

In this chapter, we learned about the sample complexity based on a generative model.

First we studied a haive approach. We estimate the the number of samples to control the accuracy of the approximate model with any policy, which leads to Prop 2.1.

[Prob. 2.1] Suppose
$$2 = \frac{1}{1-\gamma}$$
, when $\# samples = 1 \le 1 \le 1 \le N$ and $N \ge \frac{\gamma}{(1-\gamma)^4} = \frac{1 \le 1 \log (c \le 1 \le 1 \le 1) \times N}{2^2}$
For all policies π , $||Q^{\pi} - \hat{Q}^{\pi}||_{\infty} \le 2$. with prob. $\ge 1-8$

Then we tried to understand how many samples do we need to estimate \hat{Q}^* with policy $\hat{\tau}^*$, which leads to Prop. 2.4.

[Proposition 2.4] Let
$$8 \ge 0$$
. With prob. $\ge 1-8$

$$\begin{cases} ||Q^* - \hat{Q}^*||_{\infty}, & \le \Delta_8, N \\ ||Q^* - \hat{Q}^{\pi^*}||_{\infty} \end{cases} \le \Delta_8, N$$
where $\Delta_{8,N} = \frac{\gamma}{(1-\gamma)^2} \sqrt{\frac{2\log(2|S||A|/8)}{N}}$

Finally, we proved that model based algorithm is minmax optimal, which means that less error means

larger samples, which is shown in theorem. 2.8:

[Theorem 2.8.] for $\xi \in (0, \xi_0)$, $\xi \in (0, \xi_0)$, if algorithm A is (ξ, ξ) -good, then A must use a number of samples which is lower bounded as:

note: (2,8)-good: 11Q*- Q*11∞ € 2 prob. >-8.

Besides, with lemma 1.11, we have the amplification on $Q^{\widehat{\Lambda}^*}$

[lemma 1.11] For any vector
$$Q \in \mathbb{R}^{|S||A|}$$

 $V^{\pi_Q} > V^{*} - \frac{2||Q - Q^{*}||}{|-\gamma|} \mathbf{1}$

By regarding \hat{Q}^* as \hat{Q} , $\hat{\pi}^*$ as π^Q , we can use Lemma 1.11 to quantify $\|Q^* - Q^{\hat{\pi}^*}\|_{\infty}$.