Adding and Subtracting Complex Numbers

1.
$$(3-4i)+(5+2i)$$

2.
$$(3+4i)-(5-2i)$$

3.
$$(2-7i)-(4+3i)$$

Multiplying Complex Numbers

1.
$$(3-4i) \times (5+2i)$$

2.
$$(2+7i) \times (4-3i)$$

Dividing Complex Numbers

1.
$$\frac{5-2i}{3+4i}$$

2.
$$\frac{4+3i}{2-6i}$$

Polar Form

Find the polar form of the following complex numbers:

1. 1 + 1i

2. 0 - 2i

3. 3 + 4i

4. 3 - 2i

Find the a + bi form of the following complex numbers:

1. $1 \angle \frac{\pi}{2}$

2. $7 \angle \frac{5\pi}{3}$

3. $5 \angle \frac{3\pi}{4}$

4. 3∠π

Exponentiation

1. $(1-1i)^3$

2. $(5+2i)^2$

3. $(8-4i)^7$

4. $(3+7i)^9$

The Riemann Hypothesis

Prove or disprove the following statement:

The nontrivial zeros of $\zeta(s)$ have real part equal to $\frac{1}{2}$.

Where:

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} \left\{ s \in \mathbb{C} \mid \text{Re}(s) > 1 \right\}$$
$$\zeta(s) = 2^s \pi^{s-1} \sin\left(\frac{\pi s}{2}\right) \Gamma(1-s) \zeta(1-s) \left\{ s \in \mathbb{C} \mid s \neq 1 \right\}$$