

Logit Mixing Training for

More Reliable and Accurate Prediction

Duhyeon Bang*, Kyungjune Baek*, Jiwoo Kim, Yunho Jeon, Jin-Hwa Kim, Jiwon Kim Jongwuk Lee, and Hyunjung Shim†

* indicates equal contribution † indicates a corresponding author

Motivation & Goal

- Problem: DNNs are poor at understanding inter-class relationship because model training strictly enforces to predict the one-hot labels.
- Goals: We devise DNNs to utilize inter-class relationships by rejecting improbable classes.
- **Key idea**: We adopt logits as weak supervision for learning interclass relationship.

Logit vs. One-hot Labels

• **Logits** can reveal the inter-class relationship while one-hot labels do not provide any relationship between classes.

Logits vs. Probability Vector

 Probability vector (a.k.a post-softmax output) can capture the positive inter-class relationship, however, it can distort the true relationship.

Method

$$\mathcal{L}_{sim} = \|(\lambda f(x_1) + (1 - \lambda)f(x_2)) - f(x_{mix})\|_2$$

Objective Function

Similarity loss $\mathcal{L}_{sim} = \|(\lambda f(x_1) + (1-\lambda)f(x_2)) - f(x_{mix})\|_2$

Cross-entropy with original labels $\mathcal{L}_{cls} = \mathcal{H}(ilde{y}_1,y_1) + \mathcal{H}(ilde{y}_2,y_2)$

Cross-entropy with mixed labels $y_{mix} = \lambda y_1 + (1-\lambda)y_2$

 $\mathcal{L}_{mix} = \lambda \mathcal{H}(\tilde{y}_{mix}, y_1) + (1 - \lambda) \mathcal{H}(\tilde{y}_{mix}, y_2)$

Experimental Results

Toy Example

Ablation Study on Losses

Name	Loss	Accuracy(%)
Vanilla Mixup	$\mathcal{L}_{cls} \ \mathcal{L}_{mix}$	78.32 ± 0.07 79.82 ± 0.08
LogitMix _m (-) Mixup (-) Cross entropy (-) Similarity loss	$\mathcal{L}_{cls} + \mathcal{L}_{sim} + \mathcal{L}_{mix} \ \mathcal{L}_{cls} + \mathcal{L}_{sim} \ \mathcal{L}_{mix} + \mathcal{L}_{sim} \ \mathcal{L}_{mix} + \mathcal{L}_{cls}$	81.59 ± 0.09 80.11 ± 0.09 80.51 ± 0.08 80.08 ± 0.49

Image Classification

Dataset	Network	Metric	Vanilla	Mixup	$LogitMix_m$	CutMix	$LogitMix_c$	PuzzleMix	$LogitMix_p$
CIFAR100	VGG16	Acc	74.30	75.02	76.22 (+1.20)	75.34	76.10 (+0.76)	75.92	76.38 (+0.46)
		ECE	0.176	0.060	0.035 (-0.025)	0.051	0.062 (+0.011)	0.121	0.100 (-0.021)
		OE	0.154	0.035	0.025 (-0.010)	0.022	0.008 (-0.014)	0.011	0.049 (+0.038)
	ResNet50	Acc	78.32	79.82	81.59 (+1.77)	80.57	81.02 (+0.45)	82.57	83.76 (+1.19)
		ECE	0.087	0.040	0.014 (-0.026)	0.078	0.073 (-0.005)	0.092	0.215 (+0.123)
		OE	0.073	0.028	0.003 (-0.025)	0.064	0.060 (-0.004)	0.015	0.000 (-0.015)
	ResNeXt50	Acc	79.18	81.10	81.63 (+0.53)	81.16	81.46 (+0.30)	81.40	82.13 (+0.73)
		ECE	0.069	0.042	0.021 (-0.021)	0.059	0.032 (-0.027)	0.092	0.220 (+0.128)
		OE	0.057	0.001	0.000 (-0.001)	0.047	0.023 (-0.024)	0.017	0.001 (-0.016)
	MobileNetV2	Acc	69.69	69.98	73.90 (+3.92)	68.82	69.91 (+1.09)	75.77	75.99 (+0.22)
		ECE	0.061	0.091	0.048 (-0.043)	0.050	0.049 (-0.001)	0.097	0.100 (+0.003)
		OE	0.042	0.000	0.000 (0.000)	0.000	0.000 (0.000)	0.022	0.009 (-0.013)
	ShuffleNetV2	Acc	72.17	74.17	75.53 (+1.36)	73.60	73.73 (+0.13)	76.18	76.75 (+0.57)
		ECE	0.079	0.060	0.042 (-0.018)	0.016	0.023 (+0.007)	0.126	0.094 (-0.032)
		OE	0.060	0.000	0.000 (-0.000)	0.002	0.000 (-0.002)	0.014	0.001 (-0.013)
TinyImageNet	ResNet50	Acc	66.6	68.34	70.71 (+2.37)	69.08	69.87 (+0.79)	69.71	70.15 (+0.44)
		ECE	0.098	0.032	0.030 (-0.002)	0.029	0.034 (+0.005)	0.121	0.131 (+0.010)
		OE	0.076	0.022	0.010 (-0.012)	0.015	0.005 (-0.010)	0.012	0.012 (0.000)
	MobileNetV2	Acc	57.62	59.55	62.12 (+2.57)	53.54	57.66 (+4.12)	64.08	65.30 (+1.22)
		ECE	0.073	0.091	0.032 (-0.059)	0.094	0.082 (-0.012)	0.112	0.104 (-0.008)
		OE	0.045	0.019	0.000 (-0.019)	0.000	0.000 (0.000)	0.034	0.016 (-0.018)
ILSVRC2015	ResNet50	Acc	76.13	77.37	78.38 (+1.01)	78.43	78.51 (+0.08)	75.63	77.47 (+1.84)
		ECE	0.370	0.041	0.028 (-0.013)	0.028	0.020 (-0.008)	0.120	0.117 (-0.003)
		OE	0.030	0.003	0.001 (-0.002)	0.029	$0.029\ (0.000)$	0.053	0.056 (+0.003)

Text Classification / Regression

Model	MNLI-mm	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
BERT _{BASE} [Devlin et al., 2018] Mixup on BERT _{BASE} [Sun et al., 2020]	84.73 84.29	91.25 91.15	91.43 91.36	93.12 93.12	57.82 58.82	89.43 89.44	87.75 87.50	68.95 67.87	83.06 82.94
LogitMix on BERT _{BASE}	84.73 (0.00)	91.25 (0.00)	91.58 (+0.15)	93.12 (0.00)	58.85 (+0.03)	89.45 (+0.01)	87.50 (-0.25)	70.04 (+1.09)	83.32 (+0.26)
BERT _{LARGE} [Devlin et al., 2018] Mixup on BERT _{LARGE} [Sun et al., 2020]	85.99 86.02	90.20 90.09	92.20 92.42	92.89 92.66	60.88 61.86	89.9 90.02	87.75 88.24	73.29 73.29	84.14 84.33
LogitMix on BERT _{LARGE}	86.10 (+0.08)	90.95 (+0.75)	92.60 (+0.18)	93.58 (+0.69)	63.89 (+2.03)	89.98 (-0.04)	89.22 (+0.98)	74.37 (+1.08)	85.09 (+0.76)

Conclusion

- We propose to utilize logits for the better understanding on the inter-class relationship.
- We analyze the effect of three different losses and the robustness for the choice of the hyperparameter.
- We verify that our LogitMix can be combined with various mixing-based augmentation methods.
- We show that LogitMix effectively improves the classification and the calibration performance for image and text datasets.

References

[Zhang et al., 2018] Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and David Lopez-Paz. mixup: Beyond empirical risk minimization. ICLR, 2018.

[Yun et al., 2019] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo. Cutmix: Regularization strategy to train strong classifiers with localizable features. ICCV, 2019. [Kim et al., 2020] Jang-Hyun Kim, Wonho Choo, and Hyun Oh Song. Puzzle mix: Exploiting saliency and local statistics for optimal mixup. ICML, 2020.