Seminar Statistische Lernverfahren

Klassifikation von Rezensionstypen

Till Gräfenberg, Matthias Häußler, Alexander Kohlscheen, Michael Lau, Tanja Niklas, Jonathan Schmitz

12. Dezember 2019

Inhaltsverzeichnis

- 1. Problemstellung
- 2. Erstellen von Prädiktoren
- 3. Analysemethoden
 - 3.1 Naive Bayes
 - 3.2 Entscheidungsbaum
 - 3.3 Random Forest
 - 3.4 Support Vector Machine
 - 3.5 weitere Anpassungen und Modelle

Problemstellung

► Ziel: Klassifizierung von Reviews in folgende Typen:

Texttyp	introvertiert	extrovertiert
emotional	stetig	initiativ
rational	gewissenhaft	dominant

► Gegeben: 439 bereits klassifizierte Reviews

- ► Klassifikation sollte durch verwendete Wörter geschehen
- Zurückführung auf Grundwörter notwendig
- Benutzung verschiedener Packages in R bzw. Python ermöglichte verschiedene Verfahren

Was ist Stemming?

- ► Verfahren, mithilfe dessen man verschiedene Varianten eines Wortes auf ihren gemeinsamen Wortstamm zurückführt
- ▶ Durch Abschneiden von Prä-/In- und Suffixen und Ersetzen von Umlauten, Diphtongen etc. erzeugen von Wortstämmen
- lacktriangle Beispiele: gelernt o lernen; Wohnungen o Wohnung

Erstellen von Prädiktoren Stemming

► Eigene Implementierung nach Vorgabe von COMPEON in R

- ▶ Für Englische Sprache bereits vorgefertigte Tools z.B.
 - porterstemmer von nltk in Python
 - snowballstemmer von nltk in Python

Was ist Lemmatisierung?

- ▶ Das Lemma ist im Bereich der Linguistik die Grundform eines Wortes
 - → Wortform z.B. in einem Nachschlagewerk
- Zurückführung auf grammatikalische Grundformen
- Lemmatisierung als ein lexikonbasiertes Stemmingverfahren
- auftretende Probleme des Vorgangs:
 - Ambiguitäten
 - Wahl des Lemma eines Wortes (Verbinfinitiv vs. Nomen)
 - Kompositazerlegung nicht eindeutig (Beispiel: Wachstube)
 - ► Simplizia (Beispiel: Kreuzer, Tangente)
 - Unregelmäßigkeit von Verben im Deutschen

Lemmatisierung

- Erfordert vorgefertigte Packages z.B.
 - SpaCy in Python
 - nltk in Python
- Diese lieferten zusätzlich Informationen über die Wortart
- Auch hier für Englische Sprache ausgereifter als die deutsche Alternative

Wortliste

- Ausgangssituation: 439 Reviews über die Firma COMPEON
- ▶ 8792 Wörter in reviews_preprocessed (mitunter mehrfach)

$cleaned_text$	preprocessed_text
richtigen	richtig
darlehen	darleh
gewünschte	wunsch
taggenuae	taggenua
gegenüber	genub

Tabelle: Wortliste Beispiele

Filterung der Prädiktoren

- Nach Erstellung der Grundwörter konnte gefiltert werden, welche Wörter häufig auftraten
- Denkbare Filtermethoden für das Wörterbuch:
 - Nur Wörter, die mind. n Mal aufgetaucht sind
 - ▶ Nur Wörter, die in mind. p% der Reviews verwendet wurden
- ► Anschließend Erstellung einer binären Document-Term-Matrix, die kodiert, welche Grundwörter in welchen Reviews auftauchten
- ► Alternative: PCA um aussagekräftige "Wörterachsen" zu bestimmen. Kein sichtbarer Erfolg.

Document-Term-Matrix

Wörterbucherstellung aus den verbliebenen Grundwörtern

	Lemma	n
144		654
143	der	531
142	und	440
2	dann	10
1	abschluss	10

- ▶ DTM-Zeilen: Reviews 1 bis 439, DTM-Spalten: Grundwörter aus Wörterbuch
- zusätzliche Spalten: doc₋id, review, type (Zielvariable)
- ► Kodierung: Wort kommt in der Review vor (1) oder nicht (0)

Document-Term-Matrix

- Anfügen weiterer Prädiktoren mit Anzahlen pro Review der
 - Wörter
 - Fragen
 - Imperative
 - Sätze
 - Nebensätze/Trennungen
 - ► Satzzeichen (ggf. einzeln betrachtet)
 - Wortarten
- ► Weitere Variablenselektion möglich

Document-Term-Matrix

 dass	der	dies	 doc_id	review	words	 type
 0	1	0	 1	Die Un	12	 Ge
 0	0	0	 2	schnell	7	 In
 0	0	0	 3	Sehr g	9	 Do
 0	0	0	 4	Super	8	 In
 0	1	0	 5	Hervor	11	 In
 0	1	0	 6	Die Zu	27	 In
 0	1	0	 7	untern	26	 In
 0	1	0	 8	Schnell	23	 Ge
 0	0	0	 9	Unkom	3	 Do
 0	1	0	 10	ich ha	39	 St
 0	1	0	 11	Besten	19	 St
 0	0	0	 12	Sehr f	8	 In

Lineare Modelle

▶ Idee: Vorhersagen der Label in Form eines linearen Zusammenhangs

$$y = \beta^T \cdot x + \epsilon$$

mit $\epsilon \sim \mathcal{N}_n(0, \sigma)$ und $\beta = (X^T X)^{-1} X y$; die Zeilen der DTM entsprechen unserem x

▶ Da das Modell eine Zahl zurückgibt, müssen die einzelnen Typen oder alternativ die Eigenschaften extro-/introvertiert bzw. emotional/rational separat betrachtet werden.

Resultate lineare Modelle

Lineares Modell in R mit Wortvorkommen in mind. 20 Texten

	D	G	I	S	Acc.	Prec.	Recall	F1
Dominant	11	2	12	5		0,367	0,611	0,458
Gewissenhaft	4	5	12	4		0,200	0,357	0,256
Initiativ	2	4	11	7		0,458	0,306	0,367
Stetig	1	3	1	2		0,286	0,111	0,160
Total					0,337	0,328	0,346	0,310

Resultate lineare Modelle

Lineares Modell in R mit Wortvorkommen in mind. 20 Texten

	emotional	rational	Acc.	Prec.	Recall	F1
emotional	24	19		0,558	0,750	0,640
rational	8	35		0,814	0,648	0,722
Total			0,686	0,343	0,350	0,340

	extro.	intro.	Acc.	Prec.	Recall	F1
extrovertiert	43	20		0,683	0,796	0,735
introvertiert	11	12		0,522	0,375	0,436
Total			0,640	0,301	0,293	0,293

Idee:

Nutze die Vorhersage dieses Modells um ein neues Modell anzupassen.

Resultate lineare Modelle

Modifiziertes Modell aus beiden vorherigen linearen Modellen in R mit Wortvorkommen in mind. 20 Texten

	D	G	I	S	Acc.	Prec.	Recall	F1
Dominant	13	4	12	2		0,419	0,722	0,531
Gewissenhaft	2	5	4	1		0,417	0,357	0,385
Initiativ	2	3	16	11		0,500	0,444	0,471
Stetig	1	2	4	4		0,364	0,222	0,276
Total					0,442	0,425	0,437	0,415

Das modifizierte Modell liefert eine höhere Zuverlässigkeit.

PCA - Principal Component Analysis

Ziel: Dimensionsreduktion

Idee: Suche die Datenachsen, auf denen die Varianz am größten ist

Verfahren:

- Sei X die DT-Matrix (Spaltenmittelwerte = 0)
- ▶ Bestimme die Kovarianzmatrix $Cov = X^TX$
- **Destimme** die Eigenwerte λ_i und Eigenvektoren v_i von *Cov*
- Sei $V = (v_1|v_2|...)$
- ▶ Transformiere die Daten zu $\hat{X} = XV$

Problem: Die Resultate verlieren an Interpretierbarkeit

PCA - Principal Component Analysis

PCA - Principal Component Analysis

Fazit:

- ▶ Die Dominanten Reviews haben eine geringere Varianz
- keine erkennbaren Gruppen
- ► Mittelwerte der Gruppen sind ähnlich

Das Verfahren liefert keine besseren Ergebnisse und benötigt nicht wesentlich weniger Variablen.

Naive Bayes

▶ Das Naive Bayes Verfahren fußt auf dem Bayes Theorem

$$p(y|x) = \frac{p(x|y)p(y)}{p(x)}$$

bzw. für unabhängige Prädiktoren $x_1, ..., x_n$ als

$$p(y|x_1,...,x_n) = \frac{p(x_1|y)\cdots p(x_n|y)p(y)}{p(x_1,...,x_n)} \propto p(x_1|y)\cdots p(x_n|y)p(y).$$

Durch Schätzen von p(y) und $p(x_i|y)$ (für die Reviewtypen y) durch die relativen Häufigkeiten, können wir dann Klassifikationen durchführen als

$$\hat{y} = \operatorname{argmax}_{y} p(y) \prod_{i=1}^{n} p(x_{i}|y).$$

Naive Bayes

- Durchführung war in R mit dem Package caret, über Python mit sklearn möglich. Mit letzterem haben wir jeweils die deutschen und englischen Reviews klassifiziert.
- Dieses Vorgehen zeigte nur wenig bessere Ergebnisse als eine einheitliche Zuweisung.

(Bester) Naive Bayes, R, Wortaufkommen > 20

	D	G	I	S	Acc.	Prec.	Recall	F1
Dominant	14	2	8	1		0,412	0,778	0,538
Gewissenhaft	0	0	0	0		n.d.	0	n.d.
Initiativ	4	11	28	17		0,467	0,778	0,583
Stetig	0	1	0	0		n.d.	0	n.d
Total					0,494	n.d.	0,389	n.d.

Naive Bayes, Python, Wortvorkommen in mind. 1% der Texte, Lemmatisierung mit spacy, Englisch

					1 7			
	D	G	I	S	Acc.	Prec.	Recall	F1
Dominant	13	4	12	4		0,433	0,722	0,542
Gewissenhaft	0	3	3	0		0,5	0,214	0,3
Initiativ	4	5	16	11		0,444	0,444	0,444
Stetig	1	2	5	3		0,273	0,167	0,207
Total					0,407	0,413	0,387	0,373

Naive Bayes, Python, Wortvorkommen in mind. 1% der Texte, Lemmatisierung mit spacy, Deutsch

					1 3			
	D	G	I	S	Acc.	Prec.	Recall	F1
Dominant	16	2	13	2		0,444	0,889	0,593
Gewissenhaft	0	5	4	1		0,5	0,357	0,417
Initiativ	2	5	16	13		0,444	0,444	0,444
Stetig	0	2	3	2		0,286	0,111	0,16
Total					0,453	0,419	0,45	0,403

weitere Anpassungen und Modelle

Mit Naive Bayes und den Wortarten als Prädiktoren lässt sich zuverlässig voraussagen, ob eine Person extrovertiert ist:

Naive Bayes, R, Wortarten, Wortvorkommen in mind. 10 Texten										
	extro	intro	Acc.	Prec.	Recall	F1				
extrovertiert	30	5		0,714	0,556	0,625				
introvertiert	24	27		0,529	0,843	0,65				
Total			0,663	0,622	0,7	0,638				

Idee:

Nutze die Vorhersage dieses Modells um ein neues Modell anzupassen.

weitere Anpassungen und Modelle

Random Forest, R, Wortvorkommen in mind. 10 Texten

	D	G	I	S	Acc.	Prec.	Recall	F1
Dominant	14	2	8	1		0,56	0,778	0,561
Gewissenhaft	1	4	1	0		0,667	0,286	0,4
Initiativ	3	7	25	15		0,5	0,694	0,581
Stetig	0	1	2	2		0,4	0,111	0,174
Total					0,523	0,532	0,467	0,452

Random Forest mit Naive Bayes, R, Wortvorkommen in mind. 10 Texten

	D	G	I	S	Acc.	Prec.	Recall	F1
Dominant	15	2	9	1		0,577	0,833	0,682
Gewissenhaft	0	4	1	1		0,667	0,286	0,4
Initiativ	3	8	24	13		0,5	0,667	0,571
Stetig	0	0	2	3		0,6	0,167	0,261
Total					0,535	0,586	0,488	0,479

Entscheidungsbaum

- ► Teilt in Klassen auf
- ► Wahr- oder Falsch-Entscheidungen
- ▶ Jedes Blatt hat genau eine Klasse
- Verwende rpart

Entscheidungsbaum

Entscheidungsbaum

Resultate Entscheidungsbaum, R, Wortaufkommen > 20

	D	G	I	S	Acc.	Prec.	Recall	F1
Dominant	14	3	9	1		0.518	0.777	0.621
Gewissenhaft	0	3	5	5		0.23	0.21,4	0.221
Initiativ	2	4	19	5		0.633	0.527	0.575
Stetig	2	4	3	7		0.437	0.388	0.411
Total					0.5	0.454	0.476	0.454

Entscheidungsbaum

Resultate Entscheidungsbaum, Python, mind. in 1% der Texte, Englisch

	D	G	I	S	Acc.	Prec.	Recall	F1
Dominant	9	4	12	5		0.3	0.5	0.375
Gewissenhaft	2	3	4	2		0.272	0.214	0.239
Initiativ	5	5	12	8		0.4	0.333	0.363
Stetig	2	2	8	3		0.2	0.166	0.181
Total					0.313	0.293	0.303	0.289

Entscheidungsbaum

Resultate Entscheidungsbaum, Python, mind. in 1% der Texte, Deutsch

	D	G	I	S	Acc.	Prec.	Recall	F1
Dominant	13	4	16	1		0.382	0.722	0.499
Gewissenhaft	2	4	1	3		0.4	0.285	0.332
Initiativ	3	5	13	7		0.464	0.361	0.406
Stetig	0	1	6	7		0.5	0.388	0.436
Total					0.430	0.436	0.439	0.418

Random Forest

- Entscheidungsbaum nicht beste Option
 - ► Gut für Trainingsdaten
 - Nicht flexibel
 - Probleme mit neuen Datensätzen
- Generiere neue Testdaten durch Wählen mit Zurücklegen
- Erzeuge Entscheidungsbaum
- ► Generiere so viele Entscheidungsbäume
- ► Entscheidung durch Mehrheitsentscheidung
- R randomForest 2000 Bäume, analog in Python

Random Forest

Resultate Random Forest, R, Wortaufkommen > 20

	D	G	I	S	Acc.	Prec.	Recall	F1
Dominant	14	2	10	0		0.538	0.777	0.635
Gewissenhaft	2	4	0	1		0.571	0.285	0.28
Initiativ	2	7	25	14		0.52	0.694	0.594
Stetig	0	1	1	3		0.6	10.66	0.26
Total					0.534	0.557	0.48	0.442

Random Forest

Resultate Random Forest, Python, mind. in 1% der Texte, Englisch

	D	G	I	S	Acc.	Prec.	Recall	F1
Dominant	16	4	14	4		0.421	0.888	0.571
Gewissenhaft	0	6	2	1		0.666	0.428	0.521
Initiativ	1	4	16	9		0.533	0.444	0.484
Stetig	1	0	4	4		0.444	0.222	0.296
Total					0.488	0.516	0.495	0.468

Random Forest

Resultate Random Forest, Python, mind. in 1% der Texte, Deutsch

	D	G	I	S	Acc.	Prec.	Recall	F1
Dominant	15	4	15	2		0.416	0.833	0.554
Gewissenhaft	0	3	4	3		0.3	0.214	0.249
Initiativ	2	4	15	9		0.5	0.416	0.454
Stetig	1	3	2	4		0.4	0.222	0.285
Total					0.43	0.404	0.421	0.385

Support Vector Machine

- Versucht Entscheidungsgrenze (Hyperebene) zu finden, die die Distanz der nächsten Datenpunkte jeder Klasse zu ihr maximiert
- Diese nächsten Datenpunkte sind die Support Vectors

Quelle: https://towardsdatascience.com/support-vector-machines-for-classification-fc7c1565e3

Support Vector Machine

- Verschiedene Kerne (Funktionen) um dem Separierungsproblem gerecht zu werden
- Kerne projizieren nicht-linear separierbare Daten niedrigerer
 Dimensionen auf linear-separierbare Daten höherer Dimensionen
- Vier häufig verwendete Kerne:

Linear	$\langle u, v \rangle$
Polynomiell	$(\gamma\langle u,v\rangle+r)^d$
Radial	$\exp(-\gamma \ u-v\ ^2)$
Sigmoidal	$tanh(\gamma\langle u,v\rangle+r)$

In R mit e1071 und in Python mit sklearn

Support Vector Machine

Resultate Support Vector Machine, R, Wortvorkommen ≥ 10 , Radialer Kern, Modifizierter CISTEM-Stemmer, Deutsch

	D	G	I	S	Acc.	Prec.	Recall	F1
Dominant	14	3	8	1		0,538	0,778	0,636
Gewissenhaft	0	1	1	0		0,500	0,071	0,163
Initiativ	4	10	27	14		0,570	0,750	0,419
Stetig	0	0	0	3		1,000	0,167	0,209
Total					0,5233	0,632	0,441	0,410

Support Vector Machine

Resultate Support Vector Machine, Python, Wortvorkommen \geq 20, Sigmoid Kern, Porter-Stemmer aus nltk, Englisch

	D	G	ı	S	Acc.	Prec.	Recall	F1
Dominant	14	2	9	1		0,54	0,78	0,64
Gewissenhaft	0	5	4	1		0,50	0,36	0,42
Initiativ	3	5	19	13		0,47	0,53	0,50
Stetig	1	2	4	3		0,30	0,17	0,21
Total					0,477	0,45	0,46	0,44

Schwierigkeiten

- Keine eindeutige Klassifikation
 - Auch für Menschen nicht eindeutig
 - ► Teilweise sehr geringe Unterschiede zwischen den Typen
- Stemming nicht unbedingt eindeutig
 - Unregelmäßigkeit von Verben im Deutschen
 - Komposita
- Geringe Zahl an Trainingsdaten
- Unbalanciertes Studiendesign
- Representativität
 - Introvertierte Kunden schreiben weniger häufig Reviews
 - Nur positive Bewertungen lagen vor