Хочется сразу написать

$$\sqrt{2} = \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \cdots}}}} =$$

$$=[1;2,2,2,2,...],$$

т. е. представить $\sqrt{2}$ в виде беско- нечной цепной дроби. Но здесь нужна крайняя осторожность: мы встрети лись с новым понятием «бесконечная десятичная дробь», но не знаем, что это такое. Легко понять только, что каждому положительному иррацио- нальному числу с о о т в е т с т в у е т вполне определенная бесконеч ная последовательность

$$[a_0; a_1, a_2, ...],$$

где a_0 — целое не отрицательное, а все a_i , с номером $i \ge 1$ — натуральные числа. Во всем относящемся сюда мы разберемся

только позже $^{*)}$, а пока удовлетворимся тем, что нам понятно: как по положительному числу α по- строить его формальное разложение

$$a \sim [a_0, a_1, a_2, ...]$$

в конечную или бесконечную цепную дробь $^{**)}$.

5. Под ход ящие едробь можно оборвать, удер жав элементы a_o , a_1 , ..., a_n и отбро сив a_{n+1} Полученное таким обра зом число называется п-й nodxods- щей дробью и обозначается $\frac{p_n}{q_n}$. В частности, при n=0 имеем нулевую код- ходя- щую дробь $\frac{p_n}{q_n}=\frac{a_0}{1}$

Мы увидим, что, чем меньше п, тем подходящая дробь проще (т. е. имеет меньший знаменатель). В то же время она может использоваться как приближенное значение цепной дроби.

 $^{^{*}}$) Этот вопрос будет полностью рассмотрен в одном из следующих номеров журнала

^{**)&}quot; \sim " — знак соответствия. Мы боимся поставить знак равенства, пока не установлен смысл символа, стоящего в правой части.