MORRF*: Sampling-based Multi-Objective Motion Planning

Daqing Yi, Michael A. Goodrich, Kevin D. Seppi daqing.yi@byu.edu, mike@cs.byu.edu, kseppi@cs.byu.edu

Introduction

Motivation

- Multiple objectives in planning paths
- Conflicts between objectives
- Incomparability between objectives

Solution

Interactively select a path from a Pareto-optimal set

Goal

Find a set of Pareto-optimal (non-dominated) paths given multiple objectives

Challenges

- Nonconvexity of planning space
- Discontinuity caused by obstacles
- Inconsistency in path lengths and shapes
- Accumulation of fitness along path

Related work

MOEA-D

MOEA-D decomposes a multi-objective problem into a set of single-objective subproblems.

- ullet Generate a set of M diffferent weights $\{oldsymbol{\lambda}^1,\cdots,oldsymbol{\lambda}^M\}$
- corresponding single objective Create subproblems using:
 - Weight λ^m
 - Utopia reference vector z^{utop}
- Solve each subproblem
- The resultant set of solutions approximates the Pareto-optimal set

RRT*

RRT* connects points sampled randomly from the state space and generates a tree for path planning.

The tree converges to an optimal structure such that any path from the root to a vertex is optimal.

- simple (=efficient)
- high degrees of freedom
- probabilistically complete
- asymptotically optimal

The solution from RRT* asymptotically converges to the optimal.

MORRF*

MORRF* stands for **Multi-Objective Rapidly**exploring Random Forest*.

In finding M Pareto-optimal paths in a K-objective problem, the forest consists of M subproblem trees and K reference trees.

For a given weight λ^m , a single-objective subproblem can be created by:

• Wegithed-sum $\sum_{k=1}^{K} \lambda_k^m c_k(x)$

approach show better diversity.

• Tchebycheff $\max_{1 \leq k \leq K} \left(\lambda_k^m |c_k(x) - \boldsymbol{z}_k^{utop}| \right)$

In the forest,

- All trees have the same vertices.
- might Trees different have determined corresponding single objective.

edges, which are

Weighted-sum approach

 The solutions of all the subproblem trees constitute the Pareto-optimal solutions.

Tchebycheff approach

- Reference trees provide the estimated Utopia reference vector.
- The solutions of all the subproblem trees constitute the Pareto-optimal solutions.

Simulation

The measurement of the performance includes

- Pareto optimality All the paths are Pareto-optimal.
- Approximation capability The set of paths is diverse.

Three approaches can be compared visually in a two-dimensional fitness space.

to the Pareto-optimal set. The solutions from the Tchebycheff

Two approaches of MORRF* are then compared in a map with obstacles. The existence of obstacles leads to discontinuity in the fitness space.

Both approaches generate Pareto-optimal solutions, but the Tchebycheff approach yields better diversity.

Similar results are obtained with three objectives, which are visualized in three dimensions.

As in the 2-D case, solutions from both approaches approximate the Pareto front, but the Tchebycheff approach shows better diversity.