Odpowiedzi i schematy oceniania

Arkusz 15

Zadania zamknięte

Numer	Poprawna	Wskazówki do rozwiązania zadania	
zadania	odpowiedź		
1.	A.	$a = \left(\sqrt{4 + \sqrt{7}} - \sqrt{4 + \sqrt{7}}\right)^2 = 4 + \sqrt{7} - 2\sqrt{4 + \sqrt{7}} + 4 - \sqrt{7} \Rightarrow$	
		$\Rightarrow a = 8 - 2\sqrt{16 - 7} = 8 - 6 = 2$	
2.	В.	$\left(\frac{23}{25}, \frac{24}{25}\right) = \left(\frac{46}{50}, \frac{48}{50}\right)$	
3.	В.	$a = \log_3 \frac{6}{15} + \log_3 5 = \log_3 \frac{30}{15}$	
4.	B.	Skorzystaj z interpretacji graficznej wartości bezwzględnej.	
5.	C.	x – cena kurtki przed obniżkami,	
		$0.8 \cdot 0.85x = 408 \Rightarrow x = 600.$	
6.	В.	$W = \frac{3(x+2)}{(x-2)(x+2)} = \frac{3x+6}{x^2-4}$	
7.	A.	$\frac{x+y}{x-y} = \frac{3}{2\sqrt{2}-1} = \frac{6\sqrt{2}+3}{7}$	
8.	B.	Jedynym rozwiązaniem równania jest liczba $x = -1$ (równanie	
		$x^2 + 25 = 0$ jest sprzeczne).	
9.	C.	Tata ma 16+32 = 48 lat, zatem 3 razy więcej od Jacka.	
10.	D.	$x+3 \ge 0 \land x-7 \ge 0 \Rightarrow x \ge -3 \land x \ge 7 \Rightarrow x \ge 7$	
11.	C.	Dziedziną funkcji jest zbiór $R \setminus \{-2, 2\}$, zatem miejscami zerowymi są	
		liczby (-1) i 1.	
12.	D.	Parabola ma ramiona skierowane do góry, więc funkcja jest rosnąca w	
		przedziale $(x_w, +\infty)$, $x_w = \frac{4}{2} = 2$.	
13.	D.	Miejscem zerowym pierwszej funkcji jest liczba $\left(-\frac{5}{3}\right)$, zaś miejscem	
		zerowym drugiej funkcji jest liczba $\frac{1}{a}$. Otrzymujemy więc równanie	

		$-\frac{5}{3} = \frac{1}{a} \Rightarrow a = -\frac{3}{5}$.
1.4	Α.	Strongwatei z zasady mozacywanie wydzneców fynkaji
14.	A.	Skorzystaj z zasady przesuwania wykresów funkcji.
15.	D.	Wartości funkcji wykładniczej są dodatnie.
16.	C.	Liczba logarytmowana musi być dodatnia, zatem dziedziną funkcji
		jest zbiór $(-\infty, -3) \cup (3, +\infty)$.
17.	B.	$a_4 = 64, a_5 = -160 \Rightarrow a_4 - a_5 = 64 + 160 = 224$
18.	C.	$\begin{cases} a_1 q^2 = 4 \\ a_1 q^3 = -2 \end{cases} \Rightarrow \begin{cases} a_1 = 16 \\ q = -\frac{1}{2} \Rightarrow a_2 = -8 \end{cases}$
19.	D.	Ciąg z przykładu D jest arytmetyczny, gdyż wyrazy różnią się o 2.
20.	A.	$\frac{1}{6} < \frac{1}{2} \Rightarrow \sin \alpha < \sin 30^{\circ} \Rightarrow \alpha < 30^{\circ}$
21.	C.	$(\sin \alpha + \cos \alpha)^2 = \sin^2 \alpha + 2\sin \alpha \cos \alpha + \cos^2 \alpha = 1 + \frac{2}{7} = \frac{9}{7} \Rightarrow$
		$\Rightarrow \sin \alpha + \cos \alpha = \sqrt{\frac{9}{7}} = \frac{3\sqrt{7}}{7}$
22.	C.	$ \angle ADC = 180^{\circ} - 142^{\circ} = 38^{\circ} \Rightarrow \angle AOC = 76^{\circ}.$
23.	C.	$\frac{6}{4} = \frac{9}{6} = \frac{12}{8}$
24.	B.	$m = \frac{4+6}{2} \Rightarrow m = 5$
25.	C.	$\bar{\Omega}=52,\ \bar{A}=19$, gdyż suma zbioru asów, dam i trefli jest zbiorem dziewiętnastoelementowym.

Zadania otwarte

Numer	Modelowe etapy rozwiązywania zadania	Liczba
zadania		punktów
26.	Zapisanie równania: $\frac{-5-5+19 \cdot r}{2} \cdot 20 = 1230$	1
	Rozwiązanie równania: $r = 7$.	1

27.	Wyznaczenie miary kąta AOD : $ \angle AOD = 20^{\circ}$.	1
	Wyznaczenie miary kąta <i>DAO</i> i wykazanie tezy zadania:	1
	$ \angle DAO = 80^{\circ} \Rightarrow \angle ACB = 180^{\circ} - 2 \cdot 80^{\circ} = 20^{\circ}.$	
28.	Wyznaczenie pierwiastków trójmianu kwadratowego:	1
	$x_1 = -\frac{1}{4}, x_2 = \frac{1}{5}.$	
	Rozwiązanie nierówności: $x \in \left(-\frac{1}{4}, \frac{1}{5}\right)$.	1
29.	Zapisanie sumy kwadratów trzech kolejnych liczb naturalnych i	1
	wykorzystanie wzorów skróconego	
	mnożenia: $s = n^2 + (n+1)^2 + (n+2)^2 \Rightarrow s = 3n^2 + 6n + 5, n \in \mathbb{N}$.	
	Wykazanie tezy zadania: $s = 3(n^2 + 2n + 1) + 2$ – zapis liczby, która	1
	przy dzieleniu przez 3 daje resztę 2.	
30.	Zapisanie układu równań: $\begin{cases} R+r=19\\ R-r=5 \end{cases}$.	1
	Rozwiązanie układu równań: $\begin{cases} R = 12 \\ r = 7 \end{cases}$	1
31.	Zapisanie równania: $3^3 - 4 \cdot 3^2 - 3m + 36 = 0$.	1
	Rozwiązanie równania: $m = 9$.	1
	Pogrupowanie wyrazów wielomianu: $W(x) = (x^2 - 9)(x - 4)$.	1
	Wyznaczenie pierwiastków wielomianu: $x_1 = 3$ (dany pierwiastek),	1
	$x_2 = -3, x_3 = 4.$	
32.	Zapisanie współrzędnych środka okręgu za pomocą jednej	1
	zmiennej: $S = (x, x-2)$.	
	Zapisanie równania: $\sqrt{x^2 + (x-5)^2} = \sqrt{(x-4)^2 + (x-7)^2}$.	1
	Rozwiązanie równania i zapisanie współrzędnych środka okręgu:	1
	$S = \left(\frac{10}{3}, \frac{4}{3}\right).$	
	Wyznaczenie długości promienia okręgu: $r = \sqrt{\frac{125}{9}}$.	1

	Zapisanie równania okręgu: $\left(x - \frac{10}{3}\right)^2 + \left(y - \frac{4}{3}\right)^2 = \frac{125}{9}$.	1	
33.	Wykonanie rysunku z oznaczeniami lub wprowadzenie dokładnych oznaczeń:	1	
	a – krawędź podstawy,h – wysokość podstawy,		
	H – wysokość ostrosłupa,		
	α – kąt nachylenia krawędzi <i>SA</i> do płaszczyzny podstawy		
	ostrosłupa.		
	Wyznaczenie wysokości podstawy: $h = 10$.		
	Wyznaczenie krawędzi podstawy: $a = \frac{20\sqrt{3}}{3}$.	1	
	Wyznaczenie wysokości ostrosłupa: $H = 10$.		
	Wyznaczenie objętości ostrosłupa: $V = \frac{1000\sqrt{3}}{9}$.	1	
	Wyznaczenie kąta nachylenia krawędzi SA do płaszczyzny	1	
	podstawy ostrosłupa: $tg\alpha = \frac{H}{\frac{1}{2}a} \Rightarrow tg\alpha = \sqrt{3} \Rightarrow \alpha = 60^{\circ}$.		