الف

$$X = \begin{bmatrix} -1 & -1 \\ 0 & 0 \end{bmatrix} \qquad \overrightarrow{R}_1 + \overrightarrow{R}_2 + \overrightarrow{R}_3 = \begin{bmatrix} 0 & 0 \end{bmatrix} \Rightarrow \qquad \widetilde{X} = X$$

$$\Rightarrow 5 = \frac{\tilde{\chi} \tilde{\chi}^{T}}{N} = \begin{bmatrix} \frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{2}{3} \end{bmatrix}$$
 eigenvalues of $5 = \{0, \frac{4}{3}\}$

$$\begin{bmatrix} \frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{2}{3} \end{bmatrix} \times \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} = \frac{4}{3} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} \Rightarrow \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} = \begin{bmatrix} \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \end{bmatrix} = \text{first Princi Pal Component}$$

$$\chi_{l} = \begin{bmatrix} -1 & -1 \end{bmatrix} \implies \chi_{l}' = \begin{bmatrix} -1 & -1 \end{bmatrix} \times \begin{bmatrix} \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \end{bmatrix} = \begin{bmatrix} -\sqrt{2} \end{bmatrix}$$

$$\chi_{2} = \begin{bmatrix} 0 & 0 \end{bmatrix} \longrightarrow \chi_{2}' = \begin{bmatrix} 0 & 0 \end{bmatrix} \times \begin{bmatrix} \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \end{bmatrix} = \begin{bmatrix} 0 \end{bmatrix}$$

$$\frac{}{3} \qquad \text{Variance} = \frac{(-\sqrt{2}-0)^2 + (0-0)^2 + (\sqrt{2}-0)^2}{3} = \frac{4}{3}$$

$$\chi_1^{\prime} = \begin{bmatrix} \sqrt{2} \\ \sqrt{2} \end{bmatrix} \times \begin{bmatrix} \sqrt{2} \\ \frac{\sqrt{2}}{2} \end{bmatrix} = \begin{bmatrix} -1 & -1 \end{bmatrix} = \chi_1$$

$$\chi_{2}^{\prime} = \begin{bmatrix} 0 \end{bmatrix} , \begin{bmatrix} \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \end{bmatrix} = \begin{bmatrix} 0 & 0 \end{bmatrix} = \chi_{2}$$
The construction error = 0

$$\chi_3^2 = \begin{bmatrix} \sqrt{2} \\ \sqrt{2} \end{bmatrix}, \begin{bmatrix} \sqrt{2} \\ \frac{\sqrt{2}}{2} \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \chi_3$$

-2

الن

الف) (زآن طبی م تابع هزیند الاریتم K-me ans م بالدشه افسه افسه الاریتم mono tonically dec reasing است، ما تربس لا کیسان را بیش از یک بار مستاهده دنی کنیم. با ابن کد ماتریس لا کیان دارد، ولی د دانیم هر به به خوشد ما تربس کا کیسه می معدد ما تربس کا کیسه می معدد ما ترب الاریتم در مواکن الا تعدی به یا یان درسه.

 $\frac{k}{\sum_{j=1}^{k}} \sum_{i,j=1}^{n} \gamma_{i,j} w_{j}(x) + n \beta(x) = \sum_{j=1}^{k} \sum_{i,j=1}^{n} \gamma_{i,j} ||x_{i} - \mu_{j}||^{2} + \gamma_{i,j} ||\mu_{j} - \hat{x}||^{2}$

 $= \sum_{j=1}^{k} \sum_{i=1}^{n} \gamma_{ij} (||x_{i} - \mu_{i}||^{2} + ||\mu_{i} - \hat{n}||^{2}) = \sum_{j=1}^{k} \sum_{i=1}^{n} \gamma_{ij} (|x_{i}^{\top} x_{i} - \hat{x}_{i}^{\top} - 2x_{i}^{\top} \hat{x}_{i} + 2x_{i}^{\top} \hat{x}_{i} + \mu_{i}^{\top} \mu_{i} - 2x_{i}^{\top} \mu_{i} - 2\hat{x}_{i}^{\top} \mu_{i})$

 $= \sum_{j=1}^{k} \sum_{i>1}^{n} \gamma_{ij} \left[(y_{i}^{T} y_{i} + \hat{x}^{T} \hat{a} - 2y_{i}^{T} \hat{x}) + (\mu_{j}^{T} \mu_{j} - 2\mu_{j}^{T} y_{i} - 2\mu_{j}^{T} \hat{a} + 2 \mu_{i}^{T} \hat{a}) \right]$

 $= n \frac{1}{1}(\chi) + \sum_{j=1}^{k} \sum_{i>1}^{n} \gamma_{i} (\mu_{j}^{T} \mu_{j} - 2\mu_{j}^{T} n_{i} - 2\mu_{j}^{T} \hat{n} + 2 n_{i}^{T} \hat{n})$

ب استرانشان می دهیم کد لرده او مساوی با است و نسان می است و نسان کنید را انتفاب ما دادره الله ویتم د
ا وای کنیو و بعد از همکار یه به آلی الله می کنید کند کند کند کند (con teroid کنیک اما ندی کنیو و آن را بر دور کیس از که تا اک در دور کنی از که از در دور کنی از که تا این از که از در در کنی از که تا که از در در کنی از که تا که از در در کنی از که تا که در در در کنی کنید کنید کنید کنید کنید کنید در در در در در کنی کنید کنید کنید کنید کنید کنید کنید
تواری دهیر و نقطه ی از اعظام آن خوشد را به صدرت تصادی به خوشد جدید اینا منه کینیم . حال (۱۱) کی برابر با (۱) مشد را اجرای اکلوریتی، این
مقدار نیز به نشکه monotonic کا هشت یواند، بهامراین (۱۰) لا سال کی سازه این انتخاب ۸ مراساس کمید نشدی ک برمعینست می ن
ا بن روش هدوره کاهای بندگ ته انتخاب روسترند ریا انزایش که ی تؤن که را ^{ار} ی هشدداد.

الف

$$P(x, z; \theta) = (\pi P_r^{\chi} (1-P_r)^{1-\chi})^2 ((1-\pi) P_b^{\chi} (1-P_b)^{1-\chi})^{1-2}$$

$$l_{n} L_{c}(\theta) = \sum_{i=1}^{m} \left[z_{i} (l_{n}(\pi) + \pi_{i} l_{n}(\rho_{i}) + (1-\pi_{i}) l_{n}(1-\rho_{i})) + (1-z_{i}) (l_{n}(1-\pi) + \pi_{i} l_{n}(\rho_{b}) + (1-\pi_{i}) l_{n}(1-\rho_{b})) \right]$$

$$\frac{\partial \ln L_{c}(\theta)}{\partial \rho_{b}} = 0 \implies \sum_{i \leq i}^{m} (1-2i) \left(\frac{\Re i}{\rho_{b}} - \frac{1-\Re i}{1-\rho_{b}} \right) = 0 \implies \hat{\rho}_{b} = \frac{\sum_{i \leq i}^{m} (1-2i)\pi_{i}}{\sum_{i \geq i}^{m} (1-2i)}$$

$$\frac{\partial l_{n} L_{c}(\theta)}{\partial \rho_{r}} = 0 \Rightarrow \sum_{i=1}^{m} z_{i} \left(\frac{\alpha_{i}}{\rho_{r}} - \frac{1 - \alpha_{i}}{1 - \rho_{r}} \right) = 0 \Rightarrow \hat{\rho}_{r} = \frac{\sum_{i=1}^{m} (z_{i} \alpha_{i})}{\sum_{i=1}^{m} z_{i}}$$

$$\frac{\partial l_{n} L_{c}(\theta)}{\partial \pi} = 0 \implies \sum_{i=1}^{m} \left(\frac{z_{i}}{\pi} - \frac{1-z_{i}}{1-\pi} \right) = 0 \implies \pi = \frac{\sum_{i=1}^{m} z_{i}}{m}$$

$$P(z_{i-1} \mid X_{i-\alpha}, a_i) = P(X_{i-\alpha}, |Z_{i-1}, a_i) P(z_{i-1}, a_i) = \pi P_{x_i} (1-p_{x_i})$$

$$\frac{P(Z_{i}=1\mid X_{i}=x_{i};\theta^{t})=\frac{P(X_{i}=y_{i}\mid Z_{i}=1;\theta)}{P(X_{i}=x_{i};\theta)}=\frac{\pi P_{\gamma}^{x_{i}}(1-P_{\gamma})^{1-x_{i}}}{\pi P_{\gamma}^{x_{i}}(1-P_{\gamma})^{1-x_{i}}}$$

$$\frac{1}{2} \int_{0}^{t} \frac{dt}{dt} \int_{0}^{t} \frac{dt}$$