ILC Exam Report Implementation of f-ILC

Lorenzo Paiola — lorenzo.paiola@iit.it

Outline

- 1. Overview
- 2. Iterative Learning Control in a Nutshell
- 3. Functional ILC
- 4. Examples
- 5. Remarks
- 6. Bibliography

Overview

- Brief summary of Iterative Learning Control
- Implementation of "Iterative Learning in Functional Space for Non-Square Linear Systems" by *C. Della Santina* and *F. Angelini*¹.
- Julia² Code found at https://github.com/PaioPaio/ILC_exam

Iterative Learning Control³ (ILC) generally concerns the control of a repeated task. It does so by:

- Closing the loop in the **Iteration Domain** rather than directly time
- Learning just the **Feed-Forward Input**

Remark

ILC assumes that only the initial state is the same at each iteration, no assumptions are made about the terminal state.

System Set up

LTI Continuous Time System
$$\dot{x}_j=Ax_j+Bu_j,\quad y_j=Cx_j\qquad \text{ with }x_j\in\mathbb{R}^n,u_j\in\mathbb{R}^l,y_j\in\mathbb{R}^m$$

This system is **Iterated** and j indicates the repetition index.

Usual Policies

$$\begin{array}{lll} \textbf{P-type} & \textbf{D-type} & \textbf{I-type} \\ u_{j+1} = u_j + Le_j & u_{j+1} = u_j + L\dot{e}_j & u_{j+1} = u_j + L\big(e_{j+1} - e_j\big) \\ & \textbf{General Rule} \\ u_{j+1} = u_j + \sum_{k=0}^r L_k e_j^{(k)} & e_j = \overline{y} - y_j, \quad L_k \in \mathbb{R}^{l \times m} \end{array}$$

Where r is the relative degree of the system, $e_j^{(k)}$ is the k-th derivative. Notice that we are working with functions.

What is Hard?

- Usually the system is **non-square**, i.e. $l \neq m$, more interesting is the case where the system is underactuated l < m.
- We **sample** \overline{y} only at a finite number of time instants $\{T^1,...,T^o\}$ and so we have no access to its derivatives or even the true function \overline{y} .
- As specified before, we're working with functions and learning functions directly is hard. Moreover, we abuse notation and omit the proper definition of functions and just specify the output domain, eg $y(t): \mathbb{R}_+ \to \mathbb{R}^m$ becomes $y \in \mathbb{R}^m$.

Functional ILC

The idea is to not learn u_j directly at each iteration, but to learn some vector of weights α_j that is multiplied to a library of base functions π_i .

What we want is

$$\lim_{j \to \infty} y_j(T^k) = \overline{y}^k, \quad \forall k \in 1...o \tag{1}$$

where \overline{y}^k is the sampled output at time T^k .

Functional ILC - Main Theorem

For a functional basis $\pi = [\pi^1...\pi^o] \in \mathbb{R}^{l \times mo}$ and a control function constructed as

$$u_{j}(t) = \pi \alpha_{j}, \quad \alpha_{j+1} = \alpha_{j} + L \begin{bmatrix} \overline{y}^{1} - y_{j}(T^{1}) \\ \vdots \\ \overline{y}^{o} - y_{j}(T^{o}) \end{bmatrix} \in \mathbb{R}^{mo}$$
 (2)

Equation 1 is achieved if $\rho(I-LH) < 1$, with

$$H = \begin{bmatrix} \int_0^{T^1} Ce^{A(T^1 - \tau)} B\pi(\tau) d\tau \\ \vdots \\ \int_0^{T^o} Ce^{A(T^o - \tau)} B\pi(\tau) d\tau \end{bmatrix} \in \mathbb{R}^{mo \times mo}.$$
 (3)

Functional ILC - π choice

Any choice of π for which H is full rank is fine.

The paper¹ gives a possible construction that satisfies this condition:

$$\pi^{i}(t) = \begin{cases} B^{\top} e^{A^{\top}(T^{i}-t)} C^{\top} & \text{if } T^{i-1} \leq t \leq T^{i}, \\ 0 \in \mathbb{R}^{l \times m} & \text{otherwise.} \end{cases}$$
 (4)

In the case in which the control can be applied only in a limited timespan, the basis

$$\pi^{i}(t) = \begin{cases} B^{\top} e^{A^{\top}(T^{i}-t)} C^{\top} & \text{if } T^{i-1} \leq t \leq T^{i-1} + d\tilde{T} \\ 0 \in \mathbb{R}^{l \times m} & \text{otherwise} \end{cases}$$
 (5)

is appropriate.

The learning matrix is instead set to $L = (H^T H + S)^{-1} H^T \in \mathbb{R}^{mo \times mo}, \quad S = I \cdot 10^{-2}.$

Functional ILC - Summary

fILC Structure

- $\begin{bmatrix} \alpha_j^1 \\ \vdots \\ \alpha_j^{mo} \end{bmatrix}$ vector of weights updated at each iteration j
- *l* basis functions for each weight
- Reference given at discrete set of sampled times $\{T^1,...,T^o\}$, $(T^0=0)$
- $L \in \mathbb{R}^{mo \times mo}$ learning matrix s.t. ho(I-LH) < 1

Examples

Carts

Mass-Spring-Damper system actuated by a force on the last cart. Uses Equation 4.

Basketball in the wind

Juggle a

Basketball in
place a few
times and then
try a free throw.
Uses
Equation 5.

The details of the systems can be found directly in the paper¹.

Results - MSD, 5 Carts

Figure 1: 30 Iterations

Figure 2: 300 Iterations - Not much changes

Results - MSD, 8 Carts

Figure 3: 30 Iterations - Can't perform to specification

Figure 4: 300 Iterations - Better, still not perfect

Results - Basketball, $d\tilde{T}$ = 0.2s

Figure 5: 8 Iterations

Figure 6: 100 Iterations

Results - Basketball, $d\tilde{T}$ = 0.5s

Figure 7: 8 Iterations

Figure 8: 100 Iterations

Remarks

- If the number of carts is > 8 fILC struggles to converge, for higher numbers it outrights fails even after $\sim 10^3$ Iterations
- The success of the scheme in the basketball example is dependent on the integrator used to simulate the system.
 - This is most likely due to the step-like nature of the constrained basis π_i rendering the linear ODE stiff
 - Strangely even integrators made for stiff ODEs fails if the method order is set too high or the timestep adaptive
 - ► Integrators that worked were: Heun, ROCK2, Ralston

Bibliography

- 1. Della Santina, C. & Angelini, F. Iterative Learning in Functional Space for Non-Square Linear Systems. in 2021 60th IEEE Conference on Decision and Control (CDC) 5858–5863 (IEEE, Austin, TX, USA, 2021). doi:10.1109/CDC45484.2021.9683673
- 2. Bezanson, J., Edelman, A., Karpinski, S. & Shah, V. B. Julia: A Fresh Approach to Numerical Computing. SIAM Review **59**, 65–98 (2017)
- 3. Bristow, D., Tharayil, M. & Alleyne, A. A Survey of Iterative Learning Control. *IEEE Control* Systems **26**, 96–114 (2006)