Growth of Functions Chapter 2 & 3

Mei-Chen Yeh

What is a good algorithm?

Algorithm design and analysis process

Analysis Framework

• Run time vs. input size

Run time = f(input size)

- # Basic operations
- Order of growth

m	log n	nlog n	2 ^m	ml	m^2	m ³
---	-------	--------	----------------	----	-------	----------------

n	$\log_2 n$	n	$n \log_2 n$	n^2	n^3	2^n	n!
10	3.3	10^{1}	$3.3 \cdot 10^{1}$	10^{2}	10^{3}	10^{3}	$3.6 \cdot 10^6$
10^{2}	6.6	10^{2}	$6.6 \cdot 10^2$	10^{4}	10^{6}	$1.3 \cdot 10^{30}$	$9.3 \cdot 10^{157}$
10^{3}	10	10^{3}	$1.0 \cdot 10^4$	10^{6}	10^{9}		
10^{4}	13	10^{4}	$1.3 \cdot 10^5$	10^{8}	10^{12}		
10^{5}	17	10^{5}	$1.7 \cdot 10^6$	10^{10}	10^{15}		
10^{6}	20	10^{6}	$2.0 \cdot 10^7$	10^{12}	10^{18}		

Analysis Framework (cont.)

Worst-case, best-case, average-case

ALGORITHM Mystery(A[0..n-1], K)

```
i \leftarrow 0

while i < n and A[i] \neq K do

i \leftarrow i + 1

if i < n return i

else return -1
```

Pseudo code

Average-case is or isn't

the average of worst and best case?

Analysis Framework (cont.)

- Time (Space) efficiency is measured as a function of the algorithm's input size.
- Time efficiency is measured by counting the number of times the basic operation is executed.
- Need to distinguish between the worst-case, average-case, and best-case efficiencies.

Run time =
$$f($$
 ∞

Asymptotic Notations

Characterize the order of growth of an algorithm's basic operation count

O-notation (upper bound)

O(g(n)) is the set of functions with a smaller or same order of growth as g(n).

True or false?
$$n \in O(n^2)$$

 $100n + 5 \in O(n^2)$
 $0.5n(n-1) \in O(n^2)$
 $0.00001 n^3 \in O(n^2)$

• Definition:

```
O(g(n)) = \{ f(n) : \text{there exist constants} 

c > 0, n_0 > 0 \text{ such} 

\text{that } 0 \le f(n) \le cg(n) 

\text{for all } n \ge n_0 \}
```

• Example: $100n+5 \in O(n^2)$ $100n+5 \le 100n+n \text{ (for all } n \ge 5) = 101n \le 101n^2$

Ω-notation (lower bound)

 $\Omega(g(n))$ is the set of functions with a larger or same order of growth as g(n).

$$n^{3} \in \Omega(n^{2})$$

$$0.5n(n-1) \in \Omega(n^{2})$$

$$100n + 5 \in \Omega(n^{2})$$

Definition:

```
\Omega(g(n)) = \{ f(n) : \text{there exist constants} \\ c > 0, n_0 > 0 \text{ such} \\ \text{that } 0 \le cg(n) \le f(n) \\ \text{for all } n \ge n_0 \}
```

• Example: $n^3 \in \Omega(n^2)$

Select c = 1 and $n_0 = 1$

Θ-notation

 $\Theta(g(n))$ is the set of functions that have the same order of growth as g(n).

$$5n^2 + 2n + 9 \in \Theta(n^2)$$

• Definition:

$$\Theta(g(n)) = \{ f(n) : \text{there exist constants} \}$$
 $c_1 > 0, c_2 > 0, n_0 > 0 \text{ such}$
 $\text{that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}$

• Example: $0.5n(n-1) \in \Theta(n^2)$ Select $c_1 = 0.25$, $c_2 = 0.5$ and $n_0 = 2$

o- and ω- notations

- O-notation and Ω -notation are like \leq and \geq .
- o-notation and ω -notation are like < and >.
- Example:

$$2n \in O(n^2)$$
, but $2n^2 \notin o(n^2)$

If
$$f_1(n) \in O(g_1(n))$$
 and $f_2(n) \in O(g_2(n))$
 $f_1(n) + f_2(n) \in O(?)$
(1) $g_1(n) + g_2(n)$
(2) $\max\{g_1(n), g_2(n)\}$
(3) $\min\{g_1(n), g_2(n)\}$
(4) 0.5 $(g_1(n) + g_2(n))$

Rank the following functions in terms of their order of growth

Practice (1)

Order of growth:

Practice (2)

$$\log_2 n$$
 vs. $\log_{100} n$?

Recall
$$\log_b a = \frac{\log_c a}{\log_c b}$$

$$\log_{2} n = \frac{\log_{100} n}{\log_{100} 2}$$

$$= \frac{1}{\log_{100} 2} \times \log_{100} n$$

$$= 6.643 \times \log_{100} n$$

Practice (3)

• Function(s) **not** in $O(n^2)$?

```
n^{2} n

n^{2} + n n/1000

n^{2} + 1000n n^{1.99999}

1000n^{2} + 1000n n^{2} / |g|g|gn
```

What's the message?

- Given n numbers, the time complexity of my algorithm for sorting them is $O(n^2)$.
- Given n numbers, the time complexity of my algorithm for sorting them is $\Theta(n^2)$.
- Given n numbers, the time complexity of my algorithm for sorting them is $\Omega(n^2)$.

- Analysis examples
- Three methods for solving recurrences

Analysis Examples

Example (1)

ALGORITHM X-Algorithm(A[0..n-1])

```
val \leftarrow A[0]

for i \leftarrow 1 to n-1 do

if A[i] > val

val \leftarrow A[i]

return val
```

Basic operation?
Complexity?

Example (2)

ALGORITHM X-Algorithm(n)

```
count \leftarrow 1

while n > 1 do

count \leftarrow count + 1

n \leftarrow floor(n/2)

return count
```

Example (3)

ALGORITHM F(n)

```
if n=0 return 1
else return F(n-1)*n
```

Complexity?

To compute To multiply F(n-1) F(n-1) by n

The recurrence relation: M(n) = M(n-1) + 1 for n>0

The initial condition: M(0) = 0 [Backward substitution]

Example (3)

Backward substitutions

$$M(n) = M(n-1)+1$$

$$= [M(n-2)+1] + 1 = M(n-2)+2$$

$$= [M(n-3)+1] + 2 = M(n-3)+3$$

$$\vdots$$

$$= ???$$

Solving Recurrences

Chapter 4.3 - 4.5

Tower of Hanoi

How many moves are required to move disks from peg 1 to peg 3?

Tower of Hanoi

#moves vs. #disks?

M(n) = The number of required moves given n disks

Recurrence:

$$M(n) = M(n-1) + 1 + M(n-1)$$
 for $n>1$
 $M(1) = 1$ 1. n
 $M(n) = \Theta(?)$ 2. $n\log n$
3. n^2
4. 2^n

$$M(n) = M(n-1) + 1 + M(n-1)$$
 for $n>1$
 $M(1) = 1$

$$M(n) = 2M(n-1) + 1$$

= $2[2M(n-2)+1] + 1 = 4M(n-2) + 3$
= $4[2M(n-3)+1] + 3 = 8M(n-3) + 7$
:
:
:
= $2^{i}M(n-i) + 2^{i} - 1$ Exponential algorithm!

total moves = $2^{n-1}M(1) + 2^{n-1} - 1 = 2^n - 1 = \Theta(2^n)$

Fibonacci Numbers

Recurrence:

$$F(n) = F(n-1) + F(n-2)$$
 for $n>1$
 $F(0) = 0$, $F(1) = 1$

$$F(n) = \Theta(?)$$

- 1. Linear *n*
- 2. Polynomial *n^c*
- 3. Exponential *c*ⁿ
- 4. Factorial *n*!

- Analysis examples
- Three methods for solving recurrences

Solving recurrences

- $T(n) = 16T(n/4) + n^2$
- $T(n) = 7T(n/3) + n^2$
- T(n) = T(n/2) + T(n/4) + T(n/8) + n
- T(n) = 2T(n/4) + 1

Solving recurrences

- The substitution method
 - Forward substitution
 - Backward substitution
- The recursion tree method
- The master method

Backward substitution

Recurrence

$$x(n) = x(n-1) + n$$
$$x(1) = 1$$

Solution

$$x(n) = x(n-1) + n$$

$$= [x(n-2)+n-1] + n$$

$$= [x(n-3)+n-2] + (n-1) + n$$

$$= x(n-i) + (n-i+1) + (n-i+2) + ... + n$$

$$x(n) = 1+2+3+...+n = n(n+1)/2 = \Theta(n^2)$$

Forward substitution

Recurrence

$$x(n) = 2x(n-1) + 1$$
 for $n>1$
 $x(1) = 1$

Solution

$$x(1) = 1$$

 $x(2) = 2*1 + 1 = 3$
 $x(3) = 2*3 + 1 = 7$
 $x(4) = 2*7 + 1 = 15$
 $x(n) = 2^{n}-1 = \Theta(2^{n})$

Recursion tree

Recurrence

$$T(n) = T(n/4) + T(n/2) + n^2$$

The master theorem

 The master method applies to recurrences of the form

$$T(n) = aT(n/b) + f(n),$$

where $a \ge 1$, b > 1, and f is asymptotically positive.

(An asymptotically positive function is one that is positive for all sufficiently large n.)

Examples

$$T(n) = aT(n/b) + f(n)$$

•
$$T(n) = 4T(n/2) + n$$

•
$$T(n) = 2T(n/3) + n^3$$

•
$$T(n) = 5T(3n/4) + n^2$$

•

$$f(n)$$
 vs. $n^{\log_b a}$

The master theorem: three cases

$$T(n) = aT(n/b) + f(n) f(n) \text{ vs. } n^{\log_b a}$$

- Case 1: $f(n) < n^{\log_b a}$

$$T(n) = \Theta(n^{\log_b a})$$

- Case 2: $f(n) = n^{\log_b a}$

$$T(n) = \Theta(n^{\log_b a} \lg n)$$

- Case 3: $f(n) > n^{\log_b a}$

$$T(n) = \Theta(f(n))$$

and polynomially smaller! $f(n) = O(n^{\log_b a - \varepsilon})$ for some $\varepsilon > 0$

and polynomially larger! $f(n) = \Omega(n^{\log_b a + \varepsilon}) \ for \ some \ \varepsilon > 0$ and satisfy the regularity condition! $af(n/b) \le cf(n) \quad for \ some \ c < 1$

The master theorem: examples

$$T(n) = aT(n/b) + f(n)$$

•
$$T(n) = 4T(n/2) + n$$

 $-a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2$
 $-f(n) = n \Rightarrow f(n) = O(n^{2-\varepsilon}) \text{ for } \varepsilon = 1$

CASE 1!
$$T(n) = \Theta(n^2)$$

The master theorem: examples

$$T(n) = aT(n/b) + f(n)$$

•
$$T(n) = 4T(n/2) + n^2$$

 $-a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2$
 $-f(n) = n^2$

CASE 2!
$$T(n) = \Theta(n^2 | gn)$$

The master theorem: examples

$$T(n) = aT(n/b) + f(n)$$

- $T(n) = 4T(n/2) + n^3$
 - -a=4, $b=2 \Rightarrow n^{log_b a}=n^2$

$$-f(n) = n^3 \Rightarrow f(n) = \Omega(n^{2+\varepsilon})$$
 for $\varepsilon = 1$

• Check the regularity condition: $4(n/2)^3 \le cn^3$ for c = 1/2

CASE 3!
$$T(n) = \Theta(n^3)$$

The regularity condition:

$$af(n/b) \le cf(n)$$
 for some $c < 1$

Idea of the master theorem

$$T(n) = aT(n/b) + f(n)$$

Idea of the master theorem

Case 1 $(f(n) < n^{\log_b a})$: dominated by the cost in the leaves Case 2 $(f(n) = n^{\log_b a})$: evenly distributed among levels of the tree Case 3 $(f(n) > n^{\log_b a})$: dominated by the costs of the root

Idea of the master theorem

- Case 1: $f(n) < n^{\log_b a} \Rightarrow \Theta(n^{\log_b a})$
 - The weight increases geometrically from the root to the leaves.
- Case 2: $f(n)=n^{\log_b a} \Rightarrow \Theta(n^{\log_b a} \lg n)$ or $\Theta(f(n) \lg n)$
 - The weight is approximately the same on each level.
- Case 3: $f(n) > n^{\log_b a} \Rightarrow \Theta(f(n))$
 - The weight decreases geometrically from the root to the leaves.

Coming up

- Analysis examples
- Three methods for solving recurrences
- Divide and conquer (Chapter 4.1 4.2)

