

GENERAL GUIDELINES

Do's:-

- Students should be on time for every lecture.
- Students are advised to show due respect to all faculty members.
- Students should keep the Classrooms, Laboratories and Workshops clean and tidy.
- Students must maintain absolute discipline and decorum, while on campus.
- Students should come prepared with algorithm / flowchart / program / procedure for all the experiments before attending the laboratory session.
- Students should bring the data sheets and laboratory records completed in all respects to the laboratory.
- Students are advised to clarify their doubts in the respective courses with the faculty.
- Students have to inform their parents that they should follow up the progress of their wards by being in touch with the institution authorities at regular intervals.
- Students are advised to be present for the mentor meetings conducted by their respective Faculty Advisors, failing which appropriate disciplinary action will be taken.

Don'ts:-

- Students are not permitted to attend the class without the identity card, once issued.
- Ragging is strictly prohibited because it is punishable under Karnataka Education Act. Any student involved in ragging, will be severely punished which includes handing over the case to Police, rustication from the college etc.
- Writing on desks and walls is strictly prohibited, failing which the students will be fined heavily.
 If the identity of the individual is not established the entire class / students in the block will be fined.
- Students must not use their cell phones during class hours. If any student is found using their cell phone during class hours it will be confiscated.
- Students are not supposed to alter the configuration of the system / any software on the systems.

III SEMESTER (2021-25 BATCH)

SI. Course Code Course		Course Title	Но	urs p	er w	reek	Credits	Tools / Languages	Course Type
No.	Course Coue	Course ritte	L	Т	Р	S	С		
1	UE21CS251A	Digital Design and Computer Organization	4	0	2	5	5	Icarus, Verilog Simulator, GTKWave waveform viewer	CC- Lab Integrated
2	UE21CS252A	Data Structures and its Applications	4	0	2	5	5	C Programming Language	CC-Lab Integrated
3	UE21CS241A	Statistics for Data Science	4	0	1	4	4	Python	CC- Independent
4	UE21CS242A	Web Technologies	4	0	1	4	4	HTML, CSS, JavaScript, MERN Technologies	CC- Independent
5	UE21CS243A	Automata Formal Languages and Logic	4	0	1	4	4	JFLAP	CC- Independent
6	UE21MA221A	Bridge Course Mathematics –I (Applicable for the Lateral Entry Students)*	2	0	0	2	0		FC- Independent
Total			20/22	0	7	22/ 24	22		

UE21CS251A: DIGITAL DESIGN AND COMPUTER ORGANIZATION

No. of Credits: 5 # of Hours: 100

	Chapter title/	-	% of Portions covered	
Class No.	Reference literature	Topics to be covered	Absolute %	Cumula tive %
UNIT – I: Co	ombinational Logic Design			
1-2	Lecture 1 slides	Introduction, Boolean Functions, Truth Tables		
3-6	R2: 3.2-3.3 ,3.5-3.6	K-Maps		
7-8	T1: Chapter 5 Digital Building Blocks,5.1, 5.2.1	Adder/Subtractor, Overflow		
9-11: Lab1a	Basics of Verilog: Basic gates, Adder/	Subtractor (One bit & n-bit).		
12-14: Lab1b	Basics of System C: Basic gates, Adde	r/ Subtractor (One bit & n-bit).	21.5	21.5%
15-17	T1: Chapter 2 Combinational Logic Design 2.1, 2.2, 2.3,2.7	15-17		
18	T1: Chapter 5 Digital Building Blocks 5.2.5	18		
19-20: A1	Assignment-1: Write a Verilog code a Decoders.			
21	Revision			

0

Computer Science And Engineering

		<u> </u>		
PES	T1: Chapter 2 Combinational Logic Design			
22	2.8, 2.6, Handouts	Gate/Wire Delays, Timing		
	2.9 (exclude contamination delay)			
24-26	T1: Chapter 3 Sequential Logic Design	Latches, Flip-Flops		
27-30	3.2 (excluding 3.2.7)	Synchronous Logic Design	21.5	
31-33	3.3 (excluding 3.3.1, 3.3.3)	Finite State Machines		43%
	3.4 (excluding 3.4.4)			
34-35: A2	Write a Verilog code and test bench for Flip-Fl	op, Synchronous Register		
36-38:	Design of an ALU			
Lab2				
39	Revision			
UNIT – III: S	equential Logic and Arithmetic Circuits			
40-43	T1: Chapter 3 Sequential Logic Design 3.4.1, examples 3.6, 3.7, 3.9	FSM examples		
44-45	Handout Link 1	Counters		
46-48: Lab3	Design of a Register File	_		
49	T1: Chapter 5 Digital Building Blocks	Memory Arrays		
50-52	5.5, 5.5.1 5. 2.1	Carry-lookahead and Prefix Adders	17.7	60.7%
53-54: A3	Write a Verilog code and test bench for Count	ers or Prefix adders.		
55-56: Lab4	Design of a Data-path (Integration of ALU and Register File).			
57	Revision			
UNIT – IV: A	Arithmetic Circuits and Architecture			
58-61	R3: Chapter 9 Arithmetic 9.4	Shift/add Multiplier/Divider		
62	Handout			
62	Link 2 29.2.3, 29.3.2	Wallace Tree Multiplier		
63-65: Lab5	Design of a Program Counter.	·		
66	T1: Chapter 5 Digital Building Blocks 5.3.2 (excluding subsections Rounding and Floating-Point Addition)	Floating point		
67-68	Chapter 6 Architecture 6.1, 6.2 6.3, 6.4.1 6.4.2, 6.4.3 (exclude switch/case statements) 6.4.4 (exclude magnitude comparison)	Introduction, Assembly Language	17.8	78.5%
69-70		Machine Language		
71-72: A4	Write a Verilog code and test bench for Multip			
73	Revision			
UNIT – V: N	licroarchitecture			
L				

74-75	T1: Chapter 6 Architecture 6.5	Addressing modes		
76	T1: Chapter 7 Microarchitecture 7.1, 7.2, 7.4 (exclude 7.3.3, 7.3.4, 7.4.3)	Introduction, Performance Analysis		
77-81		Single-Cycle, Multi-Cycle Processor		
82	Handout Link 3	Systolic array matrix multiply		
83-85	Handout Link 4	Overview of Computer Systems Organization	21.5	100%
86-88: Lab6a	Design of a Control Logic.			
89-90: A5	Write a Verilog code and test bench to in Load and Jump Instructions			
91-92: Lab6b	Design of 16-bit Microprocessor			
93	Revision			
94-100:	Mini Project			

Textbook(s):

1) Digital Design & Computer Architecture, David Money Harris, Sarah L Harris

References:

- 1) Computer Organization and Design, David A Patterson, John L Hennessey
- 2) Digital Design, M.Morris Mano & Michael D. Ciletti
- 3) Computer Organization, Carl Hamacher, SafwatZaky, ZvonkoVranesic

DDCO LAB

Learning Outcome:

At the end of all lab experiment, the student will be able to:

- 1. Achieve knowledge and awareness of various components to design stable digital circuits.
- 2. Analyze and design combinational circuits.
- 3. Design and develop sequential circuits.
- 4. Design and develop a basic microprocessor.
- 5. Translate real world problems into digital logic formulations using Verilog.

Lab Policies:

- 1. You will (have access to and) work in the lab.
- 2. All communication will be done through Group Email. So, please keep checking emails for notifications and updates. Important information will also be emailed.
- 3. 15-minute lab discussion sessions will be held before the lab experiment. These will be conducted by the Lab in charge Faculty. It is advisable to read Theory Class notes before coming to the lab class, so that you are better prepared to ask guestions and resolve doubts.
- 4. All Lab experiments are to be done individually.
- 5. Grading will occur in two parts: submission and demo.
- 6. For submission, upload all relevant files (specified with each lab under the 'Submission Details' section) via Edmodo/Google Drive. Once the lab is submitted, DO NOT make changes! You must demo with the code you submitted. In the event you decide to change the code for the demo, the day of the demo will be considered the turn-in date, and the appropriate late penalty will be applied.
- 7. In case you miss your check out lab slot, you can check out for that lab during office hours any time before the next lab's due date. In other words, the Faculty will not entertain requests for checking out labs older than the previous lab.
- 8. Late submissions will lead to penalty according to the following rules:
 - a. One day late submission less 10% of your normal score
 - b. Two day late submission less 20% of your normal score
 - c. Three day late submission less 30% of your normal score Submissions late by more than 3 days will not be accepted and you will be marked zero (unless you have taken permission from the professor).
 - d. Sundays are not counted for late submissions. So, if a lab is due on Saturday and you submit it on Monday, it will be considered 1-day late submission.

UE21CS252A - Data Structures & its Applications (4-0-2-5-5)

of Hours: 105

Class #	Unit#/ Reference Books	Topics to be Covered				ortion ered
Co	olor Code	Practice problems	Lab Exercises	Assignments	% of Syllabus	Cumula tive %
1		Overview of the course, Indefined data type	ntroduction to Data	Structures, User		
2		Pointers, Pointer to struct	tures			
3		Recursion				
4		Practice problems on C Fu	undamentals and Re	cursion		
5		Static and Dynamic Memo	ory Allocation			
6		Practice problems on File	s and Dynamic Mem	ory Allocation		
7		Abstract Data Type (ADT) structure	, List as an ADT, List	as a data		
8		Array List Implementation	า			
9		Singly Linked List (SLL) ins specified position, destro		nning, end, at a		
10		SLL delete operations: be search operation, concate		ecified position,		
11	Unit#1	Addition of two polynomi	als using SLL		22.85	22.85
12	Overview / T1, R1	Delete every alternate no node	de in the SLL startin	g from the first		
13		Doubly Linked List (DLL) in a specified position, destr	•	ginning, end, at		
14		DLL delete operations: be search operation	ginning, end, at a sp	ecified position,		
15		Create an ordered doubly	linked list			
16		Merge two ordered lists				
17		Implementation of Circula	ar Singly Linked List			
18		Implementation of Circula	ar Doubly Linked Lis	ţ		
19		Sparse matrix and its repr	esentation using M	ulti list		
20		Skip list Case study				
21		Dictionary Implementation	n using skip list			
22		Revision / ISA1				
23-24		Assignment 1				

25		Basic structure of a stack, Implementation of stack using arrays		
26		Implementation of stack using linked list, Applications of stack: Function execution, Nested functions		
27		Evaluation of a postfix expression using stack		
28		Conversion of an expression from Infix to postfix using stack		
29-30		Conversion of an expression from Infix to prefix using stack and evaluate the prefix expression		
31		Parenthesis matching using stack		
32		Practice problems on stack and its applications		
33	Unit#2	Basic structure of a simple queue, Implementation of simple queue using array and linked list		
34	Stacks and	Implementation of circular queue using array and linked list	20.95	43.80
35-36	Queues / T1,	Implement a queue using two stacks	20.33	13.00
37	R1	Implementation of priority queue using array		
38		Implementation of priority queue using linked list		
39		Double ended queue (Deque) and its Implementation using array		
40		Double ended queue (Deque) and its Implementation using linked list		
41		Applications of Queue: Case Study – Josephus problem, Implementation of Josephus problem		
42		Applications of Queue : CPU scheduling		
43		Practice problems on queue and its applications		
44		Revision / ISA2		
45-46		Assignment 2		
47		Binary Tree and Binary Search Tree (BST) : definition, properties		
48		Implementation of BST using dynamic allocation		
49		Binary Tree Traversal: Inorder, preorder, postorder		
50	Unit #3	Implementation of BST using arrays		
51	Trees and	Binary Search Tree: node deletion operation	19.05	62.85
52	Heaps / T1, R1	Implementation of binary expression tree		
53-54		Implementation of the Iterative inorder, preorder, postorder traversal of a binary tree		
55		Threaded binary search tree and its implementation		
56		Implementation of Dictionary using Binary Search Tree		

57		Practice problems on binary trees		
58		n-ary tree, Forest, conversion of an n-ary tree and Forest to Binary Tree		
59		Heap and its properties, implementation using array, Top down heap construction		
60-61		Bottom up heap construction		
62		Implementation of Priority Queue using min and max heap		
63		Practice Problems on heap		
64		Revision / ISA3		
65-66		Assignment 3		
67		Balanced Trees: Definition, AVL trees		
68		Rotations in AVL Trees		
69		Splay Trees		
70		Graphs: Introduction, properties, representation		
71		Implementation of graphs using adjacency matrix and adjacency list		
72		Depth First Search (DFS) traversal of a graph		
73		Breadth first search (BFS) traversal of a graph		
74	Unit#4	Application of BFS and DFS: Connectivity of graph		
75	Balanced	Application of BFS and DFS: finding path in a network		
76-77	Trees and	To check if there exists a cycle in a given graph	20	82.85
78	Graphs / T1,	Practice problems on graphs		
79	R1	Representation of computer network topology using graphs		
80		Case Study: Indexing in databases (B Tree: K-way tree), B tree Insertion		
81		B Tree deletion operations with examples, Implementation for B Tree construction from given keys		
82-83		To find shortest path from source to destination		
84		Practice problems on graphs		
85		Revision / ISA4		
86-87		Assignment 4		
88		Hashing: Simple mapping, hash function, hash table		
89	Unit #5	Collision handling using linear and quadratic probing		
90	Suffix Tree and Hashing	Collision handling using separate chaining, Collision handling using double hashing and rehashing	17.15	100
91-92	/ T1, R1	Implement collision handling using separate chaining and double hashing		

93	Practice Problems on hashing	
94	Implementation of Trie trees: Insert, search operations	
95	Trie: delete operation	
96-97	Display the words in a trie in lexicographic order	
98	Trie: multi pattern search, Suffix Trees, Applications of TRIE: URLs decoding, Word prediction using TRIE trees / Suffix Trees	
99	Auto-complete feature using Trie	
100	Revision / ISA5	
101	Practice problems on trie	
102- 105	Assignment 5	

Tool/ Languages: C

Text Book:

1. "Data Structures using C / C++", Langsum Yedidyah, Moshe J Augenstein, Aaron M Tenenbaum Pearson Education Inc, 2nd edition, 2015.

Reference Book:

1:"Data Structures and Program Design in C", Robert Kruse, Bruce Leung, C.L Tondo, Shashi Mogalla, Pearson, 2nd Edition, 2019.

UE21CS241A: STATISTICS FOR DATA SCIENCE (4-0-0-4)

No. of Hours: 75

	Chapter		% of Portion	on
Class #	Title/Reference	Topics to be covered	% of	Cumula
	Literature		syllabus	tive
1.		Introduction to Data Science: Motivating Examples		
		and Scope.		
2.		Sampling: Introduction, Sample, Population, Types		
		of population – Tangible, Conceptual. (1.1),		
3.		Sampling Methods (1.1)		
4.		Sampling Methods (1.1) Sampling Errors – Handout		
		1		
5.		Types of Data, Types of Experiments – Controlled		
		and Observational study (1.1)		
6.		Hands on session: Purpose and Components of		
		Python-A quick recap		
7.		Getting and Analyzing Data:Scraping the Web		
		(Handout 2)		
		Hands on Session-Web Scraping with		
	Unit: 1	BeautifulSoup		
8.		Getting and Analyzing Data: Reading Files (.csv)		
	Introduction to	(Handout 3)		
	Data Science,	Hands on Session Reading Files with Pandas		
9.	Statistics and	Data Cleaning: Need for Data Cleaning, Basics of		
	Visualizing data	Data Cleaning.(Handout 4)	28%	28%
	_	Hands on Session- Data Cleaning with Pandas		
10.	T1: Chapter 1	Statistics : Introduction, Types of Statistics,		
	1.1-1.3	Summary Statistics(1.2)		
4.4				
11.		Summary Statistics (cont.), Statistic and		
4.2		Parameter.(1.2)		
12.		Hands on Session-Summary Statistics and		
12		Sampling Methods		
13.		Data Visualization and Interpretation:		
		Graphical summaries - Histogram - Equal and		
		Unequal Widths (1.3) Hands on Session-Data		
1.4		Visualization with Matplotlib and Seaborn		
14.		Visualizing Data: Box Plots (1.3) Hands on Session-		
1 -		Data Visualization with Matplotlib and Seaborn	-	
15.		Visualizing Data: Two variables (Scatter Plots) (1.3), Hands on Session-Data Visualization with		
4.0		Matplotlib and Seaborn	-	
16.		Visualizing Data: Bar Charts – Handout 5, Hands on		
		Session-Data Visualization with Matplotlib and		
		Seaborn		

47				
17.		Heat Maps-Handout 6 Hands on Session-Data		
		Visualization with Matplotlib and Seaborn		
		Good vs. Bad Visualization.(Handout 7)		
18.		Tutorial 1: Sample Exercise Problem Solving		
19.		Revision/ISA 1		
20.		Case Study 1: Real world Application		
21.		Coding Assignment 1 based on Case Study 2		
22.		Brief overview of Probability Basics.(Handout 8)		
		Random Variables : Introduction, Discrete Random		
		Variables(2.4)		
23.		Continuous Random Variables (2.4)		
24.		Chebyshev's inequality(2.4),		
25.		Linear Functions of Random Variables.(2.5)		
26.	Unit: 2	Linear Functions of Random Variables.(2.5)		
27.		Probability Distributions: TheBernoulli		
	Random Variables	Distribution(4.1)+derivation of Mean and Variance		
28.	and Probability	The Binomial Distribution(4.2) Hands on session on		
	Distributions	distributions)+derivation of Mean and Variance		
29.		The Poisson Distribution(4.3) Hands on session on		
		distributions	2001	100/
30.	T1: Chapter 2	The Normal Distribution(4.5)	20%	48%
31.	2.4 – 2.5,	The Normal Distribution(4.5) Hands on session on		
31.	Chapter 4	distributions		
32.	4.1 – 4.3,	Generation of Random Variates (Handout 9)		
32.	4.5	Hands on session		
33.		Tutorial 2: Sample Exercise Problem Solving		
		Revision/ISA 2		
34. 35.				
-		Case Study 1: Real world Application		
36.		Coding Assignment 2 based on Case Study 2		
37.		Principles of Point Estimation : Mean squared error(4.9)		
38.	Unit: 3	Maximum likelihood estimate (4.9)+(Handout 10)		
39.		Maximum likelihood estimate (4.9)+(Handout 10)		
	Probability	contd.,		
40.	Distributions and	Normal Probability Plot (4.10)		
	Confidence	Hands on session		
41.	Intervals	Sampling Distribution	20	68
42.		Sampling concepts : The Central Limit Theorem and	0	
		its applications(4.11)		
		Hands on session		
43.		Continuity Correction-Normal approximation to		
75.		Binomial and Poisson distribution		
		Hands on session		
44.		Confidence Intervals:Introduction, Interval		
77.		Community intervals. Introduction, interval		

		estimates for proportion of large samples. (5.2)		
45.		Confidence intervals for mean of Small		
13.		Samples.(5.3)		
		Student's t Distribution		
	T1: Chapter 4	Hands on session		
46.	4.9 – 4.11	Confidence Intervals for the Difference Between		
	Chapter 5	Two Means for large samples(5.4),		
47.	5.1-5.4,5.7	Confidence Interval estimates for paired data.(5.7)		
		Factors affecting Margin of Error.(Handout 11)		
		Hands on session		
48.		Tutorial 3: Sample Exercise Problem Solving		
49.		Revision/ISA 3		
50.		Case Study 1: Real world Application		
51.		Coding Assignment 3 based on Case Study 2		
52.		Hypothesis Testing: Introduction (6.1)		
53.		Large sample tests for a Population Mean (6.1)		
54.		Drawing conclusions from the results of Hypothesis		
		tests(6.2)		
55.	Unit: 4	Large sample tests for a Population proportion		
_	Ome. 4	(6.3)		
56.	Hypothesis and	Large - Sample tests for Difference between two		
	Inference.	means (6.5)	4= 00	0= 00
57.		Hands on session :Hypothesis Testing	17.33	85.33
58.	T1: Chapter 6	Distribution Free Tests. (6.9) Chi-squared Test.(6.10)		
59. 60.	6.1 - 6.3, 6.5, 6.9,	Fixed Level Testing (6.12), Type I and Type II Errors		
00.	6.10, 6.12	(6.12)		
61.		Tutorial 4: Sample Exercise Problem Solving		
62.		Revision/ISA 4		
63.		Case Study 1: Real world Application		
64.		Coding Assignment 4 based on Case Study 2		
65.		Power of a Test.(6.13)		
66.		Power of a Test.(6.13)		
67.		Factors affecting Power of a Test.(Handout 12)		
68.	Unit: 5	Simple Linear Regression: Introduction,		
	Power of Test	Correlation.(7.1)		
69.	T1: Chapter 6	The Least squares Line.(7.2)		
70.	6.13	Predictions using regression models - Uncertainties	14.67	100
		in Regression Coefficients.(7.3)		
71.	Simple Linear	Checking Assumptions and transforming data.(7.4)		
	Regression.	Hands on session on Linear regression		
72.		Tutorial 5: Sample Exercise Problem Solving		
73.	T1: Chapter 7	Revision/ISA 5		

	_		
74.	7.1 – 7.4	Case Study 1: Real world Application	
75.		Coding Assignment 5 based on Case Study 2	

Literature:

Book Type	Code	Title & Author	Publication Information		
			Edition	Publisher	Year
Text Book	T1	Statistics for Engineers and Scientists, William Navidi.	4 th	McGraw Hill Education, India	2013
Reference Book	T2	The Art of Computer Systems Performance Analysis: Techniques for Experimental Design, Measurement, Simulation, and Modeling, Raj Jain		Wiley	2008
Reference Book	Т3	Data Science From Scratch, Joel Grus	1 st	O'Reilly	2015
Reference Book	T4	Sampling- Design and Analysis, Sharon L. Lohr	2 nd	Cengage	2010
Reference Book	T5	Statistics for Engineers and Scientists, William Navidi.	3 rd	McGraw Hill Education, India	2010

UE21CS242A: WEB TECHNOLOGIES (4-0-0-4)

No. of Hours: 75

01	Chapter	Chapter		% of Portions Covered	
Class	Title/Reference	Topics to be Covered	% of	Cumulative	
#	Literature		Syllabus	%	
1.		Introduction to Web Architecture and Web			
		protocols (HTTP Request Response Formats,			
		URLs)			
2.		Basic Mark-ups & syntax, HTML elements &			
		attributes			
3.		Web Form 2.0 & Form Controls			
4.		HTML5 (New Tags, Inputs, Elements and			
		Controls),			
5.	UNIT 1(12 Hours)	CSS3.0-Styles and Style sheets,			
6.	TB1 : Chapter	Selectors, Style properties			
7.	1,Chapter 13:	Box Model and Positioning	21.43%	21.43%	
8.	Pageno 309 to 323	CSS Flex Property and Media Queries			
9.	Chapter 18 and 19	JavaScript Basics(Variables, Scope)			
10.	chapter to alla 13	JavaScript Basics: Functions, Hoisting			
11.		JavaScript Built in Objects			
12.		JavaScript Objects			
13.		Review: Lab Assignment on HTML and CSS:			
		Unit 1 – Submission of project Titles and			
		Team			
		Members			
14.		ISA 1			
15.		JavaScript Objects and Prototypal			
		Inheritance			
16.		DOM Manipulations			
17.		Events			
18.	UNIT 2(12 hours)	Event Handling in JavaScript,			
19.	TB1 : Chapter 17,	HTML5 (APIs), Audio, Video, Progress			
20.	Chapter	HTML5 (APIs) – Canvas, SVG, File api,			
	21,22,24,25	geolocation, web workers.			
21.	,,,	JQuery (Introduction, Handling events)			
22.		JQuery (Introduction, Handling events)			
23.		Callbacks & Promises, Single Page			
		Application		/J2 0C0/	
24.		XML Vs JSON, Asynchronous	21.43%	42.86%	
		Communication- XHR (properties and			
		methods)	_		
25.		\$.ajax,\$.get,\$.post,	_		
26.		\$load, Fetch API	_		
27.		Review: Lab Assignment on Javascript: Unit			
28.		2 ISA 2	-		
29.		Project Review- Submission of wireframe	-		
25.		design			
30.	UNIT 3(10 Hours)	MERN Introduction		_	
31.	TB2 : Chapter 1,3,4	React Classes and Components	17.85%	60.71%	
S Unive	•			4 -	

22		Chilling and Compley corresponds		
	,8	Styling and Complex components		
33.		Properties, States and Context		
34.		Component lifecycle methods		
35.		Self Learning: Explore on Bootstrap		
		template.		
		Apply Bootstrap's choices of color, size, font		
		and layout to your own project.		
36.		Stateless components		
37.		Refs & Keys		
38.		Event Handling		
39.		React Form Handling		
40.		React Form Handling		
41.		Review: Lab Assignment on ReactJS: Unit 3		
42.		ISA 3		
43.		Understanding Node JS Architecture		
44.		Set up Node JS app		
45.		Node Modules		
46.		Buffers, Streams, File system		
47.		HTTP Module, Handling HTTP Requests		
48.		HTTP Module, Handling HTTP Requests		
49.		Self Learning : Compare AngularJS and		
45.		ReactJS and NodeJS		
50.	UNIT 4(12 Hours)	Mongo DB- Documents, Collections	21.43%	82.14%
51.	TB2 : Chapter 6	Reading and Writing to DB		
52.		MongoDB Node JS Driver		
53.		Events and Events Emitter		
54.		Running a react application on		
		NodeJS(Hands-on)		
55.		React Router		
56.		Review: Lab Assignment on NodeJS: Unit 4		
57.		ISA 4		
58.		Introduction to Web services		
59.		REST API's		
60.				
61.		Express Framework Overview Routing		
62.		URL Binding	\dashv	
63.		Error Handling		
64.		Express Middleware		
65.		Form Data	\dashv	
66.		File Upload		
67.	UNIT 5(10 hours)TB2:	File Upload	\dashv	
<u> </u>	Chapter 5	Review: Lab Assignment on ExpressJS: Unit	 17.86%	100%
68.	Chapter 3	5		
69.		Self Learning: Vue JS		
70.		ISA 5		
71.		Guest Lecture		
72.				
73.		Mini Project Presentation and Evaluation		
74.		,		
75.				

Tools / Languages: HTML, CSS, JavaScript, MERN Technologies.

Books:

			Publication Information			
Book Type	Code	Title & Author	Edition	Publisher	Year	
Text Book	T1	Learning PHP, MySQL & JavaScript, 5th Edition. by Robin Nixon. May 2018, O'Reilly Media, Inc. ISBN: 9781491978917	2 nd	Wiley Publishing	2018	
Text Book	T2	Pro MERN Stack: Full Stack Web App Development with Mongo, Express, React, and Node by Vasan Subramanian. March 2017, Apress	1 st	O'Reilly	2017	
Reference Book	R1	Beginning Node.js, Express & MongoDB Development by Greg Lim, July 2019	1 st	McGraw Hill	2019	
Reference Book	R2	Learning React, Functional Web Development with React and Redux By Alex Banks and Eve Porcello, May 2017, O'Reilly Media	1 st	O'Reilly Media	2017	

UE21CS243A: Automata Formal Languages and Logic (4-0-0-4)

No. of Hours: 75

Hours	Topic	Chapter	Coverage		
	-	and Section	% of Syllabus	Cumulative %	
Unit 1:	Introduction				
1.	Mathematical Preliminaries and	T1 – 1.1			
	Notation,	T2 – 1.2			
2.	Three Basic Concepts. Finite Automata: Deterministic Finite Accepters	T1 – 2.1			
3.	Deterministic Finite Accepters	T1 – 2.1			
4.	Deterministic Finite Accepters	T1 – 2.1			
5.	Non-Deterministic Finite Accepters,	T1 – 2.2			
6.	Non-Deterministic Finite Accepters,	T1 – 2.2			
7.	Equivalence of Deterministic and Non- Deterministic Finite Accepters,	T1 – 2.3	18	18	
8.	Equivalence of Deterministic and Non- Deterministic Finite Accepters,	T1 – 2.3			
9.	Reduction of the number of states in Finite Automata.	T1 – 2.4			
10.	Reduction of the number of states in Finite Automata.	T1 – 2.4			
11.	Unit wise revision session				
12.			7		
13.	ISA 1		7		
Unit 2:	Regular Languages and Grammars		1		
14.	Regular Expressions.	T1 – 3.1			
15.	Regular Expressions	T1 – 3.1			
16.	Connection between Regular Expressions and Regular Languages.	T1 – 3.2			
17.	Equivalence of two Regular Expressions,	T1 – 3.2			
18.	Regular Grammars	T1 – 3.3			
19.	Regular Grammars, Equivalence of Regular Grammar and Finite Automata	T1 – 3.3			
20.	Equivalence of Regular Grammar and Finite Automata	T1 – 3.3	18	36	
21.	Properties of Regular Languages	T1 – 4.1	1		
	Elementary Questions about RegularLanguages	T1 – 4.1 T1 – 4.2			
22.	Pumping Lemma	T1 – 4.3	1		
23.	Pumping Lemma, Identifying NonRegular Languages.				
24.	Unit wise revision/case study session		1		
25.	,,		7		

.1	
.1	
2	
.2	
2	
.2	
2	
	F7.2
	57.3
.1	
.2	
2	
2	
1	
<u> </u>	
1	
1	
1	
2 21.2	70.6
21.3	78.6
3	
.1	
.3	
.2	
.2	
	2 21.3 21.3 21.3 21.3 21.3 21.3 21.3 21.

	Enumerable Languages, idea ofreduction	T1- 11.3		
53.	Unit wise revision session			
54.				
55.	ISA 4			
Unit 5: P	ropositional Logic		1	
56.	A very simple Logic, Syntax, Semantics,	T2- 7.4, T2-		
		7.4.1, T2-		
		7.4.2		
57.	A simple knowledge Base, A simple	T2- 7.4.3, T2-		
	inference procedure.	7.4.4		
58.	Propositional Theorem Proving:	T2- 7.5.1,		
	Inference and Proofs,	7.5.2		
59.	Proof by Resolution	T2- 7.5.1,		
		7.5.2		
60.	Conjunctive Normal Form	T2- 7.5.1,		
61.	Conjunctive Normal Form	T2- 7.5.1		
62.	A resolution algorithm.	T2- 7.5.2		
63.	Syntax and Semantics of First Order Logic:	T2- 8.2		
64.	Models for First Order Logic Symbols and interpretations,	T2- 8.2	21.3	100
65.	Terms, Atomic Sentences, Complex Sentences	T2- 8.2		
66.	Quantifiers, Equality, Numbers	T2- 8.3.3		
67.	Sets and Lists. Example - The electronic circuits' domain.	T2- 8.4.2		
68.	Problems Based on CNF and Resolutionalgorithm			
69.	ISA 5			
70.	Unit wise revision session			
71.	Introduction to Prolog Programming			
72.	Assignment 2: Syntax Validation of a programming			
73.	language by writing the Context Free Grammar. (PLY, ANTLR Tools)			
74.	Assignment 1: Implementation of			
75.	RegEx for NLP Applications			

Tools:

JFLAP - Java Formal Languages and Automata Package

Text Book(s):

- 1. "An Introduction to Formal Languages and Automata", Peter Linz, Jones and Bartlett, New Delhi, India, 5th Edition, 2011.
- 2. Artificial Intelligence A Modern Approach", Stuart Russell and Peter Norvig, Pearson, 3rd Edition (Paperback), 2016

References:

- 1. "Theory of Computation", Michael Sipser, Cengage Learning, New Delhi, India, 2008.
- 2. "Introduction to Automata Theory, Languages, and Computation", John E Hopcroft, Rajeev Motwani, Jeffrey D Ullman, Pearson Education, New Delhi, India, 3rd Edition, 2009.
- 3. "Theory of Computation: A Problem-Solving Approach", Kavi Mahesh, Wiley India, NewDelhi, 2012