Deena 20104016

```
In [1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as pp
```

Problem Statement

LINEAR REGRESSION

In [2]: a = pd.read_csv("13_placement.csv")

Out[2]:

	cgpa	placement_exam_marks	placed
0	7.19	26.0	1
1	7.46	38.0	1
2	7.54	40.0	1
3	6.42	8.0	1
4	7.23	17.0	0
995	8.87	44.0	1
996	9.12	65.0	1
997	4.89	34.0	0
998	8.62	46.0	1
999	4.90	10.0	1

1000 rows × 3 columns

HEAD

In [3]:		1/\		
Out[3]:				
		cgpa	placement_exam_marks	placed
	0	7.19	26.0	1
	1	7.46	38.0	1
	2	7.54	40.0	1
	3	6.42	8.0	1
	4	7.23	17.0	0

Data Cleaning and Preprocessing

Out[5]:

placed	placement_exam_marks	cgpa	
1000.000000	1000.000000	1000.000000	count
0.489000	32.225000	6.961240	mean
0.500129	19.130822	0.615898	std
0.000000	0.000000	4.890000	min
0.000000	17.000000	6.550000	25%
0.000000	28.000000	6.960000	50%
1.000000	44.000000	7.370000	75%
1.000000	100.000000	9.120000	max

To display heading

```
In [6]:
Out[6]: Index(['cgpa', 'placement_exam_marks', 'placed'], dtype='object')
```

In [7]:

Out[7]: <seaborn.axisgrid.PairGrid at 0x1e11e7a5b80>

Out[8]: <seaborn.axisgrid.FacetGrid at 0x1e120451940>

TO TRAIN THE MODEL - MODEL BUILDING

RIDGE & LASSO

```
In [21]:
         print(a.coef_)
         print(a.intercept_)
         print(a.score(x_test,y_test))
         [0.]
         0.48428571428571426
         -0.0009877551020409658
         [0.48428571 0.48428571 0.48428571 0.48428571 0.48428571 0.48428571
          0.48428571 0.48428571 0.48428571 0.48428571 0.48428571 0.48428571
          0.48428571 0.48428571 0.48428571 0.48428571 0.48428571 0.48428571
          0.48428571 0.48428571 0.48428571 0.48428571 0.48428571 0.48428571
          0.48428571 0.48428571 0.48428571 0.48428571 0.48428571 0.48428571
          0.48428571 0.48428571 0.48428571 0.48428571 0.48428571 0.48428571
          0.48428571 0.48428571 0.48428571 0.48428571 0.48428571 0.48428571
          0.48428571 0.48428571 0.48428571 0.48428571 0.48428571 0.48428571
          0.48428571 0.48428571 0.48428571 0.48428571 0.48428571 0.48428571
          0.48428571 0.48428571 0.48428571 0.48428571 0.48428571 0.48428571
          0.48428571 0.48428571 0.48428571 0.48428571 0.48428571 0.48428571
          0.48428571 0.48428571 0.48428571 0.48428571 0.48428571 0.48428571
          0.48428571 0.48428571 0.48428571 0.48428571 0.48428571 0.48428571
          0.48428571 0.48428571 0.48428571 0.48428571 0.48428571 0.48428571
          0.48428571 0.48428571 0.48428571 0.48428571 0.48428571 0.48428571
          0.48428571 0.48428571 0.48428571 0.48428571 0.48428571 0.48428571
          0.48428571 0.48428571 0.48428571 0.48428571 0.48428571 0.48428571
          0.48428571 0.48428571 0.48428571 0.48428571 0.48428571 0.48428571
          0.48428571 0.48428571 0.48428571 0.48428571 0.48428571 0.48428571
          0.48428571 0.48428571 0.48428571 0.48428571 0.48428571 0.48428571
          0.48428571 0.48428571 0.48428571 0.48428571 0.48428571 0.48428571
          0.48428571 0.48428571 0.48428571 0.48428571 0.48428571 0.48428571
          0.48428571 0.48428571 0.48428571 0.48428571 0.48428571 0.48428571
          0.48428571 0.48428571 0.48428571 0.48428571 0.48428571 0.48428571
          0.48428571 0.48428571 0.48428571 0.48428571 0.48428571 0.48428571
          0.48428571 0.48428571 0.48428571 0.48428571 0.48428571 0.48428571
          0.48428571 0.48428571 0.48428571 0.48428571 0.48428571 0.48428571
          0.48428571 0.48428571 0.48428571 0.48428571 0.48428571 0.48428571
          0.48428571 0.48428571 0.48428571 0.48428571 0.48428571 0.48428571
          0.48428571 0.48428571 0.48428571 0.48428571 0.48428571 0.48428571
          0.48428571 0.48428571 0.48428571 0.48428571 0.48428571 0.48428571
          0.48428571 0.48428571 0.48428571 0.48428571 0.48428571 0.48428571
          0.48428571 0.48428571 0.48428571 0.48428571 0.48428571 0.48428571
          0.48428571 0.48428571 0.48428571 0.48428571 0.48428571 0.48428571
          0.48428571 0.48428571 0.48428571 0.48428571 0.48428571 0.48428571
          0.48428571 0.48428571 0.48428571 0.48428571 0.48428571 0.48428571
          0.48428571 0.48428571 0.48428571 0.48428571 0.48428571 0.48428571
          0.48428571 0.48428571 0.48428571 0.48428571 0.48428571 0.48428571
          0.48428571 0.48428571 0.48428571 0.48428571 0.48428571 0.48428571
          0.48428571 0.48428571 0.48428571 0.48428571 0.48428571 0.48428571
          0.48428571 0.48428571 0.48428571 0.48428571 0.48428571 0.48428571
          0.48428571 0.48428571 0.48428571 0.48428571 0.48428571 0.48428571
          0.48428571 0.48428571 0.48428571 0.48428571 0.48428571 0.48428571
          0.48428571 0.48428571 0.48428571 0.48428571 0.48428571 0.48428571
          0.48428571 0.48428571 0.48428571 0.48428571 0.48428571 0.48428571
          0.48428571 0.48428571 0.48428571 0.48428571 0.48428571 0.48428571
          0.48428571 0.48428571 0.48428571 0.48428571 0.48428571 0.48428571
          0.48428571 0.48428571 0.48428571 0.48428571 0.48428571 0.48428571
          0.48428571 0.48428571 0.48428571 0.48428571 0.48428571 0.48428571
```

0.48428571 0.48428571 0.48428571 0.48428571 0.48428571

```
In [22]: from sklearn import metrics
print(" Mean Absolute Error :",metrics.mean_absolute_error(y_test,prediction))
print(" Mean Squared Error :",metrics.mean_squared_error(y_test,prediction))
```

Mean Absolute Error : 0.499769263706374 Mean Squared Error : 0.2502955064898015

Root Mean Absolute Error : 0.7069436071614015

7 of 7