Embedded Face Detector System Capstone Project Report

Team #5: Pranav Puritipati, Dongyeong Kim, Prem Chandrasekhar
ENEE408M: Section 0101
Shuvra Bhattacharyya
05/09/2022

Table of Contents

Cover Page	1
Table of Contents	2
Signature (Approval) of Each Team Member	2
Pranav Puritipati	2
Dongyeong Kim	4
Prem Chandrasekhar	5
Executive Summary	6
Main Body	7
Goals and Design Overview	7
Realistic Constraints	7
Engineering Standards	7
Alternative Designs and Design Choices	7
Technical Analysis for System and Subsystems	8
Design Validation for System and Subsystems	8
Test Plan	8
Project Planning and Management	8
Conclusions	10
References	11

Signature (Approval) of Each Team Member

Pranav Puritipati

Dongyeong Kim

Prem Chandrasekhar

Executive Summary

Main Body

Goals and Design Overview

Figure 1: Dataflow Graph for Embedded Face Detector System Application

As illustrated in Fig. 1, the dataflow graph contains six types of actors: init_classifiers_from_file (Classifier Read), file_read (Image Read), txt_img_read (Image to Text), integrate_image (Image Integrate), classify (Classify), and file_write (File Write). In each iteration of the dataflow graph, the

Realistic Constraints

Engineering Standards
Alternative Designs and Design Choices
Technical Analysis for System and Subsystems
Design Validation for System and Subsystems
Test Plan
Project Planning and Management

Conclusions

References

- [1] P. Viola and M. J. Jones, Kluwer Academic Publishers, Cambridge, MA, tech., 2004.
- [2] P. Viola and M. Jones, IEEE, Cambridge, MA, tech., 2001.
- [3] R. Gupta, "The intuition behind facial detection: The viola-jones algorithm," *Towards Data Science*, 12-Feb-2020. [Online]. Available:

https://towardsdatascience.com/the-intuition-behind-facial-detection-the-viola-jones-algorithm-2 9d9106b6999. [Accessed: 05-May-2022].

- [4] University of Maryland, College Park, Face Detection Using the Viola-Jones Algorithm, 2022.
- [5] University of Maryland, College Park, Training Process for the Viola-Jones Algorithm, 2022.
- [6] "Vocal Technologies," VOCAL Technologies. [Online]. Available: https://www.vocal.com/video/face-detection-using-viola-jones-algorithm/#:~:text=The%20Viola%2DJones%20algorithm%20is,it%20does%20not%20use%20multiplications. [Accessed: 05-May-2022].