Lec 15: The Normal Distribution, continued

Instructors: Tomer Altman

October 1, 2025

Learning objectives for today

- Calculate the quantile for a specified cumulative probability for any specified Normal distribution using R
- ► Learn about Q-Q plots and how to use them to assess whether a variable is Normally distributed

Finding Normal percentiles

Recap: Last class, we have calculated the *probability* using pnorm() given specific values for x.

Sometimes we want to go in the opposite direction: We might be given the probability within some range and tasked with finding the corresponding x-values.

Finding Normal percentiles

Example: The hatching weights of commercial chickens can be modeled accurately using a Normal distribution with mean $\mu =$ 45 grams and standard deviation $\sigma = 4$ grams. What is the third quartile of the distribution of hatching weights? That is, what is the value of xsuch that 75% of the probability is under the curve "to the left" of x?

Finding Normal percentiles using the qnorm() function

Example: The hatching weights of commercial chickens can be modeled accurately using a Normal distribution with mean $\mu=45$ grams and standard deviation $\sigma=4$ grams. What is the third quartile of the distribution of hatching weights?

$$qnorm(p = 0.75, mean = 45, sd = 4)$$

[1] 47.69796

Thus, 75% of the data is below 47.7 for this distribution.

Using the standard Normal table

- Before we had easy access to computers and software people would use printed out tables to compute probabilities
- ➤ We can ignore this section of the textbook because we will always have R to do the calculations for us

The Normal quantile plot (a.k.a. the Q-Q plot)

- ► The purpose of making a Q-Q plot is to examine whether a continuous variable follows a Normal distribution
- If you want to know whether a variable is Normally distributed you could examine its histogram to see if it is unimodal and symmetric. However, it is still sometimes hard to say if it is truly Normal.
- ► Think of the Q-Q plot as a magnifying lens for visualizing whether a curve is truly Normal

Are these data Normally distributed?

The data is unimodal and symmetric, but is its distribution Normal?

Basic idea of a Normal quantile plot

- 1. Arrange the observed data values from smallest to largest. Record what percentile of the data each value occupies. For example, the smallest observation in a set of 20 is at the 5% point, the second smallest is at the 10% point, and so on.
- 2. Do Normal distribution calculations to find z-scored at these same percentiles. For example, z=-1.645 is the 5% point of the standard Normal distribution, and z=-1.282 is the 10% point.
- 3. Plot each data point x against the corresponding z. If the data distribution is close to standard Normal, the plotted points will lie close to the 45-degree line x=z. If the data distribution is close to any normal distribution, the plots points will lie close to some straight line.

Any Normally distributed data set will produce a straight line on a Normal quantile plot, because the data distribution and the z distribution are both Normally distributed, the data and the z

Making a Q-Q Plot in R

Looking at this plot, does the pattern in the data lie on a straight line?

```
ggplot(example_data, aes(sample y) not Normally stat_qq() + distributed.
```


It does in the middle values of the data, but not at the tails. This means that the original variable is not Normally

Code template

```
#students, make sure to remove `eval=F` if you copy this co
ggplot(your_data, aes(sample = your_var)) +
   stat_qq() +
   stat_qq_line() +
   theme_minimal()
```

Another example

```
Recall the seed data:
                               head(seed data)
library(readr)
seed_data <- read_csv("./data/ch04_seed-data") x 3
                               ##
                                    species
                                                     seed_cour
## Rows: 19 Columns: 3
                               ##
                                    <chr>>
                                                           <db]
## -- Column specification
                               ## 1 Paper birch
                                                          2723
## Delimiter: ","
                               ## 2 Yellow birch
                                                           1215
## chr (1): species
                               ## 3 White spruce
                                                            720
## dbl (2): seed_count, seed_weightEngelman spruce
                                                            367
##
                               ## 5 Red spruce
                                                            505
## i Use `spec()` to retrieve ##Pe6 fp4flicofree specification
## i Specify the column types gristration col_types = FALS
                               seed_count Normal?
```

Another example

Check out its distribution. It definitely does not look normal:

```
ggplot(seed_data, aes(x = seed
geom_histogram(col = "white"
theme_minimal(base_size = 18
## `stat_bin()` using `bins =
```

Another example

And look at its Q-Q plot. Does the data appear to follow a Normal distribution? These data definitely do not follow a straight line - there is a curved pattern shown in the

```
ggplot(seed_data, aes(sample = ploted_count)) +
  stat_qq() + stat_qq_line() +
  theme_minimal(base_size = 15)
```

Another example (logged)

You might remember that we took the log of seed_count before we used it in regression.

Another example (logged)

How does the Q-Q plot look for the logged variable?

Once we log transformed the data, the values now follow a

```
ggplot(seed_data, aes(sample = Normal distribution))) +
  stat_qq() + stat_qq_line() +
  theme_minimal(base_size = 15) + scale_y_continuous(limits
```


Normal quantile plot when data is skewed right

Normal quantile plot when data is skewed left

Normal quantile plot when data has "wide tails"

Normal quantile plot when data is bimodal

Reference

- Read this blog post by Sean Kross (up to and including the Takeaways)
- ▶ You can read this if you want, but you don't need to

Recap of functions used

- p qnorm(p = 0.75, mean = 0, sd = 1) to calculate the x-value for which some percent of the data lies below it
- stat_qq() and stat_qq_line() to make a Q-Q plot. Notice also that aes(sample = var1) is needed