A model with 175 billion parameters

@learn.machinelearning

Dataset	Quantity (tokens)	Weight in training mix	Epochs elapsed when training for 300B tokens
Common Crawl (filtered)	410 billion	60%	0.44
WebText2	19 billion	22%	2.9
Books1	12 billion	8%	1.9
Books2	55 billion	8%	0.43
Wikipedia	3 billion	3%	3.4

DATA USED TO TRAIN GPT-3

- GPT-3 175B is trained with 499 Billion tokens.
- While GPT-2 1.5B is trained with 40GB of Internet text, which is roughly 10 Billion tokens (conversely assuming the average token size is 4 characters).
- So GPT-3 175B has a lower data compression ratio of 2.85 in comparison to GPT-2
 1.5G which has 6.66.

ARCHITECTURE OF GPT-3

 The OpenAl team used the same model and architecture as GPT-2 that includes modified initialisation, pre-normalisation, and reversible tokenisation along with alternating dense and locally banded sparse attention patterns in the layers of the transformer.

TRAINING OF GPT-3

- Because of the architecture it eventually helped GPT-3 (175 B) model to use 3.2 M as batch size for its training.
- It was given that all these models are trained on the same number of tokens and trained on V100 GPU'S having high bandwidth provided by Microsoft.

TRANSFORMER - DECODER ACRHITECTURE

A BIT MORE ABOUT ARCHITECTURE

- GPT-2 or GPT-3 uses Transformer Decoder acrhitecture.
- The flow looks like first tokens are converted into woed embeddings and then added with positional embeddings(specific pattern about the position of each word).
- This is applied to all tokens in a sequence which is limited to 2048.
- Then the input token is passed through first token and masked self attention layer.
- Masked Self Attention is similar to Self-attention expect that in the former one model can't see the words after the particular current word.
- For each attention head, scores of tokens are calculated and this final matrix is sent to the feed-forward network.
- In feed forward network again there are two layers.
- The output of the feed forward network is the output of the particular decoder layer.

DIFFERENT GPT - 3 MODELS

 The team developed 8 different models varying in parameters, layers and model size ranging from 125 Million Parameters to 175 Billion Parameters.

GPT-3 small
12 Decoder layers
125M parameters

GPT-3 medium
24 Decoder layers
350M parameters

GPT-3 Large
24 Decoder layers
760M parameters

#24

•••••
#1

GPT-3 XL

24 Decoder layers

1.3B parameters

#32
#1

GPT-3 2.7B
32 Decoder layers
2.7B parameters

#32

GPT-3 6.7B
32 Decoder layers
6.7B parameters

#40

GPT-3 13B 40 Decoder layers 13B parameters #96

••••

#1

GPT-3 170B or GPT-3 96 Decoder layers 170B parameters

EVALUATION OF GPT-3

- Evaluation of GPT-3 is done under 3 conditions
- Few-shot learning: In addition to the model description, the model sees a few examples of the task.
- One-shot learning: The model sees one example of the task.
- Zero-shot learning: The model predicts the answer given only a natural language description of the task.
- GPT-3 achieved promising results on all three

APPLICATIONS OF GPT - 3

GPT-3 as an Author

GPT-3 as a blogger

Search Engine

Spreadsheet autocompletion

Simple English to SQL

English to Layout generator

Full blow UI design

Text to CSS

Text to LaTeX

English to Keras

Text to manim

learn.machinelearning

RESCUES

CLICK THE LINKS TO GET RESOURCES

@learn.machinelearning

• Find all GPT-3 resources here