HW9 Individual

CS40 Fall'21

Bharat Kathi (5938444)

Due: Monday, Dec 6, 2021 at 10:00PM on Gradescope

In this assignment,

You will have more practice with counting, binary relations, and proof strategies learned so far.

For all HW assignments:

Please see the instructions and policies for assignments on the class website and on the writeup for HW1. In particular, these policies address

- Collaboration policy
- Where to get help

- Typing your solutions
- Expectations for full credit

You will submit this assignment via Gradescope (https://www.gradescope.com) in the assignment called "HW9-Individual".

Assigned questions

1. We define the following function:

$$f: \{0,1\}^3 \to \{0,1\}^3,$$

where the output of f is obtained by taking the input string and replacing the first bit by 1, regardless of whether the first bit is a 0 or 1. For example, f(001) = 101 and f(110) = 110. Indicate whether the f is onto, one-to-one, neither or both. If the function is not onto or not one-to-one, give an example showing why.

Answer: .

```
\{0,1\}^3 = \{000,001,011,100,101,010,110,111\}
f(000) = 100
f(001) = 101
f(011) = 111
f(101) = 101
f(010) = 110
f(111) = 111
f(110) = 110
```

Since f(000) and f(100) both equal 100, the function is not one-to-one. Since there is no preimage for 000, the function is also not onto.

2. Count the number of different one-to-one functions $f:\{0,1\}^7\to\{0,1\}^7$. Justify your answer.

Answer: .

Since $\{0,1\}^7$ is the set of all 7 long binary strings, the total number of elements is $2^7 = 128$. Since $f: \{0,1\}^7 \to \{0,1\}^7$ should be a one-to-one function, each element in $\{0,1\}^7$ must be mapped to a unique element in $\{0,1\}^7$.

That means that we now have 2^7 choices for the first term, $2^7 - 1$ choices for the second term, and so on.

Therefore, the total number of choices is $128! * (2^7)!$

3. Recall that in a movie recommendation system, each user's ratings of movies is represented as a n-tuple (with the positive integer n being the number of movies in the database), and each component of the n-tuple is an element of the collection $\{-1,0,1\}$.

Assume there are five movies in the database, so that each user's ratings can be represented as a 5-tuple. Let R be the set of all ratings, that is, the set of all 5-tuples where each component of the 5-tuple is an element of the collection $\{-1,0,1\}$.

Consider the following two binary relations on R:

$$A_1 = \{(u, v) \in R \times R \mid \text{users } u \text{ and } v \text{ agree about the first movie in the database}\}$$

$$A = \{(u, v) \in R \times R \mid \text{users } u \text{ and } v \text{ don't care or haven't seen the same number of movies}\}$$

Binary relations that satisfy certain properties (namely, are reflexive, symmetric, and transitive) can help us group elements in a set into categories.

(a) **True** or **False**: The relation A_1 holds of u = (1, 1, 1, 1, 1) and v = (-1, -1, -1, -1, -1).

Answer: True

- (b) **True** or **False**: The relation A holds of u = (1, 0, 1, 0, -1) and v = (-1, 0, 1, -1, -1).
- (c) **True** or **False**: A_1 is reflexive; namely, $\forall u \in R \ ((u, u) \in A_1)$
- (d) **True** or **False**: A_1 is symmetric; namely, $\forall u \in R \ \forall v \in R \ (\ (u,v) \in A_1 \to (v,u) \in A_1 \)$
- (e) **True** or **False**: A_1 is transitive; namely, $\forall u \in R \ \forall v \in R \ \forall w \in R(\ ((u,v) \in A_1 \land (v,w) \in A_1) \rightarrow (u,w) \in A_1$)
- (f) **True** or **False**: A is reflexive; namely, $\forall u \in R \ ((u, u) \in A)$
- (g) **True** or **False**: A is anti-symmetric; namely, $\forall u \in R \ \forall v \in R \ (\ (u,v) \in A \land (v,u) \in A\) \rightarrow (u=v)$
- (h) **True** or **False**: A is transitive; namely, $\forall u \in R \ \forall v \in R \ \forall w \in R (\ ((u,v) \in A \land (v,w) \in A) \rightarrow (u,w) \in A)$
- 4. In the previous question select any one of parts (c) to (h) that evaluated to True and provide a formal proof using the strategies you have learned in CS40
- 5. No justifications are required for credit for this question. It's a good idea to think about how you would explain how you arrived at your examples. Given the relations A_1 and A in Q4 answer the following questions:
 - (a) Give two distinct examples of elements in $[(1,0,0,0,0)]_{A_1}$

Answer: (1,1,0,0,0) (1,-1,0,0,0)

(b) Give two distinct examples of elements in $[(1,0,0,0,0)]_A$

Answer: (0,1,0,0,0) (0,0,1,0,0)

(c) Find examples $u, v \in R$ where $[u]_{A_1} \neq [v]_{A_1}$ but $[u]_A = [v]_A$

Answer: u = (1, 0, 0, 0, 0) and v = (-1, 0, 0, 0, 0)

- (d) Find examples $u, v \in R$ (different from the previous part) where $[u]_{A_1} = [v]_{A_1}$ but $[u]_A \neq [v]_A$ Answer: u = (1, 0, 0, 0, 1) and v = (1, 0, 0, 1, 1)
- 6. Bonus not for credit (but much appreciated): Please complete the course ESCI and TA evaluations by Dec 3 (Friday).