Lecture 17-Morphological Operations (Chapter 9.1-9.5)

Yuyao Zhang, Xiran Cai PhD

zhangyy8@shanghaitech.edu.cn caixr@shanghaitech.edu.cn

SIST Building 2 302-F/302-C

Course piazza link: piazza.com/shanghaitech.edu.cn/spring2021/cs270spring2021

Outline

This lecture will cover:

- Morphology Image Processing (形态学图像处理)
 - Morphological operation.
 - Morphological algorithms.

Problem try to solve

• Imperfect from image segmentation.

Historically, certain computer programs were written using only two digits rather than four to define the applicable year. Accordingly, the company's software may recognize a date using "00" as 1900 rather than the year 2000.

Preliminaries ---Set Operation

A digital image f(x,y) can be considered as a set A, if w(x,y) in 2D integer space Z^2 , then

- $\triangleright w \in A$: w is an element of A.
- $\triangleright w \notin A$: w is not an element of A.
- $\triangleright B = \{w | condition\}$: all elements which meet the specific condition.
 - $A \cup B = \{w | w \in A \text{ or } w \in B\}$: union (并集)
 - $A \cap B = \{w | w \in A \text{ and } w \in B\}$: intersection (交集)
 - $A^C = \{w | w \notin A\}$: complement (补集)
 - $A B = \{w | w \in A \text{ and } w \notin B\}$: difference (差集)

 A^c

 $\overline{A-B}$

Structure element (结构元)

> Structuring Element (SE) --- small sets or sub-images used to probe an image under study for properties of interest.

> SE Selection

- Simpler than the image
- With boundary
- Convex

> Structures

- Origin
- Rectangular

Erosion (腐蚀)

≻Definition:

$$A \ominus B = \{z \mid (B)_z \subseteq A\}$$

or

$$A \ominus B = \{z \mid (B)_z \cap A^c = \emptyset\}$$

≻Erosion will do:

- removes thin lines
- isolate dots
- leaves gross details
- "Peeling away" layers
- Is always a sub-set of A

Erosion (腐蚀)

Erosion (腐蚀)

Dilation (膨胀)

≻ Definition

$$A \oplus B = \{z | \widehat{B_z} \cap A \subseteq A\}$$
 or

$$A \oplus B = \{ z | \widehat{B_z} \cap A \subseteq \emptyset \}$$

Dilation will do:

Fatten up. Kind of opposite of

Erosion.

Bridge gaps, fill holes, wighout change overall size of object.

Dilation (膨胀)

Opening (开操作)

> Definition:

$$A \circ B = (A \ominus B) \oplus B$$

or

$$A \circ B = \bigcup \{ (B)_z \mid (B)_z \subseteq A \}$$

- > Erode then dilate: break narrow bridges, eliminate thin structures
- ➤ Matlab Function: J = imopen(I,SE)
- Properties:
 - 1 A B is a subset (subimage) of A
 - ② If C is a subset of D, the C B is a subset of D B
 - $\Im (A \circ B) \circ B = A \circ B$

Closing (闭操作)

> Definition:

$$A \bullet B = (A \oplus B) \ominus B$$

- ➤ Dilate, then erode: fuse narrow breaks, eliminate small holes
- ➤ Matlab Function: J = imclose(I,SE)
- > Properties:
 - 1 A is a subset (subimage) of A B
 - ② If C is a subset of D, the C B is a subset of D B
 - $\mathfrak{J}(A \bullet B) \bullet B = A \bullet B$

Opening & Closing (开操作和闭操作)

➤ Opening (开操作)

- Smooth the contour of an object
- Break narrow bridges.
- Eliminate thin structures.

➤ Closing (闭操作)

- Smooth the contour of an object
- Fuse narrow breaks and long thin gulfs
- Eliminate small holes
- Fill gaps in the contour

The Hit-or-Miss Transformation (击中或击不中变换)

$$A \circledast B = (A \ominus B_1) \cap (A^c \ominus B_2)$$

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 0 1 0 0 0 0 0 1 1 1 0 0 0 0 0

1 1 1 1 0 1 0 1 1 1 1 1 1 0 1 0 1

1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1

1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1

 B_2

The Hit-or-Miss Transformation (击中或击不中变换)

$$A \circledast B = (A \ominus B_1) \cap (A^c \ominus B_2)$$

- \triangleright A method to find the location of a shape B_1 in an image A.
 - -Erosion of $A \ominus B_1$ gives all places where B_1 fits in A.
- \triangleright So also require the boundary around the shape, B_2 to be empty.
 - -Erosion of $A^c \ominus B_2$ gives all places where B_2 fits in empty places of A.
- Then take the intersection:

$$A \circledast B = (A \ominus B_1) \cap (A^c \ominus B_2)$$

Boundary Extraction (边界提取)

Morphological algorithm: $\beta(A) = A - (A \ominus B)$

$$\beta(A) = A - (A \ominus B)$$

Hole Filling (孔洞填充)

- Let A be the set of 8-connected boundary points of a region
- Start with a point inside the region
- Repeatedly dilate
- At each step, the points corresponding to the region boundary are set to zero :

$$X_k = (X_{k-1} \oplus B) \cap A^c, k = 1,2,3,...$$

Stop when no more changes

Take home message

- ➤ Morphological Language: Set theory (集合)
- ➤ Morphological operations take a set of pixels:
 - Key element: "structure element".
 - Insensitive to noise.
 - Smooth edge
 - Key operations
 - HMT (Hit or Miss Transformation)(击中与否变换)
 - Dilation (膨胀) and Erosion (腐蚀)

