组合逻辑电路分析与设计

【实验目的】

- 1. 掌握组合逻辑电路的分析方法,并验证其逻辑功能。
- 2. 掌握组合逻辑电路的设计方法,并能用最少的逻辑门实现之。
- 3. 熟悉示波器的使用。

【实验仪器及器件】

仪器及器件名称	型号	数量
数字电路实验箱	DS99-1A	1
数字万用表	DY2106	1
双踪示波器	CS-4135	1
	74LS00	1
虚拟器件	74LS86	1
	74LS197	1

【实验原理】

- 1. 组合逻辑电路的分析:对已给定的组合逻辑电路分析其逻辑功能。
 - 步骤: (1) 由给定的组合逻辑电路写函数式:
 - (2) 对函数式进行化简或变换;
 - (3) 根据最简式列真值表;
 - (4) 确认逻辑功能。
- 2. 组合逻辑电路的设计:按照具体逻辑命题设计出最简单的组合电路。
 - 步骤: (1) 根据给定事件的因果关系列出真值表:
 - (2) 由真值表写出函数式;
 - (3) 对函数式进行化简或变换:
 - (4) 画出逻辑图,并测试逻辑功能;
- 3. 异步计数器 74LS197 组成与工作原理

图 1 74LS197 原理图

74LS197 内部由一个 8 进制计数器和一个 2 进制计数器组成,它们可以独立工作,也可以串联组成一个 16 进制计数器。MR 和 PL 两个低电平有效的控制信号是两个计数器共用的。

当 MR 为低电平时,输出 、 、 、 清零; PL 为低电平时, 把来自输

入端 ABCD 的电平送入 、 Q_1 、 Q_2 、 Q_3 ,因 LD 容易受到外来干扰,在使用时常接高电平。

16 进制计数器接法: CP_0 作为时钟输入, 与 CP_1 连接,则 、 、 和 就是 16 进制计数器的输出。将 、 、 和 接 "0-1" 显示器, CP_0 接手动单步脉冲。

4. 74LS86 为异或门 (OC 门), 各引脚定义如图 3

图 2 74LS86 引脚定义

【实验内容】

- 1. 设计一个代码转换电路,输入为4位8421码,输出为4位循环码。
- 2. 用逻辑开关模拟二进制代码输入,并把输出接"0-1"显示器检查电路,看电路是否正常工作。
- 3. 用集成异步下降沿触发的异步计数器 74LS197 构成十六进制计数器作为代码转换电路的输入信号源。16 进制计数器工作正常后,将 、 、 和 连接到代码转换输入端,作为 8421 码输入。注意: 在把 197 的输出接入代码转换输入之前,先要断开原来作为 8421 码输入的逻辑开关。检查电路是否正常工作。
- 5. 思考分析: 组合电路的分析。多功能发生电路的逻辑函数 Y = , $F_{4}F_{3}F_{2}F_{1}$ 取不同组合,则可得到以 $A \times B$

为输入变量的各种逻辑函数。

【实验分析及总结】

1. 代码转换电路的设计

已知 4 位输入 8421 码为 BCD 码, 4 位输出循环码如 GRAY 码

	BCI) 码		GRAY 码						
D	C	В	Α				G_0			
0	0	0	0	0	0	0	0			
0	0	0	1	0	0	0	1			
0	0	1	0	0	0	1	1			
0	0	1	1	0	0	1	0			
0	1	0	0	0	1	1	0			
0	1	0	1	0	1	1	1			
0	1	1	0	0	1	0	1			
0	1	1	1	0	1	0	0			
1	0	0	0	1	1	0	0			
1	0	0	1	1	1	0	1			
1	0	1	0	1	1	1	1			
1	0	1	1	1	1	1	0			
1	1	0	0	1	0	1	0			
1	1	0	1	1	0	1	1			
1	1	1	0	1	0	0	1			
1	1	1	1	1	0	0	0			

将表 1 中 ABCD 作为自变量,表 2 中 ~ 各自作为因变量可得到四张真值表。

G3:

АВ	00	01	11	10
CD				
00				
01	1	1	1	1
11	1	1	1	1
10				

G₂:

АВ	00	01	11	10
CD				
00				
01	1	1	1	1
11				
10	1	1	1	1

G1:

АВ	00	01	11	10
CD				
00		1	1	
01		1	1	
11	1			1
10	1			1

Go:

AB	00	01	11	10
CD				
00		1		1
01		1		1
11		1		1
10		1		1

即可得出 ~ 各自与 ABCD 的逻辑函数式如下

 $G_3 = D \qquad (1)$

 $G_2 = C \oplus D$ (2)

$$G_1 = B \oplus C$$
 (3)

$$G_0 = A \oplus B \qquad \textbf{(4)}$$

由函数式可得下图

图 3 代码转换电路逻辑图

2. 代码转换电路工作实验

图中波形DO表示时钟信号CP, D1、D2、D3、D4分别表示输出GRAY码 , A5、A6、A7、A8分别表示输入BCD码

4. 思考分析:

由式 $Y = (F_1AB)'(F_2A'B)'(F_3AB')'(F_4A'B')'$, 即有下表

	多	功能发生电路函数	女表	
F4	F3	F2	F1	Y
0	0	0	0	1
0	0	0	1	(AB) '
0	0	1	0	(A' B) '
0	0	1	1	В'
0	1	0	0	(AB')'
0	1	0	1	Α'
0	1	1	0	A⊙B
0	1	1	1	A' B'
1	0	0	0	(A' B')'
1	0	0	1	$A \ \oplus B$
1	0	1	0	Α
1	0	1	1	AB'
1	1	0	0	В
1	1	0	1	A' B
1	1	1	0	AB
1	1		1	0

1
各函数真值表

A	В	Y0	Y1	Y2	Y3	Y4	Y5	Y6	Y7	Y8	Y9	Y10	Y11	Y12	Y13	Y14	Y15
0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
0	1	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0
1	0	1	1	1	1	0	0	0	0	1	1	1	1	0	0	0	0
1	1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0