SOUTHERN UNIVERSITY OF SCIENCE AND TECHNOLOGY DEPARTMENT OF ELECTRICAL & ELECTRONIC ENGINEERING

ACADEMIC YEAR 2019-2020 SEMESTER 1 DIGITAL SIGNAL PROCESSING

TUTORIAL 3

1. Consider the following sequences:

$$x[n] = \{2, 0, -1, 6, -3, 2, 0\},$$
 $-3 \le n \le 3,$
 $y[n] = \{8, 2, -7, -3, 0, 1, 1\},$ $-5 \le n \le 1,$
 $w[n] = \{3, 6, -1, 2, 6, 6, 1\},$ $-2 \le n \le 4.$

Determine the following sequence by a linear convolution of the sequences given above:

- (a) $u[n] = x[n] \bigotimes y[n]$;
- (b) $v[n] = x[n] \bigoplus w[n]$;
- (c) $g[n] = w[n] \oplus y[n]$.
- 2. Let $y[n] = x_1[n] \oplus x_2[n]$, and $v[n] = x_1[n-N_1] \oplus x_2[n-N_2]$. Express v[n] in terms of y[n].
- 3. Consider the following finite-length sequences:
 - (i) $\{h[n]\}, -M \le n \le N,$
 - (ii) $\{g[n]\}, K \le n \le N,$
 - (iii) $\{w[n]\}, -L \le n \le -R,$

where M, N, K, L and R are positive integers with K < N and L > R. Define

- (a) $y_1[n] = h[n] \otimes h[n]$,
- (b) $y_2[n] = g[n] \otimes g[n]$,
- (c) $y_3[n] = h[n] \oplus g[n]$,
- (d) $y_4[n] = h[n] \bigoplus w[n]$,

What is the length of each of the convolved sequences? What is the range of the index n for which each of the above convolved sequences is defined?

- 4. Develop a closed-form expression for the convolution: $a^n \mu[n] \otimes \mu[n]$.
- 5. Consider two complex-valued sequences h[n] and g[n] expressed as a sum of their respective conjugate symmetric and conjugate anti-symmetric parts, i.e., $h[n] = h_{cs}[n] + h_{ca}[n]$, and $g[n] = g_{cs}[n] + g_{ca}[n]$. For each of the following sequences, determine if it is conjugate symmetric or conjugate antisymmetric.
 - (a) $h_{cs}[n] \oplus g_{cs}[n]$ (b) $h_{ca}[n] \oplus g_{cs}[n]$ (c) $h_{ca}[n] \oplus g_{ca}[n]$
- 6. Show that the following sequences are absolutely summable, where $|\alpha|$ <1

(a)
$$x_1[n] = \alpha^n \mu[n-1]$$
 for $|\alpha| < 1$, (b) $x_2[n] = n\alpha^n \mu[n-1]$ for $|\alpha| < 1$, and (c) $x_3[n] = \mu[n]/((n+2)(n+3))$

- 7. An LTI discrete-time system is characterized by a left-side impulse response given by $h[n] = \alpha^n \mu[-n-1]$. Determine the range of the value of the constant α for which the system is BIBO stable.
- 8. Develop a general expression for the output y[n] of an LTI discrete-time system in terms of its input x[n] and the unit step response s[n] of the system.

- 9. Determine the step response of an LTI discrete-time system characterized by an impulse response $h[n] = (-\alpha)^n \mu[n], 0 < \alpha < 1.$
- 10. Determine the expression for the impulse response of following LTI system.

