STAT 345/445 Lecture 5

Section 1.4: Random Variables

Random Variables

A Random variable is a numerical representation of outcomes.

Random Variable

- Recall a probability model: (S, B, P)
 - Sample space S, σ -algebra \mathcal{B} and a probability function $P: \mathcal{B} \to [0,1]$

Definition: Random variable

A **random variable**, denoted X or $X(\cdot)$ is a function with domain S and range in the real line:

$$X:\ \mathcal{S}
ightarrow\mathbb{R}$$

ullet Technically, X has to satisfy that $orall r \in \mathbb{R}$ the set

$$A_r = \{s : X(s) \le r\}$$
 is a set in \mathcal{B}

 Note: To really dive into the knots and bolts of probability theory we need measure-theory. Only get a peak in this course.

Random Variables

X and P have to play together

 We can think of random variables as a numerical representation of the outcomes in S

Random Variables

 We can think of random variables as a numerical representation of the outcomes in S

More on random variables

Definition

Range of a random variable X is

$$\mathcal{X}: \{r \in \mathbb{R}: \exists s \in S \text{ such that } X(s) = r\}$$

- If \mathcal{X} is finite or countable, we say that X is a **discrete random** variable $\mathcal{L} \subset \mathcal{A}$. \mathbb{Z}
- If \mathcal{X} is uncountable, we say that X is a **continuous random** variable

Examples of Random Variables

•
$$S = \{(s_1, s_2) : s_1, s_2 \in \{1, 2, 3, 4, 5, 6\}\} = \{(s_1, s_2), \ldots, (s_n, s_n)\}$$

•
$$X(s_1, s_2) = s_1 + s_2$$
 Range: $\{2, 3, \dots, 12\} = \mathcal{X}$

•
$$Y(s_1, s_2) = \max\{s_1, s_2\}$$
 Range: $\mathcal{Y} = \{1, 2, ..., 6\}$

Experiment: Lifetime of a light bulb

•
$$S=(0,\infty)$$

•
$$X(s) = s$$
 Range: $T = (0, \infty) = 5$
Identity

Sunction

Connecting $P(\cdot)$ and random variables

- Probability functions P are functions of events (in \mathcal{B})
- Events are subsets of S
- Can define events that are sets of outcomes that correspond to some value(s) of the random variable.
 - Examples:

$$A = \{ s \in S : X(s) = 5 \} = X^{-1}(s)$$

$$B = \{ s \in S : X(s) > 25 \} = X^{-1}(s)$$

If $A \in \mathcal{B}$ we can find the probability that X(s) = 5If $B \in \mathcal{B}$ we can find the probability that X(s) > 25

• Get an Induced probability function

Induced probability function

Definition: Induced probability function

Let (S, \mathcal{B}, P) be a probability model. A probability function induced by X is defined as follows.

If X is a discrete random variable:

$$P_X(X = x) = P(\{s \in S : X(s) = x\})$$

If *X* is a continuous random variable:

$$P_X(X \in R) = P(\{s \in S : X(s) \in R\})$$

Sketch of P, S, \mathcal{B} , X etc

