SciencesPo Computational Economics Spring 2017

Florian Oswald

April 6, 2017

1 Numerical Dynamic Programming

Florian Oswald, Sciences Po, 2017

1.1 Intro

- Numerical Dynamic Programming (DP) is widely used to solve dynamic models.
- You are familiar with the technique from your core macro course.
- We will illustrate some ways to solve dynamic programs.
 - 1. Models with one discrete or continuous choice variable
 - 2. Models with several choice variables
 - 3. Models with a discrete-continuous choice combination
- We will go through:
 - 1. Value Function Iteration (VFI)
 - 2. Policy function iteration (PFI)
 - 3. Projection Methods
 - 4. Endogenous Grid Method (EGM)
 - 5. Discrete Choice Endogenous Grid Method (DCEGM)

1.2 Dynamic Programming Theory

• Payoffs over time are

$$U = \sum_{t=1}^{\infty} \beta^t u\left(s_t, c_t\right)$$

where β < 1 is a discount factor, s_t is the state, c_t is the control.

- The state (vector) evolves as $s_{t+1} = h(s_t, c_t)$.
- All past decisions are contained in *s*_t.

1.2.1 Assumptions

- Let $c_t \in C(s_t)$, $s_t \in S$ and assume u is bounded in $(c,s) \in C \times S$.
- Stationarity: neither payoff *u* nor transition *h* depend on time.
- Write the problem as

$$v(s) = \max_{s' \in \Gamma(s)} u(s, s') + \beta v(s')$$

• $\Gamma(s)$ is the constraint set (or feasible set) for s' when the current state is s

1.2.2 Existence

Theorem. Assume that u(s,s') is real-valued, continuous, and bounded, that $\beta \in (0,1)$, and that the constraint set $\Gamma(s)$ is nonempty, compact, and continuous. Then there exists a unique function v(s) that solves the above functional equation.

Proof. [@stokeylucas] [4] theoreom 4.6.

2 Solution Methods

2.1 Value Function Iteration (VFI)

- Find the fix point of the functional equation by iterating on it until the distance between consecutive iterations becomes small.
- Motivated by the Bellman Operator, and it's characterization in the Continuous Mapping Theorem.

2.2 Discrete DP VFI

- Represents and solves the functional problem in \mathbb{R} on a finite set of grid points only.
- Widely used method.
 - Simple (+)
 - Robust (+)
 - Slow (-)
 - Imprecise (-)
- Precision depends on number of discretization points used.
- High-dimensional problems are difficult to tackle with this method because of the curse of dimensionality.

2.2.1 Deterministic growth model with Discrete VFI

• We have this theoretical model:

$$V(k) = \max_{0 < k' < f(k)} u(f(k) - k') + \beta V(k')$$
 $f(k) = k^{\alpha}$
 k_0 given

• and we employ the followign numerical approximation:

$$V(k_i) = \max_{i'=1,2,...,n} u(f(k_i) - k_{i'}) + \beta V(i')$$

• The iteration is then on successive iterates of *V*: The LHS gets updated in each iteration!

$$V^{r+1}(k_i) = \max_{i'=1,2,\dots,n} u(f(k_i) - k_{i'}) + \beta V^r(i')$$

$$V^{r+2}(k_i) = \max_{i'=1,2,\dots,n} u(f(k_i) - k_{i'}) + \beta V^{r+1}(i')$$

- And it stops at iteration r if $d(V^r, V^{r-1}) < \text{tol}$
- You choose a measure of *distance*, $d(\cdot, \cdot)$, and a level of tolerance.
- V^r is usually an *array*. So d will be some kind of *norm*.
- maximal absolute distance
- mean squared distance

2.2.2 Exercise 1: Implement discrete VFI

2.3 Checklist

- 1. Set parameter values
- 2. define a grid for state variable $k \in [0,2]$
- 3. initialize value function V
- 4. start iteration, repeatedly computing a new version of *V*.
- 5. stop if $d(V^r, V^{r-1}) < \text{tol}$.
- 6. plot value and policy function
- 7. report the maximum error of both wrt to analytic solution

```
In [1]: alpha = 0.65
   beta = 0.95
   grid_max = 2 # upper bound of capital grid
   n = 150 # number of grid points
   N_iter = 3000 # number of iterations
   kgrid = 1e-6:(grid_max-1e-6)/(n-1):grid_max # equispaced grid
   f(x) = x^alpha # defines the production function f(k)
   tol = 1e-9
```

Out[1]: 1.0e-9

2.4 Analytic Solution

- If we choose $u(x) = \ln(x)$, the problem has a closed form solution.
- We can use this to check accuracy of our solution.

```
# optimal analytical values
        v_star(k) = c1 .+ c2 .* log(k)
        k_star(k) = ab * k.^alpha
        c_star(k) = (1-ab) * k.^alpha
        ufun(x) = log(x)
Out[2]: ufun (generic function with 1 method)
In [3]: # Bellman Operator
        # inputs
        # `grid`: grid of values of state variable
        # `v0`: current guess of value function
        # output
        # `v1`: next quess of value function
        # `pol`: corresponding policy function
        #takes a grid of state variables and computes the next iterate of the value function.
        function bellman_operator(grid, v0)
            v1 = zeros(n)
                               # next quess
            pol = zeros(Int,n)
                                   # policy function
            w = zeros(n)
                            # temporary vector
            # loop over current states
            # current capital
            for (i,k) in enumerate(grid)
                # loop over all possible kprime choices
                for (iprime,kprime) in enumerate(grid)
                    if f(k) - kprime < 0
                                           #check for negative consumption
                        w[iprime] = -Inf
                    else
                        w[iprime] = ufun(f(k) - kprime) + beta * v0[iprime]
                    end
                end
                # find maximal choice
                v1[i], pol[i] = findmax(w)
                                              # stores Value und policy (index of optimal choic
            return (v1,pol) # return both value and policy function
        end
        # VFI iterator
        ## input
        # `n`: number of grid points
```

```
# output
# `v_next`: tuple with value and policy functions after `n` iterations.
function VFI()
   v_init = zeros(n)
                          # initial guess
    for iter in 1:N_iter
        v_next = bellman_operator(kgrid,v_init) # returns a tuple: (v1,pol)
        # check convergence
        if maxabs(v_init.-v_next[1]) < tol</pre>
            verrors = maxabs(v_next[1].-v_star(kgrid))
            perrors = maxabs(kgrid[v_next[2]].-k_star(kgrid))
            println("Found solution after $iter iterations")
            println("maximal value function error = $verrors")
            println("maximal policy function error = $perrors")
            return v_next
        elseif iter==N_iter
            warn("No solution found after $iter iterations")
            return v_next
        end
        v_init = v_next[1] # update guess
    end
end
# plot
function plotVFI()
   v = VFI()
    figure("discrete VFI",figsize=(10,5))
    subplot(131)
    plot(kgrid,v[1],color="blue")
    plot(kgrid, v_star(kgrid), color="black")
    xlim(-0.1,grid_max)
    ylim(-50, -30)
    xlabel("k")
    ylabel("value")
    title("value function")
    subplot(132)
    plot(kgrid,kgrid[v[2]])
    plot(kgrid,k_star(kgrid),color="black")
    xlabel("k")
    title("policy function")
    subplot(133)
    plot(kgrid,kgrid[v[2]].-k_star(kgrid))
    title("policy function error")
```

end

using PyPlot
plotVFI()

Found solution after 448 iterations

maximal value function error = 121.49819145170268 maximal policy function error = 0.010775693497948935

2.4.1 Exercise 2: Discretizing only the state space (not control space)

- Same exercise, but now use a continuous solver for choice of k'.
- in other words, employ the following numerical approximation:

$$V(k_i) = \max_{k' \in [0,\bar{k}]} \ln(f(k_i) - k') + \beta V(k')$$

- To do this, you need to be able to evaluate V(k') where k' is potentially off the kgrid.
- use Interpolations. jl to linearly interpolate V.
 - the relevant object is setup with function interpolate((grid,),v,Gridded(Linear()))
- use Optim::optimize() to perform the maximization.
 - you have to define an ojbective function for each k_i
 - do something like optimize(objective, lb,ub)

In [4]: using Interpolations
 using Optim

```
function bellman_operator2(grid,v0)
    v1 = zeros(n)
                       # next guess
    pol = zeros(n)
                       # consumption policy function
    #construct interpolator (kgrid, v0)
    # loop over current states
    # of current capital
    for (i,k) in enumerate(grid)
    end
    return (v1,pol) # return both value and policy function
end
function VFI2()
   v_init = zeros(n)
                         # initial guess
    for iter in 1:N_iter
       v_next = bellman_operator2(kgrid,v_init) # returns a tuple: (v1,pol)
        # check convergence
        v_init = v_next[1] # update guess
    end
    return nothing
end
function plotVFI2()
    v = VFI2()
    # plot 3 panels: v, policy, policy error
end
plotVFI2()
```

Found solution after 439 iterations

maximal value function error = 121.10003370383764 maximal policy function error = 0.004564649814724597

Out[4]: PyObject <matplotlib.text.Text object at 0x32a6219d0>

2.5 Policy Function Iteration

- This is similar to VFI but we now guess successive *policy* functions
- The idea is to choose a new policy p^* in each iteration so as to satisfy an optimality condition. In our example, that would be the Euler Equation.
- We know that the solution to the above problem is a function $c^*(k)$ such that

$$c^*(k) = \arg\max_z u(z) + \beta V(f(k) - z) \ \forall k \in [0, \infty]$$

• We **don't** directly solve the maximiation problem outlined above, but it's first order condition:

$$u'(c^*(k_t)) = \beta u'(c^*(k_{t+1}))f'(k_{t+1})$$

= $\beta u'[c^*(f(k_t) - c^*(k_t))]f'(k_{t+1})$

• In practice, we have to find the zeros of

$$g(k_t) = u'(c^*(k_t)) - \beta u'[c^*(f(k_t) - c^*(k_t))]f'(k_{t+1})$$

```
In [ ]: # Your turn!
        using Roots
        function policy_iter(grid,c0,u_prime,f_prime)
            #ăcreate interpolator from current consumption policy c0
            # loop over current states
            for (i,k) in enumerate(grid)
                #ăcreate objective function: euler equation
                #ăstore minimizer as next consumption function guess at i
            return c1 # c1 is the next consumption function
        end
        # now let's run this
        # define uprime and fprime
        # PFI runner
        function PFI()
            c_init = kgrid
            for iter in 1:N_iter
                # do an iteration on policy_iter
                # check convergence
                # update guess
            end
        end
        # plotter
        function plotPFI()
            v = PFI()
            figure()
            subplot(121)
            plot(kgrid,v)
            plot(kgrid,c_star(kgrid),color="black")
            xlabel("k")
            title("policy function")
            subplot(122)
            plot(kgrid, v.-c_star(kgrid))
```

```
xlabel("k")
  title("policy function error")
end
plotPFI()
```

3 Projection Methods

- Many applications require us to solve for an *unknown function*
 - ODEs, PDEs
 - Pricing functions in asset pricing models
 - Consumption/Investment policy functions
- Projection methods find approximations to those functions that set an error function close to zero.

3.1 Example: Growth, again

- We stick to our working example from above.
- We encountered the Euler Equation *g* for optimality.
- At the true consumption function c^* , g(k) = 0.
- We define the following function operator:

$$0 = u'(c^*(k)) - \beta u'[c^*(f(k) - c^*(k))]f'(f(k) - c^*(k))$$

$$\equiv (\mathcal{N}(|^*))(k)$$

• The Equilibrium solves the operator equation

$$0 = \mathcal{N}(c^*)$$

3.1.1 Projection Method example

- 1. create an approximation to c^* :
 - find

$$\bar{c} \equiv \sum_{i=0}^{n} a_i k^i$$

which nearly solves

$$\mathcal{N}(c^*) = 0$$

2. Compute Euler equation error function:

$$g(k;a) = u'(\bar{c}(k)) - \beta u'[\bar{c}(f(k) - \bar{c}(k))]f'(f(k) - \bar{c}(k))$$

- 3. Choose a to make g(k; a) small in some sense
- small in some sense:

- Least-squares: minimize sum of squared errors

$$\min_{a} \int g(k;a)^2 dk$$

- Galerkin: zero out weighted averages of Euler errors
- − Collocation: zero out Euler equation errors at grid $k \in \{k_1, ..., k_n\}$:

$$P_i(a) \equiv g(k_i; a) = 0, i = 1, \ldots, n$$

3.1.2 General Projection Method

1. Express solution in terms of unknown function

$$\mathcal{N}(h) = 0$$

where h(x) is the equilibrium function at state x

- 2. Choose a space for appximation
- 3. Find \bar{h} which nearly solves

$$\mathcal{N}(\bar{h}) = 0$$

3.1.3 exercise

- take g(k; a) from above. We want to approximate with Chebyshev polynomials.
- take kgrid from above, but with 15 points.
- normalize points to [-1,1]

$$z_i = 2\frac{k_i - a}{b - a} - 1$$

- Evaluate Chebyshev polynomial basis on those points
- Find coefficients *a* which set *g* close to zero.

4 Endogenous Grid Method (EGM)

- Fast, elegant and precise method to solve consumption/savings problems
- One continuous state variable
- One continuous control variable

$$V(M_t) = \max_{0 < c < M_t} u(c) + \beta E V_{t+1} (R(M_t - c) + y_{t+1})$$

- Here, M_t is cash in hand, all available resources at the start of period t
 - For example, assets plus income.
- $A_t = M_t c_t$ is end of period assets
- y_{t+1} is stochastic next period income.
- *R* is the gross return on savings, i.e. R = 1 + r.
- utility function can be of many forms, we only require twice differentiable and concave.

4.1 EGM after [@carroll2006method]

- [@carroll2006method] [1] introduced this method.
- The idea is as follows:
 - Instead of using non-linear root finding for optimal c (see above)
 - fix a grid of possible end-of-period asset levels A_t
 - use structure of model to find implied beginning of period cash in hand.
 - We use euler equation and envelope condition to connect M_{t+1} with c_t

4.1.1 Recall Traditional Methods: VFI and Euler Equation

• Just to be clear, let us repeat what we did in the beginning of this lecture, using the M_t notation.

$$V(M_t) = \max_{0 < c < M_t} u(c) + \beta E V_{t+1} (R(M_t - c) + y_{t+1})$$

$$M_{t+1} = R(M_t - c) + y_{t+1}$$

4.1.2 VFI

- 1. Define a grid over M_t .
- 2. In the final period, compute

$$V_T(M_T) = \max_{0 < c < M_t} u(c)$$

3. In all preceding periods *t*, do

$$V_t(M_t) = \max_{0 < c_t < M_t} u(c_t) + \beta E V_{t+1} (R(M_t - c_t) + y_{t+1})$$

4. where optimal consumption is

$$c_t^*(M_t) = \arg\max_{0 < c_t < M_t} u(c_t) + \beta E V_{t+1} (R(M_t - c_t) + y_{t+1})$$

4.1.3 Euler Equation

• The first order condition of the Bellman Equation is

$$\frac{\partial V_t}{\partial c_t} = 0$$

$$u'(c_t) = \beta E \left[\frac{\partial V_{t+1}(M_{t+1})}{\partial M_{t+1}} \right] \quad (FOC)$$

• By the Envelope Theorem, we have that

$$\frac{\partial V_t}{\partial M_t} = \beta E \left[\frac{\partial V_{t+1}(M_{t+1})}{\partial M_{t+1}} \right]$$
by FOC
$$\frac{\partial V_t}{\partial M_t} = u'(c_t)$$

true in every period:

$$\frac{\partial V_{t+1}}{\partial M_{t+1}} = u'(c_{t+1})$$

• Summing up, we get the Euler Equation:

$$u'(c_t) = \beta E \left[u'(c_{t+1})R \right]$$

4.1.4 Euler Equation Algorithm

- 1. Fix grid over M_t
- 2. In the final period, compute

$$c_T^*(M_T) = \arg\max_{0 < cT < M_t} u(c_T)$$

3. With optimal $c_{t+1}^*(M_{t+1})$ in hand, backward recurse to find c_t from

$$u'(c_t) = \beta E \left[u'(c_{t+1}^*(R(M_t - c_t) + y_{t+1}))R \right]$$

- 4. Notice that if M_t is small, the euler equation does not hold.
 - In fact, the euler equation would prescribe to *borrow*, i.e. set $M_t < 0$. This is ruled out.
 - So, one needs to tweak this algorithm to check for this possibility
- Homework.

4.2 The EGM Algorithm

Starts in period *T* with $c_T^* = M_T$. For all preceding periods:

- 1. Fix a grid of end-of-period assets A_t
- 2. Compute all possible next period cash-in-hand holdings M_{t+1}

$$M_{t+1} = R * A_t + y_{t+1}$$

- for example, if there are n values in A_t and m values for y_{t+1} , we have $dim(M_{t+1}) = (n, m)$
- 3. Given that we know optimal policy in t + 1, use it to get consumption at each M_{t+1}

$$c_{t+1}^*(M_{t+1})$$

4. Invert the Euler Equation to get current consumption compliant with an expected level of cash-on-hand, given A_t

$$c_t = (u')^{-1} \left(\beta E \left[u'(c_{t+1}^*(M_{t+1})) R | A_t \right] \right)$$

5. Current period *endogenous* cash on hand just obeys the accounting relation

$$M_t = c_t + A_t$$

#ăCore of a simple implementation

type iidModel <: Model

computation grids

```
avec::Vector{Float64}
    yvec::Vector{Float64} # income support
    ywgt::Vector{Float64}
                            # income weights
    # intermediate objects (na,ny)
   m1::Array{Float64,2}
                            # next period cash on hand (na,ny)
    c1::Array{Float64,2}
                            #ănext period consumption
    ev::Array{Float64,2}
    # result objects
    C::Array{Float64,2}
                          # consumption function on (na,nT)
    S::Array{Float64,2}
                          # savings function on (na,nT)
                          # endogenous cash on hand on (na,nT)
    M::Array{Float64,2}
                         # value function on (na,nT). Optional.
    V::Array{Float64,2}
    Vzero::Array{Float64,1} # value of saving zero
end
function EGM!(m::iidModel,p::Param)
    # final period: consume everything.
   m.M[:,p.nT] = m.avec
   m.C[:,p.nT] = m.avec
   m.C[m.C[:,p.nT].<p.cfloor,p.nT] = p.cfloor</pre>
    # preceding periods
    for it in (p.nT-1):-1:1
        # interpolate optimal consumption from next period on all cash-on-hand states
        # using C[:,it+1] and M[:,it+1], find c(m,it)
        tmpx = [0.0; m.M[:,it+1]]
        tmpy = [0.0; m.C[:,it+1]]
        for ia in 1:p.na
            for iy in 1:p.ny
                m.c1[ia+p.na*(iy-1)] = linearapprox(tmpx,tmpy,m.m1[ia+p.na*(iy-1)],1,p.na)
                \# m.c1[ia,iy] = linearapprox(tmpx, tmpy, m.m1[ia,iy], 1, p.na) \# equivalent
            end
        end
        # get expected marginal value of saving: RHS of euler equation
        # beta * R * E[u'(c_{t+1})]
        Eu = p.R * p.beta .* up(m.c1,p) * m.ywgt
        # get optimal consumption today from euler equation: invert marginal utility
        m.C[:,it] = iup(Eu,p)
        # floor consumption
        m.C[m.C[:,it].<p.cfloor,it] = p.cfloor</pre>
```

```
# get endogenous grid today
m.M[:,it] = m.C[:,it] .+ m.avec
end
end
```

4.3 Discrete Choice EGM

- This is a method developed by Fedor Iskhakov, Thomas Jorgensen, John Rust and Bertel Schjerning.
- Reference: [@iskhakovRust2014] [3]
- Suppose we have several discrete choices (like "work/retire"), combined with a continuous choice in each case (like "how much to consume given work/retire").
- Let d = 0 mean to retire.
- Write the problem of a worker as

$$V_t(M_t) = \max \left[v_t(M_t | d_t = 0), v_t(M_t | d_t = 1) \right]$$
with
$$v_t(M_t | d_t = 0) = \max_{0 < c_t < M_t} u(c_t) + \beta E W_{t+1}(R(M_t - c_t))$$

$$v_t(M_t | d_t = 1) = \max_{0 < c_t < M_t} u(c_t) - 1 + \beta E V_{t+1}(R(M_t - c_t) + y_{t+1})$$

• The problem of a retiree is

$$W_t(M_t) = \max_{0 < c_t < M_t} u(c_t) + \beta E W_{t+1} (R(M_t - c_t))$$

• Our task is to compute the optimal consumption functions $c_t^*(M_t|d_t=0)$, $c_t^*(M_t|d_t=1)$

4.3.1 Problems with Discrete-Continuous Choice

- Even if all conditional value functions *v* are concave, the *envelope* over them, *V*, is in general not.
- [@clausenenvelope] [2]show that there will be a kink point \bar{M} such that

$$v_t(\bar{M}|d_t = 0) = v_t(\bar{M}|d_t = 1)$$

- We call any such point a primary kink (because it refers to a discrete choice in the current period)
- V is not differentiable at \bar{M} .
- However, it can be shown that both left and right derivatives exist, with

$$V^-(\bar{M}) < V^+(\bar{M})$$

- Given that the value of the derivative changes discretely at \bar{M}_t , the value function in t-1 will exhibit a discontinuity as well:
 - v_{t-1} depends on V_t .

- Tracing out the optimal choice of c_{t-1} implies next period cash on hand M_t , and as that hits \bar{M}_t , the derivative jumps.
- The derivative of the value function determines optimal behaviour via the Euler Equation.
- We call a discontinuity in v_{t-1} arising from a kink in V_t a **secondary kink**.
- The kinks propagate backwards.
- [@iskhakovRust2014] [3] provide an analytic example where one can compute the actual number of kinks in period 1 of T.
- Figure 1 in [@clausenenvelope]:

[@iskhakovRust2014] figure 1

4.3.2 Kinks

- Refer back to the work/retirement model from before.
- 6 period implementation of the DC-EGM method:
- Iskhakov @ cemmap 2015: Value functions in T-1
- Iskhakov @ cemmap 2015: Value functions in T-2
- Iskhakov @ cemmap 2015: Consumption function in T-2

github/floswald

• Optimal consumption in 6 period model:

4.3.3 The Problem with Kinks

- Relying on fast methods that rely on first order conditions (like euler equation) will fail.
- There are multiple zeros in the Euler Equation, and a standard Euler Equation approach is not guaranteed to find the right one.
- picture from Fedor Iskhakov's master class at cemmap 2015:

4.3.4 DC-EGM Algorithm

- 1. Do the EGM step for each discrete choice *d*
- 2. Compute *d*-specific consumption and value functions
- 3. compare *d*-specific value functions to find optimal switch points
- 4. Build envelope over *d*-specific consumption functions with knowledge of which optimal *d* applies where.

4.3.5 But EGM relies on the Euler Equation?!

- Yes.
- An important result in [@clausenenvelope] is that the Euler Equation is still the necessary condition for optimal consumption
 - Intuition: marginal utility differs greatly at $\epsilon + \bar{M}$.
 - No economic agent would ever locate **at** \bar{M} .
- This is different from saying that a proceedure that tries to find the zeros of the Euler Equation would still work.
 - this will pick the wrong solution some times.
- EGM finds all solutions.
 - There is a proceedure to discard the "wrong ones". Proof in [@iskhakovRust2014]

4.3.6 Adding Shocks

- This problem is hard to solve with standard methods.
- It is hard, because the only reliable method is VFI, and this is not feasible in large problems.
- Adding shocks to non-smooth problems is a widely used remedy.
 - think of "convexifying" in game theoretic models
 - (Add a lottery)
 - Also used a lot in macro
- Adding shocks does indeed help in the current model.
 - We add idiosyncratic taste shocks: Type 1 EV.
 - Income uncertainty:
 - In general, the more shocks, the more smoothing.
- The problem becomes

$$\begin{aligned} V_t(M_t) &= \max \left[v_t(M_t|d_t=0) + \sigma_{\epsilon} \epsilon_t(0), v_t(M_t|d_t=1) + \sigma_{\epsilon} \epsilon_t(1) \right] \\ v_t(M_t|d_t=1) &= \max_{0 < c_t < M_t} \log(c_t) - 1 + \beta \int EV_{t+1}(R(M_t-c_t) + y\eta_{t+1}) f(d\eta_{t+1}) \end{aligned}$$

where the value for retirees stays the same.

4.3.7 Adding Shocks

4.3.8 Full DC-EGM

- Needs to discard *false* solutions.
- Criterion:
 - grid in A_t is **increasing**
 - Assuming concave utility function, the function

$$A(M|d) = M - c(M|d)$$

is monotone non-decreasing

- This means that, if you go through A_i , and find that

$$M_t(A^j) < M_t(A^{j-1})$$

you know you entered a non-concave region

- The Algorithm goes through the upper envelope and *prunes* the *inferior* points *M* from the endogenous grids.
- Precise details of Algorithm in paper.
- Julia implementation on floswald/ConsProb.jl

References

- [1] Christopher D Carroll. The method of endogenous gridpoints for solving dynamic stochastic optimization problems. *Economics letters*, 91(3):312–320, 2006.
- [2] A. Clausen and C. Strub. Envelope theorems for non-smooth and non-concave optimization. https://andrewclausen.net/research.html, 2013.
- [3] Fedor Iskhakov, John Rust, Bertel Schjerning, and Thomas Jorgensen. Estimating Discrete-Continuous Choice Models: Endogenous Grid Method with Taste Shocks. *SSRN working paper*, 2014.
- [4] Nancy Stokey and R Lucas. *Recursive Methods in Economic Dynamics (with E. Prescott)*. Harvard University Press, 1989.

Figure 2: Optimal Consumption Rules for Agent Working Today $(d_{t-1} = 1)$.

Notes: The plots show optimal consumption rules of the worker who decides to continue working in the consumptionsavings model with retirement in period t=T-5 for a set of taste shock scales σ_{ε} in the absence of income uncertainty, $\sigma_{\eta}=0$, (left panel) and in presence of income uncertainty, $\sigma_{\eta}=\sqrt{.005}$, (right panel). The rest of the model parameters are R=1, $\beta=0.98$, y=20.

Figure 3: Artificial Discontinuities in Consumption Functions, $\sigma_{\eta}^2 = 0.01, t = T - 3.$

Notes: Figure 3 illustrates how the number of discrete points used to approximate expectations regarding future income affects the consumption functions from value function iteration (VFI) and the DC-EGM. Panel (a) illustrates how using few (10) discrete equiprobable points to approximate expectations produce severe approximation error when there is no taste shocks. Panel (b) illustrates how moderate smoothing ($\sigma_{\varepsilon}=.05$) significantly reduces this approximation error.

11

[@iskhakovRust2014] figure 2

Figure 4: Non-concave regions and the elimination of the secondary kinks in DC-EGM.

Notes: The plots illustrate the output from the EGM-step of the DC-EGM algorithm (Algorithm 1) in a non-concave region. The dots are indexed with the index j of the ascending grid over the end-of-period wealth $\vec{A} = \{A^1, \dots, A^G\}$ where $A^j > A^{j-1}$, $\forall j \in \{2, \dots, G\}$. The connecting lines show the d_t -specific value functions $v_t(\vec{M}_t|d_t)$ and the consumption function $c_t(\vec{M}_t|d_t)$ linearly interpolated on the endogenous grid \vec{M}_t . computed on this grid are the outputs. The left panels illustrate the deterministic case without taste shocks, while in the right panels $\sigma_\varepsilon = 0.03$. The "true" solution, after applying the DC-EGM algorithm is illustrated with a solid red line. Dashed lines illustrate discontinuities. The solution is based on G = 70 grid points in \vec{A} , R = 1, $\beta = 0.98$, y = 20, $\sigma_{\eta} = 0$.

15

[@iskhakovRust2014] figure 4

Figure 5: Local maxima and multiple solutions of the Euler equation.

Notes: The figure plots the maximand of the equation (10), which defines the discrete choice specific value function $v_t(M_t|d_t=1)$, for the case of $\sigma_\varepsilon=0$ (panel a) and $\sigma_\varepsilon=0.03$ (panel b). Horizontal lines indicate the critical points found or approximated by the EGM step of DC-EGM algorithm. The points are indexed with the same indexes as in Figure 4 and the black dots represent global maxima. Model parameters are identical to those of Figure 4.

[@iskhakovRust2014] figure 4