NOM: DAVID PRENOM: Clément

Octobre 2016
GROUPE: B2

Contrôle 1 de Physique

Les calculatrices et les documents ne sont pas autorisés. Réponses exclusivement sur le sujet

Exercice 1 (4 points)

On considère, dans un repère orthonormé de base $(\vec{u}_x, \vec{u}_y, \vec{u}_z)$, les trois vecteurs :

 \vec{U} , \vec{V} et \vec{W} de composantes respectives: $\vec{U}(-4x,-2,+4)$; $\vec{V}(-1,+2,+3)$; $\vec{W}(-2,+4y,+6)$

a) Calculer la norme de chacun des vecteurs pour x = 0 et y = -1.

b) Calculer le produit scalaire $\vec{U}.\vec{V}$, donner la valeur de x pour laquelle \vec{U} est orthogonal à \vec{V} .

2- Calculer le produit vectoriel : $\vec{V} \wedge \vec{W}$, pour quelle valeur de y les vecteurs \vec{V} et \vec{W} sont colinéaires.

Exercice 2

Composition de vecteurs (5 points)

Calculer la norme de la résultante \vec{R} des vecteurs forces dans les cas suivants (1) et (2) :

1)
$$F_1 = 4N$$

$$F_2 = 3N$$

$$\alpha = (\vec{F}_1, \vec{F}_2) = 90^{\circ}$$

2)
$$F_1 = 1N$$

$$F_2 = 2N$$

$$\alpha = (\vec{F}_1, \vec{F}_2) = 60^\circ$$

3) a- Donner les expressions littérales des composantes R_x et R_y de la résultante \vec{R} des forces représentées sur le schéma ci-dessous, en fonction de F₁, F₂, F₃, F₄, α et β.

b- En déduire l'expression littérale de la norme de la résultante R en fonction des normes F₁, F₂, F₃, F_4 , α et β .

)

Dans le repère $(O, \vec{u}_x, \vec{u}_y)$, la position d'un point M est définie à chaque instant t par les équations horaires: $\begin{cases} x(t) = 2t \\ y(t) = \sqrt{4(1-t^2)} \end{cases}$

1- Retrouver l'équation de la trajectoire. Préciser sa nature.

$$\xi = \frac{\chi(t)}{2}$$
 $y(x) = \left(1 \left(1 \left(\frac{g(t)}{2}\right)^{2}\right) = \sqrt{1-\chi(t)^{2}}$

Za hajectoine est parabolique.

2- a) Déterminer les composantes cartésiennes du vecteur vitesse. Exprimer sa norme.

$$\int_{V} \frac{\partial \hat{x}(t) - v_{x}}{\partial t} = \frac{1}{\sqrt{2}}$$

$$V = \int_{V} \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} \right)^{2}$$

$$V = \int_{V} \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} \right)^{2}$$

$$V = \int_{V} \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} \right)^{2}$$

$$V = \int_{V} \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} \right)^{2}$$

$$V = \int_{V} \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} \right)^{2}$$

$$V = \int_{V} \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} \right)^{2}$$

$$V = \int_{V} \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} \right)^{2}$$

$$V = \int_{V} \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} \right)^{2}$$

$$V = \int_{V} \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} \right)^{2}$$

$$V = \int_{V} \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} \right)^{2}$$

$$V = \int_{V} \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} \right)^{2}$$

$$V = \int_{V} \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} \right)^{2}$$

$$V = \int_{V} \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} \right)^{2}$$

$$V = \int_{V} \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} \right)^{2}$$

$$V = \int_{V} \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} \right)^{2}$$

$$V = \int_{V} \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} \right)^{2}$$

$$V = \int_{V} \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} \right)^{2}$$

$$V = \int_{V} \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} \right)^{2}$$

$$V = \int_{V} \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} \right)^{2}$$

$$V = \int_{V} \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} \right)^{2}$$

$$V = \int_{V} \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} \right)^{2}$$

$$V = \int_{V} \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} \right)^{2}$$

$$V = \int_{V} \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} \right)^{2}$$

b) En déduire les composantes a_T et a_N du vecteur accélération dans la base de Frenet

And the same of th

3- a) Déterminer les composantes cartésiennes du vecteur accélération. Exprimer sa norme.

 $\frac{\partial^{2} \int v_{1} dv}{\partial v_{2}} = \frac{\partial^{2} \int v_{1} dv}{\partial v_{2}}$

b) En déduire que le module du vecteur accélération est indépendant du repère d'étude.

Exercice 4 Cinématique (5 points)

On considère le mouvement d'un point matériel sur une spirale tracée sur un cône. Les équations horaires du mouvement en coordonnées cylindriques sont données par :

$$\begin{cases} \rho(t) = \rho_0 \exp(\omega t) \\ z(t) = a\rho_0 \exp(\omega t) \end{cases}$$
 (a, ρ_0 , ω sont des constantes positives et $\theta = \omega$)

1- Donner le vecteur position \vec{OM} en coordonnées cylindriques.

2- Exprimer le vecteur vitesse en coordonnées cylindriques. En déduire sa norme.

3- Exprimer les composantes du vecteur accélération dans les mêmes coordonnées. En déduire sa norme.