Cara untuk mendapatkan salah satu nilai desimal dari contoh kromosom-kromosom di atas adalah sebagai berikut:

Nilai desimal (110011) =
$$(1 \times 2^5) + (1 \times 2^4) + (0 \times 2^3) + (0 \times 2^2 + (1 \times 2^1) + (1 \times 2^0)$$

= 51

Untuk memulai proses algoritma genetika, sejumlah kromosom yang berperan sebagai populasi awal dibangkitkan **secara acak**. Misalkan populasi ini terdiri atas empat buah kromosom, yaitu sebagai berikut.

No.	Kromosom pada populasi awal	Nilai desimal	
1.	110011	51	
2.	010111	23	
3.	101100	44	
4. 011011		27	

Nilai *fitness* keempat kromosom di atas dapat diketahui dengan mensubstitusikan nilai desimal masing-masing kromosom ke dalam fungsi *fitness*. Hasil penghitungan ini dapat dilihat pada Tabel 2.1.

Tabel 2.1 Hasil penghitungan untuk contoh Algoritma Genetika Sederhana

No.	populasi awal (x)		Nilai fitness f(x)=x ²	
1.			2601	
2.	010111	23	529 1936	
3.	101100	44		
4.	011011	729		
	5795			
	1448,75			
	2601			

Seleksi

Sebelum reproduksi dimulai, dilakukan seleksi terhadap kromosom yang ada untuk dijadikan sebagai induk. Secara alami, kromosom dengan nilai *fitness* yang lebih tinggi akan memiliki peluang lebih besar terpilih. Besarnya peluang masing-masing kromosom dalam contoh ini dapat dilihat pada Gambar 2.4.

Salah satu teknik seleksi adalah *Roulette Wheel Selection*, seperti yang telah dijelaskan pada subbab terdahulu. Jumlah populasi yang digunakan adalah 4 kromosom. Dengan demikian, agar jumlah populasinya konstan, roda rolet diputar sebanyak 4 kali. Setiap pemutaran roda rolet akan dihasilkan satu buah kromosom induk. Setelah roda rolet diputar empat kali, misalkan secara berurutan diperoleh kromosom 1, kromosom 3, kromosom 2, dan kromosom 4. Kromosom-kromosom inilah yang akan menjadi kromosom induk, untuk kemudian akan mengalami penyilangan dan atau juga mutasi.

Gambar 2.4 Proporsi peluang terpilihnya kromosom dalam tahap *Roulette Wheel Selection*

Teori dan Aplikasinya untuk Bisnis dan Industri

Penyilangan (Crossover)

Ilustrasi proses penyilangan kromosom 1 (*Parent 1*) dan kromosom 4 (*Parent 4*) dengan titik potong pada posisi 2 yang ditentukan secara *random* (acak) adalah sebagai berikut:

Parent 1	1	1	0	0	1	1	\rightarrow	51
Parent 4	0	1	1	0	1	1	\rightarrow	27
Child 1	0	1	0	0	1	1	\rightarrow	59
Child 2	1	1	1	0	1	1	\rightarrow	19

Ilustrasi proses penyilangan kromosom 2 (*Parent 2*) dan kromosom 3 (*Parent 3*) dengan titik potong pada posisi 3 yang ditentukan secara *random* (acak) adalah sebagai-berikut:

Parent 2	0	1	0	1	1	1	\rightarrow	23
Parent 3	1	0	1	1	0	0	\rightarrow	44
Child 3	1	0	1	1	1	1	\rightarrow	47
Child 4	0	1	0	1	0	0	\rightarrow	20

Berdasarkan penjelasan di atas, dapat dilihat bahwa proses penyilangan akan menghasilkan keturunan yang lebih *fit* (yang memiliki nilai *fitness* lebih tinggi). Populasi yang dihasilkan disajikan pada Tabel 2.2.

Tabel 2.2 Populasi baru pada contoh Algoritma Genetika Sederhana

	Kromosom anak	Nilai desimal (x)	Nilai fitness f(x)=x2
1	111011	59	3481
2	010011	19	361
3	101111	47	2209
4	010100	20	400
		Total	6451
		Rata-rata	1612,75
		Maksimum	3481

Dari Tabel 2.2 dapat dilihat bahwa nilai total dan nilai *fitness* rata-rata dari populasi baru lebih tinggi dari populasi awal. Hal ini menandakan bahwa proses pencarian menggunakan algoritma genetika mampu mendapatkan nilai x yang lebih baik dari yang sebelumnya. Di mana kromosom dengan nilai x yang baik merupakan calon optimal permasalahan yang dihadapi. Untuk mempertahankan kromosom yang memiliki nilai yang optimal maka diperlukan proses elitisme serta penambahan generasi sehingga menghasilkan solusi optimal seperti pada Gambar 2.5.

Dari Gambar 2.5 di atas dapat kita lihat bahwa nilai fitness dari generasi ke generasi kian membaik (meningkat). Peningkatan ini dimulai pada generasi ke-30 hingga generasi ke-40. Setelah itu, nilai fitness akan konvergen hingga generasi ke-300. Saat konvergen inilah, dicapai nilai x optimal (x^*) yaitu 63. Struktur kromosom untuk x ini adalah 111111 dengan nilai fitness 3969. Nilai ini adalah nilai fitness terbaik (paling optimum) yang pernah ditemukan oleh algoritma genetika.