

Ethernet MAC (Beta Release)

Version 0.1

Copyright

Copyright © 2021 Rapid Silicon. All rights reserved. This document may not, in whole or part, be reproduced, modified, distributed, or publicly displayed without prior written consent from Rapid Silicon ("Rapid Silicon").

Trademarks

All Rapid Silicon trademarks are as listed at www.rapidsilicon.com. Synopsys and Synplify Pro are trademarks of Synopsys, Inc. Aldec and Active-HDL are trademarks of Aldec, Inc. Modelsim and Questa are trademarks or registered trademarks of Siemens Industry Software Inc. or its subsidiaries in the United States or other countries. All other trademarks are the property of their respective owners.

Disclaimers

NO WARRANTIES: THE INFORMATION PROVIDED IN THIS DOCUMENT IS "AS IS" WITHOUT ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND INCLUDING WARRANTIES OF ACCURACY, COMPLETENESS, MERCHANTABILITY, NONINFRINGEMENT OF INTELLECTUAL PROPERTY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL RAPID SILICON OR ITS SUPPLIERS BE LIABLE FOR ANY DAMAGES WHATSOEVER (WHETHER DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL, INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OF OR INABILITY TO USE THE INFORMATION PROVIDED IN THIS DOCUMENT, EVEN IF RAPID SILICON HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. BECAUSE SOME JURISDICTIONS PROHIBIT THE EXCLUSION OR LIMITATION OF CERTAIN LIABILITY, SOME OF THE ABOVE LIMITATIONS MAY NOT APPLY TO YOU.

Rapid Silicon may make changes to these materials, specifications, or information, or to the products described herein, at any time without notice. Rapid Silicon makes no commitment to update this documentation. Rapid Silicon reserves the right to discontinue any product or service without notice and assumes no obligation to correct any errors contained herein or to advise any user of this document of any correction if such be made. Rapid Silicon recommends its customers obtain the latest version of the relevant information to establish that the information being relied upon is current and before ordering any products.

Contents

IP Summary Introduction	
Overview Ethernet MAC	4
IP Specification Standards	5
IP Support Details	6
Resource Utilization	7
Parameters	
Design Flow IP Customization and Generation	
Testbench Simulate IP	
Revision History	13

IP Summary

Introduction

Ethernet MAC IP Core is a pre-verified implements the Media Access Control (MAC) functionality of the Ethernet protocol. It efficiently manages data flow between the FPGA and the network. It ensures access to the shared medium and handling packet reception and transmission. Additionally, it connects the physical network (via GMII/RGMII) to the internal world of the FPGA.

Features

- · Support two physical interfaces.i.e. GMII and RGMII.
- · Support FIFO implementation for data buffering.
- · Support configurable FIFO depth.
- Supports 10Mbps, 100Mbps and 1000Mbps speed.

Overview

Ethernet MAC

An Ethernet MAC IP Core acts as a bridge for enabling communication over Ethernet networks. It implements the Media Access Control(MAC) sublayer of the Ethernet protocol. This core efficiently moves data packets back and forth between the FPGA and the network. Packets leaving the FPGA use the AXI4-Stream TX interface and GMII/RGMII to reach the outside world. Incoming packets travel through the GMII/RGMII and AXI4-Stream RX interface before reaching the FPGA's internal world. This two-way flow management empowers FPGAs to actively participate in network communication.

Figure 1: Block Diagram

IP Specification

Ethernet MAC IP Core offers flexibility for network integration. It supports both GMII and space-saving RGMII interfaces, catering to different board space constraints. Users may tailor data buffering by including or omitting a FIFO and configuring its depth. It adapts to diverse network environments with support for 10Mbps, 100Mbps, and 1Gbps speeds.

Figure 2: Top Module

Standards

The AXI4-Stream Master and Slave interfaces are compliant with the AMBA® AXI Protocol Specification.

IP Support Details

The Table 1 gives the support details for Ethernet MAC.

Co	mpliance	IP Resources				Tool Flow		
Device	Interface	Source Files Constraint File Testbench			Simulation Model	Analyze and Elaboration	Simulation	Synthesis
VIRGO	AXI4-Stream	Verilog	-	Cocotb	-	Raptor	Raptor	Raptor

Table 1: Support Details

Resource Utilization

The parameters for computing the maximum and the minimum resource utilization are given in Table 2. Other parameters are kept at their default values.

Tool	Raptor Design Suite					
FPGA Device	VIRGO					
	Configuration	Resource Utilization				
Minimum	Options	Configuration	Resources	Utilized		
Resource		3				
	INTERFACE	GMII	BRAMS	0		
	FIFO	False	LUTS	400		
	DATA_RATE	10Mbps	REGISTERS	224		
Maximum	Options	Configuration	Resources	Utilized		
Resource			11000011000			
	INTERFACE	RGMII	BRAMS	3		
	FIFO	True	LUTS	870		
	DATA_RATE	1000Mbps	REGISTERS	545		
	FIFO_DEPTH	4096	-	-		

Table 2: Resource Utilization

Ports

Table 3 lists the top interface ports of the Ethernet MAC.

Signal Name	Width	I/O	Description		
	Clock/Reset				
gtx_clk_125MHz	1	I	125MHz Clock signal for the GTX transceiver		
gtx_clk_12_5MHz	1	I	12.5MHz Clock signal for the GTX transceiver		
gtx_clk_1_25MHz	1	I	1.25MHz Clock signal for the GTX transceiver		
gtx_clk90	1	I	90-degree clock for data transmission in RGMII		
gtx_rst	1	I	Reset signal for the GTX transceiver		
rx_clk	1	I/O	Clock signal for receiving data		
rx_rst	1	I/O	Reset signal for receiving data		
tx_clk	1	I/O	Clock signal for transmitting data		
tx_rst	1	I/O	Reset signal for transmitting data		
		Tra	nsmitter AXI4-Stream		
tx_axis_tdata	8	I	Parallel data to be transmitted		
tx_axis_tkeep	1	I	Signals which bytes within tx_axis_tdata are valid		
tx_axis_tvalid	1	I	Indicates the presence of valid data in tx_axis_tdata		
tx_axis_tready	1	0	Receiver's readiness to accept data on tx_axis_tdata		
tx_axis_tlast	1	I	Indicates the last data packet in a transmission		
tx_axis_tuser	1	I	Optional user-defined signal for additional information		
		R	eceiver AXI4-Stream		
rx_axis_tdata	8	0	Received parallel data		
rx_axis_tkeep	1	0	Signals which bytes within rx_axis_tdata are valid		
rx_axis_tvalid	1	0	Indicates the presence of valid data in rx_axis_tdata		
rx_axis_tready	1	I	MAC's readiness to accept data on rx_axis_tdata		
rx_axis_tlast	1	0	Indicates the last data packet in a received frame		
rx_axis_tuser			Optional user-defined signal for additional information		
GMII					
gmii_rx_clk	1	I	Clock signal for receiving data		
gmii_rxd	8	I	Eight data bits received from the PHY		
gmii_rx_dv	1	I	Indicates the validity of received data		
gmii_rx_er	1	I	Indicates an error condition during data reception		
mii_tx_clk	1	I	Clock signal for transmitting data		
gmii_tx_clk	1	0	Clock signal for transmitting data		
gmii_txd	8	0	Eight data bits to be transmitted to the PHY		
gmii_tx_en	1	0	Enables the transmission of data		
gmii_tx_er	1	0	Indicates an error condition during data transmission		
	•		RGMII		
rgmii_rx_clk	1	I	Clock signal for receiving data		
rgmii_rxd	4	l	Four data bits received from the PHY		
rgmii_rx_ctl	1	I	Control signals for receiving data		
rgmii_tx_clk	1	0	Clock signal for transmitting data		

Signal Name	Width	I/O	Description			
rgmii_txd	4	0	Four data bits to be transmitted to the PHY			
rgmii_tx_ctl	1	0	Control signals for transmitting data			
Status						
tx_error_underflow	1	0	Error due to data starvation			
tx_fifo_overflow	1	0	Indicates the transmit FIFO is full			
tx_fifo_bad_frame	1	0	Indicates error in transmitted frame			
tx_fifo_good_frame	1	0	Indicates a frame was transmitted without errors			
rx_fifo_overflow	1	0	Indicates FIFO is full			
rx_fifo_bad_frame	1	0	Indicates error in a received frame			
rx_fifo_good_frame	1	0	Indicates a frame was received without errors			
rx_error_bad_frame	1	0	Malformed frame received error			
rx_error_bad_fcs	1	0	Data corruption error during transmission			
speed	2	0	Speed of the Ethernet connection			
Configuration						
cfg_ifg	8	I	Time interval between transmitted Ethernet frames			
cfg_tx_enable	1	I	Enable for transmission of Ethernet frames			
cfg_rx_enable	1	I	Enable for reception of Ethernet frames			

Table 3: Port List

Parameters

Table 4 lists the parameters of the Ethernet MAC.

Parameter	Values	Default Value	Description
INTERFACE	GMII, RGMII	GMII	Physical Interface of Ethernet
DATA_RATE	10Mbps, 100Mbps, 1000Mbps	10Mbps	Speed of Ethernet
FIFO	True/ False	False	Ethernet MAC with/without FIFO
FIFO_DEPTH	64, 128, 256, 512, 1024, 2048, 4096	4096	Depth of FIFO for data buffering

Table 4: Parameters

Design Flow

IP Customization and Generation

Ethernet MAC IP core is a part of the Raptor Design Suite Software. Customized IP can be generated from the Raptor's IP configuration window as shown in figure 3.

Figure 3: IP List

Parameters Customization

From the IP configuration window, the parameters of the Ethernet MAC can be configured and it's features can be enabled for generating a customized IP core that suits the user application requirements. All parameters are shown in Figure 4. The module name specifies the name of both the Verilog file and the top-level IP name that will be generated based on above configured parameters.

Figure 4: IP Configuration

Testbench

Ethernet MAC IP Core is provided with a testbench which is based upon Cocotb verification environment. This test injects ethernet packets via the GMII interface. The core receives and verifies the data integrity using Frame Check Sequence (FCS). Then this data will be transmitted over RX AXI4-Stream interface. The core receives the Ethernet packets through TX AXI4-Stream interface and verifies the data integrity using FCS. Then this valid data will be routed to TX GMII physical interface. In this test, sent data and received data is compared to verify the overall functionality of the IP. The test status is shown in Figure 5.

**********	******	*******	*******	******
** TEST	STATUS	SIM TIME (ns)	REAL TIME (s)	RATIO (ns/s) **
**********	*******	******	******	*******
** test top.run test rx 001	PASS	98252.00	8.85	11107.37 **
** test_top.run_test_rx_002	PASS	838220.00	52.32	16019.58 **
** test_top.run_test_rx_003	PASS	8377400.00	477.12	17558.42 **
** test_top.run_test_tx_001	PASS	88536.00	7.77	11396.35 **
** test_top.run_test_tx_002	PASS	875992.00	53.09	16500.62 **
** test_top.run_test_tx_003	PASS	8754672.00	495.02	17685.35 **
**********	******	******	******	******
** TESTS=6 PASS=6 FAIL=0 SKIP=0)	19033072.01	1094.64	17387.59 **
***********	******	******	******	******

Figure 5: Simulation Results

Simulate IP

For simulation, right click on generated IP Instance and then click "Simulate IP" as shown in Figure 6.

Figure 6: Simulate IP

Waveform

To view waveform, right click on generated IP Instance and then click "View waveform" as shown in Figure 7.

Figure 7: View Waveform

Revision History

Date	Version	Revisions
June 14, 2024	0.1	Initial version Ethernet MAC User Guide