

LECTURE 34 OF 42

Machine Learning: Decision Trees & Statistical Learning Discussion: Feedforward ANNs & Backprop

William H. Hsu

Department of Computing and Information Sciences, KSU

KSOL course page: http://snipurl.com/v9v3
Course web site: http://www.kddresearch.org/Courses/CIS730
Instructor home page: http://www.cis.ksu.edu/~bhsu

Reading for Next Class:

Chapter 20, Russell and Norvig

CIS 530 / 730 ARTIFICIAL INTELLIGENCE ECTURE 34 OF 42

CIAL INTELLIGENCE

WHAT JUSTIFIES THIS INDUCTIVE LEAP?

- Example: Inductive Generalization
 - * Positive example: <Sunny, Warm, Normal, Strong, Cool, Change, Yes>
 - * Positive example: <Sunny, Warm, Normal, Light, Warm, Same, Yes>
 - * Induced S: <Sunny, Warm, Normal, ?, ?, ?>
- Why Believe We Can Classify The Unseen?
 - * e.g., <Sunny, Warm, Normal, Strong, Warm, Same>
 - * When is there enough information (in a new case) to make a prediction?

AN UNBIASED LEARNER

- Inductive Bias
 - Any preference for one hypothesis over another, besides consistency
 - Example: H = conjunctive concepts with don't cares
 - What concepts can H not express? (Hint: what are its syntactic limitations?)
- Idea
 - Choose <u>unbiased</u> H': expresses every teachable concept (i.e., power set of X)
 - Recall: $|A \rightarrow B| = |B|^{|A|} (A = X; B = \{labels\}; H = A \rightarrow B)$
 - $$\begin{split} & \quad \{\{\text{Rainy, Sunny, Cloudy}\} \times \{\text{Warm, Cold}\} \times \{\text{Normal, High}\} \times \{\text{None-Mild, Strong}\} \\ & \quad \times \{\text{Cool, Warm}\} \times \{\text{Same, Change}\}\} \rightarrow \{0, 1\} \end{split}$$
- · An Exhaustive Hypothesis Language
 - Consider: H' = disjunctions (∨), conjunctions (∧), negations (¬) over H
 - $|H'| = 2^{(2 \cdot 2 \cdot 2 \cdot 3 \cdot 2 \cdot 2)} = 2^{96}$; $|H| = 1 + (3 \cdot 3 \cdot 3 \cdot 4 \cdot 3 \cdot 3) = 973$
- What Are S, G For The Hypothesis Language H?
 - S ← disjunction of all positive examples
 - G ← conjunction of all negated negative examples

CIS 530 / 730 Artificial Intelligence ECTURE 34 OF 42

Cov

ARTIFICIAL INTELLIGENCE

AN UNBIASED LEARNER

- Concept learning algorithm L
- Instances X, target concept c
- Training examples $D_c = \{\langle x, c(x) \rangle\}$
- $L(x_b, D_c)$ = classification assigned to instance x_i by L after training on D_c

Definition

- The inductive bias of L is any minimal set of assertions B such that, for any target concept c and corresponding training examples D_c ,

$$\forall x_i \in X. [(B \land D_c \land x_i) \models L(x_i, D_c)]$$

where A | B means A logically entails B

 Informal idea: preference for (i.e., restriction to) certain hypotheses by structural (syntactic) means

Rationale

- Prior assumptions regarding target concept
- Basis for inductive generalization

THREE LEARNERS WITH DIFFERENT BIASES

- Rote Learner
 - Weakest bias: anything seen before, i.e., no bias
 - Store examples
 - Classify x if and only if it matches previously observed example
- Version Space Candidate Elimination Algorithm
 - Stronger bias: concepts belonging to conjunctive H
 - Store extremal generalizations and specializations
 - Classify x if and only if it "falls within" S and G boundaries (all members agree)
- Find-S
 - Even stronger bias: most specific hypothesis
 - Prior assumption: any instance not observed to be positive is negative
 - Classify x based on S set

VIEWS OF LEARNING

- Removal of (Remaining) Uncertainty
 - Suppose unknown function was known to be m-of-n Boolean function
 - Could use training data to infer the function
- Learning and Hypothesis Languages
 - Possible approach to guess a good, small hypothesis language:
 - · Start with a very small language
 - · Enlarge until it contains a hypothesis that fits the data
 - Inductive bias
 - Preference for certain languages
 - · Analogous to data compression (removal of redundancy)
 - Later: coding the "model" versus coding the "uncertainty" (error)
- We Could Be Wrong!
 - Prior knowledge could be wrong (e.g., $y = x_4 \land \text{one-of } (x_1, x_3) \text{ consistent}$)
 - If guessed language was wrong, errors will occur on new cases

@

CIS 530 / 730 Artificial Intelligence LECTURE 34 OF 42

COMPUTING & INFOR

APPROACHES TO LEARNING

- Develop Ways to Express Prior Knowledge
 - Role of prior knowledge: guides search for hypotheses / hypothesis languages
 - Expression languages for prior knowledge
 - · Rule grammars; stochastic models; etc.
 - · Restrictions on computational models; other (formal) specification methods
- Develop Flexible Hypothesis Spaces
 - Structured collections of hypotheses
 - · Agglomeration: nested collections (hierarchies)
 - · Partitioning: decision trees, lists, rules
 - · Neural networks; cases, etc.
 - Hypothesis spaces of adaptive size
- Either Case: Develop Algorithms for Finding A Hypothesis That Fits Well
 - Ideally, will generalize well
- Later: Bias Optimization (Meta-Learning, Wrappers)

WHEN TO CONSIDER USING **DECISION TREES**

- Instances Describable by Attribute-Value Pairs
- **Target Function Is Discrete Valued**
- Disjunctive Hypothesis May Be Required
- **Possibly Noisy Training Data**
- **Examples**
 - Equipment or medical diagnosis
 - Risk analysis
 - · Credit, loans
 - Insurance
 - · Consumer fraud
 - · Employee fraud
 - Modeling calendar scheduling preferences (predicting quality of candidate time)

DECISION TREES & DECISION BOUNDARIES

- **Instances Usually Represented Using Discrete Valued Attributes**
 - Typical types
 - Nominal ({red, yellow, green})
 - Quantized ({low, medium, high})
 - Handling numerical values
 - Discretization, a form of vector quantization (e.g., histogramming)
 - · Using thresholds for splitting nodes
- **Example: Dividing Instance Space into Axis-Parallel Rectangles**

DECISION TREE LEARNING: TOP-DOWN INDUCTION

• Algorithm Build-DT (Examples, Attributes)

IF all examples have the same label THEN RETURN (leaf node with *label*) ELSE

IF set of attributes is empty THEN RETURN (leaf with *majority label*) ELSE

Choose best attribute A as root

FOR each value v of A

Create a branch out of the root for the condition A = v

IF $\{x \in Examples: x.A = v\} = \emptyset$ THEN RETURN (leaf with majority label)

ELSE Build-DT ($\{x \in Examples: x.A = v\}$, Attributes ~ $\{A\}$)

But Which Attribute Is Best?

ARTIFICIAL INTELLIGENCE

ECTURE 34 OF 42

OMPUTING & INFORMATION SCIENCES

CHOOSING "BEST" ROOT ATTRIBUTE

- · Objective
 - Construct a decision tree that is a small as possible (Occam's Razor)
 - Subject to: consistency with labels on training data
- Obstacles
 - Finding minimal consistent hypothesis (i.e., decision tree) is 72-hard

- Recursive algorithm (Build-DT)
 - · A greedy heuristic search for a simple tree
 - · Cannot guarantee optimality
- · Main Decision: Next Attribute to Condition On
 - Want: attributes that split examples into sets, each relatively pure in one label
 - Result: closer to a leaf node
 - Most popular heuristic
 - · Developed by J. R. Quinlan
 - · Based on information gain
 - Used in ID3 algorithm

ENTROPY: INTUITIVE NOTION

A Measure of Uncertainty

- The Quantity
 - · Purity: how close a set of instances is to having just one label
 - Impurity (disorder): how close it is to total uncertainty over labels
- The Measure: Entropy
 - · Directly proportional to impurity, uncertainty, irregularity, surprise
 - Inversely proportional to purity, certainty, regularity, redundancy

Example

- For simplicity, assume H = {0, 1}, distributed according to Pr(y)
 - · Can have (more than 2) discrete class labels
 - · Continuous random variables: differential entropy
- Optimal purity for y: either
 - Pr(y = 0) = 1, Pr(y = 1) = 0
 - Pr(y = 1) = 1, Pr(y = 0) = 0
- What is the least pure probability distribution?
 - Pr(y = 0) = 0.5, Pr(y = 1) = 0.5
 - Corresponds to maximum impurity/uncertainty/irregularity/surprise
 - · Property of entropy: concave function ("concave downward")

C

CIS 530 / 730 Artificial Intelligence ECTURE 34 OF 42

OMPUTING & INFORMATION SCIENCES

ENTROPY: INFORMATION THEORETIC DEFINITION [1]

Components

- D: set of examples $\{ \langle x_1, c(x_1) \rangle, \langle x_2, c(x_2) \rangle, ..., \langle x_m, c(x_m) \rangle \}$
- $p_{+} = Pr(c(x) = +), p_{-} = Pr(c(x) = -)$

Definition

- H is defined over a probability density function p
- D: examples whose frequency of + and indicates p_+ , p_- for observed data
- The entropy of *D* relative to *c* is:

$$H(D) \equiv -p_+ \log_b(p_+) - p_- \log_b(p_-)$$

· What Units is H Measured In?

- Depends on base b of log (bits for b = 2, nats for b = e, etc.)
- Single bit required to encode each example in worst case (p_{\perp} = 0.5)
- If there is less uncertainty (e.g., p_{\star} = 0.8), we can use less than 1 bit each

ENTROPY:

INFORMATION THEORETIC DEFINITION [2]

- Partitioning on Attribute Values
 - Recall: a partition of *D* is a collection of disjoint subsets whose union is *D*
 - Goal: measure the uncertainty removed by splitting on the value of attribute A
- Definition
 - The information gain of D relative to attribute A is the expected reduction in entropy due to splitting ("sorting") on A:

$$\textit{Gain}(\textit{D},\textit{A}) \equiv -\textit{H}(\textit{D}) - \sum_{\textit{v} \in \textit{values}(\textit{A})} \left[\frac{|\textit{D}_{\textit{v}}|}{|\textit{D}|} \bullet \textit{H}(\textit{D}_{\textit{v}}) \right]$$

where D_v is $\{x \in D: x.A = v\}$, set of examples in D where attribute A has value v

- Idea: partition on A; scale entropy to the size of each subset D_v
- Which Attribute Is Best?

CIS 530 / 730 Artificial Intelligence LECTURE 34 OF 42

DMPUTING & INFORMATION SCIENCES

ILLUSTRATIVE EXAMPLE

Training Examples for Concept PlayTennis

Day	Outlook	Temperature	Humidity	Wind	PlayTennis?
1	Sunny	Hot	High	Light	No
2	Sunny	Hot	High	Strong	No
3	Overcast	Hot	High	Light	Yes
4	Rain	Mild	High	Light	Yes
5	Rain	Cool	Normal	Light	Yes
6	Rain	Cool	Normal	Strong	No
7	Overcast	Cool	Normal	Strong	Yes
8	Sunny	Mild	High	Light	No
9	Sunny	Cool	Normal	Light	Yes
10	Rain	Mild	Normal	Light	Yes
11	Sunny	Mild	Normal	Strong	Yes
12	Overcast	Mild	High	Strong	Yes
13	Overcast	Hot	Normal	Light	Yes
14	Rain	Mild	High	Strong	No

- ID3 ≡ Build-DT using Gain(•)
- How Will ID3 Construct A Decision Tree?

CONSTRUCTING DECISION TREE FOR *PLAYTENNIS* USING ID3 [1]

· Selecting The Root Attribute

Day	Outlook	Temperature	Humidity	Wind	PlayTennis?
1	Sunny	Hot	High	Light	No
2	Sunny	Hot	High	Strong	No
3	Overcast	Hot	High	Light	Yes
4	Rain	Mild	High	Light	Yes
5	Rain	Cool	Normal	Light	Yes
6	Rain	Cool	Normal	Strong	No
7	Overcast	Cool	Normal	Strong	Yes
8	Sunny	Mild	High	Light	No
9	Sunny	Cool	Normal	Light	Yes
10	Rain	Mild	Normal	Light	Yes
11	Sunny	Mild	Normal	Strong	Yes
12	Overcast	Mild	High	Strong	Yes
13	Overcast	Hot	Normal	Light	Yes
14	Rain	Mild	High	Strong	No

- · Prior (unconditioned) distribution: 9+, 5-
 - H(D) = -(9/14) Ig (9/14) (5/14) Ig (5/14) bits = 0.94 bits
 - H(D, Humidity = High) = -(3/7) lg (3/7) (4/7) lg (4/7) = 0.985 bits
 - H(D, Humidity = Normal) = -(6/7) lg (6/7) (1/7) lg (1/7) = 0.592 bits
 - Gain(D, Humidity) = 0.94 (7/14) * 0.985 + (7/14) * 0.592 = 0.151 bits
 - Similarly, Gain (D, Wind) = 0.94 (8/14) * 0.811 + (6/14) * 1.0 = 0.048 bits

$$Gain(D, A) \equiv -H(D) - \sum_{v \in values(A)} \left[\frac{|D_v|}{|D|} \cdot H(D_v) \right]$$

CIS 530 / 730

LECTURE 34 OF 42

COMPUTING & INFORMATION SCIENCES

CONSTRUCTING DECISION TREE FOR *PLAYTENNIS* USING ID3 [2]

· Selecting The Root Attribute

Day	Outlook	Temperature	Humidity	Wind	PlayTennis?
1	Sunny	Hot	High	Light	No
2	Sunny	Hot	High	Strong	No
3	Overcast	Hot	High	Light	Yes
4	Rain	Mild	High	Light	Yes
5	Rain	Cool	Normal	Light	Yes
6	Rain	Cool	Normal	Strong	No
7	Overcast	Cool	Normal	Strong	Yes
8	Sunny	Mild	High	Light	No
9	Sunny	Cool	Normal	Light	Yes
10	Rain	Mild	Normal	Light	Yes
11	Sunny	Mild	Normal	Strong	Yes
12	Overcast	Mild	High	Strong	Yes
13	Overcast	Hot	Normal	Light	Yes
14	Rain	Mild	High	Strong	No

- Gain(D, Humidity) = 0.151 bits
- Gain(D, Wind) = 0.048 bits
- Gain(D, Temperature) = 0.029 bits
- Gain(D, Outlook) = 0.246 bits
- Sunny Overcast Rain 2+, 3-] [4+, 0-] [3+, 2-]
- · Selecting The Next Attribute (Root of Subtree)
 - Continue until every example is included in path or purity = 100%
 - What does purity = 100% mean?
 - Can Gain(D, A) < 0?

CONSTRUCTING DECISION TREE FOR *PLAYTENNIS* USING ID3 [3]

Selecting The Next Attribute (Root of Subtree)

Day	Outlook	Temperature	Humidity	Wind	PlayTennis?
1	Sunny	Hot	High	Light	No
2	Sunny	Hot	High	Strong	No
3	Overcast	Hot	High	Light	Yes
4	Rain	Mild	High	Light	Yes
5	Rain	Cool	Normal	Light	Yes
6	Rain	Cool	Normal	Strong	No
7	Overcast	Cool	Normal	Strong	Yes
8	Sunny	Mild	High	Light	No
9	Sunny	Cool	Normal	Light	Yes
10	Rain	Mild	Normal	Light	Yes
11	Sunny	Mild	Normal	Strong	Yes
12	Overcast	Mild	High	Strong	Yes
13	Overcast	Hot	Normal	Light	Yes
14	Rain	Mild	High	Strong	No

- Convention: lg(0/a) = 0
- $Gain(D_{Sunny}, Humidity) = 0.97 (3/5) * 0 (2/5) * 0 = 0.97 bits$
- $Gain(D_{Sunny}, Wind) = 0.97 (2/5) * 1 (3/5) * 0.92 = 0.02$ bits
- $Gain(D_{Sunny}, Temperature) = 0.57 bits$
- **Top-Down Induction**
 - For discrete-valued attributes, terminates in O(n) splits
 - Makes at most one pass through data set at each level (why?)

ON SCIENCES

CIS 530 / 730 Artificial Intelligence ECTURE 34 OF 42

COMPUTING & INFORMATION
KANSAS STAT

CONSTRUCTING DECISION TREE FOR *PLAYTENNIS* USING ID3 [4]

Day	Outlook	Temperature	Humidity	Wind	Play I ennis'?
1	Sunny	Hot	High	Light	No
2	Sunny	Hot	High	Strong	No
3	Overcast	Hot	High	Light	Yes
4	Rain	Mild	High	Light	Yes
5	Rain	Cool	Normal	Light	Yes
6	Rain	Cool	Normal	Strong	No
7	Overcast	Cool	Normal	Strong	Yes
8	Sunny	Mild	High	Light	No
9	Sunny	Cool	Normal	Light	Yes
10	Rain	Mild	Normal	Light	Yes
11	Sunny	Mild	Normal	Strong	Yes
12	Overcast	Mild	High	Strong	Yes
13	Overcast	Hot	Normal	Light	Yes
14	Rain	Mild	High	Strong	No

CIS 530 / 730 ARTIFICIAL INTELLIGENCE LECTURE 34 OF 42

COMPUTING & INFORMATION SCIENCES

KANSAS STATE I INIVERSIT

HYPOTHESIS SPACE SEARCH IN ID3

- Search Problem
 - Conduct a search of the space of decision trees, which can represent all possible discrete functions
 - · Pros: expressiveness; flexibility
 - · Cons: computational complexity; large, incomprehensible trees (next time)
 - Objective: to find the best decision tree (minimal consistent tree)
 - Obstacle: finding this tree is NP-hard
 - Tradeoff
 - · Use heuristic (figure of merit that guides search)
 - · Use greedy algorithm
 - · Aka hill-climbing (gradient "descent") without backtracking
- · Statistical Learning
 - Decisions based on statistical descriptors p₊, p₋ for subsamples L
 - In ID3, all data used
 - Robust to noisy data

CIS 530 / 730

LECTURE 34 OF 42

COMPUTING & INFORMATION SCIENCES

INDUCTIVE BIAS IN ID3 (& C4.5 / J48)

- Heuristic : Search :: Inductive Bias : Inductive Generalization
- H is the power set of instances in X
 - ⇒ Unbiased? Not really...
 - · Preference for short trees (termination condition)
 - · Preference for trees with high information gain attributes near the root
 - Gain(•): a heuristic function that captures the inductive bias of ID3
 - Bias in ID3
 - · Preference for some hypotheses is encoded in heuristic function
 - Compare: a restriction of hypothesis space H (previous discussion of propositional normal forms: k-CNF, etc.)
- · Preference for Shortest Tree
 - Prefer shortest tree that fits the data
 - An Occam's Razor bias: shortest hypothesis that explains the observations

TERMINOLOGY

- Decision Trees (DTs)
 - Boolean DTs: target concept is binary-valued (i.e., Boolean-valued)
 - Building DTs
 - · Histogramming: method of vector quantization (encoding input using bins)
 - Discretization: continuous input into discrete (e.g., histogramming)
- Entropy and Information Gain
 - Entropy H(D) for data set D relative to implicit concept c
 - Information gain Gain (D, A) for data set partitioned by attribute A
 - Impurity, uncertainty, irregularity, surprise vs. purity, certainty, regularity, redundancy
- · Heuristic Search
 - Algorithm Build-DT: greedy search (hill-climbing without backtracking)
 - ID3 as Build-DT using the heuristic Gain(•)
 - Heuristic : Search :: Inductive Bias : Inductive Generalization
- MLC++ (Machine Learning Library in C++)
 - Data mining libraries (e.g., MLC++) and packages (e.g., MineSet)
 - Irvine Database: the Machine Learning Database Repository at UCI

CIS 530 / 730 Artificial Intelligence ECTURE 34 OF 42

LECTORE SHOT 42

SUMMARY POINTS

- Decision Trees (DTs)
 - Can be boolean $(c(x) \in \{+, -\})$ or range over multiple classes
 - When to use DT-based models
- Generic Algorithm *Build-DT*: Top Down Induction
 - Calculating best attribute upon which to split
 - Recursive partitioning
- Entropy and Information Gain
 - Goal: to measure uncertainty removed by splitting on a candidate attribute A
 - · Calculating information gain (change in entropy)
 - · Using information gain in construction of tree
 - ID3 ≡ Build-DT using Gain(•)
- ID3 as Hypothesis Space Search (in State Space of Decision Trees)
- · Heuristic Search and Inductive Bias
- Data Mining using MLC++ (Machine Learning Library in C++)
- · Next: More Biases (Occam's Razor); Managing DT Induction

Human Brains

- Neuron switching time: ~ 0.001 (10⁻³) second
- Number of neurons: ~10-100 billion (10¹⁰ 10¹¹)
- Connections per neuron: ~10-100 thousand (10⁴ 10⁵)
- Scene recognition time: ~0.1 second
- 100 inference steps doesn't seem sufficient! → highly parallel computation

Definitions of Artificial Neural Networks (ANNs)

- "... a system composed of many simple processing elements operating in parallel whose function is determined by network structure, connection strengths, and the processing performed at computing elements or nodes." - DARPA (1988)
- NN FAQ List: http://www.ci.tuwien.ac.at/docs/services/nnfaq/FAQ.html

Properties of ANNs

- Many neuron-like threshold switching units
- Many weighted interconnections among units
- Highly parallel, distributed process
- Emphasis on tuning weights automatically

CIS 530 / 730 Artificial Intelligence LECTURE 34 OF 42

COMPUTING & INFORMATION SO

- Input: High-Dimensional and Discrete or Real-Valued
 - e.g., raw sensor input
 - Conversion of symbolic data to quantitative (numerical) representations possible
- Output: Discrete or Real Vector-Valued
 - e.g., low-level control policy for a robot actuator
 - Similar qualitative/quantitative (symbolic/numerical) conversions may apply
- Data: Possibly Noisy
- Target Function: Unknown Form
- Result: Human Readability Less Important Than Performance
 - Performance measured purely in terms of accuracy and efficiency
 - Readability: ability to explain inferences made using model; similar criteria
- **Examples**
 - Speech phoneme recognition [Waibel, Lee]
 - Image classification [Kanade, Baluja, Rowley, Frey]
 - Financial prediction

- Pomerleau et al
 - http://www.cs.cmu.edu/afs/cs/project/alv/member/www/projects/ALVINN.html
 - Drives 70mph on highways

Hidden-to-Output Unit Weight Map (for one hidden unit)

Input-to-Hidden Unit Weight Map (for one hidden unit)

TION SCIENCE

CIS 530 / 730 ARTIFICIAL INTELLIGENCE LECTURE 34 OF 42

COMPUTING & INFORMATION SCIENCES

- Perceptron: Single Neuron Model
 - aka Linear Threshold Unit (LTU) or Linear Threshold Gate (LTG)
 - Net input to unit: defined as linear combination $net = \sum_{i=0}^{n} w_i x^i$
 - Output of unit: threshold (activation) function on net input (threshold $\theta = w_0$)
- Perceptron Networks
 - Neuron is modeled using a unit connected by weighted links w_i to other units
 - Multi-Layer Perceptron (MLP): next lecture

ision Surface of a Perceptron

Example A

Example B

- Perceptron: Can Represent Some Useful Functions
 - LTU emulation of logic gates (McCulloch and Pitts, 1943)
 - e.g., What weights represent $g(x_1, x_2) = AND(x_1, x_2)$? $OR(x_1, x_2)$? NOT(x)?
- Some Functions Not Representable
 - e.g., not linearly separable
 - Solution: use networks of perceptrons (LTUs)

CIS 530 / 730 Artificial Intelligence ECTURE 34 OF 42

ARTIFICIAL INTELLIGENCE

ning Rules for Perceptrons

- Learning Rule = Training Rule
 - Not specific to supervised learning
 - Context: updating a model
- Hebbian Learning Rule (Hebb, 1949)
 - Idea: if two units are both active ("firing"), weights between them should increase
 - $w_{ij} = w_{ij} + r o_i o_j$ where r is a learning rate constant
 - Supported by neuropsychological evidence
- Perceptron Learning Rule (Rosenblatt, 1959)
 - Idea: when a target output value is provided for a single neuron with fixed input, it can incrementally update weights to learn to produce the output
 - Assume binary (boolean-valued) input/output units; single LTU
 - $W_i \leftarrow W_i + \Delta W_i$

 $\Delta w_i = r(t-o)x_i$

where t = c(x) is target output value, o is perceptron output, r is small learning rate constant (e.g., 0.1)

- Can prove convergence if *D* linearly separable and *r* small enough

CIS 530 / 730 ARTIFICIAL INTELLIGENCE LECTURE 34 OF 42

COMPUTING & INFORMATION SCIENCES KANSAS STATE I INIVERSITY

<u>ceptron Learning Algorithm</u>

- Simple Gradient Descent Algorithm
 - Applicable to concept learning, symbolic learning (with proper representation)
- Algorithm Train-Perceptron $(D \equiv \{\langle x, t(x) \equiv c(x) \rangle\})$
 - <u>Initialize all weights w_i to random values</u>
 - WHILE not all examples correctly predicted DO

FOR each training example $x \in D$

Compute current output o(x)

FOR i = 1 to n

 $\underline{w_i} \leftarrow \underline{w_i} + r(t - o)x_i$ // perceptron learning rule

- Perceptron Learnability
 - Recall: can only learn $h \in H$ i.e., linearly separable (LS) functions
 - Minsky and Papert, 1969: demonstrated representational limitations
 - <u>e.g.</u>, parity (*n*-attribute XOR: $x_1 \oplus x_2 \oplus ... \oplus x_n$)
 - e.g., symmetry, connectedness in visual pattern recognition
 - Influential book Perceptrons discouraged ANN research for ~10 years
 - NB: \$64K question "Can we transform learning problems into LS ones?"

CIS 530 / 730 Artificial Intelligence ECTURE 34 OF 42

COMPUTING 8

? A

- Functional Definition
 - f(x) = 1 if $w_1x_1 + w_2x_2 + ... + w_nx_n \ge 0$, 0 otherwise
 - <u>θ: threshold value</u>
- Linearly Separable Functions
 - NB: D is LS does not necessarily imply c(x) = f(x) is LS!
 - <u>Disjunctions: $c(x) = x_1 \lor x_2 \lor \dots \lor x_m$ </u>
 - $m \text{ of } n: c(x) = \text{at least 3 of } (x_1^2, x_2^2, ..., x_m^2)$
 - Exclusive OR(XOR): $c(x) = x_1 \oplus x_2$
 - General DNF: $c(x) = T_1 \vee T_2 \vee ... \vee T_m$; $T_i = l_1 \wedge l_1 \wedge ... \wedge l_k$
- Change of Representation Problem
 - Can we transform non-LS problems into LS ones?
 - Is this meaningful? Practical?
 - Does it represent a significant fraction of real-world problems?

Perceptron Convergence Theorem

- Claim: If there exist a set of weights that are consistent with the data (i.e., the data is linearly separable), the perceptron learning algorithm will converge
- Proof: well-founded ordering on search region ("wedge width" is strictly decreasing) see
 Minsky and Papert, 11.2-11.3
- Caveat 1: How long will this take?
- Caveat 2: What happens if the data is not LS?

Perceptron Cycling Theorem

- Claim: If the training data is not LS the perceptron learning algorithm will eventually repeat the same set of weights and thereby enter an infinite loop
- Proof: bound on number of weight changes until repetition; induction on n, the dimension of the training example vector - MP, 11.10

How to Provide More Robustness, Expressivity?

- Objective 1: develop algorithm that will find closest approximation (today)
- Objective 2: develop architecture to overcome representational limitation (next lecture)

CIS 530 / 730

LECTURE 34 OF 42

COMPUTING & INFORMATION SCIENCES

Understanding Gradient Descent for Linear Units

- Consider simpler, unthresholded linear unit:

$$o(\vec{x}) = net(\vec{x}) = \sum_{i=0}^{n} w_i x_i$$

- Objective: find "best fit" to D
- Approximation Algorithm
 - Quantitative objective: minimize error over training data set D
 - Error function: sum squared error (SSE)

$$E[\vec{w}] = error_D[\vec{w}] = \frac{1}{2} \sum_{x \in D} (t(x) - o(x))^2$$

How to Minimize?

- Simple optimization
- Move in direction of steepest gradient in weight-error space
 - Computed by finding tangent
 - i.e. partial derivatives (of E) with respect to weights (w_i)

terivation of Delta/LlYIS (VYidrow-Floff) Rule

Definition: Gradient

$$\nabla E[\vec{w}] = \left[\frac{\partial E}{\partial w_0}, \frac{\partial E}{\partial w_1}, \dots, \frac{\partial E}{\partial w_n}\right]$$

Modified Gradient Descent Training Rule

$$\Delta \vec{w} = -r \nabla E[\vec{w}]$$

$$\Delta w_i = -r \frac{\partial E}{\partial w_i}$$

$$\begin{split} \frac{\partial E}{\partial w_i} &= \frac{\partial}{\partial w_i} \left[\frac{1}{2} \sum_{\mathbf{x} \in D} (t(\mathbf{x}) - o(\mathbf{x}))^2 \right] = \frac{1}{2} \sum_{\mathbf{x} \in D} \left[\frac{\partial}{\partial w_i} (t(\mathbf{x}) - o(\mathbf{x}))^2 \right] \\ &= \frac{1}{2} \sum_{\mathbf{x} \in D} \left[2(t(\mathbf{x}) - o(\mathbf{x})) \frac{\partial}{\partial w_i} (t(\mathbf{x}) - o(\mathbf{x})) \right] = \sum_{\mathbf{x} \in D} \left[(t(\mathbf{x}) - o(\mathbf{x})) \frac{\partial}{\partial w_i} (t(\mathbf{x}) - \vec{w} \cdot \vec{\mathbf{x}}) \right] \end{split}$$

$$\frac{\partial \boldsymbol{E}}{\partial \boldsymbol{w}_{i}} = \sum_{\boldsymbol{x} \in \boldsymbol{D}} [(\boldsymbol{t}(\boldsymbol{x}) - \boldsymbol{o}(\boldsymbol{x}))(-\boldsymbol{x}_{i})]$$

C

CIS 530 / 730

LECTURE 34 OF 42

COMPUTING & INFORMATION SCIENCES

- Algorithm Gradient-Descent (D, r)
 - Each training example is a pair of the form $\langle x, t(x) \rangle$, where x is the vector of input values and t(x) is the output value. r is the learning rate (e.g., 0.05)
 - <u>Initialize all weights w_i to (small) random values</u>
 - UNTIL the termination condition is met, DO

Initialize each Δw_i to zero

FOR each $\langle x, t(x) \rangle$ in D, DO

Input the instance x to the unit and compute the output o

FOR each linear unit weight win DO

$$\Delta w_i \leftarrow \Delta w_i + r(t - o)x_i$$

$$\underline{w_i} \leftarrow \underline{w_i} + \Delta \underline{w_i}$$

- RETURN final w
- Mechanics of Delta Rule
 - Gradient is based on a derivative
 - Significance: later, will use nonlinear activation functions (aka transfer functions, squashing functions)

Example A

Example B

Example C

- LS Concepts: Can Achieve Perfect Classification
 - Example A: perceptron training rule converges
- **Non-LS Concepts: Can Only Approximate**
 - Example B: not LS; delta rule converges, but can't do better than 3 correct
 - Example C: not LS; better results from delta rule
- Weight Vector $w = \text{Sum of Misclassified } x \in D$
 - Perceptron: minimize w

- Delta Rule: minimize *error* **=** distance from separator (I.e., maximize
- ∂**E** $) \overline{\partial \vec{w}}$

- Intuitive Idea: Distribute Blame for Error to Previous Layers
- Algorithm Train-by-Backprop(D, r)
 - Each training example is a pair of the form $\langle x, t(x) \rangle$, where x is the vector of input values and t(x) is the output value. r is the learning rate (e.g., 0.05)
 - Initialize all weights w_i to (small) random values
 - UNTIL the termination condition is met, DO

FOR each $\langle x, t(x) \rangle$ in D, DO

Input the instance x to the unit and compute the output $o(x) = \sigma(net(x))$

FOR each output unit k, DO

$$\delta_k = o_k(x)(1-o_k(x))(t_k(x)-o_k(x))$$
 Output Layer

FOR each hidden unit j, DO
$$\delta_{j} = h_{j}(x)(1 - h_{j}(x)) \sum_{\substack{k \in outputs \\ \text{v j,k}}} v_{j,k} \delta_{j}$$
Update each $w = u_{\underline{i},\underline{i}} (a = h_{\underline{i}})$ or $w = v_{\underline{j},\underline{k}} (a = o_{\underline{k}})$

 $\underline{w}_{start-layer, end-layer} \leftarrow \underline{w}_{start-layer, end-layer} + \underline{\Delta} \underline{w}_{start-layer, end-layer}$

 $\Delta w_{start-layer, end-layer} \leftarrow r \delta_{end-layer} \underline{a_{end-layer}}$

RETURN final u, v

$$\nabla \mathbf{E}[\vec{\mathbf{w}}] = \begin{bmatrix} \frac{\partial \mathbf{E}}{\partial \mathbf{w}_0}, \frac{\partial \mathbf{E}}{\partial \mathbf{w}_1}, \dots, \frac{\partial \mathbf{E}}{\partial \mathbf{w}_n} \end{bmatrix}$$

Recall: Gradient of Error Function
$$\nabla E[\bar{w}] = \begin{bmatrix} \frac{\partial E}{\partial w_0}, \frac{\partial E}{\partial w_1}, \dots, \frac{\partial E}{\partial w_n} \end{bmatrix}$$
Gradient of Sigmoid Activation Function
$$\frac{\partial E}{\partial w_i} = \frac{\partial}{\partial w_i} \begin{bmatrix} \frac{1}{2} \sum_{(\bar{x}, t(\bar{x})) \in D} (t(\bar{x}) - o(\bar{x}))^2 \end{bmatrix} = \frac{1}{2} \sum_{(\bar{x}, t(\bar{x})) \in D} \begin{bmatrix} \frac{\partial}{\partial w_i} (t(\bar{x}) - o(\bar{x}))^2 \end{bmatrix}$$

$$= \frac{1}{2} \sum_{(\bar{x}, t(\bar{x})) \in D} \left[2(t(\bar{x}) - o(\bar{x})) \frac{\partial}{\partial w_i} (t(\bar{x}) - o(\bar{x})) \right] = \sum_{(\bar{x}, t(\bar{x})) \in D} \left[(t(\bar{x}) - o(\bar{x})) \left(- \frac{\partial o(\bar{x})}{\partial w_i} \right) \right]$$

$$= -\sum_{\langle \vec{x}, t(\vec{x}) \rangle \in D} \left[(t(\vec{x}) - o(\vec{x})) \frac{\partial o(\vec{x})}{\partial net(\vec{x})} \frac{\partial net(\vec{x})}{\partial w_i} \right]$$

But We Know:
$$\frac{\partial o(\vec{x})}{\partial net(\vec{x})} = \frac{\partial \sigma(net(\vec{x}))}{\partial net(\vec{x})} = o(\vec{x})(1 - o(\vec{x}))$$

$$\frac{\partial net(\vec{x})}{\partial w_i} = \frac{\partial (\vec{w} \cdot \vec{x})}{\partial w_i} = x_i$$

 $\frac{\partial \boldsymbol{E}}{\partial \boldsymbol{w}_i} = -\sum_{\langle \vec{\boldsymbol{x}}, t(\vec{\boldsymbol{x}}) \rangle \in \boldsymbol{D}} [(t(\vec{\boldsymbol{x}}) - \boldsymbol{o}(\vec{\boldsymbol{x}})) \cdot (\boldsymbol{o}(\vec{\boldsymbol{x}})(1 - \boldsymbol{o}(\vec{\boldsymbol{x}}))) \cdot \boldsymbol{x}_i]$

