

 $\frac{1}{2} a_0 h_{\alpha\chi} \partial_{\beta} \Gamma^{\alpha\beta\chi} + \frac{11}{2} c_1 \partial^{\alpha} \Gamma^{\chi\delta}{}_{\delta} \partial_{\beta} \Gamma_{\chi\alpha}{}^{\beta} + \frac{1}{2} c_1 \partial^{\alpha} \Gamma_{\chi\alpha}{}^{\beta} \partial_{\beta} \Gamma^{\chi\delta}{}_{\delta} -$

 $19 c_1 \partial^{\alpha} \Gamma^{\chi \delta}_{\chi} \partial_{\beta} \Gamma_{\delta \alpha}^{\beta} + \frac{1}{4} a_0 h^{\alpha \beta} \partial_{\beta} \partial_{\alpha} h^{\chi}_{\chi} - \frac{1}{8} a_0 \partial_{\beta} h^{\chi}_{\chi} \partial^{\beta} h^{\alpha}_{\alpha} +$

 $\frac{1}{2} a_0 \Gamma^{\alpha}_{\alpha}{}^{\beta} \partial_{\chi} h_{\beta}{}^{\chi} + \frac{1}{4} a_0 \partial^{\beta} h^{\alpha}_{\alpha} \partial_{\chi} h_{\beta}{}^{\chi} + \frac{37}{4} c_1 \partial_{\beta} \partial_{\alpha} h^{\delta}_{\delta} \partial_{\chi} \Gamma^{\alpha\beta\chi} +$

 $\frac{3}{4}c_1\partial_{\beta}\Gamma^{\alpha\beta\chi}\partial_{\chi}\partial_{\alpha}h^{\delta}_{\delta} - \frac{1}{2}a_0h^{\alpha\beta}\partial_{\chi}\partial_{\beta}h^{\chi}_{\alpha} + \frac{1}{4}a_0h^{\alpha}_{\alpha}\partial_{\chi}\partial_{\beta}h^{\beta\chi} +$

 $\frac{1}{2} c_1 \partial_{\beta} \Gamma^{\delta}_{\ \delta \chi} \partial^{\chi} \Gamma^{\alpha}_{\ \alpha}{}^{\beta} + \frac{1}{2} c_1 \partial_{\chi} \Gamma^{\delta}_{\beta \ \delta} \partial^{\chi} \Gamma^{\alpha}_{\ \alpha}{}^{\beta} - \frac{1}{2} c_1 \partial_{\chi} \Gamma^{\delta}_{\ \beta \delta} \partial^{\chi} \Gamma^{\alpha}_{\ \alpha}{}^{\beta} -$

 $\frac{1}{2} c_1 \partial_{\chi} \Gamma^{\delta}_{\delta\beta} \partial^{\chi} \Gamma^{\alpha}_{\beta} - \frac{3}{4} c_1 \partial_{\chi} \partial_{\beta} h^{\delta}_{\delta} \partial^{\chi} \Gamma^{\alpha}_{\beta} - \frac{11}{2} c_1 \partial_{\beta} \Gamma^{\delta}_{\delta} \partial^{\chi} \Gamma^{\alpha\beta}_{\alpha} +$

 $\frac{19}{2} c_1 \partial_{\beta} \Gamma^{\delta}_{\chi \delta} \partial^{\chi} \Gamma^{\alpha \beta}_{\alpha} + \frac{11}{2} c_1 \partial_{\chi} \Gamma^{\delta}_{\beta \delta} \partial^{\chi} \Gamma^{\alpha \beta}_{\alpha} - \frac{1}{2} c_1 \partial_{\chi} \Gamma^{\delta}_{\beta \delta} \partial^{\chi} \Gamma^{\alpha \beta}_{\alpha} - \frac{1}{2} c_2 \partial_{\chi} \Gamma^{\delta}_{\beta \delta} \partial^{\chi} \Gamma^{\alpha \beta}_{\alpha} - \frac{1}{2} c_3 \partial_{\chi} \Gamma^{\delta}_{\beta \delta} \partial^{\chi} \Gamma^{\alpha \beta}_{\alpha} - \frac{1}{2} c_3 \partial_{\chi} \Gamma^{\delta}_{\beta \delta} \partial^{\chi} \Gamma^{\alpha \beta}_{\alpha} - \frac{1}{2} c_3 \partial_{\chi} \Gamma^{\delta}_{\beta \delta} \partial^{\chi} \Gamma^{\alpha \beta}_{\alpha} - \frac{1}{2} c_3 \partial_{\chi} \Gamma^{\delta}_{\beta \delta} \partial^{\chi} \Gamma^{\alpha \beta}_{\alpha} - \frac{1}{2} c_3 \partial_{\chi} \Gamma^{\delta}_{\beta \delta} \partial^{\chi} \Gamma^{\alpha \beta}_{\beta \delta} \partial^{\chi} \Gamma^{\alpha \beta}_{\alpha} - \frac{1}{2} c_3 \partial_{\chi} \Gamma^{\delta}_{\beta \delta} \partial^{\chi} \Gamma^{\alpha \beta}_{\beta \delta} \partial^{\chi} \Gamma^{\alpha \beta}_{\alpha} - \frac{1}{2} c_3 \partial_{\chi} \Gamma^{\delta}_{\beta \delta} \partial^{\chi} \Gamma^{\alpha \beta}_{\beta \delta} \partial^{\chi} \Gamma^{\alpha \beta}_{\delta \delta} \partial^{\chi} \Gamma^{\alpha \beta$

 $\frac{9}{2} c_1 \partial_{\chi} \partial_{\beta} h^{\delta}_{ \delta} \partial^{\chi} \partial_{\alpha} h^{\alpha\beta} + \frac{17}{8} c_1 \partial_{\chi} \partial_{\beta} h^{\delta}_{ \delta} \partial^{\chi} \partial^{\beta} h^{\alpha}_{ \alpha} - \frac{1}{2} c_1 \partial_{\chi} \Gamma^{\alpha\beta\chi} \partial_{\delta} \Gamma_{\alpha\beta}^{ \delta} -$

 $\frac{1}{2} c_1 \partial_{\beta} \Gamma^{\alpha\beta\chi} \partial_{\delta} \Gamma_{\alpha\chi}^{\quad \ \, \delta} - \frac{1}{2} c_1 \partial_{\beta} \Gamma^{\alpha\beta\chi} \partial_{\delta} \Gamma_{\alpha \ \, \chi}^{\quad \, \delta} + \frac{19}{2} c_1 \partial_{\chi} \Gamma^{\alpha\beta\chi} \partial_{\delta} \Gamma_{\beta\alpha}^{\quad \, \delta} +$

 $c_1 \partial^\chi \Gamma^{\alpha}_{\alpha}{}^\beta \partial_\delta \Gamma^{\delta}_{\beta \chi} + \frac{1}{2} c_1 \partial^\chi \Gamma^{\alpha}_{\alpha}{}^\beta \partial_\delta \Gamma_{\chi\beta}{}^\delta + \frac{1}{2} c_1 \partial^\chi \Gamma^{\alpha\beta}_{\alpha} \partial_\delta \Gamma_{\chi\beta}{}^\delta -$

 $\frac{1}{2} c_1 \partial_{\beta} \Gamma^{\alpha\beta\chi} \partial_{\delta} \Gamma_{\chi \alpha}^{\ \delta} + \frac{1}{2} c_1 \partial^{\chi} \Gamma_{\beta\alpha}^{\ \beta} \partial_{\delta} \Gamma_{\chi}^{\ \delta\alpha} + c_1 \partial^{\chi} \Gamma^{\alpha}_{\alpha}{}^{\beta} \partial_{\delta} \Gamma_{\chi \beta}^{\ \delta} -$

 $\frac{1}{2} c_1 \partial_{\beta} \Gamma^{\alpha}_{\alpha}{}^{\beta} \partial_{\delta} \Gamma^{\chi}_{\chi}{}^{\delta} + c_1 \partial_{\beta} \Gamma^{\alpha}_{\alpha}{}^{\beta} \partial_{\delta} \Gamma^{\chi\delta}_{\chi} - \frac{1}{2} c_1 \partial_{\beta} \Gamma^{\alpha\beta}_{\alpha} \partial_{\delta} \Gamma^{\chi\delta}_{\chi} -$

 $\frac{_{37}}{_{4}}\,c_{1}\,\partial_{\chi}\Gamma^{\alpha\beta\chi}\,\partial_{\delta}\partial_{\alpha}h_{\beta}^{\delta}-\frac{_{3}}{_{4}}\,c_{1}\,\partial_{\beta}\Gamma^{\alpha\beta\chi}\,\partial_{\delta}\partial_{\alpha}h_{\chi}^{\delta}-\frac{_{37}}{_{4}}\,c_{1}\,\partial_{\chi}\Gamma^{\alpha\beta\chi}\,\partial_{\delta}\partial_{\beta}h_{\alpha}^{\delta}+$

 $\frac{3}{8}c_1\partial_{\chi}\partial^{\chi}h^{\alpha\beta}\partial_{\delta}\partial_{\beta}h_{\alpha}^{\ \delta} + \frac{37}{8}c_1\partial_{\alpha}\partial^{\chi}h^{\alpha\beta}\partial_{\delta}\partial_{\beta}h_{\chi}^{\ \delta} + \frac{3}{4}c_1\partial^{\chi}\Gamma^{\alpha}_{\ \alpha}{}^{\beta}\partial_{\delta}\partial_{\beta}h_{\chi}^{\ \delta} +$

 $\frac{37}{4} c_1 \partial^{\chi} \Gamma^{\alpha\beta}_{\alpha} \partial_{\delta} \partial_{\beta} h_{\chi}^{\delta} - \frac{3}{8} c_1 \partial^{\chi} \partial_{\alpha} h^{\alpha\beta}_{\alpha} \partial_{\delta} \partial_{\beta} h_{\chi}^{\delta} + \frac{13}{4} c_1 \partial^{\chi} \partial^{\beta} h^{\alpha}_{\alpha} \partial_{\delta} \partial_{\beta} h_{\chi}^{\delta} -$

 $\frac{3}{4} c_1 \partial_{\beta} \Gamma^{\alpha\beta\chi} \partial_{\delta} \partial_{\chi} h_{\alpha}^{\ \delta} - \frac{43}{8} c_1 \partial_{\alpha} \partial^{\chi} h^{\alpha\beta} \partial_{\delta} \partial_{\chi} h_{\beta}^{\ \delta} + \frac{3}{4} c_1 \partial^{\chi} \Gamma^{\alpha}_{\ \alpha}^{\ \beta} \partial_{\delta} \partial_{\chi} h_{\beta}^{\ \delta} +$

 $c_1 \, \partial_\beta \partial^\beta h^\alpha_{\ \alpha} \partial_\delta \partial_\chi h^{\chi\delta} + \tfrac{37}{4} \, c_1 \, \partial_\chi \Gamma^{\alpha\beta\chi} \, \partial_\delta \partial^\delta h_{\alpha\beta} + \tfrac{17}{8} \, c_1 \, \partial_\chi \partial^\chi h^{\alpha\beta} \, \partial_\delta \partial^\delta h_{\alpha\beta} +$

 $\frac{37}{4}\,c_1\,\partial^X\Gamma^{\alpha\beta}_{\alpha}\partial_\delta\partial^\delta h_{\beta\chi} - \frac{73}{8}\,c_1\,\partial^X\partial_\alpha h^{\alpha\beta}\,\partial_\delta\partial^\delta h_{\beta\chi} + \frac{17}{4}\,c_1\,\partial^X\partial^\beta h^\alpha_{\alpha}\partial_\delta\partial^\delta h_{\beta\chi} -$

 $\frac{3}{4} c_1 \partial_{\beta} \Gamma^{\alpha\beta\chi} \partial_{\delta} \partial^{\delta} h_{\alpha\chi} + \frac{1}{4} c_1 \partial_{\alpha} \partial^{\chi} h^{\alpha\beta} \partial_{\delta} \partial^{\delta} h_{\beta\chi} - \frac{3}{4} c_1 \partial^{\chi} \Gamma^{\alpha}_{\alpha}{}^{\beta} \partial_{\delta} \partial^{\delta} h_{\beta\chi} - \frac{3}{4} c_1 \partial^{\chi} \Gamma^{\alpha}_{\alpha}{}^{\beta} \partial_{\delta} \partial^{\delta} h_{\beta\chi} - \frac{3}{4} c_1 \partial^{\chi} \Gamma^{\alpha}_{\alpha}{}^{\beta} \partial_{\delta} \partial^{\delta} h_{\alpha\chi} + \frac{1}{4} c_1 \partial_{\alpha} \partial^{\chi} h^{\alpha\beta} \partial_{\delta} \partial^{\delta} h_{\beta\chi} - \frac{3}{4} c_1 \partial^{\chi} \Gamma^{\alpha}_{\alpha}{}^{\beta} \partial_{\delta} \partial^{\delta} h_{\alpha\chi} + \frac{1}{4} c_1 \partial_{\alpha} \partial^{\chi} h^{\alpha\beta} \partial_{\delta} \partial^{\delta} h_{\alpha\chi} + \frac{1}{4} c_1 \partial_{\alpha} \partial^{\chi} h^{\alpha\beta} \partial_{\delta} \partial^{\delta} h_{\alpha\chi} - \frac{3}{4} c_1 \partial^{\chi} \Gamma^{\alpha}_{\alpha}{}^{\beta} \partial_{\delta} \partial^{\delta} h_{\alpha\chi} + \frac{1}{4} c_1 \partial_{\alpha} \partial^{\chi} h^{\alpha\beta} \partial_{\delta} \partial^{\delta} h_{\alpha\chi} - \frac{3}{4} c_1 \partial^{\chi} \Gamma^{\alpha}_{\alpha}{}^{\beta} \partial^{\delta} \partial^{\delta} h_{\alpha\chi} + \frac{1}{4} c_1 \partial_{\alpha} \partial^{\chi} h^{\alpha\beta} \partial^{\delta} \partial^{\delta} h_{\alpha\chi} - \frac{3}{4} c_1 \partial^{\chi} \Gamma^{\alpha}_{\alpha}{}^{\beta} \partial^{\delta} \partial^{\delta} h_{\alpha\chi} + \frac{1}{4} c_1 \partial^{\chi} h^{\alpha\beta} \partial^{\delta} \partial^{\delta} h_{\alpha\chi} - \frac{3}{4} c_1 \partial^{\chi} \Gamma^{\alpha}_{\alpha}{}^{\beta} \partial^{\delta} \partial^{\delta} h_{\alpha\chi} + \frac{1}{4} c_1 \partial^{\chi} h^{\alpha\beta} \partial^{\delta} \partial^{\delta} h_{\alpha\chi} - \frac{3}{4} c_1 \partial^{\chi} \Gamma^{\alpha}_{\alpha}{}^{\beta} \partial^{\delta} \partial^{\delta} h_{\alpha\chi} + \frac{1}{4} c_1 \partial^{\chi} h^{\alpha\beta} \partial^{\delta} \partial^{\delta} h_{\alpha\chi} - \frac{3}{4} c_1 \partial^{\chi} h^{\alpha\beta} \partial^{\delta} \partial^{\delta} h_{\alpha\chi} + \frac{1}{4} c_1 \partial^{\chi} h^{\alpha\beta} \partial^{\delta} \partial^{\delta} h_{\alpha\chi} - \frac{3}{4} c_1 \partial^{\chi} h^{\alpha\beta} \partial^{\delta} \partial^{\delta} h_{\alpha\chi} + \frac{1}{4} c_1 \partial^{\chi} h^{\alpha} \partial^{\chi} h^{\alpha} \partial^{\chi} h^{\alpha} \partial^{\chi} h^{\alpha} \partial^{\lambda} h^{\alpha} \partial^{\chi} h^$

 $c_1 \, \partial_\beta \Gamma^\alpha_{\ \alpha}^{\ \beta} \, \partial_\delta \partial^\delta h^\chi_{\ \chi} + c_1 \, \partial_\beta \Gamma^{\alpha\beta}_{\ \alpha} \, \partial_\delta \partial^\delta h^\chi_{\ \chi} - \tfrac{1}{2} \, c_1 \, \partial_\beta \partial^\beta h^\alpha_{\ \alpha} \, \partial_\delta \partial^\delta h^\chi_{\ \chi} +$

 $\frac{1}{2} c_1 \partial_{\alpha} \Gamma_{\beta \chi \delta} \partial^{\delta} \Gamma^{\alpha \beta \chi} + c_1 \partial_{\alpha} \Gamma_{\beta \delta \chi} \partial^{\delta} \Gamma^{\alpha \beta \chi} + c_1 \partial_{\alpha} \Gamma_{\chi \beta \delta} \partial^{\delta} \Gamma^{\alpha \beta \chi} +$

 $\frac{1}{2} c_1 \partial_{\alpha} \Gamma_{\chi \delta \beta} \partial^{\delta} \Gamma^{\alpha \beta \chi} + c_1 \partial_{\alpha} \Gamma_{\delta \beta \chi} \partial^{\delta} \Gamma^{\alpha \beta \chi} + c_1 \partial_{\alpha} \Gamma_{\delta \chi \beta} \partial^{\delta} \Gamma^{\alpha \beta \chi} -$

 $c_1 \, \partial_\chi \Gamma_{\beta\delta\alpha} \partial^\delta \Gamma^{\alpha\beta\chi} + \tfrac{3}{2} \, c_1 \, \partial_\chi \partial_\alpha h_{\beta\delta} \, \partial^\delta \Gamma^{\alpha\beta\chi} - c_1 \, \partial_\delta \Gamma_{\alpha\beta\chi} \, \partial^\delta \Gamma^{\alpha\beta\chi} -$

 $c_1 \, \partial_{\delta} \Gamma_{\alpha \chi \beta} \, \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} \, c_1 \, \partial_{\delta} \Gamma_{\beta \alpha \chi} \, \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} \, c_1 \, \partial_{\delta} \Gamma_{\beta \chi \alpha} \, \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} \, c_2 \, \partial_{\delta} \Gamma_{\beta \chi \alpha} \, \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} \, c_3 \, \partial_{\delta} \Gamma_{\beta \chi \alpha} \, \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} \, c_3 \, \partial_{\delta} \Gamma_{\beta \chi \alpha} \, \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} \, c_3 \, \partial_{\delta} \Gamma_{\beta \chi \alpha} \, \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} \, c_4 \, \partial_{\delta} \Gamma_{\beta \chi \alpha} \, \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} \, c_5 \, \partial_{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} \, c_5 \, \partial_{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} \, c_5 \, \partial_{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} \, c_5 \, \partial_{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} \, c_5 \, \partial_{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} \, c_5 \, \partial_{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} \, c_5 \, \partial_{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} \, c_5 \, \partial_{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} \, c_5 \, \partial_{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} \, c_5 \, \partial_{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} \, c_5 \, \partial_{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} \, c_5 \, \partial_{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} \, c_5 \, \partial_{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} \, c_5 \, \partial_{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} \, c_5 \, \partial_{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} \, c_5 \, \partial_{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} \, c_5 \, \partial_{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} \, c_5 \, \partial_{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} \, c_5 \, \partial_{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} \, c_5 \, \partial_{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} \, c_5 \, \partial_{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} \, \partial_{\delta} \Gamma^{\alpha \gamma \chi} -$

Added source term: $h^{\alpha\beta} \mathcal{T}_{\alpha\beta} + \Gamma^{\alpha\beta\chi} \Delta_{\alpha\beta\chi}$

 $\frac{1}{2} c_1 \partial_{\beta} \Gamma_{\alpha \chi \delta} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_1 \partial_{\beta} \Gamma_{\alpha \delta \chi} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_1 \partial_{\beta} \Gamma_{\chi \delta \alpha} \partial^{\delta} \Gamma^{\alpha \beta \chi} -$

 $\frac{3}{2}\,c_1\,\partial_\beta\partial_\alpha h_{\chi\delta}\partial^\delta\Gamma^{\alpha\beta\chi} - \frac{1}{2}\,c_1\,\partial_\chi\Gamma_{\alpha\beta\delta}\partial^\delta\Gamma^{\alpha\beta\chi} - \frac{1}{2}\,c_1\,\partial_\chi\Gamma_{\beta\alpha\delta}\partial^\delta\Gamma^{\alpha\beta\chi} +$

 $\frac{1}{2} c_1 \partial_{\delta} \Gamma_{\chi \beta \alpha} \partial^{\delta} \Gamma^{\alpha \beta \chi} + \frac{3}{2} c_1 \partial_{\delta} \partial_{\beta} h_{\alpha \chi} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{3}{2} c_1 \partial_{\delta} \partial_{\chi} h_{\alpha \beta} \partial^{\delta} \Gamma^{\alpha \beta \chi} -$

 $\frac{11}{2} c_1 \partial_{\beta} \Gamma_{\delta \alpha}^{\ \beta} \partial^{\delta} \Gamma^{\alpha \chi}_{\ \chi} - \frac{1}{2} c_1 \partial^{\alpha} \Gamma_{\delta \alpha}^{\ \beta} \partial^{\delta} \Gamma^{\chi}_{\ \chi} + \frac{1}{2} c_1 \partial_{\beta} \Gamma_{\delta \alpha}^{\ \beta} \partial^{\delta} \Gamma^{\chi \alpha}_{\ \chi} -$

 $\frac{3}{4} c_1 \partial_{\beta} \partial_{\alpha} h_{\chi \delta} \partial^{\delta} \partial^{\chi} h^{\alpha \beta} + \frac{3}{2} c_1 \partial_{\chi} \partial_{\beta} h_{\alpha \delta} \partial^{\delta} \partial^{\chi} h^{\alpha \beta} - \frac{3}{4} c_1 \partial_{\delta} \partial_{\chi} h_{\alpha \beta} \partial^{\delta} \partial^{\chi} h^{\alpha \beta}$

 $c_1 \, \partial_\beta \Gamma^\alpha_{\ \alpha}{}^\beta \, \partial_\delta \partial_\chi h^{\chi\delta} - c_1 \, \partial_\beta \Gamma^{\alpha\beta}_{\ \alpha} \, \partial_\delta \partial_\chi h^{\chi\delta} - \frac{1}{2} \, c_1 \, \partial_\beta \partial_\alpha h^{\alpha\beta} \, \partial_\delta \partial_\chi h^{\chi\delta} +$

 $\frac{37}{4} c_1 \partial^{\chi} \Gamma^{\alpha\beta}{}_{\alpha} \partial_{\delta} \partial_{\chi} h_{\beta}{}^{\delta} + \frac{77}{8} c_1 \partial^{\chi} \partial_{\alpha} h^{\alpha\beta} \partial_{\delta} \partial_{\chi} h_{\beta}{}^{\delta} - \frac{29}{4} c_1 \partial^{\chi} \partial^{\beta} h^{\alpha}{}_{\alpha} \partial_{\delta} \partial_{\chi} h_{\beta}{}^{\delta} +$

 $\frac{37}{4} c_1 \partial_\chi \partial_\beta h^\delta_{\delta} \partial^\chi \Gamma^{\alpha\beta}_{\alpha} + c_1 \partial_\alpha \Gamma^{\delta}_{\delta} \partial^\chi \Gamma^{\alpha\beta}_{\beta} - c_1 \partial_\chi \Gamma^{\delta}_{\delta} \partial^\chi \Gamma^{\alpha\beta}_{\beta} -$

 $\frac{1}{4} a_0 h^{\alpha\beta} \partial_{\chi} \partial^{\chi} h_{\alpha\beta} - \frac{1}{4} a_0 h^{\alpha}_{\alpha} \partial_{\chi} \partial^{\chi} h^{\beta}_{\beta} - \frac{1}{4} a_0 \partial_{\beta} h_{\alpha\chi} \partial^{\chi} h^{\alpha\beta} +$

 $\frac{1}{8} a_0 \partial_{\chi} h_{\alpha\beta} \partial^{\chi} h^{\alpha\beta} + \frac{1}{2} a_0 h_{\beta\chi} \partial^{\chi} \Gamma^{\alpha}_{\alpha}{}^{\beta} - \frac{1}{2} c_1 \partial_{\beta} \Gamma^{\delta}_{\chi \delta} \partial^{\chi} \Gamma^{\alpha}_{\alpha}{}^{\beta} -$

	Massive partic	e
? $J^P = 1^+$	Pole residue:	$-\frac{4164}{24389c_1} > 0$
2	Polarisations:	3
$\overline{k^{\mu}}$	Square mass:	$\frac{a_0}{29c_1} > 0$
?	Spin:	1
·	Parity:	Even

	Massive particl	е
$J^P = 1$	Pole residue:	$\frac{4907}{35937c_1} > 0$
2	Polarisations:	3
$\overline{k^{\mu}}$	Square mass:	$\frac{a_0}{33c_1} > 0$
?	Spin:	1
·	Parity:	Odd

> 0	?	$\frac{1}{2}$		$\int_{S} \int_{A} \int_{A$)
	Parity:	Square mass:	$\frac{1}{2}$ Polarisations:	Pole residue:	

		٥	/	.?	
		7		IP -	
		\frac{1}{2}	1	၂ ၂	
	.~) ^	•-	 	`.~)
Parity:	Spin:	Square	Polarisa	Pole re	

	•	$\frac{1}{k^{\mu}}$	\ \ 	$\frac{?}{P} = \frac{1}{2}$	
	.~) ``)
Parity:	Spin:	Square n	Polarisat	Pole resi	Massive

	•~	ى ر		·~	
		>	\langle	7.	
		k^{μ}		 	
			1	- C	
	·\\\\ \			`.~)
		• ~	\circ		
Parity:	Spin:	Square	Polarisat	Pole res	Massive
		Н	sa	es.	٧e

	_				
•-	ر ر	_\(\)	.?		
	k^{μ}		IP —		
.~			<u> </u>)	
	•-	် ၁			
Spin: Parity:	Square	Polaris	Pole re	Massiv	

Massive partic	le	•-
Pole residue:	$\frac{4907}{35937c_1} > 0$	
Polarisations:	3	
Square mass:	$\frac{a_0}{33c_1} > 0$	
Spin:	1	.~)
Parity:	Odd	P.I.S.

, 5+ α	$-5\sqrt{\frac{2}{3}}$	$\frac{1}{6}$ (-3 a_0 +	- <u>c1 k</u> 6 $\sqrt{\cdot}$	- 5 i c 1	0	0		
$^{1}2^{+}\alpha\beta$	$\frac{1}{4} \left(a_0 + 11 c_1 k^2 \right)$	$-5\sqrt{\frac{2}{3}}c_1k^2$	$\frac{5c_1k^2}{\sqrt{3}}$	$\frac{11 i c_1 k^3}{4 \sqrt{2}}$	0	0		
	$\Gamma_{2}^{#1} + \alpha \beta$	$\Gamma_{2}^{\#2} + \alpha^{\beta}$	$\Gamma_{2}^{#3} + \alpha \beta$	$h_2^{#1} + \alpha \beta$	$\Gamma_{2}^{#1} + \alpha \beta \chi$	$\Gamma_2^{#2} + \alpha \beta X$		
ass	sive pa	article					٥	.~:
le	residu	ıe: -	4907 5937 <i>c</i> 1	> 0				7
la	risatio	ns: 3					Kit I	
ļuā	are ma	iss: -	$\frac{a_0}{3c_1}$ >	0				<u>၂</u>

$\Gamma_{2^{-}}^{\#2} a eta_{X}$	0	0	0	0	0	$\frac{1}{4} (a_0 - 5 c_1 k^2)$
$\Gamma_{2^{-}}^{\#1}\alpha\beta\chi$	0	0	0	0	$\frac{1}{4} (a_0 - c_1 k^2)$	0
$h_{2}^{\#1}_{+}$	$-\frac{11ic_1k^3}{4\sqrt{2}}$	$\frac{5ic_1k^3}{\sqrt{3}}$	- 5ic1 k³ √6	$-\frac{1}{8}k^{2}(a_{0}-11c_{1}k^{2})$	0	0
$\Gamma_{2}^{\#3}$	$\frac{5c_1k^2}{\sqrt{3}}$	$-\frac{c_1 k^2}{6 \sqrt{2}}$	$\frac{1}{12} \left(3 a_0 + c_1 k^2 \right)$	$\frac{5ic_1 k^3}{\sqrt{6}}$	0	0
$\Gamma_{2}^{\#2}$	$-5\sqrt{\frac{2}{3}}c_1k^2$	$-5 \sqrt{\frac{2}{3}} c_1 k^2 \qquad \frac{1}{6} (-3 a_0 + c_1 k^2)$	$-\frac{c_1 k^2}{6 \sqrt{2}}$	$-\frac{5ic_1k^3}{\sqrt{3}}$	0	0
$\Gamma_{2}^{\#1}{}_{\alpha\beta}$	$+^{\alpha\beta} \left \frac{1}{4} \left(a_0 + 11 c_1 k^2 \right) \right -5$		$\frac{5c_1 k^2}{\sqrt{3}}$	$\frac{11 i c_1 k^3}{4 \sqrt{2}}$	0	0
	$+^{\alpha\beta}$	+αβ	$+\alpha\beta$: †αβ	$+^{\alpha \beta \chi}$	$+^{\alpha \beta \chi}$

	$\Delta_{2}^{\#1}{}_{lphaeta}$	$\Delta_{2}^{\#2}{}_{lphaeta}$	$\Delta_{2}^{\#3}_{+\alpha\beta}$	${\mathcal T}^{\sharp 1}_{2^+lphaeta}$	$\Delta_{2}^{\#1}{}_{\alpha\beta\chi}$	$\Delta_2^{\#2}{}_{\alpha\beta\chi}$
$\Delta_{2}^{#1} \dagger^{\alpha\beta}$	$\frac{4(a_0-11c_1k^2)}{{a_0}^2}$	$-\frac{40\sqrt{\frac{2}{3}}c_1k^2}{a_0^2}$	$-\frac{80c_1k^2}{\sqrt{3}a_0^2}$	$-\frac{44 i \sqrt{2} c_1 k}{a_0^2}$	0	0
$\Delta_{2}^{\#2} \dagger^{\alpha\beta}$	$-\frac{40\sqrt{\frac{2}{3}}c_1k^2}{a_0^2}$	$-\frac{2(3a_0+c_1k^2)}{3a_0^2}$	$-\frac{2\sqrt{2}c_1k^2}{3a_0^2}$	$-\frac{80ic_1k}{\sqrt{3}a_0^2}$	0	0
$\Delta_{2}^{#3} \dagger^{\alpha\beta}$	$-\frac{80c_1k^2}{\sqrt{3}a_0^2}$	$-\frac{2\sqrt{2}c_1k^2}{3a_0^2}$	$\frac{4(3a_0-c_1k^2)}{3a_0^2}$	$-\frac{80 i \sqrt{\frac{2}{3}} c_1 k}{a_0^2}$	0	0
${\mathcal T}_{\mathtt{2}^{+}}^{\mathtt{#1}} t^{lphaeta}$	$\frac{44 i \sqrt{2} c_1 k}{a_0^2}$	$\frac{80 i c_1 k}{\sqrt{3} a_0^2}$	$\frac{80 i \sqrt{\frac{2}{3}} c_1 k}{a_0^2}$	$-\frac{8(a_0+11c_1k^2)}{a_0^2k^2}$	0	0
$\Delta_2^{#1} \dagger^{\alpha\beta\chi}$	0	0	0	0	$\frac{4}{a_0 - c_1 k^2}$	0
$\Delta_2^{\#2} \dagger^{\alpha\beta\chi}$	0	0	0	0	0	$\frac{4}{a_0 \cdot 5 c_1 k^2}$

	$\Delta_{2}^{\#1}{}_{lphaeta}$	$\Delta^{\#2}_{2^+lphaeta}$	$\Delta^{\#3}_{2^+lphaeta}$	${\cal T}^{\sharp 1}_{2^+lphaeta}$	$\Delta_{2}^{\#1}{}_{lphaeta\chi}$	$\Delta_{2}^{#2}_{\alpha\beta\chi}$
$\Delta_{2}^{#1} \dagger^{\alpha\beta}$	$\frac{4(a_0-11c_1k^2)}{{a_0}^2}$	$-\frac{40\sqrt{\frac{2}{3}}c_1k^2}{a_0^2}$	$-\frac{80c_1k^2}{\sqrt{3}a_0^2}$	$-\frac{44i\sqrt{2}c_1k}{a_0^2}$	0	0
$\Delta_{2+}^{#2} \dagger^{\alpha\beta}$	$-\frac{40\sqrt{\frac{2}{3}}c_1k^2}{a_0^2}$	$-\frac{2(3a_0+c_1k^2)}{3a_0^2}$	$-\frac{2\sqrt{2}c_1k^2}{3a_0^2}$	$-\frac{80ic_1k}{\sqrt{3}a_0^2}$	0	0
$\Delta_{2+}^{\#3}\dagger^{\alpha\beta}$	$-\frac{80c_1k^2}{\sqrt{3}a_0^2}$	$-\frac{2\sqrt{2}c_1k^2}{3a_0^2}$	$\frac{4(3a_0-c_1k^2)}{3a_0^2}$	$-\frac{80 i \sqrt{\frac{2}{3}} c_1 k}{a_0^2}$	0	0
${\mathcal T}_{\mathtt{2}^{+}}^{\mathtt{#1}} t^{lphaeta}$	$\frac{44i\sqrt{2}c_1k}{a_0^2}$	$\frac{80 i c_1 k}{\sqrt{3} a_0^2}$	$\frac{80 i \sqrt{\frac{2}{3}} c_1 k}{a_0^2}$	$-\frac{8(a_0+11c_1k^2)}{a_0^2k^2}$	0	0
$\Delta_2^{\#1} \dagger^{\alpha\beta\chi}$		0	0	0	$\frac{4}{a_0 - c_1 k^2}$	0
$\Delta_2^{\#2} \dagger^{\alpha\beta\chi}$	0	0	0	0	0	$\frac{4}{a_0-5c_1k^2}$

L #1	0	0	0	0	0	0	$\frac{1}{2} \left(-a_0 + c_1 k^2 \right)$
$h_{0}^{#2}$	0	0	0	0	0	0	0
$h_{0+}^{#1}$	$-\frac{25ic_1k^3}{2\sqrt{2}}$	0	$-\frac{10ic_1k^3}{\sqrt{3}}$	$5\overline{l}\sqrt{rac{2}{3}}c_1k^3$	$\frac{1}{4}k^2(a_0+25c_1k^2)$	0	0
Γ#4 0+	$-\frac{10c_1 k^2}{\sqrt{3}}$	$-\frac{a_0}{2\sqrt{2}}$	$-\frac{3a_0+46c_1k^2}{6\sqrt{2}}$	$\frac{1}{6} (3a_0 + 23c_1 k^2)$	$-5 i \sqrt{\frac{2}{3}} c_1 k^3$	0	0
Γ#3 0+	$10\sqrt{\frac{2}{3}}c_1k^2$	$\frac{a_0}{2}$	23 <i>c</i> 1 k ² 3	$-\frac{3a_0 + 46c_1 k^2}{6 \sqrt{2}}$	$\frac{10ic_1k^3}{\sqrt{3}}$	0	0
Γ#2 0+	0	0	$\frac{a_0}{2}$	$-\frac{a_0}{2\sqrt{2}}$	0	0	0
Γ#1 0+	$\binom{*1}{0^+} + \frac{1}{2} (-a_0 + 25 c_1 k^2)$	0	$10\sqrt{\frac{2}{3}}c_1k^2$	$-\frac{10c_1 k^2}{\sqrt{3}}$	$\frac{25ic_1k^3}{2\sqrt{2}}$	0	0
	-#1 0+	-#2 0 ⁺ †	-#3 0+	-#4 0+	ι ₀ ^{#1} †	ι ₀ ^{#2} †	-#1 0-1

0

0 0 0 1 1 0

0

0

0

0

0

0

 $5c_1k^2$

0

0

Z 13

2

310

2 | 5

 $\sqrt{3} c_1 k^2$

2 2

 $\frac{a_0}{2\sqrt{2}}$

 $(-a_0-3c_1k^2)$

0

0

0

0

0

0

0

0

0

0

0

0

 $-\frac{1}{6}\sqrt{5}(a_0-5c_1k^2)$

 $16c_1k^2$

 $(a_0 +$

7 2 2

1 9

 $(a_0 - 8c_1 k^2)$

√5

0

3 15

0

N 2

0

0 %

0

 $\sqrt{3} c_1 k^2$

0

0

0

0

0 - 40 6 √2

$\Delta_{0^{\text{-}}}^{\#1}$	0	0	0	0	0	0	$-\frac{2}{a_0 \cdot c_1 k^2}$
${\mathcal T}_{0}^{\#2}$	0	0	0	0	0	0	0
${\mathcal T}_0^{\#1}$	$-\frac{50i\sqrt{2}c_1k}{a_0^2}$	$\frac{20i\sqrt{3}c_1k}{a_0^2}$	- 20ic1 k √3 a0 ²	$-\frac{20i\sqrt{\frac{2}{3}}c_1k}{a_0^2}$	$\frac{4(a_0-25c_1k^2)}{a_0^2k^2}$	0	0
$\Delta_{0}^{\#4}$	$-\frac{20c_1 k^2}{\sqrt{3} a_0^2}$	$-\frac{a_0-23c_1k^2}{2\sqrt{2}a_0^2}$	$-\frac{3a_0+23c_1k^2}{6\sqrt{2}a_0^2}$	$\frac{3a_0 - 23c_1 k^2}{6a_0^2}$	$20i\sqrt{\frac{2}{3}}c_1k$ a_0^2	0	0
$\Delta_{0}^{\#3}$	$\frac{10\sqrt{\frac{2}{3}}c_1k^2}{a_0^2}$	$\frac{5a_0 + 23c_1 k^2}{4a_0^2}$	$-\frac{9a_0+23c_1k^2}{12a_0^2}$	$-\frac{3a_0+23c_1k^2}{6\sqrt{2}a_0^2}$	$\frac{20ic_1k}{\sqrt{3}a_0^2}$	0	0
$\Delta_0^{\#2}$	$\frac{10\sqrt{6}c_1k^2}{a_0^2}$	$\frac{3(a_0 + 23c_1 k^2)}{4a_0^2}$	$\frac{5a_0 + 23c_1 k^2}{4a_0^2}$	$-\frac{a_0-23c_1k^2}{2\sqrt{2}a_0^2}$	$\frac{20i\sqrt{3}c_1k}{a_0^2}$	0	0
$\Delta_0^{\#1}$	$\frac{2(a_0+25c_1k^2)}{a_0^2}$	$\frac{10\sqrt{6}c_1k^2}{a_0^2}$	$-\frac{10\sqrt{\frac{2}{3}}c_1k^2}{a_0^2}$	$-\frac{20c_1 k^2}{\sqrt{3} a_0^2}$	$\frac{50i\sqrt{2}c_1k}{a_0^2}$	0	0
	$\Delta_{0}^{\#1}$ †	$\Delta_{0}^{#2} +$	$\Delta_{0}^{#3} +$	Δ#4 +	$\mathcal{T}_{0}^{\#1}$ †	${\cal T}_{0}^{\#2} \dagger$	$\Delta_{0^{\bar{-}}}^{\#1}\dagger$

0

 $\frac{5}{12} (a_0 - 17 c_1 k^2)$

 $\frac{a_0}{3}$ $\frac{a_0+40c_1k^2}{6\sqrt{2}}$ 0

 $\sqrt{5} (a_0 - 5 c_1 k^2)$

11 9

 $\frac{1}{6} (-a_0 + 20 c_1 k^2)$

0

0

0

0

7 7 2

1 9

0

0

0

0

0

0

0

8 3 3 1 1 1 | # | 8

 $+2 \Delta_{0+}^{\#4} + 3 \Delta_{0+}^{\#2} == 0$

 $\mathcal{T}_{1^{-}}^{\#1\alpha} == 0$

 $\Delta_{1}^{\#3\alpha} == 0$

2 $\Delta_{1}^{\#6}{}^{\alpha} + \Delta_{1}^{\#4}{}^{\alpha} + 2 \Delta_{1}^{\#5}{}^{\alpha} +$ Total #:

0

	$\Delta_{1}^{\#1}$ $\alpha \mu$	$\Delta_{1}^{\#2}{}_{lphaeta}$	$\Delta_{1}^{\#3}{}_{\alpha\beta}$	$\Delta_{1-\alpha}^{\#1}$	$\Delta_{1-lpha}^{\#2}$	$\Delta_{1}^{#3}{}_{\alpha}$	$\Delta_{1}^{#4}{}_{\alpha}$	$\Delta_1^{\#5}{}_{lpha}$	$\Delta_{1}^{\#6}{}_{lpha}$	$\mathcal{T}_{1-lpha}^{\sharp 1}$
$\Delta_1^{\#1} \dagger^{\alpha\beta}$	0	$-\frac{2\sqrt{2}}{a_0}$	0	0	0	0	0	0	0	0
$\Delta_1^{#2} \dagger^{\alpha \beta}$	$-\frac{2\sqrt{2}}{a_0}$	$\frac{2(a_0^2 - 14a_0c_1k^2 - 35c_1^2k^4)}{a_0^2(a_0 - 29c_1k^2)}$	$\frac{40\sqrt{2}c_1k^2}{a_0^2 - 29a_0c_1k^2}$	0	0	0	0	0	0	0
$\Delta_{1}^{\#3} \dagger^{\alpha\beta}$	0	$\frac{40\sqrt{2}c_1k^2}{a_0^2-29a_0c_1k^2}$	$\frac{4}{a_0-29c_1k^2}$	0	0	0	0	0	0	0
$\Delta_1^{#1} + c$	0	0	0	0	$\frac{2\sqrt{2}}{a_0}$	0	0	0	0	0
$\Delta_1^{\#2} + ^c$	0	0	0	$\frac{2\sqrt{2}}{a_0}$	$\frac{2(a_0^2 - 30 a_0 c_1 k^2 + 401 c_1^2 k^4)}{a_0^2 (a_0 - 33 c_1 k^2)}$	$\frac{5\sqrt{\frac{2}{3}}c_1k^2(7a_0-236c_1k^2)}{a_0^2(a_0-33c_1k^2)}$	$-\frac{5\sqrt{\frac{10}{3}}c_1k^2}{a_0^2-33a_0c_1k^2}$	$\frac{10c_1 k^2 (-11a_0 + 118c_1 k^2)}{\sqrt{3} a_0^2 (a_0 - 33c_1 k^2)}$	$\frac{50\sqrt{\frac{2}{3}}c_1k^2}{a_0^2-33a_0c_1k^2}$	0
$\Delta_1^{#3} + ^c$	0	0	0	0	$\frac{5\sqrt{\frac{2}{3}}c_1k^2(7a_0-236c_1k^2)}{a_0^2(a_0-33c_1k^2)}$	$\frac{-19a_0^2 + 472a_0c_1k^2 + 5120c_1^2k^4}{12a_0^2(a_0 - 33c_1k^2)}$	$\frac{\sqrt{5} (5 a_0 - 164 c_1 k^2)}{12 a_0 (a_0 - 33 c_1 k^2)}$	$-\frac{{a_0}^2 \cdot 118 a_0 c_1 k^2 + 2560 c_1^2 k^4}{6 \sqrt{2} a_0^2 (a_0 - 33 c_1 k^2)}$	$-\frac{a_0-28c_1k^2}{6a_0^2-198a_0c_1k^2}$	0
$\Delta_1^{\#4} + ^c$	0	0	0	0	$-\frac{5\sqrt{\frac{10}{3}}c_1k^2}{a_0^2-33a_0c_1k^2}$	$\frac{\sqrt{5} (5 a_0 - 164 c_1 k^2)}{12 a_0 (a_0 - 33 c_1 k^2)}$	$\frac{1}{12 a_0 - 396 c_1 k^2}$	$-\frac{\sqrt{\frac{5}{2}} (a_0-82c_1 k^2)}{6 a_0 (a_0-33c_1 k^2)}$	$-\frac{\sqrt{5}}{6(a_0-33c_1k^2)}$	0
$\Delta_1^{\#5} + ^c$	0	0	0	0	$\frac{10c_1 k^2 (-11a_0 + 118c_1 k^2)}{\sqrt{3} a_0^2 (a_0 - 33c_1 k^2)}$	$-\frac{a_0^2 - 118 a_0 c_1 k^2 + 2560 c_1^2 k^4}{6 \sqrt{2} a_0^2 (a_0 - 33 c_1 k^2)}$	$-\frac{\sqrt{\frac{5}{2}} (a_0-82 c_1 k^2)}{6 a_0 (a_0-33 c_1 k^2)}$	$\frac{17a_0^2 - 236a_0c_1k^2 + 1280c_1^2k^4}{6a_0^2(a_0 - 33c_1k^2)}$	$-\frac{7 (a_0+2 c_1 k^2)}{3 \sqrt{2} a_0 (a_0-33 c_1 k^2)}$	0
$\Delta_1^{\#6} \dagger^c$	0	0	0	0	$\frac{50\sqrt{\frac{2}{3}}c_1k^2}{a_0^2-33a_0c_1k^2}$	$-\frac{a_0-28c_1k^2}{6a_0^2-198a_0c_1k^2}$	$-\frac{\sqrt{5}}{6(a_0-33c_1k^2)}$	$-\frac{7(a_0+2c_1k^2)}{3\sqrt{2}a_0(a_0-33c_1k^2)}$	$\frac{5}{3(a_0-33c_1k^2)}$	0
$\mathcal{T}_{1}^{#1}$ †	0	0	0	0	0	0	0	0	0	0
-	Lagrangian density									
_	$-\frac{1}{2} a_0 \Gamma^{\alpha\beta\chi} \Gamma_{\beta\chi\alpha} + \frac{1}{2} a_0 \Gamma^{\alpha\beta}_{\alpha} \Gamma^{\chi}_{\beta\chi} - \frac{1}{2} a_0 \Gamma^{\alpha\beta\chi} \partial_{\beta} h_{\alpha\chi} -$									
$\frac{1}{4} a_0 \Gamma^{\alpha \beta}_{\alpha}$	$\partial_{\beta}h^{\chi}_{\chi}$ +	$\frac{1}{4} a_0 \Gamma^{\alpha\beta}_{\alpha} \partial_{\beta} h^{\chi}_{\chi} - \frac{1}{4} a_0 h$	$\chi_{\chi} \partial_{\beta} \Gamma^{\alpha}_{\alpha}{}^{\beta} + \frac{1}{4}$	$a_0 h^{\chi}_{\lambda}$	$_{\alpha}^{\prime}\partial_{eta}\Gamma^{lphaeta}_{lpha}$ -					

$\Gamma_3^{\#1} + \alpha\beta\chi$ $\frac{1}{2}$ (-	$a_0 - 7c$	•	$\Delta_3^{#1} \dagger^{\alpha\beta\chi}$	$-{a_0+}$	7
			·		
_	$\Delta_{1}^{\#1}_{lphaeta}$		$\Delta_{1}^{\#2}_{lphaeta}$		
$\Delta_{1}^{\#1} \dagger^{\alpha\beta}$	0		<u>2√2</u>		

	Unitarity conditions
Quadratic pole	(Unitarity is demonstrably impossible)
Pole residue: $-\frac{1}{a_0} > 0$	
Polarisations: 2	