BCNF Decomposition

R&G Chapter 19

In Last Lecture

- Normal forms:
 - 1st NF, 2nd NF, 3rd NF, and BCNF (3.5NF)
- If a relation is not in a desired normal form, we need to decompose the relation to eliminate data redundancy.
- Decompositions should be used only when needed, as it can cause potential problems.

Problems with Decompositions

- There are two potential problems of schema decomposition
 - May be impossible to reconstruct the original relation! (Lossiness)
 - 2) Dependency checking may require joins.

Features of a Good Decomposition

- A good decomposition is
 - Lossless
 - Dependency preserving

BCNF and 3NF Decomposition

Some rules to remember before we discuss the details of decomposition...

	BCNF	3NF
Data redundancy	NONE	May still have some
Lossless-join decomposition	Guaranteed	Guaranteed
dependency- preserving decomposition	Not guaranteed	Guaranteed

Lossy Decomposition (example)

A	В	C	A	В
1	2	3	1	2
4	5	6	4	5
7	2	8	7	2

В	C
2	3
5	6
2	8

A	В		В
1	2	Join	2
4	5	John	5
7	2		2

В	C
2	3
5	6
2	8

A	В	C
1	2	3
4	5	6
7	2	8
1	2	8
7	2	3

Lossy decomposition: Join result of the tables after decomposition is NOT the same as the original dataset

Lossless Decomposition (example)

A	В	С		A	С		В	С	
1	2	3		1	3		2	3	
4	5	6	ľ	4	6		5	6	
7	2	8		7	8		2	8	
A	С		В	С		A		В	С
A	C 3		2	C		1		B 2	C 3
		Join	2						

Lossless decomposition: Join result of the tables after decomposition is the same as the original dataset

Task #1

 How to decompose the original relation so that it is lossless?

Solution to Lossless Decomposition

 The decomposition of R into X and Y is lossless with respect to F if and only if the F+ satisfies that:

$$X \cap Y \rightarrow X$$
, or $X \cap Y \rightarrow Y$

In other words, the join attributes of X and Y is the key of either X or Y.

- If W -> Z holds over R and W ∩ Z is empty, then
 - decomposition of R into R-Z and WZ
 - R-Z and WZ are guaranteed to be loss-less (since R-Z and WZ joins at W)

Lossy Decomposition (example)

A	В	C
1	2	3
4	5	6
7	2	8

A	В
1	2
4	5
7	2

 $X=\{A, B\}, Y=\{B, C\}, X \cap Y=\{B\}, B \not > \{A, B\} \text{ and } B \not > \{B, C\}$

Lossy decomposition!

A	В	
1	2	Join
4	5	JOILL
7	2	

В	C
2	3
5	6
2	8

A	В	C
1	2	3
4	5	6
7	2	8
1	2	8
7	2	3

Lossless Decomposition (example)

A	В	C
1	2	3
4	5	6
7	2	8

A	C
1	3
4	6
7	8

В	C
2	3
5	6
2	8

$$X=\{A, C\}, Y=\{B, C\}, X \cap Y=\{C\}, C->\{B, C\}$$

Lossless decomposition!

A	C
1	3
4	6
7	8

Join

В	C
2	3
5	6
2	8

=

A	В	C
1	2	3
4	5	6
7	2	8

Lossless Decomposition Exercise 1

- Relational table R(A,B,C,D,E)
- FDs F={AB->C, C->E, B->D, E->A}
- R is decomposed into R1(B, C, D) and R2(A, C, E)
- Is (R1, R2) a lossless decomposition?

Lossless Decomposition Exercise 1

- Relational table R(A,B,C,D,E)
- FDs F={AB->C, C->E, B->D, E->A}
- R is decomposed into R1(B, C, D) and R2(A, C, E)
- Is (R1, R2) a lossless decomposition?
- Way of thinking:
 - Step 1: Find common attribute: R1 \cap R2 = (C);
 - Step 2: Check whether C is the key of R1 or R2
 (i.e., does C+ contain (B, C, D) or (A, C, E)?)
 - $C^+ = (CEA)$. So C is the key of R2.
 - It is a lossless decomposition.

Lossless Decomposition Exercise 2

- Table R(A,B,C,D,E)
- FDs F=(A->BC, CD->E, B->D, E->A)
- R is decomposed into R1(A, B, C) and R2(A, D, E)
- Is (R1, R2) a lossless decomposition?

Consider relation R with FDs F.

• Step 1:

- Ensure all FDs in F contain only single attribute on righthand side (RHS)
 - This is always doable, for example, if you have AB->CD, spit it into AB->C and AB->D;

• Step 2:

 If X -> Y (in F) violates BCNF (i.e., X is not the key of R), decompose R into R - Y and XY (guaranteed to be lossles).

Repeat Step 1 & 2, until all FDs do not violate BCNF (i.e., the left-hand-side of all FDs are superkeys).

It will give a lossless decomposition that consists of BCNF relations (i.e., data redundancy free).

Consider the relation R={CSJDPQV}:

- Its primary key is C;
- It has the following FDs: JP -> C, SD -> P, J -> S.

Question:

- (1) Does R satisfy BCNF?
- (2) If not, decompose R into BCNF tables.

Consider the relation R={CSJDPQV}:

- Its primary key is C;
- It has the following FDs: JP -> C, SD -> P, J -> S.
- Question:
- (1) Does R satisfy BCNF?
- (2) If not, decompose R into BCNF tables.
 - To deal with SD -> P, decompose into SDP, CSJDQV.
 - To deal with J -> S, decompose CSJDQV into JS and CJDQV
 - So we end up with: SDP, JS, and CJDQV
 (note: JP is a candidate key of R, so JP->C does not violate BCNF)

Consider the relation R={CSJDPQV}:

- –Its primary key is C;
- -It has the following FDs: JP -> C, SD -> P, J -> S.
- Several FDs may cause violation of BCNF. The order in which we deal with them could lead to very different sets of relations!
 - -We just tried the order of SD -> P, J -> S
 - -Now try starting from J -> S, then SD -> P