

Randomized Linear Algebra for Interior Point Methods

Agniva Chowdhury
Computer Science and Mathematics Division
Oak Ridge National Laboratory

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Joint work with...

Gregory Dexter Purdue University

Palma London Cornell University

Haim Avron Tel Aviv University

Petros Drineas Purdue University

Linear Programming: Applications

- Combinatorial optimization: traveling salesman problem, knapsack problem, or graph coloring etc.
- Network optimization: minimum cost flow, shortest path, maximum flow problems etc.
- Integer programming: continuous relaxation of the original problem.
- Optimization in operations research: supply chain management, production planning, scheduling, inventory control, resource allocation, and many more.
- Mathematical modeling: economics, engineering, logistics, and management...
- Machine learning: Basis pursuit, Sparse inverse covariance matrix estimation, MAP inference, ℓ_1 -regularized SVMs, Nonnegative matrix factorization, Markov decision process...

Linear Programming (LP)

Consider the standard form of the primal LP problem:

$$\min \mathbf{c}^\mathsf{T} \mathbf{x}$$
, subject to $\mathbf{A} \mathbf{x} = \mathbf{b}$, $\mathbf{x} \ge \mathbf{0}$

The associated dual problem is

$$\max \ \mathbf{b}^\mathsf{T} \mathbf{y} \,, \ \mathsf{subject to} \ \mathbf{A}^\mathsf{T} \mathbf{y} + \mathbf{s} = \mathbf{c} \,, \mathbf{s} \geq \mathbf{0} \tag{2}$$

Here,

 $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m$, and $\mathbf{c} \in \mathbb{R}^n$ are inputs

 $\mathbf{x} \in \mathbb{R}^n$, $\mathbf{y} \in \mathbb{R}^m$, and $\mathbf{s} \in \mathbb{R}^n$ are variables

An LP problem with m=6, n=2.

Optimality conditions

 $(\mathbf{x}, \mathbf{y}, \mathbf{s})$ is an (primal-dual) optimal solution iff it satisfies the following conditions:

$$Ax = b$$
 (primal feasibility)

$$\mathbf{A}^\mathsf{T}\mathbf{y} + \mathbf{s} = \mathbf{c}$$
 (dual feasibility)

$$\mathbf{x} \circ \mathbf{s} = \ \mathbf{0} \hspace{1cm} \text{(complementary slackness)}$$

$$(\mathbf{x},\mathbf{s}) \geq \mathbf{0} \hspace{1cm} \text{(non negativity)}$$

Assumptions:

- $-n \gg m \text{ and } \operatorname{rank}(\mathbf{A}) = m$
- Solution set is nonempty

Simplex

- Fast in practice
- Slow in theory

Simplex

- Fast in practice
- Slow in theory

Ellipsoid

- First polynomial-time algorithm for LP
- Not very fast in practice

Simplex

- Fast in practice
- Slow in theory

Ellipsoid

- First polynomial-time algorithm for LP
- Not very fast in practice

Interior Point

- Fastest in theory
- Often fast in practice

Interior point methods

• Duality measure:

$$\mu = \frac{\mathbf{x}^\mathsf{T} \mathbf{s}}{n} = \frac{\mathbf{x}^\mathsf{T} (\mathbf{c} - \mathbf{A}^\mathsf{T} \mathbf{y})}{n} = \frac{\mathbf{c}^\mathsf{T} \mathbf{x} - \mathbf{b}^\mathsf{T} \mathbf{y}}{n} \downarrow 0$$

Long-step IPM:

- $\text{ Let } \mathcal{F}^0 = \{ (\mathbf{x}, \mathbf{y}, \mathbf{s}) : \ (\mathbf{x}, \mathbf{s}) > \mathbf{0}, \ \mathbf{A}\mathbf{x} = \mathbf{b}, \ \mathbf{A}^\mathsf{T}\mathbf{y} + \mathbf{s} = \mathbf{c} \}.$
- Central path: $C = \{(\mathbf{x}, \mathbf{y}, \mathbf{s}) \in \mathcal{F}^0 : \mathbf{x} \circ \mathbf{s} = \sigma \mu \mathbf{1}_n\}, \sigma \in (0, 1)$ is the centering parameter.
- $\ \, \mathsf{Neighborhood} \colon \mathcal{N}(\gamma) = \Big\{ (\mathbf{x}, \mathbf{y}, \mathbf{s}) \in \mathcal{F}^0 : \mathbf{x} \circ \mathbf{s} \geq (1 \gamma) \mu \mathbf{1}_n \Big\}, \ \gamma \in (0, 1)$

Long-step IPM

- 1: Input: $\mathbf{A}, \mathbf{b}, \mathbf{c}, \gamma \in (0, 1)$, tolerance $\epsilon \in (0, 1), \sigma \in (0, 1)$;
- 2: Initialize: $k \leftarrow 0$; $(\mathbf{x}^0, \mathbf{y}^0, \mathbf{s}^0) \in \mathcal{F}^0$;
- 3: while $\mu_k > \tau$ do
- 4: Let $(\mathbf{x}, \mathbf{y}, \mathbf{s}) = (\mathbf{x}^k, \mathbf{y}^k, \mathbf{s}^k)$

5: Solve
$$\begin{pmatrix} \mathbf{A} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{A}^\mathsf{T} & \mathbf{I}_n \\ \mathbf{S} & \mathbf{0} & \mathbf{X} \end{pmatrix} \begin{pmatrix} \Delta \mathbf{x} \\ \Delta \mathbf{y} \\ \Delta \mathbf{s} \end{pmatrix} = \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \\ -\mathbf{X}\mathbf{S}\mathbf{1}_n + \sigma\mu\mathbf{1}_n \end{pmatrix}$$

- 6: Compute
- $\tilde{\alpha} = \operatorname{argmax}\{\alpha \in [0, 1] : (\mathbf{x}, \mathbf{y}, \mathbf{s}) + \alpha(\Delta \mathbf{x}, \Delta \mathbf{y}, \Delta \mathbf{s}) \in \mathcal{N}(\gamma)\}$ 7: Compute $\bar{\alpha} = \operatorname{argmin}\{\alpha \in [0, \tilde{\alpha}] : (\mathbf{x}(\alpha))^{\mathsf{T}}(\mathbf{s}(\alpha))\}$
- 7. Compute $\alpha = \operatorname{argmin}\{\alpha \in [0, \alpha] : (\mathbf{x}(\alpha)) \mid (\mathbf{s}(\alpha))\}$
- 8: $(\mathbf{x}^{k+1}, \mathbf{y}^{k+1}, \mathbf{s}^{k+1}) = (\mathbf{x}, \mathbf{y}, \mathbf{s}) + \alpha(\Delta \mathbf{x}, \Delta \mathbf{y}, \Delta \mathbf{s})$
- 9: $k \leftarrow k + 1$;
- 10: end while

▶ Where

$$\mathbf{X} = \operatorname{diag}(x_1, ..., x_n)$$

$$\mathbf{S} = \operatorname{diag}(s_1, ..., s_n)$$

$$\mathbf{1}_n = (1, ..., 1)^{\mathsf{T}}$$

• After $k = \mathcal{O}\left(n\log\frac{1}{\epsilon}\right)$ iterations, $\mu_k \le \epsilon \,\mu_0$.

Long-step IPM

```
1: Input: A, b, c, \gamma \in (0,1), tolerance \epsilon \in (0,1), \sigma \in (0,1);
   2: Initialize: k \leftarrow 0: (\mathbf{x}^0, \mathbf{v}^0, \mathbf{s}^0) \in \mathcal{F}^0:
   3: while \mu_k > \tau do
           Let (\mathbf{x}, \mathbf{y}, \mathbf{s}) = (\mathbf{x}^k, \mathbf{y}^k, \mathbf{s}^k)
               Solve \begin{pmatrix} \mathbf{A} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{A}^\mathsf{T} & \mathbf{I}_n \\ \mathbf{S} & \mathbf{0} & \mathbf{X} \end{pmatrix} \begin{pmatrix} \Delta \mathbf{x} \\ \Delta \mathbf{y} \\ \Delta \mathbf{s} \end{pmatrix} = \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \\ -\mathbf{X}\mathbf{S}\mathbf{1}_n + \sigma \mu \mathbf{1}_n \end{pmatrix}
  6:
                            \tilde{\alpha} = \operatorname{argmax} \{ \alpha \in [0, 1] : (\mathbf{x}(\alpha), \mathbf{y}(\alpha), \mathbf{s}(\alpha)) \in \mathcal{N}(\gamma) \}
   7:
                    Compute \bar{\alpha} = \operatorname{argmin}\{\alpha \in [0, \tilde{\alpha}] : (\mathbf{x}(\alpha))^{\mathsf{T}}(\mathbf{s}(\alpha))\}\
              (\mathbf{x}^{k+1}, \mathbf{v}^{k+1}, \mathbf{s}^{k+1}) = (\mathbf{x}(\bar{\alpha}), \mathbf{y}(\bar{\alpha}), \mathbf{s}(\bar{\alpha}))
10: end while
```

▶ Where

$$\mathbf{X} = \operatorname{diag}(x_1, ..., x_n)$$

$$\mathbf{S} = \operatorname{diag}(s_1, ..., s_n)$$

$$\mathbf{1}_n = (1, ..., 1)^{\mathsf{T}}$$

- ▶ Per iteration cost for solving the linear system in Step 5: $\mathcal{O}(m^2n)$.

Solving linear system

$$\begin{pmatrix} \mathbf{A} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{A}^\mathsf{T} & \mathbf{I}_n \\ \mathbf{S} & \mathbf{0} & \mathbf{X} \end{pmatrix} \begin{pmatrix} \Delta \mathbf{x} \\ \Delta \mathbf{y} \\ \Delta \mathbf{s} \end{pmatrix} = \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \\ -\mathbf{X}\mathbf{S}\mathbf{1}_n + \sigma\mu\mathbf{1}_n \end{pmatrix}$$

$$\mathbf{A}\mathbf{D}^2\mathbf{A}^\mathsf{T}\Delta\mathbf{y} = \underbrace{-\sigma\mu\mathbf{A}\mathbf{S}^{-1}\mathbf{1}_n + \mathbf{A}\mathbf{x}}_{\mathbf{P}},$$

$$\Delta \mathbf{s} = -\mathbf{A}^{\mathsf{T}} \Delta \mathbf{y} \,, \tag{4}$$

$$\Delta \mathbf{x} = -\mathbf{x} + \sigma \mu \mathbf{S}^{-1} \mathbf{1}_n - \mathbf{D}^2 \Delta \mathbf{s}. \tag{5}$$

Here, $\mathbf{D} = \mathbf{X}^{1/2}\mathbf{S}^{-1/2}$ is a diagonal matrix.

(3)

Solving normal equation

$$\mathbf{A}\mathbf{D}^2\mathbf{A}^\mathsf{T}\Delta\mathbf{y} = \mathbf{p} \tag{3}$$

Direct solvers

- If A is high-dimensional and dense, computationally prohibitive.
- Sparse solvers doesn't take into account the irregular sparsity pattern of $\mathbf{A}\mathbf{D}^2\mathbf{A}$.

Iterative solvers

- $\mathbf{A}\mathbf{D}^2\mathbf{A}^\mathsf{T}$ is typically ill-conditioned near the optimal solution.

Preconditioned equation

$$\mathbf{Q}^{-1/2}\mathbf{A}\mathbf{D}^2\mathbf{A}^\mathsf{T}\underbrace{\mathbf{Q}^{-1/2}\mathbf{z}}_{\Delta\mathbf{y}} = \ \mathbf{Q}^{-1/2}\mathbf{p},$$

where $\mathbf{Q} \in \mathbb{R}^{m \times m}$ is the preconditioning matrix.

Clearly, we need such a \mathbf{Q} which is "easy" to compute as well as invert. We'll use RandNLA principles to construct such a $\mathbf{Q}^{-1/2}$.

Conditions on Q

$$\mathbf{Q}^{-1/2}\mathbf{A}\mathbf{D}^2\mathbf{A}^{\top}\underbrace{\mathbf{Q}^{-1/2}\mathbf{z}}_{\Delta\mathbf{y}} = \mathbf{Q}^{-1/2}\mathbf{p}$$

For an accuracy parameter $\zeta \in (0,1)$, it can be shown that the following two conditions on the preconditioner $\mathbf{Q}^{-1/2}$ leads to the convergence of our IPM algorithm:

• All singular values $i=1,2,\ldots,m$ of the preconditioned matrix $\mathbf{Q}^{-1/2}\mathbf{A}\mathbf{D}$ satisfies

$$\frac{2}{2+\zeta} \le \sigma_i^2(\mathbf{Q}^{-\frac{1}{2}}\mathbf{A}\mathbf{D}) \le \frac{2}{2-\zeta} \qquad \cdots (\mathbf{C1})$$

$$\Rightarrow \kappa^2(\mathbf{Q}^{-1/2}\mathbf{A}\mathbf{D}) = \frac{\sigma_1^2(\mathbf{Q}^{-1/2}\mathbf{A}\mathbf{D})}{\sigma_{2r}^2(\mathbf{Q}^{-1/2}\mathbf{A}\mathbf{D})} \le \frac{1+\zeta/2}{1-\zeta/2}.$$

 As the number of iterations t of the iterative solver increases, residual norm w.r.t the preconditioned system decreases exponentially fast:

$$\left\|\mathbf{Q}^{-1/2}\mathbf{A}\mathbf{D}^{2}\mathbf{A}^{\top}\mathbf{Q}^{-1/2}\tilde{\mathbf{z}}^{t} - \mathbf{Q}^{-1/2}\mathbf{p}\right\|_{2} \leq \zeta^{t} \left\|\mathbf{Q}^{-1/2}\mathbf{p}\right\|_{2} \quad \cdots (\mathbf{C2})$$

Constructing the preconditioner $Q^{-1/2}$

- For a suitable sketching matrix $\mathbf{W} \in \mathbb{R}^{n \times w}$ $(w \ll n)$, take $\mathbf{Q} = \mathbf{ADW}(\mathbf{ADW})^{\top}$
- To invert Q, it is sufficient to compute the SVD of ADW, which takes $\mathcal{O}(m^2w)$ time.
- $\bullet \ \ \text{We need a sketching matrix } \mathbf{W} \ \text{such that:} \\$
 - ADW can be computed efficiently.
 - For a given accuracy parameter $\zeta \in (0,1)$, we need **W** to satisfy

$$\left\| \mathbf{V}^{\top} \mathbf{W} \mathbf{W}^{\top} \mathbf{V} - \mathbf{I}_{m} \right\|_{2} \le \zeta/2 \tag{6}$$

with high probability. Here $\mathbf{V} \in \mathbb{R}^{n \times m}$ is the top m right singular vectors of \mathbf{AD} .

Sketching matrix W

$$\mathbf{W}^{\mathsf{T}} = \begin{pmatrix} 0 & 0 & -\frac{1}{\sqrt{s}} & & +\frac{1}{\sqrt{s}} & 0 & & & \\ +\frac{1}{\sqrt{s}} & 0 & 0 & & \vdots & \vdots & & \\ \frac{1}{\sqrt{s}} & \vdots & \vdots & \vdots & & \vdots & \vdots & \\ \vdots & \vdots & \vdots & \ddots & & \vdots & \vdots & \\ \frac{1}{\sqrt{s}} & 0 & 0 & & -\frac{1}{\sqrt{s}} & & -\frac{1}{\sqrt{s}} \\ 0 & -\frac{1}{\sqrt{s}} & +\frac{1}{\sqrt{s}} & 0 & 0 & & 0 \end{pmatrix} \xrightarrow{\mathbf{V}} \begin{pmatrix} 0 & +\frac{1}{\sqrt{s}} & & \\ \frac{1}{\sqrt{s}} & 0 & & \\ 0 & 0 & & \vdots & \vdots & \vdots \\ 0 & -\frac{1}{\sqrt{s}} & +\frac{1}{\sqrt{s}} & & 0 & 0 & \\ 0 & 0 & 0 & & & \end{pmatrix} \quad \mathbf{S} = O(\log m) \text{ non-zero entries}$$

- For a given failure probability $\delta \in (0,1)$, $\mathbf{W} \in \mathbb{R}^{n \times w}$ is a sparse matrix with $w = \mathcal{O}(m/\zeta^2 \cdot \log m/\delta)$ and has $s = \mathcal{O}(1/\zeta \cdot \log m/\delta)$ non-zero entries per row.
- **ADW** can be computed in $\mathcal{O}(1/\zeta \cdot \log m/\delta \cdot \text{nnz}(\mathbf{A}))$ time. Therefore, time to compute $\mathbf{Q}^{-\frac{1}{2}}$ is given by $\boxed{\mathcal{O}(1/\zeta \cdot \text{nnz}(\mathbf{A}) \cdot \log m/\delta + m^3/\zeta^2 \log m/\delta)}$
- [Cohen, Nelson, and Woodruff, ICALP 2016] proved that such a construction of W satisfies $\|\mathbf{V}^{\top}\mathbf{W}\mathbf{W}^{\top}\mathbf{V} \mathbf{I}_{m}\|_{2} \leq \zeta/2$ with probability at least 1δ .

Satisfying (C1)

Lemma 1

Let $\mathbf{Q} = \mathbf{A}\mathbf{D}\mathbf{W}\mathbf{W}^\mathsf{T}\mathbf{D}\mathbf{A}^\mathsf{T}$ and if the sketching matrix \mathbf{W} satisfies $\|\mathbf{V}^\mathsf{T}\mathbf{W}\mathbf{W}^\mathsf{T}\mathbf{V} - \mathbf{I}_m\|_2 \le \zeta/2$, then, for all $i = 1 \dots m$,

$$(1+\zeta/2)^{-1} \le \sigma_i^2(\mathbf{Q}^{-1/2}\mathbf{AD}) \le (1-\zeta/2)^{-1}.$$

- If the sketching matrix W satisfies the ℓ_2 -subspace embedding, the condition number of ${\bf Q}^{-1/2}{\bf A}{\bf D}$ remains small.
- We already mentioned that, W satisfies above condition with high probability due to [Cohen, Nelson, and Woodruff, ICALP 2016]. Therefore, our preconditioner satisfies (C1) w.h.p.

Satisfying (C2)

Lemma 2

Given our preconditioner $\mathbf{Q}^{-1/2} = (\mathbf{A}\mathbf{D}\mathbf{W}\mathbf{W}^\mathsf{T}\mathbf{D}\mathbf{A}^\mathsf{T})^{-1/2}$ satisfying condition (C1) for an accuracy parameter $\zeta \in (0,1)$ and all $i=1,2\ldots,m$, our iterative solver satisfies

$$\|\mathbf{Q}^{-1/2}\mathbf{A}\mathbf{D}^2\mathbf{A}^\mathsf{T}\mathbf{Q}^{-1/2}\tilde{\mathbf{z}}^t - \mathbf{Q}^{-1/2}\mathbf{p}\|_2 \leq \zeta^t \|\mathbf{Q}^{-1/2}\mathbf{p}\|_2 \,.$$

Here $\tilde{\mathbf{z}}^t$ is the approximate solution returned by the CG iterative solver after t iterations.

- Residual drops exponentially fast as t in creases.
- The above guarantee holds for a number of iterative solvers including CG, Chebyshev iteration, Steepest descent etc.

Satisfying (C2) using CG

Lemma 3 (Theorem 8 of [Bouyouli et al., NLAA 2009])

Let $\tilde{\mathbf{f}}^{(j)} = \mathbf{Q}^{-1/2} \mathbf{A} \mathbf{D}^2 \mathbf{A}^{\top} \mathbf{Q}^{-1/2} \tilde{\mathbf{z}}^j - \mathbf{Q}^{-1/2} \mathbf{p}$ be the residual of by the CG solver at steps j. Then,

$$\|\tilde{\mathbf{f}}^{(j)}\|_{2} \le \frac{\kappa^{2}(\mathbf{Q}^{-1/2}\mathbf{A}\mathbf{D}) - 1}{2} \|\tilde{\mathbf{f}}^{(j-1)}\|_{2}$$

- Note that the above recursive relation, in general, does not ensure that the residual norms decrease monotonically.
- But, due to (C1), we already have $\kappa^2(\mathbf{Q}^{-1/2}\mathbf{AD}) \leq \frac{1+\zeta/2}{1-\zeta/2}$
- If we combine the above inequality with the recursion, we readily get (C2).
- Therefore, our preconditioner ensures the CG residual decreases monotonically, which otherwise fluctuates.

Satisfying (C2) using Chebyshev iteration

Lemma 4 (Theorem 1.6.2 of [Gutknecht, 2008])

The residual norm reduction of the Chebyshev iteration, when applied to an SPD system whose condition number is upper bounded by \mathcal{U} , is bounded according to

$$\frac{\left\|\tilde{\mathbf{f}}^{(t)}\right\|_{2}}{\left\|\tilde{\mathbf{f}}^{(0)}\right\|_{2}} \leq 2\left[\left(\frac{\sqrt{\mathcal{U}}+1}{\sqrt{\mathcal{U}}-1}\right)^{t}+\left(\frac{\sqrt{\mathcal{U}}-1}{\sqrt{\mathcal{U}}+1}\right)^{t}\right]^{-1}$$

- Chebyshev iteration avoids the computation of the communication intensive inner products which is typically needed for CG or other non-stationary methods.
- Due to (C1), we already have $\mathcal{U} = (1 + \zeta/2)/(1 \zeta/2)$. Using this, we establish (C2).

Satisfying (C2) using other solvers

- Similarly, our preconditioner also satisfies (C2) with respect to other two popular iterative solvers, namely
 - 1. Steepest descent
 - 2. Richardson iteration
- The proofs (C2) for both the solvers rely on the following recursive relation

$$\tilde{\mathbf{f}}^{(j+1)} = \left(\mathbf{I}_m - \alpha_j \mathbf{Q}^{-1/2} \mathbf{A} \mathbf{D}^2 \mathbf{A}^{\top} \mathbf{Q}^{-1/2}\right) \tilde{\mathbf{f}}^{(j)}.$$

Here $\tilde{\mathbf{f}}^{(j)} = \mathbf{Q}^{-1/2} \mathbf{A} \mathbf{D}^2 \mathbf{A}^{\top} \mathbf{Q}^{-1/2} \tilde{\mathbf{z}}^j - \mathbf{Q}^{-1/2} \mathbf{p}$ is the residual at the j-th iteration and α_j is the corresponding step size.

• The above recursive relation holds for $0 \le \alpha_j \le 1$ and due to the efficient preconditioning i.e., **(C1)**, we show that $\|\mathbf{I}_m - \alpha_j \mathbf{Q}^{-1/2} \mathbf{A} \mathbf{D}^2 \mathbf{A}^\top \mathbf{Q}^{-1/2} \|_2 \le \zeta$ for all $j = 1, \dots, t$. This establishes **(C2)**.

Iterative solver

Input: $AD \in \mathbb{R}^{m \times n}$ with $m \ll n, p \in \mathbb{R}^m$, sketching matrix $W \in \mathbb{R}^{n \times w}$, iteration count t;

Step 1. Compute \mathbf{ADW} and its SVD. Let $\mathbf{U}_{\mathbf{Q}} \in \mathbb{R}^{m \times m}$ be the matrix of its left singular vectors and let $\mathbf{\Sigma}_{\mathbf{Q}}^{1/2} \in \mathbb{R}^{m \times m}$ be the matrix of its singular values;

Step 2. Compute $\mathbf{Q}^{-1/2} = \mathbf{U}_{\mathbf{Q}} \mathbf{\Sigma}_{\mathbf{Q}}^{-1/2} \mathbf{U}_{\mathbf{Q}}^{\top}$;

Step 3. Initialize $\tilde{\mathbf{z}}^0 \leftarrow \mathbf{0}_m$ and run standard CG on $\mathbf{Q}^{-1/2}\mathbf{A}\mathbf{D}^2\mathbf{A}^T\mathbf{Q}^{-1/2}\tilde{\mathbf{z}} = \mathbf{Q}^{-1/2}\mathbf{p}$ for t iterations;

Output: return $\hat{\Delta \mathbf{y}} = \mathbf{Q}^{-1/2} \tilde{\mathbf{z}}^t$

- ▶ This algorithm summarizes our discussion in the previous slide.
- ullet Approximate solution $\hat{\Delta y}$ can be found by pre-multiplying the solution by the preconditioner.
- ▶ Instead of CG, one can use other iterative solvers, namely, Chebyshev iteration, SD etc.

Iterative solver

$$\mathbf{Q}^{-1/2}\mathbf{A}\mathbf{D}^2\mathbf{A}^\mathsf{T}\underbrace{\mathbf{Q}^{-1/2}\mathbf{z}}_{\Delta\mathbf{y}} = \ \mathbf{Q}^{-1/2}\mathbf{p}, \ ,$$

where $\mathbf{Q} \in \mathbb{R}^{m \times m}$ is the preconditioning matrix.

Let $\tilde{\mathbf{z}}^t$ be the solution after t iterations and $\hat{\Delta \mathbf{y}} = \mathbf{Q}^{-1/2} \tilde{\mathbf{z}}^t$. Then

$$\mathbf{A}\mathbf{D}^2\mathbf{A}^\mathsf{T}\hat{\Delta \mathbf{y}} \neq \mathbf{p}\,,\tag{3}$$

$$\hat{\Delta \mathbf{s}} = -\mathbf{A}^{\mathsf{T}} \hat{\Delta \mathbf{y}}, \tag{4}$$

$$\hat{\Delta \mathbf{x}} = -\mathbf{x} + \sigma \mu \mathbf{S}^{-1} \mathbf{1}_n - \mathbf{D}^2 \hat{\Delta \mathbf{s}}.$$
 (5)

•
$$\mathbf{A}^{\mathsf{T}} \hat{\Delta \mathbf{y}} + \hat{\Delta \mathbf{s}} = \mathbf{0}$$
, but $\mathbf{A} \hat{\Delta \mathbf{x}} \neq \mathbf{0}$.

$$\Rightarrow$$
 A(**x** + $\alpha \hat{\Delta \mathbf{x}}$) \neq **b** i.e. **x** + $\alpha \hat{\Delta \mathbf{x}}$ becomes primal infeasible.

Perturbation vector v [Monteiro and O'Neal, 2003]

$$\begin{pmatrix} \mathbf{A} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{A}^{\mathsf{T}} & \mathbf{I}_n \\ \mathbf{S} & \mathbf{0} & \mathbf{X} \end{pmatrix} \begin{pmatrix} \hat{\Delta \mathbf{x}} \\ \hat{\Delta \mathbf{y}} \\ \hat{\Delta \mathbf{s}} \end{pmatrix} = \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \\ -\mathbf{X}\mathbf{S}\mathbf{1}_n + \sigma\mu\mathbf{1}_n - \mathbf{v} \end{pmatrix}$$

$$\mathbf{A}\mathbf{D}^2\mathbf{A}^\mathsf{T}\hat{\Delta \mathbf{y}} = \mathbf{p} + \mathbf{A}\mathbf{S}^{-1}\mathbf{v},\tag{7}$$

$$\hat{\Delta \mathbf{s}} = -\mathbf{A}^{\mathsf{T}} \hat{\Delta \mathbf{y}}, \tag{8}$$

$$\hat{\Delta \mathbf{x}} = -\mathbf{x} + \sigma \mu \mathbf{S}^{-1} \mathbf{1}_n - \mathbf{D}^2 \hat{\Delta \mathbf{s}} - \mathbf{S}^{-1} \mathbf{v}.$$
 (9)

• $\mathbf{A}\hat{\Delta \mathbf{x}} = \mathbf{0}$ if \mathbf{v} satisfies eqn. (7) $\Rightarrow \mathbf{A}(\mathbf{x} + \alpha \hat{\Delta \mathbf{x}}) = \mathbf{b}$

Our construction of v

We need a $\mathbf{v} \in \mathbb{R}^n$ such that

$$\mathbf{A}\mathbf{S}^{-1}\mathbf{v} = \mathbf{A}\mathbf{D}^2\mathbf{A}^{\mathsf{T}}\hat{\Delta \mathbf{y}} - \mathbf{p} \tag{6}$$

- Optimal solution $\mathbf{v} = \operatorname{argmin} \left\{ \|\mathbf{v}\|_2 : \mathbf{A}\mathbf{S}^{-1}\mathbf{v} = \mathbf{A}\mathbf{D}^2\mathbf{A}^\mathsf{T}\hat{\Delta\mathbf{y}} \mathbf{p} \right\}$
- Solution proposed by [Monteiro & O'Neal , 2003] is expensive.

Our construction of v

We need a $\mathbf{v} \in \mathbb{R}^n$ such that

$$\mathbf{A}\mathbf{S}^{-1}\mathbf{v} = \mathbf{A}\mathbf{D}^2\mathbf{A}^{\mathsf{T}}\hat{\Delta \mathbf{y}} - \mathbf{p} \tag{6}$$

- Optimal solution $\mathbf{v} = \operatorname{argmin} \left\{ \|\mathbf{v}\|_2 : \mathbf{A}\mathbf{S}^{-1}\mathbf{v} = \mathbf{A}\mathbf{D}^2\mathbf{A}^\mathsf{T}\hat{\Delta\mathbf{y}} \mathbf{p} \right\}$
- Solution proposed by [Monteiro & O'Neal, 2003] is expensive.
- Our solution:

$$\mathbf{v} = (\mathbf{X}\mathbf{S})^{1/2}\mathbf{W}(\mathbf{A}\mathbf{D}\mathbf{W})^{\dagger}(\mathbf{A}\mathbf{D}^{2}\mathbf{A}^{\mathsf{T}}\hat{\Delta\mathbf{y}} - \mathbf{p}).$$

Our construction of v

Lemma 5

Let $\mathbf{W} \in \mathbb{R}^{n \times w}$ be the sketching matrix discussed earlier and $\mathbf{v} = (\mathbf{X}\mathbf{S})^{1/2}\mathbf{W}(\mathbf{A}\mathbf{D}\mathbf{W})^{\dagger}(\mathbf{A}\mathbf{D}^2\mathbf{A}^{\mathsf{T}}\hat{\Delta \mathbf{y}} - \mathbf{p})$ be the perturbation vector. Then, with probability at least $1 - \delta$, $\mathrm{rank}(\mathbf{A}\mathbf{D}\mathbf{W}) = m$ and \mathbf{v} satisfies $\mathbf{A}\mathbf{S}^{-1}\mathbf{v} = \mathbf{A}\mathbf{D}^2\mathbf{A}^{\mathsf{T}}\hat{\Delta \mathbf{y}} - \mathbf{p}$.

$Proof\ sketch:$

With probability at least
$$1 - \delta$$
, $\|\mathbf{V}^\mathsf{T} \mathbf{W} \mathbf{W}^\mathsf{T} \mathbf{V} - \mathbf{I}_m\|_2 \le \zeta/2 \Rightarrow \operatorname{rank}(\mathbf{V}^\mathsf{T} \mathbf{W}) = m$

$$\Rightarrow \operatorname{rank}(\mathbf{A}\mathbf{D}\mathbf{W}) = \operatorname{rank}(\mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{\mathsf{T}}\mathbf{W}) = \operatorname{rank}(\mathbf{V}^{\mathsf{T}}\mathbf{W}) = m.$$

Therefore, $\mathbf{ADW} (\mathbf{ADW})^\dagger = \mathbf{I}_m$ and

$$\begin{split} \mathbf{A}\mathbf{S}^{-1}\,\mathbf{v} &= \mathbf{A}\mathbf{S}^{-1}(\mathbf{X}\mathbf{S})^{1/2}\mathbf{W}(\mathbf{A}\mathbf{D}\mathbf{W})^{\dagger}(\mathbf{A}\mathbf{D}^{2}\mathbf{A}^{\mathsf{T}}\hat{\Delta\mathbf{y}} - \mathbf{p}) \\ &= \mathbf{A}\mathbf{D}\mathbf{W}(\mathbf{A}\mathbf{D}\mathbf{W})^{\dagger}(\mathbf{A}\mathbf{D}^{2}\mathbf{A}^{\mathsf{T}}\hat{\Delta\mathbf{y}} - \mathbf{p}) \\ &= \mathbf{A}\mathbf{D}^{2}\mathbf{A}^{\mathsf{T}}\hat{\Delta\mathbf{y}} - \mathbf{p} \,. \end{split}$$

Time to compute v

$$\mathbf{v} = (\mathbf{X}\mathbf{S})^{1/2}\mathbf{W}(\mathbf{A}\mathbf{D}\mathbf{W})^{\dagger}(\mathbf{A}\mathbf{D}^2\mathbf{A}^{\mathsf{T}}\hat{\Delta \mathbf{y}} - \mathbf{p})$$

- $(\mathbf{A}\mathbf{D}\mathbf{W})^{\dagger}$ can be computed in $\mathcal{O}\Big(\mathsf{nnz}(\mathbf{A}) \cdot \log(m/\delta) + m^3 \log(m/\delta)\Big)$ time.
- Pre-multiplying by W takes $\mathcal{O}\Big(\mathsf{nnz}(\mathbf{A})\log(m/\delta)\Big)$ time (assuming $\mathsf{nnz}(\mathbf{A}) \geq n$).
- $\bullet~\mathbf{X}$ and \mathbf{S} are diagonal matrices. Therefore computing \mathbf{v} takes time

$$\mathcal{O}\!\left(\mathsf{nnz}(\mathbf{A}) \cdot \log(m/\delta) \!\!+\!\! m^3 \log(\overline{m/\delta})\right)$$

Bounding $\|\mathbf{v}\|_2$

Lemma 6

Let our iterative solver satisfies (C2) after t iterations. Then, we have

$$\|\mathbf{v}\|_2 \le \sqrt{6}n\,\zeta^t\,\psi\mu$$

Moreover, after $t \geq \frac{\log(n \, \psi)}{\log(1/\zeta)}$ iterations of the iterative solver, we have

$$\|\mathbf{v}\|_2 \le \frac{\gamma \sigma}{4} \mu$$
.

Here
$$\psi = \frac{4\sqrt{6}(1+\sigma/\sqrt{1-\gamma})}{\gamma\sigma}$$
.

Convergence guarantee: main result

Theorem 1

Let the initial point $(\mathbf{x}^0, \mathbf{s}^0, \mathbf{y}^0) \in \mathcal{F}^0$ and $\|\mathbf{v}\|_2 \leq \gamma \sigma \mu/4$. Then, our algorithm generates an iterate $(\mathbf{x}^k, \mathbf{s}^k, \mathbf{y}^k)$ satisfying $\mu_k \leq \epsilon \mu_0$ after $\mathcal{O}(n \log 1/\epsilon)$ iterations.

Overall running time:

- Computing $\mathbf{Q}^{-1/2}$ and \mathbf{v} takes $\mathcal{O}(\mathsf{nnz}(\mathbf{A}) \cdot \log(m/\delta) + m^3 \log(m/\delta))$ time.
- For $t = \mathcal{O}(\log n)$ iterations of the solver, all the matrix-vector products are computed in $\mathcal{O}(\mathsf{nnz}(\mathbf{A}) \cdot \log n)$ time.
- Computational time for steps (4)-(6) is $\mathcal{O}(\operatorname{nnz}(\mathbf{A}) \cdot (\log n + \log(m/\delta)) + m^3 \log(m/\delta))$.
- Taking a union bound over all iterations with $\delta = \mathcal{O}(n^{-1})$, our algorithm coverges with probability at least 0.9 and the running time per iteration is given by 1

$$\mathcal{O}((\mathsf{nnz}(\mathbf{A}) + m^3) \log n)$$
 vs. $\mathcal{O}(m^2n)$

Our algorithm

1: Input: $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m$, $\mathbf{c} \in \mathbb{R}^n$, $\gamma \in (0,1)$, tolerance $\epsilon > 0$, $\sigma \in (0,4/5)$; 2: **Initialize:** $k \leftarrow 0$; initial point $(\mathbf{x}^0, \mathbf{v}^0, \mathbf{s}^0) \in \mathcal{F}^0$; 3: while $\mu_k > \epsilon$ do Compute sketching matrix $\mathbf{W} \in \mathbb{R}^{n \times w}$ with $\zeta = 1/2$ and $\delta = O(n^{-1})$; 4: Compute $\mathbf{Q}^{-1/2}$ and solve $\mathbf{Q}^{-1/2}\mathbf{A}\mathbf{D}^2\mathbf{A}^{\mathsf{T}}\mathbf{Q}^{-1/2}\mathbf{z} = \mathbf{Q}^{-1/2}\mathbf{p}$ with $t = \Omega(\log n)$: 5: 6: Compute $\hat{\Delta \mathbf{v}} = \mathbf{Q}^{-1/2}\mathbf{z}$, \mathbf{v} using \mathbf{W} from step (4), $\hat{\Delta \mathbf{s}}$ and $\hat{\Delta \mathbf{x}}$: Compute $\tilde{\alpha} = \operatorname{argmax}\{\alpha \in [0,1] : (\mathbf{x}^k, \mathbf{v}^k, \mathbf{s}^k) + \alpha(\hat{\Delta}\mathbf{x}^k, \hat{\Delta}\mathbf{v}^k, \hat{\Delta}\mathbf{s}^k) \in \mathcal{N}(\gamma)\}.$ 7: Compute $\bar{\alpha} = \operatorname{argmin}\{\alpha \in [0, \tilde{\alpha}] : (\mathbf{x}^k + \alpha \hat{\Delta} \mathbf{x}^k)^{\mathsf{T}} (\mathbf{s}^k + \alpha \hat{\Delta} \mathbf{s}^k)\}.$ 8: Compute $(\mathbf{x}^{k+1}, \mathbf{v}^{k+1}, \mathbf{s}^{k+1}) = (\mathbf{x}^k, \mathbf{v}^k, \mathbf{s}^k) + \bar{\alpha}(\hat{\Delta}\mathbf{x}^k, \hat{\Delta}\mathbf{v}^k, \hat{\Delta}\mathbf{s}^k)$; set $k \leftarrow k+1$; 10: end while

Infeasible case²

- Finding $(\mathbf{x}^0, \mathbf{y}^0, \mathbf{s}^0) \in \mathcal{F}^0$ is non trivial.
- \mathcal{F}^0 can be empty.
- Can be extended to analyze infeasible IPMs by starting from an arbitrary

$$(\mathbf{x}^0,\mathbf{y}^0,\mathbf{s}^0)$$
 with $(\mathbf{x}^0,\mathbf{s}^0)>\mathbf{0}$

• $\mathbf{r}_p = \mathbf{A}\mathbf{x} - \mathbf{b}$, $\mathbf{r}_d = \mathbf{A}^\mathsf{T}\mathbf{y} + \mathbf{s} - \mathbf{c}$ with $\mathbf{r} := (\mathbf{r}_p, \mathbf{r}_d) \in \mathbb{R}^{m+n}$ and the definition of $\mathcal{N}(\gamma)$ changes

$$\mathcal{N}(\gamma) = \left\{ (\mathbf{x}, \mathbf{y}, \mathbf{s}) : (\mathbf{x}, \mathbf{s}) > \mathbf{0}, \mathbf{x} \circ \mathbf{s} \geq (1 - \gamma) \mu \mathbf{1}_n \text{ and } \frac{\|\mathbf{r}\|_2}{\|\mathbf{r}^0\|_2} \leq \frac{\mu}{\mu_0} \right\}$$

• Iteration complexity of the infeasible IPM algorithm increases to $\mathcal{O}(n^2 \log(1/\epsilon))$.

Predictor-corrector IPM³

- Predictor step greatly decreases the duality measure, while deviating from the central path (centering parameter $\sigma=0$).
- Corrector step keeps the duality measure constant but returns iterate to near central path (centering parameter $\sigma=1$).
- Alternates between two neighborhoods of the central path $\mathcal{N}_2(0.25)$ and $\mathcal{N}_2(0.5)$.
- Prototypical PC converges in $\mathcal{O}\left(\sqrt{n}\log\frac{1}{\epsilon}\right)$ iterations.

Figure from [Wright, 1997]

$$\mathcal{N}_2(\theta) = \left\{ (\mathbf{x}, \mathbf{y}, \mathbf{s}) \in \mathbb{R}^{2n+m} : \|\mathbf{x} \circ \mathbf{s} - \mu \mathbf{1}_n\|_2 \le \theta \mu, (\mathbf{x}, \mathbf{s}) > 0 \right\}$$

Structural Conditions for Inexact PC

• Let If $\hat{\Delta y}$ satisfies (sufficient conditions):

$$\|\hat{\Delta y} - \Delta y\|_{\mathbf{A}\mathbf{D}^2\mathbf{A}^{\top}} \le \Theta\left(\frac{\epsilon}{\sqrt{n}\log 1/\epsilon}\right) \quad \cdots$$
 (C3)

$$\|\mathbf{A}\mathbf{D^2}\mathbf{A}^{\top}\hat{\Delta \mathbf{y}} - \mathbf{p}\|_2 \le \Theta\left(\frac{\epsilon}{\sqrt{n}\log 1/\epsilon}\right) \quad \cdots (\mathbf{C4})$$

- Then, we prove that the Inexact PC method converges in $\mathcal{O}\left(\sqrt{n} \cdot \log\left(\frac{1}{\epsilon}\right)\right)$ iterations, as expected.
- The final solution (and all intermediate iterates) are only approximately feasible.
- Satisfying the structural conditions for "standard" Inexact PC: the approximate solver needs $\mathcal{O}\left(\log\left(\frac{n\cdot\sigma_{\max}(\mathbf{AD})}{\epsilon}\right)\right)$ iterations (inner iterations).
- $\bullet \ \, \text{Per iteration cost (without a correction vector):} \overline{\left[\mathcal{O}\left((\operatorname{nnz}(\mathbf{A}) + m^3)\log\left(n \cdot \sigma_{\max}(\mathbf{A}\mathbf{D})\right)\right)\right]}$

Structural Conditions for Inexact PC using v

- ullet We modified the PC method using the correction vector ${f v}$ to make iterates exactly feasible.
- If $\hat{\Delta y}$ and v satisfy (sufficient conditions):

$$\mathbf{A}\mathbf{S^{-1}}\mathbf{v} = \hat{\mathbf{A}}\mathbf{D}^2\mathbf{A}^T\hat{\Delta\mathbf{y}} - \mathbf{p} \quad \cdots (\mathbf{C5})$$

$$\|\mathbf{v}\|_2 < \Theta(\epsilon)$$
 \cdots (C6)

- Then, we prove that this modified Inexact PC method converges in $\mathcal{O}\left(\sqrt{n} \cdot \log\left(\frac{1}{\epsilon}\right)\right)$ iterations, as expected. The final solution (and all intermediate iterates) are exactly feasible.
- Satisfying the structural conditions for the "modified" Inexact PC: the PCG solver needs $\mathcal{O}\left(\log\left(\frac{n}{\epsilon}\right)\right)$ iterations (inner iterations).
- Notice that using the error-adjustment vector \mathbf{v} in the modified Inexact PC eliminates the dependency on the largest singular value of the matrix \mathbf{AD} .
- Per iteration cost (with a correction vector): $\boxed{\mathcal{O}((\mathsf{nnz}(\mathbf{A}) + m^3)\log n)}$

Extensions: square matrices

- Our overall approach still works if **A** in any $m \times n$ matrix that is low-rank, e.g., $\operatorname{rank}(\mathbf{A}) = k \ll \min\{m, n\}.$
- In that case, using the thin SVD of $\mathbf{A} = \mathbf{U}_{\mathbf{A}} \mathbf{\Sigma}_{\mathbf{A}} \mathbf{V}_{\mathbf{A}}^\mathsf{T}$, we can rewrite the linear constraints as follows $\mathbf{U}_{\mathbf{A}} \mathbf{\Sigma}_{\mathbf{A}} \mathbf{V}_{\mathbf{A}}^\mathsf{T} \mathbf{x} = \mathbf{b}$.
- The LP of eqn. (1) can be restated as

$$\min \mathbf{c}^{\mathsf{T}} \mathbf{x}$$
, subject to $\mathbf{V}_{\mathbf{A}}^{\mathsf{T}} \mathbf{x} = \widetilde{\mathbf{b}}$, $\mathbf{x} \ge \mathbf{0}$, (10)

where $\widetilde{\mathbf{b}} = \mathbf{\Sigma}_{\mathbf{A}}^{-1} \mathbf{U}_{\mathbf{A}}^\mathsf{T} \mathbf{b}$.

- Note that, $rank(V_A) = k \ll n$ and therefore eqn. (10) can be solved using our framework.
- The matrices U_A , V_A , and Σ_A can be approximately recovered using the fast SVD algorithms [Halko, Martinsson, & Tropp , SIAM Rev. 2011].

Future directions

- Can we prove similar results for infeasible predictor-corrector IPMs?
- Are our structural conditions necessary? Can we derive simpler conditions?
- Could our structural conditions change from one iteration to the next? Could we use dynamic preconditioning or reuse preconditioners from one iteration to the next (e.g., low-rank updates of the preconditioners)?
- Can this framework be extendent to other convex optimization problems <u>e.g.</u>, Logistic regression or semidefinite programming(SDP)?

Relevant literature

- 1. G. Dexter, A. Chowdhury, H. Avron, and P. Drineas, On the convergence of Inexact Predictor-Corrector Methods for Linear Programming, ICML 2022.
- 2. A. Chowdhury, G. Dexter, P. London, H. Avron, and P. Drineas, Faster Randomized Interior Point Methods for Tall/Wide Linear Programs, JMLR 2022.
- 3. A. Chowdhury, P. London, H. Avron, and P. Drineas, Speeding up Linear Programming using Randomized Linear Algebra, NeurIPS 2020.
- 4. R. Monteiro and J. O'Neal, Convergence analysis of a long-step primal dual infeasible interior point LP algorithm based on iterative linear solvers, 2003.
- 5. D. Woodruff, Sketching as a Tool for Numerical Linear Algebra, FTTCS 2014.
- 6. M. W. Mahoney and P. Drineas, RandNLA: Randomized Numerical Linear Algebra, CACM 2016.
- 7. P. Drineas and M. W. Mahoney, Lectures on Randomized Numerical Linear Algebra, Amer. Math. Soc., 2018.

Thank you!

Questions?

