

INSTITUTO FEDERAL DE EDUCAÇÃO CIÊNCIA E TECNOLOGIA DO MARANHAO CAMPUS SÃO LUÍS - MONTE CASTELO ENGENHARIA ELÉTRICA INDUSTRIAL

Análise de Circuitos Elétricos II Professor Rodrigo Jose Albuquerque Frazao

Reinier Soares Berthier - 20211EE0021

INSTITUTO FEDERAL DE EDUCAÇÃO CIÊNCIA E TECNOLOGIA DO MARANHÃO

Reinier Soares Berthier - 20211EE0021

Tensão, corrente e potência instantânea

Atividade apresentada à disciplina de Análise de Circuitos Elétricos II do curso de Engenharia Elétrica Industrial, do Instituto Federal De Educação Ciência E Tecnologia Do Maranhão ministrada pelo professor Rodrigo Jose Albuquerque Frazao.

${\sf Sum\'ario}$

Sumário .		1
1	Cálculo das Impedâncias	2
1.1	Carga Resistiva (R)	2
1.2	Carga Indutiva (L)	2
1.3	Carga Capacitiva (C)	2
1.4	Carga RLC em Série	2
2	Gráficos	4
2.1	Carga Puramente Resistiva (R)	4
2.2	Carga Puramente Indutiva (L)	5
2.3	Carga Puramente Capacitiva (C)	6
2.4	Carga RLC em série	7
2.5	Potências do circuito Ressonante em série	8
3	Códigos de Plotagem	9
3.1	Carga Resistiva, Indutiva e Capacitiva (Figura 1)	9
3.2	Carga Resistiva (Figura 2)	11
3.3	Carga Indutiva (Figura 3)	12
3.4	Carga Capacitiva (Figura 4)	13
3.5	Carga Rlc em Série (Figura 5)	14
3.6	Gráfico das Potências no circuito RLC em série (Figura 7)	15
4	Conclusão	. 7
	Referências	8

1 Cálculo das Impedâncias

Valores Escolhidos

Os seguintes valores foram escolhidos para o circuito de corrente alternada:

$V_{\rm rms} = 12.0 \mathrm{V}$	(Tensão RMS)
$f=60.0\mathrm{Hz}$	(Frequência)
$R=10.0\Omega$	(Resistência)
$L=0.002\mathrm{H}$	(Indutância)
$C = 0.002\mathrm{F}$	(Capacitância)

1.1 Carga Resistiva (R)

Impedância da carga resistiva (Z_R) é igual à resistência (R):

$$Z_R = R = 10 \,\Omega$$

Ângulo de fase para a carga resistiva (ϕ_R) é zero, já que é uma carga puramente resistiva.

1.2 Carga Indutiva (L)

Impedância indutiva (XL) é calculada como:

$$XL = wL = 2\pi fL = 2\pi \cdot 60 \,\mathrm{Hz} \cdot 0.002 \,\mathrm{H} = 0.753 \,\Omega$$

Ângulo de fase para a carga indutiva (ϕ_L) é $\pi/2$ radianos (90 graus), pois é uma carga puramente indutiva.

1.3 Carga Capacitiva (C)

Impedância capacitiva (XC) é calculada como:

$$XC = \frac{1}{wC} = \frac{1}{2\pi fC} = \frac{1}{2\pi \cdot 60 \,\mathrm{Hz} \cdot 0.002 \,\mathrm{F}} \approx 132.66 \,\Omega$$

Ângulo de fase para a carga capacitiva (ϕ_C) é $-\pi/2$ radianos (-90 graus), pois é uma carga puramente capacitiva.

1.4 Carga RLC em Série

Para um circuito RLC em série com os seguintes valores: - Resistência $(R)=10~\Omega$ - Indutância $(L)=0.002~\mathrm{H}$ - Capacitância $(C)=0.002~\mathrm{F}$

A impedância total (Z) é calculada como:

$$Z = R + j(XL - XC)$$

Onde: - XL é a impedância indutiva, dada por $XL=wL=2\pi fL$. - XC é a impedância capacitiva, dada por $XC=\frac{1}{wC}=\frac{1}{2\pi fC}$.

Substituindo os valores:

$$XL = 2\pi \cdot 60 \,\mathrm{Hz} \cdot 0.002 \,\mathrm{H} = 0.753 \,\Omega$$

$$XC = \frac{1}{2\pi \cdot 60 \,\mathrm{Hz} \cdot 0.002 \,\mathrm{F}} \approx 132.66 \,\Omega$$

Portanto, a impedância total do circuito RLC em série é:

$$Z = 10 + j(0.753 - 132.66) \Omega$$

Simplificando:

$$Z \approx 10 - j132.66 \,\Omega$$

A impedância total é uma quantidade complexa com uma parte real de 10 ohms e uma parte imaginária de -132.66 ohms.

2 Gráficos

Carga puramente resistiva 20 Corrente (A) Potência (W) 10 0.02 0.06 0.00 Carga puramente indutiva Tensão (V) Corrente (A) 100 Potência (W) -200 Carga puramente capacitiva Tensão (V) Corrente (A) Potência (W) 100 -50 0.02 0.00 0.06 0.08

Figura 1 – Comparativo entre as 3 cargas

Fonte: Elaborada pelo autor.

A figura 1 mostra os gráficos de uma carga puramente resistiva, indutiva e capacitiva respectivamente.

2.1 Carga Puramente Resistiva (R)

Figura 2 – Gráfico da Carga Puramente Resistiva

- 1. Tensão (linha azul): A forma de onda da tensão (Figura 2) é uma senoide com uma amplitude de pico de aproximadamente 16.97 V. Isso é esperado para uma fonte de corrente alternada de 12 Vrms a 60 Hz. A tensão está em fase com a corrente, como esperado para uma carga resistiva pura.
- 2. Corrente (linha laranja): A corrente (Figura 2)
também é uma senoide com a mesma frequência da tensão e está em fase com a
tensão. A amplitude da corrente é de aproximadamente 1.2 A, de acordo com a lei de Ohm
 $(I = \frac{V}{R})$.
- 3. Potência (linha verde): A potência (Figura 2) é calculada a partir da corrente e tensão e varia de acordo com P = VI. É uma senoide positiva, o que significa que a potência é sempre positiva, indicando que a carga é puramente resistiva.

2.2 Carga Puramente Indutiva (L)

Figura 3 – Gráfico da Carga Puramente Indutiva

- 1. **Tensão (linha azul):** A forma de onda da tensão (Figura 3) é a mesma que a da carga resistiva, pois a fonte de alimentação é a mesma. No entanto, a fase da tensão é deslocada em +90 graus em relação à carga resistiva, devido à natureza indutiva da carga.
- 2. Corrente (linha laranja): A corrente (Figura 3) é uma senoide, mas está defasada em +90 graus em relação à tensão, como esperado para uma carga indutiva pura. A amplitude da corrente é de aproximadamente 1.2 A1.2 A, de acordo com a lei de Ohm.
- 3. **Potência (linha verde):** A potência (Figura 3) varia de forma diferente em comparação com a carga resistiva. A potência está atrasada em relação à tensão e à corrente devido à fase indutiva. A potência é alternadamente positiva e negativa, indicando que a carga está armazenando e liberando energia.

Figura 4 – Gráfico da Carga Puramente Capacitiva

- 1. **Tensão (linha azul):** A forma de onda da tensão (Figura 4) é a mesma que a da carga resistiva, pois a fonte de alimentação é a mesma. No entanto, a fase da tensão é deslocada em -90 graus em relação à carga resistiva, devido à natureza capacitiva da carga.
- 2. Corrente (linha laranja): A corrente (Figura 4) é uma senoide, mas está defasada em -90 graus em relação à tensão, como esperado para uma carga capacitiva pura. A amplitude da corrente é de aproximadamente 1.2 A, de acordo com a lei de Ohm.
- 3. Potência (linha verde): A potência (Figura 4) varia de forma diferente em comparação com a carga resistiva. A potência está adiantada em relação à tensão e à corrente devido à fase capacitiva. A potência é alternadamente positiva e negativa, indicando que a carga está armazenando e liberando energia, mas em uma fase diferente em comparação com a carga indutiva.

Figura 5 – Gráfico da Carga RLC em série

- 1. Tensão (linha azul): A forma de onda da tensão (Figura 5) é uma senoide com uma amplitude de pico de aproximadamente 16,97 V. Isso é esperado para uma fonte de corrente alternada de 12 Vrms a 60 Hz. A tensão está em fase com a corrente, pois ambos têm a mesma frequência.
- 2. Corrente (linha laranja): A corrente (Figura 5) é uma combinação das componentes resistiva, indutiva e capacitiva. Sua forma de onda e fase dependerão dos valores dos componentes R, L e C do circuito. Em certas condições, como a ressonância, a fase da corrente pode ser zero devido ao cancelamento das componentes indutivas e capacitivas.
- 3. Potência (linha verde): A potência (Figura 5) varia de forma diferente em comparação com a carga resistiva. A potência está atrasada em relação à tensão e à corrente devido às componentes indutivas e capacitivas. A potência é alternadamente positiva e negativa, indicando que a carga está armazenando e liberando energia devido às componentes reativas do circuito.

Figura 6 – Circuito ressonante em série.

Fonte: (Boylestad 2010).

"Um circuito elétrico ressonante precisa ter tanto indutância quanto capacitância. Além disso, uma resistência sempre está presente, seja porque não existem capacitores e indutores ideais, seja para controlar a forma da curva de ressonância. Quando a ressonância ocorre por causa da aplicação da frequência apropriada (fr), a energia armazenada em um elemento reativo é igual à fornecida por outro elemento reativo do sistema. Em outras palavras, a energia oscila entre um elemento reativo e outro. Portanto, uma vez que um sistema ideal (C e L puros) atinge um estado de ressonância, ele não necessita mais de potência reativa, pois é autossustentado. Em um circuito real, existe uma resistência presente nos elementos reativos que produz um eventual 'amortecimento' das oscilações entre os elementos reativos." (Boylestad 2010)

Figura 7 – Gráfico das Potências no circuito RLC em série

Figura 8 – Curvas de potência na ressonância para o circuito ressonante em série.

Fonte: (Boylestad 2010).

3 Códigos de Plotagem

Para a plotagem dos gráficos presentes nesta atividade, foi-se utilizado a linguagem de programação Python com as bibliotecas:

- NumPy: NumPy é uma biblioteca fundamental para computação numérica em Python. Ela fornece suporte para arrays multidimensionais (matrizes) e funções matemáticas de alto desempenho para operações nesses arrays. NumPy é amplamente utilizado em ciência de dados, computação científica, aprendizado de máquina e em muitas outras áreas da programação Python onde é necessário realizar cálculos numéricos eficientes.
- Matplotlib: Matplotlib é uma biblioteca de visualização em Python que permite criar gráficos e visualizações de dados de forma flexível e personalizada. matplotlib.pyplot é um módulo dentro do Matplotlib que fornece uma interface semelhante à do MATLAB para criar gráficos de maneira interativa e estática. Ele permite que você crie gráficos de linhas, gráficos de dispersão, histogramas, barras e muitos outros tipos de gráficos.

3.1 Carga Resistiva, Indutiva e Capacitiva (Figura 1)

```
import numpy as np
import matplotlib.pyplot as plt

# Parametros do circuito

Vrms = 12.0 # Tensao RMS em volts
f = 60.0 # Frequencia em Hz
R = 10.0 # Resistencia em ohms
L = 0.002 # Indutancia em henries
C = 0.002 # Capacitancia em farads

# Calculo de impedancias e angulos de fase
```

```
w = 2 * np.pi * f # Frequencia angular em radianos por segundo
XL = w * L # Impedancia indutiva
XC = 1 / (w * C) # Impedancia capacitiva
# Funcoes para calcular tensao, corrente e potencia
def voltage(t):
    return Vrms * np.sqrt(2) * np.sin(w * t)
def current(t, Z, phi):
   return (Vrms / Z) * np.sqrt(2) * np.sin((w * t) + phi)
def power(t, Z, phi):
   return (Vrms * Vrms / Z) * np.cos(phi) * (1 - np.cos(2 * w * t)) - (Vrms * Vrms / Z) * np.
        sin(phi) * np.sin(2 * w * t)
# Tempo
t = np.linspace(0, 5/f, 5000) # Cinco ciclos de 60 Hz
# Plotagem das formas de onda para cada carga
plt.figure(figsize=(12, 8))
# Carga puramente resistiva (R)
Z_R = R
phi_R = 0
plt.subplot(311)
{\tt plt.plot(t, voltage(t), label='Tensao_{\sqcup}(V)')}
plt.plot(t, current(t, Z_R, phi_R), label='Corrente<sub>□</sub>(A)')
plt.plot(t, power(t, Z_R, phi_R), label='Potencia<sub>□</sub>(W)')
plt.axhline(0, color='black', linestyle='--', linewidth=0.5) # Linha no eixo x
plt.title('Carga_puramente_resistiva')
plt.xlabel('Tempo<sub>□</sub>(s)')
plt.ylabel('Amplitude')
plt.legend()
# Carga puramente indutiva (L)
Z_L = XL
phi_L = np.pi / 2
plt.subplot(312)
plt.plot(t, voltage(t), label='Tensao<sub>□</sub>(V)')
plt.plot(t, \; current(t, \; Z\_L, \; phi\_L), \; label='Corrente_{\sqcup}(A)')
plt.plot(t, power(t, Z_L, phi_L), label='Potencia_(W)')
plt.axhline(0, color='black', linestyle='--', linewidth=0.5) # Linha no eixo x
plt.title('Carga_puramente_indutiva')
plt.xlabel('Tempo<sub>□</sub>(s)')
plt.ylabel('Amplitude')
```

```
plt.legend()

# Carga puramente capacitiva (C)

Z_C = XC

phi_C = -np.pi / 2

plt.subplot(313)

plt.plot(t, voltage(t), label='Tensao_(V)')

plt.plot(t, current(t, Z_C, phi_C), label='Corrente_(A)')

plt.plot(t, power(t, Z_C, phi_C), label='Potencia_(W)')

plt.axhline(0, color='black', linestyle='--', linewidth=0.5) # Linha no eixo x

plt.title('Carga_puramente_capacitiva')

plt.xlabel('Tempo_(s)')

plt.ylabel('Amplitude')

plt.legend()

plt.tight_layout()

plt.show()
```

3.2 Carga Resistiva (Figura 2)

```
import numpy as np
import matplotlib.pyplot as plt
# Parametros do circuito
Vrms = 12.0 # Tensao RMS em volts
f = 60.0 \# Frequencia em Hz
R = 10.0 # Resistencia em ohms
# Calculo de impedancias e angulos de fase
w = 2 * np.pi * f # Frequencia angular em radianos por segundo
# Funcoes para calcular tensao, corrente e potencia
def voltage(t):
   return Vrms * np.sqrt(2) * np.sin(w * t)
def current(t, Z, phi):
   return (Vrms / Z) * np.sqrt(2) * np.sin((w * t) + phi)
def power(t, Z, phi):
   return (Vrms * Vrms / Z) * np.cos(phi) * (1 - np.cos(2 * w * t)) - (Vrms * Vrms / Z) * np.
       sin(phi) * np.sin(2 * w * t)
# Tempo
t = np.linspace(0, 5/f, 5000) # Cinco ciclos de 60 Hz
```

```
# Plotagem das formas de onda para cada carga
plt.figure(figsize=(12, 8))

# Carga puramente resistiva (R)

Z_R = R
phi_R = 0
plt.plot(t, voltage(t), label='Tensao_U(V)')
plt.plot(t, current(t, Z_R, phi_R), label='Corrente_U(A)')
plt.plot(t, power(t, Z_R, phi_R), label='Potencia_U(W)')
plt.axhline(0, color='black', linestyle='--', linewidth=0.5) # Linha no eixo x
plt.title('Carga_puramente_resistiva')
plt.xlabel('Tempo_U(s)')
plt.ylabel('Amplitude')
plt.legend()

plt.tight_layout()
plt.show()
```

3.3 Carga Indutiva (Figura 3)

```
import numpy as np
import matplotlib.pyplot as plt
# Parametros do circuito
Vrms = 12.0 # Tensao RMS em volts
f = 60.0 \# Frequencia em Hz
L = 0.002 # Indutancia em henries
# Calculo de impedancias e angulos de fase
w = 2 * np.pi * f # Frequencia angular em radianos por segundo
XL = w * L # Impedancia indutiva
# Funcoes para calcular tensao, corrente e potencia
def voltage(t):
   return Vrms * np.sqrt(2) * np.sin(w * t)
def current(t, Z, phi):
   return (Vrms / Z) * np.sqrt(2) * np.sin((w * t) + phi)
def power(t, Z, phi):
   return (Vrms * Vrms / Z) * np.cos(phi) * (1 - np.cos(2 * w * t)) - (Vrms * Vrms / Z) * np.
       sin(phi) * np.sin(2 * w * t)
# Tempo
```

```
t = np.linspace(0, 5/f, 5000) # Cinco ciclos de 60 Hz
# Plotagem das formas de onda para cada carga
plt.figure(figsize=(12, 8))
# Carga puramente indutiva (L)
Z_L = XL
phi_L = np.pi / 2
plt.plot(t, voltage(t), label='Tensaou(V)')
plt.plot(t, current(t, Z_L, phi_L), label='Corrente_(A)')
plt.plot(t, power(t, Z_L, phi_L), label='Potencia<sub>□</sub>(W)')
plt.axhline(0, color='black', linestyle='--', linewidth=0.5) # Linha no eixo x
plt.title('Carga_puramente_indutiva')
plt.xlabel('Tempo<sub>□</sub>(s)')
plt.ylabel('Amplitude')
plt.legend()
plt.tight_layout()
plt.show()
```

3.4 Carga Capacitiva (Figura 4)

```
import numpy as np
import matplotlib.pyplot as plt

# Parametros do circuito

Vrms = 12.0 # Tensao RMS em volts
f = 60.0 # Frequencia em Hz
C = 0.002 # Capacitancia em farads

# Calculo de impedancias e angulos de fase
w = 2 * np.pi * f # Frequencia angular em radianos por segundo
XC = 1 / (w * C) # Impedancia capacitiva

# Funcoes para calcular tensao, corrente e potencia
def voltage(t):
    return Vrms * np.sqrt(2) * np.sin(w * t)

def current(t, Z, phi):
    return (Vrms / Z) * np.sqrt(2) * np.sin((w * t) + phi)

def power(t, Z, phi):
```

```
return (Vrms * Vrms / Z) * np.cos(phi) * (1 - np.cos(2 * w * t)) - (Vrms * Vrms / Z) * np.
        sin(phi) * np.sin(2 * w * t)
# Tempo
t = np.linspace(0, 5/f, 5000) # Cinco ciclos de 60 Hz
# Plotagem das formas de onda para cada carga
plt.figure(figsize=(12, 8))
# Carga puramente capacitiva (C)
Z_C = XC
phi_C = -np.pi / 2
plt.plot(t, voltage(t), label='Tensaou(V)')
plt.plot(t, current(t, Z_C, phi_C), label='Corrente_(A)')
plt.plot(t, power(t, Z_C, phi_C), label='Potencia<sub>□</sub>(W)')
plt.axhline(0, color='black', linestyle='--', linewidth=0.5) # Linha no eixo x
plt.title('Carga_puramente_capacitiva')
plt.xlabel('Tempo<sub>□</sub>(s)')
plt.ylabel('Amplitude')
plt.legend()
plt.tight_layout()
plt.show()
```

3.5 Carga Rlc em Série (Figura 5)

```
import numpy as np
import matplotlib.pyplot as plt

# Parametros do circuito
Vrms = 12.0 # Tensao RMS em volts
f = 60.0 # Frequencia em Hz
R = 10.0 # Resistencia em ohms
L = 0.002 # Indutancia em henries
C = 0.002 # Capacitancia em farads

# Calculo de impedancias e angulos de fase
w = 2 * np.pi * f # Frequencia angular em radianos por segundo
XL = w * L # Impedancia indutiva
XC = 1 / (w * C) # Impedancia capacitiva

# Tempo
t = np.linspace(0, 5/f, 5000) # Cinco ciclos de 60 Hz

# Funcoes para calcular tensao, corrente e potencia
```

```
def voltage(t):
    return Vrms * np.sqrt(2) * np.sin(w * t)
def current(t):
    Z = np.sqrt(R**2 + (XL - XC)**2)
    phi = np.arctan((XL - XC) / R)
    return (Vrms / Z) * np.sqrt(2) * np.sin(w * t + phi)
def power(t):
   Z = np.sqrt(R**2 + (XL - XC)**2)
    phi = np.arctan((XL - XC) / R)
    return (Vrms * Vrms / Z) * np.cos(phi) * (1 - np.cos(2 * w * t)) - (Vrms * Vrms / Z) * np.
        sin(phi) * np.sin(2 * w * t)
# Plotagem das formas de onda no mesmo grafico
plt.figure(figsize=(12, 8))
# Tensao (linha azul)
plt.plot(t, voltage(t), label='Tensao<sub>□</sub>(V)')
# Corrente (linha laranja)
plt.plot(t, current(t), label='Corrente<sub>□</sub>(A)')
# Potencia (linha verde)
plt.plot(t, power(t), label='Potencia<sub>\(\text{\(U\)}\)')</sub>
# Linha horizontal no eixo x
plt.axhline(0, color='black', linestyle='--', linewidth=0.5)
\verb|plt.title('Tensao, | Corrente| | e_{\sqcup} Potencia_{\sqcup} no_{\sqcup} Circuito_{\sqcup} RLC_{\sqcup} em_{\sqcup} Serie')|
plt.xlabel('Tempo<sub>□</sub>(s)')
plt.ylabel('Amplitude')
plt.legend()
plt.tight_layout()
plt.show()
```

3.6 Gráfico das Potências no circuito RLC em série (Figura 7)

```
import numpy as np
import matplotlib.pyplot as plt

# Parametros do circuito
Vrms = 12.0 # Tensao RMS em volts
f = 60.0 # Frequencia em Hz
```

```
R = 10.0 # Resistencia em ohms
L = 0.002 # Indutancia em henries
C = 0.002 # Capacitancia em farads
# Calculo de impedancias e angulos de fase
w = 2 * np.pi * f # Frequencia angular em radianos por segundo
XL = w * L # Impedancia indutiva
XC = 1 / (w * C) # Impedancia capacitiva
def power(t, Z, phi):
   return (Vrms * Vrms / Z) * np.cos(phi) * (1 - np.cos(2 * w * t)) - (Vrms * Vrms / Z) * np.
       sin(phi) * np.sin(2 * w * t)
# Tempo
t = np.linspace(0, 5/f, 5000) # Cinco ciclos de 60 Hz
# Calculo das potencias para cada carga
Z_R = R
phi_R = 0
P_R = power(t, Z_R, phi_R)
Z_L = XL
phi_L = np.pi / 2
P_L = power(t, Z_L, phi_L)
Z_C = XC
phi_C = -np.pi / 2
P_C = power(t, Z_C, phi_C)
# Plotagem das potencias em um unico grafico
plt.figure(figsize=(12, 6))
plt.plot(t, P_R, label='Potencia_Resistiva')
plt.plot(t, P_L, label='Potencia_Indutiva')
plt.plot(t, P_C, label='Potencia_Capacitiva')
plt.title('Potencias_em_um_Circuito_RLC_em_Serie')
plt.xlabel('Tempo,(s)')
plt.ylabel('Potencia<sub>□</sub>(W)')
plt.legend()
plt.grid(True)
plt.show()
```

4 Conclusão

Em resumo, esta atividade forneceu melhor compreensão e embasamento a cerca do estudo de cargas resistivas, capacitivas e indutivas em Corrente Alternada (CA). Atráves do uso de software de plotagem foi-se possível analisar aquilo que fora discutido em sala de aula, que em cargas puramente resistivas (Figura 2) não há defasagem angular entre tensão e corrente. Nas cargas puramente indutivas (Figura 3) a corrente está defasada em 90 graus em relação à tensão, enquanto que em cargas puramente capacitivas (Figura 4) a corrente está adiantada em 90 graus em relação à tensão.

Já para o circuito RLC em série (Figura 6)pode-se notar que a corrente é uma combinação das cargas presentes e, obviamente, sua forma de onda e fase dependerá das componentes R,L e C. A potência do gráfico da carga RLC (Figura 5) está atrasada em relação à tensão e à corrente devido às componentes indutivas e capacitivas. Podemos também perceber o fenômeno da ressonância (Figura 8) ao termos a fase da corrente igual a zero devido o cancelamento das componentes indutivas e capacitivas

Por fim o estudo da corrente alternada (CA) e de suas características, incluindo o comportamento das cargas resistivas, capacitivas, indutivas e circuitos RLC em série, é de extrema importância na engenharia elétrica e eletrônica, bem como em diversas áreas da ciência e tecnologia como por exemplo: Geração de Energia, Distribuição de Energia, Eletrônica, Indústria, Medicina, Transporte, Telecomunicações e outros.

Referências

BOYLESTAD, R. L. Introductory circuit analysis 12th ed. [S.l.]: Prentice Hall, 2010.