# **Marketing & Data Analysis**

Experiments

### Santiago Alonso-Díaz

Tecnólogico de Monterrey EGADE, Business School



## **Typology of Experiments**

Table 1
Types of experiments.

|                      | Type of experiment                           | Characteristics                                                                                                                                                                                                                                          |
|----------------------|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Internal<br>Validity | Conventional<br>laboratory<br>experiment     | High internal control for the experimenter;<br>Generally, it presents an abstract framing; Imposed<br>set of rules; Primarily homogenous subject pools                                                                                                   |
| Ī                    | Experiment with increased behavioral realism | Experiment conducted in the lab or online, measuring some form of real behavior (e.g., simulating a real negotiation process in a lab, using game theory simulations online, or choosing real products online)                                           |
| External<br>Validity | Field experiment                             | The experimenter wants to investigate the field context. Subjects may (vs. not) be aware of their participation in an experiment. Because of the field aspects, the researcher has less internal control.                                                |
|                      | Quasi<br>experiments/Natural<br>data         | Same as natural field experiments except there is no intervention by an experimenter, but there is, however, some kind of external intervention that has occurred (e.g., a change in legislation, a natural disaster, etc.). Data is completely organic. |
|                      | Conjoint analysis                            | Participants elicit their preferences on a series of manipulated factors (i.e., the attributes). This allows researchers to measure how much stakeholders value specific product features.                                                               |

Figure: Viglia et al., 2021

## **Typology of Experiments**

**Table 2**Advantages of different experimental designs.

| Experimental<br>design | Advantages                                                    |
|------------------------|---------------------------------------------------------------|
| Between-subject        | - Easier experimental setup                                   |
| design                 | - Simpler experimental data analysis                          |
| -                      | - Lower risk of participants understanding the purpose of the |
|                        | experiment and providing biased responses                     |
|                        | - Shorter experimental sessions required                      |
| Within-subject         | - Smaller sample size required                                |
| design                 | - Greater probability of grasping true differences among      |
|                        | conditions (less noise)                                       |
|                        | - Greater statistical power to the study                      |
|                        | - Greater alignment with most marketing theoretical mindsets  |
| Mixed design           | - Greater statistical power                                   |
|                        | - Less learning effects                                       |
|                        | - Less order effects                                          |

Figure: Viglia et al., 2021

## **Typology of Experiments**



Figure: Viglia et al., 2021

## **Table of contents**

- 1 Overview
- 2 A/B Testing
  - Examples
  - Implementation (Siroker & Koomen, 2015)
  - Business Requirements (BR) (Siroker & Koomen, 2015)
  - Challenges
- 3 Discrete Choice Experiments
  - Examples
  - Theory
  - Implementation
  - Challenges
- 4 References

A/B Testing

## **Prof. Zoom toilet surveys**

Which A/B option would work best? Results in zoom

Why? Emotion analysis (e.g. ask chatGPT for emotion label of a paragraph)



Figure: Position matters? Source: ebook Optimizely (2022)



Figure: Simplicity matters? Source: ebook Optimizely (2022)



Figure: Preferential treatment matters? Source: ebook Optimizely (2022)



Testing of donation forms increased average donation size

Figure: Not just for-profit marketing. Source: ebook Optimizely (2022)



Figure: A/B does not mean only two options. Source: ebook Optimizely (2022)



Figure: V1 and V2 differ and the option to buy or add. Is the double variation good or bad or irrelevant?. Source: ebook Optimizely (2022)

**Table 6** Application domain ×A/B target.

| Application<br>domain | A/B target | Algorithm | Visual<br>elements | Workflow<br>/process | Back-end | New<br>app.<br>func. | Other |
|-----------------------|------------|-----------|--------------------|----------------------|----------|----------------------|-------|
| Web                   |            | 17        | 6                  | 8                    | 1        | 3                    | 0     |
| Search engine         |            | 17        | 16                 | 3                    | 7        | 2                    | 0     |
| E-commerce            |            | 10        | 2                  | 7                    | 0        | 0                    | 1     |
| Interaction           |            | 5         | 6                  | 2                    | 2        | 1                    | 0     |
| Finances              |            | 7         | 2                  | 4                    | 0        | 1                    | 0     |
| Transportation        |            | 2         | 0                  | 0                    | 1        | 1                    | 0     |
| Other                 |            | 2         | 1                  | 3                    | 0        | 0                    | 2     |

Figure: In the online world, most applications test algorithms or visual elements (Quin et al., 2024)



Figure: Most use simply A/B tests (Quin et al., 2024)

**Table 7** Identified A/B metrics.

| A/B metric          | Number of occurrences |
|---------------------|-----------------------|
| Engagement metrics  | 226                   |
| Click metrics       | 83                    |
| Monetary metrics    | 64                    |
| Performance metrics | 50                    |
| Negative metrics    | 34                    |
| View metrics        | 21                    |
| Feedback metrics    | 17                    |

Figure: Some tested metrics (Quin et al., 2024)

Table 8 Statistical methods employed during A/B testing.

| Statistical methods employed                        | Number of occurrences |
|-----------------------------------------------------|-----------------------|
| Hypothesis - equality                               | 57                    |
| Hypothesis - equality (concrete method unspecified) | 39                    |
| Bootstrapping                                       | 11                    |
| Hypothesis - inference                              | 8                     |
| Goodness of fit                                     | 8                     |
| Estimator                                           | 8                     |
| Correction method                                   | 7                     |
| Hypothesis - independence                           | 5                     |
| Regression method                                   | 2                     |

Figure: Popular data analyses approaches (Quin et al., 2024)

Table 12
Data collected for the A/B tests.

| Data collected        | Number of   |
|-----------------------|-------------|
|                       | occurrences |
| Product/system data   | 49          |
| User-centric data     | 26          |
| Spatial–temporal data | 20          |
| Secondary data        | 6           |

Figure: Data types (Quin et al., 2024)



Figure: Quin et al., 2024

- Build proprietary A/B testing tools
- Buy commercial A/B testing tools. Or open source.
- Hire consultants to run and analyze A/B testing.

**Table 20** Environments and tools used for A/B testing.

| Environment                     | Number of occurrences |
|---------------------------------|-----------------------|
| In-house experimentation system | 21                    |
| Research tool or prototype      | 13                    |
| Commercial A/B testing tool     | 10                    |
| Commercial non A/B testing tool | 7                     |
| User survey                     | 1                     |

Figure: Quin et al., 2024

#### Build

Costly, it requires engineering and data science team.

Perhaps necessary, due to proprietary internal systems.

#### Think, for instance:

- Amazon
- Google
- Mexican government
- Hospital

## Buy

There are companies and open source alternatives that offer A/B testing (Google Optimize, AB Tasty, Optimizely, Adobe Target, Oracle Maxymiser).

#### Advantages:

- Pay as you need
- Expertise and costumer service
- Community

#### Hire

Useful if there is a weak engineering and data science know how. Also, if A/B testing is too sporadic.

#### Think, for instance:

- New product launch
- Change in logistics but expect to last years

## **BR: Culture**

- Cure the HiPPO syndrome: highest paid person opinion (rather than data)
- Fight risk aversion (e.g. by presenting a clear win case.)
- Make evidence-based decisions (frequentist and Bayesian)
- Execute fewer and shorter meetings (around the evidence).
- IMPORTANT: Build a testing culture

## **BR: Stakeholders**

Some are concept designer, experiment architect, setup technician, management

- Do not anger key people (e.g. by rejecting their old ideas) .
- Keep it simple or go slow with most areas (specially technical ones e.g. web keepers).
- Communicate results constantly to stakeholders (e.g. commercial VPs).
- Stakeholders could get tired of testing. Be creative (e.g. IGN gamified testing by betting which option wins, many times people lost, data surprises you).

## **BR: Team**

- Centralized (Testing department e.g. Staples)
- Decentralized (Each department has a testing team e.g. Netflix)

## **BR: Scientific Logic**

- Identify problem
- Come up with an hypothesis
- Test the hypothesis with A/B
- Commit to a sample size and an analyses.
- Pilot. Do A/A tests first to test the system e.g. the same page to both groups. Results should be the same.
- Run the A/B test.
- Analyze (with the committed analyses + exploratory ones).
- Accumulate and transmit knowledge.
- REPEAT

## **Challenges**

- Small sample sizes
- Naive scientific practices



Figure: Probs. better than null (blue trace). The temptation is to stop when a test goes above 95% (green ovals). Problem: under the null hypothesis  $p_{vals}$  are uniform, so stopping may lead us to a false positive (i.e. that green oval is plausible under the null). (Johari et al., 2022)

## **Challenges**

- Small sample sizes
- Naive scientific practices
- Other

Table 18
List of identified open problems.

| Open problem category | Open problem sub-category             | Number of occurrences |
|-----------------------|---------------------------------------|-----------------------|
|                       | Extend the evaluation                 | 21                    |
| Evaluation-related    | Provide thorough analysis of approach | 16                    |
|                       | Other evaluation-related              | 36                    |
| Process-related       | Add process guidelines                | 9                     |
|                       | Automate process                      | 7                     |
| Quality-related       | Enhance scalability                   | 7                     |
|                       | Enhance applicability                 | 6                     |

Figure: Quin et al., 2024

# Discrete Choice Experiments

Simulator

**Table 5.** Description of Attributes of Laptop Data.

| Attributes              | Levels                                                                                            |  |  |
|-------------------------|---------------------------------------------------------------------------------------------------|--|--|
| Price in EUR            | 600, 1,000, 1,400, 1,800, 2,200, 2,600, 3,000, 3,500, 4,000                                       |  |  |
| Brand                   | Dell, Lenovo, Hewlett-Packard (HP),                                                               |  |  |
|                         | MaxData, Acer, Apple, Asus                                                                        |  |  |
| Memory                  | 8 GB, 16 GB, 32 GB, 64 GB                                                                         |  |  |
| Screen size (in inches) | 12, 13, 14, 15, 17                                                                                |  |  |
| Resolution              | 1,280×1,024, 1,600×1,200, 1,920×1,080, 1,920×1,200, 3,840×2,160                                   |  |  |
| Processor               | AMD Athlon, AMD Ryzen 3, AMD Ryzen 5,<br>Intel Core i3, Intel Core i5, Intel Core i7,<br>Apple MI |  |  |
| Hard disk               | HDD (.3 GB/sec), SSD (.6 GB/sec), SSD (I GB/sec), SSD (2.5 GB/sec), SSD (3.1 GB/sec)              |  |  |
| Size of hard disk       | 250 GB, 512 GB, 1 TB, 2 TB                                                                        |  |  |

Figure: Pachali et al., 2023



Figure: Depiction of data capturing (done with Copilot Designer)



Figure 5. Empirical Frequency Distribution of the Maximum Price Chosen.

Notes: The distribution is across the 643 respondents considered in the analysis. Numeric values are included on top of the bars. Price axis is in 1,000 EUR.

Figure: Stated preferences Pachali et al., 2023

Table II. Equilibrium Prices (in EUR).

|                      | Max. Price | Standard Model |
|----------------------|------------|----------------|
| Dell                 | 4,000.00   | 2,230.01       |
| Lenovo               | 4,000.00   | 2,242.47       |
| Hewlett-Packard (HP) | 4,000.00   | 2,629.69       |
| MaxData              | 4,000.00   | 716.18         |
| Acer                 | 4,000.00   | 750.33         |
| Apple                | 4,000.00   | 3,236.18       |
| Asus                 | 4,000.00   | 732.13         |

Figure: With the experiment data and a model, we can calculate equilibrium prices by brand Pachali et al., 2023

- People generate a noisy internal utility from observed attributes
- Choice probability depends on the utility
- Stated preferences are comparable to revealed/actual preferences.



**Fig. 4** Alternative functional forms for the evaluation of attribute levels

Figure: Parthworth is for qualitative attributes e.g. color. y axis: utility, x axis: attribute level value (Eggers et al., 2021).



Figure: Choice probability increase with larger utility differences between options (Eggers et al., 2021).



Figure: Consumer choice process (Louviere et al., 2010). if time allows, present some behavioral/neuroeconomics

## Implementation (Louviere et al., 2010)

- Identify attributes to test (e.g. Price)
- Assign levels to those attributes (e.g. Price with three levels)
- Decide which combination of attributes and levels to present
- Design a way to present the selected combination of attributes and levels (e.g. via app)
- Select a decision mechanism (e.g. yes/no, auctions, rank-order)
- Sample selection
- Analyze/Model the data

## **Challenges**

- Combinatory explotion of attributes and levels
- Computability of multi-attribute utilities
- Bounded rationality of respondants (e.g. satisficing)
- Complex analysis (e.g. not everyone in a company is familiar with utility theory or multinomial models)

References

- Eggers, F., Sattler, H., Teichert, T., & Völckner, F. (2021). Choice-based conjoint analysis. In *Handbook of market research* (pp. 781–819). Springer.
- Johari, R., Koomen, P., Pekelis, L., & Walsh, D. (2022). Always valid inference: Continuous monitoring of a/b tests. *Operations Research*, 70(3), 1806–1821.
- Louviere, J. J., Flynn, T. N., & Carson, R. T. (2010). Discrete choice experiments are not conjoint analysis. *Journal of choice modelling*, 3(3), 57–72.
- Pachali, M. J., Kurz, P., & Otter, T. (2023). Omitted budget constraint bias and implications for competitive pricing. *Journal of Marketing Research*, 60(5), 968–986.
- Quin, F., Weyns, D., Galster, M., & Silva, C. C. (2024). A/b testing: A systematic literature review. *Journal of Systems and Software*. 112011.
  - Siroker, D., & Koomen, P. (2015). A/b testing: The most powerful way to turn clicks into customers. John Wiley & Sons.
  - Viglia, G., Zaefarian, G., & Ulqinaku, A. (2021). How to design good experiments in marketing: Types, examples, and methods. *Industrial marketing management*, 98, 193–206.