Conteúdos da Matéria Equações Diferencias Ordinárias

Lucas Moschen Fundação Getulio Vargas

31 de Março de 2020

Resumo

Neste documento irei constar os principais temas cobertos pela matéria, que tem foco em um cálculo de edos, sem grandes definições precisas e estudo do comportamento qualitativo. Qualquer correção nesse documento pode ser sugerida pelo leitor através de um *pull request*. Para iniciar, irei listar os temas até agora cobertos e também inserirei um pequeno resumo sobre o determinado tópico.

Conteúdo

1	Equações Diferenciais Lineares de 1 ^a Ordem	2
	1.1 Equações de Bernoulli	2
2	Equações com Variáveis Separáveis	3
3	Equações Exatas	3
	3.1 Fator de Integração	3
4	Equações Diferenciais de 2ª ordem	3
	4.1 Equações homogêneas (em que $G(x) = 0$)	4
	4.1.1 O Determinante Wronskiano	4
	4.1.2 Funções constantes	4
	4.2 Redução de ordem	5
	4.3 Não homogêneas com coeficientes constantes	5

		4.3.1 Método dos coeficientes a determinar	
		$4.3.2$ Método da variação de parâmetros $\ \ldots \ \ldots \ \ldots$	
5	Mo	lelos da Dinâmica de uma População	
0	5.1	Malthus	
	5.2	Logística de Verhuslt	
	5.3	Gopertz	
6	Sist	ema Autônomo	
7	Mo	lelos das Ciências Naturais	
	7.1	Resfriamento de um corpo	
	7.2	Problemas de Mistura	
	7.3	Produtos Químicos em uma Lagoa	
		7.3.1 Modelo	
0	D., .	olemas Soltos	
8	Pro	nemas somos	

1 Equações Diferenciais Lineares de 1^a Ordem

Formato: $\frac{\mathrm{d}y}{\mathrm{d}x} + p(x)y = q(x)$. Observe a linearidade de y e que a sua derivada de maior ordem é a primeira. Para resolver esse exemplo, usamos oo fator de integração $u(x) = e^{\int p(x)dx}$ e multiplicamos em ambos os lados. Observe que escolhemos ele, porque queremos $(y \cdot u)' = y' \cdot u + y \cdot u' = u \cdot q$ e $u' = u \cdot p$. A partir disso, obstemos que $y(x)u(x) = \int u(x)g(x)dx$.

1.1 Equações de Bernoulli

Formato: $y' + p(x)y = q(x)y^n$. Neste caso temos que o expoente de y é de ordem n. Para resolver esse problema, supomos que $y \neq 0$ e fazemos uma transformação de variável $z(x) = [y(x)]^{1-n}$, $\forall x$. Essa transformação vai noos permitir obter a equação em um formato desejado. Para ver isso, primeiro façamos $\frac{\mathrm{d}z}{\mathrm{d}x} = \frac{\mathrm{d}z}{\mathrm{d}y}\frac{\mathrm{d}y}{\mathrm{d}x} = (1-n)y^{-n}\frac{\mathrm{d}y}{\mathrm{d}x}$, logo, substituindo os valores, teremos que $\frac{1}{1-n}y^nz' + p(x)zy^n = q(x)y^n \implies z' + (1-n)p(x)z = q(x)$ e resolvemos pelo formato anterior.

2 Equações com Variáveis Separáveis

Formato: $\frac{\mathrm{d}y}{\mathrm{d}x} = f(x,y) = \phi(x)\psi(y)$, isto é, a derivada pode ser escrita como um produto de uma função que só depende de x por outra que só depende de y. Nesse caso, usamos a reescrita diferencial para poder escrever isso da seguinte forma: $\int \frac{dy}{\psi(y)} = \int \phi(x) dx$. Isso pode ser extendido quando a função pode ser escrita como uma divisão de funções desse tipo, bastando vê-la como um produto.

3 Equações Exatas

Formato: Seja $\frac{\mathrm{d}y}{\mathrm{d}x} = f(x,y) = -\frac{M(x,y)}{N(x,y)}$ que pode ser reescrita da forma M(x,y)dx + N(x,y)dy = 0. Ela é caracterizada como **exata** se $\exists g(x,y)$, tal que dg = Mdx + Ndy, onde dg é o diferencial de g. Isto é, $\frac{\partial g}{\partial x} = M$ e $\frac{\partial g}{\partial y} = N$. Nesse caso, podemos provar pelo teorema de Clairaut-Schwars que $\frac{\partial M(x,y)}{\partial y} = \frac{\partial N(x,y)}{\partial x}$ (*).

3.1 Fator de Integração

Suponha que a equação M(x,y)dx+N(x,y)dy=0 seja não exata. Nesse caso, a ideia é encontrar uma função u que ao multiplicar a equação, obtenhase a hipótese do teorema de Clairaut-Schwars, como mencionado acima (*). Nesse caso, se $\frac{M_y-N_x}{N}$ é função apenas de x, o fator de integração será $u(x)=\exp\left\{\int \frac{M_y-N_x}{N}dx\right\}$. Para construir esse resultado, basta pensar, supondo a existência de u(x), temos que $\frac{\partial(u\cdot M)}{\partial y}=u\frac{\partial M}{\partial y}=\frac{\partial(u\cdot N)}{\partial x}=\frac{\mathrm{d}u}{\mathrm{d}x}N+u\frac{\partial N}{\partial x}$. Agora, se $\frac{N_x-M_y}{M}$ é função apenas de y, vale que $u(y)=\exp\left\{\int \frac{N_x-M_y}{M}dy\right\}$.

4 Equações Diferenciais de 2^a ordem

Sejam $P(\cdot), Q(\cdot), R(\cdot), G(\cdot)$ (onde · indica que é uma função) contínuas tal que

$$G(x) = R(x)y + Q(x)\frac{\mathrm{d}y}{\mathrm{d}x} + P(x)\frac{\mathrm{d}^2y}{\mathrm{d}x^2}$$
 (1)

Temos uma equação diferencial de segunda ordem.

4.1 Equações homogêneas (em que G(x) = 0)

Teorema: Se $y_1(x)$ e $y_2(x)$ são soluções de 1, com G(x) = 0. Então $y(x) = c_1y_1(x) + c_2y_2(x)$ também é uma solução.

Observação: Duas soluções $y_1(x)$ e $y_2(x)$ são linearmente independentes se $\alpha_1 y_1(x) + \alpha_2 y_2(x) = 0 \implies \alpha_1 = \alpha_2 = 0, \forall x$. Em outras palavras, elas serão linearmente dependentes de $\forall x, y_2(x) = \beta y_1(x)$, para algum $\beta \in \mathbb{R}$.

Teorema 2: Se $y_1(x)$ e $y_2(x)$ são soluções linearmente independentes de 1, então a solução geral é $y(x) = c_1y_1(x) + c_2y_2(x)$, para c_1 e c_2 constantes arbitrárias.

Para demonstrar esse teorema, temos que mostrar que a dimensão do subespaço de soluções é 2. O resultado é uma consequência do Teorema da Existêmncia e Unicidade.

Observação: Esse teorema é importante porque basta para nós descobrirmos duas soluções independentes e particulares, para encontrar todas as soluções.

4.1.1 O Determinante Wronskiano

È um determinante que é usado para estudar equações diferenciais. Em particular para verificar a indepenência de soluções. De forma geral,

$$W(f_1, ..., f_n)(x) = \begin{vmatrix} f_1(x) & f_2(x) & ... & f_n(x) \\ f'_1(x) & f'_2(x) & ... & f'_n(x) \\ ... & ... & ... \\ f_1^{n-1}(x) & f_2^{n-1}(x) & ... & f_n^{n-1}(x) \end{vmatrix}$$
(2)

No caso particular de duas funções W(f,g)(x) = f(x)g'(x) - g(x)f'(x)Nesse caso, se as soluções são linearmente dependentes, então o Wronskiano será nulo. A recíproca não vale (mas podemos usar a contrapositiva).

4.1.2 Funções constantes

Considere ay'' + by' + cy = 0, com $a \neq 0$. Como estamos tratando de constantes multiplicadas por derivadas, vemos que $y = \exp(rx)$ é uma solução se $(y = e^{rx}, y' = re^{rx}, y'' = r^2e^{rx})$ satisfaz $(ar^2 + br + c)e^{rx} = 0$. Logo, basta encontrar r que seja raíz dessa equação de segundo grau.

1. Caso 1 - Determinante positivo: Se r_1 e r_2 são soluções, $y(x) = c_1 y^{r_1 x} + c_2 y^{r_2 x}$ é a solução geral.

- 2. Caso 2 Deteminante nulo: Nesse caso, se r é raíz da equação, outra solução particular é xe^{rx} e a solução geral é $y(x) = c_1e^{rx} + c_2xe^{rx}$.
- 3. Caso 3 Determinante negativo: Seja $r_1 = \alpha + \beta i$ e $r_2 = \alpha \beta i$ soluções da equação. (Note que sempre $r_1 = r_2$, pois $r_1 + r_2 = -b/a \in \mathbb{R}$). Nesse caso $y(x) = c_1 e^{r_1 x} + c_2 e^{r_2 x} = e^{\alpha x} [(c_1 + c_2) \cos(\beta x) + (c_1 c_2) \sin(\beta x)] = e^{\alpha x} (t_1 \cos(\beta x) + t_2 \sin(\beta x))$

4.2 Redução de ordem

Considere a equação na forma y'' + p(x)y' + q(x)y = 0. Suponha que temos $y_1(x)$. Seja $y = u(x)y_1(x)$. Então $y' = u'y_1 + uy_1'$ e $y'' = u''y_1 + 2u'y_1' + uy_1''$. Substituindo na equação, temos que $y_1u'' + (2y_1' + py_1)u' = 0$. Daqui podemos encontrar u(t) em função de y_1 .

4.3 Não homogêneas com coeficientes constantes

Consideremos ay'' + by' + cy = g(x).

Teorema: Seja $y_h(x)$ a solução da equação homogênea (quando g(x) = 0) e $y_p(x)$ uma solução particular a ser encontrada. Então $y(x) = y_p(x) + y_h(x)$ é solução geral da equação. De fato, basta obsevar que se y(x) é uma solução, $y(x) - y_p(x)$ será solução da equação homogênea.

4.3.1 Método dos coeficientes a determinar

Nesse caso, temos vários exemplos e temos que resolver caso a caso. Vou restringir os casos:

- 1. Se g(x) é polinomial de grau $n, y_p(x)$ é um polinômio de grau n.
- 2. Se $g(x) = ae^{bx}$, então $y_p(x) = Ae^{bx}$
- 3. Se $g(x) = \alpha sen(x)$, então $y_p(x) = Asen(x) + Bcos(x)$
- 4. Se g(x) é produto de polinnômio por exponencial, y_p também terá essa forma.
- 5. Se g(x) é produto de polinômio por função trigonométrica, então seu formato será Asen(x)p(x) + Bcos(x)q(x), onde p(x) e q(x) são polinômios de mesma ordem.

Em todos os casos, é necessário determinar os coeficientes, daí vem o nome.

4.3.2 Método da variação de parâmetros

Mais uma vez considere a equação ay'' + by' + cy = g(x). Sejam $y_1(x)$ e $y_2(x)$ soluções linearmente independentes da equação diferencial homogênea (que já sabemos encontrar). Queremos encontrar duas funções diferenciáveis $u_1(x)$ e $u_2(x)$ tal que $y(x) = u_1(x)y_1(x) + u_2(x)y_2(x)$ seja uma solução da equação diferencial. Porém, exigimos que

$$u_1'(x)y_1(x) + u_2'(x)y_2(x) = 0 (3)$$

Após fazermos as simplificações necessárias, obteremos o sistema, para cada x, temos:

$$\begin{cases} u_1'(x)y_1(x) + u_2'(x)y_2(x) = 0\\ u_1'(x)y_1'(x) + u_2'(x)y_2'(x) = \frac{g(x)}{a} \end{cases}$$

Note que podemos aplicar a regra de Cramer, que diz que $x_j = \frac{det(A_j)}{detA}$, onde A_j é a matriz A, exceto a coluna j que é formada pelo vetor independente do sistema Ax = b.

5 Modelos da Dinâmica de uma População

5.1 Malthus

Também conhecido como modelo exponencial, é baseado na ideia de que o crescimento populacional é proporcional ao tamanho da população, o que faz um certo sentido. O modelo é parte da ideia de que existiria um ponto em que o número de pessoas seria maior do que o suporte para a alimentação que tem crescimento linear. Nesse caso, se p(t) é a população no tempo t, o crescimento é dado por p'(t) = rp(t). Esse coeficiente r vai indicar a taxa de crescimento populacional, e ele é tratado como constante. Essa ideia foi descartada posteriormente, pois o crescimento reduziu suas taxas de crescimento desde os anos de 1800. Nesse caso, $p(t) = p(0)e^{rt}$.

5.2 Logística de Verhuslt

Também conhecido como curva S o função logística. Diferente do primeiro modelo, ele não assume que os recursos são ilimitados. Entretanto, ele assume a existência da capacidade de carga K, que é o tamanho populacional máximo que o meio pode sustentar inndefinidamente. O crescimento nesse caso é proporcional a p(t) e à diferença K - p(t), onde p(t) é o tamanho da população. Logo $p'(t) = sp(t)(K - p(t)) = sKp(t)(1 - \frac{p(t)}{K})$. Se sK = r, temos o modelo logístico.

5.3 Gopertz

É um modelo descrito por uma função sigmoide (em formato de S) que descreve o crecimento sendo mais lento no início e no final de um período de tempo. O modelo foi inicialmente desenvolvido para detalhar a mortalidade humano da Royal Socienty em 1825 (Wikipedia). A suposição é de que a resistência da pessoa à morte descresce com os tempo. Assune-se que a taxa de crescimento de um organismo decaia com o tamanho tal que, se p(t) é a medida, $\frac{\mathrm{d}p}{\mathrm{d}t} = \alpha(\log\left(\frac{K}{p}\right)p)$. Existem várias variações para cada aplicação dessa curva.

6 Sistema Autônomo

É um sistema em EDO que não depende, explicitamente, de variáveis independentes, como o tempo. Ele é da forma, quanto de primeira ordem $\frac{\mathrm{d}x}{\mathrm{d}t} = f(x(t))$ e só depende do tempo através de x(t). Uma propriedade interessante (exercício!) é: Se $x_1(t)$ é solução única do problema de valor inicial para um sistema auntônomo, $\frac{\mathrm{d}x}{\mathrm{d}t} = f(x(t)), x(0) = x_0$, definir $x_2(t) = x_1(t-t_0)$ resolve o problema para para a mesma função mas com condição $x(t_0) = x_0$.

Ponto de Equilíbrio ou Singularidade: Seja y'=f(y). Se $f(\hat{y})=0$, dizemos que \hat{y} é ponto de equilíbrio ou singularidade. Ele será as soluções se aproximam de \hat{y} , ele é dito ponto atrator ou singularidade estável. Caso contrário, é dito repulsor ou singularidade instável. De forma mais precisa, \hat{y} é estável se dado $\epsilon>0$, existe um $\delta>0$ tal que se $|y_0-\hat{y}|<\delta$, onde y_0 é o valor inicil, então, $|y(t)-\hat{y}|<\epsilon$ para todo t. Além do mais, se

 $\lim_{t\to\infty} y(t) = \hat{y}$, dizemos que ele é assintoticamente estável. Cas são seja estável, ele é instável.

Teorema: Seja y' = f(y) com f(y) diferencialmente contínua e \hat{y} uma singularidade. Se $f'(\hat{y}) < 0$, \hat{y} é uma singularidade estável.

7 Modelos das Ciências Naturais

7.1 Resfriamento de um corpo

Em 1701, Newton publicou um resultado sobre a temperatura de objetos ao longo do tempo. Ele encontrou que a diferença entre a temperatura do objeto e a temperatura constante do meio varia geometricamente a 0 enquanto o tempo varia arimeticamente. Isto é, se T(t) é a temperatura do objeto e T_a a temperatura do meio,

$$(T(t) - T_a)' = T'(t) = -k(T(t) - T(a)).$$

A solução é $T(t) = (T(0) - T_a)e^{-kt} + T_a.$

Se agruparmos essa ideia com o conceito de calorimetria e m, c, m_a, m_c são constantes, temos que $mc(T(0)-T)=m_ac_a(T_a-T_a(0))$, podemos tomar a temperatura do ambiente como não constante.

7.2 Problemas de Mistura

Considere um tanque com massa de sal Q(t) a cada instante de tempo t dissolvido no volume de água V(t). Água está entrando no tanque a taxa $r_e(t)$ com concentração de sal $q_e(t)$. Água está saindo do tanque a taxa $r_s(t)$ com concentração de sal $q_s(t)$. Qual a unidade de r? Qual a unida de q?

Para esse modelo, precisamos fazer algumas simplificações. Supomos que o sal que entra no tanque é instantaneamente misturado. Logo, o tanque tem concentração de sal homogênea. Vamos tratar a taxa de entrada como constante.

Desta forma, temos que
$$Q'(t) = a(t)Q(t) + b(t)$$
, onde $a(t) = -\frac{r_s}{(r_e - r_o)t + V(0)}$ e $b(t) = r_e q_e(t)$.

A solução utiliza o primeiro tópico.

7.3 Produtos Químicos em uma Lagoa

Considere que a Lagoa Rodrigo de Freitas esteja com L milhões de galões de água fresca. Ao longo do tempo, uma água contaminada com produto químico fluiu para a lagoa a uma taxa r milhões de galões por ano. Mas naquela época a prefeitura do Rio era muito ativa e já realizava a limpeza a uma taxa s, por um processo de retirada da água, limpeza e reinserção no mar.

A concentração y(t) do produto químico na água que entra varia com o tempo t segundo à expressão $y(t) = 2 + \sin(2t)$ gramas por galão. Considere o modelo da massa dessa substância na lagoa a qualquer tempo t.

7.3.1 Modelo

$$\frac{\mathrm{d}Q}{\mathrm{d}t} = (r\times 10^6)\cdot (2+\sin(2t)) - (s\times 10^6)\cdot (\frac{Q(t)}{L})$$
e $Q(0)=0.$

8 Problemas Soltos

8.1 Perseguição

Considere um homem e seu cachorro correndo em linha reta. Em um dado ponto no tempo, o cachorro está a 12m do seu dono, que começa a correr em direção perpendicular à praia com certa velocidade constante. O cachorro corre duas vezes mais rápido e sempre em direção ao seu dono. Qual o ponto de encontro?