Math 106: Problem Set 1

Owen Jones

1/21/2024

- **1.2.3** WLOG let $m \in \mathbb{Z}$. If m is even, then $m \equiv 0 \mod (2) \Rightarrow m = 2k$ for some $k \in \mathbb{Z}$. Otherwise, m is odd, so $m \equiv 1 \mod (2) \Rightarrow m = 2k + 1$ for some $k \in \mathbb{Z}$. Thus, because m is arbitrary, m^2 can be any perfect square. Either $m^2 = (2k+1)^2 = 4k^2 + 4k + 1 \equiv 1 \mod (4)$ because $4k^2$ and 4k are clearly divisible by 4, or $m^2 = 4k^2 \equiv 0 \mod (4)$ because $4k^2$ is clearly divisible by 4. Hence, every perfect square leaves remainder 0 or 1 on division by 4.
- **1.2.4** WLOG let a be odd. Suppose for the sake of contradiction b is also odd. Since a^2 and b^2 are odd, then c^2 must be even. It follows $c^2 \equiv 0 \mod (4)$ and $b^2 \equiv 1 \mod (4)$ by **1.2.3**. Thus, $c^2 b^2 \equiv 3 \mod (4)$. However, as we showed in **1.2.3**, $a^2 \equiv 1 \mod (4)$, so we obtain a contradiction. Thus, b cannot be odd. Hence, both a and b cannot both be odd.
- **1.3.1** If (a,b,c) is a pythagorean triple, then $\frac{a}{c}=\frac{1-t^2}{1+t^2}, \frac{b}{c}=\frac{2t}{1+t^2}$ where $t=\frac{q}{p}$ for some integers p,q. Substituting $\frac{q}{p}$ we obtain $\frac{a}{c}=\frac{1-\frac{q^2}{p^2}}{1+\frac{q^2}{p^2}}, \frac{b}{c}=\frac{2\frac{q}{p}}{1+\frac{q^2}{p^2}}.$ Multiplying by $\frac{p^2}{p^2}, \frac{a}{c}=\frac{p^2-q^2}{p^2+q^2}, \frac{b}{c}=\frac{2pq}{p^2+q^2}.$
- **1.3.2** If $\frac{a}{c} = \frac{p^2 q^2}{p^2 + q^2}$, $\frac{b}{c} = \frac{2pq}{p^2 + q^2}$ from **1.3.1**, then if we set $c := r(p^2 + q^2)$ then $a = r(p^2 q^2)$ and b = 2rpq
- **1.3.4** $\cos(\theta) = \frac{x}{1} = \frac{1-t^2}{1+t^2}, \sin(\theta) = \frac{y}{1} = \frac{2t}{1+t^2}$ by the solution pair $(\frac{1-t^2}{1+t^2}, \frac{2t}{1+t^2})$. $\Rightarrow \tan \frac{\theta}{2} = \frac{\sin \theta}{1+\cos \theta} = \frac{\frac{2t}{1+t^2}}{\frac{1+t^2}{1+t^2} + \frac{1-t^2}{1+t^2}} = \frac{\frac{2t}{1+t^2}}{\frac{2t}{1+t^2}} = t$
- **1.4.2** Will do later
- **1.5.1** For some arbitrary odd integer m, there exists some integer q such that m=2q+1. Squaring both sides we obtain $m^2=(2q+1)^2=4q^2+4q+1=2r+1$ where $r=2q^2+2q$. Since m^2 can be written in the form $m^2=2r+1$ for some integer r, m^2 is also odd.
- **1.5.2** Squaring 2q + 1 we obtain $4q^2 + 4q + 1 = 4s + 1$ where $s = q^2 + q$. It follows $4 \mid ((2q+1)^2 1) \Rightarrow (2q+1)^2 \equiv 1 \pmod{4}$. Any odd integer $m \equiv 1 \pmod{4}$ or $m \equiv 3 \pmod{4}$. Any even integer $m \equiv 0 \pmod{4}$ or

 $m\equiv 2\pmod 4$. Thus, $m^2\equiv 1^2\pmod 4$, $3^2\pmod 4$ $\Rightarrow m^2\equiv 1\pmod 4$ if m is odd, and $m^2\equiv 0^2\pmod 4$, $2^2\pmod 4$ $\Rightarrow m^2\equiv 0\pmod 4$ if m is even.

- **1.6.1** Let x_1, x_2 be real numbers with the same sign or 0, and let y_1, y_2 be real numbers that satisfy $x_1y_2 = x_2y_1$. WLOG by translation let $A := (-x_1, -y_1), B := (0, 0), C := (x_2, y_2)$. Let $t \in [0, 1]$ and $((x_2 + x_1)t x_1, (y_2 + y_1)t y_1)$ be the set of points between A and C. If $x_1 = 0$ or $x_2 = 0$ then either A or C must be at the origin or both A and C must be on the line x = 0. In either case, A, B, C are colinear and $AB + BC = AC \Leftrightarrow \sqrt{x_1^2 + y_1^2} + \sqrt{x_2^2 + y_2^2} = \sqrt{(x_1 + x_2)^2 + (y_1 + y_2)^2}$. Otherwise, set $t = \frac{x_1}{x_1 + x_2}$. $(y_2 + y_1)t y_1 = \frac{(y_2 + y_1)x_1}{x_1 + x_2} \frac{y_1(x_1 + x_2)}{x_1 + x_2} = \frac{y_2x_1 y_1x_2}{x_1 + x_2} = 0$. Thus, A, B, C are all colinear. Moreover, $AB + BC = AC \Leftrightarrow \sqrt{x_1^2 + y_1^2} + \sqrt{x_2^2 + y_2^2} = \sqrt{(x_1 + x_2)^2 + (y_1 + y_2)^2}$.
- 1.6.2 Let $L = \sqrt{x_1^2 + y_1^2} + \sqrt{x_2^2 + y_2^2}$ $\Rightarrow x_1^2 + y_1^2 = L^2 - 2L\sqrt{x_2^2 + y_2^2} + x_2^2 + y_2^2$ $\Rightarrow 2L\sqrt{x_2^2 + y_2^2} = L^2 + x_2^2 + y_2^2 - x_1^2 - y_1^2$ $\Rightarrow 4L^2(x_2^2 + y_2^2) = L^4 + 2L^2(x_2^2 + y_2^2 - x_1^2 - y_1^2) + (x_2^2 + y_2^2 - x_1^2 - y_1^2)^2$ $\Rightarrow 0 = L^4 - 2L^2(x_1^2 + x_2^2 + y_1^2 + y_2^2) + (x_2^2 + y_2^2 - x_1^2 - y_1^2)^2$ $\Rightarrow L^2 = (x_1^2 + x_2^2 + y_1^2 + y_2^2) \pm \sqrt{(x_1^2 + x_2^2 + y_1^2 + y_2^2)^2 - (x_2^2 + y_2^2 - x_1^2 - y_1^2)^2}$ $\Rightarrow L^2 = (x_1^2 + x_2^2 + y_1^2 + y_2^2) \pm \sqrt{(x_1^2 + x_2^2 + y_1^2 + y_2^2)^2 - (x_2^2 + y_2^2 - x_1^2 - y_1^2)^2} = \sqrt{$