Assignment cum Practice Questions (Set 1):

- 1. Let $f: C \to \Re$ be a differentiable convex function on the convex set C. If $\nabla f(x)$ is L-Lipscitz, prove that: $\frac{1}{2L} \|\nabla f(y) \nabla f(x)\|^2 \le f(y) f(x) (x y)^T \nabla f(x) \le \frac{L}{2} \|y x\|^2$.
- 2. Let $f: \mathbb{R}^n \to \mathbb{R}$ be a convex differentiable function with L-Lipschitz continuous first derivatives, with L > 0. Suppose that f has a minimizer on \mathbb{R}^n and consider the following gradient-descent updates from a given x_0 :

$$x_{k+1} = x_k - \frac{1}{L} \nabla f(x_k), \ k \ge 0.$$

3. Prove that the minimizing sequence $\{x_k\}_0^\infty$ converges to a minimizer x^* of f (as defined in Q. 2) and we have the following global convergence rate estimate:

$$f(x_k) - f(x^*) \le \frac{5L}{2\sum_{i=0}^{k-1} ||x_i - x^*||^{-2}}.$$

6. Let $f: C \to \Re$ be a differentiable and strictly convex function on the convex set C. If $\nabla f(x)$ is LLipscitz, prove that the following function (a Lyapunov Energy function for Gradient Descent):

$$L(x) = \frac{1}{2} \|x - x^*\|^2$$

satisfies the inequality: $L(x_{k+1}) \le L(x_k)$ where x_k is the k-th iterate on a Gradient Descent (GD) iteration on the function f(x). For this proof, do we need any assumption on the learning rate of the GD? Clarify.

- 7. (Divergence between multivariate normal distributions): Let P_1 be $N(\theta_1, \Sigma)$ and P_2 be $N(\theta_2, \Sigma)$, where $\Sigma > 0$ is a positive definite matrix. What is $D_{KL}(P_1||P_2)$?
- 8. (Mixtures are as good as point distributions): Let P be a Laplace (λ) distribution on \mathbb{R} , meaning that $X \sim P$ has density

$$p(x) = \frac{\lambda}{2} \exp(-\lambda |x|).$$

Assume that $X_1, \ldots, X_n \overset{i.i.d}{\sim} P$, and let P^n denote the *n*-fold product of P. In this problem, we compare the predictive performance of distributions from the normal location family $\mathcal{P} = \{N(\theta, \sigma^2) : \theta \in R\}$ with the

mixture distribution Q^{π} over P defined by the normal prior distribution $N(\mu, \tau^2)$, that is, $\pi(\theta) = (2\pi\tau^2)^{-1/2} \exp(-(\theta - \mu)^2/2\tau^2)$.

- a) Let $P_{\theta,\Sigma}$ be the multivariate normal distribution with mean $\theta \in R^n$ and covariance $\Sigma \in R^{n \times n}$. What is $D_{KL}(P^n||P_{\theta,\Sigma})$?
- b) Show that $\inf_{\theta \in \mathbb{R}^n} D_{KL}(P^n || P_{\theta, \Sigma}) = D_{KL}(P^n || P_{\theta, \Sigma})$, that is, the mean-zero normal distribution has the smallest KL-divergence from the Laplace distribution.
- 9. (Generalized "log-sum" inequalities): Let $f : \mathbb{R}_+ \to \mathbb{R}$ be an arbitrary convex function.
 - a) Let a_i , b_i , i = 1, ..., n be non-negative reals. Prove that

$$\left(\sum_{i=1}^{n} a_i\right) f\left(\frac{\sum_{i=1}^{n} b_i}{\sum_{i=1}^{n} a_i}\right) \le \sum_{i=1}^{n} a_i f\left(\frac{b_i}{a_i}\right).$$

b) Generalizing the preceding result, let $a: \mathcal{X} \to \mathbb{R}_+$ and $b: \mathcal{X} \to \mathbb{R}_+$, and let $u: \mathcal{X} \to \mathbb{R}_+$ satisfy $\int u(x)dx < \infty$. Show that

$$\int a(x)u(x)dx f\left(\frac{\int b(x)u(x)dx}{\int a(x)u(x)dx}\right) \le \int a(x)f\left(\frac{b(x)}{a(x)}\right)u(x)dx.$$

(Hint: use (after proving) the fact that the perspective of a function f, defined by h(x,t) = tf(x/t) for t > 0, is jointly convex in x and t)