

5CS037 Concepts and Technologies of Al

Final Assignment – Predicting University Rankings and Scores Using Machine Learning

Name: Lam Pasang Lama

Student ID: 2408830

Lecturer: Siman Giri

Tutor: Bibek Khanal

Classification Analysis Report

Abstract

Purpose: This study applies classification models to predict university ranking categories.

Approach: The research uses the **2024 QS World University Rankings** dataset. The methodology includes Exploratory Data Analysis (EDA), training classification models (**Logistic Regression, Decision Tree, and Random Forest**), performing hyper parameter tuning, and applying feature selection.

Key Results: The model evaluation relies on **accuracy, precision, recall, and F1-score**. Among all models, the **Random Forest Classifier achieved the highest accuracy**.

Conclusion: The classification models identified key factors influencing university rankings. **Hyper parameter tuning and feature selection improved model performance**.

1. Introduction

1.1 Problem Statement

The goal of this project is to classify universities into different ranking categories (**Top 100, 100-500, 500+**).

1.2 Dataset

The dataset used is the **2024 QS World University Rankings**. It includes various metrics such as **academic reputation**, **employer reputation**, **faculty-student ratio**, **and research impact**.

1.3 Objective

The primary objective is to develop a **classification model** to categorize universities based on ranking.

2. Methodology

2.1 Data Pre-processing

- Removed **missing values**.
- Encoded categorical variables.
- Standardized numerical features.

2.2 Exploratory Data Analysis (EDA)

- Correlation heat map to identify relationships between features.
- Class distribution visualization.

2.3 Model Building

- Models Used:
 - o Logistic Regression
 - o Decision Tree
 - o Random Forest

2.4 Model Evaluation

- Evaluation Metrics:
 - o Accuracy
 - o Precision
 - o Recall
 - o **F1-score**

2.5 Hyper parameter Optimization

• **GridSearchCV** was used to optimize model performance.

2.6 Feature Selection

• Recursive Feature Elimination (RFE) was applied to select the most relevant features.

3. Conclusion

3.1 Key Findings

- Random Forest achieved the best classification accuracy.
- Feature selection improved efficiency.

3.2 Final Model

• The **Random Forest Classifier** was the most effective model after hyper parameter tuning.

3.3 Challenges

• Complexity in feature selection.

3.4 Future Work

- Experiment with advanced ensemble models.
- Test additional feature engineering techniques.

4. Discussion

4.1 Model Performance

• Random Forest outperformed other classification models.

4.2 Impact of Hyper parameter Tuning and Feature Selection

• Tuning improved model accuracy, and feature selection reduced complexity while maintaining performance.

4.3 Limitations

• The dataset had **missing values** that required pre-processing.

4.4 Future Research Suggestions

- Expanding dataset scope.
- Implementing deep learning techniques.

