

TÓPICOS

- 1. Introdução
- 2. Limiarização global
- 3. Limiarização múltipla
- 4. Limiarização variável e multivariável
- 5. Crescimento de regiões

FUNDAMENTOS

- Técnica de segmentação por similaridade
 - Propriedades intuitivas
 - Fácil implementação
 - Velocidade computacional

$$g(x, y) = \begin{cases} 1 & \text{if } f(x, y) > T \\ 0 & \text{if } f(x, y) \le T \end{cases}$$

Limiarização múltipla

$$g(x, y) = \begin{cases} a & \text{if } f(x, y) > T_2 \\ b & \text{if } T_1 < f(x, y) \le T_2 \\ c & \text{if } f(x, y) \le T_1 \end{cases}$$

FUNDAMENTOS

- O sucesso da limiarização está diretamente relacionado com a largura e a profundidade do(s) vale(s).
- Os principais fatores que afetam os vales são:
 - A separação entre picos
 - O índice de ruído da imagem
 - O tamanho relativo dos objetos e do fundo
 - A uniformidade da fonte de iluminação
 - A uniformidade das propriedades de reflexão da imagem

LIMIARIZAÇÃO

O papel da iluminação e reflectância

LIMIARIZAÇÃO

- Limiarização global simples e iterativa
 - $\Delta T = 0$

- Limiarização global ótima (Otsu)
 - Máx/mín variância entre/intra classes
 - Uma vantagem é que seus cálculos acontecem sobre o histograma, com processamentos rápidos e simples

MÉTODO DE OTSU

Resultado

LIMIARIZAÇÃO

 Limiarização pelo método de Otsu (imagem de microscópio ótico de células polimerosomas)

Imagem original

Limiarização global simples (*T* = 169)

Método de Otsu (T = 181)

APRIMORAMENTO DE LIMIAR

- Podemos melhorar a aplicação do limiar, por simplesmente melhorar a qualidade do histograma
 - picos altos, finos simétricos e separados por vales profundos
- Exemplo: filtrar a imagem por um filtro média

APRIMORAMENTO DE LIMIAR

 Usando a informação das bordas, baseada no laplaciano para melhorar a limiarização global

LIMIARIZAÇÃO GLOBAL MÚLTIPLA

- O método de Otsu para múltiplos limiares (ex: k_1 e k_2)
- 1. Inicialmente, $k_1 = 1$;

LIMIARIZAÇÃO VARIÁVEL

- Aplicar técnicas de correção de ruídos e iluminação nem sempre é suficiente, o que pode levar ao uso da limiarização variável, como o particionamento
- Porém, a subdivisão pode não funcionar quando os objetos e o fundo não ocupam regiões de tamanho razoavelmente comparável

LIMIARIZAÇÃO VARIÁVEL

 Baseada nas propriedades locais: calcula um limiar para cada ponto (x, y) com base em propriedades em sua vizinhança.

$$g(x, y) = \begin{cases} 1 & \text{if } f(x, y) > T_{xy} \\ 0 & \text{if } f(x, y) \le T_{xy} \end{cases}$$

$$T_{xy} = a\sigma_{xy} + bm_{xy}$$
$$T_{xy} = a\sigma_{xy} + bm_G$$

$$g(x,y) = \begin{cases} 1 & \text{if } f(x,y) > T_{xy} \\ 0 & \text{if } f(x,y) \le T_{xy} \end{cases}$$

$$\frac{T_{xy} = a\sigma_{xy} + bm_{xy}}{T_{xy} = a\sigma_{xy} + bm_{G}}$$

$$g(x,y) = \begin{cases} 1 & \text{if } Q(\text{local parameters}) \text{ is true} \\ 0 & \text{if } Q(\text{local parameters}) \text{ is false} \end{cases}$$

Imagem original

Dupla segmentação de Otsu

Desvio padrão com vizinhança 3×3

Resultado (a = 30 e b = 1,5)

LIMIARIZAÇÃO MULTIVARIADA

- Não apenas uma variável (intensidade)
- Exemplo: segmentar regiões de imagem por técnicas de reconhecimento de padrões baseadas em funções de decisão

CRESCIMENTO DE REGIÕES

- Agrupa os pixels em regiões maiores com base em critérios predefinidos para o crescimento
- A abordagem básica é começar com um conjunto de pontos "semente" e, a partir deles, fazer as regiões crescerem anexando a cada semente aqueles pixels vizinhos que têm propriedades predefinidas semelhantes às das sementes
 - Quais serão as sementes?
 - Qual será o critério de similaridade?
 - Qual a vizinhança considerada?
 - Qual a regra de parada para o crescimento das regiões?

CRESCIMENTO DE REGIÕES

 Crescimento de regiões com imagem de raio x de uma solda para segmentação de fissuras e porosidades

Resultado com vizinhos-8 e

Histograma da Limiarização com Processamento similaridades por Imagem original imagem original intensidade 254 morfológico intensidades

WATERSHEDS

 Usam mínimos locais como aberturas para a formação de bacias hidrográficas

O QUE VIMOS?

- Introdução
- Limiarização global
- Limiarização múltipla
- Limiarização variável e multivariada
- Crescimento de regiões

PRÓXIMA VIDEOAULA

