GRAVITATIONAL LENSING 18 - SOFTENED LENSES

Massimo Meneghetti AA 2017-2018

SOFTENED PROFILES: THE NON-SINGULAR ISOTHERMAL SPHERE

The profiles considered so far have surface density profiles with a singularity at x=0. We consider another class of lenses which have a flat core.

Given the simplicity of the model, we investigate the effects of the core by modifying the SIS lens:

$$\Sigma(\xi) = \frac{\sigma_v^2}{2G} \frac{1}{\sqrt{\xi^2 + \xi_c^2}} = \frac{\Sigma_0}{\sqrt{1 + \xi^2/\xi_c^2}}$$

$$\Sigma_0 = rac{\sigma_{\!\scriptscriptstyle
u}^2}{2G \xi_c}$$

Choosing
$$\xi_0 = 4\pi \left(\frac{\sigma_v}{c}\right)^2 \frac{D_L D_{LS}}{D_S}$$

$$\Sigma(\xi) = rac{\sigma_v^2}{2G} rac{1}{\sqrt{\xi^2 + \xi_c^2}} = rac{\Sigma_0}{\sqrt{1 + \xi^2/\xi_c^2}}$$

$$\kappa(x) = \frac{1}{2\sqrt{x^2 + x_c^2}}$$

The mass profile is computed as follows

$$m(x) = 2 \int_0^x \kappa(x')x'dx' = \sqrt{x^2 + x_c^2} - x_c$$

The deflection angle is

$$\alpha(x) = \frac{m(x)}{x} = \sqrt{1 + \frac{x_c^2}{x^2}} - \frac{x_c}{x}$$

The shear is

$$\gamma(x) = \frac{\sqrt{x^2 + x_c^2} - x_c}{x^2} - \frac{1}{2\sqrt{x^2 + x_c^2}}$$

We can search for the tangential critical line:

$$m(x) = 2 \int_0^x \kappa(x')x'dx' = \sqrt{x^2 + x_c^2} - x_c$$
 $m(x)/x^2 = 1$
$$\sqrt{x^2 + x_c^2} - x_c = x^2$$

$$x^2(x^2 + 2x_c - 1) = 0$$

$$x_t = \sqrt{1 - 2x_c}$$

Note that the tangential critical line exists only if $x_c < 1/2$

and the radial critical line:

$$\left(1 - \frac{d\alpha(x)}{dx}\right) = 1 + \frac{m(x)}{x^2} - 2\kappa(x) = 0$$

$$1 + \frac{\sqrt{x^2 + x_c^2} - x_c}{x^2} - \frac{1}{\sqrt{x^2 + x_c^2}} = 0$$

$$x_r^2 = \frac{1}{2} \left(2x_c - x_c^2 - x_c\sqrt{x_c^2 + 4x_c}\right)$$

$$x_r^2 \ge 0 \text{ for } x_c \le 1/2.$$

Thus, the existence condition for the radial critical is the same as for the tangential critical line

If the core is too large, the convergence does not exceed 1 and the derivative of the deflection angle is never larger than 1...

No critical lines! No multiple images!

Small core,

small radial

critical line,

critical line

1.0 Χt x_r Уr 0.8 0.6 Xt, Xr, Yr 0.2 large tangential 0.0 0.1 0.5 0.2 0.0 0.3 0.4 X_{C}

large core, small radial critical line, small tangential critical line

The lens equation can be reduced to the form:

$$y = x - \frac{m(x)}{x} = x - \sqrt{1 + \frac{x_c^2}{x^2}} - \frac{x_c}{x}$$

$$x^3 - 2yx^2 + (y^2 + 2x_c - 1)x - 2yx_c = 0.$$

There are up to three solutions, but, again the existence of multiple images depends on y and $x_c...$

In particular on whether:

- > the radial caustic exist
- ➤ the source is inside or outside the radial caustic

Three images if the source is inside the radial caustic; One image otherwise.

Parity: changes at each critical line (remember: maxima, minima, saddle points of TDS.

Now we make the surface density contours of the SIS elliptical:

$$\xi \Rightarrow \sqrt{\xi_1^2 + f^2 \xi_2^2}$$

$$\Sigma(\xi) = \frac{\sigma_v^2}{2G\xi}$$

$$\Sigma(\xi) = \frac{\sigma_v^2}{2G} \frac{\sqrt{f}}{\sqrt{\xi_1^2 + f^2 \xi_2^2}}$$

Now we make the surface density contours of the SIS elliptical:

$$\xi \Rightarrow \sqrt{\xi_1^2 + f^2 \xi_2^2}$$

$$\Sigma(\xi) = \frac{\sigma_v^2}{2G\xi}$$

$$\Sigma(\xi) = \frac{\sigma_v^2}{2G} \frac{\sqrt{f}}{\sqrt{\xi_1^2 + f^2 \xi_2^2}}$$

Surface density is constant on ellipses with minor axis ξ and major axis ξ/f

Now we make the surface density contours of the SIS elliptical:

$$\xi \Rightarrow \sqrt{\xi_1^2 + f^2 \xi_2^2}$$

$$\Sigma(\xi) = \frac{\sigma_v^2}{2G\xi}$$

$$\Sigma(\xi) = \frac{\sigma_v^2}{2G} \frac{\sqrt{f}}{\sqrt{\xi_1^2 + f^2 \xi_2^2}}$$

Elliptical contours with their major axis along the ξ_2 axis

Surface density is constant on ellipses with minor axis ξ and major axis ξ/f

Now we make the surface density contours of the SIS elliptical:

$$\xi \Rightarrow \sqrt{\xi_1^2 + f^2 \xi_2^2}$$

$$\Sigma(\xi) = \frac{\sigma_v^2}{2G\xi}$$

-

$$\Sigma(\vec{\xi}) = \frac{\sigma_v^2}{2G} \frac{\sqrt{f}}{\sqrt{\xi_1^2 + f^2 \xi_2^2}}$$

Ensures that the mass inside elliptical iso-contours is independent on f

Elliptical contours with their major axis along the ξ_2 axis

Surface density is constant on ellipses with minor axis ξ and major axis ξ/f

Let's derive the convergence in dimensionless units:

$$\Sigma(\vec{\xi}) = \frac{\sigma_v^2}{2G} \frac{\sqrt{f}}{\sqrt{\xi_1^2 + f^2 \xi_2^2}}$$

Let's derive the convergence in dimensionless units:

$$\Sigma(\vec{\xi}) = \frac{\sigma_v^2}{2G} \frac{\sqrt{f}}{\sqrt{\xi_1^2 + f^2 \xi_2^2}} \frac{\xi_0}{\xi_0}$$

$$\xi_0 = 4\pi \left(\frac{\sigma_v}{c}\right)^2 \frac{D_{\rm L}D_{\rm LS}}{D_{\rm S}}$$

$$\kappa(\vec{x}) = \frac{\sqrt{f}}{2\sqrt{x_1^2 + f^2 x_2^2}}$$

Let's derive the convergence in dimensionless units:

In polar coordinates:

$$\Delta(\varphi) = \sqrt{\cos \varphi^2 + f^2 \sin \varphi^2}$$

$$\Sigma(\vec{\xi}) = \frac{\sigma_v^2}{2G} \frac{\sqrt{f}}{\sqrt{\xi_1^2 + f^2 \xi_2^2}} \frac{\xi_0}{\xi_0}$$

$$\xi_0 = 4\pi \left(\frac{\sigma_v}{c}\right)^2 \frac{D_{\rm L}D_{\rm LS}}{D_{\rm S}}$$

$$\kappa(\vec{x}) = \frac{\sqrt{f}}{2\sqrt{x_1^2 + f^2 x_2^2}}$$

$$\kappa(x, \varphi) = \frac{\sqrt{f}}{2x\Delta(\varphi)}$$

$$\Delta(\varphi) = \sqrt{\cos \varphi^2 + f^2 \sin \varphi^2}$$

$$\kappa(x, \varphi) = \frac{\sqrt{f}}{2x\Delta(\varphi)}$$

The lensing potential can be obtained by solving the Poisson equation:

$$\frac{\partial^2 \Psi}{\partial x^2} + \frac{1}{x} \frac{\partial \Psi}{\partial x} + \frac{1}{x^2} \frac{\partial^2 \Psi}{\partial \varphi^2} = 2\kappa = \frac{\sqrt{f}}{x \Delta(\varphi)}$$

$$\Delta(\varphi) = \sqrt{\cos \varphi^2 + f^2 \sin \varphi^2}$$

$$\kappa(x, \varphi) = \frac{\sqrt{f}}{2x\Delta(\varphi)}$$

The lensing potential can be obtained by solving the Poisson equation:

$$\frac{\partial^2 \Psi}{\partial x^2} + \frac{1}{x} \frac{\partial \Psi}{\partial x} + \frac{1}{x^2} \frac{\partial^2 \Psi}{\partial \varphi^2} = 2\kappa = \frac{\sqrt{f}}{x \Delta(\varphi)}$$

With the ansatz
$$\Psi(x, \varphi) := x \tilde{\Psi}(\varphi)$$

$$\tilde{\Psi}(\boldsymbol{\varphi}) + \frac{d^2}{d\boldsymbol{\varphi}^2} \tilde{\Psi}(\boldsymbol{\varphi}) = \frac{\sqrt{f}}{\Delta(\boldsymbol{\varphi})}$$

$$\Delta(\varphi) = \sqrt{\cos \varphi^2 + f^2 \sin \varphi^2}$$

$$\kappa(x, \varphi) = \frac{\sqrt{f}}{2x\Delta(\varphi)}$$

The lensing potential can be obtained by solving the Poisson equation:

$$\frac{\partial^2 \Psi}{\partial x^2} + \frac{1}{x} \frac{\partial \Psi}{\partial x} + \frac{1}{x^2} \frac{\partial^2 \Psi}{\partial \varphi^2} = 2\kappa = \frac{\sqrt{f}}{x \Delta(\varphi)}$$

With the ansatz
$$\Psi(x, \varphi) := x \tilde{\Psi}(\varphi)$$

$$\tilde{\Psi}(\boldsymbol{\varphi}) + \frac{d^2}{d\boldsymbol{\varphi}^2} \tilde{\Psi}(\boldsymbol{\varphi}) = \frac{\sqrt{f}}{\Delta(\boldsymbol{\varphi})}$$

Solved with Green's method (Kormann et al. 1994):

$$\Psi(x, \varphi) = x \frac{\sqrt{f}}{f'} \left[\sin \varphi \arcsin(f' \sin \varphi) + \cos \varphi \arcsin(f'/f \cos \varphi) \right] \qquad f' = \sqrt{1 - f^2}$$

CONVERGENCE AND POTENTIAL

$$\Psi(x, \varphi) = x \frac{\sqrt{f}}{f'} \left[\sin \varphi \arcsin(f' \sin \varphi) + \cos \varphi \arcsin(f' / f \cos \varphi) \right] \qquad f' = \sqrt{1 - f^2}$$

Let's compute the deflection angle:

 $\Psi(x, \varphi) = x \frac{\sqrt{f}}{f'} \left[\sin \varphi \arcsin(f' \sin \varphi) + \cos \varphi \arcsin(f'/f \cos \varphi) \right] \qquad f' = \sqrt{1 - f^2}$

Let's compute the deflection angle:

$$\frac{\partial}{\partial x_1} = \cos \varphi \frac{\partial}{\partial x} - \frac{\sin \varphi}{x} \frac{\partial}{\partial \varphi}$$

$$\frac{\partial}{\partial x_1} = \cos \varphi \frac{\partial}{\partial x} - \frac{\sin \varphi}{x} \frac{\partial}{\partial \varphi} \qquad \qquad \frac{\partial}{\partial x_2} = \sin \varphi \frac{\partial}{\partial x} + \frac{\cos \varphi}{x} \frac{\partial}{\partial \varphi}$$

 $\Psi(x, \varphi) = x \frac{\sqrt{f}}{f'} \left[\sin \varphi \arcsin(f' \sin \varphi) + \cos \varphi \arcsin(f'/f \cos \varphi) \right] \qquad f' = \sqrt{1 - f^2}$

Let's compute the deflection angle:

$$\frac{\partial}{\partial x_1} = \cos \varphi \frac{\partial}{\partial x} - \frac{\sin \varphi}{x} \frac{\partial}{\partial \varphi} \qquad \qquad \frac{\partial}{\partial x_2} = \sin \varphi \frac{\partial}{\partial x} + \frac{\cos \varphi}{x} \frac{\partial}{\partial \varphi}$$

$$\alpha_1(\vec{x}) = \frac{\sqrt{f}}{f'} \operatorname{arcsinh} \left(\frac{f'}{f} \cos \varphi \right)$$

 $\alpha_2(\vec{x}) = \frac{\sqrt{f}}{f'} \operatorname{arcsin}(f' \sin \varphi)$

$$\Psi(x, \varphi) = x \frac{\sqrt{f}}{f'} \left[\sin \varphi \arcsin(f' \sin \varphi) + \cos \varphi \arcsin(f'/f \cos \varphi) \right] \qquad f' = \sqrt{1 - f^2}$$

Let's compute the deflection angle:

$$\frac{\partial}{\partial x_1} = \cos \varphi \frac{\partial}{\partial x} - \frac{\sin \varphi}{x} \frac{\partial}{\partial \varphi} \qquad \qquad \frac{\partial}{\partial x_2} = \sin \varphi \frac{\partial}{\partial x} + \frac{\cos \varphi}{x} \frac{\partial}{\partial \varphi}$$

$$\alpha_1(\vec{x}) = \frac{\sqrt{f}}{f'} \operatorname{arcsinh} \left(\frac{f'}{f} \cos \varphi \right)$$

 $\alpha_2(\vec{x}) = \frac{\sqrt{f}}{f'} \operatorname{arcsin}(f' \sin \varphi)$

Analogy with the SIS: the deflection angle does not depend on x!

$$\alpha_1(\vec{x}) = \frac{\sqrt{f}}{f'} \operatorname{arcsinh} \left(\frac{f'}{f} \cos \varphi \right)$$

 $\alpha_2(\vec{x}) = \frac{\sqrt{f}}{f'} \operatorname{arcsin}(f' \sin \varphi)$

The component of the shear:

$$\alpha_1(\vec{x}) = \frac{\sqrt{f}}{f'} \operatorname{arcsinh} \left(\frac{f'}{f} \cos \varphi \right)$$

$$\alpha_2(\vec{x}) = \frac{\sqrt{f}}{f'} \operatorname{arcsin}(f' \sin \varphi)$$

The component of the shear:

$$\gamma_{1} = \frac{1}{2} \left(\frac{\partial \alpha_{1}}{\partial x_{1}} - \frac{\partial \alpha_{2}}{\partial x_{2}} \right) \qquad \gamma_{1} = -\frac{\sqrt{f}}{2x\Delta(\varphi)} \cos 2\varphi = -\kappa \cos 2\varphi$$

$$\gamma_{2} = \frac{\partial \alpha_{1}}{\partial x_{2}} \qquad \gamma_{2} = -\frac{\sqrt{f}}{2x\Delta(\varphi)} \sin 2\varphi = -\kappa \sin 2\varphi$$

$$\alpha_1(\vec{x}) = \frac{\sqrt{f}}{f'} \operatorname{arcsinh} \left(\frac{f'}{f} \cos \varphi \right)$$

$$\alpha_2(\vec{x}) = \frac{\sqrt{f}}{f'} \operatorname{arcsin}(f' \sin \varphi)$$

The component of the shear:

$$\gamma_{1} = \frac{1}{2} \left(\frac{\partial \alpha_{1}}{\partial x_{1}} - \frac{\partial \alpha_{2}}{\partial x_{2}} \right) \qquad \gamma_{1} = -\frac{\sqrt{f}}{2x\Delta(\varphi)} \cos 2\varphi = -\kappa \cos 2\varphi$$

$$\gamma_{2} = \frac{\partial \alpha_{1}}{\partial x_{2}} \qquad \gamma_{2} = -\frac{\sqrt{f}}{2x\Delta(\varphi)} \sin 2\varphi = -\kappa \sin 2\varphi$$

Similarly to the SIS: $\gamma = \kappa$

 $\gamma_1 = -\frac{\sqrt{f}}{2x\Delta(\varphi)}\cos 2\varphi = -\kappa\cos 2\varphi$

$$\gamma_2 = -\frac{\sqrt{f}}{2x\Delta(\boldsymbol{\varphi})}\sin 2\boldsymbol{\varphi} = -\kappa\sin 2\boldsymbol{\varphi}$$

We have now the ingredients to compute the lensing Jacobian matrix

$$A = \begin{bmatrix} 1 - \kappa - \gamma_1 & -\gamma_2 \\ \gamma_2 & 1 - \kappa + \gamma_1 \end{bmatrix} = \begin{bmatrix} 1 - 2\kappa \sin^2 \varphi & \kappa \sin 2\varphi \\ \kappa \sin 2\varphi & 1 - 2\kappa \cos^2 \varphi \end{bmatrix}$$

$$\gamma_1 = -\frac{\sqrt{f}}{2x\Delta(\varphi)}\cos 2\varphi = -\kappa\cos 2\varphi$$

$$\gamma_2 = -\frac{\sqrt{f}}{2x\Delta(\varphi)}\sin 2\varphi = -\kappa\sin 2\varphi$$

We have now the ingredients to compute the lensing Jacobian matrix

$$A = \begin{bmatrix} 1 - \kappa - \gamma_1 & -\gamma_2 \\ \gamma_2 & 1 - \kappa + \gamma_1 \end{bmatrix} = \begin{bmatrix} 1 - 2\kappa \sin^2 \varphi & \kappa \sin 2\varphi \\ \kappa \sin 2\varphi & 1 - 2\kappa \cos^2 \varphi \end{bmatrix}$$

whose eigenvalues are:

$$\lambda_t = 1 - \kappa - \gamma = 1 - 2\kappa$$

 $\lambda_r = 1 - \kappa + \gamma = 1$.

$$\lambda_t = 1 - \kappa - \gamma = 1 - 2\kappa$$

 $\lambda_r = 1 - \kappa + \gamma = 1$.

As the SIS, the SIE does not have a radial critical line!

$$\lambda_t = 1 - \kappa - \gamma = 1 - 2\kappa$$

 $\lambda_r = 1 - \kappa + \gamma = 1$.

$$\lambda_r = 1 - \kappa + \gamma = 1$$

As the SIS, the SIE does not have a radial critical line!

The tangential critical line is an ellipse, along which

$$\kappa = \frac{1}{2}$$

$$\lambda_t = 1 - \kappa - \gamma = 1 - 2\kappa$$

$$\lambda_r = 1 - \kappa + \gamma = 1$$
.

As the SIS, the SIE does not have a radial critical line!

The tangential critical line is an ellipse, along which

$$\kappa = \frac{1}{2}$$

$$\kappa(x, \varphi) = \frac{\sqrt{f}}{2x\Delta(\varphi)} \qquad \qquad \vec{x}_t(\varphi) = \frac{\sqrt{f}}{\Delta(\varphi)} \left[\cos\varphi, \sin\varphi\right]$$

 $\vec{x}_t(\boldsymbol{\varphi}) = \frac{\sqrt{f}}{\Delta(\boldsymbol{\varphi})} [\cos \boldsymbol{\varphi}, \sin \boldsymbol{\varphi}]$

The corresponding caustic can be found using the lens equation:

$$y_{t,1} = \frac{\sqrt{f}}{\Delta(\varphi)} \cos \varphi - \frac{\sqrt{f}}{f'} \operatorname{arcsinh} \left(\frac{f'}{f} \cos \varphi \right)$$

$$y_{t,2} = \frac{\sqrt{f}}{\Delta(\varphi)} \sin \varphi - \frac{\sqrt{f}}{f'} \operatorname{arcsin}(f' \sin \varphi).$$

SINGULAR ISOTHERMAL ELLIPSOID

 $\vec{x}_t(\boldsymbol{\varphi}) = \frac{\sqrt{f}}{\Delta(\boldsymbol{\varphi})} [\cos \boldsymbol{\varphi}, \sin \boldsymbol{\varphi}]$

The corresponding caustic can be found using the lens equation:

$$y_{t,1} = \frac{\sqrt{f}}{\Delta(\varphi)} \cos \varphi - \frac{\sqrt{f}}{f'} \operatorname{arcsinh} \left(\frac{f'}{f} \cos \varphi \right)$$

$$y_{t,2} = \frac{\sqrt{f}}{\Delta(\varphi)} \sin \varphi - \frac{\sqrt{f}}{f'} \operatorname{arcsin}(f' \sin \varphi).$$

There is no radial caustic, but there is the cut, which can be computed as

$$\vec{y}_c = \lim_{x \to 0} \vec{y}(x, \boldsymbol{\varphi}) = -\vec{\boldsymbol{\alpha}}(\boldsymbol{\varphi})$$

SINGULAR ISOTHERMAL ELLIPSOID

$$\vec{y}_c = \lim_{x \to 0} \vec{y}(x, \boldsymbol{\varphi}) = -\vec{\boldsymbol{\alpha}}(\boldsymbol{\varphi})$$

$$y_{c,1} = -\frac{\sqrt{f}}{f'} \operatorname{arcsinh} \left(\frac{f'}{f} \cos \varphi \right)$$

$$y_{c,2} = -\frac{\sqrt{f}}{f'} \arcsin(f' \sin \varphi)$$
.

1.5 1.0 0.5 0.0 -0.5-1.0-1.0-0.50.0 0.5 1.0 1.5 y_1

$$s_{1,\pm,c} = [y_{c,1}(\varphi = 0,\pi), 0],$$

 $s_{2,\pm,c} = [0, y_{c,2}(\varphi = \pi/2, -\pi/2)]$

$$s_{1,\pm,c} = [y_{c,1}(\varphi = 0,\pi), 0],$$
 $s_{1,\pm,t} = [y_{t,1}(\varphi = 0,\pi), 0],$ $s_{2,\pm,c} = [0, y_{c,2}(\varphi = \pi/2, -\pi/2)]$ $s_{1,\pm,t} = [0, y_{t,2}(\varphi = \pi/2, -\pi/2)]$

 $s_{1,\pm,c} = [y_{c,1}(\boldsymbol{\varphi}=0,\pi),0],$ $s_{2,\pm,c} = [0,y_{c,2}(\boldsymbol{\varphi}=\pi/2,-\pi/2)]$

$$s_{1,\pm,t} = [y_{t,1}(\varphi = 0,\pi),0],$$

 $s_{1,\pm,t} = [0,y_{t,2}(\varphi = \pi/2,-\pi/2)]$

$$y_{c,1} = -\frac{\sqrt{f}}{f'} \operatorname{arcsinh} \left(\frac{f'}{f} \cos \varphi \right)$$

 $y_{c,2} = -\frac{\sqrt{f}}{f'} \operatorname{arcsin}(f' \sin \varphi)$.

$$y_{t,1} = \frac{\sqrt{f}}{\Delta(\varphi)} \cos \varphi - \frac{\sqrt{f}}{f'} \operatorname{arcsinh} \left(\frac{f'}{f} \cos \varphi \right)$$

$$y_{t,2} = \frac{\sqrt{f}}{\Delta(\varphi)} \sin \varphi - \frac{\sqrt{f}}{f'} \operatorname{arcsin}(f' \sin \varphi).$$

We can easily see that

$$s_{1,c} > s_{1,t}$$

independent on f.

This is important for the image multiplicity...

