LaPIS Diagnostic Test Workbook - Mathematics

Name : Varshini V K

Class: 7

Section : B

School : AKV Public School

Login ID : AKV165

Varshini V K's Performance Report

Score: 21/40 Percentage: 52.5%

Varshini V K's Study Planner

Date	Topics Planned	Q. Numbers	Teacher Remark	Teacher Sign	Parent Sig
		Teacher's Fe	edback to Student		
	Class Teacher S			ipal Signature	

Basic arithmetic

	Topics to be Improved
Types of angles	Identification of types of angles

Hi, here in this video you will learn Types of Angles

Question: 1

Find the angles.

Answer:

The angle ranges from ____° to ____°.

The angle perpendicular to 0° is ____°.

The straight line measures $__$ °.

Question: 2

The angle formed between the directions

(i) West and East is _____ angle.

(ii) North and East is angle.
(iii) East and South is angle.
Answer:
The angle formed between West and East is° and it is called angle.
The angle formed between North and East is° and it is called angle.
The angle formed between East and South is° and it is called angle.
Question: 3
The addition of straight angle and right angle is angle.
Answer:
The measurement of straight angle is°
The measurement of right angle is°.
Straight angle + Right angle = + = =
It is called as angle.

Mensuration

Topics to be Improved	
Perimeter	Perimeter of triangle

.....

Hi, here in this video you will learn **Perimeter**

Question: 4

Highlight the perimeter in the given image.

1	n	SI	,,	o	n.
\boldsymbol{H}	Ή.	S 7	17	ייש	

Perimeter is the _____ (outer / inner) boundary of the shape

Question: 5

Find the perimeter of the given figure.

Answer:

Sides of the given shape = _____

Perimeter of a shape is _____ (sum / difference) of _____ (all/ opposite) sides.

Perimeter of the given shape = _____

Question: 6

Find the length of the rectangular floor if its perimeter is 60 ft and breadth is 3 ft.

Answer:

Shape of the floor is _____ and its perimeter formula is _____. Given:

floor perimeter =
$$___$$
, and breadth = $___$.
Perimeter of the floor = $2(____+ ___)$.

Therefore, length of the rectangular floor is ______.

Data handling

Topics to be Improved	
Range	Finding the range
Chance of probability	Sample space in probability

Hi,	here	in	this	video	vou	will	learn	Range
,	11010		CIII	11400	,, 0 01	* * * * * *	100111	

Question: 7

Answer:

The difference between highest value and lowest value is _____

Example: Find the range of 10, 5, 30, 23, 54, 39 and 16

 $Highest value = \underline{\hspace{1cm}}, Lowest value = \underline{\hspace{1cm}}.$

 $Range = \underline{\hspace{1cm}} - \underline{\hspace{1cm}} = \underline{\hspace{1cm}}.$

Question: 8

Circle the correct range for the following data 31, -20, 35, -38, 29, 0, 43, -25, 51, 14, 9

$$-20 + 51$$

$$\frac{-38-51}{2}$$
 51 + 38

$$51 + 38$$

.....

.....

.....

......

$$\frac{51+20}{2}$$

Answer:

 $Range = \bot$

Arranging the data in ascending order, _____

In the given data,

 $Highest \ value = \underline{\hspace{1cm}}$, $Lowest \ value = \underline{\hspace{1cm}}$, $Range = \underline{\hspace{1cm}}$

Question: 9

Find the range of first 10 multiple of 5.

Answer:

First 10 multiple of 5 =

Therefore,

 $Highest value = \underline{\hspace{1cm}}$, $Lowest value = \underline{\hspace{1cm}}$, $Range = \underline{\hspace{1cm}}$

Hi, here in this video you will learn Basics of probability

Question: 10

Which of the following contains list of all possible outcomes.

Probability

Sample space

Sure events

Impossible events

4					
A	n	si	1) (${m r}$	•

Probability is the me	easure of	(chance /r	number) of an even	ents happenings.	
Sample space consist	s of	(possible/ impo	ossible) outcomes	3.	
Sure events always _	(occurs/don't occurs)).		
Impossible events	(00	ccurs/ don't occurs).			
Therefore,	contains l	ist of possible outcome	mes.		
Question: 11					

Write the possible outcomes while spinning the given wheel.

Outcomes are	(possible/impossible) results of an experiment.	
The possible outcomes while sp	pinning wheel are $\mathbf{\xi}0$, $\mathbf{\xi}10$,	

Question: 12

A bag contains three balss of colour blue, green and red. Write the possible outcomes if two balls are taken out.

.....

Answer:

Answer:

A bag contains,	and	balls.
If one of the ball is blue in colour, t	then other ball can be	or
If one of the ball is green in colour,	then other ball can be	or
If one of the ball is red in colour, the	nen other ball can be	or
Therefore, if two balls are taken out	t then possible outcomes are blue	+
+	+	

Geometry

Topics to be Improved	
Right angle triangle and pythagoras property	Basics of Pythagoras property
Angle sum property of triangle	Angle sum property of triangle
Sum of lengths of two sides of a triangle	Sum of two sides of a triangle

Hi, here in this video you will learn Pythagoras property

Question: 13

In a right angled triangle, square of the _____ = sum of the squares of the legs.

Answer:

Pythagoras theorem is only applicable for ______ triangle.

Longest side of the triangle is _____ (hypotenuse/ legs) and other two sides are called _____(hypotenuse/ legs).

Pythagoras theorem states that ______.

......

Question: 14

Find the hypotenuse of the triangle ABC if base is $12~\mathrm{m}$ and altitude is $5~\mathrm{m}$.

Answer:

Pythagoras theorem states that square of the _____ = sum of the squares of its

Given: Base = _____, Altitude = _____

Base and altitude are _____ (hypotenuse/ legs) of the triangle.

Therefore, hypotenuse of the triangle is _____.

Question: 15

Find the length of the rectangle, if breadth is 3 cm and diagonal is 5 cm.

Answer:

Pythagoras theorem states that square on the _____ = sum of the squares on

Is Pythagoras theorem applicable in rectangle? ____ (yes/ no).

Given: breadth = _____, length of diagonal = _____

By Pythagoras theorem,
$$(____)^2 = (___)^2 + (___)^2$$

Therefore, diagonal of the rectangle is _____

Hi, here in this video you will learn Angle sum property

Question: 16

Sum of the angles of triangle is _____.

Answer:

$$\angle A + \angle B + \angle C = \underline{\hspace{1cm}}$$

.....

Angle sum formula = $(n-2) \times 180^{\circ}$, n = number of sides

Triangle has _____ sides.

Sum of the angles of triangle = $(\underline{} - 2) \times 180^{\circ} = \underline{}$

Question: 17

Which of the following triangle satisfy the angle sum property.

Answer:

Angle sum property of triangle: sum of the angles of a triangle is _______ In $\triangle ABC$, Sum of the angles = $\angle A + \angle B + \angle C =$ _____ = _____ = _____ In $\triangle PQR$, Sum of the angles = _____ = ____ = ____ = ____ In $\triangle XYZ$, Sum of the angles = _____ = ____ = ____ = ____ = ____ = ____ Therefore, the triangles that satisfy the angle sum property are = ______

Question: 18

Find the angles of triangle, if their angles are in the ratio 8:6:4.

Answer:

Ratio of angles in the triangle is ______ Let's consider the angles of triangle be 8x, ____ and ____ We know sum of the angles of a triangle is ____ Therefore, 8x+ ____ + ___ = 180° . The value of x= _____ The angles of the triangle are _____

Hi, here in this video you will learn Sum of the length of sides of the triangle

Question: 19

Find the greatest distance to reach C from A in the given diagram.

Answer:

The sides of the given triangle are
The possible way to reach point C from point A are and AB then to
Side $AC = \underline{\hspace{1cm}}$
Side $AB + BC = $ $+$ $=$
Therefore, the greatest distance to reach C from A in the given diagram is
Question: 20
(Sum of / Difference between) the length of any two sides of a triangle is smaller than the length of the third side.
$\underline{Answer:}$
There are sides in a triangle.
The sum of the two sides of a triangle is than the other side of the triangle.
The difference of the two sides of a triangle is than the other side of the triangle.
Example: In triangle XYZ,
${ m X}$

Question: 21

The lengths of two sides of a triangle are 7 cm and 10 cm. Between which two numbers can length of the third side fall?

Answer:

- 1. The sum of the two sides of a triangle is ______ than the third side of the triangle. Therefore, the third side should be _____ (less/ greater) than sum of other two sides. Here, sum of the two sides = _____ + ___ = ____ Therefore, the length of the third side is less than _____
- 2. The difference of the two sides of a triangle is ______ than the third side of the triangle.

 Therefore, the third side should be _____ (less/ greater) than sum of other two sides.

 Here, difference of the two sides = ____ ___ = _____

 Therefore, the length of the third side is greater than _____

Therefore, length of the third side is greater than ______ but less than _____.

Number system

Topics to be Improved	
Fractions	Division of fraction
Operations on rational numbers	Subtraction of rational numbers
Exponents	Solving exponents
Positive and negative rational numbers	Identification of positive rational numbers

Hi, here in this video you will learn Division on fractions

Question: 22

Find the shape which contains the improper fraction of $5\frac{2}{7}$.

......

Answer:

 $5\frac{2}{7}$ is a _____ (proper/mixed) fraction. Here, 5 is ____ , 2 is ____ and 7 is ____.

To convert mixed fraction into improper fraction, $\frac{(\text{Whole} \times \underline{\hspace{1cm}}) + \text{Numerator}}{\text{Denominator}})$

$$5 \frac{2}{7} = \frac{(--- \times ---) + ----}{7} = \frac{\square}{\square}$$

Question: 23

Solve: $\frac{1}{3} \div \frac{14}{3}$

Answer:

To divide a fraction by another fraction, multiply the dividend by $___$ (same / reciprocal) of the divisor. Here, dividend = $__$ and divisor = $__$.

$$\frac{1}{3} \div \frac{14}{3} = \frac{1}{3} \times \boxed{\square} = \boxed{\square}$$

.....

Question: 24

Find the half of the fraction $\frac{12}{40}$.

Answer:

To find half of a number, divide the number by _____

$$\frac{12}{40} \div \underline{} = \frac{12}{40} \times \underline{} = \underline{}$$

Then the answer is _____

Hi, here in this video you will learn **Operation on rational numbers**

Question: 25

Solve: $\frac{-3}{3} + \frac{1}{3}$

Answer:

Fractions with same denominators are called ______ (like/ unlike) fractions. Fraction can be added only if they are ______ (like/ unlike) fractions.

$$\frac{-3}{3} + \frac{1}{3} = \frac{-3}{3} = \frac{-3}{3}$$

Question: 26

Find the addition of shaded part of box A and shaded part of box B.

Answer:

Total number of square in box $A = \underline{\hspace{1cm}}$. Number of shaded square in box $A = \underline{\hspace{1cm}}$.

Shaded part of box A in fraction = _____

Total number of square in box $B = \underline{\hspace{1cm}}$. Number of shaded square in box $B = \underline{\hspace{1cm}}$. Shaded part of box B in fraction = _____. Shaded part of box A + Shaded part of box B = $__$ + $__$ = $_$ Question: 27 Find the missing values in the given figure. Answer: Given: $1 = \frac{7}{10} +$ Transposing $\frac{7}{10}$ to other sides, $1 = \frac{7}{10} =$ Therefore, result is _ Hi, here in this video you will learn Exponents and power Question: 28 Find the exponential form of 1000. Answer: _ (Exponents/Base) tells us how many times a number should be multiplied by itself to get the desired result. Exponents is also called as _____ (Base / Power). 1000 can be written as = $10 \times$ ____ \times ___ 10 is raised to the power of $\underline{\hspace{1cm}} = (10)^{\underline{\hspace{1cm}}}$

Question: 29

Find the value of $(-2)^3$.

_____ (Exponents/Base) tells us how many times a number should be multiplied by itself to get the desired result.

In this exponential form
$$(-2)^3$$
, base = ____, power = ____.
 $(-2)^3$ = ____ × ___ = ___.

 $Question:\ 30$

- (i) Tenth power of 100 is $((10)^{100})$ or $(100)^{10}$.
- (ii) k is raised to the power of 5 is $((k)^5)$ or $(5)^k$.

Answer:

Exponential form = (Base)—

- (i) Tenth power of 100: Base = ____, Power/Exponents = ____, exponential form = ____.
- (ii) k is raised to the power of 5: Base = ____, Power/Exponent = ____, exponential form = ____.

Hi, here in this video you will learn **Positive and Negative rational numbers**

Question: 31

Segregate positive and negative rational number.

Answer:

• If either the numerator and the denominator of a rational number are negative, then it is (positive/negative) rational number.
In the given circle, positive rational numbers are and negative rational numbers ar
Question: 32
$\frac{-3}{-4}$ is a (positive /negative / neither positive nor negative) rational number.
Answer:
-3 is a number, -4 is a number. Division of $\frac{-3}{-4} = \boxed{}$ and this rational number. (Positive / Negative / Neither positive nor negative rational number) Question: 33
The product of a positive rational number and a negative rational number isrational number. (Positive/ Negative/ neither positive nor negative)
Answer:
Examples for positive rational numbers: Examples for negative rational numbers: Positive rational number × Negative rational number = × = and this is rational number

Comparing Quantities

Topics to be Improved	
Equivalent ratios	Basic of proportion
Simple interest	Calculation of simple interest

Hi, here in this video you will learn Basics of proportion	
Question: 34	
If a:b and c:d are equivalent ratio, then it can be expressed as	
Answer:	
A (proportion / ratio) is used to express (one/two) equivalent is Standard form to express proportion is	ratios.
Question: 35	

Find the ratio of shaded part to unshaded part of A and B. Are the two ratios equivalent ?

Answer:

Shaded part of $A = \underline{\hspace{1cm}}$, Unshaded part of $A = \underline{\hspace{1cm}}$.
Ratio of shaded to unshaded parts of A is Fractional form =
Shaded part of $B = \underline{\hspace{1cm}}$,
Unshaded part of $B = \underline{\hspace{1cm}}$.
Ratio of shaded to unshaded parts of B is
Fractional form $=$
Fraction form of A (equal/ not equal) to Fraction form of B.
Question: 36

If a: b:: c: d is proportion, shade the correct expression

1			
	a =	$\frac{bc}{d}$	

Answer:

Two equivalent ratio which are proportion, it can be written as a : b :: c : d	
or $\underline{\hspace{1cm}}$ = $\underline{\hspace{1cm}}$ (in fraction).	
First and fourth term are called and second and third term are called	······································
In proportion, product of extreme terms is (equal to/ not equal to) product	duct of middle
terms.	
Therefore, $a \times d = \underline{\hspace{1cm}}$,	
then $a = \underline{\hspace{1cm}}$ and $c = \underline{\hspace{1cm}}$	
	网络经国
Hi, here in this video you will learn Simple Interest	
	Emilian (2004) FEET (20

Question:	<i>37</i>
-----------	-----------

Match the following.

Column A	
i	Principle(P)
ii	Amount (A)
iii	Rate (R)
iv	Time period (T)

Column B	
a	Interest calculated based on this
b	Total sum you borrow
С	Number of years
d	Total sum with interest

.....

Answer:

Formula for calculating simple interest $=$
Interest calculated based on
Total sum you borrow is known as
Number of years is Total sum with interest is

$Question:\ 38$

Sara deposited Rs.1200 in a bank. After three years, she received Rs.1320. Find the interest she earned.

......

Answer:

Given:					
Amount =	, Principle =	:	, Time perio	od =	
If Amount and pri	nciple is given, then for	ormula for calc	culating interest	t is	
$Interest = \underline{\hspace{1cm}}$		=			
Question: 39					

The simple interest on Rs.5000 for 3 years is Rs.1350. Find the rate of interest.

$\underline{Answer:}$

 $Interest = \underline{\hspace{1cm}}, Time \ period = \underline{\hspace{1cm}}, Principal = \underline{\hspace{1cm}}.$

Rate of interest $= \frac{\underline{} \times 100}{\text{Principal x}}$

Substituting values in the formula,

Rate of interest = ______

Therefore, the rate of interest is _____ %

Algebra

Topics to be Improved				
Basics of simple equation	Solving of simple equation, Formating of simple equation			
Monomials, binomials, trinomials and polynomials	Types of algebraic expression			
Addition and subtraction of algebraic expressions	Like terms and Unlike terms			
Terms of an expression	Identification of terms in an expression			
subtraction of algebraic expressions	subtraction of algebraic expressions			

Hi, here in this video you will learn Solving an equation

Question: 40

If ©=5, then 5 © +5 =

Answer:

The value of the given smiley \odot is _____.

Substituting the value in the expression $= 5(\underline{\hspace{1cm}}) + 5 = \underline{\hspace{1cm}} + \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$.

Question: 41

Which of the following number can be placed in the box to make the equation correct (-2, -1, 0, 1, 2)

......

7 + 3 = -4

Answer:

The given equation is $7 \pm 3 = -4$ Substitute the values (-2, -1, 0, 1, 2) in the circle,

$$7 \times \underline{\hspace{1cm}} +3 = \underline{\hspace{1cm}}$$

$$7 \times \underline{\hspace{1cm}} + 3 = \underline{\hspace{1cm}}$$

Therefore, _____ is the number that can be placed in a box to make the equation correct.

Question: 42

Arrange the terms in the descending order when the value of x is 2.

$$2x \qquad 5x \times 1 \qquad x+3 \qquad 2x-4$$

The given expression are _____.

The value of x is _____.

substituting value of x

$$2x = 2 \times \underline{\hspace{1cm}} = \underline{\hspace{1cm}} 2x - 4 = 2 \times \underline{\hspace{1cm}} - 4 = \underline{\hspace{1cm}}$$
 $x + 3 = \underline{\hspace{1cm}} = \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$

$$5x \times 1 = 5 \times \underline{\hspace{1cm}} \times 1 = \underline{\hspace{1cm}}$$

Arranging in descending order: ____, ____, ____, ____, ____.

Their respective algebraic terms are _____, ____, ____, ____, _____.

Hi, here in this video you will learn **Types of expression**

Question: 43

There are _____ terms in the expression 7x + 3y + m + 5.

Answer:

In algebraic expression, _____ (variables/ terms) are connected together with operations of addition.

.....

The terms in the expression are ______, _____, and ______.

Therefore, there are $___$ terms in the expression.

Question: 44

Classify the following expression into monomial, binomial and polynomial.

- 1. 7m + n + 2
- 2. $8x^2 + 0$
- 3. 7xy + 4m

Answer:

- 1. The terms in expression $8x^2 + 0$ are _____. Here, expression has _____ term and it is a _____.
- 2. The terms in expression 7xy + 4m are _____. Here, expression has _____ term and it is a _____.
- 3. The terms in expression 7m + n + 2 are _____. Here, expression has ____ term and it is a _____.

<u>Question: 45</u>
$5m^2 + m + 0$ is a expression. (Monomial/ Binomial/ Trinomial)
Answer:
The terms in expression $5m^2 + m + 0$ are Here, the expression has terms and it is called a expression.
Hi, here in this video you will learn Addition on expression
Question: 46
Shade the like terms.
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
Answer:
Given terms are Two or more term have (same/ different) variables is called like terms. Here, like terms are
Question: 47
Complete the expression $7r^2 + r \square - 2 \square = \underline{r^2}$
Answer:
(Like / Unlike) terms can be added or subtracted.
$_{7r^2+ \text{ r}} \square_{-2} \square = (7 + - 2)_{r^2} = $
Question: 48 Sam have 3a chocolates and 9y icecream. Ram have 7a chocolates and 5y icecream.
(i) Total chocolates Ram and Sam have :
(ii) How many icecreams Sam have more than Ram :

Answer:

	Chocolates	Icecream
Sam		
Ram		

(i) Total chocolates Ram and Sam have :

Ram's chocolate + Sam's chocolates = $___$ + $___$ = $__$

(ii) How many icecreams Sam have more than Ram:

•	•		
icecream	icecream =		
recream	icecreaii —	_	_

Hi, here in this video you will learn Terms of an expression

Question: 49

Separate the variables and constants for all the terms given in the box

Answer:

In algebraic expression, variables are represented by _____ and Constant is a

ns	Constants	Variables

Question: 50

Mark the expression that contains two terms.

$$3x + 5$$
 $12a$ $4xy$ $12a + b + 1$ $7m + 0$

Answer:

The terms in the expression 3x + 5 is/are _____.

The terms in the expression 12a is/are _____.

The terms in the expression 4xy is/are _____.

The terms in the expression 12a + b + 1 is/are _____

The terms in the expre	ession $7m + 0$ is/are _			
Question: 51				
Shade the outline of ci	rcle that contains the	term of the give	en expression.	
	6n	$n^2 - 7mn + nl$		
m^2	$7 \mathrm{mn}$ $6 \mathrm{m}^2$	-7mn	mn	-mn
Answer:				
In algebraic expression of addition. Here,				
Hi, here in this vie	deo you will learn			— in the second
Find the sum of two ex	expressions $a + b + c$	and $b + c + d$		
$\underline{Answer:}$				
The given two expressi The two terms will get The sum of two expres The answer is	added only if they are sions $= \underline{\qquad} + \underline{\qquad}$	re(Like,	/ Unlike) terms.	
Question: 53				
		School A	School B	
	37 1 01		27.01	

	School A	School B
Number of boys	100b	250b
Number of girls	150g	200g
Number of teachers	25t	45t

- (i) Total number of boys in school A and B is _____
- (ii) Total number of students in school B is _____
- (iii) How many more teachers are there in school B than school A?

Answer:

(i) Number of boys in school A = _____,

Number of boys in school $B = \underline{\hspace{1cm}}$

Total number of boys in school A and school B is _____ + ___ = ____

(ii) Number of boys in school B = _____,

Number of girls in school $B = \underline{\hspace{1cm}}$.

Total number of students in school B is $___+$ $___=$ $___$.

(iii) Number of teachers more in school B than school A = Teachers in school B - Teachers in school A = $__$.

Question: 54

Solve the following:

Answer:

The two terms will get added only if they are _____ (like/unlike) terms.

$$\begin{array}{c|c}
13x + \underline{\hspace{1cm}} \\
(+) & 12x + 10y \\
\underline{\hspace{1cm}} + 25y
\end{array}$$

$$\begin{array}{ccc}
 & 3a - 5b \\
 & 5a - 7b \\
 & -2a - \underline{\hspace{1cm}}
 \end{array}$$

Hi, here in this video you will learn Solving an equation using application

Question: 55

......

Box B contains _____ times the number of chocolates in Box A

Answer:

Box A contains _____ chocolates.

Box B contains _____ chocolates.

No. of chocolates in Box $B = \underline{\hspace{1cm}} \times (No. of chocolates in Box A)$

Question: 56

Write the equation for the following statement.

Subtracting four times of m from 4 is n

	Subtracting for	Four times of m ur times of m from 4		
The equation is	_			
Question: 57				
Compare the given two Sum of $2a$ and $9 \square$ A	•			
Answer:				
		Sum of $2a$ and $9 =$	=	
]	Product of a and $2 =$	=	
	Add 9 to the	product of a and $2 =$	=	
Therefore, sum of $2a$ a	nd 9 Add 9 to t	the product of a and	. 2	