вариант	ф. номер	група	поток	курс	специалност
N.I.1					
Име:		4			and the second

Логическо програмиране, летен семестър 2019-2020 уч. год. 12 септември 2020 год.

 ${f 3}$ ад. 1. Нека S е множество от дизюнкти, а D е дизюнкт.

- а) Да се докаже, че $D \in S^* \longleftrightarrow S \stackrel{r}{\vdash} D$.
- б) Нека $S \stackrel{r}{\vdash} D$. Докажете, че има такова крайно подмножество S_0 на S, че $S_0 \stackrel{r}{\vdash} D$.

 ${f 3}$ ад. ${f 2}$. Нека ${f S}$ е множество от съждителни дизюнкти.

- а) Да се докаже, че ако S е затворено относно правилото за резолюцията и не съдържа празния дизюнкт, то S има булев модел.
- б) Да се докаже, че ако S е неизпълнимо, то празният дизюнкт е резолютивно изводим от S.
- Зад. 3. а) Формулирайте правилото за едноелементния дизюнкт и докажете, че е инвариантно относно изпълнимостта.
- б) Дефинирайте специален резолютивен извод на \blacksquare от S. Нека S е хорнова програма, N е множество от цели и $S \cup N$ е неизпълнимо. Да се докаже, че има специален резолютивен извод на \blacksquare от $S \cup N$.

вариант	ф. номер	група	поток	курс	специалност
N.I.2					
Име:		,			

Логическо програмиране, летен семестър 2019-2020 уч. год. 12 септември 2020 год.

- **Зад. 1.** а) Нека S е неизпълнимо множество от съждителни дизюнкти. Да се докаже, че има крайно подмножество на S, което е също неизпълнимо.
- б) Нека Σ е множество от съждителни формули. Да се докаже, че ако всяко крайно подмножество на Σ е изпълнимо, то и Σ е изпълнимо.
- **Зад. 2.** Нека A е фамилия от множества.
- а) Да се докаже, че A има трансверзала точно тогава, когато всички елементи на A са непразни множества.
- б) Да се докаже, че ако A има трансверзала и всички елементи на A са крайни множества, то A има минимална трансверзала. Вярно ли е твърдението, ако елементите на A са непразни и точно един от тях е безкраен?
- **Зад. 3.** а) Нека S е множество от съждителни хорнови дизюнкти и M е непразно множество от модели на S. Да се докаже, че сечението на M е също модел на S.
- б) Вярно ли е, че всяка хорнова програма има най-малък модел?

вариант	ф. номер	група	поток	курс	специалност
O.I.1			4		
Име:					

Логическо програмиране, предишни семестри 12 септември 2020 год.

Зад. 1. а) Нека φ и ψ са съждителни формули. Какво означава $\psi \models \varphi$? Да се докаже, че ако ψ не е противоречие, φ не е тавтология и $\psi \models \varphi$, то има поне една съждителна променлива, която участва както в ψ , така и във φ .

б) Да се опише алгоритъм, който по дадена съждителна форму-

ла φ разпознава дали тя е противоречие.

Зад. 2. Нека M е фамилия от множества.

а) Да се докаже, че M има трансверзала точно тогава, когато всички елементи на M са непразни множества.

б) Да се докаже, че ако M е изброима, има трансверзала и всички елементи на M са крайни множества, то M има минимална

трансверзала.

- в) Нека A е безкрайно множество и M е изброима фамилия от непразни крайни множества. Вярно ли е, че $M \cup \{A\}$ има минимална трансверзала?
- 3ад. 3. Нека S е множество от съждителни дизюнкти.
- а) Да се докаже, че ако S е затворено относно правилото за резолюцията и не съдържа празния дизюнкт, то S има булев модел.
- б) Да се докаже, че ако S е неизпълнимо, то празният дизюнкт е резолютивно изводим от S.

вариант	ф. номер	група	поток	курс	специалност
O.I.2					
Име:	and the second s				

Логическо програмиране, предишни семестри 12 септември 2020 год.

Зад. 1. а) Нека $\Gamma \cup \{\psi\}$ е множество от съждителни формули. Какво означава $\Gamma \models \psi$? Да се докаже, че за всяка съждителна формула φ е в сила $\Gamma \models \varphi \Rightarrow \psi$ точно тогава, когато $\Gamma, \varphi \models \psi$.

- б) Да се опише алгоритъм, който по дадено крайно множество от съждителни формули Г разпознава дали то е изпълнимо.
- в) Да се докаже, че следните две условия са еквивалентни.
- (1) всеки път, когато Δ е множество от съждителни формули, е в сила: Δ е изпълнимо точно тогава, когато всяко крайно подмножество на Δ е изпълнимо;
- (2) всеки път, когато $\Gamma \cup \{\psi\}$ е множество от съждителни формули, е в сила: $\Gamma \models \psi$ точно тогава, когато има такова крайно подмножество Γ_0 на Γ , че $\Gamma_0 \models \psi$.
- **Зад. 2.** Нека M е фамилия от множества.
- а) Да се докаже, че от съществуването на трансверзала за M не следва съществуването на минимална трансверзала за M.
- б) Нека Y е трансверзала за M. Да се докаже, че Y е минимална трансверзала за M точно тогава, когато

 $(\forall y \in Y)(\exists A \in M)(A \cap Y = \{y\}).$

- 3ад. 3. Нека S е множество от съждителни дизюнкти.
- а) Да се докаже, че ако празният дизюнкт е резолютивно изводим от S, то S е неизпълнимо.
- б) Да се докаже, че ако S е неизпълнимо, то има крайно подмножество на S, което е неизпълнимо.

вариант	ф. номер	група	поток	курс	специалност
Ш.1		, V.			
Име:	·				

Теоретичен изпит по логическо програмиране (2019/2020) 12 IX 2020 г.

- Зад. 1. Формулирайте дефиниции на терм и атомарна формула
- Зад. 2. Формулата φ е конгруентна на $\exists y \, p(x, f(y))$. Формулата ψ се получава от $\forall x \, (\forall x \, r(x) \lor \exists y \, p(x, f(y)) \Rightarrow p(x, y))$ като заменим подформулата $\exists y \, p(x, f(y))$ с φ . Докажете, че z не е свободна променлива на ψ .
- Зад. 3. Докажете, че за всяко множество Γ от формули ако $\Gamma \vDash \varphi$ и $\Gamma \vDash \psi$, то $\Gamma \vDash \varphi \& \psi$.
- Зад. 4. Формулирайте теореми за коректност и пълнота на обратния извод с ограничения.
- Зад. 5. Универсумът на структурата M се състои от всички термове без променливи. Известно е, че стойността на терма f(x) в M при оценка v е равна на v(x). Да се докаже, че M не е ербранова структура.
- **Зад. 6.** Да се докаже, че ако празният дизюнкт е тъждествено верен в структурата \mathbf{M} , то универсумът на \mathbf{M} съдържа само един елемент.

Може да използвате без доказателство всички твърдения от лекциите или записките, но трябва да посочите кои твърдения използвате.

вариант	ф. номер	група	поток	курс	специалност
N.II.1					1
Име:					

Логическо програмиране, летен семестър на 2019'2020 уч. год. 12 септември 2020 год.

Зад. 4. Нека \mathcal{L} е език на предикатното смятане, а \mathcal{L}_1 е разширението на \mathcal{L} с две нови индивидни константи c и d. Нека φ е формула от \mathcal{L} с $\text{Var}^{\text{free}}[\varphi] = \{x,y\}$, където x и y са различни индивидни променливи. Нека \mathcal{A} е структура за \mathcal{L} . Докажете, че \mathcal{A} е модел за φ точно тогава, когато $\varphi[x/c][y/d]$ е вярна във всяко обогатяване на \mathcal{A} до структура за \mathcal{L}_1 .

 ${\bf Зад.}\ {\bf 5.}\$ Нека ${\cal L}$ е предикатен език от първи ред, а ${\cal A}$ и ${\cal B}$ са структури за ${\cal L}.$

а) Какво означава h е изоморфизъм на \mathcal{A} върху \mathcal{B} ?

б) Нека h е изоморфизъм на \mathcal{A} върху \mathcal{B} . Нека τ е терм и $\tau[x_1, \ldots, x_n]$. Да се докаже, че за произволни a_1, \ldots, a_n от универсума на \mathcal{A} е в сила равенството $h(\tau^{\mathcal{A}}[a_1, \ldots, a_n]) = \tau^{\mathcal{B}}[h(a_1), \ldots, h(a_n)]$.

в) Нека h е изоморфизъм на \mathcal{A} върху \mathcal{B} . Нека φ е затворена формула от \mathcal{L} . Да се докаже, че $\mathcal{A} \models \varphi$ точно тогава, когато $\mathcal{B} \models \varphi$.

Зад. 6. Нека \mathcal{L} е език на предикатното смятане без формално равенство и $\operatorname{Const}_{\mathcal{L}} \neq \emptyset$. Нека Δ е множество от затворени безкванторни формули от \mathcal{L} . Докажете, че следните са еквивалентни: (1) Δ има предикатен модел; (2) Δ има ербранов модел; (3) Δ е булево изпълнимо.

вариант	ф. номер	група	поток	курс	специалност
N.II.2				. المحمد المحمد	
Име:					

Логическо програмиране, летен семестър на 2019'2020 уч. год. 12 септември 2020 год.

- Зад. 4. Нека \mathcal{L} е език на предикатното смятане, а \mathcal{L}_1 е разширението на \mathcal{L} с две нови индивидни константи c и d. Нека φ е формула от \mathcal{L} с $\mathrm{Var}^{\mathrm{free}}[\varphi] = \{x,y\}$, където x и y са различни индивидни променливи. Нека \mathcal{A} е структура за \mathcal{L} . Докажете, че \mathcal{A} е модел за φ точно тогава, когато $\varphi[x/c][y/d]$ е вярна във всяко обогатяване на \mathcal{A} до структура за \mathcal{L}_1 .
- Зад. 5. Нека \mathcal{L} е език на предикатното смятане без формално равенство. Нека Δ е множество от безкванторни формули от \mathcal{L} . Докажете, че следните са еквивалентни: (1) Δ е предикатно изпълнимо; (2) Δ е предикатно изпълнимо в свободна ербранова структура; (3) Δ е булево изпълнимо.
- Зад. 6. Нека \mathcal{L} е език на предикатното смятане с поне една индивидна константа и \mathcal{A} е структура за \mathcal{L} . Нека Γ е множество от затворени универсални формули от \mathcal{L} .
- а) Да се докаже, че ако $\mathcal{A} \models \Gamma$, то $\mathcal{A} \models \mathrm{CSI}(\Gamma)$.
- б) Нека \mathcal{B} е такава структура за \mathcal{L} , че за всеки елемент b от универсума на \mathcal{B} има такъв затворен терм τ_b от \mathcal{L} , че $\tau_b^{\mathcal{B}} = b$. Да се докаже, че ако $\mathcal{B} \models \mathrm{CSI}(\Gamma)$, то $\mathcal{B} \models \Gamma$.

вариант	ф. номер	група	поток	курс	специалност
O.II.1					
Име:					

Логическо програмиране, предишни семестри 12 септември 2020 год.

Зад. 4. Нека \mathcal{L} е език на предикатното смятане от първи ред и φ е затворена формула в пренексна нормална форма.

а) Какво означава формулата ψ е получена от формулата φ при едностъпкова скулемизация?

б) Нека формулата ψ е получена от формулата φ при едностъпкова скулемизация. Да се докаже, че ако φ е вярна в структурата \mathcal{A} , то има обогатяване на структурата \mathcal{A} , в което ψ е вярна. Вярно ли е, че ψ и φ са логически еквивалентни?

 ${f 3ag.}$ 5. Нека ${\cal L}$ е предикатен език от първи ред, а ${\cal A}$ и ${\cal B}$ са структури за ${\cal L}$.

а) Какво означава h е изоморфизъм на A върху B?

б) Нека h е изоморфизъм на \mathcal{A} върху \mathcal{B} . Нека τ е терм и $\tau[x_1,\ldots,x_n]$. Да се докаже, че за произволни a_1,\ldots,a_n от универсума на \mathcal{A} е в сила равенството

 $h(\tau^{\mathcal{A}}\llbracket a_1,\ldots,a_n\rrbracket)=\tau^{\mathcal{B}}\llbracket h(a_1),\ldots,h(a_n)\rrbracket.$

в) Нека h е изоморфизъм на \mathcal{A} върху \mathcal{B} . Нека φ е затворена формула от \mathcal{L} . Да се докаже, че $\mathcal{A} \models \varphi$ точно тогава, когато $\mathcal{B} \models \varphi$.

Зад. 6. Нека \mathcal{L} е език на предикатното смятане без формално равенство, имащ поне една индивидна константа.

а) Дефинирайте понятието ербранова структура за \mathcal{L} .

б) Нека Δ е множество от затворени безкванторни формули от \mathcal{L} . Докажете, че Δ има модел точно тогава, когато Δ е булево изпълнимо.

вариант	ф. номер	група	поток	курс	специалност
O.II.2					
Име:				2	100

Логическо програмиране, предишни семестри 12 септември 2020 год.

 ${f Зад.}$ 4. Нека ${\cal L}$ е език на предикатното смятане от първи ред с равенство.

а) Какво означава формулата $\forall y [\varphi[x/y]]$ е вариант на формулата $\forall x \varphi$?

б) Докажете, че ако формулата $\forall y [\varphi[x/y]]$ е вариант на формулата $\forall x \varphi$, то те са логически еквивалентни.

Зад. 5. Нека \mathcal{L} е език на предикатното смятане от първи ред. Нека φ е затворена формула от \mathcal{L} , която е в пренексна нормална форма.

- а) Дефинирайте едностъпкова скулемизация φ_S на φ .
- б) Да се докаже, че $\varphi_S \models \varphi$.
- в) Вярно ли е, че φ и φ_S са логически еквивалентни?

Зад. 6. Нека \mathcal{L} е език на предикатното смятане с поне една индивидна константа и \mathcal{A} е структура за \mathcal{L} . Нека Γ е множество от затворени универсални формули от \mathcal{L} .

а) Да се докаже, че ако $\mathcal{A} \models \Gamma$, то $\mathcal{A} \models \mathrm{CSI}(\Gamma)$.

б) Нека \mathcal{B} е такава структура за \mathcal{L} , че за всеки елемент b от универсума на \mathcal{B} има такъв затворен терм τ_b от \mathcal{L} , че $\tau_b^{\mathcal{B}} = b$. Да се докаже, че ако $\mathcal{B} \models \mathrm{CSI}(\Gamma)$, то $\mathcal{B} \models \Gamma$.

вариант	ф. номер	група	поток	курс	специалност
W .1					
Име:			-4		

Теоретичен изпит по логическо програмиране (2019/2020) 12 IX 2020 г.

- Зад. 1. Да се докаже, че стойността на кой да е терм τ в ербранова структура **H** при оценка v е равна на резултата от прилагането на v като субституция към терма τ . Каква е стойността на τ в **H**, когато τ не съдържа променливи?
- Зад. 2. Да се докаже, че непосредствената резолвента на дизюнкти, които са верни в структура М, също е вярна в М.
- Зад. 3. Формулирайте и докажете лемата за преименуване на свободните променливи.

В доказателствата може да използвате наготово всички твърдения (не помощни леми), които на лекциите или в записките са били доказани **преди** твърденията, които тук се иска да бъдат доказани.