Redes Neuronales

Trabajo práctico 2

Arlanti - Minestrelli - Ocamica - Hurmuz

Objetivo

Objetivo

- Construir una red neuronal para que aprenda a generalizar un terreno para un videojuego.
- Analizar distintas configuraciones de red
- Evaluar variantes del algoritmo backpropagation
- Llegar a la arquitectura óptima para este problema

Terreno a Aprender

Entradas

- La elección de los patrones fue al azar siguiendo una proporción de entrenamiento - testeo.
- Conjunto de entrenamiento 80%
- Conjunto de testeo 20%

Error de Testeo vs Error de Aprendizaje

Conjunto de Entrenamiento

Conjunto de Testeo - Generalización

Arquitectura

Arquitecturas candidatas

- 1 Capa Oculta
- 2 Capas Ocultas
- 3 Capas Ocultas

Algunas Arquitecturas probadas

- 2, 50, 1
- 2, 10, 1
- 2, 5, 1
- 2,35,10,1
- 2,10,35,1
- 2, 4, 4, 1
- 2, 10, 10, 10, 1
- 2, 30, 10, 30, 1

Métricas tomadas en cuenta

- Cota de error cuadrático medio de aprendizaje
- Error cuadrático medio de testeo
- Tiempo
- Épocas

Elección de Función de Activación

Exponencial

Imagen 0 al 1

Variación de B

Variación de B

- A medida que se incrementa β, la función de activación tiende a la función escalón por lo que su salida da valores menos distinguibles y más cercanos a |1|.
- Por ello, a la red le cuesta más aprender, por el contrario si β fuera pequeño la red no podría distinguir los patrones de forma adecuada.
- Mediante las pruebas realizadas se llegó a que el valor que mejor performaba era β= 0,5

Mejoras Backpropagation

Mejoras backpropagation

- Momentum
- Ajuste de □

Comparación de optimizaciones

Comparación de optimizaciones

- Sin mejoras
- Ajustando el δ
- Con momentum
- Con momentum y δ

Elección de arquitectura

Criterio

 Aquella que generalizó mejor, sin importar cuánto haya tardado en aprender.

 Se tomó la mejor de 1, 2 y 3 capas ocultas con y sin mejoras.

Sin mejoras

Capas	1 Oculta	2 Ocultas	3 Ocultas
Arquitectura	2,50,1	2,35,10,1	2,30,10,30,1
Épocas	3986	3098	1811
Error Cuadrático Medio			
Testeo	5.6847e-04	5,9098E-04	9,3602E-04

Con Delta y Momentum

Capas	1 Oculta	2 Ocultas	3 Ocultas
Arquitectura	2,50,1	2,35,10,1	2,30,10,30,1
Épocas	3466	2303	2382
Error Cuadrático Medio			
Testeo	4,456E-04	0,001221	0,0010997

Gráfico de error configuración óptima

[2, 10, 1] con optimizaciones

[2, 50, 1] con optimizaciones

Conclusiones

- Conjunto de entrenamiento mayor a 80% → No generaliza bien
- Conjunto de entrenamiento menor a 80% → No aprende bien
- Momentum con alpha = 0.9 → Generaliza Mejor
- Arquitectura elegida 1 capa oculta con 50 neuronas (2,50,1) → Generalizó mejor