Uma arquitetura para criação de interfaces adaptativas para televisão interativa

Fabrício Jailson Barth

Laboratório de Engenharia de Conhecimento Escola Politécnica da Universidade de São Paulo Av. Prof. Luciano Gualberto, 158, tv. 3 05508-900 São Paulo, SP fabricio.barth@poli.usp.br

RESUMO

O objetivo deste trabalho é analisar a aplicabilidade de uma arquitetura de interfaces adaptativas para a futura televisão interativa, principalmente, questões relativas à aquisição de modelos de telespectadores. Acredita-se, fortemente, que a questão central para o funcionamento de interfaces adaptativas para TV Interativa passa pela definição adequada dos estereótipos e utilização das abordagens mais eficientes para aquisição e adaptação dos modelos de usuários.

Palavras-chave

Interfaces Adaptativas, Modelagem de Usuários e TV Interativa.

INTRODUÇÃO

A televisão digital é a representante da nova geração de televisão que, ao longo dos próximos anos, substituirá o atual sistema de transmissão analógico em todo o mundo. As transmissões digitais permitirão à televisão aberta oferecer livremente ao telespectador inúmeras vantagens, algumas das quais já estão sendo disponibilizadas através de outras mídias digitais pagas [1].

A televisão digital, além de permitir a transmissão de imagens com resolução até seis vezes maior que as das televisões atuais, som com qualidade digital e acesso condicional, irá fornecer um canal de retorno para o telespectador, ou seja, um meio para os usuários se comunicarem de volta com os provedores de conteúdo. O canal de retorno pode ser usado para fornecer realimentação, requisitar mais informações, comprar produtos e serviços, entre outras funções.

A combinação da televisão com conteúdos enriquecidos e com a possibilidade de um canal de retorno, constitui a chamada *TV Interativa* [1,9,12]. A *TV Interativa* fornece entretenimento e maior quantidade de informação, combinando a forma tradicional de assistir a televisão com a interatividade do computador pessoal.

A programação de uma *Tv Interativa* pode incluir gráficos especiais, acesso a web através de *links* cruzados na televisão, correio eletrônico, *chats* e comércio on-line. Porém, é necessário observar que, dado o surgimento de

Edson Satoshi Gomi

Laboratório de Engenharia de Conhecimento Escola Politécnica da Universidade de São Paulo Av. Prof. Luciano Gualberto, 158, tv. 3 05508-900 São Paulo, SP edson.gomi@poli.usp.br

recursos inovadores relacionados ao uso da televisão, existe a necessidade de criar meios eletrônicos que explorem o perfil do telespectador que está assistindo a televisão, para então, personalizar os serviços de acordo com as necessidades e interesses deste telespectador. Assim, será possível mostrar todas as funcionalidades de interesse do telespectador sem sobrecarregar a interface. Uma interface que faz uso do perfil do usuário para se adaptar as necessidades do mesmo é chamada de interface adaptativa.

Dentro deste contexto, o objetivo deste trabalho é analisar a aplicabilidade de uma arquitetura de interfaces adaptativas para a futura televisão interativa, principalmente, questões relativas à aquisição de modelos de telespectadores e modelos de residência.

Este trabalho está estruturado da seguinte forma: na próxima seção são apresentados os conceitos sobre sistemas adaptativos e modelagem de usuários; na seção *Arquitetura* é apresentada a proposta de uma arquitetura para o desenvolvimento de interfaces adaptativas, e; na última seção são apresentadas as considerações finais do trabalho.

SISTEMAS ADAPTATIVOS

Pode-se descrever um sistema adaptativo como uma entidade que tenta se adequar as expectativas dos usuários a partir de modelos representando seu perfil - modelo de usuário [2]. Sendo assim, os sistemas ditos adaptativos devem implementar, além das funcionalidades básicas do sistema, mecanismos que permitem mapear de maneira automática o perfil do usuário, representando-o em um modelo de usuário.

Um modelo de usuário consiste, principalmente, de conhecimento sobre as preferências individuais que determinam o comportamento do usuário. Entende-se por preferências todas aquelas informações que são diretamente necessárias para a adaptação do comportamento do sistema aos interesses do usuário. Por exemplo, quantas vezes, qual a freqüência e por quanto tempo um usuário acessa um determinado programa de televisão.

Além disto, o modelo de usuário pode conter informações pessoais a respeito do usuário, tais como: sua idade,

profissão, etc. Tais informações não são diretamente necessárias para a adaptação de um sistema ao usuário, mas podem ser usadas para categorizar o usuário em um estereótipo, que torna possível com que o sistema antecipe alguns dos comportamentos do usuário [3,4].

Estereótipos foram introduzidos por [5], como uma forma de organizar usuários de um sistema em grupos com o mesmo comportamento.

Um estereótipo representa uma coleção de características relacionadas a um conjunto de predições sobre estas características. O conjunto de predições representa conjecturas sobre aspectos relacionados a um grupo de pessoas. Por exemplo, mulheres acima de 40 anos, com profissão igual a dona de casa gostam muito de novelas.

Muitos métodos de aquisição de modelo de usuários têm sido apresentados na literatura. A utilização destes métodos depende da definição de modelo de usuário e da representação utilizada. Em geral, os métodos de aquisição de modelo de usuário podem ser agrupados em duas famílias: métodos explícitos e implícitos (não invasivos). Exemplo de um método explícito é a aplicação de questionários e um exemplo de método implícito é a visualização do comportamento e futura inferência das preferências de um usuário [4].

Técnicas de Aprendizado de Máquina têm sido aplicadas em problemas de modelagem de usuários principalmente para adquirir modelos individuais de usuários ou de grupos de usuários [6].

Observações sobre os comportamentos dos usuários podem fornecer um conjunto de exemplos de treinamento que um sistema de aprendizado de máquina pode usar para formar um modelo de usuário [7]. Em tais situações, o uso de um sistema por um usuário é monitorado, os dados são coletados, e usados para a construção do modelo do usuário. Por definição, o desenvolvimento de sistemas adaptativos pressupõe o desenvolvimento de módulos específicos, responsável por aprender os modelos de usuários através do monitoramento da interação do usuário com o sistema [8].

ARQUITETURA

Para personalizar as interfaces da *TV Interativa* de maneira efetiva, existem vários problemas que devem ser resolvidos [9]:

- os telespectadores geralmente não assistem televisão sozinhos, consequentemente, os modelos de residência (household models) devem ser adquiridos e manipulados;
- as técnicas de identificação das preferências do usuário devem ser desenvolvidas para não ser necessário realizar a identificação explícita de cada usuário, ou seja, os interesses dos telespectadores devem ser adquiridos sem perturbá-los com perguntas;

- o sistema deve estar preparado para a mudança repentina dos interesses do usuário, fornecendo recomendações apropriadas a todo momento, e;
- questões de privacidade devem ser consideradas para tornar os sistemas aceitáveis [10].

Com o intuito de criar interfaces adaptativas para a *TV Interativa* que respeitam as questões levantadas acima, propõe-se uma arquitetura formada com os seguintes componentes:

- modelo do usuário: modelo que representa as necessidades e interesses do telespectador;
- classes de interfaces: conjunto de interfaces prédeterminadas e codificadas. Cada interface deste conjunto é associada a um ou mais estereótipos. Quando um telespectador é caracterizado como sendo parte de um estereótipo, a interface que está associada a este estereótipo é automaticamente habilitada para aquele usuário, e;
- *medidor*: mecanismo que monitora o comportamento do usuário perante a televisão e fornece elementos para que o modelo do usuário seja adaptado.

Esta arquitetura deve permitir criar e alterar modelos de telespectadores sem perturbá-los. Para a criação desta, serão utilizadas referências de trabalhos já realizados em outros paises onde a TV Digital já é realidade. A maioria destes trabalhos utilizam abordagens híbridas com o auxílio de estereótipos.

Para a criação desta arquitetura deve-se: adotar uma classificação de estereótipos do telespectador brasileiro, onde para cada estereótipo é definido uma ou várias interfaces ideais. Pode-se utilizar informações de centros de pesquisa interessados em estudar o comportamento do telespectador brasileiro (i.e., IBOPE).

CONSIDERAÇÕES FINAIS

Para o desenvolvimento da arquitetura aqui proposta, devese responder algumas perguntas:

- quais os algoritmos mais eficientes para selecionar os interesses relevantes dos telespectadores;
- quais tipos de interfaces são as mais intuitivas para procurar e selecionar programas;
- como a privacidade dos telespectadores pode ser administrada e balanceada contra a necessidade da personalização da TV;
- o uso de estereótipos é mais eficiente do que o uso de modelos individuais de usuários para definir os interesses e preferências da TV, e;
- que métodos de teste podem ser aplicados para verificar a viabilidade das interfaces da TV.

De qualquer forma, acredita-se que a questão central para o funcionamento desta arquitetura passa pela definição adequada dos estereótipos e utilização das abordagens mais

eficientes para aquisição e adaptação dos modelos de usuários.

REFERÊNCIAS

- Glossário de Convergência Digital, STE, Obtido em http://www.set.com.br/glossario_print.html, Acessado em 20 de outubro de 2003.
- L. A. M. Palazzo, "Sistemas de hipermídia adaptativa," in JAI 2002 XXI Jornada de Atualização em Informática, Material disponível em http://gpia.ucpel.tche.br/~lpalazzo/sha/ (acessado em: 01/10/2003), 2002.
- 3. E. Rich, "Users are individuals: Individualizing user models," *International Journal of Man-Machine Studies*, vol. 51, pp. 323–338, 1999.
- C. Papatheodorou, "Machine learning in user modeling," in *Machine Learning and Applications*, G. Paliouras, V. Karkaletsis, and C. D. Spyropoulos, Eds. Berlin: Springer-Verlag Berlin Heidelberg, 2001, no. LNAI 2049, pp. 286–294.
- 5. E. Rich, "Users are individuals: Individualizing user models," *International Journal of Man-Machine Studies*, vol. 18, pp. 199–214, 1983.
- G. Paliourasa, C. Papatheodoroub, V. Karkaletsisa, and C. Spyropoulosa, "Discovering user communities on the internet using unsupervised machine learning techniques," *Interacting with Computers*, vol. 12, pp. 761–791, March 2002.

- 7. G. I. Webb, M. J. Pazzani, and D. Billsus, "Machine learning for user modeling," *User Modeling and User-Adapted Interaction*, vol. 11, no. 1-4, pp. 19–29, 2001.
- 8. P. Langley, "User modeling in adaptive interfaces," in *Proceedings of the Workshop on Machine Learning in User Modeling. Advanced Course on Artificial Intelligence (ACAI'99)*, C. Papatheodorou, Ed. Greece: Springer, July 1999.
- 9. L. Ardissono and M. Maybury, *WorkShop Summary-TV'03*, TV'03: the 3rd Workshop on Personalization in Future TV, Obtido em http://www.di.unito.it/~liliana/TV03/, Acessado em 10 de outubro de 2003.
- 10. A. Kobsa and J. Schreck, "Privacy through pseudonymity in user-adaptive systems," *ACM Transactions on Internet Technology*, vol. 3, no. 2, pp. 149–183, 2003.
- 11.C. Papatheodorou, Ed., *Proceedings of the Workshop on Machine Learning in User Modeling, Advanced Course on Artificial Intelligence (ACAI'99)*, http://www.iit.demokritos.gr/skel/eetn/acai99/Workshop s.htm, July 1999.
- 12. L. Ardissono, A. Kobsa and M. Maybury. *Personalized Digital Television. Targeting programs to individual users*. Kluwer Academic Publishers, 2004.