

18MAB102T

Advanced Calculus and Complex Analysis

Question Bank

DEPARTMENT OF MATHEMATICS FACULTY OF ENGINEERING AND TECHNOLOGY, SRMIST, KATTANKULATHUR, TAMIL NADU, INDIA. Regulation 2018

Part B Questions

Unit I

	Question	Bloom's
Q.No.	Question	Thinking Levels
1	Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1+x^2}} \frac{dxdy}{1+x^2+y^2}$	Understand
2	Evaluate $\int_{0}^{1} \int_{x}^{\sqrt{x}} xy(x+y)dxdy$	Understand
3	Evaluate $\int_{2}^{4} \int_{1}^{2} \frac{dxdy}{xy}$	Understand
4	Evaluate $\int_{-\pi/4}^{\pi/4} \int_{0}^{a\sqrt{\cos\theta}} \frac{rdrd\theta}{\sqrt{a^2 + r^2}}$	Understand
5	Evaluate $\int\limits_{0}^{\pi/2}\int\limits_{0}^{2a\cos\theta}rdrd\theta$	Understand
6	Evaluate $\int_{0}^{1} \int_{0}^{2} \int_{0}^{3} xyzdxdydz$	Understand
7	Find the area of $r^2 = a^2 \cos 2\theta$ by double integration	Apply
8	Find the area enclosed by $y=x$ and $y=x^2$ in the first quadrant, using double integration	Apply
9	Change the order of integration $\int_{0}^{\infty} \int_{x}^{\infty} \frac{e^{-y}}{y}$	Apply
10	Find the area enclosed by the ellipse using double integration $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	Apply
11	Evaluate $\int_{0}^{1} \int_{0}^{1-z} \int_{0}^{1-y-z} xyzdxdydz$	Understand
12	Find $\iiint_R (x-y+z) dx dy dz$, where R is given by $1 \le x \le 2, 2 \le y \le 3, 1 \le z \le 3$	Understand
13	Change into polar coordinates $\int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^2+y^2)} dx dy$	Apply

	Question	Bloom's
Q.No.		Thinking Levels
14	Evaluate $\int\limits_{0}^{2\pi}\int\limits_{0}^{\pi}\int\limits_{0}^{a}r^{4}drd\phi d\theta$	Understand
15	Evaluate $\int_{0}^{\log a} \int_{0}^{x} \int_{0}^{x+y} e^{x+y+z} dz dy dx$	Understand

Unit II

Q.No.	Question	Bloom's Thinking Levels
1	Find grad ϕ for the following functions.	Understand
	(i) $\phi = 3x^2y - y^3z^2$ at the point $(1, -2, 1)$.	
	(ii) $\phi = \log(x^2 + y^2 + z^2)$ at the point $(1, 2, 1)$.	
2	Find the directional derivative of the following functions.	Understand
	(i) $\phi = x^2yz + 4xz^2$ at the point $(1, -2, 1)$ in the direction of	
	$2ec{i}-ec{j}+2ec{k}$	
	(ii) $\phi = x^2 - 2y^2 + 4z^2$ at the point $(1, 1, -1)$ in the direction of	
	$2\vec{i}-\vec{j}-\vec{k}$	
3	Find a unit normal vector to the following surfaces	Understand
	(i) $x^3 + y^3 + 3xyz = 3$ at the point $(1, 2, -1)$	
	(ii) $xy^2z^3 = 1$ at the point $(1, 1, 1)$	
4	Find the maximum directional derivative of the following functions	Understand
	(i) $\phi = x^3yz$ at the point $(1,4,1)$	
	(ii) $\phi = xyz^2$ at the point $(1,0,3)$	
	In what direction from $(3,1,-2)$ is the directional derivative of	
5	$\phi=x^2y^2z^4$ maximum? Find also the magnitude of this maximum.	Apply

		Bloom's
Q.No.	Question	Thinking Levels
6	Find the angle between the following surfaces	Apply
	(i) $x^2 + y^2 + z^2 = 9$ and $x^2 + y^2 - z = 3$ at the point (2,-1,2)	
	(ii) $x^2 + yz = 2$ and $x + 2y - z = 2$ at the point $(1, 1, 1)$	
7	If \vec{r} is the position vector of (x, y, z) w.r. to origin, then prove that	Understand
	(i) div $\vec{r} = 3$ (ii) curl $\vec{r} = 0$	
	$(\mathrm{iii})\mathrm{grad}(r^n) = nr^{n-2}\vec{r}$	
8	Show that $\vec{F} = x^2 \vec{i} + y^2 \vec{j} + z^2 \vec{k}$ is a conservative field.	Apply
	Find the value of a , if the vector	
9	$\vec{F}=(2x^2y+yz)\vec{i}+(xy^2-xz^2)\vec{j}+(axyz-2x^2y^2)\vec{k} \text{ is solenoidal}.$	Apply
	Determine the constants a and b such that the curl of vector	
10	$(2xy+3yz)ec{i}+(x^2+axz-4z^2)ec{j}-(3xy+byz)ec{k}$ is zero.	Apply
	If $\vec{F}=(3x^2+6y)\vec{i}-14yz\vec{j}+20xz^2\vec{k}$, evaluate the line integral $\int \vec{F}.d\vec{r}$	
11	from (0,0,0) to (1,1,1) along the curve C given by $x=t,y=t^2,z=t^3$	Apply
	If $\vec{F}=(4xy-3x^2z^2)\vec{i}+2x^2\vec{j}-2x^3z\vec{k}$, then check whether the	
12	integral $\int_{C} \vec{F} \cdot d\vec{r}$ is independent of the path C .	Apply
	The scalar potential $\phi = ze^x - x^2y + y + \frac{z^2}{2} + c$ for the conservative	
13	field $\vec{F}=(e^xz-2xy)\vec{i}-(x^2-1)\vec{j}+(e^x+z)\vec{k}$. Evaluate $\int_C \vec{F}.d\vec{r}$	Apply
	where the end points of C are $(0,1,-1)$ and $(2,3,0)$.	
	If $ec{F}=3xyec{i}-y^2ec{j}$, evaluate $\int\limits_C ec{F}.dec{r}$ where C is the arc of the	
14	parabola $y=2x^2$ from $(0,0)$ to $(1,2)$.	Apply
	Show that $\iint_{S} \vec{F} \cdot \vec{n} dS = \frac{3}{2}$, where $\vec{F} = 4xz\vec{i} - y^2\vec{j} + yz\vec{k}$ and S is the	
15	surface of the cube bounded by planes	Apply
	x = 0, x = 1, y = 0, y = 1, z = 0 and $z = 1$.	

Unit III

	Quartien	Bloom's
Q.No.	Question	Thinking Levels
1	Find $L\left[t^{3/2}\right]$	Understand
2	Find $L\left[f(t)\right]$, if $f(t)=\left\{egin{array}{ll} (t-1)^2 & t>1 \\ 0 & t<1 \end{array}\right.$	Understand
3	Find $L \left[\cos 4t \sin 2t\right]$,	Understand
4	Find $L\left[\frac{\sin at}{t}\right]$,	Understand
5	Evaluate $\int\limits_0^\infty e^{-t} rac{\sin t}{t} dt$	Understand
6	Find the inverse Laplace transform of $\frac{1}{(s+1)(s+2)}$	Apply
7	Verify final value theorem for $f(t) = 1 + e^{-t}(\sin t + \cos t)$	Justify
8	Verify initial value theorem for $f(t) = e^{-t} \sin t$	Justify
9	Find the inverse Laplace transform of $\frac{s+3}{s^2-4s+13}$	Apply
10	Find the inverse Laplace transform of $\frac{s}{s^2 - 4s + 5}$	Apply
11	Using convolution theorem, find $L^{-1}\left[\frac{s}{(s^2+a^2)^2}\right]$	Apply
12	Using convolution theorem, find $L^{-1}\left[\frac{s^2}{(s^2+a^2)(s^2+b^2)}\right]$	Apply
13	Using convolution theorem, find $L^{-1}\left[\frac{s^2}{(s^2+4)^2}\right]$	Apply
14	Using convolution theorem, find $L^{-1}\left[\cos t * \sin t\right]$	Apply
15	Using partial fractions, find $L^{-1}\left[\frac{1}{s(s+4)}\right]$	Apply

Unit IV

Q.No.	Question	Bloom's Thinking Levels
1	Test whether $f(z) = z^2$ is analytic.	Justify
2	Test whether $f(z) = \overline{z}$ is analytic.	Justify
3	Test whether $f(z) = z^2 $ is analytic.	Justify
4	Show that $u = 3x^2y - y^3$ is harmonic function.	Apply
5	Show that $u = e^x(x\cos y - y\sin y)$ is harmonic function.	Apply
6	Show that an analytic function with constant imaginary part is constant.	Apply
7	Find the fixed points of the transformation $w = \frac{2i - 6z}{iz - 3}$	Apply
8	Find the invariant points of the transformation $w = -\frac{2z + 4i}{iz + 1}$	Apply
9	Find the image of the $ z+1 =1$ where the map $w=\frac{1}{z}$.	Apply
10	Find the image of the $ z - 2i = 2$ where the map $w = \frac{1}{z}$.	Apply
11	Construct the analytic function $f(z)$ for which the real part is $e^x \cos y$	Apply
12	Find a function w such that $w = u + iv$ is analytic, if $u = e^x \sin y$	Apply
13	Determine the analytic function $u+iv$ whose real part $u=x^3-3x^2y+3x^2-3y^2+1$	Apply
14	Find the image of the circle $\vert z \vert = 3$ under the transformation $w = 2z$	Apply
15	Show that $u = \frac{1}{2} \log(x^2 + y^2)$ is harmonic.	Apply

Unit V

	Question	Bloom's
Q.No.	Question	Thinking Levels
1	Evaluate $\oint_c \frac{e^{-z}}{z+1} dz$, where c is the circle $ z =2$.	Understand
2	Evaluate $\oint_c \frac{3z^2+z}{z^2-1}dz$, where c is the circle $ z-1 =1$	Understand
3	Evaluate $\oint_c \frac{dz}{z^3(z+4)}$ where c is the circle $ z =2$	Understand
4	Evaluate $\oint_c \frac{ze^{2z}}{(z-1)^3} dz$ where c is the circle $ z+i =2$	Understand
5	Evaluate $\oint_c \frac{\cos \pi z^2}{(z-1)(z-2)} dz$ where c is the circle $ z =3$	Understand
6	Evaluate $\oint_c \frac{e^{3z}}{(z+i\pi)^7} dz$ where c is the circle $ z =4$	Understand
7	Expand $\frac{\sin z}{z-\pi}$ about $z=\pi$	Apply
8	Expand $f(z) = \sin z$ in a Taylor's series about $z = \frac{\pi}{4}$	Apply
9	Find the poles and its residues for $f(z) = \frac{z^2}{(z-1)^2(z+2)}$	Understand
10	Evaluate $\int_C \frac{z+1}{(z-1)(z-3)dz}$ where c is —z—=2 using residue theorem.	Understand
11	Expand $z^2e^{1/z}$ in Laurent series about $z=0$	Apply
12	Expand $\frac{e^{2z}}{(z-1)^3}$ in Laurent series about $z=1$	Apply
13	Determine the nature of singularities of $\frac{\sin z - z}{z^3}$	Justify
14	Determine the nature of singularities of $\frac{e^{1/z}}{(z-a)^2}$	Justify
15	Find the residue at $z=0$ for $\frac{1}{z^2e^z}$	Understand

Part C Questions

Unit I

	Oversti en	Bloom's
Q.No.	Question	Thinking Levels
1	Change the order of integration and evaluate $\int_{0}^{a} \int_{x^2/a}^{2a-x} xy dx dy$.	Apply
2	Change the order of integration in $I = \int_{0}^{4a} \int_{x^2/4a}^{2\sqrt{ax}} dy dx$ and hence evaluate.	Apply
3	Change the order of integration and evaluate $\int_{0}^{1} \int_{x^2}^{2-x} xy dx dy$.	Apply
4	Find the area enclosed by the curves $y^2=4ax$ and $x^2=4ay$.	Apply
5	Transform into polar coordinate and evaluate $\int_{0}^{2} \int_{0}^{\sqrt{2x-x^2}} \frac{x}{x^2+y^2} dy dx$.	Apply
6	Show that $\int_{0}^{1} \int_{0}^{\sqrt{1-x^2}} \int_{0}^{\sqrt{1-x^2-y^2}} \frac{dzdydx}{\sqrt{1-x^2-y^2-z^2}} = \frac{\pi^2}{8}$	Apply
7	Show that $\int_{0}^{a} \int_{0}^{\sqrt{a^2 - x^2}} \int_{0}^{\sqrt{a^2 - x^2 - y^2}} \frac{dzdydx}{\sqrt{a^2 - x^2 - y^2 - z^2}} = \frac{\pi^2 a^2}{8}$	Apply
8	Find the volume of the sphere $x^2 + y^2 + z^2 = a^2$, using triple integral.	Apply
9	Find the volume of the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ by triple integral.	Apply
10	Find the volume of the tetrahedron bounded by the plane $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ and the coordinate planes.	Apply
11	Find the volume of the sphere $x^2 + y^2 + z^2 = a^2$ in the positive octant.	Apply
12	Find the smaller of the areas bounded by $y=2-x$ and $x^2+y^2=4$ using double integral.	Apply
13	By transforming into polar coordinates evaluate $\iint \frac{x^2y^2}{x^2+y^2}dxdy$ over the annular region between the circles $x^2+y^2=4$ and $x^2+y^2=16$.	Apply

Q.No.	Question	Bloom's Thinking Levels
14	Find the area of the cardioid $r=a(1+\cos heta)$, using double integral.	Apply
15	Evaluate $\iint\limits_A r^3 dr d heta$, where A is the area between circles $r=2\sin heta$ and $r=4\sin heta$	Apply

Unit II

O No	Question	Bloom's
Q.No.		Thinking Levels
1	Find the directional derivative of $\phi(x,y,z)=x^2yz+4xz^2$ at the point $(1,-2,-1)$ in the direction of the vector $2\vec{i}-\vec{j}-2\vec{k}$	Apply
2	Find the constants a,b and c so that $ec F=(x+2y+az)ec i+(bx-3y-z)ec j+(4x+cy+2z)ec k$ may be irrotational. Also find the scalar potential?	Apply
3	Find the directional derivative of $\phi=xy^2+yz^3$ at the point $(2,-1,1)$ in the direction of the normal to the surface $x\log z-y^2+4=0$ at the point $(-1,2,1)$.	Apply
4	Find the directional derivative of $\phi=xy+yz+zx$ at the point $(3,1,2)$ in the direction of the vector $2\vec{i}+3\vec{j}+6\vec{k}$.	Apply
5	Evaluate $\iint_S \vec{F} \cdot \vec{n} dS$ if $\vec{F} = yz\vec{i} + zx\vec{j} + xy\vec{k}$ and S is that part of the surface of the sphere $x^2 + y^2 + z^2 = 1$ which lies in the first octant.	Apply
6	Evaluate $\iint_S \vec{F} \cdot \vec{n} dS$, where $\vec{F} = z\vec{i} + x\vec{j} - y^2z\vec{k}$ and S is the surface of the cylinder $x^2 + y^2 = 1$ included in the first octant between z=0 and z=2.	Apply
7	Evaluate $\iint_S \vec{F} \cdot \vec{n} dS$, where $\vec{F} = 18z\vec{i} - 12\vec{j} + 3y\vec{k}$ and S is part of the plane $2x + 3y + 6z = 12$ which is in the first octant.	Apply

Q.No.	Question	Bloom's Thinking Levels
8	Verify Green's theorem in the plane for $\oint_c (xy+y^2)dx + x^2dy$ where C is the closed curve of the region bounded by $y=x$ and $y=x^2$	Justify
9	Verify Green's theorem in the plane for $\int\limits_C \left[(3x^2-8y^2)dx - (4y-6xy)dy \right], \text{ where C is the boundary of the region bounded by } x=0,y=0,x+y=1.$	Justify
10	Verify divergence theorem for $ec F=(x^2-yz)ec i+(y^2-zx)ec j+(z^2-xy)ec k$ taken over the rectangular parallelopiped $0\le x\le a,\ 0\le y\le b,\ 0\le z\le c,$	Justify
11	Verify Gauss divergence theorem for $\vec{F}=x^2\vec{i}+z\vec{j}+yz\vec{k}$ over the cube bounded by $x=\pm 1, y=\pm 1, z=\pm 1$	Justify
12	Verify Gauss divergence theorem for $\vec{F}=4xz\vec{i}-y^2\vec{j}+yz\vec{k}$ over the cube bounded by $x=0, x=1, y=0, y=1, z=0, z=1.$	Justify
13	Verify Stoke's theorem for $\vec{F}=y^2z\vec{i}+z^2x\vec{j}+x^2y\vec{k}$ where S is the open surface of the cube formed by the planes $x=-a, x=a, y=-a, y=a, z=-a, z=a \text{ in which } z=-a \text{ is cut open.}$	Justify
14	Verify Stoke's theorem for $\vec{F}=(y-z+2)\vec{i}+(yz+4)\vec{j}-xz\vec{k}$ where S is the open surface of the cube formed by the planes $x=0, x=2, y=0, y=2, z=0, z=2$ above the $xy-$ plane.	Justify
15	Show that $\vec{F}=(2xy+z^3)\vec{i}+x^2\vec{j}+3xz^2\vec{k}$ is a conservative field. Find the scalar potential and work done in moving an object in this field from $(1,-2,1)$ to $(3,1,4)$.	Apply

Unit III

Q.No.	Question	Bloom's Thinking Levels
1	Verify initial and final value theorem for $f(t) = 3e^{-2t}$	Justify
2	Find $L\left[\frac{\cos at - \cos bt}{t}\right]$	Apply
3	Find $L\left[te^{-2t}\sin t\right]$	Apply
4	Find $L[t \sin 3t \cos 2t]$	Apply
5	Verify initial and final value theorem for $f(t) = 1 + e^{-t}(\sin t + \cos t)$	Justify
6	Verify initial and final value theorem for $f(t) = e^{-t}(t+2)^2$	Justify
7	Find the Laplace transform of the function $f(t) = \begin{cases} \sin \omega t & 0 < t \le \frac{\pi}{\omega} \\ 0 & \frac{\pi}{\omega} < t < \frac{2\pi}{\omega} \end{cases} \text{ with period } \frac{2\pi}{\omega}.$	Apply
8	Find the Laplace transform of the function $f(t) = \begin{cases} t & 0 \le t \le a \\ 2a - t & a < t \le 2a \end{cases} \text{ and } f(t + 2a) = f(t).$	Apply
9	Find the Laplace transform of the function $f(t)=\left\{ egin{array}{ll} -1 & 0 < t \leq rac{a}{2} \\ 1 & rac{a}{2} < t < a \end{array} ight.$ and $f(t+a)=f(t).$	Apply
10	Find $L^{-1}\left[\frac{s^2}{(s^2+a^2)(s^2+b^2)}\right]$ using convolution theorem.	Apply
11	Find $L^{-1}\left[\frac{s}{(s^2+a^2)^2}\right]$ using convolution theorem.	Apply
12	Using partial fraction method, find $L^{-1}\left[\frac{s}{(s+1)(s^2+1)}\right]$	Apply

Q.No.	Question	Bloom's Thinking Levels
13	Using partial fraction method, find $L^{-1}\left[\frac{1-s}{(s+1)(s^2+4s+13)}\right]$	Apply
14	Solve $(D^2 - 2D + 1)y = e^t$, given $y(0) = 2, y'(0) = 1$	Apply
15	Solve, using Laplace transform $\frac{d^2y}{dt^2} - 4\frac{dy}{dt} + 3y = e^{-t}$, given $y(0) = 1, y'(0) = 0$.	Apply

Unit IV

Q.No.	Question	Bloom's Thinking Levels
1	Show that an analytic function with (i) constant real part is constant (ii) constant modulus is constant.	Remember
2	If $f(z) = u + iv$ is an analytic function of z, show that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) f(z) ^2 = 4 f'(z) ^2$	Justify
3	If $f(z) = u + iv$ is an analytic function of z, show that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) \log f(z) = 0$	Justify
4	Show that the function $u = e^x \cos y$ is harmonic and find the harmonic conjugate of u .	Apply
5	Find the analytic function $f(z) = u + iv$ if $u - v = e^x(\cos y - \sin y)$	Apply
6	Find the analytic function $f(z) = u + iv$ if $u - v = \frac{\sin 2x}{\cosh 2y - \cos 2x}$	Apply
7	Find an analytic function $f(z)=u+iv$, given that $2u+3v=\frac{\sin 2x}{\cosh 2y-\cos x}$	Apply

Q.No.	Question	Bloom's Thinking Levels
8	Under the transformation $w=\frac{1}{z},$ find the image of the region (i) $x>c,$ where $c>0$ (ii) $y>c,$ where $c>0.$	Remember
9	Find the bilinear mapping which maps $-1,0,1$ of the z-plane onto $i,1,-i$ of the w-plane.	Remember
10	Find the bilinear mapping which maps $0,1,\infty$ of the z-plane onto $-1,-i,1$ of the w-plane.	Remember
11	Find the bilinear map which maps $z=1,i,-1$ onto the points $\label{eq:w} w=i,0,-i.$	Remember
12	If $u = \frac{\sin 2x}{\cosh 2y + \cos x}$, find the corresponding analytic function $f(z) = u + iv$	Apply
13	Find the image of the rectangular region bounded by $x=0,y=0,x=1,y=2 \text{ under the map } w=(1+i)z+2.$	Apply
14	Show that the transformation $w=\frac{1}{z}$ maps a circle in the z-plane into a circle in the w-plane or to a straight line in the w-plane.	Apply
15	Prove that $u=e^x(x\cos y-y\sin y)$ is harmonic and find the corresponding analytic function $f(z)=u+iv$.	Apply

Unit V

Q.No.	Question	Bloom's Thinking Levels
1	Evaluate $\int_C \frac{z+4}{z^2+2z+5}dz$, where C is the circle (i) $ z+1+i =2$ (ii) $ z+1-i =2$.	Apply
2	Evaluate $\int_{c} \frac{\sin \pi z^2 + \cos \pi z^2}{(z-1)(z-2)} dz$, where C is $ z = 3$.	Apply
3	Find the Taylor's series to represent the function $\frac{z^2-1}{(z+2)(z+3)}$ in $ z <2.$	Remember
4	Expand $\frac{1}{z^2-3z+2}$ in the region (i) $1< z <2$ (ii) $0< z-1 <2$ (iii) $ z >2$	Remember
5	Expand $f(z)=\frac{z^2-1}{(z+2)(z+3)}$ as a Laurent's series if (i)2 $< z <3$ (ii) —z—¿3.	Remember
6	Find the Laurent's series of $f(z)=\frac{7z-2}{z(z-2)(z+1)}$ in $1< z-1 <3$.	Remember
7	Using residue theorem, find $\int_C \frac{dz}{(z^2+4)^2}$, where C is the circle $ z-i =2$.	Apply
8	Evaluate $\int_C \frac{z-1}{(z+1)^2(z-2)} dz$, where C is $ z-i =2$, using residue theorem.	Apply
9	Evaluate $\int_C \frac{\sin \pi z^2 + \cos \pi z^2}{(z-1)^2(z-2)} dz$, where C is $ z =3$, using residue theorem.	Apply

Q.No.	Question	Bloom's Thinking Levels
10	Evaluate $\int_C \frac{z-1}{(z+1)^2(z+2)} dz$, where C is $ z-i =2$, using residue theorem.	Apply
11	Evaluate $\int_{0}^{2\pi} \frac{d\theta}{13 + 5\sin\theta}$ by using contour integration.	Apply
12	Evaluate $\int\limits_0^{2\pi} \frac{d\theta}{1-2p\sin\theta+p^2}, \ p <1,$ using contour integration.	Apply
13	Evaluate $\int_{0}^{2\pi} \frac{1 + 2\cos\theta}{5 + 4\cos\theta} d\theta$, using contour integration.	Apply
14	Evaluate $\int_{0}^{\infty} \frac{x^2 dx}{(x^2 + a^2)(x^2 + b^2)}, a > 0, b > 0.$	Apply
15	Evaluate $\int_{0}^{\infty} \frac{dx}{(1+x^2)^2}$, using contour integration.	Apply