Proofs homework

I'd like you to carefully write up proofs for the following problems: 6, 10, 24, 26, 28. For each of these problems, your solution should include:

- A statement of any definitions that you will rely on in the proof.
- A couple of examples of the statement that is being proved.
- A proof in paragraph form using complete sentences, proper grammar, and a minimum of symbols.

Problems

Problem 6. If a|b and a|c then a|(b+c).

Proof: Since a|b, there is an integer x such that b=ax. Since a|c, there is an integer y so that c=ay. Then (b+c)=(ax+ay)=a(x+y). Therefore there is an integer z=(x+y) such that (b+c)=az and so z|(b+c).

Problem 10. Suppose that a and b are integers. if a|b, then $a|(3b^3 - b^2 + 5b)$.

Proof: Since a|b, there is an integer x such that b = ax. Then

$$(3b^3 - b^2 + 5b) = (3a^3x^3 - a^2x^2 + 5ax) = a(3a^2x^3 - ax^2 + 5x).$$

Therefore there is an integer $z = (3a^2x^3 - ax^2 + 5x)$ such that

$$(3b^3 - b^2 + 5b) = az$$

and therefore $a|(3b^3 - b^2 + 5b)$.

Problem 24. If $m \in \mathbb{N}$ and $n \geq 2$, then the numbers $n! + 2, n! + 3, \dots, n! + n$ are all composite.

Proof: We will show that i|n!+i for $i=2,\ldots,n$. Remember that n! is the product of the numbers from 1 up to n. Therefore, since i is an integer less than n and greater than 1, it is a divisor of n!, and so n!=ix for some integer x. Then n!+i=ix+i=i(x+1) and so i is also a divisor of n!+i. At the same time n!+i is greater than i. Therefore n!+i has a proper divisor i, so n!+i is composite.

Problem 26. Every odd integer is a difference of two squares.

Proof: Let n be an odd integer. Then there is an integer k so that n=2k+1. Notice that

$$(k+1)^2 - k^2 = k^2 + 2k + 1 - k^2 = 2k + 1 = n.$$

Therefore $n = (k+1)^2 - k^2$.

Problem 28. Suppose that a, b, c are integers, that a and b are not both zero, and $c \neq 0$. Prove that $c \cdot \gcd(a, b) \leq \gcd(ca, cb)$.

Proof: Let d be the greatest common divisor of a and b. Then d is a divisor of both a and b. Then cd is a divisor of both ca and cb. Therefore cd is a common divisor of ca and cb. Since $\gcd(ca,cb)$ is the *greatest* common divisor of ca and cb, we must have $cd \leq \gcd(ca,cb)$.