Automi e Linguaggi Formali

5. Proprietà di decisione dei linguaggi regolari

Davide Bresolin a.a. 2018/19

Primo compitino

Venerdì 12 Aprile – ore 12:30 Aule LuM250 e P200

- La lista su uniweb è aperta
- Si chiude Mercoledì 10 aprile
- Giovedì 11 verrà pubblicata sul moodle la ripartizione tra le due aule degli iscritti

Proprietà dei linguaggi regolari

- Proprietà di chiusura. Come costruire automi da componenti usando delle operazioni, ad esempio dati $L \in M$ possiamo costruire un automa per $L \cap M$.
- Pumping Lemma. Ogni linguaggio regolare soddisfa il pumping lemma. Se qualcuno vi presenta un falso linguaggio regolare, l'uso del pumping lemma mostrerà una contraddizione.
- Proprietà di decisione. Analisi computazionale di automi, cioè quanto costa controllare varie proprietà, come l'equivalenza di due automi.

Proprietà di chiusura

Siano L e M due linguaggi regolari. Allora i seguenti linguaggi sono regolari:

- Unione: $L \cup M$
- Intersezione: $L \cap M$
- Complemento: *L*
- Differenza: *L* \ *M*
- Inversione: $L^R = \{w^R : w \in L\}$
- Chiusura di Kleene: L*
- Concatenazione: *L.M*

Theorem (Pumping Lemma per Linguaggi Regolari)

Sia L un linguaggio regolare. Allora

- \blacksquare esiste una lunghezza $h \ge 0$ tale che
- lacktriangle ogni parola $w \in L$ di lunghezza $|w| \geq h$
- **p**uo essere spezzata in w=xyz tale che:
 - **1** $y \neq \varepsilon$ (il secondo pezzo è non vuoto)
 - $|xy| \le h$ (i primi due pezzi sono lunghi al max h)
 - 3 $\forall k \geq 0$, $xy^kz \in L$ (possiamo "pompare" y rimanendo in L)

2 II linguaggio $L_{rev} = \{ww^R : w \in \{a, b\}^*\}$ è regolare?

2 II linguaggio $L_{rev} = \{ww^R : w \in \{a, b\}^*\}$ è regolare?

No, L_{rev} non è regolare:

- supponiamo per assurdo che lo sia
- sia h la lunghezza data dal Pumping Lemma
- \blacksquare consideriamo la parola $w = a^h bba^h$
- sia w = xyz una suddivisione di w tale che $y \neq \varepsilon$ e $|xy| \leq h$: $w = \underbrace{aaa \dots abbaaa \dots aaa}_{z}$
- poiché $|xy| \le h$, le stringhe x e y sono fatte solo di a
- per il Pumping lemma, anche $xy^0z = xz \in L_{rev}$, ma non la posso spezzare in $ww^R \Rightarrow assurdo$

Il linguaggio $L_p = \{1^p : p \text{ è primo}\}$ è regolare?

Il linguaggio $L_p = \{1^p : p \text{ è primo}\}$ è regolare?

No, L_p non è regolare:

- supponiamo per assurdo che lo sia
- sia *h* la lunghezza data dal Pumping Lemma
- **•** consideriamo una parola $w = 1^p$ con p primo e p > h + 2
- sia w = xyz una suddivsione di w tale che $y \neq \varepsilon$ e $|xy| \leq h$:

$$w = \underbrace{11 \dots 11}_{x} \underbrace{11 \dots 1}_{y} \underbrace{111 \dots 11}_{z}$$

. . . .

-
- sia |y| = m: allora |xz| = p m
- per il Pumping lemma, anche $v = xy^{p-m}z \in L_p$
- allora |v| = m(p m) + p m = (p m)(m + 1) si può scomporre in due fattori
- lacksquare poiché y
 eq arepsilon, allora |y| = m > 0 e m+1 > 1
- anche p-m>1 perché abbiamo scelto p>h+2 e $m\leq h$ perché $|xy|\leq h$
- lacksquare i due fattori sono entrambi maggiori di 1 e quindi |v| non è un numero primo
- $v \notin L_{rev}$, assurdo

Il linguaggio $L_{exp} = \{1^{2^n} : n \ge 0\}$ è regolare?

Think: due minuti per pensare da soli a come risolvere l'esercizio

Pair: cinque minuti per arrivare ad una soluzione condivisa con il vostro compagno di banco

Share: cinque minuti per spiegare la vostra soluzione ad un'altra coppia di studenti.

Proprietà di decisione

Proprietà di decisione

- Convertire tra diverse rappresentazioni dei linguaggio regolari
- Il linguaggio *L* è vuoto?
- La parola w appartiene al linguaggio L?
- Due descrizioni definiscono lo stesso linguaggio?

Da NFA a DFA

- Supponiamo che l' ε -NFA di input abbia n stati.
- Per calcolare ECLOSE(p) seguiamo al più n^2 transizioni.
- Lo facciamo per n stati, quindi in totale sono n^3 passi.
- Il DFA ha 2^n stati, per ogni stato S e ogni simbolo $a \in \Sigma$ calcoliamo $\delta_D(S,a)$ in n^3 passi.
- In totale abbiamo $O(n^32^n)$ passi.
- Se calcoliamo δ solo per gli stati raggiungibili, dobbiamo calcolare $\delta_D(S,a)$ solo s volte, dove s è il numero di stati raggiungibili. In totale: $O(n^3s)$ passi.

Da DFA a NFA

- Facile: basta mettere le parentesi graffe attorno agli stati nella tabella di transizione
- Numero di passi necessari: O(n), se n è il numero di stati del DFA di input

Da FA a espressione regolare

- Supponiamo che l'FA di input abbia *n* stati ed **un** solo stato finale
- La procedura deve eliminare tutti gli *n* stati escluso quello finale e quello iniziale
- Uno stato che viene eliminato va sostituito con $O(n^2)$ transizioni
- Ogni transizione è etichettata con quattro espressioni provenienti dall'iterazione precedente
- Dobbiamo quindi calcolare n^3 cose di grandezza fino a 4^n . Totale: $O(n^34^n)$

Da espressione regolare a FA

- Supponiamo che l'espressione regolare di input sia lunga n simboli
- Possiamo costruire un albero che rappresenta l'espressione in n passi
- Possiamo costruire l' ε -NFA equivalente applicando le regole ad ogni nodo dell'albero
- Ogni regola aggiunge al massimo due stati e quattro transizioni all'automa
- Totale: O(n) stati e transizioni nell' ε -NFA

Controllare se un linguaggio è vuoto (1)

■ $L(A) \neq \emptyset$ se e solo se esiste uno stato finale raggiungibile dallo stato iniziale.

Controllare se un linguaggio è vuoto (1)

■ $L(A) \neq \emptyset$ se e solo se esiste uno stato finale raggiungibile dallo stato iniziale.

Base: lo stato iniziale è raggiungibile dallo stato iniziale Induzione: se q è raggiungibile dallo stato iniziale e c'è una transizione da q a p con un qualsiasi simbolo (compreso ε), allora anche p è raggiungibile dallo stato iniziale

Controllare se un linguaggio è vuoto (1)

■ $L(A) \neq \emptyset$ se e solo se esiste uno stato finale raggiungibile dallo stato iniziale.

Base: lo stato iniziale è raggiungibile dallo stato iniziale Induzione: se q è raggiungibile dallo stato iniziale e c'è una transizione da q a p con un qualsiasi simbolo (compreso ε), allora anche p è raggiungibile dallo stato iniziale

- Se nel corso della procedura incontriamo uno stato finale:
 - ⇒ No, il linguaggio non è vuoto
- Se la procedura termina senza trovare stati finali:
 - ⇒ Si, il linguaggio è vuoto
- Se l'automa ha n stati, la procedura impiega un numero di passi $O(n^2)$

Controllare se un linguaggio è vuoto (2)

- In alternativa possiamo analizzare l'espressione regolare E e vedere se $L(E) = \emptyset$ ragionando per casi:
 - $\mathbf{E} = \mathbf{F} + \mathbf{G}$. Allora $L(\mathbf{E})$ è vuoto se e solo se sia $L(\mathbf{F})$ e $L(\mathbf{G})$ sono vuoti;
 - E = F.G. Allora L(E) è vuoto se e solo L(F) è vuoto oppure L(G) è vuoto;
 - $\mathbf{E} = \mathbf{F}^*$. Allora $L(\mathbf{E})$ non è vuoto perche $\varepsilon \in L(\mathbf{E})$
 - $\mathbf{E} = \varepsilon$. Allora $L(\mathbf{E})$ non è vuoto perche $\varepsilon \in L(\mathbf{E})$
 - $\mathbf{E} = \mathbf{a}$. Allora $L(\mathbf{E})$ non è vuoto perche $a \in L(\mathbf{E})$
 - $\mathbf{E} = \emptyset$. Allora $L(\mathbf{E})$ è vuoto

Controllare l'appartenenza

- Per controllare se $w \in L(A)$ dobbiamo simulare A su w:
 - se |w| = n dobbiamo fare n passi di simulazione
 - \blacksquare se A è un DFA ogni passo costa O(1)
 - \Rightarrow Totale: O(n)
 - se A è un NFA con s stati ogni passo costa $O(s^2)$
 - \Rightarrow Totale: $O(ns^2)$
 - se A è un ε -NFA con s stati ogni passo costa $O(s^2)$
 - \Rightarrow Totale: $O(ns^2)$

Controllare l'appartenenza

- Per controllare se $w \in L(A)$ dobbiamo simulare A su w:
 - \blacksquare se |w|=n dobbiamo fare n passi di simulazione
 - \blacksquare se A è un DFA ogni passo costa O(1)
 - \Rightarrow Totale: O(n)
 - se A è un NFA con s stati ogni passo costa $O(s^2)$
 - \Rightarrow Totale: $O(ns^2)$
 - se A è un ε -NFA con s stati ogni passo costa $O(s^2)$
 - \Rightarrow Totale: $O(ns^2)$
- Se L è rappresentato con un'espressione regolare E, prima convertiamo E in ε-NFA e poi simuliamo w su questo automa.

Equivalenza e minimizzazione di automi

Equivalenza tra linguaggi regolari

Problema:

Dati due linguaggi regolari L e M (descritti in qualche forma), stabilire se L=M

- possiamo ipotizzare che sia *L* che *M* siano DFA
- come facciamo a stabilire se i due automi sono equivalenti?

Stati equivalenti

Sia $A=(Q,\Sigma,\delta,q_0,F)$ un DFA, e siano $p,q\in Q$ due stati. Diciamo che

$$p \equiv q$$
 se e solo se per ogni parola $w \in \Sigma^*$, $\hat{\delta}(p,w) \in F$ se e solo se $\hat{\delta}(q,w) \in F$

- Se $p \equiv q$ diciamo che p e q sono equivalenti
- Se $p \not\equiv q$ diciamo che p e q sono distinguibili

In altre parole: p e q sono distinguibili se e solo se esiste una parola w tale che $\hat{\delta}(p,w) \in F$ e $\hat{\delta}(q,w) \not\in F$, o viceversa

■ C e G

■ C e G sono distinguibili: $\hat{\delta}(C,\varepsilon) \in F$, $\hat{\delta}(G,\varepsilon) \not\in F$

- C e G sono distinguibili: $\hat{\delta}(C,\varepsilon) \in F$, $\hat{\delta}(G,\varepsilon) \notin F$
- \blacksquare $A \in G$

- C e G sono distinguibili: $\hat{\delta}(C, \varepsilon) \in F$, $\hat{\delta}(G, \varepsilon) \notin F$
- $A \in G$ sono distinguibili: $\hat{\delta}(A,01) = C \in F$, $\hat{\delta}(G,01) = E \not\in F$

■ *A* ed *E* sono ...

■ A ed E sono ...

$$\begin{split} \hat{\delta}(A,\varepsilon) &= A \not\in F, \ \hat{\delta}(E,\varepsilon) = E \not\in F \\ \hat{\delta}(A,1) &= F = \hat{\delta}(E,1) \\ \text{Quindi } \hat{\delta}(A,1x) &= \hat{\delta}(E,1x) \end{split}$$

■ A ed E sono ...

$$\begin{split} \hat{\delta}(A,\varepsilon) &= A \not\in F, \ \hat{\delta}(E,\varepsilon) = E \not\in F \\ \hat{\delta}(A,1) &= F = \hat{\delta}(E,1) \\ \text{Quindi } \hat{\delta}(A,1x) &= \hat{\delta}(E,1x) \end{split}$$

$$\hat{\delta}(A,0) = B \notin F, \ \hat{\delta}(E,0) = H \notin F$$
$$\hat{\delta}(A,00) = G = \hat{\delta}(E,00)$$
$$\hat{\delta}(A,01) = C = \hat{\delta}(E,01)$$

■ A ed E sono ... equivalenti!

$$\begin{split} \hat{\delta}(A,\varepsilon) &= A \not\in F, \ \hat{\delta}(E,\varepsilon) = E \not\in F \\ \hat{\delta}(A,1) &= F = \hat{\delta}(E,1) \\ \text{Quindi } \hat{\delta}(A,1x) &= \hat{\delta}(E,1x) \end{split}$$

$$\begin{split} \hat{\delta}(A,0) &= B \not\in F, \ \hat{\delta}(E,0) = H \not\in F \\ \hat{\delta}(A,00) &= G = \hat{\delta}(E,00) \\ \hat{\delta}(A,01) &= C = \hat{\delta}(E,01) \end{split}$$

Algoritmo riempi-tabella

Possiamo calcolare coppie di stati distinguibili con il seguente metodo induttivo (algoritmo riempi-tabella):

Base: Se $p \in F$ e $q \notin F$, allora $p \not\equiv q$

Induzione: Se trovo un simbolo $a \in \Sigma$ tale che $\delta(p, a) \not\equiv \delta(q, a)$,

allora $p \not\equiv q$.

Esempio: Applichiamo l'algoritmo riempi-tabella all'automa precedente:

Esempio: Applichiamo l'algoritmo riempi-tabella all'automa precedente:

Correttezza dell'algoritmo

Theorem

Se p e q non sono distinguibili dall'algoritmo, allora $p \equiv q$

Dimostrazione:

Correttezza dell'algoritmo

Theorem

Se p e q non sono distinguibili dall'algoritmo, allora $p \equiv q$

Dimostrazione:

- Supponiamo per assurdo che esista una coppia "sbagliata" p, q:
 - **1** esiste una parola w tale che $\hat{\delta}(q,w) \in F$ e $\hat{\delta}(p,w) \notin F$, o viceversa
 - 2 l'algoritmo non distingue tra $p \in q$
- Sia $w = a_1 a_2 \dots a_n$ la parola più corta che identifica una coppia sbagliata p, q
- \blacksquare Ragioniamo per induzione su n.
- Base: n = 0 e $w = \varepsilon$. Assurdo perché l'algoritmo avrebbe distingo p e q immediatamente.

Correttezza dell'algoritmo

. . .

- Induzione: $n \ge 1$. Consideriamo gli stati $r = \delta(p, a_1)$ e $s = \delta(q, a_1)$
- Allora *r*, *s* non può essere una coppia "sbagliata" perché sarebbe identificata da una stringa più corta di *w*.
- Gli stati *r* ed *s* sono distinti dalla parola *a*₂*a*₃..._*n*: quindi l'algoritmo deve scoperto che sono distinguibili
- Ma allora la parte induttiva dell'algoritmo procede e distingue p da q
- Quindi non ci sono coppie "sbagliate" ed il teorema è dimostrato.

Testare l'equivalenza

Problema:

Dati due linguaggi regolari L e M (descritti in qualche forma), stabilire se L=M

Soluzione:

- 1 convertiamo sia L che M in DFA.
- 2 Consideriamo un DFA i cui stati sono l'unione degli stati dei due DFA (non importa se ha due stati iniziali)
- 3 Se l'algoritmo riempi-tabella dice che i due stati iniziali sono distinguibili, allora $L \neq M$, altrimenti L = M.

Il risultato dell'algoritmo è

I due automi sono equivalenti

Minimizzazione di un DFA

- 1 Elimino tutti gli stati non raggiungibili dallo stato iniziale
- 2 Con l'algoritmo determino le coppie di stati equivalenti
- 3 Ripartisco gli stati in blocchi in modo che:
 - gli stati in uno stesso blocco siano tutti equivalenti
 - due stati in due blocchi diversi non sono mai equivalenti
- 4 Il DFA minimo ha i blocchi come stati
- 5 Sia S un blocco e a un simbolo:
 - allora deve esistere un blocco T tale che, per ogni stato $q \in S$, $\delta(q,a)$ appartiene a T

La funzione di transizione γ del DFA minimo è $\gamma(S,a)=T$

- 6 I blocchi che contengono stati finali sono stati finali del DFA minimo
- 7 Il blocco che contiene lo stato iniziale è lo stato iniziale del DFA minimo

Minimizziamo

Risultato:

Importante!

Domanda: cosa succede se proviamo a minimizzare un NFA?

Importante!

Domanda: cosa succede se proviamo a minimizzare un NFA?

- L'algoritmo ci dice che non ci sono stati equivalenti
- Ma se rimuoviamo lo stato C otteniamo un automa equivalente e più piccolo!

Conclusione:

Non possiamo usare l'algoritmo di minimizzazione con gli NFA!

Perché non si può migliorare il DFA minimizzatoristi

- Sia *B* il DFA minimizzato ottenuto applicando l'algoritmo al DFA *A*.
- Sappiamo già che L(A) = L(B).
- Potrebbe esistere un DFA C, con L(C) = L(B) e meno stati di B?
- Applichiamo l'algoritmo a B "unione degli stati con" C.
- Dato che L(B) = L(C), abbiamo che gli stati iniziali sono equivalenti: $q_0^B \equiv q_0^C$.
- Inoltre, $\delta(q_0^B, a) \equiv \delta(q_0^C, a)$, per ogni a.

Perché non si può migliorare il DFA minimizzatoriori

Per ogni stato p in B esiste almeno uno stato q in C, tale che $p \equiv q$.

Dimostrazione:

- Non ci sono stati inaccessibili, quindi $p = \hat{\delta}(q_0^B, w)$, per una qualche stringa w.
- Allora $q = \hat{\delta}(q_0^C, w)$, e $p \equiv q$.
- Dato che C ha meno stati di B, ci devono essere due stati r e s di B tali che $r \equiv t \equiv s$, per qualche stato t di C.
- Ma allora $r \equiv s$ che è una contraddizione, dato che B è stato costruito dall'algoritmo.

Esercizi

Create un DFA che riconosca i seguenti linguaggi e minimizzatelo:

- Tutte le stringhe sull'alfabeto $\{a, b, c\}$
- Tutte le stringhe sull'alfabeto {0,1} con un numero pari di 0 e un numero dispari di 1
- Tutte le stringhe sull'alfabeto {0,1} dove 0 e 1 hanno la stessa parità
- Tutte le stringhe sull'alfabeto {0,1} con 1 in terzultima posizione