10.1-6.

Show how to implement a quque using two stacks. Analyze the running time of the queue operations.

Answer.

Using two stacks S_1 and S_2 , we can Enqueue an element to the queue Q by Pushing it into S_1 and Dequeue the tail element by Poping from S_2 . Whenever S_1 becomes full or S_2 becomes empty, we transmit as much elements in S_1 to S_2 as possible using Transmit. A queue is said to be empty if and only if both of its stacks S_1 and S_2 are empty. Likewise, the queue becomes full when S_1 and S_2 are both full.

```
Queue-Empty(Q)
1
   if STACK-EMPTY(S_1) and STACK-EMPTY(S_2)
2
        return TRUE
3
    else return FALSE
Queue-Full(Q)
1
   if Stack-Full(S_1) and Stack-Full(S_2)
2
        return TRUE
3
   else return false
Enqueue(Q, x)
   if Queue-Full(Q)
2
        error "overflow"
3
   else
4
        if Stack-Full(S_1)
5
             Transmit(S_1, S_2)
6
        PUSH(S_1, x)
7
        Q.head = S_1.top
        Q.tail = S_2.top + 1
Dequeue(Q)
   if Queue-Empty(Q)
        error "underflow"
2
3
    else
4
        if Stack-Empty(S_2)
5
             Transmit(S_1, S_2)
6
        Pop(S_2)
7
        Q.tail = S_2.top + 1
8
        Q.head = S_1.top
Transmit(S_1, S_2)
   if Stack-Empty(S_2)
1
2
        POUR(S_1, S_2)
3
   else
4
        T = \text{Creat-Stack}()
        POUR(S_2, T)
5
        POUR(S_1, T)
        POUR(T, S_2)
POUR(S_1, S_2)
   while not STACK-FULL(S_2)
```

^{*.} Creative Commons © 000 2014, Lawrence X. Amlord (颜世敏, aka 颜序). Email address: informlarry@gmail.com

 $\operatorname{Push}(S_2, \operatorname{Pop}(S_1))$