PRIME FACTORIZATION

PRIME NUMBERS

Definition 2.2.1

A *prime number** is a positive integer having no divisors other than 1 and itself. If a positive integer is not 1 and is not a prime number, then it is called a *composite number*.

In the Hasse diagram of divisibility of positive integers, the above notions can be interpreted as follows:

- 1 is the root/origin;
- prime numbers are nodes adjacent to 1;
- composite number are other nodes.

^{*}There is no standard notation for the set of prime numbers. But many use \mathbb{P} .

PRIME NUMBERS

Theorem 2.2.2 (Primarity, fundamental property of primes)

Let p be a prime number. Then for any integers a, b, if $p \mid ab$, then either $p \mid a$ or $p \mid b$.

Theorem 2.2.2 (Primarity, fundamental property of primes)

Let p be a prime number. Then for any integers a, b, if $p \mid ab$, then either $p \mid a$ or $p \mid b$.

Proof. We may assume $p \nmid a$. Then since there is no other divisor of p than 1 and p, we must have gcd(p, a) = 1.

By Bézout's identity, there are integers x_0 , y_0 such that $px_0 + ay_0 = 1$. Lets multiple both sides by b, we get

$$pbx_0 + aby_0 = b$$
.

Since $p \mid ab$, by 2-out-of-3 principle, we must have $p \mid b$.

PRIME FACTORIZATION

Theorem 2.2.3 (Fundamental Theorem of Arithmetic)

Let n be any positive integer.

1. (existence) n admits a prime factorization, i.e. there exist natural numbers e_p for each prime p such that*

$$n=2^{e_2}\cdot 3^{e_3}\cdots p^{e_p}\cdots$$

2. (uniqueness) Suppose n admits another prime factorization, say

$$n=2^{f_2}\cdot 3^{f_3}\cdots p^{f_p}\cdots.$$

Then, for every prime p, we have $e_p = f_p$.

^{*}Note that this is a finite product.

PROOF OF UNIQUENESS

We first prove the uniqueness.

Suppose we have two distinct prime factorizations of n, say

$$n = 2^{e_2} \cdot 3^{e_3} \cdot \cdot \cdot p^{e_p} \cdot \cdot \cdot ,$$

$$n = 2^{f_2} \cdot 3^{f_3} \cdot \cdot \cdot p^{f_p} \cdot \cdot \cdot .$$

Then there is a prime p such that $e_p \neq f_p$, say $e_p > f_p$.

PROOF OF UNIQUENESS

We first prove the uniqueness.

Suppose we have two distinct prime factorizations of n, say

$$n = 2^{e_2} \cdot 3^{e_3} \cdot \cdots p^{e_p} \cdot \cdots,$$

$$n = 2^{f_2} \cdot 3^{f_3} \cdot \cdots p^{f_p} \cdot \cdots.$$

Then there is a prime p such that $e_p \neq f_p$, say $e_p > f_p$.

Consider $a = \frac{n}{p^{fp}}$. By the first factorization, we have $p \mid a$. By the second factorization and theorem 2.2.2, $p \nmid a$ (indeed, 2.2.2 implies: if each factor of a product is not a multiple of p, then the product is not a multiple of p). This gives a contradiction. Therefore, we must have $e_p = f_p$ for all prime p.

PROOF OF EXISTENCE

Now we prove the existence.

For each prime p. Consider the sequence

$$1 = p^0, p^1, p^2, \cdots$$

Among them, there is a largest one, say p^{e_p} , such that $p^{e_p} \mid n$.

PROOF OF EXISTENCE

Now we prove the existence.

For each prime p. Consider the sequence

$$1 = p^0, p^1, p^2, \cdots$$

Among them, there is a largest one, say p^{e_p} , such that $p^{e_p} \mid n$.

We will show that, from $p^{e_p} \mid n$ for all prime p, we can conclude that

$$2^{e_2} \cdot 3^{e_3} \cdots p^{e_p} \cdots \mid n.$$

Let's say $n=d\cdot 2^{e_2}\cdot 3^{e_3}\cdots p^{e_p}\cdots$. Then if $d\neq 1$, there must be a prime divisor p_0 of d (e.g. the smallest divisor of d other than 1). Then we have $p_0^{e_{p_0}+1}\mid n$, which contradicts with the maximality of e_{p_0} .