Package 'spcr'

October 16, 2022

Type Package

Title Sparse Principal Component Regression
Version 2.1.1
Date 2022-10-15
Author Shuichi Kawano
Maintainer Shuichi Kawano <skawano@math.kyushu-u.ac.jp></skawano@math.kyushu-u.ac.jp>
Description The sparse principal component regression is computed. The regularization parameters are optimized by cross-validation.
License GPL (>= 2)
<pre>URL https://doi.org/10.1016/j.csda.2015.03.016,</pre>
https://doi.org/10.1016/j.csda.2018.03.008,
https://sites.google.com/site/shuichikawanoen/software
Repository CRAN
NeedsCompilation yes
Date/Publication 2022-10-16 07:30:06 UTC
R topics documented:
cv.spcr
cv.spcrglm
spcr 5 spcrglm 6
speignii
Index 9

cv.spcr

Description

This function performs cross-validation for spcr. cv. spcr enables us to determine two regularization parameters λ_{β} and λ_{γ} objectively.

Usage

```
cv.spcr(x, y, k, w=0.1, xi=0.01, nfolds=5, adaptive=FALSE,
center=TRUE, scale=FALSE, lambda.B.length=10, lambda.gamma.length=10,
lambda.B=NULL, lambda.gamma=NULL)
```

Arguments

x	A data matrix.	
У	A response vector.	
k	The number of principal components.	
W	Weight parameter with $0 \le w \le 1$. The default is 0.1.	
xi	The elastic net mixing parameter with $0 \le \alpha \le 1$. The default is 0.01.	
nfolds	The number of folds. The default is 5.	
adaptive	If "TRUE", the adaptive SPCR is used.	
center	If "TRUE", the data matrix is centered.	
scale	If "TRUE", the data matrix is scaled.	
lambda.B.length		
	The number of candidates for the parameter λ_{β} . The default is 10.	
lambda.gamma.length		
	The number of candidates for the parameter λ_{γ} . The default is 10.	
lambda.B	Optional user-supplied candidates for the parameter λ_{β} . The default is NULL.	
lambda.gamma	Optional user-supplied candidates for the parameter λ_{γ} . The default is NULL.	

Value

lue		
lambda.gamma.seq		
	The values of lambda.gamma in the fit.	
lambda.B.seq	The values of lambda.B in the fit.	
CV.mat	Matrix of the mean values of cross-validation. The row shows a sequence of lambda.gamma. The column shows a sequence of lambda.B.	
lambda.gamma.cv		
	The value of lambda.gamma selected by cross-validation.	
lambda.B.cv	The value of lambda.B selected by cross-validation.	
CVM	The minimum of the mean cross-validated error.	

cv.spcrglm 3

Author(s)

```
Shuichi Kawano 
<skawano@ai.lab.uec.ac.jp>
```

References

Kawano, S., Fujisawa, H., Takada, T. and Shiroishi, T. (2015). Sparse principal component regression with adaptive loading. Computational Statistics & Data Analysis, 89, 192–203.

See Also

spcr

Examples

```
#data
n <- 50
np <- 5
set.seed(1)
nu0 <- c(-1, 1)
x <- matrix( rnorm(np*n), n, np )
e <- rnorm(n)
y <- nu0[1]*x[ ,1] + nu0[2]*x[ ,2] + e

#fit
cv.spcr.fit <- cv.spcr(x=x, y=y, k=2)
cv.spcr.fit
#fit (adaptive SPCR)
cv.adaspcr.fit <- cv.spcr(x=x, y=y, k=2, adaptive=TRUE)
cv.adaspcr.fit</pre>
```

cv.spcrglm

Cross-validation for spcr-glm

Description

This function performs cross-validation for SPCR-glm. cv.spcrglm enables us to determine two regularization parameters λ_{β} and λ_{γ} objectively.

Usage

```
cv.spcrglm(x, y, k, family=c("binomial","poisson","multinomial"),
w=0.1, xi=0.01, nfolds=5, adaptive=FALSE, q=1, center=TRUE,
scale=FALSE, lambda.B.length=10, lambda.gamma.length=10,
lambda.B=NULL, lambda.gamma=NULL)
```

4 cv.spcrglm

Arguments

x A data matrix.
y A response vector.

k The number of principal components.

family Response type.

w Weight parameter with $w \ge 0$. The default is 0.1.

xi The elastic net mixing parameter with $0 \le \alpha \le 1$. The default is 0.01.

nfolds The number of folds. The default is 5.

adaptive If "TRUE", the adaptive SPCR-glm (aSPCR-glm) is used.

q The tuning parameter that controls weights in aSPCR-glm. The default is 1.

center If "TRUE", the data matrix is centered. scale If "TRUE", the data matrix is scaled.

lambda.B.length

The number of candidates for the parameter λ_{β} . The default is 10.

lambda.gamma.length

The number of candidates for the parameter λ_{γ} . The default is 10.

lambda.B Optional user-supplied candidates for the parameter λ_{β} . The default is NULL. Optional user-supplied candidates for the parameter λ_{γ} . The default is NULL.

Value

lambda.gamma.seq

The values of lambda. gamma in the fit.

lambda.B.seq The values of lambda.B in the fit.

CV.mat Matrix of the mean values of cross-validation. The row shows a sequence of

lambda.gamma. The column shows a sequence of lambda.B.

lambda.gamma.cv

The value of lambda.gamma selected by cross-validation.

lambda.B.cv The value of lambda.B selected by cross-validation.

cvm The minimum of the mean cross-validated error.

Author(s)

Shuichi Kawano

<skawano@ai.lab.uec.ac.jp>

References

Kawano, S., Fujisawa, H., Takada, T. and Shiroishi, T. (2018). Sparse principal component regression for generalized linear models. Computational Statistics & Data Analysis, 124, 180–196.

See Also

spcrglm

spcr 5

Examples

```
# binomial
n <- 100
np <- 3
nu0 <- c(-1, 1)
set.seed(4)
x <- matrix( rnorm(np*n), n, np )</pre>
y \leftarrow rbinom(n,1,1-1/(1+exp( (nu0[1]*x[ ,1] + nu0[2]*x[ ,2] ))))
cv.spcrglm.fit <- cv.spcrglm(x=x, y=y, k=1, family="binomial")</pre>
cv.spcrglm.fit
# Poisson
set.seed(5)
y \leftarrow rpois(n, 1)
cv.spcrglm.fit <- cv.spcrglm(x=x, y=y, k=1, family="poisson")</pre>
cv.spcrglm.fit
# multinomial
set.seed(4)
y <- sample(1:4, n, replace=TRUE)
cv.spcrglm.fit <- cv.spcrglm(x=x, y=y, k=1, family="multinomial")</pre>
cv.spcrglm.fit
```

spcr

Fit a sparse principal component regression (SPCR)

Description

This function computes a principal component regression model via sparse regularization.

Usage

```
spcr(x, y, k, lambda.B, lambda.gamma, w=0.1, xi=0.01,
adaptive=FALSE, center=TRUE, scale=FALSE)
```

Arguments

X	A data matrix.
у	A response vector.
k	The number of principal components.
lambda.B	The regularization parameter for the parameter B .
lambda.gamma	The regularization parameter for the coefficient vector γ .
W	Weight parameter with $0 \le w \le 1$. The default is 0.1.
xi	The elastic net mixing parameter with $0 \le \alpha \le 1$. The default is 0.01.
adaptive	If "TRUE", the adaptive SPCR is used.
center	If "TRUE", the data matrix is centered.
scale	If "TRUE", the data matrix is scaled.

6 sperglm

Value

loadings.B the loading matrix B gamma the coefficient gamma0 intercept loadings.A the loading matrix A

Author(s)

```
Shuichi Kawano <skawano@ai.lab.uec.ac.jp>
```

References

Kawano, S., Fujisawa, H., Takada, T. and Shiroishi, T. (2015). Sparse principal component regression with adaptive loading. Computational Statistics & Data Analysis, 89, 192–203.

See Also

```
cv.spcr
```

Examples

```
#data
n <- 100
np <- 5
set.seed(4)
nu0 <- c(-1, 1)
x <- matrix( rnorm(np*n), n, np )
e <- rnorm(n)
y <- nu0[1]*x[ ,1] + nu0[2]*x[ ,2] + e

#fit
spcr.fit <- spcr(x=x, y=y, k=2, lambda.B=6, lambda.gamma=2)
spcr.fit

#fit (adaptive SPCR)
adaspcr.fit <- spcr(x=x, y=y, k=2, lambda.B=6, lambda.gamma=2, adaptive=TRUE)
adaspcr.fit</pre>
```

spcrglm

Fit a sparse principal component regression for generalized linear models (SPCR-glm)

Description

This function computes a principal component regression for generalized linear models via sparse regularization.

spcrglm 7

Usage

```
spcrglm(x, y, k, family=c("binomial","poisson","multinomial"), lambda.B,
lambda.gamma, w=0.1, xi=0.01, adaptive=FALSE, q=1, center=TRUE, scale=FALSE)
```

Arguments

x A data matrix.y A response data.

k The number of principal components.

family Response type.

lambda.B The regularization parameter for the parameter B.

lambda.gamma The regularization parameter for the coefficient vector γ .

Weight parameter with $w \ge 0$. The default is 0.1.

xi The elastic net mixing parameter with $0 \le \alpha \le 1$. The default is 0.01.

adaptive If "TRUE", the adaptive SPCR-glm (aSPCR-glm) is used.

q The tuning parameter that controls weights in aSPCR-glm. The default is 1.

center If "TRUE", the data matrix is centered. scale If "TRUE", the data matrix is scaled.

Value

loadings.B the loading matrix B

gamma the coefficient

gamma0 intercept

loadings.A the loading matrix A

Author(s)

```
Shuichi Kawano
<skawano@ai.lab.uec.ac.jp>
```

References

Kawano, S., Fujisawa, H., Takada, T. and Shiroishi, T. (2018). *Sparse principal component regression for generalized linear models. Computational Statistics & Data Analysis*, 124, 180–196.

See Also

```
cv.spcrglm
```

8 spcrglm

Examples

```
# binomial
n <- 100
np <- 5
nu0 <- c(-1, 1)
set.seed(4)
x <- matrix( rnorm(np*n), n, np )</pre>
y \leftarrow rbinom(n,1,1-1/(1+exp( (nu0[1]*x[ ,1] + nu0[2]*x[ ,2] ))))
spcrglm.fit <- spcrglm(x=x, y=y, k=2, family="binomial", lambda.B=2, lambda.gamma=1)</pre>
spcrglm.fit
# Poisson
set.seed(4)
y \leftarrow rpois(n, exp( (nu0[1]*x[ ,1] + nu0[2]*x[ ,2] )))
spcrglm.fit <- spcrglm(x=x, y=y, k=2, family="poisson", lambda.B=2, lambda.gamma=1)</pre>
{\tt spcrglm.fit}
# multinomial
set.seed(4)
y <- sample(1:4, n, replace=TRUE)</pre>
spcrglm.fit <- spcrglm(x=x, y=y, k=2, family="multinomial", lambda.B=2, lambda.gamma=2)</pre>
spcrglm.fit
```

Index