Architecture Synthesis I

Scheduling with Pipeline Resources, Integer Linear Programming, Iterative Algorithms

Exercise class 10

Presenter:
Jürgen Mattheis

In cooperation with: Pascal Walter

Based on the lecture of: Marco Zimmerling

January 29, 2023

University of Freiburg, Chair for Embedded Systems

Gliederung

Organisation

Task 1

Task 2

Task 3

Organisation

Organisation I

- ► feedback for lecture until February 29
- ► feedback for me: https://forms.gle/f3YN8EFrZ1vsfPoC6

► feedback from students in the last exercise class: don't overexplain tasks at the beginning so there's enough time for the tasks at the end

Jürgen Mattheis Architecture Synthesis I University of Freiburg

Organisation I

► the exercise class videos on youtube do now have a title containing the topics covered in the exercises of the corresponding exercise class

Task 1 I

Scheduling with Pipeline Resources

Jürgen Mattheis Architecture Synthesis I University of Freiburg

Scheduling with Pipeline Resources

Solution 1.1:

```
LIST(G_S(V_S, E_S), G_R(V_R, E_R), \alpha, \beta, priorities){
 t = 1:
 REPEAT {
   FORALL v_k \in V_T {
    Determine candidates U_{t,k} to be scheduled;
    Determine set of occupied resources O_{t,k};
    Choose subset S_t \subseteq U_{t,k} with maximal priority
     and |S_{t,k}| + |O_{t,k}| \leq \alpha(v_k);
    \tau(v_i) = t \ \forall v_i \in S_k: }
   t = t + 1:
 } UNTIL (v_n planned)
 RETURN (\tau): }
```

Scheduling with Pipeline Resources

Solution 1.1:

- $ightharpoonup O_{t,k}$ is the set of resources of type k that are occupied in the time slot t and are not yet available for the following operation. On each of these resources exactly one operation is executed in a pipeline-interval.
- ▶ $O_{t,k} = \{v_s : \beta(v_s) = v_t \land \tau(v_s) < t < \tau(v_s) + PI\}$ instead of $T_{t,k} = \{v_s : \beta(v_s) = v_t \land \tau(v_s) < t < \tau(v_s) + w(v_s, v_t)\}$

Scheduling with Pipeline Resources

Solution 1.1:

III

without pipelining:

t	k	$U_{r,k}$	$T_{r,k}$	$S_{t,k}$
0	n	v3	-7,8	v3
	12	v1 v2	-	v1
1	r ₁		- v3	-
	12	v2	v1	-
2	n		-	-
	r ₂	v2 v5	vI	
3	r ₁		-	-
	12	v2 v5	v1	-
	r ₁			-
4	12	v5		v2
5		-		
	r ₂	v5	v2	-
6	r ₁			
	72	- v5	- v2	
	r ₁	-		
7	r ₂	v5	v2	
	n	v4	-	v4
8	12	v5		V5
	r ₁		v4	
9	72		ν5	
	r ₁		-	
10	r ₂		ν5	
11	η		-	
11	r ₂	-	ν5	
12	r ₁	-	-	
	r ₂	νδ	-	νő
13	r ₁	-	-	
	r ₂	-	νő	
14	n	-	-	-
	r ₂	-	νő	
15	r ₁	-	-	-
	12	-	νő	-
15	r ₁	-	-	
	r ₂	-	-	-

Scheduling with Pipeline Resources

Solution 1.1: U, , 0, , r₁ r_1 r₁ r_1 r_1 r₂ r₂ r₂ 10 r₂ 11 12

Scheduling with Pipeline Resources

Solution 1.1:

t	k	$U_{t,k}$	$O_{t,k}$	$S_{t,k}$
0	r_1	V ₃	_	V ₃
	r ₂	v_1, v_2	-	V ₁
1	r_1	-	V ₃	-
	r ₂	V ₂	<i>v</i> ₁	_
2	r_1	-	-	-
	r ₂	v_2, v_5	-	V ₂
3	r_1	-	-	-
	r ₂	V _S	V ₂	-
4	r_1	-	-	-
	r ₂	V _S	-	V ₅
5	r_1	-	-	-
	r ₂	-	V ₅	_
6	r_1	V4	-	V4
	r ₂	_	-	-
7	r_1	_	V4	-
	r ₂	-	-	-
8	r_1	-	-	-
	r ₂	V ₆	-	V ₆
9	r_1	-	-	-
	r ₂	_	V ₆	-
10	r_1	_	-	-
	r ₂	-	_	-
11	r_1	-	-	-
	r ₂	-	-	-
12	r_1	-	-	-
	r ₂	_	-	-

Solution 1.1:

► the resulting latency is 12

Jürgen Mattheis Architecture Synthesis I University of Freiburg

Task 2 I

Integer Linear Programming

Task 2.1:

- ▶ resource type r₁: multiplication operation takes 2 time units and 2 units of this resource type are allocated
- resource type r₂: all other ALU Operations take 1 time unit and 2 units of this resource type are allocated

Task 2 II

Integer Linear Programming

Requirements 2.1:

```
\begin{aligned} & \mathsf{ASAP}(G_S(V_S, E_S), w) \ \{ \\ & \tau(v_0) = 1; \\ & \mathsf{REPEAT} \ \{ \\ & \mathsf{Determine} \ v_i \ \mathsf{whose} \ \mathsf{predec.} \ \mathsf{are} \ \mathsf{planed}; \\ & \tau(v_i) = \max\{\tau(v_j) + w(v_j) \ \forall (v_j, v_i) \in E_S \} \\ & \} \ \mathsf{UNTIL} \ (v_n \ \mathsf{is} \ \mathsf{planned}); \\ & \mathsf{RETURN} \ (\tau); \\ \} \end{aligned}
```

Task 2 III

Integer Linear Programming

Requirements 2.1:

```
\begin{aligned} \mathsf{ALAP}(G_S(V_S, E_S), w, L_{max}) \ \{ \\ \tau(v_n) &= L_{max} + 1; \\ \mathsf{REPEAT} \ \{ \\ &\quad \mathsf{Determine} \ v_i \ \mathsf{whose} \ \mathsf{succ.} \ \mathsf{are} \ \mathsf{planed}; \\ \tau(v_i) &= \min\{\tau(v_j) \ \forall (v_i, v_j) \in E_S\} - w(v_i) \\ \} \ \mathsf{UNTIL} \ (v_0 \ \mathsf{is} \ \mathsf{planned}); \\ \mathsf{RETURN} \ (\tau); \\ \} \end{aligned}
```

Task 2 IV

Integer Linear Programming

Solution 2.1:

7

Task 2 V

Integer Linear Programming

Solution 2.1:

Task 2 VI

Jürgen Mattheis

Task 2 I

Integer Linear Programming

Solution 2.2:

7

► (i) Objective function:

$$\min \quad L = \tau \left(v_n \right) - \tau \left(v_0 \right)$$

► (ii) Introduction of binary variables:

$$x_{1,1} + x_{1,2} = 1$$
 $1 \cdot x_{1,1} + 2 \cdot x_{1,2} = \tau(v_1)$

$$x_{2,1} + x_{2,2} = 1$$
 $1 \cdot x_{2,1} + 2 \cdot x_{2,2} = \tau(v_2)$

$$x_{3,3} + x_{3,4} = 1$$
 $3 \cdot x_{3,3} + 4 \cdot x_{3,4} = \tau(v_3)$

$$x_{4,5} + x_{4,6} = 1$$
 $5 \cdot x_{4,5} + 6 \cdot x_{4,6} = \tau(v_4)$

$$x_{5.6} + x_{5.7} = 1$$
 6 · $x_{5.6} + 7$ · $x_{5.7} = \tau (v_5)$

Task 2 II

Integer Linear Programming

Solution 2.2:

1

$$x_{6,1} + x_{6,2} + x_{6,3} = 1$$
 $1 \cdot x_{6,1} + 2 \cdot x_{6,2} + 3 \cdot x_{6,3} = \tau(v_6)$
 $x_{7,3} + x_{7,4} + x_{7,5} = 1$ $3 \cdot x_{7,3} + 4 \cdot x_{7,4} + 5 \cdot x_{7,5} = \tau(v_7)$
 $x_{8,1} + \ldots + x_{8,5} = 1$ $1 \cdot x_{8,1} + \ldots + 5 \cdot x_{8,5} = \tau(v_8)$
 $x_{9,3} + \ldots + x_{9,7} = 1$ $3 \cdot x_{9,3} + \ldots + 7 \cdot x_{9,7} = \tau(v_9)$
 $x_{10,1} + \ldots + x_{10,6} = 1$ $1 \cdot x_{10,1} + \ldots + 6 \cdot x_{10,6} = \tau(v_{10})$
 $x_{11,2} + \ldots + x_{11,7} = 1$ $2 \cdot x_{11,2} + \ldots + 7 \cdot x_{11,7} = \tau(v_{11})$

Task 2 III

Integer Linear Programming

Solution 2.2:

Z

► (iii) Data dependencies:

$$egin{aligned} au\left(v_{3}
ight) - au\left(v_{1}
ight) &\geq 2 & au\left(v_{3}
ight) - au\left(v_{2}
ight) &\geq 2 \\ au\left(v_{4}
ight) - au\left(v_{3}
ight) &\geq 2 & au\left(v_{5}
ight) - au\left(v_{4}
ight) &\geq 1 \\ au\left(v_{7}
ight) - au\left(v_{6}
ight) &\geq 2 & au\left(v_{5}
ight) - au\left(v_{7}
ight) &\geq 2 \\ au\left(v_{9}
ight) - au\left(v_{8}
ight) &\geq 2 & au\left(v_{11}
ight) - au\left(v_{10}
ight) &\geq 1 \\ au\left(v_{n}
ight) - au\left(v_{5}
ight) &\geq 1 & au\left(v_{n}
ight) - au\left(v_{9}
ight) &\geq 1 \\ au\left(v_{n}
ight) - au\left(v_{11}
ight) &\geq 1 & au\left(v_{11}
ight) &\geq au\left(v_{11}
ight) &\geq au\left(v_{10}
ight) &\geq 1 \end{aligned}$$

Task 2 IV

Integer Linear Programming

Solution 2.2:

Z

- ► (iv) Resource limitations:
 - ightharpoonup t=1:

$$x_{1,1} + x_{2,1} + x_{6,1} + x_{8,1} \le 2$$

 $x_{10,1} \le 2$

t = 2:

$$x_{1,1} + x_{1,2} + x_{2,1} + x_{2,2} + x_{6,1} + x_{6,2} + x_{8,1} + x_{8,2} \le 2$$

 $x_{10,2} + x_{11,2} \le 2$

t = 3:

$$\begin{aligned} x_{1,2} + x_{2,2} + x_{6,2} + x_{6,3} + x_{8,2} + x_{8,3} + x_{3,3} + x_{7,3} &\leq 2 \\ x_{10,3} + x_{11,3} + x_{9,3} &\leq 2 \end{aligned}$$

Task 2 V

Solution 2.2:

1

$$t = 4$$
:

$$x_{6,3} + x_{8,3} + x_{8,4} + x_{3,3} + x_{3,4} + x_{7,3} + x_{7,4} \le 2$$

 $x_{10,4} + x_{11,4} + x_{9,4} \le 2$

$$t = 5$$

$$x_{8,4} + x_{8,5} + x_{3,4} + x_{7,4} + x_{7,5} \le 2$$

 $x_{10,5} + x_{11,5} + x_{9,5} + x_{4,5} \le 2$

$$t = 6$$
:

$$x_{8,5} + x_{7,5} \le 2$$

 $x_{10,6} + x_{11,6} + x_{9,6} + x_{4,6} + x_{5,6} \le 2$

$$t = 7$$

$$(0 \le 2)$$
$$x_{11,7} + x_{9,7} + x_{5,7} \le 2$$

Integer Linear Programming I

Solution 2.3:

/

- ► Restating the resource limitations, and introducing additional variables:
 - ightharpoonup t=1:

$$x_{1,1} + x_{2,1} + x_{6,1} + x_{8,1} \le \alpha(r_1)$$

 $x_{10,1} \le \alpha(r_2)$
[...]

► Latency limitations:

$$L = \tau (v_n) - \tau (v_0) \le \bar{L} = 6$$

► New objective function:

$$min C = \alpha(r_1) \cdot c(r_1) + \alpha(r_2) \cdot c(r_2) = 2 \cdot \alpha(r_1) + \alpha(r_2)$$

Jürgen Mattheis Architecture Synthesis I University of Freiburg

Tasks 3 I

Iterative Algorithms

Tasks 3 II

Iterative Algorithms

Solution 3.1:

$$\tau(\nu_2) - \tau(\nu_1) \ge 10$$

$$\qquad \qquad \tau\left(\nu_{3}\right) - \tau\left(\nu_{2}\right) \geq 10$$

$$\qquad \qquad \tau\left(\nu_{4}\right) - \tau\left(\nu_{3}\right) \geq 10$$

$$\qquad \qquad \tau\left(\nu_{1}\right) - \tau\left(\nu_{5}\right) \geq 5 - 1 \cdot P$$

Tasks 3 III

Iterative Algorithms

Solution 3.2:

1

► solve system of inequalities for P:

$$ightharpoonup 0-25 \ge 5-P \Leftrightarrow P_{min}=30$$

$$L = 30$$

Architecture Synthesis I

50

40

Tasks 3 IV

Iterative Algorithms

Tasks 3 V

Iterative Algorithms

Solution 3.3:

1

- $\vdash \tau(\nu_1) \tau(\nu_5) \geq 5 n \cdot 10 \Leftrightarrow n_{min} = 3$
- \blacktriangleright we have to add 2 more tokens on the edge between v_5 and v_1
- ► *L* = 30

Tasks 3 VI

Iterative Algorithms

