Algebra Definition Theorem List

Hui Sun

August 11, 2025

Contents

1	Category Theory	3
2	Group Theory I	4
3		8 10 11 12 13 14
4	Ring Theory 4.1 Modules	15 18 19
5	Ring Theory II 5.1 UFD, PID, ED 5.2 $R(x)$ and Field of Fractions 5.3 Irreducibility 5.4 CRT	22 23 24 25 26
6	Linear Algebra I 6.1 Homomorphisms $R^n \to R^m$	28 29
7	Field Theory 7.1 Finite fields	30 32 32
8	Linear Algebra II	35
9	Field Theory-Hilbert's Nullstellensatz	36
10	Representation Theory of Finite Groups	37
11	Semisimple Algebra	38

Category Theory

Definition 1.1 (initial, final). Let \mathcal{C} be a category, then object I is initial if for every object A, there exists a unique morphism $I \to A$. We say F is final if for every A, there exists a unique morphism $A \to F$.

Group Theory I

This corresponds to Aluffi Chapter II.

Proposition 2.1. Let G be a group, for all $a, g, h \in G$, if

$$ga = ha$$

then g = h.

Proposition 2.2. Let $g \in G$ have order n, then

$$n \mid |G|$$

Corollary 2.1. If g is an element of finite order, and let $N \in \mathbb{Z}$, then

$$g^N = e \iff N \text{ is a multiple of } |g|$$

Proposition 2.3. Let $g \in G$ be of finite order, then g^m also has finite order, for all $m \ge 0$, and

$$|g^m| = \frac{\operatorname{lcm}(m, |g|)}{m} = \frac{|g|}{\gcd(m, |g|)}$$

Proposition 2.4. If gh = hg, then |gh| divides lcm(|g|, |h|).

Definition 2.1 (Dihedral Group). Let D_{2n} denote the group of symmetries of a n-sided polynomial, consisting of n rotations and n reflections about lines trhough the origin and a vertex or a midpoint of a side.

Proposition 2.5. Let $m \in \mathbb{Z}/n\mathbb{Z}$, then

$$|m| = \frac{n}{\gcd(n, m)}$$

Corollary 2.2. The element $m \in \mathbb{Z}/n\mathbb{Z}$ generates $\mathbb{Z}/n\mathbb{Z}$ if and only if gcd(m, n) = 1.

Definition 2.2 (Multiplicative $(\mathbb{Z}/n\mathbb{Z})^{\times}$). The multiplicative group of $\mathbb{Z}/n\mathbb{Z}$ is

$$(\mathbb{Z}/n\mathbb{Z})^{\times} = \{ m \in \mathbb{Z}/n\mathbb{Z} : \gcd(m, n) = 1 \}$$

Proposition 2.6. Let $\varphi: G \to H$ be a homomorphism, and let $g \in G$ be an element of finite order, then $|\varphi(g)|$ divides |g|.

For example, there is no nontrivial homomorphism from $\mathbb{Z}/n\mathbb{Z}$ to \mathbb{Z} .

Proposition 2.7. There is an isomorphism between D_6 and S_3 .

Proposition 2.8. Let $\varphi: G \to H$ be an isomorphism, for all $g \in G$, $|\varphi(g)| = |g|$, and G is commutative if and only if H is commutative.

Proposition 2.9. If H is commutative, then Hom(G, H) is a group.

Definition 2.3. Let $A = \{1, ..., n\}$, then the free abelian group on A is

$$\mathbb{Z}\oplus\cdots\oplus\mathbb{Z}=\mathbb{Z}^{\oplus n}$$

Proposition 2.10. Let $\{H_{\alpha}\}$ be any family of subgroups of G, then

$$\bigcap_{\alpha} H_{\alpha}$$

is a subgroup of G.

Proposition 2.11. If $\varphi: G_1 \to G_2$ is a group homomorphism, then if $H_2 \subset G_2$ is a subgroup, then

$$\varphi^{-1}(H_2)$$

is a subgroup of G_1 .

Proposition 2.12. Let $H \subset \mathbb{Z}/n\mathbb{Z}$ be a subgroup, then H is generated by some m where m divides n.

Proposition 2.13. If $\varphi: G_1 \to G_2$ is a homomorphism, then $\ker(\varphi)$ is a normal subgroup.

Theorem 2.1. Let $\varphi: G_1 \to G_2$ be a surjective homomorphism, then

$$G_2 \cong \frac{G_1}{\ker \varphi}$$

Proposition 2.14. Let H_1, H_2 be normal subgroups of G_1, G_2 , then $H_1 \times H_2$ are normal subgroups of $G_1 \times G_2$, then

$$\frac{G_1 \times G_2}{H_1 \times H_1} \cong \frac{G_1}{H_1} \times \frac{G_2}{H_2}$$

For example,

$$\frac{Z/6\mathbb{Z}}{\mathbb{Z}/3\mathbb{Z}} = \mathbb{Z}/2\mathbb{Z}$$

Proposition 2.15. Let H be a normal subgroup of G, then every subgroup K containing H, K/H can be identified with a subgroup of G/H.

Proposition 2.16. Let H be a normal subgroup of G, and N be a subgroup of G containing H, then N/H is normal in G/H if and only if N is normal in G, in this case

$$\frac{G/H}{N/H} = \frac{G}{N}$$

Proposition 2.17. Let H, K be subgroups of G, and if H is normal, then HK is a subgroup of G and H is normal in HK. Moreover, $H \cap K$ is normal in K, and

$$\frac{HK}{H}\cong \frac{K}{H\cap K}$$

Proposition 2.18. Let *H* be a subgroup of *G*, then for all $g \in G$, the function $H \to gH$ such that

$$h \mapsto gh$$

is a bijection.

Theorem 2.2 (Lagrange). If G is a fintie group, and $H \subset G$ is a subgroup, then

$$|G| = [G:H] \cdot |H|$$

In particular, |H| divides |G|.

Theorem 2.3 (Fermat's Little Theorem). Let *p* be a prime integer, and *a* be any integer, then

$$a^p \equiv a \mod p$$

Proposition 2.19. Any group G acts on itself by left/right multiplications, and acts on the costs G/H:

$$\varphi:g\mapsto (aH\mapsto gaH)$$

Definition 2.4 (orbit). The orbit of $a \in A$ of a group action by G is

$$O(a) = \{g \cdot a : g \in G\}$$

The stabilizer of a is the following

$$Stab_G(a) = \{ g \in G : g \cdot a = a \}$$

Proposition 2.20. The orbits of an action form a partition on the set *A*, and *G* acts transitively on each orbit.

Definition 2.5 (transitive action, faithful action). An action of G on A is transitive if for all $a, b \in G$, there exists $g \in G$ such that

$$g \cdot a = b$$

In other words, the orbit of any element $a \in A$ is the entire set.

An action is faithful if for any $g \in G$,

$$g \cdot a = a$$
 for all a

implies that g = e.

Proposition 2.21. Every transitive action of G on a set A is isomorphic to multiplication of G on G/H, where $H = \operatorname{Stab}(a)$ for any $a \in A$.

Proposition 2.22. If O(a) is an orbit of the action of a finite group G, then O(a) is a finite and |O| divides |G|. Moreover,

$$|G| = |O(a)| \cdot |\operatorname{Stab}_G(a)|$$

For example, there is no transitive action of S_3 on the set of 5 elements.

Group Theory II

This corresponds to Aluffi Chapter IV.

Proposition 3.1. Every **transitive** action of a group G on a set S is isomorphic to the left multiplication on the cosets G/H. Here, H can be taken to be the stabilizer of any element $a \in S$.

Moreover, suppose G is finite, then

$$|G| = |O_a| \cdot |\operatorname{Stab}(a)|$$

for any $a \in S$. (The size of the orbit must divide |G|.)

Proposition 3.2 (class formula). Let *S* be a finite set, and *G* act on *S*, then

$$|S| = |Z| + \sum_{a \in A} [G : \mathsf{Stab}(a)] = |Z| + \sum_{a \in A} |O_a|$$

where $Z = \{a \in S : g \cdot a = a \text{ for all } g\}$, i.e., the fixed elements, and $A \subset S$ contains exactly one element from each nontrivial orbit of the action.

In other words, |S| is the sum of the number of trivial orbits and each nontrivial orbit.

Proposition 3.3. Let G be a p-group that acts on a finite set S, then let Z be fixed elements of this acion, then

$$|S| \equiv |Z| \mod p$$

Warning 3.1. The important takeaway is that each summand on the right, $|O_a|$ divides |G|.

3.1 Conjugation Action

Definition 3.1 (fixed points, centralizer, conjugacy class). The fixed points under the conjugation action is the center of G. The centralizer $Z_G(g)$ where $g \in G$ is its stabilizer under conjugation:

$$Z_G(g) = \{ h \in G : hgh^{-1} = g \}$$

The conjugacy class of $g \in G$ is the orbit [g]. (In other words, centralizer is the set of elements that commute with g.)

For arbitrary $a \in G$, we have

$$Z(G) \subset Z_G(a)$$

Moroever, a is the only element in [a] iff $a \in Z(G)$.

Proposition 3.4. The center is the set of fixed points of *G* under the conjugation action, the conjugacy classes are the orbits.

Theorem 3.2. Let G be finite, and if G/Z(G) is cyclic, then G is abelian.

Proof. One can show that every element $a \in G$ can be written as

$$a = g^r z$$

for some $z \in Z(G)$, then compute ab = ba.

Proposition 3.5 (Class formula). Let *G* be finite, then

$$\begin{split} |G| = & |Z(G)| + \sum_{[a] \in A} |[a]| \\ = & |Z(G)| + \sum_{a} [G:Z_G(a)] \end{split}$$

where A contains one representative for each nontrivial conjugacy class.

Warning 3.3. There are many consequences of the class formula, showing center is nontrivial, etc. Mainly using the summand divides |G|!

Theorem 3.4. Let G be a nontrivial p-group, then G has a nontrivial center.

Proposition 3.6. Let G be a group of p^2 elements, where p is prime, then G is commutative.

Proposition 3.7. The only possibility for the class formula of a nonabelian group of order 6 is

$$6 = 1 + 2 + 3$$

The center must be trivial if *G* is nonabelian.

Proposition 3.8. Normal subgroups are unions of conjugacy classes. Thus, a noncommutative group of order 6 cannot have a normal subgroup of order 2.

It contains the identity, and there is no other conjugacy class of size 1.

Definition 3.2 (normalizer). Let $A \subset G$ be a subset. The normalizer $N_G(A)$ of A is

$$\operatorname{Stab}_G(A) = \left\{ g : gAg^{-1} = A \right\}$$

If H is subgroup of G, every conjugate gHg^{-1} is also a subgroup of G, and all conjugate groups have the same order.

The centralizer of *A* is the subgroup $Z_G(A) \subset N_G(A)$ fixing each $a \in A$:

$$Z_G(A) = \left\{ g : gag^{-1} = a \text{ for all } a \in A \right\}$$

Proposition 3.9 (*). H is a normal in G if and only if $N_G(H) = G$. More generally, the normalizer $N_G(H)$ for any subgroup H is the largest subgroup such that H is normal in $N_G(H)$.

Proposition 3.10 (*). Let $H \subset G$ be a subgroup, then the number of subgroups conjugate to H is the size of the orbit=index of the stabilizer, which is $[G:N_G(H)]$.

Corollary 3.1. If [G:H] is finite, then the number of subgroups conjugate to H is finite, and

$$[G:H] = [G:N_G(H)] \cdot [N_G(H):H]$$

In other words, the number of subgroups conjugate to H divides the index [G:H].

3.2 Sylow

Theorem 3.5 (Cauchy's Theorem). Let G be a finite group, and let p be a prime divisor of |G|, then G contains an element of order p.

Moreover, let N be the number of cyclic subgroups of order p, then

$$N\equiv 1\mod p$$

Definition 3.3 (simple). A group is simple if it is nontrivial and its only normal subgroups are $\{e\}$ and G (has no nontrivial proper subgroup).

Definition 3.4 (*p*-Sylow subgroups). Let p be prime, a p-Sylow subgroup of a finite group G is a subgroup of order p^r , where $|G| = p^r m$, gcd(p, m) = 1.

Theorem 3.6 (Sylow I). Every finite group contains a p-Sylow subgroup for all prime p. If p^k divides |G|, then G has a subgroup of order p^k .

Theorem 3.7 (Sylow II). Let G be finite, and P is a p-Sylow subgroup, let $H \subset G$ be a p-group, then H is contained in a conjugate of P. If P_1, P_2 are both p-Sylow subgroups, then they are conjugates to each other.

Theorem 3.8 (Sylow III). Let $|G| = p^r m$, and gcd(p, m) = 1, then the number of *p*-Sylow subgroups is

$$n_p \mid m$$

and

$$n_p \equiv 1 \mod p$$

Proposition 3.11. Let G be a finite group, let P be a p-Sylow subgroup, the number of p-Sylow subgroup n_p is

$$n_p = [G: N_G(P)]$$

by definition.

Proposition 3.12. Let G be a group of order mp^r , where p is prime and 1 < m < p, then G is not simple.

Proposition 3.13 (*). Let p < q be primes, let G has order pq, if $p \nmid (q-1)$, then G is cyclic.

Proof. If G is abelian, use elements of orders p,q. If G not necessarily abelian, then use the conjugation action.

Proposition 3.14 (*). Let q be an odd prime, and G be a noncommutative group of order 2q, then

$$G \cong D_{2q}$$

3.3 Series and Solvability

Definition 3.5 (composition series). A comp series for *G* is a normal series

$$\{e\} = G_0 \subset G_1 \subset \cdots \subset G_n = G$$

such that G_{i+1}/G_i is simple.

Definition 3.6 (commutator subgroup). Let G be a group, the commutator subgroup of G is the subgroup **generated** by all elements

$$ghg^{-1}h^{-1}$$

Proposition 3.15. Let [G,G] be the commutator subgroup of G, then [G,G] is normal in G, and the quotient, also called the abelianization of G,

$$G^{\rm ab} = \frac{G}{[G,G]}$$

is commutative.

If $\varphi: G \to H$, where H is commutative, then

$$[G,G]\subset \ker(\varphi)$$

Definition 3.7. A group *G* is solvable, if ther exists a sequence such that

$$\{e\} = G_0 \subset \cdots \subset G_k = G$$

where G_i is normal in G_{i+1} , and G_{i+1}/G_i is abelian, or equivalently, cyclic.

Proposition 3.16. All *p*-groups are solvable!

Proposition 3.17. Let N be normal in G, then G is solvable if and only if N, G/N are solvable.

3.4 S_n and A_n

Proposition 3.18. Disjoint cycles commute. For every $\sigma \in S_n$, σ can be written as disjoint nontrivial cycles, unique up to rearranging.

Proposition 3.19. Two elements in S_n are conjugate in S_n if and only if they have the same type. Hence the number of conjugacy classes is the number of partitions of n as a sum.

Proposition 3.20. Let $\sigma \in S_n$, and $(a_1 \dots a_n)$ is a cycle in S_n , then

$$\sigma(a_1 \dots a_n) \sigma^{-1} = (\sigma(a_1) \dots \sigma(a_n))$$

Proof: try $\varphi(a_1)$ on the left hand side.

Warning 3.9. Very useful!

Example 3.1. In S_4 , we have

$$(1234)(12)(1234)^{-1} = (23)$$

Definition 3.8 (Even permutation). Let $\sigma \in S_n$, then σ is even if

$$\prod_{i < j} (x_i - x_j) = \prod_{i < j} (x_{\sigma(i)} - x_{\sigma(j)})$$

Proposition 3.21. A_n is always normal in S_n , because it is the kernel of the $\varepsilon: S_n \to \{\pm 1\}$ (determining parity).

Proposition 3.22. Let $\sigma \in A_n$, where $n \ge 2$, then the conjugacy class of σ in S_n splits into two conjugacy classes in A_n precisely if the type of σ consists of distinct odd numbers; or equivalently, the centralizer of σ is contained A_n . Otherwise, the conjugacy class stays the same.

Example 3.2. S_5 has even permutations 5, 3, 2+2, 1, and only 5-cycle of S_5 splits into 2 conjugacy classes in A_5 .

Proposition 3.23. The group A_5 is a simple noncommutative group of order 60.

13

Proposition 3.24. Every simple group of order < 60 is commutative, A_5 is the smallest simple group that is not commutative.

Proof. Any nontrivial normal subgroup consists of nontrivial conjugacy classes and $\{e\}$, the conjugacy classes of A_5 has the following size:

Thus any subgroup of G, i.e., order that divides 60 cannot be written as a sum of the numbers above.

Proposition 3.25. The alternating group is generated by 3-cycles.

Proposition 3.26. Let $n \ge 5$, if a normal subgroup of A_n contains a 3-cycle, then it contains all 3-cycles.

Proof. It suffices to note that the 3 cycles form a conjugacy class that doesn't split from S_n to A_n .

Proposition 3.27. The alternating group A_n is simple for $n \ge 5$. As a result, S_n is not solvable for $n \ge 5$.

Product of Groups 3.5

Proposition 3.28. Let N, H be normal subgroups of G, let [N, H] be the commutator of N, H, then

$$[N,H] \subset N \cap H$$

Thus if $N \cap H = \{e\}$, then N, H commute with each other.

A stronger statement is the following:

Theorem 3.10. Let N, H be normal subgroups of G, such that $N \cap H = \{e\}$, then

$$NH \cong N \times H$$

Definition 3.9 (Split Short exact sequence). A short exact sequence of groups is a sequence:

$$1 \longrightarrow N \stackrel{\varphi}{\longrightarrow} G \stackrel{\psi}{\longrightarrow} H \longrightarrow 1$$

splits if *H* is identified with a subgroup of *G* such that

$$N \cap H = \{e\}$$

Definition 3.10 (semidirect product). Let N be a normal subgroup, and let $\theta: H \to \operatorname{Aut}(N)$, then define an operator \cdot_{θ} on $N \times H$ as

$$(n_1, h_1) \cdot_{\theta} (n_2, h_2) = (n_1 \theta(h_1)(n_2), h_1 h_2)$$

The semidirect product of $N \rtimes_{\theta} H$ is the group $N \times H$ with operation \cdot_{θ} .

Proposition 3.29. Let N, H be subgroups, and N is normal, suppose that $N \cap H = \{e\}$, and G = NH, then let $\theta : H \to \operatorname{Aut}(N)$ be $\theta \mapsto \theta_h$, and

$$\theta_h(n) = nhn^{-1}$$

Then

$$G \cong N \rtimes_{\theta} H$$

(Recall that the operation defined on $N \otimes_{\theta} H$ is $(n_1, h_1) \cdot (n_2, h_2) = (n_1 \theta_{h_1}(n_2), h_1 h_2)$).

Proposition 3.30. Let G be a noncommutative group of order pq, then there is exactly one group up to isomorphism.

3.6 Classification of Finite Abelian Groups

Proposition 3.31. Let G be abelian, let H, K be subgroups such that |H|, |N| are relatively prime, then

$$H+K\cong H\oplus K$$

Proof. Lagrange: $N \cap H = \{e\}$.

Proposition 3.32. Every finite abelian group is a direct sum of its nontrivial Sylow subgroups.

Theorem 3.11. If G is finite and abelian, then G is a direct sum of cyclic p-groups.

Theorem 3.12. Let G be finite nontrivial abelian group, then there exists prime integers p_1, \ldots, p_r , and positive integers $n_{i(j)}$ such that

$$G = \bigoplus_{i,j} \frac{\mathbb{Z}}{p_i^{n_{i(j)}} \mathbb{Z}}$$

There exists positive integers $1 < d_1 \mid \cdots \mid d_s$ such that $|G| = d_1 \dots d_s$, and

$$G\cong rac{\mathbb{Z}}{d_1\mathbb{Z}}\oplus\cdots\oplusrac{\mathbb{Z}}{d_s\mathbb{Z}}$$

Example 3.3. Finite abelian group of order 360 has 6 isomorphism classes.

Theorem 3.13. Let F be a field, and G be a finite subgroup of the multiplicative group (F^{\times}, \cdot) , then G is cyclic.

Proof. Hard proof. Don't torture yourself.

Ring Theory

This corresponds to Aluffi Chapter III.

Definition 4.1 (free action). An action by G is free if there exists $x \in X$ such that qx = x then q = e.

Definition 4.2 (faithful action). An action by G is faithful if gx = x for all $x \in X$ implies that g = e.

Definition 4.3 (zero-divisor). An element $a \in R$ is a (left) zero-divisor if there exists $b \neq 0$ such that

$$ab = 0$$

Proposition 4.1. In a ring R, $a \in R$ is not a left zero-divisor if and only if the left multiplication by a is injective.

Definition 4.4 (integral domain). An ID is a nonzero commutative ring such that for all $a, b \in R$,

$$ab = 0$$

implies a=0 or b=0. In other words, IDs are commutative rings without zero divisors. Equivalently, if $a,b\neq 0$, then $ab\neq 0$.

Proposition 4.2. In a ring R:

- 1. u is left unit iff the left multiplication by u is surjective.
- 2. If *u* is a left unit, then the right multiplication by *u* is injective, i.e., *u* is not a right zero-divisor.

Notice that in a commutative ring, this means u is a unit iff multiplication by u is bijective.

Definition 4.5 (division ring, field). A division ring is a ring in which every nonzero element is a unit. A field is a nonzero commutative ring in which every nonzero element is a unit.

Proposition 4.3. The group of units in $\mathbb{Z}/n\mathbb{Z}$ is exactly the group $(\mathbb{Z}/n\mathbb{Z})^*$.

Proof. m is a unit iff multiplication by m is surjective, iff m generates $\mathbb{Z}/n\mathbb{Z}$, iff $m \in (\mathbb{Z}/n\mathbb{Z})^*$.

Definition 4.6 (Power Series Ring). The power series ring

$$\sum_{i=0}^{\infty} a_i x^i$$

is denoted by R[[x]].

Definition 4.7 (Monoid Ring). Given a monoid *M* and a ring *R*, the elements

$$\sum_{m \in M} a_m \cdot m$$

where $a_m \in R$ and $a_m \neq 0$ for finitely many terms, forms a ring denoted as R[M].

Proposition 4.4. Assume R is a finite commutative ring, then R is an integral domain if and only if R is a field.

Proposition 4.5. End_{Ab}(\mathbb{Z}) $\cong \mathbb{Z}$, where End_{Ab}(G) = Hom_{Ab}(G, G) where G is abelian.

Proof. $\varphi \mapsto \varphi(1)$.

Theorem 4.1. Let I be a two-sided ideal of a ring R. Then for every ring homomorphism $\varphi:R\to S$ such that $I\subset\ker\varphi$ there exists a unique ring homomorphism $\tilde\varphi:R/I\to S$ so that the diagram commutes:

Theorem 4.2. Let $\varphi: R \to S$ be a surjective ring homomorphism, then

$$S \cong \frac{R}{\ker(\varphi)}$$

Proposition 4.6. Let I be an ideal of a ring R, and let J be an ideal of R containing I, then J/I is an ideal of R/I, and

$$\frac{R/I}{J/I} = \frac{R}{J}$$

Definition 4.8 (Noetherian). A commutative ring R is Noetherian if every ideal of R is finitely generated. An ideal I is finitely generated if $I = (a_1, \ldots, a_n)$, i.e., every element in I can be written as

$$r_1a_1 + \cdots + r_na_n$$

for some $r_1, \ldots, r_n \in R$.

Proposition 4.7. Let \bar{b} be the class of b in R/(a), then

$$\frac{R/(a)}{(\bar{b})}\cong\frac{R}{(a,b)}$$

Proposition 4.8. \mathbb{Z} is a PID by taking the smallest positive element d in each ideal, obtaining (d).

Definition 4.9. *I* is a prime ideal if R/I is an integral domain, and is a maximal ideal if R/I is a field.

Definition 4.10. Let I, J be ideals of R, then IJ is the ideal **generated** by elements $ij, i \in I, j \in J$. Note that $IJ \subset I \cap J$.

Example 4.1. In \mathbb{Z} :

 $(4) \cap (3) = (12)$

and

 $(4) \cap (6) = (12)$

Definition 4.11 (Long division). Let $f(x) \in R[x]$ be monic, if $g(x) \in R[x]$ be another polynomial, then there exists unique $q, r \in R[x]$, where $\deg(r) < \deg(f)$, such that

$$g(x) = f(x)q(x) + r(x)$$

Moreover,

$$g(x) + (f(x)) = r(x) + (f(x))$$

as cosets of (f(x)).

Proposition 4.9. Let I be an ideal of commutative R, if R/I is finite, then I is prime if and only if maximal.

Proposition 4.10. Let R be a PID, a nonzero ideal I is prime if and only if it is maximal.

Proof. Is simple proof, you just do it.

Theorem 4.3. Let R be commutative, let $f(x) \in R[x]$ be a monic polynomial of degree d, then

$$\varphi: R[x] \to R^{\oplus d}$$

where

$$\varphi: g(x) \mapsto r(x)$$

where r(x) is the remainder g(x) = f(x)q(x) + r(x) induces an isomorphism of **groups**:

$$\frac{R[x]}{(f(x))} \cong R^{\oplus d}$$

Ring Structure: can be induced by the map φ .

Example 4.2. Let f(x) = x - a for some $a \in R$, then

$$\frac{R[x]}{(x-a)} \cong R$$

Example 4.3. Let $f(x) = x^2 + 1$, then there is isomorphism of groups:

$$R \oplus R \cong \frac{R[x]}{(x^2+1)}$$

note that elements on the right are of the form $a_0 + a_1x$. One can give a ring structure on $R \oplus R$ by φ .

Example 4.4. The ideal (2, x) is maximal in $\mathbb{Z}[x]$.

Example 4.5. The maximal ideals in $\mathbb{C}[x]$ are precisely

$$(x-a)$$

where $a \in \mathbb{C}$.

Definition 4.12 (Krull dimension). Let R be commutative, the Krull dimension is the length of the longest chain of prime ideals in R. For example, PIDs but not fields have Krull dimension 1.

$$(0) \subset (d)$$

has length 1.

Moreover, $k[x_1, \ldots, x_n]$ have Kruell dimension n:

$$(0) \subset (x_1) \subset (x_1, x_2) \subset \dots (x_1, \dots, x_n)$$

4.1 Modules

Definition 4.13 (module). A *R*-module *M* is an abelian group with a ring action, satisfying:

- 1. r(m+n) = rm + rn
- 2. (r+s)m = rm + sm
- 3. (rs)m = r(sm)
- 4. 1m = m.

A **submodule** *N* of *M* is an abelian group such that for all $r \in R$, $n \in N$,

$$rn \in N$$

A **homomorphism** of R-modules $\varphi: M \to M'$ is such that

$$\begin{cases} \varphi(m+n) = \varphi(m) + \varphi(n) \\ \varphi(rm) = r\varphi(m) \end{cases}$$

4.2. FREE MODULES 19

Let R = k be a field, then R-modules are called vector spaces over k.

Definition 4.14. Let $r \in M$ be in the center of M, then

$$rM = \{rm : m \in M\}$$

is a submodule of M. If I is an ideal of R, then

$$IM = \{ \sum_{i} r_i m_i : r \in I, m \in M \}$$

i.e., generated by $rm, r \in I$ is a submodule.

Example 4.6. If R is not commutative, then R/I is not a ring, where I is a left ideal, but is defined as a left-module. The multiplication given by r(a + I) = ra + I.

Definition 4.15. An *R*-algebra is a ring with a ring *R* action.

Theorem 4.4. Suppose $\varphi: M \to M'$ be a surjective R-module homomorphism, then

$$M' \cong \frac{M}{\ker \varphi}$$

Proposition 4.11. Let N be a submodule of an R-module M, and let P be a submodule of M containing N. Then P/N is a submodule of M/N, and

$$\frac{M/N}{P/N} \cong \frac{M}{P}$$

Proposition 4.12. Let N, P be submodules, then N+P is a submodule of M, and $N\cap P$ is a submodule of P, and

$$\frac{N+P}{N}\cong \frac{P}{N\cap P}$$

4.2 Free Modules

Definition 4.16. Let *A* be a set, then

$$F^R(A) \cong R^{\oplus A}$$

where $F^R(A)$ denotes the free modules over A. Every element is written as

$$\sum_{a \in A} r_a a$$

(always a finite sum). We say a module $M = \langle A \rangle$ is finitely generated if A is finite.

Example 4.7. Let $R = \mathbb{Z}[x_1, \dots, x_n]$, when R viewed as a R-module over itself, it is finitely generated (by 1), by the ideal

$$(x_1,x_2,\dots)$$

as an *R*-module, is not finitely generated.

Definition 4.17 (Noetherian Modules). An R-module is Noetherian if every submodule of M is finitely generated as an R-module.

Proposition 4.13. Let M be an R-module, N be a submodule, then M is Noetherian iff N, M/N are both Noetherian.

Definition 4.18 (finite, finite-type R-algebra). Let S be an R-algebra, it is called **finite** if it is finitely generated as an R-module; equivalently,

$$S \cong \frac{R^{\oplus n}}{M}$$

for some submodule M.

An *R*-algebra *S* is called **finite-type** if it is finitely generated as an *R*-algebra, i.e.,

$$S \cong \frac{R[x_1, \dots, x_n]}{I}$$

for some ideal I.

Elements in finite *R*-algebra is of the form:

$$\sum_{i=1}^{n} r_i s_i$$

where $S = \langle s_1, \dots, s_n \rangle$. Elements in finite-type R-algebra is of the form:

$$r_{11}s_1 + r_{12}s_1^2 + \cdots + r_{21}s_2 + r_{22}s_2^2 + \cdots + r_{nk}s_n^k$$

Proposition 4.14. The polynomial ring R[x] is finite-type, not finite.

Proposition 4.15. Let R be a PID, and F be a finitely generated free module over R, and let $M \subset F$ be a submodule, then M is free.

Definition 4.19 (???). Let R be an integral domain, the rank of M is the maximal number of linearly independent elements of M.

4.2. FREE MODULES 21

Definition 4.20 (SES, split). A sequence

$$0 \longrightarrow A \stackrel{f}{\longrightarrow} B \stackrel{g}{\longrightarrow} C \longrightarrow 0$$

is short exact iff f is injective, g is surjective, and

$$\ker(g) = \operatorname{im}(f)$$

A SES is said to **split** if it is isomorphic in a sense that the following diagram commutes:

Ring Theory II

This corresponds to Aluffi Chapter V.

Proposition 5.1. Let N be a submodule of M, where M is finitely generated, let $\langle m_1, \ldots, m_k \rangle$ be the elements whose cosets generate M/N, then

$$M = N + \langle m_1, \dots, m_k \rangle$$

Proof. This is the same proof that if N, M/N are finitely generated, then M is.

Proposition 5.2. Let R be commutative, and M be an R-module, then TFAE:

- 1. *M* is **Noetherian**.
- 2. M satisfies the **ascending chain condition**. (sequence of submodules.)
- 3. Every nonempty family of submodules has a maximal element with respect to inclusion.

Proof. Noetherian implies acc: given $N_1 \subset N_2 \subset \ldots$, then $N = \bigcup_i N_i$ is finitely generated.

Proposition 5.3 (Hilbert's basis theorem). Let R be a Noetherian ring, then $R[x_1, \ldots, x_n]$ is Noetherian. This is the same as If R is Noetherian, then R[x] is also Noetherian.

Proposition 5.4. Let $a, b \in R$, then (a) = (b) iff a = ub for some unit u.

Definition 5.1 (prime, irreducible elements). Let *R* be commutatie

- 1. Let *R* be an integral domain, an element $a \in R$ is **prime** if the ideal (a) is prime.
- 2. An element $a \in R$ is **irreducible** if a is not a unit and

$$a = bc$$

implies b is a unit or c is a unit. Equivalently, a is irreducible if $(a) \subset (b)$ implies (b) = (a) or (b) = (1) = R, i.e., (a) is maximal in principal ideals.

5.1. UFD, PID, ED 23

Proposition 5.5. Let R be an integral domain, then

nonzero prime elements \Rightarrow irreducible

Definition 5.2 (factorization). $r \in R$ has a factorization if there exists **finite** irreducibles q_1, \ldots, q_n such that

$$r = q_1 \dots q_n$$

Proposition 5.6. Let R be an integral domain, and let r be a nonzero, nonunit element of R. Assume that every ascedning chain of principal ideals,

$$(r) \subset (r_1) \subset (r_2) \dots$$

stabilizes. Then r has a factorization into irreducibles.

Of course if a ring is ACC, then factorizations exist.

Proposition 5.7. Factorization exists in Noetherian rings.

Example 5.1. A non-Noetherian ring but factorization still exists:

$$\mathbb{Z}[x_1,\ldots,x_n]$$

Proposition 5.8. Let R be Noetherian and I be an ideal, then R/I is also Noetherian.

5.1 UFD, PID, ED

Definition 5.3 (gcd). Let $a, b \in R$, then the gcd of a, b is d such that (d) is the smallest principal ideal such that

$$(a,b)\subset (d)$$

Proposition 5.9. Let R be UFD, and $a,b,c\in R$ be nonzero, then

$$(a) \subset (b) \iff m(b) \subset m(a)$$

where m(a) is the multiset of irreducible factors of a. Moreover, the irreducible factors of bc are the collection of irreducible factors of b and c.

Proposition 5.10. Let R be a UFD, then gcd of any a, b exsits.

Example 5.2. There exists Noetherian rings that are not UFD.

$$\frac{\mathbb{C}[x,y,z,w]}{(xw-yz)}$$

since r = xw = yz.

Proposition 5.11. In UFD, *a* is irreducible implies *a* is prime.

Proof. Assume $bc \in (a)$, then $(bc) \subset (a)$, hence the multiset of irreducible factors of a is contained in the multiset of b, c, but a is irreducible implies that a must be among the factors of b or c.

Theorem 5.1. An integral domain *R* is a UFD if and only if

- 1. The acc holds for principal ideals in R.
- 2. Every irreducible element of R is prime.

Proposition 5.12. If R is a PID, and $a, b \in R$, then $d = \gcd(a, b)$ iff (a, b) = (d). In other words, there exists $r, s \in R$, such that

$$d = ra + sb$$

Example 5.3. UFD but not PID:

$$\mathbb{Z}[x]$$

Definition 5.4 (Euclidean domain). A Euclidean valuation on an integral domain R is an valuation: for all $a \in R$, and all nonzero $b \in R$, there exists q, r such that

$$a = qb + r$$

with either r = 0 or v(r) < v(b). An integral domain is a ED if it admits a Euclidean valuation.

5.2 R(x) and Field of Fractions

Theorem 5.2. Let R be a UFD, then R[x] is also a UFD.

Example 5.4. $\mathbb{Z}[x], \mathbb{Z}[x_1, \dots, x_n]$ are UFD.

Definition 5.5 (Field of fractions). Let *R* be an integral domain, then the field of fractions is

$$\operatorname{Frac}(R) = \left\{ \frac{a}{r} : a, r \in R, r \neq 0 \right\}$$

where $\frac{a}{r}$ is the equivalence given by $\frac{a}{r} \sim \frac{b}{s} \iff as = br$.

Definition 5.6. The field of fractions R[x] is the field of rational functions with coefficients in R: elements are of the form

$$\frac{p(x)}{q(x)}, q(x) \neq 0$$

denoted as R(x).

5.3. IRREDUCIBILITY 25

Definition 5.7 (primitive). Let R be a UFD, f is primitive if and only if $gcd(a_0, \ldots, a_d) = 1$.

Proposition 5.13. Let R be a UFD, and K be its field of fractions, let $f \in R[x]$ be a nonconstant, irreducible polynomial, then f is irreducible in K[x].

5.3 Irreducibility

Proposition 5.14. Let R be an ID, then $f \in R[x]$ of degree d can have at most d roots.

This is not true for non-ID, for example, $x^2 + 2$ over $\mathbb{Z}/6\mathbb{Z}$.

Proposition 5.15. Let k be a field, then $f \in k[x]$ of degree 2 or 3 is irreducible iff it has no root in k.

Example 5.5. $t^2 + t + 1$ is irreducible over \mathbb{F}_2 (therefore over \mathbb{Q}).

Proposition 5.16 (rational root theorem). Let *R* be a UFD, and *K* be its field of fractions, let

$$f(x) = a_0 + a_1 x + \dots + a_n x^n \in R[x]$$

if $\frac{p}{q} \in K$ is a root, $(\gcd(p,q) = 1)$, then

p divides a_0 , q divides a_n

Proposition 5.17. Let k be a field, and $f(t) \in k[t]$ be a nonzero irreducible polynomial. Then

$$F = \frac{k[t]}{(f(t))}$$

is a field, where k embeds into F. Moreover, $f(x) \in k[x]$ has a root in F, which is

$$t + (f(t))$$

Proposition 5.18. A field is algebraically closed

k is algebraically closed \iff all irreducible polynomials in k[x] have degree 1

 \iff every nonconstant polynoimal f factors completely into linear factors

 \iff every nonconstant f has a root in k

Proposition 5.19. Finite fields are not algebraically closed. In other words, if a field k is algebraically closed, then it is infinite.

Example 5.6. The nonconstant irreducible polynomials of $\mathbb{R}[x]$ are precisely those of degree 1 and quadratic $f = ax^2 + bx + c$ where $b^2 - 4ac < 0$.

Proposition 5.20. Let $f \in \mathbb{Z}[x]$ be such that $\gcd(a_0, \ldots, a_n) = 1$, and let p be prime. If $f \mod p$ has the same degree as f, and is irreducible over \mathbb{F}_p , then f is irreducible over \mathbb{Z} .

Warning 5.3. This is important! We can show a polynomial is irreducible over \mathbb{Z} by showing it is irreducible over \mathbb{F}_p for some p.

Example 5.7. There exists reducible polynomial over \mathbb{Z} but irreducible over \mathbb{F}_p for every prime p: x^4+1 . (Hint: Legendre symbol).

Proposition 5.21 (Generalized Eisenstein). Let R be a commutative ring, let p be a prime ideal in R, let $f \in R[x]$, assume that

- 1. $a_n \notin p$.
- $a_i \in p$.
- 3. $a_0 \notin p^2$

then f is not the product of polynomials with degree strictly less than deg(f).

Warning 5.4. Generalized Eisenstein works for commutative rings! Some examples:

$$\mathbb{C}[x,y], \frac{\mathbb{C}[x_1,x_2,x_3,x_4]}{(x_1x_2-x_3x_4)}$$

Example 5.8. For all n and all primes p, the polynomial $x^n - p$ is irreducible over \mathbb{Z} .

Example 5.9. Let p be a prime, then the cyclotomic polynomial $\Phi_p(x)$ is irreducible.

$$1 + x + x^2 + \dots + x^{p-1}$$

Proof.

$$f(x) = \frac{x^p - 1}{x - 1}f(x + 1) = \frac{(x + 1)^p - 1}{x}$$

We see that coefficients are now

$$\binom{p}{k}, k = 1, \dots, p - 1$$

hence p divides all but leading coefficient.

5.4 CRT

Theorem 5.5 (CRT). Let I_1, \ldots, I_k be ideals of R such that $I_i + I_j = (1)$ for all $i \neq j$. Then

$$\frac{R}{I_1 \cap \dots \cap I_k} = \frac{R}{I_1 I_2 \dots I_k} \cong \frac{R}{I_1} \times \dots \times \frac{R}{I_k}$$

(It uses if $I_i + I_j = (1)$, then $I_1 \dots I_k = I_1 \cap \dots \cap I_k$).

5.4. CRT 27

Proposition 5.22 (CRT in PID). Let R be a PID, and let a_1, \ldots, a_k be elemnts such that $gcd(a_i, g_j) = 1$, let $a = a_1 \ldots a_k$, then

$$\frac{R}{(a)} \cong \frac{R}{(a_1)} \times \dots \times \frac{R}{(a_k)}$$

Linear Algebra I

This corresponds to Aluffi Chapter VI, excluding Section 4-5.

Proposition 6.1 (Zorn's). Every module M has maximal linealry independent set. In other words, let $S \subset M$ be a linearly independent subset. Then there exists a maximal linealry independent subset of M containing S.

Definition 6.1 (basis). A subset $S \subset M$ is a basis if it is linearly independent and generates M. Every element in M can be written as

$$m = \sum_{s_i \in S} r_i s_i$$

where only finitely many terms are nonzero.

 $((2) \subset \mathbb{Z} \text{ is maximal but not a basis}).$

Proposition 6.2. Regarding basis,

- 1. An R-module M is free iff it admits a basis. (Any vector space is free as a k-module).
- 2. The converse holds when R = k: let B be a maximal linearly independent subset of M = V, then B is a basis.
- 3. When R = k, let S be a linearly independent subset, then there exists a basis B of V containing S. If B is a minimal generating set for V, then B is also a basis.

Proposition 6.3. Let R be an **integral domain**, and M a free R-module, let B be a maximal linearly independent subset of M. If S is any independent subset, then

$$|S| \leq |B|$$

Example 6.1. The basis $\mathbb{C}[x]$ over \mathbb{C} is $\{1, x, \dots\}$, hence an uncountable subset of $\mathbb{C}[x]$ is necessarily linearly dependent.

29

Proposition 6.4. Let R be an **integral domain**, let m, n be nonnegative integers,

$$R^m \cong R^n \iff m = n$$

If R satisfies the above, we say it satisfies the invariant basis number property. (All commutative rings satisfy this)!

Definition 6.2 (rank of a module). Let R be an integral domain, the rank of a free module M is the size of the maximal linearly independent subset of M.

Proposition 6.5. Let R be an integral domain, and let M be a free R-module, assume that M is generated by S: $M = \langle S \rangle$, then S contains a maximal linearly independent subset of M.

6.1 Homomorphisms $R^n \to R^m$

Definition 6.3 (adjoint matrix). Let M be an $n \times n$ matrix, the adjoint matrix adj(A) is such that

$$A \cdot \operatorname{adj}(A) = \operatorname{adj}(A)A = \det(A)I_n$$

Proposition 6.6 (Nakayama's lemma). (Different versions of the same lemma).

1. Let R be a commutative ring, M and R-module, and let $a \in R$ be a nilpotent element, then

$$M = 0 \iff aM = M$$

2. Let J be the Jacobson radical of R, where M is finitely generated R-module. If M = JM + N, then M = N. (A special case is when R is a local ring and $\mathfrak{m} = J$).

Field Theory

Aluffi Chapter VII.

Proposition 7.1. Any ring homomorphism from a field to a nonzero ring is injective.

Definition 7.1 (finite field extension). A field extension $k \subset F$ is finite, of degree n, if F has finite dimension $\dim F = n$ as a vector space over k.

Definition 7.2 (simple extension). A field extension $k \subset F$ is simple if there exists an element $\alpha \in F$ such that $F = k(\alpha)$.

For example, the extension $\frac{K[t]}{(f(t))} = K(\alpha)$ for some $f(\alpha) = 0$.

Proposition 7.2. Let $k \subset k(\alpha)$ be a simple extension, then consider the evaluation map

$$\varepsilon: f(t) \mapsto f(\alpha)$$

Then ε is not injective iff $k(\alpha)$ is a finite extension, i.e., there exists a monic irreducible polynomial p such that

$$k(\alpha) = \frac{k[t]}{(p(t))}$$

Definition 7.3. Let $k \subset F$ be an extension, then the group of automorphisms of this extension, denoted $\operatorname{Aut}_k(F)$ is the group of automorphisms $\varphi : F \to F$ that fixes k.

Corollary 7.1. Let $k \subset k(\alpha)$, and p(x) be the minimal polynomial over k, then

$$|\operatorname{Aut}_k(k(\alpha))| = \operatorname{number} \operatorname{of} \operatorname{distinct} \operatorname{roots} \operatorname{of} p \operatorname{in} k(\alpha)$$

and

$$|\operatorname{Aut}_k(k(\alpha))| \leq [k(\alpha):k]$$

with equality if and only if p(x) factors over $k(\alpha)$ as a product of distinct linear factors.

Proposition 7.3. Let $k \subset F$ be finite, then it is also an algebraic extension, where for any $\alpha \in F$,

$$[k(\alpha):k] \leq [F:k]$$

Proposition 7.4. Let $k \subset E \subset F$ be field extensions, then $k \subset F$ is finite iff both E/k and F/E are finite, in this case

$$[F:k] = [F:E][E:k]$$

Corollary 7.2. Let $k \subset F$ be finite, and E be an intermediate field, then both [E:k], [F:E] divide [F:k].

Definition 7.4. A field ext $k \subset F$ is finitely generated if there exists $\{\alpha_i\} \subset F$ such that

$$F = k(\alpha_1) \dots (\alpha_n)$$

Proposition 7.5. Let $k \subset k(\alpha_1, \dots, \alpha_n)$ be finitely generated, then $k \subset F$ is algebraic implies that $k \subset F$ is finite.

Corollary 7.3. Let $k \subset F$ be a field extension, then

$$E = \{ \alpha \in F : \alpha \text{ is algebraic over } k \}$$

is a field extension over k.

Corollary 7.4. Let $k \subset E \subset F$, then $k \subset F$ is algebraic iff both $k \subset E$ and $E \subset F$ are algebraic.

Definition 7.5. Let $f(x) \in k[x]$ be a polynomial of degree d, the splitting field of f over k

$$F = k(\alpha_1) \dots (\alpha_d)$$

generated by all roots of f, i.e., such that f splits into linear factors over F.

Proposition 7.6. Splitting field of f is unique up to isomorphisms, and

$$[F:k] \leq (\deg(f))!$$

Definition 7.6. A field extension $k \subset F$ is normal if every irred polynomial f has a root in F iff f splits into product of linear factors over F.

Proposition 7.7 (normal). A field extension $k \subset F$ is **finite and normal** iff F is the splitting feild of some polynomial $f \in k[x]$.

Definition 7.7. Let k be a field, $f \in k[x]$ is separable if it has no multiple factors over its splitting field.

Proposition 7.8. Let $f \in k[x]$, then f is separable iff f, f' are relatively prime. If it is inseparable, then f' = 0.

Definition 7.8. Let k be a field of characteristic p, the map from $k \to k$ such that $x \mapsto x^p$ is a homomrophism (Frobenius).

A field is perfect if char(k) = 0 or the Frobenius map is surjective.

Proposition 7.9. k is perfect iff irred polynomial in k[x] are separable.

Corollary 7.5. Finite fields are perfect, i.e., irred polynomials are separable.

7.1 Finite fields

Definition 7.9. Let F be a finite field of characteristic p, then F is an extension of \mathbb{F}_p , i.e.,

$$F = \mathbb{F}_{p^d}$$

for some $d \in \mathbb{Z}^+$.

Theorem 7.1. The polynomial

$$r^{p^d} - r$$

is separable over \mathbb{F}_p , and the splitting field of $x^{q^d}-x$ over \mathbb{F}_p is a field with q^d elements. Conversely, let F be a field with p^d elements, then F is the splitting field of

$$x^{q^d} - x$$

over \mathbb{F}_p .

Corollary 7.6. For every p^d for some d, ther exists only one finite field of order p^d up to isomorphisms. This is the Galois field of order p^d .

Corollary 7.7. $\mathbb{F}_{p^d} \subset \mathbb{F}_{p^e}$ iff $d \mid e$.

Corollary 7.8. Let $F = \mathbb{F}_q$, then

$$x^{q^n} - n$$

factors over \mathbb{F}_q as irreducible polynomials of degree d, where d ranges over all divisors of n. These polynomials factor completely over \mathbb{F}_{q^n} .

Theorem 7.2. Aut_{\mathbb{F}_p}(\mathbb{F}_{p^d}) is cyclic, generated by the Frobenius isomorphism.

7.2 Cyclotomic

7.2. CYCLOTOMIC 33

Definition 7.10. Polynomial

$$\Phi_n(x) = \prod_{i=0}^{n-1} (x - \xi_n^i)$$

is called the nth cyclotomic polynomial.

Proposition 7.10. If n = p is prime, then

$$\Phi_p(x) = x^{p-1} + \dots + x + 1 = \frac{x^p - 1}{x - 1}$$

For all positive integers n, we have

$$x^n - 1 = \pi_{1 < d|n} \Phi_d(x)$$

Proposition 7.11. For all positive n, $\Phi_n(x) \in \mathbb{Z}[x]$ is irreducible over \mathbb{Q} .

Definition 7.11. The splitting field $\mathbb{Q}(\zeta_n)$ for $x^n - 1 \in \mathbb{Q}[x]$ is the nth cyclotomic field.

Proposition 7.12. Aut_{\mathbb{Q}}($\mathbb{Q}(\zeta_n)$) is isomorphic to the group $(\mathbb{Z}/n\mathbb{Z})^{\times}$

Proposition 7.13. An algebraic extension $k \subset F$ is simple iff the number of distinct intermediate fields $k \subset E \subset F$ is finite.

Theorem 7.3. Every finite separable is simple.

One should draw diagrams

$$k - E - F$$

and

$$\operatorname{Aut}_k(F) - \operatorname{Aut}_E(F) - \{e\}$$

each extension (reversely) corresponds to a subgroup that fixes that extension in the Galois group Gal(F/k).

Theorem 7.4. Let $k \subset F$ be Galois, then $k \subset E \subset F$, $k \subset E$ is Galois iff $Aut_E(F)$ is normal in Gal(F/k), in this case,

$$Gal(E/k) \cong \frac{Gal(F/k)}{Gal(F/E)}$$

Definition 7.12 (discriminant). The discriminant of f, separable, irreducible is

$$D(f) = \Delta^2 f = \prod_{1 \le i < j \le n} (\alpha_i - \alpha_j)^2$$

Proposition 7.14. Let k be field of char not equal to 2, and f is separable, with discriminant D. Then the Galois group of f is contained in A_n iff D is a square in k.

(We note that Δ is fixed by the Galois group G iff $G \subset A_n$)

Proposition 7.15. Let $f \in \mathbb{Q}[x]$ be irred of degree p, assume that f has p-2 real roots and p-2 real roots are real roots.

Theorem 7.5. Every finite abelian group is the Galois group of some extension F over \mathbb{Q} .

More specifically, every finite abelian group G is the group of some intermediate field of the extension $\mathbb{Q} \subset \mathbb{Q}(\xi_n)$ in a cyclotomic field.

Proof. Classification:

$$G \cong \frac{\mathbb{Z}}{n_1 \mathbb{Z}} \times \dots \times \frac{\mathbb{Z}}{n_r \mathbb{Z}}$$

Choose distinct p_i such that $p_i \equiv 1 \mod n_i$. Let $n = p_1 \dots p_r$, by CRT

$$(\mathbb{Z}/n\mathbb{Z})^{\times} \cong (\mathbb{Z}/p_1\mathbb{Z})^{\times} \times \cdots \times (\mathbb{Z}/p_r\mathbb{Z})^{\times}$$

Then $(\mathbb{Z}/n\mathbb{Z})^{\times}$ has a subgroup H such that

$$G \cong \frac{\left(\mathbb{Z}/n\mathbb{Z}\right)^{\times}}{H}$$

Since $(\mathbb{Z}/n\mathbb{Z})^{\times} \cong \operatorname{Gal}(\mathbb{Q}(\zeta_n))$, H corresponds to an intermediate field F, where

$$\mathbb{Q} \subset F \subset \mathbb{Q}(\zeta_n)$$

H is automatically normal, hence $Q \subset F$ is Galois and

$$Gal(F/\mathbb{Q}) = G$$

Linear Algebra II

This corresponds to Aluffi Chapter VIII.

Field Theory-Hilbert's Nullstellensatz

This corresponds to Aluffi Chapter VII 2.2-2.3.

Proposition 9.1. For a field K, TFAE:

- 1. *K* is algebraically closed.
- 2. There is no algebraic extension over K except for the trivial one.
- 3. If $K \subset L$ is any extension, and $\alpha \in L$ is algebraic over K, then $\alpha \in K$.

Definition 9.1 (algebraic closure). An algebraic closure of a field k is the algebraic extension such that \bar{k} is algebraically closed.

Proposition 9.2 (Hilbert's Nullstellensatz). Recall that if K is algebraically closed, then every maximal ideal in K[x] is of the form $(x - \alpha), \alpha \in K$.

Proposition 9.3. Let K be algebraically closed, and $I \subset K[x_1, \dots, x_n]$ be an ideal, then I is maximal iff

$$I = (x_1 - c_1, \dots, x_n - c_n)$$

for some $c_1, \ldots, c_n \in K$.

Proposition 9.4 (normal basis theorem). Let $k \subset K$ be a Galois extension of degree n, let $\{\sigma_1, \ldots, \sigma_n\}$ be the elements of the Galois group, then there exists $w \in K$ such that

$$\{\sigma_1(w),\ldots,\sigma_n(w)\}$$

forms a basis of K over k.

Representation Theory of Finite Groups

Let k be a field and G be a finite group, a representation $\rho:G\to \mathrm{GL}(V)$ is such that

$$\rho(g_1g_2) = \rho(g_1) \circ \rho(g_2)$$

And V is a k[G]-module, i.e., elements in k[G] are of the form

$$\sum_{g \in G} a_g g$$

and they act on V by

$$\left(\sum_{g \in G} a_g g\right) \cdot v = \sum_{g \in G} a_g \left(\rho(g)(v)\right)$$

Semisimple Algebra