A Recursive Strategy for Symbolic Execution Expressed in Coq

Alyssa Byrnes

October 25, 2018

Abstract

Symbolic execution allows one to execute a program with symbolic inputs, rather than concrete ones, exploring multiple execution paths simultaneously. This can be a useful tool in debugging a system, for now we can potentially execute all possible inputs of a program to discover bugs and generate exploits. In this work, we examine a previously proposed hardware-oriented recursive symbolic execution algorithm and formally verify that if an error state is reachable, it produces a sequence of inputs that will take the processor from its inital state to that error state.

1 Abstract Variables and Methods

1.1 Concrete Execution

Abstract Variables

- input string of inputs
- \bullet state system state

Inductive-type Variables

- input list list of elements of type "input"
- conc_state constructs a concrete state given a system state and an input, (elements of type "state" and "input".)

Abstract Methods

• conc ex - inputs elements of type "conc state" and and "input" and outputs new "conc state".

1.2 Symbolic Execution

Abstract Variables

- phi Abstract State
- \bullet pc path constraint

Inductive-type Variables

- sym state constructs a symbolic state given elements of type "phi" and "pc"
- SE tree tree structure consisting of sym state elements
- SE_tree_list list containing SE_tree elements

Abstract Methods

- get_phi inputs sym_state and returns phi
- get pc inputs sym state and returns pc
- concretize takes a phi and pc and returns a concrete state
- get input takes a pc and outputs an element of type "input"

2 Definitions

2.1 Variables

- init conc states an ensemble of conc states.
- \bullet tree list an SE_tree_list

2.2 General Methods

Definition 1 is_connected(tlist) := forall $A \ B \in$, tlist $\geq 2 \rightarrow$ if A and B are consecutive, then the root of B is a leaf of A.

Definition 2 execute_tree_list(tlist): steps through tlist, executing a list of size 2 (or the first two elements of a list) as $conc_ex(conc_ex(init_conc_states, x), y)$ where $x = get_input(get_pc(root(second_element))))$ and $y = get_input(get_pc(root(third_element))))$. For any other element in the list, it recurses as $conc_ex(execute_tree_list(tlist', z))$, where tlist' = tlist with the last element removed, and $z = get_input(get_pc(root(next_element)))$.

2.3 Circle Operations

Circle_op_1 takes as input symbolic state of root and pc of its leaf and returns all and only the concrete states that will take us down the path that leads to the leaf.

Definition 3 circle op 1 (sym, sym leaf) := concretize (get phi sym) (get pc sym leaf).

Circle_op_2 takes as input symbolic state of leaf state and pc of leaf state and returns concrete states that correspond.

Definition 4 $circle_op_2$ (sym) := concretize $(get_phi\ sym)$ $(get_pc\ sym)$.

3 Assumptions

 $\begin{array}{ll} \textbf{Property 1} & Property \ 1: \ init_conc_states \in circle_op_1 \ (root(head(tree_list)), \ root \ (second_elem \ (tree_list))). \end{array}$

Property 2 Property 2: circle op 2 (root (last elem(tree list))) \cap ErrorStates \neq Empty set.

Property 3 Property 3: is connected tree list.

Property 4 tl $size : size(tree \ list) \ge 2$.

Property 5 base_case: forall $s0 \ s$: SE_tree , $is_connected (([] :: <math>s0$) :: s) -> $conc_ex$ ($conc_ex$ init_conc_states (get_input (get_pc (root s0)))) (get_input (get_pc (root s))) = $circle_op_2$ (root s).

Property 6 co_2_def: forall (s0 : SE_tree) (s: sym_state), is_leaf_state s0 s -> $conc_ex$ (circle op 2 (root s0)) (get input (get pc s)) = (circle op 2 s).

Property 7 connected_elim: forall $(t : SE_tree_list)$ $(s0 \ s : SE_tree)$, $is_connected$ $((t :: s0) :: s)-> is_connected$ (t :: s0).

4 Theorem

Theorem 1 Theorem sufficiency: $(execute_tree_list\ tree_list) \cap ErrorStates) \neq Empty_set.$

5 Notes for Consideration

- We need to consider uniqueness. This might come naturally from the overall tree structure.
- Our work assumes SAT-solver correctness.
- Our circle op returns concrete states, so we just need to be able to compare concrete states.