

低轨导航技术

第二组: 徐震霆、王子琪、李厚华、彭健坤

1 低轨卫星基本介绍

2 低轨导航与GNSS对比分析

3 低轨导航定位技术挑战

4 结论与展望

低轨卫星导航分类

低轨卫星导航系统有望实现信号强度 提升,精度提高,形成对基于中高轨星座 GNSS的增强、补充备份能力,同时具备独 立提供导航服务的潜力。

在实际设计和建设工程中,三类系统功能并不一定严格区分、在系统建设步骤、系统功能等方面可以部分交叉。

导航增强系统

导航增强系统不单独提供服务,主要解决现有GNSS系统在特定区域、场景下服务性能降低的问题,与基本导航系统共同提供服务,起到扩展服务区域,增强导航性能,提高服务指标等作用。

02 补充备份系统

补充备份系统在GNSS不可用的情况下具备独立提供导航服务的能力,保证用户服务的不间断,功能和性能指标允许一定程度的降低。补充备份系统在工作体制、信号频率等方面应与 GNSS 系统具有很强的互补性,在 GNSS 系统遭受干扰或打击时一般不会同时受损。

03 独立导航系统

独立导航系统卫星通过配备片上原子钟等方式 维持独立的时空基准,通过载波相位结合伪距等测量方式,具备单独提供服务的能力,功能、性能指标可达到或者超过目前 GNSS系统水平。同时,二者兼容互操作,可共同为用户提供更优服务。

低轨卫星发展历程

导航增强系统

PPP 快速收敛

低轨卫星的运行速度快,星座几何图形结构变化快,可以有效降低历元间观测值的相关性,从而加速PPP收敛,因此通过低轨卫星导航增强技术将有望将PPP更广泛地应用到实时高精度需求场景中。

表 4 LEO 增强、PPP、RTK、PPP-RTK 对比

Tab. 4 Comparison of LEO augmentation, PPP, RTK, PPP-RTK

	RTK	PPP	PPP-RTK	低轨增强
定位精度	水平:1cm+1×10 ⁻⁶	水平:10cm	水平:10cm	水平:10cm
	垂直:2cm+1×10 ⁻⁶	垂直:20cm	垂直:20cm	垂直:20cm
收敛时间	秒级(双频)	20~30min 1. 37min ^[38]	1min(双频)	1min(双频)
覆盖范围	区域覆盖	全球覆盖	区域覆盖	全球覆盖
建站密度	20~50km	全球大约 100 个 Veripos——94 个	$20{\sim}50\mathrm{km}$	全球 24 个[40]
服务系统	北斗地基增强系统	商业系统:Veripos、OminiStar、Trimble、中国精度等 GNSS系统:BDS b2b、Galileo HAS	QZSS-CLAS	建设中

导航增强系统

联合定轨

低轨星载接收机可作为 天基跟踪站,弥补地面观测站 分布不均匀的问题,提高 GNSS定轨精度。研究显示只 需要 2~3 颗低轨卫星参与联 合定轨即可显著改善GNSS卫 星的轨道精度。

电离层及对流层大气反演

低轨卫星的运行不受地 面条件的影响,而且不同倾角 轨道上的低轨卫星可以实现对 地球表面不同区域的覆盖,有 利于解决全球监测站分布不均 匀的问题。而且,低轨卫星可 以同时对其上部和下部的电离 层进行监测,这有助于研究电 离层的分层结构。

地球参考框架确定

得益于更全面的轨道覆盖,低轨卫星的加入非常有益于TRF的测定,特别是对地心坐标和尺度的估计。未来更多低轨卫星部署到近地空间后,有望进一步提高TRF的精度。

补充备份系统

- ▶补充备份系统一般支持终端采用多星单 历元、单星多历元多普勒定位解算以及 高程辅助等灵活多样的定位模式。
- ➤ 在10 min 的观测时间内,如果积分多普勒测量误差小于2.5 ns,可使得定位误差优于100 m。
- ▶随着卫星数量增加,当覆盖重数增加到二至三重时,定位精度将进一步提高,同时缩短定位时间。

图 5 总定位精度与积分多普勒测量误差的关系

独立导航系统

信号落地功率

- ➤ 在赋球波束条件下,卫星信号的空间哀减与用户距离平方成正比。
- 》以铱星卫星为例,在5°仰角可视时,其距离用户约为2800km;在天顶正上方时,其距离用户约780km。相比之下,GPS卫星距离用户从20000km到25000km。
- → 如图1所示,铱星的落地功率大约比GPS 卫星高 30dB。从实际接收载噪比来看, GPS为45dBHz,而 Iridium 可以达到 80~45dBHZ。

独立导航系统

覆盖性

- 》从用户角度来看,用户需要观测不少于4颗卫星才能定位,实际用户观测卫星数量往往需要6颗以上。由于低轨卫星覆盖区域较小,需要更多低轨卫星数量。
- ➤如图2所示,以192颗极轨卫星为例,可见卫星数量平均为62颗,而 Spacex 可见星平均数量将超过 100 颗。
- ► 从成本角度来看,按照单颗低轨卫星制造与发射成本为100万美元计算,192 颗卫星不到2亿美元,远远小于 GPS 卫星单颗5 亿美元的代价。

图 2 低轨卫星覆盖性[32]

独立导航系统

精度因子和定位精度

- ▶ 相同覆盖数下,低轨导航系统具有和现有中高轨卫星导航系统类似的 DOP值分布; 低轨星座卫星数量可以更多,其 DOP值相对于 GNSS 星座具有优势。
- ➤ 根据 2016年斯坦福大学仿真结果,现有 GNSS 的 DOP 值在1~3 之间,而巨型星 座的 DOP 普遍在1以内。
- ➤ 用户定位精度=用户 DOP 值x用户测距误差(SIS URE)目前,GPS 的 SIS URE为0.82m,假定低轨卫星SIS URE 模型与GPS 类似,其 SIS URE 为 3.3m。GNSS定位精度与 LEO 定位精度相当。

图 3 不同星座 DOP 值[32]

依赖GNSS的时空基准建立——时间基准

星载原子钟

	GPS原子钟	芯片原子钟
时钟更新周期	一天一次	轨道运行一周 (100min)
更新时刻稳定度	3*10 ⁻¹⁴	1*10 ⁻¹²
不确定度/ns	2.5	6

芯片原子钟

芯片原子钟时钟稳定度与GNSS星载原子钟相差2个量级, 因此低轨导航时间基准建立和维持与星载原子钟存在巨 大差距。

依赖GNSS的时空基准建立——时间基准

低轨导航增强系统通过**时频保持与传递**,维持低轨星座内部、GNSS系统及导航用户的时频统一

依赖GNSS的时空基准建立——空间基准

低轨卫 星定轨应用

低轨卫星接收GNSS信号以 测定自身精密轨道

对GNSS轨道精度测 定的增强

动力学定轨法,几何定轨法、约化动力学 定轨法以及利用实时 精密星历和低轨卫星 GNSS观测数据联合解算的RT-PPP算法 LEO作为天基监测站联合地面监测站,利用低轨GNSS观测数据及地 面监测数据实现联合定轨

依赖GNSS的时空基准建立——空间基准

针对一步法定轨、两步法定轨以及星载PPP定位方法的选择将是下一步空间基准建立与维持需要研究的内容。

不依赖GNSS的时空基准

公开研究成果相对较少,类比中高轨GNSS,低轨星座时空基准需要星间链路以及大量地面站网,目前尚无成熟完整的解决方案,这也是未来需要研究的方向之一。

星座设计——信号覆盖性

应用	覆盖	卫星数量	卫星载荷	体制
导航增强	单充、双重	60~150	双频GNSS接收机、 信号播发载荷、 高稳晶振	信号+信息增强
补充备份	双重及以上	150~200	双频GNSS接收机、 双频信号播发载荷、 高稳晶振	多普勒定位等
独立导航	四重及以上	400+	双频GNSS接收机、 至少双频信号播发 载荷、独立原子钟	载波测量、 伪距测量

星座设计——星座构型

极轨道星座

极轨道是指卫星在地球两极南北 向运行的轨道,即轨道倾角为90°。 几个具有相 同卫星数、相同轨道 高度和特定空间相位关系的极轨 道平面构成了一个极轨道星座, 具有覆盖均匀特点。 Walker 星座

walker星座由几个相同高度和倾角的圆轨道组成。每个轨道平面的升交点赤径在赤道面内均匀分布,所有卫星在轨道面上均布,能提供稳定的全球或区域覆盖,具有中低纬度覆盖特点。

信号体制——低轨增强信号体制

注信号频点选择

- □ 考虑低轨增强信号与GNSS信号 频点兼容问题。
- □ 国际电信联盟ITU在L频段划分 了137MHz带宽的导航信号频率, 划分了7MHz带宽通信信号频率。
- □ 低轨导航信号频率将从上述频率 拥挤的L频率中选择,并满足相 关ITU规定。

第 信号调制

- □ 需要与现有信号体制相兼容
- □ 需要提升民用导航公开服务的抗 欺骗能力

★ 高精度增强

- □ 设计广播电文能够表征低轨卫星 高精度轨道和钟差
- □ 低轨卫星轨道主要与摄动力相关, 与中高轨卫星所受摄动力相比, 低轨卫星受到大气阻力影响,其 受到摄动力更为复杂。
- □ 现有北斗广播星历参数无法表征 低轨卫星轨道,因此低轨卫星广 播电文设计也成为难点之一。

信号体制——低轨导航通信融合信号体制

低轨导航通信融合

- □ 可选择卫星通信的频率资源,包括 L、C、Ku以及Ka等.
- □ Ka 频 段 的 优 点 是 可 用 带 宽 大 (200MHz),可采用点波束播发,抗 干扰能力强;缺点包括传播损耗大,同等传播距离比L频段高20db以上,且易受天气影响,雨衰大。

信号调制

- 需要考虑导航信号与通信信号一体 化设计.
- 通导信号一体化播发可采用频分、 时分以及码分等复用方式中的一种 或者灵活组合。

监测评估技术

由于LEO单星覆盖性较小,现有地面监测网密度远远不够,如何实现低轨导航监测评估将是技术挑战之一。

低轨导航应用方向

一、空间段

1、GNSS高精度定轨

- ➤ 利用较少数量的低轨卫星对现有中高 轨GNSS卫星信号的天基监测和高精 度定轨。
- ➤ 降低中高轨GNSS的地面建站压力, 并提升定轨精度。

2、厘米级高精度导航增强

- 低轨导航增强具有全球覆盖以及收敛时间相对 较短的优势。
- 在通信网络和地面站不覆盖区域有一定的优势, 但高精度定位收敛时间缩短的程度相对有限。
- ➤ 与PPP、RTK以及快速发展的PPP-RTK技术在 综合成本的考量下,孰优孰劣有待考察

低轨导航应用方向

3、通导一体化

- > 基于通信星座建立低轨导航系统
- ▶ 有丰富的信号频点选择(抗干扰)
- > 星座建设与运营成本等方面具有特定优势

表 2.三种通导融合技术形式

技术形式	优势	
搭载 PNT 有效载荷	1.载荷模块化 2.与卫星通信任务相独立 3.兼容现有导航设备	1.星上硬件资源有限 2.载荷生产与测试成本高
非合作 PNT	1.无需与星座持有者合作 2.服务与协调成本低 3.终端用户隐匿性强	1.被动使用信号 2.大型宽带星座机会信号 会出现间歇性与完全不可 用的情况 3.不能保证用户使用需求 完好性
合作 PNT	1.保障用户使用需求完好性 2.不要求卫星在轨资源分配重大变化 3.充分利用宽带卫星硬件与频率资源	1.运营商支持成本高 2.融合信号设计、调度算 法开发的难度高

通信导航融合技术将卫星导航系统与通信系统相融合,依托现有低轨通信互联网星座,在满足用户通信需求的同时也可提供PNT服务,是整合星座资源的最佳途径。

低轨导航发展方向

二、地面段

- ▶ 地面段主要包括GNSS/低轨监测站、 GNSS/低轨数据处理中心,其他数据传 输和业务管控等与现有地面设施复用。
- ▶ 充分利用现有资源,通过新增或者改造实现国内监测站,实现高精度伪码、载波相位测量量收集,支撑高精度定轨和钟差确定。

低轨导航发展方向

三、用户段

- > 终端采用通导一体化设计。
- ▶ 根据可见北斗卫星和低轨卫星数量,综 合收集观测信息,自主选择定位解算方 法。
- ➤ 支持多源融合定位,解算模式包括GNSS 独立定位、低轨独立定位、GNSS与低轨 组合定位以及复杂电磁环境下辅助北斗 定位等模式。

导航增强

增强导航信号落地功率,加速定位收敛速度,提升定位 精度、完好性等指标。

导航备份

补充备份系统平时具备与基本导航系统共同提供服务的能力,在GNSS系统不可用时,播发双频信号利用其他体制提供导航服务。

独立导航

满足复杂电磁环境下的米级精度抗干扰导航定位需求。 维持独立的时空基准,功能、性能指标可达到或者超 过目前GNSS系统水平,可独立提供服务。

