本章教材习题全解

6-1 习题

1. 由图 6-5 所示的偏序集,哪一个是格?为什么?

图 6-5

- 解:a) 不是格,因为1,2没有最大下界。
 - b) 是格。
 - c) 是格。
 - d) 不是格,因为1,2没有最大下界。
- 2. 由下列集合L构成的偏序集 $\langle L, \leqslant \rangle$,其中 \leqslant 的定义为:对于 $n_1, n_2 \in L, n_1 \leqslant n_2$ 当且仅当 n_1 是 n_2 的因子,问其中哪几个偏序集是格。
 - a) $L = \{1, 2, 3, 4, 6, 12\}$.
 - b) $L = \{1,2,3,4,6,8,12,14\}$.

- c) $L = \{1,2,3,4,5,6,7,8,9,10,11,12\}$ ME:a EA AB
 - b) 不是格,因为 12,14 没有最小上界。
 - c) 不是格,因为9,10没有最小上界。
- 3. 验证以整除关系"|"为偏序关系的正整数格 $\langle I_+, | \rangle$ 所诱导的代数系统 $\langle I_+, V_+, \Lambda_- \rangle$ 满足 $V_+, \Lambda_- \rangle$ 满足 $V_+, \Lambda_- \rangle$ 前足 $V_+, \Lambda_- \rangle$ 可以 $V_+ \rangle$ 可以
 - 证明:格 $\langle I_+, | \rangle$ 所诱导的代数系统 $\langle I_+, \vee, \wedge \rangle$ 中的二元运算分别定义为: \vee :为最小公倍数, \wedge :为最大公约数。即对任意的 $a,b \in I_+$,有 $a \vee b = \text{LCM}(a,b)$, $a \wedge b = \text{GCD}(a,b)$ 。

对于任意的 $a,b,c \in I_+$,有

- 1) $a \lor b = LCM(a,b) = LCM(b,a) = b \lor a$,
- $a \wedge b = GCD(a,b) = GCD(b,a) = b \wedge a$,满足交换性。
- 2) $(a \lor b) \lor c = LCM(a,b) \lor c = LCM(a,b,c) = a \lor LCM(b,c) = a \lor (b \lor c),$
- $(a \land b) \land c = GCD(a,b) \land C = GCD(a,b,c) = a \land GCD(b,c) = a \land (b \land c)$,满足结合性。
- 3) $(a \lor a) = LCM(a,a) = a, a \land a = GCD(a,a) = a, 满足幂等性。$
- 4) $a \lor (a \lor b) = a \lor (GCD(a,b)) = LCM(a,GCD(a,b)) = a$,
- $a \land (a \lor b) = a \land (LCM(a,b)) = GCD(a,LCM(a,b)) = a, 满足吸收性。$
- 4. 设 $\langle A, \leqslant \rangle$ 是一个格,任取 a,b 且a < b,构造集合 $B = \langle x \mid x \in A$ 且 $a \leqslant x \leqslant b \rangle$,则 $\langle B, \leqslant \rangle$ 也是一个格。
 - 证明: $\langle A, \leqslant \rangle$ 是一个格,且 $B \subseteq A$,所以 $\langle B, \leqslant \rangle$ 是一个偏序集,对于任意的 $c,d \in B$,则 $a \leqslant c \leqslant b,a \leqslant d \leqslant b$,所以有 $a = a \lor a \leqslant c \lor d \leqslant b \lor b = b$,即 $a \leqslant c \lor d \leqslant b,c \lor d \in B$,a $= a \land a \leqslant c \land d \leqslant b \land b = b$,即 $a \leqslant c \land d \leqslant b$, $c \land d \in B$,因此 $\langle B, \leqslant \rangle$ 也是一个格。
- 5. 设 A, B 是两个集合,f 是 A 到 B 的映射,证明 $\langle S, \subseteq \rangle$ 是 $\langle \mathcal{R}(B), \subseteq \rangle$ 的一个子格,其中 $S = \{y \mid y = f(x), x \in \mathcal{R}(A)\}$ 。
 - 证明:因为 \subseteq 是偏序关系,由 $(\mathscr{P}(B),\subseteq)$ 所诱导的代数系统是 $(\mathscr{P}(B),\cup,\bigcap)$ 。对于任意的 $B_1,B_2\in\mathscr{P}(B)$,有 $B_1\cup B_2\in\mathscr{P}(B)$, $B_1\cap B_2\in\mathscr{P}(B)$,故 $(\mathscr{P}(B),\subseteq)$ 是格。由 S 定义可知 $S\subseteq\mathscr{P}(B)$,所以 (S,\subseteq) 是一个偏序集。

对于任意的 S_1 , $S_2 \in S$, 必存在 A_1 , A_2 , 使得 $S_1 = f(A_1)$, $S_2 = f(A_2)$, 其中 $A_1 \subseteq A$, $A_2 \subseteq A$ 。又因为 f 是从 A 到 B 的映射, 对于任意的 $a \in A$,都有唯一的 $b \in B$,使得 f(a) = b。所以有

$$S_1 \cup S_2 = f(A_1) \cup f(A_2)$$

$$= f(A_1 \cup A_2) \in S,$$

$$S_1 \cap S_2 = f(A_1) \cap f(A_2)$$

$$= f(A_1 \cap A_2) \in S_o$$

因此 $\langle S, \subseteq \rangle$ 是 $\langle \mathcal{P}(B), \subseteq \rangle$ 的子格。

6. 设〈A, V, A〉是一个代数系统,其中 V, A 都是二元运算且分别满足幂等性,

举例说明吸收性不一定成立。

解:例如 (A, V, Λ) 是一个代数系统,其中 $A = \{a,b\}$,

V 运算定义为:a ∨ a = a,a ∨ b = b,b ∨ b = b,b ∨ a = a,

 Λ 运算定义为: $a \wedge a = a$, $a \wedge b = b$, $b \wedge b = b$, $b \wedge a = a$,

则 \vee , \wedge 满足等幂性,但是 $a \wedge (a \vee b) = a \wedge b = b$,不满足吸收律。

7. 设 a 和 b 是格 $\langle A, \leq \rangle$ 中的两个元素,证明:

a) $a \land b = b$ 当且仅当 $a \lor b = a$ 。

证明:a) $\langle A, \leqslant \rangle$ 是格,满足吸收律,故若 $a \land b = b$,则 $a \lor b = a \lor (a \land b) = a$; 若 $a \lor b = a$,则 $a \land b = (a \lor b) \land b = b$ 。

b) 若 $a \land b \lt b$ 和 $a \land b \lt a$,则 $a \land b \ne b$ 且 $a \land b \ne a$ 。

假设a = b是可比较的,则 $a \le b$ 或 $b \le a$,那么有 $a \land b = a$ 或 $a \land b = b$ 矛盾,所以a = b是不可比较的。

8. 证明:在格中若 $a \le b \le c$,则 $a \lor b = b \land c$, $(a \land b) \lor (b \land c) = b = (a \lor b) \land (a \lor c)$ 。

证明:在格中若 $a \le b \le c$ 则 $a \land b = a, a \lor b = b, b \land c = b, b \lor c = c, a \lor c = c$ 成立。

所以 $a \lor b = b = b \land c$,

 $(a \land b) \lor (b \land c) = a \lor b = b, (a \lor b) \land (a \lor c) = b \land c = b,$ 因此 $(a \land b) \lor (b \land c) = b = (a \lor b) \land (a \lor c)$ 成立。

9. 证明在格中成立 $(a \land b) \lor (c \land d) \leqslant (a \lor c) \land (b \lor d)$ 和 $(a \land b) \lor (b \land c) \lor (c \land a) \leqslant (a \lor b) \land (b \lor c) \land (c \lor a)$ 。

证明:由 $a \land b \leqslant a,c \land d \leqslant c$,可得 $(a \land b) \lor (c \land d) \leqslant a \lor c$,由 $a \land b \leqslant b,c \land d \leqslant d$,可得 $(a \land b) \lor (c \land d) \leqslant b \lor d$,所以 $(a \land b) \lor (c \land d) \leqslant (a \lor c) \land (b \lor d)$,

由 $a \land b \leq a, b \land c \leq b, c \land a \leq a,$ 可得 $(a \land b) \lor (b \land c) \leq a \lor b, ((a \land b) \lor (b \land c)) \lor (c \land a) \leq (a \lor b) \lor a,$

即 $(a \land b) \lor (b \land c) \lor (c \lor a) ≤ a \lor b$,

同理可得 $(a \land b) \lor ((b \land c)) \lor (c \land a) \leq b \lor c, (a \land b) \lor (b \land c) \lor (c \land a) \leq c \lor a,$

所以 $(a \land b) \lor (b \land c) \lor (a \land c) \leq (a \lor b) \land (b \lor c) \land (c \lor a)$ 。

10. 用对偶原理证明定理 6-1. 2 中的后一个结论,即在格中若 $a \le b$ 和 $c \le d$,则 a \land $c \le b$ \land d。

证明:由格的性质可得,若 $a \leq b$ 和 $c \leq d$,则 $a \vee c \leq b \vee d$ 。

对此结论应用对偶原理应有,若 $b \le a$ 和 $d \le c$,则 $b \land d \le a \land c$,再将a与b互换,c与d 互换,得若 $a \le b$ 和 $c \le d$,则 $a \land c \le b \land d$ 。

11. 设 $\langle A, \leqslant \rangle$ 是一个格,证明 $\langle A, \leqslant_R \rangle$ 也是一个格。

证明:先证 \leq_R 是一个偏序关系,因为 \leq 是一个偏序关系,所以满足自反性、反对称性和传递性。对任意 $a \in A$, \leq 是自反的,所以 $a \leq a$ 成立,从而 $a \leq_R a$ 也成立, \leq_R 是自反的。

对于任意 $a,b \in A$ 若 $a \leq_R b$ 且 $b \leq_R a$,则有 $b \leq a$ 且 $a \leq b$ 成立,因为 \leq 是 反对称的,所以 a = b,故 \leq_R 是反对称的。

对于任意 $a,b,c\in A$ 若 $a\leqslant_R b,b\leqslant_R c$,则有 $b\leqslant a,c\leqslant b$ 成立,因为 \leqslant 是传 递的,所以 $c\leqslant a$ 成立, $a\leqslant_R c$,故 $\leqslant_R e$ 是传递的。

由上可知、 $\langle A, \leq_R \rangle$ 是一个偏序集。

对于任意 $a,b \in A$ 由 $\langle A, \leqslant \rangle$ 为格可知 $a \land b,a \lor b$ 存在,设 \lor 1 和 \land 1 的关系是 \leqslant_R 的最小上界和最大下界,则 $a \lor_1 b = a \land b,a \land_1 b = a \lor b$ 。即 A 任意两个元素都有最小上界和最大下界。

综上可知, $\langle A, \leq_R \rangle$ 也是一个格。

6-2 习题

1. 试举两个含有 6 个元素的格,其中一个是分配格,另一个不是分配格。解:分配格如图 6-6(a),不是分配格的如图 6-6(b)。

图 6-6

2. 在图 6-7 中给出的几个格,哪个是分配格?

图 6-7

解:(c) 不是分配格,因为它有与 同构的子格,(a),(b) 是分配格。

3. 证明格 $\langle I, \max, \min \rangle$ 是分配格。

证明:对任意的 $a,b,c \in I$,

$$\max(a, \min(b, c)) = \begin{cases} \max(a, b) = \begin{cases} a, b \leq c, b \leq a \\ b, b \leq c, a \leq b \end{cases} \\ \max(a, c) = \begin{cases} a, c \leq b, c \leq a \\ c, c \leq b, a \leq c \end{cases} \end{cases}$$

$$\min(\max(a, b), \max(a, c)) = \begin{cases} \min(a, c) = a, b \leq a, a \leq c \\ \min(a, a) = a, b \leq a, c \leq a \end{cases}$$

$$\min(b, c) = \begin{cases} b, a \leq b, a \leq c, b \leq c, \\ c, a \leq b, a \leq c, c \leq b \\ \min(b, a) = a, a \leq b, c \leq a \end{cases}$$

所以 $\max(a, \min(b, c)) = \min(\max(a, b), \max(a, c))$ 。

由对偶原理可知, min(a, max(b,c) = max(min(a,b), min(a,c))。

4. 证明在分配格中,可以把分配式更一般地写成:

 $a \wedge (b_1 \vee b_2 \vee \cdots \vee b_n) = (a \wedge b_1) \vee (a \wedge b_2) \vee \cdots \vee (a \wedge b_n),$

 $a \vee (b_1 \wedge b_2 \wedge \cdots \wedge b_n) = (a \vee b_1) \wedge (a \vee b_2) \wedge \cdots \wedge (a \vee b_n).$

证明:用数学归纳法

当n=2时, $a \wedge (b_1 \vee b_2) = (a \wedge b_1) \vee (a \wedge b_2)$

假设当n = k 时成立,即 $a \land (b_1 \lor b_2 \lor \cdots \lor b_k) = (a \land b_1) \lor (a \land b_2)$

 $\vee \cdots \vee (a \wedge b_k)$,则当 n = k+1 时, $a \wedge (b_1 \vee b_2 \vee \cdots \vee b_k \vee b_{k+1})$

 $= (a \wedge (b_1 \vee b_2 \vee \cdots \vee b_k)) \vee (a \wedge b_{k+1})$

 $= (a \wedge b_1) \vee (a \wedge b_2) \vee \cdots \vee (a \wedge b_k) \vee (a \wedge b_{k+1}),$

所以对于任意 n在分配格中,分配式 $a \wedge (b_1 \vee b_2 \vee \cdots \vee b_n) = (a \wedge b_1) \vee (a \wedge b_2) \vee \cdots \vee (a \wedge b_n)$,同理可得 $a \vee (b_1 \wedge b_2 \wedge \cdots \wedge b_n) = (a \vee b_1) \wedge (a \vee b_2) \wedge \cdots \wedge (a \vee b_n)$ 。

5. 设 $\langle A, \leqslant \rangle$ 是一个分配格, $a,b \in A$ 且a < b,证明: $f(x) = (x \lor a) \land b$ 是一个 从 A 到 B 的同态映射。其中, $B = \{x \mid x \in A$ 且 $a \leqslant x \leqslant b\}$

证明:先证f是从A到B的一个映射。

因为 $\langle A, \leqslant \rangle$ 是一个分配格,所以对任意 $x \in A$, $f(x) = (x \lor a) \land b$ 唯一存在。

因为 $a \le x \lor a$ 且 a < b,所以 $a = a \land b \le (x \lor a) \land b \le b$,即 $a \le f(x) \le b$, $f(x) \in B$,所以 f 是从 A 到 B 的一个映射。

再证 f 是同态映射。

对于任意 $x,y \in A$,又因为 $\langle A, \leqslant \rangle$ 是分配格。

所以 $f(x \lor y) = ((x \lor y) \lor a) \land b = (x \lor y \lor a) \land b = (x \land b) \lor (y \land b) \lor (a \land b)$,

 $f(x) \lor f(y) = ((x \lor a) \land b) \lor ((y \lor a) \land b) = (x \land b) \lor (a \land b) \lor (y \land b) \lor (a \land b) = (x \land b) \lor (y \land b) \lor (a \land b),$

 $f(x \lor y) = f(x) \lor f(y),$

同理可得 $f(x \land y) = f(x) \land f(y)$, 因此, f 是一个从 A 到 B 的同态映射。

6. 试举例说明模格不一定是分配格。

图 6-8

解:给定格如图 6-8 所示,对于任意的 $x,y,z \in \{a,b,c,d,e,f\}$,若有 $x \leq y, 则 x$ = a 或 y = e 或 y = f,

 $y = f \bowtie_{x} \lor (y \land z) = x \lor z = y \land (x \lor z),$

 $x = a \bowtie x \lor (y \land z) = y \land z = y \land (x \lor z),$

y = e 时,则 $x \in \{a,b,c,d\}$,若 x = a,则 $x \lor (y \land z) = y \land z = y \land (x \lor z)$,

若 $x \in \{b,c,d\}, 则z \in \{a,b,c,d,e,f\},$

当z = a时, $x \lor (y \land z) = x \lor z = x,y \land (x \lor z) = y \land x = x,$

当z = f时, $x \lor (y \land z) = x \lor y = y,y \land (x \lor z) = y \land x = y,$

当x = e时, $x \lor (y \land z) = x \lor y = y,y \land (x \lor z) = y \land z = y,$

当 $z \in \{b,c,d\}$ 时,若x = z,则 $x \lor (y \land z) = x \lor z = x,y \land (x \lor z) = y \land x = x$,

若 $x \neq z$,则 $x \land (y \land z) = x \lor z = e$, $y \land (x \lor z) = y \land e = e$,

综上可知: $x \lor (y \land z) = y \land (x \land z) = y \land (x \lor z)$ 因此上图所示的格是

模格,但不是分配格,因此格中有子格。

7. 证明:一个格 $\langle A, \leqslant \rangle$ 是分配格当且仅当对任意的 $a,b,c \in A$,有 $(a \land b) \lor (b \land c) \lor (c \land a) = (a \lor b) \land (b \lor c) \land (c \lor a)$

证明:必要性,若格(A, ≼) 是分配格,则有

 $(a \land b) \lor (b \land c) \lor (c \land a)$

- $= (b \land (a \lor c)) \lor (c \land a)$
- $= (b \lor (c \land a)) \land ((a \lor c) \lor (c \land a))$
- $= (b \lor c) \land (b \lor a) \land (c \lor a)$
- $= (a \lor b) \land (b \lor c) \land (c \lor a)$

充分性,对任意 $a,b,c \in A$,令 $a' = (a \lor b) \land (a \lor c),b' = b \lor c,c' = a$, 则 $(a' \land b') \lor (b' \land c') \lor (c' \land a')$

 $= ((a \lor b) \land (a \lor c) \land (b \lor c)) \lor ((b \lor c) \land a) \lor (a \land (a \lor b) \land (a$

V c))

- $= ((a \lor b) \land (a \lor c) \land (b \lor c)) \lor ((b \lor c) \land a) \lor a$
- $= ((a \land b) \lor (a \land c) \lor (b \land c)) \lor a$
- $= a \lor (b \land c)$

 $(a' \lor b') \land (b' \lor c') \land (c' \lor a')$

- $= (((a \lor b) \land (a \lor c)) \lor (b \lor c)) \land ((b \lor c) \land a) \lor (a \lor (a \lor b) \land (a \lor c))$
- $= (((a \lor b) \land (a \lor c)) \lor (b \lor c)) \land ((a \lor b) \land (a \lor c))$
- $= (a \lor b) \land (a \lor c)$

所以 $a \lor (b \land c) = (a \lor b) \land (a \lor c)$,同理可证 $a \land (b \lor c) = (a \lor b) \land (a \lor c)$,

所以格(A, ≼)是分配格。

- 8. 举出两个含有6个元素的格,其中一个是模格,另一个不是模格。
- 解:例如图 6-9 所示,(a) 模格,(b) 不是模格。

图 6-9

- 9. 证明:一个格是模格当且仅当对于任意的 a,b,c,有 a ∨ (b ∧ (a ∨ c)) = (a ∨ b) ∧ (a ∨ c)
- 证明:必要性,设 $\langle A, \leqslant \rangle$ 是模格,则对于任意的 $a,b,c \in A$,若 $a \leqslant b$,则 $a \lor (b \land c) = b \land (a \lor c)$,因为 $a \leqslant a \lor c$,所以 $a \lor ((a \lor c) \land b) = (a \lor c) \land (a \lor b)$ 。

充分性,设 $\langle A, \leqslant \rangle$ 是格,且对于任意 $a,b,c \in A,a \lor (b \land (a \lor c)) = (a \lor b) \land (a \lor c),则当 a \leqslant c 时,a \lor c = c,故得 a \lor (b \land c) = (a \lor b) \land c。 所以<math>\langle A, \leqslant \rangle$ 是模格。

10. 设 $\langle A, \leqslant \rangle$ 是模格, $x,y,a \in A$,且x,y分别盖住a,证明 $x \lor y$ 盖住x 和y。 证明:由x,y盖住a 可知, $a \leqslant x$ 且 $a \leqslant y$,且没有 $z \in A$ 使得 $a \leqslant z \leqslant x,a \leqslant z \leqslant y$,所以 $x \land y = a$ 。又因为 $x \leqslant x \lor y,y \leqslant x \lor y$,若存在 $z \in A$,使 $x \leqslant z \leqslant x \lor y$,则 $x \land y,x,y,z,x \lor y$ 的关系如图 6-10 所示。

现考虑 $x \lor (z \land y)$,有三种可能,

- a) 若 $z \land y = y$,则 $y \leqslant z$,又 $x \leqslant z$,故有 $x \lor y \leqslant z$, $x \lor y = z$;
- b) 若 $z \land y = z$,则 $z \le y$,而 $a \le x \le z$,故 $a \le z \le y$,这与y盖住a矛盾;
- c) $z \land y = a$,则 $x \lor (z \land y) = x \lor a = x$,又 $z \land (x \lor y) = z$,又因为 x

 $\leq z$,由模格定义可知: $x \lor (z \land y) = z \land (x \lor y)$,即x = z,可见 $x \lor y$ 盖住x,同理可证 $x \lor y$ 盖住y。

图 6-10

11. 设 $\langle S, \leqslant \rangle$ 是模格, $a,b \in S$,作 $X = \{x \mid x \in S, \exists a \land b \leqslant x \leqslant a\}, Y = \{y \mid y \in S, \exists b \leqslant y \leqslant a \lor b\}$,则下面的互逆映射:

 $x \rightarrow x \lor b(x \in X), y \rightarrow y \land a(y \in Y),$

是X和Y之间的同构。

证明:记 $f:x \to x \lor b(x \in X), g:y \to y \land a(y \in Y), \exists a \land b \leqslant x \leqslant a, (a \land b) \lor b \leqslant x \lor b \leqslant a \lor b, \text{即} b \leqslant x \lor b \leqslant a \lor b, f(x) \in Y, 故 f 是 X 到 Y 的映射; 当 b \leqslant y \leqslant a \lor b 时, b \land a \leqslant y \land a \leqslant a, g(y) \in X, 故 g 是从 Y 到 X 的映射。$

对于任意 $x \in X, g \circ f(x) = g(f(x)) = g(x \lor b) = (x \lor b) \land a;$ 因为 $\langle S, \leqslant \rangle$ 是模格, $x \leqslant a,$ 则 $(x \land b) \lor a = x \lor (a \land b) = x,$ 即 $g \not\in f$ 的左逆。类似地,对任意 $y \in Y, f \circ g(y) = f(g(y)) = f(y \land a) = (y \land a) \lor b = y$ $\land (a \lor b) = y,$ 即 $g \not\in f$ 的右逆,因此 $f \land ng$ 都是双射。

若对于任意的 $x_1 \leq x_2$, x_1 , $x_2 \in X$, 则 $a \land b \leq x_1 \leq x_2 \leq a$, 从而($x_1 \lor b$) $\leq (x_2 \lor b)$, 即 $f(x_1) \leq f(x_2)$, 故 f 是从 X 到 Y 的同构映射。

若对于任意的 $y_1 \leq y_2, y_1, y_2 \in Y$,则 $b \leq y_1 \leq y_2 \leq a \lor b$,从而 $(y_1 \land a) \leq (y_2 \land a)$,即 $g(y_1) \leq g(y_2)$,故 g 是从 Y 到 X 的同构映射。

6-3 习题

1. 试根据图 6-11 所示的有界格,回答以下问题。

• 195 •

- a) a 和 f 的补元素分别是哪些元素?
- b) 该有界格是分配格吗?
- c) 该有界格是有补格吗?
- 解:a) a 和 f 都没有补元。
 - b) 因为 $c \land (e \lor f) = c \land a = c, \overline{n}(c \land e) \lor (c \land f) = e \lor 0 = e, \overline{n} \lor c \land (e \lor f) \neq (c \land e) \lor (c \land f), 因此不是分配格。$
 - c) d没有补元,它不是有补格。
- 2. 证明:在有界格中 0 是 1 的唯一补元,1 是 0 的唯一补元。
- 证明: $\langle A, \leqslant \rangle$ 是有界格,0 是 A 的全下界,1 是 A 的全上界,所以 $0 \land 1 = 0$,0 $\lor 1 = 1$,从而 $0 \in A$ 0 的补元,1 是 0 的补元。

假设 0_1 也是 1 的补元,则 0_1 \wedge $1 = 0,0_1$ \vee $1 = 1,由于 <math>0 \le 0_1 \le 1$,所以 0_1 \wedge $1 = 0_1,即 0 = 0_1,因此 0 是 <math>1$ 的唯一补元。

- 3. 证明具有两个或更多个元素的格中不存在以自身为补元的元素。
- 证明:因在格中求补元,此格必为有界格,设〈A, 《〉为有界格,若 |A|=2,则 $A=\{0,1\}$ 。因为 $0 \lor 0=0$,0 $\land 0=0$,1 $\lor 1=1$,1 $\land 1=1$,0 $\lor 1=1$,0 $\land 1=0$,所以 0 和 1 互为补元,即具有两个元素的格中不存在以自身为补元的元素。若 |A|>2,设存在 $a\in A$, $a\neq 0$ 且 $a\neq 1$, a 以自身为补元,则由补元定义: $a=a \land a=0$, $a=a \lor a=1$,可得 0=a=1 与假设矛盾,因此不存在以自身为补元的元素。

因此,具有连个或更多个元素的格中不存在以自身为补元的元素。

- 4. 在有界分配格中,证明具有补元的那些元素组成一个子格。
- 证明:设 $\langle A, \leqslant \rangle$ 是一有界分配格,B是A中具有补元的那些元素的集合,因为0和1互为补元,所以0,1 \in B \neq Ø。对于任意的 $a,b\in$ B,设其补元分别为 $\overline{a},\overline{b}$ 。 先考察 $a\lor b$,因为 $(a\lor b)\lor (\overline{a}\land \overline{b})=(a\lor b\lor \overline{a})\land (a\lor b\lor \overline{b})=(b\lor 1)\land (a\lor 1)=1\land 1=1,$

 $(a \lor b) \land (\overline{a} \land \overline{b}) = (a \land \overline{a} \land \overline{b}) \lor (b \land \overline{a} \land \overline{b}) = (0 \land \overline{b}) \lor (0 \land \overline{a}) = 0 \lor 0 = 0$,所以 $a \lor b \in B$ 。

再考察 $a \land b$,因为 $(a \land b) \lor (\overline{a} \lor \overline{b}) = (a \lor \overline{a} \lor \overline{b}) \land (b \lor \overline{a} \lor \overline{b}) = (1 \lor \overline{b}) \land (\overline{a} \lor 1) = 1 \land 1 = 1,$

 $(a \land b) \land (\overline{a} \lor \overline{b}) = (a \land b \land \overline{a}) \lor (a \land b \land \overline{b}) = (0 \land b) \lor (0 \land a) = 0 \lor 0 = 0$,所以 $a \land b \in B_o$

综上可知 B 是子格。

- 5. 试证明,具有三个或更多个元素的链不是有补格。
- 证明:设 $\langle A, \leqslant \rangle$ 是链,且 $|A| \leqslant 3$,对于任意元素 $a \in A$,且 $a \neq 0$, $a \neq 1$,若 a 有 补元 b,则有 $a \lor b = 1$, $a \land b = 0$,因为 $\langle A, \leqslant \rangle$ 是链,必有 $a \leqslant b$ 或 $b \leqslant a$, 若 $a \leqslant b$,则 $a \land b = a$,所以 a = 0,与 $a \neq 0$ 矛盾,若 $b \leqslant a$,则 $a \lor b = a$,得 a = 1,与 $a \neq 1$ 矛盾,所以 a 的补元 b 是不存在的,这种链不是有补格。
- 6. 设(A, ≤) 是一个有界格,对于x,y ∈ A,证明:
- a) 若 $x \lor y = 0$,则x = y = 0。

b) 若 $x \land y = 1$,则x = y = 1。

证明:a) 若 $x \lor y = 0$,则 $x \le 0$, $y \le 0$ 。因为 0 是全下界,所以不可能有x < 0 和y < 0,则必有x = y = 0;

b) 若 $x \land y = 1$,则 $1 \le x$, $1 \le y$,因为1是全上界,不可能有1 < x,1 < y,则有x = y = 1。

6-4 习题

1. 证明在布尔代数中,有

$$a \lor (\overline{a} \land b) = a \lor b$$

 $a \land (\overline{a} \lor b) = a \land b$

证明:布尔代数是由布尔格所诱导的代数系统,布尔格是有补分配格,所以

$$a \lor (\overline{a} \land b) = (a \lor \overline{a}) \land (a \lor b) = 1 \land (a \lor b) = a \lor b$$

$$a \wedge (\overline{a} \vee b) = (a \wedge \overline{a}) \vee (a \wedge b) = 0 \vee (a \wedge b) = a \wedge b_{\circ}$$

2. 设 $(S, V, \Lambda, \bar{})$ 是一个布尔代数, $x,y \in S$,证明 $x \leq y$ 当且仅当 $\bar{y} \leq \bar{x}$.

证明: $\langle S, \vee, \wedge, \neg \rangle$ 是一个布尔代数, $x,y \in S$,则 $x \leqslant y \Leftrightarrow x \wedge y = x \Leftrightarrow \overline{x \wedge y} = \overline{x} \Leftrightarrow \overline{x} \vee \overline{y} = \overline{x} \Leftrightarrow \overline{y} \leqslant \overline{x}$ 。

 $3.\langle A, \vee, \wedge, \neg \rangle$ 是布尔代数,如果在 A 上定义二元运算 \oplus 为:

$$a \oplus b = (a \wedge \overline{b}) \vee (\overline{a} \wedge b)$$

证明:〈A, ①〉是一个阿贝尔群。

证明:① 因为〈A, V, \wedge , 〉 是布尔代数, V, \wedge , 三个运算在 A 上是封闭的,所以对于任意 $a,b\in A$, $a\oplus b=(a\wedge \bar{b})\vee (\bar{a}\wedge b)\in A$,运算 \oplus 在 A 上是封闭的。

② 对于任意 $a,b,c \in A$,

 $(a \oplus b) \oplus c = ((a \land \overline{b}) \lor (\overline{a} \land b)) \oplus c$

 $=(((a \wedge \overline{b}) \vee (\overline{a} \wedge b)) \wedge \overline{c}) \vee \overline{((a \wedge \overline{b}) \vee (\overline{a} \wedge b)} \wedge c)$

 $= (a \wedge \overline{b} \wedge \overline{c}) \vee (\overline{a} \wedge b \wedge \overline{c}) \vee (((\overline{a} \vee b) \wedge (a \vee \overline{b})) \wedge c)$

 $= (a \wedge \overline{b} \wedge \overline{c}) \vee (\overline{a} \wedge b \wedge \overline{c}) \vee (((a \wedge b) \vee (\overline{a} \wedge \overline{b})) \wedge c)$

 $=(a \wedge \overline{b} \wedge \overline{c}) \vee (\overline{a} \wedge b \wedge \overline{c}) \vee (a \wedge b \wedge c) \vee (\overline{a} \wedge \overline{b} \wedge c)$

同理可得 $a \oplus (b \oplus c) = (a \land \bar{b} \land \bar{c}) \lor (\bar{a} \land b \land \bar{c}) \lor (a \land b \land c) \lor (\bar{a} \land \bar{b} \land c) \lor (\bar{a} \land \bar{$

③ 对于任意 $a \in A$,有 $a \oplus 0 = (a \land 1) \lor (\overline{a} \land 0) = a = 0 \oplus a = (0 \land \overline{a}) \lor (1 \land a)$,故 0 是幺元。

④ 对于任意 $a \in A$,有 $a \oplus a = (a \land \overline{a}) \lor (\overline{a} \land a) = 0 \lor 0 = 0$,所以 $\overline{a} = a$,即 A 中每一个元素都以自身为逆元。

由上可知(A, ①) 是群。

对任意的 $a,b \in A,a \oplus b = (a \land \overline{b}) \lor (\overline{a} \land b) = (b \land \overline{a}) \lor (\overline{b} \land a) = b \oplus a,$ 所以运算 \oplus 满足交换性,故 $\langle A, \oplus \rangle$ 是阿贝尔群。

4. 设 $\langle A, \vee, \wedge, \neg \rangle$ 是一个布尔代数,如果在 A 上定义二元运算 + , \bullet 为: $a+b=(a\wedge \overline{b})\vee(\overline{a}\wedge b)$,

```
a \cdot b = a \wedge b,
```

证明: $\langle A, +, \bullet \rangle$ 是以 1 为幺元的环。

证明:由6-4习题3可知(A,+)是阿贝尔群。

对于任意 $a,b,c \in A,a \cdot b = a \land b \in A$,满足封闭性。

 $a \cdot (b \cdot c) = a \cdot (b \wedge c) = a \wedge (b \wedge c) = (a \wedge b) \wedge c = (a \cdot b) \wedge c = (a \cdot b)$

· b) · c 满足结合性,故⟨A, ⊕⟩ 是半群。

 $a \cdot (b+c) = a \cdot ((\bar{b} \land c) \lor (b \land \bar{c}))$

 $= a \wedge ((\bar{b} \wedge c) \vee (b \wedge \bar{c}))$

 $= (a \wedge \overline{b} \wedge c) \vee (a \wedge b \wedge \overline{c})$

 $a \cdot b + a \cdot c = (a \wedge b) + (a \wedge c)$

 $= (\overline{(a \wedge b)} \wedge (a \wedge c)) \vee ((a \wedge b) \wedge \overline{(a \wedge c)})$

 $= ((\overline{a} \vee \overline{b}) \wedge a \wedge c) \vee (a \wedge b \wedge (\overline{a} \vee \overline{c}))$

 $= (a \wedge \overline{b} \wedge c) \vee (a \wedge b \wedge \overline{c})$

所以 $a \cdot (a+b) = a \cdot b + a \cdot c$,即·对+满足分配律。

对于 $a \in A$, $a \cdot 1 = a \land 1 = a = 1 \cdot a = 1 \land a$,1是运算·的幺元。

综上可知, 〈A, +, •〉是以1为幺元的环。

- 5. 对于6-4习题4中的二元运算+和•,证明
- a) (a+b)+b=a.
- b) $a \cdot (b+c) = (a \cdot b) + (a \cdot c)$.
- c) a + a = 0.
- d) a + 0 = a.
 - e) $a + 1 = \bar{a}$,

证明:a) 由 6-4 习题 3 可知运算 + 是可结合的,所以

 $(a+b)+b=a+(b+b)=a+(b \wedge \bar{b}) \vee (\bar{b} \wedge b)=a+(0 \vee 0)=a+$

 $0 = (a \land 1) \lor (\overline{a} \land 0) = a \lor 0 = a, \mathfrak{P}(a+b) + b = a.$

b) 6-4 习题 4 中已证 $a \cdot (b+c) = (a \land b \land \overline{c}) \lor (a \land \overline{b} \land c) = (a \cdot b) + (a \cdot c)$ 。

- c) $a+a=(a \wedge \overline{a}) \vee (\overline{a} \wedge a)=0 \vee 0=0$.
- d) $a+0=(a \wedge 1) \vee (\overline{a} \wedge 0)==a \vee 0=a$
- e) $a+1=(a \land 0) \lor (\overline{a} \land 1)=0 \lor \overline{a}=\overline{a}$.

6. 设 $K = \{1,2,5,10,11,22,55,110\}$ 是 110 的所有整因子的集合,证明:具有全上界 110 和全下界 1 的代数系统 $\langle K, LCM, GCD,' \rangle$ 是一个布尔代数,这里,对于任意的 $x \in K, x' = 110/x$ 。

证明:显然,代数系统 $\langle K, LCM, GCD, ' \rangle$ 是由格 $\langle K, | \rangle$ 所诱导的,其中 | 为整除关系。

对于任意的 $a,b,c \in K$,有 a LCM(b GCD c) = (a LCM b) GCD(a LCM c), a GCD(b LCM c) = (a GCD b) LCM(a GCD c),则 $\langle K, | \rangle$ 为分配格。

对于 K 中元素,因为1 LCM 110 = 110,1 GCD 110 = 1,

2 LCM 55 = 110, 2 GCD 55 = 1,

5 LCM 22 = 110,5 GCD 22 = 1,

10 LCM 11 = 110, 10 GCD 11 = 1,

所以有:1' = 110,2' = 55,5' = 22,10' = 11。即 K 中任一元素 X 的补元为 X',则格 $\langle K, | \rangle$ 为有补分配格。所以 $\langle K, LCM, GCD, ' \rangle$ 是一个布尔代数。

7. 设 $\langle K, \vee, \wedge, \wedge' \rangle$ 和 $\langle L, \cup, \cap, \neg' \rangle$ 是两个布尔代数,并设 f 是从 K 到 L 的满同态,即对于任意的 $x,y \in K$,有 $f(x \wedge y) = f(x) \cap f(y)$, $f(x \vee y) = f(x) \cup f(y)$, $f(x') = \overline{f(x)}$,试证明: $f(0_K) = 0_L$, $f(1_K) = 1_L$ 。这里 0_K , 0_L 和 1_K , 1_L 分别是相应的布尔代数中的全上界和全下界。

证明:因为 $f \in K$ 到 L 的满射,则对任意 $l \in L$,存在 $k \in K$,使得 f(k) = l。 因为 $l \cup f(0_K) = f(k) \cup f(0_K) = f(k \vee 0_K) = f(k) = l$, $l \cap f(1_K) = f(k) \cap f(1_K) = f(k \wedge 1_K) = f(k) = l$, 所以有 $f(0_K) \leq l$, $l \leq f(1_K)$,由 l 的任意性知, $f(0_K)$ 和 $f(1_K)$ 分别是 L 的全下界和全上界,因为布尔代数的全上界和全下界是唯一的,所以 $f(0_K) = 0_L$, $f(1_K) = 1_L$ 。

8. 设 12 和 24 的整因子集合分别为 $K_1 = \{1,2,3,4,6,12\}$ 和 $K_2 = \{1,2,3,4,6,8,12,24\}$,试问 $\langle K_1$,LCM,GCD, $\langle K_2 \rangle$,LCM,GCD, $\langle K_3 \rangle$,LCM,GCD, $\langle K_4 \rangle$,LCM,GCD, $\langle K_4$

解: $\langle K_1, LCM, GCD, '\rangle$ 是由 $\langle K_1, |\rangle$ 诱导的(|表示整除关系), $\langle K_2, LCM, GCD, '\rangle$ 是由 $\langle K_2, |\rangle$ 诱导的。

 $\langle K_1, | \rangle$ 所对应的哈斯图如图 6-12(a) 所示。因为 2 和 6 没有补元,所以 $\langle K_1, | \rangle$ 不是有补格,也不是布尔格,故 $\langle K_1, LCM, GCD, ' \rangle$ 不是布尔代数。

 $\langle K_2, | \rangle$ 所对应的哈斯图如图 6-12(b) 所示。因为 2,4,6 和 12 都没有补元,所以 $\langle K_2, | \rangle$ 不是有补格,也不是布尔格,故 $\langle K_2, LCM, GCD, ' \rangle$ 不是布尔代数。

图 6-12

9. 设a,b₁,b₂,…,b_r 都是布尔代数 $\langle A$, \vee , \wedge , $^-\rangle$ 的原子,那么, $a \leq (b_1 \vee b_2 \vee \cdots \vee b_r)$ 当且仅当存在着 $i(1 \leq i \leq r)$ 使得 $a = b_i$ 。

证明: 充分性, 若存在 i 使得 $a = b_i$ (1 $\leq i \leq r$), 则有 $a = b_i \leq (b_1 \lor b_2 \lor \cdots \lor b_{i-1} \lor b_i \lor b_{i+1} \lor \cdots \lor b_r$),

必要性,反证法,设 $a \leq (b_1 \lor b_2 \lor \cdots \lor b_r)$,但不存在 $i(1 \leq i \leq r)$ 使a =

 b_i , \emptyset $a \wedge \overline{(b_1 \vee b_2 \vee \cdots \vee b_r)} = a \wedge (b_1 \vee b_2 \vee \cdots \vee b_r) = (a \wedge b_1) \vee \cdots \vee (a \wedge b_r) = 0 \vee \cdots \vee 0 = 0$,

因为 a 和 b_i 均是原子, $a \neq b_i$ (1 $\leqslant i \leqslant r$),则 $a \land b_i = 0$ (1 $\leqslant i \leqslant r$),所以由 定理 6-4.1 可知, $a \leqslant \overline{(b_1 \lor b_2 \lor \cdots \lor b_r)}$ 这与 $a \leqslant (b_1 \lor b_2 \lor \cdots \lor b_r)$ 矛盾,假设不成立,所以必存在 i (1 $\leqslant i \leqslant r$) 使得 $a = b_i$ 。

10. 设 b_1 , b_2 , …, b_r 是有限布尔代数 $\langle A, \vee, \wedge, \neg \rangle$ 中的所有原子,那么 y = 0 当且 仅当对每一个 i 都有 $y \wedge b_i = 0$,这里, $1 \leq i \leq r$ 。

证明:必要性,若y=0,则 $y \land b_i=0(1 \le i \le r)$ 。

充分性,用反证法。假设对每个 i 都有 $y \land b_i = 0$ ($1 \le i \le r$),但 $y \ne 0$ 。则由 定理 6-4.2 可知,至少存在一个原子 b_i ($1 \le j \le r$) 使得 $b_i \le y$,则 $b_i \land y = b_i \ne 0$ 矛盾,所以 y = 0。

6-5 习题

1. 设 $E(x_1, x_2, x_3) = (x_1 \land x_2) \lor (x_2 \land x_3) \lor (\overline{x_2} \land x_3)$ 是布尔代数 $(\{0,1\}, \lor, \land, \neg)$ 上的一个布尔表达式,试写出 $E(x_1, x_2, x_3)$ 的析取范式和合取范式。

解: 布尔表达式 $E(x_1,x_2,x_3) = (x_1 \land x_2) \lor (x_2 \land x_3) \lor (\overline{x_2} \land x_3)$ 所对应的函数表,如表 6-1 所示。因为函数值为 1 所对应的有序三元组依次为 $\langle 0,0,1\rangle,\langle 0,1,1\rangle,\langle 1,0,1\rangle,\langle 1,1,0\rangle,\langle 1,1,1\rangle,$ 所以可分别构造小项为: $\overline{x_1} \land \overline{x_2} \land x_3,\overline{x_1} \land x_2 \land x_3,x_1 \land \overline{x_2} \land x_3,x_1 \land x_2 \land x_3,$ 因此 $E(x_1,x_2,x_3)$ 的析取范式为:

 $E(x_1,x_2,x_3) = (\overline{x_1} \wedge \overline{x_2} \wedge x_3) \vee (\overline{x_1} \wedge x_2 \wedge x_3) \vee (x_1 \wedge \overline{x_2} \wedge x_3) \vee (x_1 \wedge \overline{x_2} \wedge x_3) \vee (x_1 \wedge x_2 \wedge x_3),$

因为函数值 0 对应的有序三元组依次为: $\langle 0,0,0\rangle$, $\langle 0,1,0\rangle$, $\langle 1,0,0\rangle$,所以可分别构造大项为: $x_1 \lor x_2 \lor x_3$, $x_1 \lor \overline{x_2} \lor x_3$, $\overline{x_1} \lor x_2 \lor x_3$,因此, $E(x_1,x_2,x_3)$ 的合取范式为:

 $E(x_1,x_2,x_3)=(x_1 \vee x_2 \vee x_3) \wedge (x_1 \vee \overline{x_2} \vee x_3) \wedge (\overline{x_1} \vee x_2 \vee x_3)_{\circ}$

表 6-1

A 0 1			
x_1	. x ₂	x_3	$E(x_1,x_2,x_3)$
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

如需其他课本详解,请扫描下列二维码进入《心悦书屋》

淘宝二维码

微店二维码

谢谢您对心悦书屋的支持,如有店铺欠缺书籍,请联系客服 QQ: 2556693184,为您赶作,及时更新!