GeoProp Analyzer - Real Estate Analysis Tool

Overview

An interactive dashboard for analyzing real estate properties with geospatial visualization and investment scoring.

Features

- Interactive map with property locations
- Price per square foot visualization
- XGBoost-based investment scoring
- 12-month price projections
- Filters for:
 - Zipcode
 - Bedrooms/Bathrooms/Floors
 - Square footage range
 - Price range

Installation

Prerequisites

- Python 3.7 or higher
- pip package manager

Required Libraries

pip install dash plotly pandas scikit-learn xgboost joblib

Detailed Dependency List

Package	Version	Purpose	
dash	>=2.0.0	Web framework	
plotly	>=5.0.0	Interactive visualizations	
pandas	>=1.0.0	Data processing	
scikit-learn	>=1.0.0	Model support	
xgboost	>=1.5.0	ML model	
joblib	>=1.0.0	Model serialization	

Installation Steps

- 1. Clone the repository:
 git clone https://github.com/yourusername/GeoProp-Analyzer.git
 cd GeoProp-Analyzer
- 2. Create and activate virtual environment:

python -m venv .venv

On Windows:

.venv\Scripts\activate

On macOS/Linux:

source .venv/bin/activate

3. Install dependencies:

pip install -r requirements.txt

File Structure GeoProp-Analyzer/

```
– data∕
    └─ filtered_real_estate_data.csv
                                        # Sample dataset
                                        # Dashboard
   — main window.py
implementation
   xqboost investment model.pkl # Trained model
  - models/
     – data_processor.py
                                        # Data handling
      - real_estate.py
                                        # Property class
  - analysis/
                                        # Address resolution
   ├─ adrs_ext.py
using geocoding API
    — logistic_model_test.py
                                # Logistic regression
testing
    model_comparison.py
                                        # Model comparison via
scoring
     — model_training.py
                                        # Random forest training
   xgboost_model_test.py
                                        # XGBoost training and
evaluation
                                        # Entry point
 — main.py
└─ README.md
                                         # Documentation
```

Supplementary Files Overview

adrs_ext.py

Purpose: Uses the Google Maps Geocoding API to retrieve formatted addresses from latitude and longitude coordinates. Key Components:

- get_address(lat, lng): Makes an HTTP request to the API and returns the formatted address.
 - Requires an API key (API_KEY) and uses requests.

logistic_model_test.py

Purpose: Builds and evaluates a logistic regression model using real estate data.

Key Components:

- Loads data from filtered_real_estate_data.csv
- Creates features like price_per_sqft and affordability_score
- Splits data, trains a logistic regression model, and evaluates it with metrics and confusion matrix

model_comparison.py

Purpose: Compares multiple models on real estate data using investment scoring.

Key Components:

- Feature engineering for affordability_score, quality_score, and a combined investment_score
- Evaluation likely includes visual comparison (e.g., matplotlib, seaborn)

model_training.py

Purpose: Trains a Random Forest Regressor on real estate data. Key Components:

Loads and preprocesses the dataset

- Feature engineering for investment scoring
- Trains a RandomForestRegressor and calculates performance metrics like $\ensuremath{\mathsf{R}}^2$ and $\ensuremath{\mathsf{RMSE}}$
 - Saves the model using joblib

xgboost_model_test.py

Purpose: Trains and evaluates an XGBoost model on the dataset. Key Components:

- Uses xgboost.XGBRegressor
- Feature engineering and model evaluation (R², RMSE)
- Includes feature importance plotting with plot_importance

Running the Application

- 1. Start the server: python main.py
- 2. Access the dashboard:

Open your web browser

Navigate to: http://localhost:8050/

Troubleshooting

If the page doesn't load:

- 1. Verify the server is running (you should see output in your terminal)
- 2. Check your firewall settings

Notes

- The application requires the model file
- (xgboost_investment_model.pkl) to be present in the gui folder
- Sample data should be placed in the data folder
- First run may take longer as it loads the ML model