基於邊緣計算之智慧工廠下精粹深度學習法於零工式生產排程

陳芋勻 早和晏 林春成 1,*

¹國立陽明交通大學工業工程與管理學系 *cclin321@nycu.edu.tw

摘要

在工業 4.0 的概念下,自動化在半導體製造中扮演關鍵角色,而有效的排程能減少浪費並提高系統利用率,因此排程是成本控制的關鍵。這項研究使用了多決策深度學習(Multi-Decision Reinforcement Learning,MDRL)作為基礎架構,融合了邊緣運算和雲端運算的智慧工廠架構。透過雲端的神經網路計算,為各個機台制定最佳的派工規則,並透過邊緣運算裝置進行監控,將機台運作資料傳回雲端,不只提供即時資訊並確保生產流程順暢,還是下一個學習週期的基礎。然而,MDRL 仍有改進的空間。因此,本研究旨在優化 MDRL,將其概念應用於靈活製造中的排程問題,進一步提高系統運行效率。優化的方法包括減少神經網路輸入層資料的複雜度,藉此減輕雲端運算裝置的負擔。此外,通過刪除實驗結果不佳的派工法則,整體效率得到顯著提升。同時,為提高結果準確度,本研究增加神經網路中狀態資料的分割密度,提高效率的同時保持資料精準度。

關鍵字:智慧工廠、零工生產問題、雲端計算、邊緣計算、多決策深度學習

1 緒論

晶圓代工廠的排程在製造過程中扮演關鍵的角色,有效的排程可以幫助管理者監控生產狀況,減少資源浪費,提高整體系統利用率。目前排程優化的研究著重於分散式智慧排程,根據半導體產品特性的多樣性,採用了多決策深度強化學習方法。然而,儘管這方法能貼合產品需求,仍有優化的空間。本研究將提出改善方案,進化排程系統。

從過去的相關研究中,已經有一些強化學習架構試圖改善 JSP 問題,目標是取得用時短且不存在重疊的排程結果。有 JSP 相關研究(Zhang et al., 1995)提出強化學習方法來學習特定領域的啟發式算法,並用於 Job shop scheduling 排程。該方

法利用了時間差異算法來訓練計算模型,並用於對每個狀態進行評估,進而產生評估函數。接下來在涉及少量工作的問題上進行訓練,最後在更大的問題上進行測試, 證實強化學習可以提供構建高性能排程系統的新方法。

目前排程優化研究多著重分散式智慧排程,根據半導體產品特性的多樣性,採用了多決策深度強化學習方法(Lin et al., 2019)。然而,儘管這方法能貼合產品需求,仍有優化的空間。本研究將提出改善方案,進化排程系統。本研究之主要貢獻如下:

- 在保留機台收集資料排程的數據真實度,讓決策系統做出更精準的判斷。同時保留MDRL的精隨。
- 為了降低運算成本,本研究提出的架構縮減神經網路的輸入層參考資料,也針對效率明顯低落的派工法則進行刪減。除了能精簡整個系統的資料複雜度,還能減輕神經網路運算的負擔,進而達成降低成本的最終目的。

2 文獻回顧

2.1 智慧工廠、雲端計算與邊緣計算

排程系統的效率和效益是取得競爭優勢的關鍵因素。提高機台利用率能有效 降低工廠資本成本,而排程正是優化機台利用率的核心。邊緣計算裝置的引入能夠 減少訂單排程的反應延遲時間。根據(Yi et al., 2015)以及(Ha et al., 2014)的研究,邊 緣計算裝置對提升效率有著顯著的影響。此外雲端計算也是熱門的研究對象,能夠 快速指派運算結果及同時監控和量測各機台裝置的運行情況。

2.2 深度強化學習(Deep Reinforcement Learning)

深度學習(Deep Learning) (LeCun et al, 2015)與強化學習(Reinforcement Learning) (Sutton et al, 1998)兩者的結合便形成了深度強化學習(Deep Q-Learning)。與一般取最近一次的經驗學習不同,深度強化學習是利用先前的經驗進行隨機採樣學習。深度 Q 網路(Deep Q Network, DQN)的概念為設計出一神經網路,透過紀錄狀態並輸出每一行為的 Q 值,來減少記憶體中需儲存的資訊量。作為 RL 的一種延伸算法。

2.3 多決策強化學習方法(Multi-Decision Reinforcement Learning, MDRL)

於是本研究選用 MDRL,也就是同時具備邊緣計算裝置以及雲端計算裝置的

排程系統,以解決零工生產問題。但 MDRL 仍存瑕疵,也就是汲取過多非必要資訊,考量不具優化效益的派工法則,增加計算裝置的負擔,並且在數據統計切分方面,過度模糊導致無法精準呈現數據的真實性。總結來說,整體計算裝置的運算速度無法達到最佳表現。

3 研究方法

本研究之目標為利用本研究所提出的精簡深度強化學習(Refined Deep Q Learning, RDQN)來解決有雲端計算與邊緣運算架構之智慧工廠中的零工生產排程(如圖 1 所示),為每部機台分配達最高效率的派工法則,並依此排定加工順序。雲端計算中心依客戶訂單的加工資訊為每部機台分配派工法則(如表 2 所示),邊緣計算確定每部機台的排程結果後,將修正神經網路所需資訊回傳到雲端計算中心,雲端計算中心則基於回饋來調整神經網路,以用於下一次神經網路運算。

圖2、本研究所提出RDQN之流程圖

本研究所提 RDQN 與 MDRL 有下列幾點的差異:1) 派工法則的採用數量:在 MDRL 論文的基礎上,我們對派工法則的數量進行了刪減,針對其中四個工時間明顯較長的派工法則 SPT、LPT、SQN、LQN 刪除,只保留 FIFO、MOPNR、LOPT。減少神經網路進行運算的時間,精簡化派工法則的複雜度。2) 減少輸入層:同理,為了降低資料輸入所耗費的時間與程序,將輸入層的數量略作減少。3) 減少資料的失真:為了避免 C_{max} 與利用率失真,因此新增至 8 個區間,使資料不因區間數量而失去參考性。

表 2、本研究所使用之派工法則表

派工法則	優先條件
先進先出法	越先早到達之工作越優先加工處理。
(First In First Out, FIFO)	
最長後續加工時間	後續作業加工時間越短越優先處理。
(Most Operations Remaining,	
MOPNR)	
最多後續工作數	後續作業加工時間越長越優先處理。
(Longest operation processing	
time, LOPT)	

本研究提出基於多決策深度強化學習的 RDQN 方法,能更有效率的解決智慧工廠的零工排程問題。以下將說明如何透過此方法訓練一個自動排程的模型,並將流程透過 Algorithm 1 表示。本研究所使用到的符號總結如表 3 所示,而所訓練的神經網路輸入層組成如表 4 所示。

```
Algorithm 1: MDRL
Input: Train set T_{\text{train}}(1, 2, ..., N)
Output: \theta(Weight of neural network)
        for n = 1, 2, ..., N do
  1:
 2:
              Cloud center reads J jobs in customer order n and assigns a random or certain dispatching rule
              to each edge device
  3:
             Compute system features \overline{F}, C_{max}, \overline{Q}, \{\mu_m\}, and \{\overline{Q}_m\}
  4:
              Create a state based on (J, C_{\text{max}}, \mu_1, \mu_2, ..., \mu_M) in the Q table
  5:
              Construct an NN with 8 + 2 \cdot M input neurons and 7 \cdot M output neurons
  6:
              for epoch number t = 1, 2, ..., T do
                    The cloud center conducts neural network forward propagation in the cloud center //
  7:
                    The cloud center determines dispatching rules of all machines, and transmit the
  8:
                    information to each edge device// Algorithm 3
                    Each edge device schedules all jobs in the controlled machine by the assigned dispatching
 9:
                    rule // Algorithm 4
                    The cloud center repairs the scheduling results that violates the research hypothesis.//
10:
                    Algorithm 5
                    The cloud center creates a state based on (J, C_{\text{max}}, \mu_1, \mu_2, ..., \mu_M) in the Q table, and uses
11:
                   q_m' = [q_m + (\mu_m' - \mu_m)/\mu_m] + \gamma \cdot \text{Max}_a \ Q[s', a]
to update the Q table and the neuron values in the output layer
                   The cloud center updates the system features: F, C_{\max}, \overline{Q}, \{\mu_{\scriptscriptstyle m}\}, and \{\overline{O}_{\scriptscriptstyle m}\}
12:
                    Update the hidden layer by using the loss function
13:
                       E[(Q_m'-Q_m)^2]
14:
              next for
        next for
15:
```

表 1、本研究所用之符號

符號	意義
N	訂單中的第 N 筆作業
T	訓練模型之迭代數(Epoch)
M	機台數量
J	工作數量
P_{jm}	工作 j 在機台 m 的加工時間
F_m	機台 m 的完工時間
C_j	工作 j 的完工時間
Q_{jm}	工作 j 在機台 m 的等候加工時間
μ_m	機台 m 的利用率
I_m	機台 m 的閒置時間
O_m	機台 m 的在製品數量
K_{jm}	工作 j 在機台 m 的完工時間

表 2、神經網路輸入層組成

客戶訂單特徵資訊	
機台數量	M
工單數量	J
總加工時間	$\sum_{j}\sum_{m}P_{jm}$
最大加工時間	$\operatorname{Max}_{i,m} P_{im}$
最小加工時間	$\operatorname{Min}_{j,m} P_{jm}$
系統特徵資訊	
平均流程時間	$\bar{F} = (\sum_{j} C_{j})/J$
總處理時間	CMax _{j j_{max}}
工單平均等候處理時間	$\bar{Q} = (\sum_{i} \sum_{m} Q_{jm})/J$
各機台使用率	$\mu_m = (F_m - I_m)/F_m$
各機台在製品數量	$\bar{O}_m = (\sum_j K_{jm})/F_m$

以下為針對 RDQN 的 7 個步驟的詳細說明:

- 1) Step 1 (在雲端中心的神經網路):如 Algorithm 2 所示,利用 J 個工作的訂單資訊,作為計算出訂單特徵資訊與系統特徵資訊的來源(第 3 行)。接著,將這些資訊送入輸入層(第 4 行),最終在輸出層產生結果(本研究稱為 Qvalue)。
- 2) Step 2 (指派派工法則): 如 Algorithm 3 所示,獲取到新的 Q-value 之後,雲端計算中心會根據輸出層提供的結果,將特定派工法則指派給所有的邊緣計算裝置。每一個機台均會被指派一種派工法則,由於此研究中有三個派工原則,因此每三個輸出層神經元就是一個機台。在本研究的 ε-greedy policy

中, ϵ 設為 0.9,是隨機選一個派工法則的機率。而選擇擁有最大輸出值的派工法則的機率是 0.1,隨著訓練模型的迴圈次數變多, ϵ 會隨著遞減。

Algorithm 2: Experimental Procedure

Input: Information of J jobs

Output: Q-values (neuron values in the output layer of neural network)

- 1: Compute $\sum_{j} \sum_{m} P_{mj}$, $max_{m,j} P_{mj}$, and $min_{m,j} P_{mj}$.
- 2: The order features M, J, $\sum_{j}\sum_{m}P_{mj}$, $\max_{m,j}P_{mj}$, $\min_{m,j}P_{mj}$ and the system features are fed into the neural network's input layer.
- 3: If this is the first epoch, the neural network's hidden layer will initialize its weights randomly.
- 4: Execute once of the neural network forward propagation.

Algorithm 3: Determining dispatching rules

Input: Q-value (neural network's output layer values)

Output: Dispatching rules for all machines

- 1: **for** m = 1 to M **do**
- 2: **if** $P \le \varepsilon$ **then**
- 3: Assign machine *m* with a random dispatching rule
- 4: else
- 5: Assign machine *m* with the dispatching rule corresponding to the largest output neuron value in the *m*-th group of output neurons
- 6: end if
- 7: **next for**
- 3) 利用派工法則排定機台的排程(Step 3):如 Algorithm 4 所示,在第 m 台機台接收到雲端計算裝置所指派的派工法則後,每個邊緣計算裝置為機台進行排程。此外為了避免作業處理順序雷同的狀況,會依序利用 MONPR、SPT、Random 三種方法加以修正,最終生成的便是個別機台的加工處理順序。
- 4) 修正機台排程結果:如 Algorithm 5 所示,雖然前項的演算法可以有效的為各別機台機算出可行的排程結果,然而在雲端計算中心針對所有機台的排程進行宏觀性的監控時,容易發生作業於機台或機台於作業中有重疊的問題,因此需要對此進行修正。
- 5) 更新 Q 表與輸出層(Step 5): 我們將邊緣計算裝置連結的智慧工廠狀態定義了意下幾項: (J, Cmax, μ1, μ2, ..., μΜ), Q 表紀錄各個狀態轉換截至目前最佳的輸出行為結果,而後根據這些數據進行分配派工法則的依據。在狀態中 Cmax 為工作完成的最大時間,而μ1, μ2, ..., μΜ 則代表各個機台在該狀態的利用率,兩者的值域皆頗為廣大。因此在進行模型訓練時為了縮短訓練所需時間,並盡量降低資料的失真程度,我們將兩者各切分為 8 類。
- **6) 更新系統特徵:**接著會在根據新的系統特徵資料 $(\overline{F}, C_{\max}, \overline{Q}, \{\mu_m\}, \{\overline{O}_m\})$ 以及 更新過後的 Q 表,作為下一階段神經網路輸入層中的特徵值。

Algorithm 4: Determining the scheduling result of a machine

Input: The assigned dispatching rule of machine *m* **Output:** Scheduling result of machine *m*

```
All edge devices schedule all jobs in each machine according to the assigned dispatching rule and
      it comes out all scheduling result
 2:
      for m = 1 to M do
 3:
      While the scheduling result based on the assigned rule is infeasible then
 4:
           if the scheduling result is infeasible then
 5:
                if the assigned rule is not MOPNR then
                      Use the MOPNR rule to repair the repeated job numbers in the scheduling result
 6:
 7:
                if the scheduling result is infeasible then
 8:
 9:
                      if the assigned rule is not SPT then
10:
                           Use the SPT rule to repair the repeated job numbers in the scheduling result
11:
12:
                      if the scheduling result is infeasible then
13:
                           A random schedule result is adopted
14:
                      end if
15:
                end if
16:
           end if
17:
     next for
```

Algorithm 5 Repairing scheduling results

Input: The scheduling results of all machines

Output: A correct scheduling result for each machine

```
1: for i = 1 to J do
 2:
           for j = 1 to M - 1 do
 3:
                 m_1 = index of the machine that processes task j of job i
 4:
                 m_2 = index of the machine that processes task (j + 1) of job i
  5:
                 Let T_{im}^s denote the starting time and T_{im}^e denote the end time of job i at machine m
                 according to the scheduling result of machine m
  6:
                 \delta_1 = T_{im_1}^e - T_{im_2}^s
  7:
                  if \delta_1 > 0 then
  8:
                       T_{im_2}^s = T_{im_2}^s + \delta_1 and T_{im_2}^e = T_{im_2}^e + \delta_1
 9:
                       Let j_2 denote the ordinal number in which job i is processed at machine m_2 according
                       to the scheduling result of machine m_2, i.e., job i is the j_2-th job to be processed at
                       machine m_2
10:
                       for each job k processed after job i at machine m_2 except for the last job do
11:
                             Let k' denote the index of the job processed next to job k at machine m_2
12:
                             \delta_2 = T_{km_2}^e - T_{k'm_2}^s
                             if \delta_2 > 0 then
13:
14:
                                    T_{k'm_2}^s = T_{k'm_2}^s + \delta_2 and T_{k'm_2}^e = T_{k'm_2}^e + \delta_2
15:
                              end if
                       next for
16:
17:
                 end if
18:
           next for
19:
     next for
```

7) 更新隱藏層:在最後則會再次回到第一步驟的驗算法中,將預測的 Q 值以及 Q 表中的 Q 值帶入損失函數: $E[(Q_m - Q_m)^2]$,也就是 Q_m 減去 Q_m 的平方後 之期望值作為隱藏層中權重更新的依據。

4 實驗結果

4.1 實驗環境

本研究中採用 job shop 指標資料庫中之資料集進行實驗,命名為「Lawrence (la)」、「Demirkol, Mehta, and Uzsoy (dmu)」、「Taillard (ta)」、「Applegate and Cook」。 而模型中需要參數分別是神經網路中隱藏層裡面神經元的數量, ε -greedy 策略的參數,以及在更新 Q 表時使用的學習率。經過分析後得出最佳參數值分別是 NN = 100、 ε = 0.9、 ε -diff = 0.01、 γ = 0.7。

4.2 參數分析

本階段會分析後續模型會需要的參數,並依據不同參數的收斂程度選擇最適當的最佳參數值。以神經網路中隱藏層裡面神經元的數量為例進行分析。在「1a01」資料集中M=5及J=10的清況下,將起始值設定為50。從圖3中可以看出,當神經元達到100時,整體的收斂效果相較其他數值佳,因此我們設定100為神經元數量最佳參數值。

圖3、神經元數量分析

再以ε-diff 參數為例,從圖 4 中可知,此參數越小,模型的收斂速度越慢。而相較於其他測試值,起始值也就是 0.01 是最大的,我們便將此最佳參數值設為 0.01。

圖4、epsilon-diff參數收斂分析

4.3 實驗結果分析

本研究比較了 RDQN 與複合式派工法則及單一派工法則的訂單總完工時間。 SDR 及 MDR 分別代表單一及複合式的派工法則,Random 則是間指派個機台處理 加工順序。從表 6 中可知在機台數量為 15 的情況下,RDQN 的完工效率較 MDR 高出了 11.217%。

Instance	J	M	Random	RDQN -	MDR	SDR		
			Kandom		MDRL	FIFO	LOPT	MOPNR
ta06	15	15	11482	1020	1386	1496	1683	1736
ta07	15	15	12083	1204	1496	1693	1583	1739
ta08	15	15	10735	1485	1592	1830	1376	1736
ta09	15	15	11446	1032	1296	1482	1395	1303
ta10	15	15	11587	1386	1605	1704	1953	2074
ta16	20	15	20951	1395	1486	1583	1493	1624
ta17	20	15	19725	1527	1794	1936	2084	2104
ta18	20	15	19129	1639	1936	2385	2159	2275
ta19	20	15	18067	1875	2057	2204	2047	2493
ta20	20	15	19131	1694	1835	1957	1796	2041
ta36	30	15	34034	2642	2794	2947	2836	2815
ta37	30	15	32037	2306	2507	2749	2645	2603
ta38	30	15	34817	2684	2935	3085	2947	3195
ta39	30	15	33066	2386	2679	2794	3021	2905
ta40	30	15	36733	2589	2860	2974	3185	3075

表 6、不同策略的計算時間比較

5 結論

本研究所提出的架構適用於半導體的零工生產式智慧工廠。工廠會接收到來自客戶端的訂單資訊,將資訊傳入雲端計算裝置,並與邊緣計算裝置互動後,選擇出最適合該工作站的派工法則。本研究基於多決策深度強化學習(MDRL)的模型,進行效率的提升,分別是派工法則數量的刪減、增加狀態資料的密度、減少輸入層資料數量。依照實驗結果顯示,RDQN模型在派工法則的決策效率相較 MDRL 有顯著的提升,尤其是當機台數量較多時,效率提升程度更佳。

關於未來展望,我們預期此研究模型可進行其他延伸。針對方法面向,未來研究可以調整 Q 表的計算方式、更改回饋值計算公式。而針對模型面向,未來研究可以延伸如在模型中加入霧計算,或將神經網路強化為 Double DQN 的架構。因此,此研究的後續應用範圍相當廣泛。

參考文獻

- Applegate, D., and W. Cook (1991), "A computational study of the job-shop scheduling problem," *ORSA Journal on Computing*, vol. 3, no. 2, pp. 149-156.
- Ha, K., et al. (2014), "You can teach elephants to dance: agile VM handoff for edge computing," in *Proceedings of the 2nd ACM/IEEE Symposium on Edge Computing (SEC 2017)*, article no. 12.
- LeCun, Y., Bengio, Y. and Hinton, G. (2015) "Deep learning," *Nature*, vol. 521, pp. 436-
- Lin, C.-C., D.-J. Deng, Y.-L. Chih, and H.-T. Chiu (2019), "Smart manufacturing scheduling with edge computing using multiclass deep Q network," *IEEE Transactions on Industrial Informatics*, vol. 15, no. 7, pp. 4276-4284.
- Sutton, R. S., and A. G. Barto (1998), "Reinforcement learning: An introduction," *IEEE Transactions on Neural Networks*, vol. 9, no.5, pp. 1054-1054
- Yi, S., C. Li, and Q. Li (2015), "A Survey of Fog Computing: Concepts, Applications and Issues," in *Proceedings of 2015 Workshop on Mobile Big Data (Mobidata 2015)*, pp. 37-42
- Zhang, W., and T. G. Dietterich (1995), "A reinforcement learning approach to job-shop scheduling," in *Proceedings of 14th International Joint Conferences on Artificial Intelligence*, vol. 2, pp. 1114-1120.