

planetmath.org

Math for the people, by the people.

Eisenstein criterion in terms of divisor theory

Canonical name EisensteinCriterionInTermsOfDivisorTheory

Date of creation 2013-03-22 18:00:45 Last modified on 2013-03-22 18:00:45

Owner pahio (2872) Last modified by pahio (2872)

Numerical id 6

Author pahio (2872)
Entry type Theorem
Classification msc 13A05
Related topic DivisorTheory

The below theorem generalises Eisenstein criterion of irreducibility from UFD's to domains with divisor theory.

Theorem. Let $f(x) := a_0 + a_1 x + \ldots + a_n x^n$ be a primitive polynomial over an integral domain \mathcal{O} with http://planetmath.org/DivisorTheorydivisor theory $\mathcal{O}^* \to \mathfrak{D}$. If there is a prime divisor $\mathfrak{p} \in \mathfrak{D}$ such that

- $\mathfrak{p} \mid a_0, a_1, \ldots, a_{n-1},$
- $\mathfrak{p} \nmid a_n$,
- $\mathfrak{p}^2 \nmid a_0$,

then the polynomial is irreducible.

Proof. Suppose that we have in $\mathcal{O}[x]$ the factorisation

$$f(x) = (b_0 + b_1 x + \dots + b_s x^s)(c_0 + c_1 x + \dots + c_t x^t)$$

with s > 0 and t > 0. Because the principal divisor (a_0) , i.e. $(b_0)(c_0)$ is divisible by the prime divisor \mathfrak{p} and there is a unique factorisation in the monoid \mathfrak{D} , \mathfrak{p} must divide (b_0) or (c_0) but, by $\mathfrak{p}^2 \nmid (a_0)$, not both of (b_0) and (c_0) ; suppose e.g. that $\mathfrak{p} \mid c_0$. If \mathfrak{p} would divide all the coefficients c_j , then it would divide also the product $b_s c_t = a_n$. So, there is a certain smallest index k such that $p \nmid c_k$. Accordingly, in the sum $b_0 c_k + b_1 c_{k-1} + \ldots + b_k c_0$, the prime divisor \mathfrak{p} http://planetmath.org/DivisibilityInRingsdivides every summand except the first (see the definition of http://planetmath.org/DivisorTheorydivisor theory); therefore it cannot divide the sum. But the value of the sum is a_k which by hypothesis is divisible by the prime divisor. This contradiction shows that the polynomial f(x) is irreducible.