Homework 2

Lygina Oksana 878

23 февраля 2021 г.

Conjugate sets

1. solution:

По теореме с семинара: $S^* = \{a = (a_1, a_2) \in R^2 \mid -3a_1 + a_2 \ge 0, 2a_1 + 3a_2 \ge 0, 4a_1 + 5a_2 \ge 0\}$

2. solution:

$$S = \{x \in R^2 \mid x_1 + x_2 \ge 0, \, 2x_1 + x_2 \ge -4, -2x_1 + x_2 \ge -4\}$$

Нарисуем это:

Заметим, что $S = \text{conv} \{(-4,4), (\frac{-4}{3}, \frac{4}{3})\} + \text{cone} \{(-1,2,1,2)\}$

Тогда по теореме получаем: $S^*=\{a=(a_1,a_2)\in R^2\mid -4a_1+4a_2\geq -1,\,\frac{4}{3}a_1-\frac{4}{3}a_2\geq -1,\,a_1+2a_2\geq 0,\,-a_1+2a_2\geq 0\}$ S, S^* выпуклы, замкнуты и содержат нуль $\Rightarrow S^{**}=S,\,S^{***}=S^*$

3. solution:

Сначала докажем утверждение: пусть L - подпространство евклидового пространства X. Тогда $L^*=L^\perp$, где L^\perp - ортогональное дополнение L. Доказательство:

1)
$$L^* \subset L^{\perp}$$

Пусть $y \in L^*$. Тогда $\forall x \in L$, так как $(-x) \in L$:

$$< x,y> \geq 0, <-x,y> \geq 0 \rightarrow < x,y> = 0 \rightarrow y \in L^{\perp}$$

$$2) L^* \supset L^{\perp}$$

Пусть $y \in L^{\perp}$. Тогда $\forall x \in L$:

$$< x, y > = 0 \ge 0 \to y \in L^*$$

Теперь используя это утвеждение, докажем наше задание:

В силу утверждения достаточно показать, что $(A_n)^{\perp} = S_n$. Покажем два включения.

1)
$$(A_n)^{\perp} \subset S_n$$

Пусть $Y \in (A_n)^\perp$. Тогда возьмем антисимметричную матрицу А такую, что $a_{ij} = 0$, кроме $a_{kl} = -a_{kl} = 1 \ (k \neq l)$

Тогда
$$<$$
 $\mathbf{Y},$ $\mathbf{A}>=y_{kl}-y_{lk}=0 \rightarrow y_{kl}=y_{lk} \forall k \neq l \rightarrow Y \in S_n$

 $(A_n)^{\perp} \supset S_n$

Пусть $Y \in S_n$. Тогда для любой антисимметричной матрицы A:

$$<$$
Y, A> $=\sum_{i,j=1}^{n} y_{ij}a_{ij} = \sum_{i< j} (y_{ij}a_{ij} - y_{ij}a_{ij}) = 0$

Ответ:

4. solution:

 $K = \{(x, y, z) | y > 0, ye^{\frac{x}{y}} \le z\}$

 $K^* = \{(a, b, c) : \forall (\mathbf{x}, \mathbf{y}, \mathbf{z}) \in K \hookrightarrow ax + by + cz \ge 0\}$

Обозначим $U=\frac{x}{y},\,V=\frac{z}{y},\,$ получим условие: $aU+b+cV\geq 0$ Нам достаточно рассмотреть три случая: $c=-1,\,c=0,\,c=1$

Найдем такие константы a, b, чтобы область $\{V \geq e^U\}$ лежала внутри области $\{V \ge -aU - b\}$

Это случится, если прямая будет лежать ниже экспоненты.

При а > 0 это невозможно

При a=0 получим условие $b\geq 0$

При а < 0 найдем условие касания:

Система $e^U = -aU - b$, $e^U = -a$

Получаем: b = a(1 - ln(-a))

То есть при а < 0: $b \ge a(1 - ln(-a))$

при a = 0: b > 0

при a > 0: нет таких b

2) c = 0:

Нужно, чтобы $\{V \ge e^U\} \subset \{aU+b \ge 0\}$. Это невозможно ни при каких а и b, так как аU+b=0 - вертикальная прямая

3) c < 0:

Аналогично, условие $\{V \geq e^U\} \subset \{V \leq aU + b\}$ не выполнено ни пи каких а и b, так как первое множество неограниченно сверху при любых U

В итоге получаем: $K^* = \{\lambda(a,b,1) \mid \lambda \geq 0, \text{ если a} = 0, \text{ то b} \geq 0; \text{ если a} < 0, \text{ то b} \geq a(1 - \ln(-a)) \}$

5. solution:

S = conv
$$\{(-4,-1),(-2,-1),(-2,1)\}$$
 + cone $\{(1,0),(2,1)\}$ По теореме с семинара: $S^*=\{a\in R^2\mid -4a_1$ - $a_2\geq -1,\, -2a_1$ - $a_2\geq -1,\, -2a_1+a_2\geq -1,\, a_1\geq 0,\, 2a_1+a_2\geq 0\}$

6. solution:

Если $S^* = \{y \in \mathbb{R}^n \mid \langle y, x \rangle \leq 1 \ \forall x \in S\}$ - сопряженное множество, то $B_1(0) = \{x \mid \langle x, x \rangle \leq 1 \}$ -единственное самосопряженное множество Доказательство:

1) Покажем, что $B = B_1(0)$ - самосопряженное множество

Пусть $y \in B$. Тогда для любого $x \in B$ по неравенству Коши - Буняковского:

$$|\langle x, y \rangle| \le |\langle x, y \rangle| \le ||x||^* ||y|| \le 1^* 1 = 1 \to y \in B^*$$

Пусть $y \in B^*$. Тогда для любого $x \in B$ выполнено $\langle x, y \rangle \leq 1$.

Если y=0, то $y\in B$. При $y\neq 0$ возьмем $\mathbf{x}=\frac{y}{||y||}\in B$, тогда

$$<\mathbf{x},\,\mathbf{y}>=\frac{< y,y>}{||y||}=||\mathbf{y}||\leq 1 {\rightarrow}\ y\in B$$

2) Покажем, что если $S\subset S^*$, то $S\subset B_1(0)$

Пусть $x \in S \subset S^*$. Тогда $\forall y \in S^* < \mathbf{x}, \, \mathbf{y} > \leq 1$.

При y = x имеем:

$$< x, y > = ||x||^2 \le 1 \to x \in B_1(0)$$

3) Покажем, что если $S^*\subset S\subset B_1(0),$ то $B_1(0)\subset S$

Имеем, что если $\langle x, y \rangle \ \forall x \in S$, то $y \in S$. Покажем, что произвольный $y \in B_1(0)$ удовлетворяет этому условию, учитывая, что $S \subset B_1(0)$. По неравенству Коши - Буняковского для любого $x \in S$:

$$<$$
х, у $> \le ||\mathbf{x}||^*||\mathbf{y}|| \le 1 \to y \in S$. чтд \checkmark

7. solution:

Найти сопряженное множество к эллипсоиду $S = \{x \in R^n | \sum_{i=1}^n a_i^2 * x_i^2 \le \epsilon^2 \}$

Докажем, что $S^* = Y = \{y \in R^n | \sum_{i=1}^n \frac{y_i^2}{a_i^2} \le \frac{1}{\epsilon^2} \}$

$$1)\ Y\subset S^*$$

$$y \in Y, x \in S \to \langle x, y \rangle^2 = (\sum_{i=1}^n x_i y_i)^2 = (\sum_{i=1}^n a_i x_i \frac{y_i}{a_i}) \le \sum_{i=1}^n x_i^2 a_i^2 * \sum_{i=1}^n \frac{y_i^2}{a_i^2} \le \epsilon^2 * \frac{1}{\epsilon^2} = 1 \to \langle x, y \rangle \ge 1 \to y \in S^*$$

Здесь мы использовали неравенство Коши - Буняковского - Шварца

2) $S^* \subset Y$

Докажем от обратного. Пусть $\exists y \in S^*: y \notin Y$. Тогда выберем $x \in S: \sum_{i=1}^n a_i^2 x_i^2 = \epsilon^2$ и при этом чтобы координаты x были пропорциональны координатам y, то есть чтобы они были коллинеарны.

Покажем, что такой вектор действительно можно выбрать: так как координаты пропорциональны, то выразим все координаты $x_2, x_3, ..., x_n$ через $x_1, y_1, y_2, ..., y_n$ полученное подставим в $\sum_{i=1}^n a_i^2 x_i^2 = \epsilon^2$ и отсюда найдем x_1 , а через него и остальные компоненты.

Для коллинеарных векторов:

$$< x,y>^2 = (\sum_{i=1}^n a_i x_i rac{y_i}{a_i})^2 = \sum_{i=1}^n x_i^2 a_i^2 \sum_{i=1}^n rac{y_i^2}{a_i^2} = \mathrm{A}^* \epsilon^2 > 1$$
 — обозначим за (1)

Здесь мы использовали тот факт, что $\sum_{i=1}^n \frac{y_i^2}{a_i^2} > \frac{1}{\epsilon^2}$

Заметим, что в силу симметрии эллипсоида относительно начала координат для сопряженности необходимо не только чтобы $\langle x, y \rangle \ge -1$, но чтобы $|\langle x, y \rangle| \le 1$.

Действительно, мы можем взять любой $x \in S$, отразить его и полученный вектор также будет лежать в S, а знак неравенства поменяется на противоположный.

Но в таком случае (1) мы получаем противоречие с тем, что $y \in S^*$ \checkmark

Conjugate function

1. solution:

$$f(x) = \frac{-1}{x}, x \in R_{++}, f^*(y) - ?$$
 $f^*(y) = \sup_{x \in domf} (< y, x > -f(x)) = \sup_{x \in domf} (yx + \frac{1}{x})$ при $y > 0$ $g(x, y) = yx + \frac{1}{x}$ - неограничена сверху при $x \to +\infty$ $\frac{1}{x} \to 0, yx \to \infty$ при $y < 0$ при $x \to \infty$ аналогично устремим выражение в бесконечность при $y = 0$ $g(x, y)$ - неограничена при $x \to 0$ $g(x, y) \to \infty$ Значит $dom f^*(y) = \{\phi\} \Rightarrow$ сопряженная функция нигде не определена.

2. solution:

$$\begin{array}{l} f(x) = -0.5 - \log \mathbf{x}, x > 0, \mathbf{f}^*(y) - ? \\ \mathbf{f}^*(y) = \sup_{x \in domf} (< y, x > -f(x)) = \sup_{x \in domf} (yx + 0.5 + \log x) \\ g(x,y) = yx + 0.5 + \log x \\ \mathbf{y} \geq 0 \\ \text{при } x \to \infty \ g(x,y) \to \infty \\ \text{при } y < 0 \\ \nabla_x g(x,y) = \mathbf{y} + \frac{1}{x} = 0 \to \mathbf{x} = \frac{-1}{y} \\ f^*(y) = -0.5 - \ln(-\mathbf{y}), \ \mathbf{y} < 0 \end{array}$$

3. solution:

solution:
$$f(\mathbf{x}) = \log(\sum_{i=1}^{n} e^{x_i})$$

$$f^*(y) = \sup_{x \in domf} (<\mathbf{y}, \, \mathbf{x}> -\log(\sum_{i=1}^{n} e^{x_i})$$

$$g(\mathbf{x}, \, \mathbf{y}) = \mathbf{y}\mathbf{x} - \log(\sum_{i=1}^{n} e^{x_i})$$

$$\nabla_{x_k} g(x, y) = y_k - \frac{e^{x_k}}{\sum_{i=1}^{n} e^{x_i}} = 0$$

$$\rightarrow y_k = e^{x_k} \sum_{i=1}^{n} e^{x_i} \rightarrow y > 0; 0.1^T * y = 1$$

$$f^*(y) = \frac{\sum_{i=1}^{n} e^{x_i}}{\sum_{k=1}^{n} e^{x_k}} - \ln(\sum_{i=1}^{n} e^{x_i}) = \sum_{i=1}^{n} \frac{(\ln e^{x_i} e^{x_i})}{(\sum_{k=1}^{n} e^{x_k})} - (\sum_{i=1}^{n} e^{x_k}) = ((\sum_{i=1}^{n} \frac{e^{x_i}}{\sum_{k=1}^{n} e^{x_k}} [\ln e^{x_i} - \ln e^{x_i})]$$

$$ln(\sum_{k=1}^{n} e^{x_k}] = \sum_{i=1}^{n} \frac{e^{x_i}}{\sum_{k=1}^{n} e^{x_k}} ln \frac{e^{x_i}}{\sum_{k=1}^{n} e^{x_k}} = \sum_{i=1}^{n} y_i ln y_i$$

4. solution:

5. solution:

$$f(X) = -lndetX, X \in S_{++}, \ f^*(Y) - ?$$
 $f^*(Y) = sup_{X \in domf} \ ((Y, X) + lndetX) = sup_{X \in domf} \ (tr(Y^TX) + lndetX)$
 $g(X,Y) = tr(XY) + lndetX$
Предположим, что $\exists ZX > 0$: $(Z, Y) = c_0 \ge 0$. Тогда возьмем $X = CZ, C > 0$, тогда XS_{++}^n . $D = detX > 0$
 $g(X, Y) = C(Y, Z) + lndet \ CX = Cc_o + ln(C^nD) = Cc_0 + nlnC + lnD \to \infty$ при $C \to \infty$

Таким образом, чтобы функция была ограничена сверху необходимо, чтобы такого Z не существовало, то есть Y была отрицательна определена.

$$\nabla_X g(X, Y) = Y + X^{-T} = 0 \to X = -Y^{-T}$$

Видим, что отрицательная определенность Y является достаточным условием, чтобы это уравнение решалось относительно X. То есть $dom f^* = \{Y \in S^n_{-,-}\}.$ $f^*(Y) = \operatorname{tr}(-Y^TY^{-T})$ - $\ln \det(-Y) = -\ln \det(-Y)$ - n

6. solution:

Доказать, что если
$$f(x) = g(Ax)$$
, то $f^*(y) = g^*(A^(-T)y)$
 $f^*(y) = \sup_x ((x,y) - f(x)) = \sup_x ((x,y) - g(Ax)) = |$ пусть $t = Ax | = \sup_t ((A^{-1}t,y) - g(t)) = \sup_t ((t,A^{-T}y) - g(t)) = g^*(A^{-T}y)$

Subgradient and subdifferential

1. solution:

Пусть
$$0 \in \partial f(x_0) \to f(x) \ge f(x_0) \forall x \in S \to x_0$$
 - минимум по определению

2. solution:

$$f(\mathbf{x}) = \max\{0, x\}$$

Из теоремы Дубовицкого - Милютина:

$$(x) = \begin{cases} 0 & x < 0 \\ conv(0, 1) = [0, 1] & x = 0 \\ 1 & x > 0 \end{cases}$$

3. solution:

1) при р = 1
$$\mathrm{f(x)} = ||x||_1 = \sum_{i=1}^n |x_i| = \sum_{i=1}^n max\{-x_i, x_i/x_i\}$$

 $\partial(x_i)(x) = \nabla_x(x_i) = (0,...,1,...,0)^T$ - единица на i - ом месте. По теореме Дубовицкого - Милютина(все функции выпуклы):

Система: $\partial |x_i|(x) = 1) (0, ..., -1, ..., 0)^T, \mathbf{x}_i < 0$

2)
$$\{0\}$$
 x ... x[-1, 1] x ... x $\{0\}$, $x_i = 0$

3)
$$(0,...,1,...,0)^T$$
, если $x_i > 0$

По теореме Моро - Рокафеллара (все функции выпуклы):

Система: $\partial f(x) = 1)(\operatorname{sign}(\mathbf{x}_1), ..., \operatorname{sign}(\mathbf{x}_n))^T$, все $x_i \neq 0$

2)
$$\prod_{i \in J}$$
 $\{ \operatorname{sign}(\mathbf{x}_i) \} x \prod_{i \neq J}$ [-1, 1], $x_i \neq 0$ при $i \in J$

$$(3)[-1,1]^n, x=0$$

$$2)$$
 при ${
m p}=2$ ${
m f}({
m x})=||{
m x}||=\sqrt{x_1^2+...+x_n^2}$

При $x \neq 0$ функция f(x) дифференцируема, поэтому $\partial f(x) = \frac{x}{||x||}$

Покажем, что $\partial f(0) = B_1(0)$ - шар радиуса 1

Пусть $y \in B_1(0)$. По неравенству Коши - Буняковского:

$$< y, x > \le |< y, x > | \le ||y|| * ||x|| \le 1 * f(x) \to y \in \partial f(0)$$

Пусть $y \in \partial f(0)$. Допустим, ||y|| > 1

Известно, что норма $||.||_2$ является самосопряженной нормой и что сопряженная норма определяется выражением: $||q||_* = \sup_{||p|| \le 1} < q, p >$

Тогда имеем

$$||\mathbf{y}|| = \sup_{||x|| \le 1} < y, x >> 1 \to \exists x_o : (||x_o|| \le 1) < \mathbf{y}, \mathbf{x}_o >> 1 \to ||x_o|| \le 1 << y, x_o >> 1 \to ||x_o|| \le 1 << y, x_o >> 1 \to ||x_o|| \le 1 << y, x_o >> 1 \to ||x_o|| \le 1 << y, x_o >> 1 \to ||x_o|| \le 1 << y, x_o >> 1 \to ||x_o|| \le 1 << y, x_o >> 1 \to ||x_o|| \le 1 << y, x_o >> 1 \to ||x_o|| \le 1 << y, x_o >> 1 \to ||x_o|| \le 1 << y, x_o >> 1 \to ||x_o|| \le 1 << y, x_o >> 1 \to ||x_o|| \le 1 << y, x_o >> 1 \to ||x_o|| \le 1 << y, x_o >> 1 \to ||x_o|| \le 1 << y, x_o >> 1 \to ||x_o|| \le 1 << y, x_o >> 1 \to ||x_o|| \le 1 << y, x_o >> 1 \to ||x_o|| \le 1 << y, x_o >> 1 \to ||x_o|| \le 1 << y, x_o >> 1 \to ||x_o|| \le 1 << y, x_o >> 1 \to ||x_o|| \le 1 << y, x_o >> 1 \to ||x_o|| \le 1 << y, x_o >> 1 \to ||x_o|| \le 1 << y, x_o >> 1 \to ||x_o|| \le 1 << y, x_o >> 1 \to ||x_o|| \le 1 << y, x_o >> 1 \to ||x_o|| \le 1 << y, x_o >> 1 \to ||x_o|| \le 1 << y, x_o >> 1 \to ||x_o|| \le 1 << y, x_o >> 1 \to ||x_o|| \le 1 << y, x_o >> 1 \to ||x_o|| \le 1 << y, x_o >> 1 \to ||x_o|| \le 1 << y, x_o >> 1 \to ||x_o|| \le 1 << y, x_o >> 1 \to ||x_o|| \le 1 << y, x_o >> 1 \to ||x_o|| \le 1 << y, x_o >> 1 \to ||x_o|| \le 1 << y, x_o >> 1 \to ||x_o|| \le 1 << y, x_o >> 1 \to ||x_o|| \le 1 << y, x_o >> 1 \to ||x_o|| \le 1 << y, x_o >> 1 \to ||x_o|| \le 1 << y, x_o >> 1 \to ||x_o|| \le 1 << y, x_o >> 1 \to ||x_o|| \le 1 << y, x_o >> 1 \to ||x_o|| \le 1 << y, x_o >> 1 \to ||x_o|| \le 1 << y, x_o >> 1 \to ||x_o|| \le 1 << y, x_o >> 1 \to ||x_o|| \le 1 << y, x_o >> 1 \to ||x_o|| \le 1 << y, x_o >> 1 \to ||x_o|| \le 1 << y, x_o >> 1 \to ||x_o|| \le 1 << y, x_o >> 1 \to ||x_o|| \le 1 << y, x_o >> 1 \to ||x_o|| \le 1 << y, x_o >> 1 \to ||x_o|| \le 1 << y, x_o >> 1 \to ||x_o|| \le 1 << y, x_o >> 1 \to ||x_o|| \le 1 << y, x_o >> 1 \to ||x_o|| \le 1 << y, x_o >> 1 \to ||x_o|| \le 1 << y, x_o >> 1 \to ||x_o|| \le 1 << y, x_o >> 1 \to ||x_o|| \le 1 << y, x_o >> 1 \to ||x_o|| \le 1 << y, x_o >> 1 \to ||x_o|| \le 1 << y, x_o >> 1 \to ||x_o|| \le 1 << y, x_o >> 1 \to ||x_o|| \le 1 << y, x_o >> 1 \to ||x_o|| \le 1 << y, x_o >> 1 \to ||x_o|| \le 1 << y, x_o >> 1 \to ||x_o|| \le 1 << y, x_o >> 1 \to ||x_o|| \le 1 << y, x_o >> 1 \to ||x_o|| \le 1 << y, x_o >> 1 \to ||x_o|| \le 1 << y, x_o >> 1 \to ||x_o|| \le 1 << y, x_o >> 1 << y$$

Это противоречит тому, что $y \in \partial f(0)$

Система: $\partial f(x) = 1$) $\frac{x}{||x||}$, $x \neq 0$

2)
$$B_1(0), X = 0$$

3) при
$$p=\infty$$

$$f(\mathbf{x}) = \max_{i} |x_i| = \max_{i} (\max\{-x_i, x_i\})$$

$$\partial |x_i|(x)$$
 такой же, как в пункте 1)

По теореме Дубовицкого - Милютина (все функции выпуклы):

Система:
$$\partial f(x) = 1)(0, ..., sign(x_k), ..., 0)^T$$
, $|\mathbf{x}_i| < |x_k|, = 1, ..., n, i \neq k$

$$2)conv_{j\in J}(sign(x_j)), x \neq 0,$$
 max достигается на множестве индексов J

3)
$$[-1,1]^n$$
, $x=0$

solution:

$$f(\mathbf{x}) = ||Ax - b||_1$$

$$\partial ||x||_1$$
 мы знаем из 3 номера

$$||x||_1^2 = \phi(||x||_1), \ \phi(t) = t^2$$
 - дифференцируема, а значит применяем chain rule:

$$\partial ||x_1^2|| = 2||x||_1 \partial ||x||_1$$

Применяем свойство с семинара
$$\partial (f(Ax+b)) = A^T \partial f(Ax+b)$$
 для выпуклых функций: $\partial ||Ax-b||_1^2 = A^T * 2||Ax-b||_1 \partial ||.||_1 (Ax-b)$

solution:

$$f(x) = e^{||x||_2} = h(g(x))$$

$$h(x) = e^x, g(x) = ||x||_2$$

Применим chain rule и воспользуемся найденным в третьем номере субградиентом для евклидовой нормы:

$$\begin{array}{l} \partial f(x) = e^{||x|_2} \partial g(x) = 1) \ \{ \mathbf{z} \in R^n |||\mathbf{z}||_2 \leq 1 \}, \ \mathbf{x} = 0 \\ 2) \ e^{||x||_2} \frac{x}{||x||^2}, \ x \equiv 0 \end{array}$$