Development of a Simple Near-Ground Path Loss Model Verified by Measurements

SEMCON 2016

December 22, 2016

Kemal Kapetanovic, Mads Gotthardsen and Thomas Jørgensen

16gr751 1st Semester WCS

Introduction

Introduction

PL models

Measurements

Influence of parameters

Proposed PL model

Model fit

- ► Wireless Sensor Networks
 - ► Commercial
 - Military
- ► Focus
 - Accuracy
 - Applicability
 - ► Simplicity

Introduction

PL models

Measuremer

Influence of parameters

Proposed PL mod

Model fit

The z parameter

Friss free space PL (FSPL):

- ► Only direct wave
- ▶ High heights

- ► No Multipath
- d >> λ

$$L_p = \left(\frac{4\pi d}{\lambda}\right)^2$$

Introductio

PL models

Measuremen

Influence o

Proposed PL mod

Model fit

The z parameter

Approximated two-ray ground-reflection PL (ATRPL):

- Direct and reflected wave
- ► Medium heights

- ▶ No obstacles
- ▶ Plane surface
- $d > \frac{4\pi \cdot h_t h_r}{\lambda}$

$$L_{p} = \left(\frac{d^{2}}{h_{t}h_{r}}\right)^{2}$$

Introduction

PL models

Measuremer

Influence of parameters

Proposed PL mod

Model fit

The z parameter

Norton surface wave PL (NSPL):

- ► Only surface wave
- ► Low heights
- Dependent on surface constants

- ► No obstacles
- ► Plane surface
- $ightharpoonup h_t, h_r > \lambda$

$$L_{p} = \left(d \cdot \left| \frac{\lambda}{2\pi z} \right|^{-1} \right)^{4} \tag{1}$$

Introduction

PL models

Measuremen

Influence of parameters

Proposed PL mod

Model fit

The z parameter

Ground wave PL (GWPL):

- ► All waves
- ► All heights
- Dependent on surface constants

- ► No obstacles
- ▶ Plane surface

$$L_p = \left(\frac{4\pi d}{\lambda}\right)^2 \cdot \left|\underbrace{1}_{\substack{\text{Direct}\\\text{wave}}} + \underbrace{\text{Reflected}}_{\substack{\text{wave}\\\text{wave}}} + \underbrace{(1-R)Ae^{j\Delta}}_{\substack{\text{Surface}\\\text{wave}}}\right|^{-2} \tag{2}$$

Measurements

Introduction

PL model

Measurements

Influence of parameters

Proposed PL mode

lodel fit

The z parameter

- ► 1 Frequency (858 MHz)
- ► 2 Antenna sets (monopole and patch)
- ► 2 Polarization (horizontal and vertical)
- ► 2 Location (outdoor and indoor)
- ► 4 Rx/Tx heights (from 0.04 to 2.02 m)
 - ► 6 Distances (from 1 to 30 m)

16gr751 1st Semester WCS

Influence of parameters

Introduction

PL models

Measurements

Influence of parameters

Proposed PL model

Model fit

Distance	1 m	2 m	4 m
PL	(34.7±1.6) dB	(41.4±1.4) dB	(49.0±1.7) dB
	•	•	•

Distance	8 m	15 m	30 m
PL	(57.3±2.1) dB	(66.1±2.5) dB	(72.3±2.3) dB

$h_t \setminus h_r$	0.04 m	0.14 m	0.36 m	2.02 m
0.04 m	(63.7±5.2) dB	(60.7±5.1) dB	(55.4±4.7) dB	(52.4±3.8) dB
0.14 m	(60.7±5.1) dB	(58.1±5.2) dB	(53.4±4.5) dB	(50.2±3.2) dB
0.36 m	(55.4±4.7) dB	(53.4±4.5) dB	(49.0±2.9) dB	(47.6±4.8) dB
2.02 m	(52.4±3.8) dB	(50.2±3.2) dB	(47.6±4.8) dB	(44.4±3.1) dB

Gym	Parking lot	Monopole	Patch
(52.4±1.8) dB	(54.6±2.2) dB	(55.6±2.0) dB	(51.4±2.0) dB

Vertical	Horizontal
(51.8±1.9) dB	(55.1±2.1) dB

Proposed PL model

Introduction

PL models

Influence of

Proposed PL model

Model fit

$$PPL = \left(ATRPL^{-1} + NSPL^{-1}\right)^{-1}$$

$$PPL = \frac{d^4}{h_t^2 h_r^2 + h_0^4}$$

Model fit

Introduction

PL models

Measurements

Influence of parameters

Proposed PL model

Model fit

Models	MSE	Applicability
FSPL	15.95	35 %
ATRPL	141.58	65 %
GWPL	35.49	100 %
NSPL	230.05	30 %
PPL	60.18	65 %

The z parameter

Introduction

PL models

Measurements

parameters

Proposed PL mode

Model fit

$$z_{H} = \sqrt{\epsilon_{0} - \cos^{2}\theta}$$

Questions

