

Sokoban

Giorgio Caculli LA196672, Guillaume Lambert LA198116, Tanguy Taminiau LA199566, Nathan Thaon LA188132 Groupe B01

7 décembre 2021

Table des matières

1	Introduction	2
2	Présentation du sujet 2.1 Spécification technique 2.1.1 GUI : SFML 2.1.2 Librairies 2.1.3 Fichiers 2.1.4 OS	2 2 3
3	Analyse 3.1 Product Backlog	3
4	diagramme4.1 Diagramme UML	4 4 5
5	Code source	5
6	Implémentation	5
7	Contribution	5
8	Conclusion	6
9	Bibliographie	6

1 Introduction

Dans le cadre du cours de développement de jeux vidéo, il nous a été demander de créer un jeu vidéo.

2 Présentation du sujet

Notre jeu sera un jeu de type puzzle. Il sera en vue 2D, vue du haut. Le but du jeu sera d'atteindre un objectif, en se frayant un chemin via la résolution d'un puzzle. La mécanique principale de ce jeu sera de pouvoir pousser une caisse pour nous permettre d'atteindre notre objectif qui sera de pousser ces caisses sur certains points pour finir le niveau. Les mouvements du personnage et des caisses se feront en case par case et les caisses ne pourront pas être poussées deux par deux. Il y aura aussi la présence d'un compteur de mouvements et un un compteur de reset.

2.1 Spécification technique

2.1.1 GUI: SFML

FIGURE 1 – Logo SFML

SFML est une librairie qui donne accès à une vaste variété de fonctionnalités purement écrites en C++. Les cinq fonctionnalités dont nous disposons sont les gestions suivantes :

- Toute interaction avec le système d'exploitation
- Fenêtrage
- Graphismes
- Son
- Réseau

SFML permet le cross-platforming, soi-disant, un logiciel codé avec SFML aura le même visuel indépendamment du système d'exploitation sur lequel le jeu tourne.

2.1.2 Librairies

Figure 2 – Logo Boost

La librairie de logging que nous utiliserons se nomme Boost. En quelques mots, la librairie Boost est ellemême un ensemble de librairies permettant d'étendre les fonctionnalités de C++. Dans notre cas, nous utiliserons les fonctionnalités prédéfinies de Boost.Log, qui nous donne accès à la possibilité d'enregistrer les différentes interactions qui ont eu lieu lors de l'exécution du jeu.

2.1.3 Fichiers

Les niveaux et les sauvegardes seront stockés dans des fichiers purement textuels. Ces fichiers ne stockeront que le design des niveaux ou de la partie en cours. Comme déclaré précédemment, Boost est un ensemble de librairies, dans cet ensemble il existe la librairie Boost. JSON. Grâce à cette librairie, nous serons capable de stocker des informations en format JSON, comme par exemple, une liste des scores.

2.1.4 OS

Les systèmes d'exploitation sur lesquels nous testerons notre jeu sont les suivants :

- Linux
- MS Windows 10

3 Analyse

3.1 Product Backlog

US-01	En tant qu'utilisateur je voudrais reset une partie.
US-02	En tant qu'utilisateur je voudrais mettre en pause la partie.
US-03	En tant qu'utilisateur je voudrais sauvegarder une partie.
US-04	En tant qu'utilisateur je voudrais charger des niveaux personnalisé.
US-05	En tant qu'utilisateur je voudrais arrêter mon jeu à tout môment.
US-06	En tant qu'utilisateur je voudrais une musique de fond.
US-07	En tant qu'utilisateur je voudrais gérer le volume de la musique et des effets.
US-08	En tant qu'utilisateur je voudrais créer des niveaux personnaliser.

4 diagramme

4.1 Diagramme UML

FIGURE 3 – diagramme de classe

4.2 Diagramme d'activité

FIGURE 4 – diagramme d'activité

5 Code source

Section totalement inutile et trop longue

6 Implémentation

Présentation du programme et capture d'écran

7 Contribution

Partie de la doc sur la contribution de chaque personne sur le projet

Giorgio a réalisé l'interface graphique. Etant plus en avance que les autres sur le language C++, il s'est directement attaqué à l'interface graphique donc de la matière qui n'a pas été vue, étant donné que Giorgio

avait déjà vu une partie de la matière de C++. états du jeu

Tanguy a réalisé l'UML de base pour mettre en place le début du projet, celui-ci a été appelé à évoluer avec le developpement du projet. Tanguy suite au développement de l'UML a commencé l'écriture des différentes classes du modèle.

Guillaume a réalisé une partie de l'algorithmique du modèle, notamment la gestion des collisions. Guillaume a aussi aidé en naviguant entre les différents participants du projet en fonction de là où il serait le plus utile.

Nathan: ...

8 Conclusion

Partie de la doc abritant la conclusion

9 Bibliographie

Partie abritant la bibliographie

