Martin Black

Regional Sales Director @ Hazelcast

martin@hazelcast.com

Emrah Kocaman

Software Engineer @ Hazelcast emrahkocaman

emrah@hazelcast.com

http://www.zenika.com/formation-hazelcast-essentials.html

30Th November - Free Training

Hazelcast For Beginners

Agenda

- What is Hazelcast?
- Hazelcast Demo
- Hazelcast Data Distribution
- Hazelcast Features
- Q/A Session

what is hazelcast?

"Hazelcast is *In-Memory Data Grid (IMDG)*Solution"

an open-source project

an open-source project

- leading open-source in-memory data grid.
- Apache 2 License
- dead simple distributed programming
- lightweight w/o any dependency
- built with in Istanbul

Hazelcast Inc.

- Hazelcast Enterprise
- Support Contracts
- Training / Consulting
- Offices in Istanbul & Ankara (Engineering), Palo Alto(HQ+Sales) and London(Sales)

"Hazelcast is a java library to create distributed applications"

What are the main features of Distributed Applications?

What are the main features of Hazelcast?

Scalability

Incredible Hulk® is a registered trademark by Marvel Characters, Inc., Cadence Industries Corporation (d.b.a. Marvel Comics Group).

Scale Out

What are the main features of Hazelcast?

- Scalability
- Speed


```
L1 cache reference ..... 0.5 ns
Branch mispredict ..... 5 ns
L2 cache reference ..... 7 ns
Mutex lock/unlock ..... 25 ns
Send 2K bytes over 1 Gbps network \dots 20,000 ns = 20 \mus
Read 1 MB sequentially from memory .... 250,000 ns = 250 \mus
Round trip within same datacenter ..... 500,000 ns = 0.5 ms
Read 1 MB sequentially from SSD* .... 1,000,000 ns =
                               1 ms
Read 1 MB sequentially from disk .... 20,000,000 ns =
                               20 ms
```

Reference: https://gist.github.com/hellerbarde/2843375

Memory

Getting cheaper and faster

Historic RAM Prices				
Year	Manufacturer	Size (KB)	Price	Price / MB
1957	C.C.C.	0.00098	\$392	\$411,041,792
1960	E.E.Co.	0.00098	\$5	\$5,242,880
1965	IBM	0.00098	\$2.52	\$2,642,412
1970	IBM	0.00098	\$0.70	\$734,003
1975	MITS	0.25	\$103	\$421,888
1980	Interface Age	64	\$405	\$6,480
1985	Do Kay BYTE	512	\$440	\$880
1990	Unitex BYTE	8,192	\$851	\$106
1995	Pacific Coast Micro	16,384	\$494	\$30.9
2000	Crucial	65,536	\$72	\$1.12
2005	Corsair	1,048,576	\$189	\$0.185
2010	Kingston	8,388,608	\$99	\$0.0122
2013	Crucial	16,777,216	\$88	\$0.0054
2014	Patriot	32,000,000	\$294	\$0.0091

Reference: http://www.statisticbrain.com/average-historic-price-of-ram/

What are the main features of Distributed Applications?

- Scalability
- Speed
- Simplicity

Hazelcast is simple!

IT'S DEMO TIME

Data Backup

- <backup-count>1</backup-count>
- max backup count is 6
- Backups increase memory usage since they are also kept in memory.

DATA PARTITIONING

With 4 cluster nodes every server holds 1/4 real data and 1/4 of backups

Rebalance Data on New Node

Fixed number of partitions (default 271) Each key falls into a partition

partitionId = hash(keyData)%PARTITION_COUNT

Partition ownerships are reassigned upon membership change

New Node Added

Migration Complete

Data Safety when Node Dies

Node Crashes

Backups Are Restored

Backups Are Restored

Recovery Is Complete

Deployment Options

- Client/Server Architecture
- Embedded Architecture

Deployment Options

Embedded Hazelcast

Great for early stages of rapid application development and iteration

Client-Server Mode

Necessary for scale up or scale out deployments – decouples upgrading of clients and cluster for long term TCO

Networking Options

- Multicast (default)
- ▶ TCP/IP
- AWS

Hazelcast Features

Data Store Features

Java Collection API: Map, List, Set, Queue

JCache

High Density Memory Store

Hibernate 2nd Level Cache

Web Session Replication: Tomcat, Jetty

Predicate API: Indexes, SQL Query

Persistence: Map/Queue Store & Loader. Write Behind/Through

Eviction

Near Cache

Transactions: Local & XA

WAN Replication

Memcached Interface

Distributed Computing Features

Java Concurrency API

(Lock, Semaphore, AtomicLong, AtomicReference, Executor Service, Blocking Queue)

Entry and Item Listeners

Entry Processor

Aggregators

Map/Reduce

Data Affinity

Continues Query

Map Interceptors

Delta Update

Distributed Messaging Features

Queue

Topic (Pub/Sub)

Event Listeners

Ring Buffers

Hazelcast Integration Modules

- Spring Cache Manager
- Hibernate 2nd Level Cache Provider
- Web Session Replication
- OSGI Support

Hazelcast Enterprise Features

- Management Center (free up to 2 nodes)
- High-Density Memory
- Tomcat/Jetty Session Replication
- Enterprise WAN Replication
- Security
- Native Clients (.NET/C++)

Thank you!:)

any questions?

mrah@hazelcast.com

http://www.zenika.com/formation-hazelcast-essentials.html

30Th November - Free Training

