Kapitel 1

Die Geometrie der Gaussabbildung

1.1 Gaussabbildung

Definition. Sei $\Sigma \subset \mathbb{R}^3$ eine reguläre Fläche und $V \subseteq \Sigma$ offen. Eine stetige Abbildung $N: V \to S^3$ heisst Einheitsnormalenfeld (oder lokale Gauss-Abbildung), falls

$$\forall p \in V \text{ gilt: } N(q) \perp T_p \Sigma$$

Zusatz. Flächenelement $\sqrt{EG-F^2}$

$$EG - F^2 = \det \begin{pmatrix} E & F \\ F & G \end{pmatrix}$$

Existenz. Definiere $N: V \to S^2$

$$q \mapsto \frac{\varphi u(q) \times \varphi_v(q)}{\|\varphi_u(q) \times \varphi_v(q)\|_2}$$
 Dieser Ausdruck ist stetig in q , da φ_u und φ_v stetig sind.

Eindeutigkeit. Falls V zusammenhängend ist, dan ist $N:V\to S^2$ bis auf Vorzeichen eindeutig festgelegt: $\pm N$.

Bemerkung. Falls $\Sigma \subset \mathbb{R}^3$ geschlossen ist (d.h. kompakt und ohne Rand), dann existiert sogar ein globales Einheitsnormalenfeld $N: \Sigma \to S^2$, genannt Gaussabbildung. Tatsächlich tren
nt eine solche Fläche \mathbb{R}^3 in zwei Zusammenhangskomponenten. Für (nicht-geschlossene) reguläre Fläche $\Sigma \subset \mathbb{R}^3$ gilt: Es existiert $N: \Sigma \to S^2$ stetiges Einheitsnormalenfeld genau dann, wenn Σ orientierbar ist.

zwei zeichnungen, torus und moebiusband

Sei nun $\varphi:U\to V\subset \Sigma$ eine lokale C^1 -Parametrisierung und $N:V\to S^2$ eine lokale Gaussabbildung. Dann gilt $\forall q \in V$:

1.
$$N(q) \perp T_q \Sigma$$

2.
$$N(q) \perp T_{N(q)} \Sigma$$

$$\implies T_a \Sigma = T_{N(a)} S^2$$
 für letzteres gilt $\forall p \in S^2 : p \perp T_p S$

 $\implies T_q\Sigma = T_{N(q)}S^2$ für letzteres gilt $\forall p \in S^2: p \perp T_pS$ Falls $N: V \to S^2$ sogar differenzierbar ist, dann erhalten wir $\forall p \in V$ eine Abbildung

$$(DN)_p: T_p\Sigma \to T_{N(p)}S^2 = T_p\Sigma$$

die Weingartenabbildung.

Definition.

$$K(p) = \det(DN)_p \in \mathbb{R}$$

Gaussische Krümmung im Punkt $p \in \Sigma$

Bemerkung. K(p) hängt nicht von der Wahl von N ab, da det $-(DN)_p = (-1)^2 \times$ $\det(DN)_p$ ist.

Beispiel. 1. $\Sigma = \mathbb{R}^2 \times 0 \subset \mathbb{R}^3 \stackrel{N:\Sigma \to S^2}{q \mapsto e_3(\text{oder } -e_3)} N$ ist konstant, also gilt $\forall q \in \Sigma$ $(DN)_a = 0$: K(a) = 0 $(DN)_q = 0; K(q) = 0.$

K equiv to 1

2.
$$\Sigma = S^2 \subset \mathbb{R}^3$$
 (Einheitssphäre)
 $N: S^2 \to S^2$
 $q \mapsto q$

Einheitssphäre mit Krümmung = 1

$$N = Id_{S^2} \text{ (oder } -Id_{S^2})$$

 $\forall q \in S^2 \text{ gilt also } (DN)_q = Id : T_q\Sigma \to T_q\Sigma$
 $\implies K(q) = \det Id : T_q\Sigma \to T_q\Sigma = 1$

3.
$$Z = (x, y, z) \in \mathbb{R}^3 | x^2 + y^2 = 1 \in \mathbb{R}^{|\mathcal{E}|}$$

 $N : Z \to S^2$

$$(x,y,z) \mapsto (x,y,0)$$

Wir bemerken: N hängt nicht von z ab.

Zylinder mit K equiv to 0

Also gilt für alle
$$q \in Z : (DN)_q(e_3) = \lim_{t \to 0} \underbrace{\frac{\sum_{t=0}^{q} N(q+t \cdot e_3) - N(q)}{N(q+t \cdot e_3) - N(q)}}_{t} = 0$$
 $\implies 0$ ist ein Eigenwert der Abbildung $(DN)_q : T_qZ \to T_qZ \implies K(q) = 0$.

Zusatz. Genauere Betrachtung des dritten Beispiels:

$$F\ddot{u}r\ q=(x,y,z)\in Z\ gilt:\ T_qZ=span\{e_3,\overbrace{-y\cdot e_1+x\cdot e_2}\}$$
 Wir bestimmen $(DN)_q\overset{(*)}{=}v$ (*) Erklärung: Die Einschränkung von N auf $S'\times\{0\}$ ist die Identität. Folglich ist die Abbildungsmatrix von $(DN)_q$ bezüglich der Basis $\{e_3,-y\cdot e_1+x\cdot e_2\}$

1.2 Die zweite Fundamentalform

1.3 Gaussabbildung in lokalen Koordinaten

Rotationsflächen

1.4 Theorema Egregium