2022 年全国大学生数学竞赛(专业组)模拟试卷 2

1. (20分) 已知
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
, $P = \begin{bmatrix} 0 & 0 & 2 \\ 1 & 1 & 0 \\ -1 & 1 & -1 \end{bmatrix}$.

- (1) 求 P^{-1}
- (2) 求 $P^{-1}AP$
- (3) 求 A^{2022}

2. (20分)

- (1) 设矩阵 $A = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, 请找到一个二阶可逆矩阵P使得 $A = P^{-1}BP$.
- (2) 设矩阵 $A = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 0 & 0 \\ -1 & 0 \end{bmatrix}$, 请找到一个二阶可逆矩阵P使得 $A = P^{-1}BP$.
- 3. (15 分) 求 $\lim_{\alpha \to 0} \int_{\alpha}^{1+\alpha} \frac{1}{1+x^2+\alpha^2} dx$
- **4、(15 分)**设f(x)在[0, ∞)上二阶可导, $A = \lim_{x \to \infty} f(x)$ 存在并有限,且对任意的x有 $|f''(x)| \le M$.

证明: $\lim_{x\to\infty} f'(x) = 0$.

5、(15 分) 设f(x)在 $[0,\infty)$ 上三阶可导, $\lim_{x\to\infty} f(x) = \lim_{x\to\infty} f'''^{(x)} = 0$.

证明: $\lim_{x\to\infty} f'(x) = \lim_{x\to\infty} f''(x) = 0.$

6、(15 分) 假设 $\int_1^{+\infty} f(x)dx$ 收敛,且 $0 \le g(x) = xf(x)$ 在[1,+ ∞]上单调递减.

证明: $\lim_{x\to\infty} x f(x) \ln x = 0$. (提示: $xf(x) \ln x - xf(x) \ln \sqrt{x} = \frac{1}{2} x f(x) \ln x$)