Item-based vs User-based Collaborative Recommendation Predictions

Joel Azzopardi

Department of Artificial Intelligence Faculty of ICT University of Malta

joel.azzopardi@um.edu.mt

September 2017

Overview

- The Problem
- 2 Background
- Research Questions
- Methodology
- Evaluation
- 6 Conclusions

The Problem

The Problem

- Information Overload
- Information Retrieval user 'pulls' relevant information after submitting query.
- Recommendation Systems system 'pushes' relevant information to the user based on user model.
- Main Challenge: handling large amounts of data efficiently and effectively.

Background

Recommendation Approaches

- Content-based techniques recommendation is performed on the basis of similarity between the content of the different items (documents).
 - Need to extract features from the different items (documents).
 - Does not suffer from new user/item problem, and from sparse matrix problem.
 - Suitable for items with high turn-over (e.g. news).
- Collaborative techniques recommendation is performed on the basis of what other 'similar' users have found useful.
 - Does not use features from the items/documents.
 - Need to have substantial user-item rating overlap.

Collaborative Recommendation

- More effective than content-based approaches.
- Exploit the fact that humans enjoy sharing their opinions with others.
- 2 main types:
 - User-based an item's recommendation score for a user is calculated depending on that items' ratings by other similar users
 - **Item-based** item's rating is predicted based on how similar items have been rated by that user.

Research Questions

Research Questions

- What will be the performance of an *ensemble* system combining both *user-based* and *item-based* approaches?
- What is the effect of *Latent Semantic Analysis (LSA)* applied to the collaborative recommendation algorithms?
- What is the *optimal neighbourhood size* for the different collaborative recommendation setups?

Latent Semantic Analyses

$$X = T \cdot S \cdot D^T$$

Figure 1: Latent Semantic Analysis Process, from: http://www.slideshare.net/vitomirkovanovic/topic-modeling-for-learning-analytics-researchers-lak15-tutorial, September 2016

Methodology

Collaborative Recommendation Algorithm

```
predictRating-SimUsers (UserSimMatrix, UserID, ItemID, k)
  CandidateRatings \leftarrow \phi
  SimUsers ← getSimilarUsers (UserSimMatrix, UserID)
  curk \leftarrow 0
  while (curk < k)
    user ← getNextMostSimilarUser (SimUsers)
    SimUserRating \leftarrow getUserItemRating (user, ItemID)
    if (exists(SimUserRating))
       updateCandidateRatings (CandidateRatings, SimUserRating,
                                                   Similarity (user, UserID))
       k \leftarrow k + 1
    end if
  end while
  return (getHighestWeightedCandidate (CandidateRatings))
end
```

Methodology

- Algorithm is based on k Nearest Neighbours (kNN).
 - Votes are weighted according to neighbours' similarities.
- Use of:
 - User pair-wise similarity matrix in user-based recommendation.
 - Item pair-wise similarity matrix in item-based recommendation.
- In LSA, these similarity matrices are decomposed, and only the top dimensions are considered.
- Ensemble algorithm:
 - Separate candidate user-item ratings are obtained from *user-based* and *item-based* algorithms.
 - Lists are merged together.
 - Predicted recommendation score is set to the highest weighted candidate score in the merged list.

Evaluation

Evaluation Dataset

- MovieLens 1M dataset
 - 1000209 ratings
 - 3883 movies
 - 6040 different users
- Split into 80% / 20% for training and testing.
 - Training set consists of the oldest 80% ratings for each user.
 - Rest into test set.
- Metric used: Mean Average Error (MAE)
- Neighbourhood sizes: 1, 2, 3, 6, 10, 20, 40, 80, 140, 200

System Configurations Evaluated

Algorithm Index	Similar Items	Similar Users	Item Category	LSA Dimensions Used
1	\checkmark			-
2	\checkmark			300
3		\checkmark		-
4		\checkmark		1000
5	\checkmark	\checkmark		-
6	\checkmark	\checkmark		300
7			\checkmark	-
8	\checkmark		\checkmark	-
9	\checkmark		\checkmark	300
10		\checkmark	\checkmark	-
11		\checkmark	\checkmark	1000
12	\checkmark	\checkmark	\checkmark	-
13	\checkmark	\checkmark	\checkmark	300

Results

Conclusions

Comparison of the Different Setups

- Item-based recommenders perform considerably better than the user-based ones.
- LSA has a beneficial effect on user-based recommendations, but an overall negative effect on the item-based recommendations.
- Ensemble system that uses LSA gives best (albeit slightly) results across practically all neighbourhood sizes.

Optimal Neighbourhood Size

- Optimal neighbourhood size seems to be around 40.
- *Item-based* recommenders are most effective with a neighbourhood size of 40 with a slight deterioration of results for larger sizes.
- Performance of user-based recommenders keeps improving (albeit very slightly) as neighbourhood sizes are increased.
- Ensemble algorithm that uses LSA obtains the best results with a neighbourhood size of 80, and results degrade slightly with larger neighbourhoods.

Future Work

- Investigation of the different methods of how content-type features may be incorporated in collaborative systems.
- Recommendation over big-data: how to perform distributed recommendation over multiple datasets and merging the recommendation scores.