

DEPARTMENT OF COMPUTER ENGINEERING

CS 353 - Database Systems

Online Flower Shopping System

Project Design Report

Instructor: Özgür Ulusoy

TA: Duygu Durmuş

Group 31

Doğacan Kaynak - 21400682

Burak Yeni - 21502761

Yiğit Gülben - 21101130

Deniz Doğanay - 21100658

1. Revised ER Model	2
2. Relation Schemas	3
2.1. Person	3
2.2. Customer_Services	3
2.3. Customer	4
2.4. Flower_Seller	5
2.5. Delivery_Person	5
2.6. Order	6
2.6. Complaint	7
2.7. History	8
2.8. Assignment	9
2.9. Item	10
2.10. Gift_Box	11
2.11. Bouquet	11
2.12. Flower	12
2.13. Home_Deco	12
2.14. Favorites	13
3. User Interface Design & Corresponding SQL Statements	14
3.1. Customer Interface Design	14
3.1.1. Customer Home Screen	14
3.1.2. Shopping Cart Screen	15
3.1.3. Checkout Screen	16
3.1.4. Login Page	17
3.1.5. Signup Page	18
3.1.6. Categories Screen	19
3.2. Flower-seller Interface Design	20
3.2.1. Application Form Page for Flower Sellers	20
3.2.2. Courier List Page For Flower Sellers	21
3.2.3. Order Page for flower seller	22
3.3. Courier Interface Design	23
3.3.1. Available Orders For Courier	23
4. Implementation Plan	24
5. Website	24

1. Revised ER Model

According to our assistant's review and also during the design process we made the following changes in our E/R model in order to have a better structure for out database system:

- We have additional functionalities such that :
 - Customer can create their own gift box,
 - Customer can create their own bouquet,
 - Customer can order home decoration
 - Customer can pay without registering on our site.
- Primary key complications reduced.
- Limitations set to what customer can do on our system.
- Relationship complications reduced.
- Stock added as specifying quantity of items.

- Order history added to customer.
- Deliver relation deleted and its attributes added to order.
- Complaint functionality changed.
- In order you can make a description according to your demand.

2. Relation Schemas

2.1. Person

Relational Model:

Person(person id, password, name, surname, phone number(), email address)

Functional Dependencies:

```
person_id -> password, name, surname, phone_number, email_address
email_address -> person_id ,password, name, surname, phone_number()
```

Candidate Keys:

```
{ (person_id),(email_address) }
```

Normal Form:

Because it's already in BCNF it is also 3NF

Table Definition:

CREATE TABLE Person(

person_id INT PRIMARY KEY AUTO_INCREMENT,

password VARCHAR(32) NOT NULL,
name VARCHAR(32) NOT NULL,
surname VARCHAR(32) NOT NULL,

phone_number INT UNIQUE NOT NULL,

email_address VARCHAR(32) UNIQUE NOT NULL);

2.2. Customer_Services

Relational Model:

Customer_Services(cs_id)

Functional Dependencies:

None

Candidate Keys:

{ (cs_id) }

Normal Form:

Because it's already in BCNF it is also 3NF

Table Definition:

CREATE TABLE Customer_Services(

cs_id INT PRIMARY KEY,

FOREIGN KEY (cs_id) REFERENCES Person(person_id);

2.3. Customer

Relational Model:

Customer(c id)

Functional Dependencies:

c_id -> street, apt_no, street, city, internal_no

Candidate Keys:

{ (c_id)}

Normal Form:

Because it's already in BCNF it is also 3NF

Table Definition:

CREATE TABLE Customer(

c_id INT PRIMARY KEY,

street VARCHAR(32) NOT NULL,

apt_no INT NOT NULL,

city VARCHAR(32) NOT NULL,

internal_no VARCHAR(32) NOT NULL); FOREIGN KEY (c_id) REFERENCES Person(person_id);

2.4. Flower_Seller

Relational Model:

Flower_Seller(fs_id)

Functional Dependencies:

fs_id -> company_name, street, apt_no, city, internal_no

Candidate Keys:

{ (fs_id)}

Normal Form:

Because it's already in BCNF it is also 3NF

Table Definition:

CREATE TABLE Flower_Seller(

fs_id INT PRIMARY KEY,

company_name VARCHAR(32) NOT NULL, fs_street VARCHAR(32) NOT NULL,

fs_apt_no INT NOT NULL,

fs_city VARCHAR(32) NOT NULL,

fs_internal_no VARCHAR(32) NOT NULL);

FOREIGN KEY (fs_id) REFERENCES Person(person_id);

2.5. Delivery Person

Relational Model:

Delivery_Person(<u>dp_id</u>)

Functional Dependencies:

dp_id -> person_id

Candidate Keys:

{ (dp_id)}

Normal Form:

Because it's already in BCNF it is also 3NF

Table Definition:

CREATE TABLE Delivery_Person(

dp_id INT PRIMARY KEY,

status VARCHAR(32) NOT NULL,

FOREIGN KEY (dp_id) REFERENCES Person(person_id);

2.6. Order

Relational Model:

Order(o_id, fs_id_, street, apt_no, city, internal_no , note, occasion, delivery_type, payment_method, time, date, del_time, del_status)

Functional Dependencies:

o_id -> street, apt_no, city, internal_no , note, occasion, delivery_type, payment_method, time, date, del_time, del_status, fs_id

fs_id -> o_id , street, apt_no, city, internal_no , note, occasion, delivery_type, payment method, time, date, del time, del status

Candidate Keys:

{ (o_id),(fs_id) }

Normal Form:

Because it's already in BCNF it is also 3NF

Table Definition:

CREATE TABLE Order(

o_id INT PRIMARY KEY AUTO_INCREMENT,

del_street VARCHAR(32) NOT NULL,

del_apt_no INT NOT NULL,

del_city VARCHAR(32) NOT NULL,

del_internal_no VARCHAR(32) NOT NULL,

note VARCHAR(32), occasion VARCHAR(32),

delivery_type VARCHAR(32) NOT NULL,

payment_method VARCHAR(32) NOT NULL,

time VARCHAR(32) NOT NULL,

date VARCHAR(32) NOT NULL,

del_time VARCHAR(32) NOT NULL,

del_status VARCHAR(32) NOT NULL,

fs_id INT NOT NULL);

PRIMARY KEY (o_id, fs_id),

FOREIGN KEY (fs_id) REFERENCES Flower_Seller);

2.6. Complaint

Relational Model:

Complaint(comp id)

Functional Dependencies:

None

Candidate Keys:

{ (comp_id) }

Normal Form:

Because it's already in BCNF it is also 3NF

Table Definition:

CREATE TABLE Complaint(

comp_id INT PRIMARY KEY AUTO_INCREMENT,

description VARCHAR(32),
o_id INT NOT NULL);


```
PRIMARY KEY (comp_id, o_id),
FOREIGN KEY (o_id) REFERENCES Order);
```

2.7. History

Relational Model:

History(<u>c_id</u>, o_id, del_street, del_apt_no, del_city, del_internal_no , del_time, del_status)

Functional Dependencies:

c_id, o_id -> del_street, del_apt_no, del_city, del_internal_no , del_time, del_status

Candidate Keys:

{ (comp_id) }

Normal Form:

Because it's already in BCNF it is also 3NF

Table Definition:

CREATE TABLE History(

c_id INT NOT NULL,
o_id INT NOT NULL,

del_street VARCHAR(32) NOT NULL,

del_apt_no INT NOT NULL,

del_city VARCHAR(32) NOT NULL,
del_internal_no VARCHAR(32) NOT NULL,
del_time VARCHAR(32) NOT NULL,
del_status VARCHAR(32) NOT NULL,

PRIMARY KEY (c_id, o_id),

FOREIGN KEY (c_id) REFERENCES Customer),

FOREIGN KEY (o_id) REFERENCES Order),

FOREIGN KEY (del_street) REFERENCES Order),


```
FOREIGN KEY (del_apt_no) REFERENCES Order),
FOREIGN KEY (del_city) REFERENCES Order),
FOREIGN KEY (del_internal_no) REFERENCES Order),
FOREIGN KEY (del_time) REFERENCES Order),
FOREIGN KEY (del_status) REFERENCES Order);
```

2.8. Assignment

Relational Model:

Assignment (<u>dp_id</u>, <u>c_id</u>, <u>o_id</u>, fs_street, fs_apt_no, fs_city, fs_internal_no , del_street, del_apt_no, del_city, del_internal_no , is_accepted)

Functional Dependencies:

dp_id -> c_id, o_id, fs_street, fs_apt_no, fs_city, fs_internal_no , del_street, del_apt_no, del_city, del_internal_no , is_accepted

Candidate Keys:

{ (dp_id) }

Normal Form:

Because it's already in BCNF it is also 3NF

Table Definition:

CREATE TABLE Assignment(

dp_id INT NOT NULL,
c_id INT NOT NULL,
o_id INT NOT NULL,

fs_street VARCHAR(32) NOT NULL,

fs_apt_no INT NOT NULL,

fs_city VARCHAR(32) NOT NULL,
fs_internal_no VARCHAR(32) NOT NULL,
del_street VARCHAR(32) NOT NULL,

del_apt_no INT NOT NULL,

del_city VARCHAR(32) NOT NULL,
del_internal_no VARCHAR(32) NOT NULL,
is_accepted VARCHAR(32) NOT NULL,


```
PRIMARY KEY (dp_id, c_id, o_id),

FOREIGN KEY (c_id) REFERENCES Customer),

FOREIGN KEY (o_id) REFERENCES Order);

FOREIGN KEY (fs_street) REFERENCES Flower_Seller),

FOREIGN KEY (fs_apt_no) REFERENCES Flower_Seller),

FOREIGN KEY (fs_city) REFERENCES Flower_Seller),

FOREIGN KEY (fs_internal_no) REFERENCES Flower_Seller),

FOREIGN KEY (del_street) REFERENCES Order),

FOREIGN KEY (del_apt_no) REFERENCES Order),

FOREIGN KEY (del_city) REFERENCES Order),

FOREIGN KEY (del_internal_no) REFERENCES Order);
```

2.9. Item

Relational Model:

Item(<u>i_id</u>, i_name, type, price, i_description, quantity, theme)

Functional Dependencies:

i_id-> i_name, type, price, i_description, quantity, theme

Candidate Keys:

{ (i_id) }

Normal Form:

Because it's already in BCNF it is also 3NF

Table Definition:

CREATE TABLE Item(

i_id INT PRIMARY KEY AUTO_INCREMENT,

i_name VARCHAR(32) NOT NULL, type VARCHAR(32) NOT NULL,

price INT NOT NULL,

i_description VARCHAR(32) NOT NULL,

quantity INT,

2.10. Gift_Box

Relational Model:

Gift_Box(gb_id,size)

Functional Dependencies:

None

Candidate Keys:

{ (i_id) }

Normal Form:

Because it's already in BCNF it is also 3NF

Table Definition:

CREATE TABLE Gift_Box(

gb_id INT PRIMARY KEY,

size VARCHAR(32) NOT NULL,

FOREIGN KEY (gb_id) REFERENCES Item(i_id);

2.11. Bouquet

Relational Model:

Bouquet(<u>bq_id</u>,flowertype1, flowertype2, flowertype3)

Functional Dependencies:

None

Candidate Keys:

{ (bq_id) }

Normal Form:

Because it's already in BCNF it is also 3NF

Table Definition:

CREATE TABLE Bouquet(

bq_id INT PRIMARY KEY,

flowertype1 VARCHAR(32) NOT NULL,
flowertype2 VARCHAR(32) NOT NULL,
flowertype3 VARCHAR(32) NOT NULL,
FOREIGN KEY (bq_id) REFERENCES Item(i_id);

2.12. Flower

Relational Model:

Flower(<u>fl_id</u>, flowertype)

Functional Dependencies:

None

Candidate Keys:

{ (fl_id) }

Normal Form:

Because it's already in BCNF it is also 3NF

Table Definition:

CREATE TABLE Flower(

fl_id INT PRIMARY KEY,

flowertype VARCHAR(32) NOT NULL, FOREIGN KEY (fl_id) REFERENCES Item(i_id);

2.13. Home Deco

Relational Model:

Home_Deco(hd_id)

Functional Dependencies:

None

Candidate Keys:

{ (hd_id) }

Normal Form:

Because it's already in BCNF it is also 3NF

Table Definition:

CREATE TABLE Flower(

hd_id INT PRIMARY KEY,

decotype VARCHAR(32) NOT NULL,

FOREIGN KEY (hd_id) REFERENCES Item(i_id);

2.14. Favorites

Relational Model:

Favorites(<u>f_id</u>)

Functional Dependencies:

None

Candidate Keys:

{ (f id) }

Normal Form:

Because it's already in BCNF it is also 3NF

Table Definition:

CREATE TABLE Favorites(

c_id INT NOT NULL, i_id INT NOT NULL,

FOREIGN KEY (c_id) REFERENCES Customer,

FOREIGN KEY (i_id) REFERENCES Item;

User Interface Design & Corresponding SQL Statements

3.1. Customer Interface Design

3.1.1. Customer Home Screen

Inputs: @searchquery

Process: The homepage for the Online Flower Shopping System is displayed above. Non-registered users are welcomed with random items. There is a navigation menu on the left side of the main page. Users can access many pages through this left menu.

SQL Statements:

Displaying random items

CREATE VIEW displayed_items (name, price) AS SELECT name, price FROM item

LIMIT 15; -- number of items shown in main screen

3.1.2. Shopping Cart Screen

Inputs: @quantity, @i_id

Process: Users can increase or decrease the number of flowers then go to the checkout page by clicking Checkout.

SQL Statements:

Shopping Cart

UPDATE item

SET quantity = @quantity

WHERE i_id = @i_id

3.1.3. Checkout Screen

Inputs: @del_street, @del_apt_no, @del_city, @del_internal_no, @note, @occasion, @delivery_type, @payment_method

Process: The user can checkout items in his cart after he enters the necessary information.

SQL Statements:

Checkout Information

INSERT INTO order (street, apt_no, city, internal_no, note, occasion, delivery_type, payment_method) -- time, date and flower_seller will be determined by the system VALUES (@del_street, @del_apt_no, @del_city, @del_internal_no, @note, @occasion, @delivery_type, @payment_method)

3.1.4. Login Page

Inputs: @email, @password

Process: Users can login by entering their emails and passwords. If a user does not have any account, he can go to the sign-up page by clicking Don't have an account.

SQL Statements:

Login

SELECT *

FROM person

WHERE email = @email AND password = @password

3.1.5. Signup Page

Inputs: @name, @surname, @phone_number, @email_address, @password, @street, @apt_no, @city, @internal_no

Process: The user enters necessary information then clicks Sign-up to create a new account.

SQL Statements:

Registration

INSERT INTO person

VALUES (@name, @surname, @phone_number, @email_address, @password, @street, @apt_no, @city, @internal_no)

3.1.6. Categories Screen

Inputs: @search_query, @type, @min_price, @max_price, @order_type, @view_limit **Process:** In this screen, users can see items. Grid and list options are available. Users can also sort items and adjust how many items can be seen on one page. Users can access different types of item categories or select some filters to eliminate unnecessary items.

SQL Statements:

Listing items

SELECT name, price

FROM item

WHERE type = @type AND price >= @min_price AND price <= max_price

ORDER BY @order_type

LIMIT @view_limit

3.2. Flower-seller Interface Design

3.2.1. Application Form Page for Flower Sellers

Inputs: @name, @surname, @phone_number, @email_address, @password, @street, @apt_no, @city, @internal_no

Process: The flower-sellers enter necessary information then clicks Sign-up to create a new account for their companies.

SQL Statements:

Application

INSERT INTO flower_seller

VALUES (@name, @surname, @phone_number, @email_address, @password, @fs_street, @fs_apt_no, @fs_city, @fs_internal_no)

3.2.2. Courier List Page For Flower Sellers

Inputs: @searchquery

Process: In this page, the available couriers for flower sellers are listed and flower sellers choose one of them to deliver the order.

SQL Statements:

Courier List

SELECT name, surname, price, availability FROM delivery_person WHERE availability = 'available'

3.2.3. Order Page for flower seller

Inputs: @searchquery, @selected_o_id

Process: In this page, flower sellers can see the specifications of chosen order.

SQL Statements:

Items in Order

SELECT name, price, quantity

FROM item

Order Specs

SELECT del_status, del_street, del_apt_no, del_city, del_internal_no

FROM order

WHERE o_id = @selected_o_id

Total Price

SELECT SUM(price)

FROM item

3.3. Courier Interface Design

3.3.1. Available Orders For Courier

Inputs: @searchquery, @selected_o_id

Process: In this page, courier can accept or reject available order by clicking buttons

SQL Statements:

Items in Order

SELECT name, price, quantity

FROM item

Order Specs

SELECT del_status, del_street, del_apt_no, del_city, del_internal_no FROM order

WHERE o_id = @selected_o_id

Total Price

4. Implementation Plan

For our system functionalities and user interface in our flower shopping system, we have finished the UI with Bootstrap, HTML, CSS, PHP and Javascript, within Javascript we think to use JQuery. In order to manage the flow of data in our project, we are planning to use MySQL Server.

5. Website

- Our project website link is on the below:
 - https://dogacankaynak.github.io/OnlineFlowerShopingSystem2/
- Our project information link is on the below:

https://dogacankavnak.github.io/onlineFlowerShoppingSystem/