

Homework 3

Due Friday, December 20, 2019

Exercise 1. Max SNR Beaformer

Teaching assistants: Michalina Pacholska

The array signal vector follows the model

$$x_n = a(\theta) s_n + e_n = z_n + e_n,$$

where s_n is the desired narrowband source signal, θ is the direction of arrival, $a(\theta)$ is the array response vector at θ , while e_n is the noise vector. Assume that the desired source signal and noise are zero-mean WSS, and that noise covariance matrix R_e is positive definite. Show that the maximum SNR beamformer has the form

$$h = \alpha R_e^{-1} a(\theta)$$
.

Note that the SNR in this particular case has the form

SNR =
$$\frac{E[|h^*z_n|^2]}{E[|h^*e_n|^2]}$$
.

Exercise 2. Splines

We would like to interpolate the function $f(x) = \frac{1}{x}$ at points x = 1, 4, 5 with a cubic spline s(x) that satisfies the clamped boundary conditions:

$$s'(a) = f'(a)$$

$$s'(b) = f'(b),$$
(1)

for a = 1 and b = 5.

Let the cubic spline in the interval from x = 1 to x = 4 be

$$s_1(x) = a_1 + b_1(x-1) + c_1(x-1)^2 + d_1(x-1)^3,$$
(2)

and the cubic spline in the interval from x = 4 to x = 5 be

$$s_2(x) = a_2 + b_2(x-4) + c_2(x-4)^2 + d_2(x-4)^3.$$
(3)

(i) 3) What are the values of a_1 and a_2 ?

In order to find the values of b_1, c_1, d_1, b_2, c_2 and d_2 in (2) and (3), we try to reach the following matrix notation:

(ii) 7) Fill in the empty boxes in the above equation.

Next, we would like to prove that if s(x) is a *cubic* spline that interpolates a function $f(x) \in C^2[a,b]$ at knots $a = x_1 < x_2 < \cdots < x_n = b$ and satisfies the clamped boundary conditions (1), then

$$\int_{a}^{b} [s''(x)]^{2} dx \le \int_{a}^{b} [f''(x)]^{2} dx.$$
 (4)

(iii) 8) Define the difference d(x) = f(x) - s(x) and prove that

$$\int_{a}^{b} s''(x)d''(x)dx = 0.$$
 (5)

Hint: Divide the interval [a,b] into subintervals and use integration by parts in each subinterval.

(iv) 7) Using (5), prove (4).

Exercise 3. Splines

Consider the signal x(t) as shown in Figure 1. Note that x(t) is non-zero only for [0,5].

Figure 1: Signal x is non-zero only in interval [0, 5].

Recall that $S_{K,\mathbb{Z}}$ is the spline space of degree K with knots at integer values.

- 1. If we say that $x(t) \in S_{K,\mathbb{Z}}$, what would be the minimum value of K?
- 2. We can expand x(t) using the causal elementary B-splines of order 1, $\beta_{+}^{(1)}(t)$:

$$x(t) = \sum_{k \in \mathbb{Z}} a_k \beta_+^{(1)}(t-k) .$$

Find the values of a_k .

3. Define

$$y(t) = \int_{-\infty}^{t} x(\tau)d\tau.$$

The signal y(t) can be expanded as

$$y(t) = \sum_{k \in \mathbb{Z}} b_k \beta_+^{(2)}(t-k) .$$

Find the values of b_k .