Errata zur 4. Auflage von Computernetze kompakt.

Erschienen 2018 bei Springer Vieweg. ISBN: 978-3-662-57468-3

Seite 6, Tabelle 2.2

Das niederwertigste Bit ist x_0 und nicht x_1 und das höchstwertigste Bit ist im konkreten Beispiel x_7 und nicht x_8 .

	Quotient	Rest
k	k DIV 2	k MODULO 2
164	82	$0 = x_0$
82	41	$0 = x_1$
41	20	$1 = x_2$
20	10	$0 = x_3$
10	5	$0 = x_4$
5	2	$1 = x_5$
2	1	$0 = x_6$
1	0	$1 = x_7$

Seite 8, Tabelle 2.4

Aus mathematischer und didaktischer Sicht ist es sinnvoller "Bytes" und nicht "Bedeutung" als Überschrift der dritten Spalte zu verwenden.

Name	Symbol	Bytes
Kilobyte	kB	$2^{10} = 1.024$
Megabyte	MB	$2^{20} = 1.048.576$
Gigabyte	GB	$2^{30} = 1.073.741.824$
Terabyte	TB	$2^{40} = 1.099.511.627.776$
Petabyte	PB	$2^{50} = 1.125.899.906.842.624$
Exabyte	EB	$2^{60} = 1.152.921.504.606.846.976$
Zettabyte	ZB	$2^{70} = 1.180.591.620.717.411.303.424$
Yottabyte	YB	$2^{80} = 1.208.925.819.614.629.174.706.176$

Seite 16, Abschnitt 3.1, 9. Zeile von oben

Ersetze "verfübar" durch "verfügbar".

Seite 52, Tabellenüberschrift von Tabelle 5.5

Ersetze "Datenübertragungsraten der IEEE-Standards für WLAN" durch "Modulationsverfahren und Kanalbreiten der IEEE-Standards für WLAN".

Seite 53, Abbildung 5.1

Die Frequenz von Kanal 4 ist nicht 2,417 MHz, sondern 2,427 MHz.

Seite 54, Abbildung 5.2

Die Frequenz von Kanal 4 ist nicht 2,417 MHz, sondern 2,427 MHz.

Seite 54, Abbildung 5.3

Die Frequenz von Kanal 4 ist nicht 2,417 MHz, sondern 2,427 MHz.

Seite 62, 8. Zeile

Ersetze "Diffie-Hellmann-Algorithmus" durch "Diffie-Hellman-Algorithmus"

Seite 65, Abschnitt 5.2.2

Falsch

Der Empfänger filtert Störsignale dadurch heraus, dass er die Differenz der Signalamplituden von Leitung A und Leitung B berechnet. Das Ergebnis ist eine doppelte Signalamplitude beim Empfänger und die Eliminierung des Störsignals:

Korrekt

Unabhängig von der Höhe des Störsignals bleibt die Differenz zwischen Nutzsignal und Komplementärsignal gleich. Die Differenz der Signalamplituden von Leitung A und von Leitung B beim Empfänger ist:

Seite 84, Abschnitt 5.6, 1. Zeile

Streiche "bis"

Seite 94, Bildunterschrift von Abbildung 6.3

Ersetze "Spaning Tree" durch "Spanning Tree".

Seite 94, Abschnitt 6.1.2, 2. Aufzählungspunkt, 7. Zeile von unten

Ersetze "zu Knoten C" durch "zu Knoten B".

Seite 94, Abschnitt 6.1.2, 3. Aufzählungspunkt, 3. Zeile von unten

Ersetze "zu Knoten C" durch "zu Knoten B".

Seite 99, Abschnitt 6.1.3.1, letzte Zeile des ersten Abschnitts

Ersetze "65.536" durch "65.535".

Seite 119, Abschnitt 6.6.2, 3. Abschnitt unterhalb von Tabelle 6.6

Ersetze "das Generatorpolynom CRC-5" durch "die Bitfolge 100110 als Generatorpolynom".

Grund der Änderung: Das im Rechenbeispiel verwendete Generatorpolynom ist nicht CRC-5. Wie in Tabelle 6.6 korrekt angegeben verwendet CRC-5 die Bitfolge 100101 und nicht die im Beispiel verwendete Bitfolge 100110.

Seite 124, Ende des vorletzten Abschnitts von unten

Ersetze "eines Rahmens pro Sekunde." durch "eines Rahmens in Sekunden".

Seite 125, Letzter Abschnitt

Entferne "oder Fading".

Seite 131, vorletzte Zeile von Abschnitt 6.9

Ersetze "erfolgreich" durch "erforderlich".

Seite 156, Abbildung 7.8

In der Abbildung ist das erste Byte der MAC-Adresse (hexadezimal: 1c) falsch.

Falsch

Extended Unique Identifier (64 Bits)

Korrekt

Extended Unique Identifier (64 Bits)

Seite 152, 6. Zeile von Abschnitt 7.2.10

Ersetze "UCP" durch "UDP".

Seite 154, 9. Zeile

Ersetze

"Beispiele für Link-State-Routing-Protokolle sind das Border Gateway Protocol (BGP) und Open Shortest Path First (OSPF)"

durch

"Ein Beispiel für ein Link-State-Routing-Protokoll ist *Open Shortest Path First* (OSPF)"

Das BGP implementiert Pfad-Vektor-Routing und nicht Link-State-Routing.

Seite 154, Abschnitt 7.3, letzte Zeile

Streiche "meist".

Seite 155, 14. Zeile

Ersetze "einen Entfernungswert" durch "eine Veränderung".

Seite 157, 2. Zeile

Ersetze "7,30" durch "7:30".

Seite 157, letzte Zeile

Ersetze " R_c " durch " R_c ".

Seite 162, letzte Zeile

Ersetze "berechnen die" durch "berechnet jeder".

Seite 193, 4. und 5. Zeile

Ersetze "Treshold" durch "Threshold".

Seite 203, Abschnitt 9.2.1, 4. Zeile

Entferne den Punkt nach "0.0.0.0".

Seite 213, Abschnitt 9.6, letzte Zeile

Ersetze "SMTP-Kommandos" durch "POP3-Kommandos".

Seite 224, Tabelle 11.1, vorletzte Zeile

Ersetze "Verschlüsselt" durch "Verschlüsselte" in der Beschreibung des letzten Kommandos (telnet).

Seite 231, Tabelle 11.5

Streiche "sowie die Adresse(n) der Vermittlungsschicht" in der Beschreibung des ersten Kommandos (ip link show dev eth0).

Seite 233, 4. Zeile

Ersetze "Standardardroute" durch "Standardroute".

Seite 237, 3. Zeile

Ersetze "ein" durch "an".

Seite 243, Glossar, Eintrag von OSPF

Ersetze

"Routing-Protokoll auf Basis des Link-State-Algorithmus"

durch

"Link-State-Routing-Protokoll auf Basis des Dijkstra-Algorithmus"

Seite 244, Glossar, Eintrag von RIP

Ersetze

"Routing-Protokoll auf Basis des Distanzvektoralgorithmus"

durch

"Distanzvektor-Routing-Protokoll auf Basis des Bellman-Ford-Algorithmus"

Seite 245, Glossar, Eintrag von Unicast

Ersetze

"Eine Broadcast-Nachricht..."

durch

"Eine Unicast-Nachricht...".

Seite 254, Index

Ersetze "Treshold" durch "Threshold".

Seite 247, Literaturverzeichnis, 5. Eintrag

Ersetze "Grumm H" durch "Gumm H"