Techniques Multimédias Outils du traitement d'images

November 29, 2015

Houcemeddine HERMASSI houcemeddine.hermassi@enit.rnu.tn

École Nationale d'Ingénieurs de Carthage ENI-CAR Université Carthage Tunisie

Plan de cour

Profil d'une image

Prétraitement-amélioration

Segmentation des images

Profil d'une image

Histogramme d'une image

Définition

Fonction qui donne la fréquence d'apparition de chaque niveau de gris dans l'image (distribution ou dynamique) :

- ► en abscisse les niveaux de gris de 0 à N_{max}
- en ordonnée le nombre (ou pourcentage) de pixels d'un niveau de gris donné.

Profil d'une image

Représentation

Profil 3-D

- ▶ Une image est en réalité une entité à 3 dimensions : x, y et le niveau de gris du point (x, y).
- Une coupe dans ce profil permet de faire une analyse fine des variations d'intensité de l'image, en particulier lorsque celles-ci sont faibles.

Profil d'une image Isolation de niveaux de gris

Principe

- Permet de déterminer la répartition spatiale de pixels de même intensité.
- On isole pour cela un pixel donné dont on mesure le niveau de gris et on affiche la carte des points de l'image ayant même niveau de gris que ce point.
- Les exemples d'application sont nombreux, comme la mesure du niveau de bruit contenu dans une image.

Prétraitement-amélioration Principe

Principe

Traitements locaux sur des erreurs introduites : éclairage, qualité optique de l'objectif , bruit électronique inhérent au capteur, ou bien encore défaut du système d'échantillonnage. Restauration : restitution de l'image avant dégradation

- 1. détermination du modèle mathématique du processus ayant entrainé la dégradation,
- 2. application de son inverse sur l'image source. Deux approches :
 - a priori (modèle construit à partir d'images tests),
 - a posteriori (mesures sur l'image à restaurer puis processus adaptatif).

Amélioration d'image (image enhancement) : de l'aspect visuel de l'image. Deux approches : par l'examen de l'histogramme ou le filtrage qui minimise le bruit.

Transformation d'histogramme

Table de conversion

fonction qui transforme un niveau de gris g_i en un niveau de gris g_j sans modification de la structure spatiale de l'image.

Soit $G_l = 0, 1, ..., N_l$ l'ensemble des niveaux de gris initiaux et $G_F = 0, 1, ..., N_F$ l'ensemble des niveaux de gris finaux, on définit une fonction f telle que :

$$f: G_I \rightarrow G_F$$

$$\forall g_i \in G_I, \exists g_i \in G_F, g_i = f(g_i)$$

Cette fonction peut être représentée par une table. Elle peut être linéaire (voir ci-dessous) mais aussi logarithmique, polynomiale, . . .

Deux tables de conversion triviales. l'identité et l'inversion :

Transformation d'histogramme

Recadrage de dynamique

- Utilisé lorsque certaines images sont initialement trop claires, trop foncées ou bien peu contrastées.
- Le but de la table, dans ce contexte, est de redistribuer les niveaux de gris de l'image pour leur faire occuper toute la bande de nuances possibles.

Transformation d'histogramme Recadrage de dynamique

Exemple

Ce recadrage de dynamique (pourcentage de niveaux de gris recadré à 0 ou N_{max}) entraı̂ne une perte d'information

Transformation d'histogramme Recadrage de dynamique

Mise en évidence de zones d'intérêt de l'histogramme

(a) par recadrage de dynamique; (b) par binarisation.

Transformation d'histogramme

Modification de la forme de l'histogramme

- Une image quantifiée de manière linéaire peut présenter une majorité de pixels de valeurs inférieure à la luminance moyenne
- ⇒ détails des régions sombres difficilement perceptibles.
- La modification d'histogramme réduit cet inconvénient en donnant à l'histogramme une forme déterminée à l'avance (exponentielle, hyperbolique, . . .).
- La forme la plus courante est la forme linéaire uniforme ou égalisation, dans laquelle la silhouette de l'histogramme se rapproche d'une droite horizontale.

Transformation d'histogramme

Egalisation d'histogramme

- Soient P le nombre de pixels de l'image, N_I le nombre de luminances initial et N_F le nombre final.
- L'histogramme égalisé idéal est séparé en bande de taille N_I/N_F , chaque bande contenant P/N_F pixels (avec $N_F < N_I$ i.e intégration de l'histogramme initial).

Transformation d'histogramme

Egalisation d'histogramme: Exemple d'algorithme

- 1. On part du niveau 0.
- On calcule les valeurs cumulées des niveaux suivants jusqu'à ce que la somme soit la plus proche possible de la moyenne idéale P/N_F.
- Tous les niveaux ayant participés à cette somme sont recadrés au centre de la bande (ou redistribuer aléatoirement dans toute la bande) de l'histogramme final.
- 4. On recommence l'opération pour les bandes suivantes

Remarque : pour éviter les phénomènes de tassement, d^u à des pics dans un histogramme à grandes variations, on effectue un recadrage de dynamique de l'image égalisée.

Transformation d'histogramme

Egalisation d'histogramme: Exemple d'algorithme

Le bruit, ennemi du signal image

Filtrage

le bruit peut être caractérisé comme la brusque variation d'un pixel isolé par rapport à ses voisins.

- Filtrage linéaire (ou produit de convolution), l'un des outils les plus répandus permettant d'atténuer les effets du bruit :
 - on remplace la valeur de chaque pixel par une moyenne pondérée, ou combinaison linéaire, des valeurs des pixels voisins..
 - Néanmoins, il existe de nombreux points délicats : la nouvelle valeur d'un pixel ne peut être écrite immédiatement, les bords de l'image doivent être traité de fa_scon particulière, . . .

Le bruit, ennemi du signal image

Convolution

- Fonction qui en tout point du domaine est égale à l'intégrale d'une des deux fonctions autour de ce point, pondérée par l'autre fonction autour de l'origine.
- Produit de convolution : généralise l'idée de moyenne glissante, représentation mathématique de la notion de filtre linéaire.

Le bruit, ennemi du signal image

Filtrage linéaire

Méthode simple qui consiste à donner à un pixel la valeur moyenne de ses 8 voisins ; peut être mis sous la forme d'un masque (une matrice) :

$$F_1 = \left(\begin{array}{rrr} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array}\right)$$

Soient I_I image de départ, I_F image finale (de taille $N \times N$) et F_1 masque (une matrice 3×3):

$$I_F(x,y) = \frac{1}{9} \sum_{i=-1}^{1} \sum_{j=-1}^{1} F_1[i+1][j+1] \cdot I_1(x+i,y+j)$$

Le bruit, ennemi du signal image

Filtrage linéaire

Généralisation pour un filtre F de taille n + 1 x n + 1 (avec n pair) et dont la somme des coefficients vaut K:

$$I_F(x,y) = \frac{1}{K} \sum_{i=-n/2}^{n/2} \sum_{j=-n/2}^{n/2} F[i+n/2][j+n/2] \cdot I_I(x+i,y+j)$$

- ightharpoonup C'est un produit de convolution discret en chaque point de l'image : $I_F = F \oplus I_I$.
- ► F est la réponse impulsionnelle du filtre correspondant à l'image obtenue en appliquant le filtre à une image composée d'un seul pixel allumé (impulsion de Dirac).

Le bruit, ennemi du signal image

Filtrage linéaire

D'autres filtres peuvent être réalisés en modifiant les coefficients de pondération :

- $ightharpoonup F_2$ est un filtre moins actif que F_1 en donnant plus de poids au pixel central
- $ightharpoonup F_3$ privilégie les directions x et y.

$$F_2 = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 1 \end{pmatrix} \quad F_3 = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{pmatrix}$$

Prétraitement-amélioration Filtrage linéaire

Point délicat

Attention : un filtre opère une modification sur un pixel en tenant compte des pixels voisins problème au bord d'une image.

Pour un filtre de taille $n+1 \times n+1$ (avec n pair), celui-ci n'est pas applicable pour un cadre d'épaisseur n/2 autour de l'image.

Des solutions existent :

- ► filtrer uniquement la partie intérieure de l'image de n/2 à N n/2
- réaliser un effet "miroir" en ajoutant un cadre dans lequel on recopie les n/2 lignes du bord de l'image
- ajouter un cadre rempli de 0.

Prétraitement-amélioration Filtre gaussien

Principe

Facile à mettre en œuvre et donne des résultats de bonne qualité. Il tire son nom de la valeur de ses coefficients qui sont ceux d'une courbe de Gauss à deux dimensions.

$$G(x,\sigma) = \frac{1}{\sigma\sqrt{2\pi}}e^{-x^2/2\sigma^2}$$

Filtre gaussien

Cas bidimensionnel

Le filtrage d'une image est équivalent à la convolution d'une image II avec une gausienne $G(x,y,\sigma)$

$$I_F = I_I \otimes G$$

avec

$$G(x, y, \sigma) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(x^2+y^2)/2\sigma^2}$$

où G est un masque carré dont les coefficients sont les éléments discrétisés de la gaussienne.

Prétraitement-amélioration Filtre gaussien

Réduction du coût

- Pour un bon filtrage, la taille du filtre doit être au moins égale à 4σ, ce qui correspond à 95 % de la courbe.
- Pour un masque de taille $M \times M$, on a $M^2 = 16\sigma^2$ multiplications et $M^2 1 = 16\sigma^2 1$ additions par point de l'image pour effectuer la convolution.
- ► La fonction G est séparable : elle peut s'appliquer par une succession de deux convolutions de filtre de taille *M* × 1, soient 2M multiplications et 2(M 1) additions :

$$I_F = I_I \oplus G_X \oplus G_V$$

Remarque : l'ordre des convolutions est indifférent.

Filtre gaussien

Filtre gaussien

Calcul des coefficients du filtre : $M = 4\sigma + 1$ soit $\sigma = (M1)/4$, puis on calcule chaque $M_i, i \in [0, M1]$:

$$M_i = \frac{1}{\sigma\sqrt{2\pi}}e^{-(i-(M-1)/2)^2/2\sigma^2}$$

Filtrage non-linéaire

Principe

- Il repose sur des heuristiques et le résultat ne provient pas d'une combinaison linéaire de pixels.
- L'exemple le plus classique de filtre non linéaire est le filtre médian (dit de Tuckey), efficace pour les sources de bruit impulsionnel.

Filtrage non-linéaire

Principe

Il peut être décomposé suivant les étapes suivantes :

Algorithme Tuckey()

pour chaque pixel de l'image faire classer les pixels voisins par valeurs croissantes affecter au pixel la valeur médiane des pixels classés finpour

▶ Plus ce filtre est grand, plus il déforme l'image sans adoucir son contraste ⇒ on préfèrera un filtre en forme de croix au traditionnel carré.

Images binaires, opérateurs morphologiques

Introduction

- La binarisation d'une image présente plusieurs avantages dont le faible espace mémoire nécessité par une image binaire et la simplicité des opérateurs qui lui sont associés.
- La binarisation est aussi la première étape d'isolement des objets par rapport au fond.

Images binaires, opérateurs morphologiques

Les opérateurs morphologiques

- Du fait de leur codage sur deux niveaux, chaque pixel d'une image binaire peut être codé comme un élément logique.
- Les opérateurs morphologiques sont issus des études sur la morphologie mathématique et reposent sur le concept de transformation géométrique d'une image par un élément structurant
- L'élément structurant est un masque de forme quelconque dont les éléments forment un motif.
- L'application de l'opérateur consiste à balayer l'image avec ce masque et à effectuer pour chaque pixel une mise en correspondance du pixel et de ses voisins avec le motif du masque, puis d'en effectuer l'union ou l'intersection.

Images binaires, opérateurs morphologiques

Dilatation, érosion

- La binarisation d'une image fortement bruitée donne souvent naissance à une image décevante en terme d'éléments caractéristiques
- ► Opérateurs morphologiques améliorant les images binaires : la dilatation et l'érosion.
- La dilatation permet d'éliminer les points noirs de l'image et l'érosion d'éliminer les points blancs.

Original

Après dilatation

Après érosion

Images binaires, opérateurs morphologiques

Dilatation

- Les points noirs isolés au milieu de parties blanches sont "mangés" par la dilatation des parties blanches.
- Un élément structurant en forme de H parcourt l'image et effectue pour chaque pixel dans cette partition le OU logique des voisins du pixel central.
- ▶ Si le résultat vaut 1, alors le pixel courant est forcé à 1, sinon il est simplement recopié.

Images binaires, opérateurs morphologiques

Erosion

 Procédé dual de la dilatation. On effectue cette fois le ET des voisins : l'image se trouve érodée et tout pixel blanc isolé disparaît.

 En général, on effectue une dilatation/érosion suivie d'une érosion/dilatation afin de supprimer les points isolés de l'image.

Images binaires, opérateurs morphologiques

Squelettisation

- Pas d'amélioration de l'image mais mise en évidence de l'information essentielle à la description de son contenu.
- Elimine au maximum l'information redondante afin de diminuer la quantité de données à analyser.
- Succession d'opérations appelées amincissements jusqu'à obtention d'une structure stable ne pouvant plus être amincie.

Images binaires, opérateurs morphologiques

Squelettisation: Opérateurs topologiques

Images binaires, opérateurs morphologiques

Squelettisation

Ces masques décrivent les différentes formes possibles qu'une ligne peut prendre sur trois pixels (points 2, 3 et 4 des masques). La fonction logique FS associée est :

$$FS = 1.2.3.4.\bar{5}.\bar{6}.\bar{7}$$

La présence de huit masques s'explique par le fait que l'opérateur ne doit pas privilégier une direction particulière.

Segmentation des images

Extraction de contours

Extraction de contours

 Opérateurs de différenciation : extraction de contours réalisé en dérivant l'image une fois (gradient) ou bien deux fois (laplacien).

Contours:

- lignes de maximum locaux pour les filtres de gradient,
- suites de points à 0 pour les filtres Laplaciens.

Opérateurs de dérivation: Opérateur de Roberts

[Roberts 1965] application directe de la formule d'une dérivée, dont on rappelle sa représentation pour une fonction f :

$$a \mapsto f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

Version discrétisée, pour chaque pixel I[x, y] d'une image I, la dérivée en x est :

$$A_x = \frac{I[x+1,y] - I[x,y]}{x+1-x} = I[x+1,y] - I[x,y]$$

Opérateurs de dérivation: Opérateur de Roberts

De même, la dérivée en y est :

$$A_y = I[x, y+1] - I[x, y]$$

► Ces calculs reviennent à convoluer l'image avec les masques :

$$H_x = [-1, 1]$$
 $H_y = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$

L'amplitude 2 est donnée par $\sqrt{A_x^2+A_y^2}$ et la direction par $\arctan(A_y/A_x)$.

Gradients de Sobel et Prewitt

- Présentent l'avantage d'être moins sensibles au bruit. Or tout processus de dérivation d'un signal tend à accentuer le bruit présent dans ce signal.
- Cette sensibilité a été diminuée en effectuant une moyenne locale sur le domaine couvert par le masque.

$$H_x = \left(\begin{array}{ccc} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{array}\right) \quad H_y = \left(\begin{array}{ccc} -1 & -1 & -1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{array}\right)$$

$$H_{x} = \begin{pmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{pmatrix} \quad H_{y} = \begin{pmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{pmatrix}$$

Gradients de Sobel et Prewitt

Amincissement des lignes de contours

- Isolation des maximums locaux d'une image dérivée pour réduire les points de contour à une courbe d'un seul pixel d'épaisseur.
- Méthode de suppression des points non maximum :
 - soient A la carte des gradients et D la carte des directions,
 - pour chaque point A(x, y) on détermine les points adjacents qui se trouvent dans la direction du gradient,
 - soient A₁ et Ā₂ ces points, si A(x, y) est supérieur à la fois à A₁ et A₂ alors il est conservé sinon il est mis à zéro.

L'algorithme de Canny (1986)

- Optimal suivant trois critères :
 - détection : faible taux d'erreur dans la signalisation des contours
 - localisation : distances minimales entre contours réels et détectés,
 - réponse claire : unicité du contour et pas de faux positifs.
- Mise en œuvre : réduction du bruit (filtre gaussien), calcul des gradients d'intensité (G_x, G_y) , détermination de la direction des contours $(\theta = \arctan(G_x/G_y))$, suppression des non-maxima, seuillage des contours (hysteresis).

L'algorithme de Canny

Laplacien

► Calcul de la dérivée seconde de l'image. Plusieurs masques :

$$H_1 = \left(\begin{array}{ccc} 0 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 0 \end{array} \right) \quad H_2 = \left(\begin{array}{ccc} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{array} \right) \quad H_3 = \left(\begin{array}{ccc} 1 & -2 & 1 \\ -2 & 4 & -2 \\ 1 & -2 & 1 \end{array} \right)$$

- ► Le contour est déterminé par détection des passages par zéro du laplacien de l'image ⇒ contours d'un pixel d'épaisseur.
- Inconvénient majeur : grande sensibilité au bruit.

Gradient vs Laplacien

Description des contours

- ▶ Isolation de chaque contour i.e de chaque ensemble de points connectés et codage :
 - rejet des contours non fermés ou fermeture par extrapolation,
 - suppression des branches pendantes,
 - représentation exacte ou interpolation.
- Complexité du calcul, compacité du résultat, unicité de la représentation, richesse de l'information extraite croissants en fonction du codage du contour :
 - liste de ses points (codage cartésien, codage de Freeman),
 - approximation par segments de droite (transformée de Hough),
 - approximation par courbe polynomiale.

Segmentation des images

Extraction de contours

Description des contours

- Codage cartésien : parcours récursif "en profondeur d'abord" à partir d'un point du contour avec suppression des contours non fermés et des branches pendantes.
- Codage de Freeman : utilise la position relative d'un pixel du contour par rapport au précédent (codage des 8 directions possibles).

3	2	1
4		0
5	6	7

Description des contours

- Approximation par segments de droite, sous-échantillonnage du contour par pas de taille p (profondeur du suivi de contour) :
 - construction de segments de droite,
 - calcul de la distance au segment courant pour tous les points du contour dans l'intervalle.
 - subdivision du segment si la distance est supérieure à une distance seuil.
- ► Transformée de Hough (droite = distance à l'origine et angle) :
 - pour chaque point du contour calcul de l'équation de la droite passant par ce point de direction orthogonale à la direction du gradient,
 - accumulation de points (d, α) si des points sont proches avec des directions de gradient voisines,
 - détection et moyenne des accumulations puis construction de la droite par la transformée inverse.

Extraction de contours

Description des contours

contours Transformée de Hough

Segmentation des images

Segmentation en régions homogènes

Segmentation en régions homogènes

- Critères d'homogénéité : luminosité, couleur, texture, mouvement, . . .
- ► Trois approches :
 - méthodes par séparation (split) : quadtree, . . .
 - méthodes par fusion (merge), croissance de régions et fusion (critère de similarité et d'adjacence): blob coloring, clustering, region growing, . . .
 - méthodes par séparation/fusion.

Merci pour votre attention!

