BT209

Bioreaction Engineering

16/03/2023

An aqueous reactant stream (4 mol A/liter) passes through a mixed flow reactor followed by a plug flow reactor. Find the concentration at the exit of the plug flow reactor if in the mixed flow reactor $C_A = 1$ mol/liter. The reaction is second-order with respect to A, and the volume of the plug flow unit is three times that of the mixed flow unit.

Solution: Problem 1

For mixed flow reactor/CSTR

$$\frac{V_{\rm m}}{F_{\rm A0}} = \frac{T_{\rm A0}}{C_{\rm A0}} = \frac{\Delta X_{\rm A}}{-r_{\rm A}} = \frac{X_{\rm A}}{-r_{\rm A}} = \frac{C_{\rm A0} - C_{\rm A}}{C_{\rm A0}(-r_{\rm A})}$$

$$-r_A = kC_A^2 = kC_{A1}^2 = k(1)^2 = k$$

For PFR

$$\frac{V_{\rm P}}{F_{\rm A0}} = \frac{V_{\rm P}}{C_{\rm A0}} = \int_{\rm X_{A1}}^{\rm X_{A2}} \frac{dX_{\rm A}}{-r_{\rm A}} = -\frac{1}{C_{\rm A0}} \int_{\rm C_{A1}}^{\rm C_{A2}} \frac{dC_{\rm A}}{-r_{\rm A}}$$

$$V_p=3V_m$$
 Therefore, $\tau_p=3\tau_m$ $-r_A=kC_A^2$

 C_{A2} =0.1 mol/l

We wish to treat 10 liters/min of liquid feed containing 1 mol A/liter to 99% conversion. The stoichiometry and kinetics of the reaction are given by

$$A \rightarrow R$$
, $-r_A = \frac{C_A}{0.2 + C_A} \frac{\text{mol}}{\text{liter} \cdot \text{min}}$

Suggest a good arrangement for doing this using two mixed flow reactors, and find the size of the two units needed. Sketch the final design chosen.

solution

It is best to solve this graphically. Thus by the method of maximization of rectangles

c_{A}	$-\frac{1}{r_A} = \frac{0.2 + c_A}{c_A}$
1	1.2
0.4	1.5
0.2	2
0.1	3
0.08	3.5
0.01	21

$$C_{A0} = |mol/lit$$

$$V = |olit/min|$$

$$C_{A2} = 0.01$$

$$T_1 = \frac{V_1}{U}$$

$$T_2 = \frac{V_2}{U}$$

 $y=(1/-r_A)$, $dy/dCA=-0.2/C_A^2$

Let at C* SLOPE WILL BE SAME, dy/dCA at C*= [y(at C_2)-y(at C*)]/(Co-C*)

Therefore, $-0.2/C_A^2 = [y(at C2)-y(at C^*)]/(Co-C^*)=[21-(0.2/C^* +1)]/(1-C^*)]$

By trial and error method, C*=0.106

Tou1 = (C1-Co)/(-rA)=(1-0.1)*3=2.7

Tou2 = (C2-C1)/(-rA)=(0.1-0.01)*21=1.9

V1=2.7*10=27 LIT

V2=1.9*10=19 lit

c_{A}	$-\frac{1}{r_A} = \frac{0.2 + c_A}{c_A}$
1	1,2
0.4	1.5
0.2	2
0.1	3
0.08	3.5
0.01	21

Method -2

From CSTR design equation write V_1 and V_2 . Put

$$\frac{d \left(V1 + V2 \right)}{d_{xA1}} = 0$$

or

$$\frac{d\left(V1+V2\right)}{d_{CA1}}=0$$

Originally we planned to lower the activity of a gas stream containing radioactive Xe-138 (half life 14 minutes) by having it pass through two CSTR in series having the residence time/space time of 2 weeks in each tank. It has been suggested that we replace the two tanks with a PFR. What should be the mean residence time/space time in the PFR for the same extent of radioactive decay?

Originally we planned to lower the activity of a gas stream containing radioactive Xe-138 (half life 14 minutes) by having it pass through two CSTR in series having the residence time/space time of 2 weeks in each tank. It has been suggested that we replace the two tanks with a PFR. What should be the mean residence time/space time in the PFR for the same extent of radioactive decay?

Solution:

 τ = 2 weeks = 20160 min

Radioactive decay follows first order kinetics, so here

$$k = \frac{\ln 2}{t_{1/2}} = \frac{0.6931}{14 \,\text{min}} = 0.0495 \,\text{min}^{-1}$$

$$\frac{a_2}{a_0} = \frac{a_2}{a_1} \frac{a_1}{a_0} = \frac{1}{\left(1 + k\tau\right)^2} = \frac{1}{\left[1 + \left(0.0495 \times 20160\right)\right]^2} = 1.0017 \times 10^{-6}$$

For PFR:

$$\frac{a_2}{a_0} = 1.0017 \times 10^{-6} = e^{-k\tau_p} = e^{-0.0495\tau_p}$$
$$\tau_p = \frac{\ln(1.0017 \times 10^{-6})}{-0.0495} = 279 \,\text{min} = 4.65 \,hr$$

The elementary irreversible aqueous-phase reaction A + B → R + S is carried out isothermally as follows. Equal volumetric flow rates of two liquid streams are introduced into a 4-liter mixing tank. One stream contains 0.020 mol A/liter, the other 1.400 mol B/liter. The mixed stream is then passed through a 16-liter plug flow reactor. We find that some R is formed in the mixing tank, its concentration being 0.002 mol/liter. Assuming that the mixing tank acts as a mixed flow reactor, find the concentration of R at the exit of the plug flow reactor as well as the fraction of initial A that has been converted in the system.

imaginary section in which the 2 feed streams are mixed.

Simplification: Since CAO = 1/70. CBO we may assume that CBO = constant, and that the reaction is 1st order with respect to A.