ATOMIC STRUCTURE & BONDING:

Answer all questions

Part A: Multiple Choice Questions. (10 marks)

- $^{24}_{12}Mg^{2+}$ contains Q1. The species
 - A. 12 protons, 12 neutrons and 12 electrons
 - B. 12 protons, 12 neutrons and 14 electrons
 - C. 12 protons, 10 neutrons and 10 electrons
 - D. 12 protons, 12 neutrons and 10 electrons
- Q2. Some information about the element rhenium (Re) is given in the table below.

Isotope	Relative isotopic mass
¹⁸⁵ Re	185.0
¹⁸⁷ Re	187.0

Given that the relative atomic mass of Re is 186.2, the percentage abundance of ¹⁸⁵Re is closest to

- 40 A.
- 50 B.
- C. 60
- D. 70
- Q3. Which statement **cannot** be true of two atoms with the same mass number?
 - They have different numbers of protons A.
 - They are isotopes of the same element В.
 - They have different numbers of neutrons C.
 - D. They are atoms of two different elements
- Which one of the following alternatives lists the atoms of chlorine, fluorine, Q4. magnesium and potassium in order of decreasing atomic radius?
 - (largest) K, F, Mg, Cl (smallest) A.
 - (largest) F, Mg, Cl, K (smallest) (largest) K, Mg, Cl, F (smallest) В.
 - C.
 - (largest) F, Cl, Mg, K (smallest) D.
- Which of the following energy changes refers to the first ionisation energy of oxygen: Q5.
 - ½ O_{2(g)} \rightarrow O⁺_(g) + e⁻ A.
 - В. $\frac{1}{2} O_{2(g)} + e^{-}$
 - $O_{(g)} + e^{-}$ \rightarrow O^{-(g)} C. \longrightarrow O⁺(g) + e⁻ D. $O_{(g)}$

Q6. The following table gives the electronegativities of some elements:

Element	-1	Element	
	Electronegativity		Electronegativity
bromine	2.8	nitrogen	3.0
hydrogen	2.1	chlorine	3.0
carbon	2.5	oxygen	3.5

Which one of the following bonds would be expected to be **most** polar?

- A. C H
- B. N O
- C. N-C
- D. H-Br

Q7. Carbon and silicon are both members of Group 14 on the periodic table. Carbon dioxide is a gas at room temperature while silicon dioxide is a solid because

- A. Van der Waals forces are much weaker than covalent bonds.
- B. carbon dioxide contains double covalent bonds while silicon dioxide contains single covalent bonds.
- C. carbon-oxygen bonds are less polar than silicon-oxygen bonds.
- D. the relative formula mass of carbon dioxide is less than that of silicon dioxide.
- Q8. The diagram below shows two methanol molecules.

The dashed line (- - -) in this diagram represents

- A. a non-polar covalent bond between the oxygen atom and the hydrogen atom.
- B. a polar covalent bond between the oxygen atom and the hydrogen atom.
- C. a hydrogen bond between the methanol molecules.
- D. dispersion forces between the methanol molecules.
- Q9. Consider the following four molecules: $(Cl_2, BCl_3, SiCl_4, and NH_3)$.

Which ONE of the following statements is TRUE?

- A. None of the molecules has an overall permanent dipole.
- B. Only one of the molecules has an overall permanent dipole.
- C. None of the molecules contains dipoles.
- D. Two of the molecules have the same shape.
- Q10. Two of the compounds shown below react together to form a new compound with a coordinate covalent bond.

Which of the following compounds react this way?

- A.
- В. С.
- Methane and ammonia Methane and water Hydrogen fluoride and ammonia Hydrogen fluoride and methane
- D.

END OF PART A

PART B: SHORT ANSWER QUESTIONS (15 marks)

11. The successive ionisation energies, in kJ mol^{-1} , of an unknown element are listed in the table below.

1 st	2 nd	3 rd	4 th	5 th	6 th	7 th
588	1 143	4 903	6 463	8 130	10 477	12 300

From this data predict the following:

Reaso	n
	(2 marks)
B.	Given that the element is in Period 4, write the balanced equations for its reactions with oxygen, hydrogen and water?
With o	oxygen
With l	nydrogen
With v	water
	(3 marks)
12.	A gaseous element, X, has the properties of a non-metal, and forms compounds with chlorine, sodium and hydrogen. The empirical formulae of these compounds are all inthe ratio 1:3.
	Identify the element, clearly indicating your reasons
Reaso	
Reaso	
Reaso	
Reaso	ns
Reaso	

Describe the trend in the atomic radii of the atoms F, Cl, and Br. Explain how this affects their ease of conversion to the ion, F-, Cl-, and Br-.

(3 marks)

- 14. Consider the **main groups** in the Periodic Table.
- A. Explain why elements within a group react similarly.

(1 mark

- B. Give a reason why caesium is more reactive than the lower atomic mass alkali metals.
- C. Give a reason why fluorine is the most reactive halogen.

(1 mark)

(1 mark)

PART C: EXTENDED ANSWER SECTION (15 marks)

Q15. A. The graph shows the first five ionisation energies for sodium, aluminium and magnesium.

C E Housecroft & E C Constable, 2002, Chemistry, 2nd edn, reproduced woth permission of Prentice Hall, Harlow, England.

urks)	

Q16. Draw an electron dot diagram or Lewis diagram for each of the following species, representing \pmb{ALL} valence electron pairs as $\pmb{\vdots}$.

Species	Structural formula (showing all valence shell electrons)	Shape (draw or state name)
$\mathbf{CO_2}$		
CH ₂ O		
HCO ₃ -		

(3 marks)

					BONDIN STIONS		Answer rks)	all que	estions	
OBC		STRU	CTURE	E AND I	BONDIN	G:	Answer	all que	stions	
ODC										
3BC	HE						Τ			
В.	Wh	at ma	ss of th	e reage	nt in exc	ess is le	ft over a	fter the	reaction	is complete?
A.	Cal	culate ction.	the ma	aximum	ı mass o	f pure go	old whicl	n could	be obtai	ned from this (4 marks)
			2	kAu(Cl	$N)_2 + Zn$	$\rightarrow K_2Zn($	CN) ₄ + 2	Au		
Impu	re go	old is a	reacted	with po	otassium	ı cyanide	e, KCN, f	forming	the com	ipound
						.00 molI	c⁻¹ solutio	on of ox		that would b
_			·	` '						
rust	was	remov	ed by ti	reatmer	nt with o	xalic aci	d , H_2C_2C	O ₄ , accoi	rding to	the following
	Calcurequi A gol Impu KAu(3.90 A.	A gold pur Impure go KAu(CN) ₂ .	A gold purificat Impure gold is KAu(CN) ₂ . This 3.90 kg of KAu(A. Calculate reaction. B. What ma	rust was removed by the equation. Fe ₂ O ₃ Calculate the minimum required to remove 50. A gold purification prodimpure gold is reacted KAu(CN) ₂ . This is then 2 3.90 kg of KAu(CN) ₂ was A. Calculate the mareaction. B. What mass of the	rust was removed by treatmer equation. Fe ₂ O _{3(s)} + 6H ₂ Calculate the minimum volum required to remove 50.0 g of r A gold purification process us Impure gold is reacted with po KAu(CN) ₂ . This is then treated 2KAu(CN) ₂ was react A. Calculate the maximum reaction. B. What mass of the reages	rust was removed by treatment with o equation. Fe ₂ O _{3(s)} + 6H ₂ C ₂ O _{4(aq)} - Calculate the minimum volume of a 2 required to remove 50.0 g of rust. A gold purification process uses the folimpure gold is reacted with potassium KAu(CN) ₂ . This is then treated with zimes 2KAu(CN) ₂ + Zn 3.90 kg of KAu(CN) ₂ was reacted with A. Calculate the maximum mass of reaction. B. What mass of the reagent in exception with the reagent in exception in the reagent in exception.	rust was removed by treatment with oxalic aci equation. Fe ₂ O _{3(s)} + 6H ₂ C ₂ O _{4(aq)} → 2Fe(C ₂ Calculate the minimum volume of a 2.00 molL required to remove 50.0 g of rust. A gold purification process uses the following Impure gold is reacted with potassium cyanide KAu(CN) ₂ . This is then treated with zinc. The r 2KAu(CN) ₂ + Zn → K ₂ Zn(c) 3.90 kg of KAu(CN) ₂ was reacted with 1.10 kg. A. Calculate the maximum mass of pure go reaction. B. What mass of the reagent in excess is le	rust was removed by treatment with oxalic acid, H ₂ C ₂ C equation. Fe ₂ O _{3(s)} + 6H ₂ C ₂ O _{4(aap)} → 2Fe(C ₂ O ₄) ₃ ³ · _(aap) . Calculate the minimum volume of a 2.00 molL ⁻¹ solution required to remove 50.0 g of rust. A gold purification process uses the following reactions Impure gold is reacted with potassium cyanide, KCN, 1 KAu(CN) ₂ . This is then treated with zinc. The reaction 2KAu(CN) ₂ + Zn → K ₂ Zn(CN) ₄ + 2. 3.90 kg of KAu(CN) ₂ was reacted with 1.10 kg of Zn. A. Calculate the maximum mass of pure gold which reaction. B. What mass of the reagent in excess is left over a END OF TEST	rust was removed by treatment with oxalic acid, H ₂ C ₂ O ₄ , according equation. Fe ₂ O _{3(s)} + 6H ₂ C ₂ O _{4(ad)} → 2Fe(C ₂ O ₄) ₃ ³ (ad) + 6H ⁺ (ad) Calculate the minimum volume of a 2.00 molL ⁻¹ solution of ox required to remove 50.0 g of rust. A gold purification process uses the following reactions. Impure gold is reacted with potassium cyanide, KCN, forming KAu(CN) ₂ . This is then treated with zinc. The reaction is: 2KAu(CN) ₂ + Zn → K ₂ Zn(CN) ₄ + 2Au 3.90 kg of KAu(CN) ₂ was reacted with 1.10 kg of Zn. A. Calculate the maximum mass of pure gold which could reaction. B. What mass of the reagent in excess is left over after the	Fe ₂ O _{3(s)} + 6H ₂ C ₂ O _{4(aug)} → 2Fe(C ₂ O ₄) ₃ ³ (aug) + 6H ⁴ _(aug) Calculate the minimum volume of a 2.00 molL ⁻¹ solution of oxalic acid required to remove 50.0 g of rust. A gold purification process uses the following reactions. Impure gold is reacted with potassium cyanide, KCN, forming the contact KAu(CN) ₂ . This is then treated with zinc. The reaction is: 2KAu(CN) ₂ + Zn → K ₂ Zn(CN) ₄ + 2Au 3.90 kg of KAu(CN) ₂ was reacted with 1.10 kg of Zn. A. Calculate the maximum mass of pure gold which could be obtain reaction. B. What mass of the reagent in excess is left over after the reaction. END OF TEST

PART B: SHORT ANSWER QUESTIONS (15 marks)

Q11.

Ā. **2**+

The energy required to remove the 3^{rd} electron is very much higher than that required to remove the 2^{nd} electron, this indicates that the 3^{rd} electron is from an inner "shell", therefore there are 2 valence electrons.

B. $2Ca + O_2 \rightarrow 2CaO$ $Ca + H_2 \rightarrow CaH_2$ $Ca + 2H_2O \rightarrow Ca(OH)_2 + H_2$

Q12. Nitrogen

 NCl_3 , Na_3N and NH_3 fits an empirical formula of 1:3.

N has a valency of 3

 N_2 is gaseous and a non-metal whereas P is a solid, therefore element X cannot be phosphorus.

Q13. Atomic radius decreases from Na → Si

Outer electrons in the same "shell" but as we go from left to right there is an increasing nuclear charge (extra proton added each time) and this causes a decrease in atomic radius from left to right

Atomic radius increases from $F \rightarrow Br$

The halogens gain electrons to form X- ions

The smaller the radius, the closer the nucleus is to the surface of the atom, hence the more reactive (i.e. the easier it is for them to form X^- ions) they are and the easier it is for them to capture an electron. As a consequence reactivity decreases form $F \to Br$.

Q14.

- A. They have similar electron configurations (arrangements) i.e. the same number of valence electrons (electrons in the outermost energy level). Consequently they have similar processes (reactivity) in attaining stable electron configurations.
- B. It is a large atom, therefore has a lower ionisation energy than the lower atomic mass alkali metals, therefore it is more reactive.
- C. It is the smallest halogen and since its nucleus is so close to its surface, it is extremely good at capturing electrons (i.e. it is a strong oxidant/oxidising agent/oxidiser)
- Q15. A very large "jump" (large increase) in removing a successive electron indicates that that electron comes from an inner "shell"

For Na the large increase is on the 2^{nd} electron, hence there is 1 valence electron.

For Mg the large increase is on the 3^{rd} electron, hence there are 2 valence electrons.

For Al the large increase is on the 4^{th} electron, hence there are 3 valence electrons.

Q16.

Species	Structural formula (showing all valence shell electrons)	Shape (draw or state name)
CO ₂	: O : : C : : O :	Linear

Q17.

```
n(Fe_2O_3) = 50 \div 159.7 = 0.31308 \text{ mol}

n(H_2C_2O_4) = 6 \times n(Fe_2O_3) = 6 \times 0.31308 = 1.8785 \text{ mol}

n = CV; V = n/C

V = 1.8785 \div 2 = 0.939 \text{ L or } 939 \text{ mLs}
```

Q18.

A.
$$n(KAu(CN)_2) = 3.9 \times 10^3 \div 288.14 = 13.53 \text{ mol}$$

 $n(Au) = n(KAu(CN)_2) = 13.53 \text{ mol}$
 $n(Zn) = 1.1 \times 10^3 \div 65.38 = 16.82 \text{ mol}$
 $n(Au) = 2 \times n(Zn) = 2 \times 16.82 = 33.64 \text{ mol}$

KAu(CN)₂ is limiting as it produces the least amount of Au

```
m(Au) = n(Au) \times M(Au) = 13.53 \times 197 g = 2670 g \text{ or } 2.67 \text{ Kg or } 2.67 \times 10^3 g
```

```
B. n(Zn)_{reacting} = \frac{1}{2} \times KAu(CN)_2 = \frac{1}{2} \times 13.53 = 6.767 \text{ mol}

m(Zn)_{reacting} = 7.767 \times 65.38 \text{ g} = 442.4 \text{ g}

m(Zn)_{inxs} = m(Zn)_{init} - m(Zn)_{reacting} = 1100 - 442.4 = 658 \text{ g}
```