

Rangkaian Adder

Pertemuan 12

Materi

- Rangkaian Adder
- Operasi Rangkaian Adder
- Subtraction Dengan Rangkaian Adder

Sub-CPMK

 Mahasiswa mampu mencari output dari suatu rangkaian adder yang disusun paralel (C3, A3)

1.

Rangkaian Adder

Rangkaian Adder

- Rangkaian Adder adalah rangkaian gerbang logika yang disusun menjadi sehingga dapat melakukan operasi penjumlahan dari dua input dan sebuah input carry dari paralel adder lainnya
- Input rangkaian Adder: A dan B dan sebuah input Carry-in
- Output rangkaian Adder: hasil penjumlahan A dan B dan Carryout

Half Adder

Half Adder – Tabel Kebenaran

A_{0}	B_0	C ₁	Σ
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

 Dari tabel kebenaran didapatkan persamaan

$$\Sigma_0 = A_0 \overline{B}_0 + \overline{A}_0 B_0$$

Half Adder - Penyederhanaan

Half adder K-maps for (a) Σ_0 (b) C_1 .

Half Adder – Rangkaian

 Penyederhanaan menghasilkan persamaan

$$\Sigma_0 = A_0 \oplus B_0$$

• Ekspresi untuk Carry adalah $C_1 = A_0B_0$

Rangkaian Half Adder

Full Adder

- A_0 , $B_0 \rightarrow Input$
- Σ_0 $C_0 \rightarrow Carry In$
 - $C_1 \rightarrow Carry Out$
- $C_I \quad \bullet \quad \Sigma_0 \rightarrow \text{fungsi sum}$

Full Adder – Tabel Kebenaran

A_0	B_0	C_0	C_{I}	Σ
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Persamaan Hasil Penjumlahan:

•
$$\Sigma_0 = A_0 \overline{B_0 C_0} + A_0 B_0 \overline{C_0} + A_0 \overline{B_0 C_0} + A_0 \overline{B_0 C_0}$$

Persamaan Carry Out

•
$$C_1 = A_0 \overline{B_0} C_0 + A_0 B_0 C_0 + \overline{A_0} B_0 C_0 + A_0 B_0 \overline{C_0}$$

Full Adder – Karnaugh Maps

Karnaugh Map untuk Σ_0

Karnaugh Map untuk C₁

		00	01	11	10
		$\overline{A_0} \ \overline{B_0}$	$\overline{A_0} B_0$	$A_0 \ B_0$	$A_0 \overline{B_0}$
0	$\overline{C_0}$		1		1
1	C_{0}	1		1	

Full Adder - Rangkaian

 Penyederhanaan menghasilkan persamaan

$$\Sigma_0 = A_0 \oplus B_0 \oplus C_0$$

 Ekspresi untuk Carry out adalah

$$C_1 = A_0 B_0 + A_0 C_0 + B_0 C_0$$

Half Adder Using Full Adder

2.

Operasi Rangkaian Adder

Paralel Adder

- Paralel adder disusun dari beberapa rangkaian adder
- Carry in rangkaian adder pertama selalu berisi 0 karena tidak ada rangkaian adder sebelumnya
- Carry out dari rangkaian adder sebelumnya masuk ke Carry in dari rangkaian adder berikutnya.
- Carry out dari rangkaian adder terakhir menjadi output MSB dari hasil

Parallel Adder

Parallel adder layout for addition of two 3 bit numbers.

- Pada rangkaian pertama, merupakan half adder, dimana carry in C_0 bernilai 0, hasil dari FA_0 adalah dan Carry out C_1 . menghasilkan Σ_0 .
- Carry out C_1 dari rangkaian FA_0 menjadi Carry in C_1 dari rangkaian FA_1 . Rangkaian ini menghasilkan Carry out C_2 . dan hasil penjumlahan Σ_1 .
- Carry out C_2 dari rangkaian FA_1 menjadi Carry in C_2 dari rangkaian FA_2 . Rangkaian ini menghasilkan Carry out C_3 . dan hasil penjumlahan Σ_2 .
- Hasil dari penjumlahan A dengan B diambil dari output $C_3 \Sigma_2 \Sigma_1$ dan Σ_0 .

Contoh parallel Adder

- Penambahan A dengan B dimana A=111 dan B=101
- Hasil dari proses adalah 1100.

3.

Subtraction Dengan Rangkaian Adder

Menjumlahkan

- Pengurangan biner dapat juga dilakukan melalui penjumlahan, yaitu dengan cara menjumlahan bilangan yang akan dikurangi dengan 2's komplemen dari bilangan pengurangnya.
- Contoh:

```
- 15_{(10)} = 1111_{(2)}

- 1001_{(2)} + (komplemen dari 7_{(10)} .= 111_{(2)})

- 8^{(10)} . = 1000^{(2)},
```

• Untuk membuat 2's komplemen kita lakukan seperti contoh berikut:

```
0 1 1 0 1 1 = 27 → (bilangan yang dicari komplemennya)

1 0 0 1 0 0 → (komplemen dari 27)

1 0 0 1 0 1 → (2's komplemen 27)
```


Paralel Subtraction dg 2's Complement

Subtraction (Pengurangan) pada binary dapat dilakukan dengan mengkonversi bilangan pengurang ke bentuk 2's Complement dan menambahkan ke bilangan yang akan dikurangi.

Contoh
$$F = 6 - 4$$

Pemakaian Full Adder untuk pengurangan

Dengan menginvert input B dan mengeset Carry In C₀ dengan 1, maka sebuah Full Adder dapat dipergunakan untuk melakukan pengurangan

A full adder used as subtractor.

Paralel Subtraction

Dengan melakukan modifikasi input carry in C_0 selalu diset 1, sedangkan carry in C_1 dan C_2 sesuai dengan carry out C_1 dan C_2 , maka serangkan Full Adder dapat menjadi rangkaian Paralel Subtration.

Ringkasan

- Rangkaian Adder adalah rangkaian gerbang logika yang disusun sehingga dapat melakukan operasi penjumlahan dari dua input dan sebuah input carry dari paralel adder lainnya
- Input rangkaian Adder: A dan B dan sebuah input Carry-in
- Output rangkaian Adder: hasil penjumlahan A dan B dan Carryout
- Paralel adder disusun dari beberapa rangkaian adder
- Carry in rangkaian adder pertama selalu berisi 0 karena tidak ada rangkaian adder sebelumnya

Ringkasan (lanjutan)

- Paralel adder disusun dari beberapa rangkaian adder
- Carry in rangkaian adder pertama selalu berisi 0 karena tidak ada rangkaian adder sebelumnya
- Carry out dari rangkaian adder sebelumnya masuk ke Carry in dari rangkaian adder berikutnya.
- Carry out dari rangkaian adder terakhir menjadi output MSB dari hasil

Ringkasan (lanjutan)

- Subtraction (Pengurangan) pada binary dapat dilakukan dengan mengkonversi bilangan pengurang ke bentuk 2's Complement dan menambahkan ke bilangan yang akan dikurangi.
- Dengan menginvert input B dan mengeset Carry In C_0 dengan 1, maka sebuah Paralel Full Adder dapat dipergunakan untuk melakukan oeprasi pengurangan

Terimakasih

TUHAN Memberkati Anda

Teady Matius Surya Mulyana (tmulyana@bundamulia.ac.id)