УРАЛЬСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ Кафедра физики

OT4ET

по лабораторной работе №29

«Изучение дифракционных решеток. Определение длины световой волны с помощью дифракционной решетки»

Студент(ка)	
Группа	
Преподаватель_	
Пата	

1. Расчетные формулы:

$$\lambda = \frac{d \sin \varphi}{m}; m_{\text{max}} = \left[\frac{d}{\lambda}\right]; R = mN; \delta\lambda = \frac{\lambda}{R}; D = \frac{m}{d \cos \varphi},$$

d-

 φ – _____

N – ______

 m_{max} –

R-

2. Номер установки _____

3. Источник излучения _____

4. Приборы и принадлежности. Их характеристики

Наименование	предел измерений	Наименьшая цена
прибора		деления шкалы
Спектрогониометр		
Дифракционная	d = HM	
решетка	L = MM	

2

5. Ход лучей

6. Результаты измерений

Таблица 1 Результаты измерений углов дифракции и длин волн спектральных линий

Спектральная	Угловое положение линий		Угол	Длина	Длина
линия	слева от центр. максимума α ₁	справа от центр. максимума α2	дифракции, рад	волны λ нм эксперимент	волны λ нм (табличное)
Фиолетовая					
зелёная					
жёлтая 1					
жёлтая 2					

7. Расчёт характеристик решётки

7.1. Наивысший порядок спектра (для каждой линии) рассчитывается по формуле

$$m_{\text{max}} = \left[\frac{d}{\lambda}\right]$$

7.2. Разрешающая сила R для спектра 1-го порядка, рассчитывается по формуле R=mN,

где m=1, N=L/d, L — ширина рабочей части решётки (указана в характеристиках решётки).

7.3. Линейное разрешение $\delta \lambda$ всех спектральных линий исследуемого спектра рассчитывается по формуле

$$\delta\lambda = \frac{\lambda}{R}$$

7.4. Угловая дисперсия D решётки для линий спектра 1-го порядка

$$D = \frac{d\varphi}{d\lambda} = \frac{m}{d\cos\varphi}$$
, где $m = 1$

Таблица 2

Характеристики используемой дифракционной решётки

Период	Разрешающая	линия	Наивысш.	Линейное	Угловая
решётки	сила <i>R</i>		порядок т	разрешение	дисперсия
d, нм				$\delta\lambda$, нм	D , $1/_{\rm HM}$
		фиолетовая			
		зелёная			
		жёлтая 1			
		жёлтая 2			

8.Оценка погрешности измерений длин волн

Оценка относительной погрешности измерений длин волн производится по формуле

$$\gamma = rac{\left| \lambda_{maбл.} - \lambda_{_{9 \kappa cn.}}
ight|}{\lambda_{maбл.}} \cdot 100\%$$
 $\gamma_{_{\phi uon.}} = \%$, $\gamma_{_{3 en\"{e}hag}} = \%$, $\gamma_{1 m\'{e}ntag} = \%$, $\gamma_{2 m\'{e}ntag} = \%$

$$\gamma_{\rm фиол.} =$$

$$\%$$
, γ_{3 елёная =

$$\% , \gamma_{1$$
жёлтая =

$$% \gamma_{2m} = 1$$

%

9. Выводы