ASSIGNMENT-4

Date	29 oct 2022
Student roll no	912619104011
Student name	Keerthana.R
Maximum mark	2 mark

1. Download the dataset: https://www.kaggle.com/code/kredy10/simple-lstm-for-text-classification/**data**

```
[] import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import keras
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from keras.models import Model
from keras.layers import LSTM, Activation, Dense, Dropout, Input, Embedding
from keras.optimizers import RMSprop
from keras.optimizers import Tokenizer
from keras.preprocessing.text import Tokenizer
from keras.preprocessing import sequence
from keras.utils import to_categorical, pad_sequences
from keras.atils import to_categorical, pad_sequences
from keras.sintlacks import EarlyStopping
%matplotlib inline
```

2. Import Required libararies

[] df = pd.read_csv('/content/spam.csv',delimiter=',',encoding='latin-1')
 df.head()

	v1	v2	Unnamed: 2	Unnamed: 3	Unnamed: 4
0	ham	Go until jurong point, crazy Available only \dots	NaN	NaN	NaN
1	ham	Ok lar Joking wif u oni	NaN	NaN	NaN
2	spam	Free entry in 2 a wkly comp to win FA Cup fina	NaN	NaN	NaN
3	ham	U dun say so early hor U c already then say	NaN	NaN	NaN
4	ham	Nah I don't think he goes to usf, he lives aro	NaN	NaN	NaN

3. Read dataset and pre-processing

```
[] df.drop(['Unnamed: 2', 'Unnamed: 3', 'Unnamed: 4'],axis=1,inplace=True)
[ ] df.shape
    (5572, 2)
[ ] #plot the ham and spam messages to understand the distribution
    df['v1'].value_counts().plot(kind='bar')
    plt.xlabel('Label')
    plt.title('Number of ham and spam messages')
    Text(0.5, 1.0, 'Number of ham and spam messages')
                Number of ham and spam messages
     5000
     4000
     1000
                   mer
 [ ] X = dt.v2
      Y = df.v1
     #label encoding for Y
     le = LabelEncoder()
     Y = le.fit_transform(Y)
     Y = Y.reshape(-1,1)
 #split into train and test sets
     X_train,X_test,Y_train,Y_test = train_test_split(X,Y,test_size=0.20)
 [ ] max_words = 1000
     max_len = 150
      tok = Tokenizer(num_words=max_words)
     tok.fit_on_texts(X_train)
      sequences = tok.texts_to_sequences(X_train)
      sequences_matrix = keras.utils.pad_sequences(sequences,maxlen=max_len)
```

◆ 4. Add Layers(LSTM, Dense-(Hidden Layers), Output)

```
inputs = Input(name='inputs',shape=[max_len])
layer = Embedding(max_words,50,input_length=max_len)(inputs)
layer = LSTM(64)(layer)
layer = Dense(256,name='FC1')(layer)
layer = Activation('relu')(layer)
layer = Dropout(0.5)(layer)
layer = Dense(1,name='out_layer')(layer)
layer = Activation('sigmoid')(layer)
```

5. Create Model

```
[ ] model = Model(inputs=inputs,outputs=layer)
```

6. Compile the Model

```
[ ] model.summary()
  model.compile(loss='binary_crossentropy',optimizer=RMSprop(),metrics=['accuracy'])
```

Model: "model"

Layer (type)	Output Shape	Param #
inputs (InputLayer)	[(None, 150)]	0
embedding (Embedding)	(None, 150, 50)	50000
lstm (LSTM)	(None, 64)	29440
FC1 (Dense)	(None, 256)	16640
activation (Activation)	(None, 256)	0
dropout (Dropout)	(None, 256)	0
out_layer (Dense)	(None, 1)	257
activation_1 (Activation)	(None, 1)	0

Total params: 96,337

Trainable params: 96,337 Non-trainable params: 0

7.Fit the Model

8. Save the Model

```
[ ] model.save('spam_lstm_model.h5')
```

9.Test the Model