Quantum Computing

Nathan Chapman

Faculty of Physics Central Washington University

CS 530: High Performance Computing, Spring 2024

Why do we care?

- Because it's cool
- It turns out quantum computers can easily break classical cryptography

Qubits - Heads or Tails?

Does a coin show heads or tails?

Qubits - Single

- Classical "Bit"
 - State is true or false
 - Always
- Quantum "Qubit"
 - State is true or false or tralse or frue
 - State is a little bit of both
 - Until measured
 - At measurement, the state is true or false
- Example A simple coin
 - Classical Deterministic via applied force, torque, height, etc.
 - Quantum Probabilistic until measured

Figure: The Bloch sphere reprensetation of a qubit $|\psi\rangle = \cos\left(\frac{\theta}{2}\right)|0\rangle + e^{i\phi}\sin\left(\frac{\theta}{2}\right)|1\rangle$

Qubits - Multiple

- 2 qubits \implies state is a mix between the 4 permutations $\{|00\rangle, |01\rangle, |10\rangle, |11\rangle\}$
- Each permutation has its own probability
 such that the total is 1
- Bell State: 50% |00> and 50% |11>

Demo: 2 quantum coins with a volunteer

Qubits - Quantum Registers

Classical

- Register of size $N \equiv N$ flip-flops
- Stores 1 permutation of states

Quantum

- Register of size $N \equiv N$ qubits
- Stores ALL 2^N permutations of states

The information density of a quantum computer can be massive

Quantum Computation - Single Qubit Gates

Classical

- Only one non-trivial gate
- $\bullet \ \mathsf{NOT} \mathsf{0} \to \mathsf{1}$

Quantum

- Several non-trivial gates
- NOT (X) swaps the probabilities
- Z flips the sign of the probability on the
 |1⟩ state
- Hadamard "mixes" the pure states toward the other
 - ullet $|0
 angle
 ightarrow 50\% \, |0
 angle$ and $50\% \, |1
 angle$
 - ullet $|1
 angle
 ightarrow 50\%\,|0
 angle$ and $-50\%\,|1
 angle$

Quantum Computation - Single Bit Gates

Figure: A comparison between logic gates that can act on a single classical or quantum bit.

Quantum Computation - Multi-Qubit Gates

Classical

• AND, OR, XOR, NAND, NOR

- XOR isn't invertible
- NAND makes up all gates

Quantum

- Controlled not CNOT
- Uses a control bit and a target
- If control is 1, NOT target, otherwise do nothing
- CNOT is invertible
- CNOT and single-gates make up all multi-gates

Quantum gates need to conserve information

Quantum Computation - Circuits

Quantum Algorithms - The Quantum Fourier Transform

Quantum Algorithms - Quantum Search

Quantum Cryptography

Demo - Qiskit

Honorable Mention - CUDA-Q

Conclusion

