The proximal mapping

http://bicmr.pku.edu.cn/~wenzw/opt-2018-fall.html

Acknowledgement: this slides is based on Prof. Lieven Vandenberghes lecture notes

Outline

closed function

- Conjugate function
- Proximal Mapping

Closed set

a set *C* is closed if it contains its boundary:

$$x^k \in C, \quad x^k \to \bar{x} \qquad \Longrightarrow \qquad \bar{x} \in C$$

operations that preserve closedness

- the intersection of (finitely or infinitely many) closed sets is closed
- the union of a finite number of closed sets is closed
- inverse under linear mapping: $\{x \mid Ax \in C\}$ is closed if C is closed

Image under linear mapping

the image of a closed set under a linear mapping is not necessarily closed

example(C is closed, $AC = \{Ax \mid x \in C\}$ is open):

$$C = \{(x_1, x_2) \in \mathbf{R}_+^2 \mid x_1 x_2 \ge 1\}, \quad A = \begin{bmatrix} 1 & 0 \end{bmatrix}, \quad AC = \mathbf{R}_{++}$$

sufficient condition: AC is closed if

- C is closed and convex
- and C does not have a recession direction in the nullspace of A.
 i.e.,

$$Ay = 0, \quad \hat{x} \in C, \quad \hat{x} + \alpha y \in C \quad \forall \alpha \ge 0 \qquad \Longrightarrow \qquad y = 0$$

in particular, this holds for any A if C is bounded

Closed function

definition: a function is closed if its epigraph is a closed set or if for each $\alpha \in \mathbb{R}$ the sublevel set $\{x \in \mathbf{dom} f \mid f(x) \leq \alpha\}$ is a closed set.

- If f is a continuous function and $\mathbf{dom} f$ is closed, then f is closed.
- If f is a continuous function and $\operatorname{dom} f$ is open, then f is closed iff it converges to ∞ along every sequence converging to a boundary point of $\operatorname{dom} f$

examples

- $f(x) = -\log(1 x^2)$ with **dom** $f = \{x \mid |x| < 1\}$
- $f(x) = x \log x$ with $\operatorname{dom} f = \mathbf{R}_+$ and f(0) = 0
- indicator function of a closed set C: f(x) = 0 if $x \in C = \operatorname{dom} f$

not closed

- $f(x) = x \log x$ with $\operatorname{dom} f = \mathbf{R}_{++}$ or $\operatorname{dom} f = \mathbf{R}_{+}$ and f(0) = 1
- indicator function of a set C if C is not closed

Properties

sublevel sets: f is closed if and only if all its sublevel sets are closed **minimum:** if f is closed with bounded sublevel sets then it has a minimizer

Weierstrass

Suppose that the set $D \subset E$ (a finite dimensional vector space over R^n) is nonempty and closed, and that all sublevel sets of the continuous function $f:D\to R$ are bounded. Then f has a global minimizer.

common operations on convex functions that preserve closedness

- sum: f + g is closed if f and g are closed (and $\operatorname{dom} f \cap \operatorname{dom} g \neq \emptyset$)
- ullet composition with affine mapping: f(Ax+b) is closed if f is closed
- supremum: $\sup_{\alpha} f_{\alpha}(x)$ is closed if each function f_{α} is closed

Outline

closed function

Conjugate function

Proximal Mapping

Conjugate function

the **conjugate** of a function f is

$$f^*(y) = \sup_{x \in \mathbf{dom}\, f} (y^T x - f(x))$$

 f^* is closed and convex even if f is not

f(x) x $(0, -f^*(y))$

Fenchel's s inequality

$$f(x) + f^*(y) \ge x^T y \quad \forall x, y$$

(extends inequality $x^Tx/2 + y^Ty/2 \ge x^Ty$ to non-quadratic convex f)

Quadratic function

$$f(x) = \frac{1}{2}x^T A x + b^T x + c$$

strictly convex case ($A \succ 0$)

$$f^*(y) = \frac{1}{2}(y-b)^T A^{-1}(y-b) - c$$

general convex case ($A \succeq 0$)

$$f^*(y) = \frac{1}{2}(y-b)^T A^{\dagger}(y-b) - c$$
, $\mathbf{dom} \, f^* = range(A) + b$

Negative entropy and negative logarithm

negative entropy

$$f(x) = \sum_{i=1}^{n} x_i \log x_i$$
 $f^*(y) = \sum_{i=1}^{n} e^{y_i - 1}$

negative logarithm

$$f(x) = -\sum_{i=1}^{n} \log x_i$$
 $f^*(y) = -\sum_{i=1}^{n} \log(-y_i) - n$

matrix logarithm

$$f(x) = -\log \det X$$
 (**dom** $f = S_{++}^n$) $f^*(Y) = -\log \det(-Y) - n$

Indicator function and norm

indicator of convex set C: **conjugate** is support function of C

$$f(x) = \begin{cases} 0, & x \in C \\ +\infty, & x \notin C \end{cases} \qquad f^*(y) = \sup_{x \in C} y^T x$$

norm: conjugate is indicator of unit dual norm ball

$$f(x) = ||x||$$
 $f^*(y) = \begin{cases} 0, & ||y||_* \le 1 \\ +\infty, & ||y||_* > 1 \end{cases}$

(see next page)

proof: recall the definition of dual norm:

$$||y||_* = \sup_{||x|| \le 1} x^T y$$

to evaluate $f^*(y) = \sup_x (y^T x - ||x||)$ we distinguish two cases

• if $||y||_* \le 1$, then (by definition of dual norm)

$$y^T x \le ||x|| \quad \forall x$$

and equality holds if x = 0; therefore $\sup_{x} (y^{T}x - ||x||) = 0$

• if $||y||_* > 1$, there exists an x with $||x|| \le 1, x^T y > 1$; then

$$f^*(y) \ge y^T(tx) - ||tx|| = t(y^Tx - ||x||)$$

and *r.h.s.* goes to infinity if $t \to \infty$

The second conjugate

$$f^{**}(x) = \sup_{y \in \mathbf{dom} \, f^*} (x^T y - f^*(y))$$

- $f^{**}(x)$ is closed and convex
- from Fenchel's inequality $x^Ty f^*(y) \le f(x)$ for all y and x):

$$f^{**} \le f(x) \quad \forall x$$

equivalently, $epi f \subseteq epi f^{**}$ (for any f)

if f is closed and convex, then

$$f^{**}(x) = f(x) \quad \forall x$$

equivalently, $\operatorname{epi} f = \operatorname{epi} f^{**}$ (if f is closed convex); proof on next page

proof $(f^{**} = f \text{ if } f \text{ is closed and convex})$: by contradiction suppose $(x, f^{**}(x)) \notin \text{epi } f$; then there is a strict separating hyperplane:

$$\left[\begin{array}{c} \mathbf{a} \\ b \end{array}\right]^T \left[\begin{array}{c} z - x \\ s - f^{**}(x) \end{array}\right] \le c \le 0 \qquad \forall (z, s) \in \ \mathsf{epi}\, f$$

for some a, b, c with $b \le 0$ (b > 0 gives a contradiction as $s \to \infty$)

• if b < 0, define y = a/(-b) and maximize l.h.s. over $(z, s) \in \operatorname{epi} f$:

$$f^*(y) - y^T x + f^{**}(x) \le c/(-b) < 0$$

this contradicts Fenchel's inequality

• if b=0, choose $\hat{y} \in \operatorname{dom} f^*$ and add small multiple of $(\hat{y},-1)$ to (a,b):

$$\begin{bmatrix} a + \epsilon \hat{\mathbf{y}} \\ -\epsilon \end{bmatrix}^T \begin{bmatrix} z - x \\ s - f^{**}(x) \end{bmatrix} \le c + \epsilon (f^*(\hat{\mathbf{y}}) - x^T \hat{\mathbf{y}} + f^{**}(x)) < 0$$

now apply the argument for b < 0

Conjugates and subgradients

if f is closed and convex, then

$$y \in \partial f(x) \Leftrightarrow x \in \partial f^*(y) \Leftrightarrow x^T y = f(x) + f^*(y)$$

proof: if $y \in \partial f(x)$, then $f^*(y) = \sup_{u} (y^T u - f(u)) = y^T x - f(x)$

$$f^{*}(v) = \sup_{u} (v^{T}u - f(u))$$

$$\geq v^{T}x - f(x)$$

$$= x^{T}(v - y) - f(x) + y^{T}x$$

$$= f^{*}(v) + x^{T}(v - v)$$
(1)

for all v; therefore, x is a subgradient of f^* at y ($x \in \partial f^*(y)$) reverse implication $x \in \partial f^*(y) \Rightarrow y \in \partial f(x)$ follows from $f^{**} = f$

Some calculus rules

separable sum

$$f(x_1, x_2) = g(x_1) + h(x_2)$$
 $f^*(y_1, y_2) = g^*(y_1) + h^*(y_2)$

scalar multiplication: (for $\alpha > 0$)

$$f(x) = \alpha g(x)$$
 $f^*(y) = \alpha g^*(y/\alpha)$

addition to affine function

$$f(x) = g(x) + a^{T}x + b$$
 $f^{*}(y) = g^{*}(y - a) - b$

infimal convolution

$$f(x) = \inf_{u+v=x} (g(u) + h(v))$$
 $f^*(y) = g^*(y) + h^*(y)$

Outline

closed function

Conjugate function

Proximal Mapping

Proximal mapping

$$prox_f(x) = \underset{u}{\operatorname{argmin}} \left(f(u) + \frac{1}{2} ||u - x||_2^2 \right)$$

if f is closed and convex then $prox_f(x)$ exists and is unique for all x

- existence: $f(u) + (1/2)||u x||_2^2$ is closed with bounded sublevel sets
- uniqueness: $f(u) + (1/2)||u x||_2^2$ is strictly (in fact, strongly) convex

subgradient characterization

$$u = prox_f(x) \iff x - u \in \partial f(u)$$

we are interested in functions f for which $prox_{ff}$ is inexpensive

Examples

quadratic function $(A \succeq 0)$

$$f(x) = \frac{1}{2}x^{T}Ax + b^{T}x + c,$$
 $prox_{tf}(x) = (I + tA)^{-1}(x - tb)$

Euclidean norm: $f(x) = ||x||_2$

$$\operatorname{prox}_{tf}(x) = \begin{cases} (1 - t/\|x\|_2)x & \|x\|_2 \ge t \\ 0 & otherwise \end{cases}$$

logarithmic barrier

$$f(x) = -\sum_{i=1}^{n} \log x_i, \quad \text{prox}_{tf}(x)_i = \frac{x_i + \sqrt{x_i^2 + 4t}}{2}, \quad i = 1, \dots, n$$

Some simple calculus rules

separable sum

$$f\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = g(x) + h(y), \qquad \operatorname{prox}_f\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} \operatorname{prox}_g(x) \\ \operatorname{prox}_h(y) \end{bmatrix}$$

scaling and translation of argument : with $\lambda \neq 0$

$$f(x) = g(\lambda x + a), \qquad \operatorname{prox}_f(x) = \frac{1}{\lambda}(\operatorname{prox}_{\lambda^2 g}(\lambda x + a) - a)$$

scaling and translation of argument : with $\lambda>0$

$$f(x) = \lambda g(x/\lambda), \quad \text{prox}_f = \lambda \text{prox}_{\lambda^{-1}g}(x/\lambda)$$

Addition to linear or quadratic function

linear function

$$f(x) = g(x) + a^{T}x$$
, $\operatorname{prox}_{f} = \operatorname{prox}_{g}(x - a)$

quadratic function: with u > 0

$$f(x) = g(x) + \frac{u}{2} ||x - a||_2^2, \quad \text{prox}_f(x) = \text{prox}_{\theta g}(\theta x + (1 - \theta)a),$$

where
$$\theta = 1/(1+u)$$

Moreau decomposition

$$x = \operatorname{prox}_f(x) + \operatorname{prox}_{f^*}(x) \quad \forall x$$

• follows from properties of conjugates and subgradients:

$$u = prox_f(x) \iff x - u \in \partial f(u)$$
$$\iff u \in \partial f^*(x - u)$$
$$\iff x - u = prox_{f^*}(x)$$

 generalizes decomposition by orthogonal projection on subspaces:

$$x = P_L(x) + P_{L^{\perp}}(x)$$

if L is a subspace, L^{\perp} its orthogonal complement (this is Moreau decomposition with $f=I_L, f^*=I_{L^{\perp}}$)

Extended Moreau decomposition

for
$$\lambda > 0$$

$$x = prox_{\lambda f}(x) + \lambda prox_{\lambda^{-1}f*}(x/\lambda)$$
 $\forall x$

proof: apply Moreau decomposition to λf

$$x = \operatorname{prox}_{\lambda f}(x) + \operatorname{prox}_{(\lambda f)*}(x)$$
$$= \operatorname{prox}_{\lambda f}(x) + \lambda \operatorname{prox}_{\lambda^{-1} f*}(x/\lambda)$$

second line uses $(\lambda f)^*(y) = \lambda f^*(y/\lambda)$

Composition with affine mapping

for general A, the prox-operator of

$$f(x) = g(Ax + b)$$

does not follow easily from the prox-operator of g

• however if $AA^T = (1/\alpha)I$, we have

$$prox_f(x) = (I - \alpha A^T A)x + \alpha A^T (prox_{\alpha^{-1}g}(Ax + b) - b)$$

example:
$$f(x_1, ..., x_m) = g(x_1 + x_2 + ... + x_m)$$

$$prox_f(x_1,\ldots,x_m)_i = x_i - \frac{1}{m} \left(\sum_{j=1}^m x_j - prox_{mg} \left(\sum_{j=1}^m x_j \right) \right)$$

24/37

proof: $u = prox_f(x)$ is the solution of the optimization problem

$$\min_{u,y} g(y) + \frac{1}{2} ||u - x||_2^2$$

s.t. $Au + b = y$

with variables u, y

eliminate u using the expression

$$u = x + A^{T} (AA^{T})^{-1} (y - b - Ax)$$
$$= (I - \alpha A^{T} A)x + \alpha A^{T} (y - b)$$

optimal y is minimizer of

$$g(y) + \frac{\alpha^2}{2} ||A^T(y - b - Ax)||_2^2 = g(y) + \frac{\alpha}{2} ||y - b - Ax||_2^2$$

solution is $y = prox_{\alpha^{-1}\varrho}(Ax + b)$

Projection on affine sets

hyperplane: $C = \{x | a^T x = b\}$ (with $a \neq 0$)

$$P_C(x) = x + \frac{b - a^T x}{\|a\|_2^2} a$$

affine set: $C = \{x | Ax = b\}$ (with $A \in \mathbb{R}^{p \times n}$ and $\operatorname{rank}(A) = p$)

$$P_C(x) = x + A^T (AA^T)^{-1} (b - Ax)$$

inexpensive if $p \ll n$, or $AA^T = I$, ...

Projection on simple polyhedral sets

halfspace: $C = \{x | a^T x \le b\}$ (with $a \ne 0$)

$$P_C(x) = \begin{cases} x + \frac{b - a^T x}{\|a\|_2^2} a & \text{if } a^T x > b \\ x & \text{if } a^T x \le b \end{cases}$$

rectangle: $C = [l, u] = \{l \leq x \leq u\}$

$$P_C(x)_i = \begin{cases} l_i & x_i \le l_i \\ x_i & l_i \le x_i \le u_i \\ u_i & x_i \ge u_i \end{cases}$$

nonnegative orthant: $C = \mathbf{R}_+^n$

 $P_C(x) = x_+$ $(x_+ \text{ is componentwise maximum of 0 and } x)$

probability simplex: $C = \{x | 1^T x = 1, x \ge 0\}$

$$P_C(x) = (x - \lambda 1)_+$$

where λ is the solution of the equation

$$1^{T}(x - \lambda 1)_{+} = \sum_{i=1}^{n} \max\{0, x_{k} - \lambda\} = 1$$

probability simplex: $C = \{x | a^T x = b, l \le x \le u\}$

$$P_c(x) = P_{[l,u]}(x - \lambda a)$$

where λ is the solution of

$$a^T P_{[l,u]}(x - \lambda a) = b$$

28/37

Projection on norm balls

Euclidean ball: $C = \{x | ||x||_2 \le 1\}$

$$P_C(x) = \begin{cases} \frac{1}{\|x\|_2} x & \text{if } \|x\|_2 > 1\\ x & \text{if } \|x\|_2 \le 1 \end{cases}$$

1-norm ball: $C = \{x | ||x||_1 \le 1\}$

$$P_c(x)_k = \begin{cases} x_k - \lambda, & x_k > \lambda \\ 0, & -\lambda \le x_k \le \lambda \\ x_k + \lambda, & x_k < -\lambda \end{cases}$$

 $\lambda = 0$ if $||x||_1 \le 1$; otherwise λ is the solution of the equation

$$\sum_{k=1}^{n} \max\{|x_k| - \lambda, 0\} = 1$$

Projection on simple cones

second order cone $C = \{(x, t) \in \mathbf{R}^{n \times 1} | ||x||_2 \le t\}$

$$P_C(x,t) = (x,t)$$
 if $||x||_2 \le t$, $P_C(x,t) = (0,0)$ if $||x||_2 \le -t$

and

$$P_C(x,t) = \frac{t + \|x\|_2}{2\|x\|_2} \begin{bmatrix} x \\ \|x\|_2 \end{bmatrix} \quad \text{if } \|x\|_2 > t, \, x \neq 0$$

positive semidefinite cone $C = S_+^n$

$$P_C(X) = \sum_{i=1}^n \max\{0, \lambda_i\} q_i q_i^T$$

if $X = \sum_{i=1}^{n} \lambda_i q_i q_i^T$ is the eigenvalue decomposition of X

Support function

conjugate of support function of closed convex set is indicator function

$$f(x) = S_C(x) = \sup_{y \in C} x^T y, \qquad f^*(y) = I_C(y)$$

prox-operator of support function: apply Moreau decomposition

$$\operatorname{prox}_{tf} = x - t \operatorname{prox}_{t^{-1}f^*}(x/t)$$
$$= x - t P_C(x/t)$$

example: f(x) is sum of largest r components of x

$$f(x) = x_{[1]} + \dots + x_{[r]} = S_C(x), \qquad C = \{y | 0 \le y \le 1, 1^T y = r\}$$

prox-operator of f is easily evaluated via projection on C

Norms

conjugate of norm is indicator function of dual norm ball:

$$f(x) = ||x||,$$
 $f^*(x) = I_B(y)$ $(B = \{y | ||y||_* \le 1\})$

prox-operator of norm: apply Moreau decomposition

$$prox_{tf} = x - tprox_{t^{-1}f^*}(x/t)$$
$$= x - tP_B(x/t)$$
$$= x - P_{tB}(x)$$

useful formula for $\mathrm{prox}_{t\|\cdot\|}$ when projection on $tB = \{x|\|x\| \leq t\}$ is cheap

examples: $\|\cdot\|_1, \|\cdot\|_2$

Distance to a point

distance (in general norm)

$$f(x) = ||x - a||$$

prox-operator: from page 20, with g(x) = ||x||

$$prox_{tf} = a + prox_{tg}(x - a)$$

$$= a + x - a - tP_B(\frac{x - a}{t})$$

$$= x - P_{tB}(x - a)$$

B is the unit ball for the dual norm $\|\cdot\|_*$

Euclidean distance to a set

Euclidean distance (to a closed convex set C)

$$d(x) = \inf_{y \in C} ||x - y||_2$$

prox-operator of distance

$$\operatorname{prox}_{td}(x) = \theta P_C(x) + (1 - \theta)x, \qquad \theta = \begin{cases} t/d(x) & d(x) \ge t \\ 1 & otherwise \end{cases}$$

prox-operator of squared distance: $f(x) = d(x)^2/2$

$$\operatorname{prox}_{tf} = \frac{1}{1+t}x + \frac{t}{1+t}P_C(x)$$

proof (expression for $prox_{td}(x)$)

• if $u = \text{prox}_{td}(x) \notin C$, then from the definition and subgradient for d

$$x - u = \frac{t}{d(u)}(u - P_C(u))$$

implies $P_C(u) = P_C(x), d(x) \ge t, u$ is convex combination of $x, P_C(x)$

• if $u \in C$ minimizes $d(u) + (1/(2t))||u - x||_2^2$, then $u = P_C(x)$

proof (expression for $prox_{tf}(x)$ when $f(x) = d(x)^2/2$)

$$\operatorname{prox}_{tf}(x) = \arg\min_{u} \left(\frac{1}{2} d(u)^{2} + \frac{1}{2t} \|u - x\|_{2}^{2} \right)$$
$$= \arg\min_{u} \inf_{v \in C} \left(\frac{1}{2} \|u - v\|_{2}^{2} + \frac{1}{2t} \|u - x\|_{2}^{2} \right)$$

optimal u as a function of v is

$$u = \frac{t}{t+1}v + \frac{1}{t+1}x$$

optimal *v* minimizes

$$\frac{1}{2} \left\| \frac{t}{t+1} v + \frac{1}{t+1} x - v \right\|_{2}^{2} + \frac{1}{2t} \left\| \frac{t}{t+1} v + \frac{1}{t+1} x - x \right\|_{2}^{2} = \frac{1}{2(1+t)} \| v - x \|_{2}^{2}$$

Over C, i.e., $v = P_C(x)$

Refrences

- P. L. Combettes and V. R. Wajs, Signal recovery by proximal forward-backward splitting, Multiscale Modeling and Simulation (2005).
- P. L. Combettes and J.-Ch. Pesquet, Proximal splitting methods in signal processing, Fixed-Point Algorithms for Inverse Problems in Science and Engineering (2011).
- N. Parikh and S. Boyd, Proximal algorithms (2013).