《大学物理 AI》作业 No.06 电场强度

班级		学	_ 姓名 _	成绩 _	
******	 *******	 *****本章教	 学要求*****	 *******	 ****
公式。	方场强公式及场系 2场的高斯定理, 无线长带电直线	强叠加原理求 并掌握用高 线、无线大带	场强的方法; 斯定理求场强 电平面、带电	虽分布的方法; 2圆环等典型带电位	
 一、填空题					
不连续性称为	。? 效果上考虑,可认	生讨论宏观带电	现象时由于宏	的整数倍。物体观物体所带电荷量远远 现物体所带电荷量远远 包体上的;在阐明	远大于一个电子
2.实验证明,一个 ^特 荷量是相同的,电				不同参考系中测量同-	一带电粒子的电
_	——— 静电力(选填: 静	止,运动);	静电场中单位检	汤对处于场中 远验电荷受到的静电力 决定。	
4.点电荷系电场中位 体现。	壬一场点的场强等	于		这就是均	汤强叠加原理的
为该点的 电场线,穿过某一 线方向相同,电通量	,其分布的 给定曲面的 量为	与i 被称为i , 当电场强度的	亥处的 通过该曲面的电 方向与曲面法约	列的虚拟曲线,其上 成正比,我们和 迅通量,当电场强度的 我方向相反,电通量为	"这样的曲线为]方向与曲面法
对封闭曲面来说, 6.电场高斯定理∮ £	_			5线正万问。 ,而通过任意	意封闭曲面 S 的
斯定理反映了电场 或从	和场源电荷之间的 出发伸向无限远,	」关系,静电场约 或从无限远处》	^{浅总是起始于}	由面外的电荷分布 ,终止于_ 。场线有头有尾	,
静电场是一种	均。				

二、选择题

1. 一个带正电荷的质点,在电场力作用下从 A 点出发经 C 点运动到 B 点,其运动轨迹如图所示。已知质点运动的速率是递减的,下面关于 C 点场强方向的四个图示中正确的是:

- 2. 下面列出的真空中静电场的场强公式, 其中哪个是正确的?
- I I (A) 点电荷 q 的电场: $E = \frac{q}{4\pi\varepsilon_0 r^2}$
- (B) "无限长"均匀带电直线(电荷线密度 λ)的电场: $E = \frac{\lambda}{4\pi\varepsilon_0\,r^3} r$
- (C) "无限大"均匀带电平面(电荷面密度 σ)的电场: $E = \pm \frac{\sigma}{2\varepsilon_0}$
- (D) 半径为 R 的均匀带电球面(电荷面密度 σ)外的电场: $E = \frac{\sigma R^2}{\varepsilon_0 r^3} P$
- 3. 面积为 S 的空气平行板电容器,极板上分别带电量 $\pm q$,若不考虑边缘效应,则两极板间的相互作用力为
- [] (A) $\frac{q^2}{\varepsilon_0 S}$ (B) $\frac{q^2}{2\varepsilon_0 S}$ (C) $\frac{q^2}{2\varepsilon_0 S^2}$ (D) $\frac{q^2}{\varepsilon_0 S^2}$
- 4. 在空间有一非均匀电场,其电力线分布如图所示,在电场中作一半径为 R 的闭合球面 S,已知通过球面上某一面元 ΔS 的电场强度通量为 $\Delta \Phi_e$,则通过该球面其余部分的电场强度通量为:

(A)
$$-\Delta \Phi_e$$
 (B) $\frac{4\pi R^2}{\Delta S} \Delta \Phi_e$ (C) $\frac{4\pi R^2 - \Delta S}{\Delta S} \Delta \Phi_e$ (D) 0

三、简答题

- 1、有一点电荷 Q 置于半径为 R 的球面的中心,试求通过该球面的电场强度通量 Φ_e ,并讨论在下列情况下 Φ_e 有无变化。
- (1) Q偏离球心,仍在球面内;
- (2)球面外再放一个 q;
- (3)球面内再放一个 q;
- (4)将球面半径增至 2R。

2、六个相等的电荷放在正六边形的六个顶点上,问是否可以以正六边形外接圆圆心为球心作一个球面,利用高斯定理求出它们所产生的场强?对此球面高斯定理是否成立?

兀		1	上算	碼
<i>P</i> ¬	`			・ルフへ

1.一电荷面密度为 σ 的 "无限大"平面,在距离平面 a 米远处的一点的场强大小的一半是由平面上的一个半径为R 的圆面积范围内的电荷所产生的,试求该圆半径的大小。

2、一个内外半径分别为 R_1 和 R_2 的均匀带电球壳,其电荷体密度为 ρ ,试求处于球壳以下区域内电场强度的大小: (1) $r < R_1$; (2) $R_1 < r < R_2$; (3) $r > R_2$ 。