

- ¹ Cosmologix: Fast, accurate and differentiable
- ² distances in the universe with JAX
- Marc Betoule 0 1 , Jérémy Neveu 0 Dylan Kuhn 0 , Maude Le Jeune 0 3,
- Mathieu Bernard 1, Nicolas Regnault 1, and Sébastien Bongard 1
- ⁵ 1 LPNHE, CNRS, France ROR 2 IJCLab, Orsay, France ROR 3 APC, Paris, France ROR ¶ Corresponding
- 6 author

DOI: 10.xxxxx/draft

Software

- Review 🗗
- Repository 🖸
- Archive 🗗

Editor: ♂

Submitted: 26 May 2025 **Published:** unpublished

License

Authors of papers retain copyrights and release the work under a 17 Creative Commons Attribution 4.Qs International License (CC BY 4.0)9

Summary

Type-la supernovae serve as standardizable candles to measure luminosity distances in the universe. Cosmologix accelerates and simplifies cosmological parameter inference from large datasets by providing fully differentiable calculations of the distance-redshift relation as a function of cosmological parameters. This is achieved through the use of JAX (Bradbury et al., 2018), a Python library providing automatic differentiation and compilation for CPU and hardware accelerators. Cosmologix incorporates the density evolution of all relevant species, including neutrinos. It also provides common fitting formulae for the acoustic scale so that the resulting code can be used for fast cosmological inference from supernovae in combination with BAO or CMB distance measurements. We checked the accuracy of our computation against CAMB, CCL and astropy.cosmology. We demonstrated that our implementation is approximately ten times faster than existing cosmological distance computation libraries, computing distances for 1000 redshifts in approximately 500 microseconds on a standard laptop CPU, while maintaining an accuracy of 10^{-4} magnitudes in the distance modulus over the redshift range 0.01 < z < 1000.

Statement of need

Many software are available to compute cosmological distances including astropy (Astropy Collaboration, 2013), camb (Challinor & Lewis, 2011), class (Lesgourgues, 2011), ccl (Chisari et al., 2019). To our knowledge only jax-cosmo (Campagne et al., 2023) and cosmoprimo (Mattia, 2022) provide automatic differentiation through the use of JAX. Unfortunately, at the time of writing, the computation in cosmoprimo does not seem to be jitable and distance computation in jax-cosmo is neglecting contributions to the energy density from neutrinos and photons. The accuracy of the resulting computation is insufficient for the need of the LEMAITRE analysis, a compilation of type-la Supernovae joining the very large sample of nearby events discovered by ZTF (Rigault et al., 2025) to higher redshift events from the SNLS (Astier et al., 2006) and HSC (Yasuda et al., 2019). The LEMAITRE collaboration is therefore releasing its internal code for computing cosmological distances. The computation follows standard methods, but our JAX implementation is optimized for speed while maintaining sufficient accuracy.

56 Computations of the homogeneous background evolution

- 37 The core library offers jax functions to compute the evolution of energy density in the universe
- 38 (via the cosmologix.densities module) and derived quantities, such as cosmological distances
- you the cosmologix.distances module). Details are provided in the documentation. As

- an example, we highlight the speed and accuracy of calculating the distance modulus (the
- logarithm of luminosity distance) for a large number of redshifts in the following discussion.

2 Accuracy

51

52

The distance computation involves the numerical evaluation of an integral. The resolution of the quadrature used for this evaluation is adjustable in cosmologix. To assess the numerical accuracy of our baseline computation, we compared it to the same integral evaluated at 10-fold higher resolution. The difference is displayed in Figure 1 for the baseline Planck Λ CDM model, reported in Table 1 in (Planck Collaboration et al., 2020). The difference in distance modulus between the coarse (baseline) and fine resolution computation is smaller than 10^{-4} mag over the redshift range 0.01 < z < 1000, dominated by the interpolation error.

We also compared the results of various external codes to the fine quadrature of cosmologix as the reference. It demonstrates agreement within a few 10^{-5} magnitudes over the same redshift range. Residual discrepancies between libraries stem from differences in handling the effective number of neutrino species. We adopt CAMB's convention, where all species share the same temperature, resulting in closer alignment with its predictions. We exclude jax_cosmo from this comparison because it does not account for neutrino contributions to energy density, precluding a meaningful comparison.

Figure 1: Difference in distance modulus for the Planck best-fit Λ CDM model with respect to the higher resolution quadrature computation in cosmologix.

7 Computation speed

The computation time for a vector of distance moduli across various redshifts is plotted in Figure 2 as a function of the number of redshifts requested. We differentiate between the first call and subsequent calls, as the initial call may involve specific overheads. For cosmologix,

this includes JIT-compilation times, which introduces a significant delay. In subsequent calls,

- cosmologix overperforms all other tested codes by a significant margin.
- In addition we also timed the computation of the jacobian matrix of the distance modulus
- with respect to the 9 cosmological parameters. It is evaluated as jax.jacfwd(mu). The
- 65 computation time for the Jacobian is roughly 5 times larger than the function itself. This is
- 66 faster than finite differences, which require 10 function evaluations, reducing computation time
- ₆₇ by approximately 50%.

Figure 2: Computation speed of the distance modulus for various cosmological codes. The left panel displays the measured time for the first call which integrates pre-computation and in the case of jax codes overhead associated with jit compilation. The right panel displays the average time measured over 10 subsequent calls. The measurements were obtained on an Intel(R) Core(TM) i7-1165G7 CPU clocked at 2.80GHz, without GPU acceleration.

Differentiability and likelihood maximization

Last, the code provides a framework to efficiently build frequentist confidence contours for cosmological parameters for all measurements whose likelihood can be expressed as a chi-square. Figure 3 provides an example 2-dimensionnal confidence region in the plane (Ω_{bc}, w) for a flat w-CDM model as probed by the Union3 supernovae compilation (Rubin et al., 2023). The full computation took 3.86s on an Intel(R) Core(TM) i7-1165G7 at 2.80GHz without GPU acceleration.

Figure 3: Confidence region at 68 and 95 percent for the w and Ω_{bc} parameters probed by the Union3 compilation.

References

Astier, P., Guy, J., Regnault, N., Pain, R., Aubourg, E., Balam, D., Basa, S., Carlberg, R. G., Fabbro, S., Fouchez, D., Hook, I. M., Howell, D. A., Lafoux, H., Neill, J. D., Palanque-Delabrouille, N., Perrett, K., Pritchet, C. J., Rich, J., Sullivan, M., ... Walton, N. (2006). The Supernova Legacy Survey: measurement of Ω_M , Ω_Λ and w from the first year data set. 447(1), 31-48. https://doi.org/10.1051/0004-6361:20054185

Astropy Collaboration. (2013). Astropy: A community Python package for astronomy.

Astronomy and Astrophysics, 558. https://doi.org/10.1051/0004-6361/201322068

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin, D., Necula, G., Paszke, A., VanderPlas, J., Wanderman-Milne, S., & Zhang, Q. (2018). *JAX: Composable transformations of Python+NumPy programs* (Version 0.3.13). http://github.com/jax-ml/iax

Campagne, J.-E., Lanusse, F., Zuntz, J., Boucaud, A., Casas, S., Karamanis, M., Kirkby, D., Lanzieri, D., Peel, A., & Li, Y. (2023). JAX-COSMO: An End-to-End Differentiable and GPU Accelerated Cosmology Library. *The Open Journal of Astrophysics*, 6, 15. https://doi.org/10.21105/astro.2302.05163

Challinor, A., & Lewis, A. (2011). The linear power spectrum of observed source number counts. 84, 043516. https://doi.org/10.1103/PhysRevD.84.043516

Chisari, N. E., Alonso, D., Krause, E., Leonard, C. D., Bull, P., Neveu, J., Villarreal, A. S.,
 Singh, S., McClintock, T., Ellison, J., Du, Z., Zuntz, J., Mead, A., Joudaki, S., Lorenz,
 C. S., Tröster, T., Sanchez, J., Lanusse, F., Ishak, M., ... LSST Dark Energy Science
 Collaboration. (2019). Core Cosmology Library: Precision Cosmological Predictions for

- LSST. 242(1), 2. https://doi.org/10.3847/1538-4365/ab1658
- Lesgourgues, J. (2011). The Cosmic Linear Anisotropy Solving System (CLASS) I: Overview.

 arXiv e-Prints, arXiv:1104.2932. https://doi.org/10.48550/arXiv.1104.2932
- Mattia, A. de. (2022). Cosmoprimo: Package for primordial cosmology. In *GitHub repository*. GitHub. https://github.com/cosmodesi/cosmoprimo
- Planck Collaboration, Aghanim, N., Akrami, Y., Ashdown, M., Aumont, J., Baccigalupi, C.,
 Ballardini, M., Banday, A. J., Barreiro, R. B., Bartolo, N., Basak, S., Battye, R., Benabed,
 K., Bernard, J.-P., Bersanelli, M., Bielewicz, P., Bock, J. J., Bond, J. R., Borrill, J., ...
 Zonca, A. (2020). Planck 2018 results VI. Cosmological parameters. *A&A*, *641*, A6.
 https://doi.org/10.1051/0004-6361/201833910
- Rigault, M., Smith, M., Goobar, A., Maguire, K., Dimitriadis, G., Johansson, J., Nordin, J.,
 Burgaz, U., Dhawan, S., Sollerman, J., Regnault, N., Kowalski, M., Nugent, P., Andreoni, I.,
 Amenouche, M., Aubert, M., Barjou-Delayre, C., Bautista, J., Bellm, E., ... Yan, L. (2025).
 ZTF SN Ia DR2: Overview. 694, A1. https://doi.org/10.1051/0004-6361/202450388
- Rubin, D., Aldering, G., Betoule, M., Fruchter, A., Huang, X., Kim, A. G., Lidman, C., Linder, E., Perlmutter, S., Ruiz-Lapuente, P., & Suzuki, N. (2023). Union Through UNITY: Cosmology with 2,000 SNe Using a Unified Bayesian Framework. arXiv e-Prints, arXiv:2311.12098. https://doi.org/10.48550/arXiv.2311.12098
- Yasuda, N., Tanaka, M., Tominaga, N., Jiang, J., Moriya, T. J., Morokuma, T., Suzuki, N., Takahashi, I., Yamaguchi, M. S., Maeda, K., Sako, M., Ikeda, S., Kimura, A., Morii, M., Ueda, N., Yoshida, N., Lee, C.-H., Suyu, S. H., Komiyama, Y., ... Rubin, D. (2019). The Hyper Suprime-Cam SSP transient survey in COSMOS: Overview. 71(4), 74. https://doi.org/10.1093/pasj/psz050

