CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge Ordinary Level

MARK SCHEME for the May/June 2015 series

5054 PHYSICS

5054/22 Paper 2 (Theory), maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

P	age :	2		yllabus	Paper
			Cambridge O Level – May/June 2015	5054	22
1	(a)	or	ight (pulls spring down and causes tension) force/pull of gravity mass is in gravitational field		B1
	(b)	ha	s a direction		B1
	(c)	(i)	1 $l = l_0 + e$ or $l_0 = l - e$ or $e = l - l_0$		B1
			2 36 cm		B1
		(ii)	curve upwards after 10 N		B1
2	(a)	tap	pe		B1
	(b)	(i)	mass ÷ volume or mass per unit volume		B1
		(ii)	(V=) $15 \times 0.25 \times 2$ or 7.5 seen 2400kg/m^3		C1 A1
		(iii)	(A=) 15×0.25 or 3.75 or (P=) F/A		C1
			or (P=) 18 0000 / A or (P=) <i>dgh</i> / <i>ρgh</i> seen 48 000 Pa		A1
		(iv)	(length doubles) so both area and weight/force double or area and force/weight both increase/larger (in proportion) or height and density the same (in $P = dgh$)		B1
3	(a)	(i)	(efficiency =) useful energy ÷ input energy		C1
			or 95 000/120 000 (×100) 0.79(17) or 79(.17)%		A1
		(ii)			C1
			1500 W		A1
	(b)	•	ectric kettle and more energy/heat per minute output/into water/supplied more power output nsfers heat/energy faster/at a faster rate		B1
			motors from the gy function at a function rate		
	(c)		eam molecules have more potential energy; further apart; smaller force/tween molecules; have latent heat; more random arrangement	bonds	B1
4	(a)		=) <i>mcT</i> or 330 × 4.2 × 13 000 J or 18020 J or 18018 J		C1 A1

Syllabus

Paper

Pa	age 3	3	Mark Scheme	Syllabus	Paper
			Cambridge O Level – May/June 2015	5054	22
	(b)	ice • •	takes in/needs heat/energy for latent heat to melt/turn to water (at 0°C)/change state to break bonds/for molecules to gain P.E.		B1
			ter (in jug initially at 0°C) warms up ice (and melted water in jug) stays at 0°C/stays cold/stays at constant temp. gives larger temperature difference (between liquid and melting ice	e in jug)	B1
	(c)	or allo pe	etal is a good conductor (of heat) metal/can has lower heat capacity ow opposite statements for plastic, e.g. plastic is an insulator (of heat nalise wrong statements and Physics, e.g. liquid evaporates from cat nduct temperature/convect better	,	B1
5	(a)		gative charge moves from hair/person/head to balloon ectrons move from hair/person/head to the balloon		C1 A1
	(b)	ор	ir is positive (at end) posite charges attract positive and negative attract		B1 B1
	(c)	•	arges/electrons don't flow away aren't conducted (to earth/person) y on balloon/on insulator		B1
	(d)		y sensible example e.g. photocopier, electrostatic precipitator, flu asl ray painting, printing, crop spraying, lightning fixes nitrogen in atmos		В1
6	(a)	(i)	mention of (magnetic) field/flux (of N and S-poles) (coil/wire) cuts magnetic field/flux/lines or magnetic flux in coil changes		C1 A1
		(ii)	(one side of) coil cuts one way and then the other or (side) moves one way and then the other/returns or flux increases and then decreases		B1
	(b)	no	crease in emf for both stronger magnets and more turns change/same frequency for both stronger magnets and more turns crease and increase for turn the coil faster		B1 B1 B1

	J -		Cambridge O Level – May/June 2015	5054	22	
7	(a)	 to provide a complete circuit (with live) or to pass current back to mains or provide a return path for the current 				
	(b)	cas	rent/charge/electrons flow to earth/earth wire/ground (when live to e) e melts/blows and disconnects circuit/cuts live/stops current	ouches	B1 B1	
	(c)	or (ably insulated case/body made of plastic/insulator/not made of metal user cannot touch metal		B1	
	(d)	•	cuit breaker) turns off/acts fast(er) can be reset easy to see it has tripped/switched can detect small difference between live and neutral currents / smalkage) current to earth	all	B1	
8	(a)		column both 1 It column 0 and 1		B1 B1	
	(b)	(at least one of the atoms) contain same number of electrons and protons				
		cha	nave 1 electron and 1 proton Irge on electron and proton opposite Electron negative and proton positive		B1	
		or charge on electron neutralises/cancels/balances proton charge neutrons have no charge				
9	(a)	number of waves (that pass a point)				
		or number of oscillations (passing a point)in unit time or per second or in 1 second				
	(b)	(i)	1.5 cm		B1	
		(ii)	$(v =)f\lambda$ or 5×1.5 seen or $(s=)d/t$ and $f=1/t$		C1	
			7.5 cm/s		A1	
	(c)	(i)	wavelength decreases travels a shorter distance in the same time or frequency stays the same (and $v = f\lambda$)		B1 B1	

Syllabus

Paper

Pa	age (5	Mark Schen	ne	Syllabus	Paper
	ige .		Cambridge O Level – N		5054	22
		(ii)	wavefronts with smaller wavelength (smaller angle to surface (by eye) and wavefronts join those in shallow water	slanted down	✓ ,	B1 B1 B1
	(d)	(i)				
			sound	water		
			 particles/wave/source vibrate/oscillate/move in direction of (travel of) wave/along wave move backwards and forwards 	 particles/wave/source vibrate/oscillate/move ato direction of (travel of) move up and down 		B1 B1 one
			(contains) compressions and rarefactions or particles come closer/further apart	(contains) crests and troughs	5	row only
			speed 300-330 m/s	wave slower (than sound)		
		(ii)	method of generating sound, e.g. (loud) speaker (and signal generator) apparatus that enables refraction clear, e.g. carbon dioxide in balloon or any shape where refraction is possible method of detecting refraction, e.g. microphone and how it is used to show refraction			B1 B1 B1
10	(a)	(i)	1 S-pole on right of core			B1
			 N-pole anywhere on vertical section and S-pole anywhere on horizon or N-pole on left of vertical section 	ntal section of armature	ht	B1
		(ii)	poles (on core) reverse/change posi (armature still) attracted (to core)	tions		B1 B1
		(iii) (iron is a) temporary magnet or (iron) easily demagnetised or steel retains magnetism				B1
			when current off/no battery/switch off/circuit open and armature released/does not stay attracted/opens connections (at AB)			

Page 6	Mark Scheme Syllabus Cambridge O Level – May/June 2015 5054	Paper 22
(b) (i)		
(b) (i)	thermistor	B1
(ii)	resistance (of X) decreases current (in coil) increases or more voltage across coil and	B1 B1
	either relay switch closes or circuit (to bell) complete	
(iii)	1 (V=) IR or 1.5×10^{-3} × 2000 $3(.0)$ V	C1 A1
	2 9(.0) V	B1
	3 12/200 or 0.06 (A) or 60 (mA) seen or $(R_T =)$ 195(.12 Ω)	C1
	61(.5) mA or 0.061(5) A or 62 mA or 0.062 A	A1
(iv)	light dependent resistor or LDR	B1
11 (a) (i)	distance (travelled) per second or speed distance (travelled) per second/speed in a given direction or displacement/time or change in displacement per unit time or displacement (travelled/covered) per unit time or rate of change of displacement	C1 A1
(ii)	opposite direction	B1
(iii)	value seen for v and corresponding value of t 0 < $t \le$ 1.4 and 0 < $v \le$ 14	C1
	(a=) v-u/t algebraic or numerical equation 10 m/s ²	C1 A1
	2 sensible comment	A1
(iv)	1 4(.0 s)	B1
	 weight or force due to gravity mentioned (at D) mention of upwards force (on man) from cord 	B1 B1
	 tension / elastic force from cord (on man) force in cord / upward force / tension greater than downwards force or resultant force upwards 	B1
(b) (i)	5000 20 000	B1 B1
(ii)	$(h =) PE/mg \text{ or } 5000 = 50 \times 10 \times h$ 10 m	C1 A1