# Mitigating Backdoors/Trojans in Deep Neural Networks

CSIT375/975 AI and Cybersecurity

Dr Wei Zong

SCIT University of Wollongong

Disclaimer: The presentation materials come from various sources. For further information, check the references section

## Outline

- Detect triggers in input
  - STRIP
- Remove backdoors/Trojans in DNN
  - Fine-pruning
  - Neural cleanse
- Robust learning against backdoors/Trojans
  - Anti-backdoor learning

# Detect Triggers in Input

- Problem: can we detect whether input contains a trigger?
  - Backdoor may exist.
    - But not necessarily.
  - Do not have any information about triggers and target labels.
    - Adversaries will not share such information.
  - If a trigger is detected
    - Reject the input.



#### Observation

- Empirically, triggers are input-agnostic, e.g., BadNets.
  - Examples are shown in the figure on the top.
  - If a trigger exists, the output will be the same regardless the input content.
- This inspires the strategy to detect Trojan attacks via repeatedly mixing input with another clean input which has a different label.
  - The intuition is that predictions for clean input will be altered randomly.
    - Input is ambiguous.
  - Predictions for input with triggers will stay stable.
- Block input if triggers are identified in input.
  - No need to patch the model as malicious input are rejected.

#### STRIP algorithm

- An input is mixed with multiple other clean input to form a perturbed set.
  - Clean input are randomly drawn from the dataset.
- Entropy of each perturbed input is then calculated.

$$\mathbb{H}_n = -\sum_{i=1}^M y_i \times \log_2 y_i$$

- where  $H_n$  is entropy for the  $n^{th}$  perturbed input.
- $y_i$  indicates the probability of being classified as class i.
- M is the total number of classes.
- Entropy value ranges [0, 1]
  - A larger entropy means more randomness.
  - A smaller entropy means less randomness.

## **Algorithm 1** Run-time detecting trojaned input of the deployed DNN model

```
1: procedure detection (x, \mathcal{D}_{test}, F_{\Theta}), detection boundary)
         trojanedFlag \leftarrow No
        for n = 1 : N do
             randomly drawing the n_{\rm th} image, x_n^t, from \mathcal{D}_{\rm test}
             produce the n_{th} perturbed images x^{p_n} by superimposing in-
    coming image x with x_n^t.
         end for
       \mathbb{H} \leftarrow F_{\Theta}(\mathcal{D}_p) \rightarrow \mathcal{D}_p is the set of perturbed images consisting of
     \{x^{p_1}, \ldots, x^{p_N}\}, \mathbb{H} is the entropy of incoming input x assessed by
     averaging all the calculated entropy.
         if \mathbb{H} \leq detection boundary then
              trojanedFlag \leftarrow Yes
         end if
10:
         return trojanedFlag
12: end procedure
```

- STRIP algorithm (continued)
  - The entropy values are averaged
    - A larger entropy means higher possibility for the input being clean.
      - Perturbed input are ambiguous.
    - A smaller entropy means higher possibility for the existence of a trigger.
      - The trigger is detected.
  - Anomaly detection is employed to detect the existence of a trigger in new input.
    - Assume the entropy for clean input follows a Normal (Gaussian) Distribution,.
    - In practice, the entropy distribution for clean input can be calculated in advance to determine the detection threshold.

## **Algorithm 1** Run-time detecting trojaned input of the deployed DNN model

```
1: procedure detection (x, \mathcal{D}_{test}, F_{\Theta}), detection boundary)
         trojanedFlag \leftarrow No
         for n = 1 : N do
              randomly drawing the n_{\rm th} image, x_n^t, from \mathcal{D}_{\rm test}
              produce the n_{th} perturbed images x^{p_n} by superimposing in-
    coming image x with x_n^t.
         end for
        \mathbb{H} \leftarrow F_{\Theta}(\mathcal{D}_p) \rightarrow \mathcal{D}_p is the set of perturbed images consisting of
     \{x^{p_1}, \ldots, x^{p_N}\}, \mathbb{H} is the entropy of incoming input x assessed by
     averaging all the calculated entropy.
         if \mathbb{H} \leq detection boundary then
 8:
              trojanedFlag \leftarrow Yes
 9:
         end if
10:
         return trojanedFlag
12: end procedure
```



#### Results

- An example of entropy distribution for clean input and input with triggers is shown in the figure.
  - 2000 benign and 2000 Trojaned input images of GTSRB.
  - The entropy of input containing a trigger is concentrated at low values.
  - The entropy distribution for clean input spreads across a large range.
    - Consistent with the intuition that there is more randomness in predictions for clean input when mixed with other clean input.
  - The entropy distribution for clean input visually follows a normal distribution.
- Choosing a 1% false rejection rate (FRR) suppresses false acceptance rate (FAR) to be less than 1%.
  - Based on case studies on MNIST, CIFAR10, and GTSRB.
  - The FRR is the probability when the benign input is regarded as a trojaned input.
  - The FAR is the probability when the trojaned input is recognized as the benign input.

# Remove backdoors/Trojans in DNN

- Merely detecting trigger in input is not enough.
  - The risk does not disappear.
  - Backdoored models need to be purified.
- Problem: given a well trained DNN, can we remove potential backdoors?
  - Backdoor may exist.
    - But not necessarily.
  - Negligibly affect model performance.
    - Otherwise, decreasing its value.
  - A user may not have access to the original training set.
    - Download a pretrained model.
  - Do not have any information about triggers and target labels.
    - Adversaries will not share such information.
  - Computational costs need to be considered
    - Significantly less than training a clean model from scratch.

#### Observation

- Different neurons are activated for clean input and input with triggers.
  - A potential explanation is that each neuron aims to detect a specific feature from the input.
- Hence, neurons that detect the existence of triggers are not activated when input is clean and vice versa.

#### Key idea

- Prune neurons that do not activate for clean input.
  - The purpose is to remove potential Trojan from a target model.



- A naïve approach fails
  - Initial results show that removing neurons that are not activated for normal input can remove potential Trojan.
    - This will also degrade the performance significantly.
    - This is because the original architecture is changed.
  - Trojan is successfully removed at the cost of 4% decrease in accuracy for clean input.
    - 4% decrease in accuracy is not negligible.
    - Research community improved the state-ofthe-art top-1 accuracy on ImageNet by about only one percent point per year.



- Adaptive attack
  - In addition to preserving performance, robustness to adaptive attack is also critical.
    - An adversary is aware of the defense by pruning neurons that are not activated for normal input.
    - Robustness to adaptive attacks is essential for a practical defense.
  - Key question for an adversary
    - Can the clean and backdoor behavior be projected onto the same subset of neurons?
      - Yes, 4-stage pruning-aware attack.

- 4-stage pruning-aware attack
  - Stage 1: an adversary normally trains a model on clean datasets.
  - Stage 2: the adversary prunes neurons that are not activated for clean input.
  - Stage 3: the adversary re-trains the pruned DNN
    - With the poisoned training dataset.
  - Stage 4: the adversary re-installs all pruned neurons back into the network along with the associated weights and biases.
    - This step is necessary because if the architecture of a model is changed, this will arouse suspicion of a victim and the compromised model may not be used.



- 4-stage pruning-aware attack
  - This adaptive attack forces remaining neurons in the pruned model to be activated when input contains triggers.
    - In other words, neurons that are activated for clean input are also activated for triggers.
      - Break the assumption of the defense.
  - Results
    - Trojan cannot be removed.
      - Performance of a target model is significantly affected.



#### Fine-Pruning

- Preserve performance and defend against adaptive attack
- Two stages of defense
  - Firstly, prune the neurons that do not react to clean input.
  - Then, fine-tune the network on a clean training set.
  - Hence called Fine-Pruning.
- Underlying reason for this strategy
  - Fine-tuning a pruned model can effectively destroy potential Trojan since model weights are changed.
  - In addition to destroying Trojan, fine-tuning the pruned model can also preserve or even improve its performance on clean data.
  - Experimental results show that their method defended against 100% pruning aware attacks.
  - The decrease in accuracy is only 0.2%.

- Fine-Pruning
  - Results
    - Targeted attack: face recognition and speech recognition; Untargeted attack: traffic Sign detection.
    - Baseline attack: train a model on a poisoned dataset.

| Neural<br>Network |           | Baseline Atta | ack          | Pruning Aware Attack |             |              |  |  |
|-------------------|-----------|---------------|--------------|----------------------|-------------|--------------|--|--|
|                   | ]         | Defender Stra | tegy         | Defender Strategy    |             |              |  |  |
|                   | None      | Fine-Tuning   | Fine-Pruning | None                 | Fine-Tuning | Fine-Pruning |  |  |
| Face              | cl: 0.978 | cl: 0.978     | cl: 0.978    | cl: 0.974            | cl: 0.978   | cl: 0.977    |  |  |
| Recognition       | bd: 1.000 | bd: 0.000     | bd: 0.000    | bd: 0.998            | bd: 0.000   | bd: 0.000    |  |  |
| Speech            | cl: 0.990 | cl: 0.990     | cl: 0.988    | cl: 0.988            | cl: 0.988   | cl: 0.986    |  |  |
| Recognition       | bd: 0.770 | bd: 0.435     | bd: 0.020    | bd: 0.780            | bd: 0.520   | bd: 0.000    |  |  |
| Traffic Sign      | cl: 0.849 | cl: 0.857     | cl: 0.873    | cl: 0.820            | cl: 0.872   | cl: 0.874    |  |  |
| Detection         | bd: 0.991 | bd: 0.921     | bd: 0.288    | bd: 0.899            | bd: 0.419   | bd: 0.366    |  |  |

- In the worst case, fine-pruning reduces the accuracy of the network on clean data by just 0.2%.
  - in some cases, fine-pruning increases the accuracy on clean data slightly.
- For targeted attacks, fine-pruning is highly effective for both the baseline and pruning-aware attacks.
- For the untargeted attacks on traffic sign recognition, fine-pruning reduces the attacker's success from 99% to 29% in the baseline attack
  - From 90% to 37% in the pruning-aware attack.
  - Untargeted attacks are much easier to achieve than targeted attacks.

#### Defense goals

- Detecting backdoor
  - Want to make a binary decision of whether a given DNN has been infected by a backdoor.
  - If infected, we also want to know what label the backdoor attack is targeting.

#### Identifying backdoor

- Want to identify the expected operation of the backdoor.
- Want to reverse engineer the trigger used by the attack.

#### Mitigating Backdoor

- Want to render the backdoor ineffective.
  - Want to "patch" the DNN to remove the backdoor without affecting its classification performance for normal inputs.

#### Observation

- A backdoor trigger produces a classification result to a target label regardless of the label the input normally belongs in.
- A simplified illustration.
  - Top figure shows a clean model
    - More modification is needed to move samples of B and C across decision boundaries to be misclassified into label A.
  - Bottom figure shows the infected model
    - the backdoor changes decision boundaries and creates backdoor areas close to B and C.
    - These backdoor areas reduce the amount of modification needed to misclassify samples of B and C into the target label A.



- Key idea
  - Detect these shortcuts, by measuring the minimum amount of perturbation necessary to change all inputs from each region to the target region.
    - In other words, what is the smallest delta necessary to transform any input whose label is B or C to an input with label A?



#### Detecting Backdoors

- An infected model is detected if it requires much smaller modifications to cause misclassification into the target label than into other uninfected labels
- Three steps
  - Step 1
    - For a given label, treat it as a potential target label of a targeted backdoor attack.
    - Find the "minimal" trigger (adversarial perturbations) required to misclassify all samples from other labels into this target label.
      - The trigger is considered as the "reverse engineered trigger".
  - Step 2
    - Repeat Step 1 for each output label in the model.
  - Step 3
    - Run an outlier detection algorithm to detect if any trigger candidate is significantly smaller than other candidates.
    - A significant outlier represents a real trigger
    - The label matching that trigger is the target label of the backdoor attack.

- Reverse Engineering Triggers
  - A generic form of trigger injection:

$$A(\boldsymbol{x}, \boldsymbol{m}, \boldsymbol{\Delta}) = \boldsymbol{x'}$$
  
 $\boldsymbol{x'}_{i,j,c} = (1 - \boldsymbol{m}_{i,j}) \cdot \boldsymbol{x}_{i,j,c} + \boldsymbol{m}_{i,j} \cdot \boldsymbol{\Delta}_{i,j,c}$ 

- $A(\cdot)$  represents the function that applies a trigger to the original image x.
- lacksquare  $\Delta$  is the trigger pattern.
- m is the mask to blend  $\Delta$  with x.
- $\circ$  Calculate  $\Delta$  and m via solving an optimization:

$$\min_{\boldsymbol{m}, \boldsymbol{\Delta}} \quad \ell(y_t, f(A(\boldsymbol{x}, \boldsymbol{m}, \boldsymbol{\Delta}))) + \lambda \cdot |\boldsymbol{m}|$$
for  $\boldsymbol{x} \in \boldsymbol{X}$ 

- |m| is  $l_1$  norm of m.
  - Sum of the absolute value of each element.

- Detecting infected models
  - A trigger for a target label is identified if the corresponding |m| is significantly smaller than the others.
    - The infected label is far below the median and much smaller than the smallest of uninfected labels.
  - Use Median Absolute Deviation to detect anomaly
    - Use it as a black-box tool (details not covered).
    - Return an anomaly index for a data point.
      - Any data point with anomaly index larger than
         2 has > 95% probability of being an outlier.
      - Mark any label with anomaly index larger than
         2 as an outlier and infected.
    - The bottom figure shows the anomaly index regarding the label with the smallest trigger.
      - Infected models can be reliably detected.





Reverse engineered triggers



- $_{\circ}$  Compare the original and reversed triggers ( $m\cdot\Delta$ ) in four BadNets models.
  - Reversed triggers are roughly similar to original triggers.
    - L1 norms are norms of masks.
    - Color of original trigger and reversed trigger is inverted for better visualization.
  - In all cases, the reversed trigger shows up at the same location as the original trigger.

- Patching DNNs via Unlearning
  - Train DNN to unlearn the original trigger.
    - Fine-tune the model for 1 epoch
    - Use 10% sample of the original training data.
    - Add the reversed trigger to 20% of subset without modifying labels.

| Task         | Before Patching |                | Patching w/ Reversed Trigger |                | Patching w/ Original Trigger |                | Patching w/ Clean Images |                |
|--------------|-----------------|----------------|------------------------------|----------------|------------------------------|----------------|--------------------------|----------------|
| lask         | Classification  | Attack Success | Classification               | Attack Success | Classification               | Attack Success | Classification           | Attack Success |
|              | Accuracy        | Rate           | Accuracy                     | Rate           | Accuracy                     | Rate           | Accuracy                 | Rate           |
| MNIST        | 98.54%          | 99.90%         | 97.69%                       | 0.57%          | 97.77%                       | 0.29%          | 97.38%                   | 93.37%         |
| GTSRB        | 96.51%          | 97.40%         | 92.91%                       | 0.14%          | 90.06%                       | 0.19%          | 92.02%                   | 95.69%         |
| YouTube Face | 97.50%          | 97.20%         | 97.90%                       | 6.70%          | 97.90%                       | 0.0%           | 97.80%                   | 95.10%         |
| PubFig       | 95.69%          | 97.03%         | 97.38%                       | 6.09%          | 97.38%                       | 1.41%          | 97.69%                   | 93.30%         |

- Unlearning with reversed triggers is a good approximation for unlearning using the original trigger.
- Unlearning using only clean training data is ineffective for all BadNets models.
  - Attack success rate still high: > 93.37%.
  - May further decrease with more data and epochs, but it increases costs.

# Robust Learning against Backdoors/Trojans

- Problem: is it possible to train a clean model on poisoned data?
  - Prohibitively expensive to manually check each training data.
    - Imagenet with 1000 classes contain over 1 million images.
    - Triggers can even be imperceptible.
  - Do not have any information about triggers and target labels.
    - Adversaries will not share such information.
    - Do not know the poisoning rate either.
  - Preserve the performance of trained models.
    - Keep backdoor attack success rates as low as possible.

- Identify and remove backdoored data before training a model.
  - This is not a trivial task.
    - On CIFAR-10, even if the poisoning rate is less than 1%, various attacks can still achieve high attack success rates.
      - Attack performance remains the same if we miss a few backdoored data.
    - May accidentally remove a lot of valuable data when the dataset is completely clean.
      - Decrease model performance.



#### Observations

- The learning process on a backdoor-poisoned dataset contains two sub tasks.
  - The learning of the clean portion as the original (clean) task
  - The learning of the backdoored portion as the backdoor task.
- 2 characteristics of learning the backdoor.
  - The backdoor task is a much easier task compared to the original task.
    - The training loss of the backdoored portion drops abruptly in early epochs of training.
    - The loss of clean examples decreases at a steady pace.
  - The backdoor task is tied to a specific class, i.e., the backdoor target class.
    - The correlation between the trigger pattern and the target class could be easily broken
      - Simply randomizing the class target, e.g., shuffling the labels of a small proportion of examples with low loss

- Distinctive learning behaviors on backdoor examples
  - Poison 10% of CIFAR-10 training data.
  - Compare the average training loss (i.e., crossentropy) on clean versus backdoored training examples
    - The training loss on backdoor examples drops much faster than that on clean examples in the first few epochs.
    - Backdoor attack adds an explicit correlation between the trigger pattern and the target class to simplify and accelerate the injection of the backdoor trigger.



BadNets (ASR=100%)



Blend (ASR=100%)

- Can we simply remove backdoored data by filtering out the low-loss examples at an early stage?
  - This strategy is ineffective for two reasons.
    - Reason 1
      - The training loss shown previously is the average training loss, which means some backdoor examples can still have high training loss.
      - Several powerful attacks can still succeed even with very few (50 or 100) backdoor examples.
    - Reason 2
      - If the training progresses long enough (e.g., beyond epoch 20), many clean examples will also have a low training loss, which makes the filtering significantly inaccurate.

- Anti-Backdoor learning method
  - Decompose the entire training process into two stages
    - Early training stage isolates potential backdoored data.
      - Run gradient ascent on loss function if loss values are below a threshold.
        - Backdoor examples would escape the constraint since their loss values drop fast.
      - ullet percent of data with the lowest loss values will be isolated into the backdoor set
      - The rest data are put into the clean set.
      - Isolation rate (e.g., p = 1%) is assumed to be much smaller than the poisoning rate (e.g., 10%).
    - Later training stage unlearns identified backdoored data.
      - Run gradient ascent on the loss function with respect to the isolated data.
      - A model is normally trained on data in the clean set.

- Anti-Backdoor learning method
  - Results on CIFAR-10.
    - Compared to other defenses
      - Fine-pruning (FP), Mode Connectivity Repair (MCR) (not covered), and Neural Attention Distillation (NAD) (not covered)
    - Achieve the best accuracy on clean data and
    - Achieve the best robustness against attacks overall.
      - Less robust against Blend compared to NAD.

| Dataset  | Types   | No Defense |        | FP     |        | MCR    |        | NAD    |        | ABL (Ours) |        |
|----------|---------|------------|--------|--------|--------|--------|--------|--------|--------|------------|--------|
| Dataset  |         | ASR        | CA     | ASR    | CA     | ASR    | CA     | ASR    | CA     | ASR        | CA     |
|          | None    | 0%         | 89.12% | 0%     | 85.14% | 0%     | 87.49% | 0%     | 88.18% | 0%         | 88.41% |
| CIFAR-10 | BadNets | 100%       | 85.43% | 99.98% | 82.14% | 3.32%  | 78.49% | 3.56%  | 82.18% | 3.04%      | 86.11% |
|          | Trojan  | 100%       | 82.14% | 66.93% | 80.17% | 23.88% | 76.47% | 18.16% | 80.23% | 3.81%      | 87.46% |
|          | Blend   | 100%       | 84.51% | 85.62% | 81.33% | 31.85% | 76.53% | 4.56%  | 82.04% | 16.23%     | 84.06% |
|          | Dynamic | 100%       | 83.88% | 87.18% | 80.37% | 26.86% | 70.36% | 22.50% | 74.95% | 18.46%     | 85.34% |
|          | SIG     | 99.46%     | 84.16% | 76.32% | 81.12% | 0.14%  | 78.65% | 1.92%  | 82.01% | 0.09%      | 88.27% |
|          | CL      | 99.83%     | 83.43% | 54.95% | 81.53% | 19.86% | 77.36% | 16.11% | 80.73% | 0%         | 89.03% |
|          | FC      | 88.52%     | 83.32% | 69.89% | 80.51% | 44.43% | 77.57% | 58.68% | 81.23% | 0.08%      | 82.36% |
|          | DFST    | 99.76%     | 82.50% | 78.11% | 80.23% | 39.22% | 75.34% | 35.21% | 78.40% | 5.33%      | 79.78% |
|          | LBA     | 99.13%     | 81.37% | 54.43% | 79.67% | 15.52% | 78.51% | 10.16% | 79.52% | 0.06%      | 80.52% |
|          | CBA     | 90.63%     | 84.72% | 77.33% | 79.15% | 38.76% | 76.36% | 33.11% | 82.40% | 29.81%     | 84.66% |
|          | Average | 97.73%     | 83.55% | 75.07% | 80.62% | 24.38% | 76.56% | 20.40% | 80.37% | 7.69%      | 84.76% |

- Anti-Backdoor learning method
  - Results of various rates  $p \in [0.01, 0.2]$  on CIFAR-10.
    - A high isolation rate can isolate more backdoor examples for the later stage of unlearning, producing a much lower attack success rate (ASR).
    - It also puts more examples into the unlearning mode, which harms the clean accuracy.





• Fixing 1% isolation rate while increasing poisoning rate (CIFAR-10).

| Poisoning Rate  | Defense |       | lNets  | Blend  |        |  |
|-----------------|---------|-------|--------|--------|--------|--|
| 1 ofsoming Nate | Detense | ASR   | ACC    | ASR    | ACC    |  |
| 50%             | None    | 100%  | 75.31% | 100%   | 69.49% |  |
| 30%             | ABL     | 4.98% | 70.52% | 27.28% | 64.19% |  |
| 70%             | None    | 100%  | 74.8%  | 100%   | 67.32% |  |
| 7070            | ABL     | 5.02% | 70.11% | 62.28% | 64.43% |  |

- With a high poisoning rate of 50%, can still reduce the ASR from 100% to 4.98% and 27.28% for BadNets and Blend.
  - Robust against BadNets even though the poison rate is 70%.
- Potential explanation for the worse robustness against Blend.
  - Blend mixes the trigger pattern (i.e., another image) with the background of the poisoned images.
  - This makes it harder to be isolated and unlearned, since even clean data may have such patterns.

## Arms race

- Endless battle between backdoor attackers and defenders
  - o Once a defense is proposed, there "always" will be adaptive attacks bypassing it.
    - Attacks can simply bypass defense via reasonably breaking its assumptions.
  - This is different from adversarial examples.
    - Adversarial examples are intrinsic flaws (e.g., shortcut learning) in current deep learning models.
    - Learning features that align with human perception will eventually eliminate adversarial examples.
      - It's acceptable that humans and AI models are fooled in the same way.
        - e.g., optical illusions.

## Arms race

- Breaking the assumption of defense.
  - An attack can bypass STRIP if it breaks the assumption of input-agnostic triggers.
  - Input-dependent backdoor: Invisible Backdoor Attack with Sample-Specific
     Triggers (labeled as "ours").



- The entropy generated by STRIP of different attacks.
- The higher the entropy, the harder the attack for STRIP to defend.
- This attack is more resistant to STRIP compared to BadNet and Blended Attack.
  - It has the potential to bypass STRIP.

### References

- Liu, K., Dolan-Gavitt, B. and Garg, S., 2018, September. Fine-pruning: Defending against backdooring attacks on deep neural networks. In International symposium on research in attacks, intrusions, and defenses (pp. 273-294). Cham: Springer International Publishing.
- Gao, Y., Xu, C., Wang, D., Chen, S., Ranasinghe, D.C. and Nepal, S., 2019, December. Strip: A defence against trojan attacks on deep neural networks. In Proceedings of the 35th annual computer security applications conference (pp. 113-125).
- Li, Y., Lyu, X., Koren, N., Lyu, L., Li, B. and Ma, X., 2021. Anti-backdoor learning: Training clean models on poisoned data. Advances in Neural Information Processing Systems, 34, pp.14900-14912.
- Wang, B., Yao, Y., Shan, S., Li, H., Viswanath, B., Zheng, H. and Zhao, B.Y., 2019, May. Neural cleanse: Identifying and mitigating backdoor attacks in neural networks. In 2019 IEEE symposium on security and privacy (SP) (pp. 707-723). IEEE.
- Li, Y., Li, Y., Wu, B., Li, L., He, R. and Lyu, S., 2021. Invisible backdoor attack with sample-specific triggers. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 16463-16472).