Applications linéaires et dimension

Aperçu

- 1. Application linéaire en dimension finie
- 2. Rang d'une application linéaire
- 3. Dualité
- 4. Application aux suites récurrentes linéaires d'ordre deux

- 1. Application linéaire en dimension finie
- 1.1 Caractérisation d'une application linéaire par l'image d'une base
- 1.2 Caractérisation des isomorphismes par les bases
- 1.3 Caractérisation des isomorphismes en dimension finie
- 2. Rang d'une application linéaire
- 3. Dualité
- 4. Application aux suites récurrentes linéaires d'ordre deux

- 1. Application linéaire en dimension finie
- 1.1 Caractérisation d'une application linéaire par l'image d'une base
- 1.2 Caractérisation des isomorphismes par les bases
- 1.3 Caractérisation des isomorphismes en dimension finie
- 2. Rang d'une application linéaire
- 3. Dualité
- 4. Application aux suites récurrentes linéaires d'ordre deux

T 1 On considère la base $S = (v_1, v_2)$ de $E = \mathbb{R}^2$ donnée par

$$v_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
 et $v_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$.

On suppose donnée une application linéaire $f:E\to\mathbb{R}^3$ telle que

$$f(v_1) = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \quad \text{et} \quad f(v_2) = \begin{pmatrix} -2 \\ 3 \\ -1 \end{pmatrix}.$$

Déterminer l'image du vecteur $v = (2, -5)^T$ par f.

T 2 Soit E un \mathbb{K} -espace vectoriel de dimension finie et $\mathcal{B}=(v_1,v_2,\ldots,v_n)$ une base de E. Soit F un \mathbb{K} -espace vectoriel et (y_1,y_2,\ldots,y_n) une famille de n vecteurs de F. Alors, il existe une unique application linéaire $T:E\to F$ telle que

$$\forall j \in [[1, n]], T(v_j) = y_j.$$

Autrement dit, une application linéaire est entièrement déterminée par l'image d'une base.

C 3 Deux applications linéaires qui coïncident sur une base sont égales.

Soient E et F deux \mathbb{K} -espaces vectoriels de dimension finie. Alors $\mathcal{L}(E,F)$ est de dimension finie et

 $\dim (\mathcal{L}(E, F)) = \dim(E) \times \dim(F).$

Démonstration. Admettons ce résultat pour ce chapitre. Nous verrons le cas particulier $F = \mathbb{K}$ dans la section \ref{Matter} .

- 1. Application linéaire en dimension finie
- 1.1 Caractérisation d'une application linéaire par l'image d'une base
- 1.2 Caractérisation des isomorphismes par les bases
- 1.3 Caractérisation des isomorphismes en dimension finie
- 2. Rang d'une application linéaire
- 3. Dualité
- 4. Application aux suites récurrentes linéaires d'ordre deux

T 5 Soit E un \mathbb{K} -espace vectoriel de dimension finie et $\mathcal{B} = (v_1, v_2, \dots, v_n)$ une base de E. Soit F un \mathbb{K} -espace vectoriel et $f: E \to F$ une application linéaire. On note $f(\mathcal{B})$ la famille

$$(f(v_1), f(v_2), \dots, f(v_n))$$

Alors,

- 1. f est un isomorphisme si, et seulement si la famille $f(\mathcal{B})$ est une base de F.
- 2. f est un injective si, et seulement si la famille $f(\mathcal{B})$ est une famille libre de F.
- 3. f est un surjective si, et seulement si la famille $f(\mathcal{B})$ est une famille génératrice de F.
- P 6 Deux espaces vectoriels de dimension finie sont isomorphes si, et seulement si ils ont même dimension.

$$\operatorname{rg}\left(f(w_1), f(w_2), \dots, f(w_p)\right) = \operatorname{rg}\left(w_1, w_2, \dots, w_p\right).$$

Si E est de dimension finie et \mathcal{B} est une base de E, alors

$$\operatorname{rg}(w_{1}, w_{2}, \dots, w_{p}) = \operatorname{rg}(\operatorname{Coord}_{\mathcal{B}}(w_{1}), \operatorname{Coord}_{\mathcal{B}}(w_{2}), \dots, \operatorname{Coord}_{\mathcal{B}}(w_{p}))$$
$$= \operatorname{rg}(\operatorname{Coord}_{\mathcal{B}}(w_{1}, w_{2}, \dots, w_{p})).$$

- 1. Application linéaire en dimension finie
- 1.1 Caractérisation d'une application linéaire par l'image d'une base
- 1.2 Caractérisation des isomorphismes par les bases
- 1.3 Caractérisation des isomorphismes en dimension finie
- 2. Rang d'une application linéaire
- Dualité
- 4. Application aux suites récurrentes linéaires d'ordre deux

- **T 9** Soient E et F deux \mathbb{K} -espaces vectoriels de dimension finie et $f \in \mathcal{L}(E, F)$. On suppose $\dim(E) = \dim(F)$. Alors, les assertions suivantes sont équivalentes:
 - 1. *f* est bijective.
 - 2. f est surjective.
 - 3. f est injective.
- **C 10** Soit f un endomorphisme d'un \mathbb{K} -espace vectoriel E de dimension finie. Alors f est bijective si, et seulement si f est surjective si, et seulement si f est injective.

E 11 On reprend l'exemple de l'application $T: \mathbb{R}^3 \to \mathbb{R}^3$ définie par

$$T \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x + y + z \\ x - y \\ x + 2y - 3z \end{pmatrix}.$$

Montrer (rapidement) que T est bijective.

- 1. Application linéaire en dimension finie
- 2. Rang d'une application linéaire
- 2.1 Applications linéaires de rang fini
- 2.2 Rang d'une composée
- 2.3 Théorème du rang pour les application linéaires
- 3. Dualité
- 4. Application aux suites récurrentes linéaires d'ordre deux

- 1. Application linéaire en dimension finie
- 2. Rang d'une application linéaire
- 2.1 Applications linéaires de rang fini
- 2.2 Rang d'une composée
- 2.3 Théorème du rang pour les application linéaires
- 3. Dualité
- 4. Application aux suites récurrentes linéaires d'ordre deux

D 12 Soit E et F deux \mathbb{K} -espaces vectoriels et $f: E \to F$ une application linéaire. On dit que f est de **rang fini** lorsque l'image de f est de dimension finie. La dimension de cette image est alors appelée **rang** de f que l'on note $\operatorname{rg}(f)$:

$$rg(f) = dim(Im(f))$$
.

T 13 Soit E et F deux \mathbb{K} -espaces vectoriels et $f: E \to F$ une application linéaire. On suppose que E est de dimension finie $n \ge 1$ et que $\mathcal{B} = (v_1, v_2, \dots, v_n)$ est une base de E. Alors f est de rang fini et

$$Im(f) = Vect (f(v_1), f(v_2), \dots, f(v_n)).$$

On a donc

$$\operatorname{rg}(f) = \operatorname{rg}\left(f(v_1), f(v_2), \dots, f(v_n)\right) \qquad \operatorname{rg}(f) \leq \dim(E) \qquad \operatorname{rg}(f) \leq \dim(F).$$

Plus généralement, si A est une partie de E,

$$f(\operatorname{Vect}(A)) = \operatorname{Vect}(f(A))$$
.

- 1. Application linéaire en dimension finie
- 2. Rang d'une application linéaire
- 2.1 Applications linéaires de rang fini
- 2.2 Rang d'une composée
- 2.3 Théorème du rang pour les application linéaires
- 3. Dualité
- 4. Application aux suites récurrentes linéaires d'ordre deux

- P 14 Soit E,F et G trois \mathbb{K} -espaces vectoriels de dimension finie, $f \in \mathcal{L}(E,F)$ et $g \in \mathcal{L}(F,G)$, alors
 - 1. $\operatorname{rg}(g \circ f) \leq \operatorname{rg} f$ et $\operatorname{rg}(g \circ f) \leq \operatorname{rg} g$.
 - 2. Si g est injective, alors $rg(g \circ f) = rg f$.
 - 3. Si f est surjective, alors $rg(g \circ f) = rg g$.
- Le rang d'une application linéaire est invariant par composition à gauche, ou à droite, par un isomorphisme.

- 1. Application linéaire en dimension finie
- 2. Rang d'une application linéaire
- 2.1 Applications linéaires de rang fini
- 2.2 Rang d'une composée
- 2.3 Théorème du rang pour les application linéaires
- 3. Dualité
- 4. Application aux suites récurrentes linéaires d'ordre deux

T 16 Forme géométrique du théorème du rang

Soient E et F deux \mathbb{K} -espaces vectoriels et $f:E\to F$ une application linéaire. Soit S est un supplémentaire de $\ker f$ dans E alors

$$g = f_S^{\operatorname{Im} f} : S \to \operatorname{Im} f$$

 $x \mapsto f(x)$

est un isomorphisme. C'est-à-dire que tout supplémentaire de $\ker f$ dans E est isomorphe à $\operatorname{Im} f$.

On dit que f induit un isomorphisme g de S sur Im f.

T 17 Théorème du rang

Soient E et F deux \mathbb{K} -espaces vectoriels, E étant de dimension finie et $f: E \to F$ une application linéaire. Alors f est de rang fini et

$$rg(f) + dim(ker(f)) = dim E$$
.

C 18 Soient E et F deux \mathbb{K} -espaces vectoriels de dimension finie et $f: E \to F$ une application linéaire. Alors si (b_1, \ldots, b_p) est une base de $\operatorname{Im} f$, et, pour chaque $i \in [\![1,p]\!]$, a_i un élément de E tel que $f(a_i) = b_i$, la famille (a_1, \ldots, a_p) est libre et engendre un sous-espace supplémentaire de $\ker(f)$.

Soit une matrice A de type (m, n) et $T: x \mapsto Ax$. Alors T est une application linéaire de $E = \mathbb{K}^n$ dans $F = \mathbb{K}^m$. De plus, $\ker(T) = \ker(A)$ et $\operatorname{Im}(T) = \operatorname{Im}(A)$, donc $\operatorname{rg}(T) = \operatorname{rg}(A)$. Le théorème du rang affirme donc que

$$rg(A) + dim(ker A) = n,$$

où n est la dimensions de $E = \mathbb{K}^n$, qui est égale au nombre de colonnes de A.

- 1. Application linéaire en dimension finie
- 2. Rang d'une application linéaire
- 3. Dualité
- 3.1 Base duale
- 3.2 Formes linéaires et hyperplans
- 4. Application aux suites récurrentes linéaires d'ordre deux

- 1. Application linéaire en dimension finie
- 2. Rang d'une application linéaire
- 3. Dualité
- 3.1 Base duale
- 3.2 Formes linéaires et hyperplans
- 4. Application aux suites récurrentes linéaires d'ordre deux

D 21 Soit E un espace vectoriel de dimension n et $\mathcal{B} = (e_1, \dots, e_n)$ une base de E. La base duale de (e_1, \dots, e_n) est la famille (e_1^*, \dots, e_n^*) des formes linéaires coordonnées relativement à la base B, c'est-à-dire la famille des formes linéaires vérifiant

$$\forall i \in [[1, n]], \forall j \in [[1, n]] e_i^* \left(e_j\right) = \delta_{i, j} = \begin{cases} 1 & \text{si } i = j \\ 0 & \text{si } i \neq j. \end{cases}$$

E 23 La base duale de la base $(1, X, ..., X^n)$ de $\mathbb{R}[X]$ est $\left(P \mapsto \frac{P^{(k)}(0)}{k!}\right)_{k=0,...,n}$.

P 24 Soit E un espace vectoriel de dimension n et (e_1, \ldots, e_n) une base de E. La base duale de (e_1, \ldots, e_n) est une base de l'espace dual $E^* = \mathcal{L}(E, \mathbb{K})$. Par conséquent, E^* est de dimension finie et

$$\dim\left(E^*\right) = \dim(E).$$

- 1. Application linéaire en dimension finie
- 2. Rang d'une application linéaire
- 3. Dualité
- 3.1 Base duale
- 3.2 Formes linéaires et hyperplans
- 4. Application aux suites récurrentes linéaires d'ordre deux

D 25 Soit E un \mathbb{K} -espace vectoriel et H un sous-espace vectoriel de E. On dit que H est un hyperplan de E si il existe une droite vectorielle D = Vect { a } telle que

$$E = H \oplus D$$
.

- P 26 Soit H un hyperplan d'un espace vectoriel E et $x \notin H$. Alors l'hyperplan H et la droite Vect(x) sont supplémentaire dans E.
- **T 27** Si E est de dimension finie $n \in \mathbb{N}^*$, les hyperplans de E sont exactement les sousespaces vectoriels de E de dimension n-1.

T 28 Soit φ une forme linéaire non nulle sur un espace vectoriel E. Alors, $\ker(\varphi)$ est un hyperplan de E.

Le théorème précédent admet une réciproque:

T 29 Soit *H* un hyperplan d'un espace vectoriel *E*.

- 1. Il existe des formes linéaire φ telles que $H = \ker \varphi$.
- 2. Si φ_0 est l'une d'entre elles, les autres sont les $\lambda \varphi_0$ avec $\lambda \in \mathbb{K} \setminus \{0\}$.

D 30 Lorsque $H = \ker \varphi$, on dit que H a pour équation $\varphi(x) = 0$.

Il n'y a pas unicité de cette équations, mais les autres équations de H sont $\lambda \varphi(x)=0$ avec $\lambda \neq 0$.

Remarquez qu'en dimension finie, après choix d'une base (e_1,\ldots,e_n) , une forme linéaire sera décrite par une expression du type

$$\varphi(x) = a_1 x_1 + \dots + a_n x_n,$$

où les (x_1, \ldots, x_n) sont les coordonnées de x dans la base (e_1, \ldots, e_n) . Ainsi, l'équation d'un hyperplan est de la forme

$$a_1 x_1 + \dots + a_n x_n = 0,$$

et les autres sont promotionnelles.

T 31 Intersection d'hyperplans

Soit E un espace vectoriel de dimension finie n.

- 1. L'intersection de m hyperplans de E est un sous-espace vectoriel de dimension au moins n-m.
- 2. Tout sous-espace vectoriel V de E de dimension n-m peut s'écrire comme l'intersection de m hyperplans.

Esquisse. 1. Par récurrence sur m, en utilisant la formule de Grassmann.

2. Soit (e_{m+1}, \ldots, e_n) une base de V que l'on complète en $\mathcal{B} = (e_1, \ldots, e_m, e_{m+1}, \ldots, e_n)$ une base de E. En notant (e_1^*, \ldots, e_n^*) la base duale de la base \mathcal{B} et

$$H_i = \ker\left(e_i^*\right),\,$$

on vérifie bien que $V = H_1 \cap \cdots \cap H_m$.

- 1. Application linéaire en dimension finie
- 2. Rang d'une application linéaire
- 3. Dualité
- 4. Application aux suites récurrentes linéaires d'ordre deux