Evolution of galaxy dynamics over the last 10 Gyrs with MUSE/VLT

de Paris

Author: Mercier Wilfried

Supervisor: Contini Thierry (IRAP) Co-Supervisor: Epinat Benoit (LAM)

Internship at IRAP 11 March 2019 - 26 July 2019

Galaxy evolution through time

Why studying kinematics?

Explain the co-evolution of morphology with kinematics

- \triangleright main processes responsible for disc formation and settling ?
- $\,\rhd\,$ impact of merging, inflows and outflows on these processes ?
- \triangleright kinematics \rightarrow rotation curve \rightarrow dark matter and angular momentum distribution ?

Integral Field Spectroscopy & MUSE

IFS:

- \triangleright 3D cubes (2D spatial + 1D spectral)
 - \rightarrow photometry + kinematics

MUSE:

- $\triangleright 1 \times 1 \operatorname{arcmin}^2 \operatorname{FoV} \to \mathbf{environment}$
- \triangleright 0.2 arcsec spatial sampling
- ightharpoonup spectral range [4650 Å, 9300 Å]
- ▶ seeing-limited or AO observations
- - ightarrow low-mass galaxies + blind surveys

MUSE instrument. Credit: Contini Thierry (IRAP)

Our sample

HST image of COSMOS group CGr30

- > 16 MUSE fields in COSMOS area
- \triangleright exposures from 1 to 10 hr
- $ightharpoonup ext{seeing-limited} \ (FWHM \lesssim 0.7\text{"}) ext{ or AO} \ (FWHM \lesssim 0.5\text{"})$
- $ho \sim 500$ field galaxies with [OII] detection
 - $\begin{array}{c} \cdot \text{ HST-ACS} \\ \text{ counterparts} \end{array}$
 - $0.4 \le z \le 1.4$

Methodology

- I. Morphological information
 - \triangleright half-light radius $R_{1/2}$ to select resolved galaxies
 - · Cassata, Tasca and Zurich catalogues
 - > ellipticitiy to compute the inclination
 - · fixed input for the kinematical model

- II. Kinematical modelling
 - ightharpoonup recover $V_{
 m max}$ and $\sigma_{
 m v}$

III. Tully-Fisher relation

Checking morphological parameters Half-light radius

GALFIT run by V. Abril-Melgajero (LAM) on structure galaxies

spheroidal disk-like irregulars

Checking morphological parameters Ellipticity

> values are consistent between catalogues

 ⊳ scatter is due to bulge dominated (spherically symmetric) systems

Characteristics of our sample Redshift distribution

The total number corresponds to galaxies with photometric data in Cassata and/or Zurich catalogues.

- \triangleright sample of 103 galaxies with $R_{1/2} > 0.35$ " and SNR > 5
- \triangleright we loose galaxies at $z \approx 1.4$
- > redshift distribution is not drastically changed

Characteristics of our sample Mass-SFR relation

massive quiescent (low [OII]) and very low mass galaxies

are lost

Kinematical modelling Cleaning galaxies

Kinematical modelling Fitting a model

First results Tully-Fisher relation

Perspectives

Short term:

 \triangleright TFR evolution with z

Long term:

- ➤ Improve morphological modelling
- ➤ Angular momentum evolution ?
- > Dark matter vs. luminous mass?
- \triangleright better selection + larger sample

