```
.Im (a+ib)=b אזי a,b\in\mathbb{R} החלק המדומה: יהיו
                                                                                                                    \overline{a+ib}=a-ib אזי a,b\in\mathbb{R} הצמוד: יהיו
                                                                                              |a+ib|=\sqrt{a^2+b^2} אזי a,b\in\mathbb{R} הערך המוחלט: יהיו
                                                                                                                \operatorname{Re}\left(z
ight)=0 עבורו z\in\mathbb{C} מספר מדומה טהור:
                                                                                                                  \operatorname{Im}\left(z
ight)=0 עבורו z\in\mathbb{C}:מספר ממשי טהור:
                                                                                                                                                            למה: יהיz\in\mathbb{C} אזי
                                                                                                                                                                    .\overline{(\overline{z})} = z \bullet
                                                                                                                                                                  |\overline{z}| = |z| \bullet
                                                                                                                                                                .z\overline{z} = |z|^2 \bullet
                                                                                                                       .z^{-1}=rac{\overline{z}}{|z|^2} אזי z\in\mathbb{C}ackslash\{0\} מסקנה: יהי
                                                                                                         מסקנה: \mathbb C עם הפעולות שהוגדרו מלעיל הינו שדה.
                                                                                                                                                   טענה: יהיו z,w\in\mathbb{C} אזי
                                                                                                                                                          .Re (z) = \frac{z + \overline{z}}{2} \bullet
                                                                                                                                                         \operatorname{Im}(z) = \frac{z - \overline{z}}{2i} \bullet
                                                                                                                                                      \overline{z+w} = \overline{z} + \overline{w} \bullet
                                                                                                                                                          \overline{z \cdot w} = \overline{z} \cdot \overline{w} \bullet
                                                                                                                               \overline{\left(rac{z}{w}
ight)}=rac{\overline{z}}{\overline{w}} אזי w
eq 0 נניח כי
                                                                                                                              |z\cdot w|=|z|\cdot |w|י גיוח כי |z| = w אזי איז |z| = w.
                                                                                                                                             |z| \le \operatorname{Re}(z) \le |z| \bullet
                                                                                                                                              |z| \le \operatorname{Im}(z) \le |z| \bullet
.|z+w|\leq |z|+|w| איז z,w\in\mathbb{C} טענה אי שיוויון המשולש: יהיו z,w\in\mathbb{C} איז איז z,w\in\mathbb{C} טענה אי שיוויון קושי שוורץ: יהיו z_i=z_iw_i=\left(\sum_{i=1}^n|z_i|^2\right)\left(\sum_{i=1}^n|w_i|^2\right) איז z_1\ldots z_n,w_1\ldots w_n\in\mathbb{C} טענה אי שיוויון קושי שוורץ: יהיו
                                                                                                                       מסקנה: יהיו a,b\in\mathbb{R} ויהיו z,w\in\mathbb{C} אזי
                                                                                                                                               |z| - |w| \le |z - w| •
                                                                                                                                               |a+ib| \leq |a|+|b|
                                                                       e^{i	heta}=\cos{(	heta)}+i\sin{(	heta)} אזי 	heta\in\mathbb{R} הצגה פולרית/הצגה קוטבית: יהי
                                                                                      \mathrm{arg}\left(z
ight)=\left\{	heta\in\mathbb{R}\mid z=|z|\,e^{i	heta}
ight\} אזי z\in\mathbb{C} הארגומנט: יהי
                                                                z=|z|\cdot e^{i	heta} עבורו 	heta\in(-\pi,\pi] אזי קיים ויחיד z\in\mathbb{C}ackslash\{0\} יהי
                                                    \operatorname{Arg}(z)=	heta אזי 	heta\in \operatorname{arg}(z)\cap (-\pi,\pi] ויהי z\in \mathbb{C}\setminus\{0\} אזי z\in \mathbb{C}\setminus\{0\}
                                                                                           . ויחיד קיים ויחיד אזי הארגומנט העיקרי קיים ויחיד z\in\mathbb{C}\backslash\left\{ 0
ight\} הערה: יהי
```

A=B+C אוי קיימות איי אוי פיימות 0 עבורן B באשר באר באשר באשר אנטי־קונפורמית או $A\in M_2\left(\mathbb{R}\right)$ אוי קיימות איי קיימות ויחידות באשר באשר אווי באשר באשר באשר אנטי־קונפורמית או

. מעל \mathbb{R}^2 עם הפעולות הסטנדרטיות מרוכבים: מרחב וקטורי

.i=(0,1) הגדרה וכן וכן $1\mapsto (1,0)$ בהתאמה ב־D הערה: נשתמש ב־משקנה: אזי קיימים ויחידים $a,b\in\mathbb{R}$ עבורם $z\in\mathbb{C}$ אזי אזי קיימים ויחידים $a,b\in\mathbb{R}$ עבורם מסקנה: $\exists a,b\in\mathbb{R}.A=\left(egin{array}{c} a-b\\ b&a \end{array}\right)$ המקיימת $0
eq A\in M_2\left(\mathbb{R}
ight)$

. היא איזומורפיזם $T\left(a+ib\right)=\left(egin{array}{c} a-b \\ b \end{array}\right)$ המוגדרת $T\in \mathrm{Hom}\left(\mathbb{C},O\left(2\right)\right)$ היא איזומורפיזם

(a+ib) (c+id)=(ac-bd)+i (ad+bc) אזי $(a,b,c,d\in\mathbb{R}$ מרפלת מרוכבים: יהיו

טענה: תהא $A \in M_2(\mathbb{R})$ אזי (A קונפורמית) אזי $A \in M_2(\mathbb{R})$ הפיכה ושומרת אווית). $\exists a,b \in \mathbb{R}. A = \left(\begin{smallmatrix} a & b \\ b & -a \end{smallmatrix} \right)$ המקיימת $A \in M_2(\mathbb{R})$ אזי (A אנטי־קונפורמית) אווית). $A \in M_2(\mathbb{R})$ הפיכה והופכת אווית). טענה: תהא $A \in M_2(\mathbb{R})$

 $\mathbb C$ סימון: נסמן את המרוכבים בעזרת

 $.i^2 = -1$:טענה

 $O\left(n
ight)=\left\{ A\in M_{2}\left(\mathbb{R}
ight)\mid$ קונפורמית $A\}$

 $\operatorname{Re}\left(a+ib
ight)=a$ אזי $a,b\in\mathbb{R}$ החלק הממשי: יהיו

```
\operatorname{arg}\left(zw
ight)=\operatorname{arg}\left(z
ight)+\operatorname{arg}\left(w
ight) אזי w,z\in\mathbb{C} מסקנה: יהיו
                                                                                                       (r \cdot e^{i\theta})^{-1} = \frac{1}{\pi} \cdot e^{-i\theta} אזי r > 0 ויהי \theta \in \mathbb{R} טענה: יהי
                                                                                        (r\cdot e^{i	heta})^n=r^n\cdot e^{in	heta} אזי n\in\mathbb{Z} ויהי r\geq 0 יהי 	heta\in\mathbb{R} יהי
                                        \left(\cos\left(	heta
ight)+i\sin\left(n	heta
ight)
ight)^{n}=\cos\left(n	heta
ight)+i\sin\left(n	heta
ight) אזי n\in\mathbb{Z} ויהי 	heta\in\mathbb{Z} ויהי 	heta\in\mathbb{Z}
                                             0.\sqrt[n]{re^{i	heta}}=\left\{\sqrt[n]{r}e^{i\left(rac{	heta+2\pi k}{n}
ight)}\mid k\in\{0,\dots,n-1\}
ight\} אזי n\in\mathbb{N}_+ יהי 0י יהי \theta\in\mathbb{R} יהי טענה: יהי
                                                                       0.\sqrt[n]{1}=\left\{e^{rac{2i\pi k}{n}}\mid k\in\{0,\ldots,n-1\}
ight\} מסקנה שורשי יחידה: יהי n\in\mathbb{N}_+ אזי
                                                                     x\in\mathbb{C} אזי קיים x\in\mathbb{C} עבורוx\in\mathbb{C} המשפט היסודי של האלגברה: יהיx\in\mathbb{C} אזי קיים
                                                           a_0 = a_0 \prod_{i=1}^n (x-a_i) עבורם a_0 \ldots a_n \in \mathbb{C} אזי קיימים p \in \mathbb{C}_{\geq 1}[x] יהי
                                                                                                                      N=(0,0,1) את \mathbb{R}^3הקוטב הצפוני: נסמן ב
                                                                                                        \mathbb{S}^n=\{x\in\mathbb{R}^{n+1}\mid \|x\|=1\} אזי n\in\mathbb{N}_+ יהי יהי יהי
                                                                                          z>0 המקיימות (x,y,z)\in\mathbb{S}^2 הנקודות כל העליונה: כל
                                                                                        z<0 המקיימות (x,y,z) המקיימות כל הנקודות כל הנקודות ההמיספרה התחתונה:
                                      f\left(x+iy
ight)=\left(rac{2x}{x^2+y^2+1},rac{2y}{x^2+y^2+1},1-rac{2}{x^2+y^2+1}
ight) כאלה סטריאוגרפית: נגדיר וגדיר f:\mathbb{C}	o\mathbb{S}^2\setminus\{N\} הטלה סטריאוגרפית:
f(p) = \mathrm{line}_{p,N} \cap \mathbb{S}^1 נגדיר את \mathbb{C} להיות שני הצירים הראשונים, אז ההטלה הסטריאוגרפית היא מבחינה מעשית \mathbb{C}
                                                                                                                                                                 .טענה: f רציפה
                                                                                                                                                          טענה: יהיz\in\mathbb{C} אזי
                                                                                                                                      (z \in \mathbb{S}^1) \iff (f(z) = z) \bullet
                                                                                                            (\mathbb{S}^1בהמיספרה העליונה) בהמיספרה f(z) •
                                                                                                             .(\mathbb{S}^1 בתוך בתוך בתוך התחתונה) בהמיספרה f(z)
                                                                   .f^{-1}\left(x,y,z
ight)=rac{x}{1-z}+irac{y}{1-z} כך כך f^{-1}:\mathbb{S}^2ackslash\left\{N
ight\}	o\mathbb{C} טענה: f הפיכה ומתקיים
                                                                                                                                                       \widehat{\mathbb{C}}=\mathbb{C}\cup\{\infty\}\cup\widehat{\mathbb{C}}
                                                                                f\left(\infty
ight)=N וכן f:\widehat{\mathbb{C}}	o\mathbb{S}^2 הספירה של רימן: f ניתנת להרחבה רציפה
                                                                                    טענה: תהא f^{-1}[A] מעגל A\subseteq \mathbb{S}^2\setminus\{N\} מעגל או ישר).
                                        (N\in P) ישר) ישר f^{-1}[C] אזי וויהי C=P\cap\mathbb{S}^2 מישור עבורו C\subseteq\mathbb{S}^2\setminus\{N\} ישר מסקנה: יהי
                                      \lim_{n	o\infty}a_n=z אזי orallarepsilon\in\mathbb{C} אזי arthetaarepsilon>0. אזי a\in\mathbb{C}^\mathbb{N} אזי a\in\mathbb{C}^\mathbb{N}
                                                                                    (a_n 	o z) \Longleftrightarrow (|a_n - z| 	o 0) אזי z \in \mathbb{C} ויהי a \in \mathbb{C}^{\mathbb{N}} אחי
                                           \lim_{n	o\infty}a_n=\infty אזי אM\in\mathbb{R}.\exists N\in\mathbb{N}. orall n\geq N. M<|a_n| עבורה a\in\mathbb{C}^\mathbb{N} אזי אזי
                                                                                                        (a_n 	o \infty) \Longleftrightarrow (|a_n| 	o \infty) אזי a \in \mathbb{C}^{\mathbb{N}} אזי טענה: תהא
                                                                               טענה: תהיינה a,b\in\mathbb{C}^{\mathbb{N}} ויהיו a,b\in\mathbb{C}^{\mathbb{N}} אזי מענה: תהיינה
                                                                                                                                                   .a_n + b_n \rightarrow z + w \bullet
                                                                                                                                                       .a_n \cdot b_n \to z \cdot w \bullet
```

 $.\overline{a_n} o \overline{z} ullet$

 $|a_n| \to |z| \bullet$

 $\operatorname{Re}\left(a_{n}\right)
ightarrow \operatorname{Re}\left(z\right) \ ullet$

 $\operatorname{Im}\left(a_{n}\right) \to \operatorname{Im}\left(z\right) \bullet$

.(מתכנסות) Re (a) , Im (a)) אזי $a\in\mathbb{C}^{\mathbb{N}}$ אזי מתכנסות מענה: תהא $a\in\mathbb{C}^{\mathbb{N}}$

 $.(orall arepsilon>0.\exists N\in\mathbb{N}. orall n, m\geq N. \ |a_n-a_m|<arepsilon)$ אזי (מ מתכנסת) אזי $a\in\mathbb{C}^\mathbb{N}$ אזי ($a\in\mathbb{C}^\mathbb{N}$

 $a_n o 0$ אזי אזי $|a_n| o 0$ המקיימת $a \in \mathbb{C}^{\mathbb{N}}$ אזי

 $.rac{a_n}{b_n} orac{z}{w}$ אאי w
eq 0 נניח כי ullet פענה: $a_n o z$ ויהי $z\in\widehat{\mathbb C}$ אאי $a_n o z$ אויהי

 $\mathrm{Arg}\,(z)=\{\mathrm{Arg}\,(z)+2k\pi\mid k\in\mathbb{Z}\}$ הערה: אזי $heta, \phi\in\mathbb{R}$ אזי טענה: יהיו

 $(r \cdot e^{i\theta}) \cdot (s \cdot e^{i\phi}) = rs \cdot e^{i(\theta + \phi)} \bullet$

 $\overline{r \cdot e^{i\theta}} = r \cdot e^{-i\theta} \bullet$

 $a_nb_n o 0$ אזי אזי $b_n o 0$ באשר $a,b\in\mathbb{C}^\mathbb{N}$ מסקנה: תהיינה

הערה: מכאן והלאה הסימון $\mathbb F$ יתאר שדה מבין $\mathbb R$ וכאשר נאמר כי $\mathcal U$ פתוחה הכוונה היא ביחס לשדה.

 $orall arepsilon > 0. \exists \delta > 0. orall z \in \mathcal{U} \setminus \{a\}. \|z-a\| < \omega$ עבורה $f: \mathcal{U} o \mathbb{F}_2$ ותהא $A \in \mathbb{F}_2$ ותהא $a \in \mathbb{F}_1$ פתוחה תהא $\mathcal{U} \subseteq \mathbb{F}_1$ פתוחה תהא $\mathcal{U} \subseteq \mathbb{F}_1$ אבול: $\lim_{z\to a} f(z) = A$ איי $\delta \Longrightarrow \|f(z) - A\| < \varepsilon$

 $(\lim_{z \to a} f\left(z
ight) = A) \Longleftrightarrow \left(orall b \in \mathbb{C}^{\mathbb{N}}. \left(b_n o a
ight) \Longrightarrow \left(f\left(b_n
ight) o A
ight)
ight)$ פתוחה אזי $\mathcal{U} \subseteq \mathbb{F}_1$ משפט היינה: תהא

טענה: תהא $\lim_{z o a}g\left(z
ight)=B$ וכן $\lim_{z o a}f\left(z
ight)=A$ באשר $f,g:\mathcal{U} o\mathbb{F}_2$ פתוחה ותהיינה $\mathcal{U}\subseteq\mathbb{F}_1$ אזי

- $\lim_{z\to a} (f+g)(z) = A+B \bullet$
 - $\lim_{z\to a} (fg)(z) = AB \bullet$
- $\lim_{z \to a} \left(\frac{f}{g} \right)(z) = \frac{A}{B}$ איז $B \neq 0$ נניח $B \neq 0$

 $\lim_{z o a}f\left(z
ight)=A$ באשר $f:\mathcal{U} o\widetilde{\mathbb{C}}$ פתוחה ותהא $\mathcal{U}\subseteq\mathbb{F}$ באשר שינה: תהא

- $\lim_{z\to a} \overline{f(z)} = \overline{A} \bullet$
- $\lim_{z\to a} |f(z)| = |A| \bullet$
- $\lim_{z\to a} \operatorname{Re}(f(z)) = \operatorname{Re}(A) \bullet$
- $.{\lim _{z \to a}}\operatorname{Im}\left({f\left(z \right)} \right) = \operatorname{Im}\left(A \right) \text{ } \bullet$

אזי $a\in\mathbb{C}$ ויהי $f:\mathbb{C} o\mathbb{C}$ אזי $f:\mathbb{C}$

- $\lim_{z \to a} f\left(z
 ight) = \infty$ אזי א $M > 0. \exists \delta > 0. \forall z \in \mathbb{C} \setminus \{a\} \, . \, |z-a| < \delta \Longrightarrow M < |f\left(z
 ight)|$ אזי $M > 0. \exists \delta > 0. \forall z \in \mathbb{C} \setminus \{a\} \, . \, |z-a| < \delta \Longrightarrow M < |f\left(z
 ight)|$ אזי
 - $\lim_{z \to \infty} f\left(z
 ight) = a$ אזי $\forall arepsilon > 0. \exists R > 0. \forall z \in \mathbb{C}. R < |z| \Longrightarrow |f\left(z
 ight) a| < arepsilon$ אזי ullet
 - $\lim_{z \to \infty} f\left(z
 ight) = \infty$ אזי $\forall M > 0. \exists R > 0. \forall z \in \mathbb{C}. R < |z| \Longrightarrow M < |f\left(z
 ight)|$ שאיפה לאינסוף באינסוף: אם

 $\lim_{z o a}f\left(z
ight)=f\left(a
ight)$ המקיימת $f:\mathcal{U} o\mathbb{F}_2$ אזי $a\in\mathcal{U}$ פתוחה יהי $\mathcal{U}\subseteq\mathbb{F}_1$ המקיימת $\mathcal{U}\subseteq\mathbb{F}_1$

מסקנה: כל מניפולציות הרציפות של פונקציה מחדו"א1 מתקיימות.