

Circuitos lógicos programables

Contador ascendente/Descendente controlado por UART

Trabajo práctico final

Lic. Mariano A. Deville

(mariano.deville@gmail.com)

Descripción del Sistema

El proyecto consiste en la implementación de un contador de 8 bits controlado mediante comandos UART, con las siguientes características principales:

Comandos de control:

- C: comenzar la cuenta.
- P: detener la cuenta.
- A: contar en forma ascendente.
- D: contar en forma descendente.
- R: resetear el contador a cero.
- Vn: configurar velocidad de cuenta, donde los valores válidos para n son de 1a 255.
- On: configurar límite de cuenta, donde los valores válidos para n son de 1a 255.

Parámetros del sistema:

- Rango de velocidad de conteo: desde 2 pulsos de reloj del sistema hasta 16.581.375 pulsos, equivale a n^3 .
- Rango del límite de conteo: 1 a 255.

Implementación:

El diseño se basa en la práctica previa UART_led, reutilizando los módulos UART existentes. Se emplearon versiones modificadas de los módulos enaGen y contador_universal, y se desarrolló un nuevo módulo encargado de:

- Recibir la salida de la UART.
- Interpretar los comandos recibidos.
- Controlar el generador de pulsos (enaGen) y el contador (contador_universal).

Salida:

El resultado del conteo se visualiza en un bus de 8 bits conectado a LEDs mediante un módulo VIO (Virtual Input/Output), que refleja en tiempo real el estado del contador.

El siguiente diagrama conceptual muestra la idea inicial de los módulos y su interconexión, mientras que el diagrama final refleja la implementación definitiva del sistema.

Simulaciones

Se realizaron simulaciones individuales para cada módulo.

Una vez validadas, los módulos fueron integrados en bloques funcionales y nuevamente verificados.

Las simulaciones más relevantes corresponden a los módulos que controlan el generador de pulsos de habilitación y el contador de 8 bits (cont_ctl, genEna y cont8b).

Finalmente, se simuló el bloque integrado que contiene los tres módulos principales, verificando el correcto funcionamiento del sistema completo.

Implementación en FPGA

Para la implementación final se utilizó la placa disponible en el servidor Iseserver, empleando un VIO para el manejo de las señales digitales de entrada y salida.

La comunicación UART se realizó mediante una sesión SSH que permitió enviar los comandos a través de la interfaz RS232.

En la siguiente imagen se muestran los recursos utilizados por la FPGA, y en la imagen posterior, el consumo de potencia correspondiente.

