{"talk_title": "Column Names as Contracts",

```
"talk author": {
  "author_name": "Emily Riederer",
  "author_twtr": "@emilyriederer",
  "author_site": "emily.rbind.io"
"talk_forum": {
  "forum_name": "Data Workshop on Reproducibility",
  "forum_locn": "Toronto",
  "forum_date": "2021-02-26"
```

User interfaces make performance contracts

Column names are the user interface of our data

A	В	С	D	-	User Interface
1	10	11	1		
2	20	12	10		
3	30	13	100	←	Functionality
4	40	14	1,000		
5	50	15	10,000		
• • •	• • •	• • •	• • •		

Column names are a way to align data producers and consumers

From lab assistant

From you in the field

to you in the office

From the paper author

to the replicator

From the data engineer

to the analyst

Subtle design choices challenge scientific (re)producibility

<u>Origin</u>	Encoding	<u>Usage</u>
Field provenance	Indicator encoding	Feature leakage
When field loads	Metric definition	Date formats
Unique keys	Null handling	Allowed operations

Subtle design choices challenge scientific (re)producibility

Indicator encoding

"We had a bunch of zeros that should have been coded ones and the ones should have been coded zeroes."

Retraction Watch

"These data sets often have multiple files that...have unclear and sometimes duplicative variables. Such complexities are commonplace among many data systems... I would not be surprised if coding errors were fairly common, and that the ones discovered constitute only the "tip of the iceberg."

Retraction Watch

Metric definition

Column names rarely encode human-interpretable meaning

US Census Bureau

B19013_001 (median household income) P013001 (median age)

Column names rarely encode human-interpretable meaning

US Census Bureau

B19013_001 (median household income) P013001 (median age)

Cooperative Congressional Election Study

Using controlled vocabularies for column names

WHAT

- 1. Establish a set of well-defined stubs
- 2. Stubs at different levels encode different semantics
- 3. Stubs may also carry associated contracts
- 4. Stubs are composed to communicate complex concepts

Stub
ID
IND / IS
BIN
N
AMT
VAL
DT
TM
CAT
CD

Stub	Semantics
ID	Unique entity identifier
IND / IS	Binary 0/1 indicator; rest of name describes 1 condition
BIN	Binary 0/1 indicator; rest of name describes 1 condition
N	Count of quantity or event occurrences
AMT	Sum-able real number amount ("denominator free")
VAL	Numeric variables that are not inherently summable
DT	Date of an event
ТМ	Timestamp of an event
CAT	Human-readable categorical variable
CD	System-generated categorical variable

Stub	Semantics	Contracts
ID	Unique entity identifier	Numeric, primary / surrogate key
IND / IS	Binary 0/1 indicator; rest of name describes 1 condition	Always 0 or 1, non-null
BIN	Binary 0/1 indicator; rest of name describes 1 condition	Always 0 or 1
N	Count of quantity or event occurrences	Non-negative integer, non-null
AMT	Sum-able real number amount ("denominator free")	Numeric
VAL	Numeric variables that are not inherently summable	Numeric
DT	Date of an event	Date, ISO 8601 (YYYY-MM-DD)
ТМ	Timestamp of an event	Datetime, YYYY-MM-DD HH:MM:SS
CAT	Human-readable categorical variable	-
CD	System-generated categorical variable	-

Stub	Semantics	Contracts
ID	Unique entity identifier	Numeric, primary / surrogate key
IND / IS	Binary 0/1 indicator; rest of name describes 1 condition	Always 0 or 1, non-null
BIN	Binary 0/1 indicator; rest of name describes 1 condition	Always 0 or 1
N	Count of quantity or event occurrences	Non-negative integer, non-null
AMT	Sum-able real number amount ("denominator free")	Numeric
VAL	Numeric variables that are not inherently summable	Numeric
DT	Date of an event	Date, ISO 8601 (YYYY-MM-DD)
ТМ	Timestamp of an event	Datetime, YYYY-MM-DD HH:MM:SS
CAT	Human-readable categorical variable	-
CD	System-generated categorical variable	-

Stub
COUNTY
CASE
HOSP

Stub	Semantics
COUNTY	Continental US county or county equivalents as defined by the US Census Bureau
CASE	Test-confirmed COVID-19 case as reported by state health department and as aligned by date of testing
HOSP	In-patient COVID-19 hospitalization as reported by the state health department

Stub	Semantics
COUNTY	Continental US county or county equivalents as defined by the US Census Bureau
CASE	Test-confirmed COVID-19 case as reported by state health department and as aligned by date of testing
HOSP	In-patient COVID-19 hospitalization as reported by the state health department

Stub	Semantics	Consequence
COUNTY	Continental US county or county equivalents as defined by the US Census Bureau	
CASE	Test-confirmed COVID-19 case as reported by state health department and as aligned by date of testing	Reports may continue to backfill, generally up to 7 days
HOSP	In-patient COVID-19 hospitalization as reported by the state health department	

Types		
ID		
IND / IS		
BIN		
N		
AMT		
VAL		
DT		
ТМ		
CAT		

```
Subjects

COUNTY

STATE

CASE

HOSP
...
```



```
DT_COUNTY
ID_{COUNTY | STATE}
{DT | IND | PROP}_COUNTY_HPSA
IND_COUNTY_METRO
N_CASE_{ACTL | PRED}_{07|14|21|24}
N_HOSP_{ACTL | PRED}_{07|14|21|24}
. . .
```

Subtle design choices aid scientific (re)producibility

<u>Origin</u>	Encoding	<u>Usage</u>
Field provenance	Indicator encoding	Feature leakage
In 'entity' level	IND stub -> positive	<pre>select(data, -contains("POST"))</pre>
When field loads	Metric definition	Date formats
In 'entity' level	Clearly composed	DT stub -> IS08601
Unique keys	Null handling	Allowed operations
ID field	Non-null guarantees	VAL stub -> nonsummable

Using controlled vocabularies for column names

WHAT

- 1. Establish a set of stubs with well-defined meanings
- 2. Stubs at different levels can encode different semantics
- 3. Stubs may also carry associated contracts
- 4. Stubs are composed to communicate complex concepts

WHY

- Automate maintenance burden for producers
- Reduce cognitive load for consumers
- Add clarity for reviewers

Data discoverability & documentation

Data dictionary

Variable exploration

Autocomplete

Data validation

```
library(pointblank)
data %>%
 create_agent(actions =
               action_levels(stop_at = 0.1)) %>%
 col_vals_gte(starts_with("N"), 0) %>%
 col_vals_not_null(starts_with("IND")) %>%
 col_vals_in_set(starts_with("IND"), c(0,1)) %>%
 col_is_date(starts_with("DT")) %>%
  interrogate()
```


Data wrangling

```
library(dplyr)
data %>%
  group_by(NM_STATE) %>%
  summarize(
    across(starts_with("IND"), mean),
    across(contains("_ACTL_"), sum)
#> # A tibble: 51 x 4
    NM_STATE
                 IND_COUNTY_HPSA N_CASE_ACTL N_DEATH_ACTL
     <chr>
                        <dbl>
                                    <dbl>
                                                <dbl>
#> 1 Alabama
                       0.149
                                   455582
                                                7566
#> 2 Alaska
                       0.235
                                                 250
                                    51338
#> 3 Arizona
                       0
                                   753379
                                               13098
```

Data wrangling

```
library(dplyr)
data %>%
 group_by(NM_STATE) %>%
 summarize(
   across(starts_with("IND"), mean, .names = "{gsub('IND', 'PROP', {.col})}"))
   across(contains("_ACTL_"), sum)
#> # A tibble: 51 x 4
    NM_STATE
                 PROP_COUNTY_HPSA N_CASE_ACTL N_DEATH_ACTL
    <chr>
                        <dbl>
                                    <dbl>
                                                <dbl>
#> 1 Alabama
                       0.149
                                   455582
                                                7566
#> 2 Alaska
                       0.235
                                    51338
                                                 250
#> 3 Arizona
                       0
                                   753379
                                               13098
```

Bad contracts are worse than no contracts

Challenges:

- Maintaining a definition
- Adhering to the vocabulary
- Fulfilling contracts
- Communication

Bad contracts are worse than no contracts

Challenges:

- Maintaining a definition
- Adhering to the vocabulary
- Fulfilling contracts
- Communication

Solution: {convo}? dbt?

Automated tools can help us uphold contracts

R package

define & evaluate convo

local data

SQL data warehousing tool template, transform, test

Describe a controlled vocabularies with YAML


```
level1:
                                                                             In YAML file, specify:
 ID:
  desc: Unique identifie
    - col vals not null()
    - col is numeric()
                                                                                     Stub names
    - col vals between(1000, 99999)
                                                                                     Human-readable descriptions
  desc: Binary indicator
  valid:
    col is numeric()
                                                                                     Validation contracts
    - col_vals_in_set(c(0,1))
                                                                                     Renaming mappings
    - when: SUM
      then: 'N'
    - when: AVG
      then: P
   desc: Non-negative. summable quantity
  valid:
    - col is numeric()
    - col_vals_gte(0)
 VAL:
   desc: Value
   valid:
    - col is numeric()
  rename:
    - when: AVG
      then: VALAV
 CAT:
   desc: Category
  valid:
    - col is character()
   desc: System-generated code
  valid:
    - col is character()
   desc: Calendar date in YYYY-MM-DD format
  valid:
    - col is date()
level2:
 A:
   desc: Type A
                                                                             library(convo)
   desc: Type C
   desc: Type D
                                                                             convo <- read_convo("my-vocab.yml")</pre>
level3:
 "\\d{4}": []
```

Assess vocabulary quality

one meaning per stub

one stub per meaning

Assess vocabulary quality

one meaning per stub

```
bad_convo <- list(
    c("IND", "AMT", "CAT"),
    c("DOG", "CAT")
)
pivot_convo(bad_convo)

#> $CAT
#> [1] 1 2
```

one stub per meaning

```
bad_convo <- list(
    c("IND", "IS", "AMT", "AMOUNT", "CAT", "CD"),
    c("ACCOUNT", "ACCT", "ACCNT", "PROSPECT", "CUSTOMER")
)
clusts <- cluster_convo(bad_convo)
plot(clusts[[2]])</pre>
```


Challenge vocabulary realizations

evaluate names

discover new stubs

Challenge vocabulary realizations

evaluate names

```
col_names <- c(
   "ID_A", "IND_A", "XYZ_D", "AMT_B",
   "AMT_Q", "ID_A_1234", "ID_A_12"
   )
evaluate_convo(convo, col_names, sep = "_")

#> Level 1
#> - XYZ_D
#> Level 2
#> - AMT_B
#> - AMT_B
#> - ID_A_12
```

discover new stubs

```
convo_colnames <- parse_stubs(col_names)
compare_convo(
   convo_colnames,
   convo,
   fx = "setdiff"
)

#> Level 1
#> - XYZ
#> Level 2
#> - B
#> - Q
#> Level 3
#> - 12
```

Validate vocabulary promises

STEP	COLUMNS	VALUES	TBL	EVAL		PASS	FAIL	W	S	N	EX
L d col_is_numeric(-	→	✓	1	1 1.00	0.00	-	_	-	_
2 d col_is_numeric() ■IND_B	-	→	✓	1	1.00	0.00	_		_	n=
B € col_vals_in_set	() ■IND_A	0, 1	→	√	1	1 1.00	0.00	-	11-0	:- <u>.</u>	10-0
col_vals_in_set	() ■IND_B	0, 1	→	√	1	0 0.00	1 1.00	-	-	-	cs
5 D col_is_date()	■DT_B	_	→	✓	1	1.00	0.00	<u></u>	_	_	6_2

Generate data documentation

	var_name	♦ level1	♦ level2 ♦	level3 🍦	desc
1	AMT_A_2019	AMT	A	2019	Non-negative, summable quantity of Type A in given year
2	IND_C_2020	IND	С	2020	Binary indicator of Type C in given year

Export validation infrastructure


```
read_fn: ~setNames(as.data.frame(matrix(1,
ncol = 2)), c("IND_A", "AMT_B"))
tbl_name: .na.character
label: '[2021-02-07|13:02:35]'
locale: en
steps:
- col_is_numeric:
    columns: vars(IND_A)
- col_vals_in_set:
   columns: vars(IND_A)
    set:
    - 0.0
    - 1.0
- col_is_numeric:
    columns: vars(AMT_B)
- col_vals_gte:
    columns: vars(AMT_B)
    value: 0.0
```

Generate dictionary documentation

	level +	stub 🌲	stub_desc	checks
3	1	AMT	Non-negative, summable quantity	Expect that column is of type: numeric. Expect that values should be >= `0`.
5	1	CAT	Category	Expect that column is of type: character.
6	1	CD	System-generated code	Expect that column is of type: character.
8	1	DT	Calendar date in YYYY-MM-DD format	Expect that column is of type: Date.
9	1	ID	Unique identifier	Expect that all values should not be NULL. Expect that column is of type: numeric. Expect that values should be between `1000` and `99999`.
10	1	IND	Binary indicator	Expect that column is of type: numeric. Expect that values should be in the set of `0`, `1`.
11	1	VAL	Value	Expect that column is of type: numeric.
2	2	Α	Туре А	
4	2	С	Type C	
7	2	D	Type D	

SQL templating standardizes metric definition and naming

```
select
  id_county,
  dt_county,
  {% for l in var('lags') %}
    lag(cases, \{\{1\}\}\})
         over (partition by id_county
               order by dt_county)
         as n_{case\_pred_{-}\{\{\bar{1}\}\}}
  {% if not loop.last %},{% endif %}
  {% endfor %}
from predictions_source_table
```



```
select
   id_county.
  dt_county,
  lag(cases, 14
        over (partition by id_county)
order by dt_county)
as n_cases_pred_14,
   lag(cases, 2
        over (partition by id_county order by dt_county) as n_cases_pred_21,
   lag(cases, 24
        over (partition by id_county order by dt_county) as n_cases_pred_24,
. . .
```


Programmatic wrangling allows for the execution of some contracts in the pipeline itself

```
{% set cols = get_column_names( ref('data') ) %}
{% set cols_n = starts_with(cols, 'n') %}
{% set cols_dt = starts_with(cols, 'dt') %}
{% set cols_ind = starts_with(cols, 'ind') %}
{% set cols_oth =
         not_one_of(cols.
               cols_n + cols_dt + cols_ind %}
select
  {{ across(cols_oth, "{var}") }},
 {{ across(cols_n, "cast({var} as int)")}},
 {{ across(cols_dt, "date({var}) as {var})")}},
 {{ across(cols_ind, "coalesce({c}, 0)") }}
from {{ ref('data') }}
```



```
select
  amt_a,
  amt_b.
  cast(n_a as int64) as n_a,
  cast(n_c as int64) as n_c,
  date(dt_b) as dt_b.
  date(dt_d) as dt_d,
  coalesce(ind_b,0) as ind_b,
  coalesce(ind c.0) as ind c
from db.schema.data
```


With testing, we can ensure any non-enforceable contracts are upheld

```
{% set cols = get_column_names(ref('prep')) %}
{% set cols_n = starts_with(cols, 'n') %}
select *
from {{ ref('model_monitor_staging') }}
where
{%- for c in cols_n %}
   abs({{c}} - cast({{c}} as int64)) > 0.01 or
{% endfor %}
FALSE
```

```
with dbt CTE INTERNAL test as (
select *
from `sonorous-wharf-302611`.`dbt_emily`.`model_monitor_staging`
where
    abs(n_case_actl - cast(n_case_actl as int64)) > 0.01 or
   abs(n_death_actl - cast(n_death_actl as int64)) > 0.01 or
    abs(n_case_pred_07 - cast(n_case_pred_07 as int64)) > 0.01 or
    abs(n_hosp_pred_07 - cast(n_hosp_pred_07 as int64)) > 0.01 or
    abs(n_death_pred_07 - cast(n_death_pred_07 as int64)) > 0.01 or
   abs(n case pred 14 - cast(n case pred 14 as int64)) > 0.01 or
    abs(n hosp pred 14 - cast(n hosp pred 14 as int64)) > 0.01 or
    abs(n_death_pred_14 - cast(n_death_pred_14 as int64)) > 0.01 or
    abs(n_case_pred_21 - cast(n_case_pred_21 as int64)) > 0.01 or
   abs(n_hosp_pred_21 - cast(n_hosp_pred_21 as int64)) > 0.01 or
   abs(n_death_pred_21 - cast(n_death_pred_21 as int64)) > 0.01 or
    abs(n_case_pred_28 - cast(n_case_pred_28 as int64)) > 0.01 or
   abs(n_hosp_pred_28 - cast(n_hosp_pred_28 as int64)) > 0.01 or
    abs(n_death_pred_28 - cast(n_death_pred_28 as int64)) > 0.01 or
   FALSE
select count(*) from dbt CTE INTERNAL test
```


Column names can make performance contracts

Thank you!

More thoughts on my website:

- Under the `data` tag: emily.rbind.io/tags/data/
- Column Names as Contracts
- <u>Introducing {convo}</u> + open design questions!
- Embedding column-name contracts in dbt pipelines
- {convo} package website
- <u>dbt-dplyr</u> GitHub repo