		= [] C(C; E(Zt-i Zt-ith] Ty(h-i+i)
Page 1		7=0=8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
February 20, 2020	3:00 PM	
Hair Alberto Parna Warreng	Assignment2	ry(h-j+i)= 02 iff h-i+i=0
260738614	MATH SUS	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
23.3 Consider the refrate-order MA process 1xi3 1.=0 => j=i		
Xt = 20 + C	272ti	
		=> P (12 = (2 + 12) = P C12 02
what Cat is another that the angles		
is not stationary. Also show that the sources = 1 + C2 12. 02 = 00 => 1/43 is not stationary		
of first differen LYE3 def	ined by	$= 1 + C^2 \stackrel{\sim}{\square} \sigma^2 = \infty \Rightarrow d \times d \times d \Rightarrow \text{ not stationary}$ $as E(\times_e^2) = +\infty.$
		Now let dyty be definedless It = Xt - Xt-1
Ye = Xt - X	6-1	
is a first-order MA ero cass a	mel it's stationary.	then, E(Yt)=E(Xt)-E(Xt)=0 11 t
Frel the ACF of 1843.		and
Soldren		Cov (Yt, Ytru) = E ((Xt-Xt1) (Xtru - Xtru-1)
	L	
Since 34 ~ WN (0,62)	- Jace Manue =	B (P. Ci'Zti - P. Ci'Zt-in)
E(X4)= E(84+ C)	284	
		· (] Cj Ztjth -] Cj Zt-j-1+h)
= E(3H + C) E(3	77]=0	
5=1	l, j=0 = #	[(Z++CZ, Z+-1-CZ, Z+-1-1) K=1+1
Then, let $C_0 = 4$	C. 120	321
TX(h)= 医(XtXt+h)		(2++++ CZ Ztj+h-Zt+h-1-CZ Zt-j-1+h)]
	\1	(2011 CZ 2+3+11 2+11-1 = CZ 2+-1-141)
= # (2 C; 2 t-i) (Z		
		·B (フォナCアフェーフャーノーCアファーイ)
= 5 7 P CiCi 8617	6-xth	/ 20 20 7
		(2++h + CP Zejth - Zeth-1 - CP Ze-j+h)
= 12 1 Cili Elitai	Brith 1 (
7-0-0	2番【!	2+ + (2+1-2+1)(2++++ (2+++1 - 2++-1))

Page 2

February 20, 2020 4:22 PM

=B[(2+1C-1)2+1)(2+++CC-1)2++1]

h=0

7,(0)=E((2+(C1)2+1)2)

= 5 (2+2) + 2(C-1) E(12+2+1) + (C-1)26 [12-1]

= $0^2 + (c-1)^2 6^2 = [1+(c-1)^2] 0^2$

h= + 1

= B((3++(C-1)3+-1)(8++1+(C-1)3+)]

= B(2+3+1) + (C-1) B(2+2)

+ (c-1) E(2007 744) + (c-1)2E(34-34)

= ((-1)02

h +0,1 T(h)=0

=> {Yt} is stateoney with ACF

 $\gamma_{1}(h) = \begin{cases} (1+(c-1)^{2}) \sigma^{2}, & h=0 \\ (c-1)\sigma^{2}, & k=\pm 1 \end{cases}$ O, else

$$\frac{C-1}{1+CC-1/2}, h=\pm 1$$

$$0, h\neq 0, 1$$

$$\frac{C-1}{1+CC-1/2}, h\neq 0, 1$$

$$\frac{C-1}{1+CC-1/2}, h\neq 0, 1$$

P2.11 Suppose soughe of size 100 few NRCL), mean μ , $\phi = .6$, $\sigma^2 = 2$, $\overline{\chi}_{100} = 0.271$.

Constact a 95% C.7 for μ .

Solution

Assung that &X+3 has Gaussian responses, we have that

In ~ or (ju, in [] (1- lhi) r(h))

We construct a 95% CI for 1 as

C. I. 45% $(\mu) = \overline{\chi} \pm \overline{\chi}_{0.475} \cdot \sqrt{\text{Var}(\overline{\chi})}$

Her, P, $\gamma(h) = P$, $\frac{\sigma^2 \phi^k}{1 - \phi^2}$

 $= \left(1 + 2 \sum_{h=1}^{\infty} d^{h}\right) \left(\frac{\sigma^{2}}{1-d^{2}}\right)$

= (1+24) (02) = (1+24) (02) = (1+24) (02)

= (1-4+24)(02)= (1-4)(1+4)(1-4)2 (1-4)2

=> CI(1-0480 (MI)= M+ Bar (1) (0) (11-01)

=> C. Jases (M) = 0.27 + (1.96) (1) 2 \(\sqrt{100} \) (1-0.36 \)

= [-0.422,0,964]

which is compatible with 120 as OBCI (W)

B

(x1, x2) = (Cov(x2, x1) (Ov(x2, x2)) Page 3 February 20, 2020 5:25 PM $= \begin{pmatrix} \sigma^2(1+\sigma^2) & \sigma^2\theta \\ \sigma^2\theta & \sigma^2(1+\sigma^2) \end{pmatrix}$ 22.21 Let X1, X2, X1, X5 be obs. fra MACL) X += 2+ + 02+-1 , (2+3~ WN(0,02) x = [r(1) x(2)]T a) Find the best linear estimate of the missy value X3 in tems of X1 and X2 ra=z => a=riz Solution We have to forecast xnow using X1, , , xn the best linear predictor with minimum MJG 15 Pr. Xnth = jut Pa; (Xn+1-i-ju) $\begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} ue^2 & G \\ 0 & ue^2 \end{bmatrix} \begin{bmatrix} O \\ 0 \end{bmatrix}$ where an satisfies Phan = In(h) $\begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = \underbrace{\begin{bmatrix} 1 \\ (1+\theta^2)^2 - \theta^2 \end{bmatrix}} \begin{bmatrix} 1+\theta^2 & -\theta \\ -\theta & 1+\theta^2 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ and also gum Y, W,,.,Wn, 12= (or(Y, W)=((or(Y, Wn), Cor(Y, Wn-1) $q_1 = \frac{(1+6^2)\theta}{(1+6^2)^2-0^2}, b = \frac{-6^2}{(1+6^2)^2-6^2}$ -.., Cov (Y, W, 11⁷ 17 = (ov(W, W), Ty = Cov(Wart-1, V'u+1-j) >> Px, x2 (X3) = a1X2+a2X1 Best their predicts is $MSG = E \left| \left(Y - P_{W}(Y) \right)^{2} \right| d$ P(YIW) = My + at (w/w), where Pa = 0 = \(\gamma(0) - ant \(\chi_n(h)\) For MACL), X = 2 + θ 2 t-1 , (2 t) ~ WN(0, σ2) $=6^{2}(1+6^{2})-[a,a_{1}]$ Yx(h)= \(\sigma^2 \) \(\lambda^2 \) \(\lambda^2 \) \(\lambda^2 \) \(\lambda \) \(= 52(1+02) - (1+02)62 52 (1+02)2- 02 a) Best linear estimate of X3 in tous of X1 and X2

Let Y=X3, W=CX2,X1)

$$= \gamma(0) - an^{T} \gamma_{n}(h)$$

$$= 6^{2}(1+\theta^{2}) - [a, a_{2}] \begin{bmatrix} \sigma^{2}\theta \\ 0 \end{bmatrix}$$

$$= 6^{2}(1+0^{2}) - \frac{(1+0^{2})6^{2}6^{2}}{(1+0^{2})^{2}}$$

$$= \sigma^{2}(1+\sigma^{2}) - [a_{1}a_{2}a_{3}a_{4}] \begin{bmatrix} \sigma^{2}\sigma \\ \sigma^{2}\sigma \\ 0 \end{bmatrix}$$

$$= 6^{2}(1+0^{2}) - 2\left(\frac{(1+0^{2})\theta^{2}\theta^{2}}{(1+0^{2})^{2}-\theta^{2}}\right)$$