AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (withdrawn) An image displaying apparatus comprising:

a light source for emitting a beam containing at least three primary colors;

first to third reflective spatial light modulators corresponding to the three primary colors, respectively;

a color separating optical system for separating the beam emitted from the light source into three primary color beams and guiding the three primary color beams toward the first to third reflective spatial light modulators;

first to third reflective polarizing plates for polarizing and separating the corresponding primary color beam guided by the color separating optical system into a linearly polarized beam of a first polarized state, transmitting and injecting the linearly polarized beam of the first polarized state into the corresponding reflective spatial light modulator, polarizing and separating modulated-and-reflected beam from the corresponding reflective spatial light modulator into a linearly polarized beam of a second polarized state, and reflecting the linearly polarized beam of the second polarized state;

a color combining optical system for combining the three primary color beams modulated by the reflective spatial light modulators and reflected by the reflective polarizing plates into a composite beam;

an image forming optical unit for receiving the composite beam and forming an image according to the received composite beam; and wherein

the color separating optical system has a larger effective diameter than the color combining optical system.

2. (withdrawn) The image displaying apparatus of claim 1, wherein the color separating optical system comprises:

a first dichroic mirror for separating the beam from the light source into a first-second primary color beam and a third primary color beam;

a second dichroic mirror for separating the first-second primary color beam into a first primary color beam and a second primary color beam; and

first to third steering mirrors for substantially vertically deflecting the first to third primary color beams, respectively, toward the first to third reflective polarizing plates and first to third reflective spatial light modulators.

- 3. (withdrawn) The image displaying apparatus of claim 2, wherein the optical axes of the beams traveling from the first to third steering mirrors to the first to third reflective spatial light modulators are parallel to one another.
- 4. (withdrawn) The image displaying apparatus of claim 1, wherein the color combining optical system is a cross dichroic prism, the first to third reflective spatial light modulators are attached to a planar substrate at three locations around the cross dichroic prism that is also attached to the planar substrate, and beam incident faces of the reflective spatial light modulators are substantially on the same plane.
 - 5. (cancelled)
 - 6. (cancelled)
 - 7. (currently amended) The image displaying apparatus of claim $\frac{5}{8}$, wherein

the color combining optical system is a cross dichroic prism, the first to third reflective spatial light modulators are attached to a planar substrate at three locations around the cross dichroic prism that is also attached to the planar substrate, and beam incident faces of the reflective spatial light modulators are substantially on the same plane.

8. (currently amended) An image displaying apparatus comprising:
a light source for emitting a beam containing at least three primary colors;
first to third reflective spatial light modulators corresponding to the three primary colors, respectively;

a color separating optical system for separating the beam emitted from the light source into three primary color beams and guiding the three primary color beams toward the first to third reflective spatial light modulators through first to third steering mirrors, respectively;

a first dichroic mirror for separating the beam from the light source into a first-second primary color beam and a third primary color beam;

a second dichroic mirror for separating the first-second primary color beam into a first primary color beam and a second primary color beam;

first to third steering mirrors comprising reflective polarizing plates for guiding the separated first to third primary color beams corresponding to the first to third reflective spatial light modulators, respectively;

first to third wire grid type reflective polarizing plates for polarizing and separating the corresponding primary color beam guided by the color separating optical system into a linearly polarized beam of a first polarized state, transmitting and injecting the linearly polarized beam of the first polarized state into the corresponding reflective spatial light modulator, polarizing and separating a modulated-and-reflected beam from the corresponding reflective spatial light modulator into a linearly polarized beam of a second polarized state, and reflecting the linearly polarized beam of the second polarized state;

a color combining optical system for combining the three primary color beams modulated by the reflective spatial light modulators and reflected by the reflective polarizing plates into a composite beam;

an image forming optical unit for receiving the composite beam and forming an image according to the received composite beam, and wherein

the color separating optical system comprises first and third steering mirrors are disposed to be substantially oriented in the same direction, and a second steering mirror is disposed so that the optical axis of a beam injected into the second steering mirror is orthogonal to the optical axes of beams injected into the first and third steering mirrors, and the optical axes of the beams traveling from the first to third steering mirrors to the first to third reflective spatial light modulators are parallel to one another, the planes of polarization of two of the beams are orthogonal or parallel to each other, and

the reflective faces of the first to third steering mirrors and the reflective faces of the first to third wire grid type reflective polarized plates are disposed skew, respectively.

9. (withdrawn) A color separating-combining optical system comprising: first to third reflective spatial light modulators corresponding to first to third primary colors, respectively, the primary colors being contained in a beam emitted from a light source;

a color separating optical system for separating the beam emitted from the light source into three primary color beams and guiding the three primary color beams toward the first to third reflective spatial light modulators;

first to third reflective polarizing plates for polarizing and separating the corresponding primary color beam guided by the color separating optical system into a linearly polarized beam of a first polarized state, transmitting and injecting the linearly polarized beam of the first polarized state into the corresponding reflective spatial light modulator, polarizing and separating a modulated-and-reflected beam from the corresponding reflective spatial light modulator into a

linearly polarized beam of a second polarized state, and reflecting the linearly polarized beam of the second polarized state;

a color combining optical system for combining the three primary color beams modulated by the reflective spatial light modulators and reflected by the reflective polarizing plates into a composite beam, and wherein

the optical axes of the primary color beams passing through the color separating optical system, reflective polarizing plates, and color combining optical system are substantially on the same plane, the lengths of optical paths for the primary color beams from the light source to the reflective spatial light modulators are substantially equal to one another,

the color combining optical system includes at least first to third prisms arranged to include at least first and second pairs of opposing faces, the first pair of opposing faces has a first reflective layer to transmit the first primary color beam and reflect the second primary color beam, the second pair of opposing faces has a second reflective layer to transmit the first and second primary color beams and reflect the third primary color beam,

the first primary color beam entering the first prism is transmitted through the first reflective layer, second prism, second reflective layer, and third prism and emitted from the third prism,

the second primary color beam entering the second prism is reflected by the first reflective layer, transmitted through the second prism, second reflective layer, and third prism, combined with the first primary color beam, and emitted from the third prism,

the third primary color beam entering the third prism is reflected by the second reflective layer, transmitted through the third prism, combined with the second and third primary color beams and emitted from the third prism.

10. (withdrawn) An image displaying apparatus comprising: the color separating-combining optical system of claim 9;

a light source for emitting a beam containing at least three primary colors toward the color separating optical system of the color separating-combining optical system; and

an image forming optical unit for receiving the composite beam from the color combining optical system of the color separating-combining optical system and forming an image according to the received composite beam.

11. (cancelled)