Greedy algorithms 1 Scheduling

CS240

Spring 2024

Rui Fan

Greedy algorithms

- Make the best choice at the moment.
 - □ No planning ahead. "Short-sighted".
- Once choice made, it's fixed.
 - □ No take-backs.
- Cons Doesn't always find optimal answer.
- Pros Simple and fast. Sometimes optimal.

Overview

- Selecting breakpoints
- Coin change
- Interval scheduling
- Interval coloring
- Scheduling to minimizing lateness

Selecting Breakpoints

Selecting breakpoints.

- Road trip from Princeton to Palo Alto along fixed route.
- Refueling stations at certain points along the way.
- Fuel capacity = C.
- Goal: makes as few refueling stops as possible.

Greedy algorithm. Go as far as you can before refueling.

Selecting Breakpoints: Greedy Algorithm

Truck driver's algorithm.

```
Sort breakpoints so that: 0 = b_0 < b_1 < b_2 < \ldots < b_n = L
S \leftarrow \{0\} \leftarrow \text{breakpoints selected}
x \leftarrow 0 \leftarrow \text{current location}
\text{while } (x \neq b_n)
\text{let p be largest integer such that } b_p \leq x + C
\text{if } (b_p = x)
\text{return "no solution"}
x \leftarrow b_p
S \leftarrow S \cup \{p\}
\text{return S}
```

Implementation.

O(n log n) to sort.

O(n) time for while loop.

Selecting Breakpoints: Correctness

Theorem. Greedy algorithm is optimal.

Pf. (by contradiction)

- Assume greedy is not optimal, and let's see what happens.
- Let $0 = g_0 < g_1 < \ldots < g_p = L$ denote set of breakpoints chosen by greedy.
- Let $0 = f_0 < f_1 < \ldots < f_q = L$ denote set of breakpoints in an optimal solution with $f_0 = g_0$, $f_1 = g_1, \ldots, f_r = g_r$ for largest possible value of r.
- Note: $g_{r+1} > f_{r+1}$ by greedy choice of algorithm.

Selecting Breakpoints: Correctness

Theorem. Greedy algorithm is optimal.

Pf. (by contradiction)

- Assume greedy is not optimal, and let's see what happens.
- Let $0 = g_0 < g_1 < \ldots < g_p = L$ denote set of breakpoints chosen by greedy.
- Let $0 = f_0 < f_1 < \ldots < f_q = L$ denote set of breakpoints in an optimal solution with $f_0 = g_0$, $f_1 = g_1, \ldots, f_r = g_r$ for largest possible value of r.
- Note: $g_{r+1} > f_{r+1}$ by greedy choice of algorithm.

Coin Changing

Goal. Given currency denominations: 1, 5, 10, 25, 100 (penny, nickel, dime, quarter, dollar) devise a method to pay amount to customer using fewest number of coins.

Ex: 34¢.

Cashier's algorithm. At each iteration, add coin of the largest value that does not take us past the amount to be paid.

Ex: \$2.89.

Coin-Changing: Greedy Algorithm

Cashier's algorithm. At each iteration, add coin of the largest value that does not take us past the amount to be paid.

```
Sort coins denominations by value: c_1 < c_2 < ... < c_n.

coins selected

S \leftarrow \phi

while (x \neq 0) {

let k be largest integer such that c_k \leq x

if (k = 0)

return "no solution found"

x \leftarrow x - c_k

S \leftarrow S \cup \{k\}
}

return S
```

Q. Is cashier's algorithm optimal?

Coin-Changing: Analysis of Greedy Algorithm

Theorem. Greed is optimal for U.S. coinage: 1, 5, 10, 25, 100.

Pf. (by induction on x)

- Consider optimal way to change $c_k \le x < c_{k+1}$: greedy takes coin k.
- We claim that any optimal solution must also take coin k.
 - if not, it needs enough coins of type $c_1, ..., c_{k-1}$ to add up to x
 - table below indicates no optimal solution can do this
- Problem reduces to coin-changing x c_k cents, which, by induction, is optimally solved by greedy algorithm.

k	C _k	All optimal solutions must satisfy	Max value of coins 1, 2,, k-1 in any OPT		
1	1	P ≤ 4	-		
2	5	N ≤ 1	4		
3	10	N + D ≤ 2	4 + 5 = 9		
4	25	Q ≤ 3	20 + 4 = 24		
5	100	no limit	75 + 24 = 99		

- Opt must have $p \le 4$, because if $p \ge 5$, can replace 5 p with 1 n.
- Opt must have $n \le 1$, because if $n \ge 2$, can replace with one dime, etc.
- So if don't use c_k , then must use $c_1, ..., c_{k-1}$, and these must add up to $\geq x \geq c_k$.
- By case analysis, we see coins of type $c_1, ..., c_{k-1}$ never add up to $\geq c_k$.

Coin-Changing: Analysis of Greedy Algorithm

Observation. Greedy algorithm is sub-optimal for US postal denominations: 1, 10, 21, 34, 70, 100, 350, 1225, 1500.

Counterexample. 140¢.

• Greedy: 100, 34, 1, 1, 1, 1, 1, 1.

• Optimal: 70, 70.

Interval scheduling

- Given a set of intervals, pick the largest number of nonoverlapping ones.
 - □ Each interval given by a start and finishing time.
- Models use of a shared resource.
 - Ex 9 people want to use a room. Different people want to use it at different times. Let max number of people use room.

A greedy algorithm

- Let's pick the intervals from left to right.
- Intuition Since can't pick a new interval until the previous one ends, want to pick intervals that end as quickly as possible.
- So we sort the intervals by finishing times. Then keep selecting earliest finishing one that doesn't overlap previous selected interval.

```
Initially let R be the set of all requests, and let A be empty While R is not yet empty

Choose a request i \in R that has the smallest finishing time Add request i to A

Delete all requests from R that are not compatible with request i

EndWhile Return the set A as the set of accepted requests
```

M

A greedy algorithm

Intervals numbered in order

Selecting interval 1

Selecting interval 3

Selecting interval 5

Selecting interval 8

Algorithm Design Kleinberg, Tardos

Correctness

- We'll compare algorithm's solution S to an optimal solution T.
 - □ Can have S≠T, since there may be several optimal solutions.
- Def Let s_k and t_k be k'th interval in S and T, resp.
- Def let fin(i) be finishing time of an interval i.
- Claim $fin(s_k) \le fin(t_k)$ for all k.
- Proof By induction. True for k=1 since s_k is interval with min fin time.
 - □ Suppose true for < k, i.e. $fin(s_{k-1}) \le fin(t_{k-1})$.
 - □ Then {intervals not intersecting s_{k-1} and finishing after s_{k-1} } \supseteq {intervals not intersecting t_{k-1} and finishing after t_{k-1} }.
 - \square By the algorithm, s_k is earliest finishing interval in the first set.
 - \Box t_k is some interval in the latter set.
 - □ So $fin(s_k) \le fin(t_k)$.
- Corollary S has at least as many intervals as T, i.e. S is optimal.

Analysis

- If there are n intervals, sorting the intervals takes O(n log n) time.
- Then we go through the intervals in order of finishing times.
 - □ For each interval, check if it intersects last selected one, and select it if it doesn't.
 - □ Takes O(n) time.
- Total O(n log n) time.

Interval coloring problem

- In interval scheduling, we scheduled the max number of intervals on one resource.
- In interval coloring, we need to schedule all the intervals on some number of resources.
 - □ Intervals on the same resource cannot overlap.
 - □ Goal Minimize the number of resources used.
- Example application is to schedule people who need to use a room in the min number of rooms.

Optimality criterion

- Observation Suppose k intervals intersect at some time point. Then the optimal schedule needs at least k resources.
 - Since intervals on same resource can't overlap, then the k intersecting intervals need to be assigned to k different resources in any solution.
- Def Depth of a set of intervals is the max number of intervals that intersect at any time.

These intervals have depth 3

Optimality criterion

- Corollary Let d be the depth of a set of intervals, and suppose we find a schedule using d resources. Then the schedule is optimal.
 - By the observation, any schedule needs at least d resources. Since our schedule uses d resources, it's optimal.

Since depth is 3, this schedule is optimal

A greedy algorithm

- Sweep through intervals in order of increasing start time.
 - □ Break ties arbitrarily.
- For each interval, assign it to smallest resource not already assigned to an intersecting interval.

Correctness

- Claim Let the set of intervals have depth d. Then the algorithm uses d resources.
- Proof Suppose algorithm is processing some interval s. Then ≤ d-1 intervals intersect s.
 - □ So ≤ d-1 resources assigned to these intervals.
 - □ So s can be assigned some resource ≤ d.
- Corollary The algorithm is optimal
 - ☐ Follows by the optimality criterion.

Scheduling to Minimizing Lateness

Minimizing lateness problem.

- Single resource processes one job at a time.
- Job j requires t_i units of processing time and is due at time d_i.
- If j starts at time s_j , it finishes at time $f_j = s_j + t_j$.
- Lateness: $\ell_i = \max \{ 0, f_i d_i \}$.
- Goal: schedule all jobs to minimize maximum lateness L = max ℓ_i .

Ex:

	1	2	3	4	5	6
† _j	3	2	1	4	3	2
dj	6	8	9	9	14	15

Minimizing Lateness: Greedy Algorithms

Greedy template. Consider jobs in some order.

 [Shortest processing time first] Consider jobs in ascending order of processing time t_i.

[Earliest deadline first] Consider jobs in ascending order of deadline d_i.

 $_{\:\raisebox{1pt}{\text{\circle*{1.5}}}}$ [Smallest slack] Consider jobs in ascending order of slack d_{j} - $t_{j}.$

Minimizing Lateness: Greedy Algorithms

Greedy template. Consider jobs in some order.

 [Shortest processing time first] Consider jobs in ascending order of processing time t_i.

	1	2
† _j	1	10
dj	100	10

counterexample

[Smallest slack] Consider jobs in ascending order of slack d_j - t_j.

	1	2
† _j	1	10
dj	2	10

counterexample

Minimizing Lateness: Greedy Algorithm

Greedy algorithm. Earliest deadline first.

```
Sort n jobs by deadline so that d_1 \leq d_2 \leq ... \leq d_n t \leftarrow 0 for j = 1 to n  \text{Assign job j to interval } [t, \ t + t_j]  s_j \leftarrow t, \ f_j \leftarrow t + t_j  t \leftarrow t + t_j output intervals [s_j, \ f_j]
```

	1	2	3	4	5	6
† _j	3	2	1	4	3	2
d_{j}	6	8	9	9	14	15

Minimizing Lateness: No Idle Time

Observation. There exists an optimal schedule with no idle time.

Observation. The greedy schedule has no idle time.

Minimizing Lateness: Inversions

Def. An inversion in schedule S is a pair of jobs i and j such that:

Observation. Greedy schedule has no inversions.

Observation. If a schedule (with no idle time) has an inversion, it has one with a pair of inverted jobs scheduled consecutively.

Minimizing Lateness: Inversions

Def. An inversion in schedule S is a pair of jobs i and j such that:

Claim. Swapping two adjacent, inverted jobs reduces the number of inversions by one and does not increase the max lateness.

Pf. Let ℓ be the lateness before the swap, and let ℓ ' be it afterwards.

- $\ell'_{k} = \ell_{k}$ for all $k \neq i, j$
- $\ell'_{i} \leq \ell_{i}$
- If job j is late:

$$\ell'_{j} = f'_{j} - d_{j}$$
 (definition)
 $= f_{i} - d_{j}$ (j finishes at time f_{i})
 $\leq f_{i} - d_{i}$ (i < j)
 $\leq \ell_{i}$ (definition)

Minimizing Lateness: Analysis of Greedy Algorithm

Theorem. Greedy schedule S is optimal.

Pf. Define S* to be an optimal schedule that has the fewest number of inversions, and let's see what happens.

- Can assume S* has no idle time.
- If S* has no inversions, then S = S*.
- If S* has an inversion, let i-j be an adjacent inversion.
 - swapping i and j does not increase the maximum lateness and strictly decreases the number of inversions
 - this contradicts definition of S*