Домашнее задание 2 МАТЕМАТИЧЕСКИЙ АНАЛИЗ-I

Срок сдачи: 25 октября

Минимум из количества сданных задач и 10 равняется оценке за листок.

1. (а) Последовательность $(x_n)_{n\in\mathbb{N}}$ такова, что подпоследовательности $(x_{2n})_{n\in\mathbb{N}}$ и $(x_{2n+1})_{n\in\mathbb{N}}$ сходятся. Обязательно ли сходится сама последовательность $(x_n)_{n\in\mathbb{N}}$?

(b) Последовательность $(x_n)_{n\in\mathbb{N}}$ такова, что сходятся подпоследовательности $(x_{2n})_{n\in\mathbb{N}}$, $(x_{3n})_{n\in\mathbb{N}}$ и $(x_{2n+1})_{n\in\mathbb{N}}$. Обязательно ли сходится последовательность $(x_n)_{n\in\mathbb{N}}$?

2. Пусть даны две ограниченные последовательности $(x_n)_{n\in\mathbb{N}}$ и $(y_n)_{n\in\mathbb{N}}$. Доказать неравенства

$$\limsup_{n \to \infty} (x_n + y_n) \leqslant \limsup_{n \to \infty} x_n + \limsup_{n \to \infty} y_n, \quad \liminf_{n \to \infty} (x_n + y_n) \geqslant \liminf_{n \to \infty} x_n + \liminf_{n \to \infty} y_n$$

Привести примеры, когда имеют место строгие неравенства.

3. Пусть $y_n \to A$ при $n \to \infty$. Докажите, что $\limsup_{n \to \infty} (x_n + y_n) = \limsup_{n \to \infty} x_n + A$ и $\liminf_{n \to \infty} (x_n + y_n) = \liminf_{n \to \infty} x_n + A$

4. К чему и при каких $\alpha \in \mathbb{R}$ сходится последовательность заданная как $x_n = \frac{n2^n + \alpha^n}{(n+1)2^n + (2n+3)\alpha^n}$?

5*. Доказать, что у последовательности $(n\sin(n))_{n\in\mathbb{N}}$ есть ограниченная подпоследовательность.

6. Найти $\limsup_{n\to\infty}$ и $\liminf_{n\to\infty}$ последовательности с n-м членом $(-1)^n(1+\frac{1}{n})^{2n}+n2^{-n}$.

7. (а) Пусть последовательность $(x_n)_{n\in\mathbb{N}}$ задана соотношением $x_{n+1} = ax_n + b$ (числа $a \neq 1, b, x_0$ считаем известными). Найти явную формулу для x_n и определить, при каких a, b, x_0 последовательность сходится.

(b) Пусть последовательность $(x_n)_{n\in\mathbb{N}}$ задана соотношением $x_{n+2}=ax_{n+1}+bx_n$ (числа a,b,x_0,x_1 считаем известными). Найти явную формулу для x_n (через эти числа) и определить, при каких a,b,x_0,x_1 последовательность $(x_n)_{n\in\mathbb{N}}$ сходится.

8. Пусть ряд $\sum_{n=1}^{\infty} a_n$ сходится. Обязательно ли сходятся ряды $\sum_{n=1}^{\infty} a_n^2$ и $\sum_{n=1}^{\infty} a_n^3$?

9. Сходятся ли ряды:

$$\sum_{n=1}^{\infty} q^{\sqrt{n}}, \ \sum_{n=1}^{\infty} q^{\ln n}, \ q \in (0,1)?$$

10*. Сходится ли ряд $\sum_{n=1}^{\infty} p_n^{-1}$, где $p_n - n$ -е простое число?

11. Покажите, что ряд сходится и найдите его сумму

a)
$$\sum_{n=1}^{\infty} \frac{1}{(3n-2)(3n+1)}$$
, b) $\sum_{n=1}^{\infty} (\sqrt{n+2} - 2\sqrt{n+1} + \sqrt{n})$.

12. Сходятся ли ряды

a)
$$\sum_{n=1}^{\infty} \frac{\sqrt{n} + \sin n}{n^2 - n + 1}$$
, b) $\sum_{n=1}^{\infty} \frac{\ln n}{n^2}$, c) $\sum_{n=1}^{\infty} \frac{1}{(\ln n)^{\sqrt{n}}}$?

1

Звёздочкой помечены задачи повышенной сложности.