Convolution, Integrating Factors, Review

Convolution

Problem Find L [52+172]

We know $\mathcal{L}^{-1}\left[\frac{s}{s^{2}+1}\right] = \cot$ and $\mathcal{L}^{-1}\left[\frac{s}{s^{2}+1}\right] =$ pint

The convolution allows us to find & of the product 52+1.

 $f(t) = \int_{0}^{t} f(t-u) g(u) du$ Constant variable

 $\mathcal{L}\left[\left(f*8\right)\left(t\right)\right] = F(5)G(5)$

Z-1[F(s) G(s)] = (f * g)(t) = Z-1[F(s)] * Z-1[G(s)]

Useful Formulas (not to be learned, in textbook, \$5.6, Ex. 8, P. 462)

- (1) $(\sin xt)*(\cos xt) = \frac{t}{2} \sin xt$
- (2) $(\sin \Delta t) * (\sin \Delta t) = \frac{1}{2d} \sin \Delta t \frac{t}{2} \cos \Delta t$
- (3) $(\cos \lambda t) * (\cos \lambda t) = \frac{1}{2d} \sin \lambda t + \frac{\epsilon}{2} \cos \lambda t$.

 \mathbb{E}_{X} . $\mathcal{L}^{-1}\left[\frac{5}{(5^2+1)^2}\right]$

 $=\mathcal{L}^{-1}\left[\frac{s}{s^2+1}\cdot\frac{1}{s^2+1}\right]=\mathcal{L}^{-1}\left[\frac{s}{s^2+1}\right]*\mathcal{L}^{-1}\left[\frac{1}{s^2+1}\right]$

= $\cot * sint = \frac{t}{7} sint$

```
Integrating Factors
   Ex. Solve 3x' + 2x = 1.
                           x' + \frac{2}{3}x = \frac{1}{3} (N)
                     Solve x' + \frac{2}{3}x = 0 (H)
    Earlier method: Solve (H) by separation of variables.
                  Then solve (N) by Vop.
   Integrating factor for \chi' + r(t) x = \varphi(t)

lading coef 1

\varphi(t) = e^{\int r(t)dt}
                                                                                  (*)
   · Only for lin. (st-order DE in standard form (*)
 Ex. Solve 3x' + 2x = 1.
   (1) Divide by 3: \chi' + \frac{2}{3}\chi = \frac{1}{3}
    (2) Integrating factor: S(t) = e^{\int \frac{1}{3} dt} = e^{\frac{1}{3}t}
    (3) Multiply (N) by 9(t): e^{\frac{2}{3}t}x' + \frac{2}{3}e^{\frac{2}{3}t}x = \frac{1}{3}e^{\frac{2}{3}t}
    (4) Integrato: e^{\frac{2\pi}{3}t} \times = \int \frac{1}{3}e^{\frac{2\pi}{3}t} = \frac{1}{2}e^{\frac{2\pi}{3}t} + C
(5) Multiply by e^{-\frac{2\pi}{3}t}: x = \frac{1}{2} + Ce^{-\frac{2\pi}{3}t}

part. sol gen. sol to (H)
This method always works for lim. 1st-order DE.
```

Review: Single Equation

First - Order DE

1) General:
$$A(x,t) \frac{dx}{dt} = B(x,t)$$

•
$$\frac{dx}{dt} = f(t) \Rightarrow integrate$$

2) Linear: (H)
$$\frac{d\times}{dt} + r(t) \times = 0$$
 ($\Leftrightarrow \frac{d\times}{dt} = -r(t) \times$)

· separation of variables

(N)
$$\frac{dx}{dt} + r(t)z = g(t)$$

· Book : Solve (H) by separation of variables

Then variation of parameters (not recommended)

· Better: Integrating factor

Higher-Order DE (Linear Constant Coefficients)

(H) homogeneous L(D) x = 0.

	Din indep solutions
D ³	ı, t, t²
D - λ	$e^{\lambda t}$
(D-\)3	$e^{\lambda t}$, $te^{\lambda t}$, $t^2e^{\lambda t}$
D - (a±ib)	e coobt, e sin bt
$(D - (a \pm ib))^2$	eatcoolt, eatsinbt, teatcoolt, teatsinbt

(N) nonhomogeneous
$$(D^3 + b_1D^2 + b_2D + b_3) x = 2(t)$$
.

only works for 9(t) a linear combination of
$$t^{h}e^{at}$$
 coubt, $t^{h}e^{at}$ sin bt

- · Variation of parameters
- 1) Write down general solution to (H): $h(t) = c_1h_1 + c_2h_2 + c_3h_3$

$$c_{1}' h_{1} + c_{2}' h_{2} + c_{3}' h_{3} = 0$$

$$c_{1}' h_{1}' + c_{2}' h_{2}' + c_{3}' h_{3}' = 0$$

$$c_{1}' h_{1}'' + c_{2}' h_{2}'' + c_{3}' h_{3}'' = g(t)$$

· Laplace transform: only for IVP (initial-value problems)

(H) homogeneous Dz = Az

Real eigenvalue $\lambda \Rightarrow solution e^{\lambda t} \vec{v}$ W/ eigenvector \vec{v}

Complex eigenvalues $\lambda \Rightarrow solutions$: Re $(e^{\lambda t}\vec{v})$, Im $(e^{\lambda t}\vec{v})$ W/ complex eigenvectors \vec{v} (Ignore the conjugato)

Repeated eigenvalues

- · Find as many lin indep eigenvectors as you can
- · Otherwise, find indep generalized eigenvectors:

$$\lambda \text{ multiplicity } m \Rightarrow \text{ solve } (A - \lambda I)^m \vec{v} = \vec{0}.$$

$$\text{sol} = e^{\lambda t} \left[\vec{v} + t(A - \lambda I) \vec{v} + \frac{1}{2} t^2 (A - \lambda I)^2 \vec{v} + \cdots + \frac{1}{(m-1)!} t^{m-1} (A - \lambda I)^{m-1} \vec{v} \right].$$

(N) nonhomogeneous $D\vec{z} = A\vec{x} + \vec{E}(t)$
VoP: 1) Find general sof
$\vec{h}(t) = q \vec{h}_1(t) + \cdots + q \vec{h}_n(t)$
2) Solve
$c_n' \overrightarrow{h}_n(t) + \cdots + c_n' \overrightarrow{h}_n(t) = 0$
3) Integrate 4'(t).
4) Then $\vec{p}(t) = \sum c_i(t) \vec{h}_i(t)$ is a part sol of (N).