Système	Point	Cylindre	Sphère	Tige
Schéma	Δ $M(m)$	A R	$\frac{\Delta}{m}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Moment d'inertie	$J_{\Delta} = mr^2$	J_{Δ} (cylindre plein) = $\frac{1}{2} mR^2$ J_{Δ} (cylindre creux) = mR^2	J_{Δ} (sphère pleine) = $\frac{2}{5} mR^2$ J_{Δ} (sphère creuse) = $\frac{2}{3} mR^2$	$J_{\Delta} = \frac{1}{12} mL^2$ $J_{\Delta'} = \frac{1}{3} mL^2$
Condition		Δ est l'axe du cylindre.	Δ passe par le centre de la sphère.	Δ est orthogonal à la tige et passe par son centre.