In [7]: import pandas as pd from sklearn.preprocessing import LabelEncoder from sklearn.model_selection import train_test_split from sklearn.naive bayes import GaussianNB from sklearn.metrics import accuracy score playtennis=pd.read_csv(r'C:\Users\y22acm475\Desktop\playtennis.csv') print("given dataset is:\n", playtennis, "\n") le=LabelEncoder() # convert non-numerical value into numerical values playtennis['outlook'] = le.fit_transform(playtennis['outlook']) playtennis['Temperature'] = le.fit transform(playtennis['Temperature']) playtennis['Humidity'] = le.fit transform(playtennis['Humidity']) playtennis['Wind'] = le.fit_transform(playtennis['Wind']) playtennis['PlayTennis'] = le.fit_transform(playtennis['PlayTennis']) print("the Encoding dataset is \n", playtennis) x = playtennis.drop(['PlayTennis'], axis=1) y = playtennis['PlayTennis'] x train, x test, y train, y test = train test split(x,y,test size=0.20) print("\n x_train: \n", x_train) print("\n y_train: \n", y_train) model=GaussianNB() model.fit(x_train,y_train) y_pred=model.predict(x_test) accuracy = accuracy_score(y_test, y_pred) print("\n Accuracy of Naive Bayes classifier: ", accuracy)

	4.44	•			
give	en dataset	is: Temperature	Uumi di tv	Wind	PlayTennis
0	Sunny	Hot	High	Weak	No
1	Sunny	Hot			No
	Overcast		High	Strong Weak	
2		Hot	High		Yes
3	Rain	Mild	High	Weak	Yes
4	Rain	Cool	Normal	Weak	Yes
5	Rain	Cool	Normal	Strong	No
6	0vercast	Cool	Normal	Strong	Yes
7	Sunny	Mild	High	Weak	No
8	Sunny	Cool	Normal	Weak	Yes
9	Rain	Mild	Normal	Weak	Yes
10	Sunny	Mild	Normal	Strong	Yes
11	Overcast	Mild	High	Strong	Yes
12	Overcast	Hot	Normal	Weak	Yes
13	Rain	Mild	High	Strong	No
the	Encoding o				
	outlook	Temperature	Humidity		PlayTennis
0	2	1	0	1	0
1	2	1	0	0	0
2	0	1	0	1	1
3	1	2	0	1	1
4	1	0	1	1	1
5	1	0	1	0	0
6	0	0	1	0	1
7	2	2	0	1	0
8	2	9	1	1	1
9	1	2	1	1	1
10	2	2	1	0	1
11	0	2	0	0	1
12	0	1	1	1	1
13	1	2	0	0	0
13	1	2	Ø	v	Ø
x_train:					
- `-		Temperature	Humidity	/ Wind	
11	0	2	0	0	
13	1	2	0	0	
10	2	2	1	0	
5	1	0	1	0	
		1		1	
0	2		0 1		
6	0	0		0	
3	1	2	0	1	
2	0	1	0	1	
9	1	2	1	1	
4	1	0	1	1	
1	2	1	0	0	
y_train:					
11	1				
13	0				
10	1				
5	0				
0	0				
6	1				
3	1				
2	1				
9	1				
4	1				
1	0				

Name: PlayTennis, dtype: int64

Accuracy of Naive Bayes classifier: 1.0

```
In [22]:
         import numpy as np
          import matplotlib.pyplot as plt
         np.random.seed(42)
         m = 100
         X=6*np.random.rand(m,1)=3
         y=0.5*X**2+X+2+np.random.randn(m,1)
         plt.plot(X,y,"bo")
         plt.xlabel("X1")
         plt.ylabel("Y")
         plt.show()
            10
             8
             6
             4
             2
             0
                                            i
                                                   ż
                                     Ò
                                    Х1
         from sklearn.model_selection import train_test_split
In [29]:
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
         from sklearn.preprocessing import PolynomialFeatures
         poly_features=PolynomialFeatures(degree=2,include_bias=False)
         X_poly=poly_features.fit_transform(X)
         X[0]
Out[29]: array([-0.75275929])
In [26]: X poly[0]
Out[26]: array([-0.75275929, 0.56664654])
In [27]:
         from sklearn.linear_model import LinearRegression
         lin reg=LinearRegression()
         lin_reg.fit(X_poly,y)
         lin_reg.intercept_,lin_reg.coef_
Out[27]: (array([1.78134581]), array([[0.93366893, 0.56456263]]))
```

```
In [28]: X_new=np.linspace(-3,3,200).reshape(200,1)
    X_new_poly=poly_features.transform(X_new)
    y_new=lin_reg.predict(X_new_poly)
    plt.plot(X_new,y_new,"r-",linewidth=2,label="Predictions")
    plt.plot(X_train,y_train,"b.")
    plt.plot(X_test,y_test,"b.")
    plt.xlabel("X1")
    plt.ylabel("Y")
    plt.legend()
    plt.show()
```


In []: