Notizen zum Seminar

Thermodynamik

Maximilian Marienhagen pankratius.github.io/

Temperatur

- Maß für mittlere kin. Energie der Teilchen
- Einheit Kelvin
- $\bullet\,$ absoluter Nullpunkt bei0K

Ausdehnung bei Temperaturänderungen

- $\Delta l = \alpha l \Delta T$
- $\Delta A = \beta A \Delta T, \beta = 2\alpha$
- $\Delta V = \gamma V \Delta T, \gamma = 3\alpha$

Wärme

- Def. als Energie, die zwischen thermodynamischen Systemen übertragen wird
- $Q = mc\Delta T$
- Aggregatzustandsänderungen (auch im T Q-Diagramm) $Q \sim m$

Wärmeübertragung

- Konvektion
- Wärmeleitung $P = \lambda \frac{A}{d} \Delta T$
- Wärmestrahlung
 - Stefan-Boltzmannsches Strahlungsgesetz: $P = \epsilon \sigma A T^4$
 - Kirchhoffsches Strahlungsgesetz: Emissionsgrad ϵ = Absorptionsgrad α

– Schwarze Körper: $\epsilon = \alpha = 1$

Aufgabe 1

Der Draht einer 100W-Glühbirne ist 10cm lang und hat einen Durchmesser von 0,3mm. Welche Betriebstemperatur hat er?

Modell ideales Gas

- Teilchen des Gases identische Massepunkte
- ausschließlich elastische Stöße miteinander und mit Gefäßwänden
- keine Kräfte
- Energie auf Freiheitsgrade gleichverteilt

Zustandsänderungen

$$pv = nRT$$
 $W + Q = \Delta U$ $U = \frac{f}{2}nRT$ $W = -\int pdV$

- isochor: $V = konst. \implies W = 0$
- isobar: $p = konst. \implies W = -p\Delta V$
- isotherm: T = konst.
- adiabatisch: $Q = 0 \Longrightarrow W = \Delta U$ $pV^{\kappa} = konst.$ mit $\kappa = \frac{f+2}{f}$

(auch Kreisprozess

- periodische Folge von Zustandsänderungen
- ullet Betrag der Arbeit ist eingeschlossene Fläche im $p-V-{
 m Diagramm}$
- für Wärmekraftmaschine: $\eta = \frac{|W|}{Q_{zu}} \le \frac{T_H T_K}{T_{zz}}$
- Durchlaufrichtung beachten!

Aufgabe 2

Gegeben sei ein rechteckiger Kreisprozess im p-V-Diagramm, wobei die Kanten parallel zu den Achsen sind. Finde den Wirkungsgrad