Algoritmos de sustitución

- Podemos tener las siguientes combinaciones
 - » asignación fija y sustitución local
 - » asignación variable y sustitución local
 - » asignación variable y sustitución global
- Veremos distintos algoritmos de sustitución y nos basaremos (por simplicidad) en que se utiliza una política de asignación fija y sustitución local
- Cadena de referencia, ω = r₁,r₂,r₃,...,r_i, ..., : secuencia de números de páginas referenciadas por un proceso durante su ejecución

Algoritmo Optimo

- Se sustituye la página que no será objeto de ninguna referencia posterior o que se referencie más tarde
- » 4 marcos de página
- » Problema: debemos tener un "conocimiento perfecto" de la cadena de referencia
- » Se utiliza para medir cómo de bien se comportan otros algoritmos
- » Faltas de páginas: 6

```
1,2,3,4,1,2,5,1,2,3,4,5
```

1	1	1	1	1	1	1	1	1	1	4 4
	2	2	2	2	2	2	2	2	2	22
		3	3	3	3	3	3	3	3	3 3
			4	4	4	5	5	5	5	5 5
										_

Algoritmo FIFO

- Se sustituye la página por orden cronológico de llegada a MP (la página más antigua)
- » 4 marcos de página
- » Faltas de página: 10
- » Sufre de la *Anomalía de Belady*: "más marcos no implican menos faltas de páginas"

```
1 1 1 1 1 1 1 5 5 5 5 4 4

2 2 2 2 2 2 1 1 1 1 1 5

3 3 3 3 3 3 2 2 2 2

4 4 4 4 4 4 4 3 3 3
```

Algoritmo LRU

- Se sustituye la página que fue objeto de la referencia más antigua (Least Recently Used)
 - » 4 marcos de página
 - » Faltas de página: 8
 - » Implementación del algoritmo:
 - con contadores
 - con pila
 - » Mayor coste

```
1111111115
2222222222
3333555544
44444333
```

Implementaciones de LRU

LRU con contador

- » Cada entrada de la tabla de páginas tiene un contador. Cada vez que se referencia la página, se copia el tiempo del reloj en el contador
- » Cuando necesitamos cambiar una página, se miran todos los contadores y se elige la que tiene el menor tiempo

LRU con pila

- » Los números de páginas se mantienen en una pila (lista doblemente enlazada). Cuando se referencia una página se mueve a la cima de la pila (cambio de seis punteros como máximo)
- » No hay que hacer búsqueda para la sustitución de una página, se sustituye la del fondo de la pila

Algoritmo del reloj

- Cada página tiene asociado un bit de referencia R (lo pone a 1 el hardware)
- Los marcos de página se representan por una lista circular y un puntero a la página
 visitada hace más tiempo
- Selección de una página:
 - 1. Consultar marco actual
 - 2. ¿Es R=0?
 - No: R=0; ir al siguiente marco y volver al paso 1
 - Si: seleccionar para sustituir e incrementar posición

Ejemplo algoritmo del reloj

El proceso intenta acceder a la página 2 de su espacio de direcciones. Solo hay 4 marcos de página.

Comparación

- Conclusión:
 - » Influye más la cantidad de MP disponible que el algoritmo de sustitución usado