

HSR Hochschule für Technik Rapperswil

Name:

Computer Engineering 2

Quick-Reference / Summary

Version 2.4

7-Bit ASCII Table

Dec	Hex	Char	Dec	Hex	Char	Dec	Hex	Char	Dec	Hex	Char
0	00	Null	32	20	Space	64	40	0	96	60	`
1	01	Start of heading	33	21	!	65	41	A	97	61	а
2	02	Start of text	34	22	"	66	42	В	98	62	b
3	03	End of text	35	23	#	67	43	С	99	63	С
4	04	End of transmit	36	24	\$	68	44	D	100	64	d
5	05	Enquiry	37	25	*	69	45	E	101	65	e
6	06	Acknowledge	38	26	٤	70	46	F	102	66	f
7	07	Audible bell	39	27		71	47	G	103	67	g
8	08	Backspace	40	28	(72	48	H	104	68	h
9	09	Horizontal tab	41	29)	73	49	I	105	69	i
10	OA	Line feed	42	2A	*	74	4A	J	106	6A	Ċ
11	OB	Vertical tab	43	2B	+	75	4B	K	107	6B	k
12	OC	Form feed	44	2C	,	76	4C	L	108	6C	1
13	OD	Carriage return	45	2 D	-	77	4D	M	109	6D	m
14	OE	Shift out	46	2 E		78	4E	N	110	6E	n
15	OF	Shift in	47	2 F	/	79	4F	0	111	6F	0
16	10	Data link escape	48	30	0	80	50	P	112	70	p
17	11	Device control 1	49	31	1	81	51	Q	113	71	q
18	12	Device control 2	50	32	2	82	52	R	114	72	r
19	13	Device control 3	51	33	3	83	53	s	115	73	s
20	14	Device control 4	52	34	4	84	54	T	116	74	t
21	15	Neg. acknowledge	53	35	5	85	55	U	117	75	u
22	16	Synchronous idle	54	36	6	86	56	v	118	76	v
23	17	End trans, block	55	37	7	87	57	W	119	77	w
24	18	Cancel	56	38	8	88	58	x	120	78	×
25	19	End of medium	57	39	9	89	59	Y	121	79	У
26	1A	Substitution	58	ЗА	:	90	5A	Z	122	7A	z
27	1B	Escape	59	3B	;	91	5B	[123	7B	{
28	1C	File separator	60	3 C	<	92	5C	١	124	7C	1
29	1D	Group separator	61	ЗD	-	93	5D]	125	7D	}
30	1E	Record separator	62	3 E	>	94	5E	^	126	7E	~
31	1F	Unit separator	63	3 F	?	95	5F		127	7F	

Cortex-M3 Register-Set

Cortex-M3 Program Status Register

Ν	Negative
Z	Zero
C	Carry/borrow
V	Overflow
Q	Sticky saturation fl

ICI/IT Interrupt-Continuable Instruction (ICI) bits, IF-THEN instruction status bit
Thumb state, always 1; trying to clear this bit will cause a fault exception

Exception number Indicates which exception the processor is handling

Document-Info:	CE2 Quick-Reference V2_4.docx						
NumPages	NumWords	NumChars	SaveDate	PrintDate			
12	1,583	7,787	11.08.20	11.08.20			

Cortex-M3

Operation-Modes und Stack-Pointer Auswahl

Cortex-M3 Exception-Vector-Table

Exception Type	CMSIS Interrupt Number	Address Offset	Vectors	Je tiefer, deste höher die Priorität SysTick höher priorisiert: SysTick = 0, GPIO = 1
18 - 255	2 - 239	0x48 - 0x3FF	IRQ #2 - #239	
17	1	0x44	IRQ#1	sysTick_Handler
16	0	0x40	IRQ #0	y ← Button pressed by →
15	-1	0x3C	SysTick	portD_ISR
14	-2	0x38	PendSV	Background Background
NA	NA	0x34	Reserved	Gleich Priorisiert: SysTick = 1, GPIO = 1
12	-4	0x30	Debug Monitor	L L lost L delayed L L delayed
11	-5	0x2C	SVC	sysTick_Handler SysTick_Handler
NA	NA	0x28	Reserved	
NA	NA	0x24	Reserved	Button pressed
NA	NA	0x20	Reserved	portD_ISR
NA	NA	0x1C	Reserved	Background
6	-10	0x18	Usage fault	Gleiche Priorität. unterschiedliche subPriorität: SysTick=0; GPIO=1
4	-11	0x14	Bus Fault	Exact gleicher Zeitpunkt II delayed / delayed
4	-12	0x10	MemManage Fault	sysTick Handler
3	-13	0x0C	HardFault	, <u> </u>
2	-14	0x08	NMI	2 √ Button pressed——
1	NA	0x04	Reset	portD_ISR
NA	NA	0x00	Initial value of MSP	Background

Cortex-M3 Memory Organization und Reset Sequence

Cortex-M3 Memory-Map

Cortex-M3 Bit-Banding

BitBandAliasAddress = BitBandAliasBase + (MemoryAddress - BitBandRegionBase) * 32 + 4 * BitNumber

BBAA = BBAB + (MA - BBRB) * 32 + 4 * BNr

Legende:

BBAA = BitBandAliasAddress = Word-Adresse des Bit-Band Alias

BBAB = BitBandAliasBase = Basisadresse der Bit-Band Alias (Speicherbereich)

MA = MemoryAddress

= Memory-Adresse innerhalb der Bit-Band Region

BBRB = BitBandRegionBase

= Basisadresse der Bit-Band Region (Speicherbereich)

BNr = BitNumber

= Bit-Nummer in der Dateneinheit an der MemoryAddress

Assembler-Syntax

Keil vs. Code Composer Studio/GNU

One of the difficulties in translating Keil to CCS is that the Keil syntax of LDR R#, =Label is not supported in CCS. So, to access variables and I/O ports we need to define a 32-bit pointer-constant using the .field pseudo-op. The actual machine code created by these two assemblers is virtually identical. The only difference is where in ROM the pointer-constant resides. In CCS you explicitly position the pointer-constants, and in Keil, the assembly automatically positions them.

;Keil				; CCS		
	THUMB				.thumb	;1)
	AREA	DATA, AI	LIGN=2		.data	;2)
					.align 4	;3)
	EXPORT	M			.global M	;4)
M	SPACE	4		м	.field 32	;5)
					.align 2	;6)
ARE	A .text	CODE, RI	EADONLY, ALIGN=2		.text	;7)
		•		PtM	.field M,32	;8)
PORTA	EQU 0x4	00043FC		PORTA	.field 0x400043FC,32	;8)
BIT5	EQU 0x2	0		BIT5	.equ 0x20	;9)
	EXPORT	InputPA!	5		.global InputPA5	;10)
InputP	A5				.thumbfunc InputPA5	;11)
				Input	PA5: .asmfunc	;12)
	LDR RO,	=PORTA	;R0 = &PORTA		LDR RO, PORTA	;13)
	LDR R1,	[R0]	;R1 = PORTA		LDR R1, [R0]	
	AND R1,	R1,#BIT5	; Mask		AND R1,R1,#BIT5	
	LDR R2,	=M	; R2 = &M		LDR R2,PtM	;13)
	STR R1,	[R2]	M = PA5		STR R1, [R2]	
	BX LR				BX LR	
					.endasmfunc	;12)
	END				.end	;14)

This illustrates the order and syntax of pseudo-ops in assembly files.

- 1) Use Thumb assembly language
- 2) This is a data section (variables typically go in RAM)
- 3) Align on 32-bit boundary
- 4) Declare the variable **M** globally visible to other files including to C programs
- 5) Define an uninitialized 32-bit object and call it M
- 6) Align on 16-bit boundary
- 7) This is a text section, which is executable code and callable from C (in ROM)
- 8) .field defines 32-bit objects and initialize them as pointers to M and to Port A
- 9) .equ defines a numerical constant
- 10) Declare it globally visible to other files including to C programs
- 11) There is a thumb function with this name
- 12).asmfunc and .endasmfunc help with debugging, marking beginning and end
- 13) A pointer-constant is stored in ROM, and PC relative addressing is used
- 14) Marks the end of the file

Each compiler has its own syntax for handling inline assembly. The syntax for inline assembly in C is illustrated below. Both compilers follow the AAPCS convention for passing parameters and saving registers.

This illustrates inline assembly in C programs.

The CCS code requires the quotation marks with a new line character at the end of each assembly line. This is a clever hack around to enable multiple lines to be written as one line. In essence Keil allows straight inline assembly, whereas in CCS you have to specify it as a string that will then be inserted. If you have to use assembly it is better to place it in a separate file, because inline assembly can be difficult to debug and makes the code less portable.

Cortex-M3 Instruction Set Details

$\begin{array}{llllllllllllllllllllllllllllllllllll$	Notes]←imm16 re inverted first		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
SBC $\{R_d, \}R_n, \langle op \rangle$ $R_d \leftarrow R_n - \langle op \rangle + C - 1$ NZCV	carry OR borrow		
	carry OR borrow		
RSB $\{R_d, \}R_n, \langle op \rangle$ $R_d \leftarrow \langle op \rangle - R_n$ NZCV	carry OR borrow		
Multiply / Divide			
MUL $\{R_d, R_m, R_m\}$ R _d $\leftarrow R_n * R_m$ NZ 32-bit product; C \leftarrow undefined			
$MLA \qquad R_d \cdot R_n \cdot R_m \cdot R_n \qquad \qquad R_d \leftarrow (R_n * R_m) + R_n \qquad \qquad -$			
MLS R_d , R_m , R_a $R_d \leftarrow R_a - (R_n * R_m)$ 32-bit product			
IIMIII I Rajo, Rahi, Rn. Rm RahiRajo ← Ro*Rm -			
Unsigned 64-bit product $R_{dlo}, R_{dhi}, R_{n}, R_{m}$ $R_{dhi}, R_{dhi}, R_{dhi}$			
SMULL Ralo, Rahi, Rn. Rn. Rn. RahiRalo ← Rn*Rm -			
SMLAL R _{dlo} , R _{dhi} , R _n , R _m R _{dhi} R _{dlo} ← R _{dhi} R _{dlo} + R _n *R _m - Signed 64-bit product			
UDIV $\{R_d, \}R_n, R_m$ $R_d \leftarrow R_n/R_m$ - Unsigned 32-bit quotient; no re	emainder		
SDIV $\{R_d, R_n, R_m\}$ $R_d \leftarrow R_n/R_m$ - Signed 32-bit quotient; no rem			
Compare / Test			
CMP R _n , <op> R_n - <op> * C=1: carry OR borrow Always u</op></op>	pdates: NZCV		
CMN R_n , $\langle op \rangle$ $R_n + \langle op \rangle$ * C=1: carry OR borrow Always u			
	pdates: NZC		
TEQ R_n , $< op> * Always u$	pdates: NZC		
Bitwise Logic			
AND $\{R_d, \}R_n, \langle op \rangle$ $R_d \leftarrow R_n \& \langle op \rangle$ NZC			
ORR $\{R_d,\}R_n,\langle op \rangle$ $R_d \leftarrow R_n \mid \langle op \rangle$ NZC			
EOR $\{R_d, \}R_n, \langle op \rangle$ $R_d \leftarrow R_n \land \langle op \rangle$ NZC $\langle op 2 \rangle$			
BIC $\{R_d, \}R_n, \langle op \rangle$ $R_d \leftarrow R_n \& \sim \langle op \rangle$ NZC			
ORN $\{R_d, \}R_n, \langle op \rangle$ $R_d \leftarrow R_n \mid \sim \langle op \rangle$ NZC			
Shift / Rotate			
ASR R_d , R_m , $< op> R_d \leftarrow R_m >> < op> NZC Sign external sign ex$			
LSL R_d , R_m , $\langle op \rangle$ $R_d \leftarrow R_m << \langle op \rangle$ NZC Rs or $\# n$			
LSR R_d , R_m , $\langle op \rangle$ $R_d \leftarrow R_m \gg \langle op \rangle$ NZC			
ROR R_d , R_m , Cop $R_d \leftarrow R_m >> Cop>$ NZC Right rot			
RRX R_d , R_m $R_d \leftarrow R_m >> 1$ NZC Right rotate, with extend through	igh carry		
Bits / Bytes / Halfword / Words			
CLZ R_d , R_m R_d \leftarrow CountZeroes(R_m) - Count leading zeroes (0-32)			
RBIT R_d , R_m $R_d \leftarrow RevBits(R_m)$ - Reverses bit order in word			
	Reverses byte order in word		
REV16 R _d , R _m R _d ← RevHalfWords(R _m) - Reverses byte order in each ha			
REVSH R_d , R_m $R_d \leftarrow RevLoHalf(R_m)$ - Reverses byte order lower half	wora, sign extend		
SXTB $\{R_d, R_m\}$, ROR #num $\}$ $R_d \leftarrow SignedByte(R_m)$ - Sign extermination $-$	ends to word		
SXTH $\{R_d, \}R_m\{, ROR \#num\}$ $R_d \leftarrow SignedHalf(R_m)$ - bits to rotate			
UXTB $\{R_d, \}R_m\{, ROR \#num\}$ $R_d \leftarrow UnsignedByte(R_m)$ - $\#num=<0 8 16 24>$	ends to word		
UXTH $\{R_d, \}R_m \{, ROR \#num\}$ $R_d \leftarrow UnsignedHalf(R_m)$ -			

Hinweis: Dies ist eine nicht vollständige Zusammenstellung und zeigt lediglich die am häufigsten verwendeten Thumb-2 Instruktionen.

Di+fiold		Oneration	(C)	(0.0)	Notes
Bitfield BFC	D #1ch #uidth	Operation Deskits 4-0	{S}	<op> Bit field clear</op>	Notes
	R _d ,#lsb,#width	$R_d < bits > \leftarrow 0$	-		
	R _d ,R _n ,#lsb,#width	$R_d < bits > \leftarrow R_n < lsb's >$	-	Bit field insert	
	R _d ,R _n ,#1sb,#width	$R_d \leftarrow R_n < bits >$	-	Signed bit field e	
	R _d ,R _n ,#lsb,#width	$R_d \leftarrow R_n < bits >$	-	Unsigned bit fiel	d extract
Branch ,		relative Addressing		1	I
В	label PC←la		-	PC rel.offs.	unconditional branch
B{cond	,	then PC←label	-	range=+/-16MB	{cond} is an optional condition
BL{con		PC←label; LR←retAdr	-		Subroutine call
BX{con	-	PC←R _m	-		Subroutine return when R _m =LR
BLX{co	•	PC←R _m ;LR←retAdr	-	•	Subroutine call indirect via R _m
CBZ	•): PC←label	-	PC rel.offs	Compare and Branch on Zero
CBNZ): PC←label	-	_	Comp. and Branch on Non-Zero
ITC ₁ C ₂ C		is one of T, E, or empty	-	Controls 1-4 inst	ructions in "IT block"
Literal F		relative Addressing R _t		T	
ADR	R _d ,label	R _d ←label	-	label = PC relativ	ve offset =+/-4095
LDR	R _t ,label	R _t ←mem ₃₂ [label]	-	-	
LDRB	R _t ,label	R _t ←mem ₈ [label]	-	PC rel.offs.	Zero fills bits 318 of R _t
LDRH	R _t ,label	R _t ←mem ₁₆ [label]	-	range=+/-4095	Zero fills bits 3116 of R _t
LDRSB	R _t ,label	R _t ←mem ₈ [label]	-	1411gc 1/ 1055	Sign extends in bits 318 of R _t
LDRSH	R _t ,label	R _t ←mem ₁₆ [label]	-		Sign extends in bits 3116 of R_t
LDRD	R _t ,R _{t2} ,label	R _{t2} ,R _t ←mem ₆₄ [label]	-	range=+/-1020	
	ore Memory Men	nory Access R _d			,
LDR	R _d , <mem></mem>	$R_d \leftarrow mem_{32}[EA]$	-		
LDRB	R _d , <mem></mem>	R _d ←mem ₈ [EA]	-		Zero fills bits 318 of R _d
LDRH	R _d , <mem></mem>	R _d ←mem ₁₆ [EA]	-		Zero fills bits 3116 of R _d
LDRSB	R _d , <mem></mem>	R _d ←mem ₈ [EA]	-	<mem></mem>	Sign extends in bits 318 of R _d
LDRSH	R _d , <mem></mem>	$R_d \leftarrow mem_{16}[EA]$	-	see	Sign extends in bits 3116 of R _d
STR	R _d , <mem></mem>	$R_d \rightarrow mem_{32}[EA]$	-	Memory Access	
STRB	R _d , <mem></mem>	R _d →mem ₈ [EA]	-	Modes	
STRH	R _d , <mem></mem>	$R_d \rightarrow mem_{16}[EA]$	-		
LDRD	R_d , R_{d2} , <mem></mem>	R_{d2} , R_d ← mem ₆₄ [EA]	-		may not use R _m in <mem></mem>
STRD	R_d , R_{d2} , <mem></mem>	R_{d2} , $R_d \rightarrow mem_{64}[EA]$	-		may not use R _m in <mem></mem>
Stack, N	Aultiple Load/Store				
POP	{reglist}	regs←mem[SP++]	-	reglist: not SP; m	nay include one of PC or LR
PUSH	{reglist}	regs→mem[SP]	-	reglist: may not	include SP or PC
LDM{IA	DB} R _n {!},{reglist	} regs←mem[R _n]; (Notes)	-	optional! will up	odate R _n =R _n +/-(4*#regs)
STM{IA	DB} R _n {!},{reglist	\rightarrow regs \rightarrow mem[R _n]; (Notes)	-	IA = increment a	fter, DB = decrement before
Special	Functions				
CPSIE	{I F}	PRIMASK or FAULTMASK ←0	ı	Enable interrupt	s or faults
CPSID	{I F}	PRIMASK or FAULTMASK←1	-	Disable interr	upts or faults
MRS	R _d ,spec_reg	R _d ←spec_reg	-	Read special reg	ister
MSR	spec_reg,R _m	spec_reg←R _m	NZCV	Write special reg	gister
					· · · · · · · · · · · · · · · · · · ·

$\langle op2 \rangle$ **Examples of flexible operand** $\langle op2 \rangle$ **creating the 32-bit number.** (e.g. Rd = Rn+op2)

ADD Rd, Rn, Rm	;op2 = Rm		Rm is signed or unsigned
ADD Rd, Rn, Rm, ASR #n	;op2 = Rm>>n	Arithmetic Shift Right	Rm is signed
ADD Rd, Rn, Rm, LSL #n	;op2 = Rm< <n< td=""><td>Logical Shift Left</td><td>Rm is signed or unsigned</td></n<>	Logical Shift Left	Rm is signed or unsigned
ADD Rd, Rn, Rm, LSR #n	;op2 = Rm>>n	Logical Shift Right	Rm is unsigned
ADD Rd, Rn, Rm, ROR #n	;op2 = Rm>>n	Rotate Right	Rm is signed or unsigned
ADD Rd, Rn, Rm, LSR #n	;op2 = Rm>>n	Rotate Right through Carry	Rm is signed or unsigned
ADD Rd, Rn, #constant	<pre>;op2 = constant</pre>	where X and Y are hex	adecimal digits: constant produced by shifting
		an 8-bit unsigned value	e left by any number of bits in the form:
		0x00XY00XY or	0xXY00XY00 or 0xXYXYXYXY

Symbols:

Symbols	Meaning
$R_a \; R_d \; R_{d2} \; R_m \; R_n \; R_t \; R_{t2}$	represent 32-bit registers
{R _d ,}	if R _d is present R _d is destination, otherwise R _n
<op2></op2>	the value generated by the flexible second operand op2
{S}	if S is present, instruction will set condition codes
{cond}	optional logical condition, condition code suffix
#imm12	any value in the range: 04095
#imm16	any value in the range: 065535
#offset	immediate: -255+4095; pre/post-indexed: +/-255; LDRD/STRD: +/-1020
#n	any value in the range: 0 31
value	any 32-bit value: signed, unsigned, or address
label	any address within the ROM of the microcontroller; offset range relative to PC
	for Branch/Call: +/-16MB; for ADR/LDR: +/-4095; for LDRD: +/-1020
R _m {,shift}	specifies an optional shift on R _m
R _n {,#offset}	specifies an optional offset to R _n
EA	Effective Address
{reglist}	List of registers, sequence is not relevant
.N or .W	Specify the use of 16-bit (narrow) instruction or 32-bit (wide) instruction.

{cond} Conditional Execution, Condition Code Suffix

Any one of these may be appended to any instruction mnemonic when used inside an If-Then-Else (IT) block. (e.g., IT **NE** followed by ADD**NE** would add only if $Z \neq 0$.) Exceptions: CBZ, CBNZ, CMP, CMN, NEG, TST, or TEQ

Condition Code	Meaning	Flags (APSR) / Requirements unsi	igned	signed
EQ	Equal	Z = 1	==	X ==
NE	Not equal	Z=0 X	!=	X !=
CS or HS	Carry set, Unsigned ≥ carry OR borrow	C = 1 borrow X	>=	
CC or LO	Carry clear, Unsigned < carry OR borrow	C=0 carry X	<	
MI	Min us/negative	N = 1		Χ -
PL	Plus/positive or zero (non-negative)	N = 0		X +
VS	Overflow	V = 1		Χ
VC	No overflow	V=0		Х
HI	Unsigned > ("Higher")	$C = 1 \&\& Z = 0$ \overline{carry} X	>	
LS	Unsigned ≤ ("Lower or Same")	C = 0 Z=1 X	<=	
GE	Signed ≥ ("Greater than or Equal")	N = V		X >=
LT	Signed < ("Less Than")	$N \neq V$		Χ <
GT	Signed > ("Greater Than")	Z = 0 && N = V		X >
LE	Signed ≤ ("Less than or Equal")	Z = 1 N ≠ V		X <=
AL	Always (unconditional)	only used with IT instruction		

Rm{,shift} Shift Codes

Any of these may be applied to the register option of <op2> in Move/Add/Subtract, Compare, and Bitwise.

shift	Meaning	Notes
LSL #n	Logical shift left by n bits	Zero fills; 0 ≤ n ≤ 31
LSR #n	Logical shift right by n bits	Zero fills; 1 ≤ n ≤ 32
ASR #n	Arithmetic shift right by n bits	Sign extends; 1 ≤ n ≤ 32
ROR #n	Rotate right by n bits	1 ≤ n ≤ 32
RRX	Rotate right w/C by 1 bit	Through carry-flag

<mem> Memory Access Modes / Addressing Modes

May be used with Load/Store Instructions LDR/STR. Exceptions: LDRD and STRD may not use R_m

Memory Access Mode	<mem></mem>	EA=Effective Address	Example
Indirect addressing	[R _n]	EA ← R _n	[r2]
Immediate offset addressing	[R _n ,#offset]	$EA \leftarrow R_n + offset$	[r5,#100]
Register offset addressing{with shift}	$[R_n,R_m\{,LSL \#n\}]$	$EA \leftarrow R_n + (R_m << n)$	[r4,r5,LSL #3]
Pre-indexed addressing	[R _n ,#offset]!	$R_n \leftarrow R_n + offset; EA \leftarrow R_n$	[r5,#100]!
Post-indexed addressing	[R _n],#offset	$EA \leftarrow R_n$; $R_n \leftarrow R_n + offset$	[rS],#100
Register	Rn		R2,R3
Register List	{Rn-Rm,PC}		R1-R3,PC
Quickegister Immediate Quickegister Indirect With Index	Rn, #imm [Rn,Rm]	EA< Rn+Rm Version 2.4	R2,#100 R0,[R1,R2]
PC-Relative	label		В

Hardware-Platform: Memory-Map

Hardware-Platform: Register Description

Haraware	-Piai	<i>tjorm:</i> Register	De	SCri	otion									
Module	Offset	Name	Туре	Reset	Short Description <> = BitNr.									
LED	0x0	HW_LED_DATA	W	0×00	<70> Data ('1': on, '0': off)									
	0x0	HW_SWITCH_DATA	R	0x??	<70> Data ('1': up, '0': down)									
	0x1	HW_SWITCH_INTERRUPT_ENABLE	R/W	0×00	<70> Interrupt Enable ('1': enable, '0': disable)									
SWITCHES	0×2	HW_SWITCH_INTERRUPT_BOTHEDGE	R/W	0×00	<70> Interrupt Both Edges ('1': both edge, '0': single edge)									
	0x3	HW_SWITCH_INTERRUPT_EDGE	R/W	0×00	<70> Interrupt Edge ('1': rising, '0': falling)									
	0x4	HW_SWITCH_INTERRUPT_STATUS	R/W	0x00	<70> R: Interrupt Status ('1': pending, '0': not pending) / W: Interrupt Clear ('1': clear, '0' no									
	0x0	HW_BUTTON_DATA	R	0x??	<30> Data ('1': pressed, '0': released)									
	0×1	HW_BUTTON_INTERRUPT_ENABLE	R/W	0×00	<30> Interrupt Enable ('1': enable, '0': disable)									
BUTTONS	0×2	HW_BUTTON_INTERRUPT_BOTHEDGE	R/W	0×00	<30> Interrupt Both Edges ('1': both edge, '0': single edge)									
	0x3	HW_BUTTON_INTERRUPT_EDGE	R/W	0×00	<30> Interrupt Edge ('1': rising, '0': falling)									
	0x4	HW_BUTTON_INTERRUPT_STATUS	R/W	0×00	<30> R: Interrupt Status ('1': pending, '0': not pending / W: Interrupt Clear ('1': clear, '0' no action)									
	0x0	HW_SEVENSEG0HEX_DATA	W	0x00	<74> reserved, <30> Value interpreted as hex digit									
	0×1	HW_SEVENSEG1HEX_DATA	W	0×00	(e.g. 0x0E displays hex digit 'E' on segments)									
	0x2	HW_SEVENSEG2HEX_DATA	W	0×00	Note: decimal point is not accessible, i.e. always pd = off									
7-SEGMENT	0x3	HW_SEVENSEG3HEX_DATA	W	0×00	Thole: decimal point is not accessible, i.e. always pa = oil									
7-SEGWENT	0x4	HW_SEVENSEG0_DATA	W	0×00										
	0x5	HW_SEVENSEG1_DATA	W	0×00										
	0x6	HW_SEVENSEG2_DATA	W	0×00	<7> dp, <6> g, <5> f, <4> e, <3> d, <2> c, <1> b, <0> a d									
	0x7	HW_SEVENSEG3_DATA	EVENSEG3_DATA W 0x00											
LOGICPORT-MODE	0x0	HW_LOGICPORTMODE_DATA	R/W	-	<30> Value of Logicportsetting (Dragwheel)									
INTERRUPT	0x0	HW_INTERRRUPT_STATUS	R	0x00	<7> PicoBlazeCompatibility, <2> UART, <1> BUTTON, <0> SWITCH ('1': pending, '0': no)									
	0x20	HW_PBC_ISTATUS	R/W	0x00	<4> BFLAG, <0> TFLAG									
	0x21	HW_PBC_ICONFIG	R/W	0×00	<7> ICE, <6> reserved, <5> BSTEADY, <4> BIE, <32> TBASE, <1> TOFF, <0> TIE									
	0x22	HW_PBC_TRELOAD	W	0xFF	<70> Reload Value									
	0x23	HW_PBC_TVALUE	R/W	0×00	<70> Counter Value									
PicoBlaze	0x30	HW_PBC_LEDPORT	W	0×00	<70> Data ('1': on, '0': off)									
Compability	0x31	HW_PBC_BMPORT	R	0x??	<7> BUTTONØ ('1': pressed, '0': released), <30> Logicportsetting (Dragwheel)									
Companity	0x32	HW_PBC_SWITCHPORT	R	0x??	<70> Data ('1': up, '0': down)									
	0x40	HW_PBC_SEVENSEG0	W	0x00										
	0x41	HW_PBC_SEVENSEG1	W	0x00										
	0x42	HW_PBC_SEVENSEG2	W	0×00	<7> dp, <6> g, <5> f, <4> e, <3> d, <2> c, <1> b, <0> a									
	0x43	HW_PBC_SEVENSEG3	W	0x00										
LCD	0x0	HW_LCD_DATA	R/W	-	3×16 Character LCD (see Datasheet EA DOGM163L-A)									
	0x1	HW_LCD_COMMAND	W	-	(**************************************									
	0x0	HW_UART_DATA	R/W	-										
	0x0	HW_UART_DIVISOR_LOW	-	-										
	0x1	HW_UART_DIVISOR_HIGH	-	-										
	0x1	HW_UART_INTERRUPT_ENABLE	-	-										
	0x2	HW_UART_FIFO_CONTROL	-	-										
UART	0x2	HW_UART_INTERRUPT_STATUS	-	-	UART IC with 16B-FIFO (see Datasheet SC16C550BIB48)									
	0x3	HW_UART_LINE_CONTROL	-	-										
	0x4	HW_UART_MODEM_CONTROL	-	-										
	0x5	HW_UART_LINE_STATUS	-	-										
	0x6	HW_UART_MODEM_STATUS	-	-										
	0x7	HW_UART_SCRATCHPAD	-	-	,									
RAM	-	HW_SRAM_DATA (BASE)	R/W	-	Data from RAM IC (see Datasheet BS62LV256SIP55)									
FLACIL	-	HW_FLASH_DATA	R/W	-	Data from EALCULIC (*** Data best 007201/E040)									
FLASH		HW_FLASH_WP1	W	-	Data from FALSH IC (see Datasheet SST39VF010)									
	0x2AAA	HW_FLASH_WP2	W	-										

Hardware-Platform: Controls

Hardware-Platform: LogicPort Analyzer

Hardware-Platform: LogicPort Settings

Signal / Signalgruppe	Reset	Address Latch Enable	WRITE_n	READ_n	ADDRESS [27:0]	ADDRESS [19:0]	ADDRESS [3:0]	DATA [7:0]	INTERRUPT	INTERRUPT_CSn	LED_LATCH_ENABLE	LED_CSn	LED [7:0]	SEVENSEG_ENABLE [3:0]	SEVENSEG [7:0]	SEVENSEG_CSn	BUTTONS [3:0]	BUTTONS_CSn	BUTTONS_INTERRUPT	SWITCHES [7:0]	SWITCHES_CSn	SWITCHES_INTERRUPT	UART_CSn	UART_INTERRUPT	UART_Rx	UART_Tx	UART_RXD	UART_TxD	LCD_CSn	SRAM_CSn	FLASH_CSn	LOGICPORTMODE_CSn	USERLED_CSn	/ITCHES_(NOTTON	STUD_FPGA_INTERRUPT
0_Address.LPF		х	х	х	х																															
1_Address_Data.LPF		х	х	х		х		х																												
2_Switch_Button.LPF		х	х	х			х	x									x	х	х	x	х	х														
3_7Seg_Led.LPF		х	х	х			x	x			х	х		x	x	х																				
4_Interrupts.LPF		х	х	х			х	x	х	х									х			х		х												х
5_AddressMapping.LPF		х	х	х				х		х		х				х		х			х		х						х	х	х	х	х	х	x	
6_Interrupt_L_B_S.LPF									х				x				x		х	x	х															
7_Uart.LPF	х																							х	х	х	х	х								

Personal Notes

Personal Notes