Opgave 164

December 1, 2016

Opgave 292 - Bevis for L'Hopitals regel om 0/0-udtryk ved grænseovergange $x \to a^-$ og $x \to a$

a) Tilfældet $x \to a^-$

Antag, at f og g er defineret og differentiable i en interval $]a - \rho, a[$ til venstre for punktet a, og at der gælder:

$$f(x) \to 0 \text{ for } x \to a^-$$
 (1)

$$g(x) \to 0 \text{ for } x \to a^-$$
 (2)

$$\frac{f'(x)}{g'(x)} \to c \text{ for } x \to a^-$$
 (3)

Bevis, at så gælder der

$$\frac{f(x)}{g(x)} \to c \text{ for } x \to a^-$$
 (4)

Lad $\tilde{f}(x) = f(-x)$ og $\tilde{g}(x) = g(-x)$. \tilde{f} og \tilde{g} er da defineret og differentiable i intervallet $]-a, -a + \rho[$ og der kigges nu på grænseovergangen $x \to -a^+$.

Lad nu $\tilde{f}(-a) = 0$ og $\tilde{g}(-a) = 0$ Analogt med forberedelserne til beviset for grænseovergangen for $x \to a^+$ laves forberedelse, således middelværdisætningen kan benyttes. Siden \tilde{g} og \tilde{f} er kontinuerte i ethvert punkt af intervallet er de det dermed også i -a. \tilde{f} og \tilde{g} er desuden definerede i et interval $]-a, -a + \rho_1[$, hvor $\rho_1 \leq \rho$, og hvorpå \tilde{f} og \tilde{g} altså er differentiable.

Dermed opfylder \tilde{f} og \tilde{g} kravene for middelværdisætningen, og der eksisterer et $\xi \in]-x, -a[$, således

$$\frac{\tilde{g}(-x) - \tilde{g}(-a)}{-x + a} = \tilde{g}'(xi) \neq 0 \quad \text{og} \quad \frac{\tilde{f}(-x) - \tilde{f}(-a)}{-x + a} = \tilde{f}'(-\xi) \neq 0. \tag{5}$$

Det skal bevises, at når følgende er givet

$$\forall \varepsilon > 0 \exists \delta > 0 : -a < -x < -a + \delta \implies \left| \frac{\tilde{f}(-x)}{\tilde{g}(-x)} - c \right| < \varepsilon \tag{6}$$

så gælder det i følge L'Hopitals regel, at

$$\forall \varepsilon > 0 \exists \delta > 0 : -a < -x < -a + \delta \implies \left| \frac{\tilde{f}'(-x)}{\tilde{g}'(-x)} - c \right| < \varepsilon \tag{7}$$

Lad så $\varepsilon > 0$ være givet og bestem δ i henhold til (6). Herudfra påståes så, at det bestemte δ også vil afparere ε i (7).

Da $f(\bar{-}a) = g(\bar{-}a) = 0$ vælges -x nu vilkårligt, sådan at $-a < -x < -a + \delta$ og følgende brøk opstilles

$$\frac{\tilde{f}(-x)}{\tilde{g}(-x)} = \frac{\tilde{f}(-x) - \tilde{f}(-a)}{\tilde{g}(-x) - \tilde{g}(-a)}.$$
 (8)

Da $x \neq -a$ og $\tilde{g}(0) = 0$ fås at $\tilde{g}(-x) \neq 0$. Altså gælder ifølge Cauchys middelværdisætning

$$\frac{\tilde{f}(-x)}{\tilde{g}(-x)} = \frac{\tilde{f}(-x) - \tilde{f}(-a)}{\tilde{g}(-x) - \tilde{g}(-a)} = \frac{\tilde{f}'(-\xi)}{\tilde{g}'(-\xi)}$$
(9)

og da $-a<\xi<-a+\delta$ følger det heraf, at

$$\left| \frac{\tilde{f}(-x)}{\tilde{g}(-x)} - c \right| = \left| \frac{\tilde{f}'(-\xi)}{\tilde{g}'(-\xi)} - c \right| < \varepsilon.$$
 (10)

Altså haves, at

$$\frac{f(-x)}{g(-x)} \to c \text{ for } -x \to -a^+ \tag{11}$$

i et interval] $-a, -a + \rho$ [til højre for -a og dermed også at

$$\frac{f(x)}{g(x)} \to c \text{ for } x \to a^-$$
 (12)

i et interval $a - \rho$, a til venstre for a.

$\mathbf{b} \quad \text{Tilfældet } x \to a$

Antag, at f og g er definerede i nærheden af punktet a, og at der gælder

$$f(x) \to 0 \text{ for } x \to a,$$
 (13)

$$g(x) \to 0 \text{ for } x \to a, \qquad \text{og}$$
 (14)

$$\frac{f'(x)}{g'(x)} \to c \text{ for } x \to a. \tag{15}$$

Bevis, at så gælder der

$$\frac{f(x)}{g(x)} \to c \text{ for } x \to a.$$
 (16)

Da