REGULARIZED BAYESIAN BEST RESPONSE LEARNING IN FINITE GAMES

Sayan Mukherjee

(joint work with Souvik Roy)

Economic Research Unit, Indian Statistical Institute, Kolkata

Learning, Evolution and Games 2021

September 2, 2021

Model

- Consider a population with unit mass.
- Let $S := \{1, ..., n\}$ denote the strategy space of the population.
- Let Δ denote the space of probability distributions on S.
- A *population game* is defined as a mapping $\omega : \Delta \longrightarrow \mathbb{R}^n$, that is, the payoff to a player exercising strategy $i \in S$ at population state $x \in \Delta$ is given by $\omega_i(x)$.
- Let $\mathscr{C}(\Delta; \mathbb{R}^n)$ be the collection of continuous population games, equipped with the topology of uniform convergence.

- Endow $\mathscr{C}(\Delta;\mathbb{R}^n)$ with the Borel sigma-algebra and a probability measure ξ and call $(\mathscr{C}(\Delta;\mathbb{R}^n),\mathscr{B}(\mathscr{C}(\Delta;\mathbb{R}^n)),\xi)$ the type space of the population.
- A *Bayesian strategy* is a Böchner measurable map $\sigma: \mathscr{C}(\Delta; \mathbb{R}^n) \longrightarrow \Delta$ and let Σ be the collection of all Bayesian strategies.
- The *aggregate distribution* is a map $\mathscr{E}: \Sigma \longrightarrow \Delta$ such that $i = 1, \dots, n$,

$$\mathscr{E}^i(\sigma) := \int_{\mathscr{C}(\Delta;\mathbb{R}^n)} \sigma^i(\omega) \xi(d\omega); \quad ext{for all } \sigma \in \Sigma.$$

• A mapping $\mathscr{G}: \Sigma \times \mathscr{C}(\Delta; \mathbb{R}^n) \longrightarrow \mathbb{R}^n$ such that for every $\sigma \in \Sigma$,

$$\mathscr{G}(\sigma,\omega) = \omega(\mathscr{E}(\sigma)); \text{ for all } \omega \in \mathscr{C}(\Delta;\mathbb{R}^n)$$

is called a Bayesian aggregate population game.

Bayesian best response

• Consider the type space $(\mathscr{C}(\Delta;\mathbb{R}^n),\xi)$. The *Bayesian best* response correspondence is a mapping $\beta:\Sigma \Longrightarrow \Sigma$ is such that for all $\sigma \in \Sigma$,

$$\beta[\sigma](\omega) := \arg\max_{\mathbf{y} \in \Delta(\mathcal{S})} \langle \mathbf{y}, \mathcal{G}(\sigma, \omega) \rangle; \quad \xi - a.s.$$

 To ensure a unique best response, we resort to regularization, in view of which we have the following definition.

Definition (Regularizer (Coucheney et al. (2015)))

A mapping $v: \Delta \longrightarrow \mathbb{R} \cup \{\infty\}$ is called regularizer if it is finite except possibly on the relative boundary $\partial \Delta$ of Δ , continuous on Δ , smooth on Δ° with $\|\nabla v(x_n)\| \longrightarrow \infty$ as $x_n \longrightarrow \partial \Delta$, and convex on Δ , strongly convex on Δ° .

Regularized Bayesian best response

- Some examples of regularizers which have been widely used in theory of evolution and learning in finite games include:
 - **1 Shannon-Gibbs entropy**: $v(x) := -\sum_j x_j \log x_j$.
 - **2** Tsallis entropy: $v(x) := (1 \gamma)^{-1} \sum_i (x_i x_i^{\gamma})$, for $0 < \gamma < 1$.
 - **3** Burg entropy: $v(x) := -\sum_{i} \log x_{i}$.

Definition (Regularized Bayesian best response)

For $\varepsilon > 0$, the regularized Bayesian best response is a mapping $\beta_{\varepsilon} : \Sigma \longrightarrow \Sigma$ such that for every $x \in \Delta$,

$$\beta_{\varepsilon}[\sigma](\omega) := \arg\max_{\mathbf{y} \in \Delta} \langle \mathbf{y}, \mathscr{G}(\sigma, \omega) \rangle - \varepsilon \nu(\mathbf{y}); \quad \textit{ for all } \omega \in \mathscr{C}(\Delta; \mathbb{R}^n).$$

• The fact that the regularizer v is strongly convex, implies that for every $\sigma \in \Sigma$, the mapping $\omega \longmapsto \beta_{\varepsilon}[\sigma](\omega)$ is measurable.

A digression to Böchner spaces

- Let $(\widehat{\Omega},\widehat{\mathscr{A}},\widehat{\mu})$ be a probability space and let \mathscr{X} be a Banach space.
- Let $\mathscr{L}^1(\widehat{\Omega},\widehat{\mu},\mathscr{X})$ denote the linear space of all $(\widehat{\mu}$ -a.s) equivalence classes Böchner integrable functions with norm

$$\|f\|_{\mathscr{L}^1(\widehat{\Omega},\widehat{\mu},\mathscr{X})} := \int_{\widehat{\Omega}} \|f(\widehat{\pmb{\omega}})\| \widehat{\mu}(d\widehat{\pmb{\omega}}); \quad \textit{for all } f \in \mathscr{L}^1(\widehat{\Omega},\widehat{\mu},\mathscr{X}).$$

This norm induces the **strong topology** on $\mathcal{L}^1(\widehat{\Omega}, \widehat{\mu}, \mathcal{X})$.

• For $\widehat{\omega} \in \widehat{\Omega}$, let $\langle \cdot, \cdot \rangle(\widehat{\omega}) : \mathscr{L}^1(\widehat{\Omega}, \widehat{\mu}, \mathscr{X}) \times \mathscr{L}^{\infty}(\widehat{\Omega}, \widehat{\mu}, \mathscr{X}^*) \longrightarrow \mathbb{R}$ be the bilinear pairing defined as

$$\langle f,g\rangle(\widehat{\omega}):=g(\widehat{\omega})(f(\widehat{\omega})); \text{ for all } f\in \mathscr{L}^1(\widehat{\Omega},\widehat{\mu},\mathscr{X}), g\in \mathscr{L}^\infty(\widehat{\Omega},\widehat{\mu},\mathscr{X}^*),$$

where \mathscr{X}^* denotes the dual space of \mathscr{X} .

• Let $(\widehat{\Omega},\widehat{\mathscr{A}},\widehat{\mu})$ be a probability space and let \mathscr{X} be a Banach space. Then the **weak topology** on $\mathscr{L}^1(\widehat{\Omega},\widehat{\mu},\mathscr{X})$ is the topology induced by the convergence:

$$f_n \longrightarrow^{\mathbf{w}} f$$
 if and only if $\int_{\widehat{\Omega}} \langle f_n, g \rangle(\widehat{\omega}) \widehat{\mu}(d\omega) \longrightarrow \int_{\widehat{\Omega}} \langle f, g \rangle(\widehat{\omega}) \widehat{\mu}(d\omega);$

for all
$$g \in \mathscr{L}^{\infty}(\widehat{\Omega}, \widehat{\mu}, \mathscr{X}^*)$$
.

• In our case, as we will just see, that $\mathscr{X}=\mathbb{R}^n$, a reflexive Banach space. Hence, as a matter of fact, it follows that the space $\mathscr{L}^1(\widehat{\Omega},\widehat{\mu},\mathscr{X})^*$ is isometrically isomorphic to the space $\mathscr{L}^\infty(\widehat{\Omega},\widehat{\mu},\mathscr{X}^*)$. This result is due to Ralph S. Phillips.

Regularized Bayesian best response dynamic

• In our paper, we set $\widehat{\Omega} = \mathscr{C}(\Delta; \mathbb{R}^n)$, $\widehat{\mu} = \xi$, and $\mathscr{X} = \mathbb{R}^n$. We call this Böchner space, the space of *integrable signed Bayesian strategies*. In other words,

$$\widehat{\Sigma} := \Big\{ \widehat{\sigma} : \mathscr{C}(\Delta; \mathbb{R}^n) \longrightarrow \mathbb{R}^n : \| \widehat{\sigma} \|_{\mathscr{L}^1(\mathscr{C}_n, \xi, \mathbb{R}^n)} < \infty \Big\}.$$

Definition (Regularized Bayesian best response dynamic)

Consider the type space $(\mathscr{C}(\Delta;\mathbb{R}^n),\xi)$. Let $\varepsilon>0$ be a noise parameter and let $\beta_{\varepsilon}:\Sigma\longrightarrow\Sigma$ be the RBBR map. Then the regularized Bayesian best response learning dynamic is defined as

$$\dot{\sigma} = \beta_{\varepsilon}(\sigma) - \sigma.$$

• A rest point of the RBBR learning dynamic (or a fixed point of the map β_{ε}), is a Bayesian strategy σ° satisfying $\dot{\sigma}^{\circ} \equiv 0$.

Existence of Regularized Bayesian Equilibrium (RBE)

- In view of showing existence of a fixed point of the RBBR map, it is desirable to consider the following subsets of the space of continuous population games.
- For a compact set $K \subseteq \mathbb{R}^n$, let $\mathscr{C}(\Delta; K)$ denote the collection of population games with range contained in the compact subset K.
- Let $\mathscr{C}_{eq}(\Delta; \mathbb{R}^n)$ denote an equicontinuous family of population games.

Theorem (*Existence of compact support of* ξ)

Let $K \subseteq \mathbb{R}^n$ be any compact set and let $\mathscr{C}_{eq}(\Delta;K)$ be an equicontinuous family of population games with range contained in K. Then subset $\mathscr{C}_{eq}(\Delta;K)$ has compact closure in $\mathscr{C}(\Delta;\mathbb{R}^n)$ under d_{∞} .

Theorem (*Existence of RBE*)

Consider the type space $(\mathscr{C}(\Delta;\mathbb{R}^n),\xi)$. Let $\mathscr{C}_{eq}(\Delta;K)$ be as defined above. Suppose that $\xi(\operatorname{closure}[\mathscr{C}_{eq}(\Delta;K)])=1$. Then for every $\varepsilon>0$, the RBBR mapping $\sigma\longmapsto\beta_{\varepsilon}(\sigma)$ admits a fixed point, that is, there exists $\sigma_{\varepsilon}^{\circ}\in\Sigma$ such that $\beta_{\varepsilon}(\sigma_{\varepsilon}^{\circ})=\sigma_{\varepsilon}^{\circ}$.

- The first step to prove the equilibrium existence result is to show that Σ is a compact subset of Σ̂ under the weak topology. The fact that Σ is convex is trivial.
- Next, we show that the mapping $\sigma \longmapsto \beta_{\varepsilon}(\sigma)$ is continuous in the weak topology.
- Finally, the existence of regularized Bayesian equilibrium follows via the Brouwer-Schauder-Tychonoff fixed point theorem.

Matrix games

- For $F \subseteq \mathbb{R}$ compact, let $\mathcal{M}_n(F)$ be the collection of matrices with entries from F.
- Consider the case where the type measure ξ is concentrated on populations games which are obtained via random matching in matrix games.

Corollary (*Existence of RBE for matrix games*)

The following statements hold true:

- For $F \subseteq \mathbb{R}$ compact, the set $\mathscr{M}_n(F)$ has compact closure in $\mathscr{C}(\Delta; \mathbb{R}^n)$.
- ② If $\xi(closure[\mathcal{M}_n(F)]) = 1$, then for every $\varepsilon > 0$, the RBBR map admits a fixed point.

Existence of solutions to the RBBR dynamic

• In order to prove the existence of solutions to the RBBR dynamic, we consider the following definition.

Definition (Lipschitz Population Game)

A population game $\omega:\Delta\longrightarrow\mathbb{R}^n$ is Lipschitz if there exists a real number $\alpha>0$ such that

$$\|\omega(x) - \omega(y)\| \le \alpha \|x - y\|, \quad \text{for all } x, y \in \Delta.$$

• For $\alpha > 0$, and $K \subseteq \mathbb{R}^n$ let $\operatorname{Lip}_{\alpha}(\Delta;K)$ be the collection of all α -Lipschitz population games with range contained in the set K.

Theorem (*Lipschitz support of* ξ)

For every $\alpha > 0$ and every $K \subseteq \mathbb{R}^n$ compact, the family $\operatorname{Lip}_{\alpha}(\Delta; K)$ is a compact subset of $\mathscr{C}(\Delta; \mathbb{R}^n)$ under d_{∞} .

• The *semiflow* of the RBBR learning dynamic is the map $\zeta:\widehat{\Sigma}\times[0,\infty)\longrightarrow\widehat{\Sigma}$ defined as $\zeta(\sigma,t):=\Phi_{\sigma}(t)$ for all $\sigma\in\Sigma$ and $t\in[0,\infty)$, where $\Phi_{\sigma}(t)$ is the position of the trajectory at time $t\in[0,\infty)$ with initial condition $\sigma\in\Sigma$.

Theorem (Existence of solution to RBBR dynamic)

Let $(\mathscr{C}(\Delta; \mathbb{R}^n), \xi)$ be a type space, $K \subseteq \mathbb{R}^n$ be compact, and $\alpha > 0$. Suppose that $\xi(\operatorname{closure}[\operatorname{Lip}_{\alpha}(\Delta; K)]) = 1$. Then,

- For every initial condition $\sigma_0 \in \Sigma$, the RBBR dynamic admits a unique solution $(\sigma_t)_{t>0}$.
- ② The semiflow $\zeta: \widehat{\Sigma} \times [0,\infty) \to \widehat{\Sigma}$ of the RBBR dynamic is continuous in the initial conditions with respect to the strong topology on $\widehat{\Sigma}$.

Bayesian potential games

Definition (*Bayesian Potential Games*)

A mapping $\mathscr{G}: \Sigma \times \mathscr{C}(\Delta; \mathbb{R}^n) \longrightarrow \mathbb{R}^n$ is called a Bayesian potential game if there exists a Fréchet differentiable map $\varphi: \widehat{\Sigma} \longrightarrow \mathbb{R}$ such that for every $\sigma \in \Sigma$, we have

$$abla^{\mathbf{F}} \varphi(\sigma)(\omega) = \mathscr{G}(\sigma, \omega), \quad \xi - a.s.$$

The map φ is called the Bayesian potential function of the Bayesian potential game \mathscr{G} .

• Let $M \subseteq \Delta^{\circ}$ be compact. Define

$$\Sigma_M := \{ \sigma : \sigma(\omega) \in M \text{ for all } \omega \in \mathscr{C}(\Delta; \mathbb{R}^n) \}.$$

Define the Bayesian counterpart of the regularizer as

$$\widetilde{v}(\sigma) := \int_{\mathscr{C}(\Delta:\mathbb{R}^n)} v(\sigma(\omega)) \xi(d\omega); \quad ext{for all } \sigma \in \Sigma_M.$$

Definition (Entropy Adjusted Bayesian Potential Function)

The entropy adjusted Bayesian potential function is a mapping $\widetilde{\varphi}: \Sigma_M \longrightarrow \mathbb{R}$ defined as

$$\widetilde{\varphi}_M(\sigma) = \varphi(\sigma) - \widetilde{v}(\sigma); \quad \textit{for all } \sigma \in \Sigma_M.$$

We now define the notion of a Lipschitz Bayesian strategy.

Definition (Lipschitz Bayesian strategy)

A Bayesian strategy $\sigma: \mathscr{C}(\Delta; \mathbb{R}^n) \longrightarrow \Delta$ is Lipschitz if there exists $\alpha > 0$ such that

$$\|\sigma(\omega) - \sigma(\widetilde{\omega})\| \le \alpha d_{\infty}(\omega, \widetilde{\omega}), \quad \text{for all } \omega, \widetilde{\omega} \in \mathscr{C}(\Delta; \mathbb{R}^n).$$

• For $K \subseteq \mathbb{R}^n$ be compact, let $\mathscr{C}_{eq}(\Delta;K)$ be an equicontinuous family of population games with range contained in K. Let Σ^{α} be the collection of Bayesian strategies which are α -Lipschitz on the set closure[$\mathscr{C}_{eq}(\Delta;K)$].

Theorem (*Forward invariance of* Σ_{α} *under RBBRD*)

Let v be a θ -strongly convex regularizer for some $\theta>0$, and let the type space $(\mathscr{C}(\Delta;\mathbb{R}^n),\xi)$ be such that $\xi(\operatorname{closure}[\mathscr{C}_{eq}(\Delta;K)])=1$ for some compact $K\subseteq\mathbb{R}^n$. Suppose Σ^α is the collection of Bayesian strategies that are uniformly α -Lipschitz on $\operatorname{closure}[\mathscr{C}_{eq}(\Delta;K)]$ for some $\alpha>0$. Then the following statements hold true:

- **1** The subset Σ^{α} is relatively norm compact in $\widehat{\Sigma}$.
- 2 If $\alpha \geq \frac{1}{\varepsilon \theta}$, then the subset Σ^{α} is forward invariant under the RBBR learning dynamic.

Convergence in Bayesian potential games

Theorem (*The Convergence theorem*)

Suppose that the assumptions of the previous theorem are satisfied. Let $\mathscr{G}: \Sigma \times \mathscr{C}(\Delta; \mathbb{R}^n) \longrightarrow \mathbb{R}^n$ be a Bayesian potential game with Bayesian potential function $\varphi: \widehat{\Sigma} \longrightarrow \mathbb{R}$. For $M \subseteq \Delta^\circ$ compact, let $\widetilde{\varphi}_{M,\alpha}: \Sigma_M^\alpha \longrightarrow \mathbb{R}$ be the entropy adjusted Bayesian potential function restricted to Σ_M^α . Then the following statements hold true:

- $\widetilde{\varphi}_{M,\alpha}$ increases weakly along every solution trajectory to RBBR learning dynamic that originates in Σ_M^{α} and increases strictly across every non-stationary solution trajectory.
- ② The set of omega–limit points (in the strong topology on Σ_M^{α}) of any trajectory to the RBBR learning dynamic is a non-empty connected compact set of regularized Bayesian equilibria. Moreover, such limit points are local maximizers of the entropy adjusted Bayesian potential function $\widetilde{\varphi}_{M,\alpha}$ on Σ_M^{α} .

THANK YOU