8086 Addressing Modes

Course Teacher:

Md. Fahmidur Rahman Sakib

Lecturer, Department of Computer Science & Engineering Metropolitan University

Course ID: CSE 237

Course Title: Microprocessor and Interfacing

Lecture References:

Book:

- Microprocessors and Interfacing: Programming and Hardware, Chapter # 2, Author: Douglas V. Hall
- The 8086/8088 Family: Design, Programming, And Interfacing, Chapter # 2, Author: John Uffenbeck.

Addressing Mode and Categories

- > The different ways in which a microprocessor can access data are referred to as its addressing modes.
- > Addressing modes of 8086 Microprocessor are categorized as:
 - Addressing Data
 - > Addressing Program codes in memory
 - > Addressing Stack in memory
 - > Addressing I/O
 - > Implied addressing

Things to know...

> Instruction format

opcode Operand(s)

- Instructions can have 1, 2 or no operands
 - > INCAX; I operand
 - \rightarrow **ADD CX, DX**; 2 operands \Longrightarrow CX = CX + DX
 - > **HLT**; no operand
- > Instruction cannot have:
 - > SUB [DI], [1234h]; memory locations as both operands
 - > MOV 1234, AX; immediate data as destination operand

- Immediate addressing
- II. Direct addressing
- III. Register [direct] addressing
- IV. Register indirect addressing
- v. Base-plus-index addressing
- VI. Register relative addressing
- VII. Base-relative-plus-index addressing

Immediate addressing

Data is immediately given in the instruction

MOV BL, 44

II. Direct addressing

Data address is directly given in the instruction

MOV BX, [437AH]

III. Register [direct] addressing

Data is in a register (here BX register contains the data)

MOV AX, BX

IV. Register [indirect] addressing

Register supplies the address of the required data

MOV CX, [BX] JMP [DI]

v. Base-plus-index addressing

- Base register is either BX or BP
- Index register is either DI or SI

MOV DX, [BX+DI]

VI. Register relative addressing

- Register can be a base (BX, BP) or an index register (DI, SI)
- Mainly suitable to address array data

MOV AX, [BX+1000]

VII. Base-relative-plus-index addressing

Suitable for array addressing

MOV AX, [BX+DI+10]

2. Addressing Program Codes in Memory

- Used with JMP and CALL instructions
- 3 distinct forms:
 - Direct
 - Indirect
 - Relative

2. Addressing Program Codes in Memory

Address is directly given in the instruction

JMP 1000: 0000

or JMP doagain; doagain is a label in code

CALL 1000:0000

or CALL doagain; doagain is a procedure in code

Often known as far jump or far call

2. Addressing Program Codes in Memory

- Address can be obtained from

 - **b)** any relative registers ([BP],[BX],[DI],[SI])
 JMP [BX]
 IP = what is inside the physical address of DS : BX ; then CS : IP
 - c) any relative register with displacement JMP [BX + 100h]

IP = what is inside the physical address of DS : BX +100h ; then CS : IP

3. Addressing Stack in Memory

 PUSH and POP instructions are used to move data to and from stack (in particular from stack segment).

PUSH AX

POP CX

 CALL also uses the stack to hold the return address for procedure.

CALL SUM; SUM is a function name

4. Addressing Input and Output Port

- IN and OUT instructions are used to address I/O ports
- Could be direct addressing
 - IN AL, 05h; Here 05h is a input port number
- or indirect addressing
 - **OUT DX, AL**; DX contains the address of I/O port
- Only DX register can be used to point a I/O port

5. Implied Addressing

- No explicit address is given with the instruction
- implied within the instruction itself
- Examples:

```
CLC; clear carry flag
```

HLT; halts the program

RET; return to DOS

Thank You!!