Трехмерная графика. Работа с изображениями

Храмов Д. А.

18.03.2020

В этой лекции

- Построение кривых и точек в пространстве.
- Построение графиков функций двух переменных: mesh и surf.
- Низкоуровневые графические функции. Управление свойствами графических объектов.
- ▶ Пример: множество Жюлиа.
- Пример: одномерный клеточный автомат.
- ▶ Пример: игра "Жизнь".

Построение кривых и точек в пространстве

```
plot3(x,y,z) x,\,y\,u\,z\,-\, векторы координат точек линии (равной длины): x\,=\,x(t)\,,\,\,y\,=\,y(t)\,,\,\,\,z\,=\,z(t)\,.
```

Функция plot3 удобна для отображения точек данных. Нужно лишь поставить маркер «точка». Для этой же цели используется scatter3.

ПРИМЕР. Винтовая линия

Винтовая линия – растущая вверх окружность единичного радиуса.

```
t = 0:pi/50:10*pi;
plot3(sin(t),cos(t),t)
grid on
```


ПРИМЕР. Построение графика единичной сферы с помощью окружностей

```
n = 50; m = 50;
t1 = -pi:pi/n:pi;
t2 = [-pi/2:pi/m:pi/2]';
X = cos(t2)*cos(t1);
Y = cos(t2)*sin(t1);
E = ones(size(t1));
Z = sin(t2)*E;
plot3(X,Y,Z,'r.'), grid on
title('Cфepa'), axis square
```


Поверхность в пространстве

Задается функцией двух переменных: z = f(x, y).

Каждой точке с координатами x и y соответствует «высота» z – значение функции.

Как задать область определения функции

Чтобы построить график функции одной переменной y=f(x), мы изменяли аргумент x с заданным шагом h и вычисляли соответствующие значения функции y.

В пространственном случае будем строить двумерную сетку: изменять значения аргументов x и y с постоянными шагами h_x , h_y и вычислять соответствующие значения функции z.

Для простоты будем рассматривать только прямоугольные области определения.

Область $0 \le x \le 1$, $0 \le y \le 1$, h = 0.5

$$X = [0 \ 0.5 \ 1;$$

 $0 \ 0.5 \ 1;$
 $0 \ 0.5 \ 1];$

$$Y = [0 \quad 0 \quad 0;$$

 $0.5 \quad 0.5 \quad 0.5;$
 $1 \quad 1 \quad 1]:$

Дано:
$$x = 0:0.5:1, y = 0:0.5:1$$

Строки матрицы X состоят из копий вектора x. Число этих копий равно числу элементов в векторе y.

Столбцы Y представляют собой у-координаты узлов сетки. Число столбцов равно числу элементов вектора x.

Формирование прямоугольной координатной сетки: meshgrid

Мы не можем записать $Z=x.^2+y.^2$, поскольку x=0.0.5:1, y=0.0.5:1— одномерные массивы, а Z— двумерный (значения функции в узлах сетки). Для создания сетки понадобится специальная функция

$$[X,Y] = meshgrid(x, y)$$

x, y — векторы, задающие диапазоны изменения по осям Ox, Oy. X, Y — матрицы элементов сетки.

```
[X,Y] = meshgrid(0:1,0:1);
Z = X.^2 + Y.^2; % поэлементное действие!
```

Как бы мы поступали, если бы meshgrid не было?

Построение графиков функций двух переменных

График функции двух переменных – это поверхность в пространстве.

Поверхности строятся с помощью:

- ▶ mesh(X,Y,Z) проволочный каркас поверхности.
- ▶ surf(X,Y,Z) грани, соединяющие ребра каркаса.

Каркас окрашен в зависимости от значения функции в данной точки. Например, большие значения функции окрашены в более теплые цвета (максимальное — в ярко красный), меньшие — в более холодные (наименьшее — в синий).

Принцип раскраски граней тот же, что у каркаса.

mesh

```
[X,Y] = meshgrid(-8:.5:8);
R = sqrt(X.^2 + Y.^2) + eps;
Z = sin(R)./R;
mesh(X,Y,Z)
```


surf

```
[X,Y] = meshgrid(-8:.5:8);
R = sqrt(X.^2 + Y.^2) + eps;
Z = sin(R)./R;
mesh(X,Y,Z)
```


Алгоритм построения графика функции двух переменных

- 1. Сгенерировать матрицы X,Y с координатами узлов сетки: meshgrid.
- 2. Вычислить значения функции в узлах сетки: Z = f(X,Y).
- 3. Использовать одну из графических функций MATLAB: surf, mesh,...

ПРИМЕР. Поиск максимума функции peaks и вывод его на график


```
Z = peaks(100);
surf(Z), hold on
% Найдем максимум по столбцам
% и строкам
Zmax = max(max(Z));
% Найдем индексы
% максимального элемента
[i,j] = find(Z==Zmax);
% Отметим максимум
% большой фиолетовой точкой
```

plot3(j,i,Z(i,j),'m.','MarkerSize',30)

і и ј — не координаты, а индексы максимального элемента массива, координаты же этого элемента: x=j, y=i.

Если данные распределены неравномерно, то вместо meshgrid используются griddata или TriScatteredInterp (в последних версиях MATLAB).

Вспомогательные графические функции

Большинство вспомогательных функций, определяющих внешний вид графика в плоском случае, работают и в трехмерной графике.

- axis управление свойствами осей координат сохраняют свои свойства и в трехмерной графике. Добавляется третья ось координат: axis([xmin xmax ymin ymax zmin zmax])
- ▶ Для обозначения по оси z используется функция zlabel: zlabel('строка')

Существуют функции, специально предназначенные только для трехмерной графики. Например:

▶ hidden on/off - {включить}/выключить удаление невидимых линий.

Высокоуровневые и низкоуровневые графические функции

Высокоуровневые графические функции plot, surf, mesh делают сразу несколько дел:

- 1. строят графическое окно;
- 2. определяют параметры координатных осей;
- 3. строят координатные оси;
- 4. строят кривую или поверхность, то есть собственно график.

Все это можно сделать по частям с помощью низкоуровневых графических функций. Они позволяют создавать рисунки из отдельных объектов, как из кубиков. Такой подход гибче, а его результат работает быстрее, поскольку не задействованы избыточные возможности высокоуровневых функций.

Примеры:

- ► Настраиваем графики в MATLAB
- Многоцветная линия

Иерархия графических классов

- 1. root соответствует экрану компьютера. В работе явно не используется.
- 2. figure (рисунок) графическое окно.
- 3. В окне размещаются:
 - axes координатные оси;
 - ▶ UI* элементы пользовательского интерфейса (меню, кнопки и др.).
- 4. В осях координат располагаются
 - line (линия) кривая графика функции одной переменной;
 - text текстовая надпись;
 - surface поверхность, являющаяся графиком функции двух переменных.

Конструкторы объектов

patch() рисует многоугольник, закрашиваемый заданным цветом:

```
x = [0 1 2];
y = [0 1 0];
patch(x,y,'r')
```

Названия функций-конструкторов обычно совпадают с названиями создаваемых ими графических объектов.

Указатели объектов

Как отличить один графический объект от другого?

Создадим объект figure (графическое окно):

```
h = figure;
```

h — указывает на этот объект. Во всех операциях с данным окном мы будем использовать этот указатель. Если это первое открытое графическое окно, то h=1.

Создадим новое окно, не закрывая первого:

```
p = figure;
```

p = 2. Указатель объектов figure — целое число, номер графического окна.

Указатель — это то, с помощью чего MATLAB отличает один объект от другого. Можно воспринимать указатель как имя объекта или как ссылку на объект.

Указатель (дескриптор) – не совсем удачный перевод термина "handle" — титул, прозвище, кличка.

Другой способ указать на объект — понятие "текущего" или "активного" объекта: gcf, gca, gco.

Получение свойств объекта: get(h)

Построим график из отрезков линии красного цвета:

3.0017

Объект line имеет указатель h. Узнать свойства этого объекта можно так:

get(h)

Свойства line

```
DisplayName =
Annotation = [ (1 by 1) hg.Annotation array]
Color = [1 0 0]
LineStyle = -
LineWidth = [0.5]
Marker = none
MarkerSize = [6]
MarkerEdgeColor = auto
MarkerFaceColor = none
XData = [0 2 5]
YData = [1 4 -1]
ZData = []
BeingDeleted = off
ButtonDownFcn =
Children = []
Clipping = on
CreateFon =
DeleteFcn =
BusyAction = queue
HandleVisibility = on
HitTest = on
Interruptible = on
Parent = \lceil 174.007 \rceil
Selected = off
SelectionHighlight = on
Tag =
Type = line
UIContextMenu = []
UserData = []
Visible = on
```

Установка свойств объекта: set(h)

Изменить свойства объекта позволяет функция set:

```
set(h, 'Color', [0 1 0])
% Вместо [0 1 0]
% можно указать 'g' или 'green'.
```

Общий вид функции:

```
set(h, 'Свойство', значение)
```


Низкоуровневые графические функции позволяют управлять тонкими свойствами графических объектов, которые нельзя изменить с помощью функций высокого уровня:

```
set(h, 'LineWidth', 1)
set(h, 'FontSize', 12)
```

Удаление объекта: delete(h)

ПРИМЕР. Динамический график

```
%% Статический график
n = 1000;
x = linspace(0,50,n); y = exp(-0.1*x).*sin(x);
plot(x,y)
% Возьмем пределы из готового графика.
limits = get(gca, {'XLim', 'YLim'});
celldisp(limits)
  limits{1} =
          50
     0
  limits{2} =
   -0.8000 1.0000
```

%% Динамический график

```
figure; grid on;
set(gca,'XLim',limits{1},'YLim',limits{2});
h = line([x(1),x(1)],[y(1),y(1)], 'EraseMode', 'none');
for i=2:n
    set(h,'XData',[x(i-1),x(i)],'YData',[y(i-1),y(i)]);
    drawnow;
    %pause(1e-6);
end
set(h,'XData',x,'YData',y)
%% Закрыть все окна графиков
%close all
```


Чтение/запись изображения

Команда

```
A = imread(filename, fmt)
```

читает изображение из файла с filename и помещает его в массив A.

Формат файла fmt при вызове функции может быть опущен, тогда формат определяется из содержимого файла.

Вместо filename можно указать URL.

Запись изображения в файл:

imwrite(A, filename, fmt)

Любой цвет задается смесью красного (Red), зеленого (Green) и синего (Blue) цветов.

Интенсивности пикселей цветного изображения хранятся в трехмерном массиве I(M,N,3).

M, N – количество пикселей по X и Y.

Каждый пиксел (i,j) цветного изображения характеризуется тремя числами:

- ► I(i,j,1) интенсивностью красного цвета,
- ▶ I(i,j,2) интенсивностью зеленого цвета и
- ► I(i,j,3) интенсивностью синего цвета.

Интенсивность - положительное целое число: uint*.

ПРИМЕР. Вывод информации об изображении

```
A = imread('../images/lenna.png')
imshow(A);
imfinfo('../images/lenna.png')

Filename: 'D:\km\images\lenna.png'
FileModDate: '08-Mar-2019 09:58:08'
FileSize: 473831
Format: 'png'
Width: 512
Height: 512
BitDepth: 24
ColorType: 'truecolor'
```


- ▶ imshow(filename), imshow(A) вывод изображения на экран.
- imfinfo(filename, fmt) информация об изображении: дата создания, размер, формат, метод кодирования, глубина цветопередачи, ...

Прозрачность: alpha

```
A = imread('../images/lenna.png');
subplot(2,2,1);
imshow(A);
title('Original, alpha = 1');
subplot(2,2,2);
h = imshow(A); alpha(h, 0.8);
title('alpha = 0.8');
subplot(2,2,3);
alpha(imshow(A),0.5);
title('alpha = 0.5');
subplot(2,2,4);
alpha(imshow(A),0.2);
title('alpha = 0.2');
```


ПРИМЕР. Фракталы. Множество Жюлиа

Фрактал — это объект (например, кривая), обладающий свойством самоподобия. Понятие ввел Бенуа Мандельброт.

Фракталы обнаружились при измерении рек и границ.

Длина государственной границы между Испанией и Португалией в справочниках этих стран какое-то время отличалась на 20% (Испания насчитала 616 миль, а Португалия 758 миль). Оказалось, что страны измеряли протяженность границы разными "линейками". Короткая "линейка" позволяла учитывать мелкие детали, что в итоге и дало 20% разницы.

Был некоторый скандал, а потом разобрались, что во всем виноваты фракталы.

 ${\it Источник:}\ http://paulscottinfo.ipage.com/fractals-in-nature/3/F2.spain-portugal-border.html$

Множество Жюлиа

Гастон Жюлиа, лежа в больнице после ранения, развлекался вычислением последовательности

$$Z_{n+1} = Z_n^2 + C.$$

Оказалось, что после нескольких итераций точки либо остаются в ограниченной области, либо "убегают" на бесконечность.

Остающиеся точки

Было доказано, что как только выполняется $|Z_n| \geq 2$, то последовательность стремится к бесконечности.

Проверка этого свойства позволяет выделять точки, не попадающие внутрь множества.

Напрашивается алгоритм:

- 1. задаем кол-во итераций;
- 2. задаем исследуемую область;
- 3. задаем начальную точку С;
- выполняем заданное число итераций для каждой точки области;
- 5. рисуем точки, которые остались в области.

```
iter = 30; % кол-во итераций
пріх = 1000; % размер изображения: пріх х пріх
% Область наблюдения
dl = 1.5;
x = linspace(-dl,+dl,npix);
y = linspace(-dl,+dl,npix);
[X,Y] = meshgrid(x,y);
Z = X + i*Y:
% Начальная точка
C = 0.27334 - 0.00742i:
B = zeros(npix);
for l = 1:iter
    Z = Z.^2 + C;
    B = B + (abs(Z)<2);
end;
imagesc(B);
```

C = -0.561321 + 0.64100i

Wikipedia: Julia Set

ПРИМЕР. Одномерный клеточный автомат

Клеточный автомат – набор конечного числа элементов (клеток), образующих регулярную сетку.

Каждая клетка находится в одном из конечного числа *состояний*. Например, 0 или 1.

Окрестность клетки состоит из нее самой и соседних клеток. В одномерном КА под окрестностью клетки понимается она сама и ее соседи слева и справа.

Состояние клетки изменяется по шагам, в зависимости от состояния ее окрестности.

Пусть текущее состояние всех клеток известно (задано). На следующем шаге состояние каждой клетки преобразуется по определенным правилам. Например, таким

111	110	101	100	011	010	001	000
0	1	0	1	1	0	1	0

Первая строка – текущее состояние окрестности, вторая – состояние центральной клетки на следующем шаге.

Первое правило (крайнее слева): если все клетки окрестности активны (1), то на следующем шаге центральная клетка пассивна (0).

Казалось бы, клеточные автоматы должны эволюционировать либо к простым пространственно-однородным состояниям, либо к периодическим структурам (на рисунке). Но это не так.

Правило 30

Код

end

```
nx=720; % должно делитьсЯ на 2
nt=nx/2:
z = zeros(nt,nx);
C = z:
c = zeros(1.nx):
c(nx/2) = 1;
C(1,:) = c;
imh = image(cat(3,z,C,C));
set(imh, 'erasemode', 'none'); axis('equal', 'tight', 'off')
x = 2:nx-1:
for t=2:nt
    C(t,x) = (c(x-1)==1 \& c(x)==1 \& c(x+1)==0) | ...
             (c(x-1)==1 \& c(x)==0 \& c(x+1)==0) | ...
             (c(x-1)==0 \& c(x)==1 \& c(x+1)==1) | \dots
             (c(x-1)==0 \& c(x)==0 \& c(x+1)==1); \% sierpinsky
    set(imh, 'cdata', cat(3,z,C,C) )
    drawnow
    c = C(t.:):
```

БОНУС. Игра "Жизнь". Джон Конуэй, 1970 г.

Клетки игрового поля размечаются в начале игры как живые (1) или мертвые/пустые (0).

Правила

- 1. Если у пустой клетки есть ровно 3 живых соседа, то на следующем ходу в ней происходит "рождение".
- 2. Если у живой клетки 2 или 3 живых соседа, то на следующем ходу она продолжает жить.
- 3. Если у живой клетки меньше 2 или больше 3 живых соседей, то на следующем ходу она умирает (одиночество или перенаселение).

Игрок не принимает непосредственного участия в игре, а лишь расставляет начальную конфигурацию "живых" клеток.

Интересные конфигурации

► Koд: source/life.m.

Много интересных комбинаций:

Math Battle in Game Of Life

Можно собрать логические элементы типа И, ИЛИ и НЕ, а значит создать эквивалент универсального компьютера внутри самой игры.

 Game of Life: Logic gates – реализация логических вентилей И, ИЛИ, НЕ в игре "Жизнь".

БОНУС. Комплексные корни полинома

Найдем корни полинома $x^4 + 2x^3 + 3x^2 + 4x + 5$ и отобразим их на графике.

```
p = [1 2 3 4 5]; % коэффициенты полинома
r = roots(p)
r =
0.2878 + 1.4161i
0.2878 - 1.4161i
-1.2878 + 0.8579i
-1.2878 - 0.8579i
```

Значения полинома на комплексной плоскости

```
% контурный график значений полинома
[X,Y] = meshgrid(linspace(-1.5,.5,100), ...
                 linspace(-1.5, 1.5, 100);
Z = X + 1i*Y:
Z1 = Z.^4 + 2*Z.^3 + 3*Z.^2 + 4*Z + 5:
[C,h] = contour(X,Y,Z1,20); hold on
clabel(C,h); % надписи на изолиниях
% добавляем корни на график
scatter(real(r),imag(r),'filled','red'), grid on
xlabel('Re(z)'), ylabel('Im(z)')
```

contour и scatter (plot) на одном графике

Ссылки

- 1. Representing Data as a Surface MATLAB & Simulink график поверхности, код примера построения графика sinc.
- 2. MATLAB Plot Gallery просто красивые и полезные примеры.
- 3. Интересные конфигурации в игре "Жизнь".