Кафедра Компьютерных технологий

Отчет по проекту по курсу «Численные методы», 2 семестр III курса 2018 г.

Моделирование роста монокристаллического твердого раствора $Al_xGa_{1-x}N$ методом хлоридной эпитаксии

Выполнили:

Антонов Кирилл М3338 Игнашов Иван М3339 Киселев Владислав М3339 Родионова Анна М3339 Шкарупин Данил М3339

Задание 1

Найти межфазные потоки G_i Al-содержащих компонент ($i=AlCl, AlCl_2$ и AlCl_3) на поверхности твердого алюминия и скорость испарения источника алюминия V_{Al}^e в зависимости от температуры T, для чего решить систему уравнений (2)-(6) при разных значениях температуры. Построить графики полученных зависимостей в координатах ln(...)-1/T (т.н. диаграммы Аррениуса). Расчеты провести при следующих значениях входящих в систему величин: $P_{AlCl}^g = P_{AlCl_2}^g = P_{H_2}^g = 0$, $P_{H_2}^g = 10000~\Pi a$, $P_{N_2}^g = 90000~\Pi a$ (полное давление в источнике $P = P_{HCl}^g + P_{N_2}^g$ - атмосферное, т.е. примерно 100000 Πa), $\delta = 0.01~m$, T меняется в диапазоне 350-650 °C. Показать, что преобладающим Al-содержащим компонентом, выходящим из источника, является трихлорид алюминия (AlCl_3).

Т. о. из первого графика видим, что преобладающим Al-содержащим компонентом, выходящим из источника, является AlCl₃. (+)

Задание 2

Найти межфазные потоки G_i Ga-содержащих компонент (i=GaCl, $GaCl_2$ и $GaCl_3$) на поверхности жидкого галлия и скорость испарения источника галлия V_{Ga}^e в зависимости от температуры T, для чего решить систему уравнений (8)-(12) при различных значениях температуры. Построить графики полученных зависимостей в координатах ln(...)-1/T. Расчеты провести при следующих значениях входящих в систему величин: $P_{GaCl}^g = P_{GaCl_2}^g = P_{H_2}^g = 0$, $P_{HCl}^g = 10000$ Πa , $P_{N_2}^g = 90000$ Πa (полное давление в источнике $P = P_{HCl}^g + P_{N_2}^g$ - атмосферное), $\delta = 0.01$ м, T = 650-950 °C. Показать, что преобладающим Ga-содержащим компонентом, выходящим из источника, является монохлорид галлия (GaCl).

Т. о. из первого графика видим, что преобладающим Ga-содержащим компонентом, выходящим из источника, является GaCl. (+)

Задание 3

Найти межфазные потоки G_i компонент $AlCl_3$ и GaCl на ростовой поверхности, а также скорость роста слоя V_{AlGaN}^g и долю AlN-составляющей в твердом растворе x в зависимости от доли $AlCl_3$ в газообразных хлоридах — величины $x^g = P_{AlCl_3}^g / (P_{AlCl_3}^g + P_{GaCl}^g)$. С этой целью решить систему уравнений (14)-(19) при различных значениях x^g из полного диапазона от 0 до 1. Построить графики полученных зависимостей в координатах (...)- x^g , в частности, график $x=f(x^g)$ — т.н. диаграмму вхождения алюминия в кристалл. Расчеты провести при следующих значениях входящих в систему величин: $P_{HCl}^g = 0$, $P_{AlCl_3}^g + P_{GaCl}^g = 30$ Па, $P_{NH_3}^g = 1500$ Па, $P_{H_2}^g + P_{N_2}^g = 98470$ Па (полное давление в реакторе $P = P_{AlCl_3}^g + P_{GaCl}^g + P_{NH_3}^g + P_{N_2}^g -$ атмосферное), $\delta = 0.01$ м, T = 1100 °C. Рассмотреть два случая: 1) $P_{H_2}^g = 0$ (несущий газ — чистый N_2) и 2) $P_{H_2}^g / P_{N_2}^g = 0.1/0.9$ (несущий газ — 10%-ая смесь H_2 и N_2). Показать, что в первом случае диаграмма вхождения Al в кристалл близка к линейной, а во втором представляет собой сильно выпуклую линию (доля алюминия в кристалле резко превышает долю $AlCl_3$ в газообразных хлоридах). Сравнить полученные результаты с экспериментальными данными работы [1] и объяснить изменение диаграммы при добавлении малого количества H_2 .

Из графиков, представленных ниже, видим:

- 1. В первом случае (чистый N_2) диаграмма вхождения Al в кристалл близка к линейной, а во втором (смесь N_2 и H_2) представляет собой сильно выпуклую линию (доля Al в кристалле резко превышает долю AlCl₃ в газообразных хлоридах). (+)
- 2. При добавлении водорода скорость протекания реакции для:
 - GaN замедляется
 - AlN не изменяется

Из-за этого в случае с добавлением водорода галлия образуется меньше, чем в случае с отсутствием водорода.

1) <u>Только с N₂</u>

2) <u>Смесь N₂ и Н₂</u>

