캐글 코리아 4차 대회

학습 내용

- 라벨 인코딩 적용
- 다양한 모델 성능 비교
- 이진 분류 평가지표 활용

목차

01. 라이브러리 임포트 및 데이터 준비 02. 데이터 전처리 03. 모델 구축 및 평가하기

01. 라이브러리 임포트 및 데이터 준비

목차로 이동하기

In [1]:

```
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import warnings
warnings.filterwarnings('ignore')
```

In [2]:

```
train = pd.read_csv('data/4th_kaggle/train.csv')
test = pd.read_csv('data/4th_kaggle/test.csv')
sub = pd.read_csv('data/4th_kaggle/sample_submission.csv')
```

데이터 탐색

• 컬럼명 : [].columns

행열 : [].shape정보 : [].info()

• 수치 데이터 요약정보 : [].describe()

• 결측치 : [].isnull().sum()

데이터 정보

age : 나이

workclass : 고용 형태

fnlwgt : 사람 대표성을 나타내는 가중치 (final weight의 약자)

education : 교육 수준 (최종 학력) education_num : 교육 수준 수치

marital_status: 결혼 상태

occupation : 업종

relationship : 가족 관계

race : 인종 sex : 성별

capital_gain : 양도 소득 capital_loss : 양도 손실

hours_per_week : 주당 근무 시간

native_country : 국적

income : 수익 (예측해야 하는 값, target variable)

In [4]:

```
print("학습용 데이터 : ", train.shape)
print("테스트용 데이터 : ", test.shape)
```

학습용 데이터 : (26049, 16) 테스트용 데이터 : (6512, 15)

In [6]:

```
y = train['income']
test['income'] = "blank"
all_dat = pd.concat([train, test], axis=0)
print(all_dat.shape)
```

(32561, 16)

In [7]:

```
all_dat.income.value_counts()
```

Out[7]:

<=50K 19744 blank 6512 >50K 6305

Name: income, dtype: int64

02. 데이터 전처리

목차로 이동하기

In [8]:

```
all_dat.loc[ all_dat['income']=='>50K' , 'target'] = 1
all_dat.loc[ all_dat['income']=='<=50K' , 'target'] = 0
all_dat.loc[ all_dat['income']=='blank' , 'target'] = 999
all_dat['target'] = all_dat.target.astype("int")</pre>
```

라벨 인코딩

In [9]:

```
from sklearn.preprocessing import LabelEncoder
```

In [10]:

```
en_x = LabelEncoder()
all_dat['workclass_lbl'] = en_x.fit_transform(all_dat['workclass'])
all_dat.head(3)
```

Out[10]:

	id	age	workclass	fnlwgt	education	education_num	marital_status	occupation	relations
0	0	40	Private	168538	HS-grad	9	Married-civ- spouse	Sales	Husba
1	1	17	Private	101626	9th	5	Never-married	Machine- op-inspct	Own-cl
2	2	18	Private	353358	Some- college	10	Never-married	Other- service	Own-cl
4									•

In [11]:

```
all_dat['education_lbl'] = en_x.fit_transform(all_dat['education'])
all_dat['marital_status_lbl'] = en_x.fit_transform(all_dat['marital_status'])
all_dat['occupation_lbl'] = en_x.fit_transform(all_dat['occupation'])
all_dat['relationship_lbl'] = en_x.fit_transform(all_dat['relationship'])
all_dat['race_lbl'] = en_x.fit_transform(all_dat['race'])
all_dat['native_country_lbl'] = en_x.fit_transform(all_dat['native_country'])
all_dat.head(3)
```

Out[11]:

	id	age	workclass	fnlwgt	education	education_num	marital_status	occupation	relations
0	0	40	Private	168538	HS-grad	9	Married-civ- spouse	Sales	Husba
1	1	17	Private	101626	9th	5	Never-married	Machine- op-inspct	Own-cl
2	2	18	Private	353358	Some- college	10	Never-married	Other- service	Own-cl

3 rows × 24 columns

→

In [12]:

```
mf_mapping = {"Male": 1, "Female": 2}
all_dat['sex'] = all_dat['sex'].map(mf_mapping)
all_dat.head(3)
```

Out[12]:

	id	age	workclass	fnlwgt	education	education_num	marital_status	occupation	relations
0	0	40	Private	168538	HS-grad	9	Married-civ- spouse	Sales	Husba
1	1	17	Private	101626	9th	5	Never-married	Machine- op-inspct	Own-cl
2	2	18	Private	353358	Some- college	10	Never-married	Other- service	Own-cl
2 manua y 24 arahaman									

3 rows × 24 columns

In [13]:

Out[13]:

	id	age	fnlwgt	education_num	sex	capital_gain	capital_loss	hours_per_week	targ
0	0	40	168538	9	1	0	0	60	
1	1	17	101626	5	1	0	0	20	
2	2	18	353358	10	1	0	0	16	
3	3	21	151158	10	2	0	0	25	
4	4	24	122234	10	2	0	0	20	
6507	6507	35	61343	13	1	0	0	40	9(
6508	6508	41	32185	13	1	0	0	40	9(
6509	6509	39	409189	3	1	0	0	40	9(
6510	6510	35	180342	9	1	0	0	40	9(
6511	6511	28	156819	9	2	0	0	36	9(

32561 rows × 16 columns

→

In [14]:

```
X_cat = all_dat_n.drop(['target'],axis=1)
y = all_dat_n['target']
```

In [16]:

```
train_n = all_dat_n.loc[ (all_dat_n['target']==0) | (all_dat_n['target']==1) , : ]
test_n = all_dat_n.loc[ all_dat_n['target']==999 , : ]
print(train_n.shape, test_n.shape)
```

(26049, 16) (6512, 16)

In [17]:

03. 모델 구축 및 평가하기

목차로 이동하기

로지스틱 모델

In [22]:

```
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
```

In [21]:

```
model = LogisticRegression()
model.fit(X_train, y_train)
pred_log = model.predict(X_test)

model.score(X_train, y_train), model.score(X_test, y_test),
```

Out[21]:

(0.7960403641548756, 0.7901471529110684)

혼동 행렬

In [23]:

```
confusion = confusion_matrix(y_test, pred_log)
print("오차 행렬:\mun{}".format(confusion))
```

```
오차 행렬:
[[5509 380]
[1260 666]]
```

In [24]:

	precision	recall	f1-score	support
50K>= 50K<	0.81 0.64	0.94 0.35	0.87 0.45	5889 1926
accuracy macro avg weighted avg	0.73 0.77	0.64 0.79	0.79 0.66 0.77	7815 7815 7815

f1-score 0.45

In [25]:

```
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import AdaBoostClassifier
from sklearn.ensemble import GradientBoostingClassifier
```

In [26]:

```
model = RandomForestClassifier()
model.fit(X_train, y_train)
pred_rf = model.predict(X_test)

model = AdaBoostClassifier()
model.fit(X_train, y_train)
pred_ada = model.predict(X_test)

model = GradientBoostingClassifier()
model.fit(X_train, y_train)
pred_gr = model.predict(X_test)
```

In [27]:

	precision	recall	f1-score	support
50K>= 50K<	0.82 0.59	0.91 0.40	0.86 0.48	5889 1926
accuracy macro avg weighted avg	0.71 0.77	0.65 0.78	0.78 0.67 0.77	7815 7815 7815

In [28]:

	precision	recall	f1-score	support
50K>= 50K<	0.82 0.67	0.94 0.36	0.88 0.47	5889 1926
accuracy macro avg weighted avg	0.74 0.78	0.65 0.80	0.80 0.67 0.78	7815 7815 7815

In [29]:

	precision	recall	f1-score	support
50K>= 50K<	0.83 0.64	0.93 0.40	0.87 0.50	5889 1926
accuracy			0.80	7815
macro avg	0.74	0.67	0.68	7815
weighted avg	0.78	0.80	0.78	7815

• GradientBoostingClassifier() 알고리즘이 가장 좋은 f1-score의 값을 갖는다. 0.50

교육용으로 작성된 것으로 배포 및 복제시에 사전 허가가 필요합니다.

Copyright 2022 LIM Co. all rights reserved.