Big Data Asset Pricing

Exercise 4: Hig-Dimensional Return Predictions

Seyyed Morteza Aghajanzadeh Department of Finance Stockholm School of Economics

Statement: I certify with my signature that I have solved the exercise according to the Code of Professional Conduct and Ethics. For example, I have not plagiarized others, but, instead, solved the exercise myself (possibly with allowed collaboration with other students), and I have referenced my sources appropriately.

1

2

2.a

Table 1: The table shows the results of the Fama-Macbeth regression.

	Parameter	Std. Err.	T-stat	P-value	Lower CI	Upper CI
be_me	0.0316	0.0263	1.2032	0.2289	-0.0199	0.0831
ret_12_1	-0.0239	0.0211	-1.1340	0.2568	-0.0652	0.0174
${\bf market_equity}$	-0.0316	0.0276	-1.1424	0.2533	-0.0858	0.0226

2.b

2.c

Table 2

Model	In-sample R2
Model A	0.0012
Model B	0.0012
Model C	0.0050

4

5

5.a

Table 3

Model	Out-sample R2
Model A	0.4869
Model B	-0.0007
Model C	0.0002

5.b

 $\begin{tabular}{ll} \textbf{Table 4} \\ \hline \textbf{Panel A: Pooled OLS} \\ \end{tabular}$

Portfolio	$r_i - r_f$	t_{stat}	α_{CAPM}	t_{α}	Sharpe Ratio	IR
1	0.008	1.621	0.008	1.472	0.149	0.139
2	0.008	1.551	0.008	1.447	0.142	0.134
3	0.006	1.160	0.006	1.146	0.106	0.105
4	0.009	1.798	0.009	1.767	0.165	0.162
5	0.003	0.825	0.003	0.938	0.076	0.082
LS	-0.005	-1.515	-0.004	-1.200	-0.139	-0.118

Panel B: Ridge Regression

Portfolio	$r_i - r_f$	t_{stat}	α_{CAPM}	t_{lpha}	Sharpe Ratio	IR
1	-0.481	-0.787	-0.526	-0.816	-0.072	-0.079
2	0.061	0.802	0.075	0.885	0.074	0.092
3	-0.010	-0.168	-0.012	-0.226	-0.015	-0.019
4	0.003	0.071	0.003	0.080	0.007	0.006
5	0.060	1.770	0.055	1.848	0.162	0.149
LS	0.540	0.884	0.580	0.900	0.081	0.087

Panel C: Random Forest

Portfolio	$r_i - r_f$	t_{stat}	α_{CAPM}	t_{α}	Sharpe Ratio	IR
1	-0.068	-0.380	-0.074	-0.413	-0.035	-0.038
2	-0.019	-1.221	-0.020	-1.214	-0.112	-0.120
3	-0.059	-0.745	-0.032	-0.510	-0.068	-0.038
4	0.008	1.676	0.008	1.605	0.154	0.147
5	0.013	2.508	0.012	2.334	0.230	0.222
LS	0.080	0.452	0.086	0.485	0.041	0.045

6

6.2

6.2.a

Table 5: The table shows the results of the Fama-Macbeth regression.

	Parameter	Std. Err.	T-stat	P-value	Lower CI	Upper CI
be_me	0.0041	0.0128	0.3203	0.7487	-0.0210	0.0292
${ m ret}_12_1$	0.0042	0.0048	0.8691	0.3848	-0.0053	0.0137
$market_equity$	0.1608	0.1310	1.2274	0.2197	-0.0959	0.4175
${ m ret}_1_0$	0.0012	0.0048	0.2500	0.8026	-0.0081	0.0105
$\mathrm{rvol}_{-}252\mathrm{d}$	0.0001	0.0109	0.0116	0.9907	-0.0213	0.0215
${ m beta_252d}$	-0.0947	0.0857	-1.1057	0.2688	-0.2627	0.0732
$\mathbf{qmj_safety}$	0.0068	0.0035	1.9140	0.0556	-0.0002	0.0137
${ m rmax1_21d}$	-0.0931	0.1244	-0.7484	0.4542	-0.3370	0.1507
$chcsho_12m$	-0.0089	0.0621	-0.1438	0.8856	-0.1307	0.1129
ni_me	-0.0562	0.0472	-1.1901	0.2340	-0.1486	0.0363
$\mathrm{eq}_{\text{-}}\mathrm{dur}$	43.781	43.188	1.0137	0.3107	-40.865	128.43
ret_60_12	-0.0098	0.0042	-2.3206	0.0203	-0.0180	-0.0015
ope_be	-0.0192	0.0309	-0.6206	0.5349	-0.0798	0.0414
$\mathrm{gp}_{ ext{-}}\mathrm{at}$	0.0024	0.0029	0.8322	0.4053	-0.0033	0.0081
$ebit_sale$	-0.6719	0.6837	-0.9827	0.3258	-2.0119	0.6682
${ m at_gr1}$	-1.0733	0.7334	-1.4635	0.1433	-2.5107	0.3641
${ m sale_gr1}$	0.2397	0.2739	0.8753	0.3814	-0.2971	0.7765
${f at_be}$	0.0777	0.0427	1.8208	0.0686	-0.0059	0.1613
cash_at	-0.0002	0.0030	-0.0562	0.9552	-0.0060	0.0057
age	9.9438	7.5646	1.3145	0.1887	-4.8827	24.770
z_score	0.0423	0.0594	0.7122	0.4764	-0.0741	0.1588

6.2.b

6.2.c

6.3

Table 6

Model	In-sample R2
Model A	0.0023
Model B	0.0023
Model C	0.0324

7

8

8.1

Table 7

Model	Out-sample R2
Model A	0.4870
Model B	0.0002
Model C	-0.0298

8.2

Table 8
Panel A: Pooled OLS

Portfolio	$r_i - r_f$	t_{stat}	α_{CAPM}	t_{α}	Sharpe Ratio	IR
1	-0.063	-1.113	-0.069	-1.131	-0.102	-0.112
2	-0.005	-0.233	0.008	0.329	-0.021	0.034
3	0.091	1.510	0.084	1.545	0.138	0.129
4	0.058	1.653	0.057	1.888	0.152	0.149
5	-0.055	-1.165	-0.059	-1.248	-0.107	-0.114
LS	0.008	0.111	0.011	0.127	0.010	0.013

Panel B: Ridge Regression

Portfolio	$r_i - r_f$	t_{stat}	α_{CAPM}	t_{α}	Sharpe Ratio	IR
1	0.036	1.191	0.034	1.006	0.109	0.105
2	-0.004	-0.410	-0.003	-0.343	-0.038	-0.030
3	-0.451	-1.044	-0.659	-1.299	-0.096	-0.152
4	0.018	1.448	0.017	1.126	0.133	0.120
5	0.017	3.061	0.017	2.804	0.281	0.271
LS	-0.018	-0.619	-0.018	-0.536	-0.057	-0.055

Panel C: Random Forest

Portfolio	$r_i - r_f$	t_{stat}	α_{CAPM}	t_{α}	Sharpe Ratio	IR
1	-0.061	-0.995	-0.032	-286097475885977.312	-0.091	-3264846760324056.000
2	0.402	0.785	0.142	2248224154820543.750	0.072	7224655780888126.000
3	0.115	1.281	-15.369	-1691176820516556.250	0.117	-10169850206690330.000
4	0.061	7.593	0.151	559173050015646.000	0.696	6160577553020680.000
5	-0.073	-34.301	0.018	275850033277120.750	-3.144	3695901578164656.500
LS	-0.034	-17.384	0.050	1224457471030904.000	-1.594	5112797549406387.000

Appendix

Here you can find the python code that I used to solve the exercise. Link to the GitHub repository.