Équations d'état

Vincent Le Chenadec

MFT-3-1-2 2021/2022

Équations d'état cubiques

À la fin des années 40, Redlich et Kwong développèrent l'équation d'état suivante

$$P = \frac{RT}{V - b} - \frac{a(T)}{V(V + b)}$$

► Cette équation fut généralisée plus tard sous la forme de l'équation générique

$$P = \frac{RT}{V - b} - \frac{a(T)}{(V + \epsilon b)(V + \sigma b)}$$

- Les paramètres ϵ et σ sont indépendants de la substance, tandis que a(T) et b en dépendent
- ► On retiendra les cas particuliers de
 - ► l'équation de van der Waals (vdW) ;
 - les équations de Redlich/Kwong (RK) et de Soave/Redlich/Kwong (SRK);
 - ► l'équation de Peng/Robinson (PR).

Point critique

- On définit le point critique comme le point d'inflexion de l'isotherme $T=T_c$ dans le diagramme de Clapeyron
- On en déduit

$$\left(\frac{\partial p}{\partial V}\right)_{T_c} = 0 \quad \text{et} \quad \left(\frac{\partial^2 p}{\partial V^2}\right)_{T_c} = 0$$

Principe des états correspondants

Maxwell construction