EDEXCEL FOUNDATION

Stewart House 32 Russell Square London WC1B 5DN

January 2002

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject MECHANICS 6679

* indicates printed answer

Paper No. M3

Question					
number	Scheme	Marks			
1.	$0.2a = \frac{5}{x+1}$	ні	····		
	$0.2 \text{V} \frac{\text{dV}}{\text{dx}} = \frac{5}{x+1}$	→ m1			
	$\int v dv = \int \frac{25}{x+1} dx$	⇒nı			
4	1 v2 = 25 ln(x+1) (+ C)	AI AI	٠		
Ĭ	ν=0, ν=5 =) C = 12.5	41			
<u>.</u>	125 = 25 lm(x+1) + 12.5	LMI	②		
	z = 53.6 (35F)	91			
2,6)	PE Lass = 0.5g(2+x); EPE = 19.6x2	81; 81			
	$0.55(2+x) = \frac{19.6x^2}{4}$	HI AI			
	$k(x^2-2-2)=0$ 4 50/10/5	HI	(1)		
:	1c = 4x	*1 V	(6)		
(6)	$T_e = \frac{19.6 \times 2}{2} = 19.6$	BIV			
	19.6 - 0.5g = 0.5a	ਸ।	(3)		
	$a = 29.4 \text{ ms}^{-2}$	(† i	(3)		
3.(4)	Line of action of weight must pass through a which is not above easure of rod (or equivalent)	81	(1)		
(b)	Method A:				
	$R(along tc)$: $T_1 = 2mgsid = \frac{6mg}{5}$ $R(along 8c)$: $T_2 = 2mgsid = \frac{8mg}{5}$	MI MI AI			
	[Equiv. to moments about A, B respectively]	। पान			
OR	Mahad B: Ral, Tisha + Tilax = Zang	1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-			
	+(-), Tiwax = Tasiax	⇒M1			
	Solving to find T, or T. Ti = Gns/5; Ti = 8ms/5#	H1 +1; +1	(5)		
(6)	$\frac{8mg}{5} = \frac{\log (8c - a)}{a}$	MI AT			
	Bc = 20 == 4	Ві			
	K = 8	A ((4)		

EDEXCEL FOUNDATION

Stewart House 32 Russell Square London WC1B 5DN

January 2002

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject MECHANICS 6679

Paper No. M3

Question number	Scheme	Marks	
4.6)	$\int_{0}^{\infty} (\pi) y^{2} \times dx = \int_{0}^{\infty} (\pi) y^{2} dx$	MIAI	
	greade = x grade	— ні	
	$\left[C(x) \frac{3}{x_3} \right]_{L}^{0} = 2c \left[C(x) \frac{5}{3c_y} \right]_{L}^{0}$	AI AI	(6)
$\frac{1}{2}$	$\overline{x} = \frac{2r}{3} *$,,,,	
(y)	vertical that chi and lowest	MI	
	tene = 5/4/3	to #1	(4)
	d = 72° (unavest degree)	41	©
5.	F R(1), Run 25° - Fsü 25° = mg R(4), Rsü 25° + Fun 25° = my² 40	> M1 12	
	F = 0.6R used 40	MI	
	eliminating R	De MI	
	V= 24.1ms-1, 24ms-1	A 1	(i)
6.(1)	o ABC USING V2 = 62 (02-x2)	8) ;>н1	
	0.27 = 6 (1.22 - 0.62) + 0.2 = 6 (1.23 -0.83)		
	Solve for w (=0.5) and not in other equal shown to be convert	HI c.s.o.	(5)
(6)	V= aw = 1.2x0.5 = 0.6*	HI AT	(ب
(c)	(x = 62x0.6 = 0.15 me)	मा <i>A</i> । ♦	(2)
(a)	0.6 = asin ut or 0.8 = asin ut	MI A	
	t= 1 (31-1 018 - 51-1 06)	m AIV	
	= 0.412s (3SF)	AI	(4)
)	(3)

EDEXCEL FOUNDATION

Stewart House 32 Russell Square London WC1B 5DN

January 2002

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject MECHANICS 6679

Paper No. M3

Question			
number	Scheme	Marks	
7. (a)	$\frac{1}{3}m \frac{7ag}{2} - \frac{1}{2}mv^2 = mga$ (4-), $R = mv^2 = \frac{3mg}{2}$, МІАЦ Ні Лі	(4)
(6)	$\frac{1}{2}$ M. $\frac{1}{2}$ $\frac{1}{2}$ my $\frac{1}{2}$ = mga (1+ les θ) (K1), mg les θ = mv ² Eliminatus V^2 Solving to give les θ = K, θ = θ 0° *	→ M1 A1 → M1 A1 → H1 — M1 A1	(7)
(C)	$V \cos 60^{\circ} t = a \sin 60^{\circ}$ $V^{2} = a g \cos 60^{\circ}$ $Making t explicit$ $t = \sqrt{\frac{6a}{5}}$	BI BI AI	(*) (5)
			7
	,		