Number Theory: definitions and theorems

October 27, 2019

- Euler totient function: for $n \in N$: $\phi(n) = \#\{k \in N \mid 1 \le k \le n; \ gcd(n, k) = 1\}.$
 - Euler's theorem: for any $n \in N$ and $a \in Z$ such that gcd(a, n) = 1: $a^{\phi(n)} \equiv 1 \pmod{n}$.
 - If n and m are coprime positive integers then $\phi(nm) = \phi(n) \cdot \phi(m)$
 - If $n = \prod_{i=1}^k p_i^{\alpha_i}$ where p_i are distinct primes then $\phi(n) = n \cdot \prod_{i=1}^k (1 \frac{1}{p_i})$.
 - If n is prime then $\phi(n) = n 1$ and Euler's theorem is called Fermat's little theorem.
- Let p be odd prime. Nonzero number a is called "quadratic residue" modulo p if there exists number x such that $a \equiv x^2 \pmod{p}$. Otherwise a is called "quadratic nonresidue" modulo p.
 - There are exactly $\frac{p-1}{2}$ quadratic residues modulo p and as many quadratic nonresidues.
 - The product of two quadratic residues is also quadratic residue. The product of quadratic residue and quadratic nonresidue is quadratic nonresidue. The product of two quadratic nonresidues is quadratic residue.
 - If a is quadratic residue then $a^{\frac{p-1}{2}} \equiv 1 \pmod{p}$. Otherwise $a^{\frac{p-1}{2}} \equiv -1 \pmod{p}$.
 - -1 is quadratic residue if and only if $p \equiv 1 \pmod{4}$.
- "Legendre symbol" (or "quadratic character"):

- $-\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} \pmod{p}.$
- Gauss quadratic reciprocity: if p and q are distinct odd primes then $\left(\frac{p}{q}\right)\cdot\left(\frac{q}{p}\right)=(-1)^{\frac{p-1}{2}\cdot\frac{q-1}{2}}$.
- Number g is called "generator" or "primitive root" modulo m if gcd(g, m) = 1 and all the numbers $g^1, g^2, \ldots, g^{\phi(m)}$ are distinct modulo m.
 - -g is generator if gcd(g,m)=1 and $\phi(m)$ is the smallest number $k\in N$ such that $g^k=1$ (such smallest k for number a is called "multiplicative order of a modulo m".
 - If gcd(a, m) = 1 then there exists positive integer k such that $g^k \equiv a \pmod{m}$.
 - Generator exists for modulo $m \Leftrightarrow m = 2$ or m = 4 or $m = p^k$ or $m = 2p^k$ where k is positive integer and p is odd prime (In particular, generator exists for any prime number).
 - If there exists a generator modulo m then there are exactly $\phi(\phi(m))$ generators modulo m.
- Some other useful facts.
 - Lifting the exponent lemma. Let us say $p^k \parallel a$ if $p^k \mid a$ and $p^{k+1} \nmid a$. Let $p^t \parallel a-1$ and $p^k \parallel n$. If p=2, t=1 and $k \geq 1$ then $2^{k+2} \mid a^n-1$. And if $p \geq 3$ or (!!!) $t \geq 2$ then $p^{t+k} \parallel a^n-1$ (even if k=0).
 - Wilson's theorem. p is prime $\Leftrightarrow (p-1)! \equiv -1 \pmod{p}$.
 - Bertrand's postulate. For every integer $n \ge 4$ there exists prime number p such that n .
 - Dirichlet's prime number theorem. For any two positive coprime integers a and d, there are infinitely many primes of the form a + nd, where n is also a positive integer.