Model Documentation of the 'Leteral axis dynamic for a L-1011 aircraft'

1 Nomenclature

1.1 Nomenclature for Model Equations

- x state vector
- u control input vector
- w noise vector
- z regulated output vector
- y measurement vector

2 Model Equations

State Vector and Input Vector:

$$x \in \mathbb{R}^4 u \qquad \qquad \in \mathbb{R}^1 w \in \mathbb{R}^4 z \qquad \qquad \in \mathbb{R}^4 y \in \mathbb{R}^2$$

System Equations:

$$\dot{x}(t) = Ax(t) + B_1 w(t) + Bu(t) \tag{1a}$$

$$z(t) = C_1 x(t) + D_{11} w(t) + D_{12} u(t)$$
(1b)

$$y(t) = Cx(t) + D21w(t) \tag{1c}$$

Outputs: z

2.1 Exemplary parameter values

Symbol	Value
A	$\begin{bmatrix} -2.98 & 0.93 & 0 & -0.034 \end{bmatrix}$
	$\begin{bmatrix} -0.99 & -0.21 & 0.035 & -0.0011 \end{bmatrix}$
	0 0 0 1.0
	$\begin{bmatrix} 0.39 & -5.555 & 0 & -1.89 \end{bmatrix}$
В	[-0.032]
	-1.6
B_1	[-0.032]
	0
	-1.6
C_1	[1.0 0 0 0]
	0 1.0 0 0
	0 0 1.0 0
	0 0 0 1.0
C	[0 0 1.0 0]
	$\begin{bmatrix} 0 & 0 & 0 & 1.0 \end{bmatrix}$
	$\begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix}$
D_{11}	
D_{12}	
	1.0
D_{21}	

3 Derivation and Explanation

This model is part of the "'COMPleib"' - library and was automatically imported into ACKREP.

The original description was:

AC17 Leteral axis dynamic for a L-1011 aircraft A. R. Galimidi and B. R. Bramish "The constrained Lyapunov problem and its application to robust output feedback stabilization" TOAC Vol. 31,Nr. 5, pp.410-419, 1986

4 Simulation

Figure 1: Simulation of the Leteral axis dynamic for a L-1011 aircraft.

References

[1]. R. Galimidi and B. R. Bramish "The constrained Lyapunov problem and its application to robust output feedback stabilization" TOAC Vol. 31,Nr. 5, pp.410-419, 1986