ZZYZ NOIP 模拟赛

题目名称	子集	出行	游戏
可执行文件名	subset	walk	game
输入文件名	subset.in	walk.in	game.in
输出文件名	subset.out	walk.out	game.out
每个测试点时限	1s	1s	1s
内存限制	256MB	256MB	256MB
题目分值	100	100	100
测试点个数	10	10	10
单个测试点分值	10	10	10
题目类型	传统	传统	传统

说明:

- 1.代码长度限制为 100KB,编译时开启 -02 开关。
- 2.请将自己的代码按照要求放入文件夹内。
- 3.请注意不要因为非技术因素导致程序无法正常通过数据,其中你要注意到的包括但不限于:
 - (1).内存使用情况。
- (2).是否使用文件输入输出,文件输入输出的.in/.out 的文件名是否正确,源程序的文件名是否正确。源程序的文件名和.in/.out 的文件名是否有不可见字符,如果有,则认为文件名错误,不能得分。
 - (3).保存文件的路径是否正确。
 - (4).是否删除调试信息。
 - (5).是否能通过所有样例。
 - (6).输出格式是否正确。
 - (7).变量类型是否正确。

子集

【问题描述】

若一个集合 S 中任意两个元素 x 和 y,都满足x \oplus y < min(x,y),则称集合 S 是"好的"。 其中 \oplus 为按位异或运算符。现在给定一个大小为 n 的集合 S,其中每个数字都是正整数,请 求出 S 所有"好的"子集中,元素个数最多的集合大小。

【输入】

输入文件含有多组数据

每组数据第一行读入元素个数 N。接下来一行,N 个正整数 a_i 描述集合中的元素。

【输出】

对于每组测试数据,输出一行一个整数表示答案。

【输入输出样例】

subset.in	subset.out
3	2
1 2 3	2
2	
1 1	

【样例解释】

第一组数据中,选择集合 $\{2,3\}$ 为最佳方案。若选择 $\{1,2,3\}$,由于 $1\oplus 2=3>$ min $\{1,2\}$,该集合不是"好的"。

【数据范围】

测试数据编号	数据范围
1 - 4	1 ≤ N ≤ 16
5 - 10	1 ≤ N ≤ 1000

对于 **100%**的数据: $1 \le a_i \le 10^9$ 。

出行

【问题描述】

小 C 要从 A 地赶往 B 地,A 地和 B 地相距 L 米。在 A 去往 B 的路上,还有 N 个咖啡站,其中第 i 个咖啡站在距离 A 地 x_i 米的位置($0 \le x_1 < x_2 < \cdots < x_N \le L$)。小 C 平时步行的速度为 a 米/秒,而当他喝咖啡时,步行速度会是 b 米/秒(a < b)。

每当小 C 到达一个咖啡站,小 C 可以选择购买一杯咖啡,购买咖啡所花费的时间可以忽略不计。刚买的咖啡由于太烫还不能立即饮用,所以小 C 会继续以 a 米/秒的速度前进。在买完咖啡 t 秒后,咖啡才变得可以饮用,此时小 C 便开始以 b 米/秒的速度前进。小 C 喝一杯咖啡需要 r 秒,即从开始喝咖啡 r 秒后,小 C 的前进速度又会变回 a 米/秒。当然小 C 到达咖啡站时,也可以选择不购买咖啡。

另外,如果小 C 选择在一个咖啡站停下来购买咖啡,但此时手上还有一杯没有喝或者没喝完的咖啡,那么小 C 会毫不犹豫地扔掉手上之前购买的咖啡。

请求出在最优决策下,小C从A地前往B地最少需要花费多少秒。

【输入】

第一行,五个整数 L,a,b,t,r,分别表示两地间距离,小 C 不喝咖啡及喝咖啡时的速度,咖啡变凉的时长,以及饮用一杯咖啡需要的时间。

第二行,一个整数 N,描述 A 地到 B 地之间咖啡站的数量。

接下来一行,N个单调上升的整数,表示第i个咖啡站与A地的距离。

【输出】

一行,表示答案,相对误差或绝对误差与标准答案相差不超过10-6即被认为正确。

【输入输出样例】

walk.in	walk.out
80 1 2 20 10	60
3	
0 20 40	

【样例解释】

最优决策下,小 C 会选择在第一个和第三个咖啡站买咖啡,第一次买咖啡时,小 C 以 1 米/秒的速度前进 20 秒,此时咖啡不再烫嘴,再以 2 米/秒的速度前进 10 秒,此时恰好到达第三个咖啡站。可以计算,最优花费为2 * (10 + 20) = 60秒。

【数据范围】

测试数据编号	数据范围
1 - 2	0 ≤ N ≤ 20
3 - 6	0 ≤ N ≤ 1000
7 - 10	$0 \le N \le 5 * 10^5$

对于 100%的数据: 保证1 $\leq L \leq 10^{11}$, $1 \leq a < b \leq 200$, $0 \leq t \leq 300$, $1 \leq r \leq 1200$ 。

游戏

【问题描述】

有一个长度为 n 的排列,小 C 可以交换任意相邻元素任意多次,但第i次交换需要付出i 的代价。小 C 认为逆序对是丑陋的,若在小 C 操作完的序列中共有x个逆序对,那么小 C 就会认为这个序列的丑陋度是B*x,其中B是给定的常数。小 C 希望你告诉他最佳的操作策略,使得最终的序列丑陋度和操作所付出的代价之和最小。

【输入】

第一行,两个整数n,B。

接下来一行,n个整数,描述初始排列。

【输出】

一行,表示代价与丑陋度的最小和。

【输入输出样例】

game.in	game.out
3 2	3
3 1 2	

【样例解释】

若不操作,代价+丑陋度=0+4=4

若交换 1 和 3, 序列变成 {1 3 2}, 代价+丑陋度=1+2=3

若交换 1 和 3,再交换 2 和 3,序列变成{1 2 3},代价+丑陋度=3+0=3

容易验证其他策略下,代价和丑陋度之和都不会小于3

【数据范围】

测试数据编号	数据范围
1 - 2	1 ≤ N ≤ 20
3 - 6	1 ≤ N ≤ 5000
7 - 10	$1 \le N \le 5 * 10^4$

对于 100%的数据: 0 ≤ B ≤ 10¹⁵。