1. Metric spaces

1.1. Metrics

- Metric space: (X,d), X is set, $d: X \times X \to [0,\infty)$ is metric satisfying:
 - $d(x,y) = 0 \iff x = y$
 - Symmetry: d(x,y) = d(y,x)
 - Triangle inequality: $d(x,y) \le d(x,z) + d(z,y)$
- Examples of metrics:
 - *p*-adic metric:

$$d_p(x,y) = \left(\sum_{i=1}^n \lvert x_i - y_i \rvert^p\right)^{\frac{1}{p}}$$

• Extension of the p-adic metric:

$$d_{\infty}(x,y) = \max\{|x_i - y_i| : i \in [n]\}$$

• Metric of C([a,b]):

$$d(f,g)=\sup\{|f(x)-g(x)|:x\in[a,b]\}$$

• Discrete metric:

$$d(x,y) = \begin{cases} 0 \text{ if } x = y\\ 1 \text{ if } x \neq y \end{cases}$$

• Open ball of radius r around x:

$$B(x; r) = \{ y \in X : d(x, y) < r \}$$

• Closed ball of radius r around x:

$$D(x; r) = \{ y \in X : d(x, y) < r \}$$

1.2. Open and closed sets

• $U \subseteq X$ is open if

$$\forall x \in U, \exists \varepsilon > 0 : B(x; \varepsilon) \subset U$$

- $A \subseteq X$ is **closed** if X A is open.
- Sets can be neither closed nor open, or both.