STOR 635 HW 5

BY AMEER QAQISH

February 14, 2022

1 Solutions

1. Show that if X_n, Y_n are submartingales w.r.t \mathcal{F}_n then $X_n \vee Y_n$ is also.

Proof. $X_n \vee Y_n$ is \mathcal{F}_n -measurable since both X_n and Y_n are. We have $|X_n \vee Y_n| \leq |X_n| + |Y_n| \in L^1$, so $X_n \vee Y_n \in L^1$. By monotonicity, $E(X_{n+1} \vee Y_{n+1} | \mathcal{F}_n) \geq E(X_{n+1} | \mathcal{F}_n)$ and $E(X_{n+1} \vee Y_{n+1} | \mathcal{F}_n) \geq E(Y_{n+1} | \mathcal{F}_n)$. Thus

$$E(X_{n+1} \vee Y_{n+1} \mid \mathcal{F}_n) \geq E(X_{n+1} \mid \mathcal{F}_n) \vee E(Y_{n+1} \mid \mathcal{F}_n)$$

> $X_n \vee Y_n$.

Thus $X_n \vee Y_n$ is a submartingale.

2. Let $\{\xi_{n,k}: n \geq 1, k \geq 1\}$ be an array of iid nonnegative integer valued random variables with $E(\xi_{n,k}) = \mu$. Define

$$Z_0 = 1$$
 and $Z_n = \sum_{k=1}^{Z_{n-1}} \xi_{n,k}$ $n \ge 1$.

Let $\mathcal{F}_n = \sigma(Z_1, \ldots, Z_n)$. Show that $\{Z_n\}$ is an \mathcal{F}_n -martingale, submartingale and supermartingale according as $\mu = 1$, $\mu \ge 1$, and $\mu \le 1$.

Proof. Note that Z_1 is a function of the first row $\{\xi_{1,k}: k \in \mathbb{N}\}$ of the array. Z_2 is a function of Z_1 and the second row $\{\xi_{2,k}: k \in \mathbb{N}\}$ of the array. Hence Z_2 is a function of the first two rows $\{\xi_{n,k}: n \in \{1,2\}, k \in \mathbb{N}\}$ of the array. By an inductive argument, for every $m \in \mathbb{N}$, Z_m is a function of the first m rows $\{\xi_{n,k}: n \in \{1,\ldots,m\}, k \in \mathbb{N}\}$ of the array. In particular, $\xi_{n,k}$ is independent of \mathcal{F}_{n-1} for all $n,k \in \mathbb{N}$. Thus for every $n \in \mathbb{N}$,

$$E(Z_n) = E\left(\sum_{k=1}^{Z_{n-1}} \xi_{n,k}\right)$$

$$= E\left(\sum_{k=1}^{\infty} 1_{\{k \le Z_{n-1}\}} \xi_{n,k}\right)$$

$$= \sum_{k=1}^{\infty} E(1_{\{k \le Z_{n-1}\}} \xi_{n,k})$$

$$= \sum_{k=1}^{\infty} E(1_{\{k \le Z_{n-1}\}}) E(\xi_{n,k})$$

$$= \mu \sum_{k=1}^{\infty} E(1_{\{k \le Z_{n-1}\}})$$

2 Section 1

$$= \mu E\left(\sum_{k=1}^{\infty} 1_{\{k \le Z_{n-1}\}}\right)$$
$$= \mu E(Z_{n-1}).$$

Since $E(Z_0) = 1$, this means $E(Z_n) = \mu^n$ for all $n \in \mathbb{N}$. Assuming $\mu < \infty$, this means Z_n is integrable for all n. For every $n \in \mathbb{N}_0$,

$$E(Z_{n+1} | \mathcal{F}_n) = E\left(\sum_{k=1}^{Z_n} \xi_{n+1,k} | \mathcal{F}_n\right)$$

$$= E\left(\sum_{k=1}^{\infty} 1_{\{k \le Z_n\}} \xi_{n+1,k} | \mathcal{F}_n\right)$$

$$= \sum_{k=1}^{\infty} E(1_{\{k \le Z_n\}} \xi_{n+1,k} | \mathcal{F}_n)$$

$$= \sum_{k=1}^{\infty} 1_{\{k \le Z_n\}} E(\xi_{n+1,k} | \mathcal{F}_n)$$

$$= \sum_{k=1}^{Z_n} E(\xi_{n+1,k})$$

$$= \mu Z_n.$$

Thus Z is a martingale when $\mu = 1$, a submartingale when $\mu \ge 1$, and a supermartingale when $\mu \le 1$.

3. Suppose that $\{X_n\}$ is a nonnegative \mathcal{F}_n -supermartingale and τ is a stopping time. Show that $E(X_\tau) \leq E(X_0)$.

Proof. We first consider the case when τ is bounded. So we assume that there exists $T \in \mathbb{N}$ such that $\tau \leq T$. We have $|X_{\tau}| \leq \sum_{n=0}^{T} |X_n| \in L^1$, so $X_{\tau} \in L^1$. We have

$$X_{\tau} - X_0 = \sum_{m=1}^{T} 1_{\{m \le \tau\}} (X_m - X_{m-1}) = (H \cdot X)_T, \quad H_m = 1_{\{m \le \tau\}}.$$

Since $\{m \le \tau\} = \{\tau < m\}^c = \{\tau \le m - 1\}^c \in \mathcal{F}_{m-1}$, H_m is a predictable sequence. H_m is also nonnegative and bounded. Thus $H \cdot X$ is a supermartingale. Thus

$$E(X_{\tau} - X_0) = E((H \cdot X)_T) \le E((H \cdot X)_0) = 0.$$

Thus $E(X_{\tau}) \leq E(X_0)$.

Now we consider the case of general τ . In this case, τ may take the value ∞ , so we must define X_{∞} in order for X_{τ} to make sense. Since $E(X_n^-)=0$ for all $n\geq 0$, the martingale convergence theorem yields that there exists an $\mathcal{F}_{\infty} = \sigma(\bigcup_{n=0}^{\infty} \mathcal{F}_n)$ -measurable random variable X_{∞} with $X_n \to X_{\infty}$ almost surely as $n \to \infty$ and $E(|X_{\infty}|) < \infty$.

Note that $X_{\tau \wedge n} \to X_{\tau}$ almost surely as $n \to \infty$. Since $\tau \wedge n$ is bounded, we have by the previous case that $E(X_{\tau \wedge n}) \leq E(X_0)$. Since $X_{\tau \wedge n} \geq 0$ by assumption, Fatou's lemma yields

$$E(X_{\tau}) \le \liminf_{n \to \infty} E(X_{\tau \wedge n}) \le E(X_0).$$

Solutions 3

4. Suppose that S and T are \mathcal{F}_n -stopping times. Show that $S \vee T$ and S + T are also \mathcal{F}_n -stopping times.

Proof. Since $\{S \vee T \leq n\} = \{S \leq n\} \cap \{T \leq n\} \in \mathcal{F}_n$, $S \vee T$ is a stopping time. We have

$${S + T \le n} = \bigcup_{j=0}^{n} {S = j} \cap {T \le n - j} \in \mathcal{F}_n.$$

Thus S + T is a stopping time.

5. Suppose that S and T are \mathcal{F}_n -stopping times with $S \leq T$. Define:

$$H_n(\omega) = 1_{(S(\omega), T(\omega)]}(n), \quad \omega \in \Omega, n \ge 1.$$

Show that $\{H_n\}$ is predictable and deduce that if $\{X_n\}$ is a supermartingale then

$$E(X_{T \wedge n}) \leq E(X_{S \wedge n})$$
 for all n .

Proof. We have $H_n = 1_{\{S < n \le T\}}$. Note that

$$\{S < n \le T\} = \{S < n\} \cap \{n \le T\}$$

$$= \{S \le n - 1\} \cap \{T > n\}^c$$

$$= \{S < n - 1\} \cap \{T < n - 1\}^c \in \mathcal{F}_{n-1}.$$

Thus H is predictable.

Let $(X_n)_{n=0}^{\infty}$ be an arbitrary supermartingale. To show that $E(X_{T \wedge n}) \leq E(X_{S \wedge n})$ for all n, it suffices to assume that T is bounded and show that $E(S) \leq E(T)$. So assume there exists $n_0 \in \mathbb{N}_0$ such that $T \leq n_0$. Since $|X_T| \leq \sum_{n=0}^{n_0} |X_n|$, X_T is integrable. Similarly, X_S is integrable. With $H_n = 1_{\{S < n \leq T\}}$ as above, we have $X_T - X_S = (H \cdot X)_{n_0}$. Since H is predictable, bounded, and nonnegative, $H \cdot X$ is a supermartingale. Thus $E(X_T - X_S) = E((H \cdot X)_{n_0}) \leq E((H \cdot X)_0) = 0$. Thus $E(X_T) \leq E(X_S)$.

6. Suppose that $\{X_n\}$ is an integrable \mathcal{F}_n -adapted sequence such that $E(X_\tau) = E(X_0)$ for every bounded \mathcal{F}_n -stopping time τ . Show that $\{X_n\}$ must be a \mathcal{F}_n -martingale.

Proof. Let $m, n \in \mathbb{N}_0$ with m < n be arbitrary. To show that $E(X_n \mid \mathcal{F}_m) = X_m$, we need to show that $E(X_n \mid I_A) = E(X_m \mid I_A)$ for all $A \in \mathcal{F}_m$. Let $A \in \mathcal{F}_m$ be arbitrary. Let $\tau = m \mid I_A + n \mid I_{A^c}$. We have $\{\tau = m\} = A \in \mathcal{F}_m$ and $\{\tau = n\} = A^c \in \mathcal{F}_m \subset \mathcal{F}_n$ and $\{\tau = k\} = \emptyset \in \mathcal{F}_k$ for $k \notin \{m, n\}$. Thus τ is a bounded stopping time. Thus

$$E(X_0) = E(X_\tau)$$

$$= E(X_m 1_A + X_n 1_{A^c})$$

$$= E(X_m 1_A + X_n - X_n 1_A)$$

$$= E(X_m 1_A) + E(X_n) - E(X_n 1_A)$$

$$= E(X_m 1_A) + E(X_0) - E(X_n 1_A).$$

4 Section 1

The equality $E(X_n) = E(X_0)$ used above follows from the fact that the constant random variable n is a bounded stopping time. Thus $E(X_n 1_A) = E(X_m 1_A)$. Thus $E(X_n | \mathcal{F}_m) = X_m$.

7. Let ξ_1, ξ_2, \ldots be i.i.d. N(0,1). Let $X_n = \sum_{i=1}^n \xi_i, n \ge 1$; and let $X_0 = 0$. Let $\mathcal{F}_n = \sigma\{\xi_i, i = 1, \ldots, n\}, \mathcal{F}_0 = \{\emptyset, \Omega\}$. Let $\{H_n\}_{n=1}^{\infty}$ be a \mathcal{F}_n -predictable sequence of bounded random variables. Let

$$Z_n = \exp\left(\sum_{i=1}^n H_i(X_i - X_{i-1}) - \frac{1}{2}\sum_{i=1}^n H_i^2\right), n \ge 1, \quad Z_0 = 1.$$

Show that $\{Z_n\}$ is an \mathcal{F}_n -martingale.

Solution. First we define the conditional expectation for nonnegative random variables which are not necessarily integrable.

Theorem 1. Let (Ω, \mathcal{F}, P) be a probability space, and let $X : \Omega \to [0, \infty)$ be an \mathcal{F} -measurable random variable. Suppose $\mathcal{G} \subset \mathcal{F}$ is a σ -algebra. Then there is a unique \mathcal{G} -measurable random variable $E(X \mid \mathcal{G}) : \Omega \to [0, \infty)$ such that $E(1_A X) = E(1_A E(X \mid \mathcal{G}))$ for all $A \in \mathcal{G}$.

Proof. Define a measure ν on \mathcal{G} by $\nu(A) = E(1_A X)$. Clearly $\nu \ll P|_{\mathcal{G}}$. Note that $\Omega = \bigcup_{n=0}^{\infty} \{X \leq n\}$ and that $\nu(X \leq n) = E(1_{\{X \leq n\}} X) \leq n$. Thus ν is σ -finite. By the Radon Nikodym theorem, there is a unique \mathcal{G} -measurable random variable $E(X \mid \mathcal{G}) : \Omega \to [0, \infty)$ such that for every $A \in \mathcal{G}$,

$$\nu(A) = \int_A E(X \mid \mathcal{G}) dP|_{\mathcal{G}} = \int_A E(X \mid \mathcal{G}) dP = E(1_A E(X \mid \mathcal{G})). \quad \Box$$

Proof of Problem 7. For each $n \in \mathbb{N}_0$, Z_n is \mathcal{F}_n -measurable. Now we show that $E(Z_{n+1} | \mathcal{F}_n) = Z_n$. Let $n \in \mathbb{N}_0$ be arbitrary. Note that $E(Z_{n+1} | \mathcal{F}_n) = Z_n$ if and only if $\frac{1}{Z_n} E(Z_{n+1} | \mathcal{F}_n) = E\left(\frac{Z_{n+1}}{Z_n} | \mathcal{F}_n\right) = 1$. Thus to show that $E(Z_{n+1} | \mathcal{F}_n) = Z_n$, it suffices to show that $E\left(\frac{Z_{n+1}}{Z_n} | \mathcal{F}_n\right) = 1$. We have

$$E\left(\frac{Z_{n+1}}{Z_n} \mid \mathcal{F}_n\right) = E\left(\exp\left(H_{n+1}\xi_{n+1} - \frac{1}{2}H_{n+1}^2\right) \mid \mathcal{F}_n\right)$$

$$= E\left(\exp\left(H_{n+1}\xi_{n+1}\right) \exp\left(-\frac{1}{2}H_{n+1}^2\right) \mid \mathcal{F}_n\right)$$

$$= E\left(\exp\left(H_{n+1}\xi_{n+1}\right) \mid \mathcal{F}_n\right) \exp\left(-\frac{1}{2}H_{n+1}^2\right).$$

Thus it suffices to show that $E(\exp(H_{n+1} \xi_{n+1}) \mid \mathcal{F}_n) = \exp(\frac{1}{2} H_{n+1}^2)$. Since H_{n+1} is \mathcal{F}_n -measurable, there exists a Borel measurable function $f: \mathbb{R}^n \to \mathbb{R}$ such that $H_{n+1} = f(\xi_1, \dots, \xi_n)$. For $c_1, \dots, c_n \in \mathbb{R}$,

$$E(\exp(H_{n+1}\,\xi_{n+1})\,|\,\xi_1 = c_1, \dots, \xi_n = c_n) = E(\exp(f(c_1, \dots, c_n)\,\xi_{n+1})\,|\,\xi_1 = c_1, \dots, \xi_n = c_n)$$

$$= E(\exp(f(c_1, \dots, c_n)\,\xi_{n+1})).$$

Solutions 5

For $t \in \mathbb{R}$,

$$E(\exp(t\,\xi_{n+1})) = \int_{-\infty}^{\infty} e^{tx} \,e^{-x^2/2} \,dx.$$

We have

$$-\frac{x^2}{2} + t \, x = -\frac{1}{2} \left(x^2 - 2 \, t \, x \right) = -\frac{1}{2} \left((x - t)^2 - t^2 \right) = -\frac{1}{2} \left(x - t \right)^2 + \frac{1}{2} \, t^2.$$

Thus

$$\int_{-\infty}^{\infty} e^{tx} e^{-x^2/2} dx = e^{\frac{1}{2}t^2} \int_{-\infty}^{\infty} e^{-\frac{(x-t)^2}{2}} dx = e^{\frac{1}{2}t^2} \int_{-\infty}^{\infty} e^{-\frac{x^2}{2}} = e^{\frac{1}{2}t^2}.$$

Thus $E(\exp(t\,\xi_{n+1})) = e^{\frac{1}{2}t^2}$. Thus

$$E(\exp(f(c_1,\ldots,c_n)\,\xi_{n+1})) = e^{\frac{1}{2}f(c_1,\ldots,c_n)^2}.$$

Thus

$$E(\exp(H_{n+1}\,\xi_{n+1})\mid\xi_1,\ldots,\xi_n) = \exp\left(\frac{1}{2}\,f(\xi_1,\ldots,\xi_n)^2\right) = \exp\left(\frac{1}{2}\,H_{n+1}^2\right).$$

This finishes the proof that $E(Z_{n+1} | \mathcal{F}_n) = Z_n$.

To establish integrability of Z_n , note that

$$E(Z_n) = E(E(Z_n | \mathcal{F}_{n-1})) = E(Z_{n-1}) = \dots = E(Z_0) = 1.$$

Thus Z is a martingale.