

74VHCT00A

QUAD 2-INPUT NAND GATE

PRELIMINARY DATA

- HIGH SPEED: $t_{PD} = 5$ ns (TYP.) at $V_{CC} = 5V$
- LOW POWER DISSIPATION: $I_{CC} = 2 \mu A \text{ (MAX.)}$ at $T_A = 25 \, ^{\circ}\text{C}$
- COMPATIBLE WITH TTL OUTPUTS: VIH = 2V (MIN), VIL = 0.8V (MAX)
- POWER DOWN PROTECTION ON INPUTS & OUTPUTS
- SYMMETRICAL OUTPUT IMPEDANCE: |I_{OH}| = I_{OL} = 8 mA (MIN)
- BALANCED PROPAGATION DELAYS:
 tplh ≅ tphl
- OPERATING VOLTAGE RANGE: V_{CC} (OPR) = 4.5V to 5.5V
- PIN AND FUNCTION COMPATIBLE WITH 74 SERIES 00
- IMPROVED LATCH-UP IMMUNITY
- LOW NOISE: V_{OLP} = 0.8V (Max.)

DESCRIPTION

The 74VHCT00A is an advanced high-speed CMOS QUAD 2-INPUT NAND GATE fabricated with sub-micron silicon gate and double-layer metal wiring C²MOS technology.

The internal circuit is composed of 3 stages including buffer output, which provide high noise immunity and stable output.

Power down protection is provided on all inputs and outputs and 0 to 7V can be accepted on inputs with no regard to the supply voltage. This device can be used to interface 5V to 3V.

All inputs and outputs are equipped with protection circuits against static discharge, giving them 2KV ESD immunity and transient excess voltage.

PIN CONNECTION AND IEC LOGIC SYMBOLS

August 1999 1/7

INPUT EQUIVALENT CIRCUIT

PIN DESCRIPTION

PIN No	SYMBOL	NAME AND FUNCTION				
1, 4, 9, 12	1A to 4A	Data Inputs				
2, 5, 10, 13	1B to 4B	Data Inputs				
3, 6, 8, 11	1Y to 4Y	Data Outputs				
7	GND	Ground (0V)				
14	V _{CC}	Positive Supply Voltage				

TRUTH TABLE

Α	В	Υ
L	L	Н
L	Н	Н
Н	L	Н
Н	Н	L

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vcc	Supply Voltage	-0.5 to +7.0	V
V_{I}	DC Input Voltage	-0.5 to +7.0	V
Vo	DC Output Voltage (see note 1)	-0.5 to +7.0	V
Vo	DC Output Voltage (see note 2)	-0.5 to V _{CC} + 0.5	V
I _{IK}	DC Input Diode Current	- 20	mA
lok	DC Output Diode Current	± 20	mA
Ιο	DC Output Current	± 25	mA
Icc or I _{GND}	DC V _{CC} or Ground Current	± 50	mA
T_{stg}	Storage Temperature	-65 to +150	°C
TL	Lead Temperature (10 sec)	300	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
Vcc	Supply Voltage	4.5 to 5.5	V
VI	Input Voltage	0 to 5.5	V
Vo	Output Voltage (see note 1)	0 to 5.5	V
Vo	Output Voltage (see note 2)	0 to Vcc	V
T _{op}	Operating Temperature	-40 to +85	°C
dt/dv	Input Rise and Fall Time (see note 3) $(V_{CC} = 5.0 \pm 0.5V)$	0 to 20	ns/V

¹⁾ Vcc = 0V

57

¹⁾ $V_{CC} = 0V$

²⁾ High or Low State

²⁾ High or Low State

³⁾V_{IN} from 0.8V to 2 V

DC SPECIFICATIONS

Symbol	Parameter Test Conditions		t Conditions			Value			Unit
		Vcc		T _A = 25 °C			-40 to	85 °C	
		(V)		Min.	Тур.	Max.	Min.	Max.	
V _{IH}	High Level Input Voltage	4.5 to 5.5		2			2		V
VIL	Low Level Input Voltage	4.5 to 5.5				0.8		0.8	V
V _{OH}	High Level Output	4.5	I _O =-50 μA	4.4	4.5		4.4		V
	Voltage	4.5	I _O =-8 mA	3.94			3.8		V
V _{OL}	Low Level Output	4.5	I _O =50 μA		0.0	0.1		0.1	V
	Voltage	4.5	I _O =8 mA			0.36		0.44	V
l _l	Input Leakage Current	0 to 5.5	$V_I = 5.5V$ or GND			±0.1		±1.0	μΑ
Icc	Quiescent Supply Current	5.5	$V_I = V_{CC}$ or GND			2		20	μΑ
Δl _{CC}	Additional Worst Case Supply Current	5.5	One Input at 3.4V, other input at V _{CC} or GND			1.35		1.5	mA
I _{OPD}	Output Leakage Current	0	V _{OUT} = 5.5V			0.5		5.0	μΑ

AC ELECTRICAL CHARACTERISTICS (Input $t_r = t_f = 3 \text{ ns}$)

Symbol	Parameter	Test Condition			Value				Unit	
		V _{CC} (*)	$T_A = 25 ^{\circ}C$		$C_{c}(*)$ C_{L} $T_{A} = 25 ^{\circ}\text{C}$ -40 to 85 $^{\circ}\text{C}$		85 °C			
		(V)	(pF)		Min.	Тур.	Max.	Min.	Max.	
t _{PLH}	Propagation Delay	5.0	15			5.0	7.0	1.0	8.0	20
t _{PHL}	Time	5.0	50			5.5	8.0	1.0	9.0	ns

^(*) Voltage range is 5V ± 0.5V

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Test Conditions		Value				
			T _A = 25 °C		-40 to 85 °C			
			Min.	Тур.	Max.	Min.	Max.	
C _{IN}	Input Capacitance			4	10		10	рF
C _{PD}	Power Dissipation Capacitance (note 1)			10.5				pF

¹⁾ C_{PD} is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operating current can be obtained by the following equation. $I_{CC}(opr) = C_{PD} \bullet V_{CC} \bullet f_{IN} + I_{CC}/4$ (per Gate)

DYNAMIC SWITCHING CHARACTERISTICS

Symbol	Parameter	Test Conditions		Value					Unit
		Vcc		T.	A = 25 °	C	-40 to 85 °C		
		(V)		Min.	Тур.	Max.	Min.	Max.	
V _{OLP}	Dynamic Low Voltage	5.0			0.4	0.8			
V _{OLV}	Quiet Output (note 1, 2)			-0.8	-0.4				
V _{IHD}	Dynamic High Voltage Input (note 1, 3)	5.0	C _L = 50 pF	2.0					V
V _{ILD}	Dynamic Low Voltage Input (note 1, 3)	5.0				0.8			

TEST CIRCUIT

C_L = 15/50 pF or equivalent (includes jig and probe capacitance)

 $R_T = Z_{OUT}$ of pulse generator (typically 50Ω)

WAVEFORM: PROPAGATION DELAYS (f=1MHz; 50% duty cycle)

57 4/7

²⁾ Max number of outputs defined as (n). Data inputs are driven 0V to 3.0, (n -1) outputs switching and one output at GND.

3) Max number of data inputs (n) switching. (n-1) switching 0V to 3.0V. Inputs under test switching: 3.0V to threshold (V_{ILD}), 0V to threshold (V_{ILD}), f=1MHz.

SO-14 MECHANICAL DATA

DIM.		mm							
DIIVI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.			
А			1.75			0.068			
a1	0.1		0.2	0.003		0.007			
a2			1.65			0.064			
b	0.35		0.46	0.013		0.018			
b1	0.19		0.25	0.007		0.010			
С		0.5			0.019				
c1			45	(typ.)					
D	8.55		8.75	0.336		0.344			
Е	5.8		6.2	0.228		0.244			
е		1.27			0.050				
e3		7.62			0.300				
F	3.8		4.0	0.149		0.157			
G	4.6		5.3	0.181		0.208			
L	0.5		1.27	0.019		0.050			
М			0.68			0.026			
S		8 (max.)							

57

TSSOP14 MECHANICAL DATA

DIM.		mm		inch			
2	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А			1.1			0.433	
A1	0.05	0.10	0.15	0.002	0.004	0.006	
A2	0.85	0.9	0.95	0.335	0.354	0.374	
b	0.19		0.30	0.0075		0.0118	
С	0.09		0.20	0.0035		0.0079	
D	4.9	5	5.1	0.193	0.197	0.201	
E	6.25	6.4	6.5	0.246	0.252	0.256	
E1	4.3	4.4	4.48	0.169	0.173	0.176	
е		0.65 BSC			0.0256 BSC		
K	0°	4°	8°	0°	4°	8°	
L	0.50	0.60	0.70	0.020	0.024	0.028	

6/7

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics

© 1999 STMicroelectronics – Printed in Italy – All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

http://www.st.com

