1.4. Признаци за растене и намаляване на функция

Да преговорим. Ако функцията f(x) е дефинирана в интервал U и за всеки две числа $x_1 \in U$ и $x_2 \in U$, за които $x_1 < x_2$ е изпълнено:

- а) $f(x_1) \le f(x_2)$, то f(x) се нарича **монотонно растяща**;
- б) $f(x_1) \ge f(x_2)$, то f(x) се нарича монотонно намаляваща.

Ако неравенствата са строги, f(x) се нарича **строго растяща, (строго намаляваща).**

Ако f(x) е монотонно растяща или монотонно намаляваща в U, казваме, че f(x) е **монотонна** в U (строго монотонна).

Едно необходимо и достатъчно условие за монотонност на функция дава следната Теорема (критерий за монотонност)

Нека функцията f(x) е диференцируема в интервал U.

- f(x) е растяща точно когато $f'(x) \ge 0$ за всяко $x \in U$ и f(x) е намаляваща точно когато $f'(x) \leq 0$ за всяко $x \in U$. Когато неравенствата са строги, f(x) е строго монотонна и обратно.
- 1. Да се намерят интервалите на растене и намаляване на функцията:

a)
$$f(x) = x^3 - 2x^2 + x - 7$$
; 6) $f(x) = \sqrt{x - x^2}$;

$$f(x) = \sqrt{x - x^2}$$

B)
$$f(x) = \frac{1}{x}$$
.

Решение. a) f(x) е дефинирана и диференцируема за всяко x.

Намираме $f'(x) = 3x^2 - 4x + 1$.

Определяме знака на f'(x) за всяко x.

$$3x^2-4x+1=0$$
 , $x_1=\frac{1}{3}$, $x_2=1$ Лопълваме резултата в таблица. $f': \frac{+}{-\infty} \frac{+}{\frac{1}{3}} \frac{+}{1} \frac{+}{+\infty}$

X	8	$\frac{1}{3}$		1	+8
f'(x)	+	0	_	0	+
f(x)	7		7		7

Отговор. f(x) е растяща в $(-\infty;\frac{1}{3})$, намаляваща в $(\frac{1}{3};1)$ и растяща в $(1;+\infty)$. \blacktriangle

Решение. б)
$$f(x) = \sqrt{x - x^2}$$
.

Функцията е дефинирана при $x \in [0;1]$ и диференцируема при $x \in (0;1)$ и $f'(x) = \frac{1-2x}{2\sqrt{x-x^2}}$.

Тъй като $\sqrt{x-x^2} > 0$ за всяко $x \in (0;1)$, то f'(x) > 0 за $x \in \left(0;\frac{1}{2}\right)$ и f'(x) < 0 за $x \in \left(\frac{1}{2};1\right)$.

Тогава f(x) е растяща в $\left(0;\frac{1}{2}\right)$ и намаляваща в $\left(\frac{1}{2};1\right)$. \blacktriangle

Решение. в) $f(x) = \frac{1}{x}$.

 $f(x)\,$ е дефинирана и диференцируема при $\,x\!\in M=(-\infty;0)\cup(0;+\infty)$.

$$f'(x) = -\frac{1}{x^2} < 0$$
 за всяко $x \in M$.

Тъй като $M = (-\infty; 0) \cup (0; +\infty)$ не е интервал (а обединение от интервали), то не можем да приложим критерия за монотонност за M.

х		0	+∞
f'(x)	_		_
f(x)	7		<u>\</u>

Да разгледаме f(x) в **интервала** $(-\infty;0)$:

f'(x) < 0 и следователно f(x) е намаляваща в (-∞;0).

Модул III. Практическа математика

Да разгледаме f(x) в **интервала** $(0; +\infty)$:

f'(x) < 0 и следователно f(x) е намаляваща в $(0; +\infty)$.

Получихме, че f(x) е намаляваща във всеки от интервалите $(-\infty;0)$ $(0; +\infty)$, но, разглеждана като функция в обединението $(-\infty;0) \cup (0;+\infty)$, въпросът за нейната монотонност е безсмислен.

Графиката на функцията е показана на чертежа. ▲

<u>Коментар</u>. Този пример показва, че изискването на теоремата f(x) да бъде дефинирана в интервал, е съществено. ▲

Да се намерят интервалите на монотонност на функцията $f(x) = \sqrt{x^2 + x}$.

Решение. Функцията е дефинирана при $x \in (-\infty, -1] \bigcup [0, +\infty)$ и диференцируема при

$$x \in (-\infty, -1) \cup (0, +\infty) \text{ in } f'(x) = \frac{2x+1}{2\sqrt{x^2 + x}}.$$

$$f'(x) < 0$$
 при $x \in (-\infty, -1)$; $f'(x) > 0$ при $x \in (0, +\infty)$.

Тогава
$$f(x)$$
 намалява в $(-\infty, -1)$ и расте в $(0, +\infty)$.

<u>Коментар</u>. Уравнението f'(x) = 0 няма решение поради дефиниционната област на производната. Числителят 2x+1=0, $x=-\frac{1}{2}$ и това позволява да определим знака на f'(x) там, където f^{\prime} е дефинирана .lacktriangle

3. Да се намерят интервалите на монотонност на функцията.

a)
$$f(x) = x^3 + 3x^2 - 24x + 3$$
;

6)
$$f(x) = 2x^3 + 3x^2 + 6x + 5$$
;

B)
$$f(x) = x^3 + 9x^2 + 27x - 3$$
;

r)
$$f(x) = -2x^3 + 3x^2 + 36x + 1$$
;

д)
$$f(x) = 3x^4 + 8x^3 - 30x^2 - 72x - 36$$
; e) $f(x) = 3x^5 + 5x^3 - 30x + 1$;

e)
$$f(x) = 3x^5 + 5x^3 - 30x + 1$$
;

$$(x) = x^5 + 2x^3 + 2x + 3;$$

3)
$$f(x) = x^5 - 3x^3 + 4x + 4$$
.

4. Да се намерят интервалите на монотонност на функцията.

a)
$$f(x) = x + \frac{1}{x}$$
;

6)
$$f(x) = \frac{x}{1+x^2}$$
;

B)
$$f(x) = \frac{x^2 - 1}{x^2 + 1}$$
;

r)
$$f(x) = \frac{x^2 + 1}{x^2 - 1}$$
.

Да се намерят интервалите на монотонност на функцията.

a)
$$f(x) = \sqrt{1 - x^2}$$

6)
$$f(x) = \sqrt{x^2 + 2x - 3}$$

a)
$$f(x) = \sqrt{1 - x^2}$$
;
 6) $f(x) = \sqrt{x^2 + 2x - 3}$;
 B) $f(x) = \sqrt{5x - 6 - x^2}$;

$$f(x) = \sqrt{3-x^2}$$

e)
$$f(x) = \sqrt{x^2 + 3}$$
.

Да се намерят интервалите на монотонност на функцията.

6)
$$f(x) = e^{x^2 + x}$$
;

B)
$$f(x) = \ln(x^2 + x) - x$$
.