Homework 4 Solutions

via Gradescope

- Failure to submit homework correctly will result in zeroes.
- Handwritten homework is OK. You do not have to type up your work.
- Problems assigned from the textbook are from the 5th edition.
- No late homework accepted. Lateness due to technical issues will not be excused.
- 1. (6 points) Section 4.6 #13, 14.

Solution: #13.

Theorem. For any $n \in 2\mathbb{Z}$, $\lfloor n/2 \rfloor = n/2$.

Proof. Let $n \in 2\mathbb{Z}$. n = 2k for some $k \in \mathbb{Z}$.

$$\lfloor n/2 \rfloor = \left\lfloor \frac{2k}{2} \right\rfloor = \lfloor k \rfloor = k,$$

since $k \in \mathbb{Z}$ and $k \le k = n/2 < k+1$, so

$$\lfloor n/2 \rfloor = k = n/2.$$

#14.

Conjecture. $\lfloor x - y \rfloor = \lfloor x \rfloor - \lfloor y \rfloor$ for any $x, y \in \mathbb{R}$.

Disproof. Choose $x=0\in\mathbb{R}$ and $y=-\frac{1}{2}\in\mathbb{R}$ such that $\left\lfloor 0-\left(-\frac{1}{2}\right)\right\rfloor=\left\lfloor \frac{1}{2}\right\rfloor=0$ since $0\in\mathbb{Z}$ and $0\leq\frac{1}{2}<1$. However $-1\in\mathbb{Z}$ such that $\left\lfloor 0\right\rfloor-\left\lfloor -\frac{1}{2}\right\rfloor=0-(-1)=1$ since $0\leq 0<1$ and $-1\leq -\frac{1}{2}<0$. Therefore

$$\lfloor x - y \rfloor = \left| 0 - \left(-\frac{1}{2} \right) \right| = 0 \neq 1 = \lfloor 0 \rfloor - \left| -\frac{1}{2} \right| = \lfloor x \rfloor - \lfloor y \rfloor.$$

2. (9 points) Section 4.6 #15, 18, 23.

Solution: #15.

Conjecture. $\lfloor x-1 \rfloor = \lfloor x \rfloor - 1$ for any $x \in \mathbb{R}$.

Proof. Let $x \in \mathbb{R}$. $\lfloor x - 1 \rfloor = n \in \mathbb{Z}$ if and only if $n \le x - 1 < n + 1$.

$$n \le x - 1 < n + 1$$

$$n + 1 \le x - 1 + 1 < n + 1 + 1$$

$$n + 1 \le x < n + 2$$

so $|x| = n + 1 \in \mathbb{Z}$. Thus

$$\lfloor x \rfloor - 1 = n + 1 - 1 = n + 0$$

= $n = \lfloor x - 1 \rfloor$.

#18.

Conjecture. $\lceil x+y \rceil = \lceil x \rceil + \lceil y \rceil$ for any $x,y \in \mathbb{R}$.

Disproof. Choose $x=y=\frac{1}{2}$ such that $\left\lceil \frac{1}{2}+\frac{1}{2}\right\rceil = \left\lceil 1\right\rceil = 1$ since $0<1\leq 1$ but $\left\lceil \frac{1}{2}\right\rceil = 1$ since $0<\frac{1}{2}\leq 1$ so

$$[x + y] = 1 \neq 2 = 1 + 1 = [x] + [y].$$

#23.

Theorem. $\lfloor x \rfloor + \lfloor -x \rfloor = -1$ for any $x \in \mathbb{R} - \mathbb{Z}$.

Proof. Let $x \in \mathbb{R} - \mathbb{Z}$.

 $\lfloor x \rfloor = n$ if and only if n < x < n+1 since $x \notin \mathbb{Z}$.

$$-n > -x > -n-1$$
 so $\lfloor -x \rfloor = -n-1$ since $-n-1 \in \mathbb{Z}$.

Hence

$$|x| + |-x| = n + (-n-1) = n - n - 1 = 1.$$

3. (3 points) Use contradiction to prove the following statement

$$\forall x \in \mathbb{R}$$
, If $|x| < \varepsilon$ for any $\varepsilon > 0$, then $x = 0$.

Solution: Written formally: $\forall x \in \mathbb{R} ((\forall \varepsilon > 0 (|x| < \varepsilon)) \rightarrow x = 0).$

Proof. Suppose there exists a real number x such that $|x| < \varepsilon$ for any $\varepsilon > 0$ and $x \neq 0$. Written formally: Suppose $\exists x \in \mathbb{R} \left(\left(\forall \varepsilon > 0 \left(|x| < \varepsilon \right) \right) \land x \neq 0 \right)$. Let $\varepsilon = \frac{|x|}{2}$. Since $x \neq 0$, $|x| \neq 0$. Then $|x| < \frac{|x|}{2}$ so 2 < 1 but $2 \geq 1$ is a contradiction.

4. (9 points) Section 4.7 #9, 18.

Solution: #9(a). If you negate the beginning of the student's proof, you have

There exists an irrational number and there exists a irrational number such that their difference is irrational

However, this is not the statement you wish to prove.

Remark. Let's recall that

$$\neg p \to \mathbf{c}$$

.. p

is a valid argument. If p is the statement The difference of any irrational number and any rational number is irrational, then student's proof should begin

Proof. Assume there exists a rational number and there exists an irrational number such that their difference is rational. \Box

#9(b).

Proof. Suppose there exists $r \in \mathbb{R} - \mathbb{Q}$ and $q \in \mathbb{Q}$ such that $r - q \in \mathbb{Q}$. There exists $m_1, m_2 \in \mathbb{Z}$ and $n_1, n_2 \in \mathbb{Z} - \{0\}$ such that $q = \frac{m_1}{n_1}$ and $r - q = \frac{m_2}{n_2}$.

$$\frac{m_2}{n_2} = r - q = r - \frac{m_1}{n_1}$$

$$\frac{m_2}{n_2} + \frac{m_1}{n_1} = r$$

$$\frac{m_2 n_1 + m_1 n_2}{n_1 n_2} = r$$

 $m_2n_1 + m_1n_2 \in \mathbb{Z}$ since \mathbb{Z} is closed under products and sums. $n_1n_2 \in \mathbb{Z} - \{0\}$ via Zero Product Property, since $n_1 \neq 0$, $n_2 \neq 0$, and \mathbb{Z} is closed under products. Thus $r \in \mathbb{Q}$ but $r \in \mathbb{R} - \mathbb{Q}$ is a contradiction. Therefore $r - q \notin \mathbb{Q}$.

MYU

#18.

Proof. Suppose $a \in \mathbb{Q}$, $b \in \mathbb{Q} - \{0\}$, and $r \in \mathbb{R} - \mathbb{Q}$. Suppose $a + br \in \mathbb{Q}$. Then there exist $m_1, m_3 \in \mathbb{Z}$ and $m_2, n_1, n_2, n_3 \in \mathbb{Z} - \{0\}$ such that $a = \frac{m_1}{n_1}$, $b = \frac{m_2}{n_2}$, and $a + br = \frac{m_3}{n_3}$. So

$$\begin{split} \frac{m_3}{n_3} &= a + br = \frac{m_1}{n_1} + \frac{m_2}{n_2} r \\ \frac{m_3}{n_3} &- \frac{m_1}{n_1} = \frac{m_2}{n_2} r \\ \frac{n_2}{m_2} \left(\frac{m_3}{n_3} - \frac{m_1}{n_1} \right) &= r \\ \frac{m_3 n_1 n_2 - m_1 n_2 n_3}{m_2 n_1 n_3} &= r \end{split}$$

where $m_3n_1n_2 - m_1n_2n_3 \in \mathbb{Z}$ and $m_2n_1n_3 \in \mathbb{Z} - \{0\}$ via Zero Product Property since $m_2 \neq 0$, $n_1 \neq 0$, and $n_3 \neq 0$. Thus $r \in \mathbb{Q}$ but $r \in \mathbb{R} - \mathbb{Q}$ is a contradiction. Therefore $a + br \notin \mathbb{Q}$.

5. (9 points) Section 4.7 #22, 24.

Solution: #22(a).

Proof. Suppose there exists a real number r such that r^2 is irrational but r is rational. We NTS (need to show) that this yields a contradiction. For instance, we may show that r^2 is rational to obtain the contradiction.

#22(b).

Proof. Suppose that r is rational. We need to show that r^2 is rational.

#24.

Proof by Contradiction. Suppose there exists $x \in \mathbb{R} - \mathbb{Q}$ such that $\frac{1}{x} \in \mathbb{Q}$. There exist $m, n \in \mathbb{Z} - \{0\}$ such that $0 \neq \frac{1}{x} = \frac{m}{n}$. So $x = \frac{n}{m} \in \mathbb{Q}$ but $x \in \mathbb{R} - \mathbb{Q}$ is a contradiction. Therefore $\frac{1}{x} \in \mathbb{R} - \mathbb{Q}$ for any $x \in \mathbb{R} - \mathbb{Q}$.

Let's now do contrapositive. Note that you will have to write the given statement in if-then form. In doing so, we obtain

If x is irrational, then $\frac{1}{x}$ is irrational.

$$\forall x \in \mathbb{R} - \{0\} \left(x \notin \mathbb{Q} \to \frac{1}{x} \notin \mathbb{Q} \right)$$

It follows that we want to prove

If $\frac{1}{x}$ is rational, then x is rational.

$$\forall x \in \mathbb{R} - \{0\} \left(\frac{1}{x} \in \mathbb{Q} \to x \in \mathbb{Q}\right)$$

Proof by Contraposition. Let $x \in \mathbb{R} - \{0\}$. Suppose $\frac{1}{x} \in \mathbb{Q}$. There exist $m, n \in \mathbb{Z} - \{0\}$ such that $0 \neq \frac{1}{x} = \frac{m}{n}$ so $x = \frac{n}{m} \in \mathbb{Q}$. Therefore $x \notin \mathbb{Q}$ implies $\frac{1}{x} \notin \mathbb{Q}$ for any $x \in \mathbb{R} - \{0\}$.

6. (3 points) Section 4.7 #28. Prove this using both contradiction and the contrapositive. Solution: #28.

Proof by Contradiction. Assume there exists $a, b, c \in \mathbb{Z}$ such that $a \mid b, a \nmid c$, and $a \mid (b+c)$. Since $a \mid b, b = ka$ for some $k \in \mathbb{Z}$. Since $a \mid (b+c), b+c = la$ for some $l \in \mathbb{Z}$. So ka+c=la and c=(l-k)a. Thus $a \mid c$ but $a \nmid c$ is a contradiction. Therefore $a \mid b$ and $a \nmid c$ implies $a \nmid (b+c)$ for any $a, b, c \in \mathbb{Z}$.

Proof by Contraposition. Assume that $a \mid (b+c)$. Therefore b+c=ka for some $k \in \mathbb{Z}$. $a \nmid b$ or $a \mid b$ via the law of the excluded middle.

Case 1: Suppose $a \nmid b$. Then we're done: $a \nmid b$ or $a \mid c$ via generalization. (Note that the negation of the hypothesis is $a \nmid b \lor a \mid c$.)

Case 2: Suppose $a \mid b$. Therefore b = la for some $l \in \mathbb{Z}$. The equation b + c = ak now reads la + c = ka so c = ka - la and c = a(k - l), i.e. $a \mid c$. $a \nmid b$ or $a \mid c$ via generalization.

Therefore $a \mid b$ and $a \nmid c$ implies $a \nmid (b+c)$ for any $a, b, c \in \mathbb{Z}$.

7. (9 points) Section 4.7 #31.

Solution: #31.

- (a) Proof. Assume $n, r, s \in \mathbb{Z}$ such that $r > \sqrt{n}$ and $s > \sqrt{n}$. We multiply $r > \sqrt{n}$ by s and obtain $rs > s\sqrt{n}$. Note that $s\sqrt{n} > \sqrt{n}\sqrt{n} = n$. Therefore rs > n. \square
- (b) *Proof.* Let n > 1 be any integer that is not prime. Then n = rs where 1 < s < n and 1 < r < n. By part (a) we know that $r \le \sqrt{n}$ or $s \le \sqrt{n}$.

Case 1: Suppose $r \leq \sqrt{n}$. By Theorem 4.4.4, we know there exists a prime p_1 such that $p_1 \mid r$. So, via Theorem 4.4.1, $p_1 \leq r \leq \sqrt{n}$. Since $p_1 \mid r$ and $r \mid n$, via the transitivity of divides, i.e. Theorem 4.4.3, $p_1 \mid n$.

Case 2: Suppose $s \leq \sqrt{n}$. Now repeat the argument as in **Case 1**. By Theorem 4.4.4, we know there exists a prime p_2 such that $p_2 \mid s$. So, via Theorem 4.4.1, $p_2 \leq s \leq \sqrt{n}$. Since $p_2 \mid s$ and $s \mid n$, via the transitivity of divides, i.e. Theorem 4.4.3, $p_2 \mid n$.

(c) For each integer n > 1, if for any prime number $p, p > \sqrt{n}$ or $p \nmid n$ then n is prime.