CHAPITRE 5: LES MODELES A CHOIX ORDONNES

SECTION 1: Exemple: le choix d'éducation postsecondaire (suite du chapitre 3)

Base de données : EDUCATION.XLS

N=1000 individus

Variable endogène :

$$y = \begin{cases} 1 & \text{pas au collège} \\ 2 & 2 \text{ ans au collège} \\ 3 & 4 \text{ ans au collège} \end{cases}$$

Variables exogènes:

ETCATHO = 1 si études secondaires catholiques

NIVEAU = index moyen en mathématiques, anglais et études sociales sur échelle de 13 points avec 1 le plus élevé et 13 le plus faible

REVENU = revenu familial brut en \$

PERSON = Nombre de personnes dans la famille

DIPARENT = 1 si la plupart des parents formés étaient diplômés du collège ou avaient un diplôme plus élevé

FEMME = 1 si femme, 0 si homme

NOIR = 1 si noir, 0 si autres

On va transformer l'énoncé précédent de la façon suivante :

Base de données : EDUCATION.XLS

N=1000 individus

Variable endogène:

$$y = \begin{cases} 1 & \text{pas au collège} & \text{mauvaise performance} \\ 2 & 2 \text{ ans au collège} & \text{moyen} \\ 3 & 4 \text{ ans au collège} & \text{super performance} \end{cases}$$

Nous avons donc ordonné nos réponses de la forme : 3 TB, 2 M et 1 N (N pour Nul). C'est notre ressentiment.

$$y = \begin{cases} 1 & N \\ 2 & M \\ 3 & TB \end{cases}$$

Représentons cette variable i.e notre ressentiment vis-àvis des études dans le temps sous forme de seuil :

Nous devons rechercher ces 2 seuils :

$$y = \begin{cases} 1 & \text{si } y^* \leq S1 \\ 2 & \text{si } S1 \leq y^* \leq S2 \\ 3 & \text{si } y^* \geq S2 \end{cases}$$

 y^* représente une variable latente, notre ressentiment vis-à-vis de notre jugement, de notre classement. C'est une variable inobservable.

<u>Variables exogènes</u>:

NIVEAU = index moyen en mathématiques, anglais et études sociales sur échelle de 13 points avec 1 le plus élevé et 13 le plus faible

NB: on pourrait aussi garder d'autres variables exogènes.

SECTION 2 : Ecriture du modèle

Nous devons estimer le modèle suivant :

$$y^* = \beta niveau + \epsilon$$

Comme y^* est inconnu, ce n'est pas un modèle de régression standard. On appelle ce modèle le modèle à index.

Il y a 3 alternatives, ce qui implique donc 2 seuils à chercher. La constante ne peut pas être présente car il y a multicolinéarité parfaite avec les seuils.

Comment estimer ce modèle? Nous avons deux possibilités :

- 1) Par le modèle **PROBIT** ordonné,
- 2) Par le modèle **LOGIT** ordonné.

Choisissons le modèle **LOGIT** (totalement arbitraire).

<u>SECTION 3: Formules des probabilités et des effets</u> marginaux

Les probabilités des choix sont données par :

$$p(y = 1) = \varphi(S1 - \beta \text{ niveau})$$

$$p(y = 2) = \varphi(S2 - \beta \text{ niveau}) - \varphi(S1 - \beta \text{ niveau})$$

$$p(y=3) = 1 - \varphi(S2 - \beta \text{ niveau})$$

Nb : calculs détaillés $p(y=1) = p(y^* \le S1) = p(\beta \ niveau + \varepsilon \le S1)$ $= p(\varepsilon \le S1 - \beta \ niveau) = \varphi(S1 - \beta \ niveau)$

On en déduit les effets marginaux :

$$\frac{dp(y=1)}{dniveau} = -\emptyset(S1 - \beta niveau) * \beta$$

$$\frac{dp(y=2)}{dniveau} = [\emptyset(S1 - \beta niveau) - \emptyset(S2 - \beta niveau)] * \beta$$

$$\frac{dp(y=3)}{dniveau} = \emptyset(S2 - \beta niveau) * \beta$$

SECTION 4 : Estimations

Par SAS 9.4 fichier EDUCATION2.SAS

Model Fit Summary	
Number of Endogenous Variables	1
Endogenous Variable	Y
Number of Observations	1000
Missing Values	2
Log Likelihood	-877.29561
Maximum Absolute Gradient	1.7664E-6
Number of Iterations	10
Optimization Method	Quasi-Newton
AIC	1761
Schwarz Criterion	1775

Mesures du critère qualificatif de lissage						
Mesure	Valeur	Formule				
Like lihood Ratio (R)	282.72	2 * (LogL - LogL0)				
Upper Bound of R (U)	2037.3	-2 * LogL0				
Aldrich-Ne Ison	0.2204	R / (R+N)				
Cragg-Uhler 1	0.2463	1 - exp(-R/N)				
Cragg-Uhler 2	0.2832	(1-exp(-R/N)) / (1-exp(-U/N))				
Estre lla	0.2624	1 - (1-R/U)^(U/N)				
Adjuste d Estre IIa	0.2573	1 - ((LogL-K)/LogL0)*(-2/N*LogL0)				
McFadden's LRI	0.1388	R/U				
Veall-Zimmermann	0.3286	(R * (U+N)) / (U * (R+N))				
McKelvey-Zavoina	0.5717					
N = # d'observations, l	Κ=#de	régresseurs				

Algorithm converged.

		Résultats estin	nés des pa	ra mè tre s	
Paramètre	DDL	Valeur estimée	Erreur type	Valeur du te st t	Approx. de Pr > t
NIVEAU	1	-0.510148	0.033926	-15.04	<.0001
_Limit1	1	-4.916916	0.267263	-18.40	<.0001
_Limit2	1	-3.477195	0.241669	-14.39	<.0001

Obs.	Υ	NIVEAU	Meff_P1_NIVEAU	Meff_P2_NIVEAU	Meff_P3_NIVEAU	Prob1_Y	Prob2_Y	Prob3_Y
1001		6.64	0.074663	0.052617	-0.12728	0.17806	0.29950	0.52244
1002		2.635	0.013553	0.034764	-0.04832	0.02731	0.07862	0.89407

Interprétations:

Avec un niveau de 6.64 (la médiane), [élève médian], la probabilité de ne pas aller au collège est de 17.80%, 29.95% de rester 2 ans au collège et 52.24% de rester 4 ans au collège.

Pour un bon élève (niveau de 2.635), les probabilités sont 2.7% pour 1, 7.8% pour 2 et 89% pour 3.

A comparer avec (Cf. chapitre 3):

Effets marginaux (au point 5ième décile)						
Obs.	р1	p2	р3	em1	em2	em3
1	0.017766	0.096545	0.88569	0.011642	0.033452	-0.045094