The Geometry of Model Recovery by Penalized and Thresholded Estimators

Patrick Tardivel (joint work with Tomasz Skalski, Piotr Graczyk and Ulrike Schneider)

Institut de mathématiques de Bourgogne, Dijon

Uniqueness

Consider the optimization problem

$$S_{X,\lambda \mathrm{pen}}(y) := \operatorname*{Argmin}_{b \in \mathbb{R}^p} rac{1}{2} \|y - Xb\|_2^2 + \lambda \mathrm{pen}(b).$$

Where $X \in \mathbb{R}^{n \times p}$, $y \in \mathbb{R}^n$, $\lambda > 0$ and $pen(b) = max\{u_0'b, u_1'b, \dots, u_l'b\}$, $u_0 = 0$ and $u_1, \dots, u_l \in \mathbb{R}^p$, is a polyhedral gauge.

Note: $S_{X,\lambda pen}(y) \neq \emptyset$.

- ▶ $pen(b) = ||b||_1 -> LASSO.$
- $\blacktriangleright \operatorname{pen}(b) = \|b\|_{\infty}.$
- ▶ pen(b) = $\sum_{i=1}^{p} \lambda_i |b|_{\downarrow i}$ where $\lambda_1 > 0$, $\lambda_1 \ge \cdots \ge \lambda_p \ge 0$ and $|b|_{\downarrow 1} \ge \cdots \ge |b|_{\downarrow p}$ -> SLOPE.
- ▶ pen(b) = $||Db||_1$ for some $D \in \mathbb{R}^{m \times p}$ → Generalized LASSO.

Theorem

Let $X \in \mathbb{R}^{n \times p}$, $\lambda > 0$ and pen be a polyhedral gauge where $\text{pen}(b) = \max\{u_0'b, u_1'b, \dots, u_l'b\}$. There exists $y \in \mathbb{R}^n$ for which the minimizer of

$$\underset{b \in \mathbb{R}^p}{\operatorname{Argmin}} \ \frac{1}{2} \|y - Xb\|_2^2 + \lambda \operatorname{pen}(b)$$

is not unique if and only if $row(X) := \{X'z : z \in \mathbb{R}^n\}$ intersects a face $B^* = conv\{u_0, u_1, \dots, u_l\}$ whose dimension is < dim(ker(X)).

- $ightharpoonup pen(b) = ||b||_1 -> B^* = [-1, 1]^p.$
- ▶ pen(b) = $||b||_{\infty}$ -> $B^* = \{x \in \mathbb{R}^p : ||x||_1 \le 1\}.$
- ▶ pen(b) = $||Db||_1$ for some $D \in \mathbb{R}^{m \times p}$ -> $B^* = D'[-1, 1]^m$.

$$S_{X,\|.\|_{\infty}}(y) := \underset{b \in \mathbb{R}^2}{\operatorname{Argmin}} \ \ \underbrace{\frac{1}{2}\|y - Xb\|_2^2 + \max\{|b_1|, |b_2|\}}_{:=\phi(b)},$$

where $X = \begin{pmatrix} 1 & 1 \end{pmatrix}$ and y = 2.

$$S_{X,\|.\|_{\infty}}(y) := \underset{b \in \mathbb{R}^2}{\operatorname{Argmin}} \ \frac{1}{2} \|y - Xb\|_2^2 + \max\{|b_1|, |b_2|\},$$

where $X = \begin{pmatrix} 1 & 0 \end{pmatrix}$ and y = 2.

Model pattern recovery

Consider the linear regression model $Y = X\beta + \varepsilon$ where $X \in \mathbb{R}^{n \times p}$, $\beta \in \mathbb{R}^p$ is an unknown parameter and $\varepsilon \in \mathbb{R}^n$ a random noise. Our goal is to recover $\partial_{\mathrm{pen}}(\beta)$.

Let $f: \mathbb{R}^p \to \mathbb{R}$. $s \in \mathbb{R}^p$ is a subgradient of f at $x \in \mathbb{R}^p$ if

$$f(z) \geq f(x) + s'(z - x) \ \forall z \in \mathbb{R}^p.$$

The subdifferential $\partial_f(x)$ at x is the set of all subgradients.

- ▶ $\partial_{\|.\|_1}(x) = \partial_{\|.\|_1}(z)$ iif sign(x) = sign(z).

$$\partial_{\|.\|_{\infty}}(x) = \partial_{\|.\|_{\infty}}(z) \text{ iif } \begin{cases} \{i : x_i = \|x\|_{\infty}\} = \{i : z_i = \|z\|_{\infty}\} \\ \{i : x_i = -\|x\|_{\infty}\} = \{i : z_i = -\|z\|_{\infty}\} \end{cases}$$

lacksquare When $D^{ ext{tv}}x=(x_2-x_1,\ldots,x_p-x_{p-1})$ and $ext{pen}(x)=\|D^{ ext{tv}}x\|_1$

$$\partial_{\|D^{\text{tv}}.\|_{1}}(x) = \partial_{\|D^{\text{tv}}.\|_{1}}(z) \text{ iif } \begin{cases} \{i : x_{i+1} > x_{i}\} = \{i : z_{i+1} > z_{i}\} \\ \{i : x_{i+1} < x_{i}\} = \{i : z_{i+1} < z_{i}\} \end{cases}$$

Let us assume that $\ker(D') = \{0\}$ then $\partial_{\|D.\|_1}(x) = \partial_{\|D.\|_1}(z)$ iif sign(Dx) = sign(Dz).

Path Condition

$$S_{X,\lambda \mathrm{pen}}(y) = \operatorname*{Argmin}_{b \in \mathbb{R}^p} \ \frac{1}{2} \|y - Xb\|_2^2 + \lambda \mathrm{pen}(b).$$

Definition

 $\partial_{\mathrm{pen}}(\beta)$ satisfies the path condition with respect to X and pen when

$$\exists \lambda > 0 \ \exists \hat{\beta} \in S_{X,\lambda pen}(X\beta) \text{ such that } \partial_{pen}(\hat{\beta}) = \partial_{pen}(\beta)$$

$$X = \begin{pmatrix} 5/6 & 1 & 0 \\ 1/3 & 0 & 1 \end{pmatrix}, \beta = (10, 0, 0).$$

 $sign(\beta)$ does not satisfy the path condition wrt X and $\|.\|_1$.

LASSO solution path

$$||X_I'X_I(X_I'X_I)^{-1}\operatorname{sign}(\beta_I)||_{\infty} = 30/29 > 1$$

Necessary condition for model pattern recovery

Theorem

Let $Y = X\beta + \varepsilon$ where $X \in \mathbb{R}^{n \times p}$, $\beta \in \mathbb{R}^p$ is an unknown parameter and $\varepsilon \in \mathbb{R}^n$ has a symmetric distribution. If the subdifferential of β does not satisfies the path condition with respect to X and pen then

$$\mathbb{P}(\exists \lambda > 0 \; \exists \hat{\beta} \in \mathcal{S}_{X,\lambda \mathrm{pen}}(Y) \; \mathrm{such \; that} \; \partial_{\mathrm{pen}}(\hat{\beta}) = \partial_{\mathrm{pen}}(\beta)) \leq 1/2.$$

Consequently, when $\|X_{\bar{I}}'X_I(X_I'X_I)^{-1}\operatorname{sign}(\beta_I)\|_{\infty} > 1$ then whatever $\lambda > 0$ we have

$$\mathbb{P}(\operatorname{sign}(\hat{\beta}^{\operatorname{lasso}}(\lambda)) = \operatorname{sign}(\beta)) \le 1/2.$$

Accessibility

Definition (Accessibility condition)

 $\partial_{\mathrm{pen}}(\beta)$ is accessible with respect to X and $\lambda\mathrm{pen}$ when

$$\exists y \in \mathbb{R}^p \ \exists \hat{\beta} \in S_{X,\lambda pen}(y) \text{ such that } \partial_{pen}(\hat{\beta}) = \partial_{pen}(\beta)$$

Proposition

 $\partial_{\mathrm{pen}}(\beta)$ is accessible with respect to X and λ_{pen} iif for every $\gamma \in \mathbb{R}^p$ we have

$$X\beta = X\gamma \implies \operatorname{pen}(\gamma) \ge \operatorname{pen}(\beta).$$

Note that the accessibility condition does not depend on λ .

Proposition

The path condition implies the accessibility condition.

$$X = \begin{pmatrix} 5/6 & 1 & 0 \\ 1/3 & 0 & 1 \end{pmatrix}, \beta = (10, 0, 0).$$

The path condition does not occur but $\partial_{pen}(\beta)$ is accessible with respect to X and $\|.\|_1$.

For this figure, $\lambda = 1$.

$$X = \begin{pmatrix} 5/6 & 1 & 0 \\ 1/3 & 0 & 1 \end{pmatrix}, \beta = (20, 0, 0) \text{ et } \varepsilon \sim N(0, I)$$

Box plot for the LASSO estimator

Components 1, 2 or 3

For this figure, $\lambda = 1$.

NSC for sign recovery by generalized LASSO

- One may use the penalty $pen(b) = ||b||_1$ in order to recover support: $supp(\beta) = \{i : \beta_i \neq 0\}$
- One may use the penalty $pen(b) = ||D^{tv}b||_1$ in order to recover the jump set: $\{i : \beta_i \neq \beta_{i+1}\} = \operatorname{supp}(D^{tv}\beta)$

$$D^{
m tv} = egin{pmatrix} -1 & 1 & 0 & \dots & 0 \ 0 & -1 & 1 & \ddots & dots \ dots & \ddots & \ddots & \ddots & 0 \ 0 & \dots & 0 & -1 & 1 \end{pmatrix}.$$

More generally base on the penalty term $pen(b) = ||Db||_1$ we aim at recovering $sign(D\beta)$.

Let $\hat{\beta}$ be a generalized LASSO estimator. The path condition is necessary for recovering $\operatorname{sign}(D\beta)$ via $\operatorname{sign}(D\hat{\beta})$. One may relax the path condition using the estimator $(D\hat{\beta})^{\tau}$.

Theorem

Necessary condition) If $\partial_{\|D.\|_1}(\beta)$ is not accessible with respect to X and $\|D.\|_1$ then

$$\forall y \in \mathbb{R}^n \ \forall \lambda > 0 \ \forall \hat{\beta} \in S_{X,\lambda||D.||_1}(y) \ \forall \tau \geq 0 \text{ we have}$$

$$\operatorname{sign}((D\hat{\beta})^{\tau}) \neq \operatorname{sign}(D\beta).$$

Sufficient condition) Given $\varepsilon \in \mathbb{R}^n$, let us set $y^k = X(k\beta) + \varepsilon$. We assume that $S_{X,\lambda\|D.\|_1}(y^k)$ is a singleton and its unique element is $\hat{\beta}$. If $\partial_{\|D.\|_1}(\beta)$ is accessible with respect to X and $\|D.\|_1$ then

- ▶ $\exists k_0 \ \forall k \geq k_0 \ \exists \tau \geq 0 \text{ such that } \operatorname{sign}((D\hat{\beta})^{\tau}) = \operatorname{sign}(D\beta)$
- ▶ $\exists k_0 \ \forall k \geq k_0 \ \text{we have supp}(D\beta) \in \{\emptyset, \{\pi(1)\}, \{\pi(1), \pi(2)\}, \dots, \text{supp}(D\hat{\beta})\}$. Where π is a permutation such that $|(D\hat{\beta})_{\pi(1)}| \geq \dots \geq |(D\hat{\beta})_{\pi(p)}|$.

PS: The article "The Geometry of Model Recovery by Penalized and Thresholded Estimators" provides a similar theorem for penalized least squares estimators (including SLOPE,OSCAR,...).

Sign recovery by LASSO and thresholded LASSO (Tardivel and Bogdan)

To recover $sign(\beta)$ one needs the following conditions:

► With the LASSO one needs the irrepresentability condition (path condition in this presentation)

$$\|X_I'X_I(X_I'X_I)^{-1}\mathrm{sign}(\beta_I)\|_{\infty}<1.$$

 With the thresholded LASSO/BP one needs the identifiability condition (accessibility condition in this presentation)

$$X\gamma = X\beta \Rightarrow ||\gamma||_1 \ge ||\beta||_1.$$

We remind that

 $\begin{array}{ll} \mbox{(Path condition)} & \mbox{(accesibility condition)} \\ \mbox{Irrepresentability condition} \Rightarrow \mbox{Identifiability condition} \end{array}$

Standard Gaussian design

 $X \in \mathbb{R}^{100 \times 300}$ standard Gaussian matrix

- ▶ black dotted line $k = \rho(100/300) \times 100 = 31$
- red dotted line $k = 100/(2 \log(300)) = 9$

Let $Y = X\beta + \varepsilon$ where $X \in \mathbb{R}^{100 \times 300}$ is a standard Gaussian matrix, $\varepsilon \sim \mathcal{N}(0, I_n)$, $\|\beta\|_0 = 20$, non null components of β are all equal to t > 0.

Thresholded LASSO and BP sign estimators

t: common value of the non-null components

Thank you!

▶ PJC. Tardivel, T. Skalski, P. Graczyk, U. Scheider. The Geometry of Model Recovery by Penalized and Thresholded Estimators.

Related articles

- PJC. Tardivel and M. Bogdan. On the sign recovery by LASSO, thresholded LASSO and thresholded Basis Pursuit Denoising
- U. Schneider, PJC. Tardivel. The Geometry of Uniqueness and Model Selection of Penalized Estimators including SLOPE, LASSO and Basis Pursuit.