Finite *p*-groups of class two with a large/small multiple holomorph

Andrea Caranti and Cindy (Sin Yi) Tsang Brussels, 20 January 2025, 9:30 CET

AC Dipartimento di Matematica Università degli Studi di Trento Trento

Italy

CT Department of Mathematics Ochanomizu University Tokyo Japan

Isomorphic regular subgroups

Let (G,1) be a pointed set. A subgroup $N \leq S(G)$ of the group S(G) of permutations on the set G is said to be regular if the map

$$N \rightarrow G$$
, $n \mapsto 1^n$

is a bijection.

G.A. Miller

On the multiple holomorphs of a group

Math. Ann. 1 (1908), 133-142

Miller has shown that for two regular subgroups N, M of a symmetric group S(G), where G is a set, the following are equivalent:

- N and M are isomorphic, and
- N and M are conjugate in S(G).

The holomorph

Let now $G = (G, \cdot, 1)$ be a group. In S(G) we have the regular subgroup $\rho(G)$, the image of the right regular representation

$$\rho: G \to S(G)$$
$$g \mapsto (x \mapsto x \cdot g).$$

It is an easy fact that

$$N_{S(G)}(\rho(G)) = Aut(G)\rho(G) = Hol(G) \cong Aut(G) \ltimes G.$$

More generally, for every regular subgroup $N \leq S(G)$ we have

$$N_{\mathsf{S}(G)}(N)\cong \mathsf{Hol}(N).$$

Regular subgroups of Hol(G) are in one-to-one correspondence with skew braces with additive group (G,\cdot) .

Regular subgroups of the holomorph I

Regular subgroups $N \leq N_{S(G)}(\rho(G))$ occur in cryptography:

A. Caranti, F. Dalla Volta and M. Sala

Abelian regular subgroups of the affine group and radical rings.

Publ. Math. Debrecen 69 (2006), no. 3, 297–308.

In Hopf Galois theory:

C. Greither, B. Pareigis

Hopf Galois theory for separable field extensions

J. Algebra 106 (1987), 239–258

N. P. Byott

Uniqueness of Hopf Galois structure of separable field extensions

Comm. Algebra 24 (1996), 3217-3228

Regular subgroups of the holomorph II

More Hopf Galois:

S.C. Featherstonhaugh, A.C. and L. Childs

Abelian Hopf Galois structures on prime-power Galois field extensions.

Trans. Amer. Math. Soc. 364 (2012), no. 7, 3675–3684.

Regular subgroups $N \leq N_{S(G)}(\rho(G))$ are equivalent to skew braces on G, which determine solutions to the Yang-Baxter equation:

W. Rump

Braces, radical rings, and the quantum Y-B equation J. Algebra **307** (2007), 153–170

L. Guarnieri and L. Vendramin

Skew braces and the Yang-Baxter equation Math. Comp. 86 (2017), no. 307, 2519-2534

A converse to Cayley's theorem

Let (G, \cdot) be a pointed set, and $N \leq S(G)$ be a regular subgroup, so that the map

$$N \rightarrow G$$
, $n \mapsto 1^n$

is a bijection, whose inverse

$$\nu: G \rightarrow N$$

maps $x \in G$ to the unique element $\nu(x) \in N$ such that $1^{\nu(x)} = x$.

One can use these maps to transport the group structure of N on the set G to get a group operation " \circ " on G such that

- $\nu: (G, \circ) \to N$ is an isomorphism.
- $x^{\nu(y)} = 1^{\nu(x)\nu(y)} = 1^{\nu(x\circ y)} = x\circ y$, so this is a converse to Cayley's theorem: every regular subgroup of S(G) is the image of the regular representation of a suitable group (G, \circ) .

Rephrasing isomorphism

 $N = \{ \nu(x) : x \in G \} \le S(G)$ regular, where $\nu(x)$ is the unique element of N such that $1^{\nu(x)} = x$.

There are a group (G, \circ) , and a bijection $\nu : G \to N$ such that

- $\nu:(G,\circ)\to N$ is an isomorphism, and
- $x^{\nu(y)} = x \circ y$, that is, $\nu : (G, \circ) \to S(G)$ is the right regular representation of (G, \circ) .

We can rephrase Miller's result as follows.

- Let $(G, \cdot, 1)$ be a group.
- Let $N \cong \rho(G) \cong G$ be a regular subgroup of S(G).
- Then for $\vartheta \in \mathsf{S}(G)$ such that $1^{\vartheta} = 1$, the following are equivalent :
 - $\vartheta: (G, \cdot) \to (G, \circ)$ is an isomorphism, and
 - $\rho(G)^{\vartheta} = N$.

Regular subgroups of the holomorph III

Let

$$N \leq \operatorname{Hol}(G) = N_{S(G)}(\rho(G)) = \operatorname{Aut}(G)\rho(G)$$

be a regular subgroup of S(G).

Then for the unique element $\nu(x) \in N$ such that $1^{\nu(x)} = x \in G$ we have

$$\nu(x) = \gamma(x)\rho(x),$$

where $\gamma:G\to \operatorname{Aut}(G)$ is a function, which is characterised by the functional equation

$$\gamma(x^{\gamma(y)}y) = \gamma(x)\gamma(y).$$

Groups having the same holomorph, and T(G)

G and *N* are said to have the same holomorph if $\rho(G)$, *N* are conjugate, and

$$\operatorname{Hol}(G) = N_{\operatorname{S}(G)}(\rho(G)) = N_{\operatorname{S}(G)}(N) \cong \operatorname{Hol}(N).$$

Let N be an element of

$$\mathcal{H}(G) = \{ N \leq \mathsf{Hol}(G) \text{ regular } : G \text{ and } N \text{ have the same holomorph } \}.$$

Then $\rho(G)^{\vartheta} = N$ for a ϑ in the multiple holomorph

$$\mathsf{NHol}(G) = \mathsf{N}_{\mathsf{S}(G)}(\mathsf{Hol}(G)) = \mathsf{N}_{\mathsf{S}(G)}(\mathsf{N}_{\mathsf{S}(G)}(\rho(G))).$$

According to Miller's result, $\mathcal{H}(G)$ is the orbit of $\rho(G)$ under the conjugation action of NHol(G).

The stabiliser of $\rho(G)$ is $Hol(G) \subseteq NHol(G)$. Thus

$$T(G) = NHol(G)/Hol(G)$$
 acts regularly on $\mathcal{H}(G)$.

The structure of T(G)

It is conjectured that when G is centerless, T(G) is an elementary abelian 2-group.

Cindy (Sin Yi) Tsang

The multiple holomorph of centerless groups

J. Pure Appl. Algebra 229 (2025), no. 1

When G is a finite p-group of class 2 (more generally, less than p), then T(G) contains a cyclic subgroup of order p-1.

A.C.

Multiple Holomorphs of Finite *p*-Groups of Class Two *J. Algebra* **516** (2018), 352-372

Cindy (Sin Yi) Tsang

On the multiple holomorph of groups of squarefree or odd prime power order

J. Algebra 544 (2020), 1-28

Large and small

A.C. and Cindy (Sin Yi) Tsang
Finite p-groups of class two with a large multiple holomorph

J. Algebra 617 (2023), 476–499

A.C. and Cindy (Sin Yi) Tsang

Finite p-groups of class two with a small multiple holomorph.

J. Group Theory 27 (2024), no. 2, 345-381

Large

For finite p-groups of class two, T(G) contains a cyclic subgroup of order p-1 (think of maps $x \mapsto x^d$, with gcd(x,p)=1). Cindy and I wondered how big can T(G) be. We found

Theorem

For any odd prime p, and $n \ge 4$, there exists a finite p-group G of class two and order $p^{n+\binom{n}{2}}$ such that T(G) is isomorphic to

$$\mathbf{F}_{p}^{\binom{n}{2}\binom{n+1}{2}} \rtimes \left(\mathbf{F}_{p}^{\binom{n}{2}-n)\times n} \rtimes \left(\mathrm{GL}(n,\mathbf{F}_{p}) \times \mathrm{GL}\left(\binom{n}{2}-n,\mathbf{F}_{p}\right)\right)\right).$$

The gist of it is that any finite group H occurs as a subgroup of T(G), for some finite p-group G of class two, with p an odd prime.

I will only show how the part in colour occurs. We reduce the proof to elementary questions in linear algebra.

Normality is (somewhat) easy

Recall
$$N = \{ \gamma(x)\rho(x) : x \in G \}$$
, where $\gamma : G \to \operatorname{Aut}(G)$ satisfies $\gamma(x^{\gamma(y)}y) = \gamma(x)\gamma(y)$, and $N \cong (G, \circ)$, where $x \circ y = x^{\gamma(y)}y$.
 $\operatorname{Hol}(G) = N_{S(G)}(\rho(G)) = N_{S(G)}(N) \cong \operatorname{Hol}(N)$ (1)

implies $N \leq \text{Hol}(G)$. The latter condition can be conveniently stated in terms of gamma functions as

$$\gamma(xy) = \gamma(y)\gamma(x), \qquad \gamma(x^{\beta}) = \gamma(x)^{\beta} \qquad x, y \in G, \beta \in Aut(G).$$

One cannot encode so neatly the fact that $G \cong N$, which when G is finite would give equality (1). Still it is clear that if we want a large T(G), then (a) small (automorphism group) is beautiful.

In Aut(G) you have in any case the central automorphisms Aut_c(G) that act trivially on G/Z(G), and thus on G', as for $\beta \in \text{Aut}_c(G)$ we have $[x,y]^\beta = [x^\beta,y^\beta] = [xz_1,yz_2] = [x,y]$, for $z_1,z_2 \in Z(G)$.

Bilinear forms

Assume from now on G' = Z(G) and $Aut(G) = Aut_c(G)$. We have

$$x^{\gamma(y)} = x \cdot x^{-1} x^{\gamma(y)} = x \cdot [x, \gamma(y)],$$

where

$$G \times G \to Z(G)$$

 $(x, y) \mapsto [x, \gamma(y)]$

turns out to be a morphism in both components, and thus yields a bilinear form

$$\Delta: G/G' \times G/G' \to Z(G). \tag{2}$$

The condition $\gamma(x^{\beta}) = \gamma(x)^{\beta}$, or $\Delta(x^{\beta}, y^{\beta}) = \Delta(x, y)^{\beta}$, is now empty on these forms, as $\operatorname{Aut}(G) = \operatorname{Aut}_{c}(G)$ acts trivially on both G/G' and G' = Z(G). So you can describe the group operation \circ associated to a regular subgroup $N \subseteq \operatorname{Hol}(G)$ as

$$x \circ y = x^{\gamma(y)}y = xy\Delta(x, y),$$

for a bilinear form Δ as in (2).

Symmetric forms and isomorphic groups

If Δ is symmetric, then

$$\vartheta: (G, \cdot) \to (G, \circ)$$

 $x \mapsto x\Delta(x, x)^{1/2}$

is an isomorphism, which means $\rho(G)$ and N are conjugate. Recall $x \circ y = xy\Delta(x,y)$.

More generally, if

$$\Delta = \Delta_a \Delta_s$$

for a fixed antisymmetric form Δ_a , as the symmetric part Δ_s varies, all the corresponding groups (G, \circ) are isomorphic, so we need only be concerned with antisymmetric forms.

$$\Delta = \Delta_a \Delta_s$$
 and $x \circ y = xy \Delta(x, y)$

Computing automorphisms I

- G. Daues and H. Heineken

 Dualitäten und Gruppen der Ordnung p⁶

 Geometriae Dedicata 4 (1975), no. 2/3/4, 215–220
- A.C.

 Automorphism groups of *p*-groups of class 2 and exponent *p*²: a classification on 4 generators

 Ann. Mat. Pura Appl. (4) 134 (1983), 93–146
- A.C.
 A simple construction for a class of p-groups with all of their automorphisms central

Rend. Semin. Mat. Univ. Padova 135 (2016), 251-258

A special class

Let $\mathcal F$ be the free group on n generators. Consider the quotient group

$$F = \mathcal{F}/\langle [[\mathcal{F}, \mathcal{F}], \mathcal{F}], \mathcal{F}^{p^2}, [\mathcal{F}^p, \mathcal{F}] \rangle,$$

which is free in a suitable variety. F is defined by the equations $[[x,y],z]=x^{p^2}=[x^p,y]=1$. Note $[F,F]^p=[F^p,F]=1$.

Consider, for $n \ge 4$,

$$G = G(D) = F/\langle x_i^p = \prod_{j < k} [x_j, x_k]^{d_{i,(j,k)}}, i = 1, \dots n \rangle.$$

 $D = [d_{i,(j,k)}]$ is an $n \times \binom{n}{2}$ \mathbf{F}_p -matrix, which we take of full rank n.

The free group F, its quotient G(D), and the p-th power map

$$G = G(D) = F/\langle x_i^p = \prod_{j < k} [x_j, x_k]^{d_{i,(j,k)}}, i = 1, \dots n \rangle,$$

The p-th power map

$$\pi: G/G' \to G', \qquad xG' \mapsto x^p$$

is a morphism, since p is odd: $(xy)^p = x^p y^p [y, x]^{\binom{p}{2}} = x^p y^p$.

 π is injective, as its matrix $D = [d_{i,(i,k)}]$ has full rank n.

Computing automorphisms II

 $V = G/G' = F/\operatorname{Frat}(F)$ is an \mathbf{F}_p -vector space of dimension n. Let $\alpha \in \operatorname{GL}(V) = \operatorname{GL}(n, \mathbf{F}_p)$.

$$\ker(\psi) \longrightarrow F \xrightarrow{\psi} (G, \cdot)$$

$$\downarrow^{\alpha''} \downarrow^{\psi}$$

$$\ker(\psi) \longrightarrow F \xrightarrow{\psi} (G, \cdot)$$

" α " is the lift of $\alpha \in GL(V) = GL(F/Frat(F))$ to Aut(F), which exists as F is free in a variety.

 α lifts to an automorphism ϑ of (G,\cdot) iff $\ker(\psi) \leq \ker(\alpha \psi)$.

Since G' has a basis $[x_j, x_k]$, for j < k, we can identify

$$G' \xrightarrow{\sim} \bigwedge^2 V$$
$$[x, y] \mapsto x \wedge y$$

Computing automorphisms III

$$\ker(\psi) \xrightarrow{F} \xrightarrow{\psi} (G, \cdot)$$

$$\downarrow^{\alpha''} \downarrow^{\psi} \downarrow^{\psi}$$

$$\ker(\psi) \xrightarrow{F} \xrightarrow{\psi} (G, \cdot)$$

 $\ker(\psi) \leq \ker(``\alpha"\psi)$ translates to the commutativity of

where $\pi: V \to \bigwedge^2 V$ is the *p*-th power map, and $\widehat{\alpha}$ is the map induced by α on $\bigwedge^2 V$. In matrix terms,

$$\alpha D = D\hat{\alpha}$$
.

One can choose D so that $\alpha=1$ is the only solution, that is,

$$\operatorname{Aut}(G) = \operatorname{Aut}_{c}(G).$$

Antisymmetric forms and commutators

Consider now two groups G = G(D) and (G, \circ) , where

$$x \circ y = xy\Delta(x,y),$$

for an antisymmetric form

$$\Delta: V \times V \to \bigwedge^2 V.$$

By the universal property of the exterior square,

$$\Delta(x,y) = (x \wedge y)^{\sigma} = [x,y]^{\sigma},$$

for some $\sigma \in \operatorname{End}(\bigwedge^2 V)$. Then

$$[x,y]_{\circ} = [x,y]\Delta(x,y)\Delta(y,x)^{-1} = [x,y]\Delta(x,y)^2 = [x,y]^{1+2\sigma} \in G'.$$

When $\sigma=0$, that is, $\Delta=1$, we have $(G,\circ)=(G,\cdot)$.

When $\sigma=-1/2$ is scalar, then (G,\circ) is abelian. More generally, since we have $(G,\circ)'\subseteq G'$, for isomorphism we want $G'=(G,\circ)'$, so that σ cannot have -1/2 as an eigenvalue.

Computing isomorphisms I

If $\alpha \in GL(V)$, we have

$$\ker(\psi) \longrightarrow F \xrightarrow{\psi} (G, \cdot)$$

$$\downarrow \alpha \qquad \qquad \downarrow \psi$$

$$\ker(\psi_{\circ}) \longrightarrow F \xrightarrow{\psi_{\circ}} (G, \circ)$$

Since we have fixed the identification $G' \to \bigwedge^2 V$ given by $[x,y] \to x \wedge y$, and $[x,y]_\circ = [x,y]^{1+2\sigma}$, the diagram

now yields

$$\alpha D(1+2\sigma)^{-1}=D\hat{\alpha}.$$

Computing Isomorphisms II

Recall that if $\vartheta: (G, \cdot) \to (G, \circ)$ is an isomorphism, α is the restriction of ϑ on V = G/G', which is the same for both groups.

In the equation

$$\alpha^{-1}D\hat{\alpha} = D(1+2\sigma)^{-1}.$$
(3)

you can fix σ , that is, choose a group (G, \circ) , and solve for α , that is, look for an isomorphism $\vartheta : (G, \cdot) \to (G, \circ)$ which induces α on V = G/G'.

But what is of interest to us is that given an arbitrary $\alpha \in GL(V)$, we can solve equation (3) for σ . It is a straightforward matter of linear algebra, whose details we will skip.

This will yield that the restriction $T(G) \to GL(V)$ has for image the whole GL(V), as in the statement of the main theorem.

Computing Isomorphisms III

For a fixed, but arbitrary $\alpha \in GL(V)$, consider the equation in $\sigma \in End(\bigwedge^2 V)$

$$\alpha^{-1}D\hat{\alpha}=D(1+2\sigma)^{-1},$$

Here

$$\alpha^{-1}D$$
 and D

are two $n \times \binom{n}{2}$ matrices of full rank n. And now for a piece of elementary linear algebra, complete $\alpha^{-1}D, D$ to square invertibile matrices $\overline{\alpha^{-1}D}, \overline{D}$, and take $X = \overline{D}^{-1} \cdot \overline{\alpha^{-1}D}$. Then

$$\overline{\alpha^{-1}D} = \overline{D} \cdot X, \qquad \alpha^{-1}D = DX, \qquad \alpha^{-1}D\hat{\alpha} = D(X\hat{\alpha}).$$

Since $X, \hat{\alpha}$ are invertible, you may set $(1+2\sigma)^{-1}=X\hat{\alpha}$ to get

$$\sigma = \frac{1}{2} \left((X \hat{\alpha})^{-1} - 1 \right),$$

as p is odd.

Computing Isomorphisms IV

We claimed that T(G) is isomorphic to

$$\mathbf{F}_{p}^{\binom{n}{2}\binom{n+1}{2}} \rtimes \left(\mathbf{F}_{p}^{\binom{n}{2}-n)\times n} \rtimes \left(\mathrm{GL}(n,\mathbf{F}_{p}) \times \mathrm{GL}\left(\binom{n}{2}-n,\mathbf{F}_{p}\right)\right)\right).$$

The $\mathbf{F}_{p}^{\binom{n}{2}\binom{n+1}{2}}$ part comes from the symmetric forms, the rest from the antisymmetric ones.

The $GL(n, \mathbf{F}_p)$ part follows from the fact we have just proved: all $\alpha \in GL(V)$ occur as restrictions of some $\vartheta \in T(G)$ to G/G' = V.

To get the rest of the statement, one would need the consider the restriction of $\vartheta \in T(G)$ to $G' = \bigwedge^2 V$, that is, fully exploit the degrees of freedom we had in solving in $X \in GL(\bigwedge^2 V)$ the equation

$$\alpha^{-1}D = DX$$
 via $X = \overline{D}^{-1} \cdot \overline{\alpha^{-1}D}$.

Small

Let G be a finite p-group of class two, for p > 2. Then T(G) contains a cyclic group of order $\varphi(p^r) = p^{r-1}(p-1)$, where p^r is the exponent of G/Z(G).

The p-1 part is obtained by considering the power maps

$$\vartheta_d: G \to G$$
$$x \mapsto x^d,$$

where gcd(d, p) = 1. We have

$$(xy)^{\vartheta} = x^d y^d [y, x]^{\binom{d}{2}},$$

from which one can see that (ι is "conjugation by")

$$\rho(g)^{\vartheta_d} = \iota(g^{(1-d)/2})\rho(g^d) \in \operatorname{Aut}(G)\rho(G) = \operatorname{Hol}(G),$$

and since ϑ_d commutes elementwise with $\operatorname{Aut}(G)$, we have that $\vartheta_d \in \operatorname{NHol}(G) = N_{S(G)}(\operatorname{Hol}(G))$.

Small II

Let G be a finite p-group of class two, for p > 2. Then T(G) contains a cyclic group of order $\varphi(p^r) = p^{r-1}(p-1)$, where p^r is the exponent of G/Z(G).

So we may say that T(G) is small, or minimal, when it reaches that lower bound.

We have considered various groups on n=3 or 4 generators, of the previous form

$$\langle x_1,\ldots,x_n:x_i^p=\prod_{j\leq k}[x_j,x_k]^{d_{i,(j,k)}}, i=1,\ldots n\rangle,$$

where the matrix $D = [d_{i,(j,k)}]$ has rank one, and found which cases yield a small T(G).

The case of rank zero (i.e. D=0) yields easily a small T(G), as G is free in the variety of groups of class two and exponent p there.

That's All, Thanks!