Subjectul D. OPTICĂ

Nr. item	Soluţie/Rezolvare
III.a.	Din grafic $v_0 = 5.45 \cdot 10^{14} Hz$
	$L = hv_0$
	Rezultat final: $L \cong 3.6 \cdot 10^{-19} J$
b.	
	$h \cdot v = L + E_c$ $E_c = hv - L$
	$E_c = h\nu - L$
	Panta dreptei din grafic este constanta lui Planck, h
C.	
	$\lambda_{prag} = \frac{c}{v_{prag}}$ $v_{prag} = 5,45 \cdot 10^{14} Hz \text{deoarece} E_{c_{max}} = 0J$
	$v_{prag} = 5.45 \cdot 10^{14} Hz$ decarece $E_{c_{\text{max}}} = 0J$
	$\lambda_{prag} = 550,4 nm$
	Rezultat final: λ_2 și λ_3 produc efect fotoelectric
d.	$U_{s} = \frac{h}{e} \left(\frac{c}{\lambda_{3}} - v_{0} \right)$
	Rezultat final: $U_s \cong 0.33V$