STAT 8020 R Lab 9: Multiple Linear Regression V

Whitney

September 16, 2020

Contents

Species diversity on the Galapagos Islands
Diagnostics in Multiple Linear Regression
Leverage
Studentized Residuals
Jackknife Residuals
Identifying Influential Observations: DFFITS
Residual Plot
Regression with Both Quantitative and Qualitative Predictors: Salaries for Professors Data Set $ \ldots 1$
Polynomial regression: Housing Values in Suburbs of Boston

Species diversity on the Galapagos Islands

```
#install.packages("faraway")
library(faraway)
data(gala)
gala
```

##		Species	Endemics	Area	Elevation	Nearest	Scruz	Adjacent
##	Baltra	58	23	25.09	346	0.6	0.6	1.84
##	Bartolome	31	21	1.24	109	0.6	26.3	572.33
##	Caldwell	3	3	0.21	114	2.8	58.7	0.78
##	Champion	25	9	0.10	46	1.9	47.4	0.18
##	Coamano	2	1	0.05	77	1.9	1.9	903.82
##	Daphne.Major	18	11	0.34	119	8.0	8.0	1.84
##	${\tt Daphne.Minor}$	24	0	0.08	93	6.0	12.0	0.34
##	Darwin	10	7	2.33	168	34.1	290.2	2.85
##	Eden	8	4	0.03	71	0.4	0.4	17.95
##	Enderby	2	2	0.18	112	2.6	50.2	0.10
##	Espanola	97	26	58.27	198	1.1	88.3	0.57
##	Fernandina	93	35	634.49	1494	4.3	95.3	4669.32
##	Gardner1	58	17	0.57	49	1.1	93.1	58.27
##	Gardner2	5	4	0.78	227	4.6	62.2	0.21
##	Genovesa	40	19	17.35	76	47.4	92.2	129.49
##	Isabela	347	89	4669.32	1707	0.7	28.1	634.49
##	Marchena	51	23	129.49	343	29.1	85.9	59.56
##	Onslow	2	2	0.01	25	3.3	45.9	0.10
##	Pinta	104	37	59.56	777	29.1	119.6	129.49
##	Pinzon	108	33	17.95	458	10.7	10.7	0.03
##	Las.Plazas	12	9	0.23	94	0.5	0.6	25.09
##	Rabida	70	30	4.89	367	4.4	24.4	572.33
##	${\tt SanCristobal}$	280	65	551.62	716	45.2	66.6	0.57
##	SanSalvador	237	81	572.33	906	0.2	19.8	4.89
##	SantaCruz	444	95	903.82	864	0.6	0.0	0.52
##	SantaFe	62	28	24.08	259	16.5	16.5	0.52
##	SantaMaria	285	73	170.92	640	2.6	49.2	0.10

```
## Seymour
                              16
                                    1.84
                                               147
                                                       0.6 9.6
                                                                    25.09
                     44
## Tortuga
                                    1.24
                                               186
                                                       6.8 50.9
                                                                    17.95
                     16
                               8
## Wolf
                     21
                              12
                                    2.85
                                               253
                                                      34.1 254.7
                                                                     2.33
galaNew <- gala[, -2]</pre>
galaNew
```

##		Species	Area	Elevation	Nearest	Scruz	Adjacent
##	Baltra	58	25.09	346	0.6	0.6	1.84
##	Bartolome	31	1.24	109	0.6	26.3	572.33
##	Caldwell	3	0.21	114	2.8	58.7	0.78
##	Champion	25	0.10	46	1.9	47.4	0.18
##	Coamano	2	0.05	77	1.9	1.9	903.82
##	Daphne.Major	18	0.34	119	8.0	8.0	1.84
##	Daphne.Minor	24	0.08	93	6.0	12.0	0.34
##	Darwin	10	2.33	168	34.1	290.2	2.85
##	Eden	8	0.03	71	0.4	0.4	17.95
##	Enderby	2	0.18	112	2.6	50.2	0.10
##	Espanola	97	58.27	198	1.1	88.3	0.57
##	Fernandina	93	634.49	1494	4.3	95.3	4669.32
##	Gardner1	58	0.57	49	1.1	93.1	58.27
##	Gardner2	5	0.78	227	4.6	62.2	0.21
##	Genovesa	40	17.35	76	47.4	92.2	129.49
##	Isabela	347	4669.32	1707	0.7	28.1	634.49
##	Marchena	51	129.49	343	29.1	85.9	59.56
##	Onslow	2	0.01	25	3.3	45.9	0.10
##	Pinta	104	59.56	777	29.1	119.6	129.49
##	Pinzon	108	17.95	458	10.7	10.7	0.03
##	Las.Plazas	12	0.23	94	0.5	0.6	25.09
##	Rabida	70	4.89	367	4.4	24.4	572.33
##	${\tt SanCristobal}$	280	551.62	716	45.2	66.6	0.57
##	SanSalvador	237	572.33	906	0.2	19.8	4.89
##	SantaCruz	444	903.82	864	0.6	0.0	0.52
##	SantaFe	62	24.08	259	16.5	16.5	0.52
##	SantaMaria	285	170.92	640	2.6	49.2	0.10
##	Seymour	44	1.84	147	0.6	9.6	25.09
##	Tortuga	16	1.24	186	6.8	50.9	17.95
##	Wolf	21	2.85	253	34.1	254.7	2.33

Diagnostics in Multiple Linear Regression

- Adjacent 1 66406 155638 266.62

Leverage

```
full <- lm(Species ~ ., data = galaNew)</pre>
step_gala <- step(full)</pre>
## Start: AIC=251.93
## Species ~ Area + Elevation + Nearest + Scruz + Adjacent
##
               Df Sum of Sq
##
                               RSS
                                      AIC
## - Nearest
                             89232 249.93
               1
                          0
## - Area
                1
                       4238 93469 251.33
## - Scruz
                       4636 93867 251.45
                1
                             89231 251.93
## <none>
```

```
## - Elevation 1 131767 220998 277.14
##
## Step: AIC=249.93
## Species ~ Area + Elevation + Scruz + Adjacent
##
               Df Sum of Sq
                               RSS
                                      AIC
## - Area
               1
                  4436 93667 249.39
                             89232 249.93
## <none>
## - Scruz
              1
                       7544 96776 250.37
## - Adjacent 1
                      72312 161544 265.74
## - Elevation 1
                    139445 228677 276.17
## Step: AIC=249.39
## Species ~ Elevation + Scruz + Adjacent
##
               Df Sum of Sq
                               RSS
## - Scruz
                      6336 100003 249.35
                1
## <none>
                             93667 249.39
## - Adjacent
                     69860 163527 264.11
                1
## - Elevation 1
                     275784 369451 288.56
##
## Step: AIC=249.35
## Species ~ Elevation + Adjacent
##
##
               Df Sum of Sq
                               RSS
                                      AIC
## <none>
                            100003 249.35
## - Adjacent
                      73251 173254 263.84
                1
## - Elevation 1
                     280817 380820 287.47
X <- model.matrix(step_gala)</pre>
H \leftarrow X \% *\% solve((t(X) \% *\% X)) \% *\% t(X)
lev <- hat(X)</pre>
high_lev <- which(lev \geq 2 * 3 / 30)
attach(gala)
par(las = 1)
plot(Elevation, Adjacent,
     cex = sqrt(5 * lev),
     col = "blue", ylim = c(0, 5000))
points(Elevation[high_lev],
       Adjacent[high_lev], col = "red",
       pch = 16,
       cex = sqrt(5 *lev[high_lev]))
```


Studentized Residuals

Studentized Residuals

Studentized Residuals

Jackknife Residuals

```
jack <- rstudent(step_gala)

par(las = 1)
plot(jack, pch = 16,
    cex = 0.8, col = "blue", main =" Jacknife Residuals ", xlab = "",
    ylab = "")
abline(h = 0, lty = 2, col = "gray")</pre>
```

Jacknife Residuals

Identifying Influential Observations: DFFITS

library(olsrr)
ols_plot_dffits(step_gala)

Residual Plot

```
par(las = 1)
plot(step_gala$fitted.values,
    step_gala$residuals,
    pch = 16, cex = 0.8, col = "blue", main =" Residuals ",
        xlab = expression(hat(Y)), ylab = expression(e))
abline(h = 0, lty = 2, col = "gray")
```

Residuals


```
sqrt_fit <- lm(sqrt(Species) ~ Elevation + Adjacent)

par(las = 1)
plot(sqrt_fit$fitted.values,
        sqrt_fit$residuals,
        pch = 16, cex = 0.8, col = "blue", main =" Residuals ",
        xlab = expression(hat(Y)), ylab = expression(e))
abline(h = 0, lty = 2, col = "gray")</pre>
```

Residuals

Regression with Both Quantitative and Qualitative Predictors: Salaries for Professors Data Set

The 2008-09 nine-month academic salary for Assistant Professors, Associate Professors and Professors in a college in the U.S. The data were collected as part of the on-going effort of the college's administration to monitor salary differences between male and female faculty members.

```
## Warning: package 'carData' was built under R version 3.6.2
data("Salaries")
head(Salaries)
##
          rank discipline yrs.since.phd yrs.service sex salary
## 1
          Prof
                                      19
                                                   18 Male 139750
## 2
          Prof
                         В
                                      20
                                                   16 Male 173200
## 3
      AsstProf
                         В
                                       4
                                                    3 Male 79750
## 4
          Prof
                         В
                                      45
                                                   39 Male 115000
## 5
          Prof
                         В
                                      40
                                                   41 Male 141500
## 6 AssocProf
                         В
                                       6
                                                    6 Male 97000
```

```
## rank discipline yrs.since.phd yrs.service sex
## AsstProf: 67 A:181 Min.: 1.00 Min.: 0.00 Female: 39
```

library(carData)

summary(Salaries)

```
AssocProf: 64
                   B:216
                              1st Qu.:12.00
                                             1st Qu.: 7.00
                                                             Male :358
##
   Prof
           :266
                              Median :21.00
                                              Median :16.00
##
                              Mean :22.31
                                              Mean :17.61
##
                              3rd Qu.:32.00
                                              3rd Qu.:27.00
                              Max.
                                     :56.00
                                              Max. :60.00
##
##
       salary
##
   Min. : 57800
   1st Qu.: 91000
##
##
  Median :107300
## Mean :113706
## 3rd Qu.:134185
## Max.
          :231545
boxplot(salary ~ sex, data = Salaries, las = 1)
                                                                 0
                                                                 8
200000 -
8a|a±
00000
100000 -
                          Female
                                                                Male
                                              sex
boxplot(salary ~ discipline, data = Salaries, las = 1)
```


plot(Salaries\$yrs.service, Salaries\$salary, las = 1, pch = 16, cex = 0.75)
grid()


```
##
## Call:
## lm(formula = salary ~ sex * yrs.since.phd)
## Residuals:
              1Q Median
      Min
                            3Q
## -83012 -19442 -2988 15059 102652
##
## Coefficients:
##
                         Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                          73840.8
                                      8696.7
                                             8.491 4.27e-16 ***
                          20209.6
                                      9179.2
                                             2.202 0.028269 *
## sexMale
## yrs.since.phd
                          1644.9
                                       454.6
                                              3.618 0.000335 ***
                                       468.0 -1.555 0.120665
## sexMale:yrs.since.phd
                         -728.0
## ---
```


Polynomial regression: Housing Values in Suburbs of Boston

```
library(MASS)

##
## Attaching package: 'MASS'

## The following object is masked from 'package:olsrr':
##
## cement
data(Boston)

plot(Boston$lstat, Boston$medv, col = "gray", pch = 16,
```

```
cex = 0.6, las = 1, xlab = "lower status of the population (percent)", ylab = "median value of own
m1 <- lm(medv ~ lstat, data = Boston)</pre>
abline(m1)
m2 <- lm(medv ~ lstat + I(lstat^2), data = Boston)</pre>
lines(sort(Boston$1stat), m2$fitted.values[order(Boston$1stat)], col = "red")
m3 <- lm(medv ~ lstat + I(lstat^2)+ I(lstat^3), data = Boston)
lines(sort(Boston$lstat), m3$fitted.values[order(Boston$lstat)], col = "blue")
     50
median value of owner-occupied homes
     40
     30
     20
     10
                              10
                                                    20
                                                                           30
                                    lower status of the population (percent)
m3new <- lm(medv ~ poly(lstat, 3), data = Boston)</pre>
summary(m3new)
##
## Call:
## lm(formula = medv ~ poly(lstat, 3), data = Boston)
##
## Residuals:
##
        Min
                   1Q
                         Median
                                       3Q
                                                Max
   -14.5441 -3.7122
                      -0.5145
                                  2.4846
                                           26.4153
##
## Coefficients:
##
                     Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                      22.5328
                                   0.2399 93.937
                                                    < 2e-16 ***
## poly(lstat, 3)1 -152.4595
                                   5.3958 -28.255
                                                    < 2e-16 ***
## poly(lstat, 3)2
                      64.2272
                                   5.3958 11.903 < 2e-16 ***
```

```
## poly(lstat, 3)3 -27.0511 5.3958 -5.013 7.43e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 5.396 on 502 degrees of freedom
## Multiple R-squared: 0.6578, Adjusted R-squared: 0.6558
## F-statistic: 321.7 on 3 and 502 DF, p-value: < 2.2e-16</pre>
```