ECE 210 EXAM 2 HKN REVIEW SESSION

DIMITRIOS GOTSIS, ALEC BIESTERFELD, GRANT GREENBERG

STEADY STATE, TRANSIENT, ZERO STATE, ZERO INPUT

Steady State

- Does not go to 0 for $t \to \infty$, $\lim_{t \to \infty} f(t) = f_{SS}(t)$
- Examples: Constants, Sinusoids
- Transient
 - Goes to zero over time, $\lim_{t\to\infty} f_{tr}(t) = 0$

Given ODE
$$\frac{dy}{dt} + y(t) = f(t)$$

- Zero State
 - Set $y(t_0) = 0$ and solve for y(t)
- Zero Input
 - Set f(t) = 0 and $y(t_0) = k$

PHASOR CIRCUIT ANALYSIS

Phasor

- Complex number representing sinusoid with angular velocity ω , eg $|F|e^{j \angle F}$
- Example of Conversion: $f(t) = 2\cos(2t + \frac{\pi}{3})$, |F| = 2, $\angle F = \frac{\pi}{3}$, Phasor= $2e^{j\frac{\pi}{3}}$
- Impedance (Z)
 - Ratio of Voltage to Current through circuit component, and extension of Ohm's Law, $Z=\frac{V}{I}$
 - Impedance of Capacitor $Z_C = \frac{1}{j\omega C}$
 - Impedance of Inductor $Z_L = j\omega L$
 - Impedance of Resistor Z = R

AVERAGE AND AVAILABLE POWER

•Average Power:

$$P_{avg} = \frac{1}{2} Re\{VI^*\} = \frac{1}{2} Re\{V^*I\}$$

•Available Power:

$$P_a = \frac{|V_S|^2}{8R_T}, R_T = Re\{Z\}$$

•Matches Load:

$$Z_T = Z_L^*$$

FREQUENCY RESPONSE

- •Relates input f(t), output y(t)
- •States how system reacts for frequency input ω
- •To Solve for $H(\omega)$:
 - Find $F(\omega)$ and $Y(\omega)$ from f(t), y(t)
 - $H(\omega) = \frac{Y(\omega)}{F(\omega)}$
- •Solve for y(t) given f(t) and $H(\omega)$
 - Find $F(\omega)$ from f(t)
 - $Y(\omega) = H(\omega)F(\omega)$
 - Find y(t) from $Y(\omega)$

PERIODIC SIGNALS AND FOURIER SERIES

- •Definition of Periodic Signal: f(t nT) = f(t) for some T (period) and $n \in \mathbb{Z}$
- •All frequencies represented by $kT, k \in \mathbb{Z}^+$
- •Fundamental Frequency also called First Harmonic
- Fourier Series
 - All frequencies harmonically related
 - Way to decompose periodic signal into sinusoids
 - Absolutely Integrable: $\int |f(t)|dt < \infty$ (if satisfied then Fourier Coefficients F_n are bounded)
 - Orthongonality: $\int_T e^{jnt} e^{jmt} dt = 0, m \neq n$, crucial for Fourier Series

FOURIER SERIES (CONT.)

$f(t)$, period $T = \frac{2\pi}{\omega_o}$	Form	Coefficients
$\sum_{n=-\infty}^{\infty} F_n e^{jn\omega_o t}$	Exponential	$F_n = \frac{1}{T} \int_T f(t) e^{-jn\omega_o t} dt$
$\frac{a_o}{2} + \sum_{n=1}^{\infty} a_n \cos(n\omega_o t) + b_n \sin(n\omega_o t)$	Trigonometric	$a_n = F_n + F_{-n}$ $b_n = j (F_n - F_{-n})$
$\frac{c_o}{2} + \sum_{n=1}^{\infty} c_n \cos\left(n\omega_o t + \theta_n\right)$	Compact for real $f(t)$	$c_n = 2 F_n $ $\theta_n = \angle F_n$

Table 1: Fourier series forms.

	Name:	Condition:	Property:
1	Scaling	Constant K	$K f(t) \leftrightarrow K F_n$
2	Addition	$f(t) \leftrightarrow F_n, g(t) \leftrightarrow G_n, \ldots$	$f(t) + f(t) + \ldots \leftrightarrow F_n + G_n + \ldots$
3	Time shift	Delay t_o	$f(t-t_o) \leftrightarrow F_n e^{-jn\omega_o t_o}$
4	Derivative	Continuous $f(t)$	$\frac{df}{dt} \leftrightarrow jn\omega_o F_n$
5	Hermitian	Real $f(t)$	$F_{-n} = F_n^*$
6	Even function	f(-t) = f(t)	$f(t) = \frac{a_o}{2} + \sum_{n=1}^{\infty} a_n \cos(n\omega_o t)$
7	Odd function	f(-t) = -f(t)	$f(t) = \sum_{n=1}^{\infty} b_n \sin(n\omega_o t)$
8	Average power		$P \equiv \frac{1}{T} \int_{T} f(t) ^{2} dt = \sum_{n=-\infty}^{\infty} F_{n} ^{2}$

Table 2: Fourier series properties

QUESTIONS?

TIME FOR PAST PROBLEMS!

ACKNOWLEDGMENTS

A significant portion of these slides were based off of the HKN ECE 210 EXAM 2 Spring 2016 slides by Kaidong Peng, Julian Michaels, Seungjun Cho.