Контрольная работа по курсу «Сети ЭВМ и телекоммуникации

Студент Bogarytev Stanislav Гр. 320207

Вариант 26

Часть І. Планирование адресного пространства IPv6

Задание 1.1:: Представить сокращенную запись адреса сети IPv6, который сформирован следующим образом:

- 1. Префикс глобальной маршрутизации установлен в соответствии с рекомендациями http://tools.ietf.org/html/rfc3849
- 2. Идентификатор подсети установлен в соответствии с номером Вашей учебной группы, который интерпретируется как десятичное число.
- 3. Старшие 5 байтов идентификатора интерфейса установлены кодами ASCII (http://ascii.org.ru/) первых пяти букв Вашего имени (в латинице).
- 4. Остальные позиции адреса установлены нулевыми значениями.

Решение 1.1 (макс. 20 баллов):

Сеть IPv6 | 2001:db8:0:4eef:5374:616e:6900:0/104 |

Задание 1.2: разбить сеть из п.1.1 на 65 одинаковых по размеру подсетей МАКСИМАЛЬНОЙ ДЛИНЫ и указать префиксы первой и последней подсетей.

Решение 1.2 (макс. 20 баллов):

Префикс $N_{ m C\acute{\Gamma}C,}$	$2001: \mathtt{db8:0:4eef:5374:616e:6900:0/111}$
Префикс $N_{\rm C,PePS}$	2001:db8:0:4eef:5374:616e:6980:0/111

Часть II. Планирование адресного пространства IPv4

X0= целая часть (N*16)/256+10= целая часть (26*16)/256+10=11

 $X1 = {f octatok}$ от деления $(N*16)/256 = {f octatok}$ от деления (26*16)/256 = 160

Дано: Сеть 11.160.0.0/12

Задание 2.1.1: разбить сеть на 4096 подсетей, указать для первых 5 подсетей:

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.1.1(макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	11	160	0	0
Адрес сети	00001011	10100000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

2. Чтобы разбить адрес сети на нужное количество подсетей, необходимо заимствовать 4 бит из 3-го октета и 8 бит из 2-го октета.

3. Итого, получается, что сеть 11.160.0.0/12 мы разбили на 4096 подсети, в каждой из которых по 254 узлов, указываем первые 5 подсетей:

	11	160	0	0
Адрес сети дв.с	00001011	10100000	00000000	00000000
Маска дв.с	11111111	11111111	11111111	00000000
	255	255	255	0

200	200	200
$oxedsymbol{A}$ дрес сети $N_1/$ Префикс N_1	11.160.0.0/2	24
Адрес первого узла N_1	11.160.0.1	
Адрес последнего узла N_1	11.160.0.254	!
Широковещательный адрес N_1	11.160.0.255	5
Адрес сети $N_2/$ Префикс N_2	11.160.1.0/2	24
Λ дрес первого узла N_2	11.160.1.1	
Адрес последнего узла N_2	11.160.1.254	Į.
Широковещательный адрес N_2	11.160.1.255	,
Адрес сети $N_3/$ Префикс N_3	11.160.2.0/2	24
Адрес первого узла N_3	11.160.2.1	
Адрес последнего узла N_3	11.160.2.254	
Широковещательный адрес N_3	11.160.2.255	5
$oxed{f A}$ дрес сети $N_4/$ Префикс N_4	11.160.3.0/2	24
Адрес первого узла N_4	11.160.3.1	
Адрес последнего узла N_4	11.160.3.254	
Широковещательный адрес N_4	11.160.3.255	5
$oxedsymbol{A}$ дрес сети $N_5/$ Префикс N_5	11.160.4.0/2	24
Адрес первого узла N_5	11.160.4.1	
Адрес последнего узла N_5	11.160.4.254	
Широковещательный адрес N_5	11.160.4.255	5

Дано: Сеть 11.160.0.0/12

Задание 2.1.2: разбить сеть на 1800 подсетей, указать для первой и последней подсетей:

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.1.2(макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

2. Чтобы разбить данную сеть на $(1800 \leqslant 2^{11} = 2048)$ подсетей необходимо заимствовать 4 бит из 3-го октета и 7 бит из 2-го октета (получается, что сеть можно разбить на 2048 подсетей: $2^{11} = 2048$; оставшиеся 9 бит идут под узлы: $2^9 - 2 = 510$ в каждой подсети).

3. Указываем первую и последнюю подсети:

Адрес сети $N_1/$ Префикс N_1	11.160.0.0/23
Адрес первого узла N_1	11.160.0.1
Адрес последнего узла N_1	11.160.1.254
Широковещательный адрес N_1	11.160.1.255

Λ дрес сети $N_2/$ Префикс N_2	11.174.14.0/23
${ m A}$ дрес первого узла N_2	11.174.14.1
${ m A}$ дрес последнего узла N_2	11.174.15.254
Широковещательный адрес N_2	11.174.15.255

Задание 2.2.1: разбить сеть на подсети, чтобы в каждой было по 32768 узла (с учетом адресов сети и directed broadcast), указать для ПОСЛЕДНИХ 5 подсетей:

- адрес подсети;
- адрес первого узла;

- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.2.1(макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	11	160	0	0
Адрес сети	00001011	10100000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

2. Количество узлов в сети зависит от числа бит в узловой части IP-адреса и вычисляется по формуле 2^n-2 , где n - кол-во «узловых» бит. В нашем случае n=15, т.к. $2^{15}-2=32766$. Т.е. нужно выбрать такую маску, которря выделит ровно 15 бит для адресов узлов. Таким образом, исходную сеть мы сможем разбить на $2^5=128$ подсетей по 32766 узла(ов) в каждой.

	11	160	0	0
Адрес сети дв.с	00001011	10100000	00000000	00000000
Маска дв.с	11111111	11111111	10000000	00000000
	255	255	128	Ω

3. Указываем последние 5 подсетей:

$oxed{A}$ дрес сети $N_1/$ Префикс N_1	$ \boxed{ 11.173.128.0/17 } $
Адрес первого узла N_1	11.173.128.1
Адрес последнего узла N_1	11.173.255.254
Широковещательный адрес N_1	11.173.255.255
Λ дрес сети $N_2/$ Префикс N_2	11.174.0.0/17
Адрес первого узла N_2	11.174.0.1
Адрес последнего узла N_2	11.174.127.254
Широковещательный адрес N_2	11.174.127.255
$oxed{A}$ дрес сети $N_3/$ Префикс N_3	11.174.128.0/17
Адрес первого узла N_3	11.174.128.1
Адрес последнего узла N_3	11.174.255.254
Широковещательный адрес N_3	11.174.255.255

Λ дрес сети $N_4/$ Префикс N_4	11.175.0.0/17
Λ дрес первого узла N_4	11.175.0.1
Адрес последнего узла N_4	11.175.127.254
Широковещательный адрес N_4	11.175.127.255
Λ дрес сети $N_5/$ Префикс N_5	11.175.128.0/17
${ m A}$ дрес первого узла N_5	11.175.128.1
Адрес последнего узла N_5	11.175.255.254
Широковещательный адрес N_5	11.175.255.255

Задание 2.2.2: разбить сеть на подсети, чтобы в каждой было не менее 8000 АКТИВНЫХ узлов, указать для первой и последней подсетей:

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.2.2(макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	11	160	0	0
Адрес сети	00001011	10100000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

2. Количество узлов в сети зависит от числа бит в узловой части IP-адреса и вычисляется по формуле 2^n-2 , где n - кол-во «узловых» бит. В нашем случае n=13, т.к. $2^{13}-2=8190 \geqslant 8000$.

-				
	11	160	0	0
Адрес сети дв.с	00001011	10100000	00000000	00000000
Маска дв.с	11111111	11111111	11100000	00000000
	255	255	224	0

3. Указываем первую и последнюю подсети

Адрес сети $N_1/$ Префикс N_1	11.160.0.0/19
Адрес первого узла N_1	11.160.0.1
Адрес последнего узла N_1	11.160.31.254
Широковещательный адрес N_1	11.160.31.255

Адрес сети $N_2/$ Префикс N_2	11.175.224.0/19
Адрес первого узла N_2	11.175.224.1
Адрес последнего узла N_2	11.175.255.254
Широковещательный адрес N_2	11.175.255.255

Задание 2.2.3: разбить сеть на подсети, чтобы в каждой было не менее 400 АКТИВНЫХ узлов, указать для ПОСЛЕДНИХ 5 подсетей:

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.2.3 (макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	11	160	0	0
Адрес сети	00001011	10100000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

2. Количество узлов в сети зависит от числа бит в узловой части IP-адреса и вычисляется по формуле 2^n-2 , где n- кол-во «узловых» бит. В нашем случае n=9, т.к. $2^9-2=510$.

	11	160	0	0
Адрес сети дв.с	00001011	10100000	00000000	00000000
Маска дв.с	11111111	11111111	11111110	00000000
	255	255	254	0

3. Указываем последние 5 подсетей:

$oxed{A}$ дрес сети $N_1/$ Префикс N_1	11.175.246.0/23
${ m A}$ дрес первого узла N_1	11.175.246.1
Адрес последнего узла N_1	11.175.247.254
Широковещательный адрес N_1	11.175.247.255
Адрес сети $N_2/$ Префикс N_2	11.175.248.0/23
Адрес первого узла N_2	11.175.248.1
Адрес последнего узла N_2	11.175.249.254

$oxedsymbol{A}$ дрес сети $N_3/$ Префикс N_3	11.175.250.0/23
Адрес первого узла N_3	11.175.250.1
Адрес последнего узла N_3	11.175.251.254
Широковещательный адрес N_3	11.175.251.255
$oxedsymbol{A}$ дрес сети $N_4/$ Префикс N_4	11.175.252.0/23
Адрес первого узла N_4	11.175.252.1
Адрес последнего узла N_4	11.175.253.254
Широковещательный адрес N_4	11.175.253.255
$oxedsymbol{A}$ дрес сети $N_5/$ Префикс N_5	11.175.254.0/23
Адрес первого узла N_5	11.175.254.1
Адрес последнего узла N_5	11.175.255.254
Широковещательный адрес N_5	11.175.255.255