אינפי 2מ'

מרצה אחראית: מיכל קליינשטרן

תוכן העניינים

5	פרק 1. טורי חזקות
5	1. הגדרה ודוגמאות
5	2. תחום ורדיוס ההתכנסות, נוסחת קושי הדמר, משפט דלמבר
6	3. משפט אבל
6	4. תכונות של טורי חזקות בתחום ההתכנסות
7	5. פונקציות הניתנות לפיתוח כטור חזקות
9	פרק 2. מבוא לפונקציות בשני משתנים
9	1. דוגמאות
9	\mathbb{R}^n - טופולוגיה ב 2
10	3. הגדרות בסיסיות
12	4. תחום
12	5. גבול בנקודה עבור שני משתנים

אינטגרל לא מסוים

1. הפונקציה הקדומה

 $F'\left(x
ight)=f\left(x
ight)$ אם מתקיים $F\left(x
ight)$ נקראת הפונקציה הקדומה של $F\left(x
ight)$ אם מתקיים אם הגדרה 1.1

I בקטע בקט $f\left(x
ight)$ בקטע פונקציה קדומה של פונקציה בקטע פונקציה בקטע

 $.\{F\left(x\right)+c\mid c\in\mathbb{R}\}$ הוא בקטע f בקטעות הקדומות כל הפונקציות של אזי האוסף אזי

.1.1 אינטגרלים מיידיים.

$$\int \cos x dx = \sin x + C$$
 (1)

$$\int \sin x dx = -\cos x + C$$
 (2)

$$\int e^x dx = e^x + C$$
 (3)

$$\int e^x dx = e^x + C \quad \text{(3)}$$

$$\int x^n dx = \frac{x^{n+1}}{n+1} + C \quad \text{(4)}$$

$$\int \frac{1}{x^2+1} = \arctan x + C \quad (5)$$

2. כללים למציאת פונקציה קדומה

.2.1 לינאריות האינטגרל הלא מסוים.

משפט 1.2 (לינאריות האינטגרל הלא מסוים)

אזי ,
$$a\in\mathbb{R}$$
 אזי (1)

$$\int af(x) dx = a \int f(x) dx$$

:אדיטיביות (2)

$$\int (f+g)(x) dx = \int f(x) dx + \int g(x) dx$$

.2.2 אינטגרציה בחלקים.

משפט 1.3 (נוסחת האינטגרציה בחלקים)

$$\int uv' = uv - \int u'v$$

.2.3 שיטת ההצבה.

פונקציה $f:J\to I$ ותהא הפיכה פונ' קדומה של f(x) פונ' קדומה פונ' פונ' פונ' פונ' בקטע הא כך בקטע כך בקטע גזירה והפיכה בקטf(x)

אזי:

$$\int f(x) dx = \int f(\varphi(t)) \cdot \varphi'(t) dt$$

2 פרק

אינטגרל מסוים

1. חלוקה של קטע, סכום דרבו עליון ותחתון

.1.1 חלוקה של קטע.

. מספרים ממשיים a < b יהיו a < b

יחלוקה של [a,b] היא קבוצה סופית של נקודות:

$$P = a = x_0 < x_1 < \ldots < x_n = b$$

.1.2 סכום דארבו.

 $f\left(x
ight)$ סכוס דארכו עליון - המתאים לחלוקה P הגדרה 2.2 סכוס דארכו ארכו יליון

$$U(f,P) = \sum_{i=1}^{n} M_i \Delta x_i$$

 $f\left(x
ight)$ ולפונקציה P המתאים לחלוקה - המתאו - הארכו ארכו סכוס מגדרה 2.3

$$L(f, P) = \sum_{i=1}^{n} m_i \Delta x_i$$

טענה [a,b], אזי מתקיים: חלוקה P תהא 2.1 טענה

$$M\left(b-a\right)\geq U\left(f,P\right)\geq L\left(f,P\right)\geq m\left(b-a\right)$$

2. אינטגרל עליון, אינטגרל תחתון, אינטגרביליות

.2.1 גישת דרבו.

[a,b] מוגדרת וחסומה בקטע מהא בקטע בקטע

:חיות של [a,b] מוגדר להיות אינטגרל עליון של

$$\int_{a}^{b} f = \inf_{P} U(f, P)$$

מוגדר [a,b] של בקטע של [a,b] אינטגרל תחתון אינטגרל בקטע בקטע ([a,b] מוגדרה מוגדרת תהא בקטע להיות:

$$\int_{\bar{a}}^{b} f = \sup_{P} L\left(f, P\right)$$

2. אינטגרל מסוים

8

אם: [a,b] אם: בקטע אינטגרבילית רימן בקטע 1.6 אם:

$$\int_{a}^{\bar{b}} f = \int_{a}^{b} f$$

.2.2 עידון.

[a,b] תהא P חלוקה של הקטע .P תהא P' אם P' נאמר שר P'

משפט העידון: משפט העידון:

תהא $f:[a,b] o\mathbb{R}$ חסומה. תהא P חלוקה של הקטע P מתקיים: לכל עידון P' של P מתקיים:

$$U(f, P') \le U(f, P)$$

L $(f, P') \ge L(f, P)$

.2.3 פרמטר החלוקה.

מסקנה N נקודות, אזי איי הוספת P' אם עידון אם (ממשפט העידון) אם מסקנה 2.1 מסקנה אזי מסקנה ווער)

$$\underbrace{\left(U\left(f,P\right)-L\left(f,P\right)\right)}_{\omega\left(f,P\right)}-\underbrace{\left(U\left(f,P'\right)-L\left(f,P'\right)\right)}_{\omega\left(f,P'\right)}\leq4NK\cdot\lambda\left(P\right)$$
 מכונה התנודה

כלומר,

$$0 \le \omega(f, P) - \omega(f, P') \le 4NK \cdot \lambda(f, P)$$

מסקנה 2.2 אם נגדיר:

$$A=\{U\left(f,P\right)\mid [a,b]$$
 של P חלוקה לכל $B=\{L\left(f,P\right)\mid [a,b]$ של P הלוקה לכל $a\geq b$ מתקיים $a\in A,\ b\in B$ אזי לכל

משפט 2.2 תהא $f:[a,b] o\mathbb{R}$ תהא 2.2 משפט

$$m\left(b-a\right) \leq \underbrace{\int_{\underline{a}}^{b} f}_{\sup B} \leq \underbrace{\int_{\underline{a}}^{\bar{b}} f}_{\inf A} \leq M\left(b-a\right)$$

$$.m = \inf_{[a,b]} f$$
 , $M = \sup_{[a,b]} f$ כאשר

4. סכומי רימן

9

בפרט, אם f אינטגרבילית ב-[a,b], אזי:

$$m(b-a) \le \int_a^b f \le M(b-a)$$

:משפט 2.3 תהא $f:[a,b] o\mathbb{R}$ תהא

$$m(b-a) \le \int_a^b f \le \int_a^{\bar{b}} f \le M(b-a)$$

3. תנאים שקולים לאינטגרביליות

משפט 2.4 (תנאים שקולים לאינטגרביליות) תהא תהא $f:[a,b] o \mathbb{R}$ משפט שקולים לאינטגרביליות) שקולים:

- [a,b] אינטגרבילית בקטע f (1)
- -ע כך P כך חלוקה $\varepsilon>0$ לכל (2)

$$\omega\left(f,P\right)\coloneqq U\left(f,P\right)-L\left(f,P\right)<\varepsilon$$

(התנודה קטנה כרצוננו)

(3) מתקיים: $\lambda\left(f,P\right)<\delta$ קיימת $\delta>0$ כך שלכל חלוקה המקיימת $\delta>0$ מתקיים:

$$\omega\left(f,P\right)<\varepsilon$$

4. סכומי רימן

.(בכל הנקודות בקטע). מוגדרת (בכל הנקודות בקטע) אגדרה הגדרה (חבא תהא תהא (סכום רימן) הגדרה הגדרה (סכום רימן).

[a,b] חלוקה של חקטע P

בכל תת-קטע $i \leq i \leq n$ נבחר נקודה $i \leq i \leq n$ כרצוננו.

יי: מוגדר מייג מוגדר מייג ולבחירת הנקודות לחלוקה P

$$R(f, P, c_i) := \sum_{i=1}^{n} f(c_i) \Delta x_i$$

:טענה c_i מתקיים לכל בחירה של (תוכיחו) מתקיים

$$L(f, P) \le R(f, P, c_i) \le U(f, P)$$

.4.1 הגדרת רימן לאינטגרביליות.

 $f:[a,b] o\mathbb{R}$ תהא (אינטגרביליות לפי רימן) אינטגרביליות פי הגדרה

קיים $\varepsilon>0$ קיים אזי t>0 אזי אינטגרבילית בקטע אזי t>0, כך אזי t>0 איזי אינטגרבילית שלכל חלוקה אונט אונכל חלוקה אונכל חל

$$\left| \sum_{i=1}^{n} R(f, P, c_I) - I \right| < \varepsilon$$

2. אינטגרל מסוים

5. תנאים מספיקים לאינטגרביליות

מונוטונית, מונוטוניות $f:[a,b] o \mathbb{R}$ תהא תהא אינטגרביליות גוררת אינטגרבילית רימן בקטע [a,b] אזי אינטגרבילית רימן בקטע

רציפה, $f:[a,b] o \mathbb{R}$ תהא תהא אינטגרביליות גוררת אינטגרביליות) 2.6 משפט

[a,b]- אזי אינטגרבילית אינט f

משפט 2.7 (רציפה פרט למספר סופי של נקודות) תהא $f:[a,b] o \mathbb{R}$ תהא נקודות) משפט עם נק' אי רציפות מסוג עיקרית).

[a,b] אינטגרבילית רימן בקטע אזי א נקודות, אזי למספר סופי של למספר רציפה f

6. תכונות של פונקציות אינטגרביליות

הגדרה 2.10 (סימונים מקובלים)

$$\int_a^b f = -\int_b^a f \quad (1)$$

$$\int_a^a f = 0$$
 (2)

מינוס. שלילית אז האינטגרל יהיה בסימן מינוס. f

(a < b < c) בקטעים (אדיטיביות) תהא f אינטגרבילית בקטעים (אדיטיביות) משפט 2.8 משפט

ומתקיים: [a,c] ומתקיים אינטגרבילית אינטגרבילית

$$\int_{a}^{c} f = \int_{a}^{b} f + \int_{b}^{c} f$$

אינט המתאימים, אזי: תהא f אינטגרבילית אוריינטציה אוריינטציה) אוינטגרבילית אינטגרבילית עם אוריינטציה

$$\int_{a}^{b} f + \int_{b}^{c} f = \int_{a}^{c} f$$

 $(\mathbf{a},\mathbf{b},\mathbf{c}$ בין לסדר לסדר כל חוזה ללא

צריך להוכיח את כל האפשרויות:

- .((2.10) אם a=b=c טריוויאלי (לפי הגדרה (2.10)).
 - .וכחנו a < b < c אם (2)
- (3) את כל שאר הווריאציות ניתן להוכיח בקלות באמצעות ההגדרות והדברים שהוכחנו.

[a,b] אינטגרביליות (תת-קטע) תהא אינטגרביליות עוברת עוברת אינטגרביליות (אינטגרביליות אינטגרביליות הc,d]אזי לכל לכל ל $c< d \leq b$ אזי לכל

מתקיים: $x \in [a,b]$ הרכבה) בקטע a,b, כך שלכל a,b אינטגרבילית אינטגרבילית משפט 2.11 (הרכבה)

$$c \le f(x) \le d$$

 $\left[a,b\right]$ אינטגרבילית בקטע אינטגרבילית ($\left(\varphi\circ f\right)\left(x\right)$ הפונקציה רציפה, רציפה $\varphi:\left[c,d\right]\to\mathbb{R}$ אזי לכל

lpha f + g הפונקציה $lpha \in \mathbb{R}$ אזי לכל (משפט 2.12 הפונקציה a,b) אינטגרביליות הייו (אינטגרבילית בקטע הייו a,b), ומתקיים:

$$\int_a^b (\alpha f + g) = \alpha \int_a^b f + \int_a^b g$$

(בהוכחה כדאי לפצל ל-2 משפטים)

 $\int_a^b f \geq 0$ אזי (אי-שליליות, אזי בקטע בקטע אינטגרבילית תהא $f \geq 0$ תהא (אי-שליליות) משפט 2.13 משפט

[a,b] משפט 2.14 (מונוטוניות האינטגרל) יהיו אינטגרביליות בקטע 2.14 משפט ל $\int_a^b f \le \int_a^b g$, איז אי $f(x) \le g(x)$ מתקיים מתקיים ב

: אזי: ,[a,b] אינטגרבילית אינטגרבילית המשולש האינטגרלי) אזיי אינטגרבילית אוויון המשולש אזיי

$$\left| \int_{a}^{b} f \right| \le \int_{a}^{b} |f|$$

טענה 2.3 (רציפות במספר סופי של נקודות גוררת אינטגרביליות)

תהא חסומה ורציפה פרט למספר חופי של נקודות. תהא $f:[a,b] o \mathbb{R}$ אזי אינטגרבילית בקטע [a,b].

$$f\left(x
ight) = egin{cases} \sinrac{1}{x} & x
eq 0 \\ 0 & x = 0 \end{cases}$$
 אינטגרבילית בקטע 2.1 אינטגרבילית בקטע

טענה 2.4 (שינוי במספר סופי של נקודות לא משפיע על האינטגרל)

[a,b] אינטגרבילית בקטע f

תהא קבי טופי של נקודות, בד אככל $g:[a,b]\to\mathbb{R}$ תהא תהא הא $f\left(x\right)=g\left(x\right)$ מתקיים: $f\left(x\right)=g\left(x\right)$

 $.\int_a^b f = \int_a^b g$ אזי אינטגרבילית, ומתקיים: g

.6.1 נקודות למחשבה (תרגילים בנושא אי-שליליות).

מסקנה 2.3 (נוכל ליצור הרבה פונקציות אינטגרביליות)

אז: [a,b] אזנטגרבילית אינטגרבילית אינטגרבילית אינטגרבילית

- [a,b]- אינטגרבילית ה f^n , $n\in\mathbb{N}$ לכל (1)
 - [a,b]אינטגרבילית ב-|f| (2)
- [a,b]אינטגרבילית ב-[a,b] אינטגרבילית היוה[a,b] אינטגרבילית ב-[a,b] אוי אינטגרבילית ב-[a,b]

2. אינטגרל מסוים 12

נתבונן בפונקציה:

$$f(x) = \begin{cases} x & x \neq 0 \\ 5 & x = 0 \end{cases}$$

האם $\frac{1}{f}$ אינטגרבילית בקטע [0,1]? $\inf_{[0,1]} f = 0$ כי בקטע כי $\frac{1}{f}$ לא חסומה בקטע כי

f,g אינטגרביליות בקטע אינטגרביליות יהיא אינטגרביליות היא אינטגרביליות פונ' אינטגרביליות מסקנה 2.4 מסקנה [a,b] אינטגרבילית בקטע $f\cdot g$ אזי

הוכחה.

$$f \cdot g = \frac{1}{2} (f + g)^2 - f^2 - g^2$$

לפי התכונות והמסקנות.

7. משפט ערך הביניים האינטגרלי

[a,b] טענה 2.5 (משפט ערך הביניים האינטגרלי) עהא א פונקציה רציפה בקטע

[a,b] בקטע בקטע חיובית חיובית אינטגרבילית פונקציה פונקציה פונקציה פונקציה בקטע

אזי, קיימת נקודה $a \leq c \leq b$ כך שמתקיים:

$$\int_{a}^{b} f \cdot g = f(c) \int_{a}^{b} g$$

המשפט היסודי של החדו"א

1. פונקציה צוברת שטח

לכל [a,x] פטט (פונקציה רימן קטט אינטגרבילית האא אינטגרבילית (פונקציה צוברת אטח) (הגדרה 1.5 פונקציה אינטגרבילית הא $a \leq x \leq b$

$$F\left(x\right) \triangleq \int_{a}^{x} f\left(t\right) dt$$

משפט 3.1 (הפונקציה צוברת השטח של אינטגרבילית רציפה בקטע)

[a,b]ב-ברעיפה - $F\left(x\right)=\int_{a}^{x}f$ הפונקציה אזי הפונקע בקטע - רציפה אינטגרבילית אינטגרבילית הפונקציה הפונקציה הפונקציה אינטגרבילית בקטע

2. המשפט היסודי בגרסה הפשוטה ונוסחת ניוטון-לייבניץ

משפט 3.2 (המשפט היסודי של החדו"א - גרסה פשוטה)

. פונקציה אינטגרבילית פונקציה $f:[a,b] o \mathbb{R}$

 $x \in [a,b]$: נגדיר לכל

$$F\left(x\right) = \int_{a}^{x} f\left(t\right) \mathrm{d}t$$

אם , $a \leq x_0 \leq b$ גזירה בנקודה $F\left(x\right)$ אזי , x_0 ומתקיים:

$$F'\left(x_0\right) = f\left(x_0\right)$$

מסקנה 3.1 לכל פונקציה רציפה בקטע סגור יש פונקציה קדומה, כי עבור:

$$F(x) = \int_{a}^{x} f(t) dt$$

 $F'\left(x
ight)=f\left(x
ight)$ מתקיים $x\in\left[a,b
ight]$ אם לפל לפי הקטע, לפי בקטע, לפי המדרה על פונקציה קדומה.

טענה 3.1 (נוסחת ניוטון-לייבניץ (N-L) תהא א $f:[a,b] o \mathbb{R}$ תהא ((N-L) פונקציה ניוטון-לייבניץ קדומה של f, אזי:

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$

3. כלל לייבניץ לאינטגרל מסוים

,[a,b] תהא f רציפה בקטע לאינטגרל אינטגרל (כלל לייבניץ אינטגרל מסוים) תהא אינ: $a \leq \alpha(x)$, $\beta(x) \leq b$ - ותהיינה $\alpha(x)$, $\beta(x)$ פונקציות גזירות כך

$$G\left(x\right) = \int_{\alpha(x)}^{\beta(x)} f$$

גזירה, ומתקיים:

$$G'(x) = f(\beta(x)) \cdot \beta'(x) - f(\alpha(x)) \cdot \alpha'(x)$$

ללא הוכחה.

4. המשפט היסודי - הגרסה המלאה

משפט 3.4 (המשפט היסודי - הגרסה המלאה)

[a,b] בקטע רציפה רציפה ותהא [a,b] ותהא אינטגרבילית בקטע

אם לכל F , פרט אולי למספר סופי של נקודות, הפונקציה אולי מחלי מרט , מ $a \leq x \leq b$, אזי: $F'\left(x\right) = f\left(x\right)$

$$\int_{a}^{b} f = F(b) - F(a)$$

5. שיטות אינטגרציה של אינטגרל מסוים ויישומים של המשפט היסודי

.5.1 שיטות אינטגרציה של אינטגרל מסוים.

.[a,b] עטענה 3.2 (אינטגרציה בחלקים) עו ההיינה עו $u\left(x
ight)$ תהיינה בחלקים) אינטגרציה בחלקים

(פרט אולי למספר סופי של נקודות), ופרט (פרט בקטע [a,b] אם אינטגרביליות u,v אינטגרביליות בu',v' אינטגרביליות ב

$$\int_a^b u'v = uv|_a^b - \int_a^b uv'$$

f:[a,b] עענה בקטע ההצבה תהא $f:[a,b]
ightarrow \mathbb{R}$ תהא

ותהא ופי של נקודות). רציפה ב-[a,b] וגזירה (פרט אולי למספר סופי של נקודות). נתוך ע יותהא $\psi:[\alpha,\beta]\to[a,b]$ אזי: נתוך ע אינטגרבילית, ו- $\psi:[\alpha,\beta]=b$ יותור אינטגרבילית, וי

$$\int_{a}^{b} f(x) dx = \int_{\alpha}^{\beta} f(\psi(t)) \cdot \psi'(t) dt$$

.5.2 שימושים ויישומים של אינטגרל מסוים.

 $\mbox{,}[a,b]$ אינטגרבילית אינטגרבילית ע"י גבול סכומי דרבו/רימן) אינטגרבילית משפט 3.5 משפט משפט אינטגרל ע

:אז לכל סדרה של חלוקות או $\{P_n\}_{n=1}^\infty$ המקיימת

$$\lim_{n\to\infty}\lambda\left(P_n\right)=0$$

מתקיים:

$$\lim_{n\to\infty}L\left(f,P_{n}\right)=\lim_{n\to\infty}U\left(f,P_{n}\right)=\int_{a}^{b}f$$

$$: \! x_{i-1}^{(n)} \leq c_i^{(n)} \leq x_i^{(n)}$$
 ובנוסף, לכל בחירה של

$$\lim_{n \to \infty} R\left(f, c_i^{(n)}, P_n\right) = \int_a^b f$$

אינטגרל מוכלל

1. סוגים של אינטגרלים מוכללים

אינטגרבילית בקטע $f:[a,\infty]\to\mathbb{R}$ תהא חסום לא בתחום מוכלל בתחום אינטגרבילית הגדרה אינטגרב (a, M>aלכל בתחום אם קיים הגבול

$$\lim_{M \to \infty} \int_{a}^{M} f\left(x\right) \mathrm{d}x$$

נגדיר:

$$\int_{a}^{\infty} f(x) dx \triangleq \lim_{M \to \infty} \int_{a}^{M} f(x) dx$$

- אם הגבול קיים (מספר סופי), נאמר שהאינטגרל מתכנס.
- אם הגבול לא קיים, נאמר שהאינטגרל מתכזר (ואז האינטגרל המוכלל אינו מוגדר!)

הגדרה להיות כסכיכה מווקבת (יכולה להיות של פונקציה) תהא הגדרה להיות נקודה הינגולרית של פונקציה) תהא הגדרה x_0 של היות גם תה-צדדית) של הינגולרית של פונקציה הינגולרית של היות גם הינגולרית של הינגולרית של פונקציה הינגולרית של הינגולרית של פונקציה הינגולרית הינגולרי

(יכולה להיות חד צדדית), אם בכל סביבה של x_0 היא היא נקודה סינגולרית של f, אם בכל סביבה של x_0 היא היות חד צדדית), אינה חסומה.

 $f:(a,b] o \mathbb{R}$ אינטגרל חסום בתחום אל פונקציה של פונקציה מוכלל של אינטגרל (אינטגרל מוכלל ל בקטע [x,b] לכל אינטגרבילית בקטע

:יי: מוגדר ע"י: האינטגרל המוכלל של המוכלל המוכלל היי

$$\int_{a}^{b} f = \lim_{x \to a} \int_{x}^{b} f$$

אם הגבול קיים, נאמר שהאינטגרל מתכוס.

הגדרה 4.4 (אינטגרל מוכלל של פונקציה לא חסומה בתחום לא חסום)

הגדרנו אינטגרל מוכלל עבור תחום לא חסום ועבור פונקציה לא חסומה. מה קורה אם יש "משני הסוגים"? 4. אינטגרל מוכלל

18

צריך לפצל לסכום סופי של אינטגרלים.

רק אם כל המחוברים בסכום מתכנסים, אז האינטגרל מתכנס.

2. קריטריון קושי להתכנסות אינטגרל מוכלל

משפט 4.1 (קריטריון קושי להתכנסות אינטגרל מוכלל)

A,M>a לכל [a,M] אינטגרבילית אינטגרבילית $f:[a,\infty]
ightarrow \mathbb{R}$ תהא

:אזי האינטגרל המוכלל לחכנס מתכנס אם ורק אם אזי האינטגרל המוכלל

 $y>x>X_0$ כך שלכל arepsilon>0 קיים arepsilon>0

$$\left| \int_{x}^{y} f \right| < \varepsilon$$

.P>1 מתכנס עבור $\int_a^\infty x^P \sin x \mathrm{d}x$ ישי קריטריון בעזרת בעזרת תוכיחו עצמי: תרגול עצמי

a < x < b לכל [x,b] לכל בקטע הא ל אינטגרבילית בקטע (2) מרכנס לכל $\delta > 0$ קיימת $\delta > 0$ כך שלכל $\delta > 0$ מתכנס לכל $\delta > 0$ מתכנס מתקיים:

$$\left| \int_{x}^{y} f \right| < \varepsilon$$

הוכחות (1) דומה לחישוב שמופיע בדוגמה (4.11). תנסו להוכיח את (2).

3. מבחני התכנסות עבור אינטגרנד אי שלילי

משפט 4.2 (האינטגרל המוכלל מתכנס אם"ם הפונקציה צוברת השטח חסומה)

- , אזי אנטגר[a,M] לכל (a,M) אינטגרבילית אינטגרבילית אינט אנכל $f\geq 0$ אזי (בן) תהא הא f מתכנס המכנס f מתכנס f
- , אינט, אינט, אינט (a< x< b לכל (a,b) אינט, אינטגרבילית (2) אינטגרבילית אינט (a< x< b) אינט לכל לכל האינט האינ $f\geq 0$ מתכנס המכנס לa

משפט 4.3 (מבחן השוואה) תהינה f,g פונקציות אי-שליליות בקרן (מבחן השוואה) משפט 4.3 (מבחן השוואה) לכל $g\left(x\right) \leq g\left(x\right)$ כך ש $f\left(x\right) \leq g\left(x\right)$ לכל $f\left(x\right) \leq g\left(x\right)$ לכל $f\left(x\right) \leq g\left(x\right)$ לכל $f\left(x\right) \leq g\left(x\right)$ לכל מבחן לכן שוואה

אם
$$\int_a^\infty f$$
 מתכנס, אז $\int_a^\infty g$ מתכנס.

באופן שקול:

. אם
$$\int_a^\infty g$$
 מתבדר, אז $\int_a^\infty f$ מתבדר

משפט 4.4 (מבחן השוואה גבולי)

M>a לכל [a,M] אינטגרביליות בקטע (a,∞) לכל בקרות אי-שליליות אי-שליליות הינה f,g

אם
$$L<\infty$$
 נאשר כאשר הוו $m_{x o\infty}$ $\frac{f(x)}{g(x)}=L$ אם הוחת הווא הוו $\int_a^\infty g\iff$ מתכנס. מתכנסים או מתבדרים הדיו. כלומר, $\int_a^\infty f$ -1 ה

4. התכנסות בהחלט

הגדרה 4.5 (התכנסות בהחלט)

- x>a לכל [a,x] לכל בקטע האינטגרבילית (1) תהא ל אינטגרבילית בקטע $\int_a^\infty |f|$ מתכנס. נאמר ש- $\int_a^\infty f$
 - a < x < b לכל [x,b] לכל בקטע קאינטגרבילית (2) תהא א שינטגר אם $\int_a^b |f|$ מתכנס. נאמר אם $\int_a^b f$

משפט 4.5 (התכנסות בהחלט גוררת התכנסות) עבור (2):

עבוד (ב). עבוד לב). אם
$$f$$
 אינטגרבילית בקטע $[x,b]$ לכל $[x,b]$ לכל $[x,b]$ אזי אם $\int_a^b f$ מתכנס. אזי לכל $\int_a^b f$ מתכנס.

5. התכנסות בתנאי

. מתכנס, אבל אב מתכנס, אם $\int_a^\infty f$ מתכנס מתכנס נאמר ש- $\int_a^\infty f$ מתכנס מתכנס, אבל אב בהחלט.

6. מבחן דיריכלה ומבחן אבל

משפט 4.6 (מבחן דיריכלה) תהינה פונקציות המוגדרות תהינה f,gתהינה תהיכלה) את משפט משפט המיימת הייכלה המיימת ההייכלה התנאים הבאים:

- $[a,\infty)$ -ביפה ב-f (1)
- $[a,\infty)$ -ם חסומה $F\left(x
 ight)=\int_{a}^{x}f$ השטח צוברת הפונקציה צוברת השטח (2)
 - $.[a,\infty)$ -ב גזירה ברציפות קg (3)
 - (עולה או יורדת), כך שמתקיים: g

$$\lim_{x\to\infty}g\left(x\right)=0$$

.אזי
$$\int_a^\infty f \cdot g$$
 מתכנס

(כך שמתקיים: הינה f,g מוגדרות משפט 4.7 (מבחן אבל) מהינה להינה f,g

- .רציפה בקרן f (1)
- .מתכנס $\int_a^\infty f$ (2)
- $.[a,\infty)$ מונוטונית חסומה, גזירה ברציפות מונוטונית g (3)

4. אינטגרל מוכלל

. אזי $\int_a^\infty f \cdot g$ מתכנס

טורי מספרים

1. טור של סדרת מספרים ממשיים

הגדרה 5.1 (טור של סדרת מספרים ממשיים)

, $\{a_n\}_{n=1}^\infty$ של מספרים ממשיים (sequence) בהינתן בהינתן בהינתן (series) למוגדר הביטוי:

$$a_1 + \ldots + a_n + \ldots = \sum_{n=1}^{\infty} a_n$$

: נגדיר: מספרים. סכום סור איה הגדרה טור) יהא של טור) יהא י-n ישל סכום חלקי הגדרה הגדרה (סכום חלקי של טור)

$$S_n = \sum_{k=1}^n a_n$$

בתור הסכום החלקי ה-n-י.

. היא סדרת סכומים חלקיים סדרת סדרת סדרת סדרת חלקיים חלקיים חלקיים החלקיים סדרת סכומים חלקיים.

הסכומים סדרת מספרים) מתכנס, אם המור הסכומים (התכנסות של טור מספרים) הגדרה החלקיים מתכנסת. S_n מתכנסת.

במקרה זה נגדיר:

$$\sum_{n=1}^{\infty} a_n = \lim_{n \to \infty} S_n$$

:מתכנס אם הטור הטור משפט (משפט להתכנסות להתכנסות להתכנסות להתכנסות להתכנסות של מורים) משפט 5.1 משפט להתכנסות של להתכנסות של אחרים

$$\left|\sum_{k=n+1}^{m}a_{k}\right|<\varepsilon$$
 מתקיים: $m>n>N_{0}$ כך שלכל לכל קיים $\varepsilon>0$ לכל

 $a_n \underset{n \to \infty}{\longrightarrow} 0$ מתכנס, מתכנס, משפט 5.2 (תנאי הכרחי להתכנסות טור מספרים) אם בחים אזיי להתכנסות משפט

מסקנה 5.1 אם $\sum_{n=1}^{\infty}a_n$ אזי a_n טתכדר.

משפט 5.3 (אריתמטיקה של טורים) יהיו $\sum_{n=1}^\infty b_n$ ו- $\sum_{n=1}^\infty a_n$ טורים מתכנסים, אזי הטור $\sum_{n=1}^\infty \left(\alpha a_n + b_n\right)$ מתכנס, ומתקיים:

$$\sum_{n=1}^{\infty} (\alpha a_n + b_n) = \alpha \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n$$

5. טורי מספרים 22

(נובע מיידית מאריתמטיקה עבור סדרות.)

2. מבחני התכנסות לטורים חיוביים

 $n\in\mathbb{N}$ לכל $a_n\geq 0$ נקרא חיובי, אם הגדרה נקרא טור מספרים חיובי) טור מספרים חיובי

משפט 5.4 טור חיובי מתכנס, אם"ם סדרת הסכומים החלקיים (S_n) חסומה.

הגדרה 5.6 (טור חסום) אם סדרת הסכומים החלקיים חסומה, נאמר שהטור חסוס.

משפט 5.5 (מבחן השוואה לטורים חיוביים)

 $n\in\mathbb{N}$ יהיו $0\leq a_n\leq b_n$ יהיו יהיו מתכנס. מתכנס, אז $\sum_{n=1}^\infty a_n$ מתכנס.

בע שמתקיים: , $n\in\mathbb{N}$ לכל לכל ההשוואה הגבולי לטורים חיוביים) יהיו יהיו אבולי לטורים הגבולי ההשוואה הגבולי לטורים חיוביים

$$\lim_{n \to \infty} \frac{a_n}{b_n} = L$$

- . אם אם מתכנסים או $\sum_{n=1}^\infty b_n$ ו $\sum_{n=1}^\infty a_n$ הטורים אז הטורים אם סג $0 < L < \infty$
 - . מתכנס אז $\sum_{n=1}^{\infty}a_n$ מתכנס אז $\sum_{n=1}^{\infty}b_n$ מתכנס L=0
 - . מתכנס $\sum_{n=1}^\infty b_n$ אם הכנס אז $\sum_{n=1}^\infty a_n$ מתכנס אז ג $L=\infty$

3. מבחני השורש והמנה לטורים

.3.1 מבחו השורש.

(בך שמתקיים: אבחן השורש לטורים) לכל $a_n>0$ תהא לטורים) נעד משפט 5.7 משפט

$$\limsup_{n \to \infty} \sqrt[n]{a_n} = q$$

- .אם אור מתכנס אז q < 1
- אז הטור מתבדר. q>1 אם (2)
- .אם q=1 אם q=1 אם (3)

.3.2 מבחן המנה לטורים.

כך שמתקיים: $n\in\mathbb{N}$ לכל $a_n>0$ תהא (מבחן - דלמבר לטורים המנה (מבחן המנה לטורים המנה לטורים המ

$$\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=q$$

.מתכנס $\sum_{n=1}^{\infty}a_n$ אזי q<1 מתכנס (1)

23 . טורים כלליים

מתבדר.
$$\sum_{n=1}^{\infty}a_n$$
 אזי $q>1$ מתבדר.

וה. אם q=1, אז לא ניתן לדעת ממבחן זה.

4. מבחן האינטגרל

משפט 5.9 (מבחן האינטגרל)

תהא $f:[1,\infty) \to \mathbb{R}$ מונקציה אי-שלילית ומונוטונית יורדת. נסמן: $a_n \coloneqq f(n) \geq 0$

מתכנס
$$\int_{1}^{\infty} f(x) \, \mathrm{d}x \iff \sum_{n=1}^{\infty} a_n$$

מסקנה 5.2 מתקיים:

$$\sum_{n=2}^{\infty} f(n) \le \int_{1}^{\infty} f(x) dx \le \sum_{n=1}^{\infty} f(n)$$

מסקנה 5.3 (מהוכחת מבחן האינטגרל)

$$\lim_{n \to \infty} \sum_{k=1}^{n} f(k) - \int_{1}^{n} f(x) \, \mathrm{d}x$$

5. קבוע אוילר-מסקרוני

. משפט 5.10 משפט 5.10 תהא $a_n>0$ תהא

$$\displaystyle\lim_{n o\infty}n\cdot a_n=0$$
 :אם הטור $\displaystyle\sum_{n=1}^{\infty}a_n$ מתכנס, אזי

6. טורים עם סימנים מתחלפים, טורי לייבניץ

 $a_n \underset{n o \infty}{\longrightarrow} 0$) טור לייבניץ) מונוטונית $a_n > 0$ מונוטונית (טור לייבניץ) הגדרה $\sum_{n=1}^\infty (-1)^{n+1} a_n$ הטור הטור

(מבחן לייבניץ) תהא a_n סדרה אי שלילית, מונוטונית יורדת לאפס, משפט 5.11 משפט

. מתכנס
$$\sum_{n=1}^{\infty} \left(-1\right)^{n+1} a_n$$
 מתכנס אזי הטור $S=\sum_{n=1}^{\infty} \left(-1\right)^{n+1} a_n$ נסמן

$$0 < S < a_1$$

$$|S-S_n| \leq a_{n+1}$$
 אס נסמן $S_n = \sum_{k=1}^n \left(-1
ight)^{k+1} a_k$ אס נסמן

7. טורים כלליים

הגדרה 5.8 (טור מתכנס בהחלט)

. מתכנס $\sum_{n=1}^{\infty}|a_n|$ מתכנס מתכנס מתכנס מתכנס מתכנס בהטור $\sum_{n=1}^{\infty}a_n$

5. טורי מספרים

הגדרה 5.9 (טור מתכנס בתנאי)

. מתבור פתכנס אבל שהטור מתבדר, מתבדר, מתבדר בתאני מתכנס אבל $\sum_{n=1}^{\infty} |a_n|$ אם

משפט 5.12 (טור שמתכנס בהחלט הוא מתכנס)

. מתכנס הוא אזי אזי מתכנס מתכנס מתכנס הטור $\sum_{n=1}^{\infty} a_n$

8. מבחני אבל ודיריכלה לטורים

משפט 5.13 (נוסחת הסכימה של אבל) יהיו a_1,\dots,a_n ו-, a_1,\dots,a_n מספרים ממשיים. $B_k=\sum_{i=1}^k b_i$ ו-, $B_0=0$

$$\sum_{k=1}^{n} a_n b_n = a_n B_n - \sum_{k=1}^{n-1} B_k (a_{k+1} - a_k)$$

. טור חסום האט $\sum_{n=1}^\infty b_n$ יהא יריכלה) אור משפט 5.14 משפט 5.14 משפט

. סדרה מונוטונית השואפת לאפס מהא תהא a_n

.מתכנס $\sum_{n=1}^{\infty}a_nb_n$ מתכנס

משפט 5.15 (מבחן אבל) יהא $\sum_{n=1}^\infty b_n$ טור מתכנס, ותהא סדרה פוגוטונית וחסומה, למשפט 5.15 מתכנס. (ניתן להוכיח בעזרת דיריכלה.) אזי הטור $\sum_{n=1}^\infty a_n b_n$ מתכנס.

9. שינוי סדר סכימה בטור, משפט רימן

משפט 5.16 (בטורים מתכנסים בהחלט, "חוקי המתמטיקה עובדים")

אי שינוי שינוי שינוי שינוי שינוי אזי אי בל טור איברים $\sum_{n=1}^\infty a_n$ אם הטור א $\sum_{n=1}^\infty a_n$ מתכנס בהחלט לאותו סכום.

משפט 5.17 (משפט רימן - "התכנסות בתנאי היא חלשה")

את מחדש לסדר לסדר מחדש את $S\in\mathbb{R}$ אמשר לכל מספר מתנאי, אזי לכל מתכנס אור יהא הא $\sum_{n=1}^\infty a_n$ איברי הטור כך שיתקבל טור מתכנס שסכומו איברי הטור כך איתקבל אור מתכנס

 $\pm\infty$ יתר על כן, אפשר לסדר את איברי הטור כך שהסכום יהיה

משפט 5.18 (הפעלת סוגריים לא משפיעה על התכנסות הטור - אסוציאטיביות)

אם הטור ממנו ע"י הכנסת כל (במובן הרחב), אז כל טור מתכנס הכנסת $\sum_{n=1}^{\infty} a_n$ אם הטור אם מתכנס לאותו סכום.

סדרות של פונקציות

1. התכנסות נקודתית

 $\{f_n\left(x
ight)\}_{n=1}^\infty$ התכנסות (התכנסות נקודתית של סדרת פונקציות) נאמר הגדרה 6.1 (התכנסות נקודתית הבתחום $I\subseteq\mathbb{R}$ לפונקציה גבולית $f:I\to\mathbb{R}$ אם לכל $x\in I$ מתקיים:

$$f\left(x\right) = \lim_{n \to \infty} f_n\left(x\right)$$

2. התכנסות סדרת פונקציות במידה שווה

הגדרה 6.2 (התכנסות של סדרת פונקציות במידה שווה)

 ${\it ,}I\subseteq\mathbb{R}$ סדרת בתחום המוגדרות המוגדרות סדרת $\left\{ f_{n}\left(x\right) \right\} _{n=1}^{\infty}$ תהא $f:I\rightarrow\mathbb{R}$ פונקציה.

, $f\left(x
ight)$ ה שווה כמיזה מתכנסת אמר ל $\left\{f_{n}\left(x
ight)\right\}_{n=1}^{\infty}$ שתכנסת הפונקציות (Uniformly Convergent לועזית:

אם לכל $x \in I$ אם לכל $n > N_0$ כך שלכל אם $n > N_0$ מתקיים:

$$|f_n(x) - f(x)| < \varepsilon$$

משפט 6.1 התכנסות במ"ש גוררת התכנסות נקודתית (נובע מייזית מהגדרת התנכסות במ"ש).

 $I\subseteq\mathbb{R}$ משפט 6.2 (תנאי $f_n\left(x
ight)
brace_{n=1}^\infty$ תהא (M משפט 6.2 (תנאי $f:I o\mathbb{R}$

$$M_n = \sup_{I} |f_n(x) - f(x)|$$

 $M_n \underset{n o \infty}{\longrightarrow} 0$ במ"ש, אם"ם $f_n o f$ אזי

משפט 6.3 (תנאי קושי להתכנסות במ"ש)

לכל $x\in I$ לכל , $m,n>N_0$ כך שלכל , $N_0\in\mathbb{N}$ קיים $\varepsilon>0$ לכל לכל כל קיים $|f_m\left(x\right)-f_n\left(x\right)|<\varepsilon$

3. סדרת פונקציות רציפות

משפט 6.4 (סדרת פונקציות רציפות מתכנסת במ"ש לפונקציית גבול רציפה)

4. אינטגרציה של סדרת פונקציות

משפט 6.5 (אינטגרציה / הכנסת הגבול עבור סדרות אינטג' מתכנסות במ"ש)

 $n\in\mathbb{N}$ לכל .
[a,b]בקטע בקטע אינטגרביליות פונקציות סדרת
 $\left\{f_{n}\right\}_{n=1}^{\infty}$ תהא

יומתקיים: ומתקיים בקטע [a,b]במ"ש בקטע בקטע בקטע בקטע בקטע בקטע במ"ש בקטע האינטגרבילית בקטע ב

$$\lim_{n\to\infty}\underbrace{\int_{a}^{b}f_{n}\left(x\right)\mathrm{d}x}_{\text{UTLA average}}=\int_{a}^{b}\underbrace{\left(\lim_{n\to\infty}f_{n}\left(x\right)\right)}_{f\left(x\right)}\mathrm{d}x=\int_{a}^{b}f\left(x\right)\mathrm{d}x$$

מסקנה 6.1 (סדרת צוברות השטח מתכנסת במ"ש לצוברת השטח של פונקציית הגבול)

 $\left[a,b\right]$ סדרת $f\left(x\right)$ לפונקציה במ"ש לפונקציות פונקציות סדרת פונקציות סדרת $\left\{ f_{n}\left(x\right)\right\} _{n=1}^{\infty}$

 $\left[a,b\right]$ בקטע $n\in\mathbb{N}$ לכל אינטגרביליות אינטגר $f_{n}\left(x\right)$ ש-

 $a \leq x \leq b$ נסמן לכל

$$F_n\left(x\right) = \int_a^x f_n\left(x\right) \mathrm{d}x$$

ונסמן:

$$F(x) = \int_{a}^{x} f(t) dt$$

.[a,b]במ"ש בקטע $F_{n}\left(x\right)\twoheadrightarrow F\left(x\right)$ הפונקציות סדרת אזי

תוכיחו לבד.

 $f\left(x
ight)$ אם סדרת פונקציות חסומות מתכנסת במ"ש בתחום D לפונקציה לפונקציה $f\left(x
ight)$ אזי D-ם חסומה ב-

5. גזירות של סדרת פונקציות

כך שמתקיים: סדרת (a,b) בקטע (a,b) סדרת פונקציות סדרת (a,b) סדרת (גזירות) משפט 6.6 (גזירות) משפט

- $n\in\mathbb{N}$ לכל (a,b) -גזירה ב $f_{n}\left(x
 ight)$ (1)
- מתכנסת במ"ש $\left\{ f_{n}^{\prime}\left(x
 ight)
 ight\} _{n=1}^{\infty}$ מחכנסת (2)
- מתכנסת. $\left\{ f_{n}\left(x_{0}\right)\right\} _{n=1}^{\infty}$ קיימת מסדרת כך עס $x_{0}\in\left(a,b\right)$ מתכנסת. (3)

יים: ,
 $f\left(x\right)$ גזירה לפונקציה במ"ש מתכנסת מתכנסת אז
י $\left\{ f_{n}\left(x\right)\right\} _{n=1}^{\infty}$ אזי

$$f'(x) = \lim_{n \to \infty} f'_n(x)$$

6. התכנסות מונוטונית, משפט דיני

הגדרה 6.3 (סדרת פונקציות מתכנסת מונוטונית) נאמר ש- $\{f_n\left(x
ight)\}_{n=1}^\infty$ מתכנסת גאופן פונוטונית לפונקציה [a,b],

. אם לכל $f\left(x_{0}\right)$, היא הסדרה אם $\left\{f_{n}\left(x_{0}\right)\right\}_{n=1}^{\infty}$ הסדרה הסדרה אם לכל

משפט 6.7 (משפט אוני) משפט אונק פונקציות משרט אונק $\{f_n\left(x\right)\}_{n=1}^\infty$ משפט דיני) משפט דיני תהא המרט (משפט דיני) משרט פונקציית הגבול לבקטע סגור [a,b]

אם f רציפה, אזי ההתכנסות במ"ש.

פרק 7

טורי פונקציות

 $I\subseteq\mathbb{R}$ סדרת פונקציות המוגדרות תהא $\{f_n\left(x
ight)\}_{n=1}^\infty$ תהא פונקציות המוגדרות המוגדרות הגדרה 7.1 (טור של פונקציות) הביטוי:

$$\sum_{n=1}^{\infty} f_n\left(x\right)$$

נקרא טור של פונקציות.

1. התכנסות של טורי פונקציות

התרות המוגדרות פונקציות פונקציות יהא אירה החוב התכנסות טור פונקציות בנקודה) הא $\sum_{n=1}^\infty f_n\left(x\right)$ יהא בנקודה יהא פונקציות המוגדרות בתחום . $I\subseteq\mathbb{R}$

 $S_{n}\left(x_{0}
ight)=\sum_{k=1}^{n}f_{k}\left(x_{0}
ight)$ נאמר שהטור מתכנס בנקודה $x_{0}\in I$ אם סדרה מתכנסת.

.כלומר, אם טור המספרים $\sum_{n=1}^{\infty} f_n\left(x_0\right)$ מתכנס

 $I\subseteq\mathbb{R}$ התכנסות נקודתית של טורי פונקציות) נאמר שהטור מתכנס נקודתית בתחום . $x\in I$ התכנס לכל נקודה אם הוא מתכנס לכל נקודה

הגדרה 7.5 (תחום התכנסות של טור פונקציות) קבוצת ה-x-ים שעבורם הטור מתכנס נקראת "תחום ההתכנסות של הטור".

משפט 7.1 (תנאי קושי לטורי פונקציות להתכנסות במ"ש)

 $I\subseteq\mathbb{R}$ טור פונקציות המוגדרות טור כתחום $\sum_{n=1}^{\infty}f_{n}\left(x
ight)$ יהא

:הטור יהיה מתכנס במ"ש ב-I, אם"ם

לכל $m>n>N_0$ כך שלכל כך מתקיים: arepsilon>0 קיים arepsilon>0

$$\left| \sum_{k=n+1}^{m} f_k \left(x \right) \right| < \varepsilon$$

 $.S_{n}\left(x
ight)$ על קושי לבד - תוכיחו לבד

7. טורי פונקציות

30

 $\sum_{n=1}^{\infty} f_n\left(x
ight)$ יהא יהא (התכנסות התכנסות במ"ש גוררת במ"ש בערך מוחלט בערך מוחלט במ"ש יהא יהא טור פונקציות.

. אם $\sum_{n=1}^{\infty}f_{n}\left(x\right)$ אז מתכנס במ"ש, מתכנס מתכנס במ"ש במ"ש אם $\sum_{n=1}^{\infty}\left|f_{n}\left(x\right)\right|$

מסקנה 7.2 (בטור פונקציות מתכנס במ"ש, סדרת הפונקציות מתכנסת נקודתית ל-0)

אזי בהכרח: אזי גו
 $I\subseteq\mathbb{R}$ במ"ט במ"ט מתכנס מתכנס ה $\sum_{n=1}^{\infty}f_{n}\left(x\right)$

$$f_n(x) \underset{n \to \infty}{\longrightarrow} 0$$

(תנסו להוכיח)

של ויירשטראס M-ם מבחן מבחן.

(מבחן ה-M של ויירשטראס) **7.2**

, $I\subseteq\mathbb{R}$ תהא המוגדרות פונקציות פונקציות סדרת $\{f_n\left(x\right)\}_{n=1}^\infty$ תהא תהא בתחום $[f_n\left(x\right)]\leq M_n$ סדרת מספרים כך שלכל אולכל ולכל תהא $\{M_n\}_{n=1}^\infty$

. אם $\sum_{n=1}^{\infty}f_{n}\left(x\right)$ אז מתכנס מתכנס מתכנס מתכנס מתכנס אז

3. תכונות של טורי פונקציות המתכנסים במ"ש

I משפט 7.3 (רציפות) תהא $\{f_n\left(x
ight)\}_{n=1}^\infty$ תהא 7.3 משפט 7.3 כך ש $\int_{n=1}^\infty f_n\left(x
ight)$ מתכנס במ"ש לפונקציה $\sum_{n=1}^\infty f_n\left(x
ight)$ ב-I אזי I רציפה.

משפט 7.4 ("אינטגרציה איבר איבר")

,[a,b] סדרת פונקציות אינטגרכיליות בקטע $\{f_n\left(x\right)\}_{n=1}^\infty$ תהא בח"ש פונקציות הפונקציות כך שטור הפונקציות החור אינטגרבילי, ומתקיים:

$$\int_{a}^{b} S(x) dx = \int_{a}^{b} \sum_{n=1}^{\infty} f_{n}(x) dx = \sum_{n=1}^{\infty} \int_{a}^{b} f_{n}(x) dx$$

(a,b], תהא $\{f_n\left(x
ight)\}_{n=1}^{\infty}$ תהא איבר איבר") תהא המוגדרות פונקציות המוגדרות בתחום ב-כד שמתקיים:

- [a,b] בתחום $n\in\mathbb{N}$ גזירה לכל $f_{n}\left(x
 ight)$ (1)
- $\left[a,b
 ight]$ במ"ש במ"ש מתכנס מתכנס הטור של הנגזרות הנגזרות (2)
 - בד ש- $\sum_{n=1}^{\infty} f_n(x_0)$ מתכנס. $x_0 \in (a,b)$ מתכנס.

אזי ומתקיים: מתכנס במ"ש מתכנס גזירה, ומתקיים: $\sum_{n=1}^{\infty}f_{n}\left(x\right)$

$$\left(\sum_{n=1}^{\infty} f_n(x)\right)' = \sum_{n=1}^{\infty} f'_n(x)$$

ללא הוכחה.

4. משפט דיני לטורי פונקציות

משפט 7.6 (משפט דיני לטורי פונקציות) תהא תהא תהא הדע לטורי פונקציות רציפות בעלות [a,b] משפט זהה בקטע סגור סימן זהה בקטע סגור [a,b] מימן זהה בקטע סגור

. במ"ש. ההתכנסות אזי ההתכנסות במ"ש. בחנס בחנכס נקודתית לפונקציה בציפה ב $\sum_{n=1}^{\infty}f_{n}\left(x\right)$ אם אם

טורי חזקות

1. הגדרה ודוגמאות

הגדרה 8.1 טור חזקות הוא טור מהצורה:

$$\sum_{n=0}^{\infty} a_n \left(x - x_0 \right)^n$$

. כאשר $a_i \in \mathbb{R}$ לכל לכל הטור. $a_i \in \mathbb{R}$

2. תחום ורדיוס ההתכנסות, נוסחת קושי הדמר, משפט דלמבר

. תתכנסות של טור חזקות) קבוצת הנקודות $x\in\mathbb{R}$ שבהן הטור תתכנסות של טור חזקות) הגדרה

משפט 8.1 (משפט קושי-הדמר)

. טור חזקות טור $\sum_{n=0}^{\infty}a_{n}\left(x-x_{0}\right)^{n}$ יהא

בהכרח אחת משלושת האפשרויות הבאות מתקיימת:

- , $|x-x_0| < R$ קיים מספר (1) קיים מספר ע קס פר סדר מתכנס כהחלט קיים מספר (1) קיים מספר לכל $|x-x_0| > R$
 - R=0 ונסמן, x_0 בנקודה מתכנס רק מתכנס (2)
 - $R=\infty$ ונסמן, $x\in\mathbb{R}$ ונסמן בהחלט לכל מתכנס הטור (3)

. $\{x_0+R,x_0-R\}$ כלומר, אין מידע לגבי ההתכנסות בנקודות מידע לגבי תחומים אפשריים:

$$\{x_0\}, \mathbb{R}, [x_0 - R, x_0 + R], (x_0 - R, x_0 + R), [x_0 - R, x_0 + R), (x_0 - R, x_0 + R]\}$$

. המספר התכנסות התכנסות של טור חזקות) המספר R נקרא רזיוס התכנסות של הטור.

מסקנה 8.1 (נוסחת קושי-הדמר לחישוב רדיוס התכנסות) הנוסחה:

$$R = \frac{1}{\overline{\lim} \sqrt[n]{|a_n|}}$$

נקראת נוסחת קושי הדמר לחישוב רדיוס התכנסות

:מסקנה חזקות. חזקות. הגבול: יהא רמבר) איהא (משפט דלמבר) אור מסקנה מסקנה (משפט דלמבר) אור יהא

8. טורי חזקות

$$R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = \frac{1}{\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|}$$

הוא רדיוס ההתכנסות, במידה שהגבול קיים.

משפט 8.2 (התכנסות במ"ש של טורי חזקות בכל תת קטע סימטרי של תחום ההתכנסות)

.R>0 התכנסות בעל חזקות טור טור $\sum_{n=0}^{\infty}a_{n}\left(x-x_{0}\right)^{n}$ יהא

 $[x_0 - r, x_0 + r]$ בתחום במ"ש בתחום, 0 < r < R אזי, לכל

3. משפט אבל

R>0 משפט אבל) יהא $\sum_{n=0}^{\infty}a_{n}\left(x-x_{0}
ight)^{n}$ טור חזקות בעל רדיוס התכנסות אזי התנאים הבאים שקולים:

- (בנס). $\sum_{n=0}^{\infty}a_nR^n$ מתכנס) מחכנס בנקודה $x=x_0+R$ מתכנס).
 - $[x_0,x_0+R]$ הטור מתכנס במ"ש בתחום (2)
 - $[x_0, x_0 + R)$ הטור מתכנס במ"ש בתחום (3)

4. תכונות של טורי חזקות בתחום ההתכנסות

R>0 אור חזקות בעל רדיוס התכנסות $\sum_{n=0}^\infty a_n \left(x-x_0
ight)^n$ יהא (רציפות) איז הא אוי הא $f\left(x
ight)=\sum_{n=0}^\infty a_n \left(x-x_0
ight)^n$ איז איז האיז אוי

אזי לכל x בתחום ההתכנסות מתקיים:

$$\int_{x_0}^x \sum_{n=0}^\infty a_n (x - x_0)^n dx = \sum_{n=0}^\infty a_n \int_{x_0}^x (x - x_0)^n dx = \sum_{n=0}^\infty a_n \frac{(x - x_0)^{n+1}}{n+1}$$

- מכיוון שכל הפונקציות בטור הן אינטגרביליות ומתכנסות, אינטגרל של טור חזקות גם הוא טור חזקות.
 - R הוא גם האינטגרלים אם רדיוס ההתכנסות של טור האינטגרלים הח

אחרי האינטגרציה הטור יכול להתכנס בקצוות (x_0+R) אחרי האינטגרציה הטור יכול להתכנס בקצוות.

בכל מקרה, תחום ההתכנסות הקודם נשמר, ואולי רק "מתווספים" תקצוות.

משפט 8.6 (גזירה איבר איבר) התכנסות טור הח $\sum_{n=0}^{z8}a_n\left(x-x_0\right)^n$ יהא איבר איבר איבר משפט 8.6 (גזירה איבר איבר) איבר איבר R>0

אזי סכום הטור היר ב- (x_0-R,x_0+R) , ולכל בתחום מתקיים:

$$\left(\sum_{n=0}^{\infty} a_n \left(x - x_0\right)^n\right)' \underset{\text{ באירה איבר }}{=} \sum_{n=1}^{\infty} n a_n \left(x - x_0\right)^{n-1}$$

R הוא ההתכנסות של טור הנגזרות הוא ullet

אז הטור הנגזרות מתכנס ב- x_0+R , אז הטור הייר משמאל בנקודה זו, • והשוויון של הגזירה איבר איבר מתקיים שם (כנ"ל עבור x_0-R).

(גזירה איבר מסדר p, גזירות פעמים) מסקנה (גזירה איבר איבר מסדר איבר מסקנה פעמים)

(גזיר מכל סדר), ומתקיים: ∞ פעמים" (איר מכל סדר), ומתקיים: אוכל לכל $x_0 - R < x < x_0 + R$

$$\left(\sum_{n=0}^{\infty} a_n (x-x_0)^n\right)^{p} = \sum_{n=p}^{\infty} \frac{n!}{(n-p)!} a_n (x-x_0)^{n-p}$$

(הוכחה באינדוקציה)

5. פונקציות הניתנות לפיתוח כטור חזקות

(x_0) פונקציה ניתנת לפיתוח כטור חזקות בסביבת הגדרה 8.4 (פונקציה ניתנת

 x_0 מוגדרת בסביבת הנקודה f

 x_0 נאמר ש-f ניתנת לפיתוח כטור חזקות בסביבת הנקודה

אם איים טור חזקות בעל רדיוס התכנסות R>0 כך שבסביבת בעל רדיוס מתקיים:

$$f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$$

(תנאי הכרחי של f הניתנת לפיתוח לטור חזקות) $oldsymbol{8.7}$

אס לטור וטור החזקות, אז f גזירה אס פעמים בסביבת גזירה לטור אסור לטור לטור אס ליתנת לפיתוח המתאים הוא יחיד.

היחיד אטור טיילור) אם f ניתנת לפיתוח לטור הזקות לפיתוח לטור ניתנת היחיד המדרה פיילור) אם איילור של f סביב אז מכונה טור היחיד מכונה של f סביב איילור של פייב המתאים עבורה מכונה טור טיילור של f

דוגמה 8.1 (דוגמאות לטורי טיילור)

(1)

$$(-1,1)$$
 תחום התכנסות י $\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$

(2)
$$|x| \leq 1 \; \text{תחום התכנסות} \; , \\ \frac{1}{1+x} = \sum_{n=0}^{\infty} \left(-1\right)^n x^n$$

$$|x| \leq 1$$
 תחום התכנסות ו $\frac{1}{1+x^2} = \sum_{n=0}^{\infty} \left(-1\right)^n x^{2n}$

$$(-1,1]$$
 תחום התכנסות, $\ln{(1+x)} = \sum_{n=0}^{\infty}{(-1)^n}\,rac{x^{n+1}}{n+1}$

8. טורי חזקות

(5) איב (5) איב (
$$x_0=0$$
 סביב ($e^x=\sum_{n=0}^\infty rac{x^n}{n!}$

(6) א אנים (20 מתכנס בכל ,
$$\sin{(x)}=\sum_{n=0}^{\infty}{(-1)^n}\,rac{x^{2n+1}}{(2n+1)!}$$

(7) א מתכנס בכל ,
$$\cos{(x)} = \sum_{n=0}^{\infty}{(-1)^n}\,rac{x^{2n}}{(2n)!}$$

משפט 8.8 (אפיון של פיתוח לטור חזקות) תהא f גזירה ∞ פעמים בנקודה f ניתנת לפיתוח לטור חזקות (טור טיילור) אם"ם:

$$\lim_{n \to \infty} \left(f(x) - \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k \right) = 0$$

 x_0 משפט ∞ (תנאי מספיק אך לא הכרחי) תהא א נאירה פעמים בסביבת x_0

 $\left|f^{(n)}\left(x
ight)
ight|\leq M$ כך שקיים $n\in\mathbb{N}$ ולכל $n\in\mathbb{N}$ ס, כך שלכל א כלומר, הנגזרות חסופות בפשותף), כלומר, הנגזרות הסופות בפשותף),

. אזי f ניתנת לפיתוח לטור חזקות f

מבוא לפונקציות בשני משתנים

1. דוגמאות

עם אילי עם הגרף ההחכל להסתכל , $f:\mathbb{R}^2 \to \mathbb{R}$ פונקציה בהינתן (קווי קווי גובה) קווי פונקציה בהינתן פונקציה עבור את גובה הפונקציה עבור את את ארו שיתארו את את גובה הפונקציה עבור ערכי (x,y) מסוימים.

איור 1. דוגמה לשימוש בקווי גובה

\mathbb{R}^n -2. טופולוגיה ב-2

.2.1 מרחק.

 $ec{x},ec{y}\in\mathbb{R}^n$ בין שני הווקטורים הבאים פון בין אוקלידי ב- \mathbb{R}^n מרחק אוקלידי בין שני

$$\vec{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \qquad \qquad \vec{y} = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$

נגדיר את המרחק האוקלידי של \vec{x}, \vec{y} ב- \mathbb{R}^n להיות:

$$d_2(\vec{x}, \vec{y}) = \sqrt{(x_1 - y_1)^2 + \ldots + (x_n - y_n)^2}$$

טענה 9.1 (תכונות של מרחק)

- $d\left(x,y\right) =d\left(y,x\right)$:סימטריות (1)
- x=y שוויון אם"ם, $d\left(x,y\right)\geq0$ (2)
- $d\left({x,z} \right) \le d\left({x,y} \right) + d\left({y,z} \right)$ אי שוויון המשולש: (3)

.2.2 נורמה ("אורך של וקטור").

:עבור וקטור $ec{x} \in \mathbb{R}^n$ מגדרים (נורמה ב- \mathbb{R}^n) עבור וקטור

$$\|\vec{x}\|_2 = \sqrt{x_1^2 + \ldots + x_n^2}$$

טענה 9.2 (תכונות של נורמות)

- $x=0\iff x\in\mathbb{R}^n$ מתקיים $\|x\|\geq 0$ מתקיים מוגדר לכל
 - $\|\alpha x\|=|lpha|\,\|x\|$:מתקיים: $lpha\in\mathbb{R}^n$ לכל (2)
 - $||x+y|| \le ||x|| + ||y||$ (3)

 $ec{x}, ec{y} \in \mathbb{R}^n$ מגדירים לכל (מכפלה סקלרית/פנימית) מעל (מכפלה סקלרית/פנימית) מעל

$$\vec{x} \cdot \vec{y} \equiv \langle \vec{x}, \vec{y} \rangle \equiv (\vec{x}, \vec{y}) \triangleq x_1 y_1 + x_2 y_2 + \ldots + x_n y_n$$

הגדרה 9.5 (יצוג גיאומטרי של מכפלה פנימית, זווית בין וקטורים)

ניתן לכתוב את המכפלה הפנימית בין באופן הבא: גיתן המכפלה המכפלה המכפלה לכתוב את ניתן לכתוב את המכפלה הפנימית בין

$$\langle \vec{x}, \vec{y} \rangle = ||x|| \cdot ||y|| \cdot \cos \alpha$$

 $ec{x},ec{y}$ כאשר האווית בין וקטורים lpha

(אי שוויון קושי שוורץ) לכל $ec{x},ec{y}\in\mathbb{R}^n$ מתקיים:

$$|\langle \vec{x}, \vec{y} \rangle| \le ||x|| \cdot ||y||$$

.2.3 דרכים נוספות למדידת מרחק.

- (1) מרחק אוקלידי (ראינו)
 - (2) "מרחק מנהטן":

$$d(x,y) \triangleq |x_1 - y_1| + |x_2 - y_2| + \dots + |x_n - y_n|$$
$$||x||_1 = |x_1| + |x_2| + \dots + |x_n|$$

(3) מרחק/נורמת אינסוף:

$$d_{\infty}(x,y) \triangleq \max \{|x_i - y_i| \mid 1 \le i \le n\}$$
$$\|x\|_{\infty} = \max \{|x_i| \ 1 \le i \le n\}$$

(שקילות הנורמות) ב- $x \in \mathbb{R}^n$, מתקיים:

$$||x||_1 \le \sqrt{n} ||x||_2 < n ||x||_\infty \le n ||x||_1$$

מהמשפט נסיק שניתן להשתמש בכל הנורמות למדידת מרחב.

3. הגדרות בסיסיות

.3.1 סביבה.

הכדור סביב "סביבת "סביבת עבור את "סביבת , $x_0\in\mathbb{R}^n$ עבור וקטור עבור הכדור הכדור את "סביבת ' $x_0\in\mathbb{R}^n$ עבור וקטור להיות:

$$B_{(x_0,\varepsilon)} = \{ x \in \mathbb{R}^n \mid d(x, x_0) < \varepsilon \}$$

, $D\subseteq\mathbb{R}^n$ נקודה פנימית נקודה (נקודה פנימית בקבוצה) נקראת (נקודה פנימית בקבוצה) אם $B_{(x_0,\delta)}\subseteq D$ ע- אם קיימת $\delta>0$ כך אם קיימת

3.2. קבוצה פתוחה, קבוצה סגורה.

היא נקודה שה כל נקודה ב-U נאמר שהקבוצה U פתוחה, אם כל נקודה ב-U היא נקודה פנימית.

, מגורה סגורה לקראת קבוצה (\mathbb{R}^n בוצה סגורה סגורה (קבוצה סגורה סגורה אזרה (קבוצה סגורה סגורה סגורה

. אם $A^{ extsf{C}}=\mathbb{R}^n\setminus A$ אם

A, נאמר שפה) היא נקודת שפה) איז תהא $A\subseteq\mathbb{R}^n$. נאמר ש- $A\subseteq\mathbb{R}^n$ נקודת שפה (נקודת שפה) אם לכל עיגול סביב A קיימת לפחות נקודה מתוך שלא נמצאת ב-A

האברה 9.11 (השפה של קבוצה $A\subseteq\mathbb{R}^n$ השפה של קבוצה (A השפה של קבוצה פוצדת האברה השפה שלה, ומסומנת ע"י ∂A .

הפנים של קבוצה $A\subseteq\mathbb{R}^n$ הפנים של קבוצה (A מוגדר להיות קבוצת הגדרה 9.12 הפנים של קבוצה

A כל הנקודות הפנימיות של

.int (A) או A°

. נאמר של חסומה אם היא חסומה (A בכדור, אמר של קבוצה $A\subseteq\mathbb{R}^n$ נאמר של היא מוכלת מוכלת הגדרה 9.13

משפט 9.3 (הלמה של היינה בורל) לכל כיסוי פתוח של קבוצה $A\subseteq\mathbb{R}^n$ סגורה חסומה, יש תת כיסוי סופי.

\mathbb{R}^n -ם סדרות ב-3.3

:באופן באופן \mathbb{R}^n באופן נגדיר סדרה של נגדיר (\mathbb{R}^n באופן סדרה ב-

$$\vec{x}^{(1)}, \vec{x}^{(2)}, \dots, \vec{x}^{(k)}, \dots$$

$$\vec{x}^{(k)} = \begin{pmatrix} x_1^{(k)} & \dots & x_n^{(k)} \end{pmatrix}$$

: אם: $ec{x}^{(0)} \in \mathbb{R}^n$, מתכנסת ל- $ec{x}^{(k)} \in \mathbb{R}^n$ אם: $\{ec{x}^{(k)}\}_{k=1}^\infty$, אם

$$d\left(\vec{x}^{(k)}, \vec{x}^{(0)}\right) \underset{k \to \infty}{\longrightarrow} 0$$

 $x_i^{(k)}\underset{k\to\infty}{\longrightarrow}x_i^{(0)}$ משפט 9.4 משפט $x_i^{(k)}\underset{k\to\infty}{\longrightarrow}\vec{x}^{(k)}$ אם ורק אם לכל $x_i^{(k)}\underset{k\to\infty}{\longrightarrow}\vec{x}^{(0)}$ אם ורק אם לכל (תנסו להוכית)

משפט 9.5 (משפט בולצאנו ויירשטראס) לכל סדרה חסומה (במובן של סביבה/כדור בקבוצה) יש תת-סדרה מתכנסת

(תנסו להוכיח ב \mathbb{R}^2 ולהשתמש במשפט 2.4 ובבולצאנו ויירשטראס בחד מימד)

.3.4 רציפות.

 $A\subseteq\mathbb{R}$ מוגדרת בקבוצה f מוגדרת בקבוצה (רציפות בקבוצה) אוגדרה 9.16 הגדרה

 $\boxed{x\in A}$ נאמר ש-fרציפה ב-Aאם לכל לכל $x_0\in A$ ולכל הם לsס, כך שלכל נאמר ש-לfרמפיים:

$$d(f(x), f(x_0)) < \varepsilon$$

.3.5 רציפות בלשון סדרות.

$$f\left(\vec{x}^{(k)}\right) \underset{k \to \infty}{\longrightarrow} f\left(\vec{x}^{(0)}\right)$$

(משפט ויירשטראס) אסגורה רציפה רציפה הא תהא תהא האסטראס) אסגורה חסומה, תהא משפט ויירשטראס) אזי $A\subseteq\mathbb{R}^n$ משפט ומינימום ומינימום $A\subseteq\mathbb{R}^n$ חסומה ב-A

הגדרה 9.18 (רציפות במ"ש) תהא f מוגדרת בקבוצה f מוגדרת במ"ש) הגדרה 9.18 (רציפות במ"ש) תהא d ($ec x,ec y)<\delta$ כך שלכל a בקבוצה a, אם לכל a קיימת a כך שלכל a כך שלכל a כך שלכל פוצה a המקיימים

$$d\left(f\left(\vec{x}\right), f\left(\vec{y}\right)\right) < \varepsilon$$

משפט 9.7 (קנטור היינה) תהא $f:\mathbb{R}^n \to \mathbb{R}$ תהא אזי היא רציפה היינה חסומה, אזי היא רציפה שם במ"ש.

משפט 9.8 (הרכבה) תהא $g:B \to \mathbb{R}$ רציפה ו- $f:A \to \mathbb{R}^m$ אם אם $A\subseteq \mathbb{R}^n$ תהא $g:A \to \mathbb{R}^n$ ומכילה את התמונה של $g:A \to \mathbb{R}^m$ רציפה ב-A

הגדרה 9.19 (קשירות מסילתית) נאמר שהקבוצה $A\subseteq\mathbb{R}^n$ קשירה (מסילתית), אם בין כל שתי נקודות ב-A קיים עקום רציף.

$$\gamma\left(0\right)=\vec{x}$$
 קיים עקום רציף $\gamma:[0,1]\to\mathbb{R}^n$ רציף עקום עקום $\vec{x},\vec{y}\in A$ כלומר, לכל $\gamma\left(1\right)=\vec{y}$. $t\in[0,1]$ לכל $\gamma\left(t\right)\in A$

4. תחום

הגדרה 9.20 (הגדרת התחום) תחום מוגדר להיות קבוצה פתוחה וקשירה מסילתית.

הגדרה 9.21 (תחום סגור) תחום סגור מוגדר להיות הסגור של תחום.

 $B\subseteq\mathbb{R}^n$ אונקציה רציפה ביניים) יהא $B\subseteq\mathbb{R}^n$ תחום, ותהא $A\subseteq\mathbb{R}^n$ פונקציה רציפה ב- $P,Q\in D$ אזי, לכל $A\subseteq C$ ולכל ערך $A\subseteq C$ בין $A\subseteq C$ ל- $A\subseteq C$ כך ש $A\subseteq C$ כך ש $A\subseteq C$ כך ש $A\subseteq C$ כך ש

5. גבול בנקודה עבור שני משתנים

הגדרה f נתון, ותהא f נתון, יהא $L\in\mathbb{R}$ יהא יהא E^2 (גבול ב-9.22) מוגדרת בסביבה מנוקבת של הנקודה E^2 (גאמר שמתקיים: בסביבה מנוקבת של הנקודה יהא

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = L$$

 $|f\left(x,y
ight)-L|<arepsilon$ מתקיים $d\left(\left(x,y
ight),\left(x_{0},y_{0}
ight)
ight)<\delta$ כך שלכל $\delta>0$ מתקיים arepsilon>0

 (x_0,y_0) -ב מוגדרת f אם f אם f אם רציפות ב-9.23 נאמר ש-f נאמר ש-

$$\lim_{(x,y)\to(x_0,y_0)} f\left(x,y\right) = f\left(x_0,y_0\right)$$

משפט 9.10 (תכונות של גבולות)

- (1) יחידות הגבול
- (2) אריתמטיקה
 - (3) סנדוויץ׳
- (4) אלמנטריות
- (5) חסומה כפול שואפת לאפס
 - (6) תנאי קושי
 - (7) היינה
 - (8) סדר גבולות

הוכחות ממש כמו באינפי 1.