CONTROLLER FOR IMAGING DEVICE OF STILL VIDEO CAMERA

Patent number:

JP6062322

Publication date:

1994-03-04

Inventor:

TANI NOBUHIRO

Applicant:

ASAHI OPTICAL CO LTD

Classification:

- international:

H04N5/335; H01L27/148; H04N5/235

- european:

Application number:

JP19920236312 19920813

Priority number(s):

Abstract of JP6062322

PURPOSE: To suppress the occurrence of a blooming phenomenon at the time of correcting exposure on a positive side. CONSTITUTION: A voltage phiVSUB applied to the base plate of a CCD 13 is changed corresponding to an exposure correction amount. The ON/OFF states of switches 24 and 25 are changed corresponding to exposure correction values and an MPU 15 controls a base plate voltage control circuit 16 correspondingly. When the exposure correction amount is a positive value, the base plate voltage phiVSUB is defined relatively higher. In such a manner, the saturation level of the CCD 13 is lowered and excess electric charge overflowed front a photodiode with large incident light amount is easily absorbed into the depletion layer of the CCD 13. When the exposure correction amount is a negative value, the base plate voltage phiVSUB is defined relatively lower. Thus, the depletion layer of the CCD 13 becomes smaller and a dynamic range on a high brightness side is expanded.

Data supplied from the esp@cenet database - Worldwide

BEST AVAILABLE COPY

This Page Blank (uspto)

(19)日本国特許庁 (JP) (12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-62322

(43)公開日 平成6年(1994)3月4日

FΙ (51) Int.Cl.⁵ 識別記号 庁内整理番号 技術表示箇所 P H 0 4 N 5/335 H01L 27/148 H 0 4 N 5/235 7210-4M

H01L 27/14

В

審査請求 未請求 請求項の数2(全 5 頁)

(21)出願番号

特願平4-236312

(22)出願日

平成4年(1992)8月13日

(71)出顧人 000000527

旭光学工業株式会社

東京都板橋区前野町2丁目36番9号

(72) 発明者 谷 信博

東京都板橋区前野町2丁目36番9号 旭光

学工業株式会社内

(74)代理人 弁理士 松浦 孝

BEST AVAILABLE COPY

(54) 【発明の名称】 スチルビデオカメラの撮像素子制御装置

(57)【要約】

【目的】 プラス側の露出補正時に、ブルーミング現象 が発生するのを抑制する。

【構成】 CCD13の基板に印加する電圧 o Vsva を 露出補正量に応じて変化させる。露出補正値に従ってス イッチ24、25のオンオフ状態が変わり、これに応じ てMPU15は基板電圧制御回路16を制御する。露出 補正量がプラスの値である時、基板電圧 o Vsua を相対 的に高く定める。これによりCCD13の飽和レベルが 低くなり、入射光量が多いフォトダイオードから溢れた 過剰電荷が、CCD13の空乏層に吸収されやすくな る。露出補正量がマイナスの値である時、基板電圧ΦⅤ **ままま を相対的に低く定める。これによりCCD13の空** 乏層が小さくなり、高輝度側のダイナミックレンジが拡 大する。

LIST AVAILABLE COPY

【特許請求の範囲】

【請求項1】 露出補正量を設定する手段と、この露出 補正量に応じて撮像素子の基板電圧を変化させる基板電 圧制御手段とを備えたことを特徴とするスチルビデオカ メラの撮像素子制御装置。

基板電圧制御手段は、露出補正量がプラ 【請求項2】 スの値の時基板電圧を相対的に高く定め、露出補正量が マイナスの値の時基板電圧を相対的に低く定めることを 特徴とする請求項1のスチルビデオカメラの撮像素子制 御装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】木発明はスチルビデオカメラに関 し、特にブルーミング現象の発生を抑制するための改良 に関する。

[0002]

【従来の技術】従来スチルビデオカメラでは、被写体像 に対応した信号電荷が固体撮像素子(CCD)上に形成 され、このCCDにより得られた映像信号は、所定の処 理を施されて例えばメモリカード等の記録媒体に静止画 として記録される。CCD上に形成された信号電荷は、 被写体の輝度に応じた大きさを有しており、高輝度被写 体が存在する場合、記録される画面上において高輝度部 の上下に延びるスミアが発生するのを防止するため、垂 直転送CCD上の残留電荷を、いわゆる高速掃き出しに より水平転送CCDから外部に掃き出している。

【0003】また従来、被写体の輝度に応じて露出補正 をすることができるスチルビデオカメラが知られてい る。すなわち、例えば逆光状態で被写体を撮影する場 合、撮影者の操作により、測光によって得られた露出値 30 に対してプラス側の露出補正量が施され、鮮明な被写体 像が得られる。

[0004]

【発明が解決しようとする課題】上述のように画面内に 高輝度部が存在する場合、画面上のスミアの発生は防止 可能である。しかしプラス側の露出補正量を施す場合、 高輝度部がさらに高輝度になるため、ブルーミング現象 が発生して高輝度部から上下方向に明るい線が延び、画 質が著しく劣化するという問題が生じる。本発明は、プ ラス側の露出補正時に、ブルーミング現象が発生するの を抑制することを目的としている。

[0005]

【課題を解決するための手段】本発明に係るスチルビデ オカメラの撮像素子制御装置は、露出補正量を設定する 手段と、この露出補正量に応じて撮像素子の基板電圧を 変化させる基板電圧制御手段とを備えたことを特徴とし ている。

[0006]

【実施例】以下図示実施例により本発明を説明する。図 1 は本発明の一実施例を適用したスチルビデオカメラの 50 る駆動信号によって制御される。すなわち、垂直転送C

記録系を示す。

【0007】レンズ11を通った光線は、絞り兼用シャ ッタ12を通過し、CCD13に到達する。CCD13 は、駆動回路14から出力されるパルス信号によって駆 動され、輝度信号と色信号を出力する。駆動回路14 は、制御回路(MPU)15によって制御され、クロッ クパルスを一定の周期で出力する。基板電圧制御回路1 6は、後述するように、露出補正量に応じてCCD13 の基板電圧を変化させるために設けられており、MPU 10 15によって制御される。

【0008】 CCD13の出力信号は、アンプ17によ って増幅された後、AD変換器18によってデジタル信 号に変換され、デジタル信号処理回路19に入力され る。なおAD変換器18は、駆動回路14から出力され るクロックパルスによって駆動され、CCD13の転送 動作と同じタイミングでAD変換を行う。

【0009】デジタル信号処理回路19はMPU15に よって制御され、AD変換器18から出力された輝度信 母と色信号に、同期信号を付加する等の所定の処理を施 し、輝度信号(Y)および色差信号(R-Y、B-Y) を出力する。これらの輝度信号(Y)および色差信号 (R-Y、B-Y) は、シャッターレリーズ時、メモリ コントローラ21を介してフレームメモリ22に格納さ れるとともに、記録制御回路23に入力されて所定の処 理を施され、メモリカード等の記録媒体Mに記録され る。なおフレームメモリ22は、記録媒体Mに記録され た静止画に対応した映像信号を格納するために設けら れ、この映像信号を読み出すことによりこの静止画がデ ィスプレイ装置に表示される。

【0010】MPU15に接続された第1および第2の スイッチ24、25は、撮影者によって設定された露出 補正量に応じてオンオフするものであり、電源とスイッ チ24、25との間には、プルアップ抵抗26、27が 接続されている。これらのスイッチ24、25の作用に より、基板電圧制御回路16を制御するために必要な指 令信号がMPU15から出力される。

【0011】図2はCCD13の構成を示すものであ る。フォトダイオード31は各画素に対応して設けられ ており、フォトダイオード31が配設された範囲内に受 光部32が形成される。フォトダイオード31には、入 射光量に応じた信号電荷が形成される。垂直転送CCD 33は、フォトダイオード31に隣接して垂直方向に沿 って設けられており、フォトダイオード31において生 成された電荷を水平転送CCD34に転送する。水平転 送CCD34には電荷検出容量(FDA:フローティン グディフュージョンアンプ)35が接続されており、こ のFDA35は水平転送CCD34によって転送されて きた電荷を電圧に変換し、外部に出力する。

【0012】CCD13は、駆動回路14から出力され

(3)

4相の駆動信号 o V1 ~ o V4 によって垂直方向に電荷 が転送される。水平転送CCD34では、端子37a、 37bを介して供給される駆動信号 o H1 、 o H2 によ って水平方向に電荷が転送される。

【0013】オーパーフロードレイン(OFD)38 は、CCD13に基板電圧を印加するために設けられる が、本実施例では、この基板電圧は基板電圧制御回路1 6の作用により、露出補正量に応じて変更可能である。

断面図であり、この構成自体は従来公知である。すなわ ち、フォトダイオード31には、受光量に応じた電荷が 蓄積され、この電荷は垂直転送CCD33を介して紙面 に垂直な方向に転送される。基板39には基板電圧制御 回路16(図1)を介して基板電圧 φ Vs vs が印加さ れ、またP層51は接地されている。したがって基板3 9とP層51には逆パイアス電圧が印加されることとな り、フォトダイオード31と基板39との間には空乏層 52が形成される。この空乏層52には、フォトダイオ 剰電荷が吸収される。

【0015】図4は基板電圧制御回路16の構成を示す ものである。この制御回路16は、第1~第3の電源4 1~43と、第1および第2の切換スイッチ44、45 とを有する。これらの電源電圧において、第3の電源4 3の電圧V3が最も低く、第2の電源42の電圧V2が 最も高い。すなわち第1の電源41の電圧V1はこれら の中間の値を有する。

【0016】第1および第2の切換スイッチ44、45 は、MPU15の端子P1、P2から出力される制御電 30 がオン状態に定められる。したがってMPU15の入力 圧によって切り換えられる。第1の切換スイッチ44 は、端子P1からの制御電圧が「ハイレベル(H)」で ある時、第1の電源41の電圧V1を基板電圧 Φ Vs UB としてCCD13に供給する。第1の切換スイッチ44 は、端子P1からの制御電圧が「ローレベル(L)」で ある時、第2の切換スイッチ45側に切り換えられる。 この状態において第2の切換スイッチ45は、端子P2 からの制御電圧が「H」である時、第2の電源42の電 圧V2を基板電圧 ΦVs 0 B としてCCD13に供給す 御電圧が「L」である時、第3の電源43の電圧V3を 基板電圧ΦVュロュ としてCCD13に供給する。

【0017】次に本実施例の作用を説明する。露出補正 が設定されていない場合、第1および第2のスイッチ2 4、25 (図1) はともにオフ状態にある。したがって MPU15の入力端子S1、S2の電圧はともに「H」 となり、これにより、図5に示されるようにMPU15 の出力端子P1の電圧は「H」となる。

【0018】この結果基板電圧制御回路16では、図4 から理解されるように第1の切換スイッチ44が第1の 50 電源41側に切り換えられ、中間の値を有する電圧V1 が基板電圧 Φ Vivi として CCD 13の基板39に印加

される。CCD13の出力レベルは、図6において実線 L1で示されるように入射光量の増加とともに直線的に 高くなり、所定の大きさにおいて飽和する。

【0019】露出補正量がプラスの値の時、すなわち例 えば+1EVの露出補正が行われる時、第1のスイッチ 24がオン状態で、第2のスイッチ25がオフ状態に定 められる。したがってMPU15の入力端子S1の電圧 【0014】図3は、CCD13の一部を拡大して示す 10 が「L」、入力端子S2の電圧が「H」となり、出力端 子P1の電圧が「L」、出力端子P2の電圧が「H」と

【0020】基板電圧制御回路16では、第1の切換ス イッチ44が第2の切換スイッチ45側に切り換えら れ、また第2の切換スイッチ45は第2の電源42側に 切り換えられる。したがって、相対的に高い電圧 V 2 が 基板電圧 Φ Vsus としてCCD 13の基板39に印加さ れる。このように基板電圧 o Vsva が高い値に定められ たことにより、空乏層52が大きくなり、フォトダイオ ード31の受光量が大きすぎるためにこれから溢れた過 20 ード31に発生した電荷が空乏層52に吸収されやすく なる。すなわちCCD13の出力レベルの飽和レベル は、図6において実線L2で示されるように低くなり、 入射光量が多いフォトダイオード31から溢れた電荷 は、空乏層52によって充分に吸収されることとなる。 したがって、高輝度の被写体によるブルーミング現象の 発生が抑制される。

> 【0021】これに対し、露出補正量がマイナスの値の 時、すなわち例えば-1EVの露出補正が行われる時、 第1のスイッチ24がオフ状態で、第2のスイッチ25 端子S1の電圧が「H」、入力端子S2の電圧が「L」 となり、出力端子P1、P2の電圧がともに「L」とな

【0022】基板電圧制御回路16では、第1の切換ス イッチ44が第2の切換スイッチ45側に切り換えら れ、また第2の切換スイッチ45は第3の電源43側に 切り換えられる。したがって、相対的に低い電圧V3が 基板電圧 φ Vsus としてCCD 13の基板39に印加さ れる。このように基板電圧 o Vsus が低い値に定められ る。また第2の切換スイッチ45は、端子P2からの制 40 たことにより、空乏層52が小さくなる。この結果CC D13の出力レベルの飽和レベルは、図6において実線 L3で示されるように高くなり、高輝度の映像に対する 解像度が高くなり、すなわち高輝度側のダイナミックレ ンジが拡大される。

> 【0023】なお上記実施例において、基板電圧の調整 ステップは露出補正量に対して3段階に変化していた が、これに代えて、例えば露出補正量に対して直線的に 変化するようにしてもよい。

【発明の効果】以上のように本発明によれば、プラス側

(4)

BEST AVAILABLE COPY

の露出補正時にはブルーミング現象が発生するのを抑制 することができ、またマイナス側の露出補正時には高輝 度側のダイナミックレンジを拡大することができるとい う効果が得られる。

【図面の簡単な説明】

【図1】本発明の一実施例に係るスチルピデオカメラの 回路構成を示すプロック図である。

【図2】CCDの各要素の配列を示す図である。

【図3】 CCDの構成を拡大して示す断面図である。

【図4】基板電圧制御回路を示す回路図である。

【図5】露出補正量とMPUの入出力端子の電圧の関係を示す図である。

【図6】CCDの入射光量と出力レベルの関係を示す図である。

【符号の説明】

13 CCD

16 基板電圧制御回路

31 フォトダイオード

39 基板

10 52 空乏層

[図1]

入射光量

This Page Blank (uspto)