Ad : Öğrenci Numarası :
Soyad : İmza :

SORULAR

1. D1 ve D2 diyotları ideal olmak üzere, Şekil 1'deki devrede V_i giriş sinyaline karşılık devrenin çıkış sinyali V_0 aşağıdakilerden hangisidir?

2. D1 ve D2 diyotları ideal olmak üzere, Şekil 2'deki devrede V_i giriş sinyaline karşılık devrenin çıkış sinyali V_0 aşağıdakilerden hangisidir?

3. D1 silisyum diyot ve V_B = 2.3V olmak üzere, Şekil 3'deki devrede V_i giriş sinyaline karşılık devrenin çıkış sinyali V_0 aşağıdakilerden hangisidir?

Şekil 3

4. D1 ve D2 diyodu ideal, $V_i = 10V$, $R_1 = R_2 = 2K$, $R_L = 1K$ olmak üzere V_0 kaç volttur?

Şekil 4

(a) 1V

(d) 4V

- (b) 2V
- (c) 3V

(e) 5V

5. D1, D2, D3 ve D4 diyodu ideal olmak üzere, Şekil 5'teki devrede V_i giriş sinyaline karşılık devrenin çıkış sinyali V_0 aşağıdakilerden hangisidir?

6. Şekil 6'daki T1 ve T2 transistörleri için bacak isimlendirmeleri ve katman bilgileri aşağıdaki şıklardan hangisinde doğru olarak verilmiştir?

Şekil 6

		T 1					T2					
	1	2	3	1	2	3	1	2	3	1	2	3
(a)	n	р	n	Е	В	С	p	n	р	Е	В	С
(b)	p	n	р	С	E	В	n	р	n	Е	С	В
(c)	р	n	р	Е	В	С	n	р	n	Е	В	С
(d)	n	р	n	С	E	В	р	n	р	В	С	E
(e)	р	р	р	Е	В	С	n	n	n	С	В	Е

7. Ortak emetörlü transistör devresi için aşağıdakilerden hangisi yanlıştır?

- (a) $I_C = \beta I_B$
- (d) $I_E \cong I_C$
- (b) $I_E = (\beta + 1)I_B$
- (c) $I_E = I_B + I_C$
- (e) $I_E = (\beta + 1)I_C$

8. Şekil 7'deki devrede $V_C=10V$ olabilmesi için kollektör direncinin (R_C) değeri ne olmalıdır? $\beta=100,$ $I_C=3.635mA,$ $V_{CC}=20V$

- (a) 1100Ω
- (d) 2750 Ω
- (b) 2000Ω
- (c) 400Ω
- (e) 3750Ω

9. Şekil 8'deki devrede I_C akımı yaklaşık analiz yöntemine göre aşağıdakilerden hangisidir? V_{CC} = 22V, R_C = 10k Ω , R_E = 1.5k Ω , V_B = 2V

- (a) 1.7mA
- (d) 0.657mA
- (b) 2.2mA
- (c) 0.950mA

(e) 0.867mA

10. Şekil 9'daki T1 ve T2 transistörlerinin aktif bölgede olduğu bilindiğine göre aşağıdakilerde hangisi doğrudur?

Şekil 9

	${f T}$	1	r	72
	V_2	V_{CE}	V_2	V_{EC}
(a)	0.7V	10V	9.3V	10V
(b)	10V	0.7V	-10V	9.3V
(c)	9.3V	-10V	0.7V	10V
(d)	-10V	9.3V	10V	-0.7V
(e)	-0.7V	10V	9.3V	-10V

11. Bir JFET için $I \rightarrow V_{GS} = 0$ ve $II \rightarrow V_{GS} \geq V_p$ durumları için aşağıdakilerden hangisi doğrudur?

	Ι	II
(a)	$I_D = I_{DSS}$	$I_D = 0$
(b)	$I_D < I_{DSS}$	$I_D = 0$
(c)	I_D = I_{DSS}	$I_D < I_{DSS}$
(d)	$I_D = 0$	$I_D = I_{DSS}$
(e)	$I_D = I_{DSS}$	$I_D = I_{DSS}$

12. Kısılma gerilimi $V_p = -5V$, akaç-kaynak doyma akımı $I_{DSS}=10mA$ olan
n kanallı JFET'in akaç akımı (I_D) , $V_{GS} = -1.2V$ için aşağıdakilerden hangisidir?

- (a) 7.6mA
- (d) 5.77mA
- (b) 10mA
- (c) 15.37mA

$$I_{p} = I_{pss} \left(1 - \frac{V_{GS}}{V_{p}} \right)^{2}$$

13. N
 kanallı kanal oluşturmalı eşik değeri V_T = 2.5Vve $K = 0.3mA/V^2$ olan bir MOSFET için $V_{GS} = 4V$ olduğu bir devrede ${\cal I}_D$ akımı aşağıdakilerden hangisidir?

- (a) 12.675mA
- (d) -1.95mA
- (b) 0.675mA
- (c) 0.45mA
- (e) -0.45mA

14. Şekil 10'daki devrede, $V_{DD} = 10V$, $R_D = 1k\Omega$, $R_G = 100 M\Omega$, $I_{DSS} = 7.5 mA$, ve $V_p = -2.5 V$ olmak üzere, I_D ve V_D aşağıdaki şıklardan hangisinde doğru olarak ver-

	ID	VD	
(a)	2.5	10	
(b)	5	5	
(c)	7.5	2.5	
(d)	10	2.5	
(e)	7.5	7.5	

JFET, kanal ayarlamalı MOSFET ve kanal oluşturmalı MOSFET için $I_D - V_{GS}$ arasındaki bağlantı için aşağıdakilerden hangisinde doğru olarak verilmiştir?

	JFET	Kanal Ayarlamalı MOSFET	Kanal Oluşturmalı MOSFET
(a)	Ters orantılı	Doğru orantılı	Doğru orantılı
(b)	Ters orantılı	Ters orantılı	Doğru orantılı
(c)	Ters orantılı	Ters orantılı	Ters orantılı
(d)	Doğru orantılı	Ters orantılı	Doğru orantılı
(e)	Ters orantılı	Doğru orantılı	Ters orantılı

16. Bir MOSFET'e ait transfer karakteristik eğrisi için değerler Tablo 1 ve 2'de verilmiştir. Bu değerlere göre ${\cal I}_{DQ}$ ve ${\cal V}_{GSQ}$ aşağıdaki şıklardan hangisinde doğru olarak verilmiştir?

Tablo 1

$V_{GS}(V)$	I_D (mA)	Tablo 2			
3	0	I_D (mA)	V_{GS} (V)		
	1.0	0	12		
5	1.2	6	0		
7	4.8	•	, and the second		
9	10.8				

	$I_{DQ} (mA)$	$V_{GSQ}(V)$
(a)	5.3	1.9
(b)	4.1	8.3
(c)	1.5	11
(d)	7.2	8.1
(e)	2.9	6.1

Soru 17-19

17-19 numaralı sorular Şekil 11'e göre yapılacaktır.

Şekil 11

17. Şekil 11 - (b)'deki JFET'e ait I_{DSS} değeri aşağıdakilerden hangisidir?

(a) 2mA

(d) 10mA

- (b) 4mA
- (c) 0mA

(e) -10mA

18. Şekil 11 - (b)'deki JFET'e ait V_p değeri aşağıdakilerden hangisidir?

(a) 0V

(d) 5V

- (b) -1V
- (c) -5V

(e) -3V

19. Şekil 11 - (b)'deki JFET'e ait V_{DS} değeri aşağıdakilerden hangisidir?

- (a) 8.96V
- (d) -6.146V
- (b) 6.146V
- (c) -8.96V
- (e) 0V

20. Şekil 12'deki devrede $I_D = 6.9 mA$ ise V_{DS} gerilimi aşağıdakilerden hangisidir?

Sekil 12

- a) -0.35V
- (d) 0.35V
- (b) 5.78V
- (a) 7 991

(e) 7.58V

Süre 80 dakika

Başarılar ©

Dr. Öğr. Üyesi Serap KAZAN

Arş. Gör. Dr. Muhammed Kürşad UÇAR