MA101, Real Analysis Series and Power Series

1. Discuss the convergence and divergence of the following series:

(a)
$$\sum \left[\sqrt{n+1} - \sqrt{n}\right]$$

(f)
$$\sum \frac{(-1)^n n!}{2^n}$$

(k)
$$\sum_{1}^{\infty} \frac{1}{n(\log n)^p}$$

(a)
$$\sum \left[\sqrt{n+1} - \sqrt{n}\right]$$
. (f) $\sum \frac{(-1)^n n!}{2^n}$.
(b) $\sum (1/2)^n \left(50 + \frac{2}{n}\right)$. (g) $\sum_2^\infty \frac{1}{\sqrt{n \log n}}$.
(c) $\sum \frac{100^n}{n!}$. (h) $\sum_2^\infty \frac{\log n}{n}$.

(g)
$$\sum_{1}^{\infty} \frac{1}{\sqrt{n} \log n}$$
.

(1)
$$\sum_{1}^{\infty} (-1)^n \left(\frac{\ln n}{(\log n)^2}\right)^n$$
.

(c)
$$\sum \frac{100^n}{n!}$$

(h)
$$\sum_{1}^{\infty} \frac{\log n}{n}$$

(m)
$$\sum_{1}^{\infty} (-1)^n \operatorname{sech} n$$
.

(c)
$$\sum \frac{100^n}{n!}$$
.
(d) $\sum \frac{1}{\sqrt{n!}}$.
(e) $\sum \frac{n^3}{2n}$.

(h)
$$\sum_{1}^{\infty} \frac{\log n}{n}$$
.
(i) $\sum_{1}^{\infty} \frac{1}{n \log n \log \log n}$.

(n)
$$\sum_{1}^{\infty} (-1)^n \left(\frac{\tan^{-1} n}{1+n^2} \right)$$
.

2. Let $\sum_{n=1}^{\infty} a_n$ be a convergent series of positive terms. What can be said about the convergence of

$$\sum_{n=1}^{\infty} \frac{a_1 + a_2 + \dots + a_n}{n}.$$

- 3. Let p_n be a sequence of all consecutive prime numbers. Study convergence of $\sum_{n=1}^{\infty} \frac{1}{p_n}$.
- 4. Decide whether the series

$$\sum_{n=1}^{\infty} \frac{(-1)^{[\ln n]}}{n}$$

is absolutely convergent, conditional convergent or divergent.

- 5. For a sequence $\{a_n\}$ tends to zero and for a, b, c such that $a+b+c \neq 0$, prove that the series $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} (aa_n + ba_{n+1} + ca_{n+2})$ either both converge or both diverge.
- 6. Apply Dirichlet's test and study the convergence of the series where $a \in \mathbb{R}$

(a)

$$\sum_{n=1}^{\infty} \frac{\sin(na)\sin(n^2a)}{n},$$

(b)

$$\sum_{n=1}^{\infty} \frac{\sin(na)\cos(n^2a)}{n}.$$

- 7. In the following exercises (a) find the series' radius and interval of convergence. For what values of x does the series converge (b) absolutely, (c) conditionally?
 - (a) $\sum_{0}^{\infty} (x+5)^{n}$.
 - (b) $\sum_{0}^{\infty} (-2)^{n} (n+1) (x-1)^{n}$.
 - (c) $\sum_{n=0}^{\infty} \frac{x^n}{n \ln n}$.
 - (d) $\sum_{1}^{\infty} \frac{(4x-5)^{2n+1}}{n^{3/2}}$.
 - (e) $\sum_{1}^{\infty} \frac{(x-\sqrt{2})^{2n+1}}{2^n}$.