:

C_j		17500	20000	10000	25000	0	0	0	
	V.B	x_1	x_2	x_3	x_4	s_1	s_2	s_3	RHS
0	s_1	-7/5	-2/5	2	0	1	0	-3/5	556/5
0	s_2	-18/5	-8/5	4	0	0	1	-7/5	454/5
25000	x_4	4/5	4/5	0	1	0	0	1/5	148/5
	Z_{j}	20000	20000	0	25000	0	0	5000	740000
	$C_j - Z_j$	-2500	0	10000	0	0	0	-5000	

• P.12.R:

$$V_{in}$$
 = columna Max $\{C_j - Z_j\} = X_{j^*} \Rightarrow V_{in} = x_3 : 10000$

• P.13.R:

$$s_1: \frac{556/5}{2} = 55,6$$
 $s_2: \frac{454/5}{4} = 22,7$ $x_4: \frac{148/5}{0} = -$

$$V_{out} = \text{Min}\left\{\frac{RHS}{coef_{ij^*}}\right\} = i^* \Rightarrow V_{out} = s_2: 22,7$$

C_{j}		17500	20000	10000	25000	0	0	0	
	V.B	x_1	x_2	x_3	x_4	s_1	s_2	s_3	RHS
0	s_1	-7/5	-2/5	2	0	1	0	-3/5	556/5
0	s_2	-18/5	-8/5	4	0	0	1	-7/5	454/5
25000	x_4	4/5	4/5	0	1	0	0	1/5	148/5
	Z_{j}	20000	20000	0	25000	0	0	5000	740000
	$C_j - Z_j$	-2500	0	10000	0	0	0	-5000	

Pivote =
$$a_{i^*j^*} = a_{23} = 4$$

• P.14.R:

$$x_3:$$
 $\mathbf{N.E.P} = \frac{\mathbf{E.P.A}}{P} \Rightarrow \frac{-18/5 - 8/5 \ 4 \ 0 \ 0 \ 1 \ -7/5 \ 454/5}{4} = \frac{-18}{20} \frac{-8}{20} \ 1 \ 0 \ 0 \ \frac{1}{4} \frac{-7}{20} \frac{454}{20}$

■ P.10.R.R y P.11.R.R:

C_j		17500	20000	10000	25000	0	0	0	
	V.B	x_1	x_2	x_3	x_4	s_1	s_2	s_3	RHS
0	s_1	2/5	2/5	0	0	1	-1/2	1/10	329/5
10000	x_3	-9/10	-2/5	1	0	0	1/4	-7/20	454/20
25000	x_4	4/5	4/5	0	1	0	0	1/5	148/5
	Z_{j}	11000	16000	10000	25000	0	2500	1500	967000
	$C_j - Z_j$	6500	4000	0	0	0	-2500	-1500	

• P.12.R.R:

$$V_{in} = \text{columna Max}\{C_j - Z_j\} = X_{j^*} \Rightarrow V_{in} = x_1 : 6500$$

• P.13.R.R:

$$s_1: rac{329/5}{2/5} = 169,5 \qquad x_3: rac{454/20}{-9/10} = -25,2 \qquad x_4: rac{148/5}{4/5} = 37$$

$$V_{out} = \text{Min}\left\{\frac{RHS}{coef_{ij^*}}\right\} = i^* \Rightarrow V_{out} = x_4:37$$

C_j		17500	20000	10000	25000	0	0	0	
	V.B	x_1	x_2	x_3	x_4	s_1	s_2	s_3	RHS
0	s_1	2/5	2/5	0	0	1	-1/2	1/10	329/5
10000	x_3	-9/10	-2/5	1	0	0	1/4	-7/20	454/20
25000	x_4	4/5	4/5	0	1	0	0	1/5	148/5
	Z_{j}	11000	16000	10000	25000	0	2500	1500	967000
	$C_j - Z_j$	6500	4000	0	0	0	-2500	-1500	

Pivote =
$$a_{i^*j^*} = a_{13} = 4/5$$

• P.14.R.R:

$$x_1: \quad \mathbf{N.E.P} = \frac{\mathbf{E.P.A}}{P} \Rightarrow \frac{4/5 \quad 4/5 \quad 0 \quad 1 \quad 0 \quad 0 \quad 1/5 \quad 148/5}{4/5}$$

$$= 1 \quad 1 \quad 0 \quad \frac{5}{4} \quad 0 \quad 0 \quad \frac{1}{4} \quad \frac{148}{4}$$

$$0 1/2 1 9/8 0 1/4 -1/8 56$$

• P.10.R.R.R y P.11.R.R.R:

C_j		17500	20000	10000	25000	0	0	0	
	V.B	x_1	x_2	x_3	x_4	s_1	s_2	s_3	RHS
0	s_1	0	0	0	-1/2	1	-1/2	0	51
10000	x_3	0	1/2	1	9/8	0	1/4	-1/8	56
17500	x_1	1	1	0	5/4	0	0	1/4	148/4
	Z_{j}	17500	22500	10000	33125	0	2500	3125	1207500
	$C_j - Z_j$	0	-2500	0	-8125	0	-2500	-3125	

• P.11.R.R.R:

• Si ninguno de los valores en la fila $C_j - Z_j$ es positivo, FIN.

$$C_j - Z_j \le 0 \forall j$$

Como se cumple la condición hemos llegado a la solución óptima.

Solución:

$$x_1 = 148/4 = 37$$
 Recurso abundante $x_2 = 0$ Recurso escaso $x_3 = 56$ Recurso abundante $x_4 = 0$ Recurso escaso $s_1 = 51$ Recurso abundante $s_2 = 0$ Recurso escaso $s_3 = 0$ Recurso escaso escaso $s_3 = 0$ Recurso escaso escaso

$$\begin{array}{lll} \text{Max} & Z = 17500x_1 + 20000x_2 + 10000x_3 + 25000x_4 \\ \text{s.a} & x_1 + 2x_2 + 2x_3 + 3x_4 + \leq 200 & \textbf{Restricción NO Activa} \\ & 2x_1 + 4x_2 + 4x_3 + 7x_4 + \leq 298 & \textbf{Restricción Activa} \\ & 4x_1 + 4x_2 + 5x_4 + \leq 148 & \textbf{Restricción Activa} \\ & x_1, x_2, x_3, x_4 \geq 0 & \textbf{Restricción Activa} \end{array}$$

OBS: No estoy seguro si en la solución es importante poner las holguras, pues si las pongo todas las restricciones son activas.

Problema 2

Encontrar la solución óptima para el siguiente modelo lineal. Utilice el Método Gráfico.

$$\begin{array}{lll} \text{Max} & Z=5x_1+2x_2\\ \text{s.a} & 3x_1-2x_2\geq -3\\ & x_1+x_2\leq 9\\ & 2x_1-x_2\leq 6\\ & x_1-x_2\leq 2\\ & 3x_1+x_2\geq 6\\ & x_1,x_2\geq 0 \end{array} \qquad \begin{array}{ll} \textbf{Restricci\'{o}n NO Activa}\\ \end{array}$$

Vertice (x_1, x_2)	Z	
A(2, 0)	10	
B(4, 2)	24	
C(5, 4)	33	*
D(3, 6)	27	
E(1, 3)	11	

Solución Óptima:

$$x_1 = 5$$
 Recurso abundante $x_2 = 4$ Recurso abundante $Z = 33$

Problema 3

Considere el siguiente modelo lineal.

Max
$$Z = 4x_1 + 3x_2$$

s.a $12x_1 + 14x_2 \le 84$ (Recurso 1)
 $3x_1 + 2x_2 \le 18$ (Recurso 2)
 $x_2 \le 4$ (Recurso 3)
 $x_1, x_2 \ge 0$

A continuación, se presenta una iteración intermedia del método simplex para el problema anterior.

		4	3	0	0	0	0
C_j	V.B	x_1	x_2	s_1	s_2	s_3	RHS
0	s_1	0	6	1	-4	0	12
4	x_1	1	2/3	0	1/3	0	6
0	s_3	0	1	0	0	1	4
	Z_{j}	4	8/3	0	4/3	0	<u>24</u>
	$C_j - Z_j$	0	1/3	0	-4/3	0	

a) ¿Es esta la iteración óptima? Explique.

No es la iteración óptima, ya que el la fila $C_j - Z_j$ hay valores positivo, lo que indica que no se ha llegado a la solución óptima.

b) Si no es óptima obtenga las siguientes iteraciones **a partir de esta** hasta alcanzar la solución óptima.

$$V_{in}$$
 = columna Max $\{C_j - Z_j\} = X_{j^*} \Rightarrow V_{in} = x_2 : \frac{1}{3}$

$$s_1: \frac{12}{6} = 2$$
 $x_1: \frac{6}{2/3} = 9$ $s_3: \frac{4}{1} = 4$

$$V_{out} = \text{Min}\left\{\frac{RHS}{coef_{ij^*}}\right\} = i^* \Rightarrow V_{out} = s_1: 2$$

		4	3	0	0	0	0
C_j	V.B	x_1	x_2	s_1	s_2	s_3	RHS
0	s_1	0	6	1	-4	0	12
4	x_1	1	2/3	0	1/3	0	6
0	s_3	0	1	0	0	1	4
	Z_{j}	4	8/3	0	4/3	0	<u>24</u>
	$C_j - Z_j$	0	1/3	0	-4/3	0	

Pivote =
$$a_{i^*j^*} = a_{12} = 6$$

$$x_2:$$
 N.E.P = $\frac{\mathbf{E.P.A}}{P}$ $\Rightarrow \frac{0 \ 6 \ 1 \ -4 \ 0 \ 12}{6}$ = $0 \ 1 \ \frac{1}{6} \ -\frac{2}{3} \ 0 \ 2$

$$1 \quad 0 \quad -1/9 \quad 7/9 \quad 0 \quad 14/3$$

$$0 \ 0 \ -1/6 \ 2/3 \ 1 \ 2$$

		4	3	0	0	0	0
C_j	V.B	x_1	x_2	s_1	s_2	s_3	RHS
3	x_2	0	1	1/6	-2/3	0	2
4	x_1	1	0	-1/9	7/9	0	14/3
0	s_3	0	0	-1/6	2/3	1	2
	Z_{j}	4	3	1/18	10/9	0	24,67
	$C_j - Z_j$	0	0	-1/18	-10/9	0	

c) En la tabla óptima describa la solución, clasifique los recursos y indique los precios sombra de cada recurso.

Solución:

$$x_1=14/3$$
 Recurso abundante $x_2=2$ Recurso abundante $s_1=0$ Recurso escaso $s_2=0$ Recurso escaso Recurso abundante $Z=24.67$ Max $Z=4x_1+3x_2$ s.a $12x_1+14x_2\leq 84$ Restricción Activa $3x_1+2x_2\leq 18$ Restricción Activa $x_2\leq 4$ Restricción NO Activa $x_1,x_2\geq 0$

INVESTIGAR: que es un precio sombra.