IFSP – INSTITUTO FEDERAL DE CIÊNCIA E TECNOLOGIA DE SÃO PAULO – CAMPUS CAMPOS DO JORDÃO

BEATRIZ HELENA E SILVA CJ3025799

CÁLCULO RELACIONAL BANCO DE DADOS

CAMPOS DO JORDÃO – SP 2024

BEATRIZ HELENA E SILVA CJ3025799

CÁLCULO RELACIONAL BANCO DE DADOS

Trabalho escrito apresentado como parte parcial da nota do componente curricular Banco de Dados 1, do 2º semestre do Curso Superior de Tecnólogo em Analise e Desenvolvimento de Sistemas do Instituto Federal de Ciência e Tecnologia de São Paulo – Campus Campos do Jordão.

Professor Paulo Giovanni

Sumário

1 INTRODUÇÃO	4
2 O QUE É CÁLCULO RELACIONAL	5
3 ONDE O CÁLCULO RELACIONAL É UTILIZADO	
4 IMPORTÂNCIA DO CÁLCULO RELACIONAL	
5 CAMPOS/ÁREAS DE TRABALHO	
6 CONCLUSÃO	
REFERÊNCIAS BIBLIOGRÁFICAS	

1 INTRODUÇÃO

De acordo com González, o cálculo relacional pode ser definido como uma ferramenta, a qual pode-se utilizar para consultar informações em um banco de dados relacional, na forma de uma linguagem formal declarativa.

O cálculo relacional tem suas origens pautadas em um ramo da matemática, mais especificamente da lógica matemática, conhecido como cálculo de predicados. Ainda, é possível dividi-lo em dois tipos: o cálculo de tuplas e o de domínio.

Para esta pesquisa, serão examinados os conceitos relacionados ao cálculo relacional, suas formas e exemplos de consulta, bem como sua relevância como base para outras linguagens.

2 O QUE É CÁLCULO RELACIONAL

De acordo com Singh (2024) cálculo relacional é uma linguagem não procedural, ao invés disso é declarativa, no sistema de gerenciamento de banco de dados, a qual guia o usuário para obter as saídas a partir das entradas sem que se saiba o processo para tal. Para entender melhor, uma linguagem declarativa não se atém a maneira como os resultados são obtidos do banco de dados, apenas aos resultados, a saída.

Date (2004) em seu livro diz que o cálculo relacional, trata-se de uma alternativa a álgebra relacional (AR), visto que a AR possui operadores que indicam ao sistema como efetuar a construção desejada, enquanto o CR, por outro lado, fornece uma notação, na qual, o usuário elenca as características que o resultado precisa conter, deixando que o sistema exerça as decisões sobre as operações a serem feitas.

Segundo a redação da Prepbytes (2023) existem 2 tipos de cálculo relacional no gerenciamento de banco de dados relacionais: Cálculo de tuplas e Cálculo de Domínio.

Singh, diferencia os dois tipos da seguinte forma: O cálculo de tuplas é utilizado de forma que permite selecionar os todas as linhas que satisfazem a condição previamente identificada, enquanto, no cálculo de domínio, os dados são filtrados por meio de seus domínios (tipos) associados aos atributos, nesse caso, para formar uma relação a qual tivesse grau X para um resultado, é preciso criar X variáveis de domínio, uma para cada atributo.

2.1 CÁLCULO RELACIONAL DE TUPLAS

Utiliza uma variável de tupla que verifica a condição do predicado em cada linha da tabela retornando, se a condição for atendida, a linha ou parte desta. (SINGH, 2024) A redação da Prepbytes (2023) define que essa forma de cálculo relacional:

"Utiliza variáveis para representar linhas e predicados lógicos para especificar as condições que devem ser atendidas para que as tuplas sejam selecionadas. A

expressão resultante é uma fórmula que descreve um conjunto de tuplas que atendem às condições especificadas." (Prepbytes, 2023, tradução própria)¹

Para o cálculo de tuplas, utiliza-se a seguinte sintaxe:

 $\{t \mid P(t)\}$

Na qual t representa a variável e P(t) é a condição do predicado.

2.2 CÁLCULO RELACIONAL DE DOMÍNIO

A Prepbytes (2023), define o cálculo relacional de domínio como: "O Cálculo Relacional de Domínio no SGBD é baseado no conceito de seleção de valores de uma relação (tabela) que satisfaçam determinadas condições." Diferente do Cálculo de Tuplas, o de domínio usa as variáveis para representar valores individuais, enquanto, ambas se assemelham no predicado, o qual mostra as condições que devem ser atendidas para que os resultados sejam apresentados. (PREPBYTES, 2023, tradução própria)

Para o cálculo de domínio, utiliza-se a seguinte sintaxe:

$$\{ < x1, x2, x3, x4... > | P(x1, x2, x3, x4...) \}$$

Onde $\langle x1, x2, x3, x4... \rangle$ são as variáveis de domínio e P(x1, x2, x3, x4...) é a condição do predicado.

2.3 SEGURANÇA DE EXPRESSÕES – CÁLCULO DE TUPLAS

Silberschatz, Korth e Sudarshan (2006) explicam como uma tupla pode gerar uma relação infinita, por exemplo, utilizando a expressão:

$$\{t \mid \neg (t \in exemplo)\}\$$

Existem dezenas de linhas, as quais satisfazem a expressão, diversas que não estão contidas em tabela_exemplo, valores os quais podem não ser aqueles sendo buscados. Assim, há uma forma de criar restrições para o cálculo de tuplas,

¹ Tuple Relational Calculus uses variables to represent tuples and logical predicates to specify the conditions that must be met for the tuples to be selected. The resulting expression is a formula that describes a set of tuples that meet the specified conditions. (Texto original, Prepbytes, 2024)

criando expressões seguras, que em cálculo relacional sugerem garantem a produção de um número finito de linhas na saída. (TAKAI, 2005)

Dessa forma, Takai (2005) introduz o conceito de domínio:

"O domínio de uma expressão P é o conjunto de todos os valores referenciados por P. Isso inclui os valores mencionados em P propriamente dito, assim como os valores que aparecem na tupla de uma relação referenciada por P." ²

Ou seja, P trata-se de um conjunto de valores, os quais estão presentes diretamente em P ou em uma de suas relações.

2.3 SEGURANÇA DE EXPRESSÕES - CÁLCULO DE DOMÍNIO

Novamente, no cálculo de domínios, temos expressões as quais podem gerar milhares de outros resultados, esta pode ser expressa por:

 $\{\langle a,b,c\rangle \mid \neg (\langle a,b,c\rangle \in exemplo)\}$

Nesta expressão, o resultado pode retornar valores os quais não estão no domínio da expressão, portanto deve-se analisar as cláusulas ∃ "existe" e ∀ "para todo". Portanto, criam-se 3 regras que tornam o cálculo relacional de domínios seguro, as quais podemos listar (TAKAI, 2005):

- Os valores que aparecem nas linhas da expressão são valores dentro do domínio desta.
- 2. Para (∃ x) (P(x)), a fórmula é verdadeira se, e somente se, existir um valor x no domínio de P tal que P(x) seja verdadeiro.
- 3. Para (∀ x) (P(x)), a fórmula é verdadeira se, e somente se, P(x) for verdadeiro para todos os valores de x dentro do domínio de P.

² Domain Relational Calculus in DBMS is based on the concept of selecting values from a relation (table) that satisfy certain conditions. (Texto original, Prepbytes, 2024)

3 ONDE O CÁLCULO RELACIONAL É UTILIZADO E SUA IMPORTÂNCIA

Assim como a álgebra relacional, o cálculo relacional principalmente o de tuplas é parte importante da base que forma a linguagem de manipulação de dados chamada SQL. Além de sua importância para as consultas aos bancos de dados relacionais, segundo Date (2004) o cálculo relacional de domínios é a base para a Linguagem de manipulação de dados chamada Query-by-example (QBE), que utiliza os conceitos não apenas desse tipo de cálculo relacional, mas também o cálculo de tuplas, ainda, incorpora uma sintaxe bidimensional. Angelita (2023) destaca que a linguagem QBE é usada em diversas áreas, tendo vasta aplicação, como para geração de relatórios, extração de dados e análise de dados.

4 EXEMPLOS DE CONSULTA

Para o cálculo relacional de tuplas e de domínio, considerar os seguintes campos (SILBERSCHATZ, KORTH, SUDARSHAN, 2006):

Exemplo 01:

```
agência(nome_agencia, cidade_agencia, ativo)

cliente(nome_cliente, rua_cliente, cidade_cliente)

empréstimo(numero_emprestimo, nome_agencia, quantia)

tomador(nome_cliente, numero_emprestimo)

conta(numero_conta, nome_agencia, saldo)

depositante(nome_cliente, numero_conta)
```

4.1 EXEMPLO DE CÁLCULO RELACIONAL DE TUPLAS

```
\{t \mid t \in emprestimo \land t [quantia] > 1200\}
```

Traduz-se como: "Encontre o nome_agencia, o numero_emprestimo e a quantia para empréstimo de mais \$1.200"

Pode-se observar que os mesmos operadores da álgebra relacional são aplicados as consultas de cálculo relacional: ou (v), e (^), não (¬). (SILBERSCHATZ, KORTH, SUDARSHAN, 2006)

4.1 EXEMPLO DE CÁLCULO RELACIONAL DE DOMÍNIO

```
\{<c> \mid \exists \mid (<c,l> \epsilon \text{ tomador } \land \exists \mid b,a (<l,b,a> \epsilon \text{ emprestimo } \land b = \text{"Perryridge"})\}
 \land \exists \mid a (<c,a> \epsilon \text{ depositante } \land \exists \mid b,n (<a,b,n> \epsilon \text{ conta } \land b = \text{"Perryridge"}))\}
```

Traduz-se como: "Encontro os nomes de todos os clientes que possuem um empréstimo, um conta ou ambos na agência Perryridge." (SILBERSCHATZ, KORTH, SUDARSHAN, 2006)

5 CONCLUSÃO

Bem como a álgebra relacional, o cálculo relacional, tem grande relevância para os sistemas de banco de dados relacionais, mais do que simples linguagens de consulta, são a base para linguagens mais complexas que vão além de suas funções consultivas, entrando em campos mais complexos de manipulação de dados e outros, ainda, fornecem mais possibilidades ao usuário que precisa realizar consultas específicas aos dados, dessa forma, permitindo mais versatilidade e facilidade ao efetuar o trabalho consultivo.

REFERÊNCIAS BIBLIOGRÁFICAS

ARTIGOS:

GONZÁLEZ, F. R. Cálculo Relacional. Castilla-La Mancha, Tesis doctoral. Disponível em: CALCULO-RELACIONAL.pdf (researchgate.net) > Acesso em: 06 de abril de 2024

TAKAI, Osvaldo K. Isabel C. ITALIANO. FERREIRA, João E. **Introdução a Banco de Dados**. DOC-IME-USP. Fevereiro de 2005. Disponível em: <<u>INTRODUÇÃO A BANCO DE DADOS (1library.org)</u>>Acesso em: 08 de abril de 2024.

LIVROS:

DATE, Christopher J. **Introdução a sistemas de bancos de dados**. Rio de Janeiro: Elsevier Brasil, 2003 – 15° reimpressão.

SILBERSCHATZ, Abraham. KORTH, Henry F. SUDARSHAN, S. **Sistema de Banco de Dados**. Rio de Janeiro, Elsevier Brasil, 2006 – 3º reimpressão.

SITES:

ANGELITA. **QBE**. Tech Lib - Conhecimento técnico. 17 de fevereiro de 2023. Disponível em: <<u>QBE - Tech Lib (tech-lib.wiki)</u>> Acesso em: 06 de abril de 2024.

GEEKFORGEEKS **Difference between Relational Algebra and Relational Calculus**, 07 de junho de 2022. Disponível em:<<u>Difference between Relational Algebra and Relational Calculus - GeeksforGeeks</u> > Acesso em: 06 de abril de 2024.

PREPBYTES. **Relational Calculus in DBMS.** 27 de fevereiro de 2023. Disponível em:<<u>Relational Calculus in DBMS (prepbytes.com</u>) > Acesso em: 06 de abril de 2024.

SINGH, Chaitanya. **DBMS Relational Calculus**. Beginners Book. Disponível em:<<u>DBMS Relational Calculus (beginnersbook.com)</u> > Acesso em: 06 de abril de 2024.

SINGH, Rohan K. Relational Calculus in DBMS. Scaler Topics. 12 de janeiro de 2024. Disponível em:<https://www.scaler.com/topics/dbms/relational-calculus-in-dbms/ Acesso em: 06 de abril de 2024.