# Computer Science II L3: SDE / $\tau$ -leaping

Marco S. Nobile, Ph.D.

Bachelor's Degree in Engineering Physics
Ca' Foscari University of Venice
A.Y. 2022-2023



#### Recap SDE

 Remember that a Stochastic Differential Equation (SDE) can be modeled as follows:



#### Euler-Maruyama

 We can use the Euler-Maruyama method to numerically solve and simulate the system of SDEs:

$$X(t + \Delta t) = X(t) + a(X(t), t) \cdot \Delta t + b(X(t), t) \cdot \sqrt{\Delta t} \cdot \mathcal{N}(0, 1)$$

- $\Delta t$  is the **step size**
- $\mathcal{N}(0,1)$  is a random number sampled from a **standard** Gaussian distribution

#### Toy exercise: stochastic oscillator

- Get back to the example of Harmonic Oscillator (HO)
  - Consider a **stochastic variant** of HO in which the collisions with particles introduce a **small amount of noise**
  - Forget about the physical meaning for a while, this is just an exercise
- Take back the HO equations that we saw in the previous lab
- Introduce additive noise terms in both the velocity and position ODEs
- Experiment with the **behavior** of the system, play with **parameters**, check what happens with different b functions (e.g., time-dependent)

#### Possible results







## Adaptive au-leaping

- Implement a very simple variant of the  $\tau$ -leaping algorithm with **adaptive step size**. It should work as follows:
  - 1. The user specifies a  $\tau_0$  value, a  $r\_tol$  "relative tolerance" value, and  $t_{max}$
  - 2. Calculate all propensities
  - 3. The algorithm performs a step using step size  $\tau$
  - 4. If the state is not valid (e.g., negative amounts) set  $\tau = \tau/2$  and go to step 3
  - 5. Calculate the new propensities
  - 6. Calculate the relative change of all propensities (see next slide)
  - 7. If the mean of all relative changes is greater than  $r_{tol}$  set  $\tau = \tau/2$  and go to step 3
  - 8. Update the system state, reset  $\tau = \tau_0$
  - 9. If  $t > t_{max}$  then halt, else iterate from step 2

### Calculating the relative change

• Given a reaction  $R_j$  we can calculate the relative change of the associated propensity as:

$$relchange_{j} = \frac{\left|a_{j}(\mathbf{X}(t+\tau)) - a_{j}(\mathbf{X}(t))\right|}{a_{j}(\mathbf{X}(t))}$$

- This is just one way to calculate the change
- Please note that this formula breaks down when  $a_j(\mathbf{X}(t)) = 0$ , which can happen with very high probability!