

StarfishDB: a Query Execution Engine for Relational Probabilistic Programming

Ouael Ben Amara* benamara@umich.edu

Sami Hadouaj* shadouaj@umich.edu

Niccolò Meneghetti niccolom@umich.edu

What is Probabilistic Programming?

Generative Story:
$$z \sim \mathsf{Categorical}(\phi)$$

$$\mathbf{x} \sim \mathsf{Gaussian}(oldsymbol{\mu}_z, oldsymbol{\Sigma}_z)$$

Data:

$$\mathcal{D} = \{\mathbf{x}^{(i)}\}_{i=1}^N$$
 where $\mathbf{x}^{(i)} \in \mathbb{R}^M$

Goal: compute the posterior density of the generative process w.r.t. the data.

Main Contributions

 We introduce our own probabilistic programming language that is database-centric

Main Contributions

- We introduce our own probabilistic programming language that is database-centric
- We use probabilistic programming Datalog [1] to our framework

Main Contributions

- We introduce our own probabilistic programming language that is database-centric
- We use probabilistic programming Datalog [1] to our framework
- We leverage Just in time compilation to speed up inference

Pólya die \rightarrow a *Categorical* distribution (parametrized by $\vec{\theta}$) with a *Dirichlet* prior (parametrized by $\vec{\alpha}$)

Pólya die \rightarrow a *Categorical* distribution (parametrized by $\vec{\theta}$) with a *Dirichlet* prior (parametrized by $\vec{\alpha}$)

Pólya die \rightarrow a *Categorical* distribution (parametrized by $\vec{\theta}$) with a *Dirichlet* prior (parametrized by $\vec{\alpha}$)

Pólya die \rightarrow a *Categorical* distribution (parametrized by $\vec{\theta}$) with a *Dirichlet* prior (parametrized by $\vec{\alpha}$)

Pólya die \rightarrow a *Categorical* distribution (parametrized by $\vec{\theta}$) with a *Dirichlet* prior (parametrized by $\vec{\alpha}$)

Toy Example: 2 dice, 2 constraints

Example of a probabilistic relation:

EMP	ROLE		
	Lead (v ₁)		1 (a _{1,1})
Ada (x ₁)	Dev (v ₂)	α_1	1 (α _{1,2})
	QA (V ₃)		1 (\alpha_{1,3})
	Lead (v ₁)	α_2	1 (\alpha_{2,1})
Bob (x ₂)	Dev (v ₂)		3 (α _{2,2})
	QA (v ₃)		4 (\alpha_{2,3})

There 9 possible worlds for Ada and Bob positions

EMP	ROLE	EMP	ROLE	EMP	ROLE
Ada	Lead	Ada	Dev	Ada	QA
Bob	Lead	Bob	Lead	Bob	Lead
EMP	ROLE	EMP	ROLE	EMP	ROLE
Ada	Lead	Ada	Dev	Ada	QA
Bob	Dev	Bob	Dev	Bob	Dev
EMP	ROLE	EMP	ROLE	EMP	ROLE
Ada	Lead	Ada	Dev	Ada	QA
Bob	QA	Bob	QA	Bob	QA

Toy Example: 2 dice, 2 constraints

EMP	ROLE	EMP	ROLE	EMP	ROLE
Ada	Lead	Ada	Dev	Ada	QA
Bob	Lead	Bob	Lead	Bob	Lead
EMP	ROLE	EMP	ROLE	EMP	ROLE
Ada	Lead	Ada	Dev	Ada	QA
Bob	Dev	Bob	Dev	Bob	Dev
EMP	ROLE	EMP	ROLE	EMP	ROLE
Ada	Lead	Ada	Dev	Ada	QA
Bob	QA	Bob	QA	Bob	QA

c₁: Either Ada or Bob has the of role "Lead"

$$\phi_1 = (X_1[l_1] = v_1) \lor (X_2[l_1] = v_1)$$

 $\tau_{1,1}$: Ada is Lead, Bob is Lead

 $\tau_{1,2}$: Ada is Dev, Bob is Lead

 $\tau_{1,3}$: Ada is QA, Bob is Lead

 $\tau_{1.4}$: Ada is Lead, Bob is Dev

 $\tau_{1.5}$: Ada is Lead, Bob is QA

SAT
$$(\Phi, \mathbb{X}) = {\mathbf{\tau}_{1,1}, \, \mathbf{\tau}_{1,2}, \, \mathbf{\tau}_{1,3}, \, \mathbf{\tau}_{1,4}, \, \mathbf{\tau}_{1,5}} \times {\mathbf{\tau}_{2,1}, \, \mathbf{\tau}_{2,2}, \, \mathbf{\tau}_{2,3}}$$

EMP	ROLE	EMP	ROLE	EMP	ROLE
Ada	Lead	Ada	Dev	Ada	QA
Bob	Lead	Bob	Lead	Bob	Lead
EMD	DO L F	EMB	DO 1 5		
EMP	ROLE	EMP	ROLE	EMP	ROLE
Ada	Lead	Ada	Dev	Ada	QA
Bob	Dev	Bob	Dev	Bob	Dev
EMP	ROLE	EMP	ROLE	EMP	ROLE
Ada	Lead	Ada	Dev	Ada	QA
Bob	QA	Bob	QA	Bob	QA

c₂: Ada and Bob have the same role

$$\phi_2 = \bigvee_{i=1}^3 [(X_1[l_2] = v_i) \land (X_2[l_2] = v_i)]$$

 $\tau_{2,1}$: Ada is Lead, Bob is Lead

 $\tau_{2,2}$: Ada is Dev, Bob is Dev

 $\tau_{2,3}$: Ada is QA, Bob is QA

SAT
$$(\Phi, \mathbb{X}) = {\mathbf{\tau}_{1,1}, \, \mathbf{\tau}_{1,2}, \, \mathbf{\tau}_{1,3}, \, \mathbf{\tau}_{1,4}, \, \mathbf{\tau}_{1,5}} \times {\mathbf{\tau}_{2,1}, \, \mathbf{\tau}_{2,2}, \, \mathbf{\tau}_{2,3}}$$

Constraints

Example of a probabilistic relation:

ROLE		
Lead (v ₁)	α_1	1 (α _{1,1})
Dev (v ₂)		1 (α _{1,2})
QA (V ₃)		1 (\alpha_{1,3})
Lead (v ₁)	α_2	1 (\alpha_{2,1})
Dev (v ₂)		3 (α _{2,2})
QA (V ₃)		4 (\alpha_{2,3})
	Lead (v ₁) Dev (v ₂) QA (v ₃) Lead (v ₁) Dev (v ₂)	Lead (v_1) Dev (v_2) QA (v_3) Lead (v_1) Dev (v_2) α_2

c₁: Either Ada or Bob has the role of "Lead"

c₂: Ada and Bob have the same role

Generative process

Probabilistic program

Main Goal of a Probabilistic Program

Compute the posterior distribution of generative process w.r.t constraints :

Toy example: Gibbs Sampling

i	$S[\phi_1]$	$S[oldsymbol{\phi}_2]$
(init)	$(X_1[l_1] = v_1) \land (X_2[l_1] = v_3)$ Ada is lead in obs $l_1 \land$ Bob is QA in obs l_1	$(X_1 [l_2] = v_3) \wedge (X_2 [l_2] = v_3)$ Ada is QA in obs $l_2 \wedge$ Bob is QA in obs l_2

c₁: Either Ada or Bob has the role of "Lead"

$$\phi_2 = \bigvee_{i=1}^{3} [(X_1[l_2] = v_i) \land (X_2[l_2] = v_i)]$$

Toy example: Gibbs Sampling

i	$S[\phi_1]$	$S[\phi_2]$
(init)	$(X_1 [l_1] = v_1) \land (X_2 [l_1] = v_3)$ Ada is lead in obs $l_1 \land$ Bob is QA in obs l_1	$(X_1 [l_2] = v_3) \land (X_2 [l_2] = v_3)$ Ada is QA in obs $l_2 \land$ Bob is QA in obs l_2
0	$(X_1 [l_1] = v_2) \wedge (X_2 [l_1] = v_1)$ Ada is dev in obs $l_1 \wedge$ Bob is lead in obs l_1	$(X_1 [l_2] = v_1) \land (X_2 [l_2] = v_1)$ Ada is lead in obs $l_2 \land$ Bob is lead in obs l_2

c₁: Either Ada or Bob has the role of "Lead"

$$\oint \phi_1 = (X_1[l_1] = v_1) \lor (X_2[l_1] = v_1)$$

$$\phi_2 = \bigvee_{i=1}^{3} [(X_1[l_2] = v_i) \land (X_2[l_2] = v_i)]$$

Toy example: Gibbs Sampling

i	$S[\phi_1]$	$S[\phi_2]$
<i>(</i> : •:)		(W. [1.] (W. [1.] o)
(init)	$(X_1[l_1] = v_1) \land (X_2[l_1] = v_3)$ Ada is lead in obs $l_1 \land$ Bob is QA in obs l_1	$(X_1 [l_2] = v_3) \land (X_2 [l_2] = v_3)$ Ada is QA in obs $l_2 \land$ Bob is QA in obs l_2
0	$(X_1 [l_1] = v_2) \land (X_2 [l_1] = v_1)$ Ada is dev in obs $l_1 \land$ Bob is lead in obs l_1	$(X_1 [l_2] = v_1) \land (X_2 [l_2] = v_1)$ Ada is lead in obs $l_2 \land$ Bob is lead in obs l_2
1	$(X_1 [l_1] = v_3) \land (X_2 [l_1] = v1)$ Ada is QA in obs $l_1 \land$ Bob is lead in obs l_1	$(X_1 [l_2] = v_3) \wedge (X_2 [l_2] = v_3)$ Ada is QA in obs $l_2 \wedge$ Bob is QA in obs l_2

c₁: Either Ada or Bob has the role of "Lead"

$$\phi_2 = \bigvee_{i=1}^{3} [(X_1[l_2] = v_i) \land (X_2[l_2] = v_i)]$$

i	$S[\phi_1]$	$S[\phi_2]$
(init)	$(X_1[l_1] = v_1) \land (X_2[l_1] = v_3)$ Ada is lead in obs $l_1 \land$ Bob is QA in obs l_1	$(X_1 [l_2] = v_3) \land (X_2 [l_2] = v_3)$ Ada is QA in obs $l_2 \land$ Bob is QA in obs l_2
0	$(X_1 [l_1] = v_2) \land (X_2 [l_1] = v_1)$ Ada is dev in obs $l_1 \land$ Bob is lead in obs l_1	$(X_1 [l_2] = v_1) \land (X_2 [l_2] = v_1)$ Ada is lead in obs $l_2 \land$ Bob is lead in obs l_2
1	$(X_1 [l_1] = v_3) \land (X_2 [l_1] = v1)$ Ada is QA in obs $l_1 \land$ Bob is lead in obs l_1	$(X_1 [l_2] = v_3) \wedge (X_2 [l_2] = v_3)$ Ada is QA in obs $l_2 \wedge \text{Bob}$ is QA in obs l_2
2	$(X_1 [l_1] = v_1) \wedge (X_2 [l_1] = v_1)$ Ada is lead in obs $l_1 \wedge$ Bob is lead in obs l_1	$(X_1 [l_2] = v_2) \wedge (X_2 [l_2] = v_2)$ Ada is dev in obs $l_2 \wedge Bob$ is dev in obs l_2
		•••

c₁: Either Ada or Bob has the role of "Lead"

$$\oint \phi_1 = (X_1[l_1] = v_1) \lor (X_2[l_1] = v_1)$$

$$\phi_2 = \bigvee_{i=1}^{3} [(X_1[l_2] = v_i) \land (X_2[l_2] = v_i)]$$

weather(
$$\underline{C}, \underline{T}, w \in \{\text{sun}, \text{rain}\} \sim Cat[P]$$
) $\leftarrow \text{city}(C, P), \text{ts}(T)$.

```
city('Fargo', [.1, .9]), ts('noon')
```

```
weather('Fargo', 'noon', sun) with prob 0.1
weather('Fargo', 'noon', rain) with prob 0.9
```

weather(
$$\underline{C}, \underline{T}, w \in \{\text{sun}, \text{rain}\} \sim Cat[P]$$
) $\leftarrow \text{city}(C, P), \text{ts}(T).$

```
city('Fargo', [.1, .9]), ts('noon')

weather('Fargo', 'noon', sun) with prob 0.1

weather('Fargo', 'noon', rain) with prob 0.9
```

weather(
$$\underline{C}, \underline{T}, w \in \{\text{sun}, \text{rain}\} \sim Cat[P]$$
) $\leftarrow \text{city}(C, P), \text{ts}(T)$.

```
city('Fargo', [.1, .9]), ts('noon')
```

```
weather('Fargo', 'noon', sun) with prob 0.1
weather('Fargo', 'noon', rain) with prob 0.9
```

weather(
$$\underline{C}, \underline{T}, w \in \{\text{sun}, \text{rain}\} \sim Cat[P]$$
) $\leftarrow \text{city}(C, P), \text{ts}(T)$.

```
city('Fargo', [.1, .9]), ts('noon')
```

```
weather('Fargo', 'noon', sun) with prob 0.1
```

weather('Fargo', 'noon', rain) with prob 0.9

Probabilistic Programming Datalog

(1, 1, 1, 1, 1, 1)

$$lp(\underline{VarId}, D, p \in \mathcal{S}_{|D|} \sim \mathcal{D}ir[\![H]\!]) \leftarrow dt(VarId, D, H)$$

Probabilistic Programming Datalog

$$obs(\underline{\mathit{VarId}}, \mathit{ObsId}, v \in D \sim \mathit{Cat}[P]) \leftarrow \underbrace{\mathsf{lp}(\mathit{VarId}, D, P)}_{\mathsf{sample}(\mathit{VarId}, \mathit{ObsId})}$$

N documents $\rightarrow N$ red dice K topics $\rightarrow K$ blue dice

Red die: generate numbers between 1 and K

- Each topic is a distribution over words
- Each **document** is a mixture of corpus-wide topics
- Each word is drawn from one of those topics

Blue die: generate words from a fixed vocabulary

Source: Blei, ICML 2012 Tutorial

[3] Blei, David M., Andrew Y. Ng, and Michael I. Jordan. "Latent Dirichlet allocation

$$dt([red, D], ts, [1, 1, .., 1]) \leftarrow d(D, P, W)$$

Instantiate a red die for each document

 $dt([blue, T], ws, [1, 1, .., 1]) \leftarrow t(T).$

Instantiate a blue die for each topic

$$dt([red, D], ts, [1, 1, .., 1]) \leftarrow d(D, P, W)$$
. Instantiate a red die for each document $dt([blue, T], ws, [1, 1, .., 1]) \leftarrow t(T)$. Instantiate a blue die for each topic $sample([red, D], P) \leftarrow d(D, P, W)$.

Roll the red die for every document D and position P

 $dt([red, D], ts, [1, 1, ..., 1]) \leftarrow d(D, P, W)$. Instantiate a red die for each document $dt([blue, T], ws, [1, 1, ..., 1]) \leftarrow t(T)$. Instantiate a blue die for each document $sample([red, D], P) \leftarrow d(D, P, W)$. Roll the red die for a given document D and position P $sample([blue, T], [D, P]) \leftarrow d(D, P, W)$, obs([red, D], P, T).

For every document D and position P, **roll the blue die** that corresponds to the topic sampled by rolling the red die

$$dt([red, D], ts, [1, 1, ..., 1]) \leftarrow d(D, P, W).$$

$$dt([blue, T], ws, [1, 1, ..., 1]) \leftarrow t(T).$$

$$sample([red, D], P) \leftarrow d(D, P, W).$$

$$sample([blue, T], [D, P]) \leftarrow d(D, P, W), obs([red, D], P, T).$$

$$qa^*(D, P, W) \leftarrow d(D, P, W), obs([blue, T], [D, P], W).$$

Enforce the **condition** that the generated words must match the initial words that we observed in the corpus.

The Grounding Engine

Grounding

(probabilistic program)

$$\phi_{1,1,1} = [(a_1[e_{1,1}] = t_1) \land (b_1[a_1[e_{1,1}] = t_1] = v_1)] \lor [(a_1[e_{1,1}] = t_2) \land (b_2[a_1[e_{1,1}] = t_2] = v_1)] \lor \dots \lor [(a_1[e_{1,1}] = t_K) \land (b_K[a_1[e_{1,1}] = t_K] = v_1)]$$

$$\phi_{1,2,4} = [(a_1[e_{1,2}] = t_1) \land (b_1[a_1[e_{1,2}] = t_1] = v_4)] \lor [(a_1[e_{1,2}] = t_2) \land (b_2[a_1[e_{1,2}] = t_2] = v_4)] \lor \dots \lor [(a_1[e_{1,2}] = t_K) \land (b_k[a_1[e_{1,2}] = t_K] = v_4)]$$

$$\phi_{1,3,6} = [(a_1[e_{1,3}] = t_1) \land (b_1[a_1[e_{1,3}] = t_1] = v_6)] \lor [(a_1[e_{1,3}] = t_2) \land (b_2[a_1[e_{1,3}] = t_2] = v_6)] \lor \dots$$

$$\forall [(a_1[e_{1.3}] = t_K) \land (b_k[a_1[e_{1.3}] = t_K] = v_6)]$$

•••

... and many many others

LLVM/ClangJIT^[2]

[2] Finkel et al, Clangjit: Enhancing C++ with just-in-time compilation

Experimental Evaluation: LDA

(a) Train-set NYTIMES

(b) Test-set NYTIMES

Experimental Evaluation: LDA

LDA Multithreaded 100 topics benchmarking on NYTIMES using 2, 4 and 8 threads

Future work

a) Query-Driven Variational Inference

Blei, David M., Alp Kucukelbir, and Jon D. McAuliffe. "Variational inference: A review for statisticians." *Journal of the American statistical Association* 112.518 (2017): 859-877.

b) Fairness through rel. constraints

Salimi, Babak, Luke Rodriguez, Bill Howe, and Dan Suciu.

"Interventional fairness: Causal database repair for algorithmic fairness" In *Proceedings of the 2019 International Conference on Management of Data*, pp. 793-810. 2019.

Alireza Pirhadi, Mohammad Hossein Moslemi, Alexander Cloninger, Mostafa Milani, and Babak Salimi. 2024. OTClean: Data Cleaning for Conditional Independence Violations using Optimal Transport. Proc. ACM Manag. Data 2, 3, Article 160 (June 2024)

c) Non-parametric Bayesian models

Grohe, Martin, and Peter Lindner. "Infinite probabilistic databases." Logical Methods in Computer Science 18 (2022).

Thank You ^^

Any Questions?

References

[1] Bárány, Vince, Balder Ten Cate, Benny Kimelfeld, Dan Olteanu, and Zografoula Vagena. "Declarative probabilistic programming with datalog." ACM Transactions on Database Systems (TODS) 42, no. 4 (2017): 1-35

[2] Finkel, Hal, David Poliakoff, Jean-Sylvain Camier, and David F. Richards. "Clangjit: Enhancing C++ with just-in-time compilation." In 2019 IEEE/ACM International Workshop on Performance, Portability and Productivity in HPC (P3HPC), pp. 82-95. IEEE, 2019.

[3] Blei, David M., Andrew Y. Ng, and Michael I. Jordan. "Latent Dirichlet allocation." Journal of machine Learning research 3, no. Jan (2003): 993-1022.