Intercepts of the Quadratic

 $\triangle = \sqrt{b^2 - 4ac}$

Case2: △=0

△=0

 $n_{1,2}=1,1$

Casel: $\Delta > 0$ $n_{1,2} = \frac{-b \pm \sqrt{b^2 - 4 \text{ ac}}}{2a}$ computes the n-intercepts of multiplicity 1. t(0) = c computes the single t-intercept.

Given a quadratic $t(n) = a n^2 + b n + c$ compute its discriminant \triangle :

Example 1. $t(n) = -n^2 - 2n + 63 \text{ compute its discriminant } \triangle:$

$$\triangle=256>0$$
 $n_{1,2}=-9,7$
 $t(0)=63$ t-intercept.

 $n_{1,2} = \frac{-b \pm \sqrt{b^2 - 4 \text{ ac}}}{2a} = \frac{-b \pm 0}{2a} = \frac{-b}{2a}$ single n-intercept of multiplicity 2.

Example 2. $t(n) = -2 n^2 + 4 n - 2 \text{ compute its discriminant } \triangle:$

t(0) = -2 t-intercept.

 $t\,(n)=-9\,n^2+126\,n-490$ compute its discriminant \triangle : $\triangle=-1764<0$ $t\,(0)=-490$ t-intercept.