

Maths en Jeans Sujet: La pâte feuilleté

Année 2018-2019

Lycées:

Charles Coulomb

St Paul

Marguerite de Valois

Le Sujet

 Un pâtissier réalise une pâte de la manière suivante. Il dispose une pâte d'un mètre par un mètre sur un plan de travail et à l'aide d'un rouleau à pâtisserie il étale en une pâte de 2m de long (toujours sur 1m de large). Il la replie ensuite sur elle-même de manière à obtenir un carré de 1m sur 1m. Il réalise cette opération un grand nombre de fois. Une extension et un pliage correspondra à une étape de la fabrication de la pâte feuilletée. Il aperçoit une petite coquille qui est tombée à un endroit dans la pâte, après une extension et un pliage, c'est-à-dire une étape, elle a changé de place, après une seconde étape, elle a à nouveau bougé. Puis au bout de la troisième étape elle est revenue à son point de départ.

- 1) Donner une position possible de l'endroit initial où est tombée la coquille.
- 2) Y en a t'il plusieurs ? Combien ?
- 3) Répondre à la même question si la coquille retrouve sa position initiale après 4, 5, 7 ou 127 étapes.
- 4) Existe-t-il des positions (combien ?) où la coquille revient pour la première fois à la même position à l'étape n pour tout n ∈ IN?
- 5) Existe-t-il des positions où la coquille reste au même endroit ?
- 6) Existe-t-il des positions où la coquille ne revient jamais à sa position initiale ? Etc...

I. L'approche visuelle et informatique

- 1. La fonction
- 2. Les programmes

Deux situations sont possibles :

II = distance entre le bord de la pâte et la coquille

n=int(input("entrez le numérateur")) d=int(input("entrez le dénominateur")) k=int(input("entrez le nombre de pliages: ")) for i in range (0,k): N=n/d if N>0.5: n=2*d-2*n else: n=2*n print(n) print("/") print (d)

Position décimale

• Le 1er programme permet de calculer une position (fractionnaire) après un nombre d'étapes données.

Nombre de pliages

```
while 1:
     n=int(input("entrez le numérateur"))
     d=int(input("entrez le dénominateur"))
     K=0
     F=n/d
     N=n/d
     while (K<1000):
          if F>0.5:
               n=2*d-2*n
               F=n/d
               K=K+1
          else:
               n=2*n
               F=n/d
               K=K+1
          print(F)
          if N==F:
               print("la fraction est revenue au bout de", (K), " pliages")
               break
     if K==1000:
          print ("apres 1000 pliages le nombre n'est pas revenue a sa position")
```

 Notre 2ème programme permet de calculer en combien de pliages la coquille revient à sa position initiale. Le programme affiche aussi les differentes positions par lesquelles la coquille passe avant de retrouver sa position initiale, si elle existe. L'approche mathématiques

- . En base 10
- II. En binaire

Sur les positions périodiques

Définition: Soit x une position périodique. On note P(x) le nombre minimum de coups à partir duquel cette position se répète.

Propriété: Soit f la fonction qui réalise la transformation du boulanger. Pour tout $k, n \in \mathbb{N}$ et toute position périodique x on a $x = f^{n P(x) + k}(x)$ uniquement si $P(x) \mid k$.

Propriété: Soit S la fonction qui à tout $n \in \mathbb{N}_*$ associe le nombre de positione de période n. Alors: $S(n) = 2^n - \sum S(d)$

Une relation de récurrence

II. L'approche binaire

La conversion en binaire

Propriété: Pour tout réel 0 < r < 1 il existe des entiers a_1, a_2, a_3, \ldots tel que : $a_1, a_2, a_3, \ldots \in \{0; 1\}$ et $r = \frac{a_1}{2} + \frac{a_2}{2^2} + \frac{a_3}{2^3} + \ldots$ Le nombre $0, a_1 a_2 a_3 \ldots$ représente r en base 2.

Programme pour la conversion en binaire :

Application au problème

$$\frac{2}{3} = \overline{0,1010...}^{2}$$

$$\frac{6}{7} = \overline{0,100100...}^{2}$$

$$\frac{5}{9} = \overline{0,100011100011...}^{2}$$

$$\frac{5}{6} = \overline{0,11010...}^{2}$$

On établit le lien entre position binaire et décimale :

Propriété: Toute position périodique p peut s'écrire comme :

$$p = \frac{2(2^{n-2}a_1 + 2^{n-3}a_2 + \ldots + 2a_{n-2} + a_{n-1})}{2^n - 1}, \text{ avec } p = \overline{0, a_1 a_2 \ldots a_{n-1} 0 a_1 a_2 \ldots^2}$$

Solutions possibles pour 3 étapes

2[2(2x)]=x	0
2-2[2(2x)]=x	<mark>2/9</mark>
2-2[2-2(2x)]=x	<mark>2/7</mark>
2[2-2(2x)]=x	<mark>4/9</mark>
2[2-2(2-2x)]=x	<mark>4/7</mark>
2-2[2-2(2-2x)]=x	2/3
2-2[2(2-2x)]=x	<mark>6/7</mark>
2[2(2-2x)]=x	<mark>8/9</mark>

Programme pour calculer le nombre de nouvelles solutions pour n étapes

```
1 list=[]
   2 n=int(input("nombre d'étapes"))
   4 def L(k):
         m=2
        list=[]
        while m <= k//2:
             if k%m==0:
                 list.append(m)
• 10
             m=m+1
         return list
• 11
  12
  13 def j(n):
     list=L(n)
• 14
     l=len(L(n))
• 15
     if n==1:
• 16
             k=2
• 17
• 18
         else:
             k=2**n
• 19
• 20
             for i in range(len(list)):
• 21
                 k=k-j(list[i])
• 22
             k=k-2
• 23
         return k
  24

    25 print(j(n))
```

Découpage de l'exposé

- Modélisation du problème
 - Illustration
 - Mise en équations
- Les différents cycles
 - Au bout de n étapes
 - Au bout de n étapes exactement
- Une propriété intéressante...
- Une coquille aventurière...

2/19

- Modélisation du problème
 - Illustration
 - Mise en équations
- Les différents cycles
 - Au bout de n étapes
 - Au bout de n étapes exactement
- Une propriété intéressante...
- Une coquille aventurière.

3 / 19

FIGURE – Comment se déplace la coquille ?

Soit x la position de la coquille avant pliage donc $x \in [0; 1]$. Soit f(x) une fonction qui associe à x sa position après pliage.

- Si $x \leq \frac{1}{2}$: f(x) = 2x
- Si $x > \frac{1}{2}$: f(x) = 2 2x

En partant de x, les coquilles prendront donc les positions suivantes :

FIGURE - Arbre des possibilités

- Modélisation du problème
 - Illustration
 - Mise en équations
- Les différents cycles
 - Au bout de n étapes
 - Au bout de n étapes exactement
- Une propriété intéressante...
- Une coquille aventurière.

Quelles sont les positions x telles que la coquille revienne à sa position initiale au bout de n étapes?

Les différents cycles

Exemples, n=3 et n=4

Exemples suivants

•
$$\mathbf{n} = \mathbf{3} : S_3 = \left\{0, \frac{2}{9}, \frac{4}{9}, \frac{6}{9}, \frac{8}{9}, \frac{2}{7}, \frac{4}{7}, \frac{6}{7}\right\}$$

•
$$\mathbf{n} = \mathbf{4} : S_4 = \left\{0, \frac{2}{17}, \frac{4}{17}, \frac{6}{17}, \frac{8}{17}, \frac{10}{17}, \frac{12}{17}, \frac{14}{17}, \frac{16}{17}, \frac{2}{15}, \frac{4}{15}, \frac{6}{15}, \frac{8}{15}, \frac{10}{15}, \frac{12}{15}, \frac{14}{15}\right\}$$

soit 2³ et 2⁴ positions respectivement.

Les différents cycles

Conjecture

On déduit, à partir du graphe et des exemples :

Conjecture

Après n étapes, la coquille revient à sa position x si :

•
$$x = \frac{2i}{2^n - 1}$$
, ou

$$x = \frac{2j}{2^n + 1}$$

avec i, j des entiers tels que $i \in [1; 2^{n-1}]$ et $j \in [0; 2^{n-1}]$, soit 2^n positions initiales possibles.

10 / 19

Les cycles uniques

Au bout de exactement n étapes

Combien existe t-il de positions telles que la coquille revienne pour la première fois à sa position initiale au bout de *n* étapes?

- Une coquille revenue à sa position initiale au bout de 3 étapes, reviendra à cette même position pour tous les multiples de 3 = cycle
- Enlever le nombre de positions de ces diviseurs!

Les cycles uniques

Un petit exemple

- Combien de cycles pour un nombre premier?
 - Par exemple $5 \rightarrow 1$ seul : 1 donc $2^5 2 = 30$ solutions
 - Pour n premier: $2^n 2$
- Un peu plus difficile : pour 10
 - $1 \rightarrow 2^{10} 2$
 - $2 \rightarrow 2^{10} 2 (2^2 2)$
 - $5 \rightarrow 2^{10} 2 (2^2 2) (2^5 2)$
 - 990 solutions!

- Modélisation du problème
 - Illustration
 - Mise en équations
- Les différents cycles
 - Au bout de n étapes
 - Au bout de n étapes exactement
- Une propriété intéressante...
- Une coquille aventurière.

13 / 19

Une propriété intéressante...

Nombres premiers et divisibilité

- *n* premier $\rightarrow 2^n 2$ solutions
- Remarque : $2^n 2$ est un multiple de n!
- Logique :
 - Supposons que l'on ait une position k_1
 - Étape suivante : k_2 puis $k_3 \dots k_n$ puis de nouveau k_1
 - Mais alors le cycle recommence
 - $\rightarrow n-1$ autres solutions!
- Pour chaque solution trouvée, il y en a n-1 autres donc le nombre total est divisible par *n*

Une propriété intéressante...

Nombres premiers et divisibilité

On peut généraliser avec *p* pliages au lieu de 2. On démontre ainsi le petit théorème de Fermat : Pour *p* premier :

$$a^p - a \equiv 0 \pmod{p}$$

15 / 19

- Modélisation du problème
 - Illustration
 - Mise en équations
- Les différents cycles
 - Au bout de n étapes
 - Au bout de n étapes exactement
- Une propriété intéressante...
- Une coquille aventurière..

Une coquille aventurière

Et irrationnelle?

Existe t-il des positions telles que la coquille ne revienne jamais deux fois à une même place?

$$x = \frac{2^n - 2i}{2^n - 1} ou$$
$$x = \frac{2j}{2^n + 1}$$

 $\rightarrow x$ est rationnel

Sinon, si *x* est irrationnel alors la coquille ne passera jamais par une même position deux fois

Remerciements

Merci à **Charles Dossal**, chercheur à l'Institut de Mathématiques de Toulouse, pour ce sujet et pour les pistes de recherche supplémentaires.

Merci à **M. Robuchon et autres professeurs** grâce à qui l'atelier MATh.en.JEANS est rendu possible.

Merci pour votre attention!

Avez-vous des questions?

