	Table PIDS1 Process Integration Difficult Challenges	
Near-Term 2013-2020	Summary of Issues	
1. Scaling Si CMOS	 Scaling of fully depleted SOI and multi-gate (MG) structures Implementation of gate-all-around (nanowire) structures Controlling source/drain series resistance within tolerable limits Further scaling of EOT with higher K materials (K > 30) Threshold voltage tuning and control with metal gate and high-K stack Inducing adequate strain in advanced structures 	
2. Implementation of high-mobility CMOS channel materials	 Basic issues same as Si devices listed above High-K gate dielectrics and interface state (D_{it}) control CMOS (n- and p-channel) solution with monolithic material integration Epitaxy of lattice-mismatched materials on Si substrate Process complexity and compatibility with significant thermal budget limitations 	
3. Scaling of DRAM and SRAM	 DRAM— Adequate storage capacitance with reduced feature size; implementing high-κ dielectrics Low leakage in access transistor and storage capacitor; implementing buried gate type/saddle fin type FET Low resistance for bit- and word-lines to ensure desired speed Improve bit density and lower production cost in driving toward 4F² cell size SRAM— Maintain adequate noise margin and control key instabilities and soft-error rate Difficult lithography and etch issues 	
4. Scaling high-density non-volatile memory	 Endurance, noise margin, and reliability requirements Multi-level at < 20 nm nodes and 4-bit/cell MLC Non-scalability of tunnel dielectric and interpoly dielectric in flash memory – difficulty of maintaining high gate coupling ratio for floating-gate flash Few electron storage and word line breakdown voltage limitations Cost of multi-patterning lithography Implement 3-D NAND flash cost effectively Solve memory latency gap in systems 	
5. Reliability due to material, process, and structural changes, and novel applications.	 TDDB, NBTI, PBTI, HCI, RTN in scaled and non-planar devices Gate to contact breakdown Increasing statistical variation of intrinsic failure mechanisms in scaled and non-planar devices 3D interconnect reliability challenges Reduced reliability margins drive need for improved understanding of reliability at circuit level Reliability of embedded electronics in extreme or critical environments (medical, automotive, grid) 	

Table PIDS1 Process Integration Difficult Challenges			
Long-Term 2021-2028	Summary of Issues		
Implementation of advanced multi-gate structures	 Fabrication of advanced non-planar multi-gate and nanowire MOSFETs to below 10 nm gate length Control of short-channel effects Source/drain engineering to control parasitic resistance Strain enhanced thermal velocity and quasi-ballistic transport 		
2. Identification and implementation of new memory structures	 Scaling storage capacitor for DRAM DRAM and SRAM replacement solutions Cost effective installation of high density 3-D NAND (512 Gb – 4 Tb) with high layer numbers or tight cell pitch Implementing non-charge-storage type of NVM cost effectively Low-cost, high-density, low-power, fast-latency memory for large systems 		
3. Reliability of novel devices, structures, and materials.	 Understand and control the failure mechanisms associated with new materials and structures for both transistor and interconnect Shift to system level reliability perspective with unreliable devices Muon-induced soft error rate 		
4. Power scaling	 V_{dd} scaling while supplying sufficient current drive Controlling subthreshold current or/and subthreshold slope Margin issues for low V_{dd} 		
5. Integration for functional diversification	Integration of multiple functions onto Si CMOS platform3-D integration		

LINK TO ITRS 2013 FULL EDITION DETAILS