

USC Viterbi Synergy between 3DMM and 3D Landmarks for Accurate 3D Facial Geometry

- Motivation
- 1. Previous methods only directly extract 3D landmarks, which can be further refined.
- 2. 3DMM parameters regressed from 3D spaces can free from self-occlusion issues

Self-Occlusion on the image domain

Method & Contribution

Qiangeng Xu Ulrich Neumann Cho-Ying Wu University of Southern California, Viterbi School of Engineering

Forward Direction Framework (From parameters to landmarks)

Backward Direction (Landmarks to 3DMM parameters)

Result and Comparison

Extreme Cases

Best on benchmarks

	AFLW2000-3D Original	0 to 30	30 to 60	60 to 90	All
	ESR [6]	4.60	6.70	12.67	7.99
	3DDFA [70]	3.43	4.24	7.17	4.94
	Dense Corr [67]	3.62	6.06	9.56	6.41
	3DSTN [3]	3.15	4.33	5.98	4.49
	3D-FAN [4]	3.16	3.53	4.60	3.76
	3DDFA-PAMI [71]	2.84	3.57	4.96	3.79
	PRNet [17]	2.75	3.51	4.61	3.62
	2DASL [49]	2.75	3.46	4.45	3.55
	3DDFA-V2 (MR) [20]	2.75	3.49	4.53	3.59
	3DDFA-V2 (MRS) [20]	2.63	3.42	4.48	3.51
	SynergyNet (our)	2.65	3.30	4.27	3.41
,		T ==	1		

AFLW 2000-3D	Taw	FILCH	Kon	Mean
PnP-landmark	5.92	11.76	8.27	8.65
FAN-12 point [4]	6.36	12.30	8.71	9.12
HopeNet [40]	6.47	6.56	5.44	6.16
SSRNet-MD [65]	5.14	7.09	5.89	6.01
FSANet [64]	4.50	6.08	4.64	5.07
QuatNet [22]	3.97	5.62	3.92	4.15
TriNet [7]	4.20	5.77	4.04	3.97
RankPose [10]	2.99	4.75	3.25	3.66
3DDFA-TPAMI [71]	4.33	5.98	4.30	4.87
2DASL [49]	3.85	5.06	3.50	4.13
3DDFA-V2 [20]	4.06	5.26	3.48	4.27
SynergyNet (our)	3.42	4.09	2.55	3.35
	(A)	· · · · · · · · · · · · · · · · · · ·		0

Codes and Data

