Vectors

Vectors

- Vectors are ordered list of numbers.
- An example of a vector with two entries is

$$\mathbf{w} = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$$
 ,

where w_1 and w_2 are any real numbers.

• The set of all vectors with 2 entries is denoted by R^2

Geometric Descriptions of R²

Vectors are lines that have magnitude and direction.

• We may regard R^2 as the set of all 2D vectors in the plane.

Vector Operations

■ Example 1: Given
$$u = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$$
 and $v = \begin{bmatrix} 2 \\ -5 \end{bmatrix}$, find

$$4\mathbf{u}$$
, $(-3)\mathbf{v}$, and $4\mathbf{u} + (-3)\mathbf{v}$.

Solution:

$$4\mathbf{u} = \begin{bmatrix} 4 \\ -8 \end{bmatrix} \qquad (-3)\mathbf{v} = \begin{bmatrix} -6 \\ 15 \end{bmatrix} \qquad 4\mathbf{u} + (-3)\mathbf{v} = \begin{bmatrix} 4 \\ -8 \end{bmatrix} + \begin{bmatrix} -6 \\ 15 \end{bmatrix} = \begin{bmatrix} -2 \\ 7 \end{bmatrix}$$

Vector Operations in Python

■ Example 1: Given
$$u = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$$
 and $v = \begin{bmatrix} 2 \\ -5 \end{bmatrix}$, find

$$4\mathbf{u}$$
, $(-3)\mathbf{v}$, and $4\mathbf{u} + (-3)\mathbf{v}$.

Solution:

```
import numpy as np

u = np.array([1,-2])
u.shape

(2,)
```

```
v = np.array([2,-5])
```

: array([-2, 7])

Parallelogram Rule For Addition

If \mathbf{u} and \mathbf{v} in \mathbb{R}^2 are represented as points in the plane, then $\mathbf{u} + \mathbf{v}$ corresponds to the fourth vertex of the parallelogram whose other vertices are \mathbf{u} , $\mathbf{0}$, and \mathbf{v} . See Fig. 3 below.

VECTORS IN \mathbb{R}^3 and \mathbb{R}^n

such as

- Vectors in \mathbb{R}^3 are 3×1 column matrices with three entries.
- They are represented geometrically by points in a three-dimensional coordinate space, with arrows from the origin sometimes included for visual clarity.
- If n is a positive integer, \mathbb{R}^n (read "r-n") denotes the collection of all lists (or *ordered n-tuples*) of n real numbers, usually written as $n \times 1$ column matrices,

 $\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}$