# 의사결정 나무와 앙상블

- Tree based classification -



조상구



### 과목명: 인공지능 분류 및 회귀모형

■ 빅데이터를 바탕으로 분류(Classification) 및 회귀(Regression) 머신러닝 모형(모델) 이론 및 실습 \* Python 프로그래밍, Scikit-learn, Keras

|              | 강의 내용                                                                                                                                                                                                                                                                                                          |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. 인공지능 시작하기 | <ul> <li>인공지능 개요 및 머신러닝 End-to-End 구성 및 절차 이해</li> <li>데이터, 알고리즘, 모델의 이해, Scikit learn API 메커니즘 이해 및 실습</li> <li>모델의 분산과 편향, 손실함수와 최적화, 평가지표 및 선택</li> <li>Auto ML, Low code(Pycaret) 소개</li> </ul>                                                                                                            |
| 2. 인공지능 모델   | <ul> <li>의사결정 나무와 앙상블(Decision Tree &amp; Ensemble)</li> <li>최근접 이웃(K-Nearest Neighbors)</li> <li>로지스틱 회귀와 회귀(Logistic Regression &amp; Regression)</li> <li>가우시안 나이브 베이즈(Gaussian Naïve Bayes)</li> <li>서포트 벡터 머신(Support Vector Machine)</li> <li>심층신경망(Deep learning , FNN, CNN, RNN with Keras)</li> </ul> |

<sup>\*</sup> 강의 부교재는 https://github.com/jakevdp/PythonDataScienceHandbook.pdf



#### 강의 내용

#### 강의 내용

- 분류(Classification) 문제 해결을 위해 의사결정 나무, 앙상블(배깅, 랜덤 포레스트) 등 Tree based 알고리즘 이해
- Python과 Scikit-learn API를 사용하여 실습
  - \* 강의에서 사용한 데이터와 Python 코드는 github.com/ancestor9/KB/kb.ipynb를 참고

#### 과제 제출

■ 주어진 데이터로 분류 및 회귀생성을 위한 앙상블 모델을 적용하여 과제 제출

3

\* 과제 수행 코드는 Python script 파일로 제출



# 목차

- 의^i결정 나무(Decision Tree)
- %%量(Ensemble: Bagging, Random Forest)



#### **Decision Tree**

- 스무고개 놀이(20 Questions game) : 처음 질문의 '예/아니오 ' 둘 중 하나의 응답에 따라 다음 질문을 하면서 확신이 생기는 단계에 답을 맞추는 수수께기 놀이와 동일한 원리
- '남자'이고 '주말 모바일 이용시간이 30분 이상'이며 '드라마 B를 시청한' 사람은 100%확률로 상품을 구매





### 문제 및 해결 방안

- 50개 UCI Breast cancer 세포핵 이미지 자료(target의 1의 의미는 비정상, positive)
- 2개의 특성변수(세포핵 외벽의 '평탄도'와 '길이')를 사용하여 진단 정확도(Accuracy)가 높은 예측 모델을 개발





## 분류를 가장 잘할 수 있는 방법



특성변수가 없을 경우에는 항상 정상이라고
 예측하면 정확도가 68%

[Level 0 비중]

| Target | 건수(비율)  | 예측               |
|--------|---------|------------------|
| 정상     | 34(68%) | Negative<br>(정상) |
| 비정상    | 16(32%) | (66)             |

■ 세포핵 외벽 '평탄도'와 '길이' 2개의 특징이 주어지면, 과연 어떤 첫 질문(노드분리 변수 와 값)을 하여야 예측을 잘 할 수 있을까 ?



# 1단계 노드분리 변수와 분리 값의 결정



■ 첫번째 질문은 세포핵 외벽 '길이'가 '114.6'이하 인지 아닌지로 데이터를 구분하여 예측

| Worst<br>perimeter | Target | 비중(%)      | 예측  |
|--------------------|--------|------------|-----|
| <= 114.6           | 비정상    | 1/33( 3%)  |     |
|                    | 정상     | 32/33(97%) | 정상  |
| > 114.6            | 비정상    | 15/17(88%) | 비정상 |
|                    | 정상     | 2/17(12%)  |     |

컴퓨터가 이해할 수 있도록 gini를 계산하여
 노드 분리를 자동으로 하게 함



## 지니 지수(Gini Index)

- 지니지수는 정보의 불확실성이라는 추상적인 개념을 구체적으로 계량화한 지표
- 의사결정나무는 모든 변수를 대상으로 지니지수(Impurity, Uncertainty)가 낮은 순으로 데이터 분류 (Node Splitting)를 순차적으로 수행하면 불확실성이 감소되어 예측 성능이 높아짐

지니지수 (Gini Index) = 
$$\sum_{C=1}^{2} P_C * (1 - P_C) = 2P_1 * (1 - P_1)$$

| *Depth gini                                  | 노드 gini      | 비중(%)      | Target | Worst<br>perimeter |
|----------------------------------------------|--------------|------------|--------|--------------------|
| 0.110                                        | 0.059 =      | 1/33( 3%)  | 비정상    | <= 114.6           |
| <b>0.110</b> = 0.059*(33/50) + 0.208*(17/50) | 2(3% x 97%)  | 32/33(97%) | 정상     |                    |
| + 0.208*(17/50)                              | 0.208 =      | 15/17(88%) | 비정상    | > 114.6            |
|                                              | 2(88% x 12%) | 2/17(12%)  | 정상     | ,                  |

X[1] <= 114.6 gini = 0.435 samples = 50 value = [16, 34] gini = 0.059 samples = 33 value = [1, 32]

gini = 0.208 samples = 17 value = [15, 2]



<sup>\*</sup> 각 노드의 데이터 개수를 가중치 평균

### 2단계 노드분리 변수와 분리 값의 결정



Depth 2에서는 Depth 1보다 지니 지수가 감소되면서 데이터를 분할(노드분리와 분리값 결정)



지니지수 = (0.0\*31+0.5\*2+0.0\*1+0.117\*16)/50 = 0.057

| 예<br>* | 정상   | 정상과 비정<br>상 | 정상   | 비정상 |  |  |  |
|--------|------|-------------|------|-----|--|--|--|
| 측      | 100% | 50%         | 100% | 88% |  |  |  |



## 데이터와 모델 비교

■ 총 568개의 샘플과 특성변수(수치형) 30개로 구성된 Input(X)과 Output(y) 자료를 바탕으로 의사결정 나무 → Bagging → Random Forest 모델의 정확도(Accuracy)를 비교·평가

|        | Input (X)           |                   |                |                 |                   |              |                    |                     |                   |                           | / ( | Out                          |        |  |
|--------|---------------------|-------------------|----------------|-----------------|-------------------|--------------|--------------------|---------------------|-------------------|---------------------------|-----|------------------------------|--------|--|
|        | worst<br>smoothness | worst<br>symmetry | mean<br>radius | mean<br>texture | mean<br>perimeter | mean<br>area | mean<br>smoothness | mean<br>compactness | mean<br>concavity | mean<br>concave<br>points | •   | worst<br>fractal<br>imension | target |  |
| 0      | 0.16220             | 0.4601            | 17.99          | 10.38           | 122.80            | 1001.0       | 0.11840            | 0.27760             | 0.30010           | 0.14710                   |     | 0.11890                      | 0      |  |
| 1      | 0.12380             | 0.2750            | 20.57          | 17.77           | 132.90            | 1326.0       | 0.08474            | 0.07864             | 0.08690           | 0.07017                   |     | 0.08902                      | 0      |  |
| 2      | 0.14440             | 0.3613            | 19.69          | 21.25           | 130.00            | 1203.0       | 0.10960            | 0.15990             | 0.19740           | 0.12790                   |     | 0.08758                      | 0      |  |
| 3      | 0.20980             | 0.6638            | 11.42          | 20.38           | 77.58             | 386.1        | 0.14250            | 0.28390             | 0.24140           | 0.10520                   |     | 0.17300                      | 0      |  |
| 4      | 0.13740             | 0.2364            | 20.29          | 14.34           | 135.10            | 1297.0       | 0.10030            | 0.13280             | 0.19800           | 0.10430                   |     | 0.07678                      | 0      |  |
|        |                     |                   |                |                 |                   |              |                    |                     |                   |                           |     |                              | I<br>I |  |
| 564    | 0.14100             | 0.2060            | 21.56          | 22.39           | 142.00            | 1479.0       | 0.11100            | 0.11590             | 0.24390           | 0.13890                   |     | 0.07115                      | 0      |  |
| 565    | 0.11660             | 0.2572            | 20.13          | 28.25           | 131.20            | 1261.0       | 0.09780            | 0.10340             | 0.14400           | 0.09791                   |     | 0.06637                      | 0      |  |
| 566    | 0.11390             | 0.2218            | 16.60          | 28.08           | 108.30            | 858.1        | 0.08455            | 0.10230             | 0.09251           | 0.05302                   |     | 0.07820                      | 0      |  |
| 567    | 0.16500             | 0.4087            | 20.60          | 29.33           | 140.10            | 1265.0       | 0.11780            | 0.27700             | 0.35140           | 0.15200                   |     | 0.12400                      | 0      |  |
| 568    | 0.08996             | 0.2871            | 7.76           | 24.54           | 47.92             | 181.0        | 0.05263            | 0.04362             | 0.00000           | 0.00000                   |     | 0.07039                      | 1      |  |
| 569 rd | ows × 31 colum      | nns               |                |                 |                   |              |                    |                     |                   |                           |     |                              | Ì      |  |



#### Decision Tree 오차 행렬

- 총 568개 중 340개 샘플(train)로 학습·훈련하여
- 228개(test)를 대상으로 실제 정상·비정상의 자료를 판정하면 210개를 맞추는 92.11%의 정확도(Accuracy)



Python script (Scikit learn Estimator API)





12 | 빅데이터과 |

# 모델의 과적합(Overfitting)

■ 의사결정 나무 특성상 자료의 레이블이 완전히 분류될 때까지 노드 분리(node splitting)를 하면서 훈련하기 때문에 과적합(Overfitting)이 발생하기 쉬움 → Depth를 줄여 일반화 모델 필요





#### 콩도르세의 배심원 정리

- 평범한 판단력을 가진 배심원이 모여 독립적으로 판결하게 되면 항상 모든 재판에서 올바른 판결이 가능
- 집단 지성(The wisdom of crowds)





## 여러 개의 의사결정 나무

■ 복잡한(Depth가 높은) 의사결정 나무로 예측하기 보다는 여러 개의 단순한(Depth가 낮은) 의사결정 나무를 만들어 모든 예측 결과를 다수결로 총합하여 판단(단독 판사 판결 vs 배심원 판결)

Prediction: 0



#### **Prediction: 1**

1 : 0 Three : Two













15

vs

- 의^i결정 나무(Decision Tree)
- %%量(Ensemble: Bagging, Random Forest)



#### **Bagging**(Bootstrapping aggragation)

- Bagging은 Bootstrap(Resampling) tree들의 총합(aggregation)
- 원자료를 일정한 크기의 재샘플(복원추출 방법)을 여러 번 거친 부트스트래핑후 다수결로 최종 예측
  - ※ Bootstrap 표본을 쓰므로 다양한 자료를 사용하여 예측 오류의 추정에서 예상외의 효과가 있음





# Bagging 오차 행렬

■ Bagging으로 예측하면 정확도가 92.98%로 Decision Tree 모델보다 약간 높아짐



정확도(Accuracy)= (138+74)/228 = 92.98%

Python script

from sklearn import ensemble

dt = DecisionTreeClassifier()

Bag = ensemble.BaggingClassifier (dt, n\_estimators = 30, max samples = 0.8)

model.fit(X\_train, y\_train)

model.predict(X\_test)

- 의사결정나무 30개 구성 (n\_estimators=30)
- . 340개의 훈련데이터에서 272개(80%)를 복원추출 (bootstrapping)을 30회 반복하여 재표본 구성
- . 의사결정나무 30개 총합 다수결(aggregation)로 진단 결과 예측



#### **Random Forest**

- Bagging은 부분적인 중복성이 있는 Decision Tree를 사용할 수 있어 모델 성능을 저하시킬 수 있는데, 이런 문제점을 개선한 것이 랜덤 포레스트(Random Forest)
- Random Forest 핵심 특징
  - 1) 원 표본에서 중복을 허용하여 같은 크기의 재표본을 추출하여(Bootstrapping) 훈련자료로 사용하고
  - 2) 각 노드 분리에서 전체 p개의 변수 중에서 임의로(random) 선택된 m개의 변수를 비복원 추출하여 예측



19



#### Random Forest 오차 행렬

- 30개의 의사결정 나무로 구성된 Random Forest로 예측하면 정확도가 95.18로 크게 개선됨
- 모든 데이터에 대해 Random Forest가 항상 성능이 좋은 것이 아니라 데이터의 특성에 따라 차이가 있음



정확도(Accuracy)= (139+78)/228 = 95.18%



# Python실습: Tree based classification & regression





21 | 빅데이터과 |



# 앙상블(Ensemble) 종류

- 병렬 결합 방법은 병렬적(Parallel) 형태 여러 모델(A, B)의 다수결로 예측
- 직렬 결합 ,부스팅(Boosting) 방법은 선행 모델(A)의 예측 오류를 후행 모델(B)이 이어 받아 학습 · 예측
- 스태킹(Stackinig) 방법은 여러 이종 모델(A, B)의 예측 결과를 입력변수로 메타 모델(C)이 학습·예측



23

