WSM FINAL PROJECT

・ 第六組< wsm_dmmig> 110753201 曹昱維 110753132 馬行遠 110753207 林依樺 111753124 巫謹任

Outlines

- O1 Data
 Preprocessing
- 02 Training Model

03 Result

Data Preprocessing

a. Exploring Data

• In the item_features.csv file, there may be repeated featre_category_id in one item.

```
    feature_category 最大的重複次數(該feature_category 在同一個item中 會有複數值)
    less item_features.csv | awk -F "," '{print $1, $2}'|sort|uniq -d -c|awk -F " " '{if ($3== 1 ) {print $1, $3}}'|sort|uniq
    將綠色的部份改成1 | 28 | 30 | 4 | 46 | 53
    feature_category: max number of multiple value
    1:2
    28:3
    30:8
    4:4
    46:2
    53:2
```

1) Filtering the datetime

• Select the **session** of 2021/5/15~2021/5/31 to calculate TF-IDF, and the **candidate** part also selects the items that have appeared in 2021/5/15~2021/5/31

session_id	item_id		date	original_file
115	25976	2021-05-27	10:24:05.043	train_purchases
261	8840	2021-05-31	13:44:52.368	train_purchases
332	25415	2021-05-25	16:24:30.224	train_purchases
388	14800	2021-05-21	18:12:17.106	train_purchases
526	10915	2021-05-28	08:35:35.820	train_purchases
4439898	20891	2021-05-25	23:06:15.637	train_sessions
4439898	12508	2021-05-25	22:50:11.064	train_sessions
4439898	3237	2021-05-25	23:04:53.484	train_sessions
4439898	8414	2021-05-25	23:01:48.631	train_sessions
4439898	3237	2021-05-25	23:01:28.028	train_sessions

- 2) <u>Session Preprocess</u>: Linear superposition
- Combine all items in the same session to make a session into a vector.

3) One-Hot-Encoding:

I. Feature expanded from **73 columns to 904 columns**

e.g. if feature_category_id=1 and feature_category_value=60, the new feature name would be 1_60.

feature_category_id	feature_value_id	feature_name
1	60	1_60
1	143	1_143
1	358	1_358

3) One-Hot-Encoding:

- II. After processing multi-value, expand from 73 columns to 88 columns
- If feature_category_id occurs twice in an item, the number of occurrences is listed after feature_category_id.
- e.g. if there are two feature_category_id=4 items in item 30, the number feature_category_id will be added to two columns: 4_1 and 4_2.

iter	n_id	feature_category_id
	30	16
	30	57
	30	4
	30	68
	30	61
	30	8
	30	55
	30	4

item_id	feature_category_id
30	16_1
30	57_1
30	4_1
30	68_1
30	61_1
30	8_1
30	55_1
30	4_2

3) <u>One-Hot-Encoding</u>:

III. Combine: **73+904=977**

- The results obtained in the preceding 1 are combined with the one-hot-encoding results of 73 features in the original data.
- \rightarrow 23691 rows × 977 columns

	10_147	10_159	10_184	10_217	10_22	10_287	10_361	10_407	10_464	10_561	 64	65	66	67	68	69	70	71	72	73
item_id																				Calcalatatate
2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	1.0	1.0	0.0	0.0	1.0	0.0
3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	1.0	0.0	0.0	1.0	1.0	0.0	0.0	1.0	1.0

Clustering

• To find which items are more similar

 To find which features are more similar

Method1 TF-IDF

TF-IDF

- use **cosine similarity** to calculate the similarity.
- Each **Session** is treated as an **article** (document)

Session A	.1	0	 0	1.
Session B	1	1	 0	1

$$similarity(A,B) = \frac{A \cdot B}{\|A\| \times \|B\|}$$

Method 2 ITEM-CF

ITEM-CF

- each session as a user
- calculate the **similarity** of item *i* and item *j* when both of them co-occur in a
 user's list.
- Recommend by summarizing the similarity of all similar items for all viewed items by the user

item	1	2	3	4	5
1	1	0.1	0.1	0.3	0
2	0.1	1	0.2	0.3	0.5
3	0.1	0.2	1	0	0.5
4	0.3	0.3	0	1	0
5	0	0.5	0.5	0	1

Method 3 Ensemble

Ensemble ITEM-CF & TF-IDF

- We combine itemcf and tfidf model into an ensemble model with a voting ratio R. The ratio indicates the contribution of two models.
- Re-rank recommended item with score:

$$\begin{aligned} & \text{score}_i = 1 * \frac{1}{rank_{i,itemcf}} + R * \frac{1}{rank_{i,tfidf}} \\ & \frac{1}{rank_{i,model}} = \begin{cases} \frac{1}{rank_{i,model}} & \text{if item i exist} \\ 0 & \text{if item i not exist} \end{cases} \end{aligned}$$

Results

		Score			
ID	Period of train data	of train data Feature Engineer method		Leader Broad	
1	2021/5/15~ 2021/5/31	 one-hot(904 columns) session preprocess Filtering the datetime 	TF-IDF	0.04953	
2	2021/5/1~ 2021/5/31	 one-hot(904 columns) session preprocess Filtering the datetime 	TF-IDF	0.04867	
3	2020/1/1~ 2021/5/31	one-hot(904 columns)session preprocess	TF-IDF	0.04770	

16

Results

		Method		Score
ID	Period of train data	Feature Engineer method	model	Leader Broad
1	2020/1/1~2021/6/30 (only leaderboard)	Filtering the by candidate	Item-CF with K=4	0.14584
.2	2020/1/1~2021/6/30 (only leaderboard)	Filtering the by candidate	Item-CF with K=2000	0.16909
3	2020/1/1~2021/6/30 (only leaderboard)		Item-CF with K=2000	0.16486
4	2021/1/1~2021/6/30 (only leaderboard)	Filtering the by candidateFiltering the datetime	Item-CF with K=2000	0.17068
5	2021/1/1~2021/6/30 (only leaderboard)	Filtering the by candidateFiltering the datetime	Item-CF with K=8000	0.17071

Results

ID		Method		Score	Walk Barrell
	Period of train data	Feature Engineer method	model	Leader Broad	Final
1	2021/5/15~ 2021/5/31	one-hot(904 columns)session preprocess	TF-IDF	0.04953 980	
2	2021/1/1~ 2021/6/30 (only leaderboard)	Filtering the by candidateFiltering the datetime	Item-CF with K=8000	0.17071824222 743115	
3			Ensemble ratio=0.02 Item-CF with K=8000 TF-IDF	0.17071836871 168614	

Method

TF-IDF

- use **cosine similarity** to calculate the similarity.
- Each Sesion is treated as an article (document)

Method

ITEM-CF

- each session as a user
- calculate the **similarity** of item *i* and item *j* when both of them co-occur in a user's list.