EECS 376: Foundations of Computer Science

Chris Peikert 25 January 2023

Today's Agenda

- * Overview of computability
- * **Decision** ("membership") problems
- Deterministic Finite Automata (DFA)
 - * A weak class of computing "machine"
- * A limit on the power of DFAs

Overview of Computability

- * Q: Is every "problem" solvable on a "computer"? If so, how? If not, why not?
- * Modeling computation
 - * Formalize notion of "problem" and "computer"
- * The Halting problem and reductions
 - * <u>Prove</u> there are problems that cannot be solved on any computer <u>that could ever exist</u> (or so we believe)
- * Rice's Theorem
 - * "Any non-trivial program analysis is impossible"

"The question of whether a computer can think is no more interesting than the question of whether a submarine can swim." - Edsger Dijkstra.

Modeling Computation

What is a "problem"?

* We consider *decision problems*, where the goal is to *decide* (say "yes" or "no") if a given input object has a certain property

376
Output integer prime?

abba Is the given

Output string a palindrome?

...The list goes on!
We need to *unify* under a common framework

Languages and Their Decision Problems

- * Any <u>finite</u> object (integer, graph, ...) can be <u>encoded</u> as a <u>finite</u> string of characters from a <u>finite</u> alphabet (binary, ASCII, ...).
- * A property corresponds to a <u>set of strings</u>: a.k.a., a <u>language</u>
- * Q: What are the languages for the prior decision problems?

The *decision problem* for a language L: Given a string x, *decide* if $x \in L$ (say Y/N, acc/rej, etc).

Alphabets, Strings, Languages

- * An *alphabet* is a *finite* set of characters, often denoted Σ
 - * Often implicit, e.g., $\Sigma = \mathsf{ASCII}$ characters or $\Sigma = \{0,1\}$
- * A $(\Sigma$ -)*string* is a <u>finite</u> sequence of characters from Σ
 - * The *length* of a string x (# chars) is denoted |x|
 - * The *empty string* is denoted ε ; it has length $|\varepsilon| = 0$
- * A $(\Sigma$ -)language is a (possibly infinite) set of $(\Sigma$ -)strings
 - * The language of *all* strings is denoted Σ^*
- * Example: $\Sigma = \{0,1\}, \Sigma^* = \{\varepsilon, 0, 1, 00, ...\}, \mid 010 \mid$

What is a "computer"?

A "computer" used to mean a <u>person</u> who performed arithmetic calculations

- * Alan Turing defined a formal model, called *Turing* machine, which is widely believed to encompass what any real computing process could possibly do.
- * Beautiful Idea: Abstracts the process of a <u>person/</u> <u>device</u> working on a (decision) problem, with access to an <u>unlimited amount of "scratch" paper/memory</u>.
- * Church-Turing thesis: Any "computer" can be simulated by a Turing machine.
- * Warm-up: DFAs (\equiv person <u>w/o paper</u>): deterministic finite automata

DFA Example (1/4)

Example: DFA that decides $L = \{x \in \{0,1\}^* : |x| \text{ is odd}\}$, the set of binary strings whose lengths are *odd*; alphabet $\Sigma = \{0,1\}$.

one character of x at a time and changes state according to the transition function $\delta: Q \times \Sigma \to Q$ ('program').

An edge $q \to q'$ labeled with $a \in \Sigma$ represents that $\delta \big(q, a \big) = q'$, i.e., at state q, go to state q' upon reading a.

(4) It accepts the input x if it stops at an accepting state after reading all of x.
Drawn as thick/outlined vertices.

Each state represented by a distinct vertex.

('memory').

DFA Example (2/4)

Example: DFAs that decide $L = \{0,1\}^*$, the set of <u>all</u> binary strings, for alphabet $\Sigma = \{0,1\}$.

DFA Example (3/4)

Example: DFA that decides $L = \{\varepsilon, 01, 10, 111\}$, for alphabet

An inescapable "reject" state is often quite useful!

More Examples

```
L = {w : all strings except the empty string}
L = {w : w contains exactly two 0's}
L = {w : every odd position of w is a 1}
L = {w : w contains the string 01}
L = {w : w does not contain the string 01}
L = {w : w has equal number of 0's and 1's} (no DFA can decide this! (Later.))
```

Theorems:

L = {w : strings of length at most 5}

If L is decidable by a DFA, then so is its complement $\,L.$ If L_1 and L_2 are decidable by DFAs, then so are $L_1\cup L_2$, and $L_1\cap L_2$.

DFA Example (4/4)

Example: DFA that decides $L = \{x \in \{0,1\}^* \mid \# \text{ of } 01\text{s in } x = \# \text{ of } 10\text{s in } x\}$, for alphabet $\Sigma = \{0,1\}$.

#1 tip when making DFAs:

Think about maintaining *state invariants*: properties that must hold whenever certain states are reached.

<u>Deterministic Finite Automaton:</u> Formal Definition

- * Formally, a DFA M is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where:
 - * Q is the <u>finite</u> set of **states**
 - * Σ is the *input alphabet*
 - * $\delta: Q \times \Sigma \to Q$ is the *transition function*
 - * $q_0 \in Q$ is the *initial* state
 - * $F \subseteq Q$ is the subset of **accepting** states
- * Takeaway: DFAs are a simple & weak, but well defined, kind of "computer."

The Language of a DFA

- * We say that a DFA
 - * accepts a string x if it ends at an accepting state, given x
 - * decides a language L if it accepts every string $x \in L$ and does not accept ('rejects') every string $x \notin L$
- * A language is said to be *regular* if some DFA decides it.
- * Q: Is every language regular?
- * In other words: is every <u>decision problem</u> "solvable" on this simple, weak model of a "computer"?
 - * No! Intuitively, bottlenecked by DFA's finite memory

A Thought Experiment

- * Imagine you're given a *huge* binary string *x*
 - * $|x| \gg$ number of neurons in your brain
- * You can read x as many times as you want, and in any order, but you can't write anything down
- * Q: Can you decide if $x = 0^k 1^k$ for some k?
 - * $0^k 1^k$ means k 0s followed by k 1s
- * Rabin and Scott [1959]: 'Many-read' DFAs ≡ DFAs.
 - * DFAs can read the input only once, in sequence. This theorem says that more reads don't help.

Theorem: No DFA decides $\{0^k 1^k \mid k \ge 0\}$.

No DFA decides $\{0^k 1^k \mid k \geq 0\}$

- * Suppose that some DFA M decides $\{0^k1^k \mid k \geq 0\}$.
- * Let n = # of states of M, and let $x = 0^{n+1}1^{n+1}$.
- * Claim: We can write x = uwv so that M is in the <u>same</u> state before and after reading substring $w \neq \varepsilon$.
- * M must accept $uwwv \notin \{0^k1^k \mid k \ge 0\}$. Contradiction!

<u>repeat</u> a state while reading 0^{n+1}

