

CLAIMS

1. An eyeglass lens having a protective film exhibiting a greater coefficient of friction than the lens and easy peeling and removal after processing, formed on the surface of the eyeglass lens, using a chlorinated polyolefin resin or PET (polyethyleneterephthalate), in order to prevent a shift of an axis and surface damage when processing a lens.
2. The eyeglass lens as set forth in claim 1, wherein the chlorinated polyolefin resin is a chlorinated polypropylene resin.
3. The eyeglass lens as set forth in claim 1, wherein the eyeglass lens has a dielectric thin film layer.
4. The eyeglass lens as set forth in claim 1 or 3, wherein the eyeglass lens has an anti-fouling thin film layer containing fluorine formed on the surface of the eyeglass lens.
5. The eyeglass lens as set forth in claim 1 or 4, wherein the eyeglass lens has a water repellent layer formed on the surface of the eyeglass lens.
6. A liquid coating solution for forming a protective film exhibiting a

greater coefficient of friction than the lens and easy peeling and removal after processing, on the surface of the eyeglass lens,

comprising 10 to 20 parts by weight of a chlorinated polypropylene having a molecular weight of 20,000 to 200,000; 20 to 50 parts by weight 5 of a ketone based organic solvent; and 10 to 70 parts by weight of an aromatic organic solvent.

7. A method for forming the protective film of the eyeglass lens comprising coating the coating solution of claim 6 on the surface of the 10 eyeglass lens using any one of dipping, application, spray and spin coating methods.

8. A method for forming the protective film of the eyeglass lens as set forth in claim 7, wherein coating is performed by a dip coating method 15 comprising, in order of the steps of fixing the eyeglass lens on a fixing board, lowering the lens at a predetermined speed to be dipped in the coating solution and raising again the lens at a predetermined speed, and then removing and drying it.