## Calculus I Final Exam. B

## 2015年1月6號

Note: There is no multiple choice question.



- 1. Define the function  $F(x):(0,\infty)\to\mathbb{R}$ , by  $F(x)=\int_1^{e^{x^2}}\frac{1}{t}dt$ . Can you say F(x) is one-to-one, onto, one-to-one and onto, or not the both?
  - 2.  $y = f(x) = \frac{x^3+1}{x+1}$ , Find the increasing interval.
  - 3. Calculate  $F(x) = \int_0^{\frac{\pi}{3}} sec^5(x)tan^5(x)dx$ .
- 4.  $F(x) = \int_0^{x^2} (2t^2 3) dt$ . Find the local extreme points of F'(x).
- $F(x) = \int_0^1 x^3 \sqrt{1 x^2} dx$ .
- $\frac{4b}{15}$  7 6. Find the volume by revolving about x-axis the region bounded by the graphs y = |x| + 1 and
- $7. f(x) = sin(x^2) + \frac{2}{5}x^5, x \in [2, 4]$ . Find its absolute extreme points.
  - (8) "If f'(x) = 0,  $\forall x \in (a, b)$ , then f is a constant on [a, b]." Is there any mistake in the above statement? If there is one, correct it.
  - 33. (9)  $f(x) = tan[e^{ln(x^4+2)}], g(x) = ln|e^x + sin(x^4)|.$  Find f'(x) and g'(x).
  - 75 10.  $f(x) = 2x^6 9x^5 + 5x^4 + 30x^3 60x^2$ . Find its points of reflection.
  - 11. "Suppose c is a critical point of f(x), if  $\exists \delta > 0$ , such that  $f'(x) > 0, \forall x \in (c \delta, c)$ , and  $f'(x) < 0, \forall x \in (c, c + \delta), \text{ then } c \text{ is a local maximum point.}$ Do we need to add more conditions in order to make the above statement correct? If we do, pick up one in the answer sheet.
  - (b. 12. Calculate  $\int_1^{e^2} \frac{(1+\ln x)^3}{x} dx$ .
    - 13. Find the volume by revolving about y-axis the region bounded by the graphs  $y = x^4 1$  and y = x - 1.
  - 14. [True or False]"If the function f is one-to-one and onto, f(a) = b, and  $f'(\mathfrak{F})$  exists. Then  $(f^{-1})'(b)$ 30. exists." 1'16
    - 15. 老師游泳的自由式怎麼游 (此題為填充題)

## Ans options B

- 1.  $\frac{2}{15}$
- $2. \frac{1}{15}$
- $3. \frac{-1}{15}$
- $u 4. \frac{-2}{15}$
- ✓ 5. Add "f is continuous at c.".
  - 6. Add "f is decreasing at on  $[c, c + \delta]$ ".
  - 7. Do not have to add.
  - 8. Add "f is increasing at on  $(c \delta, c)$ ."
  - 9. change (a, b) to [a, b)
  - 10. change [a,b] to (a,b)
  - 11. change [a, b] to (a, b]
  - 12. change (a, b) to (a, b]
  - 13.  $\frac{81}{4}$
  - 14.  $\frac{13}{2}$
- 15.  $\frac{65}{4}$
- 16. 20
- 17. x = 2 is the absolute minimum, x = 4 is the absolute maximum.
- 18.  $x = x = \sqrt{\frac{3\pi}{2}}$  is the absolute minimum, x = 4 is the absolute maximum.
- 19. x = 4 is the absolute minimum, x = 2 is the absolute maximum.
- 20. x=2 is the absolute minimum,  $x=\sqrt{\frac{3\pi}{2}}$  is the absolute maximum.
- $\sqrt{21}$ .  $x = \sqrt[4]{\frac{3}{10}}$  is a local minimum,  $x = -\sqrt[4]{\frac{3}{10}}$  is a local maximum.
  - 22. x = 0 is a local minimum,  $x = \sqrt[4]{\frac{2}{3}}$  is a local maximum.
  - 23.  $x = -\sqrt[4]{\frac{2}{3}}$  is a local minimum, x = 0 is a local maximum.
  - 24.  $x = -\sqrt[4]{\frac{3}{10}}$  is a local minimum,  $x = \sqrt[4]{\frac{3}{10}}$  is a local maximum.
- ∠ 25. −1, 1 and 2
  - 26. -1 and 0
  - 27. -1 and 2

- 28. -1, 0 and 2
- 29. True
- 30. False
- 31.  $f'(x) = \sec^2(x^4 + 2)$  $g'(x) = \frac{e^x + 4x^3\cos(x^4)}{e^x + \sin(x^4)}$
- 32.  $f'(x) = 4x^3 \sec^2(x^4 + 2)$  $g'(x) = \frac{e^x + 4x^3 \sin(x^4)}{e^x + \cos(x^4)}$
- 33.  $f'(x) = 4x^3 sec^2(x^4 + 2)$  $g'(x) = \frac{e^x + 4x^3 cos(x^4)}{e^x + sin(x^4)}$
- 34.  $f'(x) = csc^2(x^4 + 2)$  $g'(x) = \frac{e^x + 4x^3 sin(x^4)}{e^x + sin(x^4)}$
- 35.  $(-\infty, -1]$  and  $[\frac{1}{2}, +\infty)$
- 36.  $(-\infty, -1]$
- $\nu$  37.  $[\frac{1}{2}, +\infty)$
- 38.  $\left[-1, \frac{1}{2}\right]$
- 39.  $\frac{10}{3}\pi$
- $40. \ \frac{47}{15}\pi$
- 41.  $\frac{5}{3}\pi$
- 42.  $\frac{46}{15}\pi$
- $43. \frac{2\pi}{9}$
- 44.  $\frac{3\pi}{10}$
- 45.  $\frac{17\pi}{45}$
- 46.  $\frac{3\pi}{5}$
- 47. one-to-one and onto.
  - 48. only one-to-one.
  - 49. only onto.
- 50. neither one-to-one nor onto.
- $51. \frac{8408}{315}$
- $52. \frac{6408}{315}$
- 53. 7408
- 54. 9408
- 55. There is no any correct answer in this option sheet.





