Остовные деревья

Определение

- ullet Пусть G граф, в котором допустимы петли и кратные рёбра, а $e=xy\in E(G)$, причем x
 eq y.
- ullet Положим $V(G*e) = (V(G) ackslash \{x,y\}) \cup \{w\}$
- ullet Отображение arphi:V(G) o V(G*e) задано так, что arphi(x)=arphi(y)=w и arphi(z)=z для остальных вершин z.
- ullet Для любого ребра $f=ab\in E(G-e)$ в графе G*e будет ребро arphi(f) с концами arphi(a) и arphi(b), а других рёбер в определяемом графе нет.
- ullet Будем говорить, что граф G*e получен из G в результате стягивания ребра e и применять обозначение w=x*y. D

• Отображение $\varphi: E(G-e) \to E(G*e)$, определенное выше — биекция. Далее мы будем отождествлять соответствующие друг другу при этой биекции рёбра.

Количество остовных деревьев

ullet Обозначим через st(G) количество остовных деревьев связного графа G.

Теорема 1

(A.Cayley, 1889.) Пусть G — граф, в котором возможны петли и кратные рёбра, а ребро $e \in E(G)$ — не петля. Тогда st(G) = st(G-e) + st(G*e).

Доказательство

- ullet Количество остовных деревьев графа G, не содержащих ребра e, очевидно, равно st(G-e).
- Между остовными деревьями, содержащими ребро e и остовными деревьями графа G*e существует взаимно однозначное соответствие $T \to T*e$ (где T остовное дерево графа $G, e \in E(T)$).

Остовные деревья полного графа. Код Прюфера.

Теорема 2

(A.Cayley, 1889.) $st(K_n) = n^{n-2}$.

Доказательство. (Прюфер 1918.)

- ullet Пусть $V(K_n)=[1..n]$. Мы построим взаимно однозначное соответствие между остовными деревьями K_n (то есть всеми деревьями на вершинах [1..n].) и последовательностями длины n-2, в которых каждый член принимает натуральное значение от 1 до n.
- ullet Количество таких последовательностей равно в точности $n^{n-2}.$
- ullet Пусть T дерево на вершинах [1..n]. Построим соответствующую ему последовательность $t_1,...,t_{n-2}$.
- Пусть ℓ_1 висячая вершина наименьшего номера в дереве T, тогда t_1 единственная смежная с ℓ_1 вершина дерева T, $T_1 = T \ell_1$.
- Затем найдём в T_1 висячую вершину наименьшего номера ℓ_2 , пусть t_2 единственная смежная с ℓ_2 вершина дерева T_1 , $T_2 = T_1 \ell_2$, и так далее, будем повторять процесс, пока не получим последовательность длины n-2 (при этом, останется дерево T_{n-2} на двух вершинах).

- ullet Построим обратное соответствие. Пусть дана последовательность $t_1,...,t_{n-2}$ с элементами из [1..n].
- ullet Отметим, что по построению каждая вершина x встречается в последовательности дерева T ровно $d_T(x)-1$ раз, поэтому вершины, которые в этой последовательности не встречаются, и есть висячие вершины дерева.
- ullet Выберем такую вершину ℓ_1 с наименьшим номером и соединим её с t_1 , после чего удалим ℓ_1 из списка номеров: $V_1 = V \setminus \{\ell_1\}$.
- Теперь выберем вершину $\ell_2 \in V_1$ с наименьшим номером, которая не встречается в последовательности $t_2,...,t_{n-2}$, соединим ℓ_2 с t_2 и положим $V_2 = V_1 \setminus \{\ell_2\}$. И так далее, повторим такую операцию n –2 раза.
- ullet В результате будет использована вся последовательность и проведено n-2 ребра, останется множество V_{n-2} из двух вершин и одно непроведённое ребро дерева T.
- ullet Именно две вершины из V_{n-2} и нужно соединить ребром: их степени в имеющемся графе равны количеству вхождений этих вершин в последовательность $t_1,...,t_{n-2}$, то есть на 1 меньше, чем их степени в дереве T.

Количество листьев в остовном дереве: теорема о промежуточных значениях.

Теорема 3

(S. Schuster, 1983.) Пусть связный граф G имеет остовные деревья с m и n висячими вершинами, m < n. Тогда для любого натурального $k \in [m..n]$ существует остовное дерево графа G ровно с k висячими вершинами.

Доказательство

- ullet Пусть T_1 и T^* остовные деревья с $u(T_1)=n$ и $u(T^*)=m$.
- ullet Начиная с дерева T_1 , будем выполнять следующий шаг. Пусть уже построена последовательность остовных деревьев $T_1,...,T_i$ графа G.
- ullet Если $T_i=T^*$, то существует ребро $e_i\in E(T^*)ackslash E(T_i)$, пусть $G_i=T_i+e_i.$

ullet В графе G_i есть ровно один простой цикл C_i , проходящий по ребру e_i . Понятно, что $E(C_i)
otin E(T^*)$, поэтому существует ребро $f_i \in E(C_i) ullet E(T^*)$. Положим $T_{i+1} = G_i - f_i = T_i + e_i - f_i$.

- Поскольку в дереве T_{i+1} больше рёбер из $E(T^*)$, чем в T_i , в некоторый момент мы получим $T_\ell = T^*$. Рассмотрим последовательность деревьев $T_1, T_2, ..., T_\ell = T^*$.
- ullet Деревья T_i и T_{i+1} отличаются двумя рёбрами, поэтому, $|u(T_i)-u(T_{i+1})|\leq 2$. Следовательно, количества висячих вершин деревьев нашей последовательности деревьев покрывают отрезок натурального ряда [m...n] с пробелами не более чем в одно число.
- ullet Пусть $t\in [m..n]$ и в нашей последовательности нет дерева с t вершинами.
- ullet Тогда существует такое j, что $u(T_j)=t+1$ и $u(T_{j+1})=t-1$. По построению, $T_{j+1}=G_j-f_j$ и $T_j=G_j-e_j$, пусть $f_j=xy,e_j=ab$.
- Тогда $d_{G_j}(a)=d_{G_j}(b)=2$ (обе вершины а и b становятся висячими после удаления ребра e_j), $d_{G_j}(x)>2$ и $d_{G_j}(y)>2$ (вершины x и y не становятся висячими после удаления ребра f_j).
- Таким образом, в цикле C_j есть вершины степени 2 и есть вершины степени более 2, тогда одно из рёбер $e'=uw\in E(C_i)$ таково, что $d_{G_j}(u)>2$ и $d_{G_j}(w)=2$. Значит, в дереве $T'=G_i-e'$ ровно одна из вершин $V(C_i)$ вершина w становится висячей, то есть u(T')=t.

Алгоритм выделения остовного дерева с большим числом листьев в связном графе, степени вершин которого не менее 3.

Теорема 4

(D.J.Kleitman, D.B.West, 1991.) В связном графе G с $\delta(G) \geq 3$ существует остовное дерево с не менее чем $\frac{v(G)}{4}$ листьями.

• Изображенный пример показывает, что эта оценка почти точная

Доказательство.

- ullet Мы приведем алгоритм построения остовного дерева с соответствующим количеством висячих вершин. Алгоритм будет выделять в графе G дерево, последовательно, по шагам добавляя к нему вершины.
- Пусть в некоторый момент уже построено дерево F подграф графа G.

Определение

ullet Висячую вершину x дерева F назовем мертвой, если все вершины графа G, смежные с x, входят в дерево F.

- ullet Количество мёртвых вершин дерева F мы обозначим через b(F).
- ullet Мертвые вершины останутся мертвыми висячими вершинами на всех последующих этапах построения. Для дерева F мы определим

$$lpha(F)=rac{3}{4}u(F)+rac{1}{4}b(F)-rac{1}{4}v(F).$$

Мы хотим построить такое остовное дерево T графа G, что $lpha(T) \geq 0$.

• Так как в остовном дереве все висячие вершины — мертвые, то $u(T) = b(T) = \frac{1}{4}v(G) + \alpha(T)$ и дерево T нас устраивает. **Базовое дерево** F' — это дерево, в котором произвольная вершина a соединена со всеми $k \geq 3$ вершинами из ее окрестности. Мы имеем v(F') = k + 1, u(F') = k

$$\alpha(F') \geq \frac{3}{4}k - \frac{1}{4}(k+1) = \frac{2k-1}{4} \geq \frac{5}{4}$$

Шаг алгоритма

Пусть после нескольких шагов построения мы получили дерево F (естественно $V(F)\subset V(G)$, $E(F)\subset E(G)$).

Пусть в результате шага добавилось Δv вершин, количество висячих вершин увеличилось на Δu , а количество мертвых вершин — на Δb .

Назовем доходом шага S величину:

$$P(S) = rac{3}{4}\Delta u + rac{1}{4}\Delta b - rac{1}{4}\Delta v.$$

Мы будем выполнять только шаги с неотрицательным доходом. При вычислении дохода шага мы будем полагать, что все добавленные вершины, про которые не сказано, что они мертвые, не являются мёртвыми. Это предположение лишь

уменьшит доход шага.

- Понятно, что для итогового остовного дерева T число $\alpha(T)$ будет складываться из $\alpha(F')$ (где F' базовое дерево, с которого мы начали построение) и суммы доходов всех шагов.
- ullet Остается построить дерево T с помощью шагов с неотрицательным доходом тогда $lpha(T) \geq lpha(F') > 0$ и, как объяснено ранее, дерево T нам подходит.
- Мы опишем несколько вариантов шага алгоритма. К очередному варианту мы будем переходить, только когда убедимся в невозможности всех предыдущих.
- ullet Введём обозначение W=V(G)ackslash V(F).
- Вот какие шаги мы будем выполнять.

S1. В дереве F есть невисячая вершина x, смежная с $y \in W$.

Добавим в дерево вершину y, получим $\Delta v = \Delta u = 1$ и $p(S1) \geq \frac{3}{4} - \frac{1}{4} = \frac{1}{2}.$

S2. В дереве F есть вершина x, смежная хотя бы с двумя вершинами из W.

Добавим в дерево эти две вершины, получим $\Delta v = 2, \Delta u = 1$ и $p(S2) \geq \frac{3}{4} - 2 * \frac{1}{4} = \frac{1}{4}.$

S3. Существует вершина $y \in W$, смежная с деревом F и хотя бы с двумя вершинами из W.

Добавим в дерево у и две смежные с ней вершины из W. Получим $\Delta v=3, \Delta u=1$ и $p(S3)\geq \frac{3}{4}-3*\frac{1}{4}=0.$

S4. Существуют не вошедшие в дерево F вершины

- ullet Тогда существует и смежная с деревом F вершина $y\in W.$ Так как невозможно выполнить S3, то y смежна не более, чем с одной вершиной из W.
- ullet Однако $d_G(y) \geq 3$, следовательно, вершина y смежна с двумя вершинами $x,x' \in V(F)$. Присоединим y к x. Так как

невозможно выполнить шаги S1 и S2, вершина x' — висячая в дереве F и смежна ровно с одной вершиной из W — свершиной y.

ullet Поэтому, в новом дереве вершина x' — мёртвая. Таким образом, $\Delta v=1, \Delta b\geq 1$ и $P(S4)\geq 0.$

• Ввиду конечности графа, построение закончится, и мы получим искомое остовное дерево графа G.

Матричная теорема о деревьях.

ullet Для $x,y\in V(G)$ через $e_G(x,y)$ обозначается количество рёбер графа G между вершинами x и y

Определение

Пусть G — граф на множестве вершин [1...n]. **Лапласиан** графа G —это квадратная матрица $L=(\ell_{i,j})_{i,j\in[1..n]}$, заданная следующим образом: $\ell_{i,i}=d_G(i)$, и $\ell_{i,j}=-e_G(i,j)$ при $i\neq j$.

- ullet Из определения и отсутствия петель следует, что сумма элементов в любой строке и в любом столбце матрицы L равна 0.
- ullet Таким образом, матрица L вырождена (сумма строк равна 0, значит, они $\Pi 3$). Следовательно, det(L)=0.
- ullet Матрица L симметрична относительно главной диагонали.

Определение

Пусть $A \in M_n(K)$ — матрица с коэффициентами из поля K.

- 1. Через $A_{i_1,...,i_k;j_1,...,j_m}$ будем обозначать матрицу, полученную из A удалением строк с номерами $i_1,...,i_k$ и столбцов с номерами $j_1,...,j_m$.
- 2. Число $(-1)^{i+j} \det(A_{i;j})$ называется **алгебраическим дополнением** элемента $a_{i,j}$ матрицы A.

Теорема 5

(G.Kirhhoff, 1847.) Пусть G — граф без петель (возможно, с кратными ребрами) на $n \geq 2$ вершинах, а L — его лапласиан. Тогда $st(G) = det(L_{i;i})$ для любого $i \in [1..n]$.

Доказательство.

- При одновременной перестановке пары строк и пары столбцов с такими же номерами знак определителя не меняется. Поэтому нумерация вершин не имеет значения, что мы будем использовать.
- ullet Докажем, что st(G)=det(L1;1).
- ullet При n=1 матрица $L_{1;1}$ пустая. Мы будем считать, что $det(L_{1;1})=1$ именно столько остовных деревьев у графа на одной вершине.
- Если граф имеет более одной вершины и не имеет ребер, то его лапласиан нулевая матрицы размера не менее чем 2×2, и алгебраическое дополнение любого ее элемента равно 0. Эти случаи будут базой индукции.
- ullet Далее рассмотрим случай, когда G имеет ребро e. Будем считать, что для всех меньших графов утверждение теоремы

доказано

- ullet Если $d_G(1)=0$ (то есть, вершина 1 изолированная), то st(G)=0 ввиду несвязности графа.
- ullet В этом случае в L первая строка и первый столбец состоят из 0.
- ullet Поэтому, i строка $L_{1:1}$ получается из соответствующей строки L вычеркиванием 0.
- ullet Следовательно, сумма элементов в каждой строке $L_{1,1}$ равна 0, откуда следует, что $rk(L_{1;1}) < n-1$, а значит, $det(L_{1;1}) = 0$.
- ullet Случай разобран, далее считаем, что $d_G(1) \geq 1.$
- ullet Тогда НУО ребро e соединяет вершины 1 и 2
- ullet По $\underline{\mathsf{Teopeme\ 1}}$ мы знаем, что $st(G) = st(G{-}e) + st(G{*}e).$
- ullet Пусть H граф, полученный из G*e удалением всех петель. Понятно, что st(H)=st(G*e).
- ullet Пусть L' и L^* лапласианы графов G-e и H соответственно. Тогда по индукцинному предпложению $st(G-e)=det(L'_{1:1})$ и $st(H)=det(L^*_{1:1})$.
- ullet Остается доказать, что $det(L_{1;1}) = det(L_{1;1}') + det(L_{1;1}^*).$
- ullet Как изменяется лапласиан графа при удалении ребра между вершинами 1 и 2?
- ullet Из $\ell_{1,1}$ и $\ell_{2,2}$ вычитается по 1, а к $\ell_{1,2}$ и $\ell_{2,1}$ прибавляется по 1.
- ullet При вычеркивании первого столбца и первой строчки получается, что $L'_{1,1}$ отличается от $L_{1,1}$ только элементом в левом верхнем углу это $\ell_{2,2}-1$ у $L'_{1,1}$ вместо $\ell_{2,2}$ у $L_{1,1}$.
- Пусть вершина графа H, полученная объединением 1 и 2 вершин графа G, имеет номер 1, а остальные вершины H занумеруем так же, как в графе G числами 3,4,...,n (пропустив индекс 2).
- ullet Тогда все элементы матрицы L^* вне 1 строки и 1 столбца равны элементам L с соответствующим индексами.
- ullet Значит, $L_{1:1}^* = L_{1,2;1,2}$.
- ullet Разложим определитель $L_{1,1}$ по первой строке (она же вторая строка матрицы L с удаленным 1 элементом), используя обозначения элементов матрицы L (но учитывая, что вторая строка матрицы L это первая строка $L_{1;1}$, а $j\geq 2$ столбец L —

это $j\!-\!1$ столбец матрицы $L_{1;1}$):

$$\begin{split} \det(L_{1,1}) &= \sum_{j=2}^n (-1)^{1+(j-1)} \ell_{2,j} \cdot \det(L_{1,2;1,j}) = \\ \det(L_{1,2;1,2}) + \left((\ell_{2,2}-1) \cdot \det(L_{1,2;1,2}) + \sum_{j=3}^n (-1)^{1+(j-1)} \ell_{2,j} \cdot \det(L_{1,2;1,j}) \right) \\ \det(L_{1;1}^*) + \det(L_{1;1}'). & \Box \end{split}$$

Количество остовных деревьев равно алгебраическому дополнению любого элемента лапласиана.

Следствие 1

Пусть L — лапласиан связного графа G без петель на $n\geq 2$ вершинах. Тогда $st(G)=(-1)^{i+j}det(L_{i;j})$ для любых $i,j\in [1..n]$.

Доказательство.

- ullet Так как сумма элементов любой строки матрицы L равна 0, система уравнений LX=0 имеет ненулевое решение столбец из n единиц
- ullet Следовательно, матрица L вырождена, а значит, $rk(L) \leq n{-}1$ и det(L) = 0.
- ullet По Теореме 5 мы знаем, что $det(L_{i;i}) = st(G) = 0$ (так как граф G связен).
- ullet Таким образом, матрица L имеет ненулевой минор порядка $n{-}1$, а значит, $rk(L)=n{-}1.$
- ullet Размерность пространства решений системы (*) равна $n{-}rk(L)=1.$
- ullet Значит, все решения пропорциональны вектору из n единиц, то есть все n координат любого решения (*) равны.
- ullet Введем обозначение для алгебраических дополнений элементов матрицы L: пусть $a_{i,j}:=(-1)^{i+j}det(L_{i;j}).$
- Напомним, что сумма произведений элементов строки матрицы на их алгебраические дополнения равна ее определителю, а сумма произведений элементов строки матрицы на алгебраические дополнения другой строки равна 0.
- Так как det(L) = 0, мы имеем

$$\sum_{j=1}^n \ell_{k,j} a_{k,j} = det(L), \qquad \sum_{j=1}^n \ell_{s,j} a_{k,j} = 0 \;\;$$
 при $s
eq k$

- ullet Таким образом, столбец из алгебраических дополнений любой строки $(a_{k,1},...,a_{k,n})^T$ является решением системы (*).
- ullet Следовательно, алгебраические дополнения всех элементов одной строки равны и $(-1)^{i+k} det(L_{k;i}) = a_{k,i} = a_{k,k} = det(L_{k:k}) = st(G)$ по Теореме 5