Pen Testing

ESSAYER DE TROUVER ET D'EXPLOITER LES VULNÉRABILITÉS D'UN SYSTÈME INFORMATIQUE

Structure

- Introduction
- DoS / DDoS
- SQL injection
- •MITM (man-in-the-middle)
- Isolement pour les tests
- Réflexion
- Conclusion

Introduction

L'importance du pentesting réside dans la capacité à anticiper d'éventuelles failles de sécurité avant qu'elles ne soient exploitées par des attaquants malveillants, ce qui peut entraîner des pertes financières significatives pour une entreprise et même la mener à la faillite.

DoS/DDoS

DoS Attack

Facile à détecter

très difficile à détecter

Test

de nombreux outils

SQL injection

Running an SQL Injection Attack – Computerphile

https://www.youtube.com/watch?
v=ciNHn38EyRc

query= "SELECT * FROM Users WHERE Username = " + username + " AND Password = " + password + ";"

Is SQL injection still a thing?

The SQL Injection Threat Study

https://www.ponemon.org/local/upload/file/DB%20Networks%20Research%20Report%20FINAL5.pdf

Tests

Tests manuels

sqlmap -u
"http://localhost/vulnerable_page.php?id=1" -D
database_name -T table_name --dump --batch

MITM (man-in-the-middle)

Indicateurs d'une attaque MITM :

Connexions non chiffrées :

Trafic HTTP au lieu de HTTPS, en particulier sur des réseaux publics ou inconnus.

Ponts intermédiaires :

Le trafic semble passer par des intermédiaires inattendus (comme un proxy ou une passerelle inconnue).

Changements dans les adresses ARP:

La table ARP montre que plusieurs IP sont associées à la même adresse MAC (indication de spoofing).

Latence anormale:

Des retards inattendus dans le trafic peuvent être un symptôme de redirection ou d'inspection.

Tests

Validation des certificats

Inspecter le certificat délivré par un serveur HTTPS pour vérifier sa validité et sa correspondance avec le domaine.

Analyse du réseau Détection du spoofing ARP :

Détecter les changements dans la table ARP.

Tests de proxy

Analyser si un proxy intermédiaire altère le trafic : Faux proxy pour analyser si les applications autorisent des connexions non sécurisées.

Isolement pour les tests

Blue/Green Deployments

Load Balancers with Isolated Traffic **AWS Elastic Load Balancer**

away from a failed

Canary Deployments

Balancement

Round-Robin DNS

Migration site web

```
server {
    listen 80;
     server name oldsite.com;
     return 301
     http://newsite.com$request_uri;
location /old-path/ {
         return 301 /new-path/;
```

Réflexion

Malgré toutes ces précautions, les attaques sont inévitables. Il est donc important de réfléchir à la manière dont nous allons réagir lorsque cela se produira.

Conclusion

Les vulnérabilités seront toujours présentes, il est donc important de réaliser des tests pour les détecter avant que les attaquants ne le fassent et, dans le pire des cas, d'établir une stratégie sur la manière de réagir face à une attaque.