# **ECE 220 Computer Systems & Programming**

Lecture 1 – Course Overview & LC-3 Review August 29, 2017



**Prof. Yuting Chen** 

Office Hours: Tuesdays, 2pm-3pm, ECEB 3060

Email: ywchen@illinois.edu

**Section BL1 Instructor & Course Coordinator** 

Course Wiki: <a href="https://wiki.illinois.edu/wiki/display/ece220/Home">https://wiki.illinois.edu/wiki/display/ece220/Home</a>

**ECE ILLINOIS** 

IILLINOIS

## **Course Logistics**

- 4 Lectures to choose from (Borisov, Patel, Chen, Mitra)
- Programming Studio on Fridays (10 makeup pts/week towards MPs)
- MPs: due every Thursday @ 10pm (100 pts each, late penalty 2pts/hour)
- Quizzes: 6 programming quizzes, lowest score dropped
- Exams: 2 midterms and a final Exam (paper format)

Textbook: Patt & Patel, Introduction to Computing Systems: from bits to

gates to C and beyond, 2<sup>nd</sup> Edition.

Academic Integrity

#### **Grading Mechanics:**

**MPs: 20%** 

Quizzes: 15%

Midterms: 20% x 2

Final Exam: 25%



### **Tools & Resources**

- Course Wiki course info, MP write-up, exam info, etc.
- SVN MP release, programming studio, etc.
- Piazza discussion board monitored by TAs
- Compass online grade book
- CBTF facility for taking programming quizzes, reserve your seat 2 weeks in advance at <a href="https://cbtf.engr.illinois.edu">https://cbtf.engr.illinois.edu</a>
- Emergency Response
- Resources: CARE, counseling center, DRES

### LC-3 Review – The von Neumann Model

- 1. Memory
- 2. Processing Unit
- 3. Input
- 4. Output
- 5. Control Unit



## **LC-3 Review - Memory**

#### Load and Store Using

- MAR: Memory Address Register ( \_\_\_\_\_\_ -bit)
- MDR: Memory Data Register (\_\_\_\_\_\_\_ -bit)

#### Load Data from Memory Address X

Step 1:

Step 2:

Step 3:

#### Store Data to Memory Address Y

Step 1:

Step 2:

Step 3:

### LC-3 Review - Processing Unit, Input/Output, Control Unit

#### **Processing Unit**

- The Arithmetic and Logic Unit (ALU) only has \_\_\_\_\_, \_\_\_\_, \_\_\_\_, \_\_\_\_ operations
- Temporary Storage general-purpose registers:

Input – Keyboard (use 2 registers)

- 1.
- 2.

Output – Monitor (use 2 registers)

- 1.
- 2.

#### **Control Unit**

IR: instruction register –

PC: program counter –

## LC-3 Review – ISA (Instruction Set Architecture)

#### **Memory Organization**

- Address space (# of distinct memory locations): \_\_\_\_\_
- Addressability (# of bits stored in each memory location): \_\_\_\_\_\_

#### **Register Set**

- 8 16-bit general-purpose registers: R0, R1, ...R7
- special-purpose register: \_\_\_\_\_\_, \_\_\_\_\_\_\_

### LC-3 Review – ISA (Instruction Set Architecture)

#### **Instruction Set**

**Data Types**: 16-bit 2's complement integers

**Addressing Modes** (how the location of operand is specified):

Non-memory addresses – immediate (part of instruction), register

Memory address – PC-relative, base+offset, indirect

**Opcodes** (16-bit, bits 12-15 used to specify the opcode):

Operate instructions: ADD, AND, NOT

Data movement instructions: LD, LDI, LDR, LEA, ST, STR, STI

Control instructions: BR, JSR/JSRR, JMP, RET, TRAP, RTI

Condition codes: N (negative), Z (zero), P (positive)

## Using LD, LDI, LDR, LEA

```
.ORIG x3000
LD R6, LABEL
LDI R6, LABEL
LDR R2, R6, #0
LEA R2, LABEL
LABEL .FILL x4000
.END
; Assume the following
; Address
            Content
; x4000
            x5000
; x5000
            x6000
```

### **LC-3 Exercise**

1. Initialize a register

2. Copy from one register to another

3. Compute 5 - 3

4. Compute 4 x 3

## **MP1 – Computing a Histogram**



ASCII Table

11