$$u = x^2 \rightarrow \overline{du = z \times dx}$$

$$\int_0^1 x \cos(x^2) dx = \int_0^1 \cos u du$$

Chapter 15 Multiple Integrals 15.3 Double Integrals in polar coordinates

Polar coordinates

$$r = 1$$
 $0 = \frac{\pi}{4}$
 $r = 1 \cos(\pi 4) = \sqrt{2}/2$
 $r = 1 \sin(\pi k_1) = \sqrt{2}/2$

1) Polar to Cartesian:

$$x = r \cos(\theta)$$
, $y = r \sin \theta$

2) Cartesian to Polar: $r = \sqrt{x^2 + y^2}$

$$r = \sqrt{x^2 + y^2}$$

$$fan \Theta = \frac{y}{x} \Rightarrow \Theta = arctan(\frac{y}{x})$$

$$(\Theta = fan'(\frac{y}{x}))$$

Why would we use polar coordinates?

Example. Describe the following region:

How does it affect the double integral

Recall:

$$\iint_{R} f(x,y) dA = \int_{a}^{b} \int_{c}^{d} f(x,y) dxdy \longrightarrow \boxed{dA = dxdy}$$
$$= \int_{c}^{d} \int_{a}^{b} f(x,y) dydx \longrightarrow \boxed{dA = dydx}$$

Polar rectangle:

Close-up view

$$\iint_{R} f(x,y) dA = \int_{\alpha}^{\beta} \int_{a}^{b} f(r\cos\theta, r\sin\theta) r dr d\theta$$

R is a polar rectangle given by $a \leq r \leq b$ and $\alpha \leq \theta \leq \beta$, with $\beta - \alpha \leq 2\pi$.

EXAMPLE 1 Evaluate $\iint_R (3x + 4y^2) dA$, where *R* is the region in the upper half-plane bounded by the circles $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$.

EXAMPLE 2 Find the volume of the solid bounded by the plane z = 0 and the paraboloid $z = 1 - x^2 - y^2$.

More complicated region:

3 If f is continuous on a polar region of the form

$$D = \{(r, \theta) \mid \alpha \leq \theta \leq \beta, \ h_1(\theta) \leq r \leq h_2(\theta)\}$$

then

$$\iint\limits_{D} f(x, y) dA = \int_{\alpha}^{\beta} \int_{h_{1}(\theta)}^{h_{2}(\theta)} f(r \cos \theta, r \sin \theta) r dr d\theta$$

EXAMPLE 3 Use a double integral to find the area enclosed by one loop of the four-leaved rose $r = \cos 2\theta$.

EXAMPLE 4 Find the volume of the solid that lies under the paraboloid $z = x^2 + y^2$, above the *xy*-plane, and inside the cylinder $x^2 + y^2 = 2x$.