

Model Development Phase Template

Date	09 July 2024
Team ID	SWTID1720499933
Project Title	Ecommerce Shipping Prediction Using Machine Learning
Maximum Marks	4 Marks

Initial Model Training Code, Model Validation and Evaluation Report

The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include classification reports, accuracy, and confusion matrices for multiple models, presented through respective screenshots.

Initial Model Training Code:

```
lg=LogisticRegression(max_iter=1000)
lg.fit(X_train,Y_train)
print("LogisticRegression Training Score=",lg.score(X_train,Y_train))
print("LogisticRegression Test Score=",lg.score(X_test,Y_test))
print(classification_report(y_pred=lg.predict(X_test),y_true=Y_test))
print(confusion_matrix(y_pred=lg.predict(X_test),y_true=Y_test))
```

```
lcv=LogisticRegressionCV(max_iter=1000)
lcv.fit(X_train,Y_train)
print("LogisticRegressionCV Training Score=",lcv.score(X_train,Y_train))
print("LogisticRegressionCV Test Score=",lcv.score(X_test,Y_test))
print(classification_report(y_pred=lcv.predict(X_test),y_true=Y_test))
print(confusion_matrix(y_pred=lcv.predict(X_test),y_true=Y_test))

0.3s
```

```
xgb=XGBClassifier()
xgb.fit(X_train,Y_train)
print("XGBoost Training Score=",xgb.score(X_train,Y_train))
print("XGBoost Test Score=",xgb.score(X_test,Y_test))
print(classification_report(y_pred=xgb.predict(X_test),y_true=Y_test))
print(confusion_matrix(y_pred=xgb.predict(X_test),y_true=Y_test))
```



```
rg=RidgeClassifier()
  rg.fit(X train, Y train)
  print("RidgeClassifier Training Score=",rg.score(X train,Y train))
  print("RidgeClassifier Test Score=",rg.score(X_test,Y_test))
  print(classification_report(y_pred=rg.predict(X_test),y_true=Y_test))
  print(confusion_matrix(y_pred=rg|.predict(X_test),y_true=Y_test))
✓ 0.0s
  knn=KNeighborsClassifier()
  knn.fit(X_train,Y_train)
  print("KNN Training Score=",knn.score(X_train,Y_train))
  print("KNN Test Score=",knn.score(X_test,Y_test))
  print(classification_report(y_pred=knn.predict(X_test),y_true=Y test))
  print(confusion_matrix(y_pred=knn|.predict(X_test),y_true=Y_test))
✓ 1.0s
  rfc=RandomForestClassifier()
  rfc.fit(X train,Y train)
  print("RandomForestClassifier Training Score=",rfc.score(X_train,Y_train))
  print("RandomForestClassifier Test Score=",rfc.score(X_test,Y_test))
  print(classification_report(y_pred=rfc.predict(X_test),y_true=Y_test))
  print(confusion_matrix(y_pred=rfc.predict(X_test),y_true=Y_test))
  1.6s
```


Model Validation and Evaluation Report:

Model	(Classific	ation R	F1 Scor e	Confusion Matrix		
Logistic	LogisticRegression Training Score= 0.642459370382998 LogisticRegression Test Score= 0.639090909090909 precision recall f1-score support						[[521 375] [419 885]]
Regressi	0 1	0.55 8.70	0.58 0.68	0.57 0.69	896 1304	69%	[413 663]]
Oli	accuracy			0.64	2200		
	macro avg weighted avg	0.63 0.64	0.63 0.64	0.63 0.64	22 00 22 00		

	LogisticRegres LogisticRegres			38181818181			
Logistic Regressi on CV	0 1	8.55 8.78	0.58 0.68	0.57 0.69	896 1384	69%	[[518 378] [418 886]]
on e ,	accuracy macro avg weighted avg	8.63 8.64	0.63 0.64	9.64 9.63 9.64	2299 2299 2299		
	XGBoost Train XGBoost Test		818181818		support		[[527, 250]
XGBoost	0 1	0.55 0.71	0.60 0.66	0.57 0.68	896 1304	68%	[[537 359] [440 864]]
	accuracy macro avg weighted avg	0.63 0.64	0.63 0.64	0.64 0.63 0.64	2200 2200 2200		
	RidgeClassifi RidgeClassifi		e= 0.64989		74167 support		
Ridge Classifie	θ 1	0.57 0.71	0.59 0.69	0.58 0.70	896 1364	70%	[[532 364] [408 896]]
r	accuracy macro avg weighted avg	0.64 0.65	0.64 0.65	0.65 0.64 0.65	2260 2260 2260		
17	KNN Training KNN Test Scor				upport		[[504 275]
K Nearest Neighbo	ø 1	0.55 0.70	0.58 0.67	0.57 0.69	896 1304	69%	[[521 375] [426 878]]
ur	accuracy macro avg weighted avg	8.63 8.64	0.63 0.64	8.64 8.63 8.64	2200 2200 2200		
D 1	RandomForestO RandomForestO		est Score		1818181819 Support		[[628 268]
Random Forest Classifie	θ 1	0.57 0.76	0.70 0.63		896 1304	69%	[476 828]]
r	accuracy macro avg weighted avg	0.66 0.68	9.67 9.66		2200 2200 2200		
	SVM Classifie SVM Classifie						
C		3		f1-score	support	66%	[[670 226]
Support Vector Machine	0 1	0.55 0.77	0.75 0.58	0.63 0.66	896 1304	0070	[545 759]]

