4th lecture overview

- 2.1.5 Finite state machines with output
- 2.2 REGULAR EXPRESSIONS
 - 2.2.1 Definition of regular expressions
 - 2.2.2 Construction of ε -NFA for the given regular expressions
 - 2.2.3 Finite state machine generator

Lecture overview

- 2.1.5 Finite state machines with output
- 2.2 REGULAR EXPRESSIONS
 - 2.2.1 Definition of regular expressions
 - 2.2.2 Construction of ε -NFA for the given regular expressions
 - 2.2.3 Finite state machine generator

Number is divisible by 3

- Moore machine
 - The output is a function of the state
- Mealy machine
 - The output is a function of both the state and the input symbol

$$MoDfa = (Q, \Sigma, \Delta, \delta, \lambda, q_0)$$

Q

 \sum

Δ

δ

λ

 $q_0 \in Q$

- finite set of states
- finite set of input symbols
- finite set of output symbols
- transition function $Q \times \Sigma \rightarrow Q$
- output function $Q \rightarrow \Delta$
- start state

 q_0

$$\lambda(q_0)$$

W	w <mark>0</mark>	w1
i	2 <i>i</i>	2 <i>i</i> +1
i%3	(2 <i>i</i>)%3	(2 <i>i</i> +1)%3
0		
1		
2		

W	w ₀	w1
i	2 <i>i</i>	2 <i>i</i> +1
i%3	(2 <i>i</i>)%3	(2 <i>i</i> +1)%3
0	0	1
1	2	0
2	1	2

W	w <mark>0</mark>	w1
i	2i	2 <i>i</i> +1
i%3	(2 <i>i</i>)%3	(2 <i>i</i> +1)%3
0	0	1
1	2	0
2	1	2

W	w <mark>0</mark>	w1
i	2i	2 <i>i</i> +1
i%3	(2 <i>i</i>)%3	(2 <i>i</i> +1)%3
0	0	1
1	2	0
2	1	2

$$\lambda(q_0) = 0$$

$$\lambda(q_1) = 1$$

$$\lambda(q_2) = 2$$

W	w0	w1
i	2 <i>i</i>	2 <i>i</i> +1
i%3	(2 <i>i</i>)%3	(2 <i>i</i> +1)%3
0	0	1
1	2	0
2	1	2

$$\lambda(q_0) = 0$$

$$\lambda(q_1) = 1$$

$$\lambda(q_2) = 2$$

W	w <mark>0</mark>	w1
i	2 <i>i</i>	2 <i>i</i> +1
i%3	(2 <i>i</i>)%3	(2 <i>i</i> +1)%3
0	0	1
1	2	0
2	1	2

$$\lambda(q_2) = 2$$

W	w <mark>0</mark>	w1
i	2 i	2 <i>i</i> +1
i%3	(2 <i>i</i>)%3	(2 <i>i</i> +1)%3
0	0	1
1	2	0
2	1	2

W	w <mark>0</mark>	w1
i	2 i	2 <i>i</i> +1
i%3	(2 <i>i</i>)%3	(2 <i>i</i> +1)%3
0	0	1
1	2	0
2	1	2

Read prefix ε

Integer value

Read prefix ε 1

Integer value 1

Read prefix ε 1 10

Integer value 1 2

Output sequence

$$\lambda(q_0)=0$$

$$\lambda(q_1)=1$$

$$\lambda(q_2)=2$$

$$MeDfa = (Q, \Sigma, \Delta, \delta, \lambda, q_0)$$

Q

 $\mathbf{\Sigma}$

Δ

δ

λ

 $q_0 \in Q$

- finite set of states
- finite set of input symbols
- finite set of output symbols
- transition function $Q \times \Sigma \rightarrow Q$
- output function $Q \times \Sigma \to \Delta$
- start state

 q_0

Constructing Mealy machine for the given Moore machine

Mealy machine
$$M' = (Q, \Sigma, \Delta, \delta, \lambda', q_0)$$

Moore machine
$$M = (Q, \Sigma, \Delta, \delta, \lambda, q_0)$$

$$b T_{M'}(w) = T_{M}(w)$$

1)
$$\lambda'(q,a) = \lambda(\delta(q,a))$$

Constructing Mealy machine for the given Moore machine

Input sequence
$$a_1$$
 a_2 --- a_n

State sequence q_0 q_1 --- q_n

Output sequence $\lambda'(q_0, a_1)$ $\lambda'(q_1, a_2)$ --- $\lambda'(q_{n-1}, a_n)$

 $\lambda'(q_0, a_1) \quad \lambda'(q_1, a_2)$

Output sequence

Constructing Mealy machine for the given Moore machine

Input sequence
$$a_1$$
 a_2 $-- a_n$

State sequence q_0 q_1 $-- q_n$

Output sequence $\lambda'(q_0,a_1)$ $\lambda'(q_1,a_2)$ $-- \lambda'(q_{n-1},a_n)$
 $\lambda(\delta(q_0,a_1))$ $\lambda(\delta(q_1,a_2))$ $-- \lambda(\delta(q_{n-1},a_n))$

Input sequence
$$a_1$$
 a_2 --- a_n

State sequence q_0 q_1 --- q_n

Output sequence $\lambda'(q_0, a_1)$ $\lambda'(q_1, a_2)$ --- $\lambda'(q_{n-1}, a_n)$
 $\lambda(\delta(q_0, a_1))$ $\lambda(\delta(q_1, a_2))$ --- $\lambda(\delta(q_{n-1}, a_n))$
 $\lambda(q_1)$ $\lambda(q_2)$ --- $\lambda(q_n)$

$$\lambda'(q_0, 0) = 0$$
, because $\lambda'(q_0, 0) = \lambda(\delta(q_0, 0)) = \lambda(q_0) = 0$

$$\lambda'(q_0, 0) = 0$$
, because $\lambda'(q_0, 0) = \lambda(\delta(q_0, 0)) = \lambda(q_0) = 0$
 $\lambda'(q_0, 1) = 1$, because $\lambda'(q_0, 1) = \lambda(\delta(q_0, 1)) = \lambda(q_1) = 1$
 $\lambda'(q_1, 0) = 2$, because $\lambda'(q_1, 0) = \lambda(\delta(q_1, 0)) = \lambda(q_2) = 2$
 $\lambda'(q_1, 1) = 0$, because $\lambda'(q_1, 1) = \lambda(\delta(q_1, 1)) = \lambda(q_0) = 0$
 $\lambda'(q_2, 0) = 1$, because $\lambda'(q_2, 0) = \lambda(\delta(q_2, 0)) = \lambda(q_1) = 1$
 $\lambda'(q_2, 1) = 2$, because $\lambda'(q_2, 1) = \lambda(\delta(q_2, 1)) = \lambda(q_2) = 2$

$\lambda'(\boldsymbol{q}_0,\boldsymbol{0})=\boldsymbol{0}$	$\lambda'(q_1,0)=2$	$\lambda'(\boldsymbol{q}_2,\boldsymbol{0})=1$
$\lambda'(\boldsymbol{q}_0,1)=1$	$\lambda'(q_1,1)=0$	$\lambda'(\boldsymbol{q}_2,1)=2$

Read prefix ε

Integer value

 q_0

Output sequence

$$\lambda'(q_0, 0) = 0$$
 $\lambda'(q_1, 0) = 2$ $\lambda'(q_2, 0) = 1$ $\lambda'(q_0, 1) = 1$ $\lambda'(q_1, 1) = 0$ $\lambda'(q_2, 1) = 2$

Read prefix ε

Integer value

 $q_0 \rightarrow q_1$

Output sequence

 $\lambda'(q_0,1)=1$

$$\lambda'(q_0, 0) = 0$$
 $\lambda'(q_1, 0) = 2$ $\lambda'(q_2, 0) = 1$ $\lambda'(q_0, 1) = 1$ $\lambda'(q_1, 1) = 0$ $\lambda'(q_2, 1) = 2$

Read prefix

 $\boldsymbol{\mathcal{E}}$

 q_0

1

10

Integer value

1

 q_1

2

 q_2

Output sequence

 $\lambda'(q_0,1)=1$

 $\lambda'(q_1,0)=2$

0

$$\lambda'(q_0, 0) = 0$$
 $\lambda'(q_1, 0) = 2$ $\lambda'(q_2, 0) = 1$ $\lambda'(q_0, 1) = 1$ $\lambda'(q_1, 1) = 0$ $\lambda'(q_2, 1) = 2$

Read prefix

 ${\cal E}$

 q_0

1

10

101

Integer value

1

 q_1

2

 q_2

5

 q_2

Output sequence

 $\lambda'(q_0,1)=1$

 $\lambda'(q_1,0)=2$

0

 $\lambda'(q_2,1)=2$

$$\lambda'(q_0, 0) = 0$$
 $\lambda'(q_1, 0) = 2$ $\lambda'(q_2, 0) = 1$
 $\lambda'(q_0, 1) = 1$ $\lambda'(q_1, 1) = 0$ $\lambda'(q_2, 1) = 2$

Read prefix

 $\boldsymbol{\mathcal{E}}$

 q_0

1

10

101

1010

Integer value

1

 q_1

2

 q_2

5

 q_2

10

 q_1

Output sequence

 $\lambda'(q_0,1)=1$

 $\lambda'(q_1,0) = 2$

0

 $a^{3}(q_{2},1)=2$

 $\lambda'(q_2,0)=1$

Moore machine
$$M = (Q', \Sigma, \Delta, \delta', \lambda', q_0')$$

Mealy machine
$$M' = (Q, \Sigma, \Delta, \delta, \lambda, q_0)$$

- 1) $Q' = Q \times \Delta$, where state $[q,b] \in Q'$, $q \in Q$ i $b \in \Delta$
- 2) $q_0' = [q_0, b_0]$, where b_0 is an arbitrary element of the set Δ
- 3) $\delta'([q,b], a) = [\delta(q,a), \lambda(q,a)], \text{ where } q \in Q, b \in \Delta \text{ and } a \in \Sigma$
- 4) $\lambda'([q,b]) = b$, where $q \in Q$ i $b \in \Delta$

$$\lambda'(q_0, 0) = 0$$
 $\lambda'(q_1, 0) = 2$ $\lambda'(q_2, 0) = 1$ $\lambda'(q_0, 1) = 1$ $\lambda'(q_1, 1) = 0$ $\lambda'(q_2, 1) = 2$

1)
$$Q' = \{[q_0,0], [q_0,1], [q_0,2], [q_1,0], [q_1,1], [q_1,2], [q_2,0], [q_2,1], [q_2,2]\}$$

2)
$$q_0' = [q_0, 0]$$

3)
$$\delta'([q_0,0],0) = [\delta(q_0,0),\lambda(q_0,0)] = [q_0,0]$$

$$\lambda'(q_0, 0) = 0$$
 $\lambda'(q_1, 0) = 2$ $\lambda'(q_2, 0) = 1$ $\lambda'(q_0, 1) = 1$ $\lambda'(q_1, 1) = 0$ $\lambda'(q_2, 1) = 2$

1)
$$Q' = \{[q_0,0], [q_0,1], [q_0,2], [q_1,0], [q_1,1], [q_1,2], [q_2,0], [q_2,1], [q_2,2]\}$$

2)
$$q_0' = [q_0, 0]$$

3)
$$\delta'([q_0,0],0) = [\delta(q_0,0),\lambda(q_0,0)] = [q_0,0]$$

$$\lambda'(q_0, 0) = 0$$
 $\lambda'(q_1, 0) = 2$ $\lambda'(q_2, 0) = 1$ $\lambda'(q_0, 1) = 1$ $\lambda'(q_1, 1) = 0$ $\lambda'(q_2, 1) = 2$

1)
$$Q' = \{[q_0,0], [q_0,1], [q_0,2], [q_1,0], [q_1,1], [q_1,2], [q_2,0], [q_2,1], [q_2,2]\}$$

2)
$$q_0' = [q_0, 0]$$

3)
$$\delta'([q_0,0], 0) = [\delta(q_0,0), \lambda(q_0,0)] = [q_0, 0]$$

 $\delta'([q_0,0], 1) = [\delta(q_0,1), \lambda(q_0,1)] = [q_1, 1]$
 $\delta'([q_1,1], 0) = [\delta(q_1,0), \lambda(q_1,0)] = [q_2, 2]$
 $\delta'([q_1,1], 1) = [\delta(q_1,1), \lambda(q_1,1)] = [q_0, 0]$
 $\delta'([q_2,2], 0) = [\delta(q_2,0), \lambda(q_2,0)] = [q_1, 1]$
 $\delta'([q_2,2], 1) = [\delta(q_2,1), \lambda(q_2,1)] = [q_2, 2]$

$$\lambda'(q_0, 0) = 0$$
 $\lambda'(q_1, 0) = 2$ $\lambda'(q_2, 0) = 1$
 $\lambda'(q_0, 1) = 1$ $\lambda'(q_1, 1) = 0$ $\lambda'(q_2, 1) = 2$

1)
$$Q' = \{[q_0,0], [q_0,1], [q_0,2], [q_1,0], [q_1,1], [q_1,2], [q_2,0], [q_2,1], [q_2,2]\}$$

2)
$$q_0' = [q_0, 0]$$

3)
$$\delta'([q_0,0], 0) = [\delta(q_0,0), \lambda(q_0,0)] = [q_0, 0]$$

 $\delta'([q_0,0], 1) = [\delta(q_0,1), \lambda(q_0,1)] = [q_1, 1]$
 $\delta'([q_1,1], 0) = [\delta(q_1,0), \lambda(q_1,0)] = [q_2, 2]$
 $\delta'([q_1,1], 1) = [\delta(q_1,1), \lambda(q_1,1)] = [q_0, 0]$
 $\delta'([q_2,2], 0) = [\delta(q_2,0), \lambda(q_2,0)] = [q_1, 1]$
 $\delta'([q_2,2], 1) = [\delta(q_2,1), \lambda(q_2,1)] = [q_2, 2]$

4)
$$\lambda'([q_0, 0]) = 0 \qquad \lambda'([q_1, 0]) = 0 \qquad \lambda'([q_2, 0]) = 0$$

$$\lambda'([q_0, 1]) = 1 \qquad \lambda'([q_1, 1]) = 1 \qquad \lambda'([q_2, 1]) = 1$$

$$\lambda'([q_0, 2]) = 2 \qquad \lambda'([q_1, 2]) = 2 \qquad \lambda'([q_2, 2]) = 2$$

Lecture overview

- 2.1.5 Finite state machines with output
- 2.2 REGULAR EXPRESSIONS
 - 2.2.1 Definition of regular expressions
 - 2.2.2 Construction of ε -NFA for the given regular expressions
 - 2.2.3 Finite state machine generator

Regular expressions

$$N = \{ wcw^R \}$$

Regular expressions

$$N = \{ wcw^R \}$$

N is not a regular language

It is not possible to construct a finite state machine accepting N

Regular expressions

Regular language K

Definition of language K by regular expressions r

$$L(r) = K$$

 ε -NFA M such that L(M)=L(r)

NFA M' such that L(M')=L(M)

DFA M" such that L(M")=L(M')

DFA M" with minimum number of states such that L(M")=L(M")=L(M')=L(M)=L(r)=K

Definition of regular expressions

- Language
$$L(\varepsilon) = \{ \varepsilon \}$$

- Language
$$L((r)+(s)) = L(r) \cup L(s)$$

- Language
$$L((r)(s)) = L(r)L(s)$$

- Language
$$L((r)^*) = L(r)^*$$

Examples of regular expressions and languages

1) Regular expression: 01

Language: $L(01) = \{01\}$

2) Regular expression: 0+1

Language: $L(0+1) = \{0, 1\}$

3) Regular expression: (0+1)(0+1)

Language: $L((0+1)(0+1)) = \{00, 01, 10, 11\}$

4) Regular expression: 1*

Language: $L(1^*) = \{\varepsilon, 1, 11, 111, ..., 11111111, ...\}$

Examples of regular expressions and languages

5) Regular expression: $(0+1)^*$

001, 010, ..., 01111101, ...}

6) Regular expression: (0+1)*00(0+1)*

Language: Any string having at least two

consecutive 0s at any position.

7) Regular expression: 0*1*

111, ..., **0001111111**, ...}

Operator associativity and precedence

1) *
Unary operator
Left associative
Highest precedence

- 2) Concatenation operator

 Left associative

 Higher precendence than +
- Left associative Lowest precedence

Algebraic laws

r+s = s+r	+ is commutative	
r+(s+t)=(r+s)+t	+ is associative	
(rs)t = r(st)	concatenation is associative	
r(s+t) = rs+rt (s+t)r = sr+tr	distributivity of concatenation over +	
$\varepsilon \mathbf{r} = \mathbf{r} \varepsilon = \mathbf{r}$	arepsilon is neutral element for concatenation	
$r^* = (r + \varepsilon)^*$	relation between + and *	
r** = r*	idempotence	

Lecture overview

- 2.1.5 Finite state machines with output
- 2.2 REGULAR EXPRESSIONS
 - 2.2.1 Definition of regular expressions
 - 2.2.2 Construction of ε -NFA for the given regular expressions
 - 2.2.3 Finite state machine generator

- Language
$$L(\emptyset) = \{\}$$

$$\varepsilon$$
-NFA M =($\{i, f\}, \Sigma, \{\}, i, \{f\}$)

$$p2$$
) ε - Language $L(\varepsilon) = \{ \varepsilon \}$

$$\varepsilon$$
-NFA M =($\{i, f\}, \Sigma, \{\delta(i, \varepsilon)=f\}, i, \{f\}$)

$$p3$$
) a - Language $L(a) = \{a\}$

$$\varepsilon$$
-NFA $M=(\{i, f\}, \Sigma, \{\delta(i, a)=f\}, i, \{f\})$

p4)
$$(r)+(s)$$
 - Language $L((r)+(s)) = L(r) \cup L(s)$

$$\varepsilon$$
-NFA $M=(Q_1 \cup Q_2 \cup \{i, f\}, \Sigma_1 \cup \Sigma_2, \delta, i, \{f\})$

a)
$$\delta(i, \varepsilon) = \{i_1, i_2\}$$

b)
$$\delta(q, a) = \delta_1(q, a), \forall q \in Q_1, \forall a \in (\Sigma_1 \cup \{\varepsilon\})$$

c)
$$\delta(q, b) = \delta_2(q, b), \forall q \in Q_2, \forall b \in (\Sigma_2 \cup \{\varepsilon\})$$

d)
$$\delta(f_1, \varepsilon) = \delta(f_2, \varepsilon) = \{f\}$$

p5)
$$(r)(s)$$
 - Language $L((r)(s)) = L(r)L(s)$

$$\varepsilon$$
-NFA $M=(Q_1\cup Q_2, \Sigma_1\cup \Sigma_2, \delta, I_1, \{f_2\})$

a)
$$\delta(q, a) = \delta_1(q, a), \forall q \in Q_1, \forall a \in (\Sigma_1 \cup \{\varepsilon\})$$

b)
$$\delta(q, b) = \delta_2(q, b), \forall q \in Q_2, \forall b \in (\Sigma_2 \cup \{\varepsilon\})$$

c)
$$\delta(f_1, \varepsilon) = i_2$$

$$p6) (r)* - Language L((r)*) = L(r)*$$

$$\varepsilon\text{-NFA }M\text{=}(Q_1\cup Q_2\cup \{i, f\}, \Sigma_1\cup \Sigma_2, \delta, i, \{f\})$$

a)
$$\delta(i, \varepsilon) = \delta(f_1, \varepsilon) = \{i_1, f\}$$

b)
$$\delta(q, a) = \delta_1(q, a), \forall q \in Q_1, \forall a \in (\Sigma_1 \cup \{\epsilon\})$$

$$r = 01*+1$$

$$r = 01*+1$$

$$r = r_1 + r_2, r_1 = 01^*, r_2 = 1$$

$$r = 01*+1$$

$$r = r_1 + r_2, r_1 = 01*, r_2 = 1$$

$$r_1 = r_3 r_4, r_3 = 0, r_4 = 1*$$

$$r = 01*+1$$

$$r = r_1 + r_2, r_1 = 01*, r_2 = 1$$

$$r_1 = r_3 r_4, r_3 = 0, r_4 = 1*$$

$$r_4 = r_5^*, r_5 = 1$$

$$r = 01*+1$$

$$r = r_1 + r_2, r_1 = 01*, r_2 = 1$$

$$r_1 = r_3 r_4, \quad r_3 = 0, \quad r_4 = 1^*$$

$$r_4 = r_5^*, \quad r_5 = 1$$

$$r = 01*+1$$

$$r = r_1 + r_2, r_1 = 01*, r_2 = 1$$

$$r_1 = r_3 r_4, r_3 = 0, r_4 = 1*$$

$$r_4 = r_5^*, r_5 = 1$$

$$r = 01*+1$$

$$r = r_1 + r_2, r_1 = 01^*, r_2 = 1$$

$$r_1 = r_3 r_4, \quad r_3 = 0, \quad r_4 = 1^*$$

$$r_4 = r_5^*, r_5 = 1$$

- The number of states in the constructed ε -NKA is never larger than 2|r|, where |r| is the number of symbols in regular expression r.
- ε -NKA has only one accepting state f for which $\delta(f, a) = \emptyset$
- Set $\delta(q, a)$ contains at most one state for each input symbol a from alphabet Σ , whereas set $\delta(q, \varepsilon)$ contains at most two states.

Lecture overview

- 2.1.5 Finite state machines with output
- 2.2 REGULAR EXPRESSIONS
 - 2.2.1 Definition of regular expressions
 - 2.2.2 Construction of ε -NFA for the given regular expressions
 - 2.2.3 Finite state machine generator


```
Input string
```

```
Table[PP, 0] = NP;
Table[PP, 1] = PN;
Table[PP, \perp] = 1;
Table[NP, 0] = PP;
Table[NP, 1] = NN;
Table[NP, \perp] = 0;
Table[PN, 0] = NN;
Table[PN, 1] = PP;
Table[PN, \perp] = 0;
Table[NN, 0] = PN;
Table[NN, 1] = NP;
Table[NN, \perp] = 1;
State = PP:
Read(Symbol);
while (Symbol != \bot)
   State = Table[State, Symbol];
   Read(Symbol);
Print(Table[State, \perp], State);
```



```
Table[PP, 0] = NP;
Table[PP, 1] = PN;
Table[PP, \perp] = 1;
Table[NP, 0] = PP;
Table[NP, 1] = NN;
Table[NP, \perp] = 0;
Table[PN, 0] = NN;
Table[PN, 1] = PP;
Table[PN, \perp] = 0;
Table[NN, 0] = PN;
Table[NN, 1] = NP;
Table[NN, \perp] = 1;
State = PP:
Read(Symbol);
while (Symbol != \bot)
   State = Table[State, Symbol];
   Read(Symbol);
Print(Table[State, ⊥], State);
```

TRANSITION TABLE

contains variable information that depend on the transition function of the finite state machine


```
Table[PP, 0] = NP;
Table[PP, 1] = PN;
Table[PP, \bot] = 1;
Table[NP, 0] = PP;
Table[NP, 1] = NN;
Table[NP, \perp] = 0;
Table[PN, 0] = NN;
Table[PN, 1] = PP;
Table[PN, \perp] = 0;
Table[NN, 0] = PN;
Table[NN, 1] = NP;
Table[NN, \perp] = 1;
State = PP:
Read(Symbol);
while (Symbol != \bot)
   State = Table[State, Symbol];
   Read(Symbol);
```

TRANSITION TABLE

contains variable information that depend on the transition function of the finite state machine

SIMULATOR PROGRAM

the program code is the same for all finite state machines

Print(*Table*[*State*, \perp], *State*);

Finite state machine generator Definition of language Transition table Transition table generator by regular expressions Transition table implementation into simulator program Finite state machine M such that L(M) = L(r)

