Theory of Computation, CSCI 438 spring 2019 Nondeterminism & Relation between NFAs and DFAs, pg. 47-63, Jan. 25

Write the definition of an NFA that is similar to the definition of a DFA.

	Deterministic finite automaton - DFA	Nondeterministic finite automaton - NFA
$M = (Q, \Sigma, \delta, q_0, F)$		$M = (Q, \Sigma, \delta, q_0, F)$
*	Q - finite set of states	* Q - finite set of states
*	Σ - finite set of symbols, input alphabet	* Σ - finite set of symbols, input alphabet
*	δ : Q x Σ \rightarrow Q, transition function	* $\delta: Q \times \Sigma \varepsilon \to \mathscr{P}(Q)$, transition function $(\Sigma \varepsilon \text{ is } \Sigma \text{ augmented by } \varepsilon which indicates that the machine can move forward without an input symbol)$
*	$q_0 \in Q$, initial state	* $q_0 \in Q$, initial state
*	$F \subseteq Q$, set of accept states	* $F \subseteq Q$, set of accept states

Do the same for strings accepted by an NFA.

Do the same for samigs accepted by an 1411.		
M accepts string $w \in \Sigma^*$ iff $\delta^*(q_0, w) \in F$	M accepts string $w \in \Sigma^*$ iff there exists	
	some sequence such that $\delta^*(q_0,w) \in F$	

Exercise 1.16 a & b

1.16 Use the construction given in Theorem 1.39 to convert the following two nondeterministic finite automata to equivalent deterministic finite automata.

a.

b.

