Тюряев Илья Константинович

March 30, 2023

Задача 1

Введём обозначения:

l := 10м - длина линии связи

s := 150бит/с - скорость передачи данных

 $F := 100 {
m K}$ бит - размер каждого объекта (мы считаем, что он помещается полностью в один пакет, насколько я понял условие)

В := 200бит - размер пакета с управляющей информацией

 $c := 300 \cdot 10^6 \text{м/c}$ - скорость распостранения

Посчитаем дополнительные величины:

$$T_d = \frac{l}{c} = \frac{10}{300 \cdot 10^6} = \frac{1}{3 \cdot 10^7} c \approx 0.000000003c$$

$$T_f = \frac{F}{s} = \frac{10^6}{150} c \approx 6666.66c$$

$$T_b = \frac{B}{s} = \frac{200}{150} c \approx 1.33 c$$

а. Нужно просуммировать следующие величины: время на открытие первого ТСР соединения и передачи первого объекта T_1 , далее на 10 новых TCP соединений и передачи 10 объектов параллельно T_2 .

$$T_1 = 3 \cdot (T_d + T_b) + (T_d + T_f) \approx 6671c$$

 $T_2 = 10 \cdot (3 \cdot (T_d + T_b) + (T_d + T_f)) \approx 66706$ с (у нас в 10 раз больше объектов и значит в 10 раз медленее передача - я вынес константу из всех слагаемых внутри)

Суммарно получается 73377с

b. Теперь отличие в том, что затраты на открытие TCP соединения будут в единственном слагаемом $T_1 = 3 \cdot (T_d + T_b) \approx 3.99$ с

$$T_2 = 11 \cdot (T_d + T_f) \approx 73332.6c$$

Суммарно получаем 73334c, что незначительно меньше, потому что у нас $T_b \ll T_f$

Задача 2

Нижние оценки с лекции:

$$1) max\{\frac{N \cdot F}{u_s}, \frac{F}{d_i}\}$$

$$1) max \{ \frac{N \cdot F}{u_s}, \frac{F}{d_i} \}$$

$$2) max \{ \frac{F}{u_s}, \frac{F}{d_i}, \frac{N \cdot F}{u_s + N \cdot u} \}$$

Можно заметить, что первая оценка не зависит от u, поэтому построим графики для фиксированного N и u в качестве оси абцисс(красными точками выделены 3 нужные u). Синим будет случай клиент-серверной раздачи, оранжевым - одноранговой

$$N=10$$
 (графики совпали)

Задача 3

 $a.\frac{u_s}{N} \le d_{min}$

Сервер должен отправлять каждому клиенту данные со скоростью $\frac{u_s}{N}$ (если нацело не делится, то округляем вверх столько раз, сколько сможем, очевидно, что так все сойдётся далее я буду считать, что делится нацело). Для любого клиента время загрузки всех F бит будет $\frac{NF}{u_s}$, потому как из неравенства в условии следует $\frac{F}{d_i} \geq \frac{NF}{u_s}$. Таким образом, общее время $\frac{NF}{u_s}$

 $b.\frac{u_s}{N} \ge d_{min}$ Сервер должен отправлять каждому клиенту данные со скоростью $\frac{u_s}{N}$ (если нацело не делится, то округляем вниз - у нас не будет достигнут лимит скорости, но даже так нужное общее время сможем показать). Таким образом, общее время будет $\frac{F}{d_{min}}$: возьмем клиент с минимальным d (d_{min}), так как скорость отправки сервером данных всем остальным такая же, как и этому клиенту, то время загрузки любым другим будет не меньше, чем у нашего выбранного клиента. Значит общее время - за сколько этот клиент

загрузит все F бит, из условия знаем $\frac{u_s}{N} \geq d_{min} \Rightarrow \frac{F}{d_{min}}$. У нас есть оценка снизу $max\{\frac{NF}{u_s}, \frac{F}{d_{min}}\}$, потому как клиент с самой медленной скоростью закачки не сможем скачать быстрее, чем за $\frac{F}{d_{min}}$, но также понятно, что сервер не может выгрзуить NF бит быстрее $\frac{NF}{u_s}$ по ограничению из условия задачи. Остается лишь показать обратную стрелочку: стратегия пункта b., очевидно, не станет работать медленее, если начать округлять вверх, как в пункте a., таким образом у нас есть универсальная стратегия, которая и для случая $\frac{u_s}{N} \leq d_{min}$, и для $\frac{u_s}{N} \geq d_{min}$, работает за $max\{\frac{NF}{u_s}, \frac{F}{d_{min}}\}$ (в первом случае максимум совпадает с выводом в пункте a., для второго - аналогичное верно)