Assignment -2

Assignment Date	20 October 2022
Student Name	Nandhini. G
Student Register Number	212219060182
Topic	VirtualEye - Life Guardfor Swimming Pools to Detect Active Drowning

```
In[1]: import pandas as
    pdimport numpyas np
    import seabornas sns
    import matplotlib.pyplotas plt
    %matplotlibinline
    importscipy.stats
    #import statsmodels.api as sms
    import statsmodels.formula.apias smf
    from statsmodels.stats.stattoolsimport jarque_bera
```

In[2]: data=pd.read_csv('Churn_Modelling.csv')
 data

Out[2]:	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfP
C	1	15634602	Hargrave	619	France	Female	42	2	0.00	
1	2	15647311	Hill	608	Spain	Female	41	1	83807.86	
2	3	15619304	Onio	502	France	Female	42	8	159660.80	
3	4	15701354	Boni	699	France	Female	39	1	0.00	
4	5	15737888	Mitchell	850	Spain	Female	43	2	125510.82	
9995	9996	15606229	Obijiaku	771	France	Male	39	5	0.00	
9996	9997	15569892	Johnstone	516	France	Male	35	10	57369.61	
9997	9998	15584532	Liu	709	France	Female	36	7	0.00	
9998	9999	15682355	Sabbatini	772	Germany	Male	42	3	75075.31	
9999	10000	15628319	Walker	792	France	Female	28	4	130142.79	

10000 rows x 14 columns

Describe Function

```
In [7]: data[['Age','Surname','Tenure','Balance']].describe()
Out[7]: Age Tenure Balance
```

count 10000.000000 10000.000000 10000.000000

mean 38.921800 5.012800 76485.889288

std	10.487806	2.892174	62397.405202
min	18.000000	0.000000	0.000000
25%	32.000000	3.000000	0.000000
50%	37.000000	5.000000	97198.540000
75%	44.000000	7.000000	127644.240000
max	92.000000	10.000000	250898.090000

Data Type

Loading [MathJax]/extensions/Safe.js

```
int64
Out[15]: RowNumber
                               int64
         CustomerId
         Surname
                              object
         CreditScore
                               int64
                              object
         Geography
         Gender
                              object
         Age
                               int64
         Tenure
                               int64
         Balance
                             float64
         NumOfProducts
                               int64
         HasCrCard
                               int64
         IsActiveMember
                               int64
         EstimatedSalary
                             float64
         Exited
                               int64
         dtype: object
In [16]: data.isnull().any()
Out[16]: RowNumber
                             False
         CustomerId
                             False
                             False
         Surname
         CreditScore
                             False
         Geography
                             False
         Gender
                             False
         Age
                             False
         Tenure
                             False
         Balance
                             False
                             False
         NumOfProducts
         HasCrCard
                             False
         IsActiveMember
                             False
         EstimatedSalary
                             False
         Exited
                             False
         dtype: bool
```

UNIVARIATE ANALYSIS

In [18]: sns.histplot(data.Age,kde=True)

```
Out[18]: <AxesSubplot:xlabel='Age', ylabel='Count'>
              800
              700
              600
              500
           500
400
              300
              200
              100
                0
                           30
                                 40
                                        50
                                                     70
                                                           80
                                                                 90
```

In [15]: data.dtypes

BIVARIATE ANALYSIS

MULTIVARIATE ANALYSIS

In [47]: sns.pairplot(data)

Out[47]: <seaborn.axisgrid.PairGrid at 0x1cb8b759610>

Perform descriptive statistics on the dataset

In [3]: data.describe(include='all')

:		RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure
	count	10000.00000	1.000000e+04	10000	10000.000000	10000	10000	10000.000000	10000.000000
	unique	NaN	NaN	2932	NaN	3	2	NaN	NaN
	top	NaN	NaN	Smith	NaN	France	Male	NaN	NaN
	freq	NaN	NaN	32	NaN	5014	5457	NaN	NaN
	mean	5000.50000	1.569094e+07	NaN	650.528800	NaN	NaN	38.921800	5.012800
	std	2886.89568	7.193619e+04	NaN	96.653299	NaN	NaN	10.487806	2.892174
	min	1.00000	1.556570e+07	NaN	350.000000	NaN	NaN	18.000000	0.000000
	25%	2500.75000	1.562853e+07	NaN	584.000000	NaN	NaN	32.000000	3.000000
	50%	5000.50000	1.569074e+07	NaN	652.000000	NaN	NaN	37.000000	5.000000
	75%	7500.25000	1.575323e+07	NaN	718.000000	NaN	NaN	44.000000	7.000000
	max	10000.00000	1.581569e+07	NaN	850.000000	NaN	NaN	92.000000	10.000000

In [4]: data.count() 10000 Out[4]: RowNumber 10000 CustomerId 10000 Surname 10000 CreditScore 10000 Geography Gender 10000 Age 10000 Tenure 10000 10000 Balance NumOfProducts 10000 HasCrCard 10000 10000 IsActiveMember EstimatedSalary 10000 Exited 10000 dtype: int64

Handle the Missing values.

Fill with Zeros for NAN values

```
In [7]: a =data.fillna(0)
a
```

Out[3]

Out[7]:		RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfP
	0	1	15634602	Hargrave	619	France	Female	42	2	0.00	
	1	2	15647311	Hill	608	Spain	Female	41	1	83807.86	
	2	3	15619304	Onio	502	France	Female	42	8	159660.80	
	3	4	15701354	Boni	699	France	Female	39	1	0.00	
	4	5	15737888	Mitchell	850	Spain	Female	43	2	125510.82	
	9995	9996	15606229	Obijiaku	771	France	Male	39	5	0.00	
	9996	9997	15569892	Johnstone	516	France	Male	35	10	57369.61	
	9997	9998	15584532	Liu	709	France	Female	36	7	0.00	
	9998	9999	15682355	Sabbatini	772	Germany	Male	42	3	75075.31	
	9999	10000	15628319	Walker	792	France	Female	28	4	130142.79	

10000 rows x 14 columns

Find the outliers and replace the outliers

In [8]:	а										
Out[8]:		RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfP
	0	1	15634602	Hargrave	619	France	Female	42	2	0.00	
	1	2	15647311	Hill	608	Spain	Female	41	1	83807.86	
	2	3	15619304	Onio	502	France	Female	42	8	159660.80	
	3	4	15701354	Boni	699	France	Female	39	1	0.00	
	4	5	15737888	Mitchell	850	Spain	Female	43	2	125510.82	
	9995	9996	15606229	Obijiaku	771	France	Male	39	5	0.00	
	9996	9997	15569892	Johnstone	516	France	Male	35	10	57369.61	
	9997	9998	15584532	Liu	709	France	Female	36	7	0.00	
	9998	9999	15682355	Sabbatini	772	Germany	Male	42	3	75075.31	
	9999	10000	15628319	Walker	792	France	Female	28	4	130142.79	

10000 rows x 14 columns

Loading [MathJax]/extensions/Safe.js

```
In [9]: missing_values=data.isnull().sum()
    missing_values[missing_values>0]/len(data)*100

Out[9]: Series([], dtype:float64)

In [13]: cols =3
    rows =4
    num_cols=data.select_dtypes(exclude='object').columns
    fig = plt.figure( figsize=(cols*5, rows*5))
    for i, col in enumerate(num_cols):
```

```
sns.boxplot(x=data[col],ax=ax)
                     fig.tight_layout()
                     plt.show()
                                                                                                                  1.580
le7
                                       4000 6000
RowNumber
                                                                                             1.570
CustomerId
                               2000
                                                                               1.560
                                                                                                                                                 600
CreditScore
                                                         8000
                                                                 10000
                                                                                        1.565
                                                                                                                                           500
                                                                                                                                                             700
                                                                                                                                                                     800
                                         50 60
Age
                                                                                                                                             100000 150000
Balance
                                                                                                                                                                        250000
                                                                                                                                     50000
                                                                                                                                                               200000
                      1.0
                             1.5
                                     2.0 2.5
NumOfProducts
                                                           3.5
                                                                  4.0
                                                                                           0.4 0.6
HasCrCard
                                                                                                             0.8
                                                                                                                      1.0
                                                                                                                                               0.4 0.6
IsActiveMember
                                                                                                                                                                          1.0
                                                   3.0
                                                                          0.0
                                                                                   0.2
                                                                                                                              0.0
                                                                                                                                       0.2
Loading [MathJax]/extensions/Safe.js | latedSalary
                                                                                                                      1.0
```

ax=fig.add_subplot(rows,cols,i+1)

```
Out[14]: <AxesSubplot:>

2000
1750
1500
1250
1000
750
250
400
500
600
700
800
```

data['CreditScore'].hist()

of Age is:

```
In[15]:
    print('SkewnessvalueofAge:',data['Age'].skew())
    Age_mean=data['Age'].mean()
    print('Mean of Age is:',Age_mean)
    Age_std= data['Age'].std()
    print('Standard Deviation of Age is: ',Age_std)
    low= Age_mean-(3 * Age_std)
    high= Age_mean+ (3 * Age_std)
    Age_outliers= data[(data['Age'] <low) | (data['Age'] >high)]
    #print('OutliersofAgeis:\n',Age_outliers)
    print('Outliers of Age is:')
    Age_outliers.head()

    Skewness value of Age: 1.0113202630234552Mean
    of Age is:38.9218
    Standard Deviation of Age is: 10.487806451704591Outliers
```

Out[15]:		RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfPro
	85	86	15805254	Ndukaku	652	Spain	Female	75	10	0.00	
	158	159	15589975	Maclean	646	France	Female	73	6	97259.25	
	230	231	15808473	Ringrose	673	France	Male	72	1	0.00	
	252	253	15793726	Matveyeva	681	France	Female	79	0	0.00	
	310	311	15712287	Pokrovskii	652	France	Female	80	4	0.00	

Check for Categorical columns and perform encoding.

```
In []: #data1=pd.read_csv('Churn_Modelling.csv')
    #data1.head()

In [4]: import numpyas np #for numpy operations
    import pandas as pd#for creating DataFrame using Pandas
    # to split the dataset using sklearn
    from sklearn.model_selectionimport train_test_split
    # load titanic dataset
    data1 = pd.read csv('Churn Modelling.csv',

Loading [MathJax]/extensions/Safe.js
```

```
data1.head()
             Surname Geography Gender
 Out[4]:
             Hargrave
                          France
                                 Female
          1
                  Hill
                                 Female
                           Spain
          2
                 Onio
                          France
                                 Female
          3
                 Boni
                          France
                                 Female
          4
               Mitchell
                           Spain
                                 Female
In [5]:
          pd.get dummies(data1)
                Surname_Abazu Surname_Abbie Surname_Abbott Surname_Abdullah Surname_Abdulov Surname_Abel
 Out[5]:
                                                                                                           0
                                                                            0
                                                                                             0
                            0
                                           0
                                                           0
                                                                            0
                                                                                             0
                                                                                                           0
             2
                                           0
                                                           0
                                                                            0
                                                                                             0
                            0
                                                                                                           0
                                           0
                                                           0
                                                                            0
                                                                                             0
                                                                                                           0
                            0
                                           0
                                                           0
                                                                            0
                                                                                             0
                                                                                                           0
             4
          9995
                            0
                                           0
                                                           0
                                                                            0
                                                                                             0
                                                                                                           0
          9996
                             0
                                           0
                                                           0
                                                                            0
                                                                                             0
                                                                                                           0
          9997
                            0
                                           0
                                                           0
                                                                            0
                                                                                             0
                                                                                                           0
          9998
                             0
                                           0
                                                           0
                                                                            0
                                                                                             0
                                                                                                           0
                                           0
                                                           0
          9999
                                                                            0
                                                                                             0
         10000 rows x 2937 columns
In [17]: # Returns dictionary having key as category and values asnumber
          deffind category mappings(data, variable):
           return {k: i for i, k inenumerate(data[variable].unique())}
          # Returns the column after mapping with dictionary
          definteger encode(data, variable, ordinal mapping):
           data[variable] = data[variable].map(ordinal mapping)
          for variable in ['Surname', 'Geography', 'Gender']:
           mappings=find category mappings(data1, variable)
           integer encode(data1, variable, mappings)
          data1.head()
             Surname
                     Geography Gender
Out[17]:
          0
                   0
                              0
                                      0
```

usecols=['Surname','Gender','Geography'])

Split the data into dependent and independent

variables.

Dependent Variable: A dependent variable is a variable whose value depends on another variable.

Independent Variable : An Independent variable is a variable whose value never depends on another variable.

```
In [6]: print("TheMinimumvalueofDataset:\n",data1.min(numeric only=True))
        print("\n")
        print("TheMaximumvalueofDataset:\n", data1.max(numeric only=True))
        print("\n")
        print("TheMeanvalueofDataset:\n", data1.mean(numeric_only=True))
        print("\n")
        print(data1.count(0))
        print(data1.shape)
        print(data1.size)
        The Minimum value of Dataset:
         Series([], dtype:float64)
        The Maximum value ofDataset:
         Series([], dtype:float64)
        The Mean value of Dataset: Series ([],
         dtype:float64)
         Surname 10000
        Geography 10000
         Gender
                      10000
         dtype: int64
         (10000, 3)
         30000
In [7]: y = data1["Surname"]
        x=data1.drop(columns=["Surname"],axis=1)
        x.head()
           Geography Gender
Out[7]:
               France
                      Female
         1
                Spain Female
         2
               France Female
         3
               France Female
         4
                Spain Female
```

Scale the independent variables

```
In[8]:
          names=x.columnsnam
 Out[8]: Index(['Geography', 'Gender'], dtype='object') In[12]:
          from sklearn.preprocessingimportscale
In[16]:
                 Geography Gender
Out[16]:
              0
                    France
                            Female
                            Female
                     Spain
                    France
                            Female
                    France
                            Female
                     Spain
                            Female
           9995
                    France
                              Male
           9996
                     France
                              Male
           9997
                            Female
                    France
           9998
                   Germany
                              Male
           9999
                            Female
                    France
          10000 rows x 2 columns
```

Split the data into training and testing

The train-test split is used to estimate the performance of machine learning algorithms that are applicable for prediction-based Algorithms/Applications. By default, the Test set is split into 30 % of actual data and the training set is split into 70% of the actual data.

```
In[18]:
          from sklearn.model selectionimport train test split
In[19]:
          x train, x test, y train, y test=train test split(x, y, test size=0.2, random state=0)
In[20]:
          x train.head()
                Geography
                          Gender
Out[20]:
          7389
                     Spain
                           Female
          9275
                  Germany
                             Male
                           Female
          2995
                    France
          5316
                     Spain
                             Male
           356
                     Spain
                           Female
```

```
Loading [MathJax]/extensions/Safe.js , y_train.shape, x_test.shape, y_test.shape
```

Out[21]: ((8000, 2), (8000,), (2000, 2), (2000,))