

Discrete Structures: CMPSC 102

Oliver BONHAM CARTER

Getting Information

About the

Class and la

Two Teythook

Overvie

A Blend of two

Discrete Objects

Continuou Objects

Video

Discrete for C

Consider This!'

Discrete Structures: CMPSC 102

Oliver BONHAM-CARTER

Fall 2022 Week 1

The Class Websites

General Information

Discrete Structures: CMPSC 102

Oliver BONHAN CARTER

Getting Information

About the

Class and lab meetings

Two Textbook

Overvie

things

Continuou

Video

Discrete for CS

Consider This!'

• The course Website:

 https://www.oliverbonhamcarter.com/classes/ discretestructures/

The Class Website

Office hours

Discrete Structures: CMPSC 102

Oliver BONHAM CARTER

Getting Information

About the class

Class and Ial

Two Textboo

Overvi

A Blend of to things

Discrete Objects

Continuous Objects

Diameter for C

Discrete for CS

Consider This!'

Booking office hours:

https://www.oliverbonhamcarter.com/contactandabout/

The Class Website

Please be familiar with the course syllabus

Discrete Structures: CMPSC 102

Getting Information

Check the syllabus

https:

//github.com/CMPSC-102-Allegheny-College-Fall-2022/ classDocs/blob/main/README.md

Figure: Did I search for Syllabus correctly?

Class and lab meeting times

Please read the syllabus before next class!!

Discrete Structures: CMPSC 102

Oliver BONHAM CARTER

Getting Informatio

About the class

Class and lab meetings

Overview
A Blend of two

Discrete Objects

Continuous Objects

Video

Discrete for CS

Consider This!'

- Lecture, Discussion, Presentations, and Group Work:
 - Monday, Wednesday, Friday 1:30pm 2:20pm, Alden Hall 101
- Laboratory Session:
 - Tuesday 2:30PM 4:20PM, Alden Hall 101

Textbook

Discrete Structures: CMPSC 102

BONHAM CARTER

Getting Informatio

About the

meetings
Two Textbooks

....

A Blend of tw

Discrete Objects

Continuous Objects ^{Video}

Discrete for CS

Conside

Programming and Mathematical Thinking

A Gente Introduction to Discrete Math Featuring Python

Allan M. Stavely

 Programming and Mathematical Thinking - A Gentle Introduction to Discrete Math Featuring Python by Allan M. Stavely; ISBN paperback 978-1-938159-00-8 and ISBN ebook: 978-1-938159-01-5

Textbook

Discrete Structures: CMPSC 102

BONHAN CARTER

Getting Information

About the class
Class and lab

Two Textbooks

Overview
A Blend of tw

Discrete Objects

Continuous Objects _{Video}

Discrete for CS

Conside This!'

 Doing Math with Python by Amit Saha; ISBN paperback: 1-59327-640-0

Learning as a Computer Scientist?

In terms of programming

Discrete Structures: CMPSC 102

Oliver BONHAM CARTER

Getting Information

About the class
Class and lab

Class and lab meetings Two Textbooks

Overview
A Blend of two things

Discrete Objects

Continuou Objects

Discrete for CS

Consider

Key Question

How do I connect mathematical terminology (e.g., mapping, function, number, sequence, and set), to the implementation of Python programs that declare and call functions and declare and manipulate variables?

Learning Objectives

To remember and understand some of the discrete mathematics and Python programming concepts, setting the stage for the exploration of discrete structures.

Learning as a Computer Scientist?

For example

Discrete Structures: CMPSC 102

Oliver BONHAM CARTER

Getting Informatio

Class and lab meetings

Overview
A Blend of two

Discrete Objects

Continuous Objects _{Video}

Discrete for CS

Consider This!'

Discrete Structures = Math + Code

Discrete mathematics

- P Made up from: symbols, character strings, truth values, objects, and collections of these entities as stored in sets or tuples (for example)
- •
- Specifying and designing a **computer program**
 - Describe input, output, and internal objects
 - Use the vocabulary of discrete mathematics
 - Implement and test the program in a language

Our goal:

To implement a program P that meets a particular specification S

Learning as an Analytical Thinker?

In terms of mathematics

Discrete Structures: CMPSC 102

Oliver BONHAN CARTER

Getting Informatio

About the class

Class and lab meetings Two Textbook

Overview

A Blend of tw

Discrete Objects

Continuous Objects

Discrete for C

Consider

"An introduction to the foundations of computer science with an emphasis on understanding the abstract structures used to represent discrete objects."

Wait! What?

We keep using the word, **discrete**. What do we mean here?

Discreet or Discrete

- **Discreet** means *unobtrusive* or *unnoticeable* (not this course!)
- **Discrete** means *separate*, not continuous or *not sharing* any common space

Discrete and Countable Objects

Discrete Structures: CMPSC 102

Oliver BONHAN CARTER

Getting Information

About the class
Class and late

Class and lab meetings Two Textbook

Overview
A Blend of tw

Discrete Objects

Continuou Objects

Discrete for C

Discrete for C

Consideration This!'

- Discrete means "countable" (can be listed in an order)
- We can count the number of animals.

So, Discrete Objects, Then?

Discrete Structures: CMPSC 102

Oliver BONHAM CARTER

Informatio

About the

meetings
Two Textboo

A Blend of to

Discrete Objects

Continuous Objects

Discrete for CS

Consider

Conside This!'

• Discrete mathematics involves being able to count (*list*) things individually.

... And, Continuous Objects?

Discrete Structures: CMPSC 102

BONHAM CARTER

Getting Informatio

About the class

meetings
Two Texthool

A Blend of t

Discrete Objects

Continuous Objects

Discrete for C

Consider

Consider Fhis!'

 "Overlapping" objects cannot be counted (i.e., listed) separately.

Discrete Mathematics

Discrete Structures: CMPSC 102

Oliver BONHAN CARTER

Getting Informatio

About the

Class and lab meetings Two Textbook

A Blend of tw things

Discrete Objects

Continuous Objects Video

Video Discrete for C

Consider This!'

- Discrete Mathematics for Computer Science (developed during the latter half of the 20th century!
 - https://www.youtube.com/watch?v=q4L-wUF3yig

Non-Discrete and Un-Countable Objects

Really big amounts of things

Oliver BONHAM CARTER

Getting Informatio

About the

Class and la meetings

Two Textboo

A Blend of

Discrete Objects

Continuous Objects _{Video}

Discrete for CS

Conside This!'

- Are the numbers of grains *un*countable (i.e., unlistable)?
- Is anything *un*countable at the beach?
- How do we count an uncountable object? Why?

Relationships to Computing

Computer MUST be able to count to compute

Discrete Structures: CMPSC 102

Oliver BONHAM CARTER

Getting Informatio

About the class
Class and lab meetings

meetings
Two Textbooks

Overview

A Blend of tw

Discrete Objects

Continuous Objects _{Video}

Discrete for CS

Consider This!'

Binary Numbers

In mathematics and digital electronics, a binary number is a number expressed in the base-2 numeral system or binary numeral system, which uses only two symbols: typically, 0 (False, zero) and 1 (True, one).

- Computers use binary to function
- Processes (i.e., memory, computation, networking) are broken down into binary-driven procedures

Binary Numbers

Discrete Structures: CMPSC 102

Oliver BONHAM CARTER

Getting Informatio

About the class

meetings

Overview

Discrete

Continuous Objects

Discrete for CS

Conside This!'

2 ² = 2 ³ = 2 ⁴ = 2 ⁵ =	= 8 = 16 = 32
2° =	= 64 = 128

Binary Value			Re	Decimal Representation						Decimal Value	
			8		4		2		1	Decimal value	
0	0	0	0	0	+	0	+	0	+	0	0
0	0	0	1	0	+	0	+	0	+	1	1
0	0	1	0	0	+	0	+	2	+	0	2
0	0	1	1	0	+	0	+	2	+	1	3
0	1	0	0	0	+ .	4	+	0	+	0	4
0	1	0	1	0	+ .	4	+	0	+	1	5
0	1	1	0	0	+ .	4	+	2	+	0	6
0	1	1	1	0	+ .	4	+	2	+	1	7
1	0	0	0	8	ı	0	1	0	1	0	8
1	0	0	1	8	+	0	+	0	+	1	9
1	0	1	0	8	+	0	+	2	+	0	10

- Computing implies digital processing
- Computing binary values is a *countable* task.
- Can anything, or any number, that a computer computes be written in binary?

Countable and Not Countable?

What can be *listed* and what cannot be listed?

Discrete Structures: CMPSC 102

Oliver BONHAM CARTER

Getting Informatio

About the class
Class and lab

meetings
Two Textbooks

Overview

A Blend of two
things

Discrete Objects

Continuous Objects

Discrete for C

Consider This!'

- Get into groups and discuss the following. Take notes to report back to the class.
- Can you think of countable objects?
- Can you think of un-countable objects?
 - Can you think of types of numbers that may fit into each of these above groups?

