Министерство науки и высшего образования Российской Федерации Муромский институт (филиал) Федерального государственного бюджетного образовательного учреждения высшего образования «Владимирский государственный университет

«Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых»

Факультет_	ИТР
Кафедра_	ПИн

ЛАБОРАТОРНАЯ РАБОТА №4

10	технологиям машинного обучения					
Тема	Метод опорных векторов					
	Руководитель					
	Захаров А.А. (фамилия, инициалы)					
	(подпись) (дата)					
	Студент <u>ПИН - 121</u> (группа)					
	Ермилов М.В. (фамилия, инициалы)					
	(подпись) (дата)					

Лабораторная работа №4

Цель работы: изучить метод опорных векторов.

Ход работы:

Классификация набора данных Iris методом опорных векторов:

Импорт библиотек:

import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns %matplotlib inline import warnings warnings.filterwarnings('ignore')

Загрузка, изучение набора данных Iris:

from sklearn.datasets import load_iris
data = load_iris())
data
data.target_names
df = pd.DataFrame(data.data)
df.head()
df.columns = data.feature_names
df.head()
df['Species'] = data.target
df.head()

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	Species
0	5.1	3.5	1.4	0.2	0
1	4.9	3.0	1.4	0.2	0
2	4.7	3.2	1.3	0.2	0
3	4.6	3.1	1.5	0.2	0
4	5.0	3.6	1.4	0.2	0

Рисунок 1 – строки набора данных Iris

					МИВУ 09.03.04 - 04				
Изм.	Лист	№ докум.	Подпись	Дата					
Разр	аб.	Ермилов М.В.			Метод опорных векторов	Ли	m.	Лист	Листов
Пров	вер.	Захаров А.А.			1			2	4
Реценз.									
Н. Контр.						МИ ВлГУ ПИН-121			
Утве	ерд.								

```
Разделение на обучающий и тестовый наборы данных:
```

```
X = data.data # признаки обучающей выборки y = data.target # метки классов обучающей выборки from sklearn.model_selection import train_test_split X train,X test,y train,y test = train test split(X,y,test size=0.2,random state=43)
```

Модель классификации на основе линейного метода опорных векторов:

```
from sklearn.svm import LinearSVC clf = LinearSVC() # объект модели линейного классификатора clf.fit(X_train, y_train) # обучение модели LinearSVC(C=1.0, class_weight=None, dual=True, fit_intercept=True, intercept_scaling=1, loss='squared_hinge', max_iter=1000, multi_class='ovr', penalty='l2', random_state=None, tol=0.0001, verbose=0) # LinearSVC задает параметры линейного метода опорных векторов (SVM)
```

Оценка модели:

```
predictions = clf.predict(X_test)
data.target_names[predictions]
accuracy = result*100
print('Точность модели равна ' + str(round(accuracy, 2)) + ' %.')
```

Точность модели равна 100.0 %.

Рисунок 2 – точность модели

Прогнозирование результата для некоторых данных:

```
# Использование классификатора
# Объявление признаков объекта
X_test = np.array([[4.6, 3.1, 1.5, 0.1]])
target = clf.predict(X_test) # Получение ответа для нового объекта
print(target) # классы: 0, 1, 2
```

[0]

Рисунок 3 – полученный результат Ирис щетинистый (Iris setosa)

Вывод: В ходе выполнения данной лабораторной работы были изучены методы опорных векторов

			·	
Изм.	Лист	№ докум.	Подпись	Дата