- 13. (a) □ 1 an "X" in **all** boxes
 - (b) □ 1 not graded

Fig. 1.A

- (c) □ 1 a "•" at the origin, for y-axis
- (d) applied field, by wire
 - □ 1 a "•" near center of coil
 - □ 2 a "×" inside dashed box
- (e) □ 1 not graded

Fig. 1.C

- (f) \Box 1 a "•" for current I_W
- (g) axes
 - □ 1 vertical y-axis
 - □ 2 horizontal z-axis
 - \Box 3 a "×" at origin, for x-axis
- (h) field line
 - □ 1 counterclockwise (or upward) arrow
 - \square 2 closed loop, around I_W
 - (i) not graded

Fig. 1.B

- (j) \Box 1 counter clockwise I_C (green arrows) one arrow is OK
- (k) □ 1 a "•" near center of coil
- (I) □ 1 a "×" near midpoint of outer-left coil edge

Fig. 1.D

- (m) coil currents
 - □ 1 left wire: a "•"
 - □ 2 right wire: a "×"

- (n) coil field loops
 - □ 1 left: counterclockwise around
 - □ 2 right: clockwise around "×"

Solve

(o) \Box - 1 $A = N\ell w$

$$\Box - 2 (B_A)_i = \frac{\mu_0(I_W)_i}{2\pi d} \text{ note: } \ell \neq d,$$

$$I_W \neq I_C \neq I$$

- (p) \Box 1 $\theta_A = 0^\circ$
 - \Box 2 cos θ_A = 1
- (q) \Box 1 not graded
 - □ 2 not graded
- (r) \Box 1 Faraday: $\mathcal{E}_C = \left| \frac{\Delta \Phi}{\Delta t} \right|$
 - □ 2 Ohm: $I_C = \frac{\mathcal{E}_C}{R_C}$ (no subscript "C" is OK)
- (s) $\Box 1 (I_W)_f < (I_W)_i$
- (t) \Box 1 $I_C = -\frac{\mu_0 N \ell w}{2\pi dR_C \Delta t} \left((I_W)_f (I_W)_i \right)$
 - □ 2 not graded

Assess

- (u) forces
 - □ 1 left edge: larger force, points left
 - □ 2 right edge: smaller force, points right
 - □ 3 an "X" for "along the negative z-axis
- (v) rules of thumb
 - \Box 1 \vec{F}_{WC} and \vec{B}_{W} are perpendicular.
 - \Box 2 \vec{F}_{WC} and I_C are perpendicular