Laboratório 2 - ULA e FPULA –

GRUPO 6

Dayanne Fernandes da Cunha, 13/0107191 Lucas Mafra Chagas, 12/0126443 Marcelo Giordano Martins Costa de Oliveira, 12/0037301 Lucas Junior Ribas, 16/0052289 Caio Nunes de Alencar Osório, 16/0115132 Diego Vaz Fernandes, 16/0117925

¹Dep. Ciência da Computação – Universidade de Brasília (UnB) CiC 116394 - OAC - Turma A

1. Objetivos

- Introduzir ao aluno a Linguagem de Descrição de Hardware Verilog;
- Familiarizar o aluno com a plataforma de desenvolvimento FPGA DE2 da Altera e o software QUARTUS-II;
- Desenvolver a capacidade de análise e síntese de sistemas digitais usando HDL.

2. Ferramentas

- FPGA DE2 da Altera
- QUARTUS-II
- Verilog
- HDL

3. Exercícios

Todos os códigos escritos neste laboratório podem ser encontrados no repositório https://github.com/Dayof/OAC172 do *GitHub*.

3.1. Exercício 1. Implementação de um driver para display de 7 segmentos

Conforme descrito no arquivo *QuartusIIv3.txt* e *Set.txt*, um novo projeto foi criado no diretório *Lab2*, denominado *Display*.

Para as versões síncrona e assíncrona foram geradas as simulações temporais (Figura 1 e Figura 3) e funcionais (Figura 2 e Figura 4).

Figure 1. Simulação síncrona temporal do decoder7.

Figure 2. Simulação síncrona funcional do decoder7.

Figure 3. Simulação assíncrona temporal do decoder7.

Figure 4. Simulação assíncrona funcional do decoder7.

Os requisitos físicos do *decoder*7 do *driver* para *display* de 7 segmentos foram analisados nas versões síncrona e assíncrona como é possível ver na Tabela 1.

	Elementos lógicos	Maior atraso (ns)	Frequência máxima de operação (MHz)
Síncrono	7	?	?
Assíncrono	7	9.761	?

Table 1. Requisitos físicos do display de 7 segmentos assíncrono e síncrono.

O arquivo de interface *TopDE.v* foi incluso no projeto, sintetizado e testado como é mostrado no link https://youtu.be/wGKjze5PkcU.

3.2. Exercício 2. Unidade Lógica Aritmética de Inteiros

3.2.1. ULA MIPS32

3.2.2. Operações

3.2.3. Requisitos físicos

Para a ULA de inteiros foi levantado os requisitos físicos de cada operação e da ULA total como podemos ver na Tabela 2. Todos estes dados foram encontrados utilizando o seguinte procedimento:

- Foi aberto o projeto da ULA no Quartus II 64-Bit;
- No arquivo ALU.v para testar cada operação da ULA foi utilizado a variável iControlSignal (e.g. assign iControlSignal=OPSLL);
- Ao trocar a operação desejada foi compilado o projeto;
- Com a nova aba (Compilation Report ULA) aberta, no menu Flow Summary foi possível achar informações da quantidade total de elementos lógicos usado naquela operação;
- No menu *TimeQuest Timing Analyzer* > *Multicorner Datasheet Report Summary* foram encontrados valores dos maiores / menores tempos de atraso para concluir a operação. Estes tempos são medidos desde o ato de inserir o dado na entrada (*iA* e/ou *iB*) e resultar em algo na saída (*oALUresult*). Alguns resultados assíncronos eram aparentes na aba *RR* (medição ao subir a borda inicial até a subida da borda final), outros na *RF* (medição ao subir a borda inicial até a descida da borda final) [Altera]. Para operações síncronas era possível captar os resultados na aba *Rise*;

- Para operações puramente assíncronas o maior tempo foi encontrado no menu *Propagation Delay*. Para operações também síncronas tiveram estes dados aparentes no menu *Clock to Output Times*;
- Para operações puramente assíncronas o menor tempo foi encontrado no menu *Minimum Propagation Delay*. Para operações também síncronas tiveram estes dados aparentes no menu *Minimum Clock to Output Times*.

• A frequência máxima de clock utilizável foi gerada a partir do cálculo $F_{MAX}=1/T$, sendo T o maior tempo de atraso da operação. Esse T tem que ser o pior caso de tempo ocorrido pois precisa ser suficiente para concluir toda a operação em qualquer caso.

	Elementos	Menor	Maior	Frequência máxima de
	lógicos	atraso (ns)	atraso (ns)	clock utilizável (MHz)
ULA	?	?	?	?
OPAND	43	5.495	9.810	101.936
OPOR	43	5.490	9.811	101,926
OPADD	44	5.081	14.134	70,751
OPMFHI	0	0	0	0
OPSLL	170	6.000	15.048	66,454
OPMFLO	0	0	0	0
OPSUB	44	5.119	13.909	71,896
OPSLT	32	5.341	13.470	74,239
OPSGT	32	5.341	13.470	74,239
OPSRL	170	6.065	16.137	61,969
OPSRA	174	4.908	15.736	63,548
OPXOR	43	4.802	8.511	117,495
OPSLTU	32	5.341	13.470	74,239
OPNOR	43	4.822	9.811	101,926
OPLUI	5	4.822	9.811	101,926
OPSLLV	170	5.397	15.048	66,454
OPSRAV	174	4.908	15.736	63,548
OPSRLV	170	5.445	16.137	61,969
OPMULT	53	3.914	8.885	112,549
OPDIV	1266	4.051	9.446	105,865
OPDEBUG	11	4.549	8.255	121,139
OPMULTU	0	0	0	0
OPDIVU	0	0	0	0
OPMTHI	0	0	0	0
OPMTLO	0	0	0	0
OPMADD	0	0	0	0
OPMADDU	0	0	0	0
OPMSUB	?	?	?	?
OPMSUBU	?	?	?	?

Table 2. Requisitos físicos da *ULA* total e de cada operação.

3.2.4. Funcionamento

O projeto da ULA de inteiros foi sintetizado utilizando a interface TopDE.v na placa DE2-70 e seu funcionamento pode ser visto através do link?.

3.3. Exercício 3. Unidade Aritmética de Ponto Flutuante

3.3.1. FPULA MIPS

3.3.2. Operações

3.3.3. Requisitos físicos

	Elementos	Número de ciclos	Frequência máxima de
	lógicos	mínimo da operação (ns)	clock utilizável (MHz)
FPULA	?	?	?
OPADDS	?	?	?
OPSUBS	?	?	?
OPMULS	?	?	?
OPDIVS	?	?	?
OPSQRT	?	?	?
OPABS	?	?	?
OPNEG	?	?	?
OPCEQ	?	?	?
OPCLT	?	?	?
OPCLE	?	?	?
OPCVTSW	?	?	?
OPCVTWS	?	?	?

Table 3. Requisitos físicos da FPULA total e de cada operação.

3.3.4. Funcionamento

O projeto da *ULA* de ponto flutuante foi sintetizado utilizando a interface *TopDE.v* na placa *DE2-70* e seu funcionamento pode ser visto através do *link* ?.

References

[Altera] Altera. Multicorner timing. http://quartushelp.altera.com/15.0/mergedProjects/report/rpt/rpt_file_multicorner_timing.htm. [Online; acessado 4-Outubro-2017].