HUMBER INSTITUTE OF TECHNOLOGY AND ADVANCED LEARNING (HUMBER COLLEGE)

ASSIGNMENT NAME: In Class Group Assignment

Group No – 7

Sr No.	Name	Student Number
1	Vidhya Shanker Goel	N01650917
2	Samyuktha Lakshmi Narayanan	N01654489
3	Mohammad Haris Rasheed	N01609771
4	Himalay Dwivedi	N01647742
5	Nirupama Perumal Perumalthevar	N01650845
6	Rohith Prabhakaran Latha	N01653327

STEP 1: LOAD THE DATATSET IN DATABRICKS NOTEBOOK AND DISPLAY FIRST 10 ROWS.

f = s	park.read.opti	on("sep", "	',") \					
.0	ption("header"	, True) \						
.0	ption("inferSc	hema", True	2) \					
.с	:sv("s3n://humb	er-lfb-data	abricks-c]	lass-file	es/bigdat	a1_ga.cs	sv")	
	the first 10		⊵ DataFram	me to ins	spect the	data		

	^B _C month	^{AB} c format	ABc device_type	ABc bid_type	1 ² ₃ network_id
1	Nov-2019	display	desktop	срс	2
2	Nov-2019	display	desktop	срс	7
3	Nov-2019	display	desktop	срс	8
4	Nov-2019	display	desktop	срс	8
5	Nov-2019	display	desktop	срс	8
6	Nov-2019	display	desktop	срс	9.
7	Nov-2019	display	desktop	срс	9
8	Nov-2019	display	desktop	срс	10
9	Nov-2019	display	desktop	срс	10
10	N 2010	J: I	J1.4		11

STEP 2: PRELIMINARY ANALYSIS TO UNDERSTAND THE DATA DISTRIBUTION, MISSING VALUES AND UNIQUE VALUES.

- Code for Data Distribution and Missing Values

```
# Display summary statistics for numerical columns
df.describe().display()

# Check for missing values in each column
df.select([count(when(col(c).isNull(), c)).alias(c) for c in df.columns]).display()
```

- Output

	A ^B C summary	AB _C month	AB _C format	ABc device_type	ABc bid_type	
2	mean	null	null	null	null	
3	stddev	null	null	null	null	
4	min	Apr-2020	Audio	connected-device	срс	
5	max	Sep-2020	video	unknown	cpm	
rows					Q 7	
Table					2	
Table	1 ² ₃ month	1 ² ₃ format	1 ² ₃ device_type	1 ² ₃ bid_type	1 ² ₃ network_id	

- Code for Unique values

```
# Count unique values in categorical columns
categorical_columns = ["month", "format", "device_type", "bid_type", "network_id"]
for column in categorical_columns:
    print(f"Unique values in {column}: {df.select(column).distinct().count()}")
```

- Output

```
Unique values in month: 12
Unique values in format: 5
Unique values in device_type: 9
Unique values in bid_type: 4
Unique values in network_id: 93
```

STEP 3: PERFORMANCE METRICS

a) Calculate the Click-Through Rate (CTR) for each month.

0.3284417613768979

0.6083789196310952

0.351244935496737

1.856179703887004

2.3738953935803027

- Code and Output

8

9

10

11

12

12 rows

Aug-2020

Jul-2020

Feb-2020

Apr-2020

Nov-2019

```
df_ctr = df.withColumn("CTR", col("clicks") / col("impressions")) \
            .groupBy("month") \
            .agg(sum("CTR").alias("Total_CTR"))
display(df_ctr)
                                                                                 QT
                                                                                           Table
      A^{B}_{C} month
                      1.2 Total_CTR
      Jun-2020
                      0.24066408206969167
1
      Oct-2020
                       0.5613934226566515
2
3
      Mar-2020
                       0.7568150549324686
4
      May-2020
                       0.4819151542658173
5
      Dec-2019
                        0.860034171230304
6
      Sep-2020
                       1.1882847572023085
7
      Jan-2020
                      0.46624284251332204
```

b) Calculate the Cost Per Click (CPC) and Cost Per Mille (CPM)

- Code and Output

STEP 4: VISUALIZATION OF THE DATASET

a) Plot a time series graph to show monthly spend.

- Code and Output

- Resulting Visualization based on the Output

b) Visualize the distribution of impressions and clicks across different device types

- Code and Output

- Resulting Visualization based on the Output

c) Show a bar chart of engagements across different ad formats.

- Code and Output

- Resulting Visualization based on the Output

STEP 5: ENGAGEMENT ANALYSIS

a) Analyse the correlation between viewable impressions and engagements.

- Code and Output

```
# Calculate correlation
viewable_corr = df.stat.corr("viewable_imps", "engagements")
print(f"Correlation between Viewable Impressions and Engagements: {viewable_corr}")

Correlation between Viewable Impressions and Engagements: 0.4375628324188831
```

b) Investigate the ratio of video start to video complete. Which month had the highest drop-offs?

- Code and Output

т.	ы	_

	^{AB} c month	1.2 Total_Drop_Offs			
1	Oct-2020	72.64194314724473			
2	Jul-2020	68.78931478165			
3	Aug-2020	67.88625169935722			
4	Sep-2020	64.51052969098535			
5	Dec-2019	63.81469340909828			
6	Nov-2019	59.75284657096219			
7	Jan-2020	58.93456874093329			
8	Feb-2020	58.87021519491784			
9	Mar-2020	57.44223066265956			
10	Apr-2020	56.683825522479744			
11	Jun-2020	55.622783641355305			
12	May-2020	53.52432659616489			
12 rows					

STEP 6: TWO INSIGHTS ON THE ANALYSIS

First:-

Observation: The number of impressions for certain device types, such as tablet-app and mobile-web, is significantly high, but the corresponding number of clicks doesn't proportionally match the impression count. Insight: This suggests that while ads are being displayed frequently on these devices, they may not be as engaging or relevant to users, leading to lower click-through rates. This could be an opportunity to optimize ad content or targeting strategies for these specific devices.

Second:-

Observation: The set-top and connected-tv device types show zero clicks, despite having impressions. Insight: This could indicate a mismatch between the content of the ads and the context in which they are displayed on these devices. These device types might require a different approach, such as more interactive or video-based content, to engage users effectively.