INF721 2023/2

Aprendizado em Redes Neurais Profundas

Logística

Avisos

- ▶ Aula A2 Aprendizado de Máquina publicada no site [slides, vídeo]
- Aceitar o convite para o Slack!

Última aula

- ▶ Tipos de aprendizado e de dados;
- Espaço de hipóteses e generalização.

Plano de Aula

- Regressão logística como um neurônio artificial
- Sucesso das redes neurais artificiais
- Combinação linear de pesos e entradas
- ▶ Função de ativação
- Função de perda

O sucesso das Redes Neurais Artificiais (RNAs)

Tamanho do conjunto de dados m

O sucesso das Redes Neurais Artificiais (RNAs)

- Grandes volumes de dados
- ► Computação em GPUs e TPUs
- Frameworks de derivação automática
- Novos algoritmos

Regressão Logística

Algorítmo clássico de classificação binária que pode ser visto como um neurônio artificial de uma RNA

Regressão Logística

Entrada

Um exemplo $x \in \mathbb{R}^d$

Saída

A probabilidade de x ser da classe y = 1 $\hat{y} = P(y = 1 | x), \ 0 \le \hat{y} \le 1$

Hipótese

$$h(x) = \sigma(w \cdot x + b)$$

onde:

 $w \in \mathbb{R}^d$ e $b \in \mathbb{R}$ são pesos σ é a função logística (sigmoide)

Interpretação de Probabilidade

Fronteira de Decisão

Para encontrar o rótulo \hat{y} com a hipótese, usamos um limiar:

$$\hat{y} = \begin{cases} 1, \text{ se } h(x) \ge 0.5 \\ 0, \text{ se } h(x) < 0.5 \end{cases}$$

Repare que o liminar acima é equivalente ao seguinte limiar:

$$\hat{y} = \begin{cases} 1, \text{ se } w \cdot x + b \ge 0 \\ 0, \text{ se } w \cdot x + b < 0 \end{cases}$$

Pois:

$$h(x) \ge 0.5$$
 quando $z \ge 0$

$$h(x) < 0.5$$
 quando $z < 0$

$$h(x) = \frac{1}{1 + e^{-z}}$$

Fronteira de Decisão

Regressão Logística

$$h(x) = \frac{1}{1 + e^{-z}}$$

Considere a seguinde hipótese após o treinamento:

$$w_1 = 1$$
, $w_2 = 1$, $b = -3$

$$\hat{y} = \begin{cases} 1, \text{ se } x_1 + x_2 - 3 \ge 0 \\ 0, \text{ se } x_1 + x_2 - 3 < 0 \end{cases}$$

A reta $x_1 + x_2 = 3$ é chamada de **fronteira de decisão**.

Função de Perda

Dado um conjunto de dados $D = \{(x_1, y_1), ..., (x_n, y_n)\}$, queremos $h(x_i') \approx y_i'$

Poderíamos tentar usar a função de perda quadrática:

$$L(h) = \frac{1}{n} \sum_{i=1}^{n} (h(x_i) - y_i)^2$$

Porém, ela produz um problema de otimização não-convexo!

$$h(x) = \frac{1}{1 + e^{-w \cdot x + b}}$$

Otimização Convexa

Problema Convexo

Possui apenas um valor mínimo, chamado de mínimo global.

Problema Não-convexo

Além do mínimo global, possui mínimos locais.

Função de Perda

Entropia Cruzada Binária

Dado um conjunto de dados $D = \{(x_1, y_1), \ldots, (x_n, y_n)\}$, queremos $h(x_i') \approx y_i'$

Em regressão logística, utilizamos a função de entropia cruzada binária como função de perda:

$$L(\hat{y}, y) = -(y \log \hat{y} + (1 - y) \log(1 - \hat{y}))$$

Que produz um problema de otimização convexo!

Minimizar entropia cruzada em problemas de classificação é equivalente a **estimativa por máxima verossimilhança** (maximum likelihood estimation)!

$$h(x) = \frac{1}{1 + e^{-w \cdot x + b}}$$

Função de Perda

Entropia Cruzada Binária

Dado um conjunto de dados $D = \{(x_1, y_1), ..., (x_n, y_n)\}$, queremos $h(x_i') \approx y_i'$

$$P(y = 1 | x) = \hat{y}$$

$$P(y = 0 | x) = 1 - \hat{y}$$

$$P(y | x) = \hat{y}^{y} (1 - \hat{y})^{(1-y)}$$

$$log P(y|x) = log [\hat{y}^y (1 - \hat{y})^{(1-y)}]$$

$$log P(y|x) = y log \hat{y} + (1 - y)log (1 - \hat{y})$$

$$L(\hat{y}, y) = -(y \log \hat{y} + (1 - y) \log (1 - \hat{y}))$$

$$h(x) = \frac{1}{1 + e^{-w \cdot x + b}}$$

Próxima aula

A4: Gradiente Descendente

Otimização de pesos da regressão logística com gradiente descendente.

