Higher-ranked Exception Types

Ruud Koot

September 14, 2015

1 Motivation

An often heard selling point of non-strict functional languages is that they provide strong and expressive type systems that make side-effects explicit. This supposedly makes software more reliable by lessening the mental burden of programmers. Many object-oriented programmers are quite surprised, then, that when they make the transition to a functional language, that they lose a feature their type system formerly did provide: tracking of uncaught exceptions.

There is a good excuse why this feature is missing from the type systems of contemporary non-strict functional languages: in a strict first-order language it is sufficient to annotate each function with a single set of uncaught exceptions the function may throw, in a non-strict higher-order language the situation becomes significantly more complicated. Let us first consider the two aspects "higher-order" and "non-strict" in isolation:

Higher-order functions The set of exceptions that may be raised by a higher-order function are not given by a fixed set of exceptions, but depends on the set of exceptions that may be raised by the function that is passed as its functional argument. Higher-order functions will thus end up being *exception polymorphic*.

To po.concrete example?

Non-strict evaluation In non-strictly evaluated languages, exception are not a form of control flow, but a kind of value. Typically the set of values of each type are extended with an *exceptional value* \perp (more commonly

denoted \bot , but we shall not do so for reasons of ambiguity), or family of exceptional values \bot^{ℓ} . This means we do not only need to give all functions an exception-annotated function type, but every expression an exception-annotated type.

To po.concrete example?

Take as an example the *map* function:

$$map :: \forall \alpha \ \beta.(\alpha \to \beta) \to [\alpha] \to [\beta]$$

$$map = \lambda f.\lambda xs. \ \mathbf{case} \ xs \ \mathbf{of}$$

$$[] \mapsto []$$

$$(y: ys) \mapsto f \ y: map \ f \ ys$$

For each type τ , we denote its exception-annotated type by $\tau\langle\xi\rangle$. For function types we will write $\tau_1\langle\xi_1\rangle\xrightarrow{\xi}\tau_2\langle\xi_2\rangle$ instead of $(\tau_1\langle\xi_1\rangle\to\tau_2\langle\xi_2\rangle)\langle\xi\rangle$. If ξ is the empty exception set, then we will omit it completely.

The fully exception-polymorphic and exception-annotated type, or *exception type*, of *map* is To Do.cramped formatting

$$\forall \alpha \ \beta \ e_2 \ e_3.(\forall e_1.\alpha \langle e_1 \rangle \xrightarrow{e_3} \beta \langle e_2 \ e_1 \rangle)$$

$$\rightarrow (\forall e_4 \ e_5.[\alpha \langle e_4 \rangle] \langle e_5 \rangle \rightarrow [\beta \langle e_2 \ e_4 \cup e_3 \rangle] \langle e_5 \rangle)$$

To Do. Why not $\alpha \langle e_1 \rangle \xrightarrow{e_3} \beta \langle e_2 \rangle$?! Give some examples why higher-rankedness is needed. The example on the poster/*map* isn't sufficient. Postpone to a later section?

The exception type of the first argument $\forall e_1.\alpha \langle e_1 \rangle \xrightarrow{e_3} \beta \langle e_2 e_1 \rangle$ states that it can be instantiated with a function that accepts any exceptional value as its argument (as the exception set e_1 is universally quantified) and returns a possibly exceptional value. In case the return value is exceptional, then it will be one from the exception set e_2 e_1 . Here e_2 is an *exception operator*, a function that takes an exception set, in this case and transforms it into another exception set, for example by adding a number of new elements to it, or discarding it and returning the empty set. Furthermore, the function itself may be an exceptional value from the exception set e_3 .

The exception type of the second argument $[\alpha \langle e_4 \rangle] \langle e_5 \rangle$ states it should be a list. Any of the elements in the lists may be exception values from the exception set e_4 . Any of the constructors that form the spine of the list mat be exceptional values from the exception set e_5 .

The result of map will be a list with the exception type $[\beta\langle e_2\ e_4 \cup e_3\rangle]\langle e_5\rangle$. Any constructors in the spine of this list may be exceptional values from the exception set e_5 , the same exception set as where exceptional values in the spine of the input list could come from. By looking at the definition of map we can see why this is the case: map will only produce non-exceptional constructors, but the pattern-match on the input list will propagate any exceptional values encountered there. The elements of the list are produced by the function application f y. Recall that f has the exception type $\forall e_1.\alpha\langle e_1\rangle \xrightarrow{e_3} \beta\langle e_2\ e_1\rangle$. Now one of two things can happen:

- 1. If f is an exceptional function value, then it must be one from the exception set e_3 . Applying an argument to an exceptional value will cause the exceptional value to be propagated.
- 2. Otherwise f is a non-exceptional value. The argument y has exception type $\alpha\langle e_4\rangle$ —it is an element from the input list—and so can only be applied to f if we instantiate e_1 to e_4 first. If f y will produce an exceptional value it will thus be on from the exception set e_2 e_4 .

To account for both cases we need to take the union of the two exception sets, giving us a value with the exception type $\beta \langle e_2 \ e_4 \cup e_3 \rangle$.

The get a better feeling of how these exception type and exception operators behave let us see what happens when we apply two different functions to *map*: the identity function id and the constant exceptional values $const \perp^E$. These two functions can be given the exception types:

$$\begin{array}{ll} \textit{id} & : \forall e_1.\alpha \langle e_1 \rangle \xrightarrow{\varnothing} \alpha \langle e_1 \rangle \\ \textit{const} \ \bot^E : \forall e_1.\alpha \langle e_1 \rangle \xrightarrow{\varnothing} \beta \langle \{E\} \rangle \end{array}$$

The term id simply propagates its input, so it will also propagate any exceptional values. The term $const \perp^E$ discards it input and will always return the exceptional value \perp^E . This behavior is also reflected in their exception types.

If we apply *map* to *id* we need to unify the exception type of the formal parameter $\forall e_1.\alpha \langle e_1 \rangle \xrightarrow{e_3} \beta \langle e_2 e_1 \rangle$ with the exception type of the actual parameter $\forall e_1.\alpha \langle e_1 \rangle \xrightarrow{\varnothing} \alpha \langle e_1 \rangle$.

1.1 Overview

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

1.2 Contributions

- A type system than precisely tracks the uncaught exceptions using higherranked types.
- An inference algorithm that automatically infers such higher-ranked exception types.

To do.

- To Do. Untracked exceptions can break information flow security.

2 The λ^{\cup} -calculus

Types

$$au\in Ty$$
 ::= \mathcal{P} (base type)
$$\mid \ au_1 o au_2$$
 (function type)

Terms

$$t \in \mathbf{Tm}$$
 ::= $x, y, ...$ (variable)
$$\begin{vmatrix} \lambda x : \tau . t & \text{(abstraction)} \\ t_1 t_2 & \text{(application)} \\ 0 & \text{(empty)} \\ c \end{cases}$$

$$\begin{vmatrix} c \\ t_1 \cup t_2 & \text{(union)} \end{vmatrix}$$

Values Values v are terms of the form

$$\lambda x_1 : \tau_1 \cdots \lambda x_i : \tau_i \cdot \{c_1\} \cup (\cdots \cup (\{c_i\} \cup (x_1 \ v_{11} \cdots v_{1m} \cup (\cdots \cup x_k \ v_{k1} \cdots v_{kn}))))$$

Environments

$$\Gamma \in \mathbf{Env} ::= \cdot \mid \Gamma, x : \tau$$

2.1 Typing relation

$$\frac{\Gamma, x : \tau \vdash x : \tau}{\Gamma, x : \tau \vdash x : \tau} \text{ [T-VAR]} \quad \frac{\Gamma, x : \tau_1 \vdash t : \tau_2}{\Gamma \vdash \lambda x : \tau_1 . t : \tau_1 \to \tau_2} \text{ [T-Abs]} \quad \frac{\Gamma \vdash t_1 : \tau_1 \to \tau_2 \quad \Gamma \vdash t_2 : \tau_1}{\Gamma \vdash t_1 \ t_2 : \tau_2} \text{ [T-App]}$$

$$\frac{\Gamma \vdash \varnothing : \mathcal{P}}{\Gamma \vdash \varnothing : \mathcal{P}} \text{ [T-Empty]} \quad \frac{\Gamma \vdash t_1 : \tau \quad \Gamma \vdash t_2 : \tau}{\Gamma \vdash t_1 \cup t_2 : \tau} \text{ [T-Union]}$$

2.2 Semantics

2.3 Reduction relation

- To Do. Do not match the rules in the prototype (those are sensitive to the order in which they are tried).
- To Do. In the second rule only one term is applied; contrast this with the other rules involing applications.

- To Do. Should make use of the fact the everything is fully applied (and η -expanded/-long?): all atoms are of the form k $\overline{t_i}$, where k is c or x and the number of arguments fixed by the arity of k. Then try to factor out the commutativity rules by taking "sets" of these atoms. That might simplify stuff a whole lot...
- To Do. Can we restrict the typing rule T-Union to only allow sets and not functions on both sides? This would remove the 2nd and 3rd rewrite rules and make the system a more traditional higher-order rewrite system: it's "just" higher-order pattern E-unification (decidable), boolean rings are easy to integrate, and higher-ranked dimension types becomes higher-order E-unification (semi-decidable). Open question: how to represent e.g. $U(e_2(e_1), e_1) = [e_2 \mapsto \lambda e_1.e_1]$ without abstractions? (Reinterpret e_1 as $f(e_1)$ with f = id?)

Definition 1. *Let* \prec *be a strict total order on* **Con** \cup **Var**, *with* $c \prec x$ *for all* $c \in$ **Con** *and* $x \in$ **Var**.

$$(\lambda x : \tau . t_1) \quad t_2 \longrightarrow t_1[t_2/x] \qquad (\beta \text{-reduction})$$

$$(t_1 \cup t_2) \quad t_3 \longrightarrow t_1 \quad t_3 \cup t_2 \quad t_3$$

$$(\lambda x : \tau . t_1) \cup (\lambda x : \tau . t_2) \longrightarrow \lambda x : \tau . (t_1 \cup t_2) \qquad (\text{congruences})$$

$$x \quad t_1 \cdots t_n \cup x \quad t'_1 \cdots t'_n \longrightarrow x \quad (t_1 \cup t'_1) \cdots (t_n \cup t'_n)$$

$$(t_1 \cup t_2) \cup t_3 \longrightarrow t_1 \cup (t_2 \cup t_3) \qquad (\text{associativity})$$

$$\varnothing \cup t \longrightarrow t \qquad (\text{unit})$$

$$t \cup \varnothing \longrightarrow t \qquad (\text{unit})$$

$$t \cup \varnothing \longrightarrow t \qquad (\text{unit})$$

$$x \cup x \longrightarrow x$$

$$x \cup (x \cup t) \longrightarrow x \cup t \qquad (\text{idempotence})$$

$$\{c\} \cup \{c\} \longrightarrow \{c\} \cup t \qquad (t_1 \cdots t_n \cup t) \qquad (t_1 \cdots t_n \cup t) \qquad (t_2 \cdots t_n \cup t_n \cup t)$$

$$x \quad t_1 \cdots t_n \cup (t_1 \cup t'_1 \cdots t'_n \cup t) \qquad (t_2 \cup t'_1 \cdots t'_n \cup t) \qquad (t_3 \cup t'_1 \cdots t'_n \cup t'_1 \cdots t'_n$$

Conjecture 1. The reduction relation \longrightarrow preserves meaning.

Conjecture 2. The reduction relation \longrightarrow is strongly normalizing.

Conjecture 3. *The reduction relation* \longrightarrow *is locally confluent.*

Corollary 1. The reduction relation \longrightarrow is confluent.

Proof. Follows from SN, LC and Newman's Lemma.

Corollary 2. The λ^{\cup} -calculus has unique normal forms.

Corollary 3. Equality of λ^{\cup} -terms can be decided by normalization.

3 Completion

$$\kappa \in \mathbf{Kind} \qquad ::= \quad \mathbf{EXN} \qquad \text{(exception)}$$

$$\mid \quad \kappa_1 \Rightarrow \kappa_2 \qquad \text{(exception operator)}$$

$$\varphi \in \mathbf{EXN} \qquad ::= \quad e \qquad \text{(exception variables)}$$

$$\mid \quad \lambda e : \kappa. \varphi \qquad \text{(exception abstraction)}$$

$$\widehat{\tau} \in \mathbf{EXNTy} \qquad ::= \quad \forall e :: \kappa. \widehat{\tau} \qquad \text{(exception quantification)}$$

$$\mid \quad b\widehat{\text{ool}} \qquad \qquad \text{(boolean type)}$$

$$\mid \quad [\widehat{\tau} \langle \varphi \rangle] \qquad \text{(list type)}$$

$$\mid \quad \widehat{\tau}_1 \langle \varphi_1 \rangle \rightarrow \widehat{\tau}_2 \langle \varphi_2 \rangle \qquad \text{(function type)}$$

The completion procedure as a set of inference rules:

Figure 1: Type completion $(\Gamma \vdash \tau : \hat{\tau} \& \varphi \triangleright \Gamma')$

The completion procedure as an algorithm:

$$C :: \mathbf{Env} \times \mathbf{Ty} \to \mathbf{ExnTy} \times \mathbf{Exn} \times \mathbf{Env}$$

$$C \overline{e_i :: \kappa_i} \mathbf{bool} =$$

$$\mathbf{let} \ e \ be \ fresh$$

$$\mathbf{in} \ \langle \mathbf{bool}; e \ \overline{e_i}; e :: \overline{\kappa_i} \Rightarrow \mathbf{exn} \rangle$$

4 Type system

4.1 Terms

```
(term variable)
t \in \mathbf{Tm}
                   |c_{\tau}|
                                                                        (term constant)
                   | \lambda x : \tau . t
                                                                     (term abstraction)
                   | t_1 t_2
                                                                    (term application)
                   | t_1 \oplus t_2
                                                                               (operator)
                   | if t_1 then t_2 else t_3
                                                                           (conditional)
                                                                  (exception constant)
                   | t_1 \operatorname{seq} t_2
                                                                                 (forcing)
                   | fix t
                                                                (anonymous fixpoint)
                   | []_{\tau}
                                                                       (nil constructor)
                   | t_1 :: t_2
                                                                     (cons constructor)
                   | case t_1 of \{[] \mapsto t_2; x_1 :: x_2 \mapsto t_3\}
                                                                        (list eliminator)
```

4.2 Underlying type system

4.3 Declarative exception type system

$$\overline{\Gamma, x : \widehat{\tau} \& \varphi; \Delta \vdash x : \widehat{\tau} \& \varphi} \begin{bmatrix} \text{T-Var} \end{bmatrix}$$

$$\overline{\Gamma; \Delta \vdash c_\tau : \bot_\tau \& \emptyset} \begin{bmatrix} \text{T-Con} \end{bmatrix} \quad \overline{\Gamma; \Delta \vdash \oint_\tau^\ell : \bot_\tau \& \{\ell\}} \begin{bmatrix} \text{T-Crash} \end{bmatrix}$$

$$\overline{\Gamma; \Delta \vdash c_\tau : \bot_\tau \& \emptyset} \begin{bmatrix} \text{T-Con} \end{bmatrix} \quad \overline{\Gamma; \Delta \vdash \oint_\tau^\ell : \bot_\tau \& \{\ell\}} \begin{bmatrix} \text{T-Crash} \end{bmatrix}$$

$$\overline{\Gamma; \Delta \vdash \lambda x : \widehat{\tau}_1 \& \varphi_1, t : \widehat{\tau}_1 \langle \varphi_1 \rangle} \rightarrow \widehat{\tau}_2 \langle \varphi_2 \rangle \& \emptyset \begin{bmatrix} \text{T-Abs} \end{bmatrix}$$

$$\overline{\Gamma; \Delta \vdash \lambda x : \widehat{\tau}_1 \& \varphi_1, t : \widehat{\tau}_1 \langle \varphi_1 \rangle} \rightarrow \widehat{\tau}_2 \langle \varphi_2 \rangle \& \emptyset \begin{bmatrix} \text{T-AnnAbs} \end{bmatrix}$$

$$\overline{\Gamma; \Delta \vdash \lambda x : \widehat{\tau}_1 \& \varphi} \quad \overline{\Gamma; \Delta \vdash t_1 : \widehat{\tau}_2 \langle \varphi_2 \rangle} \rightarrow \widehat{\tau} \langle \varphi \rangle \& \varphi \quad \Gamma; \Delta \vdash t_2 : \widehat{\tau}_2 \& \varphi_2 \\ \hline{\Gamma; \Delta \vdash t_1 : \widehat{\tau}_2 \langle \varphi_2 \rangle} \rightarrow \widehat{\tau} \langle \varphi \rangle \& \varphi \quad \Delta \vdash \varphi' \le \varphi \quad \Delta \vdash \varphi'' \le \varphi \\ \hline{\Gamma; \Delta \vdash t_1 : (\varphi_2) : \widehat{\tau}_1 \langle \varphi_2 \rangle : \widehat{\tau}_1 \langle \varphi_2 \rangle \& \varphi} \begin{bmatrix} \text{T-AnnApp} \end{bmatrix}$$

$$\overline{\Gamma; \Delta \vdash t_1 : \widehat{\tau}_1 \& \varphi} \quad \overline{\Gamma; \Delta \vdash t_2 : \widehat{\tau}_2 \& \varphi} \quad \overline{\Gamma} \quad \overline{\Gamma; \Delta \vdash t_1 : \widehat{\tau}_1 \& \varphi} \quad \overline{\Gamma; \Delta \vdash t_2 : \widehat{\tau}_2 \& \varphi} \quad \overline{\Gamma} \quad \overline{\Gamma; \Delta \vdash t_1 : \widehat{\tau}_1 \& \varphi} \quad \overline{\Gamma; \Delta \vdash t_2 : \widehat{\tau}_2 \& \varphi} \quad \overline{\Gamma; \Delta \vdash t_3 : \widehat{\tau}_2 \& \varphi}$$

$$\overline{\Gamma; \Delta \vdash t_1 : \widehat{\tau}_1 \& \varphi} \quad \overline{\Gamma; \Delta \vdash t_2 : \widehat{\tau}_2 \& \varphi} \quad \overline{\Gamma; \Delta \vdash t_3 : \widehat{\tau}_2 \& \varphi} \quad \overline{\Gamma; \Delta \vdash t_1 : \widehat{\tau}_1 \& \varphi} \quad \overline{\Gamma; \Delta \vdash t_2 : \widehat{\tau}_2 \& \varphi} \quad \overline{\Gamma; \Delta \vdash t_3 : \widehat{\tau}_2 \& \varphi} \quad \overline{\Gamma; \Delta \vdash t_1 : \widehat{\tau}_1 \& \varphi} \quad \overline{\Gamma; \Delta \vdash t_1 : \widehat{\tau}_1 \& \varphi} \quad \overline{\Gamma; \Delta \vdash t_2 : \widehat{\tau}_2 \& \varphi} \quad \overline{\Gamma} \quad \overline{\Gamma; \Delta \vdash t_1 : \widehat{\tau}_1 \& \varphi} \quad \overline{\Gamma; \Delta \vdash t_2 : \widehat{\tau}_2 \& \varphi} \quad \overline{\Gamma; \Delta \vdash t_3 : \widehat{\tau}_2 \& \varphi} \quad \overline{\Gamma; \Delta \vdash t_1 : \widehat{\tau}_1 \& \varphi} \quad \overline{\Gamma; \Delta \vdash t_2 : \widehat{\tau}_2 \& \varphi} \quad \overline{\Gamma; \Delta \vdash t_3 : \widehat{\tau}_2 \& \varphi} \quad \overline{\Gamma; \Delta \vdash t_3 : \widehat{\tau}_2 \& \varphi} \quad \overline{\Gamma; \Delta \vdash t_1 : \widehat{\tau}_2 \& \varphi} \quad \overline{\Gamma; \Delta \vdash t_1 : \widehat{\tau}_2 \& \varphi} \quad \overline{\Gamma; \Delta \vdash t_2 : \widehat{\tau}_2 \& \varphi} \quad \overline{\Gamma; \Delta \vdash t_3 : \widehat{\tau}_2 \& \varphi} \quad \overline{\Gamma; \Delta \vdash t_3 : \widehat{\tau}_2 \& \varphi} \quad \overline{\Gamma; \Delta \vdash t_3 : \widehat{\tau}_2 \& \varphi} \quad \overline{\Gamma; \Delta \vdash t_3 : \widehat{\tau}_2 \& \varphi} \quad \overline{\Gamma; \Delta \vdash t_3 : \widehat{\tau}_2 \& \varphi} \quad \overline{\Gamma; \Delta \vdash t_3 : \widehat{\tau}_2 \& \varphi} \quad \overline{\Gamma; \Delta \vdash t_3 : \widehat{\tau}_2 \& \varphi} \quad \overline{\Gamma; \Delta \vdash t_3 : \widehat{\tau}_2 \& \varphi} \quad \overline{\Gamma; \Delta \vdash t_3 : \widehat{\tau}_2 \& \varphi} \quad \overline{\Gamma; \Delta \vdash t_3 : \widehat{\tau}_2 \& \varphi} \quad \overline{\Gamma; \Delta \vdash t_3 : \widehat{\tau}_3 \& \varphi} \quad \overline{\Gamma; \Delta \vdash t_3 : \widehat{\tau}_3 \& \varphi} \quad \overline{\Gamma; \Delta \vdash t_3 : \widehat{\tau}_3 \& \varphi} \quad \overline{\Gamma; \Delta \vdash t_3 : \widehat{\tau}_3 \& \varphi} \quad \overline{\Gamma; \Delta \vdash t_3 : \widehat{\tau}_3 \& \varphi} \quad \overline{\Gamma; \Delta \vdash t_3 : \widehat{\tau}_3 \& \varphi} \quad \overline{\Gamma; \Delta \vdash t_3 : \widehat{\tau}_3 \& \varphi} \quad \overline{\Gamma; \Delta \vdash t_3 : \widehat{\tau}_3 \& \varphi} \quad \overline{\Gamma; \Delta \vdash t_3 : \widehat{\tau}_3 \& \varphi} \quad \overline{\Gamma; \Delta \vdash t_3 : \widehat{\tau}_3 \& \varphi} \quad \overline{\Gamma; \Delta \vdash t_3 : \widehat{\tau}_3 \& \varphi} \quad \overline{\Gamma;$$

- In T-Abs and T-AnnAbs, should the term-level term-abstraction also have an explicit effect annotation?
- In T-AnnAbs, might need a side condition stating that e is not free in Δ .
- In T-App, note the double occurrence of φ when typing t_1 . Is subeffecting sufficient here? Also note that we do *not* expect an exception variable in the left-hand side annotation of the function space constructor.
- In T-AnnApp, note the substitution. We will need a substitution lemma for annotations.
- In T-Fix, the might be some universal quantifiers in our way. Do annotation applications in t take care of this, already? Perhaps we do need to change fix t into a binding construct to resolve this? Also, there is some implicit subeffecting going on between the annotations and effect.
- In T-Case, note the use of explicit subeffecting. Can this be done using implicit subeffecting?
- For T-Sub, should we introduce a term-level coercion, as in Dussart– Henglein–Mossin? We now do shape-conformant subtyping, is subeffecting sufficient?
- Do we need additional kinding judgements in some of the rules? Can we merge the kinding judgement with the subtyping and/or -effecting judgement? Kind-preserving substitutions.

4.4 Type elaboration system

 In T-APP and T-Fix, note that there are substitutions in the premises of the rules. Are these inductive? (Probably, as these premises are not "recursive" ones.)

$$\overline{\Gamma, x : \widehat{\tau} \& \varphi; \Delta \vdash x \hookrightarrow x : \widehat{\tau} \& \varphi} \ \overline{[\Gamma\text{-Var}]}$$

$$\overline{\Gamma; \Delta \vdash c_\tau \hookrightarrow c_\tau : \tau \& \varnothing} \ \overline{[\Gamma\text{-Con}]} \quad \overline{\Gamma; \Delta \vdash \ell_\tau^\ell \hookrightarrow \ell_\tau^\ell : \bot_\tau \& \{\ell\}} \ \overline{[\Gamma\text{-Crash}]}$$

$$\Delta, \overline{e_i : \kappa_i} \vdash \widehat{\tau_1} \rhd \tau_1 \quad \Delta, \overline{e_i : \kappa_i} \vdash \varphi_1 : \text{exn}$$

$$\Gamma, x : \widehat{\tau_1} \& \varphi_1; \Delta, \overline{e_i : \kappa_i} \vdash t \hookrightarrow t' : \widehat{\tau_2} \& \varphi_2$$

$$\overline{\Gamma; \Delta \vdash \lambda x : \tau_1.t} \hookrightarrow \Delta \overline{e_i : \kappa_i} \land x : \widehat{\tau_1} \& \varphi_1.t' : \forall \overline{e_i : \kappa_i} \widehat{\tau_1} \langle \varphi_1 \rangle \rightarrow \widehat{\tau_2} \langle \varphi_2 \rangle \& \varnothing} \ \overline{[\Gamma\text{-Abs}]}$$

$$\Delta \vdash \widehat{\tau_2} \leqslant \widehat{\tau}[\overline{\varphi_i}/\overline{e_i}] \quad \Delta \vdash \varphi_2 \leqslant \overline{\varphi}[\overline{\varphi_i}/\overline{e_i}] \quad \overline{\Delta} \vdash \varphi_i : \kappa_i}$$

$$\Gamma; \Delta \vdash t_1 \hookrightarrow t'_1 : \forall \overline{e_i : \kappa_i} \widehat{\tau_1} \langle \varphi_1 \rangle \rightarrow \widehat{\tau} \langle \varphi \rangle \& \varphi' \quad \Gamma; \Delta \vdash t_2 \hookrightarrow t'_2 : \widehat{\tau_2} \& \varphi_2} \ \overline{[\Gamma\text{-App}]}$$

$$\Gamma; \Delta \vdash t_1 \leftrightarrow t' : \forall \overline{e_i : \kappa_i} \widehat{\tau_1} \langle \varphi \rangle \rightarrow \widehat{\tau}' \langle \varphi' \rangle \& \varphi'$$

$$\Gamma; \Delta \vdash t_1 \leftrightarrow t' : \forall \overline{e_i : \kappa_i} \widehat{\tau_i} \langle \varphi \rangle \rightarrow \widehat{\tau}' \langle \varphi' \rangle \& \varphi'$$

$$\Gamma; \Delta \vdash t_1 \leftrightarrow t' : \forall \overline{e_i : \kappa_i} \widehat{\tau_i} \langle \varphi \rangle \rightarrow \widehat{\tau}' \langle \varphi' \rangle \& \varphi'$$

$$\Gamma; \Delta \vdash t_1 \leftrightarrow t' : \forall \overline{e_i : \kappa_i} \widehat{\tau_i} \langle \varphi \rangle \rightarrow \widehat{\tau}' \langle \varphi' \rangle \& \varphi'$$

$$\Gamma; \Delta \vdash t_1 \leftrightarrow t' : \forall \overline{e_i : \kappa_i} \widehat{\tau_i} \langle \varphi \rangle \rightarrow \widehat{\tau}' \langle \varphi' \rangle \& \varphi'$$

$$\Gamma; \Delta \vdash t_1 \leftrightarrow t' : \forall \overline{e_i : \kappa_i} \widehat{\tau_i} \langle \varphi \rangle \rightarrow \widehat{\tau}' \langle \varphi' \rangle \& \varphi'$$

$$\Gamma; \Delta \vdash t_1 \leftrightarrow t'_1 : \widehat{t_1} \& \varphi_1 \quad \Gamma; \Delta \vdash t_2 \leftrightarrow t'_2 : \widehat{t_1} \& \varphi_2$$

$$\Gamma; \Delta \vdash t_1 \leftrightarrow t'_1 : \widehat{t_1} \& \varphi_1 \quad \Gamma; \Delta \vdash t_2 \leftrightarrow t'_2 : \widehat{t_2} \& \varphi_2$$

$$\Gamma; \Delta \vdash t_1 \leftrightarrow t'_1 : \widehat{t_1} \& \varphi_1 \quad \Gamma; \Delta \vdash t_2 \leftrightarrow t'_2 : \widehat{\tau_2} \& \varphi_2$$

$$\Gamma; \Delta \vdash t_1 \leftrightarrow t'_1 : \widehat{t_1} \& \varphi_1 \quad \Gamma; \Delta \vdash t_2 \leftrightarrow t'_2 : \widehat{\tau_2} \& \varphi_2$$

$$\Gamma; \Delta \vdash t_1 \leftrightarrow t'_1 : \widehat{t_1} \& \varphi_1 \quad \Gamma; \Delta \vdash t_2 \leftrightarrow t'_2 : \widehat{\tau_2} \& \varphi_2$$

$$\Gamma; \Delta \vdash t_1 \leftrightarrow t'_1 : \widehat{t_1} \& \varphi_1 \quad \Gamma; \Delta \vdash t_2 \leftrightarrow t'_2 : \widehat{\tau_2} \& \varphi_2$$

$$\Gamma; \Delta \vdash t_1 \leftrightarrow t'_1 : \widehat{t_1} \& \varphi_1 \quad \Gamma; \Delta \vdash t_2 \leftrightarrow t'_2 : \widehat{\tau_2} \& \varphi_2$$

$$\Gamma; \Delta \vdash t_1 \leftrightarrow t'_1 : \widehat{t_1} \& \varphi_1 \quad \Gamma; \Delta \vdash t_2 \leftrightarrow t'_2 : \widehat{\tau_2} \& \varphi_2$$

$$\Gamma; \Delta \vdash t_1 \leftrightarrow t'_1 : \widehat{t_1} \& \varphi_1 \quad \Gamma; \Delta \vdash t_2 \leftrightarrow t'_2 : \widehat{\tau_2} \& \varphi_2$$

$$\Gamma; \Delta \vdash t_1 \leftrightarrow t'_1 : \widehat{t_1} \& \varphi_1 \quad \Gamma; \Delta \vdash t_2 \leftrightarrow t'_2 : \widehat{\tau_2} \& \varphi_2$$

$$\Gamma; \Delta \vdash t_1 \leftrightarrow t'_1 : \widehat{t_1} \& \varphi_1 \quad \Gamma; \Delta \vdash t_2 \leftrightarrow t'_2 : \widehat{\tau_2} \& \varphi_2$$

$$\Gamma; \Delta \vdash t_1 \leftrightarrow t'_1 : \widehat{t_1} \& \varphi_1 \quad \Gamma; \Delta \vdash t_2 \leftrightarrow t'_2 : \widehat{\tau_2} \& \varphi_2$$

$$\Gamma; \Delta \vdash t_1 \leftrightarrow t'_1 : \widehat{t_1} \& \varphi_1 \quad \Gamma; \Delta \vdash t_2 \leftrightarrow t'_2 : \widehat{\tau_2} \& \varphi_2$$

$$\Gamma; \Delta \vdash t_1 \leftrightarrow t'_1 : \widehat{t_1} \& \varphi_1 \quad \Gamma; \Delta \vdash t_2 \leftrightarrow t'_2 : \widehat{\tau_2} \& \varphi_2$$

$$\Gamma; \Delta \vdash t_1 \leftrightarrow t'_1 : \widehat{t_$$

- For T-Fix: how would a binding fixpoint construct work?

4.5 Type inference algorithm

```
\mathcal{R}: TyEnv × KiEnv × Tm \rightarrow ExnTy × Exn
\mathcal{R} \Gamma \Delta x
                                                             =\Gamma_x
\mathcal{R} \Gamma \Delta c_{\tau}
                                                           =\langle \perp_{\tau}; \emptyset \rangle
                                        =\langle \perp_{\tau}; \{\ell\} \rangle
\mathcal{R} \Gamma \Delta \mathcal{I}_{\tau}^{\ell}
\mathcal{R} \Gamma \Delta (\lambda x : \tau . t) = \mathbf{let} \langle \widehat{\tau}_1; e_1; \overline{e_i : \kappa_i} \rangle = \mathcal{C} \varnothing \tau
                                                                                     \langle \widehat{\tau}_2; \varphi_2 \rangle = \mathcal{R} (\Gamma, x : \widehat{\tau}_1 \& e_1) (\Delta, \overline{e_i : \kappa_i}) t
                                                                       in \langle \forall \overline{e_i : \kappa_i} . \widehat{\tau}_1 \langle e_1 \rangle \rightarrow \widehat{\tau}_2 \langle \varphi_2 \rangle; \emptyset \rangle
                                                              = let \langle \widehat{\tau}_1; \varphi_1 \rangle
\mathcal{R} \Gamma \Delta (t_1 t_2)
                                                                                                                                                                               = \mathcal{R} \Gamma \Delta t_1

\begin{aligned}
\langle \widehat{\tau}_{2}; \varphi_{2} \rangle &= \mathcal{R} \Gamma \Delta t_{2} \\
\langle \widehat{\tau}_{2}' \langle e_{2}' \rangle &\to \widehat{\tau}' \langle \varphi' \rangle; \overline{e_{i} : \kappa_{i}} \rangle &= \mathcal{I} \widehat{\tau}_{1} \\
\theta &= [e_{2}' \mapsto \varphi_{2}] \circ \mathcal{M} \oslash \widehat{\tau}_{2} \widehat{\tau}_{2}'
\end{aligned}

                                                                       in \langle \|\theta \hat{\tau}'\|_{\Delta}; \|\theta \varphi' \cup \varphi_1\|_{\Delta} \rangle
\mathcal{R} \Gamma \Delta (\mathbf{fix} \ t)
                                                              = let \langle \hat{\tau}; \varphi \rangle
                                                                                                                                                                                 = \mathcal{R} \Gamma \Delta t
                                                                                    \langle \widehat{\tau}' \langle e' \rangle \rightarrow \widehat{\tau}'' \langle \varphi'' \rangle; \overline{e_i : \kappa_i} \rangle = \mathcal{I} \widehat{\tau}
                                                                       in \langle \widehat{\tau}_0; \varphi_0; i \rangle \leftarrow \langle \bot_{|\widehat{\tau}'|}; \emptyset; 0 \rangle
                                                                                     do \theta
                                                                                                                                                   \leftarrow [e' \mapsto \varphi_i] \circ \mathcal{M} \oslash \widehat{\tau}_i \ \widehat{\tau}'
                                                                                                 \langle \widehat{\tau}_{i+1}; \varphi_{i+1}; i \rangle \leftarrow \langle \llbracket \theta \widehat{\tau}'' \rrbracket_{\Delta}; \llbracket \theta \varphi'' \rrbracket_{\Delta}; i+1 \rangle
                                                                                     until \langle \widehat{\tau}_i; \varphi_i \rangle \equiv \langle \widehat{\tau}_{i-1}; \varphi_{i-1} \rangle
                                                                                     return \langle \widehat{\tau}_i; || \varphi \cup \varphi_i ||_{\Delta} \rangle
\mathcal{R} \Gamma \Delta (t_1 \oplus t_2) = \mathbf{let} \langle \mathbf{i} \hat{\mathbf{n}} \mathbf{t}; \varphi_1 \rangle = \mathcal{R} \Gamma \Delta t_1
                                                                                     \langle \mathbf{i} \hat{\mathbf{n}} \mathbf{t}; \varphi_2 \rangle = \mathcal{R} \Gamma \Delta t_2
                                                                       in \langle \mathbf{bool}; \| \varphi_1 \cup \varphi_2 \|_{\Delta} \rangle
\mathcal{R} \Gamma \Delta (t_1 \operatorname{\mathbf{seq}} t_2)
                                                               = let \langle \widehat{\tau}_1; \varphi_1 \rangle = \mathcal{R} \Gamma \Delta t_1
                                                                                     \langle \hat{\tau}_2; \varphi_2 \rangle = \mathcal{R} \Gamma \Delta t_2
                                                                       in \langle \hat{\tau}_2; \| \varphi_1 \cup \varphi_2 \|_{\Delta} \rangle
\mathcal{R} \Gamma \Delta (if t_1 then t_2 else t_3)
                                                              = let \langle \mathbf{b}\widehat{\mathbf{oo}}\mathbf{l}; \varphi_1 \rangle = \mathcal{R} \Gamma \Delta t_1
                                                                                     \langle \widehat{\tau}_2; \varphi_2 \rangle = \mathcal{R} \Gamma \Delta t_2
                                                                                     \langle \widehat{\tau}_3; \varphi_3 \rangle = \mathcal{R} \Gamma \Delta t_3
```

```
\begin{array}{c} \quad & \quad \text{in} \quad \langle \|\widehat{\tau}_2 \sqcup \widehat{\tau}_3\|_\Delta; \|\varphi_1 \cup \varphi_2 \cup \varphi_3\|_\Delta \rangle \\ \mathcal{R} \; \Gamma \; \Delta \; []_\tau \qquad & = \langle [\bot_\tau \langle \mathcal{O} \rangle] \, ; \mathcal{O} \rangle \\ \mathcal{R} \; \Gamma \; \Delta \; (t_1 :: t_2) \; & = \text{let} \; \langle \widehat{\tau}_1; \varphi_1 \rangle \qquad = \mathcal{R} \; \Gamma \; \Delta \; t_1 \\ \qquad \qquad \qquad \qquad \langle [\widehat{\tau}_2 \langle \varphi_2' \rangle] \, ; \varphi_2 \rangle = \mathcal{R} \; \Gamma \; \Delta \; t_2 \\ \qquad \qquad \qquad \text{in} \; \langle \|[(\widehat{\tau}_1 \sqcup \widehat{\tau}_2) \langle \varphi_1 \cup \varphi_2' \rangle]\|_\Delta; \varphi_2 \rangle \\ \mathcal{R} \; \Gamma \; \Delta \; (\text{case} \; t_1 \; \text{of} \; \{[] \mapsto t_2; x_1 :: x_2 \mapsto t_3 \}) \\ \qquad = \text{let} \; \langle [\widehat{\tau}_1 \langle \varphi_1' \rangle] \, ; \varphi_1 \rangle \qquad = \mathcal{R} \; \Gamma \; \Delta \; t_1 \\ \qquad \qquad \langle \widehat{\tau}_2; \varphi_2 \rangle = \mathcal{R} \; (\Gamma, x_1 :: \widehat{\tau}_1 \; \& \; \varphi_1', x_2 : \left[\widehat{\tau}_1 \langle \varphi_1' \rangle\right] \; \& \; \varphi_1) \; \Delta \; t_2 \\ \qquad \qquad \langle \widehat{\tau}_3; \varphi_3 \rangle = \mathcal{R} \; \Gamma \; \Delta \; t_3 \\ \qquad \qquad \text{in} \; \langle \|\widehat{\tau}_2 \sqcup \widehat{\tau}_3\|_\Delta; \|\varphi_1 \cup \varphi_2 \cup \varphi_3\|_\Delta \rangle \end{array}
```

- In R-App and R-Fix: check that the fresh variables generated by \mathcal{I} are substituted away by the substitution θ created by \mathcal{M} . Also, we don't need those variables in the algorithm if we don't generate the elaborated term.
- In R-Fix we could get rid of the auxillary underlying type function if the fixpoint construct was replaced with a binding variant with an explicit type annotation.
- For R-Fix, make sure the way we handle fixpoints of exceptional value in a manner that is sound w.r.t. to the operational semantics we are going to give to this.
- Note that we do not construct the elaborated term, as it is not useful other than for metatheoretic purposes.
- Lemma: The algorithm maintains the invariant that exception types and exceptions are in normal form.

4.6 Subtyping

 Is S-Refl an admissable/derivable rule, or should we drop S-Bool and S-Int?

$$\begin{split} \frac{\Delta \vdash \widehat{\tau}_1 \leqslant \widehat{\tau}}{\Delta \vdash \widehat{\tau}_1 \leqslant \widehat{\tau}_2} & \xrightarrow{\Delta \vdash \widehat{\tau}_2 \leqslant \widehat{\tau}_3} \text{ [S-Trans]} \\ \frac{\Delta \vdash \widehat{\tau}_0 \leqslant \widehat{\tau}}{\Delta \vdash \widehat{\mathsf{bool}}} & \xrightarrow{\Delta \vdash \widehat{\tau}_1 \leqslant \widehat{\tau}_3} & \text{[S-Int]} \\ \frac{\Delta \vdash \widehat{\mathsf{bool}} \leqslant \widehat{\mathsf{bool}}}{\Delta \vdash \widehat{\mathsf{bool}}} & \xrightarrow{\Delta \vdash \widehat{\mathsf{int}} \leqslant \widehat{\mathsf{int}}} & \text{[S-Int]} \\ \frac{\Delta \vdash \widehat{\tau}_1' \leqslant \widehat{\tau}_1 \quad \Delta \vdash \varphi_1' \leqslant \varphi_1 \quad \Delta \vdash \widehat{\tau}_2 \leqslant \widehat{\tau}_2' \quad \Delta \vdash \varphi_2 \leqslant \varphi_2'}{\Delta \vdash \widehat{\tau}_1 \langle \varphi_1 \rangle \rightarrow \widehat{\tau}_2 \langle \varphi_2 \rangle \leqslant \widehat{\tau}_1' \langle \varphi_1' \rangle \rightarrow \widehat{\tau}_2' \langle \varphi_2' \rangle} & \text{[S-Arr]} \\ \frac{\Delta \vdash \widehat{\tau} \leqslant \widehat{\tau}' \quad \Delta \vdash \varphi \leqslant \varphi'}{\Delta \vdash [\widehat{\tau} \langle \varphi \rangle] \leqslant [\widehat{\tau}' \langle \varphi' \rangle]} & \text{[S-List]} & \frac{\Delta, e : \kappa \vdash \widehat{\tau}_1 \leqslant \widehat{\tau}_2}{\Delta \vdash \forall e : \kappa. \widehat{\tau}_1 \leqslant \forall e : \kappa. \widehat{\tau}_2} & \text{[S-Forall]} \\ - & \text{Possibly useful lemma: } \widehat{\tau}_1 = \widehat{\tau}_2 \iff \widehat{\tau}_1 \leqslant \widehat{\tau}_2 \land \widehat{\tau}_2 \leqslant \widehat{\tau}_1. \end{split}$$

5 Operational semantics

5.1 Evaluation

- The reduction relation is non-deterministic.
- We do not have a Haskell-style imprecise exception semantics (e.g. E-I_F).
- We either need to omit the type annotations on $\mathcal{L}_{\tau}^{\ell}$, or add them to if then else and case of $\{[]\mapsto;::\mapsto\}$.
- We do not have a rule E-AnnAppExn. Check that the canonical forms lemma gives us that terms of universally quantified type cannot be exceptional values.

6 Interesting observations

– Exception types are not invariant under η -reduction.

7 Metatheory

7.1 Declarative type system

Lemma 1 (Canonical forms).

- 1. If \widehat{v} is a possibly exceptional value of type $\widehat{\mathbf{bool}}$, then \widehat{v} is either true, false, or $exists \ell$.
- 2. If \hat{v} is a possibly exceptional value of type $\hat{\mathbf{int}}$, then \hat{v} is either some integer n, or an exceptional value \mathcal{L}^{ℓ} .
- 3. If \widehat{v} is a possibly exceptional value of type $[\widehat{\tau}\langle \varphi \rangle]$, then \widehat{v} is either [], t :: t', or f^{ℓ} .
- 4. If \widehat{v} is a possibly exceptional value of type $\widehat{\tau}_1\langle \varphi_1 \rangle \to \widehat{\tau}_2\langle \varphi_2 \rangle$, then \widehat{v} is either $\lambda x : \widehat{\tau}_1 \& \varphi_1.t'$ or ξ^{ℓ} .
- 5. If \hat{v} is a possibly exceptional value of type $\forall e : \kappa.\hat{\tau}$, then \hat{v} is $\Lambda e : \kappa.t$

Proof. For each part, inspect all forms of \widehat{v} and discard the unwanted cases by inversion of the typing relation. Note that \bot_{τ} cannot give us a type of the form $\forall e : \kappa.\widehat{\tau}$.

To Do.: Say something about T-Suв?

Theorem 1 (Progress). If Γ ; $\Delta \vdash t : \hat{\tau} \& \varphi$ with t a closed term, then t is either a possibly exceptional value \hat{v} or there is a closed term t' such that $t \longrightarrow t'$.

Proof. By induction on the typing derivation Γ ; $\Delta \vdash t : \hat{\tau} \& \varphi$.

The case T-Var can be discarded, as a variable is not a closed term. The cases T-Con, T-Crash, T-Abs, T-AnnAbs, T-Nil and T-Cons are immediate as they are values.

Case T-App: We can immediately apply the induction hypothesis to Γ ; $\Delta \vdash t_1: \widehat{\tau}_2 \langle \varphi_2 \rangle \to \widehat{\tau} \langle \varphi \rangle$ & φ , giving us either a t_1' such that $t_1 \longrightarrow t_1'$ or that $t_1 = \widehat{v}$. In the former case we can make progress using E-App. In the latter case the canonical forms lemma tells us that either $t_1 = \lambda x: \widehat{\tau}_2$ & $\varphi_2.t_1'$ or $t_1 = \xi^\ell$, in which case we can make progress using E-Appabs or E-Appexn, respectively.

The remaining cases follow by analogous reasoning.

Lemma 2 (Annotation substitution).

- 1. If Δ , $e : \kappa' \vdash \varphi : \kappa$ and $\Delta \vdash \varphi' : \kappa'$ then $\Delta \vdash \varphi[\varphi'/e] : \kappa$.
- 2. If $\Delta, e : \kappa' \vdash \varphi_1 \leqslant \varphi_2$ and $\Delta \vdash \varphi' : \kappa'$ then $\Delta \vdash \varphi_1[\varphi'/e] \leqslant \varphi_2[\varphi'/e]$.
- 3. If $\Delta, e : \kappa' \vdash \widehat{\tau}_1 \leqslant \widehat{\tau}_2$ and $\Delta \vdash \varphi' : \kappa'$ then $\Delta \vdash \widehat{\tau}_1[\varphi'/e] \leqslant \widehat{\tau}_2[\varphi'/e]$.
- 4. If Γ ; Δ , $e : \kappa' \vdash t : \hat{\tau} \& \varphi$ and $\Delta \vdash \varphi' : \kappa'$ then Γ ; $\Delta \vdash t[\varphi'/e] : \hat{\tau}[\varphi'/e] \& \varphi$.

To po.: In part 4, either we need the assumption $e \notin fv(\varphi)$ (which seems to be satisfied everywhere we want to apply this lemma), or we also need to apply the substitution to φ (is this expected or not in a type-and-effect system)? T-Fix seems to be to only rule where an exception variable can flow from $\hat{\tau}$ to ϕ

Proof. 1. By induction on the derivation of Δ , $e:\kappa' \vdash \varphi:\kappa$. The cases A-VAR, A-ABS and A-APP are analogous to the respective cases in the proof of term substitution below. In the case A-Con one can strengthen the assumption Δ , $e : \kappa' \vdash \{\ell\}$: EXN to $\Delta \vdash \{\ell\}$: EXN as $e \notin \text{fv}(\{\ell\})$, the result is then immediate; similarly for A-EMPTY. The case A-UNION goes analogous to A-APP.

- 2. To Do.
- 3. To Do.
- 4. By induction on the derivation of Γ ; Δ , $e : \kappa' \vdash t : \hat{\tau} \& \varphi$. Most cases can be discarded by a straightforward application of the induction hypothesis; we show only the interesting case.

Case T-ANNAPP: To DO.

To po.

Lemma 3 (Term substitution). *If* Γ , $x : \widehat{\tau}' \& \varphi'$; $\Delta \vdash t : \widehat{\tau} \& \varphi$ and Γ ; $\Delta \vdash t' : \widehat{\tau}' \& \varphi'$ then Γ ; $\Delta \vdash t[t'/x] : \widehat{\tau} \& \varphi$.

П

Proof. By induction on the derivation of Γ , $x : \widehat{\tau}' \& \varphi$; $\Delta \vdash t : \widehat{\tau} \& \varphi$.

Case T-VAR: We either have t = x or t = x' with $x \neq x'$. In the first case we need to show that Γ ; $\Delta \vdash x[t'/x] : \hat{\tau} \& \varphi$, which by definition of substitution is equal to Γ ; $\Delta \vdash x : \hat{\tau} \& \varphi$, but this is one of our assumptions. In the second case we need to show that $\Gamma, x' : \hat{\tau} \& \varphi; \Delta \vdash x'[t/x] : \hat{\tau} \& \varphi$, which by definition of substitution is equal to $\Gamma, x' : \hat{\tau} \& \varphi; \Delta \vdash x' : \hat{\tau} \& \varphi$. This follows immediately from T-VAR.

Case T-ABS: Our assumptions are

$$\Gamma, x : \widehat{\tau}' \& \varphi', y : \widehat{\tau}_1 \& \varphi_1; \Delta \vdash t : \widehat{\tau}_2 \& \varphi_2 \tag{7}$$

$$\Gamma; \Delta \vdash t' : \widehat{\tau}' \& \varphi'.$$
 (8)

By the Barendregt convention we may assume that $y \neq x$ and $y \notin \text{fv}(t')$. We need to show that $\Gamma; \Delta \vdash (\lambda y : \widehat{\tau}_1 \& \varphi_1.t)[t'/x] : \widehat{\tau}_1 \langle \varphi_1 \rangle \to \widehat{\tau}_2 \langle \varphi_2 \rangle \& \emptyset$, which by definition of substitution is equal to

$$\Gamma; \Delta \vdash \lambda y : \widehat{\tau}_1 \& \varphi_1.t[t'/x] : \widehat{\tau}_1 \langle \varphi_1 \rangle \to \widehat{\tau}_2 \langle \varphi_2 \rangle \& \emptyset.$$
 (9)

We weaken (8) to Γ , y : $\hat{\tau}_1$ & φ_1 ; $\Delta \vdash t'$: $\hat{\tau}'$ & φ' and apply the induction hypothesis on this and (7) to obtain

$$\Gamma, y : \widehat{\tau}_1 \& \varphi_1; \Delta \vdash t[t'/x] : \widehat{\tau}_2 \& \varphi_2. \tag{10}$$

The desired result (9) can be constructed from (10) using T-ABS.

Case T-AnnAbs: Our assumptions are $\Gamma, x: \widehat{\tau}' \& \varphi'; \Delta, e: \kappa \vdash t: \widehat{\tau} \& \varphi$ and $\Gamma; \Delta \vdash t': \widehat{\tau}' \& \varphi'$. By the Barendregt convention we may assume that $e \notin \operatorname{fv}(t')$. We need to show that $\Gamma; \Delta \vdash (\Delta e: \kappa.t) [t'/x]: \widehat{\tau} \& \varphi$, which is equal to $\Gamma; \Delta \vdash \Delta e: \kappa.t[t'/\kappa]: \widehat{\tau} \& \varphi$ by definition of substitution. By applying the induction hypothesis we obtain $\Gamma; \Delta, e: \kappa \vdash t[t'/x]: \widehat{\tau} \& \varphi$. The desired result can be constructed using T-AnnAbs.

Case T-App: Our assumptions are

$$\Gamma, x : \widehat{\tau}' \& \varphi'; \Delta \vdash t_1 : \widehat{\tau}_2 \langle \varphi_2 \rangle \to \widehat{\tau} \langle \varphi \rangle \& \varphi$$
 (11)

$$\Gamma, x : \widehat{\tau}' \& \varphi'; \Delta \vdash t_2 : \widehat{\tau}_2 \& \varphi_2. \tag{12}$$

We need to show that Γ ; $\Delta \vdash (t_1 \ t_2)[t'/x] : \widehat{\tau} \& \varphi$, which by definition of substitution is equal to

$$\Gamma; \Delta \vdash (t_1[t'/x]) \ (t_2[t'/x]) : \widehat{\tau} \& \varphi.$$
 (13)

By applying the induction hypothesis to (11) respectively (12) we obtain

$$\Gamma; \Delta \vdash t_1[t'/x] : \widehat{\tau}_2\langle \varphi_2 \rangle \to \widehat{\tau}\langle \varphi \rangle \& \varphi$$
 (14)

$$\Gamma; \Delta \vdash t_2[t'/x] : \widehat{\tau}_2 \& \varphi_2. \tag{15}$$

The desired result (13) can be constructed by applying T-APP to (14) and (15). All other cases are either immediate or analogous to the case of T-APP. \Box

Lemma 4 (Inversion).

1. If
$$\Gamma$$
; $\Delta \vdash \lambda x : \widehat{\tau} \& \varphi.t : \widehat{\tau}_1 \langle \varphi_1 \rangle \rightarrow \widehat{\tau}_2 \langle \varphi_2 \rangle \& \varphi_3$, then

$$-\Gamma$$
, $x:\widehat{\tau}$ & φ ; $\Delta \vdash t:\widehat{\tau}'$ & φ' ,

$$-\Delta \vdash \widehat{\tau}_1 \leqslant \widehat{\tau} \text{ and } \Delta \vdash \varphi_1 \leqslant \varphi$$
,

$$-\Delta \vdash \widehat{\tau}' \leqslant \widehat{\tau}_2 \text{ and } \Delta \vdash \varphi' \leqslant \varphi_2.$$

- 2. If Γ ; $\Delta \vdash \Lambda e : \kappa . t : \forall e : \kappa . \hat{\tau} \& \varphi$, then
 - $-\Gamma$; Δ , $e: \kappa \vdash t: \widehat{\tau}' \& \varphi'$,
 - $-\Delta$, $e: \kappa \vdash \widehat{\tau}' \leqslant \widehat{\tau}$,
 - $-\Delta \vdash \varphi' \leqslant \varphi.$
 - To Do. $e \notin fv(\varphi)$ and/or $e \notin fv(\varphi')$.

Proof. 1. By induction on the typing derivation.

Case T-Abs: We have $\hat{\tau} = \hat{\tau}_1$, $\varphi = \varphi_1$ and take $\hat{\tau}' = \hat{\tau}_2$, $\varphi' = \varphi_2$, the result then follows immediately from the assumption Γ , $x : \hat{\tau} \& \varphi$; $\Delta \vdash t : \hat{\tau}_2 \& \varphi_2$ and reflexivity of the subtyping and subeffecting relations.

Case T-Sub: We are given the additional assumptions

$$\Gamma; \Delta \vdash \lambda x : \widehat{\tau} \& \varphi.t : \widehat{\tau}'_1 \langle \varphi'_1 \rangle \to \widehat{\tau}'_2 \langle \varphi'_2 \rangle \& \varphi'_3,$$
 (16)

$$\Delta \vdash \widehat{\tau}_1'\langle \varphi_1' \rangle \to \widehat{\tau}_2'\langle \varphi_2' \rangle \leqslant \widehat{\tau}_1\langle \varphi_1 \rangle \to \widehat{\tau}_2\langle \varphi_2 \rangle, \tag{17}$$

$$\Delta \vdash \varphi_3' \leqslant \varphi_3. \tag{18}$$

Applying the induction hypothesis to (16) gives us

$$\Gamma, x : \widehat{\tau} \& \varphi; \Delta \vdash t : \widehat{\tau}_2'' \& \varphi_2'', \tag{19}$$

$$\Delta \vdash \widehat{\tau}_1' \leqslant \widehat{\tau}, \quad \Delta \vdash \varphi_1' \leqslant \varphi,$$
 (20)

$$\Delta \vdash \widehat{\tau}_2'' \leqslant \widehat{\tau}_2', \quad \Delta \vdash \varphi_2'' \leqslant \varphi_2'.$$
 (21)

Inversion of the subtyping relation on (17) gives us

$$\Delta \vdash \widehat{\tau}_1' \leqslant \widehat{\tau}, \quad \Delta \vdash \varphi_1' \leqslant \varphi,$$
 (22)

$$\Delta \vdash \widehat{\tau}_2'' \leqslant \widehat{\tau}_2', \quad \Delta \vdash \varphi_2'' \leqslant \varphi_2'.$$
 (23)

The result follows from (19) and combining (22) with (20) and (21) with (23) using the transitivity of the subtyping and subeffecting relations.

2. By induction on the typing derivation. Case T-AnnAbs: We need to show that Γ ; Δ , $e: \kappa \vdash t: \widehat{\tau} \& \varphi$, which is of our assumptions, and that Δ , $e: \kappa \vdash \widehat{\tau} \leqslant \widehat{\tau}$ and $\Delta \vdash \varphi \leqslant \varphi$; this follows the reflexivity of the subtyping, respectively subeffecting, relation (noting $e \notin \operatorname{fv}(\varphi)$).	from
Case T-Sub: Similar to the case T-Sub in part 1.	
Theorem 2 (Preservation). <i>If</i> Γ ; $\Delta \vdash t : \widehat{\tau} \& \varphi$ <i>and</i> $t \longrightarrow t'$, <i>then</i> Γ ; $\Delta \vdash t' : \widehat{\tau}$	& φ.
<i>Proof.</i> By induction on the typing derivation Γ ; $\Delta \vdash t : \hat{\tau} \& \varphi$. The cases for T-Var, T-Con, T-Crash, T-Abs, T-AnnAbs, T-Nil, and T-can be discarded immediately, as they have no applicable evaluation rule To Do.	
7.2 Syntax-directed type elaboration	
7.3 Type inference algorithm	
Theorem 3 (Syntactic soundness). <i>If</i> \mathcal{R} Γ Δ $t = \langle \widehat{\tau}; \varphi \rangle$, then $\Gamma; \Delta \vdash t : \widehat{\tau} \& \Gamma$	φ.
<i>Proof.</i> By induction on the term t . To DO.	
Theorem 4 (Termination). $\mathcal{R} \Gamma \Delta t$ terminates.	
<i>Proof.</i> By induction on the term t .	

$$\begin{array}{c} t_1 \longrightarrow t_1' \\ t_1 t_2 \longrightarrow t_1' t_2 \end{array} \text{ [E-APP]} & \overline{(\lambda x:\widehat{\tau} \& \varphi.t) \ t_2 \longrightarrow t_1[t_2/x]} \text{ [E-APPABS]} \\ \hline t \longrightarrow t' \\ \overline{t \ \langle \varphi \rangle \longrightarrow t' \ \langle \varphi \rangle} \text{ [E-ANNAPP]} & \overline{(\Lambda \varepsilon: \kappa.t) \ \langle \varphi \rangle \longrightarrow t[\varphi/e]} \text{ [E-ANNABSABS]} \\ \hline \frac{t \longrightarrow t'}{\text{fix } t \longrightarrow \text{fix } t'} \text{ [E-FIx]} & \overline{\text{fix } (\lambda x:\widehat{\tau} \& \varphi.t) \longrightarrow t[\text{fix } (\lambda x:\widehat{\tau} \& \varphi.t)/x]} \text{ [E-FIXABS]} \\ \hline \frac{t \longrightarrow t'}{\text{fix } t \longrightarrow \text{fix } t'} \text{ [E-APPEXN]} & \overline{\text{fix } i^\ell \longrightarrow i^\ell} \text{ [E-FIXEXN]} \\ \hline \frac{t_1 \longrightarrow t_1'}{t_1 \oplus t_2 \longrightarrow t_1' \oplus t_2} \text{ [E-OP_1]} & \frac{t_2 \longrightarrow t_2'}{t_1 \oplus t_2 \longrightarrow t_1 \oplus t_2'} \text{ [E-OP_2]} \\ \hline \frac{t_1 \longrightarrow t_1'}{t_1 \sec t_2 \longrightarrow i^\ell} \text{ [E-OPEXN_1]} & \frac{t_1 \longrightarrow t_1'}{t_1 \oplus t_2 \longrightarrow t_1' \oplus t_2'} \text{ [E-OPEXN_2]} \\ \hline \frac{t_1 \longrightarrow t_1'}{t_1 \sec t_2 \longrightarrow t_1' \sec t_2} \text{ [E-SEQ_1]} & \frac{t_1 \longrightarrow t_1'}{t_1 \sec t_2 \longrightarrow t_2} \text{ [E-IFEXN]} \\ \hline \frac{t_1 \longrightarrow t_1'}{\text{if } t_1 \text{ then } t_2 \text{ else } t_3 \longrightarrow \text{if } t_1' \text{ then } t_2 \text{ else } t_3} \text{ [E-IF} \\ \hline \text{if } \text{fuse then } t_2 \text{ else } t_3 \longrightarrow t_2} & \text{ [E-IFFALSE]} \\ \hline \frac{t_1 \longrightarrow t_1'}{\text{case } t_1 \text{ of } \{[] \mapsto t_2; x_1 :: x_2 \mapsto t_3\} \longrightarrow t_2} \text{ [E-CASENIL]} \\ \hline \text{case } [] \text{ of } \{[] \mapsto t_2; x_1 :: x_2 \mapsto t_3\} \longrightarrow t_3 \text{ [E-CASENIL]} \\ \hline \text{case } t_1 \text{ of } \{[] \mapsto t_2; x_1 :: x_2 \mapsto t_3\} \longrightarrow t_3 \text{ [E-CASEEXN]} \\ \hline \text{case } t_1' \text{ of } \{[] \mapsto t_2; x_1 :: x_2 \mapsto t_3\} \longrightarrow t_3 \text{ [E-CASEEXN]} \\ \hline \end{array}$$

Figure 2: Operational semantics $(t_1 \longrightarrow t_2)$

$$e[\varphi/e] \equiv \varphi$$

$$e'[\varphi/e] \equiv e'$$

$$\{\ell\}[\varphi/e] \equiv \{\ell\}$$

$$\varnothing[\varphi/e] \equiv \varnothing$$

$$(\lambda e' : \kappa \cdot \varphi') [\varphi/e] \equiv \lambda e' : \kappa \cdot \varphi'[\varphi/e]$$

$$(e_1 e_2) [\varphi/e] \equiv (e_1[\varphi/e]) (e_2[\varphi/e])$$

$$(e_1 \cup e_2) [\varphi/e] \equiv e_1[\varphi/e] \cup e_2[\varphi/e]$$

Figure 3: Annotation substitution

$$x[t/x] \equiv t$$

$$x'[t/x] \equiv x'$$

$$c_{\tau}[t/x] \equiv c_{\tau}$$

$$(\lambda x' : \widehat{\tau}.t') [t/x] \equiv \lambda x' : \widehat{\tau}.t'[t/x]$$
if $x \neq x'$ and $x' \notin fv(t)$

Figure 4: Term substitution