D'awee zi Ni A24 CS 0078

- Dee Jia Yee A24CS 0260
- 3 Evelyn Ang A24cS0068
- 1) Leong Jia Ling 124 CS 0104

1)a)

b) Edges: 12

Vertices: 13

c) Not a full 3-any tree because not every internal node has exactly 3 children. However, it is a 3-any tree.

d

-: The tree is balanced. All leaves are at levels 3 or 2.

- 2) a) Children of vertex d = h, i
 - b) Sibling of vertex f = g
 - 9) Height of this root tree is 4
 - d) Address of vertex j is 1-2-1
 - e) Preorder traversal: a, b, d, h, h, o, i, e, j, k, c, f, l, m, g

 In order traversal: n, h, o, d, i, b, j, e, k, a, l, f, m, c, g

 Postorder traversal: h, o, h, i, d, j, k, e, b, l, m, f, g, c, a

Expression obtained from in order traversal = 2 + 2+3 + 4/2

= 2+6+2

= 10 *

4) Each member can either recruit 4 other members or choose not to recruit any members ⇒ 4-any

→ m = 4

2000 members are actively doing the recruitments before the maximum lovel of recruiment is reached

=> 2000 members have children

=> 2000 members are internal nodes

⇒ i = 2000

Members have been recruited \Rightarrow total number of vertices -1 \Rightarrow total number of vertices = h

n = mi + 1 Members have been recruited = (4)(2000) + 1 = 8001 - 1 = 8000

.. The total number of vertices is 8001 which are people include in multi-level marketing. The first people is not recruited, the members have been recruited is 8000.

Members who did not do any recruitment ⇒ There are no children ⇒ e

 $\ell = (m-1)i+1$ = (4-1)(2000)+1 $\ell = 6001$

. Members who did not do any recruitment, l = 6001.

s) a) A simple circuit or cycle, FEDCH exists in Figure 3. However, a simple circuit or a cycle cannot be formed in Krustal's algorithm.

b) Edges in order of size:

dges	Weight	agde	Celect
CD	Ī	No	Yes
DH	2	No	Yes
EF	2	No	Yes
AB	4	No	Yes
HF	4	No	Yes

Edges	Weight	Cycle	Delat
DE	6	Yes	Ho
CE	7	Yes	No
FJ	7	No	Yes
AC	8	Yos	No
BF	8.	No	Yos

Edges	Weight	Cycle	Wat
JJ	9	No	Yes
HI	10	Yes	No
ВС	1)	Yes	No
JH	14	Yes	No

Selected edges with least weight which will not create a circuit:

- ... length of selected edges = 1+2+2+4+4+7+8+9 $= 37 \text{ meters }_{\frac{1}{2}}$ Cost per meter is RM100, $37 \text{ meters } \times 100 = 3700.$ Total cost is RM3700
- 9 Yes, it is possible. There is different edges with same length in Figure 3.

Length of selected edges
= 1+2+2+4+4+7+8+9
= 37 meters

- (ii) Minimum length of strings that is accepted by the machine, M is 1.
- (iii) 20 y q2

8) a)
$$S = \{q_0, q_1, q_2, q_3\}$$

 $I = \{a, b\}$
 $0 = \{0, 1\}$

	1 -	Ps ,	1 fo	
_	9	b	a	6
90	91	93	1	0
91	91	92	0	1
92	21	92	0	1
93	9,3	93	1	0

Output string: 100111

output: 1

.: Input string anaabbb is a coepted by the machine because the output is 1

state:

So: Green light with barrier at the top position

SI: Flashing yellow light with lowering barriers

Si : Red light, barrier at bottom which indicate that train is leaving from left conser zone

S3: Red light, barrier at bottom which indicate that train is enturing into right sensor zone

54: Ped light, barrier 11 raising

Inputs:

A: First signal from left, train entered left sensor zone

B: Second signal from left, train exited from left sensor zone

c: First signal from right, train entered right sensor zone

D: Second signal from right, train exited from right sensor zone

E: After leaving Right sensor zone

cutputs :

1: Green light with barrier at the top position

2: Flashing yellow light with lowering barriers

3: Red light with bornier at the bottom position

4.: Red light with raising barrier

State		2.	fs			fo				
	A	B	C	P	E	A	В	- c	p	E
So	Sı					2				
Si		Sa					3			
S			S ₃					3		
S3				S4					4	
S#					.2					1