Max Shi

Professor Li

MA 331

October 18, 2019

I pledge my honor that I have abided by the Stevens Honor System.

9.37.a. Table

Stratum	Allowed Claims	Not Allowed Claims	Total
Small	51	6	57
Medium	12	5	17
Large	4	1	5
Total	67	12	79

b. Percentage of not allowed claims

Small - 6/57 = 10.5%

Medium - 5/17 = 29.4%

Large - 1/5 = 20%

c. We do this because the expected value for the large and not allowed claims is too small. It would be 5*12/79 which is about 0.75, which is too small.

d. Null hypothesis – There is no association between claim size and whether or not the claim is allowed.

e.

Stratum (Observed)	Allowed Claims	Not Allowed Claims	Total
Small	51	6	57
Medium + Large	16	6	22
Total	67	12	79

Stratum (Expected)	Allowed Claims	Not Allowed Claims	Total
Small	48.341	8.658	57
Medium + Large	18.658	3.342	22
Total	67	12	79

$$X^{2} = \frac{(51 - 48.341)^{2}}{48.341} + \frac{(6 - 8.658)^{2}}{8.658} + \frac{(16 - 18.658)^{2}}{18.658} + \frac{(6 - 3.342)^{2}}{3.342}$$

$$X^{2} = 0.146 + 0.816 + 0.379 + 2.11 = 3.455$$

$$df = (2 - 1)(2 - 1) = 1$$

$$P(X_{1}^{2} > 3.455) = 0.063$$

9.38.a. Estimated Unallowed Claims

Strata	Claims in Strata	Sample Proportion	Estimated Unallowed Claims
Small	3342	10.5%	351.79
Medium	246	29.4%	72.32
Large	58	20%	11.6

b. Margins of Error:

Small -

$$SE_p = \sqrt{\frac{0.105(1 - 0.105)}{57}}$$

$$SE_p = 0.0406$$

$$SE = \sqrt{\frac{0.105(1 - 0.105)}{3342}}$$

SE = 0.0053 for population

For confidence level C, the confidence interval for the estimation is:

$$(351.79 - (0.0053 * 3342 * z_C^*), 351.79 + (0.0053 * 3342 * z_C^*))$$

 $(351.79 - (17.72 * z_C^*), 351.79 + (17.72 * z_C^*))$

Where z_{C}^{*} is the z value for which the area between z_{C}^{*} and $-z_{C}^{*}$ under the normal curve is C.

Medium -

$$SE = \sqrt{\frac{0.294(1 - 0.294)}{246}}$$
$$SE = 0.0290$$

For confidence level C, the confidence interval for the estimation is:

$$(72.32 - (0.0290 * 246 * z_C^*), 72.32 + (0.0290 * 246 * z_C^*))$$

 $(72.32 - (7.134 * z_C^*), 72.32 + (7.134 * z_C^*))$

Where z_c^* is the z value for which the area between z_c^* and $-z_c^*$ under the normal curve is C.

Large -

$$SE = \sqrt{\frac{0.2(1 - 0.2)}{58}}$$
$$SE = 0.05252$$

For confidence level C, the confidence interval for the estimation is:

$$(11.6 - (0.0525 * 58 * z_C^*), 11.6 + (0.0525 * 58 * z_C^*))$$
$$(11.6 - (3.045 * z_C^*), 11.6 + (3.045 * z_C^*))$$

Where z_{C}^{*} is the z value for which the area between z_{C}^{*} and $-z_{C}^{*}$ under the normal curve is C.

9.50.

	x <= -0.6	-0.6 < x <= -0.1	-0.1 < x <= 0.1	0.1 < x <= 0.6	0.6 < x	Total
Count	139	102	41	78	140	500
Probability	0.274	0.186	0.0797	0.186	0.274	1
Expected	137.13	92.96	39.83	92.96	137.13	500
Count						

$$X^{2} = \frac{(139 - 137.13)^{2}}{137.13} + \frac{(102 - 92.96)^{2}}{92.96} + \frac{(41 - 39.83)^{2}}{39.83} + \frac{(78 - 92.96)^{2}}{92.96} + \frac{(140 - 137.13)^{2}}{137.13}$$

$$X^2 = 0.0255 + 0.879 + 0.0344 + 2.407 + 0.0600 = 3.4059$$

 $df = 5 - 1 = 4$
 $P(X_4^2 > 3.4059) = 1 - 0.508 = 0.492$

There is about a 50% chance that these numbers were generated from a standard normal distribution.

	x <= -0.8	-0.8 < x <= -0.2	-0.2 < x <= 0.2	0.2 < x <= 0.8	0.8 < x	Total
Count	110	104	97	88	101	500
Probability	0.211	0.208	0.159	0.208	0.211	1
Expected	105.5	104	79.5	104	105.5	500
Count						

$$X^{2} = \frac{(110 - 105.5)^{2}}{105.5} + \frac{(104 - 104)^{2}}{104} + \frac{(97 - 79.5)^{2}}{79.5} + \frac{(88 - 104)^{2}}{104} + \frac{(101 - 105.5)^{2}}{105.5}$$

$$X^{2} = 0.1919 + 0 + 3.8522 + 2.4615 + 0.1919 = 6.698$$

$$P(X_{4}^{2} > 6.698) = 1 - 0.847 = 0.153$$

There is a 15.3% chance that this data was generated by a normal distribution.