

An empirical analysis of journal policy effectiveness for computational reproducibility

Victoria Stodden^{a,1}, Jennifer Seiler^b, and Zhaokun Ma^b

^aSchool of Information Sciences, University of Illinois at Urbana–Champaign, Champaign, IL 61820; and ^bDepartment of Statistics, Columbia University, New York, NY 10027

Edited by David B. Allison, Indiana University Bloomington, Bloomington, IN, and accepted by Editorial Board Member Susan T. Fiske January 9, 2018 (received for review July 11, 2017)

A key component of scientific communication is sufficient information for other researchers in the field to reproduce published findings. For computational and data-enabled research, this has often been interpreted to mean making available the raw data from which results were generated, the computer code that generated the findings, and any additional information needed such as workflows and input parameters. Many journals are revising author guidelines to include data and code availability. This work evaluates the effectiveness of journal policy that requires the data and code necessary for reproducibility be made available postpublication by the authors upon request. We assess the effectiveness of such a policy by (i) requesting data and code from authors and (ii) attempting replication of the published findings. We chose a random sample of 204 scientific papers published in the journal Science after the implementation of meir policy in February 2011. We found that we were able to obtain artifacts from 44% of our sample and were able to reproduce the findings for 26%. We find this policy—author remission of data and code postpublication upon request—an improvement over no policy, but currently insufficient for reproducibility.

putational reproducibility of published results. We use a survey instrument to test the availability of data and code for articles published in *Science* in 2011–2012. We then use the scientific communication standards from the 2012 Institute for Computational and Experimental Research in Mathematics (ICERM) workshop report to evaluate the reproducibility of articles for which artifacts were made available (11). We then assess the impact of the policy change directly, by examining articles published in *Science* in 2009–2010 and comparing artifact ability to our postpolicy sample from 2011–2012. Finally, we discuss possible improvements to journal policies for enabling reproducible computational research in light of our results.

Results

We emailed corresponding authors in our sample to request the data and code associated with their articles and attempted to replicate the findings from a randomly chosen subset of the articles for which we received artifacts. We estimate the artifact recovery rate to be 44% with a 95% bootstrap confidence interval of the proportion [0.36, 0.50], and we estimate the replication rate to be 26% with a 95% bootstrap confidence interval [0.20, 0.32].

reproducible research | data access | code access | reproducibility policy | open science