최단 경로 문제: Revisited

- 모든 정점의 쌍에 대한 최단 경로 구하기 -> All Pairs Shortest
 - 플로이드 알고리즘: 동적 계획법
- 단일 정점에서 모든 다른 정점으로의 최단 경로 구하기
 - 다익스트라 알고리즘: 탐욕법

다익스트라 알고리즘:

- 최소비용 신장트리 문제의 프림 알고리즘과 유사

$Y = \{v_1\};$

 $F = \emptyset$;

while (답을 구하지 못했음):

Y에 속한 정점만 중간에 거쳐 가는 정점으로 하여

 v_1 에서 최단경로를 가진 정점 v를 V-Y에서 선택한다.

새로운 정점 v를 Y에 추가한다.

(최단경로 상에서) v로 가는 간선을 F에 추가한다.

if(Y == V)

답을 구했음.

- 1. 출발 정점 v1, F = Φ
- 2. 다만 조건이 조금 다른데, 답을 다 구할때까지 반복하는데, 답은 Y가 V집합과 같을때 까지이다.
- 3. v1을 선택하는 기준이 다르다. (조금 더 복잡)
 - Compute shortest paths from v_1 .

1. Vertex v_5 is selected because it is nearest to v_1 .

3. Vertex v_3 is selected because it has the shortest path from v_1 using only vertices in $\{v_4, v_5\}$ as intermediates.

2. Vertex v_4 is selected because it has the shortest path from v_1 using only vertices in $\{v_5\}$ as intermediates.

4. The shortest path from v_1 to v_2 is $[v_1, v_5, v_4, v_2]$.

- W[i][j]: 그래프 G의 인접행렬
- touch[i]: Y에 속한 정점들만 중간에 거치도록 하여 v1에서 vi로 가는 현재 최단경로 상의 마지막 간선을 (v, v1)라고 할 때, Y에 속한 정점 v의 인덱스

- length[i]: Y에 속한 정점들만 중간에 거치도록 하여 v1에서 vi로 가는 현재 최단 경로의 길이

							i	2	3	4	5	е
	ı					init:	touch[i]	1	1	1	1	
W	1	2	3	4	5	init:	length[i]	7	4	6	1	
1	0	7	4	6	1	step 1:	touch[i]	1	1	5	1	(1, 5, 1)
2	∞	0	∞	∞	∞	зсер 1.	length[i]	7	4	2	-1	
3	∞	2	0	5	∞	step 2:	touch[i]	4	1	5	1	(5, 4, 1)
4	∞	3	∞	0	∞	Зсер 2.	length[i]	5	4	-1	-1	
5	∞	∞	∞	1	0	step 3:	touch[i]	4	1	5	1	(1, 3, 4)
	I					эсср э.	length[i]	5	-1	-1	-1	
						step 4:	touch[i]	4	1	5	1	(4, 2, 3)
						2200	length[i]	-1	-1	-1	-1	

- touch == nearest, length == distance처럼 프림 알고리즘의 배열 구조와 같게 보면 쉽다.

ALGORITHM 4.3: Dijkstra's Algorithm

```
void dijkstra(int n, matrix_t& W, set_of_edges& F)
{
   int vnear, min;
   vector<int> touch(n + 1), length(n + 1);

   F.clear();
   for (int i = 2; i <= n; i++) {
      touch[i] = 1;
      length[i] = W[1][i];
   }</pre>
```

ALGORITHM 4.3: Dijkstra's Algorithm (continued)

```
repeat (n - 1 times) {
        min = INF;
        for (int i = 2; i <= n; i++)
            if (0 <= length[i] && length[i] < min) {</pre>
                min = length[i];
                vnear = i;
            }
        e = edge from vertex indexed by touch[vnear];
        add e to F;
        for (int i = 2; i <= n; i++)
            if (length[i] > length[vnear] + W[vnear][i]) {
                length[i] = length[vnear] + W[vnear][i];
                touch[i] = vnear;
        length[vnear] = -1;
    }
}
```

시간복잡도 분석

다익스트라 알고리즘: O(n²) -> 탐욕 접근법

플로이드 알고리즘: O(n³) -> 동적계획법