CS & IT BENGING

Computer Network

IPv4 Header

By - Abhishek Sir

Lecture No. - 01

Recap of Previous Lecture

ABOUT ME

Hello, I'm Abhishek

- GATE CS AIR 96
- M.Tech (CS) IIT Kharagpur
- 12 years of GATE CS teaching experience

Telegram Link: https://t.me/abhisheksirCS_PW

Topic: Computer Networks

Syllabus:

- → Concept of layering : OSI and TCP/IP Protocol Stacks;
- → Data link layer : Framing, Error detection, Medium Access Control, Flow (ox)800/ Ethernet bridging;

CRC (SMA/C)

Topic: Network Layer

- → Internet Protocol (IP)
- → Two versions:
 - 1. IPv4
 - 2. IPv6

Topic: IPv4 Packet Header

IPv4 Header	Payload
IPV	f Datagram Packet

Topic: IPv4 Packet Header

_			8 15	No. Control	31
IPV4 (VER	HLEN	Type of Services	Total Length	
Headory)	Ido	entific	cation No.	EFF Fragmentation Offset	
5 to 15 word	Time-7	to-Live	Protocol Type	Header Checksum	
12 WORD	Si	ource	IP Addres.	s (32 bits)	
	90	Destin	ation IP/	Iddress (32 bits)	
		Optio	anal Header	(options)	
7					_

layload

BASE Header (5 WO R) (R) (Byle)

0 to

Topic: IPv4 Packet Header

- → Header represented in words [Word of 32 bits (4 bytes)]
- → Minimum (Base) Header Size = 5 Words (20 Bytes)
 [Word size = 4 bytes]
- → Variable Size IPv4 Header [due to options (optional header)]

Topic: Version

→ First four bits of IP datagram

- → "0100" : for IPv4
- → "0110" : for IPv6

Topic: Header Length

- → Header Length [HLEN]
- → <u>HLEN field</u> is 4 bits long
- → Size of header in words
 [Word of 4 bytes]
- → Header Length = (HLEN) Words = (HLEN * 4) Bytes

Topic: Header Length

→ Minimum Header Size = 5 Words (20 Bytes)

→ Maximum Header Size = 15 Words (60 Bytes)

Frange

Oto (24-1)

D. None of the above

Topic: Header Length

Header Size = 5 Words (20 Bytes)

Header Size = 6 Words (24 Bytes)

Header Size = $\frac{7 \text{ Words}}{(28 \text{ Bytes})}$

Header Size = 8 Words (32 Bytes)

Header Size = 9 Words (36 Bytes)

Header Size = 10 Words (40 Bytes)

Header Size = 11 Words (44 Bytes)

Header Size = 12 Words (48 Bytes)

Header Size = 13 Words (52 Bytes)

Header Size = 14 Words (56 Bytes)

Header Size = 15 Words (60 Bytes)

- A. 01000100
- B 01010101
 - C. 01000101
- D. <u>01000110</u> VERHLEN

#Q. In IPv4 packet starting bits are "01001010", calculate header size (in bytes)?

Topic: Header Length

Size of options (in IPv4 packet header)

- = [HLEN 5] words
- = [HLEN 5] * 4 bytes

Maximum Size of options (in IPv4 packet header)

- = [15 5] words
- = 10 words = 10 * 4 bytes
- = 40 bytes

HLEN=
$$(1100)_2 = 12 \text{ Words}$$

Options $5i3e = (HLEN-5) \text{ Words}$
 $= (12-5) \text{ Words}$
 $= 7 \text{ Words}$
 $= 7 \text{ 4.4 bytes}$
 $= 28 \text{ bytes}$ Ans=28

Topic: Type of Services

- → Type of Services [ToS]
- → ToS field is 8 bits long [Second byte of IPv4 packet header]
- → For QoS [Quality of Services]

- → Total Length field is 16 bits long
- → <u>Define size</u> of <u>IPv4 packet</u> (datagram) in bytes [including header]
- \rightarrow Maximum IPv4 datagram size = $[2^{16} 1]$ bytes

20 < Total length

Size of Payload = [Total Length - (HLEN * 4)] bytes

Total length = 250 bytes HLEN = 10 Words

payload Size = [Total length-(HLEN*4)] bytes = [250-(10*4)] bytes

= 210 bytes

Ans=210

- → Maximum Transmission Unit [MTU]
- → Measurement in bytes
- → Size of largest PDU (datagram) that can be communicated over a network

IP Datagram Size < MTU Size

Source Dest. Dest Sowre Rowton Host Host Router Destination Source network network

→ Source host creates IPv4 datagram as per source network MTU

→ At intermediate IPv4 router, for an received IPv4 datagram

if datagram length is greater then next network (link) MTU size

then need to do fragmentation according to MTU

Topic: Identification Number

- → 16 bits long
- Range -> 0 to (2¹⁶-1)
- → Assigned by source host only [Assigned unique identification number to each transport layer Segment]
- → Fragments of same segment, must have same identification number [does not change during routing]

Topic: Identification Number

Transport Layer PDU (Segment)

SDU for Network Layer

Topic: Identification Number

2 mins Summary

Topic

IPv4 Header

1) Header Size (3) Total Length (3) MTI)

Et Id no.

THANK - YOU