- Insertion
 - Find proper position of the node in the binary tree
 - Insert and color it red
 - If there is conflict then parent node is red
 - Fix conflict

Red Black Trees:Insertion

• Case 1:

- Parent Red, Uncle Red, Grandparent Black
- Make Grandparent Red and Parent and Uncle Black

Insertion

• Case 2a:

- Parent Red, Uncle Black, Grandparent Black
 - Straight Line among grandparent, parent and child
 - If parent is left (right) child of grandparent, child is left(right) child of parent
- Rotate such that parent is new parent, and grandparent is child
- Exchange color of parent and grandparent

Insertion

• Case 2b:

- Parent Red, Uncle Black, Grandparent Black
 - Zigzag among grandparent, parent and child
 - If parent is left (right) child of grandparent, child is right(left) child of parent
- Rotate such that child is new parent, and parent is child
- Becomes Case 2a

Insertion

- Deletion
 - If red node deleted —nothing further to be done
 - If black node deleted—there is imbalance

- As per binary tree deletion rules, node to be deleted is either leaf or has one child
- In terms of R-B tree two situations can occur
- We only need to fix when double black occurs

- Case 1: Parent red
- Sibling children black
- Change color of sibling and parent

- Case 2
 - Parent Black
 - Sibling Red
- Rotate such that sibling is parent, and parent is child of sibling
- Exchange color of parent and sibling
- Now it is Case 1

- Case 3a
 - Sibling is black
 - If sibling is left (right) child of grand parent then left (right) child of sibling is red (Straight line)
- Rotate to make sibling parent of grand parent.
- Color left child of sibling black

- Case 3b
 - Sibling is black
 - If sibling is left (right) child of grand parent then right(left) child of sibling is red (zig-zag line)
- (i) Rotate to make sibling and its child to obtain straight line
- It now becomes Case 2
- (ii) If after rotation tree is unbalanced, then switch color of A and S
- It now becomes Case 3a

- Case 3c
 - Sibling is black
 - Parent black
 - Both children of sibling are black
- Make sibling red, and push the double node up
- Transforms to one of the other cases

