CLASSIFICATION OF MASSLESS SUPERMULTIPLETS

1.

Let V be a complex vector space with a chosen spin structure. Let Σ be a spinorial representation of Spin(V), Γ : Sym²(Σ) $\to V$ the associated vector-valued pairing and T_{Σ} the supertranslation group with Lie algebra $\Pi\Sigma \oplus V$. The superPoincaré group is $Spin(V) \ltimes T_{\Sigma}$.

Recall that massless representations of the Poincaré group are parametrized in the following way. Split $V = V_0 \oplus \mathbf{C}e_+ \oplus \mathbf{C}e_-$, where e_+ and e_- are null vectors with $(e_+, e_-) = 1$. Then massless representations correspond to finite-dimensional representations of $Spin(V_0)$.

Remark 1.1. We ignore the continuous-spin representations. Alternatively, we only consider finite-dimensional representations of the little group.

We label irreducible representations of Spin(2) by **helicity** which is a half-integer number.

Definition 1.2. Suppose $\dim(V_0) \geq 2$. A representation ρ of $\mathrm{Spin}(V_0)$ is **admissible** if for some (equivalently, any) nondegenerate subspace $\mathbb{C}^2 \subset V_0$ the helicities appearing in ρ are at most 1 by absolute value.

In a similar way, massless representations of the superPoincaré group are parametrized as follows (see [Freed, Lecture 6] for details). Consider a quadratic form on Σ defined by $q(Q,Q)=(e_+,\Gamma(Q,Q))$ for $Q\in\Sigma$. Let Σ_0 be the radical of q and $\overline{\Sigma}=\Sigma/\Sigma_0$. Let $\operatorname{Cl}(\overline{\Sigma},q)$ be the associated Clifford algebra. Then massless representations correspond to finite-dimensional representations of $Cl(\overline{\Sigma},q)$ with a compatible action of $Spin(V_0)$.

1.1. d=3. We have $Spin(1) \cong \mathbb{Z}/2$. We denote its irreducible representations by \mathbb{C} and Swhich correspond to the massless scalar and massless spinor.

The spinorial representation is

$$\Sigma = (S \oplus S) \otimes W,$$

where W carries a nondegenerate symmetric bilinear form. We have

$$\overline{\Sigma} = S \otimes W.$$

There is a unique supermultiplet which contains $\dim(W)$ scalars and $\dim(W)$ spinors.

1.2. d=4. The admissible irreducible representations of Spin(2) are the trivial one-dimensional representation C, the semi-spin representations S_{\pm} of helicity $\pm \frac{1}{2}$ and the half-vector representations V_{\pm} of helicity ± 1 .

The spinorial representation is

$$\Sigma = (S_+ \oplus S_-) \otimes W \oplus (S_+ \oplus S_-) \otimes W^*$$

for a complex vector space W.

The radical is $\Sigma_0 = S_+ \otimes W \oplus S_- \otimes W^*$, so

$$\overline{\Sigma} = S_- \otimes W \oplus S_+ \otimes W^*$$

with q the obvious quadratic form. In particular, it contains a Lagrangian subspace $S_+ \otimes W^*$, so irreducible massless representations of the superPoincaré group are parametrized by irreducible Spin(2)-representations \mathbf{C}_h labeled by a half-integer h, so that the corresponding representation of the little group is

$$\mathbf{C}_h \otimes \wedge^{\bullet} (S_+ \otimes W^*).$$

This representation is admissible if $-1 \le h \le 1$ and $h + \mathcal{N}/2 \le 1$. In particular, we must have $\mathcal{N} \le 4$.

In this dimension we have to make sure our representations are CPT invariant. We will only deal with PT invariance. This corresponds to extending Spin(2) to $\mathbb{Z}/2 \ltimes Spin(2)$, where $\mathbb{Z}/2$ acts on Spin(2) by inversion.

The list of admissible supermultiplets:

- $\mathcal{N}=1$. Chiral multiplet $\mathbf{C}^{\oplus 2} \oplus S_{+} \oplus S_{-}$ and the $\mathcal{N}=1$ vector multiplet $S_{+} \oplus S_{-} \oplus V_{+} \oplus V_{-}$.
- $\mathcal{N}=2$. Half-hypermultiplet (aka $\mathcal{N}=1$ chiral multiplet) and an $\mathcal{N}=2$ vector multiplet $\mathbf{C}^{\oplus 2} \oplus (S_+ \oplus S_-)^{\oplus 2} \oplus V_+ \oplus V_-$.
- $\mathcal{N} = 4, \mathcal{N} = 3$. $\mathcal{N} = 4$ vector multiplet $\mathbf{C}^{\oplus 6} \oplus (S_+ \oplus S_-)^{\oplus 4} \oplus V_+ \oplus V_-$.
- 1.3. d = 5. The admissible irreducible representations of Spin(3) are the trivial one-dimensional representation \mathbf{C} , the spin representation S and the vector representation V_3 .

The spinorial representation is

$$\Sigma = (S \oplus S) \otimes W$$
,

where W is a complex symplectic vector space. The radical is

$$\Sigma_0 = S \otimes W$$

(say, the first summand), so

$$\overline{\Sigma} = S \otimes W$$
.

The quadratic form is given by the product of the symplectic structure on W and the symplectic structure on S. Choose a Lagrangian subspace $L \subset W$. Then the masless irreducible representations of the superPoincaré group are parametrized by irreducible representations M of Spin(3) so that the corresponding representation of the little group is

$$M \otimes \wedge^{\bullet}(S \otimes L).$$

The list of admissible supermultiplets:

- $\mathcal{N} = 1$. The chiral multiplet (aka half-hypermultiplet) $\mathbf{C}^{\oplus 2} \oplus S$ and the $\mathcal{N} = 1$ vector multiplet $\mathbf{C} \oplus S^{\oplus 2} \oplus V_3$.
- $\mathcal{N} = 2$. $\mathcal{N} = 2$ vector multiplet $\mathbf{C}^{\oplus 5} \oplus S^{\oplus 4} \oplus V_3$.
- 1.4. d = 6. The admissible irreducible representations of Spin(4) are the trivial one-dimensional representation \mathbf{C} , the semi-spin representations S_{\pm} , the vector representation V_4 and the (anti) self-dual form representations $\operatorname{Sym}^2(S_{\pm})$. Note that we have a decomposition

$$\wedge^2 V_4 \cong \operatorname{Sym}^2(S_+) \oplus \operatorname{Sym}^2(S_-).$$

The spinorial representation is

$$\Sigma = (S_+ \oplus S_-) \otimes W_+ \oplus (S_+ \oplus S_-) \otimes W_-,$$

where W_{\pm} are symplectic vector spaces.

We have

$$\overline{\Sigma} = S_- \otimes W_+ \oplus S_+ \otimes W_-$$

with the quadratic form being the product of the symplectic form on S_- , S_+ and W_{\pm} . Pick Lagrangians $L_{\pm} \subset W_{\pm}$. Then the massless irreducile reprsentations of the superPoincaré group are parametrized by an irreducible Spin(4)-representation M, so that the corresponding representation of the little group is

$$M \otimes \wedge^{\bullet} (S_{-} \otimes L_{+} \oplus S_{+} \otimes L_{-}).$$

The list of admissible supermultiplets:

- N = (1,0). The chiral multiplet (aka half-hypermultiplet) C² ⊕ S⁻, the tensor multiplet C ⊕ S⁻¹ ⊕ Sym²(S⁻) and the N = (1,0) vector multiplet S⁺¹ ⊕ V₄.
 N = (1,1). The N = (1,1) vector multiplet C⁴⁴ ⊕ (S⁺ ⊕ S⁻) ⊕² ⊕ V₄.
 N = (2,0). The N = (2,0) tensor multiplet C⁴⁵ ⊕ S⁻⁴ ⊕ Sym²(S⁻).

1.5. d=7. The only irreducible admissible representations of Spin(5) are the trivial onedimensional representation C, the 4d spin representation S and the 5d vector representation V_5 .

The spinorial representation is

$$\Sigma = (S \oplus S) \otimes W$$

where W is a symplectic vector space. We have

$$\overline{\Sigma} = S \otimes W$$

with the quadratic form the product of the symplectic structure on S and the symplectic structure on W. Pick a Lagrangian subspace $L \subset W$. Then the irreducible representation of the little group is

$$M \otimes \wedge^{\bullet}(S \otimes L),$$

where M is an irreducible representation of Spin(5).

The list of admissible supermultiplets:

- $\mathcal{N} = 1$. The vector multiplet $\mathbf{C}^{\oplus 3} \oplus S^{\oplus 2} \oplus V_5$.
- 1.6. d=8. The only irreducible admissible representations of Spin(6) are the trivial onedmensional representation C, the 4d semi-spin representations S_{\pm} and the 6d vector representation V_6 . The spinorial representation is

$$\Sigma = (S_+ \oplus S_-) \otimes (W \oplus W^*)$$

for a complex vector space W. We have

$$\overline{\Sigma} = S_+ \otimes W \oplus S_- \otimes W^*$$

with the quadratic form given by a pairing $S_+ \otimes S_- \to \mathbb{C}$. Then the irreducible representation of the little group is

$$M \otimes \wedge^{\bullet}(S_{+} \otimes W),$$

where M is an irreducible representation of Spin(6).

The list of admissible supermultiplets:

• $\mathcal{N} = 1$. The vector multiplet $\mathbf{C}^{\oplus 2} \oplus S_+ \oplus S_- \oplus V_6$.

1.7. d = 9. The only admissible irreducible representations of Spin(7) are the trivial onedimensional representation \mathbf{C} , the 8d spin representation S and the 7d vector representation V_7 . The spinorial representation is

$$\Sigma = (S \oplus S) \otimes W$$
,

where W carries a nondegenerate symmetric bilinear form. We have

$$\overline{\Sigma} = S \otimes W$$
.

Note that in the case $\dim(W)$ odd there is no $\mathrm{Spin}(7)$ -invariant Lagrangian subspace in $\overline{\Sigma}$.

The list of admissible supermultiplets:

- $\mathcal{N} = 1$. The vector multiplet $\mathbf{C} \oplus S \oplus V$.
- 1.8. d=10. The only admissible irreducible representations of Spin(8) are the trivial onedimensional representation \mathbf{C} , the semi-spin representations S_{\pm} and the 8d vector representation V_8 . The spinorial representation is

$$\Sigma = (S_+ \oplus S_-) \otimes W_+ \oplus (S_+ \oplus S_-) \otimes W_-,$$

where W_{\pm} carry nondegenerate symmetric bilinear forms. We have

$$\overline{\Sigma} = S_- \otimes W_+ \oplus S_+ \otimes W_-.$$

The list of admissible supermultiplets:

• $\mathcal{N} = (1,0)$. The vector multiplet $S_- \oplus V$.

REFERENCES

[Freed] D. Freed, Classical field theory and supersymmetry, https://web.ma.utexas.edu/users/dafr/pcmi.pdf.