PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-027112

(43)Date of publication of application: 30.01.2001

(51)Int.CI.

F01N 3/08 B01D 53/94 B01J 29/072 F01N 3/28

(21)Application number: 11-198379 (22)Date of filing:

13.07.1999

(71)Applicant : MEIDENSHA CORP

(72)Inventor: KURAMOTO MASAMICHI

OGAWA YUJI KONDO TAKASHI OGURA TAKESHI HABA HOKI

(54) NOx REMOVAL SYSTEM

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a NOx removal system of which a urea solution used as a reducing agent is decomposed efficiently into ammonium to have high NOx removal efficiency, in a NOx removal system so as to have a denitrating agent and NOx containing gas catalytically reacted under coexistence with the reducing agent.

SOLUTION: This device has a carburetor container arranged which is filled with zeolite particles inside a pipe 1 to circulate exhaust gas G for having volume of water to be fed inside the carburetor container so as to have temperature inside the carburetor container always kept in a range between 60° C or higher and 140° C or lower, or 70° C or higher and 120° C or lower to have a liquid transporting pipe 4 and a water pipe 5 adapted to inject a urea solution and water from outside the pipe 1 into inside the carburetor container provided. And urea is decomposed into ammonium as a reducing agent for being exhausted from the carburetor container into inside the pipe 1 to be structure so as to be contacted with a denitration catalyst 14 inside a reactor 11.

LEGAL STATUS

[Date of request for examination]

17 11 2004

Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

Number of appeal against examiner's decision of rejection

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-27112 (P2001-27112A)

(43)公願日 平成13年1月30日(2001.1.30)

(51) Int.CL7		識別記号	FI	テーマコード(参考)
F01N	3/08		F01N 3/08	B 3G091
B01D	53/94		B 0 1 J 29/072	A 4D048
B01J	29/072		F01N 3/28	301C 4G069
F01N	3/28	301	B 0 1 D 53/36	102Z

		審查請求	未請求 請求項の数3 OL (全 6 頁)	
(21)出顧番号	特顧平 11-198379	(71)出顧人	000006105 株式会社明電舎	
(22)出顧日	平成11年7月13日(1999.7.13)	東京都品川区大崎2丁目1番17号		
		(72)発明者	倉元 政道	
			東京都品川区大崎2丁目1番17号 株式会	
			社明電告内	
		(72)発明者	小川 裕治	
			東京都品川区大崎2丁目1番17号 株式会	
			社明電舎内	
		(74)代理人	100062199	
			弁理士 志賀 富士弥 (外1名)	

最終頁に続く

(54) 【発明の名称】 脱硝装置

(57)【要約】

【課題】 脱硝剤とNOx含有ガスとを還元剤の共存下 で接触反応させるようにした脱硝装置において、還元剤 として用いた尿素水を効率良くアンモニアに分解して脱 硝効率を高めた脱硝装置を得ることを目的とする。

【解決手段】 排気ガスGが流通する配管1内にゼオライト的臣子3が元填された気化器容器2を配置し、たの 気化器容器2内の温度が常時60で以上で140で以下、もしくは70で以上で120で以下の範囲内にあるように気化器容器内に始守る水量を調節して該気化器容器2内に配管外方より尿素水と水とを往入する液と配管4と水配管5とを設け、尿素を還元剤としてのアンモニアに分解して気化器容器2より配管1内に排出し、反応器1内で脈前触媒14と接触させるように構成した脱硫装置を提供する。

【特許請求の範囲】

とを特徴とする脱硝装置。

【請求項1】 排気ガスが流通する配管内にゼオライト の粒子が充填された気化器容器を配置し、気化器容器内 に配管外方より尿素水と水とを注入する液送配管と水配 管とを設け、排気ガスから供給される熱によって尿素を 還元剤としてのアンモニアに分解して気化器容器より配 管内に排出し、アンモニアと排気ガスとを混合した後に 脱硝触媒と接触させるように構成した脱硝装置におい

1

上記気化器容器内の温度を測定する温度測定手段を設 け、温度測定手段からの測定信号に基づき気化器容器内 の温度が常時60°C以上で140°C以下になるように気 化器容器内に供給する水量を調節するように構成したと

【請求項2】 前記気化器容器内の温度が常時70°C以 上で120°C以下の範囲内にあるように制御したととを 特徴とする請求項1に記載の脱硝装置。

【請求項3】 前記脱硝触媒として、ゼオライトを主原 料として酸ゼオライトに脱脂、焼成とハニカム成形を行*

この反応は還元剤としてアンモニア、炭化水素、一酸化 炭素が使用され、特にアンモニアは酸素が共存しても選 択的にNOxを除去するため、ディーゼル機関等の排気 ガス中に含まれているNOxの除去に用いて有効であ る。この反応は脱硝剤としてプラチナ等の青金属とかア ルミナ、酸化チタン(TiOz)を主成分とし、添加物 としてバナジウム (V), モリブデン (Mo), タング ステン (W) 等の酸化物とか複塩を含有する触媒が使用 される。

【0005】 この中でもV, O, /TiO, 系触媒は、活 性,選択性,耐久性の面で有効とされており、前記NO 以外にSO、とか、ダスト含有量の多い排気ガスに対し ても運転実績を示している。

[0006]

しかしながら分解条件によって尿素がアンモニアに分解 せずに他の高融点物質(シアヌル酸、メラミン、イソシ アン酸等) に変化してしまい。 分解効率が低下するとと 40 もに有害な物質が生じてしまうケースがあり、コスト及 び安全性の面での問題点が生じる慣れがある。

- 【0009】本発明は上記に鑑みてなされたものであっ て、尿素水を分解する際に高融点物質とか有害な物質が 生じることがなく、尿素水を効率良くアンモニアに分解 して脱硝効率を高めた脱硝装置を得ることを目的とする ものである。
- [0010]
- 【課題を解決するための手段】本発明は上記目的を達成 するために、排気ガスが流通する配管内にゼオライトの 50 温度が常時70℃~120℃の範囲内にあるように制御

- *って触媒担体を作製し、この触媒担体にコバルトを担持 させた脱硝触媒を用いたことを特徴とする請求項1又は 2の何れか1項に記載の脱硝装置。
 - 【発明の詳細な説明】
 - [0001]

[発明の属する技術分野]本発明は内燃機関等における 排気ガス中に含まれている窒素酸化物 (NOx)を除去 するための脱硝装置に関するものである。

- [0002]
- 【従来の技術】従来からNO、処理技術は種々の分野で 必要とされており、一般的な処理方法として排煙脱硝技 術として実用化されている。この排煙脱硝技術は乾式法 と混式法に大別されるが、現在では乾式法の一つである 選択接触還元法が技術的に先行しており、有力な脱硝方 法として注目されている。

【0003】上記選択接触還元法の主反応は以下の通り である。

[0004]

- ※【発明が解決しようとする課題】前記選択接触還元法は 簡単なシステムでNOxを処理することができて、高腕 硝率が得られ、しかもNOxを無害な窒素ガス(Nx)と 水分 (H2O) に分解することができるので、廃液処理 が不要であるという利点を有している。還元剤としてア ンモニアガスとかアンモニア水が使用されているが、ア ンモニアは高価であるため、コストの面から尿素水を使 用する方法が検討されている。
- 30 【0007】尿素水を還元剤として使用する場合には、 通常下記の(2)式に示したように、尿素水を加熱蒸発 させることによって尿素を分解し、還元剤としてアンモ ニアを発生させる手段が用いられる。 [0008]

粒子が充填された気化器容器を配置し、気化器容器内に 配管外方より尿素水と水とを注入する液送配管と水配管 とを設け、排気ガスから供給される熱によって尿素を環 元剤としてのアンモニアに分解して気化器容器より配管 内に排出し、アンモニアと排気ガスとを混合した後に脱 硝触媒と接触させるように構成した脱硝装置において、 上記気化器容器内の温度を測定する温度測定手段を設 け、温度測定手段からの測定信号に基づき気化器容器内 の温度が常時60℃以上140℃以下になるように気化 器容器内に供給する水量を調節するようにした脱硝装置 を提供する。

【0011】更に請求項2により、前記気化器容器内の

する例を提案する。

【0012】脱硝触媒として、ゼオライトを主原料とし て該ゼオライトに脱脂、焼成とハニカム成形を行って触 媒担体を作製し、この触媒担体にコバルトを担持させた 脱硝触媒を用いる。

3

【0013】かかる脱硝装置によれば、尿素水を液送配 管から気化器容器に注入し、同時に水配管から適量の水 を注入することにより、気化器容器内の温度が常時60 ℃以上140℃以下になるように水量を調節すると、排 気ガスから供給される熱とゼオライトの分解作用によっ 10 て尿素が分解され、還元剤としてのアンモニア(N H.) と二酸化炭素(CO.) が生成する。このアンモニ アと二酸化炭素は、気化器容器に開口された孔部から排 気ガスの配管内に流出し、排気ガスと混合されて次段の 反応器内で脱硝触媒と接触し、選択接触還元法に基づい

【0014】又、気化器容器内の温度が常時60℃以上 140℃以下、もしくは70℃以上120℃以下になる ように水配管に流入する水量を調節することによって尿 素が過剰に昇温することがなく、尿素を効率良くアンモ 20 ニアに分解することができるとともに、尿素の固化及び 固化による液送配管の詰まりが防止されるという作用が 得られる。

[0015]

て窒素酸化物が除去される。

【発明の実施の形態】以下本発明にかかる脱硝装置の具 体的な実施形態例を説明する。本発明の基礎となる尿素 の分解特性は、本願出願人が先に提案した特願平9-5 0804号の図5.図6により説明したため、詳細な説 明の重複は避けるが、基本原理は以下の通りである。即 ち、視差熱天秤を使用して尿素を毎分50℃の速度で急 30 激に昇温した場合の熱重量変化(TG,%)から、尿素 の約71.5%は熱により直接気化され、約28.5%が 高融点物質であるメラミン、シアヌル酸に変化する。

[0016] 又、反応熱 (DTA) の変化から、尿素の 融点135℃を越えた136℃から尿素が蒸発して. 1 62°Cを超えた温度で高融点物質が生成する。従って尿 素水をノズルなどを用いて約350℃~450℃の高温 下にある排気ガスの配管中に噴霧した場合には、加熱反 応によって尿素が気化したり高融点物質に変化してしま い、尿素の無駄が生じることが懸念される。

【0017】他方で一般にゼオライトは従来から触媒の 担体として用いられているアルミニウムとシリコンの砂 化物を主体に構成された物質であり、このゼオライトに は5~10Å (オングストローム)程度の細孔が形成さ れている。該ゼオライト粉末と尿素を混合すると、尿素 水を毎分50℃の速度で急激に昇温した場合でも高融点 物質の生成割合が約16%に低下し、ゼオライトが尿素 の分解を促進する作用があることが判明した。

【0018】その理由として、尿素は極性の強い物質で あるためゼオライトの表面に吸着し、ゼオライト表面で 50 して構成されていて、この2重管が排気ガス用の配管1

アンモニアと炭酸ガスに分解するためである。この尿素 水を毎分2℃のゆっくりした速度で昇温した場合は、高 融点物質の生成割合が約6%とさらに低下し、尿素の分 解が終了するための反応時間が確保されて、高融点物質 が生成する温度になるまでに尿素が分解される。

【0019】従って排気ガス中に尿素水を注入する際 に、上記のような高融点物質が生成されない温度条件が 確保されるならば、尿素を効率良くアンモニアに分解す ることができるが、一般の還元剤の噴霧手段として採用 されているノズルを用いて尿素水を直接排気ガス中に噴

霧した場合には、水が先に気化してしまい。 前記式 (2)で示した反応は生じない。

[0020] そこで本実施形態例では、尿素水を効率良 くアンモニアに分解するために、この尿素水の気化器を 用いた脱硝装置を実現している。図1により本発明にか かる脱硝装置の具体例を説明すると、図中の11は密閉 型の反応器、12はディーゼルエンジン等の内燃機関で あり、11aは内燃機関12から導出された配管1内を 流れる排気ガスGの反応器11への導入部、11bは問 排出部である。

[0021]配管1の中途部には、詳細は図2により説 明する気化器13が配置されている。15は水タンク、 16は尿素水のタンクである。

【0022】反応器11の内部には、ハニカム状に形成 された脱硝触媒14、14が積層配置されている。脱硝 触媒14.14としてはゼオライト(ZSM-5)を主 原料として該ゼオライトに脱脂、焼成とハニカム成形を 行って触媒担体を作製し、この触媒担体にイオン交換に よりコバルトを担持させた脱硝触媒を用いた。

[0023]17.18は例えば内燃機関12の負荷状 況、排気ガス中のNO。量等に応じた尿素水供給量の調 節、気化器13内の温度測定信号による水供給量の調 節 尿素水16及び水15の供給量等の制御及び各種設 定と操作を行う制御盤とコントローラである。

【0024】尚、図1中には、気化器13に対する水と 尿素水の供給量制御機構を明示するため、気化器13の 拡大図とともにその制御機構の構成を、図中の中央部分 に別途に取り出して表現してある。

[0025] 図2により前記気化器13の具体的な構成 40 を説明する。1は前記内燃機関12から導出された排気 ガスGの配管であり、この配管1内の任意の位置には、 前記気化器13を構成する気化器容器としてポット2が

配置されている。このポット2の上壁面には、気化した アンモニアガスを排出させるための多数個の孔部2a, 2aが開口されており、ボット2内にはゼオライトの粒 子3,3が充填されている。

[0026] 4は尿素水をポット2内に注入するための 液送配管であり、5は水配管である。この液送配管4と 水配管5は、内方に液送配管4を挿入した2重管構造と

を貫通して外方からボット2内に挿通されている。6は ポット2内の温度を測定する温度測定手段として、配管 1の外方からボット2内に挿通された熱電対である。

【0027】上記液送配管4と水配管を2重管機造とし た理由は、液送配管4中で尿素水が排気ガスGにより過 剰に加熱されることによって生じる尿素の固化を予防

し、液送配管4の詰まり現象を防止するためである。 【0028】かかる図1の脱硝装置によれば、内燃機関 12から発生する排気ガスGに、気化器13から尿素水 の分解によって生成したアンモニアガスが流入し、排気 10 ガスと混合された後、反広器11の違入部11aから反 応器11内に送り込まれ、脱硝触媒14、14を通過す る。との時、選択接触還元法の主反応(前記の1式を参 照) に基づいて、排気ガスG中に含まれている窒素酸化 物(NOx)が均一な脱硝反応により除去され、排出部 11bから外方に放出される。

【0029】このような動作時において、気化器13に おいて尿素水を液送配管4からポット2に注入し、同時 に水配管5から適量の水を注入して、温度測定としての 熱電対6の測定信号に基づいて気化器容器内2の温度が 20 常時60℃以上140℃以下、もしくは70℃以上で1 20℃以下の範囲内にあるように制御することにより、 前記(2)式に基づいて尿素が分解され、還元剤として のアンモニア(NH,)と二酸化炭素(CO,)が生成す る。

【0030】 このアンモニアと二酸化炭素は、ボット2 の上壁面に開口された孔部2a,2aから排気ガスGの 配管1内に流出する。そして排気ガスGと混合された 後、流下して図1に示す反応器11内の脱硝触媒14と 接触する。

【0031】上記の説明において、尿素のアンモニアへ の分解が60℃から行われることが確認されており、1 50°Cを超える温度では高融占物質が生成されることが 考えられる。従って本発明の場合には、気化器容器内2 の温度が60℃以上150℃以下とすることが好まし く、更には60℃以上で140℃以下の範囲内でも実用 上の問題は生じない。

【0032】との温度制御は水配管5より供給する水量 のコントロールにより行われ、ポット2内の温度が過剰 に昇温することが防止され、高融点物質の生成を防いで 40 尿素を効率よくアンモニアに分解できるとともに、尿素 の固化に起因する液送配管4の詰まり現象が生じるとと も防止できる。

【0033】図3は本実施形態例に基づく還元剤注入方 式による脱硝特性変化を比較例とともに示すグラフであ り、図中に示したそれぞれの気化器温度での尿素注入量 と反応器11出口のNOx濃度との関係を示している。 実験は100kWのディーゼルエンジン発電機と脱硝装 置を接続する配管中に尿素水を注入して行った。 図3の 横軸はディーゼルエンジンから排出される排気ガスG中 50 【符号の説明】

への尿素/反応器11入口NOx濃度比として示してい

【0034】図3中のライン(A)は気化器容器内2の 温度を90℃でコントロールした本発明の例であり、ラ イン (B) は比較例として尿素水を配管中にノズルから 直接暗霧した例である。又、他の比較例として気化器容 器内2の温度を50℃~170℃まで変化させた場合の 出口のNO、濃度をそれぞれ示している。

【0035】尿素とNOxの理論反応は、NOxが1に対 して尿素が0.5であるが、本実施例で採用した気化器 を使用すると、尿素注入量と脱NO、濃度比がほぼ直線 的な相関を示し、理論通りの反応が進行していることが 確認できた。又、ノズルから尿素水を配管中に直接噴霧 したライン (B) は十分な脱硝特性が得られていないと とが判明した。

[0036]

【発明の効果】以上詳細に説明したように、本発明によ れば尿素水と水とをゼオライトの粒子が充填された気化 器容器に注入することにより、排気ガスから供給される

熱によって尿素が分解され、還元剤としてのアンモニア が生成して排気ガスと混合され、反応器内の脱硝触媒に 流入し、選択接触還元法に基づいて窒素酸化物を除去す ることができる。特に気化器容器内の温度が常時60℃ 以上140°C以下、もしくは70°C以上120°C以下に なるように調節することによって尿素を効率良くアンモ ニアに分解することができるとともに、尿素の固化及び 固化による液送配管の詰まりが防止されるという効果が 得られる。

【0037】又、尿素を効率良くアンモニアに分解し、 30 アンモニアをガスの状態で排気ガスに供給することによ

り、排気ガスと還元剤との混合が良好に行われので、気 化器から反応器までの配管の長さを大幅に短縮すること ができて、脱硝装置を小型化することが可能となるとと もに尿素及び分解したアンモニアのリークは皆無とな

り、環境面でも好ましい結果が得られる。

【0038】特に本発明では、還元剤として従来使用さ れている高価なアンモニアガスとかアンモニア水を使用 しなくてもよいため、コストの面からも有効である。従 って尿素水を分解する際に高融点物質とか有害な物質が

生じることがなく、尿素水を効率良く、しかも低コスト でアンモニアに分解して排気ガスに供給することができ る脱硝装置が得られる。

【図面の簡単な説明】

【図1】本発明による脱硝装置の実際形態例を全体的に 説明するための概略図。

【図2】本発明の脱硝装置で用いた気化器の構成を示す 概略図。

【図3】本実施形態例に基づく還元剤注入方式による脱 硝特性変化を比較例とともに示すグラフ。

[図2]

[図3]

それぞれの気化器温度での尿素注入量と出口NOx濃度との関係

フロントページの続き

(72)発明者 近藤 高史 東京都品川区大崎2丁目1番17号 株式会 社明電舎内

(72)発明者 小掠 健 東京都品川区大崎2丁目1番17号 株式会 社明電舎内

(72)発明者 羽場 方紀 東京都品川区大崎2丁目1番17号 株式会 社明電舎内 F ターム(参考) 3G091 AA18 AB04 BA14 CA17 DB10 EA15 EA20 EA22 GA06 GB01W GB09X

> 4D048 AA06 AB02 AB03 AC04 BA11X BA37X BB02 CA01 CC38 DA01 DA02 DA03 DA20 4G069 AA03 BA07A BA07B BB02A BB02B CA03 CA08 CA10 CA13 DA06 EA18 ZA11B