TECHCEIVED TOOL

<110> UEMURA, Hidetoshi
 OKUI, Akira
 KOMINAMI, Katsuya
 YAMAGUCHI, Nozomi
 MITSUI, Shinichi

<120> NOVEL SERINE PROTEASE BSSP2

<130> UEMURA=7

<140> 09/856,371

<141> 2001-05-21

<150> JP 10/347785

<151> 1998-11-20

<150> PCT/JP99/06475

<151> 1999-11-19

<160> 44

<170> PatentIn version 3.1

<210> 1

<211> 717

<212> DNA

<213> Mus sp.

<220>

<221> CDS

<222> (1)..(717)

<223>

<400> 1

					gct										gct Ala	48
1	 	OL y	OT y	5	1114	VUI	711.0	DCI	10	rirg	тър	110	пр	15	AIG	

agc gtg atg ctt ggc tcc cgg cac acg tgt ggg gcc tct gtg ttg gca 96 Ser Val Met Leu Gly Ser Arg His Thr Cys Gly Ala Ser Val Leu Ala 20 25 30

cca cac tgg gta gtg act gct gcc cac tgc atg tac agt ttc agg ctg
Pro His Trp Val Val Thr Ala Ala His Cys Met Tyr Ser Phe Arg Leu
35
40
45

tcc cgc cta tcc agc tgg cgg gtt cat gca ggg ctg gtc agc cat ggt
Ser Arg Leu Ser Ser Trp Arg Val His Ala Gly Leu Val Ser His Gly
50 55 60

gct gtc cga caa cac cag gga act atg gtg gag aag atc att cct cat 240 Ala Val Arg Gln His Gln Gly Thr Met Val Glu Lys Ile Ile Pro His 70 75 80

cct ttg tac agt gcc cag aac cat gac tat gat gtg gct ctg ctg cag 288
Pro Leu Tyr Ser Ala Gln Asn His Asp Tyr Asp Val Ala Leu Leu Gln
85 90 95

ctc cgg aca cca atc aac ttc tca gac acc gtg gac gct gtg tgc ttg
Leu Arg Thr Pro Ile Asn Phe Ser Asp Thr Val Asp Ala Val Cys Leu

10	00	1	.05	110		
ccg gcc aag ga Pro Ala Lys Gl 115	ag cag tac t Lu Gln Tyr E	ttt cca t Phe Pro T 120	gg ggg tcg Trp Gly Ser	cag tgc tgg Gln Cys Trp 125	gtg tct 384 Val Ser	1
ggc tgg ggc ca Gly Trp Gly Hi 130	s Thr Asp E	ccc agc c Pro Ser H 135	His Thr His	agc tca gat Ser Ser Asp 140	aca ctg 432 Thr Leu	2
cag gac aca at Gln Asp Thr Me 145	g gta ccc o t Val Pro I 150	ctg ctc a Leu Leu S	agc acc cac Ser Thr His 155	ctc tgc aac Leu Cys Asn	agc tca 480 Ser Ser 160)
tgc atg tac ag Cys Met Tyr Se	gt ggg gca o er Gly Ala I 165	ctt aca c Leu Thr H	cac cgc atg His Arg Met 170	ttg tgt gct Leu Cys Ala	ggc tac 528 Gly Tyr 175	3
ctg gat gga ag Leu Asp Gly Ar 18	g Ala Asp A	Ala Cys G	cag gga gac Gln Gly Asp 185	agc ggg gga Ser Gly Gly 190	ccc ctg 576 Pro Leu	5
gta tgt ccc ac Val Cys Pro Se 195	gt ggt gac a er Gly Asp 1	acg tgg c Thr Trp H 200	cac ctt gta His Leu Val	ggg gtg gtc Gly Val Val 205	agc tgg 624 Ser Trp	1
ggt cgt ggc to Gly Arg Gly Cy 210	ys Ala Glu H	ccc aat c Pro Asn A 215	ege eca ggt Arg Pro Gly	gtc tat gcc Val Tyr Ala 220	aag gta 672 Lys Val	2
gca gag ttc ct Ala Glu Phe Le 225	ng gac tgg a ng Asp Trp 3 230	atc cat g Ile His A	gac act gtg Asp Thr Val 235	cag gtc cgc Gln Val Arg	tag 717	7
<210> 2 <211> 238 <212> PRT <213> Mus sp.						
<400> 2						
Ile Val Gly Gl	ly Gln Ala V 5	Val Ala S	Ser Gly Arg 10	Trp Pro Trp	Gln Ala 15	
Ser Val Met Le	_		Thr Cys Gly 25	Ala Ser Val 30	Leu Ala	
Pro His Trp Va 35	al Val Thr A	Ala Ala H 40	His Cys Met	Tyr Ser Phe 45	Arg Leu	
Ser Arg Leu Se .50		Arg Val H 55	His Ala Gly	Leu Val Ser 60	His Gly	
Ala Val Arg Gi 65	ln His Gln (70	Gly Thr M	Met Val Glu 75	Lys Ile Ile	Pro His 80	

D'

				85					90					95		
Leu	Arg	Thr	Pro 100	Ile	Asn	Phe	Ser	Asp 105	Thr	Val	Asp	Ala	Val 110	Cys	Leu	
Pro	Ala	Lys 115	Glu	Gln	Tyr	Phe	Pro 120	Trp	Gly	Ser	Gln	Cys 125	Trp	Val	Ser	
Gly	Trp 130	Gly	His	Thr	Asp	Pro 135	Ser	His	Thr	His	Ser 140	Ser	Asp	Thr	Leu	
Gln 145	Asp	Thr	Met	Val	Pro 150	Leu	Leu	Ser	Thr	His 155	Leu	Cys	Asn	Ser	Ser 160	
Cys	Met	Tyr	Ser	Gly 165	Ala	Leü	Thr	His	Arg 170	Met	Leu	Cys	Ala	Gly 175	Tyr	
Leu	Asp	Gly	Arg 180	Ala	Asp	Ala	Cys	Gln 185	Gly	Asp	Ser	Gly	Gly 190	Pro	Leu	
Val	Cys	Pro 195	Ser	Gly	Asp	Thr	Trp 200	His	Leu	Val	Gly	Val 205	Val	Ser	Trp	
Gly	Arg 210	Gly	Cys	Ala	Glu	Pro 215	Asn	Arg	Pro	Gly	Val 220	Tyr	Ala	Lys	Val	
Ala 225	Glu	Phe	Leu	Asp	Trp 230	Ile	His	Asp	Thr	Val 235	Gln	Val	Arg			
<210 <211 <212 <213	l> :1 2> :1	3 L685 DNA Mus s	sp.													
<220 <221 <222 <223	L> (2>	CDS (247)	(1	1065)												
<220 <221 <222 <223	L> n 2> -	nat_r (352)														
	<400> 3 ctcacatgta tettteagaa taaatggaga ggatettetg etteaagtae aagtaagage															

teggecagae tggeteetgg tatgecatga gggeeggage ceagecetgg geatgeacat

ctgcaagagt cttgggcata tcaggcttac tcaacacaag gccgtgaatc tgtctgacat

60

120

180

caagetcaac agateccagg agtttgetca actetetget agacegggag geettgtaga 240 ggaggc atg gaa gcc cag gta ggg ctt ctg tgg gtt agc gct aac tgt 288 Met Glu Ala Gln Val Gly Leu Leu Trp Val Ser Ala Asn Cys cct tct ggc cga att gtt tct ctc aaa tgt tct gag tgt ggg gca agg 336 Pro Ser Gly Arg Ile Val Ser Leu Lys Cys Ser Glu Cys Gly Ala Arg cct ctg gct tct cga ata gtt ggc ggc caa gct gtg gct tct ggg cgc 384 Pro Leu Ala Ser Arg Ile Val Gly Gln Ala Val Ala Ser Gly Arg -1 1 tgg cca tgg caa gct agc gtg atg ctt ggc tcc cgg cac acg tgt ggg 432 Trp Pro Trp Gln Ala Ser Val Met Leu Gly Ser Arg His Thr Cys Gly 1.5 20 gcc tct gtg ttg gca cca cac tgg gta gtg act gct gcc cac tgc atg 480 . Ala Ser Val Leu Ala Pro His Trp Val Val Thr Ala Ala His Cys Met tac agt ttc agg ctg tcc cgc cta tcc agc tgg cgg gtt cat gca ggg 528 Tyr Ser Phe Arg Leu Ser Arg Leu Ser Ser Trp Arg Val His Ala Gly 45 50 55 ctg gtc agc cat ggt gct gtc cga caa cac cag gga act atg gtg gag 576 Leu Val Ser His Gly Ala Val Arg Gln His Gln Gly Thr Met Val Glu aag atc att cct cat cct ttg tac agt gcc cag aac cat gac tat gat 624 Lys Ile Ile Pro His Pro Leu Tyr Ser Ala Gln Asn His Asp Tyr Asp 8.5 gtg get etg etg eag ete egg aca eea ate aac tte tea gae ace gtg 672 Val Ala Leu Leu Gln Leu Arg Thr Pro Ile Asn Phe Ser Asp Thr Val gac gct gtg tgc ttg ccg gcc aag gag cag tac ttt cca tgg ggg tcg 720 Asp Ala Val Cys Leu Pro Ala Lys Glu Gln Tyr Phe Pro Trp Gly Ser 115 cag tgc tgg gtg tct ggc tgg ggc cac acc gac ccc agc cat act cat 768 Gln Cys Trp Val Ser Gly Trp Gly His Thr Asp Pro Ser His Thr His 125 130 135 age tea gat aca etg eag gae aca atg gta eee etg ete age ace eac 816 Ser Ser Asp Thr Leu Gln Asp Thr Met Val Pro Leu Leu Ser Thr His 145 ctc tgc aac agc tca tgc atg tac agt ggg gca ctt aca cac cgc atg 864 Leu Cys Asn Ser Ser Cys Met Tyr Ser Gly Ala Leu Thr His Arg Met 165 170 ttg tgt gct ggc tac ctg gat gga agg gca gac gca tgc cag gga gac 912 Leu Cys Ala Gly Tyr Leu Asp Gly Arg Ala Asp Ala Cys Gln Gly Asp 180 age ggg gga eee etg gta tgt eee agt ggt gae aeg tgg eae ett gta 960 Ser Gly Gly Pro Leu Val Cys Pro Ser Gly Asp Thr Trp His Leu Val 200 ggg gtg gtc agc tgg ggt cgt ggc tgt gca gag ccc aat cgc cca ggt 1008

D'

Gly Val Val Ser Trp Gly Arg Gly Cys Ala Glu Pro Asn Arg Pro Gly 205 210 215	•
gtc tat gcc aag gta gca gag ttc ctg gac tgg atc cat gac act gtg Val Tyr Ala Lys Val Ala Glu Phe Leu Asp Trp Ile His Asp Thr Val 220 225 230 235	1056
cag gtc cgc tagccgaaga agcagcagca gccacctgtg acgccgagct Gln Val Arg	1105
gtggatcgcc catggatcac cccagtctgg gggccagcat ctgggtcact gggcctctcc	1165
ccaaaggctc tgacttcgag ttcatctttc tcatctgaga acctccacaa caggaaaagg	1225
agtctgcggc tagattggga atgatggtga gaggaaggga taggaggaca gaagagacag	1285
cagaggette tggaageate tgggagaetg etectetget eeecceacae eecaegtgea	1345
tccactgggg gatgctggag atgcccaatc cttgtttctt gtggggccac tggaaggcta	1405
agtccaactt tagaggatgc cctgtctcga gagttactag gcagataagg ttaaggttgg	1465
acaageteag gtaaaggeae ggaagteaag ateceetete eeeegtgegg teetgttetg	1525
aggtaagcta atagccccgc accaggcaga ggtctacagg gtaagaagga tgcagttggg	1585
ctacacgacg ctatttttca aatgatgttt ctgtaaattg gttgagagag ttttgttatt	1645
aaacagaaat tatgtataaa aaaaaaaaaa aaaaaaaaaa	1685
<210> 4 <211> 273 <212> PRT <213> Mus sp.	
<400> 4	
Met Glu Ala Gln Val Gly Leu Leu Trp Val Ser Ala Asn Cys Pro Ser -35 -20 -20	
Gly Arg Ile Val Ser Leu Lys Cys Ser Glu Cys Gly Ala Arg Pro Leu -15 -10 -5	
Ala Ser Arg Ile Val Gly Gly Gln Ala Val Ala Ser Gly Arg Trp Pro -1 1 5 10	
Trp Gln Ala Ser Val Met Leu Gly Ser Arg His Thr Cys Gly Ala Ser 15 20 25	

Cont

Val Leu Ala Pro His Trp Val Val Thr Ala Ala His Cys Met Tyr Ser

Phe Arg Leu Ser Arg Leu Ser Ser Trp Arg Val His Ala Gly Leu Val 50 55 60

35

Ser His Gly Ala Val Arg Gln His Gln Gly Thr Met Val Glu Lys Ile Ile Pro His Pro Leu Tyr Ser Ala Gln Asn His Asp Tyr Asp Val Ala Leu Leu Gln Leu Arg Thr Pro Ile Asn Phe Ser Asp Thr Val Asp Ala 105 Val Cys Leu Pro Ala Lys Glu Gln Tyr Phe Pro Trp Gly Ser Gln Cys Trp Val Ser Gly Trp Gly His Thr Asp Pro Ser His Thr His Ser Ser Asp Thr Leu Gln Asp Thr Met Val Pro Leu Leu Ser Thr His Leu Cys Asn Ser Ser Cys Met Tyr Ser Gly Ala Leu Thr His Arg Met Leu Cys 165 160 Ala Gly Tyr Leu Asp Gly Arg Ala Asp Ala Cys Gln Gly Asp Ser Gly Gly Pro Leu Val Cys Pro Ser Gly Asp Thr Trp His Leu Val Gly Val 195 190 Val Ser Trp Gly Arg Gly Cys Ala Glu Pro Asn Arg Pro Gly Val Tyr 210 215 220 Ala Lys Val Ala Glu Phe Leu Asp Trp Ile His Asp Thr Val Gln Val 230 Arg <210> 5 <211> 2068 <212> DNA <213> Mus sp. <220> <221> CDS <222> (516)..(1448)

<220>

<223>

<221> mat_peptide <222> (735)..()

<400> 5 ctggctgggc tgttgaatca atcccgacat gaggacagga gcctcaccct gcccagcaga 60 acttactgcc ttatatcagt gcagctgact catatgagtc caacactgga tgaccaaagc 120 ccaatggaga ttcggtgcac ggaagagggt gctgggcctg ggatcttcag aatggagttg 180 ggagaccaga ggcaatccat ttctcagtcc caacgctggt gctgcctgca acgtggctgt 240 gtaatactgg gcgtcctggg gctgctggct ggagcaggca ttgcttcatg gctcttagtg 300 ttgtatctat ggccggctgc ctctccatcc atctctggga cgttgcagga ggaggagatg 360 actttgaact gtccaggagt gagctgtgag gaagagctcc ttccatctct tcccaaaaca 420 gaataaatgg aggggatett etgetteaag tacaagtaag ageteggeea gaetggetee 480 tggtctgcca tgagggctgg agccccgccc tgggc atg cac atc tgc aag agt 533 Met His Ile Cys Lys Ser ctt ggg cat atc agg ctt act caa cac aag gcc gtg aat ctg tct gac 581 Leu Gly His Ile Arg Leu Thr Gln His Lys Ala Val Asn Leu Ser Asp -65-60atc aag ctc aac aga tcc cag gag ttt gct caa ctc tct gct aga ccg 629 Ile Lys Leu Asn Arg Ser Gln Glu Phe Ala Gln Leu Ser Ala Arg Pro -45 -50677 gga ggc ctt gta gag gag gca tgg aag ccc agc gct aac tgt cct tct Gly Gly Leu Val Glu Glu Ala Trp Lys Pro Ser Ala Asn Cys Pro Ser -35-30 -25ggc cga att gtt tct ctc aaa tgt tct gag tgt ggg gca agg cct ctg 725 Gly Arg Ile Val Ser Leu Lys Cys Ser Glu Cys Gly Ala Arg Pro Leu -10get tet ega ata gtt gge gge caa get gtg get tet ggg ege tgg eea 773 Ala Ser Arg Ile Val Gly Gly Gln Ala Val Ala Ser Gly Arg Trp Pro -1 1 10 tgg caa gct agc gtg atg ctt ggc tcc cgg cac acg tgt ggg gcc tct 821 Trp Gln Ala Ser Val Met Leu Gly Ser Arg His Thr Cys Gly Ala Ser 15 20 25 gtg ttg gca cca cac tgg gta gtg act gct gcc cac tgc atg tac agt 869 Val Leu Ala Pro His Trp Val Val Thr Ala Ala His Cys Met Tyr Ser 30 35 40 ttc agg ctg tcc cgc cta tcc agc tgg cgg gtt cat gca ggg ctg gtc 917 Phe Arg Leu Ser Arg Leu Ser Ser Trp Arg Val His Ala Gly Leu Val 50 age cat ggt get gte ega caa cae cag gga aet atg gtg gag aag ate 965 Ser His Gly Ala Val Arg Gln His Gln Gly Thr Met Val Glu Lys Ile att cct cat cct ttg tac agt gcc cag aac cat gac tat gat gtg gct 1013 Ile Pro His Pro Leu Tyr Ser Ala Gln Asn His Asp Tyr Asp Val Ala 85 90

D'

ctg ctg cag ctc cgg aca cca atc aac ttc tca gac acc gtg gac gct Leu Leu Gln Leu Arg Thr Pro Ile Asn Phe Ser Asp Thr Val Asp Ala 95 100 105	1061
gtg tgc ttg ccg gcc aag gag cag tac ttt cca tgg ggg tcg cag tgc Val Cys Leu Pro Ala Lys Glu Gln Tyr Phe Pro Trp Gly Ser Gln Cys 110 125	1109
tgg gtg tct ggc tgg ggc cac acc gac ccc agc cat act cat agc tca Trp Val Ser Gly Trp Gly His Thr Asp Pro Ser His Thr His Ser Ser 130 135 140	1157
gat aca ctg cag gac aca atg gta ccc ctg ctc agc acc cac ctc tgc Asp Thr Leu Gln Asp Thr Met Val Pro Leu Leu Ser Thr His Leu Cys 145 150 155	1205
aac agc tca tgc atg tac agt ggg gca ctt aca cac cgc atg ttg tgt Asn Ser Ser Cys Met Tyr Ser Gly Ala Leu Thr His Arg Met Leu Cys 160 165 170	1253
gct ggc tac ctg gat gga agg gca gac gca tgc cag gga gac agc ggg Ala Gly Tyr Leu Asp Gly Arg Ala Asp Ala Cys Gln Gly Asp Ser Gly 175 180 185	1301
gga ccc ctg gta tgt ccc agt ggt gac acg tgg cac ctt gta ggg gtg Gly Pro Leu Val Cys Pro Ser Gly Asp Thr Trp His Leu Val Gly Val 190 200 205	1349
gtc agc tgg ggt cgt ggc tgt gca gag ccc aat cgc cca ggt gtc tat Val Ser Trp Gly Arg Gly Cys Ala Glu Pro Asn Arg Pro Gly Vál Tyr 210 215 220	1397
gcc aag gta gca gag ttc ctg gac tgg atc cat gac act gtg cag gtc Ala Lys Val Ala Glu Phe Leu Asp Trp Ile His Asp Thr Val Gln Val 225 230 235	1445
cgc tagccgaaga agcagcagca gccacctgtg acgccgagct gtggatcgcc Arg	1498
catggatcac cccagtctgg gggccagcat ctgggtcact gggcctctcc ccaaaggctc	1558
tgacttcgag ttcatctttc tcatctgaga acctccacaa caggaaaagg agtctgcggc	1618
tagattggga atgatggtga gaggaaggga taggaggada gaagagacag cagaggdttc	1678
tggaagcatc tgggagactg ctcctctgct ccccccacac cccacgtgca tccactgggg	1738
gatgctggag atgcccaatc cttgtttctt gtggggccac tggaaggcta agtccaactt	1798
tagaggatgc cctgtctcga gagttactag gcagataagg ttaaggttgg acaagctcag	1858
gtaaaggcac ggaagtcaag atcccctctc ccccgtgcgg tcctgttctg aggtaagcta	1918 1978
atageceege accaggeaga ggtetacagg gtaagaagga tgcagttggg etacaegaeg	2038
ctatttttca aatgatgttt ctgtaaattg gttgagagag ttttgttatt aaacagaaat	2068
tatgtataaa aaaaaaaaaa aaaaaaaaaa	2000

<212> PRT <213> Mus sp.

<400> 6

Met His Ile Cys Lys Ser Leu Gly His Ile Arg Leu Thr Gln His Lys -70 -65 -60

Ala Val Asn Leu Ser Asp Ile Lys Leu Asn Arg Ser Gln Glu Phe Ala -55 -50 -45

Gln Leu Ser Ala Arg Pro Gly Gly Leu Val Glu Glu Ala Trp Lys Pro
-40 -35 -30

Ser Ala Asn Cys Pro Ser Gly Arg Ile Val Ser Leu Lys Cys Ser Glu
-25 -15 -10

Cys Gly Ala Arg Pro Leu Ala Ser Arg Ile Val Gly Gly Gln Ala Val $-5 \hspace{1cm} -1 \hspace{1cm} 1 \hspace{1cm} 5$

Ala Ser Gly Arg Trp Pro Trp Gln Ala Ser Val Met Leu Gly Ser Arg 10 15 20

His Thr Cys Gly Ala Ser Val Leu Ala Pro His Trp Val Val Thr Ala $25 \hspace{1cm} 30 \hspace{1cm} 35$

Ala His Cys Met Tyr Ser Phe Arg Leu Ser Arg Leu Ser Ser Trp Arg 40 45 50 55

Val His Ala Gly Leu Val Ser His Gly Ala Val Arg Gln His Gln Gly 60 65 70

Thr Met Val Glu Lys Ile Ile Pro His Pro Leu Tyr Ser Ala Gln Asn 75 80 85

His Asp Tyr Asp Val Ala Leu Leu Gln Leu Arg Thr Pro Ile Asn Phe 90 95 100

Ser Asp Thr Val Asp Ala Val Cys Leu Pro Ala Lys Glu Gln Tyr Phe 105 110 115

Pro Trp Gly Ser Gln Cys Trp Val Ser Gly Trp Gly His Thr Asp Pro 120 125 130 : 135

Ser His Thr His Ser Ser Asp Thr Leu Gln Asp Thr Met Val Pro Leu 140 145 150

Leu Ser Thr His Leu Cys Asn Ser Ser Cys Met Tyr Ser Gly Ala Leu 155 160 165

Thr His Arg Met Leu Cys Ala Gly Tyr Leu Asp Gly Arg Ala Asp Ala Cys Gln Gly Asp Ser Gly Gly Pro Leu Val Cys Pro Ser Gly Asp Thr 190 Trp His Leu Val Gly Val Val Ser Trp Gly Arg Gly Cys Ala Glu Pro 200 205 210 Asn Arg Pro Gly Val Tyr Ala Lys Val Ala Glu Phe Leu Asp Trp Ile 220 225 230 His Asp Thr Val Gln Val Arq 235 <210> 7 <211> 2070 <212> DNA <213> Mus sp. <220> <221> CDS <222> (116)..(1450) <223> <220> <221> mat peptide <222> (737)..() <223> <400> 7 cccagcagaa cttactgcct tatatcagtg cagctgactc atatgccctg gtgtggggct 60 gctggatctt caaccactat ttctccagag tccaacactg gatgaccaaa gccca atg 118 gag att $\,$ cgg tgc acg gaa gag $\,$ ggt gct $\,$ ggg $\,$ cct $\,$ ggg $\,$ atc $\,$ ttc $\,$ aga $\,$ Glu $\,$ Ile $\,$ Arg $\,$ Cys $\,$ Thr $\,$ Glu $\,$ Glu $\,$ Ala $\,$ Gly $\,$ Pro $\,$ Gly $\,$ Ile $\,$ Phe $\,$ Arg 163 -205 -200atg gag ttg gga gac cag agg caa tcc att tct cag tcc caa cgc Met Glu Leu Gly Asp Gln Arg Gln Ser Ile Ser Gln Ser Gln Arg 208 -190 -180tgg tgc tgc ctg caa cgt ggc tgt gta ata ctg ggc gtc ctg ggg Trp Cys Cys Leu Gln Arg Gly Cys Val Ile Leu Gly Val Leu Gly 253 ctg ctg gct gga gca ggc att gct tca tgg ctc tta gtg ttg tat Leu Leu Ala Gly Ala Gly Ile Ala Ser Trp Leu Leu Val Leu Tyr 298 -155 343 cta tgg cca gct gcc tct cca tcc atc tct ggg acg ttg cag gag

Leu	Trp		Ala	Ala	Ser			r Il	e Se	r Gl	y Th	r L	eu G	ln G	lu	
	-145					-14	0				-1: c tg	35				388
	gag Glu -130	Met	Thr	Leu	aac Asn	Cys -12	Pr	a gg o Gl	y Va	g ag 1 Se	r Cy -1	s G	lu G	lu G	lu	
ctc Leu	ctt Leu -115	Pro	tct Ser	ctt Leu	ccc	aaa Lys -11	Th	a gt r Va	a tc 1 Se	t tt r Ph	c ag e Ar -1	g I	ta a le A	at g sn G	ga ly	433
	gat Asp -100	Leu	ctg Leu	ctt Leu	caa Gln	gta Val -95	Gln	gta Val	aga Arg	gct Ala	cgg Arg -90	Pro	gac Asp	tgg Trp	ctc Leu	481
ctg Leu -85	gtc Val	tgc Cys	cat His	gag Glu	ggc Gly -80	tgg Trp	agc Ser	ccc Pro	gcc Ala	ctg Leu -75	ggc Gly	atg Met	cac His	a,tc Ile	tgc Cys -70	529
aag Lys	agt Ser	ctt Leu	ggg	cat His -65	atc Ile	agg Arg	ctt Leu	act Thr	caa Gln -60	cac His	aag Lys	gcc Ala	gtg Val	aat Asn -55	ctg Leu	577
tct Ser	gac Asp	atc Ile	aag Lys -50	ctc Leu	aac Asn	aga Arg	tcc Ser	cag Gln -45	gag Glu	ttt Phe	gct Ala	caa Gln	ctc Leu -40	tct Ser	gct Ala	625
aga Arg	ccg	gga Gly -35	ggc Gly	ctt Leu	gta Val	gag Glu	gag Glu -30	gca Ala	tgg Trp	aag Lys	ccc Pro	agc Ser -25	gct Ala	aac Asn	tgt Cys	673
cct Pro	tct Ser -20	ggc Gly	cga Arg	att Ile	gtt Val	tct Ser -15	ctc Leu	aaa Lys	tgt Cys	tct Ser	gag Glu -10	tgt Cys	ggg Gly	gca Ala	agg Arg	721
cct Pro -5	ctg Leu	gct Ala	tct Ser	cga Arg -1	ata Ile 1	gtt Val	ggc Gly	ggc Gly	caa Gln 5	gct Ala	gtg Val	gct Ala	tct Ser	ggg Gly 10	cgc Arg	769
tgç Tr	g cca Pro	tgg Trp	caa Gln 15	gct Ala	agc Ser	gtg Val	atg Met	ctt Leu 20	ggc Gly	tcc Ser	cgg Arg	cac His	acg Thr 25	tgt Cys	ggg Gly	817
gco Ala	c tct a Ser	gtg Val 30	ttg Leu	gca Ala	cca Pro	cac His	tgg Trp 35	gta Val	gtg Val	act Thr	gct Ala	gcc Ala 40	cac His	tgc Cys	atg Met	865
tac Ty:	c agt c Ser 45	ttc Phe	agg Arg	ctg Leu	tcc Ser	cgc Arg 50	cta Leu	tcc Ser	agc Ser	tgg Trp	cgg Arg 55	gtt Val	cat His	gca Ala	Gly	913
cto Let 60	g gtc u Val	agc Ser	cat His	ggt Gly	gct Ala 65	gtc Val	cga Arg	caa Gln	cac His	cag Gln 70	gga Gly	act Thr	atg Met	gtg Val	gag Glu 75	961
aa Ly	g atc s Ile	att Ile	cct Pro	cat His 80	cct Pro	ttg Leu	tac Tyr	agt Ser	gcc Ala 85	cag Gln	aac Asn	cat His	gac Asp	tat Tyr 90	gat Asp	1009
gt Va	g gct l Ala	ctg Leu	ctg Leu 95	cag Gln	ctc Leu	cgg Arg	aca Thr	cca Pro	Ile	aac Asn	ttc Phe	tca Ser	gac Asp 105	acc Thr	gtg Val	1057

ent.

gac gct gtg tgc ttg ccg gcc aag gag cag tac ttt cca tgg ggg tcg Asp Ala Val Cys Leu Pro Ala Lys Glu Gln Tyr Phe Pro Trp Gly Ser 110 115 120	1105
cag tgc tgg gtg tct ggc tgg ggc cac acc gac cec agc cat act cat Gln Cys Trp Val Ser Gly Trp Gly His Thr Asp Pro Ser His Thr His 125	1153
agc tca gat aca ctg cag gac aca atg gta ccc ctg ctc agc acc cac Ser Ser Asp Thr Leu Gln Asp Thr Met Val Pro Leu Leu Ser Thr His 140 145 150 155	1201
ctc tgc aac agc tca tgc atg tac agt ggg gca ctt aca cac cgc atg Leu Cys Asn Ser Ser Cys Met Tyr Ser Gly Ala Leu Thr His Arg Met 160 165 170	1249
ttg tgt gct ggc tac ctg gat gga agg gca gac gca tgc cag gga gac Leu Cys Ala Gly Tyr Leu Asp Gly Arg Ala Asp Ala Cys Gln Gly Asp 175 180 185	1297
agc ggg gga ccc ctg gta tgt ccc agt ggt gac acg tgg cac ctt gta Ser Gly Gly Pro Leu Val Cys Pro Ser Gly Asp Thr Trp His Leu Val 190 195 200	1345
ggg gtg gtc agc tgg ggt cgt ggc tgt gca gag ccc aat cgc cca ggt Gly Val Val Ser Trp Gly Arg Gly Cys Ala Glu Pro Asn Arg Pro Gly 205 210 215	1393
gtc tat gcc aag gta gca gag ttc ctg gac tgg atc cat gac act gtg Val Tyr Ala Lys Val Ala Glu Phe Leu Asp Trp Ile His Asp Thr Val 220 225 230 235	1441
cag gtc cgc tagccgaaga agcagcagca gccacctgtg acgccgagct Gln Val Arg	1490
gtggatcgcc catggatcac cccagtctgg gggccagcat ctgggtcact gggcctctcc	1550
ccaaaggete tgaettegag tteatettte teatetgaga acetecacaa caggaaaagg	1610
agtctgcggc tagattggga atgatggtga gaggaaggga taggaggaca gaagagacag	1670
cagaggette tggaageate tgggagaetg eteetetget eeeeceacae eeeaegtgea	1730
tccactgggg gatgctggag atgcccaatc cttgtttctt gtggggccac tggaaggcta	1790
agtocaactt tagaggatgo octgtotoga gagttactag gcagataagg ttaaggttgg	1850
acaageteag gtaaaggeae ggaagteaag ateceetete eecegtgegg teetgttetg	1910
aggtaagcta atagccccgc accaggcaga ggtctacagg gtaagaagga tgcagttggg	1970
ctacacgacg ctatttttca aatgatgttt ctgtaaattg gttgagagag ttttgttatt	2030
aaacagaaat tatgtataaa aaaaaaaaaa aaaaaaaaaa	2070

<210> 8 <211> 445 <212> PRT <213> Mus sp.

<400> 8

Met Glu Ile Arg Cys Thr Glu Glu Gly Ala Gly Pro Gly Ile Phe -205 -200 -195

Arg Met Glu Leu Gly Asp Gln Arg Gln Ser Ile Ser Gln Ser Gln -190 -185

Arg Trp Cys Cys Leu Gln Arg Gly Cys Val Ile Leu Gly Val Leu
-175 -170 -165

Gly Leu Leu Ala Gly Ala Gly Ile Ala Ser Trp Leu Leu Val Leu
-160 -155 -150

Tyr Leu Trp Pro Ala Ala Ser Pro Ser Ile Ser Gly Thr Leu Gln
-145 -140 -135

Glu Glu Glu Met Thr Leu Asn Cys Pro Gly Val Ser Cys Glu Glu
-130 -125

Glu Leu Leu Pro Ser Leu Pro Lys Thr Val Ser Phe Arg Ile Asn
-115 -110 -105

Gly Glu Asp Leu Leu Gln Val Gln Val Arg Ala Arg Pro Asp Trp
-100 -95 -90

Leu Leu Val Cys His Glu Gly Trp Ser Pro Ala Leu Gly Met His Ile -85 -80 -75

Cys Lys Ser Leu Gly His Ile Arg Leu Thr Gln His Lys Ala Val Asn
-70 -65 -60 -55

Leu Ser Asp Ile Lys Leu Asn Arg Ser Gln Glu Phe Ala Gln Leu Ser -50 -45 -40

Ala Arg Pro Gly Gly Leu Val Glu Glu Ala Trp Lys Pro Ser Ala Asn -35 -30 -25

Cys Pro Ser Gly Arg Ile Val Ser Leu Lys Cys Ser Glu Cys Gly Ala
-20 -15 -10

Arg Pro Leu Ala Ser Arg Ile Val Gly Gly Gln Ala Val Ala Ser Gly -5 -1 1 5 10

Arg Trp Pro Trp Gln Ala Ser Val Met Leu Gly Ser Arg His Thr Cys
15 20 25

Gly Ala Ser Val Leu Ala Pro His Trp Val Val Thr Ala Ala His Cys 30 35 40

D'A.

Met Tyr Ser Phe Arg Leu Ser Arg Leu Ser Ser Trp Arg Val His Ala 45 50 55

Gly Leu Val Ser His Gly Ala Val Arg Gln His Gln Gly Thr Met Val 60 65 70

Glu Lys Ile Ile Pro His Pro Leu Tyr Ser Ala Gln Asn His Asp Tyr 75 80 85 90

Asp Val Ala Leu Leu Gln Leu Arg Thr Pro Ile Asn Phe Ser Asp Thr 95 100 105

Val Asp Ala Val Cys Leu Pro Ala Lys Glu Gln Tyr Phe Pro Trp Gly 110 115 120

Ser Gln Cys Trp Val Ser Gly Trp Gly His Thr Asp Pro Ser His Thr 125 130 135

His Ser Ser Asp Thr Leu Gln Asp Thr Met Val Pro Leu Leu Ser Thr 140 145 150

His Leu Cys Asn Ser Ser Cys Met Tyr Ser Gly Ala Leu Thr His Arg 155 160 165 170

Met Leu Cys Ala Gly Tyr Leu Asp Gly Arg Ala Asp Ala Cys Gln Gly 175 180 185

Asp Ser Gly Gly Pro Leu Val Cys Pro Ser Gly Asp Thr Trp His Leu 190 195 200

Val Gly Val Val Ser Trp Gly Arg Gly Cys Ala Glu Pro Asn Arg Pro 205 210 215

Gly Val Tyr Ala Lys Val Ala Glu Phe Leu Asp Trp Ile His Asp Thr 220 225 230

Val Gln Val Arg 235

<210> 9

<211> 2265

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (156)..(1526)

<223>

<220> <221> mat peptide <222> $(80\overline{7})..()$ <223> <400> acgcgggata cagggaggg ccatgtgcga accagggaga cctcatcttc caaccaaqct 120 tgctgggctt gcatttaatc aatgcatggc cagagaacag gagcggaaca ttgcctagta gaccctgagg ctttacaaca gtgctactga cccct atg agc ctg $\,$ atg ctg gat $\,$ Met Ser Leu $\,$ Met Leu Asp 173 -215gac caa ccc cct atg gag gcc cag tat gca gag gag ggc cca gga 218 Asp Gln Pro Pro Met Glu Ala Gln Tyr Ala Glu Glu Gly Pro Gly -210 cct ggg atc ttc aga gca gag cct gga gac cag cag cat ccc att 263 Pro Gly Ile Phe Arg Ala Glu Pro Gly Asp Gln Gln His Pro Ile -190 tct cag gcg gtg tgc tgg cgt tcc atg cga cgt ggc tgt gca gtg Ser Gln Ala Val Cys Trp Arg Ser Met Arg Arg Gly Cys Ala Val 308 -175 -180ctg gga gcc ctg ggg ctg ctg gcc ggt gca ggt gtt ggc tca tgg 353 Leu Gly Ala Leu Gly Leu Leu Ala Gly Ala Gly Val Gly Ser Trp -165-160gtg ctg tat ctg tgt cct gct gcc tct cag ccc att tcc Val Leu Tyr Leu Cys Pro Ala Ala Ser Gln Pro Ile Ser 398 ctc cta Leu Leu -145 ggg acc ttg cag gat gag gag ata act ttg agc tgc tca gag gcc Gly Thr Leu Gln Asp Glu Glu Ile Thr Leu Ser Cys Ser Glu Ala 443 -135-130-125488 age get gag gaa get etg ete eet gea ete eee aaa aca gta tet Ser Ala Glu Glu Ala Leu Leu Pro Ala Leu Pro Lys Thr Val Ser -120-115-110ttc aga $\,$ ata aac agc gaa gac $\,$ ttc ttg ctg gaa gcg caa gtg agg gat $\,$ Phe $\,$ Arg $\,$ Ile $\,$ Asn $\,$ Ser $\,$ Glu $\,$ Asp $\,$ Phe $\,$ Leu $\,$ Glu $\,$ Ala $\,$ Gln $\,$ Val $\,$ Arg $\,$ Asp 536 -105-100 584 cag cca cgc tgg ctc ctg gtc tgc cat gag ggc tgg agc ccc gcc ctg Gln Pro Arg Trp Leu Leu Val Cys His Glu Gly Trp Ser Pro Ala Leu -80632 ggg ctg cag atc tgc tgg agc ctt ggg cat ctc aga ctc act cac cac Gly Leu Gln Ile Cys Trp Ser Leu Gly His Leu Arg Leu Thr His His -70 -65aag gga gta aac ctc act gac atc aaa ctc aac agt tcc cag gag ttt 680 Lys Gly Val Asn Leu Thr Asp Ile Lys Leu Asn Ser Ser Gln Glu Phe ~55 -50 gct cag ctc tct cct aga ctg gga ggc ttc ctg gag gag gcg tgg cag 728 Ala Gln Leu Ser Pro Arg Leu Gly Gly Phe Leu Glu Glu Ala Trp Gln

L C

		-40					-35					-30				
														tgc Cys		776
gag Glu -10	tgt Cys	gga Gly	gcg Ala	agg Arg	ccc Pro -5	ctg Leu	gct Ala	tcc Ser	cgg Arg -1	ata Ile 1	gtt Val	ggt Gly	Gly	cag Gln 5	tct Ser	824
gtg Val	gct Ala	cct Pro	ggg Gly 10	cgc Arg	tgg Trp	ccg Pro	tgg Trp	cag Gln 15	gcc Ala	agc Ser	gtg Val	gcc Ala	ctg Leu 20	ggc Gly	ttc Phe	872
cgg Arg	cac His	acg Thr 25	tgt Cys	ggg Gly	ggc Gly	tct Ser	gtg Val 30	cta Leu	gcg Ala	cca Pro	cgc Arg	tgg Trp 35	gtg Val	gtg Val	act Thr	920
gct Ala	gca Ala 40	cat His	tgt Cys	atg Met	cac His	agt Ser 45	ttc Phe	agg Arg	ctg Leu	gcc Ala	cgc Arg 50	ctg Leu	tcc Ser	agc Ser	tgg Trp	968
cgg Arg 55	gtt Val	cat His	gcg Ala	G] À aaa	ctg Leu 60	gtc Val	agc Ser	cac His	agt Ser	gcc Ala 65	gtc Val	agg Arg	ccc Pro	cac His	caa Gln 70	1016
Gly	gct Ala	ctg Leu	gtg Val	gag Glu 75	agg Arg	att Ile	atc Ile	cca Pro	cac His 80	ccc Pro	ctc Leu	tac Tyr	agt Ser	gcc Ala 85	cag Gln	1064
aat Asn	cat His	gac Asp	tac Tyr 90	gac Asp	gtc Val	gcc Ala	ctc Leu	ctg Leu 95	agg Arg	ctc Leu	cag Gln	acc Thr	gct Ala 100	ctc Leu	aac Asn	1112
														cag Gln		1160
														acc Thr		1208
														gtg Val		1256
														gga Gly 165		1304
														gct Ala		1352
														ggg Gly		1400
aca Thr	tgg Trp 200	cgc Arg	cta Leu	gtg Val	Gly ggg	gtg Val 205	gtc Val	agc Ser	tgg Trp	Gly	cgt Arg 210	gcg Ala	tgc Cys	gca Ala	gag Glu	1448
ccc	aat	cac	cca	ggt	gtc	tac	gcc	aag	gta	gct	gag	ttt	ctg	gac	tgg	1496

kn)

Pro Asn His Pro Gly Val Tyr Ala Lys Val Ala Glu Phe Leu Asp Trp 215 220 230	
atc cat gac act gct cag gac tcc ctc ctc tgagtcctgc tgtttcctcc Ile His Asp Thr Ala Gln Asp Ser Leu Leu 235 240	1546
agtotoactg cacaccactg cotoatgott cotggggcot coagoagoto cactaatgga	1606
ggagaggcag tagcctccga cacagaacgc atggacctcc tactactgtg tgtgaggaac	1666
agtcactace cactggccag ccacccagec aacaggtete teetettggg ccetgattte	1726
agagteetet tteteactag agaeteaatg acagaagaga ggetgggaet tggttgggea	1786
tgctgtggtt gctgagggat gagggggagg agagaggtag gagctggaga tgaagagact	1846
getagaagea geaggaagee tgeeettetg eeeteteeee teeetgeeee tgtgtgagte	1906
ttttagggag ggtgactggg aggtgccccc cgtcccacct ttttcctgtg ctctaggtgg	1966
gctaagtgcc tecetagagg actecatgge tgagaggete etgggeagat ggggteaagg	2026
ctgggccagt cccagatgaa gcctatggga gtcaggaccc tctccactct ccctctccac	208,6
teceetteet gtteteaeet ggetgtgget ggeeetgtgt ggggtgggta eaetggaaaa	2146
caagaaggtt ggagttggtc taggacattg gttttaaatg acagttctgt gaactggtcc	2206
aaggaggttc tgttattaaa gtgatatatg gtcttgaaaa aaaaaaaaaa	2265
<210> 10 <211> 457 <212> PRT <213> Homo sapiens <400> 10	
Met Ser Leu Met Leu Asp Asp Gln Pro Pro Met Glu Ala Gln Tyr -215 -210 -205	
213	
Ala Glu Glu Gly Pro Gly Ile Phe Arg Ala Glu Pro Gly -200 -195 -190	
Asp Gln Gln His Pro Ile Ser Gln Ala Val Cys Trp Arg Ser Met -185 -180 -175	

Ala Gly Val Gly Ser Trp Leu Leu Val Leu Tyr Leu Cys Pro Ala Ala Ser Gln Pro Ile Ser Gly Thr Leu Gln Asp Glu Glu Ile Thr -140

Arg Arg Gly Cys Ala Val Leu Gly Ala Leu Gly Leu Leu Ala Gly -170 -165 -160

k () 4

Leu Ser Cys Ser Glu Ala Ser Ala Glu Glu Ala Leu Leu Pro Ala -125 -120 -115

Leu Pro Lys Thr Val Ser Phe Arg Ile Asn Ser Glu Asp Phe Leu -110 -105 -100

Leu Glu Ala Gln Val Arg Asp Gln Pro Arg Trp Leu Leu Val Cys His
-95 -90 -85

Glu Gly Trp Ser Pro Ala Leu Gly Leu Gln Ile Cys Trp Ser Leu Gly
-80 -75 -70

His Leu Arg Leu Thr His His Lys Gly Val Asn Leu Thr Asp Ile Lys -65 -55 -50

Leu Asn Ser Ser Gln Glu Phe Ala Gln Leu Ser Pro Arg Leu Gly Gly
-45 -40 -35

Phe Leu Glu Glu Ala Trp Gln Pro Arg Asn Asn Cys Thr Ser Gly Gln -30 -25 -20

Val Val Ser Leu Arg Cys Ser Glu Cys Gly Ala Arg Pro Leu Ala Ser
-15 -10 -5

Arg Ile Val Gly Gly Gln Ser Val Ala Pro Gly Arg Trp Pro Trp Gln -1 1 5 10 15

Ala Ser Val Ala Leu Gly Phe Arg His Thr Cys Gly Gly Ser Val Leu 20 25 30

Ala Pro Arg Trp Val Val Thr Ala Ala His Cys Met His Ser Phe Arg 35 40 45

Leu Ala Arg Leu Ser Ser Trp Arg Val His Ala Gly Leu Val Ser His 50 55 60

Ser Ala Val Arg Pro His Gln Gly Ala Leu Val Glu Arg Ile Ile Pro 65 70 75

His Pro Leu Tyr Ser Ala Gln Asn His Asp Tyr Asp Val Ala Leu Leu 80 85 90 95

Arg Leu Gln Thr Ala Leu Asn Phe Ser Asp Thr Val Gly Ala Val Cys $100 \hspace{1.5cm} 105 \hspace{1.5cm} 110$

Leu Pro Ala Lys Glu Gln His Phe Pro Lys Gly Ser Arg Cys Trp Val 115 120 125

					•													
:	Ser	Gly	Trp 130	Gly	His	Thr	His	Pro 135	Ser	His	Thr	Tyr	Ser 140	Ser	Asp	Met		
	Leu	Gln 145	Asp	Thr	Val	Val	Pro 150	Leu	Phe	Ser	Thr	Gln 155	Leu	Cys	Asn	Ser		
	Ser 160	Cys	Val	Tyr	Ser	Gly 165	Ala	Leu	Thr	Pro	Arg 170	Met	Leu	Cys	Ala	Gly 175		
	Tyr	Leu	Asp	Gly	Arg 180	Ala	Asp	Ala	Cys	Gln 185	Gly	Asp	Ser	Gly	Gly 190	Pro		
	Leu	Val	Cys	Pro 195	Asp	Gly	Asp	Thr	Trp 200	Arg	Leu	Val	Gly	Val 205	Val	Ser		
	Trp	Gly	Arg 210		Cys	Ala	Glu	Pro 215	Asn	His	Pro	Gly	Val 220	Tyr	Ala	Lys		
	Val	Ala 225	Glu	Phe	Leu	Asp	Trp 230	Ile	His	Asp	Thr	Ala 235	Gln	Asp	Ser	Leu		
	Leu 240																	
	<21 <21	1>	11 99															
	<21 <21		DNA Arti	fici	lal S	Seque	ence											
	<22 <22		Synt	heti	ic													
	<22 <22 <22	1>	miso Desi	c_fea igned	ature d ol:	e igoni	ıcle	otid	e to	cons	stru	ct pi	lasm	id p	SecT	rypHis		
	<40 aag)0> gctte	11 ggct	agc	aaca	cca 1	tgaa [.]	tcta	ct c	ctga [.]	tcct	t ac	cttt	gttg	ctg	ctgctgt	60	
	tgo	ctgc	cccc	ttt	gacg	acg a	atga	caag	ga t	ccga	attc						99	5
	<21 <21	10> 11> 12> 13>			ial	Sequ	ence											
		20> 23>	Syn	thet	ic													
		20>	mis	c_fe	atur	e	ucle	otio	le to	con	stru	ict p	olasm	nid r	Secl	TrypHis		

Uemura7.ST25.txt

<400> gaattc	12 ggat ccttgtcatc gtcgtcaaag ggggcagcaa cagcagcagc aacaaaggta 60
aggatc	agga gtagattcat ggtgttgcta gccaagctt 99
<210><211><211><212><212><213>	DNA
<220> <223>	Synthetic
<220> <221> <223>	<pre>misc_feature Designed oligonucleotide primer t amplify neurosin-encoding seque nce</pre>
<400> ttggtg	13 catg gcgga 15
<210><211><211><212><213>	27 DNA
<220> <223>	Synthetic
<220> <221> <223>	_
<400> tcctcg	14 agac ttggcctgaa tggtttt 27
<210><211><211><212><213>	15 35 DNA Artificial Sequence
<220> <223>	Synthetic
<220> <221> <223>	misc_feature Designed oligonucleotide primer to amplify a portion of plasmid p SecTrypHis/Neurosin
<400> gcgcta	15 gcag atctccatga atctactcct gatcc 35
<210>	16


```
<211>
      29
<212>
      DNA
<213> Artificial Sequence
<220>
<223> Synthetic
<220>
      misc_feature
<221>
<223>
       Designed oligonucleotide primer to amplify a portion of plasmid p
       SecTrypHis/Neurosin
<400> 16
                                                                       29
tgaagcttgc catggaccaa cttgtcatc
<210>
       17
<211>
       26
<212>
       DNA
<213>
      Artificial Sequence
<220>
<223> Synthetic
<220>
<221>
      misc feature
<223> Designed oligonucleotide primer to amplify a portion of plasmid p
<400> 17
                                                                      26
ccaagcttca ccatcaccat caccat
<210>
      18
<211>
       17
<212>
      DNA
<213> Artificial Sequence
<220>
<223> Synthetic
<220>
<221>
      misc feature
<223>
      Designed oligonucleotide primer to amplify a portion of plasmid p
       TrypSigTag
<400> 18
                                                                      17
gcacagtcga ggctgat
<210> 19
<211>
      17
<212>
      DNA
<213> Artificial Sequence
<220>
<223> Synthetic
<220>
```

knu (

<221> misc_feature

```
<223> Designed oligonucleotide primer to amplify a portion of plasmid p
       FBTrypSigTag
<400> 19
                                                                       17
caaatgtggt atggctg
<210>
       20
<211>
       20
<212>
       DNA
<213> Artificial Sequence
<220>
<223> Synthetic
<220>
<221> misc feature
<223> Designed oligonucleotide primer to amplify conserved region of se
       rin proteases-encoding sequence
<220>
<221> misc_feature
\langle 222 \rangle (9) ... (9)
<223> n is a, c, g or t.
<220>
<221>
      misc_feature
<222>
      (12)...(12)
<223> n is a, c, g or t.
<400> 20
                                                                       20
gtgctcacng cngcbcaytg
<210>
       21
<211>
       20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic
<220>
<221> misc feature
<223> Designed oligonucleotide primer to amplify conserved region of se
       rin proteases-encoding sequence
<220>
<221> misc_feature
<222> (12)..(12)
<223> n is a, c, g or t.
<220>
<221> misc_feature
```


ALC: I

<222> (15)..(15)

<223> n is a, c, g or t.

. . .

<400> ccvctr	21 wsdc cnccnggcga	20
<210> <211> <212> <213>	22 21 DNA Artificial Sequence	
<220> <223>	Synthetic	
<220> <221> <223>	<pre>misc_feature Designed oligonucleotide primer designated as mBSSP2.0 for RACE or mBSSP2 (forward)</pre>	f
<400> atggtg	22 gaga agatcattcc t	21
<210><211><211><212><213>	23 19 DNA Artificial Sequence	
<220> <223>	Synthetic	
	<pre>misc_feature Designed oligonucleotide primer designated as mBSSP2.1 for RACE or mBSSP2 (forward)</pre>	f
<400> tacagto	23 gccc agaaccatg	19
<210> <211> <212> <213>		
<220> <223>	Synthetic	
<220> <221> <223>	<pre>misc_feature Designed oligonucleotide primer designated as mBSSPF4 for RACE r mBSSP2 (forward)</pre>	fo
<400> ctcaac	24 tete tgetagaeeg	20
<210><211><211><212><213>	25 20 DNA Artificial Sequence	


```
<220>
<223>
      Synthetic
<220>
      misc feature
<221>
<223> Designed oligonucleotide primer designated as mBSSP2F5 toamplify
      mature mBSSP2-encoding region (forward)
<400> 25
                                                                       20
atagttggcg gccaagctgt
<210>
      26
<211>
      20
<212>
      DNA
<213> Artificial Sequence
<220>
<223>
      Synthetic
<220>
<221>
      misc feature
      Designed oligonucleotide primer designated as mBSSP2.2 for RACE f
<223>
       or mBSSP2 (reverse)
<400> 26
                                                                       20
cccagcagaa cttactgcct
<210>
      27
<211>
      20
<212>
      DNA
<213>
      Artificial Sequence
<220>
<223>
      Synthetic
<220>
<221>
      misc feature
      Designed oligonucleotide primer designated as mBSSP2E2 for RACE f
<223>
       or mBSSP2 (reverse)
<400> 27
                                                                       20
tgttgcagag gtgggtgctg
<210>
       28
<211>
       21
<212>
       DNA
<213>
      Artificial Sequence
<220>
<223>
       Synthetic
<220>
<221>
       misc_feature
       Designed oligonucleotide primer designated as mBSSP2R2 for RACE f
<223>
       or mBSSP2 (reverse)
```



```
<400> 28
                                                                       21
taccattgtg tcctgcagtg t
<210>
      29
<211>
      27
<212> DNA
<213> Artificial Sequence
<220>
<223>
     Synthetic
<220>
<221>
      misc feature
      Designed oligonucleotide primer designated as mBSSP2R5/E to ampli
<223>
       fy full-length mBSSP2-encoding mRNA (reverse)
<400> 29
                                                                       27
tgaattctgc tgcttcttcg gctagcg
<210>
      30
<211>
      18
<212>
      DNA
<213>
      Artificial Sequence
<220>
<223>
      Synthetic
<220>
<221> misc feature
      Designed oligonucleotide primer designated as BSSP2SPF to amplify
<223>
        a portion of hBSSP2 (forward)
<400> 30
actgctgccc actgcatg
                                                                       18
<210>
      31
<211>
      21
<212>
<213> Artificial Sequence
<220>
<223> Synthetic
<220>
<221>
      misc_feature
      Designed oligonucleotide primer designated as BSSP2SPR to amplify
<223>
        a portion of hBSSP2 (reverse)
<400> 31
                                                                       21
caggggtccc ccgctgtctc c
<210>
      32
<211>
      20
<212>
     DNA
```

<213> Artificial Sequence

```
<220>
<223>
      Synthetic
<220>
<221> misc feature
<223> Designed oligonucleotide primer designated as hBSSP2F11 for RACE
       for hBSSP2 (forward)
<400> 32
                                                                       20
gctctcaact tctcagacac
<210>
      33
<211>
      20
<212> DNA
<213> Artificial Sequence
<220>
<223>
      Synthetic
<220>
<221>
      misc_feature
<223> Designed oligonucleotide primer designated as hBSSP2R12 for RACE
       for hBSSP2 (reverse)
<400> 33
                                                                       20
actcagctac cttggcgtag
<210>
      34
<211>
      20
<212>
      DNA
<213> Artificial Sequence
<220>
<223>
     Synthetic
<220>
<221>
      misc_feature
      Designed oligonucleotide primer designated as hBSSP2R11 for RACE
<223>
       for hBSSP2 (reverse)
<400> 34
                                                                       20
cctggagcat atccgagctg
<210>
      35
<211>
       18
<212>
       DNA
<213>
      Artificial Sequence
<220>
<223> Synthetic
<220>
```


<223> Designed oligonucleotide primer designated as hBSSP2F12 to amplif

<221>

misc_feature

y full length hBSSP2 (forward)

<400> 35 18 gctttacaac agtgctac 36 <210> <211> 28 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <220> misc_feature <221> Designed oligonucleotide primer designated as hBSSP2R13/E to ampl <223> ify full length hBSSP2 (reverse) <400> 36 28 tggaattcga ggaaacagca ggactcag <210> 37 19 <211> <212> DNA <213> Artificial Sequence <220> <223> Synthetic <220> <221> misc feature Designed oligonucleotide primer for RACE for hBSSP2 <223> <400> 37 19 tactagtcga cgcgtggcc <210> 38 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <220> <221> misc feature Designed oligonucleotide primer designated as hBSSP2F13 to amplif <223> y a portion of hBSSP2 (forward) <400> 38 18 actgctgccc actgcatg 39 <210> <211> 35 <212> DNA

40 V A

<213> Artificial Sequence

v 10 6 A

```
<220>
<223> Synthetic
<220>
<221>
      misc feature
<223> Designed oligonucleotide primer designated as FBTrpsigtagF5 to de
      tect hBSSP2
<400> 39
                                                                     35
gcgctagcag atctccatga atctactcct gatcc
<210> 40
<211>
      117
<212>
      DNA
<213> Artificial Sequence
<220>
<223> Synthetic
<220>
<221>
      misc feature
<223> Designed oligonucleotide to construct plasmid pTrypHis
<400> 40
aagcttggct agcaacacca tgaatctact cctgatcctt acctttgttg ctgctgct
                                                                     60
                                                                    117
tgctgccccc tttcaccatc accatcacca tgacgacgat gacaaggatc cgaattc
<210> 41
<211>
      117
<212>
      DNA
<213> Artificial Sequence
<220>
<223> Synthetic
<220>
<221> misc_feature
<223> Designed oligonucleotide to construct plasmid pTrypHis
<400> 41
gaattcggat ccttgtcatc gtcgtcatgg tgatggtgat ggtgaaaggg ggcagcaaca
                                                                     60
gcagcagcaa caaaggtaag gatcaggagt agattcatgg tgttgctagc caagctt
                                                                    117
<210> 42
<211> 5
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic
<400> 42
Asp Asp Asp Lys
```

I Kny

المالوني

```
<210> 43
 <211> 4
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Synthetic
 <400> 43
 Leu Val His Gly
 <210> 44
 <211> 37
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Synthetic
 <400> 44
 ggccacgcgt cgactagtac ttttttttt tttttt
```

37