Sentential Tree Logic

LOGIC I Benjamin Brast-McKie September 25, 2023

Constructing the Root

Previously: $\Gamma \vDash \varphi$ if and only if $\Gamma, \neg \varphi \vDash \bot$.

Proof: To show Γ , $\neg \varphi \vDash \bot$, we will show Γ , $\neg \varphi \vdash \bot$.

Resolution Rules

Root: A root is any finite sequence of SL sentences.

Tree: An SL *tree* consists of a root followed by any number of applications of the resolution rules given below:

Conjunction

$\varphi \wedge \psi$ $\neg (\varphi \wedge \psi)$ φ ψ $\neg \varphi$

The Material Conditional

$$arphi\supset\psi$$
 $\neg(arphi\supset\psi)$ $\neg \psi$ $\neg \psi$

Disjunction

$$\begin{array}{ccc}
\varphi \lor \psi & \neg(\varphi \lor \psi) \\
 & \neg \varphi \\
 & \neg \psi
\end{array}$$

The Biconditional

Double Negation

$$\neg \neg \varphi$$
 φ

Child: A *child* of φ in an SL tree is any sentence ψ immediately following φ .

Leaf: A leaf in an SL tree is any sentence which does not have a child.

Branch: A *branch* in an SL tree is any sequence of sentences beginning with the root of the tree and ending with a leaf of the tree where every sentence in the sequence besides the first is a child of its predecessor.

Note: Officially, an SL tree is an *ordered dyadic tree* of SL sentences where every sentence in the tree either belongs to the root, or results from resolving one of its ancestors.

Closure and Completion

Branch Closure: A branch in an SL tree is closed just in case it includes φ and $\neg \varphi$ for

some SL sentence φ , and *open* otherwise.

Tree Closure: A tree is *closed* just in case every branch is closed, and *open* otherwise.

Resolvable: A sentence is resolvable in a branch just in case it has a resolution rule

and the branch is open.

Resolved: A sentence is resolved in a branch just in case the resolution rule for

that sentence has been applied in that branch.

Branch Completion: A branch is complete just in case every resolvable sentence in that

branch has been resolved in that branch.

Tree Completion: A tree is *complete* if and only if every branch in the tree is complete.

Derivability

STL: $\Gamma \vdash \bot$ just in case there is a closed tree with root Γ .

Derivability: $\Gamma \vdash \varphi$ just in case $\Gamma, \neg \varphi \vdash \bot$.

Question 1: Why should we care about ⊢?

Answer: So far, we shouldn't, but soon we will show that: $\Gamma \vdash \varphi$ iff $\Gamma \vDash \varphi$.

Suppose: Let's suppose $\Gamma \vdash \varphi$ iff $\Gamma \vDash \varphi$ for now.

Question 2: How can we determine whether Γ is satisfiable?

Answer: Show that $\Gamma \nvdash \bot$.

Examples

1. Evaluate the following argument for validity:

$$\neg R \supset \neg Q$$
$$P \land Q$$

$$\therefore P \wedge R$$

- 2. Show that $A \vee B$, $B \supset C$, $A \equiv C \models C$.
- 3. Show that $(P \supset Q) \equiv (\neg Q \supset \neg P)$ is a tautology.
- 4. Show that $A \equiv \neg A$ is a contradiction.
- 5. Show that $\{P, P \supset Q, Q \supset \neg P\}$ is unsatisfiable.
- 6. Show that $\{P \supset Q, \neg P \lor \neg Q, Q \supset P\}$ is satisfiable.
- 7. Evaluate $P, P \supset Q, \neg Q \models A$.