Recall: Riemann sum

$$\int_a^b f(x) \; dx = \lim_{n o\infty} \sum_{i=1}^n f(x_i) \Delta x_i$$

As n -> ∞, the accuracy of the Riemann sum gradually approaches the actual value

In three dimensions:

- Let D be a closed (contains all its boundary points) and bounded set in R2 whose boundary is a
 piecewise smooth closed curve
- Let f(x,y) be a function that is bounded on D:
 - There exists some real number M such that $|f(x,y)| \le M$ for all (x,y) in D
 - of(x,y) exists in three dimensions but all (x,y) points are contained within D
- · Subdividing D into rectangles:

Definition: Integrable function

Let $D\subset\mathbb{R}^2$ be closed and bounded. Let P be a partition of D as described above, and let $|\Delta P|$ denote the length of the longest side of all rectangles in the partition P. A function f(x,y) which is bounded on D is **integrable** on D if all Riemann sums approach the same value as $|\Delta P|\to 0$.

ΔP -> 0 : rectangles get infinitely smaller; same principle as in single-variable calculus

Definition: Double Integral

If f(x,y) is integrable on a closed bounded set D, then we define the **double integral** of f on D as

$$\iint\limits_{\Omega} f(x,y) \; dA = \lim_{\Delta P o 0} \sum_{i=1}^n f(x_i,y_i) \Delta A_i$$

Interpretations of the Double Integral

The double integral can be used to compute the area of a set D:

It can also be used to calculate the volume of a function f within a set D:

$$S = \Big\{(x,y,z) \mid 0 \leq z \leq f(x,y), (x,y) \in D\Big\}$$

$$V(S) = \iint\limits_{D} f(x,y) \; dA$$

Properties of the Double Integral

Theorem 1: Linearity

If $D \subset \mathbb{R}^2$ is a closed and bounded set and f and g are two integrable functions on D, then for any constant c:

$$\iint\limits_{D} (f+g) \; dA = \iint\limits_{D} f \, dA + \iint\limits_{D} g \; dA$$
 and $\iint\limits_{D} cf \; dA = c \iint\limits_{D} f \; dA$

Theorem 2: Basic Inequality

If $D\subset\mathbb{R}^2$ is a closed and bounded set and f and g are two integrable functions on D such that $f(x,y)\leq g(x,y)$ for all $(x,y)\in D$, then

$$\iint\limits_{D}f\,dA\leq\iint\limits_{D}g\,dA$$

Theorem 3: Absolute Value Inequality

If $D \subset \mathbb{R}^2$ is a closed and bounded set and f is an integrable function on D, then

$$\left| \iint\limits_{D} f \ dA
ight| \leq \iint\limits_{D} |f| \ dA$$

Theorem 4: Decomposition

Iterated Integrals

Let $D\subset\mathbb{R}^2$ be a closed and bounded set and let f be an integrable function on D. If D is decomposed into two closed and bounded subsets D_1 and D_2 by a piecewise smooth curve C, then

$$\iint\limits_{D}f\,dA=\iint_{D_{1}}f\,dA+\iint_{D_{2}}f\,dA$$

X=KL

The area of this regro- is

 $V(x) = \int_{a}^{b(x)} f(x) dx$

Notice that in each of these cross-sectional areas, x stays constant

X= X~

If D is contained within the vertical lines $x=x_l$ and $x=x_u$, we can calculate the volume of this solid by summing over all the cross-sectional areas from x_l to x_u :

$$V = \int_{x_\ell}^{x_u} A(x) \; dx \qquad \qquad V = \int_{x_\ell}^{x_u} \left(\int_{y_\ell(x)}^{y_u(x)} f(x,y) \; dy
ight) \; dx$$

Theorem 1: Iterated Integrals

Let $D\subset \mathbb{R}^2$ be defined by

$$y_\ell(x) \leq y \leq y_u(x), \quad ext{ and } \quad x_\ell \leq x \leq x_u$$

where $y_\ell(x)$ and $y_u(x)$ are continuous for $x_\ell \leq x \leq x_u$. If f(x,y) is continuous on D, then

$$\iint\limits_D f(x,y) \; dA = \int_{x_\ell}^{x_u} \int_{y_\ell(x)}^{y_u(x)} f(x,y) \; dy \; dx$$

These can be solved using partial integration

Let
$$D$$
 be the unit disc $x^2+y^2\leq 16$. Evaluate $\iint\limits_{D}e^{x^2+y^2}dA=$

Boundary:
$$y^2 = |6 - x^2|^2$$

=> $y_n(x) = (|6 - x^2|^2)$

Meanwhile, $-4 = x < 4$
 $\Rightarrow \int_{-4}^{4} \int_{-(|6 - x^2|^2)}^{(|6 - x^2|^2)} e^{x^2} + f^2 dy dx$

$$= \int_{-4}^{4} e^{2x^{2}} \cdot \int_{-(16-x^{2})^{2}}^{(16-x^{2})^{2}} e^{x^{2}} dy dx$$
 tactor out y
$$= \int_{-4}^{4} e^{2x^{2}} \cdot \left(ye^{x^{2}} \right) \Big|_{-(16-x^{2})^{2}}^{(16-x^{2})^{2}} dx$$
 integrate x expression unt y

$$= \int_{-4}^{4} \left[e^{16-x^2} \cdot (16-x^2) \cdot e^{x^2} \right] - \left[e^{16-x^2} \cdot - (16-x^2) \cdot e^{x^2} \right]$$
plug in $y = x$ bounds

$$= \int_{-\infty}^{4} 2e^{(6-x^2)} \cdot ((6-x^2)) \cdot e^{x^2} dx$$

$$= \int_{-4}^{4} 2e^{16} \cdot (16 - \chi^{2}) dx$$

somehow
$$\pi(e^{16}-1)$$
 - convert to polar

Levaluate the following double integral. Graph
$$\int_{x=0}^1 \int_{y=0}^1 \left(3x^7+2y^4\right)\,dy\,dx =$$

Evaluate the following double integral. Give an
$$\int_{x=0}^{1} \int_{y=0}^{1} \left(3x^7 + 2y^4\right) \, dy \, dx =$$

$$=\int_{x=0}^{1} 3x^3 + \frac{2}{5} dx$$

$$= \frac{3}{8} \chi_8 + \frac{2}{5} \chi \Big|_0^1 = \frac{3}{8} + \frac{2}{5} = \frac{31}{40}$$

Determine the volume enclosed between the hemispherical surface
$$z=f(x,y)=\sqrt{64-x^2-y^2}$$
 and the $z=0$ plane by evaluating the double integral

$$\iint_{\mathbb{R}} f(x,y) \, dA$$

in polar coordinates. Give an exact value.

$$V =$$

$$0 \le c \le 8$$

Compute the following integral where
$$\mathrm{D}_{xy}$$
 is the region bounded by the ellipse $10x^2+6xy+y^2=2$. $\iint_D x^2 dA=$

$$\Rightarrow x^2 + (y + 3x)^2 = 2$$

complete

Solve double integral with these bounds

Change of Variables Theorem

Theorem 1: Change of Variable Theorem

Let each of D_{uv} and D_{xv} be a closed bounded set whose boundary is a piecewise-smooth closed curve.

$$(x,y)=F(u,v)=(f(u,v),g(u,v))$$

be a one-to-one mapping of D_{uv} onto D_{xy} , with $f,g\in C^1$, and $\dfrac{\partial(x,y)}{\partial(u,v)}
eq 0$ except for possibly on a finite collection of piecewise-smooth curves in D_{uv} . If G(x,y) is continuous on D_{xy} , then

$$\iint\limits_{\Omega}G(x,y)\;dx\;dy=\iint\limits_{\Omega}G\Big(f(u,v),g(u,v)\Big)\left|rac{\partial(x,y)}{\partial(u,v)}
ight|\;du\;dv$$

 $r \cos \Theta - \frac{\partial (x, y)}{\partial (r, \Theta)}$

Compute the integral
$$M_x = \iint_R x \ dA$$
.

$$= \iint L_{J} \cos \Theta \, dV \, d\Theta$$

Bounds:
$$\frac{\pi}{4} \leq \theta \leq \frac{7\pi}{4}$$
; $0 \leq r \leq 1$

Bounds:
$$\frac{\pi}{4} \leq \theta \leq \frac{2\pi}{4}$$
; $0 \leq r \leq 1$

$$\Rightarrow \int_{a_{14}}^{2\pi} \int_{0}^{1} r^{2} \cos \theta \, dr \, d\theta$$

$$= \frac{1}{3} \int_{a_{14}}^{a_{14}} (\cos \theta) \Big|_{0}^{1} d\theta = \frac{1}{3} \int_{a_{14}}^{a_{14}} \cos \theta$$

$$= \frac{1}{3} \sin \theta \Big|_{s_{14}}^{s_{n_{4}}} = \frac{-\sqrt{2}}{6} - \frac{-\sqrt{2}}{6} = \frac{-\sqrt{2}}{3}$$