

SCHOOL OF COMPUTER SCIENCE AND ENGINEERING (SCOPE) FALL SEMESTER 2019

Continuous Assessment Test - II September - 2019

Course Code: CSE2002 Max. Marks: 50

Course Name: Th. of Computation and Comp. Design Duration: 90 Minutes

Slot: A1 Date: 29-09-2019

Answer ALL questions. You must justify your answers to get full marks.

1. Give a CFG for the language $\{a^nb^ma^{2n}:n,m\geq 0\}$. In your solution, explain what each of your variables generates. [4]

SPARCH VIT QUESTION PAPERS ON TELEGRAM TO JOIN 2. Prove that the grammar below is ambiguous by constructing at least two different parse trees for the input string *abaabab*.

$$\begin{array}{c} K \to QK \mid \epsilon \\ Q \to Qa \mid aQb \mid ab \end{array}$$

3. Construct a PDA for the language

 $B = \{w \in \{0,1\}^* : w = w^{\mathcal{R}} \text{ and the length of } w \text{ is odd}\}.$

Idea: Similar to the NPDA for {w:w=wRZ, [4]}

where for next input symbol w;

- push w; onto stack (state 20)

- another copy of machine guesses w; is start

of second half and matches/pops. (in 2,)

But add a transition guessing w; is the

middle bit. (ignore this middle bit) from 20 to 2.

$$0, 7 | 7 | 7 | 1, 7 | 7 | 1, 7 | 7 | 1, 0 | 0, 0$$

4. Let G be the grammar

$$E \rightarrow XY$$

$$X \rightarrow ZZ \mid + \mid t$$

$$Y \rightarrow YZ \mid *$$

$$Z \rightarrow ZY \mid YX \mid +$$

$$+ * *t$$

Let the input string be w = abbc. Use the CYK algorithm to determine whether the string w is in the language L(G). Show the table computed by the CYK algorithm. [4]

5. The symmetric difference $A \triangle B$ of two sets A and B is the set of elements which belong to exactly one of the two sets. For example, if $A = \{a, b\}$ and $B = \{b, c\}$, then $A \triangle B = \{a, c\}$. Either prove the following statement or give a counterexample: if L and M are CFL's, then $L \triangle M$ is a CFL.

Counterexample: Let $M = 0^* 1^* 2^*$ $L = \left\{0^i 1^j 2^k : i \neq j \text{ or } j \neq k\right\}$ Then, $L \Delta M = \left\{0^n 1^n 2^n : n > 0\right\}$ is not a CFL.

6. Let L be the language $\{a^i: i \text{ is a perfect square}\}$. That is, L contains strings a, a^4, a^9, a^{16} , and so on. Prove that L is not context free. [6]

Pf. Suppose L is a CFL. Then, by the CFL pumping lemma, $\exists p \in \mathbb{N} \text{ s.t. } \forall s \in L \text{ with } |s| \Rightarrow p$, $\exists \text{ decomposition } s = u \circ w \times y \text{ s.t.}$ (i) $u \circ i w \times i y \in L$, $\forall i \Rightarrow 0$, (2) $|\Im x| \Rightarrow 1$, (3) $|\Im w \times | \Rightarrow 0$ Given any p (chosen by adversary), $\forall k \in S = a^p \cdot k$. For any $de \text{ composition } s = u \cdot \vartheta w \times y$ (chosen by adversary, o beys (1) - (3)), we have that $p^2 + 1 \leq |u \circ u^2 w \times u^2 y| \leq p^2 + p \cdot \langle p \cdot u^2 v \times u^2 v \rangle = 1$ Hence, $u \circ u^2 w \times u^2 v \neq L$ (blc it's length is not a perfect square).

7. Consider the following grammar, which has the set of terminals $\Sigma = \{a, b, c, d, e, f, g\}$.

$$\begin{split} S &\rightarrow AB \\ B &\rightarrow dS \mid \epsilon \\ A &\rightarrow DC \\ C &\rightarrow A \mid \epsilon \\ D &\rightarrow PE \\ E &\rightarrow eE \mid \epsilon \\ P &\rightarrow fSg \mid a \mid b \mid c \end{split}$$

- (a) Obtain the first and follow sets for each non-terminal.
- (b) Construct an LL(1) parsing table for the grammar.

[8]

(a)		$x \mid First(x)$				Follow(x)					
		S	fo	1,b,C	\$,9						
		A	f, a, b, c		d,A	,9					
		B		3,8	\$ 9						
	9	C		E,fa,b,c		(
		D	f,	a,b,c	f,a,	b, c, d, \$,9				
	(8	P			1 1000	a,b,c,d,					
		E	}	3,8	If,a,	b,c,d \$,	3				
(b)	-		£	9	a	b	C	d	e	\$	
	S	5-	AB		S→AE	SAAB	5-AB			010	
	B			B→E				B→dS		B→ E	
	A	A -	DC		A-> DC	A-DC					
		C->	A	C>E	C-) A	C-) A	CAA	C>E		C+E	
	<u>C</u>	D->"	PK			Dape					
	E	E4	٤	F>E	E - E			E-18	E-JeE	F→E	
	P	Paf	59		Paa	Pab	Pac				
		1									

Page 7 of 9

8. Let G be the grammar

$$\begin{array}{ll}
\mathbf{1.} & S \to X\$ \\
\mathbf{2.} & X \to a \\
\mathbf{3.} & X \to ab
\end{array}$$

- (a) Construct the parsing automaton for the grammar".
- (b) Write the LR(0) parse table (the ACTION and GOTO) tables. Are there are conflicts?
- (c) Write the SLR(1) parse table which uses a lookahead of one token. Are there any conflicts?

Page 8 of 9

M[1,b] = r2/53 is a <u>conflict</u>: if in State q, next symbol is b, then reduce by production # 2 x -> a, or shift and change state to 93.

9. Design a Turing machine that recognizes the language

$$L = \{ w \# w : w \in \{0, 1\}^* \}.$$

Give your answer in the form of a state transition diagram, and explain the strategy you used to create the Turing machine. Simulate the machine on input 010#010 by giving the sequence of ID's of the machine.

Strategy: 1) First check input contains a #

2) Start with leftmost symbol. Replace it with X.

Jump over 0's, 1's till we hit #. Jump over #'s. If bit matches, replace it with # 3) Move leftwards till we hit X. ' If next symbol is not #, repeat 2). 0/07,1/10 0/04,1/14,#/#4 دار دواه check fort