

Lecture 3: Random Variable, Part I

Yi, Yung (이용)

EE210: Probability and Introductory Random Processes KAIST EE

August 25, 2021

Roadmap

- (1) Random variable: Idea and formal definition
- (2) Popular discrete random variables
- (3) Summarizing random variables: Expectation and Variance
- (4) (Functions of) multiple random variables
- (5) Conditioning for random variables
- (6) Independence for random variables

Roadmap

- (1) Random variable: Idea and formal definition
- (2) Popular discrete random variables
- (3) Summarizing random variables: Expectation and Variance
- (4) (Functions of) multiple random variables
- (5) Conditioning for random variables
- (6) Independence for random variables

Random Variable: Idea

- In reality, many outcomes are e.g., stock price.
- Even if not, very convenient if we map numerical values to random outcomes, e.g., '0' for male and '1' for female.

(b) Two rolls of tetrahedral dice

Random Variable: Idea

- In reality, many outcomes are numerical, e.g., stock price.
- Even if not, very convenient if we map numerical values to random outcomes, e.g., '0' for male and '1' for female.

(b) Two rolls of tetrahedral dice

¹Finite or countably infinite.

• Mathematically, a random variable X is a \mathbb{R} which maps from Ω to \mathbb{R} .

¹Finite or countably infinite.

• Mathematically, a random variable X is a function which maps from Ω to \mathbb{R} .

¹Finite or countably infinite.

- Mathematically, a random variable X is a function which maps from Ω to \mathbb{R} .
- Notation. Random variable X, numerical value x.

¹Finite or countably infinite.

- Mathematically, a random variable X is a function which maps from Ω to \mathbb{R} .
- Notation. Random variable X, numerical value x.
- Different random variables can be defined on the same sample space.

¹Finite or countably infinite.

- Mathematically, a random variable X is a function which maps from Ω to \mathbb{R} .
- Notation. Random variable X, numerical value x.
- Different random variables can be defined on the same sample space.
- For a fixed value x, we can associate an that a random variable X has the value x, i.e.,

¹Finite or countably infinite.

- Mathematically, a random variable X is a function which maps from Ω to \mathbb{R} .
- Notation. Random variable X, numerical value x.
- Different random variables can be defined on the same sample space.
- For a fixed value x, we can associate an event that a random variable X has the value x, i.e.,

¹Finite or countably infinite.

- Mathematically, a random variable X is a function which maps from Ω to \mathbb{R} .
- Notation. Random variable X, numerical value x.
- Different random variables can be defined on the same sample space.
- For a fixed value x, we can associate an event that a random variable X has the value x, i.e., $\{\omega \in \Omega \mid X(\omega) = x\}$
- Assume that values x are discrete¹ such as 1, 2, 3,
 For notational convenience,

$$p_X(x) \triangleq \mathbb{P}(X = x) \triangleq \mathbb{P}(\{\omega \in \Omega \mid X(\omega) = x\})$$

L3(1)

¹Finite or countably infinite.

- Mathematically, a random variable X is a function which maps from Ω to \mathbb{R} .
- Notation. Random variable X, numerical value x.
- Different random variables can be defined on the same sample space.
- For a fixed value x, we can associate an event that a random variable X has the value x, i.e., $\{\omega \in \Omega \mid X(\omega) = x\}$
- Assume that values x are discrete¹ such as 1, 2, 3,
 For notational convenience,

$$p_X(x) \triangleq \mathbb{P}(X = x) \triangleq \mathbb{P}(\{\omega \in \Omega \mid X(\omega) = x\})$$

• For a discrete random variable X, we call $p_X(x)$ (PMF).

L3(1)

¹Finite or countably infinite.

- Mathematically, a random variable X is a function which maps from Ω to \mathbb{R} .
- Notation. Random variable X, numerical value x.
- Different random variables can be defined on the same sample space.
- For a fixed value x, we can associate an event that a random variable X has the value x, i.e., $\{\omega \in \Omega \mid X(\omega) = x\}$
- Assume that values x are discrete¹ such as 1, 2, 3,
 For notational convenience,

$$p_X(x) \triangleq \mathbb{P}(X = x) \triangleq \mathbb{P}(\{\omega \in \Omega \mid X(\omega) = x\})$$

• For a discrete random variable X, we call $p_X(x)$ probability mass function (PMF).

L3(1)

¹Finite or countably infinite.

Example

- Rolls a dice, $\Omega = \{1, 2, 3, 4, 5, 6\}$
- Define a random variable X = 1 for even numbers and X = 0 for odd numbers
- Event $A_1 = \{\omega \in \Omega \mid X(\omega) = 1\} = \{2,4,6\} \subset \Omega$, but simply $A_1 = \{X = 1\}$
- Event $A_0 = \{\omega \in \Omega \mid X(\omega) = 0\} = \{1, 3, 5\} \subset \Omega$, but simply $A_0 = \{X = 0\}$
- Remember that the random variable X is a function from Ω to $\mathbb R$

Roadmap

- (1) Random variable: Idea and formal definition
- (2) Popular discrete random variables
- (3) Summarizing random variables: Expectation and Variance
- (4) (Functions of) multiple random variables
- (5) Conditioning for random variables
- (6) Independence for random variables

Bernoulli X with parameter $p \in [0,1]$

Only binary values

¹w.p.: with probability

Bernoulli X with parameter $p \in [0, 1]$

Only binary values

$$X = \begin{cases} 0, & \text{w.p.} \quad 1 - p, \\ 1, & \text{w.p.} \quad p \end{cases}$$

In other words, $p_X(0) = 1 - p$ and $p_X(1) = p$ from our PMF notation.

¹w.p.: with probability

Bernoulli X with parameter $p \in [0,1]$

Only binary values

$$X = \begin{cases} 0, & \text{w.p.} \quad 1 - p, \\ 1, & \text{w.p.} \quad p \end{cases}$$

In other words, $p_X(0) = 1 - p$ and $p_X(1) = p$ from our PMF notation.

• Models a trial that results in binary results, e.g., success/failure, head/tail

¹w.p.: with probability

Bernoulli X with parameter $p \in [0,1]$

Only binary values

$$X = egin{cases} 0, & ext{w.p.} & 1-p, \ 1, & ext{w.p.} & p \end{cases}$$

In other words, $p_X(0) = 1 - p$ and $p_X(1) = p$ from our PMF notation.

- Models a trial that results in binary results, e.g., success/failure, head/tail
- Very useful for an of an event A.

¹w.p.: with probability

Bernoulli X with parameter $p \in [0, 1]$

Only binary values

$$X = \begin{cases} 0, & \text{w.p.} \quad 1 - p, \\ 1, & \text{w.p.} \quad p \end{cases}$$

In other words, $p_X(0) = 1 - p$ and $p_X(1) = p$ from our PMF notation.

- Models a trial that results in binary results, e.g., success/failure, head/tail
- Very useful for an indicator rv of an event A. Define a rv $\mathbf{1}_A$ as:

$$\mathbf{1}_{\mathcal{A}} = egin{cases} 1, & ext{if A occurs,} \ 0, & ext{otherwise} \end{cases}$$

¹w.p.: with probability

• integers a, b, where $a \le b$

- integers a, b, where $a \le b$
- Choose a number out of $\Omega = \{a, a+1, \dots, b\}$ uniformly at random.

- integers a, b, where $a \le b$
- Choose a number out of $\Omega = \{a, a+1, \dots, b\}$ uniformly at random.
- $p_X(i) =$

- integers a, b, where a < b
- Choose a number out of $\Omega = \{a, a+1, \dots, b\}$ uniformly at random.
- $p_X(i) = \frac{1}{b-a+1}, i \in \Omega$

L3(2)

- integers a, b, where a < b
- Choose a number out of $\Omega = \{a, a+1, \dots, b\}$ uniformly at random.
- $p_X(i) = \frac{1}{b-a+1}, i \in \Omega$

Models complete ignorance (I don't know anything about X)

 $[\]binom{1}{k} = \frac{n!}{k!(n-k)!}$, which we read 'n choose k'.

 Models the number of successes in a given number of independent trials

 $[\]binom{n}{k} = \frac{n!}{k!(n-k)!}$, which we read 'n choose k'.

- Models the number of successes in a given number of independent trials
- n independent trials, where one trial has the success probability p.

$$p_X(k) =$$

 $[\]binom{n}{k} = \frac{n!}{k!(n-k)!}$, which we read 'n choose k'.

- Models the number of successes in a given number of independent trials
- *n* independent trials, where one trial has the success probability *p*.

$$p_X(k) =$$

 $[\]binom{1}{k} = \frac{n!}{k!(n-k)!}$, which we read 'n choose k'.

- Models the number of successes in a given number of independent trials
- *n* independent trials, where one trial has the success probability *p*.

$$p_X(k) = \binom{n}{k} p^k (1-p)^{n-k}$$

 $[\]binom{1}{k} = \frac{n!}{\binom{k!(n-k)!}{\binom{k}{2}}}$, which we read 'n choose k'.

 Infinitely many independent Bernoulli trials, where each trial has success probability p

- Infinitely many independent Bernoulli trials, where each trial has success probability p
- Random variable: number of trials until the first success.

$$p_X(k) =$$

- Infinitely many independent Bernoulli trials, where each trial has success probability p
- Random variable: number of trials until the first success.

$$p_X(k) = (1-p)^{k-1}p$$

- Infinitely many independent Bernoulli trials, where each trial has success probability p
- Random variable: number of trials until the first success.

$$p_X(k) = (1-p)^{k-1}p$$

 Models waiting times until something happens.

Roadmap

- (1) Random variable: Idea and formal definition
- (2) Popular discrete random variables
- (3) Summarizing random variables: Expectation and Variance
- (4) (Functions of) multiple random variables
- (5) Conditioning for random variables
- (6) Independence for random variables

Expectation/Mean

Average

Definition

$$\mathbb{E}[X] = \sum_{x} x p_X(x)$$

• $p_X(x)$: relative frequency of value x (trials with x/total trials)

Expectation/Mean

Average

Definition

$$\mathbb{E}[X] = \sum_{x} x p_X(x)$$

- $p_X(x)$: relative frequency of value x (trials with x/total trials)
- Example. Bernoulli rv with p

$$\mathbb{E}[X] = 1 \times p + 0 \times (1 - p) = p = p_X(1)$$

Properties of Expectation

Not very surprising. Easy to prove using the definition.

• If
$$X \ge 0$$
, $\mathbb{E}[X] \ge 0$.

• If
$$a \leq X \leq b$$
, $a \leq \mathbb{E}[X] \leq b$.

• For a constant
$$c$$
, $\mathbb{E}[c] = c$.

• For a rv X, Y = g(X) is also a r.v.

- For a rv X, Y = g(X) is also a r.v.
- $\mathbb{E}[Y] = \mathbb{E}[g(X)] = \sum_{x} g(x) \rho_X(x)$

- For a rv X, Y = g(X) is also a r.v.
- $\mathbb{E}[Y] = \mathbb{E}[g(X)] = \sum_{x} g(x) p_X(x)$
- Compute $\mathbb{E}[Y]$ for the following:

L3(3)

- For a rv X, Y = g(X) is also a r.v.
- $\mathbb{E}[Y] = \mathbb{E}[g(X)] = \sum_{x} g(x)p_X(x)$
- Compute $\mathbb{E}[Y]$ for the following:

$$4 \times (0.4 + 0.3) + 3 \times (0.1 + 0.2)$$

= 2.8 + 0.9 = 3.7

- For a rv X, Y = g(X) is also a r.v.
- $\mathbb{E}[Y] = \mathbb{E}[g(X)] = \sum_{x} g(x) p_X(x)$
- Compute $\mathbb{E}[Y]$ for the following:

$$4 \times (0.4 + 0.3) + 3 \times (0.1 + 0.2)$$

= $2.8 + 0.9 = 3.7$

Linearity of Expectation

$$\mathbb{E}[aX + b] = a\mathbb{E}[X] + b$$

• Measures how much the spread of a PMF is.

- Measures how much the spread of a PMF is.
- What about $\mathbb{E}[X \mu]$, where $\mu = \mathbb{E}[X]$? Zero

- Measures how much the spread of a PMF is.
- What about $\mathbb{E}[X \mu]$, where $\mu = \mathbb{E}[X]$? Zero
- Then, what about $\mathbb{E}[(X \mu)^2]$?

- Measures how much the spread of a PMF is.
- What about $\mathbb{E}[X \mu]$, where $\mu = \mathbb{E}[X]$? Zero
- Then, what about $\mathbb{E}[(X \mu)^2]$?

Variance, Standard Deviation

$$\operatorname{var}[X] = \mathbb{E}[(X - \mu)^2]$$

$$\sigma_X = \sqrt{\operatorname{var}[X]}$$

•
$$\operatorname{var}[X] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$$

•
$$Y = X + b$$
, $var[Y] = var[X]$

•
$$Y = aX$$
, $var[Y] = a^2 var[X]$

•
$$\operatorname{var}[X] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$$

$$var[X] = \mathbb{E}[X^2 - 2\mu X + \mu^2]$$

= $\mathbb{E}[X^2] - 2\mu \mathbb{E}[X] + \mu^2 = \mathbb{E}[X^2] - \mu^2$

•
$$Y = X + b$$
, $var[Y] = var[X]$

•
$$Y = aX$$
, $var[Y] = a^2 var[X]$

•
$$\operatorname{var}[X] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$$

 $\operatorname{var}[X] = \mathbb{E}[X^2 - 2\mu X + \mu^2]$
 $= \mathbb{E}[X^2] - 2\mu \mathbb{E}[X] + \mu^2 = \mathbb{E}[X^2] - \mu^2$

•
$$Y = X + b$$
, $var[Y] = var[X]$
 $var[Y] = \mathbb{E}[(X + b)^2] - (\mathbb{E}[X + b])^2$

•
$$Y = aX$$
, $var[Y] = a^2 var[X]$

- $\operatorname{var}[X] = \mathbb{E}[X^2] (\mathbb{E}[X])^2$ $\operatorname{var}[X] = \mathbb{E}[X^2 - 2\mu X + \mu^2]$ $= \mathbb{E}[X^2] - 2\mu \mathbb{E}[X] + \mu^2 = \mathbb{E}[X^2] - \mu^2$
- Y = X + b, var[Y] = var[X] $var[Y] = \mathbb{E}[(X + b)^2] - (\mathbb{E}[X + b])^2$
- Y = aX, $var[Y] = a^2 var[X]$ $var[Y] = \mathbb{E}[a^2X^2] - (a\mathbb{E}[X])^2$

• $\operatorname{var}[X] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$ $\operatorname{var}[X] = \mathbb{E}[X^2 - 2\mu X + \mu^2]$ $= \mathbb{E}[X^2] - 2\mu \mathbb{E}[X] + \mu^2 = \mathbb{E}[X^2] - \mu^2$

•
$$Y = X + b$$
, $var[Y] = var[X]$
 $var[Y] = \mathbb{E}[(X + b)^2] - (\mathbb{E}[X + b])^2$

•
$$Y = aX$$
, $var[Y] = a^2 var[X]$

$$var[Y] = \mathbb{E}[a^2X^2] - (a\mathbb{E}[X])^2$$

Example: Variance of a Bernoulli rv (p)

•
$$\operatorname{var}[X] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$$

 $\operatorname{var}[X] = \mathbb{E}[X^2 - 2\mu X + \mu^2]$
 $= \mathbb{E}[X^2] - 2\mu \mathbb{E}[X] + \mu^2 = \mathbb{E}[X^2] - \mu^2$

- Y = X + b, var[Y] = var[X] $var[Y] = \mathbb{E}[(X + b)^2] - (\mathbb{E}[X + b])^2$
- Y = aX, $var[Y] = a^2 var[X]$ $var[Y] = \mathbb{E}[a^2X^2] - (a\mathbb{E}[X])^2$

Example: Variance of a Bernoulli rv (p)

$$\mu = \mathbb{E}[X] = 1 \times p + 0 \times (1 - p) = p$$
 $\mathbb{E}[X^2] = 1 \times p + 0 \times (1 - p) = p$
 $\text{var}[X] = \mathbb{E}[X^2] - \mu^2 = p - p^2$
 $= p(1 - p)$

Roadmap

- (1) Random variable: Idea and formal definition
- (2) Popular discrete random variables
- (3) Summarizing random variables: Expectation and Variance
- (4) (Functions of) multiple random variables
- (5) Conditioning for random variables
- (6) Independence for random variables

L3(4)

L3(4) August 25, 2021 19 / 1

For two random variables X, Y, consider two events $\{X = x\}$ and $\{Y = y\}$, and

$$\mathbb{P}\left(\left\{X=x\right\}\cap\left\{Y=y\right\}\right)$$

Joint PMF. For two random variables X, Y, consider two events $\{X = x\}$ and

 $\{Y=y\}$, and

$$p_{X,Y}(x,y) \triangleq \mathbb{P}(\{X=x\} \cap \{Y=y\})$$

Joint PMF. For two random variables X, Y, consider two events $\{X = x\}$ and

$$\{Y = y\}$$
, and

$$p_{X,Y}(x,y) \triangleq \mathbb{P}(\{X=x\} \cap \{Y=y\})$$

•
$$\sum_{x}\sum_{y}p_{X,Y}(x,y)=1$$

Joint PMF. For two random variables X, Y, consider two events $\{X = x\}$ and

$$\{Y=y\}$$
, and

$$p_{X,Y}(x,y) \triangleq \mathbb{P}(\{X=x\} \cap \{Y=y\})$$

- $\sum_{x} \sum_{y} p_{X,Y}(x,y) = 1$
- •

$$p_X(x) = \sum_{y} p_{X,Y}(x,y),$$

$$p_Y(y) = \sum_x p_{X,Y}(x,y)$$

Joint PMF. For two random variables \overline{X} , \overline{Y} , consider two events $\{X = x\}$ and

$$X, Y$$
, consider two events $\{X \in Y = Y\}$, and

$$p_{X,Y}(x,y) \triangleq \mathbb{P}(\{X=x\} \cap \{Y=y\})$$

- $\sum_{x} \sum_{y} p_{X,Y}(x,y) = 1$
- Marginal PMF.

$$p_X(x) = \sum_{y} p_{X,Y}(x,y),$$
$$p_Y(y) = \sum_{y} p_{X,Y}(x,y)$$

Example.

$$p_{X,Y}(1,3) =$$

$$p_X(4) =$$

$$p_{X}(4) =$$

$$\mathbb{P}(X=Y)=$$

Joint PMF. For two random variables $\overline{X}, \overline{Y}$, consider two events $\{X = x\}$ and

$$\{Y = y\}$$
, and
 $p_{X|Y}(x, y) \triangleq \mathbb{P}(\{X = x\} \cap \{Y = y\})$

- $\sum_{x} \sum_{y} p_{X,Y}(x,y) = 1$
- Marginal PMF.

$$p_X(x) = \sum_{y} p_{X,Y}(x,y),$$
$$p_Y(y) = \sum_{y} p_{X,Y}(x,y)$$

Example.

VIDEO PAUSE

$$p_{X,Y}(1,3) = 2/20$$

$$p_X(4) = 2/20 + 1/20 = 3/20$$

$$\mathbb{P}(X = Y) = 1/20 + 4/20 + 3/20 = 8/20$$

Functions of Multiple RVs

• Consider a rv Z = g(X, Y). (Ex) $X + Y, X^2 + Y^2$. Then, PMF of Z is:

Similarly,

$$\mathbb{E}[Z] = \mathbb{E}[g(X,Y)] =$$

Functions of Multiple RVs

• Consider a rv Z = g(X, Y). (Ex) $X + Y, X^2 + Y^2$. Then, PMF of Z is:

$$p_Z(z) = \mathbb{P}(g(X, Y) = z) = \sum_{(x,y):g(x,y)=z} p_{X,Y}(x,y)$$

• Similarly,

$$\mathbb{E}[Z] = \mathbb{E}[g(X,Y)] = \sum_{x} \sum_{y} g(x,y) p_{X,Y}(x,y)$$

• Remember: $\mathbb{E}[aX + b] = a\mathbb{E}[X] + b$

- Remember: $\mathbb{E}[aX + b] = a\mathbb{E}[X] + b$
- · Similarly,

$$\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$$

(easy to prove, using the definition.)

- Remember: $\mathbb{E}[aX + b] = a\mathbb{E}[X] + b$
- · Similarly,

$$\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$$

(easy to prove, using the definition.)

- $\mathbb{E}[X_1 \ldots + X_n] = \mathbb{E}[X_1] + \ldots + \mathbb{E}[X_n]$
- $\mathbb{E}[2X+3Y-Z]=2\mathbb{E}[X]+3\mathbb{E}[Y]-\mathbb{E}[Z]$

- Remember: $\mathbb{E}[aX + b] = a\mathbb{E}[X] + b$
- Similarly,

$$\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$$
 (easy to prove, using the definition.)

- $\mathbb{E}[X_1 \ldots + X_n] = \mathbb{E}[X_1] + \ldots + \mathbb{E}[X_n]$
- $\mathbb{E}[2X+3Y-Z]=2\mathbb{E}[X]+3\mathbb{E}[Y]-\mathbb{E}[Z]$

- Example. Mean of a binomial rv Y with (n, p)
- Y: number of successes in n Bernoulli trials with p

- Remember: $\mathbb{E}[aX + b] = a\mathbb{E}[X] + b$
- Similarly,

$$\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$$
 (easy to prove, using the definition.)

- $\mathbb{E}[X_1 \ldots + X_n] = \mathbb{E}[X_1] + \ldots + \mathbb{E}[X_n]$
- $\mathbb{E}[2X+3Y-Z]=2\mathbb{E}[X]+3\mathbb{E}[Y]-\mathbb{E}[Z]$

- Example. Mean of a binomial rv Y with (n, p)
- Y: number of successes in n Bernoulli trials with p
- $Y = X_1 + ... X_n$, where X_i is a Bernoulli rv.
- $\mathbb{E}[Y] = n\mathbb{E}[X_i] = n\mathbb{P}(X_i = 1) = np$

- Remember: $\mathbb{E}[aX + b] = a\mathbb{E}[X] + b$
- Similarly,

$$\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$$
 (easy to prove, using the definition.)

- $\mathbb{E}[X_1 \ldots + X_n] = \mathbb{E}[X_1] + \ldots + \mathbb{E}[X_n]$
- $\mathbb{E}[2X+3Y-Z]=2\mathbb{E}[X]+3\mathbb{E}[Y]-\mathbb{E}[Z]$

- Example. Mean of a binomial rv Y with (n, p)
- Y: number of successes in n Bernoulli trials with p
- $Y = X_1 + ... X_n$, where X_i is a Bernoulli rv.
- $\mathbb{E}[Y] = n\mathbb{E}[X_i] = n\mathbb{P}(X_i = 1) = np$

Message. When some rv X is written as a linear combination of other rvs, X becomes easy to handle.

Roadmap

- (1) Random variable: Idea and formal definition
- (2) Popular discrete random variables
- (3) Summarizing random variables: Expectation and Variance
- (4) (Functions of) multiple random variables
- (5) Conditioning for random variables
- (6) Independence for random variables

L3(5)

Remember two probability laws: $\mathbb{P}(\cdot)$ and $\mathbb{P}(\cdot|A)$ for an event A.

L3(5) August 25, 2021

•
$$p_X(x) \triangleq \mathbb{P}(X=x)$$

•
$$p_{X|A}(x) \triangleq \mathbb{P}(X = x|A)$$

•
$$p_X(x) \triangleq \mathbb{P}(X=x)$$

•
$$\mathbb{E}[X] = \sum_{x} x p_X(x)$$

$$p_{X|A}(x) \triangleq \mathbb{P}(X=x|A)$$

•
$$p_{X|A}(x) \triangleq \mathbb{P}(X = x|A)$$

• $\mathbb{E}[X|A] \triangleq \sum_{x} x p_{X|A}(x)$

•
$$p_X(x) \triangleq \mathbb{P}(X = x)$$

•
$$\mathbb{E}[X] = \sum_{x} x p_X(x)$$

•
$$\mathbb{E}[g(X)] = \sum_{x} g(x) p_X(x)$$

$$p_{X|A}(x) \triangleq \mathbb{P}(X=x|A)$$

$$\mathbb{E}[X|A] \triangleq \sum_{x} x p_{X|A}(x)$$

•
$$p_{X|A}(x) \triangleq \mathbb{P}(X = x|A)$$

• $\mathbb{E}[X|A] \triangleq \sum_{x} x p_{X|A}(x)$
• $\mathbb{E}[g(X)|A] \triangleq \sum_{x} g(x) p_{X|A}(x)$

•
$$p_X(x) \triangleq \mathbb{P}(X=x)$$

•
$$\mathbb{E}[X] = \sum_{x} x p_X(x)$$

•
$$\mathbb{E}[g(X)] = \sum_{x} g(x) p_X(x)$$

•
$$\operatorname{var}[X] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$$

$$p_{X|A}(x) \triangleq \mathbb{P}(X=x|A)$$

•
$$p_{X|A}(x) \triangleq \mathbb{P}(X = x|A)$$

• $\mathbb{E}[X|A] \triangleq \sum_{x} x p_{X|A}(x)$

•
$$\mathbb{E}[g(X)|A] \triangleq \sum_{x} g(x) p_{X|A}(x)$$

•
$$\operatorname{var}[X|A] \triangleq \mathbb{E}[X^2|A] - (\mathbb{E}[X|A])^2$$

Remember two probability laws: $\mathbb{P}(\cdot)$ and $\mathbb{P}(\cdot|A)$ for an event A.

•
$$p_X(x) \triangleq \mathbb{P}(X=x)$$

•
$$\mathbb{E}[X] = \sum_{x} x p_X(x)$$

•
$$\mathbb{E}[g(X)] = \sum_{x} g(x) p_X(x)$$

•
$$\operatorname{var}[X] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$$

$$p_{X|A}(x) \triangleq \mathbb{P}(X=x|A)$$

•
$$p_{X|A}(x) \triangleq \mathbb{P}(X = x|A)$$

• $\mathbb{E}[X|A] \triangleq \sum_{x} x p_{X|A}(x)$

•
$$\mathbb{E}[g(X)|A] \triangleq \sum_{x} g(x) p_{X|A}(x)$$

•
$$\operatorname{var}[X|A] \triangleq \mathbb{E}[X^2|A] - (\mathbb{E}[X|A])^2$$

• (Note) $p_{X|A}(x)$, $\mathbb{E}[X|A]$, $\mathbb{E}[g(X)|A]$, and var[X|A] are all just notations!

$$A = \{X \ge 2\}$$

$$\mathbb{E}[X] =$$

$$var[X] =$$

$$\mathbb{E}[X|A] =$$

$$var[X|A] =$$

$$A = \{X \ge 2\}$$

$$\mathbb{E}[X] = \frac{1}{4}(1+2+3+4) = 2.5$$
 $\mathsf{var}[X] =$

$$\mathbb{E}[X|A] =$$

$$var[X|A] =$$

$$A = \{X \ge 2\}$$

$$\mathbb{E}[X] = \frac{1}{4}(1+2+3+4) = 2.5$$

$$var[X] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$$
$$= \frac{1}{4}(1 + 2^2 + 3^2 + 4^2) - 2.5^2$$

$$\mathbb{E}[X|A] =$$

$$\mathsf{var}[X|A] =$$

$$A = \{X \ge 2\}$$

$$p_X(x)$$

$$\mathbb{E}[X] = \frac{1}{4}(1+2+3+4) = 2.5$$

$$var[X] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$$
$$= \frac{1}{4}(1 + 2^2 + 3^2 + 4^2) - 2.5^2$$

$$\mathbb{E}[X|A] = \frac{1}{3}(2+3+4) = 3$$

$$var[X|A] =$$

$$A = \{X \ge 2\}$$

$$p_X(x)$$

$$\mathbb{E}[X] = \frac{1}{4}(1+2+3+4) = 2.5$$

$$var[X] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$$
$$= \frac{1}{4}(1 + 2^2 + 3^2 + 4^2) - 2.5^2$$

$$\mathbb{E}[X|A] = \frac{1}{3}(2+3+4) = 3$$

$$\text{var}[X|A] = \mathbb{E}[X^2|A] - (\mathbb{E}[X|A])^2$$

$$\operatorname{\mathsf{var}}[X|A] = \mathbb{E}[X^2|A] - (\mathbb{E}[X|A])^2$$

$$A = \{X \ge 2\}$$

$$p_X(x)$$

$$\mathbb{E}[X] = \frac{1}{4}(1+2+3+4) = 2.5$$

$$var[X] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$$
$$= \frac{1}{4}(1 + 2^2 + 3^2 + 4^2) - 2.5^2$$

$$p_{X|A}(x)$$

$$\mathbb{E}[X|A] = \frac{1}{3}(2+3+4) = 3$$

$$\mathbb{E}[X|A] = \frac{1}{3}(2+3+4) = 3$$

$$\text{var}[X|A] = \mathbb{E}[X^2|A] - (\mathbb{E}[X|A])^2$$

$$= \frac{1}{3}(2^2 + 3^2 + 4^2) - 3^2 = 2/3$$

•
$$p_{X|A}(x) \triangleq \mathbb{P}(X = x|A)$$

•
$$p_{X|Y}(x|y) \triangleq \mathbb{P}(X=x|Y=y)$$

- $p_{X|A}(x) \triangleq \mathbb{P}(X = x|A)$ $\mathbb{E}[X|A] \triangleq \sum_{x} x p_{X|A}(x)$

- $p_{X|Y}(x|y) \triangleq \mathbb{P}(X = x|Y = y)$ $\mathbb{E}[X|Y = y] \triangleq \sum_{x} x p_{X|Y}(x|y)$

•
$$p_{X|A}(x) \triangleq \mathbb{P}(X = x|A)$$

•
$$\mathbb{E}[X|A] \triangleq \sum_{x} x p_{X|A}(x)$$

•
$$\mathbb{E}[g(X)|A] \triangleq \sum_{x} g(x) p_{X|A}(x)$$

$$p_{X|Y}(x|y) \triangleq \mathbb{P}(X=x|Y=y)$$

•
$$\mathbb{E}[X|Y=y] \triangleq \sum_{x} x p_{X|Y}(x|y)$$

•
$$p_{X|Y}(x|y) \triangleq \mathbb{P}(X = x|Y = y)$$

• $\mathbb{E}[X|Y = y] \triangleq \sum_{x} x p_{X|Y}(x|y)$
• $\mathbb{E}[g(X)|Y = y] \triangleq \sum_{x} g(x) p_{X|Y}(x|y)$

•
$$p_{X|A}(x) \triangleq \mathbb{P}(X = x|A)$$

•
$$\mathbb{E}[X|A] \triangleq \sum_{x} x p_{X|A}(x)$$

•
$$\mathbb{E}[g(X)|A] \triangleq \sum_{x} g(x) p_{X|A}(x)$$

•
$$\operatorname{var}[X|A] \triangleq \mathbb{E}[X^2|A] - (\mathbb{E}[X|A])^2$$

$$p_{X|Y}(x|y) \triangleq \mathbb{P}(X=x|Y=y)$$

•
$$p_{X|Y}(x|y) \triangleq \mathbb{P}(X = x|Y = y)$$

• $\mathbb{E}[X|Y = y] \triangleq \sum_{x} x p_{X|Y}(x|y)$

•
$$\mathbb{E}[g(X)|Y=y] \triangleq \sum_{x} g(x)p_{X|Y}(x|y)$$

•
$$\operatorname{var}[X|Y = y] \triangleq \mathbb{E}[X^2|Y = y] - (\mathbb{E}[X|Y = y])^2$$

Conditional PMF

Multiplication rule

$$p_{X,Y}(x,y) =$$

•
$$p_{X,Y,Z}(x,y,z) =$$

Conditional PMF

$$p_{X|Y}(x|y) \triangleq \mathbb{P}(X=x|Y=y) = \frac{p_{X,Y}(x,y)}{p_{Y}(y)}$$

for y such that $p_Y(y) > 0$.

Multiplication rule

$$p_{X,Y}(x,y) =$$

•
$$p_{X,Y,Z}(x,y,z) =$$

Conditional PMF

$$p_{X|Y}(x|y) \triangleq \mathbb{P}(X=x|Y=y) = \frac{p_{X,Y}(x,y)}{p_{Y}(y)}$$

for y such that $p_Y(y) > 0$.

- $\sum_{x} p_{X|Y}(x|y) = 1$
- Multiplication rule

$$p_{X,Y}(x,y) =$$

• $p_{X,Y,Z}(x,y,z) =$

Conditional PMF

$$p_{X|Y}(x|y) \triangleq \mathbb{P}(X=x|Y=y) = \frac{p_{X,Y}(x,y)}{p_{Y}(y)}$$

for y such that $p_Y(y) > 0$.

- $\sum_{x} p_{X|Y}(x|y) = 1$
- Multiplication rule

$$p_{X,Y}(x,y) = p_Y(y)p_{X|Y}(x|y)$$
$$= p_X(x)p_{Y|X}(y|x)$$

• $p_{X,Y,Z}(x,y,z) =$

Conditional PMF

$$p_{X|Y}(x|y) \triangleq \mathbb{P}(X=x|Y=y) = \frac{p_{X,Y}(x,y)}{p_{Y}(y)}$$

for y such that $p_Y(y) > 0$.

- $\sum_{x} p_{X|Y}(x|y) = 1$
- Multiplication rule

$$p_{X,Y}(x,y) = p_Y(y)p_{X|Y}(x|y)$$
$$= p_X(x)p_{Y|X}(y|x)$$

• $p_{X,Y,Z}(x,y,z) = p_X(x)p_{Y|X}(y|x)p_{Z|X,Y}(z|x,y)$

VIDEO PAUSE

$$p_{X|Y}(2|2) =$$

$$p_{X|Y}(3|2) =$$

$$\mathbb{E}[X|Y=3]=$$

Conditional PMF

$$p_{X|Y}(x|y) \triangleq \mathbb{P}(X=x|Y=y) = \frac{p_{X,Y}(x,y)}{p_{Y}(y)}$$

for y such that $p_Y(y) > 0$.

- $\sum_{x} p_{X|Y}(x|y) = 1$
- Multiplication rule

$$p_{X,Y}(x,y) = p_Y(y)p_{X|Y}(x|y)$$
$$= p_X(x)p_{Y|X}(y|x)$$

• $p_{X,Y,Z}(x,y,z) = p_X(x)p_{Y|X}(y|x)p_{Z|X,Y}(z|x,y)$

VIDEO PAUSE

$$p_{X|Y}(2|2) = \frac{1}{1+3+1}$$

$$p_{X|Y}(3|2) = \frac{3}{1+3+1}$$

$$\mathbb{E}[X|Y=3] = 1(2/9) + 2(4/9) + 3(1/9) + 4(2/9)$$

Remind: Total Probability Theorem (from Lecture 2)

- Partition of Ω into A_1, A_2, A_3
- Known: $\mathbb{P}(A_i)$ and $\mathbb{P}(B|A_i)$
- What is $\mathbb{P}(B)$?

Total Probability Theorem

$$\mathbb{P}(B) = \sum_{i} \mathbb{P}(A_i) \mathbb{P}(B|A_i)$$

L3(5)

27 / 1

Total Probability Theorem: $B = \{X = x\}$

• Partition of Ω into A_1, A_2, A_3

Total Probability Theorem

$$p_X(x) = \sum_i \mathbb{P}(A_i)\mathbb{P}(X = x|A_i) = \sum_i \mathbb{P}(A_i)p_{X|A_i}(x)$$

Total Expectation Theorem for $\{A_i\}$

• Partition of Ω into A_1, A_2, A_3

Total Probability Theorem

$$p_X(x) = \sum_i \mathbb{P}(A_i)\mathbb{P}(X = x|A_i) = \sum_i \mathbb{P}(A_i)p_{X|A_i}(x)$$

Total Expectation Theorem

$$\mathbb{E}[X] = \sum_{i} \mathbb{P}(A_i) \mathbb{E}[X|A_i]$$

• Weighted average of expectations from A_i 's perspective

Total Expectation Theorem for $\{Y = y\}$

• Partition of Ω into A_1, A_2, A_3

Total Expectation Theorem

$$\mathbb{E}[X] = \sum_{i} \mathbb{P}(A_{i}) \mathbb{E}[X|A_{i}]$$

Total Expectation Theorem for $\{Y = y\}$

• Partition of Ω into A_1, A_2, A_3

Total Expectation Theorem

$$\mathbb{E}[X] = \sum_{i} \mathbb{P}(A_{i}) \mathbb{E}[X|A_{i}]$$

Total Expectation Theorem

$$\mathbb{E}[X] = \sum_{y} \mathbb{P}(Y = y) \mathbb{E}[X | Y = y] = \sum_{y} p_{Y}(y) \mathbb{E}[X | Y = y]$$

- Question. What is $\mathbb{E}(X)$?
- (1) Just using the definition of expectation,

$$\mathbb{E}[X] =$$

- Question. What is $\mathbb{E}(X)$?
- (1) Just using the definition of expectation,

$$\mathbb{E}[X] = \frac{1}{9}(0+1+2) + \frac{2}{9}(6+7+8)$$
$$= \frac{3+12+14+16}{9} = 5$$

- Question. What is $\mathbb{E}(X)$?
- (1) Just using the definition of expectation,

$$\mathbb{E}[X] = \frac{1}{9}(0+1+2) + \frac{2}{9}(6+7+8)$$
$$= \frac{3+12+14+16}{9} = 5$$

(2) Let's use TET, for which consider

$$A_1=\{X\in\{0,1,2\}\},\ A_2=\{X\in\{6,7,8\}\}$$

- Question. What is $\mathbb{E}(X)$?
- Just using the definition of expectation,

$$\mathbb{E}[X] = \frac{1}{9}(0+1+2) + \frac{2}{9}(6+7+8)$$
$$= \frac{3+12+14+16}{9} = 5$$

(2) Let's use TET, for which consider

$$A_1 = \{X \in \{0, 1, 2\}\}, \ A_2 = \{X \in \{6, 7, 8\}\}$$

$$\mathbb{E}[X] = \sum_{i=1,2} \mathbb{P}(A_i)\mathbb{E}[X|A_i]$$

$$= 1/3 \cdot 1 + 2/3 \cdot 7 = 5$$

32 / 1

• Write softwares over and over, and each time w.p. p of working correctly (independent from previous programs).

32 / 1

- Write softwares over and over, and each time w.p. *p* of working correctly (independent from previous programs).
- X: number of trials until the program works correctly.

L3(5) August 25, 2021

32 / 1

- Write softwares over and over, and each time w.p. *p* of working correctly (independent from previous programs).
- X: number of trials until the program works correctly.
- (Q) $\mathbb{E}(X)$?

32 / 1

- Write softwares over and over, and each time w.p. *p* of working correctly (independent from previous programs).
- X: number of trials until the program works correctly.
- (Q) $\mathbb{E}(X)$?
- X is a geometric rv

L3(5) August 25, 2021

Example 2: Mean of Geometric rv

- Write softwares over and over, and each time w.p. *p* of working correctly (independent from previous programs).
- X: number of trials until the program works correctly.
- (Q) $\mathbb{E}(X)$?
- X is a geometric rv
- Direct computation is boring.

$$\mathbb{E}[X] = \sum_{k=1}^{\infty} k(1-p)^{k-1}p = p + 2(1-p)p + 3(1-p)^2p + \cdots$$

Example 2: Mean of Geometric rv

- Write softwares over and over, and each time w.p. *p* of working correctly (independent from previous programs).
- X: number of trials until the program works correctly.
- (Q) $\mathbb{E}(X)$?
- X is a geometric rv
- Direct computation is boring.

$$\mathbb{E}[X] = \sum_{k=1}^{\infty} k(1-p)^{k-1}p = p + 2(1-p)p + 3(1-p)^2p + \cdots$$

• Total expectation theorem and a notion of memorylessness helps a lot.

Memoryless Property: Motivating Example

time 0

How long do I have to wait? Probability of waiting for more than n mins?

$$\mathbb{P}(X > n)$$

Lin arrives

L3(5)

33 / 1

Background: Memoryless Property

• Some random variable often does not have memory.

Background: Memoryless Property

- Some random variable often does not have memory.
- Definition. A random variable X is called memoryless if, for any $n, m \ge 0$,

$$\mathbb{P}(X > n + m | X > m) = \mathbb{P}(X > n)$$

L3(5)

Background: Memoryless Property

- Some random variable often does not have memory.
- Definition. A random variable X is called memoryless | if, for any $n, m \ge 0$,

$$\mathbb{P}(X > n + m | X > m) = \mathbb{P}(X > n)$$

• Meaning. Conditioned on X > m, X - m's distribution is the same as the original X.

$$\mathbb{P}(X-m>n|X>m)=\mathbb{P}(X>n)$$

L3(5)

• Theorem. Any **geometric** random variable is memoryless.

- Theorem. Any geometric random variable is memoryless.
- Remind. Geometric rv X with parameter p

$$\mathbb{P}(X=k)=(1-p)^{k-1}p, \quad \mathbb{P}(X>k)=\sum_{i=k+1}^{\infty}(1-p)^{i-1}p=(1-p)^k$$

L3(5) August 25, 2021

- Theorem. Any geometric random variable is memoryless.
- Remind. Geometric rv X with parameter p

$$\mathbb{P}(X=k)=(1-p)^{k-1}p, \quad \mathbb{P}(X>k)=\sum_{i=k+1}^{\infty}(1-p)^{i-1}p=(1-p)^k$$

• Proof.

$$\mathbb{P}(X > n + m | X > m) = \frac{\mathbb{P}(X > n + m \text{ and } X > m)}{\mathbb{P}(X > m)} = \frac{\mathbb{P}(X > n + m)}{\mathbb{P}(X > m)}$$
$$= \frac{(1 - p)^{n+m}}{(1 - p)^m} = (1 - p)^n = \mathbb{P}(X > n)$$

L3(5)

- Theorem. Any geometric random variable is memoryless.
- Remind. Geometric rv X with parameter p

$$\mathbb{P}(X = k) = (1 - p)^{k-1}p, \quad \mathbb{P}(X > k) = \sum_{i=k+1}^{\infty} (1 - p)^{i-1}p = (1 - p)^k$$

• Proof.

$$\mathbb{P}(X > n + m | X > m) = \frac{\mathbb{P}(X > n + m \text{ and } X > m)}{\mathbb{P}(X > m)} = \frac{\mathbb{P}(X > n + m)}{\mathbb{P}(X > m)}$$
$$= \frac{(1 - p)^{n+m}}{(1 - p)^m} = (1 - p)^n = \mathbb{P}(X > n)$$

• Meaning. Conditioned on X > m, X - m is geometric with the same parameter.

L3(5)

• $A_1=\{X=1\}$ (first try is success), $A_2=\{X>1\}$ (first try is failure). $\mathbb{E}[X]=1+\mathbb{E}[X-1]$

• $A_1 = \{X = 1\}$ (first try is success), $A_2 = \{X > 1\}$ (first try is failure).

L3(5) August 25, 2021

• $A_1 = \{X = 1\}$ (first try is success), $A_2 = \{X > 1\}$ (first try is failure).

L3(5) August 25, 2021

• $A_1=\{X=1\}$ (first try is success), $A_2=\{X>1\}$ (first try is failure). $\mathbb{E}[X]=1+\mathbb{E}[X-1]$

• Thus,
$$\mathbb{E}[X] = \frac{1}{p}$$

L3(5)

Roadmap

- (1) Random variable: Idea and formal definition
- (2) Popular discrete random variables
- (3) Summarizing random variables: Expectation and Variance
- (4) (Functions of) multiple random variables
- (5) Conditioning for random variables
- (6) Independence for random variables

L3(6)

August 25, 2021

Two events

$$\mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B)$$

$$\mathbb{P}(A \cap B | C) = \mathbb{P}(A | C) \cdot \mathbb{P}(B | C)$$

38 / 1

Two events

$$\mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B)$$

$$\mathbb{P}(A \cap B | C) = \mathbb{P}(A | C) \cdot \mathbb{P}(B | C)$$

A rv and an event

$$\mathbb{P}(\{X = x\} \cap B) = \mathbb{P}(X = x) \cdot \mathbb{P}(B), \text{ for all } x$$

$$\mathbb{P}(\{X = x\} \cap B | \mathbf{C}) = \mathbb{P}(X = x | \mathbf{C}) \cdot \mathbb{P}(B | \mathbf{C}), \text{ for all } x$$

L3(6) August 25, 2021

Two events

$$\mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B)$$

$$\mathbb{P}(A \cap B | C) = \mathbb{P}(A | C) \cdot \mathbb{P}(B | C)$$

A rv and an event

$$\mathbb{P}(\{X = x\} \cap B) = \mathbb{P}(X = x) \cdot \mathbb{P}(B), \text{ for all } x$$

$$\mathbb{P}(\{X = x\} \cap B | \mathbf{C}) = \mathbb{P}(X = x | \mathbf{C}) \cdot \mathbb{P}(B | \mathbf{C}), \text{ for all } x$$

Two rvs

$$\mathbb{P}(\{X=x\} \cap \{Y=y\}) = \mathbb{P}(X=x) \cdot \mathbb{P}(Y=y), \text{ for all } x, y$$

$$\mathbb{P}(\{X=x\} \cap \{Y=y\} | Z=z) = \mathbb{P}(X=x | Z=z) \cdot \mathbb{P}(Y=y | Z=z), \text{ for all } x, y$$

Two events

$$\mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B)$$

$$\mathbb{P}(A \cap B | C) = \mathbb{P}(A | C) \cdot \mathbb{P}(B | C)$$

A rv and an event

$$\mathbb{P}(\{X = x\} \cap B) = \mathbb{P}(X = x) \cdot \mathbb{P}(B), \text{ for all } x$$

$$\mathbb{P}(\{X = x\} \cap B | C) = \mathbb{P}(X = x | C) \cdot \mathbb{P}(B | C), \text{ for all } x$$

Two rvs

$$\mathbb{P}(\{X = x\} \cap \{Y = y\}) = \mathbb{P}(X = x) \cdot \mathbb{P}(Y = y), \text{ for all } x, y$$

$$p_{X,Y}(x,y) = p_X(x) \cdot p_Y(y)$$

$$\mathbb{P}(\{X=x\} \cap \{Y=y\} | \mathbf{Z} = \mathbf{z})) = \mathbb{P}(X=x | \mathbf{Z} = \mathbf{z}) \cdot \mathbb{P}(Y=y | \mathbf{Z} = \mathbf{z}), \text{ for all } x, y$$
$$p_{X,Y|\mathbf{Z}}(x,y) = p_{X|\mathbf{Z}}(x) \cdot p_{Y|\mathbf{Z}}(y)$$

• *X* ⊥⊥ *Y*?

• $X \perp \!\!\! \perp Y | \{X \le 2 \text{ and } Y \ge 3\}$?

•
$$X \perp \!\!\! \perp Y$$
?
 $p_{X,Y}(1,1) = 0$
 $p_X(1) = 3/20$
 $p_Y(1) = 1/20$

• $X \perp \!\!\! \perp Y | \{X \le 2 \text{ and } Y \ge 3\}$?

$$p_{X,Y}(1,1) = 0$$
 $p_X(1) = 3/20$
 $p_Y(1) = 1/20$

• $X \perp \!\!\!\perp Y | \{X \leq 2 \text{ and } Y \geq 3\}$?

VIDEO PAUSE

Y = 4		
Y=3		
	X = 1	X = 2

у	†				
4	1/20	2/20	2/20		
3	2/20	4/20	1/20	2/20	
2		1/20	3/20	1/20	
1		1/20			
	1	2	3	4	X

$$p_{X,Y}(1,1) = 0$$
 $p_X(1) = 3/20$
 $p_Y(1) = 1/20$

• $X \perp \!\!\! \perp Y | \{X \le 2 \text{ and } Y \ge 3\}$?

Y = 4 (1/3)	1/9	2/9
Y = 3 (2/3)	2/9	4/9
	X = 1 (1/3)	X = 2 (2/3)

у	1				
4	1/20	2/20	2/20		
3	2/20	4/20	1/20	2/20	
2		1/20	3/20	1/20	
1		1/20			
	1	2	3	4	X

$$p_{X,Y}(1,1) = 0$$
 $p_X(1) = 3/20$
 $p_Y(1) = 1/20$

• $X \perp \!\!\! \perp Y | \{X \le 2 \text{ and } Y \ge 3\}$?

Y = 4 (1/3)	1/9	2/9
Y = 3 (2/3)	2/9	4/9
	X = 1 (1/3)	X = 2 (2/3)

- Yes.

Always true.

$$\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$$

• Always true.

$$\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$$

• Generally, $\mathbb{E}[g(X,Y)]
eq g(\mathbb{E}[X],\mathbb{E}[Y])$

• Always true.

$$\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$$

- Generally, $\mathbb{E}[g(X,Y)]
 eq g(\mathbb{E}[X],\mathbb{E}[Y])$
- However, if $X \perp \!\!\! \perp Y$,

$$\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$$

$$\mathbb{E}[g(X)h(Y)] = \mathbb{E}[g(X)]\mathbb{E}[g(Y)]$$

Always true.

$$\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$$

- Generally, $\mathbb{E}[g(X,Y)] \neq g(\mathbb{E}[X],\mathbb{E}[Y])$
- However, if $X \perp \!\!\! \perp Y$,

$$\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$$

$$\mathbb{E}[g(X)h(Y)] = \mathbb{E}[g(X)]\mathbb{E}[g(Y)]$$

$$\mathbb{E}[g(X)h(Y)] = \sum_{x} \sum_{y} g(x)h(y)p_{X,Y}(x,y)$$
$$= \sum_{x} g(x)p_{X}(x) \sum_{y} h(y)p_{Y}(y)$$

Always true.

$$\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$$

- Generally, $\mathbb{E}[g(X,Y)] \neq g(\mathbb{E}[X],\mathbb{E}[Y])$
- However, if $X \perp \!\!\!\perp Y$,

$$\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$$

$$\mathbb{E}[g(X)h(Y)] = \mathbb{E}[g(X)]\mathbb{E}[g(Y)]$$

Proof.

$$\mathbb{E}[g(X)h(Y)] = \sum_{x} \sum_{y} g(x)h(y)p_{X,Y}(x,y)$$
$$= \sum_{x} g(x)p_{X}(x) \sum_{y} h(y)p_{Y}(y)$$

 Always true. $var[aX] = a^2 var[X], var[X + a] = var[X]$

Always true.

$$\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$$

- Generally, $\mathbb{E}[g(X,Y)] \neq g(\mathbb{E}[X],\mathbb{E}[Y])$
- However, if $X \perp \!\!\! \perp Y$,

$$\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$$

 $\mathbb{E}[g(X)h(Y)] = \mathbb{E}[g(X)]\mathbb{E}[g(Y)]$

$$\mathbb{E}[g(X)h(Y)] = \sum_{x} \sum_{y} g(x)h(y)p_{X,Y}(x,y)$$
$$= \sum_{x} g(x)p_{X}(x) \sum_{y} h(y)p_{Y}(y)$$

- Always true. $var[aX] = a^2 var[X]$, var[X + a] = var[X]
- Generally, var[X + Y] ≠ var[X] + var[Y] (next slide)

Always true.

$$\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$$

- Generally, $\mathbb{E}[g(X,Y)] \neq g(\mathbb{E}[X],\mathbb{E}[Y])$
- However, if $X \perp \!\!\!\perp Y$,

$$\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$$

 $\mathbb{E}[g(X)h(Y)] = \mathbb{E}[g(X)]\mathbb{E}[g(Y)]$

Proof.

$$\mathbb{E}[g(X)h(Y)] = \sum_{x} \sum_{y} g(x)h(y)p_{X,Y}(x,y)$$
$$= \sum_{x} g(x)p_{X}(x) \sum_{y} h(y)p_{Y}(y)$$

- Always true. $var[aX] = a^2 var[X], var[X + a] = var[X]$
- Generally, $var[X + Y] \neq var[X] + var[Y]$ (next slide)
- However, if $X \perp \!\!\!\perp Y$, var[X + Y] = var[X] + var[Y]
- Practice.

Always true.

$$\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$$

- Generally, $\mathbb{E}[g(X,Y)] \neq g(\mathbb{E}[X],\mathbb{E}[Y])$
- However, if $X \perp \!\!\! \perp Y$,

$$\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$$

 $\mathbb{E}[g(X)h(Y)] = \mathbb{E}[g(X)]\mathbb{E}[g(Y)]$

$$\mathbb{E}[g(X)h(Y)] = \sum_{x} \sum_{y} g(x)h(y)p_{X,Y}(x,y)$$
$$= \sum_{x} g(x)p_{X}(x) \sum_{y} h(y)p_{Y}(y)$$

- Always true. $var[aX] = a^2 var[X]$, var[X + a] = var[X]
- Generally, var[X + Y] ≠ var[X] + var[Y] (next slide)
- However, if $X \perp \!\!\! \perp Y$, var[X + Y] = var[X] + var[Y]
- Practice.

$$\circ X = Y \Longrightarrow \mathsf{var}[X + Y] = \mathsf{4var}[X]$$

Always true.

$$\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$$

- Generally, $\mathbb{E}[g(X,Y)] \neq g(\mathbb{E}[X],\mathbb{E}[Y])$
- However, if $X \perp \!\!\! \perp Y$,

$$\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$$

 $\mathbb{E}[g(X)h(Y)] = \mathbb{E}[g(X)]\mathbb{E}[g(Y)]$

$$\mathbb{E}[g(X)h(Y)] = \sum_{x} \sum_{y} g(x)h(y)p_{X,Y}(x,y)$$
$$= \sum_{x} g(x)p_{X}(x) \sum_{y} h(y)p_{Y}(y)$$

- Always true. $var[aX] = a^2 var[X]$, var[X + a] = var[X]
- Generally, var[X + Y] ≠ var[X] + var[Y] (next slide)
- However, if X ⊥⊥ Y,
 var[X + Y] = var[X] + var[Y]
- Practice.

$$\circ X = Y \Longrightarrow \mathsf{var}[X + Y] = \mathsf{4var}[X]$$

$$\circ X = -Y \Longrightarrow var[X + Y] = 0$$

Always true.

$$\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$$

- Generally, $\mathbb{E}[g(X,Y)] \neq g(\mathbb{E}[X],\mathbb{E}[Y])$
- However, if $X \perp \!\!\!\perp Y$,

$$\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$$

 $\mathbb{E}[g(X)h(Y)] = \mathbb{E}[g(X)]\mathbb{E}[g(Y)]$

$$\mathbb{E}[g(X)h(Y)] = \sum_{x} \sum_{y} g(x)h(y)p_{X,Y}(x,y)$$
$$= \sum_{x} g(x)p_{X}(x) \sum_{y} h(y)p_{Y}(y)$$

- Always true. $var[aX] = a^2 var[X]$, var[X + a] = var[X]
- Generally, var[X + Y] ≠ var[X] + var[Y] (next slide)
- However, if $X \perp \!\!\! \perp Y$, var[X + Y] = var[X] + var[Y]
- Practice.

$$\circ X = Y \Longrightarrow \text{var}[X + Y] = 4\text{var}[X]$$

$$\circ X = -Y \Longrightarrow \text{var}[X + Y] = 0$$

$var[X + Y] \neq var[X] + var[Y]$

• Why not generally true?

$var[X + Y] \neq var[X] + var[Y]$

• Why not generally true?

$$var[X + Y] = \mathbb{E}[(X + Y)^{2}] - (\mathbb{E}[X + Y])^{2}$$

$$= \mathbb{E}[X^{2} + Y^{2} + 2XY] - ((\mathbb{E}[X])^{2} + (\mathbb{E}[Y])^{2} + 2\mathbb{E}[X]\mathbb{E}[Y])$$

$$= var[X] + var[Y] + 2(\mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y])$$

$var[X + Y] \neq var[X] + var[Y]$

• Why not generally true?

$$var[X + Y] = \mathbb{E}[(X + Y)^{2}] - (\mathbb{E}[X + Y])^{2}$$

$$= \mathbb{E}[X^{2} + Y^{2} + 2XY] - ((\mathbb{E}[X])^{2} + (\mathbb{E}[Y])^{2} + 2\mathbb{E}[X]\mathbb{E}[Y])$$

$$= var[X] + var[Y] + 2(\mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y])$$

is a sufficient condition for $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$

$[\mathsf{var}[X+Y] eq \mathsf{var}[X] + \mathsf{var}[Y]^t$

• Why not generally true?

$$var[X + Y] = \mathbb{E}[(X + Y)^{2}] - (\mathbb{E}[X + Y])^{2}$$

$$= \mathbb{E}[X^{2} + Y^{2} + 2XY] - ((\mathbb{E}[X])^{2} + (\mathbb{E}[Y])^{2} + 2\mathbb{E}[X]\mathbb{E}[Y])$$

$$= var[X] + var[Y] + 2(\mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y])$$

 $\circ ig| m{\mathsf{X}} \perp \!\!\! \perp m{\mathsf{Y}} ig|$ is a sufficient condition for $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$

• Why not generally true?

$$var[X + Y] = \mathbb{E}[(X + Y)^{2}] - (\mathbb{E}[X + Y])^{2}$$

$$= \mathbb{E}[X^{2} + Y^{2} + 2XY] - ((\mathbb{E}[X])^{2} + (\mathbb{E}[Y])^{2} + 2\mathbb{E}[X]\mathbb{E}[Y])$$

$$= var[X] + var[Y] + 2(\mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y])$$

- $\circ ig| m{\mathsf{X}} \perp \!\!\! \perp m{\mathsf{Y}} ig|$ is a sufficient condition for $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$
- Also, a necessary condition? we will see later, when we study covariance.

- *n* people throw their hats in a box and then pick one at random
- X: number of people with their own hat

- n people throw their hats in a box and then pick one at random
- X: number of people with their own hat
- $\mathbb{E}[X]$? var[X]?

- *n* people throw their hats in a box and then pick one at random
- X: number of people with their own hat
- $\mathbb{E}[X]$? var[X]?
- All permutations are equally likely as 1/n!. Thus, this equals to picking one hat at a time.

- *n* people throw their hats in a box and then pick one at random
- X: number of people with their own hat
- $\mathbb{E}[X]$? var[X]?
- All permutations are equally likely as 1/n!. Thus, this equals to picking one hat at a time.
- Key step 1. Define a rv $X_i = 1$ if i selects its own hat and 0 otherwise.

$$X = \sum_{i=1}^{n} X_i.$$

- *n* people throw their hats in a box and then pick one at random
- X: number of people with their own hat
- $\mathbb{E}[X]$? var[X]?
- All permutations are equally likely as 1/n!. Thus, this equals to picking one hat at a time.
- Key step 1. Define a rv $X_i = 1$ if i selects its own hat and 0 otherwise.

$$X = \sum_{i=1}^{n} X_i.$$

• $\{X_i\}, i = 1, 2, ..., n$: identically distributed (from symmetry)

•
$$\mathbb{E}[X] = n\mathbb{E}[X_1] = n\mathbb{P}(X_1 = 1) = n \times \frac{1}{n} = 1.$$

- $\mathbb{E}[X] = n\mathbb{E}[X_1] = n\mathbb{P}(X_1 = 1) = n \times \frac{1}{n} = 1.$
- Key step 2. Are X_i s are independent? If yes, easy to get var(X).

- $\mathbb{E}[X] = n\mathbb{E}[X_1] = n\mathbb{P}(X_1 = 1) = n \times \frac{1}{n} = 1.$
- Key step 2. Are X_i s are independent? If yes, easy to get var(X).
- Assume n=2. Then, $X_1=1 \rightarrow X_2=1$, and $X_1=0 \rightarrow X_2=0$. Thus, dependent.

- $\mathbb{E}[X] = n\mathbb{E}[X_1] = n\mathbb{P}(X_1 = 1) = n \times \frac{1}{n} = 1.$
- Key step 2. Are X_i s are independent? If yes, easy to get var(X).
- Assume n=2. Then, $X_1=1 \rightarrow X_2=1$, and $X_1=0 \rightarrow X_2=0$. Thus, dependent.

$$\operatorname{var}(X) = \mathbb{E}[X^2] - (\mathbb{E}[X])^2 = \mathbb{E}\Big[\sum_i X_i^2 + \sum_{i,i;j \neq i} X_i X_j\Big] - (\mathbb{E}[X])^2$$

- $\mathbb{E}[X] = n\mathbb{E}[X_1] = n\mathbb{P}(X_1 = 1) = n \times \frac{1}{n} = 1.$
- Key step 2. Are X_i s are independent? If yes, easy to get var(X).
- Assume n=2. Then, $X_1=1 \rightarrow X_2=1$, and $X_1=0 \rightarrow X_2=0$. Thus, dependent.

$$\operatorname{var}(X) = \mathbb{E}[X^2] - (\mathbb{E}[X])^2 = \mathbb{E}\left[\sum_i X_i^2 + \sum_{i,j:i \neq j} X_i X_j\right] - (\mathbb{E}[X])^2$$

$$\mathbb{E}[X_i^2] = \mathbb{E}[X_1^2] = 1 \times \frac{1}{n} + 0 \times \frac{n-1}{n} = \frac{1}{n}$$

- $\mathbb{E}[X] = n\mathbb{E}[X_1] = n\mathbb{P}(X_1 = 1) = n \times \frac{1}{n} = 1.$
- Key step 2. Are X_i s are independent? If yes, easy to get var(X).
- Assume n=2. Then, $X_1=1 \rightarrow X_2=1$, and $X_1=0 \rightarrow X_2=0$. Thus, dependent.

$$var(X) = \mathbb{E}[X^{2}] - (\mathbb{E}[X])^{2} = \mathbb{E}\left[\sum_{i} X_{i}^{2} + \sum_{i,j:i \neq j} X_{i}X_{j}\right] - (\mathbb{E}[X])^{2}$$

$$\mathbb{E}[X^{2}] = \mathbb{E}[X^{2}] = 1 + 1 + 2 + 2 + n - 1 = 1$$

$$\mathbb{E}[X_i^2] = \mathbb{E}[X_1^2] = 1 \times \frac{1}{n} + 0 \times \frac{n-1}{n} = \frac{1}{n}$$

$$\mathbb{E}[X_i X_j] = \mathbb{E}[X_1 X_2] = 1 \times \mathbb{P}(X_1 X_2 = 1) = \mathbb{P}(X_1 = 1) \mathbb{P}(X_2 = 1 | X_1 = 1), \quad (i \neq j)$$

$$\mathbb{E}[\mathcal{N}_{i}\mathcal{N}_{j}] = \mathbb{E}[\mathcal{N}_{1}\mathcal{N}_{2}] = 1 \wedge \mathbb{I}(\mathcal{N}_{1}\mathcal{N}_{2} = 1) = \mathbb{I}(\mathcal{N}_{1} = 1)\mathbb{I}(\mathcal{N}_{2} = 1|\mathcal{N}_{1} = 1), \quad (i \neq j)$$

- $\mathbb{E}[X] = n\mathbb{E}[X_1] = n\mathbb{P}(X_1 = 1) = n \times \frac{1}{n} = 1.$
- Key step 2. Are X_i s are independent? If yes, easy to get var(X).
- Assume n=2. Then, $X_1=1\to X_2=1$, and $X_1=0\to X_2=0$. Thus, dependent.

$$\operatorname{var}(X) = \mathbb{E}[X^2] - (\mathbb{E}[X])^2 = \mathbb{E}\left[\sum_i X_i^2 + \sum_{i,j:i \neq j} X_i X_j\right] - (\mathbb{E}[X])^2$$

$$\mathbb{E}[X_i^2] = \mathbb{E}[X_1^2] = 1 \times \frac{1}{n} + 0 \times \frac{n-1}{n} = \frac{1}{n}$$

$$\mathbb{E}[X_i X_j] = \mathbb{E}[X_1 X_2] = 1 \times \mathbb{P}(X_1 X_2 = 1) = \mathbb{P}(X_1 = 1) \mathbb{P}(X_2 = 1 | X_1 = 1), \quad (i \neq j)$$

•
$$\mathbb{E}[X^2] = n\mathbb{E}[X_1^2] + n(n-1)\mathbb{E}[X_1X_2] = n\frac{1}{n} + n(n-1)\frac{1}{n(n-1)} = 2$$

- $\mathbb{E}[X] = n\mathbb{E}[X_1] = n\mathbb{P}(X_1 = 1) = n \times \frac{1}{n} = 1.$
- Key step 2. Are X_i s are independent? If yes, easy to get var(X).
- Assume n=2. Then, $X_1=1 o X_2=1$, and $X_1=0 o X_2=0$. Thus, dependent.

$$\mathsf{var}(X) = \mathbb{E}[X^2] - (\mathbb{E}[X])^2 = \mathbb{E}\Big[\sum_i X_i^2 + \sum_{i,j:i \neq j} X_i X_j\Big] - (\mathbb{E}[X])^2$$

$$\mathbb{E}[X_i^2] = \mathbb{E}[X_1^2] = 1 \times \frac{1}{n} + 0 \times \frac{n-1}{n} = \frac{1}{n}$$

$$\mathbb{E}[X_i X_j] = \mathbb{E}[X_1 X_2] = 1 \times \mathbb{P}(X_1 X_2 = 1) = \mathbb{P}(X_1 = 1) \mathbb{P}(X_2 = 1 | X_1 = 1), \quad (i \neq j)$$

- $\mathbb{E}[X^2] = n\mathbb{E}[X_1^2] + n(n-1)\mathbb{E}[X_1X_2] = n\frac{1}{n} + n(n-1)\frac{1}{n(n-1)} = 2$
- var(X) = 2 1 = 1

Questions?

Review Questions

- 1) What is Random Variable? Why is it useful?
- 2) What is PMF (Probability Mass Function)?
- 3) Explain Bernoulli, Binomial, Poisson, Geometric rvs, when they are used and what their PMFs are.
- 4) What are joint and marginal PMFs?
- 5) Describe and explain the total probability/expectation theorem for random variables?
- 6) When is it useful to use total probability/expectation theorem?
- 7) What is conditional independence?