- Suponhamos que p é uma distribuição de probabilidades a q símbolos e que r < q.
- Existe um único $r' \in \{2, 3, \dots, r\}$ tal que

$$r' \equiv q \pmod{r-1},$$

e é este o número das probabilidades mais pequenas que agrupamos em p para obter o p' seguinte, no qual temos q' = q - r' + 1 probabilidades.

- Note-se que, no caso de r=2, temos sempre r'=2, ou seja para a construção de códigos de Huffman binários, agrupamos sempre as duas probabilidades mais pequenas.
- Note-se também que $q' = q r' + 1 \equiv 1 \pmod{r-1}$, pelo que na etapa seguinte teremos r'' = r. Por outras palavras, só precisamos de calcular r' na primeira etapa, sendo nas seguintes o agrupamento feito para as r probabilidades mais pequenas.

Proposição 3.9 Seja q > 2 e seja $\mathbf{p} = (p_1, p_2, \dots, p_q)$ uma distribuição de probabilidades a q símbolos com $p_1 \geqslant p_2 \geqslant \dots \geqslant p_q$. Então existe um código prefixo compacto r-ário c_1, c_2, \dots, c_q satisfazendo as seguintes propriedades:

- 1. $|c_1| \leqslant |c_2| \leqslant \cdots \leqslant |c_q|$;
- 2. as últimas r' palavras-código (com $r' \in \{2, ..., r\}$ e $r' \equiv q \pmod{r-1}$) coincidem exceto na sua última letra e não há nenhuma outra palavra-código que junto com elas tenha a mesma propriedade.

Prova. Dado um código $C=(c_1,c_2,\ldots,c_q)$, se se tiver $|c_i|>|c_j|$ com i< j, então trocando c_i e c_j não aumentamos o comprimento médio $\sum_k p_k |c_k|$. Logo, a partir de qualquer código compacto podemos obter um código compacto que satisfaz a condição (1) por simples permutação das palavras-código.

De entre os códigos compactos para a nossa distribuição de probabilidades da fonte, consideremos um para o qual $\sum_i |c_i|$ é mínimo. Pelo Teorema McMillan, vale a desigualdade de Kraft, ou seja temos $\sum_i r^{-|c_i|} \leqslant 1$, pelo que

$$\Delta = r^{|c_q|} - \sum_{i=1}^q r^{|c_q| - |c_i|} \geqslant 0.$$

$$\Delta = r^{|c_q|} - \sum_{i=1}^q r^{|c_q| - |c_i|} \geqslant 0.$$

Se for $\Delta \geqslant r-1$, então os comprimentos $(|c_1|,|c_2|,\ldots,|c_{q-1}|,|c_q|-1)$ também satisfazem a desigualdade de Kraft, pelo que há algum código prefixo r-ário com estes comprimentos, sendo o seu comprimento médio no máximo o de C, pelo que continua a ser compacto (e $p_q=0$), o que contradiz a minimalidade da soma $\sum_i |c_i|$. Logo $0\leqslant \Delta\leqslant r-2$, ou seja $r-\Delta\in\{2,3,\ldots,r\}$, uma vez que Δ é um inteiro. Seja t o número de palavras em C de comprimento $|c_q|$.

Se fosse t=1, então poderíamos apagar a última letra de c_q mantendo um código prefixo, o que novamente estaria em contradição com a minimalidade da soma $\sum_i |c_i|$.

Logo, $t \geqslant 2$. Note-se que $\Delta = r^{|c_q|} - \sum_{i=1}^q r^{|c_q| - |c_i|} \equiv -t \pmod{r}$, ou seja $t \equiv r - \Delta \pmod{r}$. Como $2 \leqslant r - \Delta \leqslant r$ e $t \geqslant 2$, concluímos que $t \geqslant r - \Delta$.

Por outro lado, temos $\Delta = r^{|c_q|} - \sum_{i=1}^q r^{|c_q|-|c_i|} \equiv 1-q \pmod{r-1}$, ou seja $r-\Delta \equiv q \pmod{r-1}$. Logo, $r-\Delta = r'$, onde r' é definido no enunciado. Como $t \geqslant r-\Delta$, segue que $t \geqslant r'$, ou seja há pelo menos r' palavras-código de comprimento máximo.

Se $c_q = wa$ para uma letra a, então podemos acrescentar a C todas as palavras que ainda lá não estejam da forma wb sem violar a condição de termos um código prefixo. Uma vez que $t \equiv r' \pmod{r}$, eliminando, se necessário, palavras a mais e reordenando as que ficam, conseguimos assim satisfazer a condição (2) do enunciado.

O exemplo anterior do processo de codificação de Huffman pode ser resumido na seguinte árvore:

A redução de Huffman

- Dada uma distribuição de probabilidades p sobre um conjunto finito, designemos por $L_r(\mathbf{p})$ o comprimento médio de um código compacto r-ário para a fonte com distribuição de probabilidades p.
- Dados $\mathbf{p} = (p_1, p_2, \dots, p_q)$ com $p_1 \geqslant p_2 \geqslant \dots \geqslant p_q$ e $r \leqslant q$, a redução r-ária de \mathbf{p} é definida como sendo

$$\mathbf{p'} = (p_1, p_1, \dots, p_{q-r'}, p_{q-r'+1} + \dots + p_q)$$

onde
$$r' \in \{2, 3, \dots, r\}$$
 é tal que $r' \equiv q \pmod{r-1}$.

■ Formalizando o método de Huffman apresentado no exemplo anterior, temos o seguinte resultado.

Proposição 3.10 Seja $\mathbf{p} = (p_1, p_2, \dots, p_q)$ uma distribuição de probabilidades com $p_1 \geqslant p_2 \geqslant \dots \geqslant p_q$ e seja \mathbf{p}' a sua redução de Huffman r-ária. Seja $C' = \{c_1, c_2, \dots, c_{q-r'}, c\}$ um código prefixo r-ário compacto para \mathbf{p}' com os comprimentos das palavras-código em ordem crescente. Então

$$C = \{c_1, c_2, \dots, c_{q-r'}, c_0, c_1, \dots, c\langle r' - 1 \rangle\}$$

é um código compacto para p. Além disso, tem-se

$$L_r(\mathbf{p}) = L_r(\mathbf{p}') + p_{q-r'+1} + \dots + p_q.$$

Prova. Começamos por notar que C é um código prefixo e que o seu comprimento médio é $L_r(\mathbf{p}') + p$ onde $p = p_{q-r'+1} + \cdots + p_q$. Em particular, tem-se

$$L_r(\mathbf{p}) \leqslant L_r(\mathbf{p}') + p.$$
 (7)

Pela Proposição 3.9, existe um código prefixo compacto r-ário para \mathbf{p} , $D = \{d_1, \ldots, d_q\}$, tal que as últimas r' palavras-código têm um prefixo comum d de comprimento $|d_q|-1$ e todas as restantes são mais curtas ou não têm d como prefixo. Então $\{d_1, \ldots, d_{q-r'}, d\}$ é um código prefixo para \mathbf{p}' cujo comprimento médio é $L_r(\mathbf{p})-p$ e, portanto, tem-se

$$L_r(\mathbf{p}') \leqslant L_r(\mathbf{p}) - p.$$
 (8)

Combinando as desigualdades (7) e (8), obtemos a igualdade $L_r(\mathbf{p}) = L_r(\mathbf{p}') + p$ do enunciado. Logo C é um código compacto para \mathbf{p} pois o seu comprimento médio é $L_r(\mathbf{p})$. \square

Algoritmo de Huffman

- O algoritmo (recursivo) de Huffman para construir um código prefixo compacto r-ário para uma fonte q-ária com distribuição de probabilidades p pode agora ser formalizado como segue:
 - se $q \le r$, tomamos o código $\{0, 1, \dots, q 1\}$ e temos $L_r(\mathbf{p}) = 1$;
 - se q > r então, aplicando o algoritmo à fonte com q r' símbolos e distribuição de probabilidades \mathbf{p}' , obtemos um código prefixo compacto r-ário C' para esta fonte; a transformação $C' \mapsto C$ da Proposição 3.10 fornece então um código prefixo compacto r-ário para \mathbf{p} .
- **Exercício**: mostre que o número de reduções de Huffman a aplicar no algoritmo de Huffman é $\lceil (q-r)/(r-1) \rceil$; mais precisamente, supondo que $q \geqslant r$, ao fim deste número de reduções obtemos uma fonte com r símbolos e, portanto, uma codificação r-ária.

Seja $\mathbf{p} = (.9, .1)$ e seja r = 2. Temos $H_2(\mathbf{p}) \simeq 0.469$. Considerando as sucessivas n-ésimas extensões da fonte, com distribuições de probabilidade \mathbf{p}^n , e aplicando o algoritmo de Huffman, obtemos os seguintes comprimentos médios por símbolo:

$$L_2(\mathbf{p}) = 1, \frac{1}{2}L_2(\mathbf{p}^2) = 0.645, \frac{1}{3}L_2(\mathbf{p}^3) \simeq 0.533, \frac{1}{4}L_2(\mathbf{p}^4) \simeq 0.493.$$

Eis um pequeno programa recursivo em *Mathematica* para fazer estes cálculos:

Programa no *Mathematica* para o cálculo de $L_r(\mathbf{p})$

```
controle=False:
huff[r_.prob_]:=
    Module[{q=Length[prob],rlinha=r,novo},
           If[!controle.res=1;rlinha=Mod[q,r-1,2]];
           If[q<=r,
                controle=False:
                res.
              controle=True:
              novo=Plus@@Take[prob,-rlinha];
              res=res+novo:
              huff[r.
                   Sort[Join[Take[prob,{1,q-rlinha}],{novo}],
                        Greater]]]]:
ext[n_.x_]:=ext[n.x]=
    If[n===1,Sort[x,Greater],
       Module[{y=ext[n-1,x],t},
              t=Table[y[[i]]x[[j]],{i,Length[y]},{j,Length[x]}];
              Sort[Flatten[t].Greater]]]:
```

Para o exemplo anterior, Table [huff[2, ext[n, {.9,.1}]]/n, {n, 4}] produz o seguinte resultado:

 $\{1, 0.645, 0.532667, 0.49255\}.$

Codificação aritmética

- Os códigos de Huffman são compactos mas, a menos que a fonte q-ária seja especial, o que em geral não há razões para esperar que seja o caso, podem estar longe de serem 100% eficientes.
- Pelo Teorema de Shannon, esta dificuldade pode ser ultrapassada trabalhando com a extensão da fonte de ordem *n* para *n* suficientemente grande.
- Mas dessa forma temos de codificar uma fonte q^n -ária, o que em particular, se um canal de comunicação tiver de ser usado, nos obriga a usá-lo para transmitir uma tabela de codificação com q^n entradas.
- Caso, adicionalmente, se verifiquem alterações das probabilidades da fonte, i.e., ela não seja estacionária, o processo poderá ter de ser repetido com regularidade.

- Uma alternativa consiste em dispor de um sistema que proceda à codificação/descodificação sem necessitar de ter à partida uma tabela para o efeito.
- Adicionalmente, a restrição que até aqui temos assumido da fonte não ter memória é excessivamente restritiva.
- Para o sistema de *codificação aritmética* que passamos a descrever, assumimos que temos uma fonte em que, para N fixado, se conhece a probabilidade $P(s_{ij}|s_{i1}s_{i2}\cdots s_{i,j-1})$ (para $j=1,\ldots,N$) de ser emitido o símbolo s_{ij} tendo acabado ser emitida a mensagem $s_{i1}s_{i2}\cdots s_{i,j-1}$.

- Na codificação aritmética binária, a cada mensagem $s_{i1}s_{i2}\cdots s_{iN}$, via a sua probabilidade, corresponde um subintervalo de [0,1[, no qual é escolhido de forma canónica um elemento da forma $0.a_1a_2\cdots a_n$, na base 2, sendo $a_1a_2\cdots a_n$ a mensagem correspondente.
- A subdivisão do intervalo [0, 1[para a construção dos subintervalos em causa prossegue de forma iterativa à medida que a mensagem vai sendo produzida:
 - inicialmente, a subdivisão é feita atribuindo sucessivamente aos símbolos s_1, \ldots, s_q os intervalos, começando o primeiro em 0, de comprimentos $P(s_1), \ldots, P(s_q)$;
 - no passo seguinte, se no primeiro passo tiver sido recebido o símbolo s_i , o subintervalo correspondente a esse s_i é subdividido em subintervalos, começando no extremo inferior com comprimentos $P(s_1|s_i)P(s_i), \ldots, P(s_q|s_i)P(s_i)$.
 - e assim sucessivamente, cada novo símbolo determinando um novo subintervalo dentro do subintervalo anterior.

Para a fonte sem memória

Símbolo	s_1	s_2	s_3
$P(s_i)$	0.2	0.5	0.3

os subintervalos sucessivos correspondentes à mensagem $s_2s_2s_1$ são

Letra seguinte	subintervalo
s_2	[0.2, 0.7[
s_2	[0.3, 0.55[
s_1	[0.3, 0.35[

Em binário, o intervalo correspondente à mensagem é

[0.01001100, 0.0101001[

no qual o número 0.0101 é aquele que tem a expansão binária mais curta. Podemos então codificar $s_2s_2s_1$ por 0101.

Descodificação aritmética

Para a descodificação da mensagem $a_1 \cdots a_n$,

- vamos sucessivamente acumulando as probabilidades $P(s_1), \ldots, P(s_i)$ até que $\sum_{k=1}^{i-1} P(s_k) \leq 0.a_1 \cdots a_n < \sum_{k=1}^{i} P(s_k)$, o que determina o símbolo inicial s_i ;
- supondo que o segmento inicial $s_{i1} \cdots s_{i,j-1}$ da mensagem já foi identificado pela determinação do intervalo [m, M[correspondente, acumulamos as probabilidades $\sum_{k=1}^{i-1} P(s_{kj}|s_{i1}\cdots s_{i,j-1})$ enquanto este número não exceder $\frac{0.a_1\cdots a_n-m}{M-m}$, o que determina o símbolo seguinte s_{ij} .

No exemplo anterior, da fonte sem memória $\{s_1, s_2, s_3\}$ com probabilidades $\mathbf{p} = (0.2, 0.5, 0.3)$, a mensagem 0101, pode ser descodificada como segue:

- ao número em binário 0.0101 corresponde na base 10 a dízima $\frac{1}{4} + \frac{1}{16} = 0.25 + 0.0625 = 0.3125$;
- de $0.2 \le 0.3125 < 0.2 + 0.5$, concluímos que o primeiro símbolo é s_2 ;
- passamos a trabalhar com o número $\frac{0.3125-0.2}{0.5} = 0.225$ e de $0.2 \le 0.225 < 0.2 + 0.5$ concluímos que o segundo símbolo também é s_2 ;
- o número seguinte é $\frac{0.225-0.2}{0.5} = 0.05$ e de $0 \le 0.05 < 0.2$ concluímos que o símbolo seguinte é s_1 ;
- o número seguinte é $\frac{0.05-0}{0.2} = 0.25$, pelo que o símbolo seguinte seria s_2 ;
- o número seguinte é $\frac{0.25-0.2}{0.5}=0.1$, pelo que o símbolo seguinte seria s_1 ;
- \blacksquare o número seguinte é $\frac{0.1-0}{0.2}=0.5$, pelo que o símbolo seguinte seria s_2 ;
- o número seguinte é $\frac{0.5-0.2}{0.5}=0.6$, pelo que o símbolo seguinte seria s_2 ;
- o número seguinte é $\frac{0.6-0.2}{0.5} = 0.8$, pelo que o símbolo seguinte seria s_3 ;
- o número seguinte é $\frac{0.8-0.7}{0.3}\simeq 0.333\cdots$, pelo que o símbolo seguinte seria $s_2;$ ETC???

Afinal, onde termina a mensagem?
Para o saber, podemos seguir um de vários mecanismos:

- enviando um símbolo tipo EOF (end of file) no final da mensagem;
- começando por enviar o número de símbolos da mensagem (o que poderá ser confuso se a própria mensagem puder ser constituída exclusivamente por dígitos);
- enviando sempre mensagens constituídas por blocos do mesmo comprimento (como os pacotes da Internet).

Este último mecanismo tem ainda a vantagem de nos permitir determinar com que precisão devemos calcular as frações que aparecem nos sucessivos passos do algoritmo de descodificação.

Com um destes tipos de mecanismos para parar o processo de descodificação, obtemos o seguinte resultado:

Teorema 3.11 O processo de codificação/descodificação aritmética descrito acima permite recuperar as mensagens iniciais e envolve um número de operações proporcional ao comprimento da mensagem.