EE120 - Fall'19 - Lecture 5 Notes¹

Murat Arcak

12 September 2019

¹ Licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Fourier Series in Discrete-Time

Section 3.3 in Oppenheim & Willsky

Discrete-Time Periodic Signals

A discrete-time signal x is periodic if there exists integer $N \neq 0$ s.t.

$$x[n+N] = x[n]$$
 for all n .

Question: Is $x[n] = cos(\omega_0 n)$ periodic for any ω_0 ? No, only when ω_0/π is rational. To find the fundamental period N, find the smallest integers M, N such that

$$\omega_0 N = 2\pi M$$

Examples:

- 1. cos(n) is not periodic;
- 2. $\cos(\frac{\pi}{5}n)$, N = 10;
- 3. $\cos(\frac{5\pi}{7}n)$, N = 14;
- 4. $\cos(\frac{5\pi}{7}n) + \cos(\frac{\pi}{5}n)$, N = 70, least common multiple of 14 and 10.

Recall that in discrete time $\omega=\pi$ is the highest frequency, as shown below:

Discrete-Time Fourier Series

Discrete-time Fourier Series expresses a sequence x with period N as a linear combination of:

$$\Phi_k[n] := e^{jk\omega_0 n}, \quad k = 0, \mp 1, \mp 2, ..., \quad \omega_0 = \frac{2\pi}{N}.$$

In continuous time each k defines a distinct function $e^{jk\omega_0t}$. Here, by contrast, $e^{j(k+N)\omega_0n} = e^{jk\omega_0n}$ because $e^{jN\omega_0n} = e^{j2\pi n} = 1$. Therefore,

$$\Phi_k[n] = \Phi_{k+N}[n] = \Phi_{k+2N}[n] = \dots$$

and N independent functions $\Phi_k[n]$ (e.g., $\Phi_0[n]$, $\Phi_1[n]$, ..., $\Phi_{N-1}[n]$) are enough for discrete-time Fourier Series.

We thus use the finite sum:

$$x[n] = \sum_{k=\langle N \rangle} a_k \Phi_k[n]$$
 (Synthesis Equation) (1)

where $k = \langle N \rangle$ means any set of N successive integers: k = 0, 1, ..., N - 1, or k = 1, 2, ..., N, or other choices.

Example: For N = 6, $\Phi_k[n] = e^{jk\frac{2\pi}{6}n}$

Properties of $\Phi_k[n]$

- 1. Periodicity in n: $\Phi_k[n+N] = \Phi_k[n]$
- 2. Periodicity in k: $\Phi_{k+N}[n] = \Phi_k[n]$
- 3. Zero sum unless $k = 0 \pmod{N}$:

$$\sum_{n=\langle N\rangle} \Phi_k[n] = \begin{cases} N & \text{if } k = 0, \mp N, \mp 2N, \dots \\ 0 & \text{otherwise} \end{cases}$$
 (2)

4. $\Phi_k[n]\Phi_m[n] = \Phi_{k+m}[n]$

Finding the Fourier Series coefficients a_k :

Multiplying both sides of (1) by $\Phi_{-m}[n]$ and summing over $n = \langle N \rangle$,

$$\sum_{n=\langle N \rangle} x[n] \Phi_{-m}[n] = \sum_{n=\langle N \rangle} \sum_{k=\langle N \rangle} a_k \Phi_{k-m}[n]$$

$$= \sum_{k=\langle N \rangle} a_k \sum_{n=\langle N \rangle} \Phi_{k-m}[n] = Na_m$$
 (3)

where the last equality follows because, from (2),

$$\sum_{n=\langle N\rangle} \Phi_{k-m}[n] = \begin{cases} N & \text{if } k = m \pmod{N} \\ 0 & \text{otherwise.} \end{cases}$$

Replacing the index m in (3) by k, we get:

$$a_k = \frac{1}{N} \sum_{n = \langle N \rangle} x[n] e^{-j\frac{2\pi}{N}kn}$$
 (Analysis Equation) (4)

As in continuous time, if x is real then $a_{-k} = a_k^*$. Combining with the periodicity of coefficients in discrete time ($a_{N-k} = a_{-k}$) we conclude:

$$a_{N-k} = a_k^*.$$

Example:

$$x[n] = 1 + \sin\left(\frac{2\pi}{10}n\right) + \cos\left(\frac{4\pi}{10}n + \frac{\pi}{4}\right) \quad N = 10$$

$$= \frac{1}{2j}e^{j\frac{2\pi}{10}n} \qquad = \frac{1}{2}e^{j\frac{4\pi}{4}}e^{j\frac{4\pi}{10}n}$$

$$- \frac{1}{2j}e^{-j\frac{2\pi}{10}n} \qquad + \frac{1}{2}e^{-j\frac{\pi}{4}}e^{-j\frac{4\pi}{10}n}$$

$$= 1 + \frac{1}{2j}\Phi_1[n] - \frac{1}{2j}\Phi_{-1}[n] + \frac{1}{2}e^{j\frac{\pi}{4}}\Phi_2[n] + \frac{1}{2}e^{-j\frac{\pi}{4}}\Phi_{-2}[n]$$

If we choose (N) to be $\{0, 1, 2, ..., 9\}$, then $a_3 = a_4 = a_5 = a_6 = a_7 = 0$,

$$a_0 = 1$$
, $a_1 = a_9^* = \frac{1}{2j}$, $a_2 = a_8^* = \frac{1}{2}e^{j\frac{\pi}{4}}$.

Example: Rectangular pulse train

For the special case $N_1 = 0$ ("impulse train"):

$$a_k = \frac{1}{N} \sum_{n = \langle N \rangle} x[n] e^{-jk\frac{2\pi}{N}n} = \frac{1}{N} x[0] e^{-jk\frac{2\pi}{N}0} = \frac{1}{N}$$
 for all k .

Derive the following for $N_1 \neq 0$:

$$a_{k} = \begin{cases} \frac{2N_{1}+1}{N} & k = 0\\ \frac{1}{N} \frac{\sin(k\pi(2N_{1}+1)/N)}{\sin(k\pi/N)} & k \neq 0. \end{cases}$$
 (5)

For N = 9, $N_1 = 2$, the figure below shows how the partial sum

$$\sum_{k=-M}^{M} a_k \Phi_k[n] \tag{6}$$

progressively reconstructs x[n] as more harmonics are included.

Figure 1: The partial sum (6) with Fourier coefficients (5), for N = 9and $N_1 = 2$. When M = 4, (6) is the complete Fourier series; thus we fully recover the rectangular pulse.

Below is a summary of continuous- and discrete-time Fourier Series:

	Continuous Time	Discrete Time
Synthesis	$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\frac{2\pi}{T}t}$	$x[n] = \sum_{k=\langle N \rangle} a_k e^{jk \frac{2\pi}{N} n}$
Analysis	$a_k = \frac{1}{T} \int_T x(t) e^{-jk\frac{2\pi}{T}t}$	$a_k = \frac{1}{N} \sum_{n=\langle N \rangle} x[n] e^{-jk\frac{2\pi}{N}n}$

Fourier Series as a Change of Basis

We can represent a discrete-time signal x with period N as a vector:

$$\vec{x} = \begin{bmatrix} x[0] \\ x[1] \\ \vdots \\ x[N-1] \end{bmatrix}$$

and define the inner product of two signals *x* and *y* as:

$$\vec{x} \cdot \vec{y} = \sum_{n=0}^{N-1} x[n]y[n]^* \tag{7}$$

which is the standard inner product in \mathbb{C}^N .

With this viewpoint we interpret the sequences $\Phi_k[n] = e^{jk\frac{2\pi}{N}n}$ as a set of basis vectors:

$$ec{\Phi}_k = egin{bmatrix} 1 \\ e^{jkrac{2\pi}{N}} \\ \vdots \\ e^{jkrac{2\pi}{N}(N-1)} \end{bmatrix}$$
 , $k=0,1,\ldots,N-1$,

and the Fourier Series representation (1) as a change of basis in \mathbb{C}^N :

$$\vec{x} = a_0 \vec{\Phi}_0 + a_1 \vec{\Phi}_1 + \dots + a_{N-1} \vec{\Phi}_{N-1}.$$
 (8)

In fact these basis vectors are orthogonal to each other, because

$$\vec{\Phi}_k \cdot \vec{\Phi}_m = \sum_{n=0}^{N-1} \Phi_k[n] \Phi_m[n]^* = \sum_{n=0}^{N-1} e^{jk\frac{2\pi}{N}n} e^{-jm\frac{2\pi}{N}n} = \sum_{n=0}^{N-1} \Phi_{k-m}[n]$$

$$= \begin{cases} N & \text{if } k = m \pmod{N} \\ 0 & \text{otherwise} \end{cases}$$

from (2). Orthogonality simplifies the computation of the coefficients in (8). If we take the inner product of both sides of (8) with $\vec{\Phi}_k$, then

$$\vec{x} \cdot \vec{\Phi}_k = a_k (\vec{\Phi}_k \cdot \vec{\Phi}_k) = a_k N.$$

Therefore,

$$a_k = \frac{1}{N} \vec{x} \cdot \vec{\Phi}_k, \tag{9}$$

which yields the analysis equation (4) when expanded using the inner product definition (7). Thus the *k*th term in the Fourier Series is essentially the projection of the signal onto the kth basis vector $\vec{\Phi}_k$.

The advantage of the Fourier basis is that, instead of the values in time $x[0], x[1], \dots, x[N-1]$, it represents the signal with the coefficients $a_0, a_1, \ldots, a_{N-1}$ describing its frequency content.