

Meet the Team

Christos Chen

Jasmine Dogu

Brian Wimmer

TABLE OF CONTENTS

BACKGROUND

General Question & Objectives

HYPOTHESES

Formation

MODELING

Exploration & Tuning

VALUE

Organizational Benefit & Future Work

General Question

Will the SVM or the Random Forest Model Predict the Likelihood of a Person Getting the H1N1 Vaccine Better?

What is H1N1?

- Subtype of the Influenza A Virus
 - Orthomyxovirus containing the haemagglutinin and neuraminidase glycoproteins
- Symptoms high fever, sore throat, etc.
- Emerged in 2009 as a novel influenza A virus (Swine Flu)
- Originated in the United States
- More contagious, less existing resistance in the general population

Hypothesis

Null

The SVM Polynomial Kernel will not perform differently than the Random Forest Classifier Model with regards to its F1 Score

Alternative

The SVM Polynomial Kernel will perform differently than the Random Forest Classifier Model with regards to its F1 Score

Model Assessment Metrics

F1 Score: A harmonic mean of precision and recall.

Particularly effective:

- Intolerance for misclassification
- Imbalanced datasets

Kappa: Performance relative to a randomly-guessing classifier

Lasso Regression

Mean-Squared Error significantly minimized at lambda = 0.006919

Feature Reduction

- Removed non-contributing variables
 - 0.3 > Coefficients > -0.3

Reduced feature space to10 distinct variables

Support Vector Machine

Kernel	RMSE
Polynomial	0.401
Radial	0.417

Hyperparameter Tuning

Cost: The cost/penalty of misclassification

Gamma: How quickly the class boundaries dissipate as they get further from support vectors

Bias-Variance Tradeoff

	Large Gamma	Small Gamma	Large C	Small C
Variance	Low	High	High	Low
Bias	High	Low	Low	High

$$C = 8 \rightarrow Small C$$

Support Vector Machine

	Polynomial Kernel	Radial Kernel	Radial - Feature Reduced	Tuned Radial - Feature Reduced
F1 Score	0.1699	0.5483	0.5734	0.6768
Карра	0.1221	0.4529	0.4788	0.6064
Specificity	0.7832	0.8492	0.8564	0.8779
Sensitivity	0.8376	0.7302	0.7302	0.8778
Accuracy	0.784	0.8326	0.8375	0.8779

Random Forest

Original Dataset	ntree	mtry
Initial	200	5
Tuned	188	5

Feature Reduced Dataset	ntree	mtry
Initial	200	6
Tuned	104	6

Random Forest

	Random Forest	Tuned Random Forest	Random Forest - Feature Reduced	Tuned Random Forest - Feature Reduced
F1 Score	0.8670	0.8655	0.6646	0.6649
Карра	0.8303	0.8285	0.5860	0.5862
Specificity	0.9453	0.9444	0.8790	0.8791
Sensitivity	0.9298	0.9310	0.8122	0.8116
Accuracy	0.9422	0.9417	0.8682	0.8682

Model Comparison

	Tuned Radial SVM- Feature Reduced	Tuned Random Forest
F1 Score	0.6768	0.8655
Карра	0.6064	0.8285
Specificity	0.8779	0.9444
Sensitivity	0.8778	0.9310
Accuracy	0.8779	0.9417

Wilcoxon Rank-Sum Test

Main Assumption

Two small independent

samples compared

Result Details

W-value: 0

Mean Difference: -0.2 Sum of pos. ranks: 0 Sum of neg. ranks: 55

Z-value: -2.8031 Mean (*W*): 27.5

Standard Deviation (W): 9.81

Sample Size (N): 10

Tuned Radial SVM	Tuned Random Forest	
0.6768	0.8655	
0.6746	0.8725	
0.6672	0.8677	
0.6771	0.8686	
0.6780	0.8671	
0.6893	0.8658	
0.6683	0.8659	
0.6724	0.8680	
0.6712	0.8686	
0.6764	0.8697	

^{*}Non-parametric version of a Two-Sample T-Test

We Reject Our Null Hypothesis

The results are significant at p < 0.05

- The value of z is -2.8031.
- The *p*-value is .00512.

SVM vs. Random Forest

Support Vector Machine

- Scales well to high dimensional
- Classes are separable
- Generalization in practice to minimize overfitting
- Kernel trick
- Good for imbalanced data
- Highly efficient and accurate

Random Forest Classifier

- Works well with non-linear data
- Good for imbalanced data
- Reduced error
- High amounts of data
- Reduced risk of overfitting
- Non-parametric
- Fast/scalable
- Less parameter tuning

*Support Vector Machines work better with high dimensional data, which did not apply to our situation. Because of Random Forest Classifiers ability to work well with non-linear, imbalanced data (like our dataset), it may have performed better.

Potential Use Case

 Government-based Targeted Marketing Campaign to Encourage Individuals to get Vaccinated

- Assumptions:

- 500,000 People Outreach/Week
- Avg Revenue of H1N1 Vaccination is \$20
- Spend \$50 marketing to convince those who are believed to not want vaccine
- Spend \$5 marketing vaccine-related resources to those who are believed to want vaccine
- Population sampled in survey was reflective of U.S. population

Actual

Yes Vaccine		No Vacc	
\$	(15.00)	\$	5.00
\$	30.00	\$	50.00

Yes Vacc

Predictions No Vacc

2,570,000/week

In Cost Savings with our Random Forest Model

Future Analysis

Other Viruses

More **insight** into factors that make a person more/less likely to get a vaccine (ex. COVID-19)

Include Seasonal Data Develop **trends** between seasonal flu and H1N1 data and assist public health officials with running targeted campaigns

Decode Variables

Ability to **identify** encoded geographic, occupation, and employment industry data to access resources and infection risks

XGBoost

Expand & expound analysis to utilize XGBoost to cross-examine potential overfitting with random forest

Thank you!

Citations

https://towardsdatascience.com/support-vector-machine-simply-explained-fee28eba5496
https://towardsdatascience.com/a-quide-to-svm-parameter-tuning-8bfe6b8a452c
https://medium.com/analytics-vidhya/machine-learning-decision-trees-and-random-forest-classifiers-81422887a544
https://towardsdatascience.com/what-is-out-of-bag-oob-score-in-random-forest-a7fa23d710
ftp.cdc.qov/pub/Health_Statistics/NCHS/Dataset_Documentation/NIS/nhfs/nhfspuf_DUG.PDF
https://www.cdc.gov/h1n1flu/surveillanceqa.htm
https://towardsdatascience.com/simplifying-precision-recall-and-other-evaluation-metrics-d066b527c6bb
https://www.iihongzhang.org/post/2019-02-19-lasso-regression-with-glmnet/

Appendix A: Cost Calculations

Cost Matrix

Actual

 Yes Vaccine
 No Vacc

 \$ (15.00)
 \$ 5.00

 \$ 30.00
 \$ 50.00

Assumptions

\$5 expended if we think they want vaccine \$50 expended if we think they don't want vaccine \$20 Revenue if someone gets vaccine

Population Matrix

Predictions No Vacc

Predictions No Vacc

Assuming population reach of 500,000 /week

Actual

 Yes Vaccine
 No Vacc

 107069
 21425

 7931
 363575

People Base Rates

Yes Vacc

Yes Vacc

115,000 0.23

385,000 0.77 385000

Actual

SUM

Yes Vacc

115000

Positive Pred Rates

Predictions No Vacc

 Yes Vaccine
 No Vacc

 0.931034483
 0.05564996

 0.068965517
 0.94435004

1

Confusion Matrix

 Yes Vaccine
 No Vacc

 Yes Vacc
 1107
 262

 No Vacc
 82
 4446

COST SAVINGS

\$ 2,570,170 / week

Cost Matrix relative to Status Quo = "predictions that all people don't want the vaccine"

Actual Yes Vaccine No Vacc

 Yes Vace
 \$ (15.00)
 \$ (45.00)

 Predictions
 No Vacc
 \$ \$