Book 13 Proposition 6

If a rational straight-line is cut in extreme and mean ratio then each of the pieces is that irrational (straightline) called an apotome.

Let AB be a rational straight-line cut in extreme and mean ratio at C, and let AC be the greater piece. I say that AC and CB is each that irrational (straight-line) called an apotome.

For let BA have been produced, and let AD be made (equal) to half of BA. Therefore, since the straight-line AB has been cut in extreme and mean ratio at C, and AD, which is half of AB, has been added to the greater piece AC, the (square) on CD is thus five times the (square) on DA [Prop. 13.1]. Thus, the (square) on CD has to the (square) on DA the ratio which a number (has) to a number. The (square) on CD (is) thus commensurable with the (square) on DA [Prop. 10.6]. And the (square) on DA (is) rational. For DA [is] rational, being half of AB, which is rational. Thus, the (square) on CD (is) also rational [Def. 10.4]. Thus, CD is also rational. And since the (square) on CD does not have to the (square) on DA the ratio which a square number (has) to a square number, CD (is) thus incommensurable in length with DA [Prop. 10.9]. Thus, CD and DAare rational (straight-lines which are) commensurable in square only. Thus, AC is an apotome Prop. 10.73. Again, since AB has been cut in extreme and mean

ratio, and AC is the greater piece, the (rectangle contained) by AB and BC is thus equal to the (square) on AC [Def. 6.3, Prop. 6.17]. Thus, the (square) on the apotome AC, applied to the rational (straight-line) AB, makes BC as width. And the (square) on an apotome, applied to a rational (straight-line), makes a first apotome as width [Prop. 10.97]. Thus, CB is a first apotome. And CA was also shown (to be) an apotome.

Thus, if a rational straight-line is cut in extreme and mean ratio then each of the pieces is that irrational (straight-line) called an apotome.