

Performance comparison between a 2 phases and a 3 phases Negotiation protocol

Antoine Pichot, Alejandro Gaspar April, 2007 All Rights Reserved \circledcirc Alcatel-Lucent 2006, ####

The context: Co-allocation

Multiple Computing farms

A (G)MPLS network

How to reserve two (or more) resources at the same time?

I.e.: A network connexion & a CPU

- VIOLA like (2Phases commit protocol)
- WS-Agreement based Negotiation (3Phases Commit Protocol)
- Cf O. Waeldrich & W. Ziegler draft @0GF18

3 Phases Commit Protocol vs 2 Phases

Capability and availability check

Phase 1

- Pre-reservation
- Resource are reserved with short reservation lifetime
- (No penalties if reservation is cancelled at this stage)
- Commitment
- Resource are reserved whenever needed
- (penalties if cancelled)

Phase 2

VIOLA reservation process

Figure 1: The negotiation process

Alcatel-Lucent

VIOLA's Meta-Scheduler reservation

Model origin

Gurbani V.K., Jagadeesan L., Mendiratta V.B.,

"Characterizing session initiation protocol (SIP) network performance and reliability",

International service availability symposium, April 2005

Model explained (1)

Job requests \Leftrightarrow Clients of the queuing network

Time spent in a waiting queue ⇔ Time spent in a state inside the MS

A queue \Leftrightarrow A state inside the MS

Meta-Scheduler

 $1/\mu_1$ is the average time taken by the Meta-Scheduler to

- receive the CreateAgreement message,
- process it, and
- take action

A Local Scheduler

Model Explained (3), Example

Example synchronous

All Rights Reserved © Alcatel-Lucent 2007

Asynchronous

Synchronous

Asynchronous

Synchronous

Service Time & Error Probability example

After a few measures on a P4@2.8GHz

1 ms	0.002 ms	0.715 ms
Receive an XML message	Check message validity 0.002 ms	Parse the message
0	0	0

+1.717ms

Probability to cancel a reservation: 10%

Probability to need to look after scheduling horizon: 10%

Those values can be modified to take more realistic values.

For example (3 Phases Asynchronous):

Probability to loop or to get an error

Maximum Job request Arrival Rate in the Meta-Scheduler

Conclusions

Performance loss of a 3 Phases over a 2 Phases Negotiation protocol is Need for an Asynchronous implementation (obvious)

- less than 10% on the maximum job request arrival rate
- less than 50% on the total job request processing delay and memory requirement

References

Article to be published soon... by the end of the year For a similar model used in a different context:

Gurbani V.K., Jagadeesan L., Mendiratta V.B., "Characterizing session initiation protocol (SIP) network performance and reliability", International service availability symposium, April 2005

www.alcatel-lucent.com

antoine.pichot@alcatel-lucent.fr