CLAIMS

1-111. (Cancelled)

112. (Currently Amended) Apparatus for providing ventilatory pressure support to a patient comprising

a control mechanism for deriving two calculated errors_each of which is a function of the same target ventilation value and a respective one of <u>a relatively</u> short and a relatively long two patient ventilation <u>measure</u> measures,

the two patient ventilation measures having respective relatively fast and relatively slow speeds of response to said calculated errors.

said control mechanism further

deriving two control responses of pressure to respective ones of said two calculated errors and

combining said two control responses to produce an overall control ${\tt response}_{{\tt \bot}}$

wherein said overall control response that increasingly favors the control response to the calculated error that is a function of the <u>relatively short</u> ventilation measure with the faster-speed of response over the control response to the calculated error that is a function of the <u>relatively long</u> ventilation measure with the slower-speed of response as the ventilation measure with the faster speed of response becomes increasingly less than said target ventilation value; and

a ventilator responsive to said overall control response for controlling the

level of pressure of air delivered to said patient.

113. (Cancelled)

114. (Currently Amended) Apparatus for providing ventilatory pressure

support to a patient in accordance with claim 112 113 wherein the degree of

control exercised by said ventilator increases with the magnitudes of said two

calculated errors.

115. (Previously Presented) Apparatus for providing ventilatory pressure

support to a patient in accordance with claim 114 wherein for equal calculated

errors below and above said target value, the degree of control exercised by said

ventilator is greater for calculated errors below said target value.

116. (Previously Presented) Apparatus for providing ventilatory pressure

support to a patient in accordance with claim 115 wherein said target value is an

alveolar ventilation that takes into account the patient's anatomical or physiologic

dead space.

117. (Currently Amended) Apparatus for providing ventilatory pressure

support to a patient in accordance with claim 116 wherein said control

- 3 -

mechanism further determines the phase of <u>a</u> the current breathing cycle and adjusts said overall control response to be a function of the amplitude <u>of</u> at the determined phase of <u>said</u> the current breathing cycle of an amplitude-versus-phase template that is appropriate for a normal breathing cycle.

118. (Previously Presented) Apparatus for providing ventilatory pressure support to a patient in accordance with claim 117 wherein said control mechanism determines the phase of the current breathing cycle by relating respiratory airflow and its rate of change to different phases of a normal breathing cycle.

119. (Previously Presented) Apparatus for providing ventilatory pressure support to a patient in accordance with claim 118 wherein said control mechanism determines the phase of the current breathing cycle by applying a set of fuzzy logic rules.

120. (Previously Presented) Apparatus for providing ventilatory pressure support to a patient in accordance with claim 119 wherein said overall control response is a clipped integral of a function of both of said calculated errors.

121. (Previously Presented) Apparatus for providing ventilatory pressure support to a patient in accordance with claim 112 wherein the degree of control

exercised by said ventilator increases with the magnitudes of said two calculated errors.

- 122. (Previously Presented) Apparatus for providing ventilatory pressure support to a patient in accordance with claim 121 wherein for equal calculated errors below and above said target value, the degree of control exercised by said ventilator is greater for calculated errors below said target value.
- 123. (Previously Presented) Apparatus for providing ventilatory pressure support to a patient in accordance with claim 122 wherein said target value is an alveolar ventilation that takes into account the patient's physiologic dead space.
- 124. (Previously Presented) Apparatus for providing ventilatory pressure support to a patient in accordance with claim 112 wherein said target value is an alveolar ventilation that takes into account the patient's physiologic dead space.
- 125. (Previously Presented) Apparatus for providing ventilatory pressure support to a patient in accordance with claim 112 wherein said control mechanism further determines the phase of the current breathing cycle and adjusts said overall control response to be a function of the amplitude at the determined phase of the current breathing cycle of an amplitude-versus-phase template that is appropriate for a normal breathing cycle.

126. (Previously Presented) Apparatus for providing ventilatory pressure support to a patient in accordance with claim 125 wherein said control mechanism determines the phase of the current breathing cycle by relating respiratory airflow and its rate of change to different phases of a normal breathing cycle.

127. (Previously Presented) Apparatus for providing ventilatory pressure support to a patient in accordance with claim 126 wherein said control mechanism determines the phase of the current breathing cycle by applying a set of fuzzy logic rules.

128. (Previously Presented) Apparatus for providing ventilatory pressure support to a patient in accordance with claim 112 wherein each of said calculated errors is a clipped integral of the respective patient ventilation measure minus said target value.

129. (Previously Presented) Apparatus for providing ventilatory pressure support to a patient in accordance with claim 112 wherein said ventilator includes a servo control mechanism whose gain is adjusted in accordance with the magnitudes of said calculated errors.

130. (Previously Presented) Apparatus for providing ventilatory pressure support to a patient in accordance with claim 129 wherein said gain increases

with the magnitudes of said calculated errors.

131. (Previously Presented) Apparatus for providing ventilatory pressure

support to a patient in accordance with claim 130 wherein for equal calculated

errors below and above said target value, said gain is greater for calculated

errors below said target value.

132. (Previously Presented) Apparatus for providing ventilatory pressure

support to a patient in accordance with claim 130 wherein said gain is varied

more aggressively for conditions of hypoventilation than for conditions of

hyperventilation.

133. (Previously Presented) Apparatus for providing ventilatory pressure

support to a patient in accordance with claim 112 wherein said ventilator is flow-

triggered and phase cycled.

134. (Previously Presented) Apparatus for providing ventilatory pressure

support to a patient in accordance with claim 112 wherein said ventilator

withdraws ventilation support more gradually when the patient is over-ventilated

than when the patient is under-ventilated.

- 7 -