Text-Aware Predictive Monitoring of Business Processes with LSTM Neural Networks

David Benedikt Georgi 18.08.2020

Interim Presentation

Business Process Monitoring – A Modern Environment for Commercial Process Mining

VS

Traditional Process Mining

- Applied project-based
- Manual data extraction
- Historical event data only (offline)
- Standalone process mining software

- Applied continuously
- Permanent data connection
- Historical and real-time event data (online)
- Integrated process mining platform

Business Process Monitoring – A Modern Environment for Commercial Process Mining

Motivation: Adding the Forward Perspective to Business Process Monitoring

Knowing the future of a process gives organizations a competitive advantage.

Contribution: A Text-Aware Process Prediction Framework

Contribution: A Text-Aware Process Prediction Framework

Contribution: A Text-Aware Process Prediction Framework

Trace Encoding

Transforming a sequence of events to a sequence of vectors

$$\langle e_1, e_2, e_3, \dots, e_n \rangle$$

$$\langle x_1, x_2, x_3, \dots, x_n \rangle$$

$$x_i = (a_i, t_i, d_i^1, d_i^2, d_i^3)$$

Encoding of Categorical and Numerical Attributes

Activities & Categorical Attributes

1-Hot-Encoding

$$1(\text{"Consultation"}) = (0,1,0,0,0)$$

Index	Activity	
1	Register patient	
2	Consultation	
3	Blood test	
4	MRI	
5	Release Patient	

Numerical Attributes

Normalization

$$\hat{d} = \frac{d - \min(d)}{\max(d) - \min(d)}$$

Capturing Temporal Dependencies

Encoding of timestamp data

- 6-dimensional vector with time-based features is part of every encoded event
- Capture daily, weekly, seasonal dependencies and concept drifts
- Idea: Process behavior might be influenced by office hours, weekends, seasons, etc.
- All time features are normalized to [0,1]

Feature	Description	
t_i^1	Time since previous event	
t_i^2	Time since case start	
t_i^3	Time since first recorded event	
t_i^4	Time since midnight	
$egin{array}{c} t_i^2 \ t_i^3 \ t_i^4 \ t_i^5 \ t_i^6 \ \end{array}$	Time since last Monday	
t_i^6	Time since last January 1 00:00	

$$t_i = (t_i^1, t_i^2, t_i^3, t_i^4, t_i^5, t_i^6)$$

Text Vectorization

1. Step: Text Normalization

	Transformation	Example
Original "The patient has been diagnosed with high l		"The patient has been diagnosed with high blood pressure."
	Lowercase	"the patient has been diagnosed with high blood pressure."
	Tokenization	["the", "patient", "has", "been", "diagnosed", "with", "high", "blood", "pressure", "."]
	Lemmatization	["the", "patient", "have", "be", "diagnose", "with", "high", "blood", "pressure", "."]
	Stop word filtering	["patient", "diagnose", "high", "blood", "pressure"]

Text Vectorization – 4 Approaches

2. Step: Apply Text Model

Bag of Words

Bag of N-Gram

Paragraph Vector

Latent Dirichlet Allocation

Bag of Words

- Represent documents by the term frequencies (tf) of its words
- Construct vocabulary using the historical event log
- Create vector with size of the vocabulary with the term frequencies of the words
- Normalize each component with the inversed document frequency (idf)

Example:

Vocabulary

Index	Word
1	patient
2	urgent
3	blood
4	pressure
5	notice
6	leg
7	high
8	low

Document

["patient", "diagnose", "high", "blood", "pressure"]

(1, 0, 1, 1, 0, 0, 1, 0)

(0.5, 0, 0.4, 1.2, 0, 0, 1.4, 0)

Bag of N-Gram

- Represent documents by the term frequencies (tf) of its ngrams
- Construct n-gram-vocabulary using the historical event log
- Create vector with size of the vocabulary with the term frequencies of the words
- Normalize each component with the inversed document frequency (idf)

Example: 2-Gram

Vocabulary

Index	2-Gram	
1	(patient, diagnose)	
2	(urgent, quick)	
3	(blood, pressure)	
4	(value, significant)	
5	(notice, recently)	
6	(leg, break)	
7	(diagnose, high)	
8	(high, blood)	

Document

["patient", "diagnose", "high", "blood", "pressure"]

[("patient", "diagnose"), ("diagnose", "high"), ("high", "blood") and ("blood", "pressure")]

(1, 0, 1, 0, 0, 0, 1, 1)

(0.5, 0, 0.4, 0, 0, 0, 1.4, 0.6)

Paragraph Vector

Latent Dirichlet Allocation

- Documents are represented by probability distributions over *k* topics
- Topics are probability distributions over words
- Assumption: Documents were created by sampling words from sampled topics
- Find the topic distribution for each document that most likely would generate the corresponding document

Example: 3 Topics, 3 Words

(0.1, 0.2, 0.7)

Topic distribution of a document for 3 topics

Text Vectorization – Comparison

Text Model	Pro	Contra
Bag of Words	Simple and fast	Ignores word orderHigh dimensionality
Bag of N-Gram	Simple and fastConsiders word order	 Very high dimensionality
Paragraph Vector	Expressive representationLow dimensionality	High computation costsRequires big training corpus
Latent Dirichlet Allocation	Low dimensionality	Ignores word orderChoice of number of topics is difficult

LSTM Module

LSTM Network Architecture

The Next Steps...

Evaluation on real-life event logs

Research Focus:

- Impact of the utilization of textual data
- Impact of the text model choice and other parameters
- Comparison with existing techniques regarding prediction quality

Schedule

Thank you for your attention.

Any questions?

