《代数结构》核心要点总结 (最终排版)

一、群 (Group)

定义 1. 群. 一个非空集合 G 和其上的一个二元运算 * 构成一个**群** (G,*),若满足:

- (i) **封闭性**: $\forall a, b \in G, a * b \in G$.
- (ii) **结合律**: $\forall a, b, c \in G, (a * b) * c = a * (b * c).$
- (iii) 单位元 $e: \exists e \in G, \forall a \in G, a * e = e * a = a.$
- (iv) 遊元 a^{-1} : $\forall a \in G, \exists a^{-1} \in G, a * a^{-1} = a^{-1} * a = e^{-1}$

若还满足**交换律** a*b=b*a,则称为**阿贝尔群**。

例子 1. 群的例子.

- **整数加法群** $(\mathbb{Z},+)$: 单位元是 0,逆元是 -a。
- **剩余类加法群** $(\mathbb{Z}_n, +_n)$: n 个元素 $\{[0], \dots, [n-1]\}$ 。
- 单位群 (U_n, \times_n) : 元素为 $\{k \mid 1 \le k < n, \gcd(k, n) = 1\}$, 共 $\phi(n)$ 个元素。

定义 2. 群元素的阶. 设 $g \in G$,使得 $g^k = e$ 的最小正整数 k 称为 g 的**阶**,记作 $\operatorname{ord}(g)$ 。

性质 1. 阶的性质. 设 ord(g) = k。

- 遊元: $\operatorname{ord}(g^{-1}) = k$.
- **幂的阶**: $\operatorname{ord}(g^m) = \frac{k}{\gcd(k,m)}$.
- 乘积的阶: 若 g, h 可交换且 gcd(ord(g), ord(h)) = 1, 则 ord(gh) = ord(g)ord(h).
- 基本性质: $g^n = e \iff k \mid n$.

定义 3. 子群与正规子群.

- **子群判定**: $H \subseteq G$ 是子群 $(H \le G) \iff \forall a, b \in H, ab^{-1} \in H$ 。对有限集 H,只需验证封闭性。
- 生成子群: $\langle g \rangle = \{ g^k \mid k \in \mathbb{Z} \}$.
- **陪集**: 左陪集 $gH = \{gh|h \in H\}$ 。所有左陪集构成对 G 的划分。
- 正规子群: $H \subseteq G \iff \forall g \in G, gH = Hg$.

注记/技巧 1. 正规子群判定技巧. $H \supseteq G \iff \forall g \in G, gHg^{-1} = H.$ 若 [G:H] = 2 (指数为 2 的子群),则 H 必为正规子群。

定理 1 (拉格朗日定理). 若 H 是有限群 G 的子群,则 |H| 整除 |G|。指数 $[G:H]=\frac{|G|}{|H|}$.

定义 4. 商群. 若 $H ext{ } ext{$

定义 5. 循环群. 若 $\exists g \in G$ 使得 $G = \langle g \rangle$, 则称 G 是循环群。

- $|G| = n \implies G \cong (\mathbb{Z}_n, +_n)$.
- $|G| = \infty \implies G \cong (\mathbb{Z}, +)$.
- m 阶循环群的生成元个数为 $\phi(m)$ 。

注记/技巧 2. 循环群的子群结构. 阶为 n 的循环 群 G 的任何子群都是循环群。对于 n 的每个正因 子 d, 都存在唯一一个阶为 d 的子群。子群个数等 于 n 的正因子个数 $\tau(n)$ 。

定义 6. 群同态. 映射 $f: G \to H$ 称为群同态, 如果 $\forall a,b \in G, f(a*b) = f(a) \circ f(b)$ 。若 f 是双射, 则为 同构 $(G \cong H)$ 。

性质 2. 同态保持的性质. 设 $f:G\to H$ 是群同态。

- $f(e_G) = e_H \ (\dot{\Psi} \dot{\Omega} \vec{\Pi})$.
- $f(g^{-1}) = (f(g))^{-1}$ (逆元)。
- $\operatorname{ord}(f(g)) \mid \operatorname{ord}(g)$ (阶是因子)。
- 若 $S \le G$, 则 $f(S) \le H$ (子群)。
- 若 $N \triangleleft G$, 且 f 是满射, 则 $f(N) \triangleleft H$ (正规子群)。

定理 2 (群同态基本定理). 设 $f: G \to H$ 是群满同态,则 $G/\ker(f) \cong H$,其中核 $\ker(f) = \{g \in G \mid f(g) = e_H\}$ 是 G 的正规子群。

注记/技巧 3. 循环群间同态. 对于 $f: \mathbb{Z}_m \to \mathbb{Z}_n$, 同态 个数为 gcd(m,n)。

定义 7. 群间运算.

- **外直积**: $G \times H = \{(g,h) \mid g \in G, h \in H\}$.
- 内直积: 若 $H, K \le G, H \cap K = \{e\}, G = HK$,则 $G \cong H \times K$.

二、环 (Ring)

定义 8. 环. 集合 R 和两个运算 $(+,\cdot)$ 构成一个**环** $(R,+,\cdot)$,若:

- (i) (R,+) 是一个阿贝尔群。
- (ii) 乘法结合律成立。
- (iii) 分配律成立。

例子 2. 环的例子.

- 整数环 (Z,+,·)。
- 剩余类环 $(\mathbb{Z}_n,+,\cdot)$ 。
- 多项式环 F[x]。

定义 9. 整环. 一个无零因子的含幺交换环称为整环。 $(ab = 0 \implies a = 0 \text{ 或 } b = 0)$

例子 3. . \mathbb{Z} 是整环。 \mathbb{Z}_n 是整环 $\iff n$ 是素数。高斯整环: $\mathbb{Z}[i] = \{a+bi \mid a,b \in \mathbb{Z}\}$ 。

定义 10. 子环与理想.

- **子环判定**: $S \subseteq R$ 是子环 \iff (S,+) 是子群且 S 对乘法封闭。
- 理想: 子环 $I \subseteq R$ 是理想, 若满足吸收性: $\forall r \in R, a \in I \Longrightarrow ra \in I$ 且 $ar \in I$ 。
- 主理想: $\langle a \rangle = RaR$ 。交换环中 $\langle a \rangle = Ra = \{ra \mid r \in R\}$ 。
- **素理想**: $ab \in P \implies a \in P$ 或 $b \in P \iff R/P$ 是整环。
- 极大理想: 不存在理想 I 使得 $M \subset I \subset R \iff R/M$ 是域。

注记/技巧 4. PID 中的理想关系. 在主理想整环 (PID) 中(如 \mathbb{Z} 和 F[x]),所有非零的素理想都是 极大理想。

定义 11. 理想间运算. 设 I, J 是环 R 的理想。

- $J_1: I+J=\{a+b \mid a\in I, b\in J\}.$
- 交: I ∩ J.
- $\pi: IJ = \{ \sum a_i b_i \mid a_i \in I, b_i \in J \}. IJ \subseteq I \cap J.$

定义 12. 环的特征.char(R) 是使得 $\forall r \in R, kr = 0$ 的最小正整数 k。

性质 3. . 整环的特征为 0 或一个素数。若 $\mathrm{char}(R) = p$ (素数), 则 $(a+b)^p = a^p + b^p$ 。

定义 13. 环同态. $f:R\to S$ 是环同态, 如果保持加法和乘法运算。

性质 4. 环同态保持的性质.

- $f(0_R) = 0_S$ (零元)。 若 f 是满射, 则 $f(1_R) = 1_S$ 。
- 若 $I \in R$ 的理想, 则 $f(I) \in f(R)$ 的理想。

定理 3 (环同态基本定理). 设 $f: R \to S$ 是一个环满同态,则 $R/\ker(f) \cong S$ 。

注记/技巧 5. 中国剩余定理 (环论形式). 若 I,J 是理想且 I+J=R, 则 $R/(I\cap J)\cong R/I\times R/J$. 对于 \mathbb{Z} , 若 $\gcd(m,n)=1$,则 $\mathbb{Z}_{mn}\cong \mathbb{Z}_m\times \mathbb{Z}_n$ 。

三、域 (Field)

定义 14. 域. 一个**含幺交换环** $(F, +, \cdot)$ 称为**域**,如果每个非零元素都有**乘法逆元**。即 $(F \setminus \{0\}, \cdot)$ 是一个阿贝尔群。

例子 4. 域的例子.

- ℚ, ℝ, ℂ.
- $\mathbb{Z}_p(p)$ 为素数) 是一个有限域。
- $GF(p^n)$: 阶为 p^n 的有限域 (伽罗瓦域)。

性质 5. 域的结构性质.

- 域一定是整环。有限整环一定是域。
- 域中只有两个理想: {0} 和 F 本身。

定义 15. 有限域.

- **\mathbf{\hat{N}}**: $\mathbf{\hat{N}}$ $\mathbf{\hat{N}}$
- 加法群: $(GF(q), +) \cong (\mathbb{Z}_p)^n$.
- 乘法群: $(GF(q) \setminus \{0\}, \cdot)$ 是一个阶为 q-1 的循环群。

注记/技巧 6. 有限域的构造与本原元.

- **构造**: $GF(p^n) \cong \mathbb{Z}_p[x]/\langle f(x) \rangle$, 其中 f(x) 是 \mathbb{Z}_p 上一个 n 次的**不可约多项式**。
- 本原元: 有限域乘法群的生成元称为本原元。例如,在 $GF(2^3) \cong \mathbb{Z}_2[x]/\langle x^3+x+1\rangle$ 中,x 就是一个本原元。