Floating Point

Math 426

University of Alaska Fairbanks

September 25, 2020

Rounding modes

Compute
$$(1.0000)_2 \times 2^0 + (1.11)_2 \times 2^{-3}$$

Modes:

1. up
$$(\rightarrow \infty)$$
:

- 2. down $(\rightarrow -\infty)$:
- 3. zero $(\rightarrow 0)$:
- 4. nearest (default)

1.00111

Round to nearest

Special rule if the number is exactly halfway between the two nearest representable numbers: result is the unique nearby representable number with a 0 in its least significant digit.

Suppose
$$2^E \le x < 2^{E+1}$$
.

Number line:

So:
$$|x - \text{round}(x)| \le \epsilon 2^E$$
.

(or $\epsilon/22^E$ for round to nearest)

$$\frac{|x - \text{round}(x)|}{|x|}$$
 Relative error

Suppose
$$2^{E} \le x < 2^{E+1}$$
.
 $|x-varid(x)| \le 2^{E} \varepsilon$

$$2^{E} \le |x| \qquad |x - vond(x)| \le 2^{E} \le \frac{2^{E}}{2^{E}} \le \frac{2^{E}}}{2^{E}} \le \frac{2^{E}}$$

$$\frac{|x - \operatorname{round}(x)|}{|x|}$$

Suppose $2^E \le x < 2^{E+1}$.

$$\frac{|x - \operatorname{round}(x)|}{|x|}$$

Suppose
$$2^{E} \le x < 2^{E+1}$$
.
 $1/|x| \le 2^{-E}$

$$1/|x| \le 2^{-E}$$

$$\frac{|x - \operatorname{round}(x)|}{|x|}$$

Suppose $2^{E} \le x < 2^{E+1}$. $1/|x| \le 2^{-E}$

$$1/|x| \le 2^{-E}$$

$$\frac{|x - \operatorname{round}(x)|}{|x|} \le \epsilon 2^{E} 2^{-E} = \epsilon$$

(or $\epsilon/2$ for round to nearest)

IEEE 754 arithmetic

The result of a floating point operation $(+, -, \cdot, /)$ is the correctly rounded value of the exact result.

$$x \oplus y := \text{round}(x + y) = x + y + \text{error}$$

IEEE 754 arithmetic

$$\Theta \otimes O \times O Y = (x \cdot Y)(1+8)$$

The result of a floating point operation $(+, -, \cdot, /)$ is the correctly rounded value of the exact result.

of the exact result.

$$x \oplus y := \text{round}(x + y) = x + y + \text{error}$$

$$x \oplus y = (x+y)(1+s)$$
 for some number s

$$= (x+y) + (x+y)s_1$$

$$= (x+y) + (x+y)s_1$$

$$= s$$

$$= s$$

$$x \oplus y = s$$

$$= s$$

$$x \oplus y = s$$

$$= s$$

$$x \oplus y = s$$

$$= s$$

IEEE 754 arithmetic

The result of a floating point operation $(+, -, \cdot, /)$ is the correctly rounded value of the exact result.

$$x \oplus y := \text{round}(x + y) = x + y + \text{error}$$

Similar operations: \ominus , \otimes , \oslash .

Rounding Isn't Easy

Rounding Isn't Easy

Compute $1.0000_2 - 0.00001010_2$ versus $1.0000_2 - 0.00001000_2$ under round to nearest.

Requires extra bits (2 suffice for most: guard bits). Special cases require more (sticky bit for flag).