Cienc. Tecnol. Agropecuaria, 22(1): e1804 ISSN: 0122-8706 ISSNe: 2500-5308 DOI: https://doi.org/10.21930/rcta.vol22_num1_art:1804

Genética y mejoramiento animal

Artículo de investigación científica y tecnológica

Análisis retrospectivo de caracteres reproductivos en hembras bovinas criollas colombianas Romosinuano

https://orcid.org/0000-0002-5453-2323 Gustavo Alfonso Ossa Saraz¹,

https://orcid.org/0000-0002-6973-2088 Jorge Leonardo López Martínez²,

https://orcid.org/0000-0002-3143-7569 Jorge Humberto Quijano Bernal³,

https://orcid.org/0000-0002-0248-9298 Martha Oliva Santana- Rodríguez^{1*},

https://orcid.org/0000-0002-4127-3510 Jorge Luis Garcés Blanquiceth¹

¹Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA). CI Turipaná. Cereté, Colombia. ²Universidad Politécnica de Valencia. Valencia, España.

³Universidad Nacional de Colombia, sede Medellín, Medellín, Colombia.

*Autor de correspondencia: Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA). CI Turipaná, Edificio Administrativo, oficina 12. Código postal 250047. Colombia. msantana@agrosavia.co

Editor temático: Sonia Daryuby Ospina Hernández (Corporación Colombiana de Investigación Agropecuaria [AGROSAVIA])

Recibido: 04 de febrero de 2020

Aprobado: 26 de noviembre de 2020

Publicado: 29 de abril de 2021

Para citar este artículo: Ossa Saraz, G. A., López Martínez, J. L., Quijano Bernal, J. H., Santana Rodríguez, M. O., & Garcés Blanquiceth, J. L (2021). Análisis retrospectivo de caracteres reproductivos en hembras bovinas criollas colombianas Romosinuano. *Ciencia y Tecnología Agropecuaria*, 22(1), e1804. https://doi.org/10.21930/rcta.vol22_num1_art:1804

Resumen

El objetivo del estudio fue estimar la repetibilidad del intervalo entre partos y establecer la

relación con diferentes caracteres de eficiencia reproductiva de hembras Romosinuano. Una

base de datos con 3.112 registros útiles de 871 hembras, colectados en el periodo 1936-2016,

y provenientes del hato de conservación del Sistema de Bancos de Germoplasma de la Nación

para la Alimentación y la Agricultura, del centro de investigación Turipaná, fue analizada.

El modelo empleado para calcular los componentes de varianza necesarios para estimar el

valor de repetibilidad del intervalo entre partos consistió en un modelo animal de medidas

repetidas en el tiempo. Los componentes de varianza fueron estimados usando paquete rptR

del software R, especializado en el análisis estadístico de datos. Con base en el valor estimado

de la repetibilidad, se calculó y correlacionó el valor genético y la capacidad más probable

de producción para cada hembra. Los valores promedio estimados del intervalo entre partos,

la repetibilidad, la eficiencia reproductiva y la correlación entre el valor genético y la

capacidad más probable de producción fueron 379,74 ± 47,74 días, 0,02 ± 0,01, 96 % y

93,7 %, respectivamente. La repetibilidad estimada para el intervalo entre partos fue baja, lo

que demuestra también una baja correlación entre los intervalos de las hembras del hato

analizado. La alta eficiencia reproductiva de la raza Romosinuano indica una gran adaptación

al medio ambiente y la perfila como una oportunidad de mejora reproductiva del hato

nacional mediante cruzamiento con otras razas.

Palabras clave: modelos animales, parámetros genéticos, recursos genéticos,

repetibilidad, valor genético

Retrospective analysis of reproductive traits in Colombian Romosinuano

creole bovine females

Abstract

The study's objective is to estimate the repeatability of calving intervals and establish its

relationship with different Romosinuano females' reproductive efficiency characteristics.

We analyzed a database with 3,112 useful records of 871 females, collected in 1936-2016

from the Nation's Germplasm Bank System for Food and Agriculture, Turipaná research

center. The model used to calculate the variance components needed to estimate the

repeatability of calving intervals value was an animal model of repeated measures over time.

The variance components were estimated using the rptR package of the R software,

specialized in statistical data analysis. Based on the estimated repeatability value, we

calculated and correlated each female's genetic value and most probable producing ability.

The estimated average values of the calving interval, repeatability, reproductive efficiency,

and correlation between genetic value and most probable producing ability were 379.74 ±

47.74 days, 0.02 ± 0.01 , 96 %, and 93.7 %, respectively. The estimated repeatability for the

calving interval was low, showing a low correlation between the females' calving intervals

of the analyzed herd. The high reproductive efficiency of the Romosinuano breed indicates

great adaptation to the environment, making crossbreeding an opportunity for the national

herd's reproductive efficiency improvement.

Keywords: animal models, genetic parameters, genetic resources, genetic value,

repeatability

Introducción

La eficiencia reproductiva (ER) del hato ganadero bovino colombiano no supera el 53 %

(Santana et al., 2009). Esta baja ER se debe a distintos factores que afectan la fertilidad, como

la nutrición, el manejo ambiental impuesto (Granja et al., 2012; Ossa et al., 2007; Vergara et

al., 2008) y el uso de razas y cruces no adaptados a la oferta ambiental (Galeano & Manrique,

2010; Perdomo et al., 2017), lo que puede conllevar un amplio intervalo entre partos (IEP).

A pesar de que Colombia cuenta con siete razas criollas, entre las que se encuentra la

Romosinuano, que han demostrado una eficiencia reproductiva superior al cebú (De Alba,

2011), se destaca el comportamiento reproductivo exhibido por la primera raza con edad al

primer parto $(1.133 \pm 200 \text{ días})$ y el IEP $(422 \pm 131 \text{ días})$ (Ossa et al., 2013).

El intervalo entre partos es un componente determinante de la eficiencia reproductiva que

expresa la capacidad de la hembra de producir una cría y una lactancia al año; además, está

relacionada con el número de partos sucesivos que el animal es capaz de tener durante su

vida reproductiva (López et al., 2006).

La eficiencia reproductiva de una hembra, en particular, y de la población a la cual pertenece,

en general, es la suma de la fertilidad y de la fecundidad (Ossa, 2003) y puede ser evaluada

mediante el número de servicios por concepción, edad al primer parto, duración de los

intervalos parto-monta y entre partos. El intervalo entre parto-monta afecta directamente la

duración del periodo entre partos y, en consecuencia, el intervalo entre partos (Ossa et al.,

2007; Ríos-Utrera et al., 2013; Vergara et al., 2008). Además, el IEP está influenciado por el

genotipo de los animales, por el mes y año del parto, y por la edad de la madre (Ossa, 2017a),

e interacciones año × estación del año o sexo de la cría × año (Cardellino & Brasil, 1987).

Para calcular la eficiencia reproductiva, Wilcox (1957) propuso una ecuación basada en el

intervalo entre partos.

La eficiencia reproductiva es un carácter de importancia económica en los sistemas de

producción bovina, debido a que un cambio en el comportamiento trae como consecuencia

variación en la rentabilidad del sistema de producción (Casas & Tewolde, 2001; Vergara et

al., 2008). Por lo tanto, el aumento en la eficiencia reproductiva es uno de los retos más

importantes en la ganadería (Galvão et al., 2013). El IEP es el carácter que mayor influencia

tiene sobre el comportamiento reproductivo y posee intensidad de expresiones diferentes

cada vez que son producidos (Cardellino & Brasil, 1987). Adicionalmente, debido a que los

partos ocurren varias veces durante la vida reproductiva de la hembra bovina, y se registra la

fecha cada vez que ocurre el evento de parto, es válido decir que el carácter es repetible.

La varianza de un carácter, en diferentes etapas de vida del animal, puede ser analizada bajo

dos componentes: la varianza dentro de individuos, que mide las diferencias temporales en

el desempeño del mismo individuo, y la varianza entre individuos, que es parcialmente

genética y ambiental, ya que la parte ambiental es causada por circunstancias del medio que

afectan en forma permanente el desempeño del individuo (Ossa, 2003).

La repetibilidad de un carácter en particular mide la correlación existente entre las medidas

repetibles de un mismo carácter en un mismo individuo, teniendo en cuenta las condiciones

ambientales constantes a través del tiempo (Rúales et al., 2007, citado por Galeano &

Manrique, 2010), y tiene una serie de consideraciones, a saber: marca el límite de la

heredabilidad y esta última puede ser igual o menor que aquella, más nunca mayor; cuando

se calcula para la media de un alto número de registros de producción, ofrece mayor

seguridad que cuando es calculada para pocos registros; se usa en la estimativa de la

capacidad más probable de producción (CMPP) del animal, indicando la producción del

animal en el siguiente parto (Ossa, 2003). Los valores de repetibilidad del IEP, reportados en

la literatura por Cardellino y Brasil (1987), Galeano y Manrique (2010) y Yagüe et al. (2009),

son bajos y variaron entre 0,05-0,10.

La repetibilidad, la heredabilidad y las correlaciones genéticas de las poblaciones son

necesarias para estimar el valor genético de los individuos (Quijano et al., 2011) y establecer

programas de mejoramiento genético (Galeano & Manrique, 2010). En razón a la baia

eficiencia reproductiva (Vergara et al., 2008), que a su vez disminuye la rentabilidad de la

ganadería (Martínez-Rocha et al., 2012) y los escasos estudios en ganado de carne

relacionados con la evaluación genética de parámetros reproductivos (Montes et al., 2009),

el objetivo de este trabajo consistió en estimar la repetibilidad del intervalo entre partos y

establecer la relación con la eficiencia reproductiva de las hembras del banco de

germoplasma de la Nación para la Alimentación y la Agricultura (SBGNAA) de la raza

criolla Romosinuano, en el Centro de Investigación Turipaná de AGROSAVIA, utilizando

registros de 81 años (1936 a 2016).

Materiales y métodos

La información utilizada en este estudio se obtuvo de los registros reproductivos de las vacas

de la raza criolla colombiana Romosinuano del SBGNAA, núcleo que conserva

AGROSAVIA en el centro de investigación Turipaná, localizado en el Valle del Sinú, en el

nordeste de Colombia.

La base de datos comprende el registro informativo del carácter intervalo entre partos, cuya

información se generó en el periodo comprendido entre 1936 y 2016. Para que la información

empleada en el análisis fuera veraz y consistente, se eliminaron los días entre partos que

estuvieran fuera del rango considerado normal (de 300 a 1.278 días), mediante el uso del

paquete dplyr (Wickham et al., 2019) del software R 3.6.0 (R Core Team, 2019),

especializado en el análisis estadístico de datos; luego de la edición de la información, el

86,9 % del número total de registros fue útil.

Con la variable mes de parto fueron formadas cuatro clases. De igual forma, la variable año

de parto de la hembra bovina se agrupó en periodos de diez años, formando ocho clases de

año de parto, con el fin de tener una mejor representación de la variable intervalo entre partos

en cada clase de mes y año de parto, puesto que, al considerar cada una de las variables por

separado, era escasa la información. En este sentido, a excepción de los partos del primero al

sexto, fue necesario agrupar los partos siete y ocho en una misma clase (séptimo parto), y los

partos iguales o mayores a nueve en una clase denominada octavo parto. Las variables

consideradas en el estudio se describen en la tabla 1.

Tabla 1. Descripción de las variables intervalo entre partos, clase mes de parto, clase año de

parto y número de parto analizados

Nombre Registrada entre 300 días (valor mínimo) y 826 días (valor máximo). Intervalo entre partos Clase mes de parto Formada por enero a marzo clase uno, abril a junio clase dos, julio a septiembre clase tres, octubre a diciembre clase cuatro. Formada por 1936 a 1945 clase uno, 1946 a 1955 clase dos, ..., 2006 a 2016 clase ocho. Clase año de parto Número de parto Formada por parto uno como primer parto, parto dos como segundo parto, ..., partos siete y ocho como séptimo parto, partos mayores a nueve como octavo parto.

Fuente: Elaboración propia

El modelo empleado para calcular los componentes de varianza, necesarios para estimar el

valor de repetibilidad de la característica intervalo entre partos, consistió en un modelo

Cienc. Tecnol. Agropecuaria, 22(1): e1804

animal de medidas repetidas en el tiempo, cuya forma escalar se puede representar de la

siguiente forma:

$$y_{ijkl} = MP_i + AP_j + NP_k + a_l + p_l + e_{ijkl}$$
 Ecuación 1

Donde y_{ijkl} corresponde al intervalo entre partos de la hembra bovina l, considerándose los

efectos fijos de clase mes de parto (MP), clase año de parto (AP) y orden de parto (NP). Los

efectos aleatorios considerados corresponden al valor genético aditivo (a_l) de la hembra

bovina l para el intervalo entre parto, al efecto de ambiente permanente (p_l) de la hembra

bovina l sobre el intervalo entre parto en sus diversos partos, y el efecto residual (e_{ijkl}) . Este

modelo asume que el efecto de los genes sobre la característica en una misma hembra bovina

no cambia con el orden de parto, y que el ambiente permanente afecta por igual a cada una

de las medidas tomadas en el mismo animal.

La forma matricial del modelo de repetibilidad se puede representar de la siguiente forma:

$$y = Xb + Z_1a + Z_2p + e Ecuación 2$$

Donde y es el vector de intervalo entre parto; b es el vector de solución de efectos fijos; a es

un vector desconocido de efectos aleatorios genéticos aditivos; p es un vector desconocido

de efectos del ambiente permanente; X, Z_1 y Z_2 son las matrices de incidencia desconocidas

que relacionan los registros con los efectos fijos (b), genéticos aditivos (a) y de ambiente

permanente (p), respectivamente, y e es el vector de efectos residuales.

Los valores esperados (E) y las varianzas (v) para los efectos aleatorios del modelo empleado

son los siguientes:

$$E\begin{bmatrix} a \\ p \\ e \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \qquad v\begin{bmatrix} a \\ p \\ e \end{bmatrix} = \begin{bmatrix} A \otimes \sigma_a^2 & 0 & 0 \\ 0 & I_N \otimes \sigma_{ep}^2 & 0 \\ 0 & 0 & I_n \otimes \sigma_n \end{bmatrix}$$

Ecuación 3

Donde A es la matriz de parentesco entre todos los bovinos en el pedigrí, \otimes es el producto

Kroenecker entre matrices, σ_a^2 es la varianza genética aditiva, I_N es la matriz identidad de

tamaño igual al número de vacas, σ_{ep}^2 es la varianza del ambiente permanente, I_n es la matriz

de identidad de tamaño igual al número de observaciones, y σ_a^2 es la varianza residual.

Mediante el uso del paquete rptR (Stoffel et al., 2019) del software R especializado en el

análisis estadístico de datos, se estimó el valor de repetibilidad de la característica intervalo

entre partos. Además de estimar dicho valor, este paquete ofrece la oportunidad de

cuantificar la incertidumbre en los valores estimados de repetibilidad (Stoffel et al., 2017),

mediante el uso del método de bootstrap.

Usando los componentes de varianza estimados mediante el paquete estadístico descrito

anteriormente, se calculó el valor genético de cada bovino, con base en la ecuación 4 (Quijano

& Echeverri, 2015; Ossa, 2017b):

$$VG = h^2 x(X_1 - \bar{X})$$
 Ecuación 4

Donde VG es el valor genético, X_I es el promedio del intervalo entre partos de cada bovino, \bar{X} es el promedio del intervalo entre partos en la población evaluada, y h^2 es la heredabilidad estimada del intervalo entre partos (valor asumido como igual a 0,02), cuya expresión se describe como σ_G^2/σ_p^2 , siendo σ_G^2 y σ_p^2 la varianza genética y fenotípica, respectivamente.

Posterior a la estimación del valor de repetibilidad, fue calculada para cada hembra bovina su capacidad más probable de producción (CMPP), cuya fórmula se describe en la ecuación 5.

$$CMPP = \bar{X_h} + \frac{nxR}{1 + (n-1)xR}x(\bar{X_t} - \bar{X_h})$$
 Ecuación 5

Donde CMPP es la capacidad más probable de producción, $\bar{X_h}$ el promedio de la población evaluada, R la repetibilidad estimada del carácter, y $\bar{X_t}$ el promedio de los registros repetidos.

La confiabilidad o precisión de estimación (P_{CMPP}) de la capacidad más probable de

producción está dada por la siguiente expresión:

$$P_{CMPP} = \frac{nxR}{1 + (n-1)xR}$$
 Ecuación 6

Se estableció la correlación lineal entre la capacidad más probable de producción y el valor

genético, clasificando inicialmente los bovinos respecto al valor obtenido en ambos

parámetros (de mayor a menor), procediendo después a calcular la correlación de Spearman

entre dicha clasificación. Por último, fue calculada la eficiencia reproductiva de las hembras

bovinas de la raza Romosinuano, mediante la fórmula planteada por Wilcox (1957),

enunciada en la ecuación 7.

$$ER_{Wilcox} = 365x \frac{(n-1)}{D} x100$$
 Ecuación 7

Donde ER_{Wilcox} es la eficiencia reproductiva según Wilcox, n es el número total de partos de

la hembra bovina, y D es la edad (en días) entre el último y el primer parto.

Resultados y discusión

La repetibilidad para el intervalo entre partos de las hembras bovinas de la raza criolla

Romosinuano, pertenecientes al SBGNAA en el centro de investigación Turipaná, fue 0,02

± 0,01 (tabla 2). El valor de la estimativa fue bajo, lo que indica una correlación baja entre

los intervalos de partos de las hembras; además, como el error estándar fue inferior a la

estimativa de la repetibilidad, los resultados obtenidos en el estudio se pueden utilizar de

forma confiable.

Teniendo en consideración que el valor de la estimativa de repetibilidad fue bajo, para

mejorar el intervalo entre partos basado en esta se tendrían que considerar los efectos

ambientales; por lo tanto, solo se deberían descartar aquellas hembras que presenten

intervalos entre partos superiores a 730 días.

Tabla 2. Estimado de repetibilidad e incertidumbre asociada al valor estimado, para la

variable intervalo entre partos de hembras bovinas de la raza criolla colombiana

Romosinuano

Valor estimado Parámetro genético Repetibilidad ± error estándar $0,02 \pm 0,01$ Incertidumbre asociada al valor estimado de repetibilidad¹ [0; 0, 05] Número diferente de registros promedio por individuo 3,57

¹Intervalo de confianza para la repetibilidad, estimada mediante 1.000 iteraciones de

bootstrap y asumiendo distribución gaussiana del intervalo entre partos

Fuente: Elaboración propia

El valor estimado de repetibilidad del intervalo entre partos en este trabajo coincide en su

categoría baja con los hallados por otros autores y en otras razas, así: 0,05, en hato Brahman

Cienc. Tecnol. Agropecuaria, 22(1): e1804

(Peña et al., 1979); 0.06 ± 0.02 , en cebú (Magaña et al., 2002); 0.09, en hembras negras

japonesas (Oyama et al., 2002); 0,082, en hembras de raza Rubia Gallega (Yagüe et al.,

2009); 0.082 ± 0.07 , en ganado Brahman (Osorio & Segura, 2010); 0.08 ± 0.01 en hembras

utilizadas en un sistema de doble propósito (Galeano & Manrique, 2010); 0,0448 ± 0,0434,

en ganado de carne de los grupos genéticos Angus × Nelore, Caracú × Nelore, y Valdostana

× Nelore (Silva et al., 2015).

La repetibilidad es un parámetro de gran utilidad, dadas las circunstancias de nuestros

sistemas de producción bovina, pues su gran falencia es la falta de registros. Para la

estimación de este parámetro, no es necesario tener una población estructurada con base en

grupos de medios hermanos paternos, artificio matemático esencial para estimar la

heredabilidad y, con base en ello, estimar el valor genético de los animales para un carácter

en particular, ya que la repetibilidad marca el límite de la heredabilidad. Esto permite estimar

el más probable valor genético de los animales, cuya expresión es $PVG = h^2x(X_i - X_h)$

(Quijano & Echeverri, 2015). De esta manera, y a partir del cálculo de este último parámetro,

es posible ordenar los animales por su mérito genético, lo cual permite tomar decisiones con

mayor probabilidad de éxito.

Como la repetibilidad marca el límite de la heredabilidad, esta puede ser menor o igual que

aquella, pero nunca mayor; por lo tanto, del estudio se puede inferir que la heredabilidad

puede tener un valor máximo de 0,02 o menor que este, siendo muy semejante al valor

estimado (0.04 ± 0.02) para dicho carácter en la misma raza, en un periodo de tiempo más

corto y con menor número de registros por (Ossa et al., 2007). Por tal motivo, se infiere que

la heredabilidad puede tener un valor máximo de 0,02 o menor que este. Además, se puede

afirmar que la heredabilidad del intervalo entre partos en vacas Romosinuano evaluadas es

igual a 0,02, lo que significa que la variación del carácter en la población depende del 2 %

de las variaciones de los genotipos entre los individuos y en 98 % de otras variaciones. Así,

si se desea mejorar dicho carácter, es importante considerar cuál de los factores ambientales

(por ejemplo, año, mes o número de parto) lo afectan en forma significativa y, con base en

ello, proponer programas de manejo que induzcan a mejorar dicho carácter.

La clasificación de las diez mejores y peores hembras del hato se muestra en la tabla 3. Nótese

que las vacas mejores presentan un intervalo entre partos menor que $379,74 \pm 47,74$ que es

el promedio de la población y, en consecuencia, un valor genético negativo. En cambio, las

consideradas en el grupo de las peores presentan una mejor capacidad más probable de

producción, dada por un intervalo entre partos mayor que el promedio de la población y, en

consecuencia, un valor genético positivo.

Tabla 3. Clasificación de las diez mejores y peores hembras bovinas de la raza Romosinuano, según su capacidad más probable de producción (CMPP) relativa a la variable *intervalo entre parto* y su respectivo valor genético (VG)

Mejores hembras bovinas					Peores hembras bovinas				
Vaca	Num. Partos	CMPP	Precisión (CMPP)	VG	Vaca	Num. Partos	CMPP	Precisión (CMPP)	VG
1.394	7	372,25	0,12	-1,15	1.985	5	384,58	0,09	3,08
5	6	373,91	0,11	-1,01	1.557	5	384,80	0,09	6,68
1.403	7	374,02	0,12	-0,87	958	4	384,81	0,08	6,41
1.913	5	374,30	0,09	-1,11	1.624	6	384,86	0,11	4,68
1.451	7	374,59	0,12	-0,77	1.448	7	385,34	0,12	8,62
1.480	5	374,82	0,09	-1,00	1.355	6	385,38	0,11	6,60
1.524	7	374,82	0,12	-0,74	1.242	3	385,42	0,06	7,69
1.417	6	374,87	0,11	-0,84	2.119	3	385,62	0,06	7,12
1.508	5	375,02	0,09	-0,95	1.837	5	385,76	0,09	6,57
1.337	4	375,25	0,08	-1,11	1.986	5	386,43	0,09	8,79

Fuente: Elaboración propia

Al momento de utilizar estos parámetros para la selección, es posible realizarla mediante la capacidad más probable de producción o por el valor genético, debido a la correlación alta y positiva obtenida entre ambos parámetros (\sim 0,94 con valor $p < 2,2 \times 10^{-16}$), como bien puede observarse en la figura 1, coincidiendo con los resultados obtenidos por Quijano y Echeverri (2015).

Cienc. Tecnol. Agropecuaria, 22(1): e1804

Figura 1. Correlación entre los valores obtenidos para la capacidad más probable de producción y los valores genéticos para la variable *intervalo entre parto* de hembras bovinas de la raza criolla colombiana Romosinuano. Las gráficas de densidad muestran la distribución presentada por estos dos parámetros

Fuente: Elaboración propia

La capacidad más probable de producción permite predecir en este caso el intervalo entre partos de la hembra bovina, en consideración del siguiente evento. Por lo tanto, este puede ser un buen indicativo para el descarte de hembras con intervalos entre partos mayores al

Cienc. Tecnol. Agropecuaria, 22(1): e1804

DOI: https://doi.org/10.21930/rcta.vol22_num1_art:1804

promedio de la población, con el objetivo de mejorar dicho carácter, hasta conseguir una

buena estructuración de los registros que permitan realizar análisis más rigurosos.

La clasificación de las 871 hembras analizadas de acuerdo con su eficiencia reproductiva se

muestra en la tabla 4. La primera clase varió entre 53 % y 57 %, lo que indica una eficiencia

reproductiva promedio del 55 %. Esto es un intervalo entre partos de 663,636 días (resultado

obtenido mediante el cálculo de 365/0,55). Dos vacas presentaron una eficiencia reproductiva

entre 118 % a 122 %, dando un intervalo entre partos promedio de 304,17 días (365/1,20).

La mayor concentración de eficiencia reproductiva fue entre el 88 % y el 107 %,

correspondientes al 75 % de las hembras, cuyos intervalos entre partos variaron entre 414,77

y 341,12 días. La eficiencia reproductiva general en el periodo analizado fue del 96 %

(365/379,74), es decir, de 100 vacas expuestas a toro, se produjeron 96 crías.

Tabla 4. Clases de eficiencia reproductiva en las cuales se agruparon las hembras bovinas de la raza criolla colombiana Romosinuano con las respectivas frecuencias

Clases de eficiencia reproductiva	Frecuencia absoluta	Frecuencia relativa
53 – 57	2	0,002
58 – 62	1	0,001
63 – 67	3	0,003
68 – 72	8	0,009
73 – 77	16	0,018
78 – 82	41	0,047
83 – 87	65	0,075
88 – 92	113	0,130
93 – 97	160	0,184
98 – 102	248	0,285
103 – 107	129	0,148
108 – 112	66	0,076
113 – 117	17	0,020
118 – 122	2	0,002
Total	871	1

Fuente: Elaboración propia

Uno de los caracteres más destacados de la raza Romosinuano es su grado de adaptación al lugar de origen, el Valle del Sinú, debido a su alta capacidad reproductiva, medida en este caso por la eficiencia reproductiva. Cabe mencionar que dicha adaptación no es solamente reproductiva, sino también en su capacidad de supervivencia a dicho medio.

Cienc. Tecnol. Agropecuaria, 22(1): e1804

Conclusiones

De acuerdo con el análisis efectuado en este trabajo se puede concluir lo siguiente:

• La repetibilidad del intervalo entre partos en las hembras de la raza Romosinuano del

hato evaluado fue baja, indicando una baja correlación entre los registros de las vacas

individualmente.

• En las evaluaciones realizadas en hembras del SBGNAA, se evidenció que la

capacidad más probable de producción se torna más confiable a medida que la hembra

produce más partos.

Las hembras del SBGNAA en Turipaná presentaron una alta eficiencia reproductiva

del 96 %, dando un valor promedio de intervalo entre partos de 379,74 días, lo que

indica la alta eficiencia de las hembras Romosinuano y, por lo tanto, la adaptación al

valle del Sinú. De esta manera, se constituye en una alternativa para la mejora de esta

característica en el hato nacional, si se usa en cruzamiento con otras razas.

• Las hembras pueden ser seleccionadas por su eficiencia reproductiva o la capacidad

más probable de producción, dada la alta correlación existente entre estas.

Agradecimientos

Este artículo se deriva de los resultados e información obtenidos en desarrollo del proyecto

Generación de recomendaciones técnicas basadas en el confort y el bienestar animal para

mejorar la fertilidad de los bovinos en el trópico, ejecutado por la Corporación Colombiana

de Investigación Agropecuaria (AGROSAVIA), en el marco de la Agenda Dinámica

Corporativa, financiado por el Ministerio de Agricultura y Desarrollo Rural (MADR).Los

autores agradecen a todas las personas que participaron en el proyecto. El origen de los datos

es el SBGNAA.

Descargos de responsabilidad

Todos los autores realizaron aportes significativos al documento, están de acuerdo son su

publicación y manifiestan que no existen conflictos de interés en este estudio.

Referencias

Cardellino, A., & Brasil, S. (1987). Parámetros genéticos do intervalo entre partos em da raça Nelore.

Pesquisa Agropecuária Brasileira, Brasilia, 22(3), 305-310.

https://seer.sct.embrapa.br/index.php/pab/article/view/14329/8241

- Casas, E., & Tewolde, A. (2001). Evaluación de características relacionadas con la eficiencia reproductiva de genotipos criollos de ganado de carne en el trópico húmedo. *Archivos Latinoamericanos de Producción Animal*, 9(2), 68-73.
- De Alba, J. (2011). Romosinuano de Colombia. En J. de Alba Martínez & S. A. Papiro Omega (Ed.), El libro de los bovinos criollos de América (pp. 193-239). Mundiprensa.
- Galeano, A., & Manrique, C. (2010). Estimación de parámetros genéticos para características productivas y reproductivas en los sistemas doble propósito del trópico colombiano. *Revista de la Facultad de Medicina Veterinaria y de Zootecnia*, 57(2), 119-131. https://revistas.unal.edu.co/index.php/remevez/article/view/17342/20017
- Galvão, K., Federico, P., De Vries, A., & Scheunemann, G. (2013). Economic comparison of reproductive programs for dairy herds using estrus detection, timed artificial insemination, or a combination. *Journal of Dairy Science*, 96(4), 2681-2693. https://doi.org/10.3168/jds.2012-5982
- Granja, Y., Cerquera, J., & Fernández, O. (2012). Factores nutricionales que interfieren en el desempeño reproductivo de la hembra bovina. *Revista Colombiana de Ciencia Animal*, 4(2), 458-472. https://doi.org/10.24188/recia.v4.n2.2012.227
- López, B., Esperón, S., Palma, G., Carmona, M., & Contreras, A. (2006). *Distribución de partos e intervalo entre ellos en dos sistemas de explotación*. Portal Veterinaria. https://www.portalveterinaria.com/rumiantes/articulos/2853/%20distribucion-de-partos-e-intervalo-entre-ellos-en-dos-sistemas-de-explotacion.html
- Magaña, J., Delgado, R., & Segura, J. C. (2002). Factores ambientales y genéticos que influyen en el intervalo entre partos y el peso al nacer del ganado Cebú en el sureste de México. Revista Cubana de Ciencia Agrícola, 36(4), 317-322.
 http://redalyc.uaemex.mx/src/inicio/ArtPdfRed.jsp?iCve=193018080001

- Montes, D., Barragán, W., & Vergara, O. (2009). Parámetros genéticos de características productivas y reproductivas para el Ganado tipo carne en Colombia. *Revista Colombiana de Ciencia Animal*, 1(2), 302-318. http://redalyc.uaemex.mx/src/inicio/ArtPdfRed.jsp?iCve=193018080001
- Martínez-Rocha, J., Gallego, V., Vásquez, R., Pedraza, J., Echeverri, J., Ceron-Muñoz, M., & Martínez, R. (2012). Estimación de parámetros genéticos para edad al primer parto e intervalo entre partos en bovinos de la raza Blanco Orejinegro (BON) en Colombia. *Revista Colombiana de Ciencias Pecuarias*, 25, 220-228. https://aprendeenlinea.udea.edu.co/revistas/index.php/rccp/article/view/324749/20782153
- Osorio, M., & Segura, J. C. (2010). Efectos raciales y ambientales sobre edad al primer parto e intervalo entre partos de vacas Brahman y sus cruces en el trópico-húmedo de México.

 Livestock Research** for Rural** Development, 22(148), 11.

 http://www.lrrd.org/lrrd22/8/osor22148.htm
- Ossa, G. (2003). Mejoramiento genético aplicado a los sistemas de producción de carne. Produmedios.
- Ossa, G. A. (2017a). Herencia y medio ambiente. En *Mejoramiento genético aplicado a los sistemas* de producción de carne (p. 61). Universidad Nacional de Colombia.
- Ossa, G. A. (2017b). Revisión básica de estadística. En *Mejoramiento genético animal aplicado a los sistemas de producción de carne* (p. 52). Universidad Nacional de Colombia.
- Ossa, G., David, A., Santana, M., Reza, S., Pérez, J., & Abuabara, Y. (2013). Formación, desarrollo y características fenotípicas de los caracteres productivos y reproductivos del hato Romosinuano del banco de germoplasma de Colombia. *Corpoica Ciencia y Tecnología Agropecuaria*, 14(2), 231-243. https://doi.org/10.21930/rcta.vol14_num2_art:503

DOI: https://doi.org/10.21930/rcta.vol22_num1_art:1804

- Ossa, G., Suárez, M., & Pérez, J. (2007). Factores ambientales y genéticos que influyen la edad al primer parto y el intervalo entre partos en hembras de la raza criolla Romosinuano. *Corpoica Ciencia y Tecnología Agropecuaria*, 8(2), 74-80.

 https://doi.org/10.21930/rcta.vol8_num2_art:97
- Oyama, K., Katsuta, T., Anada, K., & Mukai, F. (2002). Heritability and repeatability estimates for reproductive traits of Japanese black cows. *Asian-Australasian Journal of Animal Sciences*, 15(12), 1680-1685. https://doi.org/10.5713/ajas.2002.1680
- Peña, N., Verde, O., & Plasse, D. (1979). Repeatability of calving intervals in Brahman cows. *Journal of Animal Science*, 49(2), 374-377. https://doi.org/10.2527/jas1979.492374x
- Perdomo, M., Peña, L., Carvajal, J., & Murillo, L. (2017). Relación nutrición-fertilidad en hembras bovinas en clima tropical. *REDVET. Revista Electrónica de Veterinaria*, 18(9), 1-19. https://www.redalyc.org/articulo.oa?id=63653009019.
- Quijano, J. H., & Echeverri, J. J. (2015). Heredabilidad. *Genética cuantitativa aplicada al mejoramiento animal*. Universidad Nacional de Colombia.
- Quijano, J. H., Echeverri, J. J., & López, A. (2011). Evaluación genética de toros Holstein y Jersey en condiciones tropicales. Universidad Nacional de Colombia.
- R Core Team (2019). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org/
- Ríos-Utrera, Á., Hernández-Hernández, V., Villagómez Amezcua-Manjarrez, E., & Zárate-Martínez, J. (2013). Heredabilidad de características reproductivas de Vacas Indubrasil. *Agronomía Mesoamericana*, 24(2), 293-300. https://www.scielo.sa.cr/pdf/am/v24n2/a06v24n2.pdf
- Silva, L., Gasparino, E., Torres, A., Euclides Filho, K., Silva, L., Alencar, M., Souz, M. D., Battistelli, J. V., & Silva, S. (2015). Repeatability and genotypic correlations of reproductive and

DOI: https://doi.org/10.21930/rcta.vol22_num1_art:1804

- productive traits of crossbred beef cattle dams. *Genetic and Molecular Research*, *14*(2), 5310-5319. http://dx.doi.org/10.4238/2015.May.22.1
- Santana D., A., Camacho G, C., García G., G., Gutiérrez E., J., Estévez M., L., Gómez V., M., & Rozo Camargo, M. (2009). *Agenda prospectiva de investigación y desarrollo tecnológico para la cadena cárnica bovina en Colombia. Bogotá, Colombia.* Ministerio de Agricultura y Desarrollo Rural. https://isbn.cloud/9789588536064/agenda-prospectiva-de-investigacion-y-desarrollo-tecnologico-para-la-cadena-carnica-bovina-en-co/
- Stoffel, M., Nakagawa, S., & Schielzeth, H. (2019). rptR: Repeatability Estimation for Gaussian and Non-Gaussian Data. https://github.com/mastoffel/rptR
- Stoffel, M. A., Nakagawa, S., & Schielzeth, H. (2017). rptR: repeatability estimation for gaussian and non-gaussian data. *Methods in Ecology and Evolution*, 8(11), 1639-1644. https://doi.org/10.1111/2041-210X.12797
- Vergara, O., Cerón, M., Hurtado, N., Arboleda, E; Granada, J., & Rúa, C. (2008). Estimación de la heredabilidad del intervalo de partos en bovinos cruzados. *Revista MVZ Córdoba*, 13(1), 1192-1196. http://www.scielo.org.co/pdf/mvz/v13n1/v13n1a10.pdf
- Wickham, H., François, R., Henry, L., & Müller, K. (2019). dplyr: a grammar of data manipulation. https://github.com/tidyverse/dplyr
- Wilcox, C. J. (1957). An investigation of the inheritance of female reproductive performance and longevity and their interrelationship with a Holstein Friesian herd. *Journal of Dairy Science*, 40(8), 924-947. https://doi.org/10.3168/jds.S0022-0302(57)94578-2
- Yagüe, G., Goyache, F., Becerra, J., C., Sánchez, L., & Altarriba J. (2009). Bayesian estimates of genetic parameters for pre-conception traits, gestation length and calving interval in beef cattle.
 Animal Reproduction Science, 114(1-3), 72-80.
 https://doi.org/10.1016/j.anireprosci.2008.09.015