PSALTer results panel

 $= \\ \int \int \int \int \left(-3\,\alpha_{0}\,\mathcal{A}^{\alpha\beta}_{\alpha}\,\mathcal{A}^{\chi}_{\beta}\,\mathcal{A}^{\beta}_{\alpha}\,\mathcal{A}^{\chi}_{\beta}\,\mathcal{A}^{\beta}_{\alpha}\,\mathcal{A}^{\chi}_{\beta}\,\mathcal{A}^{\beta}_{\alpha}\,\mathcal{A}^{\chi}_{\beta}\,\mathcal{A}^{\beta}_{\alpha}\,\mathcal{A}^{\chi}_{\beta}\,\mathcal{A}^{\beta}_{\alpha}\,\mathcal{A}^{\chi}_{\beta}\,\mathcal{A}^{\beta}_{\alpha}\,\mathcal{A}^{\chi}_{\beta}\,\mathcal{A}^{\beta}_{\alpha}\,\mathcal{A}^{\chi}_{\beta}\,\mathcal{A}^{\beta}_{\alpha}\,\mathcal{A}^{\chi}_{\beta}\,\mathcal{A}^{\beta}_{\alpha}\,\mathcal{A}^{\chi}_{\beta}\,\mathcal{A}^{\beta}_{\alpha}\,\mathcal{A}^{\chi}_{\beta}\,\mathcal{A}^{\beta}_{\alpha}\,\mathcal{A}^{\chi}_{\beta}\,\mathcal{A}^{\beta}_{\alpha}\,\mathcal{A}^{\chi}_{\beta}\,\mathcal{A}^{\beta}_{\alpha}\,\mathcal{A}^{\chi}_{\beta}\,\mathcal{A}^{\chi}_{\beta}\,\mathcal{A}^{\beta}_{\alpha}\,\mathcal{A}^{\chi}_{\beta}\,\mathcal{$

 $6 \, \alpha_{5} \, \partial_{\beta} \mathcal{A}_{\chi}^{\delta} \, \partial^{\chi} \mathcal{A}_{\alpha}^{\beta} \, \partial^{\chi} \mathcal{A}_{\beta}^{\alpha} \, \partial^{\chi} \mathcal{A}_{\beta}^{\beta} \, \partial^{\chi} \mathcal{A}_{\beta}^{\alpha} \, \partial^{\chi} \mathcal{A}_{\beta}^{\beta} \, \partial^{\chi} \mathcal{A}_{\beta}^{$

 $4 \underbrace{\alpha_1}_{1} \partial_{\beta} \mathcal{A}_{\alpha \delta \chi} \partial^{\delta} \mathcal{A}^{\alpha \beta \chi} - 4 \underbrace{\alpha_2}_{3} \partial_{\beta} \mathcal{A}_{\alpha \delta \chi} \partial^{\delta} \mathcal{A}^{\alpha \beta \chi} + 8 \underbrace{\alpha_2}_{1} \partial_{\beta} \mathcal{A}_{\chi \delta \alpha} \partial^{\delta} \mathcal{A}^{\alpha \beta \chi} - 4 \underbrace{\alpha_2}_{2} \partial_{\beta} \mathcal{A}_{\chi \delta \alpha} \partial^{\delta} \mathcal{A}^{\alpha \beta \chi} - 4 \underbrace{\alpha_2}_{3} \partial_{\beta} \mathcal{A}_{\chi \delta \alpha} \partial^{\delta} \mathcal{A}^{\alpha \beta \chi} - 4 \underbrace{\alpha_2}_{3} \partial_{\beta} \mathcal{A}_{\chi \delta \alpha} \partial^{\delta} \mathcal{A}^{\alpha \beta \chi} - 4 \underbrace{\alpha_2}_{3} \partial_{\beta} \mathcal{A}_{\chi \delta \alpha} \partial^{\delta} \mathcal{A}^{\alpha \beta \chi} - 4 \underbrace{\alpha_2}_{3} \partial_{\beta} \mathcal{A}_{\alpha \beta \chi} \partial^{\delta} \mathcal{A}^{\alpha \beta \chi} - 4 \underbrace{\alpha_2}_{3} \partial_{\beta} \mathcal{A}_{\alpha \beta \chi} \partial^{\delta} \mathcal{A}^{\alpha \beta \chi} - 4 \underbrace{\alpha_2}_{3} \partial_{\beta} \mathcal{A}_{\alpha \beta \chi} \partial^{\delta} \mathcal{A}^{\alpha \beta \chi} - 4 \underbrace{\alpha_2}_{3} \partial_{\beta} \mathcal{A}_{\alpha \beta \chi} \partial^{\delta} \mathcal{A}^{\alpha \beta \chi} - 4 \underbrace{\alpha_2}_{3} \partial_{\beta} \mathcal{A}_{\alpha \beta \chi} \partial^{\delta} \mathcal{A}^{\alpha \beta \chi} - 4 \underbrace{\alpha_2}_{3} \partial_{\beta} \mathcal{A}_{\alpha \beta \chi} \partial^{\delta} \mathcal{A}^{\alpha \beta \chi} - 4 \underbrace{\alpha_2}_{3} \partial_{\beta} \mathcal{A}_{\alpha \beta \chi} \partial^{\delta} \mathcal{A}^{\alpha \beta \chi} - 4 \underbrace{\alpha_2}_{3} \partial_{\beta} \mathcal{A}_{\alpha \beta \chi} \partial^{\delta} \mathcal{A}^{\alpha \beta \chi} - 4 \underbrace{\alpha_2}_{3} \partial_{\beta} \mathcal{A}_{\alpha \beta \chi} \partial^{\delta} \mathcal{A}^{\alpha \beta \chi} - 4 \underbrace{\alpha_2}_{3} \partial_{\beta} \mathcal{A}_{\alpha \beta \chi} \partial^{\delta} \mathcal{A}^{\alpha \beta \chi} - 4 \underbrace{\alpha_2}_{3} \partial_{\beta} \mathcal{A}_{\alpha \beta \chi} \partial^{\delta} \mathcal{A}^{\alpha \beta \chi} - 4 \underbrace{\alpha_2}_{3} \partial_{\beta} \mathcal{A}_{\alpha \beta \chi} \partial^{\delta} \mathcal{A}^{\alpha \beta \chi} - 4 \underbrace{\alpha_2}_{3} \partial_{\beta} \mathcal{A}_{\alpha \beta \chi} \partial^{\delta} \mathcal{A}^{\alpha \beta \chi} - 4 \underbrace{\alpha_2}_{3} \partial_{\beta} \mathcal{A}_{\alpha \beta \chi} \partial^{\delta} \mathcal{A}^{\alpha \beta \chi} - 4 \underbrace{\alpha_2}_{3} \partial_{\beta} \mathcal{A}_{\alpha \beta \chi} \partial^{\delta} \mathcal{A}^{\alpha \beta \chi} - 4 \underbrace{\alpha_2}_{3} \partial_{\beta} \mathcal{A}_{\alpha \beta \chi} \partial^{\delta} \mathcal{A}^{\alpha \beta \chi} - 4 \underbrace{\alpha_2}_{3} \partial_{\beta} \mathcal{A}_{\alpha \beta \chi} \partial^{\delta} \mathcal{A}^{\alpha \beta \chi} - 4 \underbrace{\alpha_2}_{3} \partial_{\beta} \mathcal{A}_{\alpha \beta \chi} \partial^{\delta} \mathcal{A}^{\alpha \beta \chi} - 4 \underbrace{\alpha_2}_{3} \partial_{\beta} \mathcal{A}_{\alpha \beta \chi} \partial^{\delta} \mathcal{A}^{\alpha \beta \chi} - 4 \underbrace{\alpha_2}_{3} \partial_{\beta} \mathcal{A}_{\alpha \beta \chi} \partial^{\delta} \mathcal{A}^{\alpha \beta \chi} - 4 \underbrace{\alpha_2}_{3} \partial_{\beta} \mathcal{A}_{\alpha \beta \chi} \partial^{\delta} \mathcal{A}^{\alpha \beta \chi} - 4 \underbrace{\alpha_2}_{3} \partial_{\beta} \mathcal{A}_{\alpha \beta \chi} \partial^{\delta} \mathcal{A}^{\alpha \beta \chi} - 4 \underbrace{\alpha_2}_{3} \partial_{\beta} \mathcal{A}_{\alpha \beta \chi} \partial^{\delta} \mathcal{A}^{\alpha \beta \chi} - 4 \underbrace{\alpha_2}_{3} \partial_{\beta} \mathcal{A}_{\alpha \beta \chi} \partial^{\delta} \mathcal{A}^{\alpha \beta \chi} - 4 \underbrace{\alpha_2}_{3} \partial_{\beta} \mathcal{A}_{\alpha \beta \chi} \partial^{\delta} \mathcal{A}^{\alpha \beta \chi} - 4 \underbrace{\alpha_2}_{3} \partial_{\beta} \mathcal{A}_{\alpha \beta \chi} \partial^{\delta} \mathcal{A}^{\alpha \beta \chi} - 4 \underbrace{\alpha_2}_{3} \partial_{\beta} \mathcal{A}_{\alpha \beta \chi} \partial^{\delta} \mathcal{A}^{\alpha \beta \chi} - 4 \underbrace{\alpha_2}_{3} \partial_{\beta} \mathcal{A}_{\alpha \beta \chi} \partial^{\delta} \mathcal{A}^{\alpha \beta \chi} - 4 \underbrace{\alpha_2}_{3} \partial_{\beta} \mathcal{A}_{\alpha \beta \chi} \partial^{\delta} \mathcal{A}^{\alpha \beta \chi} - 4 \underbrace{\alpha_2}_{3} \partial_{\beta} \mathcal{A}_{\alpha \beta \chi} \partial^{\delta} \mathcal{A}^{\alpha \beta \chi} - 4 \underbrace{\alpha_2}_{3} \partial_{\beta} \mathcal{A}_{\alpha \lambda \chi} \partial^{\delta} \mathcal{A}^{\alpha \lambda \chi} - 4 \underbrace{\alpha_2}_{3} \partial_{\beta} \mathcal{A}_{\alpha \lambda \chi$

Wave operator

^{0⁺} Æ [∥] †	$\frac{0}{2} + \beta \cdot + \left(\alpha \cdot + \alpha \cdot 6\right) k^2$	$-\frac{\left[\left(\frac{u_0^2+2\beta_2}{6}\right)^k\right]}{\sqrt{2}}$	0	0								
^{0⁺} _• f [∥] †	$\frac{i\left(\alpha_{0}+2\beta_{2}\right)k}{\sqrt{2}}$	$2 \beta_{\frac{1}{2}} k^2$	0	0								
${\stackrel{0^+}{\cdot}}f^\perp$ †		0	0	0								
^{⊙-} ⁄⁄⁄⁄⁄// †	0	0	0	$\frac{\alpha_{\bullet}}{2} + 4\beta_{\bullet} + \left(\alpha_{\bullet} + \alpha_{\bullet}\right) k^{2}$		${\stackrel{1^{+}}{\cdot}}\mathcal{A}^{\parallel}{}_{\alpha\beta}$	${}^{1^{\scriptscriptstyle +}}_{^{\scriptscriptstyle +}}\mathcal{A}^{^{\perp}}{}_{\alpha\beta}$	${\stackrel{1^+}{\cdot}}_f{\parallel}_{\alpha\beta}$	${}^{1^{\text{-}}}_{\bullet}\mathcal{A}^{\parallel}{}_{\alpha}$	${}^{1^-}_{}\mathcal{A}^{\perp}_{\alpha}$	$ f^{-}_{\bullet}f^{\parallel}_{\alpha}$	$\overset{1^-}{\cdot}f^{^\perp}{}_\alpha$
				$^{1^{+}}_{\bullet}\mathcal{R}^{\parallel}$ † lphaeta	$\frac{\alpha}{\frac{0}{4}}$ +	$\frac{1}{3} \left(\beta_{1} + 8 \beta_{3} \right) + \left(\alpha_{2} + \alpha_{5} \right) k^{2}$	$\frac{3\alpha_{\bullet}-4\beta_{\bullet}+16\beta_{\bullet}}{6\sqrt{2}}$	$\frac{i\left(3\alpha4\beta.+16\beta.\right)k}{6\sqrt{2}}$	0	0	Θ	0
				${}^{1^{+}}_{ullet}\mathcal{A}^{\perp}\mathop{\dagger^{lphaeta}}$		$\frac{3 \alpha_{0} - 4 \beta_{1} + 16 \beta_{3}}{6 \sqrt{2}}$		$\frac{2}{3} i \left(\beta_{1} + 2 \beta_{3} \right) k$	0	0	0	0
				$^{1^{+}}f^{\parallel}$ † lphaeta		$-\frac{i\left(3\alpha4\beta.+16\beta.\right)k}{6\sqrt{2}}$	$-\frac{2}{3}i\left(\beta_{1}+2\beta_{3}\right)k$	$\frac{2}{3} \left(\beta_{1} + 2 \beta_{3} \right) k^{2}$	0	0	Θ	0
				$^{1}_{\cdot}\mathcal{A}^{\parallel}\dagger^{lpha}$		0	0	0	$\frac{\alpha_{\bullet}}{4} + \frac{1}{3} \left(\beta_{\bullet} + 2 \beta_{\bullet} \right) + \left(\alpha_{\bullet} + \alpha_{\bullet} \right) k^2$	$-\frac{3\alpha_{0}-4\beta_{1}+4\beta_{2}}{6\sqrt{2}}$	Θ	$-\frac{1}{6} i \left(3 \alpha_{0} - 4 \beta_{1} + 4 \beta_{2}\right) k$
				$^{1}_{\cdot}\mathcal{A}^{\perp}$ \dagger^{α}		0	0	0	$-\frac{3\alpha4\beta.+4\beta.}{6\sqrt{2}}$	$\frac{1}{3}\left(2\beta_{1}+\beta_{2}\right)$	0	$\frac{1}{3} i \sqrt{2} \left(2 \beta_1 + \beta_2 \right) k$
				${}^{1^{-}}_{\bullet}f^{\parallel}\uparrow^{lpha}$		Θ	0	0	0	Θ	0	Θ
				$1^{-}_{f^{\perp}}$		0	Θ	0	$\frac{1}{i} (3 \alpha 4 \beta. + 4 \beta.) k$	$-\frac{1}{i} \sqrt{2} \left(2\beta.+\beta.\right) k$	0	$\frac{2}{2} (2 \beta. + \beta.) k^2$

Saturated propagator

	••* σ	° ₇ ∥ ° ₁	. □ 0 σ	_						
⁰ ⁺σ †	$-\frac{4 \beta_{2}}{\alpha_{0}^{2}+2 \alpha_{0} \beta_{2}^{2}-4 \left(\alpha_{4}+\alpha_{6}\right) \beta_{2} k^{2}}$	$-\frac{i\sqrt{2}\left(\alpha_0+2\beta_2\right)}{-\alpha_0\left(\alpha_0+2\beta_2\right)k+4\left(\alpha_1+\alpha_6\right)\beta_2k^3} 0$	0							
^{⊙⁺} τ [∥] †	$i \sqrt{2} \left(\alpha_{\bullet} + 2\beta_{\bullet}\right)$	$\frac{\alpha_{0}+2\left(\beta_{2}+\left(\alpha_{4}+\alpha_{6}\right)k^{2}\right)}{-\alpha_{0}\left(\alpha_{0}+2\beta_{2}\right)k^{2}+4\left(\alpha_{4}+\alpha_{6}\right)\beta_{2}k^{4}} 0$	Θ							
^{0⁺} τ [⊥] †		0 0	0							
^{⊙-} σ †	0	0 0	$\frac{2}{\alpha_{\bullet} + 8 \beta_{\bullet} + 2 \left(\alpha_{\bullet} + \alpha_{\bullet}\right) k^{2}}$	$^{1^{+}}\sigma^{\parallel}_{lphaeta}$	$\overset{1^{+}}{\cdot}\sigma^{\perp}{}_{\alpha\beta}$	${\stackrel{1^+}{\cdot}}_{ au}{}^{\parallel}{}_{lphaeta}$	$\stackrel{1^-}{\cdot}\sigma^{\parallel}{}_{\alpha}$	$\overset{1}{\cdot}\sigma^{1}_{\alpha}$ 1	$[\tau^{\parallel}_{\alpha}]$	$\overset{1^-}{\cdot} \overset{\iota}{ au^{\perp}}_{lpha}$
			$\stackrel{1^{+}}{\cdot} \sigma^{\parallel} \uparrow^{\alpha\beta}$	$-\frac{1}{\frac{3\left(\alpha_{0}-4\beta_{1}\right)\left(\alpha_{0}+8\beta_{3}\right)}{16\left(\beta_{1}+2\beta_{3}\right)}+\left(\alpha_{2}+\alpha_{5}\right)k^{2}}$	$-\frac{2\sqrt{2}\left(3\alpha_{0}-4\beta_{1}+16\beta_{3}\right)}{\left(1+k^{2}\right)\left(-3\left(\alpha_{0}-4\beta_{1}\right)\left(\alpha_{0}+8\beta_{3}\right)+16\left(\alpha_{2}+\alpha_{5}\right)\left(\beta_{1}+2\beta_{3}\right)k^{2}\right)}$	$-\frac{2 i \sqrt{2} \left(3 \alpha_{0}^{-4} \beta_{1}^{+16} \beta_{3}^{+}\right) k}{\left(1+k^{2}\right)\left(-3 \left(\alpha_{0}^{-4} \beta_{1}^{+}\right) \left(\alpha_{0}^{+8} \beta_{3}^{+}\right)+16 \left(\alpha_{2}^{+4} \alpha_{5}^{+}\right) \left(\beta_{1}^{+2} \beta_{3}^{+}\right) k^{2}\right)}$	0	0	0	Θ
			$^{1^{+}}\sigma^{\perp}$ † lphaeta	$-\frac{2\sqrt{2}\left(3\alpha_{0}-4\beta_{1}+16\beta_{3}\right)}{(1+k^{2})\left(-3\left(\alpha_{0}-4\beta_{1}\right)\left(\alpha_{0}+8\beta_{3}\right)+16\left(\alpha_{2}+\alpha_{5}\right)\left(\beta_{1}+2\beta_{3}\right)k^{2}}$	$\frac{6 \alpha_{0} + 8 \left(\beta_{1} + 8 \beta_{3} + 3 \left(\alpha_{2} + \alpha_{5}\right) k^{2}\right)}{\left(1 + k^{2}\right)^{2} \left(-3 \left(\alpha_{0} - 4 \beta_{1}\right) \left(\alpha_{0} + 8 \beta_{3}\right) + 16 \left(\alpha_{2} + \alpha_{5}\right) \left(\beta_{1} + 2 \beta_{3}\right) k^{2}\right)}$	$\frac{6 i \alpha_{0} k + 8 i k \left(\beta_{1} + 8 \beta_{3} + 3 \left(\alpha_{2} + \alpha_{5}\right) k^{2}\right)}{(1 + k^{2})^{2} \left(-3 \left(\alpha_{0} - 4 \beta_{1}\right) \left(\alpha_{0} + 8 \beta_{3}\right) + 16 \left(\alpha_{2} + \alpha_{5}\right) \left(\beta_{1} + 2 \beta_{3}\right) k^{2}\right)}$	0	0	0	0
			$^{1^{+}}\tau^{\parallel}$ † lphaeta	$\frac{2 i \sqrt{2} \left(3 \alpha_0 - 4 \beta_1 + 16 \beta_3\right) k}{(1+k^2) \left(-3 \left(\alpha_0 - 4 \beta_1\right) \left(\alpha_0 + 8 \beta_3\right) + 16 \left(\alpha_2 + \alpha_5\right) \left(\beta_1 + 2 \beta_3\right) k^2}$	$\frac{-6 i \alpha_{0} k - 8 i k \left(\beta_{1} + 8 \beta_{3} + 3 \left(\alpha_{2} + \alpha_{5}\right) k^{2}\right)}{\left(1 + k^{2}\right)^{2} \left(-3 \left(\alpha_{0} - 4 \beta_{1}\right) \left(\alpha_{0} + 8 \beta_{3}\right) + 16 \left(\alpha_{2} + \alpha_{5}\right) \left(\beta_{1} + 2 \beta_{3}\right) k^{2}\right)}$	$\frac{2 k^{2} \left(3 \alpha_{0} + 4 \left(\beta_{1} + 8 \beta_{3} + 3 \left(\alpha_{2} + \alpha_{5}\right) k^{2}\right)\right)}{\left(1 + k^{2}\right)^{2} \left(-3 \left(\alpha_{0} - 4 \beta_{1}\right) \left(\alpha_{0} + 8 \beta_{3}\right) + 16 \left(\alpha_{2} + \alpha_{5}\right) \left(\beta_{1} + 2 \beta_{3}\right) k^{2}\right)}$	0	0	0	0
			$^{1}\cdot \sigma^{\parallel}$ † $^{\alpha}$	Θ	0	0	$-\frac{1}{\frac{3\left(\alpha_{0}-4\beta_{1}\right)\left(\alpha_{0}+2\beta_{2}\right)}{8\left(2\beta_{1}+\beta_{2}\right)}+\left(\alpha_{4}+\alpha_{5}\right)k^{2}}$	$\frac{2 \sqrt{2} \left(3 \alpha_{0} - 4 \beta_{1} + 4 \beta_{2}\right)}{\left(1 + 2 k^{2}\right)\left(-3 \left(\alpha_{0} - 4 \beta_{1}\right)\left(\alpha_{0} + 2 \beta_{2}\right) + 8 \left(\alpha_{1} + \alpha_{5}\right)\left(2 \beta_{1} + \beta_{2}\right) k^{2}\right)}$	$0 \qquad {\left(1+2 \ k^2\right)}$	$\frac{4 i \left(3 \alpha_{0}^{2} - 4 \beta_{1}^{2} + 4 \beta_{2}^{2}\right) k}{\left(-3 \left(\alpha_{0}^{2} - 4 \beta_{1}^{2}\right) \left(\alpha_{0}^{2} + 2 \beta_{2}^{2}\right) + 8 \left(\alpha_{4}^{2} + \alpha_{5}^{2}\right) \left(2 \beta_{1}^{2} + \beta_{2}^{2}\right) k^{2}\right)}$
			¹ -σ [⊥] † ^α	Θ	0	0	$\frac{2 \sqrt{2} \left(3 \alpha_{0} - 4 \beta_{1} + 4 \beta_{2}\right)}{\left(1 + 2 k^{2}\right)\left(-3 \left(\alpha_{0} - 4 \beta_{1}\right)\left(\alpha_{0} + 2 \beta_{2}\right) + 8 \left(\alpha_{4} + \alpha_{5}\right)\left(2 \beta_{1} + \beta_{2}\right) k^{2}\right)}$	$\frac{6\alpha_{0}+8\left(\beta_{1}+2\beta_{2}+3\left(\alpha_{4}+\alpha_{5}\right)k^{2}\right)}{\left(1+2k^{2}\right)^{2}\left(-3\left(\alpha_{0}-4\beta_{1}\right)\left(\alpha_{0}+2\beta_{2}\right)+8\left(\alpha_{4}+\alpha_{5}\right)\left(2\beta_{1}+\beta_{2}\right)k^{2}\right)}$		$2 i \sqrt{2} k \left(3 \alpha_0 + 4 \left(\beta_1 + 2 \beta_2 + 3 \left(\alpha_4 + \alpha_5\right) k^2\right)\right)$ $^2 \left(-3 \left(\alpha_0 - 4 \beta_1\right) \left(\alpha_0 + 2 \beta_2\right) + 8 \left(\alpha_4 + \alpha_5\right) \left(2 \beta_1 + \beta_2\right) k^2\right)$
			$^{1^{-}}\tau^{\parallel}\uparrow^{\alpha}$	0	0	Θ	0	0	Θ	0
			$\frac{1}{\cdot}\tau^{\perp}\uparrow^{\alpha}$	0	A	0	4 i (3 \alpha4 \beta 1 +4 \beta 2) k			$4 k^{2} \left(3 \alpha_{0} + 4 \left(\beta_{1} + 2 \beta_{2} + 3 \left(\alpha_{4} + \alpha_{5}\right) k^{2}\right)\right)$
			• ()		U	9	$(1+2 k^2)(-3 (\alpha_0-4 \beta_1)(\alpha_0+2 \beta_2)+8 (\alpha_0+\alpha_1)(2 \beta_1+\beta_2)k^2)$	$-\frac{1}{(1+2k^2)^2(-3(\alpha_0-4\beta_1)(\alpha_0+2\beta_1)+8(\alpha_0+\alpha_1)(2\beta_1+\beta_2)k^2)}$	$(1+2 k^2)^2$	$^{2}\left(-3\left(\alpha_{0}-4\beta_{1}\right)\left(\alpha_{0}+2\beta_{2}\right)+8\left(\alpha_{1}+\alpha_{2}\right)\left(2\beta_{1}+\beta_{2}\right)k^{2}\right)$

$\beta_{2} k^{2}$	2⁺ σ αβ	2 ⁺ τ∥ αβ	$^{2^{-}}\sigma^{\parallel}_{\alpha\beta\chi}$
	16.0	$2 i \sqrt{2} \left(\alpha_{0} - 4 \beta_{1}\right)$	
$\sigma^{\parallel} \uparrow^{\alpha\beta}$	0 01 (1 4/ 1	$\overline{\alpha_{0}\left(\alpha_{0}-4\beta_{1}\right)k-16\left(\alpha_{1}+\alpha_{4}\right)\beta_{1}k^{3}}$	Θ
$^{+}\tau^{\parallel}$ † $^{\alpha\beta}$	$\frac{2 i \sqrt{2} \left(\alpha_{0} - 4 \beta_{1}\right)}{\left(\alpha_{0} - 4 \beta_{1}\right)}$	$\frac{2\left(\alpha_{\bullet}-4\beta_{\bullet}-4\left(\alpha_{\bullet}+\alpha_{\bullet}\right)k^{2}\right)}{\left(\alpha_{\bullet}-4\beta_{\bullet}-4\left(\alpha_{\bullet}+\alpha_{\bullet}\right)k^{2}\right)}$	0
	$-\alpha$ $\begin{pmatrix} \alpha & -4 & \beta \\ 0 & 1 \end{pmatrix}$ $k+10 \begin{pmatrix} \alpha & +\alpha \\ 1 & 4 \end{pmatrix}$ β k	$\alpha_0 \left(\alpha_0 - 4\beta_1\right) k^2 - 16 \left(\alpha_1 + \alpha_4\right) \beta_1 k^4$	1
$r^{\parallel} + \alpha \beta \chi$	0	0	$\frac{\alpha_{\bullet}}{-\frac{\theta}{4}} + \beta_{\bullet} + \left(\alpha_{\bullet} + \alpha_{\bullet}\right) k^{2}$

Source constraints

Spin-parity form	Covariant form	Multiplicities
$\overset{\Theta^+}{\bullet} \tau^{\perp} == \Theta$	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta+\mathcal{K}\right)^{\alpha\beta} = 0$	1
Θ ⁺ τ [⊥] == Θ	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} = 0$	1
$\frac{2 i k \cdot 1 - \sigma^{\perp}^{\alpha} + \cdot 1 - \tau^{\perp}^{\alpha}}{2 \cdot 1 + \cdot 1 - \tau^{\perp}} = 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}_{\tau}\left(\Delta+\mathcal{K}\right)^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta\tau}\left(\Delta+\mathcal{K}\right)^{\alpha\beta} + 2\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi}$	3
1- _τ ^α == 0	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}$	3
$i k \stackrel{1^+}{\cdot} \sigma^{\perp}{}^{\alpha\beta} + \stackrel{1^+}{\cdot} \tau^{\parallel}{}^{\alpha\beta} = 0$	$\partial_{\chi}\partial^{\alpha}{}_{\tau}\left(\triangle+\mathcal{K}\right)^{\beta\chi} + \partial_{\chi}\partial^{\beta}{}_{\tau}\left(\triangle+\mathcal{K}\right)^{\chi\alpha} + \partial_{\chi}\partial^{\chi}{}_{\tau}\left(\triangle+\mathcal{K}\right)^{\alpha\beta} + 2 \ \partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + 2 \ \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\chi\alpha\beta} = \\ = \partial_{\chi}\partial^{\alpha}{}_{\tau}\left(\triangle+\mathcal{K}\right)^{\chi\beta} + \partial_{\chi}\partial^{\beta}{}_{\tau}\left(\triangle+\mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}{}_{\tau}\left(\triangle+\mathcal{K}\right)^{\beta\alpha} + 2 \ \partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta} = \\ = \partial_{\chi}\partial^{\alpha}{}_{\tau}\left(\triangle+\mathcal{K}\right)^{\chi\beta} + \partial_{\chi}\partial^{\beta}{}_{\tau}\left(\triangle+\mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}{}_{\tau}\left(\triangle+\mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}{}_{\tau}\left(\triangle+\mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}{}_{\tau}\left(\triangle+\mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}{}_{\tau}\left(\triangle+\mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}{}_{\tau}\left(\triangle+\mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}{}_{\tau}\left(\triangle+\mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}{}_{\tau}\left(\triangle+\mathcal{K}\right)^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\partial^{\chi}{}_{\tau}\left(\triangle+\mathcal{K}\right)^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\partial^{\chi}{}_{\tau}\left(\triangle+\mathcal{K}\right)^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\partial^{\chi}{}_{\tau}\left(\triangle+\mathcal{K}\right)^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\partial^{\chi}{}_{\tau}\left(\triangle+\mathcal{K}\right)^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\partial^{\chi}\partial^{\chi}{}_{\tau}\left(\triangle+\mathcal{K}\right)^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\partial^{\chi}\partial^{\chi}\partial^{\chi}\partial^{\chi}\partial^{\chi}\partial^{\chi}\partial^$	3
Total expected gauge generators:		

Massive spectrum

Massive particle	

Pole residue:	$\left \frac{1}{\alpha.} + \frac{\frac{\alpha. + \alpha. + 2\beta.}{4 \cdot 6 \cdot 2}}{\frac{2\alpha. \beta. + 2\alpha. \beta.}{4 \cdot 2 \cdot 6 \cdot 2}} \right >$
Square mass:	$\frac{\frac{\alpha. (\alpha. + 2\beta.)}{0.00}}{\frac{4(\alpha. + \alpha.)\beta.}{4.60}} > 0$
Spin:	0
Parity:	Even

Massive particle

Pole residue:	$-\frac{1}{\alpha_{\cdot}+\alpha_{\cdot}} > 0$
Square mass:	$-\frac{\overset{\alpha.+8}{\overset{\beta.}{\overset{3}{3}}}}{\overset{2}{\overset{(\alpha.+\alpha.)}{\overset{2}{\overset{3}{3}}}}} > 0$
Spin:	0
Davilla	O44

Massive particle $4\beta.^2 + 16(-4\beta.\beta.(\beta. + 2\beta.) + \alpha.(\beta.^2 + 8\beta.^2) + \alpha.(\beta.^2 + 8\beta.^2)))$

Pole residue:	$ \left (3 \left(\alpha. \frac{2}{3} \left(3 \alpha. + 3 \alpha. + 2 \beta. + 4 \beta. \right) - 8 \alpha. \left(\beta. \frac{2}{1} + \alpha. \left(\beta 4 \beta. \right) + \alpha. \left(\beta 4 \beta. \right) - 4 \beta. \frac{2}{3} \right) + 16 \left(-4 \beta. \beta. \left(\beta. + 2 \beta. \right) + \alpha. \left(\beta. \frac{2}{1} + 8 \beta. \frac{2}{3} \right) + \alpha. \left(\beta. \frac{2}{1} + 8 \beta. \frac{2}{3} \right)))) \right) \right $
	$(2(\alpha. + \alpha.)(\beta. + 2\beta.)(3\alpha.^{2} - 12\alpha.(\beta 2\beta.) + 16(\alpha.\beta. + 2\alpha.\beta 6\beta.\beta. + \alpha.(\beta. + 2\beta.)))) > 0$
C	$\frac{\frac{3(\alpha4\beta.)(\alpha.+8\beta.)}{16(\alpha.+\alpha.)(\beta.+2\beta.)}}{\frac{3(\alpha4\beta.)(\beta.+2\beta.)}{16(\alpha.+\alpha.)(\beta.+2\beta.)}} > 0$
Spin:	1
Parity:	Even

	Massive particle				
Pol	ble residue: $ \begin{vmatrix} -((3(\alpha_{.}^{2}(3\alpha_{.} + 3\alpha_{.} + 4\beta_{.} + 2\beta_{.}) + 4\alpha_{.}(-2\alpha_{.}\beta_{.} - 2\alpha_{.}\beta_{.} - 4\beta_{.}^{2} + 2\alpha_{.}\beta_{.} + 2\alpha_{.}\beta_{.} + 2\alpha_{.}\beta_{.} + \beta_{.}^{2}) + 8(-2\beta_{.}\beta_{.}(2\beta_{.} + \beta_{.}) + \alpha_{.}(2\beta_{.}^{2} + \beta_{.}^{2}) + \alpha_{.}(2\beta_{.}^{2} + \beta_{.}^{2}))))/(\alpha_{.}^{2}(\beta_{.}^{2}(\alpha_{.}) + \beta_{.}^{2}(\alpha_{.}) + \beta_{.}^{2}(\alpha_{.}^{2}(\alpha_{.}) + \beta_{.}^{2}(\alpha_{.}) + \beta_{.}^{2}(\alpha_{.}) + \beta_{.}^{2}(\alpha_{.}^{2}(\alpha_{.}) + \beta_{.}^{2}(\alpha_{.}) + \beta_{.}^{2}(\alpha_{.}) + \beta_{.}^{2}(\alpha_{.}^{2}(\alpha_{.}) + \beta_{.}^{2}(\alpha_{.}) + \beta_{.}^{2}(\alpha_{.}^{2}(\alpha_{.}) + \beta_{.}^{2}(\alpha_{.}) + \beta_{.}^{2}(\alpha_{.}^{2}(\alpha_{.}) + \beta_{.}^{2}(\alpha_{.}) + \beta_{.}^{2}(\alpha_{.}) + \beta_{.}^{2}(\alpha_{.}^{2}(\alpha_{.}) + \beta_{.}^{2}(\alpha_{.}) + \beta_{.}^{2}(\alpha_{.}^{2}(\alpha_{.}) + \beta_{.}^{2}(\alpha_{.}) + \beta_{.}^{2}(\alpha_{.}) + \beta_{.}^{2}(\alpha_{.}^{2}(\alpha_{.}) + \beta_{.}^{2}(\alpha_{.}) + \beta_{.}^{2}(\alpha_{.}) + \beta_{.}^{2}(\alpha_{.}^{2}(\alpha_{.}) + \beta_{.}^{2}(\alpha_{.}) + \beta_{.}^{2}(\alpha_{.}^{2}(\alpha_{.}) + \beta_{.}^{2}(\alpha_{.}) + \beta_{.}^{2}(\alpha_{.}) + \beta_{.}^{2}(\alpha_{.}^{2}(\alpha_{.}) + \beta_{.}^{2}(\alpha_{.}) + \beta_{.}^{2}(\alpha_{.}^{2}(\alpha_{.}) + \beta_{.}^{2}(\alpha_{.}) + \beta_{.}^{2}(\alpha_{.}) + \beta_{.}^{2}(\alpha_{.}) + \beta_{.}^{2}(\alpha_{.}^{2}(\alpha_{.}) + \beta_{.}^{2}(\alpha_{.}) + \beta_{.}^{2}(\alpha_{.}) + \beta_{.}^{2}(\alpha_{.}) + \beta_{.}^{2}(\alpha_{.}^{2}(\alpha_{.}) + \beta_{.}^{2}(\alpha_{.}) + \beta_{.}^{2$				
		$(2(\alpha_{.}+\alpha_{.})(2\beta_{.}+\beta_{.})(3\alpha_{.}^{2}+6\alpha_{.}(-2\beta_{.}+\beta_{.})+4(2\alpha_{.}\beta_{.}+\alpha_{.}\beta_{.}-6\beta_{.}\beta_{.}+\alpha_{.}(2\beta_{.}+\beta_{.})))))>0$			
Squ	uare mass:	$\frac{\frac{3(\alpha4\beta.)(\alpha.+2\beta.)}{\frac{0}{1}\frac{0}{1}\frac{0}{0}\frac{2}{2}}{8(\alpha.+\alpha.)(2\beta.+\beta.)}}{\frac{1}{4}\frac{1}{5}(2\beta.+\beta.)} > 0$			
Spi	in:	1			
Par	rity:	Odd			

Massive particle

 $k^{\mu} = (\mathcal{E}, 0, 0, p)$

Pole residue:	$\left -\frac{2}{\alpha_{.}} + \frac{\alpha_{.} + \alpha_{.} + 2\beta_{.}}{2\alpha_{.}\beta_{.} + 2\alpha_{.}\beta_{.}} \right >$
Square mass:	$\frac{\frac{\alpha_{0}(\alpha_{0}-4\beta_{1})}{\frac{1}{1}(\alpha_{1}+\alpha_{1})\beta_{1}}}{\frac{1}{1}(\alpha_{1}+\alpha_{1})\beta_{1}}>0$
Spin:	2
Parity:	Even

Massive particle

ole residue:	$-\frac{1}{\alpha_1 + \alpha_2} > 0$
quare mass:	$\frac{\frac{\alpha4\beta.}{0}}{\frac{1}{4(\alpha.+\alpha.)}} > 0$
pin:	2
arity:	Odd

Manalana ana atau

Massless particle

Pole residue: $\frac{p^2}{\alpha_0} > 0$ Polarisations: 2

Unitarity conditions

(Demonstrably impossible)