- §1. Определение определенного интеграла, его физический и геомет-рический смысл. Необходимое и достаточные условия интегрируемости.
 - 1°. Определение определенного интеграла.

Рассматривается функция f(x), определенная на отрезке [a, b].

1) Промежуток [a,b] разбивается на n произвольных частичных промежутков точками $x_0=a,\ x_1,\ x_2,\ \dots,\ x_{n-1},\ x_n=b$. При этом $a< x_1< x_2< \dots < x_{n-1}< x_n=b$ (рис. 1.1д).

Рис. 1.1д. Разбиение промежутка [a,b] на частичные промежутки $[x_k,x_{k+1}]$ с точками ξ_k $(k=0,1,\ldots,n-1).$

- 2) В каждом частичном промежутке $[x_k, x_{k+1}]$ выбирается произвольная точка ξ_k $(x_k \le \xi_k \le x_{k+1}).$
- 3) Значение функции $f(\xi_k)$ в точке ξ_k умножается на длину $\Delta x_k = x_{k+1} x_k$ k -го частичного промежутка, т. е. вычисляется произведение $f(\xi_k)\Delta x_k$.
- 4) Составляется сумма всех этих произведений $\sigma_n = \sum_{k=0}^{n-1} f(\xi_k) \Delta x_k$, называемая *интегральной суммой* или *суммой Римана*.
- 5) Величина $\lambda = \max_k \Delta x_k$ называется *рангом дробления* промежутка [a,b] на части. При $\lambda \to 0$ длина каждого частичного промежутка стремится к нулю. Если при $\lambda \to 0$ существует конечный предел интегральной суммы σ_n , причем не зависящий ни от способов дробления промежутка [a,b] на частичные, ни от способов выбора точек ξ_k , то он называется *определенным интегралом* от функции f(x) по промежутку [a,b] и обозначается символом $\int_a^b f(x) dx$.

Таким образом,

$$\int_{a}^{b} f(x) dx = \lim_{\lambda \to 0} \sum_{k=0}^{n-1} f(\xi_k) \Delta x_k .$$
 (1.1)

Предельное равенство (1.1) понимается следующим образом. Для любого $\varepsilon > 0$ существует число $\delta > 0$ такое, что как только $\lambda < \delta$ (т. е. промежуток [a,b] разбит на части с длинами $\Delta x_k < \delta$, $k=0,1,\ldots,n-1$), неравенство

$$\left|\sigma_n - \int_a^b f(x) \, dx\right| < \varepsilon$$

выполняется при любом выборе точек ξ_k , k = 0, 1, ..., n-1. На этот новый вид предела распространяются многие известные теоремы о пределах.

Переменная x под знаком интеграла называется переменной интегрирования (интеграции), функция f(x) – подынтегральной функцией, числа a, b – пределами интеграла (нижним и верхним), произведение f(x)dx – подынтегральным выражением.

Функция, для которой существует определенный интеграл по заданному промежутку, называется *интегрируемой* по этому промежутку.

Оказывается, что не всякая функция является интегрируемой.

Пример 1.1. Функция Дирихле (немецкий математик, 1805–1859)

$$f(x) = \begin{cases} 1, & \text{если } x - \text{рациональное число;} \\ 0, & \text{если } x - \text{иррациональное число.} \end{cases}$$

Рассмотрим произвольный промежуток [a,b]. Разобьем его на n произвольных частей так, как указано в определении определенного интеграла. Выберем в каждом частичном промежутке $[x_k, x_{k+1}]$ произвольную точку ξ_k ($k=0,1,\ldots,n-1$) и составим интегральную сумму для функции Дирихле и промежутка [a,b] двумя способами:

$$\sigma_n' = \sum_{k=0}^{n-1} f(\xi_k) \Delta x_k \ . \ \ \text{Здесь все точки} \quad \xi_k \quad - \ \ \text{рациональные, поэтому} \quad f(\xi_k) = 1 \quad \text{и}$$

$$\sigma_n' = \sum_{k=0}^{n-1} \Delta x_k = b - a \ ; \quad \sigma_n'' = \sum_{k=0}^{n-1} f(\xi_k) \Delta x_k \ . \ \ \text{Здесь все точки} \quad \xi_k \quad - \ \ \text{иррациональные, поэтому}$$

$$f(\xi_k) = 0 \ \ \text{и} \quad \sigma_n'' = 0 \ .$$

Предел постоянной величины равен ей самой, поэтому при $\lambda \to 0 - \lim \sigma_n = b - a$, $\lim \sigma_n'' = 0$. Это означает, что предел интегральной суммы зависит от способа выбора точек ξ_k , следовательно $\int_a^b f(x) dx$ для функции Дирихле не существует.

2°. Необходимое условие интегрируемости

Укажем необходимое и несколько достаточных (без доказательства) условий интегрируемости функций. Сформулируем их в виде теорем. Они указывают классы интегрируемых функций.

Теорема 1.1 (необходимое условие интегрируемости). Если функция интегрируема по промежутку [a,b], то она необходимо ограничена на этом промежутке.

3°. Достаточные условия интегрируемости. Классы интегрируемых функций.

Теорема 1.2. Если функция непрерывна на замкнутом промежутке [a,b], то она интегрируема по этому промежутку.

Теорема 1.3. Если определенная и ограниченная на замкнутом промежутке [a,b] функция непрерывна на нем, за исключением, быть может, конечного числа точек, то она интегрируема по этому промежутку.

Доказательство теорем 1.2. и 1.3. можно найти, например, в [1,7]

Указанные два класса функций в теоремах 1.2 и 1.3 практически исчерпывают все функции, встречающиеся в приложениях. В дальнейшем будет предполагаться, что рассматриваются только эти классы функций, поэтому вопросы интегрируемости функций обсуждаться не будут.

4°. Физический смысл интеграла.

Укажем несколько вариантов физической интерпретации интеграла.

1) Задача о пути.

Путь, пройденный материальной точкой со скоростью v(t) за время от момента T_1 до момента T_2 , равен определенному интегралу от скорости по промежутку времени движения:

$$s = \int_{T_{c}}^{T_{2}} v(t) dt.$$
 (1.2)

К этой формуле приводят следующие рассуждения. Если бы скорость движения материальной точка была постоянной за время движения, то ее путь был бы равен произведению скорости v на время движения (T_2-T_1) : $s=v(T_2-T_1)$. Если же скорость не является постоянной, то последняя формула не годится, и путь s в этом случае находят с помощью предельного процесса, который лежит в основе определения определенного интеграла. Промежуток времени $[T_1,T_2]$ делится на n произвольных частей моментами $T_1=t_0 < t_1 < t_2 < \ldots < t_n = T_2$. В каждом частичном промежутке $[t_k,t_{k+1}]$ выбирается произвольный момент ξ_k и вычисляется значение скорости $v(\xi_k)$. Все частичные промежутки предполагаются достаточно малыми, так что скорость v(t) в пределах каждого меняется незначительно. Ее можно приближенно считать в пределах каждого k-го промежутка постоянной и совпадающей с $v(\xi_k)$, $k=1,2,\ldots,n-1$. Тогда путь, пройденный материальной точкой за время от момента t_k до момента t_{k+1} с постоянной скоростью $v(\xi_k)$, будет равен $v(\xi_k)(t_{k+1}-t_k)=v(\xi_k)\Delta t_k$, а весь путь за промежуток времени $[T_1,T_2]$ будет равен сумме путей, пройденных за каждый частичный временной

промежуток: $s_n = \sum_{k=0}^{n-1} v(\xi_k) \Delta t_k$. Величина пути s_n при таком воображаемом движении приближенно равна истинному пути $s: s \approx s_n$. Это приближенное равенство будет тем более точным, чем мельче дробление промежутка $[T_1, T_2]$ на части. По-прежнему обозначим $\lambda = \max_k \Delta t_k$. По определению полагают

$$s = \lim_{\lambda \to 0} \sum_{k=0}^{n-1} v(\xi_k) \Delta t_k = \int_{T_k}^{T_2} v(t) dt.$$

Получили формулу (1.2).

2) Задача о массе стержня.

Масса m прямолинейного стержня, расположенного в пределах промежутка [a,b] оси Ox и имеющего линейную плотность распределения массы $\rho(x)$, равна определенному интегралу от плотности по промежутку, занимаемому стержнем:

$$m = \int_{a}^{b} \rho(x) dx. \tag{1.3}$$

К формуле (1.3) приходят с помощью рассуждений, аналогичных тем, которые применялись в задаче о пути. Промежуток [a,b] делится на n произвольных частей точками $a=x_0 < x_1 < \ldots < x_n = b$. В каждом частичном промежутке $[x_k, x_{k+1}]$ выбирается произвольная точка ξ_k , $k=0,1,\ldots,n-1$ (рис. 1.1д). В точках ξ_k вычисляется значение линейной плотности $\rho(\xi_k)$. Предполагается, что дробление промежутка [a,b] на части настолько мелкое, что в пределах каждого частичного промежутка плотность $\rho(x)$ меняется незначительно. Ее можно считать постоянной и равной $\rho(\xi_k)$ в пределах k-го частичного промежутка. Тогда масса части стержня, расположенной в пределах частичного промежутка $[x_k, x_{k+1}]$, будет приближенно равна $\rho(\xi_k)\Delta x_k$, а масса всего стержня m приближенно равна сумме масс всех частей: $m \approx \sum_{k=0}^{n-1} \rho(\xi_k)\Delta x_k$. Это равенство тем более точное, чем мельче дробление, т. е. чем меньше ранг дробления $\lambda = \max_k \Delta x_k$. По определению полагают $m = \lim_{k \to 0} \sum_{k=0}^{n-1} \rho(\xi_k)\Delta x_k = \int_0^k \rho(x) dx$. Пришли к формуле (1.3).

3) Задача о работе переменной силы, действующей вдоль прямолинейного пути.

Работа A переменной силы F(x), действующей вдоль пути и перемещающей материальную точку в пределах отрезка [a,b] оси Ox, равна определенному интегралу от силы по отрезку пути:

$$A = \int_{a}^{b} F(x) dx. \tag{1.4}$$

Формула (1.4) обосновывается аналогично двум предыдущим с помощью аналогичных эвристических рассуждений. Промежуток [a,b] разбивается на n произвольных частей точками $a=x_0 < x_1 < \ldots < x_n = b$. В каждом частичном промежутке $[x_k,x_{k+1}]$ выбирается произвольная точка ξ_k , $k=0,1,\ldots,n-1$ (рис. 1.1д). Работа силы F(x) на k-м частичном промежутке $[x_k,x_{k+1}]$ приближенно равна $F(\xi_k)\Delta x_k$, а вся работа A приближенно равна сумме работ на отдельных участках пути: $A \approx \sum_{k=0}^{n-1} F(\xi_k)\Delta x_k$. Это равенство тем более точное, чем меньше ранг дробления $\lambda = \max_k \Delta x_k$. По определению полагают

$$A = \lim_{\lambda \to 0} \sum_{k=0}^{n-1} F(\xi_k) \Delta x_k = \int_a^b F(x) dx.$$

5°. Геометрический смысл интеграла.

Рассмотрим плоскую фигуру, называемую криволинейной трапецией. Это фигура, ограниченная графиком функции y = f(x), осью абсцисс и прямыми x = a и x = b (рис. 1.1).

Если функция y = f(x) непрерывна на отрезке [a, b] и неотрицательна, то площадь S криволинейной трапеции, ограниченной графиком этой функции и опирающейся на отрезок [a, b], равна определенному интегралу от функции f(x) по отрезку [a, b]:

$$S = \int_{a}^{b} f(x) dx. \tag{1.5}$$

Рис. 1.2 Криволинейная трапеция и ступенчатая фигура, составленная из прямоугольников, с площадью, приближенно равной площади криволинейной трапеции

Эвристические рассуждения, приводящие к формуле (1.5), опираются на интуитивные представления о площади плоской фигуры, полученные в средней школе. Они аналогичны тем, которые применялись в физических задачах о пути, массе, работе. Разобьем отрезок [a,b] на n произвольных частичных промежутков точками $a=x_0 < x_1 < \ldots < x_n = b$. В каждом частичном промежутке $[x_k, x_{k+1}]$ выберем произвольную точку ξ_k , $k=0,1,\ldots,n-1$. Далее на каждом частичном промежутке $[x_k, x_{k+1}]$, как на основании, построим прямоугольник с высотой $f(\xi_k)$ и площадью $f(\xi_k)\Delta x_k$. Получим ступенчатую фигуру (рис. 1.2), площадь которой равна сумме площадей составляющих ее прямоугольников: $s_n = \sum_{k=0}^{n-1} f(\xi_k)\Delta x_k$. Площадь ступенчатой фигуры приближенно равна площади криволинейной трапеции: $S \approx s_n$. Это равенство тем более точно, чем мельче дробление промежутка [a,b] на части. Пусть $\lambda = \max_k \Delta x_k$. Полагают

$$S = \lim_{\lambda \to 0} \sum_{k=0}^{n-1} f(\xi_k) \Delta x_k = \int_a^b f(x) \, dx \, .$$

Пришли к формуле (1.5).

Пример.
$$\int_{a}^{b} dx = b - a.$$

Этот интеграл выражает площадь прямоугольника с основанием b-a и высотой 1.