

Vishay Semiconductors

High Speed Optocoupler, Single and Dual, 10 MBd

DESCRIPTION

The 6N137, VO2601, and VO2611 are single channel 10 MBd optocouplers utilizing a high efficient input LED coupled with an integrated optical photodiode IC detector. The detector has an open drain NMOS-transistor output, providing less leakage compared to an open collector Schottky clamped transistor output. The VO2630, VO2631, and VO4661 are dual channel 10 MBd optocouplers. For the single channel type, an enable function on pin 7 allows the detector to be strobed. The internal shield provides a guaranteed common mode transient immunity of 5 kV/µs for the VO2601 and VO2631 and 15 kV/µs for the VO2611 and VO4661. The use of a 0.1 µF bypass capacitor connected between pin 5 and 8 is recommended.

FEATURES

• Choice of CMR performance of 15 kV/µs, 5 kV/µs, and 1000 V/µs

- High speed: 10 MBd typical
- +5 V CMOS compatibility
- Pure tin leads

- Guaranteed AC and DC performance over temperature
- Meets IEC 60068-2-42 (SO₂) and IEC 60068-2-43 (H₂S) requirements
- Low input current capability of 5 mA
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

APPLICATIONS

- Microprocessor system interface
- PLC, ATE input / output isolation
- Computer peripheral interface
- Digital fieldbus isolation: CC-link, DeviceNet, profibus, SDS
- High speed A/D and D/A conversion
- AC plasma display panel level shifting
- Multiplexed data transmission
- Digital control power supply
- · Ground loop elimination, noise isolation

AGENCY APPROVALS

- UL1577
- cUL
- DIN EN 60747-5-5 (VDE 0884-5) available with option 1
- BS EN 60950-1
- CQC GB8898-2011, GB4943.1-2011

6N137, VO2601, VO2611, VO2630, VO2631, VO4661

www.vishay.com

Vishay Semiconductors

TRUTH TABLE (positive logic)				
LED	ENABLE	OUTPUT		
On	Н	L		
Off	Н	Н		
On	L	Н		
Off	L	Н		
On	NC	L		
Off	NC	Н		

PARAMETER	CONDITIONS	SYMBOL	VALUE	UNIT
INPUT				
Average forward current (single channel)		I _F	20	mA
Average forward current (per channel for dual channel)		I _F	15	mA
Reverse input voltage		V _R	5	V
Enable input voltage		V _E	V _{CC} + 0.5 V	V
Enable input current		I _E	5	mA
Surge current	t = 100 μs	I _{FSM}	200	mA
Output power dissipation (single channel)		P _{diss}	35	mW
Output power dissipation (per channel for dual channel)		P _{diss}	25	mW
OUTPUT			<u> </u>	
Supply voltage	1 min maximum	V _{CC}	7	V
Output current		Io	50	mA
Output voltage		V _O	7	V
Output power dissipation (single channel)		P _{diss}	85	mW
Output power dissipation (per channel for dual channel)		P _{diss}	60	mW
COUPLER				
Storage temperature		T _{stg}	-55 to +150	°C
Operating temperature		T _{amb}	-40 to +100	°C
Lead solder temperature	for 10 s		260	°C
Solder reflow temperature			260	°C

Note

• Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute maximum ratings for extended periods of the time can adversely affect reliability.

Fig. 1 - Total Power Dissipation vs. Ambient Temperature (single channel)

Fig. 2 - Total Power Dissipation vs. Ambient Temperature (dual channel)

Fig. 3 - Forward Current vs. Ambient Temperature (single channel)

Fig. 4 - Forward Current vs. Ambient Temperature (dual channel)

RECOMMENDED OPERATING CONDITIONS					
PARAMETER	TEST CONDITION	SYMBOL	MIN.	MAX.	UNIT
Operating temperature		T _{amb}	-40	100	°C
Supply voltage		V _{CC}	4.5	5.5	V
Input current low level		I _{FL}	0	250	μA
Input current high level		I _{FH}	5	15	mA
Logic high enable voltage		V_{EH}	2	V _{CC}	V
Logic low enable voltage		V_{EL}	0	0.8	V
Output pull up resistor		R_L	330	4K	Ω
Fanout	$R_L = 1 \text{ k}\Omega$	N	-	5	-

6N137, VO2601, VO2611, VO2630, VO2631, VO4661

www.vishay.com

Vishay Semiconductors

ELECTRICAL CHARACTERISTICS (T _{amb} = 25 °C, unless otherwise specified)						
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
INPUT						
Input forward voltage	I _F = 10 mA	V_{F}	1.1	1.4	1.7	V
Reverse current	V _R = 5 V	I _R	-	0.01	10	μΑ
Input capacitance	$f = 1 \text{ MHz}, V_F = 0 \text{ V}$	CI	-	55	-	pF
OUTPUT						
High level supply current	$V_E = 0.5 \text{ V}, I_F = 0 \text{ mA}$	I _{CCH}	-	4.1	7	mA
(single channel)	$V_E = V_{CC}$, $I_F = 0$ mA	I _{CCH}	-	3.3	6	mA
High level supply current (dual channel)	$I_F = 0 \text{ mA}$	Іссн	-	6.5	12	mA
Low level supply current	$V_E = 0.5 \text{ V}, I_F = 10 \text{ mA}$	I _{CCL}	-	4	7	mA
(single channel)	$V_E = V_{CC}$, $I_F = 10 \text{ mA}$	I _{CCL}	-	3.3	6	mA
Low level supply current (dual channel)	I _F = 10 mA	I _{CCL}	-	6.5	12	mA
High level output current	$V_E = 2 \text{ V}, V_{CC} = 5.5 \text{ V}, I_F = 250 \mu\text{A}$	I _{OH}	-	0.002	1	μΑ
Low level output voltage	$V_E = 2 \text{ V}, I_F = 5 \text{ mA},$ I_{OL} (sinking) = 13 mA	V _{OL}	-	0.2	0.6	V
Input threshold current	$V_E = 2 \text{ V}, V_{CC} = 5.5 \text{ V},$ I_{OL} (sinking) = 13 mA	I _{TH}	-	2.4	5	mA
High level enable current	V _E = 2 V	I _{EH}	-	-0.6	-1.6	mA
Low level enable current	V _E = 0.5 V	I _{EL}	-	-0.8	-1.6	mA
High level enable voltage		V _{EH}	2	-	-	V
Low level enable voltage		V_{EL}	-	-	0.8	V

Note

Minimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering
evaluation. Typical values are for information only and are not part of the testing requirements.

SWITCHING CHARACTERISTICS						
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
Propagation delay time to high	$R_1 = 350 \Omega, C_1 = 15 pF$	t _{PLH}	20	48	75 ⁽¹⁾	ns
output level	η_ = 330 Ω, Θ_ = 13 βι	t _{PLH}	-	-	100	ns
Propagation delay time to low	$R_1 = 350 \Omega, C_1 = 15 pF$	t _{PHL}	25	50	75 ⁽¹⁾	ns
output level	n _L = 350 ½, O _L = 15 pr	t _{PHL}	-	-	100	ns
Pulse width disortion	$R_L = 350 \Omega, C_L = 15 pF$	t _{PHL} - t _{PLH}	-	2.9	35	ns
Propagation delay skew	$R_L = 350 \Omega, C_L = 15 pF$	t _{PSK}	-	8	40	ns
Output rise time (10 % to 90 %)	$R_L = 350 \Omega, C_L = 15 pF$	t _r	-	23	-	ns
Output fall time (90 % to 10 %)	$R_L = 350 \Omega, C_L = 15 pF$	t _f	-	7	-	ns
Propagation delay time of enable from V _{EH} to V _{EL}	$R_L = 350 \ \Omega, \ C_L = 15 \ pF, \ V_{EL} = 0 \ V, \ V_{EH} = 3 \ V$	t _{ELH}	-	12	-	ns
Propagation delay time of enable from V _{EL} to V _{EH}	$R_L = 350 \ \Omega, \ C_L = 15 \ pF, \ V_{EL} = 0 \ V, \ V_{EH} = 3 \ V$	t _{EHL}	-	11	-	ns

Notes

Over recommended temperature (T_{amb} = -40 °C to +100 °C), V_{CC} = 5 V, I_F = 7.5 mA unless otherwise specified. All typicals at T_{amb} = 25 °C, V_{CC} = 5 V.

^{(1) 75} ns applies to the 6N137 only, a JEDEC® registered specification

Fig. 5 - Single Channel Test Circuit for $t_{PLH},\,t_{PHL},\,t_{r}$ and t_{f}

Fig. 6 - Dual Channel Test Circuit for t_{PLH} , t_{PHL} , t_{r} and t_{f}

Fig. 7 - Single Channel Test Circuit for t_{EHL} , and t_{ELH}

6N137, VO2601, VO2611, VO2630, VO2631, VO4661

Vishay Semiconductors

COMMON MODE TRANSIENT IMMUNITY (T _{amb} = 25 °C, unless otherwise specified)						
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
Common mode transient immunity	$ \begin{vmatrix} V_{CM} = 10 \text{ V}, V_{CC} = 5 \text{ V}, I_F = 0 \text{ mA}, \\ V_{O(min.)} = 2 \text{ V}, R_L = 350 \Omega, T_{amb} = 25 \text{ °C} \text{ (1)} $	CM _H	1000			V/µs
	$ V_{CM} = 50 \text{ V}, V_{CC} = 5 \text{ V}, I_F = 0 \text{ mA}, V_{O(min.)} = 2 \text{ V}, R_L = 350 \Omega, T_{amb} = 25 ^{\circ}C$ (2)	CM _H	5000	10 000		V/µs
	$ \begin{vmatrix} V_{CM} = 1 \text{ kV, } V_{CC} = 5 \text{ V, } I_F = 0 \text{ mA,} \\ V_{O(min.)} = 2 \text{ V, } R_L = 350 \Omega, T_{amb} = 25 \text{ °C } ^{(3)} $	CM _H	15 000	25 000		V/µs
	$ \begin{vmatrix} V_{CM} = 10 \text{ V}, V_{CC} = 5 \text{ V}, I_F = 7.5 \text{ mA}, \\ V_{O(max.)} = 0.8 \text{ V}, R_L = 350 \; \Omega, T_{amb} = 25 \; ^{\circ}C ^{(1)} \\ \end{vmatrix} $	CM _L	1000			V/µs
	$ \begin{vmatrix} V_{CM} = 50 \text{ V}, V_{CC} = 5 \text{ V}, I_F = 7.5 \text{ mA}, \\ V_{O(max.)} = 0.8 \text{ V}, R_L = 350 \Omega, T_{amb} = 25 ^{\circ}\text{C} ^{(2)} \\ \end{vmatrix} $	CM _L	5000	10 000		V/µs
	$ \begin{vmatrix} V_{CM} = 1 \text{ kV}, V_{CC} = 5 \text{ V}, I_F = 7.5 \text{ mA}, \\ V_{O(max.)} = 0.8 \text{ V}, R_L = 350 \ \Omega, T_{amb} = 25 \ ^{\circ}\text{C} \ ^{(3)} $	CM _L	15 000	25 000		V/µs

Notes

- ⁽¹⁾ For 6N137 and VO2630
- (2) For VO2601 and VO2631
- (3) For VO2611 and VO4661

Fig. 8 - Single Channel Test Circuit for Common Mode Transient Immunity

Fig. 9 - Dual Channel Test Circuit for Common Mode Transient Immunity

Vishay Semiconductors

SAFETY AND INSULATION RATINGS PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT
Climatic classification		STIVIDOL	55 / 100 / 21	ONIT
	According to IEC 68 part 1			
Pollution degree	According to DIN VDE 0109		2	
Comparative tracking index	Insulation group IIIa	CTI	175	
Maximum rated withstanding isolation voltage	According to UL1577, t = 1 min	V _{ISO}	5300	V_{RMS}
Maximum transient isolation voltage	According to DIN EN 60747-5-5	V_{IOTM}	8000	V _{peak}
Maximum repetitive peak isolation voltage	According to DIN EN 60747-5-5	V _{IORM}	890	V _{peak}
Isolation resistance	T _{amb} = 25 °C, V _{IO} = 500 V	R _{IO}	≥ 10 ¹²	Ω
Isolation resistance	T _{amb} = 100 °C, V _{IO} = 500 V	R _{IO}	≥ 10 ¹¹	Ω
Output safety power		P _{SO}	500	mW
Input safety current		I _{SI}	300	mA
Input safety temperature		T _S	175	°C
Creepage distance	DIP-8		≥ 7	mm
Clearance distance	DIP-6		≥ 7	mm
Creepage distance	DID 9 400 mil (antion 6)		≥8	mm
Clearance distance	DIP-8, 400 mil (option 6)		≥ 8	mm
Creepage distance	CMD 0 (aution 7)		≥ 8	mm
Clearance distance	SMD-8 (option 7)		≥ 8	mm
Creepage distance	CMD 0 (antique 0)		≥ 8	mm
Clearance distance	SMD-8 (option 9)		≥ 8	mm
Insulation thickness		DTI	≥ 0.4	mm

Note

TYPICAL CHARACTERISTICS (T_{amb} = 25 °C, unless otherwise specified)

Fig. 10 - Forward Voltage vs. Ambient Temperature

Fig. 11 - Forward Voltage vs. Forward Current

As per IEC 60747-5-5, § 7.4.3.8.2, this optocoupler is suitable for "safe electrical insulation" only within the safety ratings. Compliance with
the safety ratings shall be ensured by means of protective circuits.

Fig. 12 - Reverse Current vs. Ambient Temperature

Fig. 13 - Low Level Supply Current vs. Ambient Temperature

Fig. 14 - High Level Supply Current vs. Ambient Temperature

Fig. 15 - Input Threshold On Current vs. Ambient Temperature

Fig. 16 - Input Threshold Off Current vs. Ambient Temperature

Fig. 17 - Low Level Output Voltage vs. Ambient Temperature

Fig. 18 - Low Level Output Current vs. Ambient Temperature

Fig. 19 - High Level Output Current vs. Ambient Temperature

Fig. 20 - Output Voltage vs. Forward Input Current

Fig. 21 - Propagation Delay vs. Ambient Temperature

Fig. 22 - Propagation Delay vs. Forward Current

Fig. 23 - Pulse Width Distortion vs. Ambient Temperature

Fig. 24 - Pulse Width Distortion vs. Forward Current

Fig. 25 - Rise and Fall Time vs. Ambient Temperature

Fig. 26 - Rise and Fall Time vs. Forward Current

Fig. 27 - Enable Propagation Delay vs. Ambient Temperature

Vishay Semiconductors

PACKAGE DIMENSIONS (in millimeters)

DIP-8

DIP-8, 400 mil (option 6)

Vishay Semiconductors

SMD-8 (option 7)

PIN ONE I.D. 2 3 4

SMD-8 (option 9)

Vishay Semiconductors

PACKAGE MARKING

Fig. 28 - Example of VO2611-X017T

Notes

- VDE logo is only marked on option 1 parts.
- Tape and reel suffix (T) is not part of the package marking.

PACKING INFORMATION (in millimeters)

Tube

Fig. 29 - Shipping Tube Specifications for DIP-8 Packages

DEVICES PER TUBS			
TYPE	UNITS/TUBE	TUBES/BOX	UNITS/BOX
DIP-8	50	40	2000

DIP-8

Fig. 30 - Tube Shipping Medium

Vishay Semiconductors

DIP-8, 400 mil (option 6)

Fig. 31 - Tube Shipping Medium

Tape and Reel

Fig. 32 - Tape and Reel Shipping Medium

Fig. 33 - Tape and Reel Shipping Medium

SMD-8 (option 7)

Fig. 34 - Tape and Reel Packing (1000 pieces on Reel)

Vishay Semiconductors

SMD-8 (option 9)

Fig. 35 - Tape and Reel Shipping Medium

SOLDER PROFILES

Fig. 36 - Wave Soldering Double Wave Profile According to J-STD-020 for DIP Devices

Fig. 37 - Lead (Pb)-free Reflow Solder Profile According to J-STD-020 for SMD Devices

HANDLING AND STORAGE CONDITIONS

ESD level: HBM class 2 Floor life: unlimited

Conditions: T_{amb} < 30 °C, RH < 85 %

Moisture sensitivity level 1, according to J-STD-020

Vishay Semiconductors

Footprint and Schematic Information for 6N137, VO2601, VO2611, VO2630, VO2631, VO4661

The footprint and schematic symbols for the following parts can be accessed using the associated links. They are available in Eagle, Altium, KiCad, OrCAD / Allegro, Pulsonix, and PADS.

Note that the 3D models for these parts can be found on the Vishay product page.

PART NUMBER	FOOTPRINT / SCHEMATIC
6N137	www.snapeda.com/parts/6N137/Vishay/view-part
VO2601	www.snapeda.com/parts/VO2601/Vishay/view-part
VO2611	www.snapeda.com/parts/VO2611/Vishay/view-part
VO2630	www.snapeda.com/parts/VO2630/Vishay/view-part
VO2631	www.snapeda.com/parts/VO2631/Vishay/view-part
VO4661	www.snapeda.com/parts/VO4661/Vishay/view-part

For technical issues and product support, please contact optocoupleranswers@vishay.com.

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.