functional analysis study note

Zehao Li

October 2025

0.1 Weak Topology

Definition 1. Schwartz Space:

$$S(R) = \{ f \in C^{\infty}(R^n) | ||f||_{(N,d)} < \infty \} N \in N, \alpha \in N^n$$

where $||f||_{(N,d)} = \sup_{x \in \mathbb{R}^n} (1+|x|)^N |\partial^x f(x)|$

f consists of \hat{C}^{∞} functions on \mathbb{R}^n all derivative vanish at ∞ faster than any polynomials.

Definition 2. Schwartz space: $S(R) = \{f \in C^{\infty}(R^n) | ||f||_{(n,\alpha)} < \infty\}, n \in \mathbb{N}, \alpha \in \mathbb{N}^n \text{ where } ||f||_{(n,\alpha)} = \sup_{x \in R^n} (1+x)^N |\partial^{\alpha} f(x)|.$

f consists of C^{∞} functions on \mathbb{R}^n . All derivative vanish at ∞ faster than any polynomials.

Definition 3. Weak and strong operator topologies.

Let X, Y be Banach space. Consider B(X,Y) the topology generated by semi norm $p_{\psi,x}(T) = ||\psi(Tx)||$

Define a LCTVS topology on B(X,Y) called the weak operator topology.

Definition 4. a Net $(T_{\lambda})_{{\lambda}\in\Lambda}\subset B(X,Y)$ converge to $T\in B(X,Y)$ in weak operator topology if and only if $|\psi(T_{\lambda}x)-\psi(T_x)|\to 0 \forall x\in X, \psi\in Y^*$ $(B(X,Y),\{p_{\psi,x}\})$ is a LCTVS.

Definition 5. Strong operator topology is the LCTVS topology on B(X,Y) generated by the semi-norm $p_x(T) = ||T_x||, x \in X$ a net $(T_\lambda) \subset B(X,Y) \to (strong\ operator\ converge) \to T \in B(X,Y)$ if and only if $||T_\lambda x - Tx|| \to 0 \forall x \in X$

Definition 6. X be a vector space, Let Y be a space of linear functionals on X and suppose Y separates point of X. Then, define a seminorm: $p_{\psi}(x) = |\psi(x)|, \psi \in Y, x \in X$.

The LCTVS topology T1 on X define by $\{p_{\psi}\}$ is called the weak topology on X induced by Y, denoted by $\sigma(X,Y)$

Recall the sets $V(x_0, \psi_1 \dots \psi_n, \varepsilon) = \{x \in X | |\psi_j(x - x_0)| < \varepsilon\}, \psi_j \in T, \varepsilon > 0, n \in N \text{ form a neighborhood base } x_0 \text{ for the } \sigma(X, Y) \text{ topology.}$

Since Y is separating $\sigma(X,Y)$ is T_1 gives Hausdorff T_2 .

More, each $\psi \in Y$ is continuous in $\sigma(X,Y)$ topology $V(x_0,\psi_1...\psi_n,\varepsilon)$ is a neighborhood of 0.

If (X,τ) is a TVS such that $\psi \in Y$ is continuous in τ , then $\sigma(X,Y) \subset \tau$.

Thus, $\sigma(X,Y)$ is the weakest topology on X which means every $\psi \in Y$ is continuous.

 $X_{\lambda} \to X$ in a $\sigma(X,Y)$ if and only if $\psi(x_{\lambda} - x) \to 0 \forall \psi \in Y$

If $Y_1 \subset Y_2$ then $\sigma(X, Y_1) \subset \sigma(X, Y_2)$.

Special case: Let (X, τ) be a TVS and X^* separates the points of X. Then, $\sigma(X, X^*)$ is called the weak topology on X. More, $\sigma(X, X^*) \subset \tau$

Remark 1. One can characterize all TVS on X that have X^* on continuous dual.

Theorem 1. Let (X, τ) be a LCTVS that is T_1 . Let $C \subset X$ be a convex subset. Then $\overline{C} = \overline{C}^W$ (weak topology $C^W = C^{\sigma}(X, X^*)$)

Proof. Write $\sigma := \sigma(X, X^*)$ for brevity. Since σ is weaker than τ , closures satisfy

$$\overline{C}^{\,\sigma} \supset \overline{C}^{\,\tau}.$$

Thus it suffices to prove the reverse inclusion $\overline{C}^{\sigma} \subset \overline{C}^{\tau}$.

Assume, toward a contradiction, that there exists $x_0 \in X$ with $x_0 \notin \overline{C}^{\tau}$ but $x_0 \in \overline{C}^{\sigma}$. Since τ is Hausdorff and X is locally convex, \overline{C}^{τ} is a closed convex set not containing x_0 .

By the Hahn–Banach separation theorem (point vs. closed convex set in a Hausdorff LCTVS), there exists a continuous linear functional $f \in X^*$ and a real number α such that

$$\sup_{x \in C} \operatorname{Re} f(x) \leq \alpha < \operatorname{Re} f(x_0). \tag{1}$$

(For complex scalars we take the real part.)

Consider the set

$$U := \{ x \in X : \operatorname{Re} f(x) < \alpha \}.$$

Because $f \in X^*$ is (by definition) continuous for the weak topology, the map $x \mapsto \operatorname{Re} f(x)$ is σ -continuous, hence U is σ -open.

By (1), we have $x_0 \in U$ and $U \cap C = \emptyset$ (since Re $f(x) \leq \alpha$ for all $x \in C$). Therefore U is a σ -open neighborhood of x_0 disjoint from C, which implies $x_0 \notin \overline{C}^{\sigma}$, a contradiction.

Hence no such x_0 exists, and we conclude $\overline{C}^{\sigma} \subset \overline{C}^{\tau}$. Combining with the obvious reverse inclusion yields the desired equality $\overline{C}^{\tau} = \overline{C}^{\sigma}$.

Definition 7. Let (X,τ) be a TVS with dual X^* . Let $x \in X$ separates the points of X^* , then $\sigma(X^*,X)$ with $p_x(\psi) = |\psi(x)|$ called the weak* topology on X^* , which makes X^* into a LCTVS T1

Remark 2 (Basic neighborhoods in the weak* topology). Let (X, τ) be a TVS with dual X^* . The weak* topology $\sigma(X^*, X)$ on X^* is generated by the seminorms $p_x(\psi) = |\psi(x)|$ for $x \in X$. A basic 0-neighborhood is

$$V(x_1, ..., x_n; \varepsilon) = \{ \psi \in X^* : |\psi(x_i)| < \varepsilon, i = 1, ..., n \},$$

with $x_1, \ldots, x_n \in X$ and $\varepsilon > 0$. Equivalently, writing

$$p_{x_1,...,x_n}(\psi) := \max_{1 \le i \le n} |\psi(x_i)|,$$

we have the "ball"

$$B_{x_1,...,x_n}(0,\varepsilon) = \{ \psi \in X^* : p_{x_1,...,x_n}(\psi) < \varepsilon \}.$$

example 1. (X, ||||) normed space, $(X^*, ||||)$ normed space, then there are 2 topo on X^* :

$$\sigma(X^*, X) \subset \sigma(X^*, X^{**})$$

and $X \subset X^{**}$

Let X be a vector space and $\psi_1, \psi_2 \dots \psi_n$ are linear functional on X such that $\bigcap_{i=1}^n \ker \psi_i \subset \ker \psi$, then $\psi = c_1 \psi_1 + c_2 \psi_2 + \dots + c_n \psi_n$

Let X be a vector space and $\psi_1, \psi_2, \ldots, \psi_n$ be linear functionals on X. If $\bigcap_{i=1}^n \ker \psi_i \subseteq \ker \psi$, then there exist scalars c_1, \ldots, c_n such that

$$\psi = c_1\psi_1 + c_2\psi_2 + \dots + c_n\psi_n.$$

Proof. Without loss of generality, assume all $\psi_i \neq 0$. For each i, choose $x_i \in X$ such that $\psi_i(x_i) \neq 0$, and define

$$z_i = \frac{x_i}{\psi_i(x_i)} \quad \Rightarrow \quad \psi_i(z_i) = 1.$$

Define the map $\Phi: X \to \mathbb{K}^n$ by $\Phi(x) = (\psi_1(x), \dots, \psi_n(x))$, and let $V = \operatorname{Im}(\Phi)$. Define $f: V \to \mathbb{K}$ by $f(\Phi(x)) = \psi(x)$. This is well-defined: if $\Phi(x) = \Phi(y)$, then $x - y \in \bigcap \ker \psi_i \subseteq \ker \psi$, so $\psi(x) = \psi(y)$.

Extend f to a linear functional F on \mathbb{K}^n , which has the form $F(a_1, \ldots, a_n) = \sum c_i a_i$. Then for any $x \in X$,

$$\psi(x) = f(\Phi(x)) = F(\psi_1(x), \dots, \psi_n(x)) = \sum_{i=1}^n c_i \psi_i(x).$$

Hence $\psi = \sum c_i \psi_i$.

Theorem 2. If (X, τ) is a locally convex T_1 topological vector space, then

$$(X^*, \sigma(X^*, X))^* \cong X.$$

Proof. 1. $X \subset X^{**}$

2. opposite direction: for any $f \in X^{**}$, there exists $c > 0, x_1, x_2 \dots x_n \in X$ such that

$$|f(\psi)| \le c \sum_{i=1}^{n} |x_i(\psi)| = c \sum_{i=1}^{n} |\psi(x_i)|$$

Hence $\bigcap_{i=1}^n \ker(x_i) \subset \ker f$

Hence $\bigcap_{i=1}^{\infty} \ker(x_i) \subset \ker J$ By lemma above, we have there exists $c_1 \dots c_n$ such that $f = c_1 x_1 + c_2 x_2 \dots c_n x_n$. Thus $f \in X$ for any $f \in X^{**}$. So $X \supset X^{**}$

Theorem 3 (Alaoglu). Let X be a normed vector space over $\mathbb{K} = \mathbb{R}$ or \mathbb{C} , and let

$$B^* = \{ f \in X^* : ||f|| \le 1 \}$$

be the closed unit ball in the dual space X^* . Then B^* is compact in the weak* topology $\sigma(X^*, X)$.

Proof. For each $x \in X$, define

$$K_x = \{ z \in \mathbb{K} : |z| \le ||x|| \}.$$

Each K_x is a closed bounded interval (if $\mathbb{K} = \mathbb{R}$) or disk (if $\mathbb{K} = \mathbb{C}$), hence compact in \mathbb{K} . Consider the product space

$$\mathcal{K} = \prod_{x \in X} K_x.$$

By Tychonoff's Theorem, K is compact in the product topology. Note that the product topology on K is precisely the topology of pointwise convergence.

Define the map

$$\Phi: B^* \to \mathcal{K}, \quad \Phi(f) = (f(x))_{x \in X}.$$

For $f \in B^*$, we have $||f|| \le 1$, so

$$|f(x)| \le ||f|| \cdot ||x|| \le ||x|| \implies f(x) \in K_x \quad \forall x \in X.$$

Thus $\Phi(f) \in \mathcal{K}$, so $\Phi(B^*) \subseteq \mathcal{K}$.

Let $g = (g_x)_{x \in X} \in \mathcal{K}$ be a limit point of $\Phi(B^*)$ in the product topology. Then there exists a net $\{f_{\alpha}\}\subset B^*$ such that

$$f_{\alpha}(x) \to g_x$$
 for all $x \in X$.

Define $f: X \to \mathbb{K}$ by $f(x) = g_x$. We verify:

(a) f is linear: For $x, y \in X$ and $\lambda \in \mathbb{K}$,

$$f_{\alpha}(x+y) = f_{\alpha}(x) + f_{\alpha}(y) \rightarrow f(x) + f(y),$$

but also $f_{\alpha}(x+y) \to f(x+y)$, so f(x+y) = f(x) + f(y). Similarly, $f(\lambda x) = \lambda f(x)$.

(b) f is bounded with $||f|| \le 1$: For any $x \in X$,

$$|f_{\alpha}(x)| \le ||x||$$
 (since $||f_{\alpha}|| \le 1$),

so

$$|f(x)| = \lim_{\alpha} |f_{\alpha}(x)| \le ||x||.$$

Thus $||f|| \le 1$, so $f \in B^*$.

Hence $g = \Phi(f) \in \Phi(B^*)$, so $\Phi(B^*)$ is closed in \mathcal{K} .

Since K is compact and $\Phi(B^*) \subseteq K$ is closed, $\Phi(B^*)$ is compact in the product topology.

The weak* topology $\sigma(X^*, X)$ on X^* is the topology of pointwise convergence on X. The product topology on \mathcal{K} is also pointwise convergence. Thus the map

$$\Phi: (B^*, \sigma(X^*, X)) \to (\Phi(B^*), \text{ subspace topology})$$

is a homeomorphism (it is clearly continuous, bijective, and its inverse is continuous by definition of the subspace topology). Since $\Phi(B^*)$ is compact, B^* is weak* compact.

corollary 1. Let X be a normed space, then $(X^*) = \{ \psi \in X^* | ||\psi|| \le 1 \}$ is compact in the weak* topology.

Proof. Consider $V=\{x\in X|\|x\|\leq 1\}$ then $K=(X^*)$. Then apply Alaoglu theorem to it. \Box