(19)日本国特許庁(JP)

(12) 公表特許公報(A)

(11)特許出願公表番号 特表2002-503204 (P2002-503204A)

最終頁に続く

(43)公表日 平成14年1月29日(2002.1.29)

(51) Int.Cl. ⁷	識別記号	FΙ	テーマコート ゙(参考)
C 0 7 C 317/12		C 0 7 C 317/12	
C 0 1 B 31/02	101	C 0 1 B 31/02	101F
C 0 7 C 29/16		C 0 7 C 29/16	
29/32		29/32	
33/18		33/18	
	来查請求	未醋求 予備審査請求 有	(全 134 頁) 最終頁に続く
(21)出願番号	特願平9-531955	(71)出願人 ハイピリオン	カタリシス インターナシ
(86) (22)出顧日	平成9年3月5日(1997.3.5)	ョナル インコーポレイテッド	
(85)翻訳文提出日	平成10年9月7日(1998.9.7)	アメリカ合衆国02138 マサチューセッツ	
(86)国際出願番号	PCT/US97/03553	州, ケンプリッジ, スミス プレース 38	
(87)国際公開番号	WO 9 7/3 2 5 7 1	(72)発明者 フィッシャー	·, アラン
(87)国際公開日	平成9年9月12日(1997.9.12)	アメリカ合衆国02139 マサチューセッツ	
(31)優先権主張番号	60/037, 238	37,238 州センブリッジ,アントリム ストリート	
(32)優先日	平成8年3月6日(1996.3.6) 80		
(33)優先権主張国	米国(US)	(72)発明者 ホック,ロバート アメリカ合衆国12439 ニューヨーク州へ	
		ンソンピル、	アール. アール. 1, ボック
		ス 422	
		(74)代理人 弁理士 浅村	皓 (外3名)

(54) 【発明の名称】 官能化されたナノチューブ

(57)【要約】

化学的置換によって又は官能性成分の吸着によって官能化されている、グラファイト性ナノチューブ (管状フラーレン (通常、「バッキーチューブ」と称される)やフィブリルをも包含する)。より詳しくは、本発明は、化学的成分によって均一又は不均一に置換されている又は特定の環状化合物が吸着されているグラファイト性ナノチューブに関し、また、かかる官能化されたナノチューブが互いに連結して構成する複合体構造に関する。更に、本発明はかかるナノチューブの表面上に官能基を導入する方法に関する。更に、本発明は官能化されたナノチューブの用途に関する。

【特許請求の範囲】

1. 式

 $[C_n H_1 + R_m]$

〔式中、

炭素原子、 C_n は、5より大きい長さ/直径比と0. 5 μ より小さい直径を有する実質的に円筒状のグラファイト性ナノチューブの表面炭素であり、

nは整数であり、Lは0.1nより小さい数であり、mは0.5nより小さい数であり、

Rの各々は同一であって、

SO3H, COOH, NH2, OH, R' CHOH, CHO, CN, COC1, ハライド, COSH, SH, COOR', SR', SiR'3.

 $Si \leftarrow OR' \rightarrow _{y}R'_{3-y}$, $Si \leftarrow O-SiR'_{2} \rightarrow OR'$, R'', Li, AlR'_{2} , Hg-X, $TlZ_{2}Mg-X$, から選ばれ、

yは3以下の整数であり、

R'は水素、アルキル、アリール、シクロアルキル、アラルキル、シクロアリール、またはポリ(アルキルエーテル)であり、

R"はフルオロアルキル、フルオロアリール、フルオロシクロアルキルまたはフルオロアラルキルであり、

Xはハライドであり、そして

Zはカルボキシレートまたはトリフルオロアセテートである〕 の合成物。

2. 式

 $\begin{bmatrix} C_n & H_1 \rightarrow R_m \end{bmatrix}$

〔式中、

炭素原子、C_nは、熱分解付着炭素を実質的に含有しない実質的に円筒状のグラファイト性フィブリルの表面炭素であり、前記フィブリル上のグラファイト層の突起はフィブリル直径少なくとも2つ分の距離延びており、

nは整数であり、Lは0.1 nより小さい数であり、mは0.5 nより小さい

数であり、

Rの各々は同一であって、

SO3H, COOH, NH2, OH, R' CHOH, CHO, CN, COC1, ハライド, COSH, SH, COOR', SR', SiR'3,

 $Si \leftarrow OR' \rightarrow {}_{\flat}R' {}_{3-{}_{\flat}}$, $Si \leftarrow O-SiR' {}_{2} \rightarrow OR'$, R'', Li, AlR' ${}_{2}$, Hg-X, Tl Z_{2} およびMg-X, から選ばれ、

vは3以下の整数であり、

R'は水素、アルキル、アリール、シクロアルキル、アラルキル、シクロアリール、またはポリ(アルキルエーテル)であり、

R"はフルオロアルキル、フルオロアリール、フルオロシクロアルキルまたはフルオロアラルキルであり、

Xはハライドであり、そして

Zはカルボキシレートまたはトリフルオロアセテートである〕 の合成物。

3. 式

 $[C_n H_l \rightarrow R_m]$

〔式中、

炭素原子、C。は、フィッシュボーンフィブリルの表面原子であり、

nは整数であり、Lは0.1 nより小さい数であり、mは0.5 nより小さい数であり、

Rの各々は同一であって、

SO3H, COOH, NH2, OH, R' CHOH, CHO, CN, COC1, ハライド, COSH, SH, COOR', SR', SiR'3,

 $Si \leftarrow OR' \rightarrow _{p}R'_{3}$, $Si \leftarrow O-SiR'_{2} \rightarrow OR'$, R'', Li, AIR'_{2} , Hg-X, TIZ_{2} およびMg-X, から選ばれ、

yは3以下の整数であり、

R'は水素、アルキル、アリール、シクロアルキル、アラルキル、シクロアリ

ール、またはポリ(アルキルエーテル)であり、

R"はフルオロアルキル、フルオロアリール、フルオロシクロアルキルまたはフルオロアラルキルであり、

Xはハライドであり、そして

Zはカルボキシレートまたはトリフルオロアセテートである〕 の合成物。

4. 式

 $[C_n H_l + R_m]$

〔式中、

炭素原子、 C_n は、5より大きい長さ/直径比と0. 5 μ より小さい直径を有する実質的に円筒状のグラファイト性ナノチューブの表面炭素であり、

nは整数であり、Lは0.1nより小さい数であり、mは0.5nより小さい数であり、

Rの各々は同一であってもよいし又は異なっていてもよく、

SO3H, COOH, NH2, OH, R' CHOH, CHO, CN, COC1, ハライド, COSH, SH, COOR', SR', SiR'3,

 $Si \leftarrow OR' \rightarrow _{r}R'_{3-r}$, $Si \leftarrow O-SiR'_{2} \rightarrow OR'$, R'', Li, AlR'_{2} , Hg-X, TlZ_{2} およびMg-X, から選ばれ、

yは3以下の整数であり、

R'は水素、アルキル、アリール、シクロアルキル、アラルキル、シクロアリール、またはポリ(アルキルエーテル)から選ばれ、

R"はフルオロアルキル、フルオロアリール、フルオロシクロアルキルまたはフルオロアラルキルであり、

Xはハライドであり、

2はカルボキシレートまたはトリフルオロアセテートであり、

そして、Rの各々が酸素含有基である場合にはCOOHが存在しないことを条件とする]

の合成物。

5. 式

 $[C_n H_l \rightarrow R_m]$

〔式中、

炭素原子、C。は、熱分解付着炭素を実質的に含有しない実質的に円筒状のグラファイト性フィブリルの表面炭素であり、前記フィブリル上のグラファイト層の突起はフィブリル直径少なくとも2つ分の距離延びており、

nは整数であり、Lは0.1nより小さい数であり、mは0.5nより小さい数であり、

Rの各々は同一であってもよいし又は異なっていてもよく、

SO3H, COOH, NH2, OH, R'CHOH, CHO, CN, COC1, ハライド, COSH, SH, COOR', SR', SiR'3,

 $Si \leftarrow OR' \rightarrow R' \rightarrow R' \rightarrow R' \rightarrow OR'$, R'', Li,

AlR'₂, Hg-X, TlZ₂ π \$UMg-X,

から選ばれ、

yは3以下の整数であり、

R'は水素、アルキル、アリール、シクロアルキル、アラルキル、シクロアリール、またはポリ(アルキルエーテル)であり、

R"はフルオロアルキル、フルオロアリール、フルオロシクロアルキルまたはフルオロアラルキルであり、

Xはハライドであり、

Zはカルボキシレートまたはトリフルオロアセテートであり、

そして、Rの各々が酸素含有基である場合にはCOOHが存在しないことを条件とする]

の合成物。

6. 式

 $[C_n H_l \rightarrow R_n]$

〔式中、

炭素原子、C゚は、フィッシュボーンフィブリルの表面原子であり、

nは整数であり、Lは0.1 nより小さい数であり、mは0.5 nより小さい

数であり、

Rの各々は同一であってもよいし又は異なっていてもよく、

SO3H, COOH, NH2, OH, R' CHOH, CHO, CN, COC1, ハライド, COSH, SH, COOR', SR', SiR'3,

 $Si \leftarrow OR' \rightarrow _{\nu}R'_{3-\nu}$, $Si \leftarrow O-SiR'_{2} \rightarrow OR'$, R'', Li, AlR'_{2} , Hg-X, TlZ_{2} およびMg-X, から選ばれ、

yは3以下の整数であり、

R'は水素、アルキル、アリール、シクロアルキル、アラルキル、シクロアリール、またはポリ(アルキルエーテル)であり、

R"はフルオロアルキル、フルオロアリール、フルオロシクロアルキルまたはフルオロアラルキルであり、

Xはハライドであり、

Zはカルボキシレートまたはトリフルオロアセテートであり、

そして、Rの各々が酸素含有基である場合にはCOOHが存在しないことを条件とする]

の合成物。

7. 式

[C, H, -]-Am

「式中、

炭素原子、 C_n は、5より大きい長さ/直径比と0. 1 μ より小さい直径を有する実質的に円筒状のグラファイト性ナノチューブの表面炭素であり、

nは整数であり、Lは0. 1 nより小さい数であり、mは0. 5 nより小さい数であり、

Aの各々は

OY, NHY, C-OY, C-NR' Y, C-SY, C-Y, -CR' $_{\rm 2}$ -OY, N=Y, -NHCY \pm \$\tau C=Y,

から選ばれ、

Yは、タンパク質、ペプチド、アミノ酸、酵素、抗体、ヌクレオチド、オリゴ ヌクレオチト、抗原、又は酵素基質、酵素阻害剤又は酵素基質の遷移状態類似体 の適切な官能基であり、又は

R' -OH, R' -N (R')₂, R' SH, R' CHO, R' CN, R' X, R' N^+ (R')₃ X^- , R' SiR'₃, R' $Si \leftarrow OR' \rightarrow _{\nu}R'$ _{3- ν}, R' $Si \leftarrow O-SiR'$ ₂ $\rightarrow OR'$, R' -R', R' -N-CO, (C₂ H_4 $O \rightarrow _{\nu}H$, \leftarrow C₃ H_6 $O \rightarrow _{\nu}H$, \leftarrow C₂ H_4 O) $_{\nu}-R'$,

 $(C_3 H_6 O)_{\bullet} - R', R',$

から選ばれ、

yは3以下の整数であり、

R'は水素、アルキル、アリール、シクロアルキル、アラルキルまたはシクロアリールであり、

R"はフルオロアルキル、フルオロアリール、フルオロシクロアルキルまたはフルオロアラルキルであり、

Xはハライドであり、

Zはガルボキシレートまたはトリフルオロアセテートであり、そしてwは1より大きくかつ200より小さい整数である〕

の合成物。

8. Aが

であり、

R'がHであり、そして

Yが、リジン、セリン、トレオニン、チロシン、アスパラギン酸およびグルタ

ミン酸からなる群から選ばれたアミノ酸である、

請求項7の合成物。

9. 式

 $[C_n H_L + A_m]$

〔式中、

炭素原子、C。は、熱分解付着炭素を実質的に含有しない実質的に円筒状のグラファイト性フィブリルの表面炭素であり、前記フィブリル上のグラファイト層の突起はフィブリル直径少なくとも2つ分の距離延びており、

nは整数であり、Lは0.1 nより小さい数であり、mは0.5 nより小さい数であり、

Aの各々は

O, NHY, C-OY, C-NR' Y, C-SY, C-Y, -CR' $_{\rm 2}$ -OY, N=Y, -NHCY \pm /c! $\rm C=Y$,

から選ばれ、

Yは、タンパク質、ペプチド、アミノ酸、酵素、抗体、ヌクレオチド、オリゴ ヌクレオチド、抗原、又は酵素基質、酵素阻害剤又は酵素基質の遷移状態類似体 の適切な官能基であり、又は

R' -OH, R' -N (R'), R' SH, R' CHO, R' CN, R' X, R' N⁺ (R'), X⁻, R' SiR', R' Si $\leftarrow OR' \rightarrow R'$, R', R' Si $\leftarrow O-SiR'$, POR', R' -R'', R' -N-CO, (C₂ H₄ O) wH, $\leftarrow C_3$ H₆ O) wH, $\leftarrow C_2$ H₄ O) w-R',

から選ばれ、

yは3以下の整数であり、

R'は水素、アルキル、アリール、シクロアルキル、アラルキルまたはシクロアリールであり、

R"はフルオロアルキル、フルオロアリール、フルオロシクロアルキルまたはフルオロアラルキルであり、

Xはハライドであり、

Z はカルボキシレートまたはトリフルオロアセテートであり、そして w は 1 より大きくかつ 2 0 0 より小さい整数である〕 の合成物。

10. Aが

であり、

R'がHであり、そして

Yが、リジン、セリン、トレオニン、チロシン、アスパラギン酸およびグルタミン酸からなる群から選ばれたアミノ酸である、

請求項9の合成物。

11. 式

[C, H, +Am

〔式中、

炭素原子、C_n、はフィッシュボーンフィブリルの表面原子であり、

nは整数であり、Lは0.1 nより小さい数であり、mは0.5 nより小さい数であり、

Aの各々は

OY, NHY, C-OY, C-NR' Y, C-SY, C-Y, -CR'
$$_2$$
-OY, N=Y, -NHCY \pm \$\tau_c \tau_c \tau_c

から選ばれ、

Yは、タンパク質、ペプチド、アミノ酸、酵素、抗体、ヌクレオチド、オリゴ ヌクレオチド、抗原、又は酵素基質、酵素阻害剤又は酵素基質の遷移状態類似体 の適切な官能基であり、又は

R'-OH, R'-N (R') 2, R'SH, R'CHO, R'CN, R'X,

 $R' N^{+} (R')_{3} X$, $R' S i R'_{3}$, $R' S i \leftarrow O R' \rightarrow R'_{3}$, $R' S i \leftarrow O - S i R'_{2} \rightarrow O R'$, R' - R'', R' - N - C O, $(C_{2} H_{4} O \rightarrow H_{4} \leftarrow C_{3} H_{6} O \rightarrow H_{4} \leftarrow C_{2} H_{4} O)_{W} - R'$,

 $(C_3 H_6 O)_w - R', R'$

から選ばれ、

yは3以下の整数であり、

R'は水素、アルキル、アリール、シクロアルキル、アラルキルまたはシクロアリールであり、

R"はフルオロアルキル、フルオロアリール、フルオロシクロアルキルまたはフルオロアラルキルであり、

Xはハライドであり、

Zはカルボキシレートまたはトリフルオロアセテートであり、そしてwは1より大きくかつ200より小さい整数である〕

の合成物。

12. Aが

であり、

R'がHであり、そして

Yが、リジン、セリン、トレオニン、チロシン、アスパラギン酸およびグルタミン酸からなる群から選ばれたアミノ酸である、

請求項11の合成物。

13. 式

 $[C_n H_l + [R' - A]_m]$

〔式中、

炭素原子、 C_n は、5より大きい長さ/直径比と0. 5 μ より小さい直径を有する実質的に円筒状のグラファイト性ナノチューブの表面炭素であり、

nは整数であり、Lは0.1nより小さい数であり、mは0.5nより小さい数であり、

R'の各々はアルキル、アリール、シクロアルキル、アラルキル、シクロアリール、またはポリ(アルキルエーテル)であり、

Aは

から選ばれ、

Yは、タンパク質、ペプチド、アミノ酸、酵素、抗体、ヌクレオチド、オリゴ ヌクレオチド、抗原、又は酵素基質、酵素阻害剤又は酵素基質の遷移状態類似体 の適切な官能基であり、又は

R' -OH, R' -N (R') $_2$, R' $_3$, R' $_4$ CHO, R' $_4$ CN, R' $_4$, R' $_4$ N' (R') $_3$ X', R' $_4$ R' $_5$ R' $_5$ R' $_4$ OR' $_4$ P' $_4$ R' $_4$ O- $_4$ CO, (C₂ H₄ O) $_4$ H, $_4$ C₃ H₆ O $_4$ H, $_4$ C₂ H₄ O) $_4$ P',

 $(C_3 H_6 O)_v - R', R',$

から選ばれ、

yは3以下の整数であり、

R"はフルオロアルキル、フルオロアリール、フルオロシクロアルキルまたはフルオロアラルキルであり、

Xはハライドであり、

2はカルボキシレートまたはトリフルオロアセテートであり、そして

wは1より大きくかつ200より小さい整数である〕 の合成物。

14. Aが

であり、

R'がHであり、そして

Yが、リジン、セリン、トレオニン、チロシン、アスパラギン酸およびグルタミン酸からなる群から選ばれたアミノ酸である、

請求項13の合成物。

15. 式

$$[C_n H_l + [R' - A]_m$$

〔式中、

炭素原子、C。は、熱分解付着炭素を実質的に含有しない実質的に円筒状のグラファイト性フィブリルの表面炭素であり、前記フィブリル上のグラファイト層の突起はフィブリル直径少なくとも2つ分の距離延びており、

nは整数であり、Lは0.1 nより小さい数であり、mは0.5 nより小さい数であり、

R'の各々はアルキル、アリール、シクロアルキル、アラルキル、シクロアリール、またはポリ(アルキルエーテル)であり、

Aは

から選ばれ、

Yは、タンパク質、ペプチド、酵素、アミノ酸、抗体、ヌクレオチド、オリゴ ヌクレオチド、抗原、又は酵素基質、酵素阻害剤又は酵素基質の遷移状態類似体 の適切な官能基であり、又は

R'-OH, $R-NR'_2$, R'SH, R'CHO, R'CN, R'X,

R' N' (R') 3 X , R' S i R' 3 , R' S i
$$\leftarrow$$
 OR' \rightarrow ,R' 3 , ,
R' S i \leftarrow O - S i R' 2 \rightarrow OR' , R' - R" , R' - N - CO,
(C₂ H₄ O \rightarrow , H, \leftarrow C₃ H₆ O \rightarrow , H, \leftarrow C₂ H₄ O) , -R' ,

 $(C_3 H_6 O)_w - R', R',$

から選ばれ、

yは3以下の整数であり、

R"はフルオロアルキル、フルオロアリール、フルオロシクロアルキルまたは フルオロアラルキルであり、

Xはハライドであり、

Zはカルボキシレートまたはトリフルオロアセテートであり、そしてwは1より大きくかつ200より小さい整数である〕 の合成物。 16. Aが

であり、

R'がHであり、そして

Yが、リジン、セリン、トレオニン、チロシン、アスパラギン酸およびグルタミン酸からなる群から選ばれたアミノ酸である、

請求項15の合成物。

17. 式

$$[C_n H_L + [R' - A]_m]$$

〔式中、

炭素原子、C゚は、フィッシュボーンフィブリルの表面原子であり、

nは整数であり、LはO. 1nより小さい数であり、mはO. 5nより小さい

数であり、

R'の各々はアルキル、アリール、シクロアルキル、アラルキル、シクロアリール、またはポリ(アルキルエーテル)であり、

Αは

から選ばれ、

Yは、タンパク質、ペプチド、アミノ酸、酵素、抗体、ヌクレオチド、オリゴ ヌクレオチド、抗原、又は酵素基質、酵素阻害剤又は酵素基質の遷移状態類似体 の適切な官能基であり、又は

R'-OH, R'-N (R')₂, R'SH, R'CHO, R'CN, R'X,

 $R' N^{+} (R')_{3} X^{-}, R' S i R'_{1}, R' S i \leftarrow O R' \rightarrow {}_{\nu}R'_{3-\nu},$ $R' S i \leftarrow O - S i R'_{2} \rightarrow O R', R' - R'', R' - N - C O,$ $(C_{2} H_{4} O \rightarrow {}_{\nu}H, \leftarrow C_{3} H_{6} O \rightarrow {}_{\nu}H, \leftarrow C_{2} H_{4} O)_{\nu} - R',$

 $(C_3 H_6 O)_{\mathbf{v}} - R', R'$

から選ばれ、

yは3以下の整数であり、

R"はフルオロアルキル、フルオロアリール、フルオロシクロアルキルまたはフルオロアラルキルであり、

Xはハライドであり、

Zはカルボキシレートまたはトリフルオロアセテートであり、そしてwは1より大きくかつ200より小さい整数である〕 の合成物。

18. 式

$$[C_n H_1 + [X' - A_a]_m$$

〔式中、

炭素原子、C_nは、5より大きい長さ/直径比と0.5 μより小さい直径を有する実質的に円筒状のグラファイト性ナノチューブの表面炭素であり、

nは整数であり、Lは0. 1 nより小さい数であり、mは0. 5 nより小さい数であり、aは1 0より小さい整数であり、

Aの各々は

から選ばれ、

Yは、タンパク質、ペプチド、アミノ酸、酵素、抗体、ヌクレオチド、オリゴ ヌクレオチド、抗原、又は酵素基質、酵素阻害剤又は酵素基質の遷移状態類似体 の適切な官能基であり、又は

R' -OH, R' -N (R')₂, R' SH, R' CHO, R' CN, R' X, R' N⁺ (R')₃ X⁻, R' SiR'₃, R' Si \leftarrow OR' \rightarrow ,R'₃, R' Si \leftarrow O-SiR'₂ \rightarrow OR', R' -R", R' -N-CO, (C₂ H₄ O \rightarrow , H, \leftarrow C₃ H₆ O \rightarrow , H, \leftarrow C₂ H₄ O) , -R',

 $(C_3 H_6 O)_* - R', R'$

から選ばれ、

yは3以下の整数であり、

R'はアルキル、アリール、シクロアルキル、アラルキルまたはシクロアリールであり、

R"はフルオロアルキル、フルオロアリール、フルオロシクロアルキルまたはフルオロアラルキルであり、

Xはハライドであり、

X'は、多核芳香族、ポリヘテロ核芳香族またはメタロポリヘテロ核芳香族成分であり、

Zはカルボキシレートまたはトリフルオロアセテートであり、そしてwは1より大きくかつ200より小さい整数である〕の合成物。

19. 式

 $[C_n H_1 + [X' - A_a]_m$

〔式中、

炭素原子、C』は、熱分解付着炭素を実質的に含有しない実質的に円筒状のグラファイト性フィブリルの表面炭素であり、前記フィブリル上のグラファイト層の突起はフィブリル直径少なくとも2つ分の距離延びており、

nは整数であり、Lは0.1 nより小さい数であり、mは0.5 nより小さい数であり、aは10より小さい整数であり、

Aの各々は

から選ばれ、

Yは、タンパク質、ペプチド、アミノ酸、酵素、抗体、ヌクレオチド、オリゴ ヌクレオチド、抗原、又は酵素基質、酵素阻害剤又は酵素基質の遷移状態類似体 の適切な官能基であり、又は

R' -OH, R' -N (R') $_2$, R' $_3$, R' $_4$ CHO, R' $_4$ CN, R' $_4$, R' $_4$ N' (R') $_3$ X , R' $_4$ Si $_4$ OR' $_3$, R' $_4$ OR' $_4$ OR' $_4$ OR', R' $_$

 $(C_3 H_6 O)_{\mathbf{v}} - R', R'$

から選ばれ、

vは3以下の整数であり、

R'はアルキル、アリール、シクロアルキル、アラルキルまたはシクロアリールであり、

R"はフルオロアルキル、フルオロアリール、フルオロシクロアルキルまたはフルオロアラルキルであり、

Xはハライドであり、

X'は、多核芳香族、ポリヘテロ核芳香族またはメタロポリヘテロ核芳香族成分であり、

Z はカルボキシレートまたはトリフルオロアセテートであり、そしてwは1より大きくかつ200より小さい整数である〕 の合成物。

20. 式

 $[C_n H_L + [X' - A_a]_m$

〔式中、

炭素原子、Caは、フィッシュボーンフィブリルの表面原子であり、

nは整数であり、Lは0. 1 nより小さい数であり、mは0. 5 nより小さい数であり、aは1 0より小さい整数であり、

Aの各々は

から選ばれ、

Yは、タンパク質、ペプチド、アミノ酸、酵素、抗体、ヌクレオチド、オリゴ ヌクレオチド、抗原、又は酵素基質、酵素阻害剤又は酵素基質の遷移状態類似体

の適切な官能基であり、又は

R' -OH, R' -N (R') 2, R' SH, R' CHO, R' CN, R' X, R' N^{+-} (R') 3 X^{--} , R' SiR' 3, R' $Si \leftarrow OR' \rightarrow _{\nu}R'$ 3, R' $Si \leftarrow O-SiR'$ 2 $\rightarrow OR'$, R' -R', R' -N-CO, (C2 H_4 $O \rightarrow _{\nu}H$, \leftarrow C3 H_6 $O \rightarrow _{\nu}H$, \leftarrow C2 H_4 O) $_{\nu}-R'$,

 $(C_3 H_6 O)_w - R', R'$

から選ばれ、

yは3以下の整数であり、

R'はアルキル、アリール、シクロアルキル、アラルキルまたはシクロアリールであり、

R"はフルオロアルキル、フルオロアリール、フルオロシクロアルキルまたはフルオロアラルキルであり、

Xはハライドであり、

X'は、多核芳香族、ポリヘテロ核芳香族またはメタロポリヘテロ核芳香族成分であり、

Zはカルボキシレートまたはトリフルオロアセテートであり、そしてwは1より大きくかつ200より小さい整数である〕 の合成物。

21. 式

 $[C_n, H_1] \rightarrow [CH(R'), OH]_n$

〔式中、

炭素原子、C_nは、実質的に円筒状のグラファイト性ナノチューブの表面炭素であり、

nは整数であり、Lは0.1 nより小さい数であり、mは0.5 nより小さい数であり、

R'は水素、アルキル、アリール、シクロアルキル、アラルキル、シクロアリール、またはポリ(アルキルエーテル)であり、

R"はフルオロアルキル、フルオロアリール、フルオロシクロアルキルまたはフルオロアラルキルである〕

の合成物を生成する方法であって、

ラジカル開始剤の存在下で表面炭素と式 R $^{\prime}$ C H $_{2}$ O H を有する化合物とを、式 $[C_{n}$ H $_{L}$] $[C_{n}$ H $_{L}$] $[C_{n}$ C H $_{n}$] $[C_{n}$ H $_{n}$] $[C_{n$

22. 前記ラジカル開始剤が過酸化ベンゾイルである請求項21の方法。

23. 式

 $[C_n H_L \rightarrow A_m]$

〔式中、

炭素原子、C n は、実質的に円筒状のグラファイト性ナノチューブの表面炭素であり、

nは整数であり、Lは0.1 nより小さい数であり、mは0.5 nより小さい数であり、

Aの各々は

から選ばれ、

Yは、タンパク質、ペプチド、アミノ酸、酵素、抗体、オリゴヌクレオチド、 ヌクレオチド、抗原、又は酵素基質、酵素阻害剤又は酵素基質の遷移状態類似体 の適切な官能基であり、又は

R' -OH, R' -N (R') 2, R' SH, R' CHO, R' CN, R' X, R' SiR' $_3$ R' $-N^{+}$ (R') $_3$ X^{-} , R' -R", R' -N-CO,

 $(C_2 H_4 O)_w H_r \leftarrow C_3 H_6 O)_w H_r \leftarrow C_2 H_4 O)_w -R'$

から選ばれ、

R'は水素、アルキル、アリール、シクロアルキル、アラルキルまたはシクロアリールであり、

R"はフルオロアルキル、フルオロアリール、フルオロシクロアルキルまたは フルオロアラルキルであり、

Xはハライドであり、

Zはカルボキシレートまたはトリフルオロアセテートであり、そしてwは1より大きくかつ200より小さい整数である〕

の合成物を生成する方法であって、

(a) 表面炭素と少なくとも一つの適切な試薬とを、式 [C, H_L+] R_m 〔式中、Rの各々は同一であって、

SO3H, COOH, NH2, OH, CH (R') OH, CHO, CN, COC1, ハライド, COSH, SH, COOR', SR',

 SiR'_3 , $Si \leftarrow OR' \rightarrow _{\nu}R'_{3\cdots\nu}$,

 $Si \leftarrow O-SiR' 2 \rightarrow OR'$, R", Li, AlR'2, Hg-X, TlZ_2 およびMg-X,

から選ばれ、そして y は 3 以下の整数である〕を有する置換ナノチューブを生成するのに十分な条件下で、反応させ; そして

(b) 置換ナノチューブ $[C_n H_L + R_m]$ と少なくとも一つの適切な試薬とを、式 $[C_n H_L + A_m]$ を有する官能化されたナノチューブを生成するのに十分な条件下で、反応させる

諸工程を含む、前記方法。

24. 式

 $[C_n, H_i \rightarrow A_m]$

〔式中、

炭素原子、 C_n は、5より大きい長さ/直径比と0. 1 μ より小さい直径を有する実質的に円筒状のグラファイト性ナノチューブの表面炭素であり、

nは整数であり、Lは0.1 nより小さい数であり、mは0.5 nより小さい数であり、

Aの各々は

OY, NHY, C-OY, C-NR'Y, C-SY, C-Y, -CR' 2-OY, N=Y, -NHCY $\pm c$ t C=Y,

から選ばれ、

Yは、タンパク質、ペプチド、アミノ酸、酵素、抗体、オリゴヌクレオチド、 ヌクレオチド、抗原、又は酵素基質、酵素阻害剤又は酵素基質の遷移状態類似体 の適切な官能基であり、又は

R' - O H, R' - N (R')₂, R' S H, R' C H O, R' C N, R' X, R' S i R'₃, R' - N (R')₃ X , R' - R", R' - N - C O, (C₂ H₄ O - W H, - C₃ H₆ O - W H, - C₂ H₄ O) W - R',

から選ばれ、

R'は水素、アルキル、アリール、シクロアルキル、アラルキルまたはシクロアリールであり、

R"はフルオロアルキル、フルオロアリール、フルオロシクロアルキルまたは フルオロアラルキルであり、

Xはハライドであり、

Zはカルボキシレートまたはトリフルオロアセテートであり、そしてwは1より大きくかつ200より小さい整数である〕

の合成物を生成する方法であって、

(a) 表面炭素と少なくとも一つの適切な試薬とを、式 [C。H_L + R_m 〔式中、Rの各々は

 SO_3H , COOH, NH_2 , OH, CH (R') OH, CHO, CN, COCI, $N \not\ni \mathcal{A}$ F, COSH, SH, COOR', SR',

 SiR'_{3} , $Si \leftarrow OR' \rightarrow _{y}R'_{3-y}$,

 $Si \leftarrow O-SiR' 2 \rightarrow OR'$, R'', Li, A1R' 2, Hg-X, $T1Z_2$ およびMg-X,

から選ばれ、そして y は 3 以下の整数である〕を有する置換ナノチューブを生成するのに十分な条件下で、反応させ; そして

(b) 置換ナノチューブ $[C_n H_L + R_m]$ と少なくとも一つの適切な試薬とを、式 $[C_n H_L + A_m]$ を有する官能化されたナノチューブを生成するのに十分な条件下で、反応させる

諸工程を含む、前記方法。

25. 式

 $[C_n H_l \rightarrow A_m]$

〔式中、

炭素原子、C』は、熱分解付着炭素を実質的に含有しない実質的に円筒状のグラファイト性ナノチューブの表面炭素であり、

nは整数であり、Lは0. 1 nより小さい数であり、mは0. 5 nより小さい数であり、

Aの各々は

OY, NHY, C-OY, C-NR' Y, C-SY, C-Y, -CR' $_2$ -OY, N=Y, -NHCY \pm たは C=Y.

から選ばれ、

Yは、タンパク質、ペプチド、アミノ酸、酵素、抗体、オリゴヌクレオチド、 ヌクレオチド、抗原、又は酵素基質、酵素阻害剤又は酵素基質の遷移状態類似体 の適切な官能基であり、又は

R' - OH, R' - N (R') 2, R' SH, R' CHO, R' CN, R' X,

R' S i R' 3, R' - N' (R') 3 X', R' - R'', R' - N - CO.

 $(C_2 H_4 O \rightarrow_w H, \leftarrow C_3 H_6 O \rightarrow_w H, \leftarrow C_2 H_4 O)_w - R'$

から選ばれ、

R['] は水素、アルキル、アリール、シクロアルキル、アラルキルまたはシクロアリールであり、

R"はフルオロアルキル、フルオロアリール、フルオロシクロアルキルまたはフルオロアラルキルであり、

Xはハライドであり、

Zはカルボキシレートまたはトリフルオロアセテートであり、そしてwは1より大きくかつ200より小さい整数である〕

の合成物を生成する方法であって、

(a) 表面炭素と少なくとも一つの適切な試薬とを、式 [C , H , + R , 〔式中、R の各々は

 SiR'_{3} , $Si \leftarrow OR' \rightarrow_{y}R'_{3-y}$,

 $Si \leftarrow O - SiR' 2 \rightarrow OR'$, R", Li, A1R'2, Hg-X, T1Z2 およびMg-X,

から選ばれ、そして y は 3 以下の整数である〕を有する置換ナノチューブを生成するのに十分な条件下で、反応させ; そして

(b) 置換ナノチューブ [C。H、子 Rm と少なくとも一つの適切な試薬とを、式 [C。H、子 Am を有する官能化されたナノチューブを生成するのに十分な条件下で、反応させる

諸工程を含む、前記方法。

26. 式

$[C_n H_k + A_m]$

〔式中、

炭素原子、C n は、実質的に円筒状のグラファイト性ナノチューブの表面炭素であり、

nは整数であり、Lは0. 1 nより小さい数であり、mは0. 5 nより小さい数であり、

Aの各々は

から選ばれ、

Yは、タンパク質、ペプチド、アミノ酸、酵素、抗体、オリゴヌクレオチド、 ヌクレオチド、抗原、又は酵素基質、酵素阻害剤又は酵素基質の遷移状態類似体 の適切な官能基であり、又は

R' - OH, R' - N (R') 2, R' SH, R' CHO, R' CN, R' X, R' S i R' 3, R' - N' (R') 3 X, R' - R'', R' - N - CO,

 $(C_2 H_4 O)_{w}H_7 \leftarrow C_1 H_6 O)_{w}H_7 \leftarrow C_2 H_4 O)_{w} - R'$

から選ばれ、

R'は水素、アルキル、アリール、シクロアルキル、アラルキルまたはシクロ アリールであり、

R"はフルオロアルキル、フルオロアリール、フルオロシクロアルキルまたはフルオロアラルキルであり、

Xはハライドであり、

Zはカルボキシレートまたはトリフルオロアセテートであり、そしてwは1より大きくかつ200より小さい整数である]

の合成物を生成する方法であって、

置換ナノチューブ $[C_n H_L + R_n]$ と少なくとも一つの適切な試薬とを、式 $[C_n H_L + A_n]$ を有する官能化されたナノチューブを生成するのに十分な条件下で反応させる工程を含み、R の各々は同一であって、

SO₃H, COOH, NH₂, OH, CH (R') OH, CHO, CN, COC1, ハライド, COSH, SH, COOR', SR', SiR'₃,

 $Si \leftarrow OR' \rightarrow {}_{r}R' {}_{3-r}$, $Si \leftarrow O-SiR' {}_{2} \rightarrow OR'$, R'', Li, $AlR' {}_{2}$, Hg-X, TlZ_{2} およびMg-X,

から選ばれ、そしてyは3以下の整数である、前記方法。

27. 式

 $[C_n H_L \rightarrow A_m]$

〔式中、

炭素原子、 C_n は、5より大きい長さ/直径比と0. 1 μ より小さい直径を有する実質的に円筒状のグラファイト性ナノチューブの表面炭素であり、

nは整数であり、Lは0. 1 nより小さい数であり、mは0. 5 nより小さい数であり、

Aの各々は

OY, NHY, C-OY, C-NR'Y, C-SY, C-Y, -CR'2-OY, N=Y, -NHCY またはC=Y,

から選ばれ、

Yは、タンパク質、ペプチド、アミノ酸、酵素、抗体、オリゴヌクレオチド、 ヌクレオチド、抗原、又は酵素基質、酵素阻害剤又は酵素基質の遷移状態類似体 の適切な官能基であり、又は

R' - OH, R' - N (R') 2, R' SH, R' CHO, R' CN, R' X, R' S i R' 3, R' - N' (R') 3 X, R' - R'', R' - N - CO,

 $(C_2 H_4 O)_{w}H_1 + C_3 H_6 O)_{w}H_1 + C_2 H_4 O)_{w} - R'$

から選ばれ、

R'は水素、アルキル、アリール、シクロアルキル、アラルキルまたはシクロアリールであり、

R"はフルオロアルキル、フルオロアリール、フルオロシクロアルキルまたはフルオロアラルキルであり、

Xはハライドであり、

Zはカルボキシレートまたはトリフルオロアセテートであり、そしてwは1より大きくかつ200より小さい整数である〕

の合成物を生成する方法であって、

置換ナノチューブ $\{C_n H_L + R_m \}$ と少なくとも一つの適切な試薬とを、式 $\{C_n H_L + A_m \}$ を有する官能化されたナノチューブを生成するのに十分な条件下で反応させる工程を含み、 $\{R_n \}$ の各々は

SO3H, COOH, NH2, OH, CH (R') OH, CHO, CN, COC1, ハライド, COSH, SH, COOR', SR', SiR'3,

 $Si \leftarrow OR' \rightarrow R'$ 3-7, $Si \leftarrow O-SiR'$ 2 $\rightarrow OR'$, R'', Li, AlR' 2, Hg-X, TlZ2 およびMg-X,

から選ばれ、そしてyは3以下の整数である、前記方法。

28. 式

[Cn HL + Am

〔式中、

炭素原子、C』は、熱分解付着炭素を実質的に含有しない実質的に円筒状のグラファイト性ナノチューブの表面炭素であり、

nは整数であり、Lは0. 1 nより小さい数であり、mは0. 5 nより小さい数であり、

Aの各々は

から選ばれ、

Yは、タンパク質、ペプチド、アミノ酸、酵素、抗体、オリゴヌクレオチド、 ヌクレオチド、抗原、又は酵素基質、酵素阻害剤又は酵素基質の遷移状態類似体 の適切な官能基であり、又は

R' -OH, R' -N (R')₂, R' SH, R' CHO, R' CN, R' X, R' S i R'₃, R' -N (R')₃ X, R' -R", R' -N-CO, (C₂ H₄ O - WH, \leftarrow C₃ H₆ O - WH, \leftarrow C₂ H₄ O)W -R',

から選ばれ、

R'はアルキル、アリール、シクロアルキル、アラルキルまたはシクロアリールであり、

R"はフルオロアルキル、フルオロアリール、フルオロシクロアルキルまたはフルオロアラルキルであり、

Xはハライドであり、

Z はカルボキシレートまたはトリフルオロアセテートであり、そしてwは1より大きくかつ200より小さい整数である〕

の合成物を生成する方法であって、

置換ナノチューブ $[C_n H_L + R_m]$ と少なくとも一つの適切な試薬とを、式 $[C_n H_L + A_m]$ を有する官能化されたナノチューブを生成するのに十分な条件下で反応させる工程を含み、R の各々は

SO3H, COOH, NH2, OH, CH(R') OH, CHO, CN, COC1 , ハライド, COSH, SH, COOR', SR', SiR'3,

から選ばれ、そして y は 3 以下の整数である、前記方法。

29. 式

$$[C_n H_L \rightarrow [R' - A]_m$$

〔式中、

炭素原子、C_nは、実質的に円筒状のグラファイト性ナノチューブの表面炭素であり、

nは整数であり、Lは0.1 nより小さい数であり、mは0.5 nより小さい数であり、

R'はアルキル、アリール、シクロアルキル、アラルキル、シクロアリール、 又はポリ(アルキルエーテル)であり、

Xはハライドであり、

Aの各々は

から選ばれ、

Yは、タンパク質、ペプチド、アミノ酸、酵素、抗体、オリゴヌクレオチド、 ヌクレオチド、抗原、又は酵素基質、酵素阻害剤又は酵素基質の遷移状態類似体 の適切な官能基であり、又は

R' -OH, R' $-NH_2$, R' SH, R' CHO, R' CN, R' X,

R' S i R' , R' -R''. R' -N-CO, (C_2 H_4 $O \rightarrow_w H$, $+C_3$ H_6 $O \rightarrow_w H$, $+C_2$ H_4 O) $_w$ -R', (C_3 H_6 O) $_w$ -R',

から選ばれ、

R"はフルオロアルキル、フルオロアリール、フルオロシクロアルキルまたは フルオロアラルキルであり、そして

Zはカルボキシレートまたはトリフルオロアセテートである〕 の合成物を生成する方法であって、

式 $[C_n H_L]$ $[R'-R]_n$ を有する置換ナノチューブと少なくとも一つの適切な試薬とを、式 $[C_n H_L]$ $[R'-A]_n$ を有する官能化されたナノチュ

ーブを生成するのに十分な条件下で反応させる工程を含み、Rの各々は SO₃ H, COOH, NH₂, OH, CH(R') OH, CHO, CN, COC1, ハライド, COSH, SH, COOR', SR', SiR'₃.

 $Si \leftarrow OR' \rightarrow R'_{3-y}$, $Si \leftarrow O-SiR'_{2} \rightarrow OR'$, R'', Li, AlR'_{2} , Hg-X, TlZ_{2} およびMg-X.

から選ばれ、そして y は 3 以下の整数である、前記方法。

30. 式

 $[C_n H_l + [X' - R_a]_m$

〔式中、

炭素原子、C n は、実質的に円筒状のグラファイト性ナノチューブの表面炭素であり、

nは整数であり、Lは0. 1 nより小さい数であり、mは0. 5 nより小さい数であり、aはゼロ又は10より小さい整数であり、

Rの各々は

SO3H, COOH, NH2, OH, CH (R') OH, CHO, CN, COC1, ハライド, COSH, SH, COOR', SR', SiR'3,

 $Si \leftarrow OR' \rightarrow _{\nu}R'_{3-\nu}$, $Si \leftarrow O-SiR'_{2} \rightarrow OR'$, R'', Li, AlR'_{2} , Hg-X, TlZ_{2} およびMg-X,

から選ばれ、

yは3以下の整数であり、

R'はアルキル、アリール、シクロアルキル、アラルキルまたはシクロアリールであり、

Xはハライドであり、

X'は、多核芳香族、ポリヘテロ核芳香族またはメタロポリヘテロ核芳香族成分であり、

R"はフルオロアルキル、フルオロアリール、フルオロシクロアルキルまたはフルオロアラルキルであり、そして

Zはカルボキシレートまたはトリフルオロアセテートである]

の合成物を生成する方法であって、

グラファイト性ナノチューブの表面上に少なくとも一つの適切なマクロ環状化合物を、式 $[C_nH_L+][X'-R_a]_n$ を有する官能化されたナノチューブを

生成するのに十分な条件下で、吸着させる工程を含む、前記方法。

31. 式

$$[C_n H_L + [X' - A_a]_m$$

〔式中、

炭素原子、C_nは、実質的に円筒状のグラファイト性ナノチューブの表面炭素であり、

n は整数であり、L は 0 . 1 n より小さい数であり、m は 0 . 5 n より小さい数であり、a は 1 0 より小さい整数であり、

Aの各々は

から選ばれ、

Yは、タンパク質、ペプチド、アミノ酸、酵素、抗体、オリゴヌクレオチド、 ヌクレオチド、抗原、又は酵素基質、酵素阻害剤又は酵素基質の遷移状態類似体 の適切な官能基であり、又は

R'-OH, $R'-NH_2$, R'SH, R'CHO, R'CN, R'X,

R' S i R' $_3$, R' $_7$ R' $_7$ R' $_7$ N $_7$ CO, (C $_2$ H $_4$ O $_7$ $_8$ H, $_7$ C $_2$ H $_4$ O $_7$ $_8$ R' $_8$ R'

から選ばれ、

R'は水素、アルキル、アリール、シクロアルキル、アラルキルまたはシクロアリールであり、

R"はフルオロアルキル、フルオロアリール、フルオロシクロアルキルまたはフルオロアラルキルであり、

Xはハライドであり、

X'は、多核芳香族、ポリヘテロ核芳香族またはメタロポリヘテロ核芳香族成分であり、

Zはカルボキシレートまたはトリフルオロアセテートであり、そしてwは1より大きくかつ200より小さい整数である〕

の合成物を生成する方法であって、

(a) グラファイト性ナノチューブの表面上に少なくとも一つの適切なマクロ環状化合物を、式 [C H L + [X'-R] 「式中、Rの各々はSO3H, COOH, NH2, OH, CHO, CN, COC1, ハライド, COSH, SH, COOR', SR', SiR'3,
 Si←OR'→ R'3 、 Si ← O-SiR'2 → OR', R",

Li, AlR', Hg-X, TlZ₂およびMg-X, から選ばれ、そしてyは3以下の整数である〕を有する置換ナノチューブを生成するのに十分な条件下で、吸着させ;そして

(b) 置換ナノチューブ [C、H、+ [X'-R] 」、と少なくとも一つの適切な試薬とを、式 [C、H、+ [X'-A] 、を有する官能化されたナノチューブを生成するのに十分な条件下で、反応させる

諸工程を含む、前記方法。

32. 式

$$[C_n H_l + [X' - A_a]_m$$

〔式中、

炭素原子、C』は、実質的に円筒状のグラファイト性ナノチューブの表面炭素であり、

nは整数であり、Lは0. 1 nより小さい数であり、mは0. 5 nより小さい数であり、aは1 0より小さい整数であり、

Aの各々は

から選ばれ、

Yは、タンパク質、ペプチド、アミノ酸、酵素、抗体、オリゴヌクレオチド、 ヌクレオチド、抗原、又は酵素基質、酵素阻害剤又は酵素基質の遷移状態類似体 の適切な官能基であり、又は

R' -OH, R' $-NH_2$, R' SH, R' CHO, R' CN, R' X,

R' SiR'_{*} , R' -R'', R' -N-CO, ($C_2H_4O_{*}H_{*}$, $+C_3H_6O_{*}H_{*}$, $+C_2H_4O_{*}H_{*}$, ($C_3H_6O_{*}H_{*}$), -R',

から選ばれ、

R'はアルキル、アリール、シクロアルキル、アラルキルまたはシクロアリールであり、

R"はフルオロアルキル、フルオロアリール、フルオロシクロアルキルまたは フルオロアラルキルであり、

Xはハライドであり、

X'は、多核芳香族、ポリヘテロ核芳香族またはメタロポリヘテロ核芳香族成分であり、

Zはカルボキシレートまたはトリフルオロアセテートであり、そしてwは1より大きくかつ200より小さい整数である〕の合成物を生成する方法であって、

置換ナノチューブ $[C_n H_L + [X'-R_a]_m$ と少なくとも一つの適切な試薬とを、式 $[C_n H_L + [X'-A_a]_m$ を有する官能化されたナノチューブを生成するのに十分な条件下で、反応させる工程を含み、Rの各々が SO_3H , COOH, NH2, OH, CHO, CN, COC1, ハライド, COSH, SH, COOR', SR', SiR'a, Si \leftarrow OR' \rightarrow R'a-y, Si \leftarrow O-SiR'a \rightarrow OR', R", Li, AlR'a, Hg-X, T1 Z_2 およびMg-X,

から選ばれ、そしてyは3以下の整数である、前記方法。

33. 式

(式中、

炭素原子、Cnは、実質的に円筒状のグラファイト性ナノチューブの表面炭素であり、

nは整数であり、Lは0.1 nより小さい数であり、そしてmは0.5 nより小さい数であり、

R'はアルキル、アリール、シクロアルキルまたはシクロアリールである) の合成物を生成する方法であって、

表面炭素と少なくとも一つの適切な試薬とを、式 $\{C, H_L\} \leftarrow COOH\}$ 。 を有する官能化されたナノチューブを生成するのに十分な条件下で、反応させ; そして

その官能化されたナノチューブと、アミノ基を2つ又はそれ以上有する化合物 との、式

O || [C_n H_L + CNHR' NH₂) m

を有する官能化されたナノチューブを生成するのに十分な条件下で反応させる、 諸工程を含む、前記方法。

34. 式

 $[C_n H_1 \rightarrow R_m]$

〔式中、

炭素原子、C_nは、実質的に円筒状のグラファイト性ナノチューブの表面炭素であり、

nは整数であり、Lは0.1 nより小さい数であり、mは0.5 nより小さい数であり、

Rの各々は同一であって、

SO3H, COOH, NH2, OH, CH (R') OH, CHO, CN, COC1, ハライド, COSH, SH, COOR', SR', SiR'3,

 $Si \leftarrow OR' \rightarrow _{\nu}R'$ 3-- $_{\imath}$, $Si \leftarrow O-SiR'$ 2 $\rightarrow OR'$, R'' , Li , AlR' 2 , Hg-X , TlZ_2 およびMg-X から選ばれ、

yは3以下の整数であり、

R'は水素、アルキル、アリール、シクロアルキル、アラルキルまたはシクロアリールであり、

R"はフルオロアルキル、フルオロアリール、フルオロシクロアルキルまたは フルオロアラルキルであり、

Xはハライドであり、

Zはカルボキシレートまたはトリフルオロアセテートである〕

の合成物を生成する方法であって、

表面炭素と、ナノチューブを基質として受け入れることができる少なくとも一つの酵素とを反応させ、そして式 [C H L + R の物質の組成物を生じる化学 反応を、この少なくとも一つの酵素がこの反応を行うのを許容できる条件下で、水性懸濁下で、行う工程を含む、前記方法。

35. R_•が一OHであり、そして酵素がチトロクロムP450酵素又はペルオキシダーゼである、請求項34の方法。

36. 式

 $[C_n H_L \rightarrow (NH_2)_m]$

(式中、

炭素原子、C_nは、実質的に円筒状のグラファイト性ナノチューブの表面炭素であり、

nは整数であり、Lは0.1 nより小さい数であり、そしてmは0.5 nより小さい数である)

の合成物を生成する方法であって、

表面炭素を硝酸及び硫酸と反応させて硝酸化ナノチューブを生成し;そして 硝酸化ナノチューブを還元して $[C_n, H_L] + (NH_2)_n$ を生成する 諸工程を含む、前記方法。

- 37. カーボンナノチューブを、該カーボンナノチューブの表面上に官能基を均一に置換することが可能な反応体の有効量と接触させることを含む、カーボンナノチューブの表面を官能基によって均一に置換する方法。
 - 38. 反応体がフタロシアニンである、請求項37の方法。
- 39. 反応体がニッケル(II) フタロシアニンテトラスルホン酸(テトラナトリウム塩) または1, 4, 8, 11, 15, 18, 22, 25-オクタブトキシー29H, 31H-フタロシアニンである、請求項38の方法。
- 40. カーボンナノチューブを、該カーボンナノチューブの表面上に官能基を置換するための反応体の有効量と接触させることを含む方法によって製造された表面修飾カーボンナノチューブ。
- 41. 反応体がフタロシアニンである、請求項40の表面修飾カーボンナノチューブ。
- 42. 反応体がニッケル(II) フタロシアニンテトラスルホン酸(テトラナトリウム塩) または1, 4, 8, 11, 15, 18, 22, 25ーオクタブトキシー29H, 31Hーフタロシアニンである、請求項42の表面修飾カーボンナノチューブ。

- 43. NHSエステル基を担持するナノチューブとタンパク質とを、NHSエステルとタンパク質のアミン基との間に共有結合を形成するのに十分な条件下で、接触させる工程を含む、ナノチューブにタンパク質を連結させる方法。
 - 44. 官能化されたナノチューブを含む電極。
 - 45. 電極が多孔性フロースルー電極である、請求項44の電極。
- 46. 官能化されたナノチューブがフタロシアニン置換ナノチューブである請求項45の電極。
- 47. 官能化されたナノチューブの網状構造の多重からなる多孔性材料であって、前記の官能化されたナノチューブの網状構造は少なくとも1つのリンカー成分によって官能基で連結されている少なくとも2つの官能性フィブリルからなり、前記リンカー成分が二官能性または多官能性どちらかである、前記多孔性材料。
 - 48. 試料から対象溶質を分離する方法であって、

官能化されたナノチューブを生成するのに十分な条件下で、グラファイト性ナ ノチューブの表面炭素を少なくとも一つの適切な試薬によって物理的又は化学的 に修飾し:

官能化されたナノチューブ上に、対象溶質と結合可能な基質を固定化し;そして

官能化されたナノチューブ上に固定化された基質に対象溶質が結合するのに十分な条件下で、置換ナノチューブを対象溶質含有画分に曝す 諸工程を含む、前記方法。

- 49. 対象溶質がタンパク質である、請求項48の方法。
- 50. 官能化されたナノチューブを回収する工程を更に含む、請求項49の方法
- 51. 官能化されたナノチューブが多孔性マットの形態にある、請求項48の方法。
 - 52. 官能化されたナノチューブが充填カラムの形態にある、請求項48の方法
 - 53. 結合が可逆的である、請求項48の方法。
 - 54. 結合がイオン性相互作用である、請求項48の方法。

- 55. 結合が疎水性相互作用である、請求項48の方法。
- 56. 結合が特異分子認識を介してである、請求項48の方法。
- 57. 官能化されたナノチューブの複数と連結している 2 5 μより小さい直径を有する本質的に球形のビーズを含むポリマービーズ。
 - 58. ビーズが磁性である、請求項57のポリマービーズ。
- 59. 少なくとも一つの反応体が少なくとも一つの生成物に転化される反応を触 媒する方法であって、

官能化されたナノチューブを生成するのに十分な条件下で、グラファイト性ナ ノチューブの表面炭素を少なくとも一つの適切な試薬によって物理的又は化学的 に修飾し;

官能化されたナノチューブ上に、反応を触媒できる生体触媒を固定化し;そして

官能化されたナノチューブと反応体(単数または複数)とを、反応体(単数または複数)が生成物(単数または複数)に転化するのに十分な条件下で、接触させる

諸工程を含む、前記方法。

- 60. 官能化されたナノチューブを、反応が完了した後に回収する工程を更に含む、請求項59の方法。
- 61. 官能化されたナノチューブが多孔性マットの形態にある、請求項59の方法。
- 62. 官能化されたナノチューブが充填カラムの形態にある、請求項59の方法
- 63. ペプチドの末端アミノ基を可逆的リンカーを介してナノチューブに結合させる工程を含む、ペプチドを合成する方法。
- 64. リンカーが 4 (ヒドロキシメチル) フェノキシ酢酸である、請求項 6 3 の方法。

【発明の詳細な説明】

官能化されたナノチューブ

関連出願のクロス・リファレンス

本願は1994年12月8日に出願された米国出願第08/352,400号 の一部継続出願であり、原出願の内容は本願明細書中に組み入れられる。

発明の分野

広くは、本発明は化学的置換によって又は官能性成分の吸着によって官能化されているグラファイト性ナノチューブに関し、管状フラーレン(通常、「バッキーチューブ」と称する)やフィブリルをも包含する。より詳しくは、本発明は、化学的成分によって均一に又は不均一に置換されている又は特定の環式化合物が吸着されているグラファイト性ナノチューブに関する、及びかかる官能化されたフィブリルか互いに連結されて成る複合体構造(complex structure)に関する。本発明はまた、かかるフィブリルの表面に官能基を導入する方法に関する。

発明の背景

1976年に、遠藤ら (Obelin, A., and Endo, M., J. of Crystal Growth,

Vol. 32 (1976), pp. 335-349参照、それは本願明細書中に組み

入れられる)はかかるカーボンフィブリルの成長の基本的メカニズムを解明した。炭化水素含有気体の存在下では炭素の中に過飽和するようになる金属触媒粒子に由来することがわかった。円筒状の秩序化されたグラファイトコアが押し出され、それは遠藤らによれば熱分解付着グラファイト(pyrolytically deposited graphite)の外層で直ちに被覆されてしまう。熱分解オーバーコートを有するこれらフィブリルは直径が0. 1 μ を越し、より一般的には0. $2\sim0$. 5 μ である。

1983年には、テナント(Tennent)の米国特許第4,663,230号(これは本願明細書中に組み入れられる)は熱分解炭素によって汚染されていない円筒状の秩序化されたグラファイトコアを成長させることに成功した。従って、テナントの発明はより小さい直径の、代表的には35~700オングストローム(0.0035~0.070 μ)のフィブリルの入手及び「成長したとき(asgrown)」秩序化されているグラファイト表面の入手を提供した。しかし、熱分解炭素の外層をもたないけれども、もっと完全でない構造のフィブリル炭素も成長した

本願における官能化されたフィブリル、バッキーチューブ及びナノチューブは補強材として市販されている連続カーボンファイバーとは区別される。アスペクト比が望ましいことに大きいが限定されることを回避できないフィブリルとは対照的に、連続カーボンファイバーはアスペクト比(L/D)が少なくとも 10^4 であり、しばしば 10^6 以上である。また、連続ファイバーの直径はフィブリルのそれよりもはるかに大きく、常に、 $>1.0\mu$ であり、代表的には、 $5\sim7\mu$ である。

連続カーボンファイバーは、有機前駆体ファイバー、通常、ナイロン、ポリアクリロニトリル (PAN) 及びピッチ、の熱分解によって製造される。従って、それらはその構造の内部にヘテロ原子を包含しているであろう。「製造されたとき(as made)」連続のカーボンファイバーのグラファイト特性は多様である、しかし、それらのファイバーは後でグラファイト化工程を受けてもよい。存在するならばグラファイト平面のグラファイト化度、配向度および結晶化度の相違、ヘ

テロ原子の存在の可能性、および更には基質直径の絶対的相違は、連続ファイバーによる経験はナノファイバー化学の予想に役立たない。

テナントの米国特許第4,663,230号には、連続の熱的カーボン外被を含有しないで、フィブリル軸に実質的に平行な多数のグラファイト外層を有するカーボンフィブリルが記載されている。たとえば、それらは、グラファイトの湾曲層の接線に対して垂直である(すなわち、それらの円筒軸に対して実質的に垂直である) c 軸を有するものとして特徴付けられるであろう。それらは一般的には 0.1μ 以下の直径と少なくとも 5 の長さ/直径比を有する。望ましくは、それらは、連続の熱的カーボン外被、即ち、それらを製造するのに使用した気体供給材料の熱分解からもたらされる熱分解付着炭素、を実質的に含有しない。

テナントの米国特許第 5, 171, 560号(これは本願明細書中に組み入れられる)には、熱的外被を含有せずに、フィブリル軸に実質的に平行なグラファイト層を有し前記フィブリル軸上の前記層の突起がフィブリル直径少なくとも 2つ分の距離延びているカーボンフィブリルが記載されている。代表的には、かかるフィブリルは実質的に一定の直径を有する実質的に円筒状のグラファイト性ナノチューブであり、それはその c 一軸がその円筒軸に対して実質的に垂直であるところの円筒状のグラファイトのシートからなる。それらは熱分解付着炭素を実質的に含有しないし、0.1 μ より小さい直径と5より大きい長さ/直径比を有する。これらフィブリルは本発明においても第一に関心がある。

カーボンフィブリル集合体の生成に関する更なる詳細は、1988年1月28日出願のスナイダー(Snyder)らの米国特許出願第149,573号、及び1989年1月28日出願のPCT出願US89/00322号(「カーボンフィブリル」)WO89/07163、及び1989年9月28日出願のモイ(Moy)らの米国特許出願第413,837号、及び1990年9月27日出願のPCT出願第US90/05498号(「フィブリル集合体及びその製法」)WO91/05089、の開示の中に見いだされる。これらはいずれも本発明と同じ譲受人に対して譲渡されており、いずれも本願明細書中に組み入れられる。

1992年5月22日出願のモイらの米国特許出願第07/887,307号 (これは本願明細書中に組み入れられる)には、(走査電子顕微鏡検査法によっ

て測定したときの)様々な巨視的形態を有する集合体として製造されたフィブリルが記載されており、そこでは、それらは鳥の巣(bird nest)(「BN」)に似ているフィブリルの絡み合ったボールを形成するように互いに無作為に絡み合っている;又は、実質的に同じ相対整列を有し梳毛糸(combed yarn)(「CY」)の外観を有する僅かに曲がった又はねじれたカーボンフィブリルに対して真っ直ぐな束からなる集合体として存在する、例えば、各フィブリルの長軸は(個々の曲がり又はねじれにもかかわらず)束の中の取り囲んでいるフィブリルのそれと同じ方向に延びている;又は、「オープン ネット(open net)」(「ON」)構造を形成するように互いにゆるく絡み合っている僅かに曲がった又はねじれたフィブリルに対して真っ直ぐに構成されている集合体として存在する。オープンネット構造においてはフィブリルの絡み合いの度合いは、(個々のフィブリルが実質的に同じ相対整列を有する)梳毛糸的集合体において観察されるものよりも大きいが、鳥の巣のそれよりも少ない。CY集合体およびCN集合体はBNよりも容易に分散され、そのことはそれらをして、構造全体に一様な性質が望まれる複合体の製造に有効ならしめる。

フィブリル軸上のグラファイト層の突起がフィブリル直径2つ分より小さい距離延びている場合には、グラファイト性ナノチューブの断面における炭素平面はヘリングボーン(herring bone)外観をおびる。これらをフィッシュボーン フィブリルと称する。ギアス(Geus)の米国特許第4,855,091号(これは本願明細書中に組み入れられる)は、熱分解外被を実質的に含有しないフィッシュボーン フィブリルの製造手順を提供している。これらフィブリルも本発明の実施に有効である。

上記の触媒作用で成長したフィブリルに類似する形態を有するカーボンナノチューブは高温の炭素アークで成長した(Iijima, Nature <u>354</u>, 56, 1991)。今では、これらアーク成長ナノチューブはテナントの触媒成長フィブリルと同じ形態を有することが一般に受け入れられている(Weaver, Science <u>265</u>1994)。アーク成長したカーボン ナノチューブも本発明に有効である。

1989年5月31日に出願されたマッカーシー (McCarthy) らの米国特許出願第351,967号 (これは本願明細書中に組み入れられる) には、カーボン

フィブリルの表面を酸化する方法が記載されており、それはフィブリルの表面を酸化するのに十分な反応条件(例えば、時間、温度、及び圧力)の下でフィブリルを、硫酸 $(H_2 S O_4)$ や塩素酸カリウム $(K C I O_3)$ も包含する酸化剤と接触させることを包含する。マッカーシーらの方法に従って酸化されたフィブリルは非一様に酸化されている、即ち、炭素原子はカルボキシルとアルデヒドとケトンとフェノールとその他の炭化水素基との混合物によって置換されている。

フィブリルは硝酸による処理によっても非一様に酸化された。国際出願PCT / US94/10168には、官能基の混合物を含有する酸化フィブリルの生成が開示されている。また、M. S. ホウゲンバード(Hoogenvaad)ら(1994年9月にベルギーのブルッセルで開催された、不均質触媒の製造のための科学的基礎に関する第6回国際会議で呈示された「新規炭素支持体上に支持された金属触媒(Metal Catalysts supported on a Novel Carbon Support)」)は、フィブリル支持貴金属の製造にはフィブリル表面を硝酸でまず酸化することが有利であることを見いだしている。酸によるかかる前処理は炭素で支持された貴金属触媒の製造では標準工程であり、その場合、かかる炭素の通常の源が与えられたら、望ましくない材料の表面を清浄にすることはそれを官能化するのと同じように役に立つ。

公開された研究において、マッカーシーとベンディングは(McCarthy and Ben ding, Polymer Preprints ACS Div. of Polymer Chem. 30 (1) 420 (1990))、表面が様々な酸化された基から構成されたことを実証するために酸化フィブリルの誘導体を製造した。彼らが製造した化合物、フェニルヒドラゾン、ハロ芳香族エステル、タリウム塩、等々は、それらの分析有用性、例えば、鮮やかに着色すること、又は何らかのその他の強度及び容易に同定され区別されるしるしを有することを理由に、選ばれた。これら化合物は単離されなかったし、ここに記載される誘導体と違って実際上意味をもたない。

上記の特許及び特許出願に記載されているように、カーボンフィブリルおよび カーボンフィブリル集合体には多くの用途が見いだされているが、フィブリル表 面が官能化されるならば多数の異なった重要な用途が開発されるであろう。均一 又は不均一どちらかの官能化は官能化されたフィブリルと多様な基質との相互作 用が独特の性質を有する物質の独特の組成物を生成することを可能にするし、またフィブリル表面の官能性サイト間の結合に基づいてフィブリル構造体がつくられることを可能にする。

発明の目的

本発明の第一の目的は官能化されているフィブリル、即ち、それと組み合わされた官能性化学成分を有するようにその表面が均一又は不均一に修飾されている (modified) フィブリル、を提供することである。

本発明の別の関連する目的は酸化させる化学的媒体又はその他の化学的媒体との反応によりその表面が官能化されているフィブリルを提供することである。

本発明の更に別の関連する目的はその表面が化学反応によるか又は化学反応性をそれ自身有する種の物理吸着によるかどちらかによって一様に修飾されているフィブリルを提供することである。

本発明の更に別の目的は表面が例えば酸化によって修飾されており官能基との 反応によって更に修飾されるフィブリルを提供することである。

本発明の更に別の関連する目的はフィブリルが様々な基質の中の化学基に化学的に反応できる又は物理的に結合できるように表面が或る範囲の官能基によって修飾されているフィブリルを提供することである。

本発明の更に別の関連する目的はフィブリル上の官能基を或る範囲のリンカー 化学作用によって互いに連結させることによってフィブリルの錯体構造を提供す ることである。

本発明の更に別の関連する目的は、各々の場合に、フィブリルの表面と組み合わされた官能性成分を提供するように、フィブリル表面を化学的に修飾する方法及びフィブリルの表面に種を物理的に吸着させる方法を提供することである。

本発明の更に別の目的は官能化されているフィブリルを基材とした物質の新規 合成物を提供することである。

図面の簡単な説明

図1はプレーン フィブリル、カルボキシ フィブリル、および P E G で修飾 されたフィブリルに対する B S A 結合の検定を表すグラフである。

図2は2つの異なる方法により製造したカルボキシフィブリル及びPEG修飾

フィブリルに対するβーラクトグロブリン結合の検定を表すグラフである。

図3は第三アミン フィブリル カラムでのウシ血清アルブミン (bovine ser um albumin) (BSA)の溶離プロフィールを表すグラフである。

図 4 は第四アミン フィブリル カラムでの B S A の溶出プロフィールを表す グラフである。

図5はリジン系のデンドリマー性フィブリル(dendrimeric fibril)を製造するための反応順序である。

図6は鉄フタロシアニン修飾フィブリルの、フローセルでの使用を実証するサイクリックボルタモグラムを表すグラフである。

図8はフィブリルに固定化されたリパーゼを使用しての酪酸エチルの合成の結果を表すグラフである。

図9はアルカリ性ホスファターゼ(AP)と β -ガラクトシダーゼ(β G)の混合物から、AP阻害剤修飾フィブリルを使用して、APを分離した結果を表すグラフである。

図 1 0 は β G 修飾フィブリルを使用して A P E β G の混合物から β G を分離した結果を表すグラフである。

発明の詳細な説明

本発明は、広くは式

 $[C_n H_1 + R_m]$

〔式中、

nは整数であり、Lは0.1nより小さい数であり、mは0.5nより小さい数であり、

Rの各々は同一であって、

SO3H, COOH, NH2, OH, R'CHOH, CHO, CN, COC1, ハライド, COSH, SH, COOR', SR', SiR'3,

 $Si \leftarrow OR' \rightarrow$, $R'_{3-\gamma}$, $Si \leftarrow O-SiR'_{2} \rightarrow OR'$, R'' , Li , AlR'_{2} , Hg-X, TlZ_{2} およびMg-X,

から選ばれ、

yは3以下の整数であり、

R'は水素、アルキル、アリール、シクロアルキル、またはアラルキル、シクロアリール、またはポリ(アルキルエーテル)であり、

R"はフルオロアルキル、フルオロアリール、フルオロシクロアルキル、フルオロアラルキルまたはシクロアリールであり、

xはハライドであり、そして

Zはカルボキシレートまたはトリフルオロアセテートである]

を有する合成物に関する。

炭素原子、 C_n は、実質的に一定の直径を有する実質的に円筒状のグラファイト性ナノチューブの表面炭素である。ナノチューブは、5より大きい長さ/直径比と、 0.5μ より小さい、好ましくは 0.1μ より小さい直径を有するものを包含する。ナノチューブは熱分解付着炭素を実質的に含有しない実質的に円筒状のグラファイト性ナノチューブであることもでき、より好ましくは、フィブリル軸上のグラファイト層の突起がフィブリル直径の少なくとも2つ分の距離延びているもの及び/又はその10 軸がその円筒軸に実質的に垂直である円筒状のグラファイトのシートを有するものであることができる。これら組成物は10 の各々が同一であることにおいて均一である。

不均一に置換されたナノチューブも製造される。これらは式

 $\{C_n H_L + R_m\}$

(式中、n、L、m、Rおよびナノチューブ自体は上記定義通りであるが、Rの各々が酸素を含有しないこと又はRの各々が酸素含有基である場合にはCOOHが存在しないことを条件とする)の合成物を包含する。

定

$[C_n H_L + R_m]$

(式中、n、L、m、R及び及びR'は上記と同じ意味を有し、そして炭素原子は5より大きい長さ/直径比を有するフィッシュボーン フィブリルの表面炭素である)を有する官能化されたナノチューブも本発明に包含される。これらは均一に又は不均一に置換されている。好ましくは、ナノチューブは熱的外被を含有

せず、そして0.5μより小さい直径を有する。

また、本発明には、式

$[C_n H_l + [R' - R]_m]$

(式中、n、L、m、R'及びRは上記と同じ意味を有する)を有する官能化されたナノチューブも包含される。炭素原子、 C_n は実質的に一定の直径を有する実質的に円筒状のグラファイト性ナノチューブの表面炭素である。ナノチューブは5より大きい長さ/直径比と、0. 5μ より小さい、好ましくは、0. 1μ より小さい直径を有する。ナノチューブは、熱分解付着炭素を実質的に含有しないナノチューブであってもよい。より好ましくは、ナノチューブはフィブリル軸上のグラファイト層の突起がフィブリル直径の少なくとも2つ分の距離延びているもの及び/又はそのc軸がその円筒軸に実質的に垂直である円筒状のグラファイトのシートを有するものである。

均一に置換されているナノチューブ及び不均一に置換されているナノチューブ どちらにおいても、表面炭素 C_n は反応されている。グラファイト性フィブリル の表面層の中の大抵の炭素原子は、グラファイトにおいてそうであるように、基 礎面炭素である。基礎面炭素は化学的攻撃に対して比較的不活性である。欠陥サイトには、例えば、グラファイト平面がフィブリルの周りに完全に延びていない ところには、グラファイト平面のエッジ炭素原子と同類の炭素原子が存在する(エッジ及び基礎面の炭素に関する議論については、Urry, Elementary Equilibri um Chemistry of Carbon, Wiley, New York 1989を参照)。

欠陥サイトにおいては、ナノチューブのもっと下の内層のエッジ又は基礎面の 炭素が露出しているであろう。用語、表面炭素はナノチューブの最外層の基礎面 とエッジの全炭素ばかりでなく、最外層の欠陥サイトにおいて露出しているであ ろう下層の基礎面及び/又はエッジどちらの炭素をも包含する。エッジ炭素は反 応性であり、そして炭素原子価を満たすために或る種のヘテロ原子又は基を含有 しなければならない。

上記の置換ナノチューブは有利には更に官能化されてもよい。かかる合成物は 式

[C. HL+Am

〔式中、炭素はナノチューブの表面炭素であり、n、Lおよびmは上記の通りであり、

Aの各々は

から選ばれ、

Yは、タンパク質、ペプチド、アミノ酸、酵素、抗体、ヌクレオチド、オリゴ ヌクレオチド、抗原、又は酵素基質、酵素阻害剤又は酵素基質の遷移状態類似体 の適切な官能基であり、又は

R'
$$-OH$$
, R' $-NR'_{2}$, R' SH , R' CHO , R' CN , R' X , R' N^{+} (R') $_{3}$ X^{-} , R' SiR'_{3} , R' $Si \leftarrow OR' \rightarrow_{\nu}$ R' $_{3}$,, R' $Si \leftarrow O-SiR'_{2} \rightarrow OR'$, R' $-R''$, R' $-N-CO$, (C₂ H_{4} $O \rightarrow_{w}$ $H_{5} \leftarrow C_{3}$ H_{6} $O \rightarrow_{w} -H_{5} \leftarrow C_{2}$ H_{4} $O)_{w}$ $-R'$,

 $(C_3 H_6 O)_v - R'$.

から選ばれ、

そしてwは1より大きくかつ200より小さい整数である〕 の合成物を包含する。

炭素原子、 C_n は、直径が実質的に一定である実質的に円筒状のグラファイト性ナノチューブの表面炭素である。ナノチューブは5より大きい長さ/直径比と、 $0.1~\mu$ より小さい、好ましくは $0.05~\mu$ より小さい直径とを有するものを包含する。ナノチューブはまた、熱分解付着炭素を実質的に含有しない実質的に円

筒状のグラファイト性ナノチューブであることができる。より好ましくは、それ

らはフィブリル軸上のグラファイト層の突起がフィブリル直径の少なくとも 2つ分の距離延びていることを特徴とし、及び/又はそれらはその c 軸がその円筒軸に実質的に垂直である円筒状のグラファイトのシートから構成されている。好ましくは、ナノチューブは熱的オーバーコートを含有せず、そして 0. 5 μ より小さい直径を有する。

構造

$$[C_n H_L + [R' - R]_m$$

の官能性ナノチューブは、式

$$[C_n H_1 + [R' - A]_m$$

を有する合成物を生成するように官能化されてもよい。式中、n、L、m、R 'および A は上記定義通りである。炭素原子、 C_n は、実質的に一定の直径を有する実質的に円筒状のグラファイト性ナノチューブの表面炭素である。ナノチューブは 5 より大きい長さ/直径比と、0. 5 μ より小さい、好ましくは 0. 1 μ より小さい直径とを有するものを包含する。ナノチューブはまた、熱分解付着炭素を実質的に含有しない実質的に円筒状のグラファイト性ナノチューブであることができる。より好ましくは、それらはフィブリル軸上のグラファイト層の突起がフィブリル直径の少なくとも 2 つ分の距離延びていることを特徴とし、及び/又はそれらはその c 軸がその円筒軸に実質的に垂直である円筒状のグラファイトのシートから構成されている。好ましくは、ナノチューブは熱的オーバーコートを含有せず、そして 0. 5 μ より小さい直径を有する。

本発明の合成物は或る種の環状化合物が吸着されているところのナノチューブ も包含する。これらは、式

$$[C_n H_t + [X - R_n]_m$$

(式中、nは整数であり、Lは0. 1 nより小さい数であり、mは0. 5 nより小さい数であり、a はゼロであるか又は1 0より小さい数であり、X は多核芳香族、ポリヘテロ核芳香族またはメタロポリヘテロ核芳香族成分であり、そしてR は上記の通りである)の物質の合成物を包含する。炭素原子、 C_n は、実質的に

一定の直径を有する実質的に円筒状のグラファイト性ナノチューブの表面炭素である。ナノチューブは5より大きい長さ/直径比と、0.5 μより小さい、好ま

しくは 0.1μ より小さい直径とを有するものを包含する。ナノチューブはまた熱分解付着炭素を実質的に含有しない実質的に円筒状のグラファイト性ナノチューブであることができ、そしてより好ましくは、前記フィブリル軸上のグラファイト層の突起がフィブリル直径の少なくとも 2 つ分の距離延びていることを特徴とするもの及び/又はその c 軸がその円筒軸に実質的に垂直である円筒状のグラファイトのシートを有するものであることができる。好ましくは、ナノチューブは熱的オーバーコートを含有せず、そして 0.5μ より小さい直径を有する。

好ましい環状化合物は、コットンとウィルキンソンのアドバンスド オーガニック ケミストリー (Cotton and Wilkinson, Advanced Organic Chemistry) の76頁に記載されている通りの平面状の大環式化合物である。より好ましい環式化合物はポリフィリンおよびフタロシアニンである。

吸着された環式化合物は官能化されてもよい。かかる組成物は、式

$$[C_n H_1 + [X - A_n]_m$$

(式中、m、n、L、a、XおよびAは上記定義通りであり、そして炭素は上記の通り実質的に円筒状のグラファイト性ナノチューブの表面炭素である)の化合物を包含する。

上記のように官能化されたカーボンフィブリルはマトリックスの中に組み入れられてもよい。好ましくは、マトリックスは有機重合体(例えば、熱硬化樹脂、例えば、エポキシ、ビスマレイミド、ポリアミド、またはポリエステル樹脂;熱可塑性樹脂;反応射出成形樹脂;またはエラストマー、例えば、天然ゴム、スチレンーブタジエンゴムまたはシスー1, 4ーポリブタジエン);無機重合体(例えば、ポリマー性無機酸化物、例えばガラス)、金属(例えば、鉛または銅)、またはセラミック材料(例えば、ポルトランド セメント)である。フィブリルを組み入れてあるマトリックスからビーズを形成してもよい。代替では、官能化されたフィブリルを官能化されたビーズの外表面に結合させることができる。

特定の理論に拘束するつもりはないが、官能化されたフィブリルは改質された

表面特性が重合体との混和性がより良いので、又は修飾された官能基(特に、ヒ ドロキシ又はアミン基)が末端基として重合体に直接結合するので、重合体の系 の中により良く分散される。この手法では、ポリカーボネート、ポリウレタン、

ポリエステル又はポリアミド/イミドのようなポリマー系はフィブリルに直接結合してフィブリルを改良された付着性をもって分散させることを容易にする。

本発明はまた、カーボン フィブリルと強い酸化剤とを、前記フィブリルの表面を酸化するのに十分な時間接触させ、そして更に前記フィブリルを酸化表面に官能基を付加するのに適する反応体と接触させることによってカーボン フィブリルの表面に官能基を導入する方法にある。本発明の好ましい態様においては、酸化剤は強酸中のアルカリ金属塩素酸塩の溶液からなる。本発明の別の態様においては、アルカリ金属塩素酸塩は塩素酸ナトリウム又は塩素酸カリウムである。好ましい態様においては、使用される強酸は硫酸である。酸化に十分な時間は約0.5時間~約24時間である。

本発明はまた、NHSエステルによって修飾されたナノチューブにタンパク質を、NHSエステルとタンパク質のアミノ基との間に共有結合を形成することによって、結合させる方法にある。

本発明はまた、カーボンフィブリルの表面を酸化するのに十分な時間カーボンフィブリルと酸化剤を接触させ、表面酸化されたカーボンフィブリルをカーボンフィブリルの表面に官能基を付加するのに適する反応体と接触させ、そして表面官能化されたフィブリルをカーボンフィブリルの網状構造を生成するのに有効な架橋剤と更に接触させることを含む、カーボンフィブリルの網状構造を生成する方法にある。好ましい架橋剤はポリオール、ポリアミンまたはポリカルボン酸である。

官能化されたフィブリルはフィブリルの硬質網状構造を製造するのにも有効で

ある。酸官能化フィブリルのよく分散された三次元網状構造は、例えば、酸基 (インター-フィブリル)をポリオールまたはポリアアミンによって架橋結合させて硬質網状構造を形成することによって安定化されてもよい。

本発明はまた、本発明の官能化されたフィブリルを連結させることによって形

成された三次元網状構造を包含する。これら複合体は直接結合又は化学成分を含む一つまたはそれ以上のリンカーによって連結された少なくとも2つの官能化されたフィブリルを包含する。これら網状構造は顕著に一様な均等な孔径の多孔性 媒体を構成する。それらは吸着剤、触媒支持体及び分離膜として有効である。

これらフィブリル間の隙間は大きさ及び形状どちらにおいても不規則であるけれども、それらは多孔質として考えることができ、そして多孔性媒体を特徴付けるのに使用した方法によって特徴付けられる。かかる網状構造の中の隙間の大きさはフィブリルの分散の濃度とレベル及び架橋剤の濃度と鎖長によってコントロールすることができる。かかる材料は構造化された触媒支持体として作用することができ、そして特定の大きさの分子を排除又は包含するように調節されてもよい。通常の工業用触媒の外に、それらは生体触媒(biocatalyst)のための大きな気孔の多孔性支持体として特殊な用途を有する。

硬質網状構造は分子認識のための生体模倣系における骨格としても役立つことができる。かかる系は米国特許第5,110,833号および国際特許公報WO93/19844号に記載されている。架橋剤及び錯化剤についての適切な選択は特異な分子フレームワークの安定化を可能にする。

ナノチューブを官能化する方法

本発明の均一に官能化されたフィブリルはスルホン化や、脱酸素化されたフィブリル表面への求電子付加や、メタレーションによって直接に製造できる。アーク成長ナノチューブを使用する場合には、官能化に先立って長大な精製を必要とするかも知れない。エバスンらは(Ebbesen et al., Nature 367 519 (1994))、かかる精製のための手順を与えている。

好ましくは、カーボンフィブリルはそれらを官能化剤と接触させる前に加工される。かかる加工はフィブリルを溶剤中に分散させることを包含するであろう。

場合によっては、それから、カーボンフィブリルは更なる接触に先立って濾過され乾燥される。

1. スルホン化

背景技術は次の文献に記載されている:March, J.P., Advanced Organic Chemistry, 3rd Ed., Wiley, New York 1985; House, H., Mordern

Synthetic Reactions, 2nd Ed., Benjamin/Cummings, Menlo Park, CA 1972

活性化されたC-H(芳香族のC-Hも含まれる)結合は SO_3 、を20%まで含有する濃硫酸の溶液である発煙硝酸(oleum)を使用してスルホン化することができる。通常の方法は発煙硫酸を使用してT約80%における液相を通してである:しかしながら、活性化されたC-H結合は不活性な非プロトン性溶媒中の SO_3 又は蒸気相中の SO_3 を使用してスルホン化することも可能である。反応は次の通りである:

$$-C-H + SO3 ----> -C-SO3 H$$

過剰反応は次の反応に従ってスルホンの生成を生じる:

硫酸の使用によるC-H結合の活性化

反応は気相中と溶液中で行い、結果に有意差を生じなかった。蒸気相反応はリンドバーグ炉によって加熱された水平石英管反応器の中で行った。気体流入/流出管を装着した、濃硫酸中に S O₃ 2 0 %を含有する多ロフラスコを、S O₃ 源として使用した。

磁製ボートの中のフィブリル(BNまたはCC)の秤量試料を、気体導入口を装備した1インチ管の中に入れた;流出口は濃硫酸バブラートラップ(bubbler trap)に接続した。反応器全体にアルゴンを20分間フラッシュして全空気を除き、そして試料を300℃に1時間加熱して残留水分を除去した。乾燥後、アルゴン下で温度を反応温度に調節した。

所定温度が安定化されたら、SO₃源を反応器管に接続し、そしてアルゴン流

を使用してSO₃蒸気を石英管反応器の中に送った。反応は所定温度で所定時間行い、その後で反応器をアルゴン流の下で冷却した。それからフィブリルを5" Hg真空で90℃で乾燥して乾燥重量利得を得た。スルホン酸(-SO₃H)含 有量は0.100NのNaOHとの反応および終点としてpH6.0を使用しての0.100NのHC1による逆滴定によって求めた。

液相反応は温度計/温度コントローラー及び磁気攪拌機を装着した100ccの 多ロフラスコの中でSO3 20%を含有する濃硫酸中で行った。濃硫酸(50)

の中のフィブリルスラリーをフラスコに入れた。発煙硫酸溶液(20cc)を反応器に加える前に約60℃に予め加熱した。反応後、酸スラリーを砕いた氷の上に注ぎ、そして直ちに1リットルの脱イオン水で希釈した。固体を濾過し、そして洗浄排出液のpHが変化しなくなる迄、脱イオン水で完全に洗浄した。フィブリルを5"Hg真空で100℃で乾燥した。濾過での移し替えによる損失のせいで、厳正な重量増加は観察されなかった。結果は表1に列挙されている。

<u>表1</u> 反応のまとめ

実施例	実験#	反応	試料 重wt.g	フィブリル の タイプ	T° C	時間	韓 量	SO₃H濃度 meq/g
1 A	118-60A	気相	0.20	CY	110	15 m	9. 3%	0. 50
1 B	118-61A	気相	0.20	BN	100	30 m	8. 5%	0, 31
1 C	118-61B	気相	0. 20	BN	65	15 m	4. 2%	0. 45
1 D	118-56A	液相	1.2	CY	50	10 m		0. 33
1 E	118-56B	液相	1. 0	CY	25	20 m		0. 40

蒸気相または液相での反応によるスルホン酸含量に有意差はなかった。温度効果はあった。より高い温度の反応(蒸気相)はより高い量のスルホンを与える。 118-61Bでは、4.2%の重量増加はスルホン酸含量と一致した(理論値は0.51meq/gであった)。実験60Aおよび61Aはスルホン酸含量によるだけと説明するには高すぎる重量増加を有した。従って、かなりの量のスルホンも製造されたと推定された。

2. 酸化物を含有しないフィブリル表面への付加

背景技術は次の文献に記載されている: Urry, G., Elementary Equilibrium_C hemistry of Carbon, Wiley, New York 1989。

フィブリルの中の表面炭素はグラファイトのように挙動する、すなわち、それらは基礎面とエッジ両方の炭素を含有する六方晶シート(hexagonal sheet)の状態に配列されている。基礎面炭素は化学的攻撃に比較的不活性であるが、エッジ炭素は反応性であり、そして炭素原子価を満たすために或る種のヘテロ原子また

は基を含有しなければならない。フィブリルは、基本的にエッジ炭素であり且つ ヘテロ原子または基を含有するところの表面欠陥サイトも有している。

フィブリルの表面炭素に結合した最も普通のヘテロ原子は次のものである:水素、製造中の主な気体成分;酸素、その高い反応性のせい及びその痕跡を回避するのが非常に難しいせい;及びH₂O、それは触媒のせいで常に存在する。真空中での約1000℃における熱分解はメカニズムが未知であるが化学量論量がわかっている複雑な反応で表面を脱酸素化するであろう。生成物は2:1比のCOとCO₂である。得られるフィブリル表面はC₁-C₁配列における基を含有しており、それら基は活性化されたオレフィンに対して非常に反応性である。表面は真空中で又は不活性気体の存在下で安定であるが、反応性気体に曝されるまではその高い反応性を維持する。従って、フィブリルは真空中で又は不活性雰囲気下で約1000℃で熱分解されること、これら同一条件下で冷却されること、そしてより低い温度で適切な分子と反応して安定な官能基を与えることができる。代表的な例は次の通りである:

引き続き:

 $RFS + CH₂ = CHCOX \xrightarrow{1 \ 0 \ 0 \ 0} C$

-OH, -C1, -NH₂, -H

RFS + 無水マレイン酸 -----> フィブリルーR' (COOH)2

RFS + シアノゲン -----> フィブリルーCN

RFS + $CH_2 = CH - CH_2 X \longrightarrow 7 \pi J J J J - R' CH_2 X$

 $X = -NH_2$, -OH, -NDFV,

RFS + H₂ O -----> フィブリル=O(キノイド性)

RFS + CH₂ = CHCHO ----> フィブリルーR' CHO (アルデ

ヒド性)

 $RFS + CH₂ = CH - CN - - - > 7 \pi J U - R' CN$

但しR'は炭化水素基(アルキル、シクロアルキル、等)

実施例2

アクリル酸と無酸化物フィブリル表面との反応による 官能化されたフィブリルの製造

磁製ボートの中の1gのBNフィブリルを、熱電対を装着した水平の1"石英管の中で入れ、そしてリンドバーグ管炉の中に置いた。端部に気体流入口/流出口を装着した。管を乾燥脱酸素アルゴンで10分間パージした後に、炉の温度を300℃に昇げて30分維持した。その後で、アルゴンの連続流の下で、温度を100℃増分で1000℃まで昇げ、そして16時間維持した。その後で、管をアルゴン流の下で室温(RT)に冷却した。それから、アルゴンの流れをそらして50℃の純粋な精製アクリル酸を含有し気体流入口/流出口を装着した多口フラスコを通るようにした。アクリル酸/アルゴン蒸気の流れはRTで6時間継続した。その後に、残留した未反応アクリル酸の除去を、まずアルゴンによるパージによって、それから<5"真空で100℃での真空乾燥によって、行った。カルボン酸含量は、過剰の0.100NのNaOHとの反応とpH7.5の終点まで0.100NのHCIで逆滴定することによって測定した。

<u>実施例3</u>

アクリル酸と無酸化物フィブリル表面との反応による 官能化されたフィブリルの製造

手順は熱分解と冷却を 10^{-1} トール真空で行ったこと以外は上記手順と同じように繰り返した。精製アルリル酸蒸気は上記手順におけるようにアルゴンで希釈した。

実施例 4

マレイン酸と無酸化物フィブリル表面との反応による 官能化されたフィブリルの製造

手順はRTにおける反応体が精製した無水マレイン酸(MAN)であり、それがアルゴン気体を80℃の溶融MAN浴に通すことによって反応器に供給されたこと以外は実施例2と同じように繰り返した。

<u>実施例 5</u>

塩化アクリロイルと無酸化物フィブリル表面との反応による

官能化されたフィブリルの製造

手順はRTにおける反応体が精製した塩化アクリロイルであり、それがアルゴン気体を25℃の純粋な塩化アクリロイルの上に通すことによって反応器に供給されたこと以外は実施例2と同じように繰り返した。酸塩化物の含量は、過剰の0.100NのNaOHとの反応と0.100NのHClによる逆滴定によって測定した。

真空中でのフィブリルの熱分解はフィブリル表面を脱酸素化した。TGA装置では、真空中での又は精製Ar流の中での1000℃における熱分解はBNフィブリルの3つの試料について3%の平均重量損失を与えた。ガスクロマトグラフ分析はそれぞれ約2:1の比のCOとCO₂だけを検出した。得られた表面は非常に反応性であり、そして活性化オレフィン、例えば、アクリル酸、塩化アクリロイル、アクリルアミド、アクロレイン、無水マレイン酸、アリルアミン、アリルアルコールまたはハロゲン化アリルは室温でさえ反応して活性化オレフィンに結合したその官能基だけを含有する清浄な生成物を生成するであろう。従って、カルボン酸だけを含有する表面はアクリル酸または無水マレインとの反応によっ

て入手可能であり;酸塩化物だけを含有する表面は塩化アクリロイルとの反応によって;アルデヒドだけを含有する表面はアクロレインから;ヒドロキシルだけを含有する表面はアリルアルコールから;アミンだけを含有する表面はアリルアミンから;そしてハライドだけを含有する表面はハロゲン化アリルから、入手可能である。

3. メタレーション

背景技術は次の文献に記載されている: <u>March, Advanced Organic Chemistry</u> , 3rd ed., p 5 4 5。

芳香族C-H結合は様々な有機金属試薬によってメタレートされて炭素-金属結合 (C-M) を生成することができる。Mは通常、Li、Be、Mg、Al、またはTlである;しかしながら、その他の金属も使用できる。最も簡単な反応は活性化された芳香族の中の水素の直接置換によるものである:

1. Fibril (フィブリル) - H + R - Li -----> Fibril - Li + R H 反応は更に、強塩基、例えば、カリウム t - ブトキシド、またはキレート化用

ジアミンを必要とするかも知れない。非プロトン性溶媒は必要である(パラフィン、ベンゼン)。

- 2. Fibril-H + AlR₃ -----> Fibril-AlR₂ + RH
- 3. Fibril-H + Tl(TFA)₃ -----> Fibril-Tl(TFA)₂ + HTFA

TFAはトリフルオロアセテート。HTFAはトリフルオロ酢酸。

メタレート誘導体は第一の単独官能化されたフィブリルの例である。しかし、 それらを更に反応させて別の第一の単独官能化されたフィブリルを与えることが できる。いくつかの反応は中間体を単離せずに同じ装置で順次実施できる。 4. Fibril-M + O₂ -----> Fibril-OH + MO M= Li, Al

H⁺

Fibril
$$-M$$
 + S -----> Fibril $-SH$ + M^+ Fibril $-M$ + X_2 ----> Fibril $-X$ + MX $X=$ ハロゲン

触媒

触 媒

触 媒

Fibril-Tl(TFA)₂ + NH₃ OH ----> Fibril-NH₂ + HTFA

Fibril-Tl(TFA)2 + KCN水溶液 -----> Fibril-CN + TlTFA + KTFA Fibril-CN + H2 -----> Fibril-CH2 -NH2

実施例6

フィブリルーLiの製造

水素化されたフィブリルを、脱酸素化した乾燥ヘプタンと共に(Li Al Haと共に)、1リットルの多口丸底フラスコに移した。このフラスコには、全ての空気を除去し不活性雰囲気に維持するための精製アルゴンのパージシステム、冷却器、磁気攪拌機およびゴム隔膜(それを通してシリングで液体を加えることができ

る)が装備されていた。アルゴン雰囲気下で、ヘプタン中に5ミリモルのブチルリチウムを含有する2%溶液をシリンジによって加え、そしてこのスラリを穏やかな還流下で4時間攪拌した。その後に、フィブリルをアルゴン雰囲気グローブボックスの中で重力濾過によっ分離し、そしてフィルター上で脱酸素化乾燥ヘプタンによって数回洗浄した。フィブリルを活栓付きの50cc丸底フラスコに移し、そして 10^{-4} トル真空下で50℃で乾燥した。リチウム含量は、フィブリルの試料をDI水(脱イオン水)中で過剰の0. 100NのHCIと反応させ0. 100NのNaOHでpH 5. 100NのNaOHでpH 100NoNaOHでpH 100NoNaOHでpH 100NoNaOH 10

実施例7

フィブリルーTl(TFA)2の製造

1 gのC Cフィブリルを実施例 5 のように水素化し、そして多口フラスコの中に、乾燥アルゴンによる繰り返しパージによってガス抜きされているHTFAと共に装填した。HTFA中の5ミリモルTI(TFA) $_2$ の5%溶液をゴム隔膜からフラスコに加え、そしてこのスラリを穏やかな還流下で6時間攪拌した。反応後に、フィブリルを実施例 1 のように集め乾燥した。

<u>実施例 8</u>

フィブリルー〇Hの製造

(〇H官能化だけを含有する酸素化誘導体)

実施例6で製造したリチウム化フィブリルの0.5gを脱酸素化乾燥へプタンと共に、アルゴン雰囲気グローブバッグの中で、活栓と磁気撹拌棒を付けた50ccーロフラスコに移した。フラスコをグローブバックから取り出し、そして磁気攪拌機で攪拌した。それから、活栓を大気に対して開き、そしてスラリを24時間攪拌した。その後で、フィブリルを濾過によって分離し、そしてMeOH水溶液で洗浄し、そして5"真空で50℃で乾燥した。OH基の濃度は、ジオキサン中の無水酢酸の標準化溶液(0.252M)と80℃で反応させてOH基を酢酸エステルに転化することによって求めた。そうした場合、反応した酸無水物1モル当たり1当量の酢酸が放出される。全体の酸含量、遊離酢酸と未反応無水酢酸、は0.100NのNaOHでpH7.5の終点まで滴定することによって測定

した。

実施例9

フィブリルーNH2の製造

1 gのタリウム化フィブリルを実施例7のように製造した。フィブリルをジオキサンの中にスラリー化し、そしてジオキサンに溶解した0.5 gのトリフェニルホスフィンを加えた。スラリーを50℃で数分攪拌した後に、50℃のアンモニア気体を30分間加えた。それから、フィブリルを濾過によって分離し、ジオキサン中で、それからDI水中で洗浄し、そして5"真空で80℃で乾燥した。アミン濃度は、過剰の無水酢酸と反応させ遊離酢酸と未反応無水酢酸を0.100 NのNaOHで逆滴定することによって測定した。

4. 誘導化された多核芳香族、ポリヘテロ核芳香族

及び平面大環式の化合物

フィブリルのグラファイトの表面は芳香族化合物の物理的吸着を可能にする。 吸引はファンデルワールス力による。この力は多環へテロ核芳香族化合物とグラファイト表面の基礎面炭素との間にかなりある。脱着は競合表面吸着が可能である条件下で又は吸着質が高い溶解度を有する条件下で起こるであろう。

例えば、フィブリルはフタロシアニン誘導体の吸着によって官能化されることができる。それから、これらフタロシアニン誘導体フィブリルはタンパク質の固体支持体として使用できる。異なる化学基をフィブリル表面に導入することは単

にフタロシアニンの異なる誘導体を選択することによって可能である。

タンパク質を固定化するためにフタロシアニン誘導体フィブリルを使用することは従来のタンパク質固定化方法よりも有意な利点を有する。特に、それは共有結合修飾よりも簡単である。加えて、フタロシアニン誘導体フィブリルは高い表面積を有し、そして広範囲の温度及び p Hにわたってどの種類の溶媒中でも安定である。

<u>実施例10</u>

フィブリル上へのポリフィリン及びフタロシアニンの吸着 フィブリル上に物理吸着するのに好ましい化合物は、グラファイトまたはカー ボンブラックに強く吸着することが知られている誘導化されたポリフィリンまたはフタロシアニンである。幾つかの化合物が入手可能であり、例えば、テトラカルボン酸ポリフィリン、コバルト(II)フタロシアニンまたはニリチウムフタロシアニン。後者の2つはカルボン酸形態に誘導化されることができる。

ニリチウムフタロシアニン

一般に、大抵の金属(特に多価)錯体によってフタロシアニン(Pc)基から 2つのLi イオンが放逐される。従って、不安定でない配位子と結合した金属イオンによるLi イオンの置換はフィブリル表面上に安定な官能基を置く方法である。ほぼ全部の遷移金属錯体はPcからLi を放逐して安定な、非不安定性のキレートを生成するであろう。それから、要点はこの金属を適する配位子と結合させることである。

コバルト(II) フタロシアニン

このためにはコバルト(II)錯体が特に適する。Co イオンは 2 つのLi イオンの代わりに置換できる。それから、Co イオンは、垂下(pendant)カルボン酸基を有するピリジン環を含有しているニコチン酸のような配位子に配位することができ、それはピリジン基に優先的に結合することが知られている。過剰のニコチン酸の存在下では、Co(II) Pc は電気化学的に酸化されて Co(III) Pc になることができ、ニコチン酸のピリジン成分と不安定でない錯体を形成する。従って、ニコチン酸配位子の遊離カルボン酸基はフィブリル表面にしっかりと結合している。

その他の適する配位子はアミノピリジン又はエチレンジアミン(垂下N H₂)、 メルカプトピリジン (S H)、又は、一方の端にアミノー又はピリジルー成分ど ちらかをそして他端に何らかの望ましい機能を含有するその他の多官能性配位子 である。

ポルフィリンまたはフタロシアニンのローディング容量(loadingc apacity1 は、それらを漸増添加したときの溶液の脱色によって測定できる。溶液の深い色 (MeOH中のテトラカルボン酸ポルフィリンでは深いピンク色、アセトンまたはピリジン中のCo(II) またはニリチウムフタロシアニンでは暗い青ー緑色)

は、分子がフィブリルのブラック表面への吸着によって除去されたときには変化 する。

ローディング容量はこの方法によって推定し、そして誘導体のフットプリントはその近似測定(約140平方オングストローム)から算出した。平均では、フィブリルの表面積は $250\,\mathrm{m}^2/\mathrm{g}$ であり、最大ローディングは約0.3ミリモル/ g であろう。

テトラカルボン酸ポルフィリンを滴定によって分析した。吸着の保全性は周囲 温度と高温における水性系での色放出によって試験した。

フィブリルスラリを最初に混合(ワーリング ブレンダー(Waring blender)) し、そしてローディングの間中攪拌した。色がもはや変化しなくなった後にスラ リの一部を超音波処理したが、効果がなかった。

ローディング後、実験169-11-12、-14及び-19-1(表II参照)は同じ溶媒中で洗浄して吸蔵顔料を除去した。全てが洗浄流出液中に連続して弱い色を示したので、正確に飽和点を求めることが難しかった。実験168-18及び-19-2はローディングのための計算した量の顔料を使用し、そしてローディング後に非常に軽く洗浄した。

テトラカルボン酸ポルフィリン(アセトンから)及びCoフタロシアニン(ピリジンから)は更に特徴表示するためにフィブリル上にローディングされた(それぞれ、実験169-18及び-19-2)。

テトラカルボン酸ポルフィリンの分析

過剰塩基の添加(pH11~12)は滴定するスラリに直ちにピンク色の着

コバルトまたは二リチウムフタロシアニンの分析

これらの吸着質の濃度は脱色実験だけから推定した。 青ー緑の色が30分後に

退色しなかった場合の点を飽和点とした。多数の、置換された多核芳香族又はポリヘテロ核芳香族の化合物がフィブリル表面に吸着された。付着力のためには、芳香族環の数は環/垂下官能基当り2つより多くすべきである。従って、3つの縮合環を含有する置換アントラセンやフェナントレン等、又は4つ以上の縮合環を含有する多官能性誘導体はポルフィリン又はフタロシアニン誘導体の代わりに使用できる。同様に、置換された芳香族ヘテロ環式化合物例えばキノリン、又は4つ以上の環を含有する多置換されたヘテロ芳香族化合物を使用できる。

表IIには、3種類のポルフィリン/フタロシアニン誘導体についてのローディング実験の結果をまとめてある。

<u>表II</u> 吸着実験のまとめ

			フィブリル		ローディ	ィング	meq/g
実施例	実験 #	吸着質	重量(g)	溶媒	g/g Ħ	態	滴 定
10A	169-11	TCAPorph	19.6mg	Acet	0.18g/g	酸	na
10B	169-12	TCAPorph	33.3mg	H ₂ O	0.11	Na塩	na
10 C	169-14	DiLiPhth	119.0mg	Acet	0. 170	Li	na
10D	169-19-1	CoPhth	250.0mg	Pyr	0. 187	Co	0.335(cal)
10E	169-18	TCAPorph	1.00g	Acet	0. 205	酸	1.10(T)
10F	169-19-2	CoPhth	1. 40g	Руг	0.172	Co	0.303(cal)

TCAPorphは、テトラカルボン酸ポルフィリンである。

(cal) は、計算値である。

DiLiPhthは、ニリチウムフタロシアニンである。

CoPhthは、コバルト(II) フタロシアニンである。

(T) は、滴定である。

次の実施例11および12は2種類の異なるフタロシアニン誘導体をカーボンナノチューブ上に吸着させる方法を説明する。

実施例11

ニッケル(II)フタロシアニンテトラスルホン酸の吸着 によって官能化されたフィブリル

フィブリルを I ミリリットルの d H_2 Oで 3 回、 1 ミリリットルのM e O Hで 3 回、そして I ミリリットルの CH_2 CI_2 で 3 回洗浄し、そして真空下で乾燥した。

これらのフタロシアニン誘導体フィブリルにサーモリシンを吸着によって固定化した。0.5mgのフィブリルを250マイクロリットルの dH_2O の中に懸濁させ、そして超音波で20分処理した。上澄み液を捨て、そしてフィブリルを250マイクロリットルの0.05 Mのトリス(Tris)(pH=8.0)の中に懸濁させ、そして同じ緩衝液中でつくった0.6m Mのサーモリシン(thermolysin)溶液の250マイクロリットルと混合した。この混合物を室温で2時間回転させ、そして4 %で一晩貯蔵した。それから、フィブリルを1 ミリリットルの25m Mのトリス(pH=8)で3回洗浄し、そして4 0mMのトリスと1 0mMのCaCl2 を含有するpH7.5 の緩衝液の250 マイクロリットルの中に懸濁させた。

これらフィブリル上のサーモリシンの量はフィブリルの酵素活性度を測定することで求めた。サーモリシンは基質 FAGLA(N-(3-[2-フリル])アクリロニトリル) -グリーロイアミド)と反応することができ、そして 345nmで

実施例12

1, 4, 8, 11, 15, 18, 22, 25-オクタブトキシ

-29H, 31H-フタロシアニンの吸着 によって官能化されたフィブリル

フィブリルを1ミリリットルのCH₂Cl₂で3回洗浄し、そして真空下で乾燥した。

これらフタロシアニン誘導体フィブリルの上にサーモリシンを実施例 34の方法に従って吸着によって固定化した。フィブリル 1g 当りの活性サーモリシンの量は 0.7μ モルであった。

実施例13

サーモリシンがその上に固定化されている フタロシアニン誘導体フィブリルを使用する アスパルターム前駆体の合成

サーモリシンがその上に固定化されているフタロシアニン誘導体フィブリルは、人工甘味料アスパルタームの前駆体の合成を触媒するために使用できる。反応は 1 O μ Mのフィブリル固定化サーモリシンを有する酢酸エチルの中で 8 O m Mの L

-Z-Aspと220mMのL-PheoMeを混合することによって行った。生成物、Z-Asp-PheoMeは収量を測定するためにHPLCによって監視した。

5. 塩素酸塩または硝酸による酸化

濃硫酸中の塩素酸カリウムや、硝酸のような、強い酸化剤によるグラファイトの酸化に関する文献としては、次のものが挙げられる:R.N. Smith, Quarterly Review 13, 287 (1959); M.J.D. Low, Chem. Rev. 60, 267 (1960) o-般に、エッジ炭素(欠陥サイトも包含する)は攻撃されてカルボン酸、フェノール及びその他の酸素化された基の混合物を与える。メカニズムはラ

ジカル反応を含む複雑なものである。

実施例14

塩素酸塩を使用しての

カルボン酸で官能化されたフィブリルの製造

濃硫酸の中にCCフィブリルの試料をへらで混ぜることによってスラリ化し、それから気体流入口/流出口及び頭上攪拌機を装着し反応フラスコに移した。攪拌しながら、そしてゆっくりしたアルゴン流の下で、NaClO₃の装填を実験の時間中にRTで数回に分けて行った。実験の全過程中に塩素蒸気が発生するので反応器から塩素蒸気をスウィープしてNaOH水溶液トラップに送り込んだ。実験の最後に、砕いた氷の上にフィブリルスラリを注ぎ、そして減圧濾過した。それから、濾過ケークをソックスレー円筒濾紙に移し、そしてソックスレー抽出器でDI水によって洗浄し、数時間毎に新鮮な水に交換した。新鮮DI水を加えたときにフィブリルの試料が水のpHを変化させなくなるまで洗浄を継続した。それから、フィブリルを濾過によって分離し、そして5″真空で100℃で一晩乾燥した。

カルボン酸含量は、サンプルを過剰の0.100NのNaOHと反応させ、そして0.100NのHCIによってpH7.5の終点まで逆滴定することによって、測定した。結果は表に列挙した。

表III

直接酸化実験のまとめ

Rec	酸,		分 ,g			
Ex.	RUN #	フィブリル	NaC10a	cc H ₂ SO ₄	時間(h)	洗净 pH 重量
meq/g						
11A 10. 0	168-30 0.78	10. 0	8. 68	450	24	5. 7
11B 13, 7	168-36 0.75	12. 0	13. 9	600	24	5 . 9

実施例15

硝酸を使用しての

カルボン酸で官能化されたフィブリルの製造

フィブリルの秤量した試料を、頭上攪拌機と水コンデンサーを装着した丸底で多口のくぼみ付きの反応フラスコの中で、適切な強さの硝酸によってスラリ化した。絶えず攪拌しながら、温度を調節し、そして反応を特定された時間行った。酸の強度に関係なく、温度が70℃を越えた後に短時間の間、褐色の煙が遊離した。反応後、砕いた氷の上にスラリを注ぎ、そしてD1水で希釈した。スラリを濾過し、そして過剰の酸をソックスレー抽出器で洗浄することによって除去するのであるが、溜めを数時間毎に新鮮DI水で置き換えることを、スラリ化された試料がDI水からのPhに変化を与えなくなるまで行った。フィブリルを5"真空で100℃で一晩乾燥した。フィブリルの一部の秤量を標準の0.100NのNaOHと反応させ、そして0.100NのHC1による逆滴定によってカルボン酸含量を測定した。表面酸素含量はXPSによって測定した。水への分散性は0.1重量%において、ワーリング ブレンダーの中で最高2分混合することによって試験した。結果は表4にまとめた。

表IV

直接酸化実験のまとめ

	成分								
分散性	g	cc					СООН	ESCA,	at%
Ex.	フィブリル	酸	酸濃度	温度℃	時間	重量損失	meq/g	C	0
H ₂ O									
12A P	1(BN)	300	70%	室温	24 hr	0	<0.1	98	2
12B P	1(BN)	300	15	還流	48	< 5 %	<0. 1	分析t	ナず
12 C G	20(BN)	1.01	70	還流	7	25%	0.8	分析も	ナ ず
12 D G	48(BN)	1.01	70	還流	7	20%	0, 9	分析·t	生 ず
						P=	悪い	G = E	しい

6. フィブリルのアミノ官能化

アミノ基をグラファイト性フィブリルに直接導入することは、下記の式に従って、フィブリルを硝酸と硫酸で処理して硝酸化フィブリルを得てから、この硝酸化された形態をジチオン酸ナトリウムのような還元剤で還元してアミノ官能化されたフィブリルを得ることによって、可能である:

$$F i b \xrightarrow{HNO_3/H_2SO_4} F i b - NO_2 \xrightarrow{NaS_2O_4} F i b - NH_2$$

得られたフィブリルは、タンパク質(例えば、酵素および抗体)の固定化や、アフィニティ及びイオン交換クロマトグラフィーを包含する多数の有用性を有する

実施例16 硝酸を使用しての

アミノ官能化されたフィブリルの製造

水(1.6 m l)と酢酸(0.8 ml)の中のフィブリル(70 mg)の冷却懸濁物(0 $\mathbb C$)に、硝酸(0.4 ml)を滴加した。この反応混合物を0 $\mathbb C$ で15分攪拌し、室温で更に1時間攪拌した。硫酸(0.4 ml)と塩素酸(0.4 m)の混合物をゆっくり加え、室温で1時間攪拌した。反応を停止し遠心分離した。水性層を除去し、そしてフィブリルを水で洗浄(\times 5)した。残留物を10%水酸化ナトリウムで処理(\times 3)し、そして水で洗浄(\times 5)して硝酸化フィブリルを完成した。

水(3ml)と水酸化アンモニウム(2ml)の中の硝酸化フィブリルの懸濁物に、0 \mathbb{C} でジチオン酸ナトリウム(200mg)を3回にわけて加えた。この反応混合物を室温で5分攪拌し、そして100 \mathbb{C} で1 時間攪拌した。反応を停止し、0 \mathbb{C} に冷却し、そしてp H を酢酸(p H 4)で調節した。室温で一晩放置した後、懸濁物を濾過し、水(\times 10)、メタノール(\times 5)で洗浄し、そして真空乾燥してアミノフィブリルを与えた。

このアミノ官能化されたフィブリルを試験するために、フィブリルにホースラディッシュ(horseradish)ペルオキシダーゼをカップリングさせた。それから、このHRPをカップリングされたアミノフィブリルを大規模に透析した。透析の後に、フィブリルをその翌週の間15回洗浄した。この酵素で修飾されたフィブリルは次の通り検定された:

結果は $Fib-NH_2$ に結合されたHRPが1週間にわたって保持される良好な酵素活性度を示したことを表している。

7. ラジカル開始剤を使用しての末端アルコールの結合

カーボンナノチューブの高度の安定性は、過酷な環境で使用することを可能にする一方で、更なる修飾のために活性化することを難しくさせている。従来の方法は過酷な酸化剤と酸の使用を伴っていた。驚くべきことに、過酸化ベンゾイル(BPO)のようなラジカル開始剤を使用してカーボンナノチューブに末端アルコールを結合できることが判明した。式 RCH2OH (式中、Rは水素、ア

ルキル、アリール、シクロアルキル、アラルキル、シクロアリール、またはポリ (アルキルエーテル)である)を有するアルコールに、カーボンナノチューブを ラジカル開始剤と共に加え、そして約60 $^{\circ}$ ~約90 $^{\circ}$ に加熱する。好ましいア ルコールにはエタノールおよびメタノールが包含される。ラジカル開始剤の全部 が分解するのに十分な時間が経過したときに、反応混合物を濾過し、そしてカーボンナノチューブ材料を洗浄し乾燥して、式 ナノチューブー CH(R)OHの 修飾されたナノチューブを生じる。この方法は二官能性アルコールを結合させる のにも使用できる。これは一端がカーボンナノチューブに連結すること及び他端 が別の材料を表面に間接的に連結するのに使用されることを可能にする。

<u>実施例17</u>

過酸化ベンゾイルを使用しての

アルコール官能化されたナノチューブの製造

0. 277gのカーボンナノチューブをMeOHの中にプローブ超音波装置を使用して分散させた。0. 126gのBPOを室温で加え、そして温度を60℃に上げ、そして追加の0. 128gのBPOを加えた。60℃で更に45分の後に、0. 129gの最終BPO添加を行い、そして混合物を60℃に更に30分保った。生成物を膜上で濾過し、そしてMeOHとEtOHで数回洗浄し、そして90℃のオーブンで乾燥した。収量は0. 285gであった。ESCA分析は2. 5原子%の酸素含量を示し、これに比べて、BPO無しでMeOHの中で還流した対照試料では0. 74原子%であった。

実施例18

過酸化ベンゾイルを使用しての

ポリ(エチレングリコール)によるカーボンナノチューブの修飾

0.1gのカーボンナノチューブと、0.5gのBPOと、10gのポリ(エチレングリコール)(平均分子量1000)(PEG-1000)を室温で混ぜ合わせた。この混合物を90 でに加熱してPEGを溶融し、そして90 で反応させるために一晩置いた。混合物全体を濾過し、そして洗浄して過剰PEGを除去し、それから乾燥した。得られた材料はそのまま使用することもできるし、又はPEGの自由端に関心のある材料を結合させることによって更に修飾されるこ

とも可能である。

実施例19

PEGで修飾されたカーボンナノチューブの 非特異結合を低下させるための用途

高い表面積のカーボン材料への非特異結合は至る所にある。カーボンナノチューブにPEGのような親水性オリゴマーを結合させると非特異結合を低下させることができることが判明した。また、ナノチューブの表面にPEGのような鎖状分子の一端を結合させることによって、自由端は関心のある他の材料の結合のために使用できる官能基を含有することができ、それでいて非特異結合を低下させるためにPEG(又は他の材料)層の性質をなお維持する、ことも判明した。

PEG修飾フィブリルによるウシ血清アルブミンの非特異結合の低下

各々の1. 0mgを10mlの緩衝液の中に超音波処理によって分散させることによって、未修飾フィブリル、塩素酸塩酸化フィブリル、及びPEG修飾フィブリルの、pH7. 0の50mMの燐酸カリウム緩衝液中の0. 1mg/mlのストック分散物を製造した。各々の一連の2倍希釈物の2mlを、9つのポリプロピレン管の各々に入れた。同じ緩衝液中のウシ血清アルブミン(BSA)の0. 2mg/mlの溶液の100μlを各管に、及び3つの緩衝液ブランクに加えた。タンパク質を含有しない3つの緩衝液の管もつくった。どの管もボルテックスミキサーで混合し、そして10分毎に30秒ボルテックスしながら30分間インキュベートした。全ての管を遠心器にかけてフィブリルを分離し、そして上澄みの1mlのアリコートを新しい管に移し、そしてミクロ(Micro)BCAプロテインアッセイ(ピアス(Pierce))を使用して全タンパク質含量について分析した。上澄みの中に残っているタンパク質のレベルはフィブリルに非特異に結合した量の間接測定であった。PEG修飾フィブリルでは全部のBSAが上澄みの中に残ったが、未修飾または塩素酸塩酸化フィブリルにはほぼ完全に結合した(図1参照)。

過酸化ベンゾイルを使用して製造されたPEG修飾フィブリルによる非特異結合の低下とNHSエステルカップリングによる非特異結合の低下の比較

塩素酸塩で酸化されたフィブリル、過酸化ベンゾイルを使用してPEGによって修飾されたフィブリル、及びNHSエステルカップリングによってPEGで修

飾された塩素酸塩酸化フィブリルのストック分散物を、pH7.0、50mMの燐 酸カリウム緩衝液の中の1. Omg/mlで、超音波処理により製造した。各々の一 連の3倍希釈物の2mlを、7つのポリプロピレン管の各々に入れた。同じ緩衝液 の中の β ーラクトグロブリン(β L G)の0. 2 mg/mlの溶液の100 μ lを各 管に、及び3つの緩衝液ブランクに加えた。タンパク質を含有しない3つの緩衝 液の管もつくった。どの管もボルテックスミキサーで混合し、そして10分毎に 30秒ボルテックスしながら60分間インキュベートした。全ての管を遠心器に かけてフィブリルを分離し、そして上澄みの1mlのアリコートを新しい管に移し 、そしてミクロBCAプロテインアッセイ(ピアス)を使用して全タンパク質含 量について分析した。上澄みの中に残っているタンパク質のレベルはタンパク質 に非特異に結合した量の間接測定であった(図2参照)。管の各々について、 B LGはNHSエステルのルートを通してPEGによって修飾されたフィブリルの 上澄みの中に残っており、非特異結合がないことを意味した。BPOルートを通 してPEGによって修飾されたフィブリルは1. Omg/mlの最も高いフィブリル のレベルにおいて β LGの僅かだけ(約10%)の結合を示し、そしてもっと低 いレベルでは有意な結合を示さなかった。対照的に、塩素酸塩で酸化されたフィ ブリルに対しては O. 1 mg/ml以上のレベルでほぼ完全に結合し、そして実質的 結合はこれらフィブリルの0.01mg/mlまでみられた。

8. 官能化されたナノチューブの二次誘導体

カルボン酸で官能化されたナノチューブ

カルボン酸から製造できる二次誘導体の数は本質的に無限である。アルコール 又はアミンは酸に容易に連結して適するエステル又はアミドを与える。アルコー ル又はアミンがジー又は二官能性、多官能性の分子の一部である場合には、Oー 又はNHーを通しての連結は他の官能基を垂下基として放出する。二次試薬の代 表的な例は次のものである:

一般式	垂下基	例
HO-R、Rはアルキル、	R —	メタノール、フェノール、
アラルキル、アリール、		トリフルオロカーボン、

フルオロエタノール、

OH末端ポリエステル、

ポリマー、SiR'3

シラノール

 $H_2 N - R$

R —

アミン、アリニン、

Rは上記に同じ

フッ素化アミン、

シリルアミン、アミン

末端ポタアミド、

タンパク質

 $C1-SiR_3$

SiR₃-

シクロシラン

HO-R-OH

 $H_2 N - R - N H_2$

HO-

エチレングリコール、PEG、

Rはアルキル、

ペンタエリトリトール、

アラルキル、CH2O-

H₂ N —

ビスーフェノールA

Rはアルキル、アラルキル

エチレンジアミン、 ポリエチレンアミン

ポリアミンアミド、

X-R-Y、Rはアルキル等; Y-

メルカプトエタノール

YはSH、CNNC=O、

XはOH又はNH2;

CHO、アルケン、アルキン、

芳香族、ヘテロ環

反応はカルボン酸をアルコール又はアミンでエステル化又はアミノ化するため に開発された方法のいずれかを使用して行うことができる。これらの中でも、エ

ステル又はアミドのためにアシル化剤としてN, N'ーカルボニルジイミダソール (CDI) を使用する、H. A. スタップの方法 (H.A. Staab, <u>Angew. Chem.</u> <u>Internat. Edit.</u>, (1)351 (1962));およびアミド化のためのカルボン酸を活性化するためにNービトロキシスクシンイミド (NHS) を使用するアンダーソンらの方法 (Anderson, et al., <u>J. Amer. Chem. Soc.</u>, 86, 1839 (1964))が使用された。

実施例20

官能化されたフィブリルの二次誘導体の製造

N, N'ーカルボニルジイミダゾール

この手順には清浄な乾燥した非プロトン性溶媒(例えば、トルエン又はジオキサン)が要求された。試薬の化学量論量で十分であった。エステルのためには、カルボン酸化合物を不活性雰囲気(アルゴン)の中でトルエン中で、トルエンに溶解したCDIの化学量論量と室温で2時間反応させた。この時間中に、CO₂が発生した。2時間後に、アルコールを触媒量のNaエトキシドと共に加え、そして反応を80℃で4時間継続した。n-アルコールでは、収量は定量的であった。反応は次の通りである:

1. $R-COOH+Im-CO-Im---->R-CO-Im+HIm+CO_2$, Imはイミダゾリドであり、

HImはイミダゾールである。

2.
$$R-CO-Im+R'OH \xrightarrow{NaOEt} R-CO-OR'+HIm$$

アミンのアミド化はRTでは触媒されないことが起こる。この手順の中の第一 工程が同じである。 CO_2 の発生後に、化学量論量のアミンをRTで加え、そして $1\sim2$ 時間反応させた。反応は定量的であった。反応は次の通りである:

3. R-CO-Im+R'NH2-----> R-CO-NHR+HImシリル化

トリアルキルシリルクロライド又はトリアルキルシラノールは活性水素とは直 ちに次の通り反応する:

R-COOH+C1-SiR'。-----> R-CO-SiR'。+HCl 触媒として少量のジアザー1, 1, 1ービシクロオクタン(DABCO)を使

用した。適する溶媒はジオキサンとトルエンであった。

スルホン酸で官能化されたフィブリル

実施例 1 で製造したようなアリールスルホン酸は二次誘導体を生成するために 更に反応することができる。スルホン酸をL i A 1 H_4 またはトリフェニルホス フィンとヨウ素の組合せによってメルカプタンに還元することができる(March , J. P., p. 1 1 0 7)。それはまた、ジアルキルエーテルとの反応によってス ルホン酸エステルに転化できる、すなわち、次の通りである:

Fibril-SO₂ H+R-O-R -----> Fibril-SO₂ OR+ROH N-ヒドロキシスクシンイミド

第一アミンによるアミド化のためのカルボン酸の活性化はNーヒドロキシスクシンアミルエステルを通して起こる;カルボジイミドは置換ウレアとして放出される水と結合するために使用される。それから、NHSエステルはRTで第一アミンとの反応によってアミドに転化される。反応は次の通りである:

- 1. R-COOH + NHS+carbodimide -----> R-CONHS + 基質ウレア
 - 2. $R-CONHS + R'NH_2 \longrightarrow R-CO-MHR'$

この方法はタンパク質の側鎖上の遊離NH。を通してグラファイト性フィブリルにタンパク質を共有結合させるのに特に有効である。この方法によってフィブリルに固定化できるタンパク質の例はトリシン、ストレプトアビジン、及びアビジンを包含する。ストレプトアビジン(又はアビジン)フィブリルはビオチン化された物質(biotinylated substance)のための固体担体を提供する。

実施例21

タンパク質をNHSエステルを通してフィブリルに共有結合 タンパク質がNHSエステルを通してフィブリルに共有結合することができる ことを実証するために、ストレプトアビジン、アビジン及びトリプシンをフィブ リルに次の通り結合させた。

0. $5 \, \text{mg}$ の N H S - エステル フィブリルを、 $5 \, \text{mM}$ の燐酸ナトリウム緩衝液(p H 7. 1)で洗浄し、そして上澄みを捨てた。 $2 \, 0 \, 0 \, \mu$ l のストレプトアビジン溶液(同じ緩衝液中の 1. $5 \, \text{mg}$)をフィブリルに添加し、そして混合物を

室温で 5. 5 時間回転させた。それから、フィブリルを 1 m 1の下記緩衝液で順番に洗浄した:5 m Mの燐酸ナトリウム(p H 7. 1)、P B S(0. 1 Mの燐酸ナトリウム、0. 1 5 MのN a C 1、p H 7. 4)、O R I G E N アッセイ緩衝液(IGEN, Inc., Gaithersburg, MD)および P B S。ストレプトアビジンフィブ

リルは更に使用するためにPBS緩衝液中に貯蔵した。

2. $25 \, \text{mgONHS} - \text{エステル}$ フィブリルを $500 \, \mu$ $100 \, \text{5} \, \text{nM}$ の燐酸ナトリウム緩衝液(pH7. 1)の中で $40 \, \text{分超音波処理し}$ 、そして上澄みを捨てた。フィブリルを $500 \, \mu$ $100 \, \text{5} \, \text{nM}$ の燐酸ナトリウム緩衝液(pH7. 1)の中で超音波処理し、そして $2 \, \text{mg}$ のアビジン(シグマ、A-9390)を含有する同じ緩衝液中でつくったアビジン溶液の $300 \, \mu$ $1 \, \text{を加えた}$ 。この混合物を室温で $2 \, \text{時間回転させ}$ 、 $40 \, \text{℃}$ で一晩貯蔵し、そして室温で更に $1 \, \text{時間回転させ}$ た。フィブリルを $1 \, \text{ml}$ $00 \, \text{5} \, \text{nM}$ の燐酸ナトリウム緩衝液($0 \, \text{mm}$ $00 \,$

トリプシン フィブリルは、1.1 mgのNHSーエステル フィブリル (アビジン フィブリルにおけると同じように処理した)と、5 mMの燐酸ナトリウム緩衝液 (pH7.1)中でつくった1.06 mMのトリプシン溶液の200 μ 1とを混合し、そして室温で6.5時間回転させることによって製造された。それから、トリプシン フィブリルを 1 mlの 5 mMの燐酸ナトリウム緩衝液 (pH7.1)で3回洗浄し、そして貯蔵のために 400 μ 1の同じ緩衝液の中に懸濁した。

実施例22

フィブリル上のトリプシンの酵素活性度の測定

トリプシンは基質 L - B A P N A(N。-ベンゾイルーL -アルギニン- p - ニトロアニリン)と反応することができ、そして 4 1 0 nmの光を吸収する着色化合物を放出した。この反応のためのアッセイ緩衝液は、0. 0 5 M のトリス、0. 0 2 M の CaCl $_2$ 、p H 8. 2 であった。反応は 1 m l の浅鉢の中で、5 μ l の L - B A P N A ストック溶液(H_2 O 中の 3 7 % D M S O の中の 5 O m M)とアッセイ緩衝液 1 m l 中の 1 0 \sim 2 5 μ g の トリプシン フィブリルを混合することによって行った。 4 1 0 nm における吸光度低下を 1 0 分間モニターした。それから、

酵素活性度(μM/分)を初期勾配から算出した。

共有結合したトリプシン フィブリルについては、活性度は $13\mu g$ のフィブリル当り $5.24\mu M$ /分であった。この結果は、アッセイ条件下で $1\mu M$ のトリ

プシン当り $46 \mu \text{M}$ /分であると測定されたトリプシン溶液の既知濃度の活性度を割ることによって、フィブリル上の活性トリプシンの量に変換することができる。従って、フィブリル 1 g 当りの活性トリプシンの量は 2 g $2 \text{ g$

実施例23

表面トリオールを有するカーボンナノチューブ

実施例27(下記)に記載されているようにエチレンジアオンによる修飾によって製造されたアミノ カーボンナノチューブ(CN)の0.112gを、50 mMのEDTAを含有するpH8.0の0.05Mの燐酸ナトリウム緩衝液の20 mlの中に懸濁させた。この懸濁物をブランソン(Branson)450ワット プローブ超音波装置で5分超音波処理してCNを分散させた。得られた懸濁物は全く粘稠であった。攪拌しながら、懸濁物の中にアルゴンを30分吹き込んだ。50mgの2ーイミノチオラン塩酸塩を加え、そして混合物をアルゴン下で連続攪拌しながら70分反応させた。得られた材料をポリカーボネート膜フィルターで濾過し、緩衝液で2回、DI水で1回、そして無水EtOHで2回洗浄し、その全てをアルゴンブラッケット下で行った。このチオール修飾されたCNを真空デシケーターの中に入れ、そして一晩吸排気した。最終重量は0.118gであり、重量増加に基づいて55%の転化率であった。

チオール化されたナノチューブの 1 0 mgの試料を 1 0 m1の D I 水の中に超音波処理で懸濁させ、そして 0. 4 5 μ mのナイロン膜で濾過してフェルト状マットを生成した。マット部分を真空デシケーターの中に貯蔵した後に E S C A によって分析し、それは 0. 4 6 %の緩衝液と 1. 6 9 %の窒素を示し、チオール修飾 C N への成功した転化が確認された。

<u>実施例24</u>

チオール修飾されたカーボンナノチューブを金表面に結合 金箔(アルファ/エーサル(Alfa/Aesar)) $2 \text{ cm} \times 0$. 8 cmを、1 部の 3 0 %過

酸化水素と3部の濃硫酸の溶液で10分間清浄にし、そして脱イオン水で洗った。箔片を金の導線に接続し、そしてサイクリック ボルタモグラムが約10分間

変化しなくなるまで 1 Mの硫酸の中で-0. 35 V vs. A g / A g / C 1 から 1 . 45 V vs. A g / A g / C 1 までの間で電気化学的に循環させた。それから、脱イオン水で洗い、そして乾燥した。大きな片を 4 つの 0. 5 cm \times 0. 8 cm 0 小片に裁断した。

アルゴンで30分間バージすることによって脱酸素化した無水E t OHの10 mlを、2つのガラス壜の各々に入れた。一つの壜の中に16 mgのチオール修飾 CN(CN/SH)と2片のAuを、そして他方の壜の中に1片のAuと、チオール誘導体をつくるために使用したエチレンジアミン修飾 CNの10 mgを懸濁させた。全ての操作はAr充填グローブバッグの中に行った。壜をAr下で密封し、そして冷却した超音波浴の中に1時間入れた。密封壜をRTで72時間放置した。壜からAu試料を取り出し、E t OHで3回洗浄し、自然乾燥し、そして保護壜の中に入れた。

CN/エチレンジアミンおよびCN/SHに曝されたAu箔試料を、走査電子 顕微鏡(SEM)によって検査して表面上のCNの有無を調べた。40,000 ×での検査はCN/SHに曝された表面上に分布されたCNの存在を示したが、 CN/エチレンジアミンに曝されたAu箔試料ではCNが観察されなかった。

実施例25

アミノフィブリルからマレイミドフィブリルを製造

アミノフィブリルは実施例13に従って製造した。それから、アミノフィブリル(62.2mg)を燐酸ナトリウム緩衝液(5ml、pH7.2で<math>5mM)の中で超音波処理した。このフィブリル懸濁物に、スルホスクシンミジルー4ー(N-マレイミドメチル)シクロヘキサンー1-カルボキシレート(SMCC; 28.8mg、0.66ミリモル:ピアス、触媒No.22360)を加えた。この反応混合物を室温で一晩攪拌した。フィブリルを水とメタノールで洗浄し、そして生成物フィブリルを真空乾燥した。この生成物上での抗体固定化はマレイミドフィブリルの存在を確認した。異なるリンカーを有する他のマレイミド(たとえば、スルホーSMCC、4-[p-マレイミドフェニル] 酪酸スクシンイミジル [S

ンイミドエステル〔MBS〕、スルホーMBS、等々)フィブリルは、同じ方法を通して製造できる。

得られたマレイミド フィブリルはタンパク質、例えば、抗体および酵素、の共有結合固定化のための固体支持体として使用できる。抗体はマレイミドで活性化されたフィブリルの上に共有結合で固定化された。抗体の容量は硝酸化/還元法(実施例13)から得られたアミノフィブリルを使用した場合にはフィブリル1g当り1.84mgであった、そしてカルボキシルフィブリルから誘導されたアミノフィブリルを使用した場合にはフィブリル1g当り0.875mgであった。

<u>実施例26</u>

カルボン酸で官能化されたフィブリルからの エステル/アルコール誘導体の製造

カルボン酸で官能化されたフィブリルを実施例 14のように製造した。カルボン酸含有量は 0.75 meq/gであった。室温で溶媒としてトルエンを使用して不活性雰囲気中でフィブリルと化学量論量の CDI との反応を CO_2 の発生が止むまで行った。その後で、このスラリを 80 C で 10 倍モル過剰のポリエチレングリコール(分子量 600)と触媒としての少量の NaOE t をもって反応させた。 2 時間反応後、フィブリルを濾過によって分離し、トルエンで洗浄し、そして 100 C で乾燥した。

実施例27

カルボン酸で官能化されたフィブリル (177-041-1) からのアミド/アミン誘導体の製造

セラムストッパー(serum stopper)を装着した 100mlon RB フラスコの中で 攪拌しながら 20mlom x ジオキサンの中に、0.242g の、塩素酸塩で酸化 されたフィブリル(0.62meq/g)を懸濁させた。 20倍モル過剰のN-ヒ ドロキシスクシンイミド(0.299g)を加え溶解させた。これに続いて、20倍モル過剰の1-エチルー2-(3-ジメチルアミノプロピル)カルボジイミド(<math>EDAC)(0.510g)を加え、そして攪拌を室温で2時間継続した。この後に、攪拌を止め、上澄みを吸引し、そして固定を無水ジオキサンと

MeOHで洗浄し、そしTO. 45μ のポリスルホン膜で濾過した。濾膜上で固体を更にMeOHで洗浄し、そして真空乾燥を重量低下が観察されなくなるまで行った。NHSで活性化された酸化フィブリルの収率は観察された6%増量に基づいT100%であった。

 100μ lのエチレンジアミン(en)を10mlの0.2MのNaHCO $_3$ の緩衝液の中に加えた。等容量の酢酸(HOAc)を加えて $_1$ Hを $_2$ 近くに維持した。激しく攪拌しながら、 $_3$ NHSで活性化された酸化フィブリル($_3$ 10g)を加え、そして $_4$ 時間反応させた。追加の $_3$ 00 $_4$ lの $_4$ ne $_4$ ne $_5$ 00 $_4$ lのHOA cを更に $_4$ 10分間で加えた。溶液を $_4$ 5 $_4$ ポリスルホン膜で濾過し、 $_4$ NaH CO $_3$ 緩衝液、 $_4$ 8 $_4$ %のHC 1、 $_4$ 以下がよび $_4$ との日で順に洗浄した。固体を一晩真空乾燥した。このHC 1 塩を更なる分析および反応のためにNaOHとの反応によって遊離アミンに戻した($_4$ 7 7 $_4$ 0 4 6 $_4$ 1)。

このアミノ化フィブリル(G F / N H₂)の上に存在する N の量を定量化するために E S C A を行った。 1 7 7 - 0 4 6 - 1 の E S C A 分析は 0.9 0 原子%の N を示した(1 7 7 - 0 5 9)。さらに、この N のどれだけの量が、アクセシブルな反応性の基として存在するのかを調べるために、利用可能な第一アミン基による対応シッフ塩基結合を生成するためにペンタフルオロベンズアルデヒドとの気相反応によって誘導体を生成した。 E S C A 分析はなお予想通りの 0.9 1 原子% と、1.6 8 原子% の F を示した。これは 0.3 4 原子% の N が アミノ化フィブリル上の反応性の第一アミンとして存在するとの解釈になる(ペンタフルオロベンズアルデヒド分子当り5つの F)。 0.45 原子% の N の レベルは各 N の自由端によって完全反応を引き受けると予想されるであろう。観測されたレベルは N H S で活性化されたフィブリルによる N の反応から非常に高い収率を指標しており、そして利用可能な自由アミン基の反応性を確認している。

ESCAデータから算出された自由アミンとして存在する0.34原子%のNのレベルにおいては、フィブリルは他の材料のカップリングを許す自由アミン基によって殆ど完全な被覆されているのであろう。

カルボキシルフィブリルは、エチレンジアミン(炭素2個のリンカー)ではな く、モノー保護した1,6-ジアミノヘキサン(炭素6個のリンカー)を使用し てやはりアミノフィブリルに転化された。

実施例28

カルボン酸で官能化されたフィブリルからの

アミン誘導体の製造

フィブリル上のカルボキシル基は、そのカルボキシル基を、2つ又はそれ以上のアミノ基(その少なくとも1つはt-BocやSBZのような基によって保護されていない)を有する化合物の1つのアミノ基と反応させることによって修飾されることができる。そうして生成されたフィブリルはアミド誘導体であり、そこではフィブリルカルボニル基からアミドカルボニルが誘導されており、そしてアミド窒素は一つまたはそれ以上の第一アミン基を含有する基(例えば、アルキル基)によって置換されている。それから、これらアミノ基は使用のために又は更なる修飾のために利用可能である。

出口をゴムセラム隔膜で完全にとめてある乾燥した焼結ガラス濾過漏斗の中に 1 gのカーボンフィブリルを入れ、そして無水ジクロロメタンを加えて覆った。 N-メチルモルホリン(7 5 8 μ L、7 ϵ J ϵ J ϵ L、 ϵ の懸濁物をへらの 助けで混ぜた。それから、イソブチルクロロホルメート(1 ϵ J ϵ L、 ϵ J ϵ L、 ϵ J ϵ L、 ϵ L ϵ L

その間にN-b o c-1, 6-iジアミノヘキサン塩酸塩(1.94g、7.7 ミリモル)をジクロロメタン(10mL)と1NのN a O H(10mL)の間に分配した。後者の有機相を無水炭酸カリウムで乾燥し、そして綿栓を有する使い捨てパスツールピペットを通して濾過し、そしてN-メチルモルホリン($758\mu L$ 、7ミリモル)を加えた。

濾過漏斗からセラム隔膜を取り除き、減圧濾過によってフィブリルから試薬を除去し、そしてフィブリルを無水ジクロロメタンで洗浄した。セラム隔膜を再び取り付け、そしてNーメチルモルホリンとモノ保護ジアミノヘキサンの混合物をフィブリルに加えた。混合物を1時間の間、定期的に攪拌した。それから、濾過によって試薬を除去し、そしてフィブリルをジクロロメタン、メタノール、水、メタノール、及びジクロメタンで順に洗浄した。

トリフロオロ酸とジクロロメタンの50%混合物をフィブリルに加え、そして混合物を20分間定期的に撹拌した。溶媒を濾過によって除去し、そしてフィブリルをジクロロメタン、メタノール、水、0.1M KNaOH、及び水で順に洗浄した。

実施例29

カルボン酸で官能化されたフィブリルからの シリル誘導体の製造

実施例14のように製造した酸官能化フィブリルを不活性雰囲気中でジオキサンの中にスラリ化した。攪拌しながら、化学量論量のクロロトリエチルシランを加え、そして0.5時間反応させ、その後、ジオキサン中のDABCOの5%溶液を数滴加えた。この系を更に1時間反応させ、その後にフィブリルを濾過によって回収し、そしてジオキサンの中で洗浄した。フィブリルを5"真空で100℃で一晩乾燥した。

表 5 に二次誘導体の製造をまとめた。生成物は E S C A により、 C 、 O 、 N 、 S i および F の表面含量について分析した。

表V

二次誘導体の製造のまとめ

ESCA	分	析.	原	子	Ж
LOUA	73	471.	1JTS		70

反 応 体	垂 下 基	<u>S</u>	С	N	0	Si	F
成長As			98. 5		1, 5		units states
塩素酸塩 酸化物	-соон, с=о, с-он		92. 4		7. 6		
H ₂ N-C ₂ H ₄ -NH ₂	-CONHC 2 H 4 NH 2		99. 10	0. 90			
	-CONHC 2 H 4 N=OC 6 F 5		97. 41	0.91			1. 68

実施例30

カルボン酸で官能化されたフィブリルからの シリル誘導体の製造

実施例14のように製造した酸官能化フィブリルを不活性雰囲気中でジオキサンの中にスラリ化した。攪拌しながら、化学量論量のクロロトリエチルシランを加え、そして0.5時間反応させ、その後、ジオキサン中のDABCOの5%溶液を数滴加えた。この系を更に1時間反応させ、その後にフィブリルを濾過によって回収し、そしてジオキサンの中で洗浄した。フィブリルを5"真空で100℃で一晩乾燥した。

表 6 に二次誘導体の製造をまとめた。生成物は E S C A によって分析した。分析は所定の垂下基の導入を確認した。生成物を E S C A によって、 C、 O、 N、 Siおよび F の表面含量について分析した。

表VI

二次誘導体の製造のまとめ

ESCA 分析,原子》

<u> 反 応 体 垂 下 基 S___ C N O Si F_</u>

CF a CH 2 OH

-COOCH2CF3

NOT ANALYZED

PolyEG-600

 $-CO-(OC_2H_4O-)H$

NOT ANALYZED

HO-C2H4-SH

-COOC2H4SH

C1-SiEta

-COSiEta

実施例31

カルボン酸で官能化されたフィブリルからの 第三及び第四アミン誘導体の製造

第三及び第四アミン官能基はナノチューブ上のカルボキシル基と第三又は第四アミン前駆体のアミン又はヒドロキシルどちらかの基とによるアミド又はエステル結合を通してカーボンナノチューブの表面に結合させることができる。かかる第三又は第四アミンフィブリルは生体触媒を分離するためのクロマトグラフィー用マトクリックスとして有効である。第三又は第四アミンフィブリルはディスク形状のマットに加工することができるし、又は分離のための通常のクロマトグラフィー用媒体(例えば、アガロース)と混合することができる。

トリエチルエタノールアミンヨージド前駆体の製造

100mlの丸底フラスコの中で10gのN, Nージエチルエタノールアミン(85.3ミリモル)を10mlの無水メタノールと混合した。それから、20gのヨウ化エチル(127.95ミリモル)と10mlの無水メタノールの混合物をピペットを使用して滴加した。この反応混合物を30分還流した。反応混合物を室温まで放冷したとき、白色の結晶性生成物が形成された。この白色固体生成物を濾過によって集め、そして無水メタノールで洗浄した。さらに、生成物を真空下でデシケーターの中で一晩乾燥させた。33%収率で、生成物(10.3g、37.7ミリモル)が得られた。

第四アミンで官能化されたグラファイト性フィブリルの製造

真空乾燥した25mlのウィートン(Wheaton)使い捨てシンチレーション バイ

アルの中で、100mgの乾燥カルボキシルフィブリル(フィブリル1g当り約0.7ミリモルのCOOH)を2mlの無水ジメチルホルムアミドと混合し、この混合物を60秒間超音波処理した。さらに2mlのジメチルホルムアミド、39mgのジメチルーアミノピリジン(0.316ミリモル)及び50µlのジイソプロピルカルボジイミド(0.316ミリモル)を反応バイアルに加えた。この反応混合物を室温で1時間攪拌し、それから88mgのトリエチルエタノールアミンヨージド(0.316ml)をバイアルに加え、そして反応を一晩行った。得られたフィブリルを20mlのジメチルホルムアミドで3回、20mlの塩化メチレンで3回、メタノールで3回、そして最後に脱イオン水で3回洗浄した。生成物を真空乾燥した。窒素の元素分析からの結果はフィブリル上のカルボキシル基の約50%が第四アミン成分の中の第一アミノ基と反応していたことを示した。

実施例32

第四アミン官能化グラファイト性フィブリル上での ウシ血清アルブミン(BSA)のクロマトグラフィー

60mgの、2ージエチルアミノエチルアミンで修飾されたカルボキシルフィブリルと180gのセフェデックス(Sephadex)Gー25スーパーファイン樹脂(ファルマシア(Pharmacia)、スウェーデン、ウプサラ在)とを含有する水性スラリを室温で一晩放置して固体支持体の完全な水和を確実にした。このスラリを1cm×3.5cmのカラムに充填した。カラムを5mMの燐酸ナトリウム緩衝液(pH7.3)の流速0.2ml/分によって平衡にした。カラムにBSA(0.6mg、脱イオン水0.1mlの中)を装填した。カラムを5mMの燐酸ナトリウムの流速0.2ml/分によって溶出させ、そして0.6mlの分画をを集めた。溶出プロフィールはUVー可視検出器を使用してモニターし、そして図3に示した。検出器がカラムからタンパク質がこれ以上溶出されないことを示したら、5mMの燐酸ナトリウム(pH7.3)の中の1M KClを加えることによって結合BSAを溶出させた。各分画の中のタンパク質の存在はマクイロBCAアッセイ(ピアス、イリノイ州ロックフォード在)により同定した。

実施例33

第四アミン官能化グラファイト性フィブリル上での ウシ血清アルブミン(BSA)のクロマトグラフィー

100mgの、2-(2-トリエチルアミノエトキシ) エタノールで修飾されたカルボキシルフィブリルと300gのセフェデックスG-25スーパーファイン 樹脂とを含有する水性スラリを室温で一晩放置した。得られたスラリを直径1cmのカラムに充填した。カラムを流速0.1~0.6ml/分の5mMの燐酸ナトリウム緩衝液(pH7.3)で平衡にした。カラムにBSA(2.7mg、脱イオン水0.2mlの中で)を装填した。カラムを5mMの燐酸ナトリウムの流速0.2ml/分によって溶出させ、そして0.6mlの分画をを集めた。溶出プロフィールはUV-可視検出器を使用してモニターした(図4)。検出器が5mMの燐酸ナトリウム緩衝液ではもはやタンパク質がカラムから溶出されないことを示したら、溶媒を5mMの燐酸ナトリウム(pH7.3)の中の1MのKC1に変更した。各分画の中のタンパク質の存在はマクイロBCAアッセイ(ピアス、イリノイ州ロックフォード在)により同定した。

9. グラファイト性カーボンの酵素的官能化

グラファイト性カーボン、特に、カーボン ナノチューブ、の表面に官能基を 導入するのに生体触媒を使用できる。今までは、グラファイト性カーボンは純粋 に化学的手段(例えば、1994年12月8日に出願された米国特許出願第08 / 352,400号を参照)によって修飾されていた。これら化学的方法は次のような欠点を有する;(1)過酷な条件(極端の温度、極端な活性度または有毒 な化学物質の使用)、および(2)特異性の欠如(たとえば、酸化がCOOH、CPH、およびCHOの基を導入する)。固体グラファイト性カーボン(たとえば、カーボンフィブリル;ハイパーイオン社)の水性懸濁物は、グラファイト性 カーボンを基質として受け入れることができそして化学的に修飾されたグラファイト性カーボンをもたらす化学反応を行うことができる一つまたはそれ以上の酵素を含有して製造される。水性懸濁物は酵素(単数または複数)がグラファイト 性カーボンの表面を触媒的に修飾するのに十分な時間酵素(単数または複数)が 反応を行うために許容できる条件(温度、pH、塩濃度、等々)に維持される。

反応中、酵素(単数または複数)がグラファイト性カーボンの表面に接近することを可能にするために懸濁物は連続混合される。反応が満足な度合いに進行するために許容できる反応時間の後に、酵素は濾過洗浄によってカーボンから除去される。

今日迄は、2つのタイプの酵素が使用されてきた:チトクロム p 4 5 0 酵素とペルオキシダーゼ酵素。両方の場合とも、酵素のタイプが十分研究されており、それらは芳香族のタイプの基質を許容し、そしてそれらの最適反応条件は研究されている。どちらの酵素のタイプもヒドロキシル基をそれらの基質の中に導入する;そしてヒドロキシル基をグラファイト性カーボンの中に導入するであろう。酵素の外に、その他の生体触媒、例えば、リボザイムおよび触媒的抗体、または酵素の非生物学的擬態はカーボンナノチューブを触媒的に官能化するように設計されることができるはずである。

<u>実施例34</u>

ラット肝ミクロソームを使用しての酵素的官能化

チトクロムp450酵素は肝臓の中で解毒剤として機能すると一般に考えられている(F. Peter Guengerich、American Scientist、81、440-447及びF. Peter Guengerich、J. Biol. Chem.、266、10019-10022)。それらはポリ芳香族毒性化合物のような外来化合物をヒドロキシル化する。ヒドロキシル化はこれら化合物が尿によって体から消えることができるように水溶性になることを可能にする。肝臓には多数の様々なチトクロムp450酵素が存在し、各々が異なる基質特異性を有する。これらの広い範囲の特異性は解毒を要求する環境毒素の範囲が広いので重要であると考えられる。個々のチトクロムp450sは商業的に入手可能であるが、そのいずれかがカーボンナノチューブを基質として受け入れるかどうかに関しての情報は入手可能でない。この不確かさ故に、本発明者らは最初にカーボンナノチューブを、多数の異なるチトクロムp450sを含有したラット肝抽出物と一緒にインキュベートすることに決めた。

ルを含まない水を与えた。それから、ラットを犠牲にして、それらの肝臓から標準手順(例えば、次の文献を参照:Methods in Enzymology, Vol, 206)によってチトクロム p 450 s を含有するミクロソームを調製した。

ミクロソームをカーボンナノチューブ(フィブリル)と混合してチトクロム p 450sをグラファイト性カーボンと反応させた。この実験では、0.1Mのト リス、1.0mMのNADPH、0.01%のNaN₃、10mMのグルコースー6 ーホスフェート、グルコースー6ーホスフェート デヒドロゲナーゼ(1ユニッ ト/mL)、pH7.4、を含有する、緩衝剤で処理済みの溶液の中で、5mgのフ ィブリル(「プレーン」即ち非官能化フィブリルと「COOH」即ち酸化フィブ リルの両方)をミクロソーム(実験用と対照の両方のミクロソーム)と混合した 。NADPHはチトクロムp450sのための補基質として包含されており、グ ルコースー6ーホスフェート、グルコースー6ーホスフェート デヒドロゲナー ゼは、(NADP がチトクロムp450sによって生成された場合に)NAD P からNADPHを再生するために添加された。混合物をミクロ遠心管の中で 室温で約1.5日回転させた。インキュベーション後、フィブリルを脱イオン水 x0.05%のツイーン(Tween)、メタノール、及び1MのNaClで手広く洗 浄した。洗浄後、タンパク質用のミクロBSAアッセイ(ピアス)はフィブリル がそれと組み合わされたタンパク質をなお有しているらしいことを示した(しか し、洗浄液にはタンパク質が検出されなかった)。

ヒドロキシル基がフィブリル表面上に導入されたのかどうかを測定するためにフィブリルをN-FMOC-dVロイシンと反応させた。異なるバッチのフィブリル(対照と実験用)(各々 1.5 mg)を、 4.4 5 mg/mLのFMOC-dVロイシン、 1.5 4 mg/mLのジメチルアミノピリジン(DMAP)及び 2.6 mg/mLの 1,3 - ジシクロヘキシルカルボジイミド(DCC)を含有する乾燥 DMFの溶液の 3 3 マイクロリットルと反応させた。(連続回転させながらの) 2 日間の反応後に、フィブリルを DMF、ピペリジン、ソタノール、水、DMF、メタノール、塩化メチレン(各600 μ L)で洗浄した。この洗浄順序を 3 回繰り返した。存在したイソロイシンに関するアミノ酸分析のために、フィブリルを ガ

ルブレイス研究所(Galbraith Laboratories)(テネシー州ノックスビル(Knoxv ille)在)に送った。結果はイソロイシンの外に他の多数のアミノ酸が見られたのではっきりせず、それはラット肝ミクロソーム抽出物の中に存在したタンパク質、ペプチド、及びアミノ酸がフィブリルから完全には洗い去られなかったことを意味する。従って、洗浄および分析における技術的難しさ故に、チトクロムp450sがフィブリルを官能化したのかどうかを決定することができなかった。

実施例35

商業的に入手可能な組換えチトクロム p 4 5 0 酵素を 使用してのフィブリルの官能化

チトクロム p 4 5 0 s 源としてラット肝ミクロソームを使用することに関連した不純物を避けるために、個々のチトクロム p 4 5 0 酵素を購入した(ジェンテスト(GENTEST)、M A 州ホバーン(Woburn)在)。チトクロム p 4 5 0 酵素は膜との関連で活性であるに過ぎないので、これら酵素はミクロソーム調製物として供給される。上記のものに似た反応手順を使用して、本発明者らは次のチトクロム p 4 5 0 s を試験した:C Y P 1 A 1(触媒 # M 1 1 1 b)、C Y P 1 A 2(触媒 # M 1 0 3 c)、C Y P 2 B 6(触媒 # M 1 1 0 a)、C Y P 3 A 4(レダクターゼを含む、触媒 # M 1 0 7 r)。反応溶液にはMgCl2(0.6 7 mg/mL)も包含された。この実験では、フィブリルはソックスレー装置の助けをもって洗浄した。

導入されたヒドロキシル基の分析は、チトクロムp450と反応し洗浄されたフィブリルと着色試薬3,5ージニトロ安息香酸(DNBA)との反応によって行った。カップリングはN-FMOCーイソロイシンについて上記に説明した通りに行った。DNBAとの反応の後に、フィブリルをDMFで洗浄し、そして残留した(共有結合した)DNBAは6MのHCI又は46ユニット/mlのブタ肝エステラーゼ(シグマ)を使用して加水分解した。解放されたDNBAの分析は加水分解処理の後のフィブリルを取り囲んでいる上澄みのHPLC分析によって行った。解放されたDNBAのHPLC分析は、Vydac C18逆相分析カラム(触媒#218TP54)を備えたウォーターズ(Waters)HPLCシステ

ムで、そして0.1%のTFAを含有する脱イオン水(溶媒A)から0.1%の TFAを含有するアセトニトリル(溶媒B)までの線状勾配で、行った。

実施例36

ペルオキシダーゼを使用してのフィブリルの官能化

ペルオキシダーゼ基質特異性についての文献記述は、カーボンナノチューブがこれら酵素のための基質であるかも知れないことを包含していた(J.S. Dorick et al., Biochemistry (1986), 25, 2946-2951; D.R. Buhler et al., Arch. Biochem. Biophys. (1961)92, 424-437; H.S. Mason, Advances in Enzymology, (1957)19, 79; G.D. Nordblom et al., Arch. Biochem. Biophys. (1976)175, 524-533)。ペルオキシダーゼ(水素ペルオキシダーゼ、タイプII、シグマ)がフィブリルの表面上にヒドロキシル基を導入できるかどうかを測定するために、フィブリル(11mg)を、50mMの酢酸ナトリウムを含有する溶液(1.25mL、pH5.0)の中で、ホースラディッシュ ペルオキシダーゼ(200mM)と混合し、そしてジヒドロキシフマル酸(15mg)を、反応の最初の3時間の間に5mgで、加えた。反応は気体酸素を間欠的に吹き込みながら4℃で全体で5時間行った。反応後、フィブリルを水、1NのNaOH、メタノール、及び塩化メチレン(各200mL)で洗浄した。対照反応は熱不活性化されたペルオキシダーゼ(100℃で5分)を使用して行った。

ペルオキシダーゼで触媒されたフィブリルのヒドロキシル化の大きさを分析するために、フィブリルを乾燥DMF中でイミダゾールの存在下でtーブチルジメチルシリルクロリド(アルドリッチ)と反応させた。フィブリルの洗浄後、フィブリルの中に導入された珪素の元素分析のために、フィブリルをロバートソンミクロリット研究所(Robertson Microlit Laboratories, Inc)(NJ州マジソン在)に送った。分析の結果はフィブリルの表面上の珪素の存在についてははっきりしなかった。元素分析のために提出したフィブリルの中の小さなチップの中に、実験に使用したガラス容器からの珪素が存在したと考えられる。これは実験用試料と対照試料の両方において高い珪素レベルをもたらした。実験の結論はペルオキシダーゼはフィブリルの中にヒドロキシル基を導入したであろうというも

のであるが、技術的に難しいために本発明者らは導入されたヒドロキシル基の存在を測定することを妨げられた。

10. 無酸素フィブリル表面への電子親和物付加によって

又は金属化によって官能化されたナノチューブ

活性化した電子親和物を無酸素フィブリル表面に付加することにより得ることができる主な生成物は垂下の-COOH、-COCI、-CN、 $-CH_2NH_2$ 、 $-CH_2OH$ 、 $-CH_2-$ 、ハロゲン、またはHC=Oを有する。これらは次の反応によって二次誘導体に転化できる:

Fibril-COOH ----> 上記参照

Fibril-COC1(酸塩化物) + HO-R-Y ----> F-COO-R-Y (Sec. 4/5)

Fibril-COCI + NH_2 -R-Y ----> F-CONH-R-Y

 $Fibril-CN + H_2 \longrightarrow F-CH_2-NH_2$

Fibril- CH_2 NH_2 + HOOC-R-Y ----> $F-CH_2$ NHCO-R -Y

Fibril- $CH_2 NH_2 + O = CR - R'Y \longrightarrow F - CH_2 N = CR - R' - Y$

Fibril-CH₂ OH + O (COR-Y)₂ ----> $F-CH_2$ OCOR-Y

Fibril-CH₂ OH + HOOC-R-Y ----> $F-CH_2$ OCOR-Y

Fibril $- C H_2$ $- Halogen + Y^- -----> F - C H_2 - Y + X^-$

 $Y^- = NCO^-, -OR^-$

 $Fibril-C=O + H_2 N-R-Y -----> F-C=N-R-Y$

11. デンドリマー性ナノチューブ

ナノチューブの表面上の官能基の濃度は、特異官能基の数が各ジェネレーションによって増加してデンドリマー(dendrimer)様の構造を形成する結果になる多官能性試薬の一連のジェネレーションによってナノチューブを修飾することによ

って、増加させることができる。得られたデンドリマー性ナノチューブはそこに

タンパク質を共有結合で固定化するための固体支持体として特に有効である、何 故ならば、それらはナノチューブ表面に固定化されたタンパク質の密度を増加さ せるからである。本発明は特異な化学官能基の高密度は高い表面積の粒状カーボ ンの表面に与えられることができることを実証し、それは従来の高い表面積のカ ーボンをもってしては困難であった。

実施例37

リジン系デンドリマーの製造

反応順序は図5に示されている。重炭酸ナトリウム(5 ml、0.2 M、p H 8.6)の中のアミノフィブリル(90 mg)の懸濁物に、ジオキサン(5 ml)中の Na, Naージー t ー b o c ー L ー リジン N ー ヒドロキシスクシンイミド エステル(120 mg、0.27ミリモル)の溶液を加えた。この反応混合物を室温で一晩攪拌した。 t e r t ー ブトキシカルボニルで保護したリジンフィブリルを、水、メタノール及び塩化メチレンで完全に洗浄し、そして真空乾燥した。それから、 t e r t ー ブトキシカルボニルで保護したリジンフィブリルを、塩化メチレン(5 ml)中のトリフルオロ酢酸(5 ml)によって室温で2時間処理した。生成物アミノリジンフィブリルを塩化メチレン、メタノール及び水で完全に洗浄し、そして真空乾燥した。第二および第三ジェネレーションのリジンフィブリルの製造は同じ手順に従った。アミノ酸分析データは、第一ジェネレーションのリジンフィブリルはフィブリル1 g 当り 0.6マイクロモルのリジンを含有し、第二ジェネレーションのリジンフィブリルはフィブリル1 g 当り 1.8マイクロモルを含有し、そして第三ジェネレーションのリジンはフィブリル1 g 当り 3.6マイクロモルのリジンを有することを示した。

カルボキシル デンドリメリック フィブリルはカルボキシルフィブリルと共 にアスパラギン酸又はグリタミン酸を使用することによって同じ方法によって製 造することができる。

実施例38

カルボキシレート末端デンドリマーの製造

カーボンナノチューブ (CN) コアを有するカルボキシレート末端デンドリマ

ーは、代々の、アミノブチルーニトリロトリ酢酸(NTA)の逐次カップリングと、塩素酸塩で酸化されたカーボンフィブリルのNHSエステルによる開始とによって製造できる。

NTAの製造

NTAはホチュリ(Hochuli)の方法(E. Hochuli, H. Dobeli, and A. Scbacher, J. Chromatography, 4 1 1, 1 7 7 - 1 8 4 (1987)、その内容は本願明細書中に組み入れられる)に従って製造した。

CN/NHSの製造

CN/NHSは実施例20の方法に従って製造した。

CN/NTAの製造

 $25ml00.2M0NaHCO3、pH8.1、の中に、0.4g0NTA-HC1を溶解した。pHを7.8までもどすために1NのNaOHを加えた。0.5gのCN/NHSを加え、CNを分散させるために混合物を超音波処理し、得られたスラリを攪拌しながら30分間反応させた。スラリを0.45<math>\mu$ mのナイロン膜上で濾過し、そしてフィルター上で、pH8.1の炭酸塩緩衝液で2回、そしてDI水で2回洗浄した。修飾されたCNを25mlのMeOHの中に超音波処理によって2回再懸濁させ、濾過して固体ケークにし、そして最後に真空デシケーターで乾燥した。

C N / N T A / N T A の製造

CN/NTAをNHS活性エステルにまず転化した。90℃のオーブンの中で0.386gのCN/NTAを30分乾燥し、それから30mlの無水ジオキサンを含有しアルゴンでパージされた100mlのRBフラスコに移した。攪拌しなが60.4gのNーヒドロキシスクシンイミドを、次いで0.67gのEDCを加え、更に1時間連続攪拌した。この間中、<math>CNは互いに凝集しがちであった。ジオキサンをデカントして捨て、そして固体を20mlの無水ジオキサンで2回洗浄した。固体を20mlの無水MeOHで洗浄し、その間に凝集は壊れた。固体を0.45 μ mのナイロン膜で濾過し、MeOHの中に再懸濁させ、濾過し、そしてフィルター上でMeOHによって洗浄した。

0. 2gのNTAを50mlのフラスコに入れ、そして1NのNaOHの10滴

で溶解した。20m1009.2M0NaHCO3、pH8.1、を加え、それから、CN/NTA/NHSの全てを加え、そして溶液をプローブ ソニケーターで軽く超音波処理した。混合物を室温で<math>2.5時間反応させた。修飾されたCNを $0.45\mu m$ のナイロン膜で濾過し、炭酸塩緩衝液で2回洗浄し、DI水の中に超音波処理によって再懸濁させ、濾過し、そしてDI水で洗浄した。それから、それらを真空デシケーターの中に入れて乾燥した。

CN/NTA/NTA/NTAの製造

上記手順に従って、追加のレベルのNTAを付加した。

CN/NTA/NTA/NTA/NTAの製造

上記手順に従って、追加のレベルのNTAを付加した。

NTA付加の4つのジェネレーションの各々の試料(約10 mg)を10 mlのD I 水の中に超音波処理によって懸濁させ、そして0.45 μ mのナイロン膜で濾過してフェルト状マットを形成した。マット切片を真空デシケーターの中に貯蔵し、そしてESCAによって窒素(N)について分析してNTAの相対量を示した。結果は下記の表に示す。

材 料	<u>ESCAによるN%</u>
C N/N T A	0
CN/NTA/NTA	1.45
CN/NTA/NTA/NTA	1.87
CN/NTA/NTA/NTA/NTA	2.20

ESCA結果は継続する各ジェネレーションによる増加する量の導入を立証している。

<u>実施例39</u>

タンパク質支持体としてのカーボンナノチューブデンドリマー

カーボンナノチューブの上に固定化されたタンパク質の密度は、デンドリマーを担持するように誘導化されたフィブリルを使用することによって大きく増加し得る。ホースラディッシュ ペルオキシダーゼ (HRP) を次の方法に従ったデンドリマー性ナノチューブの上に固定化した:

プレーンフィブリル(0. 49mg)、アミノフィブリル(0. 32mg)、第一ジェネレーションのリジンフィブリル(0. 82mg)、第二ジェネレーションのリジンフィブリル及び第三ジェネレーションのリジンフィブリルを、重炭酸ナトリウム コンジュゲート緩衝液(600 μ l、0. 1 M、0. 9%のNaClを含有する)と共に室温で15分間超音波処理した。それから、それらを重炭酸ナトリウム コンジュゲート緩衝液の中のHRP溶液(490ml、5. 6mg/mlの酵素ストック溶液)と共に、室温で19時間インキュベートした。HRPを固定化したフィブリルを次の緩衝液(1ml)で洗浄した:0. 9%のNaClを含有する10mMのNaHCO3緩衝液、pH9. 5(1X洗浄用緩衝液)で7回、1X洗浄用緩衝液の中の0. 1%のトリトンX-100で5回、1X洗浄用緩衝液の中の50%のエチレングリコールで3回。HRPの活性度は過酸化水素溶液(10 μ l、10mMストック溶液)およびグリシジン アッセイ緩衝液(50mM、pH4. 4)の中の2、2ーアジノビス(3ーエチルベンゾチアゾリン)ー6ースルホン酸ニアンモニウム塩(ABTS、3 μ l、mMストック溶液)によって、414nmで検定した。結果は次の表に示した:

<u>フィブリル</u>	nmol HRP/g, フィブリル
プレーンフィブリル	3.82
$F i b - N H_2$	8.58
F i b-NH-L y s	28.09
$F i b-NH-L y s (L y s)_2$	28.30
$F i b-NH-L y s (L y s)_4$	46.28

<u>12. 二官能性フィブリル</u>

一つタイプの官能基より多く(例えば、カルボキシル基とアミノ基)を同時にフィブリル上に導入することは、官能化されたナノチューブ、例えば、カルボキシナノチューブをアミノ酸と反応させることによって、できることがわかった。かかる二官能性ナノチューブは多数の分子を、特に、1:1の化学量論量で、そして接近させて、固定化するのに使用できる。

実施例40

リジンの付加による二官能性フィブリルの製造

<u>N。-CBZ-L-リジン ベンジル エステルの合成</u>

反応順序は図7に示されている。 N_{ϵ} - (tert-ブトキシカルボニル)-L ーリジン(2g、8.12ミリモル)をメタノール(40ml)と水(40ml)の 中に溶解し、そしてトリエチルアミンによってpHを8に調節した。ジオキサン の中のN-(ベンゾイルオキシカルボニルーオキシ)スクシンイミドの溶液(2 Omlの中の、2. 4g、9. 7ミリモル)を、上記混合物に加え、そしてトリエ チルアミンによってpHを8~9に維持した。反応混合物を一晩攪拌した。溶媒 を回転蒸発によって除去して粗N。- C B Z - N: - (tert-ブトキシカルボ ニル)-L-リジンを得た。 $N_a-CBZ-N_E-$ (tert-ブトキシカルボニ ル)ーLーリジンをO. 2Mの炭酸ナトリウム(4ml)で処理し、そして水性層 を除去して白色固体を得た。固体をN,N-ジメチルホルムアミド(40㎖)と 臭化ベンゾイル (1. 16ml) の中に再懸濁させた。反応混合物を室温で一晩攪 拌した。反応混合物を酢酸エチル及び水と混ぜ、そして有機相を硫酸マグネシウ ムで乾燥した。溶媒を除去して粗N₂-CBZ-Nෑ-(tert-ブトキシカル ボニル) - L - リジン ベンジル エステルを得、それを溶媒として酢酸エチル 中の25%へキサンを使用するシリカゲル クロマトグラフィーによって精製し た。塩化メチレン(1 Oml)の中のNa-CBZ-NE-(tert-ブトキシカ ルボニル) - L - リジン ベンジル エステル (1g、2.2ミリモル) に、ト リフルオロ酢酸を0℃で加えた。反応混合物を0℃で10分攪拌し、それから室 温で更に2.5時間攪拌した。溶媒を除去し、そして粗生成物を得た。シリカゲ ルクロマトグラフィーによって純N。-CBZ-L-リジン ベンジル エステ ルを得た。

N。- C B Z - L - リジン ベンジル エステル フィブリルの合成

塩化メチレン(1.8ml)中のカルボニルフィブリル(3.0.0mg)の懸濁物に、 $N_a-CBZ-L-$ リジン ベンジル エステル(1.4.8mg、0.3.2.5リモル、2.0mlの塩化メチレンと $1.7.6\mu$ lのトリエチルアミンの中)を加えた。それから、HOBT(4.3.3g、0.3.2.5リモル)とEDC(6.3.3mg、0.3.2.5リモル)を加えた。反応混合物を室温で一晩攪拌して粗生成物を得た。生

物フィブリルをメタノール、塩化メチレン、及び水によって大規模に洗浄し、それから真空乾燥した。

官能性フィブリル Fib-Lys (COOH) NH2の合成

メタノール(4 ml)中のNa - C B Z - L - リジン ベンジル エステル フィブリル(1 1 3 mg)に、水酸化ナトリウム(1 N、 4 ml)を加え、そして反応混合物を一晩攪拌した。生成物 Na - C B Z - L - リジンフィブリルを水およびメタノールで大規模に洗浄し、そしてフィブリルを真空乾燥した。アセトニトリニ(4 ml)の中の Na - C B Z - L - リジンフィブリル(5 0 mg)の懸濁物に、トリメチルシリルヨージド(1 ml)を加えた。混合物を 4 0 $^{\circ}$ で3時間攪拌した。最終の二官能性フィブリルを水、メタノール、0.5 Nの水酸化トリウム、アセトニトリル、及び塩化メチレンによって大規模に洗浄した。アミノ酸の分析はフィブリル 1 g 当 5 0.3 マイクロモルのリジンを示した。

ヒドロキシルとカルボキシル(又はアミノ)の二官能性フィブリルは、セリン、トレオニン又はチオシンを使用することによって、ここに記載したのに似た方法によって製造できる。チオール化とカルボキシル(又はアミノ)の二官能性フィブリルはシステインを使用して製造できる。カルボキシルとアミノの二官能性フィブリルはアスパラギン酸又はグルタミン酸を使用して製造できる。

官能化されたナノチューブの用途

官能化されたグラファイト性ナノチューブはその高い気孔度、化学的及び物理的安定性、及び高い表面積によって多数のバイオテクノロジー分野における固体支持体として有用である。それらは過酷な化学的および熱的処理に適合性であり且つ化学的官能化を非常に受けやすいことが判明した。

例えば、酵素は修飾されたナノチューブ上に共有結合で固定化されることが、 その生物学的活性を維持しながら可能である。その上、ナノチューブは生物分子 の分離におけるアフィニティークロマトグラフィー用支持体としての用途にも適 している。例えば、酵素阻害剤は多段階合成においてナノチューブ上に調製され たので、固定化された阻害剤は巨大分子に近づくことができたし、またタンパク 質と修飾フィブリルとの間に可逆の特異な生物学的認識が起こった。

ナノチューブ表面の疎水性は吸着によってタンパク質の高密度を固定化するに

は十分でない。ナノチューブ表面の疎水性を増加させるために及び疎水性環境を 二次元から三次元に拡張するために、様々な長さのアルキル鎖をナノチューブ表 面にカップリングさせた。アルキルナノチューブ上に吸着によって固定化された タンパク質には、トリプシン、アルカリ性ホスファターゼ、リバーゼおよびアビ ジンが含まれる。これら固定化されたタンパク質の酵素活性度は遊離酵素のもの に匹敵しており、それは水溶液中でのそれらの基質の加水分解に向かう触媒効率 によって証明された。

加えて、アルキル鎖の末端にフェニル基の付加を有するアルキルナノチューブであるフェニルーアルキルナノチューブも製造された。この修飾は、 $\pi - \pi$ 相互作用を通してタンパク質の中のアミノ酸フェニルアラニン、チロシン及びトリプトファンと相互作用する芳香族構造を導入した。フェニルーアルキルナノチューブ上へのアルカリ性ホスファターゼ及びリパーゼの吸着は C_8 ーアルキルナノチューブ上への吸着に匹敵した。

官能化されたフィブリルはタンパク質合成のための固体支持体として有効であることも判明した。

1. 酵素のための固体支持体としての官能化されたナノチューブ 実施例 4 1

吸着による酵素の固定化

アルキルフィブリルの製造

- 10 mgのカルボキシルフィブリル(それは-COOH基を約0.007ミリモル含有する(10 mgのフィブリル×0.7ミリモルの-COOH/mgフィブリル =0.007ミリモル))を、
- 0. 14ミリモルのEDA(1-エチルー3-(3-ジメチルアミノプロピル)カルボジイミド)及び 0. 14ミリモルのDMAP(4-ジメチルアミノピリジン)を使用して、1.5mlのDMF(N,N-ジメチルホルムアミド)の中の 0. 14ミリモルのアルキルアミンと、

反応させることによって、アルキルフィブリルを製造した。化学反応は次の通りである:

酵素の吸着

酵素リパーゼ、トリプシン、アルカリ性ホスファターゼ及びアビジンはこの実施例のアルキルフィブリルの上に吸着によって固定化された。アルキルフタロシアニンと酵素を室温で3~4時間混合した後、5mMの燐酸ナトリウム(pH7. 1)で2~4回洗浄した。アルカリ性ホスファターゼは C_8 ーフィブリルおよび C_8 OHーフィブリルの上に固定化された;トリプシンは C_6 ー、 C_8 ー、 C_{10} ー 及び C_{18} ーフィブリルの上に;リパーゼは C_8 OHー、 C_8 ー、 C_{10} ー、及び C_{18} によってアビジンは C_8 ーフィブリルの上に;そしてアビジンは C_8 ーフィブリルの上に固定化された。結果は次の表に示されている:

酵 素	μmol/g フィブリル	mg/g フィブリル	
リパーゼ	6. 8	8 1 6	
トリプシン	1. 7	4 0	
アルカリ性ホスファターゼ	0. 6 6	5 6	
アビジン	not determined		

固定化酵素の反応速度特性は次の表に示されているように遊離酵素のそれに匹 敵することが判明した:

酵素	K _m (M)	Kcat (8-1)	K _{cat} / K _m (M 's
リパーゼ	4.0×1.0^{-6}	0. 0 4 0	0.99×10^{3}
リパーゼー フィブリル	3 6 × 1 0 ⁻⁶	0. 0 4 8	1. 3 4 × 1 0 ³
トリプシン	1. 2×10^{-3}	4. 8	4. 1 7 × 1 0 ³
トリプシンー フィブリル	7. $9 \times 1 \ 0^{-3}$	19. 1	2. 4 3 × 1 0 ³

基質:リパーゼ 1,2-O-ジラウリル-rac-グリセロ-3-グルタル酸 レゾルフィンエステル

トリプシン N-ンエイルーL-アルギニン-p-ニトロアニリド

実施例 4 2

フィブリルーリパーゼによって触媒されたエステル化

(酪酸エチルの合成)

リパーゼを実施例 4 1 の手順に従って C_8 ーアルキルフィブリルの上に固定化した。リパーゼフィブリルをまずジオキサンで洗浄し、それからジオキサンとへプタンの混合物で洗浄し、そしてフィブリルをヘプタンの中に分散させるために最後にヘプタンで洗浄した。酪酸エチル(パイナップルーバナナの香りを与える食品添加物)を合成するために、6.2 μ mのフィブリル固定化リパーゼを含有するヘプタンの中でエタノール(0.4 M)と酪酸(0.25 M)を混合した。反応混合物を室温で攪拌した。収率は7時間で60%であった。それは確立された方法を使用して反応混合物の中のエタノール濃度を測定することによって測定した。反応および結果は図8に示されている。

実施例43

フェニルーアルキル フィブリルの上への アルカリ性ホスファターゼの固定化

フェニルーアルキル フィブリルの製造

2つの異なる反応系によってフェニルーアルキル フィブリルを製造した。反

応1は、20mgのカルボキシルフィブリル(約0.014ミリモルの一COOH 基を含有する)を1.5mlのDMF(N,Nージメチルホルムアミド)の中の0.28ミリモルの4ーフェニルブチルアミン、0.28ミリモルのEDC及び0.28ミリモルのDMAP(4ージメチルアミノピリジン)と混合した。反応2は、20mgのカルボキシルフィブリルを1.5mlのDMFの中の0.28ミリモルの6ーフェニルー1ーへキサノール、0.28ミリモルのDOC(1,3ージシクロへキシルカルボジイミド)及び0.28ミリモルのDMAPと混合した。反応は室温で一晩攪拌しながら行った。それから、フィブリルを 3×25 mlのCH $_2$ Cl2、 3×25 mlのMeOH、及び 3×25 mlのd $_2$ Cl2、 3×25 mlのMeOH、及び 3×25 mlのd $_2$ Cl2、 $_2$ Cl2、 $_3$ Cl2 $_4$ Cl2 $_5$

アルキル性ホスファターゼを固定化したフィブリルの製造

 $0.5 \, \mathrm{mg}$ のフェニルーアルキル フィブリルを $400 \, \mu \, \mathrm{lo} \, 0.05 \, \mathrm{Mo}$ トリス (pH8.6) の中に懸濁させ、そして $20 \, \mathrm{O} \, \mathrm{li}$ 超音波処理した。これらフィブリルに $150 \, \mu \, \mathrm{lo}$ アルカリ性ホスファターゼの溶液($5 \, \mathrm{mM}$ の燐酸ナトリウム緩衝液中で $1.67 \, \mathrm{mg/ml}$ 、pH7.0)を加え、そして混合物を室温で $2 \, \mathrm{Hi}$ 回転させ、そして $4 \, \mathrm{C} \, \mathrm{C}$

触媒活性の測定による特異固定化アルカリ性ホスファターゼの定量

アルカリ性ホスファターゼは基質 p ーニトロフェニルホスフェートと反応し、そして 405 nmの光を 18, 200 M $^{-1}$ cm $^{-1}$ の吸光係数をもって吸収する着色化合物を放出する。この反応のためのアッセイ バッファー条件は 10 nMのトリス、1 nMのMgCl2、及び 0. 1 MのZnCl2、p H = 8. 4 であった。反応は 1 nlの浅鉢の中で 5 μ lの p ーニトロフェニルホスフェートのストック溶液(アッセイバッファー中の 33 %の DMS Oの中の 0. 5 M)と 1 nlのアッセーバッファー中の 13 μ gのアルカリ性ホスファターゼ フィブリルとを混合することによって行った。 405 nmの吸光度の増加は 分間のタイムスキャンによってモニターした。それから、吸光係数 18200 M $^{-1}$ cm $^{-1}$ を使用して初期勾配から酵素活性度(μ M $^{-1}$ 分)を算出した。

反応 1 からのフェニルフィブリルの上に吸着されたアルカリ性ホスファターゼについては、活性度は 1 3 μ gのフィブリル当り 6 . 9 5 μ M/分であった。反応 2 からのフェニルフィブリルの上に吸着されたアルカリ性ホスファターゼについては、活性度は 1 3 μ gのフィブリル当り 2 . 5 8 μ M/分であった。これら結果は同じアッセイ条件下で 1 μ Mのアルカリ性ホスファターゼ当り 8 7 9 . 8 μ M/分であると測定された既知濃度のアルカリ性ホスファターゼの活性度を除することによって、フィブリル 1 g 当り、それぞれ、0 . 6 3 マイクロモル(又は 5 4 mg)及び 0 . 2 3 マイクロモル(又は 2 0 mg)の活性なアルカリ性ホスファターゼに換算された。

実施例44

フェニルアルキルフィブリル上へのリバーゼの固定化 リパーゼを固定化したフィブリルの製造

 $0.5 \, \mathrm{ng}$ のフェニルーアルキル フィブリルを $50 \, \mu \, \mathrm{lo} \, \mathrm{5} \, \mathrm{nM}$ の燐酸ナトリウム緩衝液($\mathrm{p} \, \mathrm{H} \, \mathrm{7}$. 1)の中に懸濁させ、そして $20 \, \mathrm{O} \, \mathrm{ll}$ 超音波処理した。これらフィブリルに $350 \, \mu \, \mathrm{lo} \, \mathrm{J}$ パーゼ溶液($5 \, \mathrm{nM} \, \mathrm{mM}$ 機酸ナトリウム緩衝液中の2. $5 \, \mathrm{nM}$, $\mathrm{p} \, \mathrm{H} \, \mathrm{7}$. 1)を加え、そして混合物を室温で $5 \, \mathrm{H} \, \mathrm{ll}$ 回転させ、そして $4 \, \mathrm{C} \, \mathrm{C} \, \mathrm{C} \, \mathrm{C} \, \mathrm{H}$ の時間に表されから、フィブリルを $600 \, \mu \, \mathrm{lo} \, \mathrm{5} \, \mathrm{nM}$ の燐酸ナトリウム緩衝液($\mathrm{p} \, \mathrm{H} \, \mathrm{7}$. 1)で $3 \, \mathrm{lo} \, \mathrm{lm}$ で $3 \, \mathrm{lo} \, \mathrm{lo}$ で $3 \, \mathrm{lo} \, \mathrm{lo}$

触媒活性の測定による特異固定化リパーゼの定量

初期勾配から酵素活性度(μM/分)を算出した。

実施例45

アミノアルキル修飾フィブリルの上への

ホースラディッシュ ペルオキシダーゼ(HRP)の固定化 カルボン酸で官能化されたフィブリル(カルボキシルフィブリル)の製造

10.0gのグラフエイト性フィブリルを450mLの濃硫酸の中にスパチュラで混合することによってスラリ化し、それから流入口/流出口と頭上攪拌機を備えた反応フラスコに移した。攪拌しながら、ゆっくりのアルゴン流の下で、室温で24時間かけて装填量8.68gのNaClO₃を少しずつ加えた。実験の全過程中に発生する塩素蒸気は反応器からスウィープされてNaOH水溶液トラップの中へ追い込まれた。実験の最後に、フィブリルスラリを砕いた氷の上に注ぎ、そして真空濾過した。それから、フィルターケークをソックスレー円筒濾紙に移し、そしてソックスレー抽出器の中で脱イオン水で数時間毎に新しい水に交換しながら洗浄した。洗浄はフィブリルの試料が新しい脱イオン水に加えられたときに水のpHを変化させなくなるまで継続した。それから、カルペキシル化フィブリルを濾過によって回収し、そして5"真空で100℃で一晩乾燥した。収量は10.0gであった。

HRPを固定化したフィブリルの製造

実施例27の方法を使用して1,6 ージアミノヘキサンから製造したアミノフィブリル(1.2 mg)をコンジュゲートバッファー(0.1 M NaHCO $_3$ 、0.9% NaCl、pH9.5)に加え、そしてこの懸濁物を20分間超音

波処理した。それから、フィブリルをエッペンドルフ管の中でコンジュゲートバッファーによって2回洗浄し、そして400μLのコンジュゲートバッファーの中に懸濁させた。懸濁物の50μLアリコート(0.14mgのフィブリル)を、50μLの脱イオン水の中に溶解した4.0mgの活性化HRP(ピアス、IL州ロックフォード在)と混合し、そして得られた懸濁物を4℃で一晩回転させた。HRPをコンジュゲートされたフィブリルをエッペンドルフ遠心管の中で次の溶液の組み合わせにより大規模に洗浄した:コンジュゲートバッファー、洗浄緩衝液(20mMのKH2PO4、0.45% NaCl、pH6.2)、0.03~0.1%のトリトンX-100を含有する洗浄緩衝液、及び50%のエチレングリコールを含有する洗浄緩衝液。対照として、活性化HRPを含む同一のマニプレーションをプレーン(非誘導体化)フィブリルをもって実施したところ、アミノフィブリルへのHRPの結合が実際に特異共有結合であったことを示した。

触媒活性の測定による特異固定化HRPの定量

大規模な洗浄は非特異結合した酵素の大部分を除去した。固定化活性HRPは過酸化水素と色素原基質 2, 2'-アジノービス(3-エチルベンズチアゾリンー6-スルホン酸)二アンモニウム塩(ABTS)を使用しての基質のターンオーバーによって定量化された。HRPの触媒活性度は 100μ Mの過酸化水素と 30μ Mの ABTS を基質として使用して 414 nmにおいて分光測定でモニーした。これらの予備研究においてアミノフィブリルに結合した酵素の全量はフィブリル 1 g 1 g 1 g 1 g 1 g 1 d 1 g 1 d 1 g 1 d 1 d 1 mol 1 d 1 mol 1 d 1 d 1 mol 1 d 1 d 1 mol 1 d 1 d 1 d 1 mol 1 d 1

実施例46

固定化された酵素阻害剤を担持するフィブリル上での アルカリ性ホスファターゼ(AP)と β -ガラクトシダーゼ(βG)の アフィニティークロマトグラフィーによる分離

アルカリ性ホスファターゼ阻害剤フィブリルの製造

AP-阻害剤で修飾されたフィブリルの製造はブレナ(Brenne)らの方法に基

づいた(Brenna et al., (1975), Biochem. J., 151:291-296)。 カルボキシル化フィブリルを使用して、上記の実施例50に記載したように、NHSエステルフィブリルを製造した。4mLのアセトンにNHSエステルフィブリル (114mg) を懸濁させ、そして(フィブリル1g当り0.7meqのNHSエステルとの推定に基づいて)10当量のチラミン(tyramine)を添加した。乾燥トリエチルアミン(10当量)を添加し、そして混合物を室温で3時間攪拌した。チラミニルフィブリルを焼結ガラスの濾過漏斗の中で真空下で最初にアセトンによって、それから大規模に脱イオン水によって洗浄した。

p-Tミノーフェニルー $\beta-D-F$ オガラクトシダーゼ(TPEG)誘導フィブリルを、ウルマンの方法(Ullman, (1984) \underline{Gene} , 29:27-31)に基づいて製造した。 2.24 mgののTPEGを、 0.2 mLの脱イオン水の中の8 mgのカルボキル化フィブリルに加えた。懸濁液のpHを 0.1 MのHCIで 4.

Oに調節し、そして15mgのEDACを加えた。混合物をpH4.0で、室温で

3時間攪拌した。エッペンドルフ管の中での急速遠心分離によって反応を停止し、そして液体を除去した。 β ーガラクトシダーゼ阻害剤フィブリルを脱イオン水中への再懸濁と遠心分離によって 5 回洗浄した。

<u>アフィニティークロマトグラフィー</u>

アルカリ性ホスファターゼ(AP)(大腸菌(E. Coli, Type III)から、シ グマ ケミカル社 (Sigma Chemical Co.)、MO州セントルイス)と、βーガラ クトシダーゼ (βG) (大腸菌 (E. Coli) から、カルビオケム (Calbiochem) 、CA州ラジョラ)の混合物は、エッペンドルフ ミクロ遠心管の中で、AP阻 害剤フィブリル又は β G 阻害剤フィブリルのどちらかの上で、バッチ関連で分離 された。アフィニティー分離のために、AP(一般に約10ユニット)と βG (一般に約280ユニット)の両方を含有するローディング バッファー (20 mM) トリス、10mMのMgCl、1.6MのNaCl、10mMのシステイン、pH7 . 4) の溶液 1. 0 mLを、 0. 8~11. 0 mgの A P 又は β G どちらかの阻害剤 フィブリルに加えた。得られた懸濁物を穏やかにかきまぜ、それから室温で2時 間回転させた。酵素結合の後に、フィブリルを卓上遠心分離器で簡単な遠心分離 によって沈殿させ、そして未結合酵素を含有する液相を引き出し、そして酵素検 定のためにとっておく。ローディング バッファーによる洗浄 (7×1.0 mL) は、バッファー添加、穏やかなかきまぜ、15分の保留、簡単な遠心分離、及び パスツール ピペットによる溶媒撤収の繰り返しによって行った。7回洗浄後に ム、10mMのシステイン、10mMのシステイン、pH10.0)またはAP阻害 剤フィブリル(40mMのNaHPO₁、10mMのトリス、1.0mMのMgCl₂、0. 1mMのZnCl₂、pH8.4)どちらかにとっての適切な溶出緩衝液をもって繰り 返し実施した (5×1. OmL)。

全ての分画(未結合酵素、洗浄液、及び溶出液)を $AP \ BG$ G両方の活性度について検定した。アルカリ性ホスファターゼ活性度は $500 \ \mu$ Mのp ーニトローフェニルホスフェート(PNPP)の加水分解速度を $410 \ nm$ ($\Delta \epsilon = 18$, $00 \ M^{-1}$ cm)において分光測定で監視することにより測定した。アルカリ性ホ

A P 阻害剤フィブリルおよび β G 阻害剤フィブリルどちらでも、A P E β G O混合物を加えた。特異結合容量の測定を容易にするために、添加酵素の濃度は固 体化阻害剤濃度の大きな過剰の中にあった。AP阻害剤フィブリルでは、フィブ リルのg 当り0. 5 5 0 μ mol D A P が結合した(これに対して β G D β B合はフィブリルの g 当り 0 . 0 2 0 μ mol) 。 β G 阻害剤フィブリルでは、容量 はフィブリルのg 当り0. 0 9 3 μ mol Ω β G であると測定された(これに対し TAPの非特異結合はフィブリルのg当り $0.012\mu mol$)。アフィニティー クロマトグラフィー実験の結果は図9と図10に示されている。AP阻害剤フィ ブリルは評価できるほどにはβGを結合しなかった、しかしΑΡを結合した、こ れはバッファーに40mMのホスフェート、競合阻害剤、が添加されたときには特 に溶出された(図9)。β Gによって誘導されたフィブリルは実質的量のΑ Pを 結合しなかった、しかしβGを結合した、これは酵素阻害剤の提携を弱めるため にpHを高くしたときには特に溶出された(図10)。これら結果は阻害剤がフ ィブリルにうまく共有結合されたこと、固定化阻害剤が大きな分子に近づき得た こと、阻害剤が特異酵素結合のために利用可能であったこと、及び特に溶離され たときに酵素が活性のままであったことを示している。図10では、β G阻害剤 フィブリルからの β G の連続浸出があるようである。 Α Ρ 阻害剤フィブリルによ る図9では同じ現象がみられないので、これはフィブリルの欠点というよりむし ろ自然の弱い酵素-阻害剤親和力の結果であるらしい。

2. 抗体の固体支持体としての官能化ナノチューブ

官能化されたナノチューブの上に抗体を固定化することができること、及びかかる抗体ナノチューブはそれらの重量当りの高い表面積、電気伝導性、及び化学

的及び物理的安定性によって多数の応用のための独特の利点を有することが判明 した。例えば、抗体ナノチューブは分子分離のめたのアフィニティー試薬として 使用できる。抗体ナノチューブはまた、ECL系免疫検定のような診療用免疫検 定を含めて分析の応用のためにも有効である。

抗体は共有結合又は非共有結合どちらかによって固定化されることができる。 共有結合固定化は様々な方法によって行われた;抗体のカルボキシレート基の反応性アミノ化、カルボキシル化フィブリルのNHSエステル活性化(上記実施例27を参照)、及びチオール化フィブリル又はマレイミドフィブリルと還元された又はマレイミド修飾された抗体との反応(上記の実施例23及び25参照)が挙げられる。

抗体をナノチューブに付着させるための最善の方法はそれらが使用されるべき 用途に依存する。分離用には、好ましい方法は非共有結合の吸着であるかも知れ ない、何故ならば、タンパク質結合の容量がこの方法のためには最も高いと思わ れるからである。フィブリルの電気伝導度が重要であるかも知れない、ECLを 包含する方法のためには、共有結合方法が好ましいであろう(アルキル付加物は 弱い電気的導体でありフィブリルを絶縁することが期待できる)。還元性アミノ 化はフィブリルに抗体を共有結合するための最善の方法であるらしい、何故なら ば、この方法を使用することによって、抗体はそれらの結合サイトが(フィブリ ルから遠い)外側を向くように正しく配向されるからである。

3. 官能化されたナノチューブへのNAD の付加

NAD のような補助因子は酵素補助因子に結合するタンパク質の生体特異アフィニティークロマトグラフィー用の固体支持体に付加されそして固体支持体として使用することができる。例えば、NAD フィブリルはデヒドロゲナーゼの純化のための固体支持体として使用されている。フィブリルを使用する主な利点はそれらの大きな量の接近可能な表面積である。高い表面積を有するアフィニティーマトリックスは高い潜在容量故に望ましい。フィブリルはゆるい分散物であるか又はカラム若しくはマット状に固定されるかどちらでもよい。

<u>実施例47</u>

NAD フィブリル上のデヒドロゲナーゼの

アフィニティークロマトグラフィーによる分離

NAD フィブリルの製造

アフィニティー分離

NAD 固定フィブリル(0.26mg)及びプレーンフィブリル(0.37mg)を燐酸ナトリウム(1ml、0.1M、pH7.1)の中の0.1%のポリエチレングリコール(PEG,MW1000)と一緒に40℃で30分間超音波処理し、それから40℃で30分間インキュベートした。フィブリル懸濁物を遠心分離し、そして上澄みを除去した。フィブリルを、Lーラクテート デヒドロゲナーゼ(LDH)の、0.1%のPEG(1000)燐酸ナトリウム緩衝液(250 μ l、LDH溶液と0.1%のPEG緩衝液の比は1:1)の中の混合物と一緒に4℃で90分間インキュベートした。それから、混合物を室温で30分間平衡化した。フィブリルのLDHとのインキュベーションの後で、フィブリルを燐酸ナトリウム緩衝液中の0.1%のPEG(1000)によって洗浄し(5×1000 μ l)、そして洗浄毎に15分間の回転を採用した。LDHは0.1%のPEG(1000)燐酸ナトリウム緩衝液(5mm、3×1000 μ l)の中の5mMのNaDHによって溶出された。各溶出洗浄中に、フィブリルを15分間回転させた。溶出液中のLDH活性度はピルピン酸塩の還元中の340mにおける吸光度変化を測定することによって検定した。検定混合物は燐酸ナトリウム緩衝液

(980 μ 1)中の0.1%のPEG(1000)、ピルビン酸塩(3.3 μ 、100 π Mストック溶液)、及び各溶出画分(16.7 μ 1)を含有していた。酵素反応は下記のように示される:

LDH ピルベート + NADH -----> ラクテート デヒドロゲナーゼ + NAD⁺

結果はNAD 固定化フィブリル上のLDHの容量がフィブリル当り484ナノモルであり、そしてプレーンフィブリル(対照)上のLDHの容量がフィブリル当り3.68ナノモルであることを示した。LDHの非特異結合は5.6%であった。

4. タンパク質合成用の固体支持体としての

官能化されたナノチューブ

実施例48

タンパク質合成のための固体支持体としての

官能化されたナノチューブ

アミノフィブリル(400mg)と塩化メチレン(20ml)中の4ー(ヒドロキシメチル)ーフェノキシ酢酸懸濁物(255mg、1.4ミリモル)との混合物に、1ーエチルー3ー(3ージメチルアミノプロピル)カルボジイミド(EDC、268mg、1.40ミリモル)と1ーヒドロキシベンゾトリアゾール水和物(HOBT、189mg、1.4ミリモル)を加えた。反応混合物をアルゴンガス下で室温で一晩攪拌した。生成物フィブリルを塩化メチレン、メタノール及び水によって大々的に洗浄し、それから真空下で乾燥してフィブリルを得た。N,Nージメチルホルムアミド(DMF、2ml)と塩化メチレン(8ml)の中のフィブリルの懸濁物に、Nー(9ーフニオレニルメトキシカルボニル)ーローブチルーLーセリン(215mg、0.56ミリモル)、1,3ージシクロヘキシルカルボジイミド(DCC、115mg、0.56ミリモル)及び4ージメチルアミノピリジン(DMAP、3.4mg、0.028ミリモル)を加えた。反応混合物を室温で一晩攪拌し、そして生成物フィブリルをDMF中の20%ピペリジン(5×40ml、毎回1分浸漬)で洗浄した。それから、生成物フィブリルをDMF、水、水酸

化ナトリウム(1N)、メタノールおよび塩化メチレンで大々的に洗浄した。生成

物 フィブリルーハンドルーセリン(O+)ーCOOH (ニンヒドリン試験は+) を真空乾燥した。ジペプチド合成のために、同じ手順を使用してアルギニンを付加した。フィブリルーハンドルーセリン(O+)ーアルギニン ($N^{^{1}}$ -2, 2, 5, 7, 8ーペンタメチルクロマンー6-スルホニル)のアミノ酸分析データは、それがフィブリルのg当り6. 5 μ モルのセリンとフィブリルのg当り7. 6 μ モルのアルギニンを含有することを示している。他のどのペプチドも同じ方法によって製造できる。

5. ビオチン化されたフィブリル及び ビオチン化されたアルキルフィブリル

フィブリル表面をビオチン化(biotinylation)によって又はアルキル化とビオチン化によって官能化することができる。かかる修飾を含有するフィブリルはそれから、ストレプトアビジンビーズやストレプトアビジン酵素のようなあらゆるストレプトアビジン コンジュゲーテッド基質を結合できる。

フィブリルはその大きな表面積故に固体担体として大きな利点を呈する。強磁性につくることもできるビーズは分離検定に極めて有効である。ここで説明するビオチン化フィブリルはフィブリルとビーズの両方の利点を組み合わせる。ビオチン化アルキルフィブリルは同じコンセプトの拡大であるが、アルキルフィブリルの追加のタンパク質吸収特性を示す。

ストレプトアビジンー及びビオチンーで被覆されたフィブリルは診療に使用でき、そして電気化学的発光アッセイのようなアッセイ用にキャプチャー剤として使用することができる。

この発明の新規特徴は1つのフィブリルに2つの固体担体を組み合わせて二官 能性フィブリルを創造することにある。さらに、開示された方法はビーズのため の表面積を増大させ、及びフィブリルの磁化を強くする。

実施例49

ビオチン化フィブリルの製造

ビオチン化フィブリルは、実施例 1 6 に記載した如く製造したアミノフィブリル 2 . 4 mg 2 、8 . 1 5 の 2 2 Mの 2 N 2 H 3 エステル長鎖ビオチンを混合することによって製造した。混合物は室温で 4

時間回転させ、そして同じ緩衝液で2回洗浄した。

<u>実施例50</u>

ビオチン化アルキルフィブリルの製造

ビオチン化アルキルフィブリルは2段階反応によって製造した。第一段階で、4.25mgの二官能性フィブリル(アミノとカルボキシルの両方を含有する)と25mgのNHSエステル長鎖ビオチンを混合した。フィブリルを洗浄し、そして真空乾燥した。

第二の反応は、4 mgのビオチン化された二官能性フィブリルを、1 1 mgのE D C (1-エチル-3, 3-ジメチルアミノプロピル)カルボジイミド)、<math>7.5 mgのDMAP (4-ジメチルアミノピリジン)及び<math>0.5 mlのDMF中の $10 \mu l$ 0 $NH_2 (CH_2)_7 CH_3 と混合することによって行った。混合物を室温で一晩攪拌した。最終のビオチン化されたアルキルフィブリルは塩化メチレン、メタノール、及び脱イオン水によって洗浄した。$

実施例 5 1

アッセイの固体支持体としてのビオチン化フィブリル

ビオチン化フィブリルはストレプトアビジンービオチンまたはアビジンービオチンの相互作用を必要とするフォーマットを包含するアッセイに使用できる。ビオチン化フィブリルは、たとえば、ストレプトアビジンによって更に誘導体化されることができた。フィブリルに共有結合したビオチン(実施例50参照)はストレプトアビジンと強い非共有結合の相互作用を形成することができた。ストレプトアビジンは4当量結合サイトを有するテトラマー性タンパク質であるので、ビオチン化フィブリルに結合したストレプトアビジンは別のビオチン化された試薬が結合できる未占有の結合サイトをほぼ確実に有していたであろう。従って、ビオチン化フィブリルはストレプトアビジン被覆フィブリルに転化されたであろう。

かかるフィブリルービオチンーストレプトアビジン(FBS)支持体を使用して行うことができる多数の分析試験が存在する。たとえば、ビオチン化された抗アナライト抗体は(抗体がアナライト(analyte)に対して複合化される前又はされた後どちらかに)FBS支持体上に捕獲されることができた。ビオチン化され

た抗アナライト抗体は十分に確立されている。かかる検定としては、関心あるアナライトが抗アナライト抗体への結合に関して標識アナライトと競合する競合検定が包含される。フィブリルで固体化された抗体から、遊離(未結合)アナライトと遊離(未結合)標識アナライトを洗浄できる。洗浄工程は遠心分離や濾過や磁石への吸引によるを包含する通常実施の手法によって溶液相から物理的に分離されるフィブリルに依存する。

競合検定の外に、サンドイッチ型免疫検定がFBS支持体上で実施できた。サンドイッチ免疫検定は診療の分野で十分に知られている。かかる検定は同時に2つの抗体によって結合されるアナライトを包含し;その第一の「主」抗体は例えばビオチンで標識されることによって固体表面に捕獲され、そしてその「第二」抗体は固体表面によって捕獲されないがレセプター基によって標識される。かかるサンドイッチ検定はフィブリルを固体キャプチャー支持体として使用しそれによってフィブリルが前段に記載のように捕獲される、で実施することができた。従って、かかる検定においては、フィブリルは既に共有結合でビオチンに結合しており、ビオチンはストレプトアビジンに結合され、ストレプトアビジンは転じて、ビオチンはストレプトアビジンに結合され、ストレプトアビジンは転じて、ビオチン化された主抗体に結合され、ビオチン化された主抗体に結合されたのあろう。

同様に、DNAプローブアッセイはFBS支持体を使用して実施することができた。ビオチン化された一本鎖DNAはFBS支持体に結合されることができ、そして競合ハイブリッド化が相補性一本鎖アナライトDNA分子と相補性標識オリゴヌクレオチドの間に起こることができる。

別のタイプのビオチン化フィブリル、ビオチン化アルキル化フィブリル、は免疫検定及びDNAプローブ検定に使用できる。実施例51に記載されているよう

に、二官能性フィブリルは一方のタイプの官能基にビオチンが共有結合しそして もう一方のタイプの官能基にアルキル鎖が共有結合することによって修飾される ことができる。得られたアルキル化されておりビオチン化されているフィブリル は、(ビオチンによって)ストレプトアビジン又はアビジンとの特異会合に及び (アルキル鎖によって)タンパク質の吸着用に、両方に使用できる。

アルキルフィブリルは他の固体支持体、例えば、ストレプトアビジン被覆磁性ビーズ、と組み合わせても使用できた。かかるビーズの上のフィブリルの一つの利点は(単位重量当りの)はるかに高い表面積を有することである。従って、フィブリルが磁性ビーズの外表面に付着できるならば、これはビーズの表面積従って結合容量を劇的に改良するであろう。アルキル化ビオチン化フィブリルはストレプトアビジン被覆ビーズと混合することができ、その結果、高い親和力のストレプトアビジン(ビーズ)ービオチン(フィブリル)の相互作用を、従って極めて高い表面積をもつフィブリル被覆ビーズを生じることが考えられる。アルキルフィブリルはタンパク質を吸着によって結合できるので、フィブリル被覆ビーズはストレプトアビジンや抗体を包含する吸着されたタンパク質によって更に誘導体化されることができた。上記の通り、ストレプトアビジンまたは抗体で被覆されたフィブリルは免疫検定およびDNAプローブ検定に使用できる。従って、フィブリル被覆ビーズは与えられたアッセイにおいて同じ結果を与えるのにより少ないビーズしか必要とされないようにその表面積を劇的に増大させることによってビーズの性質を改良することができた。

6. 三次元構造

酸化フィブリルは非酸化フィブリルよりも容易に水性媒体中に分散される。中位い乃至大きい気孔(>2nmの気孔)を有する安定な多孔性の三次元構造体は触媒又はクロマトグラフィー用支持体として非常に有効である。フィブリルは個性化された規準で分散できるので、架橋結合によって安定化されているよく分散された試料はかかる支持体を構成するこことを可能にする。官能化されたフィブリルはこの応用のために理想的である、何故ならば、それらは水性または極性媒体の中に容易に分散され、かつ官能基が架橋結合点を提供するからである。加えて

、官能基は触媒サイトまたはクロマトグラフィーサイトを支持する点を提供する 。最後の結果はその全表面積が活性剤を支持するための官能性サイトをもって入 手できる硬質の三次元構造である。

触媒におけるこれら支持体にとっての代表的な応用は、含浸によってつくられる金属触媒、例えば、貴金属水素化触媒、のための高度に多孔性の支持体としての使用を包含する。さらに、構造体の非常に高い気孔度と組み合わされた官能基

を介しての支持体へのつなぎとめによって分子状触媒を固定する能力は、不均質な仕方で均質反応を行うことを可能にする。つなぎとめられた分子状触媒は均質反応器に似た連続液相の中では本質的に懸垂状態にあり、そこでは均質反応に沿って選択性及び速度に有利な使用を可能にする。しかしながら、固体支持体につなぎとめられていると、活性剤、多くの場合は、非常に高価な触媒、の容易な分離および回収を可能にする。

これらの安定で硬質な構造は以後、不斉合成又はアフィニティークロマトグラ フィーのような非常に難しい反応を行うことも、適するエナンチオマー触媒また は選択性基質を支持体に付着させることによって、可能にする。メタローPc又 はメタローポルフィリン錯体を通しての誘導体化はまた、金属イオンに結合した 配位子の回収、及び更には、二次誘導体を通して配位子に結合する何らかの分子 を見込んでいる。例えば、官能化されたフィブリルの三次元構造が電極又は電極 の部分であり、そして官能化が Co(II) Pcの吸着から生じた場合には、ニコチ ン酸の存在下でのCo(II)からCo(III)への電気化学的酸化は垂下基としてカ ルボン酸を有する非不安定性のCo(III)ーピリジル錯体を生成するであろう。 適する抗原、抗体、触媒性抗体、またはその他のサイト特異性トラッピング剤の 結合はそうでなければ極めて達成し難い分子の選択分離(アフィニティークロマ トグラフィー)を可能にする。吸蔵物質を除去するために電極を洗浄した後、目 標分子を含有するCo(III)錯体を電気化学的に還元して不安定性Co(II)錯体 を回収することができる。それから、目標分子を含有するCo(II)上の配位子は 不安定性 Co(II)配位子の質量作用置換によって回収でき、それによって、そう でなければ遂行が非常に困難であるか又は高くつく分子(例えば、キラル薬剤)

の分離又は回収が行われる。

以前は、官能化されたカーボンフィブリルマットの内部の気孔は小さすぎて有意な流れを許さず従って電極を通る流れとして有効でないと考えられた。また、電極材料としての粒子状炭素又はその他の炭素系材料(例えば、網状化無定形炭素(Reticulated Vitreous Carbon)(RVC))の使用に関連した問題も存在した。たとえば、多孔性電極材料はその場で生成できず、非常に密に充填されそしでいて空隙や溝を形成し、溶媒やフロー条件の変化の間に寸法不安定性にさらさ

れ、そして非常に薄い電極の形成が不可能であった。官能化されたカーボンフィブリルをフローセルの電極として使用すると、かかる問題が解決された。

フローセルの電極として使用される、官能化されたカーボンフィブリルはエレクトロ活性剤による表面処理によって改質されることができる。フィブリルは触媒又は電極触媒の作用をする又はフロー物質の望まない反応又は吸着を抑制する働きをする、エレクトロ活性でない材料によっても改質されることができる。

電極を通してのこれらの流れはエレクトロクロマトグラフィー、電気化学的に 変調されたアフィニティークロマトグラフィー、エレクトロ合成、又は電気化学 的に変調されたイオン交換クロマトグラフィーのような分離技術に有効である。 それらはカーボンフィブリルマット上に捕捉された物質を分離及び/又は分析す る診断装置にも使用できる。

官能化されたカーボンフィブリルとその他のファイバー又は粒状物から構成された複合マットも使用できる。これらファイバー又は粒状物はカーボンフィブリルマットの最終の気孔度又は電導度を変更するために懸濁物に添加できる。

実施例 5 2

鉄フタロシアニン官能化フィブリルの フローセルの電極としての用途

鉄(III)フタロシアニンービスーピリジン(FePc-2Py)(アルドリッチ41,016-0)を吸着させることによってグラファイト性フィブリルを改質した。0.403gのフィブリルと0.130gのFePc-2Pyを150mlの無水エタノールに加え、そして450ワット ブランソン プローブ超音波

装置で5分処理した。得られたスラリを47 mmのミリポア膜真空フィルターマニホルドで0. $45 \mu \text{ m}$ のMSIナイロンフィルターで濾過し、水洗し、そして真空オーブンで 35 ° の一晩乾燥した。最終重量は0. 528 g であり、それは実質的吸着を表していた。濾液の分光分析は残存するFePc-2Py を説明していた。

5 mgの F e P c - 2 P y 修飾フィブリルを 1 Oml の 1

して室温で乾燥した。SSスクリーンで支持されたフィブリルマットの直径0. 5インチの円盤を、アーチパンチを使用して切り取った。

電気化学フローセルは、13mmのプラスチックの、スウィニイ(Swinney)タイプの膜フィルターホルダーから、その膜支持体の上に直径13mmの円盤の金の網(400メッシュ、Ladd Industries)を置き、そしてそのスクリーンを、3電極ポテンショスタット回路の作業電極として外部接続のためにフィルターホルダーの壁を通して送られたテフロン(登録商標)熱収縮チューブで絶縁されている白金線と電気的に接触させることによって、構成された。金の網は外側の縁の周辺に少量のエポキシを用いてその場に固定された。金箔片をリング状に、そしてフィルターホルダーの底の下流の部分に入れ、そして3電極ポテンショスタット回路の対向電極として接続のために絶縁された白金リード線と接続した。1 MのHC1の中で電気化学的に酸化された直径0.5mmの銀線のリングを、参照電極として接続のために絶縁されたリードと共にフィルターホルダーの上部に入れた。

FePc-2Pyで修飾されたCNの直径0. 5インチの円盤をフローセルの中に入れ、それから、EG&G PAR273ポテンショスタットの適切なリードに接続した。フローセルは、pH7. 0の0. 1 M燐酸カリウム緩衝液中の0. 1 MのKClを充填したセージ(Sage)シリングポンプに接続した。2 Omv/秒の電圧走査速度でサイクリックボルタモグラム(CV)をノーフロー(静止)及びフロー(0. 4 ミル/分)のもとで記録した(図6参照)。CVはフローが有っても無くてもほぼ同じであり、そしてFePc-2Pyを含有する表面と矛盾

しない2つの連続した可逆の酸化と還元の波を示した。流体フロー条件下でのレドックスピークの持続性は、FePc-2Pyがカーボンフィブリルに強く結合していること及び鉄フタロシアニン修飾フィブリルがフロースルー電極材料として十分に作用することを実証している。

三次元構造の別の例はフィブリルーセラミック材料である。

<u>実施例53</u>

アルミナーフィブリル組成物(185-02-01)の製造

1 gの、硝酸で酸化されたフィブリル(1 8 5 - 0 1 - 0 2)を、1 0 0 ccの 脱イオン水の中に U / S ジスインテグレーダーを使用して高度に分散させた。こ

のフィブリルスラリを90 ℃に加熱し、そして20 ссのプロパノールの中に溶解した0.04 モルのアルミニウムトリブトキシドの溶液をゆっくり添加した。還流を4 時間継続し、その後で冷却器を外してアルコールを飛ばした。30 分後に冷却器を戻してスラリを100 ℃で一晩還流した。一様な外観を有する黒色ゾルが得られた。このゾルを室温に冷却し、そして1 週間後に、平滑な表面をもつ黒色ゲルが形成された。このゲルを空気中で300 ℃に12 時間加熱した。

このアルミナーフィブリル複合体をSEMによって試験した。亀裂表面の顕微 鏡写真はゲルの中のフィブリルの均一分散を示していた。

実施例 5 4

シリカーフィブリル組成物(173-85-03)の製造

2 gの、硝酸で酸化されたフィブリル(173-83-03)を、200ccの エタノール中に超音波処理を使用して高度に分散させた。このスラリに、50ccのエタノール中に溶解した0.1 モルのテトラエトキシシランの溶液を室温で加え、その後で3ccの濃塩酸を加えた。この混合物を85 でに加熱し、そしてその温度に保って容量を100ccまで減少させた。混合物を冷却し、そして放置して黒色固体ゲルを生成した。このゲルを空気中で300 で加熱した。

このシリカーフィブリル複合体をSEMによって試験した。亀裂表面の顕微鏡 写真はゲルの中のフィブリルの均一分散を示していた。

他のセラミック、例えば、ジルコニア、チタニア、希土類酸化物、及び三元酸

化物をもっても、類似の調製物を製造できる。

<u>7.</u> ポリマービーズ上へのグラファイト性ナノチューブの導入

ポリマービーズ、特にFe₃ O₄ コアを含有する磁性ポリマービーズ、例えば、ダイナル(Dynal)及びその他で製造されたもの、は診断における多数の用途を有している。しかしながら、これらのビーズはナノチューブから入手可能なものに比べて低い表面積を有することに煩わされる。官能化されたフィブリルはビーズの表面上に導入することができ、それはポリマー/フィブリル複合体を分離又は分析用途(例えば、電気化学的発光アッセイ、酵素の固定化)の固体支持体として使用することを可能にする。

実施例55

官能化ビーズへの官能化フィブリルの付着

7. $5 \, \text{mg}$ の磁性のトシル活性化されたダイナビーズM-450($30 \, \text{mg/ml}$)ビーズ(ダイナル、ノールウェーのオスロ在)を $0.1 \, M$ の燐酸ナトリウム緩衝液、pH7.5、で $3 \, \text{回洗浄した}$ 。それから $0.9 \, \text{ml}$ の $0.1 \, M$ の燐酸ナトリウム緩衝液、pH8.4、をビーズに加え、そして $0.1 \, \text{ml}$ のアミンフィブリルを加えた。混合物を室温で $16 \sim 24 \, \text{時間回転させた}$ 。

顕微鏡写真で観察したとき、フィブリルの表面上にビーズを有するフィブリル のかたまりは明らかであった。

以上の説明および実施例によって例証されているようにう、本発明はナノチューブの広く様々な処方及びその用途における応用を有している。

使用されている用語及び表現は記述の表現として使用され、限定の表現として 使用されているのではなく、またかかる用語又は表現の使用においてはその一部 として示され記述されている特徴の何らかの均等物を排除することを意図してお らず、本発明の思想の範囲内で様々な変更が可能であることが認識される。

【図1】

917-101 GF~のBSAの結合

917-105 GFへの8ーラクトグロブリンの結合

rig. S

【図6】

1-7-フロー(於0.4m1/分) SS上の0.5"マット 0.1M PO4 0.1M KCI 走查遊废=20 mv/秒

フローセルにおけるFePc修飾CN 鶴極

【図7】

0.2 M/PhCH₂Br HOOCCH(NHCBZ)CH₂CH₂CH₂CH₂NHBOC PhCH₂OOCCH(NHCBZ)CH₂CH₂CH₂CH₂NHBOC

FibC(O)NHCH₂CH₂CH₂CH₂CH(NHCBZ)C(O)OCH₂Ph TFA-CH₂Cl₂ TMSI-CH₃CN

FibC(O)NHCH2CH2CH2CH2CH(NH2)C(O)OH

Fig. 7

フィブリルーリパーゼによって触媒されたエステル化

Fig. 8

【図9】

Fia. 9

【図10】

■ BG活性度 ■ AP活性度

Fig. 10

【国際調査報告】

	INTERNATIONAL SEARCH REPORT	International application N PCT/US97/03553	io.		
A. CLASSIFICATION OF SUBJECT MATTER IPC(6) :A61K 9/00; A01N 25/00; C09C 1/56; B32B 5/16 US CL :42A/405, 484, 485, 486; 435/174, 177, 180; 514/772, 772.1 788.1 According to International Patent Classification (IPC) or to both national classification and IPC					
	DS SEARCHED				
Minimum d	ocumentation searched (classification system followed by classification sym	bols)			
U.S. :	530/402, 810, 815, 812, 815; 935/22, 52, 54; 423/447.2, 447.3, 460; 428.	376, 367, 398, 403, 408			
NONE NONE	ion searched other than minimum documentation to the extent that such docu	nents are included in the fie	ids searched		
Electronic data base consulted during the international search (name of data base and, where practicable, scarch terms used) NONE					
C. DOC	UMENTS CONSIDERED TO BE RELEVANT				
Category*	Citation of document, with indication, where appropriate, of the relev	ant passages Relev	ant to claim No.		
A	US 4,663,230 A (TENNENT) 05 May 1987, document.	see entire 1-64			
A	US 5,346,683 A (GREEN et al) 13 September entire document.	1994, see 1-64			
A	US 5,424,054 A (BETHUNE et al) 13 June 1995 document.	see entire 1-64			
A,p	US 5,547,748 A (RUOFF) 20 August 1996, see entire document.				
A	US 5,46,587 A (FITZPATRICK-MCELLIGOTT et al) 14 1-64 November 1995, see entire document.				
A	US 5,472,749 A (DRAVID et al) 05 December entire document.	1995, see 1-64			
X Further documents are listed in the continuation of Box C. See patent family annex.					
Special entegories of cited documents: "T" better document published after the international filing date or priority that document defining the general state of the art which is not considered principle; or theory underlying the inversion.					
to be of particular relevance "E" exciter document published on or after the international filling date "X" document of particular relevance; the claimed invention canent be					
I. document which may throw doubte on priority chains(s) or which is when the document is taken about					
tpe	cited to establish the publication date of another citation or other special reason (as specified) document of puricular relevance; the channel invention cannot be considered to involve as inventive step when the document is sometimed with one or more other such document, such combination				
"P" document published prior to the international filing date but later than "A" document member of the same patent family the priority date channel.					
Date of the actual completion of the international search Date of mailing of the international search report					
26 JUNE 1997 1 8 JUN 1997					
Name and mailing address of the ISA/US Commissioner of Patents and Tindomarks Box PCT Washington, D.C. 20231 Facsimile No. (703) 305-2230 Authorized officer The PAGE The PAGE Totophomo No. (A03) 308-2331					
Form PCT/ISA/210 (second sheet)(July 1992)+					

INTERNATIONAL SEARCH REPORT

International application No. PCT/US97/03553

tion). DOCUMENTS CONSIDERED TO BE RELEVANT		
Citation of document, with indication, where appropriate, of the releva	nt passages Relevant u	chim N
US 5,482,601 A (OHSHIMA et al) 09 January 1996, see entire document.		
		. •
· · · · · · · · · · · · · · · · · · ·	J	
	Citation of document, with indication, where appropriate, of the releval US 5,482,601 A (OHSHIMA et al) 09 January 1996, see document.	Citation of document, with indication, where appropriate, of the relevant passages US 5,482,601 A (OHSHIMA et al) 09 January 1996, see entire document. 1-64

Form PCT/ISA/210 (continuation of second sheet)(July 1992)*

フロン	トペー	ジの続き
-----	-----	------

(51) Int.Cl.	7	識別記号	FI	テーマコード(参考)
C O 7 C	51/353		C O 7 C 51/353	
	57/40		57/40	
	57/72		57/72	
	63/44		63/44	
	209/00		209/00	
	211/57		211/57	
	233/65		233/65	
	319/14		319/14	
C 0 7 D	487/22		C O 7 D 487/22	
C O 7 F	1/02		C O 7 F 1/02	
	5/00		5/00	K
	7/08		7/08	Н
C O 7 K	17/08		C O 7 K 17/08	
C 0 8 J	3/12		C O 8 J 3/12	Z
G O 1 N	27/30		G O 1 N 27/30	В
(81)指定国		EP(AT. BE. CH. DE		

(81)指定国 EP(AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OA(BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG), AP(GH, KE, LS, MW, SD, SZ, UG), AM, AT, AU, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LT, LU, LV, MD, MG, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TT, UA, US, UZ, VN, YU

(72)発明者 モイ, デビッド

アメリカ合衆国01890 マサチューセッツ 州ウインチェスター,エドワード ドライ ブ 21

(72)発明者 ルー, ミン

アメリカ合衆国20706 メリーランド州ランハム, ダールグリーン コート 6411

(72)発明者 マーチン, マーク

アメリカ合衆国20852 メリーランド州エ ヌ. ベセスダ, オールド ファーム コー ト 6516

(72)発明者 ニウ,チュン,ミン

アメリカ合衆国02144 マサチューセッツ 州サマビル, コンウエル アベニュー 104

(72)発明者 オガタ,ナオヤ

東京都千代田区紀尾井町7-1 上智大学 化学部内

- (72)発明者 テネント,ハワード アメリカ合衆国19348 ペンシルバニア州 ケネット スクウェア,チャンドラー ミ ル ロード 301
- (72)発明者 ドン, リウエン アメリカ合衆国20850 メリーランド州ロ ックビル, ポトマック オークス ドライ ブ 11411
- (72)発明者 スン, ジー アメリカ合衆国20854 メリーランド州ポ トマック, ヘイワース ドライブ 13504
- (72)発明者 ヘルムズ,ラーリイ アメリカ合衆国20874 メリーランド州ジャーマンタウン,コッテイジ ガーデンドライブ 18036,アパートメント 103
- (72)発明者 ジャメイソン,ファビアン アメリカ合衆国20879 メリーランド州ガ イザーズバーグ,ウオーカーズ チョイス ロード 18810,ナンバー4
- (72)発明者 リアン,パム アメリカ合衆国91801 カリフォルニア州 アルハムブラ,マルガリータ アベニュー 123,アパートメント シー
- (72)発明者 シンプソン, デビッドアメリカ合衆国20852 メリーランド州エヌ. ベセスダ, サルキイ レーン 611