Лабораторная работа № 2 «Моделирование рассеивания вредных примесей и выбор высоты дымовой трубы котельной» Вариант 41

Цель работы: Изучить методику моделирования рассеивания вредных примесей при работе котельной.

1 КРАТКИЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

Котельные установки при производстве тепловой энергии непрерывно выбрасывают в атмосферу через дымовую трубу токсичные газы и мелкодисперсную золу. При высоких температурах в факеле топки происходит частичное окисление азота с образованием оксидов азота. При содержании серы в топливе в дымовых газах появляются оксиды серы. Основным показателем, характеризующим загрязнение воздушной среды, является выброс вредных веществ в единицу времени.

За стандарт качества воздуха приняты предельные допустимые концентрации (ПДК) различных токсичных веществ. ПДК атмосферных загрязнений устанавливается по двум показателям: максимально-разовому и среднесуточному. Максимально-разовая концентрация характеризует качество атмосферного воздуха при отборе пробы в течении 20 минут, а среднесуточная – в течении суток.

Исходные данные

№	Населенн	Кол	ичество	Тип котлов		Производите		Вид топлива	
	ый пункт	котл	ЮВ			льность			
						одного			
						котла, МВт			
						или т/ч			
41	Минск		6	Водогрейные		1		Попутный газ	
Q_{HOM}	0,86	eta_2	0	Δt	231	eta_3	0,85	Z	1
ΣQ	5,16	r	0	$\eta_{\scriptscriptstyle HOM}$	92	$t_{\scriptscriptstyle \mathrm{HB}}$	26,9	V_0	9.54
Кол.	. 6	q_4	0	$\eta_{\scriptscriptstyle ext{T}\Pi}$	97	а	1,1	n	1
eta_1	0,85	$Q_{\mathrm{p}}^{\scriptscriptstyle\mathrm{H}}$	36,17	$\omega_{\scriptscriptstyle m BHX}$	25	A	120	ПДК _{NO2}	0,085
$t_{ m Д\Gamma}$	250								
Природный газ Бухара-Урал									

Произведем выбор высоты дымовой трубы для производственной котельной, в которой установлено 6 котлов производительностью 1 МВт (0,86Гкал), работающих на попутном газе.

Разность температур Δt :

$$\Delta t = t_{
m Д\Gamma} - t_{
m HB}$$
 $\Delta t = 250 - 18,9 = 231,1~^oC$

Коэффициент к:

$$k = \frac{2.5 * Q_{\text{HOM}}}{Q_{\text{HOM}} + 20}$$
$$k = \frac{2.5 * 0.86}{0.86 + 20} = 0.1$$

Расчетный часовой расход топлива:

$$B_{\rm p} = (3600*\Sigma Q)/(\eta_{\rm HOM}*\eta_{\rm T\Pi}*Q_{\rm p}^{\rm H})$$

$$B_{\rm p} = (3600*5,16)/(0,94*0,97*36170) = 0,6~{\rm тыс.m}^3/{\rm q}$$

Выброс оксидов азота в пересчете на NO_2 :

$$M_{NO_2} = 0.034 * \beta_1 * k * B_p * Q_p^H * \left(1 - \frac{q_4}{100}\right) * (1 - \beta_2 * r) * \beta_3$$

$$M_{NO_2} = 0.034 * 0.85 * 0.1 * 0.6 * 36.17 * \left(1 - \frac{0}{100}\right) * (1 - 0 * 0) * 0.85 = 0.05 \text{ r/c}$$

Объемный расход продуктов сгорания через трубу в выходном сечении равен:

$$V_{\text{Tp}} = B_{\text{p}} * V_0 * \frac{a}{3.6}$$

 $V_{\text{Tp}} = 0.6 * 9.54 * \frac{1.1}{3.6} = 1.6 \text{ m}^3/\text{c}$

Расчётный диаметр устья дымовой трубы:

$$D_{ ext{тp}}^{ ext{y}} = \sqrt{rac{4*V_{ ext{тp}}}{3,14*\omega_{ ext{вых}}}}$$
 $D_{ ext{тp}}^{ ext{y}} = \sqrt{rac{4*1,6}{3,14*25}} = 0,28 ext{ м}$

Принимаем диаметр устья дымовой трубы равным 1,2 м

Высота трубы по предварительной оценке равна:

$$H = \sqrt{A * (\frac{M_{NO_2}}{\Pi Д K_{NO_2}}) * \sqrt[3]{\frac{Z}{V_{\text{тр}} * \Delta t}}}$$

$$H = \sqrt{120 * (\frac{0.05}{0.085}) * \sqrt[3]{\frac{1}{1.6 * 231.1}}} = 3.17 \text{ M}$$

Принимаем высоту дымовой трубы равным 1м.

Коэффициент f равен:

$$f = \frac{1000 * \omega_{\text{вых}}^2 * D_{\text{тр}}^y}{H^2 * \Delta t}$$
$$f = \frac{1000 * 25^2 * 1,2}{1^2 * 231.1} = 3245$$

Коэффициент т равен:

$$m = (0.67 + 0.1\sqrt{f} + 0.34\sqrt[3]{f})^{-1}$$

$$m = (0.67 + 0.1\sqrt{3245} + 0.34\sqrt[3]{3245})^{-1} = 0.1$$

Коэффициент $V_{\rm M}$ равен:

$$V_{\rm M} = 0.65 * \sqrt{\frac{V_{\rm Tp} * \Delta t}{H}}$$

$$V_{\rm M} = 0.65 * \sqrt{\frac{1.6 * 231.1}{1}} = 12.7$$

Коэффициент п принимаем равным 1.

Концентрация оксидов азота равны:

$$C_{NO_2} = \frac{A * M_{NO_2} * m * n}{H^2 * \sqrt{V_{\text{Tp}} * \Delta t}}$$

$$C_{NO_2} = \frac{120*0,05*0,1*1}{1^2 * \sqrt{1,6*231,1}} = 0,08 \text{ M}\Gamma/\text{M}^3$$

Проверяем концентрацию ПДК при выбранной высоте трубы:

$$\frac{C_{NO_2}}{\Pi Д K_{NO_2}}$$
$$\frac{0.08}{0.085} = 0.9 \le 1$$

При выбранной высоте трубы имеется небольшой запас до превышения ПДК вредных веществ