

Il Lemma di Nakayama nella teoria dei Moduli

Candidato: Manuel Pusceddu Relatore:

Prof. Andrea Loi

Università degli Studi di Cagliari

21 Settembre 2018

II Lemma di Nakayama

Manuel Pusceddu

Introduzione alla teoria dei Moduli

|| Radicale di Jacobson

|| Lemma di | Nakayama

Manuel Pusceddu

Introduzione alla teoria dei Moduli

II Radicale di

|| Lemma di Nakayama

Teorema (Lemma di Nakayama)

Sia A un anello unitario commutativo, M un A-modulo finitamente generato e I un ideale di A t.c. $I \subseteq \Re$. Allora $IM = M \implies M = 0$.

Alcune definizioni

Definizione

 $(M,+,\cdot)$ si dice un A-modulo se $(A,\oplus,\otimes,1)$ è un anello unitario commutativo, (M,+) un gruppo abeliano e $\cdot: A \times M \to M$ un'applicazione t.c. $\forall a,b \in A, \forall x,y \in M$:

$$a \cdot (x + y) = a \cdot x + a \cdot y$$

- $\bullet (a \oplus b) \cdot x = a \cdot x + b \cdot x$
- $\bullet \ (a \otimes b) \cdot x = a \cdot (b \cdot x)$
- \bullet $1 \cdot x = x$

II Lemma di Nakayama

Manuel Pusceddu

Introduzione alla teoria dei Moduli

|| Radicale di | Jacobson

Alcune definizioni

Definizione

 $(M,+,\cdot)$ si dice un A-modulo se $(A,\oplus,\otimes,1)$ è un anello unitario commutativo, (M,+) un gruppo abeliano e $\cdot: A \times M \to M$ un'applicazione t.c. $\forall a,b \in A, \forall x,y \in M$:

$$a \cdot (x + y) = a \cdot x + a \cdot y$$

$$\bullet (a \oplus b) \cdot x = a \cdot x + b \cdot x$$

$$\bullet \ (a \otimes b) \cdot x = a \cdot (b \cdot x)$$

$$\bullet$$
 $1 \cdot x = x$

II Lemma di Nakayama

Manuel Pusceddu

Introduzione alla teoria dei Moduli

|| Radicale di | Jacobson

Alcune definizioni

Definizione

 $(M,+,\cdot)$ si dice un A-modulo se $(A,\oplus,\otimes,1)$ è un anello unitario commutativo, (M,+) un gruppo abeliano e $\cdot: A \times M \to M$ un'applicazione t.c. $\forall a,b \in A, \forall x,y \in M$:

$$a \cdot (x + y) = a \cdot x + a \cdot y$$

$$\bullet (a \oplus b) \cdot x = a \cdot x + b \cdot x$$

$$\bullet (a \otimes b) \cdot x = a \cdot (b \cdot x)$$

$$\bullet$$
 $1 \cdot x = 2$

II Lemma di Nakayama

Manuel Pusceddu

Introduzione alla teoria dei Moduli

II Radicale di Jacobson

Alcune definizioni

Definizione

 $(M,+,\cdot)$ si dice un A-modulo se $(A,\oplus,\otimes,1)$ è un anello unitario commutativo, (M,+) un gruppo abeliano e $\cdot: A \times M \to M$ un'applicazione t.c. $\forall a,b \in A, \forall x,y \in M$:

$$a \cdot (x + y) = a \cdot x + a \cdot y$$

$$\bullet (a \oplus b) \cdot x = a \cdot x + b \cdot x$$

$$\bullet (a \otimes b) \cdot x = a \cdot (b \cdot x)$$

$$\bullet$$
 $1 \cdot x = x$

II Lemma di Nakayama

Manuel Pusceddu

Introduzione alla teoria dei Moduli

|| Radicale di Jacobson

Esempi di A-Moduli

- Un ideale di A è un A-modulo, in particolare A è un A-modulo.
- Se A è un campo, un A-modulo è un A-spazio vettoriale
- ① Ogni gruppo abeliano (G, +) possiede una struttura c \mathbb{Z} -modulo definita nel modo seguente:

$$h \cdot a = \begin{cases} \underbrace{a + \dots + a}_{h \text{ volte}} & h > 0 \\ 0 & h = 0 \\ -\underbrace{(a + \dots + a)}_{-h \text{ volte}} & h < 0 \end{cases}$$

II Lemma di Nakayama

> Manuel Pusceddi

Introduzione alla teoria dei Moduli

II Radicale di Jacobson

Esempi di A-Moduli

- Un ideale di A è un A-modulo, in particolare A è un A-modulo.
- 2 Se A è un campo, un A-modulo è un A-spazio vettoriale
- ① Ogni gruppo abeliano (G, +) possiede una struttura d \mathbb{Z} -modulo definita nel modo seguente:

$$h \cdot a = \begin{cases} \underbrace{a + \dots + a}_{h \text{ } volte} & h > 0 \\ 0 & h = 0 \\ -\underbrace{(a + \dots + a)}_{-h \text{ } volte} & h < 0 \end{cases}$$

II Lemma di Nakayama

> Manuel Pusceddu

Introduzione alla teoria dei Moduli

II Radicale di Jacobson

Esempi di A-Moduli

- Un ideale di A è un A-modulo, in particolare A è un A-modulo.
- Se A è un campo, un A-modulo è un A-spazio vettoriale
- 3 Ogni gruppo abeliano (G, +) possiede una struttura di \mathbb{Z} -modulo definita nel modo seguente:

$$h \cdot a = \begin{cases} \underbrace{a + \dots + a}_{h \text{ volte}} & h > 0 \\ 0 & h = 0 \\ -\underbrace{(a + \dots + a)}_{-h \text{ volte}} & h < 0 \end{cases}$$

II Lemma di Nakayama

> Manuel Pusceddu

Introduzione alla teoria dei Moduli

|| Radicale di Jacobson

II Lemma di Nakayama

Alcune proprietà

$$0_A \cdot x = 0_M$$

$$(a \cdot x) = a \cdot (-x) = (-a) \cdot x$$

 $\forall a \in A, \forall x \in M$

Intro du zion e alla teoria dei Moduli

Sottomoduli e Quozienti

II Lemma di Nakayama

> Manuel Pusceddu

Introduzione alla teoria dei Moduli

|| Radicale di Jacobson

II Lemma di Nakayama

Definizione

 $M' \leq M$ è un sottomodulo di M se $a \cdot x \in M' \ \forall x \in M', \forall a \in A$

Il gruppo quoziente M/M' eredita la struttura di A-modulo, con l'operazione definita da: $a \cdot (x + M') = a \cdot x + M'$, $\forall a \in A$, $\forall x + M' \in M/M'$

L'A-modulo M/M' si dice modulo guoziente.

Sottomoduli e Quozienti

II Lemma di Nakayama

> Manuel Pusceddu

Definizione

 $M' \leq M$ è un sottomodulo di M se $a \cdot x \in M'$ $\forall x \in M', \forall a \in A$

Il gruppo quoziente M/M' eredita la struttura di A-modulo, con l'operazione definita da: $a \cdot (x + M') = a \cdot x + M'$, $\forall a \in A$, $\forall x + M' \in M/M'$.

L'A-modulo M/M' si dice modulo quoziente.

Introduzione alla teoria dei Moduli

II Radicale di Jacobson

|| Lemma di

Sottomoduli

Esempi di sottomoduli

- \bullet $\{0_M\}$ e M sono i sottomoduli banali di M
- ② Se A è un campo i sottomoduli di M sono i suoi sottospaz vettoriali
- 3 I sottomoduli dell'A-modulo A sono gli ideali di A

II Lemma di Nakayama

Manuel Pusceddu

Introduzione alla teoria dei Moduli

II Radicale di

Sottomoduli

Esempi di sottomoduli

- \bigcirc $\{0_M\}$ e M sono i sottomoduli banali di M
- ② Se A è un campo i sottomoduli di M sono i suoi sottospazi vettoriali
- 3 I sottomoduli dell' A-modulo A sono gli ideali di A

II Lemma di Nakayama

Manuel Pusceddu

Introduzione alla teoria dei Moduli

II Radicale di

Sottomoduli

Esempi di sottomoduli

- \bullet \bullet \bullet \bullet \bullet sono i sottomoduli banali di \bullet
- ② Se A è un campo i sottomoduli di M sono i suoi sottospaz vettoriali
- 3 I sottomoduli dell'A-modulo A sono gli ideali di A

II Lemma di Nakayama

Manuel Pusceddu

Introduzione alla teoria dei Moduli

|| Radicale di

Somma di sottomoduli

II Lemma di Nakayama

Manuel Pusceddu

Introduzione alla teoria dei Moduli

Jacobson

11 Lemma di Nakayama

Definizione

Sia M un A-modulo, e $(M_i)_{i\in I}$ una famiglia di sottomoduli di M. La loro $somma \sum M_i$ è l'insieme di tutte le somme finite $\sum x_i$, dove $x_i \in M_i \ \forall i$ e $x_i = 0$ per quasi tutti gli x_i (tutti tranne un numero finito)

Proposizione

Sia M un A-modulo, $(M_i)_{i \in I}$ una famiglia di sottomoduli di M, I un ideale di A.

 $\sum M_i \ e \bigcap M_i$ sono sottomoduli di M.

 $IM = \{\sum_{i=1}^{n} a_i \cdot x_i : a_i \in I, x_i \in M, n \in \mathbb{N}_+\}$ è un sottomodulo di M.

 $Sia x \in M$.

 $Ax = \{a \cdot x : a \in A\}$ è un sottomodulo di M e si chiama il sottomodulo generato da x.

II Lemma di Nakayama

> Manuel Pusceddu

Introduzione alla teoria dei Moduli

|| Radicale di Jacobson

Proposizione

Sia M un A-modulo, $(M_i)_{i\in I}$ una famiglia di sottomoduli di M, I un ideale di A.

 $\sum M_i$ e $\bigcap M_i$ sono sottomoduli di M.

 $IM = \{\sum_{i=1}^{n} a_i \cdot x_i : a_i \in I, x_i \in M, n \in \mathbb{N}_+\}$ è un sottomodulo di M.

Sia $x \in M$.

 $Ax = \{a \cdot x : a \in A\}$ è un sottomodulo di M e si chiama il sottomodulo generato da x.

II Lemma di Nakayama

> Manuel Pusceddu

Introduzione alla teoria dei Moduli

II Radicale di Jacobson

Proposizione

Sia M un A-modulo, $(M_i)_{i \in I}$ una famiglia di sottomoduli di M, I un ideale di A.

 $\sum M_i$ e $\bigcap M_i$ sono sottomoduli di M.

 $IM = \{\sum_{i=1}^{n} a_i \cdot x_i : a_i \in I, x_i \in M, n \in \mathbb{N}_+\}$ è un sottomodulo di M.

Sia $x \in M$.

 $Ax = \{a \cdot x : a \in A\}$ è un sottomodulo di M e si chiama il sottomodulo generato da x.

II Lemma di Nakayama

> Manuel Pusceddu

Introduzione alla teoria dei Moduli

II Radicale di Jacobson

Proposizione

Sia M un A-modulo, $(M_i)_{i \in I}$ una famiglia di sottomoduli di M, I un ideale di A.

 $\sum M_i$ e $\bigcap M_i$ sono sottomoduli di M.

 $IM = \{\sum_{i=1}^n a_i \cdot x_i : a_i \in I, x_i \in M, n \in \mathbb{N}_+\}$ è un sottomodulo di M.

Sia $x \in M$.

 $Ax = \{a \cdot x : a \in A\}$ è un sottomodulo di M e si chiama il sottomodulo generato da x.

II Lemma di Nakayama

> Manuel Pusceddu

Introduzione alla teoria dei Moduli

II Radicale di Jacobson

II Lemma di

Nakavama

Introduzione alla teoria dei Moduli

Definizione

Se $M = \sum Ax_i$, $\{x_i\}_{i \in I}$ si dice un insieme di *generatori* di M e se tale insieme è finito allora M si dice finitamente generato

Definizione

Siano $x_1,...,x_n$ elementi di un A-modulo M. Si dice combinazione A-lineare di $x_1,...,x_n$ ogni espressione del tipo $a_1x_1+...+a_nx_n$, $a_i\in A$ \forall i=1,...,n.

Osservazione

Se M è un A-modulo finitamente generato e $\{x_1,...,x_n\}$ un suo insieme di generatori, allora \forall $m\in M$, \exists $\alpha_1,...,\alpha_n\in A$ t.c.

ロ ト 4 週 ト 4 差 ト 4 差 ト 2 差 - 夕 Q (C)

Definizione

Se $M = \sum Ax_i, \{x_i\}_{i \in I}$ si dice un insieme di generatori di M e se tale insieme è finito allora M si dice finitamente generato

Definizione

Siano $x_1, ..., x_n$ elementi di un A-modulo M. Si dice combinazione A-lineare di $x_1, ..., x_n$ ogni espressione del tipo $a_1x_1 + ... + a_nx_n$, $a_i \in A \ \forall \ i = 1, ..., n$.

Osservazione

Se M è un A-modulo finitamente generato e $\{x_1,...,x_n\}$ un suo insieme di generatori, allora $\forall m \in M, \exists \alpha_1,...,\alpha_n \in A$ t.c. $m = \alpha_1 x_1 + \dots + \alpha_n x_n$

|| Lemma di | Nakayama

Manuel Pusceddu

Introduzione alla teoria dei Moduli

II Radicale di Jacobson

Definizione

Se $M = \sum Ax_i$, $\{x_i\}_{i \in I}$ si dice un insieme di *generatori* di M e se tale insieme è finito allora M si dice finitamente generato

Definizione

Siano $x_1, ..., x_n$ elementi di un A-modulo M. Si dice combinazione A-lineare di $x_1, ..., x_n$ ogni espressione del tipo $a_1x_1 + ... + a_nx_n$, $a_i \in A \ \forall \ i = 1, ..., n$.

Osservazione

Se M è un A-modulo finitamente generato e $\{x_1,...,x_n\}$ un suo insieme di generatori, allora $\forall m \in M, \exists \alpha_1,...,\alpha_n \in A$ t.c. $m = \alpha_1 x_1 + ... + \alpha_n x_n$.

II Lemma di Nakayama

Manuel Pusceddu

Introduzione alla teoria dei Moduli

II Radicale di Jacobson

|| Lemma di Nakayama

> Manuel Pusceddu

Introduzione alla teoria dei Moduli

|| Radicale di | Jacobson

II Lemma di Nakayama

Definizione

Sia M un A-modulo finitamente generato.

Un insieme di generatori $G = \{u_1, ..., u_n\}$ di M si dice minimale se ogni sottoinsieme proprio di G non genera M.

Proposizione

Se M è un A-modulo finitamente generato, allora ammette un insieme minimale di generatori.

Definizione

Sia M un A-modulo finitamente generato.

Un insieme di generatori $G = \{u_1, ..., u_n\}$ di M si dice minimale se ogni sottoinsieme proprio di G non genera M.

Proposizione

Se M è un A-modulo finitamente generato, allora ammette un insieme minimale di generatori.

II Lemma di Nakayama

Manuel Pusceddu

Introduzione alla teoria dei Moduli

|| Radicale di | Jacobson

II Lemma di Nakayama

Manuel Pusceddu

Introduzione alla teoria dei Moduli

|| Radicale di | Jacobson

|| Lemma d Nakayama

Esempi

- lacktriangle Consideriamo A come A-modulo. Allora 1_A genera A
- Consideriamo Z come Z-modulo. Allora {2,3} è un insieme di generatori minimale di Z.

II Lemma di Nakayama

Manuel Pusceddu

Introduzione alla teoria dei Moduli

II Radicale di Jacobson

II Lemma d Nakayama

Esempi

- $lue{1}$ Consideriamo A come A-modulo. Allora $lue{1}_A$ genera A
- ② Consideriamo \mathbb{Z} come \mathbb{Z} -modulo. Allora $\{2,3\}$ è un insieme di generatori minimale di \mathbb{Z} .

Il Radicale di Jacobson

II Lemma di Nakayama

> Manuel Pusceddu

alla teoria dei Moduli

|| Radicale di Jacobson

II Lemma di Nakayama

Teorema (Lemma di Krull)

Sia A un anello commutativo unitario e sia I un ideale proprio di A. Allora esiste un ideale massimale M di A t.c. $I \subseteq M$.

Definizione

Sia A un anello commutativo unitario. Il Radicale di Jacobson \Re è l'intersezione di tutti gli ideali massimali di A.

Il Radicale di Jacobson

|| Lemma di Nakayama

> Manuel Pusceddu

alla teoria dei Moduli

II Radicale di Jacobson

|| Lemma di Nakayama

Teorema (Lemma di Krull)

Sia A un anello commutativo unitario e sia I un ideale proprio di A. Allora esiste un ideale massimale M di A t.c. $I \subseteq M$.

Definizione

Sia A un anello commutativo unitario. Il Radicale di Jacobson \Re è l'intersezione di tutti gli ideali massimali di A.

Il Radicale di Jacobson

una caratterizzazione

|| Lemma di Nakayama

> Manuel Pusceddu

alla teoria dei Moduli

II Radicale di Jacobson

|| Lemma di Nakayama

Lemma

Sia A un anello commutativo unitario, $x \in A$. $x \in \Re \iff 1 - xy \in U(A) \ \forall y \in A$.

|| Lemma di | Nakayama

> Manuel Pusceddu

Introduzione alla teoria dei Moduli

II Radicale di Jacobson

|| Lemma di Nakayama

Teorema (Lemma di Nakayama)

Sia A un anello unitario commutativo, M un A-modulo finitamente generato e I un ideale di A t.c. $I \subseteq \Re$. Allora $IM = M \implies M = 0$.

Dimostrazione.

Supponiamo per assurdo $M \neq 0$ e sia $\{u_1, ..., u_n\}$ un insieme minimale di generatori di M, $u_i \neq 0 \ \forall i, n \in \mathbb{N}_+$.

$$u_n \in M = IM \implies \exists x_1, ..., x_m \in M, \exists a_1, ..., a_m \in I \text{ t.c.}$$

 $u_n = \sum_{i=1}^m a_i x_i.$

$$x_1,...,x_m \in M$$
, $\forall x_i \implies \exists b_{i1},...,b_{in} \in A \text{ t.c. } x_i = \sum_{j=1}^n b_{ij}u_j$

 $\implies u_n = \sum_{j=1}^n (\sum_{i=1}^m a_i b_{ij}) u_j$ dove $\sum_{i=1}^m a_i b_{ij} \in I$ in quanto I ideale di A.

$$\implies \exists c_1,...,c_n \in I \text{ t.c. } u_n = c_1u_1 + ... + c_nu_n$$

|| Lemma di Nakayama

Manuel Pusceddu

alla teoria dei Moduli

|| Radicale di Jacobson

Dimostrazione.

Supponiamo per assurdo $M \neq 0$ e sia $\{u_1, ..., u_n\}$ un insieme minimale di generatori di M, $u_i \neq 0 \ \forall i, n \in \mathbb{N}_+$.

$$u_n \in M = IM \implies \exists x_1, ..., x_m \in M, \exists a_1, ..., a_m \in I \text{ t.c.}$$

 $u_n = \sum_{i=1}^m a_i x_i.$

$$x_1,...,x_m \in M$$
, $\forall x_i \implies \exists b_{i1},...,b_{in} \in A \text{ t.c. } x_i = \sum_{j=1}^n b_{ij}u_j$

 $\implies u_n = \sum_{j=1}^n (\sum_{i=1}^m a_i b_{ij}) u_j$ dove $\sum_{i=1}^m a_i b_{ij} \in I$ in quanto I ideale di A.

$$\implies \exists c_1,...,c_n \in I \text{ t.c. } u_n = c_1u_1 + ... + c_nu_n$$

|| Lemma di Nakayama

Manuel Pusceddu

dei Moduli

II Radicale di Jacobson

Dimostrazione.

Supponiamo per assurdo $M \neq 0$ e sia $\{u_1, ..., u_n\}$ un insieme minimale di generatori di M, $u_i \neq 0 \ \forall i, n \in \mathbb{N}_+$.

$$u_n \in M = IM \implies \exists x_1, ..., x_m \in M, \exists a_1, ..., a_m \in I \text{ t.c.}$$

 $u_n = \sum_{i=1}^m a_i x_i.$

$$x_1,...,x_m \in M$$
, $\forall x_i \implies \exists b_{i1},...,b_{in} \in A \text{ t.c. } x_i = \sum_{j=1}^n b_{ij}u_j$

 $\implies u_n = \sum_{j=1}^n (\sum_{i=1}^m a_i b_{ij}) u_j$ dove $\sum_{i=1}^m a_i b_{ij} \in I$ in quanto I ideale di A.

$$\implies \exists c_1,...,c_n \in I \text{ t.c. } u_n = c_1u_1 + ... + c_nu_n$$

|| Lemma di Nakayama

Manuel Pusceddu

dei Moduli Il Radicale di

II Radicale di Jacobson

Dimostrazione.

Supponiamo per assurdo $M \neq 0$ e sia $\{u_1, ..., u_n\}$ un insieme minimale di generatori di M, $u_i \neq 0 \ \forall i, n \in \mathbb{N}_+$.

$$u_n \in M = IM \implies \exists x_1, ..., x_m \in M, \exists a_1, ..., a_m \in I \text{ t.c.}$$

 $u_n = \sum_{i=1}^m a_i x_i.$

$$x_1,...,x_m \in M$$
, $\forall x_i \implies \exists b_{i1},...,b_{in} \in A \text{ t.c. } x_i = \sum_{j=1}^n b_{ij}u_j$

 $\implies u_n = \sum_{j=1}^n (\sum_{i=1}^m a_i b_{ij}) u_j$ dove $\sum_{i=1}^m a_i b_{ij} \in I$ in quanto I ideale di A.

$$\implies \exists c_1,...,c_n \in I \text{ t.c. } u_n = c_1u_1 + ... + c_nu_n$$

II Lemma di Nakayama

Manuel Pusceddu

alla teoria dei Moduli

ll Radicale di Jacobson

Dimostrazione.

Supponiamo per assurdo $M \neq 0$ e sia $\{u_1, ..., u_n\}$ un insieme minimale di generatori di M, $u_i \neq 0 \ \forall i, n \in \mathbb{N}_+$.

$$u_n \in M = IM \implies \exists x_1, ..., x_m \in M, \exists a_1, ..., a_m \in I \text{ t.c.}$$

 $u_n = \sum_{i=1}^m a_i x_i.$

$$x_1,...,x_m \in M$$
, $\forall x_i \implies \exists b_{i1},...,b_{in} \in A \text{ t.c. } x_i = \sum_{j=1}^n b_{ij}u_j$

 $\implies u_n = \sum_{j=1}^n (\sum_{i=1}^m a_i b_{ij}) u_j$ dove $\sum_{i=1}^m a_i b_{ij} \in I$ in quanto I ideale di A.

$$\implies \exists c_1,...,c_n \in I \text{ t.c. } u_n = c_1u_1 + ... + c_nu_n.$$

II Lemma di Nakayama

Manuel Pusceddu

alla teoria dei Moduli

ll Radicale di Jacobson

Dimostrazione.

$$\implies (1-c_n)u_n = c_1u_1 + ... + c_{n-1}u_{n-1}$$

$$c_n \in I \subseteq \Re \implies 1 - c_n \in U(A)$$

$$\implies u_n = (1 - c_n)^{-1} (c_1 u_1 + ... + c_{n-1} u_{n-1})$$

 \implies M è generato da $\{u_1,...,u_{n-1}\}$, assurdo

|| Lemma di | Nakayama

Manuel Pusceddu

Introduzione alla teoria dei Moduli

|| Radicale di Jacobson

Dimostrazione.

$$\implies (1-c_n)u_n = c_1u_1 + ... + c_{n-1}u_{n-1}$$

$$c_n \in I \subseteq \Re \implies 1 - c_n \in U(A)$$

$$\implies u_n = (1 - c_n)^{-1}(c_1u_1 + ... + c_{n-1}u_{n-1})$$

 \implies M è generato da $\{u_1,...,u_{n-1}\}$, assurdo

|| Lemma di | Nakayama

> Manuel Pusceddu

Introduzione alla teoria dei Moduli

|| Radicale di Jacobson

Dimostrazione.

$$\implies (1-c_n)u_n = c_1u_1 + ... + c_{n-1}u_{n-1}$$

$$c_n \in I \subseteq \Re \implies 1 - c_n \in U(A)$$

$$\implies u_n = (1 - c_n)^{-1}(c_1u_1 + ... + c_{n-1}u_{n-1})$$

 \implies M è generato da $\{u_1,...,u_{n-1}\}$, assurdo

II Lemma di Nakayama

> Manuel Pusceddu

Introduzione alla teoria dei Moduli

|| Radicale di Jacobson

Dimostrazione.

$$\implies (1-c_n)u_n = c_1u_1 + ... + c_{n-1}u_{n-1}$$

$$c_n \in I \subseteq \Re \implies 1 - c_n \in U(A)$$

$$\implies u_n = (1 - c_n)^{-1}(c_1u_1 + ... + c_{n-1}u_{n-1})$$

 \implies M è generato da $\{u_1,...,u_{n-1}\}$, assurdo.

|| Lemma di | Nakayama

> Manuel Pusceddu

Introduzione alla teoria dei Moduli

|| Radicale di Jacobson

|| Lemma di | Nakayama

Manuel Pusceddu

Introduzione alla teoria dei Moduli

Jacobson

II Lemma di Nakayama

Corollario

Sia A un anello commutativo unitario, M un A-modulo finitamente generato, N un sottomodulo di M, $I \subseteq \Re$ un ideale di A. Allora $M = IM + N \implies M = N$.

Dimostrazione.

Consideriamo il modulo quoziente M/N.

$$I(M/N) = \{ \sum_{i=1}^n a_i(x_i + N) | n \in \mathbb{N}, a_i \in I, x_i \in M \ \forall i \}$$

$$\{(\sum_{i=1}^n a_i x_i) + N | n \in \mathbb{N}, a_i \in I, x_i \in M \ \forall i\}$$

$$=\pi(IM)=(IM+N)/N=M/N$$

$$\Longrightarrow$$
 (Per il Lemma di Nakayama applicato a M/N)

$$i \in M = N$$

II Lemma di Nakayama

Manuel Pusceddu

Introduzione alla teoria dei Moduli

|| Radicale di Jacobson

Dimostrazione.

Consideriamo il modulo quoziente M/N.

$$I(M/N) = \{ \sum_{i=1}^{n} a_i(x_i + N) | n \in \mathbb{N}, a_i \in I, x_i \in M \ \forall i \}$$

$$= \{ \left(\sum_{i=1}^{n} a_i x_i \right) + N | n \in \mathbb{N}, a_i \in I, x_i \in M \ \forall i \}$$

$$=\pi(IM)=(IM+N)/N=M/N$$

 \Longrightarrow (Per il Lemma di Nakayama applicato a M/N)

i.e.
$$M = N$$

|| Lemma di | Nakayama

Manuel Pusceddu

Introduzione alla teoria dei Moduli

Il Radicale di Jacobson

Dimostrazione.

Consideriamo il modulo quoziente M/N.

$$I(M/N) = \{ \sum_{i=1}^{n} a_i(x_i + N) | n \in \mathbb{N}, a_i \in I, x_i \in M \ \forall i \}$$
$$= \{ (\sum_{i=1}^{n} a_i x_i) + N | n \in \mathbb{N}, a_i \in I, x_i \in M \ \forall i \}$$
$$= \pi(IM) = (IM + N)/N = M/N$$

 \Longrightarrow (Per il Lemma di Nakayama applicato a M/N) M/N = 0

i.e. M = N

|| Lemma di | Nakayama

> Manuel Pusceddu

Introduzione alla teoria dei Moduli

|| Radicale di Jacobson

Dimostrazione.

Consideriamo il modulo quoziente M/N.

$$I(M/N) = \{ \sum_{i=1}^{n} a_i(x_i + N) | n \in \mathbb{N}, a_i \in I, x_i \in M \ \forall i \}$$
$$= \{ (\sum_{i=1}^{n} a_i x_i) + N | n \in \mathbb{N}, a_i \in I, x_i \in M \ \forall i \}$$
$$= \pi(IM) = (IM + N)/N = M/N$$

 \Longrightarrow (Per il Lemma di Nakayama applicato a M/N) M/N = 0

i.e. M = N

∥ Lemma di Nakayama

> Manuel Pusceddu

Introduzione alla teoria dei Moduli

ll Radicale di Jacobson

Dimostrazione.

Consideriamo il modulo quoziente M/N.

$$I(M/N) = \{ \sum_{i=1}^{n} a_i(x_i + N) | n \in \mathbb{N}, a_i \in I, x_i \in M \ \forall i \}$$
$$= \{ (\sum_{i=1}^{n} a_i x_i) + N | n \in \mathbb{N}, a_i \in I, x_i \in M \ \forall i \}$$
$$= \pi(IM) = (IM + N)/N = M/N$$

 \Longrightarrow (Per il Lemma di Nakayama applicato a M/N) M/N = 0

i.e. M = N

|| Lemma di | Nakayama

> Manuel Pusceddu

Introduzione alla teoria dei Moduli

|| Radicale di Jacobson

Dimostrazione.

Consideriamo il modulo quoziente M/N.

$$I(M/N) = \{ \sum_{i=1}^{n} a_i(x_i + N) | n \in \mathbb{N}, a_i \in I, x_i \in M \ \forall i \}$$
$$= \{ (\sum_{i=1}^{n} a_i x_i) + N | n \in \mathbb{N}, a_i \in I, x_i \in M \ \forall i \}$$
$$= \pi(IM) = (IM + N)/N = M/N$$

 \implies (Per il Lemma di Nakayama applicato a M/N) M/N = 0

i.e.
$$M = N$$

∥ Lemma di Nakayama

> Manuel Pusceddu

Introduzione alla teoria dei Moduli

|| Radicale di Jacobson

Dimostrazione.

Consideriamo il modulo quoziente M/N.

$$I(M/N) = \{ \sum_{i=1}^{n} a_i(x_i + N) | n \in \mathbb{N}, a_i \in I, x_i \in M \ \forall i \}$$
$$= \{ (\sum_{i=1}^{n} a_i x_i) + N | n \in \mathbb{N}, a_i \in I, x_i \in M \ \forall i \}$$
$$= \pi(IM) = (IM + N)/N = M/N$$

 \Longrightarrow (Per il Lemma di Nakayama applicato a M/N) M/N=0

i.e. $M = \Lambda$

∥ Lemma di Nakayama

> Manuel Pusceddu

Introduzione alla teoria dei Moduli

|| Radicale di Jacobson

Dimostrazione.

Consideriamo il modulo quoziente M/N.

$$I(M/N) = \{ \sum_{i=1}^{n} a_i(x_i + N) | n \in \mathbb{N}, a_i \in I, x_i \in M \ \forall i \}$$
$$= \{ (\sum_{i=1}^{n} a_i x_i) + N | n \in \mathbb{N}, a_i \in I, x_i \in M \ \forall i \}$$
$$= \pi(IM) = (IM + N)/N = M/N$$

 \Longrightarrow (Per il Lemma di Nakayama applicato a M/N) M/N=0

i.e.
$$M = N$$

|| Lemma di Nakayama

> Manuel Pusceddu

ntroduzione Illa teoria Iei Moduli

|| Radicale di Jacobson