データ構造とアルゴリズム 第11週

掛下 哲郎

kake@is.saga-u.ac.jp

前回のまとめ

グラフアルゴリズム

- グラフの定義
 - □無向グラフ、有向グラフ、重み付きグラフ
- グラフの表現
 - □ 隣接行列, 隣接リスト
- グラフの探索
 - □幅優先探索(BFS), 深さ優先探索(DFS)
- 探索の応用
 - 探索木
 - □ 前置記法, 中置記法, 後置記法

深さ優先探索 vs 幅優先探索

• 幅優先探索

- □ 完全性:解が存在するならば,必ず発見できる.
- □ 最適性:長さが最も短い経路を返す
- 規模の大きな探索においては効率が悪い

• 深さ優先探索

- □ 完全性や最適性は保証されない
- □ 平均的なケースでは、幅優先探索と比較して記憶領域の使用量が少ない
- □ 再帰アルゴリズムにより、簡単に記述できる
- □ 後置記法を求める場合にも使用

講義スケジュール

週	講義計画			
1-2	導入			
3	探索問題			
4-5	基本的なデータ構造			
6	動的探索問題とデータ構造			
7	アルゴリズム演習(第1回)			
8-9	データの整列			
10-11	グラフアルゴリズム			
12	文字列照合のアルゴリズム			
13	アルゴリズム演習(第2回)			
14	アルゴリズムの設計手法			
15	計算困難な問題への対応			

データ構造

アルゴリズム

今日の内容

- 探索問題(続き)
 - Minimax法
- 最短経路問題(shortest path problem)
- ・ ネットワークフロー(network flow)

コンピュータ対戦型リバーシ

局面の評価方法

同じ局面でも、評価方法を変えると、評価値は大きく変化

30	-12	0	-1	-1	0	-12	30
-12	-15	-3	-3	-3	-3	-15	-12
0	-3	0	-1	-1	0	-3	1
-1	-3	-1	-1	-1	-1	-3	-1
-1	-3	-1	-1	-1	-1	-3	-1
0	-3	0	-1	-1	0	-3	1
-12	-15	-3	-3	-3	-3	-15	-12
30	-12	0	-1	-1	0	-12	30

Minimax法による最善手の探索

- 4. 自分にとって一番有利な手を採用!
- ⇒ 評価値が最大の手
- 3. 相手は自分にとって一番不利な手を採用
- ⇒ 評価値が最小の手
- 2. 自分にとって一番有利な手を採用
- ⇒ 評価値が最大の手
- 1. 3手先の評価値を求める

ミニマックス法(minimax)

- 自分の手番の時は最大値を採用
- 相手の手番の時は最小値を採用

コンピュータ の読み筋

最短経路問題

• 最もコスト(運賃, 時間, 距離など)の少ないルートを 調べる

重み付き有向グラフで考える

Q1: 都市Aから都市Eへの, 最短経路は?

グラフが複雑になると...

- 目で見ても分からない
- 全てのルートを調べると、非常に時間がかかる

Dijkstraの方法

最短経路問題

- 入力: 重み付き有向グラフ G=(V, E, c)
 - □ 頂点数n, 辺数m
- ・出力:2つの頂点間の最小距離
- いくつかのバリエーション
 - □「ある1頂点」から「他の1頂点」への距離
 - □「ある1頂点」から「他の全ての頂点」への距離
 - □「全ての頂点」から「全ての頂点」への距離

ダイクストラ法

始点から、調べる範囲を ジワジワと広げながら距 離を求めていく

ダイクストラの最短経路アルゴリズム

- 1. Gの各頂点vについて、vが保持する距離を∞とする.
- 2. 始点が保持する距離を0とする.
- 3. チェック済みの頂点集合Xを空とする.
- 4. すべての頂点がチェック済みになるまで、以下の 処理を繰り返す.
 - 4-1 チェック済みでない頂点の中で、保持する距離が最小の頂点をuとする.
 - 4-2 頂点uをチェック済みとし、Xに追加する.
 - 4-3 頂点uから未チェック頂点vに向かう各辺について, u が保持する距離+辺の重みが, vが保持する距離より も小さいならば, vが保持する距離を更新する.

初期化:ステップ1~3 ∞ ∞ 9 4 ∞ ∞

ループ1回目:Aをチェック済みとする

ループ2回目:Bをチェック済みとする

ループ3回目: Dをチェック済みとする

ループ4回目: Cをチェック済みとする

ループ5回目: Eをチェック済みとする

整理

- ダイクストラの最短経路アルゴリズム
 - □命題
 - チェック済み頂点は、始点からの最短距離を保持する。
 - □ 各頂点への最短経路も同時に計算できる.
 - 計算時間
 - ・ステップ1, 3:O(n)
 - ・ステップ2:0(1)
 - ・ステップ4:繰り返し回数 n回
 - ・ステップ4-1: 総実行回数 O(n²), O(m log n)
 - ・ステップ4-3: 総実行回数 O(m)
 - □ 総計算時間 O(n²+m) または O(m log n)

隣接リストを用いた場合

ヒープを用いた場合

用いるデータ 構造に依存

ネットワークフロー

- ネットワーク上の流れ(flow)をモデル化
 - □ 水道網における実際の水の流れ

インターネットにおけるデータの流れ

□道路網における交通の流れ

- 最大流問題: Maximum Flow Problem
 - s から t まで流すことができる流量の最大値と、その最大の流量を与える流し方 f を求める
 - s: ソース, t: シンク

ネットワークフロー

フロー fが満たす性質

- f(u, v): 辺(u,v)に流す水の量(フロー)
- ・ 歪(ひずみ)対称性: 任意の頂点u,vに対し、 f(u,v) = - f(v,u)
 - ※ 逆方向のフローはマイナスとする
- フロー保存則: s,t以外の任意の頂点uに対し、
 Σ_{v∈ V} f(u,v) = 0
 - ※ uに流れ込む量 = uから出る量
- 容量制約: 任意の頂点u,vに対し、 f(u,v) ≤ c(u,v)
 - ※ 各辺の容量c(u,v)を超えない

カット(cut)

• s,t-カット: sとtとを分離する線

カットの容量

カット上をs側から t側に流せる流量 の最大値

- (1) 16+10 = 26
- **2** 12+13 = 25
- 310+8+7+11=36
- 4 11+13 = 24

最大流量-最小カット定理

• 任意のカットC、任意のフローfに対し、

fの流量 ≦ カットCの容量

が成立。また、等号が成り立つようなカットとフローが存在する。

「最大流量 = カットの容量の最小値」がいえる

最大流アルゴリズム

- 適当なフローからスタートし、「追加できる」流量を順次追加していくやり方
- 以下を計算しながら、フローfを順次更新
 - 残余容量 r(u,v) = c(u,v) f(u,v)
 現時点でのフローと、容量との差。この分だけまだ余裕がある。
 - □ 残余グラフ: 残余容量を重みにしたグラフ
 - □ 拡張可能経路:残余グラフにおけるsからtへの経路

最大流アルゴリズム

- 1. fをゼロフローとする.
- 2. fに対する残余グラフをG_fとする.
- 3. G_fに拡張可能経路がある限り, 以下の処理を繰り返す.
 - 3-1 G_fにおいて拡張可能経路pを求める.
 - 3-2 p上の辺の最小残余容量の分だけフローfを増やす.
 - 3-3 残余グラフG_fを計算し直す.
- 4. fを最大フローとして出力する.

ネットワークフロー問題の解

残余グラフと拡張可能経路

フローf(流量24)

フローf(流量24)

まとめ

- ダイクストラ法による最短経路アルゴリズム
 - □ チェック済み頂点は、始点からの最短距離を保持する.
 - □ 各頂点への最短経路も同時に計算できる.
 - □ 計算時間 O(n²+m) または O(m log n)
 - ·頂点数n, 辺数m

用いるデータ構造に依存

- ネットワークフローの計算時間
 - □ ネットワークの容量が整数値の場合: O(m×f_{max})
 - ・ネットワークの容量が整数値の場合
 - ・ 最大流の値 f_{max}
 - □ 一般の場合: O(n³), O(nm²)

確認テスト(第11回)

- Minimax法
- ダイクストラの最短経路問題
- ・ネットワークフロー