54. Определить количество теплоты, поглощаемой водородом массой m=0,2 кг при нагревании его от температуры $t_1=0^0\mathrm{C}$ до температуры $t_2=100^0\mathrm{C}$ при постоянном давлении. Найти также изменение внутренней энергии газа и совершаемую им работу.

Решение задачи:

P е ш е н и е. Количество теплоты Q, поглощаемое газом при изобарном нагревании, определяется по формуле

$$Q=mc_p\Delta T, (1)$$

где m — масса нагреваемого газа; c_p — его удельная теплоемкость при постоянном давлении; ΔT — изменение температуры газа.

Как известно, $c_p = \frac{i+2}{2} \frac{R}{M}$. Подставив это выражение c_p в формулу (1), получим

$$Q = m \frac{i+2}{2} \frac{R}{M} \Delta T.$$

Произведя вычисления по этой формуле, найдем $Q=291~\mathrm{кДж}$.

Внутренняя энергия выражается формулой $U = \frac{i}{2} \frac{m}{M} RT$, следовательно, изменение внутренней энергии

$$\Delta U = \frac{i}{2} \frac{m}{M} R \, \Delta T.$$

После подстановки в эту формулу числовых значений величин и вычислений получим

$$\Delta U = 208$$
 кДж.

Работу расширения газа определим по формуле, выражающей первое начало термодинамики: $Q = \Delta U + A$, откуда

$$A = Q - \Delta U$$
.

Подставив значения Q и ΔU , найдем A = 83 кДж.