File path

Description of the files

Each target contains 4 folders: () (Each folder contains N files with the same filename as the original SAR chip [1], representing N SAR images of the same target with different azimuths.)

1. ASCM FEATURE

File type: .mat file

Contents: ASCM_feature matrix, the size is $8 \times N_{ASC}$, N_{ASC} is the number of the extracted attributed scattering centers. 8 rows are eight parameters of a extracted ASC.

	1	2	3	4	5
1	475.1661	511.8209	415.1195	398.4049	284.9318
2	0.6171	-0.7658	-3.0671	-3.0935	1.3283
3	-2.5900	-0.5500	-1.4500	-2.1100	1.2500
4	1.3100	-0.4300	3.3500	0.7100	-2.7100
5	1	0	0	0	1
6	1.0000e-11	1.0000e-11	1.0000e-11	1.0000e-11	1.0000e-11
7	0.1500	0.1300	0.2300	0.1300	0.2300
8	0.0056	-0.0020	0.0066	-0.0020	0.0086

Figure 1. Example of an ASCM_feature matrix contained in a single file in the folder named ASCM_FEATURE

8 rows are: abs(A), angle(A), x, y, α , γ , L, $\overline{\varphi}$, respectively.

2. original img

File type: .jpeg file

Contents: Raw SAR images that have been de-zero and de-widow in the original

MSTAR dataset, See Table 1 and Table 2 for the detailed image size.

3. reconstruct img

File type: .jpeg file

Contents: Reconstructed SAR image based on extracted ASCM_feature parameters, with de-zero and de-window, See Table 1 and Table 2 for the detailed image size.

4. scattering field

File type: .mat file

Contents: phdata_org, complex double matrix, frequency domain data converted from original SAR data after de-zero and de-window. The size is m×n, row m is the frequency dimension, column n is the azimuth dimension. The phdata_org can be used as the input of the sparse representation method in frequency domain.

Table 1. Six type of scattering center

Туре	Icon	Distributed/Local	L	α
Plate		Distributed	l	0
Dihedral		Distributed	l	1
Trihedral	•	Local	0	1
Cylinder		Distributed	l	1/2
Tophat		Local	0	1/2
Sphere	•	Local	0	0

^{*} In practice, when the parameter L in the extracted ASCM_feature is less than a threshold, it is determined as Local

Data set details

Table 2. data set details of 10 categories classification

Train (17°)		Test (15°)		Image size		
Target	Num	Target	Num	Origin	De-zero	Zeros
					-window	
2S1	299	2S1	274	158*158	105*105	53, 53
BMP2(SN_9566)	232	BMP2(SN_9566)	196	128*128	85*85	43, 43
BRDM2	298	BRDM2	274	129*128	85*86	43, 43
BTR60	256	BTR60	195	128*128	85*85	43, 43
BTR70(SN_C71)	233	BTR70(SN_C71)	196	128*128	85*85	43, 43
D7	299	D7	274	178*177	118*118	60, 59
T62	299	T62	273	173*172	115*115	58, 58
T72(SN_132)	232	T72(SN_132)	196	128*128	85*85	43, 43
ZIL131	299	ZIL131	274	193*192	128*128	65,64
ZSU23/4	299	ZSU23/4	274	158*158	105*105	53, 53
-	2746	-	2426	128*128	-	

Table 3. data set details of 3 categories classification

Train (17°)		Test (15°)		Image size		
Target	Num	Target	Num	Origin	De-zero	Zeros
					-window	
T72(SN_812)	231	T72(SN_132)	196	128*128	85*85	43, 43
BTR70(SN_C71)	233	T72(SN_812)	195	128*128	85*85	43, 43
BMP2(SN_9566)	232	T72(SN_S7)	191	128*128	85*85	43, 43
		BTR70(SN_C71)	196	128*128	85*85	43, 43
		BMP2(SN_9563)	195	128*128	85*85	43, 43
		BMP2(SN_9566)	196	128*128	85*85	43, 43
		BMP2(SN_C21)	196	128*128	85*85	43, 43
-	696	-	1365			

文件路径

文件说明

每个目标下包含 4 个文件夹: (每个文件夹下均有 N 个文件,文件名与原始 SAR chip 的文件明一致,代表同一目标不同方位角的 SAR 图像)

1. ASCM FEATURE

文件类型: mat 文件

文件内容: ASCM_feature 矩阵,尺寸为 8×N_{ASC}, N_{ASC} 列是该 SAR 图像中目标提取出的散射中心个数,8 行是提取出的 8 个参数

	1	2	3	4	5
1	475.1661	511.8209	415.1195	398.4049	284.9318
2	0.6171	-0.7658	-3.0671	-3.0935	1.3283
3	-2.5900	-0.5500	-1.4500	-2.1100	1.2500
4	1.3100	-0.4300	3.3500	0.7100	-2.7100
5	1	0	0	0	1
6	1.0000e-11	1.0000e-11	1.0000e-11	1.0000e-11	1.0000e-11
7	0.1500	0.1300	0.2300	0.1300	0.2300
8	0.0056	-0.0020	0.0066	-0.0020	0.0086

图 1. ASCM_FEATURE 文件夹下单个文件中包含的 ASCM_feature 矩阵示例

8 列依次代表: abs(A), angle(A), x, y, α , γ , L, $\bar{\varphi}$

2. original img

文件类型: ipeg 文件

文件内容: 已经进行过去零去窗的原始 MSTAR 数据集中的 SAR 图像,图像尺寸比原始尺寸小,具体尺寸见表

3. reconstruct img

文件类型: ipeg 文件

文件内容:基于提取的 ASCM_feature 参数,重构的 SAR 图像,已经去零去窗,图像尺寸比原始尺寸小,具体尺寸见表

4. scattering field

文件类型: mat 文件

文件内容: phdata_org 矩阵, 复数矩阵, 经过去零去窗的 SAR 图像数据转换到 频率域的数据, 尺寸为 m×n, 行 m 是频率维, 列 n 是方位维。可以直接用作频率域稀疏表示的 ASC 参数提取方法的输入

2. 散射体类型判别:

表 1. 六种散射体类型

散射体类型	图形	分布/局部	L	α
Plate		Distributed	l	0
Dihedral		Distributed	l	1
Trihedral	~	Local	0	1
Cylinder		Distributed	l	1/2
Tophat		Local	0	1/2
Sphere		Local	0	0

^{*}实际应用中,当提取的 ASCM feature 中L参数小于一个阈值,则判定为 Local

数据集构成

表 2.10 分类数据集的数据集构成

训练集(17°)		测试集(15°)		图片尺寸		
类型	数量	类型	数量	原始	去零去窗	补零
2S1	299	2S1	274	158*158	105*105	53, 53
BMP2(SN_9566)	232	BMP2(SN_9566)	196	128*128	85*85	43, 43
BRDM2	298	BRDM2	274	129*128	85*86	43, 43
BTR60	256	BTR60	195	128*128	85*85	43, 43
BTR70(SN_C71)	233	BTR70(SN_C71)	196	128*128	85*85	43, 43
D7	299	D7	274	178*177	118*118	60, 59
T62	299	T62	273	173*172	115*115	58, 58
T72(SN_132)	232	T72(SN_132)	196	128*128	85*85	43, 43
ZIL131	299	ZIL131	274	193*192	128*128	65, 64
ZSU23/4	299	ZSU23/4	274	158*158	105*105	53, 53
-	2746	-	2426	128*128	-	

表 3.3 分类数据集的数据集构成

训练集(17°))	测试集(15°))		图片尺寸	
类型	数量	类型	数量	原始	去零去窗	补零
T72(SN_812)	231	T72(SN_132)	196	128*128	85*85	43, 43
BTR70(SN_C71)	233	T72(SN_812)	195	128*128	85*85	43, 43
BMP2(SN_9566)	232	T72(SN_S7)	191	128*128	85*85	43, 43
		BTR70(SN_C71)	196	128*128	85*85	43, 43
		BMP2(SN_9563)	195	128*128	85*85	43, 43
		BMP2(SN_9566)	196	128*128	85*85	43, 43
		BMP2(SN_C21)	196	128*128	85*85	43, 43
-	696	-	1365			

初步应用验证

图 2. 融合 ASC 提取特征的 SAR 图像分类(基于 MSTAR-ASC 数据集)

针对同类目标不同型号变体这一扩展操作条件进行测试。训练集为 17°俯仰角下三类目标 T72、BTR70、BMP2 单种型号的图像,而测试集则另外包含了 15°俯仰角下采集的两种 T72 变体型号和两种 BMP2 变体型号。

训练集(17°)	测试集 (15°)		
类型	数量	类型	数量	
T72(SN_812)	231	T72(SN_132)	196	
BTR70(SN_C71)	233	T72(SN_812)	195	
BMP2(SN_9566)	232	T72(SN_S7)	191	
		BTR70(SN_C71)	196	
		BMP2(SN_9563)	195	
		BMP2(SN_9566)	196	
		BMP2(SN_C21)	196	
-	696	-	1365	

表 4. EOC 条件下的三类七型数据集

在本方法构建的数据集中,每个样本应当包括一张原始 SAR 图像和一张组合部件 SAR 图像和六张不同类别(见表 1)部件 SAR 图像。

考察融入散射特性对网络的性能是否有提升效果、全局信息与部件信息的结合能否带来正向反馈,进行消融实验,给出了分类正确概率(PCC)的结果。

主干模块	ASC 模块	PCC
√	×	0.8270
×	√	0.1436
✓	√	0.9179

表 5. 消融实验结果

实验未对网络超参数和训练策略进行大量尝试,因此表中所列 PCC 不代表对应模型所能达到的最佳性能.

当仅使用主干模块即 AconvNet 结构进行目标分类时,验证集准确率可以收敛至 0.9855,但在含有目标变体型号的测试集上表现不佳。按照模型的设计,如

果仅使用 ASC 模块,模型只有全连接和 Softmax 两层线性网络,其完全没有提取到有用的特征。图 5 中,左列子图显示了 AConvNet 在 696 张"三类三型"图片上训练的迭代过程、对 1365 张"三类七型"图片预测的混淆矩阵,以及对其特征向量在三维空间的可视化,右列则为融合网络的结果。

图 3. 模型的迭代曲线(上)、混淆矩阵(中)、特征向量可视化(下) (左: AConvNet, 右: 融合网络)

Reference:

[1] MSTAR 原始数据集下载 url, https://www.sdms.afrl.af.mil/index.php?collection =mstar