Problem Set-9 MTH-204, 204A Abstract Algebra

- 1. Let R be the ring of all the real-valued, continuous functions on [0,1]. Let $M=\{f\in R: f(1/2)=0\}$. Prove that M is a maximal ideal of R. Every maximal ideal of R is of this form.
- 2. Prove that the ring $\mathbb{Z}[i]$ is a Euclidean domain.
- 3. Let K be a field. Prove that the ring K[x] is a PID.
- 4. Prove that the quotient ring $\mathbb{R}[x]/(x^2+1)$ is isomorphic to \mathbb{C} .
- 5. Prove that if $f(x) \in \mathbb{Q}[x]$, then f is divisible by the square of a polynomial if and only if f(x) and df(x)/dx have a greatest common divisor d(x) of positive degree.
- 6. If $f(x) \in \mathbb{Z}_p[x]$, p a prime, and f(x) irreducible over \mathbb{Z}_p of degree n, prove that $\mathbb{Z}[x]/(f(x))$ is a field with p^n elements.