Comparing the Growth of Functions as Inputs (x or n) $\rightarrow \infty$

Suppose f and g are real-valued functions on a domain that includes nonnegative real numbers. We say that

• *f* is of order at most *g*, written f(x) is O(g(x)), iff there exists C > 0 and $k \ge 0$ such that

$$|f(x)| \le C|g(x)|$$
, for all real numbers $x > k$.

We call *C*, *k* **witnesses** to this **Big-***O* relationship.

• *f* is of order at least *g*, written f(x) is $\Omega(g(x))$, iff there exists C > 0 and $k \ge 0$ such that

$$|f(x)| \ge C|g(x)|$$
, for all real numbers $x > k$.

• f is of order g, written f(x) is $\Theta(g(x))$, iff f is simultaneously of order at most g and of order at least g.

Note: If f and g are sequences (i.e., functions from \mathbb{N} into \mathbb{R}), we apply these same notions, writing things like f(n) is Big-O g(n) if there exist positive numbers C, k such that $|f(n)| \le C|g(n)|$ for all n > k, and so on.

Some Facts:

- 1. If $m \ge n$ and f is a polynomial of degree n, then f(x) is $O(x^m)$.
- 2. n! is $O(n^n)$ and, as a consequence, $\log_b n!$ is $O(n \log_b n)$, for any b > 1.
- 3. It can be shown that $n < 2^n$ for $n \ge 1$ and, as a consequence, $\log_b n$ is O(n) for all b > 1.
- 4. If $f_1(x)$ is $O(g_1(x))$ and $f_2(x)$ is $O(g_2(x))$, then $(f_1 + f_2)(x)$ is $O(\max(|g_1(x)|, |g_2(x)|))$.
- 5. If $f_1(x)$ is $O(g_1(x))$ and $f_2(x)$ is $O(g_2(x))$, then $(f_1f_2)(x)$ is $O(g_1(x)g_2(x))$.
- 6. As a result of Facts 3 and 5, we have

$$n \log_b n$$
 is $O(n^2)$, $x^p (\log_b x)^q$ is $O(x^{p+q})$, etc.

- 7. If f(x) is O(g(x)) and g(x) is O(h(x)), the f(x) is O(h(x)).
- 8. Let c > b > 1, and d > 0. For comparing of a power function x^d with an exponential growth runction b^x , we have

$$x^d$$
 is $O(b^x)$, but not vice versa.

For comparing the two exponential growth functions c^x , b^x we have

$$b^x$$
 is $O(c^x)$, but not vice versa.

9. It requires calculus, but it can be shown that for any b > 0, c > 0, $(\log_b x)^c$ is O(x).

There is, therefore, this increasing sequence of orders: 1, $\log_b n$, $(\log_b n)^2$, $(\log_b n)^3$, ..., n, $n \log_b n$, $n(\log_b n)^2$, ..., n^2 , $n^2 \log_b n$, n^3 , ..., n^3 , ..., n^3 , ..., n^3 .

Examples:

1. It is a fact that, for all real numbers x > 2,

$$10|x^6| \leq |17x^6 - 45x^3 + 2x + 8| \leq 30|x^6|.$$

Given this, what sort of Big-O, Big- Ω and/or Big- Θ statements are possible here?

- 2. Show that $f(x) = \frac{15\sqrt{x}(2x+9)}{x+1}$ is $\Theta(x^{1/2})$.
- 3. Find witnesses that demonstrate $f(x) = 3x^3 + 2x + 7$ is $O(x^3)$.

Theorem 1: Let f(x) be a polynomial of degree n—that is,

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0,$$

with $a_n \neq 0$. Then

- f(x) is $O(x^s)$ for all integers $s \ge n$.
- f(x) is not $O(x^r)$ for all integers r < n.
- f(x) is $\Omega(x^r)$ for all integers $r \le n$.
- f(x) is not $\Omega(x^s)$ for all integers s > n.
- f(x) is $\Theta(x^n)$.