Availability, Usage, and Deployment Characteristics of the Domain Name System

Jeffrey Pang*, James Hendricks*, Aditya Akella*, Roberto De Prisco^{†‡}, Bruce Maggs**, Srinivasan Seshan*

*Carnegie Mellon University
†University of Salerno
‡Akamai Technologies

IMC 2004

Jeff Pang <jeffpang@cs.cmu.edu>

Why Characterize DNS?

- Critical and Understudied
 - Internet "stops working" when DNS goes down
 - Example of federated deployment styles
 - Much unknown and to be improved
 - Proposed DNS Modifications: CoDoNS [Ramasubramanian04], CoDNS [Park04]
- □ Guide to Future "Planetary-Scale" Services?
 - Largest, most robust distributed system today
 - PlanetLab, Overlays, DHTs, CDNs, and more!

IMC 2004 Jeff Pang <jeffpang@cs.cmu.edu>

The Domain Name System

Related Studies

- Workload on the Root & gTLD servers [Brownlee01]
- Lame-delegation, diminished server redundancy, and cyclic zone dependencies [Pappas04]
- □ Bottleneck gateways [Ramasubramanian04]
- □ Local DNS failures [Park04]
- □ We focus on "raw" DNS server characteristics
- Compare local vs. authoritative servers

IMC 2004 Jeff Pang <jeffpang@cs.cmu.edu> 4

Overview

Methodology

- How to obtain representative samples of DNS servers?

Load

- How many users are serviced by DNS servers?

Availability

– How often are DNS servers unavailable?

Deployment Styles

– How do organizations deploy DNS servers?

IC 2004 Jeff Pang <jeffpang@cs.cmu.edu>

Authoritative DNS (ADNS) Servers

Estimating Relative Load

ADNS

- # HTTP reqs to websites served by DNS Server
- Coarse-grained relative estimator
- (1 week)

LDNS

- #DNS reqs sent to Akamai hosted websites
- Estimated 14% of all web regs go to Akamai
- Akamai DNS records have low TTLs (20 sec)
- (1 week)

IMC 2004 Jeff Pang <jeffpang@cs.cmu.edu>

Overview

- Methodology
- Load
- Availability
- Deployment Styles

IMC 2004

Jeff Pang <jeffpang@cs.cmu.edu>

Server Availability

Goal: Estimate how often servers can not serve requests, and how long they are unavailable.

IMC 2004 Jeff Pang <jeffpang@cs.cmu.edu>

Estimating Availability

- Active Probes from one vantage point
 - Poisson sampling with mean interval 1 hour
 - Both DNS requests and ICMP pings
 - # probe failures estimates availability
 - Took steps to avoid counting local failures
 - (2 weeks)

15

Non-Responsive Servers

- Which Servers are Responsive?
 - Sent "test" probe immediately after a server sent a DNS request to Akamai
 - More likely server is "up" when initially probed
- □ LDNS Server Responsiveness
 - 76% responded to either DNS or Ping
 - 35% respond to both
 - 21% only respond to Ping
 - 20% only respond to DNS

MC 2004 Jeff Pang <jeffpang@cs.cmu.edu>

Jeff Pang <jeffpang@cs.cmu.edu>

Distinguishing Dynamic IPs

- Impact of Dynamic IPs
 - 6-8% of LDNS servers or more are probably on dynamic IPs (Surprising?)
 - Incorrect estimate of availability
 - Overestimate number of distinct DNS servers
- We choose to be conservative
 - Only analyzed servers on non-dynamic IPs
- Identifying non-dynamic IPs (one technique)
 - Conjectured that dynamic IP pools have similar host names:
 - cust-0-1-2-3-3.isp.net (IP Address: 1.2.3.3) cust-0-1-2-3-4.isp.net (IP Address: 1.2.3.4) cust-0-1-2-3-5.isp.net (IP Address: 1.2.3.5)
 - Example: for 1.2.3.3, compare with 1.2.3.2 and 1.2.3.4
- Correctly flags over 98% of a SPAM RBL dynamic IP list

Relative Load vs. Availability

		Mean Avail.	
Relative Load	LDNS	ADNS	
0-100	0.978	0.993	
100-1,000	0.979	0.996	
1,000-10,000	0.986	0.997	
10,000-100,000	0.992	0.998	
100,000-1,000,000	0.995	0.999	
>1,000,000	0.998		
Correlation(load, avail)	0.017	0.007	

Correlation(log load, avail 0.041 0.043

- Minor but non-trivial positive correlation
- Sidenote: web cache ADNS sample set had ~1% higher mean availability than "reverse crawl" sample set

IMC 2004

Jeff Pang <jeffpang@cs.cmu.edu>

Overview

- Methodology
- Load
- Availability
- Deployment Styles

IMC 2004

Jeff Pang <jeffpang@cs.cmu.edu>

Deployment Styles

Goal: Determine common "styles" of LDNS deployment within different organizations.

Deployment Styles

- Grouped LDNS servers by domain name
 - Coarse-grained approximation of organizations
- Characteristics examined:
 - Load distribution within an organization
 - Number of servers deployed [see paper]

Jeff Pang <jeffpang@cs.cmu.edu>

Jeff Pang <jeffpang@cs.cmu.edu>

Deployment Styles: LDNS Load Distribution CDF

- We observed three common patterns in LDNS load distribution among servers in a domain.

IMC 2004 Jeff Pang <jeffpang@cs.cmu.edu>

Summary

- Load Distribution
 - Many idle LDNS and ADNS servers
 - But most requests come from/to a few busy ones
- Availability
 - Majority of servers are highly available
 - Small positive correlation between load and availability
- Deployment Styles
 - Conjecture that there are 3 basic profiles for LDNS distribution in organizations
- ADNS vs. LDNS
 - ADNS slightly more available
 - LDNS servers more diverse: dynamic IPs, etc.

IMC 2004 Jeff Pang <jeffpang@cs.cmu.edu>

Questions

IMC 2004 Jeff Pang <jeffpang@cs.cmu.edu>

Extra Slides

IMC 2004 Jeff Pang <jeffpang@cs.cmu.edu>

Limitations

- Probing from single vantage point
 - Limited impact of local connectivity issues [see paper]
 - Rough estimate of failures related to network: 15%
- Probing granularity
 - Performed smaller 5-min granularity experiment
 - Similar results
- Accounting for "Middle-boxes"
 - Probes may not actually be to actual DNS server
- Sample Bias
 - Web cache vs. Reverse-crawl ADNS sample sets show sampling method is important

Jeff Pang <jeffpang@cs.cmu.edu>

Dynamic LDNS Arrival Rate

Server Availability

IMC 2004 Jeff Pang <jeffpang@cs.cmu.edu>

IMC 2004 Jeff Pang <jeffpang@cs.cmu.edu>

