S1. Table: The division of amino acid groups based on physicochemical properties and amino acid indices.

Attributes	Group 1	Group 2	Group 3
Hydrophobicity	Polar	Neutral	Hydrophobic
	Q, E, R, K, D, N	G,P, H, A, S, T, Y	C, V, F, L, I, M, W
Polarizability	0-1.08	0.128-0.186	0.219- 0.409
	S, D, G, A, T	C, Q, I, P, N, V, E, L	Y, M, K, R, H, F, W
Normalized	0-2.78	2.95-4.0	4.0-8.1
Van der Waals	S, C, G, A, T, P, D	E, Q, N, V, I, L	K, F, M, H, R, Y, W
Polarity	4.9-6.2 W, C, L, I, F, M, V, Y	8.0-9.2 T, G, P, A, S	10.4-13.0 K, N, H, Q, R, E, D
Solvent Accessibility	Buried A, I, F, C, G, L, V, W	Exposed R, K, Q, E, N, D	Intermediate M, S, P, T, H, Y
Secondary Structure	Helix E, A, L, M, Q, K, R, H	Strand V, I, Y, C, W, F, T	Coil G, N, P, S, D
Charge	Positive K, R	Neutral A, N, C, Q, G, H, I, L, M, F, P, S, T, W, Y, V	Negative D, E

S2. The parameter setting of traditional machine learning methods and DNN models for epitope prediction of human-adapted viruses.

For traditional machine learning methods, the parameters are optimized, and the values are shown below.

Random Forest (n_estimators=100, criterion='gini', min_samples_split=2, min_samples_leaf=1, min_weight fraction leaf=0.0, max_features='auto', min_impurity_decrease=0.0)

Neural Network (hidden_layer_sizes=(50,50,50), activation='relu', solver='adam', alpha=0.001, batch size='auto',learning rate='adaptive',learning rate init=0.001,power t=0.5,max iter=200)

Gaussian Naive Bayes (var_smoothing=1e-09)

K-nearest neighbors (n_neighbors=8, weights='distance', algorithm='auto', leaf_size=30, p=1, metric='minkowski')

Support Vector Machine (C=1.0, kernel='rbf', degree=3, gamma='scale', coef0=0.0, shrinking=True, probability=False, tol=0.001, max_iter=-1, decision_function_shape='ovr')

XGBoost (base_score=0.5, colsample_bytree=0.85, gamma=0.2, importance_type='gain', learning_rate=0.05, max_delta_step=0, max_depth=9, min_child_weight=3, n_estimators=180, num_parallel_tree=1, random_state=283, reg_alpha=0.05, reg_lambda=1, scale_pos_weight=1, subsample=0.75, verbosity=1)

For VGG and AlexNet, we experimented on the batch size = 2, learning rate = 0.0001, and dropout = 0.1, epoch = 100. For SqueezeNet, we experimented on the batch size = 8, learning rate = 0.00005, and dropout = 0.1, epoch = 100. For RNN-based models, we experimented on the batch size = 2, learning rate = 0.0005, and dropout = 0.1, epoch = 100.

S3 Table: The detailed description of compared methods for viral epitope prediction.

Method	Description	Length of epitope	Reference
BepiPred 2.0	BepiPred 2.0 predicts b-cell epitope using Random Forest algorithm trained on epitope and non-	>=10	[6]
	epitope amino acids determined from crystal		
	structures. The residual is predicted as part of		
	epitope when the score is above the threshold.		
LBtope	LBtope predicts variable length b-cell epitope using	All length	[7]
	SVM algorithm by constructing dipeptide vectors.		
Parker	This method uses hydrophilic scale, which is based	>7	[5]
Hydrophilicity	on peptide retention times during high-		
prediction	performance liquid chromatography (HPLC) on a		
	reversed-phase column. A window of seven		
	residues was used for analyzing epitope region.		
Chou and	According to [9], it is reasonable to predict antibody	>7	[1][9]
Fasman beta	epitopes by predicting turns. In this case we used		
turn	the Chou and Fasman scale in order to implement		
prediction	the turn scale of that paper which has some non-		
	standard properties	_	
Emini surface	This method is based on surface accessibility scale,	>7	[2]
accessibility	obtained from $S_n = 0.37^{-6} \prod_{i=1}^6 \delta_{n+4-i}$, where Sn		
Prediction	is the surface probability, δx is the fractional		
	surface probability for the amino acid at position x.		
Kolaskar and	This is a semi-empirical method based on	>7	[4]
Tongaonkar	physicochemical properties of amino acid residues		
antigenicity	and their frequencies of occurrence in		
Prediction	experimentally known segmental epitopes to		
	predict antigenic determinants on proteins		
Karplus and	This method uses flexibility scale, based on the	>7	[3]
Schulz	temperature factors, i.e., B values, of the $C\alpha$ atoms.		
Flexibility			
Prediction		. –	
AAP	AAP antigenicity scale was based on the ratio of	15	[8]
	occurrence frequency of amino acid pairs in the		
	positive set compared to the negative set.		54.03
DPC	Dipeptide composition (DPC) is represented by a	All length	[10]
	vector specifying the percentage of composition of		
	all dipeptide type		

Reference

- [1] Chou, P Y, and G D Fasman. "Prediction of the secondary structure of proteins from their amino acid sequence." Advances in enzymology and related areas of molecular biology vol. 47 (1978): 45-148. doi:10.1002/9780470122921.ch2
- [2] Emini, E A et al. "Induction of hepatitis A virus-neutralizing antibody by a virus-specific synthetic peptide." Journal of virology vol. 55,3 (1985): 836-9. doi:10.1128/JVI.55.3.836-839.1985
- [3] Karplus, P. Andrew and Georg E. Schulz. "Prediction of chain flexibility in proteins." Naturwissenschaften 72 (2005): 212-213.
- [4] Kolaskar, A S, and P C Tongaonkar. "A semi-empirical method for prediction of antigenic determinants on protein antigens." FEBS letters vol. 276,1-2 (1990): 172-4. doi:10.1016/0014-5793(90)80535-q
- [5] Parker, J M et al. "New hydrophilicity scale derived from high-performance liquid chromatography peptide retention data: correlation of predicted surface residues with antigenicity and X-ray-derived accessible sites." Biochemistry vol. 25,19 (1986): 5425-32. doi:10.1021/bi00367a013
- [6] Jespersen, Martin Closter et al. "BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes." Nucleic acids research vol. 45,W1 (2017): W24-W29. doi:10.1093/nar/gkx346
- [7] Harinder Singh, Hifzur Rahman Ansari, and Gajendra P. S. Raghava. Improved methodfor linear b-cell epitope prediction using antigen's primary sequence.PLOS ONE, 8(5):1–8,05 2013
- [8] Chen, J et al. "Prediction of linear B-cell epitopes using amino acid pair antigenicity scale." Amino acids vol. 33,3 (2007): 423-8. doi:10.1007/s00726-006-0485-9
- [9] Pellequer, J L et al. "Correlation between the location of antigenic sites and the prediction of turns in proteins." Immunology letters vol. 36,1 (1993): 83-99. doi:10.1016/0165-2478(93)90072-a
- [10] Yu, Chin-Sheng, Chih-Jen Lin, and Jenn-Kang Hwang. "Predicting subcellular localization of proteins for Gramnegative bacteria by support vector machines based on n-peptide compositions." Protein science 13.5 (2004): 1402-1406.