1.	Create Binary tree and perform following operations: a. Createb. Insertc. Display (using all 3 traversals with recursion)
2.	Create Binary tree and perform following operations: a. Create b. Display In-order traversal c. Depth of a tree
3.	Create Binary tree and perform following operations: a. Createb. Display In-order traversalc. Create a copy of a tree
4.	Create Binary tree and perform following operations: d. Create e. Display In-order traversal f. Display leaf-nodes
5.	Construct and expression tree from postfix/prefix expression and perform recursive and non-recursive In-order, pre-order and post-order traversals. Input: postfix expression a. Create tree b. All traversals
6.	Construct and expression tree from postfix/prefix expression and perform recursive and non-recursive In-order, pre-order and post-order traversals. Input: prefix expression a. Create tree b. All traversals
7.	Implement binary search tree and perform following operations: a. Insert b. Display In-order traversal c. Search
8.	Implement binary search tree and perform following operations:

a. Insert

c. Mirror image

b. Display In-order traversal

- 9. Implement binary search tree and perform following operations:
 - a. Insert
 - b. Display In-order traversal
 - c. Display level wise
- 10. Implement binary search tree and perform following operations:
 - a. Insert
 - b. Display In-order traversal
 - c. Delete (Case 1: Node to be deleted is the leaf)
- 11. Implement binary search tree and perform following operations:
 - a. Insert
 - b. Display In-order traversal
 - c. Delete (Case 2:Node to be deleted has only one child)
- 12. Implement binary search tree and perform following operations:
 - a. Insert
 - b. Display In-order traversal
 - c. Delete (Case 3: Node to be deleted has two children)
- 13. Represent any real-world graph using adjacency matrix:
 - a. Create a graph
 - b. Display

Note:

Problem statement no. 13 is only for CORE division students.