Redes Neuronales

Laboratorio de Datos, IC - FCEN - UBA - 1er. Cuatrimestre 2024

La neurona

• Las neuronas se comunican a través de impulsos (sinapsis).

- Las neuronas se comunican a través de impulsos (sinapsis).
- Una neurona recibe los impulsos de las neuronas precedentes en la red. Estos impulsos pueden ser excitatorios (+) o inhibitorios (-).

• Durante un corto periodo de tiempo, la neurona suma los impulsos recibidos.

- Durante un corto periodo de tiempo, la neurona suma los impulsos recibidos.
- La neurona dispara un impulso si la suma supera cierto umbral.

Perceptrón Simple

NEURONAS PREVIAS

1. La neurona recibe los impulsos de las neuronas precedentes y los suma:

$$\sum_{i} w_{i} x_{i}$$

1. La neurona recibe los impulsos de las neuronas precedentes y los suma:

$$\sum_{i} w_{i} x_{i}$$

2. Si la suma supera el umbral b, la neurona dispara

$$y = \begin{cases} 1 & \text{si } \sum_{i} w_i x_i > b \\ 0 & \text{si no} \end{cases}$$

Obs:

$$\sum_{i} w_i x_i > b \iff \sum_{i} w_i x_i - b > 0 \iff \sum_{i} w_i x_i + b \cdot (-1) > 0$$

 \Rightarrow agregamos una neurona para el bias, la neurona se activa si el impulso que recibe es mayor que 0

Obs:

$$\sum_{i} w_i x_i > b \iff \sum_{i} w_i x_i - b > 0 \iff \sum_{i} w_i x_i + b \cdot (-1) > 0$$

 \Rightarrow agregamos una neurona para el bias, la neurona se activa si el impulso que recibe es mayor que 0

Consideramos la siguiente función:

$$f(t) = \begin{cases} 1 & \text{si } t > 0 \\ 0 & \text{si no} \end{cases}$$

Que será nuestra función de activación.

Entrenando a la Red Neuronal

Clasificación

- Clasificación
- Regresión

- Clasificación
- Regresión
- Clustering

- Clasificación
- Regresión
- Clustering
- Reducción de dimensionalidad

- Clasificación
- Regresión
- Clustering
- Reducción de dimensionalidad
- Compresión (auto-encoders)

- Clasificación
- Regresión
- Clustering
- Reducción de dimensionalidad
- Compresión (auto-encoders)
- Reconocimiento de patrones

- Clasificación
- Regresión
- Clustering
- Reducción de dimensionalidad
- Compresión (auto-encoders)
- Reconocimiento de patrones
- Y muchas más!

Vamos a centrarnos en clasificación y regresión.

Para poder ampliar la variedad de problemas los que puede aplicarse nuestro modelo de Perceptrón Simple, vamos a suponer que el impulso que transmiten las neuronas no es necesariamente binario. Para poder ampliar la variedad de problemas los que puede aplicarse nuestro modelo de Perceptrón Simple, vamos a suponer que el impulso que transmiten las neuronas no es necesariamente binario.

ightarrow consideramos **otras funciones de activación** para la neurona de output.

IMPORTANTE: la imagen de la función de activación de la neurona de output tiene que ser coherente con los datos de salida (y).

Entrenando a la red

Como en todos los modelos de aprendizaje supervisado, queremos minimizar la discrepancia (medida por la función de pérdida) que existe entre lo que devuelve el modelo y el dato real.

Entrenando a la red

Como en todos los modelos de aprendizaje supervisado, queremos minimizar la discrepancia (medida por la función de pérdida) que existe entre lo que devuelve el modelo y el dato real.

Si vamos a minimizar una función, ¿qué algoritmo podemos usar?

Entrenando a la red

Como en todos los modelos de aprendizaje supervisado, queremos minimizar la discrepancia (medida por la función de pérdida) que existe entre lo que devuelve el modelo y el dato real.

Si vamos a minimizar una función, ¿qué algoritmo podemos usar?

El entrenamiento consiste en ir ajustando los pesos y el bias para minimizar la función de pérdida.

- 1. Inicializá los pesos y el bias aleatoriamente
- 2. En cada época:
 - 2.1 Para cada dato $x^{(i)}$:
 - 2.1.1 Feedforward: alimentamos a la red con $x^{(i)}$ como input, obtenemos $\hat{y}^{(i)}$ como output
 - 2.1.2 *Corrección*: medimos el error entre $y^{(i)}$ y $\hat{y}^{(i)}$, ajustamos los pesos para disminuirlo
 - 2.2 mezclá el dataset

Clasificando pingüinos

- peso (*X*₁)
- longitud de aleta (X_2)
- longitud de pico (X_3)
- profundidad del pico (X_4)

- peso (*X*₁)
- longitud de aleta (X_2)
- longitud de pico (X_3)
- profundidad del pico (X_4)

- Neuronas en la capa de Input:
- Neuronas en la capa de Output:
- Función de activación:
- Función de pérdida (*L*):

- peso (*X*₁)
- longitud de aleta (X_2)
- longitud de pico (X₃)
- profundidad del pico (X_4)

- Neuronas en la capa de Input: 4
- Neuronas en la capa de Output:
- Función de activación:
- Función de pérdida (*L*):

- peso (*X*₁)
- longitud de aleta (X_2)
- longitud de pico (X_3)
- profundidad del pico (X_4)

- Neuronas en la capa de Input: 4
- Neuronas en la capa de Output: 1
- Función de activación:
- Función de pérdida (*L*):

- peso (*X*₁)
- longitud de aleta (X_2)
- longitud de pico (X_3)
- profundidad del pico (X₄)

- Neuronas en la capa de Input: 4
- Neuronas en la capa de Output: 1
- Función de activación: Sigmoidea
- Función de pérdida (*L*):

- peso (*X*₁)
- longitud de aleta (X_2)
- longitud de pico (X_3)
- profundidad del pico (X_4)

- Neuronas en la capa de Input: 4
- Neuronas en la capa de Output: 1
- Función de activación: Sigmoidea
- Función de pérdida (*L*): Binary Cross Entropy

- peso (*X*₁)
- longitud de aleta (X_2)
- longitud de pico (X_3)
- profundidad del pico (X_4)
- ► Arquitectura de la red neuronal:
 - Neuronas en la capa de Input: 4
 - Neuronas en la capa de Output: 1
 - Función de activación: Sigmoidea
 - Función de pérdida (*L*): Binary Cross Entropy

▶ Codificación y:

Female: 1 Male: 0

- peso (*X*₁)
- longitud de aleta (X_2)
- longitud de pico (X_3)
- profundidad del pico (X₄)
- ► Arquitectura de la red neuronal:
 - Neuronas en la capa de Input: 4
 - Neuronas en la capa de Output: 1
 - Función de activación: Sigmoidea
 - Función de pérdida (*L*): Binary Cross Entropy

▶ Codificación y:

Female: 1 Male: 0

ightharpoonupInicialización aleatoria de w y b

- peso (*X*₁)
- longitud de aleta (X_2)
- longitud de pico (X_3)
- profundidad del pico (X_4)
- ► Arquitectura de la red neuronal:
 - Neuronas en la capa de Input: 4
 - Neuronas en la capa de Output: 1
 - Función de activación: Sigmoidea
 - Función de pérdida (*L*): Binary Cross Entropy

▶ Codificación y:

Female: 1 Male: 0

▶Inicialización aleatoria de w y b ▶ $\eta_k = 0.1$ constante

Para quien desee seguir las cuentas

$$w = (w_1, \dots, w_m)$$

$$f_i(b, w) = \frac{1}{1 + e^{-(b + w^t x^{(i)})}} \quad \text{vale que: } f'(x) = f(x)(1 - f(x))$$

Función de error Binary Cross-Entropy Loss o log loss para Regresión Logística:

$$L(b, w) = \frac{1}{n} \sum_{i=1}^{n} \underbrace{-\left(y^{(i)} \log(f_i(b, w)) + (1 - y^{(i)}) \log(1 - f_i(b, w))\right)}_{F_i(b, w_1, \dots, w_m)}$$

Tenemos que:

$$\frac{\partial F_i}{\partial w_j}(b, w_1, \dots, w_m) = w_j(f_i(b, w_1, \dots, w_m) - y_i)$$

$$\frac{\partial F_i}{\partial b}(b, w_1, \dots, w_m) = -(f_i(b, w_1, \dots, w_m) - y_i)$$

	x_1	x_2	x_3	x_4	y
0	0.32	-0.07	0.31	-0.13	0
1	0.04	0.15	-0.33	0.05	1
2	-0.21	-0.34	-0.02	-0.29	1

Inicialización de los pesos y del bias

$$w = (-0.5, 0.1, 0.1, 1)$$

 $b = 0$

	x_1	x_2	x_3	x_4	y	
0	0.32	-0.07	0.31	-0.13	0	
1	0.04	0.15	-0.33	0.05	1	
2	-0.21	-0.34	-0.02	-0.29	1	Π

Época: 1 Feedforward $x^{(1)}$

$$w^t x^{(1)} - 0 = 0.012$$

 $\hat{y}^{(1)} = f(0.012) = 0.503$

 x_3

0.31

-0.33

-0.02

 x_4

-0.13

0.05

-0.29

0.503

0.15

-0.33

0.05

0.1

Época: 1

Se actualizan el bias y los pesos como indica SGD:

$$(b, w_1, \dots, w_4) - 0.1 \cdot \nabla F_1(b, w_1, \dots, w_4)$$

$$\begin{array}{l} (0,-0.5,0.1,0.1,1) - 0.1 \cdot \nabla F_1(0,-0.5,0.1,0.1,1) = \\ = (-0.05,-0.52,0.1,0.1,1.05) \leftarrow \text{Nuevos valores de } b \text{ y } w \end{array}$$

	x_1	x_2	x_3	x_4	y	
0	0.32	-0.07	0.31	-0.13	0	
1	0.04	0.15	-0.33	0.05	1	
2	-0.21	-0.34	-0.02	-0.29	1	

Época: 1 Feedforward $x^{(0)}$

$$w^t x^{(0)} - (-0.05) = -0.23$$

 $\hat{y}^{(0)} = f(-0.23) = 0.443$

Época: 1 Feedforward $x^{(2)}$

$$w^t x^{(2)} - (-0.05) = -0.216$$

 $\hat{y}^{(2)} = f(-0.216) = 0.446$

	x_1	x_2	x_3	x_4	y	
0	0.32	-0.07	0.31	-0.13	0	
1	0.04	0.15	-0.33	0.05	1	
2	-0.21	-0.34	-0.02	-0.29	1	

Época: 1 Corrección $x^{(2)}$

Se actualizan el bias y los pesos como indica SGD:

$$(b, w_1, \ldots, w_4) - 0.1 \cdot \nabla F_2(b, w_1, \ldots, w_4)$$

$$\begin{split} &(-0.01,-0.5,0.1,0.1,1)-0.1\cdot\nabla F_2(-0.01,-0.5,0.1,0.1,1) = \\ &= (-0.06,-0.53,0.11,0.11,1.06) \leftarrow \text{Nuevos valores de } b \text{ y } w \end{split}$$

	x_1	x_2	x_3	x_4	y
0	0.32	-0.07	0.31	-0.13	0
1	0.04	0.15	-0.33	0.05	1
2	-0.21	-0.34	-0.02	-0.29	1

Época: 1 Corrección $x^{(2)}$

Se actualizan el bias y los pesos como indica SGD:

$$(b, w_1, \dots, w_4) - 0.1 \cdot \nabla F_2(b, w_1, \dots, w_4)$$

$$\begin{array}{l} (-0.01,-0.5,0.1,0.1,1) - 0.1 \cdot \nabla F_2(-0.01,-0.5,0.1,0.1,1) = \\ = (-0.06,-0.53,0.11,0.11,1.06) \leftarrow \text{Nuevos valores de } b \text{ y } w \end{array}$$

Comienza la Época: 2...

Redes feedforward multicapa

Para entender backpropagation:

Para entender backpropagation:

Para entender backpropagation:

Para entender backpropagation:

Existen muchos teoremas de aproximación universal, que demuestran que existen redes neuronales que convergen a ciertas clases de funciones.

Por ejemplo, el Teorema de Funahashi:

Sean $K\subset\mathbb{R}^n$ compacto, $f\colon K\to\mathbb{R}$ continua y $\varepsilon>0$, entonces existe g una red neuronal de dos capas tal que $\|f-g\|_\infty<\varepsilon$

