

DS 5220 – Lecture 6 Decision Trees

Roi Yehoshua

Some slides adapted from Tan, Steinbach & Kumar, Introduction to Data Mining

Agenda

- Decision trees
- Impurity measures
- Entropy
- Tree pruning
- Regression trees

Decision Trees

- Decision trees are one of the most powerful machine learning models
- ▶ Based on simple decision rules inferred from the data set
- Can be used both for classification and regression
- Capable of fitting complex datasets
- Can be visualized and easily interpreted
- Have been successfully applied to a broad range of tasks
 - from medical diagnosis to credit loan approvals

Decision Tree Example

Tid	Home Owner	Marital Status	Annual Income	Default
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Splitting attributes **Home Owner** No Yes **Marital Status** No Married Single, Divorced Income No < 80K > 80K No Yes

Training data

Model: decision tree

Leaf nodes assign

class labels

Test data

Home Owner		Annual Income	Default		
No	Married	80K	?		

Decision Tree Induction

- ▶ A decision tree is grown in a top-down, recursive fashion
- Initially, the root node of the tree contains all the samples in the training set
- In every node we split the training set into based on an attribute value test
 - \triangleright e.g., X > 10, where X is one of the attributes
- This process is repeated recursively on each child node
- The recursion ends when either:
 - All the samples in the node belong to the same class
 - When there are no more attributes that can be used for splitting

Decision Tree Induction


```
Algorithm Decision-Tree-Learning(examples, attributes)
Input:
```

```
examples are the training examples \{(x_1, y_1), ..., (x_n, y_n)\} attributes is the set of attributes (features) in the training set
```

- 1: Create a *root* node for the tree
- 2: **if** all *examples* have the same class label c **then**
- 3: **return** root with label = c
- 4: **else if** *attributes* is empty **then**
- 5: **return** *root* with the most common label in *examples*
- 6: else
- 7: Select attribute A from attributes that best classifies examples based on an impurity measure
- 8: Set A the attribute for *root*
- 9: **for each** value v_i of A **do**
- 10: Add a branch to the tree with label $A = v_i$
- 11: Let exp be the subset of examples that have $A = v_i$
- 12: **if** *exp* is empty **then**
- 13: Add a leaf node to the branch with the most common label in *examples*
- 14: else
- 15: $subtree \leftarrow Decision-Tree-Learning(exp, attributes A)$
- 16: Add *subtree* to the branch
- 17: return root

- ▶ How to specify the attribute test condition?
- ▶ How to determine the best split?

- Depends on the attribute type
 - Categorical
 - Continuous
- Depends on the number of ways to split
 - Binary splits
 - Multi-way splits

Categorical Attributes

Multi-way split: use as many partitions as distinct values

- Binary split: divides values into two subsets
 - Need to find optimal partitioning

Continuous Attributes

- Multi-way split: $v_i \le A < v_{i+1}$ (i = 1, ..., k)
 - v_i are distinct values of feature A in the data set
 - Adjacent intervals can be aggregated into wider ranges as long as the order is preserved
- ▶ Binary split: (A < v) or $(A \ge v)$
 - Consider all possible splits and find the best cut
 - Can be more computationally intensive

How to Determine the Best Split

Which test condition is better?

- ▶ Idea: a good attribute splits the examples into purer subsets
 - Ideally the subsets are "all positive" or "all negative"

Non-homogeneous, High degree of impurity Homogeneous, Low degree of impurity

Need a measure of node impurity

Measures of Node Impurity

- Entropy
- Gini index
- Misclassification error

Entropy

- Entropy is a measure of the uncertainty of a random variable
 - ▶ The more clueless I am about the value of the variable, the higher its entropy
- The entropy of a random variable X with values $x_1, x_2, ..., x_n$ is defined as:

$$H(X) = -\sum_{i=1}^{n} p(x_i) \log_2 p(x_i)$$

- $p \log_2 p$ is considered to be 0 whenever p = 0
- For example, the entropy of a Bernoulli variable as a function of its probability p:

Entropy

Distributions $p(x_i)$ that are sharply peaked around a few values will have lower entropy than those that are spread more evenly across many values

Figure 1.30 Histograms of two probability distributions over 30 bins illustrating the higher value of the entropy H for the broader distribution. The largest entropy would arise from a uniform distribution that would give $H = -\ln(1/30) = 3.40$.

Entropy in Decision Trees

▶ Entropy at a given node *v* of the decision tree:

$$H(v) = -\sum_{k=1}^{K} p(\mathcal{C}_k|v) \log_2 p(\mathcal{C}_k|v)$$

- $p(C_k|v)$ is the relative frequency of class k at node v
- Measures homogeneity of a node
 - Maximum ($\log_2 |K|$) when samples are equally distributed among all classes, implying least information
 - Minimum (0) when all samples belong to one class, implying most information

C_0	0
C_1	6

$$H = -0\log_2 0 - 1\log_2 1$$
$$= 0$$

$$H = -(2/6)\log_2(2/6) - (4/6)\log_2(4/6)$$

= 0.918

$$H = -0\log_2 0 - 1\log_2 1 \qquad H = -(2/6)\log_2(2/6) - (4/6)\log_2(4/6) \qquad H = -(3/6)\log_2(3/6) - (3/6)\log_2(3/6)$$

$$= 0 \qquad = 0.918 \qquad = 1$$

Information Gain

Measures the reduction in entropy as a result of splitting a node p into child nodes $v_1, ..., v_k$

$$\Delta_{\text{info}} = H(p) - \sum_{i=1}^{k} \frac{n_i}{n} H(v_i)$$

- \rightarrow n = number of samples at node p
- n_i = number of samples at child node v_i
- Our goal is to choose the split that maximizes the information gain
 - achieves most reduction in entropy

Information Gain Example

$$H(v_1) = -(5/7)\log_2(5/7) - (2/7)\log_2(2/7)$$
 $H(v_2) = -(1/5)\log_2(1/5) - (4/5)\log_2(4/5)$
= 0.863

$$IG(A) = 1 - (7/12) * 0.863 - (5/12) * 0.722$$

= 0.196

Gain Ratio

- Information gain tends to favor attributes that have a large number of distinct values
 - e.g., splitting customer records by customer ID would lead to 0 entropy
- Gain ratio adjusts information gain by the entropy of the partitioning
- For a node p that is split into child nodes v_1 , ..., v_k with n_i samples each, we define

SplitInfo =
$$-\sum_{i=1}^{k} \frac{n_i}{n} \log_2 \frac{n_i}{n}$$

▶ Then gain ratio is defined as the ratio between information gain and the split info:

$$GainRatio = \frac{\Delta_{info}}{SplitInfo}$$

▶ Higher entropy partitioning (large number of small partitions) is penalized

Gini Index

Gini index (aka gini impurity) at a node v:

$$Gini(v) = 1 - \sum_{k=1}^{K} [p(\mathcal{C}_k|v)]^2$$

- $p(C_k|v)$ is the relative frequency of class k at node v
- Maximum (1 1/|K|) when samples are equally distributed among all classes, implying least interesting information
- Minimum (0) when all samples belong to one class, implying most interesting information

C_0	0
C_1	6

Gini =
$$1 - 0^2 - (6/6)^2$$

= 0

Gini =
$$1 - (2/6)^2 - (4/6)^2$$

= 0.444

Gini =
$$1 - (3/6)^2 - (3/6)^2$$

= 0.5

Splitting Based on Gini

The reduction of gini impurity as a result of splitting node p into child nodes v_1 , ..., v_k :

$$\Delta_{\text{Gini}} = \text{Gini}(p) - \sum_{i=1}^{k} \frac{n_i}{n} \text{Gini}(v_i)$$

- \rightarrow n = number of samples at node p
- n_i = number of samples at child node v_i
- Our goal is to choose the split that achieves the most reduction in impurity

Splitting Based on Gini Example

Gini
$$(v_1) = 1 - (5/7)^2 - (2/7)^2$$

= 0.408
Gini $(v_2) = 1 - (1/5)^2 - (4/5)^2$
= 0.320

$$\Delta_{Gini}(A) = 0.5 - (7/12) * 0.408 - (5/12) * 0.320$$

= 0.129

Continuous Attributes: Computing Gini Index

- ▶ For efficient computation:
 - Sort the samples based on the attribute values
 - Linearly scan these values, each time updating the class counts and computing Gini index
 - Further optimization: consider only split positions between samples with different class labels
 - Choose the split position that has the least Gini index

	Class		No		No		N	0	Ye	s	Ye	s	Υe	s	N	0	N	o	N	0		No	
•											Ar	nnua	ıl Inc	ome	•								
Sorted values	3 →		60		70		7	5	85	;	90)	9	5	10	00	12	20	12	25		220	
Split positions →		5	5	6	5	7	2	8	0	8	7	9	2	9	7	11	0	12	22	17	'2	23	0
·		<=	>	<=	>	<=	^	<=	>	<=	^	\=	^	<=	^	<=	>	<=	>	<=	>	<=	^
	Yes	0	3	0	3	0	3	0	3	1	2	2	1	3	0	3	0	3	0	3	0	3	0
	No	0	7	1	6	2	5	3	4	3	4	3	4	3	4	4	3	5	2	6	1	7	0
	Gini	0.4	20	0.4	00	0.3	75	0.3	43	0.4	17	0.4	100	<u>0.3</u>	<u>800</u>	0.3	43	0.3	75	0.4	00	0.4	20

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Misclassification Error

Misclassification error at node v:

$$E(v) = 1 - \max_{k} p(C_k|v)$$

- Maximum (1 1/|K|) when samples are equally distributed among all classes, implying least interesting information
- Minimum (0) when all samples belong to one class, implying most interesting information

C_0	0
C_1	6

$$E = 1 - \max(0, 1) =$$

= 1 - 1 = 0

$$E = 1 - \max(2/6, 4/6) =$$

= 1 - 4/6 = 1/3

$$E = 1 - \max(2/6, 4/6) = E = 1 - \max(1/2, 1/2) = 1 - 4/6 = 1/3$$

= 1 - 1/2 = 1/2

▶ For a binary classification problem:

- ▶ The choice of impurity measure has little effect on the performance
- ▶ Gini index is usually preferred as it is less computationally expensive
 - No logarithmic computations involved

▶ Build a decision tree for the following classification problem using information gain

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Selecting the first splitting attribute:

Selecting the first splitting attribute:

- ▶ The attribute that provides the highest information gain is Outlook
- ▶ Thus, the first level of the decision tree will look like this:

Choosing the splitting criterion for the Sunny node:

Gain(Temperature) =
=
$$0.970 - (2/5)*0 - (2/5)*1 - (1/5)*0$$

= 0.570

▶ Choosing the splitting criterion for the Rain node:

Gain(Temperature) =
=
$$0.970 - (3/5)*0.918 - (2/5)*1$$

= 0.0192

Northeastern University

Decision Tree Construction Example

Example: Diabetes Diagnosis

Dongmei Pei et al., "Accurate and rapid screening model for potential diabetes mellitus", 2019

Time Complexity

- Let *n* be the number of samples and *d* the number of features
- Constructing a tree
 - The cost at each node consists of searching through O(d) features
 - ▶ For each continuous feature we need to sort the samples according to the feature values
 - \blacktriangleright Thus, in the worst case the cost at each node is $O(dn \log n)$
 - The tree contains at most O(n) nodes
 - Since each node contains at least one sample less than its parent node
 - Therefore, the total cost for construing a tree is $O(dn^2 \log n)$
- Making a prediction
 - Worst case complexity is O(m), where m is the maximum depth of the tree
 - When the decision tree is a binary balanced tree, m = O(logn)
 - Although the tree construction algorithm tries to generate balanced trees, they won't always be

Overfitting

- One of the biggest issues with decision trees is overfitting
 - The leaf nodes of the tree can be expanded until it perfectly fits the training set
 - Although the training error for such a tree is 0, the test error can be large
 - Some of the nodes may accidentally fit the noise in the training data

- We can use decision tree pruning to reduce overfitting
- ▶ Two main methods to avoid overfitting in decision tree learning:
 - Pre-pruning
 - Post-pruning

- Stop the tree construction before it becomes a fully-grown tree
- Common stopping conditions:
 - Maximum depth stop when the tree reaches a maximum depth
 - ▶ Minimum leaf size stop when a minimum number of samples at a node is reached
 - ▶ Maximum number of leaf nodes stop when maximum number of leaf nodes is reached
 - ▶ Minimum impurity decrease don't split a node if it doesn't improve the impurity measure by some threshold
 - ▶ This heuristic could miss higher-order interactions between features

Post Pruning

- A simple and fast approach for post-pruning
 - Grow decision tree to its entirety
 - Trim the nodes of the tree in a bottom-up fashion
 - Each node is replaced by a leaf node
 - whose class label is determined by the majority class of the samples in its sub-tree
 - If the generalization error improves after trimming, the change is kept

Pros:

Tends to give better results than pre-pruning because the pruning decisions are made based on a fully grown tree

Cons:

Requires more computations to grow the full tree

Post Pruning Example

▶ A decision tree for the Iris data using the first two features (sepal length and width)

Other Issues

- Optimality
- Decision boundaries
- Expressiveness
- Instability

- Finding an optimal decision tree is an NP-complete problem
- An optimal decision tree is one that minimizes the number of tests required to classify correctly all the training samples
- The algorithm presented so far uses a greedy, recursive partitioning strategy to induce a reasonable solution
- Other approaches?
 - Bottom-up
 - Bi-directional

Decision Boundaries

- ▶ The decision boundaries learned by a DT are always rectilinear (parallel to the axes)
 - Since the test conditions involve a single attribute at-a-time
- ▶ This limits the expressiveness of the decision tree representation

Decision Boundaries

- For example, a simple decision boundary of the form $x_1 + x_2$ could only be approximated through the use of many splits
- ▶ On the other hand, a linear model could directly derive this boundary

Oblique Decision Trees

- ▶ A test condition may involve multiple features
 - More expressive representation
 - Finding optimal test condition is computationally expensive
 - May increase variance and reduce interpretability

Expressiveness

- Decision trees provide expressive representations for discrete-valued functions
- ▶ However, they don't generalize well to certain types of Boolean functions
- Example: the majority function
 - Class = 1 if more than half of the Boolean attributes are True
 - Class = 0 otherwise
- ▶ For accurate modeling, we need an exponentially large decision tree
- ▶ A simple linear model (e.g., perceptron) can represent this function very compactly

Instability

- ▶ Small changes in the training data can cause large changes in the topology of the tree
 - ▶ However, the overall performance of the tree remains stable

- ▶ There is a large variety of decision tree algorithms
- ▶ The most popular ones are ID3, C4.5, and CART
- Most decision tree algorithms differ in the following aspects:
 - Node impurity measure (information gain, gini impurity)
 - Binary splits vs. multi-way splits
 - Discrete vs. continuous variables
 - Pre-pruning vs. post-pruning

Decision Tree Algorithms

Algorithm	Author	Impurity measures	Other features
ID3 (Iterative Dichotomizer 3)	Quinlan, 1986	Information gain	Supports only discrete features Multi-category splits No pruning
C4.5	Quinlan, 1993	Information gain Gain ratio	Supports both continuous and discrete features Handles missing values Multi-way splits Performs post-pruning (bottom-up pruning) Generates decision rules from the tree
CART (Classification and Regression Trees)	Breiman et al, 1984	Gini impurity	Can be used for both classification and regression Supports both continuous and discrete features Handles missing values Strictly binary splits Performs cost-complexity pruning

Decision Trees in Scikit-Learn

DecisionTreeClassifier implements an optimized version of the CART algorithm

class sklearn.tree. DecisionTreeClassifier(*, criterion='gini', splitter='best', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None, random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, class_weight=None, ccp_alpha=0.0)

[source]

Argument	Description	
criterion	The function to measure the quality of a split. Supported criteria are "gini" and "entropy"	
splitter	The strategy used to choose the split at each node. Supported strategies are "best" and "random".	
max_depth	The maximum depth of the tree	
min_samples_split	The minimum number of samples required to split an internal node	
min_samples_leaf	The minimum number of samples required to be at a leaf node	
max_features	The number of features to consider when looking for the best split	
max_leaf_nodes	Maximum number of leaf nodes	
min_impurity_decrease	A node will be split if this split induces a decrease of the impurity greater than this value	
ccp_alpha	Complexity parameter used for cost-complexity pruning	

Decision Trees in Scikit-Learn

▶ For example, let's build a decision tree classifier for the Iris data set:

```
from sklearn.datasets import load_iris

iris = load_iris()
X = iris.data
y = iris.target

X_train, X_test, y_train, y_test = train_test_split(X, y)
```

```
from sklearn.tree import DecisionTreeClassifier

clf = DecisionTreeClassifier()
clf.fit(X_train, y_train)

print(f'Training set accuracy: {clf.score(X_train, y_train):.4f}')
print(f'Test set accuracy: {clf.score(X_test, y_test):.4f}')
```

Training set accuracy: 1.0000 Test set accuracy: 0.9737

Note that scaling isn't required

Decision Tree Prediction

▶ After being fitted, the tree can be used to predict the class of new samples:

```
new_X = [[6, 3, 5, 1.5]]
clf.predict(new_X)
array([1])
```

▶ The tree can also output class probabilities, which are based on the fraction of training samples of each class in the leaf node:

```
clf.predict_proba(new_X)
array([[0., 1., 0.]])
```


▶ To visualize the decision tree you can use the following function from sklearn.tree:

```
sklearn.tree.\ plot\_tree (decision\_tree,\ ^*,\ max\_depth=None,\ feature\_names=None,\ class\_names=None,\ label='all',\ filled=False,\ impurity=True,\ node\_ids=False,\ proportion=False,\ rotate='deprecated',\ rounded=False,\ precision=3,\ ax=None,\ fontsize=None) \\ [source]
```

▶ For example, to visualize the decision tree for the Iris classification problem:

Visualizing the Decision Tree

Plotting Decision Boundaries

- ▶ In the case of 2D data, we can also plot the decision boundaries
- For example, let's build a decision tree classifier using only the first two features of the Iris data set (sepal length and sepal width)

```
X = iris.data[:, :2]
y = iris.target

X_train, X_test, y_train, y_test = train_test_split(X, y)
```

```
clf = DecisionTreeClassifier()
clf.fit(X_train, y_train)

print(f'Training set accuracy: {clf.score(X_train, y_train):.4f}')
print(f'Test set accuracy: {clf.score(X_test, y_test):.4f}')
```

Training set accuracy: 0.9464
Test set accuracy: 0.6053

▶ We can now plot the decision boundaries using the same function as before:

plot_decision_boundaries(clf, X, y, iris.feature_names, iris.target_names)

Clearly, this tree is overfitting the training data

Tree Pruning

- ▶ To avoid overfitting, we can restrict the size of the decision tree during training
- ▶ For example, let's set its maximum depth to 3

Regression Trees

- Decision trees are also capable of performing regression tasks
- The most common split criterion in regression trees is MSE (mean squared error)
- ▶ The MSE at node *v* is defined as the mean squared difference between the labels of the samples at node *v* and their average:

$$\bar{y}_v = \frac{1}{n_v} \sum_{(\mathbf{x}_i, y_i) \in v} y_i$$

$$MSE(v) = \sum_{(\mathbf{x}_i, y_i) \in v} (y_i - \bar{y}_v)^2$$

- We choose the split that achieves the most reduction in MSE
- The predicted value at a leaf node is the mean value of the labels at that node

Scikit-Learn's DecisionTreeRegressor implements a decision tree regressor

```
class sklearn.tree. DecisionTreeRegressor(*, criterion='mse', splitter='best', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None, random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, ccp_alpha=0.0) [source]
```

- ▶ It has similar parameters to DecisionTreeClassifier, except for the splitting criterion that has the following options:
 - 'mse' minimizes the L2 loss using the mean of each leaf node
 - 'friedman_mse' uses MSE with Friedman's improvement score for potential splits
 - 'mae' minimizes the L1 loss using the median of each leaf node
 - 'poisson' uses reduction in Poisson deviance to find splits

▶ For example, let's fit a regression tree to our noisy sine curve:

```
def make_data(n=50):
    rng = np.random.RandomState(0)
    X = rng.rand(n, 1) * 10
    err = rng.normal(size=n) * 0.3
    y = np.sin(X).ravel() + err
    return X, y
```

```
X, y = make_data()
plt.scatter(X, y, color='yellowgreen', edgecolor='k')
plt.xlabel('$x$')
plt.ylabel('$y$')
plt.savefig('figures/sine.pdf')
```


▶ We'll fit two decision trees with max depths 2 and 5:

```
from sklearn.tree import DecisionTreeRegressor

reg1 = DecisionTreeRegressor(max_depth=2)
reg2 = DecisionTreeRegressor(max_depth=5)

reg1.fit(X, y)
reg2.fit(X, y)
```

DecisionTreeRegressor(max_depth=5)

```
X_test = np.linspace(0, 10, 1000).reshape(-1, 1)
y1_test = reg1.predict(X_test)
y2_test = reg2.predict(X_test)

plt.scatter(X, y, color='yellowgreen', edgecolor='k', label='data')
plt.plot(X_test, y1_test, color='b', label='max_depth=2')
plt.plot(X_test, y2_test, color='r', label='max_depth=5')
plt.xlabel('$x$')
plt.ylabel('$x$')
plt.legend()
plt.savefig('figures/dt_regressor.pdf')
```


Decision Trees Summary

Pros

- Easy to understand and interpret
 - Trees can be visualized
- Capable of fitting complex and large data sets
- Classifying a new sample is very fast
 - Logarithmic in the size of the training set
- Able to handle various types of features
- Requires little data preparation
 - e.g., no scaling is required
- Can deal with redundant attributes
- Capable of both binary and multiclass classification, and regression

Cons

- Can create over-complex trees that don't generalize well (overfitting)
 - Tree pruning is necessary to avoid this problem
- Constrained to rectilinear decision boundaries
- Not guaranteed to return the globally optimal solution (a greedy algorithm)
- Unstable (small variations in the data cause large changes in the tree)
- Some concepts are hard to learn by decision trees, such as parity or majority
- Trees may be biased if some classes dominate