CMSC 474, Game Theory

4a. Extensive-Form Games

Dana Nau
University of Maryland

The Sharing Game

- Suppose agents 1 and 2 are two children
- Someone offers them two cookies, but only if they can agree how to share them
- Agent 1 chooses one of the following options:
 - > Agent 1 gets 2 cookies, agent 2 gets 0 cookies
 - > They each get 1 cookie
 - > Agent 1 gets 0 cookies, agent 2 gets 2 cookies
- Agent 2 chooses to accept or reject the split:
 - > Accept => they each get their cookies
 - > Otherwise, neither gets any

Perfect-Information Extensive Form

- Extensive form: make the game's temporal structure explicit
 - > Don't assume players choose their strategies all at once
- Perfect information:
 - > Every agent knows all players' utility functions and possible actions
 - > Every agent knows the history and current state
 - no simultaneous actions; agents move one at a time
- Can be converted to normal form
 - > So previous results carry over
- But there are additional results that depend on the temporal structure

Perfect-Information Extensive Form

- In a perfect-information game, the extensive form is a game tree:
 - > Choice (or nonterminal) node: place where an agent chooses an action
 - $H = \{\text{nonterminal nodes}\}\$
 - **Edge**: an available **action** or **move**
 - > Terminal node: a final outcome
 - At each terminal node h, each agent i has a utility $u_i(h)$

Notation from the Book (Section 4.1)

yes

(2,0)

no

(0,0)

- $H = \{\text{nonterminal nodes}\}$
- $Z = \{\text{terminal nodes}\}$
- If h is a nonterminal node, then
 - $\triangleright \rho(h)$ = the player to move at h
 - $\triangleright \chi(h) = \{\text{all available actions at } h\}$
 - $\rightarrow \sigma(h,a)$ = node produced by action a at node h
 - \triangleright h's children or successors = $\{\sigma(h,a) \mid a \in \chi(h)\}$
- If h is a node (either terminal or nonterminal), then
 - \triangleright h's **history** = sequence of actions from the root to h
 - \rightarrow h's **descendants** = nodes in subtree at h
- The book doesn't give the nodes names
 - The labels tell which agent makes the next move

I'm not used to this notation, might not always remember it

Pure Strategies

- Pure strategy for agent *i* in a perfect-information game:
 - > Function telling what action to take at **every** node where it's *i*'s choice
 - i.e., every node h at which $\rho(h) = i$

Sharing game:

- Agent 1 has 3 pure strategies: $S_1 = \{2-0, 1-1, 0-2\}$
- Agent 2 has 8 pure strategies:
- S₂ = {(yes, yes, yes), (yes, yes, no), (yes, no, yes), (yes, no, no), (no, yes, yes), (no, yes, no), (no, no, yes), (no, no, no)}
- Which action at which node?
 - Either assume a fixed ordering on the nodes, or use different action names at each node

Extensive form vs. normal form

- Every game tree corresponds to an equivalent normal-form game
- To convert
 - > Get all of the agents' pure strategies
 - Each strategy must specify an action at *every* node where it's the agent's move

- > Agent 1's pure strategies:
 - $S_1 = \{(A,G), (A,H), (B,G), (B,H)\}$
 - > (A,G) and (A,H) aren't the same strategy
- > Agent 2's pure strategies:
 - $S_2 = \{(C,E), (C,F), (D,E), (D,F)\}$

Extensive form vs. normal form

- Next, write the payoff matrix
 - > For each strategy profile, see what terminal node it goes to
- Each terminal node may occur several times in the payoff matrix
 - Can cause exponential blowup
 - 5 outcomes in the game tree
 - 16 in the payoff matrix
- 3 pure-strategy Nash equilibria:
 - > ((A,G), (C,F))
 - ► ((A,H), (C,F))
 - > ((B,H), (C,E))

• **Theorem**: Every perfect-information game in extensive form has a *pure-strategy* Nash equilibrium

- Intuition:
 - In mixed-strategy equilibria, the purpose of the mixed strategy
 - Keep the other agents from knowing your action before they choose theirs
 - Not useful in perfect-information games
 - Agents move one at a time
 - Know all previous moves
 - Don't know any subsequent moves

(A,G)	3,8	3,8	8,3	8,3
(A,H)	3,8	3,8	8,3	8,3
(B,G)	5,5	2,10	5,5	2,10
(B,H)	(5,5)	1,0	5,5	1,0

- One of the Nash equilibria is ((B,H), (C,E))
- Poll 4.1: when 1 plays B, what should 2 choose?

- One of the Nash equilibria is ((B,H), (C,E))
- If 1's strategy were (B,G)
 - > Agent 2's best response would be (C,F)
- When 1 plays B
 - The only reason for 2 to choose E is to keep 1 from doing H
- Suppose that at the start of the game, 1 announces that his/her strategy is (B,H)
 - Agent 1 is making a **threat** that Agent 2 will get 0
 - If 2 believes the threat,2 will avoid that part of the tree
 - \triangleright Agent 1 gets 5 instead of ≤ 2

(C,F)

2,10

1,0

(C,E)

5,5

5,5

(A,G)

(A,H)

(B,G)

(B,H)

	1000 1770		**********
3,8	3,8	8,3	8,3
3,8	3,8	8,3	8,3

(D,E)

5,5

5,5

2,10

1,0

- Is the threat credible?
- If 1 plays B and 2 plays F
 - ➤ Will 1 *really* play H rather than G?
 - Not rational: it would reduce 1's utility

(C,E) (C,F) (D,E) (D,E)	(C,E)	(C,F)	(D,E)	(D,F)
-------------------------------	-------	-------	-------	-------

- Need a new solution concept
 - Modified version of Nash equilibrium
 - Exclude non-credible threats

3,8	3,8	8,3	8,3
3,8	3,8	8,3	8,3
5,5	2,10	5,5	2,10
5,5	1,0	5,5	1,0

Updated 9/22/16 Nau: Game Theory 12

(A,G)

(A,H)

(B,G)

(B,H)

Subgame-Perfect Equilibrium

- Let G be a perfect-information extensive-form game
- **Subgame** of G at node h:
 - restriction of G to the subtree rooted at h

- Subgame-perfect equilibrium (SPE):
 - > Strategy profile **s** such that for every subgame of *G* the restriction of **s** to the subgame is a Nash equilibrium
- No non-credible threats
 - In every subgame, no agent can do better by changing strategy
- Every perfect-information extensive-form game has at least 1 SPE
 - > Proof: induction on the height of the game tree

Example

Recall that we have three Nash equilibria:

$$((A, G), (C, F))$$

((A, H), (C, F))

((B, H), (C, E))

(C,E)

(A,H)

(B,G)

(B,H)

- Consider this subgame:
 - H can't be part of a Nash equilibrium
- Excludes ((A,H), (C,F)) and ((B,H), (C,E))
- (A,G)Just one subgame-perfect equilibrium
 - ((A,G),(C,F))

To find subgame-perfect equilibria, use backward induction

3,8	3,8	8,3	8,3
3,8	38	8,3	8,3
5,5	2,10	5,5	2,10
5.5	1,0	5,5	1,0

(C,F)

Backward Induction

- At each non-leaf node *h*:
 - ➤ Recursive call to get SPEs for *h*'s children
 - \triangleright Let h^* = child with highest SPE payoff for player to move at h
 - \triangleright SPE action at h is to move to h^*

function Backward_Induction(h) if $h \in \mathbb{Z}$ then return $\mathbf{u}(h)$ $\mathbf{v}^* \leftarrow [-\infty, -\infty, \dots, -\infty]$ for every $a \in \chi(h)$ $\mathbf{v} \leftarrow \mathsf{Backward_Induction}(\sigma(h,a))$ if $\mathbf{u}[\rho(h)] > \mathbf{v}^*[\rho(h)]$ then $\mathbf{v}^* \leftarrow \mathbf{v}$ return v*

- Returns the SPE's payoff profile
 - Can easily modify to get the actions


```
H = \{\text{nonterminal nodes}\}\
      Z = \{\text{terminal nodes}\}\
  \rho(h) = the player to move at node h
   \chi(h) = \{\text{all available actions at node } h\}
\sigma(h,a) = child of h produced by action a
   \mathbf{u}(h) = utility profile at node h
   \mathbf{v}[i] = i'th element of utility profile \mathbf{v}
```

The Centipede Game

- I need two volunteers to play a game
- At each nonterminal node, the number tells whose move it is
 - > L means *Left*
 - > R means Right
- At each terminal node, the numbers are your payoffs

The Centipede Game

- Use backward induction to get the SPE payoffs
- Each player's SPE strategy:
 - Always move Left
- Can extend the game to any length
 - SPE: each agent always moves Left
- $u_1 + u_2$ increases monotonically with depth
 - ➤ If both agents go *Right* a few times, both get higher payoffs
 - ➤ In lab experiments, subjects continue to choose *Right* until near the end of the game

The Centipede Game

- Suppose agent 1 moves *Right*
- What should agent 2 do?
 - SPE analysis says to move *Left*
 - But it also says we should never be here at all
- Fundamental problem in game theory
- Different answers, depending on things like
 - > are both players game-theoretically rational?
 - is it common knowledge that they're game-theoretically rational?
 - how to revise beliefs about the other player from observed behavior

Constant-Sum Centipede Game

I need two more volunteers

At every terminal node, $u_1 + u_2 = 5$

Constant-Sum Centipede Game

3,2

- Use backward induction to get the SPE payoffs
- Each player's SPE strategy:
 - Always move Left
- Can extend to any depth
 - At every node, $u_1 + u_2 = c$, where $c \ge$ depth of tree
- In this case, SPE strategy gives more accurate results

Minimax Algorithm

- Backward induction is simpler in constant-sum games
 - \triangleright Only compute u_1
 - $u_2 = -u_1$

function Minimax(h)if $h \in \mathbb{Z}$ then return u(h)else if $\rho(h) = 1$ then return $\max_{a \in \chi(h)} \mathsf{Minimax}(\sigma(h, a))$ else return $\min_{a \in \chi(h)} \mathsf{Minimax}(\sigma(h,a))$

> $Z = \{\text{terminal nodes}\}\$ $\rho(h)$ = player to move at node h $\chi(h) = \{\text{available actions at node } h\}$ $\sigma(h,a)$ = node produced by action a

Summary

- Extensive-form games
 - relation to normal-form games
 - Nash equilibria
 - subgame-perfect equilibria
 - backward induction
 - The Centipede Game
 - backward induction in constant-sum games
 - minimax algorithm
- In extensive-form games, the game tree is often too big to search completely
 - \triangleright E.g., game tree for chess: about 10^{150} nodes
- Lecture 4b (not in book): ways to avoid searching most of the tree