Virtual Classes

Revision: May 10, 2016; Rendered: May 25, 2021

Quine's virtual classes and related concepts. Virtual classes are straightforwardly expressible as macros. Formalized with the *PIE* system.

1 Quine's Virtual Classes and Virtual Relations

See [Qui70, Chap. 5 The Scope of Logic], [Qui69, Chap. I]. Quine notes there that identity (that is, equality) can be "simulated" with subtitutivity axioms for the finite vocabulary of a given formula and asks whether set theory can be handled analogousy. Virtual classes and their generalization to virtual relations provide a translation that applies to set abstraction on the right side of \in .

Remark: Quine cites Behmann's book [Beh27] on [Qui69, p. 19]. He notes that Behmann also introduces operations on classes and relations as mere variant notation for sentence connectives, as in the virtual theory of classes, but that there is a crucial difference as Behmanns assumes classes and relations as values of quantifiable variables.

1.1 Virtual Classes and Relations: Abstraction and Operations

The following macros apply to both, virtual classes and relations. Relations are like sets, except that the first argument of \in and the first argument

 $Y \in_{v} \operatorname{setof}(X, F_X)$

Defined as

 F_Y

where

$$F_Y := F_X[X \mapsto Y].$$

$X \in_v complem(Y)$		
Defined as		
	$\neg X \in_v Y$.	
$X \in_v \operatorname{isect}(Y, Z)$		
Defined as		
	$X \in_v Y \wedge X \in_v Z$.	
$X \in_v \operatorname{union}(Y, Z)$		
Defined as		
	$X \in_v Y \vee X \in_v Z$.	
$X \in_v empty$		
Defined as		
	⊥.	
$X \in_v full$		
Defined as		
	Т.	
$X \in_v unit(Y)$		
Defined as		
	X = Y.	

Defined as

$$X \in_v \operatorname{union}(\operatorname{unit}(Y), \operatorname{unit}(Z)).$$

1.2 Predicates of Virtual Classes

The following macros apply to virtual *classes* only.

 $X \subseteq_{v} Y$

Defined as

$$\forall Z (Z \in_v X \to Z \in_v Y),$$

where

Z := a fresh symbol.

 $X \subset_v Y$

Defined as

$$X \subseteq_v Y \land \neg Y \subseteq_v X$$
.

$$X =_{v} Y$$

Defined as

$$\forall Z (Z \in_v X \leftrightarrow Z \in_v Y),$$

where

Z := a fresh symbol.

1.3 Predicates of Virtual Relations

The following macros apply to virtual relations. The relation arity has to be supplied as first argument N.

 $subseteq_v(N, X, Y)$

Defined as

$$\forall Z (Z \in_v X \to Z \in_v Y),$$

where

Z := a sequence of N fresh symbols.

 $subset_v(N, X, Y)$

Defined as

$$subseteq_v(N, X, Y) \land \neg subseteq_v(N, Y, X).$$

 $eq_v(N, X, Y)$

Defined as

$$\forall Z (Z \in_v X \leftrightarrow Z \in_v Y),$$

where

$$mac_make_fresh_arg(N, Z)$$
.

1.4 Operations on Binary Virtual Relations

The macros in the following group apply to binary relations.

 $[X,Y] \in_v \mathsf{product_of_classes}(A,B)$

Defined as

$$X \in_{v} A \wedge Y \in_{v} B$$
.

 $[X,Y] \in_v \mathsf{converse}(R)$

Defined as

$$[Y,X] \in_{v} R.$$

 $[X,Z] \in_v \operatorname{resultant}(Q,R)$

Defined as

$$\exists Y ([X,Y] \in_v Q \land [Y,Z] \in_v R).$$

 $X \in_v \operatorname{image}(R, A)$

Defined as

$$\exists Y ([X,Y] \in_v R \land Y \in_v A).$$

 $[X,Y] \in_v \mathsf{identity}$

Defined as

$$X = Y$$
.

1.5 Properties of Binary Virtual Relations

Further properties of relations can be defined as macros in terms of the previously defined operations – see [Qui69, p. 22f]. For example:

 $irreflexive_v(R)$

Defined as

 $subseteq_v(2, R, \mathsf{complem}(\mathsf{identity})).$

2 Quine's Set Abstraction in Element Position

This is discussed in [Qui70, p. 64ff].

 $\mathsf{setof}_{\mathsf{q}}(X, F_X) \in_q Y$

Defined as

$$\exists Z (Z \in_q Y \land \forall X (X \in_q Z \leftrightarrow F_X)),$$

where

Z := a fresh symbol.

setopsq

Defined as

$$\begin{array}{ll} \forall y \operatorname{complem_q}(y) = \operatorname{setof_q}(\mathbf{x}, \ (\mathbf{x} \in_q y)) & \wedge \\ \forall yz \operatorname{isect_q}(y,z) = \operatorname{setof_q}(\mathbf{x}, (\mathbf{x} \in_q y \wedge \mathbf{x} \in_q z)) & \wedge \\ \forall yz \operatorname{union_q}(y,z) = \operatorname{setof_q}(\mathbf{x}, (\mathbf{x} \in_q y \vee \mathbf{x} \in_q z)) & \wedge \\ \operatorname{empty_q} = \operatorname{setof_q}(\mathbf{x}, \operatorname{false}) & \wedge \\ \operatorname{full_q} = \operatorname{setof_q}(\mathbf{x}, \operatorname{true}) & \wedge \\ \forall y \operatorname{unit_q}(y) = \operatorname{setof_q}(\mathbf{x}, \mathbf{x} = y) & \wedge \\ \forall yz \operatorname{upair_q}(y,z) = \operatorname{union_q}(\operatorname{unit_q}(y), \operatorname{unit_q}(z)). & \end{array}$$

$$Y = \mathsf{setof}_{\mathsf{q}}(X, F_X)$$

Defined as

$$\forall X (X \in_q Y \leftrightarrow F_X).$$

The expansion of setopsq is now:

$$\begin{array}{ll} \forall xy \left(y \in_{q} \mathsf{complem}_{\mathsf{q}}(x) \leftrightarrow \neg y \in_{q} x\right) & \wedge \\ \forall xyz \left(z \in_{q} \mathsf{isect}_{\mathsf{q}}(x,y) \leftrightarrow z \in_{q} x \wedge z \in_{q} y\right) & \wedge \\ \forall xyz \left(z \in_{q} \mathsf{union}_{\mathsf{q}}(x,y) \leftrightarrow z \in_{q} x \vee z \in_{q} y\right) & \wedge \\ \forall x \left(x \in_{q} \mathsf{empty}_{\mathsf{q}} \leftrightarrow \bot\right) & \wedge \\ \forall x \left(x \in_{q} \mathsf{full}_{\mathsf{q}} \leftrightarrow \top\right) & \wedge \\ \forall xy \left(y \in_{q} \mathsf{unit}_{\mathsf{q}}(x) \leftrightarrow y = x\right) & \wedge \\ \forall xy \ \mathsf{upair}_{\mathsf{q}}(x,y) = \mathsf{union}_{\mathsf{q}}(\mathsf{unit}_{\mathsf{q}}(x), \mathsf{unit}_{\mathsf{q}}(y)). \end{array}$$

References

- [Beh27] Heinrich Behmann. Mathematik und Logik, volume 71 of Mathematisch-Physikalische Bibliothek. Teubner, Leipzig, 1927.
- [Qui69] Willard Van Orman Quine. Set Theory and Its Logic. Harvard University Press, Cambridge, MA, revised edition, 1969.
- [Qui70] Willard Van Orman Quine. The Philosophy of Logic. Harvard University Press, Cambridge, MA, 1970.

\mathbf{Index}

$eq_v(N,X,Y), 4$	$X \in_v \operatorname{union}(Y, Z), 2$
$X =_{v} Y, 3$	$X \in_v unit(Y), 2$
. (() -) -) -	$X \in_v upair(Y,Z),3$
$setof_{q}(X, F_X) \in_q Y, 5$	$Y \in_{v} \operatorname{setof}(X, F_X), 1$
$[X,Y] \in_v converse(R), 4$	$irreflexive_v(R), 5$
$[X,Y] \in_v \text{ identity}, 5$, ,,
$[X,Y] \in_v product_of_classes(A,B), 4$	setopsq, 6
$[X,Z] \in_v resultant(Q,R), 5$	$subset_v(N, X, Y), 4$
$X \in_v complem(Y), 2$	$X \subset_v Y, 3$
$X \in_v empty, 2$	$subseteq_v(N, X, Y), 4$
$X \in_v \text{full}, 2$	$X \subseteq_v Y, 3$
$X \in_v image(R,A), 5$	
$X \in_{v} \operatorname{isect}(Y, Z), 2$	$Y = setof_{q}(X, F_X), 6$