Machine Learning and Applications in Finance and Macroeconomics

Discussion by
Amit Seru
University of Chicago

Macro Financial Modeling 2016 Winter Meeting

Overview

- Machine Learning
 - Mortgage delinquency risk
 - Credit card delinquency risk
 - Matching datasets
- Comments
 - Where might we need this...
 - Predictions in a changing world...

Where might we need this?

- Better risk assessment
 - Investments
 - Regulation/Capital charges
- Regulation/Supervision
 - At what frequency are we running these models?
 - > Every supervision cycle?
 - > Every stress test?
 - Does it matter if we can predict better over a short horizon at high frequencies?
 - Where did we need these predictions in supervision and regulation?

Mortgage Defaults Paper

- How well do we do when the market conditions change?
 - Train for 12 years (1999-2011) and test for 2012-2014
 - What if train for 2001-2006 and test for 2007-2009?

- Combine several observable factors to "improve" predictions
 - How do we interpret the results from the black box?
 - > Would matter for what policy intervention is designed.

Credit Card Defaults Paper

- Why is risk management different across banks?
 - Selection of consumers different. (Citi v/s Capital One)
 - Selection across regions different (Citi urban v/s BofA rural)
 - Rewards program different (gas, airlines, stores, etc etc)
 - Risk management practices different -- some estimate at the account level; others at the portfolio level.
 - Attrition rates could be different

- Combine several observable factors to "improve" predictions
 - How do we interpret the black box?
- Not modeling primitives → could potentially miss key quantitatively important aspects. Would this matter?
 - Incentives of agents that influence data generating process
 - ➤ Meaning of observables can change over time

Incentives: Reliance on Hard Information

 $r_i = \alpha + \beta_{FICO} \times FICO_i + \beta_{LTV} \times LTV_i + \epsilon_i$.

	β_{FICO}	eta_{LTV}	R^2 (in %)	Observations
1997	-0.004***	0.030***	3	24067
	(.0002)	(.0013)		
1998	-0.007***	0.035***	7	60094
	(.0001)	(8000.)		
1999	-0.007***	0.020***	8	104847
	(.0001)	(.0005)		
2000	-0.010***	0.035***	14	116778
	(.0001)	(.0004)		
2001	-0.012***	0.038***	20	136483
	(.0001)	(.0004)		
2002	-0.011***	0.071***	18	162501
	(.0001)	(.0001)		040000
2003	-0.012***	0.079***	32	318866
2004	(.0001)	(.0001)	40	64.0750
2004	-0.010***	0.097***	40	610753
2005	(.0001)	(.0001)	40	702725
2005	-0.009***	0.110***	48	793725
2006	(.0001)	(.0001)	ΕO	614900
2006	-0.011***	0.115***	50	614820
	(.0001)	(.0001)		

- ▶ Dramatic increase in the R^2 : about 3% in 1997, goes upto almost 50%
 - $\beta_{FICO} < 0$, $\beta_{LTV} > 0$.
- ► In the low securitization regime, the hard information variables explain very little variation in interest rates
 - Omitted variables are particularly important
 - Soft information, by its very nature, is one of the omitted variables

Incentives: Actual versus Predicted Defaults

- Combine several observable factors to "improve" predictions
 - How do we interpret the black box?
- Not modeling primitives → could potentially miss key quantitatively important aspects. Would this matter?
 - Incentives of agents that influence data generating process
 - ➤ Meaning of observables can change over time

DGP

DGP

DGP

- Combine several observable factors to "improve" predictions
- Not modeling primitives

 could potentially miss key quantitatively important aspects
 - Policy interventions at times when "value of prediction" the most
 - > Foreclosure behavior different before and after HAMP
 - > Foreclosure behavior different before and after HARP
 - → accounting for timing and eligibility of some borrowers important
 - Institutional factors could change data generation
 - ➤ Different incentives to foreclose depending on ownership status
 - Organizational ability of servicers to pass through government subsidies

Conclusion

- Nice and interesting set of papers
 - Machine learning can help improve predictions
 - Better data would be better
- Going forward
 - What are we using these models for?
 - Regulation/Supervision/Investments?
 - Do these models do better on the Lucas critique?
 - Incentives/Institutional Factors/Government Interventions
 - How would one interpret the model with...
 - ...Other agencies also fitting same data (FICO, Zillow, TransUnion)
 - ...Human capital/political constraints in supervision