Energia Livre

Gabriel Braun

Colégio e Curso Pensi, Coordenação de Química

Sumário

1		nergia livre de Gibbs Um olhar sobre o sistema	1	
2	Os equilíbrios de fase			
3	A es	pontaneidade das reações	2	
	3.1	A energia livre de Gibbs de reação	2	
	3.2	A energia livre de Gibbs e o trabalho de não expansão	3	
	5.4			

1 A energia livre de Gibbs

Um dos problemas com o uso da segunda lei da termodinâmica para verificar se uma reação é espontânea é que, para avaliar a variação de entropia total, a variação de entropia do sistema e a variação de entropia da vizinhança precisam ser calculadas e somadas. Grande parte desse trabalho poderia ser evitada se uma única propriedade reunisse os cálculos de entropia do sistema e da vizinhança. Mas é possível simplificar empregando a energia livre de Gibbs, uma função de estado nova que é, provavelmente, a propriedade mais usada e mais útil nas aplicações da termodinâmica em química. Ela tem este nome em homenagem ao físico norte-americano do século XIX Josiah Willard Gibbs, responsável pela transformação da termodinâmica de uma mera teoria abstrata em um tema de grande relevância.

1.1 Um olhar sobre o sistema

A variação total de entropia, ΔS_{tot} , é a soma das variações no sistema, ΔS , e sua vizinhança, ΔS_{viz} , com $\Delta S_{tot} = \Delta S + \Delta S_{viz}$. Em um processo em temperatura e pressão constantes, a variação de entropia da vizinhança é dada por $\Delta S_{viz} = -\Delta H/T$. Portanto,

$$\Delta S_{tot} = \Delta S + \Delta S_{viz} = \Delta S - \frac{\Delta H}{T}$$
 (1)

Essa equação permite calcular a variação total de entropia usando informações somente do sistema. A limitação é que a equação só é válida em pressão e temperatura constantes.

A próxima etapa é introduzir a **energia livre de Gibbs**, G, definida como

$$G = H - TS \tag{2a}$$

Essa quantidade, comumente conhecida como energia livre e, mais formalmente, como energia livre de Gibbs, é definida somente em termos de funções de estado, logo, G é uma função de estado. Em um processo que ocorre em temperatura constante, a variação de energia livre é

$$\Delta G = \Delta H - T \Delta S \tag{2b}$$

Comparando essa expressão com a Equação 1, em que existe a restrição adicional da pressão constante, vemos que

$$\Delta G = -T\Delta S_{\text{tot}} \tag{3}$$

O sinal negativo dessa equação significa que, em pressão e temperatura constantes, um aumento na entropia total corresponde a uma diminuição da energia livre de Gibbs. Portanto (Figura 1),

TABELA 1		Critérios para espontaneidade
ΔΗ	ΔS	Espontâneo
_	+	Sempre
+	_	Nunca
_	_	Se ΔH domina
+	+	Se T∆S domina

 Em temperatura e pressão constantes, a direção da mudança espontânea é a direção da diminuição da energia livre de Gibbs.

FIGURA 1 Em pressão e temperatura constantes, a direção da mudança espontânea é a diminuição da energia livre. O eixo horizontal representa a evolução da reação ou do processo. O estado de equilíbrio de um sistema corresponde ao ponto mais baixo na curva.

A grande importância da introdução da energia livre de Gibbs é que, se a pressão e a temperatura permanecem constantes, é possível predizer se um processo é espontâneo somente em termos das propriedades termodinâmicas do sistema.

A Equação 2b resume os fatores que determinam a direção da mudança espontânea em temperatura e pressão constantes: para uma variação espontânea, procuramos valores de $\Delta H, \Delta S$ e T que levam a um valor negativo de ΔG (Tabela 1). Uma condição que pode levar a um ΔG negativo é um grande valor negativo de ΔH , como em uma reação de combustão. Um grande valor negativo de ΔH corresponde a um grande aumento de entropia da vizinhança. Entretanto, um valor negativo de ΔG pode ocorrer mesmo se ΔH for positivo (uma reação endotérmica), quando $T\Delta S$ é grande e positivo. Neste caso, a força condutora da reação, a origem da espontaneidade, é o aumento de entropia do sistema.

O critério do equilíbrio é $\Delta S_{tot}=0$. Da Equação 3, resulta que, para um processo em temperatura e pressão constantes, a condição do equilíbrio é

No equilíbrio:
$$\Delta G = 0$$
 (4)

Se $\Delta G=0$ para o processo, então fica claro que o sistema está em equilíbrio. Por exemplo, quando gelo e água estão em equilíbrio em uma determinada temperatura e pressão, sabemos que a energia livre de Gibbs de 1 mol de $H_2O(l)$ deve ser igual à energia livre de Gibbs de 1 mol de $H_2O(s)$. Em outras palavras, a energia livre de Gibbs por mol de água em cada fase é a mesma.

EXEMPLO 1 Determinar se um processo é espontâneo

A energia livre de Gibbs de uma substância diminui (isto é, se torna menos positiva ou mais negativa) quando a temperatura aumenta em pressão constante. Esta conclusão é uma consequência da definição G = H - TS e do fato de que a entropia de uma substância pura é sempre positiva. Quando T aumenta, TS também aumenta e uma quantidade maior é subtraída de H. Outra importante conclusão é que a energia livre de Gibbs diminui mais rapidamente com a temperatura na fase gás de uma substância do que na fase líquido. O mesmo acontece com a energia livre de Gibbs do líquido, que diminui mais rapidamente do que a energia livre de Gibbs do sólido (Figura 2).

Agora você tem condições de entender a origem termodinâmica das transições de fase. Em temperaturas baixas, a energia livre molar do sólido é a mais baixa, logo, existe a tendência para que o líquido congele e reduza sua energia livre. Acima de uma determinada temperatura, a energia livre do líquido torna-se menor do que a do sólido e a substância tem a tendência espontânea de fundir. Em temperaturas ainda mais altas, a energia livre molar da fase gás fica abaixo da linha do líquido e a substância tende espontaneamente a vaporizar. A temperatura de cada mudança de fase corresponde ao ponto de interseção das linhas das duas fases, como mostrado na Figura 2.

FIGURA 2 Variação da energia livre (molar) com a temperatura para três fases de uma substância em uma dada pressão. A fase mais estável é a que tem a energia livre molar mais baixa. Observe que, quando a temperatura aumenta, a fase sólido, a fase líquido e a fase vapor tornam-se, sucessivamente, a fase mais estável.

As posições relativas das três linhas da Figura 2 são diferentes para cada substância. Uma possibilidade – que depende da energia das interações intermoleculares nas fases condensa- das – é o líquido ficar na posição mostrada na Fig. 3. Neste caso, o estado líquido nunca é a linha mais baixa, em qualquer temperatura. Quando a temperatura sobe acima do ponto de interseção das linhas do sólido e do gás, a transição direta do sólido ao vapor,

FIGURA 3 No caso de certas substâncias e em certas pressões, a energia livre molar da fase líquido pode não ficar, em algum momento, abaixo das outras duas fases. Nestes casos, o líquido nunca é a fase estável e, em pressão constante, o sólido sublima quando a temperatura aumenta até o ponto de interseção das linhas do sólido e do vapor.

chamada de sublimação, torna-se espontânea. Este é o tipo de gráfico esperado para uma substância como o dióxido de carbono, que sublima na pressão atmosférica.

A variação de energia livre de Gibbs de um processo é uma medida da variação da entropia total de um sistema e sua vizinhança quando a temperatura e a pressão são constantes. Os processos espontâneos, em temperatura e pressão constantes, são acompanhados pela diminuição da energia livre de Gibbs.

2 Os equilíbrios de fase

3 A espontaneidade das reações

A diminuição da energia livre como um indicador de mudança espontânea e $\Delta G=0$ como critério de equilíbrio aplicam-se a qualquer tipo de processo, desde que ele ocorra em pressão e temperatura constantes.

3.1 A energia livre de Gibbs de reação

A função termodinâmica usada como critério de espontaneidade para uma reação química é a **energia livre de Gibbs de reação**, ΔG_r (comumente chamada de *energia livre de reação*). Esta quantidade é definida como a diferença entre as energias livres de Gibbs molares, G_m , de produtos e reagentes.

$$\Delta G_{r} = \sum_{produtos} nG_{m} - \sum_{reagentes} nG_{m}$$
 (6)

Nessa expressão, os valores de $\mathfrak n$ são os coeficientes estequiométricos da equação química. Por exemplo, para a formação da amônia,

$$N_2(g) + 3H_2(g) \longrightarrow 2NH_3(g)$$

A energia livre de Gibbs de reação é

$$\Delta G_r = 2G_{m,NH_3} - (G_{m,N_2} + 3G_{mH_2})$$

A energia livre de Gibbs molar de uma substância em uma mistura depende de que moléculas ela tem como vizinhos, logo, as energias livres de Gibbs molares de NH $_3$, N $_2$ e H $_2$ mudam quando a reação prossegue. No início da reação, por exemplo, uma molécula de NH $_3$ tem como vizinhos principalmente moléculas de N $_2$ e H $_2$, mas, em um estágio avançado da reação, a maior parte dos vizinhos é de moléculas de NH $_3$. Como as energias livres de Gibbs mudam quando a reação prossegue, a energia livre de Gibbs da reação também muda. Se $\Delta G < 0$ em uma determinada composição, então a reação direta é espontânea. Se $\Delta G > 0$ em uma determinada composição, então a reação inversa (a decomposição da amônia em nosso exemplo) é espontânea.

A **energia livre de Gibbs padrão de reação**, ΔG_r° , é definida da mesma forma que a energia livre de Gibbs da reação, mas em termos das energias livres de Gibbs molares padrão dos reagentes e produtos.

$$\Delta G_{r}^{\circ} = \sum_{\text{produtos}} nG_{m}^{\circ} - \sum_{\text{reagentes}} nG_{m}^{\circ}$$
 (7)

Em outras palavras, a energia livre de Gibbs padrão de reação é a diferença de energia livre de Gibbs entre os produtos nos seus estados padrão e os reagentes nos seus estados padrão (na temperatura especificada). Como o estado padrão de uma substância é sua forma pura em 1 bar, a energia livre de Gibbs padrão de reação é a diferença de energia livre de Gibbs entre os produtos puros e os reagentes puros: é uma quantidade fixa para uma dada reação e não varia quando a reação prossegue. Lembre-se desses dois pontos importantes:

- ΔG_r° é fixo para uma dada reação e temperatura e, por isso, não varia durante a reação.
- ΔG_r depende da composição da mistura de reação; logo, varia
 e pode até trocar de sinal quando a reação prossegue.

As Equações 6 e 7 não são muito úteis na prática porque só as variações das energias livres de Gibbs das substâncias são conhecidas, não os seus valores absolutos. Entretanto, a mesma técnica usada para encontrar a entalpia padrão de reação pode ser empregada, em que uma entalpia padrão de formação, $\Delta H_{\rm f}^{\circ}$, é atribuída a cada componente. De modo análogo, a energia livre de Gibbs padrão de formação, $\Delta G_{\rm f}^{\circ}$ (a energia livre padrão de formação), de uma substância é a energia livre de Gibbs padrão de reação por mol de formação de um composto a partir de seus elementos na forma mais estável.

3.2 A energia livre de Gibbs e o trabalho de não expansão

A variação de energia livre de Gibbs de um processo é igual ao trabalho máximo de não expansão que o sistema pode realizar em temperatura e pressão constantes.

3.3 O efeito da temperatura

EXEMPLO 2 Cálculo da temperatura na qual uma reação endotérmica torna-se espontânea

A produção de aço a partir do minério de ferro é endotérmica. Para reduzir a quantidade de calor que deve ser fornecida, os engenheiros precisam descobrir a menor temperatura em que as reações são espontâneas.

$$2\,Fe_2O_3(s) + 3\,C\,(s) \longrightarrow 4\,Fe\,(s) + 3\,CO_2(g)$$

Calcule a temperatura mínima na qual a reação é espontânea.

Etapa 1. Dados

- $\Delta H_f^{\circ}(CO_2, g) = -394 \text{ kJ mol}^{-1}$
- $\Delta H_f^{\circ}(Fe_2O_3, s) = -824 \text{ kJ mol}^{-1}$
- $S^{\circ}(CO_2, g) = -394 \text{ J K}^{-1} \text{ mol}^{-1}$
- $S^{\circ}(Fe_2O_3, s) = -824 \, I \, K^{-1} \, mol^{-1}$
- $S^{\circ}(CO_2, g) = -394 \, J \, K^{-1} \, mol^{-1}$
- $S^{\circ}(Fe_2O_3, s) = -824 \, J \, K^{-1} \, mol^{-1}$

Etapa 2. Calcule a entalpia de reação.

$$\begin{split} \text{De } \Delta \text{H}^{\circ}_{r} &= 3\Delta \text{H}^{\circ}_{\text{f,CO}_{2}(g)} - 2\Delta \text{H}^{\circ}_{\text{f,Fe}_{2}\text{O}_{3}(s)} \\ \Delta \text{H}^{\circ}_{r} &= 3\times (-394\,\frac{\text{kJ}}{\text{mol}}) - 2\times (-824\,\frac{\text{kJ}}{\text{mol}}) \\ &= +466\,\frac{\text{kJ}}{\text{mol}} \end{split}$$

Etapa 3. Calcule a entropia de reação.

De
$$\Delta S^{\circ} = 3S_{f^{\circ},CO_{2}(g)} - 2\Delta H_{f^{\circ},Fe_{2}O_{3}(s)}$$

Etapa 4. Calcule a temperatura na qual a energia livre de reação torna-se negativa.

A energia livre de Gibbs cresce com a temperatura em reações em que ΔS° é negativo e decresce com a temperatura em reações em que ΔS° é positivo.