Final Exam (100 pts)

Burak Ekici

Assigned: June the 15th, 09h00

Duration : 120 minutes

Q1. (40 pts) Design Turing Machine (TM)

 $M = (\{..., halt-accept, halt-reject\}, \{0, 1, 2\}, \{0, 1, 2, \vdash, _, \cdots\}, \vdash, _, \delta, s, halt-accept, halt-reject)$ accepts every member of the set

$$A := \{0^{a \times b} 1^a 2^b \mid a, b \ge 1\}$$

rejecting every non-member. Explain your code in a few lines.

Below are a few examples to the input-output harmony of the intended TM:

Input	Output
- _ω	reject
⊢ 112_ ^ω	reject
⊢ 212_ω	reject
⊢ 012_ ^ω	accept
\vdash 000011112 $_^{\omega}$	accept
\vdash 000012222 $_\omega$	accept
\vdash 00001122 $^{-\omega}$	accept
\vdash 00000011122 $_^{\omega}$	accept
\vdash 000000000111222 $_^{\omega}$	accept
\vdash 0000000000001112222 $_\omega$	accept
$\vdash \alpha 00112_\omega$	reject
$\vdash 001b12^{\omega}$	reject
\vdash 00112 c_{-}^{ω}	reject
:	:

Important. Implement the machine *M* in Morphett's TM simulator (unless the simulator crashes), and explain your implementation in a few comment-out lines. Note that TMs designated elsewise will be graded zero.

A1. Turing Machine

```
M = \{\{preprocess, preprocess2, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, halt-accept, halt-reject\}, \\ \{0, 1, 2\}, \{0, 1, 2, \vdash, \_, m, n, g, x\}, \vdash, \_, \delta, preprocess, halt-accept, halt-reject\}
```

with transition function δ available here decides the set $A := \{0^{a \times b} 1^a 2^b \mid a, b \ge 1\}$.

Q2. (30 pts) Design non-deterministic push down automaton (NPDA) $N = (Q, \{x, y\}, \{\bot, \cdots\}, \delta, s, \bot, F)$ that accepts every member of the set

$$B := \{x^a y^b \mid 0 \le a \le b \le 3a\}$$

rejecting every non-member. Justify your design in a few lines.

Below are a few examples to the input-output harmony of the intended NPDA:

Input	Output
у	reject
xxy	reject
хуууу	reject
ε	accept
xy	accept
xyy	accept
хууу	accept
xxyyy	accept
xxxyyy	accept
xxxyyyy	accept
ххууууу	accept
ххууууу	accept
ххуууууу	reject
xxxyyyyyyyyyy	reject
:	÷

A2. The NPDA $N = (\{0, 1, 2\}, \{x, y\}, \{\bot, A\}, \delta, 0, \bot, \emptyset)$ with set of transitions δ depicted in below state diagram

accepts the set B by empty stack. In state 0, the machine N non-deterministically pushes either of $A\bot$, $AA\bot$ and $AAA\bot$ into the stack upon reading the first x from the input sting and popping the \bot symbol off the stack. Similarly, benefiting from non-deterministic choice, N pushes one of AA, AAA and AAAA into the stack if x is read and A is popped off. The machine passes the control to the state 1 if a y is read and A is popped off. It repeats this process until consuming every single y in the input string, and accepts, moving into state 2, if the stack becomes empty at the same time. Note also that the empty string needs to be accepted as $\varepsilon \in B$. This is performed with the transition from the state 0 into the state 2.

Q3. (30 pts) Which of the following sets are context free and which are not?

- (a) **(10 pts)** $C := \{(ab^m)^n \mid m, n \ge 0\}$
- (b) **(10 pts)** $D := \{a^n b^m a^m b^n \mid m, n \ge 0\}$

(c) **(10 pts)** $E := \{a^k b^m c^n \mid k = n \text{ and } m \text{ is odd}\}$

Give grammars for those that are context free and proofs by contrapositive of the Pumping Lemma for those that are not.

А3.

- (a) The set $C := \{(ab^m)^n \mid m, n \ge 0\}$ is not context free. For a proof by contradiction assume that C is context-free. Let k > 0 be the constant from the pumping lemma and consider the string $z = ab^kab^kab^k \in C$. For any decomposition z = uvwxy such that $|vwx| \le k$ and |vx| > 0 the substring vwx can contain letters from at most two of the three equal blocks. When choosing i = 0 the string uv^iwx^iy consists of blocks with different numbers of b's or does not begin with an a. Hence $uv^0wx^0y \notin C$ and therefore C is not context-free.
- (b) The set $D := \{a^n b^m a^m b^n \mid m, n \ge 0\}$ is context-free since it is generated by the context-free grammar $G_D := (\{S, T\}, \{a, b\}, P, S)$ with below production rules in P:

$$S \rightarrow aSb \mid T$$
 $T \rightarrow bTa \mid \varepsilon$

Consider additionally the strings $x_i = a^i$ for $i \ge 0$. Let $i, j \ge 0$. If $i \ne j$ then $x_i b^i \in D$ and $x_j b^i \notin D$. It follows that the relation \equiv_D has infinitely many equivalence classes. According to the Myhill–Nerode theorem, D cannot be regular.

(c) The set $E := \{a^k b^m c^n \mid k = n \text{ and } m \text{ is odd}\}$ is context-free since it is generated by the context-free grammar $G_E := (\{S, A, B\}, \{\alpha, b, c\}, P, S)$ with below production rules in P:

$$S \rightarrow A$$

$$A \rightarrow aAc \mid B$$

$$B \rightarrow bBb \mid b$$

Consider additionally the strings $x_i = a^i b$ for $i \ge 0$. Let $i, j \ge 0$. If $i \ne j$ then $x_i c^i \in E$ and $x_j c^i \notin E$. It follows that the relation \equiv_E has infinitely many equivalence classes. According to the Myhill–Nerode theorem, E cannot be regular.

Important Notice:

- Collaboration is strictly and positively prohibited; lowers your score to 0 if detected.
- Any submission after 120 minutes after the exam gets started will NOT be accepted. Please beware and respect the deadline!
- Submission policy:
 - considering Q1, first implement a TM in Morphett's Simulator, then copy-and-paste your code in a text file named A1.txt;
 - 2. as for **Q2** and **Q3**, write your answers down on the paper, scan them into a PDF file named **A23.pdf**;
 - 3. and then submit both files A1.txt and A23.pdf in raw form. Please do not compress files!
- Make sure that your handwriting in **A23.pdf** is decent and readable.