Ecualización de señales en un enlace digital de comunicaciones

Rocío Parra Lucero Guadalupe Fernandez Instituto Tecnológico de Buenos Aires

Resumen—

I. Introducción

Se buscó ecualizar una señal en un enlace digital de comunicaciones. Los datos consistían en una secuencia de datos pseudoaleatoria codificada por Manchester, muestreada a una frecuencia de sampleo de 4 kHz a razón de 250 bps. Ante estas características, cada bit consiste de 16 muestras según la codificación mencionada. El canal, en este caso, conocido, modificaba la señal dependiendo del posicionamiento aleatorio de dos pares de polos conjugados. La principal dificultad consistía entonces en la variabilidad del canal. En las siguientes figuras se puede notar el efecto de lo mencionado, siendo la señal en azul los bits enviados y en naranja lo recibido.

Figura 1. Señales obtenidas en el receptor, al pasar por el canal.

0.015

0.020

0.025

0.030

0.010

El proyecto consiste en aplicar un algoritmo de filtrado adaptativo para recuperar la señal transmitida asumiendo que no se conoce la entrada, lo que simularía enlace digital de comunicaciones, un esquema de lo mencionado se puede ver en la siguiente figura.

Figura 2. Esquema del enlace digital.

Como criterio de validación del algoritmo como así de sus parámetros, se calculó el bit error rate (BER), la cantidad de bits errados por unidad de tiempo, descartando su cálculo para el período de entrenamiento, ya que este sólo es de utilidad para ajustar los coeficientes del filtro.

II. ECUALIZACIÓN ADAPTATIVA POR INVERSIÓN DE SISTEMAS

El objetivo del proyecto es invertir los efectos del canalel sistema desconocido- mediante el esquema de filtrado adaptativo conocido como inversión de sistemas. El diagrama se muestra a continuación:

Figura 3. Inversión de sistemas.

En principio se asume que el ruido del canal es incorrelacionado con s(n).

cambiar nombres al esquema y al texto

El filtrado funciona de la siguiente manera, se tiene la señal de entrada s(n), que se transmite por el sistema desconocido -el canal ya mencionado-, cuya salida es la señal x(n)=u(n), que es la entrada al filtro adaptativo, de donde se obtiene $\hat{y}(n)$. Realimentando la señal de error e(n) al filtro adaptativo se maximiza la correlación entre la salida del filtro y la señal deseada y(n)=d(n). Opcionalmente, a su vez, se puede colocar un delay, retrasando la señal al obtener d(n) para compensar el delay propio del sistema.

Con ésto se consigue una salida con una respuesta en frecuencia inversa al sistema desconocido, lo que anula su efecto. Sin embargo, en un enlace digital el receptor no conoce la respuesta deseada, por lo que este esquema no es de utilidad. La solución consiste en utilizar una secuencia de entrenamiento, una respuesta deseada d(n) preacordada entre emisor y receptor. El diagrama de bloques completo se observa en la figura siguiente:

Figura 4. Diagrama de bloques con decision-directed feedback.

Luego del período de entrenamiento inicial los coeficientes del ecualizador pueden ser continuamente ajustados con un decision-directed feedback. De esta manera, la señal de error e(n) = d(n) - y(n) se deriva del último (no necesariamente correcto) bit estimado de la secuencia transmitida u(n).

En este caso, como la señal se encontraba codificada en formato Manchester, la decisión del bit recibido no consistía en un simple comparador, sino que se utilizó la regla de decisión bayesiana [1]. Partiendo de la regla:

$$y^T \cdot (s_1 - s_0) \overset{H_1}{\underset{H_0}{\gtrless}} \sigma^2 \cdot \ln \left(\frac{P(H_0)}{P(H_1)} \right) + \frac{1}{2} \left(s_1^T s_1 - s_0^T s_0 \right)$$
 (1)

donde y es un vector con 16 mediciones, s_1 contiene las 16 muestras que forman un bit de 1 (es decir, 8 veces el valor -1 seguido de 8 veces el valor 1), y s_0 , las que forman un 0. Como $s_0 = -s_1$, y ambos símbolos son equiprobables (lo cual asumimos porque no conocemos a priori las características del mensaje que se mandará), la expresión se ve simplificada en:

$$y^T \cdot s_1 \underset{H_0}{\overset{H_1}{\gtrless}} 0 \tag{2}$$

Considerando las características de la codificación Manchester, la regla de decisión resulta ser:

$$\sum_{i=0}^{7} y_i \lessapprox \sum_{H_0}^{H_1} \sum_{i=8}^{15} y_i \tag{3}$$

III. FILTRO ADAPTATIVO

Al momento de elegir el algoritmo que se implementó para el filtro, se analizaron varias alternativas, entre ellas LMS, NLMS, VS-LMS y Sign LMS. En primer lugar, los algoritmos Sign LMS, entre ellos, sign-error, sign-data y sign-sign fueron descartados ya que el baud rate de la señal era de 250bps, cabe recordar que esta variante de LMS es de utilidad para ecualizar canales de comunicación digital de alta velocidad. En segundo lugar y luego de analizar los resultados obtenidos y las conclusiones propuestas por Bismor [2], se decidió no implementar VS-LMS. En las palabras de los autores: "no hay algoritmo VS-LMS que sea tan versátil, fácil de implementar y adecuado para aplicaciones en tiempo real como el NLMS". Esta observación, si bien descarta la implementación de VS-LMS, plantea un último debate respecto a si corresponde utilizar LMS o NLMS. Se consideró entonces, analizar el parámetro de paso que se utilizaría para LMS. Se recuerda que el paso para que converja LMS está dado por

$$0 < \mu < \frac{2}{\lambda_{\text{máx}}} \tag{4}$$

en donde $\lambda_{\text{máx}}$ es el autovalor más grande de R, la matriz de autocorrelación de u(n). En la medida en que el μ elegido se acerque al valor máximo, la velocidad de convergencia aumenta, pero así también el desajuste \mathcal{M} . Por el contrario, al disminuir el paso, la convergencia se ralentiza, y disminuye \mathcal{M} . Se trata de una relación de compromiso entre la velocidad de convergencia y el desajuste. Se realizaron 5000 simulaciones y se calculó el $\mu_{\text{máx}}$ para cada una de ellas. Se muestra a continuación un histograma con la frecuencia de aparición

del paso máximo, en función de este y los $\mu_{\text{máx}}$ en función del número de simulación.

Figura 5. Frecuencias de $\mu_{\text{máx}}$ en función del mismo.

Figura 6. $\mu_{máx}$ en función del número de simulación.

El valor del parámetro de paso varía entre valores cercanos a 0 y mayores a 8, ya que las energías de la señal de entrada no están acotadas debido a las características del canal. Lo último presenta un problema al elegir el μ conveniente para la situación real, puesto que si se elige un paso pequeño, tardará de manera considerable cuando el $\mu_{\text{máx}}$ sea alto; y si se decide por un μ mayor, divergirá en los otros casos.

Debido a lo expuesto anteriormente, se decidió no utilizar LMS, en pos de que no diverja el algoritmo. Esto se logró utilizando NLMS, pues lo que se introduce es un parámetro de paso variable, que depende de la energía de la señal de entrada, por lo que la misma ya no es un problema.

III-A. NLMS

Orden del filtro: Como se mencionó en secciones anteriores, el canal es, si bien aleatorio, conocido, por lo que se pudo observar analizándolo que contaba con dos pares de polos conjugados, 4 polos. Resulta entonces trivial la observación que

con un filtro FIR de orden 4, los efectos de las singularidades se verían neutralizados. Se implementó entonces NLMS, y se realizó una simulación de Montecarlo del bit error rate (BER) para órdenes de filtro entre 4, 5 y 6, en función del parámetro μ .

Figura 7. Bit error rate en función de μ para orden 4, 5 y 6 del filtro.

Se observa a simple vista que si bien para orden *Delay*:

REFERENCIAS

- [1] K. Sam Shanmugan, Arthur M. Breipohl. Random Signals: Detection, Estimation and Data Analysis. Wiley, May 1988.
- [2] D. Bismor, K. Czyz and Z. Ogonowski. Review and Comparison of Variable Step-Size LMS Algorithms". *International Journal of Acoustics* and Vibration vol. 21, no. 1, pp. 24-39, 2016.
- [3] S. Qureshi. Adaptive Equalization". IEEE Communications Magazine, vol. 20, no. 2, pp. 9-16, March 1982.
- [4] S. Qureshi. Adaptive Equalization". Proceedings of the IEEE, vol. 73, no. 9, pp. 1349-1387, 1985.