

CSE 6140/ CX 4140:

Computational Science and Engineering ALGORITHMS

Instructor: Anne Benoit

Visiting Associate Professor, CSE

Based on slides by Bistra Dilkina

Entry Quiz

Mean: 32.6 (35.2 last year) (between 2 and 57)

• Q1: 4.3/7

• Q2: 1.6/4

• Q3: 2.7/6

• Q4: 6/10

• Q5: 11.9/15

• Q6: 2.4/5

• Q7: 3.6/10

Schedule

- Aug 22: Introduction and Entry quiz. Reading: review material from quiz if you were not confident, for instance read KT1, KT2, KT3.
- Aug 24: Review of proofs and Greedy algorithms. Reading: KT2.1, KT2.2, KT1.2, KT4.1.
- Aug 29: Greedy algorithms (interval scheduling). Reading: KT4.1, KT4.2.
- Aug 31: Greedy algorithms (graphs, shortests paths). Reading: KT4.3, KT4.4.

The kind of problems

- Design an algorithm such that
- Given any valid input
 - e.g. a graph, a set of strings from an alphabet, a set of jobs
- Find an output that:
- Satisfies a set of requirements (feasible)
 - e.g. a set of vertices that are not neighbors in the graph
 - e.g. a set of jobs that do not overlap
- And has the best possible quality based on a specified objective function (optimal)

Algorithm

Definition

 A sequence of computational steps that transform the input into a desired output

Proof of correctness

- On every valid input, the algorithm produces the output that satisfies the required input/output relationship
 - Review of proofs

Analysis of time and space

- Given the 'size' of the input, how many computational steps does the algorithm take?
 - Review of Asymptotic Notations
 - Review of Recurrences

REVIEW OF PROOFS

Proofs by counterexample
Proofs by contradiction
Inductive proofs
If-and-only-if proofs
Etc.

Questions 3 & 4 of Quiz in class

Why algorithm design matters?

Table 2.1 The running times (rounded up) of different algorithms on inputs of increasing size, for a processor performing a million high-level instructions per second. In cases where the running time exceeds 10²⁵ years, we simply record the algorithm as taking a very long time.

	n	$n \log_2 n$	n^2	n^3	1.5 ⁿ	2 ⁿ	n!
n = 10	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	4 sec
n = 30	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	18 min	10^{25} years
n = 50	< 1 sec	< 1 sec	< 1 sec	< 1 sec	11 min	36 years	very long
n = 100	< 1 sec	< 1 sec	< 1 sec	1 sec	12,892 years	10^{17} years	very long
n = 1,000	< 1 sec	< 1 sec	1 sec	18 min	very long	very long	very long
n = 10,000	< 1 sec	< 1 sec	2 min	12 days	very long	very long	very long
n = 100,000	< 1 sec	2 sec	3 hours	32 years	very long	very long	very long
n = 1,000,000	1 sec	20 sec	12 days	31,710 years	very long	very long	very long

Running time

- Model of computation: Random-Access Machine (RAM)
 - Instructions are executed one after the other (non concurrency)
 - Each "simple" operation takes 1 step: (+, -, =, if, call, memory access)
 - Loops and subroutine calls are not simple operations. They
 depend upon the size of the data and the contents of a
 subroutine. "Sort" is not a single step operation
- Input size
 - Depends on the problem being studied
 - E.g., number of items in the input
 - E.g., number of nodes and number of edges in a graph input
- Running time
 - Number of steps taken by the algorithm, given input size

Running time

Steps

- Worst-case: the maximum number of steps taken on any instance of size n
- Best-case: the minimum number of steps taken on any instance of size n.

Average-case: the average number of steps taken on any instance of size n. (Need an understanding of the distribution of possible inputs)

Time complexity

- The time complexity of an algorithm associates a number T(n), the maximum (worst-case) amount of time taken on any input of size n
- Mathematically, T: N → R
 i.e., T is a function mapping non-negative integers (problem sizes) to real numbers (number of steps).
 - "Reals" so we can say, e.g., sqrt(n) instead of [sqrt(n)]
- A key question is "Scaling up" of the algorithm
 - What happens to my runtime if I have twice as many items, or twice as large graph?
 - (E.g. today: cn^2 , next year: $c(2n)^2 = 4cn^2$: 4x longer.)
 - Big-Oh notation answers this kind of questions

Exact analysis is hard

 T(n) might be difficult to deal with precisely because the details are very complicated:

- It easier to talk about upper and lower bounds of the function
- Asymptotic notation (O, Ω , and Θ) are the way we practically deal with analysis of time complexity

Big-Oh notation

ASYMPTOTIC ORDER OF GROWTH

Asymptotic Order of Growth

- Upper bounds: T(n) is O(g(n)) if there exist constants c > 0 and $n_0 \ge 0$ such that for all $n \ge n_0$ we have $T(n) \le c \cdot g(n)$.
- Lower bounds: T(n) is $\Omega(g(n))$ if there exist constants c > 0 and $n_0 \ge 0$ such that for all $n \ge n_0$ we have $T(n) \ge c \cdot g(n)$.
- **Tight bounds**: T(n) is $\Theta(g(n))$ if T(n) is both O(g(n)) and $\Omega(g(n))$.

Notation

- Example: $T(n) = 32n^2 + 17n + 32$.
 - T(n) is O(n²), O(n³), Ω (n²), Ω (n), and Θ (n²).
 - T(n) is not O(n), $\Omega(n^3)$, $\Theta(n)$, or $\Theta(n^3)$.
- Slight abuse of notation. T(n) = O(g(n))
- Equality not transitive:
 - T1(n) = $5n^3$; T2(n) = $3n^2$
 - $T1(n) = O(n^3) = T2(n)$
 - But $T1(n) \neq T2(n)$.
- Better notation: $T(n) \in O(g(n))$
- T(n) is in the set of functions bounded from above by g(n)

Properties

Transitivity

- If $f \in O(g)$ and $g \in O(h)$ then $f \in O(h)$.
- If $f \in \Omega(g)$ and $g \in \Omega(h)$ then $f \in \Omega(h)$.
- If $f \in \Theta(g)$ and $g \in \Theta(h)$ then $f \in \Theta(h)$.

Additivity

- If $f \in O(h)$ and $g \in O(h)$ then $f + g \in O(h)$.
- If $f \in \Omega(h)$ and $g \in \Omega(h)$ then $f + g \in \Omega(h)$.
- If $f \in \Theta(h)$ and $g \in O(h)$ then $f + g \in \Theta(h)$.

Some Common Functions

- Polynomials: $a_0 + a_1 n + ... + a_d n^d$ is $\Theta(n^d)$ if $a_d > 0$.
- Logarithms: the base does not matter
 - $O(\log_a n) = O(\log_b n)$ for any constants a, b > 0.
 - Recall $log_b n = log_a n / log_a b$
- Polynomial time. Running time is O(n^d) for some constant d independent of the input size n.
- Exponential time. Running time is O(rⁿ) for some constant r.

- Logarithms grow slower than every polynomial
 - For every d > 0 (no matter how small d)
 - $\log n \in O(n^d)$.

Polynomial vs. Exponential

- Exponentials grow faster than every polynomial
 - For every r > 1 (no matter how small/close to 1)
 - and every d > 0 (no matter how big)
 - $n^d \in O(r^n)$.

Some examples of running times

- O(log n): binary search on sorted list
- O(n): find max element in a list
- O(n log n): sort a set of elements
- O(n²): find the pair of points that is closest to each other
- $O(n^3)$: Given n sets S_1 , ..., S_n , each of which is a subset of 1, 2, ..., n, is there some pair of these which are disjoint?
- O(n^k): Given a graph of n nodes, are there k nodes such that no two are joined by an edge?
- O(2ⁿ): Enumerate all subsets of a set of n elements
- O(n!): given a set of cities and distances, find a shortest route that visits each city exactly once and returns to the start city? (naive approach)

REPRESENTATIVE PROBLEMS

The kind of problems

- Design an algorithm such that
- Given any valid input
 - e.g. a graph, a set of strings from an alphabet, a set of jobs
- Find an output that:
- Satisfies a set of requirements (feasible)
 - e.g. a set of vertices that are not neighbors in the graph
 - e.g. a set of jobs that do not overlap
- And has the best possible quality based on a specified objective function (optimal)

- Input. Set of jobs with start times and finish times.
- Goal. Find maximum cardinality subset of mutually compatible jobs.

Weighted Interval Scheduling

- Input. Set of jobs with start times, finish times, and weights.
- Goal. Find maximum weight subset of mutually compatible jobs.

Bipartite Matching

- Input. Bipartite graph.
- Goal. Find maximum number of edges that don't share a node

Independent Set

- Input. Graph.
- Goal. Find maximum cardinality independent set.

subset of nodes such that no two are joined by an edge

Representative Problems

- Variations on a theme: independent set
- Interval scheduling: O(n log n) greedy algorithm
- Weighted interval scheduling: O(n log n) dynamic programming algorithm
- Bipartite matching: O(n^k) max-flow based algorithm
- Independent set: NP-complete, O(n²2ⁿ) brute-force

Greedy Algorithms

Greedy-choice property: we can assemble a globally optimal solution by making locally optimal (greedy) choices

i.e. we make the choice that looks best given the current partial solution

Interval Scheduling [KT 4]

- Job j starts at s_j and finishes at f_j .
- Two jobs compatible if they don't overlap.
- Goal: find maximum subset of mutually compatible jobs.

Interval Scheduling: Greedy Algorithms

Greedy template. Consider jobs in some natural order.

Take each job provided it's compatible with the ones already taken.

• [Earliest start time] Consider jobs in ascending order of s_j .

counterexample for earliest start time

• [Shortest interval] Consider jobs in ascending order of f_j - s_j .

counterexample for shortest interval

• [Fewest conflicts] For each job j, count the number of conflicting jobs c_i . Schedule in ascending order of c_i .

counterexample for fewest conflicts

■ [Earliest finish time] Consider jobs in ascending order of f_j.

Interval Scheduling: Greedy Algorithm

Greedy algorithm. Choose next job to add to solution as the one with earliest finish time that it is compatible with the ones already taken. (natural order = finish time)

```
Sort jobs by finish times so that f_1 \le f_2 \le \ldots \le f_n.

set of jobs selected

A \leftarrow \phi
for j = 1 to n \in \{1, j\}

A \leftarrow A \cup \{j\}

return A
```


Interval Scheduling: Greedy Algorithm

Greedy algorithm. Choose next job to add to solution as the one with earliest finish time that it is compatible with the ones already taken.

```
O(n log n) Sort jobs by finish times so that f_1 \le f_2 \le \ldots \le f_n. Set of jobs selected A \leftarrow \phi Naïve O(n^2) for j=1 to n { if (job j compatible with A) A \leftarrow A \cup \{j\}} return A
```

Running time. $O(n^2)$. Why is this optimal? Come to next class!

Interval Scheduling: Greedy Algorithm

Greedy algorithm. Choose next job to add to solution as the one with earliest finish time that it is compatible with the ones already taken.

```
O(n \ log \ n) \qquad \text{Sort jobs by finish times so that} \ f_1 \leq f_2 \leq \ldots \leq f_n. A \leftarrow \phi f_{j^*} = 0 for \ j = 1 \ to \ n \ \{ if (job j compatible with A: s_j \geq f_{j^*}) A \leftarrow A \cup \{j\} f_{j^*} = f_j \} return A
```

Running time. O(n log n).

- Remember job j* that was added last to A.
- Job j is compatible with A if $s_j \ge f_{j^*}$.