Zadanie 1

Trudność: średnie Punktów: 4

Wręczono nam obwód kwantowy Q_F^{\pm} o n wejściach i wyjściach (oraz osobno oznaczonych ancilla, żeby nie było wątpliwości, które wejścia są właściwymi argumentami funkcji F). Obiecano nam, że funkcja $F:\{0,1\}^n \to \{0,1\}$ gdy dostanie wektor x, patrzy tylko na współrzędne ze zbioru $S\subseteq [n]$ i zwraca XOR-a wartości x na tych współrzędnych. Nie znamy tylko zbioru S. Jak odkryć go używając obwodu Q_F^{\pm} tylko raz?

Zadanie 2

Trudność: średnie Punktów: 3

Ile razy trzeba odpytać obwód Q_F , dla F jak z poprzedniego zadania, w klasycznym modelu obliczeń?

Zadanie 3 [Deutsch-Jozsa]

Trudność: łatwe Punktów: 4

Dostajemy obwód realizujący funkcję $f:[N] \rightarrow \{0,1\}$, o której wiemy, że

- 1. Albo zwraca zero na każdym wejściu,
- 2. Albo jest zbalansowana, czyli zwraca zero na N/2 wejść i jeden na N/2 wejść.

Zbuduj obwód kwantowy, który pozwoli odróżnić te przypadki (z prawdopodobieństwem równym 1). Na ilu wejściach trzeba by odpytać funkcję f w modelu klasycznym?

Zadanie 4

Trudność: średnie Punktów: 2

Zaproponuj klasyczny algorytm zrandomizowany, który odpyta funkcję f na dwóch wejściach i odpowie poprawnie z prawdopodobieństwem przynajmniej $\frac{2}{3}$.

Zadanie 5

Trudność: średnie Punktów: 2

Funkcja $f:[N] \rightarrow \{0,1\}$ spełnia następującą obietnicę:

- (1) Na pierwszej N/2 wejść zwraca 0, a na drugiej N/2 wejść 1, albo
- (2) Na pierwszej N/2 wejść zwraca tyle samo zer co jedynek, podobnie na drugiej.

Jak zmodyfikować algorytm z Deutscha-Jozsy (z poprzedniego zadania), by odróżnić te przypadki?

Zadanie 6 [Problem Simona]

Trudność: trudne Punktów: 5

Dostajemy wyrocznię O_f^{\pm} dla funkcji $f: \{0,1\}^n \to \{0,1\}^m$, o której obiecano nam:

- (i) f jest 2-do-1, czyli na każdy element z obrazu f wskazują dokładnie dwa argumenty.
- (ii) $\exists_{s \in [N] \setminus \{0\}} \forall_{x \in [N]} f(x) = f(x \oplus s)$.

Naszym celem jest znalezienie wektora s. W obwodzie na rysunku użyto wyroczni O_f , którą skonstruowaliśmy w zadaniu 9 z listy pierwszej. Jaką informację daje on nam na temat s-a? Ile razy musimy go odpalić, żeby wydedukować s?

Zadanie 7 [Forrelation]

Trudność: łatwe
Punktów: 3

Dla funkcji $f, g : \{0, 1\}^n \rightarrow \{-1, 1\}$ zdefiniujemy miarę forrelacji (korelacji z Fourierem) jako

$$\Psi_{f,g} = \frac{1}{\sqrt{2^n}^3} \sum_{x,y \in [2^n]} f(x) (-1)^{x \cdot y} g(y),$$

gdzie $x \cdot y$ to normalny iloczyn skalarny.

Dostajemy funkcje f i g, o których obiecano nam, że wpadają w jeden z przypadków:

- (1) $\Psi_{f,g} \geqslant \frac{3}{5}$, albo
- (2) $|\Psi_{f,g}| \leq \frac{1}{15}$.

Zaprojektuj obwód kwantowy, który korzysta z O_g^{\pm} oraz O_g^{\pm} po $\mathcal{O}(1)$ razy i pozwala odróżnić te przypadki ze stałym¹ prawdopodobieństwem błędu.

Zadanie 8

Trudność: trudne Punktów: 4

Rozwiązujemy to samo zadanie, co przed chwilą, ale tym razem dysponujemy obwodem CONTROLLED- $O_{f,g}^{\pm}$, który przyjmuje n+1 bitów i aplikuje na n bitach funkcję f lub g w zależności od wartości bitu kontrolnego. Obwód ten możemy wykorzystać tylko jednokrotnie.

Skonstruuj algorytm, który odpowie TAK z prawdopodobieństwem $\frac{1+\Psi_{f,g}}{2}$, a NIE z pozostałym.

Zadanie 9

Trudność: łatwe Punktów: 1

Zmodyfikuj powyższy algorytm tak, by zarówno w przypadku (1) jak i (2) zwracał poprawną odpowiedź z prawdopodobieństwem 60% (nie zwiększając liczby odpytań obwodu CONTROLLED- $O_{f,g}^{\pm}$).

¹Tzn. o stałą lepszym od $\frac{1}{2}$.