

ARQUITETURAS DE ALTO DESEMPENHO ASSIGNMENT 1 - HAMMING CODES

BIT-SERIAL ENCODER COMBINATIONAL DECODER

Turma 1 - Grupo 6 Rui Miguel Oliveira - 89216 Gabriel Malta - 80131

BIT-SERIAL ENCODER - DESIGN

BIT-SERIAL ENCODER - PRINCIPLES

CONTROL UNIT

When the counter reaches 11, the ROM switches the Multiplexers to the parity bit outputs.

```
CONSTANT ROM_TABLE
"1100000",
"1010000",
"1001000",
"0110000",
"0110000",
"1110000",
"1110000",
"1111000",
"1111000",
"00111000",
"00111000",
"00111000",
"0000110",
"0000110",
"0000111",
```

COUNTER 4 BIT

Used to increment the Control Unit.

COMBINATIONAL DECODER - DESIGN

COMBINATIONAL DECODER - PRINCIPLES

- PARITY BITS CALCULATOR
- DECODER 4:11

From the parity-check matrix and the Parity Bits the mask (11bits) is calculated

 IMPLEMENTATION OF THE ERROR CORRECTING PART

Mask ♥ Original Message

A = m1 + m7 + m8 + m11 B = m6 + m9 + m10 + m11

x12 = A * m2 * m3 * m9; x13 = A * m4 * m5 * m10. x14 = B * m2 * m4 * m7; x15 = B * m3 * m5 * m8.

18 x-ors; 3 x-or propagation time delays in the worst case

RESULTS (VWF)

ENCODER

MESSAGE M (M1, M2, ..., M11) = 11110000000 ENCODED MESSAGE X (X1, X2, ..., X15) = 11110000001001

DECODER

SEVERAL EXAMPLES

> CODED B 11010001	110100010111111	100100000100000	000011010101000	110101001010110	111111100111000	100000010110010	101011010111100	X
⇒ MESSAGE B 10010001	10010001011	10010001010	00001101010	11010100101	11111110011	10000001111	11101101011	X