I EG-X Hamiltonian in Reciprocal Space

Clean up this section

In the following chapter, the model Hamiltonian

$$H_0 = -t_{\mathcal{X}} \sum_{\langle ij \rangle, \sigma} d^{\dagger}_{i,\sigma} d_{j,\sigma} - t_{\text{Gr}} \sum_{\langle ij \rangle, \sigma} c^{(A),\dagger}_{i,\sigma} c^{(B)}_{j,\sigma} + V \sum_{i,\sigma} d^{\dagger}_{i,\sigma} c^{(A)}_{i,\sigma} + \text{h.c.}$$
 (I.1)

will be treated to obtain the band structure. The first step is to write out the sums over nearest neighbors $\langle i,j \rangle$ explicitly, writing δ_X , δ_ε ($\varepsilon=A,B$) for the vectors to the nearest neighbors of the X atoms and Graphene A,B sites. Doing the calculation for example of the X atoms:

$$-t_{X} \sum_{\langle ij \rangle, \sigma} (d_{i,\sigma}^{\dagger} d_{j,\sigma} + d_{j,\sigma}^{\dagger} d_{i,\sigma}) = -\frac{t_{X}}{2} \sum_{i,\sigma} \sum_{\delta_{X}} d_{i,\sigma}^{\dagger} d_{i+\delta_{X},\sigma} - \frac{t_{X}}{2} \sum_{j,\sigma} \sum_{\delta_{X}} d_{j,\sigma}^{\dagger} d_{j+\delta_{X},\sigma}$$

$$= -t_{X} \sum_{i,\sigma} \sum_{\delta_{X}} d_{i,\sigma}^{\dagger} d_{i+\delta_{X},\sigma}$$
(I.2)

The factor $^{1}/^{2}$ in eq. (I.2) is to account for double counting when going to the sum over all lattice sites i. By relabeling $j \rightarrow i$ in the second sum, the two sum are the same and eq. (I.3) is obtained. Using now the discrete Fourier transform

$$c_i = \frac{1}{\sqrt{N}} \sum_{\mathbf{k}} e^{i\mathbf{k}\mathbf{r}_i} c_{\mathbf{k}}, \ c_i^{\dagger} = \frac{1}{\sqrt{N}} \sum_{\mathbf{k}} e^{-i\mathbf{k}\mathbf{r}_i} c_{\mathbf{k}}^{\dagger}$$
 (I.4)

with the completeness relation

$$\sum_{i} e^{i\mathbf{k}\mathbf{r}_{i}} e^{-i\mathbf{k}'\mathbf{r}_{i}} = N\delta_{\mathbf{k},\mathbf{k}'}, \qquad (I.5)$$

eq. (I.3) reads:

2

$$-t_{X}\frac{1}{N}\sum_{i,\sigma}\sum_{\delta_{X}}d_{i,\sigma}^{\dagger}d_{i+\delta_{X},\sigma} = -t_{X}\frac{1}{N}\sum_{i,\sigma}\sum_{\mathbf{k},\mathbf{k}',\delta_{X}}\left(e^{-i\mathbf{k}\mathbf{r}_{i}}d_{\mathbf{k},\sigma}^{\dagger}\right)\left(e^{i\mathbf{k}'\mathbf{r}_{i}}e^{i\mathbf{k}'\delta_{X}}d_{\mathbf{k}',\sigma}\right) \quad (I.6)$$

$$= -t_{X} \frac{1}{N} \sum_{\mathbf{k}, \mathbf{k}', \delta_{X}, \sigma} d^{\dagger}_{\mathbf{k}, \sigma} d_{\mathbf{k}', \sigma} e^{i\mathbf{k}'\delta_{X}} \sum_{i} e^{-i\mathbf{k}\mathbf{r}_{i}} e^{i\mathbf{k}'\mathbf{r}_{i}}$$
(I.7)

$$= -t_{X} \frac{1}{N} \sum_{\mathbf{k}, \mathbf{k}', \sigma} d_{\mathbf{k}, \sigma}^{\dagger} d_{\mathbf{k}', \sigma} \sum_{\delta_{X}} e^{i\mathbf{k}'\delta_{X}} \left(N \delta_{\mathbf{k}, \mathbf{k}'} \right)$$
 (I.8)

$$= -t_X \sum_{\mathbf{k},\sigma} d_{\mathbf{k},\sigma}^{\dagger} d_{\mathbf{k},\sigma} \sum_{\delta_X} e^{i\mathbf{k}\delta_X} . \tag{I.9}$$

This part is now diagonal in **k** space. The nearest neighbours vectors δ_X for the X atoms are the vectors $\delta_{AA,i}$ from **??**. With that, the sum over δ_X can be explicitly calculated:

Correct exp expressions

Example for a vector product

$$f_X(\mathbf{k}) = -t_X \sum_{\delta_X} e^{i\mathbf{k}\delta_X}$$
 (I.10)

$$= -t_X \left[\exp \left(ia \left(\frac{k_x}{2} + \frac{\sqrt{3}k_y}{2} \right) \right) + e^{iak_x} + e^{ia(\frac{k_x}{2} - \frac{\sqrt{3}k_y}{2})} \right) \right]$$
(I.11)

$$+ e^{\mathrm{i}a(-\frac{k_x}{2} - \frac{\sqrt{3}k_y}{2})} + e^{-\mathrm{i}ak_x} + e^{\mathrm{i}a(-\frac{k_x}{2} + \frac{\sqrt{3}k_y}{2})}$$
 (I.12)

$$= -t_X \left(2\cos(ak_x) + 2e^{ia\frac{\sqrt{3}k_y}{2}}\cos(\frac{a}{2}k_x) + 2e^{-ia\frac{\sqrt{3}k_y}{2}}\cos(\frac{a}{2}k_x) \right)$$
 (I.13)

$$=-2t_X\left(\cos\left(ak_x\right)+2\cos\left(\frac{a}{2}k_x\right)\cos\left(\sqrt{3}\frac{a}{2}k_y\right)\right)\ . \tag{I.14}$$

The same can be done for the hopping between Graphene sites, for example:

$$-t_{\rm Gr} \sum_{\langle ij \rangle, \sigma\sigma'} c_{i,\sigma}^{(A),\dagger} c_{j,\sigma'}^{(B)} = -t_{\rm Gr} \sum_{i,\sigma\sigma'} \sum_{\delta_{AB}} c_{i,\sigma}^{(A),\dagger} c_{i+\delta_{AB},\sigma'}^{(B)}$$
(I.15)

$$= -t_{Gr} \sum_{\mathbf{k}, \sigma, \sigma'} c_{\mathbf{k}, \sigma}^{(A)\dagger} c_{\mathbf{k}, \sigma'}^{(B)} \sum_{\delta_{AB}} e^{i\mathbf{k}\delta_{AB}}$$
 (I.16)

Show that!

We note

$$\sum_{\delta_{AB}} e^{i\mathbf{k}\delta_{AB}} = \left(\sum_{\delta_{BA}} e^{i\mathbf{k}\delta_{BA}}\right)^* = \sum_{\delta_{BA}} e^{-i\mathbf{k}\delta_{BA}}$$
(I.17)

Figure I.1: Bands of the non-interacting EG-X model. All the bands are spin-degenerate.

and calculate

$$f_{Gr} = -t_{Gr} \sum_{\delta_{AB}} e^{i\mathbf{k}\delta_{AB}} \tag{I.18}$$

$$= -t_{Gr} \left(e^{i\frac{a}{\sqrt{3}}k_y} + e^{i\frac{a}{2\sqrt{3}}(\sqrt{3}k_x - k_y)} + e^{i\frac{a}{2\sqrt{3}}(-\sqrt{3}k_x - k_y)} \right)$$
 (I.19)

$$= -t_{Gr} \left(e^{i\frac{a}{\sqrt{3}}k_y} + e^{-i\frac{a}{2\sqrt{3}}k_y} \left(e^{i\frac{a}{2}k_x} + e^{-i\frac{a}{2}k_x} \right) \right)$$
 (I.20)

$$= -t_{Gr} \left(e^{i\frac{a}{\sqrt{3}}k_y} + 2e^{-i\frac{a}{2\sqrt{3}}k_y} \cos\left(\frac{a}{2}k_x\right) \right)$$
 (I.21)

All together, we get:

$$H_{0} = \sum_{\mathbf{k},\sigma,\sigma'} \begin{pmatrix} c_{k,\sigma}^{A,\dagger} & c_{k,\sigma}^{B,\dagger} & d_{k,\sigma}^{\dagger} \end{pmatrix} \begin{pmatrix} 0 & f_{Gr} & V \\ f_{Gr}^{*} & 0 & 0 \\ V & 0 & f_{X} \end{pmatrix} \begin{pmatrix} c_{k,\sigma}^{A} \\ c_{k,\sigma}^{B} \\ d_{k,\sigma} \end{pmatrix}$$
(I.22)

The band structure for the non-interacting EG-X model is easily obtained by diagonalising the matrix in eq. ??. This was done in fig. I.1.

Values used for calculation:

- $a_0 = 1$
- $t_{Gr} = 1$
- $t_X = 0.01$

V is the control parameter. A range from V=0.1 to V=2 can be mapped onto materials in experiment.