Midterm Exam: Control Systems Eng.(I) 2020/05/12

1. 아래의 회로의 transfer function, $V_o(s)/V_i(s)$, 을 구하시오 ($R_{\rm l}$ =1, $R_{\rm 2}$ = 2, $C_{\rm l}$ =1, $C_{\rm 2}$ =2).

2. 관심있는 linear time-invariant system 을 아래의 signal flow graph 로 표현하였다. Transfer function 을 구하고 input 이 impulse, $\delta(t)$, 일 때의 출력인 impulse response 를 구하시오.

3. 함수 $f(x) = 5\cos(x)$ 를 $x = \frac{\pi}{2}$ 근처에서 Taylor series expansion 을 활용하여 선형화 하시오.

4. 아래 시스템에서 K_1 과 K_2 는 constant 이다. Closed loop system 의 damping ratio (ζ) 는 0.7, natural frequency (ω_n) 는 4 rad/sec 가 되도록 하는 K_1 과 K_2 를 구하시오.

5. 아래 시스템의 transfer function (T(s))을 구하시오.

6. Second-order system 의 step response 는 damping $\mathrm{ratio}(\zeta)$ 에 따라 구분될 수 있다. 아래의 step response 에 알맞은 damping $\mathrm{ratio}(\zeta)$ 를 $(A) \sim (D)$ 에서 선택하세요.

- (1) Undamped response []
- (2) Underdamped response [
- (3) Critically damped response [
- (4) Overdamped response [

- (A) 0.5
- (B) 2.0
- (C) 0
- (D) 1.0

7. 다음과 같이 state equation 으로 표현된 시스템의 transfer function 을 구하시오.

$$\dot{x} = Ax + Bu$$
 where $A = \begin{bmatrix} 0 & 1 \\ 0 & -2 \end{bmatrix}$, $B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 0 \end{bmatrix}$

8. 아래의 transfer function 에 알맞은 step response 를 $(A) \sim (D)$ 에서 선택하시오 $(\alpha > 0, \beta > 0)$.

(1)
$$\frac{1}{(s+\alpha)(s+\beta)} \quad --- [$$

9. System engineer 로부터 아래와 같이 signal-flow graph 로 표현된 시스템을 전달받았다. 시스템 분석을 위하여 필요한 state-space representation 으로 표현하시오.

10. 어떤 시스템의 the state-transition matrix $(\Phi(t) = e^{At})$ 가 아래와 같을 때에 시스템을 구성하는 matrix A 를 구하시오.

$$\Phi(s) = \begin{bmatrix} \frac{s+6}{s^2+6s+5} & \frac{1}{s^2+6s+5} \\ \frac{-5}{s^2+6s+5} & \frac{s}{s^2+6s+5} \end{bmatrix}$$