Westfälische Wilhelms-Universität Münster

Praktikum zur Mustererkennung

Emotionserkennung

Klassifikation von Action Units anhand von Landmarks

Robin Rexeisen

Matrikelnr. 123456

Johannes Stricker Johannes Stricker Alexander Schlüter johannesstricker@gmx.net alx.schlueter@gmail.com Matrikelnr. 383779

Alexander Schlüter Matrikelnr. 409649

Betreuer: Sören Klemm soeren.klemm@wwu.de

eingereicht am 16. September 2016

Vorwort

Hier entsteht ein Vorwort.

Inhaltsverzeichnis

1.	Einleitung 1						
	1.1. Facial Action Code	1					
	1.2. DISFA Datenbank	1					
	1.3. Die Aufgabenstellung						
2.	Methodik	2					
	2.1. Vorverarbeitung	2					
	2.1.1. Punktwolken						
	2.1.2. Feature Extraction	2					
	2.2. Evaluierungsmethoden	4					
3.	Implementierung						
	3.1. QViewer	5					
	3.2. Auto-Train						
4.	Ergebnis	6					
5.	Diskussion	8					
6.	Fazit	10					
	6.1. Zusammenfassung	10					
	6.2. Ausblick						
A.	Anhang	11					
	A.1. Auflistung der relevanten Action Units	11					

1. Einleitung

Das Thema der (visuellen) Emotionserkennung durch Computersysteme hat in den letzten Jahren immer mehr an Bedeutung gewonnen. Die Einsatzgebiete sind vielseitig und reichen von Sicherheitsanwendungen, über Robotik, bis hin zu Unterhaltungsmedien. Meist wird versucht, anhand von verschiedenen Merkmalen im Gesicht, diesem eine oder mehrere Emotionen zuzuordnen. Im Rahmen unsere Praktikums, war es unsere Aufgabe ein solches Computersystem zur Erkennung von Emotionen zu entwickeln.

Im Folgenden Kapitel werden die Aufgabenstellung, sowie die Eingabedaten genauer beschrieben. In Kapitel 2 werden daraufhin die Methodiken vorgestellt, die wir für unser Programm nutzen, woraufhin in Kapitel 3 erläutert wird, wie wir diese implementiert haben. Daraufhin folgt die Vorstellung unserer Ergebnisse in Kapitel 4 und ein Ausblick auf mögliche Erweiterungen der Anwendung. Im letzten und 5. Kapitel wird das Ergebnis der Arbeit kurz resümiert.

1.1. Facial Action Code

Der Facial Action Code (kurz FAC) ist ein System zur Unterscheidung von Bewegungen von isolierten Teilen des menschlichen Gesichts, welches 1976 von Paul Ekman und Wallace V. Friesen entwickelt wurde. Es basiert auf sogenannten Action Units (kurz AU), welche eben genau diese Bewegungen beschreiben sollen. Dabei kann eine Action Unit eine Ausprägung zwischen einschließlich 0 und 5 haben, wobei 0 bedeutet, dass keine entsprechende Bewegung vorhanden ist, und 5 bedeutet, dass die Bewegung maximal stark ausgeprägt ist. Eine Auflistung der für diese Arbeit relevanten Action Units findet sich im AnhangA.1.

1.2. DISFA Datenbank

Die Denver Intensity of Spontaneous Facial Action Database (kurz DISFA Database) enthält eine Sammlung von Gesichtsbewegungen von insgesamt 27 unterschiedlichen, erwachsenen Probanden. Hierzu wurde von jedem Probanden ein 4-minütiges Video mit je 20 Frames pro Sekunde gedreht. Danach wurde jedes Frame nach dem Facial Action Coding System auf die Ausprägung von 12 Action Units analysiert und gelabelled. Weiterhin enthält jedes Frame 66 Landmark Koordinaten, von markanten Punkten des Gesichtes.

1.3. Die Aufgabenstellung

Die Aufgabenstellung des Praktikums bestand darin, aus einer Auswahl von 12 Videos der DISFA Datenbank einen Klassifikator zu entwickeln, der möglichst präzise in der Lage ist für ein beliebiges Frame aus der Datenbank zu bestimmen, welche Action Units in dem Frame aktiviert sind (dh. eine Ausprägung größer oder gleich 1 haben).

2. Methodik

Hier keine Details zur Implementierung!

2.1. Vorverarbeitung

2.1.1. Punktwolken

- 1. Beschreibung der Daten ?!
- 2. Normalisierung
- 3. Randomisiertes erweitern
- 4. PCA

2.1.2. Feature Extraction

Bei der (visuellen) Emotionserkennung wird versucht anhand von einem oder mehreren, verschiedenen Merkmalen (engl. features) einem Gesicht eine oder mehrere Emotionen zuzuordnen. Je mehr Aussagekraft die Kombination dieser Merkmale über die jeweiligen Emotionen haben, desto besser können diese klassifiziert werden. Das Problem dabei ist, dass meist weder die Merkmale, noch ihre Aussagekraft zuvor bekannt sind. Deshalb extrahieren wir aus den Eingabedaten, also den Videos mit je 66 Landmarks pro Frame, verschiedene Merkmale, um sie in verschiedenen Kombinationen miteinander zu testen. Es folgt eine Beschreibung der von uns verwendeten Features.

Statische Features

Dazu schreiben, wieso wir finden, dass das Feature ein gutes ist (z.B. weil es den Feature-Raum verkleinert, ...)

1. X-/Y-Koordinaten: die Koordinaten der Landmarks werden als Merkmale genutzt. Da in der Menge der Koordinaten sowohl Informationen über die individuellen Punkte liegen, als auch Informationen über ihre Relation zueinander, ist es sinnvoll dieses Feature zu testen.

Abbildung 2.1.: Normalisierung der Rotation anhand ausgesuchter Linien

Abbildung 2.2.: InterpolationFeatureExtraction

Abbildung 2.3.: TimeDifferentialExtraction

- 2. Paarweise Orientierung: es werden jeweils alle Paare von je zwei unterschiedlichen Landmarks betrachtet und die Rotation des Vektors zwischen den beiden Punkten als Merkmal genutzt. Weil sich bei verschiedenen Mimiken meist die Position markanter Punkte im Gesicht zueinander ändert, erscheint es sinnvoll Features zu nutzen, die die Landmarks untereinander explizit in Relation setzen.
- 3. Paarweise Euklidische Distanz: auch hier werden jeweils alle Paare unterschiedlicher Landmarks betrachtet und die euklidische Distanz zwischen den beiden Punkten als Merkmal genutzt. Dieses Feature erscheint ebenfalls sinnvoll, weil es Informationen über die Relation von Landmarks untereinander hat.
- 4. Orientierung relativ zum Mittelpunkt der Landmarks: bei diesem Feature wird die Orientierung jedes Landmarks relativ zum Mittelpunkt aller Landmarks betrachtet, das heisst es wird die Rotation des Vektors zwischen Mittelpunkt und Landmarks als Merkmal genutzt. Dieses Feature enthält Informationen darüber, wie die Position der Landmarks relativ zum gesamten Gesicht ist. Dies erscheint für viele Gesichtsausdrücke sinnvoll.
- 5. Euklidische Distanz zum Mittelpunkt der Landmarks: dieses Feature betrachtet die euklidische Distanz jedes Landmarks zum Mittelpunkt aller Landmarks. Dieses Feature sagt ebenfalls etwas über die Relation der einzelnen Landmarks zum gesamten Gesicht aus.
- 6. Polynominterpolation: es wird versucht zusammenhängende Landmarks, das heisst Punkte, welche zusammen einen Teil des Gesichtes ergeben, durch ein Polynom zu interpolieren und die Polynomkoeffizienten als Feature zu extrahieren. Die Action Units beziehen sich meist auf genau einen isolierten Bereich des Gesichtes. Daher erscheint es naheliegend, diese Bereiche durch eine Funktion zu approximieren und diese als Feature zu nutzen.

Zeitliche Features

• TimeDifferential

Featureverarbeitung

Zweck mitbeschreiben (z.B. PCA -> FeatureRaum weiter reduzieren)

- · Negativanteil verringern
- MinMax/MeanVar Normalisieren
- Shufflen
- PCA

Klassifikatoren

SVM + Random Forests, Art von Parametern Vielleicht noch eine Beschreibung einer allgemeinen Pipeline.

2.2. Evaluierungsmethoden

Die im vorherigen Abschnitt beschrieben Methoden zur Feature Extraction, Verarbeitung und Klassifikation sollen in verschiedenen Kombinationen evaluiert werden. Der erste Datensatz aus 10 Personen wird dazu aufgeteilt in 60% Trainingsmenge und 40% Validierungsmenge. Hier ist die Entscheidung zu treffen, wie die Personen auf die Mengen aufgeteilt werden:

- 1. Erst die Frames durchmischen, dann aufteilen: Dies ist sinnvoll, wenn der Klassifikator nur verwendet werden soll, um Action Units in neuen Frames von schon bekannten Personen zu erkennen. Es wird nicht getestet, wie gut der Klassifikator auf neue Personen generalisiert!
- 2. 6 Personen nur im Training, 4 nur in der Validierung verwenden: Die Performance auf der Validierungsmenge ist repräsentativ dafür, wie gut der Klassifikator Action Units bei bisher unbekannten Personen erkennt

Erste Tests haben gezeigt, dass Methode 1 zu deutlich besserern Performancestatistiken führt. Wir haben uns aber für Methode 2 entschieden, weil die Generalisierung auf neue Personen das interessantere Problem ist: In Anwendungsfällen ist es wünschenswert, für neue Personen nicht erst mehrere tausend Frames manuell labeln zu müssen, um den Klassifikator auf dieser Person zu trainieren.

Aufgrund der geringen Anzahl positiver Samples (Frames, in denen die Action Unit aktiviert ist), ist die Accuracy keine zuverlässige Statistik. Ein Klassifikator, der die Action Unit immer als "nicht aktiv" klassifiziert, könnte sehr hohe Accuracy erreicht, ohne tatsächlich etwas über die Action Unit gelernt zu haben. Stattdessen evaluieren wir die Klassifikatoren anhand von

$$Precision = \frac{TP}{TP + FP}, \qquad Recall = \frac{TP}{TP + FN}, \qquad F1 \text{ score} = 2 \cdot \frac{Precision \cdot Recall}{Precision + Recall}.$$

Der F1 score ist das harmonische Mittel zwischen Precision und Recall. Da wir von der Aufgabenstellung her keine Präferenz für hohe Precision / hohen Recall haben, nutzen wir den F1 score als erste Zahl zum Vergleich der Klassifikatoren.

Es werden alle Kombinationen aus Feature Extraction, Klassifikator und Parametern auf dem ersten Datensatz trainiert und evaluiert. Anschließend werden die besten fünf pro Action Unit anhand des F1 scores ausgewählt. Da pro Action Unit ca. 160 Kombinationen evaluiert werden, kann es durch diese Auswahl der besten fünf zu einem Overfitting gegen die Validierungsmenge kommen. Um realistische Zahlen für die Performance zu bekommen, werden deshalb die besten fünf nochmal auf einer Testmenge evaluiert. Diese besteht aus fünf bisher unbekannten Personen aus einem zweiten Datensatz.

3. Implementierung

- Architektur/OS eines lauffähigen Systems
- Softwareabhängigkeiten
- Programmiersprache

3.1. QViewer

- 1. Zweck
- 2. Bilder

3.2. Auto-Train

- Zum trainieren und evaluieren
- Kurzes Wort zum Design von FeatureExtractor
- Automatisches Speichern aller relevanten Dateien.
- Erwähnung der JSON-Konfigurations-Datei
 - Design von Processors

4. Ergebnis

- Welche Parameter/Pipeline zum trainieren
 - Warum diese Parameter und keine anderen?
- Alle Plots zeigen (oder nur eine Teilmenge?)
 - Bei den Plots schwache Punkte gar nichts erst anzeigen?!
 - Auf jedenfall gute immer beschreiben (welche Parameter z.B.)
- Auflisten welche Action-Unit welche Classificator gut war (Recall, Precision, F1-Score)
- Klar machen, wie gut diese Klassifikatoren bei Trainingsmenge abschneiden
- Allgemeine Aussage, welche Klassifikatoren mit Parametern überhaupt nicht geeignet sind und welche super sind.
- Aussage welche Action-Unit gut zu klassifizieren ist
- Erwähnen, dass Shuffle SVM-Ergebnisse ändert.

AU	Bester Klassifikator				
AU	F1 Val	F1 Test	Precision Test	Recall Test	Features
Lip Corner Puller	0.37	0.431	0.317	0.674	XY
Outer Brow Raiser	0.391	_	0	0	EuclidianDistance
Lip Corner Depressor	0.022	_	0	0	XY
Upper Lid Raiser	0.394	_	0	0	Interpolation
Inner Brow Raiser	0.2	0.084	0.064	0.125	EuclidianDistance
Cheek Raiser	0.277	0.18	0.102	0.769	XY
Lips Part	0.656	0.575	0.598	0.554	CenterDistance
Brow Lowerer	0.163	0.2	0.659	0.118	EuclidianDistance
Chin Raiser	0.191	0.03	0.163	0.017	CenterDistance
Nose Wrinkler	0.242	0.03	0.015	0.62	EuclidianDistance

Abbildung 4.1.: F1 scores und Testergebnisse des besten Klassifikators pro Action Unit

Abbildung 4.2.: Validierungsergebnisse für Lips Part und Lip Corner Puller. Jeder Punkt steht für eine Kombination aus Feature Extraction, Klassifikator und Parametern.

F1 score Validation	F1 score Test	Precision Test	Recall Test
0.656	0.575	0.598	0.554
0.656	0.594	0.639	0.555
0.647	0.655	0.809	0.55
0.623	0.616	0.966	0.452
0.585	0.732	0.752	0.713

Abbildung 4.3.: F1 scores und Testergebnisse der Top 5 Klassifikatoren für Lips Part

5. Diskussion

- Wieso sind gut bei Test, aber schlecht bei Training
- Wieso sind diese Klassifikatoren gut und andere nicht
- Wieso sind viele Action-Units schlecht zu erkennen
- Wieso gerade diese Feature so gut?
- ⇒ Overfitting
- Warum geht diese Action-Unit besser als andere

Abbildung 5.1.: F1 score des besten Klassifikators jeder Action Unit gegen Anteil positiver Samples

6. Fazit

6.1. Zusammenfassung

6.2. Ausblick

- Was könnte man noch verbesser, und wieso haben wir das nicht gemacht (z.B. aus Zeitgründe)
 - 1. Mehr Kombinationen (Mit/ohne PCA, mehr Time-Differential-Feature, überhaupt mehr zeitliche Features, andere normalisierungen der Punktwolke, Neuronales-Netzwerk oder andere Klassifikatoren dazu benutzen)
- Wie könnte das Ergebnis besser werden (z.B. mehr Daten von mehreren Personen)

A. Anhang

A.1. Auflistung der relevanten Action Units

- 1. Inner Brow Raiser
- 2. Outer Brow Raiser
- 3. Brow Lowerer
- 4. Upper Lid Raiser
- 5. Cheek Raiser
- **6.** Lid Tightener
- 7. Nose Wrinkler
- 8. Upper Lid Raiser
- 9. Nasolabial Fold Deepener
- 10. Lip Corner Puller
- 11. Cheeck Puffer
- 12. Dimpler
- **13.** Lip Corner Depressor
- **14.** Lower Lip Depressor
- 15. Chin Raiser
- 16. Lip Puckerer
- 17. Lip Stretcher
- 18. Lip Funneler
- **19.** Lip Tightner
- 20. Lip Pressor
- 21. Lips Part
- 22. Jaw Drop
- 23. Mouth Stretch
- **24.** Lip Suc