Math 180B - Induction

- 1. Prove the following equations by induction. In each case, n is a positive integer.
 - (a) $1+4+7+\cdots+(3n-2)=\frac{n(3n-1)}{2}$.
 - (b) $1 + x + x^2 + \dots + x^n = \frac{1 x^{n+1}}{1 x}$. What happens when x = 1?
 - (c) $\lim_{x\to\infty} \frac{x^n}{e^x} = 0$.
 - (d) $n! = \int_0^\infty x^n e^{-x} dx$.
- 2. Prove the following inequalities by induction. n is a positive integer.
 - (a) $1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{2^n} \ge 1 + \frac{n}{2}$.
 - (b) $\binom{2n}{n} < 4^n$.
 - (c) $n! \leq n^n$.
- 3. Prove that the sum of the angles of a convex n-gon $(n \ge 3)$ is 180(n-2) degrees or $\pi(n-2)$ radians.
- 4. Prove the binomial theorem

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k.$$

5. What's wrong with this proof?

Claim. If we have n lines in the plane, no two of which are parallel, then they all go through one point.

Proof. This is clearly true for one or two lines by definition. Suppose that it is true for any set of n lines and let $S = \{\ell_1, \ell_2, \ell_3, \ell_4, \dots, \ell_{n+1}\}$ be a set of n+1 lines in the plane, no two of which are parallel. Delete the line ℓ_3 to obtain a set S' of n lines, no two of which are parallel. By the induction hypothesis, the lines in S' must all pass through some point P. In particular, ℓ_1 and ℓ_2 pass through P.

Now put ℓ_3 back and delete ℓ_4 instead to get another set S'' of n lines, no two of which are parallel. Again by the induction hypothesis, they must all pass through some point Q. In particular, ℓ_1 and ℓ_2 pass through Q. But ℓ_1 and ℓ_2 pass through P. Since two lines can pass through at most one point, we must have P = Q. But then ℓ_3 goes through P, so all the lines in S go through P.