6. 토픽모델링 Topic Modeling

집현전 초급반 6조

김준태, 박준현, 전인성

목차

- 1. 잠재 의미 분석 Latent Semantic Analysis
 - SVD, truncated SVD
 - LSA
- 2. 잠재 디리클레 할당 Latent Dirichlet Allocation
 - Graphical model
 - LDA

▶ 문서를 표현하는 가장 직관적이고 쉬운 방법은 카운트 기반의 Bag of Words

► Document-Term Matrix, DTM

-	과일이	길고	노란	먹고	바나나	사과	싶은	저는	좋아요
문서1	0	0	0	1	0	1	1	0	0
문서2	0	0	0	1	1	0	1	0	0
문서3	0	1	1	0	2	0	0	0	0
문서4	1	0	0	0	0	0	0	1	1

-	과일이	길고	노란	먹고	바나나	사과	싶은	저는	좋아요
문서1	0	0	0	0.287682	0	0.693147	0.287682	0	0
문서2	0	0	0	0.287682	0.287682	0	0.287682	0	0
문서3	0	0.693147	0.693147	0	0.575364	0	0	0	0
문서4	0.693147	0	0	0	0	0	0	0.693147	0.693147

- ▶ 그러나 DTM이나 TF-IDF는 단어의 의미(관계, 유사도, 토픽)를 고려하지 못함.
 - ► Document-Term Matrix, DTM

토픽 : 과일

▶ 그러나 DTM이나 TF-IDF는 단어의 의미(관계, 유사도, 토픽)를 고려하지 못함.

► Document-Term Matrix, DTM

-	과일이	길고	노란	먹고	바나나	사과	싶은	저는	좋아요
문서1	0	0	0	1	0	1	1	0	0
문서2	0	0	0	1	1	0	1	0	0
문서3	0	1	1	0	2	0	0	0	0
문서4	1	0	0	0	0	0	0	1	1

잠재 의미 분석(Latent Semantic Analysis, LSA)

- ▶ DTM, TF-IDF에서 시작하는 카운트 기반 의미 분석
- ▶ 문서 단어 행렬(DTM)이나 단어 빈도-역 문서 빈도(TF-IDF) 행렬을 특이값 분해(Singular Value Decomposition, SVD)를 통해 Low-rank approximation 수행

-	과일이	길고	노란	먹고	바나나	사과	싶은	저는	좋아요			Truncat	ed SVD)
문서1	0	0	0	1	0	1	1	0	0	A'		U_t	Σ_t	V_t^T
문서2	0	0	0	1	1	0	1	0	0	>]		σ_{1}	
문서3	0	1	1	0	2	0	0	0	0		=			
문서4	1	0	0	0	0	0	0	1	1					

- ▶ 문서 단어 행렬의 크기 축소
- ▶ 중요한 정보만 남기기
- ▶ 비슷한 단어들을 토픽으로 묶어서 문서 분석

- ightharpoonup A 라는 $m \times n$ 행렬이 있을 때 다음과 같이 3개의 행렬의 곱으로 분해함
- $A = U\Sigma V^T = (m \times m) \times (m \times n) \times (n \times n)^T$

$$\checkmark U = m \times m$$
 직교행렬

- ✔ 왼쪽 특이행렬
- $\checkmark UU^{T} = I, U^{-1} = U^{T}$

- $\checkmark \Sigma = m \times n$ 직사각 대각행렬
 - ✔ 대각선 말고는 다 0.
 - ✔ 대각값들은 A의 특이값(singular value)이라고 함.
- $\checkmark V = n \times n$ 직교행렬
 - ✔ 오른쪽 특이행렬
 - $\checkmark V^T = V$ 의 전치행렬

ightharpoonup A 라는 $m \times n$ 행렬이 있을 때 다음과 같이 3개의 행렬의 곱으로 분해함

$$A = U\Sigma V^T = (m \times m) \times (m \times n) \times (n \times n)^T$$

 \boldsymbol{A}

U

 \sum

 \sqrt{T}

$$A = U\Sigma V^T = (m \times m) \times (m \times n) \times (n \times n)^T$$

$$\begin{bmatrix} 2 & 3 \\ 1 & 4 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0.82 \\ 0.58 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0.82 \\ 0.82 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0.00 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0.40 \\ 0.91 \\ 0.40 \\ 0 \end{bmatrix} \begin{bmatrix} 0.40 \\ 0.91 \\ 0.91 \\ 0.40 \end{bmatrix}$$

$$A \qquad U \qquad \qquad \sum \qquad V^T$$

$$A = U\Sigma V^T = (m \times m) \times (m \times n) \times (n \times n)^T$$

$$\begin{bmatrix} 2 & 3 \\ 1 & 4 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0.82 \\ 0.58 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0.82 \\ 0.82 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 5.47 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0.37 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0.40 \\ 0.91 \\ -0.91 \\ 0.40 \end{bmatrix}^{\nu_1} \begin{bmatrix} 0.40 \\ 0.91 \\ 0 \end{bmatrix}^{\nu_1} \begin{bmatrix} 0.40 \\ 0.91 \\ 0.40 \end{bmatrix}^{\nu_1} \begin{bmatrix} 0.40 \\ 0.91 \\ 0 \end{bmatrix}^{\nu_1} \begin{bmatrix}$$

$$A = \begin{bmatrix} \sigma_1 & v_1 & + \\ u_1 & & u_2 \end{bmatrix} + \cdots$$

$$A = U\Sigma V^T = (m \times m) \times (m \times n) \times (n \times n)^T$$

특이값 분해 (SVD)

$$A = U\Sigma V^T = (m \times m) \times (m \times n) \times (n \times n)^T$$

$$A = \begin{bmatrix} \sigma_1 & v_1 & + & \sigma_2 & v_2 & + & \dots \\ u_1 & \text{content 1} & & u_2 & \text{content 2} \end{bmatrix}$$

특이값 분해 (SVD)

$$A = U\Sigma V^T = (m \times m) \times (m \times n) \times (n \times n)^T$$

$$A = \begin{bmatrix} \sigma_1 & v_1 \\ u_1 \end{bmatrix} + \begin{bmatrix} \sigma_2 & v_2 \\ u_2 \end{bmatrix}$$

절단된 특이값 분해 (truncated SVD)

▶ truncated SVD : SVD를 수행한 다음, 중요한 컨텐츠만 남겨서 정보를 압축하기

$$A = \begin{bmatrix} \sigma_1 & v_1 & + & \sigma_2 & v_2 \\ u_1 & \text{content 1} & u_2 & \text{content 2} \end{bmatrix}$$

절단된 특이값 분해 (truncated SVD)

- ▶ truncated SVD : SVD를 수행한 다음, 중요한 컨텐츠만 남겨서 정보를 압축하기
- $lackbox{A} pprox \hat{U}\hat{\Sigma}\hat{V}^T = (m \times t) \times (t \times t) \times (t \times n) : t$ 개의 컨텐츠만 남기는 경우

$$A \approx 0$$
 σ_1 v_1 u_1 content 1

▶ DTM이나 TF-IDF 행렬에 절단된 SVD(truncated SVD)를 사용하여 차원을 축소시키고, 단어들의 잠재적인 의미를 끌어냄

-	과일이	길고	노란	먹고	바나나	사과	싶은	저는	좋아요
문서1	0	0	0	1	0	1	1	0	0
문서2	0	0	0	1	1	0	1	0	0
문서3	0	1	1	0	2	0	0	0	0
문서4	1	0	0	0	0	0	0	1	1

 $\blacktriangleright A[4,9] \rightarrow \text{np.linalg.svd} \rightarrow U[4,4], s[4], VT[9,9]$

```
[4] 1 A
    array([[0, 0, 0, 1, 0, 1, 1, 0, 0],
           [0, 0, 0, 1, 1, 0, 1, 0, 0],
           [0, 1, 1, 0, 2, 0, 0, 0, 0],
           [1, 0, 0, 0, 0, 0, 0, 1, 1]])
[5] 1 U, s, VT = np.linalg.svd(A, full matrices = True)
[9] 1 U. round(2)
    array([[-0.24, 0.75, 0., -0.62],
           [-0.51, 0.44, -0., 0.74],
          [-0.83, -0.49, -0., -0.27],
          [-0., -0., 1., 0.]
[10] 1 s.round(2)
    array([2.69, 2.05, 1.73, 0.77])
[11] 1 VT. round(2)
    array([-0., -0.31, -0.31, -0.28, -0.8, -0.09, -0.28, -0., -0.]
           [0., -0.24, -0.24, 0.58, -0.26, 0.37, 0.58, -0., -0.],
           [0.58, -0., 0., -0., -0., 0.58, 0.58],
           [0., -0.35, -0.35, 0.16, 0.25, -0.8, 0.16, -0., -0.],
           [-0., -0.78, -0.01, -0.2, 0.4, 0.4, -0.2, 0., 0.]
           [-0.29, 0.31, -0.78, -0.24, 0.23, 0.23, 0.01, 0.14, 0.14],
           [-0.29, -0.1, 0.26, -0.59, -0.08, -0.08, 0.66, 0.14, 0.14],
           [-0.5, -0.06, 0.15, 0.24, -0.05, -0.05, -0.19, 0.75, -0.25],
          [-0.5, -0.06, 0.15, 0.24, -0.05, -0.05, -0.19, -0.25, 0.75]])
```

Full SVD

 $\blacktriangleright A[4,9] \rightarrow \text{np.linalg.svd} \rightarrow U[4,4], s[4], VT[9,9] \rightarrow U[4,4], S[4,4], VT[4,9]$

```
[4] 1 A
    array([[0, 0, 0, 1, 0, 1, 1, 0, 0],
           [0, 0, 0, 1, 1, 0, 1, 0, 0],
          [0, 1, 1, 0, 2, 0, 0, 0, 0],
          [1, 0, 0, 0, 0, 0, 0, 1, 1]])
[5] 1 U, s, VT = np.linalq.svd(A, full matrices = True)
[9] 1 U. round(2)
    array([[-0.24, 0.75, 0., -0.62],
          [-0.51, 0.44, -0., 0.74],
          [-0.83, -0.49, -0., -0.27],
          [-0., -0., 1., 0.]
[10] 1 s.round(2)
    array([2.69, 2.05, 1.73, 0.77])
[11] 1 VT.round(2)
    array([-0., -0.31, -0.31, -0.28, -0.8, -0.09, -0.28, -0., -0.]
          [0., -0.24, -0.24, 0.58, -0.26, 0.37, 0.58, -0., -0.]
          [0.58, -0., 0., 0., -0., 0., -0., 0.58, 0.58],
           [ 0. , -0.35, -0.35, 0.16, 0.25, -0.8 , 0.16, -0. , -0.
           [-0. , -0./8, -0.01, -0.2, 0.4, 0.4, -0.2, 0.
           [-0.29, 0.31, -0.78, -0.24, 0.23, 0.23, 0.01, 0.14, 0.14],
          [-0.29, -0.1, 0.26, -0.59, -0.08, -0.08, 0.66, 0.14, 0.14],
          [-0.5, -0.06, 0.15, 0.24, -0.05, -0.05, -0.19, 0.75, -0.25],
           [-0.5, -0.06, 0.15, 0.24, -0.05, -0.05, -0.19, -0.25, 0.75]])
```

Full SVD

[14] 1 S = np.diag(s)

$ightharpoonup A = U\Sigma V^T$

```
[18] 1 U. round(2)
    array([[-0.24, 0.75, 0. , -0.62],
           [-0.51, 0.44, -0., 0.74],
          [-0.83, -0.49, -0., -0.27],
          [-0., -0., 1., 0.]
[19] 1 S. round(2)
    array([[2.69, 0. , 0. , 0. ],
           [0., 2.05, 0., 0.],
          [0. , 0. , 1.73, 0. ],
           [0., 0., 0., 0.77]
[20] 1 VT.round(2)
    array([[-0. , -0.31, -0.31, -0.28, -0.8 , -0.09, -0.28, -0. , -0. ],
           [0., -0.24, -0.24, 0.58, -0.26, 0.37, 0.58, -0., -0.],
           [0.58, -0., 0., 0., -0., 0., -0., 0.58, 0.58],
          [0., -0.35, -0.35, 0.16, 0.25, -0.8, 0.16, -0., -0.]])
[21] 1 A_recon = U @ S @ VT
     3 np.abs(A recon.round(2))
    array([[0., 0., 0., 1., 0., 1., 1., 0., 0.],
           [0., 0., 0., 1., 1., 0., 1., 0., 0.],
           [0., 1., 1., 0., 2., 0., 0., 0., 0.]
           [1., 0., 0., 0., 0., 0., 0., 1., 1.]]
[22] 1 A
    array([[0, 0, 0, 1, 0, 1, 1, 0, 0],
           [0, 0, 0, 1, 1, 0, 1, 0, 0],
          [0, 1, 1, 0, 2, 0, 0, 0, 0],
           [1, 0, 0, 0, 0, 0, 0, 1, 1]])
```

Full SVD

▶ Full SVD 결과

ight angle Σ : 토픽 중요도

Full SVD

[0, 0, 0, 토픽4]]

ightharpoonup U : 문서-토픽 행렬

Full SVD

ightharpoonup U : 문서-토픽 행렬

- ightharpoonup U의 행벡터는 문서의 저차원 표현
 - ▶ 토픽 개수와 같은 차원의 벡터 표현일 뿐, 숫자들이 어떤 의미를 지니는지는 모름
 - ▶ ex. 문서 1의 토픽 벡터의 1번째 숫자인 -0.24 = 문서 1에서 토픽 1의 중요도 ???

 $ightharpoonup V^T$: 토픽-단어 행렬

```
[18] 1 U.round(2)
    array([[-0.24, 0.75, 0. , -0.62],
          [-0.51, 0.44, -0., 0.74],
          [-0.83, -0.49, -0., -0.27],
          [-0., -0., 1., 0.]
[19] 1 S. round(2)
    array([[2.69, 0. , 0. , 0. ],
          [0., 2.05, 0., 0.],
          [0.,0.,1.73,0.],
          [0., 0., 0., 0.77]
[20] 1 VT.round(2)
   array([[-0. , -0.31, -0.31, -0.28, -0.8 , -0.09, -0.28, -0. , -0. ],
          [0., -0.24, -0.24, 0.58, -0.26, 0.37, 0.58, -0., -0.],
          [0.58, -0., 0., 0., -0., 0., -0., 0.58, 0.58],
          [0., -0.35, -0.35, 0.16, 0.25, -0.8, 0.16, -0., -0.]])
```

Full SVD


```
S = [[토픽1, 0, 0, 0],
U = [[EH1],
                                     VT = [[토픽1],
     [문서2],
                   [0, 토픽2, 0, 0],
                                           [토픽2],
                   [0, 0, 토픽3, 0],
     [문서3],
                   [0, 0, 0, 토픽4]]
     [문서4]]
```

- [토픽3], [토픽4]] $ightharpoonup V^T$ 의 행벡터는 토픽별 단어 벡터
 - ▶ 단어 개수와 같은 차원의 벡터 표현일 뿐, 숫자들이 어떤 의미를 지니는지는 모름

 $ightharpoonup V^T$: 토픽-단어 행렬

-	과일이	길고	노란	먹고	바나나	사과	싶은	저는	좋아요
문서1	0	0	0	1	0	1	1	0	0
문서2	0	0	0	1	1	0	1	0	0
문서3	0	1	1	0	2	0	0	0	0
문서4	1	0	0	0	0	0	0	1	1

- $ightharpoonup V^T$ 의 열벡터들은 단어별 토픽 벡터.
 - ightharpoonup U에서와 마찬가지로, 토픽의 개수와 같은 차원으로(저차원) 압축된 표현

▶ truncated SVD를 이용한 LSA

```
[29] 1 U = U[:,:2]
     3 U. round(2)
    array([[-0.24, 0.75],
           [-0.51, 0.44],
           [-0.83, -0.49],
           [-0., -0.]
[30] 1 s = s[:2]
     2 S = np.diag(s)
     4 S. round(2)
    array([[2.69, 0. ],
           [0. , 2.05]])
[31] 1 VT = VT[:2,:]
     3 VT.round(2)
    array([-0., -0.31, -0.31, -0.28, -0.8, -0.09, -0.28, -0., -0.])
           [0., -0.24, -0.24, 0.58, -0.26, 0.37, 0.58, -0., -0.]])
[32] 1 A recon = U @ S @ VT
     3 np.abs(A recon.round(2))
    array([[0. , 0.17, 0.17, 1.08, 0.12, 0.62, 1.08, 0. , 0. ],
           [0. , 0.2 , 0.2 , 0.91, 0.86, 0.45, 0.91, 0. , 0. ],
           [0. , 0.93, 0.93, 0.03, 2.05, 0.17, 0.03, 0. , 0. ],
           [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]])
[33] 1 A
    array([[0, 0, 0, 1, 0, 1, 1, 0, 0],
           [0, 0, 0, 1, 1, 0, 1, 0, 0],
           [0, 1, 1, 0, 2, 0, 0, 0, 0],
           [1, 0, 0, 0, 0, 0, 0, 1, 1]])
```

Truncated SVD

▶ truncated SVD를 이용한 LSA

```
[29] 1 U = U[:,:2]
     2
     3 U. round(2)
    array([[-0.24, 0.75]
           [-0.51, 0.44]
            [-0.83, -0.49],
           [-0., -0.]
[30] 1 s = s[:2]
     2 S = np.diag(s)
     4 S. round(2)
    array([[2.69, 0. ],
           [0. , 2.05]])
[31] 1 \text{ VT} = \text{VT}[:2,:]
     3 VT. round(2)
    array([[-0., -0.31, -0.31, -0.28, -0.8], -0.09, -0.28, -0., -0.],
           [0., -0.24, -0.24, 0.58, -0.26] [0.37, 0.58, -0., -0.]])
```

-	과일이	길고	노란	먹고	바나나	사과	싶은	저는	좋아요
문서1	0	0	0	1	0	1	1	0	0
문서2	0	0	0	1	1	0	1	0	0
문서3	0	1	1	0	2	0	0	0	0
문서4	1	0	0	0	0	0	0	1	1

- ▶ 문서는 4개, 단어는 9개이지만 토픽은 2개
- ▶ 문서 표현 및 단어 표현이 2차원 벡터로 모두 압축된다
- ▶ 코사인 유사도로 문서/단어 비교 가능 + 추가 분석에 이용

▶ 질문 있으신가요?

```
[29] 1 U = U[:,:2]
     3 U.round(2)
    array([[-0.24, 0.75],
           [-0.51, 0.44],
           [-0.83, -0.49],
           [-0., -0.]
[30] 1 s = s[:2]
     2 S = np.diag(s)
     4 S. round(2)
    array([[2.69, 0. ],
           [0. , 2.05]])
[31] 1 VT = VT[:2,:]
     3 VT.round(2)
    array([[-0. , -0.31, -0.31, -0.28, -0.8]
                                            -0.09, -0.28, -0. , -0. ],
           [0., -0.24, -0.24, 0.58, -0.26] [0.37, 0.58, -0., -0.]])
```

Truncated SVD

-	과일이	길고	노란	먹고	바나나	사과	싶은	저는	좋아요
문서1	0	0	0	1	0	1	1	0	0
문서2	0	0	0	1	1	0	1	0	0
문서3	0	1	1	0	2	0	0	0	0
문서4	1	0	0	0	0	0	0	1	1

잠재 디리클레 할당 Latent Dirichlet Allocation

- ▶ LSA는 토픽모델링을 위한 기법이라기보다는 토픽을 고려한 문서 및 단어 표현 기법
 - ▶ 저차원 상의 벡터들의 의미를 해석하기 어려움

-	과일이	길고	노란	먹고	바나나	사과	싶은	저는	좋아요
문서1	0	0	0	1	0	1	1	0	0
문서2	0	0	0	1	1	0	1	0	0
문서3	0	1	1	0	2	0	0	0	0
문서4	1	0	0	0	0	0	0	1	1

각 원소는 문서별 단어 빈도수!

1번째 원소가 1번째 토픽에 대한 값 2번째 원소가 2번째 토픽에 대한 값 → 그래서 무슨 값인데?

▶ LDA는 토픽에 따라 다른 단어를 가진 문서가 생성되는 과정을 설명하는 확률 모델을 도입

LDA의 확률 모델

- ▶ 변수들 간의 상호 의존 관계를 표현한 확률 모델
- $\triangleright P(A, B, C)$

$$P(A = 0, B = 0, C = 0)$$

$$P(A = 0, B = 0, C = 1)$$

$$P(A = 0, B = 1, C = 0)$$

. .

$$P(A = 1, B = 1, C = 0)$$

$$P(A = 1, B = 1, C = 1)$$

A, B, C

- ▶ 변수들 간의 상호 의존 관계를 표현한 확률 모델
 - $ightharpoonup P(A,B,C) = P(A \mid C)P(C \mid B)P(B)$ (chain rule of probability)

$$B \xrightarrow{\mathsf{P}(\mathsf{B})} C \xrightarrow{\mathsf{P}(\mathsf{AIC})} A$$

- ▶ 변수들 간의 상호 의존 관계를 표현한 확률 모델
 - $\triangleright P(A, B, C) = P(A \mid C)P(C \mid B)P(B)$

$$B \to C \to A$$

Directed Graph

▶ 변수들 간의 상호 의존 관계를 표현한 확률 모델

$$P(A_1, A_2, \dots, A_N, B, C) = P(A_1 | C)P(A_2 | C) \dots P(A_N | C)P(C | B)P(B)$$

$$B \rightarrow C \rightarrow A_{n=1,2,...,N}$$

Graphical Model

▶ 변수들 간의 상호 의존 관계를 표현한 확률 모델

$$P(A_1, A_2, \dots, A_N, B, C) = P(A_1 | C)P(A_2 | C) \dots P(A_N | C)P(C | B)P(B)$$

Graphical Model

▶ 변수들 간의 상호 의존 관계를 표현한 확률 모델

$$P(A_1, A_2, \dots, A_N, B, C) = P(A_1 | C)P(A_2 | C) \dots P(A_N | C)P(C | B)P(B)$$

▶ LDA는 토픽에 따라 다른 **단어**를 가진 **문서**가 생성되는 과정을 설명하는 **그래피컬 모델**을 도입

▶ α , θ , Z: 문서 관련 변수

 $ightharpoonup eta, \phi$: 토픽 관련 변수

▶ *W* : 단어 변수

LDA의 그래피컬 모델

▶ LDA의 원리

▶ "나는 이 **문서**를 작성하기 위해서 이런 **토픽**들을 넣을거고, 이런 **토픽**들을 위해서는 이런 **단어**들을 넣을 거야"

▶ LDA의 원리

▶ "나는 이 **문서**를 작성하기 위해서 이런 **토픽**들을 넣을거고, 이런 **토픽**들을 위해서는 이런 **단어**들을 넣을 거야"

▶ LDA의 원리

▶ "나는 이 **문서**를 작성하기 위해서 이런 **토픽**들을 넣을거고, 이런 **토픽**들을 위해서는 이런 **단어**들을 넣을 거야"

▶ LDA의 원리

▶ "나는 이 **문서**를 작성하기 위해서 이런 **토픽**들을 넣을거고, 이런 **토픽**들을 위해서는 이런 **단어**들을 넣을 거야"

토픽_3 = 단어_1 30% + 단어_2 40% + 단어_3 10% + 단어_4 20%

문서 1 (토픽_1) --

▶ LDA의 원리

▶ "나는 이 **문서**를 작성하기 위해서 이런 **토픽**들을 넣을거고, 이런 **토픽**들을 위해서는 이런 **단어**들을 넣을 거야"

문서 1 단어_2 --

▶ LDA의 원리

▶ "나는 이 **문서**를 작성하기 위해서 이런 **토픽**들을 넣을거고, 이런 **토픽**들을 위해서는 이런 **단어**들을 넣을 거야"

토픽_3 = 단어_1 30% + 단어_2 40% + 단어_3 10% + 단어_4 20%

문서 1 단어_2 (토픽_2) -

▶ LDA의 원리

▶ "나는 이 **문서**를 작성하기 위해서 이런 **토픽**들을 넣을거고, 이런 **토픽**들을 위해서는 이런 **단어**들을 넣을 거야"

문서 1 단어_2 단어_4 -

▶ LDA의 원리

▶ "나는 이 **문서**를 작성하기 위해서 이런 **토픽**들을 넣을거고, 이런 **토픽**들을 위해서는 이런 **단어**들을 넣을 거야"

문서 1 단어_2 단어_4 (토픽_1)

▶ LDA의 원리

▶ "나는 이 **문서**를 작성하기 위해서 이런 **토픽**들을 넣을거고, 이런 **토픽**들을 위해서는 이런 **단어**들을 넣을 거야"

문서 1

단어_2 단어_4 단어_1

▶ LDA의 원리

 $lackbr{\triangleright}$ "나는 이 **문서** D 를 작성하기 위해서 이런 **토픽** T 들을 넣을거고, 이런 **토픽**들을 위해서는 이런 **단어** W들을 넣을 거야"

문서_1 = 토픽_1
$$P(T=1 | D=1)$$
 + 토픽_2 $P(T=2 | D=1)$ + ... + 토픽_K $P(T=K | D=1)$ 문서_2 = 토픽_1 $P(T=1 | D=2)$ + 토픽_2 $P(T=2 | D=2)$ + ... + 토픽_K $P(T=K | D=2)$... 문서_M = 토픽_1 $P(T=1 | D=M)$ + 토픽_2 $P(T=2 | D=M)$ + ... + 토픽_K $P(T=K | D=M)$

토픽_1 = 단어_1
$$P(W=1 \mid T=1)$$
 + 단어_2 $P(W=2 \mid T=1)$ + ... + 단어_N $P(W=N \mid T=1)$

토픽_2 = 단어_1
$$P(W=1 \mid T=2)$$
 + 단어_2 $P(W=2 \mid T=2)$ + ... + 단어_N $P(W=N \mid T=2)$

. . .

토픽_K = 단어_1
$$P(W = 1 \mid T = K)$$
 + 단어_2 $P(W = 2 \mid T = K)$ + ... + 단어_N $P(W = N \mid T = K)$

- ▶ LDA의 그래피컬 모델
 - ▶ 문서에서 토픽이 뽑히고, 해당하는 토픽의 단어 확률에 따라 단어가 뽑힌다.

 $ightharpoonup W_{d,n}$: 문서 d의 n번째 단어 ex) 문서3 의 2번째 단어가 BoW에서 5번째 단어라면, $W_{3,2}=5$

- $ightharpoonup W_{d,n}$: 문서 d의 n번째 단어
- $ightharpoonup Z_{d,n}$: 문서 d의 n번째 단어에 대한 토픽 ex) 문서3 의 2번째 단어가 1번째 토픽에서 왔다면, $Z_{3,2}=1$

- $ightharpoonup W_{d,n}$: 문서 d의 n번째 단어
- $ightharpoonup Z_{d,n}$: 문서 d의 n번째 단어에 대한 토픽
- ightharpoonup W는 관찰된 변수, Z는 잠재 변수

- $ightharpoonup \phi_k$: 토픽 k의 단어 확률을 벡터로 표현한 것.
 - ightharpoonup ex) 토픽 1 = 단어 1 20% + 단어 2 40% + 단어 3 40% 라면, $\phi_1 = (0.2, 0.4, 0.4)$

- $ightharpoonup heta_d$: 문서 d의 토픽 확률을 벡터로 표현한 것.
 - ▶ ex) 문서 2 = 토픽 1 70% + 토픽 2 30% 라면, $\theta_2 = (0.7,0.3)$

 $lackbox \phi_k$: 토픽 k의 단어 확률

 $lackbox{ } heta_d$: 문서 d의 토픽 확률

▶ LDA의 그래피컬 모델

 $ightharpoonup W_{2,3}$: 문서 2의 3번째 단어

- **▶** 문서 2 = 토픽 1 70% + 토픽 2 30%
 - $\bullet \theta_2 = (0.7, 0.3)$

- **▶** 문서 2 = 토픽 1 70% + 토픽 2 30%
 - $\triangleright \theta_2 = (0.7, 0.3)$
- ▶ 문서 2의 3번째 단어에 대한 토픽을 뽑는다.
 - $ightharpoonup Z_{2,3} \sim \text{Multinomial}(0.7,0.3) \to Z_{2,3} = 1$

- **▶** 문서 2 = 토픽 1 70% + 토픽 2 30%
 - $\triangleright \theta_2 = (0.7, 0.3)$
- ▶ 문서 2의 3번째 단어에 대한 토픽을 뽑는다.
 - ► $Z_{2,3}$ ~ Multinomial(0.7,0.3) → $Z_{2,3} = 1$

- **▶** 문서 2 = 토픽 1 70% + 토픽 2 30%
 - $\bullet \theta_2 = (0.7, 0.3)$
- ▶ 문서 2의 3번째 단어에 대한 토픽을 뽑는다.
 - $ightharpoonup Z_{2,3} \sim \text{Multinomial}(0.7,0.3) \to Z_{2,3} = 1$

- ▶ 토픽 1 = 단어 1 20% + 단어 2 40% + 단어 3 40%
 - $\blacktriangleright \phi_1 = (0.2, 0.4, 0.4)$
- ▶ 토픽 2 = 단어 1 60% + 단어 2 10% + 단어 3 30%

$$\blacktriangleright \phi_2 = (0.6, 0.1, 0.3)$$

- **▶** 문서 2 = 토픽 1 70% + 토픽 2 30%
 - $\bullet \theta_2 = (0.7, 0.3)$
- ▶ 문서 2의 3번째 단어에 대한 토픽을 뽑는다.
 - $ightharpoonup Z_{2,3} \sim \text{Multinomial}(0.7,0.3) \to Z_{2,3} = 1$

- ▶ 토픽 1 = 단어 1 20% + 단어 2 40% + 단어 3 40%
 - $\blacktriangleright \phi_1 = (0.2, 0.4, 0.4)$
- ▶ 토픽 2 = 단어 1 60% + 단어 2 10% + 단어 3 30%
 - $\blacktriangleright \phi_2 = (0.6, 0.1, 0.3)$

- lacktriangle 선택된 토픽 $Z_{2,3}=1$ 에 해당하는 토픽의 확률분포 $\phi_{Z_{2,3}}=\phi_1$ 에서 단어 $W_{2,3}$ 을 뽑는다.
 - $\blacktriangleright W_{2,3} \sim \text{Multinomial}(0.2,0.4,0.4) \rightarrow W_{2,3} = 3$

- ightharpoonup 뽑힌 토픽 $Z_{2,3}$ 에 해당하는 토픽의 확률분포 $\phi_{Z_{2,3}} = \phi_1$ 에서 단어 $W_{2,3}$ 을 뽑는다.
 - $ightharpoonup W_{2,3} \sim \text{Multinomial}(0.2,0.4,0.4) \rightarrow W_{2,3} = 3$
 - ▶ Bag-of-Words(BoW) 에서 3번째 단어를 가져온 것이 실제 문서2의 3번째로 생성된 단어가 된다.

-	과일이	길고	노란	먹고	바나나	사과	싶은	저는	좋아요
문서1	0	0	0	1	0	1	1	0	0
문서2	0	0	0	1	1	0	1	0	0
문서3	0	1	1	0	2	0	0	0	0
문서4	1	0	0	0	0	0	0	1	1

- ightharpoons 문서별 토픽 확률 $heta_d$
- ightharpoons 토픽별 단어 확률 ϕ_1,\ldots,ϕ_K
- ▶ 토픽 $Z_{d,n} \sim \text{Multinomial}(\theta_d)$
- ▶ 단어 $W_{d,n} \sim \text{Multinomial}(\phi_{Z_{d,n}})$

$$\theta \sim \text{Dirichlet}(\alpha)$$
 $\phi \sim \text{Dirichlet}(\beta)$

$$\phi \sim \text{Dirichlet}(\beta)$$

▶ 뉴스 헤드라인 데이터

```
[ ] 1 import pandas as pd
2 import urllib.request
3
4 urllib.request.urlretrieve("https://raw.githubusercontent.com/franciscadias/data/master/abcnews-date-text.csv", filename="abcnews-date-text.csv")
5 data = pd.read_csv('abcnews-date-text.csv', error_bad_lines=False)
```

	<pre>publish_date</pre>	headline_text
0	20030219	aba decides against community broadcasting lic
1	20030219	act fire witnesses must be aware of defamation
2	20030219	a g calls for infrastructure protection summit
3	20030219	air nz staff in aust strike for pay rise
4	20030219	air nz strike to affect australian travellers
[] 1 len(data)	
	1082168	

▶ 분석을 위해 제목만 뽑아낸 뒤, 텍스트 전처리를 수행합니다.

```
[ ] 1 text = data[["headline_text"]]

[ ] 1 text.head()

headline_text

0 aba decides against community broadcasting lic...

1 act fire witnesses must be aware of defamation
2 a g calls for infrastructure protection summit
3 air nz staff in aust strike for pay rise
4 air nz strike to affect australian travellers
```

- ▶ 불용어 제거 : 토픽 분석에 크게 도움이 되지 않는 against, be, of, a, in, to 등의 be 동사 및 전치사를 제거합니다.
- ▶ 표제어 추출: 3인칭 단수 표현을 1인칭으로 바꾸고, 과거 현재형 동사를 현재형으로 바꿉니다.
- ▶ 짧은 단어 제거 : 길이가 3 이하인 단어 제거
- ▶ 단어 토큰화: nltk.word_tokenize 를 이용해서 텍스트를 원핫벡터로 변환

▶ 전처리가 끝난 문서 단어 행렬로부터 TF-IDF 행렬을 준비합니다.

```
[ ] 1 from sklearn.feature_extraction.text import TfidfVectorizer
2
3 vectorizer = TfidfVectorizer(stop_words='english', max_features= 1000)
4 X = vectorizer.fit_transform(text['headline_text'])
5
6 X.shape
(1082168, 1000)
```

▶ sklearn.decomposition의 LatentDirichletAllocation 클래스로 LDA를 수행합니다.

- ▶ LDA 결과는 LatentDirichletAllocation 클래스의 components_ 인자를 통해 볼 수 있습니다.
 - ▶ components_는 각 토픽의 단어 확률을 보여줍니다.

▶ 각 토픽별로 큰 확률을 지닌 단어들을 보고, 어떤 토픽인지 유추할 수 있습니다.

▶ 마지막으로, 문서들이 어떤 토픽으로 이루어져 있는지를 확인함으로써 LDA가 완료됩니다.

```
[] 1 doc_components = lda_model.transform(X[:5])
2
3 def get_doc_topic(components, n=5):
4     for idx, doc in enumerate(components):
5         print("Doc %d:" % (idx+1), [[f"Topic {i}", doc[i].round(2)] for i in doc.argsort()[:-n - 1:-1]])
6
7 get_doc_topic(doc_components, 3)

Doc 1: [['Topic 1', 0.55], ['Topic 3', 0.05], ['Topic 9', 0.05]]
Doc 2: [['Topic 5', 0.55], ['Topic 3', 0.05], ['Topic 9', 0.05]]
Doc 3: [['Topic 4', 0.63], ['Topic 3', 0.04], ['Topic 9', 0.04]]
Doc 4: [['Topic 6', 0.54], ['Topic 9', 0.24], ['Topic 3', 0.03]]
Doc 5: [['Topic 9', 0.53], ['Topic 6', 0.2], ['Topic 3', 0.03]]
```

▶ gensim과 pyLDAvis.gensim을 이용하면 손쉽게 시각화도 가능합니다.

Wrap-Up

LSA

Truncated SVD를 이용하여

DTM, TF-IDF를 저차원의 벡터들로 분해함

U의 행벡터는 문서 표현

VT의 열벡터는 단어 표현

S의 대각값은 토픽의 중요도

상대적 비교는 가능하나 절대적인 의미는 없음

문서별 단어 빈도를 단순히 분석하기만 했음

LDA

확률 모델을 이용하여

"문서 -> 토픽 -> 단어" 가정

문서별 토픽 확률

토픽별 단어 확률

결과들이 곧바로 확률을 의미

단어의 생성 과정을 reverse-engineering