1.1. Вопросы по разделу основные понятия и определения архитектуры вычислительной техники

1.1.1. Вопросы по разделу системы с жёсткой логикой.

- 1.1.1.1. Какие преимущества имеют системы с жесткой логикой по сравнению с системами с гибкой логикой сегодня, привести примеры.
- 1.1.1.2. Какие системы счисления называются позиционными, приведите примеры позиционных и непозиционных систем счисления.
- 1.1.1.3. Какие системы счисления называются унарными приведите примеры унарных и неунарных систем счисления.
- 1.1.1.4. Как логические операции называются базовыми, приведите примеры систем жесткой и гибкой логики построенных на тех или иных базовых логических элементах, соответствующих базовым логическим операциям.
- 1.1.1.5. Объяснить, как в процессорах используются триггеры, какие триггеры бывают.
- 1.1.1.6. Объяснить, почему для организации ячеек памяти используют регистры и какие это регистры, с какими логическими элементами они связаны.
- 1.1.1.7. Объяснить, почему элемент XOR самый простой сумматор, что нужно изменить, чтобы из XOR сделать полусумматор и полный сумматор.
- 1.1.1.8. Объяснить область применения шифраторов и дешефраторов,
- 1.1.1.9. Объяснить область применения мультиплексоров и демультиплексоров.

1.1.2. Вопросы по разделу системы с гибкой логикой:

- 1.1.2.1. Какие недостатки имеют системы с гибкой логикой сегодня, какие преимущества по сравнению с системами жесткой логики.
- 1.1.2.2. Какие недостатки имеют последовательные системы с гибкой логикой по сравнению с параллельной, приведите примеры задач, где они проявляются.
- 1.1.2.3. Приведите примеры последовательных и параллельных и гибридных цифровых устройств гибкой схемотехники, объясните цели их использования и особенности построения.
- 1.1.2.4. Зачем нужны разные виды ПЛИС, привести примеры ПЛИС и задач, где они используются.
- 1.1.2.5. Назвать принципы, на которых основаны FPGA (field programmable gate array); назвать принципы, на которых основаны CPLD (complex programmable logic device)
- 1.1.2.6. Зачем нужны системы типа SOC (system on chip), приведите примеры задач, где они используются.
- 1.1.2.7. Объясните, почему последовательные устройства развиваются стремительней параллельных.

1.2. Вопросы по разделу введение в архитектуру процессорных устройств.

- 1.2.1. Вопросы по разделу принципы построение последовательных устройств гибкой логики.
- 1.2.1.1. Объясните в чем заключается принцип программного управления системами гибкой логики.
- 1.2.1.2. В чем отличия машинного кода от транслируемых языков программирования.
- 1.2.1.3. Из каких составных частей состоит процессор, какие у них функции.
- 1.2.1.4. Из каких составных частей состоит ЭВМ, какие у них функции.
- 1.2.1.5. Объясните, зачем нужна иерархия памяти, какие виды памяти могут быть, какие технологии работы памяти используются и в каких видах памяти, как виды памяти соотносятся с точки зрения иерархии, привести примеры использования различных видов памяти.
- 1.2.1.6. Назвать особенности магистральной организации процессорных устройств, привести примеры использования.
- 1.2.1.7. Дать определения и назвать особенности использования кэш памяти, ОЗУ, регистровой памяти. Почему процессор непосредственно работает с регистрами, а не напрямую с ОЗУ и зачем ему КЭШ.

1.2.2. Вопросы по разделу основные особенности архитектуры процессов

- 1.2.2.1. Назвать какие архитектуры оп принципу разделения памяти существуют, какие привести примеры их использования, назвать их преимущества и недостатки.
- 1.2.2.2. Рассказать, какие виды архитектур используются в современном процессоре ПК и как применяются, привести примеры.
- 1.2.2.3. Какая из архитектур (по принципу организации памяти) может обеспечить параллельность обработки на одном процессоре, почему, примеры реализации и примеры устройств.
- 1.2.2.4. Зачем нужна магистральная организация процессора, дать определение, привести примеры.
- 1.2.2.5. Зачем нужны разные архитектуры по принципу организации команд, привести примеры их использования, назвать их преимущества и недостатки.
- 1.2.2.6. Какая из архитектур (по принципу организации команд) проще, какая быстрее, обосновать ответ, привести примеры
- 1.2.2.7. Объяснить особенности организации параллелизма на уровне процессоров, зачем нужны разные архитектуры, привести примеры использования.
- 1.2.2.8. Объяснить, почему в RISC архитектурах можно реализовать конвейерный принцип, в какой архитектуре по принципу деления памяти может быть реализована конвейерная архитектура.
- 1.2.2.9. Объяснить, почему в CISC процессорах используют супер-скалярную архитектуру.
- 1.2.2.10. Объяснить отличия Гарвардской архитектуры и архитектуры Фон-Неймана.

- 1.2.2.11. Объяснить отличия SISD, MISD, SIMD и MIMD архитектур, назвать задачи, где они используются.
- 1.2.2.12. Назвать типичные тенденции развития процессорной техники, прокомментировать их особенности.
- 1.2.2.13. Назвать особенности видеопроцессоров по сравнению с центральными процессорами.
- 1.2.2.14. Объяснить, зачем нужны микроконтроллеры, одноплатные компьютеры, сопроцессоры, почему нельзя все делать на одном процессоре.

1.3. Вопросы по разделу Модель памяти процессорных устройств

1.3.1. Вопросы по разделу базовая модель памяти.

- 1.3.1.1. Объяснить, почему недостаточно прямой «физической» адресации, зачем нужны модели памяти?
- 1.3.1.2. Объяснить, какие есть виды сегментов памяти, в чем особенность каждого сегмента памяти, можно ли их сделать на одних и тех же физических адресах памяти, и если можно, то как?
- 1.3.1.3. Объяснить цель использования регистров флагов, можно ли без него обойтись, привести примеры использования флагов, обосновать ответ?
- 1.3.1.4. Объяснить особенности работы со стеком, в каких задачах как он используется, привести примеры.
- 1.3.1.5. Зачем нужно несколько наборов команд (X86, X87,...), в каких задачах, какие используются? Можно ли обойтись без каких-то из регистров команд?
- 1.3.1.6. Всегда ли виртуальный адрес имеет соответствие ячейки ОЗУ?
- 1.3.1.7. Как страничная организация памяти помогает оптимизации работы процессора?
- 1.3.1.8. Зачем нужно делать несколько режимов работы процессора?
- 1.3.1.9. Какой режим выставляется при загрузке системы, почему? Какой режим используется во время работы операционной системы, чем он отличается от того, который при загрузке.
- 1.3.1.10.В чем особенность защищённого режима, как и что он «защищает»?
- 1.3.1.11.Зачем нужны уровни привилегий доступа к памяти, обосновать ответ?
- 1.3.1.12. Чем таблицы дескрипторов отличаются от векторов адресации? Что такое дескрипторы и зачем они нужны?
- 1.3.1.13.Назовите особенности таблиц локальных дескрипторов? Зачем нужны они таблицы и где они хранятся.
- 1.3.1.14. Каким образом используется таблица векторов прерываний? Что такое прерывания и что такое вектора.

- 1.3.1.15. Какие бывают виды прерываний, привести примеры работы каждого из таких видов.
- 1.3.1.16.В чем смысл деления прерываний на маскируемые и не маскируемые, приведите пример, когда стоит маскировать прерывание?
- 1.3.1.17. Как обрабатываются ошибки, зачем нужны Аварии?
- 1.3.1.18. Как прерывания участвуют в работе процессора с внешними устройствами?
- 1.3.1.19. В чем преимущества страничной организации памяти, обосновать ответ.
- 1.3.1.20. Объяснить цель работы устройства управления памятью. Зачем оно нужно, какие функции выполняет, как работает.
- 1.3.1.21.Зачем нужен кэш TLB, как его работа проявляется на практике?
- 1.3.1.22. Как реализуется принцип многозадачности? С каким режимом работы он связан, как он связан с работой процессора.

1.4. Вопросы по разделу Функциональные особенности системных плат.

1.4.1. Вопросы по разделу особенности организации системной платы.

- 1.4.1.1. Назвать основные функции системной платы. Можно ли построить ЭВМ без использования системной платы, что для этого нужно сделать, какие в этом случае будут преимущества и недостатки ЭВМ.
- 1.4.1.2. Какие основные тенденции в архитектуре чипсетов имеет место сегодня, чем они обусловлены.
- 1.4.1.3. В чем преимущества и в чем недостатки шинной организации системной платы, почему она все же используется.
- 1.4.1.4. Назовите цели использования контроллера шин, какие он имеет функции, как функционировали бы шины без своих контроллеров?
- 1.4.1.5. Каким образом прямой доступ к памяти способствует производительности ЭВМ.
- 1.4.1.6. В чем заключается необходимость использования прерываний в контроллерах шин, как можно бы было обойтись без них к чему бы это привело.
- 1.4.1.7. Какие типы шинной организации системных плат существуют и в чем их особенность.
- 1.4.1.8. Объясните, каким образом системная плата позволяет осуществлять связь устройств ввода-вывода и процессора.
- 1.4.1.9. Как вы думаете, какие особенности архитектуры процессоров связаны с принятыми сегодня стандартами организации системных плат. Назовите эти стандартами и объясните их необходимость.
- 1.4.1.10. Назовите особенности шины Front-Side Bus, почему эту шину не используют сегодня.
- 1.4.1.11. Назовите особенности шин QPI и HyperTransport.

1.4.1.12. Какие основные тенденции в организации шин типа «процессор-память» имеет место сегодня, в чем причина таких тенденций, приведите примеры.

1.4.2. Вопросы по разделу базовая система ввода вывода.

- 1.4.2.1. Объяснить место базовой системы ввода вывода в организации работы системной платы. Зачем в BIOS нужны ROM и RAM и почему их делают отдельно от основных ROM и RAM.
- 1.4.2.2. Назовите функции базовой системы ввода вывода.
- 1.4.2.3. Опишите процесс работы базовой системы ввода до загрузки операционной системы, и в течение ее работы.
- 1.4.2.4. Какие проблемы могут быть выявлены в режиме POST, какие не могут быть выявлены и почему, что нужно сделать, чтобы такие проблемы диагностировать.
- 1.4.2.5. Объяснить, как происходит начальная загрузка операционной системы, как ее можно упростить, почему эту процедуру не упрощают.
- 1.4.2.6. Объяснить принцип работы системы Plug&Play. В каких случаях система Plug&Play не может быть использована. Какие у данной системы преимущества и недостатки.
- 1.4.2.7. Объяснить какие есть преимущества у системы UEFI по сравнению с BIOS.
- 1.4.2.8. Объясните назначение системы UEFI, Все ли операционные системы поддерживают UEFI, объяснить ответ.
- 1.4.2.9. Объяснить, зачем нужна сложная структура флеш-памяти UEFI. Какие там есть сегменты, зачем они нужны.
- 1.4.2.10. Объяснить процесс загрузки операционной системы с использованием UEFI.
- 1.4.2.11. Рассказать о режимах безопасности в системе UEFI.
- 1.4.2.12.Зачем нужно использовать несколько режимов безопасности UEFI. Назвать эти режимы. Сравнить безопасность UEFI и BIOS.
- 1.4.2.13. Рассказать, что UEFI должен сделать, чтобы передать управление операционной системе. Какова функция UEFI в течение работы операционной системы.

1.5. Вопросы по разделу интерфейсные шины ЭВМ

1.5.1. Вопросы по разделу интерфейсные шины персональных ЭВМ.

- 1.5.1.1. Объяснить необходимость, контроллера шин, какие основные функции он может выполнять?
- 1.5.1.2. Объяснить разницу между изохронными, синхронными и асинхронными шинами, привести примеры использования этих типов шин?
- 1.5.1.3. Рассказать об основных принципах организации интерфейсов PCI, используется ли шина PCI сегодня и где, в чем схожесть и в чем различия PCI-Express и PCI?

- 1.5.1.4. Рассказать об основных принципах организации интерфейсов PCI-Express, какова необходимость введения стека протоколов в PCI-Express, рассказать о стеке?
- 1.5.1.5. Как вы думаете, зачем запоминающие устройства конфигурируются преимущественно на отдельных шинах, каковы перспективы интерфейсов запоминающих устройств ATA и SCSI, SAS?
- 1.5.1.6. Как вы думаете, почему шины DIMM параллельные, почему нет последовательных, каковы тенденции в архитектуре DIMM?

1.5.2. Вопросы по разделу интерфейсные шины промышленного назначения.

- 1.5.2.1. Как вы думаете, почему в промышленности используют интерфейсы отличающиеся от интерфейсов ПК, зачем их столько видов, какие к ним предъявляют требования?
- 1.5.2.2. Как вы думаете, почему интерфейсы типа USART наиболее широко используются, какие у них преимущества и недостатки, в чем отличия их реализаций на примере COM port (RS232, 422 и 485)?
- 1.5.2.3. Как вы думаете, почему шины SPI часто применяются в цифровой электронике, в чем их преимущества и недостатки?
- 1.5.2.4. Как вы думаете, в чем преимущества и недостатки шины I2C по сравнению с SPI, привести примеры использования?
- 1.5.2.5. Как вы думаете, где используются аналоговые и импульсные интерфейсы, в чем их преимущества и недостатки по сравнению с цифровыми интерфейсами?

1.5.3. Вопросы по разделу Интерфейс USB.

- 1.5.3.1. Какие основные особенности и свойства интерфейса USB делают его популярным сегодня, ответ обосновать?
- 1.5.3.2. Какие свойства интерфейса USB позволяют использовать его в системе Plug&Play, в чем особенность реализации данной системе в USB?
- 1.5.3.3. Рассказать о физической и логической топологии USB, почему они отличаются, в чем их схожесть?
- 1.5.3.4. Как вы думаете, зачем нужны разные режимы работы USB, какие у них особенности, привести примеры использования?
- 1.5.3.5. Рассказать о физическом уровне стека протоколов USB.
- 1.5.3.6. В чем особенность обмена данными между функциями и кроновым хабом в интерфейсе USB.
- 1.5.3.7. Рассказать об особенностях конечных точек, зачем они нужны, что представляют, как связаны с понятием о каналах данных

- 1.5.3.8. Рассказать о структуре драйверов USB, какие есть типы драйверов, как они логически связаны между собой и как связаны с логической структурой устройств USB.
- 1.5.3.9. Рассказать об особенностях стека протоколов USB. В чем предназначение пакетов, транзакций и кадров.

1.6. Вопросы по разделу Физический уровень проводных локальных сетей 1.6.1. Вопросы по разделу Классические сети.

- 1.6.1.1. Как вы думаете, в чем преимущества и недостатки классической сети Ethernet по сравнению с сетями типа ArcNet, FDDI, TokenRing и т.д.?
- 1.6.1.2. Объяснить цель использования стеков протоколов и эталонных моделей, почему нельзя обойтись одним протоколом?
- 1.6.1.3. Сравнить особенности подключения сетей по витой паре, коаксиальному (а также твинксальному) кабелю и оптоволокну, зачем использовать три варианта, а не ограничится одним, в чем их особенности?
- 1.6.1.4. Объяснить, как алгоритмы класса CSMA (напр. CSMA/CD) позволяют решать проблему коллизий, в чем преимущество CSMA/CD перед, CSMA/CA или другими алгоритмами с использованием jam сигнала?
- 1.6.1.5. Как вы думаете, зачем в стандарте IEEE 802 (напр. 802.3) заложено разделение канального уровня на MAC и LLC подуровень, чем эти уровни отличаются, какие у них цели использования?
- 1.6.1.6. Объясните необходимость физического и логического кодирования, какие варианты кодировок там используются и почему?
- 1.6.1.7. Как вы думаете, чем отличаются концентратор и коммутатор и роутер, какие сети они позволяют создавать, в чем их преимущества, на каких уровнях модели ОСИ они работают, какие еще устройства коммутации существуют и в чем их цель?

1.6.2. Вопросы по разделу Современные сети Ethernet.

- 1.6.2.1. Как вы думаете, зачем в сети Fast Ethernet расширен физический уровень, какие составляющие там за что отвечают, к чему это приводит?
- 1.6.2.2. Объяснить необходимость ввода расширителей кадров в сетях Giagbit Ethernet, какие есть способы расширения кадров.
- 1.6.2.3. Объяснить особенности физического уровня стандартов Giagbit Ethernet, и 10, 40, 100 Gigabit Ethernet, какие составляющие физический уровень имеет, зачем вводят новые виды кодировок, какие режимы работы используются?

1.7. Вопросы по разделу Физический уровень беспроводных локальных сетей 1.7.1. Вопросы по разделу Особенности физического уровня беспроводных локальных сетей.

- 1.7.1.1. Как вы думаете, в чем преимущества и недостатки беспроводных локальных сетей по сравнению с проводными, почему в проводных локальных сетях достаточно использовать один протокол, а в беспроводных несколько проколов для разных задач?
- 1.7.1.2. Как вы думаете, почему в беспроводных сетях используется протокол CSMA/CA, а не CSMA/CD, зачем еще нужны методы RTS-CTS, NAV, почему дополнительно используется метод ASK?
- 1.7.1.3. Как вы думаете, почему в беспроводных сетях используются более сложный стек кодирования, чем в проводных, зачем нужны такие приемы как скремблирование данных, избыточное кодирование, чередования и т.д.,
- 1.7.1.4. Как вы думаете, зачем нужно несколько видов цифровой модуляции сигнала, какие у них преимущества и недостатки
- 1.7.1.5. Сравнить технологии расширения канала связи, что такое временное разделение каналов, что такое частотное и кодовое разделение?
- 1.7.1.6. Сравнить технологии расширения спектра OFDM, FHSS и DSSS, какие технологии более перспективны и почему, какие проще?
- 1.7.1.7. Как вы думаете, какие тенденции имеются в развитии стандартов группы 802.11, с чем физически эти особенности связаны, ответ обосновать, привести примеры?

1.7.2. Особенности физического уровня беспроводных локальных сетей 802.11.

- 1.7.2.1. Как вы думаете, какова цель стандарта 802.11e, зачем нужны централизованный и децентрализованный режимы, что дает фрагментация, и зачем нужен изохронный режим?
- 1.7.2.2. Как вы думаете, почему физический уровень модели OSI разный для разных стандартов 802.11, зачем иногда преамбула и тас фрейм кодируются по-разному, какие особенности имеет уровень MAC стандарта по сравнению с Ethernet?

1.7.3. Особенности физического уровня беспроводных локальных сетей Bluetooth.

- 1.7.3.1. Как вы думаете, какие цель использования стандарта Bluetooth, в каких особенностях стандарта эти цели выражаются?
- 1.7.3.2. Объяснить особенности стека протоколов Bluetooth связан с моделями его использования?

- 1.7.3.3. Объяснить особенности топологии сетей Bluetooth, как организовывается связь внутри сети и связь между разными сетями, почему на протокол Bluetooth не влияет работа других сетей в том же диапазоне?
- 1.7.3.4. Объяснить, зачем нужно вводить 5 режимов логического транспорта в Bluetooth, ответ обосновать, привести примеры использования?