Heat Conduction

ME210 Heat Transfer — Lect #9 Maithripala D. H. S.

A General Heat Conduction Problem

$$\mathcal{F} = \begin{cases} \text{Space of square integrable} \\ \text{functions on } \Omega \\ \text{that satisfy the boundary conditions} \end{cases}$$

For each $t \in \mathbb{R}$ $T(t, \cdot) \in \mathcal{F}$

Special Case: Steady State Solution

Solve
$$\frac{1}{D}\frac{\partial T}{\partial t} = \nabla^2 T + \gamma_{\rm S}(p)$$
 in the domain Ω

such that T(t,p) where $p \in \Omega$ is specified on $\partial \Omega$

and satisfies the IC $T(0,p) = T_0(p)$

Define
$$T_s(p) \triangleq \lim_{t \to \infty} T(t, p)$$

Then $T_s(p) \in \mathcal{F}$ must satisfy $\nabla^2 T + \gamma_s(p) = 0$

(For example in the 1D case with $\gamma_s(x) \equiv 0 \rightarrow T_s(x) = C_1 x + C_0$)

General Solution

$$T(t,p) = \sum_{n=1}^{\infty} \alpha_n(t)\phi_n(p)$$

where

$$\alpha_n(t) = e^{-D\lambda_n^2 t} \alpha_n(0) + D \int_0^t e^{-D\lambda_n^2 (t-\tau)} \gamma_n(\tau) d\tau$$

and

$$\alpha_n(0) = \langle \phi_n(p), T_0(p) \rangle$$

This is possible only if

If there exists $\phi_n \in \mathcal{F}$ such that

$$\nabla^2 \phi_n = -\lambda_n^2 \phi_n$$
 and $\langle \phi_n, \phi_m \rangle = \delta_{nm}$

for some appropriate inner product

and
$$\{\phi_n\}_{n=1}^{\infty}$$
 spans \mathscr{F}

This process is in general very hard !!

General Solution Procedure

Solve
$$\frac{1}{D}\frac{\partial T}{\partial t}=\nabla^2 T+\gamma(t,p)$$
 in the domain Ω such that $T(t,p)=T_{BC}(p)$ for $p\in\partial\Omega$ and $T(0,p)=T_0(p)$

Let $T_{SH}(p)$ be such that $\nabla^2 T = 0$ and $T_{SH}(p)$ satisfies the BCs $(T_{SH}(p))$ is the steady state homogeneous solution)

Reduction to a Heat Conduction Problem with Homogeneous BCs

Let
$$\widetilde{T}(t,p) \triangleq T(t,p) - T_{SH}(p)$$

Let
$$\mathscr{F} = \begin{cases} \text{Space of square integrable} \\ \text{functions on } \Omega \text{ that satisfy} \\ \text{homogeneous boundary conditions} \end{cases}$$

Then we can verify that

$$\frac{1}{D}\frac{\partial \widetilde{T}}{\partial t} = \nabla^2 \widetilde{T} + \gamma(t, p)$$
and $\widetilde{T}(t, \cdot) \in \mathscr{F}$ for each $t \in \mathbb{R}$

Now we look for

$$\phi_n \in \mathscr{F}$$
 such that

$$\nabla^2 \phi_n = -\lambda_n^2 \phi_n$$
 and $\langle \phi_n, \phi_m \rangle = \delta_{nm}$

for some appropriate inner product

and
$$\{\phi_n\}_{n=1}^{\infty}$$
 spans \mathscr{F}

This process is possible in many cases

General Solution to the reduced problem

$$\widetilde{T}(t,p) = \sum_{n=1}^{\infty} \alpha_n(t)\phi_n(p)$$

where

$$\alpha_n(t) = e^{-D\lambda_n^2 t} \alpha_n(0) + D \int_0^t e^{-D\lambda_n^2 (t-\tau)} \gamma_n(\tau) d\tau$$

$$\gamma_n(t) = \langle \phi_n(p), \gamma(t, p) \rangle$$

and

$$\alpha_n(0) = \langle \phi_n(p), T_0(p) - T_s(p) \rangle$$

Hence General Solution

$$T(t,p) = T_{SH}(p) + \sum_{n=1}^{\infty} \alpha_n(t)\phi_n(p)$$

where

$$\alpha_n(t) = e^{-D\lambda_n^2 t} \alpha_n(0) + D \int_0^t e^{-D\lambda_n^2 (t-\tau)} \gamma_n(\tau) d\tau$$

and

$$\gamma_n(t) = \langle \phi_n(p), \gamma(t, p) \rangle$$

and

$$\alpha_n(0) = \langle \phi_n(p), T_0(p) - T_s(p) \rangle$$

Back to 1-D Homogenous Problem

$$\phi_n(x) \triangleq \sin\left(\frac{n\pi x}{L}\right) \in \mathcal{F}$$

$$\nabla^2 \phi_n = -\lambda_n^2 \phi_n$$

$$\lambda_n^2 = \left(\frac{n\pi}{L}\right)^2$$

$$\langle \phi_n, \phi_m \rangle = \frac{2}{L} \int_0^L \sin\left(\frac{n\pi x}{L}\right) \sin\left(\frac{m\pi x}{L}\right) dx = \delta_{nm}$$

and
$$\{\phi_n\}_{n=1}^{\infty}$$
 spans \mathscr{F}

Back to 1-D Heat Conduction

Solve HE
$$\frac{1}{D} \frac{\partial T}{\partial t} = \nabla^2 T + \gamma(t, x)$$

for
$$f, g \in \mathcal{F}$$

$$\langle f, g \rangle \triangleq \frac{2}{L} \int_{0}^{L} f(x)g(x) dx$$

defines an inner product on \mathcal{F}

Steady State Homogeneous Solution

The solution is

$$T_{SH}(x) = T_0 - (T_0 - T_L) \frac{x}{L}$$

$$T_{SH}(0) = T_0$$
 and $T_{SH}(L) = T_L$

Solve
$$\nabla^2 T_{SH} = 0$$

1-D Heat Conduction

$$T(t,x) = T_{SH}(x) + \sum_{n=1}^{\infty} \alpha_n(t) \sin\left(\frac{n\pi x}{L}\right)$$

$$\alpha_n(t) = e^{-D\lambda_n^2 t} \alpha_n(0) + D \int_0^t e^{-D\lambda_n^2 (t-\tau)} \gamma_n(\tau) d\tau$$

Non-homogeneous BCs

$$T(t,0) = T_0$$
 and $T(t,L) = T_L$

$$T(0,x) = T_0(x)$$
 | ICs

Solve HE
$$\longrightarrow \frac{1}{D} \frac{\partial T}{\partial t} = \nabla^2 T + \gamma(t, x)$$

Where

$$\gamma_n(t) = \frac{2}{L} \int_0^L \gamma(t, x) \sin\left(\frac{n\pi x}{L}\right) dx$$

Solve HE
$$\frac{1}{D}\frac{\partial T}{\partial t} = \nabla^2 T + \gamma(t,x)$$
 $\alpha_n(0) = \frac{2}{L}\int_0^L \left(T_0(x) - T_{SH}(x)\right) \sin\left(\frac{n\pi x}{L}\right) dx$

1-D Heat Conduction

Solve HE
$$\longrightarrow \frac{1}{D} \frac{\partial T}{\partial t} = \nabla^2 T + \gamma(t, x)$$

 $T(0,x) = T_0(x)$

1-D Heat Diffusion: Example 1

$$\gamma(t,x)\equiv 0$$

$$T(t,0)=0$$
 and $T(t,L)=0$ BCs $T(0,x)=T_0(x)=\sin\left(\frac{\pi x}{L}\right)$ ICs Solve HE $\frac{1}{D}\frac{\partial T}{\partial t}=\nabla^2 T$

What happens if
$$T_0(x) = \sin\left(\frac{\pi x}{L}\right)$$
 ?

Then
$$a_n = \frac{2}{L} \int_0^L \sin\left(\frac{\pi x}{L}\right) \sin\left(\frac{n\pi x}{L}\right) dx$$

$$= \delta_{1n}$$

$$T(t,x) = e^{-\left(\frac{\pi}{L}\right)^2 t} \sin\left(\frac{\pi x}{L}\right)$$

1-D Heat Diffusion: Example 2

What happens if
$$T_0(x) = \sin\left(\frac{\pi x}{L}\right) - \frac{1}{2}\sin\left(\frac{2\pi x}{L}\right)$$
 ?

$$T(t,x) = e^{-D\left(\frac{\pi}{L}\right)^2 t} \sin\left(\frac{\pi x}{L}\right) - \frac{1}{2}e^{-D\left(\frac{2\pi}{L}\right)^2 t} \sin\left(\frac{2\pi x}{L}\right)$$

1-D Diffusion in an infinite domain

Solve HE
$$\frac{1}{D} \frac{\partial T}{\partial t} = \nabla^2 T$$

In the domain $\Omega = \mathbb{R}$

With Initial Condition $T(0,x) = \delta(x)$

$$\frac{d}{dt}T(t,k) + Dk^2T(t,k) = 0$$

and T(0,k) = 1

$$T(t,k) = e^{-tDk^2}$$

Spatial Fourier Transform

$$T(t,k) = \int_{-\infty}^{\infty} e^{-ikx} T(t,x) dx$$

$$T(t,x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{ikx} T(t,k) dk$$

$$T(t,x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-tDk^2} e^{ikx} dk$$
$$= \frac{1}{\sqrt{4\pi Dt}} e^{\frac{-x^2}{4Dt}}$$

1-D Diffusion in an infinite domain

Solve HE
$$\frac{1}{D} \frac{\partial T}{\partial t} = \nabla^2 T$$

In the domain $\Omega = \mathbb{R}$

With Initial Condition $T(0,x) = \delta(x)$

$$T(t,x) = \frac{1}{\sqrt{4\pi Dt}} e^{\frac{-x^2}{4Dt}}$$

2D-Example: Heat Transfer in a Disk Brake

Example: 2D Axi-Symmetric Heat Conduction

 $T(t, r, \theta, z) \equiv T(t, r)$ for 2D axi – symmetric problems

$$\nabla^2 = \left(\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial}{\partial r}\right)\right) = \frac{\partial^2}{\partial r^2} + \frac{1}{r}\frac{\partial}{\partial r}$$

Steady State Homogenous Solution

$$\nabla^2 T = 0$$
 $T_{SH}(r) = a_1 \ln r + a_2$

2D Axi-Symmetric Heat Conduction

Solve
$$\frac{1}{D} \frac{\partial T}{\partial t} = \nabla^2 T + \gamma(t, p)$$

Subject to BCs and ICs

$$\nabla^2 = \left(\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial}{\partial r}\right)\right)$$
$$= \frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r}$$

Eigenvectors of
$$\nabla^2$$

$$\nabla^2 \varphi_n = -\lambda_n^2 \varphi_n$$

$$\frac{d^2 \varphi_n}{dr^2} + \frac{1}{r} \frac{d \varphi_n}{dr} + \lambda_n^2 = 0$$
Bessel's DE

Solutions to BE

$$\frac{d^2\varphi_n}{dr^2} + \frac{1}{r}\frac{d\varphi_n}{dr} + \lambda_n^2\varphi_n = 0$$

$$\varphi_n(r) = b_{1n}J_0(\lambda_n r) + b_{2n}Y_0(\lambda_n r)$$

Bessel Functions of the 1st Kind

$$\left\langle J_0\left(\lambda_m r\right), J_0\left(\lambda_n r\right) \right\rangle \triangleq \frac{2}{a^2 J_1(\lambda_m) J_1(\lambda_n)} \int_0^a r J_0\left(\lambda_m r\right) J_0\left(\lambda_n r\right) dr$$
$$= \delta_{mn}$$

General Solution

$$T(t,p) = T_{SH}(p) + \sum_{n=1}^{\infty} \alpha_n(t)\varphi_n(p)$$

where

$$\dot{\alpha}_n(t) + D\lambda_n^2 \alpha_n = \langle \psi_n, \gamma(t, x) \rangle$$

$$\nabla^2 T_{SH} = 0$$

and

$$\alpha_n(0) = \langle \varphi_n(p), T_0(p) - T_s(p) \rangle$$

For the general cylindrical problem

- http://mathworld.wolfram.com/HeatConductionEquationDisk.html
- http://mathworld.wolfram.com/Fourier-BesselSeries.html