Abgeschlossenheit der Regulären Sprachen

Definition REG(X)

Sei X ein Alphabet. REG(X) heißt die Menge der regulären Sprachen über X.

Satz Abgeschlossenheit von REG(X)

Reg(X) ist abgeschlossen bezüglich:

- 1. Schnitten \cap
- 2. Vereinigungen \cup
- 3. Komplementbildung ^c
- 4. Komplexprodukt ·
- 5. Kleene Abschluss *

Was bedeutet das? Haben wir zwei reguläre Sprachen L_1 und L_2 dann ist auch

- 1. deren Durchschnitt $L_1 \cap L_2$,
- 2. deren Vereinigung $L_1 \cup L_2$,
- 3. jeweils das Komplement $L_1^c := X^* L_1$,
- 4. deren Komplexprodukt $L_1 \cdot L_2$,
- 5. und jeweils der Kleene Abschluss L_1^*

eine reguläre Sprache.

Aufgabe 1

Gegeben sei das Alphabet $X = \{A, B, C, D\}$.

Konstruieren sie einen deterministischen endlichen Automaten der alle Wörter akzeptiert, welche die Zeichenkette ACAB enthalten. Geben sie den Automaten in Form eines Übergangsgraphen sowie in Form einer Übergangstabelle an.

Aufgabe 2

Geben sei das Alphabet $X = \{a, b\}$. Geben sie für folgende Sprachen L einen endlichen deterministischen Automaten A an mit L = L(A). Mit L =

a)
$$\{w \in X^* \mid |w| = 0\}$$

b)
$$\{w \in X^* \mid |w| = 3\}$$

(c)
$$\{w \in X^* \mid w = abw_1 \ mit \ w_1 \in X^*\}$$

d)
$$\{ w \in X^* \mid w = w_1 ab \ mit \ w_1 \in X^* \}$$

e)
$$\{w \in X^* \mid |w|_a = 3\}$$

f)
$$\{w \in X^* \mid |w|_a \neq 3\}$$

g)
$$\{w \in X^* \mid |w|_a = 2 \land |w|_b = 1\}$$

h)
$$\{w \in X^* \mid |w|_a = 2 \lor |w|_b = 1\}$$

i)
$$\{w \in X^* \mid w = (ab)^n (aabb)^m \text{ mit } n \ge 1, m \ge 1\}$$

j)
$$\{w \in X^* \mid w = ab^n, n \in \mathbb{N}, n \ge 2\} \cup \{w \in X^* \mid w = ba^m, m \in \mathbb{N}, m \ge 2\}$$

Aufgabe 3 (Ähnlich wie Klausuraufgaben)

a) Gegeben seien die folgende Endlichen Automaten

$$A_1 = (\{x, y, z\}, \{N_0, N_1, N_2\}, \{N_0\}, \delta_1 \text{ siehe Graph}, \{N_1, N_2\})$$

$$A_2 = (\{x, y, z\}, \{I_0, I_1\}, \{I_0\}, \delta_2 \text{ siehe Graph}, \{T_1\})$$

$$A_{1}$$

$$\operatorname{start} \longrightarrow N_{0}$$

$$A_{2}$$

$$\operatorname{start} \longrightarrow I_{0}$$

$$I_{1}$$

Konstruieren sie den endlichen Automaten $(A_1^* \cdot A_2)$ mit den Mitteln die sie aus der Vorlesung kennen.

b) Gegeben seien die folgende Endlichen Automaten

$$A_1 = (\{x, y, z\}, \{N_0, N_1, N_2, N_3\}, \{N_0, N_2\}, \delta_1 \text{ siehe Graph}, \{N_1, N_2\})$$
$$A_2 = (\{x, y, z\}, \{I_0, I_1\}, \{I_0\}, \delta_2 \text{ siehe Graph}, \{T_1\})$$

 A_{1} $\operatorname{start} \longrightarrow N_{0}$ X N_{1} $\operatorname{start} \longrightarrow N_{2}$ Y Y N_{3} A_{2} $\operatorname{start} \longrightarrow I_{0}$ Z I_{1}

Konstruieren sie den endlichen Automaten $(A_1 \cdot A_2)^*$ mit den Mitteln die sie aus der Vorlesung kennen.

Aufgabe 4

Konstruieren sie einen deterministischen endlichen Automaten über dem Alphabet $X = \{x, y, z\}$, der nur Wörter akzeptiert, die mit y beginnen und mit z enden (Angelehnt an SoSe20 Aufgabe 4).

Aufgabe 5

Konstruieren sie einen deterministischen endlichen Automaten der alle Wörter der Sprache

$$A = \{ w \in \{x, y\}^* \mid w = y^m x^n mit \ m, n \in \mathbb{N} \land |w| = ungerade \}$$

annimmt (angelehnt an SoSe20 Probeklausur Aufgabe 4).