Lemma TP. Let $a, b, c \in \mathbb{Z}$. If a|b and b|c, then a|c.

Proof. Let $a, b, c \in \mathbb{Z}$ be given such that a|b and b|c. By definition, b = ax and c = by for some $x, y \in \mathbb{Z}$. Substituting into c,

$$c = (ax)y$$
$$= a(xy).$$

By CPI, xy = t for $t \in \mathbb{Z}$. Thus, a|c.

2.1 Theorem. If n is a natural number greater than 1, and that there exists a prime p such that p|n.

Proof. By contradiction, let $n \in \mathbb{N}$ with n > 1 be given, and for all primes p, p / n. Let $\mathbb{S} = \{$ the numbers greater than 1 that divide $n \}$. Since any number divides itself, the set is nonempty. By the WOANN, there exists a smallest number $p_0 \in \mathbb{S}$. Since p_0 is a composite number, $p_0 = xy$ for some $x, y \in \mathbb{Z}$ and both greater than 1. Since $x | p_0$ and $p_0 | n$, by Lemma TP, x | n.

Notice that both x and p_0 divide n. Since $1 < x < p_0$, this contradicts the WOANN where p_0 is the smallest number that divides n. Thus, there exists a prime p such that p|n.