Analysing Bacteria Patterned on Surfaces

Part of my PhD research

Cameron Boggon

How does it work?

Depositing Bacteria

Phase Contrast video of bacteria deposited into 2x2 um traps.

Fluorescence Image of bacteria patterned on PDMS template

Finding Centre of Bacterium

- 1) Smooth image Gaussian then box car kernel
- 2) Threshold Brightest 30% pixels
- 3) Brightest pixel in local area (5x5 pixels)
- 4) Find centroid by Fourier transform (3x3 pixel window)
- 5) Allocate particles to clusters (10x10 pixels)

Analysing images

Fit 2D Gaussian to Bacteria

Equation of fit:
$$f(x,y) = A + \sum_{i} B_{i} \exp\left(\frac{-(x_{i} - \mu_{x_{i}})^{2}}{2\sigma_{x_{i}}} + \frac{-(y_{i} - \mu_{y_{i}})^{2}}{2\sigma_{y_{i}}}\right)$$

Useful Metrics:

- Eccentricity = $1 \frac{\sigma_i}{\sigma_j}$, $\sigma_i < \sigma_j$
- Particle Diameter = $\frac{\sigma_i + \sigma_j}{2}$
- *Brightness of Bacterium*=*B*

Distribution in Bacteria Size

Particle Diameter /um [(3*sigma_ + 3*sigma_)/2]

Particle Diameter /um [(3*sigma_ + 3*sigma_)/2]

Particle Diameter /um [(3*sigma_ + 3*sigma_)/2]

Testing Accuracy by Eye

How to Test More Quantitatively?

What next?

Temporal parameters from time-lapse videos

Simulated Data for error analysis

What to do when we have many bacteria in 1 trap?

Questions?

Brightness vs Background

How to Calculate Background

- Remove area around found particles. Square is 30x30 pixels.
- Discount data outside of red box as too close to boundary

Watershed Algorithm

