EMA2: Lecture contents, week 9

3.2. Convergence of series

Theorem.

Let $n_0 < n_1$, consider a series $\sum_{k=n_0}^{\infty} a_k$. $\sum_{k=n_0}^{\infty} a_k$ converges if and only if $\sum_{k=n_0}^{\infty} a_k$ converges.

Then we also have $\sum_{k=n_0}^{\infty} a_k = \sum_{k=n_0}^{n_1-1} a_k + \sum_{k=n_0}^{\infty} a_k$.

If we are only interested in convergence of a series and not its sum (if it exists), then we leave out the index specification.

(necessary condition for convergence)

If a series $\sum a_k$ converges, then necessarily $\lim_{k\to\infty} (a_k) = 0$. Equivalently: If $\lim_{k\to\infty} (a_k) = 0$ is not true, then the series $\sum a_k$ necessarily diverges.

Theorem.

Consider a series $\sum a_k$. If $a_k \geq 0$ for all k, then either $\sum a_k$ converges, or $\sum a_k = \infty$.

3.2.1. Tests for series with non-negative numbers

Theorem. (integral test)

Let $f \geq 0$ be a non-increasing function on $[n_0, \infty)$ for $n_0 \in \mathbb{Z}$. The series $\sum_{k=n_0}^{\infty} f(k)$ converges if and only if $\int_{n_0}^{\infty} f(x) dx$ converges.

Moreover we then have $\int_{0}^{\infty} f(x) dx \leq \sum_{k=0}^{\infty} f(k) \leq f(n_0) + \int_{0}^{\infty} f(x) dx$.

Example.

$$\sum_{k=3}^{\infty} \frac{1}{k \ln^2(k)} : \int_{x=3}^{\infty} \frac{dx}{x \ln^2(x)} = \left| \begin{array}{c} y = \ln(x) \\ dy = \frac{dx}{x} \end{array} \right| = \int_{x=\ln(3)}^{\infty} \frac{dy}{y^2} < \infty. \text{ Therefore the series converges.}$$

Morevoer, $\sum_{k=3}^{\infty} \frac{1}{k \ln^2(k)} \in \left[\frac{1}{\ln(3)}, \frac{1}{3 \ln^2(3)} + \frac{1}{\ln(3)}\right] \sim [0.91, 1.19].$

Trick:
$$\sum_{k=3}^{\infty} \frac{1}{k \ln^2(k)} = \sum_{k=3}^{9} \frac{1}{k \ln^2(k)} + \sum_{k=10}^{\infty} \frac{1}{k \ln^2(k)}$$
$$\in \left[\sum_{k=3}^{9} \frac{1}{k \ln^2(k)} + \int_{10}^{\infty} \frac{dx}{x \ln^2(x)}, \sum_{k=3}^{9} \frac{1}{k \ln^2(k)} + \frac{1}{10 \ln^2(10)} + \int_{10}^{\infty} \frac{dx}{x \ln^2(x)} \right] \sim [1.059, 1.078].$$

Corollary. $(p\text{-}\mathbf{test})$

 $\sum \frac{1}{k^p}$ converges if and only if p > 1.

Example.

$$\sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{\pi^2}{6}.$$

$$\sum_{k=1}^{\infty} \frac{1}{k} = \infty \text{ (harmonic series)}.$$

(comparison test) Theorem.

Let $\exists n_0$ so that $0 \le a_k \le b_k$ for $k \ge n_0$.

If $\sum b_k$ converges, then also $\sum a_k$ converges. If $\sum a_k$ diverges, then also $\sum b_k$ diverges (i.e. $\sum a_k = \infty \implies \sum b_k = \infty$). Remark: Symbolically (and roughly) $a_k \leq b_k \implies \sum a_k \leq \sum b_k$.

(limit comparison test) Let $\exists n_0 \in \mathbb{Z} \text{ so that } a_k \geq 0, b_k \geq 0 \text{ for } k \geq n_0.$ If $a_k \sim b_k$, i.e. $\lim_{k \to \infty} \left(\frac{a_k}{b_k}\right) = A > 0$, then $\sum a_k \sim \sum b_k$, i.e. $\sum a_k$ converges if and only if $\sum b_k$

Example.

 $\sum \frac{1}{k^2+1}$: $0 \le \frac{1}{k^2+1} \le \frac{1}{k^2}$ and $\sum \frac{1}{k^2}$ converges, therefore by CT also $\sum \frac{1}{k^2+1}$ converges. Remark: Also IT and LCT would work here.

Example.

 $\sum \frac{1}{2k^2-1}$: $\frac{1}{2k^2-1} \ge \frac{1}{2k^2} \ge 0$, $\sum \frac{1}{2k^2} = \frac{1}{2} \sum \frac{1}{k^2}$ converges, but the inequality goes the wrong way, so no conclusion possible.

Guess $\frac{1}{2k^2-1} \sim \frac{1}{2k^2}$ for large k, confirm: $\lim_{k \to \infty} \left(\frac{\frac{1}{2k^2-1}}{\frac{1}{2k^2}} \right) = 1 > 0$, $\sum \frac{1}{2k^2} = \frac{1}{2} \sum \frac{1}{k^2}$ converges, hence by LCT also $\sum \frac{1}{2k^2-1}$ converges.

Example.

 $\sum \frac{1}{k \ln^2(k)}$: Two comparisons seem reasonable, $\frac{1}{k^2} \leq \frac{1}{k \ln^2(k)} \leq \frac{1}{k}$, but both are in the wrong direction, so nothing here.

Limit comparison: No candidate, $\frac{1}{k \ln^2(k)} \sim \frac{1}{k}$ or $\frac{1}{k \ln^2(k)} \sim \frac{1}{k^2}$ definitely not true. Thus comparison tests won't help.

Theorem.

Let $a_k \geq 0$ for all k.

ratio test:

- (i) If $\exists q < 1$ and $\exists n_0 \in \mathbb{Z}$ such that $\forall k \geq n_0$: $\frac{a_{k+1}}{a_k} \leq q$, then $\sum a_k$ converges.

(ii) If $\exists n_0 \in \mathbb{Z}$ such that $\forall k \geq n_0 \colon \frac{a_{k+1}}{a_k} \geq 1$, then $\sum a_k$ diverges $(= \infty)$. limit ratio test: Let $\lambda = \lim_{k \to \infty} \left(\frac{a_{k+1}}{a_k}\right)$, assuming that the limit converges.

- (i) If $\lambda < 1$, then $\sum a_k$ converges.
- (ii) If $\lambda > 1$, then $\sum a_k$ diverges $(= \infty)$.

root test:

- (i) If $\exists q < 1$ and $\exists n_0 \in \mathbb{Z}$ such that $\forall k \geq n_0$: $\sqrt[k]{a_k} \leq q$, then $\sum a_k$ converges. (ii) If $\exists n_0 \in \mathbb{Z}$ such that $\forall k \geq n_0$: $\sqrt[k]{a_k} \geq 1$, then $\sum a_k$ diverges $(=\infty)$.

limit root test: Let $\varrho = \lim_{k \to \infty} (\sqrt[k]{a_k})$, assuming that the limit converges.

- (i) If $\varrho < 1$, then $\sum a_k$ converges.
- (ii) If $\varrho > 1$, then $\sum a_k$ diverges $(= \infty)$.

Example.

 $\sum \frac{k!}{2^k}$: Limit ratio test $\lambda = \lim_{k \to \infty} \left(\frac{a_{k+1}}{a_k}\right) = \lim_{k \to \infty} \left(\frac{(k+1)!}{k!} \frac{2^k}{2^{k+1}}\right) = \lim_{k \to \infty} \left(\frac{1}{2}(k+1)\right) = \infty > 1.$ Thus $\sum \frac{k!}{2^k}$ diverges.

Example.

 $\sum \frac{2}{\ln^k (k+1)}$: Limit root test $\varrho = \lim_{k \to \infty} \left(\sqrt[k]{a_k} \right) = \lim_{k \to \infty} \left(\frac{\sqrt[k]{2}}{\ln(k+1)} \right) = \frac{1}{\infty} = 0 < 1.$ Thus $\sum \frac{2}{\ln^k(k+1)}$ converges.

Example.

 $\sum \left(\frac{k}{k+1}\right)^k$: Limit root test $\varrho = \lim_{k \to \infty} \left(\sqrt[k]{a_k}\right) = \lim_{k \to \infty} \left(\frac{k}{k+1}\right) = 1$, no conclusion. Similarly limit ratio fails. Integral test without chance, comparison as well. But: $a_k = \left(1 - \frac{1}{k+1}\right)^k \to e^{-1} \neq 0$, hence $\sum \left(\frac{k}{k+1}\right)^k$ diverges.

3.2.2. Tests for alternating series

(Alternating series test or Leibniz test)

Let $b_k \geq 0$ for all k and let $\{b_k\}$ be non-increasing.

The series $\sum (-1)^k b_k$ converges if and only if $\lim_{k\to\infty} (b_k) = 0$.

 $\sum \frac{(-1)^k}{k}$: $b_k = \frac{1}{k} \ge 0$ is decreasing and $\to 0$, hence $\sum \frac{(-1)^k}{k}$ converges (compare with harmonic series).

3.3. Absolute convergence of series

Definition.

We say that a series $\sum a_k$ converges absolutely if the series $\sum |a_k|$ converges.

Theorem.

If a series $\sum a_k$ converges absolutely, then it also converges and we have $\left|\sum_{k=n_0}^{\infty} a_k\right| \leq \sum_{k=n_0}^{\infty} |a_k|$.

But not the other way around! Recall that $\sum \frac{(-1)^k}{k}$ converges, but $\sum \left|\frac{(-1)^k}{k}\right| = \sum \frac{1}{k} = \infty$.

Definition.

We say that a series **converges conditionally** if it converges, but not absolutely.

Thus there are three possibilities now:

- $-\sum a_k$ converges, $\sum |a_k|$ converges: absolute convergence (the second implies the first here) $-\sum a_k$ converges, $\sum |a_k|$ diverges: conditional convergence $-\sum a_k$ diverges, $\sum |a_k|$ diverges (the first implies the second)

conditional convergence: $\sum \frac{(-1)^k}{k}$; absolute convergence: $\sum \frac{(-1)^k}{k^2}$; divergence: $\sum (-1)^k$.

Example.

 $\sum \frac{\sin(\bar{k})}{2^k}$: We do not know how to investigate this series directly. Its terms are not non-negative, therefore the tests won't work. We can't use AST, since the series is not alternating. The necessary condition won't help either, since $a_k \to 0$.

Thus we try the absolute convegence and hope that it will come out true, so that we have some conclusion:

 $\sum \left| \frac{\sin(k)}{2^k} \right| = \sum \frac{\left| \sin(k) \right|}{2^k} \le \sum \frac{1}{2^k}$, this converges, therefore by comparison test also $\sum \left| \frac{\sin(k)}{2^k} \right|$ converges, hence $\sum \frac{\sin(k)}{2^k}$ converges absolutely.

 $\sum (-1)^k \frac{2^k}{k^3}: \text{ absolute: } \sum \left|(-1)^k \frac{2^k}{k^3}\right| = \sum \frac{2^k}{k^3}, \text{ ratio test: } \frac{a_{k+1}}{a_k} = 2\left(\frac{k}{k+1}\right)^3 \to 2 = \lambda > 1,$ thus $\sum \left|(-1)^k \frac{2^k}{k^3}\right|$ diverges, hence $\sum (-1)^k \frac{2^k}{k^3}$ does not converge absolutely. But we do not know whether it by itself does converge (then it would be conditional convergence) or not.

However, $\frac{2^k}{k^3} \to \infty$, thus $a_k = (-1)^k \frac{2^k}{k^3} \not\to 0$, so the series diverges.