Cálculo Integral - Actividad 5

Resolver los siguientes ejercicios de forma analítica y comprobar los resultados con Python.

Hallar la derivada de las siguientes funciones:

1.
$$y = \sin ax^2$$

8.
$$y = \sec 4x$$

15.
$$s = e^{-t} \cos 2t$$

2.
$$y = \tan \sqrt{1-x}$$
 9. $y = \frac{1}{2}\sin^2 x$

9.
$$y = \frac{1}{2} \sin^2 x$$

16.
$$y = \ln \tan \frac{x}{2}$$

3.
$$y = \cos^3 x$$

10.
$$y = \frac{4}{\sqrt{\sec x}}$$

17.
$$y = \ln \sqrt{\frac{1+\sin x}{1-\sin x}}$$

4.
$$y = \sin nx \sin^n x$$

$$11. \ y = x \cos x$$

18.
$$f(x) = \sin^2(\pi - x)$$

$$5. \ y = 3\cos 2x$$

12.
$$f(\theta) = \tan \theta - \theta$$

13. $y = \sin 2x \cos x$

19.
$$y = x^{\sin x}$$

$$6. \ s = \tan 3t$$

$$14 \quad u = \ln \sqrt{\cos 2x}$$

20.
$$y = (\cos x)^x$$

7. $u = 2 \cot \frac{v}{2}$

14.
$$y = \ln \sqrt{\cos 2x}$$

$$20. \ y = (\cos x)^x$$

En los problemas 21 a 25 hallar la segunda derivada de cada una de las funciones.

21.
$$y = \sin kx$$

23.
$$u = \tan v$$

25.
$$s = e^t \cos t$$

22.
$$\varrho = \frac{1}{4}\cos 2\theta$$

24.
$$y = x \cos x$$

En los problemas 26 a 28 hallar $\frac{dy}{dx}$ para cada función.

26.
$$y = \cos(x - y)$$

27.
$$e^y = \sin(x+y)$$

28.
$$\cos y = \ln (x + y)$$

En los problemas 29 a 33 hallar $\frac{dy}{dx}$ para el valor dado de x (en radianes).

29.
$$y = x - \cos x$$
; $x = 1$

29.
$$y = x - \cos x$$
; $x = 1$ 31. $y = \ln \cos x$; $x = 0.5$ 33. $y = e^x \sin x$; $x = 2$

33
$$y = e^x \sin x$$
: $x = 3$

30.
$$y = x \sin \frac{x}{2}$$
; $x = 2$

30.
$$y = x \sin \frac{x}{2}$$
; $x = 2$ 32. $y = \sin x \cos 2x$; $x = 1$