(1) Taking a₁ is correct (greedy-choice property)

16-1b

(2) Optimal substructure

Let
$$X = \{a_i \mid s_i < f_1\}$$
 and $A' = A - X = \{a_i \mid s_i \ge f_1\}$.

和 a_1 衡 突

和 a_1 约 衡 实

After taking a₁

- (i) all a_i in X should be discarded;
- (ii) the problem becomes to select a maximum set of compatible activities in A'

$$\Rightarrow$$
 Y' is optimal for A'

(after a choice \rightarrow same problem of smaller size)

0-1:

optimal for $\begin{cases} A = \{a_1, a_2, ..., a_n\} \\ C \end{cases}$

optimal for

$$\begin{cases} A' = \{a_1, a_2, ..., a_{k-1}, x_k, ..., x_n\} \\ C' = C - w_k \end{cases}$$

$$C \left\{ \begin{array}{|c|} \hline a_k \end{array} \right\} C-w$$

fractional:

optimal for
$$\begin{cases} A = \{a_1, a_2, ..., a_n\} \end{cases}$$

optimal for

$$\begin{cases} A' = \{a_1, a_2, ..., a_{k-1}, x_k, ..., x_k\} \\ C' = C - w \end{cases}$$

0-1 Knapsack problem (integer weights, DP)

16-3b

* f(g,k): optimal value for

* solution: f(C,n)

* $f(g,k) = \max \left\{ f(g, k-1) \atop f(g-w_k, k-1) + v_k \right\}$

*
$$f(0,k) = f(g,0) = 0$$
, $f(-,k) = -\infty$

* Time: O(Cn)

* optimal substructure

Case 1. a_k is not selected

Case 2. a_k is selected