REAL ANALYSIS II

Jaydeb Sarkar, notes by Ramdas Singh

Second Semester

List of Symbols

```
[a, b], the set of all real numbers x such that a \le x \le b.
```

 $\mathbb{N} = \{1, 2, \ldots\}$, the set of all natural numbers.

 \mathbb{Z}_+ , defined as $\mathbb{N} \cup \{0\}$.

 $\mathcal{B}[a,b]$, the set of all boundary functions defined as $\{f:[a,b]\to\mathbb{R}\}$. It is a vector space (also an algebra) over \mathbb{R} .

 $\mathcal{P}[a,b]$, the set of all partitions of the set [a,b].

 I_j , the j^{th} subinterval of [a, b], controlled by a partition set.

L(f, P), the lower Riemann sum for a function f and partition P.

U(f,P), the upper Riemann sum for a function f and partition P.

 $\int_a^b f,$ the lower Riemann integration for a function f.

 $\int_a^{\overline{b}} f,$ the upper Riemann integration for a function f.

 $\mathcal{R}[a,b]$, the set of all Riemann integrable functions over the set [a,b].

Contents

1	THE RIEMANN INTEGRAL					
	1.1 On The Path of Definitions	1				
Aı	ppendices	3				
A	A Appendix					
In	ndex	7				

Chapter 1

THE RIEMANN INTEGRAL

1.1 On The Path of Definitions

January 6th.

Definition 1.1. A partition of [a,b] are all the points $a = x_0 < x_1 < \ldots < x_n = b$. These points within are termed nodes, and there are n-1 of them. The set I_j , defined by $[x_{j-1}, x_j]$ denotes the jth subinterval.

Definition 1.2. If I = (a, b), [a, b], (a, b], [b, a), then the length of the interval I is denoted by b - a.

Denote by $\mathcal{P}[a,b]$, the set of all partition sets of [a,b]. For $P \in \mathcal{P}[a,b]$, with n-1 nodes, the length of [a,b] will be $|[a,b]| = \sum_{j=1}^n I_j$. We also note that for all $P, \tilde{P} \in \mathcal{P}[a,b], \ P \cup \tilde{P} \in \mathcal{P}[a,b]$. Note that here we consider n to be finite.

Example 1.3. The set $\{\frac{1}{n}\}_{n\geq 1} \cup \{0\}$ does not belong to the set of all partitions of the unit interval, $\mathcal{P}[0,1]$.

Let $f \in \mathcal{B}[a,b]$, and $P \in \mathcal{P}[a,b]$. Suppose P has the nodes $a=x_0 < x_1 < \ldots < x_n = b$. For all $j=1,\ldots n$, define $m_j=\inf_{x\in I_j}f(x)$ and $M_j=\sup_{x\in I_j}f(x)$. Finally, denote by m the value of $\inf_{x\in [a,b]}f(x)$ and M to be $\sup_{x\in [a,b]}f(x)$. These are all real values.

Note that for all valid $j, m \leq m_j \leq M_j \leq M$ always holds. This must mean that

$$m |I_{j}| \le m_{j} |I_{j}| \le M_{j} |I_{j}| \le M |I_{j}|$$

$$m(b-a) \le \sum_{j=1}^{n} m_{j} |I_{j}| \le \sum_{j=1}^{n} M_{j} |I_{j}| \le M(b-a).$$
(1.1)

Definition 1.4. Let $f \in \mathcal{B}[a,b]$. For P $(a=x_0,x_1,\ldots,x_n=b) \in \mathcal{P}[a,b]$, the lower Riemann sum and the upper Riemann sum are defined as

$$L(f,P) = \sum_{j=1}^{n} m_j |I_j| \text{ and } U(f,P) = \sum_{j=1}^{n} M_j |I_j|,$$
(1.2)

respectively. Thus, $m(b-a) \leq L(f,P) \leq U(f,P) \leq M(b-a) \ \forall \ P \in \mathcal{P}[a,b].$

Remark 1.5. Clearly, $L(f, P), U(f, P) \in \mathbb{R}$ for all paritions $P \in \mathcal{P}[a, b]$ and all boundary functions $f \in \mathcal{B}[a, b]$. In fact, $L(f, P), U(f, P) \in [m(b - a), M(b - a)]$.

Definition 1.6. For $f \in \mathcal{B}[a,b]$, the lower Riemann integration is defined as

$$\int_{a}^{b} f = \sup\{L(f, P) | P \in \mathcal{P}[a, b]\}. \tag{1.3}$$

Subsequently, the *upper Riemann integration* is defined as

$$\int_{a}^{\overline{b}} f = \inf\{U(f, P) | P \in \mathcal{P}[a, b]\}. \tag{1.4}$$

Remark 1.7. Note that both $\int_{\underline{a}}^{b} f$ and $\int_{a}^{\overline{b}} f$ belong to the set [m(b-a), M(b-a)].

Definition 1.8. A function $f \in \mathcal{B}[a,b]$ is *Riemann integrable* if the lower and the upper Riemann integration are equal, that is, $\int_{\underline{a}}^{b} f = \int_{a}^{\overline{b}} f$. We denote this value by $\int_{a}^{b} f$, and call it the integration of f over [a,b]. We then say that $f \in \mathcal{R}[a,b]$.

Appendices

Chapter A

Appendix

Extra content goes here.

Appendix

Index

length of the interval, 1 lower Riemann integration, 1 lower Riemann sum, 1

nodes, 1

partition, 1

Riemann integrable, 2

upper Riemann integration, 1 upper Riemann sum, 1