Hadoop Tutorial for Beginners

US Primary Election Analysis

US Election

US Primary Election Dataset

Now as a data analyst you have 2 datasets available :

US Primary Election Data Set

state	state_abbreviation	county	fips	party	candidate	votes	fraction_votes
Alabama	AL	Autauga	1001	Democrat	Bernie Sanders	544	0.182
Alabama	AL	Autauga	1001	Democrat	Hillary Clinton	2387	0.8
Alabama	AL	Baldwin	1003	Democrat	Bernie Sanders	2694	0.329
Alabama	AL	Baldwin	1003	Democrat	Hillary Clinton	5290	0.647
Alabama	AL	Barbour	1005	Democrat	Bernie Sanders	222	0.078
Alabama	AL	Barbour	1005	Democrat	Hillary Clinton	2567	0.906
Alabama	AL	Bibb	1007	Democrat	Bernie Sanders	246	0.197
Alabama	AL	8ibb	1007	Democrat	Hillary Clinton	942	0.755
Alabama	AL	Blount	1009	Democrat	Bernie Sanders	395	0.386
Alabama	AL	Blount	1009	Democrat	Hillary Clinton	564	0.551
Alabama	AL	Bullock	1011	Democrat	Bernie Sanders	178	0.066
Alabama	AL	Bullock	1011	Democrat	Hillary Clinton	2451	0.913
Alabama	AL	Butler	1013	Democrat	Bernie Sanders	156	0.065

US Demographic Features (County-wise) Data Set

fips	area_name	state_abbreviation	PST045214	P5T040210	PST120214	POP010210	AGE135214	AGE295214	AGE775214	SEX255214
0	United States		318857056	308758105	3.3	308745538	6.2	23.1	14.5	50.8
1000	Alabama		4649377	4780127	1.4	4779736	6.1	22.6	15.3	51.5
1001	Autauga County	AL	55395	54571	1.5	54571	6	25.2	13.8	51.4
1003	Baldwin County	AL.	200111	182265	9.8	182265	5.6	22.2	18.7	51.2
1005	Barbour County	AL	26887	27457	-2.1	27457	5.7	21.2	16.5	46.6
1007	Bibb County	AL.	22506	22919	-1.8	22915	5.3	21	14.8	45.9
1009	Blount County	AL.	57719	57322	0.7	57122	6.1	23.6	37	50.5
1011	Bullock County	AL.	20764	10915	-1.4	10914	6.3	21.4	14.9	45.3
1013	Butler County	AL.	20296	20946	-3.1	20947	6.1	23.6	18	53.6
1015	Calhoun County	AL	113916	118586	-2.3	118572	5.7	22.2	36	51.8
1017	Chambers County	AL	34076	34170	-0.3	34215	5.9	21.4	18.3	52.3
1019	Cherokee County	AL	26037	25986	0.2	25569	4.6	20.4	20.9	50.2
1021	Chilton County	AL	43931	43631	0.7	43643	6.4	24.2	15.2	50.8
1023	Choctaw County	AL	13323	13858	-3.9	13859	4.9	20.6	20.8	52.5

US Primary Election Dataset

state	state_abbreviation	county	fips	party	candidate	votes	fraction_votes
Alabama	AL	Autauga	1001	Democrat	Bernie Sanders	544	0.182
Alabama	AL	Autauga	1001	Democrat	Hillary Clinton	2387	0.8
Alabama	AL	Baldwin	1003	Democrat	Bernie Sanders	2694	0.329
Alabama	AL	Baldwin	1003	Democrat	Hillary Clinton	5290	0.647
Alabama	AL	Barbour	1005	Democrat	Bernie Sanders	222	0.078
Alabama	AL	Barbour	1005	Democrat	Hillary Clinton	2567	0.906
Alabama	AL	Bibb	1007	Democrat	Bernie Sanders	246	0.197
Alabama	AL	Bibb	1007	Democrat	Hillary Clinton	942	0.755
Alabama	AL	Blount	1009	Democrat	Bernie Sanders	395	0.386
Alabama	AL	Blount	1009	Democrat	Hillary Clinton	564	0.551
Alabama	AL	Bullock	1011	Democrat	Bernie Sanders	178	0.066
Alabama	AL	Bullock	1011	Democrat	Hillary Clinton	2451	0.913
Alabama	AL	Butler	1013	Democrat	Bernie Sanders	156	0.065

state: List of US states

state_abbreviation: Abbreviation of each US state

county: List of counties in each US states

fips: FIPS county code is a Federal Information Processing Standards (FIPS) code which uniquely identifies counties

party: Different parties in US (i.e. Republican & Democrat)

candidate: candidates in US primary election from different parties

votes: number of votes gained by a candidate

fraction_votes: total number of votes gained by a candidate/ total

votes gained by the party

US County Demographic Features Dataset

fips	area_name	state_abbreviation	PST045214	PST040210	PST120214	POP010210	AGE135214	AGE295214	AGE775214	SEX255214
0	United States		318857056	308758105	3.3	308745538	6.2	23.1	14.5	50.8
1000	Alabama		4849377	4780127	1.4	4779736	6.1	22.8	15.3	51.5
1001	Autauga County	AL	55395	54571	1.5	54571	6	25.2	13.8	51.4
1003	Baldwin County	AL	200111	182265	9.8	182265	5.6	22.2	18.7	51.2
1005	Barbour County	AL	26887	27457	-2.1	27457	5.7	21.2	16.5	46.6
1007	Bibb County	AL	22506	22919	-1.8	22915	5.3	21	14.8	45.9
1009	Blount County	AL	57719	57322	0.7	57322	6.1	23.6	17	50.5
1011	Bullock County	AL	10764	10915	-1.4	10914	6.3	21.4	14.9	45.3
1013	Butler County	AL	20296	20946	-3.1	20947	6.1	23.6	18	53.6
1015	Calhoun County	AL	115916	118586	-2.3	118572	5.7	22.2	16	51.8
1017	Chambers County	AL	34076	34170	-0.3	34215	5.9	21.4	18.3	52.3
1019	Cherokee County	AL	26037	25986	0.2	25989	4.8	20.4	20.9	50.2
1021	Chilton County	AL	43931	43631	0.7	43643	6.4	24.2	15.2	50.8
1023	Choctaw County	AL	13323	13858	-3.9	13859	4.9	20.6	20.8	52.5

DETAILS:

Population, 2014 estimate
Population, 2010 (April 1) estimates base
Population, percent change - April 1, 2010 to July 1, 2014
Population, 2010

Persons under 5 years, percent, 2014
Persons under 18 years, percent, 2014
Persons 65 years and over, percent, 2014
Female persons, percent, 2014
White alone, percent, 2014 ...

US Election Solution Strategy

Market Analysis for US Cab Start-Ups

PROBLEM STATEMENT:

- A US cab service start-up wants to meet the demands in an optimum manner and maximize the profit.
- Thus, they hired you as a data analyst to interpret the available Uber's data set and find out the beehive customer pick-up points & peak hours for meeting the demand in a profitable manner.

Uber Dataset

Date/Time	Lat	Lon	Base
08-01-2014 00:03	40.7366	-73.9906	B02512
08-01-2014 00:09	40.726	-73.9918	B02512
08-01-2014 00:12	40.7209	-74.0507	B02512
08-01-2014 00:12	40.7387	-73.9856	B02512
08-01-2014 00:12	40.7323	-74.0077	B02512
08-01-2014 00:13	40.7349	-74.0033	B02512
08-01-2014 00:15	40.7279	-73.9542	B02512
08-01-2014 00:17	40.721	-73.9937	B02512
08-01-2014 00:19	40.7195	-74.006	B02512
08-01-2014 00:20	40.7448	-73.9799	B02512
08-01-2014 00:21	40.7399	-74.0057	B02512
08-01-2014 00:25	40.7651	-73.9683	B02512
08-01-2014 00:27	40.7354	-74.0081	B02512
08-01-2014 00:29	40.7339	-74.0028	B02512
08-01-2014 00:29	40.7364	-74.0301	B02512
08-01-2014 00:29	40.7364	-74.0301	B02512
08-01-2014 00:30	40.7252	-73.9516	B02512
08-01-2014 00:30	40.7433	-73.986	B02512
08-01-2014 00:34	40.7437	-73.9884	B02512

- Date/Time Pickup Date & Time
- Lat Latitude of Pickup
- Lon Longitude of Pickup
- Base TLC Base Code

Market Analysis for US Cab Start-Ups Solution Strategy

Let Us Know What It Takes...

Fundamentals Road Map

Introduction to Hadoop & Spark

Introduction to Hadoop & Spark

DataNode

Hadoop

Hadoop is a framework that allows you to store and process large data sets in parallel and distributed fashion.

- Hadoop has two core components:
- HDFS: Allows to dump any kind of data across the cluster
- YARN: Allows parallel processing of the data stored in HDFS

Spark

Apache Spark is an open-source cluster-computing framework for real time processing

- Provides an interface for programming entire clusters with implicit data parallelism and fault-tolerance
- Built on top of YARN and it extends the YARN model to efficiently use more types of computations

Spark Complementing Hadoop

Spark & Hadoop

Challenges Addressed:

Combining Spark's ability, i.e. high processing speed, advance analytics and multiple integration support with Hadoop's low cost operation on commodity hardware gives the best results

Big Data Use-Cases

Web and e-tailing

- > Recommendation Engines
- > Ad Targeting
- > Search Quality
- > Abuse and Click Fraud Detection

Government

- > Fraud Detection and Cyber Security
- > Welfare Schemes
- > Justice

Telecommunications

- > Customer Churn Prevention
- > Network Performance Optimization
- Calling Data Record (CDR) Analysis
- Analysing Network to Predict Failure

Healthcare and Life Sciences

- > Health Information Exchange
- Gene Sequencing
- > Serialization
- > Healthcare Service Quality Improvements
- > Drug Safety

Big Data Use-Cases

Banks and Financial services

- > Modeling True Risk
- Threat Analysis
- > Fraud Detection
- > Trade Surveillance
- > Credit Scoring and Analysis

· Retail

- Point of Sales Transaction Analysis
- Customer Churn Analysis
- > Sentiment Analysis

Transportation Services

- > Data from Location based social network
- > High speed data from telecom
- > Transport demand models
- > Route Planning

Hotels and Food Delivery Services

- > Customer Demands
- > Details of Customers
- Availability and Seasonal Data Changes

Big Data Use-Cases Solution Architecture

HDFS

HDFS creates an abstraction layer over the distributed storage resources, from where we can see the whole HDFS as a single unit.

NameNode

NameNode

- Master daemon
- Maintains and Manages DataNodes
- Records metadata e.g. location of blocks stored, the size of the files, permissions, hierarchy, etc.
- Receives heartbeat and block report from all the DataNodes

Secondary NameNode

Secondary NameNode

- Checkpointing is a process of combining edit logs with FsImage
- Allows faster Failover as we have a back up of the metadata
- Checkpointing happens periodically (default: 1 hour)

Secondary NameNode

HDFS Architecture in Detail

HDFS Block & Replication

HDFS Data Block

- Each file is stored on HDFS as block
- The default size of each block is 128 MB
- Let us say, I have a file example.txt of size 380 MB:

How many blocks will be created if a file of size 500 MB is copied to HDFS?

HDFS Data Block

- Each file is stored on HDFS as block
- The default size of each block is 128 MB
- Let us say, I have a file example.txt of size 500 MB:

HDFS Block Replication

Rack Awareness

- Rack Awareness Algorithm reduces latency as well as provide fault tolerance by replicating data block
- Rack Awareness Algorithm says that the first replica of a block will be stored on a local rack & the next two replicas will be stored on a different (remote) rack

Rack Awareness

Start Hadoop Daemons

Writing & Deleting a File in Hadoop

hdfs fs -put /test.txt / Coping a file from local file system to HDFS hdfs dfs -ls / Lists all the HDFS files/directories hdfs fs -rm /test.txt / Deleting the file from HDFS

What is YARN?

- Hadoop 2.0 came up with new framework YARN (Yet Another Resource Negotiator), which provides ability to run Non-MapReduce application.
- It provides a paradigm for parallel processing over Hadoop.
- YARN framework is responsible for integration of different tools with Hadoop like Spark, Hive, Pig.

ResourceManager

ResourceManager

ResourceManager

- Receives the processing requests
- Passes the requests to corresponding NodeManagers

NodeManager

NodeManager

- Installed on every DataNode
- Responsible for execution of task on every single DataNode

NodeManager

NodeManager

NodeManager

YARN Architecture in Detail

YARN Application Workflow

- 1. Client submits an application
- RM allocates a container to start AM
- AM registers with RM
- 4. AM asks containers from RM
- 5. AM notifies NM to launch containers
- 6. Application code is executed in container
- 7. Client contacts RM/AM to monitor application's status
- 8. AM unregisters with RM

Hadoop Cluster Architecture = HDFS + YARN

Hadoop Cluster Architecture

Hadoop Cluster Hardware Specification

Hadoop Cluster: Facebook Use Case

Hadoop Cluster: Spotify Use Case

Spark Core Components

Spark Core

Spark Core is the base engine for large-scale parallel and distributed data processing

It is responsible for:

- Memory management and fault recovery
- Scheduling, distributing and monitoring jobs on a cluster
- Interacting with storage systems

Spark Architecture

Spark SQL

- Spark SQL integrates relational processing with Spark's functional programming
- Provides support for various data sources and makes it possible to weave SQL queries with code transformations

Start Spark Daemons

K-Means Clustering

The process by which objects are classified into a predefined number of groups so that they are as much dissimilar as possible

from one group to another group, but as much similar as possible within each group

- The objects in group 1 should be as similar as possible
- But there should be much difference between an object in group 1 and group 2
- The attributes of the objects are allowed to determine which objects should be grouped together

K-Means Clustering

Consider a comparison on Income & Balance:

Example

The plot of students in an area is as given below

I need to find specific locations to build schools in this area so that the students doesn't have to travel much

Example

Using k-means clustering we got output as:

