PSALTer results panel

$$S = \iiint \left(\rho \, \varphi + h^{\alpha \beta} \, \mathcal{T}_{\alpha \beta} + \frac{1}{2} \, \alpha_{2} \, \partial_{\alpha} \varphi \, \partial^{\alpha} \varphi + \frac{1}{8} \, \alpha_{1} \, \left(24 \, (1 + \varphi) \, \partial_{\alpha} \partial^{\alpha} \varphi - 8 \, \partial_{\alpha} h^{\beta}_{\ \beta} \, \partial^{\alpha} \varphi + 8 \, \partial^{\alpha} \varphi \, \partial_{\beta} h^{\alpha}_{\ \alpha} - 4 \, \partial_{\beta} \partial_{\alpha} h^{\alpha}_{\ \alpha} + 4 \, \partial_{\beta} \partial^{\beta}_{\ \alpha} h^{\alpha}_{\ \alpha} - \partial_{\beta} h^{\chi}_{\ \chi} \, \partial^{\beta}_{\ \beta} h^{\alpha}_{\ \alpha} + 2 \, \partial^{\beta}_{\ h} h^{\alpha}_{\ \alpha} \partial_{\chi} h^{\chi}_{\ \beta} - 2 \, \partial_{\beta} h_{\alpha \chi} \, \partial^{\chi} h^{\alpha \beta}_{\ \beta} + \partial_{\chi} h_{\alpha \beta} \, \partial^{\chi} h^{\alpha \beta}_{\ \beta} \right) - \alpha_{1} \left(8 \, \partial_{\beta} \partial_{\alpha} h^{\chi}_{\ \chi} \, \partial^{\beta}_{\ \beta} \partial^{\alpha}_{\ \alpha} + 16 \, \partial_{\beta} \partial_{\alpha} \varphi \, \partial^{\beta}_{\ \beta} \partial^{\alpha}_{\ \varphi} - 8 \, \partial^{\beta}_{\ \beta} \partial^{\alpha}_{\ \varphi} \, \partial_{\chi} \partial_{\beta} h^{\chi}_{\ \alpha} + 8 \, \partial^{\beta}_{\ \beta} \partial^{\alpha}_{\ \varphi} \, \partial_{\chi} \partial^{\chi}_{\ h}_{\alpha \beta} + 8 \, \partial^{\beta}_{\ \beta} \partial^{\alpha}_{\ \varphi} \, \partial_{\chi} \partial^{\chi}_{\ h}_{\alpha \beta} + 8 \, \partial^{\beta}_{\ \beta} \partial^{\alpha}_{\ \varphi} \, \partial_{\chi} \partial^{\chi}_{\ h}_{\alpha \beta} + 8 \, \partial^{\beta}_{\ \beta} \partial^{\alpha}_{\ \varphi} \, \partial_{\chi} \partial^{\chi}_{\ h}_{\alpha \beta} + 8 \, \partial^{\beta}_{\ \beta} \partial^{\alpha}_{\ \varphi} \, \partial_{\chi} \partial^{\chi}_{\ h}_{\alpha \beta} + 8 \, \partial^{\beta}_{\ \beta} \partial^{\alpha}_{\ \varphi} \, \partial_{\chi} \partial^{\chi}_{\ h}_{\alpha \beta} + 8 \, \partial^{\beta}_{\ \beta} \partial^{\alpha}_{\ \varphi} \, \partial_{\chi} \partial^{\chi}_{\ h}_{\alpha \beta} + 8 \, \partial^{\beta}_{\ \beta} \partial^{\alpha}_{\ \varphi} \, \partial_{\chi} \partial^{\chi}_{\ h}_{\alpha \beta} + 8 \, \partial^{\beta}_{\ \beta} \partial^{\alpha}_{\ \varphi} \, \partial_{\chi} \partial^{\chi}_{\ h}_{\alpha \beta} + 8 \, \partial^{\beta}_{\ \beta} \partial^{\alpha}_{\ \varphi} \, \partial_{\chi} \partial^{\chi}_{\ h}_{\alpha \beta} + 8 \, \partial^{\beta}_{\ \beta} \partial^{\alpha}_{\ \varphi} \, \partial_{\chi} \partial^{\chi}_{\ h}_{\alpha \beta} + 8 \, \partial^{\beta}_{\ \beta} \partial^{\alpha}_{\ \varphi} \, \partial_{\chi} \partial^{\chi}_{\ h}_{\alpha \beta} + 8 \, \partial^{\beta}_{\ \beta} \partial^{\alpha}_{\ \varphi} \, \partial_{\chi} \partial^{\chi}_{\ h}_{\alpha \beta} + 2 \, \partial^{\chi}_{\ \beta} \partial_{\mu}_{\alpha \beta} \partial^{\chi}_{\ \delta} \partial^{\chi}_{\ h}_{\alpha \beta} + 2 \, \partial^{\chi}_{\ \beta} \partial_{\mu}_{\alpha \beta} \partial^{\chi}_{\ \delta} \partial^{\chi}_{\ h}_{\alpha \beta} + 2 \, \partial^{\chi}_{\ \beta} \partial_{\mu}_{\alpha \beta} \partial^{\chi}_{\ \delta} \partial^{\chi}_{\ h}_{\alpha \beta} + 2 \, \partial^{\chi}_{\ \beta} \partial^{\mu}_{\ \alpha}_{\ \alpha} \partial^{\chi}_{\ \delta} \partial^{\chi}_{\ h}_{\alpha \beta} \partial^{\chi}_{\ \delta}_{\ \lambda}_{\ \lambda}^{\chi}_{\ \lambda}_{\ \lambda}^{\chi}_{\ \lambda}_{\ \lambda}^{\chi}_{\ \lambda}^{\chi}_{\ \lambda}_{\ \lambda}^{\chi}_{\ \lambda}^{\chi}_{\ \lambda}^{$$

Saturated propagator

Source constraints

Spin-parity form	Covariant form	Multiplicities
° → → == 0	$\partial_{\beta}\partial_{\alpha}\mathcal{T}^{\alpha\beta} == 0$	1
$1^{-}\mathcal{T}^{\perp}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\mathcal{T}^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta}\mathcal{T}^{\alpha\beta}$	3
Total expected g	4	

Massive spectrum

Massive particle

Massive particle Pole residue: $\left| \frac{4}{\alpha_{.}} \right| > 0$ Square mass: $\left| \frac{\alpha_{.}}{4(3\alpha_{.5} - 4\alpha_{.5} + \alpha_{.7})} \right| > 0$ Square mass: $\frac{\alpha}{8 \alpha.-8 \alpha.7}$ Spin: Spin: Parity: Parity: Even

Massless spectrum

Massless particle

Pole residue: $\frac{p^2}{\alpha_1}$	$\left \frac{p^2}{\alpha_1}>0\right $	Pole residue:	$\frac{1+8p^2}{6a_1+a_2}>0$
olarisations: 2		Polarisations:	1

Unitarity conditions