

Our country, our future 525/1

S6 CHEMISTRY

Exam 28

PAPER 1

DURATION: 2 HOUR 45 MINUTES

Instructions:

- This paper consists of two sections A and B
- Section A is compulsory.
- Attempt only six questions in section B
- Answers must be written in the spaces provided only

						For	Exam	iner's	Use C	Only						
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17

1 More exams? browse: digitaltears.co.ug For consultations call: +256 776 802709

SECTION A

(All questions are compulsory)

1.	found	e freezing point of a solution containing 3.294g of sulphur in 3 to be -0.830° C and another solution containing 1.67g of ionalene froze at -0.84° C.	
	(i)	The freezing point depression constant for naphthalene (molar mass of iodine is 127)	(02 marks)
	(ii)	The molar mass of sulphur in naphthalene.	(02 marks)
	(b) (i) [Determine the molecular formula of sulphur.	(1 ½ marks)
	(ii) [Draw the structure of sulphur.	(01 mark)
2.		mplete the following equations IC ≡ CH CH ₃ Br Na in liquid NH ₃	

2 More exams? browse: digitaltears.co.ug For consultations call: +256 776 802709

(ii) CH ₄ + H ₂ O	Ni Heat (900°C)		
(iii) CH₃CH₂CH₂Cl	Cu − Zn ethanol (reflux)		
(iv) CH₃COCH₃	NaHSO₃ ►		
(b) Write the mechan	ism for the reaction in (iv)	(02 mark	(s)
3. (a) State three proper	rties in which carbon differs fro	om the rest of group (iv) elemen (1 ½ mar	
(b) Write equations fo (i) carbon	or the reaction between conce	ntrated sulphuric acid and	
Equation 			
(ii) Tin			
Equation			
4. (a) Explain why hydro	gen fluoride is a weaker acid tl	han hydrogen chloride. (1	02 marks)

		n at 25°C for some compounds are shown on the
table l	pelow.	
	Compound	Λ_0 (ohm $^{-1}$ m 2 mol $^{-1}$)
	Nitric acid	0.0421
	Potassium nitrate	0.0145
	Potassium fluoride	0.0129
3.15 x Calcul	anductivity of a 0.1 moldm $^{-3}$ aqueou 10 $^{-3}$ ohm $^{-1}$ m $^{-1}$. ate the:	
(i)	Molar conductivity of solution	(1 ½ marks)
(ii)	Degree of ionization of hydrogen flo	uoride. (2 ½ marks)

5. (a) Draw the structures and name the shapes of the following species. (4 ½ marks)

Species	Structure	Shape
(CH₃)₃N		
BF ₃		
NO ₂ -		
11.52		

	٠.,					
1	(i)	Trimethy	/lamine	and b	oroni	trifluonde

•••••	•••••	•••••	•••••	•••••

6. (a) Complete the following nuclear reactions and name the particles emitted in each case (i) $\frac{238}{92}U + \frac{1}{0}n \longrightarrow \frac{239}{93}Pu + \dots$

(i)
$${}^{238}_{92}U + {}^{1}_{0}n \longrightarrow {}^{239}_{93}Pu + \dots$$

Name of particle;

(ii)
$${241 \over 95} Am + {4 \over 2} He \longrightarrow {243 \over 97} Bk + \dots$$

Name of particle;

(iii)
$${}^{27}_{14}Si \longrightarrow {}^{27}_{13}Al + \dots$$

Name of particle;

(b) The mass of a radioisotope, T, reduced by 32% in 40 days. Calculate the half life of T.

5 More exams? browse: digitaltears.co.ug

			(2 ½ marks)
7.		r dioxide reacts with oxygen according to the following equal $+ O_2(g) \stackrel{\longrightarrow}{=} 2SO_3(g)$, $\Delta H(-ve)$	ition
	(a) Sta	te conditions for the maximum yield of sulphur trioxide.	(1 ½ marks)
	(b) Wr	ite equation (s) to show the conversion of	
	(i)	Sulphur trioxide to sulphuric acid	(03 marks)
	(ii)	Sulphuric acid to calcium superphosphate	(1 ½ marks)
8.	Compl	ete the following reactions and write the accepted mechanis	sm
	(a) CH	$_{3}CH_{2}CH = CH_{2}$ $\xrightarrow{Br_{2}/_{H2O}}$	

(b)	OH Conc H ₃ PO ₄ heat
	raph below shows the variation of melting points of group (II) elements in the periodic with atomic number

9. ic

Explain why

(i)	The melting points decrease from Be to Ba

(ii)	The melting point of calcium is higher than that of magnesium.
	SECTION B:
	Attempt only six question
	Compare the reactivity of ethanol and phenol with phosphorus penta chloride. (Include ations for reactions if any) (03 marks)
(b) V	Vrite equations to show how the following conversions can be effected.
/;\	(include conditions for the reactions) Ethanol to benzene
(i)	Ethanol to benzene

(ii)	2 – phenyl propane to hydroxybenzene.
	what would be observed and in each case write equation for the reaction that would place if
(a) Hy	ydrogen peroxide is added to a mixture acidified barium chromate solution and ether oservation
Ec	quation:
	cess chlorine is dissolved in aqueous sodium thiosulphate solution oservation
Ec	quation
	queous potassium iodide is added to potassium peroxodisulphate; oservation
Ec	quation
	eutral iron (III) chloride solution is added to hydroxybenzene oservation

Ed	quation	
12. (a) Ar stp.	n aqueous solution containing 2.8gdm ⁻³ of R exerts an osmo	tic pressure of 380mmHg at
Calcu	late the molar mass of R	(02 marks)
	rganic compound R contains carbon, oxygen. 3.4g of R ucing 5.04 dm³ of carbon dioxide and 2.70g of water at stp. Calculate the empirical formula of R	
produ	ucing 5.04 dm ³ of carbon dioxide and 2.70g of water at stp.	
produ	ucing 5.04 dm ³ of carbon dioxide and 2.70g of water at stp.	
produ	ucing 5.04 dm ³ of carbon dioxide and 2.70g of water at stp.	
produ	ucing 5.04 dm ³ of carbon dioxide and 2.70g of water at stp.	
produ	ucing 5.04 dm ³ of carbon dioxide and 2.70g of water at stp.	
produ	ucing 5.04 dm ³ of carbon dioxide and 2.70g of water at stp.	(2 ½ marks)
produ	icing 5.04 dm ³ of carbon dioxide and 2.70g of water at stp. Calculate the empirical formula of R	(2 ½ marks)
produ	Icing 5.04 dm ³ of carbon dioxide and 2.70g of water at stp. Calculate the empirical formula of R	(2 ½ marks)
produ	Icing 5.04 dm ³ of carbon dioxide and 2.70g of water at stp. Calculate the empirical formula of R	(2 ½ marks)
produ	Icing 5.04 dm ³ of carbon dioxide and 2.70g of water at stp. Calculate the empirical formula of R	(2 ½ marks)
produ (i)	Calculate the empirical formula of R Hence determine the molecular formula of R	(2 ½ marks)

			••••••
(c)		cts with a mixture of anhydrous zinc chloride and concentrated hydrochl not react with acidified potassium dichromate (VII)	oric acid but
	(i)	Identify R	(01 mark)
	(ii)	Write equation of reaction between R and a mixture of anhydrous zinc concentrated hydrochloric acid.	chloride and (01 mark)
(d)	Write	e equations to show how R can be converted to an alkyne.	(1 ½ marks)
13.	(a) Ex	plain what is meant by the term acid-base indicator.	(1 mark)
	(b) E	xplain how phenolphthalein acts as an indicator.	(02 marks)
	re A m	$5 \mathrm{cm}^3$ of a solution containing a mixture of sodium hydroxide and sodius equired 22.5 cm^3 of 0.1M hydrochloric acid in the presence of phenolphthalmother 25 cm^3 of the same mixture required 36.5 cm^3 of the same acid in the nethyl orange indicator. alculate the concentration in gl^{-1} in the mixture of	ein indicator.

(i)	Sodium hydroxide	(4½ marks)
	\	
(ii) Sodium carbonate	
(d) Ex	xplain why aqueous solution of sodium carl	
		(1½ marks)
14. (a) Co	implete the following reaction and write the CH CO C H $\rightarrow \bar{O}H$ $\rightarrow H$	e accepted mechanism.
	$CH_3CO_2C_2H_{5(l)} + \bar{O}H_{(aq)} \xrightarrow{\text{H}_2O}$	
	Mechanism	

	•••••	•••••	•••••		•••••
) Th	ne results obtai	ined for the Kinetics o	f the reaction in (a) above are shown in	the ta
elow	<i>I</i> .				
	Frent	[6], 60, 6, 11, 1	ιōπ	Initial vata of	
	Expt.	$[CH3CO2C2H5]$ moldm $^{-3}$	$[\bar{O}H]$ $moldm^{-3}$	Initial rate of reaction	
		Inolulii	motum	moldm ⁻³ s ⁻¹	
	1	0.076	0.076	1.13 x 10 ⁻³	
	2	0.038	0.152	1.13 x 10 ⁻³	
	3	0.019	0.152	5.65 x 10 ⁻⁴	
		•	•	·	
	ŌН	reaction with respect		(1 ½ mark	s)
	ŌН 			(1 ½ mark	s)
	Ō <i>H</i>			(1½ mark	s)
				(1 ½ mark	s)
)				(1 ½ mark	s)
,				(1 ½ mark	s)
)				(1 ½ mark	s)
)	CH ₃ CO ₂ C ₂ H ₅	quation for the reactio		(1½ mark	s)
)	CH ₃ CO ₂ C ₂ H ₅			(1 ½ mark	s)
)	CH ₃ CO ₂ C ₂ H ₅			(1 ½ mark	s)
)) w	CH ₃ CO ₂ C ₂ H ₅			(1 ½ mark	s)
)) W	CH ₃ CO ₂ C ₂ H ₅	quation for the reactio	n	its units. (02 marks	

Element	Ionizatio	n energy (KJmol ⁻¹)			
	First	Second	Third	Fourth		
Р	800	2,400	3,700	25,000		
Q	900	1,800	1,4800	21,000		
R	500	4,600	6,900	9,500		
State the group	and period to	which elei	ment P bel	ongs. In ea	ch case g	ive a re
State the group	and period to	which elei	ment P bel	ongs. In ea	ch case g	ive a rea

	The wavelength at the start of t Calculate the first ionization ene		mission spectrum is 242nm.
	$C = 3.0 \times 10^8 \text{ms}^{-1}$, Planks' cons (10^{23} mol^{-1})	tant = 6.626×10^{-34} Js and Av	ogdro's constant (L) = 6.023 (03 marks)
	mpound K is a colourless crysta es and a black residue. K dissolv		· · ·
(a)	solution of K was divided into tw Fo the first portion was added a solid lead (IV) oxide and then bo	few drops of concentrated ni	itric acid followed by a little
(i) Identify the cation in the	solution of K	(01 marks)
	ii) Write equation of reaction	on leading to the formation of	the purple solution (1½ marks)
;	Fo the second portion was add and write equation of reaction to the control of th		n state what was observed (2 marks)
	Equation		

•		
(c) On oxyg (i)	further elemental analysis K was found to contain 19 gen. Determine the empirical formula of K.	.1% of nitrogen and 43.6% (02 marks)
(*)	·	
(ii)	10g of K dissolved in 1000g of water lowered the fr 0.127°C. Calculate the molecular formula of K. (Kf for water is 1.86°C mol ⁻¹ per 1000g)	reezing point of solution by
	he reagents that can be used to distinguish between th	
each ca the reag (a) CrO	se state what is observed when each member of the pa	
Obs	ervation	

(b)	SO_3^2 and $S_2O_3^2$
	Reagent
	Observation
(c)	COO - and CH ₃ COO - COO -
	Reagent
	Observation

<u>END</u>