LABORATORY MANUAL

CS-4508 Computer Graphics & Multimedia

M.Sc. (C.S.) III Semester July-December 2009

SCHOOL OF COMPUTER SCIENCE & IT, DAVV, INDORE

AIM:

The aim of the course is to give students a good understanding of basic concepts of computer graphics and the need of developing graphic applications.

OBJECTIVES:

The objectives of the course are to:

- Understand the need of developing graphic applications.
- Learn the hardware involved in building graphic applications.
- Learn algorithmic development of graphic primitives like: line, circle, ellipse, polygon etc.
- Learn the representation and transformation of graphical images and pictures.
- Learn the concept of Color Generation.

ASSIGNMENTS SCHEDULE:

Week	Topic	Remark
Week 1	Assignment 1:	
0	 Write a program to implement DDA algorithm. What are the characteristics of Video Display Devices? Compare and contrast the operating characteristics of Raster Refresh Systems, Plasma Panels and LCDs. Write application of CG in Education and Training. Compare Refresh type and Storage type CRT display. Write a program to draw the following figure:- A 100090000037800000002001c000000000000000000000000000	
Week 2	Assignment 2:	
	 Write a program to implement Bresenham's line algorithm. What are the advantages of Bresenham's line algorithm over DDA algorithm. How can the Bresenham's line algorithm be modified to accommodate all types of lines? Modify the Bresenham's line algorithm so that it will produce a dashed-line pattern. Dash length should be independent of slope. Write a program to implement Midpoint circle generating algorithm. 	
Week	Topic	Remark

Week 3	Assignment 3:	
WCCK 5		
	1. Write a program to implement Bresenham's circle generating algorithm.	
	2. Differentiate between Midpoint & Bresenham's circle generating algorithm.	
	3. Write short note on different input devices.	
	4. Write a program to draw the following figure:-	
	A B	
	Point A and B is input.	
	5. Write a program to draw the following figure:-	
	0100090000037800000002001c000000000040000003010800050000000b0	
	20000000050000000c0291014605040000002e0118001c000000fb021000070	
	00000000bc02000000102022253797374656d000146050000798c0000fc5	
	b110004ee8339e84c5f040c0200004000002d0100000400000020101001c0	
	00000fb02ceff000000000000000000440001254696d6573204e65772	
	0526f6d616e0000000000000000000000000000000000	
	00000009020000000000000000000000000000	
	025160004000002d0100000320a2d00000001000400000000400390012	
	Input is radius of circle as r.	
Week 4	Test-1	
Week 5	Assignment 4:	
vv cen s	1. Write a program to implement outline character.	
	2. Write a program to implement bitmap character.	
	3. Write a program to implement ellipse generating algorithm	
	4. Write a program to draw the following figure:-	
	01000900003780000002001c000000000040000003010800050000	
	000b02000000050000000c0291014605040000002e0118001c000000f	
	b0210000700000000bc020000000102022253797374656d0001460	
	50000798c0000fc5b110004ee8339e84c5f040c020000040000002d01000	
	00400000020101001c000000fb02ceff000000000000000000044	
	0001254696d6573204e657720526f6d616e0000000000000000000000000000000000	
	00000000004000002d010100050000000000000000000000000	
	2d00000010004000000000460590012025160004000002d01000003	
	000000000	
	Input is rx, ry and center coordinates.	
Week 6	Assignment 5:	
VV CCII O	1. Write a procedure to scan the interior of a specified ellipse into a solid color.	
	2. Modify the 4-connected boundary fill algorithm to avoid excess	
	stacking.	
Week 7	3. Write the Scan line filling algorithm. Assignment 6:	
WEEK /		
	8 8	
	2. Distinguish between viewport and window.3. What do you mean by normalization transformation? Why it is needed?	
	4. Write a program to implement Line Clipping Algorithm using Cohen	
	Sutherland Algorithm. 5. Write a program to implement Line Clipping Algorithm using Liang Barsky	
	Algorithm.	

	6. Explain the Sutherland and Cohen subdivision algorithm for the line clipping.7. Explain Liang-Barsky line clipping algorithm.	
Week	Торіс	Remark
Week 8	 Assignment 7: Explain Sutherland-Hodgeman algorithm for polygon clipping. Write a program to Implement Polygon Clipping Algorithm using Sutherland -Hodgman Algorithm. Modify the Liang-Barsky line clipping algorithm to polygon clipping. What do you mean by interior and exterior clipping? Explain how exterior clipping is useful in multiple window environments. 	
Week 9	Test-2	
Week 10	Assignment 8: 1. Write a program to implement scaling on polygon. 2. Write a program to implement transferring on polygon. 3. Write a program to implement rotation on polygon. 4. Write a program to implement reflection on polygon. 5. Write a Program to implement set of Basic Transformations on Polygon i.e. Translation,Rotation and Scaling.	
Week 11	 Assignment 9: Why are matrices used for implementing transformations? What is the significance of homogeneous co-ordinates? Give the homogeneous co-ordinates for the basic transformations. Write a program to implement set of Composite Transformations on Polygon i.e Reflection, Shear (X &Y), rotation about an arbitrary point. Derive the transformation matrix for rotation about an arbitrary plane. 	
Week 12	Assignment 10: 1. Find a transformation of triangle (coordinates will be given) by Rotating 45 degree about the origin and then translating one unit in X and Y direction. 2. Derived transformation matrix for the following figure. 010009000037800000002001c0000000000040000003010800050000000000000000000000000	
	 Determine the sequence of basic transformations that are equivalent to the x-direction and y-direction shearing matrix. Show that two successive reflections about any line passing through the coordinate origin is equivalent to single rotation about the origin. Show that transformation matrix for a reflection about the line y=x, is equivalent to a reflection relative to the x axis followed by a counterclockwise rotation of 90 degrees. 	

Week	Торіс	Remark
Week 13	 Assignment 11: 1. Problems on 3-Dimension transformation. 2. What are different types of projection? Derive a matrix representation for perspective transformation? What are different perspective anomalies? 	
Week 14	Test-3	

Resources:

- Donald Hearn, M. Pauline Baker, Computer Graphics, C version, 2 edition Prentice-Hall
- Zhigang Xiang, Roy A. Plastock, Schaum's outline of Theory and Problems of computer graphics, 2 edition, McGraw-Hill.
- James D. Foley, Andries van Dam, Steven K. Feiner, John F. Hughes, Computer Graphics: Principles and Practice in C, 2 edition, Addison-Wesley Professional.