Sylvester-Gallai

Tristan Shin

4 Feb 2018

Let $S_n = \{1, 2, ..., n\}$. Choose proper subsets $T_1, T_2, ..., T_m$ of S_n such that each 2-element subset of S_n appears in exactly one of the T_i . Then $m \ge n$.

Let x be in c_x of the T_i .

Claim. If $x \notin T_i$, then $c_x \geq |T_i|$.

Proof. Take $y \in T_i$, then the unique T_j with both x, y is not T_i . Furthermore, these T_j are distinct for the different y, so there are at least $|T_i|$ of them.

Let Q be the set of all (x, i) with $x \notin T_i$. Then compute

$$1 = \sum_{x=1}^{n} \frac{1}{n} = \sum_{x=1}^{n} \frac{1}{n} \sum_{T_i \not\equiv x} \frac{1}{m - c_x} = \sum_{x=1}^{n} \sum_{T_i \not\in x} \frac{1}{n(m - c_x)} = \sum_{(x,i) \in Q} \frac{1}{mn - nc_x}$$

and

$$1 = \sum_{i=1}^{m} \frac{1}{m} = \sum_{i=1}^{m} \frac{1}{m} \sum_{x \notin T_i} \frac{1}{n - |T_i|} = \sum_{i=1}^{m} \sum_{x \notin T_i} \frac{1}{m \left(n - |T_i|\right)} = \sum_{(x,i) \in Q} \frac{1}{mn - m |T_i|}.$$

If m < n, then each term of the first sum is strictly larger than the corresponding term of the second sum, contradiction. Thus, $m \ge n$.