

Rec'd PCT/PTQ 3 1 OCT 2005 10/534538

272331US0PCT.ST25 SEQUENCE LISTING XI, YONGZHI <110> XI, CAIXIA A FULL-LENGTH POLYNUCLEOTIDE CODING CHICKEN TYPE II COLLAGEN AND <120> THE USE OF IT <130> 272331US0PCT <140> us 10/534,538 <141> 2005-05-12 PCT/CN03/00967

<150> 2003-11-14 <151>

<150> CN 100039 2002-11-14 <151>

<160> 29

PatentIn version 3.3 <170>

<210> 5495 <211> <212> DNA <213> Genomic DNA

<400> ccaggcaagg atggcgcacg tgtaagtggg gcacggccat ggggtgggct ggcaaaggat 60 120 gctcacagag accacatcct catctctctc tctctcccat agggtctgac gggtcccatt 180 ggtccccctg gccctgctgg ccccaacggt gagaaggtga gagcagcatc acagcacccc acattacgcc ccatgggatg accccagtgc ctccacctct ccatcctttc ttttccaggg 240 300 tgaatccggc cctcctggtc catctggtgc tgccggtgcc cgtggtgccc ccgtaagcac aatgtctgca gcccctgggt gcccctaacc ttcaccctaa acccccatca acccctttat 360 420 caacctcccc catctctcc cattagggtg agcgtggcga gcccggtgcc cccggtcctg ctggatttgc tggccccccg gtgagtgttt caccccgaag cccccatcgc acacccacgt 480 cttcacccca catcctcacc ccactcatgg tggctgctgt tcccatcagg gcgccgatgg 540 600 acaacccggt gccaaaggcg agcagggaga gcccgggcag aagggtgacg cgggcgctcc 660 tggtccccaa ggtccctccg gcgctcctgg cccccaggta caacaccaaa tggggcaaac 720 ccccaaattt gggacgtcac ggccccaatg caggcacact gcagctcccg ttcggatttg taacctgttt ttctctctt cctagggtcc aaccggtgtc actggtccca aaggagctcg 780 840 tggggctcag ggtcccctg tgagtaccgg ggggtgggct gcagggtggg gaaggagcgg ccgtggggct gagctgtgtc tgagccgttt ctcctctcc tctctcctct gactctgtga 900 960 ttccctcccc agggagccac gggattcccc ggagctgccg gccgtgtggg accgcccggc cctaatgtga gtctgggggc gttctgggat tgcccccacc tgggggtttgg gcgctgcttc 1020 cccgcgctgc gtgttggagg gggcactgtt tccctgcaca gacacgtggg gttttcctcc 1080 ttggctctct gatgttggct tttggggcca ttccaatggt agagaaggac ttttctaagg 1140 1200 gcaagagctc cccaagaagc agcagtggga tgcgggtgat aaagatggaa tggctgcctc Page 1

taatttacac	caacoctoct	ttccttccct	ttannntaac	ccaggccccc	cconacccc	1260
						1320
				gacgccggcc		1380
				ggcgagaagg		
				ctccgtgcac		1440
				ccctgcaggg		1500
				gtgggtctcc		1560
tggtgagaga	ggcttccccg	gactgccggg	gccatcggtg	agtgggtcgc	tctcatttgg	1620
gtgcactgaa	tcctatgggg	tgcagagatg	tgggggccgc	gatgctctgg	agcccatctc	1680
aggggtcgcc	agccctttgg	tgcagcccgg	ggacaccgtt	tgcaggtggg	ttggggtttt	1740
gcggagctcc	tttttcccca	ccaggagccg	ctggtgcaag	gcttaaagcc	ggggcaggaa	1800
aaccatcagt	ggttatttgt	tgcagagggg	tctgggagcc	ataaaaaacg	gggaaggggc	1860
agcgctgggg	tctctcccac	tcatgcacct	ctttcccatc	tttcagggag	aacctggaaa	1920
gcaaggagcg	cctggctctg	cgggtgaccg	aggtccccc	ggccccgtgg	gccccctgg	1980
gctgacaggt	cctgctggag	aacccgggcg	cgaggtaagc	aaaaccccac	agcatcacag	2040
cggcaccggg	catcaccaac	cccatggcac	agctcagctc	ccagagctcc	ccggtgtctt	2100
tttctccagc	actgaaagga	gactttgcac	aaatcctgct	ccacccgggt	tgtaacatcc	2160
ccttttcctc	ctagggcaac	cctggtgctg	acggtccccc	aggcagggat	ggcgcagctg	2220
gcgtgaaggt	gagcttgcca	tgcgctcccc	attggcactc	gccatccccg	tgccaaaagc	2280
tgtggggttt	tgcacagatc	tgacctctct	gttgtctgct	cgcagggtga	tcgtggtgag	2340
accggccctg	tgggtgctcc	cggtgctcct	ggagcccctg	gcgcccccgg	ccctgttggt	2400
				ctggcacaag		2460
				tcaaggtttg		2520
				gctgctgatt		2580
				ccccgaaatc		2640
				gtcctttttt		2700
			•	gctcgaggaa		2760
				gggtcctgcg		2820
				ttagggtccc		2880
				gctgaagggc		2940
				gtttggggag		3000
				caccgaggct		3060
				cctcagggcc		3120
				gtaagtcctg		3180
						3240
rrggggrggt	yyaayyyyaa	gyaycaycay	Page 2	gggcacctgc ?	agectetget	3210
		•				

cgctcctgtc	tgctcatcag	caccatcgcc	ttccctgccc	tgaggccccg	caatgccttc	3300
acctccccgt	tttggggctc	tctcctaggg	tcccctggt	cccgtcggcc	cctctggcaa	3360
agacggctct	aacggcatgc	ccggccccat	cggtcctccc	ggtccccgtg	gacggagtgg	3420
tgaacccggc	cctgcggtga	gtcctggtga	ggggaggcag	ggaatggggt	ccagctcgca	3480
gagcagccca	tcagcatcac	ttctttctcc	catagggtcc	tcctggaaac	cccggtcctc	3540
ccggtcctcc	tggcccccc	ggcaccggca	tcgacatgtc	tgcttttgct	ggactgggtc	3600
agacggagaa	gggccccgac	cccatccgct	acatgggggc	agacgaggcg	gccggagggc	3660
tgcggcagca	cgacgtggag	gtggacgcca	ccctcaaatc	cctcaacaat	cagattgaga	3720
gcatccgcag	ccccgagggc	tccaagaaga	accctgccag	gacctgccgc	gacatcaaac	.3780
tctgccatcc	cgagtggaag	agcggtaaga	gctccgcgtg	cctctcccgt	cctccctct	3840
tcccacagg	agagcatccc	cagcgtcctc	gcaccgacct	gcggtcaggt	tggatgttag	3900
gaaagattcc	ttgtccaaaa	gagctctggg	cgctgggctg	ggctgcccgg	ggaggtgggg	3960
cagtcgctgt	ccccataggt	gttggggaac	tgtggagatg	tggcacttgg	gagcgtggct	4020
tagtggggat	gaggcagcag	ttggaccaat	cttcgaggtc	ttctccagtc	ttaatggctc	4080
tgtgcttctg	tcggtgtgca	tggtggtgat	gggtggccat	ttagacttgg	cgatctttga	4140
ggtcttttcc	gatcttaacg	actcctagac	ctccccaacc	ccatgaacgc	tgtttgtcct	4200
ccccctgca	ggagattact	ggattgaccc	gaaccagggc	tgcaccttgg	acgccatcaa	4260
agtattctgc	aacatggaga	caggcgagac	ctgcgtctac	ccgaccccca	gcagcatccc	4320
caggaagaac	tggtggacca	gcaagacgaa	agacaagaag	cacgtctggt	ttgcagagac	4380
catcaacggc	ggtttccacg	tgggtgtccc	ccgggtgtcc	ttggaaggat	cgatcccacc	4440
tgggatgtcc	ttcttgcggt	catgtggatg	ggttttaatg	aagttataga	gggtgattct	4500
gaaggtgtag	gtttgggtca	gttcagctcc	acaaatcaaa	gggaaaggat	gggatggagc	4560
aactgagctc	cctcggtttg	tttggcccag	aaaaggtgag	gatgagggga	ggcctcacgg	4620
ccctacagcc	ccttacggcc	ctacagcagc	gttaggaaaa	aagttctgcc	ccggagctgt	4680
gttgggcaca	gaacagccct	gtgatgccgg	agctcgggga	gcattgggac	aacgctctca	4740
gacattgggt	ttgggtcagg	tcctgggtaa	cgtgatgtgc	agggggcaac	cagcccatgg	4800
gtgggcttta	aggacccttc	caagccaacc	attccatggt	tctgtgatct	gtaaggacct	4860
ttccaatcca	aaccactctg	attttttct	cagccatttg	ggaacctgaa	gtacggaagt	4920
cctcccaaaa	agctcctgag	agtaaggtgg	tcataatgcc	cgcaggcttt	aactcctcac	4980
ctcttccctc	cagttcagct	acggcgatga	gaacctgtcc	cccaacaccg	ccagcatcca	5040
gatgaccttc	ctgcgcctcc	tgtccaccga	gggctcccag	aacgtcacct	accactgcaa	5100
gaacagcatc	gcctacatgg	acgaggagac	gggcaacctg	aagaaagcca	tcctcatcca	5160
gggatccaac	gacgtggaga	tcagagccga	gggcaacagc	aggttcacct	acagcgtctt	5220
ggaggacggc	tgcacggtag	gttgctgggc	gcctgcaaag Page 3	gaaaggtgca	gatggggagg	5280

gggaggctga	ggctgggggg	atgaggccgg	agcagctgac	agcatccctg	ccctccttcc	5340
ctcccagaa	acacactggc	aaatggggca	agacggtgat	cgagtaccgg	tcgcagaaga	5400
cctcgcgcct	gcccattgta	gatattgcac	ctatggacat	tggcggagcc	gatcaggagt	5460
ttggcgtgga	tattggccca	gtctgcttct	tgtaa			5495
<210> 2 <211> 4793 <212> DNA <213> CDNA					•	
<400> 2 atgcacggcc	gccgcccgcc	ccgctccgcc	gctctcctcc	tcctcctcct	ccttctcacg	60
gccgccgcaa	ccgcgcagga	ccgcgacctc	cgacaacctg	gccccaaggg	acagaaggga	120
				ctccaggacc		180
gcaggagagc	agggacagcg	aggggaccgt	ggcgagaagg	gggagaaggg	tgctcctggc	240
ccccgtggga	gggatggaga	acccggcacc	cctggaaacc	caggcccccc	cggtccccc	300
ggacctcctg	gccccccgg	acttggtgga	aactttgcgg	cgcagatggc	gggcggcttc	360
gatgagaagg	cgggtggagc	gcagatgggt	gtcatgcagg	gacccatggg	ccctatggga	420
ccccgcggcc	cccctggccc	cactggcgca	cctggtcccc	agggatttca	aggcaacccc	480
ggtgagcccg	gcgaacccgg	cgctgctggt	ccgatgggtc	cccggggacc	tccgggacca	540
cctgggaaac	ccggtgacga	tggtgagaca	ggcaaacccg	gcaaatctgg	tgaacgtggc	600
cccccggcc	cccagggcgc	tcgtggcttc	cctgggactc	ctggtctccc	cggagtgaag	660
ggccaccgag	gctaccccgg	tttggatggt	gccaaaggag	aggcgggggc	tcctggagcc	720
aagggtgaat	ctggttcacc	gggtgagaac	ggctccccg	gccccatggg	accccgtggg	780
ctgcccggag	agcgaggacg	tcccggcccc	tccggcgccg	ccggtgctcg	tggcaatgac	840
ggtctccctg	gccctgctgg	accccctgga	cccgtcggcc	ctgccggagc	ccccggcttc	900
cccggagccc	ccggttcaaa	gggtgaagcc	ggccccactg	gtgcacgggg	tcccgagggt	960
gcccaaggac	cccgcggcga	atccggcacc	cccggctctc	ccggccccgc	tggcgcaccc	1020
ggtaacccag	ggactgatgg	catccccggt	gccaagggct	cggcgggtgc	cccgggcatt	1080
gcaggcgctc	caggattccc	cggcccacgc	ggccccccg	gaccccaagg	tgccaccgga	1140
ccactgggac	ccaaaggaca	gacgggcgaa	cccggcatcg	caggcttcaa	gggcgagcaa	1200
ggaccgaagg	gcgagacggg	ccccgcagga	ccccaaggtg	ccccgggcc	ggctggtgag	1260
gaaggcaaga	gaggagctcg	tggtgaacct	ggtgccgccg	gccctgtggg	ccccccgga	1320
gaaaggggcg	ctcctggcaa	ccgtggattc	cccgggcagg	acgggctggc	cggacccaag	1380
ggtgctccag	gtgaacgcgg	ccccgctggt	ctcgccggtc	ccaaaggtgc	caccggtgac	1440
cccggacgtc	ccggagagcc	cgggctgccc	ggagcgaggg	gtctcaccgg	ccgccccggc	1500
gatgcgggac	ctcaaggcaa	agtcggccca	actggtgctc	ctggcgagga	tggccgcccc	1560
				4		

272331US0PCT.ST25 1620 ggccccccg gacctcaggg tgctcgtggg cagcctggtg tgatgggttt ccccggtccc 1680 aaaggcgcta atggtgagcc tggaaaagct ggagagaaag gactgcccgg cgccccaggg ctgcggggtc tgcctggcaa ggatggggag acgggagctg ccggcccccc tggacccgct 1740 1800 ggtcctgtgg gtgagagagg agagcaagga gcccccggtc cttccggctt ccagggactg 1860 cccggaccac caggtccccc tggggagagc ggcaaacccg gagaccaggg tgttcctgga 1920 gaagccggtg cccccggtct tgttggtccc agaggtgaac gtggattccc cggtgaacgc ggctctcccg gtgcccaagg gctgcagggt ccccgtgggc tccccggaac gcccggcact 1980 gacggaccca agggtgcaac cggtccagcc ggccccaacg gtgcccaggg tcccccaggg 2040 2100 ctgcagggaa tgcccggtga gagaggagca gctggcatcg ctggcctcaa gggtgaccgg 2160 ggagatgttg gtgagaaagg acctgaggga gctccaggca aggatggcgc acgtggtctg 2220 acgggtccca ttggtccccc tggccctgct ggccccaacg gtgagaaggg tgaatccggc 2280 cctcctggtc catctggtgc tgccggtgcc cgtggtgccc ccggtgagcg tggcgagccc 2340 ggtgcccccg gtcctgctgg atttgctggc cccccgggcg ccgatggaca acccggtgcc 2400 aaaggcgagc agggagagcc cgggcagaag ggtgacgcgg gcgctcctgg tccccaaggt ccctccggcg ctcctggccc ccagggccca accggtgtca ctggtcccaa aggagctcgt 2460 ggggctcagg gtccccctgg agccacggga ttccccggag ctgccggccg tgtgggaccg 2520 2580 cccggcccta atggtaaccc aggccccccc ggaccccctg gctctgctgg caaggacggc 2640 cccaagggtg ttcgtggcga cgccggcccc cccggccgtg caggtgaccc cggcctccaa 2700 ggccccgccg gccccccgg cgagaagggc gaacccggcg aggacggccc cgcgggtccc gacggccccc ccggccctca aggcttggca ggacagcgtg gtattgtggg tctcccagga 2760 cagcgtggtg agagaggctt ccccggactg ccggggccat cgggagaacc tggaaagcaa 2820 2880 ggagcgcctg gctctgcggg tgaccgaggt cccccggcc ccgtggggcc ccctgggctg acgggtcctg ctggagaacc cgggcgcgag ggcaaccctg gtgctgacgg tctcccaggc 2940 3000 agggatggcg cagctggcgt gaagggtgat cgtggtgaga ccggccctgt gggtgccccc ggtgctcctg gagcccctgg cgccccggc cctgttggtc ccactggaaa acaaggagac 3060 agaggcgaga cgggtgcaca agggcccatg ggtccctctg gtcccgctgg agctcgagga 3120 atgccgggtc cccaaggacc tcgtggtgac aaaggtgaga cgggagaggc tggagagaga 3180 gggctgaagg gccaccgtgg cttcaccggt ctgcagggtc tgcccggacc acccggcccg 3240 tctggagacc aaggtgctgc cggtcccgct ggtccctccg gtcccagagg tccccttggt 3300 cccgtcggcc cctctggcaa agatggctct aacggcatgc ccggccccat cggtcctccc 3360 ggtccccgtg gacggagtgg tgaacccggc cctgcgggtc ctcctggaaa ccccggtcct 3420 cccggtcctc ctggcccccc cggcaccggc atcgacatgt ctgcttttgc tggactgggt 3480

3540

3600

cagacggaga agggccccga ccccatccgc tacatgaggg cagacgaggc ggccggaggg

ctgcggcagc acgacgtgga ggtggatgcc accctcaaat ccctcaacaa tcagattgag

agcatccgca	gccccgaggg	ctccaagaag	aaccctgcca	ggacctgccg	cgacatcaaa	3660
ctctgccatc	ccgagtggaa	gagcggagat	tactggattg	acccgaacca	gggctgcacc	3720
ttggacgcca	tcaaagtatt	ctgcaacatg	gagacgggcg	agacctgcgt	ctacccgacc	3780
cccagcagca	tccccaggaa	gaactggtgg	accagcaaga	cgaaagacaa	gaagcacgtc	3840
tggtttgcag	agaccatcaa	cggcggtttc	cacttcagct	acggcgatga	gaacctgtcc	3900
cccaacaccg	ccagcatcca	gatgaccttc	ctgcgcctcc	tgtccaccga	gggctcccag	3960
aacgtcacct	accactgcaa	gaacagcatc	gcctacatgg	acgaggagac	gggcaacctg	4020
aagaaagcca	tcctcatcca	gggatccaac	gacgtggaga	tcagagccga	gggcaacagc	4080
aggttcacct	acagcgtctt	ggaggacggc	tgcacgaaac	acactggcaa	atggggcaag	4140
acggtgatcg	agtaccggtt	gcagaagacc	tcgcgcctgt	ccattgtaga	tactgcacct	4200
atggacattg	gcggagccga	tcaggagttt	ggcgtggata	ttggcccagt	ctgcttcttg	4260
taaaaagggt	tgttgttatt	tgtgtgtttg	tttgttgttt	ggttgttgtt	ttttgtttct	4320
tttttttt	tttttagaaa	agaaaggaat	ccagcccaat	cccataaaag	caaaccagtc	4380
ccacccccag	gacccgcacg	ttcccagcac	aacttctgca	ctgaacggat	ggcacgaccc	4440
cgcgcccctt	cgggaccctc	cggcgccgtc	accgggcaga	ctgcgaaata	caaccacggg	4500
cttatattta	tttattgcct	tcctggaagg	cctggtttcg	tagggcgggt	ggaggtggga	4560
atcaatctgg	caggtgtgac	ggccccctc	cccacaaagg	gatctggcaa	acgcaggtat	4620
cgcgaatccc	ctccctccc	cgtgtatcac	cagcaggagt	gctaatgtat	catacaacag	4680
aaatggtgct	attcttgtaa	aacaagtctg	tatttttaa	catcagttga	tataaaaaca	4740
acaaaaaaa	aaacttttgg	tggaaagtaa	aaaaaacaaa	aaaaaaaaa	aaa	4793

```
<210> 3
<211> 1420
<212> PRT
```

<213> Chicken

<400> 3

Met His Gly Arg Arg Pro Pro Arg Ser Ala Ala Leu Leu Leu Leu 15 10 15

Leu Leu Leu Thr Ala Ala Ala Ala Gln Asp Arg Asp Leu Arg Gln 20 25 30

Pro Gly Pro Lys Gly Gln Lys Gly Glu Pro Gly Asp Ile Lys Asp Val 35

Val Gly Pro Arg Gly Pro Pro Gly Pro Gln Gly Pro Ala Gly Glu Gln 50 60

Gly Gln Arg Gly Asp Arg Gly Glu Lys Gly Glu Lys Gly Ala Pro Gly 65 70 75 80

272331USOPCT.ST25
Pro Arg Gly Arg Asp Gly Glu Pro Gly Thr Pro Gly Asn Pro Gly Pro
85
90
95 Pro Gly Pro Pro Gly Pro Pro Gly Leu Gly Gly Asn Phe 100 105 110 Ala Ala Gln Met Ala Gly Gly Phe Asp Glu Lys Ala Gly Gly Ala Gln 115 120 125 Met Gly Val Met Gln Gly Pro Met Gly Pro Met Gly Pro Arg Gly Pro 130 140 Pro Gly Pro Thr Gly Ala Pro Gly Pro Gln Gly Phe Gln Gly Asn Pro 145 150 155 160 Gly Glu Pro Gly Glu Pro Gly Ala Ala Gly Pro Met Gly Pro Arg Gly 165 170 175 Pro Pro Gly Pro Pro Gly Lys Pro Gly Asp Asp Gly Glu Thr Gly Lys 180 185 190 Pro Gly Lys Ser Gly Glu Arg Gly Pro Pro Gly Pro Gln Gly Ala Arg 195 200 205 Gly Phe Pro Gly Thr Pro Gly Leu Pro Gly Val Lys Gly His Arg Gly 210 215 220 Tyr Pro Gly Leu Asp Gly Ala Lys Gly Glu Ala Gly Ala Pro Gly Ala 225 230 235 240 Lys Gly Glu Ser Gly Ser Pro Gly Glu Asn Gly Ser Pro Gly Pro Met 245 250 255 Gly Pro Arg Gly Leu Pro Gly Glu Arg Gly Arg Pro Gly Pro Ser Gly 260 270 Ala Ala Gly Ala Arg Gly Asn Asp Gly Leu Pro Gly Pro Ala Gly Pro 275 280 285 Pro Gly Pro Val Gly Pro Ala Gly Ala Pro Gly Phe Pro Gly Ala Pro 290 295 300 Gly Ser Lys Gly Glu Ala Gly Pro Thr Gly Ala Arg Gly Pro Glu Gly 305 310 315 Ala Gln Gly Pro Arg Gly Glu Ser Gly Thr Pro Gly Ser Pro Gly Pro 325 330 335 Ala Gly Ala Pro Gly Asn Pro Gly Thr Asp Gly Ile Pro Gly Ala Lys 340 345 350 272331USOPCT.ST25
Gly Ser Ala Gly Ala Pro Gly Ile Ala Gly Ala Pro Gly Phe Pro Gly
355 360 365 Pro Arg Gly Pro Pro Gly Pro Gln Gly Ala Thr Gly Pro Leu Gly Pro 370 . 375 380 Lys Gly Gln Thr Gly Glu Pro Gly Ile Ala Gly Phe Lys Gly Glu Gln 385 390 395 400 Gly Pro Lys Gly Glu Thr Gly Pro Ala Gly Pro Gln Gly Ala Pro Gly 405 410 415 Pro Ala Gly Glu Glu Gly Lys Arg Gly Ala Arg Gly Glu Pro Gly Ala 420 425 430 Ala Gly Pro Val Gly Pro Pro Gly Glu Arg Gly Ala Pro Gly Asn Arg 435 440 445 Gly Phe Pro Gly Gln Asp Gly Leu Ala Gly Pro Lys Gly Ala Pro Gly 450 460 Glu Arg Gly Pro Ala Gly Leu Ala Gly Pro Lys Gly Ala Thr Gly Asp 465 470 475 480 Pro Gly Arg Pro Gly Glu Pro Gly Leu Pro Gly Ala Arg Gly Leu Thr 485 490 495 Gly Arg Pro Gly Asp Ala Gly Pro Gln Gly Lys Val Gly Pro Thr Gly 500 505 Ala Pro Gly Glu Asp Gly Arg Pro Gly Pro Pro Gly Pro Gln Gly Ala 515 520 525 Arg Gly Gln Pro Gly Val Met Gly Phe Pro Gly Pro Lys Gly Ala Asn 530 540 Gly Glu Pro Gly Lys Ala Gly Glu Lys Gly Leu Pro Gly Ala Pro Gly 545 550 560 Leu Arg Gly Leu Pro Gly Lys Asp Gly Glu Thr Gly Ala Ala Gly Pro 565 570 575 Pro Gly Pro Ala Gly Pro Val Gly Glu Arg Gly Glu Gln Gly Ala Pro 580 585 Gly Pro Ser Gly Phe Gln Gly Leu Pro Gly Pro Pro Gly Pro Pro Gly 595 600 605 Glu Ser Gly Lys Pro Gly Asp Gln Gly Val Pro Gly Glu Ala Gly Ala 610 615 620 272331USOPCT.ST25
Pro Gly Leu Val Gly Pro Arg Gly Glu Arg Gly Phe Pro Gly Glu Arg
625 630 635 640 Gly Ser Pro Gly Ala Gln Gly Leu Gln Gly Pro Arg Gly Leu Pro Gly 645 650 655 Thr Pro Gly Thr Asp Gly Pro Lys Gly Ala Thr Gly Pro Ala Gly Pro 660 665 670 Asn Gly Ala Gln Gly Pro Pro Gly Leu Gln Gly Met Pro Gly Glu Arg 675 680 685 Gly Ala Ala Gly Ile Ala Gly Leu Lys Gly Asp Arg Gly Asp Val Gly 690 695 700 Glu Lys Gly Pro Glu Gly Ala Pro Gly Lys Asp Gly Ala Arg Gly Leu 705 710 715 720 Thr Gly Pro Ile Gly Pro Pro Gly Pro Ala Gly Pro Asn Gly Glu Lys
725 730 735 Gly Glu Ser Gly Pro Pro Gly Pro Ser Gly Ala Ala Gly Ala Arg Gly.
740 745 750 Ala Pro Gly Glu Arg Gly Glu Pro Gly Ala Pro Gly Pro Ala Gly Phe 755 760 765 Ala Gly Pro Pro Gly Ala Asp Gly Gln Pro Gly Ala Lys Gly Glu Gln
770 775 780 Gly Glu Pro Gly Gln Lys Gly Asp Ala Gly Ala Pro Gly Pro Gln Gly 785 790 795 800 Pro Ser Gly Ala Pro Gly Pro Gln Gly Pro Thr Gly Val Thr Gly Pro 805 810 815 Lys Gly Ala Arg Gly Ala Gln Gly Pro Pro Gly Ala Thr Gly Phe Pro 820 825 830 Gly Ala Ala Gly Arg Val Gly Pro Pro Gly Pro Asn Gly Asn Pro Gly 835 840 845 Pro Pro Gly Pro Pro Gly Ser Ala Gly Lys Asp Gly Pro Lys Gly Val 850 855 860 Arg Gly Asp Ala Gly Pro Pro Gly Arg Ala Gly Asp Pro Gly Leu Gln 865 870 875 880 Gly Pro Ala Gly Pro Pro Gly Glu Lys Gly Glu Pro Gly Glu Asp Gly 885 890 895

272331USOPCT.ST25
Pro Ala Gly Pro Asp Gly Pro Pro Gly Pro Gln Gly Leu Ala Gly Gln
900 905 910 Arg Gly Ile Val Gly Leu Pro Gly Gln Arg Gly Glu Arg Gly Phe Pro 915 920 925 Gly Leu Pro Gly Pro Ser Gly Glu Pro Gly Lys Gln Gly Ala Pro Gly 930 935 940 Ser Ala Gly Asp Arg Gly Pro Pro Gly Pro Val Gly Pro Pro Gly Leu 945 950 955 960 Thr Gly Pro Ala Gly Glu Pro Gly Arg Glu Gly Asn Pro Gly Ala Asp 965 970 975 Gly Leu Pro Gly Arg Asp Gly Ala Ala Gly Val Lys Gly Asp Arg Gly 980 985 990 Glu Thr Gly Pro Val Gly Ala Pro Gly Ala Pro Gly Ala 995 1000 1005 Pro Gly Pro Val Gly Pro Thr Gly Lys Gln Gly Asp Arg Gly Glu 1010 1020 Thr Gly Ala Gln Gly Pro Met Gly Pro Ser Gly Pro Ala Gly Ala 1025 1030 1035 Arg Gly Met Pro Gly Pro Gln Gly Pro Arg Gly Asp Lys Gly Glu 1040 1045 1050 Thr Gly Glu Ala Gly Glu Arg Gly Leu Lys Gly His Arg Gly Phe 1055 1060 1065 Thr Gly Leu Gln Gly Leu Pro Gly Pro Pro Gly Pro Ser Gly Asp 1070 1080 Gln Gly Ala Ala Gly Pro Ala Gly Pro Ser Gly Pro Arg Gly Pro 1085 1090 1095 Pro Gly Pro Val Gly Pro Ser Gly Lys Asp Gly Ser Asn Gly Met 1100 1110 Pro Gly Pro Ile Gly Pro Pro Gly Pro Arg Gly Arg Ser Gly Glu 1115 1120 1125 Pro Gly Pro Ala Gly Pro Pro Gly Asn Pro Gly Pro Pro Gly Pro 1130 1140 Pro Gly Pro Pro Gly Thr Gly Ile Asp Met Ser Ala Phe Ala Gly 1145 1150

272331US0PCT.ST25 Leu Gly Gln Thr Glu Lys Gly Pro Asp Pro Ile Arg Tyr Met Arg 1160 1165 1170 Ala Asp Glu Ala Ala Gly Gly Leu Arg Gln His Asp Val Glu Val 1175 1180 1185 Asp Ala Thr Leu Lys Ser Leu Asn Asn Gln Ile Glu Ser Ile Arg 1190 1195 1200 Ser Pro Glu Gly Ser Lys Lys Asn Pro Ala Arg Thr Cys Arg Asp 1205 1210 1215 Ile Lys Leu Cys His Pro Glu Trp Lys Ser Gly Asp Tyr Trp Ile 1220 1230 Asp Pro Asn Gln Gly Cys Thr Leu Asp Ala Ile Lys Val Phe Cys 1235 1240 1245 Asn Met Glu Thr Gly Glu Thr Cys Val Tyr Pro Thr Pro Ser Ser 1250 1260 Ile Pro Arg Lys Asn Trp Trp Thr Ser Lys Thr Lys Asp Lys Lys 1265 1270 1275 His Val Trp Phe Ala Glu Thr Ile Asn Gly Gly Phe His Phe Ser Tyr Gly Asp Glu Asn Leu Ser Pro Asn Thr Ala Ser Ile Gln Met 1295 1300 1305 Thr Phe Leu Arg Leu Leu Ser Thr Glu Gly Ser Gln Asn Val Thr 1310 1320 Tyr His Cys Lys Asn Ser Ile Ala Tyr Met Asp Glu Glu Thr Gly 1325 1330 Asn Leu Lys Lys Ala Ile Leu Ile Gln Gly Ser Asn Asp Val Glu 1340 1350 Ile Arg Ala Glu Gly Asn Ser Arg Phe Thr Tyr Ser Val Leu Glu 1355 1360 1365 Asp Gly Cys Thr Lys His Thr Gly Lys Trp Gly Lys Thr Val Ile 1370 1380 Glu Tyr Arg Leu Gln Lys Thr Ser Arg Leu Ser Ile Val Asp Thr 1385 1390 1395 Ala Pro Met Asp Ile Gly Gly Ala Asp Gln Glu Phe Gly Val Asp 1400 1405 1410

Ile Gly 14.	y Pro Val Cys Phe Leu 15 1420	
<210> <211> <212> <213>	4 21 DNA Artificial	
<220> <223>	Synthetic DNA	
<400> tctatc	4 gcgc acccgttgtg c	21
<210> <211> <212> <213>	5 22 DNA Artificial	
<220> <223>	Synthetic DNA	
<400> gtcttg	5 tagt gctacggctt gc	22
<210> <211> <212> <213>	6 22 DNA Artificial	
<220> <223>	Synthetic DNA	
<400> ttgcag	6 atgt ctccaatacc ag	22
<210> <211> <212> <213>	7 28 DNA Artificial	
<220> <223>	Synthetic DNA	
	7 cggc tcgggcaatg tgctaacg	28
<210> <211> <212> <213>	8 20 DNA Artificial	
<220> <223>	Synthetic DNA	
<400> gctcgg	8 paagc aacggcctcg	20
<210> <211> <212>	9 20 DNA	

<220> <223>	Synthetic DNA	
<400> ctcgtca	9 aagc aacggcctcg	20
<210> <211> <212> <213>	10 19 DNA Artificial	
<220> <223>	Synthetic DNA	
<400> cgctgc	10 gatc gtcatgcgg	19
<210> <211> <212> <213>	11 20 DNA Artificial	
<220> <223>	Synthetic DNA	
<400> gtagtg	11 accc tacgcccgag	20
<210> <211> <212> <213>	12 28 DNA Artificial	
<220> <223>	Synthetic DNA	
<400> acgccg	12 gctc tcgtgctcct cgtggtgc	28
<210> <211> <212> <213>	13 24 DNA Artificial	
<220> <223>	Synthetic DNA	
<400> ccgccc	13 gggt ccgaatgccc gcat	24
<210> <211> <212> <213>	DNA	
<220> <223>	Synthetic DNA	
<400>	14	20

<210> <211> <212> <213>	15 28 DNA Artificial					
<220> <223>	Synthetic DNA					
<400> cctgate	15 cggc tccgccaatg tccatagg					28
<210> <211> <212> <213>	16 20 DNA Artificial					
<220> <223>	Synthetic DNA					
<400> gcagag	16 gtgc tgcccagaac		-			20
<210> <211> <212> <213>	17 21 DNA Artificial					
<220> <223>	Synthetid DNA					
<400> tcactc	17 cttg gatgccatgt g					21
<210> <211> <212> <213>	18 24 DNA Artificial			e e		
<220> <223>	Synthetic DNA					
<400> ggtaco	18 ttgg tggaaacttt gcgg					24
<210> <211> <212> <213>	19 24 DNA Artificial		*.			
<220> <223>	Synthetic DNA					
<400> ggtaco	19 cgtta caagaagcag actg					24
<210> <211> <212> <213>	20 24 DNA Artificial					
<220>	Synthetic DNA					

<400> agatac	tgct acgaaagacc ccga	a		24
<210> <211> <212> <213>	21 25 DNA Artificial			
<220> <223>	Synthetic DNA			
<400> ctctct	21 tggt tgtagccctc atc1	tg _,		25
<210> <211> <212> <213>	22 25 DNA Artificial			
<220> <223>	Synthetic DNA			
<400> gcggcc	22 gcag atactgctac gaaa	ag		25
<210> <211> <212> <213>	23 24 DNA Artificial			
<220> <223>	Synthetic DNA			
<400> gcggcc	23 gcct ctcttggttg tag	9		24
<210> <211> <212> <213>	24 24 DNA Artificial			
<220> <223>	Synthetic DNA			
<400> gcggcc	24 gcac agcccctgga gga	g		24
<210> <211> <212> <213>	25 25 DNA Artificial			
<220> <223>	Synthetic DNA		•	
<400> gcggcc	25 gcgg tgatgtagat cag	tc		25
<210><211><211><212><213>	26 24 DNA Artificial			

<220> <223>	Synthetic DNA			
	26 Joga tactgctacg	aaag		24
<210> <211> <212> <213>	27 24 DNA Artificial		· .	
<220> <223>	Synthetic DNA			
<400> gcggccg	27 Ject ccaactetga	taac		24
<210> <211> <212> <213>	28 23 DNA Artificial			
<220> <223>	Synthetic DNA			
<400> gcggcc	28 gcca gcccctggag	gag		23
<210> <211> <212> <213>	29 23 DNA Artificial			
<220> <223>	Synthetic DNA			
<400> gcggcc	29 gctt aatcatcatc	agc		23