Mathematics/Statistics Bootcamp Quiz

1. For what values of p > 0 does the series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converge?

A
$$p \in (0,1)$$
 B $p \in (1,\infty)$ C $p \in [1,\infty)$ D $p \in (0,1]$

- 2. f(x) is a convex function on \mathbb{R} , $P = (x_0, f(x_0))$ is a point on f(x), and l is the tangent line of the curve of f(x) at P. Choose the correct statement(s).
 - A l must lie above or on the curve of f(x);
 - B l must lie below or on the curve of f(x);
 - C l can intersect with f(x) at multiple points.
- 3. Let $c(x_1, x_2, \ldots, x_n)$ be a function of x_1, x_2, \ldots, x_n of which all the partial derivatives exist. Let $g(x_1, x_2, \ldots, x_n) = c(x_1, x_2, \ldots, x_n) \exp(\sum_{i=1}^n w_i x_i)$ where w_1, w_2, \ldots, w_n are all constant numbers. Write down the gradient vector of g.
- 4. If $X = \begin{pmatrix} -2 & 2 \\ -1 & -1 \end{pmatrix}$ and $Y = \begin{pmatrix} 3 & -8 \\ 4 & -1 \end{pmatrix}$, does XY = YX?
- 5. If X is an $n \times n$ projection matrix, show that $I_n X$ is also a projection matrix.
- 6. Find the centering matrix C such that the linear transformation CX subtracts the column means of X.
- 7. Suppose that the random variable X follows a Poisson distribution with mean λ . Suppose that the random variable Y follows a binomial distribution, with number of trials equal to X and probability of success p.
 - A Find E[Y].
 - B Find V[Y].
- 8. Male verbal GRE scores are normally distributed, with a mean of 149 and a standard deviation of 9. Female verbal GRE scores are also normally distributed, with a mean of 149 and a standard deviation of 8. 55% of the students who take the GRE are female. What is the probability that a randomly chosen student is female, given that his/her verbal GRE score was 170?
- 9. Suppose that the random variable X is gamma distributed, with probability density function

$$f(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x}.$$

What is the probability density function of 1/X? (This is the pdf of the inverse-gamma distribution).

10. One observation is taken on a discrete random variable X with pmf $f(x|\theta)$ where $\theta \in \{1,2,3\}$ (see the table below for the values of $f(x|\theta)$). Find the MLE of θ (write down the MLE as a function of the observation x).

\overline{x}	f(x 1)	f(x 2)	f(x 3)
0	$\frac{1}{3}$	$\frac{1}{4}$	0
1	$\frac{1}{3}$	$ \begin{array}{c} \frac{1}{4} \\ \frac{1}{8} \\ \frac{1}{4} \\ \frac{1}{8} \end{array} $	0
2	0	$\frac{1}{8}$	$\frac{1}{4}$
3	$\frac{1}{6}$	$\frac{1}{4}$	$\frac{1}{4}$ $\frac{1}{2}$
4	$\frac{1}{6}$	$\frac{1}{8}$	$\frac{1}{4}$

- 11. Let X_1, X_2, \ldots, X_n be i.i.d. samples from $N(\mu, \sigma^2)$ with both μ and σ^2 both unknown. Write down a 95% confidence interval of μ .
- 12. Which of the following statements about p-values is(are) **incorrect**? (Let H_0 and H_1 denote the null hypothesis and alternative hypothesis.)
 - A The p-value is a summary statistic of the observed data;
 - B p-values describe how "extreme" H_1 is given the data;
 - C smaller p-values suggest stronger evidence that H_1 is true;
 - D If the p-value is smaller than 0.05, we should reject H_0 .