dernier CM

graphe plannaire

graphe plannaire = dessiner dans un plan (les arrêtes ne se croisent pas a part aux sommets)

graphe isomorphe = graphes qui peuvent coincider par déformation

face = région délimitée par des arrêtes

frontière = ensemble des arrêtes qui délimitent une face

deux phases adjacentes = deux faces qui ont une arrête en commun

le degrès minimal d'un graphe non plannaire est 5, en dessous, on est toujours plannaire

Théorème de Kuratowski

Un graphe est plannaire si et seulement si il ne contient pas de sous graphe homéomorphe à K5 ou K3,3

K5 = graphe complet à 5 sommets K3,3 = graphe biparti complet à 3 sommets

Coloration de graphe

Deux types de coloration pour graphe G=(X,A):

- coloration de sommets : on attribue une couleur à chaque sommet de telle sorte que deux sommets adjacents n'aient pas la même couleur
- coloration d'arêtes : on attribue une couleur à chaque arrête de telle sorte que deux arrêtes incidentes à un même sommet n'aient pas la même couleur

nombre chromatique = nombre minimal de couleurs nécessaires pour colorer un graphe ensemble stable = ensemble de sommets qui ne sont pas adjacents en terme de coloration nombre de stabilité = cardinal maximal d'un ensemble stable dans un graphe il sera noté $\alpha(G)$, avec $\gamma(G)$ nombre de chromatique et N(G) le nombre de sommets :

$$\alpha(G) + \gamma(G) \ge N(G)$$

On en déduit :

$$\gamma(G) \ge \frac{N(G)}{\alpha(G)}$$

il existe 6 bornes (voir cours) et avec ces 6 bornes, si on regarde les bornes inférieures, on sait le minimum théorique mais on est pas sûr de l'atteindre.

clique = ensemble de sommets qui sont tous adjacents (egraphe complet)

Algorithme de Welsh et Powell

a ecrire avec le cours

Mais en gros : on prend le sommet de degré maximal, on le colorie avec une couleur, on colorie de la même couleur les sommets qui ne sont pas adjacents à ce sommet, on prend le sommet de degré maximal parmi les sommets non coloriés et on recommence. (Je crois)