Københavns Universitets Økonomiske Institut

Kandidatstudiet 2019 S-K DM ex ret

Rettevejledning til skriftlig eksamen i Dynamiske Modeller Onsdag den 14. august 2019

Opgave 1. For ethvert $a \in \mathbf{R}$ betragter vi tredjegradspolynomiet $P_a : \mathbf{C} \to \mathbf{C}$, som er givet ved forskriften

$$\forall z \in \mathbf{C} : P_a(z) = z^3 + (4+a)z^2 + (3+4a)z + 3a.$$

Desuden betragter vi differentialligningerne

(*)
$$\frac{d^3x}{dt^3} + (4+a)\frac{d^2x}{dt^2} + (3+4a)\frac{dx}{dt} + 3ax = 0,$$

og

$$(**) \frac{d^3x}{dt^3} + (4+a)\frac{d^2x}{dt^2} + (3+4a)\frac{dx}{dt} + 3ax = e^t,$$

(1) Vis, at for ethvert $a \in \mathbf{R}$ er tallet z = -a en rod i polynomiet P_a , og bestem dernæst samtlige rødder i dette polynomium samt deres multipliciteter.

Løsning. Vi finder, at

$$P_a(-a) = (-a)^3 + (4+a)(-a)^2 + (3+4a)(-a) + 3a = 0,$$

så z = -a er en rod i polynomiet P_a .

Ved polynomiers division opnår vi, at

$$\forall z \in \mathbf{C} : P_a(z) = (z+a)(z^2+4z+3).$$

Heraf finder vi videre, at P_a har rødderne z=-a, z=-3 og z=-1 hver med multipliciteten 1, når $a \in \mathbf{R} \setminus \{1,3\}$. Hvis a=1, er rødderne z=-3 og z=-1, som har multipliciteterne hhv. 1 og 2. Hvis a=3, er rødderne z=-3 og z=-1 med multipliciteterne hhv. 2 og 1.

(2) Bestem for ethvert $a \in \mathbf{R}$ den fuldstændige løsning til differentialligningen (*).

Løsning. Vi finder straks, at

$$x = c_1 e^{-at} + c_2 e^{-3t} + c_3 e^{-t},$$

hvor $c_1, c_2, c_3 \in \mathbf{R}$ for $a \in \mathbf{R} \setminus \{1, 3\}$,

$$x = c_1 e^{-3t} + c_2 e^{-t} + c_3 t e^{-t},$$

hvor $c_1, c_2, c_3 \in \mathbf{R}$ for a = 1, og

$$x = c_1 e^{-3t} + c_2 t e^{-3t} + c_3 e^{-t}$$

hvor $c_1, c_2, c_3 \in \mathbf{R}$ for a = 3.

(3) Bestem for ethvert $a \in \mathbf{R}$ den fuldstændige løsning til differentialligningen (**).

Løsning. For $a \neq -1$ gætter vi på en løsning af formen $\hat{x} = Ae^t$, og ved indsættelse i den givne differentialligning finder vi,at $A = \frac{1}{8(1+a)}$.

Vi får da, at hvis $a \in \mathbf{R} \setminus \{-1, 1, 3\}$, da er den fuldstændige løsning til differentialligningen (**) givet ved udtrykket

$$x = c_1 e^{-at} + c_2 e^{-3t} + c_3 e^{-t} + \frac{1}{8(1+a)} e^t,$$

hvor $c_1, c_2, c_3 \in \mathbf{R}$.

Hvis a=-1, gætter vi på en løsning af formen $\hat{x}=Ate^t$, og vi finder så, at

$$\hat{x}' = Ae^t + Ate^t, \hat{x}'' = 2Ae^t + Ate^t, \hat{x}''' = 3Ae^t + Ate^t,$$

og ved indsættelse i differentialligningen får vi, at $A = \frac{1}{8}$. Vi får derfor, at den fuldstændige løsning i dette tilfælde er

$$x = c_1 e^t + c_2 e^{-3t} + c_3 e^{-t} + \frac{1}{8} t e^t,$$

hvor $c_1, c_2, c_3 \in \mathbf{R}$.

Hvis a = 1 finder vi, at

$$x = c_1 e^{-3t} + c_2 e^{-t} + c_3 t e^{-t} + \frac{1}{16} e^t,$$

hvor $c_1, c_2, c_3 \in \mathbf{R}$, og hvis a = 3 bliver resultatet

$$x = c_1 e^{-3t} + c_2 t e^{-3t} + c_3 e^{-t} + \frac{1}{32} e^t,$$

hvor $c_1, c_2, c_3 \in \mathbf{R}$.

For ethvert $s \in \mathbf{R}$ betragter vi den homogene, lineære differentialligning

$$(***) \frac{d^3x}{dt^3} + 4s\frac{d^2x}{dt^2} + s\frac{dx}{dt} + x = 0.$$

(4) Opstil Routh-Hurwitz matricen $A_3(s)$ for differentialligningen (***), og bestem de $s \in \mathbf{R}$, hvor (***) er globalt asymptotisk stabil.

Løsning. Vi ser, at Routh-Hurwitz matricen for differentialligningen (***) er

$$\left(\begin{array}{ccc} 4s & 1 & 0 \\ 1 & s & 0 \\ 0 & 4s & 1 \end{array}\right),\,$$

og de ledende hovedunderdeterminanter er $D_1=4s, D_2=4s^2-1$ og $D_3=4s^2-1$, som alle er positive, netop når s>0 og $s^2>\frac{1}{4}$. Heraf får vi, at (***) er globalt asymtotisk stabil, netop når $s>\frac{1}{2}$.

Opgave 2. Vi betragter den funktion $f: \mathbb{C} \to \mathbb{C}$, som er givet ved forskriften

$$\forall z \in \mathbf{C} : f(z) = (1+i)z + z^2.$$

(1) Udregn funktionsværdierne f(i) og f(1-i).

Løsning Vi ser, at f(i) = i - 2 og f(1 - i) = 2 - 2i.

(2) Løs ligningen

$$z^{2} + (1+i)z - (1+i) = 0.$$

Løsning. Vi ser, at

$$z^{2} + (1+i)z - (1+i) = 0 \Leftrightarrow z = \frac{-1 - i \pm \sqrt{4 + 6i}}{2}.$$

Idet $w^2 = 4 + 6i$, får vi, at

$$w = \pm \left(\sqrt{\frac{\sqrt{52} + 4}{2}} + i\sqrt{\frac{\sqrt{52} - 4}{2}}\right) = \pm \left(\sqrt{\sqrt{13} + 2} + i\sqrt{\sqrt{13} - 2}\right).$$

Da er

$$z = \frac{\sqrt{\sqrt{13} + 2} - 1}{2} + i \frac{\sqrt{\sqrt{13} - 2} - 1}{2} \lor z$$
$$z = -\frac{\sqrt{\sqrt{13} + 2} + 1}{2} - i \frac{\sqrt{\sqrt{13} - 2} + 1}{2}.$$

Vi betragter mængden

$$K = \{ z \in \mathbf{C} \mid |z| \le 1 \}.$$

(3) Vis, at billedet $f(K) = \{f(z) \mid z \in K\}$ er en kompakt mængde i den sædvanlige topologi på \mathbb{C} .

Løsning. Billedet f(K) er kompakt i den sædvanlige topologi på \mathbb{C} , idet K er en kompakt mængde, og funktionen f er kontinuert.

Idet $a \in \mathbf{R}_+$ er vilkårligt valgt, betragter vi
 mængdesystemet

$$\sigma = \{\mathbf{C}, \emptyset, G_a\}$$

af delmængder fra \mathbf{C} , hvor $G_a = \{z \in \mathbf{C} \mid \operatorname{Re} z < a\}$.

(4) Vis, at mængdesystemet σ er en topologi på \mathbb{C} .

Løsning. Lad tallene $a_1, a_2, \ldots, a_k > 0$ være vilkårligt valgt. Da er

$$G = \bigcap_{i=1}^{k} G_{a_i} = G_a,$$

hvor $a = \min(a_1, a_2, ..., a_k)$.

Lad $(G_{a_j})_{j\in J}$ være en familie af mængder af typen G_a fra σ . Da er

$$G = \bigcup_{j \in J} G_{a_j} = G_a.$$

hvor $a = \sup\{a_j \mid j \in J\}$, dersom mængden $\{a_j \mid j \in J\}$ er opad begrænset. Hvis mængden $\{a_j \mid j \in J\}$ derimod ikke er opad begrænset, er $G = \mathbf{C}$.

Det er nu let at se, at mængdesystemet σ er en topologi på \mathbb{C} .

(5) Beskriv systemet $\chi = \chi(\sigma)$ af afsluttede mængder i topologien σ .

Løsning. Vi ser umiddelbart, at

$$\chi = \{ \mathbf{C}, \emptyset, A_a \},$$

hvor $A_a = \{z \in \mathbf{C} \mid \operatorname{Re} z \ge a\}$ for a > 0.

(6) Undersøg om mængden

$$B = \{ z \in \mathbf{C} \mid \operatorname{Im} z < 1 \}$$

er kompakt i topologien σ .

Løsning. Vi bemærker, at

$$B = \bigcup_{a>0} G_a,$$

og denne åbne overdækning kan ikke udtyndes til en endelig åben overdækning af B. Vi har hermed godtgjort, at B ikke er kompakt i topologien σ .

Opgave 3. Vi betragter vektorfunktionen $f: \mathbf{R}^2 \to \mathbf{R}^2$, som er givet ved forskriften

$$\forall (x,y) \in \mathbf{R}^2 : f(x,y) = (x^2 - y^2, x^3 + y^3).$$

(1) Bestem mængden

$$N(f) = \{(x, y) \in \mathbf{R}^2 \mid f(x, y) = \underline{0}\}.$$

Løsning. Vi bemærker, at

$$x^2 - y^2 = 0 \land x^3 + y^3 = 0 \Leftrightarrow y = -x,$$

så

$$N(f) = \{(x, y) \in \mathbf{R}^2 \mid y = -x\}.$$

(2) Bestem Jacobimatricen Df(x,y) for vektorfunktionen f i et vilkårligt punkt $(x,y) \in \mathbf{R}^2$.

Løsning. Vi finder, at

$$Df(x,y) = \begin{pmatrix} 2x & -2y \\ 3x^2 & 3y^2 \end{pmatrix}.$$

(3) Bestem mængden

$$S = \{(x, y) \in \mathbf{R}^2 \mid Df(x, y) \text{ ikke er regulær}\}.$$

Łøsning. Idet det $Df(x,y) = 6xy^2 + 6x^2y = 0$, ser vi, at

$$S = N(f) \cup \{(x, y) \in \mathbf{R}^2 \mid x = 0 \lor y = 0\}.$$

(4) Godtgør, at der findes åbne delmængder V og W af \mathbf{R}^2 , så $(1,1) \in V$ og $f(1,1) \in W$, og således at restriktionen $g = g_V$ af f til V er en bijektiv afbildning af V på W.

Løsning. Påstanden følger af sætningen om lokalt invertibel afbildning, idet $(1,1) \notin S$.

(5) Opstil differentialet

$$df(1,1) = \begin{pmatrix} u \\ v \end{pmatrix} = Df(1,1) \begin{pmatrix} x-1 \\ y-1 \end{pmatrix},$$

hvor $(x, y) \in \mathbf{R}^2$.

Løsning. Vi finder, at

$$df(1,1) = \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} 2 & -2 \\ 3 & 3 \end{pmatrix} \begin{pmatrix} x-1 \\ y-1 \end{pmatrix} = \begin{pmatrix} 2x-2y \\ 3x+3y-6 \end{pmatrix}.$$

Opgave 4. Vi betragter integralet

$$I(x) = \int_0^1 \left(-3x^2 + 2x - u^2 \right) dt,$$

hvor $\dot{x}=f(t,x,u)=x+u$, og hvor man desuden har, at $x(0)=\frac{1}{4}$ og $x(1)=\frac{5}{4}$.

(1) Opstil Hamiltonfunktionen H = H(t, x, u, p) for dette optimale kontrolproblem, og vis, at det er et maksimumsproblem.

Løsning. Vi ser, at

$$H = H(t, x, u, p) = -3x^{2} + 2x - u^{2} + p(x + u),$$

og vi finder, at

$$\frac{\partial H}{\partial x} = -6x + 2 + p = -\dot{p} \, \wedge \, \frac{\partial H}{\partial u} = -2u + p = 0.$$

Heraf ser vi, at Hamiltonfunktionens Hessematrix er

$$H'' = \left(\begin{array}{cc} -6 & 0 \\ 0 & -2 \end{array} \right),$$

og da denne matrix er negativ definit, er her tale om et maksimumsproblem.

(2) Bestem det optimale par (x^*, u^*) for dette optimale kontrolproblem.

Løsning. Da
$$p = 2u$$
 og $u = \dot{x} - x$, er $\dot{p} = 2\dot{u} = 2\ddot{x} - 2\dot{x}$, så $-6x + 2 + p + \dot{p} = 0 \Rightarrow -6x + 2 + 2\dot{x} - 2x + 2\ddot{x} - 2\dot{x} = 0$,

hvoraf man får, at

$$\ddot{x} - 4x = -1.$$

Denne inhomogene differentialligning af anden orden har den fuldstændige løsning

$$x = Ae^{2t} + Be^{-2t} + \frac{1}{4}$$
, hvor $A, B \in \mathbf{R}$.

Da
$$x(0) = A + B + \frac{1}{4} = \frac{1}{4}$$
, er $B = -A$, så

$$x = Ae^{2t} - Ae^{-2t} + \frac{1}{4}$$
, hvor $A \in \mathbf{R}$.

Idet $x(1)=A(e^2-e^{-2})+\frac{1}{4}=\frac{5}{4}$, får vi, at $A=\frac{1}{e^2-e^{-2}}$. Vi ser så, at

$$x^* = \frac{1}{e^2 - e^{-2}}(e^{2t} - e^{-2t}) + \frac{1}{4}.$$

Da er

$$\dot{x}^* = \frac{2}{e^2 - e^{-2}} (e^{2t} + e^{-2t}),$$

og dermed har vi, at

$$u^* = \dot{x}^* - x^* = \frac{1}{e^2 - e^{-2}} (e^{2t} + 3e^{-2t}) - \frac{1}{4}.$$