Final Project Report Introduction to Data Analytics

Project Title: Breast Cancer Prediction

Prepared by: Utsav Jitendrabhai Patel (N01516259)

ITE 5201 – Summer 2022 Humber College

- 1. Problem Statement: To classify that the specific cancer node is malignant or benign by observing parameters.
- **2. Dataset Description:** The used dataset carries the information regarding the cancer nodes observed in various patients. These parameters include Diagnosis (Diagnosis of breast tissue<M, B>), radius_mean (mean of the distances from center to points on the parameter), perimeter_mean (The mean size of the core tumor), texture_mean (standard deviation of gray-scale values) and so on.

Detail information of dataset: It is showing detail of columns and

null values, datatypes of columns regarding this dataset

Diagnosis (Category-Frequency Plot): 62.7% data benign and

37.3% malignant

3. Dataset Analysis and Observations: In this dataset Id has unique values. Diagnosis is highly correlated with radius_mean, area_mean is highly correlated with radius_mean, Perimeter_mean is also highly correlated with the radius_mean etc.

Univariate: Diagnosis plot: Diagnosis have categorical data (0,1)

Radius mean observations: Distinct values are 456, missing 0

after cleaning, Mean 14.12729174

Distinct	456
Distinct (%)	80.1%
Missing	0
Missing (%)	0.0%
Infinite	0
Infinite (%)	0.0%
Mean	14.12729174

Bivariate: Scatter plot of Diagnosis and radius mean

Heatmap for visualization

This scatter plot predicts the range of radius mean based on Diagnosis

Heatmap denotes the relationship between two variable's data in R * R=1 strong positive relationship * R=0 Not linearly correlated * R=-1 strong negative relationship. From this heatmap, I observed that radius_mean, texture_mean, perimeter_mean, area_mean, concavity_mean, concavepoint_mean means are highly correlated to diagnosis. And diagnosis, radius_mean, area_mean are highly important part in classifying Breast cancer type.

- **4. Proposed Analytical Model:** I have categorical output. I have used logistic regression, Random Forest and kneighborClassifier. Also, I designed confusion matrix and classification report and based on that I designed confusion matrix diagram and evaluation of predicted data. I wanted to choose these three models because for categorical these models gives accurate prediction.
- 5. Results and Discussions: I created three models and in diagram showing accuracy, confusion matrix, classification report.

True positive (TP): We predicted positive, but value is positive. False positive (FP): We predicted positive, but the actual value is negative.

True negative (TN): We predicted negative, but it is negative. False negative (FN): We predicted negative, but value is negative.

	True Positive (TP)	False Positive (FP)	True Negative (TN)	False Negative (FN)
Logistic Regression	56	3	105	7
Random Forest	59	7	101	4
KNN	56	10	98	7

Classification R	eport of L	ogistic Ri	egression		Classification Report of Random Forest:			Classificatio						
	precision	recall	f1-score	support		precision	recall	f1-score	support		precision	recall	f1-score	support
0 1	0.94 0.95	0.97 0.89	0.95 0.92	108 63	0 1	0.96 0.89	0.94 0.94	0.95 0.91	108 63	0 1	0.93 0.85	0.91 0.89	0.92 0.87	108 63
accuracy macro avg weighted avg	0.94 0.94	0.93 0.94	0.94 0.94 0.94	171 171 171	accuracy macro avg weighted avg	0.93 0.94	0.94 0.94	0.94 0.93 0.94	171 171 171	accuracy macro avg weighted avg	0.89 0.90	0.90 0.90	0.90 0.89 0.90	171 171 171

Precision	Out of all the model's prediction data 95% were correct.	Out of all the model's prediction data 89% were correct.	Out of all the model's prediction data 85% were correct.
Recall	The model predicted Data 89% correctly.	The model predicted Data 94% correctly.	The model predicted Data 89% correctly.
F1-Score	0.92 score is near to 1 so model did a good job.	0.91 score is near to 1 so model did a good job.	0.87 score is near to 1 so model did a good job.
Support	We can see that among the prediction of M and B in the test dataset, 108 datasets did not predict properly and 63 did.	We can see that among the prediction of M and B in the test dataset,108 datasets did not predict properly and 63 did.	We can see that among the prediction of M and B in the test dataset, 108 datasets did not predict properly and 63 did.

Conclusion: Hammering the last nail, the logistic regression is the best for modeling for breast cancer dataset. Because the accuracy score for logistic regression is high. And I believe that for categorical data logistic regression gives the best accuracy score.