Schema Refinement and Normalization

Nobody realizes that some people expend tremendous energy merely to be normal.

Albert Camus

- · Review FDs, Armstrong's Axioms and Attr. Closures!
- Q1: is any refinement needed??!
- If a relation is in a normal form (BCNF, 3NF etc.):
 - we know that certain problems are avoided/minimized.
 - helps decide whether decomposing a relation is useful.
- · Role of FDs in detecting redundancy:
 - Consider a relation R with 3 attributes, ABC.
 - No (non-trivial) FDs hold: There is no redundancy here.
 - Given A → B: If A is not a key, then several tuples could have the same A value, and if so, they'll all have the same B value!
- 1st Normal Form all attributes are atomic
 - i.e. the relational model
- $1^{st} \supset 2^{nd}$ (of historical interest) $\supset 3^{rd} \supset Boyce-Codd \supset ...$

Boyce-Codd Normal Form (BCNF)

- ReIn R with FDs F is in BCNF if, for all X → A in F+
 - $-A \in X$ (called a *trivial* FD), or
 - X is a superkey for R.
- In other words: "R is in BCNF if the only non-trivial FDs over R are key constraints."
- If R in BCNF, then every field of every tuple records information that cannot be inferred using FDs alone.
 - Say we know FD X → A holds this example relation:
 - Can you guess the value of the missing attribute?
 - •Yes, so relation is not in BCNF

Х	Υ	Α
5	y1	7
5	y2	?

Decomposition of a Relation Schema

- If a relation is not in a desired normal form, it can be decomposed into multiple relations that each are in that normal form.
- Suppose that relation R contains attributes A1 ... An. A
 <u>decomposition</u> of R consists of replacing R by two or more
 relations such that:
 - Each new relation scheme contains a subset of the attributes of R, and
 - Every attribute of R appears as an attribute of at least one of the new relations.

Example (same as before)

S	N	L	R	W	Н	
123-22-3666	Attishoo	48	8	10	40	
231-31-5368	Smiley	22	8	10	30	
131-24-3650	Smethurst	35	5	7	30	H
434-26-3751	Guldu	35	5	7	32	
612-67-4134	Madayan	35	8	10	40	

Hourly_Emps

- SNLRWH has FDs $S \rightarrow SNLRWH$ and $R \rightarrow W$
- · O: Is this relation in BCNF?

No, The second FD causes a violation; W values repeatedly associated with R values.

Decomposing a Relation

 Easiest fix is to create a relation RW to store these associations, and to remove W from the main schema:

S	N	L	R	Н
123-22-3666	Attishoo	48	8	40
231-31-5368	Smiley	22	8	30
131-24-3650	Smethurst	35	5	30
434-26-3751	Guldu	35	5	32
612-67-4134	Madayan	35	8	40

Wages

Hourly_Emps2

- •Q: Are both of these relations are now in BCNF?
- •Decompositions should be used only when needed.
 - -Q: potential problems of decomposition?

Problems with Decompositions

- · There are three potential problems to consider:
 - 1) May be impossible to reconstruct the original relation! (Lossy Decomposition)
 - Fortunately, not in the SNLRWH example.
 - 2) Dependency checking may require joins (not Dependency Preserving)
 - Fortunately, not in the SNLRWH example.
 - 3) Some gueries become more expensive.
 - e.g., How much does Guldu earn?

<u>Tradeoff</u>: Must consider these issues vs. redundancy. (Well, not usually #1)

Lossless Decomposition (example)

32

35 5

35 8 10 40

S	N	L	R	H					
123-22-3666	Attishoo	48	8	40				R	1
231-31-5368	Smiley	22	8	30	_	1	ı	8	
131-24-3650	Smethurst	35	5	30		V		5	
434-26-3751	Guldu	35	5	32					
612-67-4134	Madayan	35	8	40					
	S		N		L	R	W	ŀ	ł
	123-22-366	6	Attis	shoo	48	8	10	4	0
_	231-31-536	8	Smil	ley	22	8	10	3	0
=	131-24-365	0	Sme	thurst	35	5	7	3	0

434-26-3751 Guldu

612-67-4134 Madayan

Lossy Decomposition (example)

A	В	C		A	В	В	C
1	2	3		1	2	2	3
4	5	6	7	4	5	5	6
7	2	8		7	2	2	8

Lossless Join Decompositions

- Decomposition of R into X and Y is lossless w.r.t. a set of FDs F if, for every instance r that satisfies F:
 - $\pi_X(r) \bowtie \pi_Y(r) = r$
- It is always true that $r \subseteq \pi_{X}(r) \bowtie \pi_{Y}(r)$
 - In general, the other direction does not hold! If it does, the decomposition is lossless-join.
- Definition extended to decomposition into 3 or more relations in a straightforward way.
- It is essential that all decompositions used to deal with redundancy be lossless! (Avoids Problem #1)

More on Lossless Decomposition

 The decomposition of R into X and Y is lossless with respect to F if and only if the closure of F contains:

ntains:

$$X \cap Y \to X$$
, or i.e. the common attributes form a superkey for one side or the other $X \cap Y \to Y$

in example: decomposing ABC into AB and BC is lossy, because intersection (i.e., "B") is not a key of either resulting relation.

• Useful result: If $W \to Z$ holds over R and $W \cap Z$ is empty, then decomposition of R into R-Z and WZ is loss-less.

Lossless Decomposition (example)

But, now we can't check $A \rightarrow B$ without doing a join!

Dependency Preserving Decomposition

- Dependency preserving decomposition (Intuitive):
 - If R is decomposed into X, Y and Z, and we enforce the FDs that hold individually on X, on Y and on Z, then all FDs that were given to hold on R must also hold. (Avoids Problem #2 on our list.)
 - . Why do we care??
- <u>Projection of set of FDs F</u>: If R is decomposed into X and Y the projection of F on X (denoted F_X) is the set of FDs $U \to V$ in F⁺ (*closure of F*, *not just F*) such that all of the attributes U, V are in X. (same holds for Y of course)

Dependency Preserving Decompositions (Contd.)

- Decomposition of R into X and Y is <u>dependency</u> *preserving* if $(F_X \cup F_Y)^+ = F^+$
 - i.e., if we consider only dependencies in the closure F + that can be checked in X without considering Y, and in Y without considering X, these imply all dependencies in F +.
- Important to consider F + in this definition:
 - ABC, $A \rightarrow B$, $B \rightarrow C$, $C \rightarrow A$, decomposed into AB and BC.
 - Is this dependency preserving? Is $C \rightarrow A$ preserved????? • note: F^+ contains $F \cup \{A \rightarrow C, B \rightarrow A, C \rightarrow B\}$, so...
- F_{AB} contains $A \rightarrow B$ and $B \rightarrow A$; F_{BC} contains $B \rightarrow C$ and $C \rightarrow B$
- So, $(F_{AB} \cup F_{BC})^+$ contains $C \to A$

Decomposition into BCNF

- Consider relation R with FDs F. If $X \rightarrow Y$ violates BCNF, decompose R into R - Y and XY (guaranteed to be loss-less).
 - Repeated application of this idea will give us a collection of relations that are in BCNF; lossless join decomposition, and guaranteed to terminate.
 - e.g., CSJDPQV, key C, JP \rightarrow C, SD \rightarrow P, J \rightarrow S
 - {contractid, supplierid, projectid, deptid, partid, qty, value}
 - To deal with SD \rightarrow P, decompose into SDP, CSJDQV.
 - To deal with $J \rightarrow S$, decompose CSJDQV into JS and CJDQV
 - So we end up with: SDP, JS, and CJDQV
- Note: several dependencies may cause violation of BCNF. The order in which we ``deal with" them could lead to very different sets of relations!

BCNF and Dependency Preservation

- · In general, there may not be a dependency preserving decomposition into BCNF.
 - e.g., CSZ, CS \rightarrow Z, Z \rightarrow C
 - Can't decompose while preserving 1st FD; not in BCNF.
- · Similarly, decomposition of CSJDPQV into SDP, JS and CJDQV is not dependency preserving (w.r.t. the FDs $JP \rightarrow C$, $SD \rightarrow P$ and $J \rightarrow S$).
- {contractid, supplierid, projectid, deptid, partid, qty, value}
 - However, it is a lossless join decomposition.
 - In this case, adding JPC to the collection of relations gives us a dependency preserving decomposition.
 - but JPC tuples are stored only for checking the f.d. (Redundancy!)

Third Normal Form (3NF)

- ReIn R with FDs F is in 3NF if, for all X → A in F+
 - $A \in X$ (called a *trivial* FD), or
 - X is a superkey of R, or
 - A is part of some candidate key (not superkey!) for R. (sometimes stated as "A is prime")
- Minimality of a key is crucial in third condition above!
- . If R is in BCNF, obviously in 3NF.
- · If R is in 3NF, some redundancy is possible. It is a compromise, used when BCNF not achievable (e.g., no good" decomp, or performance considerations).
 - Lossless-join, dependency-preserving decomposition of R into a collection of 3NF relations always possible.

What Does 3NF Achieve?

- If 3NF violated by $X \rightarrow A$, one of the following holds:
 - X is a subset of some key K ("partial dependency")
 - We store (X, A) pairs redundantly.
 - e.g. Reserves SBDC (C is for credit card) with key SBD and S \rightarrow C
 - X is not a proper subset of any key. ("transitive dep.")
 - There is a chain of FDs $K \to X \to A$
 - So we can't associate an X value with a K value unless we also associate an A value with an X value (different K's, same X implies same A!)
 - problem with initial SNLRWH example.

- e.g., Reserves SBDC (note: "C" is for credit card here), $S \rightarrow C$, C \rightarrow S is in 3NF (why?)
- Even so, for each reservation of sailor S, same (S, C) pair is stored.
- · Thus, 3NF is indeed a compromise relative to BCNF.
 - You have to deal with the partial and transitive dependency issues in your application code!

An Aside: Second Normal Form

- · Like 3NF, but allows transitive dependencies:
 - Reln R with FDs F is in 2NF if, for all $X \to A$ in F^+ $A \in X$ (called a *trivial* FD), or X is a superkey of R, or X is not part of any candidate key for R. (i.e. "X is not prime")
- · There's no reason to use this in practice
 - And we won't expect you to remember it

Decomposition into 3NF

- · Obviously, the algorithm for lossless join decomp into BCNF can be used to obtain a lossless join decomp into 3NF (typically, can stop earlier) but does not ensure dependency preservation.
- To ensure dependency preservation, one idea:
 - If $X \rightarrow Y$ is not preserved, add relation XY.
 - Problem is that XY may violate 3NF! e.g., consider the addition of CJP to 'preserve' $JP \rightarrow C$. What if we also
- Refinement: Instead of the given set of FDs F, use a minimal cover for F.

Minimal Cover for a Set of FDs

- Minimal cover G for a set of FDs F:
 - Closure of F = closure of G.
 - Right hand side of each FD in G is a single attribute.
 - If we modify G by deleting an FD or by deleting attributes from an FD in G, the closure changes.
- Intuitively, every FD in G is needed, and ``as small as possible" in order to get the same closure as F.
- e.g., $A \rightarrow B$, ABCD $\rightarrow E$, EF \rightarrow GH, ACDF \rightarrow EG has the following minimal cover:
 - $-A \rightarrow B$, ACD $\rightarrow E$, EF $\rightarrow G$ and EF $\rightarrow H$
- M.C. implies Lossless-Join, Dep. Pres. Decomp!!!
 - (in book, p. 627)

Summary of Schema Refinement

- · BCNF: each field contains information that cannot be inferred using only FDs.
 - ensuring BCNF is a good heuristic.
- Not in BCNF? Try decomposing into BCNF relations.
 - Must consider whether all FDs are preserved!
- Lossless-join, dependency preserving decomposition into BCNF impossible? Consider 3NF.
 - Same if BCNF decomp is unsuitable for typical queries
 - Decompositions should be carried out and/or re-examined while keeping performance requirements in mind.
- · Note: even more restrictive Normal Forms exist (we don't cover them in this course, but some are in the book.)