Name - Rakesh Suthar

Registration No - 22 BcG10178

Subject - Operating Systems

Faculty - Dr. Chour Singh Rajpoot

Mid Term Exam

1) The Structure of Computer Sytems

The layered approach is a design paradigm where an operating system is divided into distinct layers, each parforming specific functions and raiving on the Services of the layers below it.

- * Hardware Layer (Layer 0) Directly interacte with

 the System physical components (CCPU, memory, disk

 drives, atc). Provides basic services like memory

 allocation, device 110, and interrupt handling.
- * Davica Drivers Layer (Layer 1) Manages spacific hardware devices, translating high level requests into low level commands. Hides davice specific components.
- * 110 Management Layer (Layer2) Hondlos Input/output
 Operations, buffering data and managing device queues.
 Coordinates with device drivers to ensure efficient
 obta transfer.
- * Memory Management Allocates and deallocates memory to processes, optimizing memory usuage. Implaments without memory techniques to provide a larger address space than Physical memory.
- * File System (Layer 4) Organizes and manages files and directories on Storage devices. Provide services for creeting, deleting, reading, and writing files.
- * Karnel Layer (Layers) Core of the Operating System Responsible for process Scheduling, inter Process

 (ommunication and System Security. Manages

 System resources and handles system calls.

Wear Interface Layer (Layer 6) - Provides the user interfaces , graphical interfaces, including command line interfaces, graphical User interfaces, and application programming interfaces (APIS). Interacts with the user and translates user colls.

Advantages.

- * Modularity Each layer is independent, making it casiar to develop, test and modify.
- * Debugging- 188 ups can be isoloted to specific layers , simplifying troubleshooting.
- * Security Layers can be designed with varying levels of Privilege, anhancing system security
- * Flexibility Now foothing layers.

Orsaduantages -

* Parformanca Ovarhead. Communication batween layer cand introduce ovarhead due to context switching and data copying.

(1) Multiprogramming 418 Multitasking

Multi Programming -

- * Multiple Programs are loaded into main memory Smultaneowly.
- * It increases CPU Utilization by organizing jobs so that the CPU always how one Job to exacute
- *Multiprogramming operating systems use the mechanism of Job sechoduling and CPU schaduling Ex- A botch processing system where multiple Jobs are executed sequentially, but the 08 switter between them to prevent CPU idle time.

Multitosking -

- * A Single Program is divided into multiple took
- * The 0s Switches between these tooks to give the illusion of concurrent execution

Ex- A user can transle run multiple applications sumultaneously on single computer.

- Process V/s Program Program Ardckess-
- * A Static entity, a sequence of instructions stored in secondary memory.
- * It doesn't consume system resources until itse exacuted
- * It doesn't perform any action on its own

 Ex A . exe file or a Python Script

 Process -
- * A dynamic entity I an instance of a program boing executed.
- * It consumos system resources (CCPU, memory 110 devices) during its execution.
- * Moittple processes can be Instances of the Same program running simultaneously

 Ex When you run a Python Script, the Os creates a process to execute its instructions

Time Sharing VIS Parallal Procassing System

Time Sharing

* Multiple users share a single computer system

*The Os allocates time slices to each user's process giving the illusion of simultaneous execution

*The time that each task gets to execute is colled quantum

Ex - A mainframe computer used by multiple users for different tasks.

Parallal Processing System -

Multiple processors or cores execute different parts of a program simultaneously.

This is used to speed up execution time for computationally intensive tacks.

Ex- A super computer with multiple processors solving complex scientific simulations.

Inter Process Communication - It is a type of mechanism Usually provided by the operating system. The mount of or goal of this mechanism is to provide communication in batween saveral processes. This

Communication could involve a process Letting another process know that some avent has occurred or the transferring of duta from one process to another.

Moad of Inter Process-

- * It helps to spead up modularity
 - La noitetuques *
- * Privalage Saparation
 - * Convenience
 - * Halps Operating System communicate with each other synchronize their actions

Approaches to Inter Process Communication

- * Pipas
- * Shared memory
- * Massage Passils
- * Diract Communication
- * Message Quava
- * Indiract Communication
- * FIFO
- * Socket
- * File
- * Signal

Mutual Exclusion - 14 To generally required that only one process throad can enter the critical section at a time. This also helps in synchronization and creates a stable state to avoid the race condition

Race Condition. A situation that occurs when two or more proceeds acres and manipulate a shared resource concurrently, and the out-timing of their actions. Race Conditions can ladd to unpradictable and often incorrect

Critical Section - It is a code segment that accesses a shared resource and must be executed by only one process at a time to avoid race conditions.

The main goal of managing a critical section To to ensure dota integrity by allowing only one process to execute in that saction at a time I typically using mutual exclusion tachniques like samaphores or muters

Key Points

* Entry Saction

* ExTT Section

* Remainder Saction

- 4) Necessary Conditions For Deadlock
 - * Mutual Exclusion Atlacest one resource can be held in a non-sharable mode, meaning only one process can use it at a time.
- * Hold and wait Atlant one process must be holding atlant one resource and waiting to acquire additional resources held by other processes.
- * Mon Precomption Pasources cannot be forcibly taken away from a process holding them; they must be released voluntarity.
- * Circular Woit A set of processes must exist each of which is worting time for a resource held by the next process in set.

 Resource Graph model-

A Resource graph model is a directed graph that depicts the current state of resource allocation among processes.

Process Modes - Represent Process in System Resource Modes - Represent Resource in System.

- * Request Edge From a process noto to a resource note indicating that the process is requesting that the process is requesting the resource.
- * Assignment Edge. From a resource node to a process node, indicating that the resource has been allocated to the process.

Safe and Unsafe State

A System is That safe state if there exists a sequence of process executions that allows each process to finish without causing a deadlock dealesceptor deadlock. In other words, there exists a safe sequence of resource allocation and deallocation that a words feedback.

Key Pornts.

- * A System can be both safe and unsafe, depanding on the order of process execution
- * Deadlock avoidance and detection techniques are employed to prevent or detect ungates states.
 - * Resource allocation streategies, such as banker's algorithm, can be used to ansure system safely

Process	Arrival Time	Burst Time	Pronty
P1	0	8	7
P2 P3	2	9 /	1
PLI	3	5	4

Gant Chart

TAT = CT - AT WT = TAT - BT

Process	AT	BT	CT	TAT	WT
PI	0	8	8	8	0
65	1	Ч	12	11	7
P3	3	5	17	14	9
PH	2	9	26	24	5

Avarage Worthy Time = (0+7+9+15)/4

= 7.75

Avarage TAT = (8+11+14+24)/4=14.25

Pronty Chart Chartt

Process	AT	BT	CT	TAT	TW
PI	0	8	8	8	0
P3	2	q	17	15	6
PZ	1	4	21	20	16
PU	3	S	26	23	18

Avarage Watting Time = (0+6+16+181) 4=6

Avarage Turn Around Time = (8+15+20+23)14
= 16.5