Representação de operadores a partir da tabela de verdade

Considere a conetiva * definida pela seguinte tabela de verdade.

Р	Q	P * Q
٧	/	F
٧	F	V
F	V	F
F	F	F

- a) Exprima essa conetiva na forma normal disjuntiva.
- b) Exprima a mesma conetiva utilizando apenas os operadores $\neg e \rightarrow$.
- c) O conjunto de operadores \neg e \rightarrow é completo? E o conjunto \land e \lor ? E o operador *?

a) P * Q
$$\Leftrightarrow$$
 P $\land \neg$ Q

b)
$$A \land B \Leftrightarrow \neg \neg (A \land B) \Leftrightarrow \neg (\neg A \lor \neg B) \Leftrightarrow \neg (A \to \neg B)$$

$$P * Q \Leftrightarrow P \land \neg Q \Leftrightarrow \neg (P \rightarrow Q)$$

c) Como a tabela de verdade é completa para a representação das conetivas Booleanas e pode ser representada na DNF, bastam as conetivas \neg , \land e \lor para representar qualquer outra conetiva. Para estudar se algum outro conjunto de conetivas é completo, basta implementar aquelas três nesse outro conjunto. Por exemplo, \neg e \land é completo porque é possível representar o \lor à custa de \neg e de \land usando as leis de De Morgan. De onde se conclui que basta implementar estas duas conetivas para provar a completude. Mas o conjunto \land e \lor não é completo, porque não é possível representar a negação, e o * sozinho não é completo, embora \neg e * seja.

$$\begin{array}{l} P \wedge Q \Leftrightarrow P * \neg Q \\ \\ \neg P \Leftrightarrow \neg (P \wedge P) \Leftrightarrow \neg (P * \neg P) \Leftrightarrow \neg \bot \wedge \neg P \Leftrightarrow \neg \bot * P \Leftrightarrow \neg (P \wedge \neg P) * P \Leftrightarrow \neg (P * P) * P \\ \\ P * P \Leftrightarrow P \wedge \neg P \Leftrightarrow \bot \\ \\ (P * P) * P \Leftrightarrow \bot \wedge \neg P \Leftrightarrow \bot \\ \\ P * (P * P) \Leftrightarrow P \wedge \neg \bot \Leftrightarrow P \end{array}$$

Só com * não se consegue representar a negação.