Using Statistical Techniques for Feature Selection

Janani Ravi CO-FOUNDER, LOONYCORN www.loonycorn.com

Overview

Methods for selecting and eliminating features

Variance thresholds

Univariate statistics

ANOVA, chi-square, mutual information

Dictionary learning and atom extraction

Statistical Techniques for Feature Selection

Reducing Complexity

Reducing Complexity

Choosing Feature Selection

Use Case

Possible Solution

Many X-variables

Most of which contain little information

Some of which are very meaningful

Meaningful variables are independent of each other

Feature selection

Hypothesis

Proposed explanation for a phenomenon.

Lady Tasting Tea

Lady tasting tea: famous experiment
Was tea added before or after milk?
Muriel Bristol claimed she could tell

Lady Tasting Tea

Null Hypothesis
(H₀)

Alternate Hypothesis (H₁)

The lady cannot tell if milk was poured first

The lady can tell if milk was poured first

Hypothesis Testing

Null Hypothesis Ho

True until proven false

Usually posits no relationship

Select Test

Pick from vast library

Know which one to choose

Significance Level

Usually 1% or 5%

What threshold for luck?

Alternative Hypothesis

Negation of null hypothesis

Usually asserts specific relationship

Test Statistic

Convert to p-value

How likely it was just luck?

Accept or Reject

Small p-value? Reject

Small: Below significance level

Statistical Techniques

Variance Thresholding

Chi-square Test

ANOVA

Mutual Information

Variance Thresholding

If all points have the same value for an X-variable, that variable adds no information. Extend this idea and drop columns with variance below a minimum threshold.

Chi-square (x²) Feature Selection

For each X-variable, use the Chi-square test to evaluate whether that variable and Y are independent. If yes, drop that feature. Used for categorical X and Y.

Chi-square Feature Selection

Does observed data deviate from those expected in a particular analysis?

Tests the effect of one variable on the outcome, univariate analysis

Sum of the squared difference between observed and expected data in all categories

ANOVA

ANalysis **O**f **VA**riance

ANOVA

Looks across multiple groups of populations, compares their means to produce one score and one significance value

ANOVA

Looks across multiple groups of populations, compares their means to produce one score and one significance value

ANOVA Feature Selection

For each X-variable, use the ANOVA F-test to check whether mean of Y category varies for each distinct value of X. If not, drop that X-variable.

Diabetes Risk

Underweight patients Normal weight patients patients patients

Perform an ANOVA test to know whether the risk of diabetes is significantly different between these groups

ANOVA Hypotheses

Null Hypothesis (H₀)

Alternate Hypothesis (H₁)

H₀: All groups of patients are at an equal risk of diabetes

H₀: All groups of patients are NOT at an equal risk of diabetes

F-statistic

Variance between groups
Variance within a group

F-statistic

If the groups are similar, F ~ 1

If the groups are different, F will be large

P-value

Significance of the F-statistic

Smaller p-values indicate that the results are not due to chance

Large F-statistic and small p-value - means the null hypothesis can be rejected

Mutual Information

Measures the amount of information obtained on random variable by observing another.

Mutual Information

Conceptually similar to using ANOVA F-test for feature selection; superior as it also captures non-linear dependencies (unlike ANOVA-based feature selection).

Dictionary Learning

Representation learning method to find a sparse representation of input data.

Demo

Use variance threshold to select features for regression

Demo

Use univariate statistics to select features for classification

Demo

Using dictionary learning to find sparse representations of complex data

Summary

Methods for selecting and eliminating features

Variance thresholds

Univariate statistics

ANOVA, chi-square, mutual information

Dictionary learning and atom extraction