MTXQCvX - Part1: pSIRM *

test test

Contents

TXQCvX part1 1
Summary
General project settings
Data import
TXQC - GC-MS perfomance
Alkane standards
Data normalization
Derivatization check
HeatMap - GC-MS performance
TXQC - Quantitative metabolomics 4
Generation of ManualQuantTable: Quant-Standards (Qstd)
Generation of ManualQuantTable: Additional calibration curves (Qadd)
Determination of calibration curves
Evaluation of experimental data
HeatMap - Quantification

This document provides an evaluation of GC-MS derived metabolomics data. It assesses GC-MS performance, the absolute quantification and the stable isotope incorporation. ADD HERE FURTHER PROJECT RELEVANT FACTS.

Keywords: MTXQCvX, GC-MS, metabolomics, data analysis and processing

MTXQCvX part1

Summary

** Summarise your major findings and important details. DO NOT skip this part.**

General project settings

```
##
## Attaching package: 'gplots'
## The following object is masked from 'package:stats':
##
## lowess

Data import
## MTXQCparams.csv imported!
## Metmax_params.csv imported.
```

^{*}Kempa Lab - Template MTXQCvX part1 - processed 'September 27, 2018'

```
## Experimental setup does not include additional quantification standards!
```

- ## File imported! annotation.csv
- ## File imported! Sample_extracts.csv
- ## WARNING: No file detected: InternalStandard.csv
- ## File imported! Alcane_intensities.csv
- ## No file with m/z 73 values defined for this input format!
- ## No file defined for this input format!
- ## File imported! quantMassAreasMatrix.csv
- ## It's not a pSIRM experiment!
- ## Correct column names in file sample_extracts.csv
- ## Correct column names in sample annotation
- ## Input files checked!
- ## Annotation and Sample_extract.csv correctly imported!

MTXQC - GC-MS perfomance

Alkane standards

QC-metric successfully exported: alkanes

Data normalization

Internal standard cinnamic acid

Empty data frame OR no peak areas for internal standard detectable!

Sum of Area of annotated metabolites per file

No SumOfArea file generated in Metmax parser!

Derivatization check

No input files detected. Either MassSum-73.csv or PeakDensities-Chroma.csv

HeatMap - GC-MS performance

Table 1: Summary of parameter evaluating GC-Performance

Batch_Id	qc_metric	title
e18627jg	0.9663448	alkanes

Export of GC-Performance values done!

Figure 1: Alkane intensities summarised per each file. Drop of intensities shows questionable files.

MTXQC - Quantitative metabolomics

Generation of ManualQuantTable: Quant-Standards (Qstd)

```
## File imported! quant1_values.csv
## ManualQuantTable imported!
Generation of ManualQuantTable: Additional calibration curves (Qadd)
Determination of calibration curves
## top5_QMQcurveInfo.csv generated!
if (nrow(qc_calcurve != 0)) {
  ggplot(qc_calcurve, aes(Lettercode, Par_value, color = Parameter)) +
        geom_point(aes(shape = Parameter), size = 3) +
    coord_flip() +
    ggtitle('Calibration curve: adj. R square and nb of data points') +
    ylim(0,1) +
    geom_hline(aes(yintercept = 0.75), linetype = 'dashed', color = 'grey30') +
    scale_color_manual(values = c('tomato3', 'black')) +
    scale_shape_manual(values = c(17,20)) +
    facet_grid(Origin ~ Batch_Id, scales = "free_y") +
        xlab('Derivate') +
        ylab('Parameter value in (-)') +
    theme(legend.position = "bottom")
Evaluation of experimental data
```

Determination extraction factor

```
## The quantification factor for that experimental setup: 0.3333333333333333
```

The sample factor for that experimental setup: 1

The extraction factor for that experimental setup: 0.33333333333333333

Quantification range and limits

Position of data points regarding calibration curves evaluated.

Figure 2: Calibration curves: Nb. of data points.

Figure 3: Limits of quantifiable range per metabolite

Figure 4: Distribution of data points regarding linear range of the calibration curve

Absolute quantification samples

Calibration curve and samples: e18627jg (samples in red)

Normalisation of absolute quantities

- ## WARNING: Sum of area normalisation factor set to value = 1 due to missing input.
- ## WARNING: Internal Standard normalisation factor set to value = 1 due to missing input.
- ## Absolute quantification and normalisation have been performed: CalculationFileData.csv

HeatMap - Quantification

- ## WARNING: Correlation between internal standard and sum of area normalisation not possible!
- ## No evaluation of isotope data included.

HeatMap - Metabolite - Pathway

Figure 5: MTXQCvX - Heatmap overview