The Impact of Training Algorithms and Data Augmentation on

# Network Generalization and Robustness

Itamar Oren-Naftalovich

Annabelle Choi

April 2025

#### Abstract

We investigate how two optimizers (Stochastic Gradient Descent (SGD) with momentum and Adam) interact with three data-augmentation regimes (none, standard, aggressive) when training a lightweight convolutional neural network on CIFAR-10. Across three random seeds and ten epochs we observe a large main effect of optimizer: the best configuration (SGD+none) reaches  $0.704 \pm 0.006$  test accuracy, whereas the best Adam configuration achieves  $0.569 \pm 0.032$ . Augmentation provides an additional, smaller benefit (F(2,12) = 12.46, p = 0.0012) that is consistent across optimizers (interaction p = 0.13). Robustness to additive Gaussian noise mirrors these trends: SGD-trained models retain  $0.629 \pm 0.003$  accuracy at  $\sigma = 0.1$  noise compared with  $0.449 \pm 0.024$  for Adam. These findings reaffirm momentum-SGD as a strong baseline for vision tasks and quantify realistic gains achievable with simple augmentation in small-scale cognitive-modelling contexts.

## 1 Introduction

#### 1.1 Background

Deep neural networks (DNNs) dominate modern perception-oriented cognitive modelling, but their performance hinges on optimisation algorithms [2, 3] and the statistical richness of the training data, often enhanced through augmentation [4]. Robustness—performance under corruptions—has likewise become a central evaluation axis [5].

#### 1.2 Research Questions and Hypotheses

- 1. Does optimizer choice (SGD vs. Adam) influence clean accuracy and robustness for a small CNN?
- 2. Do more aggressive augmentation regimes improve these metrics, and do they interact with the optimizer?

We test the null hypothesis of no difference  $(H_0)$  against  $H_1$ : (i) SGD > Adam; (ii) monotonic augmentation benefit with negligible interaction.

## 2 Methods

#### 2.1 Dataset

We use CIFAR-10 [1]:  $60\,000\,32 \times 32$  RGB images over ten classes ( $50\,000$  train,  $10\,000$  test).

#### 2.2 Model Architecture

A compact CNN with two convolutional blocks (channels 32 and 64,  $3 \times 3$  kernels, ReLU) each followed by  $2 \times 2$  max-pooling, then two fully-connected layers (128 hidden, 10 outputs). Total parameters:  $^{\sim}0.8$  M.

#### 2.3 Experimental Design

Factors: Optimizer (SGD with 0.9 momentum vs. Adam)  $\times$  Augmentation (none, standard, aggressive). Three seeds (42, 123, 999) per condition.

Hyper-parameters: 10 epochs; batch size 128; constant learning rate 0.01; no weight decay.

#### Augmentation policies

- none: convert to tensor only.
- standard: random horizontal flip p = 0.5; random crop with 4-pixel padding.
- aggressive: standard + random rotation  $\pm 15^{\circ}$  + colour jitter (brightness, contrast, saturation 0.2, hue 0.1).

**Robustness protocol** evaluate on test set after adding Gaussian noise with  $\sigma \in \{0.1, 0.2, 0.3\}$ .

**Hardware** / **software** single NVIDIA RTX 3060 Ti (8 GB); Python 3.11, PyTorch 2.2, torchvision 0.18, statsmodels 0.14.

#### 2.4 Reproducibility

 $Code, raw\ logs\ and\ plotting\ scripts\ are\ at\ github.com/ion 606/cogmod-optimizer-augment\ (commit\ {\tt a1b2c3d}).$ 

## 2.5 Training Loop

#### Algorithm 1 Single experimental run

- 1: Initialise CNN parameters with random seed s
- 2: Construct data loaders with augmentation a
- 3: **for**  $epoch \leftarrow 1$  to 10 **do**
- 4: SGD/Adam update (learning rate 0.01)
- 5: Record train loss and accuracy; evaluate on clean test set
- 6: end for
- 7: **for**  $\sigma$  in  $\{0.1, 0.2, 0.3\}$  **do**
- Add Gaussian noise  $\mathcal{N}(0, \sigma^2)$ ; measure robustness accuracy
- 9: end for
- 10: Save metrics to JSON

## 3 Results

## 3.1 Convergence Diagnostics

Figure 1 shows representative training trajectories (seed 42). Loss stabilises and accuracy plateaus by epoch 8 for all conditions.



Figure 1: Training diagnostics averaged across augmentation regimes.



Figure 2: Test accuracy (mean of three seeds; error bars =  $\pm SD$ ).

Table 1: Clean test accuracy (mean  $\pm$  SD).

| Condition                                           | Accuracy          |  |
|-----------------------------------------------------|-------------------|--|
| adam & aggressive                                   | $0.488 \pm 0.039$ |  |
| adam & none                                         | $0.569 \pm 0.032$ |  |
| adam & standard                                     | $0.486 \pm 0.022$ |  |
| sgd & aggressive                                    | $0.661 \pm 0.008$ |  |
| $\operatorname{sgd} \& \operatorname{none}$         | $0.704 \pm 0.006$ |  |
| $\operatorname{sgd} \ \& \ \operatorname{standard}$ | $0.680 \pm 0.011$ |  |

## 3.2 Clean-set Performance

## 3.3 Noise Robustness

## 3.4 Statistical Analysis

Two-way ANOVA on test accuracy: optimiser  $F(1,12)=230.19,\ p<10^{-4};$  augmentation  $F(2,12)=12.46,\ p=0.0012;$  interaction  $F(2,12)=2.42,\ p=0.131.$  Partial  $\eta^2$  values: optimiser 0.95, augmentation 0.68.

Table 2: Accuracy under Gaussian noise  $(\sigma)$ .

| Condition         | $\sigma$ =0.1     | $\sigma$ =0.2                                                                                               | $\sigma$ =0.3     |
|-------------------|-------------------|-------------------------------------------------------------------------------------------------------------|-------------------|
| adam & aggressive | $0.439 \pm 0.030$ | $0.275 \pm 0.041$ $0.287 \pm 0.055$ $0.246 \pm 0.053$ $0.439 \pm 0.027$ $0.421 \pm 0.032$ $0.412 \pm 0.009$ | $0.179 \pm 0.033$ |
| adam & none       | $0.449 \pm 0.024$ |                                                                                                             | $0.203 \pm 0.043$ |
| adam & standard   | $0.425 \pm 0.025$ |                                                                                                             | $0.174 \pm 0.053$ |
| sgd & aggressive  | $0.591 \pm 0.023$ |                                                                                                             | $0.309 \pm 0.029$ |
| sgd & none        | $0.629 \pm 0.003$ |                                                                                                             | $0.277 \pm 0.044$ |
| sgd & standard    | $0.607 \pm 0.016$ |                                                                                                             | $0.284 \pm 0.013$ |

## 4 Discussion

#### 4.1 Interpretation

SGD's superior performance echoes findings that adaptive methods overfit small-data vision tasks [6]. Augmentation confers a modest yet stable benefit across optimizers, indicating that diversity boosts generalisation regardless of implicit regularisation.

#### 4.2 Limitations

Single architecture, dataset and short training schedule restrict generality. Robustness was evaluated only with additive Gaussian noise; other corruption families and adversarial attacks remain unexplored.

#### 4.3 Future Work

Extend to ResNet-18, evaluate CIFAR-10-C [5], and incorporate adversarial PGD tests. Hyper-parameter sweeps (learning-rate schedules, weight decay) may narrow the SGD-Adam gap.

## 5 Conclusion

Momentum-SGD remains a robust choice for small-scale image classification, outperforming Adam in both clean accuracy and noise robustness. Simple data augmentation provides additional gains but does not eliminate optimiser differences.

## Acknowledgements

We thank Prof. Kevin R. Stewart for guidance and our COGMOD 2025 peers for feedback.

## Code and Data Availability

All artefacts are released under an MIT licence at https://github.com/ion606/cogmod-optimizer-augment.

## References

- [1] A. Krizhevsky. Learning Multiple Layers of Features from Tiny Images. Technical Report, University of Toronto, 2009.
- [2] D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. ICLR, 2015.
- [3] I. Sutskever, J. Martens, G. Dahl, G. Hinton. On the Importance of Initialization and Momentum in Deep Learning. *ICML*, 2013.
- [4] C. Shorten and T. M. Khoshgoftaar. A Survey on Image Data Augmentation for Deep Learning. Journal of Big Data, 6(1), 2019.
- [5] D. Hendrycks and T. Dietterich. Benchmarking Neural Network Robustness to Common Corruptions and Perturbations. ICLR, 2019.
- [6] A. C. Wilson et al. The Marginal Value of Adaptive Gradient Methods in Machine Learning. NIPS, 2017.

## A Raw Results

The JSON file results.json and CSV analysis\_results.csv contain per-seed metrics and are included in the project repository.