Temporal Graph Problems From the Multistage Model

Till Fluschnik

Technische Universität Berlin, Germany, Algorithmics and Computational Complexity, Faculty IV

Workshop: Algorithmic Aspects of Temporal Graphs III

July 07, 2020

Based on joint work with Rolf Niedermeier, Valentin Rohm, Carsten Schubert, and Philipp Zschoche.

The Multistage Model

Several instances over time (stages) of the same problem. Find a solution to each instance such that the sequence of solutions is robust, i.e., consecutive solutions differ not too much.

Example: (Saarbrückener Faasend) Asked to film (live) street parades (e.g. carnival); We have few camera teams; We want few concurrent resets.

Input: A sequence (I_1,\ldots,I_{τ}) of instances of some problem L (e.g. $VERTEX\ COVER$). Question: Is there a sequence (S_1,\ldots,S_{τ}) of solutions, i.e., S_j is a solution to I_j for

all $j \in \{1, \dots, \tau\}$, such that $diff(S_j, S_{j+1})$ is small for all $j \in \{1, \dots, \tau - 1\}$?

From Multistage To Temporal Graph Problem

A multistage graph problem:

Input: A sequence $(I_1 = (G_1, k), ..., I_{\tau} = (G_{\tau}, k))$ of instances of VERTEX COVER over the **same** set V of vertices, i.e. $G_i = (V, E_i)$.

Question: Is there a sequence (S_1, \ldots, S_{τ}) of solutions, i.e., S_j is a solution to I_j for all $j \in \{1, \ldots, \tau\}$, such that $\operatorname{diff}(S_j, S_{j+1})$ is small for all $j \in \{1, \ldots, \tau - 1\}$?

Input: A temporal graph $\mathcal{G} = (V, E_1, \dots, E_{\tau})$, and $k \in \mathbb{N}$.

Question: Is there a sequence (S_1,\ldots,S_{τ}) such that $S_j\subseteq V$ is a size-at-most-k vertex cover of (V,E_j) for all $j\in\{1,\ldots,\tau\}$ and $\mathrm{diff}(S_j,S_{j+1})$ is small for all $j\in\{1,\ldots,\tau-1\}$?

 $|S_i \triangle S_{i+1}| \le \ell$ for some given $\ell \in \mathbb{N}$

A Brief History on "Multistage (MS)"

Multistage Vertex Cover

MULTISTAGE VERTEX COVER (MSVC)

Input: A temporal graph $\mathcal{G} = (V, E_1, \dots, E_{\tau})$, two integers $k, \ell \in \mathbb{N}$.

Ques.: Is there a sequence (S_1, \ldots, S_{τ}) such that for all $i \in \{1, \ldots, \tau\}$, S_i is a size-atmost-k vertex cover of (V, E_i) , and for all $i \in \{1, \ldots, \tau - 1\}$, $|S_i| \leq S_{i+1}| \leq \ell$?

$$k=2$$
, $\ell=1$

Multistage Vertex Cover: Results

	$\begin{array}{c} \text{general layers} \\ 0 \leq \ell < 2k \end{array}$	$\ell \geq 2k$	$ \text{tree layers} \\ 0 \leq \ell < 2k $	one-edge layers $1 \le \ell < 2$
	NP-hard	NP-hard	NP-hard	NP-hard
au	para-NP-hard	para-NP-hard	para-NP-hard	FPT, PK
k	XP, W[1]-hard	FPT, No PK	XP, W[1]-hard	open, No PK
$k + \tau$	FPT, PK	FPT, PK	FPT, PK	FPT, PK
au: n	number of stages;	k : allowed vertex cover size; ℓ : allowed sym. diff. size		

FPT: $f(p) \cdot |I|^{\mathcal{O}(1)}$ -time;

XP: $|I|^{f(p)}$ -time;

 $\mathsf{PK}: (I,p) \overset{\mathsf{poly-time}}{\longrightarrow} (I',p') \text{ with } |I'| + p' \leq p^{\mathcal{O}(1)};$

W[1]-hard: presumably not FPT;

para-NP-hard: presumably not XP;

No PK: presumably no PK.

An $\mathcal{O}(\tau \cdot k^2)$ -sized Kernel for MSVC—Lifting the Classic

Reduction Rule (Isolated vertices): If $\exists v \in V$ such that $e \cap v = \emptyset \ \forall \ e \in E(\mathcal{G}_{\downarrow})$, then delete v.

Reduction Rule (High-degree): If $\exists v \in V$ with $J = \{i \in \{1, ..., \tau\} \mid \deg_{G_i}(v) > k\} \neq \emptyset$, then add vertex w_v to V and for each $i \in J$, remove all edges incident to v in G_i and add edge $\{v, w_v\}$.

Reduction Rule (NO-instances): If above RRs are not applicable and \exists layer with $> k^2$ edges, then output trivial NO-instance.

Multistage s-t Path

- Multistage s-t Path (MSP)

Input: A temporal graph $\mathcal{G} = (V, E_1, \dots, E_{\tau})$, two designated vertices $s, t \in V$, two integers $k, \ell \in \mathbb{N}$.

Ques.: Is there a sequence (P_1, \ldots, P_{τ}) such that for all $i \in \{1, \ldots, \tau\}$, P_i is a order-atmost-k s-t path in (V, E_i) , and for all $i \in \{1, \ldots, \tau - 1\}$, $|V(P_i) \triangle V(P_{i+1})| \le \ell$?

k=5, $\ell=1$

Application(s): Securing routes under uncertainty, robust re-routing, ...

Theorem: NP-hard even for two stages and $\ell = 0$.

Multistage s-t Path: Results

A $O(4^{\nu\downarrow\cdot\tau})$ Kernel for Multistage s-t Path—Lifting Twins

Definition. Two vertices v, w in a temporal graph \mathcal{G} are called temporal twins if $N_{(V,E_i)}(v) = N_{(V,E_i)}(w)$ for every $i \in \{1,\ldots,\tau\}$.

 $\leq 2^{|X| au}$ many temporal twin classes G_2

Kernelization:

- 1. Compute vertex cover X of \mathcal{G}_{\downarrow} of size $\leq 2\nu_{\downarrow}$.
- 2. Compute temporal twins in $V \setminus X$ of \mathcal{G} .
- 3. Delete vertices in too large temporal twin classes.

(poly.-time)

(poly.-time)

(poly.-time)

Epilogue

Multistage is a generic and natural model.

Variations:

- Small over-all aggregated changes ("Global Multistage").
- Dissimilarity (|· ∩ · | small) or variety (|· △ · | large).

Outlook:

- Between "standard" and "global": taking (time-)windows into account.
- Lifting more "classic" notions and techniques (e.g. for polynomial kernels for problem L to MULTISTAGE L).

Three open problems restated in this talk:

- Is MULTISTAGE VERTEX COVER in FPT w.r.t. k on temporal graphs with one-edge layers?
- Is $E\triangle E$ -MSP in XP w.r.t. $\ell + \tau$?
- Does $E\triangle E$ -MSP admit a poly. problem kernel w.r.t. $\nu_{\downarrow} + \tau$?

Thank you!

References

- [1] E. Bampis, B. Escoffier, and A. V. Kononov. LP-based algorithms for multistage minimization problems. CoRR, abs/1909.10354, 2019.
- [2] E. Bampis, B. Escoffier, M. Lampis, and V. T. Paschos. Multistage matchings. In *Proceedings of 16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2018)*, volume 101 of *LIPIcs*, pages 7:1–7:13. Schloss Dagstuhl—Leibniz-Zentrum für Informatik, 2018.
- [3] E. Bampis, B. Escoffier, K. Schewior, and A. Teiller. Online multistage subset maximization problems. In M. A. Bender, O. Svensson, and G. Herman, editors, 27th Annual European Symposium on Algorithms, ESA 2019, September 9-11, 2019, Munich/Garching, Germany, volume 144 of LIPIcs, pages 11:1-11:14.
 Schloss Dagstuhl Leibniz-Zentrum für Informatik. 2019.
- [4] E. Bampis, B. Escoffier, and A. Teiller. Multistage knapsack. In *Proceedings of the 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)*, volume 138 of *LIPIcs*, pages 22:1–22:14. Schloss Dagstuhl—Leibniz-Zentrum für Informatik, 2019.
- [5] R. Bredereck, T. Fluschnik, and A. Kaczmarczyk. Multistage committee election. CoRR, abs/2005.02300, 2020.
- [6] M. Chimani, N. Troost, and T. Wiedera. Approximating multistage matching problems. CoRR, abs/2002.06887, 2020.
- [7] D. Eisenstat, C. Mathieu, and N. Schabanel. Facility location in evolving metrics. In Proceedings of 41st International Colloquium on Automata, Languages, and Programming (ICALP 2014), volume 8572 of LNCS, pages 459–470. Springer, 2014.
- [8] T. Fluschnik, R. Niedermeier, V. Rohm, and P. Zschoche. Multistage vertex cover. In *Proceedings of the 14th International Symposium on Parameterized and Exact Computation (IPEC 2019)*, volume 148 of *LIPIcs*, pages 14:1–14:14. Schloss Dagstuhl Leibniz-Zentrum für Informatik, 2019.
- [9] T. Fluschnik, R. Niedermeier, C. Schubert, and P. Zschoche. Multistage s-t path: Confronting similarity with dissimilarity. CoRR, abs/2002.07569, 2020.
- [10] A. Gupta, K. Talwar, and U. Wieder. Changing bases: Multistage optimization for matroids and matchings. In *Proceedings of 41st International Colloquium on Automata, Languages, and Programming (ICALP 2014)*, volume 8572 of *LNCS*, pages 563–575. Springer, 2014.
- [11] K. Heeger, A. Himmel, F. Kammer, R. Niedermeier, M. Renken, and A. Sajenko. Multistage problems on a global budget. CoRR, abs/1912.04392, 2019.

Multistage Vertex Cover is W[1]-hard w.r.t. k

CLIQUE \leq_{fpt} Multistage Vertex Cover with ℓ = 2:

