Name:	Solutions	
No collab	boration!	
Cell phor	nes out of sight.	

Answers must include supporting work.

One formula sheet is allowed.

Basic calculators are allowed. Closed book and notes.

(1) [10 pts] Suppose that G is an abelian group generated by x_1, x_2, x_3 . Using a quantum algorithm we've learnt that x_1, x_2, x_3 are subject to the following relations:

$$r_1 = 6x_1 - 2x_2 + 6x_3 = 0$$

$$r_2 = -12x_1 + 6x_2 - 6x_3 = 0$$

$$r_3 = 12x_1 - 4x_2 + 42x_3 = 0.$$

Assuming that this set of relations is complete (all other relations follow from r_1, r_2, r_3), express G as a direct product of cyclic groups.

Solution: Compute the Smith normal form of the relation matrix

$$\begin{bmatrix} 6 & -2 & 6 \\ -12 & 6 & -6 \\ 12 & -4 & 42 \end{bmatrix} \rightarrow \begin{bmatrix} -2 & 6 & 6 \\ 6 & -12 & -6 \\ -4 & 12 & 42 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & -6 & -6 \\ 6 & -12 & -6 \\ -4 & 12 & 42 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 0 & 0 \\ 6 & 6 & 12 \\ -4 & 0 & 30 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 0 & 0 \\ 0 & 6 & 12 \\ 0 & 0 & 30 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 30 \end{bmatrix}$$

Thus, the group is isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_6 \times \mathbb{Z}_{30}$.

- (2) [10 pts] Consider the set of polynomials $R = \mathbb{Z}_{15}[x]$ with coefficient from \mathbb{Z}_{15} .
 - (a) Is x a zero divisor in R? Explain.
 - (b) Does 6 have a multiplicative inverse in R? Explain.
 - (c) Is R a ring? Explain.
 - (d) Is R a field? Explain.
 - (d) Consider the set $G = \{5^x \mid x \in \mathbb{N}\}\$ of all powers of 5 in $\mathbb{Z}_{15}[x]$. Is (G, \cdot) a group?

Solution

(a) No, x is not a zero divisor in R, because for every nontrivial polynomial $f(x) = a_n x^n + \ldots + a_0$ we have

$$x \cdot f(x) = a_n x^{n+1} + \ldots + a_0 x \neq 0.$$

(b) $f(x) = a_n x^n + \ldots + a_0$ is a multiplicative inverse of 6 if

$$6f(x) = 6a_nx^n + \ldots + 6a_0 = 1$$
 in $\mathbb{Z}_{15}[x]$,

which implies $6a_0 \equiv_{15} 1$, which is impossible because $gcd(6, 15) = 3 \nmid 1$.

- (c) Yes, $\mathbb{Z}_{15}[x]$ is a ring because
- (d) No, R is not a field. In particular because 6 is not a unit.
- (d) No, $G = \{5, 10\}$ does not contain 1.

(3) [10 pts] Let $f(x) = 2x^2 + x + 1 \in \mathbb{Z}_3[x]$.

(a) [3 pts] Prove that $E = \mathbb{Z}_3[x]/\langle f(x) \rangle$ is a field.

(b) [1 pt] What is $\chi(E)$ and |E|?

(c) [3 pts] Is -x (negative x) primitive in E?

(d) [3 pts] Find $(x+2)^{-1}$ in E. Explain!

Solution:

(a) $f(x) = 2x^2 + x + 1 \in \mathbb{Z}_3[x]$ is quadratic that has no zeros in \mathbb{Z}_3 :

$$f(0) = 1 \not\equiv_3 0 \qquad \qquad f(1) = 4 \not\equiv_3 0$$

 $f(2) = 11 \not\equiv_3 0.$

Hence, f(x) is irreducible and E is a field.

(b) Obviously, $\chi(E) = 3 \text{ and } |E| = 3^2 = 9.$

(c) The size of the multiplicative group E^* of E is 9-1=8. So, to check if -x is primitive it is sufficient to check that

$$(-x)^2 = x^2 = x + 1 \neq 1$$
 and $(-x)^4 = (x+1)^2 = x^2 + 2x + 1 = 2 \neq 1$.

Thus, -x is primitive.

(d) Consider a general element $ax + b \in E$ with unknown $a, b \in \mathbb{Z}_3$. Then

$$(ax + b)(x + 2) = ax^{2} + (2a + b)x + 2b$$
$$= bx + (a + 2b)$$

which should be 1. Hence,

$$\begin{cases} b \equiv_3 0 \\ a + 2b \equiv_3 1 \end{cases}$$

which gives b = 0, a = 1. Thus, $(x + 2)^{-1} = x$.

(4) [10 pts] Consider the field from the previous problem

$$E = \mathbb{Z}_3[x]/\langle f(x)\rangle$$
, where $f(x) = 2x^2 + x + 1 \in \mathbb{Z}_3[x]$

Compute the powers of -x one-by-one to find $\log_{-x}(x)$.

Solution: We've seen in the previous problem that $(-x)^4 = 2 = -1$. Hence, $\log_{-x}(x) = \log_{-x}(-x \cdot (-1)) = \log_{-x}(-x) + \log_{-x}(-1) = 1 + 4 = 5$.

- (5) [10 pts] For polynomials $f(x) = 2x^4 + x^2 + 4x + 1$ and $g(x) = x^4 + x^3 + 2x + 2$ in $\mathbb{Z}_5[x]$.
 - (a) [5 pts] Compute gcd(f(x), g(x)).
 - (b) [5 pts] Compute $\alpha(x)$, $\beta(x) \in \mathbb{Z}_5[x]$ such that $\gcd(f(x), g(x)) = \alpha(x)f(x) + \beta(x)g(x)$. Show ALL supporting work.

Solution: Using the Euclidean algorithm we obtain

$$\begin{split} f(x) &= 2g(x) + (3x^3 + x^2 + 2) \\ g(x) &= (2x+3)(3x^3 + x^2 + 2) + (2x^2 + 3x + 1) \\ 3x^3 + x^2 + 2 &= (4x+2)(2x^2 + 3x + 1) + 0 \end{split} \qquad \Rightarrow & \gcd(f,g) = \gcd(3x^3 + x^2 + 2, g) \\ &= \gcd(3x^3 + x^2 + 2, 2x^2 + 3x + 1) \\ &= \gcd(0, 2x^2 + 3x + 1) = 2x^2 + 3x + 1. \end{split}$$

Since, the gcd must be monic, we multiply the result by 3 and get $gcd(f, g) = x^2 + 4x + 3$. Next, using the computations above

$$2x^{2} + 3x + 1 = \mathbf{g}(\mathbf{x}) - (2x + 3)(3\mathbf{x}^{3} + \mathbf{x}^{2} + 2)$$

$$= \mathbf{g}(\mathbf{x}) - (2x + 3)(\mathbf{f}(\mathbf{x}) - 2\mathbf{g}(\mathbf{x}))$$

$$= \mathbf{g}(\mathbf{x})(1 + 2(2x + 3)) - \mathbf{f}(\mathbf{x})(2x + 3)$$

$$= \mathbf{f}(\mathbf{x})(3x + 2) + \mathbf{g}(\mathbf{x})(4x + 2)$$

Multiplying by 3 we get

$$gcd(f,g) = x^2 + 4x + 3 = \mathbf{f}(\mathbf{x})(4x+1) + \mathbf{g}(\mathbf{x})(2x+1)$$

Thus, $\alpha(x) = 4x + 1$ and $\beta(x) = 2x + 1$.

(6) [10 pts] Consider an instance of Shamir's (3, 3)-threshold scheme over \mathbb{Z}_5 . The participants decide to compute the secret and reveal their shares

$$\#3$$
 $(4,1)$.

What is the secret?

Solution: If we know that $f(x) \in \mathbb{Z}_5[x]$ is cubic and f(3) = 2, f(1) = 1, f(4) = 1, then

$$l_1(x) = \frac{x - x_2}{x_1 - x_2} \frac{x - x_3}{x_1 - x_3} = \frac{(x - 1)(x - 4)}{(3 - 1)(3 - 4)} = 2x^2 + 3.$$

$$l_1(x) = \frac{x - x_2}{x_1 - x_2} \frac{x - x_3}{x_1 - x_3} = \frac{(x - 1)(x - 4)}{(3 - 1)(3 - 4)} = 2x^2 + 3.$$

$$l_2(x) = \frac{x - x_1}{x_2 - x_1} \frac{x - x_3}{x_2 - x_3} = \frac{(x - 3)(x - 4)}{(1 - 3)(1 - 4)} = x^2 + 3x + 2.$$

$$l_3(x) = \frac{x - x_1}{x_3 - x_1} \frac{x - x_2}{x_3 - x_2} = \frac{(x - 3)(x - 1)}{(4 - 3)(4 - 1)} = 2x^2 + 2x + 1.$$

Finally, combine Lagrange basis polynomials

$$2(2x^2 + 3) + (x^2 + 3x + 2) + (2x^2 + 2x + 1) = 2x^2 + 4.$$

Then L(0) = 4.

- (7) [10 pts] Consider the elliptic curve \mathcal{E} defined by the equation $y^2 = x^3 + 2x + 2$ over \mathbb{Z}_5 .
 - (a) [2pts] Is it singular?
 - (b) [2pts] Which of the points (0,0),(0,4),(1,1),(3,2) belong to \mathcal{E} ?
 - (c) [2pts](3,3) + (3,3) =
 - (d) [2pts](1,3) + (3,3) =
 - (e) [2pts] (1,3) =

Solution:

	\mathcal{O}	(1,0)	(2,2)	(2,3)	(3,0)	(4, 2)	(4,3)
0	0	(1,0)	(2,2)	(2,3)	(3,0)	(4, 2)	(4, 3)
(1,0)	(1,0)	0	(1,0)	(1,0)	(1,0)	(1,0)	(1,0)
(2,2)	(2, 2)	(1,0)	(2,2)	0	(4, 2)	(4, 3)	(3,0)
(2,3)	(2,3)	(1,0)	0	(2,2)	(4,3)	(3,0)	(4, 2)
(3,0)	(3,0)	(1,0)	(4, 2)	(4,3)	0	(2, 2)	(2,3)
(4, 2)	(4, 2)	(1,0)	(4,3)	(3,0)	(2, 2)	(2,3)	0
(4,3)	(4,3)	(1,0)	(3,0)	(4, 2)	(2,3)	0	(2, 2)

- (a) We have a=2 and b=2, so $4a^3+27b^2=4\cdot 2^3+27\cdot 2^2=140\equiv_5 0$. Thus $\mathcal E$ is singular.
- (b) By simply plugging in the given points to the equation for \mathcal{E} , we can see that none of the given points belong to \mathcal{E} .
- (c) This is a typo. The point (3,3) is not on \mathcal{E} . However, if it were, we could find $\lambda = 4$, $x_3 = 0$, and $y_3 = 4$. Thus we have (3,3) + (3,3) = (0,4).
- (d) This is also a typo. Neither of the given points are on \mathcal{E} . However, if they were, we could find $\lambda = 0$, $x_3 = 1$, $y_3 = 2$. Thus we have (1,3) + (3,3) = (1,2).
- (e) This is also a typo. The given point is not on \mathcal{E} . If it were, however, we could easily find -(1,3) = (1,-3).

(8) [10 pts] Consider the elliptic curve \mathcal{E} defined by the equation $y^2 = x^3 + 2x + 5$ over \mathbb{Z}_{13} . Its addition table is shown below

	0	(2, 2)	(2,11)	(3, 5)	(3,8)	(4,5)	(4, 8)	(5,6)	(5,7)	(6,5)	(6,8)	(8,0)
\mathcal{O}	0	(2, 2)	(2,11)	(3, 5)	(3, 8)	(4, 5)	(4, 8)	(5,6)	(5,7)	(6,5)	(6,8)	(8,0)
(2,2)	(2,2)	(5,7)	0	(4, 5)	(5,6)	(6,5)	(3, 8)	(2,11)	(3, 5)	(8,0)	(4, 8)	(6,8)
(2,11)	(2,11)	0	(5,6)	(5,7)	(4,8)	(3,5)	(6, 8)	(3,8)	(2,2)	(4,5)	(8,0)	(6,5)
(3,5)	(3, 5)	(4,5)	(5,7)	(8,0)	0	(6,8)	(2,11)	(2,2)	(6,5)	(4,8)	(5,6)	(3,8)
(3, 8)	(3, 8)	(5,6)	(4,8)	0	(8,0)	(2,2)	(6,5)	(6,8)	(2,11)	(5,7)	(4,5)	(3,5)
(4,5)	(4,5)	(6, 5)	(3,5)	(6, 8)	(2,2)	(4,8)	0	(5,7)	(8,0)	(3,8)	(2,11)	(5,6)
(4, 8)	(4, 8)	(3, 8)	(6,8)	(2,11)	(6,5)	0	(4,5)	(8,0)	(5,6)	(2,2)	(3,5)	(5,7)
(5,6)	(5,6)	(2,11)	(3, 8)	(2, 2)	(6,8)	(5,7)	(8,0)	(4, 8)	0	(3,5)	(6,5)	(4,5)
(5,7)	(5,7)	(3, 5)	(2,2)	(6,5)	(2,11)	(8,0)	(5,6)	0	(4,5)	(6,8)	(3,8)	(4,8)
(6,5)	(6,5)	(8,0)	(4,5)	(4, 8)	(5,7)	(3, 8)	(2,2)	(3, 5)	(6,8)	(5,6)	0	(2,11)
(6, 8)	(6, 8)	(4,8)	(8,0)	(5,6)	(4,5)	(2,11)	(3, 5)	(6,5)	(3, 8)	0	(5,7)	(2,2)
(8,0)	(8,0)	(6,8)	(6,5)	(3, 8)	(3, 5)	(5,6)	(5,7)	(4,5)	(4, 8)	(2,11)	(2,2)	0

- (a) [2pt] Find the order of (2,2).
- (b) [4pts] If \mathcal{E} is cyclic, then find ALL primitive points on \mathcal{E} . If \mathcal{E} is not cyclic, then show that \mathcal{E} has no primitive points.
- (c) [4pts] Solve an instance ((2,2),(3,5),(6,5)) of an ECCDH.

Solution:

(a) We can find multiples of (2,2) using the given table:

```
\begin{array}{lll} 1 \cdot (2,2) = (2,2) & 2 \cdot (2,2) = (5,7) & 3 \cdot (2,2) = (3,5) \\ 4 \cdot (2,2) = (4,5) & 5 \cdot (2,2) = (6,5) & 6 \cdot (2,2) = (8,0) \\ 7 \cdot (2,2) = (6,8) & 8 \cdot (2,2) = (4,8) & 9 \cdot (2,2) = (3,8) \\ 10 \cdot (2,2) = (5,6) & 11 \cdot (2,2) = (2,11) & 12 \cdot (2,2) = \mathcal{O} \end{array}
```

Hence, |(2,2)| = 12.

- (b) We know that \mathcal{E} is cyclic from (a), since (2,2) generates \mathcal{E} . Looking at the table, we can see that all of the primitive points on \mathcal{E} are as follows: (2,2),(2,11),(6,5),(6,8).
- (c) We are given g = (2, 2), $a \cdot g = (3, 5)$, and $b \cdot g = (6, 5)$. Using the table, we can then see that a = (5, 7) (since $(5, 7) \cdot (2, 2) = (3, 5)$), and b = (4, 5) (since $(4, 5) \cdot (2, 2) = (6, 5)$. Then we compute

$$(a \cdot b) \cdot q = ((5,7) \cdot (4,5)) \cdot (2,2) = (8,0) \cdot (2,2) = (6,8).$$