5.4 高速缓存(Cache)

- Cache的基本概念
 - > 设置Cache的理由
 - ◆ CPU与主存之间在执行速度上存在较大差异
 - ◆ 高速存储器芯片的价格较高

5.4.1 Cache的工作原理

- 基于程序和数据访问的局部性
 - 时间局部性:最近的访问项可能在不久的将来再次被访问
 - 空间局部性:一个进行所访问的各项,其地址彼此很接近

■ Cache的命中率

- ▶ 访问内存时, CPU首先访问Cache, 找到则"命中", 否则为"不命中"。
- ➤ 命中率影响系统的平均存取速度

 Cache存储器系统的平均存取速度=

 Cache存取速度×命中率+RAM存取速度×不命中率
- ▶ Cache与内存的空间比一般为: 1: 128

5.4.2 Cache的读写操作

写操作写穿式回写式

■ 1. 贯穿读出式

- > CPU对主存的所有数据请求都首先送到Cache, 在Cache中查找。
- > 若命中, 切断CPU对主存的请求, 并将数据送出;
- > 如果不命中,则将数据请求传给主存。

■ 2. 旁路读出式

- > CPU向Cache和主存同时发出数据请求。
- ▶ 命中,则Cache将数据回送给CPU,并同时中断CPU对主存的请求;
- > 若不命中,则Cache不做任何动作,由CPU直接访问主存

■ 3. 写穿式

▶ 向CPU发出的写信号送Cache的同时也写入主存

■ 4.回写式(写更新)

▶ 数据一般只写到Cache, 当Cache中的数据被再次更新时,将原更新的数据写入主存相应单元,并接受新的数据。

5.4.3 Cache与贮存的存取一致性

- 对Cache的管理全部是由硬件实现的,在Cache存储器系统中,存储器的 编址方式与主存储器是完全一致的。
- Cache中存放的内容应该是主存的部分副本。

5.4.4 Cache的分级体系结构

- 一级Cache: 容量一般为8KB~64KB
 - ➤ 一级Cahce集成在CPU片内。L1 Cache分为指令Cache和数据Cache 。使指令和数据的访问互不影响。指令Cache用于存放预取的指令。 数据Cache中存放指令的操作数。
- 二级Cache: 容量一般为128KB~2MB
 - ➤ 在Pentium II之后的微处理器芯片上都配置了二级Cache,其工作频率与CPU内核的频率相同。

5.4.4 Cache的分级体系结构

型号	步进	核心线程	主频	加速频率	二级缓 存	三级缓 存	TDP	插槽	DMI总 线	内存支持
					标准电压	ī				
Core i7-8 60	B1	四核心八 线程	2.8GH z	3.46G Hz	4×256 KB	8MB	95W	LGA 1156	2.5GT/s	DDR3-1333 双通道
Core i7-8 70	B1	四核心八 线程	2.93G Hz	3.6GH z	4×256 KB	8MB	95W	LGA 1156	2.5GT/s	DDR3-1333 双通道
Core i7-8 75K	B1	四核心八 线程	2.93G Hz	3.6GH z	4×256 KB	8MB	95W	LGA 1156	2.5GT/s	DDR3-1333 双通道
Core i7-8 80	B1	四核心八 线程	3.06G Hz	3.73G Hz	4×256 KB	8MB	95W	LGA 1156	2.5GT/s	DDR3-1333 双通道
					低电压					
Core i7-8 60S	B1	四核心八 线程	2.53G Hz	3.46G Hz	4×256 KB	8MB	82W	LGA 1156	2.5GT/s	DDR3-1333 双通道
Core i7-8 70S	B1	四核心八 线程	2.66G Hz	3.6GH z	4×256 KB	8MB	82W	LGA 1156	2.5GT/s	DDR3-1333 双通道

5.4.4 Cache的分级体系结构

型号	步进	核心线程	主频	加速频率	二级缓 存	三级缓 存	TDP	插槽	QPI总 线	内存支持
Core i7-9 70	B1	六核心十二 线程	3.2GH z	3.46GH z	6×256K B	12MB	130W	LGA 1366	4.8GT/s	DDR3-1066 三通道
Core i7-9 80	B1	六核心十二 线程	3.33G Hz	3.6GHz	6×256K B	12MB	130W	LGA 1366	4.8GT/s	DDR3-1066 三通道
Core i7-9 80X	B1	六核心十二 线程	3.33G Hz	3.6GHz	6×256K B	12MB	130W	LGA 1366	6.4GT/s	DDR3-1066 三通道
Core i7-9 90X	B1	六核心十二 线程	3.46G Hz	3.73GH z	6×256K B	12MB	130W	LGA 1366	6.4GT/s	DDR3-1066 三通道

常见的存储设备

图 5-11 SRAM 6116 外部引线图

图 5-12 SRAM 6116 的应用连接图

2164A

图 5-21 字扩展连接示意图

	2764	
V_{PP}	1	$28 - V_{CC}(+5V)$
A ₁₂	2	27 <u>PGM</u>
A_7	3	26 — NC
A ₆	4	25 — A ₈
A_5 —	5	24 — A ₉
A ₄ —	6	23 — A ₁₁
A_3	7	22 — <u>OE</u>
A_2	8	$21 - A_{10}$
A_1	9	20 <u></u>
A_0	10	19
D_0 —	11	$18 - D_6$
D_1 —	12	$17 \mid -D_5$
D_2 —	13	$16 \longrightarrow D_4$
地一	14	15 $-D_3$

图 5-24 EPROM 2764 引线图

图 5-26 2764 与 8088 系统的连接图

图 5-29 NMC98C64A 引线图

图 5-31 98C64A 与系统的连接

5.5 半导体存储器设计举例

■ 例5-8,利用图5-43所示的SRAM8256存储器芯片(容量为256K*8b)构成1MB的存储器。芯片各引线含义为: A0~A17,地址线; D0~D7,数据线;/WE,写允许信号线;/OE,读出允许信号线;/CS,片选信号。

■ 例5-9, 某8088系统使用EPROM2764和SRAM6264芯片组成16KB内存。

其中:ROM地址范围为FE000H~FFFFFH,RAM地址范围为F0000H~F1FFFH。要求利用74LS138译码器设计译码电路,实现16KB存储器与系统的连接。

 ■ 例5-10,分别利用SRAM6264芯片和EEPROM98C64A芯片构造32KB的数据存储器即32KB的程序存储器,并将程序存储器各单元的初值置为FFH