1.5 Cantor's Theorem

Cantor's Diagonalization Method

Cantor initially published his discovery that ${\bf R}$ is uncountable in 1874, but in 1891 he offered another simpler proof that relies on decimal representations for real numbers.

THEOREM 1.5.1. The open interval $(0,1) = \{x \in \mathbf{R} : 0 < x < 1\}$ is uncountable.

Power Sets and Cantor's Theorem

Given a set A, the *power set* P(A) refers to the collection of all subsets of A. **Example:**

$$P(\{a,b\}) = \{\emptyset, \{a\}, \{b\}, \{a,b\}\}$$

THEOREM 1.5.2 (Cantor's Theorem). Given any set A, there does not exist a function $f: A \to P(A)$ that is onto.

Proof. For contradiction, assume that $f:A\to P(A)$ is onto. So for each element $a\in A$, f(a) is a particular subset of A. Since f is onto, early subset of A appears as f(a) for some $a\in A$. Now, let B be a subset of A ($B\subseteq A$) following

$$B = \{ a \in A : a \notin f(a) \}$$

Since f is onto B = f(a') for some $a' \in A$.

If a' is in B ($a' \in B$), $a' \notin f(a')$ since this is a requirement to be in B. Since $a' \notin f(a')$ and f(a') = B implies $a' \notin B$ and we assumed that $a' \in B$, we have a contradiction.

If a' is not in B ($a' \notin B$), $a' \in f(a')$ since it would otherwise be in B. Since $a' \in f(a')$ and f(a') = B implies $a' \in B$ and we assumed that $a' \notin B$, we have a contradiction.