ADFP Cell-Based IC Physical Design and Verification with Innovus

Presenter: 黃宥翔

Date: 2024.10

Outline

- 1. Pre-requirement
- 2. Assign Problem and Change Naming Rule Script
- 3. Design Import
- 4. Initial Step
- 5. Floor Plan
- 6. Power Plan
- 7. Power Route
- 8. Placement
- 9. CTS
- 10. Route
- 11. Post processing
- **12. Post Layout Simulation**
- 13. HomeWork Requirment

Pre-requirement

- Gate-Level netlist(Verilog)
- TestBench and Pattern
- SDC constraints
- ▶ Physical Library(ADFP製程LEF)
- ▶ Timing Library(ADFP製程LIB)
- Multi Mode Multi Corner MMMC.view.stylus

資料夾建立

	/home/m123040031/TA/HDL_HW3/ADFP/APR/						
	▼ Name	Size (KB)	Last modified	Own ^			
	1						
	.cadence		2024-09-11	m12			
	dbs		2024-09-11	m12			
	outputs		2024-09-11	m12			
	timingReports		2024-09-11	m12			
1	.thumb_11868.slk.gz	594	2024-09-11	m12			
	.thumb_37397.slk.gz	594	2024-09-11	m12			
	innovus.cmd	24	2024-09-11	m12			
	_						

Assign Problem and Change Naming Rule Script(1/2)

The syntax of "assign" may cause problems in the LVS

- To ensure that your final netlist does not contain assign statements, separate the multiple port nets
- ▶ during compile. (一定要在合成前做以下指令在進行合成)
- dc_shell > set_fix_multiple_port_nets -all -buffer_constants [get_designs *]

Assign Problem and Change Naming Rule Script(2/2)

- ► The wrong naming rules may cause problems in the LVS
- 在合成完後加入以下指令
- set bus_inference_style {%s[%d]}
- set bus_naming_style {%s[%d]}
- set hdlout_internal_busses true
- change_names -hierarchy -rule verilog
- define_name_rules name_rule -allowed "A-Z a-z 0-9 _" -max_length 255 -type cell
- define_name_rules name_rule -allowed "A-Z a-z 0-9 _[]" -max_length 255 -type net
- define_name_rules name_rule -map {{"*cell*""cell"}}
- define_name_rules name_rule -case_insensitive
- change_names -hierarchy -rules name_rule

```
assign \A[19] = A[19];
assign \A[18] = A[18];
assign \A[17] = A[17];
assign \A[16] = A[16];
assign \A[15] = A[15];
assign ABSVAL[19] = \A[19];
assign ABSVAL[18] = \A[18];
assign ABSVAL[17] = \A[17];
assign ABSVAL[16] = \A[16];
assign ABSVAL[15] = \A[15];
```

```
BUFX1 X37X( .I(A[19]), .Z(ABSVAL[19]) );
BUFX1 X38X( .I(A[18]), .Z(ABSVAL[18]) );
BUFX1 X39X( .I(A[17]), .Z(ABSVAL[17]) );
BUFX1 X40X( .I(A[16]), .Z(ABSVAL[16]) );
BUFX1 X41X( .I(A[15]), .Z(ABSVAL[15]) );
```

SDC File

需要將這幾行註解

```
# Created by write_sdc on Wed Sep 11 16:12:33 2024
set sdc_version 2.1
#set units -time ns -resistance kOhm -capacitance pF -voltage V -current mA
#set operating conditions -max ss0p72vm40c -max library
#N16ADFP StdCellss0p72vm40c ccs\
                      -min ff0p88v125c -min library
#N16ADFP StdCellff0p88v125c ccs
#set wire load mode top
#set wire load model -name ZeroWireload -library N16ADFP StdCellss0p72vm40c ccs
#set_ideal_network [get_ports clk]
create_clock [get_ports clk] -period 2.5 -waveform {0 1.25}
set clock latency 0.2 [get clocks clk]
set_clock_uncertainty 0.02 [get_clocks clk]
set clock transition -max -rise 0.1 [get clocks clk]
set clock transition -max -fall 0.1 [get clocks clk]
set_clock_transition -min -rise 0.1 [get_clocks clk]
set clock transition -min -fall 0.1 [get clocks clk]
```

Multi Mode Multi Corner MMMC.view.stylus

Design import(1/4)W

- ▶cd 進入APR資料夾
- Terminal 下輸入innovus -stylus
- **1.File** → Import Design → Netlist → Verilog \rightarrow Files $\rightarrow \dots \rightarrow$ select your file and click Add
- 2.Select By User, fill your_design_name

Design import(2/4)

- 3. Load process file
- LEF Files $\rightarrow \cdots \rightarrow$ Filters: All Files(*) \rightarrow add lef files

註:製程的technology lef一定要放第一個,其餘的無順序之分,不同

製程有不同的名字,如果不知道的話就一個一個試,錯誤的話最後設定

完成後就會出現錯誤。(此範例為N16ADFP_APR_Innovus_11M. 10a. tlef)

Design import(3/4)

X Design Import — DarkSoul

- 4.(Optional) IO Assignment File → add IO file
- 5.Power → Power Nets:VDD;Ground Nets:VSS

Netlist: Verilog Files: ../SYN/Thumb_syn.v ··· Top Cell: ○ Auto Assign ● By User: thumb O OA Library: Cell: View: Technology/Physical Libraries: O OA Technology Libraries: Reference Libraries: Abstract View Names Layout View Names ;e/Collaterals/IP/stdcell/N16ADFP_StdCell/LEF/lef/N16ADFP_StdCell.lef LEF Files 如果有IO配置檔就放 Floorplan IO Assignment File: Power Power Nets: VDD Ground Nets: VSS CPF File: **Analysis Configuration** MMMC View Definition File: <u>C</u>ancel <u>H</u>elp

TSMC: VDD VSS UMC: VCC GND

Design import(4/4)

6. mmmc.view.stylus

initial Step(1/3)

- 1.Connect global power
- Power \rightarrow Connect Global Nets \rightarrow Connect:Pin \rightarrow Pin Name(s): VDD;
- Scope:Apply All; To Global Net: VDD \rightarrow Add to List \rightarrow Do it again but
- change VDD to VSS
- Power → Connect Global Nets → Connect:Pin → Pin Name(s): VPP;
 - Scope:Apply All; To Global Net: VDD → Add to List
 - Power \rightarrow Connect Global Nets \rightarrow Connect:Pin \rightarrow Pin Name(s): VBB;
- Scope: Apply All; To Global Net: VSS → Add to List
- Power \rightarrow Connect Global Nets \rightarrow Connect:Tie High \rightarrow Scope:Apply All;
- To Global Net: VDD → Add to List
- Power \rightarrow Connect Global Nets \rightarrow Connect:Tie Low \rightarrow Scope:Apply All;
- To Global Net: VSS → Add to List→ Apply → Check → Close

Initial Step(2/3)

- innovus > source -quiet ADFP_APR_script/config.tcl
- innovus > source ADFP_APR_script/config_cts.tcl
- Save Design File →Save Design
- Restore Design
 File →Restore Design

Initial Step(3/3)

- 3.Decide the overview of your design.
- lacksquare Floorplan... ightarrow Specify Floorplan... ightarrow ...
- ▶ Ratio (H/W):1; Core Utilization:0.7; (建議0.6-0.8)
- Core to Left:80; Core to Right:80; Core to Top:80; Core to Bottom:80;

註:如果有PAD的話要調整適當的距離,如果 Core跟PAD太接近,在後面接Power Ring及 Route後,有可能會DRC錯誤

PowerPlan(1/9)

- 1. innovus > source ADFP_APR_script/pns.tcl
- 2. Create Power Ring ---- To give Power to chip
- 3. Power \rightarrow Power Planning \rightarrow Add Rings \rightarrow Basic
 - Nets: VDD VSS
 - In Ring Configuration, change Top & Bottom to METAL8, Left & Right to METAL7;
 - Set Width to 2 and Spacing to 1.1
- 4.Change to Advanced
 - Select Wire Group, set Numbers of Bits to 12
 - Select Interleaving

PowerPlan(2/9)

What's Interleaving?

- ✓ Use wire group no interleaving ✓ number of bits = 2
- VDD

 GND

 GND

- **✓**Use wire group
- **√interleaving**
- ✓ number of bits = 2

PowerPlan(3/9)

PowerPlan(4/9)

- 5. Create Power Ring ---- To give Power to chip
- 6. Power \rightarrow Power Planning \rightarrow Add Rings \rightarrow Basic
 - Nets: VDD VSS
 - In Ring Configuration, change Top & Bottom to METAL6, Left & Right to METAL5;
 - Set Width to 2 and Spacing to 1.1
- 7.Change to Advanced
 - Select Wire Group, set Numbers of Bits to 12
 - Select Interleaving
- 8. innovus > edit_trim_routes -nets {VDD VSS} -layer {M8 M7 M6 M5}
 - 會把Power Ring 多餘的部分切掉

PowerPlan(5/9)

PowerPlan(6/9)

- 8. Add stripe
 - The deeper part of your design may not have enough power from power ring, so you need to add stripe to boost the voltage.
 - Vertical stripe is recommended.
- 9. Power → Power Planning → Add Stripe → Basic
 - Nets: VDD VSS
 - Layers: METAL9 and select Vertical;
 - Set Width to 1.8 and Spacing to 1.8
 - In Set Pattern, select Set-to-set distance and input 7.2
 - Select Relative from core or selected area
 - Start: 1.8

PowerPlan(7/9)

- 10. Change to Advanced Page
 - Choose Merge with block ring if spacing less then: 10
 - Choose Auto
- 11. Change to Mode
 - Extend to closest target: Ring
 - Top Stack via layer: METAL10 Bottom Stack via layer: METAL8
 - Choose Connect to orthogonal targets only
 - un-choose Pad/Core ring connection & Block ring connection

PowerPlan(8/9)

Net	Metal layer	dir	width	space	set to set	start	Top stack via	Bottom stack via	Snap to Routing grid
VDD VSS	М9	٧	1.8	1.8	7.2	1.8	M10	M8	
VDD	M8	Н	0.864	0	2.88	0	М9	M7	Half_Grid
VSS	M8	Н	0.864	0	2.88	1.44	М9	M7	Half_Grid
VDD	М7	٧	0.24	0	7.2	7.2	M8	M6	Grid
VSS	М7	٧	0.24	0	7.2	3.6	M8	М6	Grid
VDD	М6	Н	0.24	0	7.2	0	M7	M5	Grid
VSS	М6	Н	0.24	0	7.2	3.6	M7	M5	Grid
VDD	M5	V	0.24	0	7.2	0	М6	M4	Grid
VSS	М5	V	0.24	0	7.2	3.6	М6	M4	Grid

PowerPlan(9/9)

12. Check \rightarrow CheckDRC... \rightarrow OK

```
VERIFY DRC ..... Sub-Area: {194.432 222.208 222.208 248.736} 80 of 81 VERIFY DRC ..... Sub-Area : 80 complete 0 Viols. VERIFY DRC ..... Sub-Area: {222.208 222.208 248.940 248.736} 81 of 81 VERIFY DRC ..... Sub-Area : 81 complete 0 Viols. Verification Complete : 0 Viols.
```


Power Route(1/8)

- What's power route? ---- Connect all cell to power ring
- 1. Route → Special Route → Basic
 - Net(s): VDD VSS
 - In SRoute, only select Follow pins
 - un-choose Allow jogging
- 2. Change to Via Generation
 - In Make Via Connection To, select Core Ring & Stripe
 - Crossover Connection: Top Stack Via Layer: METAL5

Power Route(2/8)

Power Route(3/8)

3. innovus > source ADFP_APR_script/shrink_via.tcl

Power Route(4/8)

Mxa Forbidden Spacing

Power Route(5/8)

- 4. Power \rightarrow Power Planning \rightarrow Add Stripe \rightarrow Basic
 - Nets: VSS
 - Layers: METAL2 and select Horizontal;
 - Set Width to 0.064 and Spacing to 0
 - In Set Pattern, select Set-to-set distance and input 1.152
 - Select Relative from core or selected area
 - Start: 0.544
- 5. Change to Advanced Page
 - -Snap wire center to routing grid : select "None"
- 6. Change to Mode
 - Extend to closest target: Ring
 - Top Stack via layer: METAL3 Bottom Stack via layer: METAL1
 - un-choose Pad/Core ring connection & Block ring connection
- 7. Click Apply

Power Route(6/8)

8. Change VSS to VDD

- Nets: VDD

- Start: -0.032

9. Click Apply

Power Route(7/8)

10. Check → Check Connectivity...

- Net Type: Special Only

- Nets: VDD VSS

- In Check, un-choose DanglingWire (Antenna)

There should not have any violation and X on the screen.

****** End: VERIFY CONNECTIVITY *******

Verification Complete: 0 Viols. 0 Wrngs.

(CPU Time: 0:00:00.1 MEM: 0.000M)

Power Route(8/8)

12. Check \rightarrow CheckDRC... \rightarrow OK

```
VERIFY DRC ..... Sub-Area : 80 complete 0 Viols.
VERIFY DRC ..... Sub-Area: {222.208 222.208 248.940 248.736} 81 of 81
VERIFY DRC ..... Sub-Area : 81 complete 0 Viols.
Verification Complete : 0 Viols.
```


Placement(1/3)

- 1. innovus > source ADFP_APR_script/add_well_taps.tcl
- 2. Place \rightarrow Place Standard Cell \rightarrow Click OK
- 3. Place → Check Placement → Click Ok

Placement(2/3)

4. Timing → Report Timing

- Design Stage : Choose Pre-CTS

-Analysis Type : Choose Setup

Placement(3/3)

ECO → Optimize Design

- Design Stage : Choose Pre-CTS

-Optimization Type : Choose Max Fanout

6. Timing → Report Timing

- Design Stage : Choose Pre-CTS

-Analysis Type : Choose Setup

X Optimization — DarkSoul

Post-CTS

Hold

Post-Route

Design Stage

Optimization Type

Design Rules Violations

Pre-CTS

✓ Setup

Incremental

✓ Max Cap

CTS(1/6)

Clock Tree Synthesis(CTS), To solve Clock problem:

- Heavy clock net loading
- Long clock insertion delay
- Clock skew
- Skew across clocks
- Clock to signal coupling effect
- Clock is power hungry

CTS(2/6)

Clock Concurrent Optimization

CTS(3/6)

- 1. innovus > set_interactive_constraint_modes [all_constraint_modes]
- 2. innovus > reset_clock_latency [all_clocks]
- 3. innovus > ccopt_design
- 4. Timing → Report Timing
 - Design Stage : Choose Post-CTS
 - -Analysis Type : Choose Setup

CTS(4/6)

5. Timing → Report Timing

- Design Stage : Choose Post-CTS

-Analysis Type : Choose hold

CTS(5/6)

6. ECO → Optimize Design

- Design Stage : Choose Post-CTS

-Optimization Type : Choose Hold

-Optimization Type : Choose Max Fanout

7. Timing → Report Timing

-Design Stage : Choose Post-CTS

-Analysis Type: Choose Hold

X Optimization — DarkSoul

Post-CTS

Hold

Post-Route

Design Stage

Optimization Type

Pre-CTS

Setup

CTS(6/6)

- 8. Add Tie HI / LO cell
 - Place → Tie HI / LO → Add

Route(1/5)

- 1. Start routing:
 - Route → NanoRoute → Route
 - Detail Route End Iteration :10
 - In Routing Phase, select Optimize Via & Optimize Wie
 - In Concurrent Routing Features, select Fix Antenna, Timing Driven, SI Driven
 - Click OK

Route(2/5)

- 2. innovus > set_db delaycal_enable_si true
- 3. Timing → Report Timing
 - -Design Stage : Choose Post-Route
 - -Analysis Type : Choose Setup
- 4. ECO → Optimize Design
 - Design Stage : Choose Post-Route
 - -Optimization Type : Choose Setup
 - Click OK

Setup mode	all	reg2reg	in2reg	reg2out	in2out	default
WNS (ns):	0.000	0.746	0.398	2.303	N/A	0.000
TNS (ns):		0.000	0.000	0.000	N/A	0.000
Violating Paths:		0	0	0	N/A	0
All Paths:		735	1007	66	N/A	0

Route(3/5)

- 5. Timing → Report Timing
 - -Design Stage : Choose Post-Route
 - -Analysis Type : Choose Hold
- **P** 6. ECO → Optimize Design
 - Design Stage : Choose Post-Route
 - -Optimization Type: Choose Hold
 - Click OK

Route(4/5)

7. Timing → Report Timing

-Design Stage: Choose Sign-Off

-Analysis Type : Choose Setup

8. innovus > set_multi_cpu_usage -remote_host 8

innovus > opt_signoff -setup

+		+	+	+	+	++
Setup mode	all	reg2reg	in2reg	reg2out	in2out	default
WNS (ns): TNS (ns): Violating Paths:	0.000	0.730 0.000	1.319 0.000	2.302 0.000	N/A N/A N/A	0.000 0.000
All Paths:		735	1007	66	N/A	Ö

Route(5/5)

9. Timing → Report Timing

-Design Stage: Choose Sign-Off

-Analysis Type : Choose Hold

10. innovus > set_multi_cpu_usage -remote_host 8

innovus > opt_signoff -hold

+	+		+	+	+	+	++
1	Hold mode	all	reg2reg	in2reg	reg2out	in2out	default
+	+		+	+	+	+	++
1	WNS (ns):	0.008	0.008	0.018	0.090	N/A	0.000
ĺ	TNS (ns):	0.000	0.000	0.000	0.000	N/A	0.000
ĺ	Violating Paths:	Θ	Θ	Θ	0	N/A	0
T	All Paths:	1351	735	1007	66	N/A	j 0 j
+	+		+	+	+	+	++

Post processing(1/5)

1. Add Core Filler

- To fill the gap between cells.
- Start from wider filler to narrow filler

Post processing(2/5)

- 2. Add Core Filler:
 - innovus > get_db add_fillers_cells
 - Place \rightarrow Physical Cells \rightarrow Add Filler \rightarrow Click OK
- 3. Add VIA1 between M1 and M2
 - innovus > source ADFP_APR_script/post_via_drop.tcl
- 4. Check DRC
 - innovus > set_db check_drc_limit 10000
 - innovus > check_drc
 - innovus > source ADFP_APR_script/fix_manual_via12.tcl


```
VERIFY DRC ..... Sub-Area: {0.000 187.488 27.280 214.272} 64 of 81 Thread: 6
VERIFY DRC ..... Thread: 6 finished.
VERIFY DRC ..... Sub-Area: {54.560 187.488 81.840 214.272} 66 of 81 Thread: 7
VERIFY DRC ..... Thread: 7 finished.
VERIFY DRC ..... Sub-Area: {218.240 187.488 241.380 214.272} 72 of 81 Thread: 0
VERIFY DRC ..... Thread: 0 finished.
VERIFY DRC ..... Sub-Area: {163.680 187.488 190.960 214.272} 70 of 81 Thread: 4
VERIFY DRC ..... Thread: 4 finished.

Verification Complete: 3 Viols
```

Post processing(3/5)

fix_manual_via12.tcl

Post processing(4/5)

- 5. Check \rightarrow CheckDRC... \rightarrow OK
- 6. Check →Check Connectivity
 - -Net Type → Choose Regular Only
 - -Net \rightarrow All
 - -Check → un-choose DanglingWire(Antenna)
- 7. Finish Design
 - innovus > source ADFP_APR_script/write_netlist.tcl
 - innovus > source ADFP_APR_script/write_sdf.tcl
 - innovus > source /ADFP_APR_script/write_stream.tcl

```
VERIFY DRC ..... Thread : 4 finished.
VERIFY DRC ..... Thread : 6 finished.
VERIFY DRC ..... Sub-Area: {190.960 187.488 218.240 214.272} 71 of 81 Thread : 3
VERIFY DRC ..... Thread : 3 finished.

Verification Complete : 0 Viols

*** End Verify DRC (CPU: 0:01:18 ELAPSED TIME: 14.00 MEM: 8.0M) ***
```


Post processing(5/5)

write_netlist.tcl

```
write_netlist outputs/FMA_pipe_pr.v

set TAP_CELL_LIST [get_db [get_db base_cells TAP_*] .name]

set BOUNDARY_CELL_LIST [get_db [get_db base_cells BOUNDARY_*] .name]

set DECAP_CELL_LIST [get_db [get_db base_cells DCAP_*] .name]

set PVDD_CELL_LIST [get_db [get_db base_cells PVDD*] .name]

set FILLER_CELL_LIST [get_db [get_db base_cells FILL*] .name]

set FILLER_CELL_LIST [get_db [get_db base_cells FILL*] .name]

set PFORNER_CELL_LIST [get_db [get_db base_cells PCORNER*] .name]

set PCORNER_CELL_LIST [get_db [get_db base_cells PCORNER*] .name]

write_netlist -include_pg_ports -include_phys_cells "$TAP_CELL_LIST $BOUNDARY_CELL_LIST $PVDD_CELL_LIST $FILLER_CELL_LIST $PFILLER_CELL_LIST $PCORNER_CELL_LIST outputs/FMA_pipe_pg.v
```

write_sdf.tcl

```
write_sdf outputs/FMA_pipe_ff0p88v125c.sdf -max_view AV_func_ff0p88v125c
write_sdf outputs/FMA_pipe_ss0p72vm40c.sdf -max_view AV_func_ss0p72vm40c
```

write_stream.tcl

Highlight module(1/3)

- 1. ctrl +f
- 2. Select Module
- 3. Type stage1 → Enter

Highlight module(2/3)

Highlight module(3/3)

Thank you