

Design of an Externalized Music Player

■ Ecole Polytechnique Fédérale de Lausanne – LTS2

Spring Semester 2021

Contents

- 1. Introduction
- 2. Method
- 3. Concept
- 4. User Interface of the Music Player
- 5. Conclusion

1. Introduction

Introduction: Sound Externalization

 Sounds from the real-world are perceived externalized and the source can be localized

 Sounds from headphones are perceived inside-the-head

Lateralization

- Headphones sound externalization recreates the perception of an externalized sound source
- Applications in hearing aids technologies, augmented and virtual reality, ...

Figure 1: Concept of Sound Externalization

Introduction: Scope of the Project

- Sound reproduction systems over headphones may lead to mental fatigue which can be reduced with externalized sounds.
- The scope of the project is to design of a music player capable of externalizing audio tracks according to a specific environment
 - Based on convolutional artificial reverberation
 - Adjustable in real-time according to an head tracking system

Figure 2: Simulated loudspeaker setup

- Artificial Reverberation Algorithms simulate the psychoacoustic impact of reverberation impulse response features
 - Input 'dry' signal convolved with BRIR
 - For real-time application, **partitioned convolution** is the most valid alternative to regular convolution
 - Partitioned convolutions guarantee a latency as short as the partition size (ex: 64 samples at 44100 Hz → 1.45 ms)

Figure 3: Impulse Response Partitioning

2. Method

Method: Tools

- Implementation on Pure Data
- Auxiliary scripts on MATLAB and C language
- BRIRs recorded at EPFL listening room using KEMAR manikin by G.R.A.S.
- HRTFs from the compact dataset made available by MIT Media Lab
- IMU sensor produced by x-io
 Technologies

EPFL

Method: Pure Data

- Open source visual programming environment for interactive computer music and multimedia works
- Equipped with hundreds of objects optimized for real-time multimedia application
- Can interact with multiple devices (e.g. Raspberry board, Arduino board, MIDI devices) and allows transfer of data over WiFi

Figure 4: Example of a Pure Data patch

EPFL

Method: Limitations

- No objects available for partitioned convolution that allow to change on the fly the set of BRIRs without producing artifacts
- The available objects for partitioned convolution
 - Clear the buffers when a new set of BRIRs are loaded
 - Works on a heavy use of FFTs that may cause spikes in the CPU usage which in turns interrupt the audio stream
- Lack of an intuitive tool for debugging custom objects and patches

Time

Figure 5: Spectrogram of the output of a convolution object in Pd

3. Concept

Concept: Initial Designs

Design 1

- Improve the source code of the available objects
 - Modified buffer management
 - Import the BRIR dataset at initialization

Conclusions

- The deadtime reduced slightly but not enough
- The code requires a more drastic re-design to get acceptable results

Time

Figure 6: Spectrogram of the output of the modified convolution object in Pd

EPFL

Concept: Initial Designs

Design 2

- Circular chain of 5 partitioned convolution objects per channel whose output is controlled by a multiplexer
 - The output of the multiplexer never coincides with the newly updated partitioned convolution object
 - Expected high usage of the CPU

Conclusions

Same artifacts as in Design 1

Figure 7: Two subsequent instances of [part of] the second implementation

EPFL

Concept: Final Design

- Direct sound and reflections treated separately and combined together after processing
 - Direct Sound: dry sound convolved in time domain with the HRTFs
 - Early Reflections (ER) and Late Reverberation (LR): dry sound convolved in frequency domain with modified BRIRs
- HRTFs are linearly interpolated
- The location of the ER and LR is fixed to avoid artifacts.

Figure 8: HRTF and modified BRIR at 30°

EPFL

Concept: Final Design

Pure Data objects:

- earplug: convolution with the HRTFs
- convolve: convolution with the BRIRs

Figure 9: Diagram of the sound externalization block

4. User Interface of the Music Player

Semester Project: Design of an Externalized Music Player

EPFL

Unser Interface

Music Player

- Load from file explorer
- Play/pause/resume the audio file
- Scroll bar to play from a specific point
- Master volume control bar
- Toggle between wet (externalized) and dry sound

Unser Interface

Head Tracking System

Three modes available

- auto: simulation of the rotation of the head from -45° to 45°
- manual: user can set the desired angle of the head
- sensor: connects the patch to the IMU tracking device to retrieve the rotation of the head

Figure 10: Head tracking system angle convention

EPFL

Unser Interface

Artificial Reverb

- Custom DRR
- Simulation of mono or stereo loudspeaker set up
- Custom length of the BRIRs
- The user can load his own set of ER+LR both in mono and stereo mode

Figure 11: BRIRs naming convention

5. Conclusions

Conclusions

Limitations

Strengths

- Control over several parameters
 - It can be used to investigate the effects on perceived externalization of different configuration
- Artifact-free and low computational expensive implementation
- Modular architecture, easy to be modified

- It cannot be distributed as a standalone application
- Lack of a Pure Data object that allows to change the set of BRIRs in realtime

Future Work

 Conduct a formal psychoacoustic test to assess the efficacy of the sound externalization algorithm and on the effect of externalized sounds on mental fatigue

Thank you for your attention!

Questions?

Gloria Dal Santo gloria.dalsanto@epfl.ch