Implementing Molecular Hydrophobicity Potential Measurment for the Analysis of Dynamic Biomolecular Interactions

Peleg Bar Sapir¹

Under supervision of Prof. Maria Andrea Mroginski²

¹Freie Universität Berlin ²Techniche Universität Berlin

February 18, 2018

Molecular Hydrophobicity Potential

Pelg Bar Sapir

troduction

Hydrophobicity and log P Partition Coefficient

Hydrophob Potential

What is it?

Potential

General form

Force Constants

Surface

Solvent accesible surface Evenly distributed points

Prograi

Vhat are we interested in?

Result

Validation via Known log p

An Example System

Outline Introduction

Hydrophobicity and log P Partition Coefficient

Molecular Hydrophobicity Potential

What is it?

Potential

General form

Force Constants

Distance function

Surface

Solvent accesible surface

Evenly distributed points

Integration

Program

What are we interested in?

Program Specifications

Results

Validation via Known log p Values

An Example System

Molecular Hydrophobicity Potential

Pelg Bar Sapir

troduction

Partition Coefficient

lolecular

ydrophobicity otential

hat is it?

Potential

General forn

Force Constants

urface

Evenly distributed points Integration

rogram

at are we interested in? ogram Specifications

Result

4 ロ ト 4 倒 ト 4 豆 ト 4 豆 ト 9 9 9 9

Values

An Example Syste

Hydrophobicity and log P

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log P

Partition Coefficient

Molecular

Hydrophob Potential

hat is it?

Potential

General form

Distance function

Surface

Solvent accesible surface

Evenly distributed points Integration

Prograi

What are we interested in? Program Specifications

Result

Validation via Known log p Values

An Example Systen

Hydrophilic/Hydrophobic Interactions

Molecular Hydrophobicity Potential

Pelg Bar Sapir

ntroduction

Hydrophobicity and log P

Partition Coefficient

Molecula

Hydrophobicity Potential

What is i

Conoral f

- 0 .

Poice Constants

Surface

Surface

Evenly distributed point

Prograi

What are we interested in? Program Specifications

Results

Validation via Known log Values

An Example System

Definition

The ratio of concentrations of a compound in a mixture of two immiscible phases at equilibrium

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Definition

The ratio of concentrations of a compound in a mixture of two immiscible phases at equilibrium

Commonly used: water and octanol

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Definition

The ratio of concentrations of a compound in a mixture of two immiscible phases at equilibrium

- Commonly used: water and octanol
- Can be measured at an ionized or unionized state

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Definition

The ratio of concentrations of a compound in a mixture of two immiscible phases at equilibrium

- Commonly used: water and octanol
- Can be measured at an ionized or unionized state

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Definition

The ratio of concentrations of a compound in a mixture of two immiscible phases at equilibrium

- Commonly used: water and octanol
- Can be measured at an ionized or unionized state

$$\qquad \log P_{\text{octanol/water}} = \log \left(\frac{[\text{solute}]_{\text{water}}}{[\text{solute}]_{\text{octanol}}} \right)$$

ightharpoonup Hydrophobicity increases with the (common) $\log P$

Molecular Hydrophobicity Potential

Pelg Bar Sapir

What is Molecular Hydrophobicity Potential (MHP)?

▶ By measuring the log P of many (ca. 30,000) compounds¹, single atoms can be assigned local "force" values.

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log P Partition Coefficient

> Molecular Hydrophobicity Potential

What is it?

Potential

General form

Force Constants

urface

olvent accesible su

Evenly distributed points Integration

rogram

hat are we interested in rogram Specifications

Results

Validation via Known log p Values

ın Example Syster

¹Ghose et al, J. Phys. Chem. A 1998, 102, 3762-3772 () → () → ()

What is Molecular Hydrophobicity Potential (MHP)?

- ▶ By measuring the log *P* of many (ca. 30,000) compounds¹, single atoms can be assigned local "force" values.
- Combining these values with a distance-depended decay function, a potential can be constructed.

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log P Partition Coefficient

> Molecular Hydrophobicity

What is it?

Potential

General form Force Constants

Surface

Solvent accesible surface Evenly distributed points

rogram

at are we interested in?

Results

Validation via Known log p

An Example Syster

¹Ghose et al, J. Phys. Chem. A 1998, 102, 3762-3772 () → () → () → ()

What is Molecular Hydrophobicity Potential (MHP)?

- ▶ By measuring the log *P* of many (ca. 30,000) compounds¹, single atoms can be assigned local "force" values.
- Combining these values with a distance-depended decay function, a potential can be constructed.
- ▶ This potential predicts the local $\log P$ behaviour of fragments of a molecule.

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log P Partition Coefficient

> Molecular Hydrophobicity

What is it?

Potential

General form Force Constants

Surface

Solvent accesible surface Evenly distributed points

rogran

nat are we interested in?

Results

Validation via Known log p

n Example Systen

¹Ghose et al, J. Phys. Chem. A 1998, 102, 3762-3772 () → ()

$$\mathsf{MHP}\left(\mathbf{x}'\right) = \sum_{i=1}^{k} \left[f_i \cdot D\left(\mathbf{x} - \mathbf{x}'_i\right) \right]$$

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log P Partition Coefficient

Molecular Hydrophobicity

What is it?

General form

orce Constants

Distance fu

Solvent accesible surface

Evenly distributed points Integration

Progra

what are we interested in?
Program Specifications

Resul

Validation via Known log

An Example Syster

Summing over all atoms

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log F Partition Coefficient

Iolecular Ivdrophobic

ydrophobici otential

Potential

General form

Force Constants

Distance function

Surface

Solvent accesible surface Evenly distributed points Integration

Progra

What are we interested in Program Specifications

Resul

Validation via Known log p Values

An Example Syster

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log F Partition Coefficient

1olecular Ivdrophobi

otential

otential

General form

orce Constants

OICE CONSIGNS

Distance function

Surface

Solvent accesible surface Evenly distributed points Integration

Prograi

/hat are we interested in? rogram Specifications

Result

Validation via Known log p Values

An Example Syste

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log F Partition Coefficient

olecular /drophobicit

otential /hat is it?

Potential

General form

oroo Constants

Pieters for the

Surface

Solvent accesible surface Evenly distributed points

Progran

/hat are we interested in? rogram Specifications

Results

Validation via Known log p Values

Force Constants - Carbon

Molecular Hydrophobicity Potential

Pelg Bar Sapir

ntroduction

Hydrophobicity and log P Partition Coefficient

olecular

drophobicity ential at is it?

General form Force Constants

Distance fund

Solvent acces

ivenly distributed pointegration

rogran

nat are we interested in ogram Specifications

Result

√alidation via Known log μ √alues

Carbon atom contribution to hydrophobicity²

Type	Description	f_i value
	Carbon in:	
1	$\mathrm{CH_{3}R}$	-1.5603
3	CHR_3	-0.6681
7	CH_2X_2	-1.0305
13	RCX_3	0.7894
17	$=CR_2$	0.0383
24	RCHR	-0.3251
25	RCRR	0.1492
26	RCXR	0.1539

²Source: Ghose et al, J. Phys. Chem. A 1998, 102, 3762-3772

Force Constants - Hydrogen

Hydrogen atom contribution to hydrophobicity³

Type	Description	f_i value
	Hydrogen attached to:	
46	$\overline{\mathrm{C_{sp^3}}$, no X in $lpha$	0.7341
47	$ m C_{sp}^2$	0.6301
50	X	-0.1036
52	$\mathrm{C}_{\mathrm{sp^3}}$, 1 X in $lpha$	0.6666
54	C_{sp^3} , 3 X in α	0.6338

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Force Constants

³Source: Ghose et al, J. Phys. Chem. A 1998, 102, 3762-3772

Force Constants - Oxygen

Oxygen atom contribution to hydrophobicity⁴

Type	Description	f_i value
	Oxygen in:	
56	Alcohol	-0.3567
57	Phenol, enol, carboxyl OH	-0.0127
58	Ketone	-0.0233
61	Nitro, N-oxides	1.0520
62	O_{-}	-0.7941

Molecular Hydrophobicity Potential

Pelg Bar Sapir

ntroduction

Hydrophobicity and log P Partition Coefficient

olecular drophobicit

hat is it?

otential

Force Constants

ristance tui irface

Solvent accesible surfa
Evenly distributed poin

rogram /hat are we interested in

rogram Specifications

Resul

Validation via Known log p

n Example Systen

⁴Source: Ghose et al, J. Phys. Chem. A 1998, 102, 3762-3772

Force Constants - Various

Various atom contribution to hydrophobicity⁵

Type	Description	f_i value
66	Primary amine	-0.5427
67	Secondary amine	-0.3168
81	F attached to $\mathrm{C}_{\mathrm{sp^3}}$	0.4797
106	S in R-SH (thiol)	1.0520
119	$P \text{ in } PR_3 \text{ (phosphine)}$	-0.7941

Molecular Hydrophobicity Potential

Pelg Bar Sapir

ntroduction

Hydrophobicity and log P Partition Coefficient

drophobicity

What is it? Potential

General form

Force Constants

Distance Iu urface

Solvent accesible surface Evenly distributed points

rogram

What are we interested in

Result

Validation via Known log p

⁵Source: Ghose et al, J. Phys. Chem. A 1998, 102, 3762-3772

ın Example Syster

notarioo rariotic

Audry form

Exponential decay form

$$D\left(x\right) = \frac{1}{1+x}$$

$$D\left(x\right) = e^{-\alpha x}$$

Molecular Hydrophobicity Potential

Pelg Bar Sapir

ntroduction

Hydrophobicity and log P Partition Coefficient

olecular ydrophobicit

hat is it?

Ceneral form

orce Constants

Distance function

Surface

Solvent accesible surface Evenly distributed points Integration

Progran

/hat are we interested in? rogram Specifications

Result

Validation via Known log p Values

An Example Syste

Solvent accesible surface

The surface around a molecule accesible to solvent molecules

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log P Partition Coefficient

Molecular Hydrophob

lydrophobi otential

Vhat is it?

General form

orce Constants

Distance function

Surface

Solvent accesible surface

Evenly distributed points Integration

Program

What are we interested in?
Program Specifications

Results

Validation via Known log Values

An Example System

Solvent accesible surface

The surface around a molecule accesible to solvent molecules

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Solvent accesible surface

Solvent accesible surface

The surface around a molecule accesible to solvent molecules

For water molecules usually r = 1.4 |A|

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Solvent accesible surface

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log P Partition Coefficient

Molecular Hydrophobicity

What is it?

Potentia

General form

Force Constan

Distance fur

Solvent accesible surface

Evenly distributed point

Program

What are we interested in Program Specifications

Results

Validation via Known log Values

An Example Syster

1. Take all atoms with their vdW-radii

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log P Partition Coefficient

Molecular Hydrophobicity

Vhat is it?

Potentia

General forn

Force Constants

Distance functio

Solvent accesible surface

Evenly distributed points

Progra

What are we interested in?

Resul

Validation via Known log Values

An Example Syster

1. Take all atoms with their vdW-radii

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log F Partition Coefficient

lolecular ydrophobicity

otential What is it?

Potential

General form

Force Constants

Distance function

Solvent accesible surface

Evenly distributed points Integration

What are we interested in?

Resul

Validation via Known log Values

All Example System

- 1. Take all atoms with their vdW-radii
- 2. Create spheres around all atoms with $R^i = R^i_{\text{vdw}} + R_{\text{probe}}$

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log F Partition Coefficient

olecular ydrophobicity

hat is it?

Potential

General form

Force Constants

Distance function

Surface

Solvent accesible surface

Evenly distributed points Integration

Progra

What are we interested in Program Specifications

Resu

Validation via Known log p Values

An Example Systen

- Take all atoms with their vdW-radii
- Create spheres around all atoms with

 $R^i = R^i_{\text{vdw}} + R_{\text{probe}}$

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Solvent accesible surface

- 1. Take all atoms with their vdW-radii
- 2. Create spheres around all atoms with

$$R^i = R^i_{\text{vdw}} + R_{\text{probe}}$$

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log P Partition Coefficient

olecular odrophobicity

hat is it?

Potential

General form

Force Constants

Surface

Solvent accesible surface

Evenly distributed points

Integration

Progra

hat are we interested in?

Resul

Validation via Known log p Values

n Example System

- 1. Take all atoms with their vdW-radii
- 2. Create spheres around all atoms with $R^i = R^i_{\text{vdw}} + R_{\text{probe}}$

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log P Partition Coefficient

olecular ydrophobicity otential

What is it?

Potential

General form

Force Constants

Distance function

Surface

Solvent accesible surface

Evenly distributed points Integration

Integration

hat are we interested in

Resul

Validation via Known log p Values

An Example Syster

- 1. Take all atoms with their vdW-radii
- 2. Create spheres around all atoms with $R^i = R^i_{\text{vdw}} + R_{\text{probe}}$
- 3. Delete all points that are "burried" in other extended spheres (i.e. $\Delta(p^i, c^j) \leq R^j + R_{\text{probe}}$)

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log F Partition Coefficient

drophobicity

/hat is it?

Potential

General form Force Constan

Distance function

Solvent accesible surface

Evenly distributed points Integration

Prograi

What are we interested in Program Specifications

Result

Validation via Known log p Values

n Example System

- 1. Take all atoms with their vdW-radii
- 2. Create spheres around all atoms with $R^i = R^i_{\text{vdw}} + R_{\text{probe}}$
- 3. Delete all points that are "burried" in other extended spheres (i.e. $\Delta(p^i, c^j) \leq R^j + R_{\text{probe}}$)
- The remaining surface is the solvent-accesible surface of the molecule

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log P Partition Coefficient

olecular drophobicity

tential nat is it?

Potential

General form Force Constants

Distance function

Surface Solvent accesible surface

Evenly distributed points

Integration

Progra

What are we interested in Program Specifications

Result

Validation via Known log p Values

an Example Syster

Evenly distributed points

How to distribute N points on a surface of a sphere?

Molecular Hydrophobicity Potential

Pelg Bar Sapir

ntroduction

Hydrophobicity and log I Partition Coefficient

Molecular Hydrophol

Potentia

What is it

Potential

General forn

Force Constants

Distance

surrace

olvent accesible

Evenly distributed points

rogra

What are we interested in

Result

Validation via Known log p Values

An Example Syster

Evenly distributed points

How to distribute N points on a surface of a sphere?

$$\varphi_i = i \cdot \frac{2\pi}{N}$$

$$\theta_j = j \cdot \frac{\pi}{N}$$

Molecular Hydrophobicity Potential

Pelg Bar Sapir

troduction

Hydrophobicity and log P Partition Coefficient

Molecular Hydrophob

Potential What is it?

Potential

General for

Force Constants

Distance f

Surface

Solvent accesible surface Evenly distributed points

Progra

hat are we interested in:

Result

Validation via Known log p Values

711 Example Oyote

Evenly distributed points

How to distribute N points on a surface of a sphere?

$$\varphi_i = i \cdot \frac{2\pi}{N}$$
$$\theta_j = j \cdot \frac{\pi}{N}$$

Pelg Bar Sapir

troduction

Hydrophobicity and log F Partition Coefficient

lolecular lydrophobicity otential

What is it? Potential

General form

Force Constants

urface

Solvent accesible surface Evenly distributed points

Integration

Progra

What are we interested in Program Specifications

Results

Validation via Known log p Values

How to distribute N points on a surface of a sphere?

$$\varphi_i = i \cdot \frac{2\pi}{N}$$

$$\theta_j = j \cdot \frac{\pi}{N}$$

Points are not evenly distributed Pelg Bar Sapir

troduction

Hydrophobicity and log F Partition Coefficient

Molecular Hydrophobicity

What is it?

otential General for

Force Constants

urface

Solvent accesible surface Evenly distributed points

Integration

Progran

What are we interested in? Program Specifications

Results

Validation via Known log p Values

How to distribute N points on a surface of a sphere?

$$\varphi_i = i \cdot \frac{2\pi}{N}$$

$$\theta_j = j \cdot \frac{\pi}{N}$$

$$\theta_j = j \cdot \frac{\pi}{N}$$

Points are not evenly distributed

Several points overlap at poles

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Evenly distributed points

Solution: Vogel's method

In 2 dimensions:

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log P Partition Coefficient

Molecular Hydrophobicity Potential

What is it?

Potential

General form

Porce Constants

Surface

Solvent accesible surface

Evenly distributed points

Progran

What are we interested in? Program Specifications

Results

Validation via Known log Values

Solution: Vogel's method

In 2 dimensions:

▶ Distances: $r_i = \sqrt{\frac{i}{N}}$

• Angle: $\theta_i = \varphi i$

(φ is the golden ratio!)

Molecular Hydrophobicity Potential

Pelg Bar Sapir

ntroduction

Hydrophobicity and log F Partition Coefficient

> Molecular Hydrophobicity Potential

What is it?

Potential

General form

Force Constants

JISTANCE IL

urface

Solvent accesible surface Evenly distributed points

Prograi

What are we interested in

Results

Validation via Known log

Solution: Vogel's method

In 2 dimensions:

▶ Distances:
$$r_i = \sqrt{\frac{i}{N}}$$

• Angle: $\theta_i = \varphi i$ (φ is the golden ratio!)

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Evenly distributed points

Solution: Vogel's method

In 2 dimensions:

- ▶ Distances: $r_i = \sqrt{\frac{i}{N}}$
- Angle: $\theta_i = \varphi i$ (φ is the golden ratio!)

In 3 dimensions (cylindrical coordinates):

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Evenly distributed points

In 2 dimensions:

▶ Distances:
$$r_i = \sqrt{\frac{i}{N}}$$

• Angle:
$$\theta_i = \varphi i$$

(φ is the golden ratio!)

In 3 dimensions (cylindrical coordinates):

▶ Distances:
$$z_i = \left(1 - \frac{1}{N}\right) \left(1 - \frac{2i}{N-1}\right)$$

► Angles:

$$\theta_i = \varphi i, \ \rho_i = \sqrt{1 - z_i^2}$$

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log P Partition Coefficient

Molecular lydrophobicity

otential /hat is it?

Potential

General form

Force Constants

Distance

Surface

Solvent accesible surface Evenly distributed points

Program

nat are we interested in ogram Specifications

Resul

Validation via Known log Values

Solution: Vogel's method

In 2 dimensions:

▶ Distances:
$$r_i = \sqrt{\frac{i}{N}}$$

• Angle: $\theta_i = \varphi i$ (φ is the golden ratio!)

In 3 dimensions (cylindrical coordinates):

- ▶ Distances: z_i = $\left(1-\frac{1}{N}\right)\left(1-\frac{2i}{N-1}\right)$
- Angles: $\theta_i = \varphi i, \ \rho_i = \sqrt{1 - z_i^2}$

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Evenly distributed points

► Each atom's total surface area: $V^a = 4\pi \left(R_{\text{vdW}}^a + R_{\text{probe}}\right)^2$

$$V^a = 4\pi \left(R_{\text{vdW}}^a + R_{\text{probe}} \right)^2$$

Molecular Hydrophobicity Potential

Pelg Bar Sapir

► Each atom's total surface area: $V^a = 4\pi \left(R_{\text{vdW}}^a + R_{\text{probe}}\right)^2$

$$V^a = 4\pi \left(R_{\text{vdW}}^a + R_{\text{probe}} \right)^2$$

▶ The surface is represented by *N* points

Molecular Hydrophobicity Potential

Pelg Bar Sapir

► Each atom's total surface area: $V^a = 4\pi \left(R_{\text{vdW}}^a + R_{\text{probe}}\right)^2$

$$V^a = 4\pi \left(R_{\text{vdW}}^a + R_{\text{probe}} \right)^2$$

- ▶ The surface is represented by *N* points
- ▶ Meaning: each point has $V_j^a = \frac{4\pi}{N} \left(R_{\text{vdW}}^i + R_{\text{probe}} \right)^2$

Molecular Hydrophobicity Potential

Pelg Bar Sapir

► Each atom's total surface area: $V^a = 4\pi \left(R_{\text{vdW}}^a + R_{\text{probe}}\right)^2$

$$V^a = 4\pi \left(R_{\text{vdW}}^a + R_{\text{probe}} \right)^2$$

- ▶ The surface is represented by *N* points
- ▶ Meaning: each point has $V_j^a = \frac{4\pi}{N} \left(R_{\text{vdW}}^i + R_{\text{probe}} \right)^2$
- ▶ In addition, each point has: MHP^a_i

Molecular Hydrophobicity Potential

Pelg Bar Sapir

► Each atom's total surface area: $V^a = 4\pi \left(R_{\text{vdW}}^a + R_{\text{probe}}\right)^2$

$$V^a = 4\pi \left(R_{\text{vdW}}^a + R_{\text{probe}} \right)^2$$

- ▶ The surface is represented by *N* points
- ▶ Meaning: each point has $V_j^a = \frac{4\pi}{N} \left(R_{\text{vdW}}^i + R_{\text{probe}} \right)^2$
- In addition, each point has: MHP^a_i

Therefore, each atom has a total MHP of:

$$\mathsf{MHP}^a = \frac{4\pi}{N} \sum_{j=0}^M \mathsf{MHP}^a_j$$

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Written in Python3, utylizing ProDy

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log P Partition Coefficient

Molecular Hydrophobicity

hat is it?

Potential

seneral form

Distance function

urfaco

urface

Solvent accesible surface Evenly distributed points Integration

rogram

Vhat are we interested

Program Specifications

Results

Validation via Known log | Values

- Written in Python3, utylizing ProDy
- Heavy calculation written in Cython

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log F Partition Coefficient

Molecular Hydrophobicit

Potentia

What is it?

General form

General form

Distance function

urface

Solvent accesible surfac

rogram

/hat are we interested in

Program Specifications

Results

Validation via Known log

- Written in Python3, utylizing ProDy
- Heavy calculation written in Cython
- Uses neighbor cells implementation for faster calculation

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log P Partition Coefficient

Molecular lydrophobicity

otentia Vhat is it?

Potential

General form

Force Constants

ırface

Solvent accesible surfac Evenly distributed points

Evenly distributed point ntegration

fograffi hat are we interested

hat are we interested in

Program Specifications

Results

Validation via Known log

An Example System

All Example Gyster

- Written in Python3, utylizing ProDy
- Heavy calculation written in Cython
- Uses neighbor cells implementation for faster calculation
- Uses PSF, PDB and DCD files

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Program Specifications

- Written in Python3, utylizing ProDy
- Heavy calculation written in Cython
- Uses neighbor cells implementation for faster calculation
- Uses PSF, PDB and DCD files
- Generates a PDB output, MHP values in beta column

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log P Partition Coefficient

> olecular ydrophobicity

otential hat is it?

Potential Conoral form

General form

Distance fun

ırface

Solvent accesible surfac Evenly distributed points Integration

ogram

hat are we interested i

Program Specifications

Resul

Validation via Known log p

values An Example System

► Input: PSF + PDB or DCD

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log I Partition Coefficient

Molecular Hydrophobicity Potential

What is it

Conoral for

---- 0------

Distance functio

Surface

Solvent accesible surface Evenly distributed points

rogram

Vhat are we interested in

Program Specifications

Result

Validation via Known log Values

- ► Input: PSF + PDB or DCD
- Subselection (optional): Atomic selection (like vmd)

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log F Partition Coefficient

olecular ydrophobicity

tential

Potential

General form

Force Constants

urface

Solvent accesible surface Evenly distributed points Integration

rogram

/hat are we interested in?

Program Specifications

Result

Validation via Known log | Values

- ► Input: PSF + PDB or DCD
- Subselection (optional): Atomic selection (like vmd)
- ▶ Number of points per atom (default: 64)

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log F Partition Coefficient

olecular ydrophobicity

hat is it?

Potential

General form

Force Constants

Distance

irface solvent accesible

Solvent accesible surfac Evenly distributed points Integration

rogram /hat are we interested

Program Specifications

riogram opecincan

Resul

Validation via Known log Values

- ► Input: PSF + PDB or DCD
- Subselection (optional): Atomic selection (like vmd)
- Number of points per atom (default: 64)
- ► Solvent probe radius (defalt: 1.4Å)

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log F Partition Coefficient

olecular ydrophobicity

What is it?

Potential

General form

Force Constants

urface

Solvent accesible surface Evenly distributed points

rogram

rogram

Program Specifications

_

Result

Validation via Known log p Values

- ► Input: PSF + PDB or DCD
- Subselection (optional): Atomic selection (like vmd)
- Number of points per atom (default: 64)
- ► Solvent probe radius (defalt: 1.4Å)
- ► Cutoff distance for distance function (default: 4Å)

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log F Partition Coefficient

drophobicity

What is it?

Potential

Force Constants

Purfoce

Surface Solvent accesible

Evenly distributed po Integration

ntegration

rogram

What are we interested in Program Specifications

rogram Specification

Resu

Validation via Known log p Values

- Input: PSF + PDB or DCD
- Subselection (optional): Atomic selection (like vmd)
- Number of points per atom (default: 64)
- Solvent probe radius (defalt: 1.4Å)
- Cutoff distance for distance function (default: 4Å)
- Frame range (if DCD)

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Program Specifications

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Partition Coefficient

Molecular Hydrophobicity Potential

What is it?

Potential

General form

Force Constant

Distance function

Surface

Solvent accesible surface Evenly distributed points Integration

Progra

What are we interested in?

Result

Validation via Known log p Values

▶ By integrating and comparing to known $\log P$ values, a correlation can be measured.

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log P Partition Coefficient

Molecular Hydrophobicity Potential

What is it?

General form

General form

Distance function

Surface

Solvent accesible surface Evenly distributed points

rogram

/hat are we interested in?

Results

Validation via Known log p Values

- ▶ By integrating and comparing to known $\log P$ values, a correlation can be measured.
- A groups of amino acids of varying hydrophobicity where simulated and their MHP calculated

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log P Partition Coefficient

> lolecular ydrophobicity otential

What is it? Potential

General form

Force Constants

Distance function

Surface

Solvent accesible surface Evenly distributed points

Progran

nat are we interested in?

Results

Validation via Known log p

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Validation via Known log p Values

Validation in vacuum (5 frames per molecule)⁶, $R^2 = 0.668$

⁶MD simulation using NAMD, performed by Dr. Tillmann Utesch 990

ntroduction

Hydrophobicity and log P Partition Coefficient

lolecular

Potential

Potential

General form

Force Constants

Distance

Solvent accesible surface

Evenly distributed poir ntegration

rogran

/hat are we interested in? rogram Specifications

Resul

Validation via Known log p Values

An Evennele Cueto

Validation in water + structural optimization (10 frames per molecule), $R^2 = 0.748$

Molecular Hydrophobicity Potential

Pelg Bar Sapir

ntroduction

Hydrophobicity and log P Partition Coefficient

Molecular

Potential

What is it?

General form

Contra Orași

Distance fu

Surface

Solvent accesible surface Evenly distributed points

rogram
What are we interested in

Resul

Validation via Known log p Values

An Evample Custo

Validation in water + structural optimization + SAS normalization (10 frames per molecule), $R^2 = 0.760$

An Example System

An existing trajectory (100 frames) of a protein-membrane system⁷ was analazyed.

The peptide: OP-145, a Cathelicidin derivative with improved properties.

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log F Partition Coefficient

olecular /drophobic otential

otential hat is it?

Potential

General form

Force Constants

urface

Solvent accesible surface Evenly distributed points

Integration

rogram

hat are we interested in? ogram Specifications

Results

Validation via Known log p Values

⁷Trajectory provided by Dr. Alejandra de Miguel Catalina ≥ ✓ ९ ०

An Example System

An existing trajectory (100 frames) of a protein-membrane system⁷ was analazyed.

- The peptide: OP-145, a Cathelicidin derivative with improved properties.
- The interaction mechanism pathway was studied by means of all-atom simulation.

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log F Partition Coefficient

olecular /drophobicit otential

Vhat is it?

Potential

Jeneral form

Distance fund

Surface

Solvent accesible surface Evenly distributed points

ogram

nat are we interested in? ogram Specifications

Results

Validation via Known log p Values

⁷Trajectory provided by Dr. Alejandra de Miguel Catalina = → ≥ → < ○

Potential

General form Force Constants

Distance

Solvent accesible surface Evenly distributed points

Program
What are we interested in

Dagulta

Validation via Known log p

/alues

An Example System

An existing trajectory (100 frames) of a protein-membrane system⁷ was analazyed.

- The peptide: OP-145, a Cathelicidin derivative with improved properties.
- The interaction mechanism pathway was studied by means of all-atom simulation.
- The membrane used for the study consists of a mixture of two lipids, PG and PE, in agreement with experimental measurements.

⁷Trajectory provided by Dr. Alejandra de Miguel Catalina → → → → →

A picture of the system

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log P Partition Coefficient

Molecular Hydrophobicity Potential

What is i

Potential

General form

Force Constant

2...4---

Surface

Evenly distributed point

Prograi

What are we interested in: Program Specifications

Results

Validation via Known log p

MHP Change Over Time

MHP change over time for ARG-7

Molecular Hydrophobicity Potential

Pelg Bar Sapir

ntroduction

Hydrophobicity and log P Partition Coefficient

olecular ydrophobio

otential
/hat is it?

Potential

General form

Distance for starte

,

Solvent accesible surfa

venly distributed poi

rogran

Vhat are we interested in?

Result

Validation via Known log p

MHP Change Over Time

MHP change over time for ARG-24

Molecular Hydrophobicity Potential

Pelg Bar Sapir

MHP Change Over Time

MHP change over time for PRO-22

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log P Partition Coefficient

ioleculai lydropho otential

hat is it?

Potential

General form

Distance fi

Solvent accesible surface Evenly distributed points

rogram

nat are we interested in? ogram Specifications

Resu

Validation via Known log p

