1.3: The Classification of Matter (section 1.2 of OpenStax Chemistry 2e)

- Matter is anything that occupies space and has mass.
 - Your textbook, your desk, your chair, and your body are all composed of matter.
- 2. We can classify matter according to its **state** (its physical form) and its **composition** (the basic components that make it up).
- 3. Matter can be classified as solid, liquid, or gas based on what properties it exhibits.
- 4. The state of matter changes from solid to liquid to gas with increasing temperature.

Structure Determines Properties

 The atoms or molecules have different arrangements in solids, liquids, and gases leading to different properties.

Solid Matter (1 of 2)

- In solid matter, atoms or molecules pack close to each other in fixed locations.
- Although the atoms and molecules in a solid vibrate, they do not move around or past each other.
- Consequently, a solid has a fixed volume and rigid shape.
 - -Ice, aluminum, and diamond are examples of solids.

Solid Matter (2 of 2)

- Solid matter may be crystalline, in which case its atoms or molecules are in patterns with long-range, repeating order.
 - -Table salt and diamond are examples of crystalline solid matter.
- 2. Other solids may be **amorphous**, in which case their atoms or molecules do not have any longrange order.
 - Glass and plastic are examples of amorphous solids.

Crystalline Solid: Regular three-dimensional pattern

C (s, diamond)

Liquid Matter

- In liquid matter, atoms or molecules pack about as closely as they do in solid matter, but they are free to move relative to each other.
- 2. Liquids have fixed volume but not a fixed shape.
- 3. Liquid's ability to flow makes it assume the shape of its container.
 - Water, alcohol, and gasoline are all substances that are liquids at room temperature.

Gaseous Matter

- In gaseous matter, atoms or molecules have a lot of space between them.
- Gases are therefore compressible.
- The particles are moving quickly and are independent of each other.
- Gases take the shape of their container and fill the volume of the container.

A solid is not compressible.

Some Properties of Solids, Liquids, and Gases

Property	Solid	Liquid	Gas
Shape	Has a definite shape	Takes the shape of the container	Takes the shape of its container
Volume	Has a definite volume	Has a definite volume	Fills the volume of the container
Arrangement of particles	Fixed, very close	Random, close	Random, far apart
Interaction between particles	Very strong	Strong	Essentially none
Movement of particles	Very slow	Moderate	Very fast
Examples	Ice, salt, iron	Water, oil, vinegar	Water vapor, helium, air

Learning Check 1

Identify each description as that of a solid, liquid, or gas.

- A. It has definite volume and takes the shape of the container. **liquid**
- B. Its particles are moving very rapidly. gas
- C. Its particles fill the entire volume of a container. gas
- D. Its particles have a fixed arrangement. solid
- E. Its particles are close together but can move relative to each other. **liquid**

The Classification of Matter by Components

 Matter can also be classified according to its composition: elements, compounds, and mixtures.

Classification of Matter by Components

- The first division in the classification of matter is between a *pure substance* and a *mixture*.
- A pure substance is made up of only one component, and its composition is invariant.
- A mixture, by contrast, is a substance composed of two or more components in proportions that can vary from one sample to another.

Classification of Pure Substances (1 of 2)

- There are two types of pure substances.
 - Elements
 - Compounds
- This categorization depends on whether or not they can be broken down (or decomposed) into simpler substances.

Classification of Pure Substances (2 of 2)

- An element is a substance that can't be chemically broken down into simpler substances.
 - Basic building blocks of matter
 - Composed of single type of atom, like helium
 - Are displayed in the Periodic Table.
- A compound is a substance composed of two or more elements in fixed definite proportions.
- Most elements are chemically reactive and combine with other elements to form compounds like water, sugar, etc.

Classification of Mixtures

- Mixtures can be categorized into two types:
 - Heterogeneous mixtures
 - Homogeneous mixtures
- This categorization depends on how uniformly the substances within them mix.

Heterogeneous Mixture

- A heterogeneous mixture is one in which the composition varies from one region of the mixture to another.
 - Made of multiple substances whose presences can be seen
 - Examples: salad dressing or a pizza
- Different portions of a sample of heterogeneous mixture have different composition and properties.

Homogeneous Mixture

- A homogeneous mixture is made of multiple substances but appears to be one substance.
- All portions of a sample have the same composition and properties (like sweetened tea).
- Homogeneous mixtures have uniform compositions because the atoms or molecules that compose them mix uniformly.

Learning Check 2

Identify each of the following as pure substance or mixture. If pure substance, classify as element or compound; if mixture, classify as homogeneous or heterogeneous:

- A. copper pure substance, element
- B. cereal in milk mixture, heterogeneous
- C. air mixture, homogeneous (nitrogen, oxygen, more)
- D. table salt, NaCl pure substance, compound

Separating Mixtures (1 of 3)

- Mixtures are separable because the different components have different physical or chemical properties.
- Various techniques that exploit these differences are used to achieve separation.
- A mixture of sand and water can be separated by decanting—carefully pouring off the water into another container.

Separating Mixtures (2 of 3)

 A mixture of an insoluble solid and a liquid can be separated more efficiently by filtration a process in which the mixture is poured through filter paper in a funnel.

Filtration

Separating Mixtures (3 of 3)

- A homogeneous mixture of liquids can often be separated by distillation, a process in which the mixture is heated to boil off the more volatile (easily vaporizable) liquid.
- The volatile liquid is then re-condensed in a condenser and collected in a separate flask.

