HW2 SEUNG EUN LEE

1. (a) K	Accuracy
1	0.751847
5	0.754889
11	0.764885
21	0.746632
41	0.752282
61	0.737505
81	0.726641
101	0.728814
201	0.731421
401	0.719687
1.(b) K	Accuracy
1	0.856150
5	0.870056
11	0.878748
21	0.884398
41	0.885267
	0.005207
61	0.882660
61 81	
1000000	0.882660
81	0.882660 0.877445

	ID	1	5	11	21	41	61	81	101	201	401
0	t1	spam	no	no							
1	t2	spam	no	no							
2	t3	spam									
3	t4	spam									
4	t5	spam									
5	t6	spam	spam	no	spam	no	no	no	no	spam	spam
6	t7	spam	no								
7	t8	spam									
8	t9	spam									
9	t10	spam									
10	t11	spam									
11	t12	spam									
12	t13	spam	no	no	no						
13	t14	spam	no	no							
14	t15	spam									
15	t16	spam									

16	t17	spam									
17	t18	spam	no								
18	t19	spam									
19	t20	no	spam								
20	t21	spam									
21	t22	spam	no	no	no						
22	t23	spam									
23	t24	no	spam								
24	t25	spam									
25	t26	spam									
26	t27	spam									
27	t28	spam									
28	t29	spam	no	no							
29	t30	spam	spam	spam	spam	no	no	no	no	no	no
30	t31	spam	no								

31	t32	spam	no	no							
32	t33	spam	spam	spam	spam	spam	no	no	no	no	no
33	t34	spam	spam	spam	spam	spam	no	no	no	no	no
34	t35	spam									
35	t36	spam									
36	t37	spam									
37	t38	spam									
38	t39	spam									
39	t40	no									
40	t41	no									
41	t42	spam	no	no							
42	t43	no									
43	t44	no									
44	t45	spam									
45	t46	spam									
46	t47	spam									
47	t48	spam									
48	t49	spam									
49	t50	spam									

1.(d)

- Z-score normalization increased the accuracy than the not-normalized one.
- For (a) K=11, for (b) K=41 have the best accuracies

1.(e)

<Elbow method>

: Try various values of K, and if there is a point where the value changes significantly, where a point bends like an elbow bend. This point is judged as the optimal K value.

2. <pre-prune>

<post-prune>
College >> low

4.	25 students -> 60% accuracy
	(a) take 3 models, M.V.C C3
	C3's accuracy
	8000) 0.4 -> p
	$\frac{n}{k n_{12}} \binom{n}{k} p^{k} (1-p)^{n+k}$
	3 k71.5 (k) (0,4) k (1-0,4)3k
	= = (3) (0.4) (0.6) 3-k
	$=) \left(\frac{3}{2}\right) 0.4^{2} 0.6' + \left(\frac{3}{3}\right) (0.4)^{3} (0.6)^{\circ}$
	=> 3(2 O142 O161 + 3(3 O143 CO.6)°
	3x(0,4)(0,6) + (0,4)3(0,6)°
	= 0.352
	1 accuracy = 0,648
	(b) = (=) (0.4) × (0.6) = ×
	3 = (5) (014) × (016) 5 ×
	= 5(3(0,4)3(0,6)2+5(4(0,4)4(0,6)) +5(5(0,4)5(0,6)°
	= 0.317
	: accuracy = 0,683
	(c) $\frac{25}{2525/2}$ (25) (04) $(0,6)^{25-k} = 0.154$
	(c) $\frac{25}{2525/2} (25) (0.4)^{k} (0.6)^{25-k} = 0.154$

(d)
Assumption of every classifier has the same probability will cause difference from the reality.
Another assumption is that each classifier must be independent of each other.

(e)

(simple program to calculate the error probability)