Design Theory: Functional Dependencies and Normal Forms, Part I

Instructor: Shel Finkelstein

Reference:

A First Course in Database Systems, 3rd edition, Chapter 3

Important Notices

- Gradiance #4 was assigned on Sunday, May 19, and is due on Monday, May 27 by 11:59pm.
- Lab4 assignment is due on Sunday, June 2, by 11:59pm.
 - Subject of Lab4 is Lecture 10 (Application Programming).
 - Lab4 will be discussed at Lab Sections.
 - Your solution should be submitted via Canvas as a zip file.
 - Canvas is used for both Lab submission and grading.
 - Late Lab Assignments will not be accepted.
 - Be sure that you post the correct file!
 - Load file for Lab4 has been/will be posted to Piazza.
 - You must use load file to do Lab4.
 - Load data helps with testing, but we won't post query solutions.
- See <u>Small Group Tutoring website</u> for LSS Tutoring with <u>Chandler Hawkins</u>.

Important Notices

CMPS 180 Final Exam is on **Monday June 10, 4:00 – 7:00pm**, in our usual classroom.

- No early/late Finals, no make-up Finals.
- No devices.
- Includes a Multiple Choice Section and a Longer Answers Section.
 - Bring <u>Red Scantron</u> sheets (ParSCORE form number f-1712) sold at Bookstore, and #2 pencils for Multiple Choice Section.
 - Ink and #3 pencils don't work.
- Covers entire quarter, with slightly greater emphasis on second half of quarter.
- You may bring in <u>one</u> double-sided 8.5 by 11 sheet, with anything that you can read unassisted printed or written on both sides of the paper.
 - No sharing of sheets is permitted.
 - Include name on top right of sheet. Sheets will be collected with Finals.
- You must show your UCSC ID at end of Final.
- Will post Practice Final from Spring 2017 (2 Sections) on Piazza.

Database Schema Design

- So far, we have learned database query languages:
 - SQL, Relational Algebra
- How can you tell whether a given database schema is "good" or "bad"?
- Design theory:
 - A set of design principles that allows one to decide what constitutes a "good" or "bad" database schema design.
 - A set of algorithms for modifying a "bad" design to a "better" one.

Example

• If we know that rank determines the salary scale, which is a better design? Why?

Employees(<u>eid</u>, name, addr, rank, salary_scale)

OR

Employees2(<u>eid</u>, name, addr, rank)
 Salary_Table(rank, salary_scale)

Lots of Duplicate Information

eid	name	addr	rank	salary_scale
34-133	Jane	Elm St.	6	70-90
33-112	Hugh	Pine St.	3	30-40
26-002	Gary	Elm St.	4	35-50
51-994	Ann	South St.	4	35-50
45-990	Jim	Main St.	6	70-90
98-762	Paul	Walnut St.	4	35-50

- Lots of duplicate information
 - Employees who have the same rank have the same salary scale.

Update Anomaly

eid	name	addr	rank	salary_scale
34-133	Jane	Elm St.	6	70-90
33-112	Hugh	Pine St.	3	30-40
26-002	Gary	Elm St.	4	35-50
51-994	Ann	South St.	4	35-50
45-990	Jim	Main St.	6	70-90
98-762	Paul	Walnut St.	4	35-50

Update anomaly

 If one copy of salary scale is changed, then all copies of that salary scale (of the same rank) have to be changed.

Insertion Anomaly

eid	name	addr	rank	salary_scale
34-133	Jane	Elm St.	6	70-90
33-112	Hugh	Pine St.	3	30-40
26-002	Gary	Elm St.	4	35-50
51-994	Ann	South St.	4	35-50
45-990	Jim	Main St.	6	70-90
98-762	Paul	Walnut St.	4	35-50

Insertion anomaly

- How can we store a new rank and salary scale information if currently, no employee has that rank?
- Use NULLS?

Deletion Anomaly

eid	name	addr	rank	salary_scale
34-133	Jane	Elm St.	6	70-90
33-112	Hugh	Pine St.	3	30-40
26-002	Gary	Elm St.	4	35-50
51-994	Ann	South St.	4	35-50
45-990	Jim	Main St.	6	70-90
98-762	Paul	Walnut St.	4	35-50

Deletion anomaly

- If Hugh is deleted, how can we retain the rank and salary scale information?
- Is using NULL a good choice?
 - (Why not?)

So What Would Be a Good Schema Design for this Example?

- salary_scale is dependent only on rank
 - Hence associating employee information such as name, addr with salary_scale causes redundancy.
- Based on the constraints given, we would like to refine the schema so that such redundancies cannot occur.
- Note however, that sometimes database designers may choose to live with redundancy in order to improve query performance.
 - Ultimately, a good design is depends on the query workload.
 - But understanding anomalies and how to deal with them is still important.

Functional Dependencies

- The information that rank determines salary_scale is a type of integrity constraint known as a functional dependency (FD).
- Functional dependencies can help us detect anomalies that may exist in a given schema.
- The FD "rank → salary_scale" suggests that
 Employees(eid, name, addr, rank, salary_scale)
 should be decomposed into two relations:
 Employees2(eid, name, addr, rank)
 Salary_Table(rank, salary_scale).

Meaning of an FD

- We have seen a kind of functional dependency before.
- Keys:
 - Emp(<u>ssn</u>, name, addr)
 - If two tuples agree on the ssn value, then they must also agree on the name and address values. (ssn \rightarrow name, addr).
- Let **R** be a relation schema. A *functional dependency (FD)* is an integrity constraint of the form:
 - $X \rightarrow Y$ (read as "X determines Y or X functionally determines Y") where X and Y are non-empty subsets of attributes of **R**.
- A relation instance r of **R** satisfies the FD X → Y if
 for every pair of tuples t and t' in r, if t[X] = t'[X], then t[Y] = t'[Y]

Denotes the X value(s) of tuple t, i.e., project t on the attributes in X.

Illustration of the Semantics of an FD

• Relation schema R with the FD A_1 , ..., $A_m \rightarrow B_1$, ..., B_n where $\{A_1, ..., A_m, B_1, ..., B_n\} \subseteq attributes(R)$.

	A ₁ A ₂ A _m	B ₁ B _n	the rest of the attributes in R, if any		
t	XXXXXXXXXXXXXX	ууууууууу	yy zzzzzzzzzzzzzzzzzzzzzzzzzzzzzz		
			The actual values do not matter, I they cannot be the same if R is a		
t'	XXXXXXXXXXXXXX	Ууууууууу	¥ wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww		
	VVVVVVVVVVVVVV	ууууууууу	uuuuuuuuuuuuuuuuuuuuu	OK	
	XXXXXXXXXXXXXX	vvvvvvvv	uuuuuuuuuuuuuuuuuuuuuuuuuu VIOLATION!		

More on Meaning of an FD

- Relation R satisfies X → Y
 - Pick any two (not necessarily distinct) tuples t and t' of an instance r of R. If t and t' agree on the X attributes, then they must also agree on the Y attributes.
 - The above must hold for every possible instance r of R.
- An FD is a statement about all possible legal instances of a schema. We <u>cannot</u> just look at an instance (or even at a set of instances) to determine which FDs hold.
 - Looking at an instance may enable us to determine that some FDs are not satisfied.

Reasoning about FDs

```
R(A,B,C,D,E)
Suppose A \rightarrow C and C \rightarrow E. Is it also true that A \rightarrow E?
In other words, suppose an instance r satisfies A \rightarrow C and C \rightarrow E,
```

is it true that r must also satisfy $A \rightarrow E$?

YES

Proof: ?

Implication of FDs

- We say that a set \mathcal{F} of FDs *implies* an FD F if for every instance r that satisfies \mathcal{F} , it must also be true that r satisfies F.
- Notation: $\mathcal{T} \models F$
- Note that just finding some instance(s) r such that r satisfies \mathcal{F} and r also satisfies F is not sufficient to prove that $\mathcal{F} \models F$.
- How can we determine whether or not \mathcal{F} implies F?

Armstrong's Axioms

- Use Armstrong's Axioms to determine whether or not $\mathcal{T} \models F$.
- Let X, Y, and Z denote sets of attributes over a relation schema R.
- Reflexivity: If Y ⊆ X, then X → Y.
 ssn, name → name
 - FDs in this category are called trivial FDs.
- Augmentation: If X → Y, then XZ → YZ for any set Z of attributes.
 ssn, name, addr → name addr
- Transitivity: If X → Y and Y → Z, then X → Z.
 If ssn → rank, and rank → sal_scale,
 then ssn → sal_scale.

Union and Decomposition Rules

- Union: If $X \rightarrow Y$ and $X \rightarrow Z$, then $X \rightarrow YZ$.
- **Decomposition**: If $X \to YZ$, then $X \to Y$ and $X \to Z$.
- Union and Decomposition rules are not essential. In other words, they can be derived using Armstrong's axioms.
- Derivation of the Union rule: (to fill in)

Union and Decomposition Rules

- Union: If $X \rightarrow Y$ and $X \rightarrow Z$, then $X \rightarrow YZ$.
- **Decomposition**: If $X \to YZ$, then $X \to Y$ and $X \to Z$.
- Union and Decomposition rules are not essential. In other words, they can be derived using Armstrong's axioms.
- Derivation of the Union rule:

```
Since X \rightarrow Z, we get XY \rightarrow YZ (augmentation)
```

Since $X \rightarrow Y$, we get $X \rightarrow XY$ (augmentation)

Therefore, $X \rightarrow YZ$ (transitivity)

Additional Rules

 Derivation of the Decomposition rule: (to fill in)

Additional Rules

Derivation of the Decomposition rule:

```
X \rightarrow YZ (given)

YZ \rightarrow Y (reflexivity)

YZ \rightarrow Z (reflexivity)

Therefore, X \rightarrow Y and X \rightarrow Z (transitivity).
```

- We use the notation $\mathcal{F} \vdash F$ to mean that F can be derived from \mathcal{F} using Armstrong's axioms.
 - That's a lot of words, so we'll sometimes just read this as: " \mathcal{T} generates F".
 - What was the meaning of $\mathcal{F} \models F (\mathcal{F} \text{ implies } F)$?

Pseudo-Transitivity Rule

- Pseudo-Transitivity: If $X \to Y$ and $WY \to Z$, then $XW \to Z$.
- Can you derive this rule using Armstrong's axioms?
- Derivation of the Pseudo-Transitivity rule: (to fill in)

Pseudo-Transitivity Rule

- Pseudo-Transitivity: If $X \to Y$ and $WY \to Z$, then $XW \to Z$.
- Can you derive this rule using Armstrong's axioms?
- Derivation of the Pseudo-Transitivity rule:

```
X -> Y and WY -> Z
XW -> WY (augmentation)
```

WY -> Z (given)

Therefore XW -> Z (transitivity)

Completeness of Armstrong's Axioms

• Completeness: If a set \mathcal{F} of FDs implies F, then F can be derived from \mathcal{F} by applying Armstrong's axioms.

– If \mathcal{F} implies F, then one can prove F from \mathcal{F} using Armstrong's axioms (i.e., \mathcal{F} generates F).

For those familiar with Mathematical Logic:

- T ⊨ F is "model-theoretic"
- *T* ⊢ F is "proof-theoretic"

Soundness of Armstrong's Axioms

- Soundness: If F can be derived from a set of FDs \mathcal{F} through Armstrong's axioms, then \mathcal{F} implies F.
 - If \mathcal{F} ⊢ F, then \mathcal{F} ⊨ F.
 - That is, if $\mathcal F$ generates F, then $\mathcal F$ implies F.
 - Handwaving proof: If one can generate F from T using Armstrong's axioms, then surely T implies F. (Why?)
- With Completeness and Soundness, we know that $\mathcal{T} \vdash \mathsf{F}$ if and only if $\mathcal{T} \models \mathsf{F}$ In other words, Armstrong's axioms generate precisely *all* the FDs that must hold under \mathcal{T} (all the axioms that \mathcal{T} implies).
- Great! But how can we decide whether or not $\mathcal F$ implies F?

Closure of a Set of FDs \mathcal{F}

Expensive and

tedious! Let's

find a better way.

- Let \mathcal{F}^+ denote the set of all FDs implied by a given set \mathcal{F} of FDs.
 - \circ Also called the closure of \mathcal{F} .
- To decide whether T implies F, first compute T+, then see whether
 F is a member of T+.
- Example: Compute \mathcal{T}^+ for the set { A \rightarrow B, B \rightarrow C} of FDs.
- Trivial FDs
 - $\bigcirc \ \ \, \mathsf{A} \to \ \, \mathsf{A}, \, \mathsf{B} \to \ \, \mathsf{B}, \, \mathsf{C} \to \ \, \mathsf{C}, \, \mathsf{AB} \to \ \, \mathsf{A}, \, \mathsf{AB} \to \ \, \mathsf{B}, \, \mathsf{BC} \to \ \, \mathsf{B}, \, \mathsf{BC} \to \ \, \mathsf{C}, \, \mathsf{AC} \to \ \, \mathsf{A}, \\ \ \ \, \mathsf{AC} \to \ \, \mathsf{C}, \, \mathsf{ABC} \to \ \, \mathsf{A}, \, \mathsf{ABC} \to \ \, \mathsf{B}, \, \mathsf{ABC} \to \ \, \mathsf{C}, \, \mathsf{ABC} \to \ \, \mathsf{AB}, \, \mathsf{ABC} \to \ \, \mathsf{AC} \, , \\ \ \ \, \mathsf{ABC} \to \ \, \mathsf{BC}, \, \mathsf{ABC} \to \ \, \mathsf{ABC} \to \ \, \mathsf{ABC}$
- Transitivity (non-trivial FDs)
 - \circ AC \to B AC \to A (trivial), A \to B (given), so AC \to B (transitivity).
 - AB → C AB → B (trivial), B → C (given), so AB → C (transitivity).
 - \circ A → C A → B (given), B → C (given), so A → C (transitivity).

Attribute Closure Algorithm

- Let X be a set of attributes and \mathcal{F} be a set of FDs. The attribute closure X^+ with respect to \mathcal{F} is the set of all attributes A such that $X \to A$ is derivable from \mathcal{F} .
 - That is, all the attributes A such that $\mathcal{F} \vdash X \rightarrow A$

```
Input: A set X of attributes and a set \mathcal{F} of FDs.
    Output: X<sup>+</sup>
    Closure = X; // initialize Closure to equal the set X
    repeat until no change in Closure {
     if there is an FD U \rightarrow V in \mathcal{F} such that U \subseteq Closure,
     then Closure = Closure U V;
    return Closure;
If A \in Closure (that is, if A \in X^+), then X \to A.
More strongly, \mathcal{F} \vdash X \rightarrow A if and only A \in X^+
```

FD Example 1 using Attribute Closure

- $\mathcal{F} = \{ A \rightarrow B, B \rightarrow C \}.$
- Question: Does A → C?
- Compute A⁺
- Closure = { A }
- Closure = $\{A, B\}$ (due to $A \rightarrow B$)
- Closure = $\{A, B, C\}$ (due to $B \rightarrow C$)
- Closure = { A, B, C }
 - no change, stop
- Therefore A⁺ = {A, B, C }
- Since $C \in A^+$, answer YES.

FD Example 2 using Attribute Closure

- $\mathcal{F} = \{ AB \rightarrow E, B \rightarrow AC, BE \rightarrow C \}$
- Question: Does BC → E?
- Compute BC⁺
- Closure = { B, C }
- Closure = { A, B, C } (due to B → AC)
- Closure = $\{A, B, C, E\}$ (due to $AB \rightarrow E$)
- Closure = $\{A, B, C, E\}$ (due to BE \rightarrow C)
 - No change, so stop.
- Therefore BC⁺ = {A,B,C,E}
- Since E ∈ BC⁺, answer YES.

A Better Algorithm for FDs

It's much easier to compute Attribute Closure X^+ , rather than FD Closure \mathcal{T}^+

- To determine if an FD $X \to Y$ is implied by \mathcal{F} , compute X^+ and check if $Y \subseteq X^+$.
- Notice that computing Attribute Closure X^+ is less expensive (and less tedious) to compute than is FD Closure \mathcal{F}^+ .

Correctness of Algorithm

Is it correct?

Prove that the algorithm indeed computes X⁺.

- Show that for any attribute $A \in X^+$, it is the case that $X \to A$ is derivable from \mathcal{F} .
- Show if X → A is derivable from \mathcal{F} , then it must be that A ∈ X⁺.

Proof of Correctness

Claim: If $A \in X^+$, then $\mathcal{T} \vdash X \rightarrow A$.

Proof: By induction on the number of iterations in the attribute closure algorithm.

(to fill in)

Soundness and Completeness of the Attribute Closure Algorithm

- Soundness: From previous slide, if A ∈ X⁺, then F ⊢ X→A.
 By the Soundness of Armstrong's axioms, it follows that F ⊨ F.
- Is it also true that if $T \vDash F$, where F is the FD X \rightarrow A, then A \in X⁺?
- Completeness.
 - Claim: If that if $\mathcal{T} \models F$, where F is the FD X \rightarrow A, then it must be the case that A \in X $^+$.
 - Proof by contradiction. Won't go through proof details.

Using Attribute Closure Algorithm to Find All Superkeys/Keys for Relation R, given Functional Dependencies \mathcal{F}

Attribute Closure algorithm can be modified to find all superkeys and all candidate keys for R, given Functional Dependencies \mathcal{F} .

- How?
 - Compute the closure of a single attribute in attr(R). Then compute the closure of every 2 attribute set, 3 attribute set, and so on.
 - If the closure of a set of attributes contains all attributes of relation R, then it is a *superkey* for R.
 - If <u>no proper subset</u> of those attributes has a closure that contains all attributes of the relation, then it is a *key*.

Using Attribute Closure Algorithm to Determine if a Set of Attributes X is a SuperKey/Key for Relation R, given Functional Dependencies F

Attribute Closure algorithm can be modified to determine if a set of attributes X is a superkey/key for R, given Functional Dependencies \mathcal{F} .

- How?
 - Compute the attribute closure of X⁺.
 - If X^+ = attr(R), then X is a *superkey*.
 - If <u>no proper subset</u> of X has a closure that contains all attributes of the relation, then X is a *key*.

Practice Homework 6

- 1. Let R(A,B,C,D,E) be a relation schema and let $\mathcal{T} = \{AB \rightarrow E, B \rightarrow AC, BE \rightarrow C\}$ be a set of FDs that hold over R.
 - a. Prove that $\mathcal{T} \models B \rightarrow E$ using Armstrong's axioms.
 - b. Compute the closure of B. That is, compute B⁺.
 - c. Give a key for R. Justify why your answer is a key for R.
 - d. Show an example relation that satisfies \mathcal{F} .
 - e. Show an example relation that does not satisfy \mathcal{F} .
- 2. Let R(A,B,C,D,E) be a relation schema and let $\mathcal{F} = \{ A \rightarrow C, B \rightarrow AE, B \rightarrow D, BD \rightarrow C \}$ be a set of FDs that hold over R.
 - a. Show that $B \rightarrow CD$ using Armstrong's axioms.
 - b. Show a relation of R such that R satisfies \mathcal{F} but R does not satisfy $A \rightarrow D$.
 - c. Is AB a key for R?