Probabilité et Simulation

PolyTech INFO4 (Grenoble) - 2024-2025 - Practical Sessions

Last updated: 2024-09-26. Info: davide.legacci@univ-grenoble-alpes.fr

1. Theory recap 11.9.24

- Fet set $\Omega=$ finite set of possible outcomes ω
- *Probability* on $\Omega = \text{set of weights } P(\omega) \in \mathbb{R}$ on each $\omega \in \Omega$ such that
 - $P(\omega) > 0 \forall \omega \in \Omega$
 - $ightharpoonup \sum_{\omega \in \Omega} P(\omega) = 1$
- Event $A \subseteq \Omega$ = subset of the jet set
- Complementary event $A^c = \Omega/A$
- The cardinality of a set S is denoted by |S|
- Uniform probability of the event A

$$P(A) = \sum_{\omega \in A} P(\omega) = \sum_{\omega \in A} \frac{1}{|\Omega|} = \frac{|A|}{|\Omega|}$$
 (1)

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) \tag{2}$$

• Binomial theorem

$$(x+y)^n = \sum_{j=0}^n \binom{n}{j} x^{n-j} y^j \tag{3}$$

1.1. Counting

- Number of *permutations* of k elements:
 - ▶ Number of ways to *order k* elements
 - Only order matters

$$P_k = k! (4)$$

- Number of *dispositions* of k elements out of n ($k \le n$):
 - Number of ways to *choose and order* k elements out of n
 - Order and elements matter
 - ▶ Number of injections $f : \{1, ..., k\} \rightarrow \{1, ..., n\}$

$$D_{n,k} = \underbrace{n(n-1)...}_{k \text{ times}} = n(n-1)...(n-k+1) = \frac{n!}{(n-k)!}$$
 (5)

- Number of *combinations* of k elements out of n ($k \le n$):
 - Number of ways to *choose* k elements out of n
 - ▶ Only elements matter
 - Number of subsets of cardinality k of a set of cardinality n
 - Number of dispositions modulo number of permutations

$$C_{n,k} = \frac{D_{n,k}}{P_k} = \frac{n!}{k!(n-k)!} = \binom{n}{k} = \operatorname{choose}(n,k)$$
 (6)

Exercises

Exercise 1.1 (Handshakes and kisses)

There are f girls and g boys in a room. Boys exchange handshakes, girs exchange kisses, boys and girls exchange kisses. How many kisses in total?

The number of kisses exchanges among girls is the number of subsets of cardinality 2 of a set of cardinality f, that is $\binom{f}{2} = \frac{f(f-1)}{2}$. Or, think that each girl gives f-1 kisses, and one needs a factor of one half to avoid double counting.

For the number of kisses exchanged between boys and girls: the first girl gives g kisses, the second girl gives g kisses, and so on, so we have fg in total.

$$\text{number of kisses} = \frac{f(f-1)}{2} + fg \tag{7}$$

Exercise 1.2 (*Throwing a dice*) Throw a fair dice with f faces n times. What's the prob to never get the same result twice?

Let $\mathcal{N} = \{1, ..., n\}$ and $\mathcal{F} = \{1, ..., f\}$. The jet set is

$$\Omega = \{\omega = (\omega_1, ..., \omega_n) : \omega_i \in \mathcal{F} \text{ for all } i \in \mathcal{N}\} = \mathcal{F}^n$$
 (8)

with cardinality

$$|\Omega| = |\mathcal{F}^n| = |\mathcal{F}|^n = f^n \tag{9}$$

The event we're looking at is

$$A = \left\{ \omega \in \Omega : \omega_i \neq \omega_j \text{ for all } i \neq j \in \mathcal{N} \right\}$$
 (10)

Clearly if n > f then P(A) = 0. Let $n \le f$. The (uniform) probability of the event A is $P(A) = \frac{|A|}{|\Omega|}$, with

|A|=# of ways to choose and order n elements out of f

$$=\underbrace{f(f-1)...}_{n} = f(f-1)...(f-n+1) = \frac{f!}{(f-n)!}$$
(11)

$$P(A) = \frac{f!}{f^n(f-n)!} \tag{12}$$

Exercise 1.3 (Birthday paradox) What is the probability that at least 2 people out of n have the same birthday? (Assume: uniform birth probability and year with y number of days).

Quick solution

$$P(A) = 1 - P\left(\underbrace{\text{no two people have the same birthday}}_{\text{Ex. 2}}\right)$$

$$= 1 - \frac{y!}{y^n(y-n)!}$$
(13)

Formal solution Let $\mathcal{N} = \{1, ..., n\}$ and $\mathcal{Y} = \{1, ..., y\}$ with $n \leq y$. The jet set is

$$\begin{split} \Omega &= \text{distributions of possible birthdays of } n \text{ people} \\ &= \{\omega = (\omega_1, ..., \omega_n) : \omega_i \in \mathcal{Y} \text{ for all } i \in \mathcal{N}\} = \mathcal{Y}^n \end{split} \tag{14}$$

where ω_i is the birthday of the *i*-th person. The cardinality of the jet set is

$$|\Omega| = |\mathcal{Y}^n| = |\mathcal{Y}|^n = y^n \tag{15}$$

The event we're looking at is

$$A = \left\{ \omega \in \Omega : \exists i \neq j \in \mathcal{N} : \omega_i = \omega_j \right\} \tag{16}$$

Note that this is the complementary event to the event defined in Equation 10 of Exercise 2. Thus we can compute its probability as

$$P(A) = 1 - P(A^c) \tag{17}$$

in agreement with Equation 13.

Figure 1: Birthday paradox probability. Code available.

Exercise 1.4 (Same birthday as the prof) What is the probability that at least 1 student out of n has the same birthday of the prof? (Assume: uniform birth probability and year with y number of days).

Quick solution

$$P(A) = 1 - P\left(\underbrace{\text{nobody has the prescribed birth date}}\right)$$

$$= 1 - \left(\frac{y-1}{y}\right)^{n}$$
(18)

Formal solution 1 As above $\mathcal{N}=\{1,...,n\}$ and $\mathcal{Y}=\{1,...,y\}$ with $n\leq y$. The jet set is $\Omega=\mathcal{Y}^{n+1}$, that is the set of possible birthdays of n+1 people, the (n+1)-th being the prof. Its cardinality is $|\Omega|=y^{n+1}$. The event we're looking at is

$$A = \left\{\omega \in \Omega: \exists i \in \mathcal{N}: \omega_i = \omega_{n+1}\right\} \tag{19}$$

with complementary event

$$A^{c} = \{ \omega \in \Omega : \omega_{i} \neq \omega_{n+1} \,\forall i \in \mathcal{N} \}$$
 (20)

As usual $P(A) = 1 - P(A^c) = 1 - \frac{|A^c|}{|\Omega|}$, with

$$|A^c| = \underbrace{y}_{\text{prof}} \cdot \underbrace{(y-1)^n}_{\text{students}}$$
 (21)

So, $P(A)=1-rac{y(y-1)^n}{y^{n+1}}=1-\left(rac{y-1}{y}
ight)^n$, in agreement with Equation 18.

Formal solution 2 Using the probability of the complementary event is often the smartest way to proceed, but for the sake of completeness let's see how to get the same result directly. Let A_j be the event "exactly j students out of n have the same birthday as the prof". The event we look at then is

$$A = \sqcup_{i \in \mathcal{N}} A_i \tag{22}$$

with probability (cf Equation 2)

$$P(A) = \sum_{j \in \mathcal{N}} P(A_j) = \frac{\sum_{j \in \mathcal{N}} |A_j|}{|\Omega|}$$
 (23)

The cardinality of A_i is

$$|A_{j}| = \underbrace{1...1}_{j \text{ times}} \cdot \underbrace{(y-1)...(y-1)}_{n-j \text{ times}} \cdot \underbrace{y}_{\text{prof}} \cdot \underbrace{\begin{pmatrix} n \\ j \end{pmatrix}}_{\text{number of ways to choose } j \text{ elements out of } n}$$

$$= y(y-1)^{n-j} \binom{n}{j}$$
(24)

By an application of the binomial theorem (Equation 3) and a short manipulation,

$$\sum_{j=1}^{n} |A_j| = y(y^n - (y-1)^n)$$
(25)

which leads back to Equation 18.

2. Theory recap 18.9.24

2.1. Conditional probability

• Conditional probability

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} \text{ if } P(B) \neq 0$$
 (26)

- not reallty defined if P(B) = 0, cf [1] pag. 427.
- · often used as

$$P(A \cap B) = P(A \mid B)P(B) \tag{27}$$

• Conditional probability and complementary event (proof: simple exercise.)

$$P(A \mid B) + P(A^c \mid B) = 1$$
 (28)

• Total probability theorem

$$P(A) = P(A \mid B)P(B) + P(A \mid B^{c})P(B^{c})$$
(29)

• Bayes theorem

$$P(A \cap B) = P(B \cap A) \Rightarrow P(A \mid B)P(B) = P(B \mid A)P(A) \tag{30}$$

See this notebook for an example of Bayes theorem in action.

2.2. Independent events

Let Ω be equipped with a probability P.

• two events $A, B \subseteq \Omega$ are said independent if

$$P(A \cap B) = P(A)P(B) \tag{31}$$

• n events $A_1, ..., A_n$ are said independent if

$$P(\cap_{i\in I}\;A_i)=\prod_{i\in I}P(A_i)\text{ for all }I\subseteq\{1,...,n\} \tag{32}$$

• pairwise independence does not imply independence of all events!

Exercises

Exercise 2.1 (*Pile ou Face*) Jet de 2 pieces, $\Omega = \{PP, PF, FP, FF\}$. Cet espace est muni de la probabilite uniforme. Soient les evenements:

- A = 1ere piece donne P
- B = 2eme piece donne F
- C =le deux pieces donnent le meme resultat

Questions:

- A et B sont indépendantes?
- A, B et C sont indépendants?

```
\begin{array}{lll} A &= \{PP, PF\} & \mathbb{P}(A) &= 1/2 \\ B &= \{PF, FF\} & \mathbb{P}(B) &= 1/2 \\ C &= \{PP, FF\} & \mathbb{P}(C) &= 1/2 \\ A \cap B &= \{PF\} & \mathbb{P}(A \cap B) &= 1/4 &= \mathbb{P}(A)\mathbb{P}(B) \\ A \cap C &= \{PP\} & \mathbb{P}(A \cap C) &= 1/4 &= \mathbb{P}(A)\mathbb{P}(C) \\ B \cap C &= \{FF\} & \mathbb{P}(B \cap C) &= 1/4 &= \mathbb{P}(B)\mathbb{P}(C) \\ A \cap B \cap C &= \emptyset & \mathbb{P}(A \cap B \cap C) &= 0 &\neq \mathbb{P}(A)\mathbb{P}(B)\mathbb{P}(C). \end{array}
```

Ainsi les événements A,B et C sont 2 à 2 indépendants mais pas indépendants.

Figure 2: Pairwise independence does not imply independence of all events!

Exercise 2.2 (*Pieces mecaniques defectueuses*) Parmi 10 pièces mécaniques, 4 sont déefectueuses. On prend successivement deux pièces au hasard dans le lot (sans remise). Quelle est la probabilité pour que les deux pièces soient correctes?

Solution 1 Let A_i be the event *the i-th drawn piece is good*, with $i \in \{1, 2\}$. We need the probability of the event $A_2 \cap A_1$. By definition of conditional probability,

$$P(A_2 \cap A_1) = \underbrace{P(A_2 \mid A_1) P(A_1)}_{\frac{5}{2}} = \frac{1}{3}.$$
 (33)

Solution 2 The jet set is the set of subsets of cardinality 2 of a set of cardinality 10, so $|\Omega| = \binom{10}{2}$. The event we consider is the set of subsets of cardinality 2 of a set of cardinality 6, so $|A| = \binom{6}{2}$. Then

$$P(A) = \frac{\binom{6}{2}}{\binom{10}{2}} = \frac{6 \cdot 5}{10 \cdot 9} = \frac{1}{3}.$$
 (34)

Exercise 2.3 (*Betting on cards*) We have three cards:

- a red card with both faces red;
- a white card with both faces white;
- a *mixed* card with a red face and a white face.

One of the three cards is drawn at random and one of the faces of this card (also chosen at random) is exposed. This face is red. You are asked to bet on the color of the hidden face. Do you choose red or white?

Intuitive solution The cards are RR, RW, WW with W for white and R for red. Call RR the "red" card, WW the "white" card, and WR the "mixed" card. Since we observe a red face, the white card cannot be on the table. There are three possibilities left: 1. we're observing a face of the red card (in which case the hidden face is red); 2. we are observing the other face of the red card (in which case the hidden face is red); 3. we are observing the red face of the mixed card (in which case the hidden face is white). So the hidden face is red 2 out of 3 times.

Formal solution The jet set contains the possible outcomes of a sequence of two events: 1. draw a card (out of three), and 2. observe a face (out of two). Denote by R a red face and by W a white face, and denote by a subscript o the observed face, and by a subscript h the hidden face. The possible outcomes then are

$$\Omega = \{R_h \cap R_o, R_h \cap W_o, W_h \cap R_o, W_h \cap W_o\} \tag{35}$$

where the first entry indicates the hidden face, and the second entry indicates the observed face. For example, $W_h \cap R_o$ is the event "the hidden face is white and the observed face is red", and similarly for the others

In this formulation, every element in the jet set is the intersection of two (dependent) events of the type 1. a face is hidden, and 2. a face is observed. Note that the event $W_h \cap R_o$ is equivalent to the event "the mixed card is drawn, and the red face is observed." Under this second point of view, each outcome in Ω is the intersection of two (dependent) events of the type 1. a card is drawn, and 2. a face is observed. Denoting the event "draw the red card" by r, the event "draw the white card" by w, and the event "draw the mixed card" by m, the jet set is equivalently

$$\Omega = \{ r \cap R_o, m \cap W_o, m \cap R_o, w \cap W_o \}$$
(36)

This formulation helps to understand that the probability on Ω is **not uniform**. The probabilities of the events in Ω are computed by Equation 27:

$$P(R_h \cap R_o) = P(r \cap R_o) = \frac{P(r \mid R_o)}{R_o} \tag{37}$$

However, we do not know the probabilities on the right hand side. As a simple trick, remember that $P(A \cap B) = P(B \cap A)$, so we can turn this around:

$$\begin{split} P(R_h \cap R_o) &= P(R_o \cap r) \\ &= \underbrace{P(R_o \mid r) P(r)}_{1} = \frac{2}{6} \end{split} \tag{38}$$

$$\begin{split} P(R_h \cap W_o) &= P(W_o \cap m) \\ &= \underbrace{P(W_o \mid m)P(m)}_{\frac{1}{2}} = \frac{1}{6} \end{split} \tag{39}$$

$$P(W_h \cap R_o) = P(R_o \cap m)$$

$$= \underbrace{P(R_o \mid m)P(m)}_{\frac{1}{2}} = \frac{1}{6}$$
(40)

$$\begin{split} P(W_h \cap W_o) &= P(W_o \cap w) \\ &= \underbrace{P(W_o \mid w) P(w)}_{1} = \frac{2}{6} \end{split} \tag{41}$$

Now by Equation 26 and using these probabilities,

$$\begin{split} P(W_h \mid R_o) &= \frac{P(W_h \cap R_o)}{P(R_o)} \\ &= \frac{P(W_h \cap R_o)}{P(R_h \cap R_o) + P(W_h \cap R_o)} = \frac{1}{3} \end{split} \tag{42}$$

$$\begin{split} P(R_h \mid R_o) &= \frac{P(R_h \cap R_o)}{P(R_o)} \\ &= \frac{P(R_h \cap R_o)}{P(R_h \cap R_o) + P(W_h \cap R_o)} = \frac{2}{3} \\ &= 1 - P(W_h \mid R_o) \end{split} \tag{43}$$

where the last line follows from Equation 28 and gives directly the answer. So in conclusion, given the fact that we observe a red face, the hidden face is also red with probability 2/3.

Exercise 2.4 (*Russian roulette*) You are playing two-person Russian roulette with a revolver featuring a rotating cylinder with six bullet slots. Each time the gun is triggered, the cylinder rotates by one slot. Two bullets are inserted one next to the other into the cylinder, which is then randomly positioned. Your opponent is the first to place the revolver against her temple. She presses the trigger and... she stays alive. With great display of honor, she offers you to rotate the barrel again at random before firing in turn. What do you decide?

The bullets occupy the positions x and $x + 1 \mod 6$:

$$\Omega = \{12, 23, 34, 45, 56, 61\} \tag{44}$$

Say the revolver shots from position 1. The event "the first player dies" is

$$die_1 = \{12, 61\} \tag{45}$$

so $P(\mathrm{die}_1) = \frac{1}{3}$ and $P(\mathrm{live}_1) = \frac{2}{3}.$ We need to compute

$$P(\operatorname{die}_2 \mid \operatorname{live}_1) = \frac{P(\operatorname{die}_2 \cap \operatorname{live}_1)}{P(\operatorname{live}_1)} \tag{46}$$

Since the cylynder rotates after being triggered we have $\text{die}_2 = \{56, 61\}$ and $\text{die}_2 \cap \text{live}_1 = \{56\}$, so $P(\text{die}_2 \mid \text{live}_1) = \frac{1}{6}/\frac{2}{3} = \frac{1}{4} < P(\text{die}_1)$. So you don't shuffle the barrel.

3. Theory recap 26.9.24

3.1. Probability measure

The relevant references are [2] pag. 11 and [1], pag. 22 and 160.

Definition 3.1.1 (sigma-field) Let Ω be any set. A σ -field \mathcal{A} on Ω is a collection of subsets of Ω that

- 1. is closed under complement: if $A \in \mathcal{A}$ then $A^c \in \mathcal{A}$;
- 2. contains the whole set: $\Omega \in \mathcal{A}$;
- 3. is closed under countable union: if A_1, A_2, \ldots is a countable family of sets of $\mathcal A$ then their union $\bigcup_{i=1}^{\infty} A_i$ is also in $\mathcal A$.

A subset of Ω that is in \mathcal{A} is called *event*.

Definition 3.1.2 (*Measure*) Given a set Ω and a σ -algebra \mathcal{A} on Ω, a *measure* μ is a function

$$\mu: \mathcal{A} \to \mathbb{R}_{>0} \tag{47}$$

such that

- 1. $\mu(\emptyset) = 0$
- 2. countable additivity (also called σ -additivity) is fulfilled, namely the measure of a disjoint countable union of sets in \mathcal{A} is the sum of their measures:

$$\mu\left(\bigsqcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \mu(A_i). \tag{48}$$

Definition 3.1.3 (*Probability measure*) Given a set Ω and a σ -algebra \mathcal{A} on Ω , a *probability measure* P is a measure (in the sense above) with the additional requirement that

$$P(\Omega) = 1. (49)$$

- Note that this implies that $P(A) \leq 1$ for all events $A \in \mathcal{A}$.
- A triple (Ω, \mathcal{A}, P) where \mathcal{A} is a σ -algebra on Ω and P is a probability measure is called *probability* space.

Take-away Putting all together, a probability measure $P: \mathcal{A} \to [0, 1]$ on a space Ω is a function from a "well-behaved" collection of subsets of Ω (the σ -field) to [0, 1], such that $P(\emptyset) = 0$, $P(\Omega) = 1$, and fulfilling countable additivity.

3.2. Discrete random variables

Definition 3.2.1 (Discrete random variable) Given a probability space (Ω, \mathcal{A}, P) , a discrete random variable X is a function $X : \Omega \to F$ such that

- 1. *F* is a *countable* set;
- 2. the level sets of X are events, that is

$$\{X = x\} := \{\omega \in \Omega : X(\omega) = x\} \in \mathcal{A} \text{ for all } x \in F$$
 (50)

• clearly, $\{X = x\} = \emptyset \in \mathcal{A} \text{ for all } x \in F \setminus \text{Im}(X)$

¹In french, this set is called *tribu* on Ω . The term σ -algebra is also used – and is more common in the context of pure analysis, c.f. [3] – whereas the term σ -field is more common in the context of probability theory, c.f. [1].

• the second property guarantees that $P\{X=x\}$ is well-defined for all $x\in F$, which allows for the following definition:

Definition 3.2.2 (Distribution of a discrete random variable) The distribution (or law) of a random variable X is the function $\mu: F \to [0,1]$ defined by

$$\mu(x) = P\{X = x\} \text{ for all } x \in F. \tag{51}$$

• two discrete random variables X and Y taking values resp. in F and G are independent if

$$P\{X = x, Y = y\} = P\{X = x\}P\{Y = y\} \text{ for all } x \in F, y \in G$$
(52)

• it is understood that $\{X = x, Y = y\}$ is a shorthand for the event

$$\{\omega \in \Omega : X(\omega) = x\} \cap \{\omega \in \Omega : Y(\omega) = y\} \in \mathcal{A}. \tag{53}$$

• the definition generalises to collections of DRVs, see Section 2.2.3 in [2].

Take-away A discrete random variable is a *function of events* with *countable range*. Its *law, or distribution*, gives the probability to observe each of the possible (countable) *values* of the random variable.

Take-away

- (Ω, \mathcal{A}, P) with $P : \mathcal{A} \to [0, 1]$ and $P(\Omega) = 1$
- $X:\Omega \to F$ countable, with $\{X=x\}\in \mathcal{A}$ for all $x\in F$
- $\mu: F \to [0,1]$ such that $\mu(x) = P\{X = x\}$

3.3. Standard discrete distributions

3.3.1. Bernoulli $\mathcal{B}(p)$

- The Bernoulli distribution models a random experiment which has two possible outcomes.
- More precisely, the Bernoulli distribution is the distribution of a discrete random variable X that can assume only values in $F = \{0, 1\}$.
- The distribution is parametrized by $p \in [0, 1]$, and we write $X \sim \mathcal{B}(p)$.

$$\mu: F \to [0, 1]$$

$$1 \longmapsto p$$

$$0 \longmapsto 1 - p$$

$$x \longmapsto p^{x} (1 - p)^{1 - x}$$

$$(54)$$

3.3.2. Binomial $\mathcal{B}(n,p)$

- Distribution of the discrete random variable $X = X_1 + ... + X_n$, where the X_i -s are independent Bernoulli variables of parameter $p \in [0, 1]$.
- $F = \{0, ..., n\}; k \in F$ is value of the sum

$$\mu: F \to [0, 1]$$

$$k \longmapsto \binom{n}{k} p^k (1 - p)^{n - k}$$

$$\tag{55}$$

3.3.3. Poisson $\mathcal{P}(\lambda)$

- probability of observing a given number of independent events occurring at constant rate $\lambda > 0$
- $F = \mathbb{N}$; $n \in F$ is number of observed events

$$\mu: F \to [0, 1]$$

$$n \longmapsto e^{-\lambda} \frac{\lambda^n}{n!} \tag{56}$$

3.3.4. Geometric $\mathcal{G}(p)$

- First successful event from a sequence of independent p-Bernoulli events.
- $F = \mathbb{N}^*$; $k \in F$ is first successful event

$$\mu: F \to [0,1]$$

$$k \longmapsto p(1-p)^{k-1} \tag{57}$$

3.4. Useful stuff

• Vandermonde's identity

$$\sum_{k_1=0}^{k} \binom{n_1}{k_1} \binom{n_2}{k-k_1} = \binom{n_1+n_2}{k} \tag{58}$$

Exercises

Exercise 3.1 (Sum of independent binomial distributions) Let $X_i \sim \mathcal{B}(n_i, p)$ with $i \in \{1, 2\}$ be independent discrete random variables following the Bernoulli law. Find the law of $X_1 + X_2$.

Hint: c.f. derivation of binomial distribution [2] pag. 16.

The laws $\mu_i: F_i = \{0,...,n_i\} \rightarrow [0,1]$ of the two variables are given by

$$\mu_i(k_i) = P(X_i = k_i) = \binom{n_i}{k_i} p^{k_i} (1 - p)^{n_i - k_i}$$
(59)

The law of X_1+X_2 takes value in $F=\{0,...,n_1+n_2\}$ and for all $k\in F$ is given by

$$\begin{split} \mu(k) &= P(X_1 + X_2 = k) \\ &= P\left(\bigsqcup_{\substack{k_i \in F_i \\ k_1 + k_2 = k}} \{X_1 = k_1, X_2 = k_2\} \right) \\ &= \sum_{\substack{k_i \in F_i \\ k_1 + k_2 = k}} P(X_1 = k_1) P(X_2 = k_2) \qquad \text{by c. add and indep.} \\ &= \sum_{\substack{k_i \in F_i \\ k_1 + k_2 = k}} \mu(k_1) \mu(k_2) \qquad \text{by def of law} \\ &= \sum_{\substack{k_i \in F_i \\ k_1 + k_2 = k}} \binom{n_1}{k_1} \binom{n_2}{k_2} p^{k_1 + k_2} (1 - p)^{n_1 + n_2 - k_1 - k_2} \\ &= p^k (1 - p)^{n_1 + n_2 - k} \sum_{\substack{k_i \in F_i \\ k_1 + k_2 = k}} \binom{n_1}{k_1} \binom{n_2}{k_2} \\ &= p^k (1 - p)^{n_1 + n_2 - k} \sum_{\substack{k_i \in F_i \\ k_1 \in F_i \\ k_1 \in F_i}} \binom{n_1}{k_1} \binom{n_2}{k_2} \\ &= p^k (1 - p)^{n_1 + n_2 - k} \sum_{\substack{k_i \in F_i \\ k_1 \in F_i \\ k_1 \in F_i}} \binom{n_1}{k_1} \binom{n_2}{k_2} \\ &= p^k (1 - p)^{n_1 + n_2 - k} \sum_{\substack{k_i \in F_i \\ k_1 \in F_i \\ k_1 \in F_i}} \binom{n_1}{k_1} \binom{n_2}{k_2} \\ &= p^k (1 - p)^{n_1 + n_2 - k} \sum_{\substack{k_i \in F_i \\ k_1 \in F_i \\ k_1 \in F_i \\ k_1 \in F_i \\ k_2 \in F_i}} \binom{n_1}{k_1} \binom{n_2}{k_2} \\ &= p^k (1 - p)^{n_1 + n_2 - k} \sum_{\substack{k_i \in F_i \\ k_1 \in F_i \\ k_2 \in F_i \\ k_1 \in F_i \\ k_2 \in F_i \\ k_2 \in F_i \\ k_1 \in F_i \\ k_2 \in F_i \\ k_2 \in F_i \\ k_1 \in F_i \\ k_2 \in F_i \\ k_2 \in F_i \\ k_1 \in F_i \\ k_2 \in F_i \\ k_3 \in F_i \\ k_4 \in F_$$

Let's focus on the sum. For each fixed $k_1 \in F_1$, k_2 is constrained to be $k-k_1$. Furthermore, in order for k_2 to be ≥ 0 , k_1 can be at most equal to k. So the constraints

$$\begin{aligned} k_1 &\in \{0,...,n_1\} \\ k_2 &\in \{0,...,n_2\} \\ k_1 + k_2 &= k \end{aligned} \tag{61}$$

can be replaced by the constraints

$$\begin{aligned} k_1 &\in \{0,...,k\} \\ k_2 &= k - k_1 \end{aligned} \tag{62}$$

namely

$$\sum_{\substack{k_1 \in F_i \\ k_1 + k_2 = k}} \binom{n_1}{k_1} \binom{n_2}{k_2} = \sum_{k_1 = 0}^k \binom{n_1}{k_1} \binom{n_2}{k - k_1} = \binom{n_1 + n_2}{k}$$
(63)

where the second step follows by Vandermonde's identity.

Remark 3.4.1 Note that it is correct to have k_1 running from 0 to k:

- If $k \le n_1$, k_1 can be at most k so that $k_2 = k k_1 \ge 0$, so we have directly Equation 63.
- If $k > n_1$, we have

$$\begin{split} \sum_{\substack{k_i \in F_i \\ k_1 + k_2 = k}} \binom{n_1}{k_1} \binom{n_2}{k_2} &= \sum_{k_1 = 0}^{n_1} \binom{n_1}{k_1} \binom{n_2}{k - k_1} \\ &= \sum_{k_1 = 0}^{n_1} \binom{n_1}{k_1} \binom{n_2}{k - k_1} + \sum_{k_1 = n_1 + 1}^{k} \binom{n_1}{k_1} \binom{n_2}{k - k_1} \end{split} \tag{64}$$

since each summand in the the second sum is zero², and we get again Equation 63.

So in conclusion

$$\mu(k) = \binom{n_1 + n_2}{k} p^k (1 - p)^{n_1 + n_2 - k}$$
(65)

namely $X_1 + X_2 \sim \mathcal{B}(n_1 + n_2, p).$

Exercise 3.2 (Sum of independent Poisson distributions) Let $X_i \sim \mathcal{P}(\lambda_i)$ with $i \in \{1,2\}$ be independent discrete random variables following the Poisson law. Find the law of $X_1 + X_2$.

Hint: c.f. previous exercise and binomial theorem.

Analogously to before, with $i \in \{1, 2\}$, we look for the law $\mu : \mathbb{N} \to [0, 1]$ given by

$$\mu(n) = P(X_1 + X_2 = n) = \sum_{\substack{n_i \in \mathbb{N} \\ n_1 + n_2 = n}} \mu_1(n_1)\mu_2(n_2)$$

$$= \sum_{\substack{n_i \in \mathbb{N} \\ n_1 + n_2 = n}} e^{-\lambda_1} \frac{\lambda_1^{n_1}}{n_1!} e^{-\lambda_2} \frac{\lambda_2^{n_2}}{n_2!}$$
(66)

As before we replace the constraint by $n_1 \in \{0,...,n\}$ and $n_2 = n - n_1$, so

²Recall that $\binom{a}{b} = 0$ if b > a.

$$\mu(n) = e^{-(\lambda_1 + \lambda_2)} \sum_{n_1 = 0}^{n} \frac{\lambda_1^{n_1}}{n_1!} \frac{\lambda_2^{n_1 - n_1}}{n - n_1!} \cdot \frac{n!}{n!}$$

$$= \frac{e^{-(\lambda_1 + \lambda_2)}}{n!} \sum_{n_1 = 0}^{n} {n \choose n_1} \lambda_1^{n_1} \lambda_2^{n_1 - n_1}$$

$$= e^{-(\lambda_1 + \lambda_2)} \frac{(\lambda_1 + \lambda_2)^n}{n!}$$
(67)

So $X_1 + X_2 \sim \mathcal{P}(\lambda_1 + \lambda_2)$.

Exercise 3.3 (Min of independent geometric distributions) Let $X_i \sim \mathcal{G}(p_i)$ with $i \in \{1,2\}$ be independent DRVs following the geometric law. Find the law of $\min\{X_1 + X_2\}$.

Hint: set up the problem in terms of inequalities.

Let $Z=\min\{X_1+X_2\}.$ We look for the law $\mu:\mathbb{N}^* \to [0,1]$ such that

$$\begin{split} \mu(k) &= P(Z=k) \\ &= P(Z \geq k) - P(Z \geq k+1) \\ &= P(X_1 \geq k, X_2 \geq k) - P(X_1 \geq k+1, X_2 \geq k+1) \\ &= P(X_1 \geq k) P(X_2 \geq k) - P(X_1 \geq k+1) P(X_2 \geq k+1) \end{split} \tag{68}$$

Let's drop the subscript for a moment. For a DRV $X \sim \mathcal{G}(p)$ and for $k \in \mathbb{N}^*$ we need

$$P(X \ge k) = P\left(\bigsqcup_{x \ge k} (X = i)\right)$$

$$= \sum_{i \ge k} P(X = i)$$

$$= \sum_{i \ge k} p(1 - p)^{i - 1}$$

$$= p(1 - p)^{k - 1} + p(1 - p)^{k} + p(1 - p)^{k + 1} + \dots$$

$$= p(1 - p)^{k - 1} \left(1 + (1 - p) + (1 - p)^{2} + \dots\right)$$

$$= p(1 - p)^{k - 1} \sum_{j = 0}^{\infty} (1 - p)^{j}$$

$$= (1 - p)^{k - 1}$$

$$= (1 - p)^{k - 1}$$
(69)

Plugging in Equation 68 we get

$$\begin{split} \mu(k) &= P(X_1 \geq k) P(X_2 \geq k) - P(X_1 \geq k+1) P(X_2 \geq k+1) \\ &= (1-p_1)^{k-1} (1-p_2)^{k-1} - (1-p_1)^k (1-p_2)^k \\ &= (1-p_1)^{k-1} (1-p_2)^{k-1} [1-(1-p_1)(1-p_2)] \end{split} \tag{70}$$

Let $\alpha=(1-p_1)(1-p_2)$ and $\beta=1-\alpha=p_1+p_2-p_1p_2,$ so $\mu(k)=\beta(1-\beta)^{k-1},$ i.e. $Z\sim\mathcal{G}(\beta).$

Exercise 3.4 (Lost messages) On a telecommunication channel, it has been estimated that in T time units there arrives a number of messages that can be estimated by a DRV $\sim \mathcal{P}(\lambda T)$. Each message has a loss probability equal to p, independent of the other messages. Find the probability that the number of lost message in T units of time is equal to l.

Without loss of generality rescale $\lambda \leftarrow \lambda T$. We need to find the discrete random variable L whose range $\{0,1,2,\ldots\} \ni l$ contains the possible numbers l of lost messages in one time unit. The probability P(L=l) to lose l message is then by definition by the law of L.

Let X_i be the DRV for the event "the i-th" message is lost. Since each message is lost with probability $p, X_i \sim \mathcal{B}(p)$ for all $i \in \{1, 2, ...\}$.

Let $L_a = \sum_{i=1}^a X_i$ be the DRV whose range $\mathrm{Im}(L_a) = \{0,1,...,a\} \ni l$ contains the numbers l of possible lost messages out of a arrived. Since L_a is the sum of a independent p-Bernoulli DRVs, L_a follows the binomial distribution:

$$L_a \sim \mathcal{B}(a, p). \tag{71}$$

Finally, let A be the DRV estimating the number of arrived messages $a \in \{0, 1, ..., \}$ in one time unit; we are given that $A \sim \mathcal{P}(\lambda)$.

The law of L is given by

$$P(L=l) = P\left[\bigsqcup_{a=l}^{\infty} \{L_a = l \cap A = a\}\right],\tag{72}$$

that is, we look at the disjoint union of all the events in which, given a arrived messages, l are lost. By countable additivity and independence,

$$P(L=l) = \sum_{a=l}^{\infty} P(L_a=l)P(A=a) \tag{73}$$

Now ${\cal L}_a$ follows a binomial distribution and A follows a Poisson distribution, so

$$P(L=l) = \sum_{a=l}^{\infty} {a \choose l} p^{l} (1-p)^{a-l} e^{-\lambda} \frac{\lambda^{a}}{a!} \cdot \frac{\lambda^{l}}{\lambda^{l}}$$

$$= \lambda^{l} p^{l} \frac{1}{l!} e^{-\lambda} \sum_{a=l}^{\infty} \frac{1}{(a-l)!} (1-p)^{a-l} \lambda^{a-l}$$

$$= \lambda^{l} p^{l} \frac{1}{l!} e^{-\lambda} \sum_{j=0}^{\infty} \frac{(\lambda - \lambda p)^{j}}{j!}$$

$$= \lambda^{l} p^{l} \frac{1}{l!} e^{-\lambda} e^{\lambda - \lambda p}$$

$$= \frac{(\lambda p)^{l}}{l!} e^{-\lambda p}.$$

$$(74)$$

So $V \sim \mathcal{P}(\lambda p)$.

Bibliography

- [1] P. Billingsley, *Probability and Measure*. John Wiley & Sons, 2012.
- [2] B. Jourdain, Probabilités et statistique pour l'ingénieur. 2018.

 $[3] \ \ \text{E. H. Lieb and M. Loss}, \textit{Analysis}, \text{2nd ed. in Graduate Studies in Mathematics 14.} \ \text{American}$

Mathematical Society, 2001.