

Question

How much will an apartment rent for based on its description?

Ex. features:

- Location
- Square Footage
- Number of bedrooms/bathrooms

Data

- Address
- Monthly rent
- #Bedrooms/Baths
- Sq. Feet
- Build Date
- Nearby Colleges
- Nearby Airports
- More: pets allowed, Amenities

Data - Multiple Listings per Page

Assumption: Lowest/highest rent corresponds to combination of all lowest/highest values

Consequences:

- Apt complexes with more than 2 listings are under-represented
- Middling apt's are under-represented

- Sq. ft. and # of baths have highest correlation
- % change in employment has negative correlation with rent

- 0.8

- Sq. ft., # baths, and # bdrms all highly correlated
- Demographic features are all correlated with each other

- Sq. ft., # baths, and # bdrms all highly correlated
- Demographic features are all correlated with each other

- 0.8 - 0.6 -0.4-0.2 - 0.0 -0.4

Results

- Model: LASSO
- MAE: \$772/mo
- Median Rent: \$2,295/mo
- $R^2=0.44$

Results

- Room for improvement
- Model underestimates expensive apartments

Possible Improvements

- Add additional features (such as distance to ocean/city center)
- Try nonlinear regressors like a random forest
- Scrape more data (especially from outside LA county)

Questions?

Appendix

$$y_{box-cox} = \frac{y^{\lambda} - 1}{\lambda}$$

Appendix

Rent vs features scatterplots

