Statistical Data Analysis, Lecture 2

dr. Dennis Dobler

Vrije Universiteit Amsterdam

February 10, 2021

intro

•0

- - Exploring distributions
 - Density estimation

Summarizing data

- Bootstrap methods
- Nonparametric tests
- Analysis of categorical data
- Multiple linear regression

Chapter 3: Exploring distributions

Contents of Chapter 3:

- Quantile function
- 2 Location-scale family
- QQ-plots and symplots
- Goodness-of-fit tests
 - Shapiro-Wilk test
 - Kolmogorov-Smirnov test
 - Chi-square test

Random variable $X:\Omega\to\mathbb{R}$

Random variable \wedge . 22 \rightarrow \mathbb{R}

Population distribution function $F(x) = P(X \le x), x \in \mathbb{R}$

Empirical distribution function given sample x_1, \ldots, x_n :

$$\widehat{F}_n(x) = \frac{1}{n} \sum_{i=1}^n 1_{\{x_j \le x\}}, \quad x \in \mathbb{R}$$

In R, sample stored in vector x:

x <- rnorm(10, 0, 1)

plot(ecdf(x), col="red")

compare to e.g. N(0,1) distribution function:

x.lattice <- seq(-3,3,0.001)

lines(x.lattice, pnorm(x.lattice,mean=0,sd=1), col="blue")

00000

samples x_1, \ldots, x_n from N(0, 1):

empirical and population dist N(0,1) sample of size 10

empirical and population dist N(0,1) sample of size 50

empirical and population dist N(0.1) sample of size 500

Goal (1)

Distribution: part of (parametric) statistical model.

Empirical distribution → set up statistical model.

Goal: find underlying distribution

Questions:

- One sample data from
 - specific distribution? (QQ-plot, goodness-of-fit tests)
 - symmetric distribution? (symplot)
- Two sample data from
 - same distribution? (QQ-plot)

quantile function and location-scale family

Quantile function

Quantile function F^{-1} : "inverse" of F.

Definition
$$F^{-1}(\alpha) = \inf\{x : F(x) \ge \alpha\}, \quad \alpha \in (0,1).$$

R: gnorm, gexp, gpois, etc.

Definition location-scale family

If $X \sim F$, denote $Y = a + bX \sim F_{a,b}$, $a \in \mathbb{R}, b > 0$.

$$\Rightarrow$$
 $F_{a,b}(x) = F\left(\frac{x-a}{b}\right)$

Location-scale family (LSF) w.r.t. F: $\{F_{a,b}: a \in \mathbb{R}, b > 0\}$

$$E(X) = 0 \& var(X) = 1 \Longrightarrow E(Y) = a \& var(Y) = b^2.$$

Claim
$$F_{a,b}^{-1}(\alpha) = a + bF^{-1}(\alpha)$$
.

Proof (for invertible *F*):

Quantiles of F and $F_{a,b}$ (2)

Hence, $\{(F^{-1}(\alpha), F_{a,b}^{-1}(\alpha)) : \alpha \in (0,1)\}$ forms line y = a + bx.

N(0,1) & N(1,4): same LSF.

N(0,1) & Exp(1): not same LSF.

N(0,1) & Unif(0,1): not same LSF.

N(0,1) & Cauchy(1): not same LSF.

QQ-plots and symplots

$$X_1, \ldots, X_n \overset{i.i.d.}{\sim} F$$
 continuous: $\mathrm{E} F(X_{(i)}) = \frac{i}{n+1} \ \Rightarrow \ X_{(i)} \approx F^{-1}(\frac{i}{n+1}).$

$$X_1, \ldots, X_n \overset{i.i.d.}{\sim} F$$
 continuous: $\mathrm{E}F(X_{(i)}) = \frac{i}{n+1} \Rightarrow X_{(i)} \approx F^{-1}(\frac{i}{n+1}).$
If $Y_i = a + bX_i, \ i = 1, \ldots, n$: $\mathrm{E}F_{a,b}(Y_{(i)}) = \frac{i}{n+1}.$

distributions

$$X_1, \ldots, X_n \overset{i.i.d.}{\sim} F$$
 continuous: $\mathrm{E}F(X_{(i)}) = \frac{i}{n+1} \Rightarrow X_{(i)} \approx F^{-1}(\frac{i}{n+1}).$

If $Y_i = a + bX_i$, $i = 1, \ldots, n$: $\mathrm{E}F_{a,b}(Y_{(i)}) = \frac{i}{n+1}.$
 $\Rightarrow Y_{(i)} \approx F_{a,b}^{-1}(\frac{i}{n+1}) = a + bF^{-1}(\frac{i}{n+1}).$

 $\Rightarrow \left\{ \left(F^{-1}\left(\frac{i}{n+1}\right), y_{(i)}\right) : i = 1, \dots, n \right\} \text{ approximates line } y = a + bx.$

distributions

$$X_1, \ldots, X_n \overset{i.i.d.}{\sim} F$$
 continuous: $EF(X_{(i)}) = \frac{i}{n+1} \Rightarrow X_{(i)} \approx F^{-1}(\frac{i}{n+1}).$
If $Y_i = a + bX_i$, $i = 1, \ldots, n$: $EF_{a,b}(Y_{(i)}) = \frac{i}{n+1}.$

$$\Rightarrow Y_{(i)} \approx F_{a,b}^{-1}(\frac{i}{n+1}) = a + bF^{-1}(\frac{i}{n+1}).$$

$$\Rightarrow \left\{ \left(F^{-1}\left(\frac{i}{n+1}\right), y_{(i)}\right) : i = 1, \dots, n \right\} \text{ approximates line } y = a + bx.$$

true F unknown... \rightsquigarrow QQ-plots!

R: ganorm, ggexp, ggunif, etc.

of $X_1, \ldots, X_n \sim N(\mu, \sigma^2)$ vs N(0, 1); varying n, μ, σ^2 .

$$v = x$$

$$y = x$$

$$y = 1 + 2x$$

In R:
par(pty="s")
qqnorm(rnorm(10))

Using QQ-plots — Example 1

- plot histogram
- plot different QQ-plots & choose most linear

- plot histogram
- plot different QQ-plots & choose most linear
- determine location (a) & scale (b) by fitting
 - straight line y = a + bx visually
 - sample mean & variance to theoretical values (preferred!):

$$Y = a + bX \Rightarrow E(Y) = a + bE(X) \& var(Y) = b^2 var(X)$$

$$\Rightarrow b = \sigma_Y/\sigma_X$$
 estimated by $\hat{b} = \hat{\sigma}_Y/\sigma_X$

&
$$a = E(Y) - bE(X)$$
 estimated by $\hat{a} = \bar{Y} - \hat{b}E(X)$

In R: use abline (a = ..., b = ...) (different from ggline!)

Using QQ-plots — Example 1

- plot histogram
- plot different QQ-plots & choose most linear
- determine location (a) & scale (b) by fitting
 - straight line y = a + bx visually
 - sample mean & variance to theoretical values (preferred!):

$$Y = a + bX \Rightarrow E(Y) = a + bE(X) \& var(Y) = b^2 var(X)$$

$$\Rightarrow b = \sigma_Y / \sigma_X \text{ estimated by } \hat{b} = \hat{\sigma}_Y / \sigma_X$$

$$\begin{cases} \hat{b} = \hat{\sigma}_Y / \sigma_X \\ \hat{\sigma} = \hat{\sigma}_Y / \sigma_X \end{cases}$$

& a = E(Y) - bE(X) estimated by $\hat{a} = \bar{Y} - \hat{b}E(X)$

In R: use abline(a = ..., b = ...) (different from $\underline{qqline!}$)

• Example $\bar{Y} = 1.98, \ \hat{\sigma}_{Y}^{2} = 4.2, \ X \sim \textit{Exp}(1)$

- $\Rightarrow \hat{b} = 2.049, \hat{a} = 1.98 \sqrt{4.2}/1 \approx -0.069$
- \Rightarrow model distribution $Y \sim -0.069 + 2.049 \cdot Exp(1)$ = -0.069 + Exp(1/2.049)
 - Or round: $Y \sim Exp(0.5)$ (rather don't!)

Example: possibly transform.

Definition symmetry plot

Investigate symmetry/skewness of a distribution.

F symmetric around
$$\theta \Rightarrow F^{-1}(1-\alpha) - \theta = \theta - F^{-1}(\alpha), \quad \alpha \in (0,1).$$

$$\Rightarrow$$
 { $(\theta - F^{-1}(\alpha), F^{-1}(1 - \alpha) - \theta) : \alpha \in (0, 1)$ } straight line $y = x$.

Definition symmetry plot

Investigate symmetry/skewness of a distribution.

F symmetric around
$$\theta \Rightarrow F^{-1}(1-\alpha) - \theta = \theta - F^{-1}(\alpha), \quad \alpha \in (0,1).$$

 $\Rightarrow \{(\theta - F^{-1}(\alpha), F^{-1}(1-\alpha) - \theta) : \alpha \in (0,1)\} \text{ straight line } y = x.$

Symplot of x_1, \ldots, x_n : plot of

$$\left\{\left(\operatorname{med}(x)-x_{(i)},x_{(n-i+1)}-\operatorname{med}(x)\right):i=1,\ldots,\left\lfloor\frac{n}{2}\right\rfloor\right\}.$$

R: symplot

Example symplot

Sample size matters!

Other ways to investigate symmetry

- histogram
- boxplot
- skewness parameter (be cautious, see syllabus)
- difference sample mean & sample median

Systematic search for underlying distribution

- Investigate symmetry plot & histogram
- Try several QQ-plots
 - if symmetric:

• if not symmetric:

• Not satisfactory? Try transformations!

Two sample QQ-plot

 $x_1, \ldots, x_m \& y_1, \ldots, y_n$: from same LSF?

If m = n: empirical QQ-plot plots $\{(x_{(i)}, y_{(i)}) : i = 1, 2, \dots, n\}$.

If m < n, it plots $\{(x_{(i)}, y_{(i)}^*) : i = 1, 2, ..., m\}$, where

$$y_{(i)}^* = \frac{1}{2} \left(y_{([i\frac{n+1}{m+1}])} + y_{([i\frac{n+1}{m+1} + \frac{m}{m+1}])} \right).$$

Idea: match $x_{(i)}$ with $y_{(i)}$ for which $\frac{i}{m+1} \approx \frac{j}{n+1}$.

R: gaplot

Two sample QQ-plot, example

Roughly straight line: possibly same LSF.

goodness-of-fit tests

Recap hypothesis testing:

- H_0 , H_1 , α ,
- test statistic,
- its H_0 -distribution,
- test score,
- p-value OR critical region,
- conclusion

Goodness-of-fit test

Idea: sample x_1, \ldots, x_n from unknown F. Test

 $H_0: F \in \mathcal{F}_0$

 $H_1: F \notin \mathcal{F}_0$

where $\mathcal{F}_0 = \{F_0\}$ (simple H_0)

or \mathcal{F}_0 = collection of distributions (composite H_0), e.g. LSF.

Goodness-of-fit test

Idea: sample x_1, \ldots, x_n from unknown F. Test

 $H_0: F \in \mathcal{F}_0$ $H_1: F \notin \mathcal{F}_0$

where $\mathcal{F}_0 = \{F_0\}$ (simple H_0) or $\mathcal{F}_0 =$ collection of distributions (composite H_0), e.g. LSF.

Aim: omnibus test with reasonable power.

goodness-of-fit intro

Goodness-of-fit test

Idea: sample x_1, \ldots, x_n from unknown F. Test

 $H_0: F \in \mathcal{F}_0$

 $H_1: F \notin \mathcal{F}_0$

where $\mathcal{F}_0 = \{F_0\}$ (simple H_0) or $\mathcal{F}_0 =$ collection of distributions (composite H_0), e.g. LSF.

Aim: omnibus test with reasonable power.

Interpretation: is H_0 not too implausible?

- Shapiro-Wilk: $H_0: F \in \{N(\mu, \sigma^2); \mu \in \mathbb{R}, \sigma^2 > 0\}$
- Kolmogorov-Smirnov: simple H_0 & adjusted (composite H_0)
- Chi-square test: simple H_0

different test statistics, with different distributions under H_0

to finish

To summarize

Today we discussed

- Quantile function
- Location-scale family
- QQ-plots and symplots
- Goodness-of-fit tests

Next week goodness-of-fit tests and kernel density estimators