Basic Elements of Statistical Mechanics

Jiasheng He Summer 2020

draft, updated randomly

This review is a logical, self-contained short review of the basic theory of statistical mechanics. It is based on my lecture notes and reading notes of undergraduate course Physics 5600 I took in Autumn 2019 at the Ohio State University, Columbus, Ohio. The instructor of this course is Prof. Michael Poirier. The textbook we used is

D. Schroeder, *An Introduction to Thermal Physics* (Addison Wesley Longman, 2000). Beyond the materials in this book, I also added several additional aspects which I encountered in my research projects.

Corrections and suggestions are very welcome to be sent to my e-mail address he.1326@osu.edu

Contents

Theory

- 1. Combinatorics
- 2. Two Einstein solids
- 3. Entropy and heat
- 4. Thermal identities
- 5. Tendency towards equilibrium
- 6. Mirco canonical, canonical, and grand canonical ensembles
- 7. Distribution functions

1. Combinatorics There are $\binom{q+N-1}{q}$ cases/ways/outcomes to distribute q units of energy to N

harmonic oscillators.

For example,
$$q = 2$$
 and $N = 3$, then $\binom{2+3-1}{2} = \binom{4}{2} = 6$

Oscillator 1	Oscillator 2	Oscillator 3
2	0	0
0	2	0
0	0	2
1	1	0
1	0	1
0	1	1

2. Two Einstein solids

Thermal Equilibrium Two Einstein solids A and B have fixed number of harmonic oscillators N_A and N_B . How many cases/ways to distribute q units of energy to the two solids?

q_{A}	$N_{\rm A}$	$\Omega_{ m A}$	$S_{\rm A}$	$q_{ m B}$	$N_{ m B}$	$\Omega_{ m B}$	S_{B}	$\Omega = \Omega_A \Omega_{ m B}$	$S = S_{\rm A} + S_{\rm B}$
1	$N_{\rm A}$			q-1	$N_{ m B}$				
2	$N_{\rm A}$			q-2	$N_{\rm B}$				
÷	N_{A}	÷	:	:	$N_{ m B}$	÷	÷	i:	:
$q_{ m A}$	N_{A}	$\begin{pmatrix} q + N_{\rm A} - 1 \\ q \end{pmatrix}$		$q - q_{\rm A}$	$N_{ m B}$	$\begin{pmatrix} q - q_{\rm A} + N_{\rm B} - 1 \\ q - q_{\rm A} \end{pmatrix}$		$\left \begin{array}{c} \left(q + N_{\mathrm{A}} - 1\right) \left(q - q_{\mathrm{A}} + N_{\mathrm{B}} - 1\right) \\ q - q_{\mathrm{A}} \end{array} \right)$	

For example, the second row means if $q_A = 2$, then Ω_A and S_A are such such. It just indicates a possible

Stirling approximation is used at $\Omega = \Omega_A \Omega_B = \binom{q + N_A - 1}{q} \binom{q - q_A + N_B - 1}{q - q_A}$ by which the function $\Omega(U_{\rm A}) = \Omega(q_{\rm A}\hbar\omega)$ can be shown is a Gaussian distribution provided q and N is very large.

FIG. 1 Plot of total multiplicity Ω as a function of q_A .

The figure is the statistical interpretation of the second law: maximize entropy $S := k \ln \Omega$. The maximal value of S indicates the thermal equilibrium. Then we can define temperature $\frac{1}{T} := \left(\frac{\partial S}{\partial E}\right)_{VN}$ and N are hold fixed. $T_{\rm A}=T_{\rm B}$ at thermal equilibrium.

Diffusion Equilibrium

FIG. 2 (*left*) The total energy in region A is fixed. The number of particle in region A and B are not fixed yet the total number $N = N_A + N_B$ is fixed. (*right*) The particles tend to move to the region with smaller chemical potential.

$q_{ m A}$	$N_{\rm A}$	$\Omega_{ m A}$	S_{A}	q_{B}	$N_{ m B}$	$\Omega_{ m B}$	S_{B}	$\Omega = \Omega_{ m A}\Omega_{ m B}$	S
q_{A}	1			$q_{ m B}$	N-1				
$q_{ m A}$	2			q_{B}	N-2				
$q_{ m A}$	÷	:	÷	$q_{ m B}$	÷	:	÷	:	:
$q_{ m A}$	$N_{\rm A}$	$\begin{pmatrix} q + N_{\rm A} - 1 \\ q \end{pmatrix}$		$q_{ m B}$	$N-N_{\rm A}$	$\begin{pmatrix} q_{\mathrm{B}} + N - N_{\mathrm{A}} - 1 \\ q_{B} \end{pmatrix}$		$\left(egin{array}{c} q+N_{ m A}-1 \ q \end{array} ight) \left(egin{array}{c} q_{ m B}+N-N_{ m A}-1 \ q_{ m B} \end{array} ight)$	

Again, the plot shows The maximal value of S indicates the diffusive equilibrium. At diffusive equilibrium, $0 = \frac{\partial S}{\partial N_{\rm A}} = \frac{\partial S_{\rm A}}{\partial N_{\rm A}} + \frac{\partial S_{\rm B}}{\partial N_{\rm A}} = \frac{\partial S_{\rm A}}{\partial N_{\rm A}} - \frac{\partial S_{\rm B}}{\partial N_{\rm B}}$. So, we define the chemical potential $\frac{\mu}{T} := -\left(\frac{\partial S}{\partial N}\right)_{E,V}$ provided E and V fixed. At diffusive equilibrium, $\mu_{\rm A} = \mu_{\rm B}$.

Note that $\mu \leq 0$. See Figure 2 (right). $0 > \mu_A > \mu_B$ means region B tends to gain particles.

Mechanical Equilibrium

FIG. 3 The board can move frictionlessly due to pressure difference on both sides.

Similarly, in this case, we can define pressure $\frac{P}{T} := \left(\frac{\partial S}{\partial V}\right)_{E,N}$ where E and N are fixed.

3. Entropy and heat From $\frac{1}{T} = \left(\frac{\partial S}{\partial E}\right)_{V,N}$, we have if V,N are fixed, the work W=0, and T does not vary in system, then $\mathrm{d}S = \frac{\mathrm{d}E}{T} = \frac{Q}{T}$.

4. Thermal identities

Based on the discussions in 2., we can say that entropy S is a function of E, V, N in general. Then

$$dS = \frac{\partial S}{\partial E}dE + \frac{\partial S}{\partial V}dV + \frac{\partial S}{\partial N}dN = \frac{1}{T}dE + \frac{P}{T}dV - \frac{\mu}{T}dN$$

So, we have

$$dE = TdS - PdV + \mu dN \tag{1}$$

This means E is a function of S, V, and N.

Definition of Legendre transformation The Legendre transformation of a convex function $f: X \to \mathbb{R}$ defined on a convex set $X \subseteq \mathbb{R}^n$ is the function $f^*: X^* \to \mathbb{R}$

$$f^*(x^*) = \sup_{x \in X} (f(x) - \langle x^* | x \rangle)$$

where
$$X^* = \left\{ x^* \in \mathbb{R}^n : \sup_{x \in X} \left(f(x) - \langle x^* | x \rangle \right) < \infty \right\}.$$

Our definition is a little bit different from the standard definition in any textbook of convex analysis. In the better and loose cases, the convex set is an interval of \mathbb{R} and $f^*(x^*) = \sup_{x \in X} (f(x) - x^*x)$. To find the "sup"

with respect to $x \in X$, we want $0 = \frac{df^*}{dx} = \frac{df}{dx} - x^*$, so

$$x^* = \frac{\mathrm{d}f}{\mathrm{d}x}$$

Note that $\frac{\mathrm{d}f^*}{\mathrm{d}x^*} = -x$.

Enthalpy H(S, P, N): Use $-P = \frac{\partial E}{\partial V}$ to perform Legendre transformation on E(S, V, N), we can get enthalpy H = E - (-P)V = E + PV and thus

$$dH = TdS + VdP + \mu dN \tag{2}$$

Note that $-V = \frac{\partial H}{\partial (-P)}$. The physical meaning of enthalpy is the energy required to exist in an environment with pressure P.

Helmholtz Free Energy F(T, V, N): Use $T = \frac{\partial E}{\partial S}$ to perform Legendre transformation on E(S, V, N), we can get Helmholtz free energy F = E - TS and thus

$$dF = dE - TdS - SdT = -SdT - PdV + \mu dN$$
(3)

Note that $-S = \frac{\partial F}{\partial T}$. E = TS + F indicates that the physical meaning of Helmholtz free energy is the net energy you need to input for a substance to exist in an environment (pressure is not considered). Note that TS is the automatic input from the environment.

Gibbs Free Energy G(T, P, N): Use $T = \frac{\partial H}{\partial S}$ to perform Legendre transformation on H(S, P, N), we can get Gibbs free energy G = H - TS and thus

$$dG = dH - TdS - SdT = -SdT + VdP + \mu dN$$
(4)

Note that $-S = \frac{\partial G}{\partial T}$. Gibbs free energy G(T, P, N) can also be transformed from F(T, V, N) by using ∂F $-P = \frac{\partial F}{\partial V}$. H = E + PV = G + TS indicates that the physical meaning of Gibbs free energy is the net energy you need to input for a substance to exist in an environment with pressure P. Note that TS is the automatic input from the environment.

Grand Free Energy $\Phi(T, V, \mu)$: Use $\mu = \frac{\partial F}{\partial N}$ perform Legendre transformation on F(T, V, N), we can get grand potential energy $\Phi = F - \mu N$ and thus

$$d\Phi = dF - \mu dN - N d\mu = -S dT - P dV - N d\mu$$
 (5)

Note that $-N = \frac{\partial \Phi}{\partial u}$. $E = \Phi + TS + \mu N$ indicates that the physical meaning of grand free energy is the net energy you need to input for a substance to exist in an environment (pressure is not considered). Note that TS and μN are the automatic inputs from the environment; in other words, the system is allowed only to exchange energy and particle with the environment.

A summary picture is given

FIG. 4 Thermal quantities are related by Legendre transformation.

5. Tendency towards equilibrium Consider a system contacting with a reservoir.

Assumption 1:
$$T = T_{rsv}$$
, N_{rsv} , and V_{rsv} are fixed. Then,
$$dS_{total} = dS + dS_{rsv} = \left(\frac{1}{T}dU + \frac{P}{T}dV - \frac{\mu}{T}dN\right) + \frac{1}{T}dU_{rsv} \xrightarrow{dU = -dU_{rsv}} \frac{1}{T}\left(PdV - \mu dN\right) = -\frac{1}{T}dF,$$

by using the second law saying S tends to increase, we have

Conclusion 1: If $T = T_{rsv}$, N_{rsv} , and V_{rsv} are fixed, then F tends to decrease.

Assumption 2:
$$T = T_{\text{rsv}}$$
, N_{rsv} , and $P = P_{\text{rsv}}$ are fixed, but V_{rsv} is not fixed. Then,
$$dS_{\text{total}} = dS + dS_{\text{rsv}} = \left(\frac{1}{T}dU + \frac{P}{T}dV - \frac{\mu}{T}dN\right) + \left(\frac{1}{T}dU_{\text{rsv}} + \frac{P}{T}dV\right) = \frac{dU = -dU_{\text{rsv}}}{dV = -dV_{\text{rsv}}} - \frac{1}{T}\mu dN = -\frac{1}{T}dG,$$

by using the second law saying S tends to increase, we have

Conclusion 2: If $T = T_{rsv}$, N_{rsv} , and $P = P_{rsv}$ are fixed, then G tends to decrease.

6. Micro canonical ensemble: the system cannot exchange anything with the environment.

Canonical ensemble: the system can only exchange energy with the environment

Grand canonical ensemble: the system can only exchange energy and particles with the environment.

FIG. 5 Statistical Ensembles. The relations between system and the environment. The image is from wikipedia.org

Micro Canonical Ensemble

?????

Canonical Ensemble

?????

Grand Canonical Ensemble using grand partition function Z

The system is in contact with a reservoir; it is at thermal equilibrium with a reservoir and can only exchange energy and particles with the reservoir.

Again, we have
$$\frac{\text{Prob}(s_2)}{\text{Prob}(s_1)} = \frac{\Omega_{\text{rsv}}(s_2)}{\Omega_{\text{rsv}}(s_1)} = \frac{\exp\left(\frac{S_{\text{rsv}}(s_2)}{k}\right)}{\exp\left(\frac{S_{\text{rsv}}(s_1)}{k}\right)} = e^{\frac{1}{k}(S_{\text{rsv}}(s_2) - S_{\text{rsv}}(s_1))}.$$
Invoke $dS_{\text{rsv}} = \frac{1}{k}(dU_{\text{rsv}} + PdV_{\text{rsv}} - udN_{\text{rsv}}) = \frac{1}{k}(dU_{\text{rsv}} - udN_{\text{rsv}}) \text{ where we set } dV_{\text{rsv}}$

Invoke $dS_{rsv} = \frac{1}{T_{rsv}} (dU_{rsv} + P dV_{rsv} - \mu dN_{rsv}) = \frac{1}{T_{rsv}} (dU_{rsv} - \mu dN_{rsv})$ where we set $dV_{rsv} = 0$ only. This is Gibbs statistics.

Because of thermal equilibrium, $T_{\text{sys}} = T$. We have

$$S_{\text{rsv}}(s_2) - S_{\text{rsv}}(s_1) = \frac{1}{T} \left(E_{\text{rsv}}(s_2) - E_{\text{rsv}}(s_1) - \mu (N_{\text{rsv}}(s_2) - N_{\text{rsv}}(s_1)) \right)$$

To change from reservoir to system, use conservation of energy $E_{rsv}(s_2) + E(s_2) = E_{rsv}(s_1) + E(s_1)$ and of particles $N_{rsv}(s_2) + N(s_2) = N_{rsv}(s_1) + N(s_1)$, we have

$$S_{rsv}(s_2) - S_{rsv}(s_1) = \frac{1}{T} \left(E(s_1) - E(s_2) - \mu(N(s_1) - N(s_2)) \right)$$
$$= -\frac{1}{T} \left((E(s_2) - \mu N(s_2)) - (E(s_1) - \mu N(s_1)) \right)$$

$$= -\frac{1}{T}((E(s_2) - \mu N(s_2)) - (E(s_1) - \mu N(s_1)))$$
So, $\frac{\text{Prob}(s_2)}{\text{Prob}(s_1)} = e^{-\frac{1}{kT}((E(s_2) - \mu N(s_2)) - (E(s_1) - \mu N(s_1)))} = \frac{e^{-\frac{1}{kT}(E(s_2) - \mu N(s_2))}}{e^{-\frac{1}{kT}(E(s_1) - \mu N(s_1))}}$; the ratio of Prob(s) is the ratio of $e^{-\frac{E(s) - \mu N(s)}{kT}}$.

Gibbs factor is $e^{-\frac{E(s)-\mu N(s)}{kT}}$ for a microstate s of the system.

In general, for many different species of particles, Gibbs factor is $e^{-\frac{E(s)-\sum_{i}\mu_{i}N_{i}(s)}{kT}}$.

Gibbs probability
$$\operatorname{Prob}(s) = \frac{1}{\mathcal{Z}} e^{-\frac{E(s) - \mu N(s)}{kT}}$$
 where normalization gives
$$\mathcal{Z} = \sum_{s} e^{-\frac{E(s) - \mu N(s)}{kT}}, \text{ the grand partition function}$$

$$= \sum_{s} e^{-\frac{E(s_j) - \mu N(s_j)}{kT}}$$

$$= \sum_{j} e^{-\frac{(s_j|H|s_j) - \mu(s_j|\hat{N}|s_j)}{kT}}$$

$$= \sum_{j} e^{-\frac{H_{jj} - \mu \hat{N}_{jj}}{kT}}$$

Note that \hat{H} and \hat{N} , written in the basis of microstates of the system s_j , are diagonal matrices; so is the matrix $\hat{H} - \mu \hat{N}$. Hence, by

$$e^{-\frac{\hat{H}-\mu\hat{N}}{kT}} = \begin{pmatrix} e^{-\frac{\hat{H}_{11}-\mu\hat{N}_{11}}{kT}} \\ e^{-\frac{\hat{H}_{22}-\mu\hat{N}_{22}}{kT}} \\ & \ddots \end{pmatrix} = \begin{pmatrix} e^{-\frac{E(s_1)-\mu N(s_1)}{kT}} \\ e^{-\frac{E(s_2)-\mu N(s_2)}{kT}} \\ & \ddots \end{pmatrix}$$

we have grand partition function $\mathcal{Z} = \operatorname{tr}\left(e^{-\frac{\hat{H}-\mu\hat{N}}{kT}}\right)$.

Theorem For grand canonical ensemble (Gibbs statistics at equilibrium), T and V are fixed, then we have $\Phi = -kT \ln \mathcal{Z}$.

In above discussion, the letter s indicates the state of the *whole* system. The system is made up by several same-species particles, and each particle is in a single-particle state f_i which is the tensor product of the linear combination of spatial eigen-solutions ψ_0 , ψ_1 , ψ_2 , ... and the linear combination of spin solutions, of single-particle Schröedinger equation. So, the system state s can be written as an ordered pair of single-particle states f_i . For example, suppose a helium gas is composed of three helium atoms, then $s = (f_1, f_2, f_3)$. From this point of view, the energy E(s) is just the sum of the energy of each single-particle state if each is stationary, but N(s) is hard to tell due to exchanging with reservoir. However, we have the following logic.

A specific single-particle state f_i with energy ε_i can be occupied by 0, 1, 2, ..., or more same-species particles; so, the grand partition function of f_i is $\sum_{n=0}^{\text{all}} e^{-\frac{n(\varepsilon_i - \mu)}{kT}}$. Hence, the total grand partition function (multiplicity of the system) is their product $\prod_i \sum_{n=0}^{\text{all}} e^{-\frac{n(\varepsilon_i - \mu)}{kT}}$.

Let E and N be the energy and particle's number of the system state s, and let ε and n be the energy and particle's number of a single-particle state f, then the grand partition function of the system is

$$\mathcal{Z} = e^{-\frac{\Phi}{kT}} = \sum_{s} e^{-\frac{E(s) - \mu N(s)}{kT}} = \operatorname{tr}\left(e^{-\frac{\hat{H} - \mu \hat{N}}{kT}}\right) = \prod_{\varepsilon} \sum_{n=0}^{\text{all}} e^{-\frac{n(\varepsilon - \mu)}{kT}}$$
(6)

Grand Canonical Ensemble using grand free energy Φ

By the preceding theorem, we can rewrite the probability of the system in state s as $Prob(s) = e^{-\frac{E-\Phi-\mu N}{kT}}$, Gibbs probability.

7. Distribution functions Let the energy of a single-particle state be ε , then the probability of n such particles in this state is

Prob(*n* in state *s*) =
$$\frac{1}{\mathcal{Z}}e^{-\frac{n\varepsilon-\mu n}{kT}} = \frac{1}{\mathcal{Z}}e^{-\frac{n(\varepsilon-\mu)}{kT}}$$

Fermi-Dirac Distribution If n particles are n fermions, then n = 0 or 1, then

$$\mathcal{Z} = e^0 + e^{-\frac{\varepsilon - \mu}{kT}} = 1 + e^{-\frac{\varepsilon - \mu}{kT}}$$

$$\langle n \rangle = \sum_{n=0}^{1} n \operatorname{Prob}(n \text{ in state } s) = 0 + 1 \cdot \operatorname{Prob}(1 \text{ in state } s) = 0 + \frac{1}{1 + e^{-\frac{\varepsilon - \mu}{kT}}} e^{-\frac{\varepsilon - \mu}{kT}} = \frac{1}{e^{\frac{\varepsilon - \mu}{kT}} + 1}$$

Fermi-Dirac Distribution

Average number of fermions in a single-particle state (energy ε) is $\langle n \rangle_{\rm FD} = \frac{1}{e^{\frac{\varepsilon - \mu}{kT}} + 1}$.

Bose-Einstein Distribution If n particles are n bosons, then n can be any non-negative integers.

$$\mathcal{Z} = 1 + e^{-\frac{\varepsilon - \mu}{kT}} + e^{-\frac{2(\varepsilon - \mu)}{kT}} + \dots = \sum_{n=0}^{\infty} e^{-nx} = \frac{1}{1 - e^{-x}} \text{ where } x = \frac{\varepsilon - \mu}{kT}$$

$$\langle n \rangle = \sum_{n=0}^{\infty} n \frac{1}{\mathcal{Z}} e^{-nx} = -\frac{1}{\mathcal{Z}} \sum_{n=0}^{\infty} (-n) e^{-nx} = -\frac{1}{\mathcal{Z}} \sum_{n=0}^{\infty} \frac{\partial}{\partial x} (e^{-nx}) = -\frac{1}{\mathcal{Z}} \frac{\partial}{\partial x} \left(\sum_{n=0}^{\infty} e^{-nx} \right) \text{ since the series converges}$$

$$= -\frac{1}{\mathcal{Z}} \frac{\partial \mathcal{Z}}{\partial x} = \text{(plug in } \mathcal{Z} \text{ and do some basic calculations)} = \frac{1}{e^x - 1}$$

Bose-Einstein Distribution

Average number of bosons in a single-particle state (energy ε) is $\langle n \rangle_{\rm BE} = \frac{1}{e^{\frac{\varepsilon - \mu}{kT}} - 1}$.

Boltzmann Distribution Boltzmann statistics tells us that the probability of a particle being in the state (energy ε) is $\frac{1}{Z_{\text{single}}}e^{-\frac{\varepsilon}{kT}}$. So if we have N such particles (a general speaking, so we will not specify whether they are a kind of fermion or a kind of boson), then the average number of particles in this state is

$$N\left(\frac{1}{Z_{\text{single}}}e^{-\frac{\varepsilon}{kT}}\right) \stackrel{\mu=-kT \ln \frac{Z_{\text{single}}}{N}}{=} e^{\frac{\mu}{kT}}e^{-\frac{\varepsilon}{kT}} = e^{-\frac{\varepsilon-\mu}{kT}}$$

Boltzmann Distribution

Average number of particles in a single-particle state (energy ε) is $\langle n \rangle_{\text{Boltzmann}} = \frac{1}{\rho^{\frac{\varepsilon - \mu}{kT}}}$.