Introdução à arquitetura IA-32

João Canas Ferreira

Fevereiro 2013

Registos do CPU (modo de 32 bits)

32 bits	16 bits	8 bits	
EAX	AX	AL, AH	acumulador
EBX	ВХ	BL, BH	
ECX	CX	CL, CH	contador
EDX	DX	DL, DH	
EDI	DI	_	
ESI	SI	_	
EBP	BP	_	utilização especial
ESP	SP	_	utilização especial
EFLAGS	_	_	"bandeiras" (em modo 32 bits)
EIP	_		instruction pointer (em modo 32 bits)

Os registos indicados em cada linha NÃO são independentes.

Formato de instruções

Número de operandos

- Zero operandos: nop
- Um operando: jmp destino
- Dois operandos: add eax,ebx

Categorias de operandos

- Registos (eax, bx, dl, ...)
- Constantes (valores imediatos): 21, 17c3h, 0a3h
- Referências a posições de memória (diversos modos de endereçamento)

Regras para instruções de 2 operandos

- Formato geral: instr op1, op2
 Significado: op1 ← op1 <operação> op2
- Operandos têm tamanho igual.
- Apenas um operando pode ser uma referência a memória.

João Canas Ferreira (FEUP)

Intro IA-32

Fevereiro 2013

3 / 15

Operações de transferência de dados

Instrução mov: Copiar valor de um local para outro.

O local de origem NÃO é alterado.

Exemplos

- mov eax, ebx registos ficam com valor igual (o valor de ebx)
- mov eax,eax sem efeito prático
- mov bl,dl
- mov dx, bx
- mov dx, OABCDh copia constante para registo dx

Instruções não existentes

- mov eax,bx
- mov OABCDh,dx

operandos de tamanhos diferentes

não se pode alterar uma constante

Operações aritméticas e lógicas (subconjunto)

IA-32		MIPS	Operação
add eax,ebx	add	\$s0 , \$s0 , \$s1	adição
add eax,20	addi	\$s0,\$s0,20	adição
sub eax,ebx	sub	\$s0,\$s0,\$s1	subtração
inc eax	addi	\$s0,\$s0,1	incrementar
dec eax	addi	\$s0,\$s0,-1	decrementar
neg eax	sub	\$s0,\$zero,\$s0	simétrico
and eax,ebx	and	\$s0 , \$s0 , \$s1	E (bit a bit))
or eax,ebx	or	\$s0,\$s0,\$s1	OU (bit a bit)
xor eax,ebx	xor	\$s0,\$s0,\$s1	OU-exclusivo (bit a bit)
not eax	xori	\$s0,\$s0,0xFFFF	complemento

João Canas Ferreira (FEUP)

Intro IA-32

Fevereiro 2013

5 / 15

Modos de endereçamento de memória

- Endereçamento direto de memória
 - mov eax, [1234ABCDh]
 transfere valor da posição de memória 1234ABCDh para o registo eax
 - add BYTE PTR [1234ABCDh], 21 soma 21 ao valor guardado na posição de memória 1234ABCDh
- Endereçamento indireto (via um registo)
 - mov eax, [edi]
 transfere valor da posição cujo endereço está em edi para o registo eax
 - add BYTE PTR [edx], 21 soma 21 ao valor guardado na posição cujo endereço está em edx
- Endereçamento indexado (via registo + constante)
 - mov eax, [30+edi]
 transfere valor da posição de endereço edi+30 para o registo eax
 - add BYTE PTR 100[edx], 21 sintaxe alternativa soma 21 ao valor quardado na posição de endereço edx+100

Exemplo de endereçamento direto

João Canas Ferreira (FEUP) Intro IA-32 Fevereiro 2013 7 / 15

Exemplo de endereçamento indireto

João Canas Ferreira (FEUP) Intro IA-32 Fevereiro 2013 8 / 15

Exemplo de endereçamento indexado

João Canas Ferreira (FEUP) Intro IA-32 Fevereiro 2013 9 / 15

Registo de "flags"

Flag: campo de 1 bit

- O registo EFLAGS é actualizado após a execução de cada instrução.
- Cada instrução afeta um subconjunto específico de bits.

- CF Carry flag: =1 se houve transporte (aritmética sem sinal)
- ZF Zero flag: =1 se resultado da operação foi zero
- SF Sign flag: =1 se resultado da operação é negativo
- OF Overflow flag: =1 se houve overflow (aritmética com sinal)

Exemplo: as instruções add e sub afetam os quatro indicadores (flags) mencionados (e outros).

Saltos condicionais (1)

- Os saltos condicionais são do tipo: J<cond> destino
- O salto é tomado se a condição for verdadeira.

Utilização de instrução de salto condicional

add eax,ebx; afeta *flags*jo erro; salta se existir *overflow*...; processamento "regular"
erro: ...; tratar de *overflow*

 Comparações explícitas são efetuadas com a instrução cmp op1,op2

 A instrução cmp afeta flags exactamente como sub op1,op2 mas sem alterar op1.

João Canas Ferreira (FEUP)

Intro IA-32

Fevereiro 2013

11 / 15

Saltos condicionais (sem sinal)

Instruction Mnemonic	Condition (Flag States)	Description
Unsigned Conditional Jumps		
JA/JNBE	(CF or ZF) = 0	Above/not below or equal
JAE/J.·\B	CF = 0	Above or equal/not below
JB/JNAE	CF = 1	Below/not above or equal
JBE/JNA	(CF or ZF) = 1	Below or equal/not above
JC	CF = 1	Carry
JE/JZ	ZF = 1	Equal/zero
JNC	CF = 0	Not carry
JNE/JNZ	ZF = 0	Not equal/not zero
JNP/JPO	PF = 0	Not parity/parity odd
JP/JPE	PF = 1	Parity/parity even
JCXZ	CX = 0	Register CX is zero
JECXZ	ECX = 0	Register ECX is zero

Fonte: Intel 64 and IA-32 Architectures Software Developer's Manual Vol. 1

Saltos condicionais (com sinal)

Signed Conditional Jumps		
JG/JNLE	$((SF \times OF) \times ZF) = 0$	Greater/not less or equal
JGE/JNL	(SF xor OF) = 0	Greater or equal/not less
JL/JNGE	(SF xor OF) = 1	Less/not greater or equal
JLE/JNG	$((SF \times OF) \times ZF) = 1$	Less or equal/not greater
JNO	OF = 0	Not overflow
JNS	SF = 0	Not sign (non-negative)
JO	OF = 1	Overflow
JS	SF = 1	Sign (negative)

Fonte: Intel 64 and IA-32 Architectures Software Developer's Manual Vol. 1

O programador deve escolher o tipo de teste (com ou sem sinal) com base no tipo de dados que está a processar.

João Canas Ferreira (FEUP)

Intro IA-32

Fevereiro 2013

13 / 15

Deslocamento lógico vs. aritmético

Para a direita

Exemplo: sar eax, 1

Para a esquerda

Exemplo: shl eax, 1 é o mesmo que sal eax, 1

Rotações

Para a esquerda

Exemplo: rol eax, 1 [constante: 0..31]

Exemplo: rcl eax, 1 [constante: 0..31]

Para a direita

ror eax, 1 bit menos significativo copiado para CF

• rcr eax, 1 rotação inclui CF

João Canas Ferreira (FEUP)

Intro IA-32

Fevereiro 2013

15 / 15