DOMAIN: ARTIFICIAL INTELLIGENCE

TITLE: FERTILIZER RECOMMENDATION SYSTEM FOR DISEASE PREDICTION

Team Id: PNT2022TMID38677 Team Leader:E.L vincy rashitha

Team Title: fertilizers recommendation system for disease prediction Members List: 4

INTRO	DUCTION		SURVE	EY BODY OF REV	IEW		CONCLUSION			
Year	Title	Keywords	Problem Definition	Methodology (Algorithm, ProtocolEtc)	Input Parameters	Result	Advantages	Disadvantages/ Drawbacks	Research Gap/Research Question	
		1.soil	For soil	chemical	То	overall	1.avoid risk	1.It cover limit	Requirement of best	
	soil -	analysis	disease	analysis and	implement	averag		environment	indicator of local soil	
	based,field	2.laborator	prediction	sampling error	Single soil	e	2.long term			
	-specific	у	by using	two components	sample	cv	historical			
1.	fertilizer	3. errors,	Quantitativ	soil ph,soil	needed	values				
2022	recommen	quefts,	e	organic carbon		for				
	dation are	4.soil	evaluation			sample				
	a pipe-	nutrients	of fertility			s for				
	dream	agronemic	of tropical			ph				
		efficiency	soil							
	application	1.circular	For	Electrochemical	the nitrogen	separat	1.crop	1.most cost	To research growth	
2.	of	economy	nitrogen is	Used to reject	into waste	ion of	growth	associated	of cultivation	
2022	ammonium	2.sustainabi	essential	first ammonium	water have	acid	2.reduce		underlying this work	
2022	fertilizers	lity	for crop	And remove	been broken	ordere	nitrogen		is available	
	recovered	3.ammonia	growth	Water		d	growth		cooperation	

3.	by an electroche mical system nutrient manageme nt may reduce global warming potential	4.re-using nutrients 5.nitrogen recovery 1.global warming potential 2.greenhou se gas,crop modeling, 3.food	For indicated better nutrient manageme nt practice in	crop models, cultivatuion and validation gas sampling	rice production	accordi ng total nitroge n concetr ation land use of eco system	1.better nutrient 2.rice cultivation	1.rising contration	To find the atmospheric methane,co2 productivity
2022	of rice cultivation in subtropical india	security	rice cultivation						
4. 2022	soil health and its relationshi p with food security and human health to meet the sustainable developme nt goals in india	1.soil function 2.sustainabl e 3.developm ent goals 3.soil quality 4.critical zone 5.soil education	For abilities to contribute global food security	soil nutrient status organic carbon health	basic soil properties	soil reasear ch	1.clean water 2.secure food 3.livehoods	1.shift of cultivation 2.poor soil quality	To targeted nutrients available in soil

	impacts of	1.rice based		soils fertility	fertility	soil	1.reduce	1.stimulate soil	this research did not
	soil	intercroppi		status	parameters	groups	toxicity	2.biological	receive
	fertility	ng system,			across soils	in		activity	any specific grant
	manageme	2.fodder			groups	differe			from funding
	nt on	cultivation,				nt			agencies
	product	3.nutrient				tombel			
	and	manageme				area			
	economics	nt,	optimum						
5.	of rice and	4.rice and	conditions						
2021	folder	cowpea	for plants						
	intercroppi	fodder	growth						
	ng systems	5.intercropi							
	under	ng system							
	rainfed								
	conditions								
	in								
	odisha,indi								
	a								

INTRO	DUCTION	SURVEY/BODY OF REVIEW Conclusion						
Ms. Dhatchayani .S								
Year Title Keywords Definition (Algorithm, Parameters Result Advantages Drawbacks Gap/Research								Research Gap/Research Question

	A	1.Smartpho	Plant	capture the	Image,	Smartp	1.Using	1.Already fixed	Recommend the
	smartphon	ne	disease	image then	API	hone	smartphone	treatment for	treatment for the
	e based	2. Plant	identified	classified the	CNN,	base	taking the	particular	classified disease
	plant	diseases	by current	image	ANN+CNN,	plant	image select	diseases only	using content base
	disease	3.Recomm	technology	recommended	classified	disease	particular	can	filtering
	detection	ender	by	treatment for the	the image,	S	part of image	recommended	recommender system
	and	system	implemente	plant disease	recommende	treatm	identify the		technique
	treatment	4.Treatmen	d user's	r	d system	ent	disease and		1
	recommen	t	friendly		model	recom	recommende		
	dation	5.Machine	smartphone			mende	d the		
6.	system	learning	based plant			d using	treatment		
2022	using	6.Classifica	disease			ML			
	machine	tion	treatment			techniq			
	learning		recommend			ues			
	technique		er by using						
	_		machine						
			learning						
			techniques						
					classifier	Minim	1.Self	1.It Show the	predicting the right
					crop,	um	learning	maximum level	crops and help out
			It To		collect the	level	2.Ability	of crop yield	the farmers to
	An	1.Deep	predicting	classifying	data set,	of	3.Robustness		choose the most
	Artificial	learning	the fertility	multiple crop	fertilizer	accura	4.Flexibility		appropriate crop for
7.	intelligenc	2.Deep	of the soil	AI prediction	data set,	cy will	And many		his land based on the
2022	e solution	neural	and also to	module to predict	predict the	predict	more things		soil properties.
2022	for crop	network	predict the	the best crop	right crop	base			
	recommen	3.Machine	right crops		for the	on the			
	dation	learning	to be grown		disease	soil			
		4.classifiers	in soil			propert			
		NPK				ies			
		Predictions							

8. 2021	Soil Analysis and crop fertility prediction using machine learning	1.fertility 2.crop yield prediction 3.soil chemical feature 4.ANN 5.machine learning	They are different type of soil properties know the characterist ics @propertie s for various soil type understand it which crop sow in certain soil	1. Soil dataset 2. Crop dataset 3. Yield dataset 4. Training dataset 5. testing dataset	collection of dataset, known properties at characteristics of soil type, identity crop sow in certain soil type	Predicting the soil fertilit y@cro p yield with type of the crop can grown on fertile soil	1.This completes the one epoch multiple epoch are running accuracy reached the optimal value	1.Predicting the Crop sow certain soil type	Providing fertilizer and also data from another region will be addedto make this model more reliable and more efficient usage
9. 2019	Crop suitability /fertilizers recommen dation using data mining technique	1.NPK 2.K-Means Clustering 3.Fertilizer Recommen dation 4.Random Forest Algorithm 5.Ontology	type using machine learning Predict the suitable crop for the field under the base on the regions and climate	Crop recommendation Fertilizer recommendation	farmer, Server, Fertilizer recommenda tion system, ontology	Recommendations of suitable cropsin the field for crops to data stored in ontology	1.Changes of climate base on disease will occur recommende dtreatment by using two data mining technique for it and store the data in ontology	1.Approximate fertilizer quantity and type of crop will grown or planted	Android application will be developed in regional language

10. 2019	Fertilizer Recommen dation system for disease prediction in tree leave	1.Disease Prediction 2.Graph Cut Algorithm 3.Guided Active Contour method, 4.Leaf segmentati on 5.Leaf Feature	For Testing the leave issues for quality and quantity of the food crops using SVM approach	The digital camera(or) are take image of different types & identify the affected area in leaves especially need to predict both quality &quantity of leaf model	Segment of leaf boundary, classificatio n affected part, image acquisition testing diseases suggested the fertilizer	Base on SVM to classif y tree leave identif y the disease and sugges t the fertiliz	1.It gives better result when compared to existing CNN yield more productivity	1.It takes more time consumption	To identify the disease that affect the various plant organs such as stems & fruits
			approuen	model					
		Identificati on.				er			

INTRO	INTRODUCTION SURVEY/BODY OF REVIEW							Conclusion			
Ms.Saraswathi.K											
Year	Title	Keywords	Problem Definition	Methodology (Algorithm, ProtocolEtc)	Input Parameters	Result	Advantages	Disadvantages/ Drawbacks	Research Gap/Research Question		

11. 2022	Intelligent insecticide and fertilizer recommen dation system based on TPF-CNN for smart farming	1. Artificial Intelligence 2.Mathemat i cal model3.Precision Farming 4.Sensor technology	To enhance agricultura l production and productivit y by offering smart technolog y which will recommen d insecticide s and fertilizers for crops and in the soil using TPF CNN dual operator approch	Temporal Pos Feature- Convetional Neural Network (TPF-CNN) model, Support Vector Machine(SVM), ArtificalNeural Network(ANN) and, K- Nearest Neighbour (KNN)	Plant leaf Image, Soil nutrients	Based on soil nutrients level, fertilizer recomme ndation would be done	1.Gain maximum farm yield. 2.Nutrient-rich soil. 3. It does not require an internet connection	1.It does not save any data on the system or cloud database. So we will not do any on demand fertilizer recommendati on system.	In this work, they have not consider pH, temperature, humidity, and moisture for open and indoor farming
12. 2022	Compariso n of	1.ArtificalInt elligence 2.Machinele	To predict plant disease in	Conventional Neural Network	Type of Climate, Specific	Identifyi ng of pathogen	1.Accurate prediction 2. It Minimizes	1. Plant diseae prediction is based on	It does not consider the Ph parameters and it can use other

	Artificial Intelligenc e algorithm in plant disease prediction	arning 3.Deep learning	a specific area based on the forecastin g model of weather.	(CNN), Artificial Neural Network (ANN),Suppor t Vector Machine(SVM),K-Nearest Neighbour(KN N)	crop, disease, Trainingdat a, Test data,	s causing disease& recomme nding fertilizer	the loss of crop due to disease attacks. 3. This Grows crop in desert regions 4. The amount of spraying time of fungicide sprays avoid the growth of disease.	weather condition.	algorithms.
13. 2021	Soil based Fertilizer recommend ation system for crop disease prediction system	1.Soil nutrients 2.Fertilizer3. Sensors	The type soil nutrient and of leaf disease occurring the crop	Long or short term memory algorithm	Soil type, soil analysis report	Analyzin g soil nutrient type for crop yield	1.Highly Efficient	1.Alogrithm requires a lot of resource and time	Does'not use any valid parameter regarding soil type and it does't recommend fertilizer to diversified crops.
14. 2021	Anutrient recommen dation system for soil fertilizatio n based on	1.Sensor data 2.Evolutiona ry computation 3.Soil nutrients 4,Agriculture	The exploration of nutrients to develop a knowledge -based	Improved Genetic Algorithm (IGA)	Sensor, Threshold values, Extract patterns from the time-series	Reduce the computat ion resources and improve	1.Thismethod performs better against the standard recommendati on. 2. It optimizes	1.Its does not uses the multi- objective optimization models tosolve optimization issue for more	The optimization search strategy and individual repair methods to extract valuable paramaters will reduce the computation

	evolutionar		system for the ICT		data of Nitrogen,	the	the crop yield ant maintain	efficiently.	resources and improve the
	y computatio		environme		Phosphorus	recomme ndation	the soil		recommendation to
	n		nt.		and	to	nutrient.		maintain crops for
					Potassium(maintain			soil fertilization.
					NPK)	crops for			
						soil			
						fertilizati			
						on.			
	Prediction	1.Agricultur	To detect	SupportVector	Soil	The	1.There is a	1.Takes a	In this work, they
	of crop	2.Yield	Crop	Machine	nutrients,	predictio	higher crop	more time to	have not consider
	yield and	Prediction3.	diseases	(SVM),	Location	n of crop	yield of	predict the	pH, humidity, and
	fertilizer	Machine	and	Crop Image.	data,	yield	productivity	disease in the	moisture for disease
	recommen	learning4.Ra	recommen		Plant image.	based on		crop.	prediction.
15.	dation	ndom Forest	d			location			
2010	using	5.Soil	pesticides			and the			
2019	Machine	Nutrients.	for disease			higher			
	Learning		based on			crop			
	Algorithm		Support			yield is			
			Vector			achieved			
			Machine(S						
			VM).						
			v 1V1 <i>)</i> .						

INTRO	DUCTION		SURV	EY/BODY OF	REVIEW			Conclusio	on
Year	Title	Keywords	Problem Definition	Methodolog y (Algorithm, ProtocolE tc)	Input Parameters	Result	Advantag es	Disadvantages/ Drawbacks	Research Gap/Research Question
Ms.Divy	a.K								
16. 2021	Crop yield prediction and fertilizer recommen dation using voting based Ensemble classifier	Crop,SVM, KNN,rando m forest , nitrogen ,phosphoro us,CNN	The proposed can be used to determine the ideal planting season ,plant developme nt , and plant harvesting	Random forest is a supervised learning algorithm	Nitrogen ,ph , potassium etc	The information they need to earn a high return and as a result increase benefits lowering self destruction rates	Predicting the better crop is the ultimate aim of the project	Problem is to have the better crop yield	Base on the voting prediction the fertilizer recommendation is possible?
17. 2021	Machine Learning Strategy for Soil Nutrients Prediction Using Spectrosco pic Method	machine learning; nutrients prediction; soil spectra; soil analysis; soil category;	Based on UV-VIS and VIS - NIR spectra without selection of spectral variable selection,	RF for OC, LS-VM for N, P and K, GRNN for nutrients	Soil,Joined fiber optic,lightbox ,spectromotor	The presented results confirm our initial hypothesis that the Machine Learning signifi-	Low computati on time Performs well with large datasets Reduce data dimension	Do not deal with nonlinear problems over-fitting may occur	What Chemical characterization of the samples was performed in a certified laboratory?

	precision farming	provided the ability to distinguish between high and low values			cantly improves the accuracy of soil property prediction.	ality Provide a feature selection Easy to implement		
Optin fertili recon dation method nitrat residu control a who maize double 18. cropp 2021 system drylar frami	Phosphate Nitrogen requiremen of for e Nitrate nitrogen Fertilizer recommend ation. e ing n in nd	Nitrogen Phosphate Nitrogen requiremen t Nitrate nitrogen Fertilizer recommend ation.	Winter wheat— summer maize is the major local cropping system in this area.	The local production level limits the target yield, and if the relationship between the amount of fertilizer applied and grain yield is established by collecting field data for a specific region, the estimation of this parameter will be accurate.	The yields were further improved by 81.9 %, 79.8 %, and 75.7 % at P rates of P1, P2, and P3, respectively, compared with P0.	These results indicate that the crop yields were increased by N application and they increased further when combined with P fertilizer.	Thus, insufficient or excessive N and P fertilizer decreased HI, which was not conducive to enhancing the crop yield.	Developed a convenient method to optimize the fertilizer recommendation method for the winter wheat—summer maize cropping system.

19. 2020 mo	eview on oplication of drones for crop health onitoring and oppraying esticides and fertilizer	Unmanned aerial vehicle, camera, GPS,crop monitoring, spraying system ESC,	To measure the speed of wind the indicator is used to measure the moisture in the air	Digital temperature , humidity indicator ,water sensitive sensors, anemometer, filter papers.	Training process,RGB, HSV,YUV, accuracy	performance of this method will increase by quadcopter	Implemen tation of the agricultur e technique to enhance the productivi ty	Sometime show the different color in the training process	How to find the color of the plant?
Va Fei Re dat Im bas Gr 20. Gr	ariable ertilizer ecommen tion by nage-sed cass cowth atus	Precision, Sensors, Image processing, Variability, Automatic control.	production fields and calibration relationship s were obtained between the sensor measureme nts and grass growth levels.	1.Sensing grase growth information 2.Image aquisation 3.Processing of the images *VRF Recommend ation *Prescriptio n *Variable rate applicator	Sodium,Potas sium, phosporous,n itrogen	Variations in the growth levels of the zoysiagrass were found for the same field, therefore, different levels of fertilizations were recommende d.	1.Simple methodolo gy 2.Easy to predict	1.More resources ne 9eded	This study would contribute greatly to increase fertilizer use efficiency and reduce environmental contamination, if the recommended fertilizers were variably applied.