t tests, Robust and Non Robust

Code 🕶

Hide

library(ggplot2)
library(WRS)
library(pastecs)
library(reshape)

Hide

df<- read.delim('/home/atrides/Desktop/R/statistics_with_R/09_ComparingTwoMe
ans/Data Files/SpiderLong.dat', header = TRUE)</pre>

head(df , 15)

	Group <chr></chr>			Ar	xiety <int></int>
1	Picture				30
2	Picture				35
3	Picture				45
4	Picture				40
5	Picture				50
6	Picture				35
7	Picture				55
8	Picture				25
9	Picture				30
10	Picture				45
1-10 of	15 rows	Previous	1	2	Next

Hide

```
# barplot for independent measure design , the differnce will be with errorb
ar when
# we will compare it to repeated measure design
bar<- ggplot(df, aes(Group, Anxiety))
bar<- bar+
   stat_summary(fun=mean, geom='bar', fill='white', colour='black')+
   stat_summary(fun.data=mean_cl_normal, geom='errorbar', width=0.2)+
   labs(x='Groups', y='Anxiety')+
   ggtitle('Groups vs Anxiety')
bar</pre>
```

Groups vs Anxiety

Hide

df_wide<- read.delim('/home/atrides/Desktop/R/statistics_with_R/09_Comparing
TwoMeans/Data_Files/SpiderWide.dat', header = TRUE)
df_wide</pre>

picture <int></int>	real <int></int>
30	40
35	35
45	50
40	55
50	65

	picture <int></int>	real <int></int>
	35	55
	55	50
	25	35
	30	30
	45	50
1-10 of 12 rows		Previous 1 2 Next

```
grand_mean = mean(df$Anxiety)
mean_pic<- mean(df_wide$picture)
mean_real<- mean(df_wide$real)

cat(grand_mean,mean_pic,mean_real)</pre>
```

43.5 40 47

Hide

df_wide\$mean<- (df_wide\$picture+df_wide\$real)/2
head(df wide)</pre>

	picture <int></int>	real <int></int>	mean <dbl></dbl>
1	30	40	35.0
2	35	35	35.0
3	45	50	47.5
4	40	55	47.5
5	50	65	57.5
6	35	55	45.0
6 rows			

Hide

```
df_wide$adj<- grand_mean-df_wide$mean
df_wide$picture_adj<- df_wide$picture+df_wide$adj
df_wide$real_adj<- df_wide$real+df_wide$adj

# making an id column
df_wide$id<- gl(12, 1,12, labels=c(1:12))
names(df_wide)</pre>
```

```
[1] "picture" "real" "mean" "adj" "picture_adj" "real_adj" "id"
```

```
\label{long} \begin{array}{lll} df\_long <- \mbox{ melt} (df\_wide, id.vars="id", measure.vars=c('picture\_adj', 'real\_adj')) \\ df\_long \end{array}
```

id <fctr></fctr>	variable <fctr></fctr>	value <dbl></dbl>
1	picture_adj	38.5
2	picture_adj	43.5
3	picture_adj	41.0
4	picture_adj	36.0
5	picture_adj	36.0
6	picture_adj	33.5
7	picture_adj	46.0
8	picture_adj	38.5
9	picture_adj	43.5
10	picture_adj	41.0
1-10 of 24 rov	NS	Previous 1 2 3 Next

Hide

```
bar2<- ggplot(df_long, aes(variable, value))
bar2<- bar2+
  stat_summary(fun=mean, geom='bar', fill='white', colour='black')+
  stat_summary(fun.data=mean_cl_normal, geom='errorbar', width=0.2)+
  labs(x='Groups', y='Anxiety')+
  ggtitle('Groups vs Anxiety')
bar2</pre>
```

Hide


```
# Doing independent t-test

# when data is in long format
ttest_long<- t.test(Anxiety~Group , data=df, paired=FALSE)
ttest_long</pre>
```

```
# when data is in wide format
ttest_wide<- t.test(df_wide$picture, df_wide$real, paired=FALSE)
ttest_wide</pre>
```

```
# Robust Methods for independent ttest
# we need to have data in wide format for these robusts tests
robust_t1<- WRS::yuen(df_wide$picture, df_wide$real, tr=.2 , alpha=.05)
robust_t1</pre>
```

```
$n1
[1] 12
$n2
[1] 12
$est.1
[1] 40
$est.2
[1] 46.75
$ci
[1] -17.929361 4.429361
$p.value
[1] 0.2161433
$dif
[1] -6.75
$se
[1] 5.209309
$teststat
[1] 1.295757
$crit
[1] 2.146035
$df
[1] 13.91372
                                                                              Hide
robust_t2<- WRS::yuenbt(df_wide$picture, df_wide$real, tr=.2, nboot = 599, a</pre>
lpha=0.05, side=F)
```

[1] "NOTE: p-value computed only when side=T"

```
robust_t2
```

robust_t3

```
$ci
[1] -17.726696 6.151929
$test.stat
[1] -1.193625
$p.value
[1] NA
$est.1
[1] 40
$est.2
[1] 46.75
$est.dif
[1] -6.75
$n1
[1] 12
$n2
[1] 12
                                                                             Hide
robust_t3<- WRS::pb2gen(df_wide$picture, df_wide$real, nboot=2000)</pre>
[1] "Taking bootstrap samples. Please wait."
                                                                              Hide
```

ttest dep

```
$est.1
[1] 40
$est.2
[1] 46.82025
$est.dif
[1] -6.820247
$ci
                 6.082384
[1] -16.152594
$p.value
[1] 0.169
$sq.se
[1] 21.07953
$n1
[1] 12
$n2
[1] 12
                                                                             Hide
# Effect Size, r<- sqrt(t**2/(t**2+df))
r<- sqrt((ttest_wide$statistic[[1]])^2/((ttest_wide$statistic[[1]])^2+(24-
2)))
r
[1] 0.3374392
                                                                             Hide
# which is a medium effect size
                                                                             Hide
# Doing Dependent ttest
ttest_dep<- t.test(df_wide$picture, df_wide$real, paired = TRUE)</pre>
```

```
Paired t-test
data: df wide$picture and df wide$real
t = -2.4725, df = 11, p-value = 0.03098
alternative hypothesis: true difference in means is not equal to \Theta
95 percent confidence interval:
 -13.2312185 -0.7687815
sample estimates:
mean of the differences
                     - 7
                                                                            Hide
# Robust method for dependent ttest
yuend(df wide$picture, df wide$real)
$ci
[1] -15.343818 1.843818
$p.value
[1] 0.1056308
$est1
[1] 40
$est2
[1] 46.75
$dif
[1] -6.75
$se
[1] 3.634327
$teststat
[1] -1.85729
$n
[1] 12
$df
[1] 7
                                                                            Hide
```

```
ydbt(df_wide$picture, df_wide$real, nboot=2000)
```

[1] "Taking bootstrap samples. Please wait."

the standard deviation is zero

\$ci

[1] -14.857588 1.357588

\$dif

[1] -6.75

\$p.value

[1] 0.103

Hide

bootdpci(df wide\$picture, df wide\$real, nboot=2000, est=tmean)

[1] "dif=T, so analysis is done on difference scores"
\$output

con.num psihat p.value p.crit ci.lower ci.upper [1,] 1 -7.5 0.028 0.05 -13.75 -1.125

Hide

```
# effect size, df=11
r<- sqrt(((ttest_dep$statistic[[1]])^2)/((ttest_dep$statistic[[1]])^2+11))
r</pre>
```

[1] 0.5976869