Lecture 13: CMOS Amplifiers: The Differential Pair - Third Part

Javier Ardila

Reference: Razavi (Fundamentals) - Chapter 10

Integrated Systems Research Group – OnChip Universidad Industrial de Santander, Bucaramanga - Colombia javier.ardila@e3t.uis.edu.co

Universidad Industrial de Santander

Effect of Finite Tail Impedance

▶ If the tail current source is not ideal, then when an input CM voltage is applied, the currents in Q₁ and Q₂ and hence output CM voltage will change.

Input CM Noise with Ideal Tail Current

Input CM Noise with Non-ideal Tail Current

Comparison - Tail Current

➤ As it can be seen, the differential output voltages for both cases are the same. So for small input CM noise, the differential pair is not affected.

Comparison - Tail Current

Common Mode Explanation

Lecture 13: The Differential Pair

CM to DM Conversion, A_{CM-DM}

➤ If finite tail impedance and asymmetry are both present, then the differential output signal will contain a portion of input common-mode signal.

Example: A_{CM-DM}

CMRR

CMRR defines the ratio of wanted amplified differential input signal to unwanted converted input common-mode noise that appears at the output.

Differential to Single-Ended Conversion

Many circuits require a differential to single-ended conversion, however, the above topology is not so good.

Supply Noise Corruption

➤ The most critical drawback of this topology is supply noise corruption, since no common-mode cancellation mechanism exists. Also, we lose half the signal.

MOS Differential Pair with Active Load

➤ Similar to its bipolar counterpart, MOS differential pair can also use active load to enhance its single-ended output.

Active Load vs. Static Load

> The load on the left responds to the input signal and enhances the single-ended output, whereas the load on the right does not.

Asymmetric Differential Pair

▶ Because of the vastly different resistance magnitude at the drains of M₁ and M₂, the voltage swings at these two nodes are different and therefore node P cannot be viewed as a virtual ground.

Thevenin Equivalent of the Input Pair

$$\begin{pmatrix}
v_{Thev} = -g_{mN} r_{oN} (v_{in1} - v_{in2}) \\
R_{Thev} = 2r_{oN}
\end{pmatrix}$$

Simplified Differential Pair with Active Load

$$\left(\frac{v_{out}}{v_{in1}-v_{in2}}=g_{mN}(r_{ON}\parallel r_{OP})\right)$$

Proof of $V_A \ll V_{out}$

Thanks

Universidad Industrial de Santander

javier.ardila@correo.uis.edu.co

