DHV LAB Sheet 7

```
#Import Python Libraries
import numpy as np
import scipy as sp
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
# Enable inline plotting
%matplotlib inline
```

Pandas is a python package that deals mostly with:

- **Series** (1d homogeneous array)
- **DataFrame** (2d labeled heterogeneous array)
- Panel (general 3d array)

▼ Pandas Series

Pandas *Series* is one-dimentional labeled array containing data of the same type (integers, strings, floating point numbers, Python objects, etc.). The axis labels are often referred to as *index*.

```
# Read a dataset with missing values
flights = pd.read_csv("flights.csv")
flights.head()
flights.info()
```

Missing Values

```
# Select the rows that have at least one missing value
flights[flights.isnull().any(axis=1)].head()
# Filter all the rows where arr_delay value is missing:
```

```
flights1 = flights[ flights['arr_delay'].notnull( )]
flights1.head()

# Remove all the observations with missing values
flights2 = flights.dropna()

# Fill missing values with zeros
nomiss =flights['dep_delay'].fillna(0)
nomiss.isnull().any()
```

Exercise

Count how many missing data are in dep_delay and arr_delay columns

▼ Common Aggregation Functions:

	Function	Description
	min	minimum
	max	maximum
	count	number of non-null observations
	sum	sum of values
	mean	arithmetic mean of values
	median	median
	mad	mean absolute deviation
	mode	mode
	prod	product of values
	std	standard deviation
	var	unbiased variance
f.		e number of non-missing escribe()
	Find me lights.m	an value for all the col in()
		ompute summary statistic roupby('carrier')['dep_d
		use agg() methods for ag 'dep_delay','arr_delay']

```
# An example of computing different statistics for different columns
flights.agg({'dep_delay':['min','mean',max], 'carrier':['nunique']})
```

▼ Basic descriptive statistics

	·
min	minimum
max	maximum
mean	arithmetic mean of values
median	median
mad	mean absolute deviation
mode	mode
std	standard deviation
var	unbiased variance
sem	standard error of the mean
skew	sample skewness
kurt	kurtosis
quantile	value at %
Convini	ent describe() function computes a veriety of statistics
ights.c find th	dent describe() function computes a veriety of statistics dep_delay.describe() ne index of the maximum or minimum value re are multiple values matching idxmin() and idxmax() will return the first matching idep_delay'].idxmin() #minimum value
find the if ther ights['	dep_delay.describe() ne index of the maximum or minimum value re are multiple values matching idxmin() and idxmax() will return the first ma

Exercise

#Using seaborn package explore the dependency of arr_delay on dep_delay (scatterplot or re

```
#Use matplotlib to draw a histogram of a salary data
plt.hist(df['salary'],bins=20, density=True)

# Use regular matplotlib function to display a barplot
df.groupby(['rank'])['salary'].count().plot(kind='bar')
```

```
# Use seaborn package to display a barplot
sns.set_style("whitegrid")
ax = sns.barplot(x='rank',y ='salary', data=df, estimator=len)
# Split into 2 groups:
ax = sns.barplot(x='rank',y ='salary', hue='sex', data=df, estimator=len)
#Violinplot
sns.violinplot(x = "salary", data=df)
#Scatterplot in seaborn
sns.jointplot(x='service', y='salary', data=df)
sns.scatterplot(x='service', y='salary', data=df)
#If we are interested in linear regression plot for 2 numeric variables we can use regplot
sns.regplot(x='service', y='salary', data=df)
# box plot
sns.boxplot(x='rank',y='salary', data=df)
# side-by-side box plot
sns.boxplot(x='rank',y='salary', data=df, hue='sex')
# swarm plot
sns.swarmplot(x='rank',y='salary', data=df)
# Pairplot
sns.pairplot(df)
```

×

Os completed at 10:03 AM