Задача 1: Подреством таблица на истиност да се запише функцията f $(x_1, x_2, x_3 \bowtie x_4)$, ако при стойност нула на три от променливите функция приема стойност от 0, а при стойност едно на 3 от променливите функцията приема стойност 0.

- А) да се запише СДНФ на получената функция;
- Б) да се минимизира функцията;
- В) да се реализира схема с ИЛИ-НЕ логически елементи.

Задача 1: Подреством таблица на истиност да се запише функцията f $(x_1, x_2, x_3 \bowtie x_4)$, ако при стойност нула на три от променливите функция приема стойност от 0, а при стойност едно на 3 от променливите функцията приема стойност 0

Набор	x_1	x_2	x_3	x_4	f
0					
1					
2					
3					
4					
5					
6					
7					
8					
9					
10					
11					
12					
13					
14					
15					

Задача 1: Подреством таблица на истиност да се запише функцията f $(x_1, x_2, x_3 \bowtie x_4)$, ако при стойност нула на три от променливите функция приема стойност от 0, а при стойност едно на 3 от променливите функцията приема стойност 0

			•		
Набор	x_1	x_2	x_3	x_4	f
0	0	0	0	0	
1	0	0	0	1	
2	0	0	1	0	
3	0	0	1	1	
4	0	1	0	0	
5	0	1	0	1	
6	0	1	1	0	
7	0	1	1	1	
8	1	0	0	0	
9	1	0	0	1	
10	1	0	1	0	
11	1	0	1	1	
12	1	1	0	0	
13	1	1	0	1	
14	1	1	1	0	
15	1	1	1	1	
	8	4	2	1	

Задача 1: Подреством таблица на истиност да се запише функцията f $(x_1, x_2, x_3 \ \text{и} \ x_4)$, ако при стойност нула на три от променливите функция приема стойност от 0, а при стойност едно на 3 от променливите функцията приема стойност 0

Набор	x_1	x_2	x_3	x_4	F
0	0	0	0	0	1
1	0	0	0	1	0
2	0	0	1	0	0
3	0	0	1	1	1
4	0	1	0	0	0
5	0	1	0	1	1
6	0	1	1	0	1
7	0	1	1	1	0
8	1	0	0	0	0
9	1	0	0	1	1
10	1	0	1	0	1
11	1	0	1	1	0
12	1	1	0	0	1
13	1	1	0	1	0
14	1	1	1	0	0
15	1	1	1	1	1
	0	1	2	1	

Задача 1: Подреством таблица на истиност да се запише функцията f $(x_1, x_2, x_3 \bowtie x_4)$, ако при стойност нула на три от променливите функция приема стойност от 0, а при стойност едно на 3 от променливите функцията приема стойност 0

Набор	x_1	x_2	x_3	x_4	F	А) СДНФ:
0	0	0	0	0	1	$f=x_1.x_2.x_3.x_4 \lor x_1.x_2.x_3.x_4 \lor x_1.x_2.x_3.x_4 \lor$
1	0	0	0	1	0	
2	0	0	1	0	0	$\lor x_1.x_2.x_3.x_4 \lor x_1.x_2.x_3.x_4 \lor x_1.x_2.x_3.x_4 \lor$
3	0	0	1	1	1	$\lor x_1.x_2.x_3.x_4 \lor x_1.x_2.x_3.x_4$
4	0	1	0	0	0	
5	0	1	0	1	1	
6	0	1	1	0	1	
7	0	1	1	1	0	
8	1	0	0	0	0	
9	1	0	0	1	1	
10	1	0	1	0	1	
11	1	0	1	1	0	
12	1	1	0	0	1	
13	1	1	0	1	0	
14	1	1	1	0	0	
15	1	1	1	1	1	
	8	4	2	1		

Задача 1: Подреством таблица на истиност да се запише функцията f $(x_1, x_2, x_3 \bowtie x_4)$, ако при стойност нула на три от променливите функция приема стойност от 0, а при стойност едно на 3 от променливите функцията приема стойност 0

Набор	x_1	x_2	x_3	x_4	F	А) СДНФ:
0	0	0	0	0	1	$f=\overline{x_1}.\overline{x_2}.\overline{x_3}.\overline{x_4}\vee\overline{x_1}.\overline{x_2}.x_3.x_4\vee\overline{x_1}.x_2.\overline{x_3}.x_4\vee$
1	0	0	0	1	0	
2	0	0	1	0	0	$\vee \overline{x_1}.x_2.x_3.\overline{x_4} \vee x_1.\overline{x_2}.\overline{x_3}.x_4 \vee x_1.\overline{x_2}.x_3.\overline{x_4} \vee x_1.\overline{x_2}.\overline{x_3}.\overline{x_4} \vee x_2.\overline{x_3}.\overline{x_4} \vee x_1.\overline{x_2}.\overline{x_3}.\overline{x_4} \vee x_1.\overline{x_2}.\overline{x_2}.\overline{x_3}.\overline{x_4} \vee x_1.\overline{x_2}.\overline{x_2}.\overline{x_3}.\overline{x_4} \vee x_1.\overline{x_2}.\overline{x_2}.\overline{x_3}.\overline{x_4}$
3	0	0	1	1	1	$\lor x_1.x_2.\overline{x_3}.\overline{x_4} \lor x_1.x_2.x_3.x_4$
4	0	1	0	0	0	
5	0	1	0	1	1	
6	0	1	1	0	1	
7	0	1	1	1	0	
8	1	0	0	0	0	
9	1	0	0	1	1	
10	1	0	1	0	1	
11	1	0	1	1	0	
12	1	1	0	0	1	
13	1	1	0	1	0	
14	1	1	1	0	0	
15	1	1	1	1	1	
	8	4	2	1		

Задача 1: Подреством таблица на истиност да се запише функцията f $(x_1, x_2, x_3 \bowtie x_4)$, ако при стойност нула на три от променливите функция приема стойност от 0, а при стойност едно на 3 от променливите функцията приема стойност 0

Набор	x_1	x_2	x_3	x_4	F	А) СДНФ:
0	0	0	0	0	1	$f=\overline{x_1}.\overline{x_2}.\overline{x_3}.\overline{x_4}\vee\overline{x_1}.\overline{x_2}.x_3.x_4\vee\overline{x_1}.x_2.\overline{x_3}.x_4\vee$
1	0	0	0	1	0	
2	0	0	1	0	0	$\vee \overline{x_1}.x_2.x_3.\overline{x_4} \vee x_1.\overline{x_2}.\overline{x_3}.x_4 \vee x_1.\overline{x_2}.x_3.\overline{x_4} \vee$
3	0	0	1	1	1	$\lor x_1.x_2.\overline{x_3}.\overline{x_4} \lor x_1.x_2.x_3.x_4$
4	0	1	0	0	0	Б) минимизация:
5	0	1	0	1	1	~
6	0	1	1	0	1	x_1
7	0	1	1	1	0	$x_2 \mid 1 \mid 0 \mid 0 \mid 0$
8	1	0	0	0	0	
9	1	0	0	1	1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
10	1	0	1	0	1	
11	1	0	1	1	0	
12	1	1	0	0	1	x_3
13	1	1	0	1	0	J. 3
14	1	1	1	0	0	- АМКНФ:
15	1	1	1	1	1	f=
	8	4	2	1		

Функционално пълна система (ФПС)

Задача 2: Да се провери дали функцията f = x. y образува функционално пълна система.

Набор	X	у	f = x.y
0	0	0	$f_0 =$
1	0	1	$f_1 =$
2	1	0	$f_2 =$
3	1	1	$f_3 =$

Решение: - проверяват се на кои условия за ФПС отговаря функцията.

1.

2.

3.

4

5.

Задача 3: Да се провери дали функцията f = x. y образува функционално пълна система.

Набор	X	У	f = x.y
0	0	0	$f_0 = 0.0 = 0$
1	0	1	$f_1 = 0.1 = 0$
2	1	0	$f_2 = 1.0 = 0$
3	1	1	$f_3 = 1.1 = 1$

Решение: - проверяват се на кои условия за ФПС отговаря функцията.

- 1. $f_0(0,0) = 0$ функцията има стойност нула за нулевия набор => функцията запазва константа 0;
- 2. $f_3(1,1) = 1$ функцията има стойност едно за третия набор => функцията **запазва константа 1**;
- 3. $f_0(0,0) = 0 = f_1(0,1) = 0 = f_2(1,0) = 0 < f_3(1,1) = 1$

функцията няма по-голяма стойност за по-малък свой набор => функцията е монотонна

5. f = x.y, полагаме x.y = a, "а" се представя във вид на полином по модул 2 и се получава:

$$\mathbf{0} \oplus \mathbf{a} = \overline{\mathbf{0}}.\mathbf{a} \vee \underbrace{\mathbf{0}.\overline{\mathbf{a}}}_{\mathbf{0}} = \mathbf{1}.\mathbf{a} = \mathbf{a}$$

Следователно $f = 0 \oplus x$. y, функцията е не линейна, тъй като може да се представи във вид на полином от втора степен.

Теорема на Пост-Яблонски

- 1. не отговаря функцията запазва константа 0;
- 2. не отговаря функцията запазва константа 1;
- **3. не отговаря –** функцията е монотонна;
- 4. отговаря функцията е не самодвойствена;
- **5. отговаря** функцията е не линейна.

Функцията f = x. y не е $\Phi\Pi C$, защото отговаря само на 2 от 5-те условия.

Задача 3: Да се провери дали функцията $f = \bar{x} \vee \bar{y}$ образува функционално пълна система.

Набор	X	у	$f = \bar{x} \vee \bar{y}$
0	0	0	$f_0 =$
1	0	1	$f_1 =$
2	1	0	$f_2 =$
3	1	1	$f_3 =$

Решение: - проверяват се на кои условия за ФПС отговаря функцията.

1.

2.

3.

4

5.

Задача 3: Да се провери дали функцията $f = \bar{x} \vee \bar{y}$ образува функционално пълна система.

Набор	X	У	$f = \bar{x} \vee \bar{y}$
0	0	0	$f_0 = \overline{0} \vee \overline{0} = 1 \vee 0 = 1$
1	0	1	$f_1 = \overline{0} \vee \overline{1} = 1 \vee 0 = 1$
2	1	0	$f_2 = \overline{1} \vee \overline{0} = 0 \vee 1 = 1$
3	1	1	$f_3 = \overline{1} \vee \overline{1} = 0 \vee 0 = 0$

Решение: - проверяват се на кои условия за ФПС отговаря функцията.

- 1. $f_0(0,0) = 1$ функцията има стойност едно за нулевия набор => функцията *не запазва константа 0*;
- 2. $f_3(1,1) = 0$ функцията има стойност нула за третия набор => функцията *не запазва константа 1*;
- 3. $f_0(0,0) = 1 = f_1(0,1) = 1 = f_2(1,0) = 1 > f_3(1,1) = 0$

функцията няма по-голяма стойност за по-малък свой набор => функцията е не монотонна

5. $f = \bar{x} \vee \bar{y}$, за представянето на функцията във вид на полином по модул 2 е необходимо действието между променливите да е умножение. Поради тази причина използваме закона на Де Морган: $f = \bar{x} \vee \bar{y} = \overline{\bar{x}} \vee \overline{\bar{y}} = \overline{\bar{x}} \cdot \overline{\bar{y}} = \overline{x} \cdot \overline{y}$ полагаме x.y = a от тук следва че $\overline{x.y} = a$, " \overline{a} " се представя във

полагаме x.y = a от тук следва че $\overline{x.y} = a$, " \overline{a} " се представя във вид на полином по модул 2 и се получава:

$$\mathbf{1} \oplus \mathbf{a} = \overline{\mathbf{1}}.\underline{\mathbf{a}} \vee \underline{\mathbf{1}}.\overline{\mathbf{a}} = \mathbf{1}.\overline{\mathbf{a}} = \overline{\mathbf{a}}$$

Следователно $f = 1 \oplus x$. y, функцията е не линейна, тъй като може да се представи във вид на полином от втора степен.

Теорема на Пост-Яблонски

- 1. отговаря функцията не запазва константа 0;
- 2. отговаря функцията не запазва константа 1;
- 3. отговаря функцията не е монотонна;
- 4. отговаря функцията е не самодвойствена;
- 5. отговаря функцията е не линейна.

Функцията $f = \bar{x} \vee \bar{y}$ е ФПС, защото отговаря на всичките условия.

Задача 4: Да се провери дали функцията $f = \bar{x}.y \vee x.\bar{y}$ образува функционално пълна система.

Набор	X	У	$f = \bar{x}.y \vee x.\bar{y}$
0	0	0	$f_0 =$
1	0	1	$f_1 =$
2	1	0	$f_2 =$
3	1	1	$f_3 =$

Решение: - проверяват се на кои условия за ФПС отговаря функцията.

1.

2.

3.

4

5.

Задача 4: Да се провери дали функцията $f = \bar{x}.y \vee x.\bar{y}$ образува функционално пълна система.

Набор	X	у	$f = \bar{x}.y \vee x.\bar{y}$
0	0	0	$f_0 = \overline{0}.0 \vee 0.\overline{1} = 1.0 \vee 0.0 = 0$
1	0	1	$f_1 = \overline{0}.1 \vee 0.\overline{1} = 1.1 \vee 0.0 = 1$
2	1	0	$f_2 = \overline{1}.0 \vee 1.\overline{0} = 0.0 \vee 1.1 = 1$
3	1	1	$f_3 = \overline{1}.1 \vee 1.\overline{1} = 0.1 \vee 1.0 = 0$

Решение: - проверяват се на кои условия за ФПС отговаря функцията.

- 1. $f_0(0,0) = 0$ функцията има стойност нула за нулевия набор => функцията *запазва константа 0*;
- 2. $f_3(1,1) = 0$ функцията има стойност нула за третия набор => функцията *не запазва константа 1*;

3.
$$f_0(0,0) = \mathbf{0} < f_1(0,1) = \mathbf{1} = f_2(1,0) = \mathbf{1} > f_3(1,1) = \mathbf{0}$$
 функцията няма по-голяма стойност за по-малък свой набов :

функцията няма по-голяма стойност за по-малък свой набор => функцията е не монотонна

4

$$f_2(1,0) = 1$$

$$f_0(0,0)=$$
 1 \Leftrightarrow функцията е самодвойствена

$$f_3(1,1) = 0$$

5.
$$f = \bar{x}. y \lor x. \bar{y} = x \oplus y$$
 е линейна по дефиниция

Теорема на Пост-Яблонски

- 1. отговаря функцията не запазва константа 0;
- 2. не отговаря функцията запазва константа 1;
- 3. отговаря функцията не е монотонна;
- 4. отговаря функцията е не самодвойствена;
- **5. не отговаря –** функцията е линейна.

Функцията $f=x \oplus y$ не е $\Phi\Pi C$, защото не отговаря на всичките условия.

Динамичен анализ

Задача 5: Да се проведе динамичен анализ на схемата, при смяна на входната последователност 110 с 001

Означаване и извеждане на входните, изходните и междинните променливи.

$$e_1 = \underline{x} \vee \underline{z}$$

$$e_2 = \overline{\overline{x}} \cdot \overline{\overline{y}}$$

$$e_3 = e_1 \cdot e_2$$

$$e_4 = \overline{y} \cdot \overline{z}$$

$$f = e_4 \vee e_3$$

2) Построяване на таблицата:

$$(w+3)=3+3=6$$
 колони $w=3$ (бр. стъпала от схемата) $(n+p+1)=(3+5+1)=9$ реда $n=3$ (x,y,z) $p=5$ (ЛЕ1,...,ЛЕ5)

Входна последователност 110 с 001, т.е. 110 е стария набор (с.н.), а 001 е новия набор. Съответно в колоната с.н. записваме цифрите както следва, в реда за x=1, в реда y=1 и в реда за z=0 или 110. В колоните 0τ до 3τ за x=0, y=0 и z=1

9 11 2 2					
t	0τ	1τ	2τ	3τ	
X					
У					
Z					
e_1					
e_2					
e_3					
e_4					
f					
	<i>X Y Z e</i> ₁	$egin{array}{c c} X & & & & \\ \hline y & & & & \\ \hline z & & & & \\ \hline e_1 & & & & \\ \hline e_2 & & & & \\ \hline e_3 & & & & \\ \hline \end{array}$	$egin{array}{c c} X & & & & & \\ \hline y & & & & & \\ \hline z & & & & & \\ \hline e_1 & & & & & \\ \hline e_2 & & & & & \\ \hline e_3 & & & & & \\ \hline \end{array}$	$egin{array}{c c} y & & & & & \\ \hline z & & & & & \\ \hline e_1 & & & & & \\ \hline e_2 & & & & & \\ \hline e_3 & & & & & \\ \hline \end{array}$	

$$e_1 = x \lor z$$

$$e_2 = \overline{x} \cdot \overline{y}$$

$$e_3 = e_1 \cdot e_2$$

$$e_4 = \overline{y} \cdot \overline{z}$$

$$f = e_4 \lor e_3$$

Входна последователност 110 с 001, т.е. 110 е стария набор (с.н.), а 001 е новия набор. Съответно в колоната с.н. записваме цифрите както следва, в реда за x=1, в реда y=1 и в реда за z=0 или 110. В колоните 0τ до 3τ за x=0, y=0 и z=1

C.H.	t	0τ	1τ	2τ	3τ
1	X	0	0	0	0
1	У	0	0	0	0
0	Z	1	1	1	1
	e_1				
	e_2				
	e_3				
	e_4				
	f				

$$e_1 = x \lor z$$

$$e_2 = \overline{x} . \overline{y}$$

$$e_3 = e_1 . e_2$$

$$e_4 = \overline{y} . \overline{z}$$

$$f = e_4 \lor e_3$$

Входна последователност 110 с 001, т.е. 110 е стария набор (с.н.), а 001 е новия набор. Съответно в колоната с.н. записваме цифрите както следва, в реда за x=1, в реда y=1 и в реда за z=0 или 110. В колоните 0τ до 3τ за x=0, y=0 и z=1

C.H.	t	0τ	1τ	2τ	3τ
1	X	0	0	0	0
1	У	0	0	0	0
0	Z	1	1	1	1
1	e_1	1	1	1	1
1	e_2	1	0	0	0
1	e_3	1	1	0	0
0	e_4	0	0	0	0
1	f	1	1	1	0

$$e_1 = \underline{x} \vee \underline{z}$$

$$e_2 = \overline{\overline{x} \cdot \overline{y}}$$

$$e_3 = e_1 \cdot e_2$$

$$e_4 = \overline{y} \cdot \overline{z}$$

$$f = e_4 \vee e_3$$

В моментите 0т, 1т и 2т се появява грешен сигнал дължащ се на състезание на сигнали

Мултиплексор

Задача 6: Да се построи $f = \lor (0,1,3,5,6,7,8,10,15)$ с помощта на мултиплексор с 3 адресни входа.

Решение:

Мултиплексора има n=3 адресни и $2^n=2^3=8$ информационни входа.

Задача 7: Да се построи $f = \lor (0,1,3,5,6,7,8,10,15)$ с помощта на мултиплексор с 3 адресни входа.

Решение: от условието следва, че мултиплексорът има $2^n = 2^3 = 8$ информационни входа.

		x	1				 χ	1	·	
x_2)	0	1	0	$\begin{vmatrix} x_2 \\ x_4 \end{vmatrix}$	I	I	I	ı
	C)	1	1	1	20	¹ 6	17	13	¹ 2
	C)	0	1	1	X_4	I	I	ı	I_0
	1	,	1	0	1		I_4	¹ 5	¹ 1	10
		•	γ	'_	•			· ·	·	•
			$\boldsymbol{\chi}$	3				X	3	

$I_0 = 1$ $I_1 = x_4$ $I_2 = x_4$ $I_3 = 1$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Mx	Y
$I_{4} = \bar{x}_{4}$ $I_{5} = \bar{x}_{4}$ $I_{6} = 0$ $I_{7} = x_{4}$	X4 — I5 0 — I6 X4 — I7 X1 — C X2 — B X3 — A		

Задача 8: Да се построи $f = \wedge(2,4,9,11,12,13,14)$ с помощта на мултиплексор с 3 адресни входа.

Решение:

Мултиплексора има n=3 адресни и $2^n=2^3=8$ информационни входа.

Задача 7: Да се построи $f = \wedge(2,4,9,11,12,13,14)$ с помощта на мултиплексор с 3 адресни входа.

Решение: от условието следва, че мултиплексорът има $2^n = 2^3 = 8$ информационни входа.

$I_0 = 1$ $I_1 = x_4$ $I_2 = x_4$ $I_3 = 1$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Mx	Y
$I_{4} = \bar{x}_{4}$ $I_{5} = \bar{x}_{4}$ $I_{6} = 0$ $I_{7} = x_{4}$	X4 — I5 0 — I6 X4 — I7 X1 — C X2 — B X3 — A		

Задача 9: Да се построи $f=x_2.\overline{x_3}.x_4 \vee \overline{x_1}.\overline{x_3}.x_4 \vee x_1.\overline{x_2}.\overline{x_4}$ с помощта на мултиплексор с 3 адресни входа.

Решение:

Мултиплексора n=3 адресни и $2^n=2^3=8$ информационни входа

Задача 9: Да се построи $f = x_2.\overline{x_3}.x_4 \vee \overline{x_1}.\overline{x_3}.x_4 \vee x_1.\overline{x_2}.\overline{x_4}$ с помощта на мултиплексор с 3 адресни входа.

Решение:

Мултиплексора n=3 адресни и $2^n=2^3=8$ информационни входа

I_0	=	x_4
I_1	=	0
I_2	=	1
I_3	=	0
I_4	=	\bar{x}_4
I_5	=	\bar{x}_4
I_6	=	\bar{x}_4
I_7	=	\bar{x}_4

Задача 10: Да се функцията зададена чрез схемата.

$$I_0 = 0$$
 $I_1 = 1$
 $I_2 = 0$
 $I_3 = x_4$
 $I_4 = \bar{x}_4$
 $I_5 = x_4$
 $I_6 = x_4$
 $I_7 = x_4$

f=

$$I_0 = 0$$
 $I_1 = 1$
 $I_2 = 0$
 $I_3 = x_4$
 $I_4 = \bar{x}_4$
 $I_5 = x_4$
 $I_6 = x_4$
 $I_7 = x_4$

АМДНФ:

$$f=$$

TPUTEP B TPUTEP

Пример : Да се построи S-R тригер с помощта на D тригер, посредством И-НЕ логически елементи.

Решение: Построява се таблицата на преходите на S-R тригер и матрицата на изходите на D тригер.

Табл. на преходите

S^t	R^t	Q^t	Q^{t+1}
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Пример 3: Да се построи S-R тригер с помощта на D тригер, посредством И-НЕ логически елементи.

Решение: Построява се таблицата на преходите на S-R тригер и матрицата на изходите на D тригер.

Табл. на преходите

			<i>,</i> ,
S^t	R^t	Q^t	Q^{t+1}
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Матрица на входовете

Q^{t}	\rightarrow	Q^{t+1}	D^t
0	\rightarrow	0	
0	\rightarrow	1	
1	\rightarrow	0	
1	\rightarrow	1	

Пример 3: Да се построи S-R тригер с помощта на D тригер, посредством И-НЕ логически елементи.

Решение: Построява се таблицата на преходите на J-К тригер и матрицата на изходите на D тригер.

Табл. на преходите

S^t	R^t	Q^t	Q^{t+1}	D^t
0	0	0	0	
0	0	1	1	
0	1	0	0	
0	1	1	0	
1	0	0	1	
1	0	1	1	
1	1	0	Ф	
1	1	1	Ф	

Матрица на входовете

Q^t	\rightarrow	Q^{t+1}	D^t
0	\rightarrow	0	0
0	\rightarrow	1	1
1	\rightarrow	0	0
1	\rightarrow	1	1

Пример 3: Да се построи S-R тригер с помощта на D тригер, посредством И-НЕ логически елементи.

Решение: Построява се таблицата на преходите на J-К тригер и матрицата на изходите на D тригер.

Табл. на преходите

S^t	R^t	Q^t	Q^{t+1}	D^t
0	0	0	0	0
0	0	1	1	1
0	1	0	0	0
0	1	1	0	0
1	0	0	1	1
1	0	1	1	1
1	1	0	Ф	Φ
1	1	1	Φ	Φ

Матрица на входовете

Q^t	\rightarrow	Q^{t+1}	D^t
0	\rightarrow	0	0
0	\rightarrow	1	1
1	\rightarrow	0	0
1	\rightarrow	1	1

И-НЕ

$$D^t = S^t \vee \bar{R}^t. Q^t = \overline{\overline{S^t \vee \bar{R}^t. Q^t}} = \overline{\overline{S^t}. \overline{\bar{R}^t. Q^t}}$$

ИЛИ-НЕ

$$D^t = S^t \vee \bar{R}^t. \, Q^t = S^t \vee \overline{\bar{R}^t. \, Q^t} = S^t \vee \overline{\bar{R}^t \vee \bar{Q}^t} = \overline{S^t \vee \bar{\bar{R}}^t \vee \bar{Q}^t}$$

Пример: Да се построи Ј-К тригер с помощта на Т тригер, посредством И-НЕ логически елементи.

Решение: Построява се таблицата на преходите на J-К тригер и матрицата на изходите на Т тригер.

Табл. на преходите

J^t	K^t	Q^t	Q^{t+1}
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Задача 1: Да се построи J-К тригер с помощта на Т тригер, посредством И-НЕ логически елементи.

Решение: Построява се таблицата на преходите на J-К тригер и матрицата на изходите на Т тригер.

Табл. на преходите

		/ /		
J^t	K^t	Q^t	Q^{t+1}	T^t
0	0	0	0	
0	0	1	1	
0	1	0	0	
0	1	1	0	
1	0	0	1	
1	0	1	1	
1	1	0	1	
1	1	1	0	

Матрица на входовете

Q^t	\rightarrow	Q^{t+1}	T^t
0	\rightarrow	0	
0	\rightarrow	1	
1	\rightarrow	0	
1	\rightarrow	1	

Задача 1: Да се построи Ј-К тригер с помощта на Т тригер, посредством И-НЕ логически елементи.

Решение: Построява се таблицата на преходите на J-К тригер и матрицата на изходите на Т тригер.

Табл. на преходите

J^t	K^t	Q^t	Q^{t+1}	T^t
0	0	0	0	0
0	0	1	1	0
0	1	0	0	0
0	1	1	0	1
1	0	0	1	1
1	0	1	1	0
1	1	0	1	1
1	1	1	0	1

Матрица на входовете

Q^t	\rightarrow	Q^{t+1}	T^t
0	\rightarrow	0	0
0	\rightarrow	1	1
1	\rightarrow	0	1
1	\rightarrow	1	0

$$T^t =$$

$$K^{t} \begin{vmatrix} 5 & 7 & 3 & 2 \\ 4 & 5 & 1 & 0 \end{vmatrix}$$

$$Q^{t}$$

$$T^t = J^t. \, \overline{Q}^t \vee K^t. \, Q^t$$

И-НЕ

$$T^t = J^t. \, \overline{Q}^t \vee K^t. \, Q^t = \overline{\overline{J^t. \overline{Q}^t \vee K^t. \, Q^t}} = \overline{\overline{J^t. \overline{Q}^t} \cdot \overline{K^t. \, Q^t}}$$

ИЛИ-НЕ

$$T^t = J^t. \bar{Q}^t \vee K^t. Q^t = \overline{J^t. \bar{Q}^t} \vee \overline{K^t. Q^t} = \overline{J^t \vee \bar{Q}^t} \vee \overline{K^t \vee \bar{Q}^t} = \overline{J^t \vee \bar{Q}^t} \vee \overline{K^t \vee \bar{Q}^t} = \overline{J^t \vee \bar{Q}^t} \vee \overline{K^t \vee \bar{Q}^t}$$

СИНТЕЗ НА ПОСЛЕДОВАТЕЛНОСТНИ СХЕМИ

Пример: Да се построи структурната схема на автомата, зададен с обща таблица на преходите и изходите. Да се използват тактувани D тригери и логически елементи И, ИЛИ и НЕ.

X	A_0	A_1	A_2	A_3
<i>X</i> ₁	A_0	A_1 Z_1	A_2 Z_0	A_3 Z_1
X_2	A_1 Z_1	A_3 Z_2	A_0 Z_1	A_2 Z_2

Решение:

1. Определяне броят на входните променливи, изходните променливи и броя на елементите памет.

$$N=$$
 $n =]log_2N[=]log_2...[=$
 $K=$
 $k =]log_2K[=]log_2 [=$
 $M=$
 $m =]log_2M[=]log_2 [=$

Решение:

2. Определяне броят на входните променливи, изходните променливи и броя на елементите памет.

$$N=2 (X_1$$
и $X_2)$ $n=]log_2N[=]log_22[=1$ двоична променлива

$$m{K} = (A_0, A_1, A_2 \ \text{и} \ A_3)$$

 $m{k} =] m{log_2} m{K}[=] m{log_2} m{4}[= m{2} \ \text{двоични променливи}]$

$$M = (Z_0, Z_1 \ \text{и} \ Z_2)$$
 $m =] log_2 M[=] log_2 3[= 2 \ \text{двоични променливи}$

2. Кодиране на двоичните величини

		TK-A
Q A	Q_1	Q_2
A_0		
A_1		
A_2		
A_3		

2. Кодиране на двоичните величини

	TK-X
X	X
X_1	0
X_2	1

		TK-A
Q A	Q_1	Q_2
A_0	0	0
A_1	0	1
A_2	1	0
A_3	1	1

		TK-Z
Z	z_1	z_2
Z_0	0	0
Z_1	0	1
Z_2	1	0

З.Построяване на КТПИ.

X^t	A	t	A^t	+1	Z	rt	Y	rt
X	Q_1	Q_2	Q_1	Q_2	z_1	$\boldsymbol{z_2}$	D_1	D_2
0	0	0						
0	0	1						
0	1	0						
0	1	1						
1	0	0						
1	0	1						
1	1	0						
1	1	1						

3.Построяване на КТПИ.

X^t	A^t		A^t	A^{t+1} Z^t		Z^t		rt
X	Q_1	Q_2	Q_1	Q_2	z_1	$\boldsymbol{z_2}$	D_1	D_2
0	0	0	0	0	0	0		
0	0	1	0	1	0	1		
0	1	0	1	0	0	0		
0	1	1	1	1	0	1		
1	0	0	0	1	0	1		
1	0	1	1	1	1	0		
1	1	0	0	0	0	1		
1	1	1	1	0	1	0		

3.Построяване на КТПИ.

X^t	A	l ^t	A^t	A^{t+1}		Z^t		rt
X	Q_1	Q_2	Q_1	Q_2	z_1	$\boldsymbol{z_2}$	D_1	D_2
0	0	0	0	0	0	0	0	0
0	0	1	0	1	0	1	0	1
0	1	0	1	0	0	0	1	0
0	1	1	1	1	0	1	1	1
1	0	0	0	1	0	1	0	1
1	0	1	1	1	1	0	1	1
1	1	0	0	0	0	1	0	0
1	1	1	1	0	1	0	1	0

4. Определяне на аналитичните форми на възбудителните и изходни функции.

4. Определяне на аналитичните форми на възбудителните и изходни функции.

 $D_1 = x. Q_2 \vee \overline{x}. Q_1$ $D_2 = x. \overline{Q}_1 \vee \overline{x}. Q_2$

5.Построяване на структурната схема на автомата.

Анализ на последователностни схеми

Пример. Да се построи време диаграмата за схемата при зададени начално вътрешно състояние 01 и входна последователност 1-1-0-1-0-1.

Решение:

1. Определяне на функциите:

$$\begin{split} & \mathbf{T}_1 = x.\, Q_2 \vee \bar{x}.\, Q_1 \\ & D_2 = x.\, \bar{Q}_1 \vee \bar{x}.\, Q_2 \\ & Z = \bar{x}.\, Q_1.\, \bar{Q}_2 \vee x.\, Q_1.\, Q_2 \end{split}$$

2. Локализация:

$$T_1 = x. Q_2 \vee \bar{x}. Q_1$$

<i>x</i>						 χ		
Q_1	6	7	3	2	Q_1			
•	4	5	1	0				
$\overline{Q_2}$					_	Q	2	•

$$T_1 =$$

Решение:

1. Определяне на функциите:

$$T_1 = x. Q_2 \lor \bar{x}. Q_1$$

 $D_2 = x. \bar{Q}_1 \lor \bar{x}. Q_2$
 $Z = \bar{x}. Q_1. \bar{Q}_2 \lor x. Q_1. Q_2$

2. Локализация:

$$T_1 = x. Q_2 \vee \bar{x}. Q_1$$

0		7	3	2	0	1	1	1
Q_1	6	/	3		Q_1	1	1	1
	4	5	1	0		1		
		Q	2			Q	2	•

$$T_1 = \vee (2, 3, 5, 7)^1$$

$$D_2 = x. \, \overline{Q}_1 \vee \overline{x}. \, Q_2$$

	<u> </u>	C		
Q_1	6	7	3	2
	4	5	1	0
		\overline{Q}	2	

	<u> </u>	<u> </u>	ı	
Q_1				
·				
$\overline{Q_2}$				

 $D_2 =$

$$Z = \bar{x}. Q_1. \bar{Q}_2 \vee x. Q_1. Q_2$$

$$Z =$$

$$D_2 = x. \, \overline{Q}_1 \vee \overline{x}. \, Q_2$$

		<i>C</i>		
Q_1	6	7	3	2
	4	5	1	0
				ı

 Q_1 Q_1 Q_2 Q_2

 $D_2 = \vee (1, 3, 4, 5)^1$

 Q_2

$$Z = \bar{x}. Q_1. \bar{Q}_2 \vee x. Q_1. Q_2$$

		<u> </u>		
Q_1	6	7	3	2
	4	5	1	0
				ı

 Q_1 Q_2 Q_2

 $Z = \vee (2,7)^1$

3. Построяване на време-диаграмата.

D t	Q t	Q^{t+1}
0	0	0
0	1	0
1	0	1
1	1	1

T t	Q t	Q ^{t + 1}
0	0	0
0	1	1
1	0	1
1	1	0

3.Построяване на време-диаграмата.

D t	Q t	Q^{t+1}
0	0	0
0	1	0
1	0	1
1	1	1

T t	Q t	Q^{t+1}
0	0	0
0	1	1
1	0	1
1	1	0

СИНТЕЗ НА БРОЯЧИ Пример: Да се синтезира сумиращ брояч до 3 на базата на D тригери и логически елементи от булевия базис (И,ИЛИ,НЕ) Решение:

Коефициента на броене е 3, от където следва че брояча има 3 вътрешни състояния (A_0 , A_1 , A_2). Взема се под внимание, че има 2 входни думи (X_0 — запазва старото си състояние и X_1 — брой)

1.Съставя се Абстрактната таблица на преходите и изходите

X	A_{0}	A_1	A_2
$X_{\mathcal{O}}$	A_{O}	A_1	A_2
X_1	A_1	A_2	A_{O}

2.Определяне броят на входните променливи, изходните променливи и броя на елементите памет.

$$N=$$
 $n =]log_2N[=]log_2 [=]$

$$M = m =]log_2M[=]log_2 [=$$

2.Определяне броят на входните променливи, изходните променливи и броя на елементите памет.

$$N=2(X_0$$
и $X_1)$ $n=]log_2N[=]log_22[=1$ двоична променлива

$$m{K} = (A_0, A_1, A_2)$$
 $m{k} =]m{log}_2 m{K}[=]m{log}_2 m{3}[= m{2}$ двоични променливи

3. Кодиране на двоичните величини

		TK-A
Q	Q_1	Q_2
A_0		
A_1		
A_2		

3. Кодиране на двоичните величини

TK-X

X	X
X_1	0
X_2	1

TK-A

Q A	Q_1	Q_2
A_0	0	0
A_1	0	1
A_2	1	0

X^t	A	I^t	A^t	:+1	Y	7t
X	Q_1	Q_2	Q_1	Q_2	D_1	D_2
0	0	0				
0	0	1				
0	1	0				
0	1	1				
1	0	0				
1	0	1				
1	1	0				
1	1	1				

X^t	A	\mathbf{t}	A^t	:+1	Y	7t
X	Q_1	Q_2	Q_1	Q_2	D_1	D_2
0	0	0	0	0		
0	0	1	0	1		
0	1	0	1	0		
0	1	1	Ф	Φ		
1	0	0	0	1		
1	0	1	1	0		
1	1	0	0	0		
1	1	1	Ф	Ф		

X^t	A	A^t		A^{t+1}		rt
X	Q_1	Q_2	Q_1	Q_2	D_1	D_2
0	0	0	0	0	0	0
0	0	1	0	1	0	1
0	1	0	1	0	1	0
0	1	1	Ф	Ф	Ф	Ф
1	0	0	0	1	0	1
1	0	1	1	0	1	0
1	1	0	0	0	0	0
1	1	1	Ф	Ф	Ф	Ф

5. Определяне на аналитичните форми на възбудителните и изходни функции.

5. Определяне на аналитичните форми на възбудителните и изходни функции.

6.Построяване на структурната схема на автомата.

Пример: Да се синтезира изваждащ брояч до 4 на базата на Т тригери и логически елементи от булевия базис (И,ИЛИ,НЕ) Решение:

Коефициента на брояча е 4, от където следва че брояча има 4 вътрешни състояния (A_0 , A_1 , A_2 , A_3). Взема се под внимание, че има 2 входни думи (X_0 — запазва старото си състояние и X_1 — брой)

1.Съставя се Абстрактната таблица на преходите и изходите

X	A_{0}	A_1	A_2	A_3
$X_{\mathcal{O}}$	A_{O}	A_1	A_2	A_3
X_1	A_3	A_{O}	A_1	A_2

2.Определяне броят на входните променливи, изходните променливи и броя на елементите памет.

$$N=$$
 $n =]log_2N[=]log_2 [=]$

$$K=$$
 $k =]log_2K[=]log_2 [=]$

2.Определяне броят на входните променливи, изходните променливи и броя на елементите памет.

$$N=2(X_0$$
и $X_1)$ $n=]log_2N[=]log_22[=1$ двоична променлива

$$m{K} = (A_0, A_1, A_2, A_3)$$
 $m{k} =]m{log}_2 m{K}[=]m{log}_2 m{4}[= m{2}$ двоични променливи

3. Кодиране на двоичните величини

		TK-A
Q	Q_1	Q_2
A_0		
A_0 A_1		
A_2		
A_3		

3. Кодиране на двоичните величини

TK-X

	1 11 21
X	X
X_1	0
X_2	1

TK-A

Q A	Q_1	Q_2
A_0	0	0
A_1	0	1
A_2	1	0
A_3	1	1

X^t A^t	A^{t+1}	Y ^t
-------------	-----------	----------------

X	Q_1	Q_2	Q_1	Q_2	T_1	T_2
0	0	0				
0	0	1				
0	1	0				
0	1	1				
1	0	0				
1	0	1				
1	1	0				
1	1	1				

X^t	A^t		A^{t+1}		Y^t	
X	Q_1	Q_2	Q_1	Q_2	T_1	T_2
0	0	0	0	0		
0	0	1	0	1		
0	1	0	1	0		
0	1	1	1	1		
1	0	0	1	1		
1	0	1	0	0		
1	1	0	0	1		
1	1	1	0	0		

X^t	A	A^t		A^{t+1}		Y ^t	
X	Q_1	Q_2	Q_1	Q_2	T_1	T_2	
0	0	0	0	0	0	0	
0	0	1	0	1	0	0	
0	1	0	1	0	0	0	
0	1	1	1	1	0	0	
1	0	0	1	1	1	1	
1	0	1	0	0	0	1	
1	1	0	0	1	1	1	
1	1	1	1	0	0	1	

5. Определяне на аналитичните форми на възбудителните и изходни функции.

5. Определяне на аналитичните форми на възбудителните и изходни функции.

б.Построяване на структурната схема на автомата.