Kalman Filters Week 6

Subteam 2

Last Week's Problem

 Parametrization happening, but biologically inaccurate results and bad glucose fits

Estimating All Parameters

- Shift to allowing all parameters to move during parametrization instead of being held constant
- Parameters are related → need to allow for these relationships
- Try to keep movement somewhat limited (more on this later)

Defining Success

- Concerned with:
 - Glucose fits to real data
 - Behavior of immune cells
- Glucose fits: Least Squares Error
- Immune cells: Eyeball Test

Glucose Fits Attempt 1 (Mouse 6) - Dual

Two Issues: glucose level during steady state and time of onset

Identifying Critical Parameters

- Eta, Alpha_eta, Beta_eta
 - Control time of onset and steepness of curve
- To begin with, only allowing movement in alpha_eta and beta_eta, later in week freed up eta as well

$$eta_{vary} = eta + 2 * eta * (1 + tanh(alpha_{eta} * (t - beta_{eta} * 7)))$$

Glucose Fits Attempt 2 (Mouse 6) - Dual

Run	Error
1	354.363
2	226.119
3	163.88

Immune Cells - Dual

Using Parameter Estimates

Using Baseline Parameters

Glucose Fit Attempt with Joint

Looking at All States - Joint

Comparison of Dual and Joint

Applying Code to Other Mice

- Mouse 6 is a "good" mouse, need to see how performance changes when more obscure behavior
- Testing acute vs progressive mice
- How can we use fits to multiple mice effectively?

Mice 4 and 7 (Acute) - Dual

In order to get these results, we needed to raise the variances from our Mouse 6 fits!

Mouse 1 (Progressive) - Dual

- Very irregular raw data
- Algorithm still expects a sudden jump in glucose
- Not enough parameter movement

Example that it Might Not Be - Dual

With increased variance on mouse 6 data:

*At this point eta is now moving too

Example that it Could Be (Mouse 7)

Run	Error
1	368.184
2	153.78
3	643.52

What is Causing This Issue

- For some mice, it appears that the algorithm finds a good fit in, for example, iteration *t*, but then drastically deviates from it in *t*+1
 - Example of this is on previous slide and additional example in weekly report
- Hypothesis: larger variance drives parameters outside of the optimal search area
 - Possible solution: introduce check at end of iteration: is the error of this iteration less than the previous? If no, then terminate with previous iteration as final estimate

One Iteration May Now Be Enough

Allowing eta to vary with alpha_eta and beta_eta results in:

A Second Biological Check

- These parameters are meant to "live on the edge"
 - If no wave, mouse should get healthy
 - If wave, mouse should get sick
- To check this, can plot the whole system with final parameter estimates + NO wave

A Second Biological Check

Why is Mouse Still Getting Sick?

- Relationship between parameter eta and macrophage clearance rates is very sensitive
- Eta is moving, clearance rates held constant currently
- Need clearance rates to move, but this must be done very carefully

Big Picture

- Maximize number of datasets
 - Possibility of combining Li and Matthews
 - Deterministic nature of UKF limits possibilities on Li alone
- Create distributions of key parameters
 - Use as prior distributions for MCMC (informative prior)

Overall Workflow

