D1. Power Vertical

25 баллов

Вам даны значения z-координат модельных объектов плоской подсистемы Галактики. Постройте гистограмму для распределения объектов и, представив дифференциальное распределение объектов в вертикальном направлении в форме

$$n(z) = n_0 \exp\left(-\frac{|z|}{h}\right),\,$$

оцените параметры данного распределения.

Nº	z , $\kappa \pi \kappa$	Nº	z , $\kappa \pi \kappa$						
1	0.22704	21	-0.58427	41	-0.50637	61	0.15507	81	-0.23273
2	-0.13200	22	0.10234	42	-0.04138	62	0.05679	82	0.11634
3	0.32721	23	-0.16321	43	0.04679	63	0.35165	83	-0.08477
4	-0.03158	24	0.26353	44	0.13386	64	-0.43251	84	0.21726
5	0.03651	25	-0.06483	45	0.76553	65	0.27426	85	0.48988
6	-0.10452	26	0.08800	46	-0.06870	66	-0.22000	86	-0.20985
7	-0.06620	27	0.45288	47	0.16596	67	-0.05502	87	0.02303
8	-0.01036	28	-0.08260	48	0.24685	68	0.03417	88	0.31723
9	-0.38663	29	-0.14202	49	0.25058	69	-0.12674	89	-0.08040
10	0.03326	30	-0.15234	50	0.00080	70	0.01198	90	0.07832
11	0.20565	31	-0.27634	51	-0.24046	71	0.00520	91	0.01004
12	-0.01514	32	0.18096	52	-0.23068	72	-0.04785	92	0.03118
13	0.15841	33	0.16880	53	0.03858	73	-0.17346	93	-0.00914
14	-0.00385	34	0.60287	54	0.09131	74	-0.05568	94	0.08017
15	0.01349	35	0.14273	55	0.08087	75	0.00979	95	0.03391
16	-0.15878	36	-0.34618	56	0.84044	76	-0.12544	96	-0.07779
17	-0.30594	37	0.04100	57	-0.27530	77	-0.07265	97	-0.08414
18	0.20428	38	0.44384	58	0.21010	78	0.04038	98	-0.38794
19	-0.14297	39	-0.31994	59	-0.33480	79	0.23834	99	0.00573
20	-0.02177	40	-0.06867	60	-0.54310	80	-0.92416	100	-0.15902
								-	

D2. В ожидании имперцев

25 баллов

Явин IV — четвёртый спутник газового гиганта Явин, пригодный для жизни, с тропической природой и кислородной атмосферой (32 г/моль). Простирающаяся до высоты около 100 км атмосфера Явина IV — среда сильно неоднородная. В научных целях на экваторе на высоте 1 км над поверхностью организована наблюдательная площадка «Холвард», с которой обозревается 31.3 тыс. км² окрестных земель. Она является базой по изучению атмосферы Явина IV.

Работа в жарком климате (28°C) сопряжена с определёнными трудностями. При перегревании организма заметно снижается основной обмен, тормозится течение окислительных процессов в клетках. Однако термостабилизация на станции не используется, поскольку это может влиять на результаты измерений.

С площадки запускают аэростат, который передаёт текущее время, собственную высоту h и показания манометра на борту p. Оцените массу Явина IV и его атмосферы.

Время	h, KM	p, кПа
09:23	1.0	99
09:42	2.3	81
10:06	3.9	64
10:11	4.9	55
10:30	6.2	46
10:57	7.3	38
11:16	8.9	30
11:26	10.2	25
11:34	11.7	20
11:47	13.4	15
11:57	15.5	11
12:08	17.0	9
12:37	18.2	8

Время	<i>h</i> , км	р, кПа
13:14	16.7	10
13:20	14.6	13
13:26	13.6	15
13:36	12.4	18
13:59	11.0	22
14:04	9.3	28
14:14	8.3	33
14:41	6.6	43
14:47	5.7	49
15:00	4.5	59
15:11	3.4	69
15:19	2.0	85
15:30	0.0	115

D3. Однажды долгой зимней ночью...

25 баллов

Однажды долгой зимней ночью наблюдали затменно-переменную (физически двойную) звезду. Определите отношение радиусов компонентов системы и их спектральные классы, если в главном минимуме система наблюдается как звезда класса КО.

m_V	Время
13.19	14:36
13.35	14:47
13.68	15:00
13.71	15:12
13.64	15:24
13.39	15:36
13.19	15:47
13.16	16:06
13.07	16:36
13.05	16:53
13.07	17:17
13.09	17:36
13.12	18:00
13.23	18:23

Время
18:47
19:06
19:47
20:12
20:51
21:00
21:12
21:36
21:47
22:00
22:12
22:23
22:47
23:23

D4. Этюд в полутонах

25 баллов

Среди классических цефеид выделяется подтип, характеризующийся синусоидальными кривыми блеска с пониженной амплитудой переменности. Считается (хотя это окончательно не доказано), что такие звёзды пульсируют в первом обертоне, а при более коротких периодах — и во втором обертоне:

F — основная мода, 10 и 20 — первый и второй обертоны. Цифры справа от каждой кривой блеска — период в сутках

Что такое обертон? Рассмотрим колебания струны: 1 — колебание всей струны образует основной тон, 2 — колебание половинок образует первый обертон, 3 — колебание третей — второй обертон и т. д.

В результате работы миссии OGLE-III* был составлен каталог цефеид одной из близких карликовых галактик-спутников Млечного Пути, часть которого представлена в таблице.

Колебания струны

- D4.1. Определите, какие из представленных цефеид колеблются в основной моде, а какие во втором обертоне.
- D4.2. Оцените расстояние до этой карликовой галактики, если одна из ближайших цефеид δ Цефея (колеблется в основной моде) имеет видимую звёздную величину $m_I = 3.22^{\rm m}$ и период $5.366316^{\rm d}$ при годичном параллаксе 3.77 mas.
- D4.3. Определите параметры зависимости абсолютной звёздной величины от десятичного логарифма периода (в сутках):
 - а) для цефеид, колеблющихся в основной моде;
 - b) для цефеид, колеблющихся во втором обертоне.
- D4.4. Оцените ошибки определения параметров зависимостей.

^{*}OGLE — оптический эксперимент по гравитационному линзированию.

Q21S1D Страница 6 из 6

К задаче 4. Этюд в полутонах

 $\langle I \rangle$ — средняя звёздная величина, A_I — амплитуда её колебаний, P — период

Обозначение	$\langle I \rangle$, mag	<i>P</i> , d	A_I , mag
OGLE-0002	15.672	3.118120	0.257
OGLE-0005	14.661	5.612058	0.521
OGLE-0016	13.707	10.50646	0.115
OGLE-0079	13.114	22.54332	0.681
OGLE-0091	14.767	0.815849	0.144
OGLE-0102	16.137	0.839960	0.054
OGLE-0122	16.630	1.292998	0.434
OGLE-0135	16.693	0.589394	0.039
OGLE-0298	16.229	0.778932	0.042
OGLE-0336	16.195	0.748112	0.050
OGLE-0356	13.653	12.68385	0.688
OGLE-0394	14.359	7.236789	0.305
OGLE-0603	15.546	1.200002	0.044
OGLE-0624	15.508	1.067243	0.026
OGLE-0626	15.924	2.189692	0.365
OGLE-0683	13.427	14.67694	0.559
OGLE-0712	12.742	20.70427	0.497
OGLE-0760	16.094	0.879519	0.016
OGLE-0820	13.534	16.83644	0.524
OGLE-0821	12.610	25.80322	0.471
OGLE-1031	13.312	18.46960	0.524
OGLE-1058	12.475	30.39895	0.706
OGLE-1236	16.359	0.682797	0.044
OGLE-1551	15.977	0.930830	0.059
OGLE-1555	14.950	0.494631	0.818
OGLE-2019	12.704	28.10340	0.776
OGLE-2116	16.240	0.649181	0.056
OGLE-2215	14.794	0.852869	0.311
OGLE-2320	15.652	1.045948	0.043
OGLE-2495	15.971	0.882409	0.050