Chapter 3 Arithmétique des entiers

Exercice 1 (3.0)

- 1. Énoncer le théorème de Bézout dans Z.
- 2. Soit a et b deux entiers naturels premiers entre eux.

Soit $c \in \mathbb{N}$.

Prouver que: $(a|c \text{ et } b|c) \iff ab|c$.

- 3. On considère le système (S): $\begin{cases} x \equiv 6 & [17] \\ x \equiv 4 & [15] \end{cases}$ dans lequel l'inconnue x appartient à \mathbb{Z} .
 - (a) Déterminer une solution particulière x_0 de (S) dans \mathbb{Z} .
 - (b) Déduire des questions précédentes la résolution dans \mathbb{Z} du système (S).

Solution 1 (3.0)

1. Théorème de Bézout:

Soit $(a, b) \in \mathbb{Z}^2$.

$$a \wedge b = 1 \iff \exists (u, v) \in \mathbb{Z}^2 / au + bv = 1.$$

2. Soit $(a, b) \in \mathbb{N}^2$. On suppose que $a \wedge b = 1$. Soit $c \in \mathbb{N}$.

Prouvons que $ab|c \Longrightarrow a|c \text{ et } b|c$.

Si ab|c alors $\exists k \in \mathbb{Z} / c = kab$.

Alors, c = (kb)a donc a|c et c = (ka)b donc b|c.

Prouvons que $(a|c \text{ et } b|c) \Longrightarrow ab|c$.

$$a \wedge b = 1 \text{ donc } \exists (u, v) \in \mathbb{Z}^2 / au + bv = 1.$$
 (1)

De plus a|c donc $\exists k_1 \in \mathbb{Z} / c = k_1 a$. (2)

De même, b|c donc $\exists k_2 \in \mathbb{Z} / c = k_2 b$. (3)

On multiplie (1) par c et on obtient cau + cbv = c.

Alors, d'après (2) et (3), $(k_2b)au + (k_1a)bv = c$, donc $(k_2u + k_1v)(ab) = c$ et donc ab|c.

On a donc prouvé que $(a|c \text{ et } b|c) \iff ab|c$.

3. (a) Première méthode (méthode générale):

Soit $x \in \mathbb{Z}$.

$$x \text{ solution de}(S) \iff \exists (k, k') \in \mathbb{Z}^2 \text{ tel que } \begin{cases} x = 6 + 17k \\ x = 4 + 15k' \end{cases}$$

$$\iff \exists (k, k') \in \mathbb{Z}^2 \text{ tel que } \begin{cases} x = 6 + 17k \\ x = 6 + 17k \\ 6 + 17k = 4 + 15k' \end{cases}$$

Or
$$6 + 17k = 4 + 15k' \iff 15k' - 17k = 2$$
.

Pour déterminer une solution particulière x_0 de (S), il suffit donc de trouver une solution particulière (k_0, k_0') de l'équation 15k' - 17k = 2.

Pour cela, cherchons d'abord, une solution de l'équation 15u + 17v = 1.

17 et 15 sont premiers entre eux.

Déterminons alors un couple (u_0, v_0) d'entiers relatifs tel que $15u_0 + 17v_0 = 1$.

On a: $17 = 15 \times 1 + 2$ puis $15 = 7 \times 2 + 1$.

Alors
$$1 = 15 - 7 \times 2 = 15 - 7 \times (17 - 15 \times 1) = 15 - 17 \times 7 + 15 \times 7 = 15 \times 8 - 17 \times 7$$

Donc
$$8 \times 15 + (-7) \times 17 = 1$$

Ainsi, $16 \times 15 + (-14) \times 17 = 2$.

On peut prendre alors $k'_0 = 16$ et $k_0 = 14$.

Ainsi, $x_0 = 6 + 17 \times k_0 = 6 + 17 \times 14 = 244$ est une solution particulière de (S).

Deuxième méthode:

En observant le système (S), on peut remarquer que $x_0 = -11$ est une solution particulière. Cette méthode est évidemment plus rapide mais ne fonctionne pas toujours.

(b)
$$x_0$$
 solution particulière de (S) donc
$$\begin{cases} x_0 = 6 & [17] \\ x_0 = 4 & [15] \end{cases}$$
.

On en déduit que
$$x$$
 solution de (S) si et seulement si $\begin{cases} x - x_0 = 0 & [17] \\ x - x_0 = 0 & [15] \end{cases}$

c'est-à-dire
$$x$$
 solution de $(S) \iff (17|x - x_0 \text{ et } 15|x - x_0)$.

Or
$$17 \wedge 15 = 1$$
 donc d'après 2., x solution de (S) \iff $(17 \times 15)|x - x_0$.

Donc l'ensemble des solutions de
$$(S)$$
 est $\{x_0 + 17 \times 15k, k \in \mathbb{Z}\} = \{244 + 255k, k \in \mathbb{Z}\}.$

Exercice 2 (3.1)

Démontrer que pour tout $n \in \mathbb{N}$, 7 divise $3^{6n} - 6^{2n}$.

Solution 2 (3.1)

On peut effectuer une récurrence sur $n \in \mathbb{N}$. En effet, 7 divise $0 = 3^0 - 6^0$.

Soit $n \in \mathbb{N}$. Supposons que 7 divise $3^{6n} - 6^{2n}$, c'est-à-dire qu'il existe $k \in \mathbb{Z}$ tel que

$$3^{6n} - 6^{2n} = 7k.$$

Ainsi $3^{6n} = 6^{2n} + 7k$, d'où

$$3^{6n+6} - 6^{2n+2} = 3^6(6^{2n} + 7k) - 6^{2n+2} = 6^{2n}(3^6 - 6^2) + 7k \times 3^6 = 7\left(99 \times 6^{2n} + 3^6k\right).$$

Ainsi, 7 divise $3^{6n+6} - 6^{2n+2}$.

On en déduit le résultat par récurrence.

Variante. En utilisant les opération modulo 7:

$$3^3 = 27 \equiv -1 \pmod{7}$$
 donc $3^6 \equiv (-1)^2 \equiv 1 \pmod{7}$

de même

$$6^2 = 36 \equiv 1 \pmod{7}$$
.

Ainsi, pour $n \in \mathbb{N}$,

$$3^{6n} - 6^{2n} \equiv 1^n - 1^n \equiv 0 \pmod{7},$$

c'est-à-dire que 7 divise $3^{6n} - 6^{2n}$.

Exercice 3 (3.1)

Les nombres a, b, c, d étant des éléments non nuls de \mathbb{Z} , dire si les propriétés suivantes sont vraies ou fausses, en justifiant la réponse.

- 1. Si a divise b et c, alors $c^2 2b$ est multiple de a.
- **2.** Si a divise b + c et b c, alors a divise b et a divise c.
- 3. Si a est multiple de b et si c est multiple de d, alors a + c est multiple de b + d.
- **4.** Si 4 ne divise pas bc, alors b ou c est impair.
- 5. Si a divise b et b ne divise pas c, alors a ne divise pas c.

Solution 3 (3.1)

- 1. Vrai. Si a divise b et c, alors a divise 2b et $c \times c$ et donc divise $c^2 2b$.
- **2.** Faux. On peut montrer que a divise 2b et 2c, ce qui suggère un contre exemple avec a = 2. On a bien a = 2 qui divise 8 = 5 + 3 et divise 2 = 5 3 et pourtant 2 ne divise pas 5 (ni 3 d'ailleurs).
- **3.** Faux. $4 = 2 \times 3$ et $35 = 5 \times 7$ et 4 + 35 = 39 n'est pas multiple de 3 + 7 = 10.
- **4.** Vrai. On montre facilement la contraposée. Si b et c sont pairs, alors $2 \mid b$ et $2 \mid c$, donc $4 = 2 \times 2 \mid bc$.
- 5. Faux. a = 2 divise b = 6 et 6 ne divise pas c = 10 et on a bien 2 | 10.

Exercice 4 (3.1)

Déterminer l'ensemble E des $n \in \mathbb{Z}$ tels que $n^2 + 7 \mid n^3 + 5$.

Solution 4 (3.1)

Exercice 5 (3.1)

Sachant que l'on a $96842 = 256 \times 375 + 842$, déterminer, sans faire la division, le reste de la division du nombre 96842 par chacun des nombres 256 et 375.

Solution 5 (3.1)

On a $842 = 256 \times 3 + 74$, d'où

$$96842 = 256 \times 375 + 256 \times 3 + 74 = 256 \times 378 + 74$$
 et $0 \le 74 < 256$.

Le quotient et le reste de la division euclidienne de 96842 par 256 sont respectivement 378 et 74. De manière analogue, on On a $842 = 2 \times 375 + 92$, d'où

$$96842 = 256 \times 375 + 2 \times 375 + 92 = 258 \times 375 + 92$$
 et $0 \le 92 < 375$.

Le quotient et le reste de la division euclidienne de 96842 par 375 sont respectivement 258 et 92.

Exercice 6 (3.2)

Résoudre l'équation xy + 6x - 3y = 40 d'inconnue $(x, y) \in \mathbb{Z}^2$.

Solution 6 (3.2)

Pour $(x, y) \in \mathbb{Z}^2$,

$$xy + 6x - 3y = 40 \iff (x - 3)(y + 6) + 18 = 40 \iff (x - 3)(y + 6) = 22.$$

Or l'ensemble des diviseurs (dans \mathbb{Z}) de 22 sont { $\pm 1, \pm 2, \pm 11, \pm 22$ }. On distingue ainsi huit cas:

$$x-3 = 1$$
 et $y+6 = 22 \iff x = 4$ et $y = 16$
 $x-3 = 2$ et $y+6 = 11 \iff x = 5$ et $y = 5$
 $x-3 = 11$ et $y+6 = 2 \iff x = 14$ et $y = -4$
 $x-3 = 22$ et $y+6 = 1 \iff x = 25$ et $y = -5$
 $x-3 = -1$ et $y+6 = -22 \iff x = 2$ et $y = -28$
 $x-3 = -2$ et $y+6 = -11 \iff x = 1$ et $y = -17$
 $x-3 = -11$ et $y+6 = -2 \iff x = -8$ et $y = -8$
 $x-3 = -22$ et $y+6 = -1 \iff x = -19$ et $y = -7$

L'ensemble des solutions de l'équation xy + 6x - 3y = 40 est

$$\{(4,16),(5,5),(14,-4),(25,-5),(2,-28),(1,-17),(-8,-8),(-19,-7)\}.$$

Exercice 7 (3.3)

Calculer pgcd(424, 68) par l'algorithme d'Euclide.

Solution 7 (3.3)

On a successivement

$$424 = 6 \times 68 + 16$$
 donc 424 mod $68 = 16$
 $68 = 4 \times 16 + 4$ donc 68 mod $16 = 4$
 $16 = 4 \times 4 + 0$ donc 16 mod $4 = 0$.

Ainsi pgcd(424, 68) = 4.

Exercice 8 (3.3)

Soit $n \in \mathbb{N}$. Déterminer, en discutant éventuellement suivant les valeurs de n, le pgcd des entiers suivants.

$$A = 9n^2 + 10n + 1$$
 et $B = 9n^2 + 8n - 1$.

Solution 8 (3.3)

$$pgcd(A, B) = pgcd(A - B, B) = pgcd(2n + 2, 9n^2 + 8n - 1).$$

En remarquant que $9n^2 + 8n - 1 = (n+1)(9n-1)$, on a donc

$$pgcd(A, B) = pgcd(2(n+1), (n+1)(9n-1)) = (n+1)pgcd(2, 9n-1) = (n+1)pgcd(2, n-1)$$

puisque 9n - 1 = 2(4n) + n - 1. Finalement

$$pgcd(A, B) = \begin{cases} 2(n+1) & : n \text{ impair} \\ (n+1) & : n \text{ pair} \end{cases}$$

Exercice 9 (3.3)

On considère l'équation (E): 26x + 15y = 1 dans laquelle les inconnues x et y sont des entiers relatifs.

- 1. Écrire l'algorithme d'Euclide pour les nombres 26 et 15.
- **2.** En déduire une solution particulière de (E) puis l'ensemble des solutions de (E).
- 3. Utiliser ce qui précède pour résoudre l'équation 26x + 15y = 4.

Solution 9 (3.3)

1. On a

$$26 = 1 \times 15 + 11$$
 $15 = 1 \times 11 + 4$ $11 = 2 \times 4 + 3$ $4 = 1 \times 3 + 1$ $3 = 3 \times 1 + 0$.

Donc pgcd(26, 15) = 1.

2. On remonte les calculs précédents:

$$1 = 4 - 1 \times 3$$
 = $3 \times 4 - 1 \times 11 ::3$ = $11 - 2 \times 4$
= $3 \times 15 - 4 \times 11$:: $4 = 15 - 1 \times 11$
= $7 \times 15 - 4 \times 26$:: $11 = 26 - 1 \times 15$

D'où la solution particulière $(x_0, y_0) = (-4, 7)$.

On a donc

$$26x + 15y = 1 \iff 26x + 15y = 26 \times (-4) + 15 \times 7 \iff 26(x + 4) = -15(y - 7)$$

Or $15 = 3 \times 5$ est premier avec 26, donc 3 et 5 n'apparaissent pas dans la décomposition en facteurs premiers de 26. On en déduit que 15 divise x + 4 dons l'équation précédente. Plus précisement, en posant x + 4 = 15m ($m \in \mathbb{Z}$), nous avons y - 7 = -26m.

Nous pouvons alors vérifier que l'ensemble des solutions de (E) est l'ensemble des couples

$$(15m-4, -26m+7)$$
 lorsque m décrit \mathbb{Z} .

3. Une solution particulière de 26x + 15y = 4 est $(x_0, y_0) = (-16, 28)$. Un raisonnement analogue au précédent donne tous les couples de solutions (15m - 16, -26m + 28), où $m \in \mathbb{Z}$.

Exercice 10 (3.3)

Les nombres a, b étant des éléments non nuls de \mathbb{Z} , dire si les propriétés suivantes sont vraies ou fausses, en justifiant la réponse.

- **1.** Si 19 divise *ab*, alors 19 divise *a* ou 19 divise *b*.
- **2.** Si 91 divise *ab*, alors 91 divise *a* ou 91 divise *b*.
- 3. Si 5 divise b^2 , alors 25 divise b^2 .
- **4.** Si 12 divise b^2 , alors 4 divise b.
- 5. Si 12 divise b^2 , alors 36 divise b^2 .

Solution 10 (3.3)

- 1. Vrai. 19 est un nombre premier : c'est le lemme d'Euclide.
- **2.** Faux. $91 = 7 \times 13$ n'est pas premier. Avec a = 7 et b = 13, on a bien 91|ab mais 91 ne divise ne a, ni b.
- 3. Vrai. 5 est premier et $5|b \times b$, donc (lemme d'Euclide) 5|b, d'où $25|b^2$.
- **4.** Faux. Avec b = 6, on a bien $12|b^2$ mais 4 ne divise pas $b^2 = 36$.
- **5.** On écrit la décompostion en facteur premiers de *b*:

$$b = 2^u 3^v p_1^{\alpha_1} \dots p_r^{\alpha_r}$$

où 2, 3, p_1, \ldots, p_r sont des nombre premiers distincts, $u \in \mathbb{N}$, $v \in \mathbb{N}$ (donc éventuellement nuls), $\alpha_i \in \mathbb{N}^*$. On a donc

$$b^2 = 2^{2u} 3^{2v} p_1^{2\alpha_1} \dots p_r^{2\alpha_r}$$

Si $12|b^2$ alors $2|b^2$ et $3|b^2$, donc $2u \ge 1$ et $2v \ge 1$, et puisque $v \in \mathbb{N}$, $2v \ge 2$, donc $12 = 2^1 \times 3^2|b^2$.

Exercice 11 (3.3)

Résoudre dans \mathbb{Z}^2 les équations

- **1.** 1260x + 294y = 3814.
- **2.** 1260x + 294y = 2814.

Solution 11 (3.3)

Exercice 12 (3.4)

Combien 15! admet-il de diviseurs positifs?

Solution 12 (3.4)

On écrit la décompostion en facteurs premiers de 15!:

$$15! = 2 \times 3 \times 4 \times 5 \times 6 \times 7 \times 8 \times 9 \times 10 \times 11 \times 12 \times 13 \times 14 \times 15$$

$$= 2 \times 3 \times 2^{2} \times 5 \times 2 \times 3 \times 7 \times 2^{3} \times 3^{2} \times 2 \times 5 \times 11 \times 2^{2} \times 3 \times 13 \times 2 \times 7 \times 3 \times 5$$

$$= 2^{11}3^{6}5^{3}7^{2}11^{1}13^{1}.$$

Les diviseurs positifs de 15! sont donc les entiers de la forme

$$2^{a}3^{b}5^{c}7^{d}11^{e}13^{f} \quad \text{avec} \quad \begin{cases} 0 \le a \le 11 \\ 0 \le b \le 6 \\ 0 \le c \le 3 \\ 0 \le d \le 2 \\ 0 \le e \le 1 \\ 0 \le f \le 1 \end{cases}$$

If y en a donc $12 \cdot 7 \cdot 4 \cdot 3 \cdot 2 \cdot 2 = 4032$.

Exercice 13 (3.5)

Calculer 2000^{2000} modulo 7 et 2^{500} modulo 3.

Solution 13 (3.5)

On a $2000 = 285 \times 7 + 5$, d'où

$$2000 \equiv 5 \pmod{7}$$

 $2000^2 \equiv 5^2 \equiv 25 \equiv 4 \pmod{7}$
 $2000^3 \equiv 5 \times 4 \equiv 20 \equiv 6 \pmod{7}$
 $2000^4 \equiv 5 \times 6 \equiv 30 \equiv 2 \pmod{7}$
 $2000^5 \equiv 5 \times 2 \equiv 10 \equiv 3 \pmod{7}$
 $2000^6 \equiv 5 \times 3 \equiv 15 \equiv 1 \pmod{7}$

De plus, $2000 = 333 \times 6 + 2$, d'où

$$2000^{2000} = 2000^{333 \times 6 + 2} = (2000^{6})^{333} \times 2000^{2} \equiv 1^{333} 4 \pmod{7} \equiv 4 \pmod{7}.$$

De manière analogue, on trouve $2^2 \equiv 1 \pmod{3}$, d'où

$$2^{500} = (2^2)^{250} \equiv 1^{250} \equiv 1 \pmod{3}.$$

Exercice 14 (3.5)

Quel est le reste de la division euclidienne de 3^{2022} par 11.

Solution 14 (3.5)

On a successivement,

$$3 \equiv 3 \pmod{11}$$
 $3^2 \equiv 9 \pmod{11}$ $3^3 \equiv 5 \pmod{11}$ $3^4 \equiv 4 \pmod{11}$ $3^5 \equiv 1 \pmod{11}$.

De plus, $2015 = 403 \times 5$, d'où

$$3^{2015} = (3^5)^{403} \equiv 1^{403} \equiv 1 \pmod{11}.$$

Exercice 15 (3.5)

15 pirates chinois se partagent un butin constitué de pièces d'or. Mais une fois le partage (équitable) effectué, il reste 3 pièces. Que va-t-on en faire ? La discussion s'anime. Bilan : 8 morts. Les 7 survivants recommencent le partage, et il reste cette fois ci 2 pièce ! Nouvelle bagarre à l'issue de laquelle il ne reste que 4 pirates. Heureusement, ils peuvent cette fois ci se partager les pièces sans qu'il n'en reste aucune.

Sachant que 32 Tsing-Tao (bière chinoise) coûtent une pièce d'or, combien (au minimum) de Tsing-Tao pourra boire chaque survivant ?

Solution 15 (3.5)

Exercice 16 (3.5)

Déterminer les nombres entiers x tels que $x^2 - 2x + 2$ soit divisible par 17.

Solution 16 (3.5)

Résumons sous forme de tableau

x mod 17	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
$x^2 \mod 17$	0	1	4	9	16	8	2	15	13	13	15	2	8	16	9	4	1
$x^2 - 2x + 2 \mod 17$	2	1	2	5	10	0	9	3	16	14	14	16	3	9	0	10	5

Ainsi $x^2 - 2x + 2$ est divisible par 17 si, et seulement si

$$x \equiv 5 \pmod{17}$$
 ou $x \equiv 14 \pmod{17}$.

Exercice 17 (3.5)

Soient $a \in \mathbb{N}^*$ et N le nombre de diviseurs positifs de a. Déterminer une condition nécessaire et suffisante portant uniquement sur N pour que a soit un carré parfait.

Solution 17 (3.5)

N impair.