DSC 255 - MACHINE LEARNING FUNDAMENTALS

GENERALIZATION IN BOOSTING

SANJOY DASGUPTA, PROFESSOR

COMPUTER SCIENCE & ENGINEERING
HALICIOĞLU DATA SCIENCE INSTITUTE

AdaBoost

Data set
$$(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)})$$
, labels $y^{(i)} \in \{-1, +1\}$.

- 1 Initialize $D_1(i) = 1/n$ for all i = 1, 2, ..., n
- **2** For t = 1, 2, ..., T:
 - Give D_t to weak learner, get back some $h_t: \mathcal{X} \longrightarrow [-1, 1]$
 - Compute h_t 's margin of correctness:

$$r_{t} = \sum_{i=1}^{n} D_{t}(i) y^{(i)} h_{t}(x^{(i)}) \in [-1, 1]$$

$$\alpha_{t} = \frac{1}{2} \ln \frac{1+r_{t}}{1-r_{t}}$$

- Update weights: $D_{t+1}(i) \propto D_t(i) \exp(-\alpha_t y^{(i)} h_t(x^{(i)}))$
- 3 Final classifier: $H(x) = \text{sign}(\sum_{t=1}^{T} \alpha_t h_t(x))$

The Surprising Power of Weak Learning

Suppose that on each round t, the weak learner returns a rule h_t whose error on the time-t weighted data distribution is $\leq 1/2 - \gamma$.

Then, after T rounds, the training error of the combined rule

$$H(x) = \operatorname{sign}\left(\sum_{t=1}^{I} \alpha_t h_t(x)\right)$$

Is at most $e^{-\gamma^2 T/2}$.

The Surprising Power of Weak Learning

Suppose that on each round t, the weak learner returns a rule h_t whose error on the time-t weighted data distribution is $\leq 1/2 - \gamma$.

Then, after T rounds, the training error of the combined rule

$$H(x) = \operatorname{sign}\left(\sum_{t=1}^{I} \alpha_t h_t(x)\right)$$

Is at most $e^{-\gamma^2 T/2}$.

Presumably, there will come a time T at which further reductions in training error are simply overfitting and will cause test error to rise?

Overfitting?

Freund and Schapire: boosting decision trees for "letter" dataset.

Overfitting?

Freund and Schapire: boosting decision trees for "letter" dataset.

- After 1000 rounds: total size is over 2 million nodes
- Test error keeps dropping even after training error is zero:

	# rounds				
	5	100	1000		
train error	0.0	0.0	0.0		
test error	8.4	3.3	3.1		

Final classifier with weights normalized to sum to 1:

$$H(x) = sign\left(\underbrace{\frac{\sum_{t} \alpha_{t} h_{t}(x)}{\sum_{t} |\alpha_{t}|}}_{\text{call this } f(x)}\right)$$

Final classifier with weights normalized to sum to 1:

$$H(x) = sign\left(\underbrace{\frac{\sum_{t} \alpha_{t} h_{t}(x)}{\sum_{t} |\alpha_{t}|}}_{\text{call this } f(x)}\right)$$

Margin of this classifier on data point $(x, y) \in \mathcal{X} \times \{-1, 1\}$: (fraction of votes correct) - (fraction incorrect) = $yf(x) \in [-1, 1]$.

Final classifier with weights normalized to sum to 1:

$$H(x) = sign\left(\underbrace{\frac{\sum_{t} \alpha_{t} h_{t}(x)}{\sum_{t} |\alpha_{t}|}}_{\text{call this } f(x)}\right)$$

Margin of this classifier on data point $(x, y) \in \mathcal{X} \times \{-1, 1\}$: (fraction of votes correct) - (fraction incorrect) = $yf(x) \in [-1, 1]$.

• Intuitively and mathematically: the larger a classifier's margins on the training data, the better its generalization.

Final classifier with weights normalized to sum to 1:

$$H(x) = sign\left(\underbrace{\frac{\sum_{t} \alpha_{t} h_{t}(x)}{\sum_{t} |\alpha_{t}|}}_{\text{call this } f(x)}\right)$$

Margin of this classifier on data point $(x, y) \in \mathcal{X} \times \{-1, 1\}$: (fraction of votes correct) - (fraction incorrect) = $yf(x) \in [-1, 1]$.

- Intuitively and mathematically: the larger a classifier's margins on the training data, the better its generalization.
- Adaboost seems to increase the margins on the training points even after training error has gone to zero.

Example Revisited

Cumulative distribution of margins of training examples:

Example Revisited

Cumulative distribution of margins of training examples:

	5	100	1000
train error	0.0	0.0	0.0
test error	8.4	3.3	3.1
% margins ≤ 0.5	7.7	0.0	0.0
minimum margin	0.14	0.52	0.55

Another View of Boosting

Let \mathcal{H} denote the set of base classifiers $\mathcal{X} \to \{-1, 1\}$.

For instance, $\mathcal{H} = \{\text{decision stumps}\}.$

Another View of Boosting

Let \mathcal{H} denote the set of base classifiers $\mathcal{X} \to \{-1, 1\}$.

For instance, $\mathcal{H} = \{\text{decision stumps}\}.$

Representation $\phi(x)$ in which each $h \in \mathcal{H}$ is a feature:

$$\phi(x) = (h(x): h \in \mathcal{H})$$

Boosting returns a linear classifier in this enhanced space:

$$H(x) = sign\left(\sum_{t} \alpha_{t} h_{t}(x)\right)$$
call this $f(x)$

Another View of Boosting

Let \mathcal{H} denote the set of base classifiers $\mathcal{X} \longrightarrow \{-1, 1\}$.

For instance, $\mathcal{H} = \{\text{decision stumps}\}.$

Representation $\phi(x)$ in which each $h \in \mathcal{H}$ is a feature:

$$\phi(x) = (h(x): h \in \mathcal{H})$$

Boosting returns a linear classifier in this enhanced space:

$$H(x) = sign\left(\sum_{t} \alpha_t h_t(x)\right)$$

What kind of linear classifier does boosting return? Is it optimizing some loss function?

Minimizing Exponential Loss

Boosting looks for the linear classifier f that minimizes the exponential loss:

$$\frac{1}{n} \sum_{i=1}^{n} e^{-y^{(i)} f(x^{(i)})}.$$

Minimizing Exponential Loss

Boosting looks for the linear classifier f that minimizes the exponential loss:

$$\frac{1}{n} \sum_{i=1}^{n} e^{-y^{(i)} f(x^{(i)})}.$$

This loss function is a convex upper bound on 0-1 loss:

Minimizing Exponential Loss

Boosting looks for the linear classifier f that minimizes the exponential loss:

$$\frac{1}{n} \sum_{i=1}^{n} e^{-y^{(i)} f(x^{(i)})}.$$

This loss function is a convex upper bound on 0-1 loss:

Loss minimization by coordinate descent.