Main.cpp

Initialise the PID controller

Call the updateerror function and send the cte

Steering angle is the output from the controller

PID.cpp

Didn't understand how to use Init, therefore included the arguments into PID constructor

Define d_error, P_error and i_error

Calculate the controller output

Limit it between + and -1

PID.h

Didnt understand how to use the init to initialize. Therefore included the arguments for the PID (Kp,Ki, Kd) here.

Calibration of the PID Controller

1. Started with a Kp = 2, Ki = 0.0002, Kd = 1 throttle at 0.3

The car steering angle were at the limits +1 and -1 and very soon ended at the bank. Clearly the Kp was too high and was unsuitable for driving

2. Tried Kp = 0.5, Ki = 0.0002, Kd = 1 throttle at 0.3

The car drove in a sinusoidal curve, although a lot better than before still would make one very seasick. The Kp had to be reduced further

3. Tried Kp = 0.075, Ki = 0.0002, Kd = 1 throttle at 0.3

The car was unstable and drove itself into the pond, the Kp was too low to react to the error sufficiently

4. Tried Kp = 0.15, Ki =0.0002, Kd = 1 throttle at 0.3

The car drove a full length of the track well

Wanted to see how it works at a higher throttle

5. Tried Kp = 0.15, Ki = 0.0002, Kd = 1 throttle at 0.5

The car drove around the track but oscillated quite a bit. Should I decrease the Kd?

6. Tried Kp = 0.15, Ki = 0.0002, Kd = 0.075 throttle at 0.5

The car oscillated violently and crashed on the bridge. Clearly damping less created more problems than it solved

7. Tried Kp = 0.15, Ki = 0.0002, Kd = 1.75 throttle at 0.5

The car completed a full lap and showed the best driving amongst all the variations tried

Didn't change Ki value → had no way of quantitating it. I understood from the lessons that it was to rectify any existing systemic errors. So chose a sufficiently small number and struck to it

Although a simple project in comparison to the other projects, gave a very good hands on feel to how a PID controller works