for all $t \in I$ is well-defined. By applying the chain rule, we see that φ is differentiable at t = 0, and we get

$$\varphi'(0) = dJ_u(v).$$

Without loss of generality, assume that u is a local minimum. Then we have

$$\varphi'(0) = \lim_{t \to 0_{-}} \frac{\varphi(t) - \varphi(0)}{t} \le 0$$

and

$$\varphi'(0) = \lim_{t \to 0_+} \frac{\varphi(t) - \varphi(0)}{t} \ge 0,$$

which shows that $\varphi'(0) = dJ_u(v) = 0$. As $v \in E$ is arbitrary, we conclude that $dJ_u = 0$.

Definition 40.2. A point $u \in \Omega$ such that J'(u) = 0 is called a *critical point* of J.

If $E = \mathbb{R}^n$, then the condition $dJ_u = 0$ is equivalent to the system

$$\frac{\partial J}{\partial x_1}(u_1, \dots, u_n) = 0$$

$$\vdots$$

 \vdots $\frac{\partial J}{\partial x_n}(u_1, \dots, u_n) = 0.$

The condition of Proposition 40.1 is only a *necessary* condition for the existence of an extremum, but not a sufficient condition.

Here are some counter-examples. If $f: \mathbb{R} \to \mathbb{R}$ is the function given by $f(x) = x^3$, since $f'(x) = 3x^2$, we have f'(0) = 0, but 0 is neither a minimum nor a maximum of f as evidenced by the graph shown in Figure 40.1.

Figure 40.1: The graph of $f(x) = x^3$. Note that x = 0 is a saddle point and not a local extremum.