

FUNDAMENTOS DE FÍSICA PARA AS TECNOLOGIAS DE INFORMAÇÃO

MIEGSI

1º Teste Sumativo

26 de Novembro de 2012

Duração: 2h

Nome	Nō
------	----

Todas as respostas devem indicar quais os princípios físicos (leis, conceitos, etc) em que se baseiam e devem ser justificadas. As respostas que não estejam de acordo com estes pressupostos não poderão obter a cotação total.

Parte I (8 valores – 2 valores por questão)

Responder apenas a 4 questões. Escolher apenas uma versão da questão 2

			y ↑	
1.	. Duas cargas pontuais positivas, $q_1=4q$ e $q_2=q$, estão fixas no eixo dos xx nas posições $x=0$ e $x=2$ m.			
	\square A força que q_1 exerce sobre q_2 é superior à força que q_2 exerce sobre q_1 .			
\square A força que q_1 exerce sobre q_2 é igual à força que q_2 exerce sobre q_1 . \square No eixo dos xx existe um ponto onde o campo eléctrico criado pelas duas cargas se anula.				
	\Box Uma carga $q_3 < 0$ libertada no ponto do eixo com $x=1$ m vai deslocar-se para a direita.			
	\square Uma carga $q_3 < 0$ libertada no	ponto do eixo com $x = 3$	1 m não se vai deslocar.	
2.	As placas de um condensador de placas paralelas têm cargas iguais e opostas $\pm Q$ e estão à distânce d uma da outra. Seja V a diferença de potêncial entre as placas do condensador. O condensador est em circuito aberto. As placas são então afastadas de modo que d aumenta. Que alteraçõe ocorrem?			
	\square V aumenta	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	+Q	
		$\sqsupset \overset{\circ}{Q}$ mantém-se	$\overline{\ }$ d	
	\square V diminui	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$\overline{ -Q}$	
2.	2. As placas de um condensador de placas paralelas têm cargas iguais e opostas $\pm Q$ e estão à distânci d uma da outra. Seja V a diferença de potêncial entre as placas do condensador. O condensador est ligado a uma bateria. As placas são então afastadas de modo que d aumenta. Que alteraçõe ocorrem?			
		$\sqsupset Q$ aumenta	<u> </u>	
		☐ <i>Q</i> mantém-se	${}$	
	\square V diminui	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$\int_{0}^{\infty} -Q$	
3.	3. Num circuito de corrente alternada RLC em série:			
	\square a impedância do circuito depende da frequência da tensão na fonte.			
	 □ a impedância do circuito depende do valor de pico da tensão na fonte. □ na frequência de ressonância a impedância é diferente de zero. □ na frequência de ressonância a impedância é máxima. 			
$\hfill \square$ a tensão aos terminais do condensador e a corrente nunca estão em fase.				
	□ a tensão aos terminais do cond ressonância.	densador e a corrente está	ão em fase apenas na frequência de	
4. Considere um electrão que atravessa uma certa região do espaço numa tra Despreze os efeitos da força gravítica. Que se pode concluir?				
	□ Não existe campo eléctrico nessa região.			

- ☐ Não existe campo magnético nessa região.
- ☐ Se existir um campo magnético nessa região, então a energia cinética do electrão vai variar.
- ☐ Se a energia cinética do electrão se alterar, então existe nessa região um campo eléctrico.
- ☐ Nenhuma das anteriores.
- 5. O fio rectilíneo da figura é percorrido por uma corrente eléctrica de intensidade I. O campo magnético criado no ponto P, à distância d do fio, é perpendicular ao plano da figura com o sentido "para fora", e tem intensidade $B=6.0\times 10^{-5}$ T. A distância do ponto P' ao fio é d' =2d.
 - \Box A intensidade do campo magnético em \emph{P}' é 1,5 \times 10^{-5} T.
 - \Box A intensidade do campo magnético em P' é 3,0 \times 10⁻⁵ T.
 - \Box A intensidade do campo magnético em P' é 6,0 × 10⁻⁵ T.
 - \square Não há dados para determinar a intensidade do campo magnético em P'.
 - \square A corrente I no fio flui para baixo.
 - \square A corrente *I* no fio flui para cima.

+200V

Parte II (12 valores - 3 valores por questão)

Responder apenas a 4 questões

1. Uma carga pontual $q=-5\,\mu\text{C}$ é libertada no ponto P equidistante das superfícies equipotenciais A e B, de um campo electrico uniforme, sendo $d=2,5\,$ dm.

- 1.2. Determine a energia potencial da carga no ponto P.
- 1.3. Determine o campo eléctrico \vec{E} .

- 2.1. as correntes em cada ramo;
- 2.2. a potência dissipada da resistência R_3 .

-200V

A

- 3. O sinal do gerador tem uma amplitude de 260 mV e frequencia 50 Hz. A bobina tem uma indutância de 0,3 H e $R=90~\Omega$. Determine:
 - 3.1. a corrente eficaz no circuito;
 - 3.2. o valor máximo da tensão na bobina;
 - 3.3. o valor da tensão na resistência quando é máxima a tensão na bobina.

- 4. O fio da espira representada na figura tem um comprimento total de 10 m, um diâmetro de 0.4 mm e uma resistividade $\rho=1.72\times 10^{-8}~\Omega.\text{m}.$ A parte da espira no interior do campo magnético é quadrada de lado a=~0.5 m, e a intensidade do campo magnético é de 0.8 T. Determine, para a configuração representada, com $V_1=8~\text{V},$
 - 4.1. a corrente I na espira;
 - 4.2. a intensidade da força F_4 ;
 - 4.3. o momento M das forças sobre a espira.
- 5. Descreva sucintamente o princípio de funcionamento de um altifalante.

