Binary Search Trees

Prof. Ki-Hoon Lee
School of Computer and Information Engineering
Kwangwoon University

Definition of a Binary Search Tree (BST)

- A binary tree
- Each node has a (key, element) pair
 - element: value or data
- For every node x, all keys in the left subtree of x are smaller than that in x
- For every node x, all keys in the right subtree of x are greater than that in x
- The left and right subtrees are also binary search trees

Example BST

A binary search tree

Not a binary search tree, but a binary tree

Only keys are shown.

A Dictionary

- A *dictionary* is a collection of pairs, each pair has a key and an associated element (or value).
 - It can be implemented using a BST.

```
Making a member function const means that it
template <class K, class E>
                                           cannot call any non-const member functions,
class Dictionary {
                                           nor can it change any member variables.
public:
         virtual void Ascend(void) const = 0;
           // print the dictionary in ascending order by key
         virtual pair<K, E>*Get(const K&) const = 0;
           // return pointer to the pair with specified key; return NULL if no such pair
         virtual void Insert(const pair<K, E>&) = 0;
           // insert the given pair; if key is a duplicate, update the associated element
         virtual void Delete(const K&) = 0;
           // delete pair with specified key
};
```

Inheritance

• A class may be derived from a base class by using the inheritance.

Inheritance

• The private data and methods in the base class are inaccessible in the derived class.

Polymorphism

• Polymorphism is the provision of a single interface to entities of different types.

• We use one verb (function) to mean different things. For example, we say "open" meaning to open a door, a jar, or a book; which one is determined by the context.

• Similarly, in C++, we can call printArea to print area of a triangle or the area of the rectangle.

Polymorphism

• Polymorphism is the ability to write several versions of a function, each in a separate class.

- Three conditions for polymorphism to work
 - A hierarchy of inherited classes
 - The function needs to be virtual.
 - We need to use pointers or references to objects.

Virtual Function

• A virtual function tells the compiler to bind a function with an object during the run time, not with the pointer defined during compilation time.

Virtual Function

```
class BaseClass {
public:
    virtual void print(void) const { cout << "Base class\n"; }</pre>
};
class DervClass: public BaseClass {
public:
    virtual void print(void) const { cout << "Derived class\n"; }</pre>
};
int main(void) {
    BaseClass* objPtr = new BaseClass;
    objPtr->print(); delete objPtr;
    objPtr = new DervClass;
    objPtr->print(); delete objPtr;
```

Pure Virtual Function

- In the base class, we can define the minimum number of functions and the format (argument list) that is needed for each derived class to include.
- Whereas a virtual function can have executable code in the base class, a pure virtual function can have no code.
- Pure virtual function is simply a declaration of a function that must be overridden in each derived class.
- Syntax
 virtual return_type function(parameter list) = 0;

Abstract Class

- An abstract class is a class that has at least one pure virtual function.
- It is just a model for all derived classes and cannot be instantiated.
- We cannot have an object of an abstract class because the pure virtual functions cannot be called.

Abstract Class

```
class Polygons
    protected:
        double area;
        virtual void calcArea()=0;
    public:
        Polygon() {}
        ~Polygon() {}
        void printArea() const;
```

```
class Triangle : public Polygons
    private:
        double sideA;
        double sideB;
        double sideC;
        virtual void calcArea();
    public:
        Triangle(double sideA,
                 double sideB,
                 double sideC);
```

Standard Template Library (STL)

- A set of C++ template classes to provide common programming data structures and functions.
- STL components:
 - Containers
 - Data structures: pair, vector, list, queue, priority queue, stack, set, map, ...
 - Iterators
 - Pointer-like objects used to access elements in a container
 - Algorithms
 - Basic algorithms to manipulate the elements of containers (e.g., sorting, searching, ...)
 - **–** ...
- The pair container is a simple container consisting of two data elements or objects.
 - The first element is referenced as 'first' and the second element as 'second' and the order is fixed (first, second).

The Operation Ascend()

Do an inorder traversal. O(n) time.

Searching a BST

- Searching for a node with key k
- We begin at the root.
- If the root is NULL, the tree is empty and the search is unsuccessful.
- Otherwise, we compare k with the key k_{root} in the root.
 - If $k < k_{root}$, then only the *left* subtree needs to be searched.
 - If $k > k_{root}$, then only the *right* subtree needs to be searched.
 - Otherwise, $k == k_{root}$ and the search terminates successfully.
- Complexity: O(height)

Recursive Search of a BST

```
template <class K, class E> // Driver
pair<K, E>* BST<K, E>::Get(const K& k)
// Search the binary search tree (*this) for a pair with key k.
// If such a pair is found, return a pointer to this pair; otherwise, return NULL.
  return Get(root, k);
template < class K, class E> // Workhorse
pair<K, E>* BST<K, E>::Get(TreeNode<pair<K, E> >*p, const K& k)
  if(p == NULL) return NULL;
  if(k  return <math>Get(p - sleftChild, k);
  if(k > p - sdata.first) return Get(p - srightChild, k);
  return &p->data;
```

Example (k = 8)

```
template < class K, class E> // Workhorse
pair<K, E>* BST<K, E>::Get(TreeNode<pair<K, E> >*p, const K& k)
 if(p == NULL) return NULL;
 if(k  return <math>Get(p - sleftChild, k);
 if(k > p - sdata.first) return Get(p - srightChild, k);
 return &p->data;
                                                                   18
```

Insertion into a BST

- To insert a pair (k, e), we first search the tree to verify that its key is different from those of existing nodes.
 - By the definition of BST, no two nodes have the same key.
- If the search is successful (i.e., key is a duplicate), the associated element is updated.
- If the search is unsuccessful, the node is inserted at the point the search terminated.

Insertion into a BST (cont.)

```
template <class K, class E>
void BST<K,E>::Insert(const pair<K,E>& thePair)
| {// Insert the Pair into the binary search tree
  // Search for the Pair first
  // pp is the parent of p
    TreeNode<pair<K,E> > *p = root, *pp = NULL;
   while (p) {
      pp = p;
       if (thePair.first < p->data.first) p = p->leftChild;
       else if (thePair.first > p->data.first) p = p->rightChild;
       else // duplicated, update the associated element
         {p->data.second = thePair.second; return;}
    // Perform insertion
    p = new TreeNode<pair<K,E> > (thePair);
    if (root != NULL) // tree not empty
       if (thePair.first < pp->data.first) pp->leftChild = p;
       else pp->rightChild = p;
   else root = p;
                                                             20
```

The Operation Insert()

Complexity of Insert() is O(height).

The Operation Delete()

Four cases:

- No node with delete key
- A degree 0 node (leaf node)
- A degree 1 node (internal node)
- A degree 2 node (internal node)

Delete a Leaf Node

• The corresponding child field of its parent is set to NULL.

The leaf node is disposed.

Delete a Degree 1 Node

The node is disposed

• The single-child of the disposed node takes place of

the disposed node

Delete a Degree 1 Node (cont.)

Delete a Degree 2 Node

- The node is replace by either
 - the largest node in its left subtree
 - the smallest node in its right subtree

• Delete this replacing node from the subtree from which it was taken

Example

- Delete **10**
- Find the largest key in the left subtree (or the smallest key in the right subtree).

Example (cont.)

- 8 is the largest key in the left subtree
- Replace 10 with 8

Example (cont.)

Delete the replacing node 8

• The largest key must be in a leaf or degree 1

Another Example

Another Example (cont.)

Another Example (cont.)

Delete a Degree 2 Node

Implementation

```
q is the
template < class K, class E>
void BST<K,E>::Delete(K k) {
  TreeNode<pair<K,E> > *p = root, *q = 0;
  while (p && k \neq p \rightarrow data.first) {
    q = p;
    if (k 
    else p = p \rightarrow RightChild;
  if (p == 0) return; // not found
```

```
if (p \rightarrow LeftChild == 0 \&\& p \rightarrow RightChild == 0) // p is leaf
   if (q == 0) \text{ root} = 0;
   else if (q \rightarrow LeftChild == p) q \rightarrow LeftChild = 0;
   else q \rightarrow RightChild = 0;
   delete p;
if (p \rightarrow LeftChild == 0) // p only has right child
   if (q == 0) root = p \rightarrow RightChild;
   else if (q \rightarrow LeftChild == p) q \rightarrow LeftChild = p \rightarrow RightChild;
   else q \rightarrow RightChild = p \rightarrow RightChild;
   delete p;
```

```
if (p \rightarrow RightChild == 0) // p only has left child
  if (q == 0) root = p \rightarrow LeftChild;
   else if (q \rightarrow LeftChild == p) q \rightarrow LeftChild = p \rightarrow LeftChild;
   else q \rightarrow RightChild = p \rightarrow LeftChild;
                                                                 prevprev
   delete p;
                                         find the smallest
                                                                           prev
                                         node in the right
                                         subtree
// p has left and right child.
                                                                    curr
TreeNode < pair < K,E > *prevprev = p, *prev = p \rightarrow RightChild,
      *curr = p \rightarrow RightChild \rightarrow LeftChild;
                                                              prevprev
while (curr) {
   prevprev = prev;
                                                          prev
   prev = curr;
   curr = curr \rightarrow LeftChild;
                                                   curr
```



```
// parent, prev->LeftChild is 0.

p-data = prev-data;
if (prevprev == p) prevprev-RightChild = prev-RightChild;
else prevprev-LeftChild = prev-RightChild;
delete prev;
```

// curr is 0, prev is the node to be deleted, prevprev is prev's

Operations' Efficiency on BST

Operation	Average case	Worst case
Retrieval	O(log n)	O(n)
Insertion	O(log n)	O(n)
Deletion	O(log n)	O(n)
Traversal	O(n)	O(n)

Homework #3

Implement and test

- •Programs 5.18, 5.19, 5.21
- •Exercise 5.7.1 (the delete function)

Homework을 제출할 필요는 없으나 중간/기말고사에 출제할 계획임