Optimization

Optimization difficulties, Minibatch optimization, Momentum, Nesterov's Momentum, Parameter initialization, Algorithms (SGD, Adam, AdaGrad)

How learning is different from pure optimization?

While training the model

$$J(\boldsymbol{\theta}) = \mathbb{E}_{(\boldsymbol{x}, y) \sim \hat{p}_{\text{data}}} L(f(\boldsymbol{x}; \boldsymbol{\theta}), y),$$

 \hat{p}_{data} distribution of training data

What we actually want

$$J^*(\boldsymbol{\theta}) = \mathbb{E}_{(\boldsymbol{x}, \mathbf{y}) \sim p_{\text{data}}} L(f(\boldsymbol{x}; \boldsymbol{\theta}), y).$$

Pdata distribution of actual data

Empirical risk minimization

$$\mathbb{E}_{\boldsymbol{x}, \mathbf{y} \sim \hat{p}_{\text{data}}(\boldsymbol{x}, y)}[L(f(\boldsymbol{x}; \boldsymbol{\theta}), y)] = \frac{1}{m} \sum_{i=1}^{m} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), y^{(i)})$$

Batch and Minibatch algorithms

Loss function

$$J(\boldsymbol{\theta}) = \mathbb{E}_{(\boldsymbol{x}, \mathbf{y}) \sim \hat{p}_{\text{data}}} L(f(\boldsymbol{x}; \boldsymbol{\theta}), y),$$

Training by backpropagation

$$\nabla_{\theta} J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta} L(f(x_i; \theta), y_i)$$

It requires you to evaluate gradients w.r.t all the training examples for gradient estimation

Is this efficient?

- Variance in the estimation with m samples $\sqrt[\sigma]{m}$
- By calculating grads over all samples, we get only sub-linear performance

Batch and Minibatch algorithms

Loss function

$$J(\boldsymbol{\theta}) = \mathbb{E}_{(\boldsymbol{x}, \mathbf{y}) \sim \hat{p}_{\text{data}}} L(f(\boldsymbol{x}; \boldsymbol{\theta}), y),$$

Training by backpropagation

$$\nabla_{\theta} J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta} L(f(x_i; \theta), y_i)$$

By calculating grads over all samples, we get only **sub-linear** performance

What is the alternative?

- Simple solution, don't use all the samples for gradient estimation
- At each update iteration, randomly chose B samples and use them for estimating gradients Minibatch training
- Also, does as unbiased estimate of gradients

$$\nabla_{\theta} J(\theta) = \frac{1}{\mathbf{B}} \sum_{i=1}^{\mathbf{B}} \nabla_{\theta} L(f(x_i; \theta), y_i)$$

Stochastic Gradient Descent (SGD)

```
Algorithm 8.1 Stochastic gradient descent (SGD) update at training iteration k

Require: Learning rate \epsilon_k.

Require: Initial parameter \boldsymbol{\theta}

while stopping criterion not met do

Sample a minibatch of m examples from the training set \{\boldsymbol{x}^{(1)},\ldots,\boldsymbol{x}^{(m)}\} with corresponding targets \boldsymbol{y}^{(i)}.

Compute gradient estimate: \hat{\boldsymbol{g}} \leftarrow +\frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\boldsymbol{x}^{(i)};\boldsymbol{\theta}),\boldsymbol{y}^{(i)})

Apply update: \boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \epsilon \hat{\boldsymbol{g}}

end while
```

Stochastic Gradient Descent (SGD) with momentum

Parameter update step of SGD

Apply update:
$$\theta \leftarrow \theta - \epsilon \hat{g}$$

- Depending on ϵ , learning can be very slow or have drastic oscillations
- Momentum is designed to accelerate SGD
- The momentum algorithm accumulates a weighted avg. of past gradients and continues to move in their direction.

Figure showing effect of momentum ---- path with momentum

→ direction that SGD would take

$$\boldsymbol{v} \leftarrow \alpha \boldsymbol{v} - \epsilon \nabla_{\boldsymbol{\theta}} \left(\frac{1}{m} \sum_{i=1}^{m} L(\boldsymbol{f}(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), \boldsymbol{y}^{(i)}) \right),$$

Velocity v accumulates the past gradients

$$\theta \leftarrow \theta + v$$
.

The larger α is relative to ϵ , the effect of past gradients is more

Stochastic Gradient Descent (SGD) with momentum

Parameter update step now

$$\mathbf{v} \leftarrow \alpha \mathbf{v} - \epsilon \nabla_{\boldsymbol{\theta}} \left(\frac{1}{m} \sum_{i=1}^{m} L(\mathbf{f}(\mathbf{x}^{(i)}; \boldsymbol{\theta}), \mathbf{y}^{(i)}) \right),$$

 $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \mathbf{v}.$

- In SGD, update step size was ϵ ||g||
- With momentum, depends on how large and how aligned a sequence of gradients are
- Its largest, when successive gradients are same

If momentum repeatedly observes gradient as g, it accelerates by a factor of $\frac{1}{1-\alpha}$, resulting in $\frac{\epsilon||g||}{1-\alpha}$.

For α = 0.9, the descent is 10 times normal SGD

Figure showing effect of momentum ----- path with momentum

→ direction that SGD would take

Stochastic Gradient Descent (SGD) with momentum

```
Algorithm 8.2 Stochastic gradient descent (SGD) with momentum Require: Learning rate \epsilon, momentum parameter \alpha.

Require: Initial parameter \boldsymbol{\theta}, initial velocity \boldsymbol{v}.

while stopping criterion not met do

Sample a minibatch of m examples from the training set \{\boldsymbol{x}^{(1)},\ldots,\boldsymbol{x}^{(m)}\} with corresponding targets \boldsymbol{y}^{(i)}.

Compute gradient estimate: \boldsymbol{g} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\boldsymbol{x}^{(i)};\boldsymbol{\theta}),\boldsymbol{y}^{(i)})

Compute velocity update: \boldsymbol{v} \leftarrow \alpha \boldsymbol{v} - \epsilon \boldsymbol{g}

Apply update: \boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \boldsymbol{v}

end while
```

Nesterov momentum

Parameter update

$$oldsymbol{v} \leftarrow lpha oldsymbol{v} - \epsilon
abla_{oldsymbol{ heta}} \left[rac{1}{m} \sum_{i=1}^m L\left(oldsymbol{f}(oldsymbol{x}^{(i)}; oldsymbol{ heta} + lpha oldsymbol{v}), oldsymbol{y}^{(i)}
ight)
ight], \qquad ext{Look ahead}$$
 $oldsymbol{ heta} \leftarrow oldsymbol{ heta} + oldsymbol{v}.$

Nesterov momentum

```
Algorithm 8.3 Stochastic gradient descent (SGD) with Nesterov momentum
Require: Learning rate \epsilon, momentum parameter \alpha.
Require: Initial parameter \theta, initial velocity v.
   while stopping criterion not met do
      Sample a minibatch of m examples from the training set \{x^{(1)}, \dots, x^{(m)}\} with
      corresponding labels y^{(i)}.
      Apply interim update: \tilde{\boldsymbol{\theta}} \leftarrow \boldsymbol{\theta} + \alpha \boldsymbol{v} Look ahead step
      Compute gradient (at interim point): \mathbf{g} \leftarrow \frac{1}{m} \nabla_{\tilde{\boldsymbol{\theta}}} \sum_{i} L(f(\mathbf{x}^{(i)}; \tilde{\boldsymbol{\theta}}), \mathbf{y}^{(i)})
      Compute velocity update: \mathbf{v} \leftarrow \alpha \mathbf{v} - \epsilon \mathbf{g}
      Apply update: \theta \leftarrow \theta + v
   end while
```

Why learning can be slow

- If the ellipse is very elongated, the direction of steepest descent is almost perpendicular to the direction towards the minimum!
 - The red gradient vector has a large component along the short axis of the ellipse and a small component along the long axis of the ellipse.
 - This is just the opposite of what we want.

Algorithms for optimization - adaptive learning rate

AdaGrad (Duchi et al., 2011)

Parameter update

Scales the learning rate with square root of sum of past gradients

 Larger partial derivatives reduced learning rates (viceversa)

Algorithm 8.4 The AdaGrad algorithm

Require: Global learning rate ϵ Require: Initial parameter θ

Require: Small constant δ , perhaps 10^{-7} , for numerical stability

Initialize gradient accumulation variable r=0

while stopping criterion not met do

Sample a minibatch of m examples from the training set $\{\boldsymbol{x}^{(1)},\ldots,\boldsymbol{x}^{(m)}\}$ with corresponding targets $\boldsymbol{y}^{(i)}$.

Compute gradient: $\boldsymbol{g} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), \boldsymbol{y}^{(i)})$

Accumulate squared gradient: $r \leftarrow r + g \odot g$

Compute update: $\Delta \theta \leftarrow -\frac{\epsilon}{\delta + \sqrt{r}} \odot g$. (Division and square root applied

element-wise)

Apply update: $\theta \leftarrow \theta + \Delta \theta$

end while

Algorithms for optimization - adaptive learning rate

RMSProp(Hinton et al., 2012)

Parameter update

Scales the learning rate with weighted average of square of past gradients

Algorithm 8.5 The RMSProp algorithm

Require: Global learning rate ϵ , decay rate ρ .

Require: Initial parameter θ

Require: Small constant δ , usually 10^{-6} , used to stabilize division by small numbers.

Initialize accumulation variables r = 0

while stopping criterion not met do

Sample a minibatch of m examples from the training set $\{x^{(1)}, \ldots, x^{(m)}\}$ with corresponding targets $y^{(i)}$.

Compute gradient: $\boldsymbol{g} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), \boldsymbol{y}^{(i)})$

Accumulate squared gradient: $\mathbf{r} \leftarrow \rho \mathbf{r} + (1 - \rho)\mathbf{g} \odot \mathbf{g}$

Compute parameter update: $\Delta \theta = -\frac{\epsilon}{\sqrt{\delta + r}} \odot g$. $(\frac{1}{\sqrt{\delta + r}})$ applied element-wise

Apply update: $\theta \leftarrow \theta + \Delta \theta$

end while

Algorithms for optimization - adaptive learning rate

Adam (Kingma et al., 2014)

Parameter update

Combines RMSProp and momentum methods

Algorithm 8.7 The Adam algorithm

Require: Step size ϵ (Suggested default: 0.001)

Require: Exponential decay rates for moment estimates, ρ_1 and ρ_2 in [0,1).

(Suggested defaults: 0.9 and 0.999 respectively) **Require:** Small constant δ used for numerical stabilization. (Suggested default: 10^{-8})

Require: Initial parameters θ

Initialize 1st and 2nd moment variables s = 0, r = 0

Initialize time step t = 0

while stopping criterion not met do

Sample a minibatch of m examples from the training set $\{x^{(1)}, \dots, x^{(m)}\}$ with

corresponding targets $\boldsymbol{y}^{(i)}$. Compute gradient: $\boldsymbol{g} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), \boldsymbol{y}^{(i)})$

 $t \leftarrow t + 1$

end while

Update biased first moment estimate: $\boldsymbol{s} \leftarrow \rho_1 \boldsymbol{s} + (1 - \rho_1) \boldsymbol{g}$

Update biased second moment estimate: $\mathbf{r} \leftarrow \rho_2 \mathbf{r} + (1 - \rho_2) \mathbf{g} \odot \mathbf{g}$ Correct bias in first moment: $\hat{\mathbf{s}} \leftarrow \frac{\mathbf{s}}{1 - \mathbf{s}^t}$

Correct bias in second moment: $\hat{r} \leftarrow \frac{r}{1-\rho_1^2}$

Compute update: $\Delta \theta = -\epsilon \frac{\hat{s}}{\sqrt{\hat{r}} + \delta}$ (operations applied element-wise)

Apply update: $\theta \leftarrow \theta + \Delta \theta$

*Slide courtesy, Ian Goodfellow et al., deep learning book

Newton's method

Taylor expansion of J:

$$J(\boldsymbol{\theta}) \approx J(\boldsymbol{\theta}_0) + (\boldsymbol{\theta} - \boldsymbol{\theta}_0)^{\top} \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}_0) + \frac{1}{2} (\boldsymbol{\theta} - \boldsymbol{\theta}_0)^{\top} \boldsymbol{H} (\boldsymbol{\theta} - \boldsymbol{\theta}_0),$$

 \boldsymbol{H} is the Hessian of J with respect to $\boldsymbol{\theta}$ evaluated at $\boldsymbol{\theta}_0$

Solution for critical points:

$$\boldsymbol{\theta}^* = \boldsymbol{\theta}_0 - \boldsymbol{H}^{-1} \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}_0)$$

If higher order terms are included - iterate

Newton's method

```
Algorithm
                      8.8
                                      Newton's
                                                                method
                                                                                     with
                                                                                                   objective
                                                                                                                          J(\boldsymbol{\theta})
\frac{1}{m} \sum_{i=1}^{m} L(f(\mathbf{x}^{(i)}; \boldsymbol{\theta}), y^{(i)}).
Require: Initial parameter \theta_0
Require: Training set of m examples
    while stopping criterion not met do
        Compute gradient: \boldsymbol{g} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), \boldsymbol{y}^{(i)})
        Compute Hessian: \boldsymbol{H} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}}^2 \sum_i L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), \boldsymbol{y}^{(i)})
        Compute Hessian inverse: H^{-1}
        Compute update: \Delta \theta = -H^{-1}g
        Apply update: \theta = \theta + \Delta \theta
    end while
```

Learning can be slow with steepest descent

Let $d_{+,1}$ be the previous search direction

At the minimum in direction d_{t-1} ,

$$\nabla_{\theta} J(\theta).d_{t-1} = 0$$

The current search direction of descent.

$$d_i = \nabla_{\theta} J(\theta)$$

d₊ is *orthogonal* to previous d₊₋₁

The current direction doesn't preserve minima along previous search direction

Conjugate gradient Steepest descent

$$d_t = \nabla_{\theta} J(\theta) + \beta_t d_{t-1}$$

 β_{\star} controls previous search direction contribution

Conjugate descent tries to address this

$$d_t = \nabla_{\theta} J(\theta) + \beta_t d_{t-1}$$

For conjugacy, d_t and d_{t-1}

$$\boldsymbol{d}_{t}^{\top}\boldsymbol{H}\boldsymbol{d}_{t-1}=0,$$

Without the need for H, β_{t} can be evaluated using

$$\beta_t = \frac{\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}_t)^{\top} \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}_t)}{\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}_{t-1})^{\top} \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}_{t-1})}$$

or

$$\beta_t = \frac{(\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}_t) - \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}_{t-1}))^\top \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}_t)}{\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}_{t-1})^\top \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}_{t-1})}$$

Conjugate gradient Steepest descent

Conjugate gradient

```
Algorithm 8.9 The conjugate gradient method
Require: Initial parameters \theta_0
Require: Training set of m examples
   Initialize \rho_0 = 0
   Initialize g_0 = 0
   Initialize t=1
   while stopping criterion not met do
       Initialize the gradient g_t = 0
      Compute gradient: \mathbf{g}_t \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_i L(f(\mathbf{x}^{(i)}; \boldsymbol{\theta}), \mathbf{y}^{(i)})
      Compute \beta_t = \frac{(\mathbf{g}_t - \mathbf{g}_{t-1})^{\top} \mathbf{g}_t}{\mathbf{g}_{t-1}^{\top} \cdot \mathbf{g}_{t-1}} (Polak-Ribière)
       (Nonlinear conjugate gradient: optionally reset \beta_t to zero, for example if t is
       a multiple of some constant k, such as k = 5)
       Compute search direction: \rho_t = -g_t + \beta_t \rho_{t-1}
       Perform line search to find: \epsilon^* = \operatorname{argmin}_{\epsilon} \frac{1}{m} \sum_{i=1}^m L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}_t + \epsilon \boldsymbol{\rho}_t), \boldsymbol{y}^{(i)})
       (On a truly quadratic cost function, analytically solve for \epsilon^* rather than
      explicitly searching for it)
      Apply update: \theta_{t+1} = \theta_t + \epsilon^* \rho_t
      t \leftarrow t + 1
   end while
```

END

Algorithms for optimization - strategies

Batch Normalization (loffe et al., 2015)

Optimization challenges

Ill conditioning

Local Minima

Saddle points

Algorithms for optimization - Stochastic Gradient Descent

SGD; Momentum; Nesterov Momentum

Parameter initialization

Learning rate scheduling; AdaGrad, RMSProp, Adam

2nd order methods, Conjugate gradient

Batch Normalization

Unsupervised pretraining

Each layer is trained greedily fixing previous layers' weights

