Vector Algebra and Calculus

- 1. Revision of vector algebra, scalar product, vector product
- 2. Triple products, multiple products, applications to geometry
- 3. Differentiation of vector functions, applications to mechanics
- 4. Scalar and vector fields. Line, surface and volume integrals, curvilinear co-ordinates
- 5. Vector operators grad, div and curl
- 6. Vector Identities, curvilinear co-ordinate systems
- 7. Gauss' and Stokes' Theorems and extensions
- 8. Engineering Applications

6. Vector Operators: Grad, Div and Curl

- We introduce three field operators which reveal interesting collective field properties, viz.
 - the **gradient** of a scalar field,
 - the **divergence** of a vector field, and
 - the **curl** of a vector field.
- There are two points to get over about each:
 - The mechanics of taking the grad, div or curl, for which you will need to brush up your calculus of several variables.
 - The underlying physical meaning that is, why they are worth bothering about.

- Recall the discussion of temperature distribution, where we wondered how a scalar would vary as we moved off in an arbitrary direction ...
- If $U(\mathbf{r})$ is a scalar field, its **gradient** is defined in Cartesians coords by

$$gradU = \frac{\partial U}{\partial x}\hat{\mathbf{i}} + \frac{\partial U}{\partial y}\hat{\mathbf{j}} + \frac{\partial U}{\partial z}\hat{\mathbf{k}} .$$

ullet It is usual to define the **vector operator** ∇

$$\mathbf{\nabla} = \left[\hat{\mathbf{i}} \; \frac{\partial}{\partial x} \; + \; \hat{\mathbf{j}} \; \frac{\partial}{\partial y} \; + \; \hat{\mathbf{k}} \; \frac{\partial}{\partial z} \right]$$

which is called "del" or "nabla". We can write grad $U \equiv \nabla U$

NB: grad U or ∇U is a **vector** field!

• Without thinking too hard, notice that grad U tends to point in the direction of greatest change of the scalar field U

Examples of gradient evaluation

1.
$$U = x^2$$

$$\nabla U = \left[\hat{\mathbf{i}} \frac{\partial}{\partial x} + \hat{\mathbf{j}} \frac{\partial}{\partial y} + \hat{\mathbf{k}} \frac{\partial}{\partial z}\right] x^2$$
Only $\partial/\partial x$ exists so

$$\nabla U = 2x\hat{\mathbf{i}}$$
.

2.
$$U = r^2 = x^2 + y^2 + z^2$$
, so

$$\nabla U = \left[\hat{\mathbf{i}} \frac{\partial}{\partial x} + \hat{\mathbf{j}} \frac{\partial}{\partial y} + \hat{\mathbf{k}} \frac{\partial}{\partial z}\right] (x^2 + y^2 + z^2)$$

$$= 2x\hat{\mathbf{i}} + 2y\hat{\mathbf{j}} + 2z\hat{\mathbf{k}}$$

$$= 2 \mathbf{r}$$

3. $U = \mathbf{c} \cdot \mathbf{r}$, where **c** is constant.

$$\nabla U = \left[\hat{\mathbf{i}} \frac{\partial}{\partial x} + \hat{\mathbf{j}} \frac{\partial}{\partial y} + \hat{\mathbf{k}} \frac{\partial}{\partial z}\right] (c_1 x + c_2 y + c_3 z)$$
$$= c_1 \hat{\mathbf{i}} + c_2 \hat{\mathbf{j}} + c_3 \hat{\mathbf{k}} = \mathbf{c} .$$

Another Example ...

4. U = f(r), where $r = \sqrt{(x^2 + y^2 + z^2)}$

U is a function of r alone so df/dr exists. As U = f(x, y, z) also,

$$\frac{\partial f}{\partial x} = \frac{df}{dr} \frac{\partial r}{\partial x} \qquad \frac{\partial f}{\partial y} = \frac{df}{dr} \frac{\partial r}{\partial y} \qquad \frac{\partial f}{\partial z} = \frac{df}{dr} \frac{\partial r}{\partial z} .$$

$$\Rightarrow \nabla U = \frac{\partial f}{\partial x} \hat{\mathbf{i}} + \frac{\partial f}{\partial y} \hat{\mathbf{j}} + \frac{\partial f}{\partial z} \hat{\mathbf{k}} \qquad = \frac{df}{dr} \left(\frac{\partial r}{\partial x} \hat{\mathbf{i}} + \frac{\partial r}{\partial y} \hat{\mathbf{j}} + \frac{\partial r}{\partial z} \hat{\mathbf{k}} \right)$$

But $r = \sqrt{x^2 + y^2 + z^2}$, so $\partial r/\partial x = x/r$ and similarly for y, z.

$$\Rightarrow \nabla U = \frac{df}{dr} \left(\frac{x \hat{\mathbf{i}} + y \hat{\mathbf{j}} + z \hat{\mathbf{k}}}{r} \right) = \frac{df}{dr} \left(\frac{\mathbf{r}}{r} \right) .$$

Note that f(r) is spherically symmetrical and the resultant vector field is radial out of a sphere.

• We know that the total differential and grad are defined as

$$dU = \frac{\partial U}{\partial x}dx + \frac{\partial U}{\partial y}dy + \frac{\partial U}{\partial z}dz \& \nabla U = \frac{\partial U}{\partial x}\hat{\mathbf{i}} + \frac{\partial U}{\partial y}\hat{\mathbf{j}} + \frac{\partial U}{\partial z}\hat{\mathbf{k}}$$

ullet So, we can rewrite the change in U as

$$dU = \nabla U \cdot (dx\hat{\mathbf{i}} + dy\hat{\mathbf{j}} + dz\hat{\mathbf{k}}) = \nabla U \cdot d\mathbf{r}$$

• Conclude that

 $\nabla U \cdot d\mathbf{r}$ is the small change in U when we move by $d\mathbf{r}$

Significance /ctd

- We also know (Lecture 3) that $d\mathbf{r}$ has magnitude ds.
- So divide by *ds*

$$\Rightarrow \frac{dU}{ds} = \nabla U \cdot \left[\frac{d\mathbf{r}}{ds} \right]$$

- But $d\mathbf{r}/ds$ is a unit vector in the direction of $d\mathbf{r}$.
- Conclude that

gradU has the property that the rate of change of U wrt distance in any direction $\hat{\mathbf{d}}$ is the projection of gradU onto that direction $\hat{\mathbf{d}}$

Directional derivatives 6.8

• That is

$$\frac{dU}{ds}$$
 (in direction of $\hat{\mathbf{d}}$) = $\nabla U \cdot \hat{\mathbf{d}}$

- The quantity dU/ds is called a **directional derivative**.
- In general, a directional derivative
 - had a different value for each direction,
 - has no meaning until you specify the direction.
- We could also say that

At any point P, grad*U*

- st points in the direction of greatest rate of change of U wrt distance at P, and
- * has magnitude equal to the rate of change of U wrt distance in that direction.

- Think of a surface of constant U the locus (x, y, z) for U(x, y, z) = const
- If we move a tiny amount **within** the surface, that is in any tangential direction, there is no change in U, so dU/ds = 0. So for any $d\mathbf{r}/ds$ in the surface

$$\nabla U \cdot \frac{d\mathbf{r}}{ds} = 0.$$

Conclusion is that: gradU is NORMAL to a surface of constant U

• Let **a** be a vector field:

$$\mathbf{a}(x,y,z) = a_1\hat{\mathbf{i}} + a_2\hat{\mathbf{j}} + a_3\hat{\mathbf{k}}$$

• The divergence of **a** at any point is defined in Cartesian co-ordinates by

$$\operatorname{div} \mathbf{a} = \frac{\partial a_1}{\partial x} + \frac{\partial a_2}{\partial y} + \frac{\partial a_3}{\partial z}$$

- The divergence of a vector field is a scalar field.
- ullet We can write div as a scalar product with the $oldsymbol{
 abla}$ vector differential operator:

$$\operatorname{div} \mathbf{a} \equiv \left[\hat{\mathbf{i}} \frac{\partial}{\partial x} + \hat{\mathbf{j}} \frac{\partial}{\partial y} + \hat{\mathbf{k}} \frac{\partial}{\partial z} \right] \cdot \mathbf{a} \equiv \nabla \cdot \mathbf{a}$$

a	div a
ΧÎ	1
$\mathbf{r}(=x\hat{\mathbf{i}}+y\hat{\mathbf{j}}+z\hat{\mathbf{k}})$	3
r/r^{3}	0
r c	$(\mathbf{r} \cdot \mathbf{c})/r$ where \mathbf{c} is constant

Eg 3: div $(\mathbf{r}/r^3) = 0$

The *x* component of \mathbf{r}/r^3 is $x.(x^2 + y^2 + z^2)^{-3/2}$

We need to find $\partial/\partial x$ of it ...

$$\frac{\partial}{\partial x}x.(x^2+y^2+z^2)^{\frac{-3}{2}} = 1.(x^2+y^2+z^2)^{\frac{-3}{2}} + x\frac{-3}{2}(x^2+y^2+z^2)^{\frac{-5}{2}}.2x$$
$$= r^{-3}(1-3x^2r^{-2})$$

Adding this to similar terms for y and z gives

$$r^{-3} (3 - 3(x^2 + y^2 + z^2)r^{-2}) = r^{-3} (3 - 3) = 0$$

The significance of div

- Consider vector field f(r) (eg water flow).
 This vector has magnitude equal to the mass of water crossing a unit area perpendicular to the direction of f per unit time.
- Take volume element dV and compute balance of the flow of \mathbf{f} in and out of dV.

Look at the shaded face on the left
 The contribution to OUTWARD flux from surface is

$$\mathbf{f}(y) \cdot d\mathbf{S} = [f_x(y)\hat{\mathbf{i}} + f_y(y)\hat{\mathbf{j}} + f_z(y)\hat{\mathbf{k}}] \cdot (-dx \ dz \ \hat{\mathbf{j}}) = -f_y(y)dxdz.$$

- A similar contribution, but of opposite sign, will arise from the opposite face ...
- BUT! we must remember that we have moved along y by an amount dy.
- So that this OUTWARD amount is

$$\mathbf{f}(y+dy) \cdot d\mathbf{S} = f_y(y+dy)dxdz$$
$$= \left(f_y + \frac{\partial f_y}{\partial y}dy\right)dxdz$$

• Hence the total outward amount from these two faces is

$$-f_{y}dxdz + \left(f_{y} + \frac{\partial f_{y}}{\partial y}dy\right)dxdz = \frac{\partial f_{y}}{\partial y}dydxdz = \frac{\partial f_{y}}{\partial y}dV$$

• Repeat: Total efflux from these faces is

$$\frac{\partial f_y}{\partial y} dy dx dz = \frac{\partial f_y}{\partial y} dV$$

• Summing the other faces gives a total outward flux

$$\left(\frac{\partial f_x}{\partial x} + \frac{\partial f_y}{\partial y} + \frac{\partial f_z}{\partial z}\right) dV = (\nabla \cdot \mathbf{f}) dV$$

• Conclusion:

The divergence of a vector field represents the flux generation per unit volume at each point of the field.

- * **Di**vergence because it is an efflux not an influx.
- * We also saw that the total efflux from the infinitesimal volume was equal to the flux integrated over the surface of the volume.

• grad U of any scalar field U is a vector field. We can take the div of any vector field. \Rightarrow we can certainly compute div(grad U)

$$\nabla \cdot (\nabla U) = \left(\hat{\mathbf{i}} \frac{\partial}{\partial x} + \hat{\mathbf{j}} \frac{\partial}{\partial y} + \hat{\mathbf{k}} \frac{\partial}{\partial z}\right) \cdot \left(\left(\hat{\mathbf{i}} \frac{\partial}{\partial x} + \hat{\mathbf{j}} \frac{\partial}{\partial y} + \hat{\mathbf{k}} \frac{\partial}{\partial z}\right) U\right)$$

$$= \left(\left(\hat{\mathbf{i}} \frac{\partial}{\partial x} + \hat{\mathbf{j}} \frac{\partial}{\partial y} + \hat{\mathbf{k}} \frac{\partial}{\partial z}\right) \cdot \left(\hat{\mathbf{i}} \frac{\partial}{\partial x} + \hat{\mathbf{j}} \frac{\partial}{\partial y} + \hat{\mathbf{k}} \frac{\partial}{\partial z}\right)\right) U$$

$$= \left(\frac{\partial^2 U}{\partial x^2} + \frac{\partial^2 U}{\partial y^2} + \frac{\partial^2 U}{\partial z^2}\right)$$

• The operator ∇^2 (del-squared) is called the **Laplacian**

$$\nabla^2 U = \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\right) U$$

and often appears in engineering in Laplace's equation and Poisson's equation

$$\nabla^2 U = 0$$
 and $\nabla^2 U = \rho$

\clubsuit Examples of $\nabla^2 U$ evaluation

U	$\nabla^2 U$
$r^2(=x^2+y^2+z^2)$	6
xy^2z^3	$2xz^3 + 6xy^2z$
1/r	0

Let's prove the last example

$$1/r = (x^2 + y^2 + z^2)^{-\frac{1}{2}}$$
 and so

$$\frac{\partial^2}{\partial x^2} (x^2 + y^2 + z^2)^{-\frac{1}{2}} = \frac{\partial}{\partial x} - x \cdot (x^2 + y^2 + z^2)^{-3/2}$$

$$= -(x^2 + y^2 + z^2)^{-3/2} + 3x \cdot x \cdot (x^2 + y^2 + z^2)^{-5/2}$$

$$= \frac{1}{r^3} \left(-1 + 3\frac{x^2}{r^2} \right)$$

Adding up similar terms for y and z

$$\nabla^2 \frac{1}{r} = \frac{1}{r^3} \left(-3 + 3 \frac{(x^2 + y^2 + x^2)}{r^2} \right) = 0$$

The curl of a vector field 6.17

- ullet So far we have seen the operator abla ...
 - (i) Applied to a scalar field ∇U ; and (ii) Dotted with a vector field $\nabla \cdot \mathbf{a}$.
- You are now overwhelmed by irrestible urge to ...

(iii) cross it with a vector field:
$$\nabla \times \mathbf{a}$$

• This gives the curl of a vector field

$$\nabla \times \mathbf{a} \equiv \operatorname{curl}(\mathbf{a})$$

• We can follow the pseudo-determinant recipe for vector products, so that

$$\nabla \times \mathbf{a} = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ a_x & a_y & a_z \end{vmatrix} = \left(\frac{\partial a_z}{\partial y} - \frac{\partial a_y}{\partial z} \right) \hat{\mathbf{i}} + \left(\frac{\partial a_x}{\partial z} - \frac{\partial a_z}{\partial y} \right) \hat{\mathbf{j}} + \left(\frac{\partial a_y}{\partial x} - \frac{\partial a_x}{\partial y} \right) \hat{\mathbf{k}}$$

Examples of curl evaluation

a	$\nabla \times a$
$-y\hat{\mathbf{i}} + x\hat{\mathbf{j}}$	2 ƙ
$x^2y^2\hat{\mathbf{k}}$	$2x^2y\hat{\mathbf{i}} - 2xy^2\hat{\mathbf{j}}$

2nd example:

$$\nabla \times (x^2 y^2 \hat{\mathbf{k}}) = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ \partial/\partial x & \partial/\partial y & \partial/\partial z \\ 0 & 0 & x^2 y^2 \end{vmatrix}$$
$$= \hat{\mathbf{i}} x^2 2y - \hat{\mathbf{j}} 2x y^2$$
$$= 2x^2 y \hat{\mathbf{i}} - 2x y^2 \hat{\mathbf{j}}$$

- First example gives a clue ... the field $\mathbf{a} = -y\hat{\mathbf{i}} + x\hat{\mathbf{j}}$ is sketched below.
- This field has a curl of $2\hat{\mathbf{k}}$, which is in the r-h screw direction out of the page.
- You can also see that a field like this must give a finite value to the line integral around the complete loop $\oint_C \mathbf{a} \cdot d\mathbf{r}$.

- In fact curl is closely related to the line integral around a loop.
- The **circulation** of a vector field **a** round any closed curve *C* is defined to be

$$\oint_C \mathbf{a} \cdot d\mathbf{r}$$

The **curl** of the vector field **a** represents the

- \ast the $\emph{vorticity}$, or
- * the circulation per unit area in the direction of the area's normal

ullet Consider the circulation round the perimeter of a rectangle dx by dy ...

$$\oint_{C} \mathbf{a} \cdot d\mathbf{r} = \mathbf{a}(x, y, z). [dx \ 0 \ 0] + \mathbf{a}(x + dx, y, z). [0 \ dy \ 0] + \mathbf{a}(x, y + dy, z). [-dx \ 0 \ 0] + \mathbf{a}(x, y, z). [0 \ -dy \ 0]$$

$$\oint_{C} \mathbf{a} \cdot d\mathbf{r} = \mathbf{a}(x, y, z) \cdot [dx \ 0 \ 0] + \mathbf{a}(x + dx, y, z) \cdot [0 \ dy \ 0]
+ \mathbf{a}(x, y + dy, z) \cdot [-dx \ 0 \ 0] + \mathbf{a}(x, y, z) \cdot [0 \ -dy \ 0]
= a_{x}(x, y, z) dx + a_{y}(x + dx, y, z)
- a_{x}(x, y + dy, z) dx - a_{y}(x, y, z) dy
= a_{x} dx + a_{y} dy + \frac{\partial a_{y}}{\partial x} dx dy
- a_{x} dx - \frac{\partial a_{x}}{\partial y} dy dx - a_{y} dy
= \left[\frac{\partial a_{y}}{\partial x} - \frac{\partial a_{x}}{\partial y}\right] dx dy
= (\nabla \times \mathbf{a}) \cdot dx dy \hat{\mathbf{k}}
= (\nabla \times \mathbf{a}) \cdot d\mathbf{S}$$

 \bullet Rceapping: consider circulation round the perimeter of a rectangle dx by dy

• The fields in the x-direction at bottom and top are

$$a_x(y)$$
 and $a_x(y+dy) = a_x(y) + \frac{\partial a_x}{\partial y} dy$

• The fields in the y-direction at left and right are

$$a_y(x)$$
 and $a_y(x + dx) = a_y(x) + \frac{\partial a_y}{\partial x} dx$

• Summing around from the bottom in anticlockwise order

$$dC = +[a_x(y) \ dx] + [a_y(x + dx) \ dy] - [a_x(y + dy) \ dx] - [a_y(x) \ dy]$$
$$= \left(\frac{\partial a_y}{\partial x} - \frac{\partial a_x}{\partial y}\right) \ dx \ dy = (\nabla \times \mathbf{a}) \cdot dx dy \hat{\mathbf{k}} = (\nabla \times \mathbf{a}) \cdot d\mathbf{S}$$

• A vector field with zero divergence is said to be

solenoidal.

• A vector field with zero curl is said to be

irrotational.

• A scalar field with zero gradient is said to be

constant.

Summary 6.28

• Today we've introduced ...

- The gradient of a scalar field
- The divergence of a vector field
- The Laplacian
- The curl of a vector field
- We've described the grunt of working these out in Cartesian coordinates ... If your partial differentiation is flaky, sort it.
- We've given some insight into what "physical" aspects of fields they relate too.

 Worth spending time thinking about these. Vector calculus is the natural language of engineering in 3 vector spaces...