

Curso de Tecnologia em Sistemas de Computação 1º Avaliação à Distância de Física para Computação - 2009/I

Nome: _	
Pólo:	

Observação: Em todas as questões, explique passo a passo todas as etapas do seu desenvolvimento. Não se limite à aplicação de fórmulas. Desse modo, resultados parciais e evidências de compreensão do conteúdo pertinente podem ser considerados e pontuados.

	Valor	Nota
1ª Questão	1.0	
2ª Questão	1.0	
3ª Questão	1.0	
4 ª Questão	1.0	
5 ª Questão	1.0	
6 ª Questão	1.0	
7ª Questão	1.5	
8ª Questão	2.5	
Total	10.0	

1ª Questão

a) As figuras mostram uma ginasta olímpica que se sustenta em duas argolas presas por meio de duas cordas ideais a um suporte horizontal fixo; as cordas têm 2,0m de comprimento cada uma. Na posição ilustrada na figura 1 os fios são paralelos e verticais. Nesse caso, as tensões em ambos os fios valem T. Na posição ilustrada na figura 2, os fios estão inclinados, formando o mesmo ângulo š com a vertical. Nesse caso, as tensões em ambos os fios valem T' e a distância vertical de cada argola até o suporte horizontal é h=1,80m, conforme indica a figura 2. Calcule T e T', admitindo desprezível a massa do fio.

Figura 1

Figura 2

Através da Segunda Lei de Newton temos que as forças resultantes de ambos os sistemas são nulas, assim:

Figura 1: Como as tensões em ambos os fios são iguais:

$$T+T-P=0$$

$$T = \frac{P}{2} = \frac{mg}{2}$$

Figura 2: Nesse caso, trabalhamos com a componente vertical da tensão:

$$T_y + T_y - P = 0$$

Onde $T_y = \cos(\theta)T'$ e analisando o triangulo retângulo gerado na figura 2 temos:

 $\cos\theta = \frac{1.8}{2.0} = 0.9$. Assim nossa relação anterior toma a seguinte forma:

$$\cos(\theta)T' + \cos(\theta)T' - P = 0$$

$$T' = \frac{P}{2\cos(\theta)} = \frac{P}{2X0.9} = \frac{P}{1.8} = \frac{mg}{1.8}$$

2ª Questão

Ricardo, de massa igual a 80kg, e Carmelita, que é mais leve, estão passeando na Lagoa Rodrigo de Freitas, no Rio de Janeiro, em uma canoa de 30kg distribuídos homogeneamente. Quando a canoa está em repouso na água calma, eles trocam de lugares, que estão distantes 3m e posicionados simetricamente em relação ao centro da canoa. Durante a troca, Ricardo percebe que a canoa se move 40cm em relação a um tronco de árvore submerso e calcula a massa de Carmelita. Qual a massa de Carmelita?

Chamemos de Mr e Mc as massas de Ricardo e Carmelita, respectivamente. Suponhamos que o centro de massa do sistema formado pelas pessoas (suposto mais perto de Ricardo) esteja a uma distância x do meio da canoa de comprimento L e massa m. Neste caso,

$$M_{r}\left(\frac{L}{2} - x\right) = mx + M_{c}\left(\frac{L}{2} + x\right)$$

Caso não exista força externa, esta equação permanece igualmente válida após a troca de lugares, uma vez que as posições de ambos são simétricas em relação ao meio do barco. A diferença é que o centro de massa do sistema formado pelas duas pessoas mudou de lado no barco, ou seja, sofreu uma variação de 2x. Para determinar o valor de x, basta usar a observação relacionada ao tronco de árvores submerso, que andou uma distancia

$$2x = 40 \text{ cm} = 0.4 \text{ m}$$

Portanto, usando x=0,2 na equação acima obtemos a massa de Carmelita:

$$M_{c} = \frac{\left[M_{r}\left(\frac{L}{2} - x\right) - mx\right]}{\left(\frac{L}{2} + x\right)}$$

$$M_{c} = 58kg$$

3ª Questão

Um bloco é lançado para cima sobre um plano inclinado sem atrito, com velocidade inicial v_0 . O ângulo de inclinação é θ . (a) Que distância ao longo do plano ele alcança? (b) Quanto tempo leva para chegar até lá? (c) Qual sua velocidade, quando retorna e chega de volta em baixo? Calcule numericamente as respostas para $\theta = 32^{\circ}$ e $v_0 = 3.5$ m/s.

O diagrama de corpo isolado contém duas forças: a força N normal a superfície e o peso (P) para baixo. Escolha o eixo x paralelo ao plano e apontando para baixo, na direção da aceleração, e o eixo y na direção da força normal. A componente x na segunda lei de Newton nos diz que:

$$m * g * sen(\theta) = m * a => a = g * sen(\theta)$$

a) Escolha a origem embaixo, no ponto de partida. As equações cinemáticas para o movimento ao longo do eixo x são $x=v_0t+\frac{at^2}{2}$ e $v=v_0+at$. O bloco para quando v=0. A segunda equação nos diz que a parada ocorre quando $t=-\frac{v_0}{a}$. A coordenada em que o corpo para é:

$$x = v_0 \left(-\frac{v_0}{a}\right) + \frac{a\left(-\frac{v_0}{a}\right)^2}{2} => x = -\frac{1}{2}\frac{v_0^2}{a}$$

$$x = -\frac{1}{2} \frac{v_0^2}{gsen(\theta)} = > x = -1.18m.$$

b) O tempo decorrido até parar é:

$$t = -\frac{v_0}{a} = -\frac{v_0}{gsen(\theta)} = 0.674s$$

c) Primeiro coloque x=0 na equação $x=v_0t+\frac{at^2}{2}$ e resolva-a para t. O resultado é:

$$t = \frac{-2v_0}{a} = \frac{-2v_0}{gsen(\theta)} = 1.35s$$

Neste instante a velocidade é:

$$v = v_0 + at = v_0 + a \frac{-2v_0}{a} = -v_0$$

Esse resultado já era de se esperar, por não ocorrer dissipação.

4ª Questão

Uma caixa de 68kg é puxada sobre o chão por uma corda que faz um ângulo de 15º com a horizontal. (a) Se o coeficiente de atrito estático é 0.5, qual a tensão mínima necessária para iniciar o movimento da caixa? (b) Se $\mu_c = 0.35$, qual a sua aceleração inicial?

d) O diagrama de corpo isolado tem quatro forças. Apontando para a direita e fazendo um ângulo de $heta=15^\circ$ com a horizontal temos a tensão T na corda. Horizontalmente para a esquerda aponta a força de atrito f. Na vertical, para cima aponta a força normal N do chão sobre a caixa, e para baixo a força mg da gravidade. Quando a caixa ainda não se move as acelerações são zero e, consequentemente, também o são as respectivas componentes da força resultante. Portanto, a segunda lei de Newton nos fornece para as componentes, horizontal e vertical as equações, respectivamente,

Estas

equações $f = T\cos(\theta)$ e que $N = mg - T\sin(\theta)$.

Para a caixa permanecer em repouso f tem que ser menor do que μ_sN, ou seja,

$$T\cos(\theta) - f < \mu_s (mg - T\sin(\theta)).$$

Desta expressão vemos que a caixa começará a mover-se quando a tensão T for tal que os dois lados da equação acima se compensem:

$$T\cos(\theta) = \mu_s(mg - T\sin(\theta))$$

De onde tiramos facilmente que

$$T = \frac{\mu_s mg}{\cos(\theta) + \mu_s \sin(\theta)} = \frac{(0.5)(68)(9.8)}{\cos(15^\circ) + 0.5 \sin(15^\circ)} = 304N$$

e) Quando a caixa se move, a segunda lei de Newton nos diz que

$$T\cos(\theta) - f = ma$$

 $T\sin(\theta) + N - mg = 0$

Agora, porém temos

$$f = \mu_c N = \mu_c (mg - Tsen(\theta)).$$

Onde tiramos N da segunda equação acima. Substituindo este f na primeira das equações acima temos

$$Tcos(\theta) - \mu_c \big(mg - Tsen(\theta)\big) = ma$$

De onde tiramos facilmente que

$$a = \frac{T\cos(\theta) + \mu_c(sen(\theta))}{m} - g\mu_c$$

$$a = \frac{(304)(\cos 15^\circ + 0.35 sen 15^\circ)}{68} - (0.35)(9.8)$$

$$a = 1.3 m/s^2.$$

5ª Questão

Um corpo rígido pode girar livremente em torno de um eixo fixo. É possível que a aceleração angular deste corpo seja diferente de zero, mesmo que a velocidade angular seja nula (talvez, instantaneamente)? Qual o equivalente linear desta situação?

Sim, se o corpo rígido for submetido a uma desaceleração, sua velocidade angular em algum momento será nula, e depois começará a crescer, em módulo, no sentido contrário. O equivalente linear desta situação pode ser a de um corpo jogado verticalmente para cima; sua velocidade zera no ponto mais alto da trajetória e ele torna a cair.

6ª Questão

O vetor que representa a velocidade angular de rotação de uma roda em torno de um eixo fixo tem de estar necessariamente sobre este eixo? Explique.

No caso de um eixo fixo estabelecemos sinais positivos e negativos para o sentido da velocidade angular. Neste caso, a velocidade angular positiva corresponde àquela em que o observador está ao longo do eixo e vê o movimento ocorrer no sentido antihorário. Entretanto, quando a direção do eixo de rotação não é fixa no espaço, os sinais positivos e negativos não são adequados para descrever a orientação angular. Assim, descreve-se o vetor velocidade angular como um vetor sobre o eixo de rotação. Com relação à possibilidade de o vetor velocidade angular não ser ao longo do eixo, considere o caso de um ciclista que sobre uma ladeira íngreme: o vetor velocidade angular dos pneus da bicicleta tem o sentido para a esquerda do ciclista. Suponha que ele se cansa e começa a retroceder, sem virar a bicicleta. Neste caso, o vetor velocidade angular tem o sentido da sua direita. No breve instante antes de começar a retroceder, a velocidade se anulou e, como tal, não está, instantaneamente, ao longo do eixo.

7ª Questão

Um conjunto de nuvens carregadas produz um campo elétrico no ar próximo à superfície da Terra. Uma partícula de carga -2X10⁻⁹C, colocada neste campo, fica sujeita a uma força eletrostática de 3.0X10⁻⁶N apontando para baixo. (a) Qual o módulo do campo elétrico? (b) Qual o módulo, a direção e o sentido da força eletrostática exercida sobre um próton colocado neste campo? (c) Qual a força gravitacional sobre o próton? (d) Qual a razão entre a força elétrica e a força gravitacional, nesse caso?

a) Sabemos que a intensidade do campo elétrico para cargas pontuais é dada por:

$$\left|\vec{E}\right| = \frac{\left|\vec{F}\right|}{q}$$

E neste caso temos:

$$|\vec{E}| = \frac{|\vec{F}|}{q} = \frac{3X10^{-6}N}{-2X10^{-9}C} = -1500N/C$$

A força aponta para baixo e a carga é negativa. Logo, o campo aponta de baixo para cima, o que justifica o sinal negativo.

b) O módulo da força eletrostática F_e exercida sobre o próton é

$$|\vec{F}_{e}| = q|\vec{E}| = 2.4 \, \text{X} 10^{-16} \, \text{N}$$

Como o próton tem carga positiva, a força sobre ele terá a mesma direção do campo: de baixo para cima.

- c) A força gravitacional exercida sobre o próton é: $|\overrightarrow{F_g}| = mg = 1,64X10^{-26}N$, apontando de cima para baixo.
- d) A razão entre as magnitudes das forças elétrica e gravitacional é:

$$\frac{\left|\overrightarrow{F_e}\right|}{\left|\overrightarrow{F_a}\right|} = 1,46 \text{ X} 10^{-10}$$

Portanto, vemos que o peso $|\overrightarrow{F_g}|$ do próton pode ser completamente ignorado em comparação com a força eletrostática exercida sobre o próton.

8ª Questão

Uma casca metálica esférica de raio R1 tem uma carga total q1. Uma outra, concêntrica com ela, tem raio R2> R1 e carga q2. (a) Utilize a Lei de Gauss para achar o campo elétrico para r<R1, R1<r<R2 e r>R2; (b) Qual a relação entre as cargas q1 e q2 e seus sinais relativos para que o campo elétrico seja nulo para r>R2? (c) Neste caso, esquematize as linhas de campo para q1>0.

a)

(1) r<R₁

Nesse caso não temos carga no interior da região gaussiana e, portanto, |E| = 0.

 $(2)R_1 < r < R_2$

 $\oint E ds = \frac{q}{\varepsilon_0}$ e pela uniformidade do campo temos

$$\int Eds = \frac{q_1}{\varepsilon_0}$$

como o campo elétrico é constante podemos retirá-lo do integrando, considerando-o como constante multiplicativa da integral:

$$E \int ds = \frac{q_1}{\varepsilon_0}$$

E portanto:

$$E*4\pi r^2 = \frac{q_1}{\varepsilon_0}$$

Logo:

$$E = \frac{1}{4\pi r^2} \frac{q_1}{\varepsilon_0}$$

(3) $r > R_2$

 $\oint E ds = \frac{q}{\mathcal{E}_0}$ e pela uniformidade do campo temos

$$\int E ds = \frac{q_1 + q_2}{\varepsilon_0}$$

$$E = \frac{1}{4\pi r^2} \frac{q_1 + q_2}{\mathcal{E}_0}$$

- b) As cargas têm de ser iguais com sinais opostos.
- **c)** As linhas se afastam da carga positiva e no caso da negativa elas são atraídas.