第7章 概率初步(续)

7.1 条件概率与相关公式 第1课时 条件概率

修正处

	京師						
	- 、填空题1. 设 A 、B 为两个事件.						
1.	①在已知事件 B 发生的条件下,事件 A 发生的概率,称为事件 A						
	基于条件 B 的概率,记为 $P(A B)$;						
	② $P(A B)$ 是一个数值,满足 $0 \le P(A B) \le 1$;						
	③ $P(A B)$ 与 $P(B A)$ 的意义相同;						
	④当 $P(B) > 0$ 时, $P(A B) = \frac{P(A \cap B)}{P(B)}$;						
	$\mathfrak{S}P(B A) = P(A \cap B);$						
	以上各项中所有正确的结论序号为						
2.	已知 $P(A B) = \frac{1}{2}, P(B) = \frac{1}{3}, \text{则 } P(A \cap B) = \underline{\hspace{1cm}}.$						
3.	三张奖券中只有一张能中奖,现分别由三名同学无放回地抽取.						
	(1)最后一名同学抽到中奖奖券的概率是;						
	(2)若已经知道第一名同学没有抽到中奖奖券,则最后一名同学						
	抽到奖券的概率是						
4.	某射击选手射击一次击中 10 环的概率是 $\frac{4}{5}$,连续两次均击中 10						
	环的概率是 $\frac{1}{2}$,已知该选手某次击中 10 环,则随后一次击中 10						
	环的概率是						
5.	从编号为1,2,…,10的10个大小与质地相同的球中任取4个,已知						
	取出 4 号球的条件下,取出球的最大号码为 6 的概率为						
二、选	择题						
6.	某人一周晚上值班2次,在已知他周日一定值班的条件下,他在						
	周六晚上值班的概率为(假设此人哪天值班是等可能的)()						
	A. $\frac{1}{3}$; B. $\frac{1}{6}$;						

C. $\frac{1}{5}$;

修正处

- 7. 已知盒中装有 3 只螺口灯泡与 7 只卡口灯泡,这些灯泡的外形与 功率都相同且灯头向下放着,现需要一只卡口灯泡,电工师傅每 次从中任取一只并不放回,则在他第1次抽到的是螺口灯泡的条 件下,第2次抽到的是卡口灯泡的概率为
 - A. $\frac{2}{9}$;
- B. $\frac{3}{10}$;
- C. $\frac{7}{9}$;
- 8. 从 1,2,3,4,5 中任取 2 个不同的数,事件 A 表示"取到的 2 个数 之和为偶数",事件 B 表示"取到的 2 个数均为偶数",则 P(B|A)等干
 - A. $\frac{1}{8}$;
- B. $\frac{1}{4}$;
- C. $\frac{2}{5}$; D. $\frac{1}{2}$.

三、解答题

- 9. 抛掷一枚质地均匀的硬币两次.
 - (1)两次都是正面向上的概率是多少?
 - (2)在已知有一次出现正面向上的条件下,两次都是正面向上的 概率是多少?
 - (3)在第一次出现正面向上的条件下,第二次出现正面向上的概 率是多少?

10. 某地区气象台统计,该地区下雨的概率为 $\frac{4}{15}$,刮风的概率为 $\frac{2}{15}$,

既刮风又下雨的概率是 $\frac{1}{10}$,设下雨为事件 A,刮风为事件 B. 求:

- (1)P(A|B);
- (2)P(B|A).

修正处

11. 从一副不含大小王的 52 张扑克牌中随机取出一张,用 A 表示取出的牌是 Q,用 B 表示取出的牌是红桃,试计算 P(A|B).

四、能力拓展题

12. 设某种灯管使用了 500 h 还能继续使用的概率是 0.94,使用到 700 h 还能继续使用的概率是 0.87,问已经使用了 500 h 的一个 此种灯管还能继续使用到 700 h 的概率是多少?

一、填空题

- 1. 某保险公司把被保险人分为 3 类:"谨慎的""一般的""冒失的". 统计资料表明,这 3 类人在一年内发生事故的概率依次为 0.05, 0.15 和 0.30. 如果"谨慎的"被保险人占 20%,"一般的"被保险人占 50%,"冒失的"被保险人占 30%,则一个被保险人在一年内出事故的概率是
- 2. 两批相同的产品分别有 12 件和 10 件,每批产品中各有 1 件废品,现在先从第 1 批产品中任取 1 件放入第 2 批中,然后从第 2 批中任取 1 件,则取到废品的概率为
- 3. 设袋中共有 10 个大小与质地相同的球,其中 2 个红球,其余为白球,两人分别从袋中任取一球,则第二个人取得红球的概率为.(第一人取出的球不放回)
- 4. 某小组有 20 名射手,其中 1、2、3、4 级射手分别为 2、6、9、3 名. 若选 1、2、3、4 级射手参加比赛,则在比赛中射中目标的概率分别为 0.85、0.64、0.45、0.32.今随机选一人参加比赛,则该小组比赛中射中目标的概率为_____.
- 5. 播种用的一等小麦种子中混有 2%的二等种子、1.5%的三等种子、1%的四等种子. 用一、二、三、四等种子结出的穗含有 50 颗以上麦粒的概率分别为 0.5、0.15、0.1、0.05,这批种子所结的穗含有 50 颗以上麦粒的概率为

二、选择题

- 6. 袋中有大小与质地相同的 a 个白球和 b 个黑球,不放回摸球两次,问第二次摸出白球的概率为 ()
 - A. $\frac{a}{a+b}$;

B. $\frac{b}{a+b}$;

 $C.\frac{a}{b}$;

- D. $\frac{b}{a}$.
- 7. 已知事件 A、B,且 $P(A) = \frac{1}{3}$, $P(B|A) = \frac{1}{5}$, $P(B|\overline{A}) = \frac{2}{5}$,则 P(B)等于
 - A. $\frac{3}{5}$;
- B. $\frac{1}{3}$;
- C. $\frac{1}{5}$;
- D. $\frac{1}{15}$.
- 8. 已知甲袋中有 6 个红球,4 个白球;乙袋中有 8 个红球,6 个白球,这些球的大小与质地相同. 随机取一只袋子,再从该袋中随机取一个球,则该球是红球的概率是 ()
 - A. $\frac{41}{70}$;
- B. $\frac{7}{12}$;
- C. $\frac{4}{7}$;
- D. $\frac{1}{2}$

三、解答题

9. 甲、乙两个口袋中各有大小与质地相同的 3 只白球、2 只黑球. 从 甲口袋中任取一球放入乙口袋中,求再从乙口袋中取出一球为白 球的概率.

10. 设有两箱同一种商品:第一箱内装 50 件,其中 10 件优质品;第 二箱内装 30 件,其中 18 件优质品. 现在随机地打开一箱,然后 从箱中随意取出一件,求取到优质品的概率.

11. 两台机床加工同样的零件,第一台的废品率为 0.04,第二台的废品率为 0.07,加工出来的零件混放,并设第一台加工的零件是第二台加工零件的 2 倍,现任取一零件,求它是合格品的概率.

四、能力拓展题

12. 甲、乙、丙三人同时对飞机进行射击,三人击中的概率分别为 0. 4、0. 5、0. 7. 飞机被一人击中且击落的概率为 0. 2,被两人击中 且击落的概率为 0. 6,若三人都击中,飞机必定被击落,求飞机被击落的概率.

* 第 3 课时 贝叶斯公式

	咕	*	町
_	坦	公	颞

1. 对于事件 $A \setminus B$ 有以下结论:

 $\bigcirc P(A) = P(B)P(A|B) + P(\overline{B})P(A|\overline{B});$

- $\mathfrak{D}P(B) = P(A)P(B|A) + P(A)P(\overline{B}|A);$
- ③一般地,当 0<P(A)<1 且 P(B)>0 时,有 P(A|B) = $\frac{P(A)P(B|A)}{P(B)} = \frac{P(A)P(B|A)}{P(A)P(B|A) + P(\overline{A})P(B|\overline{A})}.$

请填上所有正确结论的序号

- 2. 设 5 支枪中有 2 支未经试射校正,3 支已校正. 一射手用校正过的枪射击,中靶率为 0.9,用未校正过的枪射击,中靶率为 0.4. 若任取一支枪射击,结果未中靶,则该枪未校正的概率为 .
- 4. 已知一批产品中 96%是合格品,检查产品时,一个合格品被误认为是次品的概率是 0. 02,一个次品被误认为是合格品的概率是 0. 05,则在检查后认为是合格品的产品确是合格品的概率为 . (精确到 0.001)
- 5. 设甲、乙、丙三个地区爆发了某种流行病,三个地区感染此病的比例分别为 $\frac{1}{7}$ 、 $\frac{1}{5}$ 、 $\frac{1}{4}$. 现从这三个地区任抽取一个人,若此人感染此病,则此人来自乙地区的概率是_____.

二、选择题

6. 一道考题有 4 个答案,要求学生将其中的一个正确答案选择出来. 某考生知道正确答案的概率为 1/3,而乱猜正确的概率为 2/3. 在乱猜时,4 个答案都有机会被他选择,如果他答对了,则他确实知道正确答案的概率是

A. $\frac{1}{4}$;

B. $\frac{1}{3}$;

C. $\frac{2}{3}$;

D. $\frac{3}{4}$.

7. 某快递公司为某客户运送水果,共装有 10 个纸箱,其中 5 箱苹果、2 箱菠萝、3 箱猕猴桃. 到目的地时发现丢失一箱,但不知丢失哪一箱. 现从剩下 9 箱中随机打开一箱,结果是苹果,则丢失的一箱也是苹果的概率为

A. $\frac{2}{9}$;

B. $\frac{1}{3}$;

C. $\frac{4}{9}$;

D. $\frac{5}{9}$.

修正处

修正处

- 8. 在某一季节,疾病 D_1 的发病率为 2%,患者中 40% 表现出症状 S;疾病 D_2 的发病率为 5%,患者中 18% 表现出症状 S;疾病 D_3 的发病率为 0.5%,患者中 60% 表现出症状 S.则以下结论中错误 的是
 - A. 任意一位患者有症状 S 的概率为 0.02;
 - B. 患者有症状 S 时患疾病 D_1 的概率为 0.4;
 - C. 患者有症状 S 时患疾病 D_2 的概率为 0.45;
 - D. 患者有症状 S 时患疾病 D_3 的概率为 0.25.

三、解答题

- 9. 已知男性中有 5% 患色盲,女性中有 0. 25% 患色盲,从 100 个男性和 100 个女性中任选一人.
 - (1)求此人患色盲的概率;
 - (2)如果此人是色盲,求此人是男性的概率.

10. 某人去某地参加会议,他乘火车、轮船、汽车或飞机的概率分别为 $0.2 \times 0.1 \times 0.3 \times 0.4$. 如果他乘火车、轮船、汽车去,迟到的概率分别为 $\frac{1}{3} \times \frac{1}{12} \times \frac{1}{4}$,乘飞机不会迟到. 结果他迟到了,求他乘汽车去的概率.

11. 某新能源企业所用的元件是由三家元件制造厂提供的,根据以 往的记录有如下表的数据:

元件制造厂	次品率	提供元件的份额
1	0.02	0.15
2	0.01	0.80
3	0.03	0.05

设这三家元件制造厂的元件在仓库中是均匀混合的,且无区别的标志.

- (1)在仓库中随机地取一只元件,求它是次品的概率;
- (2)在仓库中随机地取一只元件,若已知取到的是次品,为分析 此次品出自何厂,求此次品出自三家工厂生产的概率分别是 多少?

四、能力拓展题

12. 一纸箱中原来装有 10 件产品,其中一等品 5 件,二等品 3 件,三 等品 2 件,若取走一件产品,但不知是几等品,然后从纸箱中任 取 2 件产品,结果都是一等品,求取走的也是一等品的概率.