CSE 566 Spring 2023

Sequencing Technologies

Instructor: Mingfu Shao

Sequencing Technologies

- 1st generation sequencing
 - Sanger sequencing (1977)
- 2nd/next generation sequencing (NGS)
 - Illumina sequencing
- 3rd generation sequencing
 - Pacific Biosciences (PacBio)
 - Oxford Nanopore Technologies (ONT)

Frederick Sanger 1918—2013

DNA Replication

dNTPs

deoxyadenosine triphosphate (dATP)

deoxyguanosine triphosphate (dGTP)

deoxycytidine triphosphate (dCTP)

deoxythymidine triphosphate (dTTP)

Forming Phosphodiester Bond

ddNTPs

dideoxyadenosine triphosphate (ddATP)

dideoxyadenosine triphosphate (ddGTP)

dideoxyadenosine triphosphate (ddCTP)

dideoxyadenosine triphosphate (ddTTP)

• ddNTPs can be added to the chain by the DNA polymerase, but will also terminate the synthesis.

Sanger Sequencing (version 1.0)

Tube A

TCAGTCCGAT (targeted DNAs)

DNA polymerase

datp dctp dgtp dttp

ddATP

Tube C

TCAGTCCGAT (targeted DNAs)

DNA polymerase

date dctp

dGTP dTTP

ddCTP

Tube G

TCAGTCCGAT (targeted DNAs)

DNA polymerase

dATP dCTP

dGTP dTTP

ddGTP

Tube T

TCAGTCCGAT (targeted DNAs)

DNA polymerase

dATP dCTP

dGTP dTTP

ddTTP

Sanger Sequencing (version 1.0)

Tube A

TCAGTCCGAT (targeted DNAs)

DNA polymerase

dATP dCTP

dGTP dTTP

ddATP

Tube C

TCAGTCCGAT (targeted DNAs)

DNA polymerase

datp dctp

dGTP dTTP

ddCTP

Tube G

TCAGTCCGAT (targeted DNAs)

DNA polymerase

datp dctp

dGTP dTTP

ddGTP

Tube T

TCAGTCCGAT (targeted DNAs)

DNA polymerase

dATP dCTP

dGTP dTTP

ddTTP

TCAGTCCGA TCAGTCCGA

TCA

TCA

TCA

TCAGTCCGAT

TCAGTCC

TC

TC

 $\mathsf{TCAGT}\mathbf{C}$

TCAGTC

TCAGTCCGAT

TCAGTCC**G**

TCAGTCC**G**

TCAG

TCAG

TCA**G**

TCAGTCCGAT

TCAGTCCGAT

TCAGT

T

T

TCAGT

TCAGT

Gel Electrophoresis

Tube G Tube C Tube A Tube T **TCAGTCCGA** TCAGTCC TCAGTCC**G** TCAGTCCGAT **TCAGTCCGA** TCAGTCC**G** TCAGT TC TC TCA**G** TCA TCA **TCAGTC** TCAG T **TCAGTC** TCA**G** TCA **TCAGT** TCAGTCCGAT **TCAGTCCGAT TCAGTCCGAT TCAGT** TCAGTCCGAT TCAGTCCGAT TCAGTCCGAT TCAGTCCGAT **TCAGTCCGA** TCAGTCC**G TCAGTCC TCAGTC** TCAGT **TCAG** TCA TC

Gel Electrophoresis

Sanger et al., 1977, *PNAS*

Fluorescent ddNTPs

• Fluorescent ddNTPs can be "read-out" by an optical detector.

Sanger Sequencing (version 2.0)

TCAGTCCGAT (targeted DNA)

DNA polymerase

datp ddatp

dCTP ddCTP

dGTP ddGTP

dTTP ddTTP

TCAGTCCGAT TCAGTC TCAG TC TCAG TCA TCAGTCCGA TCAGTCCG TCA TCAGTCC TCAGTCC T TCAGTC TC TCAGT TCAG TCAGTCCG TCA TCAGTCCGAT **TCAGTCCGA** TCAGTCCG **TCAGTC** TCAGT TCAGT TCAG **TCA**

Sanger Sequencing

- Open a new era
 - First bacterial genome sequenced (1995)
 - First draft of human genome (2001)
- Build a technical foundation for 2nd/3rd-gen.
- Limitations
 - Low-quality sequences within the first 15-40 bps
 - Inability to distinguish after ~800 bps
 - Low throughput

2nd/Next Generation Sequencing

- 1. Short-gun sequencing, massively parallel
- 2. Paired-end, short reads
- 3. Highly accurate: error rate < 1%
- 4. Represented by Illumina products

Many copies of DNA

Many shorter fragments

Paired-end reads

PCR (Polymerase Chain Reaction)

For rapid amplification of DNAs

Bridge PCR

• Outcomes: tens of thousands of "clusters of fragments", each of which share the same sequence.

Sequencing by Synthesis (SBS)

• In each cycle, DNA polymerase and fluorescent dNTPs are added, a single nucleotide will be synthesized in every template, and all fluorescent signals will be captured.

Sequencing by Synthesis (SBS)

- Sync through "reversible termination".
- Line up all images; for each template/cluster, turn the colors into nucleotides.

High-throughput, Low Cost

- Cost of whole-genome sequencing: ~\$1000.
- Promise of Illumina: \$100 per individual in "very near future".

3rd Generation Sequencing

- 1. Single-molecule sequencing (i.e., no PCR needed)
- 2. Direct sequencing (i.e., no synthesis)
- 3. Long reads: >200kb
- 4. High error rate: 5%-15% (HiFi reads: < 1%)
- 5. Representative technologies:
 - 1. Single-Molecule, Real-Time (SMRT), by PacBio
 - 2. Nanopore sequencing, by ONT

Official Videos

- PacBio
 - https://youtu.be/_lD8JyAbwEo
 - https://youtu.be/NHCJ8PtYCFc
- ONT
 - https://youtu.be/RcP85JHLmnI
 - https://youtu.be/Eg-Rm5AoZGw