FILIÈRE MP

CONCOURS D'ADMISSION 2011

COMPOSITION DE MATHÉMATIQUES - B - (X)

(Durée: 4 heures)

L'utilisation des calculatrices n'est pas autorisée pour cette épreuve.

Transformation d'Euler et accélération de la convergence

Dans ce problème, \mathbf{R} désigne l'ensemble des réels, \mathbf{R}_+ est l'ensemble des réels positifs et \mathbf{R}_+^* l'ensemble des réels strictement positifs. La notation \mathbf{N} désigne l'ensemble des entiers naturels et \mathbf{N}^* l'ensemble des entiers naturels non nuls.

On note E l'espace vectoriel des suites réelles. On note $u=(u_n)_{n\in\mathbb{N}}$ une suite réelle de terme général u_n . On considère l'endomorphisme Δ de E qui à toute suite $u=(u_n)_{n\in\mathbb{N}}$ associe la suite de terme général $(\Delta u)_n=u_{n+1}-u_n, n\in\mathbb{N}$.

On pose, pour k et n dans \mathbf{N} , $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ si $n \ge k$. On convient que 0! = 1 et que $\binom{n}{k} = 0$ si k > n.

Les candidats vérifieront la convergence des séries qu'ils rencontrent, même si cela n'est pas explicitement demandé.

Première partie : suites complètement monotones

Pour tout $p \in \mathbf{N}^*$, on note Δ^p le p-ième itéré de Δ défini par $\Delta^p = \Delta \circ \Delta^{p-1}$, et par convention, Δ^0 est l'identité de E.

On dit qu'une suite $(u_n)_{n\in\mathbb{N}}$ est complètement monotone si pour tous entiers naturels p et n on a

$$(-1)^p (\Delta^p u)_n > 0.$$

1. Soit f une fonction sur \mathbf{R}_+ à valeurs réelles et indéfiniment dérivable. On considère la suite de terme général $u_n = f(n)$.

1a. Montrer que pour tout entier $p \ge 1$ et tout entier n, il existe un réel x dans l'intervalle]n, n+p[tel que

$$(\Delta^p u)_n = f^{(p)}(x).$$

On pourra raisonner par récurrence en considérant la fonction g(x) = f(x+1) - f(x) et la suite de terme général $v_n = g(n)$.

- **1b**. On considère la suite de terme général $a_n = \frac{1}{n+1}$. Montrer que $(a_n)_{n \in \mathbb{N}}$ est complètement monotone.
 - **2a**. Démontrer que pour tout $p \ge 1$, on a

$$(\Delta^p u)_n = \sum_{k=0}^p (-1)^{p-k} \binom{p}{k} u_{n+k}.$$

2b. Soit $b \in]0,1[$. On considère la suite de terme général $b_n = b^n$. Calculer $(\Delta^p b)_n$ pour tous les entiers naturels n et p et en déduire que $(b_n)_{n \in \mathbb{N}}$ est complètement monotone.

Soit ω une fonction continue et positive sur [0,1], non identiquement nulle. Jusqu'à la fin de la première partie, on considère la suite de terme général $u_n = \int_0^1 t^n \omega(t) dt$.

3a. Montrer que la série de terme général $(-1)^k u_k$ converge et que

$$\sum_{k=0}^{+\infty} (-1)^k u_k = \int_0^1 \frac{\omega(t)}{1+t} dt.$$

- **3b**. Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est complètement monotone.
- 3c. Démontrer que

$$\sum_{k=0}^{+\infty} (-1)^k u_k = \frac{1}{2} \sum_{p=0}^{+\infty} \int_0^1 \left(\frac{1-t}{2}\right)^p \omega(t) dt.$$

3d. En déduire que l'on a

$$\sum_{k=0}^{+\infty} (-1)^k u_k = \sum_{p=0}^{+\infty} \frac{(-1)^p}{2^{p+1}} (\Delta^p u)_0.$$

4. Déduire des questions précédentes que

$$\ln 2 = \sum_{n=0}^{+\infty} \frac{(-1)^n}{n+1} = \sum_{p=0}^{+\infty} \frac{1}{(p+1)2^{p+1}}.$$

5. On pose
$$\mathcal{E}_n = \frac{1}{2} \sum_{k=0}^n \int_0^1 \left(\frac{1-t}{2}\right)^k \omega(t) dt$$
.

5a. Montrer que

$$\mathcal{E}_n = \sum_{p=0}^n \frac{(-1)^p}{2^{p+1}} (\Delta^p u)_0.$$

5b. On pose
$$S = \sum_{k=0}^{+\infty} (-1)^k u_k$$
. Montrer que $|S - \mathcal{E}_n| \leq \frac{S}{2^{n+1}}$.

Deuxième partie : Transformée d'Euler

Dans cette partie, on se donne une suite $(u_n)_{n\in\mathbb{N}}$ telle que la série de terme général $(-1)^n u_n$ soit convergente, et l'on note S sa somme. On ne suppose aucune autre propriété particulière de cette suite $(u_n)_{n\in\mathbb{N}}$. Le but est de démontrer que

$$S = \sum_{k=0}^{+\infty} (-1)^k u_k = \sum_{p=0}^{+\infty} \frac{(-1)^p}{2^{p+1}} (\Delta^p u)_0.$$

On dit que la série $\sum \frac{(-1)^p}{2^{p+1}} (\Delta^p u)_0$ est la transformée d'Euler de la série $\sum (-1)^k u_k$.

6a. Montrer que pour tout $p \in \mathbf{N}$, on a $\lim_{n \to \infty} (\Delta^p u)_n = 0$.

6b. Montrer que pour toute suite $(r_n)_{n \in \mathbb{N}}$ de limite nulle, on a $\lim_{p \to \infty} \frac{1}{2^p} \sum_{k=0}^p \binom{p}{k} r_k = 0$.

7a. Montrer que pour tout $n \in \mathbb{N}$, on a

$$u_n = \sum_{p=0}^{+\infty} \left(\frac{(-1)^p}{2^p} (\Delta^p u)_n - \frac{(-1)^{p+1}}{2^{p+1}} (\Delta^{p+1} u)_n \right).$$

7b. Montrer que pour tout $p \in \mathbb{N}$, on a

$$\frac{(-1)^p}{2^{p+1}}(\Delta^p u)_0 = \sum_{n=0}^{+\infty} (-1)^n \left(\frac{(-1)^p}{2^p} (\Delta^p u)_n - \frac{(-1)^{p+1}}{2^{p+1}} (\Delta^{p+1} u)_n \right).$$

8a. On pose $E_n = \sum_{p=0}^n \frac{(-1)^p}{2^{p+1}} (\Delta^p u)_0$. Montrer que

$$E_n - S = -\frac{1}{2^{n+1}} \sum_{p=0}^{n+1} {n+1 \choose p} \left(\sum_{k \ge p} (-1)^k u_k \right).$$

8b. Conclure.

Troisième partie : une amélioration de la méthode

Dans cette partie, comme dans la question 3, on se donne une fonction ω continue et positive sur [0, 1], non identiquement nulle. On considère la suite de terme général $u_n = \int_0^1 t^n \omega(t) dt$ et on pose

$$S = \sum_{k=0}^{+\infty} (-1)^k u_k.$$

On se donne aussi une suite de polynômes à coefficients réels $(P_n)_{n \in \mathbb{N}}$ telle que pour tout n, $P_n(-1) \neq 0$. Pour tout $n \in \mathbb{N}$, on pose

$$T_n = \frac{1}{P_n(-1)} \int_0^1 \frac{P_n(-1) - P_n(t)}{1 + t} \omega(t) dt.$$

9a. Montrer que
$$S - T_n = \int_0^1 \frac{P_n(t)}{P_n(-1)(1+t)} \omega(t) dt$$
.

9b. En déduire que
$$|S-T_n| \leq \frac{SM_n}{|P_n(-1)|}$$
 où $M_n = \sup_{t \in [0,1]} |P_n(t)|$.

- 10. Dans cette question, on choisit comme suite de polynômes $P_n(x) = (1-x)^n$. Donner une majoration explicite de $|S-T_n|$, en fonction de S et n.
- 11. Dans cette question, on choisit comme suite de polynômes $P_n(x) = (1 2x)^n$. Donner une majoration explicite de $|S T_n|$, en fonction de S et n.
- 12a. Démontrer l'existence et l'unicité d'une suite de polynômes $(P_n)_{n\in\mathbb{N}}$ vérifiant les conditions suivantes : pour tout $n\in\mathbb{N}$, pour tout $t\in\mathbb{R}$,

$$\deg P_n = n, \quad P_n(\sin^2 t) = \cos(2nt)$$

- **12b**. Calculer $P_n(-1)$ pour tout $n \in \mathbb{N}$.
- **12c**. Donner une majoration explicite de $|S T_n|$.

Quatrième partie : comparaison des méthodes sur un exemple

Dans cette partie,
$$u_n = \frac{1}{n+1}$$
, $S = \sum_{k=0}^{+\infty} (-1)^k u_k$, $S_n = \sum_{k=0}^n (-1)^k u_k$, $E_n = \sum_{k=0}^n \frac{1}{(k+1)2^{k+1}}$ et $T_n = \frac{1}{P_n(-1)} \int_0^1 \frac{P_n(-1) - P_n(t)}{1+t} dt$, où les P_n sont les polynômes de la question **12**.

13. Donner un équivalent de $S - S_n$ et de $S - E_n$. Comparez la vitesse de convergence de T_n avec celle de S_n et E_n . Donner un équivalent de $S - T_n$.

* *