National University of Computer and Emerging Sciences, Lahore Campus

HIGHAL UNIVERSE
2 2
SCHOOLS SCHOOLS
SAMBRIME BILLIE

Course Name:	Parallel and Distributing Computing	Course Code:	CS3006
Degree Program:	BS (CS)	Semester:	Spring 2022
Exam Duration:	60 Minutes	Total Marks:	30
Paper Date:	21/03/22	Weight	15
Exam Type:	Midterm I	Page(s):	4

Student :	Name: SOLUTION	Roll No	Section:	
Instructio	n: Attempt all	questions on the question p	aper. Rough sheets can be us	sed but it should not be
	attached. If	you think some information	is missing then assume it an	d mention it clearly.
Questio	on 1: MCQs & True/F	alse		[10 marks]
i.	Single Program with	Multiple Data (SPMD) is a	close variant of	in Flynn taxonomy:
	a. SIMD	-		•
	b. MIMD *			
	c. MISD			
	d. SISD			
ii.	In case of	decomposition, divide and	conquer strategy is used.	
	a. Recursive *			
	b. data			
	c. exploratory			
	d. Speculative			
iii.	In Bus network, the n	umber of shared connection	ons is equal to	
	a. 1			
	<mark>b. n*</mark>			
	c. log ₂ n			
	d. n^2			
iv.	The number of tasks	that can be executed in par	allel is called	
	a. dependency			
	b. degree of concurre	e <mark>ncy *</mark>		
	c. granularity			
	d. All of the above			
v.	Which one is true abo	out Amdahl's law formulati	ion: -	
	a. It does not account	for communication overhea	ıds	
	b. It provides an uppe	er-bound on the achievable sp	peedups	
	c. If the number of pr	ocessors approaches infinity	, Speedup is bounded by $\frac{1}{sequence}$	uential fraction
	d. All (a), (b), and (c)	are correct *		
	e. Only (b) and (c) ar			
vi.	Choose correct staten	nent/s regarding NUMA ar	chitecture	
	a. Access time may v	ary depending on the data l	<mark>ocation</mark> *	
	b. Different processor	rs interact with each other us	sing message passing	
	c. The same logical of	ddress on different process	ors maps to the same physica	al memory location *

d. The same logical address on different processors maps to the different physical memory locations

- vii. How is a network of workstations different from a cluster?
 - a. The workstations in such a network may have different operating systems
 - b. The nodes within a network will normally be co-located (located together)
 - c. Users normally have the power to login to individual workstations
 - d. Both (a) and (c) *
- viii. In distributed Systems, processors can share logical address space
 - a. True
 - b. False *
- ix. Mesh network provides better cost scalability but poor performance scalability than the bus network
 - a. True
 - b. False *
- x. In case of Non-uniform Memory access, a processor cannot directly access the memory associated with another processor
 - a. True *
 - b. False

Question 2: Differentiate between

[4 marks]

a. Exploratory and Speculative decomposition

Exploratory: Specially used to decompose the problems having underlying computation like search-space exploration.

We may use these steps:

- (1) Partition the search space into smaller parts;
- (2) Search each one of these parts concurrently, until the desired solutions are found

Speculative: Usually used in the problems where different input values or output of the previous stage causes many computationally intensive branches.

Possible steps:

- (1) Speculate (guess) the output of previous stage
- (2) Start performing computations in the next stage even before the completion of the previous stage.
- (3) After the output of the previous stage is available, if the speculation was correct, then most of the computation for the next step would have already been done.
- b. Static and Dynamic task mapping

Static: when the size and number of tasks are known apriori, we prefer static mapping. This mapping of tasks to processes is done before program execution.

Dynamic: when the size and number of tasks are not known apriori, we prefer dynamic mapping. This mapping of tasks to processes is done during program execution.

Question 3: Assume a sequential program S has an execution time of 200 seconds. Further, assume that S_p is a parallel variant of S. After an experimental evaluation over different number of processors, the following running times were achieved: - [4+4 marks]

P	2	4	6	8
Execution Time (seconds)	107	61.92	48.31	42.46
Speedup	<u>1.87</u>	<u>3.23</u>	<mark>4.14</mark>	<mark>4.71</mark>
Karp-Flatt Metric	<mark>0.07</mark>	<mark>0.08</mark>	<mark>0.09</mark>	<mark>0.10</mark>

a) Calculate Speedups for each of the experimental configurations in the space provided below and then write your answers in the table above.

b) Calculate the Karp-Flatt metric values in the space provided below and then write your answers in the table above. You also have to Interpret the results of Karp-Flatt metric and write your opinion below

$$\frac{((1/1.87) - (1/2)) / (1 - 1/2) = 0.06951871657}{((1/3.23) - (1/4)) / (1 - 1/4) = 0.07946336429 = 0.08}{((1/4.14) - (1/6)) / (1 - 1/6) = 0.08985507246 = 0.09}$$
$$\frac{((1/4.71) - (1/8)) / (1 - 1/8) = 0.09978768577 = 0.1}{((1/4.71) - (1/8)) / (1 - 1/8) = 0.09978768577 = 0.1}$$

As 'e' is steadily increasing with p, it suggests that parallelization overhead is also contributing to poor speedup. Therefore, we need to reduce this overhead to improve speedups.

Question 4: For this question, you have a choice to attempt any one of the following questions: [8 marks]

a) Derive generalized expressions for arc-connectivity, diameter, bisection-width, and link cost of a 2D mesh (without wraparound) having M rows and N columns.

OR

b) Write a multithreaded program either using Open MP or Pthreads to find the maximum value in a matrix of size n x m. (Minimum number of threads should be 2 and maximum could be n)

(a)

Arc connectivity = 2 (each arc is connected to two nodes)

```
Diameter = (Row distance + Column distance) = (N-1) + (M-1) = M + N - 2
```

Bisection width = Minimum (M, N) (i.e., the min. number of links that must be removed to partition in equal halves)

Cost = (Links in a Row)(Total Rows) + (Links in a column)(Total Columns)

```
= (N-1)(M) + (M-1)(N) = MN - M + MN - N = 2MN - (M + N)
```

(b) One Possible solution:

```
pthread mutex lock maxlock; // global variables
int max -10000;
int** matrix;
void function(void* arg) {
  int row = * (int*) arg;
  int localMax = -1000;
  for(int i=0; i<M; i++) {</pre>
    if(matrix[row][i] > localMax) localMax = matrix[row][i];
  mutex lock(maxLock);
  if(localMax > max) max = localMax;
  mutex unlock(maxLock);
  pthread exit(NULL);
}
int main() {
  int N, M; // values from user
  matrix = new int*[N];
  for(int i=0; i<N; i++) matrix[i] = new int[M];</pre>
  // matrix is filled by user
  pthread_t* threads;
  threads = new pthread t[N];
  for(int i=0; i<N; i++) pthread_create(threads[i], NULL, function, (void *) i);</pre>
  for(int i=0; i<N; i++) pthread join(&threads[i], NULL);</pre>
  cout << "Max " << max << endl;</pre>
  delete [] threads;
  for(int i=0; i<N; i++) delete [] matrix[i];</pre>
  delete matrix;
  return 0;
}
```