Chapitre 3:

Les algorithmes de tri

Pour trier un tableau, on peut utiliser les algorithmes de tri suivants : Tri par sélection - Tri à bulles -- Tri par insertion -- Tri de Shell

1) Le tri par sélection

Principe:

Cette méthode de tri consiste à :

- ⇒ Rechercher la position du minimum (ou maximum si l'ordre est décroissant) de 0 à n-1
- ⇒ Comparer ce minimum avec T[0]. S'ils sont différents on les permute.
- Rechercher le second plus petit élément du tableau, et l'échanger avec l'élément d'indice 1 (s'ils sont différents)
- ⇒ Continuer de cette façon jusqu'à ce que le tableau soit entièrement trié.

Exemple:

	4	1.00	1			
T	20	0	(7)	11	25	. 3
	0	1	2	3	4	5
T	7.	(0)	20	11	25	3
	0	1	2	3	4	5
T	- 7 -7	0	20	11	25	(3)
	0	1	2	3	4	5
T	7-7	0	3	(11)	25	20
h	0	1	2	3	4	5
T	17	0	3	11	25	(20)
· ·	0	1	2	3	4	5
T	47	# O	3 1/4	11	20	25
	0	1	2	3	4	5

 $T[0]\neq T[2]$. On permute T[0] et T[2].

Pas de permutation

 $T[2]\neq T[5]$. On permute T[2] et T[5].

Pas de permutation

 $T[4] \neq T[5]$. On permute T[4] et T[5].

Tableau Trié.

2) Le tri à bulles

Principe:

Cette méthode de tri consiste à :

- ⇒ Comparer deux à deux les éléments consécutifs du tableau et les permuter s'ils ne sont pas triés.
- Après un seul passage sur le tableau, la plus grande valeur est placée dans la dernière case (dans le cas d'un tri croissant), mais le tableau n'est pas entièrement trié.
- ⇒ Refaire l'étape1 sur la partie non triée du tableau T[0]---T[n-2] et ainsi de suite...
- ⇒ On s'arrête : si aucune permutation ne sera faite au cours d'une passe ou si la partie non triée est réduite à un seul élément.

3) Le tri par insertion

Principe:

On suppose que le tableau est partagé en deux parties : partie triée et partie non triée. Initialement la partie triée contient le premier élément.

Pour chaque élément d'indice i on cherche à l'insérer dans sa bonne position dans la partie triée. Pour cela :

- ⇒ Stocker sa valeur dans une variable intermédiaire x.
- Décaler tant que l'élément x est inférieur à son précèdent.
- Affecter à la dernière case décalée la valeur de la variable intermédiaire x.

Exemple:

Etape1: x contient $T[1] \implies x = 9$

Etape2 : Décalage :

1) T[0] > x donc T[1] contient T[0]

Etape3: T[0] contient le contenu de la variable x

		4 1 1 1 1	100			
1	T 9	17	0	-7	11	9
	0	1	2	3	4	5

Etape1: x contient $T[2] \implies x = 0$

x 0

Etape2 : Décalage :

1) T[1] > x donc : T[2] contient T[1]

2) T[0] > x donc : T[1] contient T[0]

Etape3: T[0] contient le contenu de la variable x

				-	-	-
T	0	9	17	-7	11	9
	0	1	2	3	4	- 5

Etapel: x contient $T[3] \Rightarrow x = -7$

x -7

Etape2 : Décalage :

- 1) T[2] > x donc : T[3] contient T[2]
- 2) T[1] > x donc : T[2] contient T[1]
- 3) T[0] > x donc : T[1] contient T[0]

Etape3: T[0] contient le contenu de la variable x		\mathbf{T}	-7
---	--	--------------	----

T 1-7 0 1 9 17 11 1 9 0 1 2 3 4 5

Etape1: x contient $T[4] \Rightarrow x = 11$

x 11

Etape2 : Décalage :

1) T[3] > x donc : T[4] contient T[3]

Etape3: T[3] contient le contenu de la variable x

T -7 0 9 11 17 9 0 1 2 3 4 5

Etape1: x contient $T[5] \gg x = 9$

x 9

Etape2 : Décalage :

1) T[4] > x donc : T[5] contient T[4]

2) T[3] > x donc : T[4] contient T[3]

Etape3: T[3] contient le contenu de la variable x.

4 SI 2 - Algo&Prog

Enseignante: ICHRAF MABROUK

				-	4 5					SIN								NE		534	
	ndpid	deg l	nitt	Part I	A. Se	45.1		- The	A STA	14 20				15000				A.			
The second second				4													3 1				
										100			6			leta.	73		567		
											120		-				100				
		844		-			15														
	Pro	ced	ure.	2	ri.	ins	ert	ion	1	110	100		6/7	: 6	6						
									F.	1.0		110			9						7 10 2 10
		Deb	ut_						7												
			Pour	=i	de	-		n	1	P	ire										
						TF	-7			0											
				Xe		16)						5.10								
				5		-					Liveline										
				2	<u></u>						-	1		0							
				1a	nly	ue	17	0_	et	TE	4	1)	74	6	rive						
					7	5	-	Ei	_1		0										
					-	0.00		100						-1	n)—					
			=		1	-	1	1						7	-0						
				Pi	Tai	Tay	16							0		TI	N				
				V	6		,							- 6							
			0		6										St. 100		iey				
		_	Dir	por	Y									X		24	rier				
		D;	N .	-						di di				-	Te	nt:	0 \				
		10.	Í																		
								-													
								-								120					
				100				-		-									-		
																	77.7				
															-						
							-	-													
					-																
	-								-												
									-												
			_						-												
						-	=														
									-					-							
									=	-			-	-			-				
							-		-								-				
																			1		1.96
																	1	100			
															1	100	1000			1	
			4		100		1	gen.					7100		1	-			1		
		Eut.	1	1	in		100	n II.	1	40			100	183			e line				