Equations et inéquations et systèmes partie2

PROF : ATMANI NAJIB

Leçon: Equations et inéquations et systèmes partie2 Présentation globale Chapitre nº 2

III) Système de deux équations du premier degré à deux inconnues

III) Système de deux équations du premier degré à deux inconnues

Définition : On appelle système de deux équations du premier degré a deux inconnues toute système de la forme :

(I)
$$\begin{cases} ax + by = c \\ a'x + b'y = c' \end{cases}$$
 où les coefficients a, b, c, d sont des addition.

réels donnés et le couple (x, y) est l'inconnue dans \mathbb{R}^2

Résoudre le système (I) c'est déterminer l'ensemble S des équations par des facteurs bien choisis. En additionnant solutions c a d l'ensemble des couples (x, y) qui vérifient

les deux équations: ax + by = c et a'x + b'y = c'simultanément

Remarque : pour Résoudre un système (I) on utilise généralement quatre méthodes :

- Méthode de substitution
- Méthode de combinaison linéaire ou addition
- Méthode des déterminants
- Méthode graphique

1) Méthode de substitution :

Substituer, c'est remplacer par (Mettre à la place de).

système équivalent :
$$\begin{cases} x = 3 - 2y \\ 2x + 3y = 4 \end{cases}$$

On remplace ensuite x par 3-2y dans la seconde équation,

ce qui donne le système :
$$\begin{cases} x = 3 - 2y \\ 2(3 - 2y) + 3y = 4 \end{cases}$$
 qui équivaut à
$$\begin{cases} x = 3 - 2y \\ 2(3 - 2y) + 3y = 4 \end{cases}$$

$$\begin{cases} x = 3 - 2y \\ -y + 6 = 4 \end{cases}$$
, soit encore à
$$\begin{cases} x = 3 - 2y \\ y = 2 \end{cases}$$

et on remplace y par 2 dans la première équation on trouve $\begin{cases} x = -1 \\ v = 2 \end{cases}$ On obtient ainsi le couple

solution donc: $S = \{(-1,2)\}$

Cette méthode consiste à faire apparaître des coefficients opposés pour l'une des inconnues, en multipliant les membre à membre les deux équations transformées, on obtient une équation à une seule inconnue que l'on peut résoudre.

Exemple : Dans le système $\begin{cases} 2x + 3y = 7 \\ 3x - 2y = 4 \end{cases}$, on multiplie les

termes de la première équation par 2 et ceux de la seconde par 3 et on obtient le système équivalent :

$$\begin{cases} 4x + 6y = 14 \\ 9x - 6y = 12 \end{cases}$$

On additionne membre à membre les deux équations et on remplace la seconde équation du système par le résultat ; on

Exemple : Dans le système $\begin{cases} x + 2y = 3 \\ 2x + 3y = 4 \end{cases}$, on exprime x en obtient le système $\begin{cases} 4x + 6y = 14 \\ 13x = 26 \end{cases}$ équivalent : $\begin{cases} 8 + 6y = 14 \\ x = 2 \end{cases}$ fonction de y dans la première équation et on obtient le système équivalent : $\begin{cases} x = 3 - 2y \\ 2x = 2 \end{cases}$ soit $\begin{cases} 6y = 6 \\ x = 2 \end{cases}$ encore ou $\begin{cases} x = 2 \end{cases}$. On en déduit le couple système équivalent : $\begin{cases} x = 3 - 2y \\ 2x = 2 \end{cases}$

solution: $S = \{(2,1)\}$.

Remarque: Un système peut n'avoir aucune solution ou encore une infinité de solutions.

Soit le système : $\begin{cases} ax + by = c \\ a'x + b'y = c' \end{cases}$. Si les coefficients

de x et de y sont proportionnels, c'est-à-dire si ab' = a'b, ce système a une infinité de solutions ou pas de

- si de plus $ac' \neq a'c$, alors le système n'a pas de solution ; On va maintenant soustraire nos deux équations pour ainsi $-\sin ac' = a'c$ (les coefficients des deux équations sont proportionnels), alors le système a une infinité de solutions.

Exercice1: Résoudre le système dans \mathbb{R}^2 :

$$\begin{cases} 3x + y = 5 \\ 2x - 3y = -4 \end{cases}$$

Par 4 Méthodes

Solution:

1)Par la Méthode de substitution

A l'aide de l'équation 3x + y = 5 on peut écrite que .

$$y = 5 - 3x$$
 On obtient alors le système :
$$\begin{cases} y = 5 - 3x \\ 2x - 3y = -4 \end{cases}$$

On va maintenant remplacer le \mathcal{Y} de la seconde équation par son expression en fonction de x qu'on vient de trouver.

Cela donne alors:
$$\begin{cases} y = 5 - 3x \\ 2x - 3(5 - 3x) = -4 \end{cases}$$

On développe et on simplifie l'écriture de la deuxième

équation :
$$\begin{cases} y = 5 - 3x \\ 11x = 11 \end{cases}$$
 On résout maintenant l'équation du

premier degré pour trouver la valeur de x: $\begin{cases} y = 5 - 3x \\ x = 1 \end{cases}$

Maintenant qu'on connaît la valeur de x, il ne nous reste plus qu'à remplacer x par sa valeur dans la première équation.

$$\begin{cases} y = 5 - 3 \times 1 = 2 \\ x = 1 \end{cases}$$
 On finit les calculs :
$$\begin{cases} x = 1 \\ y = 2 \end{cases}$$

La solution de notre système est donc : $S = \{(1,2)\}$

Il peut être utile de procéder à une vérification. Pour cela, on remplace les inconnues par les valeurs qu'on vient de trouver On lit les coordonnées du point d'intersection (1,2) dans chacune des équations et on vérifie si on retrouve bien l'égalité:

$$\begin{cases} 3 \times 1 + 2 = 3 + 2 = 5 \checkmark \\ 2 \times 1 - 3 \times 2 = 2 - 6 = -4 \checkmark \end{cases}$$

2)Par la méthode combinaison linéaire ou méthode par addition.

Le but de cette méthode est de multiplier les équations par des nombres judicieusement choisis pour qu'en additionnant | Si les droites sont confondues, alors le système (S) admet ou soustrayant les équations on n'ait plus qu'une seule inconnue.

On va chercher, par exemple, à "éliminer" l'inconnue x. Pour cela on va:

multiplier la première équation par 2 qui est le coefficient de l'inconnue de la seconde équation.

multiplier la seconde équation par 3 qui est le coefficient de l'inconnue de la première équation.

On obtient alors le système : $\begin{cases} 6x + 2y = 10 \\ 6x - 9y = -12 \end{cases}$

ne plus avoir de termes en x.

$$6x + 2y = 10$$

$$-(6x - 9y = -12)$$

$$11y = 22$$

$$donc \quad y = 2$$

On remplace maintenant cette valeur dans l'une des deux équations :

Si on choisit la première

équation
$$3x + 2 = 5$$
 soit $3x = 3$ et donc $x = 1$.

La solution du système est donc : $S = \{(1,2)\}$

3) Méthode graphique

3) Méthode graphique

Résoudre graphiquement le système
$$\begin{cases}
3x + y = 5 \\
2x - 3y = -4
\end{cases}$$

Les équations du type ax + by = c correspondent en fait à des équations de droite.

La solution du système correspond aux coordonnées, dans un repère, du point d'intersection des deux droites.

on a tracé les deux droites associées au système

donc
$$S = \{(1,2)\}$$

On distingue alors trois cas dans la résolution des systèmes graphiquement:

- Si les droites sont parallèles et distinctes, le système (S) n'admet aucun couple solution.
- Si les droites) sont sécantes, le système (S) admet une solution unique.
- une infinité de couples solutions.

4)Méthode des déterminants

Définition: soit le système de deux équations a deux

inconnues suivant : (I)
$$\begin{cases} ax + by = c \\ a'x + b'y = c' \end{cases}$$

Le nombre réel noté :
$$\Delta = \begin{vmatrix} a & b \\ a' & b' \end{vmatrix} = ab' - a'b$$

S'appelle le déterminant du système (I)

Le critère suivant permet d'en savoir plus long sur le nombre de solutions d'un système....

Proposition : soit le système de deux équations à deux

$$(I)\begin{cases} ax + by = c \\ a'x + b'y = c' \end{cases}$$
 et Δ son déterminant

1)Si $\Delta \neq 0$ alors le système (I) admet un couple solution unique

$$x = \frac{\begin{vmatrix} c & b \\ c' & b' \end{vmatrix}}{\Delta} = \frac{cb' - c'b}{\Delta} \qquad y = \frac{\begin{vmatrix} a & c \\ a' & c' \end{vmatrix}}{\Delta} = \frac{ac' - a'c}{\Delta}$$

2)Si $\Delta = 0$ alors:

✓ Si $\Delta_{x} = 0$ et $\Delta_{y} = 0$ alors :les deux équations ax + by = c et a'x + b'y = c' sont équivalentes et dans ce cas Résoudre le système c'est Résoudre l'une des équations par exemple en choisi : ax + by = c et alors

on a:
$$S = \left\{ \left(x; \frac{c - ax}{b} \right) / x \in \mathbb{R}; b \neq 0 \right\}$$

 \checkmark Si $\Delta_x \neq 0$ ou $\Delta_y \neq 0$ alors le système (I)n'admet aucun couple solutions et donc $S = \emptyset$

Exemple :Résoudre dans \mathbb{R}^2 les systèmes suivants

$$\begin{cases} 3x - y = 5 \\ 2x + 4y = -6 \end{cases} \begin{cases} 8x + 4y = 4 \\ 2x + y = 3 \end{cases}$$

3)
$$\begin{cases} \sqrt{2}x - y = \sqrt{2} \\ 2x - \sqrt{2}y = 2 \end{cases}$$
 4) (I)
$$\begin{cases} 4x + 2y = -2 \\ x - 3y = -11 \\ 2x + 4y = 8 \end{cases}$$

5) (I)
$$\begin{cases} x - 2y = 1\\ 3x + y = 2\\ x - y = 3 \end{cases}$$

Solution:

1) Le déterminant est : $\Delta = \begin{vmatrix} 3 & -1 \\ 2 & 4 \end{vmatrix} = 3 \times 4 - (-1) \times 2 = 14 \neq 0$

Alors le système $\left(I\right)$ admet un couple solution unique

Alors le système (1) admet un couple solution unique
$$x = \frac{\Delta_x}{\Delta} = \frac{\begin{vmatrix} 5 & -1 \\ -6 & 4 \end{vmatrix}}{14} = \frac{5 \times 4 - (-6) \times (-1)}{14} = \frac{20 - 6}{14} = \frac{14}{14} = 1$$

$$y = \frac{\Delta_y}{\Delta} = \frac{\begin{vmatrix} 3 & 5 \\ 2 & -6 \end{vmatrix}}{14} = \frac{3 \times (-6) - 5 \times 2}{14} = \frac{-18 - 10}{14} = \frac{-28}{14} = -2$$
On remplace dans la derniè on a $2 \times (-2) + 4 \times 3 = -4$

On en déduit le couple solution : $S = \{(1, -2)\}$

2)Le déterminant est : $\Delta = \begin{vmatrix} 8 & 4 \\ 2 & 1 \end{vmatrix} = 8 - 8 = 0$

Alors on calcule $\Delta_x = \begin{vmatrix} 4 & 4 \\ 3 & 1 \end{vmatrix} = 4 - 12 = -8 \neq 0$

Donc $S = \emptyset$

3)
$$\begin{cases} \sqrt{2}x - y = \sqrt{2} \\ 2x - \sqrt{2}y = 2 \end{cases}$$

Le déterminant est : $\Delta = \begin{vmatrix} \sqrt{2} & -1 \\ 2 & -\sqrt{2} \end{vmatrix} = -2 + 2 = 0$

Alors on calcule $\Delta_x = \begin{vmatrix} \sqrt{2} & -1 \\ 2 & -\sqrt{2} \end{vmatrix} = -2 + 2 = 0$

Alors on calcule $\Delta_y = \begin{vmatrix} \sqrt{2} & \sqrt{2} \\ 2 & 2 \end{vmatrix} = 2\sqrt{2} - 2\sqrt{2} = 0$

Donc les deux équations $\sqrt{2}x - y = \sqrt{2}$ et

 $2x - \sqrt{2}y = 2$ sont équivalentes et dans ce cas Résoudre le système c'est Résoudre l'une des équations par exemple en choisi $\sqrt{2x-y} = \sqrt{2}$ c a d $\sqrt{2}x - \sqrt{2} = y$

et alors on a :
$$S = \left\{ \left(x; \sqrt{2}x - \sqrt{2} \right) / x \in \mathbb{R} \right\}$$

4) (I)
$$\begin{cases} 4x + 2y = -2 \\ x - 3y = -11 \\ 2x + 4y = 8 \end{cases}$$
 Soit le système (I')
$$\begin{cases} 4x + 2y = -2 \\ x - 3y = -11 \end{cases}$$

Le déterminant est : $\Delta = \begin{vmatrix} 4 & 2 \\ 1 & -3 \end{vmatrix} = -12 - 2 = -14 \neq 0$

Alors le système (I') admet une solution unique

$$x = \frac{\Delta_x}{\Delta} = \frac{\begin{vmatrix} -2 & 2 \\ -11 & -3 \end{vmatrix}}{-14} = \frac{28}{-14} = -2$$

$$y = \frac{\Delta_y}{\Delta} = \frac{\begin{vmatrix} 1 & 1 \\ 1 & 3 \end{vmatrix}}{1} = \frac{2}{1} = 2$$

Donc (-2,3)est une solution du système (I^\prime)

On remplace dans la dernière équations c a d x-3y=-11

$$\oint_{0} a^{2} \times (-2) + 4 \times 3 = -4 + 12 = 8$$

Donc (-2,3) vérifie toutes les équations

On en déduit que : $S = \{(-2,3)\}$

On en déduit que :
$$S = \{(-2,3)\}$$

5) I

$$\begin{cases} x-2y=1\\ 3x+y=2 \text{ Soit le système} \\ x-y=3 \end{cases}$$

$$\begin{cases} x-2y=1\\ x-y=3 \end{cases}$$

Le déterminant est :
$$\Delta = \begin{vmatrix} 1 & -2 \\ 1 & -1 \end{vmatrix} = -1 + 2 = 1 \neq 0$$

Alors le système (I') admet une solution unique

$$x = \frac{\Delta_x}{\Lambda} = \frac{\begin{vmatrix} 1 & -2 \\ 3 & -1 \end{vmatrix}}{1} = \frac{5}{1} = 5 \text{ et}$$
 $y = \frac{\Delta_y}{\Lambda} = \frac{\begin{vmatrix} 4 & -2 \\ 1 & -11 \end{vmatrix}}{-14} = \frac{-42}{-14} = 3$

Donc (-2,3) est une solution du système (I')

On remplace dans la deuxième équations c a d 3x + y = 2 On reporte cette valeur dans la première équation : V + 23 = 64 donc V = 64 - 23 et finalement V = 41.

On a
$$3 \times 5 + 2 = 17 \neq 2$$

Donc (-2,3) ne vérifie pas toutes les équations

On en déduit que : $S = \emptyset$

Applications : RÉSOLUTION DE PROBLÈMES

L'association des Enfants Heureux organise une course. Chaque enfant a un vélo ou un tricycle. L'organisateur a compté 64 enfants et 151 roues.

- 1. Combien de vélos et combien de tricycles sont engagés dans cette course?
- 2. Chaque vélo engagé rapporte 500 F et chaque tricycle 400 F. Calculer la somme que l'association des Enfants Heureux recevra.

Solution:

1. Première étape : on identifie ce que nos inconnues vont représenter.

On cherche le nombre de vélos et le nombre de tricycle engagés.

tricvcles.

Deuxième étape : on met en équation le problème donné. On a 64 enfants. Cela signifie donc que V + T = 64. On a compté 151 roues. Chaque vélo possède 2 roues et chaque tricycle possède 3 roues. On a donc l'équation 2V + 3T = 151.

Troisième étape : On résout le système : $\begin{cases} V + T = 64 \\ 2V + 3T = 151 \end{cases}$

A l'aide de la méthode par substitution.

$$\begin{cases} V = 64 - T & V = 64 - T \\ 2V + 3T = 151 & 2(64 - T) + 3T = 151 \end{cases}$$

$$\begin{cases} V = 64 - T & V = 64 - T \\ 128 - 2T + 3T = 151 & T = 23 \end{cases}$$

$$\begin{cases} T = 23 \\ V = 64 - 23 \end{cases} \qquad \begin{cases} T = 23 \\ V = 41 \end{cases}$$

On vérifie que le couple (41,23) est bien solution du

$$\begin{cases} 41 + 23 = 64\checkmark \\ 2 \times 41 + 3 \times 23 = 82 + 69 = 151\checkmark \end{cases}$$
 A l'aide de la méthode par combinaisons linéaires

$$\begin{cases} V + T = 64 & (\times 2) \\ 2V + 3T = 151 & (\times 1) \\ 2V + 2T = 128 \\ -(2V + 3T = 151) \\ \hline -T = -23 \\ \text{donc} \quad T = 23 \end{cases}$$

On contrôle que les valeurs trouvées vérifient la seconde equation: $2 \times 41 + 3 \times 23 = 82 + 69 = 151 \checkmark$.

Conclusion: 41 vélos et 23 tricycles étaient engagés dans cette course.

2. On utilise ces valeurs pour répondre à la question posée. $41 \times 500 + 23 \times 400 = 29700$

L'association recevra donc 29 700 F grâce à cette course.

Exercice2:1. On considère le système suivant :

$$\begin{cases} 45x + 30y = 510 \\ 27x + 20y = 316 \end{cases}$$

- a. Les nombres x = 10 et y = 2 sont-ils solutions de ce système?
- b. Résoudre le système.
- 2. Pour les fêtes de fin d'année, un groupe d'amis souhaite emmener leurs enfants assister à un spectacle.

Les tarifs sont les suivants:

- 45 dh par adulte et 30 par enfant s'ils réservent en catégorie 1.
- On va donc appeler V le nombre de vélos et T le nombre de vélos et T le nombre de catégorie 2.

Le coût total pour ce groupe d'amis est de 510 dh s'ils réservent en catégorie 1 et 316 euros s'ils réservent en catégorie 2.

Déterminer le nombre d'adultes et d'enfants de ce groupe?

Solution:

1. a. Regardons si les nombres x = 10 et y = 2 vérifient chacune des deux équations

$$45 \times 10 + 30 \times 2 = 450 + 60 = 510 \checkmark$$

 $27 \times 10 + 20 \times 2 = 270 + 40 = 310 \neq 316$

Le couple (10; 2) n'est donc pas solution du système.

b. Nous allons résoudre ce système à l'aide de combinaisons linéaires :

$$\begin{cases} 45x + 30y = 510 & (\times 20) \\ 27x + 20y = 316 & (\times 30) \end{cases}$$

On reporte ce résultat dans la première équation : $45 \times 8 + 30y = 510_{\text{soit}} 360 + 30y = 510_{\text{donc}}$ $30y = 150_{\text{d'où}} y = 5$

On vérifie que le couple (8,5) est bien solution de la seconde équation:

$$27 \times 8 + 20 \times 5 = 216 + 100 = 316 \checkmark$$

Par conséquent la solution du système est . (8,5)

2. On appelle A le nombre d'adultes et E le nombre d'enfants.

Avec la première catégorie on obtient l'équation 45A + 30E = 510.

Avec la seconde catégorie on obtient l'équation 27A + 20E = 316.

On est donc ramené à résoudre le

$$\begin{cases} 45A + 30E = 510 \\ 27A + 20E = 316 \end{cases}$$
 ystème

D'après la question précédente le couple (8,5) est solution

Exercice3 : résoudre dans \mathbb{R}^2 les systèmes suivants :

1)
$$\begin{cases} x - 2y = 1 \\ -2x + 4y = -2 \end{cases}$$
 2)
$$\begin{cases} 3x - 4y = 2 \\ -x + \frac{4}{3}y = -\frac{1}{3} \end{cases}$$

$$\begin{cases} \left(\sqrt{5} - \sqrt{3}\right)x + \left(\sqrt{2} - 1\right)y = 0 \\ \left(\sqrt{2} + 1\right)x + \left(\sqrt{5} + \sqrt{3}\right)y = 1 \end{cases} = 4 \end{cases} \begin{cases} x + y = 11 \\ x^2 - y^2 = 44 \end{cases}$$

Solution : 1)
$$\Delta = \begin{vmatrix} 1 & -2 \\ -2 & 4 \end{vmatrix} = 0$$

$$\begin{cases} x - 2y = 1 \\ -2x + 4y = -2 \end{cases} \Leftrightarrow \begin{cases} x - 2y = 1 \\ -2(x - 2y) = -2 \end{cases} \Leftrightarrow \begin{cases} x - 2y = 1 \\ x - 2y = 1 \end{cases}$$

$$\Leftrightarrow x - 2y = 1 \Leftrightarrow -2y = 1 - x \Leftrightarrow y = -\frac{1}{2} + \frac{1}{2}x$$

Donc le système admet une infinité de solutions :

$$S = \left\{ \left(x; \frac{1}{2}x - \frac{1}{2} \right) / x \in \mathbb{R} \right\}$$

2)
$$\begin{cases} 3x - 4y = 2 \\ -x + \frac{4}{3}y = -\frac{1}{3} \end{cases}$$
 On multiplie la 2 iem équation par -3

On aura :
$$\begin{cases} 3x - 4y = 2 \\ 3x - 4y = 1 \end{cases}$$
 donc 2=1

Impossible donc : $S = \emptyset$

3)
$$\begin{cases} \left(\sqrt{5} - \sqrt{3}\right)x + \left(\sqrt{2} - 1\right)y = 0\\ \left(\sqrt{2} + 1\right)x + \left(\sqrt{5} + \sqrt{3}\right)y = 1 \end{cases}$$

$$\Delta = \begin{vmatrix} \sqrt{5} - \sqrt{3} & \sqrt{2} - 1 \\ \sqrt{2} + 1 & \sqrt{5} + \sqrt{3} \end{vmatrix} = (\sqrt{5} - \sqrt{3})(\sqrt{5} + \sqrt{3}) - (\sqrt{2} + 1)(\sqrt{2} - 1)$$

$$\Delta = \left(\left(\sqrt{5}\right)^2 - \left(\sqrt{3}\right)^2\right) - \left(\left(\sqrt{2}\right)^2 - \left(1\right)^2\right)$$

Donc:
$$\Delta = (5-3)-(2-1)=1 \neq 0$$

$$x = \frac{\begin{vmatrix} 0 & \sqrt{2} - 1 \\ 1 & \sqrt{5} + \sqrt{3} \end{vmatrix}}{\frac{\Delta}{\Delta}} = \frac{-(\sqrt{2} - 1)}{1} = -\sqrt{2} + 1 = 1 - \sqrt{2}$$

$$y = \frac{\begin{vmatrix} \sqrt{5} - \sqrt{3} & 0 \\ \sqrt{2} + 1 & 1 \end{vmatrix}}{\Delta} = \frac{-(\sqrt{5} - \sqrt{3})}{1} = -\sqrt{5} + \sqrt{3} = \sqrt{3} - \sqrt{5}$$

Donc:
$$S = \{(1 - \sqrt{2}, \sqrt{3} - \sqrt{5})\}$$

$$\begin{cases} x + y = 11 \\ x^2 - y^2 = 44 \end{cases} \Leftrightarrow \begin{cases} x + y = 11 \\ (x + y)(x - y) = 44 \end{cases} \Leftrightarrow$$

$$\begin{cases} x + y = 11 \\ 11(x - y) = 44 \end{cases} \Leftrightarrow \begin{cases} x + y = 11 \\ x - y = 4 \end{cases}$$

On fait la somme membre a membre on trouve :

$$x+y+x-y=11+4$$
 donc $2x=15$ donc $x=\frac{15}{2}$

Et par suite :
$$\frac{15}{2} + y = 11$$
 Donc : $y = \frac{7}{2}$

Donc:
$$S = \left\{ \left(\frac{15}{2}, \frac{7}{2} \right) \right\}$$

Exercice4 :1) résoudre dans \mathbb{R}^2 le système suivant : $\int -7x - 3y = 4$

$$\int -7x - 3y = 4$$

$$4x + 5y = -2$$

2)en déduire les solutions du système suivant :

$$\int \frac{-7}{x} - \frac{3}{y} = 4$$

$$\frac{4}{x} + \frac{5}{y} = -2$$

Solution : 1)le déterminant du système est :

$$\Delta = \begin{vmatrix} -7 & -3 \\ 4 & 5 \end{vmatrix} = -35 + 12 = -23 \neq 0$$

Donc:
$$x = \frac{\begin{vmatrix} 4 & -3 \\ -2 & 5 \end{vmatrix}}{\begin{vmatrix} -2 & 5 \end{vmatrix}} = -\frac{14}{23}$$
 et $y = \frac{\begin{vmatrix} -7 & 4 \\ 4 & -2 \end{vmatrix}}{\begin{vmatrix} 4 & -2 \end{vmatrix}} = -\frac{2}{23}$

Donc:
$$S = \left\{ \left(-\frac{14}{23}, -\frac{2}{23} \right) \right\}$$

2) pour que le systeme existe il faut que : $x \ne 0$ et $y \ne 0$

$$\begin{cases} -7\frac{1}{x} - 3\frac{1}{y} = 4 \\ 4\frac{1}{x} + 5\frac{1}{y} = -2 \end{cases}$$
 on pose : $X = \frac{1}{x}$ et $Y = \frac{1}{y}$

Le systeme devient :
$$\begin{cases} -7X - 3Y = 4\\ 4X + 5Y = -2 \end{cases}$$

D'après 1) on a :
$$X = -\frac{14}{23}$$
 et $Y = -\frac{2}{23}$

Donc:
$$\frac{1}{x} = -\frac{14}{23}$$
 et $\frac{1}{y} = -\frac{2}{23}$

Donc:
$$x = -\frac{23}{14}$$
 et $y = -\frac{23}{2}$ Donc: $S = \left\{ \left(-\frac{23}{14}, -\frac{23}{2} \right) \right\}$

Exercice5 : résoudre dans \mathbb{R}^2 le système suivant :

$$\begin{cases} \frac{5}{x-1} + \frac{3}{y-2} = 4 \\ \frac{-2}{x-1} + \frac{1}{y-2} = 1 \end{cases}$$

Solution : pour que le systeme existe il faut que : $x \ne 1$ et

$$y \ne 1$$
 on pose: $X = \frac{1}{x-1}$ et $Y = \frac{1}{y-2}$

Le systeme devient :
$$\begin{cases} 5X + 3Y = 4 \\ -2X + Y = 1 \end{cases}$$

On résolve ce systeme et on trouve : $X = \frac{1}{11}$ et $Y = \frac{13}{11}$

Donc:
$$\frac{1}{x-1} = \frac{1}{11}$$
 et $\frac{1}{y-2} = \frac{13}{11}$

Donc:
$$x-1=11$$
 et $y-2=\frac{11}{13}$

Donc:
$$x = 12$$
 et $y = \frac{37}{13}$ par suite: $S = \left\{ \left(12, \frac{37}{13}\right) \right\}$

Exercice6 : résoudre dans \mathbb{R}^2 le système suivant :

$$\begin{cases} 2\sqrt{x} + \sqrt{y} = 6 \\ -3\sqrt{x} + 5\sqrt{y} = 17 \end{cases}$$

Solution : pour que le systeme existe il faut que :

$$x \ge 0$$
 et $y \ge 0$ on pose : $X = \sqrt{x}$ et $Y = \sqrt{y}$

Le systeme devient :
$$\begin{cases} 2X + Y = 6 \\ -3X + 5Y = 17 \end{cases}$$

On résolve ce systeme et on trouve : X = 1 et Y = 4

Donc:
$$\sqrt{x} = 1$$
 et $\sqrt{y} = 4$ donc: $(\sqrt{x})^2 = (1)^2$ et $(\sqrt{y})^2 = 4^2$

Donc:
$$x = 1$$
 et $y = 16$ par suite: $S = \{(1,16)\}$

Exercice : résoudre dans \mathbb{R}^2 le système suivant :

$$\begin{cases} 2x^2 - 5y^2 = 1\\ 4x^2 + 3y^2 = 15 \end{cases}$$

Solution: $X = x^2$ et $Y = y^2$

Le systeme devient :
$$\begin{cases} 2X - 5Y = 1 \\ 4X + 3Y = 15 \end{cases}$$

On résolve ce systeme et on trouve : X = 3 et Y = 1

Donc:
$$x^2 = 3$$
 et $y^2 = 4$

Donc:
$$x = -\sqrt{3}$$
 ou $x = \sqrt{3}$ et $y = \sqrt{1}$ ou $y = -\sqrt{1}$

Donc:
$$x = -\sqrt{3}$$
 ou $x = \sqrt{3}$ et $y = 1$ ou $y = -1$

Par suite :
$$S = \{(\sqrt{3}, 1), (\sqrt{3}, -1), (-\sqrt{3}, 1), (-\sqrt{3}, -1)\}$$

Exercice7: résoudre dans \mathbb{R}^2 le système suivant :

$$\begin{cases} (x^2 - 3x + 1) + (y^2 - 5y + 4) = -3 \\ 2(x^2 - 3x + 1) - 3(y^2 - 5y + 4) = 4 \end{cases}$$

Solution: on pose: $X = x^2 - 3x + 1$ e $Y = y^2 - 5y + 4$ t

Le systeme devient :
$$\begin{cases} X + Y = -3 \\ 2X - 3Y = 4 \end{cases}$$

On résolve ce systeme et on trouve : X = -1 et Y = -2

Donc:
$$x^2 - 3x + 1 = -1$$
 et $y^2 - 5y + 4 = -2$

Donc:
$$x^2-3x+21=0$$
 et $y^2-5y+6=0$

On résolve 1'équation :
$$x^2 - 3x + 2 = 0$$

$$\Delta = b^2 - 4ac = (-3)^2 - 4 \times 1 \times (2) = 1 > 0$$

Donc:
$$x_1 = \frac{-(-3) + \sqrt{1}}{2 \times 1} = 2$$
 et $x_2 = \frac{-(-3) - \sqrt{1}}{2 \times 1} = \frac{3}{2}$

On résolve l'équation : $y^2 - 5y + 6 = 0$

$$\Delta = b^2 - 4ac = (-5)^2 - 4 \times 1 \times 6 = 1 > 0$$

Donc:
$$y_1 = \frac{-(-5) + \sqrt{1}}{2 \times 1} = 3$$
 et $y_2 = \frac{-(-5) - \sqrt{1}}{2 \times 1} = 2$

Par suite on a :
$$S = \{(1,3), (1,2), (2,3), (2,2)\}$$

« C'est en forgeant que l'on devient forgeron » Dit un proverbe.

C'est en s'entraînant régulièrement aux calculs et exercices

Que l'on devient un mathématicien

