IN THE CLAIMS

Fax:7132668510

1	1.	(сште	ntly amended) A method of identifying a presence of a first fluid in an eart
2		forma	tion having a first transverse nuclear magnetic spin relaxation time T_2 in a
3	•	mixtu	re of earth formation fluids with a second fluid in an earth formation having
4		a seco	and transverse nuclear magnetic spin relaxation time T_2 greater than said
5		first t	ransverse relaxation time, said first material comprising a small fraction of
6		the m	ixture, the method comprising:
7		(a)	using a magnet to produce producing a static magnetic field in said
8			mixture a region of examination in said earth formation and align-nuclea
9			spins in said region substantially parallel to a direction of said static field
10		(b)	applying a pulse sequence having pulses
11			A1 - τ- B1 - τ - A2 - TW - A3
12			to said mixture where A1 is a first excitation pulse, τ is a Carr-Purcell
13			time, B1 is a first refocusing pulse, A2 is forced inversion pulse, A3 is a
14			second excitation pulse, and TW is a wait time, and
15		(0)	determining wherein a value of TW for which a resulting signal
16			from said second fluid in said earth formation is substantially zero and
17		<u>(c)</u>	determining said presence by analyzing signals after said second
18			excitation pulse.
19			
1	2,	(orig	inal) The method of claim 1 wherein said first excitation pulse comprises a
2		pulse	having a tip angle substantially equal to 90°.
3			
•	10/64	19.423	

2

16:35

Jul 26 '04

1	3.	(original) The method of claim 1 wherein said second excitation pulse comprises
2		a pulse having a tip angle substantially equal to 90°.
3		
1	4.	(original) The method of claim 1 wherein said first refocusing pulse comprises a
2		pulse having a tip angle substantially equal to 180°.
3		
1	5.	(currently amended) The method of claim 1 wherein further comprising
2 .		determining said value of TW further comprises by applying a sequence of
3		refocusing pulses B2 i after said second excitation pulse and determining a value
4		of TW for which substantially no spin echo signals are produced by said sequence
5		of refocusing pulses.
6		
1	6.	(original) The method of claim 5 wherein at least one of said sequence of
2		refocusing pulses comprises a pulse with a tip angle substantially equal to 180°.
3		
1	7.	(original) The method of claim 1 further selecting τ to satisfy the condition
2		$T_2' >> \tau >> T_2$.
3		
. 1	8.	(original) The method of claim 5 further comprising:
2		(i) repeating (b) with different values of TW until no free induction decay
3		signal after the second excitation pulse A3 is produced;
4		(ii) repeating (b) with a value of TW altered from the value determined in (i)

and

5

10/649,423

16:35

Jul 26 '04

6	•	(iii) analyzing a resulting free induction decay signal.
7		
1	9.	canceled
2		
1	10.	(original) The method of claim 9 further comprising conveying said magnet on a
2		logging tool into a borehole into said earth formation.
3		
1	11.	(original) The method of claim 10 wherein said logging tool is conveyed on a
2		wireline.
3		
1	12.	(original) The method of claim 10 wherein said logging tool is conveyed on a
2		drilling tubular.
3		
1	13.	(currently amended) A system for identifying a presence of first fluid having a
2		first transverse nuclear spin relaxation time T_2 in a mixture of fluids in an earth
3		formation with a second fluid having a second transverse spin relaxation time T_2 '
4		greater than said first transverse relaxation time, said first fluid comprising a
5		small fraction of the second fluid, the method system comprising:
6	,	(a) a logging tool conveyed into a borehole into said earth formation,
7		(b) a magnet on said logging tool for producing which produces a static field
8 .		in a region of said earth formation including said mixture, said magnet
9		aligning nuclear spins in said region substantially parallel to a direction of
10	10/64	said-statie field ; 9,423

MADANMOSSMANSRIRAM

11		(b)	a trans	mitter on said logging tool for applying which applies a radio
12			freque	ncy pulse sequence
13			A1 - τ	- B1 -7 - A2 - TW - A3
14			to said	mixture in said region, where A1 is a first excitation pulse, $ au$ is a
15			Carr-F	Purcell time, B1 is a first refocusing pulse, A2 is forced inversion
16			pulse,	and A3 is a second excitation pulse,
17		(c)	a rece	iver on said logging tool for receiving which receives signals
18			resulti	ng from said nuclear spins resulting from application of said pulse
19			seque	nce; and
20		(d)	a proc	essor for determining which:
21	•		(<u>A</u>)	determines a value of TW for which a resulting signal from said
22				second fluid is substantially zero, and
23			<u>(B)</u>	identifies said presence of said first fluid by analyzing signals after
24				said second excitation pulse.
25				
1	14.	(origi	inal) Th	e system of claim 13 wherein said first excitation pulse comprises a
2		pulse	having	a tip angle substantially equal to 90°.
3				
1	15.	(orig	ínal) Th	e system of claim 13 wherein said second excitation pulse comprises
2		a pul	se havin	g a tip angle substantially equal to 90°
3				
1	16.	(cum	ently an	nended) The system of claim 13 wherein said processor determines
· 2			mining	said value of TW further comprises by further applying a sequence of
	10/64	9,423		

3		refocusing pulses B21 after said second excitation pulse and determining a value
4		of TW for which substantially no spin echo signals are produced by said sequence
5		of refocusing pules.
6		
1	17.	(previously presented) The system of claim 13 wherein said first refocusing puls
2		comprises a pulse having a tip angle substantially equal to 180°.
3		
1	18.	(original) The system of claim 16 wherein at least one of said sequence of
2		refocusing pulses comprises a pulse with a tip angle substantially equal to 180°.
3		
1	19.	(original) The system of claim 13 wherein $T_2' >> \tau >> T_2$.
2		
1	20.	(original) The system of claim 13 wherein said processor further performs:
2		(i) a repetition of (b) in claim 13 with different values of TW until no free
3		induction decay signal after the second excitation pulse A3 is produced;
4		(ii) a repetition of (b) in claim 13 with the value of TW altered from the value
5		determined in (i); and
6		(iii) analyzes a resulting free induction decay signal.
7		
1	21.	(original) The system of claim 13 further comprising a wireline for conveying
2		said logging tool into said borehole.
3		•
1	22. 10/649	(original) The system of claim 13 further comprising a drilling tubular for

3

1 23. (original) The system of claim 13 wherein said processor is on said logging tool.

10/649,423