Given a bank customer, build a neural network-based classifier that can determine whether they will leave or not in the next 6 months.

Dataset Description: The case study is from an open-source dataset from Kaggle. The dataset contains 10,000 sample points with 14 distinct features such as Customerld, CreditScore, Geography, Gender, Age, Tenure, Balance, etc. Link to the Kaggle project: https://www.kaggle.com/barelydedicated/bank-customer-churn-modeling Perform following steps:

- 1. Read the dataset.
- 2. Distinguish the feature and target set and divide the data set into training and test sets.
- 3. Normalize the train and test data.
- 4. Initialize and build the model. Identify the points of improvement and implement the same.
- 5. Print the accuracy score and confusion matrix.

```
1 import pandas as pd
2 import numpy as np
3 import seaborn as sns
4 import matplotlib.pyplot as plt #Importing the libraries
1 df = pd.read_csv("Churn_Modelling.csv")
```

→ Preprocessing.

1 df.head()

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	Has
0	1	15634602	Hargrave	619	France	Female	42	2	0.00	1	
1	2	15647311	Hill	608	Spain	Female	41	1	83807.86	1	
2	3	15619304	Onio	502	France	Female	42	8	159660.80	3	
3	4	15701354	Boni	699	France	Female	39	1	0.00	2	
4	5	15737888	Mitchell	850	Spain	Female	43	2	125510.82	1	
4											•

```
1 df.shape
(10000, 14)
```

1 df.describe()

	RowNumber	CustomerId	CreditScore	Age	Tenure	Balance	NumOfProducts	Has(
count	10000.00000	1.000000e+04	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000	10000
mean	5000.50000	1.569094e+07	650.528800	38.921800	5.012800	76485.889288	1.530200	0
std	2886.89568	7.193619e+04	96.653299	10.487806	2.892174	62397.405202	0.581654	0
min	1.00000	1.556570e+07	350.000000	18.000000	0.000000	0.000000	1.000000	0
25%	2500 75000	1 562853e+07	584 000000	32 000000	3 000000	0 000000	1 000000	Λ

1 df.isnull()

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts H
0	False	False	False	False	False	False	False	False	False	False
1	False	False	False	False	False	False	False	False	False	False
2	False	False	False	False	False	False	False	False	False	False
3	False	False	False	False	False	False	False	False	False	False
4	False	False	False	False	False	False	False	False	False	False
9995	False	False	False	False	False	False	False	False	False	False
9996	False	False	False	False	False	False	False	False	False	False
9997	False	False	False	False	False	False	False	False	False	False
9998	False	False	False	False	False	False	False	False	False	False
9999	False	False	False	False	False	False	False	False	False	False
10000 r	10000 rows × 14 columns									

1 df.isnull().sum()

RowNumber	0
CustomerId	0
Surname	0
CreditScore	0
Geography	0
Gender	0
Age	0
Tenure	0
Balance	0
NumOfProducts	0
HasCrCard	0
IsActiveMember	0
EstimatedSalary	0
Exited	0
dtype: int64	

1 df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 14 columns):

Column Non-Null Count Dtype

```
0
     RowNumber
                       10000 non-null int64
                       10000 non-null int64
1
     CustomerId
2
     Surname
                       10000 non-null object
    CreditScore 10000 non-null int64
Geography 10000 non-null object
Gender 10000 non-null object
3
5
6
                     10000 non-null int64
     Age
     Tenure 10000 non-null int64
Balance 10000 non-null float64
7
9
     NumOfProducts 10000 non-null int64
                     10000 non-null int64
10 HasCrCard
11 IsActiveMember 10000 non-null int64
12 EstimatedSalary 10000 non-null float64
13 Exited
                       10000 non-null int64
dtypes: float64(2), int64(9), object(3)
memory usage: 1.1+ MB
```

1 df.dtypes

RowNumber	int64
CustomerId	int64
Surname	object
CreditScore	int64
Geography	object
Gender	object
Age	int64
Tenure	int64
Balance	float64
NumOfProducts	int64
HasCrCard	int64
IsActiveMember	int64
EstimatedSalary	float64
Exited	int64
1	

dtype: object

1 df.columns

1 df = df.drop(['RowNumber', 'Surname', 'CustomerId'], axis= 1) #Dropping the unnecessary columns

1 df.head()

	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	Estimate
0	619	France	Female	42	2	0.00	1	1	1	10
1	608	Spain	Female	41	1	83807.86	1	0	1	11
2	502	France	Female	42	8	159660.80	3	1	0	11
3	699	France	Female	39	1	0.00	2	0	0	9
4	850	Spain	Female	43	2	125510.82	1	1	1	7
4										>

Visualization

```
1 def visualization(x, y, xlabel):
2    plt.figure(figsize=(10,5))
3    plt.hist([x, y], color=['red', 'green'], label = ['exit', 'not_exit'])
4    plt.xlabel(xlabel,fontsize=20)
5    plt.ylabel("No. of customers", fontsize=20)
6    plt.legend()

1 df_churn_exited = df[df['Exited']==1]['Tenure']
2 df_churn_not_exited = df[df['Exited']==0]['Tenure']

1 visualization(df_churn_exited, df_churn_not_exited, "Tenure")
```

/usr/local/lib/python3.7/dist-packages/numpy/core/fromnumeric.py:3208: VisibleDeprecationWarning: Creating an return asarray(a).size

/usr/local/lib/python3.7/dist-packages/matplotlib/cbook/__init__.py:1376: VisibleDeprecationWarning: Creating
X = np.atleast_1d(X.T if isinstance(X, np.ndarray) else np.asarray(X))


```
1 df_churn_exited2 = df[df['Exited']==1]['Age']
2 df_churn_not_exited2 = df[df['Exited']==0]['Age']
```

1 visualization(df_churn_exited2, df_churn_not_exited2, "Age")

Converting the Categorical Variables

```
\( \sigma \)

1 \( \text{X = df[['CreditScore', 'Gender', 'Age', 'Tenure', 'Balance', 'NumOfProducts', 'HasCrCard', 'IsActiveMember', 'Estimated's 2 \)

2 \( \text{states = pd.get_dummies(df['Geography'], drop_first = True)} \)

3 \( \text{gender = pd.get_dummies(df['Gender'], drop_first = True)} \)

\( \text{L} \)

2 \( \text{df = pd.concat([df,gender,states], axis = 1)} \)

\( \text{L} \)

20 \( \text{30} \)

30 \( \text{30} \)

31 \( \text{30} \)

32 \( \text{30} \)

33 \( \text{30} \)

34 \( \text{30} \)

35 \( \text{30} \)

36 \( \text{30} \)

37 \( \text{30} \)

38 \( \text{30} \)

39 \( \text{30} \)

30 \( \text{30} \)

31 \( \text{30} \)

32 \( \text{30} \)

33 \( \text{30} \)

34 \( \text{30} \)

35 \( \text{30} \)

36 \( \text{30} \)

37 \( \text{30} \)

38 \( \text{30} \)

39 \( \text{30} \)

30 \(
```

Splitting the training and testing Dataset

1 df.head()

	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	Estimate
0	619	France	Female	42	2	0.00	1	1	1	10
1	608	Spain	Female	41	1	83807.86	1	0	1	11
2	502	France	Female	42	8	159660.80	3	1	0	11
3	699	France	Female	39	1	0.00	2	0	0	9
4	850	Spain	Female	43	2	125510.82	1	1	1	7
4										

```
1 X = df[['CreditScore','Age','Tenure','Balance','NumOfProducts','HasCrCard','IsActiveMember','EstimatedSalary','NumOfProducts','HasCrCard','IsActiveMember','EstimatedSalary','NumOfProducts','HasCrCard','IsActiveMember','EstimatedSalary','NumOfProducts','HasCrCard','IsActiveMember','EstimatedSalary','NumOfProducts','HasCrCard','IsActiveMember','EstimatedSalary','NumOfProducts','HasCrCard','IsActiveMember','EstimatedSalary','NumOfProducts','HasCrCard','IsActiveMember','EstimatedSalary','NumOfProducts','NumOfProducts','NumOfProducts','IsActiveMember','EstimatedSalary','NumOfProducts','IsActiveMember','IsActiveMember','IsActiveMember','IsActiveMember','IsActiveMember','IsActiveMember','IsActiveMember','IsActiveMember','IsActiveMember','IsActiveMember','IsActiveMember','IsActiveMember','IsActiveMember','IsActiveMember','IsActiveMember','IsActiveMember','IsActiveMember','IsActiveMember','IsActiveMember','IsActiveMember','IsActiveMember','IsActiveMember','IsActiveMember','IsActiveMember','IsActiveMember','IsActiveMember','IsActiveMember','IsActiveMember','IsActiveMember','IsActiveMember','IsActiveMember','IsActiveMember','IsActiveMember','IsActiveMember','IsActiveMember','IsActiveMember','IsActiveMember','IsActiveMember','IsActiveMember','IsActiveMember','IsActiveMember','IsActiveMember','IsActiveMember','IsActiveMember','IsActiveMember','IsActiveMember','IsActiveMember','IsActiveMember','IsActiveMember','IsActiveMember','IsActiveMember','IsActiveMember','IsActiveMember','IsActiveMember','IsActiveMember','IsActiveMember','IsActiveMember','IsActiveMember','IsActiveMember','IsActiveMember','IsActiveMember','IsActiveMember','IsActiveMember','IsActiveMember','IsActiveMember','IsActiveMember','IsActiveMember','IsActiveMember','IsActiveMember','IsActiveMember','IsActiveMember','IsActiveMember','IsActiveMember','IsActiveMember','IsActiveMember','IsActiveMember','IsActiveMember','IsActiveMember','IsActiveMember','IsActiveMember','IsActiveMember','IsActiveMember','IsActiveMember','IsActiveMember','IsActiveMember','IsActi
```

Normalizing the values with mean as 0 and Standard Deviation as 1

2 X_train,X_test,y_train,y_test = train_test_split(X,y,test_size = 0.30)

```
[-1.58539179, 2.10250049, 0.68783334, ..., 0.92057219,
            1.7643153 , -0.57823004],
          [0.67022591, -0.84453664, -1.04886894, ..., -1.08628092,
            1.7643153 , -0.57823004],
          [1.77734102, -0.17907664, -0.00684757, ..., 0.92057219,
           -0.56679212, -0.57823004],
          [-0.44723607, -1.03466807, -0.35418802, ..., 0.92057219,
            1.7643153 , -0.57823004],
          [-0.77833592, 0.67651478, -0.35418802, ..., 0.92057219,
            1.7643153 , -0.57823004]])
1 X_test
   array([[ 0.2563511 , -0.36920807, -1.74354985, ..., 0.92057219,
           -0.56679212, 1.72941551],
          [-1.1301295 , -1.31986521, 1.0351738 , ..., 0.92057219,
            1.7643153 , -0.57823004],
          [0.93924453, 0.01105478, 1.0351738, ..., 0.92057219,
           -0.56679212, -0.57823004],
          [-1.34741378, -0.36920807, 0.34049289, ..., 0.92057219,
           -0.56679212, -0.57823004],
          [1.01167262, -1.2247995, 0.34049289, ..., -1.08628092,
           -0.56679212, -0.57823004],
          [\ 0.14253553,\ 0.1061205\ ,\ -1.39620939,\ \ldots,\ -1.08628092,
           -0.56679212, 1.72941551]])
```

Building the Classifier Model using Keras

```
1 import keras #Keras is the wrapper on the top of tenserflow
2 #Can use Tenserflow as well but won't be able to understand the errors initially.

1 from keras.models import Sequential #To create sequential neural network
2 from keras.layers import Dense #To create hidden layers

1 classifier = Sequential()

1 #To add the layers
2 #Dense helps to contruct the neurons
3 #Input Dimension means we have 11 features
4 # Units is to create the hidden layers
5 #Uniform helps to distribute the weight uniformly
6 classifier.add(Dense(activation = "relu",input_dim = 11,units = 6,kernel_initializer = "uniform"))

1 classifier.add(Dense(activation = "relu",units = 6,kernel_initializer = "uniform")) #Adding second hidden layer
1 classifier.add(Dense(activation = "sigmoid",units = 1,kernel_initializer = "uniform")) #Final neuron will be hav
1 classifier.compile(optimizer="adam",loss = 'binary_crossentropy',metrics = ['accuracy']) #To compile the Artific
1 classifier.summary() #3 layers created. 6 neurons in 1st,6neurons in 2nd layer and 1 neuron in last
```

Model: "sequential_2"

Layer (type)	Output Shape	Param #
dense_6 (Dense)	(None, 6)	72
dense_7 (Dense)	(None, 6)	42
dense_8 (Dense)	(None, 1)	7

Total params: 121
Trainable params: 121
Non-trainable params: 0

1 classifier.fit(X_train,y_train,batch_size=10,epochs=50) #Fitting the ANN to training dataset

```
Epoch 1/50
Epoch 2/50
Epoch 3/50
Epoch 4/50
Epoch 5/50
Epoch 6/50
Epoch 7/50
Epoch 8/50
Epoch 9/50
Epoch 10/50
Epoch 11/50
Epoch 12/50
Epoch 13/50
Epoch 14/50
Epoch 15/50
Epoch 16/50
Epoch 17/50
Epoch 18/50
Epoch 19/50
Epoch 20/50
Epoch 21/50
Epoch 22/50
Epoch 23/50
```

```
Epoch 24/50
 Epoch 25/50
 Epoch 26/50
 Epoch 27/50
 Epoch 28/50
 Epoch 29/50
 1 y_pred =classifier.predict(X_test)
2 y_pred = (y_pred > 0.5) #Predicting the result
 94/94 [======= ] - 0s 1ms/step
1 from sklearn.metrics import confusion_matrix,accuracy_score,classification_report
1 cm = confusion_matrix(y_test,y_pred)
1 cm
 array([[2314, 68],
     [ 443, 175]])
1 accuracy = accuracy_score(y_test,y_pred)
1 accuracy
 0.8296666666666667
1 plt.figure(figsize = (10,7))
2 sns.heatmap(cm,annot = True)
3 plt.xlabel('Predicted')
4 plt.ylabel('Truth')
```

	precision	recall	f1-score	support
0	0.84	0.97	0.90	2382
1	0.72	0.28	0.41	618
accuracy			0.83	3000
macro avg	0.78	0.63	0.65	3000
weighted avg	0.81	0.83	0.80	3000

1

