Лабораторная работа 1.1.1

"Определение систематических и случайных погрешностей при измерении удельного сопротивления нихромовой провлок"

Белов Михаил Б01-302

22 сентября 2023 г.

Аннотация:

Для определения удельного сопротивления нихромовой провлоки необходимы значения её длины, площади сечения и сопротивления при этом значении длины. Для определения длины используется линейка, для определения диаметра - микрометр. Сопротивление провлоки измеряется двумя способами: подключением провлоки в цепь с вольтемтром и амперметром и с помощью моста Уитстона.

Теоретические сведения:

По определению удельного сопротивления, его величину можно рассчитать по формуле:

$$\rho = \frac{R_{np}}{I} \cdot \frac{\pi d^2}{4},$$

где R_{np} – сопротивление провлоки, L – длина провлоки, d – диаметр провлоки.

Сопротивление провлоки можно считать равным $R=\frac{V}{I}$, однако, в этом случае мы не учитываем сопротивление амперметра и вольтметра. Формулы для расчёта с учётом этих сопротивлений будут в следующем разделе.

Первый способ измерения сопротивления провлоки основан на закое Ома, откуда $R = \frac{U}{I}$.

Второй способ основан на мосте Уитстона, состоящем из двух постоянных резисторов, реостата, измеряемого сопротивления и гальвонометра. Через гальвонометр не будет течь ток только в том случае, если разность потенциалов на его концах будет нулевой, а это может быть, только если резисторы в мосте будут попарно пропорциональны. Поэтому, зная значение сопротивлений трёх резисторов мы можем узнать сопротивление четвёртого, то есть сопротивление провлоки.

Методика измерений:

Для измерения длины провлоки используется линейка с погрешностью:

$$\delta L = 0.1 \cdot 10^{-3} \text{ m}$$

Для измерения толщины провлоки используется микрометр в 10-ти различных местах, а затем результат округляется с погрешностью:

$$d_{cp} = \frac{\sum_{i=1}^{10} d_i}{10}$$

$$\delta d = 0.01 \cdot 10^{-3} \text{ m}$$

1

1-ый способ измерения:

Рис. 1. Схема измерения вольт-амперной характеристики проволоки

где R_A, R_V, R – сопротивления амперметра, вольтметра и измеряемой провлоки соответственно.

В этом случае сопротивление провлоки можно найти по формуле:

$$R_i = \tfrac{U_V}{I_A} = R_{np} \cdot \tfrac{R_V}{R_i + R_V} \Leftrightarrow R_{np} = \tfrac{R_i \cdot (R_{np} + R_V)}{R_V} \approx R_i \cdot (1 + \tfrac{R_i}{R_V}),$$

где R_i – прямое измерение сопротивления исходя из покозаний амперметра и вольтметра, не учитывая их сопротивление.

В получившейся формуле скобка отвечает за систематическую погрешность, происходящую из-за неидеальности приборов, однако сопротивление вольтметра сильно больше сопротивления нити, поэтому её можно пренебречь. И общая погрешность будет рассчитываться по формуле:

$$\delta_{Rnp} \approx R_{np} \cdot \sqrt{\left(\frac{\delta_{U_V}}{U_V}\right)^2 + \left(\frac{\delta_{I_A}}{I_A}\right)^2}$$

2-ой способ измерения:

где R_1, R_3, R_2, R_x – это два сопротивления, реостат и провлока, V_G – гальвонометр.

В этом случае сопротивление провлоки можно рассчиать по формуле:

$$\frac{R_{np}}{R_2} = \frac{R_3}{R_1} \Leftrightarrow R_{np} = R_2 \cdot \frac{R_3}{R_1}$$

А погрешность по формуле:

$$\delta R_{np} = 0, 1 \cdot 10^{-3} \text{ Om}$$

Результаты измерений:

Результаты измерений диаметра провлоки микрометром:

N измер.	1	2	3	4	5
d, mm	0,370	0,370	0,370	0,360	0,360

Результаты измерений диаметра провлоки штангенциркулем:

N измер.	1	2	3	4	5
d, mm	0,4	0,4	0,4	0,5	0,4

Среднее значение диаметра для микрометра: $d_{cp} = 0,366$ мм

Погрешность микрометра: $\delta d = 0,005$ мм

Среднеквадратичное отклонение от среднего: $\delta d = \sqrt{\frac{\sum_{i=1}^{5}(d_{cp}-d_i)}{5\cdot(5-1)}} \approx 0,002$ мм

Среднее значение диаметра для шатнгенциркуля: $d_{cp}=0,42$ мм

Погрешность шатнгенциркуля: $\delta d=0,05$ мм

Измерения снапряжения и силы тока:

	$ m L=0.501\pm0.001~m$									
U, mV	1490	1248	1045	910	735	610	542	474	397	339
I, mA	284,3	240,7	201,3	174,2	141,2	117,8	103,6	92	77,1	65,8
	$ m L = 0.302 \pm 0.001$ м									
U, mV	1471	1065	794	600	494	416	300	271	232	203
I, mA	464,9	335,2	266,5	205,3	168,5	134,2	102,9	88,3	74,7	67,9
	$ m L = 0.202 \pm 0.001$ м									
U, mV	1394	832	697	552	454	387	310	252	184	145
I, mA	665,8	402,3	334,2	365,7	219,8	186,2	149,3	123,7	89,7	72,7
	$ m L = 0{,}100\pm0{,}001~{}$ м									
U, mV	890	523	348	261	213	184	155	125	106	87
I, mA	829,3	476,6	315,8	242,3	198,7	164,1	138,5	113,9	101,3	75,4

Пользуясь методом наименьших квадратов, строим аппроксимирующие прямые $V = R_{cp} \cdot I$, таким образом их угловой коэффициент будет равен среднему значению сопротивления.

Рассчитав по привелённым выше формулам значения сопротивления и его погрешности, мы получаем:

L, м	R_{sredn} , Om	δR_{sredn} , OM	R_{most} , Om	δR_{most} , Om
0,501	5,25	0,04	5,2941	0,0001
0,302	3,18	0,04	3,1632	0,0001
0,202	2,10	0,03	2,1285	0,0001
0,100	1,072	0,018	1,1376	0,0001

По этой табице получается, что все значения сопротивления, измеренные первым методом находятся не больше чем в $\pm 3\delta R_{sredn}.$

По приведённой в самом начле формуле рассчитаем значения удельного сопротивления для каждой длины провлоки: При этом среднее значение удельного сопротивления и его погрешность получается:

Nexp	$\rho, 10^{-6} Om \cdot m$	$\delta \rho, 10^{-6} Om \cdot m$
1	1,09	0,04
2	1,06	0,04
3	1,08	0,04
4	1,16	0,05

$$\overline{\rho} = (1, 10 \pm 0, 05) \cdot 10^{-6} \, Om \cdot m.$$

Обсуждение результатов и вывод:

Таким образом мы получили значение удельного спротивления провлоки $\overline{\rho} = (1, 10 \pm 0, 05) \cdot 10^{-6} \ Om \cdot m$. Это совпадает с табличным значением удельного сопротивления нихрома.

При этом можно заметить, что наибольшую часть погрешности удельного сопротивления будет давать погрешность измерения диаметра провлоки(2,7%). Значение погрешности удельного сопротивления составляет всего лишь 4,5%, что можно считать хорошей точностью. При этом погрешность измерения сопротивления составила всего 0,6% в первом способе измерения и менее 0,01% во втором способе, а погрешность длины не более 2%.