

B

2. Fourier-Transformation

- Eigenfunktionen von LTI-Systemen
- Fourier-Transformation
- Theoreme der Fourier-Transformation
- Diracstoß und Fourier-Transformation

1 Gedankenexperiment

1.1 Beobachtung: Formveränderung von Signalen durch LTI-Systeme

Auch LTI-Systeme verändern die Form von Signalen.

Ausnahme: Sinusförmige Signale behalten ihre Form bei.

Bei ihnen verändert sich nur die Amplitude und die Phase.

1.2 Fragestellung

Der komplexe Drehzeiger ist eine mathematisch elegante Beschreibungsform für phasenverschobene, sinusförmige Signale (wenn auch physikalisch nicht real ...).

Folgende Frage scheint daher sinnvoll:

Das Signal $s_E(t) = e^{j2\pi ft}$ werde als Eingangssignal auf das System h(t) gegeben.

Wie lautet das Ausgangssignal?

1.3 Formale Herleitung mit dem Faltungsintegral

$$s_{E}(t)*h(t) = h(t)*e^{j2\pi ft} = \int_{-\infty}^{+\infty} h(\tau) \cdot e^{j2\pi f(t-\tau)} d\tau = e^{j2\pi ft} \cdot \int_{-\infty}^{+\infty} h(\tau) \cdot e^{-j2\pi f\tau} d\tau$$

$$s_{E}(t)*h(t) = s_{E}(t) \cdot \underline{H}(f)$$
Somit gilt:
$$s_{E}(t)*h(t) = s_{E}(t) \cdot \underline{H}(f)$$

$$\underline{H}(f)$$

$$richt$$

$$zeitab$$

Das bedeutet, die Funktion $s_E(t) = e^{j2\pi ft}$ wird vom System h(t) bis auf einen konstanten (komplexen) Faktor $\underline{H}(f)$ unverändert (unverzerrt) übertragen. $s_E(t)$ wird daher auch als $\underline{Eigenfunktion}$ bezeichnet.

1.4 Diskussion

zur Erinnerung: Multiplikation eines komplexen Zeigers mit einer komplexen Zahl entspricht einer Drehstreckung.

Ist das Eingangssignal eines LTI-Systems ein komplexer Drehzeiger mit der Drehfrequenz f, dann ist auch das Ausgangssignal ein komplexer Drehzeiger mit der Drehfrequenz f, d.h. die Zeiger drehen mit gleicher Drehgeschwindigkeit.

Die frequenzabhängige Amplitudenverstärkung/-abschwächung |H(f)| und die Phasenänderung $\varphi(f)$ gegenüber dem Eingangssignal wird durch H(f) beschrieben.

Die Amplitude (Länge des Drehzeigers) und der Nullphasenwinkel (Winkel bei t=0) des Ausgangssignals sind von der Drehfrequenz f abhängig.

1.5 Übertragungsfunktion

Durch
$$\underline{H}(f) = \int_{-\infty}^{+\infty} h(\tau) \cdot e^{-j2\pi f\tau} d\tau$$
 wird somit eine Funktion $h(t)$ in eine Funktion $\underline{H}(f)$ überführt (transformiert).

Die Funktion *H*(*f*) wird als *Übertragungsfunktion* des Systems bezeichnet.

Die Übertragungsfunktion $\underline{H}(f)$ lässt sich auch experimentell ermitteln, indem man den Amplitudenverstärkungsfaktor H(f) und die Phasendrehung $\varphi(f)$ bei allen Frequenzen f misst.

B

2. Fourier-Transformation

- Eigenfunktionen von LTI-Systemen
- Fourier-Transformation
- Theoreme der Fourier-Transformation
- Diracstoß und Fourier-Transformation

1 Fouriertransformation

1.1 Definition

Durch
$$H(f) = \int_{-\infty}^{+\infty} h(\tau) \cdot e^{-j2\pi f\tau} d\tau$$
 wird eine Funktion $H(f)$

wird eine Funktion h(t) in eine Funktion H(t) überführt (transformiert).

Die Transformation $h(t) \rightarrow \underline{H}(f)$ wird wird als **Fouriertransformation** bezeichnet.

$$H(f) = \int_{-\infty}^{+\infty} h(\tau) \cdot e^{-j2\pi f\tau} d\tau$$
 (18)

1.2 Anwendung der FT auf Systeme

h(t) beschreibt ein System durch seine Stoßantwort (= Reaktion auf Diracstoß).

$$H(f) = \int_{-\infty}^{+\infty} h(\tau) \cdot e^{-j2\pi f \tau} d\tau$$

Die Übertragungsfunktion $\underline{H}(f)$ beschreibt das System durch die Wirkung des Systems auf sinusförmige Signale unterschiedlicher Frequenz (Amplituden- und Phasenänderung).

1.3 Anwendung der FT auf Signale

Es galt : Mathematisch werden Signale s(t) und Systeme h(t) gleich behandelt.

Daher gilt auch

s(t) beschreibt ein Signal als Zeitfunktion.

 $\underline{S}(f)$ beschreibt das Signal durch die im Signal enthaltenen Eigenfunktionen (komplexe Drehzeiger unterschiedlicher Frequenz = Phasoren).

Diese Form der Fouriertransformation ist <u>nicht auf abgetastete oder periodische</u> <u>Funktionen beschränkt</u> (anders als die Fourierreihe oder die DFT).

2 Inverse Fouriertransformation

Mit Hilfe der <u>inversen Fouriertransformation</u> (o.Bew.) kann h(t) wieder aus H(f) zurückgewonnen werden:

$$h(t) = \int_{-\infty}^{+\infty} H(f) \cdot e^{j2\pi f\tau} df$$
 (19)

Die inverse Fouriertransformation beschreibt die Synthese eines Zeitsignals durch die in ihm enthaltenen Eigenfunktionen mit den Frequenzen f.

Beispiel: Synthese eines Signals durch komplexe Drehzeiger

Überlagerung von komplexen Drehzeigen unterschiedlicher Frequenz und Amplitude

Imaginärteil des Ergebnisdrehzeigers

Complex Plane Periodic Signal

3 Stoßantwort und Übertragungsfunktion

Die <u>Stoßantwort h(t)</u> und die <u>Übertragungsfunktion H(f)</u> sind zwei <u>gleichwertige</u> <u>Beschreibungsfunktionen für **Systeme**</u>.

Mit Hilfe der Fouriertransformation bzw. inversen Fouriertransformation lassen sich beide Darstellungsweisen ineinander überführen.

Der Zusammenhang zwischen h(t) und H(f) wird wie folgt symbolisiert (Korrespondenzsymbol):

$$h(t) \quad \bigcirc \longrightarrow \quad H(f)$$

... und es gilt auch

Das Signal $\underline{s(t)}$ und die Fouriertransformierte $\underline{S(f)}$ sind zwei gleichwertige Beschreibungsfunktionen für **Signale**.

$$s(t) \circ - S(f)$$

4 Fouriertransformierte ausgewählter Elementarsignale

4.1 Rechteckimpuls s(t) = rect(t)

Einsetzen von rect(t) in das Fourierintegral:

$$S(f) = \int_{-\infty}^{+\infty} rect(t) \cdot e^{-j2\pi ft} dt = \int_{-0.5}^{+0.5} 1 \cdot e^{-j2\pi f\tau} d\tau = -\frac{1}{j2\pi f} \left(e^{-j\pi f} - e^{j\pi f} \right)$$

Mit der Beziehung $\sin(x) = \frac{1}{2j} (e^{jx} - e^{-jx})$

gilt somit
$$S(f) = \frac{1}{j2\pi f} \left(e^{j\pi f} - e^{-j\pi f}\right) = \frac{\sin(\pi f)}{\pi f} = Si(\pi f)$$
 (\Rightarrow SI-Funktion)

ÜBUNG: Si-Funktion

Geben Sie die Nullstellen der SI-Funktion an:

$$S(f) = \frac{\sin(\pi f)}{\pi f} = Si(\pi f)$$

4.2 Diracstoß $s(t) = \delta(t)$

Einsetzen von $\delta(t)$ in das Fourierintegral:

$$S(f) = \int_{-\infty}^{+\infty} \delta(\tau) \cdot e^{-j2\pi ft} dt = \int_{-\infty}^{+\infty} \delta(\tau) \cdot e^{-j2\pi f0} d\tau = \int_{-\infty}^{+\infty} \delta(\tau) d\tau = 1$$

Der Diracstoß enthält somit alle Frequenzen gleichermaßen.

B

2. Fourier-Transformation

- Eigenfunktionen von LTI-Systemen
- Fourier-Transformation
- Theoreme der Fourier-Transformation
- Diracstoß und Fourier-Transformation

1 Multiplikationstheorem

Nun werde die Eigenfunktion auf eine Kette von Systemen gegeben:

$$s_E(t) * h_1(t) * h_2(t) = \left[e^{j2\pi ft} \cdot H_1(f) \right] * h_2(t) = e^{j2\pi ft} \cdot H_1(f) \cdot H_2(f)$$

D.h., eine Faltung im Zeitbereich entspricht einer Multiplikation im Frequenzbereich.

$$s(t) * h(t) \longrightarrow S(f) \cdot H(f)$$
 (20)

Dieses Ergebnis ist sehr bedeutsam, da eine Multiplikation viel einfacher durchzuführen ist als eine Faltung (sowohl numerisch als auch analytisch).

Analog gilt auch

$$s(t) \cdot h(t) \hookrightarrow S(f) * H(f)$$

Fazit: Faltung und Multiplikation sind korrespondierende Operationen zwischen Zeit- und Frequenzbereich.

ÜBUNG: Multiplikationstheorem

Geben Sie die folgenden Filterungen im Zeit- und Frequenzbereich an:

$$a)$$
 $g(t) = rect(t) * \delta(t)$

$$b)$$
 $g(t) = rect(t) * rect(t)$

$$c)$$
 $g(t) = rect(t) \cdot rect(t)$

2 Superpositionssatz

Durch Einsetzen des linksseitigen Terms in die Fouriertransformation erhält man

$$a_1 \cdot s_1(t) + a_2 \cdot s_2(t) \longrightarrow a_1 \cdot S_1(f) + a_2 \cdot S_2(f)$$
 (21)

Eine Überlagerung von Signalen im Zeitbereich entspricht einer Überlagerung von Signalen im Frequenzbereich.

3 Ähnlichkeitssatz

Durch Einsetzen des linksseitigen Terms in die Fouriertransformation erhält man

$$s(bt) \circ - \frac{1}{|b|} S(\frac{f}{b})$$
 (22)

Eine Stauchung des Signals im Zeitbereich entspricht einer Dehnung im Frequenzbereich.

Beispiel: Impulsbreite und Klangfarbe

4 Verschiebungssatz

4.1 Verschiebung im Zeitbereich um t₀

Durch Einsetzen des linksseitigen Terms in die Fouriertransformation erhält man

$$s(t-t_0) \, \hookrightarrow \, S(f) \cdot e^{-j2\pi f t_0} \tag{23}$$

Eine Verschiebung des Signals im Zeitbereich entspricht einer linear mit der Frequenz steigenden Phasendrehung im Frequenzbereich.

Die Frequenzzusammensetzung bleibt gleich.

Beispiel: Frequenzabhängige Phasendrehung bei Verschiebung um to

Zwei Sinusschwingungen mit Startpunkt zum Zeitpunkt t=0:

Zwei Sinusschwingungen mit Startpunkt zum Zeitpunkt t=t₀:

$$\varphi(f_1) = 270^{\circ}$$

$$\varphi(f_2) = 810^{\circ}$$

4.2 Verschiebung im Frequenzbereich um F

Durch Einsetzen des linksseitigen Terms in die inv. Fouriertransf. erhält man

$$S(f-F) \hookrightarrow s(t) \cdot e^{j2\pi Ft}$$
 (23 b)

Beispiele: - Pitch-Shifting

- Vocoder

- Amplitudenmodulation (z.B. Mittelwellenrundfunk)

Eine Verschiebung des Signals im Frequenzbereich entspricht einer Multiplikation des Signals mit einem komplexen Drehzeiger der Frequenz F.

ÜBUNGEN: Theoreme der Fouriertransformation

Geben Sie durch Anwendung der Theoreme die Fouriertransformierte der folgenden Funktionen an:

$$a) \quad 4 \cdot rect(t) * rect(4 \cdot t)$$

b)
$$rect(\frac{t+5/2}{5}) - rect(\frac{t-5/2}{5})$$

B

2. Fourier-Transformation

- Eigenfunktionen von LTI-Systemen
- Fourier-Transformation
- Theoreme der Fourier-Transformation
- Diracstoß und Fourier-Transformation

1 Einzelner Diracstoß

Anm.: alternative Herleitung

1.1 Diracstoß im Zeitbereich

Aus der Tatsache, dass der Diracstoß das Einselement der Faltung ist (7), folgt unmittelbar die Fouriertransformierte des Diracstoßes:

$$s(t) = s(t) * \delta(t) \circ S(f) = S(f) \cdot 1$$

$$\delta(t) \longrightarrow 1$$
 (24)

Signalsichtweise: Ein Diracstoß-Signal enthält alle Frequenzen in gleicher Stärke.

Systemsichtweise: Ein Diracstoß-System lässt alle Frequenzen ungehindert passieren.

1.2 Diracstoß im Frequenzbereich

Der umgekehrte Transformationsweg ist $1 \circ \delta(f)$

Dies besagt, dass zu einem Diracstoß (bei f=0) im Frequenzbereich ein ein Gleichsignal s(t)=1 im Zeitbereich korrespondiert.

Beispiel: Eine Gleichspannung ist ein Signal mit der Frequenz f=0.

Signalsichtweise: Ein Gleichsignal enthält nur die Frequenz 0.

Systemsichtweise: Ein System mit Gleichsignal-Impulsantwort (nichtkausal !!)

lässt nur die Frequenz 0 passieren.

1.3 Verschobener Diracstoß im Zeitbereich

Aus dem Verschiebungssatz (23) folgt für den um t₀ verschobenen Diracstoß:

$$\delta(t-t_0) \hookrightarrow 1 \cdot e^{-j2\pi f t_0}$$

Systemsichtweise:

Ein System welches auf einen Diracstoß mit einem um t₀ verzögerten Diracstoß reagiert, verzögert alle Signale um t₀ (<u>Signalverzögerer</u>).

Dies ist gleichbedeutend mit einer frequenzabhängigen Phasendrehung.

Je höher die Frequenz, desto größer wird die Phasendrehung (lin. Zusammenhang).

Beispiel: Frequenzabhängige Phasendrehung bei Verschiebung um to

Zwischen einer Schallquelle und einem Mikrofon sei ein Abstand von 3m. Wie groß ist die Phasenverschiebung bei 10Hz, 20Hz, 50Hz und 100Hz?

Schallgeschwindigkeit: 343 m/s

1.4 Verschobener Diracstoß im Frequenzbereich

Aus dem Verschiebungssatz (23 b) folgt für den um F verschobenen Diracstoß:

$$e^{j2\pi Ft} \circ - \delta(f-F)$$

Ein mit der Frequenz F rotierender komplexer Drehzeiger enthält nur die Frequenz F.

2 Diracstoßpaar

2.1 Diracstoßpaar im Frequenzbereich

Die Eulerformel besagt
$$\cos(2\pi Ft) = \frac{1}{2} \left[e^{j2\pi Ft} + e^{-j2\pi Ft} \right]$$

Die Kosinusfunktion besteht also jeweils zur Hälfte aus der <u>positiven</u> Frequenz +F und der <u>negativen</u> Frequenz -F.

$$\cos(2\pi Ft) \, \smile \, \frac{1}{2} \delta(f+F) + \frac{1}{2} \delta(f-F)$$

2.2 Diracstoßpaar im Zeitbereich

Mit Hilfe der Eulerschen Formeln sowie dem Verschiebungssatz lassen sich folgende wichtige Beziehungen herleiten:

$$\frac{1}{2}\delta(t-T) + \frac{1}{2}\delta(t+T) \quad \circ \quad \frac{e^{-j2\pi fT} + e^{j2\pi fT}}{2} = \cos(2\pi fT) \quad (25)$$

ÜBUNG: Paare von Diracimpulsen

Geben Sie die Zeitfunktion s(t) zu folgender Frequenzfunktion an:

ÜBUNG: Paar von Rechteckimpulsen

Wie wirkt es sich aus, wenn das Diracstoßpaar durch Rechteckimpulse der Breite t₀ und der Höhe 0.5 ersetzt wird?

BEISPIEL: Schmaler werdender Doppelpuls der Höhe 0.5.

3 Diracstoßfolgen

3.1 Herleitung der Fouriertransformierten

Fasst man Diracstöße paarweise zusammen, so erhält man mit (25):

$$\sum_{n=-\infty}^{\infty} \left[\delta(t-n) \right] \quad \bigcirc \longrightarrow \quad \sum_{n=-\infty}^{\infty} e^{-j2\pi nf} = 1 + 2 \cdot \sum_{n=1}^{\infty} \cos(2\pi nf)$$

Behauptung:

Bildet man die Summe wie oben angegeben, so entsteht wiederum eine Diracstoßfolge.

n=5

n=10

n=50

Aus einer Diracstoßfolge im Zeitbereich wird somit eine Diracstoßfolge im Frequenzbereich

$$\sum_{n=-\infty}^{\infty} \left[\mathcal{S}(t-n) \right] \quad \bullet \quad \sum_{n=-\infty}^{\infty} \left[\mathcal{S}(f-n) \right]$$

3.1 Fouriertransformierte der um T gedehnten Diracstoßfolge

Mit Hilfe des <u>Ähnlichkeitstheorems</u> sowie der <u>Dehnungseigenschaft</u> des Diracstoßes gelten somit für Diracstoßfolgen folgende Transformationspaare:

$$\sum_{n=-\infty}^{\infty} \left[\delta(t - nT) \right] \quad 0 \longrightarrow \quad \frac{1}{|T|} \sum_{n=-\infty}^{\infty} \left[\delta(f - \frac{n}{T}) \right]$$
 (25)

ÜBUNG: Diracstoßfolgen

Geben Sie die Fouriertransformierte (FT) bzw. inverse FT der folgenden Diracstoßfolgen an:

c)
$$\frac{1}{5} \sum_{n=-\infty}^{\infty} \delta(f - \frac{n}{20})$$

b)
$$\begin{array}{c} \xrightarrow{S(f)} \\ \downarrow \\ 0 \end{array} \begin{array}{c} \xrightarrow{S(f)} \\ 2/T \end{array}$$

d)
$$2\sum_{n=-\infty}^{\infty}\delta(t-5nT)$$