人工智能基础编程作业2 — 国际象棋 Checkmate 预测

姓名: 张劲暾

学号: PB16111485

目录

```
人工智能基础编程作业2 — 国际象棋 Checkmate 预测
目录
K近邻
算法伪代码
原始六个特征K近邻结果
增加人工处理特征
决策树
算法伪代码
```

不同划分阈值下的测试结果

不同阈值下决策树结构的变化

多分类SVM

交叉验证

K近邻

算法伪代码

```
      1
      搜索k近邻的算法: kNN(A[n],k)

      2
      #輸入: A[n] 为N个训练样本在空间中的坐标,k为近邻数

      4
      #輸出: x所属的类别

      5
      取A[1]~A[k]作为x的初始近邻, 计算与测试样本x间的欧式距离d(x,A[i]),i=1,2,...,k;

      7
      按d(x,A[i])升序排序;

      8
      取最远样本距离D = max{d(x,a[j]) | j=1,2,...,k};

      9
      for(i=k+1;i<=n;i++)#继续计算剩下的n-k个数据的欧氏距离</td>

      11
      计算a[i]与x间的距离d(x,A[i]);

      12
      if(d(x,A[i]))<D</td>

      13
      then 用A[i]代替最远样本#将后面计算的数据直接进行插入即可

      14
      最后的K个数据是有大小顺序的,再进行K个样本的统计即可

      15
      最后的K个数据是有大小顺序的,再进行K个样本的统计即可

      16
      共有最大概率的类别即为样本x的类
```

原始六个特征K近邻结果

K	Accuracy	Macro_F1	Micro_F1
1	0.5166739445197767	0.4825912152571868	0.532271696098928
2	0.5166739445197767	0.4825912152571868	0.532271696098928
3	0.5770129103462437	0.581237828743619	0.6334682620879855
4	0.6257410860912406	0.6540083894372599	0.7009474667496998
5	0.6631759048939496	0.6981780269374958	0.7460522218762512
6	0.6908515411327248	0.7245641871519749	0.7762555046483697
7	0.7076840746686813	0.7319563508661349	0.7934700413682665
8	0.7102328373297949	0.7289661911479546	0.7960055157688715
9	0.6992317501788435	0.7121129711445539	0.7849294960188604

增加人工处理特征

根据国际象棋规则,加入白皇白车行差,白皇白车列差,白皇黑皇行差,白皇黑皇列差,黑皇白车行差,黑皇白车列差,黑皇白车曼哈顿距离7个特征

K	Accuracy	Macro_F1	Micro_F1
1	0.4401566324033284	0.3075965795721245	0.3640407455184378
2	0.4401566324033284	0.3075965795721245	0.3640407455184378
3	0.45809475292919	0.3515211305446855	0.40852275254659487
4	0.48191815473000493	0.42720581109097844	0.4624794270717495
5	0.5077353930934797	0.4916491201196514	0.5152350874071439
6	0.5344602144402444	0.5411208617776218	0.5644766691873138
7	0.5622077175081902	0.5822835530138714	0.6106489924825408
8	0.582575345305657	0.6040453374626259	0.6417419153952226
9	0.5997652269028626	0.6217707015240818	0.6663404652817935

效果不好,改变策略,使用原始特征,但在计算距离时使用曼哈顿距离

ĸ	Accuracy	Macro_F1	Micro_F1	
1	0.5145688846162649	0.49113765588639235	0.528312797473422	
2	0.5145688846162649	0.49113765588639235	0.528312797473422	
3	0.575270605696154	0.5837432187313495	0.6308438236733241	
4	0.6248019788221562	0.6597124772836322	0.6997464525599395	
5	0.6599442242771173	0.7007561053735905	0.742360215292914	
6	0.6869251688208513	0.726098842863655	0.7721186779947511	
7	0.7042699163560039	0.7425308815600872	0.7900449268270985	

ĸ	Accuracy	Macro_F1	Micro_F1	
8	0.711356516786381	0.7420203626350129	0.7971175659445754	
9	0.7081299020379879	0.7307470765596854	0.7939148614385481	
10	0.701063398509371	0.7175515951088984	0.7867977403140429	
11	0.6955970172344441	0.7125534768791278	0.7811930074284952	

效果稍微好了一点、

决策树

算法伪代码

```
pseudocode
 算法: Generate decision tree(samples, attribute)。由给定的训练数据产生一棵判定树。
 输入:训练样本samples,由离散值属性表示;候选属性的集合attribute_list。
 输出:一棵判定树。
 方法:
 Generate decision tree (samples, attribute list)
 (1) 创建结点 N;
 (2) if samples 都在同一个类C then //类标号属性的值均为C, 其候选属性值不考虑
 (3) return N 作为叶结点, 以类C 标记;
 (4) if attribut list 为空 then
 (5) return N 作为叶结点,标记为 samples 中最普通的类; //类标号属性值数量最大的那个
 (6) 选择attribute list 中具有最高信息增益的属性best attribute; //找出最好的划分属性
 (7) 标记结点 N 为best_attribute;
 (8) for each best attribute 中的未知值a i //将样本samples按照best_attribute进行划分
 (9) 由结点 N 长出一个条件为 best attribute = a i 的分枝;
 (10) 设si 是samples 中best attribute = a i 的样本的集合; //a partition
 (11) if si 为空 then
 (12) 加上一个树叶,标记为 samples 中最普通的类; //从样本中找出类标号数量最多的,作为此节点的标记
 (13) else 加上一个由 Generate decision tree(si,attribute list-best attribute)返回的结
 点; //对数据子集si,递归调用,此时候选属性已删除best attribute
```

不同划分阈值下的测试结果

threshold	Accuracy	Macro_F1	Micro_F1
0.0	0.6005326231691078	0.38828709588714916	0.4786460699681963
0.1	0.6005326231691078	0.38828709588714916	0.4786460699681963
0.2	0.6005326231691078	0.38828709588714916	0.4786460699681963
0.3	0.5873427091043671	0.3818813027060383	0.4668404942750255
0.4	0.5754970445996775	0.37612291092052796	0.45778781038374716
0.5	0.5537000654878848	0.3720458715108832	0.447225606379444
0.6	0.5323182993392703	0.38259774508016153	0.4443494066075056
0.7	0.5066490954834072	0.3709375325080947	0.43944916970433373
0.8	0.4812407680945347	0.33699866221808056	0.427757736852098
0.9	0.4686658286945592	0.33453380364743074	0.41612220484034235
1.0	0.4574530763403754	0.3230775151244868	0.3992059195091139
1.1	0.4478330658105939	0.30676828144247165	0.38122383539681126
1.2	0.44632499006754073	0.3038593126354794	0.3787286931818182
1.3	0.44444444444444	0.28410325701391037	0.3745012855749623
1.4	0.44387634704633055	0.2783255571396552	0.37342781222320637
1.5	0.4439461883408072	0.27855346828947536	0.3736049601417184
1.6	0.44370236505067967	0.2782752572305032	0.3731184699840623
1.7	0.44370236505067967	0.2782752572305032	0.3731184699840623
1.8	0.44370236505067967	0.27829636214851877	0.3731184699840623
1.9	0.44370236505067967	0.27829636214851877	0.3731184699840623

不同阈值下决策树结构的变化

threshold = 0.2

threshold = 1.2

threshold = 1.9

多分类SVM

使用SMO方法学习SVM,对于800例采样下不同的参数组合结果为:

sigma	С	Accuracy	Macro_F1	Micro_F1	
0	1	0.34263697591165587	0.05356627244474779	0.040729590933238885	
1	1	0.4109599010261262	0.25155148020852286	0.2833362847529662	
2	1	0.39125614910275064	0.14372953461996	0.22206481317513724	
3	1	0.38240671768131645	0.1222569467495856	0.19249158845404638	
1.6	10	0.4434932851645331	0.31236341413397417	0.3725872144501505	

SMO方法伪代码:

```
10
11 同时优化这两个向量
12
13 如果两个向量都不能被优化,退出内循环
14
、15 如果所有向量都没被优化,增加迭代数目,继续下一次循环
```

SMO实现:

```
python
1 def trainSVM(self):
           entireSet = True
           alphaPairsChanged = 0
           iterCount = 0
           while alphaPairsChanged > 0 or entireSet :
               alphaPairsChanged = 0
               if entireSet:
                   for i in range(self.trainX.shape[0]):
                       alphaPairsChanged += self.innerLoop(i)
                   print("iter: %d entire set, alpha pairs changed: %d"%
   (iterCount,alphaPairsChanged))
                   iterCount += 1
               else:
                   nonBoundAlphasList = np.nonzero((self.alphas > 0) * (self.alphas <</pre>
   self.C))[0]
                   for i in nonBoundAlphasList:
                       alphaPairsChanged += self.innerLoop(i)
                   print("iter: %d non boundary, alpha pairs changed: %d"%
   (iterCount,alphaPairsChanged))
                   iterCount += 1
               if entireSet :
                   entireSet = False
               elif alphaPairsChanged == 0 :
                   entireSet = True
```

交叉验证

KNN交叉验证结果:

ĸ	Micro F1 1-fold	Micro F1 2-fold	Micro F1 3-fold	Micro F1 4-fold	Micro F1 5-fold	Micro F1 mean
1	0.5348066298342542	0.5334806629834254	0.5383425414364641	0.5239779005524862	0.5312707182320442	0.5323756906077348
2	0.5348066298342542	0.5334806629834254	0.5383425414364641	0.5239779005524862	0.5312707182320442	0.5323756906077348
3	0.6296132596685083	0.6218784530386741	0.6209944751381216	0.6161325966850829	0.6165745856353592	0.6210386740331492
4	0.6775690607734807	0.6738121546961326	0.6735911602209945	0.6702762430939226	0.6689502762430939	0.6728397790055248
5	0.7080662983425414	0.6941436464088397	0.6965745856353591	0.7007734806629834	0.6983425414364641	0.6995801104972376
6	0.7116022099447514	0.7085082872928177	0.7049723756906078	0.7149171270718232	0.7102762430939227	0.7100552486187846

ĸ	Micro F1 1-fold	Micro F1 2-fold	Micro F1 3-fold	Micro F1 4-fold	Micro F1 5-fold	Micro F1 mean
7	0.7160220994475138	0.7069613259668508	0.7043093922651934	0.7129281767955801	0.7173480662983427	0.7115138121546962
8	0.7104972375690609	0.6990055248618785	0.7040883977900553	0.7076243093922651	0.7155801104972375	0.7073591160220994
9	0.7071823204419889	0.6943646408839779	0.703646408839779	0.7009944751381215	0.7093922651933702	0.7031160220994475
10	0.7043093922651934	0.6983425414364641	0.6956906077348066	0.6970165745856354	0.7003314917127071	0.6991381215469614
11	0.7023204419889503	0.6892817679558011	0.6932596685082872	0.6928176795580111	0.698121546961326	0.695160220994475

SVM交叉验证结果因为计算量太大,无法在实验截止时间前完成计算。