

Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение

высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	АКУЛЬТЕТ Информатика и системы управления				
КАФЕДРА	АФЕДРА Программное обеспечение ЭВМ и информационные технолог				
	ОТЧЕТ ПО ЛАБОРАТОРН	ОЙ РАБОТЕ 8			
	По дисциплине «Типы и стру				
Название «Грас	ры»_				
Студент <u>Дубов Аз</u> фамилия	ндрей Игоревич г, имя, отчество				
Группа <u>ИУ7-33Б</u>	, initial, or receipt				
Вариант <u>13</u>					
Тип лабораторной	работы Учебная				
Ступант		Пибор А. И			
Студент	подпись, дат	<u>Дубов А. И.</u> фамилия, и.о.			
Преподавател	Ь	Рыбкин Ю. А. <u>Силантьева А. В.</u>			

подпись, дата

фамилия, и.о.

Оглавление

Условие задачи	3
Описание технического задания	
Входные данные:	
Выходные данные:	
Аварийные ситуации:	
Описание структуры данных	
Описание алгоритма	
Набор тестов	
Вывод	
Ответы на контрольные вопросы	

Условие задачи

Обработать графовую структуру в соответствии с заданным вариантом. Обосновать выбор необходимого алгоритма и выбор структуры для представления графов. Ввод данных осуществить на усмотрение программиста. Результат выдать в графической форме.

Описание технического задания

В системе двусторонних дорог за проезд каждой дороги взимается некоторая пошлина. Найти путь из города A в город B с минимал ьной величиной S+P, где S- сумма длин дорог пути, а P- сумма пошлин проезжаемых дорог .

Входные данные:

Файл с данными о длинах дорог, номер команды или вершины для обработки.

Выходные данные:

Дерево, информация о частотности слова.

Аварийные ситуации:

- 1. Некорректный ввод номера команды или номера вершины
- 2. Отрицательные длины рёбер
- 3. Поиск для путей несуществующих вершин

Описание структуры данных

Структура стека

```
1 typedef struct
2 {
3    int **matrix;
4    int vertices;
5 } graph_t;
```

matrix – матрицы длин ребер vertices – количество вершин

Описание алгоритма

- 1. Пользователю предлагается инициализировать граф и посмореть кратчайщие пути
- 2. Пока пользователь не введет 0 (выход из программы), ему будет предложено вводить номера команд и выполнять действия по выбору.
- 3. При обработке кратчайших путей алгоритм добавляет начальную вершины в очередь, смотрит для нее все соединенные необработанные вершины, потом добавляет в очередь не добавленные ранее по порядку от минимальной длины пути до вершины к большей. Алгоритм работает пока очередь не опустеет. Алгоритм более известен как алгоритм Дейкстры. Сложность Алгоритма O(n²)

Набор тестов

	Название теста	Пользователь вводит	Вывод
1	Некорректный ввод команды	45	No such option or wrong input
2	Пустой ввод	Пустой ввод.	No such option or wrong input
3	Команда 0	0	Выход из программы

Оценка эффективности

Для конкретной вершины в среднем за 50 запусков поиск кратчайших маршрутов до всех вершин 22136.

Вывод

При помощи алгоритма Дейкстры можно достаточно быстро и легко искать пути в графе. Для этого алгоритма удобно использовать матрицу стоимостей, поэтому представление графа было выбрано именно в таком виде.

Ответы на контрольные вопросы

1) Что такое граф?

Граф — это конечное множество вершин и ребер, соединяющих их, т. е.: $G = \langle V, E \rangle$, где V — конечное непустое множество вершин; E — множество ребер (пар вершин).

2) Как представляются графы в памяти?

Графы в памяти могут представляться различным способом. Один из видов представления невзвешенных графов – это матрица смежности B(n*n); В этой матрице элемент b[i,j]=1, если ребро, связывающее вершины Vi и Vj существует и b[i,j]=0, если ребра нет. У неориентированных графов матрица смежности всегда симметрична.

3) Какие операции возможны над графами?

Включение элемента

Исключение элемента

Обход графа

4) Какие способы обхода графов существуют?

Обход графа в глубину

Обход графа в ширину

5) Где используются графовые структуры?

Графовые структуры используются, к примеру, в задачах на пути (Схема дорог, метро, проезд между городами, странами, кратчайшая дорога от одной точки до другой и тд.)

6) Какие пути в графе Вы знаете?

Эйлерова пути - когда граф имеет цикл, содержащий все рёбра графа по одному разу.

Гамильтонова пути - простой путь, проходящий через каждую вершину графа ровно 1 раз.

7) Что такое каркасы графа?

Дерево в котором содержатся все вершины искомого графа и некоторые его рёбра. (Без циклов)

При использовании алгоритмов поисков в ширину и глубину графы обходят разными способами, получая при этом некоторые подграфы, которые имеют специфические названия: каркасы (остовы или стягивающие деревья).