

UNIVERSIDADE FEDERAL DE MINAS GERAIS ESCOLA DE ENGENHARIA CURSO DE GRADUAÇÃO EM ENGENHARIA ELÉTRICA

Código	Disciplina	Professor
ELE042	Processamento de Sinais	Hilton de Oliveira Mota

1º TRABALHO PRÁTICO - Filtros LIT de tempo contínuo

Condições

Trabalho em grupo de 2 alunos.

Entregar:

- Documento em .pdf contendo identificação dos membros do grupo, resolução dos problemas, imagens, scripts ou códigos fontes e resultados de simulações SPICE, conforme especificado em cada enunciado
- Até 18 de fevereiro de 2021 às 23:59.

Referências bibliográficas:

Os livros abaixo e outros materiais didáticos podem ser baixados gratuitamente pelo portal de periódicos da CAPES (http://www.periodicos.capes.gov.br/) via acesso CAFE (Comunidade Acadêmica Federada):

- 1. PAARMAN, Larry D. Design and analysis of analog filters: a signal processing perspective. New York: Kluwer Academic Publishers, 2003.
- 2. SU, Kendall. Analog filters. 2nd ed. New York: Kluwer Academic Publishers, 2002.
- 1) Filtros de Butterworth são especificados a partir de uma resposta de magnitude ao quadrado dada por

$$|H(j\omega)|^2 = \frac{1}{1 + (\omega/\omega_c)^{2N}},$$

em que N é a ordem e ω_c é denominada frequência de corte, de ½ potência ou de $-3\,dB$. Considerando um filtro de Butterworth de ordem N=7 e frequência de corte $f_c=350\,Hz$:

- a) Determine, analiticamente, os valores dos polos, zeros e a função de transferência H(s).
- b) Faça um programa ou script do Matlab® que:
 - o forneça os valores dos polos e zeros e a função de transferência *H*(*s*);
 - plote o diagrama de polos e zeros;
 - o plote as curvas de superfície de |H(s)| e $\theta(s)$;
 - \circ plote as respostas de magnitude $|H(j\omega)|$ e fase $\theta(\omega)$.

Verifique se os valores condizem com os calculados anteriormente. Corrija eventuais discrepâncias e apresente, como resposta, o código do programa e os gráficos gerados.

2) A resposta de magnitude ao quadrado de um filtro Chebyshev tipo I passa-baixas é definida por

$$|H_I(j\omega)|^2 = \frac{1}{1 + \epsilon^2 C_{I,N}^2(\omega/\omega_p)},$$

em que ϵ determina o nível de *ripple* na faixa de passagem, ω_p é a frequência de borda da faixa de passagem e $C_{I,N}(\omega/\omega_p)$ é a função de Chebyshev tipo I de ordem N. A resposta de um filtro Chebyshev tipo II pode ser obtida a partir da tipo I fazendo-se $|H_{II}(j\omega)|^2 = 1 - |H_{I}(j\omega)|^2$ e substituindo-se ω/ω_p por ω_s/ω . O resultado é

$$|H_{II}(j\omega)|^2 = \frac{\epsilon^2 C_{II,N}^2(\omega_s/\omega)}{1 + \epsilon^2 C_{II,N}^2(\omega_s/\omega)}$$

em que ϵ representa a atenuação na faixa de rejeição, ω_s é a frequência de borda da faixa de rejeição e $C_{II,N}(\omega_s/\omega)$ representa a *função de Chebyshev inversa* ou do *tipo II*.

Considere um filtro Chebyshev tipo II <u>normalizado</u> em $\omega_s = 1 \, rad/s$ de ordem N = 4 e $\alpha_s = 60 \, dB$. Faça um programa ou script do Matlab® para projetar o filtro especificado e que:

- o forneça os valores dos polos e zeros e a função de transferência *H*(*s*);
- o plote o diagrama de polos e zeros;
- \circ plote as respostas de magnitude $|H(j\omega)|$ e fase $\theta(\omega)$.

Apresente, como resposta, o código do programa, os dados e gráficos gerados.

3) Filtros Chebyshev tipo II são naturalmente especificados em função da frequência de borda da faixa de rejeição, ω_s . Para se fazer um projeto em termos da frequência de borda da faixa de passagem, ω_p , é necessário determinar qual será a ω_s correspondente, o que pode ser feito por meio da expressão

$$\omega_s = \omega_p \cosh \left[(1/N) a \cosh \left[1/(\epsilon \sqrt{10^{\alpha_p/10} - 1}) \right] \right].$$

em que α_p representa o ripple na faixa de passagem, em dB.

Considerando essas informações, faça um programa ou script do Matlab® para projetar um filtro Chebyshev passa-baixas tipo II com $\omega_p = 2\pi 500 \, rad/s$, $\alpha_p = 0.5 \, dB$ e $\alpha_s = 60 \, dB$.

O programa deverá solicitar ao usuário a ordem desejada e retornar as seguintes informações:

- a) Frequência de borda da faixa de rejeição $\,\omega_{s}\,$ corrigida.
- b) Polos, zeros e diagrama correspondente.
- c) Função de transferência H(s).
- d) As respostas de magnitude $|H(j\omega)|$ e fase $\theta(\omega)$. Apresente, como resposta, o código do programa e os gráficos gerados.
- 4) Considere o desenvolvimento de um filtro elíptico passa-altas com ganho unitário e frequência de borda da faixa de passagem f_p=2kHz. Para garantir um nível mínimo de exatidão na aplicação, a distorção máxima aceitável na faixa de passagem é de 1,5%. O filtro deve fornecer uma atenuação mínima na faixa de rejeição de 99,8%, em uma frequência máxima de 1,35kHz. Faça um programa ou script do Matlab® para projetar o filtro especificado e que:
 - \circ determine a ordem mínima *N* que atenda as especificações;
 - forneça os valores dos polos, zeros e a função de transferência H(s);
 - o plote o diagrama de polos e zeros;
 - \circ plote as respostas de magnitude $|H(j\omega)|$ e fase $\theta(\omega)$.

Apresente, como resposta, o código do programa e os gráficos gerados.

- 5) Considere o desenvolvimento de um filtro Chebyshev tipo I com ordem N=3 utilizando um circuito passivo em escala LC.
 - a) Considerando o filtro normalizado em ω_p =1 rad/s, consulte os dados da tabela 1, acima, e determine a expressão para a resposta de magnitude ao quadrado na forma polinomial,

$$|H(j\omega)|^2 = \frac{K^2}{1 + \epsilon^2 \left[\sum_{k=1}^N a_k \omega^k\right]^2}$$

- b) Determine a expressão para a impedância de entrada $Z_{11}(s)$ (consulte o exemplo apresentado nos slides da aula 05_B).
- c) Considerando α_p =0,25 dB, R_S =0,5 Ω e R_L =1 Ω , utilize o método do fracionamento contínuo para obter os dois possíveis circuitos em escada LC. Compare os resultados com os apresentados na tabela 10.3, disponível nos slides da aula 06_A. Corrija eventuais discrepâncias.
- d) Faça os escalonamentos para que o filtro apresente uma resposta passa-altas com frequência de borda da faixa de passagem f_p =300 Hz alimentando uma impedância de carga R_L =50 Ω .
- e) Monte o circuito em um simulador SPICE¹ e apresente o diagrama do circuito e os gráficos de resposta de magnitude $|H(j\omega)|$ e fase $\theta(\omega)$. Corrija eventuais discrepâncias.
- 6) Faça o projeto de um filtro passa-faixa Chebyshev tipo II com as seguintes especificações: f_0 =10 kHz, Bp=1 kHz, Bs=9 kHz, α_p =2 dB, α_s =40 dB. Apresente o seu projeto da seguinte forma:
 - a) Utilize o Matlab ${\mathbb R}$ para determinar e reportar a mínima ordem N que atenda as especificações.
 - b) Utilize o Matlab® para obter a função de transferência na forma original e em expansão em termos de 1ª e 2ª ordem.
 - c) Implemente o circuito em um simulador SPICE. Utilize um fator de escala de impedância k_z =1000.

Apresente, como resposta, o código do programa, o diagrama do circuito e os gráficos de resposta de magnitude $|H(i\omega)|$ e fase $\theta(\omega)$. Corrija eventuais discrepâncias.

^{1 &}lt;a href="https://www.ti.com/tool/TINA-TI">https://www.ti.com/tool/TINA-TI, https://www.analog.com/en/design-center/design-tools-and-calculators/ltspice-simulator.html#