BRAIN TUMOR DETECTION USING CONVOLUTIONAL NEURAL NETWORK

A project report submitted in partial fulfillment of the requirements for the award of the Degree of **Bachelor of Technology**

in

Electronics and Communication EngineeringBy

MENTA SNEHITHA (20735A0413)
KADIVETI NITISH KUMAR (20735A0414)
SYED ABEED (20735A0406)
GANESHAN APARNA (19731A04N1)
GAJJALA MOUNIKA (19L41A0405)

Under the Guidance of

Dr. D.Likhith Reddy

Assistant Professor

Department of Electronics and Communication Engineering

PBR VISVODAYA INSTITUTE OF TECHNOLOGY & SCIENCE, KAVALI

(Accredited by NAAC, Affiliated to JNTUA, Anantapuramu & Approved by AICTE)

SPSR Nellore (Dt.), Andhra Pradesh – 524201

2023

Department of Electronics and Communication Engineering PBR VISVODAYA INSTITUTE OF TECHNOLOGY & SCIENCE, KAVALI

CERTIFICATE

This is to certify that the project report titled "BRAIN TUMOR DETECTION

USING CONVOLUTIONAL NEURAL NETWORK", being submitted by

MENTA SNEHITHA (20735A0413)
KADIVETI NITISH KUMAR (20735A0414)
SYED ABEED (20735A0406)
GANESHAN APARNA (19731A04N1)
GAJJALA MOUNIKA (19L41A0405)

in partial fulfillment of the requirements for the award of the degree of *Bachelor* of *Technology in Electronics and Communication Engineering*, to the Jawaharlal Nehru Technological University Anantapur, Anantapuramu is a record of bonafide work carried out by them under my guidance and supervision.

Internal Guide

DR. D. LIKHITH REDDY,

Assistant Professor,

Dept. of ECE,

PBR VITS.

Head of the Department

DR. R. SRAVANTHI,

Associate Professor,

Dept. of ECE,

PBR VITS.

External Viva Voce conducted on_____

External Examiner

DECLARATION

We hereby declare that the project entitled, "BRAIN TUMOR DETECTION USING CONVOLUTIONAL NEURAL NETWORK" completed and written by us, has not been previously submitted elsewhere for the award of any degree or diploma.

MENTA SNEHITHA	(20735A0413)	
KADIVETI NITISH KUMAR	(20735A0414)	
SYED ABEED	(20735A0406)	
GANESHAN APARNA	(19731A04N1)	
GAJJALA MOUNIKA	(19L41A0405)	

Place: Date:

ACKNOWLEDGEMENTS

We consider it as our duty to express our gratitude to all those who guided, inspired and helped us in completion of this project work.

We acknowledge, with profound sense of gratitude, the guidance and support of our guide *Dr. D Likhith Reddy*, Assistant Professor, Department of Electronics and Communication Engineering, PBR VITS, Kavali. His timely suggestions and co-operation, both professionally and personally, have greatly contributed in bringing out the project successfully.

We express our heart-felt thanks to **Dr.** *R. Sravanthi*, Associate Professor and Head of the Department of Electronics and Communication Engineering, PBR VITS, Kavali, for her kind encouragement and for providing us with all required facilities for the completion of the project work.

We also express our gratitude to the principal *Dr. B. Dattatraya Sarma*, for providing necessary infrastructure & an ambient atmosphere to complete our project work.

We are indeed indebted to all our teachers who have guided us throughout our B. Tech course for the past four years and have imparted a sufficient knowledge and inspiration to take us forward in our career.

Finally, we thank each and every one who has helped us directly and indirectly in completion of project work.

MENTA SNEHITHA (20735A0413)
KADIVETI NITISH KUMAR (20735A0414)
SYED ABEED (20735A0406)
GANESHAN APARNA (19731A04N1)
GAJJALA MOUNIKA (19L41A0405)

ABSTRACT

The human brain is the major controller of the humanoid system. The abnormal growth and division of cells in the brain lead to a brain tumor, and the further growth of brain tumors leads to brain cancer. In the area of human health, Computer Vision plays a significant role, which reduces the human judgment that gives accurate results. CT scans, X-Ray, and MRI scans are the common imaging methods among magnetic resonance imaging (MRI) that are the most reliable and secure. MRI detects every minute objects. The main aim of the project is to focus on the use of different techniques for the discovery of brain cancer using brain MRI. In this project, pre-processing using the Bilateral Filter (BF) for removal of the noises that are present in an MRI image was performed and this was followed by the binary thresholding and Convolution Neural Network (CNN) segmentation techniques for reliabledetection of the tumor region. Training, testing, and validation datasets are used. In the proposed method, brain MRI image is classified as a brain tumor or non-tumor. The resultant outcomes will be examined through various performance evaluation metrics that include accuracy, sensitivity, and specificity. It is desired that the proposed work would exhibit a more exceptional performance over its counterparts.

LIST OF CONTENTS

CHAPTER NO.	TITLE	PAGE NO
	Title Page	i
	Certificate	ii
	Declaration	iii
	Acknowledgement	iv
	Abstract	v
	List Contents	vi
	List of Figures	ix
	List of Tables	X
CHAPTER 1	INTRODUCTION	1
	1.1 Brain anatomy	2
	1.2 Motivation for the Work	3
	1.3 Problem Statement	4
	1.4 Scope	4
	1.5 Organization of project report	5
CHAPTER 2	LITERATURE REVIEW	6
	2.1 Extraction of Brain Tumor Using Soft Techniques	7
	2.2 Improved Edge Detection for Brain Tumor Detection	7
	2.3 Image Segmentation by Clustering Techniques	8
	2.4 Image Segmentation by Using Morphological Operations	8
	2.5 Brain Tumor Classification & Identification	
	Using KNN Technique	10
	2.6 Comparative Analysis of Thresholding & Edge	
	Detection Techniques	10
	2.7 Fusing Images with different focuses using SVM	11
	2.8 Texture based tumor detection using Seeded Region	11

	2.9 Brain Tumor Detection Using Artificial Neural Networks	12
	2.10 Brain MR Image Segmentation for Tumor Detection	
	using ANN	12
	2.11 Brain Image Segmentation using SVM	13
	2.12 Segmentation based Fuzzy Partition	
	Entropy & Genetic Algorithm	13
	2.13 Segmentation of K – Means with advanced	
	Dual Localization	14
	2.14 Wavelet-based feature extraction for brain tumor	
	diagnosis	14
	2.15 Brain Tumor Detection Using Histogram	
	Equalization and FSVM	15
	2.16 Improved K-means algorithm in the design of RBF	
	neural networks	15
	2.17 Survey on Neural Networks Used for	
	Medical Image Processing	16
CHAPTER 3	EXISTING METHOD	17
	3.1 Deep Learning	17
	3.2 Neural	17
	3.2.1 Weight	18
	3.2.2 Bias	18
	3.2.3 Activation Function	18
	3.3 Deep Neural Network	18
	3.3.1 Input Layer	18
	3.3.2 Hidden Layer	19
	3.3.3 Output Layer	19
	3.4 Using of Deep Neural Networks for Images	19
	3.5 Types of Deep Neural Network	20
CHAPTER 4:	PROPOSED METHOD	
	4.1 Challenges in Brain Tumor Classification	21
	4.2 Image pre-processing and Image Enhancement	22

	4.2.1 Image Pre-processing	23
	4.2.2 Image Acquisition from Dataset	24
	4.2.3 Convert image from One Colour	24
	4.2.3.1 Filters	24
	4.3 Image Enhancement	25
	4.3.1 Sobel Filter	25
	4.4 Image Segmentation using Data Augmentation	26
	4.4.1Thresholding	29
	4.4.2 Morphological Operations	30
	4.5 Image Classification	31
	4.5.1 Sequential	32
	4.5.2 Convolution	32
	4.5.3 Pooling	33
	4.5.4 Flattening	33
	4.5.5 Fully Connection	33
CHAPTER 5	RESULTS AND DISCUSSIONS	35
	5.1 Testing Data Set for Tumor MRI	35
	5.2 Testing Data Set for Non-Tumor MRI	37
	5.3 Performance Measures	39
	5.4 Performance Evaluation	40
CHAPTER 6	CONCLUSION AND FUTURE WORK	42
	6.1 Conclusion	42
	6.2 Future Work	42
	BIBLIOGRAPHY	43
	REFERNCES	58
	APPENDIX	62

LIST OF FIGURES

Figure No	Description of Figures	Page No
Fig 3.1	Basic structure of a Neuron	17
Fig 3.2	A simple Deep Neural Network	19
Fig 4.1	Location of tumors in eight different images	21
Fig 4.2	Block Diagram	22
Fig 4.3	Image Pre-Processing	23
Fig 4.4	Applied Data Augmentation Preview	27
Fig 5.1	Input Tumor MRI 1& 2	35
Fig 5.2	Output Results of Sample 1&2 Tumor is Classified	35
Fig 5.3	Input Tumor MRI Input 3 & 4	36
Fig 5.4	Output Results of Sample 3&4 Tumor is Classified	36
Fig 5.5	Input Healthy MRI 5 & 6	37
Fig 5.6	Output of Sample 5&6 MRI is Healthy is Classified	37
Fig 5.7	Input Healthy MRI 7 & 8	38
Fig 5.8	Output of Sample 7&8 MRI is Healthy is Classified	38
Fig 5.9	Represents the performance analysis of CNN	40
Fig 5.10	Represents the performance of proposed CNN	41

LIST OF TABLES

Table No.	Description of Tables	Page No.
Table 1	Represents the Precision, Recall, F1-Score and	40
	Support values of the proposed approach for	
	different set of images.	
Table 2	Represents the Accuracy, Sensitivity, and	41
	Specificity of the proposed approach for	
	different set of images.	