Ensayo de Caracterización Magnética de Superficie

Dr. José Ruzzante Ing. Lic. Pablo Alonso Castillo

Se investigaron los campos Magnéticos Bx, By, Bz presentes a 3,3 mm de la superficie de la chapa sobre la soldadura y en sus proximidades

- Método 1: Sensor analógico
 - 1 eje
 - Sensibilidad: 1nT
 - Solo cualitativo
- Método 2: Sensor digital
 - 3 ejes
 - Sensibilidad 1nT
 - Cuantitativo
 - Sin campos Externos
 - Con campos Externos
 - By Impuesto
 - Bz Impuesto

Equipos utilizados: Sensor analógico un solo eje

- 1-Instrumentación del sensor analógico
- 2-Sensor sobre la chapa
- 3-Sensor midiendo campo verticalmente
 - en el eje -Z
- 4-Encapsulado del sensor en Delrin

Sensor digital de 3 ejes:

- 1-Dispositivo microprocesado
- 2-Vista inferior con los sentidos de los ejes Bx, By, Bz
- 3-Sensor con el encoder
- 4-Vista del display con sensibilidad hasta el nT

Sensor digital de 3 ejes:

Sin campo externo

Resultados de las mediciones en los 300 mm de la 1er zona de falla sobre la soldadura

Zona relevada:

Campos en -5mm, 0, +5mm

Campos -5mm, 0mm, +5mm

Sensor digital de 3 ejes:

Con campo externo. Detalles de montaje

- 1-Dispositivo para acompañar con un campo externo el desplazamiento del sensor
- 2-Vista inferior del dispositivo acoplado al sensor
- 3-Montaje del imán del campo externo
- 4-Vista enfrentada del imán al sensor
- 5-Montaje final sobre la chapa

Sensor digital de 3 ejes con campo externo

Resultados de las mediciones en todo el largo de la chapa sobre la soldadura

1° caso: campo en +Y y en -Y

Se observa:

- 1-Corrimiento general del perfil en el eje Y
- 2-Cambio marcado del perfil en algunas zonas
- 3-Aumento selectivo de la intensidad del campo en Y

Sensor digital de 3 ejes con campo externo

Resultados de las mediciones en todo el largo de la chapa sobre la soldadura

2º caso: campo en +Z

Se observa:

- 1-Corrimiento general del perfil en el eje Z
- 2-Quedan más evidentes los puntos de quiebre de pendientes
- 3-Cambio en las alturas relativas de los picos en Z

Conclusiones:

Para continuar avanzando deberemos:

- 1.-Caracterizar el ancho y profundidad de la zona comprometida de la soldadura
- 2.-Definir exactamente los límites de la zona comprometida de la soldadura que no se observa a simple vista
- 3.-Conocer con exactitud la metalografía de la chapa
- 4.-Efectuar mediciones en condiciones de umbral de los campos en Y y Z
- 5.-Medir otras chapas con zonas similares a fin de poder comparar resultados