$10_{135} (K10n_5)$

Ideals for irreducible components 2 of X_{par}

$$I_1^u = \langle -u^{20} - u^{19} + \dots + b - 2u, \ u^{18} + u^{17} + \dots + a + 2, \ u^{21} + 2u^{20} + \dots + u - 1 \rangle$$

 $I_2^u = \langle b + 1, \ a + u, \ u^3 - u^2 + 1 \rangle$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 24 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I_1^u = \langle -u^{20} - u^{19} + \dots + b - 2u, \ u^{18} + u^{17} + \dots + a + 2, \ u^{21} + 2u^{20} + \dots + u - 1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{3} \\ u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{18} - u^{17} + \dots - u - 2 \\ u^{20} + u^{19} + \dots + 4u^{2} + 2u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{20} - u^{19} + \dots + u + 3 \\ -u^{20} - u^{19} + \dots - 5u^{2} - u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{5} + u \\ -u^{7} + u^{5} - 2u^{3} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 2u^{20} + 3u^{19} + \dots + 2u - 4 \\ 2u^{20} + u^{19} + \dots + 8u^{3} + 7u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{5} - u \\ u^{5} - u^{3} + u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes

$$= -7u^{20} - 10u^{19} + 19u^{18} + 42u^{17} - 31u^{16} - 99u^{15} + 18u^{14} + 172u^{13} + 44u^{12} - 198u^{11} - 125u^{10} + 168u^9 + 183u^8 - 76u^7 - 166u^6 - 8u^5 + 93u^4 + 26u^3 - 41u^2 - 28u + 1$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_3	$u^{21} - 8u^{20} + \dots + 17u - 1$
c_2, c_8	$u^{21} - 2u^{20} + \dots + u + 1$
c_4, c_7	$u^{21} - 4u^{20} + \dots - 2u + 1$
c_5	$u^{21} + 6u^{20} + \dots - 2u + 1$
c_6, c_9	$u^{21} - u^{20} + \dots + 4u + 8$
c_{10}	$u^{21} + 2u^{20} + \dots + 3u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_3	$y^{21} + 12y^{20} + \dots + 137y - 1$
c_2, c_8	$y^{21} - 8y^{20} + \dots + 17y - 1$
c_4, c_7	$y^{21} - 6y^{20} + \dots - 2y - 1$
c_5	$y^{21} + 22y^{20} + \dots + 66y - 1$
c_{6}, c_{9}	$y^{21} + 21y^{20} + \dots - 176y - 64$
c_{10}	$y^{21} - 24y^{20} + \dots + 17y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.567882 + 0.851579I		
a = -0.521076 - 0.321393I	2.42497 + 4.94435I	-1.24866 - 2.70559I
b = -1.047460 + 0.802568I		
u = -0.567882 - 0.851579I		
a = -0.521076 + 0.321393I	2.42497 - 4.94435I	-1.24866 + 2.70559I
b = -1.047460 - 0.802568I		
u = -0.848992 + 0.598239I		
a = 1.09099 - 1.32571I	-3.02655 - 2.36605I	-0.59037 + 2.67274I
b = 1.272850 + 0.072825I		
u = -0.848992 - 0.598239I		
a = 1.09099 + 1.32571I	-3.02655 + 2.36605I	-0.59037 - 2.67274I
b = 1.272850 - 0.072825I		
u = -0.427156 + 0.796867I		
a = -0.517814 + 0.424717I	3.29052 - 1.36266I	-0.18856 + 2.27516I
b = -0.770704 - 0.886977I		
u = -0.427156 - 0.796867I		
a = -0.517814 - 0.424717I	3.29052 + 1.36266I	-0.18856 - 2.27516I
b = -0.770704 + 0.886977I		
u = 0.707761 + 0.560391I		
a = -0.427154 - 0.668417I	-1.83472 + 0.21101I	-3.18710 - 0.57244I
b = 0.837997 + 0.449477I		
u = 0.707761 - 0.560391I		
a = -0.427154 + 0.668417I	-1.83472 - 0.21101I	-3.18710 + 0.57244I
b = 0.837997 - 0.449477I		
u = 0.951460 + 0.595395I		
a = 0.13569 + 1.78932I	-1.06863 + 4.45806I	-0.43689 - 6.14529I
b = 0.666759 - 0.637720I		
u = 0.951460 - 0.595395I		
a = 0.13569 - 1.78932I	-1.06863 - 4.45806I	-0.43689 + 6.14529I
b = 0.666759 + 0.637720I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.853051 + 0.160221I		
a = -0.985793 + 0.858266I	1.46918 - 0.34630I	5.96536 + 0.53554I
b = 0.040042 - 0.421446I		
u = -0.853051 - 0.160221I		
a = -0.985793 - 0.858266I	1.46918 + 0.34630I	5.96536 - 0.53554I
b = 0.040042 + 0.421446I		
u = 1.169830 + 0.051846I		
a = 0.79206 - 1.88563I	8.83595 + 3.51416I	4.91512 - 2.66916I
b = -0.960607 + 0.961815I		
u = 1.169830 - 0.051846I		
a = 0.79206 + 1.88563I	8.83595 - 3.51416I	4.91512 + 2.66916I
b = -0.960607 - 0.961815I		
u = 0.882737 + 0.780973I		
a = -0.878224 - 0.429656I	-3.85955 + 2.93752I	2.97600 - 3.43881I
b = -0.622642 + 0.052532I		
u = 0.882737 - 0.780973I		
a = -0.878224 + 0.429656I	-3.85955 - 2.93752I	2.97600 + 3.43881I
b = -0.622642 - 0.052532I		
u = -1.083580 + 0.616829I		
a = 1.133680 - 0.321228I	5.21503 - 3.89686I	2.41425 + 2.65107I
b = -0.721179 + 1.021470I		
u = -1.083580 - 0.616829I		
a = 1.133680 + 0.321228I	5.21503 + 3.89686I	2.41425 - 2.65107I
b = -0.721179 - 1.021470I		
u = -1.075840 + 0.689537I		
a = -0.86208 + 1.97593I	3.96319 - 10.68720I	0.56681 + 6.96141I
b = -1.117050 - 0.836949I		
u = -1.075840 - 0.689537I		
a = -0.86208 - 1.97593I	3.96319 + 10.68720I	0.56681 - 6.96141I
b = -1.117050 + 0.836949I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.289436		
a = -1.92057	-1.20998	-9.37190
b = 0.843987		

II.
$$I_2^u = \langle b+1, \ a+u, \ u^3-u^2+1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u \\ -u^{2} + u + 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u \\ -1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u + 1 \\ -1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u + 1 \\ -1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $2u^2 7u 2$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^3 + u^2 + 2u + 1$
c_2	$u^3 + u^2 - 1$
c_3, c_{10}	$u^3 - u^2 + 2u - 1$
c_4	$(u-1)^3$
c_5, c_7	$(u+1)^3$
c_6, c_9	u^3
c ₈	$u^3 - u^2 + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_{10}	$y^3 + 3y^2 + 2y - 1$
c_2,c_8	$y^3 - y^2 + 2y - 1$
c_4, c_5, c_7	$(y-1)^3$
c_6, c_9	y^3

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.877439 + 0.744862I		
a = -0.877439 - 0.744862I	-4.66906 + 2.82812I	-7.71191 - 2.59975I
b = -1.00000		
u = 0.877439 - 0.744862I		
a = -0.877439 + 0.744862I	-4.66906 - 2.82812I	-7.71191 + 2.59975I
b = -1.00000		
u = -0.754878		
a = 0.754878	-0.531480	4.42380
b = -1.00000		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$ (u^3 + u^2 + 2u + 1)(u^{21} - 8u^{20} + \dots + 17u - 1) $
c_2	$(u^3 + u^2 - 1)(u^{21} - 2u^{20} + \dots + u + 1)$
c_3	$(u^3 - u^2 + 2u - 1)(u^{21} - 8u^{20} + \dots + 17u - 1)$
c_4	$((u-1)^3)(u^{21}-4u^{20}+\cdots-2u+1)$
c_5	$((u+1)^3)(u^{21}+6u^{20}+\cdots-2u+1)$
c_6, c_9	$u^3(u^{21} - u^{20} + \dots + 4u + 8)$
c ₇	$((u+1)^3)(u^{21}-4u^{20}+\cdots-2u+1)$
c ₈	$(u^3 - u^2 + 1)(u^{21} - 2u^{20} + \dots + u + 1)$
c_{10}	$(u^3 - u^2 + 2u - 1)(u^{21} + 2u^{20} + \dots + 3u + 1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_3	$(y^3 + 3y^2 + 2y - 1)(y^{21} + 12y^{20} + \dots + 137y - 1)$
c_2, c_8	$(y^3 - y^2 + 2y - 1)(y^{21} - 8y^{20} + \dots + 17y - 1)$
c_4, c_7	$((y-1)^3)(y^{21} - 6y^{20} + \dots - 2y - 1)$
c_5	$((y-1)^3)(y^{21} + 22y^{20} + \dots + 66y - 1)$
c_6, c_9	$y^3(y^{21} + 21y^{20} + \dots - 176y - 64)$
c_{10}	$(y^3 + 3y^2 + 2y - 1)(y^{21} - 24y^{20} + \dots + 17y - 1)$