Brief Notes on Key Prompt Engineering Decisions

This document outlines the core prompt engineering decisions for the TripSmith travel assistant, focusing on architectural choices, LLM behavior management, and personalization.

1. Conversational Architecture

Multi-Stage Prompt Pipeline: The system uses a modular, multi-stage prompt architecture instead of a single monolithic prompt. This pipeline includes:

- **System Prompt:** Establishes the assistant's persona and core constraints.
- **Router Prompt:** Uses few-shot classification for intent detection and entity extraction.
- **Context-Aware Prompts:** Dynamically adapt to conversation history and user-provided information.
- **Tool Integration Prompts:** Guide the LLM to incorporate external data naturally.
- **Rationale:** This separation allows for specialized optimization at each stage, leading to a more predictable and coherent conversation flow.

Chain-of-Thought: A hidden scaffold guides the LLM's internal reasoning process (e.g., inputs \rightarrow tools \rightarrow factors \rightarrow response). The LLM's thought process remains private to the user to avoid conversational clutter while ensuring systematic decision-making.

2. LLM Model Selection and Factual Integrity

Model Choice: The project was developed and tested on both Groq and Ollama. While Groq offered superior performance and speed, it was found to have a higher tendency for factual hallucination. For this reason, **Ollama was chosen for the final implementation due to its more conservative behavior, which led to fewer fabricated responses.** This decision prioritized trustworthiness and reliability over raw speed.

Hallucination Prevention: The system is engineered to function as a data interpreter, not a knowledge generator. This is achieved through:

• **Explicit Data-Only Policy:** Prompts explicitly forbid the use of any information not sourced directly from a tool.

- **Transparent Limitation Handling:** The assistant is prompted to gracefully acknowledge data gaps (e.g., "I couldn't find specific events in...") rather than inventing plausible-sounding facts.
- **Self-Checking Mechanisms:** A validation step is integrated directly into the generation prompts, where the LLM is instructed to verify that every fact in its response can be attributed to a tool output before finalizing its answer.

3. User Context and Refinement

Anti-Repetition Logic: A detection system was developed to distinguish between genuine user requests for refinement (e.g., adding constraints like "solo traveler") and simple repetitions. When refinement is detected, a context-aware prompt is triggered, instructing the LLM to build upon the previous recommendations rather than generating a new, redundant response.

Progressive Conversation: The prompts are designed to guide the conversation progressively, starting with general recommendations and escalating to refined suggestions, specific planning, and logistics. This approach mimics a natural, helpful interaction and prevents the assistant from overwhelming the user with too much detail at once.

4. Personalization and Error Handling

Regional Intelligence: The system incorporates a personalization layer for Israeli travelers. This includes using Tel Aviv as the default origin for budget calculations and a hierarchical cost model to provide more accurate estimates for different countries and regions. This approach provides practical utility that generic travel advice would lack.

Graceful Degradation: Error recovery is built directly into the prompts. The system can acknowledge tool failures and offer alternative suggestions, ensuring the conversation remains helpful and on-track even when technical components do not provide the requested data.