

Assembly na Prática

Versão 1.0

Fernando Anselmo

Copyright © 2021 Fernando Anselmo

PUBLICAÇÃO INDEPENDENTE

http:\fernandoanselmo.orgfree.com

É permitido a total distribuição, cópia e compartilhamento deste arquivo, desde que se preserve os seguintes direitos, conforme a licença da Creative Commons 3.0. Qualquer marca utilizada aqui correspondem aos seus respectivos direitos de marca são reservados. Logos, ícones e outros itens inseridos nesta obra, são da responsabilidade de seus proprietários e foram utilizadas somente como característica informativa. Não possuo qualquer intenção na apropriação da autoria relativo a nenhum artigo de terceiros. Caso não tenha citado a fonte correta de algum texto que coloquei em qualquer seção, basta me enviar um e-mail que farei as devidas retratações, algumas partes podem ter sido cópias (ou baseadas na ideia) de artigos que li na Internet e que me ajudaram a esclarecer muitas dúvidas, considere este como um documento de pesquisa que resolvi compartilhar para ajudar os outros usuários e não é minha intenção tomar crédito de terceiros.

Sumário

1	Conceitos Introdutórios	
1.1	Do que trata esse livro?	5
1.2	Programa 1.1 - Hello World	6
1.3	Programa 1.2 - Entrada	l 1
1.4	Programa 1.3 - Comparar Valores	15
1.5	Programa 1.4 - Converter	17
1.6	Programa 1.5 - Calculadora	22
1.7	Programa 1.6 - Arrays	26
2	União com C++	
2.1	Porquê fazer isso?	29
2.2	Programa 2.1 - Troca de Informações	29
2.3	Programa 2.2 - Questão	31
2.4	Programa 2.3 - Parâmetros	33
2.5	Programa 2.4 - Fibonacci	34
2.6	Programa 2.5 - Dupla Chamada	36
2.7	Apahou2	2 0

3	Quebrar a Cabeça
3.1	Aprendizado e desafios
3.2	Programa 3.1 - Quadrado
3.3	Programa 3.2 - Pirâmide
4	Lidar com Arquivos
4.1	O Segredo
4.2	Programa 4.1 - Ler Arquivo
4.3	Programa 4.2 - Gravar Arquivo
4.4	Programa 4.3 - Adicionar no Arquivo
A	Considerações Finais
A .1	Sobre o Autor

1. Conceitos Introdutórios

O novo Google Plus deixa a impressão de que tudo está errado no Facebook. (Hans Peter Anvin - Líder dos projetos NASM e SYSLINUX)

1.1 Do que trata esse livro?

Muitas vezes parei para pensar em como é ensinado a linguagem Assembly, os livros por exemplo são mais complicados que a própria linguagem, já os cursos é sempre algo que o aluno deve possuir um microprocessador no cérebro (provavelmente por isso optei pela imagem da capa). Desejo quebrar isso, se vai dar certo não tenho a menor ideia. Porém tudo começou com o lançamento do curso "Assembly na Prática" no meu canal do YouTube, sinceramente pensava que ninguém iria acessá-lo pois se trata de uma linguagem bem antiga e arcaica, qual não foi minha surpresa quando constatei que é o vídeo mais acessado do meu canal.

A família de vídeos no canal resolveu então crescer com "Assembly na Prática com Raspberry PI"e "Assembly na Prática com Ubuntu", sendo este último o uso nativo. E agora nasce mais um membro desta família. Este livro é uma reunião e organização das ideias do curso e aqui conterá todos os programas, conceitos e detalhes vistos nos vídeos, além disso todos os programas conterão seus descritivos em gráficos de fluxogramas para facilitar o entendimento e a visualização dos mesmos.

Se engana quem pensa que vai encontrar aqui milhares de conceitos teóricos e blá-blá técnico, não foi esse meu objetivo com os vídeos disponibilizados no YouTube assim como não é neste livro. Meu desejo foi ensinar a linguagem Assembly de forma mais prática a possível. Assim se preferir corra para um manual de 800 páginas e terá um monte desses conceitos teóricos aqui entraremos na prática.

1.1.1 O que é NASM?

O compilador e linkeditor que utilizaremos durante todo o transcorrer desse livro será o NASM que é a sigla para "The Netwide Assembly". NASM foi originalmente escrito por Simon Tatham com a assistência de Julian Hall. Em 2016 é mantido por uma pequena equipe liderada por H. Peter Anvin. Sua página oficial é https://www.nasm.us/.

Para o Ubuntu um simples comando instala o NASM a partir do terminal: \$ sudo apt install nasm

Dica 1 — Sobre MEU AMBIENTE. Um detalhe que incomoda muito no Assembly e sua exigência de hardware e software compatível. Meu ambiente é o Ubuntu, uma distribuição do Linux, assim todos os programas aqui mostrados foram escritos e criados para ele. Tenho o Windows, posso usar esse livro? A resposta categórica é "Não". Para Windows existe o WASM e recomendo que você pare de ler agora e procure um livro para ele pois infelizmente o que está escrito aqui não servirá para você.

As pessoas se chateiam por ser franco, mas prefiro não lhe dar esperanças que não posso cumprir do que lhe dizer, usuário Windows leia esse livro que aprenderá algo, a única coisa que provavelmente irá aprender é me odiar por não ter lhe avisado e feito perder seu tempo.

1.1.2 Sobre o Editor

No curso em vídeo utilizei vários editores mas como isso é um livro ele não será necessário assim recomendo o que você se sinta mais confortável, seja do Vim ao Visual Studio Code. Os únicos editores que não são possíveis utilizar estão na linha do MS-Word ou Writer (LibreOffice) por introduzirem códigos no programa, mas qualquer outro é possível.

1.2 Programa 1.1 - Hello World

Abrimos nosso editor favorito e digitamos o seguinte programa:

```
section .data
  msg db 'Hello World!', 0xA
  tam equ $- msg

section .text

global _start

_start:
  mov eax, 0x4
  mov ebx, 0x1
  mov ecx, msg
  mov edx, tam
  int 0x80

saida:
  mov eax, 0x0
  int 0x80
```

Que pode ser descrito conforme o seguinte fluxograma:

Figura 1.1: Fluxograma do Programa Hello World

Salvamos este como hello.asm. Agora em um terminal e digitamos o seguinte comando para compilar o programa:

```
$ nasm -f elf64 hello.asm
```

Uma vez executado sem erros, o seguinte comando para linkeditar o programa:

\$ ld -s -o hello hello.o

E podemos executá-lo com o seguinte comando:

\$./hello

E aparece a mensagem: **Hello World!** no nosso terminal.

1.2.1 Magia Negra

Sei o que vai dizer: "Está bem parecido a algo relacionado com magia negra", mas compreenda que criamos esse programa apenas para saber que tudo está funcionando corretamente e olhe o fluxo dele verá que é algo bem simples. O problema é que as pessoas se preocupam demais em querer aprender tudo em uma simples frase ou mesmo em um único início de seção. Peço apenas que relaxemos pois ainda estamos arranhando a superfície. Temos muito mais coisa para vermos.

Vamos fazer um acordo se ao término dessa seção não compreender o que fizemos, aí sim pode chorar, reclamar e inclusive parar de ler esse livro. Tirando isso, permitamos ter paciência no nosso coração.

1.2.2 Explicação do Programa

Vamos começar entendendo a estrutura do programa. Se divide em 2 partes, uma seção ".data"que é aonde declaramos nossas constantes que utilizaremos ao longo do programa e uma seção ".text"que teremos realmente o que este programa executará. Um marcador em particular deve ser o primeiro e definido através do comando "global"e padronizado com o nome "_start". Sendo assim a estrutura deve ser essa:

```
section .data
section .text
```

```
global _start
_start:
```

Porém se tentar executar isso verá que teremos um erro, muito comum chamado "*Exec format error*", ou seja, o Sistema Operacional está nos comunicando que não existe nada aí para fazer, e precisamos de um conjunto mínimo de ações para que possa executar sem apresentar qualquer falha. Este mínimo é obtido com as 3 últimas linhas do nosso programa:

```
section .data
section .text
global _start
_start:
   mov eax, 0x1
   mov ebx, 0x0
   int 0x80
```

E agora não apresenta mais erro, e nenhuma informação. Mas o que essas linhas querem dizer? Assembly trabalha com registradores de memória e isso corresponde a uma tabela que sempre devemos ter em mente quando programamos com esta linguagem:

64 bits	32 bits	Utilização	
rax	eax	Valores que são retornados dos comandos em um registrador	
rbx	ebx	Registrador preservado. Cuidado ao utilizá-lo	
rcx	ecx	Uso livre como por exemplo contador	
rdx	edx	Uso livre em alguns comandos	
rsp	esp	Ponteiro de uma pilha	
rbp	ebp	Registrador preservado. Algumas vezes armazena ponteiros de pilhas	
rdi	edi	Na passagem de argumentos, contém a quantidade desses	
rsi	esi	Na passagem de argumentos, contém os argumentos em si	

Além desses, existem os registradores de **r8** a **r15** (de 64 bits) e **r8d** a **r15d** (de 32 bits) que são utilizados nas movimentações correntes durante a nossa programação.

Show demais e isso mas na prática? Bem temos que conhecer como age o comando MOV, este transporta valores de um lugar para outro, porém sua ordem é a seguinte: mov destino, origem. Ou seja, o segundo valor é que será transportado para o primeiro (tem pessoas que leem inversamente). Assim o comando: mov eax, 0x1

Está na verdade colocando o valor hexadecimal (indicado pelo prefixo "0x") que corresponde ao valor 1 no registrador **EAX**. Mas o que isso significa? Esse registrador armazena algumas informações destinadas ao Sistema Operacional e devemos "decorar" esses valores, então vamos fazendo isso a medida que formos utilizando.

Para o registrador EAX:

Decimal	Hexadecimal	Utilização
1	0x1	Indica o final de operação, corresponde a System.exit

Ou seja, ao movermos este valor "0x1" queremos dizer que estamos procedendo uma operação de encerramento, sendo que o valor de **EBX** é meramente informativo: mov ebx, 0x0

Como assim "informativo"? Podemos colocar um valor qualquer, usamos o zero como um padrão para indicar que tudo ocorreu bem com o nosso programa. Troque-o para qualquer outro valor e veja que teremos o mesmo resultado. Para que serve então? Para avisar a um outro programa que nos chamou, obviamente o outro deve saber disso.

Por fim mandamos a informação para o sistema operacional com: int 0x80

Esse valor hexadecimal corresponde a 128 em decimal e indica ao SO que agora é com ele e que pode realizar as ações sem problemas. Então a programação é feita assim, preparamos tudo e falamos para o SO: Pode executar.

1.2.3 Mostrar a mensagem

Com tudo o que vimos acima apenas expandimos a ideia para mostrar uma mensagem na saída do terminal, porém primeiro precisamos declarar duas constantes que é feito na seção .data, são elas:

```
section .data
msg db 'Hello World!', 0xA
tam equ $- msg
```

O que queremos dizer com isso? quereremos dizer que lá vem mais uma tabela para decorarmos:

Sigla	Tipo	Significado	Bytes
db	Define Byte	alocação de 8 bits	1 byte
dw	Define Word	alocação de 16 bits	2 bytes
dd	Define Doubleword	alocação de 32 bits	4 byte
dq	Define Quadword	alocação de 64 bits	8 byte
ddq	Define Double Quad	alocação de 128 bits - para inteiros	10 bytes
dt	Define Ten Bytes	alocação de 128 bits - para decimais	10 bytes

Então temos uma marcação chamada "msg"com 8 bits de espaço e o valor em hexadecimal 0xA (que corresponde ao 10 decimal), significa: quebra de linha (line feed). A marcação "tam"contém a quantidade de caracteres que se encontra em "msg", isso é realizado pelo comando "\$- variável". A palavra chave "equ"está apenas firmando e declarando que "tam"é uma constante.

Agora a segunda parte no qual fazemos os movimentos e dizemos para o SO, todo seu:

```
mov eax, 4
mov ebx, 1
mov ecx, msg
mov edx, tam
int 0x80
```

Mais dois valores para decorarmos com o registrador EAX:

Decimal Hexadecimal		Hexadecimal	Utilização
3 0x3		0x3	Para operações de leitura, corresponde a read
	4	0x4	Para operações de saída, corresponde a write

Agora o registrador EBX passa a ganhar importância e deve receber valores correspondentes a:

Decimal	Hexadecimal	Utilização
0	0x0	Indica uma entrada de valor na padrão do Sistema, corresponde a System.in
1	0x1	Indica uma saída de valor na padrão do Sistema, corresponde a System.out

Os movimentos realizados nesse registrador são extremamente importantes, ao enviarmos o valor 0x4 significa que realizaremos uma saída de informação, e acompanhando o registrador **EBX** indica aonde isso será feita, e ele disse 0x1, ou seja, na saída padrão (ou no caso o terminal). O próximo registrador **ECX** contém o conteúdo em caractere do que desejamos mostrar e por fim o registrador **EDX** com a quantidade de caracteres que será mostrada (precisa disso? Assembly EXIGE isso).

E assim obtemos nossa mensagem "Hello World!"no terminal.

1.2.4 Faltou um comando

Tá certo sei que faltou: saida:

Mas esse não é apenas um marcador (label) que criamos para indicar o início de um bloco, não existe qualquer motivo para ele apenas como uma característica de clareza no código.

E falando em clareza, podemos nos utilizar de comentários. Em Assembly NASM tudo o que estiver depois do ";"será desprezado pelo compilador, sendo extremamente normal as pessoas programarem e colocarem este no final de cada linha, exatamente para indicar o que está fazendo:

```
; hello.asm
; programa para mostrar uma mensagem Hello World!
;
; Secao de variaveis
section .data
  msg db 'Hello World!', OxA ; Mensagem a mostrar
```

```
tam equ $- msg
                              ; Quantidade de caracteres da mensagem
; Secao do Programa
section .text
global _start
; Marcador inicial
_start:
  mov eax, 4
              ; Informa que se trata de uma saida
  mov ebx, 1 ; Indica que deve ser realizada no terminal
  mov ecx, msg ; Conteudo da saida
  mov edx, tam ; Quantidade de caracteres
  int 0x80
              ; Envia a informacao ao Sistema Operacional
saida:
  mov eax, 1
                ; Informa que terminamos as acoes
  mov ebx, 0
                ; Informa o estado final do programa - O sem erro
  int 0x80
                ; Envia a informacao ao Sistema Operacional
```

E apesar de ter bem mais informações (poluição visual), fica bem mais claro escrito dessa forma. Então tente tornar isso um hábito quando for escrever seus programas em Assembly.

1.3 Programa 1.2 - Entrada

Outra boa prática que podemos realizar quando se programa com Assembly é colocar todos os dados, que vimos nas tabelas como descritivos de valores. Porém devemos compreender que quando programamos em Assembly temos uma paixão por hexadecimais e normalmente colocamos tudo nessa base.

Nosso programa pode ser descrito conforme o seguinte fluxograma:

Figura 1.2: Fluxograma do Programa Entrada

Ao invés de mostrar o programa inteiro, como fizemos (e provavelmente complexei um monte de leitores) veremos parte a parte deste e assim o montaremos até o resultado final (ou seja iremos assemblando¹ o

¹Pode parecer meio esquisito isso mas saiba que muitas pessoas usavam a palavra Assemblar como verbo sinônimo para

programa).

Iniciamos nossa implementação com a adição de um segmento de dado denominado "segment .data", criamos um novo programa chamado "entrada.asm"e digitamos a seguinte informação:

```
; entrada.asm
; Programa para Entrada de Dados
segment .data
        equ OxA ; Line Feed
  LF
  NULL
            equ OxD ; Final da String
  SYS_EXIT equ 0x1 ; Codigo de chamada para finalizar
  RET_EXIT equ 0x0 ; Operacao com Sucesso
  STD_IN
            equ 0x0 ; Entrada padrao
  STD_OUT
            equ 0x1 ; Saida padrao
  SYS_READ equ 0x3 ; Operacao de Leitura
  SYS_WRITE equ 0x4 ; Operacao de Escrita
  SYS_CALL equ 0x80 ; Envia informacao ao SO
```

Colocamos todos os valores que já vimos anteriormente em uma tabela associativa de variáveis, assim quando precisamos de algum deles basta chamar pelo nome desta. Mas tem valores repetidos como por exemplo SYS_EXIT e STD_OUT porquê não deixar um só? Pois a intenção é mapear os valores e não confundir quando formos escrever o comando, não existe o menor motivo de não gastar variáveis a mais para deixarmos o código mais simples e bem escrito.

Próxima parte e iniciarmos nosso programa com a declaração das variáveis que iremos utilizar e aprendermos uma nova seção:

```
section .data
  msg db "Entre com seu nome: ", LF, NULL
  tam equ $- msg

section .bss
  nome resb 1

section .text
global _start
_start:
```

Já vimos o que significa a seção .data, porém qual sua diferença para .bss? Essa seção é uma abreviatura de *Block Starting Symbol* e nela colocamos todas as variáveis que serão modificadas pelo programa. Para definir seus valores podemos usar mais uma tabela:

montar - afinal esse é o significado da palavra, até que o termo caiu em desuso.

Sigla Tipo		Significado	
resb	byte	variável de 8 bits	
resw word resd double		variável de 16 bits	
		variável de 32 bits	
resq	quad	variável de 64 bits	
resdq	double quad	variável de 128 bits	

O comando da seção .bss é bem diferente da seção .data, nessa segunda por exemplo fazemos: bVar db 10

E isso significa que criamos uma variável chamada **bVar** com o valor 10 nela e esse valor foi armazenado em uma variável de 8 bits. Porém se definirmos em .bss:

```
bVar resb 10
```

Estamos agora com um *array* de bytes contendo 10 elementos, repare que é uma diferença bem gritante. Por isso dizemos que em .data colocamos as constantes (mas na verdade também são expressões variáveis), pois lá recebem valores iniciais enquanto que .bss temos as variáveis (e na verdade são arrays de elementos).

Então conforme explicamos e com o auxílio da nossa tabela, criamos uma variável chamada "nome"que contém 1 elemento como array de bytes, que será utilizada para armazenar o valor que informaremos. O próximo bloco mostra ao usuário que ele deve informar um nome:

```
mov eax, SYS_WRITE
mov ebx, STD_OUT
mov ecx, msg
mov edx, tam
int SYS_CALL
```

Ao utilizarmos as variáveis que criamos no segmento, observe que a sintaxe do programa começa a ficar um pouco mais clara, "msg"e "tam"foram definidos na seção .data e contém respectivamente a frase que desejamos mostrar e o tamanho desta.

1.3.1 Entrada do nome

Próximo bloco corresponde a entrada da informação propriamente dita:

```
mov eax, SYS_READ
mov ebx, STD_IN
mov ecx, nome
mov edx, OxA
int SYS_CALL
```

Os movimentos dos registradores são exatamente os mesmos porém temos uma passagem diferente dos valores das informações, e aí que está toda graça de Assembly pois vemos que transações de entradas e saídas são as mesmas. Para o registrador **EAX** temos o valor correspondente a uma operação de leitura ao invés de uma escrita. Para o registrador **EBX** temos o valor correspondente a uma entrada padrão

(teclado) ao invés de uma saída padrão (monitor). Os registradores **ECX** e **EDX** permanecem com as mesmas informações variável (a diferença que agora o valor informado será armazenado na variável ao invés de obtermos seu conteúdo) e o tamanho.

E esta último preenchimento torna-se um problema, isso limita a entrada do usuário, nesse caso usamos o hexadecimal 0xA que corresponde ao decimal 10, assim sendo o usuário só pode colocar um nome contendo 10 caracteres, se ultrapassar esse valor a informação será cortada. Em breve resolveremos isso, mas por enquanto deixaremos como está.

A última parte do programa também já vimos:

```
mov eax, SYS_EXIT
mov ebx, RET_EXIT
int SYS_CALL
```

Que avisa ao sistema operacional que encerramos todas as atividades e agora pode encerrar os usos desse programa limpando as áreas de memória ou outras alocações realizadas por ele.

1.3.2 Compilação e Linkedição

Ao invés de ficarmos sofrendo tendo que inserir 2 comandos (até parece que é muita coisa) para compilar e linkeditar nosso programa, vamos criar um arquivo especial que realiza esse trabalho. Obrigatoriamente seu nome deve ser **makefile**, então crie um arquivo com esse nome e digite os seguintes comandos:

```
NOME = entrada
all: $(NOME).o
    ld -s -o $(NOME) $(NOME).o
    rm -rf *.o;
%.o: %.asm
    nasm -f elf64 $<</pre>
```

Pode parecer bem estranho mas este programa faz exatamente o que esses três comandos fariam:

```
$ nasm -f elf64 entrada.asm
$ ld -s -o entrada entrada.o
$ rm entrada.o
```

No início criamos uma variável **NOME** facilitando assim sua modificação nos próximos programas pois basta modificar essa variável para o nome do programa atual e tudo está pronto. Para executar esse programa digite o seguinte:

```
$ make
```

Não erramos na digitação é assim mesmo, disse que era um arquivo especial. E pronto, uma vez executado corretamente o programa sera compilado e linkeditado. Ao executá-lo com:

```
$ ./entrada
```

Será mostrado:

```
$ Entre com seu nome:
```

E o cursor espera que seja informado algo e pressionado a tecla ENTER para dar continuidade ao programa.

1.4 Programa 1.3 - Comparar Valores

Neste programa vamos realizar comparações entre valores e compreender como saltos condicionais e incondicionais funcionam na linguagem. Assembly realiza comparações com 2 comandos, um deles normalmente é o comando **CMP** (outros fazem esse mesmo serviço) que possui a sintaxe:

\$ cmp registrador1, registrador2

E aí pergunta-se: está comparando os registradores como? Aí entra um segundo comando que executará o salto para determinado ponto do programa, vamos para mais uma tabela:

Mnemônico	Significado	Contrário	Significado
JE	Salta se igual	JNE	Salta se não igual
JG	Salta se maior	JNG	Salta se não maior
JL	Salta se menor	JNL	Salta se não menor
JGE	Salta se maior ou igual	JNGE	Salta se não maior ou igual
JLE	Salta se menor ou igual	JNLE	Salta se não menor ou igual

Esses saltos são chamados de "condicionais", ou seja, dependem que uma comparação ocorra. Porém ainda existe o comando **JMP** que é um salto "incondicional", isso é, não depende que nada ocorra. E posto tudo isso o nosso programa deveria ter a aparência conforme o primeiro fluxograma (e assim ficaria em linguagens de alto nível), porém no Assembly nosso programa terá a aparência do segundo:

Figura 1.4: Do programa Comparar Valores

Mas qual o motivo dessa diferença tão gritante? Assembly não possui um comando interno que toma uma

decisão e faz blocos de desvios, os blocos de desvio do Assembly são simplesmente pontos "etiquetados" do nosso programa. Lembra no início que criamos um "_start:", pois bem isso não é uma função (como seria em linguagens de alto nível) isso é um *label* (ou um MARCADOR se prefere a palavra em português que é a palavra que usamos neste livro).

Vamos iniciar um programa chamado maiornum.asm, copiamos o nosso segmento de dados (os mesmos vistos anteriormente) e criamos as seguintes variáveis na seção .data:

```
segment .data
  LF
            equ 0xA ; Line Feed
  NULL
            equ OxD ; Final da String
  SYS_EXIT equ 0x1
                     ; Codigo de chamada para finalizar
  RET_EXIT
            equ 0x0 ; Operacao com Sucesso
  STD_IN
            equ 0x0
                    ; Entrada padrao
  STD_OUT
            equ 0x1
                     ; Saida padrao
  SYS_READ equ 0x3
                     ; Operacao de Leitura
  SYS_WRITE equ 0x4 ; Operacao de Escrita
  SYS_CALL equ 0x80; Envia informacao ao SO
section .data
  x dd 10
  y dd 50
  msg1 db 'X maior que Y', LF, NULL
  tam1 equ $ - msg1
  msg2 db 'Y maior que X', LF, NULL
  tam2 equ $ - msg2
```

Temos duas variáveis a primeira chamada **x** que possui o valor de 10 e a segunda **y** com o valor de 50, ao término altere esses valores para testar completamente o programa. Temos também **msg1** que mostra "X maior que Y"e **msg2** para mostrar o inverso, ou "Y maior que X"além de **tam1** e **tam2** para armazenar o tamanho das mensagens respectivamente. Agora vamos começar nosso programa propriamente dito pela seção .text:

```
section .text

global _start

_start:
   mov eax, DWORD [x]
   mov ebx, DWORD [y]
```

Iniciamos com 2 movimentos de x e y para os registradores **EAX** e **EBX** fazendo uma conversão relativa para **DWORD**. Não é possível mover o conteúdo de um DD diretamente para estes registradores.

```
cmp eax, ebx
jge maior
```

Em seguida procedemos a comparação entre os dois registradores e perguntamos se o registrador **EAX** (o primeiro) é maior ou igual (**JGE**) que **EBX** (o segundo), caso seja salta para uma etiqueta chamada **maior**. Caso não seja maior ou igual o programa continuará em seu fluxo normal.

```
mov ecx, msg2
```

```
mov edx, tam2
jmp final
```

No fluxo normal colocamos a **msg2** no registrador **ECX** e seu tamanho em **EDX**, e fazemos um salto incondicional para uma etiqueta chamada **final**.

```
maior:
mov ecx, msg1
mov edx, tam1
```

Declaramos a etiqueta maior e colocamos a msg1 no registrador ECX e seu tamanho em EDX.

```
final:
mov eax, SYS_WRITE
mov ebx, STD_OUT
int SYS_CALL
```

Declaramos a etiqueta **final**, sendo aqui que os dois pontos do programa se encontram. Fazemos os dois movimentos finais para mostrar o resultado, como já carregamos **ECX** e **EDX** anteriormente a mensagem será mostrada de forma correta.

```
mov eax, SYS_EXIT
mov ebx, RET_EXIT
int SYS_CALL
```

E fazemos o movimento final encerrando a seção. Pronto agora podemos executar (compilar e linkeditar com uma cópia do arquivo MAKEFILE visto anteriormente, modificar valor da variável NOME) e testar vários valores para X e Y.

1.5 Programa 1.4 - Converter

Antes mesmo de começarmos nosso programa, vamos criar uma biblioteca e assim parar de copiar os códigos da "segment .data", além de começarmos a criar alguns marcadores globais que podemos usar de uma forma mais consistente.

Para criar uma biblioteca, crie um novo arquivo com o nome "bibliotecaE.inc"e neste insira a seguinte codificação:

```
LF equ 0xA; Line Feed

NULL equ 0xD; Final da String

SYS_EXIT equ 0x1; Codigo de chamada para finalizar

RET_EXIT equ 0x0; Operacao com Sucesso

STD_IN equ 0x0; Entrada padrao

STD_OUT equ 0x1; Saida padrao

SYS_READ equ 0x3; Operacao de Leitura

SYS_WRITE equ 0x4; Operacao de Escrita

SYS_CALL equ 0x80; Envia informacao ao SO
```

```
TAM_BUFFER equ 0xA
segment .bss
BUFFER resb 0x1
```

Agora para o nosso programa que chamaremos de "converte.asm"na primeira linha insira o seguinte código:

```
%include 'bibliotecaE.inc'
```

A definição de **TAM_BUFFER** e **BUFFER** veremos nos marcadores propostos, por enquanto só necessitamos saber que a segunda é um binário que carrega um determinado valor a ser utilizado.

E estamos prontos, daqui para frente salvo qualquer outra observação sempre que criarmos um programa o primeiro passo será copiar o conteúdo da "bibliotecaE.inc"e adicionar a cláusula **%include**. Além obviamente do arquivo "Makefile"para compilarmos e linkeditarmos o programa. Sempre partirei (para não me tornar repetitivo) do princípio que essas ações já aconteceram.

Vamos começar adicionando um simples marcador, que já vimos ser executado várias vezes, e deve ser adicionada na "bibliotecaE.inc":

```
segment .text

; -----
; Saida do Resultado no Terminal
; ------
; Entrada: valor String em BUFFER
; Saida: valor no terminal
; ------saidaResultado:
   mov eax, SYS_WRITE
   mov ebx, STD_OUT
   mov ecx, BUFFER
   mov edx, TAM_BUFFER
   int SYS_CALL
   ret
```

Marcadores são criadas na biblioteca para nossa comodidade, acho que o único detalhe que ainda precisamos entender é esse comando **ret**, pois para o resto basta olhar desde o primeiro programa que construímos para entender seu funcionamento. Quando saltos são dados (sejam eles condicionais ou incondicionais) não existe um retorno ao ponto de partida, ao chamarmos um marcador é diferente esperamos que retornem, é exatamente isso que faz o comando **RET**, desvia o fluxo de volta para a próxima instrução onde este marcador foi chamado (ou seja por um comando **CALL**).

1.5.1 Criar o nosso programa

Neste programa vamos compreender 2 ações muito comuns que acontece em programação a conversão de uma cadeia de caracteres para um número e vice versa. Observe seu fluxograma:

Figura 1.5: Fluxograma do Programa Converter

Uma característica bem curiosa que o programa será completamente "modular"ou seja, será dividido em pequenos blocos. Vamos começar a montagem inicial:

```
section .data
  v1 dw '105', 0xa

section .text
global _start

_start:
  call converter_valor
  call mostrar_valor
  mov eax, SYS_EXIT
  mov ebx, RET_EXIT
  int SYS_CALL
```

Na seção .data criamos o valor que iremos converter em uma variável chamada v1 do tipo Double Word (ou seja um caracter). Já quando começamos o programa em si temos 2 comandos CALL, que no fluxograma corresponde as duas primeiras caixas laranjas, este comando é responsável por chamar um ponto do programa (marcado), aguardar seu retorno e continuar a partir desse ponto. E encerramos a nossa seção do programa, ou seja, podemos dizer que o principal é só isso, e observe realmente que pelo fluxo está totalmente correto.

```
converter_valor:
  lea esi, [v1]
  mov ecx, 0x3
  call string_to_int
  add eax, 0x2
  ret
```

O próximo módulo é responsável por transpor o valor de **v1** para o registrador **ESI** e seu tamanho para **ECX**, em seguida chamar o marcador **string_to_int** para realizar a conversão dessa variável em inteiro. O valor de convertido estará contido no registrador **EAX** e a ele adicionaremos mais 2 (apenas para testar se

realmente virou inteiro) e retornamos ao ponto que chamou.

O comando **LEA** permite que calculemos efetivamente o endereço de qualquer elemento em uma tabela (ou um endereço) e elimina este endereço em um registrador. Ou seja, diferente do comando **MOV** é um caminho mais seguro em se tratando de movimentações de variáveis para registradores.

```
mostrar_valor:
    call int_to_string
    call saidaResultado
    ret
```

Este trecho chama o marcador **int_to_string** para realizar a conversão da variável (que deve estar no registrador EAX) de volta para uma cadeia de caracteres como forma a dar saída no terminal através do marcador (contida em nossa biblioteca) "saidaResultado".

Agora podemos escolher se colocaremos esses dois trechos no programa ou na biblioteca, recomendamos sempre que criar uma novo trecho marcado coloque-o primeiro no programa e teste-o, caso tudo funcione corretamente transfira-o para a biblioteca. Porém as bibliotecas que usaremos não devem conter sujeira (códigos não utilizáveis pelo programa) pois senão geraríamos apenas lixo e aumento do tamanho desnecessário no nosso executável final. Ou seja, mantenha esses trechos de código a mão quando necessários o seu uso, mas não os coloque sempre para QUALQUER programa que crie.

1.5.2 Realização de Conversão

Antes de começarmos a ver as conversões devemos entender que os operadores: AH, AL, BH, BL, CH, CL, DH e DL são o que chamamos de segmentos de 8 bits. Toda vez que tratamos de um único caractere temos um byte isolado (ou seja 8 bits) e podemos usar esses operadores para realizar algumas transformações como veremos a seguir.

Convertendo da cadeia de caracteres para inteiro:

```
string_to_int:
    xor ebx, ebx

.prox_digito:
    movzx eax, byte[esi]
    inc esi
    sub al, '0'
    imul ebx, 0xA
    add ebx, eax
    loop .prox_digito
    mov eax, ebx
    ret
```

Este trecho espera que o registrador **ESI** contenha o valor a ser convertido e **ECX** a quantidade de caracteres deste. O primeiro passo é zerar o registrado **EBX**, o comando **XOR** é um comparador de bit no qual se ambos forem iguais (isto é, ambos 0 ou 1) o resultado será 0 para aquela posição de bit, isso é uma forma elegante de dizer que algo recebe 0 ao invés de simplesmente enviar 0x0.

O comando MOVZX é abreviatura para Move with Zero-Extend, isso significa que os bits superiores do

operador de destino serão preenchidos com zero. Próximo passo é incrementar a posição do registrador **ESI** e achar o valor correspondente da letra. A instrução "*sub al,'0'*" converte o caractere em **AL** isso corresponde a um número entre 0 e 9.

Agora multiplicamos o registrador **EBX** por 10 e adicionamos o conteúdo de **EAX** a este. O comando **LOOP** salta para pegar o próximo registro e assim será realizado até que todos os caracteres da cadeia tenha sido lidos. Ao término movemos o conteúdo de **EBX** para **EAX** de modo a retornar o valor.

Vamos na prática, nosso valor é "105", então o primeiro caractere é "1"e será convertido para inteiro, EBX inicial vale 0 que será multiplicado por 10 resultando 0 e assim EBX terá o valor 1. Na próxima interação vem o caractere "0"que é convertido e EBX que contém 1 multiplicado por 10, adicionado a 0 permanece 10. Na última interação o caractere "5"que é convertido e EBX que contém 10 é multiplicado por 10, adicionado a 5 o resultado é 105. Ou seja, o mesmo valor da cadeia de caracteres.

Convertendo da cadeia de caracteres para inteiro:

```
int_to_string:
  lea esi, [BUFFER]
  add esi, 0x9
  mov byte[esi], 0xA
  mov ebx, 0xA

.prox_digito:
    xor edx, edx
    div ebx
    add dl, '0'
    dec esi
    mov [esi], dl
    test eax, eax
    jnz .prox_digito
  ret
```

Este trecho espera que um valor inteiro esteja armazenado no registrador **EAX**, o primeiro passo é associar o conteúdo de BUFFER ao registrador **ESI**, ou seja, tudo o que fizermos com este será refletido para o conteúdo de buffer. Adicionamos o valor 9 a **ESI** e o movemos 10 para a posição final deste (isso é realizado para que a cadeia possa conter o Line Feed), iniciamos **EBX** com o valor 10.

No marcador de repetição zeramos **EDX** e realizamos uma divisão entre **EBX** e **EDX**, a instrução "*add dl*,'0'", transforma o valor correspondente ao caractere na tabela ASCII. Agora decrementamos 1 posição de **ESI** e adicionamos esse valor convertido. Próximo passo é testar (comando **TEST**) o registrador **EAX** para saber se ainda existem valores a serem adicionados, se sim salta de volta para obter esse próximo registro caso contrário retorna para a posição de quem chamou este marcador.

Na prática, nosso valor será 107, começamos montando a cadeia com um "LF", e pegamos o primeiro elemento que é o valor 7, convertemos este e adicionamos na cadeia que agora será "7LF", no próximo passo o valor 0 é obtido que resulta em "07LF", e por fim, o valor 1 resultando na cadeia final "107LF".

Mas qual o sentido da divisão? Note que quando convertemos da cadeia para inteiro fomos percorrendo caractere a caractere pois podemos fazer isso em uma cadeia, porém em um número isso é impossível ir de frente para trás, então temos que andar de trás para frente.

Pronto já podemos compilar, linkeditar e executar o programa. Lembre-se que se for testar com valores

diferentes de 3 casas modificar o registrador ECX, na instrução " $mov \ ecx$,0x3", para refletir esta mudança. Além disso qualquer valor colocado será aumentado em 2 conforme a instrução " $add \ eax$,0x2".

1.6 Programa 1.5 - Calculadora

Como último programa para fecharmos esse capítulo vamos construir o menu completo para uma calculadora que realiza as quatro operações básicas. Na primeira parte solicita 2 valores e em seguida qual operação deve realizar adicionar, subtrair, multiplicar ou dividir. Porém não fique triste pois não iremos realizar as operações apenas mostrar uma saída informando que chegamos ao ponto correto.

Para realizar cada uma das operações seriam necessárias muitas movimentações, mas prometo que em breve faremos isso, por enquanto precisamos apenas fixar esses conhecimentos básicos e o uso dos registrados "E"(de 32 bits) para podermos seguir adiante.

1.6.1 Novas funcionalidades a biblioteca

Observe que um menu existem muitas saídas de dados, e isso é uma característica preocupante pois temos que repetir várias vezes os mesmos comandos, além de criar aquela variável que guarda o tamanho da cadeia de caracteres. Então vamos resolver esses dois problemas primeiro e adicionar dois novos marcadores principais na nossa biblioteca.

```
; Calcular o tamanho da String
; ------
; Entrada: valor String em ECX
; Saida: tamanho da String em EDX
; ------
tamStr:
   mov edx, ecx
proxchar:
   cmp byte[edx], NULL
   jz terminei
   inc edx
   jmp proxchar
terminei:
   sub edx, ecx
   ret
```

Vamos passar uma cadeia de caracteres no registrador **ECX** e de modo bem simples vamos contar (tem que ser manualmente pois não existe um comando que realize isso) caractere a caractere, observe que no inicio mantemos o valor de **ECX** em **EDX**, o conteúdo do centro é simples conta todos os caracteres até achar o valor NULL (0xD). O pulo do gato está no comando **SUB** (que possui a sintaxe *sub destino*, *secundário*). Isso parace bem esquisito para quem vem das linguagens de alto nível: **EDX** contém 2 valores, o primeiro é a cadeia de caracteres e o segundo um valor inteiro contendo os incrementos que fizemos no centro, se queremos somente o valor inteiro basta remover essa cadeia de caracteres (para isso subtraímos).

```
; -----; Saida do Resultado no Terminal
; ------;
```

Para nosso marcador de saída, recebemos a cadeia de caractere através do registrador **ECX**, chamamos o marcador descrito anteriormente para obtermos tamanho que virá em **EDX**. Agora basta finalizar com os valores de **EAX**, **EBX** e informar ao sistema operacional que pode processar.

1.6.2 Menu de Sistema

Nosso processo começa com a declaração de todas as variáveis que utilizaremos ao longo do programa:

```
%include 'bibliotecaE.inc'
section .data
          db LF,'+----+',LF,'| Calculadora |',LF,'+----+', NULL
   tit
  obVal1 db LF,'Valor 1:', NULL
  obVal2 db LF,'Valor 2:', NULL
          db LF, '1. Adicionar', NULL
          db LF,'2. Subtrair', NULL
  opc2
          db LF, '3. Multiplicar', NULL
  орсЗ
          db LF, '4. Dividir', NULL
  opc4
  msgOpc db LF, 'Deseja Realizar?', NULL
  msgErro db LF,'Valor da Opcao Invalido', NULL
          db LF, 'Processo Adicionar', NULL
  р1
          db LF, 'Processo Subtrair', NULL
  p2
  рЗ
          db LF, 'Processo Multiplicar', NULL
          db LF, 'Processo Dividir', NULL
  р4
  msgfim db LF,'Terminei.', LF, NULL
section .bss
  opc
          resb 1
          resb 1
  num1
  num2
          resb 1
```

Um fator importante é que cada cadeia de caracteres deve obrigatoriamente terminar com o caractere NULL, senão nossa marcador de conta calculará totalmente errado. Temos 3 variáveis na seção .bss a opção que o usuário pode escolher e os dois valores para realizar a operação.

Começamos nossa programação mostrando o título inicial que como resultado deve mostrar no terminal:

```
+----+
| Calculadora |
+----+
```

```
mov ecx, obVal1 ; Valor 1:
call mst_saida
mov eax, SYS_READ
mov ebx, STD_IN
mov ecx, num1
mov edx, 0x3
int SYS_CALL
```

Solicitamos a entrada do primeiro valor para o usuário que mostra a mensagem: "Valor 1:"e fica aguardando. Uma vez informado este irá para a variável **num1**.

```
mov ecx, obVal2 ; Valor 2:
call mst_saida
mov eax, SYS_READ
mov ebx, STD_IN
mov ecx, num2
mov edx, 0x3
int SYS_CALL
```

Processamos de mesma forma agora para solicitar o segundo valor (não valeria a pena criar uma marcador isolado para isso? Utilize como um exercício de formatura desse capítulo).

```
mov ecx, opc1  ; 1. Adicionar
call mst_saida
mov ecx, opc2  ; 2. Subtrair
call mst_saida
mov ecx, opc3  ; 3. Multiplicar
call mst_saida
mov ecx, opc4  ; 4. Dividir
call mst_saida
```

Mostramos agora as quatro opções disponíveis para nosso usuário de modo que possa fazer sua escolha, que resulta em:

- 1. Adicionar
- 2. Subtrair
- 3. Multiplicar
- 4. Dividir

```
mov ecx, msgOpc ; Deseja Realizar?
call mst_saida
mov eax, SYS_READ
mov ebx, STD_IN
mov ecx, opc
mov edx, 2
int SYS_CALL
```

E solicitamos que o usuário determine uma opção (é realmente isso está implorando um marcador isolado, observe que temos exatamente os mesmos comandos porém com valores distintos).

```
mov ah, [opc]
sub ah, '0'
```

Toda entrada é realiza em cadeia de caracteres, se desejamos realizar comparações devemos converter o valor para inteiro, como é um único caractere que será informado basta subtrair por '0' que teremos o valor em inteiro. Como assim? Agora vamos ter que pensar na tabela ASCII, a posição do '0' nesta corresponde ao valor decimal 48 (ou 0x30 se prefere em hexadecimal), os próximos números estão em sequencia, assim '1' corresponde a 49 e assim sucessivamente. Ou seja, se subtraímos o valor 49 (caractere '1') por 48 (caractere '0') temos o decimal 1.

```
cmp ah, 1
je adicionar
cmp ah, 2
je subtrair
cmp ah, 3
je multiplicar
cmp ah, 4
je dividir
```

Agora é realizar os comparativos para saber qual opção nosso usuário selecionou. E se não entrar em nenhuma dessas opções:

```
mov ecx, msgErro ; Valor da Opcao Invalido
call mst_saida
jmp exit
```

Mostrar a mensagem de erro para opção inválida e sair do programa.

```
adicionar:
  mov ecx, p1
                     ; Processo Adicionar
   call mst_saida
  jmp exit
subtrair:
                     ; Processo Subtrair
  mov ecx, p2
  call mst_saida
  jmp exit
multiplicar:
                     ; Processo Multiplicar
  mov ecx, p3
   call mst_saida
  jmp exit
dividir:
  mov ecx, p4
                     ; Processo Dividir
   call mst_saida
   jmp exit
```

Agora cada marcador será bem similar, apenas modificando a mensagem para termos a certeza que entrou

na opção correta. E por fim:

```
exit:
  mov ecx, msgfim ; Terminei.
  call mst_saida

mov eax, SYS_EXIT
  mov ebx, RET_EXIT
  int SYS_CALL
```

Mostrar a mensagem de término e encerrar a seção.

1.7 Programa 1.6 - Arrays

Vetores (ou Arrays se prefere o termo mais técnico) em Assembly são extremamente comuns, nem sentimos quando estamos o usando, essa frase é tão verdadeira que as pessoas nem reparam que isso aqui em um array:

```
msg1: DB 'Parte 1', LF, NULL
msg2: DB 'Parte 2', LF, NULL
msg3: DB 'Parte 3', LF, NULL
msg4: DB 'Parte 4', LF, NULL
```

Pronto peguei um erro nesse livro e esse autor é doido, isso são quatro variáveis! Muitas pessoas agora vão estar pensando isso, mas deixe-me esclarecer, por tudo o que vimos até o momento o que significa qualquer coisa e depois um dois pontos? Isso mesmo um MARCADOR, mas espera aí isso são nomes de var... Não meu gafanhoto isso são marcadores a um determinado ponto do programa. E um detalhe os dois pontos não importam nem são obrigatórios (pode tirá-los e verá que o programa continua mas essa regra não se aplica aos marcadores da seção .text).

Vamos brincar um pouco a palavra 'Parte 1' + LF + NULL contém 9 caracteres certo, então vamos criar o seguinte programa:

```
%include 'bibliotecaE.inc'

SECTION .data
   msg1: DB 'Parte 1', LF, NULL
   msg2: DB 'Parte 2', LF, NULL
   msg3: DB 'Parte 3', LF, NULL
   msg4: DB 'Parte 4', LF, NULL

SECTION .text

global _start
_start:
   mov eax, 4
   mov ebx, 1
   mov ecx, msg1
   mov edx, 36
   int 0x80
```

```
mov eax, 1
mov ebx, 5
int 0x80
```

Se cada linha tem 9 caracteres as 4 linhas terão 36 deles por isso **EDX** contém esse valor (deixei em decimal mesmo para não causar confusão mas se quiser pode usar 0x24). Ao compilar e executar o programa temos:

Parte 1
Parte 2
Parte 3
Parte 4

Agora façamos 2 mudanças, mover msg3 para ECX e 18 para EDX, e obviamente como resultado temos:

Parte 3

Parte 4

É exatamente por esse motivo que usamos o NULL no final para podermos identificar essa posição e aplicarmos um corte quando vimos o marcador **tamStr** que calcula o tamanho da cadeia de caracteres a mostrar.

1.7.1 Arrays de Inteiros

Mas como seria um Array de inteiros? No programa **Converter** temos dois marcadores que utilizaremos aqui, são eles: **int_to_string** e **saidaResultado**. Adicionamos ambos a nossa biblioteca.

Criar um arquivo chamado "arrays.asm"e vamos iniciá-lo com o seguinte conteúdo:

```
%include 'bibliotecaE.inc'

SECTION .data
array: DD 10, 22, 13, 14, 55
```

Definimos um array (não é por causa do nome do marcador - poderíamos ter colocado "casinha"para este) com 5 números, agora devemos pensar o seguinte, cadê a posição de cada um? Temos um DD, isso significa "Define Doubleword"que aloca 4 bytes (a chave aqui é o número de bytes). Então para obtermos qualquer posição precisamos de uma simples equação:

```
[nome marcador] + 4 * [posição]
```

Então se fizermos:

```
SECTION .text
global _start:
    _start:
    mov eax, [array + 4 * 3]
    call int_to_string
    call saidaResultado
saida:
```

```
mov eax, SYS_EXIT
mov ebx, EXIT_SUCESS
int SYS_CALL
```

Qual será a resposta desse programa? Isso mesmo **14** que é a nossa **4º posição**, mas espera foi colocado 3 e isso não corresponde a **3ª**? Não pois a primeira posição é o número 0 e agora acabou de compreender porquê em QUALQUER linguagem de alto nível TODO índice do array começa com 0 e não 1.

Aprender Assembly não vai lhe tornar um Hacker, nem você vai criar sistemas complexos com este. Aprender Assembly faz conhecer detalhes das linguagens que normalmente as pessoas não conhecem e não sabem porquê é feito dessa maneira. E finalizamos esta parte introdutória da linguagem Assembly no próximo capítulo veremos uma junção desta com a linguagem C++.

2. União com C++

Existem apenas dois tipos de linguagens: aquelas que as pessoas reclamam e as que ninguém mais usa. (Bjarne Stroustrup - Criador da Linguagem C++)

2.1 Porquê fazer isso?

Talvez a pergunta mais simples seja: O que ganhamos com isso? Fico pensando sinceramente se vale a pena essa união do C++ com o Assembly e a resposta é sempre sim, isso deu muito certo com o ambiente embarcado das placas Arduino e porquê não daria conosco? É verdade que todo casamento tem seus problemas, mas se fosse tudo uma lua-de-mel seria bem esquisito.

Resolvi incluir este capítulo no livro, pois pessoalmente prefiro utilizar o C++ para realizar as entradas e saídas de dados enquanto que o Assembly toda a parte de processamento, ou seja, é aproveitar um melhor de dois mundos. Vejamos como isso funciona e alguns exemplos nas seções seguintes.

2.2 Programa 2.1 - Troca de Informações

Diferentemente do que sempre fazemos vamos começar iniciando um programa em C++, chamaremos de "troca.cpp"com o seguinte conteúdo:

```
# include <iostream>
using namespace std;

extern "C" int GetValorASM(int a);
int main() {
   cout<<"ASM me deu "<<GetValorASM(32)<<end1;
   return 0;
}</pre>
```

O comando **include** indica que iremos trabalhar com uma entrada de dados e a instrução "*using namespace std;*" serve para definir um "espaço para nomes". Isso permite a definição de estruturas, classes e constantes que estão vinculadas para definir funções da biblioteca padrão.

A instrução que realmente nos interessa é a "extern"que indica o nome de um marcador global que devemos definir, essa recebe um argumento inteiro e retorna também outro. Em linguagens de alto nível sempre temos um ponto de entrada neste caso é o "**int main()**", neste damos uma saída em cadeia de caracteres para o terminal informando: "ASM me deu "+ retorno da chamada *GetValorASM* quando esta recebe 32.

2.2.1 Agora sim vamos para o Assembly

Gostaria muito que não se assustasse com o tamanho do programa, pois o mesmo é extremamente pequeno (pensou que ia falar grande?), mas nesse começo quero deixar as coisas simples, crie um programa chamado "troca.asm", com a seguinte codificação:

```
section .text

global GetValorASM

GetValorASM:
  mov eax, edi add eax, 1 ret
```

Acredito que nem precise explicar, mas vamos assim mesmo. Antes vamos entender seu fluxo:

Figura 2.1: Fluxograma do Programa Troca de Informações

Primeiro definimos a parte de entrada, não precisamos da sessão .data então vamos direto para a .text porém com uma grande mudança ao invés de definirmos um marcador global "_start" vamos chamar um que o programa C++ está chamando e o definiu "GetValorASM" (atenção com as letras maiúsculas ou minúsculas é tudo case-sensitive).

Nesta trecho pegamos o valor do registrador **EDI** (que é utilizado para a passagem do primeiro parâmetro). Outros registradores utilizados são **ESI** para o segundo e **EDX** para o terceiro. Colocamos o valor de **EDI** em **EAX** (que é utilizado como valor de retorno da chamada - SEMPRE) e a este adicionamos mais um,

ou seja o valor de retorno será sempre o valor de entrada mais um.

2.2.2 Modificar o arquivo makefile

Como agora estamos trabalhando com o C++ precisamos realizar uma pequena alteração para o linkeditor, não podemos mais utilizar o **LD** e devemos passar a utilizar o **G++**, assim nossa nova codificação para este deve ter o comando:

```
$ g++ troca.o troca.cpp -o troca
```

Ou seja nosso arquivo agora terá a seguinte codificação:

```
NOME = troca
all: $(NOME).cpp $(NOME).o
    g++ $(NOME).o $(NOME).cpp -o $(NOME)
    rm -rf $(NOME).o

%.o: %.asm
    nasm -f elf64 $
```

Continuamos utilizando o comando **make** para compilar e linkeditar sem o menor problema e ao executarmos a instrução ./troca, teremos como resposta:

```
$ ASM me deu 33
```

Realmente as coisas estão começando a ficar fáceis demais, e me falaram que o Assembly era difícil.

2.3 Programa 2.2 - Questão

Um grande problema que podemos encontrar nessa solução é que agora temos de conhecer a sintaxe de duas linguagens e não apenas de uma e ficamos mais "presos". Porém isso pode ser uma excelente solução na criação de bibliotecas para soluções complexas que envolvem performance de sistemas.

Me perdoe pois aqui devemos pensar de modo simples para sermos didático de modo que possamos compreender na integra como tudo funciona, mas nada impede de alçarmos mais altos voos a partir do que é mostrado aqui.

Novamente vamos começar pelo programa em C++, criamos um arquivo chamado "questao.cpp"com a seguinte codificação:

```
#include <iostream>
using namespace std;

extern "C" int Question(int a);

int main() {
  if (Question(27) == 1) {
    cout << "Numero Par" << endl;
  } else {
    cout << "Numero Impar" << endl;
}</pre>
```

```
}
return 0;
}
```

Nada muito diferente porém no método **main**() esperamos seja um valor igual a 1 caso o número enviado seja par ou diferente deste caso contrário. Para o programa Assembly que é realmente o que nos interessa, criamos um arquivo chamado "questao.asm"com a seguinte codificação:

```
global Question
segment .text
Question:
 mov ebx, edi
  jmp _testar
 ret
_testar:
  cmp ebx, 0
  je _par
  jl _impar
  sub ebx, 2
  jmp _testar
_par:
 mov eax, 1
 ret
_impar:
 mov eax, 0
 ret
```

Conforme definimos no C++ o marcador global chamado é o "Question" que deve estar na nossa seção global, o registrador **EDI** recebe o parâmetro enviado, agora vamos parar para pensar um pouco (e é isso que amo no Assembly nos força a pensar), quando um número é par? Resposta geral: quando for divisível por 2, correto mas o que isso quer dizer? Resposta geral: quando após a divisão de um número por 2 não restar nada, correto novamente mas então precisamos "transpor" um valor inteiro para um decimal e pegarmos o resto da divisão.

Está vendo com a coisa fica bem complicada? Vamos pensar de modo simplificado, o que vem a seer uma MULTIPLICAÇÃO? É pegarmos o primeiro valor e SOMÁ-LO por ele mesmo quantas vezes indicar o segundo valor. Não é assim que aprendemos lá no primário? Agora a partir desse princípio, o que vem a ser uma DIVISÃO? Ao invés de somar é SUBTRAIR o valor quantas vezes indicar o segundo valor, o resultado é a quantidade de vezes conseguimos fazer isso até um resultado igual a 0. Caso o resultado seja NEGATIVO significa que sobrou um resto.

Mas o que está nos interessando é se temos um número par ou ímpar, então se o resultado dessa subtração constante por 2 (que seria qualquer número dividido por 2) for 0 significa que este é **par**, caso contrário menor que 0 ele é **impar**.

Agora podemos montar nosso fluxograma de acordo com o explicado:

Figura 2.2: Fluxograma do Programa Questão

Para compilar e linkeditar copiamos o arquivo makefile indicado anteriormente e mudamos a variável NOME para questao. E podemos modificar o valor do parâmetro passado (que atualmente é 27) para qualquer valor de modo a testarmos as várias possibilidades.

2.4 Programa 2.3 - Parâmetros

Nosso próximo programa obterá 3 parâmetros e realizará a soma entre eles, mas como os parâmetros chegam em Assembly? Usamos 3 registradores para isso na seguinte sequência EDI (recebe o 1º parâmetro), ESI (o 2º) e EDX (o 3º). Mas e se tivermos de passar mais que isso? Bem, esse é um dos problemas de utilizar essa forma de programção, nada na vida é infinito.

Vamos começar com a criação de um arquivo chamado "param.cpp", com a seguinte codificação:

```
#include <iostream>
using namespace std;

extern "C" int PassarParam(int a, int b, int c);

int main() {
   cout << "Foi retornado:" << PassarParam(50, 40, 10) << endl;
   return 0;
}</pre>
```

Então temos uma chamada a **PassarParam** no qual recebe três valores a, b e c do tipo inteiro e esperamos que nos dê o retorno da soma desses. O programa em Assembly será bem simples de se fazer, não pense que aqui guardei algum peguinha para complicar.

Criamos um arquivo chamado "param.asm", com a seguinte codificação:

```
global PassarParam
```

```
PassarParam:
  mov eax, edi
  add eax, esi
  add eax, edx
  ret
```

Nada consegue ser mais fácil que isso, colocamos o valor do primeiro parâmetro recebido **EDI** em **EAX** (que é o nosso registrador de retorno), em seguida adicionamos o valor de **ESI** (segundo parâmetro) a **EAX** e finalmente adicionamos de **EDX** (terceiro parâmetro) a **EAX**.

Agora basta copiar o arquivo **makefile**, alterar o valor da variável NOME e testarmos o programa com a passagem de vários valores.

2.5 Programa 2.4 - Fibonacci

O italiano *Leonardo Bigollo Pisano* nos deu uma das mais lindas sequências que é observada constantemente na natureza consiste em uma sucessão de números, tais que, sendo os dois primeiros números da sequência como 1 e 1, os seguintes são obtidos por meio da soma dos antecessores, assim sendo:

```
1, 1, 2, 3, 5, 8, 13, 21, 34, ...
```


Figura 2.3: Sequência de Fibonacci observada na natureza

Existem várias aplicações prática para essa sequência (pesquisar, por exemplo, sobre A Identidade de Cassini) mas nosso objetivo aqui é outro, vamos localizar a posição de um determinado elemento dentro dessa sequência, devemos nos ater que a primeira posição é ocupada pelo valor 1, a segunda pelo valor 2, a terceira pelo valor 3, a quarta pelo valor 5, a quinta pelo valor 8 e assim sucessivamente. Deste modo se nosso programa pedir o décimo terceiro valor deve retornar o valor 377, basta fazer as contas.

Vamos começar com a criação do arquivo "fibo.cpp", com a seguinte codificação:

```
#include <iostream>
using namespace std;
extern "C" long Fibonacci(long a);
int main() {
```

```
cout << "0 " << 13 << " elemento da sequencia de Fibonacci: " << Fibonacci(13) <<
   endl;
return 0;
}</pre>
```

O único detalhe interessante aqui é que ao invés de enviarmos e recebermos um elemento inteiro agora estamos usando um longo (tipo **long**), e o que isso quer dizer? A quantidade de bits passados e recebidos, um inteiro possui 32 bits de tamanho enquanto que um longo é o dobro, ou seja, 64 bits.

Vamos para a programação Assembly, e começar de modo simples. Criar um arquivo chamado "fibo.cpp"e inserir a seguinte codificação:

```
section .text

global Fibonacci

Fibonacci:
  mov eax, 1
  mov r8d, 1
  mov r9d, 1
```

Definimos o valor padrão para o registrador de retorno **EAX**, e populamos os registradores **R8D** e **R9D** com os dois primeiros valores da sequencia, e nesses que iremos processar a combinação de sequência.

O cálculo dessa sequência é relativamente simples, porém envolve uma troca de posições, novamente PENSEMOS SIMPLES, temos o seguinte, se o valor pedir 1º elemento, vamos pegar esse valor e diminuir 1 se o resultado for 0 podemos retornar, assim continuamos nosso programa com:

```
Calcular:
sub edi, 1
cmp edi, 0
je Terminar
```

Lembre-se que o primeiro parâmetro será enviado em **EDI**, sendo este será o nosso controlador, se o programa continuar seu fluxo, ou seja não entrar no marcador **terminar**, realizamos os seguintes movimentos:

```
mov eax, r8d
add eax, r9d
```

Infelizmente não existe um comando para dizer assim: EAX = R8D + R9D, então devemos realizar isso de forma "parcelada", primeiro colocamos o valor de **R8D** em **EAX** para em seguida somarmos o valor de **R9D**.

Próximo passo e procedermos a troca, ou seja, andarmos os valores:

```
mov r8d, r9d
mov r9d, eax
jmp Calcular
```

Colocamos o valor de **R9D** em **R8D** e **EAX** em **R9D** e saltamos para o marcador **Calcular** e fazemos novamente todo o processo até que **EDI** seja 0 e salte para o marcador **Terminar** com a seguinte codificação.

```
Terminar: ret
```

Que simplesmente procede o retorno. Um comentário que recebi quando publiquei esse programa: "Pombas você deve ser um PÉSSIMO programador consigo fazer isso com muito menos linhas!". Primeiro que isso não é uma competição, segundo que meu objetivo ao colocar um programa aqui é que o mesmo seja didático e possamos aprender algumas coisas, e terceiro, também consigo programá-lo com menos linhas utilizando apenas os registradores **EAX** e **R8D** do seguinte modo:

```
section .text

global Fibonacci

Fibonacci:
  mov eax, 1
  mov r8d, 1

Calcular:
  sub edi, 1
  cmp edi, 0
  je Terminar
  add eax, r8d
  jmp Calcular

Terminar:
  ret
```

Mas deste modo o que teríamos para discutir ou aprender? Pois todos os movimentos já foram vistos anteriormente. O objetivo aqui é aprendermos a programar de um jeito simples e observando os detalhes da linguagem, se deseja aprender **lógica** lhe recomendo buscar um bom curso ou livro que ensine isso, pois aqui não pretendo ficar preocupado com o perfeccionismo.

2.6 Programa 2.5 - Dupla Chamada

Tudo bem até o momento compreendemos que podemos passar valores do C++ para o Assembly, porém com tudo que foi mostrado parece que só podemos ter uma única chamada. Errado podemos ter várias chamadas, inclusive a vários pontos do programa, desde que esses tenham a seguinte característica sejam declarados com o comando **GLOBAL** e finalizem com o comando **RET**.

Vamos pensar em 2 estruturas, primeira:

```
int teste1(int valor1, int valor2) {
  if (valor1 > valor2) {
    return valor1;
  } else {
    return valor2;
  }
}
```

Uma decisão no qual retorna o valor que for maior entre dois valores passados. E uma segunda estrutura:

```
int teste2(int valor1) {
 int ret = 0;
  switch (valor1) {
    case 1:
     ret = 5;
     break;
    case 2:
     ret = 6;
     break;
    case 3:
      ret = 4;
      break;
    case 4:
      ret = 5;
      break;
  return ret;
}
```

Nesta escolha caso seja passado o valor 1 retorna 5, caso 2 retorna 6, caso 3 retorna 4, caso 4 retorna 5 e caso contrário o valor padrão 0. Como disse anteriormente não se importe muito com a lógica nesses casos pois é apenas uma exemplificação.

Começamos com a criação do arquivo "decisao.cpp"com a seguinte codificação:

```
#include <iostream>
using namespace std;

extern "C" int Teste1(int valor1, int valor2);
extern "C" int Teste2(int valor1);

int main() {
  cout << "Do teste1 foi retornado: " << Teste1(30, 20) << endl;
  cout << "Do teste2 foi retornado: " << Teste2(3) << endl;
  return 0;
}</pre>
```

Temos a chamada de dois marcadores chamadas Teste1 e Teste2, que farão exatamente o que foi proposto anteriormente. Começamos a montagem do programa "decisao.asm"com a seguinte codificação:

```
segment .text
global Teste1
global Teste2
```

Ou seja, pouco importa a quantidade de marcadores globais que criemos no programa Assembly desde que todas estejam declaradas no comando GLOBAL. Para o marcador **Teste1**:

```
Teste1:
  cmp edi, esi
  jg voltaEDI
  jmp voltaESI

voltaEDI:
  mov eax, edi
  ret

voltaESI:
  mov eax, esi
  ret
```

Comparamos os dois valores passados se o primeiro (**EDI**) for maior que o segundo retornamos este movendo-o para o registrador de retorno (EAX), caso contrário o segundo (ESI). Para o marcador **Teste2**:

```
Teste2:
  cmp edi, 1
  je volta5
  cmp edi, 2
  je volta6
  cmp edi, 3
  je volta4
  cmp edi, 4
  je volta5
 mov eax, $0x0
 ret
volta4:
 mov eax, $0x4
 ret
volta5:
 mov eax, $0x5
 ret
volta6:
  mov eax, $0x6
 ret
```

Se formos comparar com Teste1 temos apenas uma sequência de comparações e o salto para onde deve ir caso essa comparação seja igual.

Nativamente desta forma em Assembly são transpostos os comandos **IF** e **SWITCH** de C, realmente as coisas começam a ficar muito simples.

2.7 Acabou?

Esses são os casos mais comuns que utilizamos a programação Assembly em conjunto com o C++ (ou mesmo com outras linguagens de alto nível), porém o objetivo desse livro não é mesclar esse assunto mas

2.7 Acabou? 39

o de ensinar a programar em Assembly NASM.

Na próximo capítulo veremos alguns programas para praticarmos um pouco mais nossa lógica de programação juntamente com o Assembly.

3. Quebrar a Cabeça

Você não é Assembly mas eu quebro muito a cabeça para te entender. (Davyd Maker)

3.1 Aprendizado e desafios

Quando era mais jovem e iniciei no mundo da programação propus uma vez um desafia para mim, deveria fazer determinada coisa com a linguagem que escolhesse se conseguisse estava em bons caminhos, caso contrário, bem tentar novamente. Ou seja, era um desafio que não tinha muita saída, realizava ou realizava. Fosse ele fazer um programa para mostrar uma determinada figura na tela ou mesmo aprender a utilizar vetores.

Ou seja fazia algo que muitas pessoas consideravam idiota (achou que ia falar impossível) e talvez realmente fosse, mas idiota no sentido de não ser algo prático para se utilizar, mas era meu modo de criar um "Hello World"mais inteligente. Nessa seção teremos meus quatro desafios básicos, e se posso quero lhe sugerir que tente resolvê-los antes de ler a solução. Veja qual é o desafio, entenda o requisito e resolva-o depois pode ver a solução. Vou lhe dar uma dica preciosa antes mesmo de começarmos, escreva no papel o que pretende fazer e organize suas ideias, senão conseguir organizá-las então isso não serve como programa.

Para todos os programas utilizaremos a biblioteca apenas com o conjunto do segmento data (de modo que possamos escrever os nomes e não os códigos) e o arquivo makefile para compilar e linkeditar, então se acostume a copiá-los para cada um dos programas descritos e que seja seu ponto de partida.

3.2 Programa 3.1 - Quadrado

Com base em um determinado valor mostrar um quadrado de asteriscos. Como disse, as pessoas consideravam desafios idiotas pois nunca teremos um usuário pedindo: "Me dê um quadrado de asteriscos". Esse desafio é excelente para aprendermos a controlar estruturas de repetição determinada aninhas (vulgo comando "for"dentro de outro "for").

Figura 3.1: Fluxograma do Programa Quadrado

Criar um arquivo chamado "quadrado.asm"e começamos com a seguinte codificação:

```
%include 'bibliotecaE.inc'

SECTION .data
  estrela DB '*', LF, NULL
  altura EQU 4

SECTION .text
global _start
```

Começamos então com a definição da nossa cadeia de caracteres para a saída e do valor da altura. Montamos o corpo principal:

```
_start:
  mov edi, altura

inicio:
  mov esi, altura
  call impLinha
  sub edi, 0x1
  cmp edi, 0x0
  je saida
  jmp inicio
```

Colocamos o valor da altura em **EDI** (que controla a quantidade de linhas), para o marcador **inicio**, colocamos o valor da altura em **ESI** (que controla a quantidade de colunas), saltamos para um marcador de modo a mostrar 1 linha, reduzimos a quantidade de **EDI** e comparamos seu valor com 0, se for igual

vamos para o marcador saida caso contrário retornamos para o marcador início.

```
impLinha:
   call impEstrela
   sub esi, 0x1
   cmp esi, 0x1
   jg impLinha
   je impEstrelaFinal
   ret
```

No marcador **impLinha** mostramos um * na saída do terminal, reduzimos o valor de **ESI** e verificamos se este for maior que 1 retornamos para o marcador **impLinha**, se for igual mostramos "* + LF"(para saltar de linha) e retornamos para o ponto que nos chamou.

```
saida:
mov eax, SYS_EXIT
mov ebx, EXIT_SUCESS
int SYS_CALL
```

Neste ponto apenas fazemos as movimentações para terminar o programa. Mas calma que ainda existem mais dois marcadores importantes no conjunto.

```
impEstrela:
  mov eax, SYS_WRITE
  mov ebx, STDOUT
  mov ecx, estrela
  mov edx, Ox1
  int SYS_CALL
  ret
```

Observe que a cadeia de caracteres estrelas é formada por 3 elementos, dois deles é que nos interessam, se enviamos o tamanho em 1 apenas estamos tratando de mostrar '*' na saída do terminal e o cursor ficará na mesma linha, sem "cair"para a próxima.

```
impEstrelaFinal:
  mov eax, SYS_WRITE
  mov ebx, STDOUT
  mov ecx, estrela
  mov edx, Ox2
  int SYS_CALL
  ret
```

Já neste pedimos para mostrar o tamanho de dois que contém o '*' com Line Feed (ou quebra de linha se prefere) e assim ao mostrar o '*' desce para a próxima linha. Podemos agora imprimir quadrados de vários tamanhos, bastando apenas alterar a variável **altura**.

3.3 Programa 3.2 - Pirâmide

Criar uma pirâmide de Asteriscos com base no valor da altura, por exemplo, se essa for 3 a pirâmide deve ser mostrada da seguinte forma:

```
*
***
****
```

Para um valor 4, sairá assim:

```
*
***

***

****
```

O que mais gosto desse desafio é que apresenta um elemento que não estamos vendo, os espaços iniciais, temos aqui duas perguntas que devemos resolver:

- 1. Quantidade de espaços em brancos em cada linha?
- 2. Quantidade de * adicionados a cada 2ª linha?

Pensemos assim, se a altura passada for 5, na primeira linha quantos espaços em branco iniciais temos? Isso mesmo 4, mas essa é a resposta errada, na verdade temos a altura menos 1 (já que estamos na 1ª linha), na segunda linha a resposta não muda, é a altura menos 2 (agora estamos na 2ª linha). Agora vamos focar na segunda pergunta, temos 1 na 1ª linha, e são adicionados mais 2 asteriscos a cada linha.

Figura 3.2: Fluxograma do Programa Pirâmide

Criar um arquivo chamado "piramide.asm"e começamos com a seguinte codificação:

```
%include 'bibliotecaE.inc'
```

```
SECTION .data
estrela DB '*', LF, NULL
espaco DB ''', LF, NULL

SECTION .bss
altura resb OxA; Altura (fixa)
linha resb OxA; linha atual
qtdespacos resb OxA; Qtd de espacos
qtdestrelas resb OxA; Qtd de estrelas
qtdlinhas resb OxA; Qtd linhas ja impressa

SECTION .text
global _start
```

Essa é a parte fácil: Codificar. Trata apenas de uma simples tradução para o nosso fluxograma que já escrevemos. Gostaria muito que as pessoas observassem que NUNCA podemos iniciar a codificação se primeiro não temos as respostas para nosso problema, seria uma simples perda de tempo (ou se prefere tentativa e erro). E falando sério, é por isso que existem tantas piadas a respeito de programas errados ou de programadores fazendo besteiras pois eles preferem encurtar o caminho.

Seguimos agora para o início do marcador _start no qual atribuímos os valores as nossas variáveis:

```
_start:

mov byte[altura], 0x8

mov byte[linha], 0x1

mov byte[qtdestrelas], 0x1

mov byte[qtdlinhas], 0x8
```

No marcador **inicio** é que temos o coração do nosso programa:

```
inicio:
  mov edi, dword[altura]
  sub edi, dword[linha]
  call impEspacos
  mov edi, dword[qtdestrelas]
  call impEstrelas
  sub byte[qtdlinhas], 0x1
  cmp byte[qtdlinhas], 0x0
  je saida
  add byte[qtdestrelas], 0x2
  add byte[linha], 0x1
  jmp inicio
```

Movemos para **EDI** o valor da altura e subtraímos da linha atual (resposta da 1ª pergunta) e mostramos os espaços. Movemos para **EDI** o valor da quantidade de estrelas e mostramos os asteriscos. Reduzimos um na quantidade de linhas e verificamos se chegou a 0 para terminamos, caso contrário, adicionamos mais dois asteriscos na quantidade e mais um a linha atual e saltamos para o início do marcador.

```
impEspacos:
  cmp edi, 0x1
  jl finalImpEspaco
```

```
call impEspaco
sub edi, 0x1
jmp impEspacos

finalImpEspaco:
   ret
```

Para mostrar os espaços basta verificarmos o registrador **EDI** que contém a quantidade que deve ser mostrado, para isso logo no início já o comparamos com um e se for menor chamamos o marcador **finalImpEspaco** que retorna para quem nos chamou (isso é feito pois reparemos que na última linha não existe nenhum espaço). Saltamos para o marcador que vai mostrar um único espaço, reduzimos um na quantidade de **EDI** e retornamos para o início desse marcador.

```
impEstrelas:
  cmp edi, 0x1
  je impEstrelaFinal
  call impEstrela
  sub edi, 0x1
  jmp impEstrelas
```

Mais um marcador de controle, agora para a impressão dos asteriscos, basicamente a mesma coisa do anterior porém com a diferença que ao término devemos imprimir o asterisco que conterá o salto de linha. De resto temos uma repetição padrão do anterior.

```
saida:
  mov eax, SYS_EXIT
  mov ebx, EXIT_SUCESS
  int SYS_CALL
```

E finalmente a saída do programa e encerramento das chamadas. Espera um pouco não faltou mais 3 marcadores? Sim, dois deles vimos no programa anterior:

```
impEstrela:
  mov edx, 1
  mov ecx, estrela
  mov eax, SYS_WRITE
  mov ebx, STDOUT
  int SYS_CALL
  ret

impEstrelaFinal:
  mov edx, 2
  mov ecx, estrela
  mov eax, SYS_WRITE
  mov eax, SYS_WRITE
  mov ebx, STDOUT
  int SYS_CALL
  ret
```

Que mostra o asterisco na mesma linha e o asterisco com o salto de linha, e agora basta apenas repetir o primeiro marcador, mas ao invés de usarmos o asterisco vamos usar o espaço.

```
impEspaco:
  mov edx, 1
  mov ecx, espaco
  mov eax, SYS_WRITE
  mov ebx, STDOUT
  int SYS_CALL
  ret
```

E estamos prontos para mostrarmos uma pirâmide de qualquer tamanho possível, recomendo que tente estender este programa para mostrar um "Losango" (basta inverter a pirâmide).

4. Lidar com Arquivos

Os cabelos brancos são arquivos do passado. (Edgar Alan Poe - Escritor)

4.1 O Segredo

Vou lhe contar um segredo, quando sai do mundo Pascal (com o Delphi) para iniciar no C (com o Java) rodei por muito tempo pois os conceitos simplesmente não se encaixavam, tinha alguns bons anos de programação mas estes não me ajudavam a migrar, foi aí que descobri um "pulo do gato", porquê não começava por algo que já sabia muito bem: manipular arquivos.

Foi exatamente os conceitos da manipulação de arquivos que me fizeram compreender a linguagem e quem sabe isso também possa lhe servir para auxiliá-lo nessa jornada com o Assembly, ou pelo menos acaba sendo bem divertido.

Primeiro devemos conhecer mais alguns valores para o registrador EAX, são eles:

Numérico	Hexadecimal	Utilização
3	0x3	Operação de leitura do arquivo
4	0x4	Operação de escrita no arquivo
5	0x5	Operação de abertura do arquivo
6	0x6	Operação de fechamento do arquivo
8	0x8	Operação de criação do arquivo

E para o registrador **ECX**:

Numérico	Hexadecimal	Utilização
0	0x0	Arquivo aberto para leitura
1	0x1	Arquivo aberto para escrita
2	0x2	Arquivo aberto para leitura e escrita
64	0x40	Caso o arquivo não exista deve ser criado
1024	0x400	Preparado para novas adições de valores

Sendo assim agora a nossa "bibliotecaE.inc" possui a seguinte codificação (atualize esta):

```
; ------
; Biblioteca para os registradores E
; -----
segment .data
                    ; Line Feed
 LF
           equ 0xA
 NULL equ 0xD ; Final da String
RET_EXIT equ 0x0 ; Operacao com Sucesso
 SYS_EXIT
            equ 0x1
                     ; Codigo de chamada para finalizar
 STD_IN
            equ 0x0
                      ; Entrada padrao
 STD_OUT
            equ 0x1
                      ; Saida padrao
 STD ERR
            equ 0x2
                      ; Erro de operacao
 SYS_READ
            equ 0x3
                      ; Operacao de Leitura
 SYS_WRITE equ 0x4
                      ; Operacao de Escrita
 READ_FILE equ 0x3
                     ; ler o arquivo
 WRITE_FILE equ 0x4 ; escrever no arquivo
 OPEN_FILE equ 0x5 ; abrir o arquivo
 CLOSE_FILE equ 0x6
                    ; fechar o arquivo
 CREATE_FILE equ 0x8
                      ; criar o arquivo
 OPEN_READ equ 0x0
                      ; Arquivo para leitura
 OPEN_WRITE equ 0x1
                    ; Arquivo para escrita
 OPEN_RW
                      ; Arquivo para leitura/escrita
          equ 0x2
 OPEN_CREATE equ 0x40 ; Se arquivo nao existe, cria
 OPEN_APPEND equ 0x400 ; Arquivo para adicao
 SYS_CALL
            equ 0x80 ; Envia informacao ao S0
```

Mas e as funções que criamos anteriormente? Essa biblioteca deve ser sempre personalizada, as funções guarde-as para quando se mostrarem necessárias, mas não neste arquivo para não colocar códigos desnecessários ao programa.

Mas acabou em comentar sobre código desnecessário para quê então constantes com o mesmo valor? (por exemplo RET_EXIT, STD_IN e OPEN_READ), o motivo de criarmos essas é apenas para facilitar a leitura do código, deste modo prefiro manter assim para saber com qual operação estamos lidando.

Algo curioso acontece é com o valor de Leitura/Escrita (0x2), por exemplo, nos programas que fizemos para dar entrada no terminal utilizamos o valor 0x0 e para saída o valor 0x1, porém troque-os para 0x2 que

o programa funcionará sem o menor problema¹, porém NÃO devemos utilizá-lo, no caso da saída/entrada padrão ou estamos realizando uma leitura (através do teclado) ou uma saída (no monitor) NUNCA os dois. É uma simples questão de BOA PRÁTICA.

4.2 Programa 4.1 - Ler Arquivo

Devemos pensar em arquivos de modo semelhante que pensamos para o terminal, até o momento fazemos assim: **EAX** indica a operação e **EBX** para onde vai, por exemplo, 0x3 em **EAX** indica uma leitura e 0x0 em **EBX** que é na entrada padrão. Sendo assim, para um arquivo o registrador **EBX** é quem vai ditar para qual local que a informação vai entrar.

Vamos começar com a criação de um arquivo chamado "Musica.txt"com o seguinte conteúdo:

```
Speak:
And disciplinary remains mercifully
Yes and um, I'm with you Derek, this star nonsense
Now which is it?
I am sure of it
Music:
So, so you think you can tell
Heaven from hell?
Blue skies from pain?
Can you tell a green field
From a cold steel rail?
A smile from a veil?
Do you think you can tell?
Did they get you to trade
Your heroes for ghosts?
Hot ashes for trees?
Hot air for a cool breeze?
Cold comfort for change?
Did you exchange
A walk-on part in the war
For a leading role in a cage?
How I wish, how I wish you were here
We're just two lost souls
Swimming in a fish bowl
Year after year
Running over the same old ground
What have we found?
The same old fears
Wish you were here
```

A música "Wish you were here", grande sucesso da banda britânica Pink Floyd, usaremos durante alguns programas. Faremos aqui um programa para ler esse arquivo e mostrá-lo na saída padrão. Nosso programa pode ser estruturado conforme o seguinte fluxo:

¹Inclusive já vi muitos tutoriais colocando esse valor como Entrada ou Saída padrão.

Figura 4.1: Fluxograma do Programa Ler Arquivo

O fluxo está completamente errado existe um laço de repetição para ler o arquivo, é assim que muitos vão pensar. O fluxo está correto e não existirá tal laço. Vamos para o programa que isso ficará mais claro.

Criar um arquivo chamado lerarquivo.asm e vamos começar com a seguinte codificação:

```
%include 'bibliotecaE.inc'

SECTION .data
nom_arq db "Musica.txt"
tam_arq equ 1024

SECTION .bss
fd resb 4
buffer resb 1024
```

Na seção **.data** temos o nome do arquivo e um tamanho em bytes deste, em Assembly precisamos saber o tamanho de tudo o que estamos fazendo, calma que existe solução para isso, esse tamanho deve conter todo o arquivo. Pode ultrapassar sem problemas, por exemplo este arquivo contém exatos 703 bytes (troque para este valor que não apresentará o menor problema).

Na seção **.bss** definimos o **fd** (abreviatura para *file descriptor*) esse é o mais importante de todos pois indica o ponteiro descritor do arquivo, quando abrimos um arquivo devemos guardar seu local de memória para quando formos fazer qualquer operação com este. E temos o **buffer** que indica de quantos em quantos bytes ocorrerá um descarrego de memória.

Vamos compreender essa parte, quando lemos, ou mesmo gravamos, um arquivo esse conteúdo é lido (ou gravado) por partes e não de modo instantâneo, o SO envia a informação para um BUFFER de memória e o descarrega fisicamente na trilha de informação. Sendo assim quanto maior esse BUFFER mais rápido será feito os processos com o arquivo, esse pensamento está correto, porém mais memória será utilizada.

Vamos iniciar a seção do programa propriamente dito:

```
SECTION .text

global _start:

_start:

mov eax, OPEN_FILE

mov ebx, nom_arq

mov ecx, OPEN_READ

int SYS_CALL
```

Começamos com a abertura do arquivo, realizamos para isso o movimento da operação no registrador **EAX**, neste caso a abertura do arquivo, para **EBX** então recebe o nome do arquivo que tentamos abrir, **ECX** o processo que lidamos e enviamos a informação para o SO executar.

A parte mais importante é que **EAX** contém nosso *File Descriptor* então antes de realizar qualquer outro processo precisamos guardá-lo:

```
mov [fd], eax
```

Realizamos a leitura deste:

```
mov eax, READ_FILE
mov ebx, [fd]
mov ecx, buffer
mov edx, tam_arq
int SYS_CALL
```

Indicamos a operação em **EAX**, o *File Descriptor* com o ponteiro do arquivo para **EBX**, o tamanho do BUFFER de leitura (neste caso) em **ECX** e a quantidade de bytes que desejamos obter (por isso não existe aqui um laço de repetição) e enviamos a informação para o SO executar.

Mandamos a informação para saída padrão:

```
mov eax, SYS_WRITE
mov ebx, STD_OUT
mov ecx, buffer
mov edx, tam_arq
int SYS_CALL
```

Movimentos totalmente conhecidos, só que observe o seguinte, BUFFER contém TODO o conteúdo do nosso arquivo, basicamente é isso que estamos fazendo, lendo o arquivo e colocando todo seu conteúdo em BUFFER. Não tente fazer isso com arquivos "gigantes" pois provavelmente acabará com sua memória, esse programa só serve apenas para entendimento de como funciona uma leitura. Mas para frente leremos "parceladamente" um arquivo.

Precisamos fechar o arquivo:

```
mov eax, CLOSE_FILE
mov ebx, [fd]
```

```
int SYS_CALL
```

Um arquivo aberto deve ser fechado antes de finalizarmos o programa, em caso contrário este pode corromper, os movimentos são idênticos a terminar o programa. O processo em **EAX**, o **file descriptor** em **EBX** e enviamos a informação para o SO executar.

E só nos resta encerrar o programa:

```
mov eax, SYS_EXIT
mov ebx, RET_EXIT
int SYS_CALL
```

Compilamos, linkeditamos e executamos conforme visto e teremos toda a letra da belíssima música do *Pink Floyd* em nosso monitor.

4.3 Programa 4.2 - Gravar Arquivo

Estranho como são as coisas nos Sistemas Operacionais quem conhece o MacOS ou Linux se acostuma com alguns valores em Base Octal (Octal? é uma base numérica com 8 símbolos do 0 ao 7) composta por 3 dígitos, sendo que o primeiro corresponde ao dono (criador) do arquivo, o segundo aos usuários de mesmo grupo e o terceiro a usuários externos. E esses dígitos correspondem as seguintes permissões:

- 1 executar
- 2 escrever
- 3 executar e escrever
- 4 ler
- 5 executar e ler
- 6 escrever e ler
- 7 executar, escrever e ler

Essas permissões devem ser definidas para cada arquivo que criamos, em linguagens de alto nível basicamente são esquecidas por um padrão definido, mas aqui são extremamente necessárias.

Dica 2 — Na verdade. Só precisamos decorar os valores 1, 2 e 4. Pois se pensarmos um pouco vemos que as permissões se combinam, por exemplo, o valor 3 significa a permissão 1 + 2 e assim sucessivamente.

Não precisamos nos assustar pois basicamente vamos ver que tudo se trata de uma simples sequencia repetida de movimentos para os 4 registradores padrões: **EAX**, **EBX**, **ECX** e **EDX**. E garanto que tudo será bem mais simples do que se supõe.

Vamos iniciar um programa chamado gravararquivo.asm com a seguinte codificação:

```
%include 'bibliotecaE.inc'

SECTION .data
  msg db "Hello World! Voltamos ao Inicio...", LF
  tamMsg equ $ - msg
```

```
arq db 'Hello', NULL
tamArq equ $ - arq
fd dq O
```

Temos a mensagem (msg) que queremos gravar e seu respectivo tamanho (tamMsg). Em seguida o nome do arquivo (arq) e o tamanho desse nome (tamArq) isso é necessário para criarmos. E por fim o conhecido *file descriptor* (fd) para conter o apontamento do arquivo.

```
SECTION .text

global _start:

_start:

mov eax, CREATE_FILE

mov ebx, arq

mov ecx, 0o664

mov edx, tamArq

int SYS_CALL
```

Primeiro passo é mover o valor 0x8 para EAX que indica um processo de criação (ou abertura se o arquivo existe), em seguida o nome deste para EBX, em ECX colocamos o valor 0o664 os dois primeiros indicam que se trata de um valor na base octal e esses são: 6 (permissão de escrever e ler para o dono), 6 (permissão de escrever e ler para os usuários do mesmo grupo) e 4 (permissão de ler para qualquer outro tipo de usuário), colocamos o tamanho do nome do arquivo em EDX e por fim dizemos ao SO para executar essa ação.

```
mov [fd], eax
mov eax, WRITE_FILE
mov ebx, [fd]
mov ecx, msg
mov edx, tamMsg
int SYS_CALL
```

Para executar a ação de gravar em bem semelhante ao que já vimos na saída padrão com a diferença que em **EBX** deve ir o apontamento para *file descritor*.

```
mov eax, CLOSE_FILE
mov ebx, [fd]
int SYS_CALL
```

Fechamos o arquivo, aqui este comando se torna essencial pois caso contrário com certeza iremos corrompê-lo.

```
mov eax, SYS_EXIT
mov ebx, RET_EXIT
int SYS_CALL
```

E só nos resta avisar ao SO que terminamos o programa. Porém vamos alguns detalhes que ainda devemos compreender. Compilamos, linkeditamos e executamos o programa e teremos um arquivo chamado **Hello** criado e ao abri-lo existe uma linha com o valor de **msg**. Executamos novamente e continua com uma

única linha. Abrimos com um editor qualquer alteramos essa linha completamente e inclusive colocamos mais linhas e ao executarmos novamente o arquivo retorna para a uma única linha original. Mas qual o motivo disso acontecer?

Quando abrimos um arquivo estamos posicionados na linha 0 e coluna 0 deste, sendo assim sempre o estamos iniciando. Mas porquê perde o conteúdo que escrevemos? Pois esse é o objetivo do 0x8 dizer que queremos um arquivo novo em folha, o que é bem diferente do 0x5 que vimos no programa anterior.

Mas como fazemos então para criar ou abrir um arquivo se esse já existe e principalmente colocar mais conteúdo? Isso deixaremos para responder no próximo programa.

4.4 Programa 4.3 - Adicionar no Arquivo

Conseguimos então criar um arquivo e adicionar conteúdo neste, porém toda vez que rodamos o programa todo arquivo é apagado e não conseguimos manter o conteúdo anterior.

Para resolver este problema criamos um novo arquivo chamado "maisUma.asm"e adicionamos o seguinte conteúdo (coloque o arquivo "Hello"criado no programa anterior nesta pasta):

```
%include 'bibliotecaE.inc'

SECTION .data
  msg2   db "Aqui temos mais uma linha", LF
  tamMsg2 equ $ - msg2
  arq   db 'Hello', NULL
  tamArq equ $ - arq
  fd   dq 0;
```

Na nossa seção de constantes temos a mensagem que desejamos adicionar no arquivo: "Aqui temos mais uma linha", o nome do arquivo e nosso já conhecido ponteiro (*File Descriptor*) para o arquivo.

Todo "pulo do gato" esta no próximo código do programa:

```
SECTION .text

global _start:

_start:

mov eax, OPEN_FILE

mov ebx, arq

mov ecx, OPEN_CREATE+OPEN_WRITE+OPEN_APPEND

mov edx, 0o664

int SYS_CALL

mov [fd], eax
```

Movimentamos para **EAX** o código de abertura do arquivo e para **EBX** o nome deste, porém para **ECX** realizamos uma combinação de 3 valores:

- OPEN_CREATE (0x40) Se o arquivo não existe cria.
- **OPEN_WRITE** (0x4) Abrir o arquivo para escrita.

• OPEN APPEND (0x400) - Abrir o arquivo de modo inclusão.

É exatamente essa combinação que permite Criar/Abrir o arquivo em modo para adição de conteúdo, em **EDX** colocamos as permissões do arquivo e enviamos ao SO proceder essas instruções, para **EDX** indicamos as permissões do arquivo conforme já vimos.

```
escreverNoArquivo:
mov eax, WRITE_FILE
mov ebx, [fd]
mov ecx, msg2
mov edx, tamMsg2
int SYS_CALL
```

Se fizermos um comparativo com o programa anterior teremos aqui os mesmos movimentos para gravar a informação no arquivo porém como este foi aberto com o parâmetro de adição toda essa informação será inserida ao final do conteúdo da última linha no arquivo.

```
fecharArquivo:
   mov eax, CLOSE_FILE
   mov ebx, [fd]
   int SYS_CALL

final:
   mov eax, SYS_EXIT
   mov ebx, EXIT_SUCESS
   int SYS_CALL
```

E fazemos os movimentos para fechar o arquivo e encerrar o programa. O mais interessante é que a cada vez que rodamos este programa uma nova linha será adicionada. Então se pararmos para pensar até este ponto já sabemos ler um arquivo, inciar e gravar uma informação em um novo e adicionar mais conteúdo.

A. Considerações Finais

Nenhum computador tem consciência do que faz. Mas, na maior parte do tempo, nós também não. (Marvin Minsky)

A.1 Sobre o Autor

Especialista com forte experiência em Java e Python, Banco de Dados Oracle, PostgreSQL e MS SQL Server. Escolhido como Java Champion desde Dezembro/2006 e Coordenador do DFJUG. Experiência em JBoss e diversos frameworks de mercado e na interpretação das tecnologias para sistemas e aplicativos. Programação de acordo com as especificações, normas, padrões e prazos estabelecidos. Disposição para oferecer apoio e suporte técnico a outros profissionais, autor de 17 livros e diversos artigos em revistas especializadas, palestrante em seminários sobre tecnologia. Atualmente ocupa o cargo de Analista de Sistemas na Bancorbras.

- Perfil no Linkedin: https://www.linkedin.com/in/fernando-anselmo-bb423623/
- Site Pessoal: http://fernandoanselmo.orgfree.com
- Canal no YouTube: https://studio.youtube.com/channel/UC4VS4EmzyOTSbfgMfWcpnxA

Assembly na Prática

ESTE LIVRO PODE E DEVE SER DISTRIBUÍDO LIVREMENTE

Fernando Anselmo

