Generovanie váh pre CNN pomocou symbolickej regresie a genetického programovania

Bc. Richard Seipel

Fakulta informačních technologií Vysokého učení technického v Brně
Božetěchova 1/2. 612 66 Brno - Královo Pole
xseipe00@fit.vutbr.cz

- Konvolučná neurónová sieť typu LeNet.
 - 2 konvolučné vrstvy (156 a 2416 parametrov).
 - 3 plne prepojené vrstvy (30840, 10164 a 850 parametrov).
- Dátová sada MNIST.
- Refenenčná presnosť siete 92%.

Prvotný prístup

- Priama multidimenzionálna regresia.
- Pôvodný počet rozmerov.
- Vysoká komplexita → slabé výsledky.

Transformácia do jedného rozmeru

- Inšpirácia Fourierovým radom pri voľbe funkcií.
- Vrstvy transformované do jedného rozmeru.
- Uspokojivé výsledky pri menších vrstvách .
 - Prvá konvolučná vrstva 90%.
- Nedostatočné výsledky pri vrstvách s viacerými parametrami (konštantná funkcia, sínusoida).

Transformácia do jedného rozmeru

Obrázek: Aproximácia bias paramertov prvej konvolučnej vrstvy.

Transformácie do rôznych rozmerov a skupín Tett

- Cieľ om nájsť kompromis v počte a tvare rozmerov.
- Vhodné rozdelenie veľkých vrstiev na menšie skupiny.
- Zvolené skupiny:
 - Konvolučné vrstvy rozdelené podľa filtrov → v jednej skupine všetky konvolučné jadrá jedného filtra.
 - Plne prepojené vrstvy rozdelené po neurónoch \rightarrow v jednej skupine všetky vstupné váhy pre jeden neurón (dlhší vektor).
- Zvolené rozmery:
 - Konvolučné vrstvy → počet filtrov x (počet kanálov x výška) x šírka konvolučného jadra.
 - Plne prepojené vrstvy → počet výstupných neurónov x počet vstupných neurónov.

Transformácie do rôznych rozmerov a skupín Terr

- Výsledky:
 - Dosiahnutie rozumnej presnosti pre väčšie vrstvy.
 - Prvá konvolučná vrstva 91%.
 - Druhá konvolučná vrstva 80%.
 - Druhá plne prepojená vrstva 77%.
 - Tretia plne prepojená vrstva 74%.
 - Nevýhodou *vyšší počet behov* a získaných funkcií (16 a 84).

Transformácie do rôznych rozmerov a skupín TIII

Obrázek: Aproximácia paramertov jedného vektoru druhej plne prepojenej vrstvy.

Experimenty s metódou PCA

- Snaha o zjednodušenie a zmenšenie matíc parametrov.
- Nie je potreba rozdeľ ovať na skupiny → stačí menší počet výrazov popisujúcich parametre.
- Potreba naviac ukladat' maticu vektorov komponent.
- Pôsobivé, no nestabilné výsledky.
 - Napr. druhá konvolučné vrstva bez delenia na skupiny 84%.
 Pre 16 komponent matica 16x16 (256) prvkov pre 16x6x5x5 (2400) parametrov.

- Experimentovanie s rôznymi prístupmi.
- Najstabilnejšiou metóda rozdelenia na skupiny.
- Pre lepšie výsledky portebných viac experimentov.
- Rozsiahlejšie experimenty s parametrami symbolickej regresie → možné zmenšenie dĺžky výstupov regresie a zvýšenie presnosti.