DS 4 : un corrigé

Exercice:

Soit $t \in [0, \pi]$. On linéarise la fonction à intégrer :

$$\begin{split} \sin^{2m}t\cos(2mt) &= Re\Big(e^{2imt}\Big(\frac{e^{it}-e^{-it}}{2i}\Big)^{2m}\Big) \\ &= \frac{(-1)^m}{4^m}Re\Big(e^{2imt}\sum_{k=0}^{2m}\binom{2m}{k}\left(-e^{-it}\right)^k(e^{it})^{2m-k}\Big), \\ \text{la dernière égalité provenant de la formule du binôme de Newton.} \end{split}$$

Ainsi
$$\sin^{2m} t \cos(2mt) = \frac{(-1)^m}{4^m} \sum_{k=0}^{2m} {2m \choose k} (-1)^k \cos(2mt - kt + (2m - k)t).$$
Or lorsque $h \in \mathbb{N}^*$, $\int_0^{\pi} \cos(ht) dt = \left[\frac{\sin(ht)}{h}\right]_0^{\pi} = 0$ et lorsque $h = 0$, $\int_0^{\pi} \cos(ht) dt = \pi$, donc $\int_0^{\pi} \sin^{2m} t \times \cos(2mt) dt = \frac{(-1)^m}{4^m} \sum_{k=0}^{2m} {2m \choose k} (-1)^k \delta_{4m-2k,0} \pi = \frac{(-1)^m}{4^m} \pi$.

Problème 1 : fractions continues

Partie 1: notations.

1°) $\diamond x_0$ est bien défini et $x_0 \in \overline{\mathbb{R}_+}$.

Pour $n \in \mathbb{N}$, supposons que x_n est bien défini et que $x_n \in \overline{\mathbb{R}_+}$. Alors, avec les conventions de l'énoncé, $\{x_n\} \in \overline{\mathbb{R}_+}$, puis $x_{n+1} = \frac{1}{\{x_n\}}$ est bien défini et appartient à $\overline{\mathbb{R}_+}$.

Ainsi, d'après le principe de récurrence, la suite $(x_n)_{n\in\mathbb{N}}$ est bien définie, en tant que suite d'éléments de \mathbb{R}_+ .

- \diamond Alors l'énoncé permet bien de définir $a_n = |x_n| \in \overline{\mathbb{R}_+}$.
- \diamond On convient naturellement que, pour tout $x \in \overline{\mathbb{R}_+}, +\infty + x = x + (+\infty) = +\infty$. Alors, pour tout $s, t \in \overline{\mathbb{R}_+}$, la quantité $s + \frac{1}{t}$ est définie et appartient à $\overline{\mathbb{R}_+}$.
- \diamond Soit $k \in \mathbb{N}$. Notons R(k) l'assertion suivante : pour tout $s_0, \ldots, s_k \in \overline{\mathbb{R}_+}$, la quantité $[s_0,\ldots,s_k]$ est définie et appartient à \mathbb{R}_+ .

Soit $s_0 \in \overline{\mathbb{R}_+}$. Alors $[s_0] = s_0$ est défini et appartient à $\overline{\mathbb{R}_+}$, donc R(0) est vraie.

Soit $k \in \mathbb{N}$. Supposons R(k). Soit $s_0, \ldots, s_{k+1} \in \overline{\mathbb{R}_+}$.

D'après le point précédent, $s_k + \frac{1}{s_{k+1}}$ est défini et appartient à $\overline{\mathbb{R}_+}$, donc d'après R(k), $[s_0,\ldots,s_{k+1}]=\left[s_0,\ldots,s_{k-1},s_k+\frac{1}{s_{k+1}}\right]$ est défini et appartient à $\overline{\mathbb{R}_+}$. Le principe de récurrence permet de conclure.

2°) Pour tout $n \in \mathbb{N}$, on note R(n) la propriété suivante : $x = [a_0, a_1, \dots, a_{n-1}, x_n]$. Initialisation : On a $[x_0] = x_0 = x$, ce qui démontre que R(0) est vraie.

Hérédité : Fixons
$$n \in \mathbb{N}$$
 tel que $R(n)$ est vraie et démontrons $R(n+1)$. On a

$$[a_0, a_1, \dots, a_{n-1}, a_n, x_{n+1}] = \begin{bmatrix} a_0, a_1, \dots, a_{n-1}, a_n + \frac{1}{x_{n+1}} \end{bmatrix}$$

$$= [a_0, a_1, \dots, a_{n-1}, \lfloor x_n \rfloor + \{x_n\}]$$

$$= [a_0, a_1, \dots, a_{n-1}, x_n]$$

$$= x \quad \text{par hypothèse de récurrence,}$$

ce qui démontre que R(n+1) est vraie.

D'après le principe de récurrence, pour tout $n \in \mathbb{N}$, $x = [a_0, a_1, \dots, a_{n-1}, x_n]$.

Partie 2: Fraction continue d'un rationnel.

- 3°) Les divisions euclidiennes effectuées correspondent à l'application de l'algorithme d'Euclide. Comme $u \wedge v = 1$, cet algorithme se termine par un reste égal à 1 suivi d'un reste nul. Ainsi, l'algorithme d'Euclide justifie l'existence de $d \in \mathbb{N}$ tel que $r_d = 1$ et $r_{d+1} = 0.$
- $\mathbf{4}^{\circ}$) \diamond Pour tout $k \in \{0, \ldots, d\}$, on note S(k) la propriété $x_k = \frac{r_{k-1}}{r_k}$.

Initialisation : On a $\frac{r_{0-1}}{r_0} = \frac{u}{v} = x = x_0$ donc S(0) est vraie.

 $\begin{array}{l} \textit{H\'er\'edit\'e}: \text{Fixons } k \in \{0,\dots,d-1\} \text{ tel que } S(k) \text{ est vraie et d\'emontrons } S(k+1). \\ \text{On a } \frac{r_{k-1}}{r_k} = \frac{q_k \times r_k + r_{k+1}}{r_k} = q_k + \frac{r_{k+1}}{r_k}, \text{ avec } 0 \leqslant \frac{r_{k+1}}{r_k} < 1, \text{ car dans la division euclidienne } r_{k-1} = q_k \times r_k + r_{k+1}, \text{ on a } 0 \leqslant r_{k+1} < r_k. \end{array}$

De plus $q_k \in \mathbb{N}$, donc $\left\{\frac{r_{k-1}}{r_k}\right\} = \frac{r_{k+1}}{r_k}$.

Par hypothèse de récurrence, cela donne $\{x_k\} = \frac{r_{k+1}}{r_k}$ et donc $x_{k+1} = \frac{1}{\{x_k\}} = \frac{r_k}{r_{k+1}}$, Donc S(k+1) est vraie.

D'après le principe de récurrence, pour tout $k \in \{0, \ldots, d\}, x_k = \frac{r_{k-1}}{r_k}$.

 \diamond Pour tout $k \in \{0, \dots, d\}$, on a

$$a_k = \lfloor x_k \rfloor = \left\lfloor \frac{r_{k-1}}{r_k} \right\rfloor = \left\lfloor \frac{q_k \times r_k + r_{k+1}}{r_k} \right\rfloor = \left\lfloor q_k + \frac{r_{k+1}}{r_k} \right\rfloor = q_k$$

puisque $0 \leqslant \frac{r_{k+1}}{r_k} < 1$. Donc $\forall k \in \{0, \dots, d\}, \quad a_k = q_k$.

♦ On constate alors que

$$x_{d+1} = \frac{1}{\{x_d\}} = \frac{1}{\left\{\frac{r_{d-1}}{r_d}\right\}} = \frac{1}{\{r_{d-1}\}} \text{ (car } r_d = 1\text{)}$$
$$= \frac{1}{0} \text{ (car } r_{d-1} \in \mathbb{N}^*\text{)}$$
$$= +\infty,$$

ce qui permet de démontrer (à l'aide d'une récurrence immédiate) que pour tout $\forall k \ge d+1, x_k=a_k=+\infty$.

5°) D'après la question 2, $x = [a_0, a_1, \ldots, a_d, x_{d+1}]$, donc $x = [q_0, q_1, \ldots, q_d, +\infty] = x = [q_0, q_1, \ldots, q_{d-1}, q_d]$, ce qu'il fallait démontrer.

6°) On calcule
$$\frac{355}{113} = 3 + \frac{16}{113} = 3 + \frac{1}{\frac{113}{16}} = 3 + \frac{1}{7 + \frac{1}{16}}$$
, donc $\frac{355}{113} = [3, 7, 16]$.

7°) L'ensemble $\{n \in \mathbb{N} \mid a_n = +\infty\}$ est une partie non vide de \mathbb{N} , donc il admet un plus petit élément. Comme $a_0 \neq +\infty$, on sait que ce plus petit élément est supérieur ou égal à 1. Cela nous permet de l'écrire d+1 où $d \in \mathbb{N}$.

On a donc $\forall k \in \{0, \ldots, d\}, a_k \in \mathbb{N} \text{ et } a_{d+1} = +\infty.$ Il s'ensuit que $x_{d+1} = +\infty.$

D'après la question 2, on a donc

$$x = [a_0, a_1, \dots, a_d, x_{d+1}] = [a_0, a_1, \dots, a_d, +\infty] = [a_0, a_1, \dots, a_d].$$

On a donc montré que $x = [a_0, a_1, \dots, a_{d-1}, a_d]$ avec $a_0, \dots, a_d \in \mathbb{N}$.

Dès lors, x s'écrit à l'aide d'un nombre fini de fractions d'entiers empilées, donc $x \in \mathbb{Q}_+$.

Partie 3: Fraction continue d'un irrationnel.

- 8°) \diamond Soit $n \in \mathbb{N}$. Supposons que $\{x_n\} = 0$. Alors $x_{n+1} = +\infty$, puis $a_{n+1} = +\infty$, ce qui est faux. Ainsi, pour tout $n \in \mathbb{N}$, $\{x_n\} \in]0, 1[$, donc pour tout $n \in \mathbb{N}^*$, $x_n > 1$ et donc $a_n \geqslant 1$. Cela implique que $\forall n \in \mathbb{N}, q_{n+1} = a_{n+1}q_n + q_{n-1} \geqslant q_n + q_{n-1}$. Comme $q_0 = 1$, on en déduit par récurrence que $\forall n \in \mathbb{N}, q_n \geqslant 1$. Il s'ensuit que $\forall n \in \mathbb{N}^*, q_{n+1} > q_n$. Par conséquent, $(q_n)_{n\geqslant 1}$ est strictement croissante.
- \diamond Par récurrence, on en déduit que, pour tout $n \in \mathbb{N}^*$, $q_n \geq n$.

En effet, on a vu que $q_1 \ge 1$, et si $q_n \ge n$ pour un certain $n \ge 1$, alors comme $q_{n+1} > q_n$, on a $q_{n+1} > n$, donc $q_{n+1} \ge n + 1$.

On en déduit que $q_n \xrightarrow[n \to +\infty]{} +\infty$.

- **9°)** \diamond On a vu que, pour tout $n \in \mathbb{N}^*$, $a_n \in \mathbb{N}^*$. On en déduit par récurrence que, pour tout $n \in \mathbb{N}$, pour tout $t \in \mathbb{R}_+^*$, $[a_0, \ldots, a_n, t]$ est défini et appartient à \mathbb{R}_+^* .
- \diamond Pour tout $n \in \mathbb{N}$, on note R(n) la propriété suivante :

$$\forall t \in \mathbb{R}_+^*, [a_0, a_1, \dots, a_{n-1}, a_n, t] = \frac{p_n + \frac{p_{n-1}}{t}}{q_n + \frac{q_{n-1}}{t}}.$$

Initialisation : Soit $t \in \mathbb{R}_+^*$. On calcule :

$$[a_0, t] = a_0 + \frac{1}{t} \text{ et } \frac{p_0 + \frac{p_{-1}}{t}}{q_0 + \frac{q_{-1}}{t}} = \frac{a_0 + \frac{1}{t}}{1 + \frac{0}{t}} = a_0 + \frac{1}{t}, \text{ d'où } R(0).$$

$$H\acute{e}r\acute{e}dit\acute{e}: \text{ Soit } n \in \mathbb{N}. \text{ Supposons } R(n) \text{ et montrons } R(n+1). \text{ Soit } t \in \mathbb{R}_+^*.$$

$$[a_0, a_1, \dots, a_{n-1}, a_n, a_{n+1}, t] = \left[a_0, a_1, \dots, a_{n-1}, a_n, a_{n+1} + \frac{1}{t}\right], \text{ donc d'après } R(n),$$

$$[a_0, a_1, \dots, a_{n-1}, a_n, a_{n+1}, t] = \frac{\left(a_{n+1} + \frac{1}{t}\right)p_n + p_{n-1}}{\left(a_{n+1} + \frac{1}{t}\right)q_n + q_{n-1}}$$

$$= \frac{a_{n+1}p_n + p_{n-1} + \frac{p_n}{t}}{a_{n+1}q_n + q_{n-1} + \frac{q_n}{t}}$$

$$= \frac{p_{n+1} + \frac{p_n}{t}}{q_{n+1} + \frac{q_n}{t}},$$

ce qui démontre que R(n+1).

Le principe de récurrence permet de conclure.

♦ Dans la formule précédente, on fait tendre t vers $+\infty$. On obtient alors le résultat : $[a_0, a_1, \ldots, a_{n-1}, a_n] = \frac{p_n}{a_n}$.

10°) Pour tout $n \in \mathbb{N}$, on note $R(n): p_nq_{n-1} - q_np_{n-1} = (-1)^{n+1}$. Initialisation: On a $p_0q_{-1} - q_0p_{-1} = a_0 \times 0 - 1 \times 1 = -1 = (-1)^{0+1}$ d'où R(0). Hérédité: Fixons $n \in \mathbb{N}$ tel que R(n) est vraie et démontrons R(n+1). On calcule $p_{n+1}q_n - q_{n+1}p_n = (a_{n+1}p_n + p_{n-1})\,q_n - (a_{n+1}q_n + q_{n-1})\,p_n = -(p_nq_{n-1} - q_np_{n-1})$, donc d'après $R(n), \ p_{n+1}q_n - q_{n+1}p_n = (-1)^{n+2}$, ce qui démontre que R(n+1) est vraie. D'après le principe de récurrence, pour tout $n \in \mathbb{N}, \ p_nq_{n-1} - q_np_{n-1} = (-1)^{n+1}$. Cette égalité est une relation de Bézout. D'après le théorème de Bézout, on en déduit que p_n et q_n sont premiers entre eux pour tout $n \in \mathbb{N}$ et donc que la fraction $\frac{p_n}{q_n}$ est irréductible.

 $\begin{array}{l} \mathbf{11^{\circ}}) \ \, \diamond \ \, \text{Pour tout} \ \, n \geqslant 1, \ \, \text{on a} \\ \frac{p_{2n-1}}{q_{2n-1}} - \frac{p_{2n}}{q_{2n}} = \frac{p_{2n-1}q_{2n} - q_{2n-1}p_{2n}}{q_{2n-1}q_{2n}} = \frac{-(-1)^{2n+1}}{q_{2n-1}q_{2n}} = \frac{1}{q_{2n-1}q_{2n}} \ \, \text{où la troisième \'egalit\'e découle du résultat de la question précédente.} \\ \text{Comme } \lim_{n \to +\infty} q_n = +\infty, \ \, \text{on en d\'eduit que} \, \frac{p_{2n-1}}{q_{2n-1}} - \frac{p_{2n}}{q_{2n}} \underset{n \to +\infty}{\longrightarrow} 0. \\ \diamond \ \, \text{Pour tout } n \geqslant 1, \ \, \text{on calcule} \end{array}$

$$\begin{split} \frac{p_{n+2}}{q_{n+2}} - \frac{p_n}{q_n} &= \frac{p_{n+2}q_n - q_{n+2}p_n}{q_{n+2}q_n} \\ &= \frac{\left(a_{n+2}p_{n+1} + p_n\right)q_n - \left(a_{n+2}q_{n+1} + q_n\right)p_n}{q_{n+2}q_n} \\ &= \frac{a_{n+2}\left(p_{n+1}q_n - q_{n+1}p_n\right)}{q_{n+2}q_n} \\ &= \frac{a_{n+2}(-1)^n}{q_{n+2}q_n} \text{ d'après la question précédente.} \end{split}$$

Donc $\frac{p_{2n+2}}{q_{2n+2}} - \frac{p_{2n}}{q_{2n}} > 0$ et $\frac{p_{2n+1}}{q_{2n+1}} - \frac{p_{2n-1}}{q_{2n-1}} < 0$, ce qui démontre que $\left(\frac{p_{2n}}{q_{2n}}\right)_{n\geq 1}$ strictement croissante et que $\left(\frac{p_{2n-1}}{q_{2n-1}}\right)$ est strictement décroissante.

12°) \diamond Soit $n \in \mathbb{N}^*$. La fonction $t \longmapsto [a_0, a_1, \ldots, a_{2n-1}, a_{2n}, t]$ est décroissante (car t est en dessous d'un nombre impair de traits de fraction). Il s'ensuit que

 $[a_0, a_1, \dots, a_{2n-1}, a_{2n}, x_{2n+1}] \geqslant [a_0, a_1, \dots, a_{2n-1}, a_{2n}, +\infty],$

or d'après la question 2, $[a_0, a_1, \dots, a_{2n-1}, a_{2n}, x_{2n+1}] = x$

et
$$[a_0, a_1, \dots, a_{2n-1}, a_{2n}, +\infty] = [a_0, a_1, \dots, a_{2n-1}, a_{2n}] = \frac{p_{2n}}{q_{2n}}, \text{ donc } x \geqslant \frac{p_{2n}}{q_{2n}}.$$

De même, la fonction $t \longmapsto [a_0, a_1, \dots, a_{2n-2}, a_{2n-1}, t]$ est croissante (car t est en dessous d'un nombre pair de traits de fraction).

Il s'ensuit que $[a_0, a_1, \dots, a_{2n-2}, a_{2n-1}, x_{2n}] \leq [a_0, a_1, \dots, a_{2n-2}, a_{2n-1}, +\infty],$ c'est-à-dire que $x \leqslant \frac{p_{2n-1}}{q_{2n-1}}$. En conclusion, $\forall n \in \mathbb{N}^*$, $\frac{p_{2n}}{q_{2n}} \leqslant x \leqslant \frac{p_{2n-1}}{q_{2n-1}}$.

 \diamond La suite $\left(\frac{p_{2n}}{q_{2n}}\right)_{n\geq 1}$ est ainsi croissante et majorée, donc elle converge, vers une limite

que l'on notera temporairement x^- . De même, la suite $\left(\frac{p_{2n-1}}{q_{2n-1}}\right)_{n\geq 1}$ est décroissante et

minorée, donc elle converge, vers une limite que l'on notera temporairement x^+ .

En passant à la limite dans l'encadrement précédent, on obtient $x^- \le x \le x^+$. De plus on a vu que $\frac{p_{2n-1}}{q_{2n-1}} - \frac{p_{2n}}{q_{2n}} \longrightarrow 0$, donc par unicité de la limite, $x^- = x^+$. Ainsi, $x^- \le x \le x^-$, donc $x = x^- = x^+$. Ainsi, les deux suites $\left(\frac{p_{2n}}{q_{2n}}\right)_{n\ge 1}$ et $\left(\frac{p_{2n-1}}{q_{2n-1}}\right)_{n\ge 1}$ converge vers x, donc $\frac{p_n}{q_n} \longrightarrow x$: c'est un résultat classique, que l'on peut démontrer en passant aux ε :

Soit $\varepsilon > 0$. Il existe $N_1, N_2 \in \mathbb{N}^*$ tels que,

pour tout $n \ge N_1$ (c'est-à-dire $2n \ge 2N_1$), $\left| \frac{p_{2n}}{a_{2n}} - x \right| \le \varepsilon$ et,

pour tout $n \ge N_2$ (c'est-à-dire $2n - 1 \ge 2N_2 - 1$), $\left| \frac{p_{2n-1}}{q_{2n-1}} - x \right| \le \varepsilon$.

On en déduit, en distinguant le cas où n est pair de celui où n est impair, qu'en posant $N = \max(2N_1, 2N_2 - 1)$, pour tout $n \ge N$, $\left| \frac{p_n}{q_n} - x \right| \le \varepsilon$, ce qu'il fallait démontrer.

13°) Soit $n \in \mathbb{N}^*$. D'après la question 10, $p_{n+1}q_n - q_{n+1}p_n = (-1)^n$, donc en divisant

par q_nq_{n+1} , $\frac{p_{n+1}}{q_{n+1}} - \frac{p_n}{q_n} = \frac{(-1)^n}{q_nq_{n+1}}$. On en déduit, en notant d la distance dans \mathbb{R} , que $d\left(\frac{p_n}{q_n}, \frac{p_{n+1}}{q_{n+1}}\right) \leq \frac{1}{q_nq_{n+1}} \leq \frac{1}{q_n^2}$, car d'après la question 8, la suite $(q_n)_{n\geq 1}$ est croissante. Or pour tout $n\geq 1$, $\frac{p_{2n}}{q_{2n}} \leqslant x \leqslant \frac{p_{2n-1}}{q_{2n-1}}$, donc en distinguant les cas où n est pair ou impair, on en déduit que pour tout $n\in\mathbb{N}$, $d\left(x, \frac{p_n}{q_n}\right) \leq d\left(\frac{p_n}{q_n}, \frac{p_{n+1}}{q_{n+1}}\right)$, donc pour tout $n\in\mathbb{N}^*$, $\left|x-\frac{p_n}{q_n}\right|\leq \frac{1}{q_n^2}$.

Problème 2 : ensembles pairs

1°) Par hypothèse, il existe une bijection f de E dans F. On suppose que E est pair. Il existe une partition par paires de E que l'on notera \mathcal{E} .

Notons $\mathcal{F} = \{f(P) \mid P \in \mathcal{E}\}$. Il suffit de montrer que \mathcal{F} est une partition par paires de F.

- f étant injective, pour tout $P \in \mathcal{E}$, |f(P)| = |P| = 2, donc f(P) est une paire de F.
- Soit $P', Q' \in \mathcal{F}$ tel que $P' \neq Q'$.

Il existe $P, Q \in \mathcal{E}$ tels que P' = f(P) et Q' = f(Q).

 $P' \neq Q'$, donc $P \neq Q$.

Supposons que $P' \cap Q' \neq \emptyset$, c'est-à-dire que $f(P) \cap f(Q) \neq \emptyset$. Alors il existe $y \in f(P) \cap f(Q)$, donc il existe $p \in P$ et $q \in Q$ tels que y = f(p) = f(q). f est injective, donc $p = q \in P \cap Q = \emptyset$.

C'est impossible donc $P' \cap Q' = f(P) \cap f(Q) = \emptyset$.

— D'après le cours, $\bigcup_{P \in \mathcal{E}} f(P) = f\left(\bigcup_{P \in \mathcal{E}} f(P)\right) = f(E) = F$, car f est surjective.

Ceci démontre que \mathcal{F} est une partition par paires de F, donc que F est pair.

- **2**°) Posons $\mathcal{F} = \{ \{2n, 2n+1\} / n \in \mathbb{N} \}.$
 - Pour tout $n \in \mathbb{N}$, $\{2n, 2n + 1\}$ est une paire de \mathbb{N} ;
 - Soit $n, m \in \mathbb{N}$ tels que $n \neq m$. Sans perte de généralité, on peut supposer que n < m. Alors $n \leq m-1$, donc $2n \leq 2m-2$. Ainsi, 2n < 2n+1 < 2m < 2m+1, donc $\{2n, 2n+1\} \cap \{2m, 2m+1\} = \emptyset$.
 - On sait que $\mathbb{N} = \bigcup_{n \in \mathbb{N}} \{2n, 2n + 1\}$, car tout entier est pair ou impair.

Ceci démontre que \mathcal{F} est une partition par paires de \mathbb{N} , donc \mathbb{N} est pair.

- **3°)** Posons $\mathcal{F} = \{\{A, \overline{A}\} / A \subset E\}.$
 - Soit $A \subset E$. E étant non vide, il existe $x \in E$. Si $x \in A$, alors $x \notin \overline{A}$, donc $A \neq \overline{A}$ et de même, si $x \notin A$, alors $x \in \overline{A}$, donc $A \neq \overline{A}$. Ceci montre que $\{A, \overline{A}\}$ est une paire de E;
 - Soit $P, Q \in \mathcal{F}$. Il existe $A, B \in \mathcal{P}(E)$ tels que $P = \{A, \overline{A}\}$ et $Q = \{B, \overline{B}\}$.

Supposons que $P \cap Q \neq \emptyset$. Alors $A \in Q$ ou $\overline{A} \in Q$, donc il y a 4 possibilités : A = B, $A = \overline{B}$, $\overline{A} = B$ ou $\overline{A} = \overline{B}$, qui se regroupent en seulement 2 possibilités : A = B ou $A = \overline{B}$. Dans chaque cas, on a bien $P = \{A, \overline{A}\} = \{B, \overline{B}\} = Q$. On a montré que $P \cap Q \neq \emptyset \Longrightarrow P = Q$,

donc par contraposée, $P \neq Q \Longrightarrow P \cap Q = \emptyset$.

— Soit $A \in \mathcal{P}(E)$. Posons $Q = \{A, \overline{A}\}$. Alors $A \in Q$ et $Q \in \mathcal{F}$, donc $A \in \bigcup_{P \in \mathcal{F}} P$.

L'inclusion réciproque étant évidente, on a montré que $\mathcal{P}(E) = \bigcup_{P \in \mathcal{F}} P$.

Ceci démontre que \mathcal{F} est une partition par paires de $\mathcal{P}(E)$, donc $\mathcal{P}(E)$ est pair.

4°) Soit E un ensemble fini pair. Il existe une partition par paires $\{A_1, \ldots, A_m\}$ de E où $m \in \mathbb{N}$ (celle-ci contient nécessairement un nombre fini de paires sinon E serait

infini). Dès lors, on a
$$|E| = \left| \bigsqcup_{i=1}^m A_i \right| = \sum_{i=1}^m |A_i| = \sum_{i=1}^m 2 = 2m$$
 ce qui démontre que E est de cardinal pair.

Réciproquement, considérons un ensemble fini E de cardinal pair 2m où $m \in \mathbb{N}$. On peut énumérer ses eléments de sorte que $E = \{x_1, x_2, \ldots, x_{2m-1}, x_{2m}\}$. Alors l'ensemble $\{\{x_1, x_2\}, \ldots, \{x_{2m-1}, x_{2m}\}\}$ est une partition par paires de E, ce qui démontre que E est pair.

Ainsi, un ensemble fini est pair si, et seulement si, son cardinal est pair.

5°) \diamond Soit E un ensemble de cardinal 2m, où $m \in \mathbb{N}^*$.

E est non vide, donc il possède au moins un élément que l'on note e.

Pour construite une partition par paires de E, on choisit un élément f dans $E \setminus \{e\}$ (il y a 2m-1 choix) afin de constituer la paire $\{e,f\}$, puis on complète $\{\{e,f\}\}$ en choisissant une partition par paires de $E \setminus \{e,f\}$ (il y a a_{m-1} choix). On obtient donc $(2m-1)a_{m-1}$ partitions par paires de E.

Par conséquent, pour tout $m \in \mathbb{N}^*$, $a_m = (2m-1)a_{m-1}$.

 \diamond De plus a_0 désigne le nombre de partitions par paires de \emptyset , or $\mathcal{P}_2(\emptyset) = \emptyset$, donc $\mathcal{F} = \emptyset$ est l'unique partition par paires de $E = \emptyset$. Ceci prouve que $a_0 = 1$.

Par récurrence, on en déduit alors que, pour tout $m \in \mathbb{N}$, $a_m = \prod_{k=1}^m (2k-1)$ (en

convenant que le produit vide est égal à 1).

En multipliant et en divisant par le produit des nombres pairs de 2 à 2m, il vient, pour tout $m \in \mathbb{N}$, $a_m = \frac{(2m)!}{(2m) \times (2m-2) \times \cdots \times 4 \times 2}$. Chaque facteur du dénominateur

de factorise par 2 pour donner : $\forall m \in \mathbb{N}, \quad a_m = \frac{(2m)!}{m!2^m}$.

6°) Lorsque $\mathcal{E} \in \Pi(E)$, notons $\varphi(\mathcal{E}) = \{f(P) \mid P \in \mathcal{E}\}$. D'après la première question, φ est une application de $\Pi(E)$ dans $\Pi(F)$.

De même, pour tout $\mathcal{F} \in \Pi(F)$, notons $\Psi(\mathcal{F}) = \{f^{-1}(Q) \mid Q \in \mathcal{F}\}$. Toujours d'après la première question, Ψ est une application de $\Pi(F)$ dans $\Pi(E)$.

On vérifie que $\varphi \circ \Psi = Id_{\Pi(F)}$ et $\Psi \circ \varphi = Id_{\Pi(E)}$, donc φ est une bijection de $\Pi(E)$ dans $\Pi(F)$, dont Ψ est la bijection réciproque.

 $\mathbf{7}^{\circ}$) \diamond Lorsque σ est une bijection de E dans E, il est clair que $\varphi(\sigma)$ est une partition par paires de E, donc φ est bien une application de S(E) dans $\Pi(E)$.

Soit $\mathcal{F} \in \Pi(E)$. On a vu en question 4 que $|\mathcal{F}| = m$. Notons P_1, \ldots, P_m les éléments de \mathcal{F} , deux à deux distincts. Pour tout $i \in \mathbb{N}_m$, notons $\sigma(2i-1)$ et $\sigma(2i)$ les deux éléments de P_i . Ainsi, $E = {\sigma(1), \ldots, \sigma(2m)}$, donc σ est une bijection de E dans Eet $\mathcal{F} = \varphi(\sigma)$. Ceci démontre que φ est surjective.

 \diamond Reprenons les notations du point précédent. Pour construire $\sigma' \in \mathcal{S}(E)$ telle que $\varphi(\sigma') = \mathcal{F}$, on peut d'abord choisir une façon d'ordonner P_1, \ldots, P_m , sous la forme $P_{f(1)}, \ldots, P_{f(m)}$, où f est une bijection de \mathbb{N}_m dans \mathbb{N}_m , soit m! choix, puis pour chaque $i \in \mathbb{N}_m$, on choisit pour $\sigma'(2i-1)$ l'un des deux éléments de $P_{f(i)}$, soit 2 choix, l'autre élément étant alors noté $\sigma'(2i)$. Ainsi, le nombre d'antécédents de \mathcal{F} par φ est constam-

ment égal à $m!2^m$. Alors, d'après le principe des bergers, $|\Pi(E)| = \frac{|S(E)|}{m!2^m} = \frac{(2m)!}{m!2^m}$. De plus, si F est un ensemble de cardinal 2m, il est en bijection avec E, donc d'après

la question précédente, le nombre de partitions par paires de F est égale à celui de E.

Ainsi, on a établi à nouveau que $a_m = \frac{(2m)!}{m!2^m}$.

8°) Posons $x_0 = x$. Comme $E \setminus \{x_0\} \neq \emptyset$, il existe $x_1 \in E \setminus \{x_0\}$.

Comme $E \setminus \{x_0, x_1\} \neq \emptyset$, il existe $x_2 \in E \setminus \{x_0, x_1\}$, etc. On construit ainsi (par récurrence) une suite $(x_k)_{k\in\mathbb{N}}$ d'éléments de E, distints deux à deux.

 $\varphi: E \longrightarrow E \setminus \{x\}$ $y \longmapsto \begin{cases} x_{k+1} & \text{s'il existe } k \in \mathbb{N} \text{ tel que } y = x_k \\ y & \text{sinon} \end{cases}.$ Considérons l'application

C'est une bijection puisqu'on voit que sa réciproque

 $\varphi: E \setminus \{x\} \longrightarrow E$ $y \longmapsto \begin{cases} x_{k-1} & \text{s'il existe } k \in \mathbb{N}^* \text{ tel que } y = x_k \\ y & \text{sinon} \end{cases}.$ est

9°) L'ensemble $\{\{-x,x\} \mid x \in \mathbb{R}_+^*\}$ est une partition par paires de \mathbb{R}^* . Donc \mathbb{R}^* est pair. Or, d'après la question précédente, \mathbb{R} et \mathbb{R}^* sont équipotents. De plus, d'après la question 1, deux ensembles équipotents ont la même parité. Donc \mathbb{R} et \mathbb{R}^* ont la même parité. En conclusion, \mathbb{R} est pair.

 $\begin{aligned} \mathbf{10}^{\circ}) \ \ &\mathrm{Posons} \ \mathcal{E} = \bigcup_{\mathcal{F} \in \Gamma} \mathcal{F}. \ &\mathrm{Montrons} \ \mathrm{que} \ \mathcal{E} \ \mathrm{est} \ \mathrm{un} \ \mathrm{majorant} \ \mathrm{de} \ \Gamma \ \mathrm{dans} \ \Pi. \end{aligned}$ Si $\mathcal{F} \in \Gamma$, alors $\mathcal{F} \subset \mathcal{E}$ par définition de \mathcal{E} . Ainsi \mathcal{E} est un majorant de Γ dans $\mathcal{P}(\mathcal{P}_2(E))$.

Il reste à montrer que \mathcal{E} appartient à Π .

Chaque \mathcal{F} appartenant à Γ est constitué de paires d'éléments de E. Par conséquent, \mathcal{E} est constitué de paires d'éléments de E.

Soient P_1 et P_2 deux paires distinctes d'éléments de E appartenant à \mathcal{E} . Il existe alors $\mathcal{F}_1, \mathcal{F}_2 \in \Gamma$ tels que $P_1 \in \mathcal{F}_1$ et $P_2 \in \mathcal{F}_2$. Comme Γ est totalement ordonnée, on a $\mathcal{F}_1 \subset \mathcal{F}_2$ ou $\mathcal{F}_2 \subset \mathcal{F}_1$. Pour fixer les idées, on suppose que $\mathcal{F}_1 \subset \mathcal{F}_2$. Dès lors, P_1 et P_2 appartiennent à \mathcal{F}_2 . Et comme \mathcal{F}_2 est constitué de paires d'éléments de E qui sont

disjointes, on en déduit que P_1 et P_2 sont disjointes. On a ainsi démontré que toutes les paires d'éléments de E qui appartiennent à \mathcal{E} sont disjointes. On en déduit que \mathcal{E} appartient bien à Π . En conclusion, \mathcal{E} est un majorant de Γ dans Π .

11°) L'ensemble \mathcal{E} est constitué de paires d'éléments de E qui sont disjointes.

Notons $F = \bigcup_{P \in \mathcal{E}} P$. Ainsi, \mathcal{E} est une partition par paires de F. Il s'agit donc de montrer

que F=E, ou bien qu'il existe un élément x de E tel que $F=E\setminus\{x\}$.

Raisonnons par l'absurde en supposant que $F \neq E$ et que, pour tout $x \in E$, $F \neq E \setminus \{x\}$.

 $F \neq E$, donc il existe $a \in E$ tel que $a \notin F$. Mais $F \neq E \setminus \{a\}$, donc il existe $b \in E \setminus \{a\}$ tel que $b \notin F$. Alors $F \subset E \setminus \{a,b\}$. Dans ce cas, $\mathcal{E} \sqcup \{\{a,b\}\}$ est aussi un élément de Π , strictement plus grand que \mathcal{E} , ce qui est impossible car \mathcal{E} est maximal.

12°) D'après la question précédente, E est pair ou bien il existe $x \in E$ tel que $E \setminus \{x\}$ est pair, mais d'après la question 8, il existe une bijection entre E et $E \setminus \{x\}$, donc d'après la première question, lorsque $E \setminus \{x\}$ est pair, E est aussi pair. En conclusion, on a montré que tout ensemble infini est pair.