Wydział	lmię i nazwisko		Rok	Grupa	Zespół
WIEIT	1. 2.		2020	15:45	7
PRACOWNIA	Temat:	Nr ćwiczenia			
FIZYCZNA	Opracowanie danych pomiarowych				0
WFIIS AGH					
Data wykonania	Data oddania	Zwrot do popr.	Data oddania	Data zaliczenia	OCENA
11.10.2020	16.10.2020				

Opracowanie Danych Pomiarowych

 $Dzmitry\ Mikialevich$

Wojciech Sikora

Spis treści

6	Wnioski	6
	5.9 Wykres zlinearyzowany T^2 w funkcji l	5 6 6 6
	5.8 Wykres zależności okresu od długości wahadła $T(l)$	5
	5.7 Porównanie uzyskanej wartości przyspieszenia ziemskiego z wartością tabelaryczną	4
	5.5 Niepewność złożoną $u_c(g)$ przy pomocy prawa przenoszenia niepewności	4
	5.4 Przyspieszenie ziemskie na podstawie uzyskanych wartości <i>l</i> i <i>T</i>	4
	5.3 Niepewność pomiaru długości wahadła (typu B)	3
	5.2 Niepewność pomiaru okresu (typu A)	3
	5.1 Błędy grube	3
5	Opracowanie wyników Pomiarów	3
4	Wyniki Pomiarów	2
3	Przebiegi doświadczenia	2
2	Układ Pomiarowy	2
1	1.1 Cel ćwiczenia	2 2
1	Wstep	2

1 Wstęp

1.1 Cel ćwiczenia

Zaznajomienie się z typowymi metodami opracowania danych pomiarowych przy wykorzystaniu wyników pomiarów dla wahadła prostego.

1.2 Opis ćwiczenia

Zestawione wyniki opierają się na równaniu określającym zależność pomiędzy okresem drgań wahadła, oznaczonym jako T, od długości wahadła l i przyśpieszenia ziemskiego g.

$$T = 2\pi \sqrt{\frac{l}{g}}$$

Powyższy wzór jest poprawny, gdy wychylenie środka ciężkości jest niewielkie.

2 Układ Pomiarowy

- 1. Wachadło proste
- 2. Stoper
- 3. Linijka (15cm:1mm)

3 Przebiegi doświadczenia

Pomiar okresu drgań przy ustalonej długości wahadła:

- 1. Mierzymy długość wahadła
- 2. Odchylenie wahadła na mały kat i wprawienie go w ruch drgający
- 3. Pomiar czasu trwania k = 10 okresów
- 4. Wykonanie pomiaru N = 10 razy

Pomiar okresu drgań przy zmiennej długości wahadła:

- 1. Mierzymy długość wahadła
- 2. Odchylenie wahadła na mały kąt i wprawienie go w ruch drgający
- 3. Pomiar czasu trwania k = 10 okresów
- 4. Wykonanie pomiaru N=15 razy, zmieniając długość wahadła

4 Wyniki Pomiarów

Długość wahadła:

$$l = 0,45m = 45cm$$

Niepewność pomiaru:

$$u(l) = 3 \times 10^{-3} m = 3mm$$

Lp.	Liczba okresów k	Czas t dla k okresów $[s]$	okres $T_i = t/k [s]$
1	10	13,22	1,322
2	10	13,62	1,362
3	10	13,92	1,392
4	10	13,37	1,337
5	10	13,38	1,338
6	10	13,28	1,328
7	10	13,34	1,334
8	10	13,35	1,335
9	10	13,37	1,337
10	10	13,45	1,345

Tabela 1: Pomiar okresu drgań przy ustalonej długości wahadła

Lp.	1 [mm]	k	t[s]	$T_i[s]$	$T_i^2[s^2]$
1	280	10	10,23	1,023	1,047
2	300	10	11,3	1,13	1,277
3	310	10	11,72	1,172	1,374
4	330	10	12,22	1,222	1,493
5	340	10	12,35	1,235	1,525
6	350	10	12,41	1,241	1,540
7	360	10	12,52	1,252	1,568
8	370	10	12,71	1,271	1,615
9	400	10	12,96	1,296	1,680
10	440	10	13,11	1,311	1,719
11	450	10	13,31	1,331	1,772
12	480	10	14,42	1,442	2,079
13	500	10	14,43	1,443	2,082
14	520	10	14,71	1,471	2,164
15	550	10	15,7	1,57	2,465

Tabela 2: Pomiar zależności okresu drgań od długości wahadła

5 Opracowanie wyników Pomiarów

5.1 Błędy grube

Zadanie: Oceń, czy wyniki pomiaru okresu nie zawierają błędów grubych. (Zwrócić uwagę na największą i najmniejszą wartość T_i w uzyskanym zestawie danych):

Przy analizie wyników nie zauważyliśmy błędów grubych. Różnica między największą a najmniejszą wartością wynosi:

$$\Delta t = t_{max} - t_{min} = 0,07s$$

5.2 Niepewność pomiaru okresu (typu A)

Zadanie: Oblicz niepewność pomiaru okresu (typu A):

$$u(T) = \sqrt{\frac{\sum (T_i - \overline{T})^2}{n(n-1)}} = 0,0063s \approx 0,007s$$

gdzie: \overline{T} - średni okres, T_i - okres zmierzony za i-tym razem, n - liczba pomiarów **Uwaga:** Niepewność pomiaru zaokrąglamy w górę.

5.3 Niepewność pomiaru długości wahadła (typu B)

Zadanie: Oceń niepewność pomiaru długości wahadła (typu B):

Podziałka linijki, za pomocą której było mierzone wahadło wynosi 1mm, jednak oszacowanie środka ciężkości stanowiło problem, dlatego oszacowaliśmy niepewność typu B jako 3mm

5.4 Przyspieszenie ziemskie na podstawie uzyskanych wartości l i T

Zadanie: Na podstawie uzyskanych wartości l i T oblicz przyspieszenie ziemskie: Korzystając ze wzoru na okres drgań wachadła matematycznego dla małych kątów odchylenia, mamy:

$$T = 2\pi \sqrt{\frac{l}{g}} \Rightarrow g = \frac{4\pi^2}{T^2} l = \frac{4 \times 3,141^2}{(1,343s)^2} * 0,45m \approx 9,846m/s^2$$

5.5 Niepewność złożoną $u_c(g)$ przy pomocy prawa przenoszenia niepewności

Zadanie: Oblicz niepewność złożoną $u_c(g)$ przy pomocy prawa przenoszenia niepewności.

$$T = 2\pi \sqrt{\frac{l}{g}} \Rightarrow g = \frac{4\pi^2}{T^2} l \Rightarrow \frac{\partial g}{\partial l} = \frac{4\pi^2}{T^2}, \frac{\partial g}{\partial T} = -\frac{8\pi^2 l}{T^3}$$
$$u_c(g) = \sqrt{(\frac{\partial g}{\partial l} u(l))^2 + (\frac{\partial g}{\partial T} u(T))^2} = \sqrt{(21,87 \times 0,003)^2 + (14,65 \times 0,007)^2} \approx 0,121m/s^2$$

Niepewność względna:

$$\frac{u_c(g)}{g} * 100\% = 1,2\%$$

Inny sposób wyliczenia niepewności względnej, za pomocą współczynnika wrażliwości p_k :

$$\frac{u_c(g)}{g} = \sqrt{\sum_k (p_k \frac{u(x_k)}{x_k})^2}$$

Gdzie:

$$p_k = \frac{x_k}{y} \frac{\partial y}{\partial x_k}, p_l = 1, p_T = -2$$

Czyli w końcu mamy:

$$\frac{u_c(g)}{g} = \sqrt{(1 \times \frac{0,003}{0,45})^2 + (-2 \times \frac{0,007}{1,343})^2} \approx 1,2\%$$

5.6 Niepewność rozszerzoną U(g)) przy pomocy prawa przenoszenia niepewności

Zadanie: Oblicz niepewność rozszerzoną U(g).

Niepewność rozszerzoną obliczamy za pomocą wzoru:

$$U(g) = k \times u(g) = 0,242m/s^2$$

Gdzie: k=2 - współczynnik rozszerzenia. Czyli mamy: $q=9,846\pm0,242m/s^2$

5.7 Porównanie uzyskanej wartości przyspieszenia ziemskiego z wartością tabelaryczną

Zadanie: Czy uzyskana wartość przyspieszenia ziemskiego jest zgodna, w granicach niepewności rozszerzonej, z wartością tabelaryczną? .

$$\Delta g = 9,846m/s^2 - 9,811m/s2 = 0,035m/s^2 < 0,242m/s^2$$

Czyli g mieści się w zakresie niepewności rozszerzonej:

$$g_{otrz} \in (g - 0, 242m/s^2, g + 0, 242m/s^2)$$

Gdzie $g=9,811m/s^2$ - wartość przyspieszenia Ziemskiego w Krakowie.

5.8 Wykres zależności okresu od długości wahadła T(l)

Wykonaj wykres zależności okresu od długości wahadła T(l).

Rysunek 1: Wykres zależności T(l)

5.9 Wykres zlinearyzowany T^2 w funkcji l

Rysunek 2: Wykres zależności $T^2(l)$ rozszerzony o dopasowaną prostą

5.10 Dopasowanie prostej typu y = ax

Przy pomocy funkcji dostępnej w zewnętrznym arkuszu kalkulacyjnym została obliczona prosta regresji

$$y = ax + b$$

gdzie:

$$b = 1,019, \ a = \frac{T^2}{l} = 0,0041s^2/mm = 4,1s^2/m$$

5.11 Wartość przyspieszenia ziemskiego z otrzymanej wartości współczynnika nachylenia

Wykorzystano wzór:

$$a = \frac{4\pi^2}{g}$$

Po przekształceniu:

$$g = \frac{4\pi^2}{a} \approx 9,6288[m/s^2]$$

5.12 Obliczanie niepewności u(g) z niepewności u(a)

Za pomocą arkusza kalkulacyjnego została określona niepewność dopasowania u(a):

$$u(a) = 0,28[s^2/m]$$

Z prawa przenoszenia niepewności:

$$u(g) = \sqrt{(\frac{\partial g}{\partial a}u(a))^2} = u(\frac{4\pi^2}{a}) = u(a)\frac{4\pi^2}{a^2} \approx 0,667[m/s^2]$$

Porównując z wartością tabelaryczną:

$$|g-9,811| = 0,1822[m/s^2] < 0,667[m/s^2] = u(g)$$

Różnica między otrzymanym przyspieszeniem i wartością rzeczywistą jest mniejsza niż u(g) z czego wynika, że obliczenia są poprawne.

6 Wnioski

- Biorąc pod uwagę, że przyjęliśmy dużą wartość błędu i brak dobrze skonfigurowanego wahadła, doświadczenie zostało
 wykonane poprawnie. Można to potwierdzić małą różnicą między wartością tabularnyczną g, a tą, którą otrzymaliśmy,
 która "mieści się" w niepewności rozszerzonej.
- \bullet Doświadczalnie zostało potwierdzone, że gdy maleje długość wahadła, maleje również okres T.
- \bullet Liczyć niepewność względną jest wygodniej, korzystając ze współczynnika wrażliwości p_i , co zmniejsza szansę na popełnienie błędów rachunkowych.
- Liczenie niepewności pozwala na oszacowanie rozrzutu wyników, co pomaga w dalszej analizie.