L1 Jet Energy Corrections: Early 2018 results and comparisons to 2017

Eshwen Bhal and Calo Layer-2 team 23rd April, 2018

Motivational overview

- \odot To compensate for various losses $(p_{\rm T},\ \eta)$ when recording jet properties in the trigger, and ensure its performance is uniform across the detector
- One by matching reference jets (GenJets) to L1 jets
- © Use sample in particular pileup (PU) range, bin in $|\eta^{\rm L1}|$, then plot graphs of 1/response against $p_{\rm T}^{L1}$, with response = $< p_{\rm T}^{\rm L1}/p_{\rm T}^{\rm ref.}>$
- © Export the calibrations as LUTs
- Perform closure test to check calibrations

Matching logic

- \odot Minimum GenJet momentum is $p_{\mathrm{T.\,min.}}^{\mathrm{ref.}} = 10~\mathrm{GeV}$
- \odot Each L1 jet inspected in descending $p_{\rm T}$, and GenJet with $\Delta R < 0.25$ is searched for and matched to it. Multiple potential matches use jet with smallest ΔR
- Once matched, reference jet is removed from matching collection and move on to next L1 jet
- \odot GenJets aren't fully propagated in the magnetic field, so their η is at the **Primary Vertex**

Software overview

© 2017:

- CMSSW version 9.0.0.pre2 (most recent calibrations that are in firmware)
- Calo params caloStage2Params_2017_v1_4_inconsistent
- Dataset /QCD_Pt-15to3000_TuneCUETP8M1_Flat_13TeV_pythia8/ RunIISpring16DR80-FlatPU20to70HcalNZSRAW_withHLT_80X_mcRun2_ asymptotic_v14-v1/GEN-SIM-RAW

© 2018:

- CMSSW version 10.0.3 (CRAB issue in 10.1.0)
- Calo params caloParams_2018_v1_1_inconsistent + ECAL ZS params caloParams_2018_v1_1_ECALZS_inconsistent for extra study
- Dataset /QCD_Pt-15to3000_TuneCP5_Flat_13TeV_pythia8/ RunIISpring18DRNZSPU0to70_100X_upgrade2018_realistic_v10-v1/GEN-SIM-RAW

Correction curve examples

 $0.435 < |\eta| < 0.783$ (Barrel)

 \odot At low η sharp response drop at low p_{T} which corrections fail to capture. So response plots are bad at low p_{T}

 $4.191 < |\eta| < 5.191$ (HF)

 \odot At high η response drops at low $p_{\rm T}$ and very large error bars at high $p_{\rm T}$. Makes it difficult to fit

 \odot At low p_{T} outside fit limits, use the same correction as the last point for which the fit converges \smile \smile \smile \smile \smile

Response curves (2018)

Normal params, before corrections

Normal params, after corrections

- © Curves are pre-fit, where only matching has been performed. Only useful for comparing spread in response before and after JECs
- \odot Spikes and fluctuations show difficulty in fitting for high η (low stats) and low $p_{\rm T}$. Smoothed out as much as possible in correction curves

Binning in $|\eta|$

	Eta range	iEta range	
	0 – 0.435	1-5	
	0.435 – 0.783	6 – 9	Barrel
	0.783 – 1.131	10 – 13	Darrer
	1.131 – 1.305	14 – 15	
	1.305 – 1.479	16 – 17	
	1.479 – 1.653	18 – 19	
	1.653 – 1.83	20 – 21	
	1.83 – 1.93	22 – 22	
	1.93 – 2.043	23 – 23	├─ End cap
	2.043 – 2.172	24 – 24	
	2.172 – 2.322	25 – 25	
	2.322 – 2.5	26 – 26	
	2.5 – 2.964	27 – 28	
	2.964 – 3.489	29 – 32	
	3.489 – 4.191	33 – 36	├ HF
	4.191 – 5.191	37 – 41	
C CMS/			

w/ GenJet plots

Resolution plots (2018)

Plots in central region look okay, degraded resolution for Emu in HF
with new calibrations

Suspected problem in HF, but Layer-2 calibrations seem fine

2017

2018, normal params

After corrections. Entire BE

Scale is slightly different in each plot because 2017 dataset contained
10M events, while 2018 dataset contained 5M

2017

2018, normal params

After corrections. Entire HF

© Plateau in 2017 plot due to TT saturation of 128 GeV in HF. These jets are now given a maximum $p_{\rm T}$ of 1024 GeV

Backup

Absolute response plots (2018)

Normal params, before corrections

 \odot Highlights spread in response at low p_{T}

Single bin in Barrel

Single bin in HF

Scatter plots (2017 offending bin)

2017, after corrections. Single bin in HF

 $|\eta^{L1}|$: 2.964-3.489

2018, normal params

2018, ECAL ZS params

Single bin in Barrel

Run using same dataset so expect very similar results

Scatter plots (2018, BE)

Normal params, before corrections

|η^{L1}|: 0-2.964

Normal params, after corrections

Entire BE

Scatter plots (2018, HF)

Normal params, before corrections

Normal params, after corrections

Entire HF

