兰州大学信息科学与工程学院实验报告

实验	成绩:	
学生姓名:		杨添宝
学	号:	320170941671
年级	专业:	2017 级计算机基地班
指导	老师:	赵继平

实验课程: <u>计算机组成原理实验</u> 实验题目: 存储器和总线实验

一、实验目的

熟悉存储器和总线的硬件电路

二、实验要求

按照实验步骤完成实验项目,熟悉存储器的读、写操作,理解在总线上数据传输的方法。

三、实验说明

1. 存储器和总线的构成:

- (1)总线由1片74LS245、1片74LS244组成,把整个系统分为内部总线和外部总线。2片74LS374锁存当前的数据、地址总线上的数据以供LED显示。(如图 1)
 - (2) 存储器采用静态 1 片 RAM (6264)
 - (3) 存储器的控制电路由 1 片 74LS32 和 74LS08 组成。(如图 2)

2. 存储器和总线的原理:

(1) 总线的原理:由于本系统内使用 8 根地址线、8 根数据线,所以使用 1 片 74LS245 作为数据总线,另 1 片 74LS244 作为地址总线(见图 3)。总线把整个系统分为内部数据、地址总线和外部数据、地址总线,由于数据总线需要进行内、外部数据的交换,所以由 BUS 信号来控制数据的流向,当 BUS=1 时数据由内到外,当 BUS=0 时,数据由外到内。

总线单元

图 3

(2)由于本系统内使用 8 根地址线、8 位数据线,所以 6264 的 A8~A12 接地,其实际容量为 256 个字节(如图 4)。6264 的数据、地址总线已经接在总线单元的外部总线上。存储器有 3 个控制信号:地址总线设置存储器地址,RM=0时,把存储器中的数据读出到总线上;当 WM=0,并且 EMCK 有一个上升沿时,把外部总线上的数据写入存储器中。为了更方便地编辑内存中的数据,在实验平台处于停机状态时,可由监控来编辑其中的数据。

3. 控制信号说明:

信号名称	作用	有效电平
BUS	总线方向选择	
RM	6264 的读允许信号	低电平有效
WM	6264 的写允许信号	低电平有效
EMCK	6264 的写入脉冲信号	上升沿有效
CR	监控对 6264 的读允许信号	低电平有效

CW	监控对 6264 的写允许信号	低电平有效
M/C	监控选择程序空间或微程序空间	

四、实验步骤

实验 1、存储器的写操作

- 把内部地址总线 AJ1(8 芯盒形插座)与 CPT-B 板上的二进制开关单元中 J03 插座相连(对应二进制开关 H0~H7), 把内部数据总线 DJ8 与 CPT-B 板上的 J02 插座相连(对应二进制开关 H8~H15)。
- 把 EMCK 连到脉冲单元的 PLS1, WC、RC、BUS 接入二进制的开关中。(请 按下表接线)。

信号定义	接入开关位号
EMCK	PLS1 孔
WM	H22 孔
RM	H21 孔
BUS	H21 孔

- 按启停单元中的运行按钮,置实验平台为运行状态。
- 二进制开关 H0~H7 作为地址(A0~A7)输入,置 55H(对应开关如下表)。

Н7	Н6	Н5	H4	Н3	H2	H1	Н0	数据总线值
A7	A6	A5	A4	A3	A2	A1	A0	8 位数据
0	1	0	1	0	1	0	1	55H

● 二进制开关 H8~H15 作为数据(D0~D7)输入,置 66H(对应开关如下表)。

H15	H14	H13	H12	H11	H10	Н9	Н8	数据总线值
D7	D6	D5	D4	D3	D2	D1	D0	8 位数据
0	1	1	0	0	1	1	0	66H

置各控制信号如下:

H22	H21
WM	RM, BUS
0	1

● 按脉冲单元中的 PLS1 脉冲按键,在 EMCK 上产生一个上升沿,数据从内部

数据总线流向外部数据总线,将数据 66H 写入地址为 55H 的存储单元。 实验 2、读存储器的数据到总线上

- 在做好实验 1 的基础上,保持电源开启和线路连接不变,只拔掉内部数据总线 DJ8 与 CPT-B 板上的 J02 插座 (对应二进制开关 H8~H15) 的连接。
- 按启停单元中的运行按钮,置实验平台为运行状态。
- 二进制开关 H0~H7 作为地址(A0~A7)输入,置 55H(对应开关如下表)

Н7	Н6	Н5	H4	Н3	H2	H1	Н0	数据总线值
A7	A6	A5	A4	A3	A2	A1	A0	8 位数据
0	1	0	1	0	1	0	1	55H

置各控制信号如下:

H22	H21
WM	RM, BUS
1	0

● 按脉冲单元中的 PLS1 脉冲按键,在 EMCK 上产生一个上升沿,数据从外部数据总线流向内部数据总线,将存储器 55H 单元中的内容输出,应该为实验1中的写入的数据 66H。此时数据总线上的指示灯 IDB0~IDB7 显示结果 66H。

五、实验思考

1. 描述数据通路。

在存储器的写操作过程中,按脉冲单元中的 PLS1 脉冲按键,在 EMCK 上产生一个上升沿,数据从内部数据总线流向外部数据总线,将数据 66H 写入地址为 55H 的存储单元。读存储器的数据到总线上时,按脉冲单元中的 PLS1 脉冲按键,在 EMCK 上产生一个上升沿,数据从外部数据总线流向内部数据总线,将存储器 55H 单元中的内容输出。

2. 为什么 RM、BUS 可连接至同一个二进制开关上?

当 RM=0 时,将存储器的数据读出到总线上,此时对应的 BUS=0,控制数据从内到外;当 RM=1 时,将外部总线上的数据写入到存储器,此时对应的 BUS=1,控制数据从外到内。由于 BUS 与 RM 状态一直相同,因此可以将 BUS 也连

接到 RM 孔上,拨动二进制开关。

3. 实验图中,何为内,何为外?

总线由 2 片 74LS245 组成,把整个系统分为内部总线和外部总线。

4. 6264 芯片存储容量为多少字节? 其地址范围是多少? 本实验中有效地址范围是多少?

6264 芯片的存储容量为 8192 字节,其地址范围是 $0\sim2^{13}$ -1。由于本系统内使用 8 根地址线、8 位数据线,6264 的 $A8\sim A12$ 接地,所以本实验中有效地址范围是 $0\sim2^{8}$ -1,实际容量为 256 个字节。

- 5. 输入 10 组不同数据并读出,试分析该电路原理图中读写操作的特点。 读操作是将存储器中的数据读出到内部数据总线,需要在 WM=1, RM=BUS=0 的情况下进行;写操作是将数据从内部总线流向外部总线,需要在 WM=0, RM=BUS=1 的情况下进行。
 - 6. 为什么在 EMCK 信号上升沿状态时写入数据?

6264 的写入脉冲信号只在上升沿时有效,当 WM=0,并且 EMCK 有一个上升沿时,把外部总线上的数据写入存储器中。