Assigment 5

1

	Operation	Name	Min. Result Size	Min. When	Max. Result Size	Max. When
1	$\sigma_{\theta}(R)$	Selection	0	no tuple matches θ	m	all tuple matches θ
2	$\pi_{A_1A_k}$ R	Projection	0	there is no attribute	m	all attribute matches
3	$\rho_{x \leftarrow A} R$	Rename	m	-	m	-
4	$R \times A$	Cross Product	m * n	-	m*n	Both tables have tuples
5	$R \cap S$	Intersection	0	R and S are disjoint	$\min\{m,n\}$	R and S are matching
6	$R \cup S$	Union	$\max\{m,n\}$		0	R and S are disjoint
7	R\S	Difference\Minus	0		m	R and S are disjoint
8	$R \bowtie_{\theta} S$	Theta Join	0		m*n	
9	$R\bowtie S$	Natural Join	0	Tuples have same attributes but have no equals values	min{m, n}	have different attributes
10	R d-><- S	Left Outer Join	m	tuples from R which do not match to any tuples from S	m	Every tuple in S has a join partner in R
11	R d-><-d S	Full Outer Join	$\max\{m,n\}$	each tuple of the bigger table has at most one join partner, all those of the smaller table at least one	m+n	all pairs of tuples match
12	$R \ltimes S$	Left semijoin	0		$\min\{m,n\}$	
13	$R \ltimes (R \triangleright S)$	Left antijoin	0		m	

$\mathbf{2}$

- (a) I. Natural language: Find the names of all sets that have more than 2,000 parts.
 - II. Relational algebra: $\pi_{sets.name}(\sigma_{sets.num_parts>2000} \ sets)$
 - III. SQL : SELECT name

FROM sets

WHERE num $_{-}$ parts > 2000

- (b) I. Natural language: Find the names of all sets, that have a theme 'Star Wars'
 - II. Relational algebra: $\pi_{sets.name}((\sigma_{name\ LIKE\ '\%StarWars\%'\ themes}) \bowtie_{themes.id=sets.theme_id} (\sigma_{year=2017\ sets})$
 - III. SQL : SELECT s.name

FROM themes t

 $JOIN sets s on s.theme_id = t.id$

WHERE t.name LIKE '% Star Wars %'

- (c) I. Natural language: Find parts number of parts, that have 'Zoo' in name and also are in categorie 'Plants and Animals'
 - II. Relational algebra: $(\pi_{parts.part.num}(\sigma_{parts.name\ LIKE\ '\%Zoo\%'})) \cup (\pi_{part.num}(\rho_p(parts) \bowtie_{pc.id=p.part.cat_id} (\sigma_{pc.name='PlantsandAnimals'} \rho_{pc}(part_categories))))$
 - III. SQL : SELECT part_num FROM parts

1

```
WHERE name LIKE '%Zoo%'
UNION
SELECT part_num
FROM parts p
JOIN part_categories pc ON pc.id = p.part_cat_id
WHERE pc.name = 'Plants and Animals ';
```

- (d) I. Natural language: Find the names of all sets released in 1976 that do not belong to a Construction theme.
 - II. Relational algebra: $\pi_{s.name}(\rho_s(sets)) \bowtie_{s.theme_id=t.theme_id} (\sigma_{s.year=1976\ AND\ t.name!='Construction'}(\rho_t(themes)))$
 - III. SQL : SELECT s.name

FROM sets s

JOIN themes t on $t.id = s.theme_id$

WHERE s.year = 1976 and t.name != 'Construction'

- (e) I. Natural language: Find the most number of parts in set that released in 2007
 - II. Relational algebra: $\pi_{s.num_parts}(\sigma_{s.year=2007~AND~b}(\sigma_{sets.year=2007~AND~num_parts})(\rho_s(sets))$
 - III. $SQL : SELECT s . num_parts$

FROM sets s

WHERE s. year = 2007

AND NOT EXISTS (SELECT *

FROM sets

WHERE year = 2007

AND num_parts s . num_parts);

3

