

SQP vs. Semismooth Newton

Bachelorarbeit

am Fachgebiet Optimierung bei partiellen Differentialgleichungen Institut für Mathematik Fakultät II Mathematik und Naturwissenschaften Technische Universität Berlin

 $\begin{array}{c} {\rm vorgelegt\ von} \\ {\bf Vicky\ H.\ Tanzil} \end{array}$

Betreuer: Prof. Dr. Fredi Tröltzsch

Vicky H. Tanzil Matrikelnummer: 308789 Lehrter Straße 68 10557 Berlin

Eidesstattliche Erklärung

Die selbständige und eigenhändige Anfertigung versichert an Eides	statt
Berlin, den	
Unterschrift	

Inhaltsverzeichnis

A۱	bbildungsverzeichnis	IV
Ta	abellenverzeichnis	\mathbf{V}
1.	Grundlagen	1
	1.1. Aufgabenstellung	1
2.	Sequentielle Quadratische Programmierung	2
	2.1. Einführung	2
	2.2. Und nächster Abschnitt	3
3.	Semismooth Newton	4
	3.1. Einführung	4
4.	Der Vergleich	5
	4.1. Testfunktionen	5
Li	teraturverzeichnis	VI
\mathbf{A}	Anhang Eins	VII
В.	Anhang Zwei	VIII

Abbildungsverzeichnis

2.1.	Titel der A	Abbildung .	 											-	2

Tabellenverzeichnis

3.1.	Beispiel einer	Tabelle																												4
------	----------------	---------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---

Kapitel 1.

Grundlagen

1.1. Aufgabenstellung

Allgemein ist:

- 1. erster Punkt
- 2. noch ein Punkt
- 3. letzter Punkt

Konkret:

Kapitel 2.

Sequentielle Quadratische Programmierung

2.1. Einführung

Sequentielle Quadratische Optimierung ist ein bekanntes Verfahren, um ein Problem mit nicht linearer Zielfunktion und linearen Nebenbedigungen zu lösen.

Abbildung 2.1.: Titel der Abbildung

In der Abbildung 2.1^1 ist zu sehen, dass ...

¹vgl. Zitat A[1]

Kapitel 2. Sequentielle Quadratische Programm2i@rubgd nächster Abschnitt

2.2. Und nächster Abschnitt

Eine neue Seite, um auchmal die Kopfzeile zu sehen, da sie auf Seiten mit Kapitelanfang nicht erscheinen

Kapitel 3.

Semismooth Newton

3.1. Einführung

Hier füge ich mal eine Tabelle ein

SpalteA	SpalteB	SpalteC	SpalteD
InhaltA1	InhaltB1	InhaltC1	InhaltD1
InhaltA2	InhaltB2	InhaltC2	InhaltD2
InhaltA3	InhaltB3	InhaltC3	InhaltD3

Tabelle 3.1.: Beispiel einer Tabelle

Wie man in der Tabelle 3.1 sehen kann ...

Kapitel 4.

Der Vergleich

4.1. Testfunktionen

Hier mal eine Auflistung von Elementen

- ullet erstes Element
- zweites Element
- noch ein Element

Und Schluss mit der Vorlage ...

Literaturverzeichnis

[1] K. Ito und K. Kunisch. Lagrange Multiplier Approach to Variational Problems and Applications. SIAM, 2008.

Anhang A.

Anhang Eins

Anhang B.

Anhang Zwei