ACCEMENT : CAMPLINE PUTTONS AND INTERVALS			
Read and comprehend the topics on chapters 6,7 and 8 of the book			
Applied Statistics and Probability for Engineers			
CHAPTER 6 Page 202	: 6-18,19,20,26		
6-18 Find the median an	d the quartiles for the motor fuel octane data		
in Exercise 6-14			
NO OF POTO	Median/second Quartice where Quartice upper Quartice		
N = 82	Q2 = (82+1)/2 = 41.5th value Q1 = 83/4 = 20.75th value Q3 = 3(83/4) = 125th		
	Q2= (90.4+90.4)/2= 90.4 Di= 88.58 (0= 900)=9220		
	91st = 90.4; 42ml = 90.4 20m = 88.5; 21st = 88.6 62md = 922; 67nd = 922		
6-19 Find the median and the quartiles for the motor failure data in			
Exercise 6-15			
NO OF DOTA : MEDIAN / SECO	IND QUAYTILE: UPPER QUAYTILE: UPPER QUAYTILE:		
N=70 Q2= (70+1)1	2= 35.5+h = Q1 = 71/4 = 17.75+h Q3= 3(71/4) = 52.25+h		
Q2= (1434.70			
36th= 1421 34th= 1452	Q1=1097-75 Q3= 1735.00		
6-20 Find the median mode, and sample average of the data in Exercise 6-16.			
Explain both ese meas	sures of location describe different features in the data.		
NO DE DOLTON : MEDION :	MODES 34.7 SAMPLE AVERAGE		
n= 14 a= (64+1)12= 32.5th X= 2227.1		
Q2=(34.7			
Q 22 34.			
1	+		

units in personal computers. The speed of the device (in megahertz) is important because it determines the price that the manufacturer can charge for the devices. The following table contains measurements on the devices. Construct a stem-and leaf diagram for this data and comment on any important features that you notice: compute the sample mean, sample standard deviation, and the cample median.

What percentage of the devices has a speed exceeding 700 megahata?

VO- OF PORTO STEM- AND LEAF DIAGNAM

N= 120	STEM	LEAF
	43	2 4 8 9 9
	64	2 4 8 9 9
	us	223546899
	64	6000001233 4557 888 99
	47	0022455567899
	is 8	00001111233333458
	69	000011234555677889
	76	011223 44455 6
	71	0057889
	72	600012234447
	73	K q
	79	(8
	74	3

SAMPLE MEAN = 82413 = 686.775 mbz

ELED IS the most frequent

value.

X=686-78 mhz

SAMPE MEDIAN

X= (120+1) |2 =60.544

#= (689 +683) /2 = 683

683 mbz

SAMPLE CTANDARD DEVICTION

SAMPLE CTANDARD DEVICTION

78402.93

52 = 658-85 mhz

s = 25.67 mm

PETLENTAGE OF DEVICES WITH SPEED & 700 mbs

No. of pevices: 35

% of PEVICES: 35/120 . 100% = 29.1666%

= 29 %

2006 OF Devices HAS A SPEED

Exceeding 700 mhz

For CHAPTER 6 Page 208: 4	-42	
6-92 traverse 6-13 presented the joint temperatures of the O-rings (OF) for each test firing		
of actual launch of the	space shuttle vocket motor. In that exercise you	
	cample mean and cample standard deviation	
OF temperature.		
SAMPLE MEAN X = (3.08°F)	SAMPLE STANDARD PEVIATION (5= 14.05°F)	
(a) Find the upper and lower	quartiles of temperature n=34	
UPPER QUARTILE	OWER QUARTILE	
Qq (37/4) 4 = 27.75+h	Q1 = (34+1) 4 = 9.25th	
Q3 = 74.50 °F	01- 48-25°F	
(b) Find the median		
MEDIAN		
62= 37/2= 18.5th		
Q2: 64.50°F		
	observation and recompute the quantities in	
2002 (a) and (b) - 60	mment on your findings. How "different" are	
hours of her temperatur	es from this smallest value ?	
	ER QUARTILE MEDIAN	
LOWER GUANTLE UN	======================================	
	27 13°F Q2= 63°F	
Therew median and	quantiles have a tiny difference from the	
original ones.	lles lie next value. This	
the smallest value	is 90% lower than the next value. This	
the smallest value is from the differences in the other podservations.		

8-4 a confidence interval estimate is desired for the gain in a circuit on a semiconductor device. Assume that gain is normally distributed with standard deviation of 0 = 20 (a) Find a 950 to CT for M when n=10 and &=1000 1000 - 20025 (20)/10 5 M 5 1000+ 20.02 (20)/10 20.025 = \$1.96 1000 - P196(20) 5TO EM & 1000+ 7:96(20) 10 1987.60 5 M & 1012.40, (b) Find a 95% CI for u when n= 25 and x=1000 1000- \$1.96 (20)/TES € M € 1000+ 1.96 (20)/TES 1000 - 7.84 & FR & 1000 + 7.84 Jaaz. 14 / = M = 1007.84 (0) Find a 99° to of al for M when n=10 and & = 1000 1000 - 20.005 (20)/JED & M & 1000+ 20.005 (20)/JE 1000 - 2576 (20) /10 5 M & LOOD + 2-574 (20) Não 1000 - 16 -29 EM & 1000 + 14 -29 983.71 Q M 6 1010:29 (d) Find a 90% of for M when n=25 and X=1000 1000 -2.574 (20)/TES & M & 1000+2.574 (20)/VES 1000 - 10-304 EM = 1000 + 10-304 1980 694 EM 5 1010.3041

The yield of a chemical process is being studied. From previous aperience yield is known to be normally distributed and 0=3.

the past the days of plant operation have resulted in the following parent yields: 914, 88.78, 90.8, 89.95, and 91.3. Find a 95%.

Two sided confidence interval on the true mean yield

BILLIU n=5 = 72.72% (o a=0.05 0=3

Required: confidence interval (Two-sided)

\$\frac{70.48}{90.48} = \frac{1}{12.72} \frac{1}{10} \frac{10} \frac{1}{10} \frac{1}{10} \frac{1}{10} \frac{1}{10} \frac{1}{

84.74 EM E 94.20