【专题】无穷和 I: 理论

SDS 高数小班课 (2025 春)

崔畅 北京大学化学与分子工程学院 CuiChang2022@stu.pku.edu.cn

2025.6.7

1 无穷级数的审敛法

定义 1.1 (收敛序列与 Cauchy 序列). 给定 (无穷) 实序列 $\{a_k\}_{k=1}^{\infty}$.

- 1. 若存在 $A \in \mathbb{R}$, 使得对任给的 $\epsilon > 0$ 都存在对应的 $N(\epsilon) \in \mathbb{N}$ 满足 $|a_k A| < \epsilon (\forall k \geq N)$, 则称序列 $\{a_k\}_{k=1}^{\infty}$ 为收敛序列 (convergent sequence), 且以 A 为其极限. 记作 $\lim_{k \to \infty} a_k = A$;
- 2. 若存在 $N \in \mathbb{N}$,使得对任给的 $i, j \geq N$ 都满足 $|a_i a_j| < \epsilon$,则称序列 $\{a_k\}_{k=1}^{\infty}$ 为 Cauchy 序列 (Cauchy sequence).

定理 1.1 (Cauchy 收敛准则). 无穷级数 $\sum_{k=1}^{\infty} a_k$ 收敛的充要条件是: 对任给的 $\epsilon > 0$ 都存在对应的 $N(\epsilon) \in \mathbb{N}$ 满足

$$|S_{n+p} - S_n| \equiv \left| \sum_{k=n+1}^{n+p} a_k \right| < \epsilon \, (\forall n \ge N, p \ge 1)$$
 (1)

例题 1.1 (调和级数的发散性). 证明: 调和级数 $S_n = \sum_{k=1}^n \frac{1}{k}$ 发散.

1.1 常数项级数

1.1.1 正项级数的比较审敛

定理 1.2 (比较审敛法). 设两个正项级数 $\sum_{n=1}^{\infty} u_n$ 与 $\sum_{n=1}^{\infty} v_n$ 的一般项满足 $u_n \leq v_n$. 则

- 1. 级数 $\sum_{n=1}^{\infty} v_n$ 收敛蕴涵了级数 $\sum_{n=1}^{\infty} u_n$ 收敛;
- 2. 级数 $\sum_{n=1}^{\infty} u_n$ 发散蕴涵了级数 $\sum_{n=1}^{\infty} v_n$ 发散.

定理 1.3 (比较审敛法: 极限形式). 给定两个正项级数 $\sum_{n=1}^{\infty} u_n$ 与 $\sum_{n=1}^{\infty} v_n$, 记 $h \equiv \lim_{n \to \infty} \frac{u_n}{v_n}$ (可以为有限数或 $+\infty$). 则

- 1. 若 $0 \le h < +\infty$, 则级数 $\sum_{n=1}^{\infty} v_n$ 收敛蕴涵了级数 $\sum_{n=1}^{\infty} u_n$ 收敛;
- 2. 若 $0 < h \le +\infty$, 则级数 $\sum_{n=1}^{\infty} v_n$ 发散蕴涵了级数 $\sum_{n=1}^{\infty} u_n$ 发散

例题 1.2 (以等比级数为比较基准). 讨论级数 $\sum_{n=1}^{\infty} \frac{n^n}{n!}$ 的敛散性.

注记 1.1. 对 $a_1 \neq 0$ 及 q > 0 $(q \neq 1)$, 我们根据部分和 $S_n = \sum_{k=1}^n a_1 q^k = \frac{a_1(1-q^n)}{1-q}$, 讨论等比级数 $\sum_{k=1}^{\infty} a_1 q^k$ 的敛散性:

- 1. 若 0 < q < 1, 则级数收敛到 $S \equiv S_{\infty} = \frac{a_1}{1-q}$;
- 2. 若 q > 1, 则级数发散.

例题 1.3 (以 *p*-级数为比较基准). 讨论级数 $\sum_{n=1}^{\infty} \ln(\cos \frac{\pi}{n})$ 的敛散性.

注记 1.2. 对 p > 0, 我们根据 p 的取值, 讨论 p-级数 $\sum_{n=1}^{\infty} \frac{1}{n^p}$ 的敛散性.

- 1. 若 0 , 则由其与调和级数之间的比较审敛, 得到发散性;
- 2. 若 p > 1, 基于和式的重排与部分和有界定理可证, 级数收敛.

注记 1.3. 根据级数项的形式, 提炼出增长/衰减的"主要部分", 作为比较或放缩的依据. 许多复杂问题中, 不等式放缩的方向是从量级估计所得的猜想中得到启发的.

练习 1.1 (比较审敛与放缩法). 讨论级数 $\sum_{n=1}^{\infty} \frac{3\sqrt[3]{n+1}}{(\sqrt[4]{n+n})(\sqrt[3]{n+n})}$ 的敛散性.

定理 1.4 (d'Alembert 审敛法: 以等比级数为基准). 若正项级数 $\sum_{n=1}^{\infty} u_n$ 满足 $l = \lim_{n \to \infty} \frac{u_{n+1}}{u_n}$, 则 l < 1 蕴涵级数收敛, l > 1 蕴涵级数发散.

定理 1.5 (Cauchy 审敛法: 以等比级数为基准). 若正项级数 $\sum_{n=1}^{\infty} u_n$ 满足 $l = \lim_{n \to \infty} \sqrt[n]{u_n}$, 则 l < 1 蕴涵级数收敛, l > 1 蕴涵级数发散.

例题 1.4 (基于等比级数的比较审敛法). 讨论级数

$$\sqrt{2} + \sqrt{2 - \sqrt{2}} + \sqrt{2 - \sqrt{2 + \sqrt{2}}} + \sqrt{2 - \sqrt{2 + \sqrt{2} + \sqrt{2}}} + \cdots$$
 (2)

的敛散性.

定理 1.6 (Raabe 审敛法: 以 *p*-级数为基准). 若正项级数 $\sum_{n=1}^{\infty} u_n$ 满足 $R=\lim_{n\to\infty} n\left(\frac{u_n}{u_{n+1}}-1\right)$,则 R>1 蕴涵级数收敛,R<1 蕴涵级数发散.

定理 1.7 (对数审敛法: 以 p-级数为基准). 若正项级数 $\sum_{n=1}^{\infty}u_n$ 满足 $r=\lim_{n\to\infty}\frac{\ln\frac{1}{u_n}}{\ln n}$, 则 r>1 蕴涵级数收敛, $r\leq 1$ 蕴涵级数发散.

- 并非课本定理, 应用时需要基于比较审敛法做简单的证明.
- **例题 1.5** (基于 *p*-级数的比较审敛法). 讨论级数 $\sum_{n=1}^{\infty} \frac{n!e^n}{n^n+p}$ (其中 $p > \frac{3}{2}$) 的敛散性.
- 注记 1.4. 在级数的前面添加或删除有限个项, 不改变级数的敛散性.
- 注记 1.5. p-级数的衰减相较于等比级数要"慢", 是更为"精细"、"温和"的比较基准.
- **练习 1.2** (Cauchy 审敛法). 讨论级数 $\sum_{n=2}^{\infty} \left(\frac{n-1}{n+1}\right)^{n^2-n}$ 的敛散性.

1.1.2 绝对收敛的任意项级数

定义 1.2 (绝对收敛). 若 (正项) 级数 $\sum_{n=1}^{\infty} |u_n|$ 收敛,则称 (任意项) 级数 $\sum_{n=1}^{\infty} u_n$ (必然也收敛) 是**绝对收敛** (absolutely convergent) 的.

• 绝对收敛级数的和具有重排不变性 (permutation invariance), 改变各项的 排列次序不影响和的值. **例题 1.6** (绝对收敛级数). 证明: $\sum_{n=1}^{\infty} (-1)^n \left(1 - \cos \frac{1}{n}\right)$ 绝对收敛.

1.1.3 条件收敛的任意项级数

定义 1.3 (条件收敛). 若 (正项) 级数 $\sum_{n=1}^{\infty} |u_n|$ 发散但 (任意项) 级数 $\sum_{n=1}^{\infty} u_n$ 收敛, 则称级数 $\sum_{n=1}^{\infty} u_n$ 是条件收敛 (conditionally convergent) 的.

定理 1.8 (Dirichilet-Abel 审敛法). 考虑级数 $\sum_{n=1}^{\infty} a_n b_n$.

- 1. (Dirichlet 审敛法) 若序列 $\{a_n\}_{n=1}^{\infty}$ 单调且 $\lim_{n\to\infty} a_n = 0$, 序列 $\{b_n\}_{n=1}^{\infty}$ 的部分和有界, 则级数 $\sum_{n=1}^{\infty} a_n b_n$ 收敛;
- 2. (Abel 审敛法) 若序列 $\{a_n\}_{n=1}^{\infty}$ 单调且有界, 序列 $\{b_n\}_{n=1}^{\infty}$ 的级数 $\sum_{n=1}^{\infty} b_n$ 收敛, 则级数 $\sum_{n=1}^{\infty} a_n b_n$ 收敛.

例题 1.7 (Dirichlet-Abel 审敛法). 判别级数 $\sum_{n=1}^{\infty} \frac{\sin(2n)}{n+\frac{1}{n}} \left(1+\frac{1}{n}\right)^n$ 的敛散性.

注记 1.6. 因子 $\sin(n\theta)$ 作为有界函数显然并不影响一般项的增长"量级", 但根据其它因子的"量级估计"结果, 我们将需要在下述两个方向的不等式中选择一个进行放缩:

$$\frac{1 - \cos(2n\theta)}{2} \equiv \sin^2(n\theta) \le |\sin(n\theta)| \le 1.$$
 (3)

注记 1.7. Dirichlet-Abel 审敛法的难点是涉及和式的那个级数 b_n . 常用的选择包括:

- (Dirichlet 审敛) 符号级数 $b_n \equiv (-1)^n$, 三角级数 $b_n \equiv \sin(n\theta)$;
- (Abel \oplus \oplus) $b_n \equiv \frac{(-1)^n}{n^p} \not \equiv b_n \equiv \frac{\sin(n\theta)}{n^p}$ ($\not \equiv p, p > 0$).

练习 1.3 (绝对收敛与条件收敛). 设常数 p > 0, 讨论级数 $\sum_{n=1}^{\infty} \frac{\sin n}{n^p}$ 的敛散性 (绝对收敛、条件收敛).

1.2 函数项级数

1.2.1 函数序列的收敛性

定义 1.4 (函数序列: 点收敛). 给定 D 上的函数序列 $S = \{f_n(x)\}_{n=1}^{\infty}$, 我们称 S 在点 x_0 处收敛 (convergent), 若 $\lim_{n\to\infty} f_n(x_0)$ 存在. 全体收敛点 x_0 构成的集合 X 称为该序列的收敛域 (convergence domain). 在收敛域 X 中, 序列 S 定义了一个函数 $f(x) \equiv \lim_{n\to\infty} f_n(x)$, 称为极限函数 (limit function).

• 根据极限函数的定义, 对任意给定的 $\epsilon > 0$, 都存在 $N \equiv N(x; \epsilon) \in \mathbb{N}_+$, 使 得 $|f_n(x) - f(x)| < \epsilon$ 对任意 $n \ge N$ 及 $x \in X$ 成立.

定义 1.5 (函数序列: 一致收敛). 特别地, 若收敛序列定义中的临界下标 $N \equiv N(\epsilon)$ 不依赖于 x, 则称序列 S 在收敛域 X 上一致收敛 (uniformly converge) 到极限函数 f(x), 记作 $f_n(x) \Rightarrow f(x)$ $(n \to \infty)$.

• 收敛速度可由 $N(\epsilon) \equiv \sup_{x \in X} N(\epsilon; x)$ 对 X 内所有点作 "统一的" 控制.

例题 1.8 (函数序列的一致收敛性). 讨论函数序列 $f_n(x) = \left(1 - \frac{1}{\sqrt{n}}\right)^{x^2}, n = 1, 2, \cdots$ 在 $x \in (0, +\infty)$ 上的一致收敛性.

1.2.2 函数项级数的逐点收敛

例题 1.9 (点审敛). 讨论级数 $\sum_{n=1}^{\infty} \frac{\sin^n x}{1+\sin^{2n} x}$, $x \in (-\infty, +\infty)$ 的绝对收敛性和条件收敛性.

练习 1.4 (点审敛). 求函数项级数 $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n^x + 2n}$ 的收敛域, 绝对收敛点 x 的全体, 条件收敛点 x 的全体.

1.2.3 函数项级数的一致收敛

定理 1.9 (强级数审敛法). 若函数项级数 $\sum_{n=1}^{\infty} u_n(x)$ 的一般项满足 $|u_n(x)| \le a_n \ (\forall x \in X, n \in \mathbb{N}_+)$, 且正项级数 $\sum_{n=1}^{\infty} a_n \ (称为强级数)$ 收敛,则 $\sum_{n=1}^{\infty} u_n(x)$ 一致收敛.

例题 1.10 (强级数: 递推函数序列). 对于每个 $x \in [0,1], n = 1,2,\cdots$, 定义

$$f_1(x) = \int_0^x \sqrt{1+t^4} \, dt, \ f_{n+1}(x) = \int_0^x f_n(t) \, dt,$$
 (4)

证明: $\sum_{n=1}^{\infty} f_n(x)$ 在 [0,1] 上一致收敛.

练习 1.5 (强级数: 内闭一致性). 设 $\alpha, \beta > 0$, 证明: 函数项级数 $\sum_{n=1}^{\infty} n^{\alpha} e^{-n^{\beta}x}$ 在 $(0, +\infty)$ 的任意闭子区间 $[r, +\infty)$ 上一致收敛 (r > 0).

定理 1.10 (Dirichlet-Abel 审敛法). 考虑函数项级数 $\sum_{n=1}^{\infty} a_n(x)b_n(x)$.

- 1. (Dirichlet 审敛法) 若函数序列 $\{a_n(x)\}_{n=1}^{\infty}$ 在 X 上一致收敛到 0 且对任意 给定的 $x \in X$ 都对 n 单调,函数序列 $\{b_n(x)\}_{n=1}^{\infty}$ 的部分和序列在 X 上一致有界,则级数 $\sum_{n=1}^{\infty} a_n(x)b_n(x)$ 收敛;
- 2. (Abel 审敛法) 若函数序列 $\{a_n(x)\}_{n=1}^{\infty}$ 在 X 上一致有界且对任意给定的 $x \in X$ 都对 n 单调, 函数序列 $\{b_n(x)\}_{n=1}^{\infty}$ 的级数 $\sum_{n=1}^{\infty} b_n(x)$ 在 X 上一致 收敛, 则级数 $\sum_{n=1}^{\infty} a_n(x)b_n(x)$ 收敛.

例题 1.11 (Dirichlet 级数). 若级数 $\sum_{n=1}^{\infty} a_n$ 收敛, 证明: 级数 $\sum_{n=1}^{\infty} \frac{a_n}{n^x}$ 在 $[0, +\infty)$ 上一致收敛.

2 广义积分与含参积分的审敛法

2.1 广义积分的审敛

定义 2.1 (无穷积分). 设函数 f(x) 在 $[a, +\infty)$ 上有定义, 且对任意 A > a, 函数 f(x) 在 [a, A] 上可积. 若 $\lim_{A\to\infty} \int_a^A f(x) \, \mathrm{d}x$ 存在, 则称**无穷积分**

$$\int_{a}^{+\infty} f(x) \, \mathrm{d}x \equiv \lim_{A \to \infty} \int_{a}^{A} f(x) \, \mathrm{d}x \tag{5}$$

收敛; 否则发散.

定义 2.2 (瑕积分). 设函数 f(x) 在 (a,b] 上有定义, 且 f(x) 在任意区间 $[a+\epsilon,b] \subset (a,b]$ 上可积, 但 $x \to a_+$ 时 f(x) 无界. 此时, 称 a 为函数 f(x) 的**瑕点**. 若 $\lim_{\epsilon \to 0_+} \int_{a+\epsilon}^b f(x) \, \mathrm{d}x$ 存在, 则称**瑕积分**

$$\int_{a}^{b} f(x) \, \mathrm{d}x \equiv \lim_{\epsilon \to 0_{+}} \int_{a+\epsilon}^{b} f(x) \, \mathrm{d}x \tag{6}$$

收敛; 否则发散.

2.1.1 非负函数的比较审敛法

定理 2.1 (比较审敛法). 给定函数 f(x), g(x).

- 1. (无穷积分) 假设它们在 $[a, +\infty)$ 上有定义, 且当 $x \ge X \ge a$ 时, 有 $0 \le f(x) \le g(x)$. 则 $\int_a^{+\infty} g(x) \, \mathrm{d}x$ 收敛蕴涵 $\int_a^{+\infty} f(x) \, \mathrm{d}x$ 收敛, $\int_a^{+\infty} f(x) \, \mathrm{d}x$ 发散蕴涵 $\int_a^{+\infty} g(x) \, \mathrm{d}x$ 发散.
- 2. (瑕积分) 假设它们在 (a,b] 上有定义且均以 a 为瑕点, 且当 $x \in (a,c) \subset (a,b]$ 时, 有 $0 \le f(x) \le g(x)$. 则 $\int_a^b g(x) \, \mathrm{d} x$ 收敛蕴涵 $\int_a^b f(x) \, \mathrm{d} x$ 收敛, $\int_a^b f(x) \, \mathrm{d} x$ 发散蕴涵 $\int_a^b g(x) \, \mathrm{d} x$ 发散.

例题 2.1 (以 x^{-p} 为比较对象). 讨论无穷积分 $\int_0^{+\infty} \frac{\ln(1+x)}{x^p} dx$ (其中 p > 0) 的敛散性: **注记 2.1.** 对常数 p > 0 与 (常义) 积分限 $0 < c < +\infty$, 一个熟知的基本事实是:

- 1. 无穷积分 $\int_{c}^{+\infty} \frac{dx}{x^{p}}$ 在 p > 1 时收敛, 在 0 时发散;
- 2. 瑕积分 $\int_0^c \frac{dx}{x^p}$ 在 $0 时收敛, 在 <math>p \ge 1$ 时发散.

因此, 1 是审敛中常用的比较对象.

注记 2.2. 与正项级数的比较审敛法类似, 我们也可以写出并应用广义积分的比较审敛 法的极限形式, 这对增长"量级"的分析与放缩的方向具有指导作用.

注记 2.3. 注意检查被积函数的所有瑕点, 这些瑕点和无穷远点处的积分敛散性需要逐个讨论.

2.1.2 乘积函数的 Dirichlet-Abel 审敛法

定理 2.2 (无穷积分的 Dirichilet-Abel 审敛法). 考虑无穷积分 $\int_a^{+\infty} f(x)g(x) dx$.

- 1. (Dirichlet 审敛法) 若积分 $\int_a^A f(x) dx$ 有界 (其中 $A \ge a$ 任意给定), 函数 g(x) 在 $[a, +\infty)$ 上单调且当 $x \to +\infty$ 时收敛到 0, 则无穷积分 $\int_a^{+\infty} f(x)g(x) dx$ 收敛.
- 2. (Abel 审敛法) 若无穷积分 $\int_a^{+\infty} f(x) dx$ 收敛, 函数 g(x) 在 $[a, +\infty)$ 上单调有界, 则无穷积分 $\int_a^{+\infty} f(x)g(x) dx$ 收敛.

定理 2.3 (瑕积分的 Dirichlet-Abel 审敛法). 考虑以 a 为瑕点的瑕积分 $\int_a^b f(x)g(x) dx$.

- 1. (Dirichlet 审敛法) 若积分 $\int_c^b f(x) \, \mathrm{d}x$ 有界 (其中 $a < c \le b$ 任意给定), 函数 g(x) 在 (a,b] 上单调且当 $x \to a$ 时收敛到 0, 则瑕积分 $\int_a^b f(x)g(x) \, \mathrm{d}x$ 收敛.
- 2. (Abel 审敛法) 若瑕积分 $\int_a^b f(x) \, \mathrm{d}x$ 收敛, 函数 g(x) 在 (a,b] 上单调有界,则瑕积分 $\int_a^b f(x) g(x) \, \mathrm{d}x$ 收敛.

例题 2.2 (Dirichlet 积分). 讨论广义积分 $\int_0^{+\infty} \frac{\sin x}{x} dx$ 的敛散性 (绝对收敛、条件收敛或发散).

例题 2.3 (乘积因子的构造). 定义函数 $\theta:[0,+\infty)\to[0,+\infty)$ 为

$$\theta(x) = \int_0^x \sqrt{(t+1)(t+2)(t+3)} \, \mathrm{d}t,\tag{7}$$

证明: 无穷积分 $\int_0^{+\infty} \cos(\theta(x)) dx$ 收敛.

练习 2.1 (Dirichlet-Abel 审敛法). 讨论无穷积分 $\int_1^{+\infty} \frac{\sin x}{\sqrt{x}} \arctan x \, dx$ 的敛散性.

2.2 含参广义积分的审敛法

定义 2.3 (一致收敛). 给定二元函数 f(x,y).

- (无穷积分) 假设 $g(y) = \int_a^{+\infty} f(x,y) \, \mathrm{d}x$ 对一切 $y \in Y$ 都收敛. 若对任给的 $\epsilon > 0$ 都存在一个与 y 无关的实数 N > a, 使得 $\left| \int_A^{+\infty} f(x,y) \, \mathrm{d}x \right| < \epsilon$ 对任 意 A > N 与 $y \in Y$ 都成立, 则称 $\int_a^{+\infty} f(x,y) \, \mathrm{d}x$ 在区间 Y 上一**致收敛**.
- (瑕积分) 假设 $g(y) = \int_a^b f(x,y) dx$ (以 a 为瑕点) 对一切 $y \in Y$ 都收敛. 若对任给的 $\epsilon > 0$ 都存在一个与 y 无关的实数 $\delta_0 > 0$, 使得 $\left| \int_a^{a+\delta} f(x,y) dx \right| < \epsilon$ 对任意 $\delta \in (0,\delta_0)$ 与 $y \in Y$ 都成立,则称瑕积分 $\int_a^b f(x,y) dx$ 在区间 Y 上一致收敛.

定理 2.4 (强函数审敛法). 给定二元函数 f(x,y).

- (无穷积分) 假设当 $y \in Y$ 时, f(x,y) 关于变量 x 在区间 [a,A] 上可积 (其中 A > a 任意给定). 若存在函数 $\phi(x)$, 使得 $|f(x,y)| \le \phi(x)$ 对任 意 $(x,y) \in [a,+\infty) \times Y$ 成立, 且无穷积分 $\int_a^{+\infty} \phi(x) \, \mathrm{d}x$ 收敛, 则含参积分 $g(y) = \int_a^{+\infty} f(x,y) \, \mathrm{d}x$ 在区间 Y 上一致收敛.
- (瑕积分) 假设 f(x,y) 在区间 $(a,b] \times Y$ 上连续,且对任意 $y \in Y$,函数 f(x,y) 都以 a 为瑕点.若存在 (a,b] 上的连续函数 $\phi(x)$,使得 $|f(x,y)| \le \phi(x)$ 对任意 $(x,y) \in (a,b] \times Y$ 成立,且瑕积分 $\int_a^b \phi(x) \, \mathrm{d}x$ 收敛,则含参积 分 $g(y) = \int_a^{+\infty} f(x,y) \, \mathrm{d}x$ 在区间 Y 上一致收敛.

例题 2.4 (强函数审敛法). 任意取定 r > 0. 证明: 含参无穷积分 $\int_0^{+\infty} e^{-xy^2} \cos x \, dx$ 对于 $y \in [r, +\infty)$ 是一致收敛的.

注记 2.4. 当 y=0 时, 显然 $\int_0^{+\infty} \cos x \, dx$ 不再收敛. 所以, 积分 $\int_0^{+\infty} e^{-xy^2} \cos x \, dx$ 具有内闭一致性.

定理 2.5 (Dirichlet-Abel 审敛法). 给定二元函数 f(x,y) 和 g(x,y).

- (无穷积分) 若下面任一组条件得到满足, 则无穷积分 $\int_a^{+\infty} f(x,y)g(x,y) dx$ 在 Y 上一致收敛:
 - (Dirichlet 审敛法) 当 $x \to +\infty$ 时, g(x,y) 关于 x 单调且一致收敛到 0, 且积分 $\int_a^A f(x,y) \, \mathrm{d}x$ 对一切 $A \ge a$ 都关于 $y \in Y$ 一致有界;
 - (Abel 审敛法) 当 $x \to +\infty$ 时, g(x,y) 关于 x 单调且关于 $y \in Y$ 一致 有界, 且积分 $\int_a^{+\infty} f(x,y) \, \mathrm{d}x$ 在 Y 上一致收敛.
- (瑕积分) 类似.

例题 2.5 (Dirichlet-Abel 审敛法). 讨论积分 $I(\alpha) = \int_0^{+\infty} \frac{\sin x}{x} e^{-\alpha x} dx$ 在 $\alpha \in [0, +\infty)$ 时的一致收敛性.