ELEC2104 – Week 5

Diode circuit models, rectifiers

Diode Circuit Analysis

- Several techniques can be used to solve for I_D and V_D
 - Mathematical Analysis using Exponential Model
 - Graphical Analysis using Load Line Approach
 - Ideal Diode Model
 - Constant-Voltage Model

- The ideal diode model is useful for determining operating region, but does not give a very accurate estimate of Q-point and how the rest of the circuit functions
- Constant-voltage diode model takes into account the voltage drop across the diode when it is on
- Diode operates as an open circuit if $V_D < V_{D,on}$ and a constant voltage source of $V_{D,on}$ if VD exceeds $V_{D,on}$

I-V on linear scale

$$\begin{array}{ccc}
-\square & \equiv & \multimap & \multimap \\
V_{D} > V_{D,on} & & & \\
-\square & \equiv & \neg & | + \\
V_{D,on} & & & \\
\end{array}$$

Try and error with the two regimes

 The constant-voltage model yields a different break point in slope when compared to the ideal model

"on" state is just like a ideal constantvoltage source (fixed voltage drop, zero internal resistance)

- For $V_{in} < V_{D,on}$:
 - Diode is off,
 - No current flows
 - $V_{out} = V_{in} = V_D$
- For $V_{in} > V_{D,on}$:
 - If assume diode off
 - Then $V_D = V_{out} = V_{in} > V_{D,on}$. Can't be.
 - Diode must be on.
 - $V_D = V_{D,on}$
 - Current: $\frac{V_{in}-V_{D,on}}{R_1+R_2}$
 - $V_{out} = \frac{R_2}{R_1 + R_2} (V_{in} V_{D,on}) + V_{D,on}$

• Consider the example from earlier. Compare a constant-voltage analysis with the ideal diode model.

Using ideal diode model,

$$I_D = \frac{(10-0)V}{10k\Omega} = 1mA$$

Using constant-voltage model,

$$I_D = \frac{(10 - V_{on})V}{10k\Omega}$$
$$= \frac{(10 - 0.6)V}{10k\Omega} = 0.940 \, mA$$

Q-point is closer to the value found by load-line analysis (0.95 mA, 0.6 V)

From now on, use constant-voltage model by default. V_{on} is usually given in each problem. If not, use 0.6V.

Qualitative analysis:

- If $V_{in} = -\infty$, then D1 has to be on. Current flows from right to left through D1. Current flows through R1 and R2.
- If $V_{in} = \infty$, then D1 has to be off. Current flows through R1, R2.

Where is the transition point?

- Assume D1 is on, but no current flows through it (i.e. $V_{in} V_X$ just about enough to turn it on)
- From this point, increase V_{in} by any small amount will turn off D1.

Transition point: D1 is on, but no current flow through it

D1 is on:
$$V_X = V_{out} = V_{in} + V_{d,on}$$

No current flowing through D1:
$$I_{R1} = I_{R2}$$

We compute the current flowing through R_2 and R_1 :

$$I_{R1} = \frac{-V_{out}}{R_1}$$
 $I_{R2} = \frac{V_{out} - V_{in}}{R_2}$ $= \frac{-(V_{D,on} + V_{in})}{R_1}$ $= \frac{V_{D,on}}{R_2}$

Find the point where the D_1 turns off ($I_{R1} = I_{R2}$)

$$\frac{-(V_{D,on}+V_{in})}{R_1}=\frac{V_{D,on}}{R_2}$$

$$V_{in}=-\left(1+\frac{R_1}{R_2}\right)V_{D,on}$$

$$V_{in}=\frac{R_2}{R_1}$$
 When D1 off:
$$V_{in}=\frac{R_2}{R_1}$$

$$V_{out}=\frac{R_1}{R_1+R_2}V_{in}$$

Piecewise-Linear Model

Zener Diode

- Similar to constant-voltage model, but now include reverse breakdown
- The Zener diode will have a voltage drop V_Z as well as a resistance R_Z

Reverse Breakdown Analysis

- Model Zener diode with a piecewise linear model
- We can verify the Q-point by using load-line analysis
 - Choose 2 points (0 V, -4 mA) and (-5 V, -3 mA) to draw the load line
 - It intersects the I-V characteristic at the Q-point: (-2.9 mA, -5.2 V)

Load-line equation

$$-20 = V_D + 5000I_D$$

Zener Voltage Regulator

- A Zener diode can serve as a voltage regulator in breakdown operation, where $I_7 > 0$
- The Zener diode keeps the voltage across load resistor R₁ constant

$$I_S = \frac{V_S - V_Z}{R} = 3\text{mA}$$

$$I_L = \frac{V_Z}{R_L} = 1\text{mA} \mid I_Z = I_S - I_L = 2\text{mA}$$

If
$$R_L = 50 \mathrm{k}\Omega$$

$$I_S = \frac{V_S - V_Z}{R} = 3\text{mA}$$
 $I_L = \frac{V_Z}{R_L} = 0.1\text{mA} \mid I_Z = I_S - I_L = 2.9\text{mA}$

Zener Voltage Regulator

 The minimum value of load resistance for the Zener diode to continue to act as a voltage regulator

What R_L is needed for the diode to be in Zener breakdown?

$$I_Z = \frac{V_S - V_Z}{R} - \frac{V_Z}{R_L} > 0$$

$$\Rightarrow R_L > \frac{R}{\left(\frac{V_S}{V_Z} - 1\right)} = R_{min}$$

For proper regulation, I_z must be positive. If I_z < 0, the diode no longer controls the voltage across the load resistor.

Example

Find the output voltage and the Zener diode current for the following
 Zener-diode based voltage regulator circuit

$$\frac{V_S - V_L}{R} - \frac{V_L}{R_L} - \frac{V_L - V_Z}{R_Z} = 0$$

$$V_L = 5.19 V$$

$$I_Z = \frac{5.19 \, V - 5 \, V}{100} = 1.9 \, mA$$

What if $R_L = 50 \text{k}\Omega$?

Line and Load Regulation

• Line regulation characterizes how sensitive the output voltage is to input voltage changes

$$\frac{dV_L}{dV_S}mV/V$$

This is defined without knowing what the load is. The picture on the right is just an example.

- For a fixed load current (assume you can fix it), line regulation = $\frac{R_Z}{R + R_Z}$
- Load regulation characterizes how sensitive the output voltage is to changes in load current

$$\frac{dV_L}{dI_L}\Omega$$

- For changes in load current (e.g. by changing R_L), load regulation = $-(R_Z || R)$
- Load regulation is the Thévenin equivalent resistance looking back into the regulator from the load terminals

Summary of Diode Circuits

- Diode circuits can be analyzed using several different models
 - Ideal diode model is good for quickly determining what mode the diode is operating in
 - Constant-voltage model is useful to get a reasonable estimate of the Q-point
 - For precise numbers, either use simulation, iterative mathematical analysis, or draw a load line

Half-wave rectifier

Overview of a Diode Half-Wave Rectifier

- An important application of diode is DC chargers.
- The half-wave rectifier is the black box (after transformer) that passes only the positive half of the stepped-down sinusoid

DC Chargers

- A basic rectifier first converts an AC voltage to a positive half-wave
- A filter then eliminates AC components of the waveform to produce a nearly constant dc voltage output.
- Rectifier circuits are used in virtually all electronic devices to convert the 240-V 50-Hz AC power outlet source to the DC voltages

- A basic rectifier converts an ac voltage to a pulsating dc voltage
- A very common application of diodes is half-wave rectification, where either the positive or negative half of the input is blocked

Ideal model:

Diode is on during the positive half-cycle

Diode is off during negative half-cycle

Constant-voltage model

• During the on-state of the diode:

$$V_{out} = V_{in} - V_{on} = (V_p \sin(wt) - V_{on})$$

The output voltage is still zero when the diode is off

Often a step-down transformer is used to convert the 240-V, 50-Hz voltage available from the power line to the desired AC voltage level as shown.

- But, how do we generate a *constant* output?
- If the resistor in half-wave rectifier is replaced by a capacitor, a fixed voltage output is obtained since the capacitor (assumed ideal) has no path to discharge.

- At the peak of the input voltage, the diode current tries to reverse, and the diode cuts off.
- There is no circuit path to discharger, capacitor retains a constant voltage

- This circuit can be dangerous!
- The capacitor can retain a lethal charge after the power source is removed.
 - Especially if connected to 240V AC
- A practical circuit should include a way to discharge the capacitor safely.
- The resistor should consume a current large enough to discharge the capacitor in a reasonable time, but small enough to minimize unnecessary power waste.

Normally, this circuit would be connected to an output impedance, or load resistor.

Otherwise, the circuit should include a bleeder resistor connected as close as practical across the capacitor.

- A resistor in parallel allows a path for the capacitor to discharge
- During the first quarter cycle, the diode is on and the capacitor charges up to the peak value.

• At the peak input, the diode cuts off and the capacitor discharges exponentially through R.

Capacitor voltage in RC circuit: $V_c = V_i e^{-\frac{t}{RC}}$

- Peak-to-peak Amplitude of Ripple
 - The ripple amplitude is the decaying part of the exponential

• Ripple voltage becomes a problem if it goes above 5 to 10% of the

output voltage

Time

$$V_r = (V_P - V_{on}) \left[1 - \exp\left(-\frac{T - \Delta T}{RC}\right) \right]$$

 ΔT : conduction interval (i.e. charging time)

Linearize exp(-x) for small x using 1 - x:

$$\begin{split} V_r &\cong (V_P - V_{on}) \frac{T}{RC} \bigg(1 - \frac{\Delta T}{T} \bigg) \\ V_r &\cong \frac{(V_P - V_{on})}{R} \frac{T}{C} \qquad \text{If } \Delta T \text{ is small (for a good rectifier, this is true)} \end{split}$$

- Conduction Interval
 - The diode conducts for a short time ΔT called the **conduction interval**
 - Its angular equivalent is called the **conduction angle** $\theta_C = 2\pi \frac{\Delta T}{T}$

Expanded View for One Cycle

$$V_r pprox rac{V_P - V_{on}}{R} rac{T}{C}$$

• Finding ΔT

• Voltage at $t = \frac{5}{4}T - \Delta T$:

(Input is a sin wave)
$$V_p \sin \left(2\pi \frac{\left(\frac{5}{4}T - \Delta T\right)}{T}\right) = V_p - V_r$$

$$V_p \sin\left(\frac{5}{2}\pi - \theta_C\right) = V_p - V_r$$
$$V_p \cos(\theta_C) = V_p - V_r$$

For small
$$\theta_C$$
 , $\cos\theta_C \approx 1 - \frac{{\theta_C}^2}{2}$

$$\theta_C^2 = \frac{2V_r}{V_p}$$
 $\theta_C = 2\pi \frac{\Delta T}{T} = 2\pi f \Delta T$

Rule of thumb approximation

$$\Delta T \cong \frac{1}{2\pi f} \sqrt{\frac{2V_r}{V_p}} = \frac{1}{2\pi f} \sqrt{\frac{2T}{RC} \frac{(V_P - V_{on})}{V_P}}$$

• Diode Current

 We can approximate the DC current being drawn while discharging the capacitor as:

$$I_{dc} = \frac{V_P - V_{on}}{R}$$

The current in the short conduction interval must be large to charge the capacitor

• Diode Current

• The peak current is supplied by the diode to replenish the total charge lost from the filter capacitor in each cycle.

$$Q = I_p \frac{\Delta T}{2} = I_{dc} T \Rightarrow I_p = I_{dc} \frac{2T}{\Delta T} = \frac{V_p - V_{on}}{R} \frac{2T}{\Delta T}$$

Area of triangle:

$$Q = I_p \frac{\Delta T}{2}$$

Integration of current over time = charge

Impedance of capacitor:

$$Z_C = \frac{1}{j\omega C}$$

- Maximum diode current
 - The diode has its maximum current (surge current) at t=0
 - Capacitor is completely discharged
 - Largest forward bias across the diode
- This current has to be controlled so it does not damage the device.
 - In reality, surge current will not reach max value once circuit series resistances are taken into account

$$I = \frac{V}{Z_C} = Vj\omega C \qquad I_{SC} \approx C2\pi f V_p$$

- Peak Inverse Voltage Rating (PIV)
 - PIV of the rectifier diode is lower bound of the diode breakdown voltage.
 - When the diode is off, the reverse-bias across the diode is V_{out} V_{in} .
 - V_{in} at its negative peak:

$$PIV \ge V_{out} - v_{in}^{min} = V_P - V_{on} - (-V_P) \cong 2V_P$$

This is the minimum Zener breakdown voltage required for the diode

Example

• V_{in} is a sine wave with peak voltage of 15V @ 60 Hz. What is the voltage output ripple? Assume diode turn-on voltage is 0.65 V

$$V_{max} = V_{in} - V_{D1} = 14.35 V$$

$$V_{C1} = V_{max} \exp(-\frac{T - \Delta T}{R_L C_1}) \approx V_{max} (1 - \frac{T}{R_L C_1})$$

$$V_r \approx V_{max} \frac{T}{R_L C_1}$$

$$V_r = (14.35 V) \frac{1}{60 \times 220 \times 470 \times 10^{-6}} = 2.31 V$$

This rectifier is not so great

Full-wave rectifier

Full-Wave Rectifier

 We want to build a circuit that can invert the negative half of the input cycle

Full-Wave Rectifier

What is the output of these two?

Blocking positive half

Blocking negative half

Nope.

Centre-Tapped Full-Wave Rectifier

Commonly grounded at the center

Discharge for half-wave rectifier

Centre-Tapped Full-Wave Rectifier

- Full-wave rectifiers cut capacitor discharge time in half
- Require half the filter capacitance to achieve a given ripple voltage.
- All specifications are the same as for half-wave rectifiers, except I_p halved.
- Ripple amplitude:

$$V_R \cong \frac{(V_P - V_{on})}{2RCf_{in}}$$

Full-Wave Bridge Rectifier

- D1 and D2 pass/invert the negative half cycle of input
- D3 and D4 pass the positive half cycle.

Full-Wave Bridge Rectifier

- Full-Wave bridge rectifier using constant-voltage model
- The dead-zone around V_{in} arises because V_{in} must exceed 2 $V_{D,ON}$ to turn on the bridge

Full-Wave Bridge Rectifier with Capacitor

- This is the complete bridge rectifier.
- Since C1 only gets ½ of period to discharge, ripple voltage is decreased by a factor of 2.

$$V_R \cong \frac{V_P - 2V_{D,on}}{2R_L C_1 f}$$

Or, only need smaller capacitor to achieve the same ripple voltage

Full-Wave Bridge Rectifier Peak Inverse Voltage

 Each diode is subjected to approximately one V_p peak inverse voltage (PIV) (versus 2V_p in half-wave rectifier)

$$V_{out} = V_P - 2V_{D,on}$$

When $V_{in} = V_P$:

$$V_{AB} = V_{D,on} + V_{out}$$

$$PIV \ge V_P - V_{on} \cong V_P$$

$$PIV \ge 2V_P$$

Full-Wave Bridge Rectifier Peak Current

- Peak current reduced (charging more frequently)
- Surge current when circuit is first powered on is reduced proportional to the smaller capacitor

Full-Wave Bridge Rectifier Summary

Specifications are the same as for a half-wave rectifier except PIV = V_p and I_p halved

Example

• Consider the example from before where is a sine wave with peak voltage of 15V @ 60 Hz. What is the voltage ripple? Assume diode turn-off voltage 0.65 V.

$$V_{max} = V_{in} - 2V_D = 13.7 V$$

$$V_r = \frac{V_{in} - 2V_D}{2R_L C_1 f}$$

$$V_r = (13.7 V) \frac{1}{2 \times 60 \times 220 \times 470 \times 10^{-6}} = 1.1 V$$

Rectifier Summary

Comparison of Rectifiers with Capacitive Filters

comparison of Recemers with capacitive ritters			
RECTIFIER PARAMETER	HALF-WAVE RECTIFIER	FULL-WAVE RECTIFIER	FULL-WAVE BRIDGE RECTIFIER
Filter capacitor	$C = \frac{V_P - V_{\rm on}}{V_r} \frac{T}{R}$	$C = \frac{V_P - V_{\rm on}}{V_r} \frac{T}{2R}$	$C = \frac{V_P - 2V_{\rm on}}{V_r} \frac{T}{2R}$
PIV rating	$2V_P$	$2V_P$	V_P
Peak diode current (constant V_r)	Highest I_P	Reduced $\frac{I_P}{2}$	Reduced $\frac{I_P}{2}$
Surge Current	Highest	Reduced ($\propto C$)	Reduced ($\propto C$)
Comments	Least complexity	Smaller capacitor Requires center-tapped transformer Two diodes	Smaller capacitor Four diodes No center tap on transformer