Homework 3, Fall 2022

I have neither given nor received unauthorized assistance on this assignment.

Homework 3 has questions 1 through 4 with a total of 20 points. Edit this file and append you answers using LaT_EX. Be sure to fill in your name. Upload the converted pdf of your work to Canvas. This assignment is due *Saturday 10 September at 11:59* PM.

Link to your Overleaf work: XXX

5 1. Show that $(\forall x \in (-1,1)) (\exists r \in \mathbf{R}_{>0}) ((x-r,x+r) \subset (-1,1))$.

Solution: We need -1 < x - r and x + r < 1; solving for r we need r < x + 1 and r < 1 - x. Thus $r < \min(1 + x, 1 - x)$. Specifically, we'll choose $r = \frac{1}{2}\min(1 + x, 1 - x)$. We haven't yet checked that r > 0. This follows from the fact that -1 < x < 1. Adding one to -1 < x gives 0 < x + 1; similarly, subtracting one from $[x < 1] \equiv [-x > -1] \equiv [1 - x > 0]$. So indeed, $\frac{1}{2}\min(1 + x, 1 - x) > 0$

5 2. Define $S = \{(-k, k) | k \in \mathbb{Z}_{>0}\}$. Show that $\bigcup_{q \in S} q = \mathbb{R}$.

Solution:

Claim $\bigcup_{q \in S} q \subset \mathbf{R}$.

Suppose $x \in \bigcup_{q \in S} q$; we'll show that $x \in \mathbf{R}$. For some $q' \in S$, we have $x \in q'$. But $q' \subset \mathbf{R}$, so $x \in \mathbf{R}$.

 $\overline{5}$ 3. On \mathbb{Z}^2 define the binary operators + and × by

$$(a,b) + (c,d) = (a+c,b+d),$$

 $(a,b) \times (c,d) = (ac+2bd,ad+bc).$

These operators are commutative and associative. Additionally, the additive identity is (0,0), the multiplicative identity is (1,0), every member of \mathbf{Z}^2 has an additive identity, and multiplication distributes over addition. Given these facts, show that $(\mathbf{Z}^2,+,\times)$ is a field. The only thing left to show is that every member \mathbf{Z}^2 except for the additive identity has a multiplicative inverse. To prove this, you might like to use the fact that $\sqrt{2}$ is not rational.

Solution: We only need to show that every member \mathbb{Z}^2 has a multiplicative inverse. Thus given $(a,b) \in \mathbb{Z}^2_{\neq 0}$, we need to find $(x,y) \in \mathbb{Z}^2$ such that $(a,b) \times (x,y) = (1,0)$ Thus we must solve

$$ax + 2by = 1$$
$$ay + bx = 0$$

These are linear equations for x and y; in matrix form, the equations are

$$\begin{bmatrix} a & 2b \\ b & a \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

These equations have a unique solution provided $a^2 - 2b^2 \neq 0$ for all $(a, b) \in \mathbb{Z}_{\neq 0}^2$. Since $\sqrt{2}$ is not rational, we have $a^2 - 2b^2 \neq 0$. So the equations have a solution.

5 4. Show that the complex field is not ordered. Hint: Suppose it is. Let P be its positive set. Since $i \neq 0$, either $i \in P$ or $-i \in P$. Show that both $i \in P$ or $-i \in P$ are contradictions.

Solution:

Solution: We will prove this by contradiction. Suppose the complex field is ordered, and let P be its positive set. Since $i \neq 0$, either $i \in P$ or $-i \in P$. If $i \in P$, closer of P under multiplication implies that $i^2 \in P$ and $i^4 \in P$. But this says that $-1 \in P$ and $1 \in P$. That violates tricotomy.

Similarly, the assumption $-i \in P$ violates tricotomy; therefore the assumption the complex field is ordered is false.

Fun Fact It is possible to define < on the complex field that has the properties

- (a) for all $a, b \in \mathbb{C}$ exactly one of the following is true: a < b or a = b or b < a.
- (b) for all $a, b, c \in \mathbb{C}$, we have a < b and b < c implies a < c.

But the set $\{z \in \mathbb{C} | 0 < z\}$ does not have the properties required by an ordered field to be a positive set.