Revisão Sistemática e Meta-Análise

Marcelo M. Weber & Nicholas A. C. Marino github.com/nacmarino/maR

Recapitulando

- Meta-Análise: "é a análise estatística de uma ampla coleção de resultados de estudos com o propósito de integrar a evidência disponível". (*Glass, 1976*)
- Em uma meta-análise, é essencial calcularmos ou extrairmos uma métrica de tamanho de efeito e também a sua variância, para que o peso de cada estudo seja proporcional à sua precisão.
- · Não existe o melhor modelo para a sua meta-análise, mas sim o modelo que descreve melhor seus objetivos e perguntas.
- Documente todas as decisões e escolhas que você fizer durante o processo de seleção de trabalhos, extração de dados, cálculo de effect size e escolha dos modelos.

Rodar um modelo não é ter um modelo

- Existem certos pressupostos que você precisa verificar para saber se o que o modelo promete é de fato real.
- · Distribuição dos resíduos segue distribuição normal;
- · Variância dos resíduos é homogênea entre grupos ou ao longo de um gradiente (válido somente quando incluímos moderadores);
- · Os resultados não estão sendo tendenciados por observações aberrantes.
- Além disso, o modelo de meta-análise possui métricas específicas que devem ser verificadas para determinar:
- · Extensão da heterogeneidade entre observações;
- · Extensão da heterogeneidade dentro das observações;
- · Heterogeneidade total e heterogeneidade explicada pelo modelo;
- · Heterogeneidade explicada por cada *moderador*;
- · Diferença entre os níveis do mesmo *moderador*.
- · O que vale para modelos de ANOVA, Regressão, e etc, valem e funcionam de forma semelhante aqui.

Validação do Modelo

- · A promessa do modelo é real ou furada?
- · Vamos trabalhar com essa ideia usando um exemplo prático diretamente no R, com os dados que temos trabalhado no metafor.

· O output de um modelo de meta-análise: parte a parte.

model1

```
## Random-Effects Model (k = 16; tau^2 estimator: REML)
## tau^2 (estimated amount of total heterogeneity): 1.2288 (SE = 0.5923)
## tau (square root of estimated tau^2 value):
                                                 1.1085
## I^2 (total heterogeneity / total variability): 77.20%
## H^2 (total variability / sampling variability): 4.39
##
## Test for Heterogeneity:
## Q(df = 15) = 64.3755, p-val < .0001
##
## Model Results:
##
                se zval pval ci.lb ci.ub
## estimate
    0.6955 0.3190 2.1800 0.0293 0.0702 1.3208 *
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Estimativas do Modelo

- **Estimate**: é a estimativa do efeito que você está interessado.
- **SE**: é o valor do erro associado à estimativa do efeito (utilizado para os testes de significância e cálculo do intervalo de confiança).
- · zval: valor do teste estatístico deste termo no modelo.
- **pval**: valor de *p* para o teste estatístico.
- **CI**: intervalo de confiança inferior (*ci.lb*) e superior (*ci.lb*) da estimativa do efeito.

estimate	se	zval	pval	ci.lb	ci.ub
0.695	0.319	2.18	0.029	0.07	1.321

Variância dos Random-Effects

- τ^2 : variância entre estudos (between-study variance) e erro associado à esta estimativa (*se.tau2*).
- · τ^2 é estimado por REML, por conta disso, possui um erro associado à ela.

estimate	se	zval	pval	ci.lb	ci.ub	tau2	se.tau2
0.695	0.319	2.18	0.029	0.07	1.321	1.229	0.592

Testes de Heterogeneidade

- · Uma estimativa de heterogeneidade na meta-análise é dada pela estatística Q, medida análoga à soma dos quadrados em uma ANOVA.
- · A heterogeneidade total em um modelo de meta-análise é denotado por Q_{TOTAL} ou Q_T.
- · Q_T é a estatística de teste da hipótese nula (H_0) de que todos os estudos formam uma amostra homogênea de uma população com efeito real μ . Isto é, não existe heterogeneidade entre as observações.
 - p > 0.05: Aceita H_0 : não existe heterogeneidade entre as observações;
 - p ≤ 0.05: Rejeita H₀: existe evidência de heterogeneidade entre as observações.
- · Q_T é testado com base em uma distribuição do χ^2 com k 1 graus de liberdade.
- · Importante (mais sobre esses tópicos à seguir):
 - Q_T representa a heterogeneidade oriunda da varibilidade de dentro (within-study variance) dos estudos em um fixed-effects model, e variabilidade oriunda de dentro (within-study variance) e entre (between-study variance) os estudos em um random-effects model.

Testes de Heterogeneidade

- · A estatística Q não é comparável entre meta-análises e, por ser uma análise estatística, seu poder depende da quantidade de estudos incluídos.
- Uma alternativa complementar de medida de heterogeneidade é o l², que quantifica a porcentagem total da heterogeneidade que pode ser atribuído à variabilidade entre observações.

$$I^2$$
: $max (100 \times \frac{Q_T - (K-1)}{Q_T}, 0)$

(onde K é o número de estudos/graus de liberdade)

Testes de Heterogeneidade

Por fim, H² é uma outra métrica complementar de heterogeneidade que representa o quanto a total excede a heterogeneidade dentro das observações, ou ainda, o quanto a heterogeneidade entre observações contribui para o aumento dos intervalos de confiança da estimativa quando comparado aos intervalos de confiança estimados através de um modelo de efeito fixo.

H^2 : $\frac{Q_T}{K-1}$											
estimate	se	zval	pval	ci.lb	ci.ub	tau2	se.tau2	QE	QEp	12	H2
0.695	0.319	2.18	0.029	0.07	1.321	1.229	0.592	64.375	0	77.2	4.386

Validação do Modelo

Normalidade dos Resíduos

· Método gráfico vs método estatístico.

```
qqnorm.rma.uni(model1)
hist(rstudent.rma.uni(model1)$resid, xlab = "Resíduos", main = "Distribuição dos Resíduos")
boxplot(resid(model1), ylab = "Resíduos", main = "Distribuição dos Resíduos em um Box Plot")
```


Mixed-effects models

```
(model2 <- rma(yi = yi, vi = vi, data = dados, mods = ~ riqueza tratamento))</pre>
##
## Mixed-Effects Model (k = 16; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity):
                                                            0.2703 \text{ (SE} = 0.2407)
## tau (square root of estimated tau^2 value):
                                                            0.5199
## I^2 (residual heterogeneity / unaccounted variability): 42.76%
## H^2 (unaccounted variability / sampling variability):
                                                           1.75
## R^2 (amount of heterogeneity accounted for):
                                                            78.00%
##
## Test for Residual Heterogeneity:
## QE(df = 14) = 24.0827, p-val = 0.0448
## Test of Moderators (coefficient(s) 2):
## QM(df = 1) = 22.8354, p-val < .0001
##
## Model Results:
##
                       estimate
                                     se
                                            zval
                                                     pval
                                                             ci.lb
                                                                      ci.ub
## intrcpt
                        -2.2787 0.6292 -3.6217 0.0003 -3.5118 -1.0455
## riqueza tratamento
                       0.4675 0.0978 4.7786 <.0001 0.2758
                                                                   0.6593
##
## intrcpt
                       ***
```

Estimativas do Modelo

- · Note algumas diferenças no modelo de meta-regressão (mixed-effects model):
- · Você agora recebe um valor para o intercepto e slope do efeito da latitude;
- ' Assim como em um regressão, você tem acesso à uma estimativa de R² (explicação do modelo);
- · O output agora te dá uma estimativa de QM (ou Q_b , between-study variance) e QE (ou Q_w , within-study variance);
- · QM pode ser compreendido como a estatística de teste da significância do modelo;
- · QE pode ser compreendido como a estatística de teste de heterogeneidade residual aquilo que não é explicado pelo modelo.

modelo	variavel	estimate	se	zval	pval	ci.lb	ci.ub
random-effects model	Estimativa	0.70	0.32	2.18	0.03	0.07	1.32
mixed-effects model	Intecepto	-2.28	0.63	-3.62	0.00	-3.51	-1.05
mixed-effects model	Diversidade	0.47	0.10	4.78	0.00	0.28	0.66

Estimativas do Modelo

· Todas as estimativas de variabilidade não explicada caíram: τ^2 , I^2 e Q^2 .

tipo	tau2	se.tau2	QM	QMp	QE	QEp	12	H2
random-effects model	1.23	0.59	NA	NA	64.38	0.00	77.20	4.39
mixed-effects model	0.27	0.24	22.84	0	24.08	0.04	42.76	1.75

Testes de Heterogeneidade

- · QE está testando a hipótese nula de que não existe heterogeneidade nos estudos hipótese esta rejeitada no nosso exemplo.
- · QM está testando a significância dos termos no modelo, e não do modelo todo.

```
##
##
## Test of Moderators (coefficient(s) 2):
## QM(df = 1) = 22.8354, p-val < .0001</pre>
```

· A significância do modelo como um todo é dado por:

```
anova(model2, btt = c(1,2)) # o teste fala quais coeficientes estão sendo testados ## ## Test of Moderators (coefficient(s) 1:2): ## QM(df = 2) = 30.8196, p-val < .0001
```

```
(model3 <- rma(yi = yi, vi = vi, data = dados, mods = ~ ecossistema))</pre>
##
## Mixed-Effects Model (k = 16; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity):
                                                            1.3040 \text{ (SE} = 0.6424)
## tau (square root of estimated tau^2 value):
                                                            1.1419
## I^2 (residual heterogeneity / unaccounted variability): 78.08%
## H^2 (unaccounted variability / sampling variability):
                                                            4.56
## R^2 (amount of heterogeneity accounted for):
                                                            0.00%
##
## Test for Residual Heterogeneity:
## QE(df = 14) = 63.3586, p-val < .0001
## Test of Moderators (coefficient(s) 2):
## QM(df = 1) = 0.3819, p-val = 0.5366
##
## Model Results:
##
                                                               ci.lb
                         estimate
                                       se
                                               zval
                                                       pval
                                                                       ci.ub
## intrcpt
                          0.9015 0.4618 1.9521 0.0509 -0.0036 1.8066
## ecossistemaTerrestre -0.4034 0.6528 -0.6180 0.5366 -1.6828 0.8760
##
## intrcpt
```

- · Com moderadores categóricos, QM está medindo a diferença estatístico entre o intercepto e cada um dos níveis do moderador par-a-par:
- · Quem é o intercepto?
- · O que representam estas diferenças então?

variavel	estimate	se	zval	pval	ci.lb	ci.ub
Intecepto	0.901	0.462	1.952	0.051	-0.004	1.807
Ecossistema: Terrestre	-0.403	0.653	-0.618	0.537	-1.683	0.876

```
anova(model3) # testando o efeito apenas de dois níveis do moderador

##

## Test of Moderators (coefficient(s) 2):

## QM(df = 1) = 0.3819, p-val = 0.5366

anova(model3, btt = c(1, 2)) # testando o efeito do moderador

##

## Test of Moderators (coefficient(s) 1:2):

## QM(df = 2) = 4.9766, p-val = 0.0831
```

- Existe diferença entre os níveis do moderador, mas esta diferença é mascarada pelo padrão que o metafor assume.
- Uma alternativa é remover o intercepto do modelo: se cada nível do moderador é diferente de 0.
- Outra opção é reordernar os níveis do fator, determinando qual você quer que seja considerado com o 'intercepto' (especialmente útil se você tem hipóteses pré-definidas à serem testadas).
- · Este problema é menor quando o moderador possui apenas 2 níveis.

```
# removendo o intercepto
model4 <- rma(yi = yi, vi = vi, data = dados, mods = ~ ecossistema - 1)</pre>
```

variavel	estimate	se	zval	pval	ci.lb	ci.ub
Ecossistema: Aquatico	0.901	0.462	1.952	0.051	-0.004	1.807
Ecossistema: Terrestre	0.498	0.461	1.080	0.280	-0.406	1.402

Moderadores Categóricos

 A função anova pode ser usada para fazer comparações par-a-par e até mesmo contrastes.

```
anova(model4, L = c(1, -1)) # "Aquatico" vs "Terrestre"

##

## Hypothesis:

## 1: ecossistemaAquatico - ecossistemaTerrestre = 0

##

## Results:

## estimate se zval pval

## 1: 0.4034 0.6528 0.6180 0.5366

##

## Test of Hypothesis:

## QM(df = 1) = 0.3819, p-val = 0.5366
```

Moderadores Categóricos e Contínuos

· Efeito principal dos dois moderadores.

rma(yi = yi, vi = vi, data = dados, mods = ~ ecossistema + riqueza_tratamento)

variavel	estimate	se	zval	pval	ci.lb	ci.ub
Intercepto	-2.212	0.545	-4.057	0.000	-3.280	-1.143
Ecossistema: Terrestre	-0.880	0.360	-2.442	0.015	-1.586	-0.174
Diversidade	0.527	0.089	5.938	0.000	0.353	0.701

Moderadores Categóricos e Contínuos

· Efeito principal e interação entre os dois moderadores.

rma(yi = yi, vi = vi, data = dados, mods = ~ ecossistema * riqueza_tratamento)

variavel	estimate	se	zval	pval	ci.lb	ci.ub
Intercepto	-2.597	0.854	-3.040	0.002	-4.272	-0.923
Ecossistema: Terrestre	-0.240	1.146	-0.209	0.834	-2.485	2.005
Diversidade	0.598	0.149	4.005	0.000	0.305	0.890
Ecossistema: Terrestre x Diversidade	-0.110	0.186	-0.589	0.556	-0.474	0.255

Moderadores Categóricos e Contínuos

· Moderador categórico conforme modificado pelo contínuo.

```
rma(yi = yi, vi = vi, data = dados, mods = ~ ecossistema : riqueza_tratamento - 1)
```

variavel	estimate	se	zval	pval	ci.lb	ci.ub
Efeito da Diversidade em Ecossistemas Aquaticos	0.186	0.065	2.854	0.004	0.058	0.313
Efeito da Diversidade em Ecossistemas Terrestres	0.112	0.055	2.036	0.042	0.004	0.219

metafor

Resumindo

- · Independente do tipo de modelo que você escolher para trabalhar, é essencial que você garanta que o modelo cumpre com o que ele promete.
- Existem diversos testes disponíveis para a validação dos modelos de metaanálise, muitos dos quais são similares aos usados em outros tipos de modelos estatísticos.
- Após validar o modelo, você pode fazer o diagnóstico do mesmo, identificando a fonte de heterogeneidade nele e explorando esta heterogeneidade com moderaadores.
- O metafor tem muitas funcionalidades que você pode usar nesta etapa sugiro que você explore o site do projeto, para se familiarizar com aquilo que será mais importante no seu trabalho.

Literatura Recomendada

- 1. Adams et al, 1997, Ecology, Resampling tests for meta-analysis of ecological data
- 2. Nakagawa & Santos, 2012, Evol Ecol, Methodological issues and advances in biological meta-analysis
- 3. Harrison, 2011, Methods Ecol Evol, Getting started with meta-analysis
- 4. Rosenberg, 2013, Moment and least-squares based approaches to metaanalytic inference, In: Handbook of meta-analysis in ecology and evolution (Capítulo 9)
- 5. Viechtbauer, 2010, J Stat Soft, Conducting meta-analyses in R with the metafor package
- 6. Dúvidas gerais e dicas para o uso do metafor: http://www.metafor-project.org/doku.php/tips