Lecture 4

Chapter-02

Discrete-Event System Simulation -Jerry Banks

Simulation of Queuing System

Single channel Queue

Example: Single-Channel Queue

Assumptions

- Only one checkout counter.
- Customers arrive at this checkout counter at random from 1 to 8 minutes apart. Each possible value of interarrival time has the same probability of occurrence, as shown in Table 2.6.
- The service times vary from 1 to 6 minutes with the probabilities shown in Table 2.7.
- The problem is to analyze the system by simulating the arrival and service of 20 customers.

Table 2.6 Distribution of Time Between Arrivals

Time between Arrivals	D 1 122	Cumulative	Random-Digit
(Minutes)	Probability	Probability	Assignment
1	0.125	0.125	001 - 125
2	0.125	0.250	126 - 250
3	0.125	0.375	251 - 375
4	0.125	0.500	376-500
5	0.125	0.625	501-625
6	0.125	0.750	626 - 750
7	0.125	0.875	751 -875
8	0.125	1.000	876-000

Table 2.7 Service-Time Distribution

Service Time (Minutes)	Probability	Cumulative Probability	Random-Digit Assignment
1	0.10	0.10	01-10
2	0.20	0.30	11-30
3	0.30	0.60	31-60
4	0.25	0.85	61-85
5	0.10	0.95	86-95
6	0.05	1.00	96-00

Set of Random Digits

RD for IAT:	0, 913, 727, 15, 948, 309, 922, 753, 235, 302, 109, 93, 607, 738, 359, 888, 106, 212, 493, 535
RD for ST:	84, 10, 74, 53, 17, 79, 91, 67, 89, 38, 32, 94, 79, 5, 79, 84, 52, 55, 30, 50

Student	RD for Arrival	Inter Arrival Time	Arrival Time	RD for Service	Service Time	Service Begin	Service End	Wait In Queue	Service Idle Time	Time Spend in System
1	0	0	0	84	4	0	4	0	0	4
2	913	8	8	10	1	8	9	0	4	1
3	727	6	14	74	4	14	18	0	5	4
4	15	1	15	53	3	18	21	3	0	6
5	948	8	23	17	2	23	25	0	2	2
6	309	3	26	79	4	26	30	0	1	4
7	922	8	34	91	5	34	39	0	4	5
8	753	7	41	67	4	41	45	0	2	4
9	235	2	43	89	5	45	50	2	0	7
10	302	3	4 6	38	3	50	53	4	0	7
11	109	1	47	32	3	53	56	6	0	9
12	93	1	48	94	5	56	61	8	0	13
13	607	5	53	79	4	61	65	8	0	12
14	738	6	59	5	1	65	66	6	0	7
15	359	3	62	79	5	66	71	4	0	9
16	888	8	70	84	4	71	75	1	0	5
17	106	1	71	52	3	75	78	4	0	7
18	212	2	73	55	3	78	81	5	0	8
19	493	4	77	30	2	81	83	4	0	6
20	535	5	82	50	3	83	86	1	0	4
Total		82			68			56	18	124

- Example (Cont.)
 - The average waiting time for a customer : 2.8 minutes

average waiting time =
$$\frac{total\ time\ customers\ wait\ in\ queue}{total\ numbers\ of\ customers} = \frac{56}{20} = 2.8\ (min)$$

■ The probability that a customer has to wait in the queue : 0.65

$$probability (wait) = \frac{number of \ customers \ who \ wait}{total \ numbers \ of \ customers} = \frac{13}{20} = 0.65$$

■ The fraction of idle time of the server : 0.21

probability of idle server =
$$\frac{total\ idle\ time\ of\ server}{total\ run\ time\ of\ simulation} = \frac{18}{86} = 0.21$$

• The probability of the server being busy: 0.79 = 1-0.21

- Example (Cont.)
 - The average service time : 3.4 minutes

average service time =
$$\frac{total\ service\ time}{total\ numbers\ of\ customers} = \frac{68}{20} = 3.4\ (min)$$

This result can be compared with the expected service time by finding the mean of the service-time distribution using the equation in table 2.7.

$$E(S) = \sum_{s=0}^{\infty} sp(s)$$

$$E(S) = 1(0.10) + 2(0.20) + 3(0.30) + 4(0.25) + 5(0.10) + 6(0.05) = 3.2$$
(min)

The expected service time is slightly lower than the average service time in the simulation. The longer the simulation, the closer the average will be to E(S)

- Example (Cont.)
 - The average time between arrivals : 4.3 minutes

average time between arrivals =
$$\frac{sum\ of\ all\ times\ between\ arrivals}{numbers\ of\ arrivals-1} = \frac{82}{19} = 4.3\ (min)$$

■ This result can be compared to the expected time between arrivals by finding the mean of the discrete uniform distribution whose endpoints are a=1 and b=8.

$$E(A) = \frac{a+b}{2} = \frac{1+8}{2} = 4.5 \text{ (min)}$$

The longer the simulation, the closer the average will be to E(A)

■ The average waiting time of those who actually wait in the queue

average waiting time of those who wait = $\frac{total\ time\ customers\ wait\ in\ queue}{total\ numbers\ of\ customers\ who\ wiat} = \frac{56}{13} = 4.3\ (min)$

- Example (Cont.)
 - The average time a customer spends in the system : 6.2 minutes

average time customer spends in the system =
$$\frac{total\ time\ customers\ spend\ in\ system}{total\ numbers\ of\ customers} = \frac{124}{20} = 6.2\ (min)$$

```
average time average time average time

customer spends = customer spends + customer spends

in the system waiting in the queue in service
```

 \therefore average time customer spends in the system = 2.8 + 3.4 = 6.2 (min)

Example: The Able Baker Carhop Problem

- A drive-in restaurant where carhops take orders and bring food to the car.
- Assumptions
 - Cars arrive in the manner shown in Table 2.11.
 - Two carhops Able and Baker Able is better able to do the job and works a bit faster than Baker.
 - The distribution of their service times is shown in Tables 2.12 and 2.13.

Example: (Cont.)

- A simplifying rule is that Able gets the customer if both carhops are idle.
- If both are busy, the customer begins service with the first server to become free.
- To estimate the system measures of performance, a simulation of 1 hour of operation is made.
- The problem is to find how well the current arrangement is working.

Table 2.11 Interarrival Distribution of Cars

Time between Arrivals (Minutes)	Probability	Cumulative Probability	Random-Digit Assignment
1	0.25	0.25	01 - 25
2	0.40	0.65	26-65
3	0.20	0.85	66-85
4	0.15	1.00	86-00

Table 2.12 Service Distribution of Able

Service Time		Cumulative	Random-Digit
(Minutes)	Probability	Probability	Assignment
2	0.30	0.30	01-30
3	0.28	0.58	31 - 58
4	0.25	0.83	59-83
5	0.17	1.00	84-00

Table 2.13 Service Distribution of Baker

Service Time		Cumulative	Random-Digit
(Minutes)	Probability	Probability	Assignment
3	0.35	0.35	01-35
4	0.25	0.60	36-60
5	0.20	0.80	61-80
6	0.20	1.00	81-00

Table 2.14 Simulation Table for Carhop Example

Α	В	C	D	E	F	G	Н	I	J	K	L
						Able			Baker		
Customer	Random Digits	Time between	Clock Time	Random Digits	Time Service	Service	Time Service	Time Service	Service	Time Service	Time in
No.	for Arrival	Arrivals	of Arrival	for Service	Begins	Time	Ends	Begins	Time	Ends	Queue
1	_	-	0	95	0	5	5				0
2	26	2	2	21				2	3	5	0
3	98	4	6	51	6	3	9				0
4	90	4	10	92	10	5	15				0
5	26	2	12	89				12	6	18	0
6	42	2	14	38	15	3	18				1
7	74	3	17	13	18	2	20				1
8	80	3	20	61	20	4	24				0
9	68	3	23	50				23	4	27	0
10	22	1	24	49	24	3	27				O
11	48	2	26	39	27	3	30				1
12	34	2	28	53				28	4	32	0
13	45	2	30	88	30	5	35				0
14	24	1	31	01				32	3	35	1
15	34	2	33	81	35	4	39				2
16	63	2	35	53				35	4	39	0
17	38	2	37	81	39	4	43				2
18	80	3	40	64				40	5	45	0
19	42	2	42	01	43	2	45				1
20	56	2	44	67	45	4	49				1
21	89	4	48	01				48	3	51	0
22	18	1	49	47	49	3	52				O
23	51	2	51	75				51	5	56	0
24	71	3	54	57	54	3	57				0
25	16	1	55	87				56	6	62	1
26	92	4	59	47	59	3 56	62				0
						56			43		11

- Example 2.2 (cont.)
 - The row for the first customer is filled in manually, with the random-number function RAND() in case of Excel or another random function replacing the random digits.
 - After the first customer, the cells for the other customers must be based on logic and formulas. For example, the "Clock Time of Arrival" (column D) in the row for the second customer is computed as follows:

$$D2 = D1 + C2$$

■ The logic to computer who gets a given customer can use the Excel macro function IF(), which returns one of two values depending on whether a condition is true or false.

IF(condition, value if true, value if false)

- The analysis of Table 2.14 results in the following:
 - Over the 62-minute period Able was busy 90% of the time.
 - Baker was busy only 69% of the time. The seniority rule keeps Baker less busy (and gives Able more tips).
 - Nine of the 26 arrivals (about 35%) had to wait. The average waiting time for all customers was only about 0.42 minute (25 seconds), which is very small.
 - Those nine who did have to wait only waited an average of 1.22 minutes, which is quite low.
 - In summary, this system seems well balanced. One server cannot handle all the diners, and three servers would probably be too many. Adding an additional server would surely reduce the waiting time to nearly zero. However, the cost of waiting would have to be quite high to justify an additional server.