The Entropy of a Schwarzschild black hole in Causal Set Theory

MSci Project Viva - Theoretical Physics Group

Author: Vid Homšak Partner: Stefano Veroni

Supervisor: Prof Fay Dowker

Imperial College London Overview

Credits to my partner Stefano Veroni, my ride-or-die.

Presentation Outline:

- Causal Set Theory
- Simulating causal sets in Schwarzschild spacetime
- Black Hole Entropy → Entropy in Causal Sets
- Results and conclusions

Discrete theory of Quantum Gravity

Figure 1: The infinities otherwise dealt with by applying the renormalisation resurface in naive attempts to quantise gravity.

Causal Set Approach to Quantum Gravity

 Hawking-King-McCarthy-Malament (HKMM) theorem:

GEOMETRY = ORDER + NUMBER!

- Spacetime macroscopic approximation to an underlying causal discrete structure.
- Causal set: discrete, partially ordered set of events C with order relation ≺.

Figure 2: Causal Set

Causal Set Properties

A causal set (causet) satisfies $(\forall x, y, z \in C)$:

- Transitivity: $x \prec y \land y \prec z \Rightarrow x \prec z$.
- Acyclicity (irreflexivity): $x \not\prec x$
- Local finiteness: $|\{z \mid x \prec z \prec y\}|$ is finite.

Imperial College

How to Simulate Causal Sets?

Poisson Sprinkling!

- **1** Pick the sprinkling density $\rho = \ell^{-4}$.
- ② Distribute $N = \text{Poiss}(\rho V)$ points uniformly such that the probability of having n points in a volume V is

Poiss
$$(n; V) = \frac{(\rho V)^n}{n!} e^{-\rho V}$$
.

Note:
$$dV(x) \propto \sqrt{-g_{\mu\nu}(x)}$$
.

Onnect the elements according to the causal structure of the spacetime region.

Imperial College London Simulation Framework

- Schwarzschild spacetime computationally expensive!
 - ⇒ No extensive studies of Schwarzschild causets until now
- created highly-parallelised simulation framework in C++ running on Imperial's HPC
 - \Rightarrow x15000 speed up vs. single-core Python
- Need high density sprinkle into a 4D cylinder
 - \Rightarrow Causal set cardinality $\sim 750k \rightarrow 1$ TB of RAM :)

GitHub repository: vidh2000/MSciSchwarzschildCausets

Causality in Schwarzschild spacetime

Schwarzschild metric:

$$ds^{2} = -\left(1 - \frac{2M}{r}\right)dt_{S}^{2} + \left(1 - \frac{2M}{r}\right)^{-1}dr^{2} + r^{2}d\Omega^{2}$$

• Using well-behaved Eddington-Finkelstein (EF-original) coordinates:

$$\left(t^* = t_{\mathcal{S}} + 2M \ln \left| \frac{r}{2M} - 1 \right|, r, \theta, \phi\right)$$

yields a metric

$$ds^{2} = -\left(1 - \frac{2M}{r}\right)dt^{*2} + \frac{4M}{r}dt^{*}dr + \left(1 + \frac{2M}{r}\right)dr^{2} + r^{2}d\Omega^{2}$$

Determining the causality between two events in EF-original coordinates

Imagine two events E_1 and E_2 in 4D EF-original coordinates.

- **1** Rotate coord. system s.t. $\theta_1 = \theta_2 = \pi/2 \rightarrow \text{reduces to 3D}$.
- **2** Null geodesics then satisfy, (for affine parameter λ)

$$\left(\frac{2M}{r}-1\right)\left(\frac{dt^*}{d\lambda}\right)^2 + \frac{4M}{r}\frac{dt^*}{d\lambda}\frac{dr}{d\lambda} + \left(\frac{2M}{r}+1\right)\left(\frac{dr}{d\lambda}\right)^2 + r^2\left(\frac{d\phi}{d\lambda}\right)^2 = 0$$

Time and ϕ independent metric \Rightarrow conserved "energy" and "angular momentum"

$$E^* = \left(\frac{2M}{r} - 1\right) \frac{dt^*}{d\lambda} + \frac{2M}{r} \frac{dr}{d\lambda}, \qquad L = r^2 \frac{d\phi}{d\lambda}.$$

Determining the causality between two events in EF-original coordinates

1 Inserting these into the geodesic equation and rearranging yields (for u=1/r)

$$\begin{split} \frac{d\phi}{du} &= \pm_{du} \left(\eta^2 + 2Mu^3 - u^2 \right)^{-1/2} \\ \frac{dt^*}{du} &= \frac{1}{u^2 (2Mu - 1)} \left[\frac{\pm_{du} \eta}{\sqrt{\eta^2 + u^2 (2Mu - 1)}} + 2Mu \right] \end{split}$$

where
$$\eta = E^*/L$$
 and $\pm_{du} = \operatorname{sign}(\Delta u)$

- Using boundary conditions (ϕ, u) and $d\phi/du \rightarrow$ fit for η^2
- **5** Using $dt^*/du \rightarrow \text{find } t_+^*$, t_-^* when null geodesic reaches E_2

Conditions for determining the causality

Hence $E_1 \prec E_2$ iff:

- $t_2^* \in [t_-^*, t_+^*]$
- pair satisfies statements that allow determining if $E_1 \prec E_2$

Can solve analytically in (1+1)D, yielding lower bound

$$t_2^* - t_1^* = r_1 - r_2$$

and upper bound

$$t_2^* - t_1^* = [r + 4M \ln (r - 2M)]_{r_1}^{r_2}$$

Figure 3: Connections form only within the light cones, (1+1)D.

The Mystery of the Black Hole Entropy

Black hole thermodynamics:

⇒ Hawking and Bekenstein in 1970s - black holes radiate!

"If your theory is found to be against the second law of thermodynamics, I can give you no hope; there is nothing for it but to collapse in deepest humiliation." Arthur Eddington, 1915.

Black Hole Entropy in Causal Set Theory

• The entropy of a black hole with event horizon area A

$$\mathcal{S}_{BH}=rac{1}{4}rac{A}{\ell_p^2}, \qquad \qquad \ell_p=\sqrt{rac{\hbar \mathcal{G}}{c^3}}\sim 10^{-35} \ ext{m}.$$

- Entropy ⇔ microstates
- Horizon \equiv empty spacetime \Rightarrow spacetime molecules?
- ullet Assume N_{mol} independent molecules, then Gibbs entropy is

$$S = -N_{mol} \sum p_n \ln(p_n),$$

where p_n is probability for molecule to be in n^{th} state.

Horizon Molecules

Figure 4: (Up) n- Λ molecules. (Down) HRV molecules.

Imperial College

Molecule counting: Overview

- Horizon $\mathcal{H}: r = r_S$ and a space-like hypersurface $\Sigma: t^* = const. \Leftarrow$ defines the time of "measuring entropy"
- The probability a region ΔR of space with volume V is occupied by n events

$$P(n \text{ in } \Delta R) = \frac{(\rho V)^n}{n!} e^{-\rho V}$$

Locally flat ⇒ assume Rindler horizon for analytic calculations

$$\mathcal{H}: t = x$$
, $\Sigma: t = constant$

Molecule counting: HRV molecules

• Integrating over infinitesimal volume elements yields

$$\langle N_{HRV} \rangle = \rho^3 \int_{I^-(\mathcal{J})} dV_p \ V_{in}^+(p) \ V_{out}^-(p) \ e^{-\rho V^+(p)}$$

$$= \frac{3\sqrt{3}}{70} \sqrt{\rho} A$$

• Expressing in terms of Planck length

$$\langle N_{HRV} \rangle pprox rac{0.07423}{\ell^2} rac{A}{l_p^2},$$

which is our own analytic result.

Molecule counting: Links and $n-\Lambda$ molecules

• Barton et. al gives the scaling of links as

$$\langle N_{link} \rangle = \frac{\sqrt{3}}{10I^2} \frac{A}{I_p^2}$$

• Counting $n-\Lambda$ gives that

$$N_{link} = \sum_{n=1}^{\infty} n N_{n-\Lambda}$$

Results: $n-\Lambda$ counting

Entropy scales as

$$S_{\Lambda} = 0.0929 \pm 0.0006 \frac{A}{\ell^2},$$

where ℓ is discreteness scale.

- Confirms analytical results for the scaling of single-link molecules
- Analytical calculations for curvature corrections yield

$$\Delta S_{\Lambda} = 0.173 \pm 0.001 \frac{\sqrt{A}}{\ell}$$

Figure 5: Number of n- Λ molecules scales perfectly with horizon area.

When discreteness scale becomes physical

• Setting $S_{\Lambda}=S_{BH}$, noting that $S_{BH}=\frac{1}{4}\frac{A}{\ell_p^2}$ yields

$$\ell = (0.610 \pm 0.002)\ell_p$$

The implied minimum "step" in time and space

$$\Rightarrow \Delta x_{min} \sim 10^{-34} \mathrm{m}$$

$$\Rightarrow \Delta t_{min} \sim 10^{-44} s$$

Entropy really lives on the Horizon?

- Elements in molecules have $t_{min} < -3I \approx 10^{-44} \text{s}$ \Rightarrow entropy defined at a certain point in time.
- Elements in molecules straddle the horizon, $\Delta r_{max} < 2I \approx 10^{-34} m$ \Rightarrow black hole entropy lives on the horizon.

Figure 6: Horizon molecules are very localised in space and time.

Results: $n-\Lambda$ distribution

• $n - \Lambda$ molecules distributed as a falling exponential

$$p_n \propto e^{-bn}, \quad b = 1.52 \pm 0.01$$

- Each link adds an integral
- Assuming $p_n \propto e^{-E_n/k_BT}$ we obtain

$$E_n \approx \frac{3n}{2} k_B T$$
,

 \sim energy of *n*-atomic molecules in 3D space.

Figure 7: Probability of n- Λ versus n. The distribution of molecules is well described by a falling exponential.

Results: HRV molecules

Analytically derived number scaling agrees with simulation,

$$N_{HRV} = 0.0742 \frac{A}{\ell^2}.$$

Majority HRV molecules are the open type

$$p_{open} = 0.972 \pm 0.008, \qquad p_{closed} = 0.0276 \pm 0.0002$$

Entropy obtained via HRV counting scales as

$$S_{HRV} = 0.0098 \pm 0.0003 \frac{A}{\ell^2},$$

yielding a discreteness scale $\ell = 0.198 \pm 0.003 \ell_p$.

Conclusion

- Created our own extremely efficient CST simulation framework - also allows one to study causets in Schwarzschild
- For the first time showed that entropy of Schwarzschild black hole in CST
 - scales proportional to area
 - lives on the horizon
- Analytically derived
 - expected number of HRV molecules as a function of area
 - curvature corrections for link-counting in Schwarzschild
- Possible extensions:
 - discretise more complex black holes
 - investigate other entropy models and use the framework to study Ricci scalar, dimension estimators...

Literature

- Hawking SW, King AR, McCarthy PJ. 1976. J. Math. Phys. 17:174-181.
- Malament DB. 1977. J. Math. Phys. 18:1399-1404.
- 3 Bombelli L, et al. 1987. Phys. Rev. Lett. 59:521-524.
- Bekenstein JD. 1972. Lett. Nuovo Cimento 4:737–740.
- **10** Hawking SW. 1975. Commun.Math. Phys. 43:199–220.
- **1** Dou D, Sorkin RD. 2003. Found. Phys. 33:279-296.
- Me S, Rideout D. 2009. Class.Quant.Grav. 26:125015.
- Barton C, et al. 2019. Phys. Rev. D 100:126008.
- Benincasa DMT. 2013. PhD Thesis. Imperial College London.
- O Sorkin RD, Yazdi YK. 2018. Class. Quantum Grav. 35:074004.