CLASSICAL LOGICS IN COMPUTER SCIENCE

reasoning

inference rule

deduction

algorithm

tautology

proof

Presa Universitară Clujeană

Mihaiela-Ana Lupea Andreea-Diana Mihiș

CLASSICAL LOGICS IN COMPUTER SCIENCE

Referenți științifici:

Prof. univ. dr. Doina Tătar Prof. univ. dr. Gabriela Czibula

ISBN 978-973-595-758-2

© 2014 Autoarele volumului. Toate drepturile rezervate. Reproducerea integrală sau parțială a textului, prin orice mijloace, fără acordul autoarelor, este interzisă și se pedepsește conform legii.

Universitatea Babeş-Bolyai Presa Universitară Clujeană Director: Codruța Săcelean Str. Hasdeu, nr. 51 400371 Cluj-Napoca, România Tel./fax: (+40)-264-597.401 E-mail: editura@editura.ubbcluj.ro/

PREFACE

The purpose of this book is to present fundamental concepts and results of classical logics in a formal style and in an explicitly computational way. Applications to automated theorem proving in propositional logic and first-order logic are discussed. The studied proof methods are: the resolution method, the semantic tableaux method and the sequent calculus.

The paper combines the theoretical presentation of classical logics with numerous examples explained and a rich base of proposed exercises.

Chapter 1 is dedicated to *propositional logic*. The semantic issues discussed are: truth tables, validity, consistency, inconsistency, logical equivalence, logical consequence, normal forms. From a syntactic perspective, propositional logic is introduced as an axiomatic (deductive) system, with the purpose of reasoning modeling.

First-order (predicate) logic is the topic of **chapter 2** of the paper. A Hilbert axiomatic system is used to present predicate calculus in a syntactic approach. The semantics of predicate logic is introduced in order to provide a meaning in terms of the modeled universe for each formula from the language. Normal forms, substitutions and unifiers used in predicative resolution are also discussed.

Chapter 3 treats the *semantic tableaux method*, a refutation proof method. The classic approach through graphical representation using a binary tree is very suggestive. The formulas are decomposed in order to determine their models.

Chapter 4 presents *the sequent calculus*, an improvement of the natural deduction system. As a syntactic and direct proof method, it is used to check the validity/derivability and non-validity/non-derivability in propositional logic and first-order logic.

The topic of **chapter 5** is *resolution*, a syntactic and refutation proof method, very efficient and easily to implement. Resolution is introduced as an axiomatic (formal) system and as a procedure. In order to increase the efficiency of the resolution process, the strategies (deletion, set-of-support, unit preference, level saturation, linear) and the refinements (lock, linear) of resolution are studied.

By its content, this book is usefull to all those interested in classical logics, fundamental in computer science. Professionals in computer science are offered a theoretical basis in the applicative direction of building automated proof systems used in mathematics, software engineering, intelligent agents, robotics, natural language, artificial vision.

We wish to acknowledge our deep appreciation to Prof. Dr. Doina Tătar for many valuable scientific discussions and guidance during all the years of study and research in the field of classical logics. Special thanks for all her constructive comments made during the preparation of this paper.

Cluj-Napoca 2014 Mihaiela-Ana Lupea Andreea-Diana Mihiş

CONTENTS

1. Pr	opositional logic	 9
1.1.	Syntax	9
1.2.	Semantics of propositional logic	9
1.3.	Logical equivalences	13
1.4.	Normal forms in propositional logic	16
1.5.	Formal (axiomatic) system of propositional logic	19
1.6.	The theorem of deduction and its reverse	22
1.7.	Properties of propositional logic	25
1.8.	Decision problems and proof methods	26
1.9.	Exercises	27
2. Fi	st-order logic	31
2.1.	The axiomatic (formal) system of first-order logic	31
2.2.	Transformation of natural language sentences into predicate formulas	37
2.3.	The semantics of first-order (predicate) logic	
2.4.	Logical equivalences in predicate logic	42
2.5.	Normal forms in first-order logic	45
2.6.	Substitutions and unifications	48
2.7.	Exercises	52
3. Sei	mantic tableaux method	57
3.1.	A Classic Approach of the Semantic Tableaux Method	57
3.2.	Exercises	68
4. See	quent calculus method	. 71
4.1.	The sequent calculus	. 71
4.2.	Exercises	79
5. Re	solution proof method	. 83
5.1.	Resolution method for propositional logic	83
5.2	Strategies for propositional resolution	. 87
5.3	Lock resolution	90
5.4	Linear resolution	96
5.5	Resolution in first-order (predicate) logic	99
5.6	Exercises	104
Inc	dex	109
Bil	bliography	113

INDEX

α (type formulas, rules)	57	compactness theorem	26
β (type formulas, rules)	57	complete	
γ (type formulas, rules)	57, 58	branch	59
•	,	semantic tableau	59
δ (type formulas, rules)	57, 58	completeness	25
\wedge (l, r)	72	theorem	26,85
\vee (l, r)	72	lock resolution	91
\neg (l, r)	72	composition of two substitutions	49
$\exists (l, r)$	72	conjunction in conclusions	15
$\forall (l, r)$	72	conjunctive	
⇒(provable)	72	normal form	16
algorithm		prenex normal form	46
for computing the mgu of two li	terals 51	connectives	9, 31
level-saturation-strategy	88	consequent	71
predicative resolution	101	consequences of the theorem of dedu	iction 23
propositional resolution	84	consistent	
alphabet	0.	formula	11, 40
predicative resolution	100	set	14, 41
propositional resolution	83	construction of a semantic tableau	58
antecedent	71	cube	16
anti-model	40	cut	15
ATOMS	32	Davis-Putman procedure	86
axiomatic (formal) system	32	decidability	25
first-order logic	31	decidable	26
sequent calculus (predicate logic		propositional logic	74
anti-model	11	decision problems	27
basic sequent	71	decomposition rules	57
binary resolvent (predicative resolut		deducible	20, 33
bound variables	33	deduction	20, 33
clause	16	rules	20
central clauses	97	deletion strategy	88
clashing clauses	21	De Morgan's infinitary laws	42
predicative resolution	100	derivable	33
propositional resolution	83	disjunctive normal form	16
clausal normal form	47	disjunction in premises	15
closed	47	distributive laws	43
branch	59	domain	
semantic tableau	59	of interpretation	39
formula	33	for a substitution	49
coherence	25	dual	
coherent	26	concepts	17
common instance	50	connectives	14
compactness	25	rules	73
compactness	23	truth values	14

Index

duality principle	14	matrix of the formula	46
empty clause	16	mgu	50
expansion laws	42	model	10, 40
extraction of quantifiers	43	modus ponens (rule)	20, 32, 84
factor (predicative resolution)	101	modus tollens	32, 84
factoring rule	100	monotonicity	15
first-order logic	31	most general unifier	50
formal (axiomatic) system		non-contradiction	25
propositional logic	19	non-contradictory	26
resolution	83	normal forms	
free variables	33	in first-order logic	45
graphic representation (resolution)	84	in propositional logic	16
hypotheses	20	normalization algorithm	17
incompleteness		open (branch)	59
formula	90	open (semantic tableau)	59
set of clauses	90	parent clauses	83
inconsistent		permutation of the premises law	23
formula	11, 40	predicate	
set	14, 42	resolution	100
inferable	33	resolvent	101
inference (deduction) rules	20	prefix of the formula	45
inference rules	73	premise	14
sequent calculus	73	premises	73
inference/reduction rules (sequent	calculus)72	prenex normal form	45
input resolution	98	proof methods	27
interpretation	10, 39	properties of propositional logic	25
facts	14	pure literal	86
functionally complet (set)	14	quantifiers	31
hypotheses	14	interchanging laws	42
laws		reduction rules	73
simplification	13	refinements of resolution	90
idempotency	13	refutation	
commutative	13	methods	27,36
absorption	13	theorem	36
distributive	13	resolution	
De'Morgan	13	first-order (predicate) logic	100
reunion of the premises	23	method for propositional logic	83
left - side rules	72	rule	83
level saturation strategy	87	predicative resolution	100
linear		resolve	83
deduction	96	resolvent	83
resolution	96	restriction (lock resolution)	91
literal	16, 32	reunion of the premises law	23
lock resolution	91	reverse of the theorem of deduction	23
logical		right - side rules	72
connectives	19	satisfiable	11, 40
consequence	11, 14, 41	semantic	
equivalences	13,42	concepts	10
logically equivalent	11, 40	proof methods	27
logically implies	41	first-order (predicate) logic	39

Index

propositional logic	9	theorem of deduction	36
sequent calculus	71	soundness (lock resolution)	91
tableaux method	57	soundness and completeness	20, 26
semi-decidability of predicate logic	75	theorem	34
semi-decidable	45	theorems	
predicative resolution	102	Church	45
separation of the premises law	23	equivalence of unit resolution and	d input
sequent calculus method	71, 73	resolution	98
set of		soundness and completeness of s	sequent
axioms		calculus	74
predicative resolution	100	top clause	97
propositional resolution	83	transformation of natural language ser	ntences
inference rules		into predicate formulas	37
predicative resolution	100	transitivity	15
propositional resolution	83	true	
well formed formulas	19	sequent	71
predicative resolution	100	under the interpretation (formula)	40
propositional resolution	83	truth	
propositional variables	9	values	9
support resolution	89	tables	10
support strategy	89	undecidable	45
side clauses	97	predicative resolution	102
simplified set of clauses	86	unifier	50
Skolem		unit resolution	97
constants	46	universal	
functions	46	generalization	32
normal form	46	instantiation	32
soundness	25	unsatisfiable formula	11,40
theorem	26	valid formula	11, 40
lock resolution	91	vocabulary	9, 31
resolution	85	well formed formulas	9
and completeness for			
propositional logic	26		
semantic tableaux method	60		
linear resolution	97		
theorem	45, 85		
strategies for propositional resolution	87		
substitution	48		
and unifications	48		
subsumed (clauses)	86		
subsumes (clauses)	86		
support set	89		
syllogism	23,84		
syntax	9		
tautology	11, 40		
TERMS	31		
theorem	20		
completeness	26		
theorem of deduction and its reverse	22		
theorem of deduction	23		

BIBLIOGRAPHY

- 1. **Ben-Ari, M.,** *Mathematical Logic for Computer Science*, Springer, 2001.
- 2. **Benzaken, C.,** Systemes Formels. Introduction a la Logique, Masson, 1991.
- 3. **Bibel, W.,** *Automated Theorem Proving*, View Verlag, Braunschweig, second edition, 1987.
- 4. **Boian, F. M.,** *De la aritmetică la calculatoare*, Presa Universitară Clujeană, 1996.
- 5. **Bonatti, P., Olivetti, N.,** Sequent Calculi for Propositional Nonmonotonic Logics, ACM Trans. Comput. Log., 2002, pag. 226-278.
- 6. **Boole, G.,** 1847, *The Mathematical Analysis of Logic. Being an Essay Towards a Calculus of Deductive Reasoning*, Cambridge: Macmillan, Barclay, 1847.
- **7. Boole, G.,** 1854, An Investigation of the Laws of Thought, on which are Founded the Mathematical Theories of Logic and Probabilities, London: Walton & Maberly, 1854.
- 8. Both, N., Algebra logicii cu aplicații, Editura Dacia, Cluj-Napoca, 1984.
- 9. **Both, N.,** *Capitole Speciale de Logică Matematică*, Universitatea Babeş-Bolyai, Cluj-Napoca, 1994.
- 10. **Boyer, R.S.,** *Locking: A Restriction of Resolution*, Ph.D. Thesis, University of Texas at Austin, Texas, 1971.
- 11. **Chang, C.L.,** *The unit proof and the input proof in theorem proving*, Journal Assoc. Comput. Mach. 17, 1970, pp.698-707.
- 12. Chang, C.L, Lee, R.C., Symbolic Logic and Mechanical Theorem Proving, Academic Press, 1973.
- 13. **Church, A.,** *An unsolvable problem of number theory*, American Journal of Mathematics, 58, pag.345-363, 1936.
- 14. Cocan, M., Pop, B., Bazele Matematice ale Sistemelor de Calcul, Editura Albastră, Cluj-Napoca, 2001.
- 15. **Davis, M., Putnam, H.,** *A computing procedure for quantification theory*, Journal Assoc. Comput. Mach., 7, 1960, pp. 201-215.
- 16. **Delahaye, J.P.,** Outils Logiques pour l'Intelligence Artificielle, Eyrolls, 1986.
- 17. **Dreben, B., Goldfarb, W.,** *The Decision Problem: Solvable Classes of Quantificational Formulas*, Addison-Wesley, 1979.
- 18. **Duffy, D.A.,** *Principles of Automated Theorem Proving*, John Wiley & Sons, 1991.
- 19. **Dumitrescu, D.,** *Principiile Inteligenței Artificiale*, Editura Albastră, Cluj-Napoca, 2002.

Bibliography

- 20. **Fitting, M.,** First-order logic and Automated Theorem Proving, Springer Verlag, 1990.
- 21. **Floarea, A., Boangiu, A.,** *Inteligența Artificială*, Universitatea Tehnică București, 1994
- 22. **Gentzen, G.K.E,** *Untersuchungen über das logische Schließen. I*, Mathematische Zeitschrift 39 (2),1934, pp. 176–210.
- 23. **Genesereth, M.R., Nilsson, N.J.,** Logical Foundations of Artificial Intelligence, Morgan Kaufman, 1992.
- 24. **Hilbert, D., Ackermann, W.,** *Principles of Mathematical Logic*, Chelsea, New York, 1950.
- 25. **Hsu, J. Z.,** Computer logic. Design Principles and Applications, Springer-Verlag, New York, 2002.
- 26. Kleene, S.C., Mathematical Logic, Wiley, New York, 1967.
- 27. **Lenzen, W.,** *Leibniz's Logic, in Handbook of the History of Logic*, D. M. Gabbay/J. Woods (eds.), volume 3: The Rise of Modern Logic: From Leibniz to Frege, Amsterdam et al.: Elsevier-North-Holland, pp. 1–83, 2004.
- 28. **Livovschi, L.,** *Circuite cu contacte de relee*, Editura Academiei Republicii Socialiste România, 1968.
- 29. **Littlewood, J.E.,** Varietăți matematice, București, 1969.
- 30. **Loveland, D.W.,** *A linear format for resolution*, Proceedings IRIA Symp. Automatic Demonstration, Versailles, France, 1968, Springer-Verlag, New York, 1970, pp. 147-162.
- 31. **Loveland, D.W.,** *Automated Theorem Proving: A Logical Basis*, North Holland, Amsterdam, 1978.
- 32. **Luckham, D.,** *Refinements in resolution theory*, Proceedings IRIA Symp. Automatic Demonstration, Versailles, France, 1968, Springer-Verlag, New York, 1970, pp. 147-162.
- 33. **Lupea, M.,** *Lock resolution a refinement of resolution*, Seminar on Computer Science, Editura Universitatii Babes-Bolyai, Cluj-Napoca, 1994, pp. 57-64.
- 34. **Lupea, M.,** *Semantic tableaux to compute extensions for different versions of default logic*, Research Seminar on Computer Science, Editura Universitatii Babes-Bolyai, Cluj-Napoca, 2000, pp. 31-48.
- 35. **Lupea, M.,** *Raţionament nemonoton prin logici implicite*, Ph.D Thesis, Babeş-Bolyai University, Cluj-Napoca, 2002.
- 36. **Lupea, M.,** *Axiomatization of credulous reasoning in rational default logic*, Studia Universitas Babeș-Bolyai, Informatica, LII(1), pag:101-111, 2007.
- 37. **Lupea, M., Mihiş, A.,** *Logici clasice şi circuite logice. Teorie şi exemple*, Editura Albastra, Cluj-Napoca, first edition (2008), second edition (2009), third edition (2011).
- 38. **Maliţa, M., Mircea M.,** *Bazele Inteligenţei Artificiale*, Vol.I, Logici propozitionale, Editura Tehnică, Bucureşti, 1987.

Bibliography

- 39. Mihiş, A.D., Chisăliță-Creţu C., Mihăilă C., Şerban C., BOOFS a tool that supports simplifying conditional expressions using boolean functions simplification methods, Proceedings of International Conference of Mathematics & Informatics, ICMI45, Bacău, Septembrie 18-20, 2006, Studii şi cercetări ştiințifice, nr.16 2006 Supplement, Universitatea din Bacău, Facultatea de Stiințe, Seria Matematica, ISN 1224-2519.
- 40. Moşcenski, V.A., Lecţii po matematiceskoi logike, Minsk, 1973.
- 41. **Nasin, P.,** *Circuite logice și automatizări secvențiale*, Editura Tehnică, Bucuresti 1967.
- 42. **Nilsson, N.J.,** *Principles of Artificial Intelligence*, Tioga, Palo Alto, Morgan Kaufmann, 1980.
- 43. **Paulson, L.C.,** *Logic and Proof*, Cambridge University, 2000, www.cl.cam.ac.uk/teaching/2000/LogicProof/notes.pdf.
- 44. **Popa, C.,** Logica predicatelor, Editura Hyperion, Bucureşti, 1992.
- 45. Possega, M., Deduction Systems, Institute of Informatics, 2002, on-line course.
- 46. **Rădulescu, V.,** Revanșa minții, Editura Militară, București, 1974.
- 47. Reeves S., Clarke, M., Logic for Computer Science, Eddison-Wesley, 1990.
- 48. Rich, E., Artificial Inteligence, Mac Graw-Hill, New York, 1983.
- 49. **Risch, V., Schwind, C.B.,** *Tableau-Based Characterization and Theorem Proving for Default Logic*, Journal of Automated Reasoning, Vol 13, Nr. 2, 1994, pag. 223-242.
- 50. **Robinson**, **J.A.**, *A machine oriented logic based on resolution principle*, Journal Assoc. Comput. Mach, 12, 1965, pp. 23-41.
- 51. **Robinson, J.A.,** *Automatic deduction with hyper-resolution*, International Journal Computation Math, 1, 1965, pp. 227-234.
- 52. **Robinson, J.A.,** *Logic, Form and Function. The Mechanization of Deductive Reasoning*, University Press, Edinburg, 1979.
- 53. **Roul de Palma,** *Algebra binară a lui Boole și aplicațiile ei în informatică*, Editura Tehnică, Bucuresti, 1976.
- 54. Russel, S., Norwig, P., Artificial Intelligence, Prentice Hall, 1995.
- 55. **Rusu, E.,** *Cum gândim şi rezolvăm 200 de probleme*, Editura Albastros, Bucureşti, 1972.
- 56. **Schwind, C.B.,** A tableaux-based theorem prover for a decidable subset of default logic. 10-th International Conference on Automated Deduction. Lecture Notes in A.I. 449, 1990.
- 57. **Slagle, J.R.,** Automatic theorem proving with renamable and semantic resolution, Journal Assoc. Comput. Mach, 12, 1965, pp. 536-541.
- 58. **Smullyan, R.M.,** *First-Order Logic*, Springer Verlag, Berlin, 1968. Revised Edition, Dover Press, New York, 1996.
- 59. **State, L.,** Elemente de Logică Matematică și Demonstrarea Automată a Teoremelor, Universitatea București, 1989.

Bibliography

- 60. Tarski, A., Introduction to Logic, Oxford University Press, 1976.
- 61. **Thayse, A.,** editor: *From Standard Logic to Logic Programming*, John Wiley & Sons, vol1 (1989), vol2 (1989), vol3 (1990).
- 62. **Tătar, D.,** *Bazele Matematice ale Calculatoarelor*, Lito, Babeș-Bolyai University, Cluj-Napoca, 1999.
- 63. **Tătar, D.,** Inteligența Artificială: Demonstrare Automată de Teoreme și NLP, Editura Microinformatica, Cluj-Napoca, 2001.
- 64. **Tîrnoveanu, M.,** Elemente de logică matematică, vol.1, Logica propozițiilor bivalente, Editura didactică și pedagogică, București, 1964.
- 65. Wos, L., Robinson J.A., Carson, D.F., Efficiency and completeness of the set of support strategy in theorem proving, Journal Assoc. Comput. Mach, 12, 1965, pp. 536-541.

modus ponens

axiom

disjunction

syllogism theorem

proof

modus tollens

ISBN: 978-973-595-758-2