XC6201

Positive Voltage Regulators

◆CMOS Low Power Consumption

◆Dropout Voltage : 0.16V @ 100mA,

0.40V @ 200mA

◆Maximum Output Current: 250mA (Vout=5.0V, TYP)

♦Highly Accurate

♦Output Voltage Range: 1.3V ~ 6.0V

♦SOT-25 / SOT-89 / TO-92 Package

◆Capacitors can be Tantalum or Ceramic

Applications

- Mobile phones
- Cordless phones
- Cameras, video recorders
- Portable games
- ●Portable AV equipment
- ●Reference voltage
- Battery powered equipment

■General Description

The XC6201 series are highly precise, low power consumption, positive voltage regulators manufactured using CMOS and laser trimming technologies.

The series provides large currents with a significantly small dropout

The XC6201 consists of a current limiter circuit, a driver transistor, a precision reference voltage and an error amplifier. Output voltage is selectable in 0.1V steps between 1.3V ~ 6.0V.

SOT-25 (250mW), SOT-89 (500mW) and TO-92 (300mW) packages are available.

■Features

Maximum Output Current : 250mA (TYP.) **Dropout Voltage** : 0.16V @ 100mA

Maximum Operating Voltage : 10V

: 1.3V ~ 6.0V **Output Voltage Range**

(selectable in 0.1V steps)

Highly Accurate : ± 2%

Low Power Consumption : TYP 2.0 μA Operational Temperature Range : -40°C ~ 85°C

: SOT-25 (250mW). Ultra Small Packages

SOT-89 (500mW),

TO-92 (300mW)

Capacitors can be Tantalum or Ceramic

■Typical Application Circuit

Typical Performance Characteristic

■Pin Configuration

■Pin Assignment

	PIN NUMBER			
SOT-25	SOT-89/TO-92 (T)	TO-92 (L)	PIN NAME FUNCTION	
5	1	2	Vout	Output
2	2	1	Vss	Ground
1	3	3	VIN	Power Input
3	_	_	(NC)	No Connection
4	_	_	(NC)	No Connection

■Product Classification

●Ordering Information

X C 6 2 <u>0 1</u> <u>P</u> 3456 † † ① 2

DESIGNATOR	SYMBOL	DESCRIPTION	DESIGNATOR	SYMBOL	DESCRIPTION
1)	01	Indicates the product number	4	1/2	Output Voltage Accuracy e.g.1 : ±1.0%
(2)	Р	Type of			2:±2.0%
۷	2 P regu			М	Package Type: SOT-25
	13~60	Output Voltage e.g. 30 : 3.0V 50 : 5.0V	(5)	Р	: SOT-89
				Т	: TO-92 (Standard)
(3)				L	: TO-92 (Custom pin configuration)
9				R	Embossed Tape:Standard Feed
			6	L	Embossed Tape:Reverse Feed
			0	Н	Paper Type (TO-92)
				В	Bag (TO-92)

■Packaging Information

●SOT-25

●SOT-89

■Marking

●SOT-89, SOT-25

① Represents the product name

SYMBOL	PRODUCT NAME
1	XC6201PXXXXX

② Represents the type of regulator

VOLTAGE (V)	0.1~3.0	3.1~6.0	6.1~9.0
SYMBOL	5	6	7

③ Represents the Output Voltage

SYMBOL	OUTPUT VOLTAGE (V)			SYMBOL	OUTP	UT VOLTAG	E(V)
0	-	3.1	_	F	1.6	4.6	_
1	l	3.2	-	Н	1.7	4.7	_
2	ı	3.3	1	K	1.8	4.8	_
3	-	3.4	_	L	1.9	4.9	_
4	-	3.5	_	М	2.0	5.0	_
5	ı	3.6	1	N	2.1	5.1	-
6	-	3.7	_	Р	2.2	5.2	_
7	l	3.8	-	R	2.3	5.3	_
8	l	3.9	-	S	2.4	5.4	_
9	I	4.0	1	Т	2.5	5.5	-
Α	I	4.1	1	U	2.6	5.6	-
В	I	4.2	ı	V	2.7	5.7	_
С	1.3	4.3	-	Х	2.8	5.8	_
D	1.4	4.4	-	Υ	2.9	5.9	_
E	1.5	4.5	_	Z	3.0	6.0	_

4 Represents the assembly lot no.

0~9, A~Z repeated (G, I, J, O, Q, W excepted)

●TO-92

① Represents the type of regulator

DESIGNATOR	PRODUCT NAME
Р	XC6201P****
T	XC6201T****

23 Represents the Output Voltage

DESIGNATOR		VOLTAGE(V)	PRODUCT NAME
2	3	VOLTAGE(V)	PRODUCT NAME
3	3	3.3	XC6201*33***
5	0	5.0	XC6201*50***

4 Represents the Detect Voltage Accuracy

DESIGNATOR	DETECT VOLTAGE ACCURACY	PRODUCT NAME
1	within ±1%	XC6201P**1**
2	within ±2%	XC6201P**2**

5 Represents a least significant digit of the produced year

DESIGNATOR	Produced year
0	2000
1	2001

© Denotes the production lot number0 to 9, A to Z repeated(G.I.J.O.Q.W excepted)

Note: Character inversion is not used

■Block Diagram

■Absolute Maximum Ratings

Ta=25°C

PARAMETER		SYMBOL	RATINGS	UNITS	
Input Voltage		VIN	12	V	
Outpu	t Current	IOUT	500	mA	
Output Voltage		Vout	Vss-0.3~Vin+0.3	V	
	SOT-25		250		
Power Dissipation	SOT-89	Pd	500	mW	
	TO-92		300		
Operating Temp.		Topr	-40~+85	c	
Storag	je Temp.	Tstg	−55~ +125	°C	

■Electrical Characteristics

XC6201P132 VOUT (T) =1.3V (Note 1)

Ta=25°C

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	CIRCUIT
Output Voltage	VOUT(E) (Note2)	VIN=2.3V	1.274	1.300	1.326	v	2
Output Voltage	VOOT(L)	IOUT=10mA	1.274	1.500	1.020	, v	
Maximum Output Current	lOUTmax	VIN=2.3V	60			mA	2
Maximum Output Current	IOOTIIIAX	Vour(E)≥1.17V	00			l IIIA	
		VIN=2.3V				.,	
Load Regulation	ΔVOUT	1mA≤lOUT≤30mA		10	30	mV	2
Dropout Voltage (Note 3)	Vdif1	IOUT=30mA		200	600	mV	2
Diopout Voltage .	Vdif2	IOUT=60mA		500 810		mv	
Supply Current	ISS	VIN=2.3V		3.0	5.0	μА	1
Line Population	ΔVOUT	IOUT=10mA		0.2	0.3	%/V	2
Line Regulation	∆VIN • VOUT	2.3V≤VIN≤10.0V		0.2	0.3	76/ V	2
Input Voltage	VIN		1.8		10	٧	_
Output Voltage	ΔVOUT	IOUT=40mA		±100		ppm	2
Temperature Characteristics	∆Topr • VOUT	-40°C≤Topr≤85°C		<u> </u>		/°C	

XC6201P182 $VOUT(T)=1.8V^{(Note 1)}$

Ta=25°C

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	CIRCUIT
Output Voltage	VOUT(E) (Note 2)	VIN=2.8V IOUT=40mA	1.764	1.800	1.836	V	2
Maximum Output Current	IOUTmax	VIN=2.8V VOUT(E)≥1.62V	80			mA	2
Load Regulation	ΔVOUT	VIN=2.8V 1mA≤IOUT≤40mA		10	30	mV	2
Dropout Voltage (Note 3)	Vdif1	IOUT=40mA		200	370	mV	2
Diopout Voltage	Vdif2	IOUT=80mA		450	710	1110	
Supply Current	ISS	VIN=2.8V		3.0	5.0	μΑ	1
Line Regulation	$\frac{\Delta \text{VOUT}}{\Delta \text{VIN} \cdot \text{VOUT}}$	IOUT=40mA 2.8V≤VIN≤10.0V		0.2	0.3	%/V	2
Input Voltage	VIN		1.8		10	V	_
Output Voltage Temperature Characteristics	Δ VOUT Δ Topr • VOUT	IOUT=40mA -40°C≤Topr≤85°C		±100		ppm /°C	2

XC6201P272 VOUT (T) = 2.7V (Note 1)

Ta=25°C

	,						14-25 0
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	CIRCUIT
Output Voltage	VOUT(E) (Note 2)	VIN=3.7V IOUT=40mA	2.646	2.700	2.754	V	2
Maximum Output Current	IOUTmax	VIN=3.7V VOUT(E)≥2.43V	100			mA	2
Load Regulation	ΔVOUT	VIN=3.7V 1mA≤IOUT≤60mA		15	40	mV	2
Dropout Voltage (Note 3)	Vdif1	IOUT=60mA		200	370	mV 2	2
	Vdif2	IOUT=120mA		450	710		2
Supply Current	ISS	VIN=3.7V		2.0	5.0	μА	1
Line Regulation	Δ VOUT Δ VIN • VOUT	IOUT=40mA 3.7V≤VIN≤10.0V		0.2	0.3	%/V	2
Input Voltage	VIN		1.8		10	٧	_
Output Voltage Temperature Characteristics	$\frac{\Delta \text{VOUT}}{\Delta \text{Topr} \cdot \text{VOUT}}$	IOUT=40mA -40°C≤Topr≤85°C		±100		ppm /°C	2

XC6201P332 VOUT (T) = 3.3V (Note 1)

Ta=25°C

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	CIRCUIT
Output Voltage	VOUT(E) (Note 2)	VIN=4.3V IOUT=40mA	3.234	3.300	3.366	V	2
Maximum Output Current	loutmax	VIN=4.3V VOUT(E)≥2.97V	150			mA	2
Load Regulation	ΔVOUT	VIN=4.3V 1mA≤IOUT≤80mA		20	50	mV	2
Dropout Voltage (Note 3)	Vdif1	IOUT=80mA		200	360	- mV	2
	Vdif2	IOUT=160mA		450	700		
Supply Current	ISS	VIN=4.3V		2.0	5.0	μΑ	1
Line Regulation	Δ VOUT Δ VIN • VOUT	IOUT=40mA 4.3V≤VIN≤10.0V		0.2	0.3	%/V	2
Input Voltage	VIN		1.8		10	V	_
Output Voltage Temperature Characteristics	$\frac{\Delta \text{VOUT}}{\Delta \text{Topr} \cdot \text{VOUT}}$	IOUT=40mA -40°C≤Topr≤85°C		±100		ppm /°C	2

XC6201P502 VOUT (T) =5.0V (Note 1)

Ta=25°C

1001(1) 0.01					14-25 0		
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	CIRCUIT
Output Voltage	VOUT(E) (Note 2)	VIN=6.0V IOUT=40mA	4.900	5.000	5.100	V	2
Maximum Output Current	IOUTmax	VIN=6.0V VOUT(E)≥4.5V	200			mA	2
Load Regulation	ΔVOUT	VIN=6.0V 1mA≤IOUT≤100mA		30	70	mV	2
Dropout Voltage (Note 3)	Vdif1	IOUT=100mA		160	340	mV 2	2
	Vdif2	IOUT=200mA		400	600	IIIV	2
Supply Current	ISS	VIN=6.0V		2.0	6.0	μΑ	1
Line Regulation	$\frac{\Delta \text{VOUT}}{\Delta \text{VIN} \cdot \text{VOUT}}$	IOUT=40mA 6.0V≤VIN≤10.0V		0.2	0.3	%/V	2
Input Voltage	VIN		1.8		10	٧	_
Output Voltage	ΔVOUT	IOUT=40mA		±100		ppm	2
Temperature Characteristics	ΔTopr • VOUT	-40°C≤Topr≤85°C		<u> </u>		/°C	2

Note: 1. Vout(T) = Specified Output Voltage.

2. VOUT(E) = Effective Output Voltage (i.e. the output voltage when "VOUT(T)+1.0V" is provided while maintaining a certain lout value). 3. Vdif = $\{ V_{IN1}^{(Note5)} - V_{OUT1}^{(Note4)} \}$

4. Vout1 = A voltage equal to 98% of the output voltage when a stabilised (Vout (T) + 1.0V) is input.

5. VIN1 = The input voltage at the time Vout1 is output (input voltage has been gradually reduced).

■Typical Application Circuit

< External Capacitors>

The XC6201 requires an output capacitor between the $Vou\tau$ pin and the Vss pin in order to obtain stable output voltages. Where output voltage is greater than 1.7V, the output capacitor (CL) used should be more than 0.1 μ F whether using tantalum or low ESR (ceramic, for example) capacitors. Where output voltage is between 1.3V ~ 1.6V, it is recommended that only a tantalum capacitor of more than 2.2 μ F be used on the output in order to stabilize operations.

Output Voltage	Cin	CL (tantalum)	CL (low ESR)
1.3V~1.6V	greater than 0.1μF	greater than 2.2μF	-
1.7V~6.0V	greater than 0.1μF	greater than 0.1μF	greater than 0.1μF

3

■Directions for use

Notes on Use

- 1. Please use this IC within the stipulated absolute maximum ratings as the IC is liable to malfunction outside of such parameters. When the voltage on Vouτ is larger than that of Vin, for example, when there are two power supply, please insert schottky diode between Vouτ and Vin not to exceed the rating of Vouτ.
- 2. There is a possibility that oscillation may occur as a result of the impedance present between the power supply and the IC's input. Where impedance is 10Ω or more, please use a capacitor (CiN) of at least 1μF.
 - With a large output current, operations can be stabilised by increasing capacitor size (C_{IN}). If CIN is small and capacitor size (C_L) is increased, there is a possibility of oscillation due to input impedance.
 - In such cases, operations can be stabilised by either increasing the size of CIN or decreasing the size of CL.
- 3. Please ensure that output current (Iout) is less than Pd + (VIN Vout) and does not exceed the stipulated Continuous Total Power Dissipation value (Pd) for the package.

Test Circuits

Measuring Circuit 1: Supply Current

Measuring Circuit 2: Output Voltage, Oscillation Check, Line Regulation, Dropout Voltage, Load Regulation

■Typical Performance Characteristics

(1) OUTPUT VOLTAGE vs. OUTPUT CURRENT

(2) OUTPUT VOLTAGE vs. INPUT VOLTAGE

(2) OUTPUT VOLTAGE vs. INPUT VOLTAGE

(3) DROPOUT VOLTAGE vs. OUTPUT CURRENT

(4) SUPPLY CURRENT vs. INPUT VOLTAGE

(4) SUPPLY CURRENT vs. INPUT VOLTAGE

(5) OUTPUT VOLTAGE vs. AMBIENT TEMPERATURE

XC6201P132

XC6201P272

XC6201P502

XC6201P182

XC6201P332

(6) SUPPLY CURRENT vs. AMBIENT TEMPERATURE XC6201P132

(7) INPUT TRANSIENT RESPONSE

XC6201P132

XC6201P272

XC6201P502

XC6201P182

XC6201P332

Time (1msec/div)

(8) LOAD TRANSIENT RESPONSE

(9) RIPPLE REJECTION RATE

XC6201P132

XC6201P272

XC6201P502

(10) OUTPUT NOISE DENSITY

XC6201P302

XC6201P182

XC6201P332

Copyright © Each Manufacturing Company.

All Datasheets cannot be modified without permission.

This datasheet has been download from:

www.AllDataSheet.com

100% Free DataSheet Search Site.

Free Download.

No Register.

Fast Search System.

www.AllDataSheet.com