Exploiting Imprecise Information Sources in Sequential Decision Making Problems under Uncertainty

N.Drougard

under D.Dubois, J-L.Farges and F.Teichteil-Königsbuch supervision
doctoral school: EDSYS institution: ISAE-SUPAERO
laboratory: ONERA-The French Aerospace Lab

retour sur innovation

(context)

Autonomous robotics

Onera, Flight Dynamics & System control

Control Engineering, Artificial intelligence, Cognitive Sciences

Context

context

Autonomous robotics

Onera, Flight Dynamics & System control

Control Engineering, Artificial intelligence, Cognitive Sciences

among many other works:

- autonomy and human factors
- decision making, planning
- experimental/industrial applications: UAVs, human-machine interaction, exploration robots

(context)

(context)

Context

(context)

Context

(context)

Context

context

Context

context

Partially Observable Markov Decision Processes (POMDPs)

s_t

at

Context

context

context

Context

context

Context

context

Context

context

context

context

belief state, strategy, criterion

POMDP: $\langle S, A, O, T, O, r, \gamma \rangle$ (Smallwood et al. 1973)

- **transition** function $T(s, a, s') = \mathbf{p}(s' \mid s, a)$
- **observation** function $O(s', a, o') = \mathbf{p}(o' \mid s', a)$

belief state, strategy, criterion

qualitative modeling

POMDP: $\langle S, A, O, T, O, r, \gamma \rangle$ (Smallwood et al. 1973)

- **transition** function $T(s, a, s') = \mathbf{p}(s' | s, a)$
- **observation** function $O(s', a, o') = \mathbf{p}(o' | s', a)$

belief state:
$$b_t(s) = \mathbb{P}(s_t = s | a_0, o_1, ..., a_{t-1}, o_t)$$

belief state, strategy, criterion

qualitative modeling

POMDP: $\langle S, A, \mathcal{O}, T, O, r, \gamma \rangle$ (Smallwood et al. 1973)

- **transition** function $T(s, a, s') = \mathbf{p}(s' | s, a)$
- **observation** function $O(s', a, o') = \mathbf{p}(o' | s', a)$

belief state:
$$b_t(s) = \mathbb{P}(s_t = s | a_0, o_1, ..., a_{t-1}, o_t)$$

probabilistic belief update – a selected, o' received

$$b_{t+1}(s') \propto \mathbf{p}\left(\left.o'\left|\right.\right.s',a\right) \cdot \sum_{s \in \mathcal{S}} \mathbf{p}\left(\left.s'\left|\right.\right.s,a\right) \cdot b_{t}(s)$$

context

belief state, strategy, criterion

POMDP: $\langle S, A, O, T, O, r, \gamma \rangle$ (Smallwood et al. 1973)

solver & factorization

- **transition** function $T(s, a, s') = \mathbf{p}(s' \mid s, a)$
- **observation** function $O(s', a, o') = \mathbf{p}(o' \mid s', a)$

belief state: $b_t(s) = \mathbb{P}(s_t = s \mid a_0, o_1, ..., a_{t-1}, o_t)$

probabilistic belief update – a selected, o' received

$$b_{t+1}(s') \propto \mathbf{p}(o' \mid s', a) \cdot \sum_{s \in S} \mathbf{p}(s' \mid s, a) \cdot b_t(s)$$

action choices: strategy $\delta(b_t) = a_t \in \mathcal{A}$

maximizing
$$\mathbb{E}_{s_0\sim b_0}\left[\sum_{t=0}^{+\infty}\gamma^t\cdot r\Big(s_t,\delta(b_t)\Big)
ight]$$
, $0<\gamma<1$

context

optimal strategy computation PSPACE-hard
 (Papadimitriou et al. 1987)

probabilities are imprecisely known in practice

prior ignorance semantic/management?

context

practical issues: Complexity, Vision and Initial Belief

■ POMDP optimal strategy computation undecidable in infinite horizon (*Madani et al. 1999*)

context

- POMDP optimal strategy computation undecidable in infinite horizon (*Madani et al. 1999*)
- → optimality for "small" or "structured" POMDPs
- ightarrow approximate computations

Context

context

- POMDP optimal strategy computation undecidable in infinite horizon (*Madani et al. 1999*)
- → optimality for "small" or "structured" POMDPs
- \rightarrow approximate computations
 - Imprecise model, e.g. vision from statistical learning

Context

context

- POMDP optimal strategy computation undecidable in infinite horizon (*Madani et al. 1999*)
- \rightarrow optimality for "small" or "structured" POMDPs
- ightarrow approximate computations
 - Imprecise model, e.g. vision from statistical learning
- \rightarrow unknown environments: image variability of the datasets?

context

practical issues: Complexity, Vision and Initial Belief

- POMDP optimal strategy computation undecidable in infinite horizon (*Madani et al. 1999*)
- → optimality for "small" or "structured" POMDPs
- \rightarrow approximate computations
 - Imprecise model, e.g. vision from statistical learning
- ightarrow unknown environments: image variability of the datasets?

Lack of prior information on the system state: initial belief state b_0

Context

context

- POMDP optimal strategy computation undecidable in infinite horizon (*Madani et al. 1999*)
- → optimality for "small" or "structured" POMDPs
- ightarrow approximate computations
 - Imprecise model, e.g. vision from statistical learning
- ightarrow unknown environments: image variability of the datasets?

- Lack of prior information on the system state: initial belief state b_0
- \rightarrow uniform probability distribution \neq ignorance!

Qualitative Possibility Theory

presentation – (max,min) "tropical" algebra

usually $\{0, \frac{1}{k}, \frac{2}{k}, \dots, 1\}$

events
$$e \subset \Omega$$
 (universe) sorted using possibility degrees $\pi(e) \in \mathcal{L}$ \neq

quantified with frequencies $p(e) \in [0,1]$ (probabilities)

Qualitative Possibility Theory

presentation - (max,min) "tropical" algebra

finite scale \mathcal{L}

qualitative modeling

usually
$$\{0, \frac{1}{k}, \frac{2}{k}, \dots, 1\}$$

solver & factorization

events
$$e \subset \Omega$$
 (universe)

sorted using possibility **degrees**
$$\pi(e) \in \mathcal{L}$$

quantified with frequencies
$$p(e) \in [0,1]$$
 (probabilities)

$$e_1 \neq e_2$$
, 2 events $\subset \Omega$

$$\blacksquare \pi(e_1) < \pi(e_2) \Leftrightarrow "e_1 \text{ is less plausible than } e_2"$$

Qualitative Possibility Theory Criteria from Sugeno integral

qualitative modeling

Probability	/ Possibility:

+	max
×	min
$X \in \mathbb{R}$	$X\in\mathcal{L}$
	optimistic:
$\mathbb{E}[X] = \sum_{x \in X} x \cdot \mathbf{p}(x)$	$\mathbb{S}_{\Pi}[X] = \max_{x \in X} \min\{x, \pi(x)\}$
	pessimistic:

 $\mathbb{S}_{\mathcal{N}}[X] = \min_{x \in X} \max\{x, 1 - \pi(x)\}$

Qualitative Possibility Theory qualitative possibilistic POMDP (π-POMDP)

Sabbadin (UAI-98) introduces

the qualitative possibilistic POMDP

 π -POMDP: $\langle \mathcal{S}, \mathcal{A}, \mathcal{O}, T^{\pi}, O^{\pi}, \rho \rangle$

Qualitative Possibility Theory qualitative possibilistic POMDP (π-POMDP)

Sabbadin (UAI-98) introduces

the qualitative possibilistic POMDP

$$\pi$$
-POMDP: $\langle S, A, O, T^{\pi}, O^{\pi}, \rho \rangle$

- **transition** function $T^{\pi}(s, a, s') = \pi(s' | s, a) \in \mathcal{L}$
- **observation** function $O^{\pi}(s',a,o')=\pi\left(\left.o'\mid \left.s',a\right.
 ight)\in\mathcal{L}$
- **preference** function $\rho: \mathcal{S} \times \mathcal{A} \to \mathcal{L}$

Qualitative Possibility Theory qualitative possibilistic POMDP (π-POMDP)

Sabbadin (UAI-98) introduces

the qualitative possibilistic POMDP

 π -POMDP: $\langle \mathcal{S}, \mathcal{A}, \mathcal{O}, T^{\pi}, O^{\pi}, \rho \rangle$

- **transition** function $T^{\pi}(s, a, s') = \pi(s' | s, a) \in \mathcal{L}$
- **observation** function $O^{\pi}(s', a, o') = \pi(o' | s', a) \in \mathcal{L}$
- **preference** function $\rho: \mathcal{S} \times \mathcal{A} \to \mathcal{L}$
- belief space trick: POMDP \rightarrow MDP with **infinite** space π -POMDP \rightarrow π -MDP with **finite** space
- problem becomes decidable
- $\blacksquare \ \forall s \in \mathcal{S}, \ \pi(s) = 1 \Leftrightarrow \text{total ignorance about } s$

A possibilistic belief state finite belief space

$$\Pi_{\mathcal{L}}^{\mathcal{S}} = \left\{ \text{ possibility distributions } \right\}: \#\Pi_{\mathcal{L}}^{\mathcal{S}} \sim \#\mathcal{L}^{\#\mathcal{S}} < +\infty$$
 $\rightarrow i.e.$ finite belief space

qualitative modeling

context

$$\Pi_{\mathcal{L}}^{\mathcal{S}} = \left\{ \text{ possibility distributions } \right\}: \ \#\Pi_{\mathcal{L}}^{\mathcal{S}} \sim \#\mathcal{L}^{\#\mathcal{S}} < +\infty$$

 \rightarrow *i.e.* finite belief space

$$b_t^{\pi}(s) = \pi (s_t = s \mid a_0, o_1, \dots, a_{t-1}, o_t)$$

A possibilistic belief state finite belief space

$$\Pi_{\mathcal{L}}^{\mathcal{S}} = \Big\{ \text{ possibility distributions } \Big\} : \ \#\Pi_{\mathcal{L}}^{\mathcal{S}} \sim \#\mathcal{L}^{\#\mathcal{S}} < +\infty$$

 \rightarrow *i.e.* finite belief space

$$b_t^{\pi}(s) = \pi (s_t = s \mid a_0, o_1, \dots, a_{t-1}, o_t)$$

possibilistic belief update – a selected, o' received

joint distribution on $\mathcal{S} \times \mathcal{O}$ from b_t^{π} : π (o', $s' \mid b_t^{\pi}$, a)

A possibilistic belief state finite belief space

qualitative modeling

$$\Pi_{\mathcal{L}}^{\mathcal{S}} = \Big\{ \text{ possibility distributions } \Big\} : \ \#\Pi_{\mathcal{L}}^{\mathcal{S}} \sim \#\mathcal{L}^{\#\mathcal{S}} < +\infty$$

 \rightarrow *i.e.* finite belief space

$$b_t^{\pi}(s) = \pi (s_t = s \mid a_0, o_1, \dots, a_{t-1}, o_t)$$

possibilistic belief update – a selected, o' received

joint distribution on $S \times O$ from b_t^{π} : $\pi(o', s' \mid b_t^{\pi}, a)$

 \rightarrow next belief state: $b_{t+1}^{\pi}(s') = \pi(o', s' \mid b_t^{\pi}, a)$ unless s' maximizes π (o', s' | b_t^{π} , a), then $b_{t+1}^{\pi}(s') = 1$

denoted by $b_{t+1}^{\pi}(s') \propto^{\pi} \pi(o', s' \mid b_t^{\pi}, a)$

context

A possibilistic belief state finite belief space

qualitative modeling

$$\Pi_{\mathcal{L}}^{\mathcal{S}} = \left\{ \text{ possibility distributions } \right\}: \ \#\Pi_{\mathcal{L}}^{\mathcal{S}} \sim \#\mathcal{L}^{\#\mathcal{S}} < +\infty$$

 \rightarrow *i.e.* finite belief space

$$b_t^{\pi}(s) = \pi (s_t = s \mid a_0, o_1, \dots, a_{t-1}, o_t)$$

possibilistic belief update – a selected, o' received

joint distribution on $S \times O$ from b_t^{π} : $\pi(o', s' \mid b_t^{\pi}, a)$

 \rightarrow next belief state: $b_{t+1}^{\pi}(s') = \pi(o', s' \mid b_t^{\pi}, a)$ unless s' maximizes $\pi(o', s' \mid b_t^{\pi}, a)$, then $b_{t+1}^{\pi}(s') = 1$

denoted by $b_{t+1}^{\pi}(s') \propto^{\pi} \pi(o', s' \mid b_t^{\pi}, a)$

Makovian update: only depends on o', a and b_{+}^{π}

(context)

Qualitative Possibility Theory:

→ simplification, imprecision/prior ignorance modeling

Overview

Qualitative Possibility Theory:

→ simplification, imprecision/prior ignorance modeling

- 1 example of a qualitative possibilistic model
- 2 advancements and first use of the π -POMDP model
- 3 simplify computation: ADDs and factorization
- 4 probabilistic-possibilistic (hybrid) approach

Example: Human-Machine Interaction joint work with Sergio Pizziol – Context

context

 $oxed{ ext{qualitative modeling}}$ advances in $\pi ext{-POMDP}$ solver & factorization hybrid model conclusion

Example: Human-Machine Interaction joint work with Sergio Pizziol – Context

context

Issue: incorrect human assessment of the machine state \rightarrow accident risk

Example: Human-Machine Interaction

joint work with Sergio Pizziol - Context

context

Issue: incorrect human assessment of the machine state → **accident risk**

π -POMDP without actions: π -Hidden Markov Process

- lacktriangle system space \mathcal{S} : set of human assessments o hidden
- **observation space** \mathcal{O} : feedbacks/human manipulations

Example: Human-Machine Interaction

Human error model from expert knowledge

context

Machine with states A, B, C, ...

state $s_A \in \mathcal{S}$: "human thinks machine state is A"

Example: Human-Machine Interaction

Human error model from expert knowledge

Machine with states A, B, C, ...

state $s_A \in \mathcal{S}$: "human thinks machine state is A"

Machine state transition $A \rightarrow B$

■ observation: machine feedback $o'_f \in \mathcal{O}$:

human usually aware of feedbacks $\to \pi\left(s_B',o_f'\mid s_A\right)=1$ but may lose a feedback $\to \pi\left(s_A',o_f'\mid s_A\right)=\frac{2}{3}$

Human error model from expert knowledge

Machine with states A, B, C, \ldots

state $s_A \in \mathcal{S}$: "human thinks machine state is A"

Machine state transition $A \rightarrow B$

■ observation: **machine feedback** $o'_{\mathfrak{f}} \in \mathcal{O}$:

human usually aware of feedbacks $\rightarrow \pi \left(s_{R}^{\prime}, o_{f}^{\prime} \mid s_{A} \right) = 1$ but may lose a feedback $\rightarrow \pi (s'_A, o'_f \mid s_A) = \frac{2}{2}$

lacktriangle observation: **human manipulation** $o'_m \in \mathcal{O}$:

manipulation
$$o_m'$$
 normal under $s_A \to \pi\left(s_B', o_m' \mid s_A\right) = 1$ abnormal manipulation $= \frac{1}{3}$

Human error model from expert knowledge

Machine with states A, B, C, \ldots

state $s_A \in \mathcal{S}$: "human thinks machine state is A"

Machine state transition $A \rightarrow B$

■ observation: **machine feedback** $o'_{\mathfrak{f}} \in \mathcal{O}$:

human usually aware of feedbacks $\rightarrow \pi \left(s_{R}^{\prime}, o_{f}^{\prime} \mid s_{A} \right) = 1$ but may lose a feedback $\rightarrow \pi (s'_A, o'_f \mid s_A) = \frac{2}{2}$

■ observation: **human manipulation** $o'_m \in \mathcal{O}$:

manipulation
$$o_m'$$
 normal under $s_A \to \pi \left(s_B', o_m' \mid s_A\right) = 1$
abnormal manipulation $= \frac{1}{3}$

■ impossible cases: possibility degree 0

Qualitative Possibilistic Hidden Markov Process: diagnosis tool for Human-Machine interaction (with Sergio Pizziol)

 $\overline{\text{qualitative modeling}}$ advances in π -POMDP

context

- estimation of the human assessment ⇔ possibilistic belief state
- detection of human assessment errors + diagnosis
- validated with pilots on a flight simulator missions

Mixed-Observability (MOMDP) – Ong et al. (RSS-05) π -Mixed-Observable Markov Decision Process (π -MOMDP)

contribution (UAI-13):

Mixed-Observability: system state $s \in \mathcal{S} = \mathcal{S}_v \times \mathcal{S}_h$ *i.e.* state $s = \text{visible component } s_v$ & hidden component s_h

Mixed-Observability (MOMDP) — Ong et al. (RSS-05)

 π -Mixed-Observable Markov Decision Process (π -MOMDP)

contribution (UAI-13):

Mixed-Observability: system state $s \in S = S_v \times S_h$ *i.e.* state s = visible component $s_v \&$ hidden component s_h

■ belief states only over S_h (component s_v observed)

hybrid model

Mixed-Observability (MOMDP) - Ong et al. (RSS-05)

 π -Mixed-Observable Markov Decision Process (π -MOMDP)

contribution (UAI-13):

Mixed-Observability: system state $s \in \mathcal{S} = \mathcal{S}_v \times \mathcal{S}_h$ i.e. state s = visible component $s_v \& hidden$ component s_h

- belief states only over S_h (component s_v observed)
- $\blacksquare \to \pi$ -POMDP: belief space $\Pi_c^S \qquad \#\Pi_c^S \sim \#\mathcal{L}^{\#S}$
 - $\to \pi$ -MOMDP: computations on $\mathcal{X} = \mathcal{S}_{\nu} \times \Pi_{c}^{\mathcal{S}_{h}}$
 - $\#\mathcal{X} \sim \#\mathcal{S}_{v} \cdot \#\mathcal{L}^{\#\mathcal{S}_{h}} \ll \#\Pi_{\mathcal{L}}^{\mathcal{S}}$

Use of the π -MOMDP in practice undeterminate horizon

contribution (UAI-13): undeterminate Horizon

Use of the π -MOMDP in practice undeterminate horizon

contribution (UAI-13): undeterminate Horizon

Dynamic Programming scheme: # iterations $< \# \mathcal{X}$

- \blacksquare assumption: \exists artificial "stay" action as in classical planning/ γ counterpart
- criterion non decreasing with iterations

Use of the π -MOMDP in practice undeterminate horizon

contribution (UAI-13): undeterminate Horizon

Dynamic Programming scheme: # iterations $< \# \mathcal{X}$

- \blacksquare assumption: \exists artificial "stay" action as in classical planning/ γ counterpart
- criterion non decreasing with iterations
- action update for states increasing the criterion
- proof of optimality

Use of the π -MOMDP in practice simulations

context

- **goal:** reach the object A = T1 or T2
- noisy observations of the location of the object A

Factored π -MOMDP and computations with ADDs qualitative possibilistic models to reduce complexity

contribution (AAAI-14): factored π -MOMDP

context

 \Leftrightarrow state space $\mathcal{X} = \mathcal{S}_{\nu} \times \Pi_{\mathcal{L}}^{\mathcal{S}_h} =$ Boolean variables (X_1, \dots, X_n) + independence assumptions \Leftarrow graphical model

Factored π -MOMDP and computations with ADDs

qualitative possibilistic models to reduce complexity

contribution (AAAI-14): factored π -MOMDP

 \Leftrightarrow state space $\mathcal{X} = \mathcal{S}_{\nu} \times \Pi_{\mathcal{L}}^{\mathcal{S}_{h}} =$ Boolean variables (X_{1}, \dots, X_{n}) + independence assumptions \Leftarrow graphical model

■ factorization: transition functions $T_i^a = \pi\left(X_i' \mid parents(X_i'), a\right)$ stored as Algebraic Decision Diagrams (ADD)

probabilistic case: SPUDD (Hoey et al., 1999)

Simplify computations with π -MOMDPs Resulting π -MOMDP solver: PPUDD

context

- probabilistic model: + and × ⇒ new values created
 ⇒ number of ADDs leaves potentially huge
- possibilistic model: min and max \Rightarrow values $\in \mathcal{L}$ finite \Rightarrow number of leaves bounded, **ADDs smaller**.

Simplify computations with π -MOMDPs Resulting π -MOMDP solver: PPUDD

context

- probabilistic model: + and × ⇒ new values created
 ⇒ number of ADDs leaves potentially huge
- possibilistic model: min and max \Rightarrow values $\in \mathcal{L}$ finite \Rightarrow number of leaves bounded, **ADDs smaller**.

PPUDD: Possibilistic Planning Using Decision Diagrams

factorization ⇒ each DP steps divided into n stages
 → smaller ADDs ⇒ faster computations

Simplify computations with π -MOMDPs Resulting π -MOMDP solver: PPUDD

context

- probabilistic model: + and × ⇒ new values created
 ⇒ number of ADDs leaves potentially huge
- possibilistic model: min and max \Rightarrow values $\in \mathcal{L}$ finite \Rightarrow number of leaves bounded, **ADDs smaller**.

PPUDD: Possibilistic Planning Using Decision Diagrams

- factorization ⇒ each DP steps divided into n stages
 → smaller ADDs ⇒ faster computations
- computations on trees: CU Decision Diagram Package.

Simplifying computations with π -MOMDPs

Natural factorization: belief independence

contribution (AAAI-14):

independent sensors, hidden states, $\ldots \Rightarrow$ graphical model

Simplifying computations with π -MOMDPs

Natural factorization: belief independence

contribution (AAAI-14):

context

independent sensors, hidden states, $\ldots \Rightarrow$ graphical model

d-Separation
$$\Rightarrow$$
 $(s_{v}, \beta) = (s_{v,1}, \dots, s_{v,m}, \beta_{1}, \dots, \beta_{l})$
 $\beta_{i} \in \Pi_{C}^{S_{h,i}}$, belief over $s_{h,i}$

Simplify computations with π -MOMDPs

Experiments – perfect sensing: Navigation problem

PPUDD vs SPUDD (Hoey et al.)

context

Navigation benchmark: reach a goal – spots with accident risk M1 (resp. M2) optimistic (resp. pessimistic) criterion

Simplify computations with π -MOMDPs

Experiments - perfect sensing: Navigation problem

PPUDD vs SPUDD (Hoey et al.)

Navigation benchmark: reach a goal – spots with accident risk M1 (resp. M2) optimistic (resp. pessimistic) criterion

Performances, function of the instance size

reached goal frequency

steps to reach the goal

Simplify computations with π -MOMDPs

Experiments – perfect sensing: Navigation problem

computation time

max size of ADDs

- PPUDD + M2 (pessimistic criterion)

 faster with same performances as SPUDD
- SPUDD only solves the first 5 instances
- verified intuition: ADDs are smaller

Simplify computations with π -MOMDPs

Experiments – imperfect sensing: RockSample problem

PPUDD vs APPL (*Kurniawati et al.*, solver MOMDP) symbolic HSVI (*Sim et al.*, solver POMDP)

RockSample benchmark: recognize and sample "good" rocks

Simplify computations with π -MOMDPs

Experiments – imperfect sensing: RockSample problem

PPUDD vs APPL (*Kurniawati et al.*, solver MOMDP) symbolic HSVI (*Sim et al.*, solver POMDP)

RockSample benchmark: recognize and sample "good" rocks

computation time:

context

probabilistic solvers, prec. 1 PPUDD, exact resolution

average of rewards

APPL stopped when PPUDD end

- approximate model + exact resolution solver
 - → improvement of computation time and performances

IPPC 2014 – ADD-based approaches: PPUDD vs symbolic LRTDP

PPUDD + BDD mask over reachable states.

Figure: average of rewards over simulations

Qualitative possibilistic approach: benefits/drawbacks towards a hybrid POMDP

granulated belief space (discrete)

context

- ullet efficient problem **simplification** (PPUDD 2× better than LRTDP with ADDs)
- ignorance and imprecision modeling

Qualitative possibilistic approach: benefits/drawbacks towards a hybrid POMDP

- granulated belief space (discrete)
- efficient problem simplification (PPUDD 2× better than LRTDP with ADDs)
- ignorance and imprecision modeling
- choice of the qualitative criterion (optimistic/pessimistic)
- preference → non additive degrees
 → same scale as possibility degrees (commensurability)
- coarse approximation of probabilistic model
 → no frequentist information

A hybrid model a probabilistic POMDP with possibilistic belief states

hybrid approach

context

- agent knowledge = possibilistic belief states
- probabilistic dynamics & quantitative rewards

A hybrid model

context

a probabilistic POMDP with possibilistic belief states

hybrid approach

- agent knowledge = possibilistic belief states
- probabilistic dynamics & quantitative rewards

Usefullness

- → heuristic for solving POMDPs: results in a standard (finite state space) MDP
- → problem with qualitative & quantitative uncertainty

Transitions and rewards

belief-based transition and reward functions

possibility distribution $\beta \to \text{probability distribution } \beta$ using poss-prob tranformations (Dubois et al., FSS-92)

Transition function on belief states

$$\Rightarrow \mathbf{p}\Big(\beta'\Big|\overline{\beta},a\Big) = \sum_{\substack{o' \text{ t.q.} \\ \textit{update}(\beta,a,o') = \beta'}} \mathbf{p}\left(o' \mid \overline{\beta},a\right)$$

Transitions and rewards

qualitative modeling

context

belief-based transition and reward functions

possibility distribution $\beta \to \text{probability distribution } \beta$ using poss-prob tranformations (Dubois et al., FSS-92)

Transition function on belief states

$$\Rightarrow \mathbf{p}\Big(\beta'\Big|\overline{\beta},a\Big) = \sum_{\substack{o' \text{ t.q.} \\ \textit{update}(\beta,a,o') = \beta'}} \mathbf{p}\left(o' \mid \overline{\beta},a\right)$$

 \blacksquare reward cautious according to β

Pessimistic Choquet Integral

$$r(\beta, a) = \sum_{i=1}^{\#\mathcal{L}-1} (l_i - l_{i+1}) \cdot \min_{\substack{s \in \mathcal{S} \text{ s.t.} \\ \beta(s) \geqslant l_i}} r(s, a)$$

translation from hybrid POMDP to MDP – contribution (SUM-15):

input: a POMDP $\langle S, A, \mathcal{O}, T, O, r, \gamma \rangle$ output: the MDP $\langle \tilde{S}, A, \tilde{T}, \tilde{r}, \gamma \rangle$:

translation from hybrid POMDP to MDP - contribution (SUM-15):

input: a POMDP $\langle \mathcal{S}, \mathcal{A}, \mathcal{O}, T, O, r, \gamma \rangle$ output: the MDP $\langle \tilde{\mathcal{S}}, \mathcal{A}, \tilde{T}, \tilde{r}, \gamma \rangle$:

■ state space $\tilde{S} = \Pi_{\mathcal{L}}^{S}$, the set of the possibility distributions over S

context

translation from hybrid POMDP to MDP – contribution (SUM-15):

input: a POMDP $\langle S, A, O, T, O, r, \gamma \rangle$ output: the MDP $\langle \tilde{S}, A, \tilde{T}, \tilde{r}, \gamma \rangle$:

- state space $\tilde{\mathcal{S}} = \Pi_c^{\mathcal{S}}$, the set of the possibility distributions over \mathcal{S}
- $\forall \beta, \beta'$ possibilistic belief states $\in \Pi_c^S$, $\forall a \in A$, transitions $\tilde{T}(\beta, a, \beta') = \mathbf{p}(\beta'|\beta, a)$

context

qualitative modeling

translation from hybrid POMDP to MDP – contribution (SUM-15):

input: a POMDP $\langle S, A, O, T, O, r, \gamma \rangle$ output: the MDP $\langle \tilde{S}, A, \tilde{T}, \tilde{r}, \gamma \rangle$:

- state space $\tilde{\mathcal{S}} = \Pi_c^{\mathcal{S}}$, the set of the possibility distributions over \mathcal{S}
- $\forall \beta, \beta'$ possibilistic belief states $\in \Pi_c^S$, $\forall a \in A$, transitions $\tilde{T}(\beta, a, \beta') = \mathbf{p}(\beta'|\beta, a)$
- reward $\tilde{r}(a,\beta) = \underline{Ch}(r(a,.))$,

context

qualitative modeling

translation from hybrid POMDP to MDP – contribution (SUM-15):

input: a POMDP $\langle S, A, O, T, O, r, \gamma \rangle$ output: the MDP $\langle \tilde{S}, A, \tilde{T}, \tilde{r}, \gamma \rangle$:

- state space $\tilde{\mathcal{S}} = \Pi_c^{\mathcal{S}}$, the set of the possibility distributions over \mathcal{S}
- $\forall \beta, \beta'$ possibilistic belief states $\in \Pi_c^S$, $\forall a \in A$, transitions $\tilde{T}(\beta, a, \beta') = \mathbf{p}(\beta'|\beta, a)$
- reward $\tilde{r}(a,\beta) = \underline{Ch}(r(a,.))$,

criterion:
$$\mathbb{E}_{\beta_{t} \sim \tilde{T}}\left[\sum_{t=0}^{+\infty} \gamma^{t} \cdot \tilde{r}\left(\beta_{t}, d_{t}\right)\right]$$
.

(hybrid model)

General variable classification contribution (SUM-15):

3 classes of state variables – state space factorization

variable: **visible** $s'_v \in \mathbb{S}_v$

inferred hidden $s'_h \in \mathbb{S}_h$

3 classes of state variables – state space factorization

variable: **visible** $s'_{v} \in \mathbb{S}_{v}$

$$s_{v}' \stackrel{s_{v}' = o_{v}'}{\longrightarrow} o_{v}'$$

(hybrid model)

inferred hidden $s'_h \in \mathbb{S}_h$

3 classes of state variables – state space factorization

variable: **visible** $s'_v \in \mathbb{S}_v$

$$s_{v}' \xrightarrow{s_{v}' = o_{v}'} o_{v}'$$

$$\beta_{t+1}(s'_v) = \mathbb{1}_{\{s'_v = o'_v\}}(s'_v)$$

inferred hidden $s'_h \in \mathbb{S}_h$

3 classes of state variables – state space factorization

variable: **visible** $s'_v \in \mathbb{S}_v$

⇔ deterministic belief variable

$$\beta_{t+1}(s'_v) = \mathbb{1}_{\{s'_v = o'_v\}}(s'_v)$$

(hybrid model)

inferred hidden $s'_h \in \mathbb{S}_h$

3 classes of state variables – state space factorization

variable: **visible** $s'_v \in \mathbb{S}_v$

⇔ deterministic belief variable

$$\beta_{t+1}(s'_v) = \mathbb{1}_{\{s'_v = o'_v\}}(s'_v)$$

(hybrid model)

inferred hidden $s'_h \in \mathbb{S}_h$

3 classes of state variables – state space factorization

variable: **visible** $s'_{\nu} \in \mathbb{S}_{\nu}$

⇔ deterministic belief variable

$$\beta_{t+1}(s'_v) = \mathbb{1}_{\{s'_v = o'_v\}}(s'_v)$$

(hybrid model)

inferred hidden $s_b' \in \mathbb{S}_h$

$$\beta_{t+1}\Big(parents(o'_i)\Big) = \beta_{t+1}(s_h, s_h^a, s_h^b, s_h^c)$$

context

General variable classification contribution (SUM-15):

3 classes of state variables – state space factorization

variable: **visible** $s'_{\nu} \in \mathbb{S}_{\nu}$

⇔ deterministic belief variable

$$\beta_{t+1}(s'_v) = \mathbb{1}_{\{s'_v = o'_v\}}(s'_v)$$

inferred hidden $s_b' \in \mathbb{S}_h$

$$eta_{t+1}\Big(extit{parents}(o_i')\Big) = eta_{t+1}(s_h, s_h^a, s_h^b, s_h^c)$$
 $\propto^{\pi} \pi\Big(o_i', extit{parents}(o_i')\Big|eta_t, a\Big)$

3 classes of state variables – state space factorization

variable: **visible** $s'_v \in \mathbb{S}_v$

⇔ deterministic belief variable

$$\beta_{t+1}(s'_v) = \mathbb{1}_{\{s'_v = o'_v\}}(s'_v)$$

(hybrid model)

inferred hidden $s_b' \in \mathbb{S}_h$

$$\beta_{t+1}\left(parents(o'_i)\right) = \beta_{t+1}(s_h, s_h^a, s_h^b, s_h^c)$$

$$\propto^{\pi} \pi\left(o'_i \ parents(o'_i) \middle| \beta_{t+1} a\right)$$

 $\propto^{\pi} \pi \Big(o_i', parents(o_i') \Big| eta_t, a \Big)$

 $\wedge \mathcal{P}(o_i)$ may contain visible variables.

context

3 classes of state variables – state space factorization

variable: **visible** $s'_v \in \mathbb{S}_v$

⇔ deterministic belief variable

$$\beta_{t+1}(s'_v) = \mathbb{1}_{\{s'_v = o'_v\}}(s'_v)$$

inferred hidden $s_b' \in \mathbb{S}_h$

$$\beta_{t+1}\left(parents(o_i')\right) = \beta_{t+1}(s_h, s_h^a, s_h^b, s_h^c)$$

$$\propto^{\pi} \pi\left(o_i', parents(o_i') \middle| \beta_{t+1}, a\right)$$

 $\propto^{\pi} \pi \left(o_i', parents(o_i') \middle| \beta_t, a \right)$

 $\wedge \mathcal{P}(o_i)$ may contain visible variables.

3 classes of state variables – state space factorization

variable: **visible** $s'_v \in \mathbb{S}_v$

qualitative modeling

context

⇔ deterministic belief variable

$$\beta_{t+1}(s'_v) = \mathbb{1}_{\{s'_v = o'_v\}}(s'_v)$$

inferred hidden $s_b' \in \mathbb{S}_h$

$$\beta_{t+1}\Big(parents(o'_i)\Big) = \beta_{t+1}(s_h, s_h^a, s_h^b, s_h^c)$$

$$\propto^{\pi} \pi \Big(o_i', parents(o_i') \Big| \beta_t, a \Big)$$

 $\wedge \mathcal{P}(o'_i)$ may contain visible variables.

$$\beta_{t+1}(s_f') = \pi(s_f' \mid \beta_t, a)$$

3 classes of state variables – state space factorization

variable: **visible** $s'_v \in \mathbb{S}_v$

qualitative modeling

context

⇔ deterministic belief variable

$$\beta_{t+1}(s'_v) = \mathbb{1}_{\{s'_v = o'_v\}}(s'_v)$$

inferred hidden $s_b' \in \mathbb{S}_h$

$$\beta_{t+1}\Big(parents(o'_i)\Big) = \beta_{t+1}(s_h, s_h^a, s_h^b, s_h^c)$$

$$\propto^{\pi} \pi \left(o_i', parents(o_i') \middle| \beta_t, a \right)$$

 $\wedge \mathcal{P}(o'_i)$ may contain visible variables.

fully hidden $s_f' \in \mathbb{S}_f$

→ observations don't inform belief state on s'_f .

$$S'_f \longrightarrow O'_i$$

$$\beta_{t+1}(s_f') = \pi(s_f' \mid \beta_t, a)$$

context

bound over the global belief state

$$\beta_{t+1}(s'_1,\ldots,s'_n) = \pi(s'_1,\ldots,s'_n | a_0,o_1,\ldots,a_t,o_{t+1})$$

$$\leqslant \min \Biggl\{ \min_{s_j' \in \mathbb{S}_v} \Biggl[\mathbb{1}_{\left\{s_j' = o_j'\right\}} \Biggr], \min_{s_j' \in \mathbb{S}_f} \Biggl[\beta_{t+1}(s_j') \Biggr], \min_{o_i' \in \mathbb{O}_h} \Biggl[\beta_{t+1} \Bigl(parents(o_i') \Bigr) \Biggr] \Biggr\}$$

Possibilistic belief variables global belief state

bound over the global belief state

$$\beta_{t+1}(s'_1,\ldots,s'_n)=\pi(s'_1,\ldots,s'_n|a_0,o_1,\ldots,a_t,o_{t+1})$$

$$\leqslant \min \Biggl\{ \min_{s_j' \in \mathbb{S}_v} \Biggl[\mathbb{1}_{\left\{s_j' = o_j'\right\}} \Biggr], \min_{s_j' \in \mathbb{S}_f} \Biggl[\beta_{t+1}(s_j') \Biggr], \min_{o_i' \in \mathbb{O}_h} \Biggl[\beta_{t+1} \Bigl(parents(o_i') \Bigr) \Biggr] \Biggr\}$$

- min of marginals = a **less informative** belief state
- computed using marginal belief states
 - → factorization & smaller state space

context

lacktriangleright modeling efforts: ightarrow human-machine interaction

qualitative modeling advances in π -POMDP solver & factorization hybrid model conclusion

Conclusion contributions

- **modeling efforts**: → human-machine interaction
- advancements: → mixed-observability modeling
 → undeterminate horizon + optimality proof

context

- modeling efforts: → human-machine interaction
- advancements: → mixed-observability modeling → undeterminate horizon + optimality proof
- simplifying computations: factorization work
 & PPUDD algorithm

context

- modeling efforts: → human-machine interaction
- advancements: → mixed-observability modeling
 → undeterminate horizon + optimality proof
- simplifying computations: factorization work
 & PPUDD algorithm
- **experimentations**: real problems
 - → robust recognition mission with possibilistic beliefs
 - ightarrow validation of the computation time reduction
 - → IPPC 2014

context

- modeling efforts: → human-machine interaction
- advancements: → mixed-observability modeling
 → undeterminate horizon + optimality proof
- simplifying computations: factorization work
 & PPUDD algorithm
- experimentations: real problems
 - → robust recognition mission with possibilistic beliefs
 - ightarrow validation of the computation time reduction
 - \rightarrow IPPC 2014
- hybrid POMDP translation MDP
 - → probabilities on possibilistic belief states pessimistic rewards (Choquet integral)
 - \rightarrow factored POMDP $\xrightarrow{\text{translation}}$ factored MPD

Conclusion perspectives

- refined criteria (Weng 2005, Dubois et al. 2005) \Rightarrow finer π -POMDP
- link with statistical learning in practice

qualitative modeling advances in π -POMDP

- refined criteria (Weng 2005, Dubois et al. 2005)
 - \Rightarrow finer π -POMDP
- link with statistical learning in practice

quantitative information may be available: hybrid work

- IPPC problems (factored POMDPs);
- tests of this approach:
 - **I** simplification: π distributions definition?
 - **2 imprecision:** robust in practice?

qualitative modeling advances in π -POMDP solver & factorization hybrid model (conclusion

Conclusion

context

Thank you!

produced work:

- Qualitative Possibilistic Mixed-Observable MDPs,
 UAI-2013
- Structured Possibilistic Planning Using Decision Diagrams, AAAI-2014
- Planning in Partially Observable Domains with Fuzzy Epistemic States and Probabilistic Dynamics, **SUM-2015**
- Processus Décisionnels de Markov Possibilistes à Observabilité Mixte, Revue d'Intelligence Artificielle (RIA journal)
- A Possibilistic Estimation of Human Attentional Errors, submitted to IEEE-TFS journal