Willkommen in der guten Stube :D

Aufgabe

Man zeige für alle $n \in \mathbb{N}$ mit $n \ge 2$ die Abschätzung:

$$\sqrt[n]{n} \ge \frac{n \cdot \sqrt{n}}{n \cdot \sqrt{n} - 2 \cdot \sqrt{n} + 2}.$$

Hilfsabschätzung

Für den Beweis verwenden wir die Ungleichung zwischen dem harmonischen und geometrischen Mittel:

Hilfsabschätzung

Für den Beweis verwenden wir die Ungleichung zwischen dem harmonischen und geometrischen Mittel:

Hilfsabschätzung

Für alle $x_1, \ldots, x_m > 0$, $m \in \mathbb{N}$, gilt die Abschätzung:

$$\sqrt[m]{x_1 \cdot \ldots \cdot x_m} \ge \frac{m}{\frac{1}{x_1} + \ldots + \frac{1}{x_m}}.$$

Sei $n \in \mathbb{N}$ eine natürliche Zahl mit $n \ge 2$.

Sei $n \in \mathbb{N}$ eine natürliche Zahl mit $n \ge 2$. Wir schreiben

$$n = \sqrt{n} \cdot \sqrt{n} \cdot \underbrace{1 \cdot \ldots \cdot 1}_{(n-2)\text{-mal}}$$

Sei $n \in \mathbb{N}$ eine natürliche Zahl mit $n \ge 2$. Wir schreiben

$$n = \sqrt{n} \cdot \sqrt{n} \cdot \underbrace{1 \cdot \ldots \cdot 1}_{(n-2)\text{-mal}}$$

$$\sqrt[n]{n}$$

Sei $n \in \mathbb{N}$ eine natürliche Zahl mit $n \ge 2$. Wir schreiben

$$n = \sqrt{n} \cdot \sqrt{n} \cdot \underbrace{1 \cdot \ldots \cdot 1}_{(n-2)-\text{mal}}$$

$$\sqrt[n]{n} = \sqrt[n]{\sqrt{n} \cdot \sqrt{n} \cdot 1 \cdot \ldots \cdot 1}$$

Sei $n \in \mathbb{N}$ eine natürliche Zahl mit $n \ge 2$. Wir schreiben

$$n = \sqrt{n} \cdot \sqrt{n} \cdot \underbrace{1 \cdot \ldots \cdot 1}_{(n-2)\text{-mal}}$$

$$\sqrt[n]{n} = \sqrt[n]{\sqrt{n} \cdot \sqrt{n} \cdot 1 \cdot \dots \cdot 1}$$

$$\geq \frac{n}{\frac{1}{\sqrt{n}} + \frac{1}{\sqrt{n}} + \frac{1}{1} + \frac{1}{1} + \dots + \frac{1}{1}}$$

Sei $n \in \mathbb{N}$ eine natürliche Zahl mit $n \ge 2$. Wir schreiben

$$n = \sqrt{n} \cdot \sqrt{n} \cdot \underbrace{1 \cdot \ldots \cdot 1}_{(n-2)-\text{mal}}$$

$$\sqrt[n]{n} = \sqrt[n]{\sqrt{n} \cdot \sqrt{n} \cdot 1 \cdot \dots \cdot 1}$$

$$\ge \frac{n}{\frac{1}{\sqrt{n}} + \frac{1}{\sqrt{n}} + \frac{1}{1} + \frac{1}{1} + \dots + \frac{1}{1}}$$

$$= \frac{n}{\frac{2}{\sqrt{n}} + 1 + 1 + \dots + 1}$$

Sei $n \in \mathbb{N}$ eine natürliche Zahl mit $n \ge 2$. Wir schreiben

$$n = \sqrt{n} \cdot \sqrt{n} \cdot \underbrace{1 \cdot \ldots \cdot 1}_{(n-2)-\text{mal}}$$

$$\sqrt[n]{n} = \sqrt[n]{\sqrt{n} \cdot \sqrt{n} \cdot 1 \cdot \dots \cdot 1}$$

$$\ge \frac{n}{\frac{1}{\sqrt{n}} + \frac{1}{\sqrt{n}} + \frac{1}{1} + \frac{1}{1} + \dots + \frac{1}{1}}$$

$$= \frac{n}{\frac{2}{\sqrt{n}} + 1 + 1 + \dots + 1}$$

$$= \frac{n}{\frac{2}{\sqrt{n}} + n - 2}$$

Sei $n \in \mathbb{N}$ eine natürliche Zahl mit $n \ge 2$. Wir schreiben

$$n = \sqrt{n} \cdot \sqrt{n} \cdot \underbrace{1 \cdot \ldots \cdot 1}_{(n-2)-\text{mal}}$$

$$\sqrt[n]{n} = \sqrt[n]{\sqrt{n} \cdot \sqrt{n} \cdot 1 \cdot \dots \cdot 1}$$

$$\geq \frac{n}{\frac{1}{\sqrt{n}} + \frac{1}{\sqrt{n}} + \frac{1}{1} + \frac{1}{1} + \dots + \frac{1}{1}}$$

$$= \frac{n}{\frac{2}{\sqrt{n}} + 1 + 1 + \dots + 1}$$

$$= \frac{n}{\frac{2}{\sqrt{n}} + n - 2}$$

$$= \frac{n \cdot \sqrt{n}}{n \cdot \sqrt{n} - 2 \cdot \sqrt{n} + 2}.$$