TERMODINÁMICA

Examen Intersemestral

Nombre		Grupo
--------	--	-------

Problema -1

Se tiene un dispositivo cilindro pistón en posición vertical con todas sus superficies térmicamente aisladas. El pistón tiene una masa de 100 kg y un diámetro de 250 mm. El cilindro contiene 50 g de un gas ideal (R = 188,5 J/kg-K) cuyas tablas se adjuntan. Las condiciones ambiente son de 95 kPa y 15°C. El estado inicial es de equilibrio y el pistón está separado 50 cm de la base del cilindro.

Súbitamente se deja caer sobre el pistón una masa de 1500 kg que queda incrustada en el pistón y se espera hasta que se alcanza el equilibrio de nuevo. Tómese g = 9.8 N/kg.

Se pide:

- a) Temperatura inicial del gas.
- b) Temperatura final del gas.
- c) Distancia que separa el pistón de la base del cilindro en el estado final.
- d) Trabajo desarrollado por el gas.

Tablas de la sustancia como gas ideal

T [°C]	u [kJ/kg]	h [kJ/kg]		T [°C]	u [kJ/kg]	h [kJ/kg]
10	13,74	67,13	·	70	106,3	171
12	16,55	70,31		72	109,6	174,7
14	19,37	73,51		74	113	178,5
16	22,21	76,73		76	116,5	182,3
18	25,07	79,96		78	119,9	186,1
20	27,95	83,22		80	123,4	190
22	30,85	86,5		82	126,9	193,8
24	33,77	89,79		84	130,4	197,7
26	36,71	93,11		86	133,9	201,6
28	39,66	96,44		88	137,4	205,5
30	42,64	99,8		90	141	209,4
32	45,64	103,2		92	144,5	213,4
34	48,65	106,6		94	148,1	217,4
36	51,69	110		96	151,8	221,4
38	54,74	113,4		98	155,4	225,4
40	57,81	116,9		100	159	229,4
42	60,91	120,3		102	162,7	233,4
44	64,02	123,8		104	166,4	237,5
46	67,15	127,3		106	170,1	241,6
48	70,3	130,9		108	173,8	245,7
F0	72.47	124.4		110	177 C	240.0
50 52	73,47	134,4 138		110	177,6	249,8 254
	76,66			112	181,3	
54 56	79,87	141,6		114	185,1	258,1
56	83,1	145,2		116	188,9	262,3
58	86,35	148,8		118	192,8	266,5
60	89,62	152,4		120	196,6	270,7
62	92,91	156,1		122	200,5	275
64	96,22	159,8		124	204,3	279,2
66	99,54	163,5		126	208,2	283,5
68	102,9	167,2		128	212,1	287,8
55		,			,_	,

$$R = 0.1885 \frac{K3}{ky-k}$$
 (ideal)

No estation; me = 1500 kg; y = 9'8 N/kg Process

Estado inicial

$$P_{1} = 95 + \frac{100 \times 9.8 \times 10^{-3}}{4} = 114,964 \text{ KPa}$$

$$\sqrt{1} = \frac{110.25^2}{4} \times 0.5 = 0.02454 \text{ m}^3$$

Interpolando en la table:

Estado final

Estado final

$$P_2 = P_1 + mc9/A = 114,964 + 1700 \times 9'8 \times 10^{-3} = 414,43 \text{ KPa}$$
 $P_3 = P_4 + mc9/A = 114,964 + 1700 \times 9'8 \times 10^{-3} = 414,43 \text{ KPa}$
 $P_4 = P_4 + mc9/A = 114,964 + 1700 \times 9'8 \times 10^{-3} = 414,43 \text{ KPa}$

Tourendo el gras como sistema:

Al ser un pours so estàtico el trobejo re ha de coludor a partir de le presión equiva lente a has fueras externas, que non constan tes durante el pouro al no rebotar ha

canga.

$$V_{12} = \int_{1}^{2} Pe \, dJ = Pe \left(J_{2} - J_{1} \right) = P_{2} \left(J_{2} - J_{1} \right) = V_{2} \left(J_{2} - J_{1}$$

		f(Tz)
T_2	U2	-31, 2775
90	141	-11, 3925
	179	
100	177,6	+ 9,0925
110	166,4	-3, 238
104		+ 0, 8385
106	170,1	104

$$T_{2} - 104 = \frac{106 - 104}{0.8385 + 3.2385} = \frac{10 + 3.2385}{0.8385 + 3.2385}$$

$$\boxed{T_{2} = 105' 59'C}$$

$$V_2 = \frac{0.01 \times 0.1882 (102,124 + 5 \pm 3)}{414.43} = 0.00861 \,\mathrm{m}_3$$

$$\frac{2}{2} = \frac{0.00861}{10.25^2} = 0.1754 \text{ m}$$

El trobajo es comunicado al que por las fuerzas externos que actuan en fu supertrie.

TERMODINÁMICA

Examen Intersemestral

Nombre	Grun	0	
NOIIDIE	Orup	U	

Problema -2

La figura adjunta representa el turbocompresor de un motor de automóvil. Consta de un compresor que es accionado por la turbina y un intercambiador de calor aire/aire. La turbina es movida por los gases de escape del motor.

Se sabe que en el compresor, que se puede considerar adiabático y libre de irreversibilidades, entran (1) 0,018 kg/s de aire (R = 0,287 kJ/kg-K; $\gamma = 1,4$) en condiciones de 100 kPa y 45°C y salen a 180 kPa (2). Tras abandonar el compresor el aire se introduce en un intercambiador de calor del que sale (3) a 75°C. Por la otra rama del intercambiador entra aire a 30°C y sale a 45°C.

La turbina recibe (4) un gasto másico de 0,02 kg/s de gases de escape con una presión de 150 kPa que salen de la misma (5) a 100 kPa y 260°C. La turbina está mal aislada y disipa calor al exterior (500 W), existiendo en ella irreversibilidades internas. El proceso de expansión que tiene lugar en la turbina se puede asimilar a una politrópica.

Suponiendo que los gases de escape tienen las mismas propiedades que el aire, calcular:

- a) Gasto másico de aire de refrigeración en el intercambiador.
- b) Índice del proceso politrópico en la turbina
- c) Potencia disipada por irreversibilidades en la turbina.

Compresor

En el compresor el purcen es adiabattico y libre de irreversissilidades, por le que al dessurollarie sobre un ques pertecto (8=1,4) se asimila una politrópica con n= Y

$$\frac{T_2}{273 + 45} = \left(\frac{180}{100}\right)^{\frac{14-1}{14}} \implies T_2 = 103,15\%$$

$$R = Q - C_V = C_P(1 - \frac{1}{8}) \rightarrow Q = 1.005 \frac{KJ}{KY - K}$$

$$R = \varphi - (v = C\rho(1 - 8))$$

$$\dot{W}_{c} = \dot{m}_{c} \varphi (t_{2} - T_{1}) = 0.018 \times 1'WT \times (103'15 - 45') = 0.018 \times 1'WT \times (105'15 - 45') = 0.018 \times 1'WT \times (105'15 - 45') = 0.018 \times 1'WT \times (105'15 - 45') = 0.018 \times (105'15 - 45')$$

Intercam moder

$$vic G (T_2 - T_3) = via G \Delta Ta$$
 $vic G (T_2 - T_3) = via G \Delta Ta$
 $vic G (T_2 - T_3) = via G \Delta Ta$
 $vic G (T_2 - T_3) = via G \Delta Ta$
 $vic G (T_2 - T_3) = via G \Delta Ta$
 $vic G (T_2 - T_3) = via G \Delta Ta$
 $vic G (T_2 - T_3) = via G \Delta Ta$
 $vic G (T_2 - T_3) = via G \Delta Ta$
 $vic G (T_2 - T_3) = via G \Delta Ta$
 $vic G (T_2 - T_3) = via G \Delta Ta$
 $vic G (T_2 - T_3) = via G \Delta Ta$
 $vic G (T_2 - T_3) = via G \Delta Ta$
 $vic G (T_2 - T_3) = via G \Delta Ta$
 $vic G (T_2 - T_3) = via G \Delta Ta$
 $vic G (T_2 - T_3) = via G \Delta Ta$
 $vic G (T_2 - T_3) = via G \Delta Ta$
 $vic G (T_2 - T_3) = via G \Delta Ta$
 $vic G (T_2 - T_3) = via G \Delta Ta$
 $vic G (T_2 - T_3) = via G \Delta Ta$
 $vic G (T_2 - T_3) = via G \Delta Ta$
 $vic G (T_2 - T_3) = via G \Delta Ta$
 $vic G (T_2 - T_3) = via G \Delta Ta$
 $vic G (T_2 - T_3) = via G \Delta Ta$
 $vic G (T_2 - T_3) = via G \Delta Ta$
 $vic G (T_2 - T_3) = via G \Delta Ta$
 $vic G (T_2 - T_3) = via G \Delta Ta$
 $vic G (T_2 - T_3) = via G \Delta Ta$
 $vic G (T_2 - T_3) = via G \Delta Ta$
 $vic G (T_2 - T_3) = via G \Delta Ta$
 $vic G (T_2 - T_3) = via G \Delta Ta$
 $vic G (T_2 - T_3) = via G \Delta Ta$
 $vic G (T_2 - T_3) = via G \Delta Ta$
 $vic G (T_2 - T_3) = via G \Delta Ta$
 $vic G (T_2 - T_3) = via G \Delta Ta$
 $vic G (T_2 - T_3) = via G \Delta Ta$
 $vic G (T_2 - T_3) = via G \Delta Ta$
 $vic G (T_2 - T_3) = via G \Delta Ta$
 $vic G (T_2 - T_3) = via G \Delta Ta$
 $vic G (T_2 - T_3) = via G \Delta Ta$
 $vic G (T_2 - T_3) = via G \Delta Ta$
 $vic G (T_2 - T_3) = via G \Delta Ta$
 $vic G (T_2 - T_3) = via G \Delta Ta$
 $vic G (T_2 - T_3) = via G \Delta Ta$
 $vic G (T_2 - T_3) = via G \Delta Ta$
 $vic G (T_2 - T_3) = via G \Delta Ta$
 $vic G (T_2 - T_3) = via G \Delta Ta$
 $vic G (T_2 - T_3) = via G \Delta Ta$
 $vic G (T_2 - T_3) = via G \Delta Ta$
 $vic G (T_2 - T_3) = via G \Delta Ta$
 $vic G (T_2 - T_3) = via G \Delta Ta$
 $vic G (T_2 - T_3) = via G \Delta Ta$
 $vic G (T_2 - T_3) = via G \Delta Ta$
 $vic G (T_2 - T_3) = via G \Delta Ta$
 $vic G (T_2 - T_3) = via G \Delta Ta$
 $vic G (T_2 - T_3) = via G \Delta Ta$
 $vic G (T_2 - T_3) = via G \Delta Ta$
 $vic G (T_2 - T_3) = via G \Delta Ta$
 $vic G (T_2 - T_3) = via G \Delta Ta$

Turbiue

$$\frac{ue}{m_{T}} h_{4} = w_{T} + w_{T} h_{T} + d_{T}$$

$$\frac{v_{T}}{m_{T}} = 0'02 \times 1005 (T_{4} - 260) - 500 = 0$$

$$= 20.10 T_{4} - 5726 [w]$$

Todo el trabajo producido por la turbique wusume et comprisor:

$$\frac{337,21+273}{260+273} = \left(\frac{150}{100}\right)^{\frac{n-1}{2}} \longrightarrow \left[\frac{n-1}{100}\right]$$

Notere opere como en la turbiene de proceso no 3 odrahático y presente irreveribilidades inter uns n + r. En deur, alli radia tolo como una propieded.

Aplicando le ecuación de Bernoulli (consert ción de la energia mecanical:

$$\frac{\vec{n} R}{1-n} R (T_5 - T_4) = \vec{N}_7 - \vec{N}_D$$

$$\frac{o'o2 \times 1'T}{1-1.5} \times 287 \times (260 - 337,21) = 1051.95 - \vec{N}_D$$

$$|\ddot{W}_{D} = -277,61 \text{ W}|$$