4.1 CONTINOUS SAMPLE SIZE

A RANDOM VARIABLE X IS CONTINUOUS IF THE RANGE SX CONSISTS OF ONE OR MORE INTERVALS.

RANGE IS THE SET OF R

DIFFERENT FROM DRV: UNCOUNTABLY INFINITE (IS COUNTABLE

DEF 4.1 CUMULATIVE DISTRIBUTION FUNCTION (CDF)

THE CUMULATIVE DISTRIBUTIVE FUNCTION (CDF) OF A VARIABLE X IS

$$F_X(x) = P[X \le x]$$

GRAPHS ALL OF THE LDF START AT ZERO ON THE LEFT & END AT ONE ON THE RIGHT

THE PROPABILITY THAT THE RANDOM VARIABLE IS IN AN INTERVAL IS THE DIFFERENCE

IN THE CDF EVALUATED AT THE ENDS OF THE INTERVAL.

QU12 4.2

COMULATIVE DISTRIBUTION FUNCTION OF THE RANDOM VARIABLE Y IS,

$$F_{Y}(y) = \begin{cases} 0 & y \leq 0 \\ y/4 & 0 \leq y \leq 4 \\ 1 & y > 4 \end{cases}$$

SKETCH THE COF & CALCULATE THE FOLLOWING PROBABILITIES:

(A)
$$P[Y \leq -1] = F_Y(-1) = 0$$

(8)
$$D \left[Y \leq I \right] = F_Y(I) = 1/4$$

(c)
$$P[2 4 4 4 3] = F_{y}(3) - F_{y}(2) = \frac{3}{4} - \frac{2}{4} = \frac{1}{4}$$

(D)
$$P[Y > 1.5] = 1 - F_Y(1.5) = 8/6 - 3/8 = 5/8$$

EECS 46) PROBABILITY & STATISTICS CONTINUOUS RANDOM VARIABLES MORGAN BERGEN

DEF 4.3 PROBABILITY DENSITY FUNCTION

THE PDF OF A CONTINUOUS RANDOM YARIABLE X IS

$$\int x(x) = \frac{D F_X(x)}{DX}$$

$$P[x, \angle X \leq x_2] = \int_{x_1}^{x_2} f_X(x) px$$

QUIZ 4.3 RANDOM VARIABLE X HAS THE PROBABILITY DENSITY FUNCTION

$$f_{X}(x) = \begin{cases} -x/2 & f_{x}(x) = \int (x/4)xe^{-x/2} & x \ge 0 \\ CXe & X \ge 0 \end{cases}$$

$$O \quad \text{OTHERNISE}$$

$$f_{x}(x) = \int (x/4)x e^{-x/2} x \ge 0$$

$$0 \quad \text{OTHER}.$$

SKETCH THE COF & FIND THE FOLLOWING PROBABILITIES

$$1 = \int_{-\infty}^{\infty} F_x(x) dx = \int_{0}^{\infty} (xe^{-x/2}) dx = -2ce^{-x/2} dx$$

$$= -2ce + \int_0^{\infty}$$

 $= \int_{-\infty}^{\infty} 2ce^{-x/z} dx$

EECS 46) PROBABILITY & STATISTICS CONTINUOUS RANDOM VARIABLES MORGAN BERGEN

4.5 FAMILIES OF CONTINUOUS RANDOM VARIABLES

DEF 4.5 UNIFORM RANDOM VARIABLES

$$\int y (Y) = \begin{cases} \frac{1}{(b-a)} & a \leq x \leq b & \& b > a \end{cases}$$

$$0 \qquad OTHERWISE$$

THM

(A) THE CDF
$$X$$
 is $F_{X}(x) = \begin{cases} 0 & x \leq a \\ (x-a)/(b-a) & a \leq x \leq b \end{cases}$

$$| 1 & x > b$$

(B) THE EXPECTED VALUE OF
$$X$$
 IS $E[X] = (b+a)/2$

(C) THE VARIANCE OF X is
$$V_{AR}[X] = (b-a)^2/12$$

EECS 46) PROBABILITY & STATISTICS CONTINUOUS RANDOM VARIABLES MORGAN BEZGEN

QU12 4.6

I IS THE GAUSSIAN (0,1) RANDOM VARIABLE & Y IS THE GAUSSIAN (0,2) RANDOM VARIABLE SKETCH THE PDFS $\int x(x)$ & $\int y(y)$ ON THE SAME AXES & FIND

$$f_X(x)$$
 (0,1)

$$f_{\gamma}(\gamma)$$
 (0,2)

