Zusammenfassung Mechanik II

Nina Schmidt - nischmidt@ethz.ch

1 Repetition

α	0° [0]	30 [°] [π/6]	45 [°] [π/4]	60 [°] [π/3]	90 [°] [π/2]	180 [°] [π]
$sin(\alpha)$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0
$cos(\alpha)$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1
$tan(\alpha)$	0	$\frac{\sqrt{3}}{2}$	1	$\sqrt{3}$	-	0

$$\begin{split} \cos(\alpha + \frac{\pi}{2}) & = -\sin(\alpha) & \mid & \cos(\alpha - \frac{\pi}{2}) = \sin(\alpha) \\ \cos(\frac{\pi}{2} - \alpha) & = \sin(\alpha) & \mid & \sin(\alpha - \frac{\pi}{2}) = -\cos(\alpha) \\ \sin(\frac{\pi}{2} - \alpha) & = \cos(\alpha) & \mid & \sin^2(\alpha) + \cos^2(\alpha) = 1 \end{split}$$

$$\begin{split} a\times b &= \begin{pmatrix} a_1\\a_2\\a_3 \end{pmatrix} \times \begin{pmatrix} b_1\\b_2\\b_3 \end{pmatrix} = \begin{pmatrix} a_2b_3-a_3b_2\\a_3b_1-a_1b_3\\a_1b_2-a_2b_1 \end{pmatrix} \quad a,b \in \mathbb{R}^3\\ a\times b &= -b\times a\\ \|a\times b\| &= \|a\|\cdot\|b\|\cdot \sin(\angle[a,b]) \triangleq \text{Fläche d. Parallelogramms} \end{split}$$

Koordinatentransformation

	Kartesisch	Zylindrisch	Sphärisch
x	x	$\rho \cos \varphi$	$r\sin\theta\cos\psi$
$\mid y \mid$	y	$\rho \sin \varphi$	$r \sin \theta \sin \psi$
	z	z	$r\cos\theta$
ρ	$\sqrt{x^2+y^2}$	ρ	$r \sin \theta$
φ	$\arctan \frac{y}{x}$	φ	ψ
z	z	z	$r\cos\theta$
r	$\sqrt{x^2 + y^2 + z^2}$	$\sqrt{\rho^2 + z^2}$	r
θ	$\arccos \frac{\sqrt{x^2+y^2}}{z}$	$\arctan \frac{\rho}{z}$	θ
$ \psi $	$\arctan \frac{y}{x}$	φ	ψ

Ortsvektor:
$$\underline{r}(t) \mid$$
 Geschwindigkeit: $\underline{v}(t) = \underline{\dot{r}}(t) = \dot{s} \cdot \underline{\tau}$ Beschleunigung: $\underline{a}(t) = \underline{\dot{v}}(t) = \underline{\dot{r}}(t) \mid$ Schnelligkeit: $\dot{s} = |\underline{v}(t)| = |\underline{\dot{r}}|$ Tangentialer Einheitsvektor: $\underline{\tau} = \frac{\underline{v}}{|\underline{v}|}$

Ortsvektor: $\underline{r}(t) = \rho(t)\underline{e}_{\rho}(\varphi(t)) + z(t)\underline{e}_{z}$

Geschwindigkeit: $\underline{v}(t) = \dot{\underline{r}}(t) = \dot{\rho}(t)\underline{e}_{\varrho} + \rho\dot{\varphi}(t)\underline{e}_{\varphi} + \dot{z}(t)\underline{e}_{z}$

Schnelligkeit: $\dot{s} = |v(t)| = \sqrt{\dot{\rho}^2 + (\rho \dot{\varphi})^2 + \dot{z}^2}$

Einheitsvektor in Abhängigkeit: $\underline{e}_{\rho}=\cos(\varphi)\underline{e}_{x}+\sin(\varphi)\underline{e}_{y}$

 $\underline{e}_{\varphi} = -\sin(\varphi)\underline{e}_x + \cos(\varphi)\underline{e}_y \quad | \quad \underline{e}_z \rightarrow \text{konstant}$

Ortsvektor:
$$\underline{r}(t) = r(t)\underline{e}_r(\theta(t), \psi(t))$$

$$\text{Geschwindigkeit:} \qquad \underline{v}(t) = \underline{\dot{r}}(t) = \dot{r}(t)\underline{e}_r + r\dot{\theta}(t)\underline{e}_\theta + r\cdot sin(\theta)\dot{\psi}(t)\underline{e}_\psi$$

Schnelligkeit:
$$\dot{s}=|\underline{v}(t)|=\sqrt{\dot{r}^2+(r\dot{\theta})^2+(r\cdot sin(\theta)\dot{\psi})^2}$$

Einheitsvektor in Abhängigkeit:

$$\underline{e}_r = \sin(\theta) \cos(\psi) \underline{e}_x + \sin(\theta) \sin(\psi) \underline{e}_y + \cos(\theta) \underline{e}_z$$

$$\underline{e}_{\theta} = \cos(\theta) \cos(\psi) \underline{e}_x + \cos(\theta) \sin(\psi) \underline{e}_y - \cos(\theta) \underline{e}_z$$

$$\underline{e}_{\psi} = -\sin(\psi)\underline{e}_x + \cos(\psi)\underline{e}_y$$

3 Lagerbindungen und Lagerkräfte

4 Beanspruchung in geraden Balken

Symbol	Name	Beanspruchung auf:		
N	Normalkraft	Zug $(N>0)$ Druck $(N<0)$		
Q_2, Q_3	Querkräfte	Schub		
T	Torsionsmoment	Torsion		
M_2, M_3	Biegemomente	Biegung		

- 1. Lagerkräfte am Gesamtsystem bestimmen
- 2. Körper schneide, Laufvariable und Schnittgrössen einführen
- Gleichgewichtsbedingungen für das abgegrenzte System aufstellen → Schnittgrössen berechnen → Momentenbedingung bzgl. Schnittpunkt!
- 4. Je nach Aufgabenstellung → Beanspruchungsdiagramm zeichnen

Gelten für gerade Stabträger. q steht für Kraftverteilung:

$$\begin{cases} Q_y' = \frac{d}{dx}Q_y = -q_y \\ M_z' = \frac{d}{dx}M_z = -Q_y \\ M_z'' = \frac{d^2}{dx^2}M_z = q_y \end{cases} \implies \begin{cases} Q_z' = \frac{d}{dx}Q_z = -q_z \\ M_y' = \frac{d}{dx}M_y = Q_z \\ M_y'' = \frac{d^2}{dx^2}M_y = -q_z \end{cases}$$

Wichtig: Niemals über unstetige Belastungen (Einzelkräfte und Einzelmomente) integrieren! Bestimmung der Integrationskonstanten aus folgenden Randbedingungen

Lagerart	Symbol	Q	M	N
-Auflager	A	Q≠0	M=0	N=0
-Festlager	A	Q≠0	M=0	N≠0
-Einspannung	1	Q≠0	M≠0	N≠0
-Freies Ende	· · · · · · · · · · · · · · · · · · ·	Q=0	M=0	N=0
-Gelenk	^	Q≠0	M=0	N≠0

- $Q={\sf positive\;Lagerkraft},$ wenn Laufvariable weg vom Lager
- Q = negative Lagerkraft, wenn Laufvariable zum Lager

5 Beanspruchung im gekrümmten Balken

Es lohnt sich, in Polarkoordinaten Symbole sind dieselben, wie bei Abs. 4

Bestimmung der Beanspruchung:

- 1. Lagerkräfte bestimmen
- 2. Balken schneiden und neue Laufvariable φ einführen (Achtung, hier Winkel, resp. Bogenmass!)
- 3. Beanspruchungskomponenten einführen
- 4. Gleichgewichtsbedingungen aufstellen → bei Integration eine neue Integrationsvariable α einführen und von 0 bis φ

Die Vorzeichen stehen in direkter Beziehung zur Richtung der geführten Schnittgrössen. Diese gelten für gekrümmte Balken:

$$Q_r' - N + R \cdot q_r = 0$$
$$Q_z' + R \cdot q_z = 0$$

$$M'_r - T + R \cdot Q_z = 0$$
$$M'_z - R \cdot Q_r = 0$$

Beanspruchungsdiagramme

Lastfall:	Einfluss der Querkraft	Einfluss auf Biegemoment	
Einzelmoment	-	Sprung	
Einzelkraft	Sprung	Linear / Knick	
Gleichförm. Kraftverteilung	Linear	Quadratisch	
Dreiecksverteilung	Quadratisch	Kubisch	

- Knotengleichgewicht

 - 2. Gleichgewichtsbedingungen an jedem Knoten aufstellen ightarrow Stabkräfte als Zugkräfte einführen (Pendelstütze)
 - 3. Gleichgewichtssysteme auflösen \rightarrow Stabkräfte S_i
 - 4. S>0 o Belastung auf Zug
 - $S < 0 \rightarrow \text{Belastung auf Druck}$

Dreikräfteschnitt

- 1. Lagerkräfte bestimmen
- 2. An geeigneter Stelle max. 3 Stäbe durchschneiden und Stabkräfte S_i
- 3. Momentengleichgewicht am Schnittpunkt zweier unbekannten Stabkräfte → Berechnung der dritten Stabkraft
- Komponentenbedingung → Bestimmung der beiden anderen unbekannten

• Prinzip der virtuellen Leistung (PdvL)

- 1. Stab entfernen und Stabkraft \boldsymbol{S}_i als Zugkraft (+) einführen
- 2. Zulässige virtuelle Bewegung einführen, d.h. eine Bewegung einführen, die mit den kinematischen Bedingungen (Lager) des Fachwerks verträglich ist
- 3. Bestimmung der Geschwindigkeit in dne Knoten, in denen Kräfte wirken
- 4. Aus dem Prinzip der virtuellen Leistung folgt: $P=0
 ightarrow { t Berechnung der}$ unbekannten Stabkraft S_i

Wichtig! Immer nur einen Stab entfernen!

Spannungen

$\underline{n}_{\mathcal{O}}$ ist normiert und σ ist nur der Betrag $\sigma_n = (\underline{\underline{T}} \cdot \underline{n}_o) \cdot \underline{n}_o$ $= \underline{s} \cdot \underline{n}_{0}$

$$\begin{array}{ll} = \underline{s} \cdot \underline{n}_{O} \\ \tau_{n} = (\underline{\underline{T}} \cdot \underline{n}_{O}) \cdot \underline{t}_{O} \\ &= \underline{s} \cdot \underline{t}_{O} \\ &= |\underline{s} - \sigma_{n} \cdot \underline{n}_{O}| \end{array}$$

Definition Spannung:
$$\sigma:=$$
 Kraft pro Fläche $=Pa=rac{N}{m^2}$

• Ein Spannungstensor ist definiert durch einen Spannungsvektor s von drei senkrecht aufeinanderstehenden Flächenelement in einem Punkt

zur Erinnerung:
$$\underline{\underline{s}}(\underline{n}) = \underline{\underline{T}} \cdot \underline{n}$$

• Koordinatentransformation eines 2D-Tensors:

$$\sigma_{\xi} = \cos^{2}(\alpha) \cdot \sigma_{x} + \sin^{2}(\alpha) \cdot \sigma_{y} + 2 \cdot \sin(\alpha)\cos(\alpha) \cdot \tau_{xy}$$

$$\sigma_{\eta} = \sin^{2}(\alpha) \cdot \sigma_{x} + \cos^{2}(\alpha) \cdot \sigma_{y} - 2 \cdot \sin(\alpha)\cos(\alpha) \cdot \tau_{xy}$$

$$\tau_{\xi\eta} = (\sigma_{y} - \sigma_{x})\sin(\alpha)\cos(\alpha) + \tau_{xy}\left(\cos^{2}(\alpha) - \sin^{2}(\alpha)\right)$$

7.3 Normal- und Schubspannungen 2D

$$\sigma_n(\alpha) = \cos^2(\alpha) \cdot \sigma_x + \sin^2(\alpha) \cdot \sigma_y + 2 \cdot \sin(\alpha)\cos(\alpha) \cdot \tau_{xy}$$
$$\tau_n(\alpha) = (\sigma_y - \sigma_x) \cdot \sin(\alpha)\cos(\alpha) + \tau_{xy} \left[\cos^2(\alpha) - \sin^2(\alpha)\right]$$

- ullet Positive Normalspannungen: (Zug $\Rightarrow \sigma > 0$) wirken in Richtung der Flächennormalen n
- Positive Schubspannungen: (Druck $\Rightarrow \tau > 0$) wirken in Richtung von t

7.5 Hauptwerte und Hauptrichtungen 2D

Hauptwerte ← 2D:

Hauntrichtungen 2D:

$$\text{Winkel der 1. HR:} \quad \alpha_1 = \frac{1}{2} \cdot \arctan\left(\frac{2\tau_{xy}}{\sigma_x - \sigma_y}\right)$$

1. HR im Bereich: $0 \le \alpha_1 \le 90^{\circ}$

→ wenn nicht im Bereich, mit 90° addieren od. subtrahieren

2. HR: $\alpha_2 = \alpha_1 + 90^{\circ}$

 $\rightarrow \alpha_1$ in $\sigma_{\mathcal{E}}(\alpha)$ und $\sigma_{\eta}(\alpha)$ einsetzen für Hauptwerte $\zeta_{1,2}$

Maximale Schubspannung 2D:

 \Rightarrow gilt bei ebenem Spannungszustand oder wenn $\underline{z} = Hauptrichtung$:

$$\tau_{\rm max} = \sqrt{\frac{1}{4}(\sigma_x - \sigma_y)^2 + (\tau_{xy})^2} \quad | \quad \alpha_{\tau, \rm max} = \alpha_1 \pm 90$$

Hauptwerte λ_i 3D:

 $\lambda_i = \text{Eigenwerte}, \ n_i = \text{Eigenvektoren} \Rightarrow \text{L\"ose } \det(\underline{T} - \lambda \cdot \mathbb{I}) = 0$

$$\begin{aligned} \det(\underline{\underline{T}} - \lambda \cdot \mathbb{I}) &= 0 \quad \Rightarrow \quad \lambda^3 - A_1 \lambda^2 - A_2 \lambda - A_3 &= 0 \\ A_1 &= \sigma_x + \sigma_y + \sigma_z \\ A_2 &= -\sigma_x \sigma_y - \sigma_y \sigma_z - \sigma_x \sigma_z + (\tau_{xy})^2 + (\tau_{xz})^2 + (\tau_{yz})^2 \\ A_3 &= \det(\underline{\underline{T}}) \end{aligned}$$

Hauptrichtungen n; 3D:

Löse:
$$(\underline{\underline{T}} - \lambda_i \cdot \mathbb{I}) \cdot n_i = 0$$

• Maximale Schubspannung 3D:

$$\tau_{\max} = \frac{1}{2}[\max(\lambda_i) - \min(\lambda_i)]$$

weitere Beziehungen

HR	τ	$-\tau$	\underline{n}_i	<u>t</u>		
×	σ_y	σ_z	$\begin{array}{c} \cos(\alpha_i)\underline{e}_y \\ +\sin(\alpha_i)\underline{e}_z \end{array}$	$-sin(\alpha)\underline{e}_y + cos(\alpha)\underline{e}_z$		
у	σ_x	σ_z	$\begin{array}{c} \cos(\alpha_i)\underline{e}_x \\ +\sin(\alpha_i)\underline{e}_z \end{array}$	$-sin(\alpha)\underline{e}_x + cos(\alpha)\underline{e}_z$		
z	σ_x	σ_z	$\begin{array}{c} \cos(\alpha_i)\underline{e}_x \\ +\sin(\alpha_i)\underline{e}_y \end{array}$	$-\sin(\alpha)\underline{e}_x + \cos(\alpha)\underline{e}_y$		

Kesselformel:
$$\sigma_{arphi}\simeq -rac{R}{t}\cdot P_i$$
 mit $P_i=$ Innendruck; $R=$ Radius; $t=$ Wandstärke

$$\begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} = aei + bfg + cdh - gec - hfa - idb$$

Wenn Komponenten vom Spannungstensor \underline{T} als Funktion von $x,\,y,\,z$ gegeben sind, gelten die untenstehenden Beziehungen.

Ziel: Normalspannungsverteilung zu finden. f steht für die Raumkraftdichte, z.B. Gewichtskraft.

$$\begin{aligned} & \partial_x(\sigma_x) + \partial_y(\tau_{xy}) + \partial_z(\tau_{xz}) + f_x = 0 \\ & \partial_x(\tau_{xy}) + \partial_y(\sigma_y) + \partial_z(\tau_{yz}) + f_y = 0 \\ & \partial_x(\tau_{xz}) + \partial_y(\tau_{yz}) + \partial_z(\sigma_z) + f_z = 0 \end{aligned}$$

8 Verzerrungen

$$\begin{bmatrix} \underline{E} \end{bmatrix}_{xy} = \begin{pmatrix} \varepsilon_x & \varepsilon_{xy} & \varepsilon_{xz} \\ * & \varepsilon_y & \varepsilon_{yz} \\ * & * & \varepsilon_z \end{pmatrix}$$

$$= \begin{pmatrix} u_{x,x} & \frac{1}{2}(u_{x,y} + u_{y,x}) & \frac{1}{2}(u_{x,z} + u_{z,x}) \\ * & u_{y,y} & \frac{1}{2}(u_{z,y} + u_{y,z}) \\ * & * & u_{z,z} \end{pmatrix}$$

$$\begin{array}{ll} \gamma_{xy} = 2 \cdot \varepsilon_{xy} & \underline{\underline{v}(\underline{n})} = \underline{\underline{E}} \cdot \underline{n} \\ \gamma_{xz} = 2 \cdot \varepsilon_{xz} & \varepsilon_{n} = \underline{\underline{v}} \cdot \underline{n} \\ \gamma_{yz} = 2 \cdot \varepsilon_{yz} & \varepsilon_{nt} = |\underline{\underline{v}} - \varepsilon_{n} \cdot \underline{n}| \end{array}$$

$$\varepsilon_{xy} = \begin{cases} >0, \ \gamma \downarrow \\ <0, \ \gamma \uparrow \end{cases} \quad | \quad \gamma_{\max} = \varepsilon_1 - \varepsilon_2 = \varepsilon_{\max} \cdot 2$$

9 Stoffgesetze

$$\sigma = \frac{F}{A} \quad | \quad \sigma = E \cdot \varepsilon \quad | \quad G = \frac{E}{2(1+v)}$$

$$\Delta l = \frac{1}{E} \int_{0}^{l} \frac{N(x)}{A(x)} \, dx = \frac{F}{A \cdot E} \cdot l$$

 $\begin{array}{l} E = {\sf Elastizit"atsmodul} \; [\frac{N}{m^2}] \; \to \; {\sf Beziehung} \; {\sf zwischen} \; \sigma_x \; {\sf und} \; \varepsilon_x; \\ v = {\sf Querdehnungszahl} \; [3] \; \to \; {\sf Poissonzahl}, \; {\sf Materialkonstante}, \; 0 \; \leq \; v \; \leq \; 0.5; \end{array}$

 $G = \text{Schubmodul } \left[\frac{N}{m^2} \right] \rightarrow \text{Beziehung zwischen } \tau_{xy} \text{ und } \varepsilon_{xy}$

 $K = \mathsf{Kompressionsmodul} \; [\frac{N}{-2}] \to \mathsf{Beziehung} \; \mathsf{zwischen} \; \mathsf{Volumendehnung} \; \mathsf{und} \; \mathsf{Druck}$

3D-Fall:

$$\begin{split} \varepsilon_{x} &= \frac{1}{E} \left[\sigma_{x} - v(\sigma_{y} + \sigma_{z}) \right] + \alpha \cdot \Delta T \\ \varepsilon_{y} &= \frac{1}{E} \left[\sigma_{y} - v(\sigma_{x} + \sigma_{z}) \right] + \alpha \cdot \Delta T \\ \varepsilon_{z} &= \frac{1}{E} \left[\sigma_{z} - v(\sigma_{x} + \sigma_{y}) \right] + \alpha \cdot \Delta T \end{split}$$

$$\begin{split} \varepsilon xy &= \frac{1}{2} \gamma xy = \frac{\tau xy}{2G} \quad | \quad \varepsilon yz = \frac{1}{2} \gamma yz = \frac{\tau yz}{2G} \\ \varepsilon xz &= \frac{1}{2} \gamma xz = \frac{\tau xz}{2G} \quad | \quad \varepsilon v = spur(\underline{E}) = \varepsilon x + \varepsilon y + \varepsilon z \\ \sigma x &= \frac{E}{1+v} \left[\varepsilon x + \frac{v}{1-2v} (\varepsilon x + \varepsilon y + \varepsilon z) \right] - \frac{E}{1-2v} \cdot \alpha \Delta T \\ \sigma y &= \frac{E}{1+v} \left[\varepsilon y + \frac{v}{1-2v} (\varepsilon x + \varepsilon y + \varepsilon z) \right] - \frac{E}{1-2v} \cdot \alpha \Delta T \\ \sigma z &= \frac{E}{1+v} \left[\varepsilon z + \frac{v}{1-2v} (\varepsilon x + \varepsilon y + \varepsilon z) \right] - \frac{E}{1-2v} \cdot \alpha \Delta T \end{split}$$

$$\begin{split} \varepsilon_{x} &= \frac{1}{E}(\sigma_{x} - v \cdot \sigma_{y}) & | \quad \varepsilon_{y} = \frac{1}{E}(\sigma_{y} - v \cdot \sigma_{x}) \\ \varepsilon_{xy} &= \frac{1+v}{E} \cdot \tau_{xy} & | \quad \varepsilon_{xy} = \frac{1}{2} \cdot (2 \cdot \varepsilon_{45} \circ - \varepsilon_{x} - \varepsilon_{y}) \\ \sigma_{x} &= \frac{E}{1-v^{2}}(\varepsilon_{x} + v\varepsilon_{y}) & | \quad \sigma_{y} = \frac{E}{1-v^{2}}(\varepsilon_{y} + v\varepsilon_{x}) \\ \tau_{xy} &= \frac{E \cdot \varepsilon_{xy}}{1+v} \end{split}$$

10 Balkenbiegung

- Körper mit einfachen (zusammengesetzten) Geometrien:
 - 1. Körper in einfache Geometrien (Teilflächen od. Volumen) aufteilen
 - 2. Koordinatensystem und Ursprung definieren
 - 3. Teilflächen A_i berechnen
 - 4. Schwerpunkt einer jeden Teilfläche / Teilvolumens bestimmen
 - 5. Folgende Formeln anwenden:

$$x_{S} = \frac{\sum (x_{i} \cdot A_{i})}{\sum A_{i}} \quad | \quad y_{S} = \frac{\sum (y_{i} \cdot A_{i})}{\sum A_{i}} \quad | \quad z_{S} = \frac{\sum (z_{i} \cdot A_{i})}{\sum A_{i}}$$

beliebiges Koordinatensystem (e_{η}, e_{ξ}) :

$$\eta_S = rac{1}{A} \iint\limits_A \eta \; dA \quad | \quad \xi_S = rac{1}{A} \iint\limits_A \xi \; dA$$

$$\eta_{\mathsf{ges}} = \frac{1}{A_{\mathsf{ges}}} \cdot (A_1 \cdot \Delta \eta_1 + \ldots + A_i \cdot \Delta \eta_i)$$

 $\Delta\eta_i=$ Abstand von $\eta=0$ zum Schwerpunkt η_i des Körpers (Abstand zur $\xi\text{-Achse})$

$$I_{z} = \iint_{A} y^{2} dA$$

$$I_{y} = \iint_{A} z^{2} dA$$

$$C_{yz} = -\iint_{A} yz dA$$

$$I_{\xi} = \iint_{A} \eta^{2} dA$$

$$I_{\eta} = \iint_{A} \xi^{2} dA$$

 $I_n = I_u + (\Delta \xi)^2 \cdot A$ $I_{\xi} = I_z + (\Delta \eta)^2 \cdot A$ $C_{\eta\xi} = C_{yz} - \Delta\xi \cdot \Delta\eta \cdot A$

$$\begin{split} I_{ys} &= [I_{1y} + (\Delta z)^2 A_1] + \ldots + [I_{ny} + (\Delta z_n)^2 A_n] \\ I_{zs} &= [I_{1z} + (\Delta y)^2 A_1] + \ldots + [I_{nz} + (\Delta y_n)^2 A_n] \\ C_{yzs} &= [C_1 - \Delta \xi \cdot \Delta \eta \cdot A_1] + \ldots + [C_n - \Delta \xi \cdot \Delta \eta \cdot A_n] \end{split}$$

$$\begin{split} I_{\eta} &= \sin^2(\alpha)I_z + \cos^2(\alpha)I_y + 2\sin(\alpha)\cos(\alpha)C_{yz} \\ I_{\xi} &= \cos^2(\alpha)I_z + \sin^2(\alpha)I_y - 2\sin(\alpha)\cos(\alpha)C_{yz} \\ C_{\eta\xi} &= \cos(\alpha)\sin(\alpha)(I_z - I_y) + (\cos^2(\alpha) - \sin^2(\alpha)) \cdot C_{yz} \end{split}$$

10.3 Allgemeine Biegung

Normalspannung in x-Richtung:

$$\sigma(x,y,z) = \frac{N(x)}{A} - \frac{M_Z(x)}{I_Z} \cdot y + \frac{M_Y(x)}{I_Y} \cdot$$

DGL für Mittellinie:

Dehnung in x-Richtung:

$$\varepsilon(x, y, z) = u'_0(x) - y \cdot v''_0(x) - z \cdot w''_0(x)$$

DGL für Querkraft und Biegemoment:

$$M'_z(x) = -Q_y(x) \mid M'_y(x) = Q_z(x)$$

	В В	→ B
	I_y	I_z
1	$\frac{b \cdot h^3}{12}$	$\frac{h \cdot b^3}{12}$
2	$\frac{a \cdot h^3}{36}$	$\frac{h \cdot a^3}{36}$
3	$\frac{\pi}{4}\cdot(R^4-r^4)$	$=I_{\mathcal{Y}}$
4	$\frac{\pi}{4}\cdot (AB^3-ab^3)$	$\frac{\pi}{4}(BA^3 - ba^3)$
5	$h^3 \frac{(b_1+b_2)^2+2b_1b_2}{36\cdot(b_1+b_2)}$	$\frac{h}{48}(b_1+b_2)(b_1^2+b_2^2)$
6	$\frac{na^4}{96} \cdot \frac{2+cos(\alpha)}{(1-cos(\alpha))^2} \cdot sin(\alpha)$	$=I_{\mathcal{Y}}$
7	$\frac{1}{12}\cdot (BH^3-bh^3)$	$\frac{1}{12}\cdot (HB^3-hb^3)$
8	$\frac{1}{12}\cdot (BH^3-bh^3)$	$\frac{(H-h)B^3+h(B-h)^3}{12}$
9	$\frac{1}{12}\cdot (BH^3-bh^3)$	-

$$v''(x) = \frac{M_b(x)}{EI_z} \quad \text{oder} \quad v(x) = \frac{1}{EI_z} \iint M_b(x) \; dx$$

- Lösungsvorgehen für statisch unbestimmte Systeme:
 - 1. Flächenträgheitsmomente (I_u, I_z) berechnen
 - 2. Lagerkräfte bestimmen
 - 3. Beanspruchung bestimmen
 - 4. v''(x) integrieren
 - 5. Randbedingungen bestimmen
 - 6. v(x) bestimmen

10.6 Schiefe Biegung

 $M_2\,,\,M_3\,,\,I_3\,,\,I_2$ durch Projektion finden u_{x0},u_{y2},u_{z3} in Richtung der Hauptachsen

$$u'_{x0}(x) = \frac{N(x)}{EA} \mid u''_{y2}(x) = \frac{M_3(x)}{EI_3}$$
 ... $M_{\pi}(x)$

$$u_{z3}^{\prime\prime}(x) = -\frac{M_z(x)}{EI_2}$$

$$\sigma(x,y,z) = \frac{N(x)}{A} - \frac{M_3(x)}{I_3} \cdot y + \frac{M_2(x)}{I_2} \cdot z$$

11 Schubspannung infolge Biegung

$$\begin{split} \tau_{xy}(x,y) &= \frac{Q_y(x)}{I_Z} \cdot \frac{H_Z(y)}{b(y)} \\ H_Z(y) &= \int\limits_y^{y_{\text{max}}} \eta \cdot b(\eta) \; d\eta \\ y \; \text{im Schwerpunkt d. K\"orpers} \end{split}$$

$$\begin{split} \tau_{xs}(x,s) &= -\frac{Qy(x)}{I_Z} \cdot \frac{H_Z(s)}{e(s)} \\ H_Z(s) &= \int\limits_0^s y(\eta) \cdot e(\eta) \; d\eta \\ \text{Polarkoordinaten} &\to d\eta = r \cdot d\varphi \end{split}$$

$$|z_D| = \frac{T_B}{Q} \quad | \quad T_T = -T_B \quad | \quad H_z(s) = y_s \cdot A = y_s \cdot t \cdot s$$

 $F = \int au_{xs} \cdot \underbrace{e(\eta) \; d\eta} \; \; \; | \; \; \; \; ext{Richtung} \; z_D \; ext{aus Orientierung von} \; T_T$

(GGW: Q_D gleicht T_T im Schwerpunkt durch Hebelarm z_D aus)

Vorgehen Schubmittelpunkt:

- 1. Schubspannungen au_{xs} berechnen

$$ightarrow T_T = \int_{\Delta A} au_{xs} \; dA \cdot \Delta x$$

12 Torsion

Falls Querschnitt sich über Länge ändert:

$$(\Delta)\vartheta = \int\limits_a^b \frac{T(x)}{GI_T} \ dx \quad | \quad \vartheta' = \frac{T(x)}{GI_T} \quad | \quad \tau_{\rm max} = \frac{T}{W_T}$$

$$\left| \text{ Schubmodul } G = \frac{E}{2(1+v)} \quad \right| \quad \text{F\"{u}r } t \ll h \text{ gilt: } \ \tau_{xs} = 2G\vartheta'z$$

 $GI_T=$ Torsionssteifigkeit; $W_T=$ Torsionswiderstandsmoment für T(x) Torsionsbeanspruchung berechnen

12.1 Kreis und Vollquerschnitte

Kreis- und Vollquerschnitte	I_T	W_T	Verwölbung?	
1	$\frac{\pi R^4}{2}$	$\frac{\pi R^3}{2}$	nein	
2	$\frac{\pi(D^4-d^4)}{32}$	$\frac{\pi(D^4-d^4)}{16D}$	nein	
3	$2\pi R_m^3 t$	$2\pi R_m^2 t$	nein	
4	$\frac{\pi a^3 b^3}{a^2 + b^2}$	$\frac{\pi a b^2}{2}$	ja	
5	$0.141 \cdot a^4$	$0.208 \cdot a^{3}$	ja	
$6.1 ightarrow rac{h}{t} = 2$	$0.23 \cdot ht^3$	$0.25ht^2$	ja	
$6.2 ightarrow rac{h}{t} = 4$	$0.28 \cdot ht^3$	$0.28 \cdot ht^2$	ja	
$6.3 o \frac{h}{t} = \infty$	$\frac{ht^3}{3}$	$\frac{ht^2}{3}$	ja	

Für Kreisquerschnitte:
$$au_{x arphi}(r) = rac{T}{I_T} r$$
 und $au_{ ext{max}} = rac{T}{W_T}$ $I_T = I_p = I_z + I_y$

Verwölbung elliptischer Querschnitt: $n(y,z) = \frac{b^{\overline{2}-a^2}}{a^2+b^2} \cdot \vartheta' yz$

12.2 Dünnwandig geschlossene Querschnitte

U= Umlaufintegral entlang Profilmittellinie; $A_{m{m}}=$ von Profilmittellinie eingeschlossene Fläche: e = e(s) = Wandstärke

Dünnwandig offene Kreisquerschnitte: $I_T = \frac{2}{-}\pi Rt^3$

13 Energiemethoden

Integrale:	<i>s</i>	l p	ı	ı	ı	1	p, p.,	Di D.
p(x)	p		p	p				
k(x)	k	k	k	k	k	\triangle	k	k
$\int_{0}^{s} p(x)k(x)dx$	$\frac{1}{2}$ pks	$\frac{2}{3}$ pks	$\frac{1}{3}$ pks	$\frac{1}{6}$ pks	$\frac{1}{3}$ pks	$\frac{8}{15}$ pks	$\frac{ks}{2}(p_l+p_r)$	$\frac{ks}{6}(2p_l+p_r)$

Die Arbeit der äusseren Lasten (W_{ext}) entspricht der Deformationsenergie (U_{int})

$$W_{\text{ext}} = U_{\text{int}}$$

13.3 Statisch bestimmte Systeme

1. Freischnitt 0 System

2. Freischnitt 1 System

$$v=rac{1}{F}\cdot\int\limits_0^lrac{N^2}{EA}\;dx\;[\ldots]\;$$
 (ähnlich für weitere Terme) $heta=v'=rac{1}{M}\cdot\int\limits_0^lrac{N^2}{EA}\;dx\;[\ldots]\;$ (ähnlich für weitere Terme)

Voraussetzung: Angreifende Kraft und entsprechende Verschiebung haben dieselbe Richtung, denselben Angriffspunkt und System ist statisch bestimmt Vorgehen:

(Achtung, Lagerkräfte nur ausrechnen, wenn für Schritt 2 von Vorteil)

2. Beanspruchungsdiagramme erstellen

3. In 1. Arbeitssatz einsetzen, resp. in Integraltabelle von Abs. 14.1

$$v = \underbrace{\int\limits_{0}^{l} \frac{M_0 \, M_1}{E \, I_Z} \, dx}_{\text{Bigemoment}} + \underbrace{\int\limits_{0}^{l} \frac{N_0 \, N_1}{E \, A} \, dx}_{\text{Normalkraft}} + \underbrace{\int\limits_{0}^{l} \frac{T_0 \, T_1}{G \, I_T} \, dx}_{\text{Torsion}} + \underbrace{\int\limits_{0}^{l} \frac{Q_0 \, Q_1}{G \, A_S} \, dx}_{\text{Querkraft}}$$

Ziel: v bestimmen

Voraussetzungen: Statisch bestimmt, mehrere Kräfte sind möglich

- 1. Freischnitt 0-System
- 2. Freischnitt 1-System
- 3. Beanspruchungsdiagramme erstellen
- 4. In Arbeitssatz einsetzen, resp. in Integraltabelle von Abs. 14.1

14 Statisch unbestimmte Systeme

1. Freischnitt 0 System $\bigvee_{I} F \qquad \qquad \bigvee_{I} F$

2. Freischnitt 1 System

3. Freischnitt 2 System

Superpositionsprinzip:

$$v_{01} + v_2(F_A) = 0 \quad \Rightarrow \text{ auflösen nach } F_A$$

<u>Idee:</u> Zuerst Verschiebung v_{01} berechnen, die auftreten würde, wenn das Lager entfernt wird. Danach Verschiebung v_{02} berechnen, die auftreten würde, wenn nu die (variable) Lagerkraft auf das System wirkt. Superposition der beiden Verschiebungen muss aufgrund des Lagers = 0 ergeben.

Voraussetzung: statisch unbestimmtes System

Vorgehen:

- 1. Freischnitt 0-System | 4. Aus 0-System und 1-System v_{01} berechnen
- 2. Freischnitt 1-System | 5. Aus 2-System v_2 berechnen
- 3. Freischnitt 2-System | 6. Einsetzen $v_{01} + v_2 = 0$

15 Beanspruchung Kreisbogen

$$\begin{bmatrix} M_z \\ M_T \\ M_y \end{bmatrix} = \begin{bmatrix} \bigodot A_z & A_y \\ 0 & \bigodot A_z \\ -A_z & 0 \end{bmatrix} * \begin{bmatrix} r*sin(\alpha) \\ r*[1-cos(\alpha)] \end{bmatrix} - \begin{bmatrix} M_{A,z} \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} N \\ Q_y \\ Q_z \end{bmatrix} = \begin{bmatrix} -A_x & \bigcirc A_y & 0 \\ -A_y & \bigcirc A_x & 0 \\ 0 & 0 & -A_z \end{bmatrix} * \begin{bmatrix} sin(\alpha) \\ cos(\alpha) \\ 1 \end{bmatrix}$$

16 Ergänzungen

$$1Pa = 1 \frac{kg}{m \cdot s^2} = 1 \frac{N}{m^2} \rightarrow 1MPa = 1 \frac{N}{mm^2}$$

$$\rightarrow 1GPa = 1 \text{Milliarde } Pa$$

17 Nachtrag

Quellen:

- Formelsammlung von Frederik Pflug co. David Bamert (2021)
- Formelsammlung von Nick Büherer, ergänzt durch Micha Bosshart (2019)
- Theorie-Slides von Basile Morel aus MINT++ (2021)
- Mechanik I Zusammenfassung von Fabian Zürrer (2019)
- Übungsheft zu Mechanik II von Udo Lang, Bernard Messerey, u.a. (2006)
- Vorlesungsmaterial von Prof. Dr. Dirk Mohr (FS2021)
- Quellcode von Tabelle in Abs. 2 Koordinatentransformation von Leon Auspurg