

TEORIA DE MATERIAIS DE CONSTRUÇÃO

FRATURA – FLUÊNCIA – FADIGA

Aspecto da ruptura por fluência

Y UnB Gama o novo endereço da tecnología

TEORIA DE MATERIAIS DE CONSTRUÇÃO

 A engenharia e ciência dos materiais tem papel importante na prevenção e análise de falhas em peças ou componentes mecânicos.

Fig. 9.2 Navio com fratura abrupta devida à fragilização do material. [Callister, 1994.]

FRATURA

 Consiste na separação do material em duas ou mais partes devido à aplicação de uma carga estática à temperaturas relativamente baixas em relação ao ponto de fusão do material

FRATURA

- Dúctil a deformação plástica continua até uma redução na área para posterior ruptura (é OBSERVADA EM MATERIAIS CFC)
- Frágil não ocorre deformação plástica, requerendo menos energia que a fratura dúctil que consome energia para o movimento de discordâncias e imperfeições no material (é observada em materiais ccc e нс)

O tipo de fratura que ocorre em um dado material depende da temperatura

TEORIA DE MATERIAIS DE CONSTRUÇÃO

FRATURA

Fratura frágil

Fraturas dúcteis

TEORIA DE MATERIAIS DE CONSTRUÇÃO

FRATURA DÚCTIL E ASPECTO MACROSCÓPICO

Fratura após ensaio de tração

TEORIA DE MATERIAIS DE CONSTRUÇÃO

MECANISMO DA FRATURA DÚCTIL

- a- formação do pescoço
- b- formação de cavidades
- c- coalescimento das cavidades para promover uma trinca ou fissura
- d- formação e propagação da trinca em um ângulo de 45 graus em relação à tensão aplicada
- e- rompimento do material por propagação da trinca

Material dúctil submetido ao ensaio de tração

TEORIA DE MATERIAIS DE CONSTRUÇÃO

FRATURA DÚCTIL E ASPECTO MICROSCÓPICO

FRATURA FRÁGIL ASPECTO MACROSCÓPICO

Material frágil submetido ao ensaio de tração

A fratura frágil ocorre com a formação e propagação de uma trinca que ocorre a uma direção perpendicular à aplicação da tensão

UnB Gal o novo endereço da te

TEORIA DE MATERIAIS DE CONSTRUÇÃO

SUPERFÍCIES DE FRATURA

TEORIA DE MATERIAIS DE CONSTRUÇÃO

FRATURA FRÁGIL ASPECTO MACROSCÓPICO

Início da fratura por formação de trinca

TEORIA DE MATERIAIS DE CONSTRUÇÃO

FRATURA TRANSGRANULAR E INTERGRANULAR

TRANSGRANULAR

A fratura passa através do grão

INTERGRANULAR

A fratura se dá no contorno de grão

TEORIA DE MATERIAIS DE CONSTRUÇÃO

EXEMPLO DE FRATURA SOB TRAÇÃO EM MATERIAIS COMPÓSITOS

Ex: Liga de alumínio reforçada com partículas de SiC e Al₂O₃

Fratura: dúctil+frágil

A fratura da partícula se dá por <u>clivagem</u>, ou seja, ocorre ao longo de planos cristalográficos específicos

CONCENTRAÇÃO DE TENSÃO

- A resistência a fratura depende da coesão entre os átomos
- Segundo a teoria a resistência coesiva para um material frágil=E/10
- Na prática é entre 10-1000 X menor
- A.A. Griffith (1920) explicou essa diferença: a presença de microdefeitos ou microtrincas presentes no material faz com que as tensões sejam amplificadas.

A magnitude da amplificação depende da orientação e da geometria da trinca.

TEORIA DE MATERIAIS DE CONSTRUÇÃO

MICROTRINCA COM FORMATO ELIPTICO, ORIENTADA PERPENDICULARMENTE À TENSÃO APLICADA, A TENSÃO MÁXIMA (σ_m) NA EXTREMIDADE DA TRINCA É DADA POR:

$$\sigma_{\rm m} = \sigma_{\rm o} (1 + (2 (a/\rho_{\rm e})^{1/2})$$

 σ_o = tensão nominal a= comprimento da trinca superficial ou metade da trinca interna ρ_e = raio de curvatura da extremidade da trinca

Para uma trinca muito longa e com pequeno raio de curvatura, $(a/\rho_e)^{1/2}$ será muito grande, logo: $\sigma_m = 2 \sigma_o (a/\rho_e)^{1/2}$

Y UnB Gama O novo endereço da tecnología

TEORIA DE MATERIAIS DE CONSTRUÇÃO

CONCENTRAÇÃO DE TENSÃO

$$\sigma_{\text{máx}}/\sigma_{\text{a}} = 1 + 2a/b$$

- $\sigma_{máx}$ é a tensão máxima nas extremidades do defeito.
- σ_a é a tensão aplicada
- a é o semi-eixo normal ao carregamento,
- b é o semi-eixo paralelo à direção de carregamento.

$$\rho = b^2/a$$

Como na maioria dos casos a $>> \rho$, então:

$$\sigma_{m\acute{a}x}=2.\sigma_{a}\left(a/\rho\right)^{0.5}$$

TEORIA DE MATERIAIS DE CONSTRUÇÃO

FATOR DE CONCENTRAÇÃO DE TENSÕES (K_e)

$$K_e = \sigma_{m/}\sigma_o = 2 (a/\rho_e)^{1/2}$$

K_e mede o grau com que uma tensão é amplificada na extremidade da trinca

K é governado pela configuração geométrica do componente trincado e pelo nível e modo do carregamento imposto

TEORIA DE MATERIAIS DE CONSTRUÇÃO

ENSAIOS DE FRATURA POR IMPACTO (Charpy – EUA)

O ensaio de resistência ao choque caracteriza o comportamento dos materiais quanto a transição do comportamento dúctil para frágil em função da temperatura

Foram criados antes do desenvolvimento da "mecânica da fratura"

TEORIA DE MATERIAIS DE CONSTRUÇÃO

ENSAIOS DE FRATURA POR IMPACTO

Medem a energia absorvida no impacto por área

MAT. DÚCTEIS

Ut= $(\sigma_{esc} + \sigma_{LRT})/2$. ϵ_f MAT. FRÁGEIS

Ut= 2/3 . $(\sigma_{LRT}, \epsilon_f)$ em N.m/m³

dependência com a temperatura

TEORIA DE MATERIAIS DE CONSTRUÇÃO

ENSAIO DE TENACIDADE À FRATURA

A tenacidade é avaliada comparando-se as curvas para diferentes materiais com diferentes comprimentos de trincas

FLUÊNCIA (CREEP)

- Quando um metal é solicitado por uma carga, imediatamente sofre uma deformação elástica. Com a aplicação de uma carga constante, a deformação plástica progride lentamente com o tempo (fluência) até haver um estrangulamento e ruptura do material
- Velocidade de fluência (relação entre deformação plástica e tempo) aumenta com a temperatura
- Esta propriedade é de grande importância especialmente na escolha de materiais para operar a altas temperaturas

FLUÊNCIA (CREEP)

- Então, fluência é definida como a deformação permanente, dependente do tempo e da temperatura, quando o material é submetido à uma carga constante
- Este fator muitas vezes limita o tempo de vida de um determinado componente ou estrutura
- Este fenômeno é observado em todos os materiais, e torna-se importante à altas temperaturas (0,4T_F)

FLUÊNCIA (CREEP)

FATORES QUE AFETAM A FLUÊNCIA

- Temperatura
- Módulo de elasticidade
- Tamanho de grão

Por quê um tamanho de grão grande favorece uma maior resistência à fluência?

Em geral:

"Quanto maior o ponto de fusão, maior o módulo de elasticidade e maior é a resistência à fluência".

"Quanto maior o tamanho de grão maior é a resistência à Fluência".

TEORIA DE MATERIAIS DE CONSTRUÇÃO

ENSAIO DE FLUÊNCIA

- É executado pela aplicação de uma carga uniaxial constante a um corpo de prova de mesma geometria dos utilizados no ensaio de tração, a uma temperatura elevada e constante
- O tempo de aplicação de carga é estabelecido em função da vida útil esperada do componente
- **Mede-se as deformações ocorridas** em função do tempo (ε x t)

Y UnB Gama o novo endereço da tecnología

TEORIA DE MATERIAIS DE CONSTRUÇÃO

Curva & x t

 $\varepsilon = d\varepsilon/dt$ diminui

Estágio primário: ocorre um decréscimo contínuo na taxa de fluência (ε = dε/dt), ou seja, a inclinação da curva diminui com o tempo devido ao aumento da resistência por encruamento.

(B) Curva típica do ensaio de fluência

TEORIA DE MATERIAIS DE CONSTRUÇÃO

Curva e x t

- Estágio secundário: a taxa de fluência (ε = dε/dt) é constante (comportamento linear). A inclinação da curva constante com o tempo é devido à 2 fenômenos competitivos: encruamento e recuperação.
- H O valor médio da taxa de fluência nesse estágio é chamado de taxa mínima de fluência (εm), que é um dos parâmetros mais importantes a se considerar em projeto de componentes que deseja-se vida longa.

(B) Curva típica do ensaio de fluência

TEORIA DE MATERIAIS DE CONSTRUÇÃO

Curva e x t

- **Estágio terciário:** ocorre uma aceleração na taxa de fluência (ε = dε/dt) que culmina com a ruptura do corpo de prova.
- H A ruptura ocorre com a separação dos contornos de grão, formação e coalescimento de trincas, conduzindo a uma redução de área localizada e conseqüente aumento da taxa de deformação

(B) Curva típica do ensaio de fluência

TEORIA DE MATERIAIS DE CONSTRUÇÃO

FADIGA

- É a forma de falha ou ruptura que ocorre nas estruturas sujeitas à forças dinâmicas e cíclicas
- Nessas situações o material rompe com tensões muito inferiores à correspondente à resistência à tração (determinada para cargas estáticas)
- É comum ocorrer em estruturas como pontes, aviões, componentes de máquinas
- A falha por fadiga é geralmente de natureza frágil mesmo em materiais dúcteis.

FADIGA

- A fratura ou rompimento do material por fadiga geralmente ocorre com a formação e propagação de uma trinca.
- A trinca inicia-se em pontos onde há imperfeição estrutural ou de composição e/ou de alta concentração de tensões (que ocorre geralmente na superfície)
- A superfície da fratura é geralmente perpendicular à direção da tensão à qual o material foi submetido

FADIGA

Os esforços alternados que podem levar à fadiga podem ser:

- Tração
- Tração e compressão
- Flexão
- Torção,...

TEORIA DE MATERIAIS DE CONSTRUÇÃO

RESULTADOS DO ENSAIO DE FADIGA CURVA σ-N OU CURVA WOHLER

A CURVA σ-N REPRESENTA A TENSÃO VERSUS NÚMERO DE CICLOS PARA QUE OCORRA A FRATURA.

Normalmente para N utiliza-se escala logarítmica

TEORIA DE MATERIAIS DE CONSTRUÇÃO

PRINCIPAIS RESULTADOS DO ENSAIO DE FADIGA

Limite de resistência à fadiga (σ_{Rf}): em certos materiais (aços, titânio,...) abaixo de um determinado limite de tensão abaixo do qual o material nunca sofrerá ruptura por fadiga.

Para os aços o limite de resistência à fadiga (σ_{Rf}) está entre 35-65% do limite de resistência à tração.

TEORIA DE MATERIAIS DE CONSTRUÇÃO

PRINCIPAIS RESULTADOS DO ENSAIO DE FADIGA

Resistência à fadiga (σ_f) : em alguns materiais a tensão na qual ocorrerá a falha decresce continuamente com o número de ciclos (ligas não ferrosas: Al, Mg, Cu,...). Nesse caso a fadiga é caracterizada por resistência à fadiga (σ_f)

Que corresponde à tensão na qual ocorre a ruptura p/ um no. arbitrário de ciclos (em geral 10⁷-10⁸ ciclos)

PRINCIPAIL RESULTADO DO ENSAIO DE FADIGA

➡ Vida em fadiga (N_f): corresponde ao número de ciclos necessários para ocorrer a falha em um nível de tensão específico.

TEORIA DE MATERIAIS DE CONSTRUÇÃO

FATORES QUE INFLUENCIAM A VIDA EM FADIGA

- **Tensão Média**: o aumento do nível médio de tensão leva a uma diminuição da vida útil
- Efeitos de Superfície: variáveis de projeto (cantos agudos e demais descontinuidades podem levar a concentração de tensões e então a formação de trincas) e tratamentos superficiais (polimento, jateamento, endurecimento superficial melhoram significativamente a vida em fadiga)
- **Efeitos do ambiente: fadiga térmica** (flutuações na temperatura) e **fadiga por corrosão** (ex. pites de corrosão podem atuar como concentradores de tensão)

TEORIA DE MATERIAIS DE CONSTRUÇÃO

