Introducción a la Lógica y la Computación — Lógica proposicional Práctico 5: Conjuntos Consistentes

- 1. Demuestre las siguientes, justificando mediante derivaciones apropiadas o (en los casos ⊬) aplicando resultados del teórico, que deben ser citados correctamente.
 - $a) \Gamma \vdash \neg \bot$.
 - b) $\{p_0\} \not\vdash p_1$.
 - c) $\{\bot\} \vdash \varphi \land \neg \varphi$.
 - d) $\{\neg p_0, \neg (p_1 \land (\neg p_2))\} \not\vdash p_2 \to p_0.$
- 2. Decida cuáles de los siguientes conjuntos son consistentes:
 - a) $\{\neg p_1 \land p_2 \rightarrow p_0, p_1 \rightarrow (\neg p_1 \rightarrow p_2), p_0 \leftrightarrow \neg p_2\}.$
 - b) $\{\neg p_1 \lor \neg p_2 \to \neg p_0, p_1 \land p_0, p_1 \to (\neg p_0 \lor \neg p_2), \neg p_0 \leftrightarrow \neg p_2\}.$
 - c) $\{p_0 \to p_1, p_1 \to p_2, p_2 \to p_3, p_3 \to \neg p_0\}.$
 - d) $\{p_0 \to p_1, p_0 \land p_2 \to p_1 \land p_3, p_0 \land p_2 \land p_4 \to p_1 \land p_3 \land p_5, \dots\}$ ("pares implican impares").

 - e) $\{p_{2n} : n \ge 0\} \cup \{\neg p_{3n+1} : n \ge 0\}.$ f) $\{p_{2n} : n \ge 0\} \cup \{\neg p_{4n+1} : n \ge 0\}.$
- 3. Decidir si son verdaderos o falsos. Justificar.
 - a) Si Γ es consistente entonces $\bot \notin \Gamma$.
 - b) Si Γ es consistente entonces \perp no ocurre en ninguna fórmula de Γ .
 - c) Si Γ es inconsistente entonces existe φ tal que $\varphi \in \Gamma$ y $\neg \varphi \in \Gamma$.
- 4. Probar que $\Gamma \cup \{\varphi \land \psi\}$ es consistente si y sólo si $\Gamma \cup \{\varphi, \psi\}$ es consistente.
- 5. Demostrar que " $\Gamma \vdash \neg \varphi$ " equivale a " $\Gamma \cup \{\varphi\}$ es inconsistente".
- 6. Demostrar que $\Gamma^+ := \{ \varphi \in PROP : \bot \text{ no ocurre en } \varphi \}$ es consistente (Ayuda: se puede dar una f explícita tal que $[\![\varphi]\!]_f = 1$ para toda $\varphi \in \Gamma^+$).
- 7. Probar que son equivalentes las siguientes caracterizaciones de que Γ sea consistente maximal:
 - a) Γ es un elemento maximal del poset (Conjuntos consistentes, \subseteq).
 - b) Γ es consistente, y si $\varphi \in PROP \setminus \Gamma$, entonces $\Gamma \cup \{\varphi\}$ es inconsistente.
- 8. Pruebe todo Γ consistente maximal realiza la disyunción: Para toda φ, ψ , se tiene $\varphi \lor \psi \in \Gamma$ si y sólo si $[\varphi \in \Gamma \circ \psi \in \Gamma]$.
- 9. Sea Γ consistente maximal y suponga $\{p_0, \neg(p_1 \to p_2), p_3 \lor p_2\} \subseteq \Gamma$. Decida si las siguientes proposiciones están en Γ. (Ayuda: usar Completitud, o la caracterización de consistente maximal).
 - $a) \neg p_0$.
 - b) $((\neg p_1) \lor p_2)$.
 - $c) p_3$.
 - $d) p_2 \rightarrow p_5.$
 - e) $p_1 \vee p_6$.
- 10. Dar al menos dos conjuntos Γ diferentes que sean consistentes maximales y contengan al conjunto $\{p_0, \neg(p_1 \to p_2), p_3 \lor p_2\}$
- 11. Decidir si los siguientes subconjuntos de *PROP* son consistentes maximales.
 - a) $\{\varphi \in PROP : \{p_0, p_1, p_3, ...\} \vdash \varphi\}.$
 - b) Las tautologías.