fiche de i23 de Mehdi Ben Ahmed

Definitions et props

Définition 1: Commutatif les variables peuvent etre inverses

Définition 2: L'arbre de Derivation C'est un format de pour representer une proposition

Figure 1: $(P \Rightarrow Q) \land (P \lor \neg R)$

Définition 3: Loi de De Morgan Soit P et Q deux assertions, alors $\neg(P \lor Q) \equiv \neg P \land \neg Q$ $\neg(P \land Q) \equiv \neg P \lor \neg Q$

Tables de verite

il est assume qu'un connecteur est commutatif sauf mentione autrement

table de ∧: q binaire

\perp	\dashv	\dashv
Т	Т	\dashv
\perp	Τ	1
Т	Т	Т

table de ∨: q binaire

\perp	\dashv	\perp
\perp	Τ	Т
\dashv	Τ	Т
Т	Т	Т

table de \oplus : q binaire

\perp	\perp	\perp
Τ	Т	\vdash
Т	Τ	Т
\vdash	Τ	Τ

table de ⇒: q binaire dit non commutatif

Τ	Τ	Т
Τ	Τ	\dashv
Т	Τ	Τ

T	T
' '	' '
	_

autrement dit, vrai sauf si p est vrai et ${\bf q}$ est faux

table de ⇔: q binaire

上	Τ	Т
Τ	Т	Τ
Т	Т	\perp
Т	Т	Т

vrai si les deux variables ont la meme valeur

Proprietes

• comutativite de \wedge et \vee

$$(p \wedge q) \equiv (q \wedge p)$$

$$(p\vee q)\equiv (q\vee p)$$

• associativite de \land et \lor

$$\begin{split} ((P \wedge Q) \wedge R) &\equiv ((q \wedge R) \wedge P) \\ ((P \vee Q) \vee R) &\equiv ((Q \vee R) \vee P) \end{split}$$

• idempotence de \land et \lor

 $(p \land p) \equiv p$ $(p \lor p) \equiv p$

TPs

Question 1: Ecrire une fonction interpretations(nbVar) qui renvoie le tuple constitue de toutes les interpretations possible de nbvar variables propositionnelles

ici la strategie est d'imiter ce tableau en python $% \left\{ 1,2,\ldots ,n\right\} =\left\{ 1,2,\ldots ,n\right\}$

I		٧	f	٧
I	f	f	f	٧
I	٧	٧	٧	٧
ĺ	f	٧	f	٧

qui, rempli, donne toutes les possibilites des variables

```
def interpretations(nbvar):
    vrai = [vrai for i in range(nbvar)]
    faux = [faux for i in range(nbvar)]
```

Question 2.

Une formule propositionelle FP de n variables esst codee par une chiande de caracteres respectant la syntaxe python. les variables étant toujours codées V[0], V[1],...,V[n-1]. Écrivez une fonction TV(FP,n) qui renvoie la table de vérité de la formule FP sous forme de tuple de tuples à l'aide de la fonction Inter et la fonction d'évaluation

eval(chaine) du Python qui évalue une chaine de caractères si elle respecte la syntaxe du langage Python.

Exemple. Avec la chaîne de caractère FP =
"V[0] and V[1]", l'appel de la fonction
TV(FP,2) doit renvoyer le tuple
((False,False,False),(False,True,False),
(True,False,False),(True,True,True))

Predicats

Définition 4: Predicat enonce contenant des variables tel qu'en substituant chaque variables par une valeure choisi, on obtient une proposition

exemple: x|P(x) (se lit x tel que P(x)) est un predicat dans lesquelles la proposition P(x) est vraie pour x

Quantificateurs

Axiomes

TPs

Question 1: Ecrire une fonction interpretations(nbVar) qui renvoie le tuple constitue de toutes les interpretations possible de nbvar variables propositionnelles

ici la strategie est d'imiter ce tableau en python

	٧	f	٧
f	f	f	٧
٧	٧	٧	٧
f	٧	f	٧

qui, rempli, donne toutes les possibilites des variables

```
def interpretations(nbvar):
    vrai = [vrai for i in range(nbvar)]
    faux = [faux for i in range(nbvar)]
```

bases et codage

rappels

decimale	binaire	octal	hexa
0	0	0	0
1	1	1	1
2	10	2	2
3	11	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	Α
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	Е
15	1111	17	F

Arithmetique tronque a gauche:

logique combinatoire

(Définition 5: tableau de Karnaugh)

Définition 6: forme nominal disjonctive

logique sequentielle

fiche de i21 de Mehdi Ben Ahmed

Conception d'algorithme

Définition 7: Invalider un algo Pour montrer qu'un algo n'est pas valide, il suffit de montrer un contre exemple, soit un cas ou l'algorithme ne marcherait pas

Analyse asymptotique
Bases d'algo
Algos de tri
Algos de recherche
piles et files