

This first part of the book introduces the fundamentals of the most important topics in TCP/IP networking. Chapter 1 provides a broad look at TCP/IP, introducing the common terms, big concepts, and major protocols for TCP/IP. Chapter 2 then examines local-area networks (LANs), which are networks that connect devices that are located near to each other, for instance, in the same building. Chapter 3 then shows how to connect those LANs across long distances with wide-area networks (WANs) with a focus on how routers connect LANs and WANs to forward data between any two devices in the network.

# Part I

# **Introduction to Networking**

Chapter 1: Introduction to TCP/IP Networking

Chapter 2: Fundamentals of Ethernet LANs

Chapter 3: Fundamentals of WANs and IP Routing

**Part I Review** 

# Introduction to TCP/IP Networking

This chapter covers the following exam topics:

- 1.0 Network Fundamentals
  - 1.3 Compare physical interface and cabling types
    - 1.3.a Single-mode fiber, multimode fiber, copper
    - 1.3.b Connections (Ethernet shared media and point-to-point)

Welcome to the first chapter in your study for CCNA! This chapter begins Part I, which focuses on the basics of networking.

Networks work correctly because the various devices and software follow the rules. Those rules come in the form of standards and protocols, which are agreements of a particular part of how a network should work. However, the sheer number of standards and protocols available can make it difficult for the average network engineer to think about and work with networks—so the world of networking has used several networking models over time. Networking models define a structure and different categories (layers) of standards and protocols. As new standards and protocols emerge over time, networkers can think of those new details in the context of a working model.

You can think of a networking model as you think of a set of architectural plans for building a house. A lot of different people work on building your house, such as framers, electricians, bricklayers, painters, and so on. The blueprint helps ensure that all the different pieces of the house work together as a whole. Similarly, the people who make networking products, and the people who use those products to build their own computer networks, follow a particular networking model. That networking model defines rules about how each part of the network should work, as well as how the parts should work together so that the entire network functions correctly.

Today, TCP/IP rules as the most pervasive networking model in use. You can find support for TCP/IP on practically every computer operating system (OS) in existence today, from mobile phones to mainframe computers. Every network built using Cisco products today supports TCP/IP. And not surprisingly, the CCNA exam focuses heavily on TCP/IP. This chapter uses TCP/IP for one of its main purposes: to present various concepts about networking using the context of the different roles and functions in the TCP/IP model.

Note that most chapters cover topics about some specific CCNA exam topic. However, this chapter does not. Instead, it describes background information about the TCP/IP model and ideas you need to know about so you can better understand the detail included in CCNA.

# "Do I Know This Already?" Quiz

Take the quiz (either here or use the PTP software) if you want to use the score to help you decide how much time to spend on this chapter. The letter answers are listed at the bottom of the page following the quiz. Appendix C, found both at the end of the book as well as on the companion website, includes both the answers and explanations. You can also find both answers and explanations in the PTP testing software.

Table 1-1 "Do I Know This Already?" Foundation Topics Section-to-Question Mapping

| Foundation Topics Section      | Questions |
|--------------------------------|-----------|
| Perspectives on Networking     | None      |
| TCP/IP Networking Model        | 1–4       |
| Data Encapsulation Terminology | 5-6       |

- **1.** Which of the following protocols are examples of TCP/IP transport layer protocols? (Choose two answers.)
  - **a.** Ethernet
  - **b.** HTTP
  - c. IP
  - **d.** UDP
  - e. SMTP
  - f. TCP
- **2.** Which of the following protocols are examples of TCP/IP data-link layer protocols? (Choose two answers.)
  - **a.** Ethernet
  - **b.** HTTP
  - c. IP
  - **d.** UDP
  - e. SMTP
  - **f.** TCP
  - **g.** 802.11
- **3.** The process of HTTP asking TCP to send some data and making sure that it is received correctly is an example of what?
  - a. Same-layer interaction
  - **b.** Adjacent-layer interaction
  - c. TCP/IP model
  - **d.** All of these answers are correct.
- **4.** The process of TCP on one computer marking a TCP segment as segment 1 and the receiving computer then acknowledging the receipt of TCP segment 1 is an example of what?
  - **a.** Data encapsulation
  - **b.** Same-layer interaction

- **c.** Adjacent-layer interaction
- d. TCP/IP model
- All of these answers are correct.
- **5.** The process of a web server adding a TCP header to the contents of a web page, followed by adding an IP header and then adding a data-link header and trailer, is an example of what?
  - Data encapsulation
  - **b.** Same-layer interaction
  - c. TCP/IP model
  - All of these answers are correct.
- **6.** Which of the following terms is used specifically to identify the entity created when encapsulating data inside data-link layer headers and trailers?
  - **a.** Data
  - **b.** Chunk
  - c. Segment
  - d. Frame
  - e. Packet

# **Foundation Topics**

# **Perspectives on Networking**

So, you are new to networking. If you're like many people, your perspective about networks might be that of a user of the network, as opposed to the network engineer who builds networks. For some, your view of networking might be based on how you use the Internet, from home, using a high-speed Internet connection like fiber Ethernet or cable TV, as shown in Figure 1-1.



Figure 1-1 End-User Perspective on High-Speed Internet Connections

The top part of the figure shows a typical high-speed cable Internet user. The PC connects to a cable modem using an Ethernet cable. The cable modem then connects to a cable TV (CATV) outlet in the wall using a round coaxial cable—the same kind of cable used to connect your TV to the CATV wall outlet. Because cable Internet services provide service continuously, the user can just sit down at the PC and start sending email, browsing websites, making Internet phone calls, and using other tools and applications.

The lower part of the figure uses Ethernet between the home and service provider. First, the tablet computer uses wireless technology that goes by the name *wireless local-area* 

1

*network* (*wireless LAN*). In this example, the router uses a different technology, Ethernet, using a fiber-optic cable, to communicate with the Internet.

Both home-based networks and networks built for use by a company make use of similar networking technologies. The Information Technology (IT) world refers to a network created by one corporation, or enterprise, for the purpose of allowing its employees to communicate, as an *enterprise network*. The smaller networks at home, when used for business purposes, often go by the name small office/home office (SOHO) networks.

Users of enterprise networks have some idea about the enterprise network at their company or school. People realize that they use a network for many tasks. PC users might realize that their PC connects through an Ethernet cable to a matching wall outlet, as shown at the top of Figure 1-2. Those same users might use wireless LANs with their laptop when going to a meeting in the conference room as well. Figure 1-2 shows these two end-user perspectives on an enterprise network.



Figure 1-2 Example Representation of an Enterprise Network

**NOTE** In networking diagrams, a cloud represents a part of a network whose details are not important to the purpose of the diagram. In this case, Figure 1-2 ignores the details of how to create an enterprise network.

Some users might not even have a concept of the network at all. Instead, these users just enjoy the functions of the network—the ability to post messages to social media sites, make phone calls, search for information on the Internet, listen to music, and download countless apps to their phones—without caring about how it works or how their favorite device connects to the network.

Regardless of how much you already know about how networks work, this book and the related certification help you learn how networks do their job. That job is simply this: moving data from one device to another. The rest of this chapter—and the rest of this first part of the book—reveals the basics of how to build enterprise networks so that they can deliver data between two devices.

# **TCP/IP Networking Model**

A **networking model**, sometimes also called either a *networking architecture* or *networking blueprint*, refers to a comprehensive set of documents. Individually, each document describes one small function required for a network; collectively, these documents define

everything that should happen for a computer network to work. Some documents define a *protocol*, which is a set of logical rules that devices must follow to communicate. Other documents define some physical requirements for networking. For example, a document could define the voltage and current levels used on a particular cable when transmitting data.

You can think of a networking model as you think of an architectural blueprint for building a house. Sure, you can build a house without the blueprint. However, the blueprint can ensure that the house has the right foundation and structure so that it will not fall down, and it has the correct hidden spaces to accommodate the plumbing, electrical, gas, and so on. Also, the many different people who build the house using the blueprint—such as framers, electricians, bricklayers, painters, and so on—know that if they follow the blueprint, their part of the work should not cause problems for the other workers.

Similarly, you could build your own network—write your own software, build your own networking cards, and so on—to create a network. However, it is much easier to simply buy and use products that already conform to some well-known networking model or blueprint. Because the networking product vendors build their products with some networking model in mind, their products should work well together.

#### **History Leading to TCP/IP**

Today, the world of computer networking uses one networking model: TCP/IP. However, the world has not always been so simple. Once upon a time, networking protocols didn't exist, including TCP/IP. Vendors created the first networking protocols; these protocols supported only that vendor's computers.

For example, IBM, the computer company with the largest market share in many markets back in the 1970s and 1980s, published its Systems Network Architecture (SNA) networking model in 1974. Other vendors also created their own proprietary networking models. As a result, if your company bought computers from three vendors, network engineers often had to create three different networks based on the networking models created by each company, and then somehow connect those networks, making the combined networks much more complex. The left side of Figure 1-3 shows the general idea of what a company's enterprise network might have looked like back in the 1980s, before TCP/IP became common in enterprise internetworks.

Although vendor-defined proprietary networking models often worked well, having an open, vendor-neutral networking model would aid competition and reduce complexity. The International Organization for Standardization (ISO) took on the task to create such a model, starting as early as the late 1970s, beginning work on what would become known as the Open Systems Interconnection (OSI) networking model. ISO had a noble goal for the OSI model: to standardize data networking protocols to allow communication among all computers across the entire planet. ISO worked toward this ambitious and noble goal, with participants from most of the technologically developed nations on Earth participating in the process.

Answers to the "Do I Know This Already?" quiz:

1 D and F 2 A and G 3 B 4 B 5 A 6 D



Figure 1-3 Historical Progression: Proprietary Models to the Open TCP/IP Model

A second, less-formal effort to create an open, vendor-neutral, public networking model sprouted forth from a U.S. Department of Defense (DoD) contract. Researchers at various universities volunteered to help further develop the protocols surrounding the original DoD work. These efforts resulted in a competing open networking model called TCP/IP.

During the 1990s, companies began adding OSI, TCP/IP, or both to their enterprise networks. However, by the end of the 1990s, TCP/IP had become the common choice, and OSI fell away. The center part of Figure 1-3 shows the general idea behind enterprise networks in that decade—still with networks built upon multiple networking models but including TCP/IP.

Here in the twenty-first century, TCP/IP dominates. Some proprietary networking models still exist, but they have mostly been discarded in favor of TCP/IP. The OSI model, whose development suffered in part due to a standard-first-code-second approach, never succeeded in the marketplace. And TCP/IP, the networking model originally created almost entirely by a bunch of volunteers, with a code-first-standardize-second approach, has become the most prolific networking model ever, as shown on the right side of Figure 1-3.

In this chapter, you will read about some of the basics of TCP/IP. Although you will learn some interesting facts about TCP/IP, the true goal of this chapter is to help you understand what a networking model or networking architecture really is and how it works.

Also in this chapter, you will learn about some of the jargon used with OSI. Will any of you ever work on a computer that is using the full OSI protocols instead of TCP/IP? Probably not. However, you will often use terms relating to OSI.

# Overview of the TCP/IP Networking Model

The TCP/IP model both defines and references a large collection of protocols that allow computers to communicate. To define a protocol, TCP/IP uses documents called *Requests For Comments (RFC)*. (You can find these RFCs using any online search engine.) Each layer broadly defines a set of functions that helps create a working communication system, and each RFC gives the specifics about an option to implement one or more of the functions at some layer of the model.

The TCP/IP model also avoids repeating work already done by some other standards body or vendor consortium by simply referring to standards or protocols created by those groups.

For example, the Institute of Electrical and Electronics Engineers (IEEE) defines Ethernet LANs; the TCP/IP model does not define Ethernet in RFCs, but refers to IEEE Ethernet as an option.

To help people understand a networking model, each model breaks the functions into a small number of categories called *layers*. Each layer includes protocols and standards that relate to that category of functions, as shown in Figure 1-4.

# TCP/IP Model Application Transport **Network** Data Link **Physical**

Figure 1-4 The TCP/IP Networking Model

**NOTE** The network layer, shown as the middle layer of the TCP/IP model in Figure 1-4, may also be called the *Internet* layer in reference to its primary protocol, the Internet Protocol (IP).

On a single computer, different components implement different protocols and standards from different layers. Imagine buying a new computer and connecting it to either your home network or network at work using a cable or wireless. You would expect that you can open a web browser and connect to a website without much more effort. To make all that work, the network hardware in your computer—an integrated network interface card (NIC) implements some physical layer standards to support physical communications. That NIC also supports the related data-link standards. The OS on the computer implements protocols from the network and transport layers. Finally, that web browser implements some application layer protocols (for instance, HTTP or HTTPS.)

More generally, the TCP/IP model in Figure 1-4 shows the more common terms and layers used when people talk about TCP/IP today. The physical layer focuses on how to transmit bits over each link. The data-link layer focuses on the rules that control the use of the physical link, analogous to how we need standards for roads, cars, and traffic signals. The network layer focuses on delivering data over the entire path from the original sending computer to the final destination computer, analogous to how a national postal service arranges for unique postal addresses and a system to deliver mail to all those addresses. The top two layers focus more on the applications that need to send and receive data—for instance, how to identify data, how to ask for the data to be sent, and how to recover the data if lost in transmission.

Many of you will have already heard of several TCP/IP protocols, like the examples listed in Table 1-2. Most of the protocols and standards in this table will be explained in more detail as you work through this book, Following the table, this section takes a closer look at the layers of the TCP/IP model.

| TCP/IP Architecture Layer | Example Protocols        |
|---------------------------|--------------------------|
| Application               | HTTPS, POP3, SMTP        |
| Transport                 | TCP, UDP                 |
| Network                   | IP, ICMP                 |
| Data Link & Physical      | Ethernet, 802.11 (Wi-Fi) |

Table 1-2 TCP/IP Architectural Model and Example Protocols

#### **TCP/IP Application Layer**

TCP/IP application layer protocols provide services to the application software running on a computer. The application layer does not define the application itself, but it defines services that applications need. For example, application protocol HTTP defines how web browsers can pull the contents of a web page from a web server. In short, the application layer provides an interface between software running on a computer and the network itself.

Arguably, the most popular TCP/IP application today is the web browser. Many major software vendors either have already changed or are changing their application software to support access from a web browser. And thankfully, using a web browser is easy: You start a web browser on your computer and select a website by typing the name of the website, and the web page appears.

#### **HTTP Overview**

What really happens to allow that web page to appear on your web browser?

Imagine that Bob opens his browser. His browser has been configured to automatically ask for web server Larry's default web page, or *home page*. The general logic looks like Figure 1-5.



**Figure 1-5** Basic Application Logic to Get a Web Page

So, what really happened? Bob's initial request actually asks Larry to send his home page back to Bob. Larry's web server software has been configured to know that the default web page is contained in a file called home.htm. Bob receives the file from Larry and displays the contents of the file in Bob's web browser window.

#### HTTP Protocol Mechanisms

Taking a closer look, this example shows how applications on each endpoint computer—specifically, the web browser application and web server application—use a TCP/IP application layer protocol. To make the request for a web page and return the contents of the web page, the applications use the Hypertext Transfer Protocol (HTTP).

HTTP did not exist until Tim Berners-Lee created the first web browser and web server in the early 1990s. Berners-Lee gave HTTP functionality to ask for the contents of web pages, specifically by giving the web browser the ability to request files from the server and giving

the server a way to return the content of those files. The overall logic matches what was shown in Figure 1-5; Figure 1-6 shows the same idea, but with details specific to HTTP.



Figure 1-6 HTTP GET Request, HTTP Reply, and One Data-Only Message

**NOTE** The full version of most web addresses—also called Uniform Resource Locators (URL) or Universal Resource Identifiers (URI)—begins with the letters *http*, which means that HTTP is used to transfer the web pages.

To get the web page from Larry, at Step 1, Bob sends a message with an HTTP header. Generally, protocols use headers as a place to put information used by that protocol. This HTTP header includes the request to "get" a file. The request typically contains the name of the file (home.htm, in this case), or if no filename is mentioned, the web server assumes that Bob wants the default web page.

Step 2 in Figure 1-6 shows the response from web server Larry. The message begins with an HTTP header, with a return code (200), which means something as simple as "OK" returned in the header. HTTP also defines other return codes so that the server can tell the browser whether the request worked. (Here is another example: If you ever looked for a web page that was not found, and then received an HTTP 404 "not found" error, you received an HTTP return code of 404.) The second message also includes the first part of the requested file.

Step 3 in Figure 1-6 shows another message from web server Larry to web browser Bob, but this time without an HTTP header. HTTP transfers the data by sending multiple messages, each with a part of the file. Rather than wasting space by sending repeated HTTP headers that list the same information, these additional messages simply omit the header.

Chapter 5 in CCNA 200-301 Official Cert Guide, Volume 2, revisits both HTTP going into more depth about HTTP, secure HTTP, and the various versions of HTTP.

# **TCP/IP Transport Layer**

Although many TCP/IP application layer protocols exist, the TCP/IP transport layer includes a smaller number of protocols. The two most commonly used transport layer protocols are the Transmission Control Protocol (TCP) and the User Datagram Protocol (UDP).

Transport layer protocols provide services to the application layer protocols that reside one layer higher in the TCP/IP model. How does a transport layer protocol provide a service to a higher-layer protocol? This section introduces that general concept by focusing on a single service provided by TCP: error recovery. The CCNA 200-301 Official Cert Guide, Volume 2, Second Edition includes a chapter, "Introduction to TCP/IP Transport and Applications," which examines the transport layer in more detail.

#### TCP Error Recovery Basics

To appreciate what the transport layer protocols do, you must think about the layer above the transport layer, the application layer. Why? Well, each layer provides a service to the layer above it, like the error-recovery service provided to application layer protocols by TCP.

For example, in Figure 1-5, Bob and Larry used HTTP to transfer the home page from web server Larry to Bob's web browser. But what would have happened if Bob's HTTP GET request had been lost in transit through the TCP/IP network? Or, what would have happened if Larry's response, which included the contents of the home page, had been lost? Well, as you might expect, in either case, the page would not have shown up in Bob's browser.

TCP/IP needs a mechanism to guarantee delivery of data across a network. Because many application layer protocols probably want a way to guarantee delivery of data across a network, the creators of TCP included an error-recovery feature. To recover from errors, TCP uses the concept of acknowledgments. Figure 1-7 outlines the basic idea behind how TCP notices lost data and asks the sender to try again.



**Figure 1-7** *TCP Error-Recovery Services as Provided to HTTP* 

Figure 1-7 shows web server Larry sending a web page to web browser Bob, using three separate messages. Note that this figure shows the same HTTP headers as Figure 1-6, but it also shows a TCP header. The TCP header shows a sequence number (SEQ) with each message. In this example, the network has a problem, and the network fails to deliver the TCP message (called a **segment**) with sequence number 2. When Bob receives messages with sequence numbers 1 and 3, but does not receive a message with sequence number 2, Bob realizes that message 2 was lost. That realization by Bob's TCP logic causes Bob to send a TCP segment back to Larry, asking Larry to send message 2 again.

#### Same-Layer and Adjacent-Layer Interactions

Figure 1-7 also demonstrates a function called **adjacent-layer interaction**, which refers to the concepts of how adjacent layers in a networking model, on the same computer, work together. In this example, the higher-layer protocol (HTTP) wants error recovery, so it uses the next lower-layer protocol (TCP) to perform the service of error recovery; the lower layer provides a service to the layer above it.

Figure 1-7 also shows an example of a similar function called **same-layer interaction**. When a particular layer on one computer wants to communicate with the same layer on another computer, the two computers use headers to hold the information that they want to communicate. For example, in Figure 1-7, Larry set the sequence numbers to 1, 2, and 3 so that Bob could notice when some of the data did not arrive. Larry's TCP process created

that TCP header with the sequence number; Bob's TCP process received and reacted to the TCP segments.

Table 1-3 summarizes the key points about how adjacent layers work together on a single computer and how one layer on one computer works with the same networking layer on another computer.

Table 1-3 Summary: Same-Layer and Adjacent-Layer Interactions

| Concept                                         | Description                                                                                                                                                                                                 |
|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Same-layer interaction on different computers   | The two computers use a protocol to communicate with the same layer on another computer. The protocol defines a header that communicates what each computer wants to do.                                    |
| Adjacent-layer interaction on the same computer | On a single computer, one lower layer provides a service to the layer just above. The software or hardware that implements the higher layer requests that the next lower layer perform the needed function. |

#### TCP/IP Network Layer

The application layer includes many protocols. The transport layer includes fewer protocols, most notably, TCP and UDP. The TCP/IP network layer includes a small number of protocols, but only one major protocol: the Internet Protocol (IP). In fact, the name TCP/IP is simply the names of the two most common protocols (TCP and IP) separated by a /.

IP provides several features, most importantly, addressing and routing. This section begins by comparing IP's addressing and routing with another commonly known system that uses addressing and routing: the postal service. Following that, this section introduces IP addressing and routing. (More details follow in Chapter 3, "Fundamentals of WANs and IP Routing.")

#### Internet Protocol and the Postal Service

Imagine that you just wrote two letters: one to a friend on the other side of the country and one to a friend on the other side of town. You addressed the envelopes and put on the stamps, so both are ready to give to the postal service. Is there much difference in how you treat each letter? Not really. Typically, you would just put them in the same mailbox and expect the postal service to deliver both letters.

The postal service, however, must think about each letter separately, and then make a decision of where to send each letter so that it is delivered. For the letter sent across town, the people in the local post office probably just need to put the letter on another truck.

For the letter that needs to go across the country, the postal service sends the letter to another post office, then another, and so on, until the letter gets delivered across the country. At each post office, the postal service must process the letter and choose where to send it next.

To make it all work, the postal service has regular routes for small trucks, large trucks, planes, boats, and so on, to move letters between postal service sites. The service must be able to receive and forward the letters, and it must make good decisions about where to send each letter next, as shown in Figure 1-8.



Figure 1-8 Postal Service Forwarding (Routing) Letters

Still thinking about the postal service, consider the difference between the person sending the letter and the work that the postal service does. The person sending the letters expects that the postal service will deliver the letter most of the time. However, the person sending the letter does not need to know the details of exactly what path the letters take. In contrast, the postal service does not create the letter, but it accepts the letter from the customer. Then, the postal service must know the details about addresses and postal codes that group addresses into larger groups, and it must have the ability to deliver the letters.

The TCP/IP application and transport layers act like the person sending letters through the postal service. These upper layers work the same way regardless of whether the endpoint host computers are on the same LAN or are separated by the entire Internet. To send a message, these upper layers ask the layer below them, the network layer, to deliver the message.

The lower layers of the TCP/IP model act more like the postal service to deliver those messages to the correct destinations. To do so, these lower layers must understand the underlying physical network because they must choose how to best deliver the data from one host to another.

So, what does this all matter to networking? Well, the network layer of the TCP/IP networking model, primarily defined by the Internet Protocol (IP), works much like the postal service. IP defines that each host computer should have a different IP address, just as the postal service defines addressing that allows unique addresses for each house, apartment, and business. Similarly, IP defines the process of routing so that devices called routers can work like the post office, forwarding **packets** of data so that they are delivered to the correct destinations. Just as the postal service created the necessary infrastructure to deliver letters—post offices, sorting machines, trucks, planes, and personnel—the network layer defines the details of how a network infrastructure should be created so that the network can deliver data to all computers in the network.

#### Internet Protocol Addressing Basics

IP defines addresses for several important reasons. First, each device that uses TCP/IP—each TCP/IP *bost*—needs a unique address so that it can be identified in the network. IP also defines how to group addresses together, just like the postal system groups addresses based on postal codes (like ZIP codes in the United States).

To understand the basics, examine Figure 1-9, which shows the familiar web server Larry and web browser Bob; but now, instead of ignoring the network between these two computers, part of the network infrastructure is included.



Figure 1-9 Simple TCP/IP Network: Three Routers with IP Addresses Grouped

First, note that Figure 1-9 shows some sample IP addresses. Each IP address has four numbers, separated by periods. In this case, Larry uses IP address 1.1.1.1, and Bob uses 2.2.2.2. This style of number is called a dotted-decimal notation (DDN).

In addition, Figure 1-9 introduces icons that represent IP routers. Routers are networking devices that connect the parts of the TCP/IP network together for the purpose of routing (forwarding) IP packets to the correct destination. Routers do the equivalent of the work done by each post office site: They receive IP packets on various physical interfaces, make decisions based on the IP address included with the packet, and then physically forward the packet out some other network interface.

#### **IP Routing Basics**

The TCP/IP network layer, using the IP protocol, provides a service of forwarding IP packets from one device to another. Any device with an IP address can connect to the TCP/IP network and send packets. This section shows a basic IP routing example for perspective.

**NOTE** The term *IP bost* refers to any device, regardless of size or power, that has an IP address and connects to any TCP/IP network.

Figure 1-10 repeats the familiar case in which web server Larry wants to send part of a web page to Bob, but now with details related to IP. On the lower left, note that server Larry has the familiar application data, HTTP header, and TCP header ready to send. In addition, the message now contains an IP header. The IP header includes a source IP address of Larry's IP address (1.1.1.1) and a destination IP address of Bob's IP address (2.2.2.2).





Figure 1-10 Basic Routing Example

Step 1, on the left of Figure 1-10, begins with Larry being ready to send an IP packet. Larry's IP process chooses to send the packet to some router—a nearby router on the same LAN—with the expectation that the router will know how to forward the packet. (This logic is much like you or me sending all our letters by putting them in a nearby mailbox.) Larry doesn't need to know anything more about the topology or the other routers.

At Step 2, Router R1 receives the IP packet, and R1's IP process makes a decision. R1 looks at the destination address (2.2.2.2), compares that address to its known IP routes, and chooses to forward the packet to Router R2. This process of forwarding the IP packet is called *IP routing* (or simply *routing*).

At Step 3, Router R2 repeats the same kind of logic used by Router R1. R2's IP process will compare the packet's destination IP address (2.2.2.2) to R2's known IP routes and make a choice to forward the packet to the right, on to Bob.

You will learn IP to more depth than any other protocol while preparing for CCNA. More than half the chapters in this book discuss some feature that relates to addressing, IP routing, and how routers perform routing.

# TCP/IP Data-Link and Physical Layers

The TCP/IP model's data-link and physical layers define the protocols and hardware required to deliver data across some physical network. The two work together quite closely; in fact, some standards define both the data-link and physical layer functions. The physical layer defines the cabling and energy (for example, electrical signals) that flow over the cables. Some rules and conventions exist when sending data over the cable, however; those rules exist in the data-link layer of the TCP/IP model.

Focusing on the data-link layer for a moment, just like every layer in any networking model, the TCP/IP data-link layer provides services to the layer above it in the model (the network layer). When a host's or router's IP process chooses to send an IP packet to another router or host, that host or router then uses link-layer details to send that packet to the next host/router.

Because each layer provides a service to the layer above it, take a moment to think about the IP logic related to Figure 1-10. In that example, host Larry's IP logic chooses to send the IP packet to a nearby router (R1). However, while Figure 1-10 shows a simple line between Larry

and router R1, that drawing means that some Ethernet LAN sits between the two. Figure 1-11 shows four steps of what occurs at the link layer to allow Larry to send the IP packet to R1.





Figure 1-11 Larry Using Ethernet to Forward an IP Packet to Router R1

**NOTE** Figure 1-11 depicts the Ethernet as a series of lines. Networking diagrams often use this convention when drawing Ethernet LANs, in cases where the actual LAN cabling and LAN devices are not important to some discussion, as is the case here. The LAN would have cables and devices, like LAN switches, which are not shown in this figure.

Figure 1-11 shows four steps. The first two occur on Larry, and the last two occur on Router R1, as follows:

- **Step 1.** Larry encapsulates the IP packet between an Ethernet header and Ethernet trailer, creating an Ethernet **frame**.
- **Step 2.** Larry physically transmits the bits of this Ethernet frame, using electricity flowing over the Ethernet cabling.
- **Step 3.** Router R1 physically receives the electrical signal over a cable and re-creates the same bits by interpreting the meaning of the electrical signals.
- **Step 4.** Router R1 **de-encapsulates** the IP packet from the Ethernet frame by removing and discarding the Ethernet header and trailer.

By the end of this process, Larry and R1 have worked together to deliver the packet from Larry to Router R1.

**NOTE** Protocols define both headers and trailers for the same general reason, but headers exist at the beginning of the message and trailers exist at the end.

The data-link and physical layers include a large number of protocols and standards. For example, the link layer includes all the variations of Ethernet protocols and wireless LAN protocols discussed throughout this book.

In short, the TCP/IP physical and data-link layers include two distinct functions, respectively: functions related to the physical transmission of the data, plus the protocols and rules that control the use of the physical media.

# **Data Encapsulation Terminology**

As you can see from the explanations of how HTTP, TCP, IP, and Ethernet do their jobs, when sending data, each layer adds its own header (and for data-link protocols, also a trailer) to the data supplied by the higher layer. The term **encapsulation** refers to the process of putting headers (and sometimes trailers) around some data.

Many of the examples in this chapter show the encapsulation process. For example, web server Larry encapsulated the contents of the home page inside an HTTP header in Figure 1-6. The TCP layer encapsulated the HTTP headers and data inside a TCP header in Figure 1-7. IP encapsulated the TCP headers and the data inside an IP header in Figure 1-10. Finally, the Ethernet link layer encapsulated the IP packets inside both a header and a trailer in Figure 1-11.

The process by which a TCP/IP host sends data can be viewed as a five-step process. The first four steps relate to the encapsulation performed by the four TCP/IP layers, and the last step is the actual physical transmission of the data by the host. In fact, if you use the five-layer TCP/IP model, one step corresponds to the role of each layer. The steps are summarized in the following list:

- **Step 1.** Create and encapsulate the application data with any required application layer headers. For example, the HTTP OK message can be returned in an HTTP header, followed by part of the contents of a web page.
- **Step 2.** Encapsulate the data supplied by the application layer inside a transport layer header. For end-user applications, a TCP or UDP header is typically used.
- Step 3. Encapsulate the data supplied by the transport layer inside a network layer (IP) header. IP defines the IP addresses that uniquely identify each computer.
- **Step 4.** Encapsulate the data supplied by the network layer inside a data-link layer header and trailer. This layer uses both a header and a trailer.
- **Step 5.** Transmit the bits. The physical layer encodes a signal onto the medium to transmit the frame.

The numbers in Figure 1-12 correspond to the five steps in this list, graphically showing the same concepts. Note that because the application layer often does not need to add a header, the figure does not show a specific application layer header, but the application layer will also at times add a header as well.

# Names of TCP/IP Messages

One reason this chapter takes the time to show the encapsulation steps in detail has to do with terminology. When talking and writing about networking, people use *segment*, *packet*, and *frame* to refer to the messages shown in Figure 1-13 and the related list. Each term has a specific meaning, referring to the headers (and possibly trailers) defined by a particular layer and the data encapsulated following that header. Each term, however, refers to a different layer: segment for the transport layer, packet for the network layer, and frame for the link layer. Figure 1-13 shows each layer along with the associated term.



Figure 1-12 Five Steps of Data Encapsulation: TCP/IP



Figure 1-13 Perspectives on Encapsulation and "Data"\*

Figure 1-13 also shows the encapsulated data as simply "data." When you are focusing on the work done by a particular layer, the encapsulated data typically is unimportant. For example, an IP packet can indeed have a TCP header after the IP header, an HTTP header after the TCP header, and data for a web page after the HTTP header. However, when discussing IP, you probably just care about the IP header, so everything after the IP header is just called data. So, when you are drawing IP packets, everything after the IP header is typically shown simply as data.

**NOTE** You will also see the generic term *protocol data unit*, or *PDU*, used to refer to any message defined by a protocol. A TCP segment, IP packet, and Ethernet frame are all PDUs, for instance.

# **OSI Networking Model and Terminology**

At one point in the history of the OSI model, many people thought that OSI would win the battle of the networking models discussed earlier. If that had occurred, instead of running TCP/IP on every computer in the world, those computers would be running with OSI.

However, OSI did not win. In fact, OSI no longer exists as a networking model that could be used instead of TCP/IP, although some of the original protocols referenced by the OSI model still exist.

So, why is OSI even in this book? Terminology. During those years in which many people thought the OSI model would become commonplace in the world of networking (mostly in

<sup>\*</sup> The letters *LH* and *LT* stand for link header and link trailer, respectively, and refer to the data-link layer header and trailer.

the late 1980s and early 1990s), many vendors and protocol documents started using terminology from the OSI model. That terminology remains today. So, while you will never need to work with a computer that uses OSI, to understand modern networking terminology, you need to understand something about OSI.

#### Comparing OSI and TCP/IP Layer Names and Numbers

The OSI model has many similarities to the TCP/IP model from a basic conceptual perspective. It has layers, and each layer defines a set of typical networking functions. As with TCP/IP, the OSI layers each refer to multiple protocols and standards that implement the functions specified by each layer. Just as for TCP/IP, the OSI committees did not create new protocols or standards in some cases, instead referencing other protocols that were already defined. For example, the IEEE defines Ethernet standards, so the OSI committees did not waste time specifying a new type of Ethernet; it simply referred to the IEEE Ethernet standards.

Today, the OSI model can be used as a standard of comparison to other networking models. Figure 1-14 compares the seven-layer OSI model with the commonly used five-layer TCP/IP model and the old original four-layer TCP/IP model.





**Figure 1-14** OSI Model Compared to the Two TCP/IP Models

**NOTE** The CCNA exam topics no longer mention the OSI or TCP/IP models; however, you should know both and the related terminology for everyday network engineering discussions. While today you will see the five-layer model used throughout the industry, and in this book, the figure includes the original RFC 1122 four-layer model for perspective.

Note that the TCP/IP model in use today, in the middle of the figure, uses the exact same layer names as OSI at the lower layers. The functions generally match as well, so for the purpose of discussing networking, and reading networking documentation, think of the bottom four layers as equivalent, in name, in number, and in meaning.

Even though the world uses TCP/IP today rather than OSI, we tend to use the numbering from the OSI layer. For instance, when referring to an application layer protocol in a TCP/IP network, the world still refers to the protocol as a "Layer 7 protocol." Also, while TCP/IP includes more functions at its application layer, OSI breaks those into session, presentation, and application layers. Most of the time, no one cares much about the distinction, so you will see references like "Layer 5–7 protocol," again using OSI numbering.

For the purposes of this book, know the mapping between the five-layer TCP/IP model and the seven-layer OSI model shown in Figure 1-14, and know that layer number references to Layer 7 really do match the application layer of TCP/IP as well.

# **Chapter Review**

The "Your Study Plan" element, just before Chapter 1, discusses how you should study and practice the content and skills for each chapter before moving on to the next chapter. That element introduces the tools used here at the end of each chapter. If you haven't already done so, take a few minutes to read that section. Then come back here and do the useful work of reviewing the chapter to help lock into memory what you just read.

Review this chapter's material using either the tools in the book or the interactive tools for the same material found on the book's companion website. Table 1-4 outlines the key review elements and where you can find them. To better track your study progress, record when you completed these activities in the second column.

Table 1-4 Chapter Review Tracking

| Review Element         | Review Date(s) | Resource Used    |
|------------------------|----------------|------------------|
| Review key topics      |                | Book, website    |
| Review key terms       |                | Book, website    |
| Answer DIKTA questions |                | Book, PTP Online |

# **Review All the Key Topics**



Table 1-5 Key Topics for Chapter 1

| Key Topic<br>Elements | Description                                                                                              | Page<br>Number |
|-----------------------|----------------------------------------------------------------------------------------------------------|----------------|
| Figure 1-10           | Shows the general concept of IP routing                                                                  | 29             |
| Figure 1-11           | Depicts the data-link services provided to IP for the purpose of delivering IP packets from host to host | 30             |
| Figure 1-12           | Identifies the five steps to encapsulate data on the sending host                                        | 32             |
| Figure 1-13           | Shows the meaning of the terms segment, packet, and frame                                                | 32             |
| Figure 1-14           | Compares the OSI and TCP/IP networking models                                                            | 33             |

# **Key Terms You Should Know**

adjacent-layer interaction, de-encapsulation, encapsulation, frame, networking model, packet, same-layer interaction, segment



# **Fundamentals of Ethernet LANs**

#### This chapter covers the following exam topics:

- 1.0 Network Fundamentals
  - 1.1 Explain the role and function of network components
    - 1.1.b Layer 2 and Layer 3 switches
  - 1.2 Describe characteristics of network topology architectures
    - 1.2.e Small office/home office (SOHO)
  - 1.3 Compare physical interface and cabling types
    - 1.3.a Single-mode fiber, multimode fiber, copper
    - 1.3.b Connections (Ethernet shared media and point-to-point)

Most enterprise computer networks can be separated into two general types of technology: local-area networks (LANs) and wide-area networks (WANs). LANs typically connect nearby devices: devices in the same room, in the same building, or in a campus of buildings. In contrast, WANs connect devices that are typically relatively far apart. Together, LANs and WANs create a complete enterprise computer network, working together to do the job of a computer network: delivering data from one device to another.

Many types of LANs have existed over the years, but today's networks use two general types of LANs: Ethernet LANs and wireless LANs. Ethernet LANs happen to use cables for the links between nodes, and because many types of cables use copper wires, Ethernet LANs are often called **wired LANs**. Ethernet LANs also make use of fiber-optic cabling, which includes a fiberglass core that devices use to send data using light. In comparison to Ethernet, **wireless LANs** do not use wires or cables, instead using radio waves for the links between nodes; Part I of the *CCNA 200-301 Official Cert Guide*, *Volume 2*, Second Edition, discusses wireless LANs at length.

This chapter introduces Ethernet LANs, with more detailed coverage in Parts II and III of this book.

# "Do I Know This Already?" Quiz

Take the quiz (either here or use the PTP software) if you want to use the score to help you decide how much time to spend on this chapter. The letter answers are listed at the bottom of the page following the quiz. Appendix C, found both at the end of the book as well as on the companion website, includes both the answers and explanations. You can also find both answers and explanations in the PTP testing software.

Table 2-1 "Do I Know This Already?" Foundation Topics Section-to-Question Mapping

| Foundation Topics Section                  | Questions |
|--------------------------------------------|-----------|
| An Overview of LANs                        | 1–2       |
| Building Physical Ethernet LANs with UTP   | 3–4       |
| Building Physical Ethernet LANs with Fiber | 5         |
| Sending Data in Ethernet Networks          | 6–9       |

- **1.** Some end-user devices connect to a LAN using a cable while others use wireless. Which answer best characterizes which devices use Ethernet to connect to the LAN?
  - **a.** Only the end-user devices that use cables are using Ethernet.
  - **b.** Only the end-user devices that use wireless are using Ethernet.
  - **c.** Both the end-user devices using cables and those using wireless are using Ethernet.
  - **d.** Neither the end-user devices using cables nor those using wireless are using Ethernet.
- **2.** Which of the following Ethernet standards defines Gigabit Ethernet over UTP cabling?
  - a. 10GBASE-T
  - **b.** 100BASE-T
  - c. 1000BASE-T
  - **d.** None of the other answers are correct.
- **3.** Which of the following is true about Ethernet crossover cables for Fast Ethernet?
  - **a.** Pins 1 and 2 are reversed on the other end of the cable.
  - **b.** Pins 1 and 2 on one end of the cable connect to pins 3 and 6 on the other end of the cable.
  - **c.** Pins 1 and 2 on one end of the cable connect to pins 3 and 4 on the other end of the cable.
  - **d.** The cable can be up to 1000 meters long to cross over between buildings.
  - **e.** None of the other answers are correct.
- **4.** Each answer lists two types of devices used in a 100BASE-T network. If these devices were connected with UTP Ethernet cables, which pairs of devices would require a straight-through cable? (Choose three answers.)
  - **a.** PC and router
  - **b.** PC and switch
  - **c.** Hub and switch
  - d. Router and hub
  - **e.** Wireless access point (Ethernet port) and switch

- **5.** Which of the following are advantages of using multimode fiber for an Ethernet link instead of UTP or single-mode fiber? (Choose two answers.)
  - **a.** To achieve the longest distance possible for that single link.
  - **b.** To extend the link beyond 100 meters while keeping initial costs as low as possible.
  - **c.** To make use of an existing stock of laser-based SFP/SFP+ modules.
  - **d.** To make use of an existing stock of LED-based SFP/SFP+ modules.
- **6.** Which of the following is true about the CSMA/CD algorithm?
  - **a.** The algorithm never allows collisions to occur.
  - b. Collisions can happen, but the algorithm defines how the computers should notice a collision and how to recover.
  - **c.** The algorithm works with only two devices on the same Ethernet.
  - **d.** None of the other answers are correct.
- **7.** Which of the following is true about the Ethernet FCS field?
  - **a.** Ethernet uses FCS for error recovery.
  - **b.** It is 2 bytes long.
  - **c.** It resides in the Ethernet trailer, not the Ethernet header.
  - **d.** It is used for encryption.
- **8.** Which of the following are true about the format of Ethernet addresses? (Choose three answers.)
  - **a.** Each manufacturer puts a unique OUI code into the first 2 bytes of the address.
  - **b.** Each manufacturer puts a unique OUI code into the first 3 bytes of the address.
  - **c.** Each manufacturer puts a unique OUI code into the first half of the address.
  - **d.** The part of the address that holds the manufacturer's code is called the MAC.
  - **e.** The part of the address that holds the manufacturer's code is called the OUI.
  - **f.** The part of the address that holds the manufacturer's code has no specific name.
- **9.** Which of the following terms describe Ethernet addresses that can be used to send one frame that is delivered to multiple devices on the LAN? (Choose two answers.)
  - **a.** Burned-in address
  - **b.** Unicast address
  - c. Broadcast address
  - Multicast address

# **Foundation Topics**

# **An Overview of LANs**

The term **Ethernet** refers to a family of LAN standards that together define the physical and data-link layers of the world's most popular wired LAN technology. The standards, defined by the Institute of Electrical and Electronics Engineers (**IEEE**), define the cabling, the connectors on the ends of the cables, the protocol rules, and everything else required to create an Ethernet LAN.

#### Typical SOHO LANs

To begin, first think about a small office/home office (SOHO) LAN today, specifically a LAN that uses only Ethernet LAN technology. First, the LAN needs a device called an Ethernet LAN switch, which provides many physical ports into which cables can be connected. An Ethernet uses Ethernet cables, which is a general reference to any cable that conforms to any of several Ethernet standards. The LAN uses Ethernet cables to connect different Ethernet devices or nodes to one of the switch's Ethernet ports.

Figure 2-1 shows a drawing of a SOHO Ethernet LAN. The figure shows a single LAN switch, five cables, and five other Ethernet nodes: three PCs, a printer, and one network device called a router. (The router connects the LAN to the WAN, in this case to the Internet.)



Typical Small Ethernet-Only SOHO LAN

Although Figure 2-1 shows the switch and router as separate devices, many SOHO Ethernet LANs today combine the router and switch into a single device. Vendors sell consumer-grade integrated networking devices that work as a router and Ethernet switch, as well as doing other functions. These devices typically have "router" on the packaging, but many models also have four-port or eight-port Ethernet LAN switch ports built into the device.

Typical SOHO LANs today also support wireless LAN connections. You can build a single SOHO LAN that includes both Ethernet LAN technology as well as wireless LAN technology, which is also defined by the IEEE. Wireless LANs, defined by the IEEE using standards that begin with 802.11, use radio waves to send the bits from one node to the next.

Most wireless LANs rely on yet another networking device: a wireless LAN access point (AP). The AP acts somewhat like an Ethernet switch, in that all the wireless LAN nodes communicate with the wireless AP. If the network uses an AP that is a separate physical device, the AP then needs a single Ethernet link to connect the AP to the Ethernet LAN, as shown in Figure 2-2.

Note that Figure 2-2 shows the router, Ethernet switch, and wireless LAN access point as three separate devices so that you can better understand the different roles. However, most SOHO networks today would use a single device, often labeled as a "wireless router," that does all these functions.



Figure 2-2 Typical Small Wired and Wireless SOHO LAN

#### **Typical Enterprise LANs**

Enterprise networks have similar needs compared to a SOHO network, but on a much larger scale. For example, enterprise Ethernet LANs begin with LAN switches installed in a wiring closet behind a locked door on each floor of a building. The electricians install the Ethernet cabling from that wiring closet to cubicles and conference rooms where devices might need to connect to the LAN. At the same time, most enterprises also support wireless LANs in the same space, to allow people to roam around and still work and to support a growing number of devices that do not have an Ethernet LAN interface.

Figure 2-3 shows a conceptual view of a typical enterprise LAN in a three-story building. Each floor has an Ethernet LAN switch and a wireless LAN AP. To allow communication between floors, each per-floor switch connects to one centralized distribution switch. For example, PC3 can send data to PC2, but it would first flow through switch SW3 to the first floor to the distribution switch (SWD) and then back up through switch SW2 on the second floor.



Figure 2-3 Single-Building Enterprise Wired and Wireless LAN

Answers to the "Do I Know This Already?" quiz:

The figure also shows the typical way to connect a LAN to a WAN using a router. LAN switches and wireless access points work to create the LAN itself. Routers connect to both the LAN and the WAN. To connect to the LAN, the router simply uses an Ethernet LAN interface and an Ethernet cable, as shown on the lower right of Figure 2-3.

The rest of this chapter focuses on Ethernet in particular.

#### The Variety of Ethernet Physical Layer Standards

The term Ethernet refers to an entire family of standards. Some standards define the specifics of how to send data over a particular type of cabling, and at a particular speed. Other standards define protocols, or rules, that the Ethernet nodes must follow to be a part of an Ethernet LAN. All these Ethernet standards come from the IEEE and include the number 802.3 as the beginning part of the standard name.

Ethernet supports a large variety of options for physical Ethernet links given its long history over the last 40 or so years. Today, Ethernet includes many standards for different kinds of optical and copper cabling, and for speeds from 10 megabits per second (Mbps) up to 400 gigabits per second (Gbps). The standards also differ as far as the types and length of the cables.

The most fundamental cabling choice has to do with the materials used inside the cable for the physical transmission of bits: either copper wires or glass fibers. Devices using unshielded twisted-pair (UTP) cabling transmit data over electrical circuits via the copper wires inside the cable. Fiber-optic cabling, the more expensive alternative, allows Ethernet nodes to send light over glass fibers in the center of the cable. Although more expensive, optical cables typically allow longer cabling distances between nodes.

To be ready to choose the products to purchase for a new Ethernet LAN, a network engineer must know the names and features of the different Ethernet standards supported in Ethernet products. The IEEE defines Ethernet physical layer standards using a couple of naming conventions. The formal name begins with 802.3 followed by some suffix letters. The IEEE also uses more meaningful shortcut names that identify the speed, as well as a clue about whether the cabling is UTP (with a suffix that includes *T*) or fiber (with a suffix that includes *X*). Table 2-2 lists a few Ethernet physical layer standards. First, the table lists enough names so that you get a sense of the IEEE naming conventions.



Table 2-2 Examples of Types of Ethernet

| Speed     | Common Name      | Informal IEEE<br>Standard Name | Formal IEEE<br>Standard<br>Name | Cable Type,<br>Maximum<br>Length |
|-----------|------------------|--------------------------------|---------------------------------|----------------------------------|
| 10 Mbps   | Ethernet         | 10BASE-T                       | 802.3                           | Copper, 100 m                    |
| 100 Mbps  | Fast Ethernet    | 100BASE-T                      | 802.3u                          | Copper, 100 m                    |
| 1000 Mbps | Gigabit Ethernet | 1000BASE-LX                    | 802.3z                          | Fiber, 5000 m                    |
| 1000 Mbps | Gigabit Ethernet | 1000BASE-T                     | 802.3ab                         | Copper, 100 m                    |
| 10 Gbps   | 10 Gig Ethernet  | 10GBASE-T                      | 802.3an                         | Copper, 100 m                    |

**NOTE** Fiber-optic cabling contains long thin strands of fiberglass. The attached Ethernet nodes send light over the glass fiber in the cable, encoding the bits as changes in the light.

**NOTE** You might expect that a standard that began at the IEEE over 40 years ago would be stable and unchanging, but the opposite is true. The IEEE, along with active industry partners, continue to develop new Ethernet standards with longer distances, different cabling options, and faster speeds. Check out the Ethernet Alliance web page (www.EthernetAlliance.org) and look for the roadmap for some great graphics and tables about the latest happenings with Ethernet.

#### Consistent Behavior over All Links Using the Ethernet Data-Link Layer

Although Ethernet includes many physical layer standards, Ethernet acts like a single LAN technology because it uses the same data-link layer standard over all types of Ethernet physical links. That standard defines a common Ethernet header and trailer. (As a reminder, the header and trailer are bytes of overhead data that Ethernet uses to do its job of sending data over a LAN.) No matter whether the data flows over a UTP cable or any kind of fiber cable, and no matter the speed, the data-link header and trailer use the same format.

While the physical layer standards focus on sending bits over a cable, the Ethernet data-link protocols focus on sending an **Ethernet frame** from source to destination Ethernet node. From a data-link perspective, nodes build and forward frames. As first defined in Chapter 1, "Introduction to TCP/IP Networking," the term *frame* specifically refers to the header and trailer of a data-link protocol, plus the data encapsulated inside that header and trailer. The various Ethernet nodes simply forward the frame, over all the required links, to deliver the frame to the correct destination.

Figure 2-4 shows an example of the process. In this case, PC1 sends an Ethernet frame to PC3. The frame travels over a UTP link to Ethernet switch SW1, then over fiber links to Ethernet switches SW2 and SW3, and finally over another UTP link to PC3. Note that the bits actually travel at four different speeds in this example: 10 Mbps, 1 Gbps, 10 Gbps, and 100 Mbps, respectively.



Figure 2-4 Ethernet LAN Forwards a Data-Link Frame over Many Types of Links

So, what is an Ethernet LAN? It is a combination of user devices, LAN switches, and different kinds of cabling. Each link can use different types of cables, at different speeds. However, they all work together to deliver Ethernet frames from the one device on the LAN to some other device.

The rest of this chapter takes these concepts a little deeper. The next section examines how to build a physical Ethernet network using UTP cabling, followed by a similar look at using

fiber cabling to build Ethernet LANs. The chapter ends with some discussion of the rules for forwarding frames through an Ethernet LAN.

# **Building Physical Ethernet LANs with UTP**

The next section of this chapter focuses on the individual physical links between any two Ethernet nodes, specifically those that use unshielded twisted-pair (UTP) cabling. Before the Ethernet network as a whole can send Ethernet frames between user devices, each node must be ready and able to send data over an individual physical link.

This section focuses on the three most commonly used Ethernet standards: 10BASE-T (Ethernet), 100BASE-T (Fast Ethernet, or FE), and 1000BASE-T (Gigabit Ethernet, or GE). Specifically, this section looks at the details of sending data in both directions over a UTP cable. It then examines the specific wiring of the UTP cables used for 10-Mbps, 100-Mbps, and 1000-Mbps Ethernet.

#### Transmitting Data Using Twisted Pairs

While it is true that Ethernet sends data over UTP cables, the physical means to send the data uses electricity that flows over the wires inside the UTP cable. To better understand how Ethernet sends data using electricity, break the idea down into two parts: how to create an electrical circuit and then how to make that electrical signal communicate 1s and 0s.

First, to create one electrical circuit, Ethernet defines how to use the two wires inside a single twisted pair of wires, as shown in Figure 2-5. The figure does not show a UTP cable between two nodes, but instead shows two individual wires that are inside the UTP cable. An electrical circuit requires a complete loop, so the two nodes, using circuitry on their Ethernet ports, connect the wires in one pair to complete a loop, allowing electricity to flow.



Figure 2-5 Creating One Electrical Circuit over One Pair to Send in One Direction

To send data, the two devices follow some rules called an *encoding scheme*. The idea works a lot like when two people talk using the same language: The speaker says some words in a particular language, and the listener, because she speaks the same language, can understand the spoken words. With an encoding scheme, the transmitting node changes the electrical signal over time, while the other node, the receiver, using the same rules, interprets those changes as either 0s or 1s. (For example, 10BASE-T uses an encoding scheme that encodes a binary 0 as a transition from higher voltage to lower voltage during the middle of a 1/10,000,000th-of-a-second interval.)

Note that in an actual UTP cable, the wires will be twisted together, instead of being parallel, as shown in Figure 2-5. The twisting helps solve some important physical transmission

issues. When electrical current passes over any wire, it creates **electromagnetic interference (EMI)** that interferes with the electrical signals in nearby wires, including the wires in the same cable. (EMI between wire pairs in the same cable is called *crosstalk*.) Twisting the wire pairs together helps cancel out most of the EMI, so most networking physical links that use copper wires use twisted pairs.

#### **Breaking Down a UTP Ethernet Link**

The term **Ethernet link** refers to any physical cable between two Ethernet nodes. To learn about how a UTP Ethernet link works, it helps to break down the physical link into those basic pieces, as shown in Figure 2-6: the cable itself, the connectors on the ends of the cable, and the matching ports on the devices into which the connectors will be inserted.



Figure 2-6 Basic Components of an Ethernet Link

First, think about the UTP cable itself. The cable holds some copper wires, grouped as twisted pairs. The 10BASE-T and 100BASE-T standards require two pairs of wires, while the 1000BASE-T standard requires four pairs. Each wire has a color-coded plastic coating, with the wires in a pair having a color scheme. For example, for the blue wire pair, one wire's coating is all blue, while the other wire's coating is blue-and-white striped.

Many Ethernet UTP cables use an RJ-45 connector on both ends. The **RJ-45** connector has eight physical locations into which the eight wires in the cable can be inserted, called *pin positions*, or simply *pins*. These pins create a place where the ends of the copper wires can touch the electronics inside the nodes at the end of the physical link so that electricity can flow.

**NOTE** If available, find a nearby Ethernet UTP cable and examine the connectors closely. Look for the pin positions and the colors of the wires in the connector.

To complete the physical link, the nodes each need an RJ-45 **Ethernet port** that matches the RJ-45 connectors on the cable so that the connectors on the ends of the cable can connect to each node. PCs often include this RJ-45 Ethernet port as part of a **network interface card (NIC)**, which can be an expansion card on the PC or can be built into the system itself. Switches typically have many RJ-45 ports because switches give user devices a place to connect to the Ethernet LAN. Figure 2-7 shows photos of the cables, connectors, and ports.



**Figure 2-7** *RJ-45 Connectors and Ports* 

The figure shows a connector on the left and ports on the right. The left shows the eight pin positions in the end of the RJ-45 connector. The upper right shows an Ethernet NIC that is not yet installed in a computer. The lower-right part of the figure shows the side of a Cisco switch, with multiple RJ-45 ports, allowing multiple devices to easily connect to the Ethernet network.

Finally, while RJ-45 connectors with UTP cabling can be common, Cisco LAN switches often support other types of connectors as well. When you buy one of the many models of Cisco switches, you need to think about the mix and numbers of each type of physical ports you want on the switch.

To give its customers flexibility as to the type of Ethernet links, even after the customer has bought the switch, Cisco switches include some physical ports whose port hardware (the **transceiver**) can be changed later, after you purchase the switch.

For example, Figure 2-8 shows a photo of a Cisco switch with one of the swappable transceivers. In this case, the figure shows an enhanced small form-factor pluggable plus (SFP+) transceiver, which runs at 10 Gbps, just outside two SFP+ slots on a Cisco 3560CX switch. The SFP+ itself is the silver-colored part below the switch, with a black cable connected to it.



**Figure 2-8** 10-Gbps SFP+ with Cable Sitting Just Outside a Catalyst 3560CX Switch

Gigabit Ethernet Interface Converter (GBIC): The original form factor for a removable transceiver for Gigabit interfaces; larger than SFPs.

**Small Form-Factor Pluggable (SFP):** The replacement for GBICs, used on Gigabit interfaces, with a smaller size, taking less space on the side of the networking card or switch.

Small Form-Factor Pluggable Plus (SFP+): Same size as the SFP, but used on 10-Gbps interfaces. (The Plus refers to the increase in speed compared to SFPs.)

### UTP Cabling Pinouts for 10BASE-T and 100BASE-T

So far in this section, you have learned about the equivalent of how to drive a truck on a 1000-acre ranch: You could drive the truck all over the ranch, any place you wanted to go, and the police would not mind. However, as soon as you get on the public roads, the police want you to behave and follow the rules. Similarly, so far this chapter has discussed the general principles of how to send data, but it has not yet detailed some important rules for Ethernet cabling: the rules of the road so that all the devices send data using the right wires inside the cable.

This next topic discusses some of those rules, specifically for the 10-Mbps 10BASE-T and the 100-Mbps 100BASE-T. Both use UTP cabling in similar ways (including the use of only two wire pairs). A short comparison of the wiring for 1000BASE-T (Gigabit Ethernet), which uses four pairs, follows.

#### Straight-Through Cable Pinout

10BASE-T and 100BASE-T use two pairs of wires in a UTP cable, one for each direction, as shown in Figure 2-9. The figure shows four wires, all of which sit inside a single UTP cable that connects a PC and a LAN switch. In this example, the PC on the left transmits using the top pair, and the switch on the right transmits using the bottom pair.



**Figure 2-9** Using One Pair for Each Transmission Direction with 10- and 100-Mbps Ethernet

For correct transmission over the link, the wires in the UTP cable must be connected to the correct pin positions in the RJ-45 connectors. For example, in Figure 2-9, the transmitter on the PC on the left must know the pin positions of the two wires it should use to transmit. Those two wires must be connected to the correct pins in the RJ-45 connector on the switch so that the switch's receiver logic can use the correct wires.

To understand the wiring of the cable—which wires need to be in which pin positions on both ends of the cable—you need to first understand how the NICs and switches work. As a rule, Ethernet NIC transmitters use the pair connected to pins 1 and 2; the NIC receivers use a pair of wires at pin positions 3 and 6. LAN switches, knowing those facts about what Ethernet NICs do, do the opposite: Their receivers use the wire pair at pins 1 and 2, and their transmitters use the wire pair at pins 3 and 6. The switch effectively reverses the transmit and receive logic of the endpoint device.

To make the preceding logic work, the UTP cable must use a **straight-through cable** pinout convention. The term pinout refers to the wiring of which color wire is placed in each of the eight numbered pin positions in the RI-45 connector. An Ethernet straight-through cable connects the wire at pin 1 on one end of the cable to pin 1 at the other end of the cable; the wire at pin 2 needs to connect to pin 2 on the other end of the cable; pin 3 on one end connects to pin 3 on the other, and so on. Figure 2-10 shows the concept of straight-through pinout with two pairs—one pair at pins 1,2 and another at pins 3,6, as used by 10BASE-T and 100BASE-T.



Figure 2-10 10BASE-T and 100BASE-T Straight-Through Cable Pinout

They effectively reverse or cross over the transmit and receive functions, so that for links between a switch and an endpoint device, the cable can use the straight-through pinout shown in Figure 2-9.

A straight-through cable works correctly when the nodes use opposite pairs for transmitting data, as seen in Figure 2-9. However, when connecting two devices that transmit on the same pins, you then need another type of cabling pinout called a **crossover cable** pinout. The crossover cable pinout crosses the pair at the transmit pins on each device to the receive pins on the opposite device.

While that previous sentence is true, this concept is much clearer with a figure such as Figure 2-11. The figure shows what happens on a link between two switches. The two switches both transmit on the pair at pins 3 and 6, and they both receive on the pair at pins 1 and 2. So, the cable must connect a pair at pins 3 and 6 on each side to pins 1 and 2 on the other side, connecting to the other node's receiver logic.



Figure 2-11 Crossover Ethernet Cable Pinouts

#### Choosing the Right Cable Pinouts

For the exam, you should be well prepared to choose which type of cable (straight-through or crossover) is needed in each part of the network. The key is to know whether a device acts like a PC NIC, transmitting at pins 1 and 2, or like a switch, transmitting at pins 3 and 6. Then, just apply the following logic:

Crossover cable: If the endpoints transmit on the same pin pair

Straight-through cable: If the endpoints transmit on different pin pairs

Table 2-3 lists the devices and the pin pairs they use, assuming that they use 10BASE-T and 100BASE-T.



Table 2-3 10BASE-T and 100BASE-T Pin Pairs Used

| Transmits on Pins 1,2                      | Transmits on Pins 3,6 |
|--------------------------------------------|-----------------------|
| PC NICs                                    | Hubs                  |
| Routers                                    | Switches              |
| Wireless access point (Ethernet interface) | _                     |

For example, Figure 2-12 shows a campus LAN in a single building. In this case, several straight-through cables are used to connect PCs to switches. In addition, the cables connecting the switches require *crossover cables*.



Figure 2-12 Typical Uses for Straight-Through and Crossover Ethernet Cables

#### Automatic Rewiring with Auto-MDIX

Key Topic

Using the wrong cabling pinout with a UTP cable happens to be one of the more common implementation mistakes. Back in 1998, with the introduction of Gigabit Ethernet, the IEEE added a new feature to Ethernet that defines how any device can use electrical pulses to sense if the cable has the wrong cable pinout. For instance, if the link needs a crossover cable, but the installer connected a straight-through cable, this feature can sense the incorrect pinout, and then redirect the electrical signals to the correct pairs to compensate so that the link works. The Ethernet standard calls this feature *automatic medium-dependent interface crossover* (auto-MDIX).

Auto-MDIX allows sites to use straight-through pinouts on all cables. For instance, the entire cable plant could use a straight-through pinout. On the links that need a crossover pinout, the auto-MDIX on the switch port will sense the use of the straight-through pinout and then internally swap the pairs used by the transceiver to make the link work. (Additionally, most installations use four-pair UTP cables that support Gigabit Ethernet so that all links support 10-, 100-, or 1000-Mbps Ethernet.)

# **UTP Cabling Pinouts for 1000BASE-T**

1000BASE-T (Gigabit Ethernet) differs from 10BASE-T and 100BASE-T as far as the cabling and pinouts. First, 1000BASE-T requires four wire pairs. Second, it uses more advanced electronics that allow both ends to transmit and receive simultaneously on each wire pair. However, the wiring pinouts for 1000BASE-T work almost identically to the earlier standards, adding details for the additional two pairs.

The straight-through cable for 1000BASE-T uses the four wire pairs to create four circuits, but the pins need to match. It uses the same pinouts for two pairs as do the 10BASE-T and 100BASE-T standards, and it adds a pair at pins 4 and 5 and another pair at pins 7 and 8, as shown in Figure 2-13.

Just as with 10BASE-T and 100BASE-T, 1000BASE-T (Gigabit Ethernet) uses straight-through cable pinout for some links but crossover cables in other cases. The Gigabit Ethernet crossover cable crosses pairs A and B in the figure (the pairs at pins 1,2 and 3,6) and also pairs C and D (the pair at pins 4,5 with the pair at pins 7,8). You need a crossover cable pinout in the same cases listed earlier in Table 2-3—for instance, between two switches.



Figure 2-13 Four-Pair Straight-Through Cable to 1000BASE-T

## **Building Physical Ethernet LANs with Fiber**

The capability of many UTP-based Ethernet standards to use a cable length up to 100 meters means that the majority of Ethernet cabling in an enterprise uses UTP cables. The distance from an Ethernet switch to every endpoint on the floor of a building will likely be less than 100m. In some cases, however, an engineer might prefer to use fiber cabling for some links in an Ethernet LAN, first to reach greater distances, but for other reasons as well. This next section examines a few of the tradeoffs after discussing the basics of how to transmit data over fiber cabling.

## **Fiber Cabling Transmission Concepts**

*Fiber-optic cabling* uses glass as the medium through which light passes, varying that light over time to encode 0s and 1s. It might seem strange at first to use glass given that most of us think of glass in windows. Window glass is hard, unbending, and if you hit or bend it enough, the glass will probably shatter—all bad characteristics for a cabling material.

Instead, fiber-optic cables use fiberglass, which allows a manufacturer to spin a long thin string (fiber) of flexible glass. A **fiber-optic cable** holds the fiber in the middle of the cable, allowing the light to pass through the glass—which is a very important attribute for the purposes of sending data.

Although sending data through a glass fiber works well, the glass fiber by itself needs some help. The glass could break, so the glass fiber needs some protection and strengthening. Figure 2-14 shows a cutout with the components of a fiber cable for perspective.

The three outer layers of the cable protect the interior of the cable and make the cables easier to install and manage, while the inner **cladding** and **core** work together to create the environment to allow transmission of light over the cable. A light source, called the *optical transmitter*, shines a light into the core. Light can pass through the core; however, light reflects off the cladding back into the core. Figure 2-15 shows an example with a light-emitting diode (LED) transmitter. You can see how the cladding reflects the light back into the core as it travels through the core.



Figure 2-14 Components of a Fiber-Optic Cable



Transmission on Multimode Fiber with Internal Reflection Figure 2-15

The figure shows the normal operation of a **multimode fiber**, characterized by the fact that the cable allows for multiple angles (modes) of light waves entering the core.

In contrast, **single-mode fiber** uses a smaller-diameter core, around one-fifth the diameter of common multimode cables (see Figure 2-16). To transmit light into a much smaller core, a laser-based transmitter sends light at a single angle (hence the name *single-mode*).



Figure 2-16 Transmission on Single-Mode Fiber with Laser Transmitter

Both multimode and single-mode cabling have important roles in Ethernet and meet different needs. Multimode improves the maximum distances over UTP, and it uses less expensive transmitters as compared with single-mode. Standards do vary; for instance, the standards for 10 Gigabit Ethernet over Fiber allow for distances up to 400m, which would often allow for connection of devices in different buildings in the same office park. Single-mode allows distances into the tens of kilometers, but with slightly more expensive SFP/SFP+ hardware.

To transmit between two devices, you need two cables, one for each direction, as shown in Figure 2-17. The concept works much like having two electrical circuits with the original UTP Ethernet standards. Note that the transmit port on one device connects to a cable that connects to a receive port on the other device, and vice versa with the other cable.



**Figure 2-17** Two Fiber Cables with Tx Connected to Rx on Each Cable

### **Using Fiber with Ethernet**

To use fiber with Ethernet switches, you need to use a switch with either built-in ports that support a particular optical Ethernet standard, or a switch with modular ports that allow you to change the Ethernet standard used on the port. Refer back to Figure 2-8, which shows a photo of a switch with two SFP+ ports, into which you could insert any of the supported SFP+ modules. Those SFP+ ports support a variety of 10-Gbps standards like those listed in Table 2-4.

| Table 2-4 | A Sampling of | IEEE 802.3 | 10-Gbps Fiber | Standards |
|-----------|---------------|------------|---------------|-----------|
|-----------|---------------|------------|---------------|-----------|

| Standard    | Cable Type | Max Distance* |
|-------------|------------|---------------|
| 10GBASE-S   | MM         | 400m          |
| 10GBASE-LX4 | MM         | 300m          |
| 10GBASE-LR  | SM         | 10km          |
| 10GBASE-E   | SM         | 30km          |

<sup>\*</sup> The maximum distances are based on the IEEE standards with no repeaters.

For instance, to build an Ethernet LAN in an office park, you might need to use some multimode and single-mode fiber links. In fact, many office parks might already have fiber cabling installed for the expected future use by the tenants in the buildings. If each building was within a few hundred meters of at least one other building, you could use multimode fiber between the buildings and connect switches to create your LAN.

**NOTE** Outside of the need to study for CCNA, if you need to look more deeply at fiber Ethernet and SFP/SFP+, check out tmgmatrix.cisco.com as a place to search for and learn about compatible SFP/SFP+ hardware from Cisco.

Although distance might be the first criterion to consider when thinking about whether to use UTP or fiber cabling, a few other tradeoffs exist as well. UTP wins again on cost, because the cost goes up as you move from UTP, to multimode, and then to single-mode, due to the extra cost for the transmitters like the SFP and SFP+ modules. UTP has some negatives, however. First, UTP might work poorly in some electrically noisy environments such as factories, because UTP can be affected by electromagnetic interference (EMI). Also, UTP cables emit a faint signal outside the cable, so highly secure networks may choose to use fiber, which does not create similar emissions, to make the network more secure. Table 2-5 summarizes these tradeoffs.



Table 2-5 Comparisons Between UTP, MM, and SM Ethernet Cabling

| Criteria                                      | UTP  | Multimode | Single-Mode |
|-----------------------------------------------|------|-----------|-------------|
| Relative Cost of Cabling                      | Low  | Medium    | Medium      |
| Relative Cost of a Switch Port                | Low  | Medium    | High        |
| Approximate Max Distance                      | 100m | 500m      | 40km        |
| Relative Susceptibility to Interference       | Some | None      | None        |
| Relative Risk of Copying from Cable Emissions | Some | None      | None        |

# **Sending Data in Ethernet Networks**

Although physical layer standards vary quite a bit, other parts of the Ethernet standards work the same regardless of the type of physical Ethernet link. Next, this final major section of this chapter looks at several protocols and rules that Ethernet uses regardless of the type of link. In particular, this section examines the details of the Ethernet data-link layer protocol, plus how Ethernet nodes, switches, and hubs forward Ethernet frames through an Ethernet LAN.

#### **Ethernet Data-Link Protocols**

One of the most significant strengths of the Ethernet family of protocols is that these protocols use the same data-link standard. In fact, the core parts of the data-link standard date back to the original Ethernet standards.

The Ethernet data-link protocol defines the Ethernet frame: an Ethernet header at the front, the encapsulated data in the middle, and an Ethernet trailer at the end. Ethernet actually defines a few alternate formats for the header, with the frame format shown in Figure 2-18 being commonly used today.

|       |          |     | Header      |        |      | `            | Trailer |  |
|-------|----------|-----|-------------|--------|------|--------------|---------|--|
|       | Preamble | SFD | Destination | Source | Type | Data and Pad | FCS     |  |
| Bytes | 7        | 1   | 6           | 6      | 2    | 46 – 1500    | 4       |  |

Figure 2-18 Commonly Used Ethernet Frame Format

While all the fields in the frame matter, some matter more to the topics discussed in this book. Table 2-6 lists the fields in the header and trailer and a brief description for reference, with the upcoming pages including more detail about a few of these fields.

Table 2-6 IEEE 802.3 Ethernet Header and Trailer Fields

| Field                       | Bytes | Description                                                            |
|-----------------------------|-------|------------------------------------------------------------------------|
| Preamble                    | 7     | Synchronization.                                                       |
| Start Frame Delimiter (SFD) | 1     | Signifies that the next byte begins the Destination MAC Address field. |
| Destination MAC<br>Address  | 6     | Identifies the intended recipient of this frame.                       |
| Source MAC Address          | 6     | Identifies the sender of this frame.                                   |

| Field                         | Bytes       | Description                                                                                                                                                                    |
|-------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Туре                          | 2           | Defines the type of protocol listed inside the frame; today, most likely identifies IP version 4 (IPv4) or IP version 6 (IPv6).                                                |
| Data and Pad*                 | 46-<br>1500 | Holds data from a higher layer, typically an L3PDU (usually an IPv4 or IPv6 packet). The sender adds padding to meet the minimum length requirement for this field (46 bytes). |
| Frame Check<br>Sequence (FCS) | 4           | Provides a method for the receiving NIC to determine whether the frame experienced transmission errors.                                                                        |

<sup>\*</sup> The IEEE 802.3 specification limits the data portion of the 802.3 frame to a minimum of 46 and a maximum of 1500 bytes. The term *maximum transmission unit* (MTU) defines the maximum Layer 3 packet that can be sent over a medium. Because the Layer 3 packet rests inside the data portion of an Ethernet frame, 1500 bytes is the largest IP MTU allowed over an Ethernet.

#### **Ethernet Addressing**

The source and destination Ethernet address fields play a huge role in how Ethernet LANs work. The general idea for each is relatively simple: The sending node puts its own address in the source address field and the intended Ethernet destination device's address in the destination address field. The sender transmits the frame, expecting that the Ethernet LAN, as a whole, will deliver the frame to that correct destination.

**Ethernet addresses**, also called *Media Access Control (MAC) addresses*, are 6-bytelong (48-bit-long) binary numbers. For convenience, most computers list MAC addresses as 12-digit hexadecimal numbers. Cisco devices typically add some periods to the number for easier readability as well; for example, a Cisco switch might list a MAC address as 0000.0C12.3456.

Most MAC addresses represent a single NIC or other Ethernet port, so these addresses are often called a *unicast* Ethernet address. The term *unicast* is simply a formal way to refer to the fact that the address represents one interface to the Ethernet LAN. (This term also contrasts with two other types of Ethernet addresses, *broadcast* and *multicast*, which will be defined later in this section.)

The entire idea of sending data to a destination unicast MAC address works well, but it works only if all the unicast MAC addresses are unique. If two NICs tried to use the same MAC address, there could be confusion. (The problem would be like the confusion caused to the postal service if you and I both tried to use the same mailing address. Would the postal service deliver mail to your house or mine?) If two PCs on the same Ethernet tried to use the same MAC address, to which PC should frames sent to that MAC address be delivered?

Ethernet solves this problem using an administrative process so that, at the time of manufacture, all Ethernet devices are assigned a universally unique MAC address. Before a manufacturer can build Ethernet products, it must ask the IEEE to assign the manufacturer a universally unique 3-byte code, called the organizationally unique identifier (OUI). The manufacturer agrees to give all NICs (and other Ethernet products) a MAC address that begins with its assigned 3-byte OUI. The manufacturer also assigns a unique value for the last 3 bytes, a number that manufacturer has never used with that OUI. As a result, the MAC address of every device in the universe is unique.

**NOTE** The IEEE also calls these universal MAC addresses *global MAC addresses*.

Figure 2-19 shows the structure of the unicast MAC address, with the OUI.



Figure 2-19 Structure of Unicast Ethernet Addresses

Key Topic

Ethernet addresses go by many names: LAN address, Ethernet address, hardware address, burned-in address, physical address, universal address, or MAC address. For example, the term burned-in address (BIA) refers to the idea that a permanent MAC address has been encoded (burned into) the ROM chip on the NIC. As another example, the IEEE uses the term universal address to emphasize the fact that the address assigned to a NIC by a manufacturer should be unique among all MAC addresses in the universe.

In addition to unicast addresses, Ethernet also uses group addresses. *Group addresses* identify more than one LAN interface card. A frame sent to a group address might be delivered to a small set of devices on the LAN, or even to all devices on the LAN. In fact, the IEEE defines two general categories of group addresses for Ethernet:

Broadcast address: Frames sent to this address should be delivered to all devices on the Ethernet LAN. It has a value of FFFF.FFFF.

Multicast addresses: Frames sent to a multicast Ethernet address will be copied and forwarded to a subset of the devices on the LAN that volunteers to receive frames sent to a specific multicast address.

Table 2-7 summarizes most of the details about MAC addresses.

Table 2-7 LAN MAC Address Terminology and Features

| LAN Addressing Term or Feature             | Description                                                                                                       |
|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| MAC address                                | Media Access Control. 802.3 (Ethernet) defines the MAC sublayer of IEEE Ethernet.                                 |
| Ethernet address, NIC address, LAN address | Other names often used instead of MAC address. These terms describe the 6-byte address of the LAN interface card. |
| Burned-in address                          | The 6-byte address assigned by the vendor making the card.                                                        |
| Unicast address                            | A term for a MAC address that represents a single LAN interface.                                                  |
| <b>Broadcast address</b>                   | An address that means "all devices that reside on this LAN right now."                                            |
| Multicast address                          | On Ethernet, a multicast address implies some subset of all devices currently on the Ethernet LAN.                |

#### Identifying Network Layer Protocols with the Ethernet Type Field

While the Ethernet header's address fields play an important and more obvious role in Ethernet LANs, the Ethernet Type field plays a much less obvious role. The Ethernet Type field, or EtherType, sits in the Ethernet data-link layer header, but its purpose is to directly help the network processing on routers and hosts. Basically, the Type field identifies the type of network layer (Layer 3) packet that sits inside the Ethernet frame.

First, think about what sits inside the data part of the Ethernet frame shown earlier in Figure 2-19. Typically, it holds the network layer packet created by the network layer protocol on some device in the network. Over the years, those protocols have included IBM Systems Network Architecture (SNA), Novell NetWare, Digital Equipment Corporation's DECnet, and Apple Computer's AppleTalk, Today, the most common network layer protocols are both from TCP/IP: IP version 4 (IPv4) and IP version 6 (IPv6).

The original host has a place to insert a value (a hexadecimal number) to identify the type of packet encapsulated inside the Ethernet frame. However, what number should the sender put in the header to identify an IPv4 packet as the type? Or an IPv6 packet? As it turns out, the IEEE manages a list of EtherType values, so that every network layer protocol that needs a unique EtherType value can have a number. The sender just has to know the list. (Anyone can view the list; just go to www.ieee.org and search for *EtherType*.)

For example, a host can send one Ethernet frame with an IPv4 packet and the next Ethernet frame with an IPv6 packet. Each frame would have a different Ethernet Type field value, using the values reserved by the IEEE, as shown in Figure 2-20.



Figure 2-20 Use of Ethernet Type Field

#### Error Detection with FCS

Ethernet also defines a way for nodes to find out whether a frame's bits changed while crossing over an Ethernet link, (Usually, the bits could change because of some kind of electrical interference, or a bad NIC.) Ethernet, like most data-link protocols, uses a field in the datalink trailer for the purpose of error detection.

The Ethernet Frame Check Sequence (FCS) field in the Ethernet trailer—the only field in the Ethernet trailer—gives the receiving node a way to compare results with the sender, to discover whether errors occurred in the frame. The sender applies a complex math formula to the frame before sending it, storing the result of the formula in the FCS field. The receiver applies the same math formula to the received frame. The receiver then compares its own results with the sender's results. If the results are the same, the frame did not change; otherwise, an error occurred and the receiver discards the frame.

Note that error detection does not also mean error recovery. Ethernet defines that the errored frame should be discarded, but Ethernet does not attempt to recover the lost frame. Other protocols, notably TCP, recover the lost data by noticing that it is lost and sending the data again.

## Sending Ethernet Frames with Switches and Hubs

Ethernet LANs behave slightly differently depending on whether the LAN has mostly modern devices, in particular, LAN switches instead of some older LAN devices called LAN hubs. Basically, the use of more modern switches allows the use of full-duplex logic, which is much faster and simpler than half-duplex logic, which is required when using hubs. The final topic in this chapter looks at these basic differences.

### Sending in Modern Ethernet LANs Using Full Duplex

Modern Ethernet LANs use a variety of Ethernet physical standards, but with standard Ethernet frames that can flow over any of these types of physical links. Each individual link can run at a different speed, but each link allows the attached nodes to send the bits in the frame to the next node. They must work together to deliver the data from the sending Ethernet node to the destination node.

The process is relatively simple, on purpose; the simplicity lets each device send a large number of frames per second. Figure 2-21 shows an example in which PC1 sends an Ethernet frame to PC2.



Figure 2-21 Example of Sending Data in a Modern Ethernet LAN

Following the steps in the figure:

- 1. PC1 builds and sends the original Ethernet frame, using its own MAC address as the source address and PC2's MAC address as the destination address.
- 2. Switch SW1 receives and forwards the Ethernet frame out its G0/1 interface (short for Gigabit interface 0/1) to SW2.
- **3.** Switch SW2 receives and forwards the Ethernet frame out its F0/2 interface (short for Fast Ethernet interface 0/2) to PC2.
- **4.** PC2 receives the frame, recognizes the destination MAC address as its own, and processes the frame.

The Ethernet network in Figure 2-21 uses full duplex on each link, but the concept might be difficult to see.

Full duplex means that the NIC or switch port has no half-duplex restrictions. So, to understand full duplex, you need to understand half duplex, as follows:



Half duplex: The device must wait to send if it is currently receiving a frame; in other words, it cannot send and receive at the same time.

Full duplex: The device does not have to wait before sending; it can send and receive at the same time.

So, with all PCs and LAN switches, and no LAN hubs, all the nodes can use full duplex. All nodes can send and receive on their port at the same instant in time. For example, in Figure 2-21, PC1 and PC2 could send frames to each other simultaneously, in both directions, without any half-duplex restrictions.

#### Using Half Duplex with LAN Hubs

To understand the need for half-duplex logic in some cases, you have to understand a little about an older type of networking device called a LAN hub. When the IEEE first introduced 10BASE-T in 1990, Ethernet switches did not exist yet; instead, networks used a device called a LAN hub. Like a switch, a LAN hub provided a number of RJ-45 ports as a place to connect links to PCs; however, hubs used different rules for forwarding data.

LAN hubs forward data using physical layer standards rather than data-link standards and are therefore considered to be Layer 1 devices. When an electrical signal comes in one hub port, the hub repeats that electrical signal out all other ports (except the incoming port). By doing so, the data reaches all the rest of the nodes connected to the hub, so the data hopefully reaches the correct destination. The hub has no concept of Ethernet frames, of addresses, making decisions based on those addresses, and so on.

The downside of using LAN hubs is that if two or more devices transmitted a signal at the same instant, the electrical signals collide and become garbled. The hub repeats all received electrical signals, even if it receives multiple signals at the same time. For example, Figure 2-22 shows the idea, with PCs Archie and Bob sending an electrical signal at the same instant of time (at Steps 1A and 1B) and the hub repeating both electrical signals out toward Larry on the left (Step 2).



Figure 2-22 Collision Occurring Because of LAN Hub Behavior

**NOTE** For completeness, note that the hub floods each frame out all other ports (except the incoming port). So, Archie's frame goes to both Larry and Bob; Bob's frame goes to Larry and Archie.

If you replace the hub in Figure 2-22 with a LAN switch, the switch prevents the collision on the left. The switch operates as a Layer 2 device, meaning that it looks at the data-link header and trailer. A switch would look at the MAC addresses, and even if the switch needed

to forward both frames to Larry on the left, the switch would send one frame and queue the other frame until the first frame was finished.

Now back to the issue created by the hub's logic: collisions. To prevent these collisions, the Ethernet nodes must use half-duplex logic instead of full-duplex logic. A problem occurs only when two or more devices send at the same time; half-duplex logic tells the nodes that if someone else is sending, wait before sending.

For example, back in Figure 2-22, imagine that Archie began sending his frame early enough so that Bob received the first bits of that frame before Bob tried to send his own frame. Bob, at Step 1B, would notice that he was receiving a frame from someone else, and using halfduplex logic, would simply wait to send the frame listed at Step 1B.

Nodes that use half-duplex logic actually use a relatively well-known algorithm called carrier sense multiple access with collision detection (CSMA/CD). The algorithm takes care of the obvious cases but also the cases caused by unfortunate timing. For example, two nodes could check for an incoming frame at the exact same instant, both realize that no other node is sending, and both send their frames at the exact same instant, causing a collision. CSMA/CD covers these cases as well, as follows:

- A device with a frame to send listens until the Ethernet is not busy. Step 1.
- Step 2. When the Ethernet is not busy, the sender begins sending the frame.
- Step 3. The sender listens while sending to discover whether a collision occurs: collisions might be caused by many reasons, including unfortunate timing. If a collision occurs, all currently sending nodes do the following:
  - They send a jamming signal that tells all nodes that a collision happened. a.
  - They independently choose a random time to wait before trying again, to b. avoid unfortunate timing.
  - The next attempt starts again at Step 1. C.

Although most modern LANs do not often use hubs and therefore do not need to use half duplex, enough old hubs still exist in enterprise networks so that you need to be ready to understand duplex issues. Each NIC and switch port has a duplex setting. For all links between PCs and switches, or between switches, use full duplex. However, for any link connected to a LAN hub, the connected LAN switch and NIC port should use half duplex. Note that the hub itself does not use half-duplex logic, instead just repeating incoming signals out every other port.

Figure 2-23 shows an example, with full-duplex links on the left and a single LAN hub on the right. The hub then requires SW2's F0/2 interface to use half-duplex logic, along with the PCs connected to the hub.



Figure 2-23 Full and Half Duplex in an Ethernet LAN

Before I close the chapter, note that the discussion of full and half duplex connects to two specific terms from CCNA exam topic 1.3.b, but those connections may not be obvious. First, the term *Ethernet shared media* (from the exam topic) refers to designs that use hubs, require CSMA/CD, and therefore share the bandwidth. The idea behind the term comes from the fact that the devices connected to the hub share the network because they must use CSMA/CD, and CSMA/CD enforces rules that allow only one device to successfully send a frame at any point in time.

By contrast, the term *Ethernet point-to-point* in that same exam topic emphasizes the fact that in a network built with switches, each (point-to-point) link works independently of the others. Because of the full-duplex logic discussed in this section, a frame can be sent on every point-to-point link in an Ethernet at the same time.

# **Chapter Review**

One key to doing well on the exams is to perform repetitive spaced review sessions. Review this chapter's material using either the tools in the book or interactive tools for the same material found on the book's companion website. Refer to the "Your Study Plan" element for more details. Table 2-8 outlines the key review elements and where you can find them. To better track your study progress, record when you completed these activities in the second column.

Table 2-8 Chapter Review Tracking

| Review Element         | Review Date(s) | Resource Used |
|------------------------|----------------|---------------|
| Review key topics      |                | Book, website |
| Review key terms       |                | Book, website |
| Answer DIKTA questions |                | Book, PTP     |
| Review memory tables   |                | Book, website |

# **Review All the Key Topics**



Table 2-9 Key Topics for Chapter 2

| Key Topic<br>Element | Description                                                                                                                | Page<br>Number |
|----------------------|----------------------------------------------------------------------------------------------------------------------------|----------------|
| Figure 2-3           | Drawing of a typical wired and wireless enterprise LAN                                                                     | 40             |
| Table 2-2            | Several types of Ethernet LANs and some details about each                                                                 | 41             |
| Figure 2-9           | Conceptual drawing of transmitting in one direction each over two different electrical circuits between two Ethernet nodes | 47             |
| Figure 2-10          | 10- and 100-Mbps Ethernet straight-through cable pinouts                                                                   | 47             |
| Figure 2-11          | 10- and 100-Mbps Ethernet crossover cable pinouts                                                                          | 48             |
| Table 2-3            | List of devices that transmit on wire pair 1,2 and pair 3,6                                                                | 48             |
| Figure 2-12          | Typical uses for straight-through and crossover Ethernet cables                                                            | 49             |
| Figure 2-15          | Physical transmission concepts in a multimode cable                                                                        | 51             |
| Table 2-5            | Comparison between UTP, MM, and SM Ethernet cabling                                                                        | 53             |
| Figure 2-19          | Format of Ethernet MAC addresses                                                                                           | 55             |

| Key Topic<br>Element | Description                                                                       | Page<br>Number |
|----------------------|-----------------------------------------------------------------------------------|----------------|
| List                 | Definitions of half duplex and full duplex                                        | 58             |
| Figure 2-23          | Examples of which interfaces use full duplex and which interfaces use half duplex | 59             |

# **Key Terms You Should Know**

10BASE-T, 100BASE-T, 1000BASE-T, auto-MDIX, broadcast address, cladding, core, crossover cable, electromagnetic interference (EMI), Ethernet, Ethernet address, Ethernet frame, Ethernet link, Ethernet port, Fast Ethernet, fiber-optic cable, Frame Check Sequence, Gigabit Ethernet, IEEE, MAC address, multimode fiber, network interface card (NIC), RJ-45, single-mode fiber, straight-through cable, transceiver, unicast address, wired LAN, wireless LAN

# Fundamentals of WANs and IP Routing

This chapter covers the following exam topics:

- 1.0 Network Fundamentals
  - 1.1 Explain the role and function of network components
    - 1.1.a Routers
  - 1.2 Describe characteristics of network topology architectures
    - 1.2.d WAN

This chapter introduces WANs and the various features of the TCP/IP network layer.

First, for WANs, note that the current CCNA blueprint does not examine WANs in detail as an end to themselves. However, to understand IP routing, you need to understand the basics of the two types of WAN links introduced in the first major section of this chapter: serial links and Ethernet WAN links. In their most basic form, these WAN links connect routers that sit at sites that can be miles to hundreds of miles apart, allowing communications between remote sites.

The rest of the chapter then turns to the TCP/IP Network layer, with IP as the center of the discussion. The second section of the chapter discusses the major features of IP: routing, addressing, and routing protocols. The final section of the chapter examines a few protocols other than IP that also help the TCP/IP Network layer create a network that allows end-to-end communication between endpoints.

# "Do I Know This Already?" Quiz

Take the quiz (either here or use the PTP software) if you want to use the score to help you decide how much time to spend on this chapter. The letter answers are listed at the bottom of the page following the quiz. Appendix C, found both at the end of the book as well as on the companion website, includes both the answers and explanations. You can also find both answers and explanations in the PTP testing software.

Table 3-1 "Do I Know This Already?" Foundation Topics Section-to-Question Mapping

| Foundation Topics Section    | Questions |
|------------------------------|-----------|
| Wide-Area Networks           | 1, 2      |
| IP Routing                   | 3–6       |
| Other Network Layer Features | 7         |

- 1. Which of the following terms is not commonly used to describe a serial link?
  - a. Private line
  - **b.** Point-to-point link
  - c. Leased circuit
  - **d.** E-line
- **2.** Two routers, R1 and R2, connect using an Ethernet WAN service. The service provides point-to-point service between these two routers only, as a Layer 2 Ethernet service. Which of the following are the most likely to be true about this WAN? (Choose two answers.)
  - **a.** R1 will connect to a physical Ethernet link, with the other end of the cable connected to R2.
  - **b.** R1 will connect to a physical Ethernet link, with the other end of the cable connected to a device at the WAN service provider point of presence.
  - **c.** R1 will forward data-link frames to R2 using an HDLC header/trailer.
  - **d.** R1 will forward data-link frames to R2 using an Ethernet header/trailer.
- **3.** Imagine a network in which PC1 connects to the same Ethernet LAN as Router1, PC2 connects to the same LAN as Router2, and the two routers connect to each other with a PPP serial link. When PC1 sends data to PC2, and Router1 removes the Ethernet header and trailer, which of the following is true?
  - **a.** Router1 does not use the removed Ethernet header/trailer again.
  - **b.** Router1 re-encapsulates the packet in a PPP frame that uses the Ethernet addresses from the removed header.
  - **c.** Router1 also removes the IP header before forwarding the data to Router2.
  - **d.** Router1 re-encapsulates the packet in a new Ethernet frame before forwarding the packet to Router2.
- **4.** Which of the following does a router normally use when making a decision about routing TCP/IP packets?
  - **a.** Destination MAC address
  - **b.** Source MAC address
  - **c.** Destination IP address
  - d. Source IP address
  - e. Destination MAC and IP addresses
- **5.** Which of the following are true about a LAN-connected TCP/IP host and its IP routing (forwarding) choices?
  - **a.** The host always sends packets to its default gateway.
  - **b.** The host never sends packets to its default gateway.
  - **c.** The host sends packets to its default gateway if the destination IP address is in a different subnet than the host.
  - **d.** The host sends packets to its default gateway if the destination IP address is in the same subnet as the host.

- **6.** Which of the following are functions of a routing protocol? (Choose two answers.)
  - **a.** Advertising known routes to neighboring routers
  - **b.** Learning routes to directly connected subnets
  - **c.** Learning routes as advertised to the router by neighboring routers
  - **d.** Forwarding IP packets based on a packet's destination IP address
- 7. A company implements a TCP/IP network, with PC1 sitting on an Ethernet LAN. Which of the following protocols and features requires PC1 to learn information from some other server device?
  - ARP
  - **b.** ping
  - c. DNS
  - None of these answers are correct.

# **Foundation Topics**

## Wide-Area Networks

Imagine a typical day at the branch office at some enterprise. The user sits at some endpoint device: a PC, tablet, phone, and so on. It connects to a LAN, either via an Ethernet cable or using a wireless LAN. However, the user happens to be checking information on a website, and that web server sits at the home office of the company. To make that work, the data travels over one or more wide-area network (WAN) links.

WAN technologies define the physical (Layer 1) standards and data-link (Layer 2) protocols used to communicate over long distances. This first section examines two WAN technologies: leased-line WANs and Ethernet WANs. Leased-line WANs have been an option since the 1960s, but are seldom used today. However, because leased-line WANs have been around many years, and have been a part of CCNA for its entire history, you need to know the basics of leased-line WANs for the current CCNA.

Conversely, companies use Ethernet WAN links much more often today as compared to leased lines. Those links use the same Ethernet data-link protocols as discussed in the previous chapter, but they use physical layer Ethernet standards that work over the much longer distances required for WANs. The next few pages examine leased-line WANs first, followed by Ethernet WANs.

#### Leased-Line WANs

To connect LANs using a WAN, the internetwork uses a router connected to each LAN, with a WAN link between the routers. For the WAN link, the enterprise's network engineer must do some planning and then order some kind of WAN link from a WAN service provider. That provider installs the WAN link between the two routers, as shown in Figure 3-1. Note that drawings of leased-line WAN links represent the link with a crooked line (a lightning bolt) to imply the WAN link is a leased line.



Figure 3-1 Small Enterprise Network with One Leased Line

This section begins by examining the physical details of leased lines, followed by a discussion of the two common data-link protocols for leased lines, HDLC and PPP.

#### Physical Details of Leased Lines

The **leased line** service, a physical layer service, delivers bits in both directions, at a predetermined speed, using full-duplex logic. In fact, conceptually it acts as if you had a full-duplex crossover Ethernet link between two routers, as shown in Figure 3-2. The leased line uses two pairs of wires, one pair for each direction of sending data, which allows full-duplex operation.



Figure 3-2 Conceptual View of the Leased-Line Service

To create a leased line, some physical path must exist between the two routers on the ends of the link. The physical cabling must leave the customer buildings where each router sits; however, the **telco** does not simply install one cable between the two buildings. Instead, it uses what is typically a large and complex network that creates the appearance of a cable between the two routers.

Figure 3-3 shows a conceptual view of a small part of the telco network. Telcos put their equipment in buildings called central offices (COs). The telco installs cables from the CO to most every other building in the city, expecting to sell services to the people in those buildings one day. The telco would then configure its switches to use some of the capacity on each cable to send data in both directions, creating the equivalent of a crossover cable between the two routers.

Given the long history of leased lines, the industry uses a variety of terms to refer to the same kind of WAN link. For instance, the term *leased line* emphasizes the fact that the telco leases the use of the leased line to a customer, but the customer does not permanently own the line. Table 3-2 lists some of the many names for leased lines, mainly so that in a networking job, you have a chance to translate from the terms each person uses with a basic description as to the meaning of the name.



Figure 3-3 Possible Cabling Inside a Telco for a Short Leased Line

Table 3-2 Different Names for a Leased Line

| Name                                        | Meaning or Reference                                                                                                                                                                             |
|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Leased circuit,<br>Circuit                  | The words <i>line</i> and <i>circuit</i> are often used as synonyms in telco terminology; <i>circuit</i> makes reference to the electrical circuit between the two endpoints.                    |
| Serial link, Serial line                    | The words <i>link</i> and <i>line</i> are also often used as synonyms. <i>Serial</i> in this case refers to the fact that the bits flow serially and that routers use <b>serial interfaces</b> . |
| Point-to-point link,<br>Point-to-point line | These terms refer to the fact that the topology stretches between two points, and two points only. (Some older leased lines allowed more than two devices.)                                      |
| T1                                          | This specific type of leased line transmits data at 1.544 megabits per second (1.544 Mbps).                                                                                                      |
| WAN link, Link                              | Both of these terms are very general, with no reference to any specific technology.                                                                                                              |
| Private line                                | This term refers to the fact that the data sent over the line cannot be copied by other telco customers, so the data is private.                                                                 |

#### Data-Link Details of Leased Lines

A leased line provides a Layer 1 service. In other words, it promises to deliver bits between the devices connected to the leased line. However, the leased line itself does not define a data-link layer protocol to be used on the leased line. So, to make use of the leased line, the routers on the ends of the line use one of two data-link protocols: High-Level Data Link Control (**HDLC**) or Point-to-Point Protocol (PPP).

All data-link protocols perform a similar role: to control the correct delivery of data over a physical link of a particular type. For example, the Ethernet data-link protocol uses a destination address field to identify the correct device that should receive the data and an FCS field that allows the receiving device to determine whether the data arrived correctly. The WAN data-link protocols HDLC and PPP provide similar functions.

HDLC and PPP have even less work to do than Ethernet because of the simple point-to-point topology of a leased line. Using HDLC as an example, when one router sends an HDLC frame over a leased line, the frame can go to only one destination device: to the router on the other end of the link. So, while HDLC has an address field, the destination is implied, and the actual address value is unimportant. The idea is sort of like when I have lunch with my friend Gary, and only Gary. I do not need to start every sentence with "Hey, Gary." He knows I am talking to him.

Figure 3-4 shows the HDLC frame format as an example, with Table 3-3 that follows describing the fields. However, note that HDLC and PPP have a similar frame format, although the newer PPP (defined in the 1990s) has more features and functions (plus additional optional headers) than the older HDLC (defined in the 1970s.)



Figure 3-4 HDLC Framing

Table 3-3 Comparing HDLC and PPP Header Fields to Ethernet

| HDLC &<br>PPP Field | Ethernet<br>Equivalent | Description                                                                                           |
|---------------------|------------------------|-------------------------------------------------------------------------------------------------------|
| Flag                | Preamble,<br>SFD       | Lists a recognizable bit pattern so that the receiving nodes realize that a new frame is arriving.    |
| Address             | Destination<br>Address | Identifies the destination device, but not interesting for leased line point-to-point topologies.     |
| Control             | N/A                    | No longer of use today for links between routers.                                                     |
| Type                | Type                   | Identifies the type of Layer 3 packet encapsulated inside the data portion of the frame.              |
| FCS                 | FCS                    | Identifies a field used by the error detection process. (It is the only trailer field in this table.) |

#### How Routers Use a WAN Data Link

Leased lines connect to routers, and routers focus on delivering packets to a destination host. However, routers physically connect to both LANs and WANs, with those LANs and WANs requiring that data be sent inside data-link frames. So, now that you know a little about HDLC and PPP, it helps to think about how routers use these data-link protocols when sending data.

First, the TCP/IP network layer focuses on forwarding IP packets from the sending host to the destination host. The underlying LANs and WANs just act as a way to move the packets to the next router or end-user device. Figure 3-5 shows that network layer perspective.



**Figure 3-5** *IP Routing Logic over LANs and WANs* 

Following the steps in the figure, for a packet sent by PC1 to PC2's IP address:

- 1. PC1's network layer (IP) logic tells it to send the packet to a nearby router (R1).
- Router R1's network layer logic tells it to forward (route) the packet out the leased line to Router R2 next.
- **3.** Router R2's network layer logic tells it to forward (route) the packet out the LAN link to PC2 next.

While Figure 3-5 shows the network layer logic, the PCs and routers must rely on the LANs and WANs in the figure to actually move the bits in the packet. Figure 3-6 shows the same figure, with the same packet, but this time showing some of the data-link layer logic used by the hosts and routers. Basically, three separate data-link layer steps encapsulate the packet, inside a data-link frame, over three hops through the internetwork: from PC1 to R1, from R1 to R2, and from R2 to PC2.



**Figure 3-6** General Concept of Routers De-encapsulating and Re-encapsulating IP Packets

Following the steps in the figure, again for a packet sent by PC1 to PC2's IP address:

- **1.** To send the IP packet to Router R1 next, PC1 encapsulates the IP packet in an Ethernet frame that has the destination MAC address of R1.
- **2.** Router R1 de-encapsulates (removes) the IP packet from the Ethernet frame, encapsulates (inserts) the packet into an HDLC frame using an HDLC header and trailer, and forwards the HDLC frame to Router R2 next.
- **3.** Router R2 de-encapsulates (removes) the IP packet from the HDLC frame, encapsulates (inserts) the packet into an Ethernet frame that has the destination MAC address of PC2, and forwards the Ethernet frame to PC2.

In summary, a leased line with HDLC creates a WAN link between two routers so that they can forward packets for the devices on the attached LANs. The leased line itself provides the

physical means to transmit the bits, in both directions. The HDLC frames provide the means to encapsulate the network layer packet correctly so that it crosses the link between routers. Similarly, if the routers use PPP instead of HDLC, then the routers encapsulate the packets in PPP frames rather than HDLC frames.

Leased lines have many benefits that have led to their relatively long life in the WAN marketplace. These lines are simple for the customer, are widely available, are of high quality, and are private. However, they do have some negatives as well compared to newer WAN technologies, including a higher cost and typically longer lead times to get the service installed. Additionally, by today's standards, leased-line WAN links are slow, with the fastest leased line speeds in the tens of megabits per second (Mbps). Newer and faster WAN technology has moved the WAN market away from leased lines, with Ethernet WANs being common here in the 2020s.

## **Ethernet as a WAN Technology**

For the first several decades of the existence of Ethernet, Ethernet was only appropriate for LANs. The restrictions on cable lengths and devices might allow a LAN that stretched a kilometer or two, to support a campus LAN, but that was the limit.

As time passed, the IEEE improved Ethernet standards in ways that made Ethernet a reasonable WAN technology. For example, the 1000BASE-LX standard uses single-mode fiber cabling, with support for a 5-km cable length; the 1000BASE-ZX standard supports an even longer 70-km cable length. As time went by, and as the IEEE improved cabling distances for fiber Ethernet links, Ethernet became a reasonable WAN technology.

Today, many WAN service providers (SP) offer WAN services that take advantage of Ethernet. SPs offer a wide variety of these Ethernet WAN services, with many different names. But all of them use a similar model, with Ethernet used between the customer site and the SP's network, as shown in Figure 3-7.





Figure 3-7 Fiber Ethernet Link to Connect a CPE Router to a Service Provider's WAN

The model shown in Figure 3-7 has many of the same ideas of how a telco creates a leased line, as shown earlier in Figure 3-3, but now with Ethernet links and devices. The customer connects to an Ethernet link using a router interface. The (fiber) Ethernet link leaves the customer building and connects to some nearby SP location called a point of presence (PoP). Instead of a telco switch as shown in Figure 3-3, the SP uses an Ethernet switch. Inside the SP's network, the SP uses any technology that it wants to create the specific Ethernet WAN services.

#### Ethernet WANs That Create a Layer 2 Service

Ethernet WAN services include a variety of specific services that vary in ways that change how routers use those services. However, for the purposes of CCNA, you just need to understand the most basic Ethernet WAN service, one that works much like an Ethernet crossover cable—just over a WAN. In other words:

- Logically, behaves like a point-to-point connection between two routers
- Physically, behaves as if a physical fiber Ethernet link existed between the two routers

This book refers to this particular Ethernet WAN service with a couple of the common names:



**Ethernet WAN:** A generic name to differentiate it from an Ethernet LAN.

Ethernet point-to-point link: A term that emphasizes the topology of a typical Ethernet WAN link that has exactly two endpoints: the routers on the two ends of the link.

Ethernet Line Service (E-Line): A term from the Metro Ethernet Forum (MEF) for the kind of point-to-point Ethernet WAN service shown throughout this book.

Ethernet over MPLS (EoMPLS): A term that refers to Multiprotocol Label Switching (MPLS), a technology that can be used to create the Ethernet service for the customer.

So, if you can imagine two routers, with a single Ethernet link between the two routers, you understand what this particular Ethernet WAN service does, as shown in Figure 3-8. In this case, the two routers, R1 and R2, connect with an Ethernet WAN service instead of a serial link. The routers use Ethernet interfaces, and they can send data in both directions at the same time. Physically, each router actually connects to some SP PoP, as shown earlier in Figure 3-7, but logically, the two routers can send Ethernet frames to each other over the link.



Figure 3-8 Ethernet WAN Acting Like a Simple Ethernet Link Between Two Routers

#### How Routers Route IP Packets Using Ethernet WAN Links

WANs, by their very nature, give IP routers a way to forward IP packets from a LAN at one site, over the WAN, and to another LAN at another site. The routing logic works the same whether the WAN link happens to be a serial link or an Ethernet WAN link, with the encapsulation details being slightly different. With an Ethernet WAN link, the link uses Ethernet for both Layer 1 and Layer 2 functions, so the routers encapsulate using the familiar Ethernet header and trailer, as shown in the middle of Figure 3-9. Also, note that the figure shows a small cloud over the Ethernet link as a way to tell us that the link is an Ethernet WAN link, rather than an Ethernet LAN link.



Figure 3-9 Routing over an Ethernet WAN Link

**NOTE** The 802.3 headers/trailers in the figure are different at each stage! Make sure to notice the reasons in the step-by-step explanations that follow.

The figure shows the same three routing steps as shown with the serial link in the earlier Figure 3-6. In this case, all three routing steps use the same Ethernet (802.3) protocol, However, note that each frame's data-link header and trailer are different. Each router discards the old data-link header/trailer and adds a new set, as described in these steps. Focus mainly on Step 2, because compared to the similar example shown in Figure 3-6, Steps 1 and 3 are unchanged:

- 1. To send the IP packet to Router R1 next, PC1 encapsulates (inserts) the IP packet in an Ethernet frame that has the destination MAC address of R1.
- Router R1 de-encapsulates (removes) the IP packet from the Ethernet frame and encapsulates (inserts) the packet into a new Ethernet frame, with a new Ethernet header and trailer. The destination MAC address is R2's G0/0 MAC address, and the source MAC address is R1's G0/1 MAC address, R1 forwards this frame over the Ethernet WAN service to R2 next.
- 3. Router R2 de-encapsulates (removes) the IP packet from the Ethernet frame, encapsulates (inserts) the packet into an Ethernet frame that has the destination MAC address of PC2, and forwards the Ethernet frame to PC2.

Throughout this book, the WAN links (serial and Ethernet) will connect routers as shown here, with the focus being on the LANs and IP routing. The rest of the chapter turns our attention to a closer look at IP routing.

## **IP Routing**

Many protocol models have existed over the years, but today the TCP/IP model dominates. And at the network layer of TCP/IP, two options exist for the main protocol around which all other network layer functions revolve: IP version 4 (IPv4) and IP version 6 (IPv6). Both IPv4 and IPv6 define the same kinds of network layer functions, but with different details. This chapter introduces these network layer functions for IPv4, leaving the IPv6 details for Part VII of this book.

**NOTE** All references to IP in this chapter refer to the older and more established IPv4, and all use of the term **IP address** refers to an IPv4 address.

Internet Protocol (IP) focuses on the job of routing data, in the form of IP packets, from the source host to the destination host. IP does not concern itself with the physical transmission of data, instead relying on the lower TCP/IP layers for those functions. Instead, IP concerns itself with the logical details, rather than physical details, of delivering data. In particular, the network layer specifies how packets travel end to end over a TCP/IP network, even when the packet crosses many different types of LAN and WAN links.

This next major section of the chapter examines IP routing in more depth. First, IP defines what it means to route an IP packet from sending host to destination host, while using successive data-link protocols. This section then examines how IP addressing rules help to make IP routing much more efficient by grouping addresses into subnets. This section closes by looking at the role of IP **routing protocols**, which give routers a means by which to learn routes to all the IP subnets in an internetwork.

## **Network Layer Routing (Forwarding) Logic**

Routers and end-user computers (called *bosts* in a TCP/IP network) work together to perform IP routing. The host operating system (OS) has TCP/IP software, including the software that implements the network layer. Hosts use that software to choose where to send IP packets, often to a nearby router. Those routers make choices of where to send the IP packet next. Together, the hosts and routers deliver the IP packet to the correct destination, as shown in the example in Figure 3-10.



**Figure 3-10** Routing Logic: PC1 Sending an IP Packet to PC2

The IP packet, created by PC1, goes from the top of the figure all the way to PC2 at the bottom of the figure. The next few pages discuss the network layer routing logic used by each device along the path.

**NOTE** The term *path selection* is sometimes used to refer to the routing process shown in Figure 3-10. At other times, it refers to routing protocols, specifically how routing protocols select the best route among the competing routes to the same destination.

### Host Forwarding Logic: Send the Packet to the Default Router

In this example, PC1 does some basic analysis and then chooses to send the IP packet to the router so that the router will forward the packet, PC1 analyzes the destination address and realizes that PC2's address (150.150.4.10) is not on the same LAN as PC1. So PC1's logic tells it to send the packet to a device whose job it is to know where to route data: a nearby router, on the same LAN, called PC1's default router.

To send the IP packet to the default router, the sender sends a data-link frame across the medium to the nearby router; this frame includes the packet in the data portion of the frame. That frame uses data-link layer (Layer 2) addressing in the data-link header to ensure that the nearby router receives the frame.

**NOTE** The *default router* is also referred to as the *default gateway*.

### R1 and R2's Logic: Routing Data Across the Network

All routers use the same general process to route the packet. Each router keeps an IP routing table. This table lists IP address groupings, called IP networks and IP subnets. When a router receives a packet, it compares the packet's destination IP address to the entries in the routing table and makes a match. This matching entry also lists directions that tell the router where to forward the packet next.

In Figure 3-10, R1 would have matched the destination address (150.150.4.10) to a routing table entry, which in turn told R1 to send the packet to R2 next. Similarly, R2 would have matched a routing table entry that told R2 to send the packet, over an Ethernet WAN link, to R3 next.

The routing concept works a little like driving down the freeway when approaching a big interchange. You look up and see signs for nearby towns, telling you which exits to take to go to each town. Similarly, the router looks at the IP routing table (the equivalent of the road signs) and directs each packet over the correct next LAN or WAN link (the equivalent of a road).

## R3's Logic: Delivering Data to the End Destination

The final router in the path, R3, uses almost the same logic as R1 and R2, but with one minor difference. R3 needs to forward the packet directly to PC2, not to some other router. On the surface, that difference seems insignificant. In the next section, when you read about how the network layer uses LANs and WANs, the significance of the difference will become obvious.

## How Network Layer Routing Uses LANs and WANs

While the network layer routing logic ignores the physical transmission details, the bits still have to be transmitted. To do that work, the network layer logic in a host or router must

hand off the packet to the data-link layer protocols, which, in turn, ask the physical layer to actually send the data. The data-link layer adds the appropriate header and trailer to the packet, creating a frame, before sending the frames over each physical network.

The routing process forwards the network layer packet from end to end through the network, while each data-link frame only takes a smaller part of the trip. Each successive data-link layer frame moves the packet to the next device that thinks about network layer logic. In short, the network layer thinks about the bigger view of the goal, like "Send this packet to the specified next router or host...," while the data-link layer thinks about the specifics, like "Encapsulate the packet in a data-link frame and transmit it." The following list summarizes the major steps in a router's internal network layer routing for each packet beginning with the frame arriving in a router interface:



- **Step 1.** Use the data-link Frame Check Sequence (FCS) field to ensure that the frame had no errors: if errors occurred, discard the frame.
- **Step 2.** Assuming that the frame was not discarded at Step 1, discard the old data-link header and trailer, leaving the IP packet.
- **Step 3.** Compare the IP packet's destination IP address to the routing table, and find the route that best matches the destination address. This route identifies the outgoing interface of the router and possibly the next-hop router IP address.
- **Step 4.** Encapsulate the IP packet inside a new data-link header and trailer, appropriate for the outgoing interface, and forward the frame.

Figure 3-11 works through a repeat example of a packet sent by PC1 to PC2, followed by a detailed analysis of each device's routing logic. Each explanation includes the details about how PC1 and each of the three routers builds the appropriate new data-link headers.



Figure 3-11 Network Layer and Data-Link Layer Encapsulation

The following list explains the forwarding logic at each router, focusing on how the routing integrates with the data link.

- PC1 sends the packet to its default router. PC1's network layer logic builds Step A. the IP packet, with a destination address of PC2's IP address (150.150.4.10). The network layer also performs the analysis to decide that 150.150.4.10 is not in the local IP subnet, so PC1 needs to send the packet to R1 (PC1's default router). PC1 places the IP packet into an Ethernet data-link frame, with a destination Ethernet address of R1's Ethernet address, PC1 sends the frame on to the Ethernet.
- Step B. R1 processes the incoming frame and forwards the packet to R2. Because the incoming Ethernet frame has a destination MAC of R1's Ethernet MAC, R1 decides to process the frame. R1 checks the frame's FCS for errors, and if none, R1 discards the Ethernet header and trailer. Next, R1 compares the packet's destination address (150.150.4.10) to its routing table and finds the entry for subnet 150.150.4.0. Because the destination address of 150.150.4.10 is in that subnet, R1 forwards the packet out the interface listed in that matching route (Serial0) to next-hop Router R2 (150.150.2.7). R1 must first encapsulate the IP packet into an HDLC frame.
- Step C. R2 processes the incoming frame and forwards the packet to R3. R2 repeats the same general process as R1 when R2 receives the HDLC frame. R2 checks the FCS field and finds that no errors occurred and then discards the HDLC header and trailer. Next, R2 compares the packet's destination address (150.150.4.10) to its routing table and finds the entry for subnet 150.150.4.0, a route that directs R2 to send the packet out interface Fast Ethernet 0/0 to nexthop router 150.150.3.1 (R3). But first, R2 must encapsulate the packet in an Ethernet header. That header uses R2's MAC address and R3's MAC address on the Ethernet WAN link as the source and destination MAC address, respectively.
- R3 processes the incoming frame and forwards the packet to PC2. Like Step D. R1 and R2, R3 checks the FCS, discards the old data-link header and trailer, and matches its own route for subnet 150.150.4.0. R3's routing table entry for 150.150.4.0 shows that the outgoing interface is R3's Ethernet interface, but there is no next-hop router because R3 is connected directly to subnet 150.150.4.0. All R3 has to do is encapsulate the packet inside a new Ethernet header and trailer, but with a destination Ethernet address of PC2's MAC address.

Because the routers build new data-link headers and trailers, and because the new headers contain data-link addresses, the PCs and routers must have some way to decide what datalink addresses to use. An example of how the router determines which data-link address to use is the IP Address Resolution Protocol (ARP). ARP dynamically learns the data-link address of an IP host connected to a LAN. For example, at the last step, at the bottom of Figure 3-11, Router R3 would use ARP once to learn PC2's MAC address before sending any packets to PC2.

## **How IP Addressing Helps IP Routing**

IP defines network layer addresses that identify any host or router interface that connects to a TCP/IP network, The idea basically works like a postal address: Any interface that expects to receive IP packets needs an IP address, just like you need a postal address before receiving mail from the postal service. This next short topic introduces the idea of IP networks and subnets, which are the groups of addresses defined by IP.

**NOTE** IP defines the word *network* to mean a very specific concept. To avoid confusion when writing about IP addressing, this book (and others) often avoids using the term network for other uses. In particular, this book uses the term internetwork to refer more generally to a network made up of routers, switches, cables, and other equipment.

#### Rules for Groups of IP Addresses (Networks and Subnets)

TCP/IP groups IP addresses together so that IP addresses used on the same physical network are part of the same group. IP calls these address groups an IP network or an IP subnet. Using that same postal service analogy, each IP network and IP subnet works like a postal code (or in the United States, a ZIP code). All nearby postal addresses are in the same postal code (ZIP code), while all nearby IP addresses must be in the same IP network or IP subnet.

IP defines specific rules about which IP address should be in the same IP network or IP subnet. Numerically, the addresses in the same group have the same value in the first part of the addresses. For example, Figures 3-10 and 3-11 could have used the following conventions:

- Hosts on the top Ethernet: Addresses start with 150.150.1
- Hosts on the R1–R2 serial link: Addresses start with 150.150.2
- Hosts on the R2-R3 Ethernet WAN link: Addresses start with 150.150.3
- Hosts on the bottom Ethernet: Addresses start with 150.150.4

From the perspective of IP routing, the grouping of IP addresses means that the routing table can be much smaller. A router can list one routing table entry for each IP network or subnet, representing a group of addresses, instead of one entry for every single IP address.

While the list shows just one example of how IP addresses may be grouped, the rules for how to group addresses using subnets will require some work to master the concepts and math. Part IV of this book details IP addressing and subnetting, along with other subnetting videos and practice questions. However, the brief version of two of the foundational rules of **subnetting** can be summarized as follows:



- Two IP addresses, not separated from each other by a router, must be in the same group (subnet).
- Two IP addresses, separated from each other by at least one router, must be in different groups (subnets).

It's similar to the USPS ZIP code system and how it requires local governments to assign addresses to new buildings. It would be ridiculous to have two houses next door to each other with different postal/ZIP codes. Similarly, it would be silly to have people who live on opposite sides of the country to have addresses with the same postal/ZIP code.

#### The IP Header

The routing process also makes use of the IPv4 header, as shown in Figure 3-12. The header lists a 32-bit source IP address, as well as a 32-bit destination IP address. The header, of course, has other fields, a few of which matter for other discussions in this book. The book will refer to this figure as needed, but otherwise, be aware of the 20-byte IP header and the existence of the source and destination IP address fields. Note that in the examples so far in this chapter, while routers remove and add data-link headers each time they route a packet, the IP header remains, with the IP addresses unchanged by the IP routing process.

| 4 Bytes                |                |          |                 |                 |  |  |  |
|------------------------|----------------|----------|-----------------|-----------------|--|--|--|
| Version                | Length         | DS Field | Packet Length   |                 |  |  |  |
|                        | Identification |          |                 | Fragment Offset |  |  |  |
| Time t                 | o Live         | Protocol | Header Checksum |                 |  |  |  |
| Source IP Address      |                |          |                 |                 |  |  |  |
| Destination IP Address |                |          |                 |                 |  |  |  |

Figure 3-12 IPv4 Header, Organized as 4 Bytes Wide for a Total of 20 Bytes

## **How IP Routing Protocols Help IP Routing**

For routing logic to work on both hosts and routers, each host and router needs to know something about the TCP/IP internetwork. Hosts need to know the IP address of their default router so that hosts can send packets to remote destinations. Routers, however, need to know routes so they forward packets to each and every reachable IP network and IP subnet.

The best method for routers to know all the useful routes is to configure the routers to use the same IP routing protocol. If you enable the same routing protocol on all the routers in a TCP/IP internetwork, with the correct settings, the routers will send routing protocol messages to each other. As a result, all the routers will learn routes for all the IP networks and subnets in the TCP/IP internetwork.

IP supports a small number of different IP routing protocols. All use some similar ideas and processes to learn IP routes, but different routing protocols do have some internal differences. All the routing protocols use the same general steps for learning routes:



- Step 1. Each router, independent of the routing protocol, adds a route to its routing table for each subnet directly connected to the router.
- Step 2. Each router's routing protocol tells its neighbors about the routes in its routing table, including the directly connected routes and routes learned from other routers.
- Step 3. Each router's routing protocol listens to messages from neighboring routers and learns routes, with the next-hop router of that route typically being the neighbor from which the route was learned.

Also, note that at the final step, routers may have to choose between multiple routes to reach a single subnet. When that happens, routers place the best currently available route to reach a subnet (based on a measurement called a metric) into the routing table.

Figure 3-13 shows an example of how a routing protocol works, using the same diagram as in Figures 3-10 and 3-11. In this case, IP subnet 150.150.4.0, which consists of all addresses that begin with 150.150.4.0, sits on the Ethernet at the bottom of the figure. The figure shows the advertisement of routes for subnet 150.150.4.0 from bottom to top, as described in detail following the figure.





Figure 3-13 Example of How Routing Protocols Advertise About Networks and Subnets

Follow items A through F shown in the figure to see how each router learns its route to 150.150.4.0.

- **Step A.** Subnet 150.150.4.0 exists as a subnet at the bottom of the figure, connected to Router R3.
- **Step B.** R3 adds a connected route for 150.150.4.0 to its IP routing table; this happens without help from the routing protocol.
- **Step C.** R3 sends a routing protocol message, called a *routing update*, to R2, causing R2 to learn about subnet 150.150.4.0.
- **Step D.** R2 adds a route for subnet 150.150.4.0 to its routing table.
- **Step E.** R2 sends a similar routing update to R1, causing R1 to learn about subnet 150.150.4.0.
- **Step F.** R1 adds a route for subnet 150.150.4.0 to its routing table. The route lists R1's own Serial0 as the outgoing interface and R2 as the next-hop router IP address (150.150.2.7).

## **Other Network Layer Features**

The TCP/IP network layer defines many functions beyond IP. Sure, IP plays a huge role in networking today, defining IP addressing and IP routing. However, other protocols and standards, defined in other Requests For Comments (RFC), play an important role for network layer functions as well. For example, routing protocols like Open Shortest Path First (OSPF) exist as separate protocols, defined in separate RFCs.

This last short section of the chapter introduces three other network layer features that should be helpful to you when reading through the rest of this book. These last three topics just help fill in a few holes, helping to give you some perspective and helping you make sense of later discussions as well. The three topics are

- Domain Name System (DNS)
- Address Resolution Protocol (ARP)
- Ping

## Using Names and the Domain Name System

Can you imagine a world in which every time you used an application, you had to refer to it by IP address? Instead of using easy names like google.com or cisco.com, you would have to remember and type IP addresses, like 64.233.177.100. (At press time, 64.233.177.100 was an address used by Google, and you could reach Google's website by typing that address in a browser.) Certainly, asking users to remember IP addresses would not be user friendly and could drive some people away from using computers at all.

Thankfully, TCP/IP defines a way to use hostnames to identify other computers. The user either never thinks about the other computer or refers to the other computer by name. Then, protocols dynamically discover all the necessary information to allow communications based on that name.

For example, when you open a web browser and type in the hostname www.google.com, your computer does not send an IP packet with destination IP address www.google.com; it sends an IP packet to an IP address used by the web server for Google. TCP/IP needs a way to let a computer find the IP address used by the listed hostname, and that method uses the Domain Name System (DNS).

Enterprises use the DNS process to resolve names into the matching IP address, as shown in the example in Figure 3-14. In this case, PC11, on the left, needs to connect to a server named Server1. At some point, the user either types in the name Server1 or some application on PC11 refers to that server by name. At Step 1, PC11 sends a DNS message—a DNS query—to the DNS server. At Step 2, the DNS server sends back a DNS reply that lists Server1's IP address. At Step 3, PC11 can now send an IP packet to destination address 10.1.2.3, the address used by Server1.

Note that the example in Figure 3-14 shows a cloud for the TCP/IP network because the details of the network, including routers, do not matter to the name resolution process. Routers treat the DNS messages just like any other IP packet, routing them based on the destination IP address. For example, at Step 1 in the figure, the DNS query will list the DNS server's IP address as the destination address, which any routers will use to forward the packet.



Figure 3-14 Basic DNS Name Resolution Request

Finally, DNS defines much more than just a few messages. DNS defines protocols, as well as standards for the text names used throughout the world, and a worldwide set of distributed DNS servers. The domain names that people use every day when web browsing, which look like www.example.com, follow the DNS naming standards. Also, no single DNS server knows all the names and matching IP addresses, but the information is distributed across many DNS servers. So, the DNS servers of the world work together, forwarding queries to each other, until the server that knows the answer supplies the desired IP address information.

#### The Address Resolution Protocol

As discussed in depth throughout this chapter, IP routing logic requires that hosts and routers encapsulate IP packets inside data-link layer frames. For Ethernet interfaces, how does a router know what MAC address to use for the destination? It uses **ARP**.

On Ethernet LANs, whenever a host or router needs to encapsulate an IP packet in a new Ethernet frame, the host or router knows all the important facts to build that header—except for the destination MAC address. The host knows the IP address of the next device, either another host IP address or the default router IP address. A router knows the IP route used for forwarding the IP packet, which lists the next router's IP address. However, the hosts and routers do not know those neighboring devices' MAC addresses beforehand.

TCP/IP defines the Address Resolution Protocol (ARP) as the method by which any host or router on a LAN can dynamically learn the MAC address of another IP host or router on the same LAN. ARP defines a protocol that includes the *ARP Request*, which is a message that makes the simple request "if this is your IP address, please reply with your MAC address." ARP also defines the *ARP Reply* message, which indeed lists both the original IP address and the matching MAC address.

Figure 3-15 shows an example that uses the same router and host from the bottom part of the earlier Figure 3-13. The figure shows the ARP Request sent by router R3, on the left of the figure, as a LAN broadcast. All devices on the LAN will then process the received frame. On the right, at Step 2, host PC2 sends back an ARP Reply, identifying PC2's MAC address. The text beside each message shows the contents inside the ARP message itself, which lets PC2 learn R3's IP address and matching MAC address, and R3 learn PC2's IP address and matching MAC address.



**Figure 3-15** *Sample ARP Process* 

Note that hosts and routers remember the ARP results, keeping the information in their ARP cache or ARP table. A host or router only needs to use ARP occasionally, to build the ARP cache the first time. Each time a host or router needs to send a packet encapsulated in an Ethernet frame, it first checks its ARP cache for the correct IP address and matching MAC address. Hosts and routers will let ARP cache entries time out to clean up the table, so occasional ARP Requests can be seen.

**NOTE** You can see the contents of the ARP cache on most PC operating systems by using the arp -a command from a command prompt.

## ICMP Echo and the ping Command

After you have implemented a TCP/IP internetwork, you need a way to test basic IP connectivity without relying on any applications to be working. The primary tool for testing basic network connectivity is the ping command.

Ping uses the Internet Control Message Protocol (ICMP), sending a message called an ICMP echo request to another IP address. The computer with that IP address should reply with an ICMP echo reply. If that works, you successfully have tested the IP network. In other words, you know that the network can deliver a packet from one host to the other and back. ICMP does not rely on any application, so it really just tests basic IP connectivity— Layers 1, 2, and 3 of the OSI model. Figure 3-16 outlines the basic process.



Figure 3-16 Sample Network, ping Command

Note that while the ping command uses ICMP, ICMP does much more. ICMP defines many messages that devices can use to help manage and control the IP network.

## **Chapter Review**

The "Your Study Plan" element, just before Chapter 1, discusses how you should study and practice the content and skills for each chapter before moving on to the next chapter. That element introduces the tools used here at the end of each chapter. If you haven't already done so, take a few minutes to read that section. Then come back here and do the useful work of reviewing the chapter to help lock into memory what you just read.

Review this chapter's material using either the tools in the book or interactive tools for the same material found on the book's companion website. Table 3-4 outlines the key review elements and where you can find them. To better track your study progress, record when you completed these activities in the second column.

Table 3-4 Chapter Review Tracking

| Review Element         | Review Date(s) | Resource Used |
|------------------------|----------------|---------------|
| Review key topics      |                | Book, website |
| Review key terms       |                | Book, website |
| Answer DIKTA questions |                | Book, PTP     |
| Review memory tables   |                | Book, website |

# **Review All the Key Topics**



Table 3-5 Key Topics for Chapter 3

| Key Topic<br>Element | Description                                                                             | Page<br>Number |
|----------------------|-----------------------------------------------------------------------------------------|----------------|
| Figure 3-6           | Router de-encapsulation and re-encapsulation                                            | 68             |
| Figure 3-7           | Ethernet WAN—physical connections                                                       | 69             |
| List                 | Common terms to describe an Ethernet WAN link                                           | 70             |
| List                 | Four-step process of how routers route (forward) packets                                | 74             |
| Figure 3-11          | IP Routing and Encapsulation                                                            | 74             |
| List                 | Two statements about how IP expects IP addresses to be grouped into networks or subnets | 76             |
| List                 | Three-step process of how routing protocols learn routes                                | 77             |
| Figure 3-13          | IP Routing Protocol Basic Process                                                       | 78             |
| Figure 3-14          | Example that shows the purpose and process of DNS name resolution                       | 80             |
| Figure 3-15          | Example of the purpose and process of ARP                                               | 81             |

## **Key Terms You Should Know**

ARP, default router (default gateway), DNS, Ethernet Line Service (E-Line), Ethernet WAN, HDLC, hostname, IP address, IP network, IP packet, IP subnet, leased line, ping, routing protocol, routing table, serial interface, subnetting, telco, wide-area network (WAN)





Keep track of your part review progress with the checklist shown in Table P1-1. Details on each task follow the table.

Table P1-1 Part I Review Checklist

| Activity                            | 1st Date Completed | 2nd Date Completed |
|-------------------------------------|--------------------|--------------------|
| Repeat All DIKTA Questions          |                    |                    |
| Answer Part Review Questions        |                    |                    |
| Review Key Topics                   |                    |                    |
| Chapter Review Interactive Elements |                    |                    |

# **Repeat All DIKTA Questions**

For this task, answer the "Do I Know This Already?" questions again for the chapters in this part of the book, using the PTP software. Refer to the Introduction to this book, the section titled "How to View Only DIKTA Questions by Chapter or Part," for help with how to make the PTP software show you DIKTA questions for this part only.

## **Answer Part Review Questions**

For this task, answer the Part Review questions for this part of the book, using the PTP software. Refer to the Introduction to this book, the section titled "How to View Part Review Questions," for help with how to make the PTP software show you Part Review questions for this part only. (Note that if you use the questions but then want even more, get the Premium Edition of the book, as detailed in the Introduction, in the section "Other Features," under the item labeled "eBook.")

# **Review Key Topics**

Browse back through the chapters and look for the Key Topic icons. If you do not remember some details, take the time to reread those topics, or use the Key Topics application(s) found on the companion website.

Take the time to find the companion website for this book and bookmark that page as detailed in the Introduction section titled "Bookmark the Companion Website," in the Your Study Plan section just before Chapter 1.

## **Use Per-Chapter Interactive Review Elements**

Using the companion website, browse through the interactive review elements, like memory tables and key term flashcards, to review the content from each chapter.