4.36.

$$L_{1} \frac{dJ_{1}}{dt} + \frac{1}{C} \int (I_{1} - I_{2}) dt + (I_{1} - I_{0}) = 0$$

$$L_{2} \frac{dI_{2}}{dt} + I_{2}R_{1} + \frac{1}{C} \int (I_{2} - I_{1}) dt = 0$$

ч.3 с.

$$V_L = V_S \left(\frac{Z_L}{Z_S + Z_L} \right)$$

$$t_s$$
 y_s y_t (e)

$$I_s = V_s V_s$$
, $V_s = Z_s^{-1} \rightarrow I_s = \frac{V_s}{Z_s}$

$$V_{L} = \frac{T_{S}}{Y_{S} + Y_{L}} \Rightarrow \frac{\left(V_{S}/Z_{S}\right)}{\left(Z_{S}^{-1}\right) + \left(Z_{L}^{-1}\right)} = V_{S} \left(\frac{Z_{L}}{Z_{S} + Z_{L}}\right)$$
mest the

Current through load admittance:

$$I_L = V_L Y_L = V_S \left(\frac{2_L}{2_S + 2_L} \right) \left(\frac{2_L}{2_L} \right) = \frac{V_S}{2_S + 2_L}$$

It is the same for the current flowing through the load impedance and the current through the load admittance.

VI is also the same for the voltage across the load impedance and the voltage across the load admittance,

4.3 d. For the current in the circuit:

$$I = \frac{V_S}{Z_S + Z_L} \qquad \text{where } Z_S = R_S + j \times_S \text{ and } Z_L = R_L + j \times_L$$

$$I = \frac{V_S}{Z_S + Z_L} \qquad \text{where } Z_S = R_S + j \times_S \text{ and } Z_L = R_L + j \times_L$$

$$I = \frac{V_S}{(R_S + R_L) + j \times_S + j \times_L} = \frac{V_S}{(R_S + R_L) + j \times_S + j \times_L} = \frac{V_S}{(R_S + R_L) + j \times_S + j \times_L}$$

$$I = \frac{V_S}{(R_S + R_L) + j \times_S + j \times_L} = \frac{V_S}{(R_S + R_L) + j \times_L} = \frac$$

$$I'' = \frac{V_{s} \left[(R_{s} + R_{l}) + j(X_{s} + X_{l}) \right] \left[(R_{s} + R_{l}) + j(X_{s} + X_{l}) \right] \left[(R_{s} + R_{l}) - j(X_{s} + X_{l}) \right]}{(R_{s} + R_{l})^{2} + (X_{s} + X_{l})^{2}}$$

$$\frac{V_{s} + R_{l}^{2} + (X_{s} + X_{l})^{2}}{2 \left[\frac{V_{s}}{R_{s} + R_{l}^{2} + (X_{s} + X_{l}^{2})^{2}} \left[\frac{V_{s} \left[(R_{s} + R_{l}^{2}) - j(X_{s} + X_{l}^{2}) \right]}{(R_{s} + R_{l}^{2})^{2} + (X_{s} + X_{l}^{2})^{2}} \right]}$$

$$= \frac{R_{l}}{2} \left[\frac{V_{s}}{(R_{s} + R_{l}^{2})^{2} + (X_{s} + X_{l}^{2})^{2}} \right]$$

For max power to load:
$$\frac{dW_{L}}{dX_{L}} = 0$$
 and $\frac{dW_{L}}{dR_{L}} = 0$

$$\frac{dW_{L}}{dX_{L}} = \frac{d}{dX_{L}} \left(\frac{R_{L}}{2} \left[\frac{V_{S}}{(R_{S} + R_{L})^{2} + (X_{S} + X_{L})^{2}} \right] \right) = 0$$

$$= \frac{-R_{L}V_{S}(X_{S} + X_{L})}{\left[(K_{S} + R_{L})^{2} + (X_{S} + X_{L})^{2}\right]^{2}} \rightarrow -R_{L}V_{S}(X_{S} + X_{L}) = 0, \quad X_{L} = -X_{S}$$

$$\frac{\partial W_{L}}{\partial R_{L}} = \frac{\partial}{\partial R_{L}} \left(\frac{R_{L}}{2} \left[\frac{V_{S}}{(R_{S} + R_{L})^{2} + (X_{S} + X_{L})^{2}} \right] \right) = 0$$

$$= \frac{V_{S}}{2} \left[\frac{2R_{L}}{(R_{S} + R_{L})^{2} + (X_{S} + X_{L})^{2}} + (X_{S} + X_{L})^{2} \right] = 0$$

$$= \frac{V_{S}}{2} \left[\frac{2R_{L}}{(R_{S} + R_{L})^{2} + (X_{S} + X_{L})^{2}} \right] = 0$$

-2R_L (R_S+R_L)+[(R_S+R_L)²+(X_S+X_L)²]=0

R_L=-X_S,

-2R_L (R_S+R_L)+[(R_S+R_L)²+0]=0

-2R_LR_S-2R_L²+R_S²+R_L²+2R_LR_S= R_S²-R_L²=D, R_L=R_S

Max power to the load when R_L=R_S and X_L=-X_S

$$\frac{1}{2} = R_L + \frac{1}{3} \times L = R_S + \frac{1}{3} (-X_S) = R_S - \frac{1}{3} \times S = (R_S + \frac{1}{3} \times S)^{\frac{1}{3}} = \frac{1}{2} + \frac{1}{3} \times \frac{1}{3} = \frac{1}{3} \times \frac{1}{3} \times \frac{1}{3} \times \frac{1}{3} \times \frac{1}{3} \times \frac{1}{3} = \frac{1}{3} \times \frac{1}{3} \times$$

for
$$E_{2} = -I(2, mer)$$
 inner owter surface of inner conductor
$$E_{2} = -I\left(\frac{R_{sa}}{2\pi a} + \frac{j\omega L_{ia}}{2\pi a}\right) \qquad \alpha = radius of inner conductor$$

$$R_{sa} = resistance$$

ABCD E.
$$dl = -j\omega I_{e}dz$$

$$\frac{1}{2\pi a} + \frac{1}{2\pi a} \frac{1}{2\pi a} dz + V_{cB} + \frac{1}{2\pi b} \left(\frac{R_{Sb}}{2\pi b} + \frac{1}{2\pi b} \frac{1}{2\pi b} dz - V_{DA} = -j\omega I_{e}dz \right)$$

$$V_{DA} - V_{CB} = I \left(j\omega l_{e} + \frac{R_{Sa}}{2\pi a} + j\omega l_{ia} + \frac{R_{Sb}}{2\pi b} + j\omega l_{ib} \right) dz$$

$$V_{DA} - V_{CB} = D$$

For current from C to D, $I_C - I_D = j \omega (Cd2) V$ $C = 2\pi E f$ G(HA) m

IC - 5 = SW (2 NEDZ)V

matches capacitance shown in Fig. P4.6e