Breast Cancer Prediction Documentation

Overview

The Breast Cancer Prediction project aims to develop a predictive model for classifying breast cancer cases as benign or malignant. By leveraging historical data and employing machine learning techniques, the project seeks to provide a reliable tool for assisting medical professionals in diagnosing breast cancer.

Installation

To run this project, you'll need Python and the following dependencies:

- numpy
- pandas
- matplotlib
- scikit-learn
- tensorflow

Project Structure

The project is structured as follows:

1. Data Loading and Preprocessing:

- The breast cancer dataset is loaded from scikit-learn, converted to a structured DataFrame, and relevant statistics are summarized.
- Missing values are checked, and the distribution of the target variable is examined.

2. Data Segregation:

- The dataset is divided into features (X) and labels (y).
- The data is split into training and testing sets using the **train_test_split** function.

3. Feature Scaling:

• Standardization is applied to the features using **StandardScaler** to ensure that all features contribute equally to the model.

4. Neural Network Implementation:

- A simple neural network is implemented using TensorFlow and Keras.
- The architecture includes one input layer, one hidden layer with ReLU activation, and one output layer with sigmoid activation for binary classification.

5. Model Compilation and Training:

• The neural network model is compiled with the 'adam' optimizer and 'binary_crossentropy' loss.

• The model is trained using the training set, and accuracy and loss metrics are monitored.

6. Model Evaluation:

The trained model is evaluated on the test set, and accuracy and loss metrics are reported.

7. Visualization:

Training and validation accuracy, as well as training and validation loss, are visualized using matplotlib.

8. Interactive Prediction System:

• An interactive system is implemented to take user input for new data and make predictions using the trained model.

Usage

To run the Breast Cancer Prediction project, follow these steps:

1. Dependencies:

• Ensure that you have the required dependencies installed, including NumPy, Pandas, Matplotlib, scikit-learn, and TensorFlow.

2. Run the Code:

• Execute the provided Python script containing the project code.

3. Interactive Prediction:

 After model training, the system prompts for user input to predict the class of a tumor based on the input features.

Results

Upon completion, the project provides insights into the predictive performance of the model, visualizations of the training process, and an interactive system for real-time predictions.