Exercice 1. Soit $V = \mathbb{R}^3$ et $S = \{(9,9,0), (2,0,1), (3,5,-4), (12,12,-1)\} \subset V$. Déterminer si S est une famille libre ou une famille liée.

Solution 1. Ici $V = \mathbb{R}^3$ et $S = \{(9, 9, 0), (2, 0, 1), (3, 5, -4), (12, 12, -1)\} \subset V$. On montre que S est lié. Il y a plusieurs façons de procéder.

(a) Soient $v_1 = (9, 9, 0), v_2 = (2, 0, 1), v_3 = (3, 5, -4)$ et $v_4 = (12, 12, -1)$. On suppose que

$$\sum_{i=1}^{4} \lambda_i v_i = 0$$

où $\lambda_i \in \mathbb{R}$. Si $(\lambda_1, \lambda_2, \lambda_3, \lambda_4) = (0, 0, 0, 0)$ est la seule solution, alors S est libre, sinon S est lié. Maintenant

$$\sum_{i=1}^{4} \lambda_i v_i = 0 \iff \begin{cases} 9\lambda_1 + 2\lambda_2 + 3\lambda_3 + 12\lambda_4 = 0 \\ 9\lambda_1 + 5\lambda_3 + 12\lambda_4 = 0 \\ \lambda_2 - 4\lambda_3 - \lambda_4 = 0 \end{cases}$$

Sous forme matricielle, ce système équivaut à :

$$A = \begin{pmatrix} 9 & 2 & 3 & 12 & 0 \\ 9 & 0 & 5 & 12 & 0 \\ 0 & 1 & -4 & -1 & 0 \end{pmatrix}$$

Avec l'opération élémentaire $L_2' = L_2 - L_1$, on obtient :

$$A' = \begin{pmatrix} 9 & 2 & 3 & 12 & 0 \\ 0 & -2 & 2 & 0 & 0 \\ 0 & 1 & -4 & -1 & 0 \end{pmatrix}$$

Avec l'opération élémentaire $L_2''=L_2'+2L_3',$ on obtient :

$$A'' = \begin{pmatrix} 9 & 2 & 3 & 12 & 0 \\ 0 & 0 & -6 & -2 & 0 \\ 0 & 1 & -4 & -1 & 0 \end{pmatrix}$$

Avec les opérations élémentaires $L_2^{\prime\prime\prime}=L_3^{\prime\prime}$ et $L_3^{\prime\prime\prime}=L_2^{\prime\prime},$ on obtient :

$$A''' = \begin{pmatrix} 9 & 2 & 3 & 12 & 0 \\ 0 & 1 & -4 & -1 & 0 \\ 0 & 0 & -6 & -2 & 0 \end{pmatrix}$$

Avec l'opération élémentaire $L_3^{\prime\prime\prime\prime}=-L_3^{\prime\prime\prime}/2,$ on obtient :

$$A'''' = \begin{pmatrix} 9 & 2 & 3 & 12 & 0 \\ 0 & 1 & -4 & -1 & 0 \\ 0 & 0 & 3 & 1 & 0 \end{pmatrix}$$

On déduit que le système a une infinité de solutions $(\lambda_1, \lambda_2, \lambda_3, \lambda_4)$ et donc S est lié. (Plus précisément :

$$\begin{cases} \lambda_4 = -3\lambda_3 \\ \lambda_2 = 4\lambda_3 + \lambda_4 = \lambda_3 \\ \lambda_1 = -\frac{2\lambda_2 + 3\lambda_3 + 12\lambda_4}{9} = \frac{31\lambda_3}{9} \end{cases}$$

On peut par exemple choisir $\lambda_2 = \lambda_3 = 9$, $\lambda_4 = -27$ et $\lambda_1 = 31$.)

(b) On remarque que S est un sous-ensemble de $V = \mathbb{R}^3$ et que dim V = 3. Ainsi 4 éléments de V ne peuvent pas former une famille libre. Ainsi S est lié.

Exercice 2. Soit V un \mathbb{R} -espace vectoriel et $S = \{u, v, w\} \subset V$. Montrer que si S est une famille libre alors il en est de même pour $T = \{u, u + v, u + v + w\}$.

Solution 2. (Vidéo disponible.) Soit V un \mathbb{R} -espace vectoriel et $S = \{u, v, w\} \subset V$. On doit montrer que si S est une famille libre alors il en est de même pour $T = \{u, u + v, u + v + w\}$. Supposons donc que S est libre et que $\lambda_i \in \mathbb{R}$, où $1 \le i \le 3$, sont tels que

$$\lambda_1 u + \lambda_2 (u+v) + \lambda_3 (u+v+w) = 0.$$

On a alors

$$(\lambda_1 + \lambda_2 + \lambda_3)u + (\lambda_2 + \lambda_3)v + \lambda_3 w = 0.$$

Or S est une famille libre. On doit donc avoir

$$\lambda_1 + \lambda_2 + \lambda_3 = \lambda_2 + \lambda_3 = \lambda_3 = 0.$$

Ceci équivaut à :

$$\lambda_1 = \lambda_2 = \lambda_3 = 0$$

et donc T est libre.

Exercice 3. Soit V le \mathbb{R} -espace vectoriel des fonctions définies sur \mathbb{R} . Soit

$$S = \{f_1(x), f_2(x), f_3(x), f_4(x), f_5(x)\} \subset V$$

οù

$$f_1(x) = x$$
, $f_2(x) = 1 + x$, $f_3(x) = x + \sin^2 x$, $f_4(x) = x^3 - x$, et $f_5(x) = x + \cos^2 x$.

Montrer que S est une famille liée.

Solution 3. On doit montrer que $S = \{f_i(x) : 1 \le i \le 5\}$, où

$$f_1(x) = x$$
, $f_2(x) = 1 + x$, $f_3(x) = x + \sin^2 x$, $f_4(x) = x^3 - x$ et $f_5(x) = x + \cos^2 x$,

est une famille liée, i.e. on doit trouver $\lambda_i \in \mathbb{R}$ non tous nuls, où $1 \leq i \leq 5$, tels que

$$\sum_{i=1}^{5} \lambda_i f_i = 0,$$

i.e. tels que

$$\sum_{i=1}^{5} \lambda_i f_i(x) = 0 \ \forall \ x \in \mathbb{R}.$$

On remarque que $f_3(x) + f_5(x) = 1 + 2x$ (car $\cos^2 x + \sin^2 x = 1$). Aussi $f_1(x) + f_2(x) = 1 + 2x$ et donc

$$f_1(x) + f_2(x) - f_3(x) + 0p_4 - f_5(x) = 0.$$

On peut ainsi prendre $\lambda_1 = \lambda_2 = 1$, $\lambda_3 = \lambda_5 = -1$ et $\lambda_4 = 0$.

Exercice 4.

(i) Soit $V = M_{2\times 2}(\mathbb{R})$ et

$$S = \left\{ \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & -1 \\ 2 & 0 \end{pmatrix} \right\} \subset V.$$

Montrer que S est une famille libre.

(ii) Montrer que

$$\begin{pmatrix} 7/3 & 3 \\ 2 & 0 \end{pmatrix} \in \operatorname{Vect} \left(\left\{ \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & -1 \\ 2 & 0 \end{pmatrix} \right\} \right)$$

en trouvant $c_1, c_2 \in \mathbb{R}$ tels que $c_1 \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} + c_2 \begin{pmatrix} 1 & -1 \\ 2 & 0 \end{pmatrix} = \begin{pmatrix} 7/3 & 3 \\ 2 & 0 \end{pmatrix}$, et montrer que cette paire (c_1, c_2) est unique.

- (iii) Supposons que S est un sous-ensemble d'un \mathbb{R} -espace vectoriel V et que $v \in V$ appartient à $\mathrm{Vect}(S)$, i.e. v est une combinaison linéaire déléments de S. Montrer que si S est libre alors une combinaison linéaire d'éléments de S égale à v est unique (à réarrangement près des éléments de S).
- (iv) Supposons que S est un sous-ensemble d'un \mathbb{R} -espace vectoriel V et que $v \in V$ appartient à $\operatorname{Vect}(S)$. Montrer que si S est lié alors il existe deux combinaisons linéaires distinctes d'éléments de S égales à v.

Solution 4.

(i) Soit $V = M_{2\times 2}(\mathbb{R})$ et

$$S = \left\{ \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & -1 \\ 2 & 0 \end{pmatrix} \right\} \subset V.$$

On doit montrer que S est une famille libre. Soient

$$B = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, C = \begin{pmatrix} 1 & -1 \\ 2 & 0 \end{pmatrix},$$

et supposons que $\lambda_1, \lambda_2 \in \mathbb{R}$ sont tels que $\lambda_1 B + \lambda_2 C = 0$. On a alors

$$\begin{cases} \lambda_1 + \lambda_2 = 0 \\ \lambda_1 - \lambda_2 = 0 \\ \lambda_1 + 2\lambda_2 = 0 \end{cases}$$

Sous forme matricielle, ce système équivaut à :

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & -1 & 0 \\ 1 & 2 & 0 \end{pmatrix}$$

Avec les opérations élémentaires $L_2'=-(L_2-L_1)/2$ et $L_3'=(L_3-L_2)/3$, on obtient :

$$A' = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

Avec l'opération élémentaire $L_3''=L_3'-L_2'$, on obtient :

$$A'' = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

On obtient donc $\lambda_2 = 0$ et $\lambda_1 = \lambda_2 = 0$ et S est libre.

(ii) On doit montrer que

$$\begin{pmatrix} 7/3 & 3 \\ 2 & 0 \end{pmatrix} \in \operatorname{Vect} \left(\left\{ \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & -1 \\ 2 & 0 \end{pmatrix} \right\} \right) \subset V$$

en trouvant $c_1, c_2 \in \mathbb{R}$ tels que $c_1 \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} + c_2 \begin{pmatrix} 1 & -1 \\ 2 & 0 \end{pmatrix} = \begin{pmatrix} 7/3 & 3 \\ 2 & 0 \end{pmatrix}$, et montrer que cette paire (c_1, c_2) est unique.

Supposons $c_1 \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} + c_2 \begin{pmatrix} 1 & -1 \\ 2 & 0 \end{pmatrix} = \begin{pmatrix} 7/3 & 3 \\ 2 & 0 \end{pmatrix}$. Alors

$$\begin{cases} c_1 + c_2 = 7/3 \\ c_1 - c_2 = 3 \\ c_1 + 2c_2 = 2 \end{cases}$$

Sous forme matricielle, ce système équivaut à :

$$D = \begin{pmatrix} 1 & 1 & 7/3 \\ 1 & -1 & 3 \\ 1 & 2 & 2 \end{pmatrix}$$

Avec les opérations élémentaires $L_2' = -(L_2 - L_1)/2$ et $L_3' = (L_3 - L_2)$, on obtient :

$$D' = \begin{pmatrix} 1 & 1 & 7/3 \\ 0 & 1 & -1/3 \\ 0 & 1 & -1/3. \end{pmatrix}$$

Avec l'opration élémentaire $L_3''=L_3'-L_2',$ on obtient :

$$D'' = \begin{pmatrix} 1 & 1 & 7/3 \\ 0 & 1 & -1/3 \\ 0 & 0 & 0. \end{pmatrix}$$

On a donc $c_2 = -1/3$ et $c_1 = 7/3 - c_2 = 8/3$.

(iii) Supposons que S est un sous-ensemble d'un \mathbb{R} -espace vectoriel V et que $v \in V$ appartient à $\operatorname{Vect}(S)$, i.e. v est une combinaison linéaire déléments de S. On doit montrer que si S est libre alors une combinaison linéaire d'éléments de S égale à v est unique (à réarrangement près des éléments de S).

Soit $S = \{v_1, \dots, v_n\}$ et supposons que $\lambda_i, \mu_i \in \mathbb{R}$, où $1 \le i \le n$, sont tels que

$$\sum_{i=1}^{n} \lambda_i v_i = \sum_{i=1}^{n} \mu_i v_i = v.$$

Alors

$$\sum_{i=1}^{n} (\lambda_i - \mu_i) v_i = 0.$$

Comme S est une famille libre, on $\lambda_i - \mu_i = 0$ pour $1 \le i \le n$. Ceci montrer l'unicité d'une telle combinaison linéaire.

(iv) Supposons que S est un sous-ensemble d'un \mathbb{R} -espace vectoriel V et que $v \in V$ appartient à $\operatorname{Vect}(S)$. On doit montrer que si S est lié alors il existe deux combinaisons linéaires distinctes

d'éléments de S égales à v.

Soit $S = \{v_1, \dots, v_n\}$. Comme S est lié, il existe $\lambda_1, \dots, \lambda_n \in \mathbb{R}$ (non tous nuls) tels que

$$\sum_{i=1}^{n} \lambda_i v_i = 0.$$

Comme $v \in \text{Vect}(S)$, il existe $\mu_1, \dots, \mu_n \in \mathbb{R}$ tels que

$$\sum_{i=1}^{n} \mu_i v_i = v.$$

On a donc

$$\sum_{i=1}^{n} \mu_i v_i = \sum_{i=1}^{n} (\lambda_i + \mu_i) v_i = v$$

et

$$(\mu_1,\ldots,\mu_n)\neq(\lambda_1+\mu_1,\ldots,\lambda_n+\mu_n)$$

 $car (\lambda_1, \ldots, \lambda_n) \neq (0, \ldots, 0).$

Exercice 5. Soit $S = \{(a, c), (b, d)\} \subset \mathbb{R}^2$. Montrer que S est libre si et seulement si $ad - bc \neq 0$.

Solution 5. Soit $S = \{(a,c),(b,d)\} \subset \mathbb{R}^2$. On doit montrer que S est libre si et seulement si $ad - bc \neq 0$. On remarque que si $0 \in S$ alors S n'est pas libre. (En effet $1 \cdot \mathbf{0} = \mathbf{0}$ et $1 \neq 0$.) Comme $\mathrm{Vect}(S)$ est un sous-espace vectoriel de $V = \mathbb{R}^2$, que dim V = 2 et |S| = 2, dire que S est libre équivaut à dire que dim $\mathrm{Vect}(S) = 2$. Soit

$$A = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$$

On a donc S est libre si et seulement si l'espace ligne de A a dimension 2.

- (i) Supposons a = b = 0. Notons que dans ce cas ad bc = 0.
 - (a) Si c = 0 ou d = 0, alors $0 \in S$ et donc S n'est pas libre.
 - (b) Si $cd \neq 0$, alors Vect(S) = Vect((0,1)) et donc dim Vect(S) = 1 et S n'est pas libre.
- (ii) On peut maintenant supposer que soit $a \neq 0$ soit $b \neq 0$. Sans perte de généralité, on peut supposer que $a \neq 0$ (si besoin est, on peut interchanger les lignes de A). Avec l'opération élémentaire $L'_2 = L_2 (b/a)L_1$, on obtient :

$$A' = \begin{pmatrix} a & c \\ 0 & d - \frac{b}{a} \cdot c \end{pmatrix}$$

Avec l'opération élémentaire $L_2'' = a \cdot L_2'$, on obtient :

$$A'' = \begin{pmatrix} a & c \\ 0 & ad - bc \end{pmatrix}$$

Avec l'opération élémentaire $L_1''' = L_1''/a$, on obtient :

$$A''' = \begin{pmatrix} 1 & \frac{c}{a} \\ 0 & ad - bc \end{pmatrix}$$

- (a) Si ad bc = 0 alors Vect(S) = Vect((1, c/a)) et donc dim Vect(S) = 1 et S n'est pas libre.
- (b) Si $ad bc \neq 0$ alors Vect(S) = Vect((1, c/a), (0, 1)) et donc dim Vect(S) = 2 et S est libre.

Exercice 6. Soit $V = \mathbb{P}_3(\mathbb{R})$.

- (a) Trouver une base pour chacun des sous-espaces vectoriels W de V suivants :
 - (i) W est le sous-espace des polynômes $p \in V$ tels que p(7) = 0.
 - (ii) W est le sous-espace des polynômes $p \in V$ tels que p(7) = 0 et p(5) = 0.
 - (iii) W est le sous-espace des polynômes $p \in V$ tels que p(7) = 0, p(5) = 0 et p(3) = 0.
- (b) Soit U le sous-ensemble des polynômes $p \in V$ tels que p(7) = 0, p(5) = 0, p(3) = 0 et p(1) = 0. Montrer que $U = \{0\}$.

Solution 6. (Vidéo disponible.) Soit $V = \mathbb{P}_3(\mathbb{R})$.

 $V = \mathbb{P}_3(\mathbb{R})$. On déduit que $U = \{0\}$.

- (a) On doit trouver une base \mathcal{B} pour chacun des sous-espaces vectoriels W de V suivants :
 - (i) W est le sous-espace des polynômes $p \in V$ tels que p(7) = 0. On peut prendre $\mathcal{B} = ((x-7), x(x-7), x^2(x-7))$. En effet, soit $p = ax^3 + bx^2 + cx + d \in V$ où $a, b, c, d \in \mathbb{R}$. On a

$$p \in W \Leftrightarrow p(7) = 0$$

$$\Leftrightarrow 7^3 a + 7^2 b + 7c + d = 0$$

$$\Leftrightarrow d = -7(7^2 a + 7b + c).$$

En prenant $(a, b, c) \in \{(0, 0, 1), (0, 1, 0), (1, 0, 0)\}$, on déduit que $p_1 = x - 7, p_2 = x^2 - 7, p_3 = x^3 - 7^3$ sont des éléments de W. De plus, il est facile de voir que p_1, p_2, p_3 sont linéairement indépendants : en effet ces trois éléments sont de degré 1, 2 et 3. Finalement, soit $p \in W$, alors $p = ax^3 + bx^2 + cx - 7(c + 7b + 7^2a)$ où $a, b, c \in \mathbb{R}$, ainsi $p = ap_1 + bp_2 + cp_3$ et donc $\text{Vect}(p_1, p_2, p_3) = W$. On déduit que $\mathcal{B} = (x^3 - 7^3, x^2 - 7^2, x - 7)$ est une base de W

- (ii) W est le sous-espace des polynômes $p \in V$ tels que p(7) = 0 et p(5) = 0. On peut prendre $\mathcal{B} = ((x-5)(x-7), x(x-5)(x-7))$. En effet $p \in V$ est un élément de W si et seulement si (x-5)(x-7) divise p, i.e. si et seulement si p est une combinaison linéaire de (x-5)(x-7) et x(x-5)(x-7). Donc Vect((x-5)(x-7), x(x-5)(x-7)) = W. Finalement il est facile de vérifier que $\{(x-5)(x-7), x(x-5)(x-7)\}$ est libre.
- (iii) W est le sous-espace des polynômes $p \in V$ tels que p(7) = 0, p(5) = 0 et p(3) = 0. On peut prendre $\mathcal{B} = ((x-3)(x-5)(x-7))$. En effet $p \in V$ est un élément de W si et seulement si (x-3)(x-5)(x-7) divise p, i.e. si et seulement si p est un multiple réel de (x-3)(x-5)(x-7).
- (b) Soit U le sous-ensemble des polynômes $p \in V$ tels que p(7) = 0, p(5) = 0, p(3) = 0 et p(1) = 0. On doit montrer que $U = \{0\}$. On remarque qu'un polynôme $p \in \mathbb{P}(\mathbb{R})$ tel que p(1) = p(3) = p(5) = p(7) = 0 doit etre divisible par (x-1)(x-3)(x-5)(x-7) et donc doit être soit le polynôme nul soit un polynôme de degré supérieur ou égal à 4. Or un polynôme de degré supérieur ou égal à 4 ne peut pas appartenir à

Exercice 7. Soit $V = \{(x, y, z) : x, y, z \in \mathbb{R}, x + y + z = 1\}$. Soient $v = (x, y, z) \in V$, $v_1 = (x_1, y_1, z_1) \in V$, $v_2 = (x_2, y_2, z_2) \in V$ et $r \in \mathbb{R}$. On a montré dans un exercice précédent que V est un \mathbb{R} -espace vectoriel sous les opérations suivantes :

$$v_1 + v_2 = (x_1, y_1, z_1) + (x_2, y_2, z_2) = (x_1 + x_2 - 1, y_1 + y_2, z_1 + z_2)$$

 et

$$rv = r(x, y, z) = (rx - r + 1, ry, rz).$$

Trouver une base de V.

Solution 7. On rappelle que l'on a montré que l'élément trivial de V est (1,0,0). Soit $v_1 = (0,1,0)$, alors v_1 est un élément non trivial de V. Soit $\lambda \in \mathbb{R}$. On a $\lambda v_1 = (-\lambda + 1, \lambda y, 0)$ et donc on déduit que $v_2 = (0,0,1) \notin \text{Vect}(v_1)$. Ceci montre que v_1 et v_2 sont linéairement indépendants.

On montre finalement que $\operatorname{Vect}(S) = V$ où $S = \{v_1, v_2\}$. Pour cela il suffit de montrer que $V \subset \operatorname{Vect}(S)$. En effet, comme $S \subset V$, on a, par définition, $\operatorname{Vect}(S) \subset V$. Soit $v \in V$. On peut écrire v = (-y - z + 1, y, z) où $y, z \in \mathbb{R}$. On a ainsi v = y(0, 1, 0) + z(0, 0, 1) et donc $v \in \operatorname{Vect}(S)$. On déduit que $V \subset \operatorname{Vect}(S)$ et donc $\operatorname{Vect}(S) = V$.

On a donc montré que ((0,1,0),(0,0,1)) est bien une base de V.

Exercice 8. Soit $A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{pmatrix} \in M_{2\times 4}(\mathbb{R})$. Soit W le sous espace vectoriel de \mathbb{R}^4 consistant de l'ensemble des solutions du système homogène AX = 0. Trouver une base de W.

Solution 8. Le système correspond à la matrice augmentée suivante :

$$B = \begin{pmatrix} 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 \end{pmatrix}$$

Avec l'opération élémentaire $L'_1 = L_1 - L_2$, on obtient :

$$B' = \begin{pmatrix} 1 & 0 & 1 & 0 & & 0 \\ 0 & 1 & 0 & 1 & & 0 \end{pmatrix}$$

On déduit que $W = \{(a, b, -a, -b) : a, b \in \mathbb{R}\}$ et que ((1, 0, -1, 0), (0, 1, 0, -1)) est une base de W.