```
In [32]: import numpy as np
         import pandas as pd
         import random
         from sklearn.model selection import cross val score
         from sklearn.ensemble import RandomForestClassifier
         from sklearn.pipeline import make pipeline
         from sklearn import preprocessing
         from sklearn.preprocessing import StandardScaler
         from sklearn import svm
         import warnings
         warnings.filterwarnings('ignore')
In [2]: filename = 'train.csv'
         n = sum(1 for line in open(filename)) - 1
         s = 100000
         skip = sorted(random.sample(range(1, n+1), n-s))
         df = pd.read csv(filename, skiprows=skip)
In [3]: dest = pd.read csv('destinations.csv')
         df.shape
Out[3]: (100000, 24)
In [4]: df.to csv(r'C:\Users\Gabe\Documents\Bellevue University\Predictive Analytics\Week
         5\subset train.csv', index = False)
```

CSV was exported to perform EDA and Data Preparation in R

The data prepared CSV will be use for the modeling and algorithms

Out[7]:

	date_year	date_month	site_name	posa_continent	user_location_country	user_location_region	user_locatic
0	2014	7	11	3	205	354	
1	2014	11	2	3	66	462	
2	2014	6	2	3	66	314	
3	2013	1	2	3	66	174	
4	2013	10	2	3	66	149	

5 rows × 176 columns

1 of 3 7/4/2020, 1:35 PM

```
In [30]: relevant_hotel_info = [df.groupby(['srch_destination_id','hotel_country','hotel_mar
    ket','hotel_cluster'])['is_booking'].agg(['sum','count'])]
    agg = pd.concat(relevant_hotel_info).groupby(level=[0,1,2,3]).sum()
    #agg.dropna(inplace=True)
    agg.head()
```

sum count

Out[30]:

srch_destination_id	hotel_country	hotel_market	hotel_cluster		
148	50	953	42	1	1
245	50	365	25	1	1
259	50	444	15	1	1
263	50	455	16	1	1
305	50	453	77	1	1

```
In [21]: agg['sum_and_cnt'] = 0.85*agg['sum'] + 0.15*agg['count']
    agg = agg.groupby(level=[0,1,2]).apply(lambda x: x.astype(float)/x.sum())
    agg.reset_index(inplace=True)
    agg.head()
```

Out[21]:

	srch_destination_id	hotel_country	hotel_market	hotel_cluster	sum	count	sum_and_cnt
0	148	50	953	42	1.0	1.0	1.0
1	245	50	365	25	1.0	1.0	1.0
2	259	50	444	15	1.0	1.0	1.0
3	263	50	455	16	1.0	1.0	1.0
4	305	50	453	77	1.0	1.0	1.0

In [22]: agg_pivot = agg.pivot_table(index=['srch_destination_id','hotel_country','hotel_mar
 ket'], columns='hotel_cluster', values='sum_and_cnt').reset_index()
 agg_pivot.head()

Out[22]:

hotel_cluster	srch_destination_id	hotel_country	hotel_market	0	1	2	3	4	5	6	 9
0	148	50	953	NaN	 Na						
1	245	50	365	NaN	 Na						
2	259	50	444	NaN	 Na						
3	263	50	455	NaN	 Na						
4	305	50	453	NaN	 Na						

5 rows × 98 columns

Out[23]: (542, 271)

2 of 3 7/4/2020, 1:35 PM

Out[36]: 0.5875114694032719

```
In [24]: df = df.loc[df['is_booking'] == 1]
         # Determing features
         X = df.drop(['user_id', 'hotel_cluster', 'is_booking'], axis=1)
         y = df.hotel_cluster
In [33]: # K-Nearest Neighbor Classifier
         from sklearn.neighbors import KNeighborsClassifier
         clf = make pipeline(preprocessing.StandardScaler(), KNeighborsClassifier(n neighbor
         s=5))
         np.mean(cross val score(clf, X, y, cv=10, scoring='accuracy'))
Out[33]: 0.611901065651586
In [34]: # Random Forest Classifier
         clf = make pipeline(preprocessing.StandardScaler(), RandomForestClassifier(n estima
         tors=273, max depth=10, random state=0))
         np.mean(cross_val_score(clf, X, y, cv=10))
Out[34]: 0.5691095486128402
In [35]: # Multi-Class Logistic Regression
         from sklearn.linear model import LogisticRegression
         clf = make pipeline(preprocessing.StandardScaler(), LogisticRegression(multi class=
         'ovr'))
         np.mean(cross val score(clf, X, y, cv=10))
Out[35]: 0.6501366019042722
In [36]: # SVM Classifier
         from sklearn import svm
         clf = make pipeline(preprocessing.StandardScaler(), svm.SVC(decision function shape
         np.mean(cross_val_score(clf, X, y, cv=10))
```

3 of 3 7/4/2020, 1:35 PM