$Individual_assignment 11$

Yuhan_Xu_474154 2019/11/21

Prefix

Consider the USArrests data. We will now perform hierarchical clustering on the states.

fix(USArrests)

(a)

Using hierarchical clustering with complete linkage and Euclidean distance, cluster the states.

```
hc.complete = hclust(dist(USArrests), method = "complete")
plot(hc.complete,main="Complete Linkage", xlab = "", sub="", cex=0.9)
```

Complete Linkage

(b)

Cut the dendrogram at a height that results in three distinct clusters. Which states belong to which clusters?

cutree(hc.complete,3)

##	Alabama	Alaska	Arizona	Arkansas	California
##	1	1	1	2	1
##	Colorado	Connecticut	Delaware	Florida	Georgia
##	2	3	1	1	2
##	Hawaii	Idaho	Illinois	Indiana	Iowa
##	3	3	1	3	3
##	Kansas	Kentucky	Louisiana	Maine	Maryland
##	3	3	1	3	1
##	Massachusetts	Michigan	Minnesota	Mississippi	Missouri
##	2	1	3	1	2
##	Montana	Nebraska	Nevada	New Hampshire	New Jersey
##	3	3	1	3	2
##	New Mexico	New York	North Carolina	North Dakota	Ohio
##	1	1	1	3	3
##	Oklahoma	Oregon	Pennsylvania	Rhode Island	South Carolina
##	2	2	3	2	1
##	South Dakota	Tennessee	Texas	Utah	Vermont
##	3	2	2	3	3
##	Virginia	Washington	West Virginia	Wisconsin	Wyoming
##	2	2	3	3	2

(c)

Hierarchically cluster the states using complete linkage and Euclidean distance, after scaling the variables to have standard deviation one.

```
USArrests.sc = scale(USArrests)
hc.complete1 = hclust(dist(USArrests.sc), method = "complete")
plot(hc.complete1,main="Complete Linkage", xlab = "", sub="", cex=0.9)
```

Complete Linkage

(d)

What effect does scaling the variables have on the hierarchical clustering obtained? In your opinion, should the variables be scaled before the inter-observation dissimilarities are computed? Provide a justification for your answer.

cutree(hc.complete1,3)

##	Alabama	Alaska	Arizona	Arkansas	California
##	1	1	2	3	2
##	Colorado	Connecticut	Delaware	Florida	Georgia
##	2	3	3	2	1
##	Hawaii	Idaho	Illinois	Indiana	Iowa
##	3	3	2	3	3
##	Kansas	Kentucky	Louisiana	Maine	Maryland
##	3	3	1	3	2
##	Massachusetts	Michigan	Minnesota	Mississippi	Missouri
##	3	2	3	1	3
##	Montana	Nebraska	Nevada	New Hampshire	New Jersey
##	3	3	2	3	3
##	New Mexico	New York	North Carolina	North Dakota	Ohio
##	2	2	1	3	3
##	Oklahoma	Oregon	Pennsylvania	Rhode Island	South Carolina
##	3	3	3	3	1

```
##
     South Dakota
                        Tennessee
                                             Texas
                                                              Utah
                                                                           Vermont
##
                                                 2
                                                                 3
                                                                                  3
                 3
         Virginia
##
                                    West Virginia
                                                         Wisconsin
                                                                           Wyoming
                       Washington
##
                 3
                                 3
                                                                 3
                                                                                  3
```

```
table(cutree(hc.complete,3))
```

```
table(cutree(hc.complete1,3))
```

```
##
## 1 2 3
## 8 11 31
```

Scaling the variables will result in different clusters.

From the summary of this dataset, we know that different variables have different magnitudes. So, I think the variables should be scaled to avoid those variables with bigger magnitude dominating in clustering.

summary(USArrests)

##	Murder	Assault	UrbanPop	Rape
##	Min. : 0.800	Min. : 45.0	Min. :32.00	Min. : 7.30
##	1st Qu.: 4.075	1st Qu.:109.0	1st Qu.:54.50	1st Qu.:15.07
##	Median : 7.250	Median :159.0	Median :66.00	Median :20.10
##	Mean : 7.788	Mean :170.8	Mean :65.54	Mean :21.23
##	3rd Qu.:11.250	3rd Qu.:249.0	3rd Qu.:77.75	3rd Qu.:26.18
##	Max. :17.400	Max. :337.0	Max. :91.00	Max. :46.00