Крестики-нолики

Дана полоска 1xN, N<=100. Ставят крестики-нолики по очереди. Нельзя ставить 2 одинаковых рядом. Проигрыш — если нет хода. (Гранди [N][Lt][Rt])

Триомино

Поле 2xN, N<=800. По очереди ставят фигурки из 3 клеток. Нельзя перекрываться фигуркам. (Гранди [N][Lt][Rt])

Ним Lasker'a

За один ход можно либо уменьшить любую кучку нима, либо разбить на две. Тогда функция Гранди имеет вид:

x 0123456789101112...

g(x) 0 1 2 4 3 5 6 8 7 9 10 12 11 ...

Игра Kayles'a

По типу боулинга: есть ряд из N кегель, и за один ход можно выбить либо одну, либо две рядом стоящие. Тогда ф-я Гранди:

$y \setminus z$	0	1	2	3	4	5	6	7	8	9	10	11	
0	0	1	2	3	1	4	3	2	1	4	2	6	
12	4	1	2	7	1	4	3	2	1	4	6	7	
24	4	1	2	8	5	4	7	2	1	8	6	7	
36	4	1	2	3	1	4	7	2	1	8	2	7	
48	4	1	2	8	1	4	7	2	1	4	2	7	
60	4	1	2	8	1	4	7	2	1	8	6	7	
72	4	1	2	8	1	4	7	2	1	8	2	7	

Игра Гранди

Есть N кучек размеров Ai. За один ход можно любую кучку разделить на две, неравных размеров.

n:	1	2	3	4	5	6	7	8	9	10	11	12	13	14
g(n):	0	0	1	0	2	1	0	2	1	0	2	1	3	2
n:	15	16	17	18	19	20								
g(n):	1	3	2	4	3	0								

Просчитано до 2^35, до сих пор не найдено закономерности.

Ободки (Rims)

Есть N точек на плоскости, за один ход мы можем провести замкнутую петлю, окружив какие-то точки. Каждая петля должна проходить через хотя бы одну точку, и не должна касаться или пересекать никакую другую. Доказать, что это обычный ним.

Ободки-2 (Rayles)

То же самое, но петлю можно проводить только через 1 или 2 точки. Заметить, что это то же, что и Kayless'.

Nimble

На полоске 1xN стоят фишки. За один ход можно любую фишку подвинуть влево на любое число (возможно, перепрыгивая другие). Заметить, что это просто ним.

Крестики-крестики

на полоске 1xN ставят по крестику по очереди. Если поставить 3 крестика подряд, то победа. Тогда заметим, что ставить 2 подряд — поражение, также и ставить через один — тоже. Поэтому при постановке крестика убиваются по две клетки слева и справа.

Turning turtles

На полоске 1xN стоят крестики или нолики. За один ход можно сменить О на X, при этом, возможно, поменяв значение в какой-то из левых клеток. Тогда это обычный ним: каждый О в позиции і (нумерация с единицы) соответствует кучке размера і. Если ходим одной клеткой, то это уменьшение кучки до 0, а если ходим в m и n>m, то это уменьшение n до m.

Twins

То же самое, но менять значение нужно обязательно в двух клетках. Тогда это всё равно обычный ним, но занумеровать позиции надо с нуля.

Mock turtles

То же самое, только менять значение можно в одной, двух или трех клетках. Сначала заметим, что можно разбивать игру на сумму независимых, как и в Turtles. Тогда считаем, получаем:

```
position x: 0 	 1 	 2 	 3 	 4 	 5 	 6 	 7 	 8 	 9 	 10 	 11 	 12 	 13 	 14...
q(x): 1 	 2 	 4 	 7 	 8 	 11 	 13 	 14 	 16 	 19 	 21 	 22 	 25 	 26 	 28...
```

T.e. g(x) = нечетно единичек в x ? 2x : 2x + 1.

Northcott's Game

Есть доска NxM, в каждой строке по одной белой и черной фишке. За один ход можно пойти фишкой вправо или влево на любое число, но не перепрыгивая другую фишку. Тогда это ним с увеличениями: каждое расстояние можем либо строго уменьшить, либо увеличить (но в этом нет смысла, потому что соперник может ответить обратно). Надо заметить, что это не хорошая игра (циклы и зависимость от цвета), но это не влияет.

Лестничный ним

На i-ой ступеньке лежит Ai монет. За один ход мы можем переложить любое число монет с любой ступеньки на предыдущую (с i на i-1). Заметим, что это обычный ним, если будем брать только A1, A3, ... Действительно, это опять ним с увеличениями: мы можем либо уменьшить любую кучку на любое количество, либо увеличить на некоторое количество, но в этом опять же нет смысла.

Nimble-2

То же самое, что и Nimble, но перепрыгивать нельзя. Тогда это в точности Лестничный ним, т.е. для ним надо брать расстояния между парами: 1 и 2, 3 и 4, и т.д. Если N нечётно, то можно добавить фиктивную фишку, уперев её в левую границу полоски.

Обобщение Mypa (Moore's nim)

Если за один ход разрешается ходить сразу в К кучках (от 1 до К), то утверждается, что вместо ксора Аі надо брать сумму по каждому биту по модулю К, и если получается 0 везде, то проигрышная.

Фишки на графе - 1

Дан DAG. В некоторых вершинах стоят фишки. За один ход можно подвинуть любую фишку по ребру. Во-первых, фишки независимы. Во-вторых, для одной фишки — это игра Гранди (состояние — текущая вершина). Поэтому динамика по дереву, а потом поксорить для всех фишек.

Фишки на графе - 2

То же самое, но с аннигиляциями: если фишка приходит в вершину, где уже была фишка, то обе уничтожаются. На самом деле, это ровно то же самое: если две фишки стоят в одной вершине, то их Гранди ксорятся, и ни на что не влияют, поэтому ходить ими дальше смысла нет.