

EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015

FORMUŁA DO 2014 ("STARA MATURA")

MATEMATYKA POZIOM PODSTAWOWY

ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MMA-P1

Klucz punktowania zadań zamkniętych

Nr zad.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
Odp.	В	В	С	С	С	D	С	Α	В	Α	В	С	Α	A	В	D	В	Α	С	D	D	D	D	С	Α

Schemat oceniania zadań otwartych

Zadanie 26. (2 pkt)

Rozwiąż nierówność $7x^2 - 28 \le 0$.

Rozwiązanie

Rozwiązanie nierówności kwadratowej składa się z dwóch etapów.

Pierwszy etap rozwiązania:

Znajdujemy pierwiastki trójmianu kwadratowego $7x^2 - 28$:

 podajemy je bezpośrednio, np. zapisując pierwiastki trójmianu lub postać iloczynową trójmianu lub zaznaczając na wykresie

$$x_1 = -2$$
, $x_2 = 2$ lub $7(x+2)(x-2)$

albo

• obliczamy wyróżnik tego trójmianu, a następnie stosujemy wzory na pierwiastki:

$$\Delta = 0 - 4 \cdot 7 \cdot (-28) = 28^2$$
, $x_1 = \frac{0 - 28}{14} = -2$, $x_2 = \frac{0 + 28}{14} = 2$.

Drugi etap rozwiązania:

Podajemy zbiór rozwiązań nierówności: $-2 \le x \le 2$ lub $\langle -2, 2 \rangle$ lub $x \in \langle -2, 2 \rangle$ np. odczytując go ze szkicu wykresu funkcji $f(x) = 7x^2 - 28$.

Schemat oceniania

Zdający otrzymuje1 pkt gdy:

- zrealizuje pierwszy etap rozwiązania i na tym poprzestanie lub błędnie zapisze zbiór rozwiązań nierówności, np.
 - o rozłoży trójmian kwadratowy na czynniki liniowe, np. 7(x+2)(x-2) i na tym poprzestanie lub błędnie zapisze zbiór rozwiązań nierówności,

Egzamin maturalny z matematyki – stara formuła Rozwiązania zadań i schemat punktowania – poziom podstawowy

- o obliczy lub poda pierwiastki trójmianu kwadratowego $x_1 = -2$ i $x_2 = 2$ i na tym poprzestanie lub błędnie zapisze zbiór rozwiązań nierówności,
- o zaznaczy na wykresie miejsca zerowe funkcji $f(x) = 7x^2 28$ i na tym poprzestanie lub błędnie zapisze zbiór rozwiązań nierówności

albo

• realizując pierwszy etap popełni błąd (ale otrzyma dwa różne pierwiastki) i konsekwentnie do tego rozwiąże nierówność, np. popełni błąd rachunkowy przy obliczaniu wyróżnika lub pierwiastków trójmianu kwadratowego i konsekwentnie do popełnionego błędu rozwiąże nierówność.

• poda zbiór rozwiązań nierówności: $-2 \le x \le 2$ lub $\langle -2, 2 \rangle$ lub $x \in \langle -2, 2 \rangle$

albo

• sporządzi ilustrację geometryczną (oś liczbowa, wykres) i zapisze zbiór rozwiązań nierówności w postaci: $-2 \le x \le 2$

albo

 poda zbiór rozwiązań nierówności w postaci graficznej z poprawnie zaznaczonymi końcami przedziałów

Kryteria oceniania uwzględniające specyficzne trudności w uczeniu się matematyki

- 1. Akceptujemy sytuację, gdy zdający poprawnie obliczy lub poda pierwiastki trójmianu $x_1 = -2$ i $x_2 = 2$ i zapisze, np. $x \in \langle 2, 2 \rangle$, popełniając tym samym błąd przy przepisywaniu jednego z pierwiastków, to za takie rozwiązanie otrzymuje **2 punkty**.
- 2. Jeśli zdający pomyli porządek liczb na osi liczbowej, np. zapisze zbiór rozwiązań nierówności w postaci $x \in \langle 2, -2 \rangle$, to przyznajemy **2 punkty**.

Zadanie 27. (2 pkt)

Rozwiąż równanie $x^4 - 2x^3 + 27x - 54 = 0$.

Rozwiazanie (metoda grupowania)

Przedstawiamy lewą stronę równania w postaci iloczynu, stosując metodę grupowania wyrazów

$$x^{3}(x-2) + 27(x-2) = 0$$

 $(x^{3} + 27)(x-2) = 0$.
Stad $x = -3$ lub $x = 2$.

Egzamin maturalny z matematyki – stara formuła Rozwiązania zadań i schemat punktowania – poziom podstawowy

Schemat oceniania	
Zdający otrzymuje	1 pkt
gdy zapisze lewą stronę równania w postaci iloczynu, np.: $(x^3 + 27)(x - 2)$ i na tym poprzestanie lub dalej popełni błędy.	
Zdający otrzymuje	2 pkt

Zadanie 28. (2 pkt)

Funkcja kwadratowa f dla x=-3 przyjmuje wartość największą równą 4. Do wykresu funkcji f należy punkt A=(-1,3). Zapisz wzór funkcji kwadratowej f.

I sposób rozwiązania

Wykorzystując fakt, że dla x = -3 funkcja kwadratowa f przyjmuje wartość największą równą 4, możemy zapisać: $f(x) = a \cdot (x+3)^2 + 4$.

Punkt A = (-1,3) należy do wykresu funkcji, zatem możemy obliczyć wartość współczynnika a: $a \cdot (-1+3)^2 + 4 = 3$, stąd $a = -\frac{1}{4}$.

Zapisujemy wzór funkcji f w postaci $f(x) = -\frac{1}{4} \cdot (x+3)^2 + 4$.

gdy wyznaczy bezbłędnie oba rozwiązania równania: x = -3, x = 2.

Schemat oceniania I sposobu rozwiązania

• Zapisze wzór funkcji, w którym nieznany jest tylko współczynnik stojący przy x^2 , np. $f(x) = a \cdot (x+3)^2 + 4$,

albo

• popełni błąd rachunkowy przy obliczeniu współczynnika *a* i konsekwentnie do popełnionego błędu zapisze wzór funkcji kwadratowej *f*.

II sposób rozwiązania

Funkcja kwadratowa może być opisana wzorem $f(x) = ax^2 + bx + c$.

Wykorzystując fakt, że funkcja kwadratowa f przyjmuje wartość największą dla x=-3, możemy zapisać: $\frac{-b}{2a}=-3$.

Stad b = 6a, czyli $f(x) = ax^2 + 6ax + c$.

Punkt W = (-3,4) należy do wykresu funkcji, zatem możemy zapisać: 4 = 9a - 18a + c

Stąd c = 9a + 4, czyli $f(x) = ax^2 + 6ax + 9a + 4$.

Punkt A = (-1,3) należy do wykresu funkcji, zatem możemy obliczyć wartość

współczynnika a: a-6a+9a+4=3, stąd $a=-\frac{1}{4}$.

Wyznaczamy wartości b i c: $b = -\frac{6}{4}$, $c = \frac{7}{4}$

Zapisujemy wzór funkcji $f: f(x) = -\frac{1}{4}x^2 - \frac{6}{4}x + \frac{7}{4}$.

Schemat oceniania II sposobu rozwiązania

Zdający otrzymuje1 p. gdy

Zapisze wzór funkcji, w którym nieznany jest tylko jeden współczynnik trójmianu kwadratowego $f(x) = ax^2 + bx + c$, np. $f(x) = ax^2 + 6ax + 9a + 4$,

albo

• popełni błędy rachunkowe przy obliczeniu współczynników *a*, *b*, *c* i konsekwentnie do popełnionych błędów zapisze wzór funkcji kwadratowej *f*.

Zadanie 29. (2 pkt)

Bok AB czworokąta ABCD wpisanego w okrąg jest średnicą tego okręgu (zobacz rysunek). Udowodnij, że $\left|AD\right|^2 + \left|BD\right|^2 = \left|BC\right|^2 + \left|AC\right|^2$.

Dowód

Kat ADB jest prosty, jako kat wpisany w okrag oparty na jego średnicy.

Egzamin maturalny z matematyki – stara formula Rozwiązania zadań i schemat punktowania – poziom podstawowy

Podobnie stwierdzamy, że kąt ACB jest prosty.

Z twierdzenia Pitagorasa dla tych trójkątów prostokątnych otrzymujemy

$$|AB|^2 = |AD|^2 + |BD|^2 \text{ oraz } |AB|^2 = |AC|^2 + |BC|^2.$$

Porównując prawe strony tych równości otrzymujemy tezę. To kończy dowód.

Schemat oceniania

Zdający otrzymuje2 pkt gdy uzasadni równość.

Zadanie 30. (2 *pkt*)

W siedmiowyrazowym ciągu arytmetycznym środkowy wyraz jest równy 0. Udowodnij, że suma wyrazów tego ciągu jest równa 0.

Rozwiązanie

Ciąg (a_n) jest ciągiem arytmetycznym, złożonym z siedmiu wyrazów. Zatem środkowym wyrazem tego ciągu jest $a_4=a_1+3r=0$. Suma wyrazów tego ciągu jest równa $S_7=a_1+a_2+a_3+a_4+a_5+a_6+a_7$. Wykorzystując wzór na wyraz ogólny ciągu arytmetycznego lub wzór na sumę wyrazów ciągu arytmetycznego, zapisujemy sumę ciągu w postaci

$$S_7 = a_1 + a_1 + r + a_1 + 2r + a_1 + 3r + a_1 + 4r + a_1 + 5r + a_1 + 6r = 7a_1 + 21r$$

Ponieważ $a_1 + 3r = 0$, więc $a_1 = -3r$.

Stąd
$$S_7 = 7a_1 + 21r = 7 \cdot (-3r) + 21r = -21r + 21r = 0$$
.

Zatem suma wyrazów tego ciągu jest równa 0.

Schemat oceniania

• zapisze sumę wszystkich wyrazów ciągu w postaci $S_7 = 7a_1 + 21r$ i na tym poprzestanie lub dalej popełni błędy

albo

• zapisze wszystkie wyrazy ciągu w zależności od wyrazu a_4 , np. $a_1 = a_4 - 3r$, $a_2 = a_4 - 2r$, $a_3 = a_4 - r$, $a_5 = a_4 + r$, $a_6 = a_4 + 2r$, $a_7 = a_4 + 3r$, i na tym poprzestanie lub dalej popełni błędy.

Zadanie 31. (2 pkt)

Ze zbioru cyfr {1,2,3,4,5,6,7,8} losujemy kolejno dwie cyfry (losowanie bez zwracania) i tworzymy liczby dwucyfrowe tak, że pierwsza wylosowana cyfra jest cyfrą dziesiątek, a druga – cyfrą jedności. Oblicz prawdopodobieństwo utworzenia liczby podzielnej przez 4.

I sposób rozwiązania (klasyczna definicja prawdopodobieństwa)

Zdarzeniami elementarnymi są wszystkie pary uporządkowane (x, y), gdzie $x \neq y$, utworzone z dwóch cyfr wylosowanych ze zbioru $\{1, 2, 3, 4, 5, 6, 7, 8\}$, przy czym x oznacza cyfre dziesiątek, y oznacza cyfre jedności.

Liczba wszystkich zdarzeń elementarnych jest równa $|\Omega| = 8.7 = 56$.

Niech *A* oznacza zdarzenie, że utworzona liczba jest podzielna przez 4. Zatem

$$A = \{(1,2),(1,6),(2,4),(2,8),(3,2),(3,6),(4,8),(5,2),(5,6),(6,4),(6,8),(7,2),(7,6),(8,4)\}$$

Liczba zdarzeń elementarnych sprzyjających zdarzeniu A jest więc równa |A|=14.

Prawdopodobieństwo zdarzenia *A* jest równe: $P(A) = \frac{14}{56} = \frac{1}{4}$.

II sposób rozwiązania (metoda tabeli)

	1	2	3	4	5	6	7	8
1	X	(0)				0		
2		X		0				0
3		(0)	X			0		
4				X				0
5		(0)			X	0		
6				0		X		0
7		0				0	X	
8				0				X

Symbole w tabeli oznaczają odpowiednio:

x – zdarzenie niemożliwe

◎ – zdarzenie elementarne sprzyjające zdarzeniu A

$$|\Omega| = 8.7 = 56$$
 i $|A| = 14$, zatem

$$P(A) = \frac{14}{56} = \frac{1}{4}$$
.

Schemat oceniania I i II sposobu rozwiązania

- obliczy liczbę wszystkich możliwych zdarzeń elementarnych: $|\Omega| = 8 \cdot 7 = 56$ albo
 - obliczy (zaznaczy poprawnie w tabeli) liczbę zdarzeń elementarnych sprzyjających zdarzeniu A: |A| = 14

Uwaga

Jeżeli zdający popełnił błąd przy zliczaniu w tabeli par, spełniających warunki zadania i konsekwentnie do popełnionego błędu obliczy prawdopodobieństwo, to otrzymuje **1 punkt**.

III sposób rozwiązania (metoda drzewa)

Drzewo:

Prawdopodobieństwo zdarzenia *A* (liczba jest podzielna przez 4) jest więc równe: $P(A) = \frac{1}{8} \cdot \frac{2}{7} + \frac{1}{8} \cdot \frac{2}{7} + \frac{1}{8} \cdot \frac{2}{7} + \frac{1}{8} \cdot \frac{1}{7} + \frac{1}{8} \cdot \frac{2}{7} + \frac{1}{8} \cdot \frac{2}{7} + \frac{1}{8} \cdot \frac{2}{7} + \frac{1}{8} \cdot \frac{1}{7} = \frac{14}{56} = \frac{1}{4}.$

Schemat oceniania III sposobu rozwiązania

Uwagi

- 1. Jeśli zdający rozwiąże zadanie do końca i otrzyma P(A) > 1, to otrzymuje za całe rozwiązanie **0 punktów**.
- 2. Jeśli zdający dodaje prawdopodobieństwa na gałęziach drzewa, to za całe rozwiązanie otrzymuje **1 punkt** (pod warunkiem, że prawdopodobieństwa na gałęziach drzewa są zapisane prawidłowo).
- 3. Jeżeli zdający popełni błąd przy przepisywaniu prawdopodobieństw z gałęzi drzewa lub w zapisaniu prawdopodobieństwa na jednej gałęzi drzewa lub nie zaznaczy jednej istotnej gałęzi drzewa i konsekwentnie do popełnionego błędu oblicza prawdopodobieństwo, to otrzymuje **1 punkt**.

Zadanie 32. (4 pkt)

Dany jest romb o boku długości 35. Długości przekątnych tego rombu różnią się o 14. Oblicz pole tego rombu.

Rozwiązanie

Niech krótsza przekątna tego rombu ma długość 2x (zobacz rysunek). Wtedy druga przekątna ma długość równą 2x+14.

Przekątne rombu przecinają się pod kątem prostym oraz dzielą się na połowy, zatem możemy zapisać równanie wynikające z twierdzenia Pitagorasa:

$$x^2 + (x+7)^2 = 35^2$$
.

Po uporządkowaniu otrzymujemy równanie:

$$x^2 + 7x - 588 = 0$$
.

To równanie ma dwa rozwiązania: x = 21, x = -28. Odrzucamy ujemne rozwiązanie i zapisujemy długości przekątnych tego rombu: 2x = 42 oraz 2x + 14 = 56. Szukane pole rombu równa się więc:

$$P = \frac{1}{2} \cdot 42 \cdot 56 = 1176$$
.

Schemat oceniania

Rozwiązanie, w którym postęp jest niewielki, ale konieczny na drodze do pełnego rozwiązania 1 p.

Zdający oznaczy długości przekątnych tego rombu i zapisze zależności między długościami tych przekątnych, np.

$$2x i 2x + 14$$

i na tym zakończy lub dalej popełni błędy.

$$x^2 + (x+7)^2 = 35^2$$

i na tym zakończy lub dalej popełni błędy.

Uwaga

Jeżeli zdający zapisze układ równań opisujący sytuację w zadaniu, np.

$$\begin{cases} p-q=7\\ p^2+q^2=35^2 \end{cases}$$

gdzie p i q oznaczają długości połówek, odpowiednio, większej i mniejszej przekątnej tego rombu, to przyznajemy **2 punkty**.

$$x = 21$$
, $x = -28$,

odrzuci ujemne rozwiązanie i na tym zakończy lub dalej popełni błędy.

$$P = \frac{1}{2} \cdot 42 \cdot 56 = 1176.$$

Uwaga

Jeżeli zdający odgadnie długości przekątnych rombu i sprawdzi, że wtedy bok rombu ma długość 35, to otrzymuje **1 punkt**. Jeżeli ponadto obliczy poprawnie pole tego rombu, to otrzymuje **2 punkty**.

Zadanie 33. (4 pkt)

Wysokość prostopadłościanu *ABCDEFGH* jest równa 1, a długość przekątnej *BH* jest równa sumie długości krawędzi *AB* i *BC*. Oblicz objętość tego prostopadłościanu.

Rozwiązanie

Przyjmijmy oznaczenia jak na rysunku.

Z twierdzenia Pitagorasa dla trójkąta DBH otrzymujemy

$$|BH|^2 = |BD|^2 + |DH|^2$$
, czyli $d^2 = a^2 + b^2 + 1^2$.

Stąd i z równości d = a + b otrzymujemy

$$(a+b)^{2} = a^{2} + b^{2} + 1,$$

$$a^{2} + 2ab + b^{2} = a^{2} + b^{2} + 1,$$

$$ab = \frac{1}{2}$$

Objętość V prostopadłościanu jest zatem równa $V=ab\cdot 1=\frac{1}{2}\cdot 1=\frac{1}{2}$.

Egzamin maturalny z matematyki – stara formula Rozwiązania zadań i schemat punktowania – poziom podstawowy

Schemat oceniania

- zapisze długość przekątnej w zależności od długości boków podstawy: d = a + b albo
 - zapisze zależność między długością przekątnej prostopadłościanu i długościami jego krawędzi, np.: $d^2 = (a^2 + b^2) + 1^2$.

Uwaga

Jeżeli zdający rozwiąże zadanie jedynie w przypadku prostopadłościanu, którego podstawa ABCD jest kwadratem, to może otrzymać co najwyżej **2 punkty**, przy czym **1 punkt** otrzymuje za zapisanie równania $d^2 = \left(a\sqrt{2}\right)^2 + 1^2$, natomiast **2 punkty** otrzymuje za rozwiązanie zadania do końca w tym przypadku. Jeśli natomiast zauważy, że prostopadłościanów opisywanych w zadaniu jest nieskończenie wiele, więc wystarczy obliczyć objętość tylko w przypadku gdy a = b, to może otrzymać co najwyżej **3 punkty**.

Zadanie 34. (5 pkt)

Deweloper oferuje możliwość kompletnego wyposażenia kuchni i salonu w ofercie "Malejące raty". Wysokość pierwszej raty ustalono na 775 zł. Każda następna rata jest o 10 zł mniejsza od poprzedniej. Całkowity koszt wyposażenia kuchni i salonu ustalono na 30 240 zł. Oblicz wysokość ostatniej raty i liczbę wszystkich rat.

Rozwiązanie

Kolejne raty tworzą ciąg arytmetyczny, w którym pierwszy wyraz $a_1 = 775$ i różnica r = -10. Jeżeli n oznacza liczbę rat, to suma wszystkich rat jest równa $S_n = 30240$. Wykorzystując wzór na sumę n początkowych wyrazów ciągu arytmetycznego, zapisujemy równanie

$$\frac{2 \cdot 775 + (n-1) \cdot (-10)}{2} \cdot n = 30240.$$

Przekształcamy to równanie równoważnie i otrzymujemy

$$(780 - 5n) \cdot n = 30240$$
 i dalej

$$n^2 - 156n + 6048 = 0.$$

Równanie to ma dwa rozwiązania

Egzamin maturalny z matematyki – stara formuła Rozwiązania zadań i schemat punktowania – poziom podstawowy

$$n_1 = 72 \text{ i } n_2 = 84.$$

Obliczamy teraz wysokość ostatniej raty, czyli $a_{72} = 65$ i $a_{84} = -55$.

Drugie rozwiązanie odrzucamy, jako sprzeczne z warunkami zadania, a całkowity koszt wyposażenia kuchni i salonu zostanie spłacony w 72 ratach.

Odpowiedź: Liczba rat to 72. Ostatnia rata wyniosła 65 zł.

Schemat oceniania

Pokonanie zasadniczych trudności zadania 3 pkt

Rozwiązanie równania kwadratowego z niewiadomą n i otrzymanie dwóch rozwiązań $n_1 = 72$ i $n_2 = 84$.

Rozwiązanie zadania do końca, lecz z usterkami, które jednak nie przekreślają poprawności rozwiązania (np. drobne błędy rachunkowe lub wadliwe przepisanie)4 pkt

 rozwiązanie równania z niewiadomą n z błędem rachunkowym (o ile przynajmniej jedno rozwiązanie jest liczbą naturalną) i konsekwentne do popełnionego błędu obliczenie wysokość ostatniej raty

albo

• rozwiązanie równania kwadratowego i odrzucenie jednego rozwiązania i brak obliczenia lub obliczenie błędnie wysokości ostatniej raty.

i wysokości ostatniej raty: 65 zł.