Errata for

Fundamentals of Fiber Orientation

http://github.com/charlestucker3/Fundamentals-of-Fiber-Orientation-errata

Charles L. Tucker III
Department of Mechanical Science and Engineering
University of Illinois at Urbana-Champaign
1206 W. Green St.
Urbana, IL 61801

August 24, 2023

If you find additional errors, please send them to ctucker@illinois.edu so that they can be included here.

Chapt. 4. Flow Orientation of Single Fibers

On page 92, the last paragraph, the second line, $\xi > 1$ should be $\xi > 0$. The corrected sentence should read:

If the particle is fiber-shaped (a > b) then $\xi > 0$ and this term pulls the fiber toward the direction of maximum stretching rate.

Thanks to Florian Mallmann for this correction.

Chapt. 8. Mechanical Properties and Orientation

The example calculation in Section 8.4.5 for the stiffness of a layered structure states that the long glass fiber/PP composite has 40% by weight of fibers. However, the calculations in Fig. 8.6(c) and Table 8.4 actually used 30% by weight. The correct figure should look like this:

Fig. 8.6(c) Stiffness, 40 wt.% long glass fiber/PP

The correct table should read:

Table 8.4 Predicted tensile and flexural moduli for the two injection molded samples in Fig. 8.6.

	E_{11} (GPa)	E_{22} (GPa)
30 wt.% short glass fiber/PC		
Tensile	8.04	4.02
Flexural	8.51	3.75
40 wt.% long glass fiber/PP		
Tensile	5.59	6.38
Flexural	6.58	5.42

References

On page 315, reference [KKCO20] has no page number. The page number should be 69, and the corrected reference should read:

[KKCO20] S. K. Kugler, A. Kech, C. Cruz, and T. Osswald. Fiber orientation predictions—A review of existing models. *J. Compos. Sci.*, 4(2):69, 2020.