Linear Regression

Regression can be defined as a method to estimate the value of one variable when that of other is known, when the variables are correlated. Regression analysis is a mathematical measure of average relationship between two or more correlated values.

Linear regression

1. Line of regression of y on x is:

$$y - \overline{y} = b_{yx}(x - \overline{x})$$

where regression coefficient of y on x is given by

$$b_{yx} = \frac{\text{Cov}(\mathbf{x}, \mathbf{y})}{\sigma_x^2} = r \frac{\sigma_y}{\sigma_x}$$

2. Line of regression of x on y is:

$$x - \overline{x} = b_{xy}(y - \overline{y})$$

where regression coefficient of x on y is given by

$$b_{xy} = \frac{\text{Cov}(x,y)}{\sigma_y^2} = r \frac{\sigma_x}{\sigma_y}$$

Properties:

1. Lines of regression passes through the point $(\overline{x},\overline{y})$

2.
$$b_{yx}b_{xy} = r^2$$
. $[r = \sqrt{b_{yx}.b_{xy}}]$

3. b_{yx}, b_{xy} have same sign.

Least Squares Straight Line

For a given set of N data points $(x_1, y_1), (x_2, y_2), \dots (x_N, y_N)$ assume that the straight line

$$Y = a_0 + a_1 X = f(X)$$

fits to the data in the least squares sense Normalized equation are given by

$$\sum Y_i = Na_0 + a_1 \sum X_i$$

$$\sum X_i Y_i = a_0 \sum X_i + a_1 \sum X_i^2$$

known as "Normal equations".

1. The following are the marks in Statistics (X) and Mathematics(Y) of ten students

- 1			55								
ĺ	Y	68	67	67	65	68	70	66	68	66	70

Calculate the coefficient of correlation and estimate marks in Mathematics of a student who scored 62 marks in Statistics.

 $[\mathrm{Ans}:\,\mathrm{r}=0.44\;,\,\mathrm{Y}=69.5\;]$

•

.

2. It is given that the means of x and y are 5 and 10. If the line of regression of y on x is parallel to the line 20y = 9x + 40, estimate the value of y at x = 30

[Ans: 20y = 9x + 155 and y = 21.25]

7

.

.

3. Find the two lines of regression from the following data $\,$

X	65	66	67	67	68	69	70	72
Y	67	68	65	68	72	72	69	71

[Ans : x = 30.364 + 0.545 y and y = 23.667 + 0.667 x]

•

.

- 4. In partially destroyed laboratory record of an analysis of correlation data, the following results only are legible- Variance of X=9, regression equations are: 8X-10Y+66=0 & 40X-18Y=214 What was
 - (a) the mean of X and Y
 - (b) the correlation between X and Y
 - (c) the S.D. of Y

•

5. You are given the following data

	X	Y
Mean	30.1	47.8
standard deviation	6.2	9.5

6. Obtain the equation of the line of regression of cost on age from the following table giving the age of a car of certain make and the annual maintenance cost.

Age of car(in years)	2	4	6	8
Maintenance (in thousand of Rs.)	5	7	8.5	11

Also find maintenance cost of the car if its age is 9 years

 $[Ans:\,y=3\,+\,0.975\;x$ and $y=Rs.\ 11775]$