Problem Set 5

Bivariate Discrete and Continuous Random Variables

Date: Thurssday June 27th, 2019.

Problem 1:

I have a bag containing 40 blue marbles and 60 red marbles. I choose 10 marbles (without replacement) at random. Let X be the number of blue marbles and Y be the number of red marbles. Find the joint PMF of X and Y.

Problem 2:

Let X and Y be two independent discrete random variables with CDFs F_X and F_Y . Define $Z = \max(X, Y)$ and $W = \min(X, Y)$. Find the CDFs of Z and W.

Problem 3:

Let $X, Y \sim \text{Geometric}(p)$ be independent, and let $Z = \frac{X}{Y}$.

- (a) Find the range of Z.
- (b) Find the PMF of Z.
- (c) Find E[Z].

Problem 4:

Let X and Y be jointly continuous random variables with joint PDF

$$f_{X,Y}(x,y) = 6 \exp(-(2x+3y)), x, y \ge 0.$$

- (a) Are X and Y independent?
- (b) Find E[Y|X > 2].
- (c) Find P(X > Y)

Problem 5:

Let X be continuous random variable with PDF

$$f_X(x) = 2x, \ 0 \le z \le 1.$$

We know that given X = x,, the random variable Y is uniformly distributed on [-x, x].

- (a) Find the joint PDF $f_{X,Y}(x,y)$.
- (b) Find $f_Y(y)$.
- (c) Find $P(|Y| < X^3)$.

Problem 6:

Let X and Y be two jointly continuous random variables with joint PDF

$$f_{X,Y}(x,y) = 6xy, \ 0 \le x \le 1, 0 \le y \le \sqrt{x}$$

- (a) Show $R_{X,Y}$ in the x-y plane.
- (b) Find $f_X(x)$ and $f_Y(y)$.
- (c) Are X and Y independent?
- (d) Find the conditional PDF of X given Y = y, $f_{X|Y}(x|y)$.

- (e) Find $E[X|Y = y], 0 \le y \le 1$.
- (f) Find var[X|Y = y], $0 \le y \le 1$.

Problem 7:

Let X and Y be two jointly continuous random variables with joint PDF

$$f_{X,Y}(x,y) = 2, y + x \le 1, x > 0, y > 0.$$

Find cov(X, Y) and $\rho(X, Y)$.

Problem 8:

I roll a fair die n times. Let X be the number of 1's that I observe and let Y be the number of 2's that I observe. Find cov(X,Y) and $\rho(X,Y)$. Hint: One way to solve this problem is to look at var(X+Y).

Problem 9:

I have a coin with P(H) = p. I toss the coin repeatedly until I observe two consecutive heads. Let X be the total number of coin tosses. Find E(X).

Problem 10:

Consider two random variables X and Y with joint PMF given in the following table

	Y = 2	Y=4	Y = 5
X = 1	$\frac{1}{12}$	$\frac{1}{24}$	$\frac{1}{24}$
X = 2	$\frac{1}{6}$	$\frac{1}{12}$	$\frac{1}{8}$
X = 3	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{12}$

- (a) Find $P(X \le 2, Y \le 4)$.
- (b) Find the marginal PMFs of X and Y.
- (c) Find P(Y = 2|X = 1).
- (d) Are X and Y independent?

Problem 11:

Let X and Y be two random variables, and let U, and V be the normalized versions of X and Y as defined

$$U = \frac{X - EX}{\sigma_X}, \quad V = \frac{Y - EY}{\sigma_Y}.$$

Use the fact that $Var(U+V) \ge 0$ to show that $|\rho(X,Y)| \le 1$.

Problem 12:

Let X and Y be jointly (bivariate) normal, with Var(X) = Var(Y). Show that the two random variables X + Y and X - Y are independent.

Problem 13:

Let X and Y be jointly normal random variables with parameters $\mu_X=0$, $\sigma_X^2=1$, $\mu_Y=-1$, $\sigma_Y^2=4$, and $\rho=\frac{1}{2}$.

- (a) Find P(X + Y > 0).
- (b) Find the constant a if we know aX + Y and X + 2Y are independent.

Problem 14:

Let X and Y be two independent Uniform(0,1) random variables. Let also Z = max(X,Y) and W = min(X, Y). FindCov(Z, W).

Problem 15:

Consider two random variables X and Y with joint PMF given by

$$P_{XY}(k,l) = \frac{1}{2^{k+l}}$$
, for $k, l = 1, 2, 3, ...$

- (a) Show that X and Y are independent and find the marginal PMFs of X and Y.
- (b) Find $P(X^2 + Y^2 < 10)$.

Problem 16:

Let X and Y be two independent random variables with PMFs

$$P_X(k) = P_Y(k) = \begin{cases} \frac{1}{5} & \text{for } x = 1, 2, 3, 4, 5 \\ 0 & \text{otherwise} \end{cases}$$

Define Z = X - Y. Find the PMF of Z.

Problem 17:

Let X and Y be two jointly continuous random variables with joint PDF

$$f_{XY}(x,y) = \begin{cases} \frac{1}{2}e^{-x} + \frac{cy}{(1+x)^2} & 0 \le x, 0 \le y \le 1\\ 0 & \text{otherwise} \end{cases}$$

- (a) Find the constant c.
- (b) Find $P(0 \le X \le 1, 0 \le Y \le \frac{1}{2})$. (c) Find $P(0 \le X \le 1)$.

Problem 18:

Let X and Y be two jointly continuous random variables with joint PDF

$$f_{XY}(x,y) = \begin{cases} e^{-xy} & 1 \le x \le e, y > 0 \\ 0 & \text{otherwise} \end{cases}$$

- (a) Find the marginal PDFs, $f_X(x)$ and $f_Y(y)$.
- (b) Write an integral to compute $P(0 \le Y \le 1, 1 \le X \le \sqrt{e})$.

Problem 19:

Let X and Y be two jointly continuous random variables with joint CDF

$$F_{XY}(x,y) = \begin{cases} 1 - e^{-x} - e^{-2y} + e^{-(x+2y)} & x,y > 0 \\ 0 & \text{otherwise} \end{cases}$$

3

- (a) Find the joint PDF, $f_{XY}(x, y)$. Are X and Y independent?
- (b) Find P(X < 2Y).

Problem 20:

Let X and Y be two jointly continuous random variables with joint PDF

$$f_{XY}(x,y) = \begin{cases} x^2 + \frac{1}{3}y & -1 \le x \le 1, 0 \le y \le 1\\ 0 & \text{otherwise} \end{cases}$$

For $0 \le y \le 1$, find the following:

- (a) The conditional PDF of X given Y = y.
- (b) P(X > 0|Y = y). Does this value depend on y?
- (c) Are X and Y independent?

Problem 21:

Let X and Y be two jointly continuous random variables with joint PDF

$$f_{XY}(x,y) = \begin{cases} \frac{1}{2}x^2 + \frac{2}{3}y & -1 \le x \le 1, 0 \le y \le 1\\ 0 & \text{otherwise} \end{cases}$$

Find E[Y|X=0] and Var(Y|X=0).

Problem 22:

Let X and Y be two independent Uniform(0,2) random variables. Find P(XY < 1).

Problem 23:

Suppose $X \sim Exponential(1)$ and given X = x, Y is a uniform random variable in [0, x], i.e.,

$$Y|X=x \sim Uniform(0,x),$$

or equivalently

$$Y|X \sim Uniform(0,X),$$

- (a) Find E[Y].
- (b) Find Var(Y).

Problem 24:

Let X and Y be two independent Uniform(0,1) random variables. Find

- (a) E[XY].
- (b) $E[e^{XY}]$.
- (c) $E[X^2 + Y^2 + XY]$.
- (d) $E[Ye^{XY}].$

Problem 25:

Let X and Y be two random variables. Suppose that $\sigma_X^2 = 4$, and $\sigma_Y^2 = 9$. If we know that the two random variables Z = 2XY and W = X + Y are independent, find Cov(X,Y) and $\rho(X,Y)$.

4