

Projeto Época Normal

Machine Learning (Processamento, Visualização, Classificação) (Dataset - indicadores de pacientes com cancro da mama)

1. Objetivos do Projeto

Pretende-se desenvolver um programa em Python para extrair e visualizar caraterísticas com informação útil de um dataset com "indicadores de pacientes com cancro da mama". Terá ainda de explorar e desenvolver diversos modelos de classificadores (i.e., SVM, RF, e ANN/DNN) que permitam predizer (diagnosticar) se um paciente é suspeito ou não de ter cancro da mama. Nesse sentido, deverá aplicar / utilizar métricas apropriadas (e.g., ACCURACY, PRECISION, RECALL, etc.) para selecionar e informar qual é o classificador desenvolvido com maior performance. O dataset consta com 44 variáveis (campos): 16 do tipo inteiro (int), 27 do tipo real (float), e 1 do tipo object (string) como se descreve a seguir:

Junta-se ainda com este enunciado, alem do dataset, um ficheiro "README.pdf" no qual poderá conhecer detalhes da informação que representa em cada um dos campos (colunas).

O programa consistirá em **desenvolver um interpretador de comandos** que permita ao utilizador extrair diversos tipos de informação e garantir o seu processamento e visualização.

Projeto Época Normal

Machine Learning (Processamento, Visualização, Classificação) (Dataset - indicadores de pacientes com cancro da mama)

Se for preciso, na implementação dos comandos descritos neste enunciado se podem utilizar / definir outros tipos de dados auxiliares, que considere necessários para a implementação dos comandos.

1.1 Dados de entrada

É disponibilizado um ficheiro de entrada para teste:

"bcdr_f01_features.csv"

1.3 Comandos

O programa deverá implementar um total de 12 comandos, que são apresentados a seguir; 2 comandos para carregar os dados, 1 comando para limpeza de dados, 1 comando para sair do programa (aplicação), e 8 comandos para extração, visualização e processamento da informação.

1. LOAD

- Solicita ao utilizador o nome de um ficheiro (dataset) com informação relativa a
 "indicadores recolhidos de pacientes com cancro da mama" e carrega-o em memória na
 forma de um DataFrame, mostrando informação resumida, nomeadamente; rango de
 filas (índices), dados das colunas (nome, tipo de dado, e elementos não nulos), assim
 como a quantidade de memoria ocupada. Deverá ainda imprimir os primeiros 5 e os
 últimos 5 registos do dataset respetivamente.
- Se o ficheiro não puder ser aberto, escreve "Ficheiro não encontrado..." e o DataFrame fica vazio.

2. LOADF

- Abre o ficheiro "bcdr_f01_features.csv" e carrega-o em memória na forma de um DataFrame, mostrando informação resumida, nomeadamente; rango de filas (índices), dados das colunas (nome, tipo de dado, e elementos não nulos), assim como a quantidade de memoria ocupada. Deverá ainda imprimir os primeiros 5 e os últimos 5 registos do dataset respetivamente.
- Se o ficheiro não puder ser aberto, escreve "Ficheiro não encontrado..." e o DataFrame fica vazio.

3. CLEAR

 Limpa a informação contida em memória do DataFrame, mantendo a estrutura vazia, e deverá ainda indicar o número de registos que foram descartados.

4. QUIT

• Apaga o DataFrame e termina a execução do programa.

5. DESCRIBE

 Apresenta um resumo (descrição) estatística das colunas de dados numéricos do DataFrame.

Projeto Época Normal

Machine Learning (Processamento, Visualização, Classificação) (Dataset - indicadores de pacientes com cancro da mama)

 Conta e visualiza o número de total de pacientes do DataFrame com lesões benignas ('Benign') e malignas ('Malign')

6. SORT

- Este comando tem como objetivo realizar algumas operações necessárias, que irão facilitar posteriormente a criação dos modelos de classificação. Nesse sentido, o comando SORT deverá realizar as seguintes tarefas:
 - a) Ordenar os dados do DataFrame pelo campo "patient_id" em ordem ascendente.
 - b) Verificar se o DataFrame tem campos com valores nulos, e se for o caso deverá apagar todas as filas com valores nulos.
 - c) O campo "classification" que será usado como label (classe), contem valores de tipo string: 'Bening" e "Malign", para facilitar o desenvolvimento dos modelos de classificação, deverá substituir os valores de este campo 'Benign' por 0 e 'Malign' por 1, como resultado este campo ficará só com valores do tipo inteiro (0 e 1).
 - d) Visualize o DataFrame ordenado resultante, mas só os campos 'patient_id' e 'classification'.

7. CORRELATION

- Este comando permitirá eliminar (apagar) os campos do DataFrame que representam dados dos pacientes que não tem influência no desenvolvimento dos modelos de classificação, nomeadamente os campos: patient_id, study_id, series, lesion_id, segmentation_id, image_view, mammography_type.
- Com o DataFrame resultante deverá calcular a correlação entre as diferentes colunas, que visa conhecer quais são aquelas caraterísticas (features) mas correlacionadas com o campo "classification", que como foi anteriormente dito será usado como label.
- Visualize graficamente os resultados da correlação com recurso a um gráfico de tipo heatmap.

8. SPLITSCALE

- O comando SPLITSCALE tem como objetivo criar os datasets de treino e teste, e ainda escalar as diferentes características (features) do DataFrame. Nesse sentido, se pretende que sejam implementadas as seguintes funcionalidades:
 - a) Separar / criar os conjuntos \mathbf{X} e \mathbf{y} para separar o conjunto das features do label (campo "classification"), e logo escalar as features (conjunto \mathbf{X}), de forma que os valores de todas as características fiquem no intervalo de valores contínuos [0.0, 1.0]
 - b) Com base no ponto anterior, construir os datasets: x_train, y_train, x_test, e y_test, sendo que o dataset de treino deverá conter dados do 80% dos pacientes e do teste o resto (20%), tenha em conta que é normal que existam vários registos de um mesmo paciente no dataset. Portanto, deverá evitar a toda costa esta situação.

9. SVM

• O comando SVM, permitirá desenvolver um modelo de classificador utilizando os conhecimentos adquiridos sob máquinas de suporte vetorial, que permita predizer/diagnosticar se um paciente é suspeito de padecer cancro da mama".

Projeto Época Normal

Machine Learning (Processamento, Visualização, Classificação) (Dataset - indicadores de pacientes com cancro da mama)

- a) Deve utilizar o modelo SVC (vetor de suporte para classificação) utilizando algum dos kernels estudados (e.g., 'rbf' ou 'linear').
- b) Teste o modelo de classificação desenvolvido no dataset de teste (**x_test**) que foi anteriormente criado (comando SPLITSCALE).
- c) Como resultado deverá imprimir os 5 primeiros e os 5 últimos valores previstos pelo classificador.

10. RANDOMFOREST

- O comando RANDOMFOREST, permitirá desenvolver um modelo de classificador utilizando os conhecimentos adquiridos sob florestas aleatórias, que permita predizer/diagnosticar se um paciente é suspeito ou não de padecer cancro da mama". Deverá utilizar o modelo SVC (vetor de suporte para classificação) utilizando algum dos kernels estudados (e.g., 'rbf' e 'linear').
 - a) Teste o modelo de classificação desenvolvido no dataset de teste (**x_test**) que foi anteriormente criado (comando SPLITSCALE).
 - b) Como resultado deverá imprimir os 5 primeiros e os 5 últimos valores previstos pelo classificador.

11. ANN

- Similar ao comando anterior, no comando ANN irá criar um modelo de classificação com recurso a redes de neurónios artificiais, poderá usar um modelo com base em MLP – "multi-layer perceptron", ou pode ser também um modelo de deep learning. Pode auxiliar-se das bibliotecas / módulos (scikit-learn) e/ou (tensorflow).
 - a) Teste o modelo de classificação desenvolvido no dataset de teste (**x_test**) que foi anteriormente criado (comando SPLITSCALE).
 - b) Como resultado devera imprimir os 5 primeiros e os 5 últimos valores previstos pelo classificador.

12. METRICS

- Este comando calcula e visualiza algumas métricas com vistas a avaliar a performance dos modelos de classificação desenvolvidos (SVM, RANDOM FOREST, ANN), nomeadamente:
 - a) Matriz de confusão
 - b) Accuracy
 - c) Precision
 - d) Recall

Com base nas métricas calculadas deverá identificar qual é o modelo de classificação com melhor desempenho.

Projeto Época Normal

Machine Learning (Processamento, Visualização, Classificação) (Dataset - indicadores de pacientes com cancro da mama)

2. Relatorio e Código

2.1 Código

- ✓ Todo o código será desenvolvido em um dos IDEs "Visual Studio Code" ou "Spyder", a selecionar pela equipa de alunos do projeto. Ainda que não recomendado, será possível também apresentar o código com recurso ao Jupyter Notebook.
- √ O código de cada função / comando desenvolvido deverá ser documentado utilizando docstrings.

2.2 Relatório

No relatório deverão constar as seguintes secções (para além de capa com identificação dos alunos e índice):

- a) Introdução / Motivação / Objetivos.
- b) Comandos/Funções descrição breve dos comandos (algoritmos) implementados;
- c) Limitações quais os comandos que apresentam dificuldades ou não foram implementados;
- d) Conclusões análise crítica do trabalho desenvolvido.

3. Tabela de Cotações e Penalizações

A avaliação do trabalho será feita de acordo com os seguintes princípios:

- Estruturação: o programa deve estar estruturado de uma forma modular e procedimental;
- Correção: o programa deve executar as funcionalidades, tal como pedido.
- **Legibilidade e documentação:** o código deve ser escrito, formatado e comentado de acordo com os conhecimentos adquiridos na UC.
- Desempenho: Os comandos / algoritmos implementados devem ter em conta a complexidade do mesmo, valorizando-se a implementação de algoritmos com menor complexidade.

A nota final obtida, cuja tabela de cotações se apresenta a seguir, será ponderada de acordo com os princípios acima descritos.

Descrição	Cotação de valores
Menu de opções, leitura de comandos, tratamento de situação de ficheiro inexistente / vazio, limpeza de memória e saída do programa (QUIT)	2
Importação de dados comandos (LOAD, LOADF)	2
Comando CLEAR	1
Comando DESCRIBE	1
Comando SORT	2
Comando CORRELATION	2
Comando SPLITSCALE	1

Projeto Época Normal

Machine Learning (Processamento, Visualização, Classificação) (Dataset - indicadores de pacientes com cancro da mama)

Comando SVM	2
Comando RANDOMFOREST	2
Comando ANN	2
Comando METRICS	1
Entrega do Relatório e Código	2
Total	20

A seguinte tabela contém penalizações a aplicar:

Descrição	Penalização (valores)
Não separação de funcionalidades	2
Não comentar o programa	1

3. Tabela de Cotações e Penalizações

O não cumprimento das regras a seguir descritas implica uma penalização na nota do projeto. Se ocorrer alguma situação não prevista nas regras a seguir expostas, essa ocorrência deverá ser comunicada ao docente responsável pela UC.

Regras:

- a) O Projeto deverá ser elaborado por um grupo de **3 a 4 alunos como máximo**, cada grupo terá que eleger um líder, que será o encarregado de submeter o projeto e distribuir as tarefas.
- A nota do Projeto será atribuída individualmente a cada um dos elementos do grupo após a discussão. As discussões serão orais, feitas com todos os elementos do grupo presentes em simultâneo.
- A apresentação de relatórios ou implementações plagiadas leva à imediata atribuição de nota zero a todos os trabalhos com semelhanças, quer tenham sido o original ou a cópia.
- d) No rosto do relatório e nos ficheiros de implementação deverá constar o número, nome e turma dos autores e o nome do docente.
- e) O trabalho deverá ser submetido no Moodle, no link indicado pelo docente criado para o efeito, até às **12:00 horas do dia 22 de Janeiro de 2023**.

Para tal terão de criar uma pasta com o nome: **nomeAluno1_númeroAluno1-nomeAluno2_númeroAluno2-...**, onde colocarão o ficheiro do relatório em formato **pdf** e uma pasta com todo o código desenvolvido no projeto. Os alunos terão de submeter essa **pasta compactada em formato ZIP ou RAR**. Apenas será permitido submeter um ficheiro.

f) Não serão aceites trabalhos entregues que não cumpram na íntegra o ponto anterior.

A data prevista para a discussão do projeto é o dia 24 de janeiro de 2023.

Projeto Época Normal

Machine Learning (Processamento, Visualização, Classificação) (Dataset - indicadores de pacientes com cancro da mama)

(fim de enunciado)

Elaborado por: Miguel A. Guevara Lopez

Data: 11/12/2022

