Hierarchical Token Merging

A New Architecture to Learn Semantically Meaningful Representations

Domain

Representation Learning:

$$\mathbf{y}_i = \mathbf{f}(\mathbf{x}_i)$$

- ...where \mathbf{x}_i is the input instance, \mathbf{y}_i is the representation, and \mathbf{f} is a learned function approximator (e.g., a neural network)
- Implemented iteratively in DL settings for feature extraction
 - Facilitates downstream tasks, such as image reconstruction and generation (as explored by HTM)

Problems

- Fails to fully capture data semantics
 - Frequently outputs hallucinations
- Black box problem
 - Difficult to understand how/why the model got to the output
- Other challenges:
 - Slow training/inference speed
 - Memory intensive
 - 0 ..

Aims

- Architectural alignment to the unique hierarchical data structure of each input
 - ⇒ recursive autoencoder design
- Semantically consistent organisation & clustering of the embedding space
 - ⇒ iterative merging of embedded tokens to the root-level bottleneck
- Interpretable forward pass & outputs
 - ⇒ learnable merging trajectories (actions) inline with an RL-inspired policy

Architecture

- Lifter
 - Maps real input tokens into leaf-level embedded tokens
- Unlifter
 - Maps leaf-level embedded tokens into real output tokens
- Merger (Encoder)
 - o Merges two embedded tokens into one
 - Depth wise recurrence for abstraction of varying data granularity
- Unmerger (Decoder)
 - Similar to the merger, but in reverse
 - Unmerges one embedding into two

Policy Network

- Outputs logits from input pairs of embedded tokens
- Logits reflect the quality of the merge between those tokens

Classifier

- Outputs two logits for each input embedded token
- Logits correspond to class labels: the first for leaf-level tokens, the second for internal nodes

Forward Pass

Datasets

Crosses:

- Line segments: (x_1, y_1, x_2, y_2)
 - Two lines intersect at their midpoint to form crosses

Trees:

- Nodes: (x, y)
 - Complete binary trees with shrinking distances

Policy Diagrams

```
6 | [[[1, 0], | [[[2, 3], | [[[2, 3], | 7 | [4, 5], | [4, 5], | [1, 0], | 8 | [7, 6], | [7, 6], | [6, 7], | 9 | [2, 3], | [0, 1], | [5, 4], | 10 | [8, 9]]] | [8, 9]]] | [8, 9]]] |
```

```
0
1
2
3
4×5
```


Reconstruction Examples

Generation

- Fit GMM to root node embeddings from trained HTM model
 - Samplable latent distribution
- Data generation procedure:
 - Sample root from trained GMM
 - Obtain classification result:
 - If internal node, unmerge and append outputs to generation tree
 - If leaf, extract it
 - Repeat until full traversal of generation tree
 - Return unlifted leaves from hierarchical decoding of sampled root

Conclusion

Successes:

- Promising results from simple proof-of-concept implementations
 - Great reconstruction fidelity
 - Interpretable policy mostly inline with expectations
 - Functional generative pipeline with reasonable results

Challenges & Some Future Directions:

- Slow training and inference speed
 - $\mathcal{O}(P^2)$ memory complexity from adjacency matrices (where P is the token population size)
 - ⇒ Development of efficient graphical data structures
- Noisy policy learning environment (despite curriculum learning and baselining)
 - On-policy and credit assignment problems from REINFORCE implementation
 - ⇒ Importance sampling from replay buffers
- Pairwise merging myopia
 - Actions are not contextualised within their active token population
 - ⇒ Self attention mechanism?
- .