Yu Tianxiong

Economics Research, EEP tyuy@edu.hse.ru

Fall 2022 MI DM 2022 Competition

- Introduction
- **Data Preprocessing**
- Modeling
- Results and Discussion

Goal of the Competition:

Enzymes are proteins that act as catalysts in the chemical reactions of living organisms. The goal of this competition is to predict the thermostability of **enzyme variants**. The experimentally measured thermostability (melting temperature) data includes natural sequences, as well as engineered sequences with single or multiple mutations upon the natural sequences.

Prize Money: \$ 25,000

MI DM 2022 Fall 2022

timeline

- September 21, 2022 Start Date;
- December 27, 2022 Entry Deadline. You must accept the competition rules before this date in order to compete;
- December 27, 2022 Team Merger Deadline. This is the last day participants may join or merge teams;
- January 3, 2023 Final Submission Deadline.

4/42

competition

In this competition, you are asked to develop models that can predict the ranking of protein stability (as measured by melting point, t_m) after single-point amino acid mutation and deletion.

Novozymes(a company) finds enzymes in nature and optimizes them for use in industry.

- In industry, enzymes replace chemicals and accelerate production processes:
- They help our customers make more from less, while saving energy and generating less waste;

5/42

challenge of predicting stability

However, many enzymes are only marginally stable, which limits their performance under harsh application conditions.

Novozymes finds enzymes in nature and optimizes them for use in industry.

Computational protein stability prediction based on physics principles such as FoldX, Rosetta, and others. Recently, many machine learning methods were proposed to predict the stability impact of mutations, more and more protein structures are being solved thanks to the recent breakthrough of AlphaFold2. However, accurate prediction of protein thermal stability remains a great challenge.

e.g. Alphafold2 prediction of wildtype 3d structure

a brief intro on related knowledge

- **Enzymes** are proteins that act as catalysts in the chemical reactions of living organisms, it means that enzymes accelerate reaction speed, modifying substances called substrates, and the substrates which are chosen to bind with the enzymes to be modified, will depend in each enzyme, normally enzymes are proteins but also can be RNA:
- Proteins are large, complex molecules that play many critical roles in the body. They do most of the work in cells and are required for the structure, function and regulation of the body's tissues and organs;

a brief intro on related knowledge

- Protein is made from twenty-plus basic building blocks called amino acids;
- An amino acid is an organic molecule that is made up of a basic amino group (NH2), an acidic carboxyl group (COOH), and an organic R group (or side chain) that is unique to each amino acid:
 - Amino Acid structure (particularly the R-Group) is determined by a particular codon (triplet of Nucleotides).
- There are only 5 types of **nucleotides**

9/42

MI DM 2022 Fall 2022

a brief intro on related knowledge

Graphically explanation

summary

 To make a protein we use instructions (DNA/RNA, Nucleotides), to build up the protein chain by adding one amino acid at a time (in our instructions each codon tells us what amino acid comes next). The stability of protein is releted to natural sequences, their three dimensional structures and environments.

Data Preprocessing

- In this competition, you are asked to develop models that can predict the ranking of protein thermostability (as measured by melting point, tm) after single-point amino acid mutation and deletion.
- For the training set, the protein thermostability data includes natural sequences, engineered sequences with single or multiple mutations upon the natural sequences. The data are mainly from different sources of published studies such as Meltome atlas—thermal proteome stability across the tree of life. Many other public datasets exist for protein stability; please see the competition Rule 7 external data usage requirements.

12/42

MLDM_2022 Competition Fall 2022

File description

train.csv - the training data, with columns as follows:

Data Preprocessing

- seg_id: unique identifier of each protein variants
- protein_sequence: amino acid sequence of each protein variant. The stability (as measured by tm) of protein is determined by its protein sequence
- pH: the scale used to specify the acidity of an aqueous solution under which the stability of protein was measured
- data_source: source where the data was published
- tm: target column. Since only the spearman correlation will be used for the evaluation, the correct prediction of the relative order is more important than absolute tm values

for details

• train_updates_20220929.csv corrected rows in train, please see this forum post

 test.csv the test data; your task is to predict the target tm for each protein_sequence (indicated by a unique seq_id)

Data Preprocessing

- sample_submission.csv a sample submission file in the correct format, with seq_id values corresponding to test.csv
- wildtype_structure_prediction_af2.pdb.csv the 3 dimensional structure enzyme listed above, as predicted by AlphaFold

14/42

MLDM_2022 Competition Fall 2022

Data Preprocessing

File description

train.csv

	seq_id	protein_sequence	рΗ	data_source	tm
0		${\bf AAAAKAAALALLGEAPEVVDIWLPAGWRQPFRVFRLERKGDGVLVG}$		doi.org/10.1038/s41592-020-0801-4	75.7
1		${\tt AAADGEPLHNEEERAGAGQVGRSLPQESEEQRTGSRPRRRRDLGSR}$		doi.org/10.1038/s41592-020-0801-4	50.5
2		A AAFSTPRATSYRILSSAGSGSTRADAPQVRRLHTTRDLLAKDYYA		doi.org/10.1038/s41592-020-0801-4	40.5
3		A AASGLRTAIPAQPLRHLLQPAPRPCLRPFGLLSVRAGSARRSGLL		doi.org/10.1038/s41592-020-0801-4	47.2
4		AAATKSGPRRQSQGASVRTFTPFYFLVEPVDTLSVRGSSVILNCSA		doi.org/10.1038/s41592-020-0801-4	49.5

procedure

- Substitue old dataset with updated ones
- Consider whether some of the data_source providers are unreliable
 - add dummy
- Missing values
- Abnormal values

16/42

feature engineering

- Dealing with protein_sequence
 - frequency for each amino acid
 - length for protein_sequence
 - different kinds of amino acids
 - relative position for amino acid
 - multicollinearity for relative positions
 - mutation

processed train data

18/42

processed test data

19/42

MLDM_2022 Competition Fall 2022

Statistical analysis

	рН	length	kinds	tm	position	wildtype	mutation
count	28981.0000	28981.0000	28981.0000	28981.0000	28981.0000	28981.0000	28981.0000
mean	6.8737	450.4686	19.7070	51.3600	1.0104	4.1522	1.5093
std	0.7894	415.1590	0.7089	12.0567	0.1137	0.5260	1.4637
min	1.9900	5.0000	5.0000	25.1000	1.0000	-3.5000	-4.5000
25%	7.0000	212.0000	20.0000	43.6000	1.0000	4.2000	1.9000
50%	7.0000	351.0000	20.0000	48.8000	1.0000	4.2000	1.9000
75%	7.0000	537.0000	20.0000	54.6000	1.0000	4.2000	1.9000
max	11.0000	8798.0000	20.0000	130.0000	4.0000	4.2000	4.5000

MLDM.2022 Competition Fall 2022 20/42

Relations between pH and tm

Relations between length and tm

MLDM_2022

Competition Fall 2022 23 / 42

Relations between amino acid kinds and tm

start with some basic models

- Baseline
 - "knn", KNeighborsRegressor()
 - "rf", RandomForestRegressor()
 - "svm", SVR()
 - "Ir", LinearRegression()
 - "lgbm", LGBMRegressor()
 - "xgb", XGBRegressor()

Modeling

Modeling

boxplot algorithm comparison

scoring = R2, 3-fold cross validation indicates merely svm and Ir may not be a good fit

searching better hyperparameters for each model using GridSearchCV

- Models
 - RF
 - LGBM
 - XGB
 - KNN
- Criteria
 - R2
 - MSE
 - MAE

Modeling 00.000000000

algorithm comparison after tuning

after fine tuning, in MSE, MAE and R2 sense, Igbm <xgb <rf <knn, Igbm performs the best

	RF	XGB	LGBM	KNN
R2		0.578673	0.597628	
best_params	('max_depth': 25, 'n_estimators': 250)	{'learning_rate': 0.1, 'n_estimators': 200}	('learning_rate': 0.05, 'n_estimators': 250, '	('n_neighbors': 10, 'weights': 'distance')
MSE	61.813245	60.529299	57.806156	
MAE		5.77645	5,564431	5.943662

Modeling 000 000000000

Modeling

ensemble

consider ensemble two models, from here first naively pick knn and lgbm for balancing the model performance and the executing speed, ensemble model stacks as follows

Modeling $0000 \circ 000000$

```
Pipeline(steps=[('columntransformer',
                                XGRRegressor(base score=None.
                                              colsample bylevel=None,
                                              colsample hypodesNone
                                              colsample bytree=None
                                              reg lambda=None. ...))])).
            ("LGBM".
             Pipeline(steps=[('columntransformer'.
                                ColumnTransformer(transformers=[('passthrough',
                                                                    nassthrough'
                                                                    'data source'
                               ('lgbmregressor',
LGBMRegressor())]))],
final astimator=!impar@agression())
```


then let's try another approach, ensemble xgb and lgbm, with same stack

```
Pipeline(steps=[('columntransformer',
                                ColumnTransformer(transformers=[('passthrough'
                                XGRRegressor(base_score=None,
                                             callbacks=None.
                                             colsample bylevel=None,
                                             colsample bynode=None.
                                             colsample bytree-None.
                                             early sto.
                                             reg lambda=None, ...))])),
             Pipeline(steps=[('columntransformer',
                               ('columntransformer',
ColumnTransformer(transformers=[('passthrough',
                                                                   ['data source'
                                    (Regressor())]))],
final estimator=LinearRegression())
```

Modeling 00000 000000

	RF	XGB	LGBM	KNN	ensemble	ensemble_2
			0.597628			0.572461
	('max_depth': 25, 'n_estimators': 250)	('learning_rate': 0.1, 'n_estimators': 200}	('learning_rate': 0.05, 'n_estimators': 250, '_	('n_neighbors': 10, 'weights': 'distance')	('kNN_kneighborsregressor_weights': 'distanc	('XGB_xgbregressor_n_estimators': 100, 'XGB
			57.806156			61.421818
MAF	5.714213	5.77645	5 564431	5.943662		5.798808

Modeling 000000•00000

MLDM_2022 Competition Fall 2022

Modeling

another thought is to use NN for prediction consider the sophisticated structure of protein sequence, with another way of feature engineering

```
        pH
        tm
        data_source
        0
        1
        2
        3
        4
        5
        6
        ...
        211
        212
        213
        214
        215
        216
        217
        218
        219
        220

        0
        7.0
        49.7
        1
        1
        1
        1
        2
        3
        4
        5
        6
        ...
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0</td
```


33/42

NN, structure and loss

criterion = nn.L1Loss() optimizer = torch.optim.SGD(model_nn.parameters(), lr=1e-3)

Modeling 0000000000000

```
(embedding): Embedding(222, 256)
(lstm1): LSTM(256, 128, batch first=True, bidirectional=True)
(fc1): Linear(in_features=256, out_features=128, bias=True)
(fc2): Linear(in features=128, out features=1, bias=True)
(drop): Dropout(p=0.2, inplace=False)
```


Submission

- nn: 0.02, basically capture nothing at all, need to be modified in the future
- lgbm: 0.16, do have some boosts comparing with ver.1.5(midterm report)

Modeling 0000000000000

physics principle based methods

There are also other physics principle based methods which can predict protein stabilities such as ESM, EVE and Rosetta etc., without using the provided training set.

What's interesting is these approach are more likely to get higher scores over 0.2, better than models trained based on given train_dataset, which would be discussed later.

Modeling ററററററ്ററററ•റ

How to get high scores in real test data "easily"

with the help of previous works, one can try to combine several and try to contribute to the overall score, e.g. if one ensemble rosetta, rmsd, thermonet, plddtdiff, sasaf, plddt, demask, ddG, blosum (basically physic based theorems) and with proper weight, can easily reach a score of over 0.5

- stack former predictions
- transfer learning, etc.

for example, I can get a score of 0.6 through weighting other's preds, which reaches the top 5% on leaderboard, however maybe the previous analyse is more valuable somehow

Results and Discussion

submission

- nn: 0.02, basically capture nothing at all, need to be modified in the future
- Igbm: 0.16, do have some boosts comparing with ver.1.5(midterm report)

Results and Discussion

model comparison

ensemble_2	ensemble	KNN	LGBM	XGB	RF	
0.572461			0.597628			R2
('XGB_xgbregressor_n_estimators': 100, 'XGB	('kNN_kneighborsregressor_weights': 'distanc	('n_neighbors': 10, 'weights': 'distance')		('learning_rate': 0.1, 'n_estimators': 200}	('max_depth': 25, 'n_estimators': 250)	best_params
61.421818			57.806156	60.529299		MSE
5.709909		5 942662	5 564421	5 77645	5.714212	MAE

38/42

MLDM_2022 Competition Fall 2022

Why model performs bad in the submission part

- lacking of further discussion for the protein_sequence, **checked**
- lacking of more features (external dataset) conducted by the biologists and computer scientists, checked
- the model itself is poorly constructed, checked
- there're some tricks beneath the test dataset. exactly!

Why model performs bad in the submission part

the test data contains only protein sequences with many small mutations in amino acid, so the number of individual amino acids changes very little

- only one pH value in test data
- all test data contain and from the same data source
- the length in test data is very similar
- the protein sequence in test dataset is very alike, or otherwise, only differs for mutation or deletion point

40/42

MLDM_2022 Competition Fall 2022

Pros and Cons

- pros
 - detailed data preprocessing procedure, feature engineering is interesting and somewhat inspiring
 - abundant models with comparison, with NN as well
- cons
 - models evaluation should be more specific
 - lots of further discussion should be on NN
 - lacking of deeper biological field knowledge which could inspire model construction
 - cannot get price, 1st Place \$ 12,000!

MLDM_2022 Competition Fall 2022 41/42

Thanks for your attention.

Q&A

Appendix - support material

- 1 Data source: https://www.kaggle.com/competitions/novozymes-enzyme-stability-prediction/data
- For each part in specific, see in: https://github.com/Lecter314/MLDM_2022_ExamProject_YuTianxiong_EEP

◆ Return to presentation

MLDM.2022 Competition Fall 2022 42/42