

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS
P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/635,083	08/06/2003	Richard W. Adkisson	200208999-2	7225
22879	7590	06/27/2007	EXAMINER	
HEWLETT PACKARD COMPANY P O BOX 272400, 3404 E. HARMONY ROAD INTELLECTUAL PROPERTY ADMINISTRATION FORT COLLINS, CO 80527-2400			LE, TOAN M	
ART UNIT		PAPER NUMBER		
		2863		
MAIL DATE		DELIVERY MODE		
06/27/2007		PAPER		

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Office Action Summary	Application No.	Applicant(s)
	10/635,083	ADKISSON ET AL.
Examiner	Art Unit	
Toan M. Le	2863	

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --
Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS, WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

Status

- 1) Responsive to communication(s) filed on 06 August 2003.
 2a) This action is FINAL. 2b) This action is non-final.
 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under *Ex parte Quayle*, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

- 4) Claim(s) 1-36 is/are pending in the application.
 4a) Of the above claim(s) _____ is/are withdrawn from consideration.
 5) Claim(s) _____ is/are allowed.
 6) Claim(s) 1-36 is/are rejected.
 7) Claim(s) _____ is/are objected to.
 8) Claim(s) _____ are subject to restriction and/or election requirement.

Application Papers

- 9) The specification is objected to by the Examiner.
 10) The drawing(s) filed on 06 August 2003 is/are: a) accepted or b) objected to by the Examiner.
 Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).
 Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).
 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

- 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
 a) All b) Some * c) None of:
 1. Certified copies of the priority documents have been received.
 2. Certified copies of the priority documents have been received in Application No. _____.
 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

- 1) Notice of References Cited (PTO-892)
 2) Notice of Draftsperson's Patent Drawing Review (PTO-948)
 3) Information Disclosure Statement(s) (PTO/SB/08)
 Paper No(s)/Mail Date 8/6/03;12/6/04;2/22/05.
- 4) Interview Summary (PTO-413)
 Paper No(s)/Mail Date. _____.
 5) Notice of Informal Patent Application
 6) Other: _____.

DETAILED ACTION

Claim Rejections - 35 USC § 102

The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that form the basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless –

(b) the invention was patented or described in a printed publication in this or a foreign country or in public use or on sale in this country, more than one year prior to the date of application for patent in the United States.

Claims 1-36 are rejected under 35 U.S.C. 102(b) as being anticipated by Ranson et al. (US Patent No. 5,887,003).

Referring to claim 1, Ranson et al. disclose a general purpose performance counter ("GPPC") connected to a bus carrying debug data, the GPPC comprising:
an AND/OR circuit connected to receive the debug data (col. 12, lines 30-62);
a counter circuit connected to receive from the AND/OR circuit an increment signal that, when activated, causes the counter circuit to increment a current count value (col. 15, lines 56-67 to col. 16, lines 1-39); and

a compare circuit for activating a match/threshold signal to the AND/OR circuit responsive to a selected block of the debug data having a designated relationship to a compare value (col. 12, lines 30-62; col. 11, lines 9-21; col. 15, lines 27-55; col. 19, lines 18-67; col. 20, lines 1-14),

wherein the AND/OR circuit activates the increment signal responsive to one or more selected bits of an events signal being set (col. 15, lines 56-65; col. 16, lines 16-39).

As to claim 2, Referring to claim 1, Ranson et al. disclose a general purpose performance counter ("GPPC") connected to a bus carrying debug data wherein the compare circuit

Art Unit: 2863

comprises a match circuit for activating the match/threshold signal to the AND/OR circuit when the compare circuit is in match mode and the selected debug data block is equal to the compare value (col. 15, lines 27-55).

Referring to claim 3, Referring to claim 1, Ranson et al. disclose a general purpose performance counter ("GPPC") connected to a bus carrying debug data wherein the compare circuit comprises a threshold circuit for activating the match/threshold signal to the AND/OR circuit when the compare circuit is in threshold mode and the selected debug data block is greater than or equal to the compare value (col. 12, lines 9-29).

As to claim 4, Referring to claim 1, Ranson et al. disclose a general purpose performance counter ("GPPC") connected to a bus carrying debug data further comprising a select circuit connected to receive the debug data, the select circuit outputting to the compare circuit a selected block of the debug data identified by a value of a select control signal input thereto (col. 12, lines 30-62; col. 15, lines 27-55).

Referring to claim 5, Referring to claim 1, Ranson et al. disclose a general purpose performance counter ("GPPC") connected to a bus carrying debug data further comprising a zero circuit connected to receive a portion of the selected debug data block from the select circuit, the zero circuit for zeroing out a selected number of most significant bits ("MSBs") of the portion of the selected debug data block input thereto (col. 15, lines 56-67 to col. 16, lines 1-39).

As to claim 6, Referring to claim 1, Ranson et al. disclose a general purpose performance counter ("GPPC") connected to a bus carrying debug data wherein the zeroed-out portion of the

Art Unit: 2863

selected debug data block is input to the counter circuit and to the compare circuit (col. 15, lines 56-67 to col. 16, lines 1-39).

Referring to claim 7, Referring to claim 1, Ranson et al. disclose a general purpose performance counter ("GPPC") connected to a bus carrying debug data wherein, when the AND/OR circuit is operating in AND mode, the AND/OR circuit activates the increment signal when all of the selected bits of the events signal are set (col. 15, lines 27-55).

As to claim 8, Referring to claim 1, Ranson et al. disclose a general purpose performance counter ("GPPC") connected to a bus carrying debug data wherein when the AND/OR circuit is operating in OR mode, the AND/OR circuit activates the increment signal when at least one of the selected bits of the events signal is set (col. 15, lines 27-55).

Referring to claim 9, Referring to claim 1, Ranson et al. disclose a general purpose performance counter ("GPPC") connected to a bus carrying debug data wherein the selected bits of the events signal are selected using a composite mask (col. 15, lines 27-55).

As to claim 10, Referring to claim 1, Ranson et al. disclose a general purpose performance counter ("GPPC") connected to a bus carrying debug data wherein the events signal comprises the debug data, the match/threshold signal, and a logic one and wherein the composite mask signal comprises a debug data mask, a threshold/match mask, and an accumulate bit (col. 15, lines 27-55).

Referring to claim 11, Referring to claim 1, Ranson et al. disclose a general purpose performance counter ("GPPC") connected to a bus carrying debug data wherein the debug data comprises 80 bits (Figures 8, 10).

As to claim 12, Referring to claim 1, Ranson et al. disclose a general purpose performance counter ("GPPC") connected to a bus carrying debug data wherein the selected block comprises 16 bits and the debug data comprises eight 10-bit-block-aligned blocks (Figures 8, 10).

Referring to claim 13, Referring to claim 1, Ranson et al. disclose a general purpose performance counter ("GPPC") connected to a bus carrying debug data wherein the selected block comprises eight bits (Figures 8, 10).

As to claim 14, Referring to claim 1, Ranson et al. disclose a general purpose performance counter ("GPPC") connected to a bus carrying debug data wherein the counter circuit comprises a 48-bit counter (Figure 13).

Referring to claim 15, Referring to claim 1, Ranson et al. disclose a general purpose performance counter ("GPPC") connected to a bus carrying debug data wherein, when the counter circuit is enabled, the counter circuit performs an operation selected from a group consisting of: holding a current count value, incrementing a current count value by one, adding a specified value to the current count value, clearing the current count value, and setting the count value to a specified value (col. 14, lines 64-67 to col. 15, lines 1-55; Figure 11).

As to claim 16, Ranson et al. disclose a general purpose performance counter ("GPPC") connected to a bus carrying debug data, the GPPC comprising:

an AND/OR circuit connected to receive the debug data (col. 12, lines 30-62);
a counter circuit connected to receive from the AND/OR circuit an increment signal that, when activated while the counter circuit is enabled, causes the counter circuit to increment a count value (col. 15, lines 56-67 to col. 16, lines 1-39); and

a compare circuit for activating a match/threshold signal to the AND/OR circuit responsive to a selected block of the debug data having a designated relationship to a compare value (col. 12, lines 30-62; col. 11, lines 9-21; col. 15, lines 27-55; col. 19, lines 18-67; col. 20, lines 1-14),

wherein when the AND/OR circuit is in AND mode, the AND/OR circuit activates the increment signal if all of one or more selected bits of an events signal are set and when the AND/OR circuit is in OR mode, the AND/OR circuit activates the increment signal if at least one of the selected bits of the events signal is set (col. 15, lines 27-55).

Referring to claim 17, Ranson et al. disclose a general purpose performance counter ("GPPC") connected to a bus carrying debug data wherein the compare circuit activates the match/threshold signal to the AND/OR circuit when the compare circuit is in match mode and the selected debug data block is equal to the compare value and activates the match/threshold signal to the AND/OR circuit when the compare circuit is in threshold mode and the selected debug data block is greater than or equal to the compare value (col. 12, lines 9-29).

As to claim 18, Ranson et al. disclose a general purpose performance counter ("GPPC") connected to a bus carrying debug data further comprising a select circuit connected to receive the debug data and output to the compare circuit a selected block of the debug data identified by a value of a select control signal input thereto (col. 12, lines 30-62; col. 15, lines 27-55).

Referring to claim 19, Ranson et al. disclose a general purpose performance counter ("GPPC") connected to a bus carrying debug data further comprising a zero circuit connected to receive a portion of the selected debug data block from the select circuit, the zero circuit for zeroing out a selected number of most significant bits ("MSBs") of the portion of the selected

Art Unit: 2863

debug data block input thereto and providing the zeroed-out portion of the selected debug data block to the counter circuit and to the compare circuit (col. 15, lines 56-67 to col. 16, lines 1-39).

As to claim 20, Ranson et al. disclose a general purpose performance counter ("GPPC") connected to a bus carrying debug data wherein the events signal comprises the debug data, the match/threshold signal, and a logic one (col. 15, lines 27-55).

Referring to claim 21, Ranson et al. disclose a general purpose performance counter ("GPPC") connected to a bus carrying debug data wherein the selected bits of the events signal are selected using a composite mask and wherein the composite mask signal comprises a debug data mask, threshold/match mask, and an accumulate bit (col. 15, lines 27-55).

As to claim 22, Ranson et al. disclose a general purpose performance counter ("GPPC") connected to a bus carrying debug data wherein the debug data comprises 80 bits (Figures 8, 10).

Referring to claim 23, Ranson et al. disclose a general purpose performance counter ("GPPC") connected to a bus carrying debug data wherein the selected block comprises 16 bits and the debug data comprises eight 10-bit-block-aligned blocks (Figures 8, 10).

As to claim 24, Ranson et al. disclose a general purpose performance counter ("GPPC") connected to a bus carrying debug data wherein the selected block comprises eight bits (Figures 8, 10).

Referring to claim 25, Ranson et al. disclose a general purpose performance counter ("GPPC") connected to a bus carrying debug data wherein the count value is a 48-bit value (Figure 13).

As to claim 26, Ranson et al. disclose a general purpose performance counter ("GPPC") connected to a bus carrying debug data wherein, when the counter circuit is enabled, the counter circuit performs an operation selected from a group consisting of: holding a current count value, incrementing a current count value by one, adding a specified value to the current count value, clearing the current count value, and setting the count value to a specified value (col. 14, lines 64-67 to col. 15, lines 1-55; Figure 11).

Referring to claim 27, Ranson et al. disclose a method of implementing a general purpose performance counter ("GPPC") connected to a bus carrying debug data, the method comprising:

- providing an AND/OR circuit connected to receive the debug data (col. 12, lines 30-62);
- providing a counter circuit connected to receive from the AND/OR circuit an increment signal that, when activated, causes the counter circuit to increment a count (col. 15, lines 56-67 to col. 16, lines 1-39); and
- providing a compare circuit for activating a match/threshold signal to the AND/OR circuit responsive to a selected block of the debug data having a designated relationship to a compare value (col. 12, lines 30-62; col. 11, lines 9-21; col. 15, lines 27-55; col. 19, lines 18-67; col. 20, lines 1-14); and
- activating the increment signal by the AND/OR circuit responsive to one or more selected bits of an events signal being set (col. 15, lines 27-55).

As to claim 28, Ranson et al. disclose a method of implementing a general purpose performance counter ("GPPC") connected to a bus carrying debug data further comprising activating the match/threshold signal by the compare circuit to the AND/OR circuit when the

Art Unit: 2863

compare circuit is in match mode and the selected debug data block is equal to the compare value (col. 15, lines 27-55).

Referring to claim 29, Ranson et al. disclose a method of implementing a general purpose performance counter ("GPPC") connected to a bus carrying debug data further comprising activating the match/threshold signal by the compare circuit to the AND/OR circuit when the compare circuit is in threshold mode and the selected debug data block is greater than or equal to the compare value (col. 12, lines 9-29).

As to claim 30, Ranson et al. disclose a method of implementing a general purpose performance counter ("GPPC") connected to a bus carrying debug data further comprising:

providing a select circuit connected to receive the debug data; and
outputting by the select circuit to the match/threshold circuit a selected block of the debug data identified by a value of a select control signal input thereto (col. 12, lines 30-62; col. 15, lines 27-55).

Referring to claim 31, Ranson et al. disclose a method of implementing a general purpose performance counter ("GPPC") connected to a bus carrying debug data further comprising: providing a zero circuit connected to receive a portion of the selected debug data block from the select circuit; and the zero circuit zeroing out a selected number of most significant bits ("MSBs") of the portion of the selected debug data block input thereto (col. 15, lines 56-67 to col. 16, lines 1-39).

As to claim 32, Ranson et al. disclose a method of implementing a general purpose performance counter ("GPPC") connected to a bus carrying debug data further comprising

inputting the zeroed-out portion of the selected debug data block to the counter circuit and to the compare circuit (col. 15, lines 56-67 to col. 16, lines 1-39).

Referring to claim 33, Ranson et al. disclose a method of implementing a general purpose performance counter ("GPPC") connected to a bus carrying debug data further comprising the AND/OR circuit activating the increment signal when the AND/OR circuit is in AND mode and all of the one or more selected bits of the events signal are set (col. 15, lines 27-55).

As to claim 34, Ranson et al. disclose a method of implementing a general purpose performance counter ("GPPC") connected to a bus carrying debug data further comprising the AND/OR circuit activating the increment signal when the AND/OR circuit is in OR mode and the at least one of one or more selected bits of the events signal are set (col. 15, lines 27-55).

Referring to claim 35, Ranson et al. disclose a method of implementing a general purpose performance counter ("GPPC") connected to a bus carrying debug data further comprising selecting one or more bits of the events signal using a composite mask (col. 15, lines 27-55).

As to claim 36, Ranson et al. disclose a method of implementing a general purpose performance counter ("GPPC") connected to a bus carrying debug data further comprising:
enabling the counter circuit; and
responsive to the counter circuit being enabled, the counter circuit performing an operation selected from a group consisting of: holding a current count value, incrementing a current count value by one, adding a specified value to the current count value, clearing the current count value, and setting the count value to a specified value (col. 14, lines 64-67 to col. 15, lines 1-55; Figure 11).

Conclusion

Art Unit: 2863

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Toan M. Le whose telephone number is (571) 272-2276. The examiner can normally be reached on Monday through Friday from 9:00 A.M. to 5:30 P.M..

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, John Barlow can be reached on (571) 272-2269. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see <http://pair-direct.uspto.gov>. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

Toan Le

June 21, 2007

John Barlow
Supervisory Patent Examiner
Technology Center 2800