MDA

For c- classes problem, we consider the projection for a d-dimensional space to (c-1)dimensional space assuming $d \geq c$

$$\therefore \mathbf{S_w} = \sum_{i=1}^{3} \mathbf{S_i} \tag{43}$$

$$\mathbf{S_i} = \sum_{\vec{x} \in D_i} (\vec{x} - \vec{m_i})(\vec{x} - \vec{m_i})^T \tag{44}$$

$$\vec{m_i} = \frac{1}{n_i} \sum_{x \in D_i} \vec{x} \tag{45}$$

The generalization S_B is not as direct. Define a total mean vector \vec{m} and a total scatter matrix S_T by

matrix
$$S_T$$
 by
$$\vec{m} = \frac{1}{n} \sum_{\vec{x}} \vec{x}$$
 (46)
$$= \frac{1}{n} \sum_{i=1}^{c} n_i \vec{m_i}$$
 what is this n and n_i ? (47)

$$n \stackrel{\angle}{=} \frac{1}{\vec{x}} \sum_{r=1}^{c} n_{r}$$

$$\mathbf{S_T} = \sum_{x} (x - m)(x - m)^T \tag{48}$$

$$=\mathbf{S_w}+\mathbf{S_B}$$

(51)

(53)

If one had to guess, n_i is the number of sample in each D_i class.

The
$$(c-1)$$
 discriminant function are given by
$$y_i = \vec{w_i}^T \vec{x}, i = 1, ..., c-1$$

$$\Rightarrow y = \vec{w}^T \vec{x}.$$
(52)

where y is vector with y_i components and w is a matrix [dx(c-1)] with w_i are the column.