

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2000-137906

(43) Date of publication of application: 16.05.2000

(51)Int.CI.

G11B 5/39

(21)Application number : 11-097072

(22)Date of filing:

02.04.1999

(71)Applicant: TOSHIBA CORP

(72)Inventor: FUKUZAWA HIDEAKI

KAMIGUCHI YUZO

KOUI KATSUHIKO

NAKAMURA SHINICHI

YOSHIKAWA MASATOSHI

HASHIMOTO SUSUMU SAHASHI MASASHI

WASAKI HITOSHI

SAITO KAZUHIRO

FUKUYA HIROMI

(30)Priority

Priority number: 10185475

Priority date: 30.06.1998

Priority country: JP

JP

10237821

24.08.1998

(54) MAGNETORESISTANCE EFFECT ELEMENT, MAGNETIC HEAD, MAGNETIC HEAD

ASSEMBLY AND MAGNETIC RECORDING DEVICE (57)Abstract:

PROBLEM TO BE SOLVED: To obtain a

magnetoresistance effect element having extremely high sensitivity while maintaining a good bias point by keeping the magnetization in one of a pair of ferromagnetic films in a second ferromagnetic layer into a desired direction, and forming a nonmagnetic high conductive layer in contact with a first ferromagnetic layer on the opposite face to the film face where the first ferromagnetic layeris in contact with a nonmagnetic spacer layer.

SOLUTION: A high conductive layer 101, free layer 102, spacer layer 103, first ferromagnetic layer 104, bonding film 105, second ferromagnetic layer 106 and antiferromagnetic film 107 are laminated. By this constitution, especially when Hs on the transfer curve is small by making the free layer 102 extremely thin, a good bias point can be obtd. by rendering all of Hcu, Hpin and Hin small and satisfying Hpin-Hin=Hcu. By using a synthetic AF structure, Hpin can be decreased.

LEGAL STATUS

2/2 ページ Searching PAJ

[Date of request for examination]

03.04:2000

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3234814

21.09.2001

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-137906 (P2000-137906A)

(43)公開日 平成12年5月16日(2000.5.16)

(51) Int.Cl.7

識別記号

FΙ

テーマコート*(参考) 5D034

G11B 5/39 G11B 5/39

審査請求 未請求 請求項の数28 〇L (全 68 頁)

(21)出願番号 特願平11-97072

(22)出願日

平成11年4月2日(1999.4.2)

(31) 優先権主張番号 特願平10~185475

(32)優先日

平成10年6月30日(1998.6.30)

(33)優先権主張国

日本(JP)

(31) 優先権主張番号 特願平10-237821

(32)優先日

平成10年8月24日(1998.8,24)

(33)優先権主張国

日本(JP)

(71)出願人 000003078

株式会社東芝

神奈川県川崎市幸区堀川町72番地

(72)発明者 福澤 英明

神奈川県川崎市幸区堀川町72番地 株式会

社東芝川崎事業所内

(72)発明者 上口 裕三

神奈川県川崎市幸区堀川町72番地 株式会

社東芝川崎事業所内

(74)代理人 100064285

弁理士 佐藤 一雄 (外3名)

最終頁に続く

(54) 【発明の名称】 磁気抵抗効果素子、磁気ヘッド、磁気ヘッドアセンブリ及び磁気記録装置

(57) 【要約】

【課題】 バイアスポイントの設計が容易で、高感度且 つ高信頼性を有する磁気抵抗効果素子、磁気ヘッド、磁 気ヘッドアセンブリ及び磁気記録装置を提供することを 目的とする。

【解決手段】 スピンバルブにおいて、フリー層は、印 加磁界がゼロの時に前記第2の強磁性体層の磁化方向に 対してある角度を成す磁化方向を有し、固着層は、相互 に反強磁性的に結合された一対の強磁性体膜とこれらを 反強磁性的に結合する結合膜とを含み、さらに、固着層 の一対の強磁性体膜のいずれか一方の磁化を所望の方向 に維持する手段と、前記第1の強磁性体層と前記非磁性 スペーサ層とが接する膜面と反対側の面にて第1の強磁 性体層に接する非磁性高導電層と、を設けることによ り、良好なバイアスポイントを維持しつつ、極めて感度 の高い磁気抵抗効果素子を実現することができる。

【特許請求の範囲】

【請求項1】非磁性スペーサ層と、前記非磁性体スペーサ層によって互いに分離された第1の強磁性体層と第2の強磁性体層と、

を備え、

前記第1の強磁性体層は、印加磁界がゼロの時に前記第 2の強磁性体層の磁化方向に対してある角度を成す磁化 方向を有し、

前記第2の強磁性体層は、相互に反強磁性的に結合された一対の強磁性体膜と、前記一対の強磁性体膜を分離しつつこれらを反強磁性的に結合する結合膜とを含む磁気抵抗効果素子であって、

前記第2の強磁性体層中の前記一対の強磁性体膜のいず れか一方の磁化を所望の方向に維持する手段と、

前記第1の強磁性体層と前記非磁性スペーサ層とが接する膜面と反対側の面にて第1の強磁性体層に接する非磁性高導電層と、

を有することを特徴とする磁気抵抗効果素子。

【請求項2】前記非磁性高導電層は、バルク状態の室温 での比抵抗の値が10μΩcm以下である元素を含有す ることを特徴とする請求項1記載の磁気抵抗効果素子。

【請求項3】前記第1の強磁性体層の膜厚は0.5 nm 以上4.5 nm以下であることを特徴とする請求項1ま たは2に記載の磁気抵抗効果素子。

【請求項4】正信号磁界における再生出力の絶対値V1と、負信号磁界における再生出力の絶対値V2とにより表される波形非対称性 (V1-V2) / (V1+V2) が、マイナス0.1 以上プラス0.1 以下となるように、前記非磁性高導電層の膜厚と前記第2の強磁性体層の膜厚とを設定したことを特徴とする請求項 $1\sim3$ のいずれか1つに記載の磁気抵抗効果素子。

【請求項5】非磁性スペーサ層と、前記非磁性体スペーサ層によって互いに分離された第1の強磁性体層と第2 の強磁性体層と、

を備え、

前記第1の強磁性体層は、印加磁界がゼロの時に前記第 2の強磁性体層の磁化方向に対してある角度を成す磁化 方向を有する磁気抵抗効果素子であって、

前記第2の強磁性体層中の前記一対の強磁性体膜のいず れか一方の磁化を所望の方向に維持する手段と、

前記第1の強磁性体層と前記非磁性スペーサ層とが接する膜面と反対側の面にて第1の強磁性体層に接する非磁性高導電層と、

を有し、さらに、

正信号磁界における再生出力の絶対値 V1と、負信号磁界における再生出力の絶対値 V2とにより表される波形非対称性 (V1-V2) / (V1+V2) が、マイナス0.1以上プラス0.1以下となるように、前記非磁性高導電層の膜厚と前記第2の強磁性体層の膜厚とを設定したことを特徴とする磁気抵抗効果素子。

【請求項6】比抵抗 $10\mu\Omega$ cmのCuに換算した前記非磁性高導電層の膜厚をt(HCL)、前記第2の強磁性体層中の前記一対の強磁性体膜の膜厚を1Tの飽和磁化で換算した磁気膜厚をそれぞれtm(pin1)、tm(pin2)(tm(pin1)>tm(pin2)とする)としたときに、0.5nm \leq tm(pin1)-tm(pin2)+t(HCL) \leq 4nm、且つt(HCL) \geq 0.5nmを満足することを特徴とする請求項 $1\sim5$ のいずれか1つに記載の磁気抵抗効果素子。【請求項7】非磁性スペーサ層と、前記非磁性体スペーサ層によって互いに分離された第1の強磁性体層と第2の強磁性体層と、

を備え、

前記第1の強磁性体層は、印加磁界がゼロの時に前記第 2の強磁性体層の磁化方向に対してある角度を成す磁化 方向を有する磁気抵抗効果素子であって、

前記第2の強磁性体層中の前記一対の強磁性体膜のいず れか一方の磁化を所望の方向に維持する手段と、

前記第1の強磁性体層と前記非磁性スペーサ層とが接する膜面と反対側の面にて第1の強磁性体層に接する非磁性高導電層と、

を有し、さらに、

比抵抗 $10\mu\Omega$ c mの C u に換算した前記非磁性高導電層の膜厚を t(HCL)、前記第 2 の強磁性体層中の前記一対の強磁性体膜の膜厚を 1 T の飽和磁化で換算した磁気膜厚をそれぞれ t m(p i n 1)、 t m(p i n 2)(t m (p i n 1)> t m (p i n 2)とする)としたときに、0.5 n m \leq t m (p i n 1)- t m (p i n 2)+ t (HCL) \leq 4 n m、且つ t (HCL) \geq 0.5 n m \leq 満足することを特徴とする磁気抵抗効果素子。

【請求項8】前記非磁性高導電層は、銅(Cu)、金(Au)、銀(Ag)、ルテニウム(Ru)、イリジウム(Ir)、レニウム(Re)、ロジウム(Rh)、白金(Pt)、パラジウム(Pd)、アルミニウム(Al)、オスミウム(Os)及びニッケル(Ni)よりなる群から選ばれる少なくとも一種の金属元素を含む金属膜であることを特徴とする請求項1~7のいずれか1つに記載の磁気抵抗効果素子。

【請求項9】非磁性スペーサ層と、前記非磁性体スペーサ層によって互いに分離された第1の強磁性体層と第2 の強磁性体層と、

を備え、

前記第1の強磁性体層は、印加磁界がゼロの時に前記第 2の強磁性体層の磁化方向に対してある角度を成す磁化 方向を有する磁気抵抗効果素子であって、

前記第2の強磁性体層中の前記一対の強磁性体膜のいず れか一方の磁化を所望の方向に維持する手段と、

前記第1の強磁性体層と前記非磁性スペーサ層とが接する膜面と反対側の面にて第1の強磁性体層に接する非磁

性高導電層と、

を有し、さらに、

前記非磁性高導電層は、少なくとも2層以上の膜を積層 した積層膜から形成されることを特徴とする磁気抵抗効 果素子。

【請求項10】前記積層膜のうちで前記第1の強磁性体層に接する膜が銅(Cu)を含むことを特徴とする請求項9記載の磁気抵抗効果素子。

【請求項11】前記積層膜のうちで前記第1の強磁性体層に接しない膜が、ルテニウム(Ru)、レニウム(Re)、ロジウム(Rh)、パラジウム(Pd)、白金(Pt)、イリジウム(Ir)及びオスミウム(Os)よりなる群から選ばれた少なくとも一種の元素を含むことを特徴とする請求項10記載の磁気抵抗効果素子。

【請求項12】前記第1の強磁性体層と反対側の面において前記非磁性高導電層と接して、タンタル(Ta)、チタン(Ti)、ジルコニウム(Zr)、タングステン(W)、ハフニウム(Hf)及びモリブデン(Mo)よりなる群から選ばれた少なくとも一種の元素を含む層を有することを特徴とする請求項1~11のいずれか1つに記載の磁気抵抗効果素子。

【請求項13】前記第1の強磁性体層は、ニッケル鉄(NiFe)を含む合金層とコバルト(Co)を含む層との積層膜からなることを特徴とする請求項1~12のいずれか1つに記載の磁気抵抗効果素子。

【請求項14】前記第1の強磁性体層は、コバルト鉄 (CoFe)を含む合金層からなることを特徴とする請求項1~12のいずれか1つに記載の磁気抵抗効果素子。

【請求項15】非磁性スペーサ層と、前記非磁性体スペーサ層によって互いに分離された第1の強磁性体層と第2の強磁性体層と、

を備え、

前記第1の強磁性体層は、印加磁界がゼロの時に前記第 2の強磁性体層の磁化方向に対してある角度を成す磁化 方向を有する磁気抵抗効果素子であって、

前記第2の強磁性体層中の前記一対の強磁性体膜のいず れか一方の磁化を所望の方向に維持する手段としての反 強磁性層と、

前記第1の強磁性体層と前記非磁性スペーサ層とが接する膜面と反対側の面にて第1の強磁性体層に接する非磁性高導電層と、

を有し、

前記反強磁性体層の材料として、XzMn1-z(ここでXは、イリジウム(Ir)、ルテニウム(Ru)、ロジウム(Rh)、白金(Pt)、パラジウム(Pd)及びレニウム(Re)よりなる群から選ばれる少なくとも一種の元素とし、組成比zは、5原子%以上40原子%以下である)を用いたことを特徴とする磁気抵抗効果素子。

【請求項16】非磁性スペーサ層と、前記非磁性体スペーサ層によって互いに分離された第1の強磁性体層と第2の強磁性体層と、

を備え、

前記第1の強磁性体層は、印加磁界がゼロの時に前記第 2の強磁性体層の磁化方向に対してある角度を成す磁化 方向を有する磁気抵抗効果素子であって、

前記第2の強磁性体層中の前記一対の強磁性体膜のいず れか一方の磁化を所望の方向に維持する手段としての反 強磁性層と、

前記第1の強磁性体層と前記非磁性スペーサ層とが接する膜面と反対側の面にて第1の強磁性体層に接する非磁性高導電層と、

を有し、

前記反強磁性層の材料として、XzMn1-z(ここで Xは、白金(Pt)及びパラジウム(Pd)よりなる群 から選ばれた少なくとも一種の元素とし、組成比zは、 40原子%以上65原子%以下である)を用いたことを 特徴とする磁気抵抗効果素子。

【請求項17】前記非磁性体スペーサ層は、銅 (Cu) を含む金属層からなり、且つその膜厚が1.5nm以上2.5nm以下であることを特徴とする請求項 $1\sim16$ のいずれか1つに記載の磁気抵抗効果素子。

【請求項18】前記反強磁性的に結合された前記一対の 強磁性体膜は、それらの膜厚が等しいかまたは前記非磁 性スペーサ側に接する強磁性体膜の方が厚く

且つ、前記一対の強磁性体膜は、それぞれの膜厚と飽和磁気との積である磁気膜厚の差が 0 nmT以上 2 nmT以下であることを特徴とする請求項 1 または 2 に記載の磁気抵抗効果素子。

【請求項19】前記一対の強磁性体膜を反強磁性体的に結合する前記結合膜は、ルテニウム (Ru) からなり、且つその膜厚が0.8 nm以上1.2 nm以下であることを特徴とする請求項1または2に記載の磁気抵抗効果素子。

【請求項20】非磁性中間層を介して配置された少なくとも一対の磁化固着層・磁化自由層と前記磁化固着層に積層された前記磁化固着層の磁化を固着するための反強磁性層とを有する巨大磁気抵抗効果膜、および前記巨大磁気抵抗効果膜に電流を供給するための一対の電極を有する磁気抵抗効果素子において、前記磁化固着層は前記非磁性中間層側に配置された強磁性層Aと前記反強磁性層側に配置された強磁性層Bとからなる一対の強磁性層が磁気結合層を介して反強磁性結合されてなり、前記反強磁性層は最密面ピークのロッキングカーブ半値幅が8%以下となるように最密面が配向されてなることを特徴とする磁気抵抗効果素子。

【請求項21】非磁性中間層を介して配置された少なく とも一対の磁化固着層・磁化自由層と前記磁化固着層に 積層された前記磁化固着層の磁化を固着するための反強 磁性層とを有する巨大磁気抵抗効果膜、前記巨大磁気抵抗効果膜に電流を供給するための一対の電極、および前記巨大磁気抵抗効果膜に対する一対の縦バイアス層を有する磁気抵抗効果素子において、前記磁化固着層は前記非磁性中間層側の強磁性層Aと前記反強磁性層側の強磁性層Bからなる一対の強磁性層が磁気結合層を介して反強磁性結合されてなり、前記一対の電極は前記縦バイアス層の間隔よりも狭い電極間隔を有することを特徴とする磁気抵抗効果素子。

【請求項22】少なくとも1層の非磁性中間層と、前記 非磁性中間層を介して配置された少なくとも2層の磁性 層とを有するスピンバルブ膜と、前記スピンバルブ膜に センス電流を供給する一対の電極とを具備する磁気抵抗 効果素子において、

前記スピンバルブ膜は、前記磁性層の前記非磁性中間層 とは反対側の面と接する複数の金属膜の積層膜からなる 磁気抵抗効果向上層と、前記磁気抵抗効果向上層の前記 磁性層とは反対側の面と接する下地機能または保護機能 を有する非磁性層とを有し、かつ前記磁気抵抗効果向上 層のうち前記磁性層と接する金属膜を主として構成する 元素は、前記磁性層を主として構成する元素と非固溶で あることを特徴とする磁気抵抗効果素子。

【請求項23】下側磁気シールド層と、

前記下側磁気シールド層上に設けられた下側再生磁気ギャップ層と、

前記下側再生磁気ギャップ層の上に設けられた請求項1~22のいずれか1つに記載の磁気抵抗効果素子と、 前記磁気抵抗効果素子上に設けられた上側再生磁気ギャップ層と前記上側磁気ギャップ層の上に設けられた上側 磁気シールド層と、

を具備することを特徴とする磁気ヘッド。

【請求項24】感磁部における前記下側再生磁気ギャップ層の表面の凹凸が前記結合膜の膜厚よりも小さいことを特徴とする請求項23記載の磁気ヘッド。

【請求項25】前記第1の強磁性体層を膜厚方向にみた中心から前記非磁性スペーサ層を介して前記上側磁気シールド層と前記下側磁気シールド層のいずれか一方に至る距離を D_1 、前記第1の強磁性体層を膜厚方向にみた中心から前記非磁性スペーサ層を介さずに前記上側磁気シールド層と前記下側磁気シールド層のいずれか他方に至る距離を D_2 としたときに、 $D_1 > D_2$ であることを特徴とする請求項23または24に記載の磁気ヘッド。

【請求項26】前記上側磁気シールド層と共通化されて 設けられた下側磁極と、

前記下側磁極上に設けられた記録磁気ギャップ層と、前記記録磁気ギャップ層上に設けられた上側磁極と、を有する記録ヘッドをさらに備えたことを特徴とする請求項23~25のいずれか1つに記載の磁気ヘッド。 【請求項27】請求項26記載の磁気ヘッドを有するヘッドスライダと、 前記ヘッドスライダが搭載されたサスペンションを有するアームと、

を具備することを特徴とする磁気ヘッドアッセンブリ。 【請求項28】磁気記録媒体と、

前記磁気記録媒体に磁界を印加することにより信号を書き込み、かつ前記磁気記録媒体から発生する磁界を検出することにより信号を読み取る請求項27記載の磁気へッドを有するヘッドスライダと、

を具備することを特徴とする磁気記録装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、磁気抵抗効果素子、磁気ヘッド、磁気ヘッドアセンブリ及び磁気記録装置に関し、より詳細には、本発明は、高感度且つ高信頼性を有するスピンバルブ膜を用いた磁気抵抗効果素子、磁気ヘッド、磁気ヘッドアセンブリ及び磁気記録装置に関する。

[0002]

【従来の技術】近年、磁気記録媒体の小型・大容量化が 進められていることから、大きな出力が取り出せる磁気 抵抗効果(MR)を利用した磁気ヘッド(MRヘッド) への期待が高まっている。このようなMRヘッドの基本 構成要素となるMR膜としては、特に磁性層/非磁性層 /磁性層のサンドイッチ構造の磁性多層膜を有し、一方の磁性層に交換バイアスを及ぼして磁化を固定しておど (「磁化固着層」、「固着層」あるいは「ピン層」など と称される)、他方の磁性層を外部磁界により磁化反転 させ(「感磁層」あるいは「フリー層」などと称され る)、これら2つの磁性層の磁化方向の相対的な角度変 化により巨大磁気抵抗効果(GMR)を示すスピンバル ブ膜が注目されている。

【0003】他のMR膜としては、NiFe合金などからなる異方性磁気抵抗効果膜(AMR膜)や人工格子膜などが知られている。スピンバルブ膜のMR変化率は、人工格子膜に比べると小さいものの4%以上であり、AMR膜と比較すると十分に大きい。さらに、スピンバルブ膜は低磁場で磁化を飽和させることができることからMRへッドに適している。このようなスピンバルブ膜を用いたMRへッドには、実用上大きな期待が寄せられている。すなわち、磁気ディスクなどの磁気記録において、記録密度の高密度化を進めるのには、巨大磁気抵抗効果(GMR)を用いた高感度な磁気ヘッド、即ちGMRへッドが必要不可欠となっている。

【0004】初期のGMRへッドは、磁化自由層(フリー層)、非磁性中間層、磁化固着層(ピン層)および反強磁性層からなるスピンバルブ膜をGMR素子として用いたものである。しかしながら、記録のトラック幅を狭めて高密度化を行うのに不可欠な感度の向上を図るために、磁化自由層の膜厚を減らすと、磁化固着層からの漏洩磁界が動作点のシフトをもたらすようになり、このシ

フト量を歩留まりよく電流磁界によって補正することが 困難となる。

(

【0005】一方、磁化固着層を磁気結合層を介して反強磁性結合する2層の強磁性層で構成した、いわゆる積層フェリ固着層(以後、「SyAF」、「シンセティックAF」または「反強磁性固着層」と称する)が提案されている(特開平7-169026号公報)。この反強磁性固着層では漏洩磁界を原理的には動作点をゼロにできるので、動作点の確保が容易である。

【0006】即ち、この磁化固着層の2つの強磁性層の非磁性中間層側を強磁性層A、反強磁性層側を強磁性層Bとすると、強磁性層Aと強磁性層Bの磁気膜厚、即ち膜厚×飽和磁化が等しいSyAFでは、強磁性層Aと強磁性層Bの漏洩磁界は互いに打ち消し合うので漏洩磁界は実質的にゼロとなり、また磁化固着層が磁界には感応しなくなるために、固着磁化の安定性が反強磁性層の交換バアイスが消失するブロッキング温度Tb近傍まで良好であるなど、大きなメリットを有する。

[0007]

【発明が解決しようとする課題】しかし、従来提案されているこれらの磁気抵抗効果素子においては、種々の問題があった。

【0008】まず、第1に、感度を向上させるためにフリー層を薄膜化すると、センス電流通電時のバイアスポイント設計が困難となるという問題があった。

【0009】第2に、ブロッキング温度(Tb)以上の温度においてSyAFの磁化は不安定になるので、静電放電(ESD)電流がGMR素子に流入すると瞬間的に固着層がTb以上の温度に加熱され、磁化の固着が乱れてしまうという問題が生ずる。 第3に、磁化の固着を行うためには、Tb以上まで温度を上げて、しかもSyAFを構成する磁気結合層を介しての反強磁性結合磁界を上回る強い磁界(通常数kOe以上)を加えることが必要である。このため、反強磁性層としてTbの高い反強磁性体を用い、磁化の固着のためにTb以上まで温度を上げると、SyAFの磁気結合層と隣接する強磁性層との間に拡散を生じて反強磁性結合が低下する、という問題がある。

【0010】第4に、温度上昇させた状態で磁気結合層を介しての反強磁性結合磁界を上回る強い磁界(特開平9-16920号公報では15kOe)を加えるために、巨大な磁化固着熱処理装置が必要となる。

【0011】第5に、ピン層において反強磁性的に結合された2つ強磁性層の磁気膜厚を異ならせた非対称構造のSyAFにすると、外部磁界に感応するために磁化固着は容易になるが、その反面で対称SyAFの優れた耐熱性が失われることになるので、今後の高密度記録において必要とされる磁気ヘッドの耐熱性の要件、即ち20℃前後で磁化固着が安定であること、を満たすのが困難となるという問題が生ずる。また、漏洩磁界の発生を

伴うことになるので、動作点の確保の対策も必要となる という問題も生ずる。

【0012】第6に、SyAFが対称系であっても非対 称系であっても、磁気結合層と強磁性層Bが低抵抗であ るため、センス電流の分流を生じてGMR素子としての 抵抗変化率を低下させてしまうという問題点もある。

【0013】さらに、以上列挙した6つの問題点に加えて、(1)耐熱性が悪い(特に初期プロセスアニールに対して)、(2)再生感度のより一層の向上を図る上でMR変化率が不足している、(3)比較的大きなMR変化率が得られるCoFe合金層単層で感磁層を構成した場合に磁歪制御ができず、良好な軟磁気特性が得られない、などの問題もあった。

【0014】本発明は、上述した種々の課題の認識に基づいてなされたものである。すなわち、その目的は、バイアスポイントの設計が容易で、高感度且つ高信頼性を有する磁気抵抗効果素子、磁気ヘッド、磁気ヘッドアセンブリ及び磁気記録装置を提供することにある。

[0015]

【課題を解決するための手段】上記目的を達成するために、本発明の磁気抵抗効果素子は、非磁性スペーサ層と、前記非磁性体スペーサ層によって互いに分離された第1の強磁性体層と第2の強磁性体層と、を備え、前記第1の強磁性体層は、印加磁界がゼロの時に前記第2の強磁性体層の磁化方向に対してある角度を成す磁化方向を有し、前記第2の強磁性体層は、相互に反強磁性的に結合された一対の強磁性体膜と、前記一対の強磁性体膜を分離しつつこれらを反強磁性的に結合する結合膜とを含む磁気抵抗効果素子であって、前記第2の強磁性体層を含む磁気抵抗効果素子であって、前記第2の強磁性体層中の前記一対の強磁性体膜のいずれか一方の磁化を所望の方向に維持する手段と、前記第1の強磁性体層と前記非磁性スペーサ層とが接する膜面と反対側の面にて第1の強磁性体層に接する非磁性高導電層と、を有することを特徴とする。

【0016】上記構成により、良好なバイアスポイントを維持しつつ、極めて感度の高い磁気抵抗効果素子を実現することができる。

【0017】上記構成の望ましい実施の形態として、前記非磁性高導電層は、バルク状態の室温での比抵抗の値が10μΩcm以下である元素を含有することにより、低Hcu実現、および極薄フリー層におけるスピンフィルター効果による高MR変化率の実現が可能となる。

【0018】また、高密度記録用、および非磁性高導電層によるスピンフィルター効果によるMR変化率上昇の効果を実現するのに適した構成として、前記第1の強磁性体層の膜厚は0.5 n m以上4.5 n m以下であることを特徴とする。

【0019】また、正信号磁界における再生出力の絶対値V1と、負信号磁界における再生出力の絶対値V2とにより表される波形非対称性(V1-V2)/(V1+

V2)が、マイナス0.1以上プラス0.1以下となるように、前記非磁性高導電層の膜厚と前記第2の強磁性体層の膜厚とを設定したことを特徴とする。波形非対称性をマイナス0.1以上プラス0.1以下にするためには、必ずしもSyAFを採用する必要はなく、単層のピン層を用いても良い。その場合、3.6nmT以下で、0.5nmT以上の磁気膜厚の単層ピン層を用いることが望ましい。3.6nmT以上では上記した非対称性を満足することが困難であり、0.5nmT以下ではMR変化率が著しく小さくなるからである。

【0020】また、前記非磁性高導電層の膜厚を t (HCL) (ここでは、比抵抗 $10\mu\Omega$ cmのCu層で換算した)、前記第2の強磁性体層中の前記一対の強磁性体膜の膜厚を 1 Tの飽和磁化で換算した磁気膜厚をそれぞれ t m (p i n 1) > t m (p i n 2) (t m (p i n 1) > t m (p i n 2) とする)としたときに、0. 5 n m \leq t t m (p i n 1) -t m (p i n 2) +t (HCL) \leq 4 n m、且つ t (HCL) \geq 0. 5 n m ϵ を特徴とする。この関係を満足すれば、t m (p i n 2) = 0 すなわち単層のピン層を用いても良い。上記関係を満足することにより、波形非対称性がマイナス0.1以上でプラス0.1以下となり、且つ高MRが実現できる。

【0021】また、前記第1の強磁性体層は、その膜厚と飽和磁化との積である磁気膜厚が5nmT未満であることを特徴とする。

【 0 0 2 2 】また、前記非磁性高導電層は、低H i n 実現という条件を兼ね備えるのに有利となる銅(C u)、金(A u)、銀(A g)、ルテニウム(R u)、イリジウム(I r)、レニウム(R e)、ロジウム(R h)、白金(P t)、パラジウム(P d)、アルミニウム(A l)、オスミウム(O s)及びニッケル(N i)よりなる群から選ばれる少なくとも一種の金属元素を含む金属膜であることを特徴とする。

【0023】また、低Hinおよび軟磁性特性制御のために、前記非磁性高導電層は、少なくとも2層以上の膜を積層した積層膜から形成されることを特徴とする。

【0024】この積層膜を用いる場合にも、必ずしもSyAFを採用する必要はなく、単層のピン層を用いても良い。その場合、3.6nmT以下で、0.5nmT以上の磁気膜厚の単層ピン層を用いることが望ましい。

3.6 nmT以上では上記した非対称性を満足することが困難であり、0.5 nmT以下ではMR変化率が著しく小さくなるからである。

【0025】また、前記積層膜のうちで前記第1の強磁性体層に接する膜が、高MR変化率、低Hcu実現、軟磁性実現のために特に優れた材料として銅(Cu)を含むことを特徴とする。

【0026】また、前記積層膜のうちで前記第1の強磁性体層に接しない膜が、低Hin、低Hcu、および軟

磁性制御に特に優れた材料として、ルテニウム (Ru)、レニウム (Re)、ロジウム (Rh)、パラジウム (Pd)、白金 (Pt)、イリジウム (Ir)及びオスミウム (Os)よりなる群から選ばれた少なくとも一種の元素を含むことを特徴とする。

【0027】また、低Hcu、高MR変化率の実現のために、前記非磁性高導電層の膜厚は0.5nm以上5nm以下であることを特徴とする。

【0028】また、低Hin、高MR変化率を実現するために、前記第1の強磁性体層と反対側の面において前記非磁性高導電層と接して、タンタル(Ta)、チタン(Ti)、ジルコニウム(Zr)、タングステン

(W)、ハフニウム(Hf)及びモリブデン(Mo)よりなる群から選ばれた少なくとも一種の元素を含む層を有することを特徴とする。

【0029】また、髙MR変化率と、軟磁性実現のために、前記第1の強磁性体層は、ニッケル鉄(NiFe)を含む合金層とコバルト(Co)を含む層との積層膜からなることを特徴とする。

【0030】また、高MR変化率と、軟磁性実現のために、前記第1の強磁性体層は、コバルト鉄(CoFe)を含む合金層からなることを特徴とする。

【0031】また、前記第2の強磁性体層の磁化固着のために、前記第2の強磁性体層を所望の方向に維持する手段として、反強磁性体層を用いることを特徴とする。第2の強磁性体層は、SyAFであることが望ましいが、単層の強磁性体層でも良い。単層の場合には、その磁気膜厚が0.5nmT以上で3.6nmT以下であることが望ましい。

【0032】また、プロセス熱処理後でも高MR変化率実現のために、前記反強磁性体層の材料として、XzMn1-z(ここでXは、イリジウム(Ir)、ルテニウム(Ru)、ロジウム(Rh)、白金(Pt)、パラジウム(Pd)及びレニウム(Re)よりなる群から選ばれる少なくとも一種の元素とし、組成比zは、5原子%以上40原子%以下である)を用いたことを特徴とする。この場合にも、必ずしもSyAFを採用する必要はなく、単層のピン層を用いても良い。その場合、3.6nmT以下で、0.5nmT以上の磁気膜厚の単層ピン層を用いることが望ましい。3.6nmT以上では上記した非対称性を満足することが困難であり、0.5nmT以下ではMR変化率が著しく小さくなるからである。

【0033】また、高MR変化率を維するために、前記 反強磁性層の材料として、XzMn1-z(ここでXは、白金(Pt)及びパラジウム(Pd)よりなる群から選ばれた少なくとも一種の元素とし、組成比zは、40原子%以上65原子%以下である)を用いたことを特徴とする。この場合にも、必ずしもSyAFを採用する必要はなく、単層のピン層を用いても良い。その場合、3.6nmT以下で、0.5nmT以上の磁気膜厚の単

層ピン層を用いることが望ましい。3.6 nmT以上では上記した非対称性を満足することが困難であり、0.5 nmT以下ではMR変化率が著しく小さくなるからである。

【0034】また、高MR変化率を実現すること、および非磁性高導電層による高MR変化率の効果をより有効に用いること、および低Hcuを実現するために、前記非磁性体スペーサ層は、銅(Cu)を含む金属層からなり、且つその膜厚が1.5 nm以上2.5 nm以下であることを特徴とする。

【0035】また、高MRを実現すること、および耐ESD特性やピン固着層の耐熱性を向上させることを目的として、前記反強磁性的に結合された前記一対の強磁性体膜は、それらの膜厚が等しいかまたは前記非磁性スペーサ側に接する強磁性体膜の方が厚く、且つ、前記一対の強磁性体膜は、それぞれの膜厚と飽和磁気との積である磁気膜厚の差が0nmT以上2nmT以下であることを特徴とする。

【0036】また、前記一対の強磁性体膜を反強磁性体的に結合する前記結合膜は、ルテニウム (Ru) からなり、且つその膜厚が0.8 nm以上1.2 nm以下であることを特徴とする。

【0037】一方、本発明の第1の発明の磁気抵抗効果へッドは、非磁性中間層を介して配置された少なくとも一対の磁化固着層・磁化自由層と前記磁化固着層に積層された前記磁化固着層の磁化を固着するための反強磁性層とを有する巨大磁気抵抗効果膜、および前記巨大磁気抵抗効果膜に電流を供給するための一対の電極を有する磁気抵抗効果へッドにおいて、前記磁化固着層は前記非磁性中間層側に配置された強磁性層Aと前記反強磁性層側に配置された強磁性層Bとからなる一対の強磁性層が磁気結合層を介して反強磁性結合されてなり、前記反強磁性層は最密面ピークのロッキングカーブ半値幅が8°以下となるように最密面が配向されてなることを特徴とする磁気抵抗効果へッドである。

【0038】本発明の第2の発明の磁気抵抗効果へッドは、非磁性中間層を介して配置された少なくとも一対の磁化固着層・磁化自由層と前記磁化固着層に積層された前記磁化固着層の磁化を固着するための反強磁性層とを有する巨大磁気抵抗効果膜、および前記巨大磁気抵抗効果膜に電流を供給するための一対の電極を有する磁気抵抗効果へッドにおいて、前記磁化固着層は前記非磁性中間層側に配置された強磁性層Aと前記反強磁性層が磁気結合層を介して反強磁性結合されてなり、前記反強磁性層と配置された強磁性層Bとからなる一対の強磁性層が磁気結合層を介して反強磁性結合されてなり、前記反強磁性層は膜厚が20nm以下であり、200℃における前記強磁性層Bとの交換結合定数」が0.02erg/cm²以上であることを特徴とする磁気抵抗効果ヘッドである.

【0039】本発明の第3の発明の磁気抵抗効果ヘッド

は、非磁性中間層を介して配置された少なくとも一対の 磁化固着層・磁化自由層と前記磁化固着層に積層された 前記磁化固着層の磁化を固着するための反強磁性層とを 有する巨大磁気抵抗効果膜、および前記巨大磁気抵抗効 果膜に電流を供給するための一対の電極を有する磁気抵 抗効果ヘッドにおいて、前記磁化固着層は前記非磁性中 間層側に配置された強磁性層Aと前記反強磁性層側に配 置された強磁性層Bとからなる一対の強磁性層が磁気結 合層を介して反強磁性結合されてなり、前記反強磁性層 は膜厚が20nm以下であり、かつ2,Mn_{1-x} (Zは Ir、Rh、Ru、Pt、Pd、Co、Niから選ばれ た少なくとも1主であり、0 < x < 0. 4)、 $Z_x Mn$ l-x (ZはPt、Pd、Niから選ばれた少なくとも1 種であり、0. 4≤x≤0. 7)、またはZ, Cr₁ (ZはMn、Al、Pt、Pd、Cu、Au、Ag、R h、Ir、Ruから選ばれた少なくとも1種、0<x< 1) の少なくともいずれか1種を含むことを特徴とする 磁気抵抗効果ヘッドである。

【0040】本発明の第4の発明の磁気抵抗効果へッドは、非磁性中間層を介して配置された少なくとも一対の磁化固着層・磁化自由層と前記磁化固着層に積層された前記磁化固着層の磁化を固着するための反強磁性層とを有する巨大磁気抵抗効果膜、前記巨大磁気抵抗効果膜に対する一対の電極、および前記巨大磁気抵抗効果膜に対する一対の縦バイアス層を有する磁気抵抗効果へッドにおいて、前記磁化固着層は前記非磁性中間層側の強磁性層Aと前記反強磁性層側の強磁性層Bからなる一対の強磁性層が磁気結合層を介して反強磁性結合されてなり、前記一対の電極は前記縦バイアス層の間隔よりも狭い電極間隔を有することを特徴とする磁気抵抗効果へッドである。

【0041】なお、上述した第1乃至第4の磁気抵抗効果へッドの構成は、そのまま磁気抵抗効果素子の構成として適用することもできる。

【0042】また本発明の磁気ディスクドライブ装置は、上記の本発明の磁気抵抗効果ヘッドを具備したことを特徴とするものである。そして本出願の磁気ディスクドライブ装置の発明は、上記の本発明の磁気抵抗効果ヘッドの前記磁気抵抗効果素子に電流を供給することにより発生する磁界を用いて、前記磁化固着層の磁化を所定の方向に固着させる機構を有することを特徴とするものである。

【0043】さらに本発明の磁気抵抗効果ヘッドの製造 方法は、前記巨大磁気抵抗効果膜の成膜後であって、パ ターンニングを行う前に、前記強磁性層Aと前記強磁性 層Bに対し、磁界中熱処理を行って磁化の方向を所定の 方向に固着させることを特徴とするものである。

【0044】一方、本発明の他の形態に基づく磁気抵抗効果素子は、少なくとも1層の非磁性中間層と、前記非磁性中間層を介して配置された少なくとも2層の磁性層

とを有するスピンバルブ膜と、前記スピンバルブ膜にセンス電流を供給する一対の電極とを具備する磁気抵抗効果素子において、前記スピンバルブ膜は、前記磁性層の前記非磁性中間層とは反対側の面と接する複数の金属膜の積層膜からなる磁気抵抗効果向上層と、前記磁気抵抗効果向上層の前記磁性層とは反対側の面と接する下地機能または保護機能を有する非磁性層とを有し、かつ前記磁気抵抗効果向上層のうち前記磁性層と接する金属膜を主として構成する元素と非固溶であることを特徴としている。

【0045】または、本発明の磁気抵抗効果素子は、少

なくとも1層の非磁性中間層と、前記非磁性中間層を介 して配置された少なくとも2層の磁性層とを有するスピ ンバルブ膜と、前記スピンバルブ膜にセンス電流を供給 する一対の電極とを具備する磁気抵抗効果素子におい て、前記スピンバルブ膜は、前記磁性層の前記非磁性中 間層とは反対側の面と接する金属の単層膜または積層膜 からなる磁気抵抗効果向上層を有し、かつ前記磁気抵抗 効果向上層を主として構成する元素は、前記磁気抵抗効 果向上層が接する前記磁性層を主として構成する元素と 非固溶であると共に、前記磁気抵抗効果向上層は少なく とも貴金属系の合金層を有することを特徴としている。 【0046】または、本発明の磁気抵抗効果素子は、少 なくとも1層の非磁性中間層と、前記非磁性中間層を介 して配置された少なくとも2層の磁性層とを有するスピ ンバルブ膜と、前記スピンバルブ膜にセンス電流を供給 する一対の電極とを具備する磁気抵抗効果素子におい て、少なくとも1層の前記磁性層は、複数の金属の積層 膜および合金層の少なくとも一方を有する磁気抵抗効果 向上層を介して配置されると共に、磁気的に結合された 複数の強磁性膜を有し、かつ前記磁気抵抗効果向上層を 主として構成する元素は、前記磁気抵抗効果向上層が接 する前記強磁性膜を主として構成する元素と非固溶であ ることを特徴としている。

【0047】ここで、上記した3種の磁気抵抗効果素子 において、磁気抵抗効果向上層は例えば磁性層との界 面、積層膜内の界面、下地層や保護層としての非磁性層 との界面などで、効果の一例として電子の鏡面反射効果 を示すものであり、これによりスピンバルブ膜の磁気抵 抗効果を向上させるものである。また、フリー層が薄く なった場合には、ここでの磁気抵抗効果向上層は前述し た非磁性高導電層として作用し、極薄フリー層と非磁性 高導電層の界面を非固溶な材料の組み合わせにより形成 することによって、電子のdiffusiveな散乱を解消し、 アップスピンの透過率を向上させることによって、高い MR変化率を維持することができる。非固溶な界面なの で、熱処理などによっても界面が安定で、MR変化率の 低下を解消することができる。本発明における磁気抵抗 効果向上層は、鏡面反射効果のみに基づくものではな く、後に詳述するように、さらにスピンバルブ膜の結晶 微細構造の制御や磁歪の低減による磁気抵抗効果の向上 などももたらすものである。

【0048】また、上記した3種の磁気抵抗効果素子において、磁気抵抗効果向上層の具体的な構成としては、磁気抵抗効果向上層が接する磁性層がCoまたはCo合金からなる場合、Cu、AuおよびAgから選ばれる少なくとも1種の元素を含むことを特徴としている。また、磁気抵抗効果向上層が接する磁性層がNi合金からなる場合、Ru、AgおよびAuから選ばれる少なくとも1種の元素を含むことを特徴としている。磁気抵抗効果向上層にはCu、Au、Ag、Pt、Rh、Ru、Al、Ti、Zn、Hf、Pd、Irなどの元素を含むものを適用することができる。

【0049】磁気抵抗効果向上層に合金層を適用する場合、それを構成する合金としてはAuCu合金、PtCu合金、AgPt合金、AuPd合金、AuAg合金などが例示される。また、磁気抵抗効果向上層に積層膜を適用する場合、積層膜は互いに固溶の関係にある複数の金属膜を有することが好ましい。ただし、非固溶の関係にある複数の金属膜の積層膜を用いることも可能である。

【0050】さらに、上記した3種の磁気抵抗効果素子においては、磁性層と非固溶の関係を有する金属膜の積層膜や合金層を磁気抵抗効果向上層として用い、これを磁性層と接して配置している。また、フリー層が薄しても磁気抵抗効果向上層は前が速せ高導電層として作用し、極薄フリー層と非磁性高導電層として作用し、極薄フリー層と非磁性高導電層の界面を非固溶な材料の組み合わせにより形でまることによって、電子のdiffusiveな散乱を解消し、アップスピンの透過率を向上させることによって、所のR変化率を維持することができる。非固溶な界面ので、熱処理などによいできる。これら磁気抵抗効果のと解さるとができる。これら磁気抵抗効果面と磁性層との界面は、非固溶の関係に基づいて組成色度性に優れ、さらにこの状態は熱プロセス後においた観性に優れ、さらにこの状態は熱プロセス後においた場とにない、磁気抵抗効果向上層は鏡面反射膜

(界面反射膜)として有効に機能させることができ、磁気抵抗効果素子の特性向上に大きく寄与する。この磁気抵抗効果特性の向上効果は熱プロセス後においても失われないため、耐熱性に優れた磁気抵抗効果素子を提供することができる。言い換えると、従来のスピンバルブ膜ではプロセスアニールにより界面での拡散やミキシングにより損われていたMR特性が、本発明によればプロセスアニール後においても良好に保つことができる。

【0051】上述したような本発明の磁気抵抗効果素子の変形例としては、少なくとも1層の非磁性中間層と、前記非磁性中間層を介して配置された少なくとも2層の磁性層と、前記磁性層のうち少なくとも1層の磁化を固着する反強磁性層とを有するスピンバルブ膜と、前記スピンバルブ膜にセンス電流を供給する一対の電極とを具

備する磁気抵抗効果素子において、前記反強磁性層は、 複数の金属の積層膜および合金層の少なくとも一方を有 する磁気抵抗効果向上層と接して配置されており、かつ 前記磁気抵抗効果向上層を主として構成する元素は、前 記反強磁性層を主として構成する元素と非固溶である磁 気抵抗効果素子が挙げられる。

【0052】他の変形例としては、少なくとも1層の非磁性中間層と、前記非磁性中間層を介して配置された少なくとも2層の磁性層と、前記磁性層のうち少なくとも1層の磁化を固着する反強磁性層とを有するスピンバルブ膜と、前記スピンバルブ膜にセンス電流を供給する一対の電極とを具備する磁気抵抗効果素子において、前記反強磁性層は、複数の金属の積層膜および合金層の少なくとも一方を有する磁気抵抗効果向上層と接して配置れており、かつ前記磁気抵抗効果向上層はCu、Au、Ag、Pt、Rh、Ru、Al、Ti、Zr、Hf、PdおよびIrから選ばれる少なくとも1種の元素を含む磁気抵抗効果素子が挙げられる。

【0053】本発明における磁気抵抗効果向上層は、鏡面反射膜、安定な界面によるフリー層が薄い場合の高MR維持としての効果のみならず、膜微細構造の制御に基づく磁気抵抗効果の向上や、CoFe合金などのCo系磁性材料からなる感磁層の磁歪制御に対しても有効に機能する。例えば、Cu下地層単独では例えばCoFe合金の格子間隔が小さくなりすぎ、一方Au下地層単独ではCoFe合金の格子間隔が大きくなりすぎる。これに対して、上述したような積層膜や合金層を用いることによって、感磁層としてのCoやCoFe合金などのCo系磁性材料を低磁歪に有効な格子間隔、すなわちd(11)格子間隔を0.2055~0.2085nmの範囲とすることができる。このような磁歪制御によっても、磁気抵抗効果特性が向上する。

【0054】さらに、スピンバルブ膜の特性向上を図る 上で、結晶粒界による原子拡散の抑制なども有効であ る。結晶粒界での原子拡散を抑えるためには、スピンバ ルブ膜の結晶粒界を粗大化し、結晶粒界密度を下げるこ とが好ましい。また、結晶粒界が存在したとしても通常 の結晶粒界ではなく、ほとんど面内配向のずれがない、 いわゆるサブグレインバウンダリである疑似的な単結晶 膜ともいうべき構造であることが望ましい。このような サブグレインバウンダリの一例としては、小傾角粒界な どが挙げられる。本発明の磁気抵抗効果向上層は、この ような小傾角粒界の形成に対しても効果的であり、上述 したような金属膜の積層膜や合金層からなる磁気抵抗効 果向上層を適用することによって、スピンバルブ膜を f c c (111)配向させ、かつ膜面内における結晶粒間 の結晶配向方向のずれを30度以内とすることができ る。このようなスピンバルブ膜の結晶粒制御によって も、磁気抵抗効果特性が向上する。

【0055】または、本発明の磁気抵抗効果素子は、上

述したCoFe合金などの磁歪をAu-Cu合金やAu/Cu積層膜で低減する技術に基づくものであり、少なくとも1層の非磁性中間層と、前記非磁性中間層を介して配置された少なくとも2層の磁性層とを有するスピンバルブ膜と、前記スピンバルブ膜にセンス電流を供給する一対の電極とを具備する磁気抵抗効果素子において、前記少なくとも2層の磁性層のうち、外部磁界により磁化方向が変化する磁性層はfcc(111)配向しており、かつd(111)格子間隔が0.2055nm以上であることを特徴としている。

【0056】上述した磁気抵抗効果素子において、磁性層のd(111)格子間隔は0.2055~0.2085nmの範囲であることが好ましい。また、外部磁界により磁化方向が変化する磁性層は、例えばCoまたはCo合金からなる。

【0057】本発明の磁気ヘッドや磁気記録装置は、上述した本発明の磁気抵抗効果素子を用いたものである。すなわち、本発明の磁気ヘッドは、下側磁気シールド層と、前記下側磁気シールド層上に下側再生磁気ギャップを介して形成された、上記した本発明の磁気抵抗効果素子と、前記磁気抵抗効果素子上に上側再生磁気ギャップを介して形成された上側磁気シールド層とを具備することを特徴としている。

【0058】本発明の録再分離型の磁気ヘッドは、下側磁気シールド層と、前記下側磁気シールド層上に下側再生磁気ギャップを介して形成された、上記した本発明の磁気抵抗効果素子と、前記磁気抵抗効果素子上に上側再生磁気ギャップを介して形成された上側磁気シールド層とを有する再生ヘッドと、前記上側磁気シールド層と共通化された下側磁極と、前記下側磁極上に形成された記録磁気ギャップと、前記記録磁気ギャップ上に設けられた上側磁極とを有する記録ヘッドとを具備することを特徴としている。

【0059】本発明の磁気ヘッドアッセンブリは、上記した本発明の録再分離型の磁気ヘッドを有するヘッドスライダと、前記ヘッドスライダが搭載されたサスペンションを有するアームとを具備することを特徴としている。また、本発明の磁気記録装置は、磁気記録媒体と、前記磁気記録媒体に磁界により信号を書き込み、かつ前記磁気記録媒体から発生する磁界により信号を読み取る、上記した本発明の録再分離型の磁気ヘッドを備えるヘッドスライダとを具備することを特徴としている。

[0060]

【発明の実施の形態】以下、本発明の実施の形態について図面を参照しつつ詳細に説明する。

(第1の実施の形態:フリー層の薄膜化) 最初に、「フリー層の薄膜化」に関する発明の実施の形態について説明する。

【0061】ここで、本発明の実施の形態について説明する前に、本実施形態に至る過程で本発明者が認識した

「フリー層の薄膜化」に関する課題について詳述する。 【0062】磁気抵抗効果素子においては、前述したよ うに、MR変化率のアップに加えて、フリー層の薄膜化 (Ms*t積の減少)によって大幅な感度向上が実現で きる。おおまかにいうと、フリー層のMs*t積の大き さに反比例して出力は増大する。しかし、本発明者が独 自に行った検討の結果、フリー層の薄膜化に関して、以 下の問題が生ずることが判明した。

【0063】第1の問題として、センス電流通電時のバ イアスポイント設計が困難ということが挙げられる。へ ッド動作時にかかる磁界のすべて足し合わせたときに、 トランスファーカーブの線形的な傾きをもっている部分 の中央にバイアスポイントがくれば、最適なバイアス状 態ということになる。しかしフリー層の膜厚が薄くなる と、トランスファーカーブの傾きが急峻になるので、バ イアスポイントをトランスファーカーブの線形領域の中 央にもってくることが非常に困難になってくる。バイア スポイントが悪くなると、信号のアシメトリ(非対称 性)がでてきたり、さらに悪くなると出力レベルが全く とれなくなったりする。

【0064】第2の問題として、従来技術でフリー層を 極薄化すると、MR変化率が大幅に低下する問題を生じ る。MR変化率の減少は、再生出力の低下をもたらす。

【0065】図7は、以上列挙した2つの問題を説明す るための概念図である。すなわち、同図は、磁気抵抗効

b. p. =
$$5.0 \times (H_{shift}/H_s) + 5.0$$
 (1-1)
 $H_{shift} = -H_{in} + H_{pin} \pm H_{cu}$ (1-2)
 $H_s = H_d^{free} + H_k$ (1-3)
 $H_d^{free} = \pi^2 (M_s * t)_{pin}/h$ (1-3-1)
 $H_{pin} = \pi^2 (M_s * t)_{pin}/h$ (1-4)
 $H_{cu} = 2\pi C \times I_s/h$ (1-5)
 $C = (I_1 - I_3)/(I_1 + I_2 + I_3)$ (1-5-1)

ここで、(1-1)式のb. p. が、今回注目するバイ アスポイント [%] である。最適バイアスポイントは5 0%であり、マージンまで含めると40~60%が使用 可能なバイアスポイントといえる。バイアスポイントが これらの値からはずれると、アシメトリー (非対称性) がでてきたり、もっとひどい場合には出力が全くとれな くなってしまう。

【0069】バイアスポイント値とアシメトリーの関係 は、バイアスポイントが40%になったときにはアシメ トリーが+10%になり、バイアスポイントが60%に なったときには、アシメトリーが-10%程度になる。 後述するように、この計算での最適バイアスポイントは 40~60%ではなく、経験上30~50%が最適値と なる。

【0070】図8は、計算上のバイアスポイント値とへ ッドの再生信号波形の関係を示すグラフ図である。30 ~50%のバイアスポイント値のときには、アシメトリ 一は比較的小さく、良好な信号波形を示す。ところが、

果素子を用いた磁気ヘッドのトランスファーカーブを表 し、同図(a)はフリー層が厚い場合、同図(b)はフ リー層が薄い場合それぞれ表している。上述したよう に、フリー層が薄くなると、トランスファーカーブの傾 きが急峻になり(Hsが小さくなる)、またMR変化率 が減少することから、Δ V が小さくなるという、2つの 問題が生じることが図7からわかる。

【0066】上記問題のうち、特にバイアスポイントに 関する問題は、膜構造が決定されても容易には認識でき ず、設計上困難を極めた。今回、本発明者はモデル化し た計算を実施し、その結果と経験上得られた「ずれ」と を補正することにより、バイアスポイントを判断するこ とができた。以下にバイアスポイントの計算手法につい て述べる。

【0067】バイアスポイントは、フリー層に加わる様 々な外部磁界によって、シフトする。このシフトは、 1. 電流磁界 (H_{cu})、2. ピン層からの静磁界 (H pin)、3.スペーサを介したピン層からの層間結合磁 界(H_{ir})、4. ハードバイアス膜からの漏洩磁界(H hard) の和として近似することができる。上記1~4の 磁界の中で、4. のハードバイアス磁界は比較的小さ い。そこで、本発明者は、上記1~3の磁界の和に注目 して、鋭意検討した。今回用いたバイアスポイントの計 算式を以下に示す。

[0068]

$$(1-1)$$

$$(1-2)$$

$$(1-3)$$

$$(1-3-1)$$

$$(1-4)$$

$$(1-5)$$

その範囲からはずれたところにバイアスポイントがきて しまうと、図8から分かるようにアシメトリーが大きく なって、実用上用いることができなくなってしまう。

【0071】H_{shift}は(1-2)式で表されるよう に、フリー層に加わる各磁界の和[Oe]である。Hs は図7でも示したように、トランスファーカーブ上での 傾きである。

【0072】図9は、これらの各磁界の関係を表す説明 図である。

【0073】H_dfreeは、あるMRハイト長でのフリー 層の反磁界である。 h は、MRハイト長 [μm] であ る。Hpinは、ピン層からフリー層に加わるピン漏洩磁 界である。(Ms*t)freeは、フリー層のトータルの 飽和磁界M_sと膜厚 t の積であり、(Ms* t) pinはピ ン層のネットのピン層(シンセティックAFの場合には 上下のピン層の磁気膜厚差分) の飽和磁化と膜厚の積で

【0074】Hcuは、フリー層に加わる電流磁界であ

り、 I_s は、センス電流 [mA] である。式(1-5-1)における係数Cは、フリー層の上下の層に流れる電流分流の比である。

【0075】図10は、各層を流れる電流分流 $I_1 \sim I_3$ を表す概念図である。

【0076】ここで説明する計算では、簡単のために、ABS面エッジ部の影響や、シールドの影響は考慮されていない。本発明者の行った計算によるバイアスポイントの見積もりと、実際のヘッドととでは、バイアスポイントが約10%程度、計算のほうがマイナス側にずれることが経験上判明している。最適バイアスポイントのところから、その前後プラスマイナス10%が使用可能な

Ta5/NiFe2/Co0.5/Cu2/CoFe2/IrMn7/Ta5 (単位はnm) (1)

上記(1)は、スピンバルブの積層構造を表し、各層を構成する元素と層厚(nm)を表している。この比較例は、いわゆる従来スピンバルブ膜でフリー層だけを薄くした従来技術の延長上にある膜である。この膜構成においてバイアスポイントを計算した。

【0078】上述した $(1-1) \sim (1-5)$ 式のバイアスポイント式において、特に求めることが困難なのが、(1-5)式の電流磁界である。その理由は、(1-5-1)式の電流分流比Cを求めることが困難であるからである。薄膜においては、各層の比抵抗は結晶性、および電流分布等の影響を受けて、バルクの比抵抗値とは著しく値が異なるからである。それをできるだけ実際に則した計算を行うため、今回本発明者は以下のような工夫を行うことにより、電流分流比Cを精度よく求めることができた。

【0079】各層の比抵抗を求めるために、上記構成のスピンバルブ膜を作製し、ある層の比抵抗を求めたいときには、前後プラスマイナス2nmまで変えた膜を数個作製し、注目する層の膜厚とコンダクタンスの関係を直線で外挿して求めた。そのように求めた理由は、よく用いられる薄膜の単層膜で比抵抗を求める手法では、実際に即した値とはならないからである。結晶性の影響と、電流分布の影響をできるだけ小さくするためには、上下の膜まで実際と同じ材料にして、上述したような微小な膜厚範囲でのコンダクタンス差をみるのが最も精度が良いことが、本発明者の検討によって判明した。

【0080】この手法で求めた各層の比抵抗は、結晶性の影響が小さいだけでなく、電流分布の影響をも含んでいるため、単層膜の比抵抗を用いて単純なパラレルコンダクターで求めた(1-5-1)式の電流分流比Cよりも、かなり精度がよくなる。この手法の採用によって、従来困難だった電流磁界をより精度をあげて計算でも予想できるようになった。

 バイアスポイントということを考慮すると、計算で得られる30%~50%のバイアスポイント値のところが良好なポイントといえる。よって、上に示したような計算で得られたバイアスポイントで30%~50%という値のときには、実用上良好なバイアスポイントが得られたと判断できる。

【0077】以下に具体的に今まで知られているスピン バルブ膜を例にとって、上述したバイアスポイント計算 式を用いて、問題点を詳しく説明する。

比較例1:通常スピンバルブ (スピンフィルターなし× シンセティックAFなし)

ついては膜厚を厚くすると結晶化によって急激に比抵抗が変わり、またキャップTaについても表面酸化物の影響が大きく正確な値を求めることができなかったため、 $100\mu\Omega$ cmと仮定した。これらの値を用いて各層の電流分流比を求めて、(1-5)式により電流磁界 H_{cu} を計算した。

【0082】また、 H_{in} の値としては、実測値の250eを用いた。 H_{pin} は(1-4)式により求めた。

【0083】この膜構成では、ピン層厚が厚いままハイト長が短くなるため、ピン層からフリー層に加わる漏洩磁界Hpinが大きくなり、またフリー層の下側よりも上側に多くの電流が流れるのでフリー層に加わる電流磁界Hcuも大きい。よって、バイアスポイントの設計手法として考えられるのは、大きなHpinを大きな電流磁界Hcuでキャンセルしてバイアスポイント調整しようすることになる。

【0084】センス電流を4mAとしたときに、上記の値を用いて計算したバイアスポイント値の結果を表1に示す。

表 1 : 比較例 1 の膜の計算で得られたバイアスポイント MR height

0. $3 \mu m$ 70%

0. $5 \mu m$ 6 1 %

0. $7 \mu \text{ m}$ 53%

表 1 からわかるように、MRハイト 0 . $3\sim 0$. 5μ m ではバイアスポイントは $61\sim 70\%$ であり、計算上最適なバイアスポイント値と考えられる値よりもオーバーしている。

【0085】図11は、本比較例におけるバイアスポイントの状態を表す概念図である。すなわち、MRハイトを狭めるとバイアスポイントがアンチフェロ側(50%よりも大きい側)にシフトしてしまうことが分かる。MRハイトは機械研磨によって行うため、どうしてもばらつきがでてしまう。このようなMRハイトのばらつきによって、歩留まりが非常に悪くなってしまうことがわかる。これは定性的にいえば、図11に表したように、大きなピン漏洩磁界Hpinを大きな電流磁界Houでキャン

セルするという非常に不安定な手法でバイアスポイント を調整しようとしていることに起因する。

【0086】また、バイアスポイント以外にも本比較例の膜は、さらに本質的な問題を有する。それは、本発明で対象としている極薄フリー層を採用すると、MR変化率が低下することである。本発明者が実験的に得た事実として、フリー層の膜厚が薄くなるとプロセス熱処理後のMR変化率が極端に劣化することが大きな問題となる。例えば、比較例1の構成では、as-depo(as-deposited: 堆積したままの状態)でMR変化率は11%程度であるのに対し、プロセス熱処理後ではMR変化率5.6%とas-depoの約半分の大きさにまで減少してしまう。これでは高密度対応のスピンバルブ膜を

Ta5/Cux/NiFe1.5/Cu2.3/NiFe5/FeMn11/Ta5

極薄フリー層におけるMRを改善するために、スペーサ 非磁性層と反対側にてフリー層に高導電層を積層した構成のスピンバルブ膜が提案されている。例えば、特許第 2637360号、米国特許第5422591号、米国 特許第5688605号などを挙げることができる。

【0089】上記(2)の膜は、米国特許第5422591号に基づくスピンバルブ膜の実施例である。このスピンバルブ膜においては、フリー層のスペーサCuとは反対側に接したCu厚を厚くしていくことによって、アップスピンの平均自由行程が長くなることによりMR変化率が上昇してゆき、平均自由行程以上にCu厚を厚くすると単純なシャント層になってしまうため、あるCu厚でMR変化率のピークをとる傾向をもつ。この現象を用いれば、比較例1での1つの問題点だった、極薄フリー層でのMR変化率の減少を一部改善できる。

【0090】しかしながら、米国特許第5422591号に基づく上記(2)のスピンバルブ膜では、バイアスポイント、およびMR変化率の耐熱性という、二つの点で問題を抱える膜構成となっている。

【0091】まず、バイアスポイントという観点に関しては、米国特許第5422591号の明細書中には直接的な記載も間接的な示唆も全く開示されていない。そして、(2)の膜は到底実際のヘッドでは採用できない構成である。以下にその理由を詳述する。

【0093】素子サイズが、トラック幅 $T_w=0.5\mu$ m、MR height= $0.3\sim0.5\mu$ mのときの高密度用

実現することはできない。

【0087】さらには、このスピンバルブ膜においては各層の膜厚がすべて薄くなってきているので、スピンバルブ膜の面抵抗も30Ω程度もの大きな値になり、静電破壊(ESD: Electric Static Discharge)の点からも実用的ではない。よく知られているように、ESDは抵抗が大きければ大きいほど起こりやすくなるからである。

【0088】以上のことから、比較例1の膜は、高密度 記録用ヘッドに採用されるような実用的な膜では到底な いことがわかる。

比較例2:米国特許第5422591号 (スピンフィルターあり×シンセティックAFなし)

n11/Ta5 (単位はnm) (2)

ヘッドの場合について、バイアスポイントを計算した。 その結果を表2に示す。

【0094】表2:下地Cu厚を変えた場合の比較例2の構成での計算で得られた

バイアスポイント

MR height Cu Onm Cu 1 nm Cu 2nm 0. $3 \mu m$ 126% 143% 156% $0.5 \mu m$ 111% 127% 140% この構成では、ピン層からフリー層に加わるピン漏洩磁 界Hninが非常に大きく、バイアスポイントがプラス側 にずれやすい構成である。表2のバイアスポイントの計 算結果からもわかるように、スピンフィルター効果を用 いない、下地Cu厚がゼロの場合では、ハイト0.3~ 0. 5μ mで、バイアスポイントが $111\% \sim 126\%$ とまるで出力がとれないようなところに来てしまってい ることがわかる。

【0095】図12は、トランスファーカーブでみたときの H_{in} 、 H_{cu} の大きさとバイアスポイントとの関係を表した概念図である。 H_{pin} が大きいため、電流ゼロの状態でバイアスポイントがかなりオーバーしたところにきてしまい、それを電流磁界によってなんとか50%のほうへもってこようとする設計となる。しかしこの構成では下地に高導電層であるCuを用いているため、図10での I_3 が大きくなり、(1-5)式により得られる電流磁界 H_{cu} が小さくなってしまう。つまり、大きな H_{pin} に対して、逆向きの小さな H_{cu} によってバイアスポイントをI0%近傍に引き下げることとなり、バイアスポイントを良好なポイントにもってくることが困難となってしまう。さらに、下地I1 に関連をあげるに従って、バイアスポイントがさらに悪くなる様子が表2からわかる。

【0096】以上のような検討を重ねた結果、Gurney特許に記載のあるような構成では、バイアスポイント設計が全くできず、下地に高導電層のCuを設けることによって、バイアスポイントがさらに非現実的な構成になってしまうことが判明した。

【0097】さらに、MR変化率の耐熱性という観点か らみても、米国特許第5422591号の膜は実用的な 膜とはなっていない。 a s-depoでのMR変化率の 値は米国特許第5422591号に記載のあるように、 スピンフィルタ効果によって確かに上昇する。しかし、 実際のヘッド作製プロセスを模擬した熱処理後において は、極薄フリー層を用いたときに特有の現象として、M R変化率の値は著しく減少することを本発明者は見いだ した。これは、高密度記録用の高出力を得るためには、 深刻な問題となる。

【0098】実際に、Gurney特許の実施例の膜 (上記(2)の膜)により追試すると、下地Cu厚が1 Ta5/Cu3/Ta1/NiFe5/Cu2.5/Co2.5/FeMn10/Ta5 (単位はnm) (3)

特開平10-261209号明細書に開示されている上 記(3)の膜では、Taを介してフリー層に近接するC uシャント層が、比較例2で示した米国特許第5422 591号のようにMR変化率のスピンフィルター効果を 目的としたものではなく、電流磁界Hcuを低減させて、 センス電流によるバイアスポイントの変動を抑えて、ア シメトリーを安定させることを目的としたものである。 しかしながら、このような発想は、(3)の膜のよう に、比較的フリー層が厚い領域においては十分有効だ が、本発明でターゲットにしている極薄フリー層のとき には、バイアスポイント、およびMR変化率という点 で、到底実用的な膜とはならない。以下にその理由につ いて説明する。

【0099】まず、バイアスポイントについては、比較 例2の(2)の膜で示したように、極薄フリー層を用い てH。が非常に小さくなった場合、電流磁界H。uを低減 させても、ピン漏洩磁界Hpinが大きければ最適なバイ アスポイントは実現できない。上記(3)の構造が有効 なのは、フリー層が厚い、つまりH_sが比較的大きな場 合に、一旦最適なバイアスポイントが得られたときに、 バイアスポイントのセンス電流依存性が小さいという点 である。しかしながら、上記(3)の膜構成でフリー層 が極薄になったときには、そもそも最適なバイアスポイ ントが実現できない。つまり(3)の構成の膜で高密度 化対応にするためにフリー層を4.5 n m以下にする と、バイアスポイントがプラス側にずれることになる。 【0100】そのことを示すために、計算により求めた この構成の膜でのバイアスポイントを表3に示す。

【0101】表3:比較例(3)の膜でのバイアスポイ ント

MR height NiFe 5nm NiFe 3nm $0.3 \mu m$ 86% 108% $0.5 \mu m$ 83% 104% $0.7 \mu m$ 8 1 % 100%

ここでHinとしては、100eという値を用いた。表3 をみると、比較例(3)の構成の膜ではそもそもNiF e 膜厚が 5 n mのときでもバイアスポイントがプラス側

nmのときにasーdepoでMR変化率が1.8%で あったものが、本発明者のプロセスを模擬した熱処理を 行うと、0.8%まで劣化する。後に述べるように、こ の主な原因は反強磁性膜にFeMnを用いていることに よる。これでは、高いMR値を実現するのに困難な極薄 フリー層を用いたスピンバルブ膜において、せっかくス ピンフィルター効果によって高い値に復帰させたMR変 化率を全く機能させていないことになる。つまり、高い MR変化率を示す極薄フリー層スピンバルブ膜を実現す るためには、単純なスピンフィルター効果だけでは達成 できないことがわかる。

比較例3: 特開平10-261209号

にずれていて、良い設計とはいえない構成だが、フリー 層NiFe膜厚が3nmと薄くなるとますますバイアス ポイントがプラス側にオーバーすることがわかる。

【0102】図13は、本比較例におけるバイアスポイ ントの決定要素の関係を表す概念図である。同図に表し たように、Hpinが大きいまま、電流磁界Houだけを低 減させてしまったためにバイアスポイントがフリー層厚 が薄いところでは全くとれない構成になっている。すな わち、電流磁界Hcuと層間結合磁界Hipとピン漏洩磁界 Hpinすべての足し算をしたところがゼロになるときが 最適バイアスポイント点なので、上記(3)の構造のよ うに電流センターをフリー層に近づけて、電流磁界だけ をゼロにしようとしても、全く意味のない膜設計とな

【0103】さらに、上記(3)の構造が有する第2点 目の不具合として、高密度化に必要な高いMR変化率を 得られない点を挙げることができる。すなわち、(3) の構造においては、拡散防止層として、比較的高抵抗の 材料が高導電層とフリー層の間に挿入されているため、 極薄フリー層になったときに、Gurney特許で得ら れているようなMRのスピンフィルター効果が得られな くなってしまう。後に詳述する本発明で特に威力を発揮 するようなフリー層が4.5nm以下の領域では、

(3) の構成の膜ではMR変化率が低下してきてしま

【0104】以上2点の理由により、上記(3)の構造 はあくまでもフリー層が比較的厚い領域での発想であっ て、極薄フリー層においては到底実用的な膜構成とはな らないことがわかった。

【0105】比較例4:スピンフィルターなし×シンセ ティックAF

Ta5/NiFe2/CoFe0. 5/Cu2/CoFe2. 5/Ru0. 9/CoFe2/IrMn7/Ta 5(単位はnm)(4) 本比較例においては、ピン特 性を向上させるために、シンセティックAF構造を採用 した。Ru (ルテニウム) を介した2層の強磁性層は、 アンチフェロカップリング(反強磁性結合)している。 その一方の強磁性層は反強磁性膜によって一方向に固着

されている。シンセティックAF構造の採用によって、ノーマルピン構造では一方向性異方性磁界Huaが小さい場合でも、ある程度の大きさがあれば用いることが可能となり、ピン耐熱性が向上する。また、既に述べたように、シンセティックAF構造では、Ruを介した上下の強磁性層はお互いの磁化方向が逆向きに向いており、その結合磁界は数kOeとヘッド動作時の媒体磁界よりもはるかに大きいため、近似的に、外部にでる磁化モーメントは上下のピン層のMs*tの差がネットのモーメントと考えられる。すなわち、フリー層におよぼすピン漏洩磁界の影響を小さくすることが可能になり、バイアスポイント上有利になることが予想されている(特開平7-169026号)。

【0106】例えば、比較例の場合にはネットのピン厚は0.5 nmのピン層と等価と考えられ、ノーマルピン構造では実現不可能な薄いピン層と等価のピン漏洩磁界を実現できる。理想的には、上下のピン層を同じMs*t積に揃えれば、ピン漏洩磁界はゼロということになる。このようなピン漏洩磁界を低減させることのみによって、高密度化対応スピンバルブ膜のバイアスポイント設計は充分だと考えられていた。しかしながら、高密度対応の極薄フリー層においては、シンセティックAF構造だけでは安定したバイアスポイントを実現できないことを、今回本発明者は見出した。以下にその内容を説明する。

【0107】図14は、本比較例におけるバイアスポイントの決定要素の関係を表す概念図である。すなわち、本比較例の構成においては、フリー層はスピンバルブ膜の電流分布の電流センターから大きくはずれたところに位置しているため、電流磁界 H_{cu} は非常に大きい。 H_{in} が高々200e程度で、ピン漏洩磁界もシンセティックAF構造の採用によって非常に小さくなっているということは、電流を全く流さない状態で、ほぼジャストバイアスの状態になっている。この構成のスピンバルブ膜で電流を流すと、大きな電流磁界 H_{cu} により、電流を流せば流すほど、ジャストバイアスからはずれていくことになる。

【0108】本比較例についてのバイアスポイント計算の結果を表4に示す。

【0109】表4:比較例4の膜の計算により得られたバイアスポイント

MR height $H_{cu} \uparrow H_{pin} \uparrow$ $H_{cu} \downarrow H_{pin} \uparrow$

0. 3 μ m 88% 22%

0. 5 μ m 8 0 % 1 6 %

0. $7 \mu m$ 73% 10%

ここで H_{in} として200eという値を用いた。表4から、予想どおり、電流をどちらの向きに流してもバイアスポイントは $30\sim50\%$ の値を実現することができないことがわかる。

【0110】この構造でジャストバイアスを得る手段と

して、ピン漏洩磁界を極力小さくして、つまりシンセティックAF構造で上下のピン層厚を等しく、つまりピン漏洩磁界をほぼゼロにして、かつHinをなるべく大きくして、その大きなHinをキャンセルするように電流磁界でジャストバイアスにもってくる手法が考えられるが、これは望ましくない。大きなHinというのは単純に外部磁界応答の線形領域をシフトさせるだけではなく、線形領域を減少させる悪影響をももたらす。また、Hinを小さい値で一定に制御しようとすることはよいが、不自然に大きな値で一定に制御してスピンバルブ膜を作製しようとすることは、大量生産という点から考えても非常に困難で好ましくない。

【0111】また、フリー層のスペーサと反対側の面に 高導電層がないので、比較例1と全く同様の理由で極薄 フリー層のときにはMR変化率が劣化し、高密度記録用 のヘッドとして充分な出力を確保することはできない。 これも本質的な問題である。

【0112】以上のように、バイアスポイント、高出力という二つの点から、シンセティックAF構造だけの採用によるスピンバルブ膜では、高密度記録用の極薄フリー層スピンバルブ膜を実現することは到底できない。

【0113】以上詳述したように、本発明者は、比較例 1~4のような構成の膜では、高密度記録用の極薄フリー層をもつスピンバルブ膜として、安定したバイアスポイント、充分な高出力は達成することはできないという問題があることを、実際に即した電流磁界の計算と試作を行うことによって明らかにした。そして、さらに独自の試作検討を実施し、以下に詳述する構成を発明するに至った。

【0114】図15は、前述した各比較例のスピンバルブ膜と本発明によるスピンバルブ膜のバイアスポイントのフリー層厚依存性を比較しつつ表したグラフ図である。これまで示してきた各比較例のスピンバルブ膜ではいずれの構成でも、バイアスポイントに大きな問題があることがわかる。ここで、最適なバイアスポイントは、30~50%の範囲にある。そして、感度を十分に得るためには、低いMs*tにおいて、この範囲内のバイアスポイントを得る必要がある。

【0115】これに対して、各比較例は、いずれもMs*tが低い条件において、バイアスポイントが最適な範囲から大きく外れている。さらに、Ms*tに対するバイアスポイントの変動が極めて大きく、バイアスポイントの調節が困難であることがわかる。

【0116】これに対して、後に詳述する本発明の実施例1は、Ms*tに対するバイアスポイントの変動が極めて小さく、バイアスポイントは、常に最適な範囲内にあることがわかる。

【0117】図15において、比較例1に関してMs*tが5nmT以上の大きなところでも計算上のバイアスポイントが30%~50%の範囲にはいっていないが、

これは、実際にはMs*tが5nmT以上のフリー層を用いるような低い記録密度においてはMRハイト長が大きめの値であるためである。具体的には、本発明で対象としている記録密度でのMRハイト長 $0.3\mu m\sim 0.5\mu m$ よりも大きめの値であるためである。

【0118】いずれにしてもMs*tが5nmT以下の 領域になってきたところで、本発明の膜と比較例の膜と のバイアスポイント設計の優位差が大きくなることが明 確に分かる。

【0119】図16は、上述した比較例1~4の構造において、フリー層のMs*tだけを小さくした時にMR変化率がどのように変化するかを表したグラフ図である。ここで、縦軸のMR変化率は、図9のトランスファカーブの縦軸にほぼ比例する量である。比較のため、後に説明する本発明の実施例1及び2の膜についても示した。

【0120】ここで、比較例1~4の膜と、本発明の実施例1の膜のMs*tは、フリー層のNiFe膜厚を変えたサンプルを製作し、実施例2の膜はフリー層のCoFeの膜厚を変えたものを作成した。これらの値は、すべて7kOeの磁場中で270℃で10時間のプロセスアニールを行った後の結果である。

【0121】また、比較例2と実施例1、2の高導電層は膜厚2nmのCuとした。フリー層のMs*tとして、比較例のフリー層の膜厚のものを同図中に矢印で示した。また、フリー層のMs*tとしては、NiFeのMsは1T、CoFeのMsは1.8Tとし、すべて1TのNiFe換算の膜厚で示した。

【0122】フリー層に接する高導電層を有しない比較例1、3、4の膜では、フリー層のMs*tが小さくなるとMR変化率が急激に劣化し、高密度化対応の高出力を確保することが困難となる。

【0123】高導電層を有する比較例2の膜ではMR変化率のフリー層Ms*t依存性が比較的小さいが、反強磁性膜に貴金属を含まないFeMnを用いているため、プロセス熱処理に対するMR変化率の耐熱性が低い。このような小さなMR変化率では、高密度化の高出力を確保することができない。

【0124】比較例2、比較例3の膜では、スペーサC u とフリー層N i F e との間に0. 5 n mのC o 若しくはC o F e を挿入すると、 $1\sim2$ %ほど同図中の値よりも大きくなるが、M s * t に対する依存性はN i F e 単層のフリー層の場合と変わらず、いずれにしてもフリー層のM s * t が小さいところでのMR 変化率は小さな値で十分である。

【0125】一方、本発明によるフリー層に接した高導電層を有するフリー層と、貴金属を有する反強磁性膜を用いると、プロセス熱処理に対するMR変化率の耐熱性も改善し、高密度対応の十分な高出力を得ることができる。特に、5nmTよりも小さくなったところで、比較

例とのMR変化率の差が大きくなることが分かる。 【0126】以下に、本発明の磁気抵抗効果素子について詳細に説明する。

【0127】図1は、本発明の磁気抵抗効果素子の断面構成を表す概念図である。すなわち、本発明の磁気抵抗効果素子は、高導電層101と、フリー層102と、スペーサ層103と、第1の強磁性体層104と、結合膜105と、第2の強磁性体層106と、反強磁性膜107とを積層した構成を有する。

【0128】この構成により、特に、フリー層102を極薄化したことによるトランスファーカーブ上の H_s が小さな場合において、 H_{cu} 、 H_{pin} 、 H_{in} のすべてを小さな値として、 $H_{pin}-H_{in}=H_{cu}$ を実現することにより、良好なバイアスポイントを実現することができる。さらに、一般的に極薄フリー層の場合には高MR変化率が実現しにくくなるのを、良好なMR変化率の耐熱性を維持することによって、高出力のヘッドを実現することができる。

【0129】すなわち、本発明のスピンバルブ膜構成によって、高密度用の極薄フリー層を有する場合でも、良好なバイアスポイントが実現でき、かつ高いMR変化率を維持できるため、高出力を安定して得ることができる。具体的には、バイアスポイント設計として、 H_{pin} $-H_{in}$ $=H_{cu}$ を実現することにより良好なバイアスポイントが実現できる。 H_{pin} 、 H_{in} 、 H_{cu} のすべてが小さくすることが、上の式を安定して実現するためには重要である。

【0130】まず、 H_{pin} に対しては、前記第2の強磁性体が反強磁性的に結合したいわゆるシンセティックAF構造を用いることによって、実際に H_{pin} として作用するのは前記第1、第2の強磁性体の2層の磁気的な膜厚の差によるものだけになり、 H_{pin} を低減できる。

【0131】これは、(1-4) 式をみても、ピン層の $(Ms*t)_{pin}$ を低減させることが H_{pin} 低減のために 有効であるということがわかる。

【0132】しかしながら、極薄フリー層のバイアスポイント設計のためには H_{pin} だけを低減しても全く意味がなく、電流磁界 H_{cu} も低減することが必須である。そのために、非磁性高導電層をフリー層のスペーサとは反対側の面に接しさせることによって、スピンバルブ膜中を流れる電流の電流分布の中心をフリー層に近づけることができ、 H_{cu} を低減させることが可能となる。つまり、(1-5) 式、(1-5-1) 式において、トップタイプのスピンバルブ膜のときには I_{3} が増加し(ボトムタイプのスピンバルブ膜のときには I_{1} が増加する)、電流分流比Cが低下することによって、電流磁界 H_{cu} が抑えられるからである。非磁性高導電層のもうーつの大きな働きとして、本発明で対象としている極薄フリー層のときに、スピンフィルター効果によって高いMR変化率を維持できることにある。つまり、非磁性高導

電層を設けることによって、フリー層とスペーサに接する側のピン層の磁化方向が互いに平行状態と反平行状態のときで、アップスピンの平均自由行程の差を大きく保つことができる。

【0133】 $H_{pin}-H_{in}=H_{cu}$ を安定して実現するためには、 H_{in} 低減も重要である。上述のような極薄フリー層に接した高導電層による高MR変化率実現(スピンフィルター効果)のためには、スペーサ厚を薄くすることが重要だが、スペーサ厚が薄くなるほど、またフリー層が薄くなるほど H_{in} は一般的には大きくなりやすい。それを克服して、 $0\sim200$ e 程度の範囲の H_{in} で本発明を用いることが重要である。

【0134】図2は、本発明のスピンバルブ膜において えられるトランスファーカーブの概略図である。極薄フリー層を用いたHsが小さなトランスファーカーブにおいても、 H_{pin} 、 H_{cu} 、 H_{in} のすべてが低減されている

Ta5/Cux/CoFe2/Cu2/CoFe2.5/Ru0.9/CoFe2/IrMn7/Ta5 (単位はnm)

[0137]

図3は、上記の膜において、フリー層に接しているスペーサとは反対側の高導電層Cuの膜厚に対するフリー層に加わる電流磁界 H_{cu} の関係を表すグラフ図である。ここで、センス電流は4mAとした。同図からわかるように、Cuの膜厚を増加させるほど、(1-5)式のCo値が小さくなることによって、電流磁界 H_{cu} が低減されていく。フリー層よりも上層側と下層側との電流分流比が等しくなったときには、フリー層に加わる電流磁界はいくらセンス電流を流してもゼロ磁界となる。

【0138】ここで、電流磁界を低減させていることが本発明のポイントの一つだが、電流磁界 H_{cu} を完全にゼロにすることは逆に好ましくない。本発明においては、 $H_{pin}-H_{in}=H_{cu}$ を成り立たせることによって、バイアスポイント調整を行っているので、前述した比較例3のように、電流磁界をゼロに近くしようとする設計ではバイアスポイント調整が不可能になってしまうからである。

【0139】電流磁界の観点からすると非磁性高導電層 Cu層の膜厚は、大きな範囲でいうと、 $0.5nm\sim4nm$ の範囲内が適正膜厚ということになる。フリー層の 膜厚が薄くなるほど H_s が小さくなってくるため、電流 磁界 H_{cu} も小さいほうが望ましくなる。ここでは非磁性 高導電層として、Cuを用いたが、ほかの金属材料、もしくは積層膜を用いる場合には、すべてCuに換算した 膜厚で考えることができる。例えば、Ru1.5nm/Cu1nmという非磁性高導電層の場合には、実験的に 求めた比抵抗はRuは $30\mu\Omega$ cm、Cuは $10\mu\Omega$ cm なので、Cu換算で(1.5nm× $10\mu\Omega$ cm / $30\mu\Omega$ cm) + 1nm=1.5nm相当のCu 膜厚と 同等ということになる。

【0140】同様にほかの金属を用いた場合には、実験的に求めた比抵抗として、 $Cuは10\mu\Omega$ cm、 $Ruは30\mu\Omega$ cm、 $Auは10\mu\Omega$ cm、 $Agは10\mu\Omega$ c

ため、 $H_{pin}-H_{in}=H_{cu}$ の設計が可能となっており、バイアスポイントが50%近傍のよいところに設定することができている。さらに、高導電層によるスピンフィルター効果も用いているため、極薄フリー層においても高MR変化率が維持できており、図2の縦軸も充分大きい値が実現できている。

【0135】次に、バイアスポイントを決定する各要素、すなわち、 H_{pin} 、 H_{in} 及び H_{cu} の各パラメータに関してさらに詳細に説明する。

【0136】まず、低 H_{cu} について説明する。既に説明したように、本発明においてはフリー層のスペーサとは反対側の面に接する側に高導電層を設けることによって、(1-5)式におけるCの値を低減させ、電流磁界 H_{cu} を低減させている。具体的な例として、以下のような膜構成を用いて説明する。

【0141】比較例に関して説明したように、この比抵抗の値は隣接する材料によって変わるが、非磁性高導電層が接する材料は大きく異なることはないので、適正膜厚はこれらの値を用いて求めた値で規定できる。

【0142】また H_{cu} は(1-5)式でわかるように、フリー層に対して上層と下層との電流分流比によって決まるので、非磁性高導電層とは逆側に位置するスペーサ層の膜厚は H_{cu} 低減という観点から、できるだけ薄いほうが好ましい。これは後の説明のMR変化率のスピンフィルター効果から要求される傾向とも一致する。具体的には、スペーサ膜厚は $1.5nm\sim2.5nm$ 程度が好ましい。

【0143】非磁性高導電層は、電流磁界 H_{cu} 低減とともに、MR変化率のスピンフィルター効果をもたらす層としての機能も果たしている。その効果に起因して適性膜厚の範囲もある程度限定される。例えばピン側からのフリー層側に移動する伝導電子を考えると、フリー層の磁化方向がピン層に平行か反平行かで平均自由行程差が大きくなるのが好ましい構成となるので、スピンのアップ、ダウンに依存しないスペーサの厚さは薄いほうが好ましい。 H_{in} が増大しない程度の膜厚ということになると、スペーサ厚は1. $5 \text{ nm} \sim 2$. 5 nm 程度が好ましい。

【0144】また、フリー層厚はダウンスピンの平均自由行程よりは厚く、アップスピンの平均自由行程よりは

充分薄いほうが好ましい。例えば、NiFeのダウンス ピンの平均自由行程は1.1 nm程度なので、NiFe の膜厚としては1nm~4.5nm程度が最も好まし く、CoFeの場合には1nm~3nm程度が最も好ま しい。高導電層厚はピン厚、スペーサ厚、フリー層厚に よって最適膜厚は異なるが、スペーサ厚が薄いほど、ま たフリー層厚が薄いほどMRのピークをとる高導電層厚 の厚さは厚膜側にピークしていく。例えば、ピン層がC oFe2.5nm、Cuスペーサ厚2nm、フリー層厚 CoFe2nmの場合には、高導電層にCuを用いた場 合には2nm程度のところでピークをとる。経験上フリ ー層の膜厚と非磁性高導電層 C u のトータル膜厚が 4 ~ 5 nm程度になるときにMR変化率のピークをとるの で、その近傍になるように非磁性高導電層の膜厚を設定 するのが好ましい。Cuをフリー層に接する非磁性高導 電層に用いている場合にはCu膜厚とフリー層膜厚のト ータル膜厚は、マージンも含めて3nm~5.5nm程 度が好ましい範囲となる。

【0145】次に、 H_{nin} について説明する。 H_{pin} を低 減させるためには、Bsが1.8TのCoFeで実効的 なピン厚を約2nm以下 (NiFe換算で3.6nm以 下)、さらに望ましくは実効的なピン厚1 n m以下(N iFe換算で1.8nm以下)にすることが望ましい。 そのピン層の実現手段としては、シンセティックAF構 造が望ましい。これは例えば反強磁性膜/強磁性膜1/ RuO. 9nm/強磁性膜2という構成からなり、強磁 性膜1と強磁性膜2は反強磁性的に磁気結合している。 反強磁性的に結合した一方の強磁性膜1は反強磁性膜に よって一方向に磁化固着されている。強磁性膜1と強磁 性膜2の磁化方向は逆向きでその結合磁界は数kOeと 大きいため、一次近似として、強磁性膜1のMs*tと 強磁性膜2のMs*tの差が実効的なピン漏洩磁界に寄 与すると考えられる(特開平7-169026号公 報)。

【0146】例えば、IrMn/CoFe2/Ru0.9/CoFe2.5 (膜厚の単位はnm)という構成では実効的なピン厚は2.5nm-2nm=0.5nm (磁気膜厚は0.9nmT)ということになる。実効的なピン層厚が低減できると、(1-4)式からわかるように、H_{pin}を低減できる。このように、シンセティックAF構造は、本発明のバイアスポイントという点で、極薄フリー層を使いこなすには必須の構造である。

【0147】次に、 H_{in} について説明する。バイアスポイントおよびスピンフィルター効果の点からいうと、スペーサとして使われるCu層の厚さはできるだけ薄くすることが望ましいことを既に述べた。そのような薄い膜厚での具体的な H_{in} の値としては、 $0\sim200e$ 、さらに望ましくは、 $5\sim150e$ 程度に抑えることが望ましい。本発明の一つの解決方法として、スペーサが薄いときでも H_{in} を増大させないような膜構成として、二層下

地構成などがあげられる。

【0148】次に、MR変化率の耐熱性について説明す る。極薄フリー層を用いた場合には、MR変化率のプロ セス熱処理に対する耐熱性を維持することも、著しく困 難になる。具体的には、極薄フリー層スピンバルブ膜の MR変化率耐熱性を改善するために大きくわけて2つの 施策がある。その1つがある一定以上の非磁性高導電層 をフリー層に接して設けることである。非磁性高導電層 はスピンフィルター効果としての役割ももちろんある が、MR変化率の耐熱性を向上させるという役割も果た すことが明らかになった。これはフリー層の膜厚が4. 5 n m程度ではそれほど顕著ではないが、2 n m程度に まで薄くなると、非磁性高導電層のトータル膜厚とし て、1 n m以上は必須であることがわかった。例えば、 非磁性高導電層がOnmのときには、as-depoの MR変化率とプロセス熱処理後 (270℃×10時間) のMR変化率では相対比で約50%も減少してしまう が、1 n m程度の非磁性高導電層を設けることによっ て、0~30%の減少に抑えることができる。

【0149】さらにこれだけではまだMR変化率の熱劣化率にばらつきがある。この原因が2つ目の施策である、反強磁性膜材料の差である。反強磁性膜として、FeMnなどを用いているときが、上記の熱劣化率30%の場合である。ところが、反強磁性膜材料としてIrMnを用いているときには、0~15%の劣化率まで低減させることができる。さらに、PtMnを用いているときにはas-depoのMR変化率は測定不能だが、おむむIrMnのas-depoのMR変化率の値、つまり熱劣化率0%を実現することができる。これは、反強磁性膜材料の貴金属濃度を含むかどうかに依存しており、IrMn、PtMn、PdPtMn、RuRhMnのような貴金属を含む反強磁性膜を用いることが、本発明による極薄フリー層のスピンバルブ膜には特に望ましいことが判明した。

【0150】図4は、以上のまとめとして、アシメトリ が-10%~+10%、つまり、バイアスポイント30 %~50%を実現するためのシンセティックAFのピン 層厚と、非磁性高導電層厚との具体的な範囲を表したグ ラフ図である。ここで、「アシメトリ」すなわち「波形 非対称性」とは、正信号磁界における再生出力の絶対値 V1と、負信号磁界における再生出力の絶対値V2とに より、(V1-V2)/(V1+V2)と定義する。従 って、「アシメトリが-10%~+10%」とは、 「 (V1-V2) / (V1+V2) の値が、マイナス 0. 1以上プラス 0. 1以下」であることに対応する。 ${0151}H_{pin}-H_{in}=H_{cu}$ を実現するために、 H_{min} が小さくなったときには、 H_{cu} も下げなければな らない。つまり、式(1-4)、(1-5)からわかる ように、シンセティックAFの上下のピン層厚((Ms * t) pinを小さくした時には、非磁性高導電層の膜厚

を厚くしなければならず、(Ms*t) $_{pin}$ を大きめの値にしたときには、非磁性高導電層の膜厚を薄くしなければならない。

【0152】具体的には、シンセティックAFを形成する厚いピン層の膜厚をtm(pin1)、薄いピン層の膜厚をtm(pin1)、薄いピン層の膜厚をtm(pin2)、非磁性高導電層の膜厚をt(HCL)(比抵抗 $10\mu\Omega$ cmのCu層に換算した)としたときに、 $0.5nm \le tm(pin1)-tm$ (pin2)+t(HCL) $\le 4nm$ 、かつt(HCL) $\ge 0.5nm$ を満足するところが本発明の範囲である。ここで、0.5nm $\le tm$ (pin1)-tm(pin2)+t(HCL)はバイアスポイントが30% 近傍、つまりアシメトリが+10%になる限界であり、tm(pin1)-tm(pin2)+t(HCL) $\le 4nm$ はバイアスポイントが50% 近傍、つまりアシメトリが-10%になる限界である。

【0153】ここで、tm(pin1)-tm(pin2)は、Msが1ToNiFeに換算したときの磁気膜厚であり、例えば、<math>PtMn/CoFe2/Ru0.9/CoFe2.5という構成のシンセティックAF構造のときには、 $(2.5-2)\times1.8T=0.9nm$ ということになる。また、比較のために示した比較例の単層pin構造の場合には、単層pin層の(Ms*t)を用いる。

【0154】また、t (HCL) は非磁性高導電層をC u 換算の膜厚にした場合であり、C u 以外の非磁性高導電層を用いる場合には、前述した比抵抗値を用いてC u 換算の膜厚にすることができる。

【0155】また、t(HCL) \ge 0.5nmは、4.5nmよりも薄いフリー層における、高MR実現のために必要な非磁性高導電層の膜厚の下限値を規定するものである。 また、上記範囲のさらに好ましい範囲として、非磁性高導電層の膜厚が3nm以上になると、 ΔR sが低下する場合があるので、t(HCL) \le 3nmが望ましい。また、シンセティックAFの上下ピン層厚の差が3nm以上になると、ピン層の磁化固着の耐熱性が劣化するので、tm(pin1)-tm(pin2) \le 3nmであることが望ましい。

【0156】図4においては、前述した比較例1~4と、後に詳述する本発明の実施例1の膜のデータをプロットした。ここで、シンセティックAF構造の場合には、スペーサ層側のピン層が、もう一方のピン層よりも磁気的膜厚が厚い場合には、横軸のピン層の磁気膜厚をプラス側とし、スペーサ層側のピン層がもう一方のピン層よりも磁気膜厚が薄い場合には、横軸のピン層の磁気膜厚をマイナス側にとることとした。シンセティックAFを用いない従来のピン層の場合には、ピン層の磁気的膜厚はすべてプラス側にとることにした。

【0157】同図からわかるように、比較例は全て良好な範囲から外れ、バイアスポイントが悪い、つまりアシ

メトリが大きいが、本発明によれば、良好なバイアスポイント、つまりアシメトリが小さい膜が実現できる。【0158】以上説明した本発明による、シンセティックAFによる小さな H_{pin} を、小さな H_{cu} によってキャンセルする、つまり H_{pin} ー H_{in} = H_{cu} を実現するバイアスポイント設計と、極薄フリー層スピンバルブ膜に特有のMR変化率の耐熱性の困難点を克服した、具体的な膜構成について示す。

(実施例1)トップSFSV (NiFe/Co(Fe)フリー層)
 Ta5/Cux/NiFe2/CoFe0.5/Cu2/CoFe(2+y)/Ru0.9/CoFe2/Ir
 Mn7/Ta5 (7-1) まず、反強磁性膜がフリー層よりも上層側に位置する、いわゆるトップタイプのスピンバルブ膜の実施例について説明する。

【0159】図5は、本実施例の磁気抵抗効果素子の具体的な膜構成を示す概念図である。すなわち、下地バッファ層12の上に、本発明による特有の高導電層101、その上にフリー層102、スペーサ層103、が積層され、強磁性ピン層104,106が、105を介して反強磁性的に結合し、106のピン層が反強磁性層107によって一方向に固着されている。反強磁性層107によって一方向に固着されている。反強磁性層107には、キャップ層113が設けられている。(7-1)の膜構造は、フリー層102が110、111の二層の積層膜からなり、非磁性高導電層101が単層Cuからなるタイプのものである。

【0160】 (7-1) の膜は、Cu下地によるMRの スピンフィルター効果、電流磁界 H_{cu} 低減効果と、シンセティックAFによる H_{pin} 低減効果を用いて、MRと バイアスポイントとを両立した膜となる。この膜に関して、前述した方法によりバイアスポイントを計算した結果を表5に示す。

【0161】表5 バイアスポイント計算結果

(a) $y = 0.5 H_{in} = 20 Oe$

MR height x = 20. $3 \mu m$ 3 7 %

0. $5 \mu m$ 3 1 %

0. $7 \mu m$ 2.5%

(b) $y = 0.8 H_{in} = 20 Oe$

MR height x = 2

0. $3 \mu m$ 4.6%

0. 5 μm 40%

0. 7 μm 33%

(c) $y = 0.5 H_{in} = 10 Oe$

MR height x = 2

0. $3 \mu m$ 42%

0. $5 \mu m$ 39%

0. $7 \mu m$ 36%

ここで下地Cu厚は、2nmとした。単純な単層の高導電層からなる単層のCu下地のときには H_{in} が200eと若干大きめの値となる。そのときにはシンセティックAFのピン厚差が0. 5nmでは良好なバイアスポイン

ト値の40%よりも若干マイナス側にずれることが、表 5 (a) の結果からわかる。これでも充分実用的な膜で あるが、y=0. $8nm \ \ \, H_{min}$ を若干増大させた場合 が、表5(b)の結果である。これによって、表5 (a) のようにバイアスポイントがアンダー気味にずれ ていた場合には、バイアスポイントを良好な値に近づけ ることが可能になる。また、表5(c)のように、 H_{in} を下げても同様にバイアスポイントを良好な値にするこ とができる。表5 (a)、(b)と(c)を比べてみれ ば明らかなように、Hinが小さいほうが、バイアスポイ ントのハイト依存性が小さくなるため、Hinはできるだ け低減することが望ましい。シンセティックAF構造の 上下ピン厚差は小さいほうが、H_{pin}が小さくなりハイ ト依存性が小さくなるが、(a)と(b)の0.3 nm ぐらいの差ではほとんど影響がないので、y=0~1n m $(Ms*t=0\sim1.8nmT$ in NiFe) %好ましく、さらに望ましくは $y=0\sim0$. $5nm(0\sim$ 0. 9 nmT in NiFe) の範囲が、バイアスポ イントとともに、耐ESD対策等の特性向上なども考慮

【0162】下地Cu厚はバイアスポイント調整とともに、MRのスピンフィルター効果も用いている。下地Cu厚を厚くすればHcuが小さくなるが、ΔRsが低減してしまうため、Cu厚0.5nm~5nm、特に望ましくは0.5~3nmが好ましい。MRのスピンフィルター効果が得られる下地Cu厚はフリー層構成に依存し、フリー層厚が薄いときほど、MRのスピンフィルター効果が得られる下地Cu厚の最適厚さは厚いほうにシフトする。実験的に得られた結果では、下地Cu厚と磁性フリー層の膜厚の和が4nm~5nmのときにMR変化率がピーク値をとる。

にいれてyの値の調整が可能であるため望ましい。

【0163】 (7-1) のようなフリー層構成の場合に は、下地Cu厚が0~1.5nmまではCu厚増加によ るスピンフィルター効果によるMR増加と、Cu厚増加 によるRs低減の効果がちょうどキャンセルし、ΔRs はほとんど変化がない。1.5nm~2nmでは、ΔR sが約0.1Ω、1.5nm~3nmでは、ΔRsが 25Ω減少してしまう。 ΔRsの低下はそのまま出 力低下にほぼ比例してしまうため、好ましくない。しか し、バイアスポイント上、下地Cu厚が厚くすることが 望ましい場合には、このフリー層構成で、下地Cu厚3 nmを用いることも考えられる。このときには、単位電 流あたりの電流磁界は小さく、かつスピンバルブ膜抵抗 も低下しているため、 ARsの低下による出力低下を、 電流を多めに流すことによって回復する手法が考えられ る。出力量も電流量にほぼ比例するからである。下地C u厚を増加することによってΔRsが10%低下したと きには、例えばセンス電流をこれまでの計算の4mAか ら5mAにすることによって25%増加するので、ΔR s低下の分を十分を補うことができる。

【0164】フリー層厚が厚いNiFe4/CoFe0.5 (nm)の場合には、下地Cu厚は0.5~2nm程度が好ましく、フリー層が薄いNiFe1/CoFe0.5nmの場合には、下地Cu厚は、1~4nm程度が好ましい。また界面CoFeの厚さは0.3~1.5nmの範囲で変えても構わない。また、CoFeのかわりに、Co、もしくは他のCo合金を用いても構わない。CoFeのかわりにCoを用いる場合にはCo単体では軟磁性が実現できないため、できるだけ薄くすることが望ましい。

【0165】例えば、NiFeが4nmのときにはCoは0~1nm、NiFeが2nmのときには、<math>0~0. 5nm、NiFeが1nmのときには、0~0. 3nmが好ましい。また、下地Cuとの界面拡散を気にする場合には下地Cuとの界面にもCuと非固溶な材料のCoやCoFeを挟んでも構わない。例えば、Co0. 3/NiFe2/CoFe0. 5、CoFe0. 5/NiFe2/CoFe0. 5

【0166】また、このような極薄磁性膜の積層膜にするかわりに、NiFeCoの合金フリー層を用いてもよい。

【0168】上記のように、下地Cuは電流磁界H_{cu}を低減させて、極薄フリー層においても良好なバイアスポイントを実現するという目的と、極薄フリー層でもMR変化率の劣化なくスピンフィルター効果を用いるということが2つの大きな目的である。

【0169】バイアスポイントという点からいうと、上記(7-1)の膜でyとxは独立に決められるものではなく、相互の値に注意して決定される。例えば、yが小さくなると H_{pin} が小さくなるため、それをキャンセルする電流磁界 H_{cu} も小さいほうがよいため、xの値は大きめの値のほうに最適点がシフトする。

【0170】具体的には、-0の例として次のような膜厚設計が考えられる。非磁性高導電層がCu層の場合の設計として、ピン層が2nmTのときにはCu層は $0.5\sim1.5nm$ 、ピン層が1.5nmTのときにはCu

層は $1\sim 2$ nm、ピン層が1 nmTのときにはC u層は1. $5\sim 2$. 5 nm、ピン層が0. 5 nmTのときにはC u層は $2\sim 3$ nm、ピン層が0 nmTのときにはC u 層は2. $5\sim 3$. 5 nmということになる。

【0171】ここでピン層がCo、もしくはCoFeのときにはピン層の膜厚は $t=(Ms*t)_{pin}/1$. 8 T [nm]、ピン層がNiFeのときにはピン層膜厚は $t=(Ms*t)_{pin}/1$ T [nm]ということになる。

【0172】スペーサCuはCuの他に、Au、Ag、またはこれらの元素を含む合金などを用いても構わない。しかし最も望ましいのは、Cuである。高いMRを実現すること、およびフリー層の下地側とは反対側のシャント層をできるだけ小さくして電流磁界を低減させるためにも、スペーサ厚さは、できるだけ薄いほうが好ましい。しかし、あまり薄すぎるとピン層とフリー層のフェロ的な磁気結合が強くなってしまい、 H_{in} 増大が生じてしまうので、 $1.5nm\sim2.5nm$ 、さらに望ましくは、 $1.8\sim2.3nm$ 程度が望ましい。

【0173】スピンフィルター効果と電流磁界低減のために大きな役割を果たしている下地高導電層は、ここでは単層のCuで構成されているが、積層膜で形成しても構わない。このとき、トップスピンバルブ膜においては、fccのシード層という役割もあるため、下地材料としては、fccもしくはhcp金属材料がよい。具体的には、Au, Ag, Al, Zr, Ru, Rh, Re, Ir, Ptなどからなる金属の合金層、もしくは積層膜が考えられる。MRのスピンフィルター効果と電流磁界低減効果だけのためなら単純なCu下地で十分効果が得られるが、下地材料をわざわざ合金層や積層膜にする効果として、極薄フリー層の磁歪制御とH_{in}制御という2つの役割がある。具体的には次のような実施例が考えられる。

【0174】Ta5/Ru1/Cu1.5/NiFe2/CoFe0.5/Cu2/CoFe2.5/Ru0.9/CoFe2/IrMn7/Ta5(7-2) Ru1nmを下地として用いることによって、膜の平坦性が向上し、スペーサ2nmでフリー層のMs*tがNiFe換算2.9nmTと極薄フリー層にも関わらず100e程度の低H $_{in}$ を容易に実現することができる。低H $_{in}$ の実現はバイアスポイントのMRハイト依存性がすくなくなるという点で望ましい。また、いたずらにシンセティックAFの上下ピン層の膜厚差をつけなくても良好なバイアスポイントが実現できるという点でも好ましい。ここではRuの膜厚は1nmとしたが、0.5nm~5nm~5nm~5c6に望ましくは、1nm~3nm程度が望ましい。Ru以

外の材料でも望ましい膜厚はそれほど変わらない。

【0175】 (7-2) の膜では、 H_{cu} を計算するときには、Ruの厚さとCuの厚さの電気的なシャント層の足し算になる。例えば、Ruの場合には、 $30\mu\Omega$ cmとCuの比比抵抗の約3倍なため、 H_{cu} という観点では(7-2)の膜はCu厚換算で1.8nmの膜と同等ということになる。ただしMRという観点ではRuでは抵抗が高く、電子の平均自由行程が短いため、RuをNiFeにダイレクトに接しさせることではスピンフィルター効果はほとんど得られない。よって、フリー層に接する層としては、できるだけ低抵抗のCu、Au、Agなどが望ましく、Ruなどの材料はCu、Au、Agなどを介して二層にすることが好ましいわけである。これがわざわざ二層下地にする1つの理由である。

【0176】また、ここではバッファ層TaとRuをわけて考えたが、Ru層がバッファ層としての効果も発揮するならばTa 層はなくてもよい。例えばZr 層をRu の変わりに用いるときなどは、Ta をなくすことも可能である。

【0177】バッファ層を用いる場合には、Taの他に、Ti, Zr, W, Cu, Hf, Moもしくはこれらの合金などを用いることができる。これらのいずれの材料を用いても、膜厚は1nm~7nm、さらに好ましくは、2nm~5nm程度が好ましい。

【0178】ここではAF膜としてIrMn(Ir:5~40at%)を用いたが、IrMnの膜厚としては、3nm~13nm程度が好ましい。IrMnを用いるメリットとしては、薄い膜厚でも良好なピン特性が実現できるため、高密度化に向けた狭ギャップヘッドに適している、貴金属を含んでいるため、熱処理後に高MR変化率を維持できるという特徴がある。比較例2で示したようなFeMnを反強磁性膜に用いた膜では、高MR変化率を熱処理後に維持することはできない。これは本発明のような極薄フリー層を用いるときに顕著に表れる現象である。

【0179】また、反強磁性膜としてはCrMn、NiMn、NiOを用いても良いが、高MR変化率実現のためには、貴金属元素を含むAFが望ましい。たとえばIrの代わりにPd、Rhなどを用いても良い。FeMnやNiMnなどに比べてMR変化率が向上するため、ヘッドに不可欠なアニール熱処理後でも高MR変化率が維持される。また、貴金属元素の濃度がさらに高いPtMnを用いることも望ましい実施例のひとつである。

[0180]

 $Ta5/Cux/NiFe2/CoFe0. \ 5/Cu2/CoFe2. \ 5/Ru0. \ 9/CoFe2/PtMn10/Ta5 \ \ \, (7-3) \\ Ta5/Rux/Cuy/NiFe2/CoFe0. \ 5/Cu2/CoFe2. \ 5/Ru0. \ 9/CoFe2/PtMn10/Ta5 \ \ \, (7-4)$

PtMn (Pt:40~65at%)を使うメリットとしては、貴金属濃度がIrMnよりもさらに高いためプロセスアニールによるMR劣化がさらに少なく、高いM

R変化率が実現でき、 Δ Rsを大きくすることができ、 高出力が得られることが挙げられる。 MRの良好な耐熱 性が実現しにくい極薄フリー層のスピンバルブ膜におい て、スピンフィルター効果による下地Cuなどがある構成と、PtMnとの組み合わせが最もMR耐熱性がよい。PtMnの代わりにPdMn、PdPtMnを用いても良い(貴金属濃度:40~65at%)。

【0181】MR耐熱性という観点からいうと、下地C u厚は1nm以上あることが望ましい。それ以下の膜厚 だとMRの耐熱性が悪くなるからである。ただし、Ni Feの膜厚が4nm以上あるときには、下地Cu厚は 0.5nm以上あればMRの耐熱性を確保できる。

【0182】PtMnは電気的な比抵抗の値もIrMnとほぼ同じ値で大きいので、電流磁界に対する寄与は小さく好ましい。このように、(7-3)、(7-4)の膜は実用上非常に優れた膜である。

【0183】ただし、PtMnのデメリットとして一方向異方性磁界がでる臨界膜厚がIrMnの場合よりも厚いため、5nm程度まで薄くすることが困難なことが挙げられる。よってPtMnを用いた場合にはPtMnの膜厚としては、 $5nm\sim30nm$ が望ましい。さらに望ましくは、 $7nm\sim12nm$ 程度が望ましい。PtMn

の場合にも、 (7-4) のような、フリー層の下地の二層化に対する考え方は全く同様である。

【0184】(7-1)~(7-4)の実施例のバリエーションとして、反強磁性膜の上にさらに貴金属元素膜を積層することが考えられる。例えば、Cu、Ru、Pt、Au、Ag、Re、Rh、Pdなどの単層膜もしくは積層膜を用いてもよい。この構成によって薄いスペーサ膜厚のときでも低Hinを実現できる。ただし、あまり膜厚が厚くなると、電流分流比がフリー層の上層側で多くなってしまうので、単層膜もしくは積層膜のトータル膜厚としては0.5nm~3nm程度が好ましい。

【0185】図15に関して前述したように、本実施例のスピンバルブ膜は、比較例1~4と比べて、バイアスポイントの制御性がはるかに優れ、最適なバイアスポイントを確実に得ることができる。

【0186】また、図16に関して前述したように、本 実施例のスピンバルブ膜は、比較例1~4と比べて高い MR変化率を得ることができる。

(実施例2) トップSFSV (シンプルCoFeフリー層)

 $\label{eq:table_core} {\tt Ta5/Cux/CoFe2/Cu2/CoFe2.5/Ru0.9/CoFe2/IrMn7/Ta5} \qquad \qquad (8-1)$

Ta5/Cux/CoFe2/Cu2/CoFe2. 5/Ru0. 9/CoFe2/PtMn10/Ta5 (8 - 2)

本実施例においては、フリー層として、(実施例1)のようなNiFe/CoやNiFe/CoFeのような積層フリー層ではなく、CoFe単層からなるシンプルなフリー層構成を用いた。つまり図1において、フリー層102が単層膜のCoFeからなり、高導電層101が単層膜Cuからなる構造である。

【0188】また、CoFeフリー層は軟磁性という観点からfcc(111)配向していることが望ましい。スピンフィルター効果を効果的に得るという点からも抵抗が小さくなるようにfcc(111)配向してことが好ましいが、CoFeBのような微結晶構造やアモルファス構造のフリー層の実施例も考えられる。

【0189】シンプルCoFeフリー層はMsがNiFeよりも大きいことから同じMs*tを実現するにも薄い膜厚で実現できることから、スピンフィルター効果の観点からも有利となる。例えば4.5 nmTのフリー層を実現するにはNiFe/CoFeでは、NiFe3.

6/CoFeO.5 (nm)でトータル膜厚が約4nmとなるのに対し、シンプルCoFeフリー層ではCoFe2.5nmであり、NiFe/CoFeよりも約1.5nm薄くできる。この両者の膜にフリー層の下に接して高導電層を設けると、ダウンスピン電子は両者の膜ともダウンスピンの平均自由行程の値である約1nmと比べて厚いためフィルタアウトされるが、NiFe/CoFeのトータル膜厚4nm程度になるとアップスピンの平均自由行程と近い値になってくるため、その下の高導電層は単純なシャント効果をもたらすことになり、高導電層を厚くすればするほどシャント効果の影響でMRが低減してしまう。

【0190】一方、シンプルCoFeに関しては、2. 5 n mよりも平均自由行程が長いため、ある程度の膜厚 までは高導電層をつけるほどアップスピンの平均自由行 程が長くなり、MRが上昇する。経験的には高導電層に Cuを用いた場合には、Cu層とNiFe/CoFe、 もしくはCoFe層からなるフリー層のトータル膜厚が 4 n m程度、もしくは3 n m~5 n mのときにMRピー クをとることが実験的に得られている。つまり、バイア スポイント設計上必要な高導電層膜厚があった場合、N i Fe/CoFeではスピンフィルター効果というより もシャント効果のためMRの減少をもたらすが、CoF e ではスピンフィルター効果によって、バイアスポイン ト調整とともにMR上昇効果の両立をはかることができ るので、有利となる。これは上述のように、高導電層と フリー層とのトータル膜厚でMRピーク値がきまるの で、CoFe膜厚が薄いほど、MRピークをとるCu層

の膜厚が厚くなることになり、スピンフィルター効果とバイアスポイント調整効果の兼用効果がでてくる。以上の理由により単純CoFeフリー層のほうがスピンフィルタースピンバルブでは望ましい。

【0191】積層NiFe/CoFeのほうがMR耐熱性が悪いので、単純CoFeフリー層のほうがMRが大きいのでよい。

【0192】磁歪制御も極薄層の積層膜であるNiFe /CoFeよりもCoFeの単層のほうが制御が容易。 特に、極薄フリー層では界面磁歪が重要であるので、界 面が一つ増えるNiFe/CoFeのほうが不利であ る。

【0193】 (8-1) の構成でのバイアスポイントも、実施例1 の場合とほぼ同様に $30\sim50$ %の良好な範囲内になる。ハイト依存性も実施例1 と同様に小さい。

【0194】フリー層のMs*t 依存性に関しては、Ms*tが小さいほどトランスファーカーブ上の飽和磁界Hsが小さくなってくるため、より厳密なバイアスポイント調整が要求される。具体的には電流磁界をより低減させることが重要になってくるので、高導電層の膜厚を増加させる必要がでてくる。本発明によるスピンバルブ膜では既に述べたようにフリー層の膜厚が薄くなるほどスピンフィルター効果によりMRピークが出現する高導電層の膜厚が厚いほうにシフトするため、そのトレンドとも一致しており、本発明のスピンバルブ膜の設計思想が高密度用ヘッドの膜として利にかなっていることがわかる。

【0195】具体的には、フリー層 $Ms*t\sim4.5n$ mT、CoFe膜厚2.5nmのときには高導電層の良好な膜厚はCu換算で $0.5nm\sim4nm$ 、さらに望ましくは $1nm\sim3nm$ 、 $Ms*t\sim3.6nm$ T、CoFe膜厚2nmのときにはCu膜換算で、 $1nm\sim4.5nm$ 、さらに望ましくは $1.5\sim3.5nm$ 、 $Ms*t\sim2.7nm$ T、CoFe膜厚1.5nmのときにはCu にはCu に以換算で、CoFe にはCu に以換算で、CoFe にはCoFe にはCoFe に以上CoFe に対しCoFe に対しCo

【0196】 (8-1) では反強磁性膜としてIrMn を用いているのに対し、(8-2) ではPtMnを用いている。PtMnを用いることにより、さらにMR耐熱性が向上し、出力の向上がはかれるというメリットが得られる。これは、NiFe/Co(Fe) フリー層のときと同様である。ただし、PtMnを用いたときのほうが H_{in} が上昇しやすいという問題点があるため、バイアスポイントを良好なところに設計するためには、IrM n を用いたときよりも、電流磁界 H_{cu} を低減させるか、 H_{pin} を増加させるかの、どちらかもしくは両者の対策

が必要である。Hcuを低減させるためには、高導電層の σ t を増加させる、つまり高導電層の膜厚を増加させる ことが考えられる。また、Hoinを増加させるには、シ ンセティックAFの上下のピン層膜厚差をIrMnのと きよりも大きめにすることが考えられる。しかし、高導 電層の膜厚を増加させることは ARsの低下を招くこと にもなるので、IrMnのときよりも高導電層膜厚でC u換算で0~2nm程度の範囲での調整が望ましい。ま た、シンセティックAF構造のAtを増加させることは これまでのべてきたようにバイアスポイントのMRハイ ト依存性を増加させることにもなるのであまり大きくす ることは望ましくなく、IrMnのときと比べてCoF e 換算で0~1 n m程度の増加で設計することが望まし い。(8-1)、(8-2) のバリエーションとして、 次のような構成も考えられる。 Ta5/Rux/Cuy/CoFe2/Cu 2/CoFe2.5/Ru0.9/CoFe2/IrMn7/Ta5 (8 - 3) Ta5/Rux/Cuy/CoFe2/Cu2/CoFe2. 5/Ru0. 9/CoFe2/PtMn10/Ta5 (8 -4) この構成においては、高導電層として、Cu単層 ではなく、Ru/Cuという積層膜で構成した。積層膜 にする理由は次の二つの理由による。

【0197】1. CoFe磁歪制御

2. H. 低減効果

上記1. のСоFe磁歪制御に関しては、後に詳述する ように、CoFeの歪み制御によって磁歪を制御しよう とするものである。つまり、単純CuよりもCoFeの fcc-d(111)面間隔を広げて、Co₉₀Fe 10 (atmic%) フリー層を用いたときには負側に大 きくなりやすいCoFeフリー層の磁歪を、ゼロ近傍に 制御しようとするものである。よって、Cu層の下に位 置する材料としてはCuよりも原子半径が大きいものが 望ましい。例えば、Ruの他に、Re、Au、Ag、A 1、Pt、Rh、IrあるいはPdなどが望ましい。磁 歪制御という意味では下地二層化の他にCoFe組成を 90-10から変えることによっても可能である。 具体 的には、Co_{90F}e₁₀~Co₉₆Fe₄の組成範囲のCoF e 合金フリー層が用いられる。一方、上記2.のHin低 減効果に関しては、膜成長のときの平坦性を向上させる 効果がRuにはあるからである。既に述べてきたよう に、H_{in}はできるだけ小さいところでH_{cu}とH_{pin}によ ってバイアスポイント設計することが望ましいからであ る。特に、SFSVではMRのスピンフィルター効果、 フリー層の上層のシャント低減という2つの点でスペー サ厚はできるだけ薄いほうが望ましく、Cu~2nm程 度の極薄スペーサを使いこなす技術が必要なので、一般 的にスペーサ厚依存性が大きなHin制御が困難になる。 Ru/Cu積層膜にすることによって、Rul. 5nm /Culnm~2nm下地、フリー層Ms*t3.6n mT、CoFe膜厚2nmという極薄フリー層、スペー サCu2nmというもので、 H_{in} として $7\sim130e$ と いう低 H_{in} を実現することができる。(7-1)、(7

-2) の実施例においては H_{in} が200e程度であったことを考慮すると、この H_{in} 低減効果は大きい。

【0198】 H_{cu} 計算という観点からみたときには、R uの比抵抗から σ t e C u 膜厚に換算すればよいだけである。実験的に求まった R uの比抵抗は $30 \mu \Omega$ c mなので、 σ t のシャント効果としては比抵抗 $10 \mu \Omega$ c mのC u 膜厚にして 1/3 の膜厚ということになる。例えば、R u 1 . 5 n m/C u 1 n m e w う構成ではシャントのC u 膜厚換算値で(1 . 5 n m/3) +1 n m = 1 . 5 n m e 同等ということになる。

【0199】また(8-1)~(8-4)の実施例のバリエーションとして、反強磁性膜の上にさらに貴金属元素膜を積層することが考えられる。例えば、Cu、Ru、Pt、Au、Ag、Re、Rh、Pdなどの単層膜もしくは積層膜を用いてもよい。この構成によって薄いスペーサ膜厚のときでも低H_{in}を実現できる。ただしあまり膜厚が厚くなると、電流分流比がフリー層の上層側で多くなってしまうので、単層膜もしくは積層膜のトータル膜厚としては0.5nm~3nm程度が好ましい。

(実施例3) ボトムSFSV (NiFe/Co(Fe)フリー層) Ta5/Ru2/PtMn10/CoFe2/Ru0.9/CoFe2.5/Cu2/Co0.5/NiFe2/Cu2/Ta5 (9-1)

 $Ta5/Ru1/NiFeCr2/IrMn7/CoFe2/Ru0.\ 9/CoFe2.\ 5/Cu2/Co0.\ 5/NiFe2/Cu2/Ta5 \ (\ 9/CoFe2)$

-2)

反強磁性膜がフリー層よりも下層側に位置する、いわゆるボトムタイプの実施例について示す。図6は、本実施例にかかるスピンバルブ膜構成を表す概念図である。すなわち、下地バッファ層131上に、反強磁性膜結晶制御層128、反強磁性膜127が積層され、ピン層126、124が層125を介して反強磁性的に結合している。層124上にスペーサ層123、フリー層122、非磁性高導電層121が順次積層され、最後にキャップ層132が設けられている。

【0200】(9-1)の実施例は、反強磁性膜結晶制御層128が単層Ruからなり、127の反強磁性膜がPtMn、フリー層122が129、130の二層の積層膜から形成された場合である。(9-2)の実施例は、反強磁性膜結晶制御層128が133の膜としてRu、134の膜としてNiFeCrの二層膜から形成され、127の反強磁性膜がIrMn、フリー層が129、130の2層膜から形成された場合の実施例である。

【0201】ボトムタイプのスピンバルブ膜においては、Ta等のバッファ層の上にさらに反強磁性膜結晶制御層として、fccまたはhcpの下地膜を $1nm\sim5nm$ 程度用いる。例えば、Cu、Au、Ru、Pt 、Rh 、Ag 、Ni 、Ni Feやそれらの合金膜、積層膜などが用いられる。これらのシード(seed)層は反強磁性膜としての機能を高めるために重要な膜である。(9-1)のPt Mn の実施例においては単層のRu Mn

(9-2) の I r M n の実施例においては、R u I N I F I R I C I の積層膜を用いた。この反強磁性膜結晶制御層は反強磁性膜のブロッキング温度を充分高い値にすること、および膜平坦化を促し、本発明で必要とされる I I S I n I m I C I S I n I m I E I M I P I M

【0202】本発明によるバイアスポイントメリットという点では、上記実施例程度の膜厚の範囲では、このシード層の種類によって、大きな影響を受けることはない。ただし、低抵抗材料、すなわち比抵抗の小さな材料

を用いることは好ましくない。これは、ここでシャント分流層が増えてしまうと、電流中心をフリー層に近づけることが困難になるからである。よって、反強磁性膜としての機能を高められる材料の範囲でできるだけ高抵抗の材料を用いることが好ましい。例えば、低抵抗のNiFeの代わりに、NiFeにCr、Nb、Hf、W、Ta等を添加して比抵抗を上げて用いる実施例が考えられる。(9-2)ではNiFeの代わりにNiFeCrを用いている。

【0203】反強磁性膜としては、(9-1)ではPt Mn、(9-2)ではIrMnを用いている。PtMn を用いるメリットとしては、ブロッキング温度が高温であること、およびHu.a.が大きいこと、およびプロセス熱処理後のMR熱劣化が非常に小さく、高MR、高 ΔR sが実現できることが挙げられる。トップタイプのときと同様に極薄フリー層を用いた場合に高いMRをプロセス熱処理後に維持できるという点から貴金属を含む反強磁性膜であるPtMnを用いるメリットは非常に大きい。PtMnの代わりにPdPtMnを用いても良い。好ましい膜厚範囲としては、 $5nm\sim30nm$ 、さらに好ましくは、 $7nm\sim12nm$ が良い。

【0204】(9-2)のIrMnを用いるメリットとしては、PtMnよりも薄膜領域で特性がでるため、高密度化に対応した狭ギャップヘッドに適しているという点を挙げることができる。IrMnの膜厚としては3nm~13nmが望ましい。IrMnも貴金属元素Irを含む反強磁性膜であるため、MR変化率の耐熱性に優れている。IrMnの替わりに同様に貴金属元素を含むRuRhMnを用いてもよい。

【0205】上記のように、反強磁性膜としては、Pt Mn、IrMn、PdPtMnが最も好ましいが、本発明のスピンバルブ膜のバイアスポイントメリットという点では反強磁性膜材料によって限定されるものではなく、NiO、CrMnPt、NiMn、 $\alpha-Fe_2O_3$ 等のその他の反強磁性膜を用いても構わない。

【0206】シンセティックピン層の二層の強磁性材料

としては、ここではCoFe合金層を用いたが、Co、NiFe、またはNiFeと、CoもしくはCoFeの積層膜を用いても構わない。これらの構成材料や膜厚等の考え方は、前述した実施例1、2のトップタイプの場合と全く同様である。本発明の重要なポイントであるこのシンセティックピン層の構成は、前述のように、ピン漏洩磁界を低減させることが最も大きな目的であり、この上下強磁性層のMs*t差はフリー層に接して設けられる高導電層の膜厚と密接に関連して変えられるものである。

【0207】スペーサについてもトップタイプのときと考え方は変わらず、できるだけ薄いほうが好ましい。具体的には、1.5 nm~2.5 nm程度が望ましく、さらに望ましくは、1.8 nm~2.3 nmが好ましい。【0208】フリー層としては、ここでの実施例ではNiFe/Coの積層膜を用いている。このフリー層の膜厚、材料の考え方もトップタイプのときとほぼ同様である。ただし、NiFeの下地膜がトップタイプと、ボのトムタイプの場合では異なるため、低磁至実現のためのは下の組成がトップタイプのときとは若干異なる。はいまではNiFeの低膜厚化に伴うNiFe/CoFe積層フリー層の磁歪の正側へのシフトがトップタイプのときよりもNiFeの組成としてNiプアのものでも最適磁歪を実現できる。

【0209】例えば、NiFe3nm/CoFe0.5nm積層フリー層の場合にはトップタイプではNiFe0組成として、 $Ni_{81}Fe_{19}$ (a t %) ではまだ正側に大きい値となって使用不可能だが、ボトムタイプでは $Ni_{81}Fe_{19}$ (a t %) で小さな正の磁歪値となって実用上問題ない膜となる。

【0210】本発明の大きなポイントの2点目である高

導電層としては、ここではCu膜が用いられている。この高導電層の最も大きな役割は、電流センターをできるだけフリー層に近づけて電流磁界を低減させることである。

【0211】さらに別の効果として、Cu導電層によるMRのスピンフィルター効果も用いているため、極薄フリー層を用いているにも関わらずMR変化率の劣化はない。

【0212】最適なCu膜厚の範囲はトップSFSVのときと同様であり、フリー層厚、シンセティックAFの上下のピン層膜厚差によって最適値が微妙にずれることもトップタイプのときと同様である。またCuキャップ層のバイアスポイント調整、高MR変化率維持以外の別の大きな効果として、極薄フリー層での低 H_{in} を実現できることにある。例えば、同じフリー層厚でCuキャップがない場合には H_{in} が30Oe以上あったものがCuキャップを用いることにより約10Oeまで低減できる。

【0213】ここで、(9-1)、(9-2)のバリエーションとして、フリー層CoFeに接した高導電層Cuの換わりに、二層以上の積層膜からなる高導電層で構成したもよい。例えば、Cu/Ru、Cu/Re、Cu/Rh、Cu/Ptなどが挙げられる。二層にする効果としては、トップタイプのときに記述したようにCoFeフリー層の磁歪は歪みによって影響を受けるので、磁歪12 を実現することが主な目的である。また、低11 にを実現することが本発明においては重要だが、低11 に制御目的のためにも、12 2 層にすることがある。

【0214】具体的な膜構成としては、以下のようなものが考えられる。

[0215]

Ta5/Ru/PtMn10/CoFe2/Ru0.9/CoFe2.5/Cu2/Co0.5/NiFe2/Cu1.5/Ru1.5/Ta5 (9 - 3)

 $\label{lem:ta5/Ru/NiFeCr/IrMn7/CoFe2/Ru0.9/CoFe2.5/Cu2/Co0.5/NiFe2/Cu1.5/Ru1.5/Ta5 (9-4)} Ta5/Ru/NiFeCr/IrMn7/CoFe2/Ru0.9/CoFe2.5/Cu2/Co0.5/NiFe2/Cu1.5/Ru1.5/Ta5/Ru/NiFeCr/IrMn7/CoFe2/Ru0.9/CoFe2.5/Cu2/Co0.5/NiFe2/Cu1.5/Ru1.5/Ta5/Ru1.5/Ta5/Ru1.5/Ru1.5/Ta5/Ru1.5/$

料を用いることが好ましい。

 で薄くスピンフィルター効果が得られるのに対して、NiFe/Co(Fe)だとNiFe4/Co0.5 (nm)と総膜厚が厚くなり、高導電層を設けることによるMRのスピンフィルター効果は得られず、単純シャント層となること、およびNiFe自体のシャント効果もあることから、 Δ RsでCoFe単層フリー層と比較して、 $0\sim30\%$ 減少する。

【0216】以上のことから、Ms*tの広い範囲でMs*tのスピンフィルター効果が得られることからも、CoFeフリー層の実施例である本実施例のほうが、実施例3の場合よりも望ましい。

【0217】ここで、(10-1)、(10-2)のバリエーションとして、フリー層CoFeに接した高導電層Cuの換わりに、二層以上の積層膜からなる高導電層で構成したもよい。例えば、Cu/Ru、Cu/Re、Cu/Rhなどが挙げられる。二層にする効果としては、既述のようにCoFeフリー層の磁歪は歪みによって影響を受けるので、磁歪 λs を調整することが主な目的である。また、 KH_{in} を実現することが本発明においては重要だが、 KH_{in} 制御目的のためにも、 λs 2層にすることがある。具体的な膜構成としては、以下のようなものが考えられる。

Ta5/NiFe/PtMn10/CoFe2/Ru0. 9/CoFe2. 5/Cu2/CoFe2/Cu1. 5/Ru1. 5/Ta5 (1 0 -

3)

Ta5/NiFe/IrMn7/CoFe2/Ru0. 9/CoFe2. 5/Cu2/CoFe2/Cu1. 5/Ru1. 5/Ta5 (1 0 -

4)

【0218】上記の膜構成において、Cu薄膜の比抵抗 $10\mu\Omega$ cmに対して、Ruは $30\mu\Omega$ cmなので、電気的なシャント効果としては、Cu1nmに対し、Ru3nmが同等の効果をもたらすことになる。つまり、上記(10-3)、(10-4)の膜においては、高導電層の膜厚はCu換算で2nmと同等ということになる。Cu 単層の場合に0.5nm~3nmまでの範囲で明いられるので、Ru も同様に0.5nm~6nmの範囲で用いられる。ただし、Ruでは比抵抗も高くスピンイルター効果はCuの場合よりも弱いため、CoFeに接する高導電層としては、Cuのほうが好ましく、また、Ruをあまり厚くすることは狭ギャップという点からりましくないので、CoFeに接しさせてCuなどを用い、Cu膜厚は0.5nm~1nm程度用いた上で、2

層の他の金属材料を用いることが好ましい。

(第2~第6の実施の形態:高温安定性と再生出力の向上)次に、高温安定性と再生出力の向上の観点からみた本発明の第2~第6の実施の形態に関して説明する。

【0219】まず、第2~第6の実施の形態に共通な技術的思想に関して概説する。

【0220】図17は、本発明の第2~第6の実施の形態のうちの一実施の形態を示す図である。図17において、基板10に下シールド11、下ギャップ膜12を設け、その上にスピンバルブ素子13が形成されている。スピンバルブ素子はスピンバルブ膜14と一対の縦バイアス膜15および一対の電極16から構成され、さらに非磁性下地層141、142、反強磁性層143、磁化固着層144、中間層145、磁化自由層146、保護膜147が形成されている。

【0221】表6には本発明の実施の形態のSyAFを磁化固着層に用いた場合の、SyAFの強磁性層と結合する反強磁性層の材料組成および膜厚と、200℃における交換結合定数J、交換バイアス磁界 H_{UA} *および H_{UA} 、ブロッキング温度T b、およびスピンバルブ素子の抵抗変化率 Δ R / R を示す。また表7には、磁化固着層として従来の単層の磁化固着層を用いた場合の同様の表を示す。また表8にはS y A F と結合した反強磁性層の最密面からの回析線ピークのロッキングカーブ半値幅 Δ θ と 200 \Box におけるS y A F の反強磁性層側強磁性層との交換結合定数Jおよびブロッキング温度T b との関係を示す。

[0222]

【表1】

表6

スピンパルブ膜構成:

基板/Ta (5nm) /Nife/CoFe/Cu (3nm) /CoFe (2.5nm) /Ru (0.9nm) /CoFe (2.5nm) /反破離性圖/Ta (5nm)

反強磁性層		200℃における	2000KaH5	ブロッキング	抵抗変化率
材料	漢字(EB)	J (erg/cm²)	Hua* (0e)	温度 T b (€)	ΔR/R(\$)
l r 22M n 78	5	0.04	400	250	7. 3
	7	0.045	450	270	7. 3
	10	0.045	450	290	7
	20	0.04	400	300	6.5
(比較例)	30	0.035	350	300	5.6
R h 20M n 80	7	0. 025	250	235	7. 1
	10	0.035	350	260	6. 8
Rhi4Ru1 Mn79	7	0.02	200	2 2 5	7. 2
	10	0.03	300	246	6.8
P t 58M n 47	10	0. 02	250	290	7. 9
	15	0.025	400	320	.7.4
	20	0. 1	>600	350	7
(比较例)	3 0	0.12	>600	370	8. 2
N 1 50M n 30	1 5	0.02	250	300	8.8
CrmnPt	1 5	0.02	200	240	6. 9

1 rMn、RhMn、RhRuMn、CrMnPtを用いたスピンパルプ膜:

270℃、1時間の無処理を施した後の結果

PtMn、NIMnを用いたスピンパルブ酸:

270℃、10時間の熱処理を施した後の結果

[0223]

【表2】

表?

スピンパルブ膜構成:

基板/Ta (5nm) /NiFe/CoFe/Cu (3nm) /CoFe (2.5nm) /反破磁性層/Ta (5nm)

反強磁性層		200℃における	200℃における	ブロッキング	抵抗変化率
材料	膜罩 (nm)	J (erg/cm²)	Hua (0e)	温度Tb(t)	ΔR/ROX
I r 22M n 7B	5	0.04	170	250	6. 6
	10	0.045	190	290	6. 2
Pt #IMn49	10	0.08	i 3 0	300	7. 2
	20	0.1	430	350	6. 7
	30	0.12	510	370	6.4

I r M n を用いたスピンパルブ度: 270℃、 1時間の熱処理を施した後の結果 P t M n を用いたスピンパルブ度: 270℃、10時間の熱処理を施した後の結果 【表3】

[0224]

反強磁性層		最密面ピークのロッキング	200°C (8178	ブロッキング
数数	膜厚 (111)	カーブ半値幅Δθ(*)	i (erg/ent)	温度で b (で)
1 r 22M n 78	5	1 2	0.01	210
	Б	8	0.025	230
	5	5	0.045	250
	5	3	0.05	250
R h 20M n 80	7	13.5	~0	190
	7	8	0.02	225
	7	4	0.025	2 3 5

本発明者は表6および表8に示すように、1) 反強磁性 層と結合する磁化固着層をSyAFによって構成し、反 強磁性層の組成を選べば温度200℃における交換結合 定数」としてO. O2erg/cm²以上を得ることが できること、2) 反強磁性層の最密面ピークのロッキン グカーブ半値幅が小さくなるように最密面を配向させ て、ロッキングカーブ半値幅が好ましくは8°以下、さ らに好ましくは5°以下となるようにすることによっ て、温度200℃における交換結合定数Jを髙めること ができること、3) 反強磁性層の磁気膜厚を20 n m以 下、より好ましくは10nm以下とすることにより、抵 抗変化率を単層の磁化固着層を用いて構成したスピンバ ルブ素子の抵抗変化率と同等以上に高めることができる こと、そして4) 温度200℃における交換結合定数 J を $0.02erg/cm^2$ 以上にすることにより、温度 200℃において交換バイアス磁界H_{II}* を2000e 以上にすることができ、記録媒体などから再生素子のス ピンバルブ素子に加わる最大磁界が2000eであって も安定な磁化固着層が得られること、を見出して本発明 をなすに至った。

【0225】図18は外部磁界に対するスピンバルブ膜の抵抗値の変化と、交換バイアス磁界H_{IU}*を示す模式図である。図18で交換バイアス磁界H_{AU}*は、実質的に磁化固着層の磁化が動かない磁界の最大値を、低磁界側の直線部の延長線と高磁界の直線部の延長線との交点として求めた磁界の値と定義される。交換バイアス磁界H_{IU}*として2000e以上を有する磁化固着層は、磁化固着方向に外部磁界を加えた場合の抵抗一磁界特性において、2000eまでの磁界範囲では、磁化がほとんど動くことがなく、磁化自由層のみが磁化応答した抵抗変化が得られる。

【0226】図18では、磁界センサとしての動作点である磁界がゼロの近傍で磁化自由層の磁化応答に伴う急峻な抵抗変化のみが、抵抗一磁界特性を示す曲線上に認められ、2000eまでの外部磁界に対しては、この磁化自由層の磁化応答以外には抵抗の変化が認められず、磁化自由層が飽和した後は、磁界に対する実質的な応答がないことを示す。

【0227】従来のNiO反強磁性層や、FeMnCr

反強磁性層を用いた場合には、200℃においてはほとんど」が得られない。また、30nm厚のCrMnPt 反強磁性層を用いた場合には抵抗変化率が従来の単層の磁化固着層よりも低くなってしまうので好ましくない。

【0228】従来の単層の磁化固着層においては、表7に示されているように、PtMnを用いた場合には20nmの加厚以上で高い H_{UA} が得られるが、その場合の抵抗変化率は $6.4\sim6.7\%$ と比較的低い値を示す。

【0229】これに対し、表6に示す本発明の実施の形態によれば、IrMn、RhMn、RhRuMn、PtMn、NiMn、CrMn Pt などの厚さ20nm以下の反強磁性層を用いることにより、200 C にて H_{UA} *が2000 e以上の優れた耐熱性を満足し、しかも抵抗変化率は従来の単層の磁化固着層を用いた場合と同等あるいはそれ以上の値が得られる。なお本発明において反強磁性層の厚さの下限は好ましくは3nm以上である。

【0230】図19はH_{UA}* が2000eの本発明の実施形態のスピンバルブ膜、および従来のH_{UA}が5000eの単層磁化固着層のスピンバルブ膜について、200℃にて2000eの模擬バイアス磁界を与えた場合の経過時間と磁化固着層の磁化の動いた角度との関係を示す。図19に示されているように、従来の単層磁化固着層のスピンバルブ膜に比べて、本発明の実施形態のスピンバルブ膜は、200℃におけるH_{UA}* が2000eと、単層磁化固着層のH_{UA}、5100eに比べて小さいにもかかわらず、200℃における固着磁化の経時変化はわずかであって、安定性に優れることがわかる。

【0231】また、IrMn、RhMn、RhRuMnなどのMnリッチのy-Mn系反強磁性体膜を用いた場合にみられるように、10nm以下の反強磁性層厚では、従来の単層の磁化固着層を用いた場合よりも大きい抵抗変化率が得られ、さらに好ましい。

【0232】また、表6の本発明の実施の形態においては、Tbが240~300℃の範囲の反強磁性層で良好な固着磁化の耐熱性を示す。従ってTb近傍では磁気結合層の結合磁界を上回る大きな磁界を加えて強磁性体層Aと強磁性体層Bを同方向に飽和させることにより、磁化固着層の磁化方向を外部磁界により自由に制御できるので、磁気結合層と強磁性層Aおよび強磁性層Bとの間

の拡散があまり問題とならない300℃以下での磁化固着処理が可能となる。

【0233】磁気結合層と強磁性層Aおよび強磁性層Bとの間の拡散や拡散の影響を防止するには、磁気結合層として厚さが0.8nmを超えることが好ましく、またRu、Rh、Cr、Irなどを用いることが好ましい。また強磁性層Aや強磁性層Bには、CoFeなどのCo合金を用いること、磁気結合層の凹凸を磁気結合層の厚みと同等かそれ以下に抑えることが有効である。

【0234】さらに、磁化固着層の磁化方向規定熱処理では、強磁性層Aと強磁性層Bを同方向に飽和させる必要があるので、強磁性層Aや強磁性層Bの膜厚が2nm程度まで薄くなると、磁気結合層厚が0.8nm以下の場合は磁気結合層の反強磁性的結合磁界が約7kOeまたはそれ以上に増大し、実用的な外部磁界で磁化固着層の磁化方向規定熱処理が困難になってしまう。このため磁気結合層厚は0.8nmを超える厚さにした方が、実用的な外部磁界例えば7kOeで磁化固着層の磁化方向規定熱処理が可能であって好ましい。

【0235】表6の本発明の実施の形態において採用しているSyAF磁気結合層においては、CoFe合金で構成された強磁性層Aおよび強磁性層Bの厚みが2.5 nm、Ruで構成された磁気結合層の厚み0.9 nmとすることにより、反強磁性結合磁界は約4kOeであり、この程度の反強磁性磁界で磁化固着層の耐熱性確保を十分に良好に行うことができる。

【0236】本発明においては、強磁性層Aと強磁性層Bの磁性膜厚がほぼ等しいか、あるいは強磁性層Aの磁気膜厚が強磁性層Bの磁気膜厚よりも厚い構成が好ましい。強磁性層Aと強磁性層Bの磁性膜厚がほぼ等しい場合には、強磁性層Aの磁気膜厚が強磁性層Bの磁気膜厚よりも厚い場合に比べて、媒体磁界や縦バイアス磁界に対して磁化固着層の磁化が著しく安定である。

【0237】一方、強磁性層Aの磁気膜厚が強磁性層B の磁気膜厚よりも大きい場合には、強磁性層Aと強磁性 層Bの磁性膜厚がほぼ等しい場合に比べて、ESDによ る固着磁化反転のない良好なESD特性が実現できる。 この場合、強磁性層Aの磁気膜厚に対する強磁性層Bの 磁気膜厚の比が 0. 7~0. 9の範囲とすることが好ま しい。例えば強磁性層Aに2.5nmのCoFe合金、 強磁性層Bに2nmのCoFe合金とすることが好まし い。強磁性層Aと強磁性層Bの磁性膜厚がほぼ等しい場 合でも、磁気ディスクドライブに電流によって磁化固着 層の磁化を所定の方向に再固着する回路を組み込む (例 えば米国特許第5650887号)ことによって、ES Dによる固着磁化反転が生じても再固着できるドライブ が実現できる。200℃における」の値が0.02er g/cm²以上を実現するには、Mnを主成分とする、 IrMn、RhMn、RhRuMnなどからなるy-M n相、あるいはAuCuII形の規則化相を主相とする反

強磁性層(Mnの組成が0を超えて40%未満で実現し易い)を、あるいはPtMn、PtPdMn、NiMnなどからなる面心正方晶の規則化相(CuAuI型)を含む反強磁性層(Mn組成が40%以上70%以下で実現し易い)を、あるいはCrMnやCrAlなどのCr系反強磁性層を用いることが好ましい。

【0238】 さらにこれらの合金で200℃における J の値が0.02erg/cm 2 以上を高い抵抗変化率が得られる薄い反強磁性層にて実現するには、最密面が配向した結晶構造を実現することが必要である。

【0239】表8に示された配向度を表わすパラメータ である最密面からの回析線ピークのロッキングカーブ半 値幅 $\Delta \theta$ とTbおよびJの関係から、半値幅 $\Delta \theta$ が8° 以下でJの値がO. O2erg/cm²以上が得られ、 本発明の磁気抵抗効果ヘッドが実現できることがわか る。PtMnなどの面心正方晶に規則化した反強磁性 層、CrMnなどのbcc系の反強磁性層でも同様に最 密面が配向すると薄い反強磁性膜厚で高Tbかつ200 ℃での高い J が実現できる。ここに最密面は、f c c 相 の場合は(111)ピークを、hcp相の場合は(00 2) ピークを、bcc相の場合は(110) ピークをそ れぞれ意味する。また、面心正方晶からなる規則化相を 含むPtMnなどの場合には、残存するfcc相が(1 11) 面配向していること、あるいは規則化した面心正 方晶の(111)面が配向していることを意味する。な おfcc相やhcp相の場合、積層欠陥を含んでもよ

【0240】なお、図20に示すように、最密面からの回析線ピークのロッキングカーブ半値幅はヘッド断面からの透過電子顕微鏡回析像における最密面スポットの膜面垂直方向からの揺らぎによっても表現でき、X線回析によるロッキングカーブ半値幅と透過電子顕微鏡回析像の最密面スポットの揺らぎ角度は概ね一致する。

【0241】このような良好な最密面配列を実現するには、スピンバルブ膜の成膜を酸素ガスなどの不純物を極力抑制した雰囲気で行う。例えば10分です台にまで予備排気ができる装置による成膜、500ppm以下に酸素含有量を抑制したスパッタターゲットを用いた成膜、基板バイアススパッタなどの方法により適度なエネルギーをスパッタ原子が基板に堆積する際に与える成膜、アルミナキャップ層とスピンバルブ膜との間に下地層、例えば、Au、Cu、Ag、Ru、Rh、Ir、Pt、Pdなどの貴金属単体あるいは合金下地層や、NiFe、NiCu、NiFeCr、NiFeTaなどのNi系合金層を設ける、などの方法がある。

【0242】以上、「耐熱性と再生出力の向上」に関する本発明の第2~第6の実施の形態に関する共通的な技術思想について概説した。

【0243】次に、本発明の第2~第6の実施の形態について詳細に説明する。

【0244】 (実施の形態2) 図17に本実施形態にかかる磁気抵抗効果へッドの一例を示す。図17においてアルチック(Al_2O_3 ・TiC)基板10に下シールド11、下ギャップ膜12を形成し、その上にスピンバルブ素子13を形成する。ここに下シールド11は、厚み $0.5\sim3$ μ mを有するNiFe、Co系アモルファス磁性合金、FeA1Si合金などであって、NiFeやFeA1Si合金では研磨により表面凹凸を除去することが好ましい。また下ギャップ膜12には厚み $5\sim1$ 00nmのアルミナや窒化アルミなどが用いられる。

【0245】スピンバルブ素子はスピンバルブ膜14と一対の縦バイアス膜15および一対の電極16から構成される。スピンバルブ膜は、Ta、Nb、Zr、Hfなどの厚み $1\sim10$ nmの非磁性下地層141、必要に応じて厚み $0.5\sim5$ nmの第2の下地層142、反強磁性層143、磁化固着層144、厚み $0.5\sim4$ nmの中間層145、磁化自由層146、必要に応じて厚み $0.5\sim10$ nmの保護膜147から構成される。

【0246】その上にギャップ層17、上シールド18が形成される。また図示していないが、さらにその上に記録部が形成される。ギャップ層17は厚み $5\sim100$ n mのアルミナや窒化アルミなどが用いられ、上シールド18には厚み $0.5\sim3$ μ mを有するN i Fe、C o 系アモルファス磁性合金、FeAlSi合金などが用いられる。

【0247】反強磁性層143としてIrMn、RhMn、RhRuMnなどのy-Mn系のMnリッチ合金や、PtMn、NiMnなどの面心正方晶の規則系合金が用いられる場合には、下地層142は、Cu、Ag、Pt、Au、Rh、Ir、Niなどまたはそれらを主成分とするAuCu、CuCrなどの合金、特願平9-229736号に記載のNi、Ni系合金、NiFe、NiFe系合金など、Ru、Tiなど、またはそれらを主成分とする合金からなるhcp相金属が好ましい。

【0248】また反強磁性層143としてCr系反強磁性合金膜を用いる場合には、下地層142は、上述した下地層でもよいが、bcc層からなるCr、V、Feなど、またはそれらを主成分とする合金からなる下地層も適する。

【0249】磁化固着層144は磁気結合層1442を介して反強磁性的に結合する2層の強磁性層Bの1441と強磁性層Aの1443からなる3層膜で構成されている。強磁性層Bと反強磁性層143との中間、または強磁性層Bと縦バイアス膜の反強磁性膜との中間に酸素、窒素などの非金属を挿入すると大きな抵抗変化が得られるので好ましい。この場合、非金属を挿入する層の厚さは0.2~2nmが好ましい。例えば、強磁性層A(または強磁性層B)をその中間に酸化層を介した強磁性層A(または強磁性層B)/酸化層/強磁性層B(または強磁性層A)が好ましい。

【0250】磁気結合層1442はRu、Rh、Ir、Crからなる金属、特に大きな反強磁性結合機能を有するRuや広い膜厚範囲で反強磁性結合機能を有するRuや広い膜厚範囲で反強磁性結合機能が得られるCrが好ましい。磁気結合層の膜厚としては、文献(Phy. Rev. Lett. 67. (1991) 3598) に示されているような反強磁性結合機能を発現できる膜厚であれば使用可能である。

【0251】図21にはCoの強磁性層およびCoFe合金の強磁性層の磁気結合層に、Ruを用いた場合の熱処理後のRu厚と反強磁性結合の低下度合の関係を残留磁化比Mr/Msによって示したものである。ここにMr/Ms=1は反強磁性結合が完全に消失、Mr/Ms=0が完全な反強磁性結合であることを示す。

【0252】図21に示されたように、磁気結合層にRuを用いた場合には、磁化固着層144の磁化方向を決める熱処理やその他のヘッド工程で場合によっては必要になる250~300℃での熱処理を施しても隣接する強磁性層B、強磁性層Aと磁気結合層との相互拡散による磁気結合機能などの特性劣化を生じない0.8nmを超えて1.2nm以下が好ましい。Ru層が0.8nm以下では相互拡散による反強磁性結合機能の低下について注意を払う必要があり、他方で1.2nm厚を超えると反強磁性結合が困難になる。また磁気結合層にCrを用いた場合には、Ruを用いた場合と同様な理由で、0.8nmを超えて1.5nm以下が好ましい。そして

0.8 nmを超えて1.5 nm以下が好ましい。そして 強磁性層Bおよび強磁性層AにはCoまたはCo系合金 が好ましい。

【0253】強磁性層Bおよび強磁性層Aに Co_{1-x} Fe合金(0 < $x \le 0$. 5)を用いれば、IrMn、RhMn、RhRuMnなどのy - Mn系のMnリッチ合金からなる反強磁性層 143との大きな交換結合係数が得られ、しかもRuと強磁性層Bおよび強磁性層Aとの拡散を防ぐことができるので特に好ましい。CoFe合金に代えてCoを用いる場合には、Jがおよそ2/3となり、また図21に示すように270 $\mathbb C$ 、1 時間保持程度の熱処理でも安定な磁気結合機能を維持できる磁気結合層の膜厚範囲がCoFe合金の場合に比べて狭くなる。

強磁性結合機能の耐熱性を維持するために重要であって、10 n m² 程度の膜面内の微小領域にて、磁気結合層の厚みよりも大きな表面凹凸が発生すると、反強磁性結合機能の耐熱性が劣化する。従って磁気結合層の表面凹凸の大きさは磁気結合層の膜厚以下であることが好ま

【0254】なお、磁気結合層の表面平滑性も、その反

【0255】表9に強磁性層Aと強磁性層Bの膜厚に対するスピンバルブ膜面抵抗Rs、面抵抗変化 ΔRs および抵抗変化率 ΔR/Rの変化を示す。また図22にはスピンバルブ膜の磁界に対する抵抗値の変化を示す。

[0256]

【表4】

表 9

スピンパルブ膜の構成:

Ta/Au/CuMn/強磁性層A (CoFe)/Ru (0. 9 mm) /強磁性層B (CoFe)/Cu (2. 5 nm)/磁化自由層

(CoFe 4nm)/Ta 熱処理:270℃、1時間

強磁性層A 厚さ(nm)	強磁性層B 厚さ(nm)	抵抗変化率 AR/R(%)	表面抵抗值 Rs(Q)	表面抵抗変化量 ARs(Q)
7	7	7. 2	7. 5	0.54
5	5	8.0	9.8	0.78
3	3	8. 6	12	1.08
2	2	8.4	14.1	1.18
1	1	8.0	15.3	1.22
0.5	0.5	5.9	15.6	0.92

表9から、強磁性層Bと強磁性層Aの膜厚は1~5 nmが大きな抵抗変化率を得るために好ましく、特に1 nm~3 nmの膜厚が図22に示された外部磁界に対して安定な(+6000eの外部磁界を加えても抵抗の低下が僅か)磁化固着層に加えて、大きなスピンバルブ膜面抵抗Rsが得られ、面抵抗変化ΔRsも満足できるものであるので特に好ましい。ここで、再生出力はセンス電流と抵抗変化の積に比例し、抵抗変化は抵抗変化率とスピンバルブ膜の面抵抗の積に比例するので、抵抗変化率が大きいだけでは面抵抗が小さい場合には高出力を得ることができない。即ち、高出力を得るには、高い抵抗変化率とともに、高い面抵抗が必要である。

【0257】図23は強磁性層Aの膜厚を3nm一定とし、強磁性層Bの膜厚を変えた場合の磁界による抵抗変化を示す図である。

【0258】図23にみられるように、強磁性層Aと強磁性層Bの磁気膜厚とを等しくすると、+6000eの高磁界による抵抗の変化が小さく、従って媒体磁界、縦バイアス層からの磁界や、記録部形成熱処理時の外部磁界などに対して著しく安定な磁化固着層が実現できる。

またESDによる磁化固着層の磁化反転の問題は、すでに述べたようにドライブに組み込んだ固着磁化方向を補償する回路による電流で、磁化方向を所望の方向に戻すことにより対応できる。

【0259】一方、強磁性層Aと強磁性層Bの磁気膜厚を異ならせることによって、以下の利点が得られる。まず第1に、スピンバルブの基本的な構成である磁化自由層と磁化固着層の磁化を直交させるための、熱処理による磁化固着の操作が容易になる。第2に、強磁性層Bの膜厚と抵抗変化率との関係を示す表10によって明らかなように、強磁性層Bの磁気膜厚を強磁性層Aの磁気膜厚を強磁性層Aの磁気膜厚を強磁性層Aの磁気膜厚を強磁性層Aの磁気度率が得られる。第3にESDによる磁化固着層の磁化反転がほとんど起こらなくなり、ブレークダウン電圧近傍まで安定な再生出力が得られる。ここにブレークダウン電圧はスピンバルブ素子が電圧により破壊してスピンバルブ素子抵抗が増大し始める電圧である。

[0260]

【表5】

表10 スピンパルプ難の様成:

Ta(5nm)/AuCu(2nm)/CoFe(5nm)/Cu(3nm)/強磁性層A(CoFe)/Ru(0.9nm)/強磁性層B(CoFe)/IrMn(10nm)/Ta(5nm)

強磁性層A 厚さ(nm)	強磁性層B 厚さ (nm)	抵抗変化率 Δ R / R (%)
3	3	7. 3
3	2.5	7.8
3	2	7. 7

例えば強磁性層A、強磁性層Bおよび磁化自由層にそれぞれ、Co、CoFeおよびNiFeを用いて、非磁性中間層にCuを用いた場合には、強磁性層Bと強磁性層Aの磁気膜厚の比を0.7~0.9に設定して強磁性層Bの厚みを2.5 nmに設定した場合に、図24、図25および表11に示すような良好なESD特性を得ることができる。ここに図24および図25はスピンバルブ素子にヒューマンボディモデルによる模擬のESD電圧

を与えた後の抵抗と出力を示し、図24は強磁性層Aと 強磁性層Bの磁気膜厚が等しい場合、図25は強磁性層 Aの磁気膜厚が強磁性層Bの磁気膜厚より大きい場合を 示す。また表11はスピンバルブ素子に対するテストパ ターンによるESD特性を示したものである。

[0261]

【表6】

表11

スピンパルブ随様成:

Ta (5 nm) /磁化自由層/Cu (3 nm) /強磁性層A/Ru (0. 9 nm) /強磁性層B/1 rMn (10 nm) /Ta (5 nm)

素子構成:パターンニング無しの下シールド、下キャップ上に形成したCoPt/FeCo 下地ハード環線パイアスおよびおよび電極が縦パイアス間隔よりも狭いリードオーパーレ イドを用いた構造(シールドは無し)。

電極間隔=1.3 µm

磁気膜厚比 (lit·l) A / (lit·l) B	強磁性層A	独磁性層形	磁化自由層	因考磁化 反転電圧	ブレーク ダウン電圧
0.75	Cofe (Ing)	CoFe(1. §nn)	CoPe (Sum) /FiPe (1. 5nm)	反転せず	7 0 V
0.8	CoPe (2, Smg)	CoFe (2nm)	CoFe (3nm) /NIFe (1.5mm)	反転せず	7 5 V
0.83	CoFe (3mm)	CoPe (1. 5nm)	CoFe (4nm) /FiFe (1.8mm)	反転せず	70 V
0.85	Co (2nm)	Co (1. 7sm)	Co (0. 5nm) /#1Fe (4mm)	反転せず	7 O V
0.71	Cafe (2. 4mg)	CoFe (1. 7am)	CoFe (1um) /NiFe (3am)	6 E V	75 V
0.88	CoFe (2, 4nn)	CoFe (2. 1mm)	Cofe (Jan) /Nife (Jan)	6 5 V	75 V
1	Cofe (3nn)	CoPe (3zm)	CoFe (4nm) /#iPe (1.8mm)	50 V	7 5 V
0.667	CoFe (3nm)	CoFe (2an)	CoFe (3nm)/NiFe (1.5mm)	5 5 V	75 V
0.93	CoFe (3nm)	CoFe (2. 8nm)	CoFe (1mm) /NiFe (3mm)	5 5 V	70V

これはESD発生時に、磁化固着層には電流磁界を主とする磁界が強磁性層Bに対し、強磁性層Aに対するよりも強く加わるが、その電流磁界の比、 $H(current)_B$ / $H(current)_A$ が、磁気膜厚の逆比、 $(Ms \cdot t)_A$ / $(Ms \cdot t)_B$ とほぼ一致するために、強磁性層Aと強磁性層Bの磁化と外部磁界とのエネルギーの変化量が相殺して、全体としてのエネルギー変化、

{ $(M s \cdot t) \cdot H \text{ (current)}}_{A} - \{ (M s \cdot t) H \text{ (curreent)} \}_{B}$

が小さい状態が実現でき、その結果ESD電流磁界では 磁化固着層の磁化を動かすことができないためである。

【0262】図23に示すように、強磁性層Aが3nm、強磁性層Bが2nmであって、従って(Ms・t)_B/(Ms・t)_A=0.67となる場合には、強磁性層A、強磁性層Bとも3nmの同図(a)の場合に比べて、H_{UA}*が低下し、従って磁化固着層の耐熱性も低下する。このように強磁性層Aよりも強磁性層Bの磁気膜厚を小さくした場合には、強磁性層Bに加わる反強磁性層からのバイアス磁界と同じ方向(即ち、強磁性層Bの磁化と同じ方向)にセンス電流からの磁界が加わるように、センス電流の通電方向を選ぶことが好ましい。その理由は強磁性層Aの方が磁気膜厚が大きいと、従来の単層の磁化固着層のスピンバルブ膜と同様に、強磁性層Aと強磁性層Bとの磁気膜厚差に相当する漏洩磁界が磁化自由層に加わるので、磁化自由層と磁化固着層との磁化直交配置が乱され、再生出力の低下は再生波形の上下非

対称が増大するなどの問題を生じるが、この漏洩磁界は、スピンバルブにおける磁化と漏洩磁界を示す図26に示されるように、センス電流による磁界が交換バイアス磁界と同方向に加わるようにセンス電流を流すことによって相殺することができる。

【0263】非磁性中間層にはCu、Au、Ag 単体またはそれらを主成分とする合金を用いることが好ましい。その膜厚は抵抗変化率を得られる範囲である $1\sim1$ 0 n m程度であれば基本的に使用できるが、特に本発明のスピンバルブ膜では、1. 5 n m \sim 2. 5 n m o p p 範囲が、磁化固着層と磁化自由層の間に発生する強磁性的結合磁界を15 O e 以下に抑制でき、且つ高い抵抗変化率が得られるのでとくに好ましい。

【0264】磁化自由層には、CoやCoFe、CoNi、CoFeNiなどのCo合金、NiFe合金またはそれらの積層構成、例えば中間層側に $0.3\sim1.5nm$ の薄いCoを介したNiFe合金が用いられる。そして磁化自由層の膜厚は、 $1\sim10nm$ が好ましい。

[0266]

【表7】

表12

磁化自由層 厚さ (ma)	強磁性層A =強磁性層B 厚さ(tm)	販検変化率△R/R * 融化自由圏がC o F e 単層 (%)	抵抗変化率ΔR/R = * 配化自由層が中間層機に1nm CoをはさんだNIFe(%)
1	2. 5	6. 2	5. 7
2	2. 5	7. 5	7.0
3	2. 5	7. 9	7. 2
4	2.5	7. 8	7. 2
5	2.5	7. 5	7. 1
6	2.5	6. 9	6.4
7	2.5	6. 6	. 6.0

強磁性層Aと強磁性層Bは同じ厚さでCoFe合会を用いた。

表 1 3 は磁化自由層の厚さを 4 n m 一定とし、磁化固着層の強磁性層 A の厚さと抵抗変化率 Δ R \angle R との関係を示した表である。表 1 1 に示すように、2 \sim 5 n m の磁化自由層の厚み t (F) と強磁性層 A の厚み t (P) との間に、

 $-0.33 \le \{t(F) - t(P)\} / t(F) \le 0.$

6 7

の関係を有することが、高い抵抗変化率を得るために好 ましい。

[0267]

【表8】

表	1	3		

4. 5

磁化自由層厚さ 強磁性層A厚さ 抵抗変化率 t (F) t (P) AR/R (t(P) - t(P)) / t(P)(mm) (mm) (%) 4.5 1 4. 7 0.78 4.5 1.5 6. 9 0.67 4. 5 2 7.1 0.56 4. 5 3 7. 9 0.33 4. 5 4 7. 7 0.11 4. 5 5 7. 3 -0.114. 5 6 6.8 -0.33

5. 9

-0.66

離化自由層はCoFe合金 強磁性層Aと強磁性層BはCoFe合金 強磁性層Bの厚さは3nm

7

保護膜にはTa、Nb、Zr、Cr、Hf、Ti、M o、Wなどの金属またはそれらの合金あるいはそれら金 属の酸化物、窒化物などが用いられる。特に酸化物や窒 化物では、例えばNiFe酸化物、窒化アルミ、タンタ ル酸化物などの髙抵抗の保護膜が、高い抵抗変化率を得 るために好ましい。その膜厚は例えば0.3~4nmと 極力薄いことが後程述べる電極や縦バイアス層を形成す る上で保護膜のエッチングによる除去が容易になるので 好ましい。また、Ag、Au、Ru、Ir、Cu、P t、Pd、Reなどの貴金属単体または合金単層または 積層体を、例えばCoFe磁化自由層の場合には、Cu /Ru、Cu、Au、Cu合金など、NiFe磁化自由 層の場合にはAg、Ru、Ru/Ag、Ru/Cu、C uなどを保護膜に用いてもよい。酸化物、窒化物、貴金 属保護膜の上にさらにTaなどの高抵抗保護膜を形成し てもよい。

【0268】磁化固着層と磁化自由層の磁化を直交させることは、次の方法によって実施できる。即ち、反強磁

性層 143 が Ir Mn、Rh Mn、Rh Ru Mn などの γ - Mn 系のMn リッチ合金の場合は、スピンバルブの 成膜を行う際に、磁気結合層 1442 までの成膜を行う際に、磁気結合層 1442 までの成膜を 地で行った後に、反強磁性層 143 の交換結合バイアス 磁界方向を一方向に揃えるために熱処理を施す。なおを で で の反強磁性層 143 の交換結合バイアス 磁界方向を 一方向に揃えるために熱処理を施する ない この反強磁性層 143 の交換結合バイアス 磁界 方向に揃えるための熱処理は、強磁性層 Bの成膜 143 を で もよいが、Ru などの磁気結合層がより酸化に強いため、磁気結合層 1442 層まで成膜した方が好ましい。 この熱処理は、成膜後 リークをすることなく真空 いて ひまり高い温度にて 短時間、 好ましくは 10 分 で 1 方 の の 1 1 で 1 の の 1 1 の 1 で 1 の 1 の 1 で 1 の 1 の 1 で

【0269】次にリークをすることなく、少なくとも磁気自由層成膜中にはスピンバルブ素子のトラック幅方向に磁界を加えてその後のスピンバルブ素子の成膜を行

う。反強磁性層143がPtMnやNiMnの規則化合金の場合も同様であるが、γ-Mn系の反強磁性層とは異なり、必ずしも強磁性層Bまでの成膜を磁界中で行う必要はなく、その後の熱処理を200℃以上の高温、好ましくは270~350℃で数時間、好ましくは1~20時間行う必要がある。熱処理後は同様に磁化自由層の成膜中に磁界を付与してその後のスピンバルブ成膜を行う。

【0270】なお、いずれの反強磁性層も、スピンバルブ成膜中での熱処理を、スピンバルブ成膜後に行うこともできる。その場合には、磁気結合層1442の結合磁界を上回る磁界を加えて、強磁性層Aと強磁性層Bの磁化を完全に同方向(ハイト方向)に飽和させて熱処理することが好ましい。例えば、強磁性層B/磁気結合層/強磁性層Aが、CoFe2nm/Ru0.9nm/CoFe2nmの場合、Ruの結合磁界は約6kOeであることから、熱処理中に加える磁界は7kOe以上が好ましい。この熱処理時に加える磁界を小さくするためには、スピンバルブ膜を素子形状に加工する前に熱処理を行うことが好ましい。加工後では素子形状による反磁界のために、強磁性層Aと強磁性層Bを飽和させるのにより強い磁界が必要になる。

【0271】以上の方法により、磁化固着層144の磁化を所望の方向に固定させる。しかし、上記の熱処理が強い場合には、磁化自由層146や下シールド11の磁化容易軸が磁化固着層と同様にスピンバルブ素子のハイト方向に向いてしまい、磁化固着層の磁化と直交させることが困難になる。磁化自由層や下シールドの磁化容易軸をトラック幅方向に向けるには、記録へッドにおけるレジストキュア工程において、シールドや磁化自由層がトラック幅方向に飽和する必要最小限度磁界、例えば100~3000e程度を加えて、シールドや磁化自由層の磁化容易軸をトラック幅方向に安定化することが好ましい。また、下シールドはスピンバルブ成膜前にあらかじめ熱処理により、磁化容易軸をトラック幅方向に安定化しておくことが好ましい。

【0272】図17に示したアバットジクションタイプの素子構造、即ち、磁化自由層のトラック幅端部を除去してそこに縦バイアス層を形成した素子構造では、縦バイアス層に硬質磁性膜例えばCrやFrCoなどの下地の上に形成したCoPtやCoPt Cr など、あるいは強磁性層151と反強磁性層152を順次積層して強磁性層をハード化したものが用いられる。先に反強磁性層152 を成膜して、次に強磁性体層151 を成膜して、次に強磁性体層151 を成膜して、次に強磁性体層151 を成膜して、次に強磁性体層151 を成膜して、次に強磁性体層151 を成膜して、次に強磁性体層151 を成膜に大変を成膜に大変を表現であるには、磁化自由層が151 を151 を

は磁気膜厚で3~6 nmT程度まで薄くなると、(Ms・t) $_{IB}$ /(Ms・t) $_F$ を2以下にするために、縦バイアス強磁性層も非常に薄くなり、例えば磁気膜厚で12 nmT以下となる。

【0273】ところが一般に硬質磁性膜では10nm厚程度に薄くなると高保磁力が得難くなる。例えばMsが1TのCoPt硬質磁性膜では、20nm厚では、2000eの高保磁力であったものが、10nmでは8000eに低下する。一方、強磁性膜/反強磁性膜タイプの縦バイアス層では強磁性膜151が薄くなるほど交換バイアス磁界が増大して固着が強固となる。例えば、Msが1TのNiFeと7nm厚のIrMnを積層した縦バイアス層では、20nm厚で800eであった保磁力が10nm厚では1600eにまで増大する。この1600eは、従来のMRへッドで実績を有する値である。従って磁化自由層の厚さが極薄い領域、例えば5nm厚以下となるような領域では、強磁性膜/反強磁性膜タイプの縦バイアス層を用いることが望ましい。

【0274】さらに、強磁性膜151/反強磁性膜152の縦バイアス層では、強磁性膜151の飽和磁化は磁化自由層の飽和磁化とほぼ等しいか、それより大きいことが、なるべく小さな縦バイアス磁界でバルクハウゼンノイズを十分に除去する上で好ましい。即ち、強磁性膜151としてはNiFe合金でもよいが、より飽和磁化の大きいNiFeCo合金、CoFe合金、Coなどがより好ましい。強磁性膜151として飽和磁化の小さい膜を用いて、その膜厚を大きくすることにより、漏洩磁界を強めてバルクハウゼンノイズの除去を行うと、特に狭いトラック幅になると再生出力の低下を引き起こす。

【0275】なお、図17ではスピンバルブ膜全部を除 去しないで、縦バイアス層を形成した場合を示したが、 下地層141までエッチング除去してもよい。しかし強 磁性層の結晶性を良好に保つためには、縦バイアス層を 形成する前のエッチングする深さとして、少なくとも下 地層142を残してその結晶性改善効果を利用すること が好ましい。膜厚制御の観点からは、より厚い反強磁性 層143を若干エッチングして、その交換バアイスを弱 めて良好なハード膜特性の縦バイアス層を得ることが好 ましい。非磁性中間層の途中までエッチングを終了して その上に強磁性膜151/反強磁性膜152からなる縦 バイアス層を付与してもよい。なお、結晶性改善のため に、あるいは磁化固着層や反強磁性層143と縦バイア ス層との磁気結合を弱めるために、強磁性膜151の下 に、下地層143と同様にごく薄い下地層153を設け てもよい。磁化自由層と縦バイアス層との磁気結合の低 減を最小限に止めるために、下地層153の厚みは10 nm以下が好ましい。

【0276】硬質磁性膜を用いる場合にも、同様に磁化自由層と硬質磁性膜の飽和磁化を揃えることが好ましい。しかし、CoFeなどの高い飽和磁化自由層に匹敵

する高い飽和磁化の硬質磁性膜を作製することは通常困難である。そこで硬質磁性膜の下地としてFeCoのような高い飽和磁化の膜を用いて、磁化自由層との飽和磁化とのバランスを保つ方法が、小さな縦バイアス磁界でハルクハウゼンノイズを除去するのに適する。

・【0277】反強磁性膜152には、スピンバルブ膜に用いたものと同様な反強磁性体を用いることができる。しかし、スピンバルブの反強磁性層の交換バイアス磁界はハイト方向、そして縦バイアス層の反強磁性膜152の交換バイアス磁界はトラック幅方向と、互いに直交させる必要がある。そこで、例えば両者のブロッキング温度Tbを異ならせて、最初に高いTbを有する反強磁性層の交換バイアス磁界方向を熱処理により規定した後、それより低いTbを有する反強磁性膜に対してより低温の熱処理を行って、高Tb反強磁性層の交換バイアスムス方向を安定に保ったまま、低いTbを有する反強磁性膜の交換バイアス磁界方向を設定することにより、互いの交換バイアス磁界を直交させることができる。

【0278】具体的には、反強磁性膜152には、Pt MnやPdPtMnなどの熱処理により、Huxを発現す る反強磁性膜でもよいが、磁化固着層が安定な温度で熱 処理できるTbが200~300℃の、RhMn、Ir Mn、RhRuMn、FeMnなどを、スピンバルブ膜 の反強磁性層にはそれよりTbが高い反強磁性体、即 ち、IrMn、PtMn、PtPdMnなどを用いる と、前述したレジストキュア熱処理工程にてスピンバル ブ膜の磁化固着層磁化の方向を乱すことなく、反強磁性 膜152の交換バイアス方向をトラック幅方向に規定で きる。即ち、本発明の特徴であるブロッキング温度以下 でピン磁化が急激に安定化する性質を利用することによ って、両反強磁性膜の間のブロッキング温度差がわすが 数十℃であっても、縦バイアスと磁化固着層磁化とを良 好に直交させることができる。また反強磁性膜152に 磁界中成膜で交換バイアス磁界を付与できるIrMn、 FeMn、RhMn、RhRuMn、CrMnPt、C rMnなどを用いると、熱処理が不要なために、スピン バルブ膜の反強磁性層143のバイアス磁界方向が乱さ れることはなく、スピンバルブ膜の反強磁性層143に どのような反強磁性層を用いても、縦バイアス方向と磁 化固着層磁化方向とを直交させることができる。

【0279】一方、図27に示すように、磁化自由層のトラック幅端部の保護膜147のみをエッチング除去して、その上に反強磁性膜を交換結合積層した構造でも、磁化自由層に縦バイアスを加えることができる。縦バイアス層15は反強磁性層152とその下地として磁化自由層との交換結合を強めるためのバッファ層1511を介することが好ましい。このバッファ層1511はFe、Co、Niなどからなる強磁性層であることが好ましい。縦バイアスの磁化方向の規定は強磁性層151/反強磁性層152の縦バイアスの場合と同様である。反

強磁性層を用いた縦バイアス方式は、硬質磁性膜方式のように余分な縦バイアス磁界を発生させてヘッドの感度 低下を引き起こしたりすることなく、バルクハウゼンノ イズを抑制できる利点がある。

【0280】(実施の形態3)図28に本発明の第3実施形態を示す。図28は図21とはスピンバルブ膜の構造が異なる。図27において、下ギャップ12の上に形成されたスピンバルブ膜14は、Ta、Nb、Zr、Hfなどの厚さ1~10nmの非磁性下地層141、必要に応じて厚み0.5~5nmの第2の下地層142、磁化自由層146、厚さ0.5~4nmの中間層145、磁化固着層144、反強磁性層143、必要に応じて厚さ0.5~10nmの保護膜147から構成される。ここで磁化自由層(フリー層)146、中間層145、磁化固着層144、反強磁性層143は実施形態2と同じ構成である。

【0281】下地層142には、Au、Cu、Ru、Cr、Ni、Ag、Pt、またはRh、またはそれらを主成分とする合金を用いると、特に磁化自由層にCoFe 合金を用いた場合に抵抗変化率の耐熱性を高めることができる。

【0282】図27において、図21と同じ一対の縦バイアス層15、一対の電極16によりスピンバルブ14と合わせてスピンバルブ素子13が構成される。さらにその上に図21と同様、上ギャップ層17、上シールド18が構成される。

【0283】 (実施の形態4) 図29は本発明のさらに 他の実施形態であって、本発明をデュアルタイプのスピ ンバルブ構造に適用した場合の例を示すものである。

【0284】図29においては実施形態2の図21および実施形態3の図27の場合と同様に、下シールド11、下ギャップ12の上に、一対の縦バイアス層15、一対の電極16、縦バイアス層15、スピンバルブ膜14からなるスピンバルブ素子13が形成され、その上に上ギャップ17、上シールド18が形成される。しかし、電極16の間隔やスピンバルブ膜14の構成が図21および図27とは異なる。

【0285】スピンバルブ膜14は、Ta、Nb、Zr、Hfなどの厚さ1~10nmの非磁性下地層141、必要に応じて厚さ0.5~5nmの第2の下地層142、反強磁性層143、磁化固着層144、厚さ0.5~4nmの中間層145、磁化自由層146、厚さ0.5~4nmの第2の中間層148、第2の磁化固着層149、第2の反強磁性層150、必要に応じて厚さ0.5~10nmの保護膜147から構成される。

【0286】磁化固着層144と磁化固着層149の少なくとも一方に、図17と同じ強磁性層A、磁気結合層、強磁性層Bからなる積層磁化固着層を用いる。そして1)磁化固着層149にはSyAF磁化固着層、磁化固着層144には従来の単層磁化固着層の組み合わせ、

2) 逆に磁化固着層144にはSyAF磁化固着層、磁化固着層149には従来の単層磁化固着層の組み合わせ、あるいは3) 磁化固着層149と磁化固着層144の双方ともSyAF磁化固着層の組み合わせを用いることができる。

【0287】縦バイアス層15はいわゆるアバットジャンクションタイプの素子構造であるが、図17、図27、図28と同様な縦バイアス層15をリフトオフ法、即ち、フォトレジストをマスクにして、スピンバルブ膜のトラック幅端部をエッチング除去した後、スパッタ、蒸着、イオンビーム成膜などの方法により、縦バイアス層15を形成するのに際して、スピンバルブ膜14のエッチング除去を少なくともスピンバルブ膜14の事電体層部をのこすように行うことが好ましい。例えば反強磁性層143がIrMnのようなγ-Mn系合金の場合には、反強磁性層143の一部を少なくとも残すことが好ましい。

【0288】トラック幅端部に導電体部を残すと、アバットジャンクションの接触抵抗が下がるので、低抵抗のスピンバルブ素子13が実現しやすく、このため静電気に対して強いヘッドが実現できる。勿論、トラック幅端部のスピンバルブ膜のすべてをエッチング除去して縦バイアス層を形成してもよい。

【0289】電極16は縦バイアス層と一括してリフト オフ形成してもよいが、この場合は電極間隔と縦バイア ス層の間隔がほぼ一致する。あるいは電極形成を縦バイ アス層形成とは分離して、電極間隔を縦バイアス層の間 隔より狭めて形成した、いわゆるリードオーバーレイド 構造としてもよい。リードオーバーレイド構造とする と、特に縦バイアス層に硬質磁性層を用いた場合には、 硬質磁性層からの漏洩磁界の影響を電極とスピンバルブ 膜が積層されているトラック幅エッジ部近傍に閉じ込め ることができ、電極間で規定される再生トラック幅の、 トラック幅方向の感度プロファイルシャープに高精度で 規定できるメリットがある。特に再生トラック幅がサブ ミクロンとなるような高密度記録では、そのメリットが 従来の方法に比べてより明確になる。このリードオーバ ーレイド構造は当然図21や図27の実施形態にも適用 できる。

【0290】(実施の形態5)図30は本発明のさらに他の実施形態である。図21に示した実施の形態2と同様に、基板(図示せず)上に下シールドおよび下キャップ(図示せず)を形成し、さらにその上にスピンバルブ膜13を形成し、さらにその上に図示していないが上キャップ、上シールド、記録部を形成する。スピンバルブ膜13のトラック幅両端には一対の縦バイアス層15および電極16を形成する。縦バイアス層には一例として、下地層153、強磁性膜151、反強磁性膜152からなる積層体を用いる場合を示した。縦バイアス層には当然CoPtなどの硬質磁性膜を用いることができ

る。

【0291】電極16はTa/Au/Taなどの低抵抗金属を少なくとも含む材料を用いて形成し、電極間隔LDは縦バイアス層間隔HMDよりも狭く形成され、スピンバルブ膜13と電極16はトラック幅両端近傍で面接触する領域を有する。縦バイアス層や電極は通常リフトオフにより形成されるが、イオンミリング法や反応性イオンエッチング法などにより形成してもよい。プロセス工程が煩雑になるが、特に高精度の電極形成にはドライブプロセスが適する。

【0292】縦バイアス層15が存在しない電極16直下のスピンバルブ膜13領域では、電極の抵抗値がスピンバルブ膜の抵抗値に比べて十分に小さい場合、例えば1/10以下の場合には、さらにスピンバルブ膜の磁化自由層146の磁化が媒体磁界がほぼゼロのとき、トラック幅方向にほぼ規定されていると、スピンバルブ膜の電極直下などの電極間以外の箇所では再生感度が大幅に低減されるので、電極間隔LDで再生トラック幅が規定でき、トラック幅端における急峻な再生感度分布が実現できる。

【0293】さらにスピンバルブ膜13と電極16は面接触領域が通常のアバットジャンクション方式と比べて十分広くとれるので、電極とスピンバルブとの接触抵抗が十分に小さく制御でき、その結果低抵抗のスピンバルブ素子が実現でき、低ノイズでしかもESDに強い磁気抵抗効果ヘッドが実現できる。

【0294】ここで今後記録密度を高めるために再生トラック幅を狭めてゆくには、電極間隔LDを狭めてゆく必要がある。一方、電極間隔が著しく狭くなると素子の幅、即ちハイトをそれ以上に狭めることは困難になる。従ってHDをLDよりも大きくすることが、ヘッドを母まりよく製造する上で好ましい。具体的には、ヘッド量産時の歩留まりを良好に保つために機械加工で寸法を決定するハイトについては 0.5μ m程度かそれ以上が必要であり、再生トラック幅が 0.5μ m以下に狭まる場合にはHDをLDよりも大きく設定することが好ましい。しかしその場合には以下の問題が発生する。

【0295】その第1の問題は、再生を行うスピンバルブ膜領域の抵抗が減少するために、再生出力が減少することである。この問題に対してはスピンバルブ膜の面抵抗を高めることによって回避された。通常のSyAF固着層では固着層厚が従来単層の磁化固着層よりも厚いので高い面抵抗を得るのが困難であったが、表14および表15に示すように、本発明では磁化固着層の厚み、非磁性中間層および磁化自由層の厚みの合計を14nm厚以下に抑えることにより、16Ω以上の高い面抵抗と8%以上の高い抵抗変化が両立できる。

[0296]

【表9】

表14 スピンパルブ原構成:Ta(5mm)/Au(2mm) 1 г Mm (3mm)/強駐性層B/磁化結合層/強磁性層A/中間非磁性層/磁化自由層/Ta

強磁性層 B 厚さ (339)	磁化結合層 厚さ(un)	強磁性層A 厚さ(ma)	非磁性中間 肩厚さ(ne)	磁化自由層 厚さ (m)	強磁性層B〜磁化自 由層合計算さ(zm)	R s {0}	ΔR/R (%)
Cofe(2nn) Cofe(1.5mn) Cofe(2nn) Cofe(2nn) Cofe(2nn) Cofe(2nn) Cofe(2nn) Cofe(2nn)	Ru (D. 9an) Ru (D. 9an) Ru (D. 9an) Ru (D. 9an) Ru (Jan)	Cofe (2 nm) Cofe (2 nm) Cofe (2 nm) Cofe (1. 5 nm) Cofe (2. 5 nm) Cofe (2. 5 nm)	Cu (2111) Cu (2.5111)	Co(inm)/N i Pe (5nm) Co(inm)/N i Fe (3nm) CoFe (3nm) CoFe (4nm)	10. 8 9. 9 12. 9 9. 9 10. 4	28. 5 19. 5 19. 5 18. 2 22. 8 19. 4	8. 3 8. 7 9. 7 8. 9 8. 1 10. 7 8. 1
Cofe (3an) Cofe (3an) Cofe (2 ins) Cofe (3nn)	Ru (0. 9an) Ru (0. 9an) Ru (0. 8an)	Cofe (3nn) Cofe (3nn) Cofe (3nn) Cofe (3nn)	Cu (3nm) Cu (3nm) Cu (3nm) Cu (2 5nm) Cu (3nm)	Cofe (1mm)/N Fe (4.5mm) Cofe (1mm)/N Fe (7mm) Cofe (3mm)/N Fe (7mm) Cofe (1mm)/N Fe (7mm) Cofe (5mm)	14. 8 14. 8 16. 8 14. 7	15 13 12 14.7 12.5	6. 5 7. 2 7. 3 8. 2

[0297]

表1:

【表10】

スピンパルプ製構成:Ta(5㎝)/NiFe(2㎜) PtMn(7.5㎜)/強磁性層B/磁化節合函/強磁性層A/中間非磁性層/磁化自由層/Ta

強磁性層B 厚き(Na)	磁化結合層 厚さ (m)	強磁性層A 厚さ (mm)	非磁性中間層 即さ(m)	磁化自由層 \ 呼さ(un)	強磁性層B~磁化自 由層合計厚さ(na)	R s (0)	ΔR/R (%)
Co(2mm)	Ru: (0.9am)	Co(2ma)	C tt (2. \$20)	Co(Imm)/NiFe(2nm)	10. 4	00.5	-
Co(2mm)	Rus (0. 9am)	C (2mm)	C u (2, 5mg)			23.5	18.5
		1	C 4 (2, 3116)	Co (0.5mm)/N i Fe (2mm)	9. 9	19.7	7. 9
CoFe(2mm)	R ut (0.9mm)	CoFe(2na)	Cu (2, 5mm)	CoFe(1mm)/NiFe(2mm)	9. 7	18.6	8. 7
CoFe(2mm)	Ru (0.9mm)	CoFe(2ma)	C u. (2. 5mm)	CoFe(3mm)	10.4	18.3	9. 1

【0298】このような極薄のスピンバルブ膜を用いて高抵抗変化率を実現するためには、1)磁化固着層の強磁性層Aと強磁性層Bにはfcc相が安定なCoFe、CoNi、CoFeNi合金を用いること、2)磁化自由層にも少なくとも中間非磁性層との界面近傍にはCo、CoFe、CoNi、CoFeNi合金を用いること、3)反強磁性膜にはPtMn、PtPdMn、IrMn、RhMn、RhRuMnなどの貴金属元素を含む反強磁性層を用いることが好ましい。

【0299】HDをLDよりも大きく設定する場合の第2の問題は、バルクハウゼンノイズの発生である。従来の電極間隔と縦バイアス膜の間隔HMDがほぼ一致するアバットジャンクション方式のスピンバルブ素子では、HMDがHDよりも小さくなり、磁化自由層の形状はHD方向が長い長方形形状になってしまい、反磁界が弱いハイト方向に磁化自由層の磁化が向きやすくなり、その結果バルクハウゼンノイズが発生する。これに対し、本発明ではスピンバルブ膜の形状がHMDがHDよりも大きくトラック幅方向に長いので、磁化自由層の磁化がハ

イト方向に向きやすくなるということがなく、このため バルクハウゼンノイズの除去は容易であり、この点に関 し歩留まりよくヘッド製造ができる。

【0300】具体例として、1) HD= 0.5μ m、LD= 0.45μ m、HMD= 1.3μ m、2) HD= 0.4μ m、LD= 0.35μ m、HMD= 0.8μ m などで本発明の効果が十分に発揮される。

【0301】なお、図29には磁化自由層と基板の間に磁化固着層が配置された場合を示したが、磁化自由層が基板と磁化固着層との間に存在する場合についても同様に適用できる。

【0302】 (実施の形態6) 図31に本発明のさらに他の実施の形態を示す。図示していない基板、下シールド、下ギャップを形成され、その上に一対の縦バイアス層15がリフトオフ法や、イオンミリングや反応性イオンエッチングなどのドライプロセスにより、形成される。図29においては縦バイアス層の一例として、実施の形態2で示したと同様の反強磁性層に適した下地層153、IrMn、RhMn、CrMnなどの反強磁性膜

152、CoFe、NiFe、Coなどの強磁性膜15 1の積層体からなる場合を示したが、実施の形態2で示 した他の各縦バイアス層が適用できる。

【0303】この上にスピンバルブ膜13が形成される。スピンバルブ膜13は、縦バイアス層からのバイアス磁界を有効に磁化自由層143に付与するために、磁化固着層より基板側に磁化自由層143を配置して縦バイアス層15と磁化自由層143の下地層141、142の厚みは縦バイアス層からのバイアス磁界を有効に磁化自由層に付与するために、10nmであることが好ましい。またスピンバルブ膜13と縦バイアス15との面接触領域は極力小さくすることがバルクハウゼンノイズを抑制する上で好ましい。

【0304】スピンバルブ13の上には一対の電極16 がリフトオフ法やイオンミリング法、反応性イオンエッ チング法により形成される。図示していないが、さらに その上に上ギャップ、上シールド、記録部が形成され る。

【0305】また実施の形態5にて示したと同様に、HDはLDより大きく、且つHMDより小さくすることにより、挟トラック幅に適した再生ヘッドがなく歩留まりよく製造できる。また、磁化固着層、非磁性中間層、磁化自由層の合計厚みを14nm以下とすることで、スピンバルブ膜13の抵抗値を高めて再生出力を高め、高感度な磁気抵抗効果ヘッドを得ることができる。

【0306】だ実6。

(第7の実施の形態:耐熱性及び鏡面反射効果と低磁歪の実現)次に、「耐熱性及び鏡面反射効果と低磁歪の実現」という観点から、本発明の第7の実施の形態について説明する。

【0307】まず、本実施形態の具体例を紹介する前に、本発明者が本実施形態に至る過程で認識した課題について説明する。

【0308】高性能のスピンバルブ膜(以下、SV膜と記す)を実用化するにあたって、本発明者が認識した課題は、以下に大別することができる。

【0309】(1) 耐熱性が悪い(特に初期プロセスアニールに対して)。

【0310】(2)再生感度のより一層の向上を図る上でMR変化率が不足している。

【0311】(3) 比較的大きなMR変化率が得られる CoFe合金層単層で感磁層を構成した場合に磁歪制御 ができず、良好な軟磁気特性が得られない。

【0312】これらのSV膜の課題について以下に詳述する。

【0313】(1)耐熱性

SV膜の感磁層の一般的な構成としては、NiFe(数nm)/Co(1nm程度)やNiFe(数nm)/CoFe(1nm程度)が知られている。このような感磁

層を用いたSV膜構造としては、

(a) Ta (5nm) / Ni Fe (10nm) / Co (1nm) / Cu (3nm) / Co Fe (2nm) / I r Mn (7nm) / Ta (5nm)

(b) Ta (5nm) /Cu (2nm) /CoFe (3nm) /Cu (3nm) /CoFe (2nm) /IrMn (7nm) /Ta (5nm) などが挙げられる。

【0314】上記したようなSV膜では、250 $\mathbb{C} \times 4$ H程度のプロセスアニールでas-depo 時のMR値に対して相対比で約20 %以上ものMR劣化が生じてしまう。例えば(a)のSV膜ではas-depo 時のMR変化率6. 4 %が250 $\mathbb{C} \times 3$ Hのアニール後には4. 7 %とas-depo 時に対して相対比で20 %以上も劣化してしまう。このアニール工程はヘッド作製上欠かすことのできない工程である。た、NiFeを感磁層として用いていない(b)のSV膜でも、as-depo 時のMR変化率は8. 1 %であるのに対して、250 $\mathbb{C} \times 3$ Hのアニール後には6. 5 %とas-depo 時と比較して約20 %の劣化が生じる。このようなMR変化率の劣化を磁気特性を犠牲にすることなく改善する手法、すなわち耐熱性の改善策は今のところ見出されていない。

【0315】高密度化に向けた磁気ヘッドでは、より高いMR変化率を有するSV膜が望まれているが、上述したように現在までに得られているSV膜では、asーdepo時に得られているMR変化率を、ヘッドの作製工程上不可欠な熱プロセスにおいて著しく低下させている。これは10Gdpsi以上といような記録密度に対応させたMRヘッドを開発する上で、是非とも解決しなければならない問題である。

【0316】(2)反射効果の利用によるMR変化率の向上

高MR変化率を達成するためには、(1)で示したasーdepo時に得られていたMR変化率を熱プロセス後にいかにして保つかということと共に、MR変化率の絶対値をいかにして上げるか、もしくはas-depo時ではフルポテンシャルのMR変化率が得られていなくても、熱プロセス後に良好なMR変化率が得られるような膜をいかにして実現するかということも重要である。

【0317】GMR効果は、電子の平均自由行程よりも短い範囲では磁性層/非磁性層の積層膜の層数が多いほどスピン依存散乱をうける回数が増えるので、MR変化率が大きくなる。しかしながら、SV膜構造のように、実際にヘッドで用いられるGMR膜の構造においては、磁化固着層/非磁性中間層/感磁層といったユニットしかないため、一般的には平均自由行程よりも短い膜厚になっており、MR変化率的に損をしている。

【0318】これを少しでも改善するために層数を増や した構造として、磁化固着層を上下2層とし、その間に 感磁層を配置したデュアルスピンバルブ膜(またはシメトリースピンバルブ膜(以下、D-SV膜と記す))が知られている。これも1つの対策ではあるが、現段階では実用上の問題を全て解決するまでには至っていない。例えば、感磁層にとっての下地が非磁性中間層となるD-SV膜では、感磁層の軟磁気特性、例えば反磁界 H_k や磁歪 λ などを全て満足させることは難しい。さらに、上下2つの磁化固着層を用いた場合、これら2層の磁性膜のブロッキング温度が等しいほうが望ましいが、実際には下側に位置している反強磁性膜と非磁性中間層や感磁層を介して上層側に位置する反強磁性膜の特性を等しくすることは難しい。よって、MR変化率の点からはD-SV膜は好ましい構成であるが、実用性という観点からは多くの課題を含んでいる。

【0319】そこで、現在実用化されている反強磁性膜が1層の一般的な構造のSV膜の特性を向上させる1つの手段として、鏡面反射効果が検討されている。これは磁性層/非磁性中間層/磁性層のGMR膜の基本ユニットの片側もしくは上下両側に反射膜を配して電子を弾性的に反射させ、GMR膜の基本ユニット内での平均自由行程を長くするものである。

【0320】従来はGMR膜の基本ユニットの上下層では非弾性的な散乱を受けていたため、本来もっているはずの平均自由行程の距離だけ電子が移動できず、GMR膜の基本ユニットの膜厚以上のスピン依存散乱を受けることができないため、MR変化率的に損をしていた。それが理想的な上下両層の反射膜を用いれば、見かけ上GMR基本ユニットが無限大の人工格子と等価になり、本来移動できるはずの平均自由行程の分だけスピン依存散乱を受けることができるようになるため、MR変化率が向上する。このように、非磁性中間層の上下に位置する磁性層の外側にある反射膜自体は、スピンに依存した反射膜でなくとも、スピンに依存しない反射で十分効果を発揮する。

【0321】上記した効果は一般的なSV膜構造に限らず、D-SV膜においても効果を発揮する。ただし、層数が元々多く、本来の平均自由行程分だけスピン依存散乱を受けている無限層数の人工格子においては、反射膜の効果はない。このように、元々の層数が少ないSV膜構造ほど効果が大きい。

【0322】従来、上述したような鏡面反射効果を積極的に利用したSV膜としては、以下に示すようないくつかの構造が提案されている。

【0323】(c) Si基板/NiO(50nm)/Co(2.5nm)/Cu(1.8nm)/Co(4nm)/Cu(1.8nm)/Co(2.5nm)/NiO(50nm)

(d) Si基板/NiO(50nm)/Co(2.5 nm)/Cu(2nm)/Co(3nm)/Au(0. 4 nm)

(Ref. J. R. Jody et. al., IEEE Mag. 33 No. 5. 3580(1997))
(e) MgO基板/Pt (10nm)/Cu (5 nm)/NiFe (5 nm)/Cu (2. 8 nm)/Co (5 nm)/Cu (1. 2 nm)/Ag (3 nm)
(Ref. 川分康博他、日本金属学会 1997年春季大会講演概要p142)

(f) Si基板/Si $_3$ N $_4$ (200nm)/Bi $_2$ O $_3$ (20nm)/Au(4nm)/NiFe(4nm)/Cu(3.5nm)/CoFe(4nm). (Ref. D. Wang et al., IEEE Mag 32 No. 5. 4278(1996))なお、上述したSV膜構造のうち、下線を付した部分が鏡面反射膜と考えられている部分である。

【0324】上記(c)のSV膜では、上下両層とも酸化物からなる鏡面反射膜を用いている。単純に考えても、電子の波の反射を起こすためには、金属よりもポテンシャルバリアの高い絶縁性の酸化物を用いたほうが、鏡面反射効果が大きく有効であると考えられる。さらに、NiO膜は酸化物反射膜であると同時に、反強磁性膜でもあるため、NiOに接している磁性層の磁化を固着する役割も果たしている。上記構成はD-SV膜であるが、ノーマルSV膜、反転SV膜などの反強磁性膜が1層の構造でも片側の鏡面反射は得られると考えられる。しかしながら、このような膜ではいくつかの不具合があり、現段階では実用的ではない。

【0325】まず、NiOは交換結合力が弱く実用性が低い。弱い結合磁界では記録媒体からの漏洩磁界によって磁化固着層の磁化方向が不安定となり、出力が変動するおそれがある。さらに、上層に酸化物層を用いる場合には、NiOにしろ、またキャップ層として別の酸化物を用いるにしろ、リード電極との接触抵抗が大きくなってしまう。接触抵抗の増大はESD(electro static discharge:静電破壊)を引き起こしやすくなるために望ましくない。さらに、CoFeを感磁層に用いた場合、CoFeはfcc(111)配向させなければ良好な軟磁性を実現できないことが分かっている。感磁層が下間に位置する場合に、感磁層の下地として酸化物層を用いることはCoFeにとってfcc(111)配向のバタファ層を失うことになるため、軟磁気特性との両立が困難となる。

【0326】また、(d)のSV膜では下地層にNiOの反射膜兼反強磁性膜を用い、さらに膜表面のAu層が反射膜となっている。また、(e)のSV膜でも同様に、膜表面のAg膜が反射膜となっており、Ag膜と膜表面とのポテンシャル差を利用して鏡面反射効果を引き出している。膜表面での反射膜として、AuやAgのような貴金属膜で効果が得られた理由は明らかではないが、1つの理由として(d)の文献には、膜表面での表面拡散が遷移金属より貴金属の方が起こりやすいために、貴金属膜表面では平坦性が高くなり、反射効果を引

き出しやすくなっているためであると記載されている。 【0327】上記したような金属膜を膜表面に用いた反射膜では、酸化物反射膜のときの問題点であったリード電極との接触抵抗が小さくできる点では有利である。しかしながら、AuやAgのような貴金属膜の膜表面での鏡面反射効果を利用した場合、実際の素子では効果が失われる可能性が高い。つまり、実際のMR素子やMRへッドではSV膜の表面がそのまま晒されていることはまれであり、何らかの膜がSV膜上に積層されることが普通である。

【0328】例えば、シールド型MRへッドにおいては、アルミナなどからなる上部磁気ギャップ膜がSV膜上に積層される。(d)の文献に記載されているように、鏡面反射効果は表面や界面での状態が反射効果に大きく影響する。それが元々膜表面での反射効果を利用していた膜の上に別の膜が積層されると、反射効果は当然変ってしまう。このように、SV膜上に積層される膜によりMR特性が変動する膜構造は、実用面で問題がある。

【0329】実際に、(d)のSV膜のAu膜表面に、通常保護膜としてよく用いられるTa膜を積層すると、反射効果が失われると報告されている。このように、膜表面での鏡面反射効果を利用したSV膜は、実際のデバイス構造を想定した場合には効果が変動してしまうため、実用的なSV膜とは言えない。

【0330】(f)のSV膜は(d)と同様にAu膜を 鏡面反射膜として用いているが、これは膜表面での反射 効果ではなく、金属膜同士の膜界面での鏡面反射効果を 引き出したものである。ここで、Au膜は適当な下地層 がない基板上に直接成膜するとアイランド成長しやすい ことが知られており、これを抑制するために(f)のS V膜では下地に工夫を凝らして、Au膜表面をできるだ けフラットにし、その上に積層されるNiFeとの界面 をシャープにしている。

【0331】しかしながら、(f)の下地層は実用的な手法とは言えない。すなわち、Au 膜を Bi_2O_3 膜上に成膜し、350 でアニールを行うと良好な反射効果が引き出せることを利用して、厚さ $20nmoBi_2O_3$ 膜を下地として用いている(Ref. C. R. Tellier and A. J. Tosser. Size Ellects in Thin Films, Chapter I. Else vier, 1982、L. I. Maissel et al., Handbook of Thin Film Technology. McGRAW—Hill Publishing Company, 1983)。

【0332】さらに、 Si_2O_3 膜の下地として厚さ2 $00nmoSi_3N_4$ 膜を用いている。つまり、合計220nmbo厚さの下地膜をAu膜の下地として用いた上に、350 Cという高温でのアニール工程を経ている。220nmという膜厚は今後高密度化に伴ってますます狭ギャップになることを考えれば著しく不利となるだけでなく、実用性は極めて低いものである。さらに、

350℃という高温での熱処理は、GMR膜にとって基本となるスピン依存散乱を起こす磁性層/非磁性中間層界面で界面拡散を招き、MR変化率が著しく劣化してしまう。この温度はたとえ耐熱性に優れたCo(CoFe)/Cu/Co(CoFe)積層膜を用いたSV膜でも界面拡散が生じてしまう温度である。

【0333】 (3) CoFeの磁歪制御

CoFe層を感磁層として用いる場合、fcc(11)1)配向した下地層を適用することでCoFe層をfcc(111)配向させ、これにより軟磁気特性を向上させることが可能であることが見出されている。ここでは、fcc(111)配向した下地層としてCu層やAu層が用いられている。しかしながら、軟磁気特性のもう1つの重要な要素である磁歪については全く制御されておらず、かつ耐熱性も下地層に大きく依存することを今回見出した。例えば、上記公報に基づくSV膜としては以下に示すような膜構造が挙げられる。

[0334] (g) Ta (5nm) /Cu (2nm) /CoFe (3nm) /Cu (3nm) /CoFe (2 nm) /IrMn (7nm) /Ta (5nm)

(h) Ta (5 nm) / Au (2 nm) / CoFe (3 nm) / Cu (3 nm) / CoFe (2 nm) / Ir Mn (7 nm) / Ta (5 nm)

上記した(g)の膜では、Cu膜はfcc(111)配向しており、このfcc(111)Cu膜上のCoFe 層もfcc(111)配向して軟磁性は実現できるものの、(i)耐熱性が悪い(as-depo:8.1%→250 $^{\circ}$ ×4H後:6.5%(MR変化率は相対比で20%劣化))、(ii)磁歪 $^{\circ}$ は一14×10 $^{\circ}$ と絶対値が大きいなど、必ずしも実用性を十分に満足しているとは言えない。磁歪 $^{\circ}$ の明確な指針はないが、1つの基準としては $^{\circ}$ この、磁空をはいる。

【0335】 さらに、fcc材料としてCuに代えてAuを用いた場合((h)の膜)にも、(i) 耐熱性が悪い($as-depo:8.4% \rightarrow 250 \mathbb{C} \times 4 H後:6.5% (MR変化率は相対比で<math>23\%$ 劣化))、(ii) 磁歪 λ は $+33\times10^{-7}$ と絶対値が大きいなど、Cu 膜を用いた場合と同様に、必ずしも実用性を十分に満足しているとは言えない。

スペーシング値の中間値にすれば、小さな適切な磁歪値をとることができることから、Cu上の小さすぎるdー(111)スペーシング値、Au上の大きすぎるdー(111)スペーシング値は好ましくないことが分かった。

【0337】このように、CoFe層からなる感磁層を用いる場合、単にfcc(111)配向させた下地層上に成膜しても、磁歪の点から不十分であることが分かった。なお、磁歪を満足させる手法の1つとして、零磁歪近傍でかつfcc(111)配向させた $Ni_{80}Fe_{20}$ 上にCoFeを成膜し、磁歪的にほぼ零のNiFeにより感磁層全体として磁歪を零にする構造(上記した(a)の構成)が挙げられるが、前述したようにこの構成はM R特性の熱プロセス劣化が大きいという問題を有している。

【0338】上述したように、従来のスピンバルブ膜は 熱プロセスによるMR変化率の低下が大きいことから、 スピンバルブ膜の耐熱性を向上させることが望まれてい る。

【0339】また、スピンバルブ膜のMR変化率の向上策として鏡面反射効果が注目されているが、従来のスピンバルブ膜における反射膜は酸化物などの絶縁物であったり、また膜表面での反射効果を利用したものであるため、例えばリード電極との接触抵抗の増大によりESDを引き起こしたり、あるいはスピンバルブ膜上に保護はどを形成すると鏡面反射効果が失われるなど、実用性に劣るなどの問題を有している。さらに、界面で反射効果を利用することも検討されているが、そのために多大な下地層を設ける必要があるなど、実用性は極めて低いものであった。このようなことから、素子や磁気ヘッドとしての実用性を考慮した上で、鏡面反射効果によりスピンバルブ膜のMR変化率を向上させることが望まれている。

【0340】さらに、スピンバルブ膜の軟磁気特性を高める上で、CoFe合金などからなるCo系磁性層の磁 歪を小さく制御することが求められている。

【0341】特に、鏡面反射効果によるスピンバルブ膜のMR変化率の向上効果や磁歪の低減効果については、スピンバルブ膜の実用性を高める上で、熱プロセスによる劣化を抑制する必要がある。

【0342】本実施形態はこのような課題に対処するために発明されたもので、熱プロセスによるMR特性の低下を抑制したスピンバルブ膜を有する磁気抵抗効果素子、また実用性を考慮した上で鏡面反射効果によりMR変化率を向上させたスピンバルブ膜、低磁歪を実現したスピンバルブ膜、さらにはこれらの熱プロセス劣化を抑制したスピンバルブ膜を有する磁気抵抗効果素子を提供することを目的としている。またさらに、そのような磁気抵抗効果素子を用いることによって、記録再生特性および実用性を向上させた磁気へッドおよび磁気記録装置

を提供することを目的としている。

【0343】以下、上述した課題を解決するための実施の形態について、図面を参照して説明する。

【0344】図32は、本発明の磁気抵抗効果素子(MR素子)の一実施形態の要部構造を示す断面図である。同図において、1は第1の磁性層、2は第2の磁性層である。これら第1および第2の磁性層1、2は、非磁性中間層3を介して積層されている。第1および第2磁性層1、2間は反強磁性結合しておらず、非結合型の磁性多層膜を構成している。

【0345】第1および第2の磁性層1、2は、例えば Co単体やCo合金のようなCoを含む強磁性体により 構成されている。磁性層1、2はNiFe合金などで構 成してもよい。これらのうち、特にバルク効果と界面効 果を共に大きくすることができ、大きなMR変化量が得 られるCo合金を用いることが好ましい。

【0346】磁性層1、2を構成するCo合金としては、CoにFe、Ni、Au、Ag、Cu、Pd、Pt、Ir、Rh、Ru、Os、Hfなどから選ばれる1種または2種以上の元素を添加した合金が用いられる。添加元素量は5~50原子%とすることが好ましく、さらには8~20原子%の範囲とすることが望ましい。これは、添加元素量が少なすぎるとバルク効果が十分に増加せず、逆に添加元素量が多すぎると界面効果が減少するおそれがあるからである。添加元素は大きなMR変化量を得る上で、特にFeを用いることが好ましい。

【0347】第1および第2の磁性層1、2のうち、下側の第1の磁性層1は磁気抵抗効果向上層(MR向上層)4上に形成されている。MR向上層4は下地機能を有する非磁性層(以下、非磁性下地層と記す)5上に形成されている。この非磁性下地層5は、例えばTa、Ti、Zr、W、Cr、Nb、Mo、HfおよびAlから選ばれる少なくとも1種の元素を含む層であり、これらの単体金属や合金、あるいは酸化物や窒化物などの化合物からなる。非磁性下地層5にTaなどの酸化物を用いた場合、後に詳述するように、MR向上層4で反射しきれなかった電子を非磁性下地層5/MR向上層4界面で反射させることができる。

【0348】第1の磁性層1は外部磁界により磁化方向が変化する感磁層である。一方、第2の磁性層2上には、IrMn、NiMn、PtMn、FeMn、RuRhMn、PdPtMn、MiOなどからなる反強磁性層6が形成されている。第2の磁性層2には反強磁性層6からバイアス磁界が付与され、その磁化が固着されている。すなわち、第2の磁性層2は磁化固着層である。

【0349】図32では図示されていないが、第2の磁性層の固着方法として上記のように反強磁性膜と直接接しさせて磁化方向を固着する方法の他に、第2の磁性層上にRu、Crなどの層を介して第3の磁性層を積層し、第2の磁性層と第3の磁性層をRKKY的に反強磁

性結合させて、第3の磁性層を反強磁性結合させる、いわゆるシンセティックアンチフェロ構造を用いても構わない。シンセティックアンチフェロ構造を用いることによって、バイアス点も安定になり、かつピン特性の高温下での安定性も増す。具体的には、第2の磁性層から第3の磁性層までの構成として、CoFe/Ru/CoFe、Co/Cr/Coをどが挙げられる。このときの反強磁性膜は、上述の反強磁性膜の一群と同様である。

【0350】第1および第2の磁性層1、2間に配置される非磁性層3の構成材料としては、Cu、Au、Ag およびこれらの合金、あるいはこれらと磁性元素とを含む常磁性合金、Pd、Ptおよびこれらを主成分とする合金などが例示される。

【0351】反強磁性層6上には保護層7が設けられており、この保護層7は非磁性下地層5と同様な金属もしくは合金により構成されるものである。これら各層によって、この実施形態のスピンバルブ膜8が構成されている。スピンバルブ膜8にはセンス電流を供給する一対の電極(図示せず)が接続され、これらによってスピンバルブGMR素子が構成される。スピンバルブGMR素子は、感磁層1に対してバイアス磁界を印加する硬質磁性膜や反強磁性膜からなるバイアス磁界印加膜を有していてもよい。この場合、バイアス磁界は磁化固着層2の磁化方向に対して略直交する方向に印加することが好ましい。なお、図中9は基板である。

【0352】上述したスピンバルブ膜8を構成する各層のうち、MR向上層4は本発明の特徴的な部分であり、図32に示すMR向上層4は第1の金属膜4aと第2の金属膜4bとの積層膜により構成されている。スピンバルブ膜8の下地として機能する金属膜4a、4bには、例えばCu、Au、Ag、Pt、Rh、Al、Ti、Zェ、Hf、PdおよびIrから選ばれる少なくとも1種の元素を含む金属膜を適用することができる。

【0353】これら複数の金属膜のうち、第1の磁性層(感磁層)1と接する第1の金属膜4aを主として構成する元素は、感磁層1を主として構成する元素と非固溶の関係にある。第2の金属膜4bについても、それを主として構成する元素が感磁層1を主として構成する元素が感磁層1を主として構成する名に表が互いに固溶の関係にある場合がある。さらに、感磁層1と接する側には、例えば電子波長が短い金属からなる第1の金属膜4aが配置され、その外側に電子波長が(第1の金属膜4aが配置され、その外側に電子波長がされていることが望ましい。

【0354】ここで、本発明における非固溶の関係について述べる。本発明において、Aという元素とBという元素の2種類の元素が非固溶の関係を有する状態とは、2元素の相図(例えば、Binary Alloy Phase Diagram,

2nd Edition, ASM International. 1990など) において、室温程度の低温域で、Aを母材としたときにBが固溶できる原子%量と、B母材としたときにAが固溶できる原子%量がともに10%以下である元素の組み合わせを示すものとする。

【0355】具体例として、磁性層(例えば感磁層1) がCoまたはCo合金のときと、磁性層がNi合金の場 合について説明する。磁性層をfcc配向にするために は下地膜がfcc金属やhcp金属であることが望まし いため、磁性層に接するMR向上層の具体的な構成元素 としてはAl、Ti、Cu、Zr、Ru、Rh、Pd、 Ag、Hf、Ir、Pt、Auなどが挙げられる。これ らの元素のうち、Coと非固溶という上記の条件を満足 する元素は、Cu、Ag、Auの3元素となる。また、 Niと非固溶という上記の条件を満足する元素は、R u、Ag、Auの3元素となる。但し、磁性層としてN i合金を用いた場合には、Cuは相図のみを参照すると 固溶の関係にあるが、本発明者が実験を行った結果、M R向上層として用いた場合には、非固溶といえることが 判明した。つまり、以下のような実験結果をもとに、N i合金とCuとは非固溶と判断される。

【0356】すわわち、フリー層が薄い場合には、MR向上層は前述した第1実施形態での非磁性高導電層とフリー層との界面で原子の拡散が生じて、diffusiveな界面になってしまうと、フリー層から非磁性高導電層に向かう電子の透過率を低下させてしまう。つまり、ピン層とフリー層の磁化方向が互いに平行な状態でも、diffusiveな界面において非弾性散乱を受けてしまうため、アップスピンの低下で非弾性散乱を受けてしまうため、アップスピンの低下を招くことになる。この現象は、極薄フリー層と非磁性を招くことになる。この現象は、極薄フリー層と非磁性を招くことになる。この現象は、をブロセスの熱処理によってMR変化率が低下する。このような現象を確認する方法をとったところ、薄いNi合金層にCuをつけた実験を行ったところ、MR変化率の低下がみられなかった。

【0357】以上の結果から、Ni合金とCuとは非固溶と判断される。従って、Ni合金と非固溶の関係を満足する元素として、本発明では、相図から得られる元素の組み合わせにCuを加えて、Ru、Ag、Au、Cuと定義することができる。このような非固溶の元素を磁性層に接して配置することによって、磁性層とMR向上層との界面の組成急変性が熱処理などによっても失われることなく、鏡面反射効果が期待できる。

【0358】ここでは、磁性層をfcc配向させることを前提としたが、もちろん無配向や微結晶構造をもつ磁性層に対してこれらのMR向上層を用いても構わない。 具体的には磁性層として、CoFeB、CoZrNb、CrにTi、Zr、Nb、Hf、Mo、Taなどが添加されたアモルファス磁性層、もしくは微結晶構造をもつ 磁性層などが挙げられる。

【0359】さらに、上記の元素によって構成されたMR向上層の一部に対して、dースペーシングの制御や膜微細構造をより的確な構造にするために、別の金属膜との積層膜にしたり、別の元素と合金化した層が、本発明によるMR向上層である。この積層される膜を構成する元素としては、fcc金属やhcp金属が望ましく、Al、Ti、Cu、Zr、Ru、Rh、Pd、Ag、Hf、Ir、Pt、Auなどが挙げられる。

【0360】MR向上層に積層膜を適用する場合、磁性層に接していない側の金属膜の好ましい例としては、磁性層に接している側の金属膜と固溶の関係を有する金属が挙げられる。ここで、Aという元素とBという元素の2種類の元素が固溶の関係を有する状態とは、上記した非固溶の場合と同様に、室温程度の低温域で、Aを母材としたときにBが固溶できる原子%量と、B母材としたときにAが固溶できる原子%量がともに10%を超える元素の組み合わせを示すものとする。

【0361】MR向上層4に積層膜を適用する際の好ま しい例を示す。磁性層1がCoまたはCo合金で、金属 膜4aをそれと非固溶の条件を満たすCuで構成した場 合、金属膜4bは上記の固溶の条件を満たすAl、A u、Pt、Rh、Pd、Irから選ばれる少なくとも1 種を含む金属膜で構成することが好ましい。金属膜4 a をAgで構成した場合、金属膜4bはPt、Pd、Au から選ばれる少なくとも1種を含む金属膜で構成するこ とが好ましい。金属膜4aをAuで構成した場合、金属 膜4bはPt、Pd、Ag、Alから選ばれる少なくと も1種を含む金属膜で構成することが好ましい。磁性層 1がNi合金で、金属膜4aをそれと非固溶の条件を満 たすRuで構成した場合、金属膜4bは上記の固溶の条 件を満たすRh、Ir、Ptから選ばれる少なくとも1 種を含む金属膜で構成することが好ましい。Agおよび Auを用いる場合には、上記した通りである。

【0362】上述したような組み合わせのうち、MR向上層4を構成する2元素が10%以上互いに固溶することが望ましく、例えばAu-Cu、Ag-Pt、Au-Pd、Pt-Cu、Au-Agなどが挙げられる。なお、金属膜4aと金属膜4bの組み合わせは、必ずしも上記した固溶の関係を満たしていなければならないものではなく、例えばCu-Ru、Cu-Agの組み合わせなどを適用することも可能である。積層膜からなるMR向上層4は、第1の金属膜4aと第2の金属膜4bとの2層積層膜に限らず、3層以上の積層膜で構成することも可能である。

【0363】MR向上層4は第1の金属膜4aと第2の 金属膜4bとの積層膜に限らず、例えば図33に示すよ うに、感磁層1を主として構成する元素と非固溶の関係 にある元素の合金層4cでMR向上層4を構成すること もできる。この場合の合金層4cには上記した積層膜と 同様な考え方が適用できる。すなわち、磁性層 1 がC o またはC o 合金からなる場合には、合金層 4 c は主構成元素としてC u、A g、A u O 3元素から選ばれる少なくとも 1 種を含む。また、磁性層 1 がN i 合金からなる場合には、合金層 4 c は主構成元素としてR u、A g、A u、C u O 4 元素から選ばれる少なくとも 1 種を含む。

【0364】合金層4cは上記した主構成元素以外に少なくとも1種の元素を含む。この主構成元素以外の元素には、2相分離膜とならないように、主構成元素と固溶の元素が用いられる。例えば、合金層4cの主構成元素にCuを用いた場合には、Cu-Au、Cu-Pt、Cu-Rh、Cu-Pd、Cu-Irなどの貴金属系の合金が用いられる。合金層4cの主構成元素にAgを用いた場合には、Ag-Pd、Ag-Auなどの貴金属系の合金が用いられる。合金層4cの主構成元素にAuを用いた場合には、Au-Pt、Au-Pd、Au-Ag、Au-Alなどの貴金属系の合金が用いられる。

【0365】上述したような合金のうち、MR向上層4としての合金層4cは2元素が10%以上互いに固溶することが望ましく、例えばAu-Cu、Ag-Pt、Au-Pd、Au-Agなどが挙げられる。このように、MR向上層4には種々の形態を適用することができ、例えば図34に示すように金属膜4aと合金層4cとの積層膜でMR向上層4を構成することも可能である。

【0366】感磁層1にCo系磁性材料を用いる場合、感磁層1の下地としてのMR向上層4はCo系磁性材料と同一のfcc結晶構造を有する金属材料や、その上の膜をfcc配向させやすいhcp構造の金属材料を用いることが好ましい。このような点からも、上述したCu、Au、Ag、Pt、Rh、Pd、Al、Ti、Zr、Hf、Irなどやそれらの合金はMR向上層4の構成材料として好適である。さらに、このような金属の積層膜もしくは合金層からなるMR向上層4を用いることによって、後に詳述するように、CoFe合金などのCo系磁性材料からなる感磁層1の磁歪を低減することができる。

【0367】MR向上層4の膜厚は、下地層としての機能を持たせるためには2nm以上とすることが望ましい。ただし、あまり厚くするとシャント分流の増大によりMR変化率が減少するため、MR向上層4の膜厚は10nm以下とすることが好ましく、さらに望ましくは5nm以下である。

【0368】上述したようなMR向上層4は、スピンバルブ膜8の耐熱性を向上させる働き、スピンバルブ膜8の鏡面反射膜(界面反射膜)としての働き、フリー層が薄い場合にもMR変化率を高い値に維持する働き、Co系磁性材料からなる感磁層1の磁歪を低減する働き、スピンバルブ膜8の結晶微細構造を制御する働きなどを有

するものであり、これらに基づいてスピンバルブ膜8のMR特性を向上させるものである。以下に、MR向上層4の働きについて詳述する。

【0369】まず、スピンバルブ膜の熱プロセス劣化について述べる。プロセスアニールによるMR特性の劣化の一因として、磁性層1、2の非磁性中間層3と接していない側の鏡面反射効果がプロセスアニールにより変動することが考えられる。その様子を図35に示す。なお、図35において、 IF_S はスピン依存散乱される界面、 IF_M はスピン依存散乱ではなく鏡面錯乱される界面を示している。図35(a)、(b)は理想状態(as-depo時に対応)を、図35(c)はプロセスアニール後の状態を模式的に示している。

【0370】図35(a)、(b)に示すように、スピンバルプGMRの基本ユニットとなる感磁層1/非磁性中間層2/磁化固着層3の3層積層構造において、その両側での鏡面散乱効果がas-depo時には生じていたものが(たとえその界面が金属膜との界面であっても)、図35(c)に示すように、プロセスアニールにより容易に互いに固溶するような系では界面拡散が生じ、散乱的な界面になってしまい、鏡面反射効果が弱められて、MR特性の劣化が生じることが考えられる。

【0371】金属膜界面での鏡面反射効果は報告例自体がほとんどなく、その実証性は必ずしも確立されていないが、後述するようにポテンシャル差が小さい金属膜界面においても、理想的に鏡面反射効果が生じ得るものである。例えば、NiFe/CoFe界面でも比較的ミキシングが少ないasーdepo状態では鏡面反射効果が得られていたものが、プロセスアニール後では固溶系にあるNiFe-CoFe界面では容易に界面拡散が生じ、界面での急俊性が失われて、MR変化率が劣化することが考えられる。

【0372】具体的に、NiFe/CoFe積層膜からなる感磁層を使用したスピンバルブ膜では、NiFe/CoFe界面の鏡面反射効果がプロセスアニールによって失われ、例えばas-depo時に7.3%であったMR変化率が、250 $\mathbb{C} \times 4H$ のプロセスアニール後では5.8%まで劣化してしまう。この原因としてアニールによるNiFe/CoFe界面での鏡面反射係数の変動によるMR変化率の変動が起こったということも考えられる。

【0373】従来の考えでは、NiFe/CoFe界面は同じ金属膜どおしの界面であり、かつ電子状態も近いため、この界面での鏡面反射は考慮されていなかったが、as-depoの状態では比較的ミキシングなどの少ない均一な界面となるため、金属膜界面においても鏡面反射効果が生じると考えられる。ところが、NiFe/CoFeは固溶の関係にあるため、プロセスアニールにより容易に界面が拡散およびミキシングし、界面での組成の急俊性が失われて鏡面反射係数が小さくなり、M

R特性が劣化することが考えられる。逆にいうと、asーdepo状態では鏡面反射効果の分だけMR変化率が大きくなっていたことを意味する。

【0374】また、フリー層が薄い場合には、MR向上層は前述した第1実施形態での非磁性高導電層として作用するが、非磁性高導電層とフリー層との界面で原子の拡散が生じて、diffusiveな界面になってしまうと、フリー層から非磁性高導電層に向かう電子の透過率を低下させてしまう。つまり、ピン層とフリー層の磁化方向が互いに平行な状態でも、diffusiveな界面において非弾性散乱を受けてしまうため、アップスピンの平均自由行程が長くならない。つまり、MR変化率の低下を招くことになる。この現象は、極薄フリー層と非磁性高導電層とが固溶なときに生じ、プロセスの熱処理などを行うとより顕著となる。つまり、熱処理によってMR変化率が低下する。

【0375】フリー層と非磁性高導電層との界面において、熱処理によってもアップスピンの透過を妨げることのない安定な界面を形成することが重要である。具体的には、フリー層と非磁性高導電層の材料を非固溶とすることが重要である。例えば、磁性層にCo合金を用いたときには、非磁性高導電層の材料として、Cu、Au、Ag、Ruを挙げることができる。ここで、Cu、Au、Agは非抵抗が低いので特に望ましい。

【0376】このようなことから、MR特性の劣化を抑制する1つの実現手段として、GMR基本ユニットの両側に、磁性層1、2の材料とは非固溶の金属材料を用いることが重要である。さらに、このような非固溶の金属材料層は、例えばCoFe合金のような材料をGMR基本ユニットに用いた場合、CoFe合金層をfcc(11)配向させるためのシード層としての機能も果たさなければならないため、fcc(111)配向しやすい金属材料がよいことも分かる。加えて、感磁層にCoFe合金を用いる場合には、磁歪制御も重要である。

【0377】プロセスアニールによるMR特性の劣化の他の要因として、スピンバルブ膜の膜微細構造の熱プロセスによる変化が挙げられる。耐熱性を向上させるために重要な膜微細構造として、感磁層/非磁性中間層/磁化固着のGMR基本ユニットの各界面およびそのの両が、プロセス熱アニールを行っても安定に保っていられる微細構造が望ましい。これは、感磁層/非磁性中間層が強化固着層の界面ではスペットの表別である。これは、感磁層が非磁性中間層が強化固着層の界面では、ま鏡性層の界面散乱効果を強く引き出すためであり、また鏡面散乱効果を熱的に安定に保つために重要である。ここで、磁性層が積層膜からなる場合には、非磁性中にとの界面が、ここで言う鏡面散乱効果をもたらすスピン依存しない界面として考えられる。

【0378】上記したような条件を実現するために、磁

性層/非磁性層の各材料については、互いに非固溶の関係にある材料を選択することがそもそも望ましく(例えばCoFe/CuやCo/Cu)、そのような界面での固溶自体は起こらないはずである。従って、磁性層/非磁性層の界面、磁性層の非磁性中間層とは反対側の界面からの原子拡散を抑えることが重要になる。そのためには、GMR基本ユニット部分の結晶(例えばCoFe/Cu/CoFeの場合には格子定数が近いので、結晶粒は各層ごとにあるのではなく、CoFe/Cu/CoFeで繋がった結晶粒となっている)は、理想的には単結晶が望ましいが、実際にはアルミナなどのアモルファス層上に形成されるスピンバルブ膜8で単結晶を得るのは難しい。

【0379】そこで、実用的に実現し得る結晶構造として、結晶粒界が存在したとしても通常の結晶粒界ではなく、ほとんど面内配向のすれがないサブグレインバウングリである疑似的な単結晶膜ともいうべき構造とすることが望ましい。本発明においては、上述したようなMR向上層4を適用することによって、サブグレインバウングリとしての小傾角粒界を有するスピンバルブ膜が再現性よく得られる。具体的には、スピンバルブ膜をfcc(111)配向させ、かつ膜面内における結晶粒間の結晶配向方向のずれを30度以内とすることができる。このようなスピンバルブ膜の結晶粒制御により磁気抵抗効果特性の向上を図ることが可能となる。この結晶構造については後に詳述する。

【0380】さらに、例えばCoFe/Cu/CoFe/IrMnのようにMn系反強磁性膜により磁化固着した場合、Mnが結晶粒界を通って、CoFe層を突き抜けてCu層まで拡散すると、MR特性が劣化する可能性が大きい。このようなことからCoFe/Cu/CoFe/IrMnなどの結晶粒界を通って、例えばMnがCu層まで拡散することを抑制することが好ましい。一方、磁性層の非磁性中間層と接していない側の界面は、鏡面反射効果を引き出す界面となるので、その界面が乱れにくくなるような膜微細構造が望ましい。まず、材料的には磁性層を主として構成する元素と非固溶な関係にある材料であることが重要である。

【0381】また、IrMnのようにCoFeと格子間隔の差がある反強磁性膜を用いる場合には、CoFe層とその上に成膜されるIrMn層との間で大きな格子歪みが生じる。それを緩和するために、CoFe/IrMn界面で原子のディスロケーションが生じてしまう。このような界面現象を抑制する手段として、例えばIrMn層の上にIrMnの格子間隔を安定に保つ層、すなわちIrMnと同程度の格子間隔をもつfcc金属材料を積層することが考えられる。このような構成によっても、スピンバルブ膜の耐熱性を改善することができる。【0382】さらに、反強磁性膜の下地膜としてMR向

上層を用いる場合には、上記の効果の他に、反強磁性膜

の格子間隔を適切な値にして、ピン特性を向上させる効果もある。このように反強磁性膜に接しさせてMR向上層を用いる場合でも、ピン層に直接反強磁性膜が接する通常のピン構造だけでなく、上述のようなRu、Crなどを用いたシンセティックアンチフェロ構造であったも構わない。このように反強磁性膜と組み合わせて用いたきは、反強磁性膜とMR向上層が熱処理によって極度に拡散しないために、MR向上層は反強磁性膜と非固溶であるか、もしくはIrMn、RuRhMnのようなターMn系反強磁性膜を用いたときに反強磁性膜の結晶構造を安定に保つために、fcc金属材料、hcp金属材料であることが望ましい。

【0383】本発明の磁気抵抗効果素子は、上述したような金属膜/金属膜界面の鏡面反射効果をはじめとして種々の効果に注目し、MR特性の向上、耐熱性の改善、ピン特性の向上などを図ったものである。この際、金属膜界面を利用した鏡面反射膜では次の2点が特に心配される。まず第1に、金属膜/金属膜界面ではポテンシャルとしての差が小さいため、従来の考えに基づくと反射効果としては大きな値にならないことが予想される。第2に、反射膜としての効果を得るためにある程度の膜厚とすると、一般に金属膜は抵抗が小さいため、シャント分流によりGMR基本ユニットに流れる電流が小さくなり、MR変化率が小さくなることが予想される。

【0384】金属膜は反射膜としてだけ見たときには酸化物よりは劣ると考えられる。しかしながら、金属反射膜の反射効果としては酸化物膜よりは劣るものの、良好な反射効果を得ることができ、さらに実用性という点で考えた場合には、酸化物反射膜に比べて金属反射膜は大きなメリットをもたらすものである。本発明はこのような点に着目してなされたものである。

【0385】ここで、金属膜/金属膜界面で十分良好な鏡面反射効果が得られることを示したモデルを図36に示す。なお、ここでは通常用いる電子ポテンシャルによる説明の変わりに、波動論による非常に単純化したモデルを考えると理解しやすい。図36に示すように、あるフェルミ波長をもつ電子が金属膜界面にきたときに、反射膜pに相当する金属膜でのフェルミ波長のほうが短いならば、電子はある臨界角度 θ 。よりも低角に入射したもの(θ _c> θ) は全皮射されることになる。反射膜p内でのフェルミ波長と、反射膜pに接している金属膜でのフェルミ波長の差が大きいほど、その臨界角度 θ _cは大きくなり、伝導に寄与する全ての電子にとって平均した反射率pは大きくなる。

【0386】図37および図38に、反射膜pのフェルミ波長 Λ (p)と反射膜pと接するGMR膜フェルミ波長 Λ (GMR)との比(Λ (GMR) $/\Lambda$ (p))と、臨界角度 θ 。との関係の例を示す。図37および図38から分かるように、具体的な数値としてはそれ程大きな

電子波長の差がなくても十分な反射が生じる。もちろん、絶縁膜による反射膜では電子波長が無限大と考えられるので、臨界角角度 θ 。も大きくなるが、金属膜/金属膜界面であっても十分な反射が生じる。図38はAu(Ag)/Cu界面で鏡面反射を起こす臨界角度 θ 。を単純にフェルミ波長から算出したグラフである。図38から分かるように、Au(Ag)/Cu界面でも十分に鏡面反射が起こる。

【0387】以上のことから、金属膜で反射膜を構成する場合、(1)フェルミ波長ができるだけ長い金属膜で、(2)膜界面での組成急俊性が高い、ということが重要となることが分かる。フェルミ波長は通常数オングストロームのオーダーなので、それよりも界面拡散が生じて組成急俊性が失われると、波の反射は波長が適応して変化してしまい、透過する確率が高くなると考えられる。よって、いかにして金属膜界面での組成急俊性が高く、急激にその界面でフェルミ波長が変わらなければならないようになってるいかが重要である。ただし、

(1) については鏡面反射との相関は分かっておらず、フェルミ波長の算出も難しく、必ずしも必要な条件かどうかは不明である。ここで、特に(2) を満足するような条件は必要不可欠であると本発明者らは推測した。

【0388】(2)を満足させる1つの大きな指針として、金属膜/金属膜同士が互いに非固溶な関係にあることが特に重要である。アニールによって膜界面への析出が起こりやすい系だと、ますます膜界面での組成急俊性が高くなり、反射が生じやすくなることが予想される。電子のフェルミ波長がそもそも数オングストロームのオーダーなので、膜界面での組成急俊性もそのオーダーでフラットであることが望ましい。また、上記した(1)の点に関しては、反射効果を強く引き出すために、磁性層の外側に電子波長の短い金属膜を配置し、その外側に電子波長が長い金属膜を配置することが好ましい。

【0389】以上のことから、金属膜/金属膜界面で鏡面反射効果をより現実的に引き出す際の材料選択の指針としては、MR向上層として磁性層と非固溶な金属層を磁性層のスペーサ層とは反対側の面と接するように配置することである。加えて、例えば感磁層1の外側に電子波長の短い第1の金属膜4aを配置し、その外側に電子波長が長い第2の金属膜4bを配置することが好ましい。

【0390】さらに、反射膜として合金膜を用いると、一般的に完全な規則合金を形成しない限り、抵抗が純金属よりも大きくなる。つまり、電子波長が長くなることになる。これは反射膜としてみた場合には有利になると同時に、非固溶の関係を保っているという点でも有利である。このような合金膜を用いる方法として、合金膜を直接成膜する方法に限らず、互いに合金を作る系の膜を積層して成膜し、その積層界面に合金を生成する方法であってもよい。ただし、フリー層が薄い場合には、フリ

ー層に接するMR向上層 (フリー層が薄い場合には、第 1実施形態における非磁性高導電層として作用する)の 比抵抗は低いほうが好ましいので、合金層を直接フリー 層に接しさせることは逆に望ましくない。

【0391】以上のことから、図32、図33および図34に示したスピンバルブ膜8では、反射膜として用いるMR向上層4に、磁性層(感磁層1)とは非固溶の関係を有する金属膜(具体的には第1の金属膜4a)を磁性層(感磁層1)と接して配置し、さらに反射膜としてのMR向上層4を複数の金属膜4a、4bの積層膜で形成する、あるいはMR向上層4を合金層4cで形成するという構成を採用している。複数の金属膜4a、4bや合金層4cの構成材料は、前述した指針に基づいて選択する。さらに、積層膜でMR向上層4を構成する場合、これらのうち電子波長が短い第1の金属をMR向上層4側に配置することが好ましい。これら以外の構成条件についても、前述した指針に基づくものである。

【0392】上述した鏡面反射効果に基づくMR変化率は、前述したように、プロセスアニール後においても保たれるものである。これはMR向上層4の材料選択(非固溶の関係など)によって、界面の組成急俊性がプロセスアニール後においても保持されるためである。言い換えると、従来のスピンバルブ膜ではプロセスアニールにより界面での拡散やミキシングにより損われていたMR特性が、本発明によればプロセスアニール後においても良好に保つことができる。このように、本発明のスピンバルブ膜8は耐熱性に優れるものである。

【0393】なお、従来技術に示した(e)の構成におけるCu/Ag積層膜は、Cu膜単層では表面凹凸が大きいため、Ag膜を膜表面にして積層にすることによって、膜表面での鏡面反射効果を引き出したものである。これは本発明における金属膜/金属膜界面で鏡面反射効果を強く引き出すための構成とは明らかに異なるものである。つまり、膜表面での平坦化技術(従来技術)と、膜界面の組成急俊性を高める技術(本発明)とは、その上に積層される材料まで考慮すれば明らかに異なるものである。

【0394】MRの耐熱性に効果を発揮するMR向上層は、鏡面反射膜としての効果のみならず、前述したように膜微細構造の制御を可能にすることによって、スピンバルブ膜8のMR特性の向上に寄与している。このようなMR向上層の機能は、感磁層1の下側に配置した場合に限らず、例えば図39や図40に示すように、反強磁性層6上に配置した場合(MR向上層4B)にも発揮されるものである。この場合の効果は感磁層の磁歪には関係せず、前述したようにIrMnなどからなる反強磁性層6上に前述した複数の金属膜4a、4bの積層膜や合金層4cからなるMR向上層4Bを配置することによって、反強磁性層6の格子間隔を安定に保つことができる。これによって、磁性層2/反強磁性層6界

面でのディスロケーションが抑制され、スピンバルブ膜 8の耐熱性がより一層向上する。

【0395】さらに他のピン特性も、反強磁性膜が適切な格子間隔に制御されることによって向上する。格子間隔の制御という意味でより効果的なのは、MR向上層が反強磁性膜の下地膜として用いられる場合であり、いわゆる反転構造のスピンバルブ膜またはデュアルスピンバルブ膜などとして用いられるときに特に有効である。このときでも本発明によるfcc金属またはhcp金属膜の積層膜、もしくは合金膜によって反強磁性膜の格子間隔を適切な値に自由自在に制御でき、ピン特性の様々な特性(交換バイアス磁界、耐熱性)などを向上させることができる。

【0396】複数の金属膜4a、4bの積層膜からなるMR向上層4Bを反強磁性層6上に配置する場合、Auなどの表面エネルギーが小さい金属からなる第2の金属膜4bは、反強磁性層6側に配置することが好ましい。すなわち、AuやAgなどからなる第2の金属膜4bがTaなどからなる保護層7と接するように配置すると、AuやAgなどが保護層7に拡散して耐熱性が低下するおそれがあるため、Cuなどからなる第1の金属膜4aを保護層7側に配置することが好ましい。また、反強磁性層6上のMR向上層4Bは、第1の金属膜4a/第2の金属膜4b/第1の金属膜4aというような積層膜で構成してもよい。

【0397】前述したように、金属材料の積層膜や合金層からなるMR向上層4Aは、CoやCoFe合金などのCo系磁性材料からなる感磁層1の磁歪低減に対して効果を発揮する。つまり、Cu下地層単独では感磁層1としてのCoFe合金単層の格子間隔が小さすぎるため、一1ppmを超える負の磁歪となる。一方、Au下地層単独では感磁層1としてのCoFe合金単層の格子間隔が大きすぎて、+1ppmを超える正の磁歪となる。

【0398】これに対して、Cu、Au、Ag、Pt、Rh、Pd、Al、Ti、Zr、Hf、Irから選ばれる少なくとも1種の元素を含む金属膜の積層膜、あるいは合金層4cからなるMR向上層4を、感磁層1としてのCoFe合金の下地とすることによって、CoやCoFe合金などのCo系磁性材料のfcc(111)を合きせた上で、低磁歪に有効な格子間隔、すなわちd(111)格子間隔を0.2055~0.2085nmの範囲とすることができる。感磁層1の下地としてのMR向上層4は、fcc-d(111)が0.2058nmより大きいことが好ましい。d-(111)格子間隔を切な値に制御する方法としては、例えばAu-Cu積膜、Au-Cu合金膜を用いた場合、積層ではAuとCuの積層膜の膜厚比を変える、合金膜ではAuとCuの組成比を変えることなどが挙げられる。

【0399】Au-Cu合金の具体的な組成は、Au₂₅

 Cu_{75} ~ Au_{75} Cu_{25} (原子%) の範囲とすることが好ましい。また、合金層と金属膜との積層膜を使用する場合には、Au-Cu合金単独で用いる場合より若干Auリッチな組成、すなわち Au_{25} Cu_{75} ~ Au_{95} Cu_{5} (原子%) の組成とすることが好ましい。

【0400】図32、図33および図34は、感磁層1を下置としたスピンバルブ膜8について示したが、本発明はこれに限られるものではなく、例えば図43や図44に示すように、感磁層1を上置とした反転構造のスピンバルブ膜8やデュアルエレメントタイプのスピンバルブ膜に対して適用することもできる。特に、反転スピンバルブ膜やデュアルスピンバルブ膜のときには、反強磁性膜の下地膜としてのMR向上層としての役割でも大きな効果を発揮する。

【0401】図41および図42に示すスピンバルブ膜8は、基板9側から順に、非磁性下地層5/MR向上層4/反強磁性層6/磁化固着層2/非磁性中間層3/感磁層1/MR向上層4/保護層7が積層された構造を有している。図41はMR向上層4に合金層4cを用いた例であり、図42はMR向上層4に複数の金属膜4a、4bの積層膜を用いた例である。また、図34と同様に、金属膜4aと合金層4cとの積層膜を用いることもできる。

【0402】図42に示したように、感磁層1と接するMR向上層4に積層膜を適用する場合、図39に示した上側のMR向上層4と同様に、保護層7側にはCuなどからなる第1の金属膜4aを配置することが好ましい。従って、図42に示した感磁層1側のMR向上層4は、第1の金属膜4a/第2の金属膜4b/第1の金属膜4aの積層膜で構成している。

【0403】反転構造の場合の反強磁性膜の下地のMR向上層は膜成長の制御を行い、格子間隔の制御、膜微細構造の制御により耐熱性、ピン特性を向上させるものであり、感磁層の磁歪制御、鏡面反射効果の向上などとは異なるものである。よって、反強磁性膜の膜微細構造を良好にできる成膜条件であれば、反強磁性膜の下地側にはMR向上層なしの場合や、Ta、Tiなどの通常よく用いられるバッファ層上に反強磁性膜を成膜する、通常の反転構造の下地構造を適用した場合においても、感磁層側のMR向上層のみでも十分効果を発揮する。

【0404】反転構造のスピンバルブ膜8においても、 感磁層1に接して上記したようなMR向上層4を配置す ることによって、感磁層1とMR向上層4との界面の組 成急俊性などに基づく鏡面反射効果によりMR特性の向 上を図ることができる。そして、前述したように、鏡面 反射効果に基づくMR変化率はプロセスアニール後にお いても保たれるため、良好な耐熱性を得ることが可能と なる。

【0405】なお、上述した反転構造のスピンバルブ膜 8においては、感磁層1/MR向上層4界面、さらには MR向上層4内の第1の金属膜4a/第2の金属膜4b界面や第2の金属膜4b界面(図42)で反射を起こさせるものであり、従来技術として示した(e)の構成のCu/Ag積層膜において、Ag膜表面で反射を生じさせていたものとは構成が異なる。従来技術として示した(d)の構成でAu膜表面にTaを積層すると反射効果が失われるという問題も、本発明では解決している。本発明では金属膜/金属膜界面での鏡面反射効果を利用し、電子のフェルミ波長の大きさを考慮した膜厚と、非固溶の概念を用いているためである。

【0406】従来技術として示した(d)の構成では、 僅か0. 4nmというフェルミ波長と同程度の極薄のA u層上に、Auと固溶系であるTaを積層しているた め、たとえCo-Au界面で反射が生じていたとしても 反射効果が失われることは明白である。 A u 膜の膜厚が フェルミ波長よりも厚くした場合には、Taとの拡散界 面の影響も小さくなるため、反射効果が得られるように なる反面、シャント分流による悪影響が大きくなる。従 って、Au/Ta界面に代えてAu/Cu/Taといよ うにTaとは非固溶の関係にあるCu層を介在させた積 層膜を使用した場合にはAu膜界面を乱すことはない。 さらに、極薄のCu層を例えばCoFeとAuとの界面 に挿入することによって、Auの非磁性中間層への長期 的な拡散を抑えると同時に、一旦フェルミ波長が短い層 を介してからAu層を配置することで、反射効果を増大 させることができる。

【0407】上述した各実施形態においては、MR向上層4を感磁層1や反強磁性層6と接して配置する場合について説明したが、MR向上層4は例えば図43に示すように、感磁層1や磁化固着層4内に配置した場合にも前述した実施形態と同様な効果を得ることができる。

【0408】図43に示すスピンバルブ膜8において、 感磁層1は例えばNiFe層1aとCoFe層1bとに より構成されており、これらの間に複数の金属膜4a、 4 bの積層膜からなるMR向上層4が介在されている。 NiFe層1aとCoFe層1bとは、MR向上層4を 介して磁気的に結合(強磁性結合)されており、磁気的 には感磁層1として一体的に振る舞う。このように、N iFe層1a/CoFe層1b界面に両者と非固溶のM R向上層4を挿入する場合、NiFe層1aとCoFe 層1 b は一体となって感磁層1として働かなければなら ないので、挿入するMR向上層4は薄くしなければなら ない。また、磁化固着層2内にMR向上層4を介在させ ることもでき、その場合磁化固着層2を構成する1つ以 上の磁性膜は、強磁性結合もしくは反強磁性結合により 磁気的に結合される。強磁性結合か反強磁性結合かはM R向上層4の材料、膜厚によって決まる。

【0409】上述した各実施形態の磁気抵抗効果素子は、例えば図44や図45に示すような録再分離型磁気 ヘッドに再生素子部として搭載される。なお、本発明の 磁気抵抗効果素子は磁気ヘッドに限らず、磁気抵抗効果メモリ (MRAM) などの磁気記憶装置に適用することも可能である。

【0410】図44および図45は、本発明の磁気抵抗効果素子を再生素子部に適用した録再分離型磁気ヘッドの実施形態の構造をそれぞれ示す図であり、これらの図は録再分離型磁気ヘッドを媒体対向面方向から見た断面図である。

【0411】これらの図において、21は Al_2O_3 層を有する Al_2O_3 ・Ti C基板などの基板である。このような基板 21 の主表面上には、Ni Fe合金、Fe Si Al合金、非晶質 CoZrNb 合金などの軟磁性材料からなる下側磁気シールド層 22 が形成されている。下側磁気シールド層 22 上には、 AlO_3 などの非磁性絶縁材料からなる下側再生磁気ギャップ 23 を介してスピンバルブ GMR 膜 24 が形成されている。このスピンバルブ GMR 膜 24 として、前述した各実施形態のスピンバルブ E が使用される。

【0412】図44において、スピンバルブGMR膜24は所望のトラック幅となるように、記録トラック幅から外れた外側領域を例えばエッチング除去した形状とされている。このようなスピンバルブGMR膜24のエッジ部の外側には、それぞれスピンバルブGMR膜24にバイアス磁界を印加するバイアス磁界印加膜25が配置されている。一対のバイアス磁界印加膜25は、スピンバルブGMR膜24のエッジ部とアバット接合している。

【0413】一対のバイアス磁界印加膜25上には、Cu、Au、Zr、Taなどからなる一対の電極26が形成されている。スピンバルブGMR膜24には、一対の電極26からセンス電流が供給される。これらスピンバルブGMR膜24、一対のバイアス磁界印加膜25および一対の電極26は、GMR再生素子部27を構成している。GMR再生素子部27は、上述したようにいわゆるアバットジャンクション構造を有している。

【0414】また、図45においては、スピンバルブG MR膜24と下側再生磁気ギャップ23との間に、予めトラック幅から外れた領域にスピンバルブGMR膜24にバイアス磁界を印加する一対のバイアス磁界印加膜25が形成されている。この一対のバイアス磁界印加膜25は所定の間隙をもって配置されており、その上にスピンバルブGMR膜24の再生トラックの外側部分が積層形成されている。スピンバルブGMR膜24は、その両端部にみをそれぞれバイアス磁界印加膜25上に積層するようにしてもよい。

【0415】スピンバルブGMR膜24上には、一対の電極26が形成されている。スピンバルブGMR膜24の実質的な再生トラック幅は、一対の電極26の間隔によって規定されている。これらスピンバルブGMR膜24、一対のバイアス磁界印加膜25および一対の電極2

6は、オーバーレイド構造のGMR再生素子部27を構成している。

【0416】図44および図45において、GMR再生素子部27上には下側再生磁気ギャップ23と同様な非磁性絶縁材料からなる上側再生磁気ギャップ28が形成されている。さらに、上側再生磁気ギャップ28上には、下側磁気シールド層22と同様な軟磁性材料からなる上側磁気シールド層29が形成されている。これら各構成要素によって、再生ヘッドとしてのシールド型GMEヘッド30が構成されている。

【0417】記録ヘッドとして薄膜磁気ヘッド31は、シールド型GMEヘッド30上に形成されている。薄膜磁気ヘッド31の下側記録磁極歯、上側磁気シールド層 29と共通の磁性層により構成されている。シールド型 GMEヘッド30の上側磁気シールド層29は、薄膜磁気ヘッド31の下側記録磁極を兼ねている。この上側磁気シールド層を兼ねる下側記録磁極29上には、A1O1などの非磁性絶縁材料からなる記録磁極ギャップ32と上側記録磁極33が順に形成されている。媒体対向面より後方面には、下側記録磁極29と上側記録磁極33に記録磁界を付与する記録コイル(図示せず)が形成されている。

【0418】上述した再生ヘッドとしてのシールド型G MEヘッド30と記録ヘッドとして薄膜磁気ヘッド31 とによって、録再分離型磁気ヘッドが構成されている。このような録再分離型磁気ヘッドはヘッドスライダに組み込まれ、例えば図46に示す磁気ヘッドアッセンブリに搭載される。図46に示す磁気ヘッドアッセンブリ60は、例えば駆動コイルを保持するボビン部などを有するアクチュエータアーム61の一端にはサスペンション62が接続されている。

【0419】サスペンション62の先端には、上述した 実施形態の録再分離型磁気ヘッドを具備するヘッドスラ イダ63が取り付けられている。サスペンション62は 信号の書き込みおよび読み取り用のリード線64が有 し、このリード線64とヘッドスライダ63に組み込ま れた録再分離型磁気ヘッドの各電極とが電気的に接続さ れている。図中65は磁気ヘッドアッセンブリ60の電 極パッドである。

【0420】このような磁気ヘッドアッセンブリ60は、例えば図47に示す磁気ディスク装置などの磁気記録装置に搭載される。図47はロータリーアクチュエータを用いた磁気ディスク装置50の概略構造を示している。

【0421】磁気ディスク51はスピンドル52に装着され、駆動装置制御源(図示せず)からの制御信号に応答するモータ(図示せず)により回転する。磁気ヘッドアッセンブリ60は、サスペンション62の先端に取り付けられたヘッドスライダ63が、磁気ディスク51上

を浮上した状態で情報の記録再生を行うように取り付けられている。磁気ディスク51が回転すると、ヘッドスライダ63の媒体対向面(ABS)は磁気ディスク51の表面から所定の浮上量(0以上100nm以下)をもって保持される。

【0422】磁気ヘッドアッセンブリ60のアクチュエータアーム61は、リニアモータの1種であるボイスコイルモータ53に接続されている。ボイスコイルモータ53は、アクチュエータアーム61のボビン部に巻き上げられた図示しない駆動コイルと、それを挟み込むように対向して配置された永久磁石および対向ヨークからなる磁気回路とから構成される。アクチュエータアーム61は、固定軸54の上下2カ所に設けられた図示しないボールベアリングによって保持され、ボイスコイルモータ53により回転摺動が自在にできるようになっている。

【0423】なお、以上の実施形態では録再分離型磁気 ヘッドを用いて説明したが、記録ヘッドと再生ヘッドで 共通の磁気ョークを用いる録再一体型磁気ヘッドなどの 他のヘッド構造に本発明の磁気抵抗効果素子を適用する ことも可能である。さらに、本発明の磁気抵抗効果素子 は磁気ヘッドに限らず、磁気抵抗効果メモリ(MRA M)などの磁気記憶装置に適用することもできる。

(実施例) 次に、本発明の具体的な実施例およびその評価結果について述べる。

(実施例1) この実施例1では、 $Ta(5nm)/Au(1nm)/Cu(1nm)/CoFe(4nm)/Cu(1nm)/CoFe(4nm)/Cu(2.5nm)/CoFe(2.5nm)/IrMn(7nm)/Ta(5nm) 構造のスピンバルブ膜を、DCナグネトロンスパッタにより作製した。成膜時の真空度は<math>1\times10^{-7}Toff以下で、アルゴン圧は<math>2\sim10mToffe$ とした。基板は熱酸化シリコン基板を用いた。なお、磁気ヘッドの作製時には、アルチック基板上の Al_2O_3 ギャップ上に成膜することになるが、特性は変わらないことが確認されている。

【0424】上記したスピンバルブ膜は、as-depo状態のMR変化率が9.6%で、 $250\%\times4H$ のプロセスアニール(アニール条件: $250\%\times4H$ 、磁場 $5kO_e$)後においてもMR変化率は9.0%を維持していた。磁歪は $-\pm10\%$ 以下のオーダーの値が得られた。 H_k についても、容易軸方向に磁場を加えたままのアニール上が $9H_k$ を飽和 H_k と定義すると、飽和 H_k で約 $8O_e$ と小さく、軟磁性も実現できていた。また、容易軸方向の H_e も $0\sim3O_e$ と小さかった。

【0425】ここで、MR向上層はAu/Cu積層膜であり、AuとCuの界面は合金を形成している。CuとCoFeの界面は非固溶な界面である。TaとAuは固溶する界面であるが、Au/Cuが電子波長に比べて十分長い距離の膜厚を有するため、反射は十分それまでの界面で生じており、ここに固溶関係にある界面が存在し

ていても問題ない。 f c c 構造のAu/Cu下地層の効果によって、CoFeはfcc(111)配向している共に、CoFeのd(111)スペーシングの大きさは 0.2074 n m と磁歪的にも小さな値に制御されている。

【0427】なお、図48のXRDプロファイルにおいて、ピーク1、2、3はIrMnに相当するピークであり、ピーク4はCoFe/Cu/CoFe積層膜のfcc(111)ピークと考えられ、感磁層のみのdースペーシングを求めるのは困難である。この場合には、ピーク4のdースペーシングを感磁層のdースペーシング値とする。

【0428】上述したAu(1nm)/Cu(1nm)下地に代えて、Cu(2nm)も単独で用いるとCoFeのfcc-d(111)スペーシングは0.2054nmと小さくなり、磁歪は負側に大きくなる。一方、Au(2nm)を単独で用いるとCoFeのfcc-d(111)スペーシングは0.2086nmと大きくなり、磁歪は正側に大きくなる。このようにAu/Cu下地を用いることによって、初めて好適な0.2074nmのスペーシングが得られる。

【0429】なお、従来技術で示した(g)の構成のC u 膜上では得られなかった耐熱性が、Au/Cu積層膜 で得られた1つの要因として、磁歪にも影響している格 子間隔の違いが挙げられる。Cu下地では格子間隔が狭 くなり、IrMnとの界面での格子不整合が大きくなり 歪みが大きくなる。この歪みが大きい状態でプロセスア ニールを行うことにより歪み緩和が生じ、特に固着層と 反強磁性膜の界面で拡散を生じさせることになるからで ある。よって、この影響はIrMnの膜厚が厚いほど顕 著になる。ところが、Au/Cu下地の方がIrMnの 格子間隔と近いため、その上に積層されるCoFe/C u/CoFeが逆にIrMnに近い格子定数の歪み格子 となり、アニールによる歪み緩和の影響が小さくなるか らである。また、従来技術の(h)の構成のAu下地の 場合には、逆に格子間隔が広すぎ、CoFe/Cu/C o F e の歪みエネルギーが大きくなりすぎて、逆に界面 のディスロケーションが生じやすくなり、初期アニール 劣化が生じてしまう。Au層とCoFe層とを直接積層

すると、Au層が結晶粒界に沿って非磁性中間層のCu層にまで拡散する可能性があるからである。非磁性中間層にAuが到達するとMR変化率はとたんに小さくなる。これは長期耐熱性に影響してくる。ところが、Au/Cu積層膜にすることによって、Cu層がAu拡散のストッパ層となり長期耐熱性も安定となる。

【0430】下地としてのTaはAuを二次元的に成長させるために必要なバッファ層である。Auをアモルファス $A1_2O_3$ 上に直接成膜した場合には、Auがアイランド成長し、スペーサ層を介して固着層と感磁層との強磁性的結合の結果、 H_{in} の増大原因となる。また、実際の素子ではプロセスを経た基板上への成膜となるため、安定して成膜を行うためにバッファ層が必要である。ここではTaを下地膜に用いたが、Ti、Zr、Cr、W、Hf、Nb、もしくはこれらを含む合金、これらの金属を含む酸化物や窒化物であってもよい。

【0431】このように、従来技術の構成(f)のように、Auの下地膜として合計220nmもの層を用いなくても、Ta下地を使用することによって、十分Auのアイランド成長を妨げ平坦な膜表面を得ることができ、その上に成膜されるCu/CoFe 膜の界面も平坦となる。また、350℃もの高温の熱処理をする必要もない。最適なのは2700℃×4H程度の熱処理を行うことができる。このようにTaなどの非磁性下地層は重要であり、通常用いられている下地層との組み合わせにより平坦なAu膜が得られる。

【0432】また、非磁性下地層としてTi(5nm)、Zr(5nm)、W(5nm)、Cr(5nm)、V(5nm)、Mo(5nm)、Mo(5nm)、V(5nm)、Nb(5nm)、Mo(5nm)、Hf(5nm)、およびこれらの合金(5nm)を用いた場合においても、同様な効果が得られた。さらに、MR向上層としてAu(0..5~2nm)/Cu(0.5~2nm)/Au(0.3~1nm)/Cu(0.3~1nm)/Au(0.3~1nm)/Cu(0.3~1nm)/AuCu(0.5~5nm)/Cu(0.5~2nm)、AuCu(0.5~5nm)/Cu(0.5~2nm)を用いた場合においても、同様な効果が得られた。

【0433】このように、MR向上層は2層から構成されていても、またそれ以上の層数であっても、さらに合金層であれば1層であっても構わない。ただし、抵抗を上昇させる添加元素が加えられていない場合には、膜厚が厚くなるとシャント分流が増大するため、5 n m以下であることが望ましい。しかし、下地としてfcc配向させるシード効果もなければならないので、磁性層の下に位置する場合のMR向上層の膜厚としては2~5 n m 程度が望ましい。

【0434】上記のAu-Cuの組み合わせ以外の積層膜、合金膜材料の組み合わせとしては、磁性層がCo系合金のときには、Ru-Cu、Au-Cu、Pt-C

u、Rh-Cu、Pd-Cu、Ir-Cu、Ag-Pt、Ag-Pd、Ag-Au、Au-Pt、Au-Pt 、Au-Pt0、Au-Al0 などが挙げられる。これらの組み合わせのうち、Co0 系磁性層に接するMR向上層の主元素はCu0、Au0、Ag0いずれかである。

【0435】 膜構成に関しては、Au-Cuの場合の前述のように、2層積層膜でも、3層積層でも、さらに層数が多くても、合金層の場合には1層であってもそれ以上の層数であっても構わない。 膜厚に関しても前述のAu-Cuのときと同様であり、第3の添加元素がない場合にはトータル膜厚で2~3nm程度が望ましい。

【0436】Co系のときの以上の組み合わせのうち、特に膜微細構造の点でも望ましいのが、互いに大きく固溶する組み合わせのAu-Cu、Ag-Pt、Au-Pd、Au-Ag、Pt-Cuなどが特に望ましい。このなかであとは適当な格子定数に制御し得る組み合わせで最適な材料が決定される。

【0437】上記の磁性層がCu系のときと全く同様に、磁性層がNi系のときにはそれに接するMR向上層の積層膜、またはMR向上層の合金膜の組み合わせとして、Au-Pt、Au-Pd、Au-Ag、Au-Al、Ag-Pt、Ag-Pd、Ru-Rh、Ru-Ir、Ru-Ptなどが挙げられる。これらの組み合わせのうち、Ni系磁性層に接する側のMR向上層の主元素は、Au、Ag、Ruのいずれかである。膜構成、膜厚に関しては全く同様である。

【0438】さらに、MR向上層を形成する2つの元素の組み合わせとして、互いに非固溶であってもよく、例えば磁性層がCo系磁性層の場合には、Cu-Ru、Cu-Agの積層膜であっても構わない。これらの非固溶な組み合わせの場合には合金層を形成しようとしても、2相分離してしまうので好ましくなく、積層膜で用いるのが好ましい。ここで、磁性層がNi系磁性層の場合の具体例として、NiFeNifcCr、NiFeNb、NiFeRhなどが挙げられる。

【0439】またピン膜構成として、ここでは単純に反強磁性膜にピン層が直接積層されているタイプのものを示したが、シンセティックアンチフェロ構造でも構わない。例えばピン膜構成として、CoFe2.5nm/IrMn7nmの代えて、CoFe3nm/Ru0.9nm/CoFe3nm/IrMn7nm、CoFe3nm/Cr0.9nm/CoFe3nm/IrMn7nmなどでも構わない。

【0440】反強磁性膜は、PtMn、NiMn、Ru RhMn、CrMn、FeMn、NiOなどの材料でも 構わない。ピン層材料はCoでもNiFeでも構わない。

【0441】上記した非磁性下地層はTaなどの金属膜に限らず、例えば TaO_I のような酸化膜を使用することもでき、Taに代えて TaO_I 下地を用いた場合に

も、同様に良好な効果が得られた。この場合、MR向上層で反射しきれなかった電子をポテンシャル差が大きい TaO_I 下地/MR向上層界面で反射させることができ、MR変化率をさらに向上させることができる。ただし、 TaO_I 下地層上に直接CoFe を成膜すると fc c (111) 配向しなかったり、また磁歪的に望ましい fcc-d (111) 不ペーシングは得られない。これに対して TaO_I / Au / Cu 下地は実用性に優れるものである。 TaO_I に代えてTi、Zr、Cr、W、Hf、Nb などの酸化物を用いることもできる。また、TiN、TaN のような窒化物を用いることもできる。(実施例 2)この実施例 2 では、Ta(5nm) / Au(1nm) / CoFe(4nm) / Cu(2.5nm) / CoFe(2.5nm) / IrMn

(7nm) /Au (0.5nm) /Cu (0.5nm) /Ta (5nm) 構造のスピンバルブ膜を、実施例1と同様にして作製した。
【0442】上側のMR向上層としてのAu/Cu積層膜の格子定数は、CoFe/Cu/CoFe積層膜の格子定数よりIrMnに近いため、IrMn上にAu/Cu積層膜を形成することによって、IrMnの格子定数をより安定に保つことができ、熱安定性をより一層高め

ることができる。Au層を保護膜のTa直下に配置すると、Auのような表面エネルギーの小さな層が、Taのような表面エネルギーの大きな層の直下に存在することになるので、AuがTa表面へ拡散しやすく、層の熱安定性が劣化する。よって、Ta直下にはAuやAgなどは配置しないほうが望ましい。この実施例のようにCu層を介してTa保護膜を形成するほうが好ましい。AuCu合金層でも同様な効果が得られる。

(実施例3) この実施例3では、Ta(5nm)/NiCoFe(5nm)/Au(1nm)/Cu(1nm)/CoFe(3nm)/Cu(2.5nm)/CoFe(2.5nm)/IrMn(7nm)/Ta(5nm)構造のスピンバルブ膜を、実施例1と同様にして作製した。このスピンバルブ膜において、感磁層はAu/Cu膜が介在されたNiCoFe(5nm)とCoFe(3nm)との積層膜である。

【0443】また、本発明との比較例として、Ta (5 nm) / Ni CoFe (5 nm) / CoFe (3 nm) / Cu (2.5 nm) / CoFe (2.5 nm) / Ir Mn (7 nm) / Ta (5 nm) 構造のスピンバルブ膜を同様にして作製した。

【0444】比較例のスピンバルブ膜は、as-bepoでMR変化率8.6%であったものが、250℃×4Hのプロセスアニール後には6.6%と劣化し、劣化率は23%にも達した。これはCoFeとNiFeCrが固溶系であるため、as-bepo段階ではさほどCoFe/NiFeCr界面でミキシングせずにMR変化率がでている。しかし、250℃×4H程度のアニールを

行うと、CoFe/NiFeCr界面が容易に乱れてしまう。これはシャント化のためにNiFeCcrを4%程度添加したNiFeCcrの結果だが、 $Ni_{81}Fe_{19}$ (原子%)でも同様である。

【0445】一方、実施例3のようにAu/Cu積層膜を挿入することにより、CoFe層とNiFeCr層との拡散が抑えられるため、MR変化率はas-depo段階で8.7%であったものが、250℃×4Hのプロセスアニール後でも8.1%とMR劣化が著しく抑えられた。これはAu/Cu挿入による拡散防止の効果として、CoFe層との界面反射効果がアニール後でも保たれていることが挙げられる。

【0446】Au (1nm) /Cu (1nm) に代え τ、Au (0. 5 nm) /Cu (0. 5 nm) 、Cu (0. 5 nm) / Au (0. 5 nm), Au (0. 3 n m) /Cu (0. 3 nm) /Au (0. 3 nm) , Au (0. 3 nm) /Cu (0. 3 nm) /Au (0. 3 n m) /Cu (0. 3 nm) 、AuCu (0. 5 nm) / Cu (0. 5 nm), AuCu (1 nm) / Cu (0. 5 nm), Ag (0. 5 nm) / Cu (0. 5 nm), Cu (0.5nm) / Ag (0.5nm), Ag (0.3 nm) / Cu (0. 3nm) / Ag (0. 3nm)Ag(0.3nm)/Cu(0.3nm)/Ag(0.3 nm) /Cu (0. 3 nm), Pt (0. 5 nm) / Cu (0. 5 nm), Cu (0. 5 nm) / Pt (0. $5 \, \text{nm}$), Pt (0. $5 \, \text{nm}$) /Cu (0. $5 \, \text{nm}$), Pt (0. 5 nm) 、 Pt (0. 5 nm) / Cu (0. 5 nm) / Pt (0.5 nm) / Cu (0.5 nm)AuCu(0.5~1.5nm)などを用いた場合に も、同様な効果が得られた。

【0447】なお、第2の磁性層としてN i F e C r を 用いた理由は以下の通りである。N i F e i C r を を かることによって、M s を 低下させることなく ρ を 向上させて、シャント分流の効果を低減させている。また、C r 添加による磁歪 λ が正側に上昇するのを抑えるため、N i δ e δ e o δ 比率は通常のゼロ磁歪組成である、 δ i : δ e = δ i : δ e δ b も 少し δ i リッチにすることが望ましい。 δ s δ c δ を 強歪の全てを 満足する組成としては、 δ i δ i δ e δ c δ c δ e δ c δ c δ i δ e δ c δ c δ i δ e δ c δ c δ i δ e δ c δ c δ c δ c δ i δ e δ c δ

(実施例4) この実施例4では、Ta(5nm)/Au(1nm)/Cu(1nm)/IrMn(7nm)/CoFe(2.5nm)/Cu(2.5nm)/CoFe(4nm)/Cu(0.5nm)/Au(0.5nm)/Cu(0.5nm)/Ta(5nm)構造のスピンバルブ膜を、実施例1と同様にして作製した。

【0448】この実施例4は磁化固着層が非磁性中間層よりも下側にある、いわゆる反転構造のスピンバルブ膜である。上層のCu/Au/Cu層はMR向上層であ

り、耐熱性、MR変化率を向上させている。下側のAu/Cu層はIrMnの下地膜になっていると同時に、IrMnの格子定数を安定に保つ働きをするMR向上層である。この膜のas-depoでのMR変化率は10%で、 $250\%\times4$ Hのアニール後のMR変化率は9.5%であった。Cu/Au界面はAuCu合金を形成していた。

【0449】この実施例4の上側のTaは保護膜であり、Ta膜表面で反射を起こさせようとするものではない。この実施例4ではCu/Au/Cu層がMR向上層であるので、CoFe/Cu界面およびCu/Au界面(もしくはAuCu合金層)で反射を起こさせるものである。このように、従来技術として示した(e)や(d)の構成とは明らかに異なるものである。さらに、極薄のCu層をCoFe/Au界面に挿入しているため、Auの非磁性中間層(Cu)への長期的な拡散を抑えると同時に、一旦フェルミ波長が短い層を介してAu層を配置しているため、反射効果を増大させることができる。

【0450】上側のMR向上層としてのAu(1nm)/Cu(1nm)に代えて、Au(0.5~3nm)/Au(0.5~3nm)/Au(0.5~3nm)/Au(0.5~3nm)/Cu

【0451】また、他の材料については実施例1の場合の材料が用いられる。実施例4のフリー層の上層に積層されるMR向上層はシード効果は必要とされないため、膜厚は1nm程度に薄くしても構わない。ただし、厚いときのシャント分流増大の悪影響は実施例1のときと同様なため、5nm以下が望ましい。

【0452】反強磁性膜の下地にあるMR向上層は、反強磁性膜の格子間隔を適切な値にして、ピンCoFeと反強磁性膜の界面での格子不整合に起因する界面ミキシングを抑制するとともに、反強磁性膜自体の格子間隔を適切な値に制御することによって、ピン特性自体も向上させようとするものである。このときの具体的なMR向上層として、Al-Cu、Pt-Cu、Rh-Cu、Pd-Cu、Ir-Cu、Ag-Pt、Ag-Pd、Ag-Au、Au-Pt、Au-Pt、Ru-Cu、Ag-A

uの組み合わせの積層膜、合金膜などが例として挙げられる。

【0453】個々の反強磁性膜に適したMR向上層としては、Cu、Au、Ag、Pt、Rh、Ru、Pd、Al、Ti、Zr、Hfから選ばれる2つの元素の積層膜、合金膜が下地として効果を発揮する。ピン側だけの効果を狙うならば反転構造スピンバルブ膜のフリー層の上層に積層されたMR向上層はなくても構わない。さらに、反強磁性膜の下地のMR向上層はピン膜構成が前述のようなシンセティックアンチフェロ構造であっても構わない。一例としてTa5nm/AuCu2nm/IrMn7nm/CoFe3nm/Ru0.9nm/CoFe3nm/Cu3nm/CoFe1nm/NiFe5nm/Ta5nmなどがある。

【0454】また、Ta保護膜に代えて、Ti、Zr、Cr、W、Hf、Nbなどを用いた場合についても同様であった。

(実施例 5) この実施例 5 では、Ta (5 nm) / Au Cu (2 nm) / Ir Mn (7 nm) / CoFe (2.5 nm) / Au Cu (2.5 nm) / CoFe (4 nm) / Au Cu (2 nm) / Ta (5 nm) 構造の反転スピンバルブ膜を、実施例 1 と同様にして作製した。ここで、下側のCoFe層(磁化固着層)と上側のCoFe層(感磁層)との間に配置されたAu Cu層は、非磁性中間層であると同時に、感磁層の磁歪を制御するMR向上層である。

【0455】反転構造のスピンバルブ膜では、Cuなどからなる非磁性中間層上に形成される感磁層のfccーd(111)が小さくなり、磁歪が大きくなってしまう。これに対して、この実施例5のように、非磁性中間層であると同時にMR向上層であるAuCu合金層上にCoFe感磁層を積層形成することによって、CoFe感磁層のfccーd(111)スペーシングを適度な値に調整することができ、これにより感磁層の磁歪を低減することができる。

【0456】ところで、AuCu合金からなる非磁性中間層では、CoFe層との界面でのスピン依存散乱がCu単層の場合に比べて若干低下し、MR変化率が若干低下するおそれがある。このような点は非磁性中間層に例えばCu(0.8nm)/AuCu(0.8nm)/Cu(0.8nm) 積層膜などを使用することで解決することができる。

【0457】このような非磁性中間層であると同時にMR向上層の使用は、反転構造のスピンバルブ膜に限らず、通常のスピンバルブ膜やデュアルエレメントタイプのスピンバルブ膜に対しても有効である。デュアルエレメントタイプのスピンバルブ膜に非磁性中間層兼MR向上層を使用した例としては、Ta(5nm)/AuCu(2nm)/IrMn(7nm)/CoFe磁化固着層(2.5nm)/AuCu非磁性中間層兼MR向上層

(2.5nm) / CoFe 感磁層 (3nm) / Cu (2.5nm) / CoFe 磁化固着層 (2.5nm) / IrMn (7nm) / Ta (5nm) 構造が挙げられる。通常のスピンバルブ膜に非磁性中間層兼MR向上層を使用した例としては、Ta (5nm) / AuCu (2nm) / CoFe (4nm) / Cu (0.8nm) / AuCu (0.8nm) / CoFe (2.5nm) / IrMn (7nm) / Ta (5nm) 構造が挙げられる。

【0458】なお、反転構造のスピンバルブ膜およびデ ュアルエレメントタイプのスピンバルブ膜においてIr Mnなどの反強磁性膜の下地として用いたAuCu層の 効果などにより、CoFe感磁層のfcc-d(11 1) スペーシングが十分に制御されていれば、非磁性中 間層には一般的なCu層などを使用することができる。 【0459】反転構造のスピンバルブ膜およびデュアル エレメントタイプのスピンバルブ膜の他の具体例として は、Ta (5nm) /Au (1nm) /Cu (1nm) /IrMn (7nm) /CoFe (2. 5nm) /Ru (0. 9 nm) / C o F e (3 nm) / C u (3 nm)/CoFe (4 n m) / Ta (5 n m) 、 Ta (5 n m) /Au (1 nm) /Cu (1 nm) IrMn (7 n m) /CoFe (2. 5 nm) /Cu (3 nm) /Co Fe (4 nm) / Ta (5 nm) 、 Ta (5 nm) / A u (1 nm) / Cu (1 nm) / I r Mn (7 nm) / CoFe (2. 5 nm) / Ru (0. 9 nm) / CoF e (3 nm) / Cu (3 nm) / CoFe (2 nm) / NiFe(2nm)/Ta(5nm), Ta(5nm)/Au (1 nm) /Cu (1 nm) / I r Mn (7 n m) /CoFe (2. 5 nm) /Cu (3 nm) /Co Fe (2nm) /NiFe (2nm) /Ta (5nm), Ta (5 nm) /Au (1 nm) /Cu (1 nm) / I r M n (7 n m) / C o F e (3 n m) / C u (3 nm) /CoFe (3 nm) /Cu (2 nm) /C o Fe (3 nm) / I r Mn (7 nm) / Ta (5 n m), Ta (5 nm) / Au (1 nm) / Cu (1 n m) / I r M n (7 n m) / C o F e (3 n m) / C u (3 nm) / CoFe (1 nm) / NiFe (2 nm)/CoFe (1 nm) /Cu (3 nm) /CoFe (3 nm) / IrMn (7 nm) / Ta (5 nm) 、 Ta (5 nm) /Au (1 nm) /Cu (1 nm) /IrM n (7 nm) /CoFe (2.5 nm) /Ru (0.9 nm) /CoFe (3 nm) /Cu (3 nm) /CoF e (3 n m) /Cu (3 n m) /CoFe (3 n m) / Ru (0. 9 nm) / CoFe (2. 5 nm) / Ir M n (7 nm) / Ta (5 nm) 、 Ta (5 nm) / A u (1 nm) / Cu (1 nm) / IrMn (7 nm) / Co F e (2. 5 n m) / R u (0. 9 n m) / C o F e (3nm) /Cu (3nm) /CoFe (1nm) /N i Fe (2nm) / CoFe (1nm) / Cu (3n

m) / CoFe (3 n m) / Ru (0.9 n m) / CoFe (2.5 n m) / Ir Mn (7 n m) / Ta (5 n m) などが挙げられる。上記したAu/Cu下地に代えて前述したような各種積層膜や合金層を用いることができる。

【 O 4 6 0 】他の構造例としては、基板/Ta(5nm)/IrMn (7nm)/CoFe(2.5nm)/Ru(0.9nm)/CoFe(3nm)/Cu(3nm)/CoFe (2.5nm)/MR向上層/CoFe(2.5nm)/Cu(3nm)/CoFe(3nm)/Ru(0.9nm)/CoFe(2.5nm)/IrMn(7nm)/Ta(5nm)が挙げられる。この構造ではCoFe/MR向上層/CoFeがフリー層であり、強磁性的に結合している。

【O461】また、上述した各実施例では反強磁性膜に IrMnを使用した例に付いて説明したが、NiMn、 PtMn、PdPtMn、RuRhMn、CrMn、N iOなど、種々の反強磁性材料を用いた場合において も、同様の効果を得ることができる。

【0462】さらに、上述のように磁化固着層に例えば CoFe/Ru/CoFe/IrMn、のような反強磁 性カップリング(Ruを介したCoFe同士の反強磁性 カップリング)などを用いたスピンバルブ膜においても 本発明は効果を発揮する。上記したような積層膜におい て、ある膜厚で反強磁性的な結合をする。

【0463】この場合、中間層を本発明のMR向上層とすることができる。例えばCoFe(2.5nm)/AuCu(1nm)/CoFe(2nm)/IrMn(反強磁性カップリング)、IrMn/CoFe(2nm)/AuCu(1nm)/CoFe(2nm)(反強磁性カップリング)などであり、またCoFe(1nm)/AuCu(0.5nm)/CoFe(2nm)/IrMn(7nm)のように、強磁性カップリングを適用することもできる。磁化固着層の中間に配置されたAuCu層などは、両側の磁性層を反強磁性的に結合させ、さらに鏡面反射効果をもたらすと同時にIrMnなどの格子を安定に保ち、スピンバルブ膜の耐熱性およびMR特性を向上させるものである。このような場合のMR向上層の膜厚は0.5~2nmの範囲とすることが好ましい。

(実施例6) 耐熱性の悪化の原因となる通常の結晶粒界はほとんどなく、完全単結晶ではないにしても、粒界が存在したとしても小傾角粒界のような耐熱性に優れた結晶構造を実現するための手段としても、Au/Cuなどの積層膜や合金層からなるMR向上層は有効である。その一例として、熱酸化シリコン基板/Ta(5nm)/Au(1nm)/CoFe(3nm)/CoFe(3nm)/Cu(3nm)/CoFe(2nm)/IrMn(7nm)/Ta(5nm)の構造を、断面TEMとディフラクションパターンにより評価した。ディフラクションパターンにより評価した。ディフラクションパターンにより評価した。ボイフラクションパターンにより評価した。ボイフラクションパターンにより評価には、ディフラクションパターンにより評価にあるような大きさとした。より詳細に調べるためには、スポット径をさらに絞ったマイクロディフラクションでもかまわない。

【0464】ディフラクションパターンから、 1μ m以上の領域にわたって全てほぼ単一結晶構造の回折パターンが得られ、単結晶に近い構造を得られていることが分かった。Ta下地、保護膜を除く他は膜はfcc(111)配向している。回折パターンで中心点から半径Rの若干異なる点にスポットが見えた。これは、IrMnとCoFe/Cu/CoFeとではfcc(111)スペーシングの大きさが異なるからである。格子像を見ている。非常にきれいなfcc(111)配向ができていることが確認できた。横方向での格子点が若干不連続になっているところがたまに見られた。回折パターンは全ての領域でほぼ単一のスポットしかでていないことから、上記した格子不連続は小傾角粒界のようなサブグレインバウンダリであると思われる。

【0465】このような単結晶に近い構造は、MR変化率、磁気特性の耐熱性に優れているだけでなく、電子の散乱の原因となる結晶粒界がほとんど存在しなくなるので、電子の平均自由行程も長くなり、MR変化率の絶対値を上昇させることにもなり、望ましい膜構造である。このような単結晶に近い構造を、熱酸化シリコン、アモルファスアルミナのようなアモルファス基板上で得る技術も本発明の特徴の一つである。ここでは熱酸化シリコン基板を用いたが、実際のヘッドで通常用いられているAITiC基板上のアモルファスAIOI膜上や、その他の酸化物系アモルファス膜、窒化物系アモルファス膜、ダイヤモンドライクカーボン上でも構わない。

【0466】この実施例におけるAuの下地のTaは必ずしもTaでなくてもよいが、何らかの下地バッファ層は必要である。Auを直接熱酸化シリコン基板上に成膜しても、本発明のような単結晶に近い結晶構造の膜は得られない。Ta以外の材料としては、Ti、W、Zr、Mo、Hfやそれらを含む合金などを用いることができる。Ta/Au/Cu下地膜の場合には、TaとAuは合金を形成するため、Auが成膜されたときのAuのアイランド成長が妨げられ、二次成長しやすくなる。つまり、結晶粒としての凝集力よりも基板側との結合力が勝ることが膜成長によい影響を及ぼす。

【0467】また、Ta/Au/Cuのような下地膜構成でも単結晶ライクな成長を促すのに効果がある。この場合のように、合金を形成する材料を積層膜にする場合もAuが成膜されるときにCu上にそのまま結晶粒を保ったまま成長するのではなく、下地との結合が大きくなって単結晶的な粒を形成する。このような構造は、Ta(5nm)/Cu(2nm)/CoFe(4nm)/Cu(3nm)/CoFe(2nm)/IrMn(7nm)/Ta(5nm)のように、単純なTa/Cu下地では得られない。

【0468】良好に実現する他の構造としては、実施例 1のときと同様に、磁性層がCo系の膜の場合、Al-Cu、Pt-Cu、Rh-Cu、Pd-Cu、Ir-C u、Ag-Pt、Ag-Pd、Ag-Au、Au-Pt、Au-Pd、Au-Pd、Au-Al の積層膜または合金膜が挙げられる。積層膜の場合、繰り返し層数は 2 層以上であればいくつであっても構わない。また、磁性層がNi 系の膜の場合、Au-Pt、Au-Pd、Au-Ag、Au-Al、Ag-Pt、Ag-Pd、Ru-Rh、Ru-Ir、Ru-Pt の組み合わせの積層膜、合金膜なが挙げられる。Co 系のときと全く同様に、積層膜の層数は 2 層以上であれば何層であっても構わない。以上のような二つの金属の組み合わせのうち、固溶範囲が広い Au-Cu、Ag-Pt、Au-Pd、Au-Ag、Pt-Cu などがある。また、固溶な組み合わせでなくても、Ru-Cu 、Ag-Cu のような組み合わせの積層

【0469】他の構造として、Ta/Cu/Au/Cu 下地、Ta/Pt/Cu下地、Ta/Cu/Pt下地、 Ta/Rh/Cu下地、Ta/Cu/Rh下地、TA/ Pd/Cu下地、Ta/Cu/Pd下地などが挙げられ る。これらの材料でTaなどのバッファ層上の積層回数 を増やしてもよい。また、Taの代わりにTi、W、Z r、Mo、Hfやそれらを含む合金などを用いることが できる。fcc金属層の部分はシャント分流によるMR 変化率の減少を防ぐため、抵抗を上げる元素を添加しな い場合には、あまり厚くない方が好ましい。また逆に薄 すぎるとfccのシード層としての効果が薄れてしまう ため、あまり薄すぎないほうが好ましい。具体的には、 Taなどの下地バッファ層を除いた下地シード層の膜厚 は2~5nm程度が好ましい。ただし、添加元素などに より下地シード層の抵抗が上昇してシャント分流の心配 が低減した場合には5nm以上としてもよい。

【0471】上述したような構成の具体例としては、Ta(5nm)/Pt(1nm)/Cu(1nm)/CoFe(2.5nm)/IrMn(7nm)/Ta(5nm)、Ta(5nm)/PtCu(2nm)/CoFe(2~8nm)/Cu(3nm)/CoFe(2.5nm)/Ir

Mn (7nm) / Ta (5nm) , Ta (5nm) / Au (1 nm) / Cu (1 nm) / I r Mn (7 nm) / CoFe (3nm) /Ru (1nm) /CoFe (3n)m) /Cu (3 nm) /CoFe (1 nm) /NiFe (5 nm) / Ta (5 nm) , Ta (5 nm) / Au (1 nm) / Cu (1 nm) / IrMn (7 nm) / CoFe (2. 5nm) / Cu (3nm) / CoFe (1 nm) /NiFe (5nm) /Ta (5nm) , Ta(5 nm) /Au (1 nm) /Cu (1 nm) / I r M n (7 nm) / CoFe (3 nm) / Ru (1 nm) / CoFe (3nm) /Cu (3nm) /CoFe (4n m) / Ta (5 nm) 、 Ta (5 nm) / Au (1 n m) /Cu (1 nm) / I r M n (7 nm) / Co F e (3 nm) /Ru (1 nm) /CoFe (3 nm) /C u (3 nm) / CoFe (4 nm) / Cu (3 nm) / CoFe (3 nm) /Ru (1 nm) /CoFe (3 n m) / I r M n (7 n m) / T a (5 n m) 、 T a (5 nm) /AuCu (2 nm) / I r Mn (7 nm) / C oFe (3nm) /Ru (1nm) /CoFe (3n m) /Cu (3 nm) /CoFe (4 nm) /Cu (3 nm) /CoFe (3 nm) /Ru (1 nm) /CoF e (3nm) / IrMn (7nm) / Ta (5nm) な どが挙げられる。

(実施例7) これまでのようなMR向上層は図49のような人工格子センサの場合にも適用できる。この場合、Coを含む膜、Niを含む膜のような磁性層71と、非磁性層72との積層層数はスピンバルブ膜よりも多くなる。このときに最上層もしくは最下層の磁性層に接しさせてMR向上層73を配置させる。具体的な材料の考え方は実施例1のときなどと全く同様である。

【0472】以上、具体例を参照しつつ本発明の第1~ 第7の実施の形態について説明した。しかし、本発明 は、これらの具体例に限定されるものではない。

【0473】例えば、図50~図52は、本発明のさらなる変型例を表す概念図である。

【0474】すなわち、図50は、ABS(エア・ベアリング・サーフェース)から見たスピンバルブ素子部の断面を示すものであり、図51は、ギャップ膜やシールド膜を除いたスピンバルブ素子の斜視図である。

【0475】アルチック基板10に下シールド11(NiFe、Co系アモルファス磁性合金、FeAlSi合金など、厚み:0.5~3μm、NiFeやFeAlSi合金など、厚み:0.5~3μm、NiFeやFeAlSi合金では研磨により表面凹凸をシンセティックピン層の中間磁気結合層の厚み以下まで除去することが望ましい)、下ギャップ膜12(アルミナや窒化アルミなど)を形成し、その上にスピンバルブ素子13を形成する。スピンバルブ素子13はスピンバルブ膜14と一対の縦バイアス膜15および一対の電極16から構成される。スピンバルブ膜14は、実施例4に示したボトム型のSVから形成される。すなわち、Ta、Nb、Zr、Hf

等の非磁性下地層141(厚み:1~10 n m)、必要 に応じてRuやNiFeCrなどの第2の下地層142 (厚み:0.5~5nm)、反強磁性層143、強磁性 層/磁気結合層/強磁性層からなるシンセテックピン層 144、非磁性スペーサ145、フリー層146、高電 気伝導層147、必要に応じて保護膜148(0.5~ 10 nm) から構成される。その上に上ギャップ層17 (アルミナや窒化アルミなど)、上シールド18 (Ni Fe、Co系アモルファス磁性合金、FeAlSi合金 など、厚み: $0.5 \sim 3 \mu m$) が形成される。図示し ていないが、さらにその上に記録部が形成される。 ピンバルブ素子13は、スピンバルブ膜14のトラック 幅端部を除去してそこに縦バイアス層15を形成したい わゆるアバットジャンクションタイプの素子構造からな る。縦バイアス層15には硬質磁性膜(Cr, FeCo などの下地の上に形成したCoPtやCoPtCrな ど)或いは強磁性層151と反強磁性膜152を順次積 層して強磁性層をハード化したものが用いられる。先に 反強磁性膜152を成膜して次に強磁性膜151を成膜 しても良い。今後の狭トラックに対応して、トラック幅 端での急峻な再生感度プロファイルを得るには、磁化自 由層に対する縦バイアス強磁性層(硬質磁性層または反 強磁性膜で交換結合バイアスされた強磁性層)の磁気膜 厚比、Ms*t (縦バイアス) / Ms*t (フリー) を7 以下、望ましくは5以下に設定する。磁化自由層が4. 5 n m 厚以下(磁気膜厚比: 5 n m T以下)にまで薄く なると、 Ms*t (縦バイアス) / Ms*t (フリー) ≦5を満足するために、縦バイアス強磁性層も非常に薄 くなる(磁気膜厚比で25nmT以下)。

【0476】一般に、硬質磁性膜では膜厚が薄くなると高保磁力が得難くなるが、一方、強磁性膜/反強磁性膜タイプの縦バイアス層では強磁性膜151が薄くなるほど交換バイアス磁界が増大して固着が強固となるので、強磁性膜151/反強磁性膜152タイプの縦バイアス層が望ましい。さらに、強磁性膜151/反強磁性膜152の縦バイアス層では、強磁性層151の飽和磁化と関フリー層の飽和磁化と概ね同様かそれ以上のものが完全なBHN(バルクハウゼンノイズ)除去をなるべくかさな縦バイアス磁界で実現するのに好ましい。すなわちNiFe合金でも良いがCoFeやCo等のより飽和磁化が大きなものが望ましい。飽和磁化が小さな強磁性膜151を用いてその膜厚増大により漏洩磁界を強めてBHN除去を実現すると、特に狭いトラック幅になると再生出力低下を引き起こす。

【0477】なお、図50ではスピンバルブ膜14を全てエッチング除去しないで反強磁性層143を残して縦バイアス層を形成した場合を示したが、下地層141までエッチング除去しても良い。反強磁性層143を残してその上に縦バイアス層15を形成すると縦バイアス層とスピンバルブ膜との電気的接触が良くなる利点を有す

る。電極16が縦バイアス層15の間隔と概ね等しい一般的なアバットジャンクションでは、電極とスピンバルブ膜がダイレクトに面接触できないので反強磁性膜143を残すメリットが大きい。なお、反強磁性膜の上のピン層144は完全に除去してその上に縦バイアス層を形成することが望ましい。その理由は、後述するようにピン層144の磁化と縦バイアス層15の磁化の方向は概ね直交させることが必要なので、そうするとピン層144とその上の縦バイアス層15との磁気相互作用により縦バイアス層の磁化が不安定になるためである。或いは、高導電層147まではエッチング除去してフリー層を完全に除去すること無く、その上縦バイアス層を形成しても良い。

【0478】また、結晶性改善のために、或いは反強磁性層143と縦バイアス層15との磁気結合を弱めるために、強磁性層151の下に下地層142と同様な極薄い下地層153を設けても良い。強磁性層と強磁性層の間には、僅かな厚みの非磁性層が存在しても磁気結合が発生し易いが、反強磁性層と強磁性層の間では僅かでも非磁性層が存在するともやは磁気結合を生じない。縦バイアス層からのバイアス磁界を有効にフリー層に加えるために、下地層153の厚みは10nm以下が望ましい。硬質磁性膜を用いる場合にも同様にフリー層と硬質磁性膜の飽和磁化を揃えることが望ましいが、CoFe などの高飽和磁化フリー層に匹敵する高飽和磁化硬質磁性膜を作製することは通常困難である。

【0479】そこで、硬質磁性膜の下地にFeCoのようなCoFeに匹敵する高飽和磁化の下地を用いてフリー層との飽和磁化のバランスを保つことが、小さな縦バイアス磁界でBHNを除去するのに適する。反強磁性膜152にはスピンバルブ膜に用いたものと同様な反強磁性膜材料を用いることが出来る。

【0480】しかし、スピンバルブの反強磁性層と縦バイアス層の反強磁性膜152の交換バイアス方向は直交させる必要がある(スピンバルブ膜の反強磁性層の交換バイアス方向は素子幅(ハイト)方向、縦バイアス層の反強磁性膜152の交換バイアス方向はトラック幅方向)。

【0481】そこで、例えば、両者の反強磁性膜のブロッキング温度Tbを変えて、最初に高Tb側の反強磁性膜の交換バイアス方向を熱処理により規定して、それより低い温度で尚且つ最初にTbを規定した反強磁性膜の交換バイアスにより固着された強磁性膜の磁化方向が安定な温度近傍にもう一方の反強磁性膜のTbを設定することにより、両反強磁性膜の交換バイアスの直交化が実現できる。反強磁性層152の交換バイアス付与には、磁界中成膜(IrMn、RhMnなどを用いる)や記録部形成における200~250℃のレジストキュアー熱処理工程(PtMn、PdPtMn、IrMnなどを用いる)を利用することが望ましい。スピンバルブ膜の反

強磁性層にはそれよりTbが高い反強磁性膜(IrMn, PtMn, PtMn, PdPtMn等)を用いると、レジストキュアー熱処理工程にてスピンバルブ膜のピン層磁化の方向を乱すことなく反強磁性膜152の交換バイアス方向をトラック幅方向に規定できる。

【0482】従来の単層ピン層スピンバルブでは反強磁性膜152の交換バイアス付与熱処理をかなり下げないとピン層固着の交換バイアス磁界方向が乱れてしまい実用困難であったが、ブロッキング温度以下でピン磁化の耐熱性が急激に安定するシンセティックピン層の性質を利用すると、両反強磁性膜間の数+℃程度の僅かなブロッキング温度の差でも良好な縦バイアスとピン層磁化の直交化が可能になる。なお、反強磁性層152に規則化系反強磁性膜PtMnやPdPtMnを用いる場合は、レジストキュアー温度(200~250℃)で規則化を生じる反強磁性膜が好ましい。

【0483】電極16の間隔LDは、縦バイアス層の間 隔HMDよりも狭いことが、再生素子抵抗を下げてES Dに強いヘッドを実現するために好ましい。 LDは再生 トラックを概ね規定するので、本発明が狙う高密度記録 (10Gbpsi以上)では $0.1\sim0.7\mu m$ のサブ ミクロン幅となる。一方、HMDはLDよりもおよそ 0. 3~1μ m広めることにより、狭トラック幅でもハ ード膜磁界の影響が少なく急峻なトラック幅方向感度プ ロファイルが実現でき、高感度な再生が可能になる。さ らに、HD(素子幅)>LD且つHMD>HDとするこ により、電極間のスピンバルブ素子抵抗が低減できて、 合わせてスピンバルブ感磁部の形状がトラック幅方向に 長い長方形状となるのでバルクハウゼンノイズ抑制が容 易となる。具体的には、素子幅HDは0.4μm程度が 耐ESDを考えると望ましく、電極間隔を0.4μm以 下に狭めた狭トラック幅再生ではハード膜間隔HMDを 0.8μm程度に広げることが望ましい。

【0484】図50においてフリー層の膜厚中心から上 シールド表面までの間隔をgf、下シールド表面までの 間隔をgpとすると、フリー層に加わる電流磁界Hcu を弱めるためには、gfくgpとすることが望ましい。 これは、フリー層が下シールドよりも上シールドに近い ので、フリー層は下シールドからの磁界の影響を強く受 け、なお且つセンス電流の流れる中心が非磁性スペーサ 145側に存在するのでフリー層にはセンス電流磁界方 向と逆方向に下シールドからの磁界(センス電流により シールドが磁化されるために発生)が加わるためである (図50参照)。 センス電流磁界が弱まると、より大 きなセンス電流が投入でき、より高い再生出力および良 好なBP、すなわち上下再生波形の非対称性が小さな再 生波形が得られる。具体的には、gpは35~80 n $m, gfd25\sim50nm$ ギャップの絶縁性も保ってなお且つトータル再生ギャッ プ長も60~130nmの著しい狭ギャップが実現でき

る。

【0485】図52は、図1や図5などに例示したトッ プ型のスピンバルブ膜に適するヘッドの一実施例を示す 概念図である。図50と異なるところは、縦バイアス層 15はスピンバルブ膜を全部エッチング除去した後に下 ギャップ膜12上に形成される点である。さらに、フリ 一層膜厚中心と下シールド表面との間隔 g f が上シール ド表面との間隔gpよりも小さいことが望ましい。これ は、フリー層が上シールドよりも下シールドに近いので フリー層は下シールドからの磁界の影響を強く受け、な お且つセンス電流の流れる中心が非磁性スペーサ145 側に存在するのでフリー層にはセンス電流磁界方向と逆 方向に下シールドからの磁界(センス電流によりシール ドが磁化されるために発生)が加わるためである。セン ス電流磁界が弱まると、より大きなセンス電流が投入で き、より高い再生出力および良好なBP、すなわち上下 再生波形の非対称性が小さな再生波形が得られる。具体 的には、gpは35~80nm、gfは25~50nm としてgfくgpとすると、ギャップの絶縁性も保って なお且つトータル再生ギャップ長も60~130 nmの 著しい狭ギャップが実現できる。

【0486】また、本発明による磁気抵抗効果素子の膜構成は、種々の分析手法により同定可能である。

【0487】図53は、本発明による磁気抵抗効果素子を用いた磁気ヘッドの膜断面におけるナノEDX分析の結果を示すグラフ図である。例えば、断面TEM(tran smission electron microscopy)観察用のサンプルを作製し、その膜断面に対して直径約1nmのビームを用いたナノEDXにより、磁気抵抗効果素子を構成している材料、および膜厚を特定することができる。測定限界および熱処理による界面拡散の影響を適宜考慮することによって、膜構成を概ね再現することができる。特に、図53からも分かるように、フリー層とスペーサCuの界面、およびフリー層と非磁性高導電層のCuとの界面は比較的シャープであり膜厚を特定しやすい。

【0488】膜厚決定の定義としては、所望の膜を構成している主元素の材料のピークの半値幅を膜厚とすることができる。例えば、スペーサCuと下地非磁性高導電層のCuについてはシャープなピークなため膜厚を決定しやすいので、フリー層の膜厚は上下のCu層に挟まれた領域をフリー層膜厚とする。図53の例では、スペーサCuは2.4nm、非磁性高導電層は2nmと水より、その両者のCuに挟まれたフリー層のトータル膜厚は4.1nmとすることができる。このフリー層膜厚は4.1nmとすることができる。このフリー層膜厚はある。このような分析手法によりスピンバルブ膜の膜構成は概ねわかり、スペーサ層、非磁性高導電層、フリー層については極薄の膜厚についても比較的正確に測定することができる。

[0489]

【発明の効果】本発明は、以上説明した形態で実施され、以下に説明する効果を奏する。

【0490】まず、本発明によれば、前述した第1の実施の形態を適用することによって、従来スピンバルブ膜を単純にフリー層を薄膜化するだけでは達成できなかった、良好なバイアスポイント、および高MR、高ΔRsを実現し、かつ製造ばらつきに対しても広いマージンをもつ、次世代スピンバルブ膜が得られる。

【0491】また、本発明によれば、前述した第2乃至第6の実施の形態を適用することによって、今後ハードディスクドライブの高密度記録化に伴って、ドライブにおける動作時に磁気ヘッドの温度が例え200℃前後であっても、磁化固着層が安定であり、また静電放電電流が磁気抵抗効果ヘッドのGMR素子に流入しても磁化固着層の磁化固着が乱されることがなく安定である。またセンス電流の分流が小さいためGMR素子として高い抵抗変化率が保たれて再生感度が確保されるので、より一層の高密度の記録が可能になり、高い再生出力を得ることができる。

【0492】さらに、本発明によれば、前述した第7の実施の形態を適用することによって、MR向上層により初期プロセスアニール劣化を抑制することができると同時に、鏡面反射効果によりMR変化率の向上を図ることができる。また、フリー層が薄い場合においては、MR向上層とフリー層の界面を安定な界面にすることができるので、熱処理を行った後でも、その界面において電子の透過率を高いまま維持でき、高いMR変化率を保つことができる。さらに、例えばCo系磁性材料からなる感磁層をMR向上層により低磁歪化したり、また結晶微細構造を制御することができる。これらによって、高出力、低ノイズ、高耐熱性の磁気抵抗効果素子を提供することが可能となる。

【0493】以上詳述したように、本発明によれば、高性能且つ高信頼性を有する磁気抵抗効果素子を実現することが可能となり産業上のメリットは多大である。

【図面の簡単な説明】

【図1】本発明の磁気抵抗効果素子の断面構成を表す概 念図である。

【図2】本発明のスピンバルブ膜においてえられるトランスファーカーブの概略図である。

【図3】フリー層に接しているスペーサとは反対側の高 導電層Cuの膜厚に対するフリー層に加わる電流磁界H cuの関係を表すグラフ図である。

【図4】アシメトリが-10%~+10%、つまり、バイアスポイント30%~50%を実現するためのシンセティックAFのピン層厚と、非磁性高導電層厚との具体的な範囲を表したグラフ図である。

【図5】本発明の一実施例の磁気抵抗効果素子の具体的な膜構成を示す概念図である。

【図6】本発明の一実施例にかかるスピンバルブ膜構成

を表す概念図である。

【図7】従来の磁気抵抗効果素子が有する2つの問題を 説明するための概念図である。

【図8】計算上のバイアスポイント値とヘッドの再生信号波形の関係を示すグラフ図である。

【図9】各磁界の関係を表す説明図である。

【図10】各層を流れる電流分流 $I_1 \sim I_3$ を表す概念図である。

【図11】比較例におけるバイアスポイントの状態を表す概念図である。

【図12】トランスファーカーブでみたときの H_{in} 、 H_{eu} の大きさとバイアスポイントとの関係を表した概念図である。

【図13】比較例におけるバイアスポイントの決定要素の関係を表す概念図である。

【図14】比較例におけるバイアスポイントの決定要素の関係を表す概念図である。

【図15】各比較例のスピンバルブ膜と本発明によるスピンバルブ膜のバイアスポイントのフリー層厚依存性を比較しつつ表したグラフ図である。

【図16】比較例1~4の構造において、フリー層のMs*tだけを小さくした時にMR変化率がどのように変化するかを表したグラフ図である。

【図17】本発明の磁気抵抗効果ヘッドの一実施形態を 示す図である。

【図18】外部磁界に対するスピンバルブ膜の抵抗値の変化と、交換バイアス磁界Hua*を示す模式図である。

【図19】模擬バイアス磁界を与えた場合の経過時間と 磁化固着層の磁化の動いた角度との関係を示す図。

【図20】反強磁性層の最密面からの回析線ピークのロッキングカーブ半値幅を示す図。

【図21】磁気結合層に、Ruを用いた場合の熱処理後のRu厚と反強磁性結合の低下度合の関係を残留磁化比Mr/Msによって示した図である。

【図22】スピンバルブ膜の磁界に対する抵抗値の変化 を示す図である。

【図23】強磁性層Aと強磁性層Bの膜厚を異ならせることによって、磁界による抵抗変化が相違することを示す図である。

【図24】スピンバルブ素子にヒューマンボディモデルによる模擬のESD電圧を与えた後の抵抗と出力を示す図である。

【図25】スピンバルブ素子にヒューマンボディモデルによる模擬のESD電圧を与えた後の抵抗と出力を示す図である。

【図26】スピンバルブ素子の漏洩磁界を示す図である。

【図27】本発明の磁気抵抗効果ヘッドの他の一実施形態を示す図である。

【図28】本発明の磁気抵抗効果ヘッドのさらに他の一

実施形態を示す図である。

【図29】本発明の磁気抵抗効果ヘッドのさらに他の一 実施形態を示す図である。

【図30】本発明の磁気抵抗効果ヘッドのさらに他の一 実施形態を示す図である。

【図31】本発明の磁気抵抗効果ヘッドのさらに他の一 実施形態を示す図である。

【図32】本発明の磁気抵抗効果素子の第1の実施形態の要部構造を示す断面図である。

【図33】図32に示す磁気抵抗効果素子の変形例を示す断面図である。

【図34】図32に示す磁気抵抗効果素子の他の変形例を示す断面図である。

【図35】従来のスピンバルブ膜の熱プロセスによるM R変化率の低下モデルを示す図である。

【図36】金属膜/金属膜界面で鏡面反射効果が得られることを説明するための図である。

【図37】反射膜のフェルミ波長およびそれと接するGMR膜のフェルミ波長の比と臨界角度 θ 。との関係の一例を示す図である。

【図38】Au(Ag)/Cu界面で鏡面反射を起こす臨界角度 θ 。をフェルミ波長から算出した結果を示す図である。

【図39】図32に示す磁気抵抗効果素子のさらに他の変形例を示す断面図である。

【図40】図39に示す磁気抵抗効果素子の変形例を示す断面図である。

【図41】本発明の磁気抵抗効果素子の第2の実施形態の要部構造を示す断面図である。

【図42】図41に示す磁気抵抗効果素子の変形例を示す断面図である。

【図43】本発明の磁気抵抗効果素子の第3の実施形態の要部構造を示す断面図である。

【図44】本発明の磁気抵抗効果素子を適用した録再分離型磁気ヘッドの第1の実施形態の構造を示す断面図である。

【図45】本発明の磁気抵抗効果素子を適用した録再分離型磁気ヘッドの第2の実施形態の構造を示す断面図である。

【図46】本発明の録再分離型磁気ヘッドを適用した磁気ヘッドアッセンブリの一実施形態の構造を示す斜視図である。

【図47】本発明の録再分離型磁気ヘッドを適用した磁 気ディスク装置の一実施形態の構造を示す斜視図であ る。 【図48】本発明の実施例1で作製したスピンバルブ膜のXRDパターンを示す図である。

【図49】本発明の磁気抵抗効果素子を人工格子膜に適用した実施例の要部構造を示す断面図である。

【図50】ABS(エア・ベアリング・サーフェース)から見たスピンバルブ素子部の断面を示す概念図である。

【図51】ギャップ膜やシールド膜を除いたスピンバルブ素子の斜視図である。

【図52】図1や図5などに例示したトップ型のスピンバルブ膜に適するヘッドの一実施例を示す概念図である。

【図53】本発明による磁気抵抗効果素子を用いた磁気 ヘッドの膜断面におけるナノEDX分析の結果を示すグ ラフ図である。

【符号の説明】

- 1 威磁層
- 2 磁化固着層
- 3 非磁性中間層
- 4 MR向上層
- 4 a, 4 b 金属膜
- 4 c 合金層
- 5 非磁性下地層
- 6 反強磁性層
- 7 保護層
- 8 スピンバルブ膜
- 10 基板
- 11, 18 シールド
- 12, 17 ギャップ膜
- 13 スピンバルブ素子
- 14 スピンバルブ膜
- 15 縦バイアス膜
- 16 電極
- 141,142 非磁性下地層
- 143 反強磁性層
- 144 磁化固着層
- 145 中間層
- 146 磁化自由層
- 147 保護膜
- 151 強磁性膜
- 152 反強磁性膜
- 153 下地層
- 1441 強磁性層B
- 1442 磁気結合層
- 1443 強磁性層A

【図7】

フリー層が薄くなったときの問題点

(傾きが急唆になる) →バイアスポイントがとりづらくなる (MR変化率が減少する) →出力がとれなくなる

【図9】

Hshift =-Hin+Hpin-Hcu (または+Hcu)

トランスファーカーブ上に示した バイアスポイント(b.d.)の概念図

【図8】

バイアスポイントとヘッド再生出力波形との関係

【図12】

比較例2(Spin-Fillerあり×ノ-マルピン)のパイアスポイント (Hpinが大きくHcuは小さい為b.p. は 50%よりもかなり大きくなってしまう。)

【図13】

比較例3のパイアスポイント

- フリー層が厚い場合には、Houだけの低速で バイアスポイントが安定する。
 フリー層が薄くなると、Hpinの影響が大きく、 b.p. がはずれる。さらにMRも劣化する。

[図32]

【図38】

【図45】

【図46】

【図47】

【図48】

【図49】

【図50】

【図51】

【図52】

【図53】

フロントページの続き

(72) 発明者 鴻 井 克 彦 神奈川県川崎市幸区堀川町72番地 株式会 社東芝川崎事業所内

(72)発明者 中 村 新 一 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝横浜事業所内

(72)発明者 吉 川 将 寿 神奈川県川崎市幸区堀川町72番地 株式会 社東芝川崎事業所内

(72)発明者 橋 本 進 神奈川県川崎市幸区堀川町72番地 株式会 社東芝川崎事業所内 (72) 発明者 佐 橋 政 司 神奈川県川崎市幸区堀川町72番地 株式会 社東芝川崎事業所内

(72) 発明者 岩 崎 仁 志 神奈川県川崎市幸区堀川町72番地 株式会 社東芝川崎事業所内

(72) 発明者 斉 藤 和 浩 神奈川県川崎市幸区堀川町72番地 株式会 社東芝川崎事業所内

(72)発明者 福 家 ひろみ 神奈川県川崎市幸区堀川町72番地 株式会 社東芝川崎事業所内

Fターム(参考) 5D034 BA03 BB01 CA08

【公報種別】特許法第17条の2の規定による補正の掲載 【部門区分】第6部門第4区分

【発行日】平成13年4月13日(2001.4.13)

【公開番号】特開2000-137906 (P2000-137906A)

【公開日】平成12年5月16日(2000.5.16)

【年通号数】公開特許公報12-1380

【出願番号】特願平11-97072

【国際特許分類第7版】

A61K 31/195 7/00

7/48 A61P 17/00

29/00

A61K 31/165

31/215 G11B 5/39

[FI]

A61K 31/195

7/00 C

U

7/48

31/00 617

629

G11B 5/39

【手続補正書】

【提出日】平成12年4月3日(2000.4.3)

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】特許請求の範囲

【補正方法】変更

【補正内容】

【特許請求の範囲】

【請求項1】非磁性スペーサ層と、前記非磁性体スペーサ層によって互いに分離された第1の強磁性体層と第2の強磁性体層と、

を備え、

前記第1の強磁性体層は、印加磁界がゼロの時に前記第 2の強磁性体層の磁化方向に対してある角度を成す磁化 方向を有し、

前記第2の強磁性体層は、相互に反強磁性的に結合された一対の強磁性体膜と、前記一対の強磁性体膜を分離しつつこれらを反強磁性的に結合する結合膜とを含む磁気 抵抗効果素子であって、

前記第2の強磁性体層中の前記一対の強磁性体膜のいず れか一方の磁化を所望の方向に維持する手段と、 前記第1の強磁性体層と前記非磁性スペーサ層とが接する膜面と反対側の面にて第1の強磁性体層に接する非磁性高導電層と、

を有することを特徴とする磁気抵抗効果素子。

【請求項2】前記非磁性高導電層は、バルク状態の室温 での比抵抗の値が10μΩcm以下である元素を含有す ることを特徴とする請求項1記載の磁気抵抗効果素子。

【請求項3】比抵抗 $10\mu\Omega$ cmのCuに換算した前記非磁性高導電層の膜厚をt(HCL)、前記第2の強磁性体層中の前記一対の強磁性体膜の膜厚を1Tの飽和磁化で換算した磁気膜厚をそれぞれtm(pin1)、tm(pin2)(tm(pin1)>tm(pin2)としたときに、0.5nm \leq tm(pin1)ーtm(pin2)+t(HCL) \leq 4nm、且つt(HCL) \leq 0.5nmを満足することを特徴とする請求項1または2に記載の磁気抵抗効果素子。

【請求項4】正信号磁界における再生出力の絶対値V1 と、負信号磁界における再生出力の絶対値V2 とにより表される波形非対称性 (V1-V2) / (V1+V2) が、マイナス0. 1 以上プラス0. 1 以下となるよう

に、前記非磁性高導電層の膜厚と前記第2の強磁性体層 の膜厚とを設定したことを特徴とする請求項1または2 に記載の磁気抵抗効果素子。

【請求項5】前記第1の強磁性体層の膜厚は0.5 nm 以上4.5 nm以下であることを特徴とする請求項1~ 4のいずれか1つに記載の磁気抵抗効果素子。

【請求項6】前記第1の強磁性体層は、=ッケル鉄 (N i F e) を含む合金層とコバルト (C o) を含む層との積層膜からなることを特徴とする請求項 $1\sim5$ のいずれか1つに記載の磁気抵抗効果素子。

【請求項7】前記第1の強磁性体層は、コバルト鉄 (CoFe)を含む合金層からなることを特徴とする請求項1~5のいずれか1つに記載の磁気抵抗効果素子。

【請求項8】前記非磁性高導電層は、銅(Cu)、金(Au)、銀(Ag)、ルテニウム(Ru)、イリジウム(Ir)、レニウム(Re)、ロジウム(Rh)、白金(Pt)、パラジウム(Pd)、アルミニウム(Al)、オスミウム(Os)及びニッケル(Ni)よりなる群から選ばれる少なくとも一種の金属元素を含む金属膜であることを特徴とする請求項 $1\sim5$ のいずれか1つに記載の磁気抵抗効果素子。

【請求項9】前記非磁性高導電層は、少なくとも2層以上の膜を積層した積層膜から形成されることを特徴とする請求項1~5のいずれか1つに記載の磁気抵抗効果素子。

【請求項10】前記積層膜のうちで前記第1の強磁性体層に接する膜が銅(Cu)を含むことを特徴とする請求項9記載の磁気抵抗効果素子。

【請求項11】前記積層膜のうちで前記第1の強磁性体層に接しない膜が、ルテニウム(Ru)、レニウム(Re)、ロジウム(Rh)、パラジウム(Pd)、白金(Pt)、イリジウム(Ir)及びオスミウム(Os)よりなる群から選ばれた少なくとも一種の元素を含むことを特徴とする請求項10記載の磁気抵抗効果素子。

【請求項12】前記非磁性高導電層と前記第1の強磁性層との接する界面において、前記非磁性高導電層を主に構成する元素と、前記第1の強磁性層を主に構成する元素とが互いに非固溶な関係にあることを特徴とする請求項1~5のいずれか1つに記載の磁気抵抗効果素子。

【請求項13】前記第2の強磁性体層中の前記一対の強磁性体膜のいずれか一方の磁化を所望の方向に維持する 手段としての反強磁性層をさらに備え、

前記反強磁性体層の材料として、XzMn1-z (ここでXは、イリジウム(Ir)、ルテニウム(Ru)、ロジウム(Rh)、白金(Pt)、パラジウム(Pd)及びレニウム(Re)よりなる群から選ばれる少なくとも一種の元素とし、組成比zは、5原子%以上40原子%以下である)を用いたことを特徴とする請求項1~5のいずれ1つに記載の磁気抵抗効果素子。

【請求項14】前記第2の強磁性体層中の前記一対の強

磁性体膜のいずれか一方の磁化を所望の方向に維持する 手段としての反強磁性層をさらに備え、

前記反強磁性層の材料として、XzMn1-z(ここで Xは、白金(Pt)及びパラジウム(Pd)よりなる群 から選ばれた少なくとも一種の元素とし、組成比 z は、 40原子%以上65原子%以下である)を用いたことを 特徴とする請求項1~5のいずれか1つに記載の磁気抵 抗効果素子。

【請求項15】前記第1の強磁性体層と反対側の面において前記非磁性高導電層と接して、タンタル(Ta)、チタン(Ti)、ジルコニウム(Zr)、タングステン(W)、ハフニウム(Hf)及びモリブデン(Mo)よりなる群から選ばれた少なくとも一種の元素を含む層をさらに備えたことを特徴とする請求項1~5のいずれか1つに記載の磁気抵抗効果素子。

【請求項16】請求項1~15のいずれか1つに記載の 磁気抵抗効果素子を備えたことを特徴とする磁気へッ ド。

【請求項17】下側磁気シールド層と、

前記下側磁気シールド層上に設けられた下側再生磁気ギャップ層と、

前記下側再生磁気ギャップ層の上に設けられた請求項1 ~15のいずれか1つに記載の磁気抵抗効果素子と、 前記磁気抵抗効果素子上に設けられた上側再生磁気ギャ ップ層と

前記上側磁気ギャップ層の上に設けられた上側磁気シールド層と、

を具備することを特徴とする磁気ヘッド。

【請求項18】感磁部における前記下側再生磁気ギャップ層の表面の凹凸が前記結合膜の膜厚よりも小さいことを特徴とする請求項17記載の磁気ヘッド。

【請求項19】前記第1の強磁性体層を膜厚方向にみた中心から前記非磁性スペーサ層を介して前記上側磁気シールド層と前記下側磁気シールド層のいずれか一方に至る距離を D_1 、前記第1の強磁性体層を膜厚方向にみた中心から前記非磁性スペーサ層を介さずに前記上側磁気シールド層と前記下側磁気シールド層のいずれか他方に至る距離を D_2 としたときに、 $D_1>D_2$ であることを特徴とする請求項17または18に記載の磁気ヘッド。

【請求項20】前記上側磁気シールド層と共通化されて 設けられた下側磁極と、

前記下側磁極上に設けられた記録磁気ギャップ層と、 前記記録磁気ギャップ層上に設けられた上側磁極と、 を有する記録ヘッドをさらに備えたことを特徴とする請 求項 $17\sim19$ のいずれか1つに記載の磁気ヘッド。

【請求項21】請求項16または20記載の磁気ヘッドを有するヘッドスライダと、

前記ヘッドスライダが搭載されたサスペンションを有するアームと、

を具備することを特徴とする磁気ヘッドアッセンブリ。

【請求項22】磁気記録媒体と、

請求項20記載の磁気ヘッドアッセンブリと、 を具備することを特徴とする磁気記録装置。

【手続補正2】

【補正対象書類名】明細書

【補正対象項目名】0306

【補正方法】変更

【補正内容】

【0306】 (実施の形態7:耐熱性及び鏡面反射効果と低磁歪の実現)

次に、「耐熱性及び鏡面反射効果と低磁歪の実現」という観点から、本発明の第7の実施の形態について説明する。

【手続補正3】

【補正対象書類名】明細書

【補正対象項目名】0416

【補正方法】変更

【補正内容】

【0416】図44および図45において、GMR再生素子部27上には下側再生磁気ギャップ23と同様な非磁性絶縁材料からなる上側再生磁気ギャップ28が形成されている。さらに、上側再生磁気ギャップ28上には、下側磁気シールド層22と同様な軟磁性材料からなる上側磁気シールド層29が形成されている。これら各構成要素によって、再生ヘッドとしてのシールド型GMRヘッド30が構成されている。

【手続補正4】

【補正対象書類名】明細書

【補正対象項目名】 0 4 1 7

【補正方法】変更

【補正内容】

【0417】記録ヘッドとして薄膜磁気ヘッド31は、シールド型GMRヘッド30上に形成されている。薄膜磁気ヘッド31の下側記録磁極歯、上側磁気シールド層29と共通の磁性層により構成されている。シールド型GMRヘッド30の上側磁気シールド層29は、薄膜磁気ヘッド31の下側記録磁極を兼ねている。この上側磁気シールド層を兼ねる下側記録磁極29上には、A10、などの非磁性絶縁材料からなる記録磁極ギャップ32と上側記録磁極33が順に形成されている。媒体対向面より後方面には、下側記録磁極29と上側記録磁極33に記録磁界を付与する記録コイル(図示せず)が形成されている。

【手続補正5】

【補正対象書類名】明細書

【補正対象項目名】 0 4 1 8

【補正方法】変更

【補正内容】

【0418】上述した再生ヘッドとしてのシールド型G MRヘッド30と記録ヘッドとして薄膜磁気ヘッド31 とによって、録再分離型磁気ヘッドが構成されている。このような録再分離型磁気ヘッドはヘッドスライダに組み込まれ、例えば図46に示す磁気ヘッドアッセンブリに搭載される。図46に示す磁気ヘッドアッセンブリ60は、例えば駆動コイルを保持するボビン部などを有するアクチュエータアーム61を有し、アクチュエータアーム61の一端にはサスペンション62が接続されている。

【手続補正6】

【補正対象書類名】明細書

【補正対象項目名】 0 4 4 1

【補正方法】変更

【補正内容】

この実施例2では、Ta (5nm) /Au (1nm) /Cu (1nm) /CoFe (4nm) /Cu (2.5nm) /CoFe (2.5nm) /IrMn (7nm) /Au (0.5nm) /Cu (0.5nm) /Ta (5nm) 構造のスピンバルブ膜を、実施例1と同様にして作製した。

【手続補正7】

【補正対象書類名】明細書

【補正対象項目名】 0 4 6 5

【補正方法】変更

【補正内容】

【0465】このような単結晶に近い構造は、MR変化率、磁気特性の耐熱性に優れているだけでなく、電子の散乱の原因となる結晶粒界がほとんど存在しなくなるので、電子の平均自由行程も長くなり、MR変化率の絶対値を上昇させることにもなり、望ましい膜構造である。このような単結晶に近い構造を、熱酸化シリコン、アルファスアルミナのようなアモルファス基板上で得る技術も本発明の特徴の一つである。ここでは熱酸化シリコン基板を用いたが、実際のヘッドで通常用いられているAlTiC基板上のアモルファスAlOx膜上や、その他の酸化物系アモルファス膜、窒化物系アモルファス

膜、ダイヤモンドライクカーボン上でも構わない。

【手続補正8】

【補正対象書類名】図面

【補正対象項目名】図47

【補正方法】変更

【補正内容】

【図47】

