6.829 Computer Networks Problem set 2

Shalev Ben-David, Yonatan Belinkov March 21, 2013

1 Measurements

Figure 1 shows the performance of a protocol with a fixed window size. The best score we were able to achieve was -4.5 log(Throughput/Delay) with a window size of 15. However, the measurements were not very stable and varied by as much as 0.1 between different runs with the same window size.

50 4.5 3.5 Phroughput (Mbps) 3 2.5 2 1.5 0.5 700 600 500 300 200 400 100 Delay (ms)

Throughput vs 95-percentile delay

Figure 1: Throughput vs 95-percentile delay with a fixed window size

Our first try to implement an AIMD scheme did not produce very good results; we got -5.84 log(Throughput/Delay) when adding 1/w to the window size on every ACK and dividing by 2 on every timeout (timeout set to 1000 ms). A slower increase of $1/w^2$ improved the score to -4.72. Another approach we tried was to change the timeout, where we found out that decreasing the timeout to 100 ms improves the score to -5.28 (while maintaining the standard AIMD). By combining both approaches we managed to improve the score up to -4.12, by using a timeout of 100 ms, an additive increase of $1/w^2$ on every ACK, and a harsher decrease of $w \leftarrow \sqrt{w}$ on every timeout.

The delay-triggered scheme proved to be competitive with AIMD. We experimented with changing the window size based on when the RTT crosses a given threshold. Table 1 summarizes the results. The best score of -4.16 was achieved with a threshold of 100 ms, an increase of 0.1, and a decrease of 1.

Threshold (ms)	Increase	Decrease	Delay (ms)	Throughput	Score
				(Mbps)	
100	1	1	308	3.39	-4.51
200	1	1	580	4.02	-4.97
50	1	1	162	1.75	-4.53
100	2	2	436	3.76	-4.75
100	1	2	299	3.12	-4.56
100	0.1	1	155	2.41	-4.16

Table 1: Delay, throughput, and $\log(\text{Throughput/Delay})$ score with different delay-triggered schemes.

 $^{^{1}}$ A non-integer increase effectively means that the window size changes only when it reaches the following integer