Лекция 5 по курсу «Основы цифровой обработки сигналов» 30 сентября 2024 г.

- 3. Интерфейс вывода систем ЦОС реального времени. Восстановление сигналов по их отсчётам.
 - Идеальная интерполяция сигнала рядом Котельникова, реальные фильтры. Каузальная аппроксимация идеального фильтра нижних частот (аналогового).
 - Восстановление сигналов по дискретным отсчётам путём интерполяции.
 - Ступенчатая интерполяция, восстановление косинусоидального сигнала с помощью ЦАП.
 - Цифроаналоговое преобразование с запасом по частоте.

Интерфейс вывода систем ЦОС реального времени.

3. Интерфейс вывода систем ЦОС реального времени. Восстановление сигналов по их отсчётам.

На прошлой лекции мы рассмотрели вопрос об интерфейсе ввода систем ЦОС реального времени. В этой лекции мы рассмотрим интерфейс вывода.

Примеры систем ЦОС реального времени, где задействован аналоговый вывод:

- устройства воспроизведения звука с компьютера,
- телекоммуникационные устройства,
- системы управления двигателем автономных роботов,
- генераторы сигналов методом прямого цифрового синтеза (например, встроенный генератор в осциллографе PV6501).

Задачи преобразования цифрового сигнала в аналоговый решает цифро-аналоговый преобразователь (ЦАП).

Задача выходного фильтра системы заключается в сглаживании выхода ЦАП и устранении высокочастотных компонент в нем.

Рассмотрим вопрос о восстановлении аналоговых сигналов по их отсчетам.

Идеальная интерполяция сигнала рядом Котельникова.

Идеальная интерполяция сигнала рядом Котельникова.

Ряд Котельникова

$$x(t) = \sum_{k = -\infty}^{\infty} x(k\Delta t) \frac{\sin 2\pi f_{\theta}(t - k\Delta t)}{2\pi f_{\theta}(t - k\Delta t)}$$

означает, что значения сигнала x(t) с ограниченным спектром между отсчётными точками можно определить по выборкам $x(k\Delta t)$.

Восстановление исходного аналогового сигнала x(t) по его выборкам возможно было бы с помощью идеального фильтра нижних частот (ИФНЧ) с импульсной реакцией

$$h_0(t) = \frac{1}{\Delta t} \varphi_0(t) = 2f_e \frac{\sin 2\pi f_e t}{2\pi f_e t}.$$

При этом на вход такого фильтра подается последовательность

$$\Delta t \sum_{k=-\infty}^{\infty} x(k\Delta t) \delta(t - k\Delta t)$$

равноотстоящих δ -импульсов с площадями $\Delta t x(k\Delta t)$.

- Идеальный фильтр нижних частот физически не реализуем из-за некаузальности его импульсной характеристики.
- Бесконечно короткие импульсы не реализуемы.

Идеальная интерполяция сигнала рядом Котельникова.

Интерполяционная формула Котельникова есть по существу результат свертки

$$x(t') = \Delta t \int\limits_{-\infty}^{\infty} \sum\limits_{k=-\infty}^{\infty} x(k\Delta t) \delta(t-k\Delta t) h_0(t'-t) dt.$$
зуя фильтрующее свойство дельта-ф

Используя фильтрующее свойство дельта-функции, получаем

$$x(t') = \Delta t \sum_{k=-\infty}^{\infty} x(k\Delta t) h_0(t' - k\Delta t) =$$

$$= \sum_{k=-\infty}^{\infty} x(k\Delta t) \frac{\sin 2\pi f_{e}(t'-k\Delta t)}{2\pi f_{e}(t'-k\Delta t)}.$$

Поскольку $h_0(t) \neq 0$ при t < 0, то ИФНЧ не является каузальным, а потому физически нереализуем. Простым введением задержки эту проблему решить нельзя. Не существует таких значений t_0 , для которых $h_0(t-t_0)$ была бы строго равна нулю при t < 0.

Норберт Винер сказал по этому поводу следующее: «Ни один из фильтров, отвечающих условию причинности, не может иметь бесконечного затухания в конечной (ненулевой) полосе частот. Идеальный фильтр физически неосуществим из-за самой его сущности, а не по причине отсутствия необходимых технических средств».

Работа идеального ФНЧ в частотной области показана на рисунке.

Реальные восстанавливающие фильтры.

Требования к восстанавливающему фильтру можно существенно ослабить, если выбором Δt обеспечить

$$f_c = f_{\pi} / 2 = 1 / 2\Delta t > f_e$$
.

Это условие означает, что верхняя граничная частота в спектре сигнала не должна превышать частоту Найквиста ($f_{\rm д}/2$). В этом случае наложения частичных спектров не происходит.

Наличие свободного интервала $(f_{\mathfrak{g}},\ f_{\mathfrak{A}}-f_{\mathfrak{g}})$ упрощает реализацию фильтра, устраняется необходимость резкой отсечки в АЧХ реального фильтра |H(f)|. По этой причине на практике шаг дискретизации Δt выбирается так, чтобы

$$f_{\mathrm{I}} = (2 \div 5) f_{\mathrm{e}}.$$

Если бы выполнялись условия

$$\left|H(f)\right| = \begin{cases} \text{const} & \text{при} & \left|f\right| \leq f_{\mathrm{g}}, \\ \text{произвольная} & \text{при} & f_{\mathrm{g}} < \left|f\right| \leq f_{\mathrm{д}} - f_{\mathrm{g}}, \\ 0 & \text{при} & \left|f\right| > f_{\mathrm{д}} - f_{\mathrm{g}}, \end{cases}$$

то спектр $X_a(f)$, а потому и сам сигнал x(t), восстанавливается точно. Однако для реальных фильтров первое и третье условие выполнены лишь приближенного.

Каузальная аппроксимация ИФНЧ

Пример. Рассмотрим симметрично усечённую импульсную характеристику идеального ФНЧ. Аналитическое выражение такой каузальной импульсной характеристики имеет вид

$$\widehat{h}(t) = \begin{cases} \frac{\sin 2\pi f_{_{\mathcal{B}}}(t-T)}{\pi(t-T)}, & 0 \le t \le 2T, \\ 0, & \text{для всех других значений } t. \end{cases}$$

Функция h(t) получается стробированием идеальной характеристики $h_0(t)$ прямоугольным окном длительностью 2T и последующим сдвигом вправо на T .

Выбирая достаточно большое T и пренебрегая «хвостами» в области отрицательных значений t < 0, можно с любой наперёд заданной точностью аппроксимировать идеальный ФНЧ. Однако нетрудно показать, что для больших конечных значений T преобразование Фурье $\widehat{H}(f)$ для $\widehat{h}(t)$ приближается по форме к АЧХ идеального ФНЧ, за исключением всплесков конечной амплитуды на границах полосы частот. Площадь под указанными всплесками стремится к нулю при увеличении T. С увеличением T выброс приближается к точке разрыва $f = \pm f_{\theta}$ и колебания затухают быстрее.

Всплески являются следствием явления Гиббса, которое иллюстрируется на рисунке, где показан процесс получения свёртки частотной характеристики ИФНЧ $H_0(f_1)$ с частотной характеристикой прямоугольного вырезающего окна $W(f_1)$

$$W(f_1) = 2T \frac{\sin 2\pi f_1 T}{2\pi f_1 T}.$$

$$\widehat{H}(f) = \int_{-\infty}^{\infty} H_0(f_1)W(f - f_1)df_1$$

Функция вида также $W(f_1)$ является ядром Дирихле. Теоретически всплески являются следствием медленного импульсной характеристики h(t), **«XBOCTOB»** спадания поэтому ИХ можно искусственно подавить, если оконные функции, отличные использовать OT прямоугольной.

Пример. Рассмотрим каузальную импульсную характеристику

$$\widehat{h}(t) = \begin{cases} \left(1 - \frac{|t - T|}{T}\right) \frac{\sin 2\pi f_e\left(t - T\right)}{\pi(t - T)}, & 0 \le t \le 2T, \\ 0, & \text{для всех других значений } t. \end{cases}$$

Здесь $h_0(t)$ умножается на оконную функцию w(t) в виде симметричного треугольного импульса со спектром W(f).

Частотная характеристика треугольного окна

$$W(f) = T \left(\frac{\sin \pi f T}{\pi f T} \right)^2$$

носит название ядра Фейера. Как видно из этого рисунка, ядро Фейера по сравнению с ядром Дирихле имеет значительно меньшие боковые лепестки, причём они

однополярные. В результате свёртки частотная характеристика $\widehat{H}(f)$ каузального фильтра, соответствующая, будет аппроксимировать частотную характеристику ИФНЧ без заметных всплесков.

Восстановление сигналов по дискретным отсчётам путём интерполяции

Восстановление сигналов по дискретным отсчётам путём интерполяции n-ого порядка

Практический способ восстановления аналогового сигнала основывается на аппроксимации функции x(t) некоторым полиномом, который совпадает с x(t) при $t=k\Delta t, \quad k=0,\pm 1,\pm 2,\ldots$ Например, можно разложить x(t) в ряд между моментами $k\Delta t$ и $(k+1)\Delta t$:

$$x(t) = x(k\Delta t) + x'(k\Delta t)(t - k\Delta t) + \frac{x''(k\Delta t)}{2!}(t - k\Delta t)^2 + \dots,$$

где производные берутся по времени t.

Поскольку единственная информация о x(t)— её значения в дискретные моменты времени, то производные должны оцениваться по этим значениям:

$$\hat{x}'(k\Delta t) \approx \frac{1}{\Delta t} \left(x(k\Delta t) - x((k-1)\Delta t) \right)$$

$$\hat{x}''(k\Delta t) \approx \frac{1}{\Delta t} \left(\hat{x}'(k\Delta t) - \hat{x}'((k-1)\Delta t) \right) \approx$$

$$\approx \frac{1}{\Delta t^2} \left(x(k\Delta t) - 2x((k-1)\Delta t) + x((k-2)\Delta t) \right).$$

Видно, что чем выше порядок производной, тем большее число предшествующих выборок требуется. Можно легко убедиться, что число предшествующих выборок, необходимых для оценки значения $x^{(n)}(k\Delta t)$, равно n.

Ступенчатая интерполяция

Ступенчатая интерполяция и восстановление косинусоидального сигнала с помощью ЦАП

Ступенчатая интерполяция заключается в сохранении величины выборки в пределах шага дискретизации Δt . В цифровых системах в качестве интерполятора нулевого порядка чаще всего используется цифроаналоговый преобразователь ЦАП. Микросхемы ЦАП отличаются высоким быстродействием и точностью.

Математически сигнал на выходе стандартного ЦАП в идеальном случае можно описать как реакцию фильтра с импульсной характеристикой h(t) в виде прямоугольного

импульса длительностью Δt и с началом в точке 0 на входное воздействие вида

$$x_{_{\mathrm{I}}}(t) = \mathrm{T}\sum_{k} x(k\Delta t)\delta(t - k\Delta t), \, \mathrm{T} = \Delta t.$$

Частотная характеристика, связанная с импульсной реакцией преобразованием Фурье, будет равна

$$H(f) = \int_{-\infty}^{\infty} h(t) \exp(-j2\pi f t) dt = \int_{0}^{\Delta t} \exp(-j2\pi f t) dt = \frac{\exp(-j2\pi f t)}{-j2\pi f} \Big|_{0}^{\Delta t} = \frac{1}{\pi f} \frac{\exp(-j\pi f \Delta t) \left(\exp(-j\pi f \Delta t) - \exp(j\pi f \Delta t)\right)}{-2j} = \frac{\sin(\pi f \Delta t)}{\pi f} \exp(-j\pi f \Delta t) = \frac{1}{f_{\pi}} \frac{\sin(\pi f / f_{\pi})}{\pi f / f_{\pi}} e^{-j\pi f / f_{\pi}}.$$

Ступенчатая интерполяция

Предположим, что $x(t) = \cos(2\pi f_1 t)$. Тогда

$$X_{\scriptscriptstyle \Pi}(f) = \frac{1}{2} \sum_{n=-\infty}^{\infty} \left(\delta \left(f - f_1 + n f_{\scriptscriptstyle \Pi} \right) + \delta \left(f + f_1 + n f_{\scriptscriptstyle \Pi} \right) \right)$$

В частотной области выход системы

$$Y(f) = X_{\Pi}(f)H(f)$$

$$Y(f) = \frac{\Delta t}{2} e^{-j\frac{\pi f}{f_{a}}} \frac{\sin \frac{\pi f}{f_{A}}}{\frac{\pi f}{f_{A}}} \sum_{n=-\infty}^{\infty} \left(\delta(f - f_{1} + nf_{A}) + \delta(f + f_{1} + nf_{A})\right)$$

$$Y(f) = \sum_{n=-\infty}^{\infty} \frac{1}{2} e^{-j\frac{\pi(f_{1} + nf_{a})}{f_{a}}} \frac{\sin(\pi(f_{1} / f_{A} + n))}{\pi(f_{1} + nf_{A})} \delta(f - (f_{1} + nf_{A})) + \sum_{n=-\infty}^{\infty} \frac{1}{2} e^{-j\frac{\pi(f_{1} + nf_{a})}{f_{a}}} \frac{\sin(\pi(f_{1} / f_{A} + n))}{\pi(f_{1} + nf_{A})} \delta(f + (f_{1} + nf_{A}))$$

$$y(t) = \int_{-\infty}^{\infty} Y(f) e^{j2\pi f t} df$$

$$y(t) = \sum_{n=-\infty}^{\infty} \frac{\sin 2\pi(f_{1} + nf_{A}) \frac{\Delta t}{2}}{2\pi(f_{1} + nf_{A}) \frac{\Delta t}{2}} \cos\left[2\pi(f_{1} + nf_{A})(t - \frac{\Delta t}{2})\right]$$

Выходной сигнал есть суперпозиция гармонических компонент со своими частотами, амплитудами и фазами. Лишние компоненты определяют погрешность восстановления и требуют дополнительного подавления.

Если рассматривается не гармонический сигнал, а некоторый реальный (например, достаточно длинный отрезок гармонического сигнала), в спектре появляются очень узкие спектральные компоненты (максимумы).

Цифроаналоговое преобразование с запасом по частоте

Цифроаналоговое преобразование с запасом по частоте

Проиллюстрируем принципы цифроаналогового преобразования с запасом по частоте на примере его реализации в некоторых проигрывателях компакт-дисков. Цифровые сигналы, которые считываются с компакт-дисков, имеют вид 16-разрядных слов, передающих звуковую информацию с частотой 44,1 кГц. Если бы цифровые коды непосредственно преобразовывались в аналоговые, то появлялись бы полосы с зеркальными частотами, центрированные в точках, кратных частоте дискретизации 44,1 кГц (рис. а).

Хотя зеркальные частоты не были бы слышны (их частоты превышают границу слышимости 20 кГц), они могли бы привести к перегрузке усилителя или вызвать интермодуляционные искажения. Поэтому зеркальные компоненты должны подавляться, как минимум, на 50 дБ.

Аналоговые фильтры после АЦП, которые могли бы обеспечить такой уровень подавления, достаточно сложны. Поэтому в проигрывателях компакт дисков используют фильтры выборки с запасом по частоте.

Для реализации соответствующего метода частоту дискретизации перед ЦАП умножают на 4 (с помощью цифрового интерполяционного фильтра), так что цифроаналоговый преобразователь обновляется с частотой 176,4 кГц. Частотный спектр сигнала с четырехкратной перевыборкой показан на рис. б. Требования к фильтру оказываются более слабые, чем при востановлении сигнала с частотой дискретизации 44,1 кГц.

Задачи с лекции

Задачи для самостоятельного решения

с лекции 30 сентября 2024 г.

Nº1. Рассмотрим сигнал y(t), полученный путём фиксации на время, равное шагу дискретизации Δt , мгновенных значений исходного сигнала x(t).

Пусть $x(t) = \sin 2\pi f_0 t$, $-\infty < t < \infty$, и шаг дискретизации $\Delta t = \frac{1}{10f_0}$. Получить аналитическое выражение для спектра выходного сигнала фиксатора.

Контрольная работа №1.

На следующей лекции будет проведена контрольная работа №1 по материалам лекций блока 1 «Дискретные преобразование сигналов, интерфейсы ввода и вывода систем ЦОС реального времени» (лекции 1-5).

Во время контрольной работы студенты могут пользоваться конспектами лекций и справочной литературой, в том числе в электронном виде. Не запрещается использование средств компьютерного моделирования, например, в целях проверки своих решений.

Контрольная работа является формой текущего контроля по курсу. Варианты индивидуальные (120). Каждый вариант содержит три задачи.

В случае пропуска контрольной работы по уважительной причине может быть предоставлена возможность написать ее в другой день (необходимо отправить письмо на почту tormagov.ta@mipt.ru).