

2009 HIGHER SCHOOL CERTIFICATE TRIAL EXAMINATION

Extension 2 Mathematics

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question
- Start a new booklet for each question

Total marks - 120

- Attempt Questions 1 − 8
- All questions are of equal value

Total Marks – 120 Attempt Questions 1-8 All questions are of equal value

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Question 1. (15 marks) Start a new page

Marks

(a) (i) Show that
$$y = x\sqrt{4 - x^2}$$
 is an odd function.

1

(ii) Hence without finding the integral evaluate
$$\int_{-2}^{2} \left(x \sqrt{4 - x^2} - \sqrt{4 - x^2} \right)$$
, giving reasons.

2

(b) By using the table of standard integrals, find
$$\int \frac{dx}{\sqrt{4x^2 + 36}}$$

2

(c) Use partial fractions to evaluate
$$\int_{0}^{1} \frac{5 dt}{(2t+1)(2-t)}$$

3

(d) Find
$$\int \cos ec x \, dx$$
 by using the substitution $t = \tan \frac{x}{2}$

3

(e) Find
$$\int \frac{\sqrt{x^2 - 16}}{x} dx$$
 using the substitution $x = 4 \sec \theta$.

4

End of Question 1

Kincoppal-Rose Bay, School of the Sacred Heart HSC Mathematics Extension 2, Trial Examination 2009

Question 2. (15 marks) Start a new page

Marks

(a) Express $\frac{2-5i}{4-3i}$ in the form x + iy where x and y are real.

2

(b) Find all pairs of integers for a and b such that $(a-ib)^2 = -21-20i$

3

(c) Find the modulus and argument of $(\sin \theta + i \cos \theta)(\cos \theta - i \sin \theta)$

3

(d) (i) If $\left| \frac{z-1}{z+1} \right| = 2$, where z = x + iy, show that the locus of z is $\left(x + \frac{5}{3} \right)^2 + y^2 = \frac{16}{9}$

2

(ii) Represent this locus on an Argand Diagram and shade the region for which the inequalities $\left|\frac{z-1}{z+1}\right| \le 2$ and $0 \le \arg z \le \frac{3\pi}{4}$ are both satisfied.

3

(e) z_1 and z_2 are two complex numbers such that $\frac{z_1 + z_2}{z_1 - z_2} = 2i$

2

On an Argand diagram show vectors representing $z_1, z_2, z_1 + z_2$ and $z_1 - z_2$

End of Question 2

Examiner: ND and BW

11/8/09

Question 3. (15 marks) Start a new page

Marks

(a)

The graph of $y = x^2 e^{-x}$ is sketched above. There is a stationary point at (0,0) and $\left(2, \frac{4}{e^2}\right)$

On separate diagrams, draw a neat sketch showing the main features of each of the following

(i)
$$y = f(x) + 1$$

(ii)
$$y = f(|x|)$$

(iii)
$$y = \{f(x)\}^2$$

$$(iv) y = \frac{1}{f(x)}$$

$$(v) y^2 = f(x)$$

(vi)
$$y = \cos^{-1}(f(x))$$
 2

(b) If
$$x^m y^n = k$$
, where k is a constant, show that $\frac{dy}{dx} = -\frac{my}{nx}$

Question 3 continues on page 5

Question 3 continued Marks

(c) Using the method of cylindrical shells find the volume of the solid of revolution generated when the area enclosed by the curve $y = 6x^2 - x^4$ the *x*-axis and $0 \le x \le \sqrt{6}$ is rotated about the *y*- axis.

3

End of Question 3

Question 4. (15 marks) Start a new page

Marks

(a) If α, β, γ are the roots of the equation $x^3 - 4x^2 + 2x + 5 = 0$. Evaluate:

(i)
$$\alpha^2 + \beta^2 + \gamma^2$$

1

(ii)
$$\alpha^3 + \beta^3 + \gamma^3$$

2

- (b) P(x) is a monic polynomial of degree 4 with integer coefficients and constant term 4. One zero is $\sqrt{2}$, another zero is rational and the sum of the zeros is positive. Factorise P(x) fully over **R**.
- (c) (i) Use De Moivre's theorem to show $\cos 3\theta = 4\cos^3 \theta 3\cos \theta$

3

(ii) Hence solve $8x^3 - 6x - 1 = 0$ leaving answer in terms of $\cos \theta$

3

(d) For a real number r, the polynomial $8x^3 - 4x^2 - 42x + 45$ is divisible by $(x - r)^2$. Find the value of r.

End of Question 4

Examiner: ND and BW

11/8/09

Question 5. (15 marks) Start a new page

Marks

(a) Evaluate
$$\int_{1}^{\infty} \frac{1}{x+1} - \frac{1}{x+3} dx$$

- •
- (b) (i) Use integration by parts to show that a reduction (recurrence) formula for $I_n = \int \sin^n x \, dx$ is $I_n = -\frac{1}{n} \cos x \sin^{n-1} x + \frac{n-1}{n} I_{n-2}$
- 3

2

(ii) Hence evaluate $\int_0^{\frac{\pi}{2}} \sin^4 x \ dx$

2

- (c) The hyperbola H has equation xy = 4.
 - (i) Sketch the hyperbola and indicate on your diagram the position and coordinates of all points at which H intersects the axes of symmetry.
 - (ii) Show that the equation of the tangent at $P\left(2t, \frac{2}{t}\right)$ where $t \neq 0$, is $x + t^2y = 4t$
 - (iii) If $s \neq 0$ and $s^2 \neq t^2$, show that the tangents to H at P and $Q\left(2s, \frac{2}{s}\right)$ intersect at $M\left(\frac{4st}{s+t}, \frac{4}{s+t}\right)$
 - (iv) Suppose that in (iii) the parameter $s = -\frac{1}{t}$. Show that the locus of M is a straight line through, but excluding the origin.

End of Question 5

Question 6. (15 marks) Start a new page

Marks

1

1

2

(a)

A solid *S* is formed by rotating the region bounded by the parabola $y^2 = 16(1-x)$ and the y – axis around the line x = 2. By using the method of slices find the exact volume of *S*.

- (b) A hyperbola has foci ($\pm 10,0$) and asymptotes $y = \pm \frac{4x}{3}$.
 - (i) Find the eccentricity.
 - (ii) State the equation of the hyperbola.
 - (iii) Sketch the hyperbola indicating important features such as vertices, foci, directrices and asymptotes
- (c) Let $P(a\cos\theta, b\sin\theta)$ and $Q(a\cos\phi, b\sin\phi)$ be points on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ at the extremities of a focal chord PQ. The tangents drawn from the extremities intersect at a point R.

(i) Show that the tangent at *P* is given by $\frac{x}{a}\cos\theta + \frac{y}{b}\sin\theta = 1$.

Question 6 continues on page 9

Kincoppal-Rose Bay, School of the Sacred Heart HSC Mathematics Extension 2, Trial Examination 2009

Question 6 continued Marks

- (ii) Use simultaneous equations to show that the *x* coordinate of the point *R* is given by $x = \frac{a(\sin \phi \sin \theta)}{\cos \theta \sin \phi \sin \theta \cos \phi}$
- (iii) Use the fact that the gradient of PS = gradient of SQ to show that $\frac{\sin \phi \sin \theta}{\cos \theta \sin \phi \sin \theta \cos \phi} = \frac{1}{e}$
- (iv) Hence or otherwise show that *R* lies on the directrix of the ellipse.

End of Question 6

Question 7. (15 marks) Start a new page

Marks

2

- (a) Let α, β, γ be the roots of the equation $x^3 + qx + r = 0$. Write down the cubic equation whose roots are $\alpha^{-1}, \beta^{-1}, \gamma^{-1}$.
- (b) Let ω be a non-real root of $z^7 1 = 0$.
 - (i) Show that $1 + \omega + \omega^2 + \omega^3 + \omega^4 + \omega^5 + \omega^6 = 0$.
 - (ii) Show that $(1+\omega)(1+\omega^2)(1+\omega^4)=1$.
 - (iii) Simplify $(\omega + \omega^2 + \omega^4)(\omega^6 + \omega^5 + \omega^3)$
 - (iv) Sketch on the Argand diagram all seven roots of $z^7 1 = 0$
- (c) In a circle centre *O*, a diameter *AB* and a chord *AC* are drawn. *P* is the point on the circumference on the side of *AB* opposite to *C*, such that the tangent at *P* is perpendicular to *CA* produced.

 The tangent at *P* and the line *CA* produced intersect at the point *N*.

Copy this diagram into your examination booklet.

Prove that:

(i)
$$PC = PB$$

(ii)
$$\angle APC + 2\angle ACP = 90^{\circ}$$

(iii)
$$\angle PAB = \angle NPC$$

End of Question 7

Examiner: ND and BW

11/8/09

Kincoppal-Rose Bay, School of the Sacred Heart HSC Mathematics Extension 2, Trial Examination 2009

BLANK PAGE

Examiner : ND and BW 11/8/09

Question 8. (15 marks) Start a new page

Marks

(a) (i) Sketch $y = \sec x$ in the domain $-2\pi \le x \le 2\pi$

(ii) Using a suitable domain sketch $y = \sec^{-1} x$.

2

1

(b) For all integers $n \ge 1$, let

$$t_n = \frac{1}{n+1} + \frac{1}{n+2} + \frac{1}{n+3} + \dots + \frac{1}{2n-1} + \frac{1}{2n}$$
That is:
$$t_1 = \frac{1}{2}$$

$$t_2 = \frac{1}{3} + \frac{1}{4}$$

$$t_3 = \frac{1}{4} + \frac{1}{5} + \frac{1}{6}$$

(i) Show that $t_n + \frac{1}{2n} = \frac{1}{n} + \frac{1}{n+1} + \dots + \frac{1}{2n-1}$

2

The diagram above shows the graph of the function $y = \frac{1}{x}$ for $n \le x \le 2n$.

(ii) By using the diagram and the area of upper rectangles, show that $t_n + \frac{1}{2n} > \ln 2$ [Note that it can similarly be shown that $t_n < \ln 2$]

Questions 8 continued on page 13

Question 8 continued Marks

For all integers $n \ge 1$ let

$$s_n = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{1}{2n-1} - \frac{1}{2n}$$

That is:

$$s_1 = 1 - \frac{1}{2}$$

$$s_2 = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4}$$

$$s_3 = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6}$$

.

- (iii) Prove by mathematical induction that $s_n = t_n$
- (iv) Hence find, to three decimal places, the value of $1 \frac{1}{2} + \frac{1}{3} \frac{1}{4} + \dots + \frac{1}{9999} \frac{1}{10000}$ 3

4

End of Test

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \ n \neq -1; \ x \neq 0, \ if \ n < 0$$

$$\int \frac{1}{x} dx = \ln x, \ x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \ a \neq 0$$

$$\int \cos ax \, dx = \frac{1}{a} \sin ax, \ a \neq 0$$

$$\int \sin ax \, dx = -\frac{1}{a} \cos ax, \ a \neq 0$$

$$\int \sec^2 ax \, dx = \frac{1}{a} \tan ax, \ a \neq 0$$

$$\int \sec ax \tan ax \, dx = \frac{1}{a} \sec ax, \ a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \ a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \ a \neq 0, \ -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} \, dx = \ln(x + \sqrt{x^2 - a^2}), \ x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2} \right) \quad \text{NOTE: } \ln x = \log_e x, \ x > 0$$

2009 HIGHER SCHOOL CERTIFICATE TRIAL EXAMINATION

Extension 2 Mathematics (Solutions)

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question
- Start a new booklet for each question

Total marks – 120

- Attempt Questions 1 − 8
- All questions are of equal value

Question	Criteria	Marks
1(a)(i)	$f(x) = x\sqrt{4 - x^2}$	1
	$f(-x) = -x\sqrt{4 - (-x)^2} = -x\sqrt{4 - x^2}$	
	$\int f(x) = x\sqrt{4 - x^2}$ $-f(x) = -x\sqrt{4 - x^2}$	
	$-f(x) = -x\sqrt{4-x^2}$	
	$\therefore f(-x) = -f(x) an odd function \checkmark$	
1(a)(ii)		2
1(u)(11)	$\int_{2}^{2} \left(x \sqrt{4 - x^{2}} - \sqrt{4 - x^{2}} \right) = \int_{2}^{2} \left(x \sqrt{4 - x^{2}} \right) - \int_{2}^{2} \left(\sqrt{4 - x^{2}} \right)$	
	$= odd \ function - semi \ circle$	
	$= 0 - \frac{\pi \times 2^2}{2}$	
	$= 0 - 2\pi$	
	$=-2\pi$	
(1)(b)		2
	$\int \frac{dx}{\sqrt{4x^2 + 36}} = \frac{1}{2} \int \frac{dx}{\sqrt{x^2 + 9}}$	
	$=\frac{1}{2}\int \frac{dx}{\sqrt{x^2+9}}$	
	$-2\int \sqrt{x^2+9}$	
	$= \frac{1}{2} \ln \left(x + \sqrt{x^2 + 9} \right) + c or \ln(2x + \sqrt{4x^2 + 36}) + C$	
(1)(c)	Let A B 5	3
	Let $\frac{A}{2t+1} + \frac{B}{2-t} = \frac{5}{(2t+1)(2-t)}$	
	$\therefore A(2-t) + B(2t+1) = 5$	
	If $t = 2$, then $5B = 5 \rightarrow B = 1$	
	$t = -\frac{1}{2}$, then $\frac{5}{2}A = 5 \to A = 2$	
	$\therefore \int_0^1 \frac{5dt}{(2t+1)(2-t)} = \int_0^1 \left(\frac{2}{2t+1} + \frac{1}{2-t}\right) dt \qquad \boxed{\checkmark}$	
	$= \left[\ln\left(2t+1\right) - \ln\left(2-t\right)\right]_{0}^{1}$	
	$= \left[\ln\left(\frac{2t+1}{2-t}\right)\right]_0^1$	
	$=\ln 3 - \ln\left(\frac{1}{2}\right)$	
	$= \ln 6 \qquad \boxed{\checkmark}$	
	- m u	

(1)(d)	$t = \tan \frac{x}{2}$	$\int \cos e c x \ dx$	3
	$\frac{dt}{dx} = \frac{1}{2}\sec^2\frac{x}{2}$	$= \int \frac{1}{\sin x} \times \frac{2}{1+t^2} dt$	
	$2\cos^2\frac{x}{2}dt = dx$	$= \int \frac{1}{\frac{2t}{1+t^2}} \times \frac{2}{1+t^2} dt$	
	since $\cos^2 \frac{x}{2} = \frac{1}{1+t^2}$	$= \int \frac{1+t^2}{2t} \times \frac{2}{1+t^2} dt$	
	$\therefore dx = \frac{2}{1+t^2}dt$	$=\int \frac{1}{t} dt$	
		$= \ln(t) + C$	
		$= \ln\left(\tan\frac{x}{2}\right) + C \qquad \boxed{\checkmark}$	
(1)(e)	(e) $x = 4\sec\theta$	$\int \frac{\sqrt{x^2 - 16}}{x} dx$	4
	$x = \frac{4}{\cos \theta}$	$\int \frac{\sqrt{4^2 \sec^2 \theta - 16}}{4 \sec \theta} \times 4 \tan \theta \sec \theta d\theta$	
	$\frac{dx}{d\theta} = \frac{\cos\theta \times 0 - 4 \times -\sin\theta}{\cos^2\theta}$	$\int \frac{\sqrt{16(\sec^2\theta - 1)}}{4\sec\theta} \times 4\tan\theta \sec\theta d\theta$	
	$\frac{dx}{d\theta} = \frac{4\sin\theta}{\cos^2\theta}$	$\int 4 \tan^2 \theta \ d\theta \qquad \boxed{\checkmark}$	
	$\frac{dx}{d\theta} = 4\tan\theta\sec\theta \boxed{\checkmark}$	$\int 4(\sec^2\theta - 1) \ d\theta$	
		$\int 4\sec^2 \theta - 4 d\theta$ $= 4\tan \theta - 4\theta + C$ $= \frac{4\sqrt{16 - x^2}}{4} - 4\cos^{-1}\left(\frac{4}{x}\right) + C$	
	4	$= \sqrt{16 - x^2} - 4\cos^{-1}\left(\frac{4}{x}\right) + C \qquad \checkmark$	
	$\sqrt{x^2-16}$		
	$x = 4 \sec \theta$		
	$\frac{x}{4} = \sec \theta$		
	$\frac{4}{x} = \cos \theta$		
	$\therefore \tan \theta = \frac{\sqrt{x^2 - 16}}{4}$		

Question	Criteria	Marks
2(a)	$\frac{2-5i}{4-3i} \times \frac{4+3i}{4+3i} \checkmark$	2
	$\begin{vmatrix} 4-3i & 4+3i \\ 8+6i-20i-15i^2 \end{vmatrix}$	
	$=\frac{3+6i-26i-13i}{16-9i^2}$	
	$= \frac{23-14i}{25} $	
	25	
2(b)	$(a - ib)^2 = -21 - 20i$	3
	$a^2 - 2aib + i^2b^2 = -21 - 20i$	
	$a^2 - b^2 = -21$ and $-2aib = -20i$	
	$\therefore a = \frac{10}{b} \qquad \Rightarrow \left(\frac{10}{b}\right)^2 - b^2 = -21$	
	$\frac{100}{b^2} - b^2 = -21$	
	$b^4 - 21b^2 - 100 = 0$	
	$(b^2 - 25)(b^2 + 4) = 0$	
	$\therefore b = \pm 5 and a = \frac{10}{\pm 5} = \pm 2 \qquad \boxed{\checkmark}$	
2(c)	$(\sin\theta + i\cos\theta)(\cos\theta - i\sin\theta)$	3
	$= (\sin \theta + i \cos \theta)(\cos (-\theta) + i \sin (-\theta)) \checkmark$	
	$ z = \sqrt{\sin^2 \theta + \cos^2 \theta} = 1$	
	$arg z = -\theta$	
2(d)(i)	$(d) (i) \left \frac{z-1}{z+1} \right = 2$	2
	$\left \frac{x + iy - 1}{x + iy + 1} \right = 2$	
	$\frac{\sqrt{(x-1)^2 + y^2}}{\sqrt{(x+1)^2 + y^2}} = 2$	
	$\sqrt{(x-1)^2 + y^2} = 2\sqrt{(x+1)^2 + y^2}$	
	$(x-1)^2 + y^2 = 4\left[(x+1)^2 + y^2\right]$	
	$x^2 - 2x + 1 + y^2 = 4x^2 + 8x + 4 + 4y^2$	
	$3x^2 + 10x + 3y^2 + 3 = 0$	
	$x^2 + \frac{10}{3}x + y^2 + 1 = 0$	
	$x^{2} + \frac{10}{3}x + \left(\frac{5}{3}\right)^{2} + y^{2} = -1 + \left(\frac{5}{3}\right)^{2}$	
	$\left(x+\frac{5}{3}\right)^2+y^2=\frac{16}{9}$	

2(d)(ii)	$(ii) \left(x + \frac{5}{3}\right)^2 + y^2 \le \frac{16}{9} \qquad centre\left(-\frac{5}{3}, 0\right) radius = \frac{4}{3} \qquad \checkmark$	3
	$0 \le \arg z \le \frac{3\pi}{4} \qquad 0 \le y \le -x$	
	4	
	2	
	-4 -2 4 x	
	-2+	
	4	
	√ shaded region	
2(e)		2
	z_1-z_2 z_1+z_2	
	z_1	
	*1	
	Since $\frac{z_1 + z_2}{z_1 - z_2} = 2i$ then $\arg(z_1 + z_2) - \arg(z_1 - z_2) = \frac{\pi}{2}$ $\therefore \overline{z_1 + z_2} \perp \overline{z_1 - z_2}$	
	\checkmark vectors z_1 , z_2 and $z_1 + z_2$	
	\checkmark vectors $z_1 - z_2$	

(3)(b)	$x^m y^n = k$	2
	$u = x^m$ $v = y^n$	
	$u' = mx^{m-1} \qquad v' = ny^{n-1} \frac{dy}{dx}$	
	$my^n x^{m-1} + nx^m y^{n-1} \frac{dy}{dx} = 0$	
	$nx^m y^{n-1} \frac{dy}{dx} = -my^n x^{m-1}$	
	$\frac{dy}{dx} = \frac{-my^n x^{m-1}}{nx^m y^{n-1}}$	
	$\frac{dy}{dx} = \frac{-my^n x^m \times x^{-1}}{nx^m y^n \times y^{-1}}$	
	$\frac{dy}{dx} = \frac{-my^n x^m \times y}{nx^m y^n \times x}$	
	$\frac{dy}{dx} = \frac{-my}{2}$	
	dx - nx	
(3)(c)	$V = 2\pi r \times thickness \times height$	3
	$V = 2\pi \times x \times y \times dx$	
	$V = 2\pi \int_0^{\sqrt{6}} x \ y \ dx = $	
	$V = 2\pi \int_0^{\sqrt{6}} x \left(6x^2 - x^4\right) dx \qquad \boxed{\checkmark}$	
	$V = 2\pi \int_0^{\sqrt{6}} 6x^3 - x^5 dx$	
	$V = 2\pi \left[\frac{6x^4}{4} - \frac{x^6}{6} \right]_0^{\sqrt{6}}$	
	$V = 36\pi$	

$\alpha^{2} + \beta^{2} + \gamma^{2} = (\alpha + \beta + \gamma)^{2} - 2(\alpha\beta + \alpha\gamma + \beta\gamma)$	
$=(4)^2-2(2)$	
=12	
4(a)(ii) $x^3 - 4x^2 + 2x + 5 = 0$	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	_
$\alpha^3 - 4\alpha^2 + 2\alpha + 5 = 0$	
$\beta^3 - 4\beta^2 + 2\beta + 5 = 0$	
$\gamma^{3} - 4\gamma^{2} + 2\gamma + 5 = 0$	
$\therefore \alpha^{3} + \beta^{3} + \gamma^{3} - 4(\alpha^{2} + \beta^{2} + \gamma^{2}) + 2(\alpha + \beta + \gamma) + 15 = 0$	
$\alpha^{3} + \beta^{3} + \gamma^{3} - 4(12) + 2(4) + 15 = 0$	
$\alpha^{3} + \beta^{3} + \gamma^{3} = 48 - 8 - 15$	
= 25	
4(b) Monic $a = 1$ and integer solutions $\therefore (x - \sqrt{2})(x + \sqrt{2})(x - a)(x - b)$	√ 3
since sum or roots is positive then $-\sqrt{2} + \sqrt{2} + a + b > 0$	
product roots = 4 : $\sqrt{2} \times \sqrt{2} \times a \times b = 4$	\ _
	J
Hence $P(x) = (x - \sqrt{2})(x + \sqrt{2})(x - 2)(x + 1)$	\checkmark
$\frac{4(c)(i)}{(\cos\theta + i\sin\theta)^3 = {}^{3}C_{0}(\cos\theta)^3(i\sin\theta)^0 + {}^{3}C_{1}(\cos\theta)^2(i\sin\theta)^1 + {}^{3}C_{2}(\cos\theta)^2(i\sin\theta)^2 + {}^{3}C_{1}(\cos\theta)^2(i\sin\theta)^2 + {}^{3}C_{2}(\cos\theta)^2(i\sin\theta)^2 + {}^{3}C_{2}(\cos\theta)^2 + $	$(i\sin\theta)^2$ 3
$+ {}^{3}C_{3}(\cos\theta)^{3}(i\sin\theta)^{3}$, ((51115)
$= \cos^3 \theta + 3i \cos^2 \theta \sin \theta - 3 \cos \theta \sin^2 \theta - i \sin^3 \theta$	
DeMoivres theorem:	
$(\cos\theta + i\sin\theta)^3 = (\cos 3\theta + i\sin 3\theta)$	
$(\cos \theta + t \sin \theta) = (\cos \theta + t \sin \theta)$	
Equating real parts:	
$\cos 3\theta = \cos^3 \theta - 3\cos \theta \sin^2 \theta$	
$=\cos^3\theta - 3\cos\theta(1-\cos^2\theta)$	
$= \cos^3 \theta - 3\cos \theta + 3\cos^3 \theta$	
$=4\cos^3\theta-3\cos\theta$	

47. \(\frac{1}{2}\)	T		<u> </u>
4(c)(ii)	Let $x = \cos \theta$		
	$8\cos^3 x - 6\cos x - 1 = 0$		
	$8\cos^3 x - 6\cos x = 1$		
	$2(4\cos^3\theta - 3\cos\theta) = 1$		
	$2\cos 3\theta = 1$		
	$\cos 3\theta = \frac{1}{2}$	\checkmark	
	$3\theta = \cos^{-1}\frac{1}{2} \pm 2k\pi$, where k is an integer		
	$\theta = \frac{\pi}{9} (6k \pm 1)$	\checkmark	
	These values of θ give exactly three distinct values of $\cos \theta$, namely		
	$\therefore (k=0) \qquad \sin ce \ x = \cos \theta \ \Rightarrow \ x = \cos \left(\frac{\pi}{9}\right)$		
	$(k=1) \sin ce \ x = \cos \theta \ \Rightarrow x = \cos \left(\frac{5\pi}{9}\right) = -\cos \left(\frac{4\pi}{9}\right)$		
	$(k=1) \sin ce \ x = \cos \theta \ \Rightarrow x = \cos \left(\frac{7\pi}{9}\right) = -\cos \left(\frac{2\pi}{9}\right)$	\checkmark	
4(d)	$P(r) = 8r^3 - 4r^2 - 42r + 45 = 0$		
	$P'(r) = 24r^2 - 8r - 42 = 0 \qquad (double root)$		
	$\therefore 24r^2 - 8r - 42 = 2(6r + 7)(2r - 3) = 0$		
	$r = \frac{-7}{6} or \frac{3}{2}$		
	$sub \ P\left(\frac{-7}{6}\right) = 8r^3 - 4r^2 - 42r + 45 \neq 0$		
	sub $P\left(\frac{-7}{6}\right) = 8r^3 - 4r^2 - 42r + 45 \neq 0$ $P\left(\frac{3}{2}\right) = 8r^3 - 4r^2 - 42r + 45 = 0$ hence $r = \frac{3}{2}$		

Question	Criteria	Marks
5(a)	$\int_{1}^{\infty} \frac{1}{x+1} - \frac{1}{x+3} = \left[\ln(x+1) - \ln(x+3) \right]_{1}^{\infty}$	2
	$= \ln \left[\frac{x+1}{x+3} \right]_{1}^{\infty}$	
	$= \ln 1 - \ln \left(\frac{1}{2}\right)$	
	$= 0 - (\ln(1) - \ln(2))$	
	$=0-0+\ln 2$	
	$= \ln 2 \left(or \ln \left(\frac{1}{2} \right) \right) \qquad \boxed{\checkmark}$	
5(b)(i)	$I_n = \int \sin^n x \ dx$	3
	$= \int \sin x \cdot \sin^{n-1} x dx \qquad u = \sin^{n-1} x \qquad \frac{dv}{dx} = \sin x$	
	$\frac{du}{dx} = (n-1)\sin^{n-2}x\cos x \qquad v = -\cos x$	
	$\therefore \int u dv = uv - \int v du$	
	$= -\cos x \sin^{n-1} x - \int -\cos x (n-1) \sin^{n-2} x \cdot \cos x dx$	
	$= -\cos x \sin^{n-1} x + (n-1) \int \cos^2 x \cdot \sin^{n-2} x dx$	
	$= -\cos x \sin^{n-1} x + (n-1) \int (1-\sin^2 x) \sin^{n-2} x dx$	
	$= -\cos x \sin^{n-1} x + (n-1) \int \sin^{n-2} x dx - (n-1) \int \sin^{n} x dx$	
	$= -\cos x \sin^{n-1} x + (n-1)I_{n-2} - (n-1)I_n$	
	$\therefore nI_n = -\cos x \sin^{n-1} x + (n-1)I_{n-2}$	
	$\therefore I_n = -\frac{1}{n}\cos x \sin^{n-1} x + \frac{n-1}{n} I_{n-2}$	
5b(ii)	$\int_{0}^{\frac{\pi}{2}} \sin^{4} x dx = \left[-\frac{1}{4} \cos x \sin^{3} x \right]_{0}^{\frac{\pi}{2}} + \frac{3}{4} \int_{0}^{\frac{\pi}{2}} \sin^{2} x dx$	2
	$= 0 + \frac{3}{4} \left[-\frac{1}{2} \cos x \sin x \right]_{0}^{\frac{\pi}{2}} + \frac{3}{4} \cdot \frac{1}{2} \int_{0}^{\frac{\pi}{2}} \sin^{0} x dx \qquad \boxed{\checkmark}$	
	$= 0 + 0 + \frac{3}{8} \int_{0}^{\frac{\pi}{2}} 1 \cdot dx$	
	$=\frac{3}{8}\left[x\right]_0^{\frac{\pi}{2}}=\frac{3}{8}\left[\frac{\pi}{2}-0\right]$	
	$\frac{3\pi}{16}$	

5(c)(iv)	$M\left(\frac{4st}{t+s},\frac{4}{t+s}\right)$	3
	(t+s)(t+s)	
	$\therefore x = \frac{4st}{t+s} and y = \frac{4}{t+s}$	
	$t+s = \frac{4st}{x} and t+s = \frac{4}{y}$	
	hence $\frac{4st}{x} = \frac{4}{y} \implies y = \frac{x}{st}$	
	and $\sin ce \ s = -\frac{1}{t}$	
	$\therefore y = -x (straight \ line \ locus \ through \ (0,0)) \boxed{\checkmark}$	
	However it cannot pass through the origin as $t, s \neq 0$	

Criteria	Marks
$y^2 = 16(1-x) \implies x = 1 - \frac{y^2}{1-x^2}$	4
10	
$V = \pi \int_{-4}^{4} \left(4x - x^2 \right) dy \qquad \boxed{\checkmark}$	
$V = 2\pi \int_0^4 \left(4\left(1 - \frac{y^2}{16}\right) - \left(1 - \frac{y^2}{16}\right)^2 \right) dy$	
$V = 2\pi \int_{0}^{4} \left(4 - \frac{y^{2}}{4} - 1 + \frac{y^{2}}{8} - \frac{y^{4}}{256} \right) dy$	
$A = 2\pi \left[3y - \frac{y^3}{24} - \frac{y^5}{1280} \right]_0^4$	
$A = 2\pi \left[\left(12 - \frac{64}{24} - \frac{1024}{1280} \right) - (0) \right]$	
$A = 2\pi \left(\frac{128}{15}\right)$	
$A = \frac{256\pi}{15}$	
$ae = 10 and \frac{b}{a} = \frac{4}{3}$	1
$\therefore a = \frac{10}{e} and b = \frac{4a}{3} and \text{since } b^2 = a^2(e^2 - 1)$	
then $\left(\frac{4a}{3}\right)^2 = \left(\frac{10}{e}\right)^2 (e^2 - 1)$	
$\left(\frac{4\left(\frac{10}{e}\right)}{3}\right)^2 = \left(\frac{10}{e}\right)^2 (e^2 - 1)$	
$\frac{1600}{9e^2} = \frac{100}{e^2} \left((e^2 - 1) \right)$	
$\frac{16}{9} = e^2 - 1$	
$e = \sqrt{\frac{16}{9} + 1} \qquad as \ e > 1$	
$e = \frac{5}{3}$	
	$y^{2} = 16(1-x) \implies x = 1 - \frac{y^{2}}{16}$ $A = \pi(R^{2} - r^{2})$ $= \pi(2^{2} - (2-x)^{2})$ $= \pi(4x - x^{2})$ $V = \pi \int_{-4}^{4} (4x - x^{2}) dy$ $V = 2\pi \int_{0}^{4} \left(4\left(1 - \frac{y^{2}}{16}\right) - \left(1 - \frac{y^{2}}{16}\right)^{2}\right) dy$ $V = 2\pi \int_{0}^{4} \left(4 - \frac{y^{2}}{4} - 1 + \frac{y^{2}}{8} - \frac{y^{4}}{256}\right) dy$ $V = 2\pi \int_{0}^{4} \left(3 - \frac{y^{2}}{8} - \frac{y^{4}}{256}\right) dy$ $V = 2\pi \left[3y - \frac{y^{3}}{24} - \frac{y^{5}}{1280}\right]_{0}^{4}$ $A = 2\pi \left[3y - \frac{y^{3}}{24} - \frac{y^{5}}{1280}\right]_{0}^{4}$ $A = 2\pi \left[\left(12 - \frac{64}{4} - \frac{1024}{1280}\right) - (0)\right]$ $A = 2\pi \left[\frac{128}{15}\right]$ $A = \frac{256\pi}{15}$ $ae = 10 \text{ and } \frac{b}{a} = \frac{4}{3}$ $\therefore a = \frac{10}{e} \text{ and } b = \frac{4a}{3} \text{ and since } b^{2} = a^{2}(e^{2} - 1)$ $ \qquad \qquad$

6(b)(ii)	$\sin ce e = \frac{5}{3}$ $and a = \frac{10}{e} = 6$ $and b = \frac{4a}{3} = 8$ $\therefore Equation \ of \ hyperbola \ is \frac{x^2}{36} - \frac{y^2}{64} = 1 \boxed{\checkmark}$	1
6(b)(iii)	Shape and asymptotes $y = \pm \frac{4x}{3}$ We directrices $x = \pm \frac{18}{5}$ and foci ($\pm 6,0$)	2

6(c)(i)
$$\frac{2x}{a^2} + \frac{2y}{b^2} \frac{dy}{dx} = 0 \qquad \therefore \frac{dy}{dx} = \frac{\frac{-a^2}{a}}{\frac{a^2}{b^2}} = \frac{-b^2x}{a^2y} = \frac{-b^2(a\cos\theta)}{a^2(b\sin\theta)} = -\frac{b\cos\theta}{a\sin\theta}$$

$$Equation of Tangent:$$

$$y - b\sin\theta = \frac{b\cos\theta}{-a\sin\theta} (x - a\cos\theta)$$

$$-a\sin\theta y + ab\sin\theta \sin\theta = b\cos\theta x - ab\cos\theta \cos\theta$$

$$-a\sin\theta y + b\cos\theta x = ab\sin\theta \sin\theta - ab\cos\theta \cos\theta$$

$$a\sin\theta y + b\cos\theta x = ab\sin\theta \sin\theta + ab\cos\theta \cos\theta$$

$$a\sin\theta y + b\cos\theta x = ab\sin\theta \sin\theta + ab\cos\theta$$

$$a\sin\theta y + b\cos\theta x = ab\sin\theta + ab\cos\theta$$

$$\frac{a\sin\theta y}{ab} + \frac{\cos\theta x}{ab} = \sin^2\theta + ab\cos^2\theta$$

$$\frac{a\sin\theta y}{b} + \frac{\cos\theta x}{ab} = 1$$

$$\therefore \text{ equation of tangent at } P(a\cos\theta, b\sin\theta) \text{ is }$$

$$\frac{x\cos\theta}{a} + \frac{y\sin\theta}{b} = 1$$

$$\sin(ay) + \frac{x\cos\theta}{a} + \frac{y\sin\theta}{b} = 1$$

$$\sin(ay) + \frac{x\cos\theta}{a} = \frac{x\sin\theta}{a} = 1$$

$$\sin(ay) + \frac{x\cos\theta}{a} = \frac{x\sin\theta}{a} = \frac{x\sin\theta}{a} = \frac{x\sin\theta}{a}$$

$$\frac{x\cos\theta}{a} + \frac{y\sin\theta}{a} = 1$$

$$\sin(ay) + \frac{x\cos\theta}{a} = \frac{x\sin\theta}{a} = \frac{x\sin\theta}{a} = \frac{x\cos\theta}{a\sin\phi}$$

$$\sin(ay) + \frac{x\cos\theta}{a\sin\phi} = \frac{x\sin\theta}{a\sin\phi}$$

$$\sin(ay) + \frac{x\cos\theta}{a\sin\phi} = \frac{x\sin\theta}{a\sin\phi} = \frac{x\sin\theta}{a\sin\phi}$$

$$\cos(ay) + \frac{x\cos\theta}{a\sin\phi} = \frac{x\sin\theta}{a\sin\phi} = \frac{x\sin\theta}{a\sin\phi}$$

$$\cos(ay) + \frac{x\cos\theta}{a\sin\phi} = \frac{x\sin\theta}{a\sin\phi} = \frac{x\sin\theta}{a\sin\phi}$$

$$\cos(ay) + \frac{x\cos\theta}{a\sin\phi} = \frac{x\sin\theta}{a\sin\phi} = \frac{x\sin\theta}{a\cos\phi} =$$

6(c)(iii)	$m_{PS} = \frac{b\sin\theta}{a\cos\theta - ae}$	2
	$m_{PS} - \frac{1}{a\cos\theta - ae}$	
	$b\sin\phi$	
	$m_{QS} = \frac{b\sin\phi}{a\cos\phi - ae}$	
	$\sin ce \ m_{PS} = m_{QS} then \ \frac{b \sin \theta}{a \cos \theta - ae} = \frac{b \sin \phi}{a \cos \phi - ae}$	
	$ab\sin\theta\cos\phi - aeb\sin\theta = ab\sin\phi\cos\theta - aeb\sin\phi$	
	$aeb\sin\phi - aeb\sin\theta = ab\sin\phi\cos\theta - ab\sin\theta\cos\phi$	
	$aeb(\sin\phi - \sin\theta) = ab(\sin\phi\cos\theta - \sin\theta\cos\phi)$	
	$\sin \phi \cos \theta - \sin \theta \cos \phi$	
	$e = \frac{\sin\phi\cos\theta - \sin\theta\cos\phi}{\sin\phi - \sin\theta}$	
	$\therefore \frac{\sin \phi - \sin \theta}{\sin \phi \cos \theta - \sin \theta \cos \phi} = \frac{1}{e}$	
6(c)(iv)	Directrix of the ellipse is $x = \frac{a}{e}$	1
	R has $x - coordinates$ $x = \frac{a(\sin \phi - \sin \theta)}{(\cos \theta \sin \phi - \cos \phi \sin \theta)}$	
	$x = a(\sin \phi - \sin \theta)$	
	$\Rightarrow \frac{x}{a} = \frac{a(\sin\phi - \sin\theta)}{(\cos\theta\sin\phi - \cos\phi\sin\theta)}$	
	from (iii) $\frac{\cos\phi - \cos\theta}{\sin\theta\cos\phi - \cos\theta b\sin\phi} = \frac{b}{e}$	
	$\therefore \frac{x}{a} = \frac{b}{e}$	
	$x = \frac{a}{e}$ (lies on the discriminant of the ellipse)	

Question	Criteria	Marks
7(a)	If α, β, γ are the roots of $x^3 + qx + r = 0$ then	2
	$\alpha^{-1}, \beta^{-1}, \gamma^{-1} \text{ or } \frac{1}{\alpha}, \frac{1}{\beta}, \frac{1}{\gamma} \text{ satisfy } \left(\frac{1}{x}\right)^3 + q\left(\frac{1}{x}\right) + r = 0$	
	$\therefore 1 + qx^2 + rx^3 = 0$	
- 4 > 4		
7(b)(i)	ω is a root or $z^7 - 1$ hence $\omega^7 - 1 = 0$	1
	$\omega^{7} - 1 = (\omega - 1)(\omega^{6} + \omega^{5} + \omega^{4} + \omega^{3} + \omega^{2} + \omega + 1) = 0$	
	$\omega = 1$ or $\omega^6 + \omega^5 + \omega^4 + \omega^3 + \omega^2 + \omega + 1 = 0$	
7(b)(ii)	$\sin ce \omega = 1 and \omega^7 = 1$	1
	then $(1+\omega)(1+\omega^2)(1+\omega^4) = (1+\omega^2+\omega+\omega^3)(1+\omega^4)$	
	$= 1 + \omega^{4} + \omega^{2} + \omega^{6} + \omega + \omega^{5} + \omega^{3} + \omega^{7}$	
	=1-1+1	
	= 1	
7(b)(iii)	$(\omega + \omega^2 + \omega^4)(\omega^6 + \omega^5 + \omega^3) = \omega^7 + \omega^6 + \omega^4 + \omega^8 + \omega^7 + \omega^5 + \omega^{10} + \omega^9 + \omega^7$	2
	$=1+\underbrace{\omega^6+\omega^4+\omega+1+\omega^5+\omega^3+\omega^2}_{\text{using (i)}}+1$	
	= 1 - 0 + 1 $= 2$	
7(b)(iv)		1
	↑	
	$\sqrt{2\pi}$	
	$ \qquad \left(\text{angle of rotation of } \frac{2\pi}{7} \text{ and } z = 1 \right)$	
		1

Question	Criteria	Marks
8(a)(i)	Shape and asymptotes at $x = \pm \frac{\pi}{2}$ and $x = \pm \frac{3\pi}{2}$	1
8(a)(ii)	$domain \ 0 \le x \le 1$ $V \ domain$ $V \ shape and features$ $domain \ v \ shape and features$	2

8(b)(i)	$t_n = \frac{1}{n+1} + \frac{1}{n+2} + \frac{1}{n+3} + \dots + \frac{1}{2n-1} + \frac{1}{2n}$	2		
	$\therefore t_n + \frac{1}{2n} = \frac{1}{n+1} + \frac{1}{n+2} + \frac{1}{n+3} + \dots + \frac{1}{2n-1} + \frac{1}{2n} + \frac{1}{2n}$			
	$t_n + \frac{1}{2n} = \left(\frac{1}{n+1} + \frac{1}{n+2} + \frac{1}{n+3} + \dots + \frac{1}{2n-1}\right) + \frac{1}{n}$			
	$= \frac{1}{n} + \frac{1}{n+1} + \frac{1}{n+2} + \frac{1}{n+3} + \dots + \frac{1}{2n-1}$			
8(b)(ii)	$= \frac{1}{n} + \frac{1}{n+1} + \frac{1}{n+2} + \frac{1}{n+3} + \dots + \frac{1}{2n-1}$ $t_n + \frac{1}{2n} = \frac{1}{n} + \frac{1}{n+1} + \frac{1}{n+2} + \frac{1}{n+3} + \dots + \frac{1}{2n-1}$	3		
	=sum of upper rectangles drawn on the graph			
	$ > \int_{n}^{2n} \frac{1}{x} dx = \left[\ln x\right]_{n}^{2n} $			
	$\therefore t_n + \frac{1}{2n} > \ln 2n - \ln n = \ln \left(\frac{2n}{n}\right) = \ln 2$			
8(b)(iii)	Prove true for $n=1$	4		
	$\therefore t_1 = \frac{1}{2} \qquad s_1 = 1 - \frac{1}{2} = \frac{1}{2} \qquad Hence true for n = 1 \qquad \checkmark$			
	Assume true for $n = k$			
	$\therefore t_k = s_k$			
	Prove true for $n = k + 1$			
	Now $s_{k+1} = 1 - \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{2k} + \frac{1}{2(k+1)-1} + \frac{1}{2(k+1)}$			
	$=1-\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{2k}+\frac{1}{2k+1}+\frac{1}{2k+2}$			
	$= s_k + \frac{1}{2k+1} + \frac{1}{2k+2}$			
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
	from (i) for $n = k + 1$			
	$t_{k+1} + \frac{1}{2(k+1)} = \frac{1}{k+1} + \frac{1}{k+2} + \frac{1}{k+3} + \frac{1}{k+4} + \dots + \frac{1}{2(k+1)-1}$			
	$= \frac{1}{k+1} + \frac{1}{k+2} + \frac{1}{k+3} + \frac{1}{k+4} + \dots + \frac{1}{2k+1}$			
	$= t_{k+1} + \frac{1}{2k+1}$			
	$\therefore t_{k+1} = t_k + \frac{1}{2k+1} - \frac{1}{2k+2}$			
	$\sin ce \ s_k = t_k \ and \ s_{k+1} = s_k + \frac{1}{2k+1} + \frac{1}{2k+2} \ and \ t_{k+1} = t_k + \frac{1}{2k+1} - \frac{1}{2k+2}$			
	then $S_{k+1} = t_{k+1}$			
	\therefore By principles of mathematical induction $s_b = t_n$ for $n = 1, 2, 3,$			

8(b)(iv)	$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{1}{9999} - \frac{1}{10000} = s_{5000}$	3
	$=t_{5000} \ by (iii) \boxed{\checkmark}$	
	and $\ln 2 - \frac{1}{2n} < t_n < \ln 2$ (by (ii))	
	$ \therefore \ln 2 - \frac{1}{10000} < t_{5000} < \ln 2 $ $ \ln 2 - 0.0001 < t_{5000} < \ln 2 $	
	$0.693147 - 0.0001 < t_{5000} < 0.693147$ $\therefore t_{5000} = 0.693 \ (3 \ dec \ pl)$	