

NOUR SAFFAF - [15/MAR/2018]

CONTENT

- Theory Quick Sketch
- First Experiment
- Stage 1: Extract Raw Audio Data
- Stage 2: Fast Fourier Transform
- Stage 2 Challenges
- Stage 3 Frequency Bands
- Stage 4 Fingerprinting
- Stage 5 Database
- Frontend & Backend
- Server-less Development In Mobile
- Experiment Results
- Business Perspective

INTRODUCTION

THE JOURNEY BEGINS

Followed theory, developed a sample software in 10 days

- Followed theory, developed a sample software in 10 days
- Generated > 10,000 fingerprints for a ~ 3.5 minutes song

- Followed theory, developed a sample software in 10 days
- Generated > 10,000 fingerprints for a ~ 3.5 minutes song
- Started listening for 10s, 20s, 30s ... etc

- Followed theory, developed a sample software in 10 days
- Generated > 10,000 fingerprints for a ~ 3.5 minutes song
- Started listening for 10s, 20s, 30s ... etc
- Results = ZERO fingerprints matched

- Followed theory, developed a sample software in 10 days
- Generated > 10,000 fingerprints for a ~ 3.5 minutes song
- Started listening for 10s, 20s, 30s ... etc
- Results = ZERO fingerprints matched
- Why the experiment has failed?!!

- Followed theory, developed a sample software in 10 days
- Generated > 10,000 fingerprints for a ~ 3.5 minutes song
- Started listening for 10s, 20s, 30s ... etc
- Results = ZERO fingerprints matched
- Why the experiment has failed?!!
- What to present now?

- Don't work on compressed audio files (mp3)
- Audio file and Mic recording configurations must match!

- Don't work on compressed audio files (mp3)
- Audio file and Mic recording configurations must match!

- Don't work on compressed audio files (mp3)
- Audio file and Mic recording configurations must match!

Configurations

Sampling Frequency - 44100

- Don't work on compressed audio files (mp3)
- Audio file and Mic recording configurations must match!

Configurations

Sampling Frequency - 44100

Sample Format - 8 , 16, 24, 32 bits

- Don't work on compressed audio files (mp3)
- Audio file and Mic recording configurations must match!

Configurations

Sampling Frequency - 44100 Sample Format - 8 , 16, 24, 32 bits Sample Type - Integer or Float

- Don't work on compressed audio files (mp3)
- Audio file and Mic recording configurations must match!

Configurations

Sampling Frequency - 44100

Sample Format - 8 , 16, 24, 32 bits

Sample Type - Integer or Float

Stereo or Mono - 2 or 1 channels

- Don't work on compressed audio files (mp3)
- Audio file and Mic recording configurations must match!

Configurations

Sampling Frequency - 44100

Sample Format - 8 , 16, 24, 32 bits

Sample Type - Integer or Float

Stereo or Mono - 2 or 1 channels

Interleaved - NonInterleaved

- Don't work on compressed audio files (mp3)
- Audio file and Mic recording configurations must match!
- What configurations should I select?

Configurations

Sampling Frequency - 44100

Sample Format - 8 , 16, 24, 32 bits

Sample Type - Integer or Float

Stereo or Mono - 2 or 1 channels

Interleaved - NonInterleaved

- Don't work on compressed audio files (mp3)
- Audio file and Mic recording configurations must match!
- What configurations should I select?
- Should I test or trust the system?

Configurations

Sampling Frequency - 44100

Sample Format - 8 , 16, 24, 32 bits

Sample Type - Integer or Float

Stereo or Mono - 2 or 1 channels

Interleaved - NonInterleaved

- Don't work on compressed audio files (mp3)
- Audio file and Mic recording configurations must match!
- What configurations should I select?
- Should I test or trust the system?

Tip: work on wav audio files

Configurations

Sampling Frequency - 44100

Sample Format - 8 , 16, 24, 32 bits

Sample Type - Integer or Float

Stereo or Mono - 2 or 1 channels

Interleaved - NonInterleaved

STAGE 2 – FAST FOURIER TRANSFORM

- Only one chunk at a time [4, 8, 16, 32 ...] kb
- How many chunks per second?

STAGE 2 – FAST FOURIER TRANSFORM

- Only one chunk at a time [4, 8, 16, 32 ...] kb
- How many chunks per second?
- Mono, 16 bit, 44.1 KHz = 88.2 KB / Second
- Stereo, 16 bit, 44.1 KHz = 176.4 KB / Second

STAGE 2 - FAST FOURIER TRANSFORM

- Only one chunk at a time [4, 8, 16, 32 ...] kb
- How many chunks per second?
- Mono, 16 bit, 44.1 KHz = 88.2 KB / Second
- Stereo, 16 bit, 44.1 KHz = 176.4 KB / Second

STAGE 2 - FAST FOURIER TRANSFORM

- Only one chunk at a time [4, 8, 16, 32 ...] kb
- How many chunks per second?
- Mono, 16 bit, 44.1 KHz = 88.2 KB / Second

STAGE 2 – FAST FOURIER TRANSFORM

- Only one chunk at a time [4, 8, 16, 32 ...] kb
- How many chunks per second?

STAGE 2 - FAST FOURIER TRANSFORM

- Only one chunk at a time [4, 8, 16, 32 ...] kb
- How many chunks per second?

STAGE 2 - FAST FOURIER TRANSFORM

- Only one chunk at a time [4, 8, 16, 32 ...] kb
- How many chunks per second?

STAGE 2 - FAST FOURIER TRANSFORM

- Only one chunk at a time [4, 8, 16, 32 ...] kb
- How many chunks per second?

Is the output of FFT on the audio file and mic recording are the same?

- Is the output of FFT on the audio file and mic recording are the same?
- Use Visualisation!! Matlab/Octave

- Is the output of FFT on the audio file and mic recording are the same?
- Use Visualisation!! Matlab/Octave
- Test single pure tone (for example 400 Hz)

- Is the output of FFT on the audio file and mic recording are the same?
- Use Visualisation!! Matlab/Octave
- Test single pure tone (for example 400 Hz)

- Is the output of FFT on the audio file and mic recording are the same?
- Use Visualisation!! Matlab/Octave
- Test single pure tone (for example 400 Hz)

- Is the output of FFT on the audio file and mic recording are the same?
- Use Visualisation!! Matlab/Octave
- Test single pure tone (for example 400 Hz)

- Is the output of FFT on the audio file and mic recording are the same?
- Use Visualisation!! Matlab/Octave
- Test single pure tone (for example 400 Hz)

- Is the output of FFT on the audio file and mic recording are the same?
- Use Visualisation!! Matlab/Octave
- Test single pure tone (for example 400 Hz)

- Is the output of FFT on the audio file and mic recording are the same?
- Use Visualisation!! Matlab/Octave
- Test single pure tone (for example 400 Hz)

- Is the output of FFT on the audio file and mic recording are the same?
- Use Visualisation!! Matlab/Octave
- Test single pure tone (for example 400 Hz)

[10, 193, 301, 398] for all chunks

- Recording peak [10, 193, 301, 398]
- Is the Mic producing similar peak?

- Recording peak [10, 193, 301, 398]
- Is the Mic producing similar peak?

- Recording peak [10, 193, 301, 398]
- Is the Mic producing similar peak?

- Recording peak [10, 193, 301, 398]
- Is the Mic producing similar peak?

- Recording peak [10, 193, 301, 398]
- Is the Mic producing similar peak?

[139, 161, 301, 398]

[150, 161, 226, 398]

[129, 161, 215, 398]

- Recording peak [10, 193, 301, 398]
- Is the Mic producing similar peak?

[139, 161, 301, 398]

[150, 161, 226, 398]

[129, 161, 215, 398]

[150, 193, 236, 398]

- Recording peak [10, 193, 301, 398]
- Is the Mic producing similar peak?

[139, 161, 301, 398]

[150, 161, 226, 398]

[129, 161, 215, 398]

[150, 193, 236, 398]

- Recording peak [10, 193, 301, 398]
- Is the Mic producing similar peak?

- Recording peak [10, 193, 301, 398]
- Is the Mic producing similar peak?

- Recording peak [10, 193, 301, 398]
- Is the Mic producing similar peak?

[139, 161, 301, 398] [150, 161, 226, 398] [129, 161, 215, 398] [150, 193, 236, 398]

Normalisation/Silence Threshold

- What frequency bands should I choose?
- Need help? Create the Peaks Map

- What frequency bands should I choose?
- Need help? Create the Peaks Map

- What frequency bands should I choose?
- Need help? Create the Peaks Map

- What frequency bands should I choose?
- Need help? Create the Peaks Map

- What frequency bands should I choose?
- Need help? Create the Peaks Map

STAGE 3 - AUDIO VS MIC PEAKS MAP - 5K BANDS

Bands

~5k Hz

STAGE 3 - AUDIO VS MIC PEAKS MAP - 500 BANDS

Bands

~500 Hz

STAGE 3 - AUDIO VS MIC PEAKS MAP - 500 BANDS

Bands

~500 Hz

STAGE 3 - AUDIO VS MIC PEAKS MAP - 250 BANDS

Bands

~250 Hz

Bands

Bands

Bands

Bands

STAGE 3 - FREQUENCY BANDS SELECTION

- From the visualisations we conclude:
- Narrowing the frequency bands results in more peak matches
- Narrowing the frequency bands may result in higher duplicate peaks (smaller DFT bins)
- Narrow frequency band is needed for Mic recording to capture peaks at specific low frequencies, for example 170 Hz
- In my opinion, better detection and less duplicates could be achieved using dynamic frequency bands based on the chunk magnitude's average
- ▶ The choice of the fingerprinting algorithm may influence the bands selection
- ▶ For this experiment, I selected fixed 4 frequency bands between 20 Hz and 1k Hz

Now we selected the bands, so what next?

- Now we selected the bands, so what next?
- Algorithm? Technique?

- Now we selected the bands, so what next?
- Algorithm? Technique?
- Uniqueness or Duplicates?

- Now we selected the bands, so what next?
- Algorithm? Technique?
- Uniqueness or Duplicates?

- Now we selected the bands, so what next?
- Algorithm? Technique?
- Uniqueness or Duplicates?

- Now we selected the bands, so what next?
- Algorithm? Technique?
- Uniqueness or Duplicates?

- Now we selected the bands, so what next?
- Algorithm? Technique?
- Uniqueness or Duplicates?

- Now we selected the bands, so what next?
- Algorithm? Technique?
- Uniqueness or Duplicates?

Information

- Now we selected the bands, so what next?
- Algorithm? Technique?
- Uniqueness or Duplicates?

Information

Point 1 Frequency 5800 Hz

Point 2 Frequency 6700 Hz

Distance 60 - 35 = 25 ms

- Now we selected the bands, so what next?
- Algorithm? Technique?
- Uniqueness or Duplicates?

Information

Point 1 Frequency 5800 Hz

Point 2 Frequency 6700 Hz

Distance 60 - 35 = 25 ms

- Now we selected the bands, so what next?
- Algorithm? Technique?
- Uniqueness or Duplicates?

Information Point 1 Frequency 5800 Hz Point 2 Frequency 6700 Hz Distance 60 - 35 = 25 msAlgorithm Hashing Technique 10902398493209094380

Fingerprint

- Now we selected the bands, so what next?
- Algorithm? Technique?
- Uniqueness or Duplicates?

Information Point 1 Frequency 5800 Hz Point 2 Frequency 6700 Hz Distance 60 - 35 = 25 msAlgorithm Hashing Technique 10902398493209094380

Fingerprint

STAGE 5 - DATABASE

Unique fingerprints or Duplicates?

STAGE 5 - DATABASE

Unique fingerprints or Duplicates?

FingerPrints FPs	Time	Song Id	
10902398493209094380	0.2s	Song_1	
20802367543209094534	1.3s	Song_2	
68780279824398492094	19.4s	Song_100	

Unique FingerPrints Table

SHA-1 Will Drevo

377 MB

5.4 million FPs

45 songs

STAGE 5 - DATABASE

Unique fingerprints or Duplicates?

FingerPrints FPs	Time	Song Id	
10902398493209094380	0.2s	Song_1	
20802367543209094534	1.3s	Song_2	
68780279824398492094	19.4s	Song_100	

Unique FingerPrints Table

FingerPrints FPs	Songs Id
10902398493209094380	Song_1, Song_10
20802367543209094534	Song_2, Song_13
68780279824398492094	Song_7

Duplicates FingerPrints Table

SHA-1 Will Drevo

377 MB

5.4 million FPs

45 songs

My Experiment

18.9 MB

64699 FPs

15 songs

size is not linear

FRONTEND & BACKEND

- Fingerprinting is a pre-processing step
- Mobile app needs only to send the chunks/buffers to the server
- Server computes the FFT, selects peaks, etc...
- Server queries the database finds best match
- Server sends the result back to the app

SERVER-LESS DEVELOPMENT IN MOBILE

#	iOS	Android		
1	Core Audio	InputStream, AudioRecord		
2	vDSP	JTransforms, TarsosDSP etc		
3	Swift , Obj C	Java, Kotlin		
4	Peak as a Struct	Peak as a Class		
5	Core Data, realm	SQLite, Room, realm		

EXPERIMENT RESULTS 97.3%

8 KB Chunk	30s	15s	10s	5s	3s
Song 1	✓	☑	▽	▽	✓
Song 2	✓	✓	▽	✓	✓
Song 3	☑	☑	▽	×	×
Song 4	✓	☑	▽	☑	✓
Song 5	☑	☑	▽	✓	✓
Song 6	▽	✓	<u>~</u>	▽	▽
Song 7	▽	▼	<u>~</u>	▼	✓
Song 8	✓	✓	▽	✓	✓
Song 9	✓	✓	<u>~</u>	✓	✓
Song 10	☑	☑	▽	☑	✓
Song 11	✓	✓	<u>~</u>	✓	✓
Song 12	✓	✓	▽	✓	✓
Song 13	✓	✓	▽	✓	✓
Song 14	▽	✓	▽	▽	✓
Song 15	▽	▽	▼	▽	▽

Failed first time due to noise, succeeded three times consecutively

Success with close score for next match

Congratulations you have created Shazam-Like App!

- Congratulations you have created Shazam-Like App!
- You are going to be a rich man

\$54m revenue 2016 (The Verge)

- Congratulations you have created Shazam-Like App!
- You are going to be a rich man
- Not really.....

\$54m revenue 2016 (The Verge)

- Congratulations you have created Shazam-Like App!
- You are going to be a rich man

\$54m revenue 2016 (The Verge)

Not really.....

▶ 1st problem: Millions of songs, commercials, TV shows etc...

- Congratulations you have created Shazam-Like App!
- You are going to be a rich man

\$54m revenue 2016 (The Verge)

- ▶ 1st problem: Millions of songs, commercials, TV shows etc..
- 🕨 2nd problem: Patents everywhere.. Even Shazam was sued in 2009 🤔

- Congratulations you have created Shazam-Like App!
- You are going to be a rich man

\$54m revenue 2016 (The Verge)

- 1st problem: Millions of songs, commercials, TV shows etc...
- 2nd problem: Patents everywhere.. Even Shazam was sued in 2009 <a>9
- 3rd problem: Competitors (Apple, SoundHound, ACR Cloud)

- Congratulations you have created Shazam-Like App!
- You are going to be a rich man

\$54m revenue 2016 (The Verge)

- 1st problem: Millions of songs, commercials, TV shows etc...
- 2nd problem: Patents everywhere.. Even Shazam was sued in 2009 <a>9
- 3rd problem: Competitors (Apple, SoundHound, ACR Cloud)
- 4th problem: Marketing budget (\$100 K)?

- Congratulations you have created Shazam-Like App!
- You are going to be a rich man

\$54m revenue 2016 (The Verge)

- ▶ 1st problem: Millions of songs, commercials, TV shows etc..
- 2nd problem: Patents everywhere.. Even Shazam was sued in 2009
- 3rd problem: Competitors (Apple, SoundHound, ACR Cloud)
- 4th problem: Marketing budget (\$100 K)?
- Another problem: Why customers would migrate to your app?

REFERENCES & GOOD ARTICLES

- http://willdrevo.com/fingerprinting-and-audio-recognition-with-python/
- http://coding-geek.com/how-shazam-works/
- https://labrosa.ee.columbia.edu/matlab/fingerprint/
- https://www.theverge.com/2017/12/11/16761984/apple-shazam-acquisition

CONCLUSION

THE JOURNEY ENDS FOR NOW!

ONE MORE THING - SAWTTI APP

- ▶ 1-Rag'n'Bone Man I am Human
- 2-Ed Sheeran Shape of you
- 3-Adele Rolling in the deep
- 4-Mark Ronson Uptown Funk
- 5-Earth, Wind & Fire -September
- 6- PSY Gangnam Style
- 7- Sia Cheap Thrills
- 8- Ariana Grande Side To Side
- 9- The Chainsmokers Closer

- 10- Shakira Waka Waka
- 11- Lou Bega Mambo No. 5
- 12- Luis Fonsi Despacito
- 13- Major Lazer & DJ Snake -Lean On
- 14- Beyoncé Naughty Girl
- 15- Los del Rio Macarena

Q&A