Electronic Devices & Circuits II - EE 3EJ4 Lab #1

_

Stefan Tosti - Tostis - 400367761 - L08 2023 - 09 - 29

Questions for Part 1

Q1. (7 Points)

V+ (VCC)	V- (VE)	V(Q1C) (Volt)	V(Q1B) (Volt)	VCE (Volt)	VBEon (Volt)	RC (ohm)	RB (ohm)	IC (A)	IB (A)	β = IC/IB	VA (V)	ro=VA/IC	gm = IC/25mV	$r\pi = 25mV/IB$
0.5	-1.5	0.397558296	-0.87868933	1.898	0.621	100	1.00E+05	1.02E-03	8.79E-06	117	1000	9.76E+05	4.10E-02	2845

(1)
$$V_{BEon} = 0.621V$$
 and $I_B = 8.79 \times 10^{-6} A = 8.79 \mu A$

(2)
$$\beta = 117$$

(3)
$$|V_a| = 1000V$$

(4)
$$r_0 = 9.76 \times 10^5 \Omega = 976k\Omega$$

(5)
$$g_m = 4.10 \times 10^{-2} \frac{A}{mV} = 41 mS$$

(6)
$$r_{\pi} = 2845 \frac{mV}{A} = 2.845 k\Omega$$

Q2. (8 Points)

V+ (VCC)	V- (VE)	Channel 1 (VC)	Channel 2 (VB)	VCE (Volt)	VBEon (Volt)	RC (ohm)	RB (ohm)	IC (A)	IB (A)	β = IC/IB	VA (V)	ro=VA/IC	gm = IC/25mV	$r\pi = 25mV/IB$
0.5	-1.5	0.326	-0.825	1.826	0.675	100	1.00E+05	1.74E-03	8.25E-06	211	213	1.22E+05	6.96E-02	3030

(1)
$$I_c = 1.74mA$$

(2)
$$V_{BEon} = 0.675V$$
 and $I_B = 8.25 \times 10^{-6} A = 8.25 \mu A$

(3)
$$\beta = 211$$

(4)
$$|V_a| = 213V$$

(5)
$$r_0 = 1.22 \times 10^5 \Omega = 122k\Omega$$

(6)
$$g_m = 6.96 \times 10^{-2} \frac{A}{mV} = 69.6 mS$$

(7)
$$r_{\pi} = 3030 \frac{mV}{A} = 3.03 k\Omega$$

Questions for Part 2

Q3. (7 Points)

V+ (VE)	V- (VCC)	V(Q1C) (Volt)	V(Q1B) (Volt)	VEC (Volt)	VEBon (Volt)	RC (ohm)	RB (ohm)	IC (A)	IB (A)	β = IC/IB	VA (V)	ro=VA/IC	gm = IC/25mV	$r\pi = 25mV/IB$
1.5	-0.5	-0.397093315	0.839935339	1.90	0.660	100	1.00E+05	1.03E-03	8.40E-06	123	143	1.39E+05	4.12E-02	2976

(1)
$$V_{BEon} = 0.66V$$
 and $I_B = 8.40 \times 10^{-6} A = 8.40 \mu A$

(2)
$$\beta = 123$$

(3)
$$|V_a| = 143V$$

(4)
$$r_0 = 1.39 \times 10^5 \Omega = 139 k\Omega$$

(5)
$$g_m = 4.12 \times 10^{-2} \frac{A}{mV} = 41.2 mS$$

(6)
$$r_{\pi} = 2976 \frac{mV}{A} = 2.976 k\Omega$$

Q4. (8 Points)

V+ (VE)	V- (VCC)	Channel 1 (VC)	Channel 2 (VB)	VEC (Volt)	VEBon (Volt)	RC (ohm)	RB (ohm)	IC (A)	IB (A)	β = IC/IB	VA (V)	ro=VA/IC	gm = IC/25mV	$r\pi = 25mV/IB$
1.5	-0.5	-0.3342	0.831	1.83	0.669	100	1.00E+05	1.66E-03	8.31E-06	200	32	1.93E+04	6.63E-02	3008

(1)
$$I_c = 1.66mA$$

(2)
$$V_{BEon} = 0.669V$$
 and $I_B = 8.31 \times 10^{-6}A = 8.31 \mu A$

(3)
$$\beta = 200$$

(4)
$$|V_a| = 210V$$

(5)
$$r_0 = 1.93 \times 10^4 \Omega = 19.3 k\Omega$$

(6)
$$g_m = 6.63 \times 10^{-2} \frac{A}{mV} = 66.3 mS$$

(7)
$$r_{\pi} = 3008 \frac{mV}{A} = 3.008 \Omega$$

Questions for Part 3

Q5. (10 Points)

		Aside
Applying kve i	frem Bese to Emitter Yeilas	ic-BiB-die
VBB-RBB:	IB - VBEn - FERS - VEE =	
VBB - VBEan -	VEE = FB(RBB + (BH)R3)	
IB= VBB-V	BEan-VEE	je= (1341) ib
RIBB +	(B11)R3	
IB= VBB-V	BEan-VEE	je= (B41) ib

Q6. (10 Points)

USing equation (3) : let DVEE = VEE + DVEE TB+ STB, = VBB - (VEE + DVEE) + VBEA RBB
	DIBI = VBB-(VEE+ DVEE) + VBEan - (1) RBB
Usino equelim Ges:	/et DVEE= VEE+ DVEE TB+ DTB= VBB-(VEE+ DVEE) + VBEAN RBB+ CB+DR3
	DFB2 = VBB - (VEE + DVEE) + VBEA PBB + (B+)P3 - (2)

The main difference between these 2 equations is that in equation (3) we do not see the presence of R_3 . This is because it was taken to be 0, based on V_{BEon} as obtained in the previous section. In **Q5** we do not consider $R_3 = 0$ and thus we get the term, $(\beta + 1)R_3$

Since β is always a positive value, and the resistance, R_3 is also always positive, then we can conclude that the term $(\beta + 1)R_3$ will be an overall positive value. This means that equations (1) and (2) have the same numerator, but (2) will always have a larger denominator than (1). This means that for all parameters, $\Delta I_{B2} < \Delta I_{B1}$. This confirms the idea that the emitter resistor, R_3 , reduces the change in I_B

Q8. (10 Points)

Since $R_3 \neq 0$, we now have to take into account a voltage drop across this resistor. Previously, we had the expression $V_{o,min} = V_E + 0.3V$, the resistor, R_3 , has a voltage drop defined by $V_{R3} = I_e R_3$ and thus we can define a new expression for $V_{o,min}$, where $V_{o,min} = V_E + 0.3V + I_e R_3$

Q9. (15 Points)

VEE= -5V 0	P3= ?	Jem G1, B=1/7	ic: Bib=dje	
Io:/mp:Ic R		· · · · · · · · · · · · · · · · · · ·	Bib=Lie	
Vo, min = - 2V R				
		BH		
Vomin = VEE + IE	R3 + 0.3V	→ Ie= P Ic		
R3= 1/3 - 1/0 min - 1/E	F 1/CF =	10.min - VEE - 1/CE -	(-2)-(-5)-03 =	2.67 K SZ
I3 IE		By. Ic	(1/8) (1mA)	
			(114)	
from the given Civ	~ H() //pp	RI Dissipation Description	D IIo	
Jun VIE gilan Cil	100t3 c 1/15/5 =	RITHER VEE, RBB= 1	K1111/6	
IBRBB + VB = R	102 VEE			
IB. AB + VB=				
RI+R2		Aside		
Fc. /ap/ + VB:	= RI (-S	s) -> VB= VEE+ 2	FER3 + VBEON	
13 loc+R/	10c+121	VB=-5+(1/8 (2.67) + 0621	
1 100R1 -1.686 =	P1 (-5)	VB=-1.686V		
W7 JoctPl	100 1/21			
(10.11/.0				
R) = 40.4ks				

The plot of $I_o vs V_{cc}$ can be found below

Q10. (10 Points)

Above is the plot of I_{C} (Blue), V_{CC} (Green) & V_{E} (Red)

By generating a plot of V_{cc} vs V_E we can determine the $|V_{CE}|$. As can be seen from the graph above, $|V_{CE}| = V_{cc} - V_E = (-2V) - (-2.3V) = 0.3V$ and thus we can verify the operating condition that $|V_{CE}| \ge 0.3V$

The circuit used to simulate the above can be found below –

