K. Kuadrados

Kuadrado começou a estudar programação recentemente e está muito animado com todas as novas coisas que consegue fazer a cada conteúdo novo aprendido. Você conhece bem esta sensação, não é?

Ele está estudando matrizes e de vez em quando faz alguns desafios a si mesmo para ver o quanto realmente sabe. Ele normalmente consegue superá-los, mas agora chegou em um no qual não consegue resolver, e por isso pediu a sua ajuda.

O desafio consiste em, dada uma matriz de N linhas e M colunas, encontrar todas as submatrizes de tamanho 2×2 nas quais **todos** os valores são iguais a 1.

Entrada

A primeira linha de entrada consiste em dois valores N e M, a quantidade de linhas e de colunas da matriz, respectivamente.

As próximas N linhas contém M valores inteiros cada uma: a matriz. A matriz possui apenas os valores 0 e 1.

Perceba que pode ocorrer de duas matrizes diferentes possuírem intercessão entre si, mas devem ser consideradas como diferentes. O *Exemplo de entrada 01* deixa claro isso: se não fosse permitido intercessão entre as submatrizes, a resposta correta seria 1 (um), mas, como é permitido, há 2 (duas) submatrizes de tamanho 2×2 que possuem apenas o valor 1.

Saída

Imprima quantas submatrizes que atendem aos requisitos existem na matriz fornecida na entrada.

Restrições

$$\begin{split} &1 \leq N, M \leq 100 \\ &a_{n,m} = 0 \text{ ou } a_{n,m} = 1 \end{split}$$

Exemplo de entrada 01:	Exemplo de saída 01:	
2 3	2	
111		
111		

Exemplo de entrada 02:	Exemplo de saída 02:
3 3	2
1 1 0	
111	
0 1 1	

Exemplo de entrada 03:	Exemplo de saída 03:
3 4	3
1 1 1 0	
1110	
1 1 0 0	