Chapter 11 Homework

Mohibullah Meer

January 29, 2024

11.1.:

11.1a: Convert the binary numeral 111001 to decimal.

	2^5	2^4	2^3	2^2	2^1	2^{0}
$\#_2$	1	1	1	0	0	1
#10	32	16	8	0	0	1

$$111001_2 = 32_{10} + 16_{10} + 8_{10} + 1_{10}$$

$$111001_2 = 57_{10}$$

11.1b: Convert the decimal numeral 87 to binary.

#10	$\#_{10}/2$	R
87	0	1
43	1	1
21	2	1
10	3	0
5	4	1
2	5	0
1	6	1

$$87_{10} = 1010111_2$$

- 11.3.
- 11.3a:
- 11.3b:
- 11.3c:
- 11.3d:
- 11.3e:
- 11.5. Let $p \downarrow q$ denote the "nor" operator:
- 11.5a: Write the truth table for $p \downarrow q$.

p	q	$p \downarrow q$
F	F	T
F	Т	F
Т	F	F
T	Т	F

11.5b: Using only the \downarrow operator, write a formula equivalent to $\neg p$.

$$p \downarrow p \Leftrightarrow \neg p$$

p	$p \downarrow p$	$\neg p$
F	T	T
Т	F	F

11.5c: Show that \vee and \wedge can also be expressed using just the \downarrow operator.

$$(p\downarrow q)\downarrow (p\downarrow q)\Leftrightarrow p\vee q$$

p	q	$p \downarrow q$	$(p\downarrow q)\downarrow (p\downarrow q)$	$p \lor q$
F	F	T	F	F
F	Т	F	T	T
Т	F	F	T	T
Т	Т	F	T	T

$$(p\downarrow p)\downarrow (q\downarrow q)\Leftrightarrow p\wedge q$$

p	q	$p \downarrow p$	$q \downarrow q$	$(p\downarrow p)\downarrow (q\downarrow q)$	$p \wedge q$
F	F	Т	T	F	F
F	T	T	F	F	F
Т	F	F	T	F	F
T	Т	F	F	T	Т

11.7. Write the logical formulas for the values of Z_0 , Z_1 , and C_{out} of the two bit adder, in terms of the inputs X_0 , Y_0 , X_1 , and Y_1 .

$$Z_0 = X_0 \oplus Y_0$$

$$Z_1 = (X_0 \wedge Y_0) \oplus (X_1 \oplus Y_1)$$

$$C_{out} = (X_1 \wedge Y_1) \vee ((X_0 \wedge Y_0) \wedge (X_1 \vee Y_1))$$

X_0	Y_0	X_1	Y_1	Z_0	Z_1	C_{out}
F	F	F	F	F	F	F
F	F	F	T	F	T	F
F	F	T	F	F	T	F
F	F	T	Т	F	F	T
F	T	F	F	T	F	F
F	T	F	Т	T	T	F
F	T	T	F	T	Т	F
F	T	T	Т	T	F	T
T	F	F	F	T	F	F
T	F	F	Т	T	T	F
Т	F	T	F	T	T	F
T	F	T	Т	T	F	T
F F F F F T T T	F F F T T T F F F T T T T T	F F T F F T F F T T F F T T F T T F T T	F T F T F T F T F T F T F T	F F F T T T T T F F F	F T T F T T F T F T T F T T	F F F F F T T F F T T T T T T
T	Т	F	Т	F	F	T
T	Т	T	F	F	F	T
T	T	T	Т	F	Т	T

11.9. In terms of a 7-segment display:

11.9a: Write out the strokes that should be turned on to represent each of the remaining digits.

#	A	В	С	D	E	F	G
0	Т	T	T	F	T	T	T
3	Т	F	Т	T	F	Т	T
4	F	Т	Т	Т	F	Т	F
5	T	Т	F	Т	F	Т	T
6	T	Т	F	Т	Т	Т	T
7	Т	F	Т	F	F	Т	F
9	Т	Т	Т	Т	F	Т	T

11.9b: Write a truth table for the A segment and the binary representation of a number from 0-9.

2^3	2^2	2^1	2^0	A
F	F	F	F	Т
F	F	F	Т	F
F	F	Т	F	Т
F	F	Т	Т	Т
F	Т	F	F	F
F	Т	F	Т	Т
F	Т	Т	F	Т
F	Т	Т	Т	Т
Т	F	F	F	Т
Т	F	F	Т	Т

11.9c: Write a DNF formula for A based on the truth table from part (b).

$$(\neg p_0 \wedge \neg p_1 \wedge \neg p_2 \wedge \neg p_3) \vee (\neg p_0 \wedge \neg p_1 \wedge p_2 \wedge \neg p_3) \vee (\neg p_0 \wedge \neg p_1 \wedge p_2 \wedge p_3)$$

$$\vee (\neg p_0 \wedge p_1 \wedge \neg p_2 \wedge p_3) \vee (\neg p_0 \wedge p_1 \wedge p_2 \wedge \neg p_3) \vee (\neg p_0 \wedge p_1 \wedge p_2 \wedge p_3)$$

$$\vee (p_0 \wedge \neg p_1 \wedge \neg p_2 \wedge \neg p_3) \vee (p_0 \wedge \neg p_1 \wedge \neg p_2 \wedge p_3)$$

11.9d: Draw a logic circuit that implements the formula from part (c).

7-segment 0-9 display.

11.11. Regarding the Thue sequence:

- 11.11a: Prove that t_n is the exclusive or of the bits of the binary notation for n.
- 11.11b: Show that for every $n \ge 0$, $t_{2n} = t_n$, and t_{2n+1} is the complement of t_n .