36-401, Chapter 1: Review of Random Variables

Zach Branson, Fall 2025

Motivation

Regression involves learning the relationship (if any) between **outcomes** Y and **covariates** X. Given n observations, our data will look like $(X_1, Y_1), \ldots, (X_n, Y_n)$, where each X_i and Y_i is organized by columns in a dataset.

Example 0.1. The US Bureau of Economic Analysis (BEA) releases data on the economic output of metropolitan areas. Below we consider data from 2006, where we assess the relationship between **per-capita gross metropolitan product** (GMP) (the outcome) and **population size** (the covariate).

We can load the data and look at the first few rows:

```
## 4 Albany-Schenectady-Troy, NY 36840 850300 0.15780 0.09399 0.04511 ## 5 Albuquerque, NM 37660 816000 0.15990 0.09978 0.20500 ## 6 Alexandria, LA 25490 152200 0.09152 0.03790 0.01134
```

We'll visualization pcgmp, pop, and their relationship.

First, we can visualize the variables' marginal distributions.

```
library(ggplot2)
library(gridExtra)
pcgmpHist <- ggplot(bea, aes(x = pcgmp)) +
    geom_histogram(binwidth = 2000) +
    labs(x = "Per capita GMP", y = "MSAs")
popHist <- ggplot(bea, aes(x = pop)) +
    geom_histogram(binwidth = 500000) +
    labs(x = "Population", y = "MSAs")
grid.arrange(pcgmpHist, popHist, ncol = 2)</pre>
```


Now, we can visualize the variables' *joint distribution* and their *linear relationship* with a scatterplot and linear regression line. Below we use pop as a covariate (left) or log(pop) as a covariate (right).

```
#population as covariate
popScatter <- ggplot(bea, aes(x = pop, y = pcgmp)) +
    geom_point() +
    geom_smooth(method = "lm") + # linear model plotted on top
    labs(x = "Population", y = "Per-capita GMP")
#log(population) as covariate
logPopScatter <- ggplot(bea, aes(x = pop, y = pcgmp)) +
    geom_point() +
    scale_x_continuous(trans = "log") +
    geom_smooth(method = "lm") +
    labs(x = "Log Population", y = "Per-capita GMP")
grid.arrange(popScatter, logPopScatter, ncol = 2)</pre>
```


There are several key takeaways from the above example.

· X & Y are random variables w/ distributions
Randomness comes from sampling (X1, Y1), (Xn, Yn)
· Can consider margahal distribution, joint distr, and conditional distr. (eg. 71%)
· Unear regression when plots $\hat{E}[X] = \hat{\beta}_0 + \hat{\beta}_1 x$
· Estimators $\hat{\beta}_{o}$, $\hat{\beta}_{i}$ are functions of (X,Y) and thus are random variables,
· We'll consider expectation, variance, covariance, distr. of rand. vars, to conduct interence.
data-generally
Unknown Population Guantities Process Sample
$[(X_1,Y_1),\ldots,(X_n,Y_n)]$
Modelby analysis
stat. Estimation
Inference (Ê[X], Ê[Y], Ê[Y]x]

Distributions of Random Variables

A discrete random variable X is characterized by its probability mass function (pmf), denoted $f(\cdot)$, where

$$f(k) = \mathbb{P}(X = k)$$
 for all k .

Here, *k* corresponds to different potential values of *X*.

Exercise 0.1. List some properties that the pmf function must possess.

A continuous random variable X is characterized by its **probability density function (pdf)**, denoted f(x), such that

$$\mathbb{P}(a \le X \le b) = \int_a^b f(x) \, dx \quad \text{for all } a \le b.$$

Figure 0.1: The Exponential(λ) pdf when $\lambda = 0.5$.

Example 0.2. A random variable X is said to have the **Exponential**(λ) distribution if

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & \text{if } x \ge 0\\ 0 & \text{if } x < 0. \end{cases}$$

Exercise 0.2. Suppose $X \sim \text{Exp}(\lambda)$. What is $\mathbb{P}(X \leq a)$? What is $\mathbb{P}(3 \leq X \leq 5)$? What is $\mathbb{P}(X = 2)$?

$$P(x \le a) = \int_{0}^{a} f(x) dx, \text{ where } f(x) = \lambda e^{-\lambda x}$$

$$P(3 \le x \le 5) = \int_{3}^{5} f(x) dx$$

$$P(x = 2) = 0, (\int_{2}^{2} f(x) dx = 0)$$

Expected Values

The **expected value** of a random variable *X* is defined as

$$\mathbb{E}(X) = \sum_{k} kf(k)$$
 when X is discrete, and

$$\mathbb{E}(X) = \int_{-\infty}^{\infty} x f(x) dx$$
 when *X* is continuous.

Heuristically, $\mathbb{E}[X]$ is the "average" value a random variable X takes. Often, expectations are denoted with μ .

The **variance** of *X* is defined as

$$\operatorname{Var}(X) = \mathbb{E}\left[\left(X - \mathbb{E}[X]\right)^{2}\right] = \mathbb{E}[X^{2}] - (\mathbb{E}[X])^{2}$$

The variance measures the spread of a distribution, often denoted with σ^2 . The square root of the variance is the **standard deviation**.

The **covariance** between *X* and *Y* is defined as

$$Cov(X,Y) = \mathbb{E}[(X - \mathbb{E}(X))(Y - \mathbb{E}(Y))] = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y)$$

Covariance measures the strength of linear relationship between *X* and *Y*.

A related quantity is the **correlation** between *X* and *Y*, defined as

$$Corr(X,Y) = \frac{Cov(X,Y)}{\sigma_X \sigma_Y}$$

$$\sigma_X = \sqrt{var(X)}$$

The correlation is bounded between -1 and 1.

There are several important properties of expectations, variances, and covariances that we'll use throughout this class.

o Whearity of
$$E[\cdot]: E[ax+by+c] = aE[x]+bE[y]+c$$

for scales a,b,c

o (aw of Unconscious Statistica) (LOTUS)

$$E[h(x)] = \int_{-\infty}^{\infty} h(x) f(x) dx$$

$$\circ Var(aX+b) = a^{2}Var(x)$$

$$\circ Var(aX+by) = a^{2}Var(x) + b^{2}Var(y) + 2abCov(x,y)$$

$$\circ Cov(aX+b,y) = aCov(x,y)$$

$$\cdot Cov(aX+b,y) = aCov(x,y)$$

Exercise 0.3. What is Cov(X, X)?

$$Cov(X, X) = E[X \cdot X] - E[X] \cdot E[X]$$

$$= E[X^2] - (E[X])^2$$

$$= Var(X)$$

The above expectations, variances, covariances, and correlations are **population-level** quantities that we'll estimate with sample analogs from the data.

Sample Avg.:
$$\widehat{E}[X] = \overline{X} = \frac{1}{n} \sum_{i=1}^{n} \chi_{i}$$

Sample Var.: $\widehat{Var}(\chi) = S_{\chi}^{2} = (\frac{1}{n-1}) \sum_{i=1}^{n} (\chi_{i} - \overline{\chi})^{2}$

Sample Cov.: $\widehat{Cov}(\chi, \chi) = S_{\chi} y = (\frac{1}{n-1}) \sum_{i=1}^{n} (\chi_{i} - \overline{\chi}) (\chi_{i} - \overline{\chi})$

Sample Correlation: $\widehat{Corr}(\chi, \chi) = r_{\chi} y = \frac{S_{\chi} y}{S_{\chi} \cdot S_{\chi}}$

The above sample analogs are all **statistics**: They are functions of the data. They each have a **sampling distribution**: i.e., their distribution when we repeatedly obtain many samples of size n.

Stablistic: $T = g((x_1, x_1), \dots, (x_n, x_n))$ random var. samply distr: distr. of T across samples

Figure 0.2: Examples of scatter plots, and corresponding correlations r. From Wikipedia.

Figure 0.2 shows some example scatterplots and corresponding correlations. It is useful for building intuition about correlation values.

Conditional Expectation

Conditional expectations let us ask: What is the mean of Y among observations where X = x?

The **conditional expectation** of *Y* given X = x is

$$\mathbb{E}(Y|X=x) = \begin{cases} \sum_{y} yf(y|x) & \text{discrete case} \\ \int yf(y|x)dy & \text{continuous case.} \end{cases}$$

This is the same definition of expectation, but we replaced the marginal $f_Y(y)$ with the conditional $f_{Y|X}(y|x)$.

Similarly, if r(x, y) is a function of x and y, then

$$\mathbb{E}(r(X,Y)|X=x) = \begin{cases} \sum_{y} r(x,y) f(y|x) & \text{discrete case} \\ \int r(x,y) f(y|x) dy & \text{continuous case.} \end{cases}$$

Warning! Whereas $\mathbb{E}(Y)$ is a number, $\mathbb{E}(Y|X=x)$ is a function of x. In fact, $\mathbb{E}(Y|X)$ is a random variable whose value is $\mathbb{E}(Y|X=x)$ when X=x.

Exercise 0.4. Suppose we draw $X \sim \text{Unif}(0,1)$. After we observe X = x, we draw $Y \mid X = x \sim \text{Unif}(x,1)$. What is $\mathbb{E}(Y \mid X)$?

In general,
$$Z \sim \text{Unif}(a,b)$$
, then: $f(z) \circ \int_{b-a}^{+} f a < z < b
 v otherwise

Thus: $f(y|x) = \begin{cases} \frac{1}{1-x} & \text{for } x < y < 1 \\ 0 & \text{otherwise} \end{cases}$

$$E[Y|x=x] = \int y \cdot f(y|x) \, dy$$

$$= \frac{1}{1-x} \int_{x}^{1} y \, dy$$

$$= (\frac{1}{1-x}) \cdot (\frac{1}{2}y^{2}|_{x}^{1})$$

$$= (\frac{1}{1-x}) \cdot (\frac{1}{2}z^{2})$$

$$= \frac{1}{2(1-x)} \cdot (1-x) \cdot (1+x)$$

$$= \frac{1+x}{2}$$$

The **conditional variance** of Y given X = x is

$$Var(Y|X = x) = \int (y - \mu(x))^2 f(y|x) dy$$

where $\mu(x) = \mathbb{E}(Y|X=x)$.

Again, the conditional variance is a function of x and a random variable: It is the variance of Y when (by chance) X = x.

Two very important properties of conditional expectations and variances:

Exercise 0.5. Return to the above example. What is $\mathbb{E}(Y)$?

1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
I .		
1		
1		
1		
1		
1		
1		
I .		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		

Large-Sample Theorems

In this class, we'll consider the *asymptotic* (i.e., large-sample) behavior of estimators in terms of their *bias* and *variance*.

The below two foundational results establish the asymptotic behavior of the sample mean \overline{X} as an estimator for $\mathbb{E}[X]$.

The Law of Large Numbers. Assume $(X_1, ..., X_n)$ are independent and identically distributed (iid), where $\mathbb{E}[X_i] < \infty$. Then

$$\frac{1}{n}\sum_{i=1}^n X_i \stackrel{p}{\to} \mathbb{E}(X).$$

The $\stackrel{p}{\to}$ means "convergence in probability." Informally, this means that the bias and variance of \overline{X} go to zero as $n \to \infty$. Formally, this means

$$\lim_{n\to\infty} P(|\overline{X} - \mathbb{E}[X]| > \epsilon) = 0, \text{ for any } \epsilon > 0$$

Thus, the sample mean is a *consistent estimator* for the population mean, which is reassuring.

Central Limit Theorem. Assume $(X_1, ..., X_n)$ are iid, where $\mathbb{E}[X_i] < \infty$ and $\text{Var}(X_i) < \infty$. Then, as $n \to \infty$,

$$\frac{1}{n}\sum_{i=1}^{n}X_{i}\sim N\left(\mathbb{E}[X],\frac{\mathrm{Var}(X)}{n}\right)$$

Mathematically, it is nicer to have the limit that we're converging to not change with n. Thus, the CLT is often stated as

$$\sqrt{n}\left(\frac{\overline{X} - \mathbb{E}(X)}{\sqrt{\operatorname{Var}(X)}}\right) \stackrel{d}{\to} \mathcal{N}(0,1).$$

The \xrightarrow{d} means "convergence in distribution." The CLT tells us that not only is \overline{X} an unbiased estimator, but also it has an asymptotically Normal distribution with a defined variance. If we can estimate this variance, then the distribution provides a way to compute confidence intervals.

Figure 0.3: Three Normal densities.

The Normal Distribution

The **Normal distribution** has the classic bell-shaped density that we have learned to love, shown in Figure 0.3:

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}, \quad -\infty < x < \infty$$

Writing $X \sim N(\mu, \sigma^2)$, implies that $E(X) = \mu$ and $Var(X) = \sigma^2$.

The case where $\mu = 0$ and $\sigma^2 = 1$ is called the **standard Normal**.

Exercise 0.6. Suppose that $X_1, X_2, ..., X_n$ are each Normally distributed, i.e., $X_i \sim N(\mu_i, \sigma_i^2)$. Under what condition(s) is the linear combination

$$Y = \sum_{i=1}^{n} a_i X_i$$

(where at least one $a_i \neq 0$) also Normal?

Figure 0.4: Three chi-squared densities.

Other Important Distributions

Chi-Squared Distribution

If $Z_1, Z_2, \dots, Z_n \stackrel{iid}{\sim} N(0,1)$, then

$$X = \sum_{i=1}^{n} Z_i^2 \sim \chi_n^2$$

i.e., the above sum follows a **chi-squared distribution with** n **degrees of freedom**.

Figure 0.5: Three t-distribution densities.

The t-Distribution

If $Y \sim N(0,1)$ and $U \sim \chi_n^2$ independent of Y, then

$$X = Y / \sqrt{\frac{U}{n}} \sim t_n$$

i.e., the above quantity follows a **t-distribution with** n **degrees of freedom**. This distribution has a Normal-like shape, but with heavier tails.

The F-distribution

If $X \sim \chi_n^2$, and $Y \sim \chi_m^2$ independent of X, then

$$U = \frac{X/n}{Y/m} \sim F_{n,m}$$

i.e., the above quantity follows an **F-distribution with** n **numerator and** m **denominator degrees of freedom**.

This distribution plays an important role in hypothesis testing with linear models.