Elementary Linear Algebra - MATH 2250 - Day 20

Name:

1. Let us repeat a problem from previous worksheet: Using the cofactor formula evaluate the determinant of

$$A = \left[\begin{array}{rrr} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{array} \right].$$

Find A^{-1} .

Recall that the cofactor $C_{ij} = (-1)^{i+j} \det M_{ij}$. Find all the cofactors of the matrix A and put them in a matrix C.

Find AC^T .

Compare C^T with A^{-1} .

- 2. Recall that if C is the cofactor matrix of A, then $AC^T = (\det A)I$. That is, for example, the first row of A times the first row of C is ______, and the first row of A times the second row of C is _____.
- 3. Is any row of C in the null space of A? Why?
- 4. Using Cramer's rule find the solution to $A\mathbf{x} = \mathbf{b}$, for $A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$, and $\mathbf{b} = (1, 0, 0)$.

5. Recall the formula for the cross product of $\mathbf{u} = (u_1, u_2, u_3)$ and $\mathbf{v} = (v_1, v_2, v_3)$ which is $\mathbf{u} \times \mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}$. Show that $\mathbf{w} = \mathbf{u} \times \mathbf{v}$ is perpendicular to \mathbf{u} by calculating $\mathbf{w} \cdot \mathbf{u}$.

Is w perpendicular to v, too? How do you know? (Explain using the properties of determinant)

- 6. Recall that $||\boldsymbol{u} \times \boldsymbol{v}|| = ||\boldsymbol{u}|| \, ||\boldsymbol{v}|| \, |\sin \theta|$. What is θ in terms of \boldsymbol{u} and \boldsymbol{v} ? Explain clearly when $||\boldsymbol{u} \times \boldsymbol{v}|| = 0$.
- 7. The are of a triangle with corners (0,0),(1,1), and (4,2) is ______ (give a number).
- 8. The are of a triangle with corners (1,1),(2,2), and (4,2) is ______ (give a number).