Sub-sigma Fields as Information

July 29, 2020

Consider the probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and a sub-sigma field $\mathcal{A} \subset \mathcal{F}$. The sub-sigma field \mathcal{A} is often thought of, intuitively, as containing a subset of the information in \mathcal{F}^1 . For example, we might think of $\mathbb{P}(B|\mathcal{A})$ as the probability of the event B given the information in \mathcal{A} .

Also recall that an event B is independent of a sub-sigma field A if $\mathbb{P}(B|A) = \mathbb{P}(B)$ for all $A \in A$. So, again intuitively, the information in A does not tell us anything about the probability of event B occurring. Now a counter-example:

Consider a probability space on the unit interval, $\Omega = [0, 1]$. Let \mathcal{G} be the sigma-field of all countable sets and sets whose complement is countable. So each set in \mathcal{G} has measure 0 or 1 and so is independent of each event in \mathcal{F} . However, notice that \mathcal{G} also contains all the singleton events in \mathcal{F} (those sets which contain only a single $\omega \in \Omega$). So knowing which of the events in \mathcal{G} occurred is equivalent to knowing exactly which $\omega \in \Omega$ occurred! So in one sense, \mathcal{G} contains no information about \mathcal{F} (it is independent of it), and in another sense it contains all the information in \mathcal{F} .

This example is taken from Billingsley example 4.6 [1].

¹We mean 'information' in the casual sense, not in the sense of entropy.

References

[1] P. Billingsley, *Probability and Measure*. Wiley Series in Probability and Statistics, Wiley, 1995.