Ćwiczenia z ANALIZY NUMERYCZNEJ (M)

Blok 3: lista M 15 31 stycznia 2018 r.

M15.1. $\boxed{1}$ punkt Wykazać, że jeśli A jest macierzą ze ściśle dominującą przekątną, tj.

$$|a_{ii}| > \sum_{j=1, j \neq i}^{n} |a_{ij}| \qquad (i = 1, 2, \dots, n),$$

to $||B_J||_{\infty} < 1$ i metoda Jacobiego jest zbieżna.

M15.2. 1 punkt Niech macierz $A = [a_{ij}] \in \mathbb{R}^{n \times n}$ spełnia warunki

$$|a_{jj}| > \sum_{\substack{i=1\\i\neq j}}^{n} |a_{ij}| \qquad (j = 1, 2, \dots, n).$$

(Mówimy, że A jest macierzą z dominującą przekątną kolumnowo.)

Pokazać, że metoda iteracyjna Jacobiego, zastosowana do układu równań o macierzy A, jest zbieżna.

- **M15.3.** I punkt Wykazać, że jeśli A jest macierzą ze ściśle dominującą przekątną, to $||B_S||_{\infty} < 1$, a więc metoda Gaussa-Seidela jest zbieżna.
- **M15.4.** I punkt Macierz B_{ω} , związana z metodą nadrelaksacji (SOR), określona jest wzorem

$$B_{\omega} := (D + \omega L)^{-1} [(1 - \omega)D - \omega U],$$

gdzie ω jest parametrem. Wykazać, że promień spektralny macierzy B_{ω} spełnia nierówność

$$\rho(B_{\omega}) \geqslant |\omega - 1|.$$

M15.5. I punkt Niech $q_j \in \mathbb{R}^m$ oznaczają wektory uzyskiwane w metodzie ortogonalizacji Gramma-Schmidta, dla danego układu liniowo niezależnych wektorów $a_j \in \mathbb{R}^m$ $(j=1,2,\ldots,n)$. Udowodnić, że zachodzi równość

$$I - P_k = (I - \boldsymbol{q}_k \boldsymbol{q}_k^T) \cdots (I - \boldsymbol{q}_2 \boldsymbol{q}_2^T) (I - \boldsymbol{q}_1 \boldsymbol{q}_1^T),$$

gdzie P_k jest macierzą rzutu prostopadłego:

$$P_k \coloneqq \sum_{j=1}^k \boldsymbol{q}_j \boldsymbol{q}_j^T.$$

M15.6. $\fbox{1}$ punkt Znaleźć rozkład QR macierzy

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix}$$

za pomocą metody Householdera. Wskazać kolejne wektory v_1, v_2, \ldots określające odbicia Householdera.

Uwaga: chodzi o rozkład, w którym $Q \in \mathbb{R}^{3\times 3}$.