73-74页7,10,13; 83-84页2,4,5,11,12; 86页2,7.

73-7

Let F a subfield of $\mathbb C$ and let $T\in \mathcal L(F^3)$ defined by

$$T(x_1, x_2, x_3) = (x_1 - x_2 + 2x_3, 2x_1 + x_2, -x_1 - 2x_2 + 2x_3).$$

- (a) Verify that T is linear.
- (b) If $(a,b,c)\in F^3$, what are the conditions that $(a,b,c)\in {\rm Im}T$? Calculate ${\rm dim}{\rm Im}T$.
- (c) What are the conditions that $(a,b,c) \in \operatorname{Ker} T$? Calculate $\operatorname{dim} \operatorname{Ker} T$.

Proof: (a)
$$T(cx_1 + y_1, cx_2 + y_2, cx_3 + y_3) = cT(x_1, x_2, x_3) + T(y_1, y_2, y_3)$$
 so T is linear.

(b)
$$T(1,0,0)=(1,2,-1)$$
, $T(0,1,0)=(-1,1,-2)$, $T(0,0,1)=(2,0,2)$ then

 $T(1,0,0)\in \mathrm{Span}\langle T(0,1,0),T(0,0,1)
angle$ so $\mathrm{dim}\mathrm{Im}T=2$ and

$$Im T = Span((0,1,-1),(1,0,1)) = \{(x,y,z) : z = x - y\}.$$

(c)
$$\mathrm{Ker}T=\left\{(x,y,z):y=-2x,z=-rac{3}{2}x
ight\}=\mathrm{Span}\langle(-2,4,3)
angle$$
, $\mathrm{dim}\mathrm{Ker}T=1$.

73-10

Let V be $\mathbb C$ over the field $\mathbb R$. Find $T\in\mathcal L(V)$ but not complex linear.

Solution: Consider $T:\mathbb{C}\to\mathbb{C}, z\mapsto \bar{z}$, then $T(rz+w)=\bar{r}\bar{z}+\bar{w}=\bar{r}T(z)+T(w)$ so T is linear over the field \mathbb{R} but not over \mathbb{C} .

74-13

For $T\in\mathcal{L}(V)$. Prove that the following are equivalent: (a) $\{0\}=\mathrm{Ker}T\cap\mathrm{Im}T$; (b) $T^2(\alpha)=0\implies T\alpha=0$.

Proof: (a)=>(b): If $T(T(\alpha))=0$ then $T(\alpha)\in \operatorname{Ker} T$. Clearly $T(\alpha)\in \operatorname{Im} T$ so $T(\alpha)=0$.

(b)=>(a): If $0 \neq a \in \mathrm{Ker}T \cap \mathrm{Im}T$, then take $a=T\alpha$, we have $T\alpha \neq 0$ but $T^2\alpha = Ta = 0$.

83-2

Let $T\in\mathcal{L}(\mathbb{C}^3)$ such that $Te_1=(1,0,i), Te_2=(0,1,1), Te_3=(i,1,0).$ Is T invertible? Solution: Te_i are linearly dependent, so T is not invertible.

83-4

For the linear operator $T(x_1,x_2,x_3)=(3x_1,x_1-x_2,2x_1+x_2+x_3)$, prove that $(T^2-I)(T-3I)=0$. Proof: Note that $Te_1=3e_1$, T(0,0,1)=(0,0,1), T(0,-2,1)=-(0,-2,1), so T has three different eigenvalues 3,1,-1. Hence (T-I)(T+I)(T-3I)=0, since we can take the matrix A of T under the base (1,0,0),(0,0,1),(0,-2,1).

83-5

Let
$$B=egin{pmatrix} 1 & -1 \ -4 & 4 \end{pmatrix}$$
 and $T\in\mathcal{L}(\mathbb{C}^{2 imes2})$ be $T:A\mapsto BA$. What is the rank of T ? Can you describe T ? Solution: For any $A=egin{pmatrix} a & b \ c & d \end{pmatrix}$, $BA=egin{pmatrix} a-c & -4(a-c) \ b-d & -4(b-d) \end{pmatrix}$. So $\dim \mathrm{Im} T=2$.

84-11

Let V be a finite-dimensional vector space and let T be a linear operator on V. Suppose that $\dim \operatorname{Im} T^2 = \dim \operatorname{Im} T$. Prove that the range and null of T are disjoint. Proof: $\dim \operatorname{Im} T^2 = \dim \operatorname{Im} T |_{\operatorname{Im} T} = \operatorname{Im} T - \dim \operatorname{Ker} T |_{\operatorname{Im} T}$, so $\operatorname{Ker} T \cap \operatorname{Im} T = \{0\}$.

84-12

Let $V=F^{m\times n},W=F^{p\times n}$, $B\in F^{p\times m}$ and $T\in \mathcal{L}(V,W):A\mapsto BA$. Prove that T is invertible iff p=m and $B\in GL(m,F)$. Proof: <== is trivial: $T^{-1}:A\mapsto B^{-1}A$. ==> If T is invertible, then consider $C=T^{-1}(I)$, $I_V=T^{-1}T(I_V)=CBI_V$, and $I_W=TT^{-1}(I_W)=BCI_W$, so $BC=I_W$ and $CB=I_V$. Hence p=m and $B\in GL(m,F)$.

86-2

Let V be a vector space over the field $\mathbb C$, and suppose there is an isomorphism $T:V\to\mathbb C^3$ Let $\alpha_1,\alpha_2,\alpha_3,\alpha_3\in V$ such that $T\alpha_1=(1,0,i)$, $T\alpha_2=(-2,1+i,0)$, $T\alpha_3=(-1,1,1)$, $T\alpha_4=(\sqrt{2},i,3)$. (a) Is α_1 in the subspace spanned by α_2 and α_3 ? (b) Let $W_1=\operatorname{Span}\langle\alpha_1,\alpha_2\rangle$ and $W_2=\operatorname{Span}\langle\alpha_3,\alpha_4\rangle$. What is $W_1\cap W_2$? (c) Find a basis for the subspace of V spanned by the four vectors α_j . Solution: (a) Note that $-iT\alpha_1+\frac{1-i}{2}T\alpha_2=T\alpha_3$, since T is an isomorphism, $\alpha_1\in\operatorname{Span}\langle\alpha_2,\alpha_3\rangle$. (b) $TW_1=\operatorname{Span}\langle T\alpha_1,T\alpha_2\rangle$ and $TW_2=\operatorname{Span}\langle T\alpha_3,T\alpha_4\rangle$, so $TW_1\cap TW_2=\operatorname{Span}\langle T\alpha_3\rangle$ hence $W_1\cap W_2=\operatorname{Span}\langle\alpha_3\rangle$. (c) $\{\alpha_1,\alpha_2,\alpha_4\}$.

86-7

For an isomorphism $U\in\mathcal{L}(V,W)$, prove that $\varphi:T\mapsto UTU^{-1}$ is an isomorphism of $\mathcal{L}(V,V)\to\mathcal{L}(W,W)$. Proof: Clearly φ is linear. Consider $\psi:\mathcal{L}(W,W)\to\mathcal{L}(V,V)$, $P\mapsto U^{-1}PU$, then $\varphi\psi=1_{\mathcal{L}(W,W)}$ and

Proof: Clearly φ is linear. Consider $\psi:\mathcal{L}(W,W)\to\mathcal{L}(V,V), P\mapsto U^{-1}PU$, then $\varphi\psi=1_{\mathcal{L}(W,W)}$ and $\psi\varphi=1_{\mathcal{L}(V,V)}$ so φ is an isomorphism.