This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

(3)

19 BUNDESREPUBLIK DEUTSCHLAND

Offenlegungsschrift 27 57 157

Aktenzeichen:

P 27 57 157.9-42

Anmeldetag:

19. 12. 77

Offenlegungstag:

21. 6.79

Unionspriorität:

@ @ 9

Bezeichnung:

Verfahren zur Herstellung von 16x-alkylierten Steroiden

n Anmelder:

Schering AG, 1000 Berlin und 4619 Bergkamen

(7) Erfinder:

Neef, Günter, Dr.; Eder, Ulrich, Dr.; Haffer, Gregor, Dr.; Sauer, Gerhard, Dr.; Nickolson, Robert, Dr.; 1000 Berlin

Prüfungsantrag gem. § 28b PatG ist gestellt

Patentanspruch

Verfahren zur Herstellung von 16α-alkylierten Steroiden der allgemeinen Formel

$$R_2$$
 R_1 R_1 ,

worin

R für Sauerstoff oder Wasserstoff und Hydroxy,

R₁ für einen gegebenenfalls substituierten Alkylrest mit bis zu 8 C-Atomen,

R₂ für Wasserstoff oder Methyl und St für

$$(H_2)_{\overline{H}-CH_2} \times 5$$

$$(H_2)_{\overline{H}-CH_2} \times 5$$
oder

worin

X für Sauerstoff oder Schwefel, $c_{3}==c_{4}$ und $c_{5}==c_{6}$ für eine CC-Einfach- oder CC-Doppelbindung,

n für O oder 1 und

 R_3 für Methyl, Äthyl, Tetrahydropyranyl und Methoxymethyl stehen,

dadurch gekennzeichnet,

daß man 17-Ketosteroide der allgemeinen Formel

worin R2 und St die oben angegebene Bedeutung haben, mit Dimethylhydrazin in Gegenwart eines wasserentziehenden Mittels, vorzugsweise o-Ameisensäuretrialkylester, in einem protischen oder aprotischen Lösungsmittel bei Temperaturen oberhalb Raumtemperatur umsetzt und das so erhaltene 17-Keto-N.N-dimethylhydrazon bei Temperaturen von -80 °C bis Raumtemperatur mit Alkalimetall-Basen in einem aprotischen Lösungsmittel, vorzugsweise Tetrahydrofuran, behandelt, anschließend mit einem Alkylhalogenid der Formel R1Y,

3 -

worin R₁ die oben angegebene Bedeutung hat und Y für Chlor, Brom oder Jod steht, reagieren läßt und das so erhaltene 16α-Alkyl-17-keto-N.N-dimethylhydrazon nach an sich bekannten Methoden in wässriger Phase spaltet und gegebenenfalls die in 3-Stellung befindliche Schutzgruppe abspaltet, wobei gegebenenfalls zuvor die 17-Ketogruppe zur Hydroxygruppe in an sich bekannter Weise reduziert wird.

Verfahren zur Herstellung von 16a-alkylierten Steroiden

909825/0552

Vorstand: Dr. Herbert Asmis - Dr. Christian Bruhn - Hans-Jürgen Hamann Dr. Heinz Hannse - Karl Otto Mittelstonscheid - Dr. Horst Vitizel Vorsitzender des Aufsichtsrats: Dr. Eduard v. Schwartzkoppen Silz der Gezellschaft: Berlin und Bergkamen Handelsrogister: AG Charlottenburg 93 HRB 283 u. AG Kamen HRB 0061

Postanschrift: SCHERING AG - D-1 Berlin 85 - Postfach 65 00 11
Postscheck-Konto: Berlin-Wost 1173-101, Bankleitzahl 100 100 10
Berliner Commerzbank AG, Berlin, Konto-Nr. 100 7005 00, Bankleitzahl 100 400 00
Berliner Disconto-Bank AG, Berlin, Konto-Nr. 211/5008, Bankleitzahl 100 700 00
Berliner Handels-Geseltschalt – Franklurier Bank –, Berlin,
Konto-Nr. 14-362, Bankleitzahl 100 202 00
S4 FM IV 3378

Die Erfindung betrifft ein Verfahren zur Herstellung von 16c-alkylierten 17-Ketosteroiden der allgemeinen Formel

$$R_2$$
 R_2 R_1 , worin

R für Sauerstoff oder Wasserstoff und Hydroxy,

 $R_{\hat{\mathbf{l}}}$ für einen gegebenenfalls substituierten Alkylrest mit bis zu 8 C-Atomen,

R, für Wasserstoff oder Methyl und St für

worin

X für Sauerstoff oder Schwefel, C3===C4 und C5===C6 für eine CC-Einfach- oder CC-Doppelbindung,

n für 0 oder 1 und

R3 für Methyl, Äthyl, Tetrahydropyranyl und Methoxymethyl stehen.

Bekannterweise ist die stereoselektive Synthese von 16a-Alkylsteroiden durch direkte Alkylierung von 17-Ketoenolaten dadurch erschwert, daß das thermodynamische Gleichgewicht für Alkylsubstituenten weitgehend auf der Seite der 16ß-Alkylderivate liegt (A. Bowers, P.G. Holton, E. Necoechea, and F.A. Kincl, Steroids 1961, 4057). Die Gewinnung der α-Isomeren ist nur durch verlustreiche, fraktionierte Kristallisation oder Chromatographic möglich (DT 1 543 266). Zusätzlich tritt bei der basenkatalysierten Alkylierung von 17-Ketoenolaten in erheblichem Umfang Dialkylierung auf.

Ein weiteres bekanntes Verfahren zur stereoselektiven Einführung von 16a-Alkylsubstituenten setzt als Ausgangsmaterial 16-0xosteroide voraus, die als solche schwer zugänglich sind und deren Überführung in die entsprechenden 16a-Alkyl-17-oxo-

-6 -

steroide eine Reihe aufwendiger Stufen erfordert (z.B.: G. Goto, K. Yoshioka, K. Hiraga and T.Miki, Chem. Pharm. Bull. 25, 1295 (1977).

Aufgabe der vorliegenden Erfindung war es, ein Verfahren zur selektiven Einführung einer 16α-Alkylgruppe in 17-Ketosteroide der Androstan- und Östranreihe bereitzustellen.

Die erfindungsgemäße Aufgabe wird dadurch gelöst, daß man 17-Ketosteroide der allgemeinen Pormel

worin

R, und St die oben angegebene Bedeutung haben,

mit Dimethylhydrazin in Gegenwart eines wasserentziehenden Mittels, vorzugsweise o-Ameisensäuretrialkylester, in einem protischen oder aprotischen Lösungsmittel bei Temperaturen oberhalb Raumtemperatur umsetzt und das so erhaltene 17-Keto-N.N-dimethylhydrazon bei Temperaturen von -80 °C bis Raumtemperatur mit Alkalimetall-Basen in einem aprotischen Lösungsmittel, vorzugsweise Tetrahydrofuran, behandelt, anschließend mit einem Alkylhalogenid der Formel R1Y,

worin R₁ die oben angegebene Bedeutung hat und Y für Chlor, Brom oder Jod steht, reagieren läßt und das so erhaltene 16α-Alkyl-17-keto-N.N-dimethylhydrazon nach an sich bekannten Methoden in wässriger Phase spaltet und gegebenenfalls die in 3-Stellung befindliche Schutzgruppe abspaltet, wobei gebenenfalls zuvor die 17-Ketogruppe zur Hydroxygruppe in an sich bekannter Weise reduziert wird.

Die erfindungsgemäß eingeführte Alkylgruppe R_1 kann sowohl unsubstituiert als auch in an sich bekannter Weise substituiert sein. Unsubstituierte Alkylgruppen sind beispielsweise die Methyl-, Äthyl-, n-Propyl-, i-Propyl, n-Butyl, i-Butyl-, tert.-Butyl-, n-Pentylgruppe, 2-Methylbutyl-, 2.2-Dimethylbutyl- und die Hexylgruppe.

Substituierte Alkylgruppen können durch Arylgruppen wie z.B. durch Phenyl-oder Tolyl-, durch Alkoxy-, wie z.B. durch die Äthoxy-, Isopropoxy-, Methoxy-, Butoxy- oder Pentoxygruppe oder durch Mercapto wie Thiomethyl- oder Thioäthyl substituiert sein. Das unsubstituierte Alkyl kann auch ringgeschlossen sein, wie z.B. als Cyclopentyl- oder Cyclohexylgruppe. Die Alkylgruppe \mathbf{R}_1 kann auch acylsubstituiert sein. Als Acyl kommen an sich alle Reste von physiologisch verträglichen Carbonsäuren infrage. Bevorzugt sind solche, die sich von Alkanoylsäuren mit 2-7 Kohlenstoffatomen ableiten, wie

- 8 -

z.B. monobasische Alkanoylsäuren wie die Essig-, Propion-, Butter-, Isobutter-, a-Äthylbutter-, Pivalin-, Valerian-, Isovalerian-, a-Äthylvalerian-, Trimethylessig-, 2-Methylbutter- oder 3-Äthylbuttersäure, oder cyclische Säuren, vorzugsweise cycloaliphatische Säuren, wie die Cyclopropylidenessig-, Cyclohexylcarbon- oder Cyclohexylessigsäure oder auch carbocyclische Aryl- oder Aralkylsäuren wie die Benzoe, 2-, 3- oder 4-Methylbenzoesäure.

Geoignete Alkalimetall-Basen zur Durchführung des erfindungsgemäßen Verfahrens sind beispielsweise n-Butyllithium, tert.-Butyllithium, Lithiumdiisopropylamid, Lithiumdiäthylamid, Natriumamid, Kaliumamid und Kalium-tert-butylat.

Die Mathode zur Alkylierung von Ketonen über die Zwischenstufe des Hydrazons ist zwar an sich bekannt (E.J. Corey and D. Enders, Tetrahedron Lett. 1976, 11), jedoch lassen die publizierten Ergebnisse keinen Rückschluß auf die Stereochemie der Alkylierung von Fünfring-Ketonen, speziell von 17-Ketosteroiden, zu.

Die von Corey et al. beschriebenen Alkylierungsreaktionen von substituierten Cyclohexanonen zeigen, daß der neue Alkylsubstituent axial eingeführt wird. Im Falle von 17-

. - .

Oxosteroiden wäre demzufolge die Alkylierung der quasiaxialen 168-Position zu erwarten gewesen. Überraschenderweise wurde jedoch die nahezu ausschließliche Bildung der 16α-Alkylderivate gefunden.

Das erfindungsgemäße Verfahren wird so durchgeführt, daß man das 17-Ketosteroid zunächst in das 17-Keto-N.N-dimethylhydrazon überführt. Hierzu wird das 17-Ketosteroid in einem protischen oder aprotischen Lösungsmittel, dessen Siedepunkt zweckmäßigerweise über 60 °C liegen sollte, wie Methanol, Äthanol, Benzol, Toluol, Xylol, Hexamethylphosphortriamid, Chlorbenzol, Tetrahydrofuran oder Acetonitril gelöst und in Gegenwart eines wasserentziehenden Mittels wie o-Ameisensäuretrialkylestor, z.B. o-Ameisensäuretriäthylester, mit Dimethylhydrazin längere Zeit in der Wärme umgesetzt. Die Reaktion ist in der Wärme nach 24 Stunden praktisch quantitativ abgelaufen.

Das so erhaltene 17-Keto-N.N-dimethylhydrazon wird anschliessend in einem aprotischen Lösungsmittel wie Tetrahydrofuran, Dioxan, Diäthyläther, Dimethoxyäthan oder Hexamethylphosphortriamid oder Gemischen davon gelöst und langsam mit einer Alkalimetall-Base, wie z.B. Butyllithium, das

- 10 -

in einem inerten Lösungsmittel, wie Hexan gelöst ist, versetzt, wobei die Temperatur im Bereich zwischen -80 °C und +20 °C liegen sollte. Falls die benutzte Alkalimetallbase auch ohne Lösungsmittel benutzt werden kann, entfällt dieses Lösungsmittel im Reaktionsgemisch.

Zu diesem so vorbereiteten Reaktionsgemisch wird gleichfalls langsam das gewünschte Alkylhalogenid $R_1 Y$ gegeben, wobei die Alkylierung fast ausschließlich in 16α -Stellung erfolgt.

Nach erfolgter Alkylierung wird das Hydrazon wieder gespalten. Hierzu wird das Hydrazon in einem mit Wasser mischbaren Lösungsmittel, wie Tetrahydrofuran, Dioxan, Dimethoxyäthan, Hexamethylphosphortriamid, Aceton, Methanol, Äthanol oder Acetonitril, gelöst und mit einer wässrigen Lösung von Kupfer(II)-chlorid oder Natriumperjodat bei Raumtemperatur behandelt.

Die Schutzgruppe R₃ kann entweder unter den Bedingungen abgespalten werden, die nicht zur Einstellung des thermodynamischen Gleichgewichts an C-16 führen können, oder die Abspaltung dieser Schutzgruppe erfolgt erst dann, wenn nach Reduktion des C-17-Ketons eine Isomerisierung am C-16 nicht mehr stattfinden kann. Im letzteren Fall ist die

909825/0552

- 11 -

Entfernung der Schutzgruppe nach bekannten Verfahren ohne weiteres möglich.

Die Reduktion der 17-Ketogruppe erfolgt nach an sich bekannten Methoden. Gut geeignet ist die Reduktion mit komplexen Metallhydriden, wie Natriumborhydrid, in Methanol oder einem anderen protischen Lösungsmittel und Lithiumaluminiumhydrid in einem Äther wie Tetrahydrofuran oder Dioxan.

Soll eine gegebenenfalls vorhandene Tetrahydropyranylgruppe abgespalten werden, so erwärmt man das Tetrahydropyranyl-17-keto-16α-alkylsteroid kurzfristig über Raumtemperatur in einem Lösungsmittel, wie Tetrahydrofuran, in Gegenwart von Wasser und Kupfer(II)-chlorid. Die Abspaltung ist bei ca. 50 °C bereits nach wenigen Stunden vollständig, ohne daß dabei eine Isomerisierung des 16-Substituenten beobachtet wird.

Das erfindungsgemäße Verfahren ist zwar auch ein mehrstufiges Verfahren, jedoch liefert es im Verhältnis zu den bekannten Verfahren wesentlich höhere Gesamtausbeuten an dem gewünschten 16α-Alkylsteroid. Die Stereoselektivität der erfindungsgemäßen Reaktion beträgt 94-96 %,

- 12 -

Das erfindungsgemäße Verfahren hat weiterhin den Vorteil, daß es von leicht zugänglichen 17-Ketosteroiden ausgeht.

Die erfindungsgemäß herstellbaren Verbindungen sind entweder selbst pharmakologisch wirksam oder dienen als Zwischenprodukte zur Herstellung von bekannten Wirkstoffen.

Die nachfolgenden Beispiele sollen das erfindungsgemäße Verfahren erläutern.

- 13 -

Beispiel 1

a) Eine Lösung von 20 g 3ß-Äthoxy-5-androsten-17-on in 400 ml Äthanol, 60 ml Dimethylhydrazin und 12 ml ortho-Ameisensäuretriäthylester wird 30 Stunden unter Rückfluß erhitzt. Nach dem Abkühlen gießt man in ca. 2 1 Wasser, extrahiort mit Essigester, wäscht die Essigesterextrakte mit gesättigter Kochsalzlösung, trocknet über Natriumsulfat und engt im Vakuum

ein. Der ölige Rückstand wird aus Acetonitril kristallisiert. Man erhält 21,0 g 38-Äthoxy-5-androsten-17-on-N.N-dimethylhydrazon vom Schmelzpunkt 97-98 °C.

b) Eine Lösung von 5 g 3B-Athoxy-5-androsten-17-on-N.Ndimethylhydrazon in 50 ml absolutem Tetrahydrofuran wird bei 0 °C tropfenweise mit 13 ml einer 15%igen Lösung von n-Butyllithium in Hexan versetzt. Nach Zugabe rührt man 60 Minuten bei 0 °C, tropft anschließend 1,3 ml Methyljodid bei 0 °C dazu und rührt weitere 30 Minuten bei Raumtemperatur. Zur Aufarbeitung gießt man in gesättigte Ammoniumchlorid -Lösung und extrahiert mit Essigester. Das Rohprodukt wird aus Acctonitril kristallisiert. Man erhält 5.0 g 3β-Äthoxy-16α-methyl-5-androsten-17-on-N.N-dimethylhydrazon vom Schmelzpunkt 124,5-125,5 °C.

- 14 -

c) Eine Lösung von 1,4 g 3β-Äthoxy-16α-methyl-5-androsten17-on-N.N-dimethylhydrazon in 63 ml Tetrahydrofuran und
12 ml Wasser wird mit einer Lösung von 1,48 g Kupfer(II)chlorid in 19 ml Wasser versetzt und 4 Stunden bei Raumtemperatur gerührt. Anschließend gießt man in Wasser,
extrahiert mit Essigester, wäscht die Essigesterextrakte
mit gesättigter Kochsalz-Lösung, trocknet über Natriumsulfat und engt am Rotationsverdampfer ein. Nach Kristallisation aus Diisopropyläther erhält man 1,25 g 3ß-Äthoxy16α-methyl-5-androsten-17-on vom Schmelzpunkt 83-84 °C.

Beispiel 2

- a) Unter den Bedingungen des Beispiels la) erhält man aus 20 g
 3ß-Tetrahydropyran-2-yloxy-5-androsten-17-on 20,5 g eines
 Isomerengemisches von 16α-Methyl-3ß-tetrahydropyran-2yloxy-5-androsten-17-on-N.N-dimethylhydrazons mit den
 Schmelzpunkten 127-128 und 143-146 °C.

- 15 -

c) Unter den Bedingungen des Beispiels 1c) erhält man aus 3,0 g des zuvor erhaltenen Hydrazons 2,4 g 16a-Methyl-3B-tetrahydropyran-2-yloxy-5-androsten-17-on vom Schmelzpunkt 176-177 °C.

> nuchträglich **tre**ballap

Boispiel 3

3 g 16a-Methyl-3B-tetrahydropyran-2-yloxy-5-androsten-17-on-N.N-dimakaikade. & Vwerden in 30 ml Tetrahydrofuran und 16 ml Wasser gelöst und nach Zugabe von 5 g Kupfer(II)-chlorid 4 Stunden bei 50 °C gerührt. Nach üblicher Aufarbeitung erhält man 2,1 g 3ß-Hydroxy-16a-methyl-5-androsten-17-on vom Schmelzpunkt 137-139 °C.

Beispiel 4

- a) Unter den Bedingungen des Beispiels la) erhält man aus 5 g Östron-3-methyläther nach Kristallisation aus Acetonitril 5,6 g 3-Methoxy-1.3.5(10)-östratricn-17-on-N.N-dimethylhydrazon vom Schmelzpunkt 85-86 °C.
- b) Eine Lösung von 20,4 g 3-Methoxy-1.3.5(10)-östratrien-17-on-N.N-dimethylhydrazon in 200 ml absolutem Tetrahydrofuran wird unter den Bedingungen des Beispiels 1b) metalliert und mit 9,2 ml Bromäthan umgesetzt. Man erhält

-16

20,2 g 16g-Äthyl-3-methoxy-1.3.5(10)östratrien-17-on-N.N-dimethylhydrazon vom Schmelzpunkt 101-103 °C.

c) 20.2 g des zuvor erhaltenen 16c-Nethylhydrazons wird unteg den Bedingungen des Beispiels 1c) umgesetzt. Das so erhaltene Rohprodukt wird in Äthanol gelöst und mit Diisopropyläther kristallisiert. Man erhält 16,0 g 16α-Äthyl-3-methoxy-1.3.5(10)-östratrien-178-on als farbloses Öl.

UV: $\epsilon_{280} = 2 300$.

Beispiel 5

16,0 g 16α-Äthyl-3-methoxy-1.3.5(10)-östratrion-17β-on worden in 200 ml Äthanol gelöst und tropfenweise mit einer Lösung von 2,1 g Natriumborhydrid in 100 ml 80 %iger wässrigem Äthanol unter Eiskühlung versetzt. Man rührt 16 Stunden bei Raumtemperatur, versetzt anschliessend vorsichtig mit ln-Salzsäure, gießt in Wasser und extrahiert mit Essigester. Man erhält nach Kristallisation aus Diisopropyläther 12,2 g 16a-Äthyl-3-methoxy-1.3.5(10)-östratrien-178-ol vom Schmelzpunkt 75-76 °C.

- 17 -

Beispiel 6

2,0 g 16α-Äthyl-3-methoxy-1.3.5(10)-östratrien-17β-ol werden in 20 ml Methylenchlorid gelöst und unter Eiskühlung langsam mit 1,4 g Bortribromid versetzt. Man rührt 3 Stunden unter Eiskühlung, gießt anschließend in gesättigte Natriumhydrogencarbonat-Lösung und extrahiert mit Essigester. Nach Kristallisation aus Aceton erhält man 1,4 g 16α-Äthyl-1.3.5(10)-östratrien-3.17β-diol vom Schmelzpunkt 195-196 °C.

Beispiel 7

- a) Unter den Bedingungen des Beispiels 1b) werden 5 g 3-Methoxy-1.3.5(10)-östratrien-17-on-N.N-dimethylhydrazon mit 2-Brompropan umgesetzt. Man erhält 4,9 g 16α-Isopropyl-3-methoxy-1.3.5(10)-östratrien-17-on-N.N-dimethylhydrazon vom Schmelzpunkt 106-106,5 °C (Acetonitril).
- b) Analog Beispiel 1c) werden aus 4 g 16a-Isopropyl-3methoxy-1.3.5(10)-östratrien-17-on-N.N-dimethylhydrazon
 3,8 g 16a-Isopropyl-3-methoxy-1.3.5(10)-östratrien17-on vom Schmelzpunkt 94-96 °C erhalten.

