Overview of Today's Lecture

Assignment Project Exam Help Warmup, Review, Questions, Homework, etc.

- Greedy Approach in Bin Packing
- conhettps://powcoder.com
- Interval Problems
- Huffman Code
- Mining Chat powcoder

Next...

Assignment Project Exam Help

- 2 II. Greedy Approach in Bin Packing
- https://powcoder.com
- 4 IV. Huffman Code
- Add WeChat powcoder

[Start] [End]

Assignment Project Exam Help Review, Questions, Homework, etc.

https://powcoder.com

Warmup, Review, Questions, Homework, etc.

Assignment of the MidProject Exam Help Covers all the material up to Chapter 4.

Study guide: read our solutions to the homeworks,

https://poweoder.com

- We will publish an "estimated grade" based on midterm and hwk1-hwk5.
- Don't worry because grades are curved (not absolute).
- HWAide his Wrsa Colaratk powcoder

Next...

Assignment Project Exam Help

- 2 II. Greedy Approach in Bin Packing
- https://powcoder.com
- 4 IV. Huffman Code
- Add WeChat powcoder

[Start] [End]

Assignment Project Exam Help I. Greedy Approach in Bin Packing

https://powcoder.com

What is the Greedy Approach?

Assignment the Project design Help At each step, do what seems best for this step

THIS THE GREE DY PARADEM! der.com

Simple! Perhaps too simple?

```
To be specific: for i=1,2,... Assignmenter P_i for each Exam Help —there is a "gain function" G: X_i \to \mathbb{R}
```

```
https://powcoder.com
```

Surprising, this sometimes give OPTIMAL solutions!

Assignment Project Exam Help

There is usually some global information used

https://powcoder.com

-now to define the greedy function G(x)

Joy Rides and Bin Packing

Assignment Project Exam Help

Riders join a queue

ths://powiesdefectionsible

Each car has a maximum load

Joy Rides and Bin Packing

Example

Assignment Project Exam Help

Queue: (30,190,80,210,100,80,50)

Solution 1 (Greedy), drop the last 0 digit of the last 0 digit of

Solution 2 (Non-greedy)

Add We hat powcoder Different solution, but "no improvement".

Joy Rides and Bin Packing

Policies

Assignment-Project Exam Help The decision might be: wait for the next car

First-Come First-Ride Policy (FCFR)

The policies a circle dett der. com

FCFR is captured by "linear bin packing" formulation

your cars. Add $\overset{\text{Given }w=(w_1,\ldots,w_n)}{\text{WeChat powcoder}}$

THEOREM: the greedy method is optimal among all FCFR policies.

Sketch: proof by contradiction...

Optimality

Assylg; pasment not marze i requere i Fix (amw, Help Let A(w) be the number of cars used by algorithm A.

https://powcoder.com

Add (0.307, e.G., r) nat powcoder

FCFR algorithm, $G_1(w) = 2$

Sorted FCFR algorithm, $G_2(w) = 3$

So, G_1 , G_2 are incomparable!

Bin Packing:

Assiegnmentumer of seed by the xoth map of the Application arbitrary policy)

Bin Packing Problem: compute Opt(w)It in this Carp.

(as in this Carp.)

Such problems are not known to have polynomial-time algorithms (we believe they do pet exist).

(D) (B) (E) (E) (900

How Good is Linear Bin Packing?

Assignment Project Exam Help

- (1) $Opt(w) \ge 1 + \lfloor G_1(w)/2 \rfloor$
- (2) For all n, there exist w such that

https://poweoder.com

Significance? The (trivial) Linear Bin Packing is a factor of 2 from the optimal! $Add\ WeChat\ powcoder$

900 E (E) (E) (B)

Assignment on the proof of the

It follows that Qot W O This proves (1)
(2) Assume *n* is odd- Consider the *n*-vector

Then $dd = W_{\text{tot}} = (\frac{1}{n}, 1, \frac{1}{n}, 1, \dots, 1, \frac{1}{n})$ Then $dd = W_{\text{tot}} = (\frac{1}{n}, 1, \frac{1}{n}, 1, \dots, 1, \frac{1}{n})$ Then $dd = W_{\text{tot}} = (\frac{1}{n}, 1, \frac{1}{n}, 1, \dots, 1, \frac{1}{n})$ Then $dd = W_{\text{tot}} = (\frac{1}{n}, 1, \frac{1}{n}, 1, \dots, 1, \frac{1}{n})$ Then $dd = W_{\text{tot}} = (\frac{1}{n}, 1, \frac{1}{n}, 1, \dots, 1, \frac{1}{n})$ Then $dd = W_{\text{tot}} = (\frac{1}{n}, 1, \frac{1}{n}, 1, \dots, 1, \frac{1}{n})$ Then $dd = W_{\text{tot}} = (\frac{1}{n}, 1, \frac{1}{n}, 1, \dots, 1, \frac{1}{n})$ Then $dd = W_{\text{tot}} = (\frac{1}{n}, 1, \frac{1}{n}, 1, \dots, 1, \frac{1}{n})$ Then $dd = W_{\text{tot}} = (\frac{1}{n}, 1, \frac{1}{n}, 1, \dots, 1, \frac{1}{n})$ Then $dd = W_{\text{tot}} = (\frac{1}{n}, 1, \frac{1}{n}, 1, \dots, 1, \frac{1}{n})$ Then $dd = W_{\text{tot}} = (\frac{1}{n}, 1, \frac{1}{n}, 1, \dots, 1, \frac{1}{n})$ Then $dd = W_{\text{tot}} = (\frac{1}{n}, 1, \frac{1}{n}, 1, \dots, 1, \frac{1}{n})$ Then $dd = W_{\text{tot}} = (\frac{1}{n}, 1, \frac{1}{n}, 1, \dots, 1, \frac{1}{n})$ Then $dd = W_{\text{tot}} = (\frac{1}{n}, 1, \frac{1}{n}, 1, \dots, 1, \frac{1}{n})$ Then $dd = W_{\text{tot}} = (\frac{1}{n}, 1, \frac{1}{n}, 1, \dots, 1, \frac{1}{n})$

The Concept of Approximation Ratio

Assign 11 seap (the Proping to Exam Help

$$\begin{array}{c} https:/powcoder.com\\ \hline \\ \text{For our Greedy algorithm for linear bin packing,} \\ \hline \\ \alpha_0(G_1)=3 \end{array}$$

The problem is that this sup, may be determined by a single value of w (we like it to be achieved symptotically) reverse nearis, we simply code1

$$\alpha(A) := \limsup_{n} a_n = \lim_{n \to \infty} \sup \{a_k : k \ge n\}$$

where $a_n := \sup \left\{ \frac{A(w)}{Opt(w)} : Opt(w) = n \right\}$.

E.g., from our theorem (1) that

Assignment Project Exam Help

$$\frac{G_1(w)}{Opt(w)} \le 2 - \frac{1}{Opt(w)}$$

We must n't conclude that $\alpha(G_1) < 2$, only conclude $\alpha(G_1) \le 2$. What about the lower bound on $\alpha(G_1)$? We know that the bound

 $2 - \frac{1}{Opt(w)}$ can be achieved by Opt(w) = n for every n. Hence the limit is 2:

How to beat Linear Bin Packing's factor of 2

As sygnament Frift) to be the part of the

https://powcoder.com

First Fit Bin Packing

Assignment Project Exam Help

INPUT: $w = (w_1, ..., w_n)$ Initialize n empty bins $(B_1, ..., B_n)$ Place w_i into the first bin w_i that fits Return the non-empty bins, $(B_1, ..., B_k)$

E.g., Add, 3,5,4,1,6,2,3) hat (v) powcoder the power of the power of

Do simulation

$$B = ((3,4),(5,1),(3,2),(3))$$

- Assignment Packing Assignment Project Exam Help
 - $FF(w)/Opt(w) \le 17/10$.
 - chttps://powcoder.com $T(n) = O(n^2)$
 - Add WeChat powcoder

Next...

Assignment Project Exam Help

- II. Greedy Approach in Bin Packing
- III. Inthattps://powcoder.com
- 4 IV. Huffman Code
- Add WeChat powcoder

[Start] [End]

Assignment Project Exam Help

https://powcoder.com

Activities Problem:

E.g., swimming and tennis are in conflict.

PROBLEM: Given a set of actitivies,
find a maximal subset that is conflict-free.

Interval Problems

It represents time/span of the *i*th activity.

Two activities I_i , I_j conflict if $I_i \cap I_j \neq \emptyset$.

A set $A \subseteq S$ is said to be compatible if no 2 activities in A conflict.

PROBLEM: Give activities hat, phwcoder find a compatible set of maximum cardinality

Generic Greedy Algorithm Project Exam Help Input: a set A of intervals Output: $S \subseteq A$, a set of compatible intervals ▶ Initialization ▶ Main Loop Add Ketting That tibe to the Add Ketting The Company of the Compan

beach, swim, tennis, movie 1, movie 2

Introduction to Greedy Approach

What Sorting Criteria?

Assignment Project Exam Help

- (b) Sort I_i 's in order of increasing start times:
- (c) Sort I_i s model Polluration once the duration of a civity I_i . Note that movie 1, movie 2 and swim are tied, but breaking ties arbitrarily:

 movie 1, movie 2, swim, beach, tennis
- (d) Sort I_i's an order of increasing conflict legree. The conflict degree of I_Ms, the number of I_s which in the ordering is:
 movie 2, movie 1 or swim, beach or tennis

What are the solutions following these criteria?

Sol1: (swim, mov1, mov2)

Assignment Project Exam Help

Sol3: (mov1, mov2, swim)

https://powcoder.com

movie 3:00-4:30, movie 4:30-6:00.

Assignment Project Exam Help

Sorting the activities l_i 's in order of increasing finish times yields the optimal solution.

https://powcoder.com

How to implement the algorithm?

- Sorting in O(nlog n) time.

Activities.

Activities the time spent on activities.

Give weights to activities: maximize the total weight of solution.

Next...

Assignment Project Exam Help

- II. Greedy Approach in Bin Packing
- https://powcoder.com
- 4 IV. Huffman Code
- Add WeChat powcoder

[Start] [End]

Assignment Project Exam Help

https://powcoder.com

Informal Problem

Assignment Project Exam Help

(P) Given a string s of characters (or symbols)

from some alphabet Σ,

which minimize the space to encode s.

s called e; Wares the asstrong owo coder Compare with fixed length encoding, $ASCII: \Sigma \to \{0,1\}^8$

Variable Length Encoding

Assignment Project Exam Help

Idea: if a letter $x \in \Sigma$ is more frequent in s, want C(x) to be shorter.

Frequency function: $f_s(x) := \#(x, s)$, number of occurences of x in s.

For $x \neq y \in \Sigma$, C(x) is NOT a prefix of C(y).

So Add., Wee (shat) powe ender ruely decoded!

 \bigcirc Example s = 'abadacadaba'.

Assignment = Project(d Exam Help Two variable codes C_1 , C_2 for $\Sigma = \{a, b, c, d\}$ (represented by trees)

What is the length of this encoding $|C_1(s)|$? Let us calculate it!

$$COST(f,C) := \sum_{x \in \Sigma} |C(x)| \cdot f_s(x)$$

The formal Huffman Tree Coding Problem

Assignment Project Exam Help

The code C is representing by a binary tree T_C whose nodes V_C are binary strings, and each leaf $u \in V_C$ is labeled by a unique symbol $\lambda(u) \in \Sigma$.

Then $COST(f,C) := \sum_{u} W(u)$ A the $COST(f,C) := \sum_{u} W(u)$ A the $COST(f,C) := \sum_{u} W(u)$

If T_1 , T_2 are two trees, we can merge them by introduce a new root.

Huffman Code

The Huffman Code Algorithm

ent Project Exam Help

Input: Frequency function $f: \Sigma \to \mathbb{N}$. Output: Optimal code tree T^* for f.

- Let Q be a set of weighted code trees. Initially, Q is the set of $n = |\Sigma|$ trivial trees, ch tree having only one node representing a single character in Σ
- - 2.1. Choose $T, T' \in Q$ with the minimum and the next-to-minimum weights, respectively.
 - 2.2. Merge T, T' and insert the result T + T' into Q.
 - 2.3. Delete T, T' from Q.
- 3.

Add WeChat powcoder

Note: Q is a priority queue

Huffman Code

Binary Encoding β_T of External Binary Tree T:

Assignment Project Exam Help powcoder

Figure 4: Compressed bit representation for the Huffman tree Figure 2a

Assume $n \ge 0$ leaves (so 2n - 2 edges)

Assignment Project Exam Help

* Method 2: 3n-2 bits $(=(\bar{2}n-2)+n)$

$$\begin{array}{c} \text{hethod 3: 2n-1 bits } (=(3n-2)-(n-1)) \\ \text{https: } (p_0) & \text{or } (p_0) \\ \text{hethod 3: 2n-1 bits } (=(3n-2)-(n-1)) \\ \text{hethod 3: 2n-2 bits } (=(3n-2$$

Called the compressed bit representation of T.

The control of the co

Properties β_T , a compressed bit representation

Assignment Project Exam Help 2. Any *proper* prefix of β_T has at least as many zeros as ones.

- 3. The compressed bit representations forms a prefix-free set. 4. There is a linear algorithm to check if by is valid

• Let $C: \Sigma \to \{0,1\}^*$ be a prefix-free code and $\Sigma \subseteq \{0,1\}^N$ for some N. Let Assignment Project Exam Help

Protocol to transmit T_C :

STEP 1: Transmit the compressed bit representation

of the shape of T_C

Sransmit ed We level of in the line order

listing of the leaves of T_C .

Total bit lengti We Cahata powcoder

 $\qquad \textbf{Transmit a string } s \subseteq \Sigma^* \text{ using static Huffman coding assuming } \Sigma \subseteq \{0,1\}^{\textit{N}}.$

Assignment Project Exam Help

- (1) Compute the frequency function f_s of s
- (2) Compute a Huffman code tree T_C using f_s
- (3) STEP [3] DESignal to Outwar the laboration of the contract of the contract
- (4) STEP 4: Compute and transmit $C(s) = C(s_1)C(s_2)\cdots$ using T_C .

Add we chat powcoder

Let T be a weighted code tree with $k \ge 0$ internal nodes.

Assistante Project Exam Help
Call i the rank of the node.

https://powcoder.com

Sibling Property

Assignment Project Exam Help (S2) 2j and 2j+1 are siblings (j=0,...,k-1)

Entite s://powcoder.com

Array Representations of T

As	SS1 Rank	21	<u>1</u> 1	\sum_{2}	Ç 1	11	- 5	D ₆	rc)]	ę	ct	F	X	a 1	ņ	L	le	lp
	Lc	h	е	Ш	w	r	d	!	О	0	2	4	6	ℓ	8	10	12	14	
	Wt	1	1	1	1	1	1	1	2	2	2	2	3	3	4	5	7	12	

https://powcoder.com

- * Weight array: We Chat powcoder
 - Lc[i] = -1 if no left-child
- * Character map array: Cm

where
$$x \in \Sigma_0 \mapsto \{-1, 0, 1, ..., 2k\}$$

Assignment Project Exam Help $\begin{array}{c} \text{Assignment Project Exam Help} \\ \text{tp:} \text{Output(parity(u))} & \text{parity(u)=1 iff u is odd} \\ \text{http:} \text{hile parent(u)} \\ \text{Output(parity(u))} \\ \text{Add WeChat powcoder}. \end{array}$

How to restore sibling property after an increment:

Assignment Project Exam Help

Figure 6: Restoring Huffmanness after incrementing the frequency of letter ℓ

Restore(<u>u</u>) (recursive)

Assignment Project Exam Help u is a node whose weight is to be incremented

While (u is not the root) do

Find node y of largest rank R(v) subject to the power of 1.

While (Wt[v+1] = Wt[u])

VeChat powcoder

- 3.
- 4.
- 5. $u \leftarrow parent(u)$. $\triangleleft Reset u$
- $Wt[u]++. \triangleleft Now, u is the root$

Assume the Hello World! Huffman tree.

Assignment Project Exam Help

Operations of Restore (1st potential swap)

Rank	2++1	0	1	1	3	4	5	4	7	8	9	10	11	12	13	14	15	16
Lc		\Box h) e	/:/		儿	d	M	Jac	斌	2	4			8	10	12	15
Wt		1	1	1	T	1	1	1+1	2	2	2	2	3	3	4	5	7	12
After fir	rst swap			v				u										

Operations of Restore (the remaining potential swaps)

Assignment Project Exam Help

								_									
Rank		1	2	3	4	5	6	7	8	9	10	11	<u>12</u>	13	14	<u>15</u>	<u>16</u>
Lc		е	!	W	r	d	Ш	0	0	2	4	ℓ	6	8	10	12	15
Wt		1	1	1	1	1	1+1	2	2	2	2	3	3+1	4	5	7	12
After second supp	n	a	• /	/-	1	Ο.	XX7		\bigcirc	Δ	Δ1	v	u	10	1		
Lc III	b		• /	w	7		W	9	3	2	4	6		3	0	12	15
Wt	1	1	1	1	- 1	1	1+1	2	2	2	2	3	3+1	4	5	7+1	12
No third swap																u = v	
Lc	h	е	!	W	r	d	П	0	0	2	4	ℓ	6	8	10	12	15
Wt 🔥	1	1	1	17	1	1	1+1	2	2	2	2	3	3+1	4	1 5	7+1	12+1
No final swap			V	V	\mathbf{e}		'n	\mathbf{a}				W		\mathbf{M}	16	.1	u = v

How to add a new letter: the 0-node

Assignment-Project Exam Help

It represents all the *yet-unseen* letters in $\Sigma_0 \setminus \Sigma$

When a new letter x is seen, transmit the code of the 0-node, together with the transaction of the first transaction of t

BUT we must increase the ranks of ALL the previous nodes by 2.

Next...

Assignment Project Exam Help

- 2 II. Greedy Approach in Bin Packing
- https://powcoder.com
- 4 IV. Huffman Code
- 5 V. Minmum Spanning Tree Chat powcoder

[Start] [End]

٧

Assignment Project Exam Help V. Minimum Spanning Tree

https://powcoder.com

Given a graph G = (V, E; C)

For simplicity, assume G is connected.

Then we speak of a minimum spanning tree (MST) WCOCET

$$T = \{a-b, b-c, d-e\}$$
 is acyclic

$$T = \{a-b, b-c, c-a, d-e\}$$
 is cyclic

Generic Greedy MST Algorithm

nent Project Exam Help

Input: G = (V, E; C) a connected bigraph with edge costs. Output: $S \subseteq E$, a MST for G.

Figure 2. The property of the

 $S \leftarrow S + e$.

Output S as the minimum spanning tree.

Add WeChat powcoder

Suppose S is "good"

find $e \in E \setminus S$ so that e is "good" for SProblem:

Necessary for goodness: if S + e is acyclic, call e a candidate

Prim's Algorithm

Criteria for Goodness

Assignment Project Exam Help

- \bullet (Kruskal) Edge e has the least cost among all the candidates.
- (Prim) This has, in addition to Boruvka's condition, the requirement that the graph G'' = (V, S + e) has only one non-trivial component. [A component is trivial if it has only a single vertex.]

Hand Simulation

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Kruskal: sort edges $e_1 \le e_2 \le \cdots$

Prim: maintain array d[1..n] where d[i] is least cost to connect 1 to i.

Borukva: maintain connected component array CC[i] = j and min-cost

A[CC[i]] = u - v extension

Boruvka Algorithm

Assignment Project Exam Help Input: G = (V, E; C) a connected graph

Output: MST $S \subseteq E$ of G $S \leftarrow \emptyset$ | Initialize a Boruvka-good set of edges While $(|S| \not= n-1)$ | For each connected with potential $C(v,u): v \in C, u \notin C$ | C

Add WeChat powcoder

Maintain connected components CC[i] = j

Each phase, number of components is at least halved.

Hence, at most $\lg n$ phases

Implementing a Phase of Boruvka in O(n+m) Time

Assignment-Project Exam Help

https://powcoder.com

What is a Matroid?

 $Assing \text{ in properties } p \text{ (VP) with its properties } p \text{ (1)} \text{ Hereditary } \text{: if } A \subseteq B \in E \text{ then } A \in E. \text{ In particular } \emptyset \in E.$

 $(2) \begin{tabular}{ll} Exchange (a) & Exchange (b) & Exchange (c) & Exchange ($

Matrix Matroids

Assignment representation Assignment (Amount (Amount

Let *I* comprise all linearly independent subset $A \subseteq C$.

THE PS: MODEL COM

Recall in Linear Algebra: a set of vectors $\mathbf{v}_1, \dots, \mathbf{v}_k$ is linearly independent if for all real c_i 's,

Why is the matrix matroid a matroid?

Assignment Project Exam Help

Exchange property: if |A| < |B| then $A \cup B$ has rank strictly greater

H=({1,2**A**}dde **W e C** hat bowcoder

Graphic Matroids

Assignment graph roject Exam Help Let denote the set of all acyclic subsets of S.

The hypergraph H = (E, I) is a graphic matroid of G. Set 1 cure Steef for profit A for the first of the first of the A for profit A for the A for th

The bases of a matroid (V, E) are those $A \in E$ that is not properly contained in another independent F to F to F to F to F the part of the same cardinality called the rank of the matroid.

Kruskal's algorithm for Maximum base:

Aort Min Wares in host order ow coder

For $i = 1, \ldots, n$

Add v_i to S if it preserves independence.

"Algebra is generous, she often gives more than is asked of her." — Jean Le Rond D'Alembert (1717-83)

Assignment Project Exam Help

https://powcoder.com