timeserieslab4-rohramehak-251524

March 26, 2024

```
[43]: from google.colab import drive
       drive.mount('/content/drive')
      Drive already mounted at /content/drive; to attempt to forcibly remount, call
      drive.mount("/content/drive", force_remount=True).
[117]: import pandas as pd
       from matplotlib import pyplot as plt
       import numpy as np
       from statsmodels.tsa.holtwinters import ExponentialSmoothing
[118]: data = pd.read_csv('/content/drive/MyDrive/TSA_BDA_2024/Lab4/
        →Retail_sales_of_electricity_United_States_monthly.csv', skiprows=4)
[119]: data.dropna(inplace=True)
       data['DatePart'] = pd.to_datetime(data['Month'], format='%b %Y',__
        ⇔errors='coerce')
       data.rename(columns = {"DatePart" : "Date"}, inplace=True)
       data.set_index("Date", inplace=True)
       data.drop(columns=["Month"], inplace=True)
[120]: data
[120]:
                   all sectors million kilowatthours
       Date
       2022-10-01
                                        292257.74617
       2022-09-01
                                        297195.94414
       2022-08-01
                                        340543.84071
       2022-07-01
                                        389626.28230
       2022-06-01
                                        389214.17473
       2001-04-01
                                        264490.49166
       2001-03-01
                                        254390.93545
       2001-02-01
                                        269298.40142
       2001-01-01
                                        272334.73804
       2000-12-01
                                        310816.06880
```

[263 rows x 1 columns]

```
[121]: data.plot(figsize=(10,5), grid=True)
   plt.ylabel("electrcity killowatt hours")
   plt.show()
```


[122]: data.sort_index(inplace=True) data

[122]:		all	sectors	${\tt million}$	${\tt kilowatthours}$
	Date				
	2000-12-01				310816.06880
	2001-01-01				272334.73804
	2001-02-01				269298.40142
	2001-03-01				254390.93545
	2001-04-01				264490.49166
	•••				•••
	2022-06-01				389214.17473
	2022-07-01				389626.28230
	2022-08-01				340543.84071
	2022-09-01				297195.94414
	2022-10-01				292257.74617

[263 rows x 1 columns]

Splitting data into training and testing 90% and 10% respectively.

```
[123]: length = len(data)
  test_size = 0.1
  split_index = int(length * (1 - test_size))
  X_train = data[:split_index+1]
  X_test = data[split_index:]
```

```
[124]: fcast_months = len(X_test)
```

creating various instances of Holt Winter's Exponential Smoothing with: 1. fit1 -> additive trend with additive seasonal 2. fit2 -> additive trend with multiplicative seasonal 3. fit3 -> multiplicative trend with additive seasonal 4. fit4 -> multiplicative trend with multiplicative seasonal

```
[125]: | fit1 = ExponentialSmoothing(
           X_train,
           seasonal_periods=12,
           trend="add",
           seasonal="add",
           initialization_method="estimated",
       ).fit()
       fit2 = ExponentialSmoothing(
           X_train,
           seasonal_periods=12,
           trend="add",
           seasonal="mul",
           initialization_method="estimated",
       ).fit()
       fit3 = ExponentialSmoothing(
           X_train,
           seasonal_periods=12,
           trend="mul",
           seasonal="add",
           initialization method="estimated",
       ).fit()
       fit4 = ExponentialSmoothing(
           X_train,
           seasonal_periods=12,
           trend="mul",
           seasonal="mul",
           initialization_method="estimated",
       ).fit()
```

/usr/local/lib/python3.10/dist-packages/statsmodels/tsa/base/tsa_model.py:473: ValueWarning: No frequency information was provided, so inferred frequency MS will be used.

```
self._init_dates(dates, freq)
/usr/local/lib/python3.10/dist-
packages/statsmodels/tsa/holtwinters/model.py:917: ConvergenceWarning:
Optimization failed to converge. Check mle_retvals.
```

```
warnings.warn(
      /usr/local/lib/python3.10/dist-packages/statsmodels/tsa/base/tsa_model.py:473:
      ValueWarning: No frequency information was provided, so inferred frequency MS
      will be used.
        self. init dates(dates, freq)
      /usr/local/lib/python3.10/dist-
      packages/statsmodels/tsa/holtwinters/model.py:917: ConvergenceWarning:
      Optimization failed to converge. Check mle_retvals.
        warnings.warn(
      /usr/local/lib/python3.10/dist-packages/statsmodels/tsa/base/tsa_model.py:473:
      ValueWarning: No frequency information was provided, so inferred frequency MS
      will be used.
        self._init_dates(dates, freq)
      /usr/local/lib/python3.10/dist-
      packages/statsmodels/tsa/holtwinters/model.py:917: ConvergenceWarning:
      Optimization failed to converge. Check mle_retvals.
        warnings.warn(
      /usr/local/lib/python3.10/dist-packages/statsmodels/tsa/base/tsa_model.py:473:
      ValueWarning: No frequency information was provided, so inferred frequency MS
      will be used.
        self._init_dates(dates, freq)
      /usr/local/lib/python3.10/dist-
      packages/statsmodels/tsa/holtwinters/model.py:917: ConvergenceWarning:
      Optimization failed to converge. Check mle_retvals.
        warnings.warn(
[132]: results = pd.DataFrame(
           index=[r"$\alpha$", r"$\beta$", r"$\phi$", r"$\gamma$", r"$1_0$", "$b_0$", __

¬"SSE"]

       )
       params = [
           "smoothing_level",
           "smoothing_trend",
           "damping_trend",
           "smoothing_seasonal",
           "initial level",
           "initial_trend",
       results ["Both Additive"] = [fit1.params[p] for p in params] + [fit1.sse]
       results["Additive (t), Multiplicative (s)"] = [fit2.params[p] for p in params]
        →+ [fit2.sse]
       results ["Multiplicative (t), Additive (s)"] = [fit3.params[p] for p in params]
        →+ [fit3.sse]
       results ["Both Multiplicative"] = [fit4.params[p] for p in params] + [fit4.sse]
```

Fitting Forecating for months in the future and plotting results.

FIT 1 with additive trend with additive seasonal

```
[127]: ax = data.plot(
    figsize=(12, 6),
    marker="o",
    color="black",
    alpha=0.5,
    title="Forecasts from Holt-Winters' multiplicative method",
    label="actual values"
)

ax.set_ylabel("Electricity retail sales (millions)")
fit1.fittedvalues.plot(ax=ax, style="--", color="red", label="Train data")
fit1.forecast(fcast_months).rename("forecast").plot(
    ax=ax, style="--", marker="o", color="green", legend=True
)
plt.legend()
plt.show()
```


FIT 2 with additive trend with multiplicative seasonal

```
[128]: ax = data.plot(
    figsize=(13, 6),
    marker="o",
    color="black",
    alpha=0.5,
    title="Forecasts from Holt-Winters'method",
    label="actual values"
)
ax.set_ylabel("Electricity retail sales (millions)")
fit2.fittedvalues.plot(ax=ax, style="--", color="red", label="Train data")
```

```
fit2.forecast(fcast_months).rename("forecast").plot(
    ax=ax, style="--", marker="o", color="green", legend=True
)
plt.legend()
plt.show()
```


FIT 3 multiplicative trend with additive seasonal

```
[134]: ax = data.plot(
    figsize=(13, 6),
    marker="o",
    color="black",
    alpha=0.5,
    title="Forecasts from Holt-Winters'method",
    label="actual values"
)
    ax.set_ylabel("Electricity retail sales (millions)")
    fit3.fittedvalues.plot(ax=ax, style="--", color="red", label="Train data")
    fit3.forecast(fcast_months).rename("forecast").plot(
        ax=ax, style="--", marker="o", color="green", legend=True
)
    plt.legend()
    plt.show()
```


FIT 4 with multiplicative trend and multiplicative seasonal

```
[130]: ax = data.plot(
    figsize=(12, 6),
    marker="o",
    color="black",
    title="Forecasts from Holt-Winters'method",
    alpha=0.5,
    label="actual values"
)

ax.set_ylabel("Electricity retail sales (millions)")
fit4.fittedvalues.plot(ax=ax, style="--", color="red", label="Train data")
fit4.forecast(fcast_months).rename("forecast").plot(
    ax=ax, style="--", marker="o", color="green", legend=True
)
plt.legend()
plt.show()
```


Comparison of fitted parameters and SSE value

]: [r	esults				
]:		Both Additive	Additive (t) ,Mu	ltiplicative (s) \	
\$\alpha\$		6.060714e-01	6.414286e-01		
\$`	\beta\$	1.000000e-04		1.000000e-04	
\$`	\phi\$	NaN		NaN	
\$`	\$\gamma\$ 1.750794e-01 \$1_0\$ 2.795231e+05		1.054622e-01 2.795231e+05		
\$3					
\$1	b_0\$	4.928005e+02		4.928005e+02	
SSE		1.282116e+10		1.196271e+10	
		Multiplicative	(t) ,Additive (s) Both Multiplicative	
\$`	\alpha\$		6.414286e-0	1 6.767857e-0	
\$`	\beta\$		1.000000e-0	4 1.000000e-04	
\$`	\phi\$		Na	N Nal	
\$`	\gamma\$		1.687395e-0	1 1.010045e-01	
\$3	1_0\$		2.795231e+0	5 2.795231e+05	
\$1	b_0\$		1.001763e+0	0 1.001763e+00	
SS	SE		1.286957e+1	0 1.199945e+10	

A smaller SSE value inidicates a better fit which is obtained by using a different combination of trend and seasonal components, with a strong emphasis on the multiplicative seasonal component an we can see that multiplicative seasonal component, we have a relatively smaller see value.