

Standard Operating Procedures for Digital Identity Systems

September 2024

Executive Summary

Using Standard Operating Procedures (SOPs) when establishing a Digital Identity (DID) system is crucial for ensuring the security, reliability, and trustworthiness of the system. The 51 SOPs developed by the Alan Turing Institute provide clear, structured steps for the onboarding, authentication, and lifecycle management of digital identities and their associated credentials. By adhering to these SOPs, the DID system can effectively safeguard the personal and sensitive data of its users, prevent unauthorised access to accounts, and maintain the overall integrity of the system. This includes 51 SOPs for system implementers and 51 accompanying documents that provide the rationalisation for each SOP. Together, these SOPs provide a comprehensive framework for managing digital identities in a secure and consistent manner, as outlined in this document.

These SOPs are intended to cover scenarios that are typical or likely to occur during the lifecycle of a DID system. They address common events and standard operational processes to ensure smooth and secure management of digital identities. While the SOPs focus on routine and expected scenarios, they may need to be expanded upon further testing and evaluation to include additional events or circumstances that could arise. This ongoing evaluation ensures that the SOPs remain relevant, comprehensive, and capable of addressing the evolving needs and challenges of digital identity management.

All SOPs developed in this work can be accesses via the project's GitHub repository

https://github.com/alan-turing-institute/Standard-Operating-Procedures-for-Digital-Identity-Systems/tree/main

Acknowledgements

This work was supported, in whole or in part, by the Bill & Melinda Gates Foundation [INV-001309]. Under the grant conditions of the Foundation, a Creative Commons Attribution 4.0 Generic License has already been assigned to the Author's Accepted Manuscript.

The Institute is named in honour of Alan Turing, whose pioneering work in theoretical and applied mathematics, engineering and computing is considered to have laid the foundations for modern-day data science and artificial intelligence. It was established in 2015 by five founding universities and became the United Kingdom's (UK) National Institute for Data Science and Artificial Intelligence. Today, Turing brings together academics from 13 of the UK's leading universities and hosts visiting fellows and researchers from many international centres of academic excellence. Turing also liaises with public bodies and is supported by collaborations with influential organisations.

Table of Contents

1. IN	TRODUCTION	6
2. S	COPE	7
2.1. 2.2.	In Scope Out of Scope	
3. M	ETHODOLOGY	7
4. O	VERVIEW OF THE SOPS	9
4.1.	Onboarding Phase	9
4.2.	AUTHENTICATION PHASE	13
4.3.	ID LIFECYCLE MANAGEMENT	15
5. S	TRUCTURE OF THE SOPS	19
5.1.	DEFINITION OF PURPOSE AND SCOPE	19
5.2.	APPLICATION: STAKEHOLDER IDENTIFICATION AND OWNERSHIP	19
5.3.	Prerequisites and Assumptions	19
5.4.	DETAILED PROCESS FLOWS AND PROCEDURES	19
5.5.	Visualisation:	20
5.6.	RATIONALISATION AND COMPLIANCE:	20
5.7.	References	21
6. C	ONCLUSION	21
APPEN	NDIX A: DID SYSTEM - OVERVIEW OF ONBOARDING PHASE	22
APPEN	NDIX B: DID SYSTEM - OVERVIEW OF AUTHENTICATION PHASE	23
A DDEN	NOIS C. DID SYSTEM - OVEDVIEW OF ID I IEECYCLE MANAGEMENT DHASE	2/

1. Introduction

Standard Operating Procedures (SOPs) are a set of step-by-step instructions that detail how to execute specific functions within a system. SOPs typically break down a function into discrete processes, with each process consisting of sequential procedures (the instructions for that process). By following suitable SOPs, administrators ensure a standardised approach to operations, promoting consistency and reliability in outcomes.

The trustworthy digital infrastructure for Identity Systems team at the Alan Turing Institute has prepared a set of 51 SOPs for use. This collection consists of two versions: 51 SOPs specifically designed for system implementers, and an additional 51 SOPs that include detailed rationalisations for each procedure. This document provides a comprehensive overview of each SOP, detailing their purpose, scope, methodology, and structure. It offers an in-depth understanding of how the SOPs are designed to guide the management of DID system. There are three essential phases in a DID system, each encompassing a series of critical functions that need to be executed. These phases are:

- Onboarding This phase involves the registration of an applicant into the DID system, including the collection, validation, and verification of the applicant's claimed identity.
 It ensures that new users are securely and efficiently integrated into the system.
- Authentication This phase focuses on the modules and mechanisms used to verify
 and approve the identity of an applicant or a claimant (a person claiming to possess a
 registered identity). It employs various methods such as passwords, biometrics, and
 multi-factor authentication to ensure secure access to the system.
- DID Lifecycle Management This phase deals with the ongoing management of DID
 account holder data, including updating personal information, handling compromised
 authenticators, and managing account suspensions or deletions. It ensures the
 continued security, accuracy, and compliance of the digital identity records throughout
 their lifecycle.

The SOPs outlined in this report are designed to be followed to maintain a trustworthy DID system. These SOPs ensure that the system:

- Complies with relevant data regulations and policies, safeguarding user information and maintaining legal and regulatory standards.
- Minimises security risks associated with the registration of applicants and the storage of their data, protecting against unauthorised access and data breaches.

- Reduces the likelihood of downtime caused by procedural failures or inconsistencies, thereby ensuring the system's reliability and availability.
- Guarantees that data is accessible and efficiently retrievable for due diligence, supporting transparency and accountability in the management of digital identities.

By implementing these SOPs, the DID system can achieve a high level of security, reliability, and user trust, facilitating efficient and secure management of digital identities.

2. Scope

2.1. In Scope

The SOPs for the DID system are designed to establish a secure, reliable, and standardised process for managing digital identities. The scope includes procedures for onboarding new users, authenticating their identities, and managing the lifecycle of digital identities. These SOPs ensure compliance with regulatory standards, protect user data, and maintain the integrity and trustworthiness of the DID system. The SOPs cover the following key areas:

- Onboarding: To facilitate the registration and enrolment of new users into the DID system, ensuring that all necessary information is collected, validated, and verified.
- Authentication: To authenticate users securely and reliably, using various factors (knowledge, ownership, inherence) to verify their identities and grant access to the DID system.
- **DID Lifecycle Management**: To manage digital identities throughout their lifecycle, including updates, handling compromised authenticators, account suspensions, and deletions.

2.2. Out of Scope

Events and scenarios that are considered rare or unlikely to occur within the DID system's lifecycle, such as unusual forms of identity fraud or complex legal disputes over digital identity ownership, are not covered by these SOPs. Additionally, the SOPs do not address issues that fall outside the standard regulatory compliance and data protection frameworks for digital identity systems.

3. Methodology

A DID system is designed to ensure a secure, efficient, and standardised approach to managing digital identities. The overall methodology for developing these SOPs was structured to cover all critical phases of the DID system, including onboarding, authentication, and lifecycle management to enable appropriate deployment in an auditable and consistent

way. The development methodology involved a rigorous process to ensure that the procedures meet industry standards. This ensures that the DID system complies with applicable data protection regulations and open-source policies. This process was structured with four fundamental steps:

- Decomposing the DID System Phases: The first step was to break down the core
 phases of the DID system into distinct functions. These phases include Onboarding,
 Authentication, and Digital Identity Lifecycle Management. Each phase was examined
 to identify the specific processes associated with it, ensuring comprehensive coverage
 of the DID system's operational requirements.
- 2. Reviewing Scope and Existing Documentation: To build a foundation for the SOPs, an in-depth review of the system's scope and existing documentation was conducted. This included gathering information about stakeholders, understanding the mechanisms of the system, and identifying relevant standards and good practices. For example, standards such as NIST Digital Identity Guidelines, ISO 27001 for secure data handling, and eIDAS for identity proofing were considered to align the SOPs with recognised best practices.
- 3. Developing Rationalisation: A rationalisation was then developed to standardise processes and procedures. This provides a structured approach for documenting each SOP in a consistent and standardised format. It ensures clarity and ease of use for system implementers, covering aspects such as application initiation, document submission, biometric checks, data encryption, and validation.
- 4. Verification and Validation: The final step involved verifying and validating the SOPs using established frameworks like the NIST Assurance Framework and standards. This step ensures that each SOP meets the required assurance levels in comparison with other ID systems, providing confidence in the security and integrity of the DID system.

The SOPs cover various critical steps such as initiating online applications, document submission, terms acceptance with liveness checks, encryption and secure processing of personal data, and validation of identity information. They incorporate measures aligned with standards like NIST Digital Identity, ISO 27001, and GDPR for data protection, ensuring that the procedures are both secure and compliant with industry standards.

By following this structured methodology, the SOPs are designed to offer a comprehensive framework for securely managing digital identities throughout their lifecycle. They not only

guide system implementers through best practices but also provide rationalisation for each step, ensuring that the DID system is reliable, and in line with international standards and good practices.

4. Overview of the SOPs

In this section, key aspects of the DID system are discussed. A summary of the functions respective to each phase are discussed below Tables 1, 2, and 3. Further visualisation can be referred from Appendices A, B and C.

4.1. Onboarding Phase

This phase outlines the procedures for registering a new user in the DID system, focusing on different application methods and the collection of necessary identification data. Further details on each SOP can be referred from Table 1:

- Online and Offline Applications: Users can initiate their applications online or offline.
 There are provisions for self-initiated applications, as well as applications made by parents, guardians, or introducers.
 - Online Application: Includes self-initiated, by parent/guardian, and by introducer.
 - Offline Application: Similar categories as online but involves physical interactions.
- Pre-Registration and Appointment Booking: Users can book appointments for offline biometric collection, ensuring a structured and manageable registration process.

Validation and Verification:

- Validation: Involves checking proof of identity, proof of address, and proof of relationship.
- Verification: Ensures that the provided documents and relationships are genuine and accurate.
- **Biometric Data Collection**: Procedures for collecting biometric data (facial, fingerprint, and iris) from applicants, ensuring accurate and secure data handling.
- Account Creation and Activation: Once validation and verification are complete, a
 new digital ID account is created, authenticators are bound, and credentials are
 delivered to the user, who then activates their account.

Table 1: Description of functions in the Onboarding Phase

Onboarding	Process	Description	SOP
Function			Number
Initial Steps	Register New	The first step in the onboarding	OB.1.1.A
	Account	process, where a new account is	
		registered in the DID system, initiating	
		the user's digital identity creation.	
	Initiating an	Users begin their online registration	OB.1.1.B
	Online	by entering their personal details into	
	Application	the DID system, starting the	
		onboarding process.	
Online	Self-Initiated	Users initiate the registration process	OB.1.2.A
Application	Application	online independently, entering their	
		personal details directly into the DID	
		system.	
	Application by	A parent or guardian can start the	OB.1.2.B
	Parent/Guardian	online registration process on behalf	
		of a minor or dependent, providing	
		their details and required documents.	
	Application by	A trusted individual or entity	OB.1.2.C
	Introducer	(introducer) initiates the online	
		application process for a user,	
		facilitating their registration into the	
		DID system.	
Offline	Self-Initiated	Users visit a physical registration	OB.1.3.A
Application	Application	center to start the registration	
		process, providing their details and	
		documents in person.	
	Application by	A parent or guardian initiates the	OB.1.3.B
	Parent/Guardian	offline registration process at a	
		registration center on behalf of a	
		minor or dependent.	
	Application by	An introducer initiates the offline	OB.1.3.C
	Introducer	application at a registration center,	

		providing initial support for the user's	
		registration.	
Pre-	Pre-Registration	Users can pre-register and schedule	OB.1.3.D
Registration &	& Appointment	appointments for offline biometric data	
Appointment	Booking	collection, ensuring an organised and	
		efficient registration process.	
Biometric Data	Offline Biometric	Collection of biometric data (e.g.,	OB.1.3.E
Collection	Collection	facial, fingerprint, iris) from users at	
		registration centers, which is crucial	
		for verifying the identity and	
		preventing fraud.	
	Offline Biometric	Explicit consent is obtained from	OB.1.4.A
	Collection	users before collecting their biometric	
	Consent	data, ensuring compliance with	
		privacy standards and building trust.	
	Facial Data	Collection of facial recognition data	OB.1.4.B
	Collection	during the onboarding process to be	
		used for future biometric	
		authentication.	
	Fingerprint Data	Collection of fingerprint data to create	OB.1.4.C
	Collection	a unique biometric signature for the	
		user, enhancing security and	
		identification accuracy.	
	Iris Data	Collection of iris scan data, providing	OB.1.4.D
	Collection	a highly secure biometric method due	
		to the uniqueness of iris patterns.	
W 11 4	D (() ()		00.04
Validation	Proof-of-Identity	Administrators validate proof-of-	OB.2.A
	Validation	identity documents (e.g., national ID,	
		passport) to ensure they are genuine	
		and accurate, as part of the	
		registration process.	

	Description	Validation of proof of address	OD 0 4
	Proof-of-	Validation of proof-of-address	OB.2.A
	Address	documents to confirm the user's	
	Validation	current residence, ensuring that the	
		provided information is accurate and	
		verifiable.	
	Proof-of-	In cases where applications are	OB.2.B
	Relationship	initiated by others (e.g.,	
	Validation	parent/guardian), the relationship is	
		validated to confirm the legitimacy of	
		the application.	
Verification	Proof-of-Identity	Verification processes to further	OB.3.A
	Verification	confirm the identity of the user by	
		cross-checking the provided	
		documents with existing records.	
	Proof-of-	Verification of the user's address	OB.3.B
	Address	information, ensuring that it matches	
	Verification	official records and is validated	
		through reliable sources.	
	Verifying	Verification of the claimed relationship	OB.3.C
	Relationship in	(e.g., parent-child) to ensure that	
	Proof-of-	applications made by others on behalf	
	Relationship	of the user are legitimate.	
Account	Creating New	After successful validation and	OB.4.A
Creation	Digital ID	verification, a new digital identity	
	Account	account is created, providing the user	
		with a unique digital identity within the	
		system.	
Authenticator	Binding	Securely binding authenticators (e.g.,	OB.4.B
Binding	Authenticators	passwords, OTPs, biometric data) to	
	to User	the user's unique identification	
	Identification	number, enabling secure access to	
	Number	the digital identity.	

Credential	Delivery of	Credentials (e.g., usernames,	OB.4.C
Delivery &	Digital ID & FTP	passwords) are securely delivered to	
Activation	Credentials	the user, ensuring they can access	
		and manage their digital identity.	
	Activation of	Users activate their digital ID account	OB.4.D
	Digital ID	using the provided credentials,	
	Account	completing the onboarding process	
		and enabling them to use their digital	
		identity securely.	

4.2. Authentication Phase

This phase describes the authentication mechanisms to verify and authorise users in the DID system. Further details on each SOP can be referred from Table 2:

- **Knowledge Factors:** Involves creating strong, memorable secrets like passwords and PINs, which users will use for authentication.
- Password-Based Authentication: Users create and use passwords for securing their accounts.
- PIN-Based Authentication: Personal Identification Numbers are used for additional security.
- Ownership Factors: Involves using One-Time Passwords (OTPs) and tokens as part of the authentication process.
- One-Time Passwords: Generated for multi-user authentication scenarios to enhance security.
- Token-Based Authentication: Uses tokens (shared codes) for secure authentication.
- Inherence Factors (Biometrics): Uses biometric data (fingerprints, iris, facial recognition) for authentication, requiring obtaining explicit consent from users before collecting biometric data.

Table 2: Description of functions in the Authentication Phase

Authentication	Process	Description	SOP
Function			Number
Knowledge	Creation of Strong	Users create strong, unique	AU.1.A
Factors	Passwords	passwords as a part of their digital	
		identity security, ensuring robust	

		protection against unauthorised	
		access.	
	Password-Based	Users authenticate themselves by	AU.1.B
	Authentication	entering their passwords, which are	
		securely stored and managed within	
		the DID system.	
	Creation of	Users set up memorable secrets	AU.1.C
	Memorable Secrets	(e.g., security questions or phrases)	
		to add an extra layer of security	
		beyond passwords.	
	Memorable Secret-	Authentication process using	AU.1.D
	Based	memorable secrets, which serve as	
	Authentication	backup or supplementary methods to	
		passwords for securing accounts.	
	Creation of Personal	Users create a PIN, which serves as	AU.1.E
	Identification	a quick and secure method of	
	Number (PIN)	authentication, useful especially for	
		mobile devices or quick access	
		scenarios.	
	PIN-Based	Users enter their PINs to authenticate	AU.1.F
	Authentication	their identity, adding a simple yet	
		effective security layer to their	
		accounts.	
Ownership	Generation of One-	One-time passwords are generated	AU.2.A
Factors	Time Password	for secure, time-sensitive	
	(OTP)	authentication. These are used once	
		and expire shortly after being issued.	
	Creation of Multi-	Procedures for creating OTPs that	AU.2.B
	User One-Time	can be used by multiple users in	
	Password	scenarios requiring shared access or	
		authentication.	
	OTP-Based	Authentication using OTPs, which are	AU.2.C
	Authentication	sent to a user's registered device.	
		This method ensures that even if	

		other credentials are compromised,	
		unauthorised access is prevented.	
		·	
	Generation of	Tokens (shared codes) are created	AU.2.D
	Tokens	for use in authentication, providing an	
		additional security layer by requiring	
		possession of the token.	
	Token-Based	Using tokens for authentication,	AU.2.E
	Authentication	requiring the user to have a specific	
		token or device, enhancing security	
		through multi-factor authentication.	
Inherence	Biometric	Authentication using fingerprint data	AU.3.B
Factors	Authentication	ensures that the person accessing	
(Biometrics)	(Fingerprint Data)	the account is the legitimate owner by	
		verifying their unique biometric	
		signature.	
	Biometric	Uses iris scans for authentication,	AU.3.C
	Authentication (Iris	providing a high level of security due	
	Data)	to the uniqueness of each individual's	
		iris patterns.	
	Biometric	Facial recognition is used for	AU.3.D
	Authentication	authentication, verifying a user's	
	(Facial Data)	identity through unique facial	
		features.	
	Obtaining Claimant	Explicit consent is obtained from	AU.3.A
	Consent for	users before collecting and using	
	Biometric Use	biometric data, ensuring compliance	
		with privacy regulations and building	
		user trust.	

4.3. ID Lifecycle Management

This phase focuses on managing the lifecycle of DID accounts, ensuring that accounts are updated, maintained, and deactivated properly. Further information can be referred from Table 3:

- **Updating Information**: Includes procedures for updating both online and offline personally identifiable information (PII) and biometric data.
 - Online/Offline PII Updates: Ensures users can update their information securely.
 - **Biometric Data Updates**: Maintains up-to-date biometric data to ensure continued accuracy in authentication.
- Handling Compromised Authenticators: Procedures for reporting and managing compromised authenticators to prevent unauthorised access.
 - Reporting Compromised Authenticators: Processes for identifying and responding to cases where authentication mechanisms have been compromised.
- Account Suspension and Deletion:
 - **Temporary Suspension**: Accounts may be suspended temporarily due to fraud, ineligibility, or government orders.
 - Permanent Deletion: Accounts can be permanently deleted by user choice or upon the user's death.
- **Expiry and Renewal**: Procedures for the expiration and renewal of authenticators, ensuring they remain effective and secure throughout their lifecycle.

Table 3: Description of functions in the ID Lifecycle Management Phase

Lifecycle	Process	Description	SOP
Management			Number
Function			
Updating	Updating Online	Procedures for users to update	LM.1.A
Information	Personally	their personal details (e.g.,	
	Identifiable	name, address) online, ensuring	
	Information (PII)	that the DID system maintains	
		accurate and current user data.	

	Updating Offline PII Updating Online	Similar to online updates, this allows users to update their personal information through offline means, accommodating users who may not have online access. Users can update their biometric	LM.1.B
	Biometric Data	information (e.g., facial recognition data, fingerprints) online to keep their authentication methods accurate and secure.	LWITTO
	Updating Offline Biometric Data	Users provide updated biometric data at a physical location, ensuring that all biometric records are current and accurate for future use.	LM.1.D
	Request New DID Physical Card (Lost/Theft/Damage)	Procedures for requesting a new physical DID card in cases of loss, theft, or damage, ensuring continued secure access to the digital identity.	LM.1.E
Handling Compromised Authenticators	Reporting Online Compromised Authenticators	Procedures for reporting compromised authenticators (e.g., passwords, OTP devices) online, allowing for quick action to secure accounts against unauthoris ed access.	LM.3.A
	Reporting Offline Compromised Authenticators	Similar reporting procedures are available for users who need to report compromised authenticators through offline means, ensuring comprehensive security coverage.	LM.3.B

Management Suspension suspended in response to	
issues such as suspected fraud,	
ineligibility, or by government	
order, preventing unauthorised	
access during investigations.	
Permanent Account Users have the option to LM.5.	3
Deletion (By Choice) permanently delete their digital	
identity accounts, ensuring their	
right to privacy and the removal	
of personal data from the DID	
system.	
Permanent Account Accounts are deleted upon the LM.5.)
Deletion (Upon user's death, a necessary step	
Death) in lifecycle management to	
protect data and prevent misuse	
by unauthorised parties.	
Authenticator Expiry and Renewal Authenticators such as LM.4.	3
Management of Authenticators passwords, OTPs, and tokens	
have defined expiration periods.	
These processes manage the	
renewal of these authenticators	
to maintain ongoing security.	
Expiry and Renewal Procedures for managing the LM.4.	4
of DID Account expiration and renewal of DID	
accounts, ensuring that inactive	
accounts are reviewed and	
reactivated or deactivated as	
necessary.	

5. Structure of the SOPs

Each SOP features the following components:

5.1. Definition of Purpose and Scope

- Each SOP begins with a clear definition of its purpose, outlining the specific objectives
 it aims to achieve. For instance, the SOP for registering a new account details the
 steps from the initial visit to the DID portal to the successful creation of a new user
 account.
- The scope of each SOP is defined to ensure it covers relevant processes, stakeholders, and regulatory compliance requirements. This includes identifying ownership and responsibilities, target users, and potential beneficiaries such as the general public, government agencies, and private sector companies.

5.2. Application: Stakeholder Identification and Ownership

- The SOPs specify the roles and responsibilities of key stakeholders, including Digital Identity Service Providers (DISPs), IT and security teams, and compliance and legal departments. Each stakeholder group is responsible for maintaining, updating, and ensuring compliance with the SOPs.
- Collaboration among these stakeholders is emphasised to enhance system functionality, security, and adherence to regulatory standards.

5.3. Prerequisites and Assumptions

- Before executing the SOPs, certain prerequisites must be met. These include system requirements, technical setups, and interdependencies with other SOPs (e.g., those related to system maintenance and security protocols).
- Assumptions are made about the users' basic understanding of navigating digital forms
 and the operational status of technological infrastructure. Constraints, such as system
 downtime or regulatory changes, are also identified to manage expectations and plan
 for contingencies.

5.4. Detailed Process Flows and Procedures

- Each SOP includes a detailed, step-by-step process flow, starting from the initiation of an action to its successful completion or error handling. This ensures that each task is clearly defined, with specific actions, expected outputs, and integrated security measures at each step.
- Process steps cover actions such as applicant registration, document submission, liveness checks, and system processing. Security measures, such as encryption and

biometric checks, are incorporated to ensure data protection and compliance with standards like ISO 27001 and NIST guidelines.

- The SOPs also provide protocols for handling exceptions and errors, ensuring that any
 issues encountered during a process are managed effectively. For instance, if an error
 occurs during biometric verification, the system provides clear guidance to the user
 and implements security protocols to address the situation.
- Limits on retry attempts and clear communication of error messages help manage user expectations and maintain the integrity of the process. These protocols are essential for preserving the security and reliability of the DID system while guiding users toward resolution in the event of an error.
- Notifications and logging are integral to each process. Actions, whether successful or failed, are logged, and users are notified of outcomes through secure channels such as email or phone notifications. This ensures transparency and accountability in the registration process.
- Logging supports audit trails and compliance checks, providing a record of all actions
 within the DID system. For example, details of an online application process, including
 document submission and liveness checks, are securely logged for future reference
 and compliance purposes.

5.5. Visualisation:

- Visual elements, such as flowcharts and diagrams, are included in each SOP to provide a clear representation of the process flow. These visualisations help to simplify complex procedures, making it easier for stakeholders to understand and follow the outlined steps.
- The use of visual aids supports effective communication of the process, highlighting key stages and decision points within the SOP, thus enhancing overall comprehension and implementation.

5.6. Rationalisation and Compliance:

- Robust security measures are incorporated throughout the SOPs to protect user data and prevent unauthorised access. These measures include encryption, two-factor authentication, SSL/TLS protocols, and the use of intrusion detection and prevention systems.
- The SOPs ensure compliance with international standards and regulations (e.g., NIST, eIDAS, ISO 27001) to minimise legal risks and build trust with users and regulatory bodies.

- Each SOP includes a section on rationalisation, offering a detailed explanation for each step and decision within the process. This rationale helps stakeholders understand the importance and necessity of each procedure, ensuring clarity and reinforcing compliance.
- The rationalisation outlines how each step aligns with regulatory requirements, best practices, and security standards. For instance, it explains why specific security measures like encryption or biometric checks are crucial for maintaining the system's integrity.

5.7. References

 The SOPs conclude with references to relevant standards, guidelines, and best practices, such as NIST Digital Identity Guidelines, ISO 27001, and eIDAS regulations.
 This ensures that the SOPs are grounded in recognised frameworks and provide a solid foundation for the DID system's operations

6. Conclusion

In conclusion, the 51 SOP developed for the DID system offer a comprehensive framework for managing digital identities securely and reliably. By incorporating industry standards, best practices, and comprehensive process flows, these SOPs ensure that the DID system remains secure and compliant. They provide clear guidelines for all phases of digital identity management, from onboarding to authentication and lifecycle management, contributing to the overall trustworthiness of the system.

Appendix A: DID System - Overview of Onboarding Phase

Appendix B: DID System - Overview of Authentication Phase

Appendix C: DID System - Overview of ID Lifecycle Management Phase

