Egzamin maj 2008 r. Arkusz I, zadanie 1. POTĘGI

W poniższej tabelce podane są wartości kolejnych potęg liczby 2.

k	0	1	2	3	4	5	6	7	8	9	10
2^k	1	2	4	8	16	32	64	128	256	512	1024

Ciąg $a = (a_0, a_1, a_2, ...)$ definiujemy następująco:

 a_k = reszta z dzielenia liczby 2^k przez 10 dla k = 0, 1, 2, ...

a) Korzystając z definicji, podaj 16 pierwszych wyrazów ciągu *a.* Wyniki umieść w poniższej tabelce.

k	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
a_{k}																

Uwaga:

W dalszej części tego zadania możesz przyjąć, że operacje arytmetyczne na liczbach całkowitych (dodawanie, odejmowanie, mnożenie, dzielenie całkowite, reszta z dzielenia) wykonywane są w czasie stałym, niezależnie od wielkości argumentów.

b) W wybranej przez siebie notacji (lista kroków, schemat blokowy lub język programowania) podaj algorytm, który dla danej nieujemnej liczby całkowitej k wyznacza resztę z dzielenia liczby 2^k przez 10. Np. dla k=15 wynikiem działania Twojego algorytmu powinno być 8.

Przy ocenie Twojego rozwiązania będzie brana pod uwagę zarówno poprawność zaproponowanego algorytmu, jak i jego złożoność czasowa, czyli liczba operacji arytmetycznych wykonywanych w trakcie obliczania wyniku.

Specyfikacja:

Dane: Liczba całkowita $k \ge 0$.

Wynik: Reszta z dzielenia 2^k przez 10.

c) Podaj w wybranej przez siebie notacji (lista kroków, schemat blokowy lub język programowania) algorytm obliczania liczby a^n , gdy a jest liczbą całkowitą, natomiast n jest potęgą liczby 2 ($n=2^k$ dla pewnej liczby całkowitej $k\geq 0$). Przy ocenie Twojego rozwiązania będzie brana pod uwagę złożoność czasowa (w zależności jedynie od n) zaproponowanego algorytmu, czyli liczba operacji arytmetycznych wykonywanych w trakcie obliczania wyniku.

Wskazówka: Zauważ, że $a^n = a^{\frac{n}{2}} \cdot a^{\frac{n}{2}}$ dla n > 1.

Specyfikacja:

Dane: Liczby całkowite *a* i *n*, gdzie $n = 2^k$ dla pewnej liczby całkowitej $k \ge 0$.

Wynik: Liczba a^n .