Solutions Manual to Pattern Recognition and Machine Learning

Hiromichi Inawashiro June 9, 2024

1 Introduction

1.1

To minimise

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} (y(x_n, \mathbf{w}) - t_n)^2,$$
(1.1)

setting its derivative to zero gives

$$\mathbf{0} = \sum_{n=1}^{N} \frac{\partial y(x_n, \mathbf{w})}{\partial \mathbf{w}} \left(y(x_n, \mathbf{w}) - t_n \right). \tag{1.2}$$

Substituting

$$y(x_n, \mathbf{w}) = \sum_{j=0}^{M} w_j x_n^j \tag{1.3}$$

gives

$$0 = \sum_{n=1}^{N} x_n^i \left(\sum_{j=0}^{M} w_j x_n^j - t_n \right).$$
 (1.4)

Therefore,

$$\sum_{i=0}^{M} A_{ij} w_j = T_i \tag{1.5}$$

where

$$A_{ij} = \sum_{n=1}^{N} x_n^{i+j},$$

$$T_i = \sum_{n=1}^{N} x_n^{i} t_n.$$
(1.6)

1.2

To minimise

$$\tilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} (y(x_n, \mathbf{w}) - t_n)^2 + \frac{\lambda}{2} ||\mathbf{w}||^2,$$
 (1.7)

setting its derivative to zero gives

$$\mathbf{0} = \sum_{n=1}^{N} \frac{\partial y(x_n, \mathbf{w})}{\partial \mathbf{w}} (y(x_n, \mathbf{w}) - t_n) + \lambda \mathbf{w}.$$
 (1.8)

Substituting

$$y(x_n, \mathbf{w}) = \sum_{j=0}^{M} w_j x_n^j \tag{1.9}$$

gives

$$0 = \sum_{n=1}^{N} x_n^i \left(\sum_{j=0}^{M} w_j x_n^j - t_n \right) + \lambda w_i.$$
 (1.10)

Therefore,

$$\sum_{j=0}^{M} \tilde{A}_{ij} w_j = T_i \tag{1.11}$$

where

$$\tilde{A}_{ij} = \sum_{n=1}^{N} x_n^{i+j} + \lambda \delta_{ij},$$

$$T_i = \sum_{n=1}^{N} x_n^i t_n.$$
(1.12)

1.3

Let a, o and l be the events where an apple, orange and lime are selected respectively. The probability that an apple is selected is given by

$$p(a) = p(a|r)p(r) + p(a|b)p(b) + p(a|g)p(g).$$
(1.13)

Substituting $p(a|r) = \frac{3}{10}$, $p(r) = \frac{1}{5}$, $p(a|g) = \frac{1}{2}$, $p(r) = \frac{1}{5}$, $p(a|g) = \frac{3}{10}$ and $p(g) = \frac{3}{5}$ gives

$$p(a) = \frac{17}{50}. (1.14)$$

If an orange is selected, the probability that it came from the geen box is given by

$$p(g|o) = \frac{p(g,o)}{p(o)}.$$
 (1.15)

Here,

$$p(g, o) = p(o|g)p(g),$$

$$p(o) = p(o|r)p(r) + p(o|b)p(b) + p(o|g)p(g).$$
(1.16)

Substituting $p(o|r) = \frac{2}{5}$, $p(r) = \frac{1}{5}$, $p(o|b) = \frac{1}{2}$, $p(b) = \frac{1}{5}$, $p(o|g) = \frac{3}{10}$ and $p(g) = \frac{3}{5}$ gives $p(g, o) = \frac{9}{50}$ and $p(o) = \frac{9}{25}$. Therefore,

$$p(g|o) = \frac{1}{2}. (1.17)$$

1.5

By the definition,

$$var f(x) = E(f(x) - Ef(x))^{2}.$$
(1.18)

The right hand side can be written as

$$E((f(x))^{2} - 2f(x)Ef(x) + (Ef(x))^{2}) = E(f(x))^{2} - (Ef(x))^{2}.$$
 (1.19)

Therefore,

$$\operatorname{var} f(x) = \operatorname{E} (f(x))^{2} - (\operatorname{E} f(x))^{2}.$$
 (1.20)

1.6

By the definition,

$$cov(x,y) = E((x - Ex)(y - Ey)). \tag{1.21}$$

The right hand side can be written as

$$Exy - E(xEy) - E(yEx) + E(ExEy) = Exy - ExEy.$$
 (1.22)

The right hand side can be written as

$$\int xyp(x,y)dxdy - \int xp(x)dx \int yp(y)dy.$$
 (1.23)

If x and y are independent, by the definition.

$$f(x,y) = f(x)f(y). \tag{1.24}$$

Then,

$$\int xyp(x,y)dxdy = \int p(x)dx \int p(y)dy.$$
 (1.25)

$$cov(x,y) = 0. (1.26)$$

1.7

Let

$$I = \int_{-\infty}^{\infty} \exp\left(-\frac{1}{2\sigma^2}x^2\right) dx. \tag{1.27}$$

Then

$$I^{2} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \exp\left(-\frac{1}{2\sigma^{2}} \left(x^{2} + y^{2}\right)\right) dx dy. \tag{1.28}$$

By the transformation from Cartesian coordinates (x, y) to polar coordinates (r, θ) , the right hand side can be written as

$$\int_0^\infty \int_0^{2\pi} \exp\left(-\frac{1}{2\sigma^2}r^2\right) \begin{vmatrix} \cos\theta & -r\sin\theta \\ \sin\theta & r\cos\theta \end{vmatrix} dr d\theta = 2\pi \int_0^\infty \exp\left(-\frac{1}{2\sigma^2}r^2\right) r dr. \tag{1.29}$$

By the transformation $s = \frac{r}{\sigma}$, the right hand side can be written as

$$2\pi\sigma^2 \int_0^\infty \exp\left(-\frac{1}{2}s^2\right) s ds = 2\pi\sigma^2 \left[-\exp\left(-\frac{1}{2}s^2\right)\right]_0^\infty. \tag{1.30}$$

Therefore,

$$I = \left(2\pi\sigma^2\right)^{\frac{1}{2}}.\tag{1.31}$$

By the definition,

$$\mathcal{N}\left(x|\mu,\sigma^2\right) = \left(2\pi\sigma^2\right)^{-\frac{1}{2}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right). \tag{1.32}$$

Then

$$\int_{-\infty}^{\infty} \mathcal{N}\left(x|\mu,\sigma^2\right) dx = \left(2\pi\sigma^2\right)^{-\frac{1}{2}} \int_{-\infty}^{\infty} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right) dx. \tag{1.33}$$

By the transformation $t = x - \mu$, the right hand side can be written as

$$(2\pi\sigma^2)^{-\frac{1}{2}} \int_{-\infty}^{\infty} \exp\left(-\frac{1}{2\sigma^2}t^2\right) dt = (2\pi\sigma^2)^{-\frac{1}{2}} I.$$
 (1.34)

$$\int_{-\infty}^{\infty} \mathcal{N}\left(x|\mu,\sigma^2\right) dx = 1. \tag{1.35}$$

1.8

If x is under the Gaussian distribution with mean μ and variance σ^2 , then

$$Ex = \int_{-\infty}^{\infty} x \mathcal{N}(x|\mu, \sigma^2) dx.$$
 (1.36)

By the definition, the right hand side can be written as

$$\left(2\pi\sigma^2\right)^{-\frac{1}{2}} \int_{-\infty}^{\infty} x \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right) dx. \tag{1.37}$$

By the transformation $y = x - \mu$, it can be written as

$$\left(2\pi\sigma^2\right)^{-\frac{1}{2}} \int_{-\infty}^{\infty} (y+\mu) \exp\left(-\frac{1}{2\sigma^2}y^2\right) dy. \tag{1.38}$$

Since

$$(2\pi\sigma^2)^{-\frac{1}{2}} \int_{-\infty}^{\infty} y \exp\left(-\frac{1}{2\sigma^2}y^2\right) dy = 0,$$
 (1.39)

and

$$\left(2\pi\sigma^2\right)^{-\frac{1}{2}} \int_{-\infty}^{\infty} \mu \exp\left(-\frac{1}{2\sigma^2}y^2\right) dy = \mu \int_{-\infty}^{\infty} \mathcal{N}\left(y|\mu,\sigma^2\right) dy, \tag{1.40}$$

we have

$$\mathbf{E}x = \mu. \tag{1.41}$$

By the definition,

$$\int_{-\infty}^{\infty} \mathcal{N}\left(x|\mu,\sigma^2\right) dx = 1 \tag{1.42}$$

can be written as

$$(2\pi\sigma^2)^{-\frac{1}{2}} \int_{-\infty}^{\infty} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right) dx = 1.$$
 (1.43)

Differentiating both sides with respect to σ^2 gives

$$(2\pi)^{-\frac{1}{2}} \left(-\frac{1}{2}\right) (\sigma^2)^{-\frac{3}{2}} \int_{-\infty}^{\infty} \exp\left(-\frac{1}{2\sigma^2} (x-\mu)^2\right) dx + (2\pi\sigma^2)^{-\frac{1}{2}} \int_{-\infty}^{\infty} \frac{1}{2} (\sigma^2)^{-2} (x-\mu)^2 \exp\left(-\frac{1}{2\sigma^2} (x-\mu)^2\right) dx = 0.$$
(1.44)

The left hand side can be written as

$$-\frac{1}{2} \left(\sigma^2\right)^{-1} \int_{-\infty}^{\infty} \mathcal{N}\left(x|\mu,\sigma^2\right) dx + \frac{1}{2} \left(\sigma^2\right)^{-2} \int_{-\infty}^{\infty} (x-\mu)^2 \mathcal{N}\left(x|\mu,\sigma^2\right) dx$$
$$= -\frac{1}{2} \left(\sigma^2\right)^{-1} + \frac{1}{2} \left(\sigma^2\right)^{-2} \text{var}x.$$

$$(1.45)$$

Therefore,

$$var x = \sigma^2. (1.46)$$

1.9

By the definition,

$$\mathcal{N}\left(x|\mu,\sigma^2\right) = \left(2\pi\sigma^2\right)^{-\frac{1}{2}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right). \tag{1.47}$$

Setting its derivative to zero gives

$$0 = (2\pi\sigma^2)^{-\frac{1}{2}} \left(-\frac{1}{\sigma^2} (x - \mu) \right) \exp\left(-\frac{1}{2\sigma^2} (x - \mu)^2 \right). \tag{1.48}$$

Therefore, the mode is given by μ .

Similarly, by the definition,

$$\mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = (2\pi)^{-\frac{D}{2}} |\boldsymbol{\Sigma}|^{-\frac{1}{2}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right). \tag{1.49}$$

Setting its derivative to zero gives

$$\mathbf{0} = -(2\pi)^{-\frac{D}{2}} |\mathbf{\Sigma}|^{-\frac{1}{2}} \left(\mathbf{\Sigma}^{-1} + \left(\mathbf{\Sigma}^{-1}\right)^{\mathsf{T}}\right) (\mathbf{x} - \boldsymbol{\mu}) \exp\left(-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right).$$
(1.50)

Therefore, the mode is given by μ .

1.10

By the definition,

$$E(x+y) = \int \int (x+y)p(x,y)dxdy.$$
 (1.51)

The right hand side can be written as

$$\int x \left(\int p(x,y) dy \right) dx + \int y \left(\int p(x,y) dx \right) dy = \int x p(x) dx + \int y p(y) dy.$$
(1.52)

By the definition, the right hand side can be written as

$$Ex + Ey. (1.53)$$

Therefore,

$$E(x+y) = Ex + Ey. (1.54)$$

Similarly, by the definition,

$$var(x + y) = E(x + y - E(x + y))^{2}$$
 (1.55)

By the result above and the definition, the right hand side can be written as

$$E(x - Ex)^{2} + 2E((x - Ex)(y - Ey)) + E(y - Ey)^{2}$$

$$= varx + 2cov(x, y) + vary.$$
(1.56)

If x and y are independent, then

$$cov(x,y) = 0, (1.57)$$

by 1.6. Therefore,

$$var(x+y) = varx + vary. (1.58)$$

1.11

To maximise

$$\ln p\left(\mathbf{x}|\mu,\sigma^{2}\right) = -\frac{N}{2}\ln\left(2\pi\sigma^{2}\right) - \frac{1}{2\sigma^{2}}\sum_{n=1}^{N}(x_{n}-\mu)^{2},\tag{1.59}$$

setting the partial derivatives with respect to μ and σ^2 to zero gives

$$0 = \frac{1}{\sigma^2} \sum_{n=1}^{N} (x_n - \mu),$$

$$0 = -\frac{N}{2\sigma^2} + \frac{1}{2(\sigma^2)^2} \sum_{n=1}^{N} (x_n - \mu)^2.$$
(1.60)

Therefore,

$$\mu_{\rm ML} = \frac{1}{N} \sum_{n=1}^{N} x_n,$$

$$\sigma_{\rm ML}^2 = \frac{1}{N} \sum_{n=1}^{N} (x_n - \mu_{\rm ML})^2.$$
(1.61)

1.12

If x_m and x_n are independent, then

$$Ex_m x_n = Ex_m Ex_n. (1.62)$$

If they are samples from the Gaussian distribution with mean μ and variance σ^2 , the right hand side is given by μ^2 . On the other hand, by the definition,

$$Ex_n^2 = var x_n + (Ex_n)^2. (1.63)$$

If x_n is a sample from the Gaussian distribution with mean μ and variance σ^2 , the right hand side is given by $\sigma^2 + \mu^2$. Therefore,

$$Ex_m x_n = \mu^2 + \delta_{mn} \sigma^2. \tag{1.64}$$

Here, since

$$\mu_{\rm ML} = \frac{1}{N} \sum_{n=1}^{N} x_n, \tag{1.65}$$

we have

$$E\mu_{ML} = \frac{1}{N} \sum_{n=1}^{N} Ex_n.$$
 (1.66)

Therefore,

$$E\mu_{ML} = \mu. \tag{1.67}$$

Similarly, since

$$\sigma_{\rm ML}^2 = \frac{1}{N} \sum_{n=1}^{N} (x_n - \mu_{\rm ML})^2,$$
 (1.68)

we have

$$E\sigma_{ML}^2 = \frac{1}{N} \sum_{n=1}^{N} E(x_n - \mu_{ML})^2.$$
 (1.69)

The right hand side can be writen as

$$\frac{1}{N} \sum_{n=1}^{N} E\left(x_n^2 - 2\mu_{\text{ML}}x_n + \mu_{\text{ML}}^2\right) = \frac{1}{N} \sum_{n=1}^{N} Ex_n^2 - \frac{2}{N} E\left(\mu_{\text{ML}}\left(\sum_{n=1}^{N} x_n\right)\right) + E\mu_{\text{ML}}^2.$$
(1.70)

The first term of the right hand side can be written as

$$\frac{1}{N} \sum_{n=1}^{N} (\mu^2 + \sigma^2) = \mu^2 + \sigma^2, \tag{1.71}$$

while the second and third terms can be writen as

$$-2E\mu_{\rm ML}^2 + E\mu_{\rm ML}^2 = -E\mu_{\rm ML}^2. \tag{1.72}$$

Here,

$$E\mu_{\rm ML}^2 = E\left(\frac{1}{N}\sum_{n=1}^N x_n\right)^2.$$
 (1.73)

The right hand side can be written as

$$\frac{1}{N^2} \sum_{n=1}^{N} Ex_n^2 + \frac{2}{N^2} \sum_{1 \le m < n \le N} Ex_m x_n = \frac{1}{N} (\mu^2 + \sigma^2) + \frac{N-1}{N} \mu^2.$$
 (1.74)

Therefore,

$$E\mu_{\rm ML}^2 = \mu^2 + \frac{1}{N}\sigma^2. \tag{1.75}$$

Thus,

$$E\sigma_{\rm ML}^2 = \frac{N-1}{N}\sigma^2. \tag{1.76}$$

1.13

It is clear that

$$E\left(\frac{1}{N}\sum_{n=1}^{N}(x_{n}-\mu)^{2}\right) = \frac{1}{N}\sum_{n=1}^{N}E(x_{n}-\mu)^{2}.$$
 (1.77)

The right hand side can be writen as

$$\frac{1}{N} \sum_{n=1}^{N} E\left(x_n^2 - 2\mu x_n + \mu^2\right) = \frac{1}{N} \sum_{n=1}^{N} Ex_n^2 - \frac{2\mu}{N} \sum_{n=1}^{N} Ex_n + \mu^2.$$
 (1.78)

The first term of the right hand side can be written as

$$\frac{1}{N} \sum_{n=1}^{N} (\mu^2 + \sigma^2) = \mu^2 + \sigma^2, \tag{1.79}$$

while the second term can be writen as

$$-\frac{2\mu}{N}\sum_{n=1}^{N}\mu = -2\mu^2. \tag{1.80}$$

Therefore,

$$E\left(\frac{1}{N}\sum_{n=1}^{N}(x_{n}-\mu)^{2}\right) = \sigma^{2}.$$
(1.81)

1.14

Let

$$w_{ij}^{S} = \frac{1}{2}(w_{ij} + w_{ji}),$$

$$w_{ij}^{A} = \frac{1}{2}(w_{ij} - w_{ji}).$$
(1.82)

Then

$$w_{ij} = w_{ij}^{S} + w_{ij}^{A},$$

$$w_{ij}^{S} = w_{ji}^{S},$$

$$w_{ij}^{A} = -w_{ji}^{A}.$$
(1.83)

Here,

$$\sum_{i=1}^{D} \sum_{j=1}^{D} w_{ij}^{A} x_i x_j = \frac{1}{2} \sum_{i=1}^{D} \sum_{j=1}^{D} (w_{ij} - w_{ji}) x_i x_j.$$
 (1.84)

The right hand side can be written as

$$\frac{1}{2} \left(\sum_{i=1}^{D} \sum_{j=1}^{D} w_{ij} x_i x_j - \sum_{i=1}^{D} \sum_{j=1}^{D} w_{ji} x_i x_j \right) = 0.$$
 (1.85)

$$\sum_{i=1}^{D} \sum_{j=1}^{D} w_{ij}^{A} x_i x_j = 0.$$
 (1.86)

Additionally,

$$\sum_{i=1}^{D} \sum_{j=1}^{D} w_{ij} x_i x_j = \sum_{i=1}^{D} \sum_{j=1}^{D} \left(w_{ij}^{S} + w_{ij}^{A} \right) x_i x_j.$$
 (1.87)

The right hand side can be written as

$$\sum_{i=1}^{D} \sum_{j=1}^{D} w_{ij}^{S} x_i x_j + \sum_{i=1}^{D} \sum_{j=1}^{D} w_{ij}^{A} x_i x_j = \sum_{i=1}^{D} \sum_{j=1}^{D} w_{ij}^{S} x_i x_j,$$
 (1.88)

where the result above is used. Therefore,

$$\sum_{i=1}^{D} \sum_{j=1}^{D} w_{ij} x_i x_j = \sum_{i=1}^{D} \sum_{j=1}^{D} w_{ij}^{S} x_i x_j.$$
 (1.89)

Finally, since the matrix $w^{\rm S}_{ij}$ is $D\times D$ symmetric matrix, its number of independent parameters is $\frac{D(D+1)}{2}$.

1.17

By the definition,

$$\Gamma(x) = \int_0^\infty u^{x-1} \exp(-u) du. \tag{1.90}$$

Then

$$\Gamma(x+1) = \int_0^\infty u^x \exp(-u) du. \tag{1.91}$$

The right hand side can be written as

$$[-u^{x} \exp(-u)]_{u=0}^{u=\infty} + \int_{0}^{\infty} x u^{x-1} \exp(-u) du = x\Gamma(x).$$
 (1.92)

Therefore,

$$\Gamma(x+1) = x\Gamma(x). \tag{1.93}$$

By the definition,

$$\Gamma(1) = \int_0^1 \exp(-u)du. \tag{1.94}$$

The right hand side can be written as

$$[-\exp(-u)]_0^\infty = 1. \tag{1.95}$$

Therefore,

$$\Gamma(1) = 0!. \tag{1.96}$$

For a positive integer x, let us assume that

$$\Gamma(x) = (x-1)!. \tag{1.97}$$

Then,

$$\Gamma(x+1) = x\Gamma(x),\tag{1.98}$$

where the right hand side can be written as

$$x(x-1)! = x!. (1.99)$$

Therefore,

$$\Gamma(x+1) = x!. \tag{1.100}$$

Thus, the assumption is proved by induction on x.

1.18

Let us consider the transformation from Cartesian to polar coordinates

$$\prod_{i=1}^{D} \int_{-\infty}^{\infty} \exp(-x_i^2) dx_i = S_D \int_{0}^{\infty} \exp(-r^2) r^{D-1} dr,$$
 (1.101)

where S_D is the surface area of a sphere of unit raidus in D dimensions. By 1.7, the left hand side can be written as $\pi^{\frac{D}{2}}$. By the transformation $s = r^2$, the right hand side can be written as

$$\frac{S_D}{2} \int_0^\infty \exp(-s) s^{\frac{D-1}{2}} s^{-\frac{1}{2}} ds = \frac{S_D}{2} \Gamma\left(\frac{D}{2}\right). \tag{1.102}$$

$$S_D = \frac{2\pi^{\frac{D}{2}}}{\Gamma\left(\frac{D}{2}\right)}. (1.103)$$

Additionally, the volume of the sphere can can be written as

$$V_D = S_D \int_0^1 r^{D-1} dr. (1.104)$$

The right hand side can be written as

$$S_D \left[\frac{r^D}{D} \right]_{r=0}^{r=1} = \frac{S_D}{D}. \tag{1.105}$$

Therefore,

$$V_D = \frac{S_D}{D}. ag{1.106}$$

Finally, the results above reduce to

$$S_2 = \frac{2\pi}{\Gamma(1)},$$
 (1.107)
 $V_2 = \frac{S_2}{2}.$

Therefore,

$$S_2 = 2\pi,$$
 $V_2 = \pi.$ (1.108)

Similarly,

$$S_3 = \frac{2\pi^{\frac{3}{2}}}{\Gamma(\frac{3}{2})},$$

$$V_3 = \frac{S_3}{3}.$$
(1.109)

$$S_3 = 4\pi,$$

$$V_3 = \frac{4}{3}\pi.$$
(1.110)