

UNIVERSIDAD AUSTRAL DE CHILE FACULTAD DE CIENCIAS DE LA INGENIERÍA CENTRO DE DOCENCIA DE CIENCIAS BÁSICAS PARA INGENIERÍA.

BAIN017 Álgebra Guía de Aprendizaje Conjuntos

Propiedades: Sean A, B y C conjuntos, entonces se cumple:

- 1. Asociatividad
- a. $(A \cup B) \cup C = A \cup (B \cup C)$
- b. $(A \cap B) \cap C = A \cap (B \cap C)$
- 2. Distributividad
- a. $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$
- b. $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$
- 3. Ley de Morgan
- a. $(A \cup B)^c = (A^c \cap B^c)$
- b. $(A \cap B)^c = (A^c \cup B^c)$
- 4. Usuales
- a. $(A-B)=A\cap B^c$
- b. $A \subseteq B \Rightarrow B^c \subseteq A^c$
- c. $A \cup (A \cap B) = A$ (absorción)
- d. $A \cap (A \cup B) = A$ (absorción)
- e. $A\Delta B = (A-B) \cup (B-A)$ diferencia simétrica
- f. $|A \cup B| = |A| + |B| |A \cap B|$ Cardinalidad

Ejercicios

- 1. Simplifique las siguientes expresiones.
- a. $[A \cap [(A \cup B)^c \cup (B^c \cup A)^c]]$ Ley de Morgan $= [A \cap [(A^c \cap B^c) \cup (B \cap A^c)]]$ Distribución $= [A \cap [\{(A^c \cap B^c) \cup B\} \cap \{(A^c \cap B^c) \cup A^c\}]$ Dis.y Abs. $= [A \cap [(A^c \cup B) \cap A^c]$ Distribución $= [A \cap (A^c \cup (B \cap A^c))]$ Dist. $= \phi$
- b. $[A^c (A^c B^c)] \cap \{[(A C) \cup B] A\}$
- c. $([A^c \cap (A^c \cup B^c)] \cup B^c)^c$
- d. $\{[A^c \cap (A^c \cup B)] \cup (B \cap A)^c\} \cap A$
- 2. Dado el conjunto universo $U = \{x \in \mathbb{Z} : x^2 < 16\}$, el conjunto $A = \{x \in U : x \text{ es par}\}$ y el conjunto $B = \{x \in U : x^2 \in U\}$ determine:
- a. A^c
- b. $(A \cup B)^c$
- c. $P(A \cap B)$
- d. $A (A^c \cap B^c)$
- e. $A\Delta B$
- f. Construya el diagrama de Venn de los puntos anteriores.