Stay Away from Nesting Views

A nested view exists when one view calls another view, which calls more views, and so on. This can lead to confusing code for two reasons. First, the views are masking the operations being performed. Second, the query may be simple, but the execution plan and subsequent operations by the SQL engine can be complex and expensive. This occurs because the optimizer doesn't have time to simplify the query, eliminating tables and columns it doesn't need; instead, the optimizer assumes that all tables and columns are needed. The same rule applies to nesting user-defined functions.

Ensure No Implicit Data Type Conversions

When you create variables in a query, be sure those variables are of the same data type as the columns that they will be used to compare against. Even though SQL Server can and will convert, for example, a VARCHAR to a DATE, that implicit conversion can prevent indexes from being used. You have to be just as careful in situations like table joins so that the primary key data type of one table matches the foreign key of the table being joined. You may occasionally see a warning in the execution plan to help you with this, but you can't count on this.

Minimize Logging Overhead

SQL Server maintains the old and new states of every atomic action (or transaction) in the transaction log to ensure database consistency and durability. This can place tremendous pressure on the log disk, often making the log disk a point of contention. Therefore, to improve database performance, you must try to optimize the transaction log overhead. In addition to the hardware solutions discussed later in the chapter, you should adopt the following query-design best practices:

 Choose table variables over temporary tables for small result sets, less than 20 to 50 rows, where possible. Remember, if the result set is not small, you can encounter serious issues. The performance benefit of table variables is explained in detail in the "Using Table Variables" section of Chapter 18.

CHAPTER 28 SQL SERVER OPTIMIZATION CHECKLIST

- Batch a number of action queries in a single transaction. You must be careful when using this option because if too many rows are affected within a single transaction, the corresponding database objects will be locked for a long time, blocking all other users trying to access the objects.
- Reduce the amount of logging of certain operations by using the Bulk Logged recovery model. This rule applies primarily when dealing with large-scale data manipulation. You also will use minimal logging when Bulk Logged is enabled, and you use the WRITE clause of the UPDATE statement or drop or create indexes.

Adopt Best Practices for Reusing Execution Plans

The best practices for optimizing the cost of plan generation can be broadly classified into these two categories:

- Caching execution plans effectively
- Minimizing recompilation of execution plans

Caching Execution Plans Effectively

You must ensure that the execution plans for your queries are not only cached but reused often. Do so by adopting the following best practices:

- Avoid executing queries as nonparameterized, ad hoc queries.
 Instead, parameterize the variable parts of a query and submit the parameterized query using a stored procedure or the sp_executesql system stored procedure.
- If you must use lots of ad hoc queries, enable the Optimize for Ad
 Hoc Workload option, which will create a plan stub instead of a full
 plan the first time a query is called. This radically reduces the amount
 of procedure cache used.
- Use the same environment settings (such as ANSI NULLS) in every connection that executes the same parameterized queries. This is important because the execution plan for a query is dependent on the environment settings of the connection.

 As explained earlier in the "Explicitly Define the Owner of an Object" section, explicitly qualify the owner of the objects when accessing them in your queries.

The whole idea is to ensure you have only the plans that you need in the cache and that you use those plans repeatedly rather than compiling new ones all the time. The preceding aspects of plan caching are explained in detail in Chapter 17.

Minimizing Recompilation of Execution Plans

To minimize the unnecessary generation of execution plans for queries, you must ensure that the plans in the cache are not invalidated or recompiled for reasons that are under your control. The following recommended best practices minimize the recompilation of stored procedure plans:

- Do not interleave DDL and DML statements in your stored procedures. You should put all the DDL statements at the top of the stored procedures.
- In a stored procedure, avoid using temporary tables that are created outside the stored procedure.
- Prefer table variables over temporary tables for small data sets.
- Do not change the ANSI SET options within a stored procedure.
- If you really can't avoid a recompilation, then identify the stored procedure statement that is causing the recompilation, and execute it through the sp_executesql system stored procedure.

The causes of stored procedure recompilation and the recommended solutions are explained in detail in Chapter 18.

Adopt Best Practices for Database Transactions

The more effectively you design your queries for concurrency, the faster the queries will be able to complete without blocking one another. Consider the following recommendations while designing the transactions in your queries:

 Keep the scope of the transactions as short as possible. In a transaction, include only the statements that must be committed together for data consistency.

CHAPTER 28 SQL SERVER OPTIMIZATION CHECKLIST

- Prevent the possibility of transactions being left open because of poor error-handling routines or application logic. Do so using the following techniques:
 - Use SET XACTABORT ON to ensure that a transaction is aborted or rolled back on an error condition within the transaction.
 - After executing a stored procedure or a batch of queries containing a transaction from a client code, always check for an open transaction and then roll back any open transactions using the following SQL statement:

IF @@TRANCOUNT > O ROLLBACK

 Use the lowest level of transaction isolation required to maintain data consistency as determined by your application requirements. The amount of isolation provided by the Read Committed isolation level, the default isolation level, is sufficient most of the time. If excessive locking is occurring, consider using the Read Committed Snapshot isolation level.

The impact of transactions on database performance is explained in detail in Chapter 20.

Eliminate or Reduce the Overhead of Database Cursors

Since SQL Server is designed to work with sets of data, processing multiple rows using DML statements is generally much faster than processing the rows one by one using database cursors. If you find yourself using lots of cursors, reexamine the logic to see whether there are ways you can eliminate the cursors. If you must use a database cursor, then use the database cursor with the least overhead: the FAST_FORWARD cursor type (generally referred to as the *fast-forward-only cursor*). You can also use the equivalent DataReader object in ADO.NET.

The performance overhead of database cursors is explained in detail in Chapter 23.

Use Natively Compile Stored Procedures

In situations where you're accessing only in-memory tables, you have one additional performance enhancement open to you, which is to compile your stored procedures into a DLL that runs within the SQL Server executable. As was shown in Chapter 24, this has fairly radical performance implications. Just be sure that you call the procedures in the correct fashion passing parameters by ordinal position rather than by parameter name. Although this feels like you're breaking a best practice, it leads to better performance of the compiled procedure.

Take Advantage of Query Store for Analytical Queries

Most applications using relational databases to store their information have some degree of analytical queries. Either you have an OLTP system with a few analytical queries or you have a data warehouse or reporting system with lots of analytical queries. Take advantage of columnstore indexes in support of the queries that do lots of aggregation and analysis. A clustered columnstore is best when the majority of the queries are analytical but doesn't work as well for OLTP point look up style of query. The nonclustered columnstore index adds analysis when the majority of queries are OLTP focused, but some of them need to do analysis. In this case, it's all about picking the right tool for the job.

Summary

Performance optimization is an ongoing process. It requires continual attention to database and query characteristics that affect performance. The goal of this chapter was to provide you with a checklist of these characteristics to serve as a quick and easy reference during the development and maintenance phases of your database applications.

Index

A	memory_grant_updated_by_
Active Server Pages (ASP), 85	feedback event, 813, 815
Active Server Fages (ASF), 63 Adaptive query processing	row mode execution, 810
interleaved execution	types, 810
anti-patterns, 817	Ad hoc workloads
Clustered Index Seek and Table	definition, 474
Scan, 819	forced parameterization, 485-488
estimated number of rows, 821	optimization, 479–481
execution plans, 819	plan reusability
execution plans, 819 execution times, 821	non reusability of existing plan, 479
multistatement functions,	non reuse of existing plan, 478
815-817, 821	from procedure cache, 477
parameter sniffing, 823	sys.dm_exec_cached_plans
properties, 820–821	output, 477
run a query, 818	prepared workload, 475-476
WHERE clause, 822	simple parameterization
mechanisms, 810	autoparameterized plan, 482-485
memory grant feedback	limits, 485
bigTransactionHistory table,	using template, 484
811-812	ALTER DATABASE command,
DATABASE SCOPED	339, 387, 392
CONFIGURATION, 815	Atomicity, consistency, isolation, and
DISABLE_BATCH_MODE_	durability (ACID), 18
MEMORY_GRANT_FEED	Automatic index management
BACK, 815	AdventureWorksLT, 799
execution plan, 812, 814	automatic tuning
Extended Events, 811, 814	database features, 802–803
inadequate memory, 811	enabling, 803
memory_grant_feedback_loop_	results, 804
disabled, 811	estimated impact view, 805-806

Automatic index management (cont.)	В
evaluation period, 808	Baseline creation
PaaS, 799	
performance recommendations and	Azure SQL Database, 102 counter log
tuning history, 804-805	data collector set, 92–93
PowerShell script, 800–802	data logs, 93–94
Query Store, 802	Performance Monitor, 95–96
sys.dm_db_tuning_	
recommendations, 804	schedule pane, 94–95 counter number, 97
T-SQL script, 799–800	·
tuning history, 808-809	monitoring virtual and hosted machines, 87
Validation report, 807	Performance Monitor graphs, 98
Automatic plan correction	prefer counter logs, 97
enable automatic tuning	reusable list
Azure portal, 792–795	.htm file, 91
cache, testing, 797	Internet browser, 92
CurrentState value, 797	Performance Monitor
desired_state value, 796	counters, 89–92
forced plan, 798	SQL Server, 90–91
SQL Server 2017, 796	sampling interval, 98
sys.database_automatic_	save counter log, 98
tuning_options, 796	system behavior analysis
sys.dm_db_tuning_	database server, 99
recommendations, 798	log analysis, 100
Query Store, 784	performance data, 100–101
tuning recommendations	Performance Monitor tool, 99
AdventureWorks, 785	Blocking
CPU time, 788	atomicity
dbo.bigTransactionHistory	dbo.ProductTest table, 635
table, 786	explicit rollback, 636-637
execution plan, data set, 786–787	INSERT statement, 634–635
FORCE_LAST_GOOD_PLAN, 788	logical unit of work, 633-634
JSON document, 788-791	SET XACT_ABORT ON, 635-636
planForceDetails, 789	consistency, 637
Query Store, 785	data access requests, 633
sys.dm_db_tuning_	database connection, 632
recommendations, 788, 792	deadlocking, 632

deadly embrace, 632	Clustered indexes, 187
durability, 639-640	creating, 213
information	data access, 217
cause of, 680	data retrieval, 218-219
Extended Events and blocked_	frequently updatable columns, 220-221
process_report, 684-687	heap tables, 209
SQL, 681-683	narrow, 213, 215-216
isolation, 638	and nonclustered
locking, 632	B-tree structure, 212
lock manager, 632	data page, 212
Performance Monitor	dbo.DatabaseLog, 210
counters, 693	execution plan, 211-212
reduce/avoid, recommendations,	heap table, 209
692–693	nested loop operation, 211
resolutions	RID lookup operation, 211
covering index, contended data,	row locator, 209-210, 212
691-692	rebuilding, 216
isolation level, 690	uniqueifier, 216–217
optimizing queries, 688–690	wide keys, 221
partitioning, contended data,	Clustered Index Scan, 263
690-691	Clustered IndexSeek, 263
SQL Server alerts	Columnstore indexes, 769
Blocked Process report, 694–695	adaptive join and attendant behavior,
and jobs, 694	262–263
SQL Server Enterprise	Adaptive Threshold Rows property, 264
Manager, 696–697	aggregations for GROUP BY query, 259
Bookmark lookups, 222, 319, 321	ALTER INDEX REORGANIZE
	command, 258
C	batch mode processing, 261
Causality tracking, 126–127	benefits, 257
CHECK constraint, 889	clustered, 256, 260
Checkpoint process, 60	Clustered Index Scan, 263
Client cursors, 722	Clustered IndexSeek, 263
Client-side cursors	Columnstore Index Scan operator,
characteristics, 724	260-261
cost benefits, 732	data types, 256
cost overhead/drawbacks, 732-733	data warehousing, 256

Columnstore indexes (cont.)	BusinessEntityID, 330
dbo.bigTransationHistory, 264	DBCC SHOWSTATISTICS, 331-332
deltastore, 258	INCLUDE columns, 328–329
dictionary, 257	index storage, INCLUDE
make_big_adventure.sql, 257	keyword, 329
nonclustered, 256, 259	JobTitle and HireDate, 327
performance enhancements, 256	maintenance cost, 328
reads and execution times, 260	metrics and execution plan, 327-329
recommendations, 266	NationalIDNumber, 330
restrictions, 256	statistics, 332
rowgroups, 257	INCLUDE operator, 233, 234
rowstore indexes, 257	Index Seek operation, 234
sample query, 258	I/O and execution time, 232-233
segment, 257	Key Lookup operator, PostalCode
segment elimination, 262	data, 233
status of row groups, 264	pseudoclustered index, 234
sys.dm_db_column_store_row_group_	recommendations, 235
physical_stats, 264-265	SELECT statement, 232
tuple mover, 258	CPU performance analysis
types, 259	eliminating excessive compiles/
Columnstore Index Scan operator, 260–261	recompiles, 76
Common table expression (CTE), 136	Linux, 75
Composite index, 200, 202	network analysis
Cost analysis	application workload, 79
client-side cursors, 732-733	Bytes Total/sec counter, 77
dynamic cursors, 740	% Net Utilization counter, 78
fast-forward-only cursor, 738	Performance Monitor counters, 77
forward-only cursors, 737	optimizing application workload, 75
keyset-driven cursors, 739	processor analysis
optimistic concurrency model, 735-736	batch requests/sec, 73
read-only concurrency model, 734-735	context switches/sec, 72
scroll locks concurrency model, 736	Performance Monitor counters, 70
server-side cursors, 733–734	% Privileged Time, 72
static cursors, 738	processor queue length, 72
Cost-based optimization, 451	% Processor Time, 71
Covering indexes, 222, 224, 231	resolutions, 75–76
definition, 232	SQL Compilations/sec, 73
HumanResources.Employee table	SQL Recompilations/sec, 73

Query Store, 74	recommendations, 751-752
SQL server analysis	server, 722
batch requests/sec, 84	static, 729
database concurrency, 82	T-SQL, 722, 746-750
Deadlocks/Sec counter, 83	
dynamic management objects, 81	Б
excessive data scans, 80	D
execution plan reusability, 83-84	Database administration
Full Scans/sec, 80	AUTO_CLOSE, 898
incoming requests, 84	AUTO_SHRINK, 899
Lock Timeouts/sec, 82-83	minimum index defragmentation, 898
Lock Wait Time (ms), 82-83	up-to-date statistics, 897
missing indexes, 80	Database API cursor, 746
Performance Monitor	Database design
counters, 79–80	adopting index-design, 890
Total Latch Wait Time, 82	configurations settings, 893
user connection, 84	domain and referential integrity
Sys.dm_os_wait_stats, 74	constraints, 887
Sys.dm_os_workers and Sys.dm_	entity-integrity constraints
os_schedulers, 74	data integrity, 884
Cursors	natural key, 884
categories, 723	UNIQUE constraint, 886
concurrency	in-memory storage, 892
optimistic, 726–727	sp_prefix, 892
read-only, 725-726	triggers, 892
scroll locks, 727	use of columnstore indexes, 893
cost analysis (see Cost analysis)	Database Engine Tuning Advisor
data manipulation, 721	advanced Tuning Options dialog
default result set (see Default result set)	box, 277
dynamic, 730-731	Apply Recommendation, 283-284
events, 746	command prompt (dta.exe), 273
forward-only, 728	covering index, 283
keyset-driven, 729–730	description, 273
location	drop-down box, 275
client-side cursors, 724	limitations, 290–291
server-side cursors, 725	Limit Tuning Time, 276
Person.AddressType table, 724	partitioning, 276
positives and negatives, 740	plan cache, 288–289

Database Engine Tuning Advisor (cont.)	DATABASEPROPERTYEX function, 350
Query Store, 289–290	Database Transaction Unit (DTU), 102
query tuning general settings, 279–280	Database workload optimization
query tuning initial recommendations,	AdventureWorks2012 database, 843
281-282	ALTER EVENT SESSION command, 847
query tuning recommendations, 283	Cartesian join, 880
reports, 278	costliest query identification
server and database, 274	baseline resource, 852
simple query, 279	detailed resource use, 854
testing queries, 284	OLTP database, 851
tool, 271	overall resource use, 853
trace workload, 285-288	SQL workload, 852
T-SQL statements, 284	SSMS/query technique, 851
Tuning Options tab, 275–276, 280–281	worst-performing query, 851–852
workload, 275	CountDuration, 850
Database-level lock, 647	database application designs and
Database performance testing	database environments, 840
Distributed Replay	errors/warnings, 878
architecture, 828	Extended Events, 847, 850
client configuration, 835	external factors analysis
execution, 836	code modification, 868
preprocessing, 834-835	connection options, 857
XML configuration file, 834	cost reduction, 867
Full Recovery mode, 826	defragmentation (see
load testing, 826	Defragmentation)
playback mechanism, 826	execution plan, 866
query capture mechanism, 826	internal behavior, 864
repeatable process, 827	lookup operation, 871–872
server side trace, 829	processing strategy, 867
@DateTime, 833	query execution plan, 864
Distributed Replay, 830	statistics effectiveness, 858
event and column, 829, 831	tuning, second query, 872
profiler, 830	wrapper procedure, 874
SQL Server 2005–2014, 832	in-depth analysis, 849
standard performance test, 833	INSERT statement, 880
TSQL file, 830, 832	Live Data explorer, 848
SQL profiler, 825	optimizing effect, 877
SQL server 2012, 825	query optimization process, 841

query types, 846–847	Purchasing.PurchaseOrderDetail
SELECT statement, 840, 880	table, 714
server resources, 840	scenario, 700
SLA, 878	shared lock, 700
SQL query, 850, 878–879	T-SQL statement, 708–709
SQL Server performance, 842	victim, 700–701
SumDuration, 850	xml:deadlock_report event, 708
UPDATE statement, 840	XML information, 709–714
XML field data, 849	Deadly embrace, 699
Data Definition Language (DDL), 457	Declarative referential integrity (DRI), 600
Data Manipulation Language (DML), 457	Default result set, 738
Data retrieval mechanism, 338	benefits, 742
Data storage, 117–118	client-network buffer, 744
DBCC SHOW_STATISTICS command,	conditions, 741
361, 368, 397	data access layers (ADO, OLEDB,
Deadlocks	and ODBC), 741
access resources, physical order, 715-716	database requests, 744
covering index, SELECT statement, 717	drawbacks, 743
deadly embrace, 699	MARS, 742
error handling, 702-703	PowerShell script, 743
graph, 708	sys.dm_tran_locks, 744-745
information	test table, 743
DBCC TRACEON statement, 705	Deferred object resolution, 536
DBCC TRACESTATUS	execution plan, 540
statement, 706	local temporary table
execution plan, 705	Extended Events output, 543
Extended Events, 704	schema, 543
SQL Server Configuration Manager,	stored procedure recompilation, 542
706–707	SELECT statement, 541–542
system_health session, 703-704, 707	sql_statement_recompile event, 542
trace flags, 703, 705	table creation, 541
lock contention	Defragmentation
isolation level, 718	ALTER INDEX REBUILD statement, 436
locking hints, 718–719	characteristics, 443
row versioning, 717	DROP_EXISTING clause, 432
lock monitor, 700	HumanResources.Employee table, 862
nonclustered to clustered index, 716	Purchasing.PurchaseOrderHeader
parallel operations, 700	table, 862

Direct-attached storage (DAS), 61 Disk performance analysis alignment, 62 Avg. Disk Sec/Read and Avg. Disk Sec/Write, 55	DReplayClient.config file, 835 Dreplay.exe command, 836 DReplay.Exe.Preprocess.config file, 834 DROP_EXISTING clause, 432-433 Dynamic cursors
buffer manager page, 55	characteristics, 730–731
data files configuration, 64	cost benefits, 740
disk bottleneck analysis, 51	cost overhead, 740
Disk Bytes/sec counter, 54	Dynamic management functions
disk counters, 52	(DMFs), 26
disk transfers/sec monitors, 54	Dynamic management objects
faster I/O path, 58	(DMOs), 26–27
filegroups configuration, 63–64	sys.dm_db_xtp_table_memory_stats, 44
I/O monitoring tools, 55	sys.dm_os_memory_brokers, 42
log files, 66-67	sys.dm_os_memory_clerks, 43
Monitoring Linux I/O, 57	sys.dm_os_ring_buffers, 43-44
new disk subsystem, 65-66	sys.dm_xtp_system_memory_
optimizing application workload, 57	consumers, 44
PhysicalDisk and LogicalDisk	Dynamic management views
counters, 53	(DMVs), 26, 463
RAID array, 53	
configurations, 58	_
RAID 0, 59	E
RAID 1, 59	Entity-integrity constraints
RAID 1+0 (RAID 10), 61	data integrity, 884
RAID 5, 59–60	natural key, 884
RAID 6, 60	SQL Server, 885
SAN system, 61	Stream Aggregate operation, 886
solid-state drives, 62	UNIQUE, 886
sys.dm_io_virtual_file_stats	Execution plan cache
function, 55–56	ad hoc workloads (see Ad hoc
sys.dm_os_wait_stats function, 56	workloads)
system memory, 62	recommendations
table partition, 67	avoiding ad hoc queries, 506
Distributed replay administrator, 828	avoiding implicit resolution,
Distributed replay client, 828	508-509
Distributed replay controller, 828	parameterizing variable parts, 508
Domain integrity, 887	prepare/execute model, 506

query, 504	filters, 113–115
sp_executesql coding, 505-508	General page, 104–105
steps, 504	global fields, 111–113
stored procedure creation, 505	live output, wizard, 119–120
reuse, 473-474	Management Studio GUI, 104
sys.dm_exec_cached_plans, 471-472	monitor query completion, 108
Execution plan generation	query_hash, 121
aging, 469–470	query performance, 109-111
binding	Query Store, 103
error statement, 455	recommendations
query processor tree, 454	cautious with debug
syntax-based optimization,	events, 128
455-456	No_Event_Loss, 128
warning indicator, 456	set max file size, 127
cost-based optimization, 451	resource stress, 108
execution context, 469	RPC mechanism, 108
parse tree, 454	system_health, 121-123
query compilation, 454	templates, 105-106
query plan, 468	T-SQL batch, 108
relational engine, 454	XE Profiler, 106
SQL Server techniques	Extent-level lock, 645
query execution, 453	External fragmentation, 407, 418
resource consumption, 451	
storage engine, 454	_
Extended Events sessions	F
Advanced page, 119	Fast-forward-only cursor, 738
automation	Filtered indexes, 231
GUI, 123-124	ANSI settings, 246
T-SQL, 124-126	covering index, 243
causality tracking, 126-127	definition, 242
data storage, 117-118	execution plans, 245
date and time, 120-121	Index Seek, 244
description, 103	I/O and execution time, 242-243
event fields	null values, 242, 243, 246
actions commands, 116	performance, 245
configure on display, 117	Sales.SalesOrderHeader
Event library, 109	table, 242
Events page, 107	simplification, 245

920

Forced parameterization, 485–488	IX_Test, 253, 255
Forward-only cursors	page-level, 253
characteristics, 728	row-level, 253
cost benefits, 737	sys.dm_db_index_physical_
drawbacks, 737	stats, 254
FULLSCAN, 373, 389	Indexed views, 232
Full-text index, 267	AVG, 251
	benefit, 247
G	computations, 250
	execution plan, 252
General Data Protection Regulation	logical reads, 250
(GDPR), 885	materialized view, 246
4-Gig tuning (4GT), 49	OLTP database, 247
Globally unique identifiers (GUIDs), 885	PurchaseOrderDetail table, 250-252
	query execution, 248-249
Н	reporting systems, 248
Hardware resource bottlenecks	restrictions, 247–248
	SELECT statement, 246
identifying, 28	T-SQL code, 248
memory, 30 resolution, 29	Indexes
Hash index	BIT data type column, 269
bucket count, 764–766	B-tree structure
	branch nodes, 190
deep distribution, 765	initial layout of 27 rows, 189
description, 764 shallow distribution, 765	ordered layout of 27 rows, 189
sys.dm_db_xtp_hash_index_stats, 766	root node, 190
unique indexes and primary keys, 765	search process, 190
Heap or B-tree (HoBT) lock, 645	single-column table, 189
rieap of b-tiee (flob1) lock, 045	clustered (see Clustered indexes)
_	column data type, 204–205
l	column order
Implicit data type conversion, 608–611	composite index, 206
INDEX hint, 595–596	execution plan, 207-208
Index compression, 232	leading edge, 205, 207
code modification, 255	Seek operation, 207-208
CPU, 255	SELECT statement, 207
definition, 253	computed columns, 268
IX_Comp_Page_Test, 255	CREATE INDEX operation, 269

Database Engine Tuning Advisor	WHERE clause and JOIN criteria
tool, 271	columns, 195-197
data manipulation queries	Index fragmentation
DELETE statement, 191, 193	ALTER INDEX REBUILD statement
INSERT statement, 191	CREATE INDEX and DROP_
test table, 192	EXISTING clause, 433, 434
UPDATE statement, 191, 193-194	defragmentation technique, 436
definition, 185	internal and external
different column sort order, 268	fragmentation, 435
heap table, 188	PAD_INDEX setting, 436
impact of, 191	sys.dm_db_index_physical_
locking	stats, 435
clustered index, 678-679	ALTER INDEX REORGANIZE
nonclustered index, 676-678	statement, 437-442
resource_type, 676	analyzing amount of, 423-424
sys.dm_tran_locks, 675	automatic maintenance, database
test table, 675	analysis, 449
manufacturer, 188	causes of, 405
MaritalStatus column	clustered index, 419-420
composite index, 200	columnstore indexes, 421-423
DBCC SHOW_STATISTICS, 201	data modification and columnstore
execution plan, 201-202	indexes, 415-417
FORCESEEK, 204	data modification and rowstore
HumanResources.Employee table,	indexes, 405
201-203	defragmentation and partitions, 444-445
Nested Loops join and Key Lookup	disk and random I/O operation, 418
operator, 204	extents, 406, 407
unique values, 200	external fragmentation, 407, 418
WHERE clause/join criterion, 201	fill factor
narrow, 197–200	Avg. Page Density (full), 448
nonclustered (see Nonclustered	avg_page_space_used_in_
indexes)	percent, 447
online index creation, 270	clustered index, 446
parallel index creation, 270	default fill factor, 446
Production.Product table, 186	INSERT and UPDATE
scan process, 188	operations, 447
Serializable isolation level, 679–680	small test table, 446
StandardCost, product table, 186–187	transactional table, 445

Index fragmentation (cont.)	Index types
INSERT statement	full-text, 267
DBCC IND and DBCC PAGE, 415	spatial, 267
dbo.Test1, 414	storage mechanisms, 266
page split, 413-414	XML, 268
sys.dm_db_index_physical_stats	In-memory OLTP tables
output, 413	columnstore indexes, 769
internal fragmentation, 407, 418	correct workload, 774
leaf pages, 405	data, 754
resolutions, 430	database, 756-757
DROP_EXISTING clause, 432-433	durability, 756
dropping and re-creation, 431	features, 753
SELECT statements, 420-421	hash index, 764–766
small table analyzing, 428–430	limitations, 757
sys.dm_db_index_physical_stats	Memory Optimization Advisor (see
clustered index, 424	Memory Optimization Advisor)
detailed scan, 425, 427	memory-optimized technologies, 753
mixed extents, 424	Native Compilation Advisor, 779–781
output, 425	natively compiled stored procedures
uniform extent, 424	dbo.CountryRegion table, 772
UPDATE statement	estimated plan, 773
clustered index, 408	execution time, 772
DBCC IND output, 411-412	parameters, 772
page_count column, 410	query definition, 772
page split, 411	SELECT operator properties, 773
PageType, 412	syntax, 771
SELECT statement, 409	nonclustered indexes, 767-769
sys.dm_db_index_physical_	performance baseline, 774
stats, 410	Person.Address table
Index intersections, 231	coding, 757
covering index, 237	execution plan, 762
hash join, 237	IDENTITY value, 758
key lookup, 237	load data, 759, 761-762
nonclustered index, 238	query metrics, 763
OrderDate column, 235-237	query results, 760
SalesPersonID, 235	run a query, 759
statistics I/O and time, 237	unsupported data types, 758
Index joins, 238-241	spinning platters, 754

statistics maintenance, 770–771	database, 647
system requirements, 755-756	extent, 645
transactions, 754	HoBT, 645
T-SQL code, 755	KEY, 643-644
Internal fragmentation, 407, 418	PAG, 645
Internet Information Services (IIS), 85	resource levels, 641
Internet Small Computing System	RID, 642–643
Interface (iSCSI), 61	TAB, 646
Isolation levels	Lock manager, 632
Read Committed, 661–663	Lock modes
Read Uncommitted, 660–661	BU, 658
repeatable read, 663, 665-667	exclusive (X), 656
Serializable, 667	IS, IX, and SIX, 657–658
Snapshot, 674	Key-Range, 659
	resources, 648
J	Sch-M and Sch-S, 658
	Shared (S), 649
JOIN hint	UPDATE
execution plan, 592–593	data integrity, 650
LOOP, 593–594	drawback, 655
SELECT statement, 591	script order, T-SQL query windows,
SQL Server 2017, 590–591	650-651, 653
types, 591	sys.dm_tran_locks, 653-654
	transactions, 656
K	Lock monitor, 700
KEEPFIXED PLAN option, 554	Lookups
Key-level lock, 643–645	bookmark, 319, 321
Keyset-driven cursors	clustered index, 319, 326
characteristics, 729–730	covering index (see Covering indexes)
cost benefits, 739	drawbacks, 322-323
cost overhead, 739	HumanResources.Employee table
	execution plan, 324
L	key lookup Properties window, 325
	NationalIDNumber, JobTitle, and
LIKE search condition, 578–579	HireDate, 324
Lock compatibility, 659	Output List property, 325-326
Lock escalation, 647–648	views and user-defined
Lock granularity	functions, 325

Lookups (<i>cont.</i>)	in-memory table, 48
index join (PurchaseOrderHeader)	memory allocation, 47
covering index, 334	optimizing application workload, 47
execution plan, 335	process address space, 3GB, 49
Key Lookup operation, 334	system memory, 48
narrow indexes, 333	SQL Server Management
OrderDate, 334	Available Bytes counter, 36
SELECT statement, 334, 335	buffer cache hit ratio, 38
VendorID and OrderID, 335	buffer pool, 30
WHERE clause, 334	Checkpoint Pages/sec counter, 39
nonclustered index, 319	configuration, 30-31, 33
SalesOrderDetail table, 320-321	dynamic memory, 34
LOOP join hint, 593–594	Lazy writes/sec counter, 39
	max server memory, 32
N.A.	Memory Grants Pending counter, 39
M	memory pressure analysis, 35
Mapping index, 222	min server memory, 31
Memory bottleneck analysis, 894	operating system and external
Memory bottleneck resolutions, 894	processes, 32
Memory Optimization Advisor	Page Faults/sec, 36-37
data migration warnings, 776-777	Page File %Usage, 37
InMemoryTest database, 776	Page Life Expectancy, 38–39
options, 777	Pages/sec counter, 36–37
Person.Address table, 775	private bytes, 32
primary key, 778	RECONFIGURE statement, 34
results, 776	sp_configure system, 33
running, 776	Target and Total Server Memory, 40
successful migration, 779	Microsoft Developers Network, 138
unsupported data types, 775	Multiple active result sets (MARS), 742
Memory performance analysis	Multiple optimization phases
DBCC MEMORYSTATUS, 41-42	configuration cost, 460
DMO, 26-27, 42	DMV, 463-464
Performance Monitor tool, 24–25	index variations, 460
resolution	nontrivial plan, 461
address fragmentation, 50	QueryPlanHash, 463
32-bit to 64-bit processor, 48	size and complexity, 459
data compression, 49	T-SQL SELECT operator, 462
flowchart, 45-47	WHERE clause, 460

N	Optimistic concurrency model, 726–727
Narrow indexes, 197–200 Native Compilation Advisor, 779–781 Nonclustered indexes, 188, 767–769 vs. clustered indexes, 224 analytical style queries, 228 avoid blocking, 227 covering index, 229–230 credit cards, 228 data-retrieval performance, 228 execution plan, 226–227	benefits, 735 cost overhead, 735–736 Optimizer hints INDEX hints, 595–596 JOIN hint, 590 execution plan, 592–593 LOOP join hint, 593–594 SELECT statement, 591 SQL Server 2017, 590–591 types, 591
index key size, 227 SELECT statement, 225–227, 230 test table, 225 covering index, 222, 224 frequently updatable columns, 223 lookups, 222 maintenance, 221–222 mapping index, 222 row locator, 221 UPDATE operation, 223 wide keys, 223 Nonsargable search conditions, 574 BETWEEN vs. IN/OR, 575 !< Condition vs. >= Condition,	Page-level compression, 253 Page-level lock, 645 Parallel index creation, 270 Parallel plan optimization affinity setting, 465 cost factors, 464 cost threshold, 466 DML action queries, 467 MAXDOP query hint, 465 memory requirement, 466 number of CPUs, 465 OLTP queries, 467
579–580 LIKE condition, 578–579 and sargable conditions, 574 Nonuniform memory access (NUMA), 39 NOT NULL constraint, 597	query execution, 467 Parameter sniffing, 620 AddressByCity, 513 bad parameter identification, 518 I/O and execution plan, 517 Mentor, 517–518
0	mitigating behavior, 521
Old-school approach, 523	old-school approach, 523
Online index creation, 270	OPTIMIZE FOR hint, 524–525
Online transaction processing (OLTP), see In-memory OLTP tables	runtime and compile time values, 525 SELECT properties, 524