	Thứ Ngày · ·	No.
Personal Note #8: Graph Neural Diffusion.		
	1/10 Talkasenna 15 (4) (1)	# T L
Tour on the Hills	ing referred 2 at	
1) Prevaquisites: ODE and Neural ODE.		
@ Under standing Ordinary Differential Equation.		,
Traditional date modelling method (regression	in): Given a bunch of pairs	d input
and out put E(zi, yi) I'm, find a function	f: X -> 4 to approx output	- dired
The problem with this traditional paradigm is	that the data is generaled b	oy nat
factors (economis, social,). We have no re	eliable way to remodel the	sophit
natural generation process. So, we treate no	eture like a black box x by	Pass
Should supply to the holomater for a region to the	The second second	
1) X Nature ??? Y) = ax +b.	
45 5 51 11 45	Params: a and	h
	Goal: Find a* a	
	that minimize MSE:	
and his minimized for the second of and set of	oliv ain kan Shan A Lis	
Find bost hit is	2(a,b) = 1 N (4 -1)	12
	N 2 121 - 41	1
2 Using ODE: 77	i dan	
	- God. Find a s-	١ . ١
X QU(1) V	manning 19 Com V	
7,	mapping f from X	to y_
6 Solve an ODE numerically: Euler's Method.	control to many of the	
Modelling rate of change.	공기들이 불위하다 그는 특히 되는 이 그리고 들어 들었다면 이렇게 그리고 있는데 얼굴했다.	
La So, instruct of modelling the		
we model the rate of change.	- Lucian used auseital	
La For every continuous differentiable fun	thion I its water at all and	0
is defined as the dorivative:	clairs 1	
f ing white the		
t, - qf (and		
dt (ordx, de	pending on input).	
5 10	15	

	Thứ Ngày · . No.
V ga V	In simple terms, Euler's mothed starts at an initial condition (Rosyd) then recursively increase No by a fixed step size S and evaluate the clope
M	at each step to derive the approximated solution (curve).
natan'i variable, se problem).	$\begin{cases} \lambda_{n+1} = \lambda_n + \delta \\ y_{n+1} = y_n + \delta f(\lambda_n, y_n) \end{cases}$
	AVI lasting to
	(*) Optimising the ODE.
	Les suppose we want to model a linear regression model $\hat{y}(x) = dx + b$.
	We have a set of input X and output Y. with N data points.
21171	1. Choose an initial value (xorys) and a fixed stepsize 8.
: asikhu	3. Add additional point from X so that Euler's method can be
oun sal, q acide	computed at a regular interval D. This is my computation trajectory. 4. Evaluate the trajectory at the chosen k points.
	5. Compute loss a gradient descont.
	(11 12 + 12) - 17 2 (01 , 12) = 04012
	(propred to see a superation of the second
	to ball to be a second of the
	37.0K 04
	5 10 15

Lad