

## NET PRESENT VALUE AND OTHER INVESTMENT CRITERIA

Brian P. Cozzarin

MSCI 261 Winter 2021



#### Topics Covered

- A Review of The Basics
- Book Rate of Return and Payback
- Internal (or Discounted Cash Flow) Rate of Return
- Choosing Capital Investments When Resources Are Limited



## Figure 5.1 A Review of the Basics





#### Three Points to Remember about NPV

- 1. A dollar today is worth more than a dollar tomorrow
- 2. Net present value depends solely on the *forecasted cash flows* from the project and the *opportunity cost of capital*
- 3. Because present values are all measured in today's dollars, you can add them up

$$NPV(A + B) = NPV(A) + NPV(B)$$



# Figure 5.2 Survey Data on CFOs' Use of Investment Evaluation Techniques





### Book Rate of Return and Payback

#### Book Rate of Return

 Average income divided by average book value over project life. Also called accounting rate of return.

Book rate of return = 
$$\frac{\text{book income}}{\text{book assets}}$$

- Managers rarely use this measurement to make decisions.
  - The components reflect tax and accounting figures, not market values or cash flows.

#### Book Rate of Return and Payback Continued

- The payback period of a project is the number of years it takes before the cumulative forecasted cash flow equals the initial outlay.
- The payback rule says to only accept projects that "pay back" in the desired time frame.
- This method is flawed, primarily because it ignores later-year cash flows and the present value of future cash flows.



#### Book Rate of Return and Payback Continued 2

#### **Example**

Examine the three projects and note the mistake we would make if we insisted on only taking projects with a payback period of two years or less.

|         | Discounted Cash Flows (\$) |                       |                             |                        |  |  |
|---------|----------------------------|-----------------------|-----------------------------|------------------------|--|--|
| Project | <b>C</b> <sub>0</sub>      | <i>C</i> <sub>1</sub> | $c_{\scriptscriptstyle 2}$  | <i>C</i> <sub>3</sub>  |  |  |
| А       | -2,000                     | 500/1.10 =<br>455     | $500/1.10^2 = 413$          | $5,000/1.10^3 = 3,757$ |  |  |
| В       | -2,000                     | 500/1.10 = 455        | $1,800/1.10^2 = 1,488$      |                        |  |  |
| С       | -2,000                     | 1,800/1.10 =<br>1,636 | 500/1.10 <sup>2</sup> = 413 |                        |  |  |



#### Book Rate of Return and Payback Concluded

#### **Example**

Examine the three projects and note the mistake we would make if we insisted on only taking projects with a payback period of two years or less.

|         | Discounted Cash Flows (\$) |                       |                                 |                        |                                         |               |
|---------|----------------------------|-----------------------|---------------------------------|------------------------|-----------------------------------------|---------------|
| Project | $c_{\scriptscriptstyle 0}$ | C <sub>1</sub>        | <b>C</b> <sub>2</sub>           | <b>C</b> <sub>3</sub>  | Discounted<br>Payback<br>Period (years) | NPV at<br>20% |
| А       | -2,000                     | 500/1.10 =<br>455     | $500/1.10^2 = 413$              | $5,000/1.10^3 = 3,757$ | 3                                       | +2,624        |
| В       | -2,000                     | 500/1.10 = 455        | 1,800/1.10 <sup>2</sup> = 1,488 |                        | _                                       | -58           |
| С       | -2,000                     | 1,800/1.10 =<br>1,636 | $500/1.10^2 = 413$              |                        | 2                                       | +50           |



## Internal (or Discounted Cash Flow) Rate of Return

#### Internal Rate of Return (IRR)

Discount rate at which NPV = 0

#### Internal Rate of Return Rule

 Invest in any project offering a rate of return that is higher than the opportunity cost of capital

Rate of return = 
$$\frac{\text{payoff}}{\text{investment}} - 1$$



#### 5-11

## Internal (or Discounted Cash Flow) Rate of Return Continued

#### **Example**

You can purchase a turbo-powered machine tool gadget for \$4,000. The investment will generate \$2,000 and \$4,000 in cash flows for two years, respectively. What is the IRR on this investment?



## Internal (or Discounted Cash Flow) Rate of Return Concluded

#### **Example**

You can purchase a turbo-powered machine tool gadget for \$4,000. The investment will generate \$2,000 and \$4,000 in cash flows for two years, respectively. What is the IRR on this investment?

$$NPV = -4,000 + \frac{2,000}{(1+IRR)^{1}} + \frac{4,000}{(1+IRR)^{2}} = 0$$

$$IRR = 28.08\%$$



## Figure 5.3 Internal Rate of Return



## Pitfall 1—Lending or Borrowing?

- With some cash flows (as noted below), the NPV of the project increases as the discount rate increases
- This is contrary to the normal relationship between NPV and discount rates

|         | Cash Fl        | ows (\$)              |      |            |
|---------|----------------|-----------------------|------|------------|
| Project | C <sub>o</sub> | <i>C</i> <sub>1</sub> | IRR  | NPV at 10% |
| Α       | -1,000         | +1,500                | +50% | +364       |
| В       | +1,000         | -1,500                | +50% | -364       |



## Pitfall 2—Multiple Rates of Return

- Certain cash flows can generate NPV = 0 at two different discount rates
- The following cash flow in Figure 5.4 generates NPV = \$A 253 million at both IRR% of +3.50% and +19.54%.



#### Pitfall 2—Multiple Rates of Return

## Pitfall 2—Multiple Rates of Return Continued

• It is possible to have a zero IRR and a positive NPV

|         | Ca     | sh Flows              | (\$)   |         |                   |
|---------|--------|-----------------------|--------|---------|-------------------|
| Project | $C_0$  | <i>C</i> <sub>1</sub> | $C_2$  | IRR (%) | <b>NPV</b> at 10% |
| С       | +1,000 | -3,000                | +2,500 | None    | +339              |



## Pitfall 3—Mutually Exclusive Projects

- IRR sometimes ignores the magnitude of the project
- The following two projects illustrate that problem

| Cash Flows (\$) |                       |                       |         |                   |
|-----------------|-----------------------|-----------------------|---------|-------------------|
| Project         | <b>C</b> <sub>0</sub> | <i>C</i> <sub>1</sub> | IRR (%) | <b>NPV</b> at 10% |
| D               | -10,000               | +20,000               | 100     | +8,182            |
| E               | -20,000               | +35,000               | 75      | +11,818           |







## Pitfall 4—What Happens When There Is More than One Opportunity Cost of Capital

- Term structure assumption
- We assume that discount rates are stable during the term of the project
- This assumption implies that all funds are reinvested at the IRR
- This is a false assumption



## Choosing Capital Investments When Resources Are Limited

- Capital Rationing
  - Limit set on the amount of funds available for investment
- Soft Rationing
  - Limits on available funds imposed by management
- Hard Rationing
  - Limits on available funds imposed by the unavailability of funds in the capital market



## An Easy Problem in Capital Rationing

- When resources are limited, the profitability index (PI) provides a tool for selecting among various project combinations and alternatives
- A set of limited resources and projects can yield various combinations

 The highest weighted average PI can indicate which projects to select



## An Easy Problem in Capital Rationing Continued

| Project | Investment<br>(\$ millions) | NPV<br>(\$ millions) | Profitability<br>Index |
|---------|-----------------------------|----------------------|------------------------|
| Α       | 10                          | 21                   | 2.1                    |
| В       | 5                           | 16                   | 3.2                    |
| С       | 5                           | 12                   | 2.4                    |

Profitability index = 
$$\frac{NPV}{investment}$$



## An Easy Problem in Capital Rationing Concluded

| Cash Flows (\$ millions) |       |                |       |            |
|--------------------------|-------|----------------|-------|------------|
| Project                  | $C_0$ | C <sub>1</sub> | $C_2$ | NPV at 10% |
| Α                        | -10   | +30            | +5    | 21         |
| В                        | -5    | +5             | +20   | 16         |
| С                        | -5    | +5             | +15   | 12         |



## Example: Profitability Index

#### **Example**

We only have \$300,000 to invest. Which do we select?

| Project | NPV     | Investment | PI   |
|---------|---------|------------|------|
| А       | 230,000 | 200,000    | 1.15 |
| В       | 141,250 | 125,000    | 1.13 |
| С       | 194,250 | 175,000    | 1.11 |
| D       | 162,000 | 150,000    | 1.08 |



#### Example: Profitability Index Continued

#### **Example continued**

| Project | NPV     | Investment | PI   |
|---------|---------|------------|------|
| А       | 230,000 | 200,000    | 1.15 |
| В       | 141,250 | 125,000    | 1.13 |
| С       | 194,250 | 175,000    | 1.11 |
| D       | 162,000 | 150,000    | 1.08 |

Select projects with the highest weighted average PI

Weighted average PI (BD) = 
$$\left(1.13 \times \frac{125}{300}\right) + \left(1.08 \times \frac{150}{300}\right) + \left(0.0 \times \frac{25}{30}\right) = 1.01$$



## Example: Profitability Index Concluded

#### **Example concluded**

| Project | NPV     | Investment | PI   |
|---------|---------|------------|------|
| А       | 230,000 | 200,000    | 1.15 |
| В       | 141,250 | 125,000    | 1.13 |
| С       | 194,250 | 175,000    | 1.11 |
| D       | 162,000 | 150,000    | 1.08 |

Select projects with highest weighted average PI

WAPI 
$$(BD) = 1.01$$

WAPI (A) 
$$= 0.77$$

**WAPI (BC) = 
$$1.12$$**

