Математически турнир "Иван Салабашев" 30 ноември 2024 г.

Решения на задачите от темата за 10-12. клас

Задача 1. За даден триъгълник да се намери най-голямото реално число m такова, че през всяка точка от равнината минава права, която отсича от него отсечка с дължина поне m.

Решение. Ще докажем, че ако $h_a \leq h_b, h_c$ за $\Delta = \triangle ABC$, то $m = h_a$.

Очевидно през всяка точка от равнината минава права, която пресича Δ във връх и точка от срещуположната му страна, например D and D_1 . Понеже $|DD_1| \ge h_d \ge h_a$, следва, че $m \ge h_a$. От друга страна, можем да изберем O така, че $AO \perp BC$, $\triangleleft ABO \ge 90^{\circ}$ и $\triangleleft ACO \ge 90^{\circ}$. Нека права през O пресича Δ в точки E и E_1 . Можем да считаме, че $E \in [AB]$ и $E_1 \in [A_1B]$, където $A_1 = AO \cap BC$. Тогава $|OE_1| \ge |OA_1|$ и $|OE| \le |OA|$ (понеже $\triangleleft AEO \ge \triangleleft ABO \ge 90^\circ$ при $E \neq A$), откъдето $|EE_1| \leq |AA_1| = h_a$. Следователно $m \leq h_a$.

Оценяване. 2 т. за $m \ge h_a$ и 5 т. $m \le h_a$.

Задача 2. Да се докаже, че съществуват безбройно много функции от вида $f(x) = \frac{ax+b}{cx+d}$, където $a,b,c,d\in\mathbb{R}$, такива, че f(f(f(x)))=x за всяко $x\in\mathbb{R}$, за които лявата страна е дефинирана.

Решение. Директно се проверява, че функциите $f_{a,d}(x) = a - \frac{(a+d)^2}{r+d}, \ a \neq -d$, имат исканото

Оценяване. 3 т. за пример и 4 т. за проверка.

Забележка. В комплексния случай може да се докаже, че:

- а) f(f(z)) = z точно когато f(z) = z, f(z) = -z + b или $f(z) = \frac{az + b}{z a}$, $a^2 \neq -b$.
- б) f(f(f(z))) = z точно когато f(z) = z, $f(z) = e^{2\pi i/3}z$, $f(z) = e^{4\pi i/3}z$ или $f(z) = f_{a,d}(z)$, $a \neq -d$. **Задача 3.** Нека $c \in \mathbb{R}$, m и n са естествени числа, по-големи от 1, а P и Q са такива неконстанти полиноми с реални коефициенти, че $(P(x))^m - (Q(x))^n = c$ за всяко $x \in \mathbb{R}$. Да се докаже, че c = 0.

Решение. Ясно е, че даденото равенство е изпълнено за всяко $z \in \mathbb{C}$. По-долу ще разглеждаме полиноми с комплексни коефициенти.

Да допуснем, че $c \neq 0$. Нека z_1, \ldots, z_m са комплексните m-ти корени на c. Тогава (1) $Q^n =$ $(P-z_1)\dots(P-z_m)$. Понеже всеки два от полиномите в това произведение нямат обща нула, то (2) $P-z_k=Q_k^n$ за $k=1,\ldots,m$, където Q_k са полиноми. Тогава (3) $0\neq z_1-z_2=Q_1^n-Q_2^n$ и както по-горе следва, че Q_1-Q_2 е константен полином, съвпадащ с всеки от комплексните n-ти корени на $z_1 - z_2$, което е противоречие.

Оценяване. По 2 т. за (1) и (2), 1 т. за (3) и 2 т. за довършване. 2 т., ако е разгледан само случаят, когато HOД(m,n)=k>1, с помощта на разлагането $a^k-b^k=(a-b)(a^{k-1}+a^{k-2}b+1)$ $\cdots + ab^{k-2} + b^{k-1}$).

Забележка. Вярно е и по-общо твърдение: разликата на два различни неконстанти полиноми без прости комплексни нули не може да бъде константен полином.