수학영역 미적분

이책의차례 Contents

	단원	쪽수
01	수열의 극한	4
02	급수	16
03	여러 가지 함수의 미분	28
04	여러 가지 미분법	44
05	도함수의 활용	60
06	여러 가지 적분법	76
07	정적분의 활용	88

이책의구성과특징 Structure

• 개념 정리

1. 수열의 수렴과 발산 (1) 수염의 수렴 수염 [a_x]에서 n의 값이 한없이 커진 데, a_x의 값이 일정한 수 a에 한없이 가까워지면 수염 [a_x]은 a에 수염 한다고 하고 이것은 기호로 와 같이 나타낸다. 이때 a를 수열 (a,)의 극한값 또는 극한이라 한다. #2 | lim a, =a는 n의 값이 한없이 거칠 때 a,의 값이 a와 갑겨나 a에 한없이 가까워진다는 것이다. 예 ① 수염 $\left\{\frac{1}{n}\right\}$ 의 일반응은 $\frac{1}{n}$ 이고 n의 값이 한없이 커질 때 $\frac{1}{n}$ 의 값은 0에 한없이 가까워진다. 따라서 수염 $\left\{\frac{1}{n}\right\}$ 은 0에 수립한다. 즉, $\lim_{n\to\infty} \frac{1}{n} = 0$ 이다. ② 수열 (3)의 일반항은 3이고 #의 값이 한없이 커질 때 각 항의 값은 항상 3이다. 따라서 수열 (3)은 3에 수렴한 다. 즉, [im 3=3이다. (2) 수열의 발산 하고, 이것을 기호로 다음과 같이 나타낸다. $\lim a_n = \infty$ 또는 $n \rightarrow \infty$ 일 때 $a_n \rightarrow \infty$ $a_n = a_n = a_n$ (② 수열 $\{a_n\}$ 에서 n의 값이 한없이 켜질 때. a_n 의 값이 음수이면서 그 절댓값이 한없이 켜지면 수열 $\{a_n\}$ 은 음의 무한대로 발산한다고 하고 이것을 기호로 다음과 같이 나타낸다 ∞ 또는 $n \rightarrow \infty$ 일 때 $a_n \rightarrow -\infty$ ③ 수열 $\{a_n\}$ 에서 n의 값이 한없이 켜질 때. a_n 의 값이 일정한 수에 수렴하지도 않고 양의 무한대나 음의 무 한대로 발산하지도 않으면 수열 $\{a_a\}$ 은 진동한다고 한다.

교과서의 핵심 내용을 체계적으로 정리하였다.

EBS

• Level 1-Level 2-Level 3

Level 1 기초 연습은 기초 개념의 인지 정도를 확인할 수 있는 문항을 제시하였으며, Level 2 기본 연습은 기본 응용 문항을, 그리고 Level 3 실력 완성은 수학적 사고력과 문제 해결 능력을 함양할 수 있는 문항을 제시하여 대학수학능력시험 실전에 대비할 수 있도록 구성하였다.

• 예제 & 유제

예제는 개념을 적용한 대표 문항으로 문제를 해결하는 데 필요한 주요 개념을 풀이 전략으로 제시하여 풀이 과정의 이해를 돕도록 하였고, 유제는 예제와 유사한 내용의 문 제나 <mark>일반화된 문제를 제시</mark>하여 학습 내용과 문제에 대한 연관성을 익히도록 구성하였다.

• 대표 기출 문제

대학수학능력시험과 모의평가 기출 문항으로 구성하였으며 기존 출제 유형을 파악할 수 있도록 출제 경향과 출제 의도를 제시하였다.

01 수열의 극한

1. 수열의 수렴과 발산

(1) 수열의 수렴

수열 $\{a_n\}$ 에서 n의 값이 한없이 커질 때, a_n 의 값이 일정한 수 α 에 한없이 가까워지면 수열 $\{a_n\}$ 은 α 에 수렴 한다고 하고. 이것을 기호로

$$\lim a_n = \alpha$$
 또는 $n \to \infty$ 일 때 $a_n \to \alpha$

와 같이 나타낸다. 이때 α 를 수열 $\{a_n\}$ 의 극한값 또는 극한이라 한다.

참고 $\lim a_n = \alpha$ 는 n의 값이 한없이 커질 때 a_n 의 값이 α 와 같거나 α 에 한없이 가까워진다는 것이다.

- 예 ① 수열 $\left\{\frac{1}{n}\right\}$ 의 일반항은 $\frac{1}{n}$ 이고 n의 값이 한없이 커질 때 $\frac{1}{n}$ 의 값은 0에 한없이 가까워진다. 따라서 수열 $\left\{\frac{1}{n}\right\}$ 은 0에 수렴한다. 즉, $\lim_{n \to \infty} \frac{1}{n} = 0$ 이다.
 - ② 수열 {3}의 일반항은 3이고 n의 값이 한없이 커질 때 각 항의 값은 항상 3이다. 따라서 수열 {3}은 3에 수렴한 다. 즉, lim 3=3이다.

(2) 수열의 발산

수열 $\{a_n\}$ 이 수렴하지 않으면 수열 $\{a_n\}$ 은 발산한다고 한다. 다음은 수열 $\{a_n\}$ 이 발산하는 경우이다.

① 수열 $\{a_n\}$ 에서 n의 값이 한없이 커질 때, a_n 의 값이 한없이 커지면 수열 $\{a_n\}$ 은 양의 무한대로 발산한다고 하고, 이것을 기호로 다음과 같이 나타낸다.

$$\lim a_n = \infty$$
 또는 $n \to \infty$ 일 때 $a_n \to \infty$

② 수열 $\{a_n\}$ 에서 n의 값이 한없이 커질 때, a_n 의 값이 음수이면서 그 절댓값이 한없이 커지면 수열 $\{a_n\}$ 은 음의 무한대로 발산한다고 하고, 이것을 기호로 다음과 같이 나타낸다.

$$\lim a_n = -\infty$$
 또는 $n \to \infty$ 일 때 $a_n \to -\infty$

③ 수열 $\{a_n\}$ 에서 n의 값이 한없이 커질 때, a_n 의 값이 일정한 수에 수렴하지도 않고 양의 무한대나 음의 무 한대로 발산하지도 않으면 수열 $\{a_n\}$ 은 진동한다고 한다.

2. 수열의 극한에 대한 기본 성질

두 수열 $\{a_n\}$, $\{b_n\}$ 에 대하여 $\lim a_n = \alpha$, $\lim b_n = \beta (\alpha, \beta)$ 는 상수)일 때

(1)
$$\lim_{n \to \infty} ca_n = c \lim_{n \to \infty} a_n = ca$$
 (단, c는 상수)

(2)
$$\lim_{n \to \infty} (a_n + b_n) = \lim_{n \to \infty} a_n + \lim_{n \to \infty} b_n = \alpha + \beta$$

(3)
$$\lim_{n \to \infty} (a_n - b_n) = \lim_{n \to \infty} a_n - \lim_{n \to \infty} b_n = \alpha - \beta$$
 (4)
$$\lim_{n \to \infty} a_n b_n = \lim_{n \to \infty} a_n \times \lim_{n \to \infty} b_n = \alpha \beta$$

$$(4) \lim a_n b_n = \lim a_n \times \lim b_n = \alpha \beta$$

$$\lim_{n\to\infty}\frac{a_n}{b_n}\!=\!\frac{\lim_{n\to\infty}a_n}{\lim b_n}\!=\!\frac{\alpha}{\beta}\,(\text{ 단, 모든 자연수 }n\text{에 대하여 }b_n\!\neq\!0,\,\beta\!\neq\!0)$$

예 두 수열 $\{a_n\}$, $\{b_n\}$ 에 대하여 $\lim a_n=2$, $\lim b_n=3$ 일 때

$$\lim_{n\to\infty} 4a_n = 4 \times 2 = 8$$
, $\lim_{n\to\infty} (a_n + b_n) = 2 + 3 = 5$, $\lim_{n\to\infty} a_n b_n = 2 \times 3 = 6$, $\lim_{n\to\infty} \frac{a_n}{b_n} = \frac{2}{3}$ (단, $b_n \neq 0$)

예제 1 수열의 극한에 대한 기본 성질

www.ebsi.co.kr

두 수열 $\{a_n\}$, $\{b_n\}$ 에 대하여 $\lim_{n\to\infty}(2a_n-3)=7$, $\lim_{n\to\infty}(a_n+4b_n)=-5$ 일 때, $\lim_{n\to\infty}(1-2b_n)$ 의 값은?

- 1)6
- 27
- **4** 9
- ⑤ 10

풀이 전략

수열의 극한에 대한 기본 성질을 이용하여 $\lim a_n$, $\lim b_n$ 의 값을 차례로 구한다.

풀이

 $\lim (2a_n - 3) = 7$ 이므로

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{1}{2} \{ (2a_n - 3) + 3 \} = \frac{1}{2} \{ \lim_{n \to \infty} (2a_n - 3) + \lim_{n \to \infty} 3 \}$$
$$= \frac{1}{2} (7 + 3) = 5$$

$$\lim (a_n+4b_n)=-5$$
이므로

$$\lim_{n \to \infty} b_n = \lim_{n \to \infty} \frac{1}{4} \{ (a_n + 4b_n) - a_n \} = \frac{1}{4} \left[\lim_{n \to \infty} (a_n + 4b_n) - \lim_{n \to \infty} a_n \right]$$

$$= \frac{1}{4} (-5 - 5) = -\frac{5}{2}$$

따라서

$$\lim_{n \to \infty} (1 - 2b_n) = \lim_{n \to \infty} 1 - 2\lim_{n \to \infty} b_n = 1 - 2 \times \left(-\frac{5}{2} \right) = 6$$

1

수열 $\{a_n\}$ 에 대하여 $\lim_{n\to\infty} \frac{3}{2a_n+1} =$ 2일 때, $\lim_{n\to\infty} a_n(4a_n+k) =$ 1을 만족시키는 상수 k의 값은?

[22011-0001]

(단, 모든 자연수 n에 대하여 $2a_n+1\neq 0$ 이다.)

- $\bigcirc 1 3$ $\bigcirc 2 1$
- ③ 1
- **4** 3
- (5) **5**

[22011-0002]

두 수열 $\{a_n\}$, $\{b_n\}$ 에 대하여 $\lim_{n\to\infty}\frac{b_n}{a_n+b_n}=-1$, $\lim_{n\to\infty}(a_n-b_n)=\frac{9}{4}$ 일 때, $\lim_{n\to\infty}a_n$ 의 값은?

(단, 모든 자연수 n에 대하여 $a_n + b_n \neq 0$, $a_n - b_n \neq 0$ 이다.)

- $1 \frac{1}{2}$
- 2 1
- $3\frac{3}{2}$
- 4 2

01 수열의 극한

3. 수열의 극한값의 계산

두 수열 $\{a_n\}$, $\{b_n\}$ 에 대하여 일반항 a_n , b_n 이 각각 n에 대한 일차 이상의 다항식일 때

- $\lim_{n \to \infty} \frac{a_n}{b_n}$ 의 값은 다음과 같이 구할 수 있다. (단, 모든 <mark>자연</mark>수 n에 대하여 $b_n \neq 0$ 이다.)
 - ① $(a_n$ 의 차수) $>(b_n$ 의 차수)이면 $\lim_{n\to\infty}\frac{a_n}{b_n}=\infty$ 또는 $\lim_{n\to\infty}\frac{a_n}{b_n}=-\infty$
 - ② $(a_n$ 의 차수) $<(b_n$ 의 차수)이면 $\lim_{n\to\infty}\frac{a_n}{b_n}=0$
 - ③ $(a_n$ 의 차수)= $(b_n$ 의 차수)=p(p는 자연수)이면 $\frac{a_n}{b_n}$ 의 분모, 분자를 n^b 으로 나누고 수열의 극한에 대한 기본 성질을 이용하여 구하면 편리하다.

$$\lim_{n \to \infty} \frac{2n+3}{3n-1} = \lim_{n \to \infty} \frac{2+\frac{3}{n}}{3-\frac{1}{n}} = \frac{\lim_{n \to \infty} \left(2+\frac{3}{n}\right)}{\lim_{n \to \infty} \left(3-\frac{1}{n}\right)} = \frac{\lim_{n \to \infty} 2+\lim_{n \to \infty} \frac{3}{n}}{\lim_{n \to \infty} 3-\lim_{n \to \infty} \frac{1}{n}} = \frac{2+0}{3-0} = \frac{2}{3}$$

참고 세 수열 $\{a_n\}$, $\{b_n\}$, $\{c_n\}$ 의 일반항이 n에 대한 다항식이고, $(a_n$ 의 차수)= $(b_n$ 이 차수)= $(b_n$ 이 차수)= $(b_n$ 이 차수)= $(b_n$ 이 $(c_n$ 의 차수)= $p^2(p$ 는 자연수)일 때, $\lim_{n\to\infty}\frac{a_n}{b_n+\sqrt{c_n}}$ 의 값은 $\frac{a_n}{b_n+\sqrt{c_n}}$ 의 분모, 분자를 n^p 으로 나누어 구하면

- (2) $\lim (\sqrt{a_n} \sqrt{b_n})$ 의 값은 다음과 같이 구할 수 있다.
 - ① $(a_n$ 의 차수) $\neq (b_n$ 의 차수)이면 $\lim (\sqrt{a_n} \sqrt{b_n}) = \infty$ 또는 $\lim (\sqrt{a_n} \sqrt{b_n}) = -\infty$
 - ② $(a_n$ 의 차수)= $(b_n$ 의 차수)이면 $\sqrt{a_n} \sqrt{b_n} = \frac{a_n b_n}{\sqrt{a_n} + \sqrt{b_n}}$ 으로 변형하고 (1)의 방법을 이용하여 구하면 편리하다.

$$\lim_{n \to \infty} (\sqrt{n^2 + n} - n) = \lim_{n \to \infty} \frac{(\sqrt{n^2 + n} - n)(\sqrt{n^2 + n} + n)}{\sqrt{n^2 + n} + n} = \lim_{n \to \infty} \frac{n}{\sqrt{n^2 + n} + n} = \lim_{n \to \infty} \frac{1}{\sqrt{1 + \frac{1}{n}} + 1} = \frac{1}{1 + 1} = \frac{1}{2}$$

참고 두 수열 $\{a_n\}$, $\{b_n\}$ 에 대하여 $\lim_{n\to\infty}a_n=\infty$, $\lim_{n\to\infty}b_n=\infty$ 이고 두 수열 $\left\{\frac{a_n}{b_n}\right\}$, $\{a_n-b_n\}$ 이 수렴할 때, 두 수열 $\left\{\frac{a_n}{b_n}\right\}$, $\{a_n - b_n\}$ 의 극한값은 주어진 식을 수열의 극한에 대한 기본 성질을 이용할 수 있도록 변형하여 구하면 편리하다.

4. 수열의 극한의 대소 관계

두 수열 $\{a_n\}$, $\{b_n\}$ 에 대하여 $\lim a_n=\alpha$, $\lim b_n=\beta$ (α,β) 는 상수)일 때

- (1) 모든 자연수 n에 대하여 $a_n \le b_n$ 이면 $\alpha \le \beta$ 이다.
- (2) 수열 $\{c_n\}$ 이 모든 자연수 n에 대하여 $a_n \le c_n \le b_n$ 을 만족시키고 $\alpha = \beta$ 이면 $\lim c_n = \alpha$ 이다.
 - 예 수열 $\{c_n\}$ 이 모든 자연수 n에 대하여 $\frac{1}{n+1} \le c_n \le \frac{1}{n}$ 을 만족시키면 $\lim_{n\to\infty} \frac{1}{n+1} = 0$, $\lim_{n\to\infty} \frac{1}{n} = 0$ 이므로 $\lim c_n = 0$ 이다.

예제 2 수열의 극한값의 계산

www.ebsi.co.kr

수열 $\{a_n\}$ 이 모든 자연수 n에 대하여 부등식

$$\frac{3n-1}{2n+3} < \frac{a_n}{n} < \sqrt{n^2 + 3n} - n$$

을 만족시킬 때, $\lim_{n\to\infty} \frac{2a_n + n + 4}{3n + 1}$ 의 값은?

- ① $\frac{2}{3}$ ② $\frac{5}{6}$ ③ 1
- $4\frac{7}{6}$
- $\bigcirc \frac{4}{3}$

풀이 전략

세 수열 $\{a_n\}$, $\{b_n\}$, $\{c_n\}$ 이 모든 자연수 n에 대하여 $a_n < c_n < b_n$ 을 만족시킬 때, $\lim a_n = \lim b_n = \alpha$ (α 는 상수)이면 $\lim c_n = \alpha$ 이다.

$$\lim_{n \to \infty} \frac{3n-1}{2n+3} = \lim_{n \to \infty} \frac{3-\frac{1}{n}}{2+\frac{3}{n}} = \frac{3-0}{2+0} = \frac{3}{2}$$

$$\lim_{n \to \infty} \left(\sqrt{n^2 + 3n} - n \right) = \lim_{n \to \infty} \frac{\left(\sqrt{n^2 + 3n} - n \right) \left(\sqrt{n^2 + 3n} + n \right)}{\sqrt{n^2 + 3n} + n} = \lim_{n \to \infty} \frac{3n}{\sqrt{n^2 + 3n} + n}$$

$$= \lim_{n \to \infty} \frac{3}{\sqrt{1 + \frac{3}{n}} + 1} = \frac{3}{1 + 1} = \frac{3}{2}$$

이므로 수열의 극한의 대소 관계에 의하여 $\lim_{n \to \infty} \frac{a_n}{n} = \frac{3}{2}$ 이다.

따라서

$$\lim_{n \to \infty} \frac{2a_n + n + 4}{3n + 1} = \lim_{n \to \infty} \frac{2 \times \frac{a_n}{n} + 1 + \frac{4}{n}}{3 + \frac{1}{n}} = \frac{2 \times \frac{3}{2} + 1 + 0}{3 + 0} = \frac{4}{3}$$

3 5

유제

정답과 풀이 4쪽

$$\lim_{n\to\infty} \frac{an}{bn+3} = \frac{1}{2}$$
, $\lim_{n\to\infty} \frac{(a+b)n^2+3n}{n^2+1} = 2$ 일 때, ab 의 값은? (단, a , b 는 상수이고, $b>0$ 이다.)

[22011-0003]

$$1\frac{2}{9}$$

$$2\frac{4}{9}$$

$$3\frac{2}{3}$$

$$4\frac{8}{9}$$

$$\bigcirc \frac{10}{9}$$

$$\lim_{n\to\infty} \frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n+2}-\sqrt{n}}$$
의 값은?

②
$$\frac{1}{2}$$

$$2\frac{1}{2}$$
 $3\frac{\sqrt{2}}{2}$

$$\bigcirc$$
 $\sqrt{2}$

01 수열의 극한

5. 등비수열의 극한

등비수열 $\{\gamma^n\}$ 의 수렴과 발산은 공비 γ 의 값의 범위에 따라 다음과 같다.

- (1) *r*>1일 때, lim *r*ⁿ=∞ (발산)
- (2) r=1일 때, $\lim_{n \to \infty} r^n = 1$ (수렴)
- (3) -1 < r < 1일 때, $\lim r^n = 0$ (수렴)
- (4) $r \le -1$ 일 때, 수열 $\{r^n\}$ 은 진동한다. (발산)
- 설명 (1) r > 1 일 때

r=1+h (h>0)으로 놓으면 모든 자연수 n에 대하여 $r^n = (1+h)^n \ge 1+nh$ 이때 $\lim_{n \to \infty} (1+nh) = \infty$ 이므로 $\lim_{n \to \infty} r^n = \infty$

- (2) r = 1 일 때수열 $\{r^n\}$ 의 모든 항이 1이므로 $\lim r^n=1$
- (3) -1< r< 1일 때

 - \mathbb{Q} $r \neq 0$ 이면 $\frac{1}{|r|} > 1$ 이므로 (1)에 의하여 $\lim_{n \to \infty} \frac{1}{|r^n|} = \lim_{n \to \infty} \left(\frac{1}{|r|}\right)^n = \infty$ 따라서 $\lim_{n\to\infty} |r^n| = \lim_{n\to\infty} \frac{1}{\frac{1}{1+\frac{n}{1+1}}} = 0$ 이므로 $\lim_{n\to\infty} r^n = 0$
- (4) r≤-1일 때
 - \bigcirc r=-1이면 수열 $\{r^n\}$ 은 -1, 1, -1, 1, …이므로 진동한다.
 - \bigcirc r<-1이면 |r|>1이므로 (1)에 의하여 $\lim |r''|=\lim (\,|r|\,)^n=\infty$ 이고, n의 값이 한없이 커질 때 r''의 부호가 교대로 바뀌므로 수열 $\{r^n\}$ 은 진동한다.
- **참고** ① h > 0일 때, 모든 자연수 n에 대하여 $(1+h)^n \ge 1 + nh$ 임은 수학적 귀납법으로 보일 수 있다.
 - ② 모든 자연수 n에 대하여 $a_n > 0$ 일 때, $\lim_{n \to \infty} \frac{1}{a_n} = \infty$ 이면 $\lim_{n \to \infty} a_n = 0$ 이다.
 - ③ $\lim_{n \to \infty} |a_n| = 0$ 이면 $\lim_{n \to \infty} a_n = 0$ 이다.
 - ④ 등비수열 $\{r^n\}$ 이 수렴하기 위한 필요충분조건은 $-1 < r \le 1$ 이다.
 - (5) γ^n 을 포함한 수열의 극한은 γ 의 값의 범위를 |r| > 1, |r| < 1, r = 1, r = -1인 경우로 나누어 구하면 편리하다.
- 예 (1) 수열 $\{2^n\}$ 은 공비가 2인 등비수열이고 2>1이므로 $\lim 2^n=\infty$
 - (2) 수열 $\left\{ \left(\frac{2}{3}\right)^n \right\}$ 은 공비가 $\frac{2}{3}$ 인 등비수열이고 $-1 < \frac{2}{3} < 1$ 이므로 $\lim_{n \to \infty} \left(\frac{2}{3}\right)^n = 0$
 - (3) 수열 $\{(-2)^n\}$ 은 공비가 -2인 등비수열이고 -2 < -1이므로 수열 $\{(-2)^n\}$ 은 진동한다.

예제 3 등비수열의 극한

www.ebsi.co.kr

첫째항이 3이고 공비가 2인 등비수열 $\{a_n\}$ 에 대하여 $\sum\limits_{k=1}^n a_{2k} = T_n$ 이라 할 때, $\lim\limits_{n \to \infty} \frac{T_n}{2^n a_n + 3^n}$ 의 값은?

 $2\frac{2}{3}$

3 1

 $4\frac{4}{3}$

 $(5) \frac{5}{3}$

등비수열 $\{r^n\}$ 의 수렴과 발산은 공비 r의 값의 범위에 따라 다음과 같다.

(1) r > 1일 때, $\lim r^n = \infty$ (발산)

(2) r=1일 때, $\lim r^n=1$ (수렴)

(3) -1 < r < 1일 때, $\lim r^n = 0$ (수렴)

(4) $r \le -1$ 일 때, 수열 $\{r^n\}$ 은 진동한다. (발산)

풀이

등비수열 $\{a_n\}$ 의 첫째항이 3이고 공비가 2이므로

$$a_n = 3 \times 2^{n-1}$$

수열 $\{a_{2n}\}$ 은 첫째항이 $a_2=3\times 2=6$, 공비가 $2^2=4$ 인 등비수열이므로

$$T_n = a_2 + a_4 + a_6 + \dots + a_{2n} = \frac{6(4^n - 1)}{4 - 1} = 2(4^n - 1)$$

$$\lim_{n \to \infty} \frac{T_n}{2^n a_n + 3^n} = \lim_{n \to \infty} \frac{2 \times 4^n - 2}{2^n \times 3 \times 2^{n-1} + 3^n}$$

4

정답과 풀이 4쪽

 $\lim_{n\to\infty} \frac{a\times 3^{n+1}+4^{-n}}{3^{n-1}+(-2)^n} = \frac{3}{4}$ 일 때, 상수 a의 값은?

[22011-0005]

① $\frac{1}{12}$ ② $\frac{1}{6}$ ③ $\frac{1}{4}$

6

자연수 n에 대하여 좌표평면 위의 점 A_n 의 좌표를 $(2^n, 3^{n-1})$ 이라 하고, 두 점 O, A_n 사이의 거리를 a_n , 두 점 A_n , A_{n+1} 사이의 거리를 b_n 이라 하자. $\lim_{n\to\infty} \left(\frac{b_n}{a_n}\right)^2$ 의 값은? (단, O는 원점이다.)

[22011-0006]

1 1

② 2

③ 3

4

(5) **5**

[22011-0007]

- 수열 $\{a_n\}$ 에 대하여 $\lim_{n\to\infty}(3a_n-2)=4$ 일 때, $\lim_{n\to\infty}a_n(a_n+2)$ 의 값은?
 - ① 4
- 28
- ③ 12
- **4** 16
- \bigcirc 20

[22011-0008]

두 수열 $\{a_n\}$, $\{b_n\}$ 에 대하여 $\lim_{n\to\infty}(a_n+b_n)=4$, $\lim_{n\to\infty}a_nb_n=-2$ 일 때, $\lim_{n\to\infty}\left(\frac{b_n}{a_n}+\frac{a_n}{b_n}\right)$ 의 값은?

(단, 모든 자연수 n에 대하여 $a_nb_n \neq 0$ 이다.)

- ① -2
- (2) -4
- $^{\odot}$ -6
- (4) -8

- ① 0
- ② $\frac{1}{5}$
- $3\frac{2}{5}$
- $4\frac{3}{5}$

[22011-0011]

$\lim_{n\to\infty} \frac{an}{2n+5} = \frac{3}{8}$, $\lim_{n\to\infty} \frac{b\times 3^{n+1}}{3^n+2^n} = \frac{3}{4}$ 일 때, a+b의 값은? (단, a, b는 상수이다.) 5

 $\textcircled{1} \frac{1}{2}$

② $\frac{3}{4}$

[22011-0012]

6 수열 $\{a_n\}$ 이 모든 자연수 n에 대하여 부등식

$$n+2 < a_n < n+3$$

을 만족시킬 때, $\lim_{n \to \infty} \frac{a_n a_{n+1}}{(2n-1)(2n+1)}$ 의 값은?

- ① $\frac{1}{2}$ ② $\frac{1}{4}$
- $4\frac{1}{8}$
- $(5) \frac{1}{10}$

- ① 1
- $2\frac{1}{3}$ $3\frac{1}{6}$
- $4\frac{1}{9}$
- $(5) \frac{1}{12}$

- ① 3
- 2 4
- 3 5
- **4** 6
- **⑤** 7

[22011-0015]

- 자연수 p에 대하여 수열 $\{a_n\}$ 의 일반항이 $a_n = n^{p-10} \Big(n^2 + \frac{1}{n}\Big)^2$ 일 때, 수열 $\{a_n\}$ 이 수렴하도록 하는 모든 p의 값의 합은?
 - ① 16

4 31 ⑤ 36

[22011-0016]

수열 $\{a_n\}$ 에 대하여 $\lim_{n\to\infty}\frac{3-a_n}{a_n+2}=\frac{2}{3}$ 일 때, $\lim_{n\to\infty}(a_n+2)(3-a_n)$ 의 값은?

(단, 모든 자연수 n에 대하여 $a_n+2\neq 0$ 이다.)

- ① 3
- (2)6
- ③9
- **4** 12
- (5) 15

두 수열 $\{a_n\}$, $\{b_n\}$ 에 대하여 $\lim_{n\to\infty} n(a_n+b_n)=3$, $\lim_{n\to\infty} (2n+1)b_n=8$ 일 때, $\lim_{n\to\infty} (4n-1)a_n$ 의 값은?

- $\bigcirc -4$
- ③ 0
- **4** 2

[22011-0018]

- 수렴하는 수열 $\{a_n\}$ 이 있다. 수직선 위의 두 점 $\mathbf{A}_n(2a_n)$, $\mathbf{B}_n(3a_{n+1})$ 에 대하여 선분 $\mathbf{A}_n\mathbf{B}_n$ 을 3:1로 외분하 는 점을 $C_n(x_n)$ 이라 하자. $\lim_{n\to\infty} x_n = \frac{7}{8}$ 일 때, $\lim_{n\to\infty} a_n$ 의 값은? (단, 모든 자연수 n에 대하여 $2a_n \neq 3a_{n+1}$ 이다.)

[22011-0019]

- $\lim_{n\to\infty} \left(\sqrt{n^2+2n}+\sqrt{4n^2+an}-3n\right)=\frac{7}{6}$ 일 때, 상수 a의 값은? 5
 - $1\frac{1}{6}$
- $2\frac{1}{3}$ $3\frac{1}{2}$
- $(5) \frac{5}{6}$

6 첫째항이 1이고 공차가 0이 아닌 등차수열 $\{a_n\}$ 의 첫째항부터 제n항까지의 합을 S_n 이라 하자.

$$\lim_{n\to\infty} \frac{S_n}{a_{n+1}a_{2n+1}} = \frac{1}{2}$$
일 때, a_5 의 값은?

- ① 3
- 2 5
- ③ 7
- (4) 9
- ⑤ 11

7 두 양수 r, s에 대하여 $\lim_{n\to\infty}\frac{3^n\times r^{n+1}}{2^n+1}=\frac{2}{3}$, $\lim_{n\to\infty}(r^n+s^n)=1$ 일 때, r+s의 값은?

[22011-0022]

첫째항이 $\frac{1}{4}$ 이고 공비가 $\frac{1}{2}$ 인 등비수열 $\{a_n\}$ 의 첫째항부터 제n항까지의 합을 S_n 이라 할 때, 수열 $\{b_n\}$ 이 모 8 든 자연수 n에 대하여 부등식

$$b_n < \frac{3^n + 6^{n+k}}{20 \times 4^n + 8 \times 6^n} < S_n$$

을 만족시킨다. $\lim_{n\to\infty} b_n = \frac{1}{2}$ 일 때, 상수 k의 값은?

- $\bigcirc \log_6 2$
- $\log_6 \frac{5}{2}$
- $3 \log_6 3$
- $4 \log_6 \frac{7}{2}$
- ⑤ 2 log₆ 2

[22011-0023]

f(0)=0인 이차함수 f(x)와 자연수 n에 대하여 $a_n=f(2n)$, $b_n=n^3f\left(\frac{1}{n}\right)$ 이라 하자. $\lim_{n\to\infty}\frac{a_n+b_n}{7n+4}=2$ 일 때, f(1)의 값은?

4 8 ⑤ 10

[22011-0024]

양의 실수 b가 다음 조건을 만족시킨다.

$$(7) \lim_{n \to \infty} p^n = 0$$

$$\text{(L+)} \lim_{n \to \infty} \frac{p^n + 4(1-p)^{n+1} + \left(\frac{1}{4}\right)^n}{2p^{n+1} + 5(1-p)^n + \left(\frac{1}{2}\right)^n} = \frac{2}{3}$$

모든 p의 값의 합은?

①
$$\frac{7}{12}$$

$$2\frac{3}{4}$$

$$3\frac{11}{12}$$

$$4\frac{13}{12}$$

[22011-0025]

3 그림과 같이 n이 자연수일 때 길이가 2n인 선분 A_nB_n 을 지름으로 하는 원 위의 한 점 C_n 에 대하여 $\overline{B_nC_n} = \sqrt{3n-1}$ 이다. 점 C_n 에서 선분 A_nB_n 에 내린 수선의 발을 H_n 이라 하고, 점 A_n 이 중심이고 점 C_n 을 지나는 원이 선분 A_nB_n 과 만나는 점을 D_n 이라 할 때, $\lim_{n\to\infty}(\overline{B_nD_n} imes\overline{B_nH_n})=rac{q}{p}$ 이다. p+q의 값을 구하시오. (단, p와 q는 서로소인 자연수이다.)

대표 기출 문제

기본적인 수열의 극한값을 구하는 계산 문제, 수열의 극한에 대한 기본 성질과 대소 관계를 이용하여 수열의 극한값 을 구하는 문제, 주어진 그래프나 도형으로부터 수열의 일반항을 구하여 극한값을 구하는 문제 등이 출제되고 있다.

모든 항이 양수인 수열 $\{a_n\}$ 이 모든 자연수 n에 대하여 부등식

$$\sqrt{9n^2+4} < \sqrt{na_n} < 3n+2$$

를 만족시킬 때, $\lim_{n\to\infty}\frac{a_n}{n}$ 의 값은? [3점]

- 1)6
- (2) 7
- ③ 8
- (4) 9
- (5) 10

2020학년도 대수능 9월 모의평가

(출제 의도) 수열의 극한의 대소 관계를 이용하여 수열의 극한값을 구할 수 있는지를 묻는 문제이다.

풀이 수열 $\{a_n\}$ 이 모든 자연수 n에 대하여 부등식

$$\sqrt{9n^2+4} < \sqrt{na_n} < 3n+2$$

를 만족시키므로

$$9n^2+4 < na_n < (3n+2)^2$$

 $n^2 > 0$ 이므로 부등식의 각 변을 n^2 으로 나누면

$$\frac{9n^2+4}{n^2} < \frac{a_n}{n} < \frac{9n^2+12n+4}{n^2}$$

이때

$$\lim_{n \to \infty} \frac{9n^2 + 4}{n^2} = \lim_{n \to \infty} \left(9 + \frac{4}{n^2}\right) = 9 + 0 = 9$$

$$\lim_{n \to \infty} \frac{9n^2 + 12n + 4}{n^2} = \lim_{n \to \infty} \left(9 + \frac{12}{n} + \frac{4}{n^2}\right) = 9 + 0 + 0 = 9$$

이므로 수열의 극한의 대소 관계에 의하여

$$\lim_{n\to\infty}\frac{a_n}{n}=9$$

(4)

02 급수

1. 급수의 뜻

수열 $\{a_n\}$ 의 각 항을 차례로 덧셈 기호 +로 연결한 식

$$a_1 + a_2 + a_3 + \cdots + a_n + \cdots$$

을 급수라 하고, 이것을 기호 \sum 를 사용하여 $\sum\limits_{n=1}^{\infty}a_n$ 과 같이 나타낸다. 즉,

$$a_1 + a_2 + a_3 + \cdots + a_n + \cdots = \sum_{n=1}^{\infty} a_n$$

(1)
$$2+4+6+\cdots+2n+\cdots=\sum_{n=1}^{\infty}2n$$

(2)
$$1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} + \dots = \sum_{n=1}^{\infty} \frac{1}{n}$$

2. 급수의 수렴과 발산

(1) 급수 $\sum_{n=1}^{\infty} a_n$ 에서 첫째항부터 제n항까지의 합

$$S_n = a_1 + a_2 + a_3 + \cdots + a_n$$

- 을 이 급수의 제n항까지의 부분합이라 한다.
- (2) 급수 $\sum_{n=1}^{\infty} a_n$ 의 제n항까지의 부분합으로 이루어<mark>진 수열 $\{S_n\}$ 이 일정한 값 S에 수렴하면, 즉</mark>

$$\lim_{n\to\infty} S_n = \lim_{n\to\infty} \sum_{k=1}^n a_k = S$$

이면 급수 $\sum\limits_{n=1}^{\infty}a_n$ 은 S에 수렴한다고 한다. 이때 S를 이 급수의 합이라 하고, 이것을 기호로

$$a_1+a_2+a_3+\cdots+a_n+\cdots=S$$
 $\Xi = \sum_{n=1}^{\infty} a_n=S$

- 와 같이 나타낸다.
- (3) 급수 $\sum\limits_{n=1}^{\infty}a_n$ 의 제n항까지의 부분합으로 이루어진 수열 $\{S_n\}$ 이 발산하면 급수 $\sum\limits_{n=1}^{\infty}a_n$ 은 발산한다고 한다.
- 예 급수 $\sum_{n=1}^{\infty} \left(\frac{1}{n} \frac{1}{n+1}\right)$ 의 제n항까지의 부분합 S_n 은

$$S_n = \sum_{k=1}^n \left(\frac{1}{k} - \frac{1}{k+1} \right)$$

$$= \left(\frac{1}{1} - \frac{1}{2} \right) + \left(\frac{1}{2} - \frac{1}{3} \right) + \left(\frac{1}{3} - \frac{1}{4} \right) + \dots + \left(\frac{1}{n} - \frac{1}{n+1} \right)$$

$$= 1 - \frac{1}{n+1}$$

이코,
$$\lim_{n\to\infty} S_n = \lim_{n\to\infty} \left(1 - \frac{1}{n+1}\right) = 1$$
이므로
$$\sum_{n=0}^{\infty} \left(\frac{1}{n} - \frac{1}{n+1}\right) = 1$$

첫째항이 4이고 공차가 2인 등차수열 $\{a_n\}$ 에 대하여 $\sum\limits_{n=1}^{\infty}\frac{80}{a_na_{n+1}}=a_m$ 을 만족시키는 자연수 m의 값은?

- \bigcirc 2
- 2 4
- ③ 6
- **4** 8
- **⑤** 10

급수 $\sum\limits_{n=1}^{\infty}a_n$ 의 제n항까지의 부분합으로 이루어진 수열 $\{S_n\}$ 이 일정한 값 S에 수렴하면 $\sum\limits_{n=1}^{\infty}a_n=\lim_{n\to\infty}S_n=S$ 이다.

 a_n =4+(n-1)×2=2n+2, a_{n+1} =2(n+1)+2=2n+4이므로

급수 $\sum\limits_{n=1}^{\infty} rac{80}{a_n a_{n+1}}$ 의 제n항까지의 부분합을 S_n 이라 하면

$$S_{n} = \sum_{k=1}^{n} \frac{80}{a_{k} a_{k+1}} = \sum_{k=1}^{n} \frac{80}{(2k+2)(2k+4)}$$

$$= \frac{80}{4} \sum_{k=1}^{n} \frac{1}{(k+1)(k+2)} = 20 \sum_{k=1}^{n} \left(\frac{1}{k+1} - \frac{1}{k+2}\right)$$

$$= 20 \left\{ \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \left(\frac{1}{4} - \frac{1}{5}\right) + \dots + \left(\frac{1}{n+1} - \frac{1}{n+2}\right) \right\}$$

$$= 20 \left(\frac{1}{2} - \frac{1}{n+2}\right)$$

따라서 $\sum_{n=1}^{\infty} \frac{80}{a_n a_{n+1}} = \lim_{n \to \infty} S_n = \lim_{n \to \infty} 20 \left(\frac{1}{2} - \frac{1}{n+2}\right) = 20 \times \left(\frac{1}{2} - 0\right) = 10$ 이므로 $a_m = 2m + 2 = 10$ 에서 m = 4

유제

정답과 풀이 10쪽

수열 $\{a_n\}$ 의 일반항이 $a_n=rac{3n}{2n+1}$ 일 때, $\sum\limits_{n=1}^{\infty}(a_{n+1}-a_n)$ 의 값은?

[22011-0026]

- ① $\frac{1}{2}$
- 21 $3\frac{3}{2}$
- ④ 2
- $(5) \frac{5}{2}$

첫째항이 1인 수열 $\{a_n\}$ 의 첫째항부터 제n항까지의 합을 S_n 이라 할 때 $S_n = \frac{an+b}{3n+1}$ 이다.

[22011-0027] $\sum_{n=0}^{\infty} a_n = 2$ 일 때, a_2 의 값은? (단, a_1 , b는 상수이다.)

- ① $\frac{1}{7}$ ② $\frac{2}{7}$ ③ $\frac{3}{7}$ ④ $\frac{4}{7}$
- $5\frac{5}{7}$

02 급수

3 급수와 수열의 극한 사이의 관계

수열 $\{a_n\}$ 에 대하여

- (1) 급수 $\sum_{n=1}^{\infty} a_n$ 이 수렴하면 $\lim_{n\to\infty} a_n = 0$ 이다.
- (2) $\lim_{n\to\infty} a_n \neq 0$ 이면 급수 $\sum_{n=0}^{\infty} a_n$ 은 발산한다.
- 설명 (1) 급수 $\sum_{n=1}^{\infty} a_n$ 이 S에 수렴한다고 하자.

급수 $\sum_{n=1}^{\infty} a_n$ 의 제n항까지의 부분합을 S_n 이라 하면 $n \ge 2$ 일 때

$$\lim_{n\to\infty} S_n = S$$
, $\lim_{n\to\infty} S_{n-1} = S$

이때 $a_n = S_n - S_{n-1} (n \ge 2)$ 이므로

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} (S_n - S_{n-1}) = \lim_{n \to \infty} S_n - \lim_{n \to \infty} S_{n-1} = S - S = 0$$

따라서 급수 $\sum_{n=0}^{\infty} a_n$ 이 수렴하면 $\lim_{n\to\infty} a_n = 0$ 이다.

- (2) (1)의 명제가 참이므로 그 대우 ' $\lim_{n\to\infty}a_n \neq 0$ 이면 급수 $\sum_{n=1}^{\infty}a_n$ 은 발산한다.'는 참이다.
- 예 $\sum_{n=1}^{\infty} \frac{n}{n+1}$ 에서 $\lim_{n\to\infty} \frac{n}{n+1} = \lim_{n\to\infty} \frac{1}{1+\frac{1}{n}} = 1 \neq 0$ 이므로 급수 $\sum_{n=1}^{\infty} \frac{n}{n+1}$ 은 발산한다.

4. 급수의 성질

두 급수 $\sum\limits_{n=1}^{\infty}a_n$, $\sum\limits_{n=1}^{\infty}b_n$ 이 모두 수렴하고, $\sum\limits_{n=1}^{\infty}a_n=S$, $\sum\limits_{n=1}^{\infty}b_n=T$ 라 할 때

- (1) $\sum_{n=1}^{\infty} ca_n = c \sum_{n=1}^{\infty} a_n = cS$ (단, c는 상수)
- (2) $\sum_{n=1}^{\infty} (a_n + b_n) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n = S + T$
- (3) $\sum_{n=1}^{\infty} (a_n b_n) = \sum_{n=1}^{\infty} a_n \sum_{n=1}^{\infty} b_n = S T$
- 참고 두 급수 $\sum\limits_{n=1}^{\infty}a_n$, $\sum\limits_{n=1}^{\infty}b_n$ 의 제n항까지의 부분합을 각각 S_n , T_n 이라 하고 수열의 극한에 대한 기본 성질을 이용하면 급수의 성질(1),(2),(3)이 성립함을 알 수 있다.
- 예 두 수열 $\{a_n\}$, $\{b_n\}$ 에 대하여 $\sum\limits_{n=1}^\infty a_n=2$, $\sum\limits_{n=1}^\infty b_n=3$ 일 때

$$\sum_{n=1}^{\infty} 4a_n = 4\sum_{n=1}^{\infty} a_n = 4 \times 2 = 8, \ \sum_{n=1}^{\infty} (a_n + b_n) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n = 2 + 3 = 5$$

두 수열 $\{a_n\}$, $\{b_n\}$ 에 대하여 $\sum_{n=1}^{\infty} a_n = 3$, $\sum_{n=1}^{\infty} (3a_n + 2b_n + 4) = 17$ 일 때, $\lim_{n \to \infty} b_n + \sum_{n=1}^{\infty} (b_n + 2)$ 의 값은?

① 1

2 2

③ 3

4

⑤ 5

풀이 전략

(1) 급수 $\sum_{n=1}^{\infty} a_n$ 이 수렴하면 $\lim_{n\to\infty} a_n = 0$ 이다.

(2) 두 급수 $\sum_{n=1}^{\infty} a_n$, $\sum_{n=1}^{\infty} b_n$ 이 모두 수렴하면 $\sum_{n=1}^{\infty} (a_n + b_n) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n$, $\sum_{n=1}^{\infty} ca_n = c \sum_{n=1}^{\infty} a_n$ (c는 상수)이다.

풀이 두 급수 $\sum_{n=1}^{\infty} a_n$, $\sum_{n=1}^{\infty} (3a_n + 2b_n + 4)$ 가 모두 수렴하므로 $\lim_{n\to\infty} a_n = 0$, $\lim_{n\to\infty} (3a_n + 2b_n + 4) = 0$ 이다. 그러므로

 $\lim_{n \to \infty} b_n = \lim_{n \to \infty} \frac{1}{2} \{ (3a_n + 2b_n + 4) - 3a_n - 4 \} = \frac{1}{2} \lim_{n \to \infty} (3a_n + 2b_n + 4) - \frac{3}{2} \lim_{n \to \infty} a_n - \lim_{n \to \infty} 2a_n + 2a_n +$

$$\sum_{n=1}^{\infty} (b_n + 2) = \sum_{n=1}^{\infty} \frac{1}{2} \{ (3a_n + 2b_n + 4) - 3a_n \} = \frac{1}{2} \sum_{n=1}^{\infty} (3a_n + 2b_n + 4) - \frac{3}{2} \sum_{n=1}^{\infty} a_n \} = \frac{1}{2} \times 17 - \frac{3}{2} \times 3 = 4$$

따라서 $\lim_{n\to\infty} b_n + \sum_{n=1}^{\infty} (b_n + 2) = -2 + 4 = 2$

[주의] 두 급수 $\sum\limits_{n=1}^{\infty}b_n$, $\sum\limits_{n=1}^{\infty}4$ 는 모두 발산하므로

 $\sum_{n=1}^{\infty} (3a_n + 2b_n + 4) \neq 3\sum_{n=1}^{\infty} a_n + 2\sum_{n=1}^{\infty} b_n + \sum_{n=1}^{\infty} 4$

2

유제

정답과 **풀이** 10쪽

3

수열 $\{a_n\}$ 에 대하여 $\sum_{n=1}^{\infty} na_n = 8$ 일 때, $\lim_{n \to \infty} \frac{(n^2+1)a_n + 3n}{3n + \sqrt{4n^2 + 9n}}$ 의 값은?

[22011-0028]

1) -

 $2\frac{2}{5}$

 $3\frac{3}{5}$

 $4\frac{4}{5}$

(5) **1**

두 수열 $\{a_n\}$, $\{b_n\}$ 에 대하여 $\sum\limits_{n=1}^{\infty}(a_n+b_{2n-1})=4$, $\sum\limits_{n=1}^{\infty}b_{2n}=1$, $\sum\limits_{n=1}^{\infty}b_n=p$ 이다. 모든 자연수 n에 대하여

[22011-0029]

 $b_{2n-1} = b_{2n}$ 일 때, $\sum\limits_{n=1}^{\infty} (4a_n + pb_n)$ 의 값을 구하시오. (단, p는 상수이다.)

02 급수

5. 등비급수의 뜻

첫째항이 a $(a \neq 0)$ 이고 공비가 r인 등비수열 $\{ar^{n-1}\}$ 의 각 항을 차례로 덧셈 기호 +로 연결한 급수

$$\sum_{n=1}^{\infty} ar^{n-1} = a + ar + ar^{2} + \dots + ar^{n-1} + \dots$$

을 첫째항이 a이고 공비가 r인 등비급수라 한다.

6. 등비급수의 수렴과 발산

첫째항이 a $(a \neq 0)$ 이고 공비가 r인 등비급수 $\sum_{n=1}^{\infty} ar^{n-1}$ 은

(1) |r| < 1일 때, 수렴하고 그 합은 $\frac{a}{1-r}$ 이다. 즉,

$$\sum_{n=1}^{\infty} a r^{n-1} = \frac{a}{1-r}$$

- (2) |r|≥1일 때, 발산한다.
- 설명 등비급수 $\sum\limits_{n=1}^{\infty} ar^{n-1}$ 의 제n항까지의 부분합을 S_n 이라 하면

$$r \neq 1$$
이면 $S_n = \frac{a(1-r^n)}{1-r}$

$$r=1$$
이면 $S_n=a+a+a+\cdots+a=na$

따라서 r의 값의 범위에 따라 등비급수 $\sum_{n=1}^{\infty} ar^{n-1}$ 의 수렴, 발산을 조사하면 다음과 같다.

(1) |r|<1일 때

$$\lim r^n = 0$$
이므로

$$\lim_{n\to\infty} S_n = \lim_{n\to\infty} \frac{a(1-r^n)}{1-r} = \frac{a}{1-r}$$

따라서
$$\sum_{n=1}^{\infty} a r^{n-1} = \frac{a}{1-r}$$

 $\lim_{n \to \infty} ar^{n-1} \neq 0$ 이므로 등비급수 $\sum_{n=1}^{\infty} ar^{n-1}$ 은 발산한다.

- 참고 급수 $\sum_{n=1}^{\infty} ar^{n-1}$ 에서 a=0이면 급수의 각 항이 0이므로 $\sum_{n=1}^{\infty} ar^{n-1} = 0$ 이다.
- 예 등비급수 $\sum_{n=1}^{\infty} \left(\frac{1}{3}\right)^{n-1}$ 은 첫째항이 1, 공비가 $\frac{1}{3}$ 이고, $\left|\frac{1}{3}\right| < 1$ 이므로

$$\sum_{n=1}^{\infty} \left(\frac{1}{3}\right)^{n-1} = \frac{1}{1 - \frac{1}{3}} = \frac{3}{2}$$

참고 일정한 닮음비로 닮은 도형이 한없이 반복되는 그림에서 주어진 모든 닮은 도형의 길이의 합이나 넓이의 합은 등비급수 로 나타내어진다. 이때 닮음비를 이용하여 등비급수의 공비를 구할 수 있다.

공비가 실수인 등비수열 $\{a_n\}$ 에 대하여 $a_2+a_4=25,\ a_5=40$ 일 때, $\sum\limits_{n=1}^{\infty}\frac{a_n}{4^n}$ 의 값은?

- (1) 1

- $\bigcirc \frac{9}{8}$ $\bigcirc \frac{5}{4}$ $\bigcirc \frac{11}{8}$
- $(5) \frac{3}{2}$

풀이 전략

첫째항이 a $(a \neq 0)$ 이고 공비가 r (|r| < 1)인 등비급수 $\sum_{i=1}^{\infty} ar^{n-1}$ 의 합은 $\frac{a}{1-r}$ 이다.

등비수열 $\{a_n\}$ 의 첫째항을 a, 공비를 r라 하면

$$a_2+a_4=ar(1+r^2)=25, a_5=ar^4=40$$

이므로 $\frac{ar(1+r^2)}{ar^4}=\frac{5}{8}$ 에서

$$5r^3-8r^2-8=0$$
, $(r-2)(5r^2+2r+4)=0$

이때 r는 실수이므로 r=2

$$ar^4 = 16a = 40$$
 에서 $a = \frac{5}{2}$

따라서 수열 $\left\{ rac{a_n}{4^n}
ight\}$ 은 첫째항이 $rac{a_1}{4} = rac{1}{4} imes rac{5}{2} = rac{5}{8}$, 공비가 $rac{r}{4} = rac{2}{4} = rac{1}{2}$ 인 등비수열이므로

$$\sum_{n=1}^{\infty} \frac{a_n}{4^n} = \frac{\frac{5}{8}}{1 - \frac{1}{2}} = \frac{5}{4}$$

3

정답과 **풀이 10**쪽

수열 $\{a_n\}$ 의 첫째항부터 제n항까지의 합을 S_n 이라 할 때, $S_n=2^{2-n}-4$ 이다. $\sum\limits_{n=1}^{\infty}a_na_{n+1}$ 의 값은?

[22011-0030]

- ① $\frac{13}{6}$ ② $\frac{7}{3}$ ③ $\frac{5}{2}$ ④ $\frac{8}{3}$ ⑤ $\frac{17}{6}$

두 등비수열 $\{a_n\}$, $\{b_n\}$ 에 대하여 $a_1=1$, $b_1=2$ 이고 $\sum\limits_{n=1}^{\infty}a_n=5$, $\sum\limits_{n=1}^{\infty}b_n=4$ 일 때, $\sum\limits_{n=1}^{\infty}a_nb_n$ 의 값은?

[22011-0031]

- $2\frac{20}{3}$ 3 10 4 $\frac{40}{3}$ 5 $\frac{50}{3}$

[22011-0032]

- 수열 $\{a_n\}$ 에 대하여 $\sum\limits_{n=1}^{\infty}\left\{a_n+rac{1}{n(n+1)}
 ight\}=4$ 일 때, $\sum\limits_{n=1}^{\infty}a_n$ 의 값은?
- 2 2
- 4
- **5** 5

[22011-0033]

- $\sum_{n=1}^{\infty} \left(a_n \frac{2n}{n+1}\right) = 3$ 일 때, $\lim_{n \to \infty} \frac{na_n + 3n}{4n-1}$ 의 값은?
 - ① $\frac{1}{4}$ ② $\frac{1}{2}$ ③ $\frac{3}{4}$
- **4** 1
- $(5) \frac{5}{4}$

- $\mathbf{3}$ 두 수열 $\{a_n\}$, $\{b_n\}$ 에 대하여 $\sum\limits_{n=1}^{\infty}(a_n+2b_n)=12$, $\sum\limits_{n=1}^{\infty}(2a_n-b_n)=9$ 일 때, $\sum\limits_{n=1}^{\infty}(a_n+b_n)$ 의 값은?
 - 1)6
- 27
- 3 8
- **4** 9
- ⑤ 10

- 4

Level 2 기본 연습

[22011-0036]

두 등비수열 $\{a_n\}$, $\{b_n\}$ 의 공비가 각각 2, 3이고, $a_1 = b_1$ 이다. 급수 $\sum\limits_{n=1}^{\infty} c_n$ 의 제n항까지의 부분합을 S_n 이라 하

면 $S_n = \frac{3^n a_n + 2^n b_n}{6^{n+1} + 3^{n+1}}$ 이고 $\sum_{n=1}^{\infty} c_n = \frac{5}{9}$ 일 때, a_1 의 값은?

① $\frac{5}{2}$ ② 3 ③ $\frac{7}{2}$

4 4

[22011-0037]

2 실수 r에 대하여 $\sum_{n=1}^{\infty} (-1)^n \left(\frac{1}{n+1} + \frac{1}{n+2}\right) = r$ 일 때, $\sum_{n=1}^{\infty} r^{n+1}$ 의 값은?

- $(5) \frac{1}{3}$

자연수 n에 대하여 좌표평면 위의 두 직선 x-ay+2a=0, y=n+2가 만나는 점의 좌표를 (x_n, y_n) 이라 하자. $\sum_{n=1}^{\infty} \frac{1}{x_n y_n} = \frac{1}{8}$ 일 때, 상수 a의 값은? (단, $a \neq 0$)

① 3

- 2 4
- ③ 5
- 4 6
- (5) 7

4 공비가 같은 두 등비수열 $\{a_n\}$, $\{b_n\}$ 에 대하여 $a_1b_1=8$ 이고, $\sum\limits_{n=1}^{\infty}a_n=3$, $\sum\limits_{n=1}^{\infty}a_nb_n=9$ 일 때,

 $\sum_{n=1}^{\infty} \{(a_n)^2 + (b_n)^2\}$ 의 값은?

- 2 25
- (4) 30
- ⑤ $\frac{65}{2}$

Level 2 기본 연습

[22011-0040]

두 함수 $f(x) = \frac{1}{x^2}$, $g(x) = a^x$ $(a > 0, a \ne 1)$ 에 대하여 $\sum_{n=1}^{\infty} (f \circ g)(n) = \frac{9}{7}$, $\sum_{n=1}^{\infty} (f \circ g) \left(\frac{n}{2}\right) = b$ 이다. ab의 5 값은? (단, a, b는 상수이다.)

[22011-0041]

공비가 $\frac{1}{2}$ 인 등비수열 $\{a_n\}$ 과 공비가 $\frac{2}{3}$ 인 등비수열 $\{b_n\}$ 에 대하여

$$\sum_{n=1}^{\infty} (2a_n - b_n) = 2, \sum_{n=1}^{\infty} (a_n + b_n) = 7$$

일 때, $\sum_{n=1}^{\infty} (-1)^{n+1} a_n b_n$ 의 값은?

① $\frac{5}{6}$

2 1

 $3\frac{7}{6}$

 $4\frac{4}{3}$

 $(5) \frac{3}{2}$

[22011-0042]

그림과 같이 좌표평면에서 직선 $y=\frac{3}{2}x$ 위에 점 $A_1(4,6)$ 이 있다. 점 A_1 을 지나고 y축에 평행한 직선이 직선 $y=\frac{2}{3}x$ 와 만나는 점을 B_1 , 점 B_1 을 지나고 x축에 평행한 직선이 직선 $y=\frac{3}{2}x$ 와 만나는 점을 A_2 , 점 A_2 를 지 나고 y축에 평행한 직선이 직선 $y=\frac{2}{3}x$ 와 만나는 점을 B_2 , 점 B_2 를 지나고 x축에 평행한 직선이 직선 $y=rac{3}{2}x$ 와 만나는 점을 $\mathbf{A}_{\mathfrak{z}}$ 이라 하자. 이와 같은

방법으로 자연수 n에 대하여 점 A_n 을 지나고 y축에 평행한 직선이 직선 $y=\frac{2}{3}x$ 와 만나는 점을 B_n , 점 B_n 을 지나고 x축에 평행한 직선이 직선 $y=rac{3}{2}x$ 와 만나는 점을 A_{n+1} 이라 하자. 선분 $\mathrm{A}_n\mathrm{B}_n$ 을 빗변으로 하는 직각이 등변삼각형 $A_nB_nC_n$ 을 만들고, 점 C_n 의 x좌<mark>표를 c_n 이라</mark> 할 때, $\sum_{n=1}^{\infty}c_n$ 의 <mark>값은</mark>?

(단, 점 C_n 의 x좌표는 점 A_n 의 x좌표보다 크다.)

① $\frac{51}{5}$

 $2\frac{53}{5}$

③ 11

 $4\frac{57}{5}$

 $^{\circ}\frac{59}{5}$

[22011-0043]

수열 $\{a_n\}$ 의 일반항이

$$a_n = \begin{cases} rac{p}{n(n+2)} & (n \text{이 홀수인 경우)} \\ 2^{-n} & (n \text{이 짝수인 경우)} \end{cases}$$
일 때, $\sum_{n=5}^{\infty} a_n = rac{1}{12}$ 을 만족시키는 상수 p 의 값은?

① $\frac{1}{8}$ ② $\frac{3}{8}$

 $4\frac{7}{8}$

수열 $\{a_n\}$ 의 일반항이 $a_n=\frac{n+3}{3n-1}$ 이고, 수열 $\{b_n\}$ 의 첫째항부터 제n항까지의 합을 T_n 이라 할 때, 두 수열 $\{a_n\}$, $\{b_n\}$ 은 다음 조건을 만족시킨다.

(가) 모든 자연수 n에 대하여 $a_n - a_{n+1} < b_n$ 이다.

(나) 모든 자연수 n에 대하여 $T_n + T_{n+1} < \frac{30n^2 + 52n + 15}{9n^2 + 15n + 4}$ 이다.

 $\sum_{n=1}^{\infty} b_n = p$ 일 때, 실수 p의 값은?

① $\frac{1}{3}$ ② $\frac{2}{3}$ ③ 1 ④ $\frac{4}{3}$

 $^{\circ}\frac{5}{3}$

[22011-0045]

등차수열 $\{a_n\}$ 에 대하여 $\sum\limits_{n=1}^{\infty}\left(\frac{a_n}{n}-\frac{2n+3}{n+1}\right)=1$ 일 때, $\sum\limits_{n=1}^{10}a_n$ 의 값은?

① 110

② 120

③ 130

4 140

⑤ 150

[22011-0046]

4 그림과 같이 한 변의 길이가 2인 정사각형 $OA_iB_iC_i$ 에서 두 변 A_iB_i , B_iC_i 과 대각선 A_iC_i 에 동시에 접하는 원 G_1 을 그리고 원 G_1 과 세 선분 A_1B_1 , B_1C_1 , A_1C_1 이 만나는 점을 각각 D_1 , E_1 , F_1 이라 하자. 원 G_1 의 중심 각의 크기가 $\frac{\pi}{2}$ 인 호 D_iE_i 과 선분 D_iE_i 로 둘러싸<mark>인 부분</mark>에 색칠을 하고, 중심이 A_i 이고 중심각의 크기가 $\frac{\pi}{4}$ 인 부채꼴 $A_iD_iF_i$ 의 호 D_iF_i 과 선분 D_iF_i 로 <mark>둘러싸</mark>인 부분 및 중심이 C_i 이고 <mark>중심각</mark>의 크기가 $\frac{\pi}{4}$ 인 부채꼴

 $C_1E_1F_1$ 의 호 E_1F_1 과 선분 E_1F_1 로 둘러싸인 부<mark>분에</mark> 색칠을 하여 얻<mark>은 그림을 R_1 이라 하</mark>자.

그림 R_1 에서 원 G_1 에 접하고 대각선 A_1C_1 과 수직인 두 직선이 변 OA_1 , 변 OC_1 과 만나는 점을 각각 A_2 , C_2 라 하고 정사각형 $OA_2B_2C_2$ 를 그린다. 정사각형 $OA_2B_2C_2$ 에서 두 변 A_2B_2 , B_2C_2 와 대각선 A_2C_2 에 동시에 접하는 원 G_2 를 그리고 원 G_2 와 세 선분 A_2B_2 , B_2C_2 , A_2C_2 가 만나는 점을 각각 D_2 , E_2 , F_2 라 하자. 원 G_2 의 중심각의 크기가 $\frac{\pi}{2}$ 인 호 D_2E_2 와 선분 D_2E_2 로 둘러싸인 부분에 색칠을 하고, 중심이 A_2 이고 중심각의 크기가

 $\frac{\pi}{4}$ 인 부채꼴 $A_2D_2F_2$ 의 호 D_2F_2 와 선분 D_2F_2 로 둘러싸인 부분 및 중심이 C_2 이고 중심각의 크기가 $\frac{\pi}{4}$ 인 부채 $\mathbb{E}_{\mathcal{F}}$ $\mathbb{E}_{\mathcal{F}}$

이와 같은 과정을 계속하여 n번째 얻은 그림 R_n 에 색칠되어 있는 부분의 넓이를 S_n 이라 할 때, $\lim S_n$ 의 값은?

 G_1 R_2

①
$$\frac{\sqrt{2}(\pi-2)-1}{2}$$

②
$$\frac{\sqrt{2}(\pi-1)-1}{4}$$

$$\sqrt[3]{\frac{\sqrt{2}(\pi-2)+1}{4}}$$

$$4 \frac{\sqrt{2}(\pi-1)}{4}$$

$$\begin{array}{c}
\sqrt{2}(\pi-2) \\
2
\end{array}$$

대표 기출 문제

기본적인 급수의 합을 구하는 문제, 급수와 수열의 극한 사이의 관계를 이용하는 문제, 등비급수의 합을 이용하여 도형의 길이나 넓이를 구하는 문제 등이 출제되고 있다.

등비수열 $\{a_n\}$ 에 대하여 $\sum\limits_{n=1}^{\infty}(a_{2n-1}-a_{2n})=3$, $\sum\limits_{n=1}^{\infty}a_n^2=6$ 일 때, $\sum\limits_{n=1}^{\infty}a_n$ 의 값은? [3점]

- ① 1
- ② 2
- ③ 3
- (4) **4**
- (5) **5**

2022학년도 대수능

(출제 의도) 등비급수의 합을 구할 수 있는지를 묻는 문제이다.

풀이 등비수열 $\{a_n\}$ 의 첫째항을 a, 공비를 r라 하자.

$$a_{2n-1}-a_{2n}=a_{2n-1}-r\times a_{2n-1}=(1-r)a_{2n-1}$$

이므로 수열 $\{a_{2n-1}-a_{2n}\}$ 은 첫째항이 $a_1-a_2=(1-r)a$, 공비가 r^2 인 등비수열이다.

$$\sum\limits_{n=1}^{\infty}(a_{2n-1}{-}a_{2n}){=}3$$
이므로 $r^2{<}1$, 즉 $-1{<}r{<}1$ 이고

$$\sum_{n=1}^{\infty} (a_{2n-1} - a_{2n}) = \frac{(1-r)a}{1-r^2} = 3$$

$$r \neq 1$$
이므로 $\frac{a}{1+r} = 3$ ······ \bigcirc

수열 $\{a_n^{\ 2}\}$ 은 첫째항이 $a_1^{\ 2}=a^2$, 공비가 r^2 인 등비수열이므로

$$\sum_{n=1}^{\infty} a_n^2 = \frac{a^2}{1-r^2} = 6 \qquad \cdots$$

①에 의하여 $\dfrac{a^2}{1-r^2}=\dfrac{a}{1+r} imes\dfrac{a}{1-r}=3 imes\dfrac{a}{1-r}$ 이므로 ①에서

$$3 \times \frac{a}{1-r} = 6, \frac{a}{1-r} = 2$$

따라서
$$\sum_{n=1}^{\infty} a_n = \frac{a}{1-r} = 2$$

2

03 여러 가지 함수의 미분

1. 지수함수와 로그함수의 극한(1)

- (1) 지수함수의 극한
 - ① a>1일 때, $\lim a^x = \infty$

② 0 < a < 1일 때, $\lim a^x = 0$

- (2) 로그함수의 극한
 - ① a > 1일 때, $\lim \log_a x = \infty$, $\lim \log_a x = -\infty$
 - ② 0 < a < 1일 때, $\lim_{n \to \infty} \log_a x = -\infty$, $\lim_{n \to \infty} \log_a x = \infty$

참고 (1) 지수함수 $y=a^x$ $(a>0, a \neq 1)$ 은 실수 전체의 <mark>집합에</mark>서 연속이므로 실수 k에 대하여 $\lim_{x\to b} a^x=a^k$ 이다.

(2) 로그함수 $y=\log_a x$ $(a>0,\ a\neq 1)$ 은 양의 실수 전체의 집합에서 연속이므로 양수 k에 대하여 $\lim_a \log_a x = \log_a k$ 이다.

2. 지수함수와 로그함수의 극한(2)

(1) 무리수 *e*의 뜻

x의 값이 0에 한없이 가까워질 때. $(1+x)^{\frac{1}{x}}$ 의 값은 일정한 값에 수렴한다는 것이 알려져 있는데 그 극한값을 e로 나타낸다. 즉.

$$\lim_{x\to 0} (1+x)^{\frac{1}{x}} = e$$

이다. 이때 e는 무리수이며 그 값은 e=2.71828···임이 알려져 있다.

(2) 자연로그의 뜻

무리수 e를 밑으로 하는 로그 $\log_e x$ 를 자연로그<mark>라 하</mark>고, 기호로 $\ln x$ 와 같이 나타낸다.

(3) 지수함수와 로그함수의 극한

①
$$\lim_{x\to 0} \frac{\ln(1+x)}{x} = 1$$
, $\lim_{x\to 0} \frac{e^x - 1}{x} = 1$

- ② $\lim_{x\to 0} \frac{\log_a(1+x)}{x} = \frac{1}{\ln a}$, $\lim_{x\to 0} \frac{a^x-1}{x} = \ln a$ (단, a > 0, $a \ne 1$)

또 $e^x-1=t$ 로 놓으면 $x=\ln{(1+t)}$ 이고, $x\to 0$ 일 때 $t\to 0$ 이므로

$$\lim_{x \to 0} \frac{e^x - 1}{x} = \lim_{t \to 0} \frac{t}{\ln(1+t)} = \lim_{t \to 0} \frac{1}{\frac{\ln(1+t)}{t}} = \frac{1}{\lim_{t \to 0} \frac{\ln(1+t)}{t}} = \frac{1}{1} = 1$$

또 $a^x-1=t$ 로 놓으면 $x=\log_a(1+t)$ 이고. $x\to 0$ 일 때 $t\to 0$ 이므로

$$\lim_{x \to 0} \frac{a^{x} - 1}{x} = \lim_{t \to 0} \frac{t}{\log_{a}(1+t)} = \lim_{t \to 0} \frac{1}{\frac{\log_{a}(1+t)}{t}}$$

$$= \frac{1}{\lim_{t \to 0} \log_{a}(1+t)^{\frac{1}{t}}} = \frac{1}{\log_{a}e} = \ln a$$

예제] 지수함수와 로그함수의 극한

www.ebsi.co.kr

a>0이고 $a\neq 1$ 인 상수 a에 대하여 $\lim_{x\to\infty}\{\log_a 4^{x+1}-\log_a (4^x+1)\}=\lim_{x\to\infty}x\{\ln{(x+2)}-\ln{x}\}$ 일 때, a의 값은?

- ① $\frac{1}{4}$
- $2\frac{1}{2}$
- 3 2
- 4
- **⑤** 8

(1) a > 1일 때 $\lim_{x \to \infty} a^x = \infty$, 0 < a < 1일 때 $\lim_{x \to \infty} a^x = 0$

- (2) $\lim_{x \to 0} (1+x)^{\frac{1}{x}} = e$
- 풀이

 $\lim_{x \to \infty} \{\log_a 4^{x+1} - \log_a (4^x + 1)\} = \lim_{x \to \infty} \log_a \frac{\frac{4^{x+1}}{4^x + 1}}{\frac{4^x + 1}{4^x + 1}} = \lim_{x \to \infty} \log_a \frac{4}{1 + \left(\frac{1}{4}\right)^x} = \log_a 4$

 $\lim_{x\to\infty} x\{\ln{(x+2)} - \ln{x}\} = \lim_{x\to\infty} x\ln\left(1 + \frac{2}{x}\right) = \lim_{x\to\infty} \ln\left(1 + \frac{2}{x}\right)^x$ $=\lim_{x\to\infty}\ln\left\{\left(1+\frac{2}{x}\right)^{\frac{x}{2}}\right\}^2$ $= \lim_{x \to \infty} 2 \ln \left(1 + \frac{2}{x} \right)^{\frac{x}{2}}$

$$=2 \ln e = 2$$

따라서 $\log_a 4$ =2에서 a^2 =4이고 a>0이므로

$$a=2$$

3

유제

정답과 풀이 17쪽

 $\lim_{x\to 0} \frac{e^{2x} - e^x}{4^x - 2^x}$ 의 값은?

- [22011-0047]
- $2\frac{1}{2 \ln 2}$
- ③ 1
- $\textcircled{4}\ 2\ ln\ 2$

 $\lim_{x\to 0} \frac{\ln(ax+1)}{\sqrt{3x+b}-2} = 8$ 일 때, a+b의 값은? (단, a, b는 상수이다.)

- [22011-0048]
- 1)2
- 2 4
- 3 6
- 4 8
- ⑤ 10

03 여러 가지 함수의 미분

3. 지수함수와 로그함수의 미분

(1) $y=e^x$ 이면 $y'=e^x$

$$y=\ln x$$
이면 $y'=\frac{1}{r}$

(2) $y = a^x (a > 0, a \neq 1)$ 이면 $y' = a^x \ln a$

$$y = \log_a x \ (a > 0, a \neq 1)$$
이면 $y' = \frac{1}{x \ln a}$

설명 (1) $y=e^x$ 에 대하여 지수함수의 극한을 이용하면

$$y' = \lim_{h \to 0} \frac{e^{x+h} - e^x}{h} = \lim_{h \to 0} \frac{e^x(e^h - 1)}{h} = e^x \lim_{h \to 0} \frac{e^h - 1}{h} = e^x \times 1 = e^x$$

 $y=\ln x$ 에 대하여

$$y' = \lim_{h \to 0} \frac{\ln(x+h) - \ln x}{h} = \lim_{h \to 0} \frac{\ln \frac{x+h}{x}}{h} = \lim_{h \to 0} \frac{1}{h} \ln(1 + \frac{h}{x})$$

이때 $\frac{h}{r} = t$ 로 놓으면 h = xt이고, $h \rightarrow 0$ 일 때 $t \rightarrow 0$ 이므로 로그함수의 극한에 의하여

$$y' = \lim_{h \to 0} \frac{1}{h} \ln \left(1 + \frac{h}{x} \right) = \lim_{t \to 0} \frac{\ln \left(1 + t \right)}{xt} = \frac{1}{x} \lim_{t \to 0} \frac{\ln \left(1 + t \right)}{t} = \frac{1}{x} \times 1 = \frac{1}{x}$$

(2) $y=q^x$ 에 대하여 지수함수의 극한을 이용하면

$$y' = \lim_{h \to 0} \frac{a^{x+h} - a^x}{h} = \lim_{h \to 0} \frac{a^x (a^h - 1)}{h} = a^x \lim_{h \to 0} \frac{a^h - 1}{h} = a^x \times \ln a = a^x \ln a$$

 $y = \log_a x$ 에 대하여

$$y' = (\log_a x)' = \left(\frac{\ln x}{\ln a}\right)' = \frac{1}{\ln a} \times (\ln x)' = \frac{1}{\ln a} \times \frac{1}{x} = \frac{1}{x \ln a}$$

예 (1) ① $y = e^{x+1}$ 에 대하여

$$y' = (e^{x+1})' = (e \times e^x)' = e \times (e^x)' = e \times e^x = e^{x+1}$$

② $y = xe^x$ 에 대하여

$$y'=(x)'e^x+x(e^x)'=e^x+xe^x=(x+1)e^x$$

③ *y*=ln 2*x*에 대하여

$$y' = (\ln 2x)' = (\ln 2 + \ln x)' = (\ln 2)' + (\ln x)' = \frac{1}{r}$$

④ $y=x \ln x$ 에 대하여

$$y' = (x)' \ln x + x(\ln x)' = \ln x + x \times \frac{1}{x} = \ln x + 1$$

(2) ① $y=2^{x+1}$ 에 대하여

$$y' = (2^{x+1})' = (2 \times 2^x)' = 2 \times (2^x)' = 2 \times 2^x \ln 2 = 2^{x+1} \ln 2$$

② y=log₂ 5x에 대하여

$$y' = (\log_2 5x)' = (\log_2 5 + \log_2 x)' = (\log_2 5)' + (\log_2 x)' = \frac{1}{x \ln 2}$$

예제 2 지수함수와 로그함수의 미분

www.ebsi.co.kr

함수 $f(x)=x^2\ln x$ 에 대하여 등식 $f'(e)=\lim_{x\to 0}\frac{f(1+kx)}{x}$ 를 만족시키는 상수 k의 값은?

- (1) e
- ② 2e
- ③ 3*e*
- 4 4e
- (5) 5e

 $y=\ln x$ 이면 $y'=\frac{1}{x}$

풀이

 $f(x) = x^2 \ln x$ 에서

$$f'(x) = (x^2)' \times \ln x + x^2 \times (\ln x)' = 2x \ln x + x^2 \times \frac{1}{x} = x(2 \ln x + 1)$$

이므로

$$f'(e) = e \times (2+1) = 3e$$

한편 k=0이면 $\lim_{x\to 0} \frac{f(1+kx)}{x} = 0$ 이므로 $k\neq 0$ 이다.

f(1)=0, $f'(1)=1\times(0+1)=1$ 이므로 미분계수의 정의를 이용하면

$$\lim_{x \to 0} \frac{f(1+kx)}{x} = \lim_{x \to 0} \left\{ \frac{f(1+kx) - f(1)}{kx} \times k \right\}$$
$$= f'(1) \times k$$
$$= 1 \times k$$

따라서 k=3e

3

정답과 풀이 17쪽

함수 $f(x)=(x-1)e^x$ 에 대하여 등식 $f(a)=\lim_{x\to a}\frac{f(x)-f(a)}{x^2-a^2}$ 를 만족시키는 상수 a의 값은?

[22011-0049]

(단, *a*≠0)

- ① $\frac{1}{2}$ ② 1
- **4** 2

함수 $f(x) = \log_3 9x \times \log_9 3x$ 에 대하여 f'(3)의 값은?

03 여러 가지 함수의 미분

4. 삼각함수의 덧셈정리

- (1) $\sin(\alpha+\beta) = \sin\alpha\cos\beta + \cos\alpha\sin\beta$ $\sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta$
- (2) $\cos(\alpha+\beta) = \cos\alpha\cos\beta \sin\alpha\sin\beta$ $\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$
- (3) $\tan(\alpha+\beta) = \frac{\tan\alpha + \tan\beta}{1 \tan\alpha \tan\beta}$ $\tan(\alpha - \beta) = \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta}$
- 설명 그림과 같이 원점이 O인 좌표평면에서 두 각 α , $-\beta$ $(\alpha>0, \beta>0)$ 이 나타내는 동경 과 원 $x^2+y^2=1$ 이 만나는 점을 각각 A. B라 하자.

삼각형 AOB에서 $\angle AOB = \alpha + \beta$ 이므로 코사인법칙으로부터

$$\overline{AB} = \sqrt{\overline{OA}^2 + \overline{OB}^2 - 2\overline{OA} \times \overline{OB} \times \cos(\alpha + \beta)}$$

$$= \sqrt{2 - 2\cos(\alpha + \beta)} \qquad \dots \dots \bigcirc$$

이때 점 A의 좌표는 $(\cos \alpha, \sin \alpha)$ 이고,

점 B의 좌표는 $(\cos(-\beta), \sin(-\beta))$, 즉 $(\cos \beta, -\sin \beta)$ 이므로

$$\overline{AB} = \sqrt{(\cos \alpha - \cos \beta)^2 + (\sin \alpha + \sin \beta)^2}$$

③과 ⓒ의 우변이 같아야 하므로 두 우변을 각각 제곱<mark>한 것</mark>도 서로 같아야 한<mark>다. 즉,</mark>

$$2-2\cos(\alpha+\beta)=(\cos\alpha-\cos\beta)^2+(\sin\alpha+\sin\beta)^2$$

따라서 이를 정리하면 다음을 얻는다.

$$\cos(\alpha+\beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta$$
 \oplus

또 $\sin \theta = \cos \left(\frac{\pi}{2} - \theta \right)$ 이므로 \oplus 을 이용하여 다음을 얻는다.

$$\sin(\alpha+\beta) = \cos\left\{\frac{\pi}{2} - (\alpha+\beta)\right\} = \cos\left\{\left(\frac{\pi}{2} - \alpha\right) + (-\beta)\right\}$$

$$= \cos\left(\frac{\pi}{2} - \alpha\right)\cos(-\beta) - \sin\left(\frac{\pi}{2} - \alpha\right)\sin(-\beta)$$

$$= \sin\alpha\cos\beta + \cos\alpha\sin\beta \qquad \cdots \qquad \textcircled{2}$$

또 $\tan \theta = \frac{\sin \theta}{\cos \theta}$ 이므로 ⓒ, ֎을 이용하면 다음을 얻는다.

$$\tan(\alpha+\beta) = \frac{\sin(\alpha+\beta)}{\cos(\alpha+\beta)} = \frac{\sin\alpha\cos\beta + \cos\alpha\sin\beta}{\cos\alpha\cos\beta - \sin\alpha\sin\beta} = \frac{\frac{\sin\alpha}{\cos\alpha} + \frac{\sin\beta}{\cos\beta}}{1 - \frac{\sin\alpha}{\cos\alpha} \times \frac{\sin\beta}{\cos\beta}} = \frac{\tan\alpha + \tan\beta}{1 - \tan\alpha\tan\beta}$$

한편 $\alpha - \beta$ 에 대한 덧셈정리는 $\alpha + \beta$ 에 대한 덧셈<mark>정리에 β 대신 $-\beta$ 를 대입하면 얻을 수 있다.</mark>

$$\text{(1)} \sin 105^{\circ} = \sin \left(60^{\circ} + 45^{\circ}\right) = \sin 60^{\circ} \cos 45^{\circ} + \cos 60^{\circ} \sin 45^{\circ} = \frac{\sqrt{3}}{2} \times \frac{\sqrt{2}}{2} + \frac{1}{2} \times \frac{\sqrt{2}}{2} = \frac{\sqrt{6} + \sqrt{2}}{4}$$

$$(2)\cos 105^{\circ} = \cos (60^{\circ} + 45^{\circ}) = \cos 60^{\circ}\cos 45^{\circ} - \sin 60^{\circ}\sin 45^{\circ} = \frac{1}{2} \times \frac{\sqrt{2}}{2} - \frac{\sqrt{3}}{2} \times \frac{\sqrt{2}}{2} = \frac{\sqrt{2} - \sqrt{6}}{4}$$

$$(3) \tan 105^{\circ} = \tan (60^{\circ} + 45^{\circ}) = \frac{\tan 60^{\circ} + \tan 45^{\circ}}{1 - \tan 60^{\circ} \tan 45^{\circ}} = \frac{\sqrt{3} + 1}{1 - \sqrt{3} \times 1} = \frac{(\sqrt{3} + 1)^{2}}{(1 - \sqrt{3})(1 + \sqrt{3})} = -2 - \sqrt{3}$$

예제 3 삼각함수의 덧셈정리

www.ebsi.co.kr

그림과 같이 길이가 2인 선부 AB를 지름으로 하는 반원이 있다. 호 AB 위의 두 점 A, B가 아닌 점 C에서 선분 AB에 내린 수선의 발을 D라 하자. 호 AC 위의 점 E를 $\overline{AE} = \overline{DE}$ 가 되도록 잡고, 두 선분 AC, DE가 만나는 점을 F라 하자. $\overline{AD} = \frac{8}{5}$ 일 때, $\sin(\angle CFD) = p\sqrt{2} + q\sqrt{3}$ 이다. 5(p+q)의 값을 구하시오.

(단, *p*와 *q*는 유리수이다.)

 $\sin(\alpha+\beta) = \sin\alpha\cos\beta + \cos\alpha\sin\beta$

 $\angle CAD = \alpha$, $\angle ADE = \beta$ 라 하면 $\angle CFD = \alpha + \beta$

$$\angle ACB = \frac{\pi}{2}$$
이므로

 $\overline{AC} = \overline{AB} \cos \alpha = 2 \cos \alpha$. $\overline{AD} = \overline{AC} \cos \alpha = 2 \cos^2 \alpha$

$$\overline{\mathrm{AD}} = \frac{8}{5}$$
이므로 $2\cos^2lpha = \frac{8}{5}$ 이고, $0이므로$

$$\cos \alpha = \frac{2\sqrt{5}}{5}, \sin \alpha = \sqrt{1 - \cos^2 \alpha} = \frac{\sqrt{5}}{5}$$

점 E에서 선분 AD에 내린 수선의 발을 H라 하면 $\overline{AH} = \frac{1}{2}\overline{AD} = \frac{4}{5}$ 이므로

직각삼각형 AEH에서 $\overline{AH} = \overline{AE} \cos \beta = 2 \cos^2 \beta$

그러므로
$$2\cos^2\beta = \frac{4}{5}$$
이고, $0<\beta < \frac{\pi}{2}$ 이므로 $\cos\beta = \frac{\sqrt{10}}{5}$, $\sin\beta = \sqrt{1-\cos^2\beta} = \frac{\sqrt{15}}{5}$

삼각함수의 덧셈정리에 의하여

$$\sin(\angle CFD) = \sin(\alpha + \beta) = \sin\alpha\cos\beta + \cos\alpha\sin\beta$$

$$= \frac{\sqrt{5}}{5} \times \frac{\sqrt{10}}{5} + \frac{2\sqrt{5}}{5} \times \frac{\sqrt{15}}{5} = \frac{\sqrt{2} + 2\sqrt{3}}{5}$$

따라서
$$p=\frac{1}{5},\ q=\frac{2}{5}$$
이므로 $5(p+q)=5\left(\frac{1}{5}+\frac{2}{5}\right)=3$

3

정답과 풀이 18쪽

 $0<\alpha<\frac{\pi}{2},\ 0<\beta<\frac{\pi}{2}$ 인 α , β 에 대하여 $\sin\alpha=\cos\beta=\frac{1}{3}$ 일 때, $\cos(\beta-\alpha)$ 의 값은?

[22011-0051]

- ① $\frac{\sqrt{2}}{9}$ ② $\frac{2\sqrt{2}}{9}$ ③ $\frac{\sqrt{2}}{3}$ ④ $\frac{4\sqrt{2}}{9}$ ⑤ $\frac{5\sqrt{2}}{9}$

- ① -1 ② $-\frac{5}{6}$ ③ $-\frac{2}{3}$ ④ $-\frac{1}{2}$ ⑤ $-\frac{1}{3}$

03 여러 가지 함수의 미분

5. 삼각함수의 극한

$$\lim_{x\to 0} \frac{\sin x}{x} = 1$$

설명 (i)
$$0 < x < \frac{\pi}{2}$$
일 때

그림과 같이 중심각의 크기가 x(라디안)이고 반지름의 길이가 1인 부채꼴 OAB에 대하여 점 A를 지나고 선분 OA에 수직인 직선과 선분 OB의 연장선이 만나는 점을 T라 하자. (삼각형 OAB의 넓이)<(부채꼴 OAB의 넓이<mark>)<(</mark>삼각형 OAT의 넓<mark>이)이므로</mark>

$$\frac{1}{2} \times 1^2 \times \sin x < \frac{1}{2} \times 1^2 \times x < \frac{1}{2} \times 1 \times \tan x$$

$$\frac{1}{2}\sin x < \frac{1}{2}x < \frac{1}{2}\tan x$$

 $\sin x < x < \tan x$

 $\sin x > 0$ 이므로 각 변을 $\sin x$ 로 나누면

$$1 < \frac{x}{\sin x} < \frac{1}{\cos x}$$

각 변의 역수를 취하면

$$\cos x < \frac{\sin x}{x} < 1$$

 $\lim_{x\to 0+} \cos x = 1$, $\lim_{x\to 0+} 1 = 1$ 이므로 함수의 극한의 <mark>대소 관</mark>계에 의하여

$$\lim_{x \to 0+} \frac{\sin x}{x} = 1$$

$$(ii) - \frac{\pi}{2} < x < 0 일 때$$

 $\lim_{x\to 0-}\frac{\sin x}{x}$ 에서 -x=t로 놓으면 $0< t<\frac{\pi}{2}$ 이고, $x\to 0-$ 일 때 $t\to 0+$ 이므로

$$\lim_{x \to 0^{-}} \frac{\sin x}{x} = \lim_{t \to 0^{+}} \frac{\sin (-t)}{-t}$$
$$= \lim_{t \to 0^{+}} \frac{\sin t}{t} = 1$$

$$(i)$$
, (ii) 에 의하여 $\lim_{x\to 0} \frac{\sin x}{x} = 1$

예
$$\lim_{x\to 0} \frac{\sin 2x}{x}$$
의 값을 구해 보자.

2x=t로 놓으면 $x \rightarrow 0$ 일 때 $t \rightarrow 0$ 이므로

$$\lim_{x \to 0} \frac{\sin 2x}{x} = \lim_{t \to 0} \frac{\sin t}{\frac{t}{2}} = 2 \lim_{t \to 0} \frac{\sin t}{t} = 2 \times 1 = 2$$

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{\sin x}{x} = 1$$

예제 4 삼각함수의 극한

www.ebsi.co.kr

그림과 같이 $\overline{AB} = \overline{AC} = 1$ 인 이등변삼각형 ABC가 있다. 점 C에서 선분 AB에 내린 수 선의 발을 H라 하고, 중심이 C이고 반지름의 길이가 \overline{CH} 인 원이 두 선분 AC, BC와 만 나는 점을 각각 D. E라 하자. $\angle BAC = \theta$ 라 할 때, 부채꼴 CDH의 넓이를 $f(\theta)$, 삼각 형 CHB의 내부와 부채꼴 CHE의 외부의 공통부분의 넓이를 $g(\theta)$ 라 하자.

$$\lim_{\theta \to 0+} \frac{f(\theta) - g(\theta)}{\theta^2}$$
의 값은? (단, $0 < \theta < \frac{\pi}{2}$)

 $\bigcirc \frac{\pi}{10}$

 $4\frac{\pi}{4}$

 $\bigcirc \frac{\pi}{2}$

부채꼴 CHE의 넓이를 S라 할 때, $f(\theta)-g(\theta)=\{f(\theta)+S\}-\{g(\theta)+S\}$ 임을 이용하여 $f(\theta)-g(\theta)$ 를 θ 에 대한 삼각함수로 나타 낸 후 $\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1$ 임을 이용한다.

부채꼴 CHE의 넓이를 S라 하면 풀이

 $f(\theta)-g(\theta)=\{f(\theta)+S\}-\{g(\theta)+S\}=$ (부채꼴 CDE의 넓이)-(삼각형 CHB의 넓이)

직각삼각형 AHC에서 $\overline{CH} = \sin \theta$, $\angle ACB = \frac{\pi - \theta}{2}$ 이므로

$$f(\theta) + S = \frac{1}{2} \times \overline{CH}^2 \times \frac{\pi - \theta}{2} = \frac{1}{4} \times \sin^2 \theta \times (\pi - \theta)$$

또 $\overline{BH} = 1 - \overline{AH} = 1 - \cos \theta$ 이므로 $g(\theta) + S = \frac{1}{2} \times \overline{BH} \times \overline{CH} = \frac{1}{2} \times (1 - \cos \theta) \times \sin \theta$

따라서 $f(\theta) - g(\theta) = \{f(\theta) + S\} - \{g(\theta) + S\} = \frac{1}{2} \times \sin \theta \times \left\{\sin \theta \times \frac{\pi - \theta}{2} - (1 - \cos \theta)\right\}$ 이므로

$$\begin{split} \lim_{\theta \to 0+} \frac{f(\theta) - g(\theta)}{\theta^2} &= \lim_{\theta \to 0+} \left\{ \frac{1}{2} \times \frac{\sin \theta}{\theta} \times \left(\frac{\sin \theta}{\theta} \times \frac{\pi - \theta}{2} - \frac{1 - \cos \theta}{\theta} \right) \right\} \\ &= \frac{1}{2} \times \lim_{\theta \to 0+} \frac{\sin \theta}{\theta} \times \left\{ \lim_{\theta \to 0+} \left(\frac{\sin \theta}{\theta} \times \frac{\pi - \theta}{2} \right) - \lim_{\theta \to 0+} \frac{\sin^2 \theta}{\theta (1 + \cos \theta)} \right\} \\ &= \frac{1}{2} \times \lim_{\theta \to 0+} \frac{\sin \theta}{\theta} \times \left\{ \lim_{\theta \to 0+} \left(\frac{\sin \theta}{\theta} \times \frac{\pi - \theta}{2} \right) - \lim_{\theta \to 0+} \left(\frac{\sin \theta}{\theta} \times \frac{\sin \theta}{1 + \cos \theta} \right) \right\} \\ &= \frac{1}{2} \times 1 \times \left(1 \times \frac{\pi}{2} - 1 \times 0 \right) = \frac{\pi}{4} \end{split}$$

4

유제

정답과 풀이 18쪽

 $6 \times \lim_{x \to 0} \frac{x \sin x}{1 - \cos^3 x}$ 의 값을 구하시오.

[22011-0053]

 $0 < t < \frac{\pi}{4}$ 인 실수 t에 대하여 직선 x = t가 두 곡선 $y = \tan 2x$, $y = \sin x$ 와 만나는 점을 각각 A, B라 [22011-0054] 하자. 원점 O에 대하여 두 직선 OA, OB가 이루는 예각의 크기를 $\theta(t)$ 라 할 때, $\lim_{t\to 0^+} \tan \theta(t)$ 의 값은?

- $\bigcirc \frac{1}{\epsilon}$
- $2\frac{1}{2}$
- $3\frac{1}{2}$
- $4\frac{2}{3}$

03 여러 가지 함수의 미분

6. 삼각함수의 미분

- (1) $y = \sin x$ 이면 $y' = \cos x$
- (2) $y = \cos x$ 이면 $y' = -\sin x$
- 설명 (1) $y=\sin x$ 에 대하여 삼각함수의 덧셈정리와 삼각함수의 극한을 이용하면

$$y' = \lim_{h \to 0} \frac{\sin(x+h) - \sin x}{h}$$

$$= \lim_{h \to 0} \frac{(\sin x \cos h + \cos x \sin h) - \sin x}{h}$$

$$= \lim_{h \to 0} \frac{\cos x \sin h - \sin x (1 - \cos h)}{h}$$

$$= \lim_{h \to 0} \left(\cos x \times \frac{\sin h}{h} - \sin x \times \frac{1 - \cos h}{h}\right)$$

이때

$$\lim_{h \to 0} \frac{1 - \cos h}{h} = \lim_{h \to 0} \frac{(1 - \cos h)(1 + \cos h)}{h(1 + \cos h)} = \lim_{h \to 0} \frac{\sin^2 h}{h(1 + \cos h)}$$

$$= \lim_{h \to 0} \left(\frac{\sin h}{h} \times \frac{\sin h}{1 + \cos h}\right) = 1 \times \frac{0}{1 + 1} = 0$$

이므로

$$y' = \cos x \times \lim_{h \to 0} \frac{\sin h}{h} - \sin x \times \lim_{h \to 0} \frac{1 - \cos h}{h}$$
$$= \cos x \times 1 - \sin x \times 0$$
$$= \cos x$$

 $(2) y = \cos x$ 에 대하여 삼각함수의 덧셈정리와 삼각함수의 극한을 이용하면

$$y' = \lim_{h \to 0} \frac{\cos(x+h) - \cos x}{h}$$

$$= \lim_{h \to 0} \frac{(\cos x \cos h - \sin x \sin h) - \cos x}{h}$$

$$= \lim_{h \to 0} \frac{-\sin x \sin h - \cos x (1 - \cos h)}{h}$$

$$= -\sin x \times \lim_{h \to 0} \frac{\sin h}{h} - \cos x \times \lim_{h \to 0} \frac{1 - \cos h}{h}$$

$$= -\sin x \times 1 - \cos x \times 0 = -\sin x$$

예 $(1) y = x \sin x$ 에 대하여

$$y' = (x)' \times \sin x + x \times (\sin x)' = \sin x + x \cos x$$

(2) $y = \sin x \cos x$ 에 대하여

$$y' = (\sin x)' \times \cos x + \sin x \times (\cos x)' = \cos^2 x - \sin^2 x$$

예 $f(x)=\sin x+\cos x$ 에 대하여 곡선 y=f(x) 위의 점 $\left(\frac{\pi}{2},\,1\right)$ 에서의 접선의 기울기를 구해 보자.

$$f'(x) = \cos x - \sin x$$
이므로 곡선 $y = f(x)$ 위의 점 $\left(\frac{\pi}{2}, 1\right)$ 에서의 접선의 기울기는

$$f'\left(\frac{\pi}{2}\right) = \cos\frac{\pi}{2} - \sin\frac{\pi}{2} = 0 - 1 = -1$$

예제 5 삼각함수의 미분

www.ebsi.co.kr

함수 $f(x)=\sin x\cos x$ 에 대하여 $0< x< 2\pi$ 에서 방정식 f'(x)=0과 부등식 f(x)< 0을 동시에 만족시키는 모 = x의 값의 합은?

 \bigcirc π

 $2\frac{3}{2}\pi$

 32π

 $4\frac{5}{2}\pi$

(5) 3π

풀이 전략

 $(\sin x)' = \cos x \cdot (\cos x)' = -\sin x$

풀이

 $f(x) = \sin x \cos x$

 $f'(x) = (\sin x)' \times \cos x + \sin x \times (\cos x)' = \cos x \times \cos x + \sin x \times (-\sin x) = \cos^2 x - \sin^2 x$ 이므로 방정식 f'(x)=0에서

 $\cos^2 x - \sin^2 x = 0$, $(1 - \sin^2 x) - \sin^2 x = 0$, $\sin^2 x = \frac{1}{2}$

$$\sin x = \frac{\sqrt{2}}{2} \operatorname{Ed} \sin x = -\frac{\sqrt{2}}{2}$$

그러므로 $0 < x < 2\pi$ 에서 방정식 f'(x) = 0의 해는

한편 $0 < x < 2\pi$ 에서 부등식 f(x) < 0

즉, $\sin x \cos x < 0$ 의 해를 구하면

 $\sin x > 0$, $\cos x < 0$ 인 모든 x의 값의 범위는 $\frac{\pi}{2} < x < \pi$

 $\sin x < 0$, $\cos x > 0$ 인 모든 x의 값의 범위는 $\frac{3}{2}\pi < x < 2\pi$

그러므로 $0 < x < 2\pi$ 에서 부등식 f(x) < 0의 해는

$$\frac{\pi}{2} < x < \pi$$
 또는 $\frac{3}{2}\pi < x < 2\pi$

따라서 ①, ⓒ을 동시에 만족시키는 모든 x의 값은 $\frac{3}{4}\pi$, $\frac{7}{4}\pi$ 이고 그 합은

$$\frac{3}{4}\pi + \frac{7}{4}\pi = \frac{5}{2}\pi$$

4

유제

정답과 **풀이** 19쪽

함수 $f(x) = e^x \cos x$ 에 대하여 $\lim_{x \to 0} \frac{f(x) - f'(x)}{x}$ 의 값은?

[22011-0055]

⑤ 1

10 $0 < x < \frac{\pi}{2}$ 에서 정의된 함수 $f(x) = \sin x - 2\cos x$ 에 대하여 곡선 y = f(x)와 x축이 만나는 점을 P [22011-0056] 라 할 때, 곡선 y=f(x) 위의 점 P에서의 접선의 기울기는?

① 1

 \bigcirc $\sqrt{2}$

③ √3

(4) 2

⑤ √5

Level 기초 연습

[22011-0057]

- $\lim_{x\to 0}\frac{e^{2x}\!-\!2^{2x}}{x}$ 의 값은?
 - ① $2-3 \ln 2$
- ② 2-ln 6
- $32-2 \ln 2$
- $4) 2 \ln 2$
- (5) 2

- $\lim_{x \to -1} \frac{\ln(x^2 + 2x + a)}{b(x+1)^2} = \frac{1}{4}$ 일 때, a+b의 값은? (단, a, b는 상수이고 a > 1, $b \neq 0$ 이다.)
 - 1)6
- 2 7
- 3 8
- **4** 9
- ⑤ 10

[22011-0059]

함수 $f(x)=(x^2-4x-4)e^x$ 에 대하여 방정식 f'(x)=0의 서로 다른 두 실근을 α , β 라 할 때, $\alpha^2+\beta^2$ 의 값 을 구하시오.

[22011-0060]

- 함수 $f(x)=e^x(e^x-1)$ 에 대하여 곡선 y=f(x)와 직선 y=2가 만나는 점을 P라 할 때, 곡선 y=f(x) 위의 점 P에서의 접선의 기울기는?
 - \bigcirc 2
- (2) 4
- 3 6
- **4** 8
- ⑤ 10

[22011-0061]

- 함수 $f(x)=x\ln kx$ 에 대하여 $\lim_{h\to 0} \frac{f(e+h)-f(e-h)}{h}=2$ 일 때, 양수 k의 값은?
- $2\frac{1}{e}$
- 3 1
- ④ e
- \bigcirc e^2

- $0<lpha<rac{\pi}{2}$ 인 lpha에 대하여 $\sinlpha=rac{1}{3}$ 일 때, $\cos\left(rac{5}{3}\pi+lpha
 ight)$ 의 값은?

- ① $\frac{2\sqrt{2}-\sqrt{3}}{6}$ ② $\frac{2\sqrt{3}-\sqrt{2}}{6}$ ③ $\frac{\sqrt{2}+\sqrt{3}}{6}$ ④ $\frac{2\sqrt{2}+\sqrt{3}}{6}$ ⑤ $\frac{\sqrt{2}+2\sqrt{3}}{6}$

[22011-0063]

- 이차방정식 $x^2+ax-2=0$ 의 서로 다른 두 실근이 $\tan \alpha$, $\tan \beta$ 이고 $\tan (\alpha+\beta)=\frac{2}{3}$ 일 때, 상수 a의 값은?
- ③ 0
- **4** 2

[22011-0064]

 $\lim_{x\to 0} \frac{x}{2x + \sin 2x}$ 의 값은? 8

4 2

(5) **4**

[22011-0065]

- $\lim_{x\to 0} \frac{\tan x \sin x}{\ln(1+x^3)}$ 의 값은?
 - $\textcircled{1} \frac{1}{4}$
- ② $\frac{1}{2}$
- ③ 1
- 4) 2
- (5) 4

곡선 $y=a\sin x+b\cos x$ 위의 점 $\left(\frac{\pi}{2},3\right)$ 에서의 접선의 기울기가 1일 때, a+b의 값은?

(단, a, b는 상수이다.)

- 1
- 2 2
- 3 3
- **4**
- **5** 5

Level 2 기본 연습

[22011-0067]

실수 전체의 집합에서 연속인 함수 f(x)가 $x>-\frac{1}{2}$ 인 모든 실수 x에 대하여

 $f(x) \ln(1+2x) = 4-ae^{-x}$

을 만족시킬 때, $a \times f(0)$ 의 값은? (단, a는 상수이다.)

4 8

5 10

[22011-0068]

다항함수 f(x)가 다음 조건을 만족시킨다.

$$(71) \lim_{x \to \infty} \frac{f(x)}{x^2} = 3$$

(나)
$$\lim_{x\to 0} \frac{\ln\{1+f(x)\}}{2x} = 3$$

f(2)의 값을 구하시오.

[22011-0069]

함수 $f(x) = \frac{4^{-x}}{\ln 2}$ 과 자연수 n에 대하여 $\sum_{n=1}^{\infty} f'(n)$ 의 값은?

- ① -1 ② $-\frac{5}{6}$ ③ $-\frac{2}{3}$ ④ $-\frac{1}{2}$ ⑤ $-\frac{1}{3}$

[22011-0070]

4 실수 t에 대하여 직선 y=x-t가 함수 $y=|\ln 3x|$ 의 그래프와 만나<mark>는 점의</mark> 개<mark>수를 f(t)라 하자.</mark> $\lim_{t\to a+} f(t) \neq \lim_{t\to a-} f(t)$ 를 만족시키는 모든 실수 α 의 값의 합은?

- ① $2-\ln 3$ ② $\frac{5}{3}-\ln 3$ ③ $\frac{4}{3}-\ln 3$ ④ $1-\ln 3$ ⑤ $\frac{2}{3}-\ln 3$

[22011-0071]

5 함수 $f(x)=2\sin x+\cos x$ 에 대하여 함수 y=f(x)의 그래프를 x축의 방향으로 α 만큼 평행이동한 그래프 가 점 $\left(\frac{\pi}{4}, 0\right)$ 을 지날 때, $\tan \alpha$ 의 값을 구하시오. $\left(\text{단}, 0 < \alpha < \frac{\pi}{2}\right)$

[22011-0072]

6 그림과 같이 중심이 제1사분면 위에 있고 $\frac{\text{반지름의}}{\text{UNHOOLY}}$ 길이가 2인 원 C가 직선 $y=\frac{4}{3}x$ 와 x축에 동시에 접한다. 직선 y=mx가 원 C와 서로 다른 두 점 P, Q에서 만나고, 두 직선 $y=\frac{4}{3}x$, y=mx가 이루는 예각의 크기가 $\frac{\pi}{4}$ 일 때, $\overline{\mathrm{PQ}}^{2}$ 의 값은? $\left(\mathrm{tt},\,m$ 은 상수이고, $0 < m < \frac{4}{3}$ 이다. $\right)$

1)8

(2) **9**

(4) 11

(5) 12

[22011-0073]

그림과 같이 $0 < t < \frac{\pi}{2}$ 인 실수 t에 대하여 원 $x^2 + y^2 = t^2$ 과 두 직선 $y = (\sin t)x$, $y = (\tan t)x$ 가 있다. 원 $x^2 + y^2 = t^2$ 과 직선 $y = (\sin t)x$ 가 만나는 점을 P라 하고, 원 위의 점 P에서의 접선이 직선 $y=(\tan t)x$ 와 만나는 점을 Q라 할 때, $\lim_{t\to 0+} \frac{\overline{\mathrm{PQ}}}{t^4}$ 의 값은?

① $\frac{1}{6}$

② $\frac{1}{3}$

 $4\frac{2}{3}$

[22011-0074]

함수 $f(x)=x\sin x$ 에 대하여 $\lim_{x\to\frac{\pi}{2}}\frac{xf'(x)-f(x)}{2x-\pi}$ 의 값은? 8

① $-\pi^2$ ② $-\frac{\pi^2}{2}$ ③ $-\frac{\pi^2}{4}$

[22011-0075]

0이 아닌 실수 t에 대하여 직선 y=t가 두 곡선 $y=\log_2 x$, $y=\log_a x$ (0 < a < 1)과 만나는 점을 각각 P, Q라 하고, 선분 PQ의 길이를 f(t)라 하자. $\lim_{t\to 0+} \frac{f(2t)-f(t)}{t} = 3 \ln 2$ 일 때, f'(1)-f'(-1)의 값은?

(단, a는 상수이다.)

① 8 ln 2

② 9 ln 2 3 10 ln 2

4 11 ln 2

(5) 12 ln 2

[22011-0076]

그림과 같이 정사각형 ABCD와 선분 DC를 지름으로 하는 반원이 있다. 반원 의 호 위의 점 E에 대하여 $\sin\left(\angle \text{EDC}\right) = \frac{4}{5}$ 일 때, $\tan\left(\angle \text{BEC}\right) = \frac{q}{p}$ 이다. p+q의 값을 구하시오.

(단, 점 E는 정사각형 ABCD의 외부에 있고, p와 q는 서로소인 자연수이다.)

[22011-0077]

그림과 같이 길이가 2인 선분 AB를 지름으로 하는 반원이 있다. 호 AB 위의 점 P에 대하여 선분 AP 위의 점 Q를 $\angle QAB = \angle QBA = \theta$ 가 되도록 잡는다. 선분 AB의 중점을 O라 할 때, 선분 QB와 선분 OP가 만나는 점을 R라 하자. 삼각형 PQR의 넓이를 $S(\theta)$ 라 할 때, $\lim_{\theta \to 0+} \frac{S(\theta)}{\theta}$ 의 값은? $\left(\text{단, } 0 < \theta < \frac{\pi}{4} \right)$

대표 기출 문제

도형에서 사인법칙, 코사인법칙, 삼각함수의 덧셈정리를 이용하는 문제, 도형의 성질을 이용하여 식을 구한 후 삼각함 수의 극한을 이용하여 극한값을 구하는 문제 등이 출제되고 있다.

그림과 같이 $\overline{AB}=2$, $\angle B=\frac{\pi}{2}$ 인 직각삼각형 ABC에서 중심이 A, 반지 름의 길이가 1인 원이 두 선분 AB, AC와 만나는 점을 각각 D, E라 하자. 호 DE의 삼등분점 중 점 D에 가까운 점을 F라 하고. 직선 AF가 선분 BC와 만나는 점을 G라 하자. ∠BAG=θ라 할 때. 삼각형 ABG의 내부 와 부채꼴 ADF의 외부의 공통부분의 넓이를 $f(\theta)$, 부채꼴 AFE의 넓이 A를 $g(\theta)$ 라 하자. $40 \times \lim_{\theta \to 0+} \frac{f(\theta)}{g(\theta)}$ 의 값을 구하시오. $\left(\text{단}, 0 < \theta < \frac{\pi}{6} \right)$ [3점]

2021학년도 대수능

(출제 의도) 부채꼴의 넓이와 삼각형의 넓이를 이용하여 삼각함수의 극한값을 구할 수 있는지를 묻는 문제이다.

풀이 부채꼴 AFE에서 ∠EAF=2θ이므로

$$g(\theta) = \frac{1}{2} \times 1^2 \times 2\theta = \theta$$

직각삼각형 ABG에서 $\overline{BG} = 2 \tan \theta$ 이므로

$$\begin{split} f(\theta) = & \frac{1}{2} \times \overline{AB} \times \overline{BG} - \frac{1}{2} \times 1^2 \times \theta \\ = & \frac{1}{2} \times 2 \times 2 \tan \theta - \frac{\theta}{2} \\ = & 2 \tan \theta - \frac{\theta}{2} \end{split}$$

따라서

$$\begin{split} 40 \times \lim_{\theta \to 0+} \frac{f(\theta)}{g(\theta)} &= 40 \times \lim_{\theta \to 0+} \frac{2 \tan \theta - \frac{\theta}{2}}{\theta} \\ &= 40 \times \lim_{\theta \to 0+} \left(\frac{2 \tan \theta}{\theta} - \frac{1}{2} \right) \\ &= 40 \times \lim_{\theta \to 0+} \left(\frac{2}{\cos \theta} \times \frac{\sin \theta}{\theta} - \frac{1}{2} \right) \\ &= 40 \times \left(\frac{2}{1} \times 1 - \frac{1}{2} \right) = 60 \end{split}$$

60

04 여러 가지 미분법

1. 함수의 몫의 미분법

두 함수 f(x) ($f(x) \neq 0$), g(x)가 미분가능할 때

(1)
$$y = \frac{1}{f(x)}$$
이면 $y' = -\frac{f'(x)}{\{f(x)\}^2}$

(2)
$$y = \frac{g(x)}{f(x)}$$
이면 $y' = \frac{g'(x)f(x) - g(x)f'(x)}{\{f(x)\}^2}$

설명 (1) 함수 $y = \frac{1}{f(x)}$ 에 대하여

$$y' = \lim_{\Delta x \to 0} \frac{\frac{1}{f(x + \Delta x)} - \frac{1}{f(x)}}{\Delta x} = -\lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} \times \lim_{\Delta x \to 0} \frac{1}{f(x + \Delta x)f(x)} = -\frac{f'(x)}{\{f(x)\}^2}$$

(2) 함수
$$y = \frac{g(x)}{f(x)}$$
에 대하여 $y = g(x) \times \frac{1}{f(x)}$ 이므로

$$y' = g'(x) \times \frac{1}{f(x)} + g(x) \times \left\{ \frac{1}{f(x)} \right\}' = \frac{g'(x)}{f(x)} - \frac{g(x)f'(x)}{\left\{ f(x) \right\}^2} = \frac{g'(x)f(x) - g(x)f'(x)}{\left\{ f(x) \right\}^2}$$

2. 함수 $y=x^n$ (n은 정수)의 도함수

n이 정수일 때. $y=x^n$ 이면 $y'=nx^{n-1}$

설명 n이 음의 정수일 때, n=-m (m은 양의 정수)로 놓으면

$$y' = (x^{n})' = (x^{-m})' = \left(\frac{1}{x^{m}}\right)' = -\frac{(x^{m})'}{(x^{m})^{2}} = -\frac{mx^{m-1}}{x^{2m}} = -mx^{-m-1} = nx^{n-1}$$

3. 삼각함수의 도함수

(1) $\csc \theta$, $\sec \theta$, $\cot \theta$ 의 정의

좌표평면의 원점 O에서 x축의 양의 방향을 시초선으로 정할 때, 일반각 θ 를 나타내는 동경과 원점 O를 중심으로 하고 반지름의 길이가 r인 원의 교점을 P(x,y)라 하면 $\csc\theta$, $\sec\theta$, $\cot\theta$ 를 다음과 같이 정의한다.

$$\csc \theta = \frac{r}{y} (y \neq 0)$$
, $\sec \theta = \frac{r}{x} (x \neq 0)$, $\cot \theta = \frac{x}{y} (y \neq 0)$

이 함수를 차례로 θ 에 대한 코시컨트함수, 시컨트함수, 코탄젠트함수라 한다.

(2) 삼각함수의 도함수

몫의 미분법을 이용하여 여러 가지 삼각함수의 도<mark>함수</mark>를 구할 수 있다.

①
$$y = \tan x$$
이면 $y' = \sec^2 x$

②
$$y = \cot x$$
이면 $y' = -\csc^2 x$

③
$$y = \sec x$$
이면 $y' = \sec x \tan x$

④
$$y = \csc x$$
이면 $y' = -\csc x \cot x$

설명 ① $\tan x = \frac{\sin x}{\cos x}$ 이므로

$$y' = \left(\frac{\sin x}{\cos x}\right)' = \frac{(\sin x)' \times \cos x - \sin x \times (\cos x)'}{\cos^2 x} = \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \frac{1}{\cos^2 x} = \sec^2 x$$

마찬가지 방법으로 몫의 미분법을 이용하여 ②. ③. ④의 삼각함수의 도함수를 구할 수 있다.

예제] 함수의 몫의 미분법

www.ebsi.co.kr

실수 전체의 집합에서 f(x)>0이고 미분가능한 함수 f(x)에 대하여 함수 g(x)를

$$g(x) = \frac{f(x)}{x^2 + 1}$$

라 하자. f'(1)=1, $g'(1)=\{2g(1)\}^2$ 일 때, f(1)의 값은?

- (4) 2
- (5) 4

풀이 전략

두 함수 f(x) $(f(x) \neq 0)$, g(x)가 미분가능할 때, $\left\{ \frac{g(x)}{f(x)} \right\}' = \frac{g'(x)f(x) - g(x)f'(x)}{\left\{ f(x) \right\}^2}$ 이다.

풀이

$$g(x) = \frac{f(x)}{x^2 + 1} \text{ on } g(1) = \frac{f(1)}{2}$$

$$g'(x) = \frac{f'(x) \times (x^2+1) - f(x) \times 2x}{(x^2+1)^2}$$

이고 f'(1)=1이므로

$$g'(1) = \frac{2f'(1) - 2f(1)}{4} = \frac{1 - f(1)}{2}$$
 ©

 \bigcirc , 으라 $g'(1) = \{2g(1)\}^2$ 에서

$$\frac{1-f(1)}{2} = \{f(1)\}^2$$

$$\{f(1)+1\}\{2f(1)-1\}=0$$

$$f(1) > 0$$
이므로 $f(1) = \frac{1}{2}$

2

유제

정답과 **풀이 26**쪽

할수 $f(x)=\frac{x+2}{x^2}$ 에 대하여 $\lim_{h\to 0}\frac{1}{h}\{f(2+h)-1\}$ 의 값은?

[22011–0078]

- ① $-\frac{1}{4}$ ② $-\frac{1}{2}$ ③ $-\frac{3}{4}$ ④ -1 ⑤ $-\frac{5}{4}$

함수 $f(x) = \tan x + \sec x$ 에 대하여 $f'(\alpha) = 2$ 인 모든 양수 α 를 작은 수부터 크기순으로 나열한 수 열을 $\{\alpha_n\}$ 이라 할 때, $f(\alpha_4)$ 의 값은?

- **4** 0
- (5) $\frac{\sqrt{3}}{2}$

04 여러 가지 미분법

4. 합성함수의 미분법

두 함수 y=f(u), u=g(x)가 미분가능할 때, 합성함수 y=f(g(x))도 미분가능하며 그 도함수는

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$$
 또는 $y' = f'(g(x))g'(x)$

설명 함수 u=g(x)에서 x의 증분 Δx 에 대한 u의 증분을 Δu 라 하고, 함수 y=f(u)에서 u의 증분 Δu 에 대한 y의 증분을 Δy 라 하면 $\frac{\Delta y}{\Delta x} = \frac{\Delta y}{\Delta u} \times \frac{\Delta u}{\Delta x} \; (\Delta u \neq 0)$ 이고, 두 함수 y = f(u), u = g(x)가 미분가능하므로

$$\lim_{\Delta y \to 0} \frac{\Delta y}{\Delta u} = \frac{dy}{du}, \lim_{\Delta x \to 0} \frac{\Delta u}{\Delta x} = \frac{du}{dx}$$

이때 미분가능한 함수 u=g(x)는 연속이므로 $\Delta u=g(x+\Delta x)-g(x)$ 에서 $\Delta x \rightarrow 0$ 이면 $\Delta u \rightarrow 0$ 이다.

따라서
$$\frac{dy}{dx} = \lim_{dx \to 0} \frac{\Delta y}{\Delta x} = \lim_{dx \to 0} \left(\frac{\Delta y}{\Delta u} \times \frac{\Delta u}{\Delta x} \right) = \lim_{du \to 0} \frac{\Delta y}{\Delta u} \times \lim_{dx \to 0} \frac{\Delta u}{\Delta x} = \frac{dy}{du} \times \frac{du}{dx}$$

또한
$$\frac{dy}{du} = f'(u) = f'(g(x))$$
이고, $\frac{du}{dx} = g'(x)$ 이므로

$$y' = \{f(g(x))\}' = f'(g(x))g'(x)$$

예 함수 $y=(x^2+1)^3$ 의 도함수를 구해 보자.

$$u=x^2+1$$
이라 하면 $y=u^3$ 이고 $\frac{dy}{du}=3u^2$, $\frac{du}{dx}=2x$ 이므로 $y'=\frac{dy}{du}\times\frac{du}{dx}=3u^2\times 2x=6x(x^2+1)^2$

참고 함수 f(x)가 미분가능할 때, 함수 $y = \{f(x)\}^n$ (n은 정수)는 미분가능하고 그 도함수는 $y' = n\{f(x)\}^{n-1}f'(x)$

5. 로그함수의 도함수

- (1) $y = \ln |x|$ 이면 $y' = \frac{1}{x}$
- (2) $y = \log_a |x| \ (a > 0, a \neq 1)$ 이면 $y' = \frac{1}{x \ln a}$
- (3) 미분가능한 함수 f(x)에 대하여 $f(x) \neq 0$ 일 때, $y = \ln|f(x)|$ 이면 $y' = \frac{f'(x)}{f(x)}$
- 설명 (1) 함수 $y=\ln |x|$ 의 정의역은 $\{x|x\neq 0$ 인 실수 $\}$ 이므로
 - (i) x > 0일 때, $y = \ln |x| = \ln x$ 이므로 $y' = \frac{1}{x}$
 - (ii) x < 0일 때, $y = \ln |x| = \ln (-x)$ 이므로 합성함수의 미분법에 의하여

$$y' = \frac{1}{-x} \times (-x)' = \frac{1}{-x} \times (-1) = \frac{1}{x}$$

(i), (ii)에 의하여 $y'=\frac{1}{x}$

6. 함수 $y=x^{\alpha}(\alpha = 24, x>0)$ 의 도함수

 α 가 실수일 때, $y=x^{\alpha}(x>0)$ 이면 $y'=\alpha x^{\alpha-1}$

설명
$$x^a = (e^{\ln x})^a = e^{a \ln x}$$
이므로 $y' = (e^{a \ln x})' = e^{a \ln x} (a \ln x)' = e^{a \ln x} \times \frac{a}{x} = x^a \times \frac{a}{x} = ax^{a-1}$

예제 2 합성함수의 미분법

www.ebsi.co.kr

함수 $f(x) = \sqrt{x+1}$ 에 대하여 함수 g(x)를

$$g(x) = \lim_{h \to 0} \frac{f(e^{x+h}) - f(e^x)}{h}$$

이라 할 때, $g(\ln 3)$ 의 값은?

 $4\frac{3}{4}$

 $(5) \frac{1}{2}$

풀이 전략

두 함수 f(x), g(x)가 미분가능할 때

(1)
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

(2) $\{f(g(x))\}'=f'(g(x))g'(x)$

풀이

함수 $k(x)=f(e^x)=\sqrt{e^x+1}$ 이라 하면 함수 k(x)의 정의역은 실수 전체의 집합이고, 두 함수 f(x)와 e^x 이 미분가능하 므로 함수 k(x)는 실수 전체의 집합에서 미분가능하고

$$g(x) = \lim_{h \to 0} \frac{f(e^{x+h}) - f(e^x)}{h} = \lim_{h \to 0} \frac{k(x+h) - k(x)}{h} = k'(x)$$

즉.

$$g(x) = (\sqrt{e^x + 1})' = \{(e^x + 1)^{\frac{1}{2}}\}' = \frac{1}{2}(e^x + 1)^{-\frac{1}{2}} \times (e^x + 1)' = \frac{e^x}{2\sqrt{e^x + 1}}$$

따라서

$$g(\ln 3) = \frac{e^{\ln 3}}{2\sqrt{e^{\ln 3} + 1}} = \frac{3}{4}$$

4

유제

정답과 풀이 27쪽

함수 $f(x) = \sin \pi x$ 에 대하여 $f'\left(\frac{1}{3}\right)$ 의 값은?

[22011-0080]

① $\frac{1}{2}$ ② $\frac{\sqrt{3}}{2}$ ③ $\frac{\pi}{2}$

 $4\frac{\sqrt{3}}{2}\pi$

 \odot π

양수 a와 함수 $f(x) = \ln(e^x + 1)$ 에 대하여 닫힌구간 [-a, a]에서 f'(x)의 최댓값이 $\frac{4}{5}$ 일 때, a의

[22011-0081]

값은?

① ln 2

② ln 3

③ 2 ln 2

4 ln 5

(5) ln 6

04 여러 가지 미분법

7. 매개변수로 나타낸 함수의 미분법

(1) 두 변수 x. y 사이의 관계를 변수 t를 매개로 하여

$$x=f(t), y=g(t)$$

로 나타낼 때 변수 t를 매개변수라 하고, 이 함수를 매개변수로 나타낸 함수라 한다.

- 예 함수 x=t+1, $y=t^2$ 은 함수 $y=(x-1)^2$ 을 매개<mark>변수 t로 나타낸 함수이다.</mark>
- (2) 매개변수 t로 나타낸 함수

$$x=f(t), y=g(t)$$

에서 두 함수 f(t), g(t)가 미분가능하고 $f'(t) \neq 0$ 일 때,

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{g'(t)}{f'(t)}$$

설명 매개변수 t의 증분 Δt 에 대한 x의 증분을 Δx , y의 증분을 Δy 라 하면

$$\frac{\Delta y}{\Delta x} = \frac{\frac{\Delta y}{\Delta t}}{\frac{\Delta x}{\Delta t}}$$

이때 x=f(t)는 t에 대하여 미분가능하고, $f'(t)\neq 0$ 이므로 $\Delta x \rightarrow 0$ 이면 $\Delta t \rightarrow 0$ 이다.

따라서
$$\frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta t \to 0} \frac{\frac{\Delta y}{\Delta t}}{\frac{\Delta x}{\Delta t}} = \lim_{\Delta t \to 0} \frac{\frac{\Delta y}{\Delta t}}{\frac{\Delta x}{\Delta t}} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{g'(t)}{f'(t)}$$

- 참고 함수 x=f(t)가 미분가능하고 $f'(t)\neq 0$ 일 때, 역함수가 존재하며 역함수는 연속임이 알려져 있다. 따라서 $\Delta x \rightarrow 0$ 일 때 $\Delta t \rightarrow 0$ 이다.
- 예 ① 매개변수 t로 나타낸 함수 x=2t+1, $y=t^3$ 에서 $\frac{dy}{dx}$ 를 구해 보자.

$$\frac{dx}{dt}$$
=2, $\frac{dy}{dt}$ =3 t^2 이旦로

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{3t^2}{2}$$

② 매개변수 t로 나타낸 함수 $x=e^t+1$, $y=e^{2t}+e^t$ 의 t=0에서의 미분계수를 구해 보자.

$$\frac{dx}{dt} = e^t$$
, $\frac{dy}{dt} = 2e^{2t} + e^t$ 이므로

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{2e^{2t} + e^{t}}{e^{t}} = 2e^{t} + 1 \qquad \cdots \cdots \bigcirc$$

따라서 주어진 함수의 t=0에서의 미분계수는 \bigcirc 에 t=0을 대입한 값과 같으므로

$$2e^0+1=2+1=3$$

예제 3 매개변수로 나타낸 함수의 미분법

www.ebsi.co.kr

매개변수 t로 나타낸 곡선 $x=e^{-2t}+1$, $y=6e^{-t}+t$ 에 대하여 $t=\alpha_1$, $t=\alpha_2$ $(\alpha_1<\alpha_2)$ 에 각각 대응하는 점에서의 접 선의 기울기가 모두 m이다. $\alpha_1 + \alpha_2 = 3 \ln 2$ 일 때, $m \times \alpha_2$ 의 값은? (단, m은 상수이다.)

① 2 ln 2

② 4 ln 2

③ 6 ln 2

④ 8 ln 2

⑤ 10 ln 2

매개변수 t로 나타낸 곡선 x=f(t), y=g(t)에 대하여 두 함수 f(t), g(t)가 미분가능하고 $f'(t)\neq 0$ 일 때, $\frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{t}}=\frac{g'(t)}{f'(t)}$ 이다.

풀이

$$x = e^{-2t} + 1 \text{ if } \frac{dx}{dt} = e^{-2t} \times (-2t)' = -2e^{-2t}$$

$$y = 6e^{-t} + t \text{ if } \frac{dy}{dt} = 6e^{-t} \times (-t)' + 1 = -6e^{-t} + 1$$

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{-6e^{-t} + 1}{-2e^{-2t}} = \frac{e^{2t} - 6e^{t}}{-2}$$

 $t=\alpha_1$ 에 대응하는 점에서의 접선의 기울기가 m이므로

$$\frac{e^{2\alpha_1}-6e^{\alpha_1}}{-2}=m, \stackrel{\text{\tiny def}}{=} (e^{\alpha_1})^2-6e^{\alpha_1}+2m=0$$

같은 방법으로 $(e^{a_2})^2 - 6e^{a_2} + 2m = 0$

방정식 $(e^a)^2 - 6e^a + 2m = 0$ 에서 $e^a = X$ 라 하면 $X^2 - 6X + 2m = 0$ 이고 이 이차방정식의 두 근이 e^a , e^a 이므로 근과 계수의 관계에 의하여

$$2m = e^{a_1} \times e^{a_2} = e^{a_1 + a_2} = e^{3 \ln 2} = e^{\ln 8} = 8, m = 4$$

$$(e^a)^2 - 6e^a + 8 = (e^a - 2)(e^a - 4) = 0$$
이므로 $e^a = 2$ 또는 $e^a = 4$

$$\alpha_1 < \alpha_2$$
이므로 $\alpha_1 = \ln 2$, $\alpha_2 = \ln 4 = 2 \ln 2$

따라서
$$m \times \alpha_2 = 4 \times 2 \ln 2 = 8 \ln 2$$

4

유제

정답과 풀이 27쪽

매개변수 t (t>0)으로 나타낸 함수 $x=(t+1)\sqrt{t}$, $y=t+\frac{1}{t}$ 에 대하여 t=4에서의 $\frac{dy}{dx}$ 의 값은 m이 [22011-0082] 다. 52m의 값을 구하시오.

매개변수 $\theta\left(\frac{\pi}{2}<\theta<\pi\right)$ 로 나타낸 곡선 $x=\cos^3\theta+\cos\theta$, $y=\sin^2\theta\cos\theta$ 위의 점 P에서의 접선의 기울기가 $\frac{1}{2}$ 일 때, 점 P의 y좌표는?

- ① $\frac{10}{27}$ ② $\frac{8}{27}$ ③ $-\frac{2}{9}$ ④ $-\frac{8}{27}$ ⑤ $-\frac{10}{27}$

04 여러 가지 미분법

8. 음함수의 미분법

(1) 음함수

방정식 f(x, y) = 0에서 x와 y의 값의 범위를 적당히 정하면 y는 x의 함수가 된다.

이와 같은 의미에서 x의 함수 y가 방정식

$$f(x, y) = 0$$

의 꼴로 주어졌을 때, x의 함수 y가 음함수 꼴로 주어졌다고 한다.

(2) 음함수의 미분법

x의 함수 y가 f(x, y) = 0의 꼴로 주어질 때, y = x의 함수로 보고 양변을 x에 대하여 미분하여 $\frac{dy}{dx}$ 를 구하 는 것을 음함수의 미분법이라 한다.

예 ① 음함수
$$x^2+y^2=1$$
에서 $\frac{dy}{dx}$ 를 구해 보자.

y를 x의 함수로 보고 양변을 x에 대하여 미분하면

$$\frac{d}{dx}(x^2) + \frac{d}{dx}(y^2) = \frac{d}{dx}(1)$$

합성함수의 미분법에 의하여

$$\frac{d}{dx}(y^2) = \frac{d}{dy}(y^2) \times \frac{dy}{dx} = 2y\frac{dy}{dx}$$

$$2x+2y\frac{dy}{dx}=0$$

따라서
$$\frac{dy}{dx} = -\frac{x}{y}$$
 (단, $y \neq 0$)

② 곡선 xy+y+3=0 위의 점 (2, -1)에서의 접선의 기울기를 구해 보자.

y를 x의 함수로 보고 양변을 x에 대하여 미분하면

$$\frac{d}{dx}(xy) + \frac{d}{dx}(y) + \frac{d}{dx}(3) = \frac{d}{dx}(0)$$

$$\frac{d}{dx}(xy) = \frac{d}{dx}(x) \times y + x \times \frac{d}{dx}(y) = y + x \frac{dy}{dx}$$

$$y + x \frac{dy}{dx} + \frac{dy}{dx} = 0$$

$$(x+1)\frac{dy}{dx} = -y$$

$$\frac{dy}{dx} = \frac{-y}{x+1}$$
(단, $x \neq -1$) ······ ①

따라서 점 (2, -1)에서의 접선의 기울기는 \bigcirc 에 x=2, y=-1을 대입한 값과 같으므로

$$\frac{-(-1)}{2+1} = \frac{1}{3}$$

예제 4 음함수의 미분법

www.ebsi.co.kr

곡선 $2x^2 + xy - y^2 = 2$ 위의 점 (a, 1)에서의 접선의 기울기가 m (m < 0)일 때, 두 상수 a, m에 대하여 a + m의 값은?

①
$$-\frac{41}{14}$$

$$2 - \frac{20}{7}$$
 $3 - \frac{39}{14}$ $4 - \frac{19}{7}$ $5 - \frac{37}{14}$

$$3 - \frac{39}{14}$$

$$4 - \frac{19}{7}$$

$$\bigcirc$$
 $-\frac{37}{14}$

풀이 전략

x의 함수 y가 f(x,y)=0의 꼴로 주어질 때, y를 x의 <mark>함수로</mark> 보고 양변을 x에 대하여 미분하여 $\dfrac{dy}{dx}$ 를 구한다.

점 (a, 1)이 곡선 $2x^2 + xy - y^2 = 2$ 위에 있으므로

$$2a^2+a-1=2$$
, $(a-1)(2a+3)=0$

$$a=1$$
 또는 $a=-\frac{3}{2}$

 $2x^2+xy-y^2=2$ 에서 y를 x의 함수로 보고 양변을 x에 대하여 미분하면

$$\frac{d}{dx}(2x^{2}) + \frac{d}{dx}(xy) - \frac{d}{dx}(y^{2}) = \frac{d}{dx}(2)$$

$$\frac{d}{dx}(xy) = \frac{d}{dx}(x) \times y + x \times \frac{d}{dx}(y) = y + x \frac{dy}{dx}, \quad \frac{d}{dx}(y^2) = \frac{d}{dy}(y^2) \times \frac{dy}{dx} = 2y \frac{dy}{dx}$$

$$4x + \left(y + x\frac{dy}{dx}\right) - 2y\frac{dy}{dx} = 0, (x - 2y)\frac{dy}{dx} = -4x - y$$

$$\frac{dy}{dx} = -\frac{4x+y}{x-2y}$$
 (단, $x \neq 2y$)

a=1일 때, 점 (1,1)에서의 접선의 기울기는 $-\frac{5}{-1}=5$

$$a=-rac{3}{2}$$
일 때, 점 $\left(-rac{3}{2},\,1
ight)$ 에서의 접선의 기울기는 $-rac{-5}{-rac{7}{2}}=-rac{10}{7}$

$$m < 0$$
이므로 $m = -\frac{10}{7}$ 이고 $a = -\frac{3}{2}$

따라서
$$a+m=-\frac{3}{2}+\left(-\frac{10}{7}\right)=-\frac{41}{14}$$

1

유제

정답과 풀이 28쪽

곡선 $x+\tan y=2$ 위의 점 $\left(1,\frac{\pi}{4}\right)$ 에서의 접선의 기울기는?

[22011-0084]

②
$$-\frac{3}{4}$$

$$2 - \frac{3}{4}$$
 $3 - \frac{1}{2}$ $4 - \frac{1}{4}$

$$(4) - \frac{1}{4}$$

[22011-0085]

곡선 $x+\log_2(x+y)=y$ 가 직선 y=x+2와 만나는 점을 P라 할 때, 이 곡선 위의 점 P에서의 접선 의 기울기는?

①
$$\frac{3 \ln}{3 \ln}$$

①
$$\frac{3 \ln 2 + 1}{3 \ln 2 - 1}$$
 ② $\frac{4 \ln 2 + 1}{4 \ln 2 - 1}$ ③ $\frac{5 \ln 2 + 1}{5 \ln 2 - 1}$ ④ $\frac{3 \ln 2 - 1}{3 \ln 2 + 1}$ ⑤ $\frac{4 \ln 2 - 1}{4 \ln 2 + 1}$

$$3\frac{5 \ln 2 + 1}{5 \ln 2 - 1}$$

$$4 \frac{3 \ln 2 - 1}{3 \ln 2 + 1}$$

04 여러 가지 미분법

9. 역함수의 미분법

미분가능한 함수 f(x)의 역함수 y=g(x)가 존재하고 이 역함수가 미분가능할 때

(1)
$$g'(x) = \frac{1}{f'(g(x))}$$
 (단, $f'(g(x)) \neq 0$) 또는 $\frac{dy}{dx} = \frac{1}{\frac{dx}{dy}}$ (단, $\frac{dx}{dy} \neq 0$)

(2)
$$f(a)=b$$
, 즉 $g(b)=a$ 이면 $g'(b)=\frac{1}{f'(a)}$ (단, $f'(a)\neq 0$)

설명 함수 f(x)의 역함수가 g(x)이므로

$$f(g(x)) = x$$

이 식의 양변을 x에 대하여 미분하면

$$f'(g(x))g'(x)=1$$

따라서

$$g'(x) = \frac{1}{f'(g(x))}$$
 (단, $f'(g(x)) \neq 0$)

참고 y=g(x)에서 x=f(y)이므로 이 식의 양변을 x에 대하여 미분하면

$$1 = \frac{d}{dx}f(y) = \frac{d}{dy}f(y) \times \frac{dy}{dx} = f'(y)\frac{dy}{dx} = \frac{dx}{dy} \times \frac{dy}{dx}$$

따라서
$$\frac{dy}{dx} = \frac{1}{\frac{dx}{dy}} \left(\text{단, } \frac{dx}{dy} \neq 0 \right)$$

예 함수 $f(x)=x^3+x$ 의 역함수를 g(x)라 할 때, g'(2)의 값을 구해 보자.

$$g(2) = a$$
라 하면 $f(a) = 2$

$$f(a) = a^3 + a = 2$$
 $|A| (a-1)(a^2 + a + 2) = 0$

$$a=1$$
 또는 $a^2+a+2=0$

이차방정식 $a^2+a+2=0$ 의 판별식을 D라 하면 $D=1^2-4\times1\times2=-7<0$ 이므로 이차방정식 $a^2+a+2=0$ 은 실근 을 갖지 않는다. 그러므로 a=1. 즉 f(1)=2이고 g(2)=1

$$f'(x)=3x^2+1$$
에서 $f'(1)=4$

따라서
$$g'(2) = \frac{1}{f'(1)} = \frac{1}{4}$$

10. 이계도함수

함수 f(x)의 도함수 f'(x)가 미분가능할 때, 함수 f'(x)의 도함수

$$\lim_{\Delta x \to 0} \frac{f'(x + \Delta x) - f'(x)}{\Delta x}$$

를 함수 y=f(x)의 이계도함수라 하고, 기호로 y'', f''(x), $\frac{d^2y}{dx^2}$, $\frac{d^2}{dx^2}$ f(x)와 같이 나타낸다.

예 함수 $y=x \ln x$ 의 이계도함수를 구해 보자.

$$y'=(x \ln x)'=1 \times \ln x + x \times \frac{1}{x} = \ln x + 1$$
이므로

$$y'' = (\ln x + 1)' = \frac{1}{x}$$

예제 5 역함수의 미분법

www.ebsi.co.kr

상수 a(a>0)에 대하여 함수 f(x)를 $f(x)=x^3+ax$ 라 하자. 함수 f(x)의 역함수 $f^{-1}(x)$ 에 대하여 $g(x)=f^{-1}(2x-1)$

이고 g(2)=1일 때, a+g'(2)의 값은?

- ① $\frac{6}{5}$
- 3 2

전략

미분가능한 함수 f(x)의 역함수 y=g(x)가 존재하고 미분가능할 때, $g'(x)=\frac{1}{f'(g(x))}($ 단, $f'(g(x))\neq 0)$

- 풀이
- $g(2)=f^{-1}(3)=1$ 에서 f(1)=3
- f(1)=1+a=3에서 a=2
- 이때 $f(x) = x^3 + 2x$ 이고 $f'(x) = 3x^2 + 2$ 이다.
- $g(x)=f^{-1}(2x-1)$ 에서

$$g'(x) = (f^{-1})'(2x-1) \times 2$$

이므로

$$g'(2) = (f^{-1})'(3) \times 2$$

$$=\frac{2}{f'(1)}$$

$$=\frac{2}{5}$$

 $=\frac{2}{5}$ 따라서 $a+g'(2)=2+\frac{2}{5}=\frac{12}{5}$

정답과 풀이 28쪽

함수 $f(x) = \frac{2}{1 + e^{x+1}}$ 의 역함수를 g(x)라 하자. 함수 $h(x) = \{g(x)\}^2$ 에 대하여 h'(1)의 값은?

[22011-0086]

- ① $\frac{1}{4}$
- ② $\frac{1}{2}$
- 4) 2
- (5) **4**

10

함수 $f(x) = x \sin 2x$ 에 대하여 $f''\left(\frac{3}{4}\pi\right)$ 의 값은?

- [22011-0087]
- (1) -3π
- $\bigcirc -2\pi$
- $^{\odot}$ π
- $\bigcirc 2\pi$
- \odot 3π

Level 기초 연습

[22011-0088]

1 함수 $f(x) = \frac{x^2 - 2x}{x+1}$ 에 대하여 f'(1)의 값은?

 $3\frac{1}{4}$

⑤ 1

[22011-0089]

실수 전체의 집합에서 미분가능한 두 함수 f(x), g(x)가 모든 실수 x에 대하여 $(g\circ f)(x)=e^{2x}$ 을 만족시킨 다. f(0)=1, f'(0)=2일 때, g'(1)의 값은?

 $\textcircled{1} \frac{1}{4}$

 $2\frac{1}{2}$

3 1

4 2

(5) **4**

[22011-0090]

함수 $f(x) = 2\sin^2 x - \cos^4 x$ 에 대하여 $f'(\frac{\pi}{4})$ 의 값은? 3

 $\bigcirc 1$

② $\frac{3}{2}$

⑤ 3

[22011-0091]

매개변수 t(t>0)으로 나타낸 함수 $x = \ln 2t, y = t^2 - 6t$

에 대하여 $\frac{dy}{dx}$ 의 최솟값은?

① $-\frac{15}{2}$ ② -6

[22011-0092]

- 5 곡선 $x\left(y+\frac{1}{2}\right)=e^{y}$ 위의 점 (2,0)에서의 접선의 기울기는?

 - ① -1 ② $-\frac{1}{2}$

- ⑤ 1

[22011-0093]

- 열린구간 $(-\pi, \pi)$ 에서 정의된 함수 f(x)= $\tan \frac{x}{2}$ 의 역함수를 g(x)라 할 때, $g'\left(f\left(\frac{\pi}{3}\right)\right)$ 의 값은?
 - $1 \frac{1}{2}$
- $2\frac{3}{4}$
- $4\frac{5}{4}$

실수 전체의 집합에서 미분가능하고 일대일대응인 함수 f(x)의 역함수를 g(x)라 하자.

$$\lim_{x\to 2} \frac{f(x)-3}{x-2} = 5$$
일 때, $g(3)+g'(3)$ 의 값은?

- ① $\frac{11}{5}$ ② $\frac{13}{5}$
- $4\frac{17}{5}$

[22011-0095]

- 함수 $f(x)=(x+1)e^x$ 에 대하여 $\lim_{h\to 0}\frac{f'(1-h)-f'(1)}{h}$ 의 값은? 8
- ② -2e
- 4 2e
- (5) 4*e*

[22011-0096]

- 함수 $f(x) = ax^2 + \sin\left(4x + \frac{\pi}{6}\right)$ 에 대하여 $f''\left(\frac{\pi}{3}\right) = 20$ 일 때, 상수 a의 값은?
 - 1)6
- **②** 5
- 3 4
- **4** 3
- **5** 2

Level 2 기본 연습

- 두 함수 $f(x)=2^{x^2+1}$, $g(x)=4^{x^2+1}$ 에 대하여 $\sum_{n=1}^5 \log_2 \frac{g'(n)}{f'(n)}$ 의 값은?
- 2 65
- 3 70
- (5) 80

 $2 \qquad \text{함수 } f(x) = \left\{ \begin{array}{l} \frac{\ln{(1+x^2)}}{x} \; (x \neq 0) \\ a \qquad (x = 0) \end{array} \right. \text{이 실수 전체의 집합에서 연속이고 } b = f'(a)$ 라 할 때, f'(b)의 값은?

(단. a는 상수이다.)

- 1
- $2\frac{8}{5} 4 \ln \frac{5}{4}$ $31 \ln 2$ $4\frac{2}{5} \frac{\ln 5}{4}$ $5\frac{1}{5} \frac{\ln 10}{9}$

매개변수 t(t>0)으로 나타낸 곡선 $x = \frac{2}{3}t\sqrt{t}, y = \frac{1}{2}t^2 + at$

에 직선 y=-2가 점 (b,-2)에서 접할 때, ab의 값은? (단, a는 상수이다.)

- ⑤ $\frac{8\sqrt{2}}{3}$

- 열린구간 $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$ 에서 정의된 함수 $f(x)=(x-a)|\tan x-1|$ 이 $-\frac{\pi}{2}< x<\frac{\pi}{2}$ 인 모든 실수 x에 대하여 미분가능할 때, f'(-a)의 값은? (단, a는 상<mark>수이다.)</mark>

 - ① $\frac{\pi}{2} + 1$ ② $\frac{\pi}{4} + 2$ ③ $\frac{\pi}{2} + 2$
- $4\pi+1$
- ⑤ $\pi + 2$

[22011-0101]

5 함수 $f(x)=e^{2x}-e^{-2x}+1$ 의 역함수를 g(x)라 할 때, 상수 a와 함수 g(x)가 다음 조건을 만족시킨다.

모든 실수 x에 대하여 $q'(x) \leq q'(a)$ 이다.

a+g'(a)의 값은?

- $2\frac{3}{2}$
- (4) 2
- $^{\circ}$ $\frac{9}{4}$

[22011-0102]

- 6 함수 $f(x) = \cos 3x - 2 \sin 3x$ 에 대하여 $0 \le x \le \pi$ 에서 방정식 f(x) = f''(x)의 해를 $\alpha_1, \alpha_2, \alpha_3 (\alpha_1 < \alpha_2 < \alpha_3)$ 이라 할 때, $\sin(3\alpha_1) - \sin(3\alpha_2) + \sin(3\alpha_3)$ 의 값은?

 - ① $\frac{\sqrt{5}}{5}$ ② $\frac{2\sqrt{5}}{5}$ ③ $\frac{3\sqrt{5}}{5}$ ④ $\frac{4\sqrt{5}}{5}$

- ⑤ √5

[22011-0103]

실수 전체의 집합에서 미분가능한 함수 f(x)에 대하여 함수 g(x)를

$$g(x) = \frac{f(x)+1}{\sin^2(\pi x)+1}$$

이라 할 때, 두 함수 f(x), g(x)가 다음 조건을 만족시킨다.

- (7) 모든 실수 x에 대하여 g(-x) = -g(x)이다.
- (\downarrow) f(-1)=f(0)+4, f'(-1)=f(1)+3

g'(1)의 값은?

- (1) -1
- ② -2
- $^{(3)}-3$
- (5) -5

[22011-0104]

- 양의 실수 t와 함수 $f(x) = \begin{cases} x^2 & (x < 0) \\ \log_2(x+1) & (x \ge 0) \end{cases}$ 에 대하여 직선 y = -2x + t가 함수 y = f(x)의 그래프와 만나는 두 점의 x좌표를 각각 $\alpha(t)$, $\beta(t)$ ($\alpha(t) > 0$, $\beta(t) < 0$)이라 하자, 매개변수 t (t > 0)으로 나타낸 곡선 $x=\alpha(t)$, $y=\beta(t)$ 에 대하여 x=3에 대응<mark>하는 점</mark>에서의 접선의 기울기는?

 $3 - \frac{8 \ln 2 + 1}{24 \ln 2}$

- $4 \frac{6 \ln 2 + 1}{24 \ln 2}$
- $(5) \frac{4 \ln 2 + 1}{24 \ln 2}$

[22011-0105]

이차함수 f(x)에 대하여 함수 g(x)를

$$g(x)=\ln|f(x)+1|$$

이라 하자. 두 함수 f(x), g(x)가 다음 조건을 만<mark>족시</mark>킬 때, g(3)의 값은?

- (가) 함수 g(x)는 실수 전체의 집합에서 미분가능하고, $\lim_{r \to 1} \frac{g(x)}{r-1} = 4$ 이다.
- (나) f(2)는 10보다 작은 자연수이다.
- ① ln 21
- ② ln 23
- ③ 2 ln 5
- (4) 3 ln 3
- (5) ln 29

[22011-0106]

- 두 함수 $f(x) = (x^2 + a)e^{-2x}$, $g(x) = x^3 + bx$ 는 각각 역함수가 존재하고 다음 조건을 만족시킨다.
 - (가) 함수 $f^{-1}(x)$ 는 x=c에서만 미분가능하지 않다.
 - (나) $h(x) = (f \circ g)(x)$ 라 할 때, $(h^{-1})'(f(0)) = -12e$ 이다.

 $\frac{c}{ab}$ 의 값을 구하시오. (단, a, b, c는 상수이다.)

[22011-0107]

3 양의 실수 t와 함수 $f(x)=\sin\left(\frac{\pi}{4}x\right)$ 에 대하여 점 $(t,\ f(t))$ 를 지나고 x축에 평행한 직선이 곡선 y=f(x)와 만나는 점 중에서 x좌표가 t보다 큰 점의 x좌표의 최솟값을 t_1 이라 할 때, $g(t)=t_1-t$ 라 하자. 함수 g(t)가 $t=\alpha$ $(\alpha>0)$ 에서 불연속인 모든 α 의 값을 작은 수부터 크기순으로 나열한 수열을 $\{\alpha_n\}$ 이라 할 때. 보기에 서 옳은 것만을 있는 대로 고른 것은?

- $\neg \alpha_1 + g(\alpha_1) = 10$
- ㄴ. 모든 자연수 k에 대하여 $g(a_k) \lim_{t \to a_k} g(t) = 8$ 이다.
- $= \sum_{k=1}^{10} \left\{ \lim_{t \to a_k} \frac{t a_k}{\sigma(\sqrt{t}) \sigma(\sqrt{a_k})} \right\}^2 = 200$
- \bigcirc
- ② ¬. L
- 3 7. ⊏
- ④ ∟, ⊏
- (5) 7, L, E

대표 기출 문제

함수의 몫의 미분법, 합성함수의 미분법, 역함수의 미분법을 이용하여 다항함수, 삼각함수, 지수함수, 로그함수의 도 함수를 구하는 문제, 매개변수 또는 음함수로 나타낸 곡선 위의 점에서의 접선의 기울기를 구하는 문제 등이 출제되 고 있다.

실수 전체의 집합에서 미분가능한 함수 f(x)가 모든 실수 x에 대하여

$$f(x^3+x)=e^x$$

을 만족시킬 때, f'(2)의 값은? [3점]

- (1) e

2022학년도 대수능

(출제 의도) 합성함수의 미분법을 이용하여 미분계수를 구할 수 있는지를 묻는 문제이다.

풀이 $f(x^3+x)=e^x$ 의 양변을 x에 대하여 미분하면

$$f'(x^3+x)\times(x^3+x)'=(e^x)'$$

$$f'(x^3+x)\times(3x^2+1)=e^x$$

$$f'(x^3+x) = \frac{e^x}{3x^2+1} \qquad \cdots \quad \bigcirc$$

$$x^3 + x = 2$$
에서

$$x^3 + x - 2 = 0$$

$$(x-1)(x^2+x+2)=0$$

$$x=1$$
 또는 $x^2+x+2=0$ ····· ©

이차방정식 $x^2+x+2=0$ 의 판별식을 D라 하면

$$D=1^2-4\times1\times2=-7<0$$

이므로 이차방정식 $x^2+x+2=0$ 을 만족시키는 실수는 존재하지 않는다.

그러므로 \bigcirc 에서 x=1이다.

따라서 \bigcirc 에 x=1을 대입하면

$$f'(2) = \frac{e}{4}$$

(4)

05 도함수의 활용

1. 접선의 방정식

미분가능한 함수 f(x)에 대하여 곡선 y=f(x) 위의 점 $\mathbf{P}(a,\,f(a))$ 에서의 접선의 방정식은

$$y-f(a)=f'(a)(x-a)$$

$$f(x)$$
= $\frac{1}{x}$ 이라 하면 $f'(x)$ = $-\frac{1}{x^2}$

곡선 y=f(x) 위의 점 (1, 1)에서의 접선의 기울기는 f'(1)=-1 따라서 구하는 접선의 방정식은 $y-1=-1\times(x-1)$, 즉 y=-x+2

$$\frac{dx}{dt} = e^t + 2, \ \frac{dy}{dt} = -e^{-t} + 3$$
이므로
$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{-e^{-t} + 3}{e^t + 2}$$

t=0에 대응하는 점에서의 접선의 기울기는 $\frac{-1+3}{1+2} = \frac{2}{3}$

따라서 구하는 접선의 방정식은 $y-1=\frac{2}{3}(x-1)$, 즉 $y=\frac{2}{3}x+\frac{1}{3}$

참고 ① 미분가능한 함수 f(x)에 대하여 곡선 y=f(x)에 접하고 기울기가 m인 접선의 방정식은 다음과 같이 구할 수 있다.

- (i) 접점의 좌표를 (t, f(t))로 놓는다.
- (ii) f'(t)=m을 만족시키는 t의 값을 구한다.
- (iii) 접선의 방정식 y-f(t)=m(x-t)를 구한다.
- ② 미분가능한 함수 f(x)에 대하여 곡선 y=f(x) 위에 있지 않은 점 (x_1,y_1) 에서 곡선 y=f(x)에 그은 접선의 방정 식은 다음과 같이 구할 수 있다.
 - (i) 접점의 좌표를 (t, f(t))로 놓고, 이 점에서의 접선의 방정식 y-f(t)=f'(t)(x-t)를 구한다.
 - (ii) 점 (x_1, y_1) 은 이 접선 위의 점이므로 (i)의 방정식에 $x=x_1, y=y_1$ 을 대입한다.
 - (ii) (ii)에서 실수 t의 값을 구한 후 (i)에 대입하여 접선의 방정식을 구한다.

2. 함수의 증가와 감소

(1) 함수의 증가와 감소

함수 f(x)가 어떤 구간에 속하는 임의의 두 실수 x_1, x_2 에 대하여

- ① $x_1 < x_2$ 일 때, $f(x_1) < f(x_2)$ 이면 함수 f(x)는 이 구간에서 증가한다고 한다.
- ② $x_1 < x_2$ 일 때, $f(x_1) > f(x_2)$ 이면 함수 f(x)는 이 구간에서 감소한다고 한다.
- (2) 미분가능한 함수의 증가와 감소의 판정

함수 f(x)가 어떤 열린구간에서 미분가능하고, 이 구간의 모든 실수 x에 대하여

- ① f'(x) > 0이면 함수 f(x)는 이 구간에서 증가한다.
- ② f'(x)<0이면 함수 f(x)는 이 구간에서 감소한다.

예제 1 접선의 방정식

www.ebsi.co.kr

점 (0, a)에서 함수 $y=e^{|x|-2}$ 의 그래프에 그은 두 접선이 서로 수직일 때, a의 값은? $\left(\text{단, }a<\frac{1}{a^2}\right)$

①
$$-2$$

$$2 - \frac{3}{2}$$
 $3 - 1$

$$(4) - \frac{1}{2}$$

풀이 전략

곡선 y=f(x) 위의 점 (t, f(t))에서의 접선의 방정식은 y-f(t)=f'(t)(x-t)이다.

풀이

 $f(x)=e^{|x|-2}$ 이라 하면 x<0에서 $f(x)=e^{-x-2}$, $x\ge 0$ 에서 $f(x)=e^{x-2}$ 이므로 함수 $y = e^{|x|-2}$ 의 그래프는 그림과 같다.

모든 실수 x에 대하여 f(-x)=f(x)이므로 함수 y=f(x)의 그래프는 y축에 대하여 대칭이다. 그러므로 y축 위의 점 (0, a)에서 함수 y=f(x)의 그래프에 그은 두 접선도 *y*축에 대하여 서로 대칭이다.

그러므로 점 (0, a)에서 함수 y=f(x)의 그래프에 그은 두 접선이 서로 수직이려면 두 접선 중 기울기가 양수인 직선이 x축의 양의 방향과 이루는 각의 크기가 45° , 즉 직선의 기울기가 1이어야 한다. 또한 이때의 접점의 x좌표를 t라 하면 t>0이다.

함수 y=f(x) (x>0)의 그래프 위의 점 (t, e^{t-2}) 에서의 접선의 기울기가 1이려면

$$f'(t) = e^{t-2} = 1$$
에서 $t = 2$

그러므로 함수 y=f(x)의 그래프 위의 점 (2,1)에서의 접선의 방정식은

$$y=1\times(x-2)+1, = y=x-1$$

점 (0, a)가 이 직선 위의 점이므로

$$a = 0 - 1 = -1$$

3

정답과 풀이 35쪽

함수 $f(x) = \cos 2x + 1$ 에 대하여 곡선 y = f(x) 위의 점 $\left(\frac{\pi}{4}, f\left(\frac{\pi}{4}\right)\right)$ 에서의 접선이 점 $\left(\frac{1}{2}, a\right)$ 를 지 [22011-0108] 날 때. a의 값은?

곡선 $x^2 - xy - 2y^2 = a^2$ (a > 0)이 x축과 만나는 두 점을 각각 P. Q라 하고, 이 곡선 위의 점 P. Q에 서의 접선을 각각 l_1 , l_2 라 하자, 두 직선 l_1 , l_2 사이의 거리가 4일 때, 상수 a의 값은?

(단, 점 P의 x좌표는 점 Q의 x좌표보다 작다.)

- ① 1
- \bigcirc $\sqrt{2}$
- ③ √3
- \bigcirc 2
- $(5)\sqrt{5}$

05 도함수의 활용

3. 함수의 극대와 극소

(1) 함수의 극대와 극소

함수 f(x)가 x=a를 포함하는 어떤 열린구간에 속하는 모든 실수 x에 대하여

- ① $f(x) \le f(a)$ 이면 함수 f(x)는 x=a에서 극대라 하고. f(a)를 극댓값이라 한다.
- ② $f(x) \ge f(a)$ 이면 함수 f(x)는 x=a에서 극소라 하고, f(a)를 극솟값이라 한다.
- ③ 극댓값과 극솟값을 통틀어 극값이라 한다.
- (2) 미분가능한 함수의 극대와 극소의 판정
 - ① 미분가능한 함수 f(x)에 대하여 f'(a)=0이고 x=a의 좌우에서 f'(x)의 부호가
 - \bigcirc 양에서 음으로 바뀌면 함수 f(x)는 x=a에서 극대이고, 극댓값은 f(a)이다.
 - ① 음에서 양으로 바뀌면 함수 f(x)는 x=a에서 극소이고, 극솟값은 f(a)이다.
 - ② 이계도함수가 존재하는 함수 f(x)에 대하여 f'(a)=0이고 f''(a) < 0이면 함수 f(x)는 x = a에서 극대이고. f''(a) > 0이면 함수 f(x)는 x = a에서 극소이다.

4. 곡선의 오목과 볼록

(1) 곡선의 오목과 볼록

닫힌구간 [a, b]에서 곡선 y=f(x) 위의 임의의 서로 다른 두 점 P, Q에 대하여 두 점 P, Q를 잇는 곡선 부분이

- ① 선분 PQ보다 항상 아래쪽에 있으면 곡선 y=f(x)는 이 구간에서 아래로 볼록 또는 위로 오목하다고 한다.
- ② 선분 PQ보다 항상 위쪽에 있으면 곡선 y=f(x)는 이 이 구간에서 위로 볼록 또는 아래로 오목하다고 한다.

- (2) 이계도함수를 이용한 곡선의 오목과 볼록의 판정
 - 이계도함수가 존재하는 함수 f(x)가 어떤 구간의 모든 x에 대하여
 - ① f''(x) > 0이면 곡선 y = f(x)는 이 구간에서 아래로 볼록하다.
 - ② f''(x) < 0이면 곡선 y = f(x)는 이 구간에서 위로 볼록하다.

5. 곡선의 변곡점

(1) 곡선의 변곡점

곡선 y=f(x) 위의 점 P(a, f(a))에 대하여 x=a의 좌우에서 곡선의 모양이 아래로 볼록에서 위로 볼록 으로 변하거나 위로 볼록에서 아래로 볼록으로 변할 때, f(a)점 P를 곡선 y=f(x)의 변곡점이라 한다.

(2) 이계도함수를 이용한 곡선의 변곡점의 판정 이계도함수가 존재하는 함수 f(x)에 대하여 f''(a)=0이고. x=a의 좌우에서 f''(x)의 부호가 바뀌면 점 (a, f(a))는 곡선 y=f(x)의 변곡점이다.

예제 2 함수의 극대와 극소

www.ebsi.co.kr

함수 $f(x) = \begin{cases} kx & (x < 1) \\ kx - \ln x & (x \ge 1) \end{cases}$ 이 극댓값 $\frac{1}{e}$ 을 가질 때, 함수 f(x)의 극솟값은? (단, k는 양의 상수이다.)

①
$$-\frac{1}{3}$$

$$2 - \frac{1}{4}$$

$$4\frac{1}{4}$$

$$(5) \frac{1}{3}$$

함수 f(x)가 x=a를 포함하는 어떤 열린구간에 속하<mark>는 모든</mark> 실수 x에 대하여 $f(x) \le f(a)$ 이면 함수 f(x)는 x=a에서 극대라 하고, f(a)를 극댓값이라 한다.

$$f(x) = \begin{cases} kx & (x<1) \\ kx - \ln x & (x \ge 1) \end{cases} \text{ odd}$$

 $\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} kx = k, \ \lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} (kx - \ln x) = \overline{k}, \ f(1) = k$

이므로 함수 f(x)는 x=1에서 연속이다.

$$x < 1$$
에서 $f'(x) = k$, $x > 1$ 에서 $f'(x) = k - \frac{1}{x} = \frac{kx - 1}{x}$

(i) $\frac{1}{h} \le 1$, 즉 $k \ge 1$ 일 때

x<1에서 f'(x)=k>0이고 x>1에서 f'(x)>0이므로 함수 f(x)는 실수 전체의 집합에서 증가한다. 이때 함수 f(x)는 극값을 갖는다는 조건을 만족시키지 않는다.

(ii) $\frac{1}{h} > 1$, 즉 0 < k < 1일 때

x<1에서 f'(x)=k>0이므로 함수 f(x)는 증가한다.

$$x>1$$
에서 $f'(x)=0$ 이면 $x=\frac{1}{b}$

실수 전체의 집합에서 함수 f(x)의 증가와 감소를 표 로 나타내면 오른쪽과 같다.

함수 f(x)는 x=1을 포함하는 어떤 열린구간에 속하 는 모든 실수 x에 대하여 $f(x) \le f(1)$ 이므로 함수

x		1	•••	$\frac{1}{k}$	•••
f'(x)	+	><	_	0	+
f(x)	1	k	\	$1+\ln k$	1

f(x)는 x=1에서 극대이고, 극댓값이 $\frac{1}{\rho}$ 이므로 $f(1)=k=\frac{1}{\rho}$

또 함수 f(x)는 $x=\frac{1}{k}$, 즉 x=e에서 극소이고, 극솟값은 $f(e)=1-\ln e=0$

(i), (ii)에 의하여 함수 f(x)의 극솟값은 0이다.

(3)

정답과 풀이 35쪽

함수 $f(x)=ax^2+\cos x$ 에 대하여 점 $P\left(\frac{2}{3}\pi,\ f\left(\frac{2}{3}\pi\right)\right)$ 가 곡선 y=f(x)의 변곡점일 때, 점 P에서의

접선이 x축, y축과 만나는 점을 각각 A, B라 하자. $\frac{\overline{OB}}{\overline{OA}}$ 의 값은? (단, a는 상수이고, O는 원점이다.)

①
$$\frac{2\pi - 3\sqrt{3}}{6}$$

$$2\pi - 3$$

①
$$\frac{2\pi - 3\sqrt{3}}{6}$$
 ② $\frac{2\pi - 3}{6}$ ③ $\frac{\pi + 3\sqrt{3}}{6}$ ④ $\frac{2\pi + 3}{6}$ ⑤ $\frac{2\pi + 3\sqrt{3}}{6}$

$$4 \frac{2\pi+3}{6}$$

$$(5) \frac{2\pi + 3\sqrt{3}}{6}$$

05 도함수의 활용

6. 함수의 그래프

함수 y=f(x)의 그래프의 개형은 다음과 같은 사항을 고려하여 그린다.

(1) 함수 f(x)의 정의역과 치역

- (2) 곡선 y = f(x)의 대칭성 $(y \stackrel{>}{\Rightarrow}$ 대칭, 원점 대칭)과 주기
- (3) 곡선 y=f(x)와 좌표축이 만나는 점
- (4) 함수 f(x)의 증가와 감소. 극대와 극소
- (5) 곡선 y=f(x)의 오목과 볼록, 변곡점
- (6) $\lim f(x)$, $\lim f(x)$, 곡선 y=f(x)의 점근선
- 예 함수 $y=\ln(x^2+1)$ 의 그래프의 개형을 그려 보자.

 $f(x) = \ln(x^2 + 1)$ 이라 하면 함수 f(x)의 정의역<mark>은 실수</mark> 전체의 집합이다.

$$f'(x) = \frac{2x}{x^2+1}$$
이므로 $f'(x) = 0$ 에서 $x = 0$

$$f''(x) = \frac{2(x^2+1)-2x\times 2x}{(x^2+1)^2} = \frac{-2(x+1)(x-1)}{(x^2+1)^2}$$
이므로 $f''(x) = 0$ 에서 $x = -1$ 또는 $x = 1$

실수 전체의 집합에서 함수 f(x)의 증가와 감소를 표로 나타내면 다음과 같다.

x	•••	-1	•••	0		1	
f'(x)	_	_	_	0	+	+	+
f''(x)	_	0	+	+	+	0	_
f(x)	J	ln 2	,	0)	ln 2	<u> </u>

모든 실수 x에 대하여 f(-x)=f(x)이고 f(0)=0이므로 곡선 y=f(x)는 원점을 지나고 y축에 대하여 대칭이다.

또한 $\lim_{x \to \infty} f(x) = \infty$, $\lim_{x \to \infty} f(x) = \infty$ 이다.

따라서 함수 $y=\ln(x^2+1)$ 의 그래프의 개형은 그림과 같다.

7. 함수의 최댓값과 최솟값

(1) 함수의 최댓값과 최솟값

함수 f(x)가 닫힌구간 [a, b]에서 연속이면 최대 · 최소 정리에 의하여 함수 f(x)는 이 구간에서 반드시 최 댓값과 최솟값을 갖는다.

(2) 함수의 최댓값과 최솟값 구하기

닫힌구간 [a, b]에서 연속인 함수 f(x)가 열린구간 (a, b)에서 극값을 가질 때, 극값, f(a), f(b) 중에서 가장 큰 값이 함수 f(x)의 최댓값, 가장 작은 값이 함수 f(x)의 최솟값이다.

예 닫힌구간 [0, 2]에서 함수 $f(x) = xe^{-x}$ 의 최댓값<mark>과 최솟</mark>값을 구해 보자.

$$f'(x) = e^{-x} + x \times (-e^{-x}) = (1-x)e^{-x}$$

f'(x)=0에서 x=1이고 x=1의 좌우에서 f'(x)의 부호가 양에서 음으로 바뀌므로 함수 f(x)는 x=1에서 극대이고, 극댓값은 $f(1)=\frac{1}{g}$ 이다.

또 f(0)=0, $f(2)=\frac{2}{e^2}$ 이다. 따라서 닫힌구간 [0,2]에서 함수 f(x)의 최댓값은 $\frac{1}{e}$, 최솟값은 0이다.

예제 3 함수의 최댓값과 최솟값

www.ebsi.co.kr

양의 실수 t와 함수 $f(x)=x^2\left(\ln\frac{x}{4}-\frac{1}{2}\right)$ 에 대하여 $x\geq t$ 에서 함수 f(x)의 최솟값을 g(t)라 하자. 두 상수 k, lpha (lpha
eq 0)에 대하여 $\{t \mid g(t) = k\} = \{t \mid 0 < t \leq lpha\}$ 일 때, |k imes lpha|의 값을 구하시오. (단, $\lim_{x \to 0+} f(x) = 0$)

풀이 전략

구간 $(0,\infty)$ 에서 함수 f(x)의 도함수 f'(x)를 이용하여 함수 $y{=}f(x)$ 의 그래프의 개형을 그린 후 구간 $[t,\infty)$ 에서 최솟값 g(t)를 구 한다.

함수 f(x)의 정의역은 $\{x|x>0\}$ 이다.

$$f(x) = x^2 \left(\ln \frac{x}{4} - \frac{1}{2} \right) \text{ on } f'(x) = 2x \times \left(\ln \frac{x}{4} - \frac{1}{2} \right) + x^2 \times \frac{\frac{1}{4}}{\frac{x}{4}} = 2x \ln \frac{x}{4}$$

$$f'(x) = 0$$
에서 $\ln \frac{x}{4} = 0$ 이므로 $x = 4$

x>0에서 함수 f(x)의 증가와 감소를 표로 나타내면 다음과 같다.

x	(0)		4	
f'(x)		_	0	+
f(x)		`	-8	1

이때 $\lim_{x\to 0} f(x) = 0$, $\lim_{x\to 0} f(x) = \infty$ 이므로 함수 y=f(x)의 그래프의 개형은 그림과 같다. 그러므로 $x \ge t$ 에서 함수 f(x)의 최솟값 g(t)는 다음과 같다.

므로
$$x \ge t$$
에서 함수 $f(x)$ 의
$$g(t) = \begin{cases} -8 & (0 < t \le 4) \\ f(t) & (t > 4) \end{cases}$$

따라서 k=-8. $\alpha=4$ 이므로

$$|k \times \alpha| = |-32| = 32$$

32

정답과 풀이 35쪽

함수 $f(x)=x+\frac{4}{x^2}$ 에 대하여 닫힌구간 [1,3]에서 함수 f(x)의 최댓값을 M, 최솟값을 m이라 할 [22011-0111] 때, M+m의 값을 구하시오.

실수 t와 함수 $f(x) = x^2 e^{-x}$ 에 대하여 함수 g(t)를 다음과 같이 정의한다.

[22011-0112]

f'(t) = 0이면 g(t) = 0.

 $f'(t) \neq 0$ 이면 곡선 y = f(x) 위의 점 (t, f(t))에서의 접선의 x절편을 g(t)라 한다.

단한구가 [-1, 1]에서 함수 a(t)의 최댓값과 최솟값의 함은 $m+n\sqrt{2}$ 이다. 30(m+n)의 값을 구하 시오. (단. *m*. *n*은 유리수이다.)

05 도함수의 활용

8. 방정식에의 활용

- (1) 방정식 f(x)=0의 서로 다른 실근의 개수 방정식 f(x)=0의 실근은 함수 y=f(x)의 그래프와 x축이 만나는 점의 x좌표와 같다. 따라서 방정식 f(x)=0의 서로 다른 실근의 개수는 함수 y=f(x)의 그래프가 x축과 만나는 점의 개수와 같다.
- (2) 방정식 f(x)=g(x)의 서로 다른 실근의 개수
 - ① 방정식 f(x) = g(x)의 실근은 두 함수 y = f(x), y = g(x)의 그래프가 만나는 점의 x좌표와 같다. 따라서 방정식 f(x)=g(x)의 서로 다른 실근의 개수는 두 함수 y=f(x), y=g(x)의 그래프가 만나는 점의 개수와 같다
 - ② 방정식 f(x)=g(x)에서 f(x)-g(x)=0이므로 방정식 f(x)=g(x)의 서로 다른 실근의 개수는 함수 y=f(x)-g(x)의 그래프와 x축이 만나는 점의 개수와 같다.
- 예 방정식 $x-\ln x-2=0$ 의 서로 다른 실근의 개수를 구해 보자. (단, $\lim (x-\ln x)=\infty$)

 $f(x) = x - \ln x - 2$ 로 놓으면 $f'(x) = 1 - \frac{1}{x} = \frac{x-1}{x}$ 이므로 f'(x) = 0에서 x = 1x>0에서 함수 f(x)의 증가와 감소를 표로 나타내면 다음과 같다.

\boldsymbol{x}	(0)		1	
f'(x)		P 7	0	+
f(x)			-1	1

함수 f(x)는 x=1에서 극소이고, 극솟값은 f(1)=-1이다. 또 $\lim_{x\to 0} f(x)=\infty$, $\lim_{x\to 0} f(x)=\infty$ 이다.

그러므로 함수 y=f(x)의 그래프는 그림과 같이 x축과 서로 다른 두 점에서 만난다. 따라서 방정식 $x - \ln x - 2 = 0$ 의 서로 다른 실근의 개수는 2이다.

9. 부등식에의 활용

- (1) 부등식 $f(x) \ge 0$ 또는 f(x) > 0이 성립함을 보이는 방법 함수 y=f(x)의 그래프를 이용하여 주어진 구간에서 부등식 $f(x) \ge 0$ 또는 f(x) > 0이 성립함을 보이면 된다.
- (2) 부등식 $f(x) \ge g(x)$ 또는 f(x) > g(x)가 성립함을 보이는 방법 함수 h(x) = f(x) - g(x)로 놓고 주어진 구간에서 부등식 $h(x) \ge 0$ 또는 h(x) > 0이 성립함을 보이면 된다.
- 예 $x \ge 0$ 인 모든 실수 x에 대하여 부등식 $x \ge \sin x$ 가 성립함을 보이자.

 $f(x)=x-\sin x$ 로 놓으면 $f'(x)=1-\cos x$

모든 실수 x에 대하여 $-1 \le \cos x \le 1$ 이므로 $0 \le 1 - \cos x \le 2$

 $f'(x) \ge 0$ 이고, $x = 2n\pi$ (n은 정수)에서만 f'(x) = 0이므로 함수 f(x)는 실수 전체의 집합 에서 증가한다.

이때 f(0) = 0이므로 $x \ge 0$ 일 때 $f(x) \ge f(0) = 0$. 즉 $x - \sin x \ge 0$ 이다. 따라서 $x \ge 0$ 인 모든 실수 x에 대하여 부등식 $x \ge \sin x$ 가 성립한다.

예제 4

방정식에의 활용

www.ebsi.co.kr

n이 자연수일 때, x에 대한 방정식 $(\ln x)^2 - \frac{n}{6x} = 0$ 의 서로 다른 실근의 개수가 3이 되도록 하는 모든 n의 값의 합 을 구하시오. (단, $7 < e^2 < 8$ 이고, $\lim_{x \to 0.1} x(\ln x)^2 = 0$ 이다.)

풀이 전략

방정식 f(x)=g(x)의 서로 다른 실근의 개수는 두 함수 y=f(x), y=g(x)의 그래프가 만나는 점의 개수와 같다.

 $(\ln x)^2 - \frac{n}{6x} = 0$ $\Rightarrow 6x(\ln x)^2 = n$

 $f(x) = 6x(\ln x)^2$ 이라 하면 방정식 $(\ln x)^2 - \frac{n}{6x} = 0$ 의 서로 다른 실근의 개<mark>수는 함</mark>수 y = f(x)의 그래프와 직선 y=n이 만나는 점의 개수와 같다.

$$f'(x) = 6(\ln x)^2 + 12x \ln x \times \frac{1}{x} = 6(\ln x + 2) \ln x$$

$$f'(x)$$
=0에서 $x=\frac{1}{e^2}$ 또는 $x=1$

x>0에서 함수 f(x)의 증가와 감소를 표로 나타내면 다음과 같다.

\boldsymbol{x}	(0)		$\frac{1}{e^2}$		1	
f'(x)		+	0	_	0	+
f(x)			$\frac{24}{e^2}$		0	

이때 $\lim_{x\to 0+} f(x) = 0$, $\lim_{x\to \infty} f(x) = \infty$ 이므로 함<mark>수 y=f(x)</mark>의 그래프는 <mark>그림과</mark> 같다<mark>.</mark>

함수 y=f(x)의 그래프와 직선 y=n이 만나<mark>는 점</mark>의 개수가 3이려면 $0 < n < \frac{24}{e^2}$

 $7 < e^2 < 8$ 에서 $3 < \frac{24}{e^2} < \frac{24}{7}$ 이므로 자연수 n이 될 수 있는 값은 1, 2, 3이다.

따라서 모든 n의 값의 합은

1+2+3=6

3 6

정답과 풀이 36쪽

x에 대한 방정식 $x+ke^{-x}=0$ 의 실근<mark>이 존</mark>재하도록 하는 <mark>실수 k의 최댓값은</mark>? (단, $\lim_{x\to -\infty}xe^x=0$)

[22011-0113] $1 - \frac{2}{e}$ $2 - \frac{1}{e}$ $3 \frac{1}{e}$ $4 \frac{2}{e}$ $5 \frac{4}{e}$

7 $0 \le x < \frac{\pi}{2}$ 인 모는 실구 $x \le \eta \le \eta \le \eta \le \eta$ 이다. p+q의 값을 구하시오. (단, p와 q는 서로소인 자연수이다.) $0 \le x < rac{\pi}{2}$ 인 모든 실수 x에 대하여 부등식 $an x - \sqrt{3} \ge 4x - k$ 가 성립하도록 하는 실수 k의 최솟값

05 도함수의 활용

10. 속도와 가속도

- (1) 수직선 위를 움직이는 점 P의 시각 t에서의 위치 x가 x=f(t)일 때. 점 P의 시각 t에서의 속도 v와 가속도 a는 다음과 같다.
 - ① 속도: $v = \frac{dx}{dt} = f'(t)$

② 가속도:
$$a = \frac{dv}{dt} = f''(t)$$

(2) 좌표평면 위를 움직이는 점 P의 시각 t에서의 위치 (x, y)가

$$x=f(t), y=g(t)$$

일 때, 점 P의 시각 t에서의 속도와 속력, 가속도와 가속도의 크기는 다음과 같다.

① 속도:
$$\left(\frac{dx}{dt}, \frac{dy}{dt}\right)$$
 또는 $(f'(t), g'(t))$

속력:
$$\sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} = \sqrt{\{f'(t)\}^2 + \{g'(t)\}^2}$$

② 가속도: $\left(\frac{d^2x}{dt^2}, \frac{d^2y}{dt^2}\right)$ 또는 (f''(t), g''(t))

가속도의 크기:
$$\sqrt{\left(\frac{d^2x}{dt^2}\right)^2 + \left(\frac{d^2y}{dt^2}\right)^2} = \sqrt{\{f''(t)\}^2 + \{g''(t)\}^2}$$

- 설명 좌표평면 위를 움직이는 점 P의 시각 t에서의 위치 x=f(t), y=g(t)가 t의 함수이고 점 P에서 x축. y축에 내린 수선의 발을 각각 Q. R라 하면 점 P가 움직일 때 두 점 Q. R는 각각 x축. y축 위에서 직선 운동을 한다.
 - ① 두 점 Q. R의 시각 t에서의 속도는 각각

$$\frac{dx}{dt} = f'(t), \frac{dy}{dt} = g'(t)$$

이므로 좌표평면 위를 움직이는 점 P의 속도를 $\left(\frac{dx}{dt},\frac{dy}{dt}\right)$ 또는 (f'(t),g'(t))로

나타내고

$$\sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} = \sqrt{\{f'(t)\}^{2} + \{g'(t)\}^{2}}$$

을 속도의 크기 또는 속력이라 한다.

② 두 점 Q. R의 시각 t에서의 가속도는 각각

$$\frac{d^2x}{dt^2} = f''(t), \frac{d^2y}{dt^2} = g''(t)$$

이므로 좌표평면 위를 움직이는 점 P의 가속도를 $\left(\frac{d^2x}{dt^2}, \frac{d^2y}{dt^2}\right)$ 또는 (f''(t), g''(t))로 나타내고

$$\sqrt{\left(\frac{d^2x}{dt^2}\right)^2 + \left(\frac{d^2y}{dt^2}\right)^2} = \sqrt{\{f''(t)\}^2 + \{g''(t)\}^2}$$

의 가속도의 크기라 한다.

에 $\sqrt{2}$ 좌표평면 위를 움직이는 점 P의 시각 t에서의 위치 (x,y)가 $x=3t,y=2t^2$ 일 때, 시각 t에서의 점 P의 속력과 가 속도의 크기를 구해 보자.

$$\frac{dx}{dt}$$
=3, $\frac{dy}{dt}$ =4t이므로 시각 t에서의 점 P의 속력은 $\sqrt{\left(\frac{dx}{dt}\right)^2+\left(\frac{dy}{dt}\right)^2}$ = $\sqrt{3^2+(4t)^2}$ = $\sqrt{16t^2+9t^2}$

$$\frac{d^2x}{dt^2}$$
 = 0, $\frac{d^2y}{dt^2}$ = 4이므로 시각 t 에서의 점 P의 가속도의 크기는 $\sqrt{\left(\frac{d^2x}{dt^2}\right)^2 + \left(\frac{d^2y}{dt^2}\right)^2}$ = $\sqrt{0^2 + 4^2}$ = 4

예제 5 속도와 가속도

www.ebsi.co.kr

좌표평면 위를 움직이는 점 P의 시각 t(t>0)에서의 위치 (x, y)가

$$x=4t, y=e^{2t}+4e^{-t}$$

이다. t>0에서 점 P의 속력이 최소인 시각에서의 점 P의 가속도의 크기는?

(1) $2\sqrt[3]{4}$

② $4\sqrt[3]{2}$

 $3) 4\sqrt[3]{4}$

 $4) 6\sqrt[3]{2}$

(5) $6\sqrt[3]{4}$

좌표평면 위를 움직이는 점 P의 시각 t에서의 위치 (x,y)가 x=f(t),y=g(t)일 때, 점 P의 시각 t에서의 속력, 가속도의 크기는 다음

(1) 속력:
$$\sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} = \sqrt{\{f'(t)\}^2 + \{g'(t)\}^2}$$

(2) 가속도의 크기:
$$\sqrt{\left(\frac{d^2x}{dt^2}\right)^2 + \left(\frac{d^2y}{dt^2}\right)^2} = \sqrt{\{f''(t)\}^2 + \{g''(t)\}^2}$$

풀이

$$x=4t$$
 에서 $\frac{dx}{dt}=4$, $\frac{d^2x}{dt^2}=0$

$$y=e^{2t}+4e^{-t}$$
 $\frac{dy}{dt}=2e^{2t}-4e^{-t}$, $\frac{d^2y}{dt^2}=4e^{2t}+4e^{-t}$

시각 t에서의 점 P의 속력은

$$\sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} = \sqrt{4^2 + (2e^{2t} - 4e^{-t})^2} = \sqrt{4^2 + 4(e^{2t} - 2e^{-t})^2}$$

이므로 점 P의 속력이 최소이려면 $e^{2t}-2e^{-t}=0$ 에서 $e^{3t}=2$, $t=\frac{1}{3}\ln 2$

시각 t에서의 점 P의 가속도의 크기는

$$\sqrt{\left(\frac{d^2x}{dt^2}\right)^2 + \left(\frac{d^2y}{dt^2}\right)^2} = \sqrt{0^2 + \left(4e^{2t} + 4e^{-t}\right)^2} = 4e^{2t} + 4e^{-t}$$

따라서 시각 $t = \frac{1}{3} \ln 2$ 에서의 점 P의 가속도의 크기는

$$4e^{\frac{2}{3}\ln 2} + 4e^{-\frac{1}{3}\ln 2} = 4 \times 2^{\frac{2}{3}} + 4 \times 2^{-\frac{1}{3}} = 4 \times 2^{\frac{2}{3}} + 2 \times 2^{\frac{2}{3}} = 6 \times 2^{\frac{2}{3}} = 6\sqrt[3]{4}$$

(5)

정답과 풀이 37쪽

좌표평면 위를 움직이는 점 P의 시각 t(t>0)에서의 위치 (x, y)가 $x=t+\sin t$, $y=\cos 2t$ 이다. 시각 $t=\frac{\pi}{2}$ 에서의 점 P의 가속도의 <mark>크기는</mark>?

① $\sqrt{13}$

 $\bigcirc \sqrt{14}$

 $(3)\sqrt{15}$

4 4

 \bigcirc $\sqrt{17}$

좌표평면 위를 움직이는 점 P의 시각 t(t>0)에서의 위치 (x, y)가 $x=at-\ln t$, $y=\ln t$ 이다. t>0에서 점 P의 속력의 최솟값이 2일 때, 상수 a의 값은? (단, a > 0)

 \bigcirc $\sqrt{5}$

 $\bigcirc \sqrt{6}$

③ √7

(4) $2\sqrt{2}$

(5) 3

[22011-0117]

직선 y=mx가 곡선 $y=\ln x$ 에 접할 때, 상수 m의 값은?

- ① $\frac{1}{2e}$ ② $\frac{1}{e}$
- ④ e
- (5) 2e

[22011-0118]

매개변수 t로 나타낸 곡선 $x=e^{t-1}$, $y=e^{-2t}+t$ 에 대하여 t=0에 대응하는 점에서의 접선이 점 (1,a)를 지날 때. a의 값은?

- ① -e+1 ② -e+2
- ③ e
- $^{(4)}e+1$
- ⑤ e+2

[22011-0119]

함수 $f(x)=x+\frac{4}{x}$ 의 극댓값을 α , 극솟값을 β 라 할 때, $\alpha-\beta$ 의 값은?

- **4 4**

5 8

[22011-0120]

함수 $f(x)=e^{\sin 3x+kx}$ 의 극값이 존재하도록 하는 정수 k의 개수는?

- (1) 1
- ③ 3
- (4) **4**

(5) 5

국선 $y = \frac{1}{x^2 + 1}$ 의 두 변곡점을 각각 A, B라 <mark>할 때</mark>, 삼각형 OAB의 넓이는? (단, O는 원점이다.)

- ① $\frac{\sqrt{3}}{8}$ ② $\frac{\sqrt{3}}{4}$ ③ $\frac{3\sqrt{3}}{8}$ ④ $\frac{\sqrt{3}}{2}$

[22011-0122]

6 함수 $f(x) = \cos x + x \sin x$ 에 대하여 닫힌구간 $[0, 2\pi]$ 에서 함수 f(x)의 최댓값을 M, 최솟값을 m이라 할 때, $M \times m$ 의 값은?

$$2 - \frac{3}{4}\pi^2$$

$$3 - \frac{1}{2}\pi$$

$$(4) - \frac{1}{4}\pi$$

[22011-0123]

x에 대한 방정식 $x=\ln 3x+k$ 가 오직 하나의 실근을 갖도록 하는 상수 k의 값은?

(단, $\lim_{x\to\infty}(x-\ln 3x)=\infty$)

$$2 \ln \frac{e}{3}$$

$$4 \ln \frac{3}{e}$$

$$5 \ln \frac{e}{2}$$

[22011-0124]

- 모든 실수 x에 대하여 부등식 $ke^{x-2} \ge x$ 가 <mark>성립하도록</mark> 하는 실수 k의 최솟값은? (단, $\lim_{x \to \infty} xe^{-x} = 0$)
 - $\bigcirc \frac{1}{\varrho}$
- $2\frac{2}{e}$
- ③ 1
- ④ e
- (5) 2e

[22011-0125]

9 좌표평면 위를 움직이는 점 \mathbf{P} 의 시각 t (t>0)에서의 위치 (x,y)가 $x=e^{t}+e^{-t}, y=e^{t}-e^{-t}$ 이다. 시각 $t=\ln 2$ 에서의 점 P의 속력은?

$$2 \frac{\sqrt{30}}{2}$$

③
$$2\sqrt{2}$$

$$\textcircled{4} \frac{\sqrt{34}}{2}$$

⑤ 3

Level 2 기본 연습

[22011-0126]

구간 $(0, \infty)$ 에서 이계도함수를 갖는 함수 f(x)에 대하여 f'(1)=0이고 $f''(x)=-x+\frac{a}{x}+2$ 일 때, 함수 f(x)가 x=1에서 극대가 되도록 하는 정수 a의 최댓값은?

(4) 1

(5) 2

[22011-0127]

2 함수 $f(x) = \left(\frac{1}{5}x^2 - x + a\right)\sqrt{x}$ 가 x = 2에서 극값을 가질 때, 함수 f(x)의 극댓값은? (단, a는 상수이다.)

- ① $\frac{4\sqrt{2}}{5}$ ② $\frac{6}{5}$ ③ $\frac{8}{5}$ ④ $\frac{6\sqrt{2}}{5}$
- **⑤** 2

3 그림과 같이 양의 실수 t에 대하여 원점 O와 점 A(t, 0)을 이은 선분 OA를 1: 2로 내분하는 점을 B라 하고, 점 B를 지나고 x축에 수직인 직선이 곡선 $y=e^{-x}$ 과 만나는 점을 C라 할 때, 삼각형 OAC의 넓이의 최댓값은?

 $2\frac{1}{e}$

 $3\frac{5}{4e}$

 $4\frac{3}{2e}$

 $\bigcirc \frac{7}{4e}$

[22011-0129]

함수 $f(x)=ax+\ln(3x+1)+2$ 의 역함수를 g(x)라 하자. 함수 y=g(x)의 <mark>그래프가</mark> x축과 만나는 점을 A 라 하고, 함수 y=g(x)의 그래프 위의 점 A에서의 접선이 점 (7,1)을 지날 때, 상수 a의 값은? (단, a>0)

 $1 \frac{1}{2}$

2 1

 $3\frac{3}{2}$

4) 2

 $(5) \frac{5}{2}$

[22011-0130]

5 x에 대한 방정식 $x+8-kxe^x=0$ 의 모든 실근이 1보다 작도록 하는 10 이하의 자연수 k의 개수는?

(단, $\lim_{x\to-\infty} xe^x = 0$ 이고, $\frac{5}{2} < e < 3$ 이다.)

1) 5 [22011-0131] 4 8 **5** 9

좌표평면 위를 움직이는 점 P의 시각 $t\left(0 < t < \frac{\pi}{2}\right)$ 에서의 위치 (x,y)가 6 $x=\ln(\cos t)$, $y=3\sin t$

이다. $0 < t < \frac{\pi}{2}$ 에서 점 P의 속력이 최소인 시각이 $t = \alpha$ 일 때, 시각 $t = \alpha$ 에서의 점 P의 가속도의 크기는?

- ① 3
- ② $2\sqrt{3}$
- $\sqrt{3}\sqrt{15}$
- $4) 3\sqrt{2}$
- $(5)\sqrt{21}$

- 양의 실수 t에 대하여 곡선 $y=t(\ln x)^2$ 이 <mark>곡선 $y=kx^2$ 과 서로 다른 두 점에서만 만</mark>나도록 하는 실수 k의 값 을 f(t)라 하자. $\frac{f'(\alpha)}{f(2\alpha)} = 6$ 을 만족시키는 양수 α 의 값은? (단, $\lim_{x\to\infty}\frac{\ln x}{x} = 0$)

 - ① $\frac{1}{15}$ ② $\frac{1}{12}$ ③ $\frac{1}{9}$ ④ $\frac{1}{6}$ ⑤ $\frac{1}{3}$

[22011-0133]

함수 f(x)의 도함수 f'(x)가 $f'(x) = ae^{\sin(ax)}$ 일 때, 다음 조건을 만족시키는 정수 a의 최솟값은? 8

(가) $0 \le x_1 < x_2 \le \frac{\pi}{4}$ 인 모든 x_1, x_2 에 대하여 $f(x_1) < f(x_2)$ 이다.

- (나) $0 < x_3 < x_4 < \frac{\pi}{4}$ 인 어떤 x_3 , x_4 에 대하<mark>여 $f'(x_3) > f'(x_4)$ 이다.</mark>
- ① -1
- 20
- 3 1
- 4 2
- **(5)** 3

[22011-0134]

다음 조건을 만족시키는 음이 아닌 두 실수 a, b에 대하여 a+b의 값이 최소가 되도록 하는 a의 값을 a_1 , b의 값을 b_1 이라 하자. $a_1 \times b_1$ 의 값은?

 $x \ge 0$ 인 모든 실수 x에 대하여 부등식 $2\sin\left(\frac{\pi}{4}x\right) \le ax + b$ 가 성립한다.

① $\frac{\pi}{2}(4-\pi)$ ② $\frac{\pi}{4}(4-\pi)$ ③ $\frac{\pi}{6}(4-\pi)$ ④ $\frac{\pi}{8}(4-\pi)$ ⑤ $\frac{\pi}{10}(4-\pi)$

[22011-0135]

최고차항의 계수가 -1이고 f(0)=1인 삼차함수 f(x)에 대하여 함수 $g(x)=\sin(\pi f(x))$ 가 다음 조건을 만족시킨다.

(r) 함수 q(x)는 x=0에서 극소이다.

(나) 함수 g(x)가 x=a에서 최대가 되는 모든 양수 α 를 작은 수부터 크기순으로 나열한 수열을 $\{\alpha_u\}$ 이라 할 때. $\alpha_2 = 1$ 이다.

f(-4)의 값을 구하시오.

[22011-0136]

3 두 상수 a, b (a>1, b>0)에 대하여 실수 전체의 집합에서 미분가능한 함수 f(x)를

$$f(x) = \begin{cases} x^2 + ax & (x \le 0) \\ bxe^{-x} + x & (x > 0) \end{cases}$$

이라 하자. 실수 t에 대하여 점 P(t, f(t))와 직선 y=x 사이의 거리를 g(t)라 할 때. 두 함수 f(x), g(t)에 대한 설명으로 보기에서 옳은 것만을 있는 대로 고른 것은? (단, $\lim xe^{-x} = 0$)

ㄱ. a=2일 때, $g(1)=\frac{\sqrt{2}}{2\rho}$ 이다.

L. 함수 g(t)가 t=-2에서 극소일 때, $a+\frac{b=5}{0}$ 이다.

ㄷ. 함수 g(t)가 $t=\alpha$ 에서 극대이고 집합 $\{t \mid g(t)=g(\alpha)\}$ 의 원소의 개수가 3일 때, $\alpha+b=1+\frac{6}{\alpha}$ 이다.

(1) ¬

② 7. L

③ 7. ⊏

4) ١, ٢

⑤ つ. し. こ

삼각함수, 지수함수, 로그함수에 대하여 접선의 방정식, 함수의 극댓값과 극솟값, 최댓값과 최솟값을 구하는 문제, 함수의 증가와 감소, 곡선의 변곡점, 방정식과 부등식의 해에 관한 문제와 속력과 가속도의 크기를 구하는 문제 등이 출제되고 있다.

두 함수

$$f(x) = e^x$$
, $g(x) = k \sin x$

에 대하여 방정식 f(x)=g(x)의 서로 다른 양의 실근의 개수가 3일 때, 양수 k의 값은? [3점]

- ① $\sqrt{2}e^{\frac{3\pi}{2}}$ ② $\sqrt{2}e^{\frac{7\pi}{4}}$ ③ $\sqrt{2}e^{2\pi}$ ④ $\sqrt{2}e^{\frac{9\pi}{4}}$ ⑤ $\sqrt{2}e^{\frac{5\pi}{2}}$

2022학년도 대수능 6월 모의평가

- (출제 의도) 함수의 그래프를 이용하여 방정식의 실근에 대한 조건을 만족시키는 상수의 값을 구할 수 있는지를 묻는 문제 이다.
- 풀이 $e^x = k \sin x$ 에서 $\frac{1}{k} = e^{-x} \sin x$ \bigcirc

 $h(x) = e^{-x} \sin x$ 라 하면 $h'(x) = -e^{-x} \sin x + e^{-x} \cos x = e^{-x} (\cos x - \sin x)$

h'(x)=0을 만족시키는 x의 값은 $x=\frac{\pi}{4},\,\frac{5}{4}\pi,\,\frac{9}{4}\pi,\,\cdots$ 또는 $x=-\frac{3}{4}\pi,\,-\frac{7}{4}\pi,\,\cdots$ 이므로 실수 전체의 집합 에서 함수 h(x)의 증가와 감소를 표로 나타내면 다음과 같다.

x		$-\frac{3}{4}\pi$		$\frac{\pi}{4}$		$\frac{5}{4}\pi$	•••	$\frac{9}{4}\pi$		$\frac{13}{4}\pi$	
h'(x)	_	0	+	0	_	0	+	0	_	0	+
h(x)	`	$-\frac{e^{\frac{3}{4}\pi}}{\sqrt{2}}$	1	$\frac{1}{\sqrt{2}e^{\frac{\pi}{4}}}$	\	$-\frac{1}{\sqrt{2}e^{\frac{5}{4}\pi}}$	/	$\frac{1}{\sqrt{2}e^{\frac{9}{4}\pi}}$	`	$-\frac{1}{\sqrt{2}e^{\frac{13}{4}\pi}}$	1

이때 h(0)=0이므로 함수 y=h(x)의 그래프는 그림과 같다.

⊙의 서로 다른 양의 실근의 개수가 3이기 위해서는 그림과 같

이 직선
$$y=\frac{1}{k}$$
이 곡선 $y=e^{-x}\sin x$ 와 점 $\left(\frac{9}{4}\pi,\ h\!\!\left(\frac{9}{4}\pi\right)\right)$ 에

서 접해야 한다.

따라서

$$\frac{1}{k} = \frac{1}{\sqrt{2}e^{\frac{9}{4}\pi}}$$

이므로 $k = \sqrt{2}e^{\frac{9}{4}\pi}$

(4)

06 여러 가지 적분법

1. 함수 $y=x^n(n)$ 은 실수)의 부정적분과 정적분

(1) $n \neq -1$ 일 때, $\int x^n dx = \frac{1}{n+1} x^{n+1} + C$ (단, C는 적분상수)

(2)
$$n = -1$$
일 때, $\int x^{-1} dx = \int \frac{1}{x} dx = \ln|x| + C$ (단, C는 적분상수)

설명
$$(1)$$
 $n \ne -1$ 일 때, 함수 $y = x^n$ 의 미분법에서 $\left(\frac{1}{n+1}x^{n+1}\right)' = x^n$ 이므로
$$\int x^n \, dx = \frac{1}{n+1}x^{n+1} + C$$

(2) n=-1일 때, 로그함수의 미분법에서 $(\ln |x|)'=\frac{1}{r}$ 이므로

$$\int x^{-1} dx = \int \frac{1}{x} dx = \ln|x| + C$$

(1)
$$\int_{1}^{4} \sqrt{x} dx = \int_{1}^{4} x^{\frac{1}{2}} dx = \left[\frac{2}{3}x\sqrt{x}\right]_{1}^{4} = \frac{16}{3} - \frac{2}{3} = \frac{14}{3}$$

(2) $\int_{1}^{3} \frac{1}{x} dx = \left[\ln|x|\right]_{1}^{3} = \ln 3 - 0 = \ln 3$

2. 지수함수의 부정적분과 정적분

(1)
$$\int e^x dx = e^x + C$$
 (단, C 는 적분상수)

(2)
$$a > 0$$
, $a \ne 1$ 일 때, $\int a^x dx = \frac{a^x}{\ln a} + C$ (단, C는 적분상수)

(1)
$$\int_{0}^{2} e^{x} dx = \left[e^{x} \right]_{0}^{2} = e^{2} - 1$$
(2)
$$\int_{1}^{2} 2^{x} dx = \left[\frac{2^{x}}{\ln 2} \right]_{1}^{2} = \frac{4}{\ln 2} - \frac{2}{\ln 2} = \frac{2}{\ln 2}$$

3. 삼각함수의 부정적분과 정적분

(1)
$$\int \sin x dx = -\cos x + C$$
 (단, C는 적분상수) (2) $\int \cos x dx = \sin x + C$ (단, C는 적분상수)

(2)
$$\int \cos x dx = \sin x + C$$
 (단, C는 적분상수)

(3)
$$\int \sec^2 x dx = \tan x + C$$
 (단, C는 적분상수)

(3)
$$\int \sec^2 x \, dx = \tan x + C$$
 (단, C는 적분상수) (4) $\int \csc^2 x \, dx = -\cot x + C$ (단, C는 적분상수)

$$(1) \int_0^{\pi} \sin x \, dx = \left[-\cos x \right]_0^{\pi} = -\cos \pi + \cos 0 = 1 + 1 = 2$$

$$(2) \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \cos x \, dx = \left[\sin x \right]_{\frac{\pi}{6}}^{\frac{\pi}{2}} = \sin \frac{\pi}{2} - \sin \frac{\pi}{6} = 1 - \frac{1}{2} = \frac{1}{2}$$

(3)
$$\int_0^{\frac{\pi}{4}} \sec^2 x \, dx = \left[\tan x \right]_0^{\frac{\pi}{4}} = \tan \frac{\pi}{4} - \tan 0 = 1 - 0 = 1$$

$$(4) \int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \csc^2 x \, dx = \left[-\cot x \right]_{\frac{\pi}{6}}^{\frac{\pi}{4}} = -\cot \frac{\pi}{4} + \cot \frac{\pi}{6} = -1 + \sqrt{3}$$

www.ebsi.co.kr

실수 전체의 집합에서 미분가능한 함수 f(x)에 대하여 $f'(x)=a\sin x+2a\cos x$ 이고 f(0)=0이다.

 $\int_0^\pi \{f(x)-f(-x)\}\,dx=1$ 일 때, $f\left(\frac{\pi}{2}\right)$ 의 값은? (단, a는 상수이다.)

- $\bigcirc \frac{3}{2}$
- $2\frac{3}{4}$
- $3\frac{1}{2}$
- $4\frac{3}{8}$

풀이 전략

(1) $\int \sin x dx = -\cos x + C$ (단, C는 적분상수)

(2) $\int \cos x dx = \sin x + C$ (단, C는 적분상수)

풀이

 $f'(x) = a \sin x + 2a \cos x$ 이므로

 $f(x) = \int (a \sin x + 2a \cos x) dx = -a \cos x + 2a \sin x + C$ (단, C는 적분상수)

f(0) = -a + C = 0에서 C = a

즉, $f(x) = -a \cos x + 2a \sin x + a$ 이고

 $f(-x) = -a\cos(-x) + 2a\sin(-x) + a = -a\cos x - 2a\sin x + a$

이므로

 $\int_{0}^{\pi} \{f(x) - f(-x)\} dx = \int_{0}^{\pi} 4a \sin x dx = \left[-4a \cos x \right]_{0}^{\pi} = 4a - (-4a) = 8a$

8a = 1에서 $a = \frac{1}{8}$

따라서 $f(x) = -\frac{1}{8}\cos x + \frac{1}{4}\sin x + \frac{1}{8}$ 이므로

 $f\left(\frac{\pi}{2}\right) = 0 + \frac{1}{4} + \frac{1}{8} = \frac{3}{8}$

E 4

유제

정답과 **풀이** 45쪽

1

함수 $f(x) = \frac{a}{x^2} + \frac{b}{x^3}$ 에 대하여 f(2) = 1이고 $\int_1^2 f(x) dx = \frac{5}{2}$ 일 때, a + b의 값은?

[22011-0137]

(단, *a*, *b*는 상수이다.)

- (1) 6
- 2 7
- ③8
- **4** 9
- (5) **10**

2

실수 전체의 집합에서 미분가능한 <mark>함수 f(x)에 대하여 $\lim_{h \to 0} \frac{f(x+2h)-f(x)}{h} = 2^{x+1}-4$ 이다.</mark>

[22011-0138]

 $f(0) = \frac{1}{\ln 4}$ 일 때, f(-1)의 값은?

- ① 1
- $2\frac{1}{\ln 2}$
 - 3 2
- $4 \frac{2}{\ln 2}$
- ⑤ 4

06 여러 가지 적분법

4. 치환적분법

(1) 치환적분법을 이용한 부정적분 미분가능한 함수 g(x)에 대하여 g(x)=t로 놓으면

$$\int f(g(x))g'(x)dx = \int f(t)dt$$

(2) 치화적분법을 이용한 정적분

미분가능한 함수 g(x)의 도함수 g'(x)가 닫힌구<mark>간 [a, b]에서 연속이고 $g(a) = \alpha$, $g(b) = \beta$ 일 때, 함수</mark> f(t)가 α . β 를 포함하는 구간에서 연속이면

$$\int_{a}^{b} f(g(x))g'(x) dx = \int_{a}^{\beta} f(t) dt$$

설명 함수 f(x)의 한 부정적분을 F(x)라 하자.

(1) 합성함수의 미분법에서 $\frac{d}{dx}F(g(x))=F'(g(x))g'(x)=f(g(x))g'(x)$ 이므로

$$\int f(g(x))g'(x)\,dx = F(g(x)) + C \text{ (단, } C \text{는 적분상수)} \qquad \qquad \cdots \cdots \text{ $} \odot$$$

이때
$$g(x)=t$$
로 놓으면 $F(g(x))=F(t)$ 이고, $\int f(t)\,dt=F(t)+C$ (단, C 는 적분상수) ····· ©

①, 일에서
$$\int f(g(x))g'(x)dx = \int f(t)dt$$

$$(2) \int_{a}^{b} f(g(x))g'(x) dx = \left[F(g(x)) \right]_{a}^{b} = F(g(b)) - F(g(a)) = F(\beta) - F(\alpha) = \int_{a}^{\beta} f(t) dt$$

참고
$$\int \frac{f'(x)}{f(x)} dx$$
에서 $f(x)=t$ 로 놓으면 $f'(x)=\frac{dt}{dx}$ 이므로
$$\int \frac{f'(x)}{f(x)} dx = \int \frac{1}{t} dt = \ln|t| + C = \ln|f(x)| + C \text{ (단, } C$$
는 적분상수)

5. 부분적분법

(1) 부분적분법을 이용한 부정적분 두 함수 f(x), g(x)가 미분가능할 때

$$\int f(x)g'(x)dx = f(x)g(x) - \int f'(x)g(x)dx$$

(2) 부분적분법을 이용한 정적분

두 함수 f(x), g(x)가 미분가능하고 f'(x), g'(x)가 닫힌구간 [a, b]에서 연속일 때

$$\int_a^b f(x)g'(x)dx = \left[f(x)g(x)\right]_a^b - \int_a^b f'(x)g(x)dx$$

예 $\int_0^\pi x \sin x dx$ 에서 f(x)=x, $g'(x)=\sin x$ 로 놓으면 f'(x)=1, $g(x)=-\cos x$ 이므로

$$\int_{0}^{\pi} x \sin x dx = \left[-x \cos x \right]_{0}^{\pi} - \int_{0}^{\pi} (-\cos x) dx = -\pi \cos \pi + \left[\sin x \right]_{0}^{\pi} = \pi$$

예제 2 부분적분법을 이용한 정적분

www.ebsi.co.kr

양의 실수 전체의 집합에서 미분가능한 함수 f(x)의 한 부정적분 F(x)가 모든 양의 실수 x에 대하여

$$F(x) = xf(x) - 2x^2 \ln x + x^2$$

을 만족시킨다. f(e)-f(1)의 값은?

- 1) 4
- 24(e-1) 38
- (4) 4e
- 54(e+1)

주어진 등식의 양변을 미분하여 f'(x)를 구하고, 부분적분법을 이용하여 정적분의 값을 구한다.

F'(x) = f(x)이므로 등식 $F(x) = xf(x) - \frac{2x^2 \ln x + x^2}{2x^2 \ln x}$ 의 양변을 x에 대하여 미분하면

$$f(x) = f(x) + xf'(x) - 4x \ln x - 2x^2 \times \frac{1}{x} + 2x$$
, $xf'(x) = 4x \ln x$

x>0에서 $f'(x)=4 \ln x$ 이므로

$$f(e)-f(1) = \int_{1}^{e} f'(x) dx = \int_{1}^{e} 4 \ln x dx$$

u(x)= $\ln x$, v'(x)=4로 놓으면 u'(x)= $\frac{1}{x}$, v(x)=4x이므로

$$\int_{1}^{e} 4 \ln x \, dx = \left[4x \ln x \right]_{1}^{e} - \int_{1}^{e} \left(4x \times \frac{1}{x} \right) dx = 4e - \int_{1}^{e} 4 \, dx$$

$$= 4e - \left[4x \right]_{1}^{e} = 4e - (4e - 4)$$

1

유제

정답과 **풀이** 46쪽

실수 전체의 집합에서 미분가능한 함수 f(x)에 대하여 곡선 y=f(x) 위의 임의의 점 (x,y)에서의 접선의 기울기는 $-xe^{-x}$ 이다. f(0)=1일 때, 곡선 y=f(x) 위의 점 (1, f(1))에서의 접선의 x절편 [22011-0139] <u>0</u>?

- ② 2
- 4
- (5) **5**

실수 전체의 집합에서 정의된 함수 $f(x) = \int_0^x \frac{t}{\sqrt{t^2+1}} dt$ 에 대하여 곡선 y = f(x)와 직선 y = 2가 만

[22011-0140]

나는 두 점 사이의 거리는?

1) 4

1 1

- ② $4\sqrt{2}$
- $(3) 4\sqrt{3}$
- **4** 8
- (5) $4\sqrt{5}$

06 여러 가지 적분법

6. 정적분으로 표시된 함수의 미분과 극한

- (1) 정적부으로 표시된 함수의 미부 연속함수 f(x)에 대하여
 - ① $\frac{d}{dx}\int_{a}^{x}f(t)dt=f(x)$ (단, a는 상수)
 - ② $\frac{d}{dx} \int_{x}^{x+a} f(t)dt = f(x+a) f(x)$ (단, a는 상수)
 - ③ 두 함수 g(x), h(x)가 미분가능할 때,

$$\frac{d}{dx} \int_{g(x)}^{h(x)} f(t)dt = f(h(x))h'(x) - f(g(x))g'(x)$$

설명 함수 f(x)의 한 부정적분을 F(x)라 하면

$$=F'(h(x))h'(x)-F'(g(x))g'(x)$$

=f(h(x))h'(x)-f(g(x))g'(x)

③
$$\frac{d}{dx} \int_{3x}^{x^2} \sin t \, dt = \sin x^2 \times 2x - \sin 3x \times 3 = 2x \sin x^2 - 3 \sin 3x$$

(2) 정적분으로 표시된 함수의 극한

연속함수 f(x)에 대하여

①
$$\lim_{x\to 0} \frac{1}{x} \int_{a}^{a+x} f(t)dt = f(a)$$
 (단, a는 상수)

- ② $\lim_{x \to a} \frac{1}{x-a} \int_{-x}^{x} f(t)dt = f(a)$ (단, a는 상수)
- 설명 함수 f(x)의 한 부정적분을 F(x)라 하면

$$(1) \lim_{x \to 0} \frac{1}{x} \int_{a}^{a+x} f(t) dt = \lim_{x \to 0} \frac{1}{x} \left[F(t) \right]_{a}^{a+x} = \lim_{x \to 0} \frac{F(a+x) - F(a)}{x} = F'(a) = f(a)$$

$$2 \lim_{x \to a} \frac{1}{x - a} \int_{a}^{x} f(t) dt = \lim_{x \to a} \frac{1}{x - a} \left[F(t) \right]_{a}^{x} = \lim_{x \to a} \frac{F(x) - F(a)}{x - a} = F'(a) = f(a)$$

예제 3 정적분으로 표시된 함수의 미분

www.ebsi.co.kr

실수 전체의 집합에서 연속인 함수 f(x)가 모든 실수 x에 대하여

$$\int_0^{2x} tf\left(\frac{t}{2}\right) dt = (2x+1)\sin x + (2-x)\cos x + a$$

를 만족시킬 때, $f(0)+f\left(\frac{\pi}{a}\right)$ 의 값은? (단, a는 상수이다.)

 \bigcirc 0

 $4\frac{3}{4}$

5 1

함수 f(x)가 실수 전체의 집합에서 연속일 때, 상수 a와 미분가능한 함수 g(x)에 대하여

$$\frac{d}{dr} \int_{a}^{g(x)} f(t) dt = f(g(x))g'(x)$$

풀이

$$\int_0^{2x} tf\left(\frac{t}{2}\right) dt = (2x+1)\sin x + (2-x)\cos x + a \qquad \dots \dots \oplus$$

등식 \bigcirc 의 양변에 x=0을 대입하면 0=0+2+a에서 a=-2

등식 ①의 양변을 x에 대하여 미분하면

$$2xf(x) \times 2 = 2\sin x + (2x+1)\cos x - \cos x - (2-x)\sin x$$

$$4xf(x) = 2x \cos x + x \sin x$$

 $x\neq 0$ 이면 $f(x)=\frac{1}{2}\cos x+\frac{1}{4}\sin x$ 이므로

$$f\left(\frac{\pi}{a}\right) = f\left(-\frac{\pi}{2}\right) = \frac{1}{2}\cos\left(-\frac{\pi}{2}\right) + \frac{1}{4}\sin\left(-\frac{\pi}{2}\right) = -\frac{1}{4}$$

함수 f(x)는 x=0에서 연속이므로

$$f(0) = \lim_{x \to 0} f(x) = \lim_{x \to 0} \left(\frac{1}{2} \cos x + \frac{1}{4} \sin x \right) = \frac{1}{2}$$

따라서
$$f(0) + f\left(\frac{\pi}{a}\right) = \frac{1}{2} + \left(-\frac{1}{4}\right) = \frac{1}{4}$$

2

유제

정답과 풀이 46쪽

실수 전체의 집합에서 연속인 함수 f(x)가 모든 실수 x에 대하여

[22011-0141]
$$\int_{1}^{x+1} (e^{t-1} + e^{1-t}) f(t-1) dt = e^{2x} + e^{-2x} - 2$$

를 만족시킬 때, $\int_0^{\ln 2} f(x) dx$ 의 값은?

① 1

② $\frac{3}{2}$

③ 2

 $4\frac{5}{2}$

(5) **3**

6
$$\lim_{x\to 2} \frac{1}{x^2-4} \int_2^x \left(\sqrt{2t} + \frac{1}{\sqrt{t+a}}\right) dt = \frac{9}{16}$$
 일 때, 상수 a 의 값을 구하시오. (단, $a>0$)

Level 기초 연습

[22011-0143]

- $\int_{1}^{2} \frac{5x^{2}-1}{\sqrt{x}} dx \stackrel{\text{def}}{=} ?$

 - ① $2\sqrt{2}$ ② $4\sqrt{2}$
- ③ $6\sqrt{2}$
- $4 8\sqrt{2}$
- ⑤ $10\sqrt{2}$

[22011-0144]

- $\int_0^4 |2^x 4| dx$ 의 값은?
 - ① $\frac{1}{\ln 2}$ ② $\frac{3}{\ln 2}$ ③ $\frac{5}{\ln 2}$ ④ $\frac{7}{\ln 2}$ ⑤ $\frac{9}{\ln 2}$

[22011-0145]

- $\int_0^{\frac{\pi}{2}} \left(4\sin 2x + 3\sec^2\frac{x}{2}\right) dx$ 의 값은?
 - \bigcirc 2
- 2 4
- 3 6

⑤ 10

- $\int_{1}^{e^{2}} \frac{(\ln x + 1)^{3}}{2x} dx$ 의 값은?

[22011-0147]

$\int_0^\pi (x+2)(\sin x + \cos x) dx$ 의 값은?

① $\pi - 4$ ② $\pi - 2$

②
$$\pi - 2$$

③ π

$$40 \pi + 2$$

⑤ $\pi + 4$

[22011-0148]

(1) e^{2}

②
$$2e^{2}$$

$$3e^{2}$$

$$4e^{2}$$

$$^{\circ}$$
 5 $e^{^{2}}$

[22011-0149]

를 만족시킨다. $f(e^2)$ 의 값은?

1 1

2 2

③ 3

(4) **4**

5 5

[22011-0150]

① 2 ln 2

② ln 6

③ 3 ln 2

4 ln 10

⑤ ln 12

Level 2 기본 연습

[22011-0151]

양의 실수 전체의 집합에서 정의된 미분가능한 함수 f(x)에 대하여 $f'(x)=\sqrt{x}+\frac{3}{\sqrt{x}}-4$ 이다. 함수 f(x)의 극댓값이 4일 때, 함수 f(x)의 극솟값은?

[22011-0152]

실수 전체의 집합에서 미분가능한 함수 f(x)가 x<0에서 $f'(x)=\sin x, x>0$ 에서 $f'(x)=\sin 2x$ 이다. $\int_{\frac{\pi}{2}}^{\pi} f(x) dx = \pi$ 일 때, $f\left(-\frac{\pi}{3}\right)$ 의 값은?

 $1 \frac{1}{2}$

 $3\frac{3}{2}$ 4 2

f(-1)=0인 일차함수 f(x)에 대하여 $\int_0^1 e^x \{f(x)+f'(x)\}\,dx=4e-2$ 일 때, f(2)의 값은?

 \bigcirc 2

- 2 4
- 3 6
- **4** 8
- ⑤ 10

화수 $f(x) = (x - p^2)\cos x$ 에 대하여 $\int_0^p x f(x^2) dx = -\frac{1}{6}$ 일 때, $f'(p^2)$ 의 값은? (단, p는 상수이다.)
 ① $\frac{1}{2}$ ② $\frac{1}{2}$ ③ $\frac{1}{2}$ ④ $\frac{2}{3}$ ⑤ $\frac{5}{6}$

[22011-0155]

수열 $\{a_n\}$ 은 모든 자연수 n에 대하여 $\frac{a_n}{n+1} = \int_0^p \left(\tan^n x + \tan^{n+2} x\right) dx$ 를 만족시킨다. $\sum_{n=1}^\infty a_n = \frac{1}{12}$ 일 때, 5

 $\tan p$ 의 값은? $\left(\text{단, } p \text{는 } 0$

- $4\frac{1}{2}$
- ⑤ $\frac{5}{8}$

[22011-0156]

6 양의 실수 전체의 집합에서 정의된 연속함수 f(x)가 모든 양의 실수 x에 대하여

 $f(x) + \int_{1}^{e} 2t f(t) dt = \ln x$

를 만족시킬 때, $f(\sqrt{e})$ 의 값은?

실수 전체의 집합에서 미분가능한 함수 f(x)가 다음 조건을 만족시킨다.

(가) 모든 실수 x에 대하여 f(x) > 0이다.

(나) 모든 실수 x에 대하여 $f(x) = \int_1^x (x-t)f'(t) dt + x$ 이다.

f(2)의 값은?

- ① \sqrt{e}
- ② √2e
- (4) 2e
- (5) e^{2}

[22011-0158]

실수 전체의 집합에서 미분가능한 함수 f(x)가 다음 조건을 만족시킨다.

$$(7) f'(x) = (1-x)e^{1-x}$$

$$(\downarrow) \lim_{x \to 1} \frac{1}{x-1} \int_0^{\frac{x-1}{2}} f(2t+1) dt = e^2$$

f(-1)의 값은?

①
$$e^2 - 1$$

(2)
$$e^2$$

$$@e^2+1$$

$$(4)$$
 $2e^2-1$

(5)
$$2e^2$$

[22011-0159]

양의 실수 전체의 집합에서 정의된 함수 $f(x)=(ax+b)e^x$ 의 역함수가 존재하고, f(x)의 역함수를 g(x)라 할 때, 두 함수 f(x), g(x)가 다음 조건을 만족시킨다.

$$(71) \frac{f'(1)}{f(1)} = \frac{4}{3}$$

(나)
$$\int_{1}^{5} g'(f(x))e^{x}dx = \ln \sqrt{2}$$

두 상수 a, b에 대하여 10a+b의 값을 구하시오. (단, $a\neq 0$)

[22011-0160]

함수 $f(x) = \cos(2\pi x)$ 에 대하여 함수 g(x)를

$$g(x) = \pi^2 \int_0^1 x^2 (1-t) f(xt) dt$$

라 하고, 함수
$$h(x)$$
를
$$h(x) = \begin{cases} g(x) & (x < a) \\ g(x-a) + g(a) & (x \ge a) \end{cases}$$

라 하자. 함수 h(x)가 실수 전체의 집합에서 <mark>미분가능</mark>하도록 하는 모든 양수 a의 값을 작은 수부터 크기순으 로 나열한 수열을 $\{a_n\}$ 이라 할 때, $\sum\limits_{k=1}^m a_k = 18$ 을 만족시키는 자연수 m의 값은?

- 1)6
- (2) 7
- ③ 8
- (4) **9**
- (5) 10

대표 기출 문제

여러 가지 함수의 부정적분을 구하는 문제, 치환적분법이나 부분적분법을 이용하여 정적분의 값을 구하는 문제, 정적 분으로 표시된 함수의 미분이나 극한과 관련된 문제 등이 출제되고 있다.

x>0에서 미분가능한 함수 f(x)에 대하여

$$f'(x)=2-\frac{3}{x^2}, f(1)=5$$

이다. x < 0에서 미분가능한 함수 g(x)가 다음 조건을 만족시킬 때, g(-3)의 값은? [4점]

(가) x < 0인 모든 실수 x에 대하여 g'(x) = f'(-x)이다.

(나)
$$f(2)+g(-2)=9$$

- 1 1
- (2) 2
- ③ 3
- (4) **4**
- (5) 5

2021학년도 대수능

(출제 의도) 함수 $y=x^n$ (n은 실수)의 부정적분을 구할 수 있는지를 묻는 문제이다.

풀이 x>0에서 $f'(x)=2-\frac{3}{x^2}$ 이므로

$$f(x) = \int \left(2 - \frac{3}{x^2}\right) dx = \int \left(2 - 3x^{-2}\right) dx = 2x + \frac{3}{x} + C_1 \left(\text{단, } C_1 \stackrel{\bullet}{\hookrightarrow} \text{ 적분상수}\right)$$

f(1)=5이므로

$$f(1)=2+3+C_1=5$$
에서 $C_1=0$

$$\stackrel{\text{def}}{=} , f(x) = 2x + \frac{3}{x} (x > 0)$$

x<0에서 $g'(x)=f'(-x)=2-rac{3}{(-r)^2}=2-rac{3}{r^2}$ 이므로

$$g(x) = \int \left(2 - \frac{3}{x^2}\right) dx = \int \left(2 - 3x^{-2}\right) dx = 2x + \frac{3}{x} + C_2$$
 (단, C_2 는 적분상수)

f(2)+g(-2)=9이므로

$$f(2)+g(-2)=\left(4+rac{3}{2}
ight)+\left(-4-rac{3}{2}+C_{\scriptscriptstyle 2}
ight)=9$$
에서 $C_{\scriptscriptstyle 2}=9$

$$\stackrel{\mathbf{Z}}{=}$$
, $g(x) = 2x + \frac{3}{x} + 9(x < 0)$

따라서
$$g(-3) = -6 - 1 + 9 = 2$$

P (2)

07 정적분의 활용

1. 정적분과 급수

함수 f(x)가 닫힌구간 [a, b]에서 연속일 때,

$$\lim_{n\to\infty}\sum_{k=1}^{n}f\left(a+\frac{b-a}{n}k\right)\frac{b-a}{n}=\int_{a}^{b}f(x)\,dx$$

설명 함수 f(x)가 닫힌구간 [a, b]에서 연속이고 $f(x) \ge 0$ 일 때, 그림과 같이 닫힌구간 [a, b]를 n등분하여 양 끝 점과 각 분점의 x좌표를 차례대로

$$a=x_0, x_1, x_2, \cdots, x_{n-1}, x_n=b$$

라 하고, 닫힌구간 $[x_{k-1}, x_k]$ 의 길이를 Δx 라 하면

$$\Delta x = \frac{b-a}{n}, x_k = a + k\Delta x$$
 (단, $k = 1, 2, 3, \dots, n$)

이때 그림과 같이 n개의 직사각형을 만들고. 이 직사각형의 넓이의 합을 S...이라 하면

$$S_n = f(x_1) \Delta x + f(x_2) \Delta x + f(x_3) \Delta x + \dots + f(x_n) \Delta x$$

= $\sum_{k=0}^{n} f(x_k) \Delta x$

n의 값이 한없이 커질 때 S_n 은 곡선 y=f(x)와 x축 및 두 직선 x=a, x=b로 둘러싸인 부분의 넓이에 한없이 가까워지므로

$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} \sum_{k=1}^n f(x_k) \Delta x$$

$$= \int_a^b f(x) \, dx$$

즉, $\lim_{n\to\infty}\sum\limits_{k=1}^nf\Big(a+\frac{b-a}{n}k\Big)\frac{b-a}{n}=\int_a^bf(x)\,dx$ 가 성립한다.

한편 함수 f(x)가 닫힌구간 [a, b]에서 연속이고, $f(x) \le 0$ 이면 $f(x_k) \le 0$ $\Delta x > 0$ 이므로 곡선 y = f(x)와 x축 및 두 직선 x = a, x = b로 둘러싸인 도형의 넓이 를 S라 하면

$$\lim_{n \to \infty} \sum_{k=1}^{n} f(x_k) \Delta x = -S = -\int_{a}^{b} \{-f(x)\} dx$$
$$= \int_{a}^{b} f(x) dx$$

y=f(x)

- 참고 (1) $\lim_{n \to \infty} \sum_{k=1}^{n} f\left(\frac{k}{n}\right) \frac{1}{n} = \int_{0}^{1} f(x) dx$
 - (2) $\lim_{n \to \infty} \sum_{k=1}^{n} f\left(\frac{p}{n}k\right) \frac{p}{n} = \int_{0}^{p} f(x) dx$ $= p \int_0^1 f(px) dx \, (\mathrm{U}, p = \frac{\mathrm{V}}{\mathrm{V}})$

(3)
$$\lim_{n \to \infty} \sum_{k=1}^{n} f\left(a + \frac{p}{n}k\right) \frac{p}{n} = \int_{a}^{a+p} f(x) dx = \int_{0}^{p} f(a+x) dx$$
$$= p \int_{0}^{1} f(a+px) dx \, (단, a, p = Å^{2})$$

예제] 정적분과 급수

www.ebsi.co.kr

함수 $f(x) = \cos \frac{\pi}{2} x$ 에 대하여 $\lim_{n \to \infty} \sum_{k=1}^{n} \frac{k}{n^2} f\left(1 + \frac{k}{n}\right)$ 의 값은?

- ③ 0
- $4\frac{2}{\pi^2}$
- $(5) \frac{4}{\pi^2}$

주어진 급수를 정적분으로 변형하고, 부분적분법을 이용한다.

풀이

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{k}{n^{2}} f\left(1 + \frac{k}{n}\right) = \lim_{n \to \infty} \sum_{k=1}^{n} \frac{k}{n} f\left(1 + \frac{k}{n}\right) \times \frac{1}{n} = \int_{0}^{1} x f(1+x) \, dx$$

$$= \int_{0}^{1} x \cos\left(\frac{\pi}{2} + \frac{\pi}{2}x\right) dx = -\int_{0}^{1} x \sin\frac{\pi}{2}x \, dx \qquad \dots \dots \quad \bigcirc$$

이때 $\int_0^1 x \sin \frac{\pi}{2} x dx$ 에서 u(x) = x, $v'(x) = \sin \frac{\pi}{2} x$ 로 놓으면 u'(x) = 1, $v(x) = -\frac{2}{\pi} \cos \frac{\pi}{2} x$ 이므로 $\int_{1}^{1} x \sin \frac{\pi}{2} x dx = \left[-\frac{2}{\pi} x \cos \frac{\pi}{2} x \right]_{1}^{1} + \frac{2}{\pi} \int_{1}^{1} \cos \frac{\pi}{2} x dx$ $=0+\frac{2}{\pi}\left[\frac{2}{\pi}\sin\frac{\pi}{2}x\right]_{0}^{1}=\frac{4}{\pi^{2}}$

따라서 ①에서

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{k}{n^2} f\left(1 + \frac{k}{n}\right) = -\int_0^1 x \sin\frac{\pi}{2} x \, dx = -\frac{4}{\pi^2}$$

(1)

[참고] $\lim_{n\to\infty}\sum_{k=1}^n\frac{k}{n}f\left(1+\frac{k}{n}\right)\times\frac{1}{n}=\int_1^2(x-1)f(x)\,dx$ 를 이용하여 풀수도 있다.

정답과 풀이 54쪽

1 $\lim_{n\to\infty} \sum_{k=1}^{n} \frac{1}{\sqrt{n^2 + 3nk}}$ 의 값은?

- ① $\frac{1}{6}$ ② $\frac{1}{3}$

[22011-0162]

그림과 같이 곡선 $y=\ln x$ 와 두 점 A(1, 0), B(3, 0)이 있다. 자연 수 n에 대하여 선분 AB를 n등분한 점을 점 A에 가까운 점부터 차례 로 P_1 , P_2 , P_3 , ..., P_{n-1} 이라 하고, 점 B를 P_n 이라 하자.

점 $P_k(1 \le k \le n)$ 을 지나고 x축에 수직인 직선이 곡선 $y = \ln x$ 와 만나 \Box

는 점을 Q_k , 삼각형 AP_kQ_k 의 넓이를 S_k 라 할 때, $\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^nS_k$ 의 값은?

- ① $\frac{\ln 3}{4}$ ② $\frac{3}{8} \ln 3$ ③ $\frac{\ln 3}{2}$ ④ $\frac{5}{8} \ln 3$ ⑤ $\frac{3}{4} \ln 3$

 $y = \ln x$

07 정적분의 활용

2. 곡선과 x축 사이의 넓이

함수 f(x)가 닫힌구간 [a, b]에서 연속일 때, 곡선 y=f(x)와 x축 및 두 직선 x=a, x=b로 둘러싸인 부분의 넓이 S는

$$S = \int_a^b |f(x)| dx$$

y=f(x)

y = -f(x)

y=f(x)

Oa

- 설명 함수 f(x)가 닫힌구간 [a, b]에서 연속일 때, 곡선 y=f(x)와 x축 및 두 직선 x=a, x=b로 둘러싸인 부분의 넓이 S를 각 경우로 나누어 구해 보면 다음과 같다.
 - (i) 닫힌구간 [a, b]에서 $f(x) \ge 0$ 인 경우

$$S = \int_a^b f(x) dx$$

이때 f(x) = |f(x)|이므로

$$S = \int_{a}^{b} f(x) dx$$

$$=\int_a^b |f(x)| dx$$

(ii) 닫힌구간 [a, b]에서 $f(x) \le 0$ 인 경우

곡선 y=f(x)와 곡선 y=-f(x)는 x축에 대하여 대칭이므로 곡선 y=-f(x)와 x축 및 두 직선 x=a, x=b로 둘러싸인 부분<mark>의 넓이</mark>는 S이다.

이때
$$-f(x) \ge 0$$
이고 $-f(x) = |f(x)|$ 이므로

$$S = \int_{a}^{b} \{-f(x)\} dx$$

$$= \int_a^b |f(x)| dx$$

- (iii) 닫힌구간 [a, c]에서 $f(x) \ge 0$, 닫힌구간 [c, b]에서 $f(x) \le 0$ 인 경우
 - (i). (ii)에 의하여

$$S = \int_{a}^{c} f(x)dx + \int_{c}^{b} \{-f(x)\}dx$$
$$= \int_{a}^{c} |f(x)|dx + \int_{c}^{b} |f(x)|dx$$
$$= \int_{a}^{b} |f(x)|dx$$

참고 곡선과 y축 사이의 넓이

함수 x=g(y)가 닫힌구간 [c,d]에서 연속일 때, 곡선 x=g(y)와 y축 및 두 직선 y=c. y=d로 둘러싸인 부분의 넓이 S는

$$S = \int_{c}^{d} |g(y)| dy$$

예제 2 곡선과 좌표축 사이의 넓이

www.ebsi.co.kr

그림과 같이 정의역이 $\{x|x>0\}$ 인 함수 $f(x)=\frac{x^2-3x+2}{x^2}$ 에 대하여 곡

선 y=f(x)와 x축으로 둘러싸인 부분의 넓이를 S_1 이라 하고, 곡선 $y=f(x)\;(x\geq 2)$ 와 x축 및 직선 x=4로 둘러싸인 부분의 넓이를 S_2 라 하 자. $S_1 + S_2$ 의 값은?

① $\frac{1}{2}$

(4) 2

 $(5) \frac{5}{2}$

함수의 그래프와 x축의 교점의 x좌표를 구하여 구<mark>간을 나눈</mark> 후 정적분을 이용하여 넓이를 구한다.

풀이

f(x) = 0에서

$$x^2-3x+2=0$$
, $(x-1)(x-2)=0$

$$x=1$$
 또는 $x=2$

이때 닫힌구간 [1, 2]에서 $f(x) \le 0$, 닫힌구간 [2, 4]에서 $f(x) \ge 0$ 이므로

$$S_{1}+S_{2}=\int_{1}^{4} \left| \frac{x^{2}-3x+2}{x^{2}} \right| dx$$

$$=\int_{1}^{2} \left(-\frac{x^{2}-3x+2}{x^{2}} \right) dx + \int_{2}^{4} \frac{x^{2}-3x+2}{x^{2}} dx$$

$$=\int_{1}^{2} \left(-1 + \frac{3}{x} - \frac{2}{x^{2}} \right) dx + \int_{2}^{4} \left(1 - \frac{3}{x} + \frac{2}{x^{2}} \right) dx$$

$$=\left[-x + 3\ln|x| + \frac{2}{x} \right]_{1}^{2} + \left[x - 3\ln|x| - \frac{2}{x} \right]_{2}^{4}$$

$$=\left\{ (3\ln 2 - 1) - 1 \right\} + \left\{ \left(\frac{7}{2} - 3\ln 4 \right) - (1 - 3\ln 2) \right\}$$

$$=\frac{1}{2}$$

1

정답과 **풀이** 54쪽

곡선 $y=2\cos x+1$ $(0 \le x \le 2\pi)$ 와 x축으로 둘러싸인 부분의 넓이는?

[22011-0163]

(1)
$$\sqrt{3} - \frac{\pi}{3}$$

①
$$\sqrt{3} - \frac{\pi}{3}$$
 ② $2\sqrt{3} - \frac{\pi}{3}$ ④ $\sqrt{3} + \frac{\pi}{3}$

$$3 2\sqrt{3} - \frac{\pi}{3}$$

$$4\sqrt{3} + \frac{\pi}{3}$$

$$5\sqrt{3} + \frac{2}{3}\pi$$

곡선 $y=e^x$ 과 x축, y축 및 직선 $x=\ln 4$ 로 둘러싸인 부분의 넓이를 직선 x=k가 이등분할 때, 상수 k의 값은?

- ① ln 2

- ② $\ln \frac{9}{4}$ ③ $\ln \frac{5}{2}$ ④ $\ln \frac{11}{4}$
- ⑤ ln 3

정적분의 활용

3. 두 곡선으로 둘러싸인 부분의 넓이

두 함수 y=f(x), y=g(x)가 닫힌구간 [a,b]에서 연속일 때, 두 곡선 y=f(x), y=g(x) 및 두 직선 x=a, x=b로 둘러싸인 부분의 넓이 S는

$$S = \int_a^b |f(x) - g(x)| dx$$

- 설명 두 함수 f(x), g(x)가 닫힌구간 [a, b]에서 연속일 때, 두 곡선 y=f(x), y=g(x) 및 두 직선 x=a, x=b로 둘러 싸인 부분의 넓이 S를 각 경우로 나누어 구해 보면 다음과 같다.
 - (i) 닫힌구간 [a, b]에서 $0 \le g(x) \le f(x)$ 인 경우

$$S = \int_{a}^{b} f(x)dx - \int_{a}^{b} g(x)dx$$
$$= \int_{a}^{b} \{f(x) - g(x)\}dx$$
$$= \int_{a}^{b} |f(x) - g(x)|dx$$

(ii) 닫힌구간 [a, b]에서 $g(x) \le f(x)$ 이고, f(x) 또는 g(x)가 음의 값을 갖는 경우

두 곡선 y=f(x), y=g(x)를 y축의 양의 방향으로 k만큼 평행이동하여 닫힌구간 [a, b]에서 $0 \le g(x) + k \le f(x) + k$ 가 되게 할 수 있다.

평행이동하여도 구하는 넓이 S는 변하지 않으<mark>므로</mark>

$$S = \int_{a}^{b} \{f(x) + k\} dx - \int_{a}^{b} \{g(x) + k\} dx$$

$$= \int_{a}^{b} [\{f(x) + k\} - \{g(x) + k\}] dx$$

$$= \int_{a}^{b} \{f(x) - g(x)\} dx$$

$$= \int_{a}^{b} |f(x) - g(x)| dx$$

(iii) 닫힌구간 [a, c]에서 $g(x) \leq f(x)$ 이고, 닫힌구간 [c, b]에서 $f(x) \leq g(x)$ 인 경우

(i). (ii)에 의하여

$$S = \int_{a}^{c} \{f(x) - g(x)\} dx + \int_{c}^{b} \{g(x) - f(x)\} dx$$
$$= \int_{a}^{c} |f(x) - g(x)| dx + \int_{c}^{b} |f(x) - g(x)| dx$$
$$= \int_{a}^{b} |f(x) - g(x)| dx$$

예제 3 두 곡선으로 둘러싸인 부분의 넓이

www.ebsi.co.kr

정의역이 $\left\{x\Big|0\le x<\frac{\pi}{2}\right\}$ 인 두 함수 $f(x)=\frac{1}{2}\tan x,\ g(x)=\sin x$ 에 대하여 두 곡선 $y=f(x),\ y=g(x)$ 로 둘러 싸인 부분의 넓이는?

①
$$\frac{1}{2}(1-\ln 2)$$
 ② $\frac{1}{2}\ln 2$ ③ $\ln 2$ ④ $\frac{1}{2}(1+\ln 2)$ ⑤ $2\ln 2$

$$2\frac{1}{2}\ln 2$$

$$4\frac{1}{2}(1+\ln 2)$$

두 곡선의 교점의 x좌표를 구한 후 정적분을 이용하여 넓이를 구한다.

 $0 \le x < \frac{\pi}{2}$ 에서 방정식 $\frac{1}{2} \tan x = \sin x$ 의 <mark>근을 구하면</mark>

 $\frac{\sin x}{2\cos x}$ = $\sin x$, $\sin x = 2\cos x \sin x$, $(2\cos x - 1)\sin x = 0$

$$\cos x = \frac{1}{2} \pm \sin x = 0$$

따라서
$$x=0$$
 또는 $x=\frac{\pi}{3}$

닫힌구간 $\left[0, \frac{\pi}{3}\right]$ 에서 $\frac{1}{2} \tan x \le \sin x$ 이므로 구하는 부분의 넓이를 S라 하면

$$S = \int_0^{\frac{\pi}{3}} \left| \frac{1}{2} \tan x - \sin x \right| dx$$

$$= \int_0^{\frac{\pi}{3}} \left(-\frac{1}{2} \tan x + \sin x \right) dx$$

$$= \left[\frac{1}{2}\ln|\cos x| - \cos x\right]_0^{\frac{\pi}{3}}$$

$$=\left(\frac{1}{2}\ln\frac{1}{2} - \frac{1}{2}\right) + 1$$

$$=\frac{1}{2}(1-\ln 2)$$

(1)

정답과 **풀이** 55쪽

5 두 곡선 $y=e^x$, $y=e^{2x}-2$ 및 y축으로 둘러싸인 부분의 넓이는? ① $\ln 2-\frac{1}{2}$ ② $1-\ln 2$ ③ $2\ln 2-1$ ④ $2\ln 2-\frac{1}{2}$ ⑤ $\ln 2+1$

①
$$\ln 2 - \frac{1}{2}$$

$$4 2 \ln 2 - \frac{1}{2}$$

[22011-0166] 두 곡선 $y=\ln x,\ y=\frac{1-x}{x}$ 와 두 직선 $x=\frac{1}{2},\ x=2$ 로 둘러싸인 부분의 넓이는? ① $\frac{1}{2}\ln 2$ ② $\ln 2$ ③ $\frac{3}{2}\ln 2$ ④ $2\ln 2$ ⑤ $\frac{5}{2}\ln 2$

①
$$\frac{1}{2} \ln 2$$

$$3\frac{3}{2}\ln 2$$

$$(5) \frac{5}{2} \ln 2$$

07 정적분의 활용

4. 입체도형의 부피

닫힌구간 [a, b]에서 x좌표가 x인 점을 지나고 x축에 수직인 평면으로 자른 단면의 넓이가 S(x)이고, 함수 S(x)가 닫힌구간 [a, b]에서 연속일 때, 이 입체도형의 부피 V는

$$V = \int_{a}^{b} S(x) dx$$

$$a=x_0, x_1, x_2, \cdots, x_{n-1}, x_n=b$$

라 하고, 닫힌구간 $[x_{k-1}, x_k]$ 의 길이를 Δx 라 하면

$$\Delta x = \frac{b-a}{n}$$
, $x_k = a + k\Delta x$ (단, $k = 1, 2, 3, \cdots, n$)

이때 각 점 x_k 에서 x축에 수직인 평면으로 자른 단면의 넓이 $S(x_k)$ 를 밑면의 넓이로 하고 높이가 Δx 인 n개의 기둥의 부피의 합을 V_n 이라 하면

$$V_n = S(x_1) \Delta x + S(x_2) \Delta x + S(x_3) \Delta x + \cdots + S(x_n) \Delta x$$

$$=\sum_{k=1}^{n} S(x_k) \Delta x$$

입체도형의 부피 V는 정적분과 급수의 관계에 의하여

$$V = \lim_{n \to \infty} V_n = \lim_{n \to \infty} \sum_{k=1}^n S(x_k) \Delta x$$

= $\int_a^b S(x) dx$

 $0 \le t \le \ln 2$ 인 실수 t에 대하여 직선 x = t를 포함하고 x축에 수직인 평면으로 자른 단면의 넓이를 S(t)라 하면

$$S(t) = (e^t)^2 = e^{2t}$$

따라서 구하는 부피 V는

$$V = \int_0^{\ln 2} S(t) dt$$

$$= \int_0^{\ln 2} e^{2t} dt$$

$$= \left[\frac{1}{2} e^{2t} \right]_0^{\ln 2}$$

$$= \frac{1}{2} \times 4 - \frac{1}{2} \times 1$$

$$= \frac{3}{2}$$

예제 4

입체도형의 부피

www.ebsi.co.kr

그림과 같이 곡선 $y=\cos x\sqrt{\cos x}\left(-\frac{\pi}{4} \le x \le \frac{\pi}{4}\right)$ 와 x축 및 두 직선 $x=-\frac{\pi}{4}$,

 $x=rac{\pi}{4}$ 로 둘러싸인 부분을 밑면으로 하는 입체도형이 있다. 이 입체도형을 x축 에 수직인 평면으로 자른 단면이 모두 정사각형일 때, 이 입체도형의 부피는?

 $4 \frac{7\sqrt{2}}{6}$

① $\frac{2\sqrt{2}}{3}$ ② $\frac{5\sqrt{2}}{6}$ ④ $\frac{7\sqrt{2}}{6}$ ⑤ $\frac{4\sqrt{2}}{3}$

x축에 수직인 평면으로 자른 단면의 넓이를 구한 후 치환적분법을 이용하여 입체도형의 부피를 구한다.

 $-rac{\pi}{4} \le t \le rac{\pi}{4}$ 인 실수 t에 대하여 직선 x = t를 포함하고 x축에 수직인 평면으로 자른 단면의 넓이를 S(t)라 하면 $S(t) = (\cos t \sqrt{\cos t})^2 = \cos^3 t$

구하는 입체도형의 부피를 V라 하면 $-\frac{\pi}{4} \le t \le \frac{\pi}{4}$ 인 모든 실수 t에 대하여 S(-t) = S(t)이므로

$$V = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \cos^3 t \, dt = 2 \int_{0}^{\frac{\pi}{4}} \cos^3 t \, dt$$

$$=2\int_0^{\frac{\pi}{4}}(\cos t \times \cos^2 t)dt$$

$$=2\int_{0}^{\frac{\pi}{4}} {\{\cos t \times (1-\sin^{2}t)\}} dt$$

이때 $\sin t = s$ 로 놓으면 t = 0일 때 s = 0, $t = \frac{\pi}{4}$ 일 때 $s = \frac{\sqrt{2}}{2}$ 이고, $\frac{ds}{dt} = \cos t$ 이므로

$$V = 2 \int_{0}^{\frac{\pi}{4}} \{\cos t \times (1 - \sin^{2} t)\} dt = 2 \int_{0}^{\frac{\sqrt{2}}{2}} (1 - s^{2}) ds$$

$$= 2 \left[s - \frac{1}{3} s^{3} \right]_{0}^{\frac{\sqrt{2}}{2}}$$

$$= 2 \times \left(\frac{\sqrt{2}}{2} - \frac{1}{3} \times \frac{\sqrt{2}}{4} \right)$$

$$= \frac{5\sqrt{2}}{2}$$

2

정답과 풀이 55쪽

[22011-0167]

그림과 같이 양수 k에 대하여 두 곡선 $y=\frac{k}{r}$, $y=-\frac{k}{r}$ 및 두 직선 x=2, x=4로 둘러싸인 부분을 밑면으로 하고 x축에 수직인 평 면으로 자른 단면이 모두 반원인 입체도형의 부피가 2π 일 때. k의 값을 구하시오.

07 정적분의 활용

5. 좌표평면 위를 움직이는 점이 움직인 거리

좌표평면 위를 움직이는 점 P의 시각 t에서의 위치 (x, y)가

$$x=f(t), y=g(t)$$

일 때, t=a에서 t=b까지 점 P가 움직인 거리 s는

$$s = \int_a^b \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$$
$$= \int_a^b \sqrt{\{f'(t)\}^2 + \{g'(t)\}^2} dt$$

설명 점 P가 움직인 거리는 시각 t ($a \le t \le b$)의 함수이므로 s = s(t)로 나타내기로 하자. 그림과 같이 시각 t에서 점 A(x, y)에 있던 점 P가 시각 $t + \Delta t$ 에서 점 $B(x+\Delta x, y+\Delta y)$ 로 이동했을 때 s의 증분 Δs 는 Δt 가 충분히 작으면 $\sqrt{(\Delta x)^2 + (\Delta y)^2}$ 에 가까워지므로

$$s'(t) = \frac{ds}{dt} = \lim_{\Delta t \to 0} \frac{\Delta s}{\Delta t}$$
$$= \lim_{\Delta t \to 0} \sqrt{\left(\frac{\Delta x}{\Delta t}\right)^2 + \left(\frac{\Delta y}{\Delta t}\right)^2}$$
$$= \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2}$$

따라서 시각 t=a에서 t=b까지 점 P가 움직인 거리 s는

$$s = s(b) - s(a) = \left[s(t) \right]_a^b$$
$$= \int_a^b \sqrt{\left(\frac{dx}{dt} \right)^2 + \left(\frac{dy}{dt} \right)^2} dt$$

6. 곡선의 길이

(1) 곡선 위의 점 (x, y)가 각각 x=f(t), y=g(t)이고 <mark>겹쳐지는 부분이 없을 때, $a \le t \le b$ 에서 이 곡선의</mark> 길이 *l*은

$$l = \int_{a}^{b} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt$$
$$= \int_{a}^{b} \sqrt{\{f'(t)\}^{2} + \{g'(t)\}^{2}} dt$$

(2) $a \le x \le b$ 에서 곡선 y = f(x)의 길이 l은

$$l = \int_{a}^{b} \sqrt{1 + \left(\frac{dy}{dx}\right)^{2}} dx$$
$$= \int_{a}^{b} \sqrt{1 + \left\{f'(x)\right\}^{2}} dx$$

예제 5 좌표평면 위를 움직이는 점이 움직인 거리

www.ebsi.co.kr

좌표평면 위를 움직이는 점 P의 시각 t(t>0)에서의 위치 (x, y)가

$$x=\ln t + \frac{1}{t}, y = \frac{4\sqrt{t}}{t}$$

일 때. 시각 t=1에서 t=e까지 점 P가 움직인 거리는?

- $41 + \frac{1}{e}$
- $(5) 2 \frac{1}{6}$

좌표평면 위를 움직이는 점 P의 시각 t에서의 위치 (x,y)가 x=f(t), y=g(t)일 때, 시각 t=a에서 t=b까지 점 P가 움직인 거리 s는 $s = \int_{a}^{b} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt$ old.

풀이

$$\begin{split} x &= \ln t + \frac{1}{t} \text{ ond } \frac{dx}{dt} = \frac{1}{t} - \frac{1}{t^2}, \ y = \frac{4\sqrt{t}}{t} = 4t^{-\frac{1}{2}} \text{ ond } \frac{dy}{dt} = -2t^{-\frac{3}{2}} = -\frac{2}{t\sqrt{t}} \\ & \left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 = \left(\frac{1}{t} - \frac{1}{t^2}\right)^2 + \left(-\frac{2}{t\sqrt{t}}\right)^2 = \left(\frac{1}{t^2} - \frac{2}{t^3} + \frac{1}{t^4}\right) + \frac{4}{t^3} \\ &= \left(\frac{1}{t} + \frac{1}{t^2}\right)^2 \end{split}$$

따라서 시각 t=1에서 t=e까지 점 P가 움직인 거리를 s라 하면

$$s = \int_{1}^{e} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt = \int_{1}^{e} \sqrt{\left(\frac{1}{t} + \frac{1}{t^{2}}\right)^{2}} dt$$

$$= \int_{1}^{e} \left(\frac{1}{t} + \frac{1}{t^{2}}\right) dt = \left[\ln|t| - \frac{1}{t}\right]_{1}^{e}$$

$$= \left(1 - \frac{1}{e}\right) - (0 - 1)$$

$$= 2 - \frac{1}{e}$$

3 (5)

정답과 풀이 56쪽

좌표평면 위를 움직이는 점 P의 시각 t(t>0)에서의 위치 (x, y)가

[22011-0168]

 $x = \sin t \cos t, y = \cos^2 t$

일 때, 시각 $t=\frac{\pi}{2}$ 에서 $t=\pi$ 까지 점 P가 움직인 거리는?

- (4) 2π

매개변수 t로 나타낸 곡선 $x=2+3t^2$, $y=2+2t^3$ 에 대하여 $0 \le t \le \sqrt{3}$ 에서 이 곡선의 길이를 구하시오.

[22011-0169]

Level 기초 연습

[22011-0170]

 $\lim_{n\to\infty} \frac{3}{n} \sum_{k=1}^{n} \sqrt{1 + \frac{3k}{n}} \stackrel{\triangle}{=} \stackrel{\triangle}{=} ?$

- ① $\frac{10}{3}$

⑤ 6

[22011-0171]

함수 $f(x) = \frac{a}{x+2}$ 에 대하여

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} f' \left(1 + \frac{2k}{n} \right) = \frac{1}{3}$$

일 때, 상수 a의 값은?

- 1 5 2 4
- 3 3 4 2
- (5) -1

[22011-0172]

정의역이 $\{x | 0 \le x \le 4\pi\}$ 인 함수 $f(x) = \cos \frac{x}{2}$ 에 대하여 곡선 y = f(x)와 x축으로 둘러싸인 부분의 넓이를 구하시오.

[22011-0173]

- 4 곡선 $y=\frac{2-x}{x+2}$ 와 x축 및 y축으로 둘러싸인 부분의 넓이는?

 - ① 2 ln 2-1 ② 4 ln 2-2
- $4 \ln 2 1$
- ⑤ 4 ln 2

함수 $f(x) = |\ln x|$ 에 대하여 함수 y = f(x)의 그래프와 직선 y = 1로 둘러싸인 부분의 넓이는?

- ① $e + \frac{1}{e} 2$ ② $e \frac{1}{e} 1$ ③ $e + \frac{1}{e} 1$ ⑤ $e + \frac{1}{e}$

[22011-0175]

6 그림과 같이 곡선 $y=2^x-1$ 은 직선 y=-x+2와 점 (1, 1)에서 만난다. 곡선 $y=2^{x}-1$ 과 두 직선 x=0, y=-x+2로 둘러싸인 부분의 넓이를 S_{1} , 곡선 $y=2^{x}-1$ 과 두 직선 y=-x+2, x=2로 둘러싸<mark>인 부분</mark>의 넓이를 S_{2} 라 하자.

① $\frac{3}{\ln 2} - 4$

 $S_2 - S_1$ 의 값은?

- $2\frac{2}{\ln 2} 2$
- $3 \frac{3}{\ln 2} 3$

- $4 \frac{2}{\ln 2} 1$
- $(5) \frac{3}{\ln 2} 2$

[22011-0176]

그림과 같이 곡선 $y=e^x+1$ 과 x축, y축 및 직선 $x=\ln 3$ 으로 둘러싸인 부분을 밑면으로 하는 입체도형을 x축에 수직인 평면으로 자른 단면이 모두 정사각형일 때, 이 입체도형의 부피는?

- ① 6+ln 3
- ② 7+ln 3
- $38 + \ln 3$

- ④ 9+ln 3
- ⑤ 10+ln 3

[22011-0177]

좌표평면 위를 움직이는 점 P의 시각 t (t>0)에서의 위치 (x,y)가 $x=2\ln t,$ $y=t+\frac{1}{t}$ 일 때, 시각 t=1에 8 서 t=4까지 점 P가 움직인 거리는?

[22011-0178]

x=0에서 x=3까지의 곡선 $y=\frac{1}{3}(x^2+2)^{\frac{3}{2}}$ 의 길이를 구하시오. 9

[22011-0179]

 $\lim_{n\to\infty}\frac{\pi}{n^2}\sum_{k=1}^n k\sin\frac{k\pi}{n} \stackrel{\text{ol}}{\text{ate}}?$

① $\frac{1}{5}$

⑤ 1

[22011-0180]

그림과 같이 곡선 $x^2+y^2=1$ $(y\geq 0)$ 위의 두 점 A(1,0), B(-1,0)에 대 $x^2+y^2=1$ $(y\geq 0)$ 생 가 되었다. 하여 호 AB를 n등분하는 점을 점 A에 가까운 점부터 차례로 $P_1,\ P_2,\ P_3,$ \cdots , P_{n-1} 이라 하고, 점 $P_k(1 \le k \le n-1)$ 에서 x축에 내린 수선의 발을 H_k 라 하자. 삼각형 $\mathrm{AP}_k\mathrm{H}_k$ 의 넓이를 S(k)라 할 때, $\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^{n-1}S(k)$ 의 값은?

- ① $\frac{1}{4\pi}$
- $2\frac{1}{2\pi}$
- $3\frac{3}{4\pi}$
- $4\frac{1}{\pi}$

[22011-0181]

3 그림과 같이 곡선 $y=\ln x$ 와 x축 및 두 직선 x=2, x=4로 둘러싸인 부 분의 넓이를 곡선 $y=\ln kx$ 가 이등분할 때, k^2 의 값은? $\left(\text{단, } \frac{1}{2} < k < 1 \right)$

- ① $\frac{e}{10}$
- $2\frac{e}{9}$

- $4\frac{e}{7}$

[22011-0182]

곡선 $y = \frac{4}{x}$ 위의 점 (2, 2)에서의 접선과 곡선 $y = \frac{3}{x}$ 으로 둘러싸인 부분의 넓이는?

- ① $4-3 \ln 3$
- ② $3-2 \ln 3$
- $3 2 \ln 2$
- $4 2 \ln 3$
- $5 4 3 \ln 2$

[22011-0183]

정의역이 $\left\{x \middle| 0 \le x \le \frac{\pi}{2}\right\}$ 인 두 함수 $f(x) = \cos x$, $g(x) = k \sin x \ (k > 1)$ 에 5 대하여 그림과 같이 두 곡선 y=f(x), y=g(x) 및 y축으로 둘러싸인 부분의 넓 이를 S_1 , 두 곡선 y=f(x), y=g(x) 및 x축으로 둘러싸인 부분의 넓이를 S_2 , 두 곡선 y=f(x), y=g(x) 및 직선 $x=\frac{\pi}{2}$ 로 둘러싸인 부분의 넓이를 S_3 이라 하자, $S_2 = 2S_1$ 일 때, S_3 의 값은?

 $2\frac{5}{9}$

[22011-0184]

6 함수 $f(x)=x^2e^{-x+2}$ 과 양수 k에 대하여 방정식 f(x)=f(k)의 서로 다른 실근의 개수가 2일 때, 곡선 $y=f(x)\;(x\ge 0)$ 과 y축 및 직선 y=f(k)로 둘러싸인 부분의 넓이는? (단, $\lim_{\longrightarrow} x^2e^{-x+2}=0$)

① $15-2e^2$

 $4018-2e^2$

(5) $19-2e^2$

[22011-0185]

그림과 같이 곡선 $y = \frac{\ln x}{\sqrt{x}}$ 와 x축 및 두 직선 x = e, $x = e^2$ 으 로 둘러싸인 부분을 밑면으로 하고, x축에 수직인 평면으로 자른 단면이 모두 정삼각형인 입체도형의 부피가 $\frac{q}{p}\sqrt{3}$ 이다. p+q의 값을 구하시오. (단, p와 q는 서로소인 자연수이다.)

[22011-0186]

8 매개변수 t로 나타낸 곡선 $x=2 \ln(t^2-1)$, y=2t에 대하여 $3 \le t \le 7$ 에서 이 곡선의 길이는?

① $6+2 \ln \frac{3}{2}$

② $6+2 \ln 2$ 3 $8+\ln \frac{3}{2}$

 $4.8 + 2 \ln \frac{3}{2}$

 $58+2 \ln 2$

[22011-0187]

함수 $f(x) = (x-1)^2 e^x$ 에 대하여 $\lim_{n \to \infty} \sum_{k=1}^n \frac{1}{n+k} f'\left(\frac{k}{n}\right)$ 의 값은?

- ② 2-e
- 3 e
- $^{(4)}e+1$
- ⑤ e+2

[22011-0188]

- 정의역이 $\{x | 0 < x < \pi\}$ 인 함수 $f(x) = 2 \sin x$ 에 대하여 곡선 y = f(x)가 직선 y = t (0 < t < 2)와 만나는 서로 다른 두 점을 A. B라 하고, 선분 AB의 길이를 g(t)라 하자, g'(t) = -2가 되도록 하는 실수 t의 값을 k라 할 때, 직선 y=k와 곡선 y=f(x)가 만나는 서로 다른 두 점에서 각각 곡선 y=f(x)에 그은 접선과 곡선 y=f(x)로 둘러싸인 부분의 넓이는?
 - ① $\frac{\pi^2}{36} + \frac{\sqrt{3}}{3}\pi 2$
- $2\frac{\pi^2}{36} + \frac{\sqrt{3}}{3}\pi 1$
- $3\frac{\pi^2}{18} + \frac{\sqrt{3}}{3}\pi 1$

- $4 \frac{\pi^2}{36} + \frac{2\sqrt{3}}{3}\pi 1$ $5 \frac{\pi^2}{18} + \frac{2\sqrt{3}}{3}\pi 2$

[22011-0189]

- 3 1보다 큰 양수 a에 대하여 함수 $f(x) = \frac{ax}{\sqrt{1+x^2}}$ 의 역함수를 g(x)라 하고, 두 곡선 y = f(x), y = g(x)가 만 나는 점 중 x좌표가 양수인 점의 x좌표를 k라 하자. $\int_0^k \frac{x}{f'(g(x))} dx = 2$ 일 때, 두 곡선 y = f(x), y = g(x)로 둘러싸인 부분의 넓이는?
 - ① $\frac{1}{2}$ ② 1
- **4** 2

대표 기출 문제

정적분과 급수의 관계를 이용하는 문제, 정적분을 활용하여 곡선으로 둘러싸인 부분의 넓이, 입체도형의 부피를 구하 는 문제. 평면 위의 점이 움직인 거리를 구하는 문제 등이 출제된다.

좌표평면 위를 움직이는 점 P의 시각 t (t>0)에서의 위치가 곡선 $y=x^2$ 과 직선 $y=t^2x-\frac{\ln t}{2}$ 가 만나는 서로 다른 두 점의 중점일 때. 시각 t=1에서 t=e까지 점 P가 움직인 거리는? [3점]

$$2\frac{e^4}{2} - \frac{5}{16}$$

$$3\frac{e^4}{2} - \frac{1}{4}$$

$$\textcircled{1} \ \, \frac{e^4}{2} - \frac{3}{8} \qquad \qquad \textcircled{2} \ \, \frac{e^4}{2} - \frac{5}{16} \qquad \qquad \textcircled{3} \ \, \frac{e^4}{2} - \frac{1}{4} \qquad \qquad \textcircled{4} \ \, \frac{e^4}{2} - \frac{3}{16} \qquad \qquad \textcircled{5} \ \, \frac{e^4}{2} - \frac{1}{8}$$

$$(5) \frac{e^4}{2} - \frac{1}{8}$$

2022학년도 대수능

(출제 의도) 정적분을 이용하여 좌표평면 위의 점이 움직인 거리를 구할 수 있는지를 묻는 문제이다.

풀이 곡선 $y=x^2$ 과 직선 $y=t^2x-\frac{\ln t}{8}$ 가 만나는 두 점의 x좌표를 각각 $lpha,\ eta$ 라 하면 두 점의 좌표는 $(lpha,\ lpha^2),$

 (β, β^2) 이므로 이 두 점을 잇는 선분의 중점의 좌표는

$$\left(\frac{\alpha+\beta}{2}, \frac{\alpha^2+\beta^2}{2}\right)$$
 \bigcirc

이다. 또 α , β 는 x에 대한 이차방정식 $x^2=t^2x-\frac{\ln t}{8}$, 즉 $x^2-t^2x+\frac{\ln t}{8}=0$ 의 두 실근이므로 이차방정식의 근과 계수의 관계에 의하여

$$\alpha + \beta = t^2$$
, $\alpha\beta = \frac{\ln t}{8}$

이고, $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = t^4 - \frac{\ln t}{4}$ 이므로 ①에서

$$\frac{\alpha+\beta}{2} = \frac{1}{2}t^2, \frac{\alpha^2+\beta^2}{2} = \frac{1}{2}t^4 - \frac{\ln t}{8}$$

그러므로 점 P의 시각 t에서의 위치 (x,y)는 $x=\frac{1}{2}t^2, y=\frac{1}{2}t^4-\frac{\ln t}{8}$ 이다.

$$x=rac{1}{2}t^2$$
에서 $rac{dx}{dt}=t$ 이고, $y=rac{1}{2}t^4-rac{\ln t}{8}$ 에서 $rac{dy}{dt}=2t^3-rac{1}{8t}$ 이므로

$$\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2} = t^{2} + \left(2t^{3} - \frac{1}{8t}\right)^{2} = 4t^{6} + \frac{1}{2}t^{2} + \frac{1}{64t^{2}} = \left(2t^{3} + \frac{1}{8t}\right)^{2}$$

따라서 시각 t=1에서 t=e까지 점 P가 움직인 거리는

$$\begin{split} \int_{1}^{e} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} \, dt &= \int_{1}^{e} \sqrt{\left(2t^{3} + \frac{1}{8t}\right)^{2}} \, dt = \int_{1}^{e} \left(2t^{3} + \frac{1}{8t}\right) dt = \left[\frac{1}{2}t^{4} + \frac{1}{8}\ln|t|\right]_{1}^{e} \\ &= \left(\frac{e^{4}}{2} + \frac{1}{8}\right) - \left(\frac{1}{2} + 0\right) = \frac{e^{4}}{2} - \frac{3}{8} \end{split}$$

1

고2~N수 수능 집중 로드맵

과목	수능 입문	기출 / 연습	연계+연기	계 보완	고난도	모의고사
국어	수능 감 (感)잡기	수능 기출의	수능연계교재의 국어 어휘 수능연계교재의 VOCA 1800	수능특강 사용설명서	수능연계완성 3/4주 특강 고난도 · 신유형	FINAL 실전모의고사
염어		미래	수능연계 기출 Vaccine VOCA	수능특강 연계 기출 수능완성 사용설명서	수능의 7대 함정	만점마무리 봉투모의고사
수학	수능특강 Light 가능개념	수능특강Q 미니모의고사	연계 ^{급수} 수능특강			만점마무리 봉투모의고사 RED EDITION
한국사 사회 과학		, —	수능완성			고난도 시크릿X 봉투모의고사
구분	시리즈명		특짐		수준	염역
一十正	시디스B 수능 감(感) 잡기	두이 시대 . 약	극성 유형의 내신과 수능 문형	한 비교리 스트 이미	・ 全世	국/수/영
ㅅ느 이므	수등 김(感) 십기 수능특강 Light		유영의 대신과 우등 문영 연계교재 학습 전 연계			국/우/영 국/영
수능 입문	구등특성 Light		면게교제 익급 전 면게 표 강사들과 함께하는 4			국/ 8 전영역
	수능 기출의 미래	_(에 딱 필요한 문제만 선			전영역
기출/연습	수능특강이 미니모의고사		에 ㅋ 할요한 문제한 편 분으로 연습하는 고퀄리			전영역
	수능특강	_	경향과 기출 유형을 분			전영역
	수능특강 사용설명서		교재 수능특강의 지문·		•	전영역
	수능특강 연계 기출		- '' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '		•	국/영
연계	수능완성		· · · · · · · · · · · · · · · · · · ·		•	전영역
+ 연계 보완	수능완성 사용설명서		· · · - · · · · · · · · · · · · · · · ·		•	국/영
	수능연계교재의 국어 어휘	수능 지	문과 문항 이해에 필요	한 어휘 학습서	•	국어
	수능연계교재의 VOCA 1800	수능특강과	수능완성의 필수 중요	어휘 1800개 수록	•	영어
	수능연계 기출 Vaccine VOCA	수능-EBS	연계 및 평가원 최다 빈	<u>l</u> 출 어휘 선별 수록	•	영어
	수능연계완성 3/4주 특강	단기:	간에 끝내는 수능 킬러	문항 대비서	•	국/수/영/과
고난도	수능의 7대 함정	아깝게 틀리	기 쉬운 영역별 수능 힘	l정 문제 유형 분석	•	국/수/영/사/과
	박봄의 사회 · 문화 표 분석의 파	배턴 박봄 선생님	님과 사회 · 문화 표 분석	부문항의 패턴 연습	•	사회탐구
모의고사	FINAL 실전모의고사	수능 동일	! 난도의 최다 분량, 최대	다 과목 모의고사	•	전영역
	만점마무리 봉투모의고사	실제 시험지	형태와 OMR 카드로	실전 훈련 모의고사	•	전영역
	만점마무리 봉투모의고사 RED EDITION	신규 문항 2호	티분으로 국어 · 수학 · 양	경어 논스톱 모의고사	•	국/수/영
	고난도 시크릿X 봉투모의고사	사 제대로	어려운 고퀄리티 최고	난도 모의고사	•	국/수/영