CSC-411 Artificial Intelligence	e		
Course Title:	Artificial Intelligence		
Course Code:	CSC-411		
Pre-Requisites:			
Credit Hours Theory:	3		
Credit Hours Lab (If	0		
Applicable):			
Course Objectives:	Artificial Intelligence (AI) is a constantly and actively growing and		
	changing field. In this course, students will learn the basics of		
	modern AI as well as some of the representative applications of AI.		
Learning Outcomes:	After the successful completion of course, the students will be able		
	to:		
	CLO-1: Know various AI search algorithms (tree search,		
	uninformed, informed, and heuristic), understand different types of		
	AI agents, know how to build simple knowledge-based systems.		
	CLO-2 : Ability to apply knowledge representation, reasoning, and		
Contents (Catalog	machine learning techniques to real-world problems. This course introduces students to the basic knowledge		
Description):	representation, problem solving, and learning methods of artificial		
Description).	intelligence. Upon completion, students should be able to develop		
	intelligent systems by assembling solutions to concrete		
	computational problems; understand the role of knowledge		
	representation, problem solving, and learning in intelligent-system		
	engineering; and appreciate the role of problem solving, vision, and		
	language in understanding human intelligence from a		
	computational perspective.		
	S. J. Russell and P. Norvig, Artificial Intelligence: A Modern		
Recommended Text Books:	Approach, Prentice-Hall.		
	Koller and Friedman. Probabilistic Graphical Models.		
	Sutton and Barto. Reinforcement Learning: An Introduction.		
Reference Books:	Hastie, Tibshirani, and Friedman. The elements of statistical		
	learning.		
	Tsang. Foundations of constraint satisfaction		
Helping Web Sites:			
	Attendance is mandatory. Every class is important. All deadlines		
	are hard. Under normal circumstances late work will not be		
	accepted. Students are required to take all the tests. No make-up		
	tests will be given under normal circumstances. There is 0 tolerance		
General Instructions for	for plagiarism. Any form of cheating on		
students:	exams/assignments/quizzes is subject to serious penalty.		
	<u>Attendance</u>		
	75% attendance is mandatory. Latecomers will be marked as		
	absent.		

20%
10%
20%
50%

Sixteen	Week	Topics Covered					
Week	1	1st Lecture					
Lesson Plan		Introduction and Scope, Problem Solving					
		2nd Lecture					
	Tree Search, Graph Search, BFS, UCS						
		3rd Lecture					
		A* Search, State Spaces, Problems with Search					
	2	1st Lecture					
		Probability in AI, Dependence					
		2nd Lecture					
		Bayes Rule, Conditional Independence, Independence					
		3rd Lecture					
		General Bayes Net, D Separation					
	3	1st Lecture					
		Probabilistic Inference, Enumeration, Causal Direction					
		2nd Lecture					
		Variable Elimination, Approximate Inference					
		3rd Lecture					
		Gibbs Sampling, Markov Chain Monte Carlo					
	4	1st Lecture					
		Machine Learning, Relationship to Bayes Network, Linear Regression					
		2nd Lecture					

	Perceptron, Support Vector Machines Quiz 1
	3rd Lecture
	K Nearest Neighbors, Smoothing Parameters, Problems with KNN
5	1st Lecture
	Unsupervised Learning, Dimensions.
	2nd Lecture
	K Means Clustering, Expectation Maximization
	3rd Lecture
	Gaussian Learning, EM Algorithm
6	1st Lecture
	Representation with Logic, Propositional Logic, Truth Tables, Quiz 2
	2nd Lecture
	First Order Logic, Terminology, Limitations,
	3rd Lecture
	Models, Syntax, Problems
7	1st Lecture
	Problem Solving vs. Planning, Planning vs. Execution, Infinite Sequences
	2nd Lecture
	Classical Planning, Progression Search, Regression Search
	3rd Lecture
	Regression vs. Progression, Plan Space Search, Situation Calculus
8	1st Lecture
	Planning Under Uncertainty, MDP Grid World, MDP and Cost
	2nd Lecture
	Value Iteration, Partial Observability

	3rd Lecture
	POMDP, POMDP vs. MDP
9	Mid Term Exam
10	1st Lecture
	Reinforcement Learning, Forms of Learning, Agents of reinforcement learning, Passive Agents,
	2nd Lecture
	Greedy Agents, Balancing Policy, Errors in Utility Questions, Exploration Agents
	3rd Lecture
	Application of Trees: Game Trees, Quiz 3
11	1st Lecture
	Hidden Markov Models, Bayes Network of HMMs, Stationary Distribution
	2nd Lecture
	Transition Probabilities, HMM Equations
	3rd Lecture
	Particle Filters, Particle Filter Algorithm, Pros and Cons
12	1st Lecture
	Game Theory, Dominant Strategy, Pareto Optimal, Equilibrium
	2nd Lecture
	Mixed Strategy, Geometric Interception
	3rd Lecture
	Game Theory Strategies, Mechanism Design, Quiz 4
13	1st Lecture
	Advanced Planning, Scheduling, Extending Planning
	2nd Lecture
	Hierarchical Planning, Refinement Planning
	3rd Lecture
	Reachable States, Conformant Plan, Sensory Plan
14	1st Lecture

	Computer Vision, Image Formation, Projection Length, Focal Length, Range
	2nd Lecture
	Perspective Projection, Vanishing Points, Invariance
	3rd Lecture
	Linear Filter, Prewitt Mask, Gaussian Kernel, Modern Feature Detectors
15	1st Lecture
	Robotics, Kinematics
	2nd Lecture
	Localization, Monte Carlo Localization
	3rd Lecture
	Prediction, Road Graph, Path Planning
16	1st Lecture
	Natural Language Processing, Language Models, Bag of Words, Probabilistic Models
	2nd Lecture
	Language and Learning, Unigram Models,, Bigram Model, N Gram Model
	3rd Lecture
	Classification, Segmentation, Spelling Correction, Further Applications
17	1st Lecture, 2nd Lecture, 3rd Lecture
	Final Project Presentations & Revisions
18	Final Exam

CONTRIBUTION OF COURSE LEARNING OUTCOMES (CLOs) TO PROGRAMME LEARNING OUTCOMES (PLOs)

BS Software Engineering		Artificial Intelligence						
No	Program Learning Outcomes	Course Learning Outcomes						
		1	2	3	4	5	6	
1	Engineering Knowledge							
2	Problem analysis	✓						
3	Design/Development of solutions							
4	Investigation		✓					
5	Modern tool usage							
6	Engineer and society							
7	Environment and sustainability							
8	Ethics							
9	Individual and Team work							
10	Communication							
11	Project Management							
12	Lifelong learning							