实验报告: 集成运算放大器在信号运算方面的应用

谢悦晋 提高2201班 U20221033

华中科技大学 电子信息与通信学院 Oct 31st, 2023

目录

1	实验	名称		2					
2	实验	目的		2					
3	实验	元器件		2					
4	实验	任务		2					
	4.1	MOSFI	ET输出特性曲线仿真	3					
	4.2	4.2 MOSFET转移特性曲线仿真							
	4.3	MOSFI	ET共源放大电路安装、调试及测试	4					
5	实验	原理		6					
	5.1	ET共源放大电路安装、调试及测试	6						
	5.2	Multisi	m的使用和学习	7					
6	实验过程								
	6.1	6.1 Multisim 仿真							
		6.1.1	DC Operating Point 模拟直流静态工作点	7					
		6.1.2	Single frequency ac analysis 得到输入输出电压曲线	7					
		6.1.3	AC Analysis 得到幅频特性曲线	7					
		6.1.4	AC 模式测量输入阻抗	7					
		6.1.5	AC 模式测量输出阻抗	7					
		6.1.6	MOSFET 输出特性仿真	7					
		6.1.7	MOSFET 转移特性仿真	7					
	6.2	IOSFET 共源放大电路插板实验	7						
		6.2.1	测试静态工作点	7					
		6.2.2	性能测试	7					
		6.2.3	观察失真波形	7					
7	实验	小结		7					

1 实验名称

共源放大电路设计、仿真与实现

2 实验目的

- 学习共源放大电路工作原理
- 掌握金属-氧化物-半导体场效应管的主要性能参数及其测试方法
- 掌握共源放大电路参数调整方法
- 掌握共源放大电路的基本原理与参数测量方法
- 掌握MOSFET共源极放大电路的安装与测试技术
- 掌握Multisim软件的使用,实现共源放大电路的仿真实现

3 实验元器件

名称	型号/参数	数量
场效应管	2N7000	1
	4.7 µ F	1
电容	47 µ F	1
	1 µ F	1
电位器	500k Ω	1
	47 μ F 1 μ F	2
 电阻	5.1k Ω	1
円阻	51k Ω	1
	1kΩ	1

4 实验任务

主要为以下三个实验任务: MOSFET输出特性曲线仿真、MOSFET转移特性曲线仿真、MOSFET共源放大电路安装、调试及测试

4.1 MOSFET输出特性曲线仿真

使用 OrCAD/Spice 分析绘制 MOSFET (2N7000) 的共源极输出特性曲线。实验步骤与要求如下:

(1)建立新项目,绘出电路图。

首先新建一个工程项目,然后放置元器件(M2N7000、Vdc、0 (GRD)等)、连线,画出如图 3.3.5 所示的电路,并在 MOSFET 的漏极放置电流测试探针

- (2)设置仿真简表。
- ① 新建仿真简表 (New Simulation Profile),设置直流扫描分析(DC Sweep) 的主扫描(Primary Sweep),扫描变量为VDD,采用线性扫描,由OV开始至8V结束,步进为0.01V。
- ② 设置直流扫描分析(DC Sweep)中的二级扫描(Secondray Sweep),扫描变量为 VGG,采用线性扫描,由1.7V开始至2.05V结束,步进为0.05V。

图 1: 特性曲线仿真电路

- (3)保存文档、执行仿真(Run)。运行后自动打开结果显示窗,显示输出特性曲线(i_D v_{DS})。多根曲线对应 v_{GS} 的间隔为 0.05 V。
 - (4) 将仿真结果反映至实验报告中。
 - ① 选中仿真电路图,复制粘贴到实验报告文档中。
- ② 在结果显示窗中,选择 Window\Copy to Clipboard...将曲线复制到剪贴板,期间最好选择"change all colors to black"将所有曲线都变为黑色。然后粘贴至实验报告文档。

4.2 MOSFET转移特性曲线仿真

使用 OrCAD/Spice 分析绘制 MOSFET (2N7000) 的共源极转移特性曲线。实验步骤与要求如下:

- (1)修改电路参数,将vop电压改为8V。
- (2)设置仿真简表。新建仿真简表(New Simulation Profile), 设置直流扫描分析(DC Sweep) 的主扫描 (Primary Sweep), 扫描变量为 V_{GG} , 采用线性扫描,由 OV 开始至 4V 结束,步进为0.01V。
- (3)保存文档、执行仿真 (Run)。运行后自动打开结果显示窗,显示转移特性曲线 $(i_D v_{GS})$.
 - (4) 将仿真结果复制粘贴到实验报告文档中。

4.3 MOSFET共源放大电路安装、调试及测试

图 2: 共源极放大电路

实验步骤与要求如下:

- (1)测试电路的静态工作点。
- ① 按照图3.3.6在面包板上组装电路, v_{DD} 的 12V 取自直流稳压电源。安装电阻前先用万用表测试电阻值,填入表 3.3.2 相应栏中。检查无误后接通电源。用数字万用表的直流电压挡测量电路的 V_G (栅极对地电压)、 V_S (源极对地电压)和 V_D (漏极对地电压),计算静态工作点 $Q(I_DQ,V_{GSQ},V_{DSQ})$ 。将结果填入表 3.3.2 相应栏中。
- ②关闭电源,将 $R_{\rm gl}$ 改为 100k, 检查无误后接通电源,再次测量 $V_{\rm G}$ 、 $V_{\rm s}$ 和 $V_{\rm D}$,计算静态工作点 $\rho(I_{\rm bO},V_{\rm GSO},V_{\rm DSO})$ 。将结果填入表 3.3.2 相应栏中。
- ③ 关闭电源,将 R_{gl} 恢复为 240k, 而将 R_{g2} 改为 33k, 检查无误后接通电源,测量 $V_{\rm G}$ 、 $V_{\rm S}$ 和 $V_{\rm D}$,计算静态工作点 $Q(I_{\rm DQ}$ 、 $V_{\rm GSQ}$ 、 $V_{\rm DSQ}$)。完成表 3.3.2 的内容。 (2)测试放大电路的输入、输出波形和通带电压增益。参考上节的图 3.2.7,搭建放大电路实验测试平台。关闭电源,将电阻参数恢复为 $R_{g1}=240k$, $R_{g2}=100k$,检查无误后接通电源。调整信号源,使其输出峰-峰值为 30mV、频率为1kHz 的正弦波,作为放大电路的 $v_{\rm i}$ 。分别用示波器的两个通道同时测试 $v_{\rm i}$ 和 $v_{\rm o}$,在实验报告上定量画出 $v_{\rm i}$ 和 $v_{\rm o}$ 的波形(时间轴上下对齐),分别测试负载开路和 $R_{\rm L}=5.1$ k Ω 两种情况下的 $v_{\rm T}$ 和 $v_{\rm O}$,完成表 3.3.3。

	实测值				MOSFET处于		
	V_G/V	V _S /V	V_D/V	$I_{DQ} = V_S/R_S/\text{mA}$	$V_{GSQ} = (V_G - V_S)/V$	$V_{DSQ} = (V_D - V_S)/V$	哪个工作区
$R_{g1} = 240k$							
$R_{g2} = 100k$							
$R_{g1} = 100k$							
$R_{g2} = 100k$							
$R_{g1} = 240k$							
$R_{g2}=33k$							
实测电阻值	$R_{g1} = $ $,R_{g2} = $ $,R_d = $ $,R_s = $						

表 1: 静态工作点

(3)测试放大电路的输入电阻。采用在输入回路串入已知电阻的方法测量输入电阻。由于 MOSFET 放大电路的输入电阻较大,所以当测量仪器的输入电阻不够大时,采用如图 3.2.8 所示的方法可能存在较大误差,改用如图 3.3.7 所示的测量输出电压的方法更好。R 取值尽量与 R_i 接近(此处可取 $R=51k\Omega$)。信号源仍旧输出峰-峰值 30mV、1kHz 正弦波,用示波器的一个通道始终监视 v_i 波形,用另个通道先后测量开关 S 闭合和断开时对应的输出电压 v_{01} 和 v_{02} ,则输入电阻为

$$R_{\rm i} = \frac{v_{\rm o2}}{v_{\rm ol} - v_{\rm o2}} \cdot R \tag{4.3.1}$$

测量过程要保证火。不出现失真现象

负载 情况	v _i 峰-峰 值V _{ipp} /mV	v _o 峰-峰值 V _{opp} /mV	$ A_{v} = V_{opp}/V_{ipp}$	<i>A_v</i> 的 理论值	相对 误差
负载开路	30				
$R_L = 5.1 \mathrm{k}\Omega$	30				

表 3:电压增益(f=1kHz)

图 4: 高输入电阻测试局部示意图

(4)测试放大电路的输出电阻。

采用改委负载的方法测试输出电阻。分别测试负载开路输出电压 v_o 和接入已知负载 R_L 时的输出电压 v_o ,测量过程同样要保证 v_o 不出现失真现象。实际上在表 3.3.3 中已得到 v_o' 和 v_o ,则输出电阻为

$$R_{\rm o} = \frac{v_{\rm o}' - v_{\rm o}}{v_{\rm o}'} \times R_{\rm L} \tag{4.3.2}$$

 $R_{\rm L}$ 越接近 R_0 误差越小。

(5)测试放大电路的通频带。在图3.3.6中,输入v_i为峰-峰值30mV、1kHz的正弦波,用示波器的一个通道始终监视输入波形的峰-峰值,用另一个通道测出输出波形的峰-峰

值。保持输入波形峰-峰值不变,调节信号源的频率,逐渐提高信号的频率,观测输出波形的幅值变化,并相应适时调节示波器水平轴的扫描速率,保证始终能清晰观测到正常的正弦波。持续提高信号频率,直到输出波形峰峰值降为 1kHz 时的 0.707 倍,此时信号的频率即为上限频率 f_H ,记录该频率;类似地,逐渐降低信号频率,直到输出波形峰-峰值降为 1kHz 时的 0.707 倍,此时的频率即为下限频率 f_L ,记录该频率,完成表 3.3.4。要特别注意,测试过程必须时刻监视输入波形峰-峰值,若有变化,需调整信号源的输出幅值,保持 v_i 的峰-峰值始终为 30mV。

通频带(带宽)为:

$$BW = f_{\rm H} - f_{\rm L} \tag{4.3.3}$$

信号频率ƒ	f_L	-	f_H
百 寸/火平力		1kHz	
输出波形 峰-峰值 <i>Vopp</i>			
$ A_v $			

表 2: 通频带($V_{ipp} = 30 \text{mV}$)

5 实验原理

5.1 MOSFET共源放大电路安装、调试及测试

图 3.3.6 为 N 沟道增强型 MOSFET 共源极放大电路,其静态工作点可由式(4.3.1) 估算

$$V_{\text{GSQ}} = \frac{R_{\text{g2}}}{R_{\text{g1}} + R_{\text{g2}}} \times V_{\text{DD}} - I_{\text{DQ}} R_{\text{s}}$$

$$I_{\text{DQ}} = K_{\text{n}} (V_{\text{GS}} - V_{\text{TN}})^{2}$$

$$V_{\text{DSQ}} = V_{\text{DD}} - I_{\text{DQ}} (R_{\text{d}} + R_{\text{s}})$$

$$(5.1.1a)$$

$$K_{\text{g1}}$$

$$C_{1}$$

$$C_{1}$$

$$(5.1.1c)$$

$$C_{1}$$

动态性能指标可由式(4.1) 估算

$$A_{\rm v} = -g_{\rm m}R_{\rm d}$$
 (5.1.2a) $R_{\rm s1}$ $R_{\rm s1}$ $R_{\rm s2}$ $R_{\rm o} = R_{\rm d}$ (5.1.2b) $R_{\rm s1}$ $R_{\rm s2}$ $R_{\rm s3}$ $R_{\rm s4}$ $R_{\rm s1}$ $R_{\rm s1}$ $R_{\rm s1}$ $R_{\rm s1}$ $R_{\rm s2}$ $R_{\rm s3}$ $R_{\rm s4}$ $R_{\rm s1}$ $R_{\rm s1}$ $R_{\rm s1}$ $R_{\rm s2}$ $R_{\rm s3}$ $R_{\rm s4}$ $R_{\rm s1}$ $R_{\rm s1}$ $R_{\rm s1}$ $R_{\rm s2}$ $R_{\rm s2}$ $R_{\rm s3}$ $R_{\rm s1}$ $R_{\rm s1}$ $R_{\rm s2}$ $R_{\rm s3}$ $R_{\rm s1}$ $R_{\rm s1}$ $R_{\rm s1}$ $R_{\rm s1}$ $R_{\rm s2}$ $R_{\rm s2}$ $R_{\rm s3}$ $R_{\rm s1}$ $R_{\rm s1}$ $R_{\rm s2}$ $R_{\rm s2}$ $R_{\rm s3}$ $R_{\rm s1}$ $R_{\rm s1}$ $R_{\rm s2}$ $R_{\rm s2}$ $R_{\rm s3}$ $R_{\rm s2}$ $R_{\rm s3}$ $R_{\rm s1}$ $R_{\rm s1}$ $R_{\rm s1}$ $R_{\rm s2}$ $R_{\rm s2}$ $R_{\rm s3}$ $R_{\rm s3}$ $R_{\rm s2}$ $R_{\rm s3}$ $R_{\rm s3}$

5.1k

51Ω

 $R_{\rm g2}$

2N7000

数据手册通常会给出 v_{TN} 和某工作点下的 g_{m} 。由表 3.3.1 看出,对于 MOS 管 2N7000, I_{D} = 200mA 时, g'_{m} = 100mS,可得 $K_{n}=(g'_{m}/2)^{2}/I_{\text{D}}=12.5$ mA/ V^{2} 式(3.3.4a)中的 g_{m} 是图 3.3.6 电路静态工作点下 MOS 管的互导,同样可得

$$g_m = g_m' \sqrt{I_{\rm DQ}/I_{\rm D}} \tag{5.1.3}$$

$$g_{\rm m} = 10\sqrt{I_{\rm DQ}/2} \text{mS} \tag{5.1.4}$$

由数据表可知 V_{TN} 在0.8-3V之间,这里取 $V_{TN} = 1.75V$

- 5.2 Multisim的使用和学习
- 6 实验过程
- 6.1 Multisim 仿真
- 6.1.1 DC Operating Point 模拟直流静态工作点
- 6.1.2 Single frequency ac analysis 得到输入输出电压曲线
- 6.1.3 AC Analysis 得到幅频特性曲线
- 6.1.4 AC 模式测量输入阻抗
- 6.1.5 AC 模式测量输出阻抗.
- 6.1.6 MOSFET 输出特性仿真
- 6.1.7 MOSFET 转移特性仿真
- 6.2 单极 MOSFET 共源放大电路插板实验
- 6.2.1 测试静态工作点
- 6.2.2 性能测试
- 6.2.3 观察失真波形
- 7 实验小结