MAT02035 - Modelos para dados correlacionados

Revisão de modelos lineares generalizados

Rodrigo Citton P. dos Reis citton.padilha@ufrgs.br

Universidade Federal do Rio Grande do Sul Instituto de Matemática e Estatística Departamento de Estatística

Porto Alegre, 2019

Introdução

Introdução

- Quando a variável resposta é categórica (por exemplo, dados binários e de contagem), modelos lineares generalizados (por exemplo, regressão logística) podem ser estendidos para lidar com os resultados correlacionados.
- No entanto, transformações não lineares da resposta média (por exemplo, logit) levantam questões adicionais relativas à interpretação dos coeficientes de regressão.
- Diferentes abordagens para contabilizar a correlação levam a modelos com coeficientes de regressão com interpretações distintas.
- Neste curso, consideraremos duas extensões principais de modelos lineares generalizados:
 - modelos marginais;
 - 2. modelos de efeitos mistos.

Exemplo: Tratamento oral da infecção das unhas dos pés

- Estudo aleatorizado, duplo-cego, multicêntrico de 294 pacientes comparando 2 tratamentos orais (denotados A e B) para infecção nas unhas dos pés.
- ► Variável desfecho: variável binária indicando presença de onicólise (separação da placa ungueal do leito ungueal).
- ▶ Pacientes avaliados quanto ao grau de onicólise na linha de base (semana 0) e nas semanas 4, 8, 12, 24, 36 e 48.
- ▶ Interesse na taxa de **declínio da proporção** de pacientes com onicólise ao longo do tempo e nos efeitos do tratamento nessa taxa.

Exemplo: Ensaio clínico de progabida anti-epiléptica

- ► Estudo aleatorizado, controlado por placebo, do tratamento de crises epilépticas com progabida.
- Os pacientes foram aleatorizados para tratamento com progabida ou placebo (em adição à terapia padrão).
- Variável desfecho: Contagem do número de convulsões.
- Cronograma de medição: medição da linha de base durante 8 semanas antes da aleatorização.
 - Quatro medições durante intervalos consecutivos de duas semanas.
- ► Tamanho da amostra: 28 epiléticos com placebo; 31 epiléticos em progabida.

Introdução

- Modelos lineares generalizados (MLG) são uma classe de modelos de regressão; eles incluem o modelo de regressão linear padrão, mas também muitos outros modelos importantes:
 - Regressão linear para dados contínuos
 - Regressão logística para dados binários
 - Modelos de regressão log-linear / Poisson para dados de contagem
- Modelos lineares generalizados estendem os métodos de análise de regressão a configurações nas quais a variável resposta pode ser categórica.
- Nas próximas aulas, consideramos extensões de modelos lineares generalizados para dados longitudinais.
- ▶ Primeiro, revisaremos os modelos logístico e de regressão de Poisson para uma única resposta.

▶ Até agora, consideramos modelos de regressão linear para uma resposta contínua, *Y*, da seguinte forma

$$Y = \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_p X_p + e.$$

► A variável resposta Y é assumida como tendo uma distribuição normal com média

$$\mathsf{E}(Y) = \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_p X_p$$

e com variância σ^2 .

- Lembre-se de que o intercepto da população (para $X_1=1$), β_1 , tem interpretação como o valor médio da resposta quando todas as covariáveis assumem o valor zero.
- A inclinação da população, digamos β_k , tem interpretação em termos da mudança esperada na resposta média para uma mudança de uma unidade em X_k , uma vez que todas as outras covariáveis permanecem constantes.
- ► Em muitos estudos, no entanto, estamos interessados em uma variável resposta dicotômica / binária em vez de contínua.
- ► A seguir, consideramos um modelo de regressão para uma resposta binária (ou dicotômica).

- Seja Y uma resposta binária, em que
 - Y = 1 representa um "sucesso";
 - Y = 0 representa uma "falha".
- ▶ Então a média da variável resposta binária, denominada π , é a proporção de sucessos ou a probabilidade de a resposta assumir o valor 1.
- Ou seja,

$$\pi = \mathsf{E}(Y) = \mathsf{Pr}(Y = 1) = \mathsf{Pr}(\text{"sucesso"}).$$

- ightharpoonup Com uma resposta binária, geralmente estamos interessados em estimar a probabilidade π e relacioná-la a um conjunto de covariáveis.
- Para fazer isso, podemos usar regressão logística.

 Uma estratégia ingênua para modelar uma resposta binária é considerar uma modelo de regressão

$$\pi = \mathsf{E}(Y) = \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_p X_p.$$

- No entanto, em geral, esse modelo não é viável, pois π é uma probabilidade e restringe-se a valores entre 0 e 1.
- Além disso, a suposição usual de homogeneidade de variância seria violada, uma vez que a variância de uma resposta binária depende da média, ou seja,

$$Var(Y) = \pi(1 - \pi).$$

 Em vez disso, podemos considerar um modelo de regressão logística em que

$$\log[\pi/(1-\pi)] = \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_p X_p.$$

- Este modelo acomoda a restrição que π está restrita a valores entre 0 e 1.
- Lembre-se de que $\pi/(1-\pi)$ é definido como a chance de sucesso.
 - Portanto, modelar com uma função logística pode ser considerado equivalente a um modelo de regressão linear em que a média da resposta contínua foi substituída pelo logaritmo das chances de sucesso.
- ightharpoonup Observe que a relação entre π e as covariáveis é não linear.

- Partindo do pressuposto de que as respostas binárias são variáveis aleatórias de Bernoulli, podemos usar a estimativa de ML para obter estimativas dos parâmetros de regressão logística.
- ► Finalmente, lembre-se a relação entre o "odds" e "probabilidades".

$$\mathsf{Odds} = \frac{\pi}{1 - \pi};$$

$$\pi = rac{\mathsf{Odds}}{1 + \mathsf{Odds}}.$$

Dado o modelo de regressão logística

$$\log[\pi/(1-\pi)] = \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_p X_p$$

o intercepto populacional, β_1 , tem interpretação como a probabilidade de sucesso logarítmica quando todas as covariáveis assumem o valor zero.

- A inclinação da população, digamos β_k , tem interpretação em termos da mudança na "log-chance" (log-odds) de sucesso para uma mudança unitária em X_k , uma vez que todas as outras covariáveis permanecem constantes.
- ▶ Quando uma das covariáveis é dicotômica, digamos X_2 , então β_2 tem uma interpretação especial:
 - $\exp(2)$ é a **razão de chances** de sucesso para os dois níveis possíveis de X_2 (dado que todas as outras covariáveis permanecem constantes).

Lembre-se de que:

- $\triangleright \pi$ aumenta
 - odds de sucesso aumenta
 - ▶ log-odds de sucesso aumenta

Da mesma forma, como:

- $\triangleright \pi$ diminui
 - odds de sucesso diminui
 - ▶ log-odds de sucesso diminui

Regressão logística: exemplo

Desenvolvimento de displasia broncopulmonar (DBP) em uma amostra de 223 crianças com baixo peso ao nascer

- ▶ **Resposta binária:** Y = 1 se DBP estiver presente, Y = 0 caso contrário.
- ► Covariável: Peso ao nascer do bebê em gramas.
- ► Considere o seguinte modelo de regressão logística

$$\log[\pi/(1-\pi)] = \beta_1 X_1 + \beta_2 \mathsf{Weight}$$

em que
$$\pi = E(Y) = Pr(Y = 1) = Pr(DBP)$$
.

Regressão logística: exemplo

 Para os 223 bebês da amostra, a regressão logística estimada (obtida usando MV) é

$$\log[\hat{\pi}/(1-\hat{\pi})] = 4.0343 - 0.0042$$
Weight.

- A estimativa de MV de β_2 implica que, para cada aumento de 1 grama no peso ao nascer, a log-odds de DBP diminuam 0,0042.
- ▶ Por exemplo, as chances de DBP para um bebê com 1200 gramas são

$$\exp(4.0343 - 1200 \times 0.0042) = \exp(-1.0057) = 0.3658$$

-Assim, a probabilidade predita de DBP é:

$$0.3658/(1+0.3658) = 0.268.$$

Regressão logística: exemplo

- Na regressão de Poisson, a variável resposta é uma contagem (por exemplo, número de casos de uma doença em um determinado período de tempo).
- ► A distribuição de Poisson fornece a base da inferência baseada em verossimilhança.
- ► Frequentemente, as contagens podem ser expressas como *taxas*.
- Ou seja, a contagem ou o número absoluto de eventos geralmente não é satisfatório porque qualquer comparação depende quase inteiramente dos tamanhos dos grupos (ou do "tempo em risco") que gerou as observações.

- Como uma proporção ou probabilidade, uma taxa fornece uma base para comparação direta.
- ► Em ambos os casos, a regressão de Poisson relaciona as contagens ou taxas esperadas a um conjunto de covariáveis.

O modelo de regressão de Poisson possui dois componentes:

 A variável resposta é uma contagem e é assumida como tendo uma distribuição de Poisson. Ou seja, a probabilidade de ocorrer um número específico de eventos, y, é

$$\Pr(y \text{ eventos}) = \frac{e^{-\lambda} \lambda^y}{y!}$$

▶ Observe que λ é a contagem ou número esperado de eventos e a taxa esperada é dada por λ/t , em que t é uma medida de linha de base relevante (por exemplo, t pode ser o número de pessoas ou o número de pessoas-ano de observação).

2.
$$\log(\lambda/t) = \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_p X_p$$

Observe que, como $\log(\lambda/t) = \log(\lambda) - \log(t)$, o modelo de regressão de Poisson também pode ser considerado como

$$\log(\lambda) = \log(t) + \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_p X_p$$

em que o "coeficiente" associado a log(t) é fixado em 1.

Esse termo de ajuste é conhecido como "offset".

- Portanto, modelar λ (ou = λ/t) com uma função logarítmica pode ser considerado equivalente a um modelo de regressão linear em que a média da resposta contínua foi substituída pelo logaritmo da contagem (ou taxa) esperada.
- ▶ Observe que a relação entre λ (ou λ/t) e as covariáveis é não linear.
- Podemos usar a estimação por MV para obter estimativas dos parâmetros de regressão de Poisson, pressupondo que as respostas sejam variáveis aleatórias de Poisson.

Dado o modelo de regressão de Poisson

$$\log(\lambda/t) = \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_p X_p$$

o intercepto populacional, β_1 , tem interpretação como a log-taxa esperada quando todas as covariáveis assumem o valor zero.

- A inclinação da população, digamos β_k , tem interpretação em termos da mudança na log-taxa esperada para uma mudança de unidade única em X_k , uma vez que todas as outras covariáveis permanecem constantes.
- ▶ Quando uma das covariáveis é dicotômica, digamos X_2 , então β_2 tem uma interpretação especial:
 - $\exp(\beta_2)$ é a razão da taxa (de incidência) para os dois níveis possíveis de X_2 (dado que todas as outras covariáveis permanecem constantes).

Estudo prospectivo de doença cardíaca coronária (CHD)

- ▶ O estudo observou 3154 homens entre 40 e 50 anos em média por 8 anos e registrou incidência de casos de doença coronariana.
- Os fatores de risco considerados incluem:
 - Exposição ao fumo: 0, 10, 20, 30 cigarros por dia;
 - ▶ Pressão arterial: 0 (< 140), 1 (≥ 140);</p>
 - ► Tipo de comportamento: 0 (tipo B), 1 (tipo A).

Um modelo simples de regressão de Poisson é:

$$\log(\lambda/t) = \log(\text{taxa de CHD}) = \beta_1 + \beta_2 Smoke$$

ou

$$\log(\lambda) = \log(t) + \beta_1 + \beta_2 Smoke.$$

Person - Years	Smoking	Blood Pressure	Behavior	CHD
5268.2	0	0	0	20
2542.0	10	0	0	16
1140.7	20	0	0	13
614.6	30	0	0	3
4451.1	0	0	1	41
2243.5	10	0	1	24
1153.6	20	0	1	27
925.0	30	0	1	17
1366.8	0	1	0	8
497.0	10	1	0	9
238.1	20	1	0	$\frac{9}{3}$
146.3	30	1	0	7
1251.9	0	1	1	29
640.0	10	1	1	21
374.5	20	1	1	7
338.2	30	1	1	12

- Neste modelo, a estimativa de MV de β_2 é 0,0318. Ou seja, a taxa de CHD aumenta por um fator de $\exp(0.0318) = 1.032$ para cada cigarro fumado.
- ▶ Alternativamente, a taxa de CHD em fumantes de um maço por dia (20 cigarros) é estimada em $(1.032)^20 = 1.88$ vezes maior que a taxa de CHD em não fumantes.
- ▶ Podemos incluir os fatores de risco adicionais no seguinte modelo:

$$\log(\lambda/t) = \beta_1 + \beta_2 Smoke + \beta_3 Type + \beta_4 BP$$

Effect	Estimate	Std. Error
Intercept Smoke Type BP	-5.420 0.027 0.753 0.753	$0.130 \\ 0.006 \\ 0.136 \\ 0.129$

- A taxa ajustada de CHD (controle da pressão arterial e tipo de comportamento) aumenta em um fator de $\exp(0.027) = 1.028$ para cada cigarro fumado.
- A taxa ajustada de CHD em fumantes de um maço por dia (20 cigarros) é estimada em $(1.027)^20 = 1.7$ vezes maior que a taxa de CHD em não fumantes.

Finalmente, observe que quando um modelo de regressão de Poisson é aplicado aos dados consistindo em taxas muito pequenas (digamos, $\lambda/t\ll 0.01$), a taxa é aproximadamente igual à probabilidade correspondente, p, e

$$\log(axa) pprox \log(p) pprox \log[p/(1-p)].$$

- ▶ Portanto, os parâmetros para os modelos de regressão de Poisson e regressão logística são aproximadamente iguais quando o evento em estudo é raro.
- ▶ Nesse caso, os resultados de uma regressão de Poisson e logística não fornecerão resultados discernivelmente diferentes.

Modelos lineares generalizados

Modelos lineares generalizados

Modelos lineares generalizados

- Modelos lineares generalizados (MLG) são uma classe de modelos de regressão; eles incluem o modelo de regressão linear padrão, mas também muitos outros modelos importantes:
 - Regressão linear para dados contínuos
 - Regressão logística para dados binários
 - Modelos de regressão log-linear / Poisson para dados de contagem
- Modelos lineares generalizados estendem os métodos de análise de regressão a configurações nas quais a variável resposta pode ser categórica.

Notação

- Assuma N observações independentes de uma única variável resposta Y_i.
- ▶ Associada a cada resposta Y_i , existe um vetor $p \times 1$ de covariáveis, X_{i1}, \ldots, X_{ip} .
- ▶ Objetivo: o interesse principal está em relacionar a média de Y_i , $\mu_i = \mathsf{E}\left(Y_i | X_{i1}, \dots, X_{ip}\right)$, às covariáveis.

Modelos lineares generalizados

Em modelos lineares generalizados:

- Assume-se que distribuição da variável resposta pertence a família de distribuições conhecida como família exponencial, por exemplo, as distribuições normal, Bernoulli, binomial, Poisson, entre outras.
- 2. A transformação da média da resposta, μ_i , tem uma relação linear com as covariáveis por meio de uma **função de ligação** apropriada:

$$g(\mu_i) = \beta_1 X_{i1} + \beta_2 X_{i2} + \ldots + \beta_p X_{ip},$$

em que a função de ligação $g(\cdot)$ é uma função conhecida, por exemplo, $\log(\mu_i)$.

Média e variância das distribuições na família exponencial

- Distribuições na família exponencial compartilham algumas propriedades estatísticas comuns.
- \triangleright A variância de Y_i pode ser expressa em termos de

$$Var(Y_i) = \phi v(\mu_i),$$

em que o parâmetro de escala $\phi > 0$.

▶ A função de variância, $v(\mu_i)$, descreve como a variância da resposta está funcionalmente relacionada μ_i , a média de Y_i .

A função de ligação

► A função de ligação aplica uma transformação à média e, em seguida, vincula as covariáveis à média transformada,

$$g(\mu_i) = \beta_1 X_{i1} + \beta_2 X_{i2} + \ldots + \beta_p X_{ip}$$

em que a função de ligação $g(\cdot)$ é uma função conhecida, por exemplo, $\log(\mu_i)$.

Isso implica que é a resposta média transformada que muda linearmente com as mudanças nos valores das covariáveis.

Modelos lineares generalizados

Funções de ligação canônicas e variância para as distribuições normais, Bernoulli e Poisson.

Distribuição	Função de variância	Ligação canônica
Normal	$v(\mu) = 1$	Identidade: $\mu=\eta$
Bernoulli	$ u(\mu) = \mu(1-\mu)$	Logit: $\log \left[\frac{\mu}{1-\mu} \right] = \eta$
Poisson	$v(\mu) = \mu$	$Log \colon log(\mu) = \eta$

em que
$$\eta = \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_p X_p$$
.

Avisos

Avisos

- ▶ **Próxima aula (26/11):** Modelos marginais (GEE).
- ► Para casa: ler o Capítulo 11 do livro "Applied Longitudinal Analysis" (em particular a Seção 11.7).
 - ► Caso ainda não tenha lido, leia também os Caps. 1, 2, 3, 4, 5, 6, 7, 8, 9 e 10.
- ▶ Para casa: veja o help da função glm do R; rode os exemplos apresentados no help da função.

Bons estudos!

Basically, I'm not interested in doing research and I never have been... I'm interested in understanding, which is quite a different thing. And often to understand something you have to work it out yourself because no one else has done it.

— David Blackwell —

AZ QUOTES