使用手册

NGenomeSyn

Any Way to Show Multi genomic Synteny 任意展示多基因组共线性的作图工具

Version 1.39 使用说明文档 2022-12-12

hewm2008@gmail.com / hewm2008@qq.com

微信 打赏 QQ 入群: 125293663 微信公众号

目录

MGenomeSyn	
1.简介	
各版本新功能	
2.应用场景示例	
2.1 两个基因组	
2.2 三个(N)基因组 坚排	
2.3 三个任意分布	
2.4 任意基因组任意分布	
2.5 局部基因结构共线性和 ZoomRegion 功能	
2.6 泛基因组实际应用	10
3. 下载与安装	
3.1 下载网址	13
3.2 预先安装	13
3.3 安装	13
4. 用法和参数说明	13
4.1 NGenomeSyn 参数	13
4.1.1 主要配置参数	14
4.1.2 其它配置参数	15
4.1.3 link 的 Style	17
4.2 输入文件	18
4.2.1 数据文件(必须)	18
4.2.2 配置颜色(可选)	19
4.3 输出文件	19
5.实例	20
6.优势	20
7.常见问题	20
7.1 NGenomeSyn 和 RectChr 的中的共线性差异	20
7.2 NGenomeSyn 的 chr 边框会被覆盖, 如何调作?	
7.3 透明度不起作用 or 存在 线条 锯齿 型状	21
7.4 联系与打赏	22

1.简介

NGenomeSyn 是于基于多个基因组共线性关系的可视工具,该软件可以添加多个基因组一起进行分析绘图(可超过 12 个),各基因组顺序可以自由定制以及添加特殊属性,染色体长度,扩长收缩,及旋转角度也可以自由调整。通过结合不同的颜色,该软件绘图效果能够达 规律鲜明,结果易于呈现出各类共线性,大尺度变异,细部标识特殊基因区域等。软件配套流程结合 minimap2 软件可以高度自动化出图,能够快速检查变异情况。

亮点:

- 1 任意多个基因组(目前我限 20 个,可以取消)
- 2 各个基因组可以自己调顺序 颜色和添加自己属性等等功能
- 3 各个基因组可以移动 旋转 扩长和收缩等
- 4 Link 信也可可以自定义颜色和添加特定属性(如透明度)等等功能
- 5 可以局部放大指定的区域, ZoomRegion 功能

其中 3 可以调好相关参数 可以出现 三角形 五角形 四边形 等等组合 (后面将有空升组调定这些参数)

程序是给一些有基础的生信朋友用的、若是小白看不懂就算了。

程序提供了6不同的应用场景实例之后,知乎专栏也收集了一些用户的配置和说明。

各版本新功能

- A. Beta 版本,大家试用 有 bug 和更的需求有空再丰富
- B. 后面将加一个新的功能参数 可以直接出 三角形 等的排布 (不加这个参数了,正式 释放出版本稳定版本了)
- C. 添加 LinkALL 的参数功能。近五个月来没有人反馈问题,释放正式版本
- D. 1.38 版本 添加了 ZoomRegion 的功能,只看具体某一区域的 link 情况
- E. 1.39 版本 添加了 ShowCoordinates 的功能,显示坐标系的功能

2.应用场景示例

两个 三个 等 N 个基因组均可以画. 各个基因组的关系颜色也可以配置,后面再更新. 默认分布是 1 各基因组 从上到下 居中排列分布.

NGenomeSyn 各位画时

- 1 遇到问题可以反馈与我
- 2 同时我希望有好图可以帮发个贴 教与别人
- 3 若图很好很美可以把物种名等改一下,隐藏一些信息 我把其写入 exampleXX 并收藏进使用说明里面。

如下提供了6个实例,均用到真正的数据作的图。

Examples	Description
example1	An integrating pipeline and processing data and visualizing of two genomes for the simplest usage
example2	Horizontal layout of 3 or more genomes, genome layout adjustment and special region highlight
example3	Link settings, five link styles, genome layout adjustment for particular shape (triangle)
example4	ZoomRegion function of local gene structure(CDS mRNA) collinearity
example5	The comprehensive configuration for horizontal layout of more than three genomes (>3)
example6	quick identification of genetic deletion in some breeds (pan-genome frequently analysis) to solve biological problems

所有测试数据均来自真实数据,我们将其放在 Example/RealData 目录下,并且文件 (00.ReadMe)里面有列到数据的 下载的 URL

2.1 两个基因组

最简易用法。输入两个基因组的坐标 len 文件 和 link 文件即可(0.17 后的版本提供了一个小 perl 流程,可以直接由两个 fa 文件生成这三个文件,具体说明点击这儿查看,方便更多小白操作)。同时 example1 里面提供了 run2.sh

如 example1 的配置文件如下(数据来自 ncbi):

SetParaFor = global
GenomeInfoFile1=R64.len
GenomeInfoFile2=YJM1447.len

LinkFileRef1VsRef2=R64 YJM1447.link

后图如下:

用户可以 自主 加属性 变透明 调颜色 等, 如加上 ChrNameShow=1 显示 chr 名,具体见 example1

Run1.sh 中展示了 minimap2 和 **mscanX** 的结果如何转格式并作图的过程. Run2.sh 的示例如何从两个 fa 到出图的流程。

```
wget -c
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/146/045/GCA_000146045.2_R64/GCA_0
00146045.2_R64_genomic.fna.gz
wget -c
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/977/955/GCA_000977955.2_Sc_YJM144
7_v1/GCA_000977955.2_Sc_YJM1447_v1_genomic.fna.gz
perl ../../bin/GetTwoGenomeSyn.pl -InGenomeA
GCA_000146045.2_R64_genomic.fna.gz -InGenomeB
GCA_000977955.2_Sc_YJM1447_v1_genomic.fna.gz -OutPrefix OUT2 -MappingBin
minimap2 -BinDir /hwfssz4/BC_PUB/Software/08.Centos7/minimap2-2.23/ -
MinLenA 1000 -MinLenB 1000
```

2.2 三个(N)基因组 坚排

我们用的还是上面的数据,用三个基因示例如下:

```
SetParaFor = global
GenomeInfoFile1=9311.len
GenomeInfoFile2=IRGSP.len ## GenomeInfoFile2 就表示有 2 个基因组
GenomeInfoFile3=ZH11.len ## GenomeInfoFile3 就表示有 3 个基因组
LinkFileRef2VsRef3=IRGSP_9311.link
LinkFileRef2VsRef3=IRGSP_ZH11.link
```

即得到如下图:

那么 我们对第三个基因组进行 缩小 旋转等,在上面的配置后面加上如下信息:

```
CanvasHeightRitao=1.6 # 画布高度多点
SetParaFor = Genome3 # GenomeALL/GenomeX X 第 X 个基因组
ZoomChr=0.5 ## chr 长度 等大 缩小 or 扩大
RotateChr=28 ## chr 的起点 顺时针 旋转 28 度
ShiftX=60
ShiftY=-80 ## #7这个基因组移动
```


另外可以加上一些其它信息 显示 chr 名 颜色 和稍移动

ChrNameShow=1 ChrNameColor=green ChrNameShiftX=10 ChrNameShiftY=30

GenomeName="ThisGenome" ##自定义基因组名字

后见下面:

其中想把特别的区域表示出来(高亮等)如,文件 SpeRegion.bed 格式 如下

Chr10 10036207 11920932 fill="#3d84a8" Chr6 13071427 17863436 fill=green stroke=green

在对应的 Genome2 加上如下一行

SpeRegionFile=SpeRegion.bed ## 文件,把特别区域表示出来[格式 chr start End]

我们想在这个区域中加个一些文字可以在,对应这一行 后面属性加上 SN=RepeatRegion (SN 为我们自己定义的 ShowNamw SN=)

则如下:

同时我们也可以把三个基因组 MoveX Y 到画布中间, 并将分别按-135, -45 和 90 度旋转基 因组,结果 link 方式(五种方式的差别见下面 4.2.3 解析)改为 UpUp, 可以出下面图,具体见 in3.conf 的配置,可以出下面图型.

2.3 三个任意分布

共五种作 link 方式(五种方式的差别见<u>下面 4.2.3 解析</u>) DownDown UpUp DownUp UpDown 及设置颜色和透明度等 示例: 具体见 example3 里面的

SetParaFor =Link3 HeightRatio=1.5

StyleUpDown=DownDown ## DownDown UpUp DownUp UpDown

Reverse=1

ZoomRegion=Chr6:12914310:18879240 # 只看这个区域的

后图如下:

同样的数据,用 MoveToX/MoveToY ZoomChr RotateChr=-60 /60 构成三角型后如下:

加上显示坐标的参数
ShowCoordinates=1
下面有显示 ScaleNum=20 和 LablePrecision 精度小数点等

2.4 任意基因组任意分布

亮点:

- 1 任意多个基因组, 建议不要超过 20 个
- 2 各个基因组可以自己调顺序 颜色和添加自己属性等等功能
- 3 各个基因组可以移动 旋转 扩长和收缩等
- 4 Link 信也可可以自定义颜色和添加特定属性(如透明度)等等功能

其中 3 可以调好相关参数 可以出现 三角形 五角形 四边形 等等组合 (后面将有空升组调定这些参数)

现我这试调如下图:

配置如下:

```
SetParaFor = global
GenomeInfoFile1= IRGSP.len
                                ## GenomeInfoFile 1 : IRGSP japonica
GenomeInfoFile2= ZH11.len ## GenomeInfoFile 2 means the 2th genome is ZH11 GenomeInfoFile3= 9311.len ## GenomeInfoFile 3 means the 3th genome is 9311 GenomeInfoFile4= TM.len ## GenomeInfoFile 4 means the 4th genome is TM
GenomeInfoFile5= KY131.len
                              ## GenomeInfoFile 5 means the 5th genome is KY131
GenomeInfoFile6= YX1.len
                                ## GenomeInfoFile 6 means the 6th genome is YX1
GenomeInfoFile7= Basmati1.len
LinkFileRef1VsRef2= IRGSP_ZH11.link  ## First : Link1
LinkFileRef1VsRef3= IRGSP_9311.link  ## second appearance :Link2
LinkFileRef2VsRef3= ZH11_9311.link ## Link3
LinkFileRef4VsRef5= TM_KY131.link
                                         ## Link4
LinkFileRef6VsRef7= YX1_Basmati1.link ## Link5
                          ## setting parameters for the Link3
SetParaFor=Link3
StyleUpDown=DownDown
                          ## Links Style set to DownDown(UpDown/DownUp/UpUP/DownDown/line)
HightRation=1.2
                          ## High ratio of links expand or shrink
fill=grey
                          ## fill Color set to grey
stroke=grey
                          ## the link line to RefA becomes a little shorter
## the link line to RefB becomes a little shorter
ShortLinkLineRefA=10
ShortLinkLineRefB=10
SetParaFor=Link4
                          ## setting parameters for the Link4;
StyleUpDown=DownDown
                          ## Links Style set to DownDown
                          ## High ratio of links expand or shrink
HightRation=1.2
fill=grey
stroke=grev
ShortLinkLineRefA=10
ShortLinkLineRefB=10
SetParaFor=Link5
                          ## setting parameters for the Link5;
                          ## Links Style set to DownDown(UpDown/DownUp/UpUP/DownDown/line)
StyleUpDown=DownDown
HightRation=1.2
                          ## High ratio of links expand or shrink
fill=grey
stroke=grey
ShortLinkLineRefA=10
ShortLinkLineRefB=10
LinkFileRef2VsRef4= ZH11_TM.link
LinkFileRef4VsRef6= TM_YX1.link
                        ## setting parameters for the Link6
SetParaFor=Link6
fill="#5CA76D"
                         ## set the Links Color
stroke="#5CA76D"
SetParaFor=Link7 ## setting parameters for the Link7
```

```
fill="#5CA76D"
                ## set the Links Color
stroke="#5CA76D"
LinkFileRef3VsRef5= 9311_KY131.link
                                          ## Link8
LinkFileRef5VsRef7= KY131_Basmati1.link
                                         ## Link9
SetParaFor=Link8
                     ## setting parameters for the Link8
fill="#4B73B7"
                    ## set the Links Color
stroke="#4B73B7"
SetParaFor=Link9
                    ## setting parameters for the Link9
fill="#4B73B7"
                     ## set the Links Color
stroke="#4B73B7"
#Main = "main_Figure" ## the Fig Name :MainRatioFontSize MainCor ShiftMainX ShiftMainY
left=200
             ## The length of the space on the left side of the canvas is 200
right=200
             ## The length of the space on the right side of the canvas is 200
SetParaFor = GenomeALL
                         ## setting parameter for the ALL genome
ZoomChr=0.4
                         ## Reduce(<1) the lenghth of chromosomes 0.4 of the original</pre>
GenomeNameSizeRatio=2.0
SetParaFor = Genome1
                         ## setting parameter for the 1st genome
ShiftY=100
                         ## shift Y coordinates down 100
SetParaFor = Genome2
                         ## setting parameter for the 2st genome
RotateChr=-10
                         ## Move the starting point to (100,570), and rotate 10 degrees
counterclockwise
MoveToX=100
MoveToY=570
SetParaFor = Genome3
                         ## setting parameter for the 3st genome
RotateChr=10
                         ## Move the starting point to (850,470), and rotate 10 degrees
clockwise
MoveToX=850
MoveToY=470
SetParaFor = Genome4
                         ## setting parameter for the 4st genome
RotateChr=-10
                         ## Move the starting point to (100,870), and rotate 10 degrees
counterclockwise
MoveToX=100
MoveToY=870
SetParaFor = Genome5
                         ## setting parameter for the 5st genome
RotateChr=10
                         ## Move the starting point to (850,770), and rotate 10 degrees
clockwise
MoveToX=850
MoveToY=770
SetParaFor = Genome6
                         ## 6st genome
                         ## Move the starting point to (100,1170), and rotate 10 degrees
RotateChr=-10
counterclockwise
MoveToX=100
MoveToY=1170
SetParaFor = Genome7
                        # 7st Genome
RotateChr=10
MoveToX=850
MoveToY=1070
```

即可以如上排布,再结果自己定义颜色和属性 加上 links 数据必可以出下图(具体见exampl4 水稻的真实数据画的):

下面 可以美化一下如类似下面的图. We also could arrange to obtain complex layout below simlar as Zheng et al, 2022

Figure was retrieved from Figure 2 in Zheng et al, 2022

2.5 局部基因结构共线性和 ZoomRegion 功能

亮点: 在 0.21 的版本之后,提供多对特殊 SpeRegion 宽度 Width 的按制参数 SpeRegioWidthRatio 默认为 1,和 chrwidth 是一样高的。

1.38 版本 添加了 ZoomRegion 的功能,即多了参数 ZoomRegion,格式为 chr:Start:End 只看具体某一区域的 link 情况.

那么 example5 的配置主要是把 特殊区域宽度调大点,同时把 links 链接线缩短点。如下:

```
SetParaFor = global
GenomeInfoFile1=R64.len
                            ## GenomeInfoFile 1 For R64
GenomeInfoFile2=YJM1447.len ## GenomeInfoFile 2 For YJM1447
LinkFileRef1VsRef2=R64_YJM1447.gene.pairwise.A2B.link ## Link1
SetParaFor = Genome1 # GenomeALL/GenomeX X 第 X 个基因组
SpeRegionFile = R64_YJM1447.gene.pairwise.A.geneInfo.bed
                                                         ## special regions files, highlight
these Regions
ChrNameColor=green
                                   ## set Chr Name Color to green
ChrNameShiftY=10
                                   ## Chr Name text move down 10
SpeRegionWidthRatio=1.5
                                     ## Increase the height of special Region by 2 times of the
original
NormalizedScale=1
ZoomRegion=BK006937.2:35800:82600 ## Zoom this specific Region
SetParaFor = Genome2
                        ## setting parameter for the 2st genome
ChrNameColor=green
ChrNameShiftY=30
GenomeNameColor=blue
SpeRegionWidthRatio=1.5
SpeRegionFile = R64_YJM1447.gene.pairwise.B.geneInfo.bed
                                                             ## special regions files,
highlight these Regions
NormalizedScale=1
ZoomRegion=CP004738.2:1403880:1437000 ## Zoom this specific Region
SetParaFor =Link1
                         ## setting parameters for the Link1
OutsideWidthDeta=13
                         ## the link line to RefA and RefB becomes a little shorter
stroke-opacity=0.7
                         ## Color opacity set to 0.7
fill-opacity=0.7
stroke="rgb(230,171,2)"
                         ## fill Color set to "rgb(230,171,2)"
fill="rgb(230,171,2)"
stroke-width=1
```

最后得如下图:

其中也可以见 example5 的 **run2.sh** , SpeRegionFile 的第四列可以识别 *CDS mRNA* 和 *UTR* 自动设置高度和颜色,结果如下:

2.6 泛基因组实际应用

泛基因组中,不同品种组装出多个基因组,常要分析在某一个区域展示不同品种的

insertion 和 deletion,看看这里面的基因是否引起了品种分化的重要基因。 如下是 7 个水稻在 chr12 上的发现,其配置如下:

```
SetParaFor = global
GenomeInfoFile1=IRGSP.len
                             ## GenomeInfoFile 1 : IRGSP japonica
GenomeInfoFile2=9311.len
                             ## GenomeInfoFile 2 means the 2th genome is 9311
GenomeInfoFile3=Basmati1.len
GenomeInfoFile4=KY131.len
GenomeInfoFile5=TM.len
                             ## GenomeInfoFile 5 means the 5th genome is TM
GenomeInfoFile6=YX1.len
                             ## GenomeInfoFile 6 means the 6th genome is YX1
GenomeInfoFile7=ZH11.len ## GenomeInfoFile 7 means the 7th genome is ZH11
LinkFileRef1VsRef2=IRGSP 9311.link
                                         ## Link1
LinkFileRef1VsRef3=IRGSP_Basmati1.link ## Link2
LinkFileRef1VsRef4=IRGSP_KY131.link ## Link3
LinkFileRef1VsRef5=IRGSP_TM.link
                                         ## Link4
LinkFileRef1VsRef6=IRGSP_YX1.link
                                         ## Link5
LinkFileRef1VsRef7=IRGSP_ZH11.link
                                        ## Link6
CanvasHeightRitao=1.6
                         # increase canvas height to 1.7 of the original
CanvasWidthRitao=2.6
                        # increase canvas Width to 2.6 of the original
SetParaFor =GenomeALL
                         ## setting parameter for the ALL genome
ChrWidth=12
NormalizedScale=1
                         ## use the custome scale (=1) or the same with default genomes (=0)
SpeRegionWidthRatio=2
                         ## Increase the height of special Region by 2 times of the original
GenomeNameSizeRatio=2
                         ## the font of the chr name is enlarged by 2 times of the original
SetParaFor = Genome1
                         ## setting parameter for the 1st genome
MoveToX=1400
MoveToY=1000
SpeRegionFile=Data_SpeRegion/IRGSP.bed
                                          ## special regions files,For highlight these Regions
ZoomRegion=Chr12:14822000:27530800
                                          ## Zoom this specific Region,ignore Others
GenomeName="IRGSP Chr12:14.8M:27.5M"
GenomeNameShiftX=-130
SetParaFor = Genome2
MoveToX=400
MoveToY=700
RotateChr=-30
ZoomRegion=Chr12:14878000:26029400
                                         ## Zoom this specific Region, ignore Others
SpeRegionFile=Data_SpeRegion/9311.bed
                                         ## special regions to highlight
SetParaFor = Genome3
MoveToX=1400
MoveToY=200
ZoomRegion=Chr12:15829400:27774200
ShowCoordinates=1
ScaleUpDown=Up ## Show Coordinates . with other para [ScaleNum=10 ScaleUpDown ScaleUnit Labe
lUnit LablefontsizeRatio
SetParaFor = Genome4
MoveToX=2500
MoveToY=220
RotateChr=30
ZoomRegion=Chr12:13998000:26530600
                                        ## Zoom this specific Region, ignore Others
                 ## Show Coordinates with LablePrecision
ScaleUpDown=Up
GenomeNameShiftX=40
                     ## move the Genome Name Text
SetParaFor = Genome5
MoveToX=400
MoveToY=1300
RotateChr=30
ZoomRegion=Chr12:14942000:26205200
SetParaFor = Genome6
MoveToX=1400
MoveToY=1800
ZoomRegion=Chr12:15125500:26457200
```

```
SetParaFor = Genome7
RotateChr=-30
MoveToX=2500
MoveToY=1780
SpeRegionFile=Data_SpeRegion/ZH11.bed
                                            ## special regions to highlight
ZoomRegion=Chr12:14217800:28156500
SetParaFor=LinkALL
                             ## setting parameters for the ALL Link
fill-opacity=0.7
                             ## Color opacity set to 0.7
stroke-opacity=0.7
                             ## setting parameters for the Link1
SetParaFor=Link1
                             ## the link line to RefA and RefB becomes a little shorter
OutsideWidthDeta=-23
fill="rgb(27,158,119)"
                             ## fill Color set to "rgb(red,green,blue)"
stroke="rgb(27,158,119)"
SetParaFor=Link2
                             ## setting parameters for the Link2
OutsideWidthDeta=-23
fill="rgb(217,95,2)"
stroke="rgb(217,95,2)"
                             ## fill Color set to "rgb(red,green,blue)"
SetParaFor=Link3
                             ## setting parameters for the Link3
OutsideWidthDeta=-23
stroke-width=0
fill="rgb(117,112,179)"
stroke="rgb(117,112,179)"
SetParaFor=Link4
                             ### setting parameters for the Link4
OutsideWidthDeta=13
stroke="rgb(231,41,138)"
fill="rgb(231,41,138)"
stroke-width=0
SetParaFor=Link5
OutsideWidthDeta=13
fill="rgb(102,166,30)"
stroke="rgb(102,166,30)"
stroke-width=0
SetParaFor=Link6
OutsideWidthDeta=13
stroke="rgb(230,171,2)"
fill="rgb(230,171,2)"
stroke-width=0
```

最后得到如下图:

3. 下载与安装

3.1 下载网址

这主要是防止大家还在用 beta 版本,还在用可能存在 bug 的程序,强迫*大家定期更新*。/hwfssz4/BC PUB/Software/08.Centos7/NGenomeSyn-*

里面有 example1-6

持续更新在这: https://github.com/hewm2008/NGenomeSyn 下载时记得*加个星星*哦

3.2 预先安装

NGenomeSyn 适用于 Linux/Unix/**macOS** 系统。在安装之前,请先安装以下使用条件:
1) Perl: Perl 内的<u>模块 SVG.pm</u> (https://metacpan.org/release/SVG)。可以预先安装。尽管我们安装包已经内置了 SVG.pm 包了

2) convert: 系统命令,可以将 svg 转 png。莫有也无关系,有则更佳,建议安上

3.3 安装

使用者可采用以下直接 chmod 755 运行:

1)

git clone https://github.com/hewm2008/NGenomeSyn cd NGenomeSyn; chmod -R 755 bin/*
./bin/NGenomeSyn -h # 直接运行

4. 用法和参数说明

4.1 NGenomeSyn 参数

程序 NGenomeSyn 很简单,一个输入和一个输出. 具体如下。

[heweiming@cngb-ologin-25 bin]\$./bin/NGenomeSyn

Version:1.40 hewm2008@gmail.com

Options

-InConf-OutPut<s>: InPut Configuration File-OutPut svg file result

-help : Show more help with more parameter

-InConf 输入文件配置好的文件

-OutPut 输出文件, out.svg

-help 具体见配置参数

其中程序会对输入的配置文件进行简单的检测, 若异常的配置如文件格式和行数 不符合时会报异常, 麻烦检查.

另外提供了一个小 perl GetTwoGenomeSyn.pl 可以快速生成相关输入文件和图的, 该程序 GetTwoGenomeSyn.pl 的参数说明和用法见这儿, 和 这儿

4.1.1 主要配置参数

SetParaFor 是设置参数 可以是 global 全局变量 GenomeALL 是所有层都起作用 GenomeX 是对第 X 个的基因组进行配置

配置文件主要参数解释有如下几个

The Cofi parameters can be seen from this figure:

序号	示例	解析说明
参数 1	<pre>GenomeInfoFileX= /path/Ref.len</pre>	(X=1,2,3) 输入的是第 N 个基因组 文件格式见下面
参数 2	LinkFileRefNVsRefM =./N_M.link	N,M <=X 第 N 个基因和 M 的 link 文件,可重复输入,格式见下面
参数 3	#ZoomChr=1.0	该 X 的基因组等比例放长 or 缩短
参数 4	#RotateChr=0	该 X 的基因组 在画布上 旋转角度
参数 5	#ShiftX=0 #ShiftY=0 MoveToX/Y	该 X 的基因组在画布上 移动 指定位置
参数 6	#ChrWidth=20	## 这个基因组 chr 的在画布的宽度
参数 7	#LinkWidth=180	## 这个基因组和下一个 link 的高度
参数 8	#ChrSpacing=10	## 这个基因组 chr 之间的空隙
参数 9	#ZoomRegion	##扩大指定区域,格式 (ZoomRegion=chr2:1000:5000)

4.1.2 其它配置参数

SetParaFor = GenomeX 为设置第(X)个基因组的一个 Flag 参数 global 是全局变量 GenomeALL 是所有基因组都能管用,各层没有配置的话,则默认为全局(GenomeALL)的参数。LinkALL 是对所有 Link 起作用。

下面列出一个示例 大家可以看后面##的解析

- SetParaFor = global
- 2.
- 4.
- 5. GenomeInfoFile1=./RefA.len

```
6. ##### Format (chr Start End ...其它属性) chr 顺序和这文件一致 若是 End Start 则这
   条 chr 反向互补
7. ## 其它属性 如 fill=red stroke-width=0 stroke=black stroke-opacity=1 fill-
  opacity=1 等等可以不同行不同属性
8.
9. GenomeInfoFile2=./RefB.len ## GenomeInfoFile X 就表示有 X 个基因组
10.
11. LinkFileRef1VsRef2=./RefA_RefB.link
                                   # Link1
12. ###### Format (chrA StartA EndA chrB StartB End ...其它属性)
13. # 可以多次 Ref1VsRef2 LinkFileRef2VsRef1 等
14.
15. #Main = "main_Figure" ## the Fig Name :MainRatioFontSize MainColor ShiftMainX
  ShiftMainY
16. # font-size
17.
19.
20.
21. ##############
                   画布 和 图片 参数配置 ###############
22. #body=1200 ## 默认是 1200, 主画布大小设置 另外: up/down/left/right) =
   (55,25,100,120); #CanvasHeightRitao=1.0 CanvasWidthRitao=1.0
23. ##RotatePng = 0 ## 对 Figure 进行旋转的角度
25. SetParaFor = Genome1 # GenomeALL/GenomeX X 第 X 个基因组
26.
27. #ZoomChr=1.0
                   ## chr 长度 等大 缩小 or 扩大
28. #RotateChr=30
                   ## chr 的起点 顺时针 旋转 xx 度
29. #ShiftX=0
30. #ShiftY=0
                   ##对这个基因组移动
31. #MoveToX MoveToY ## 直接移动到指定的点
32.
33.
               ## 这个基因组 chr 的在画布的宽度
34. #ChrWidth=20
35. #LinkWidth=180
                   ## 这个基因组和下一个 link 的高度
36. #ChrSpacing=10
                   ## 这个基因组 chr 之间的空隙
37. #NormalizedScale=0 ## 用自己的标尺 这个相当该基因组与默认的基因组变成等长
                   ## 文件,表记特别区域[格式 chr start End (xx=yy 加属性等]
38. #SpeRegionFile
39. ZoomRegion
                    ## 扩大只看特定区 Zoom the specific Region
   (ZoomRegion=chr2:1000:5000)
40
41. ## GenomeNameRatio GenomeName
42. ##其它当很少用到的参数 EndCurveRadian=3/ 等等
```

- 43. ## GenomeName GenomeNameSizeRatio GenomeNameColor GenomeNameShiftX GenomeNameShiftY
- 44. ## ChrNameShow 显示 chr 名及其属性 ChrNameShiftX ChrNameShiftY ChrNameSizeRatio ChrNameColor ChrNameRotate

45.

46. SetParaFor = Genome2 # GenomeX X 第 X 个基因组

47.

48. SetParaFor=Link1 # 对第 X 个 Link X File 进行设置 LinkALL:对所有 link 起作用

49. #StyleUpDown= ## UpDown DownUp UpUP DownDown line 五种形式 line 为直线

50. #Reverse=1 ## 反向 link

51. #HeightRatio=1.0 ## links 的高比例 扩大 or 缩小

52. #### fill/ stroke/stroke-opacity/fill-opacity/stroke-width 等可设##

53.

其中也提供有了更多参数,只是大家不常用到,就隐藏起来

如对 Main 标题的一些控制参数隐藏起来: 在 global 下:

移动位置 : ShiftMainX=0 /ShiftMainY=0; 字体颜色为: MainCol="blue"; 字体大小:

MainRatioFontSize=1.0

ChrColorBrewer 和 GenomeColorBrewer

4.1.3 link 的 Style

如下是五种 link 的的型式的

StyleUpDown	示图
StyleUpDown=UpDown HeightRatio=1.0 (default)	PGSP B311
StyleUpDown=UpUp HeightRatio=1.5	ROSP 83H
StyleUpDown=DownDown HeightRatio=1.5	ROSP ROSP

4.2 输入文件

两种输入文件

A 一种是基因组信息, GenomeInfoFile 后辍名我们定义为 *.len 主要存 chr 的长度, 条数和定义好 chr 顺序. 至少要两个基因组.

B LinkFile 两个基因组的 link 关系 后辍名我们定义为 *.link

4.2.1 数据文件(必须)

*.len 文件格式 (GenomeInfoFile)

如上,其中我们在将这一文件后辍名定义为 *.len, 方便更多交流。

A 格式固定为前三列 Chr Start End ,其中 会 check Start End 其中一个是否为 1,后面若有=号的为 作图属性,不同行可以用不同属性 如加上 **stroke-dasharray="5,5"** 即连圈为**虚线** B chr 的顺序为文件从上到下的序列,即上面的序列为 B1 B3 B2 其中 B2 的 1 在 end 上,即会对 B2 进行**反向互补**的作图,

- C 其它属性 fill 和 stroke 是颜色, stroke-opacity 和 fill-opacity 是透明度 B3 用了 "#F8F8F8" 填补颜色,B2 用 red. 颜色可以同时 fill=grey stroke=grey
- D 其他属性可以是 stroke-width=0 stroke=black ; stroke-opacity=1 fill-opacity=1 等

*。Link 文件格式 LinkFileRef1VsRef2

A LinkFile 两个基因组的 link 关系 Ref XX Vs Ref YY . 表示第 XX 个基因组和 YY 个基因组的 link 文件

- B Ref XX Vs RefYY XX 和 YY 可以多次输入,越后出来的就是层次越高
- C 前 6 列为 chrA StartA EndA chrB StartB End 后面若有=号为其属性
- D 示例文件如下:

chrB1	1 1000000	LG01	100000 1
chrB3	1 1000000	LG02	1 1000000 fill="#F8F8F8"
chrB2	1001 LG03	500	8000 fill=red fill-opacity=0.5
•••			

我们定义该文件的后辍为 xx.link ,建议命名为 RefA_vs_RefB.link

重要提示:

可以在 SetParaFor=Link1 # 对 fill 和 stroke, stroke-opacity 和 fill-opacity 和 strokewidth 对该 link 层所有 属性 进行设置,其它属性只能在 配置文件里面设置。

4.2.2 配置颜色(可选)

chr Start End Flag(Value)

这儿 ChrColorBrewer 和 GenomeColorBrewer 先对 Ref 和 link 默认配色

ChrColorBrewer 设置 chr 的默认<mark>颜色条</mark> Paired

GenomeColorBrewer 设置不同基因组的的默认<mark>颜色条</mark> Set3 SpeRegionColorBrewer 设置特别区域的默认<mark>颜色条</mark> Dark2

等我其它有空等再开放一些参数 和细节优化,暂时内定一些颜色。

4.3 输出文件

输出文件	说明
out.svg	输出的 SVG 格式图
out.png	输出的 png 格式图

示例图见上面应用场景给的图

5.实例

上面示例图都有实例, 我这

具体数据格式和配置等见这:

./bin/NGenomeSyn -InConf in.conf -OutPut out.svg

这儿共提示了6个实例,配置文件和输入文件格式等,运行就只须要几分钟。

具体见 软件里面的 Example 目录: exampl1-6

具体见程序目录里面的 Example/example* 的数据和配置

在这搜索了一些在网上的其它人的配置和示意,点击可以找开网页,查看

NGenomeSyn 总简介

NGenomeSyn 之 两个基因组

NGenomeSyn 各位画时

- 1 同时我希望有好图可以帮发个贴 教与别人
- 2 若图很好很美可以把物种名等改一下,隐藏一些信息 我把其写入 exampleXX 并收藏进使用说明里面。

更多实例 随时更新, 见 website 网页, 具体见这:

https://github.com/hewm2008/NGenomeSyn 里面的

6.优势

- 1 快速少内存 批量画图 瞬间出结果。
- 2 可以自定义各种参数,如 chr 层,可以自己颜色,定义高度,画图设计全开放与用户,可以应用在多种场景
- 3应用场景广泛,应用场景多种多样,自主性较大,用户可以结合自己的数据画图。
- 4 免安装,使用方便

7.常见问题

7.1 NGenomeSyn 和 RectChr 的中的共线性差异

NGenomeSyn 主要可以任意个数,同时可以任意移动放在画布的任意位置,可以旋转等

7.2 NGenomeSyn 的 chr 边框会被覆盖, 如何调作?

如下图 (默认情况下是不会出现下图这种情况的):

这个<mark>边框会被覆盖</mark>的原因,是 chr 的 stroke-width=xx, xx 外边框偏大的原因,那么此时须要调作的方法是把 link 层的上下缩小这个距离, 在对应的 link 层设置中 加上**隐藏参数** OutsideWidthDeta=xx (xx 建议和 stroke-width 同一数),如对 example3 各 link 层添加 OutsideWidthDeta=2 后如下:

另外提供了更多两个隐藏参数 ShortLinkLineRefA 和 ShortLinkLineRefB 即对 link 上下的两个基因组连接处缩短 or 变长。如对 link 添加参数

7.3 透明度不起作用 or 存在 线条 锯齿 型状

具体见这儿贴说明。 简要为:

NGenomeSyn 透明度 有人说无法调 我也调了很久 发现是这样使得图看起来不是透明的 即主要还是数据问题 只是看起来不是透明而己 实是透明的. 打个比方 1-100 vs 1-100 若数据 变成了 1 vs 1, 2 vs 2, 3 vs 3 ...100 vs 100 由于画布问题 很多 link 是叠叠在一起 使得透明度被**叠没有了**. 所以 我建议大家把这种情况 尽量合并成一个大的 block 块(异常碎小共线性块过滤掉等) 由于 minmap 比较存在这种情况, 这种处理十分有必要, 同时这样处理可以使 svg 文件变成更小,小片段区间合并大的区间 link 也不会影响 png 的。

7.4 联系与打赏

随意 是缘是福,一切随风

- <u>⋈ hewm2008@gmail.com</u> / <u>hewm2008@qq.com</u>
- join the **QQ Group** : **125293663**

微信 打赏

QQ入群: 125293663

微信公众号

