

DSA211 - Statistical Learning With R

Project Part 2 Q2 Report

Section Number: G1

Instructor: Professor Goh Jing Rong

Toh Jing Lin Cheryl	01430750	cheryl.toh.2021
Foo Chuan Wei	01394670	cwfoo.2021
Nguyen Hanh Trang	01422031	htnguyen.2021
Seah Li Ping Megan	01395272	megan.seah.2019
Sharafinaz Binte Shawal	01443439	sharafinazs.2021

1.0 Test Model

All R Outputs and Inputs may be found in the Appendix.

From our Project Part 2 Q1 Report, the best model we will use for the testing is **M5** as shown in Figure 1.

Figure 1: Best Model for lasso regression (M5)

2.0 Test Result

The test MSE value obtained was 201447.7.

Course Name: DSA211-G1-Statistical Learning with R

Instructor(s): _, **Dr GOH Jing Rong**Student Name: _, **FOO CHUAN WEI**

Campus ID: **01394670**Date/Time: **02 Feb 2024 14:23**

Name	Marks	Grade	Weight
Class Participation		A+	
Group Project		A+	
Assignment		A+	

APPENDIX

1.0 Input

```
#BEST MODEL FROM PROJECT PART TWO Q1
library(leaps)
library(glmnet)
RNGkind(sample.kind = "Rounding")
set.seed(123)
bank = read.csv("Bank2023P.csv", stringsAsFactors = TRUE)
attach(bank)
train <- sample(1:nrow(bank),800)
test <- -train
bank.train = bank[train,]
bank.test = bank[test,]
train.x = model.matrix(Balance~Rating*Cards*Gender + Rating*Income*Cards +
Rating*I(Income^2)*Cards + Rating*Income*Gender+Rating*I(Income^2)*Gender
+ Income*Cards*Gender + I(Income^2)*Cards*Gender, data = bank.train)
train.y = bank.train$Balance
test.x = model.matrix(Balance~Rating*Cards*Gender + Rating*Income*Cards +
Rating*I(Income^2)*Cards + Rating*Income*Gender+Rating*I(Income^2)*Gender
+ Income*Cards*Gender + I(Income^2)*Cards*Gender,bank.test)
test.y = bank.test$Balance
lasso.mod <- glmnet(train.x, train.y, alpha=1)
lassocv.out <- cv.glmnet(train.x, train.y, alpha=1)</pre>
lassolam <- lassocv.out$lambda.min
lassolam
```

```
lasso.pred <- predict(lasso.mod, s=lassolam, newx=test.x)
mean((lasso.pred-test.y)^2)

x = model.matrix(Balance~Rating*Cards*Gender + Rating*Income*Cards +
Rating*I(Income^2)*Cards + Rating*Income*Gender+Rating*I(Income^2)*Gender
+ Income*Cards*Gender + I(Income^2)*Cards*Gender, bank)
y = bank$Balance

out.lasso <- glmnet(x,y,alpha=1)
lasso.coef <- predict(out.lasso, type="coefficients", s=lassolam)[1:21,]

lasso.coef[lasso.coef!=0]
```

1.0 Output

[1] 4.710897		
[1] 201781.3		
(Intercept)	Cards	
GenderFemale		
7.339071e+02	-8.612623e+01	
1.028961e+02		
Income	I(Income^2)	
Rating:GenderFemale		
1.201578e-01	3.749728e-04	
1.749931e-01		
Cards:GenderFemale	Rating:Income	
Rating:I(Income^2)		
6.591505e+01	1.014376e-05	
4.319330e-08		
GenderFemale: I (Income^2)	Rating:Cards:GenderFemale	
Rating:Cards:I(Income^2)		
-7.447831e-05	3.387013e-03	
1.377175e-09		
Rating:GenderFemale:I(Income^2)		
-2.260941e-08		

2.0 Input

```
RNGkind(sample.kind = "Rounding")
set.seed(123)

testbank <- read.csv("Bank2023testP.csv", stringsAsFactors = TRUE)
test.xx <- model.matrix(Balance~Rating*Cards*Gender + Rating*Income*Cards +
Rating*I(Income^2)*Cards + Rating*Income*Gender+Rating*I(Income^2)*Gender
+ Income*Cards*Gender + I(Income^2)*Cards*Gender, data=testbank)
test.yy <- testbank$Balance
yhatall <- predict(out.lasso, newx=test.xx, s=lassolam) #uses lowest lasso from
mean((test.yy-yhatall)^2)
```

2.0 Output

[1] 201447.7