RELAXING THE MODEL ASSUMPTIONS

Standardizing residuals

We recall from previous results that for residual random vectors $\mathbf{Y} - \widehat{\mathbf{Y}}$ we have (under correct specification)

$$\operatorname{Var}_{\mathbf{Y}|\mathbf{X}}[\mathbf{Y} - \widehat{\mathbf{Y}}|\mathbf{X}] = \sigma^2(\mathbf{I}_n - \mathbf{H}).$$

Taking the diagonal elements, this implies that the variance of the *i*th residual is

$$\sigma^2(1-h_{ii})$$

which we may use as a means to process the residual so that it appears on a standard scale.

Outliers

An **outlier** is a point for which the residual (or standardized residual) is large.

- Such points need to be considered carefully as they may exert a lot of influence on the fit.
- Outliers may need to be deleted from the data set.

Using standard large sample arguments, a data point may be considered an outlier if

$$\left|\frac{y_i-\widehat{y}_i}{\sqrt{\sigma^2(1-h_{ii})}}\right|>2$$

Deletion residuals

Consider the fit of a regression model to data indexed i = 1, ..., n, and consider refitting the model with the ith point deleted. Let

- $\mathbf{y}_{(i)}$ be the response vector with the *i*th response deleted;
- $\mathbf{X}_{(i)}$ be the **X** matrix with the *i*th row deleted.

The least squares estimate when point i is deleted is

$$\widehat{\beta}_{(i)} = (\mathbf{X}_{(i)}^{\top} \mathbf{X}_{(i)})^{-1} \mathbf{X}_{(i)}^{\top} \mathbf{y}_{(i)}.$$

We then have the prediction at $\mathbf{x} = \mathbf{x}_i$ as

$$\widehat{y}_{(i)} = \mathbf{x}_i \widehat{\beta}_{(i)}.$$

We attempt to assess model validity using this 'out-of-sample' prediction.

Deletion residuals (cont.)

The *i*th PRESS (<u>Pre</u>diction <u>S</u>um of <u>S</u>quares) residual is defined as

$$e_{(i)} = y_i - \widehat{y}_{(i)} = y_i - \mathbf{x}_i \widehat{\beta}_{(i)} = y_i - \mathbf{x}_i (\mathbf{X}_{(i)}^\top \mathbf{X}_{(i)})^{-1} \mathbf{X}_{(i)}^\top \mathbf{y}_{(i)}$$

We compute this quantity for i = 1, ..., n. It transpires (see Appendix) that

$$e_{(i)} = \frac{e_i}{1 - h_{ii}}$$

where h_{ii} is the *i*th diagonal element of hat matrix **H**.

Deletion, Leverage and influence

We can extend the idea of deletion for residuals to deletion for inference: we compare estimates

- $\widehat{\beta}$ from the full data set
- $\widehat{\beta}_{(i)}$ when the *i*th data point is removed.

As well as the regression estimates, we also have the estimates of σ^2 :

- $\hat{\sigma}^2$ from the full data set
- $\hat{\sigma}_{(i)}^2$ when the *i*th data point is removed.

Deletion, Leverage and influence (cont.)

We might use for data point i

$$D_i = \frac{(\widehat{\beta}_{(i)} - \widehat{\beta})^{\top} (\mathbf{X}^{\top} \mathbf{X}) (\widehat{\beta}_{(i)} - \widehat{\beta})}{p \mathsf{MS}_{\mathsf{Res}}} = \frac{(\widehat{\mathbf{y}}_{(i)} - \widehat{\mathbf{y}})^{\top} (\widehat{\mathbf{y}}_{(i)} - \widehat{\mathbf{y}})}{p \mathsf{MS}_{\mathsf{Res}}}$$

as a global measure of influence on inference on a standardized scale.

 D_i is Cook's distance.

Leverage

From standard theory, we have that

$$\widehat{\boldsymbol{y}} = \boldsymbol{H}\boldsymbol{y}$$

where **H** is the hat matrix $\mathbf{H} = \mathbf{X}(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}$. Thus

$$\widehat{y}_i = \sum_{j=1}^n h_{ij} y_j$$

The coefficients h_{ij} measure the importance of each of the original data y_1, \ldots, y_n in predicting y_i .

 h_{ij} is termed the **leverage** of point j on point i. We have

$$h_{ii} = \mathbf{x}_i (\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{x}_i^\top$$

and if this value is large, the data point i is considered influential.

Example: Life Cycle Data

From the R help:

Under the life-cycle savings hypothesis as developed by Franco Modigliani, the savings ratio is explained by per-capita disposable income, the percentage rate of change in per-capita disposable income, and two demographic variables: the percentage of population less than 15 years old and the percentage of the population over 75 years old. The data are averaged over the decade 1960–1970 to remove the business cycle or other short-term fluctuations.

- predictor pop15 % of population under 15
- predictor pop75 % of population over 75
- predictor dpi real per-capita disposable income
- predictor ddpi % growth rate of dpi
- response sr savings ratio (aggregate personal saving divided by disposable income)

Analysis

```
> LifeCvcleSavings
2
                    sr pop15 pop75
                                       dpi
                                            ddpi
3
   Australia
                 11.43 29.35 2.87 2329.68 2.87
4
   Austria
                 12.07 23.32 4.41 1507.99 3.93
5
   Belgium
                 13.17 23.80 4.43 2108.47 3.82
6
   Bolivia
                   5.75 41.89 1.67 189.13
                                            0.22
   Brazil
                 12.88 42.19 0.83 728.47 4.56
8
   Canada
                  8.79 31.72 2.85 2982.88 2.43
9
   Chile
                  0.60 39.74 1.34
                                    662.86 2.67
10
   China
                 11.90 44.75 0.67 289.52 6.51
11
12
13
14
   Tunisia
                  2.81 46.12 1.21 249.87 1.13
15
   United Kingdom 7.81 23.27 4.46 1813.93 2.01
16
   United States
                7.56 29.81 3.43 4001.89 2.45
17
   Venezuela
                 9.22 46.40 0.90 813.39 0.53
18
   Zambia
                 18.56 45.25 0.56 138.33 5.14
19
   Jamaica
                  7.72 41.12 1.73 380.47 10.23
20
                  9.24 28.13 2.72 766.54 1.88
   Uruquay
21
   Libva
                  8.89 43.69 2.07 123.58 16.71
22
                   4.71 47.20
   Malavsia
                              0.66
                                    242.69
                                            5.08
```

Analysis

```
23
   > str(LifeCvcleSavings)
24
   'data.frame': 50 obs. of 5 variables:
25
    $ sr : num 11.43 12.07 13.17 5.75 12.88 ...
26
    $ pop15: num 29.4 23.3 23.8 41.9 42.2 ...
27
    $ pop75: num 2.87 4.41 4.43 1.67 0.83 2.85 1.34 0.67 1.06 1.14 ...
28
    $ dpi : num 2330 1508 2108 189 728 ...
29
    $ ddpi : num 2.87 3.93 3.82 0.22 4.56 2.43 2.67 6.51 3.08 2.8 ...
30
31
   > fit1 <- lm(sr \sim pop15 + pop75 + dpi + ddpi,
32
   + data = LifeCycleSavings)
33
   > summary(fit1)
34
   Coefficients:
35
                Estimate Std. Error t value Pr(>|t|)
36 (Intercept) 28.5660865 7.3545161 3.884 0.000334 ***
37
   pop15 -0.4611931 0.1446422 -3.189 0.002603 **
38
   pop75 -1.6914977 1.0835989 -1.561 0.125530
39
   dpi -0.0003369 0.0009311 -0.362 0.719173
   ddpi 0.4096949 0.1961971 2.088 0.042471 *
40
41
42
   Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
43
44
   Residual standard error: 3.803 on 45 degrees of freedom
45
   Multiple R-squared: 0.3385, Adjusted R-squared: 0.2797
46 F-statistic: 5.756 on 4 and 45 DF, p-value: 0.0007904
```

Residual Plots and Diagnostics plot (fit1)

Diagonals of the hat matrix (h_{ii})

```
47
   inf.diags<-lm.influence(fit1)
48
   data.frame(hat=inf.diags$hat[c(1:7,42:50)])
49
                         hat.
50
   Australia
                  0.06771343
51
   Austria
                  0.12038393
52 Belgium
                  0.08748248
53
   Bolivia
                  0.08947114
54
  Brazil
                  0.06955944
55
   Canada
                  0.15840239
56
   Chile
                  0.03729796
57
   Tunisia
                  0.07456729
58
   United Kingdom 0.11651375
59
   United States 0.33368800
60
  Venezuela
                 0.08628365
61
   Zambia
                  0.06433163
62
   Jamaica
                  0.14076016
63
   Uruguay
                 0.09794717
64
   Libya
                  0.53145676
65
   Malaysia
                  0.06523300
```

Deletion change in eta estimates $\widehat{eta}_{(i)} - \widehat{eta}_i$

```
66
   > data.frame(signif(inf.diags$coef[c(1:7,42:50),],4))
67
                       Intercept
                                   pop15
                                            pop75
                                                          dpi
                                                                    ddpi
                       0.09158 -0.0015260 -0.02905 4.267e-05 -3.157e-05
68
   Australia
69
   Austria
                      -0.07473
                                0.0008692 0.04474 -3.456e-05 -1.623e-03
70
   Belgium
                      -0.47520
                                0.0075010 0.13170 -3.255e-05 -1.435e-03
71
   Bolivia
                       0.04295 -0.0018570 -0.02467
                                                     2.998e-05 8.061e-03
72
   Brazil
                       0.66040 -0.0089200 -0.19420
                                                     1.118e-04 1.344e-02
73
   Canada
                       0.04023 -0.0009873 0.01118 -3.324e-05 -5.255e-04
74
   Chile
                      -1.40000
                                0.0183200
                                            0.22740 -1.776e-05 2.248e-02
75
   Tunisia
                       0.54500 -0.0152600 -0.08411
                                                     4.152e-05 2.031e-02
76
   United Kingdom
                       0.34520 -0.0052090 -0.18650
                                                    1.175e-04 1.978e-02
77
   United States
                       0.51320 -0.0106500
                                            0.04098 -2.192e-04 -6.485e-03
78
   Venezuela
                      -0.37380 0.0145800 -0.03648 1.058e-04 -2.442e-02
79
   Zambia
                       1.11800 -0.0106400 -0.34120
                                                    8.136e-05 4.160e-02
80
   Jamaica
                       0.80830 -0.0145400 -0.06219 -6.566e-06 -5.814e-02
81
   Uruquay
                      -0.99250
                                0.0187600
                                           0.03222 1.231e-04 1.967e-02
82
   Libya
                       4.04200 -0.0697500 -0.41060 -1.800e-05 -2.006e-01
83
   Malavsia
                       0.27200 -0.0088760 0.03519 -4.633e-05 -1.424e-02
```

Influence Diagnostics

84		$dfb.1_{-}$	dfb.pp15	dfb.pp75	dfb.dpi	dfb.ddpi	dffit	cov.r	cook.d	hat
85	Australia	0.012	-0.010	-0.027	0.045	0.000	0.063	1.193	0.001	0.068
86	Austria	-0.010	0.006	0.041	-0.037	-0.008	0.063	1.268	0.001	0.120
87	Belgium	-0.064	0.051	0.121	-0.035	-0.007	0.188	1.176	0.007	0.087
88	Bolivia	0.006	-0.013	-0.023	0.032	0.041	-0.060	1.224	0.001	0.089
89	Brazil	0.090	-0.062	-0.179	0.120	0.068	0.265	1.082	0.014	0.070
90	Canada	0.005	-0.007	0.010	-0.035	-0.003	-0.039	1.328	0.000	0.158
91	Chile	-0.199	0.133	0.220	-0.020	0.120	-0.455	0.655	0.038	0.037
92	Tunisia	0.074	-0.105	-0.077	0.044	0.103	-0.218	1.131	0.010	0.075
93	United Kingdom	0.047	-0.036	-0.171	0.126	0.100	-0.272	1.189	0.015	0.117
94	United States	0.069	-0.073	0.037	-0.233	-0.033	-0.251	1.655	0.013	0.334
95	Venezuela	-0.051	0.101	-0.034	0.114	-0.124	0.307	1.095	0.019	0.086
96	Zambia	0.164	-0.079	-0.339	0.094	0.228	0.748	0.512	0.097	0.064
97	Jamaica	0.110	-0.100	-0.057	-0.007	-0.295	-0.346	1.200	0.024	0.141
98	Uruguay	-0.134	0.129	0.030	0.131	0.100	-0.205	1.187	0.009	0.098
99	Libya	0.551	-0.483	-0.380	-0.019	-1.024	-1.160	2.091	0.268	0.531
100	Malaysia	0.037	-0.061	0.032	-0.050	-0.072	-0.213	1.113	0.009	0.065

Influence Diagnostics

• rstandard: Standardized residual

$$\frac{y_i - \widehat{y}_i}{\widehat{\sigma}}$$

• rstudent Studentized residual

$$\frac{y_i - \widehat{y}_i}{\widehat{\sigma}\sqrt{1 - h_{ii}}}$$

Let

$$\mathbf{C} = (\mathbf{X}^{\top} \mathbf{X})^{-1} \qquad \qquad \mathbf{R} = (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top}$$

where **R** has rows \mathbf{r}_i , i = 1, ..., n, and

$$\widehat{\sigma}_{(i)}^2 = \frac{1}{n-p-1} \sum_{i \neq i} (y_i - \widehat{y}_{j(i)})^2$$

is computed for the data set with point *i* omitted.

• dfbetas: standardized change in coefficient when *i*th point is deleted; for j = 1, ..., p,

$$DFBETAS_{j,i} = \frac{\widehat{\beta}_j - \widehat{\beta}_{j(i)}}{\sqrt{\widehat{\sigma}_{(i)}^2 C_{jj}}}.$$

We consider a point *i* to be worthy of examination if

$$|DFBETAS_{j,i}| > \frac{2}{\sqrt{n}}$$

• dffits: standardized change in fitted value when *i*th point is deleted; for i = 1, ..., n,

$$DFFITS_i = \frac{\widehat{y}_i - \widehat{y}_{(i)}}{\sqrt{\widehat{\sigma}_{(i)}^2 h_{ii}}}.$$

We consider a point *i* to be worthy of examination if

$$|DFFITS_i| > 2\sqrt{\frac{p}{n}}$$

 covratio change in precision of estimation when ith point is deleted, obtained by considering ratios of determinants; for i = 1,...,n,

$$COVRATIO_i = \frac{|\widehat{\sigma}_{(i)}^2(\mathbf{X}_{(i)}^\top\mathbf{X}_{(i)})^{-1}|}{|\widehat{\sigma}^2(\mathbf{X}^\top\mathbf{X})^{-1}|} = \left(\frac{\widehat{\sigma}_{(i)}^2}{\widehat{\sigma}^2}\right)^p \frac{1}{1 - h_{ii}}$$

as

$$\frac{|(\mathbf{X}_{(i)}^{\top}\mathbf{X}_{(i)})^{-1}|}{|(\mathbf{X}^{\top}\mathbf{X})^{-1}|} = \frac{1}{1 - h_{ii}}$$

• cooks.distance: standardized aggregate change in coefficient when *i*th point is deleted; for i = 1, ..., n,

$$D_i = \frac{(\widehat{\beta}_{(i)} - \widehat{\beta})^{\top} (\mathbf{X}^{\top} \mathbf{X}) (\widehat{\beta}_{(i)} - \widehat{\beta})}{p \widehat{\sigma}^2} = \frac{(\widehat{\mathbf{y}}_{(i)} - \widehat{\mathbf{y}})^{\top} (\widehat{\mathbf{y}}_{(i)} - \widehat{\mathbf{y}})}{p \widehat{\sigma}^2}$$

Adapting the least squares procedure

We may generalize the variance assumption of the linear model to allow for more general variance structures. Suppose that we assume

$$Var[\epsilon | \mathbf{X}] = \sigma^2 \mathbf{V}$$

for some positive definite matrix **V**. This allows the residual errors to have unequal variances and be correlated. Under this assumption, the least squares criterion is amended to

$$\widehat{\beta}_{\mathbf{V}} = \arg\min_{\beta} (\mathbf{y} - \mathbf{X}\beta)^{\top} \mathbf{V}^{-1} (\mathbf{y} - \mathbf{X}\beta)$$

Again we can minimize using calculus to obtain

$$\widehat{\beta}_{\mathbf{V}} = (\mathbf{X}^{\top} \mathbf{V}^{-1} \mathbf{X})^{-1} \mathbf{X}^{\top} \mathbf{V}^{-1} \mathbf{y}$$

Adapting the least squares procedure (cont.)

Under correct specification of the conditional mean, this estimator is unbiased, with variance

$$\sigma^2(\mathbf{X}^{\top}\mathbf{V}^{-1}\mathbf{X})^{-1}.$$

We also have

$$\begin{split} \widehat{\mathbf{y}} &= \mathbf{X} (\mathbf{X}^{\top} \mathbf{V}^{-1} \mathbf{X})^{-1} \mathbf{X}^{\top} \mathbf{V}^{-1} \mathbf{y} = \mathbf{H}_{\mathbf{V}} \mathbf{y} \\ SS_{Res} &= (\mathbf{y} - \widehat{\mathbf{y}})^{\top} \mathbf{V}^{-1} (\mathbf{y} - \widehat{\mathbf{y}}) = \mathbf{y}^{\top} (\mathbf{I}_n - \mathbf{H}_{\mathbf{V}}) \mathbf{V}^{-1} (\mathbf{I}_n - \mathbf{H}_{\mathbf{V}}) \mathbf{y} \end{split}$$

For convenience, we may write these formulae using

$$\mathbf{W} = \mathbf{V}^{-1}$$

Typically, V is treated as known, or estimated in a preliminary calculation.

Adapting the least squares procedure (cont.)

We may rewrite this generalized least squares formulation as an ordinary least squares problem using a decomposition of V as

$$V = KK^\top = K^\top K$$

and premultiplying through the model equation by K^{-1} , that is

$$\mathbf{Y} = \mathbf{X}\beta + \boldsymbol{\epsilon}$$

becomes

$$\mathbf{K}^{-1}\mathbf{Y} = \mathbf{K}^{-1}\mathbf{X}\boldsymbol{\beta} + \mathbf{K}^{-1}\boldsymbol{\epsilon}$$

where the variance of $\mathbf{K}^{-1}\boldsymbol{\epsilon}$ is $\sigma^2\mathbf{I}_n$.

Adapting the least squares procedure (cont.)

If **V** is diagonal, with diagonal elements (v_1, \ldots, v_n) , then a model can be fitted using weighted least squares via the 1m function: we let $w = (1/v_1, \ldots, 1/v_n)$, and write

$$lm(y \sim x, weights = w)$$

NB: Using weighted least squares will only affect the **variance** of the estimators.

Regression with transformations

In forming the linear regression model, we may consider transformations of the **predictors** to form part of the conditional expectation model: for example

- polynomial terms: x_{i1}^k , some k = 1, 2, ...;
- fractional polynomial terms x_{i1}^{α} , $\alpha \in \mathbb{R}$; eg $\sqrt{x_{i1}}$
- reciprocal terms: $1/x_{i1}$;
- logarithmic terms: $\log x_{i1}$;
- splines, wavelets, orthogonal bases etc.

These can be readily incorporated into the regression model.

Regression with transformations (cont.)

We may also consider transforming the response variable in order to make the standard modelling assumptions

$$\mathbb{E}_{\mathbf{Y}|\mathbf{X}}[\mathbf{Y}|\mathbf{X}] = \mathbf{X}\beta \qquad \mathbb{V}\operatorname{ar}_{\mathbf{Y}|\mathbf{X}}[\mathbf{Y}|\mathbf{X}] = \sigma^2 \mathbf{I}_n$$

more plausible. For example, we might make the

- $\sqrt{y_i}$;
- $\log y_i$

transformations; typically these transformations are considered variance stabilizing transforms.

After the transform, the linear model and constant variance assumptions may appear more plausible.

Regression with transformations (cont.)

For strictly positive responses, the **Box-Cox** family of transformations defines the new response variable as

$$\frac{y_i^{\lambda} - 1}{\lambda \dot{y}^{\lambda - 1}}$$

for some $\lambda \in \mathbb{R}$, where

$$\dot{y} = \exp\left\{\frac{1}{n}\sum_{i=1}^{n}\log y_i\right\}$$

is the geometric mean of y_1, \ldots, y_n .

For completeness, we define the new response value when $\lambda = 0$ in this family as

$$\dot{y} \log y_i$$

Example

Data on transportation equipment manufacturing: response is value added due to capital investment and other economic indicators. n = 25 observations, economic indicators in 1957 dollars.

- US State = Observation,
- ValueAdd = output (dollars),
- Capital = capital input (dollars),
- Labor = labour input (dollars),
- Nfirm = number of firms.

```
102
    > head(ZD)
103
            State ValueAdd Capital Labor NFirm
104
          Alabama
                   126,148
                             3.804
                                    31.551
                                              68
105
       California 3201.486 185.446 452.844
                                          1372
106
      Connecticut 690.670 39.712 124.074
                                             154
107
          Florida 56.296 6.547 19.181
                                             2.92
108
         Georgia 304.531 11.530 45.534
                                             71
109
         Illinois
                  723.028
                            58.987
                                    88.391
                                             2.75
```

Data

Value Added vs Capital and Labour input.

Linear model fit

```
110 > fit1<-lm(ValueAdd~Capital+Labor,data=ZD)
111
    > summary(fit1)
112 Coefficients:
113
               Estimate Std. Error t value Pr(>|t|)
114 (Intercept) -27.0555 32.9097 -0.822 0.42
115 Capital 3.2164 0.6461 4.978 5.55e-05 ***
116 Labor 5.3788 0.4771 11.274 1.31e-10 ***
117
   ___
    Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
118
119
120 Residual standard error: 116.4 on 22 degrees of freedom
121 Multiple R-squared: 0.9867, Adjusted R-squared: 0.9855
122 F-statistic: 815 on 2 and 22 DF, p-value: < 2.2e-16
```

Residuals from linear model fit

Box-Cox transformation

To find the optimal Box-Cox transformation, we need to estimate parameter λ .

This can be done using the boxcox function from the MASS library in R;

- the model formula is proposed;
- the boxcox uses the result of the 1m to optimize λ .

The boxcox function returns a likelihood plot for λ from which the estimate is obtained. This plot is used to construct a confidence interval for λ .

Optimizing λ

For any linear model, the log likelihood for λ is

$$\ell(\lambda; \mathbf{y}, \mathbf{X}) = -\frac{n}{2} \log SS_{Res}(\lambda)$$

where $SS_{Res}(\lambda)$ is the sum of squared residuals of the given a specified conditional mean model evaluated at a fixed transformation value λ .

By standard maximum likelihood theory, we have that an approximate 95 % interval for λ is the collection of values of t such that

$$2n(\ell(\widehat{\lambda}; \mathbf{Y}, \mathbf{X}) - \ell(t; \mathbf{Y}, \mathbf{X})) \le 3.841$$

where 3.841 is the 0.95 quantile of the χ_1^2 distribution.

Box-Cox Analysis

automatically produces a plot.

```
123
     > lam.fit<-boxcox(lm(ValueAdd~Capital+Labor,data=ZD),
                        plotit=FALSE, lambda=seq(0,1.5, by=0.0001))
124
    +
125
    >
126
    > (lambda.hat<-lam.fit$x[which.max(lam.fit$y)])</pre>
127
     [1] 0.8453
    Hence \hat{\lambda} = 0.8453. The call
128
    lam.fit <-boxcox(lm(ValueAdd~Capital+Labor,data=ZD),
129
                      lambda=seq(0,1.5,by=0.0001))
```

Box-Cox log-likelihood plot

Transforming the response

```
130
    > ytilde<-exp(mean(log(ZD$ValueAdd)))
131
    > Y<-ZD$ValueAdd
132 > ZD$ynew<-(Y^lambda.hat-1)/(lambda.hat*ytilde^(lambda.hat-1))
133
    > fit2<-lm(vnew~Capital+Labor,data=ZD)
134
    > summarv(fit2)
135
    Coefficients:
136
               Estimate Std. Error t value Pr(>|t|)
137 (Intercept) 74.7825 25.7096 2.909 0.00814 **
138
    Capital 1.8260 0.5047 3.618 0.00152 **
139
    Labor
          4.8738 0.3727 13.076 7.51e-12 ***
140
    ___
    Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
141
142
143 Residual standard error: 90.97 on 22 degrees of freedom
144
    Multiple R-squared: 0.9875, Adjusted R-squared: 0.9863
    F-statistic: 866.1 on 2 and 22 DF, p-value: < 2.2e-16
145
```

Residuals from linear model fit

Residuals from transformed model fit

Normal Q-Q plots

Summary

- Transformed data are more suitable for linear regression modelling with the fit computed by least squares;
- Optimal λ here is 0.8453;
- *R*² values are similarly high in the two cases, but the results are not directly comparable due the data transformation.

Cobb-Douglas Production Function

The Cobb-Douglas production function for observed economic data i = 1, ..., n may be expressed as

$$O_i = e^{eta_0} l_i^{eta_1} c_i^{eta_2} u_i$$

- O_i is output
- l_i is labour input
- c_i is capital input
- *u_i* is a random error term

Cobb-Douglas Production Function (cont.)

Taking natural logs, we have that

$$Y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \epsilon_i$$

- $Y_i = \ln(O_i)$ is log output
- $x_{i1} = \ln(l_i)$ is log labour input
- $x_{i2} = \ln(c_i)$ is log capital input
- $\epsilon_i = \ln(u_i)$ is a random error term

Cobb-Douglas Production Function

Box-Cox log-likelihood plot

Box-Cox log-likelihood plot

The conclusion from the log-likelihood plot is that λ is not significantly different from zero.

Therefore the log transform (which corresponds to $\lambda = 0$) is appropriate.

Computing the PRESS residuals efficiently

We have

$$e_{(i)} = y_i - \widehat{y}_{(i)} = y_i - \mathbf{x}_i \widehat{\beta}_{(i)} = y_i - \mathbf{x}_i (\mathbf{X}_{(i)}^\top \mathbf{X}_{(i)})^{-1} \mathbf{X}_{(i)}^\top \mathbf{y}_{(i)}.$$

Now

$$\mathbf{X}_{(i)}^{\top}\mathbf{y}_{(i)} = \mathbf{X}^{\top}\mathbf{y} - \mathbf{x}_{i}^{\top}y_{i}$$

and

$$\mathbf{X}^{\top}\mathbf{X} = \sum_{j=1}^{n} \mathbf{x}_{j}^{\top}\mathbf{x}_{j} = \mathbf{x}_{i}^{\top}\mathbf{x}_{i} + \sum_{j \neq i} \mathbf{x}_{j}^{\top}\mathbf{x}_{j} = \mathbf{x}_{i}^{\top}\mathbf{x}_{i} + \mathbf{X}_{(i)}^{\top}\mathbf{X}_{(i)}.$$

so therefore

$$(\mathbf{X}_{(i)}^{\top}\mathbf{X}_{(i)})^{-1} = \left(\mathbf{X}^{\top}\mathbf{X} - \mathbf{x}_{i}^{\top}\mathbf{x}_{i}\right)^{-1}$$

Woodbury's Matrix Formula

We have that

$$(A + BCD)^{-1} = A^{-1} - A^{-1}B(C^{-1} + DC^{-1}B)^{-1}DA^{-1}.$$

- **A** is $p \times p$;
- **B** is $p \times q$;
- C is $q \times q$;
- **D** is $q \times p$;

Woodbury's Matrix Formula (cont.)

We set

•
$$\mathbf{A} = \mathbf{X}^{\top} \mathbf{X}$$
 is $p \times p$;

•
$$\mathbf{B} = -\mathbf{x}_i^{\top}$$
 is $p \times 1$;

•
$$C = 1 \text{ is } 1 \times 1$$
;

•
$$\mathbf{D} = \mathbf{x}_i$$
 is $1 \times p$;

so that

$$\left(\mathbf{X}^{\top}\mathbf{X} - \mathbf{x}_i^{\top}\mathbf{x}_i\right)^{-1} = (\mathbf{X}^{\top}\mathbf{X})^{-1} + \frac{(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{x}_i^{\top}\mathbf{x}_i(\mathbf{X}^{\top}\mathbf{X})^{-1}}{1 - \mathbf{x}_i(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{x}_i^{\top}}$$

$$1 - \mathbf{x}_i (\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{x}_i^\top = 1 - h_{ii}$$

Woodbury's Matrix Formula (cont.)

Therefore

$$y_i - \mathbf{x}_i (\mathbf{X}_{(i)}^{\top} \mathbf{X}_{(i)})^{-1} \mathbf{X}_{(i)}^{\top} \mathbf{y}_{(i)}$$

simplifies to

$$y_i - \mathbf{x}_i \left((\mathbf{X}^\top \mathbf{X})^{-1} + \frac{(\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{x}_i^\top \mathbf{x}_i (\mathbf{X}^\top \mathbf{X})^{-1}}{1 - h_{ii}} \right) \left(\mathbf{X}^\top \mathbf{y} - \mathbf{x}_i^\top y_i \right)$$

$$\mathbf{x}_i(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y} = \mathbf{x}_i\widehat{\boldsymbol{\beta}} = \widehat{\boldsymbol{y}}_i$$

Woodbury's Matrix Formula (cont.)

This becomes

$$y_i - \mathbf{x}_i \left(\widehat{\beta} + \frac{1}{1 - h_{ii}} (\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{x}_i^\top \mathbf{x}_i \widehat{\beta} \right)$$

$$+ \mathbf{x}_i \left((\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{x}_i^\top y_i + \frac{1}{1 - h_{ii}} (\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{x}_i^\top \mathbf{x}_i (\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{x}_i^\top y_i \right)$$

or equivalently

$$y_i - \widehat{y}_i - \frac{h_{ii}}{1 - h_{ii}} \widehat{y}_i + h_{ii} y_i + \frac{h_{ii}^2}{1 - h_{ii}} y_i$$

which simplifies to

$$\frac{y_i-\widehat{y}_i}{1-h_{ii}}.$$

Assessing Normality via Probability Plots

For a collection of residuals e_i , i = 1, ..., n, we may check whether the Normality assumption is violated using probability plotting.

- P-P plot: plot
 - \triangleright x-axis: the values

$$\frac{i-1/2}{n} \qquad i=1,\ldots,n$$

• *y*-axis: if the residuals are sorted into ascending order.

$$e_1 < e_2 < \cdots < e_n$$
.

we plot

$$\Phi\left(\frac{e_i-\overline{e}}{s_e}\right)$$
.

where $\Phi(.)$ is the standard normal cdf, \bar{e} is the sample mean of the residuals, and s_e is the sample standard deviation of the residuals.

Assessing Normality via Probability Plots (cont.)

- Q-Q plot
 - \triangleright x-axis: the values

$$\Phi^{-1}\left(\frac{i-1/2}{n}\right) \qquad i=1,\ldots,n$$

where $\Phi^{-1}(.)$ is the standard normal inverse cdf;

▶ *y*-axis: the residuals sorted into ascending order.

P-P/Q-Q plots: n = 50

P-P/Q-Q plots: n = 500

P-P/Q-Q plots with 95 % CI: n = 50

P-P/Q-Q plots with 95 % CI: n = 500

