## **Mathematical Finance**

Winter term 2023/2024

S. Christensen

P. Le Borne, B. Schroeter, B. Schultz

Sheet QF06

## $Mathematical\ Finance:\ QF$

Exercises (for discussion on Monday, 11.12.2023)

**Exercise 1.** We consider a price process  $S = (S^0, S^1)$  with time horizon N = 2. The probability measure P fulfills  $P(\{\omega\}) > 0$  for all  $\omega$  and the filtration is given by the tree.



- a) Compute an equivalent martingale measure Q, i.e. find a probability measure Q such that  $\hat{S}$  is a Q-martingale.
- b) Is the market complete? Explain your answer!

Exercise 2. Given the setting of Exercise 1:

a) Consider the contingent claim  $X = \max\{S_2^1 - 1, 0\}$ . Find the fair price process for X given by

$$S_n^2 = S_n^0 \mathbb{E}_Q[\hat{X}|\mathcal{F}_n], \quad n = 0, 1, 2.$$

b) Find a self-financing (and predictable) trading strategy  $\varphi=(\varphi^0,\varphi^1)$  such that

$$V_2(\varphi) = X.$$

c) Compute  $V_0(\varphi)$  and compare it with the initial value  $S_0^2$  of the price process obtained in Part (a).

**Exercise 3.** Let  $(S^0, S^1)$  be the price process in a market with end-time 1. Assume that  $S_0^0 = S_0^1 = S_1^0 = 1$  and that

$$S_1^1(\omega) = \begin{cases} x_1, & \text{falls } \omega = \omega_1 \\ x_2, & \text{falls } \omega = \omega_2 \\ x_3, & \text{falls } \omega = \omega_3 \end{cases}$$

with

$$p_1 := P(\{\omega_1\}) > 0,$$
  

$$p_2 := P(\{\omega_2\}) > 0,$$
  

$$p_3 := P(\{\omega_3\}) = 1 - p_1 - p_2 \ge 0$$

and  $x_1 < x_2 < x_3$ .

- a) Find specific values for  $x_1, x_2, x_3$  and  $p_1, p_2, p_3$ , such that the market admits an arbitrage and give the arbitrage strategy.
- b) Find specific values for  $x_1, x_2, x_3$  and  $p_1, p_2, p_3$ , such that the market is arbitrage-free and complete.
- c) Find specific values for  $x_1, x_2, x_3$  and  $p_1, p_2, p_3$ , such that the market is arbitrage-free and not complete.

In all cases explain your choices.

**Exercise 4.** Consider an inhomogeneous market with time horizon N.  $S^0$  is the riskless asset given by  $S_n^0 = 1 + nr$  with a constant r > 0. Let the stock  $S^1$  be given by  $S_n^1 = \prod_{i=1}^n (1 + \Delta \tilde{X}_i)$  with the  $\Delta \tilde{X}_i$ , i = 1, 2, ..., N being independent random variables with

$$P(\Delta \tilde{X}_i = u_i - 1) = p_i > 0,$$
  
 $P(\Delta \tilde{X}_i = d_i - 1) = 1 - p_i > 0,$ 

for real numbers  $u_i > d_i > 0$ . We consider the filtration is generated by  $\mathcal{F}_n := \sigma(\Delta \tilde{X}_1, \dots, \Delta \tilde{X}_n)$ ,  $\mathcal{F}_0 = \{\Omega, \emptyset\}$  and set  $S_0^0 = S_0^1 = 1$ . Show that there is no arbitrage if

$$u_n > \frac{1+nr}{1+(n-1)r} > d_n$$

for all  $n \in \{1, ..., N\}$ .

Submission of the homework until: Thursday, 07.12.2023, 10.00 a.m. via OLAT.