Практическое задание №1

Нахождение прообраза функции сжатия MD2

В данном задании Вам необходимо реализовать алгоритм нахождения прообраза итеративной хэш-функции MD2 [1], описанный в статье [2].

Обратите внимание на ошибку в статье [2]: на Рис. 2 указано, что A_0^i вычисляется как $\phi(A_0^{i-1}, C_{15}^i + i - 1)$. В оригинальном же алгоритме $A_0^i = \phi(A_0^{i-1}, C_{15}^i + i - 2)$.

Так как вычислительная сложность данного алгоритма слишком высока для реализации на персональном компьютере, то мы рассмотрим вариант алгоритма MD2 (и, соответственно, алгоритма из [2]), работающий с 2-битными "байтами". Отличия данного варианта алгоритмов состоят в:

1. S-боксе (перестановке на \mathbb{F}_2^2), который в данном варианте задается следующей таблицей (здесь и далее элемент $(x_0, x_1) \in \mathbb{F}_2^2$ отождествляется с числом $x_0 + 2x_1$):

0	1	2	3
1	3	0	2

2. Padding Rule. В нашем варианте сообщение дополняется i байтами со значением $(i \mod 4)$ до длины, кратной 16 (т.е. вместо байта i используется $(i \mod 4)$).

В качестве решения необходимо представить:

- 1. Программу на одном из языков программирования C, C++, Python, которая может работать в 3-х режимах:
 - (a) Вычисление MD2 для заданной последовательности 16-байтных блоков. Пример вызова:

./your-program md2 "0 3 1 2 1 1 0 2 0 3 3 0 1 1 2 0" "3 2 2 2 2 2 1 0 0 3 3 0 1 2 3 0"

Ожидаемый вывод:

1 2 1 2 1 2 3 2 0 3 0 3 0 3 2 3

(b) Вычисление функции сжатия $(H_{i+1} = F(H_i, M_i))$ для заданного H_i и блока сообщения M_i . Пример вызова:

./your-program compress "1 3 2 2 0 2 1 0 0 3 3 0 1 2 3 0" "1 2 0 2 3 1 0 2 0 3 3 0 1 1 2 0"

Ожидаемый вывод:

3 3 0 0 1 3 1 2 0 0 2 3 3 3 0 1

- (c) Вычисление прообраза (т.е. блока сообщения M_i) для заданных H_i и H_{i+1} . Пример вызова:
 - ./your-program preimage "0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3" "0 0 3 2 2 2 1 0 0 0 3 0 3 3 1 2"

Ожидаемый вывод:

0 0 3 2 2 2 1 0 0 0 3 0 3 3 1 2

- 2. Отчет (документ в формате pdf или doc), включающий в себя:
 - (а) Описание алгоритма MD2 (по разобранному на лекции шаблону).
 - (b) Краткое описание алгоритма атаки (своими словами).
 - (с) Теоретическая оценка времени работы и требуемой Вашей программой памяти; замеры реального времени работы.
- 3. Ответ (т.е. любое M_i , удовлетворяющее $H_{i+1} = F(H_i, M_i)$) для Вашего варианта.

Последний день сдачи — 22 сентября 2019 года.

Варианты

- 3. $H_i =$ "3 3 0 0 0 2 3 2 1 2 0 0 3 2 1 1", $M_i =$ "1 3 0 2 1 1 3 2 3 1 2 2 1 2 0 1"
- 5. $H_i =$ "1 2 2 2 3 3 2 0 1 2 3 0 1 3 3 2", $M_i =$ "2 0 1 3 3 1 0 0 0 3 2 0 3 1 0 1"
- 6. $H_i =$ "3 0 0 1 0 1 1 2 1 1 2 3 3 0 1 0 ", $M_i =$ "0 2 1 2 0 2 0 1 0 1 3 1 0 3 1 1 "
- 7. $H_i =$ "3 0 2 2 1 0 0 0 2 3 1 1 2 2 0 1", $M_i =$ "3 1 0 2 0 3 1 2 2 0 2 2 0 2 0 1"
- 8. $H_i=$ "1 3 3 1 3 3 3 0 1 2 2 3 0 0 1 1", $M_i=$ "3 3 1 3 3 1 1 0 1 3 2 3 2 1 3 2"
- 9. $H_i =$ "3 2 2 1 0 0 2 3 2 2 0 3 3 2 2 0 ", $M_i =$ "3 3 0 3 1 2 2 0 1 3 0 3 3 3 1 1 "
- 10. $H_i =$ "3 1 1 2 2 1 0 2 1 0 0 2 3 0 3 1", $M_i =$ "2 2 2 1 1 1 0 2 0 3 1 2 2 0 1 3"
- 11. $H_i =$ "2 2 3 0 0 1 1 3 2 2 3 3 2 3 0 0 ", $M_i =$ "2 3 0 2 1 2 1 0 2 3 0 3 2 2 2 0 "
- 12. $H_i =$ 0 2 2 3 2 3 0 2 1 1 0 0 2 2 2 0 0, $M_i =$ 3 0 0 2 3 0 2 3 2 3 3 0 1 0 3 2 2

- 13. $H_i =$ "2 0 2 1 2 3 1 0 2 3 1 3 0 2 2 0", $M_i =$ "3 3 0 3 3 1 3 0 0 2 0 2 0 2 0 "
- 14. $H_i =$ "2 0 2 1 3 2 3 2 3 3 2 3 1 0 1 1", $M_i =$ "1 2 2 2 0 1 2 2 0 0 3 0 2 2 3 1"
- 15. $H_i = 0$ 2 3 3 3 1 1 1 3 0 2 1 3 2 3 3", $M_i = 2$ 2 0 0 2 0 2 0 0 1 3 3 0 3 3 2"
- 16. $H_i =$ "3 2 2 2 2 0 0 2 0 3 2 0 1 0 3 1", $M_i =$ "0 0 3 3 0 2 1 1 0 3 3 0 2 2 1 1"
- 17. $H_i =$ "0 2 3 0 0 3 0 0 0 1 0 0 2 0 2 1", $M_i =$ "2 2 0 3 1 1 0 0 1 0 0 3 2 1 0 2"
- 18. $H_i =$ "2 3 3 0 3 0 2 2 3 0 3 1 2 0 3 1", $M_i =$ "1 1 3 0 1 1 2 2 0 3 2 1 0 3 3 0"

Список литературы

- [1] https://tools.ietf.org/html/rfc1319
- [2] The MD2 Hash Function Is Not One-Way. Frédéric Muller