FTN SIIT / IIS

Statistika - test

Novi Sad, 20. II 2020.

Prezime: _____ lme: ____ br.ind.: ____

1. Za događaje A i B u prostoru verovatnoće (Ω, \mathscr{F}, P) staviti znak =, \leq , \geq u polje gde važi, ostaviti prazno ako ništa od toga ne važi.

 $P(A) \square P(AB), \qquad P(A \cup B) \square P(A) + P(B), \qquad P(AB) \square P(A) P(B).$

2. Ako su $X: \mathcal{N}(2,1)$ i $Y: \mathcal{N}(3,1)$ nezavisne slučajne promenljive, onda Z=3X+2Y ima _____ raspodelu.

3. Testira se hipoteza o jednakosti srednjih vrednosti dva obeležja sa Normalnom rapodelom sa pragom značajnosti $\alpha=0.05$ (t-test). Realizovana vrednost statistike iznosi t=1.3796, sa 11 stepeni slobode. U R-u dobijamo:

> qt(.975,11)
[1] 2.200985

Koji znak stoji između α^* i $\alpha = 0.05$:

≤ ≥ Zavisi od uzorka

4. Vrši se testiranje nezavisnosti diskretnih obeležja X i Y tabelom kontigencije za uzorak u kome X uzima 4 moguće vrednosti i Y uzima 2 moguće vrednosti sa $\alpha = 0.05$.

Sa kvantilima koje raspodele se poredi statistika $\theta = \sum_{sve\ \acute{c}elije} \frac{(ostvareno-o\acute{c}ekivano)^2}{o\acute{c}ekivano}$, gde se suma uzima po svih $4\cdot 2=8$ ćelija? ______

Kako glasi komanda u R-u za dobijanje traženog kvantila?

Rekonstruisati uzorak $(x_1,...,x_5)$ čija je empirijska funkcija raspodele F_5 data levo:

Izračunati uzoračku korigovanu varijansu:

Izračunati $F_5(\sqrt{3}) =$

Metod momenata i Metod maksimalne verodostojnosti, primeri

FTN SIIT / IIS

Statistika - test

Novi Sad, 20. II 2020.

Prezime: _____ br.ind.: ____

1. Za skup $\Omega = \{1, 2, 3, 4, 5, 6\}$, minimalno dopuniti \mathscr{F} do σ -polja događaja i P do verovatnoće nad \mathscr{F} .

 $\mathscr{F} = \{\Omega, \quad \{3, 4, 5, 6\},$

 $P = \left(\begin{array}{cc} \Omega & \{3,4,5,6\} \\ 1 & 1/3 \end{array}\right)$

- 2. Ako $S_n: \mathcal{B}(n,p)$ i $\lim_{n\to\infty} np = \lambda = const$, za konačno k, aproksimacija Poasonovom raspodelom je $\lim_{n\to\infty} \binom{n}{k} p^k (1-p)^{n-k} =$
- 3. Vrši se testiranje nezavisnosti diskretnih obeležja X i Y tabelom kontigencije sa $\alpha = 0.05$.

Realizovana vrednost statistike $\chi^2 = \sum_{sve\ \acute{cellije}} \frac{(ostvareno-o\check{c}ekivano)^2}{o\check{c}ekivano}$ sa 6 stepeni slobode iznosi $\chi^2 = 13$.

Dat je deo tabele kvantila Pirsonove χ^2 raspodele

3	J			,,	
$n \setminus F$.9000	.9500	.9750	.9900	.9950
6 	10.6	12.6	14.4	16.8	18.5

Da li su obeležja *X* i *Y* nezavisna?

DA NE

Zavisi od uzorka

4. U analizi varijanse, koji znak stoji između $E\left(\frac{SSTR}{G-1}\right)$ i σ^2 ?

1

=

Kako kad

5. Za normalnu raspodelu $\mathcal{N}(0,1)$, kurtosis $\mu_4/\mu_2^2 =$

, skewness $\mu_3/\mu_2^{(3/2)} =$

Prezime:

Ime: _____

br.ind.: _____

1. Ako je P(A) = 0.5, P(B) = 0.6 i P(AB) = 0.4, izračunati

$$P(\bar{A}B) =$$

$$, P(A \cup B) =$$

$$P(A|B) =$$

2. Izračunati disperziju slučajne promenljive $X : \mathcal{B}(25,0.2)$.

$$D(X) =$$

- 3. Za uzorak (X_1, X_2, X_3, X_4) obeležja sa normalnom raspodelom $X: \mathcal{N}(m, \sigma)$, slučajna promenljiva $Y = \left(\frac{X_1 m}{\sigma}\right)^2 + \left(\frac{X_2 m}{\sigma}\right)^2 + \left(\frac{X_3 m}{\sigma}\right)^2 + \left(\frac{X_4 m}{\sigma}\right)^2 \text{ ima } \underline{\hspace{1cm}} \text{raspodelu.}$
- 4. Ako je u ANOVA testu realizovana vrednost Fišerove statistike $f_{3,26} = 1.876$, a tablična vrednost 0.95 kvantila jednaka $f_{3,26;0.95} = 2.975$, šta je nulta hipoteza ANOVA testa sa pragom značajnosti $\alpha = 0.05$ i kakav je zaključak?

Kakav bi bio zaključak da je prag značajnosti $\alpha = 0.01$?

5.

Rekonstruisati uzorak $(x_1,...,x_{10})$ čija je empirijska funkcija raspodele $F_n(x)$ data slikom levo:

Za dobijeni uzorak izračunati inter-kvartilni razmak IQR =

Testiranje statističkih hipoteza, parametarski testovi za dva uzorka

FTN SIIT / IIS

Statistika - test

Novi Sad, 20. II 2020.

Prezime: _____ br.ind.: ____

1. U kutiji su sve figure za šah. Izvlači se na slučajan način 10 figura sa vraćanjem. Kolika je verovatnoća da je izvučeno tačno 4 piona? (Zapisati pomoću binomnih koeficijenata)

P =

2. Za obeležje sa normalnom raspodelom $X: \mathcal{N}(m, \sigma)$, statistika $\frac{n \bar{S}_n^2}{\sigma^2}$ ima ______ raspodelu.

3. Posmatra se masa u kg osobe koja se pridržava dijete. Pretpostavlja se da masa ima normalnu raspodelu. Za sve osobe iz uzorka i = 1, 2, ..., n zna se masa pre dijete X_i i posle dijete Y_i .

Za testiranje uspešnosti dijete koristi se _____ i alternativnom hipotezom _____ .

4. Za realizovanu vrednost dvodimenzionalnog uzorka $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ prava linearne regresije y po x (najmanjih kvadrata) je y = a + bx i neka su $\hat{y}_i = a + bx_i$, $i = 1, 2, \dots, n$.

Koji znak stoji između $\sum\limits_{i=1}^n (y_i-\hat{y}_i)^2$, i $\sum\limits_{i=1}^n (y_i-\bar{y}_n)^2$, gde je $\bar{y}=\sum_{i=1}^n y_i/n$?

 \leq

 \geq

=

Zavisi od y_i

 Za uzorak iz boxplota levo očitati:

min =

max =

IQR =

 $Q_1 =$

 $Q_2 =$

Tačkaste ocene parametara, osnovne osobine, Uzoračka aritmetička sredina i Uzoračka varijansa

Statistika - test

Novi Sad, 20. II 2020.

br.ind.: _____

Prezime: Ime:

1. Iz špila 52 karte, izvučeno je 5 karata (bez vraćanja). Kolika je verovatnoća, da je u izvučenih 5 karata 3 slike (slike su J, Q, K)? (Koristiti binomne koeficijente.)

P =

2. Nezavisne slučajne promenljive X i Y imaju istu raspodelu $\mathcal{N}(m, \sigma)$.

Koju raspodelu ima slučajna promenljiva Z = 3X + 4Y?

3. Za uzorak obeležja sa normalnom raspodelom testiranjem $H_0(m=m_0)$ protiv $H_1(m\neq m_0)$ odbačena je nulta hipoteza sa pragom značajnosti 5%. Da li se odbacuje nulta hipoteza testiranjem $H_0(m=m_0)$ protiv $H_1(m \neq m_0)$ sa pragom značajnosti 1%?

DA NE Nekad DA, nekad NE

4. Za realizovanu vrednost dvodimenzionalnog uzorka $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ prava linearne regresije y po x (najmanjih kvadrata) je y = a + bx i neka su $ss_x = \sum_{i=1}^n (x_i - \bar{x}_n)^2$, $ss_y = \sum_{i=1}^n (y_i - \bar{y}_n)^2$,

$$s_{xy} = \sum_{i=1}^{n} (x_i - \bar{x}_n) (y_i - \bar{y}_n), \ \bar{x}_n = \frac{1}{n} \sum_{i=1}^{n} x_i, \ \bar{y}_n = \frac{1}{n} \sum_{i=1}^{n} y_i.$$
 Formule za r, b, a , preko $ss_x, ss_y, s_{xy}, \bar{x}_n, \bar{y}_n$:

r =

b =

a =

5. Za realizovanu vrednost dvodimenzionalnog uzorka: (0,2),(2,5),(4,6),(6,5) naći pravu linearne regresije najmanjih kvadrata y = a + bx.