Linear model parameters

Warning: package 'knitr' was built under R version 3.4.3

Objectives

- Understand how to interpret R output and parameters in linear models
- Be able to describe the difference between an interactive and additive model
- Plot predictions from additive and interactive linear models

Model parameters: definitions

- Parameters of a linear model typically characterize differences in means
- These are differences per unit of change for continuous predictors,
- These are differences between groups (or between group averages) for *categorical* predictors
- Interactions are differences between differences

Coding for categorical predictors: contrasts

- What do the parameters of a linear model mean?
- Start with categorical variables, because they're potentially more confusing ("intercept and slope" isn't too hard)
- Default R behaviour: treatment contrasts
 - \(\beta_I\) = expected value in baseline group (= first level of the factor variable, by default the first in alphabetical order);
 - $(\hat{i}) = \text{expected difference between group }(i) \text{ and the first group.}$

Example

The previously explored ant-colony example:

Define data:

```
pr(lm1 <- lm(colonies-place, data=ants))</pre>
```

```
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.75 0.98 10.97 4.2e-06
## placeforest -3.75 1.27 -2.96 0.018
```

- The (Intercept) row refers to \(\beta_I\\), which is the mean density in the "field" sites ("field" comes before "forest").
- The placeforest row indicates we are looking at the effect of forest level of the place variable, i.e. the difference between "forest" and "field" sites. (To know that "field" is the baseline level we must (I) remember, or look at levels (ants\$place) or (2) notice which level is missing from the list of parameter estimates.)

R's behaviour may seem annoying at first — it seems like the estimated values of the groups are what we're really interested in — but it is really designed for testing differences among groups. To get the estimates per group, you could:

use a regression formula colonies~place-1, or equivalently colonies~place+0, to suppress the implicit intercept term:

```
## Estimate Std. Error t value Pr(>|t|)
## placefield 10.75 0.98 10.97 4.2e-06
## placeforest 7.00 0.80 8.75 2.3e-05
```

When you use the colonies~place-1 formula, the meanings of the parameters change: \(\beta_I\\) is the same (mean of "field"), but \(\beta_2\\) is 'mean of "field" rather than ("(field)-(forest)").

Interpretation using predict

• Use the predict function:

```
predict(lm1,newdata=data.frame(place=c("field","forest")),
    interval="confidence")
```

```
## fit lwr upr
## 1 10.75 8.489484 13.010516
## 2 7.00 5.154296 8.845704
```

Interpretation using effects package

Use the effects package:

```
library("effects")
summary(allEffects(lm1))
```

```
## model: colonies ~ place
##
## place effect
## place
## field forest
## 10.75 7.00
##

## Lower 95 Percent Confidence Limits
## place
## field forest
## 8.489484 5.154296
##

## Upper 95 Percent Confidence Limits
## place
## field forest
## 13.010516 8.845704
```

Interpretation using 1smeans package

Use the lsmeans package:

```
library("1smeans")
lsmeans(lm1, specs=-place)
```

```
## place lsmean SE df lower.CL upper.CL
## field 10.75 0.9802742 8 8.489484 13.010516
## forest 7.00 0.8003905 8 5.154296 8.845704
##
## Confidence level used: 0.95
```

Graphical summaries from effects package

plot(allEffects(lm1))

place effect plot

The effects package works on more complicated models

lm3 <- lm(colonies-place*observers,data=ants)
plot(allEffects(lm3))</pre>

place*observers effect plot

Switching to a dataset with more than two levels

Some data on lizard perching behaviour (brglm package; Schoener 1970 Ecology 51:408-418).

lizards <- read.csv("lizards.csv")</pre>

Response is number of Anolis grahami lizards found on perches in particular conditions.

What is the effect of time of day on lizard perching?

```
pr(lmX <- lm(grahami~time, data=lizards))</pre>
```

```
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 17.63 5.97 2.95 0.0079
## timelate -9.50 8.44 -1.13 0.2739
## timemidday 14.52 8.74 1.66 0.1123
```

If we leave the factors alphabetical then \(\beta_I\)="early", \(\beta_3\)="midday"-"early". It might be more sensible to change the levels in accordance with time progression.

Change the order of the levels:

```
## Warning: package 'bindrcpp' was built under R version 3.4.4
```

This just swaps the definitions of \(\beta_2\) and \(\beta_3\).

```
pr(lmX <- lm(grahami~time, data=lizards))</pre>
```

```
Estimate Std. Error t value Pr(>|t|)
                                       2.95
                                               0.0079
                  17.63
                               5.97
## (Intercept)
## timemidday
                  14.52
                               8.74
                                       1.66
                                               0.1123
## timelate
                  -9.50
                               8.44
                                      -1.13
                                               0.2739
```

Multiple treatments and interactions

Additive model

Consider the light variable in addition to time.

```
pr(lmTL1 <- lm(grahami~time+light, data=lizards))</pre>
```

```
Estimate Std. Error t value Pr(>|t|)
                27.29
                           5.63
                                  4.85 0.00011
## (Intercept)
                13.14
## timemidday
                           7.11
                                  1.85 0.08010
## timelate
                -9.50
                           6.85
                                  -1.39
                                        0.18174
## lightsunny
               -19.32
                           5.73
                                  -3.37 0.00321
```

\(\beta_I\) is the intercept ("early", "sunny"); \(\beta_2\) and \(\beta_3\) are the differences from the baseline level ("early") of the first variable (time) in the baseline level of the other parameter(s) (light="shady"); \(\beta_4\) is the difference from the baseline level ("sunny") of the second variable (light) in the baseline level of time ("early").

Graphical interpretation

Loading required package: grid

What are the p-values?

```
pr(lmTL2 <- lm(grahami-time*light, data=lizards))</pre>
```

```
Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                           23.50
                                       5.38
                                              4.37 0.00042
## timemidday
                           27.75
                                       7.60
                                               3.65 0.00198
## timelate
                          -12.75
                                       7.60
                                              -1.68 0.11180
## lightsunny
                          -11.75
                                       7.60
                                              -1.55 0.14061
## timemidday:lightsunny
                          -32.83
                                      11.19
                                              -2.93
                                                     0.00927
## timelate:lightsunny
                            6.50
                                      10.75
                                               0.60
                                                     0.55343
```

The p-values tell us the difference from the baseline level, not from each other

Assessing differences among pairs of variable levels

```
library(lsmeans)
library(multcompView)
lsmeans(lmTL1, specs = "time", contr = "pairwise")
```

```
## $1smeans
## time lsmean
                      SE df lower.CL upper.CL
## early 17.6250 4.846034 19 7.482134 27.76787
## midday 30.7625 5.196793 19 19.885488 41.63951
           8.1250 4.846034 19 -2.017866 18.26787
## Results are averaged over the levels of: light
## Confidence level used: 0.95
##
## $contrasts
                estimate SE df t.ratio p.value
## contrast
  early - midday -13.1375 7.105681 19 -1.849 0.1810
## early - late 9.5000 6.853327 19 1.386 0.3677
  midday - late 22.6375 7.105681 19
                                       3.186 0.0129
## Results are averaged over the levels of: light
## P value adjustment: tukey method for comparing a family of 3 estimates
```

Getting an ABCDEF.. list

```
lsm1<-lsmeans(lmTL1,pairwise-time)
cld(lsm1,by = NULL, Letters = "ABCDEFGHIJ")</pre>
```

```
## time lsmean SE df lower.CL upper.CL .group
## late 8.1250 4.846034 19 -2.017866 18.26787 A
## early 17.6250 4.846034 19 7.482134 27.76787 AB
## midday 30.7625 5.196793 19 19.885488 41.63951 B
##
## Results are averaged over the levels of: light
## Confidence level used: 0.95
## P value adjustment: tukey method for comparing a family of 3 estimates
## significance level used: alpha = 0.05
```

Interaction model

```
pr(lmTL2 <- lm(grahami-time*light,data=lizards))</pre>
```

```
Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                            23.50
                                        5.38
                                               4.37
                                                      0.00042
## timemidday
                            27.75
                                        7.60
                                                3.65 0.00198
## timelate
                           -12.75
                                        7.60
                                               -1.68 0.11180
## lightsunny
                           -11.75
                                               -1.55 0.14061
                                        7.60
## timemidday:lightsunny
                           -32.83
                                       11.19
                                               -2.93
                                                      0.00927
## timelate:lightsunny
                             6.50
                                       10.75
                                                0.60 0.55343
```

Parameters \(\beta_I\) to \(\beta_4\) have the same meanings as before. Now we also have \(\beta_5\) and \(\beta_6\), labelled "timemidday:lightsunny" and "timelate:lightsunny", which describe the difference between the expected mean value of these treatment combinations based on the additive model (which are \(\beta_I + \beta_2 + \beta_4\) and \(\beta_I + \beta_3 + \beta_4\) respectively) and their actual values.

Graphical version

Effects plot

plot(allEffects(lmTL2))

time*light effect plot

Other refs

- http://sas-and-r.blogspot.com/2010/10/example-89contrasts.html
- models::fit.contrast() (show parameter estimates based on re-fitting models with new contrasts), rms::contrast.rms() (ditto, for rms-based fits)
- http://www.ats.ucla.edu/stat/r/library/contrast_coding.htm