Vinaykumar Hegde

720 W 27th Street, Apt #224, Los Angeles, CA - 90007 http://vnay.in | vinaykuh@usc.edu | 213.610.3742

EDUCATION

University of Southern California (USC)

MS in Electrical Engineering Expected Graduation: May 2016 Los Angeles, CA

CGPA: 3.95/4

VISVESVARAYA TECHNOLOGICAL UNIVERSITY (VTU)

BE in Electronics and Communication Engineering

R. V. College of Engineering | Bangalore, India Graduation: Jun 2011 CGPA: 9.13/10

COURSEWORK

GRADUATE

Linear Algebra (EE441) Probability (EE503) Robotics (CSCI545) Computer Vision (CSCI574) Machine Learning (EE660) Coordinated Mobile Robotics (CSCI599, Audit) Pattern Recognition (EE559) Linear Systems (EE585)

Undergraduate

Real Time Embedded Systems Artificial Neural Networks Computer Orgranization & Architecture

CERTIFICATIONS

Machine Learning - Coursera Design & Analysis of Algorithms 1 -Coursera Scalable Machine Learning - EdX.

ONLINE COURSES

Deep Learning - Udacity Autonomous Mobile Robotics - EdX

SKILLS

PROGRAMMING

C/C++ • Python • MATLAB

ROBOTIC PLATFORMS

ROS • Gazebo • iRobot Create • Nao • SL Simulator • Kinect • Arduino • AR Drone • Nvidia Jetson TK1

OTHER

Git • OpenCV • IPython • IPython.Parallel • Scikit-learn • numpy • Theano • Keras • Starcluster

RESEARCH

DIRECTED RESEARCH ON INDOOR MOBILE ROBOT NAVIGATION

Jan 2016 - Current | Advisor: Prof. Laurent Itti | USC, Los Angeles

- Designing a low cost hardware/robot. Developing ROS packages and ROS messages to control mobile robot.
- Using Kinect/Asus Xtion pro for RGBD SLAM and Indoor Navigation.
- Researching on using low cost IR and Ultrasonic sensors for surprise detection in indoor mobile robot navigation.

EXPERIENCE

DIGITAL DESIGN ENGINEER - TEXAS INSTRUMENTS

Jul 2011 - Jul 2014 | Bangalore, India

- Designed and characterized Standard Cells for TI's processes.
- Developed automation flows for characterization.
- Designed Python based web-server for Digital Design Margin Calculator.

PROJECTS

CIFAR-10: OBJECT DETECTION IN IMAGES

(Fall-2015/Course: EE660/Instructor: Prof. Keith Jenkins)

- Compared object detection techniques on CIFAR-10 dataset (SVM, Adaboost and Neural Networks). Achieved 78% accuracy using CNN with Keras and Theano.
- Keywords: Keras, Theano, IPython Parallel, Starcluster, AWS, HOG, SIFT

HETEROGENEOUS COORDINATED ROBOTS FOR NAVIGATION

(Spring-2015/Course: CSCl599/Instructor: Prof. Nora Ayanian)

- Navigating ground robot (Turtlebot) using live feed data (image) from AR Drone quadcopter.
- Implemented the idea on ROS and Gazebo.

HUMAN ACTIVITY RECOGNITION FROM INERTIAL SENSOR DATA

(Spring-2015/Course: EE559/Instructor: Prof. Keith Jenkins)

- Using pattern recognition and machine learning techniques to predict the human activities like walking, standing, sitting and laying. Used mobile phone inertial sensors dataset from UCI repository.
- Tools used: Python, Scikit-learn, numpy

BALANCING NAO ROBOT IN ONE LEG

(Spring-2015/Course: CSCl545/Instructor: Prof. Stefan Schaal)

- Using Inverse kinematics, minimum jerk/cubic spline controls, and COG Jacobian techniques to balance the Nao Robot in single leg.
- Implemented the idea using SL simulator.

MOBILE ROBOTS FOR CRACK DETECTION

Sep 2015 – Dec 2015 | Dynamics Lab

- Integrated ROS and other packages for iRobot Create 1 robot and ASUS Netbook.
- Developed a ROS node to capture the image and feed it to crack detection system.
- Keywords: ROS, OpenCV, IMU, Localization.

AVIONICS PROJECT

Undergraduate Senior Project

- Developed IMU sensors interface and control algorithms for quadcopter on LPC2148 ARM controller.
- Designed wireless video transmission system for UAVs. Developed 24fps QVGA video transmission system using OMAP3, Embedded Linux and WiFi.
- Designed data acquisition system and radio transceiver for Unmanned Aerial Vehicles with LabVIEW and ZigBee.

STUDENT SATELLITE PROJECT

Undergraduate Junior Project

- Developed device drivers for CC1020/CC1070 transceivers and AX.25 protocol on Atmel AVR32-32 bit microcontrollers.
- Simulated bit error rate in space using Simulink/Matlab.