Rappels sur l'ACP avec métriques

Marie Chavent

http://www.math.u-bordeaux.fr/ machaven/

2014-2015

1 Les données

- 1. **Z** est une matrice $n \times p$ regroupant la mesure sur n individus de p variables **quantitatives**.
- 2. Chaque individu i est caractérisé par un vecteur $\mathbf{z}_i \in \mathbb{R}^p$ (ième ligne de \mathbf{Z}). L'espace des individus \mathbb{R}^p est muni d'une métrique \mathbf{M} qui est souvent l'indentité \mathbf{I}_p .
- 3. Chaque variable j est caractérisée par un vecteur $\mathbf{z}^j \in \mathbb{R}^n$ (jème colonne de \mathbf{Z}). L'espace des variables \mathbb{R}^n est muni de la métrique $\mathbf{N} = \operatorname{diag}(\dots, p_i, \dots)$ où p_i , est le poids de l'individu i. Généralement $p_i = \frac{1}{n}$.
- 4. Le tableau \mathbf{Z} est généralement centré pour fixer le centre de gravité du nuage des individus à l'origine : pour chaque variable j on effectue $z^j \to z^j \bar{z}_j \mathbf{1}_n$, où $\bar{z}_j = \sum_{i=1}^n p_i z_{ij}$.
- 5. Le tableau **Z** est souvent réduit ensuite pour éliminer le fait que les variables sont sur mesurées sur des échelles (de variation) différentes : pour chaque variable j on effectue $z^j \to \frac{z^j}{s_j}$, où $s_j^2 = \sum_{i=1}^n p_i(z_{ij} \bar{z}_j)^2$ est la variance empirique de j.

2 Définitions

1. Le vecteur $\Psi^{\alpha} \in \mathbb{R}^n$ des coordonnées factorielles (des scores) des n individus sur l'axe α est le vecteur des projections orthogonales (pour le produit scalaire \mathbf{M}) des n individus sur l'axe engendré par le vecteur \mathbf{v}_{α} (\mathbf{M} -normé à 1) maximisant l'inertie du nuage projeté. On a :

$$\Psi^{\alpha} = \mathbf{Z} \mathbf{M} \mathbf{v}_{\alpha}$$

où \mathbf{v}_{α} est le vecteur propre de $\mathbf{Z}^{t}\mathbf{N}\mathbf{Z}\mathbf{M}$ associé à la valeur propre λ_{α} .

Le vecteur Ψ^{α} s'appelle aussi α ème composantes principales. Les composantes principales sont donc des nouvelles variables synthétiques (des combinaisons linéaires des variables initiales \mathbf{z}^{j}) qui vérifient :

- la variance de la composante principale Ψ^{α} est égale à la valeur propre λ_{α} : $Var(\Psi^{\alpha}) = \lambda_{\alpha} \ .$
- la corrélation linéaire entre deux composantes principales Ψ^{α} et $\Psi^{\alpha'}$ est nulle : $r(\Psi^{\alpha}, \Psi^{\alpha'}) = 0$.

En résumé, les k composantes principales Ψ^1, \ldots, Ψ^k sont de nouvelles variables synthétiques (combinaisons linéaires des variables initiales) non corrélées entre elles, de variance maximale et les plus liées (en un certain sens) aux variables initiales $\mathbf{z}^1, \ldots, \mathbf{z}^p$.

2. Le vecteur $\Phi^{\alpha} \in \mathbb{R}^p$ des coordonnées factorielles (des loadings) des p variables sur l'axe α est le vecteur des projections orthogonales (pour le produit scalaire \mathbf{N}) des p variables sur l'axe engendré par le vecteur \mathbf{u}_{α} (\mathbf{N} -normé à 1) maximisant l'inertie du nuage projeté. On a :

$$\Phi^{\alpha} = \mathbf{Z}^t \mathbf{N} \mathbf{u}_{\alpha}$$

où \mathbf{u}_{α} est le vecteur propre de $\mathbf{Z}\mathbf{M}\mathbf{Z}^{t}\mathbf{N}$ associé à la valeur propre λ_{α} .

Le vecteur des loadings Φ^{α} contient les corrélations des p variables avec la α ème composantes principales $\Psi^{\alpha}: \phi_{j\alpha} = r(\mathbf{z}^{j}, \Psi^{\alpha}).$

3 ACP avec métriques

L'ACP du triplet $(\mathbf{Z}, \mathbf{N}, \mathbf{M})$ revient à effectuer une décomposition en valeurs singulières généralisée (GSVD - Generalized Singular Value Decomposition) d'une matrice réelle \mathbf{Z} de dimension $n \times p$ avec les métriques \mathbf{N} sur \mathbb{R}^n et \mathbf{M} sur \mathbb{R}^p .

SVD généralisée. La GSVD de la matrice \mathbf{Z} de rang r avec les métriques \mathbf{N} et \mathbf{M} donne la décomposition :

$$\mathbf{Z} = \mathbf{U} \mathbf{\Lambda} \mathbf{V}^t$$

avec

— $\Lambda = \operatorname{diag}(\sqrt{\lambda_1}, \dots, \sqrt{\lambda_r})$ est la matrice diagonale des r valeurs singulières de $\mathbf{Z}\mathbf{N}\mathbf{Z}^t\mathbf{M}$ et $\mathbf{Z}^t\mathbf{N}\mathbf{Z}\mathbf{M}$.

- U est la matrice de dimension $n \times r$ dont les colonnes sont les vecteurs propres de $\mathbf{Z}\mathbf{M}\mathbf{Z}^t\mathbf{N}$ et $\mathbf{U}^t\mathbf{N}\mathbf{U} = \mathbb{I}_r$ (les vecteurs propres sont N-orthonormés).
- V est la matrice de dimension $p \times r$ dont les colonnes sont les vecteurs propres de $\mathbf{Z}^t \mathbf{N} \mathbf{Z} \mathbf{M}$ et $\mathbf{V}^t \mathbf{M} \mathbf{V} = \mathbb{I}_r$ (les vecteurs propres sont M-orthonormés).

En pratique, on peut obtenir la DVSG de \mathbf{Z} en trouvant la DVS classique de $\tilde{\mathbf{Z}} = \mathbf{D}^{1/2}\mathbf{Z}\mathbf{M}^{1/2}$, c'est à dire la DVSG avec les métriques \mathbb{I}_n sur \mathbb{R}^n et \mathbb{I}_p sur \mathbb{R}^p . On trouve $\tilde{\mathbf{Z}} = \tilde{\mathbf{U}}\tilde{\mathbf{\Lambda}}\tilde{\mathbf{V}}^t$ et :

$$\Lambda = \tilde{\Lambda}, \quad \mathbf{U} = \mathbf{D}^{-1/2}\tilde{\mathbf{U}}, \quad \mathbf{V} = \mathbf{M}^{-1/2}\tilde{\mathbf{V}}.$$

Coordonnées factorielles des individus et des variables

1. On note Ψ la matrice de dimension $n \times r$ des coordonnées des \mathbf{M} -projections des n individus (les lignes de \mathbf{Z}) sur les axes de vecteurs directeurs $\mathbf{v}^1, \dots, \mathbf{v}^r$ (colonnes de \mathbf{V}). Cette matrice est aussi appellée matrice des coordonnées factorielles (scores) des individus. On a par définition que :

$$\Psi = \mathbf{ZMV}$$

On en déduit donc que :

$$\Psi = \mathbf{U}\Lambda$$

On en déduit également que $\mathbf{u}_{\alpha} = \Psi^{\alpha}/\sqrt{\lambda_{\alpha}}$ est la α ème composante principale standardisée (divisée par son écart-type) et que \mathbf{U} est la matrice des composantes principales standardisées.

2. On note Φ la matrice de dimension $p \times r$ des coordonnées des N-projections des p variables (les colonnes de \mathbf{Z}) sur les axes de vecteurs directeurs $\mathbf{u}^1, \dots, \mathbf{u}^r$ (colonnes de \mathbf{U}). Cette matrice est aussi appellée matrice des coordonnées factorielles (loadings) des variables. On a par définition que :

$$\Phi = \mathbf{Z}^t \mathbf{M} \mathbf{U}$$

On en déduit donc que :

$$\Phi = \mathbf{V}\Lambda$$