

Prática 01

Prof: Leonardo Augusto

Comunicação SPI (Serial Peripheral Interface)

Tecnologia	Barramento de comunicação	Taxa máxima	Fluxo de dados
UART (RS232)	2 (sem controle de fluxo)	115.200 bps	Half ou Full Duplex
SPI	3 + nº de Slaves	2 Mbps	Full Duplex
I2C	2 (até 127 dispositivos)	400 Kbps	Half Duplex

Na comunicação serial síncrona definimos também o conceito de Mestre-Escravo. Normalmente o gerador do sinal de sincronismo é definido como o Mestre (Master) da comunicação. Para os dispositivos que utilizam do sinal de sincronismo gerado, damos a definição de Escravo (Slave).

Pino	Nome Padrão	Significado	Nomes Alternativos
Do Master para o Slave	MOSI	Master Output Slave Input	SDO, DO, SO
Do Slave para o Master	MISO	Master Input Slave Output	SDI, DI, SI
Clock	SCLK	Serial Clock	SCK, CLK
Seleção de Slave	SS	Slave Select	CS, nSS, nCS


```
#include <SPI.H>
#define SS SLAVE
void setup( void )
   pinMode( SS SLAVE , OUTPUT ) ;
   SPI.begin(); // Inicializa a SPI do periférico.
void loop( void )
   unsigned char retorno[3]; // Retorno para cada byte.
   digitalWrite ( SS SLAVE , LOW ) ; // Habilita o SS.
   retorno[0] = SPI.transfer(0x00); // Envia 00h e recebe o retorno.
   retorno[ 1 ] = SPI.transfer( 0x3C ); // Envia 3Ch e recebe o retorno.
   retorno[2] = SPI.transfer(0x5A); // Envia 5Ah e recebe o retorno.
   digitalWrite ( SS SLAVE , HIGH ) ; // Desabilita o SS.
   delay( 1000 ) ;
```


Módulo RFID MFRC522

MFRC522 - Especificações

Tensão de Operação	2,5V à 3,3V
Corrente em Operação	13mA à 26mA
Corrente em Standby	10mA à 12mA
Frequência de Operação	13,56 MHz
Frequência Máxima do SPI	10 MHz
Frequência Máxima do I2C	3,4 MHz
Distância Mínima de Operação	50mm

Pinout

PINO	DESCRIÇÃO
SS ou CS	(Chip Select) seleciona o módulo ao qual deseja realizar uma comunicação
SCK	Origem do clock de sincronia entre os dispositivos
MOSI	Master Output Slave Input, é a saída de dados do Arduino
MIS0	Master Input Slave Output, é a entrada de dados vindo do sensor para o Arduino.
IRQ	Gera um pulso de interrupção para o Arduino quando o sistema detecta atividade.
GND	Ground da alimentação
RST	Reinicia o módulo quando inserido um pulso neste pino
VCC	3.3V da alimentação

Montagem com o Arduino Uno

Montagem com o Arduino Mega 2560

Instalando lib

Exemplo para Arduino Uno

```
if (!mfrc522.PICC IsNewCardPresent()) return;// Aguarda a
//Inclui as bibliotecas do SPI e do RC522
                                                                                                                                        conteudo.concat(String(" 0"));
                                                            aproximação do token
#include <SPI.h>
                                                             if (!mfrc522.PICC ReadCardSerial()) return; // Seleciona qual token
#include <MFRC522.h>
                                                            vai ser utilizado
                                                                                                                                        else{
//Definição dos pinos de conexão do projeto
                                                             Serial.print("UID da tag:"); // Mostra UID do token na serial
                                                                                                                                         conteudo.concat(String(" "));
                                                             String conteudo= ""; //Cria uma variável vazia, do tipo string
#define PINO SS 10
#define PINO RST 9
                                                               byte letra;
                                                                                                                                        conteudo.concat(String(mfrc522.uid.uidByte[i], HEX));
//Cria o item para configurar o módulo RC522
                                                             for (byte i = 0; i < mfrc522.uid.size; i++) {
MFRC522 mfrc522(PINO_SS, PINO_RST);
                                                               if(mfrc522.uid.uidByte[i] < 0x10){
                                                                                                                                      Serial.println();
                                                                 Serial.print(" 0");
void setup() {
                                                                                                                                       conteudo.toUpperCase();//Coloca todas as letras da string em
 Serial.begin(9600); // Inicializa a serial
                                                                                                                                     maiúscula
                                                                                                                                      if (conteudo.substring(1) == "60 85 73 A5") {
 SPI.begin();// Inicializa a comunicação SPI
                                                               else{
                                                                                                                                       Serial.println("Acesso Permitido!");
 mfrc522.PCD Init(); // Inicializa o módulo MFRC522
                                                                 Serial.print(" ");
 Serial.println("Sistema Inicializado: Aproxime o token");
                                                                                                                                      delay(1000);
                                                               Serial.print(mfrc522.uid.uidByte[i], HEX);// Printa a mensagem
                                                            convertida em hexadecimal
void loop() {
                                                               if(mfrc522.uid.uidByte[i] < 0x10){
```


Buzzer

Experimento

- Simule um controle de acesso com o módulo RFID. Utilize 2 leds e 1 buzzer. O led vermelho inicialmente ficará aceso. Ao inserir uma tag rfid previamente cadastrada, apague o led vermelho e acenda um led verde por 10 segundos e mostre na tela a mensagem "Acesso liberado".
- Caso a tag não esteja cadastrada, mostre na tela a mensagem "cartão invalido" e pisque o led vermelho algumas 3 vezes.
- Em caso de inserir por 5 vezes uma tag que não esteja cadastrada, imprima a mensagem "SISTEMA BLOQUEADO", o led vermelho ficará piscando e o buzzer acionado por 30 segundos.

Desenvolva seu código!