DianNao系列AI加速器 ——2020年高性能评测与优化课程小组讨论

报告人:徐云鹏

组 员: 李新龙 曹政 徐云鹏

指导: 龚春叶、甘新标、杨博

简介

1.2007, Larochelle和Bengio增加网络层数可以获得比浅层模型更强大的建模能力。

2.2010, ISCA, Olivier Temam在 "The Rebirth of Neural Networks" 演讲中首次提出机器学习加速器的思想。

3.2012, ISCA, Olivier Temam提出了第一个AI加速器的设计

DianNao系列AI加速器

一、需求分析

二、动机

三、技术方案

四、效果

五、分析

一、需求分析

AI → 芯片

陈云霁、陈天石与Olivier Temam合作

项目名: DIANNAO

核心:设计一系列定制的AI芯片

公司: 寒武纪

- ➤ DIANNAO——第一个设计
- ➤ DADIANNAO——DianNao的多片版本
- ➤ SHIDIANNAO——与传感器直连
- ➤ PUDIANNAO——支持多种常规机器学习算法

2017年,华为发布世界首款手机AI芯片麒麟970,核心模块NPU,正是来自于中科寒武纪的1A处理器。

简介

陈天石(左)与陈云霁(右)

简介

陈天石,男,1985年6 月生,江西南昌人, 中国科学院计算技术 研究所 研究员,中科 寒武纪科技CEO。

陈云霁,男,1983年生 ,江西南昌人,中国科 学院计算技术研究所研 究员,博士生导师。他 带领智能处理器研究中 心,研制了国际上首个 深度学习专用处理器芯 片。

DianNao系列AI加速器

一、需求分析

二、动机

三、技术方案

四、效果

五、分析

1.DianNao: A Small-Footprint High-Throughput Accelerator for Ubiquitous Machine-Learning是DianNao项目的第一篇,是一篇开创性论文,发表在了ASPLOS14上,并且获得了当年的最佳论文

核心思想: 结合神经网络模型的数据局部性特点以及计算特性,进行存储体系以及专用硬件设计,从而获取更好的性能加速比以及计算功耗比。

在这之前方案:

全硬件实现(full-hardware implementation)

Figure 9. Full hardware implementation of neural networks.

将每个神经元都映射到 具体的硬件计算单元上,模 型权重参数则作为latch或是 RAM块实现

Figure 9. Full hardware implementation of neural networks.

优点: 简洁, 计算性能高, 功耗低

缺点: 扩展性太差

针对不同输入神经元 (input neurons) 网络权重数的网络层 (network layer) 给出了全硬件实现方案在硬件关键路径延时/芯片面积/功耗上的变化趋势

Figure 10. Energy, critical path and area of full-hardware layers.

0

2.DaDianNao:

A Machine-Learning Supercomputer是 DianNao项目的第二篇代表性论文,发表在 Micro 2014,并且获得了当届的最佳论文。这篇论文针对主流神经网络模型尺寸较大的应用 场景,提出了一种具备伸缩性,并通过这种伸缩性可以承载较大尺寸模型的加速器设计架构

DianNao系列AI加速器

一、需求分析

二、动机

三、技术方案

四、效果

五、分析

针对全硬件实现方案的不足,文章提出了基于时分复用原则的加速器设计结构

Figure 11. Accelerator.

加速器芯片里包含三块片上存储:

- ➤ 存储输入神经元的NBin、
- ➤ 存储输出神经元 (output neuron) 的NBout
- ➤ 存储神经网络模型权重参数的SB。

另一核心部件——NFU(Neural Functional Unit),由三级流水线组成,完成神经网络的核心计算逻辑。

NFU提基础计算building block——乘法、加法操作以及非线性函数变换

三、技术方案

1.DIANNAO:

Figure 11. Accelerator.

时分复用的思想:

> 模型参数

> 每层神经层的输入数据

➤ layer计算结果

 \longrightarrow

 \rightarrow

SB NBin

NBout

第一个设计方案中一些重要细节。

1.以小的模型精度损失(16位定点代替32位浮点),在芯片面积和功耗上都取得了明显的收益

Figure 12. 32-bit floating-point vs. 16-bit fixed-point accuracy for UCI data sets (metric: log(Mean Squared Error)).

Type	Error Rate
32-bit floating-point	0.0311
16-bit fixed-point	0.0337

Table 1. 32-bit floating-point vs. 16-bit fixed-point accuracy for MNIST (metric: error rate).

Туре	Area (μm^2)	Power (μW)
16-bit truncated fixed-point multiplier	1309.32	576.90
32-bit floating-point multiplier	7997.76	4229.60

Table 2. Characteristics of multipliers.

三、技术方案

2.片上SRAM存储划分为NBin/NBout/SB这三个分离的模块

三、技术方案

- 3.对输入神经元数据以及SB数据局部性的挖掘。
- 输入数据的加载与计算过程给重叠起来
- 神经元进行计算
- ▶ DMA启动下一组输入神经元/SB参数的加载
- > SRAM存储需要支持双端口访问

- 4.对输出神经元数据以及SB数据局部性的挖掘。
- > 引入专用寄存器
- 一定程度上减少存储的性能开销

设计思想:

- 1.用eDRAM代替SRAM/DRAM,在存储密度/访存延迟/功耗之间获得了大模型所需的更适宜的trade-off。
- 2.在体系结构设计中以模型参数为中心。
- 3.神经网络模型具备良好的模型可分特性。

设计方案

Figure 3: Block diagram of the DianNao accelerator [5].

DaDianNao的逻辑结构与 DianNao非常相似

主要区别:

- ➤ NBin, NBout, SB的组织方式,
- ➤ 与NFU的交互方式

Figure 11. Accelerator.

单个DaDianNao芯片

Figure 5: Tile-based organization of a node (left) and tile architecture (right). A node contains 16 tiles, two central eDRAM banks and fat tree interconnect; a tile has an NFU, four eDRAM banks and input/output interfaces to/from the central eDRAM banks.

NFU的内部结构:

Figure 6: The different (parallel) operators of an NFU: multipliers, adders, max, transfer function.

NFU的流水线工作模式:

Figure 7: Different pipeline configurations for CONV, LRN, POOL and CLASS layers.

单片上的SB存储仍然有限,为了支持大模型,就需要由多个DaDianNao芯片构成的多片系统。

DianNao系列AI加速器

- 一、需求分析
- 二、动机
- 三、技术方案

四、效果

五、分析

四、效果

1.DIANNAO:

Figure 15. Layout (65nm).

整体布局

Component or Block	Area in μm^2	(%)	Power in mW	(%)	Critical path in ns
ACCELERATOR	3,023,077	(70)	485	(70)	1.02
Combinational	608,842	(20.14%)	89	(18.41%)	
Memory	1,158,000	(38.31%)	177	(36.59%)	
Registers	375,882	(12.43%)	86	(17.84%)	
Clock network	68,721	(2.27%)	132	(27.16%)	
Filler cell	811,632	(26.85%)			
SB	1,153,814	(38.17%)	105	(22.65%)	
NBin	427,992	(14.16%)	91	(19.76%)	
NBout	433,906	(14.35%)	92	(19.97%)	
NFU	846,563	(28.00%)	132	(27.22%)	
CP	141,809	(5.69%)	31	(6.39%)	
AXIMUX	9,767	(0.32%)	8	(2.65%)	
Other	9,226	(0.31%)	26	(5.36%)	

Table 6. Characteristics of accelerator and breakdown by component type (first 5 lines), and functional block (last 7 lines).

分别按组件类型和功能块划分的面积和功耗及其占比

Figure 16. Speedup of accelerator over SIMD, and of ideal accelerator over accelerator.

相对于SIMA芯片的加速比

Figure 17. Energy reduction of accelerator over SIMD.

功耗减少的情况

Figure 18. Breakdown of accelerator energy.

DianNao加速器的能耗分布

Figure 19. Breakdown of SIMD energy.

SIMA的能耗分布

Figure 9: Snapshot of the node layout.

Component/Block	Area (μm^2)	(%)	Power (W)	(%)
WHOLE CHIP	67,732,900		15.97	
Central Block	7,898,081	(11.66%)	1.80	(11.27%)
Tiles	30,161,968	(44.53%)	6.15	(38.53%)
HTs	17,620,440	(26.02%)	8.01	(50.14%)
Wires	6,078,608	(8.97%)	0.01	(0.06%)
Other	5,973,803	(8.82%)		
Combinational	3,979,345	(5.88%)	6.06	(37.97%)
Memory	32207390	(47.55%)	6.12	(38.30%)
Registers	3,348,677	(4.94%)	3.07	(19.25%)
Clock network	586323	(0.87%)	0.71	(4.48%)
Filler cell	27,611,165	(40.76%)		

Table VI: Node layout characteristics.

布局、多芯片系统的性能和节能效果

Figure 11: Time breakdown (left) for 4, 16 and 64 nodes, (right) breakdown for 1, 4, 16, 64 nodes; CLASS, CONV, POOL, LRN stand for the geometric means of all layers of the corresponding type, Gmean for the global geometric mean.

inter-chip的工作模式下数据通信量

Figure 12: Speedup w.r.t. the GPU baseline (training).

Figure 10: Speedup w.r.t. the GPU baseline (inference). Note that CONV1 and the full NN need a 4-node system, while CONV3* and CONV4* even need a 36-node system.

以GPU为基线,training环节和inference环节的加速比。

Figure 14: Energy reduction w.r.t. the GPU baseline (training). Figure 13: Energy reduction w.r.t. the GPU baseline (inference).

以GPU为基线,training环节和inference环节的功耗减少情况。

DianNao系列AI加速器

- 一、需求分析
- 二、动机
- 三、技术方案

四、效果

五、分析

DianNao在实验评估上,作为第一个里程碑式的工作,虽然很多细节有待琢磨,基线(baseline)选取上与后续的几篇论文相比,有些保守,在这篇论文里只选取了CPU作为基线,并未将GPU作为基线。

但是,这篇论文是DianNao项目的开山之作,为后续的工作打下了基础。提到下一步要对NFU进行修改和算法的改进,进一步减少主存储器传输延迟,研究可伸缩性,并提高实现工艺,这些在DaDianNao的方案中都有所体现。

对体系结构进行了改进,具备了可以承载较大尺寸 模型的能力。与针对嵌入式设备应用场景提出的 ShiDianNao (第三篇论文) 不同, DaDianNao针对的 应用场景是服务器端的高性能计算,所以在计算能耗比 上虽然相比于基线 (GPU/CPU)会有提升,但其设计核心 还是专注于高性能地支持大尺寸模型,所以在硬件资源 的使用上也远比ShiDianNao要更为大方一些。在 GPU/CPU和同期提出的加速器中, DaDianNao算法具 有良好的加速性能和节省空间的功能,但它们在很大程 度上仍受带宽限制。下一步,主要沿着多个方向改进体 系结构: 提高NFU的时钟频率, 多维环面互连以改善大 型CLASS layer的可伸缩性,以每个节点简单的VLIW核 和相关工具链的形式研究更灵活的控制。

谢谢, 敬请批评指正!

