

**Today's Lecture** 

## **Algorithms**

- We've been studying data structures.
- We'll now move towards algorithm design.
- Data scientists do design algorithms.
- But perhaps more important to understand solutions to common problems and which problems are difficult.

## **Today**

- ► We'll introduce the idea of an **optimization problem**.
- ► Talk about one easy strategy that sometimes works.



#### Optimization Problems and Design Strategies

# **Optimization Problems**

- We often want to find the best.
  - Shortest path between two nodes.
  - Minimum spanning tree.
  - Schedule that maximizes tasks completed.
  - Line of best fit.

► These are **optimization problems**.

# **Example: Regression**

- Given a set of n points in  $\mathbb{R}^2$ , find a straight line y = mx + b which minimizes the Sum of Squared Errors.
- ▶ **Given**: set of *n* points  $\{(x_i, y_i)\}$  in  $\mathbb{R}^2$
- **Search Space**: all straight lines of form y = mx + b
- ▶ Objective Function:  $\phi(m,b) = \sum_{i=1}^{n} (y_i (mx_i + b))^2$

# **Continuous Optimization**

- Here, the search space is continuous, often infinite.
- Methods for solving often use calculus.

# **Discrete Optimization**

- ► Here, the search space is discrete, typically **finite**.
- Example: shortest path between two nodes.
- Methods for solving (usually) can't use calculus.
- We will focus on these problems.

#### **Brute Force**

- If search space is finite, can employ brute force search.
- Typically search space is too large to be feasible.

# **Design Strategies**

- Focus on design strategies for discrete optimization.:
  - Greedy Algorithms
  - Backtracking
  - Dynamic Programming



The Greedy Approach by Example

#### **Problem**

Choose: 4 numbers with largest sum.

```
95 83 80 77
62 65 55 75
85 91 70 74
88 72 59 79
```

# **Specification**

- ▶ **Given**: A set *X* of *n* numbers and an integer *k*.
- ▶ **Search Space**: Subsets  $S \subset X$  of size k.
- Objective: maximize sum of numbers in S,

$$\phi(S) = \sum_{S \in S} S$$

#### **Brute Force**

- ▶ Brute force: try every possible subset of size *k*.
- How many are there?

$$\binom{n}{k} = \Theta(n^k)$$

Time complexity is  $\Theta(k \cdot n^k)$ 

## **The Greedy Approach**

```
95 83 80 77
62 65 55 75
85 91 70 74
88 72 59 79
```

## **The Greedy Approach**

- At every step, make the best decision at that moment.
- Is this optimal? Not always, but it is here.

#### **Proof**

Let  $x_1 \ge \cdots \ge x_k$  be the *k* largest numbers. Let  $y_1 \ge \cdots \ge y_k$  be some other solution. Since  $x_1, \dots, x_k$  are the *k* largest:

$$X_1 \ge Y_1, \quad X_2 \ge Y_2, \quad \dots, \quad X_k \ge Y_k.$$

Therefore:

$$\sum_{i=1}^k x_i \ge \sum_{i=1}^k y_i$$

Since the other solution was arbitrary, this shows that the greedy solution is at least as good as anything else; therefore it is maximal.

# **Efficiency**

- Algorithm: loop through once, find k largest numbers.
- Linear time, Θ(n).
- Much faster than  $\Theta(k \cdot n^k)$ !

#### **A Variation**

Now you can only choose one number from each row.

```
95 83 80 77
62 65 55 75
85 91 70 74
88 72 59 79
```

## **Specification**

- ▶ **Given**: An  $n \times n$  matrix X of numbers and an integer k.
- ▶ **Search Space**: Subsets  $S \subset X$  of size k where each element is from a different row of X.
- Objective: maximize sum of numbers in S.

$$\phi(S) = \sum_{S \in S} S$$

# **Optimality**

► The greedy approach of choosing largest within each row is optimal.

#### **Another Variation**

Now you can only choose one from each row/column.

```
95 83 80 77
62 65 55 75
85 91 70 74
88 72 59 79
```

## **Specification**

- ▶ **Given**: An  $n \times n$  matrix X of numbers and an integer k.
- ► **Search Space**: all subsets of entries of *X* of size *k* such that each element is in a different row/column of *X*.
- Objective: maximize sum of numbers in subset.

$$\phi(S) = \sum_{S \in S} S$$

## **Greedy is not Optimal**

► The optimal solution is: 80 + 75 + 91 + 88 = 334

```
95 83 80 77
62 65 55 75
85 91 70 74
88 72 59 79
```

#### Main Idea

For some problems, a greedy approach is guaranteed to find the optimal solution. For other problems, it is not.

#### Main Idea

Coming up with a greedy algorithm is usually simple – proving that it finds the optimal may not be so easy.



**Activity Selection Problem** 

# **Vacation Planning**



#### **Formalized**

- This is called the activity selection problem.
- ► **Given**: a set of start/finish times  $(s_i, f_i)$  for n events
- Search Space: all schedules S with non-overlapping events
  - Format: S is a set of event indices  $e_1, e_2, ..., e_k$
- Objective: maximize |S| (number of events)

$$\phi(S) = |S|$$

## **Greedy Strategies**

- There are several strategies we might call "greedy".
- Approach #1: in order of duration, shortest events first.

### In Order of Duration



# **Greedy Strategies**

Approach #2: in order of start time.

#### **In Order of Start Time**



# **Greedy Strategies**

Approach #3: in order of finish time.

### In Order of Finish Time



#### In Order of Finish Time

Choose event with earliest finish time as first event.

- Choose subsequent events in order of finish time.
  - provided that they are non-overlapping.
- This is guaranteed to find global optimum.
- But how do we know this?



**Exchange Arguments** 

## **Convincing Yourself**

- Designing a greedy algorithm is usually easy.
- ▶ It can be hard to convince yourself that it is optimal.
- Now, one proof technique: **exchange arguments**.

## **First: Proving Non-Optimality**

To show that a strategy is **non-optimal**, find a counterexample.

## **Proving Optimality**

There may be many optimal solutions – we want to show that the greedy solution  $S_G$  is always one of them.

#### **Exchange Arguments**

- Start with an arbitrary optimal solution, S\*.
- Make a **chain** of optimal solutions  $S^*, S_1, S_2, ..., S_G$
- At every step from  $S_{k-1}$  to  $S_k$ :
  - $\triangleright$  construct solution  $S_k$  by exchanging part of  $S_{k-1}$  with  $S_G$
  - ightharpoonup argue that  $S_{h}$  is **valid**<sup>1</sup>
  - $\triangleright$  argue that  $S_{k}$  is **also optimal**
- Proves  $S_G$  is optimal, as  $\phi(S^*) = \phi(S_1) = \phi(S_2) = \dots = \phi(S_G)$

<sup>&</sup>lt;sup>1</sup>It is part of the search space and meets all constraints.

## **Exchange Argument for Activities**



## **Exchange Argument for Activities**

Take an arbitrary optimal solution  $S^*$ . Suppose it is different from the greedy solution,  $S_G$  (as otherwise we're done).

If it's different, it has to be different somewhere. Let's look at the first event in  $S^*$  that is not in S; call this the *i*th event in  $S^*$ .

We'll exchange the ith event in  $S^*$  with the ith event in  $S_G$ , but we have to be a little careful: what if  $|S^*| > |S_G|$ , so that it's possible that  $S_G$  has no ith element? So there are two cases:  $i \le |S_G|$  and  $i > |S_G|$ . First case:  $i \le |S_G|$ . Then exchange the ith event in  $S^*$  with the ith event in  $S_G$ , creating a new solution S'.

This is **valid**: the event from  $S_G$  cannot overlap with any of the events in  $S^*$ , since the previous i-1 events in  $S^*$  are the same as in  $S_G$  (and they didn't overlap), and the finish time of the greedy event is  $\leq$  the finish time of event it is replacing, so it cannot overlap with the remaining events.

42 / 61



**Minimum Spanning Trees** 



# **MSTs and Clustering**



# **Minimum Spanning Trees**

**Given**: a weighted graph  $G = (V, E, \omega)$ , where  $\omega : E \to \mathbb{R}$ .

- Search Space: all spanning trees T = (V, E'), where  $E' \subset E$ .
- ▶ **Objective**: minimize total edge weight

$$\phi(T) = \sum_{e \in F'} \omega(e)$$

### Kruskal's Algorithm

- Kruskal's Algorithm is a greedy algorithm for computing a MST.
- Idea: add edges one-by-one in order of weight.
  - But only if edge does not make a cycle!



### Kruskal's Algorithm (Pseudocode)

```
def kruskals(graph, weight):
    mst = UndirectedGraph()
    edges = sorted(graph.edges, key=weight)

for (u, v) in edges:
    if u and v are not connected in mst:
        mst.add_edge(u, v)

return mst
```

## Implementing Kruskal's Algorithm

```
def kruskals(graph, weight):
    mst = UndirectedGraph()
    edges = sorted(graph.edges, key=weight)
    dsf = DisjointSetForest()
    for i in range(len(graph.nodes)):
        dsf.make set()
    for (u, v) in edges:
        if dsf.find set(u) != dsf.find set(v):
            mst.add_edge(u, v)
dsf.union(u, v)
    return mst
```

# **Optimality**

- Kruskal's Algorithm find an optimal solution.
- We can prove this with an exchange argument.

#### **Notes**

- ► The greedy approach produces a valid spanning tree.
- Any two spanning trees have same number of edges.
- Removing an edge from a MST partitions nodes in two.



#### **Exchange Idea**

- Suppose  $e^* = (u, v)$  is in  $T^*$ , but not in T.
- ▶ We'll find a node e on the path from u to v in T.
- Make a new tree, T', by taking T\*, removing e\*, replacing it with e.

#### **Exchange Argument**

Let  $T^*$  be any minimum spanning tree, and let  $T_G$  be a tree produced by Kruskal's algorithm. Suppose that  $T^*$  and  $T_G$  are different, and let  $e^* = (u, v)$  be an edge in  $T^*$  that is not in  $T_G$ .

Consider the path from u to v in  $T_G$ . Adding  $e^*$  to  $T_G$  would create two different paths from (u, v), and thus a cycle. Let (A, B) be the cut produced if  $e^*$  were removed from  $T^*$ , and let e be an edge along the cycle that crosses the cut (A, B) (there must be at least one).

We will exchange  $e^*$  in  $T^*$  for the edge e. First, this will create a **valid** spanning tree. Removing  $e^*$  in  $T^*$  breaks the tree into two connected components with disjoint node sets A and B. Since e crosses (A, B), adding it will re-connected the disconnected components, and thus form a spanning tree, T'.

Second, the new tree is **also optimal**. We claim that  $\omega(e') \ge \omega(e)$ . At the time e' was considered by Kruskal's, it was rejected because it would create a cycle. Meaning that edge e was already added, implying that  $\omega(e) \le \omega(e^*)$ . As

54 / 61



**Designing Greedy Algorithms** 

### **Designing Algorithms**

- When do we know to use a greedy algorithm?
- It isn't always obvious.

#### **A Pattern**

- Our examples have a common pattern: sort by some attribute, then loop through.
  - Number grid: take numbers in descending order.
  - Activities: take activities in increasing order of finish time.
  - MST: take edges in increasing order of weight.
- This is a new justification for value of sorting.
- Suggestion: when tackling a problem, try sorting first.

#### **Greedy Approximations**

- A greedy algorithm can be useful, even if not guaranteed to produce optimal answer.
- Especially true if exact algorithms are slow.
- Example: k-means clustering (Lloyd's algorithm)

#### k-means Problem

- ▶ **Given**: n data points X in  $\mathbb{R}^d$ , parameter k.
- Search Space: all clusterings  $C = \{X_1, ..., X_k\}$  of X into k disjoint sets.
- Objective function: minimize

$$\phi(C) = \sum_{i=1}^k \sum_{x \in X_i} (x - \text{mean}(X_i))^2$$

### **Greedy Algorithm**

- Lloyd's algorithm (a.k.a., the "k-means algorithm") is a greedy algorithm for minimizing the k-means objective.
- ► Start with *k* centroids,  $\mu_1, ..., \mu_k$ .
- At each step, let  $X_i$  be set of points closest to  $\mu_i$ , update  $\mu_i$  to be mean( $X_i$ ), repeat until convergence.
- Each step decreases value of objective function.

# **Optimality**

- Lloyd's algorithm is **not** guaranteed to find optimum.
- Then again, no feasible algorithm is.
- Used in practice because it is fast and "good enough".