· Sub-space Hi, H2,..., Hm of a vs V are ind (=> d (\vec{z} Hi) = I dim (Hi)

T: $V \longrightarrow V$ a LT. Let N_1 , N_2 , ..., N_m be distinct eigenvalues of T. For $1 \le i \le m$, let $E_{N_i} = \{V \in V : Tv = N_i v\}$

{Exi}, are independent bubspaces of V.

· T: V -> V is diagonalizable if V has a basis write which the matrix of T is diagonal.

Diagonalizability criteria. T:V -> V is diagonalizable (=) dim (V) = Sum of the dimensions of the eigen spaces.

Proof. => Suffore that T is diagonalizable. Then I a bais B of V S. F. [T] is a diagonal matrix. Let

LTJB = dig (M1, M2, ..., Mn), where n = dim (V). Here Me E.F. Also, Mi's need not be distinct.

Observe that NEFT is an eigenvalue of T (=) it is one of the pi's.

Let N, N2, ..., Nm be the distinct eigenvalues of T. Let Vi denote the no of
times Ni is repeated. Then T, + T2 + ... + Tm= n. Also, as T is diagonalizable,

dim (Eni) = Vi i.e.,

Let Vi denote the pi's.

(= Suppose that dim(v) = sum of the dimensions of the eigenspaces of T.

Let n_1 , n_2 ,..., n_m be the distinct eigenvalues of T and let E_n ; denote the corresponding eigenschace: Let $v_i = \dim(E_n)$. Let B_i be the hears for E_n ; $1 \le i \le m$. Let $B_i = 0$ $B_i = 0$ be some that $1 \otimes 1 = 0$ dimv, because E_n ; and in dependent. Thus,

dim V = dim (= = = = = = 181 = 18).

In farticular, B forms a how for V. As B carried only of eigenvectors

Example $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ T(x,y,y) = (5x-6y-6y, -x+4y+2y, 8x-6y-4y) $\lambda = 1 (3,-1,3) \quad \lambda = 1 (2,1,0), (2,0,1)$

dim (E,) = 1	dim (Ex) = 2	
∴ The dia	gonali zalle	
7=1 7=1	3 1 -1 2 2 -1 2 2 0 (1,-1,0) (Verify)	T is not diagon-dizable.
Exercise 1		