YET ANOTHER "GWAS + ML" PROJECT

Vivien Goepp

March, 16 2020 CBIO Meeting 1. Short reminder on GWAS

The CD/CV hypothesis

- Common diseases are caused by common variants
- Common diseases : not caused by Mendelian mutations
- \bullet Common variants : need to consider many mutations jointly
- Each mutation can only have a small effect

Linkage disequilibrium

$Linkage \ disequilibrium \ (LD) :$

• For geneticists:

Source : Bush et al (2012)

Linkage disequilibrium

$Linkage \ disequilibrium \ (LD) :$

• For statisticians : correlations between close-by alleles on the genome

Indirect Association

Source: Bush et al (2012)

Linkage disequilibrium

Idea of using single nucleotide polymorphisms (SNPs):

- There are many high-LD blocks on the genome
- We can use SNPs as markers of an LD block
- \bullet The disease-inducing mutations are observed through correlation

Goal of GWAS

- Goal : Discover gene mutations *linked* to a disease.
- GWAS will not provide : causality relations or biological pathways leading to a disease.
- Applications to common diseases :
 - ► Inflammatory Bowel Diseases
 - ► Auto-immune diseases
 - ► Metabolic diseases (T2 diabetes, obesity, BMI)
 - Multiple sclerosis
 - ► Cancer

GWAS

Genome-wide association studies (GWAS)

- Gather $n \sim 10^3$ individuals
- Observe the phenotype:
 - ► quantitative (BMI, cholesterol, height)
 - \blacktriangleright or qualitative (case-control for common disease).
- Observe the genotype of $p \sim 10^6 \text{ SNPs}$

GWAS

Genome-wide association studies (GWAS)

- Gather $n \sim 10^3$ individuals
- Observe the phenotype :
 - quantitative (BMI, cholesterol, height)
 - ▶ or qualitative (case-control for common disease).
- Observe the genotype of $p \sim 10^6 \text{ SNPs}$

Encoding of SNP alleles

Each SNP has value $\in \{aa, aA, AA\}$.

Genotype	Allelic dosage	Dominant	Recessive	Dummy	One-hot
aa	0	0	0	00	100
aA	1	1	0	01	010
AA	2	1	1	11	001

We will use one-hot encoding.

Epistasis and interactions between SNPs

What is epistasis?

- "The masking of the effects of one variant by another" (Bateson 1909).
- Broad sense: "The dependence of the mutation outcome on the genetic background" (Lehner 2011).

Different biological explanasions for epistasis

Several molecular mechanisms thought to be linked to epistasis between genes :

Source: Lehner (2011)

We do feature selection with :

• $\frac{p}{n} \sim 1000$

We do feature selection with :

- $\frac{p}{n} \sim 1000$
- Correlation between features

We do feature selection with:

- $\frac{p}{n} \sim 1000$
- Correlation between features
- Interaction between features

We do feature selection with:

- $\frac{p}{n} \sim 1000$
- Correlation between features
- Interaction between features
- Bonus : population structure : mixture between different haplotype

2. Set covering machines for SNPs discovery

Setting of the set covering machines (SCM)

- $y_i \in \{0, 1\}$ (binary classification case/control GWAS)
- $x_{i,j} \in \{0,1\}$ (binary features with one-hot encoding)
- $p \gg n$ with true model assumed to be very sparse

Goal: find a prediction rule of the form:

$$f(\mathbf{x}) = \bigwedge_{h \in \mathcal{R}} h(\mathbf{x}),$$

where \mathcal{R} is a set of rules r.

Here a rule is the absence or presence of SNP i.

The set covering problem

Haussler algorithm:

- consider only rules that perfectly classify the positive examples.
- find the smallest number of rules that cover the negative examples.

	\mathbf{y}	h_1	h_2	h_3	h_4
	0	0	0	1	1
۸.	0	1	0	0	1
<i>J</i> V	0	1	1	0	0
	0	1	1	1	0
\mathcal{P}	1	1	1	1	1
	1	1	1	1	1

Set covering machine

We choose the rule with maximum usefulness:

$$U_h = |\mathcal{A}_h| - q|\mathcal{B}_h|,$$

 \mathcal{A}_h : negative examples correctly classified \mathcal{B}_h : positive examples uncorrectly classified

Set covering machine

We choose the rule with maximum usefulness:

$$U_h = |\mathcal{A}_h| - q|\mathcal{B}_h|,$$

 \mathcal{A}_h : negative examples correctly classified \mathcal{B}_h : positive examples uncorrectly classified

- We allow errors on positive examples
- q tunes this error

Set covering machine: example

		SNP1	SNP2	SNP3	SNP4
	\mathbf{y}	h_1	h_2	h_3	h_4
	0	0	0	1	1
۸.	0	1	0	0	1
JV	0	1	1	0	0
	0	1	1	1	0
	1	1	0	1	1
Ρ	1	1	0	0	1

		SNP1	SNP2	SNP3	SNP4
	\mathbf{y}	h_1	h_2	h_3	h_4
	0	0	0	1	1
۸.	0	1	0	0	1
\mathcal{N}	0	1	1	0	0
	0	1	1	1	0
	1	1	0	1	1
\mathcal{P}	1	1	0	0	1
	$ \mathcal{A}_h $	1	2	2	2

Set covering machine: example

		SNP1	SNP2	SNP3	SNP4
	\mathbf{y}	h_1	h_2	h_3	h_4
	0	0	0	1	1
۸.۲	0	1	0	0	1
N	0	1	1	0	0
	0	1	1	1	0
\mathcal{P}	1	1	0	1	1
P	1	1	0	0	1
	$ \mathcal{A}_h $	1	2	2	2
	$ \mathcal{B}_h $	0	2	1	0

Set covering machine : example

		SNP1	SNP2	SNP3	SNP4
	\mathbf{y}	h_1	h_2	h_3	h_4
	0	0	0	1	1
\mathcal{N}	0	1	0	0	1
<i>J</i> V	0	1	1	0	0
	0	1	1	1	0
\mathcal{P}	1	1	0	1	1
P	1	1	0	0	1
	$ \mathcal{A}_h $	1	2	2	2
	$ \mathcal{B}_h $	0	2	1	0
	\mathcal{U}_h	1	2-2q	2-q	2

		SNP1	SNP2	SNP3	SNP4
	\mathbf{y}	h_1	h_2	h_3	h_4
	0	0	0	1	1
\mathcal{N}	0	1	0	0	1
<i>J</i> V	0	1	1	0	0
	0	1	1	1	0
\mathcal{P}	1	1	0	1	1
r	1	1	0	0	1
	$ \mathcal{A}_h $	1	2	2	2
	$ \mathcal{B}_h $	0	2	1	0
	\mathcal{U}_h	1	2-2q	2-q	2

• $\mathcal{R} \leftarrow \{h_4\}$

		SNP1	SNP2	SNP3	SNP4
	\mathbf{y}	h_1	h_2	h_3	h_4
	0	0	0	1	1
\mathcal{N}	0	1	0	0	1
<i>J</i> V	0	1	1	0	0
	0	1	1	1	0
\mathcal{P}	1	1	0	1	1
P	1	1	0	0	1
	$ \mathcal{A}_h $	1	2	2	2
	$ \mathcal{B}_h $	0	2	1	0
	\mathcal{U}_h	1	2-2q	2-q	2

•
$$\mathcal{R} \leftarrow \{h_4\}$$

•
$$\mathcal{R} \leftarrow \{h_4\}$$

• $\mathcal{N} \leftarrow \mathcal{N} \setminus \mathcal{A}_{h_4}$

		SNP1	SNP2	SNP3	SNP4
	\mathbf{y}	h_1	h_2	h_3	h_4
	0	0	0	1	1
٨٢	0	1	0	0	1
JV	0	1	1	0	0
	0	1	1	1	0
\mathcal{P}	1	1	0	1	1
P	1	1	0	0	1
	$ \mathcal{A}_h $	1	2	2	2
	$ \mathcal{B}_h $	0	2	1	0
	\mathcal{U}_h	1	2-2q	2-q	2

- $\mathcal{R} \leftarrow \{h_4\}$
- $\mathcal{N} \leftarrow \mathcal{N} \setminus \mathcal{A}_{h_4}$
- $\mathcal{P} \leftarrow \mathcal{P} \setminus \mathcal{B}_{h_4}$

	\mathbf{y}	h_1	h_2	h_3
Λ.	0	0	0	1
JV	0	1	0	0
\mathcal{D}	1	1	0	1
P	1	1	0	0

	\mathbf{y}	h_1	h_2	h_3
Λ.	0	0	0	1
N	0	1	0	0
\mathcal{P}	1	1	0	1
Ρ	1	1	0	0
	$ \mathcal{A}_h $	1	2	1

	\mathbf{y}	h_1	h_2	h_3
\mathcal{N}	0	0	0	1
JV	0	1	0	0
\mathcal{P}	1	1	0	1
P	1	1	0	0
	$ \mathcal{A}_h $	1	2	1
	$ \mathcal{B}_h $	0	2	1

	\mathbf{y}	h_1	h_2	h_3
\mathcal{N}	0	0	0	1
	0	1	0	0
\mathcal{P}	1	1	0	1
	1	1	0	0
	$ \mathcal{A}_h $	1	2	1
	$ \mathcal{B}_h $	0	2	1
	\mathcal{U}_h	1	2-2q	2-q

Stopping criteria

- We have finished the job : $\mathcal{N} = \emptyset$
- Early stopping : $|\mathcal{R}| \ge s$ with parameter $s \ge 1$
- There remains only useless rules : $|\mathcal{A}_h| = |\mathcal{B}_h| = 0$

Computation time

- Each greedy step is fast to compute:
 - ▶ Let $\mathcal{I}_{\mathcal{N}}$ be the (current) indices of the negative examples.
 - ▶ $|A_h| = |I_N| \sum_{i \in I_N} x_{i,j}$ if h is the presence rule of feature j
 - ▶ $|\mathcal{A}_h| = \sum_{i \in \mathcal{I}_N} x_{i,j}$ if h is the absence rule of feature j
 - Similar for $|\mathcal{B}_h|$.

Computation time

- Each greedy step is fast to compute:
 - ▶ Let $\mathcal{I}_{\mathcal{N}}$ be the (current) indices of the negative examples.
 - ▶ $|A_h| = |I_N| \sum_{i \in I_N} x_{i,j}$ if h is the presence rule of feature j
 - ▶ $|\mathcal{A}_h| = \sum_{i \in \mathcal{I}_N} x_{i,j}$ if h is the absence rule of feature j
 - Similar for $|\mathcal{B}_h|$.
- Overall complexity $\mathcal{O}\left(|\mathcal{R}|ns\right)$

Computation time

- Each greedy step is fast to compute :
 - ▶ Let $\mathcal{I}_{\mathcal{N}}$ be the (current) indices of the negative examples.
 - ▶ $|A_h| = |I_N| \sum_{i \in I_N} x_{i,j}$ if h is the presence rule of feature j
 - ▶ $|\mathcal{A}_h| = \sum_{i \in \mathcal{I}_N} x_{i,j}$ if h is the absence rule of feature j
 - Similar for $|\mathcal{B}_h|$.
- Overall complexity $\mathcal{O}(|\mathcal{R}|ns)$
- Limited memory usage

Upper bound on the risk (1/3)

- SCM is a sample compression algorithm
- Given a model h chosen by an SCM, there exist
 - a set of individuals $\mathcal{Z} \in \{1, \cdots, n\}$
 - \blacktriangleright a message string σ containing additional information, such that

$$h = \mathbf{\Phi}(\mathcal{Z}, \sigma)$$
:

h can be reconstructed from \mathcal{Z} .

Upper bound on the risk (2/3)

Then there exists a bound on the risk

$$R(h) = \mathbb{E}_{(\mathbf{x},y)\sim D} \left[\mathbb{1}_{f(\mathbf{x})\neq y}\right]$$

that depends on the size of \mathcal{Z} .

Models that can be compressed using few examples have good generalization.

Upper bound on the risk (3/3)

Marchand and Sokolova (2005) established that :

$$\mathbb{P}\left(\forall S \sim D, \forall h, R(h) \leq \varepsilon(h, S, \delta)\right) \geq 1 - \delta$$

Upper bound on the risk (3/3)

Marchand and Sokolova (2005) established that:

$$\mathbb{P}\left(\forall S \sim D, \forall h, R(h) \leq \varepsilon(h, S, \delta)\right) \geq 1 - \delta$$

with

$$\varepsilon(h, S, \delta) = 1 - \exp\left(\frac{-1}{n - |\mathcal{Z}| - r} \left[\log\binom{m}{|\mathcal{Z}|} + \log\binom{m - |\mathcal{Z}|}{r}\right] + \left|h|\log(2\mathcal{N}(\mathcal{Z})) + \log\Omega\right]\right)$$

with $\Omega = \frac{\pi^6(|h|+1)^2(r+1)^2(|\mathcal{Z}|+1)^2}{216\delta}$, where r is the number of classif. errors on $S \setminus \mathcal{Z}$.

Sample compression bound

Consequences:

- \bullet The bound does not depend on p : theoretical performance guarantee
- It can be used for hyperparameter selection (Marchand et Shawe-Taylor, 2002).

Conclusion

- Set covering machine
 - ▶ runs fast
 - does not suffer from $p \gg n$
- However there are other issues:
 - ▶ Many SNPs are equivalent
 - ▶ Only conjunctions of SNPs

THANK YOU

References

- SCM: Marchand, M. and Shawe-Taylor, J., The set covering machine, JMLR, 2002
- Risk bound for SCM: Marchand, M and Sokolova, M., Learning with Decision Lists of Data-Dependent Features, JMLR, 2005
- GWAS: Bush, W, Moore, J., Lewitter, F., and Kann, M, *Chapter* 11: Genome-Wide Association Studies, Plos Comp. Biol., 2012
- Epistasis: Lehner, B., Molecular mechanisms of epistasis within and between genes, Trends in Gen., 2011