Vorkurs Mathematik für Informatiker

Donnerstag, 29. Oktober 2020

Wintersemester 2020/21

Dirk Hachenberger, Tobias Mömke, Kathrin Gimmi

Übungsblatt 8

Aufgabe 1 Seien T_n und \widetilde{T}_n definiert wie auf Übungsblatt 7. Bestimmen Sie für die folgenden Mengen jeweils deren Mächtigkeit:

a) T_n

b) \widetilde{T}_n

c) $\{f: [m] \to [n] \mid f \text{ ist injektiv }\}.$

Aufgabe 2 Zeigen Sie die folgenden Identitäten für alle $n, m, k \in \mathbb{N}$:

a) $\binom{m+n}{k} = \sum_{i=0}^{k} \binom{m}{i} \binom{n}{k-i}$

b) $\sum_{i=0}^{m} \binom{n}{i} \binom{n-i}{m-i} = \binom{n}{m} \cdot 2^m$

Aufgabe 3 Zeigen Sie:

- a) Ist p ein Primzahl und $1 \le i < p$, so teilt p den Binomialkoeffizienten $\binom{p}{i}$.
- b) Für alle $n \in \mathbb{N}$ und Primzahlen p gilt: p teilt $n^p n$.

Aufgabe 4

- a) Seien U, V abzählbar unendlich und disjunkt. Dann ist $U \cup V$ abzählbar.
- b) Seien U, V abzählbar unendlich. Dann ist $U \times V$ abzählbar unendlich.
- c) Es ist $\{U \in \mathcal{P}(\mathbb{N}) : |U| < \infty\} \subseteq \mathcal{P}(\mathbb{N})$ abzählbar unendlich.

Aufgabe 5 Zeigen Sie:

- a) Es gibt keine Menge M, die gleichzeitig endlich und unendlich ist.
- b) Sei M eine unendliche Menge und $x \notin M$, so gibt es eine Bijektion $f: M \cup \{x\} \to M$.
- c) Sei M Menge, $x \notin M$ und $f: M \cup \{x\} \to M$ eine Bijektion. Dann ist M nicht endlich.

Aufgabe 6 Sei I := [0, 1]. Zeigen Sie, dass es keine bijektive Abbildung zwischen I und \mathbb{Q} gibt.