Esercizi Inferenza

- I.1 Si assuma che $y_i = w_* x_i + \epsilon_i$ dove $\epsilon_i \sim \mathcal{N}(0,1)$ e w_* è una costante non nota. Utilizzare il principio di massima verosimiglianza per stimare w_* , data la sequenza ordinata di punti $\{x_i\}_{i=1}^4 = [-2,4,6,10]$ e la corrispondente sequenza di valori $\{y_i\}_{i=1}^4 = [4,16,25,100]$. Si calcoli, inoltre, il valore dello stimatore nei punti x=10, x=-2 e x=6.
- **I.2** Sia ω_0 il valore vero di un parametro e $\hat{\omega}$ uno stimatore tale che $E[\hat{\omega}] = 3\omega_0 1$. Dire se lo stimatore è distorto, in caso affermativo calcolarne la distorione. Dato lo stimatore $\hat{\omega}_c := \frac{\hat{\omega} + a}{b}$, che valori devono avere le costanti a e b affinché $\hat{\omega}_c$ non sia distorto?
- **I.3** Sia data la variabile aleatoria $X \sim \mathcal{N}(5,2)$. Fissato il valore di confidenza $\alpha = 5\%$ determinare lo stimatore di intervallo per l'intervallo $[x-2\sigma,x+2\sigma]$ dove σ è la deviazione standard di X. (Suggerimento: Per calcolarlo si trasformi X in una variabile aleatoria Z di media nulla e varianza unitaria e si utilizzi il fatto che $P(|Z| \le 2) \simeq 0.95$).

Dire se ciascuno dei seguenti valori $x_1 = -0.5$, $x_2 = 0.9$ e $x_3 = 3.5$ rientra nell'intervallo stimato.