Применение сверточных нейронных сетей к задаче классификации трехмерных моделей

ОБУЧАЮЩИЙСЯ:

ВАКУЛИН А.А.

РУКОВОДИТЕЛИ:

КРЫЛОВЕЦКИЙ А.А. ЧЕРНИКОВ И.С.

ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ФАКУЛЬТЕТ КОМПЬЮТЕРНЫХ НАУК КАФЕДРА ЦИФРОВЫХ ТЕХНОЛОГИЙ

Цель:

Разработка математических методов и алгоритмов классификации трёхмерных объектов с помощью сверточных нейронных сетей

Задачи:

- •Исследование возможных представлений (дескрипторов) трехмерных объектов
- Исследование технологий сверточных нейронных сетей и построение архитектуры сети для решения поставленных задач
- Создание програмной реализации системы распознавания трехмерных объектов с использованием сверточных нейронных сетей

Система классификации

- Формирование базы данных
- Подготовка данных
- Построение глобальных дескрипторов поверхности
- Обучение сверточной нейронной сети

Формирование базы данных

Princeton Shape Benchmark

- 540 объектов
- 3 класса

Рис.1: Классы объектов, выбранные для распознавания

Подготовка данных

Контроль разрешения объектов

Рис. 2: Базовые операции алгоритма контроля разрешения трехмерных объектов. Ребро свернуто в точку(верхний рисунок). Ребро разделено на два(нижний рисунок)

Построение дескрипторов

Спиновые изображения

Рис. 3: Относительные координаты спинового изображения α и β

Рис. 4: Примеры спиновых изображений

Общее представление

- Сверточный слой (convolutional)
- Слой объединения (pooling)
- Слой полносвязной нейронной сети

Рис. 5: Общая схема сверточной нейронной сети

Сверточный слой (convolutional)

Рис. 6: Пример работы сверточного слоя

Слой объединения (pooling)

Рис. 7: Пример работы слоя объединения

Реализация системы №1

Рис. 8: Архитектура сверточной нейронной сети, использованная для реализации системы №1

График изменения значений функции ошибки для реализации системы №1

Реализация системы №2

Рис. 8: Архитектура сверточной нейронной сети, использованная для реализации системы №2

График изменения значений функции ошибки для реализации системы №2

Диаграмма результатов тестирования системы

Результаты работы

- 1. Разработаны математические методы построения дескрипторов трехмерных поверхностей для использования в системах глубокого обучения.
- 2. Проведено исследование возможных архитектур СНС и на основании проведенных вычислительных экспериментов предложены две возможные архитектуры для решения задачи распознавания трехмерных моделей.
- 3. Создана программная реализация системы распознавания трехмерных объектов с использованием нейронных сетей глубокого обучения и открытой базы данных 3D моделей The Princeton Shape Benchmark.

Список литературы

- 1. Johnson A.E. Spin-Images: A Representation for 3-D Surface Matching, Ph. D. Thesis, Carnegie Mellon University, 1997, 288 p.
- 2. Автоматическое совмещение поверхностей в системах компьютерного зрения / А.А. Крыловецкий, И.С. Черников, С.Д. Кургалин // Математическое моделирование .— 2013 .— Т. 25, № 3. С. 33-46.
- Michael Neilsen. Neural Networks and Deep Learning / Michael Neilsen [Электронный ресурс].- 2017. URL: http://neuralnetworksanddeeplearning.com (дата обращения 23.04.2017).

Обучение сверточной нейронной сети

Рис. 6: Цикл метода обратного распространения ошибки

Спиновое изображение

Трехмерные объекты и графические представления их глобальных дескрипторов для различной средней длины ребер

Функция потери

Функция среднеквадратической ошибки

$$L(W) = (\sum_{p=1}^{N} \frac{1}{2} (D_p - O(I_p, W))^2) / N$$

,где L(W) — это функция ошибки для всей обучающей выборки, p - номер обучающей пары, N - количество обучающих пар, D_p — желаемый выход сети, $O(I_p,W)$ — выход сети, зависящий от p-го входа и весовых коэффициентов W. Задача обучения так настроить веса W, чтобы они для любой обучающей пары (I_p,D_p) давали минимальную ошибку L.

Обновление веса

$$w = w_i - \eta \frac{dL(W_i)}{dW}$$

,где w_i - начальное значение регулируемого веса, $L(W_i)$ - функция ошибки, η - скорость обучения.