Solution

- 1. The guessed LB and UB for a parameter are usually orders of magnitude apart, and the geometric mean gives a more reasonable estimate because it provides a logarithmic average as compared to a arithmetic average.
- 2. Since the number of NF is fixed in the p-median problem, adding the fixed cost to the objective function only adds a constant amount and does not affect the solution.
- 3. The unit of time over which demand is specified should have no impact on the results, which is only true if the fractional component is used (e.g., it should make no difference if you specify demand annually or weekly, but rounding weekly demand may result in zero demand for most weeks).

	Class	250	
	MC	95.71	\$
	wt	70	lb
	cu	20	ft^3
		25	cartons
	qLB	1750	lb
	q	0.875	ton
	qB	1	ton
	OD(i)	126.12	\$/cwt
	OD(i+1)	102.1	\$/cwt
	OD_i*20*q	2207.1	\$
0	D_i_1*20*qB	2042	\$
TC_LTL (Czar, no disc)		2042	\$
	PPI_LTL	182.9	
	s	3.5	lb/ft^3
	d	691	mi
	qLTL	0.875	ton
	rLTL	3.367819	\$/ton-mi
	TC_LTL	2036.268	\$

4.

	Current	Optimal		
PPI_TL	138.6	138.6		Prod Price Index for TL
Kwt	25	25	ton	Physical weight capacity
Kcu	2750	2750	ft^3	Effective cube capacity
S	9	9	lb/ft^3	Density
d	650	650	mi	Distance
r	2.699124	2.699124	\$/mi	TL rev per loaded tr-mi
qmax	12.375	12.375	ton	Max payload
MC_TL	60.73028	60.73028	\$	Min charge TL
f	300	300	ton/yr	Annual demand
V	15000	15000	\$/ton	Value per ton
h	0.3	0.3	1/yr	Inventory carrying rate
а	1	1		Inventory fraction
Freezer	1250	2403.311	ft^3	Shipment cube
q	5.625	10.8149	ton	Shipment size
TC	93,570	48,667	\$	Transport Cost
IC	25,313	48,667	\$	Inventory Cost
TLC	118,882	97,334	\$	Total Logistics Cost
Can save	\$ 21,548	per year		
by addiing	1153.311	ft^3 of freezer space		

5.

6.

A&B A+B Α В 25 25 Pct nFTL Kwt 25 ton cum w W Kcu 2750 2750 2750 cu ft Albuquerque 0.35 140 16.54545 16.54545 16.54545 25 wt 80 lb 5 4 ft3 Amarillo 0.2 80 9.454545 12 28.54545 cu 5 6.153846 lb/ft3 Amarillo B 100 4 32.54545 20 s 6.875 25 8.461538 ton Memphis 0.3 120 14.18182 14.18182 46.72727 qmax 300 100 400 ton Nashville A 300 35.45455 35.45455 82.18182 24000 Greensboro 7.090909 ud 2500 0.15 60 12 94.18182 W= 94.18182 47.09091 W/2= nMIN=

6