Proposed Method

Feature Encoding Network

- Use the pertained ResNet to extract the visual feature of each shot after the segmentation process
- Denote the shot-level features in a specific video segment as $(v_1, v_2, \dots, v_{s_k})$
 - s_k : the number of shots in the video segment
- Then use <u>convolutional structure</u> to further encode the visual feature

Proposed Method

Fully Convolutional Block

- Use 1D fullyconvolutional network architecture to encode the shot-level visual feature
- Utilize <u>dilated</u>
 <u>convolutions</u> to
 obtain <u>larger receptive</u>
 <u>field</u> for handling long
 distance among the
 video segment

shot features

- First propose convolutional networks with different filter size and then concatenate their outputs which enables the model to receive more information
- The <u>dilated convolution</u> operation on *i*-th shot in a video segment: $o_i = \sum_{t=-k}^{k} f(t) \cdot v_{i+d\cdot t}$, where 2k+1 is the filter size, f is the filter and d is dilation factor
- Then employ a pooling layer on the temporal axis of the video, can reduce computing time and also decrease the running memory of the model
- Connect different fully convolutional block and construct a multi-layer block to extracted representative features