Divided-power Envelop

This is just a summary of [BO78, Appendix A]. Fix a ring A. Let M be an A-module.

1 Construction

Let $G_A(M) := A[\{(x, n) : x \in M, n \in \mathbb{N}\}]$ be the polynomial A-algebra on the set of indeterminates $\{(x, n) : x \in M, n \in \mathbb{N}\}$. The algebra $G_A(M)$ has a natural grading by letting (x, n) have degree n. Write $G_A^{\bullet}(M)$ for this graded A-algebra. Let $I_A(M)$ be the ideal of G generated by

- 1. (x, 0) 1,
- 2. $(\lambda x, n) \lambda^n(x, n), \lambda \in A$.
- 3. $(x,n)(x,m) \frac{(n+m)!}{n!m!}(x,n+m)$.
- 4. $(x + y, n) \sum_{i+j=n} (x, i)(y, j)$.

Then $I_A(M)$ is a homogeneous ideal. Then define

$$\Gamma_A^{\bullet}(M) := G_A^{\bullet}(M)/I_A(M), \qquad \Gamma_A^{+}(M) := \bigoplus_{n \ge 1} \Gamma_A^n(M)$$

Write $x^{[n]}$ as the image of (x, n) in $\Gamma_A^{\bullet}(M)$. We have natural isomorphisms $\Gamma_A^0(M) \cong A$ and $\Gamma_A^1(M) \cong M$.

2 Universal Properties

2.1

For any A-algebra R, set $\exp(R)^1$ to be the subgroup of units of R[[T]], consisting of those $f \in R[[T]]$ that is of exponential type, i.e., $f(T_1 + T_2) = f(T_1)f(T_2)$ for indeterminates T_1 and T_2 . Then we have natural bijection

$$\operatorname{Hom}_{\operatorname{Alg}/A}\left(\Gamma_A(M),R\right) \longrightarrow \operatorname{Hom}_{\operatorname{Mod}/A}\left(M,\exp(R)\right)$$

$$\alpha \longmapsto \left(x \mapsto \sum_{n \geq 0} \alpha(x^{[n]})T^n\right)$$

As a corollary, we have

¹One-parameter subgroups of $\hat{\mathbb{G}}_m(R)$.

- 1. $\Gamma_A(M) \otimes_A A' \cong \Gamma_{A'}(M \otimes_A A')$.
- 2. $\varinjlim_{\lambda} \Gamma_A(M_{\lambda}) \cong \Gamma_A(\varinjlim_{\lambda} M_{\lambda})$.
- 3. $\Gamma_A(M) \otimes_A \Gamma_A(N) \cong \Gamma_A(M \oplus N)$.

If *M* is free with basis $(x_i : i \in I)$, then $\Gamma_A(M)$ is free with basis $(x_1^{[q_1]} x_2^{[q_2]} \cdots x_r^{[q_r]} : \sum_i q_i = n)$.

2.2

If M and N are two A-modules. Let P(M,N) be the set of *polynomial functions*.² Namely, elements of P(M,N) are compatible collection of set of maps $\{f_R: M \otimes_A R \to N \otimes_A R\}$. A polynomial function f is said to have weight n, if $f_R(r \cdot m) = r^n \cdot f_R(m)$, for all $r \in R$, and all $m \in M \otimes R$. Denote by the set of polynomial functions of weight n by $P_n(M,N)$. The A-module structure on N gives an A-module structure on P(M,N).

For any $n \in \mathbb{N}$, and any A-algebra R, we have an isomorphsim $\alpha_{n,R} : \Gamma_A^n(M) \otimes_A R \to \Gamma_R^n(M \otimes_A R)$ and natural map $M \otimes_A R \to \Gamma_R(M \otimes_A R)$, $x \mapsto x^{[n]}$. Set

$$\ell_{n,R}: M \otimes_A R \to \Gamma_A(M) \otimes_A R, \quad x \mapsto \alpha_{n,R}^{-1}(x^{[n]})$$

Then $\ell_n := \{\ell_{n,R}\}$ is an element of $P_n(M, \Gamma_A^n(M))$, and it is the universal one in the following sense.

There is a natural bijection

$$\operatorname{Hom}_{\operatorname{Mod}/A} (\Gamma_n(M), N) \longrightarrow P_n(M, N)$$
$$f \longmapsto f \circ \ell_n := \{ (f \otimes_A R) \circ \ell_{n,R} \}$$

As corollaries, we have if $M' \xrightarrow{f} M \xrightarrow{h} M'' \to 0$ is an exact sequence, then for each $n \in \mathbb{N}$ and any A-module N, we have exact sequences

1.
$$0 \longrightarrow P_n(M'', N) \longrightarrow P_n(M, n) \Longrightarrow P_n(M', N)$$

2.
$$\Gamma_A^n(M') \Longrightarrow \Gamma_A^n(M) \longrightarrow \Gamma_A^n(M'') \longrightarrow 0$$

Moreover, if $0 \to K \to M \to N \to 0$ is an exact sequence of A-modules, then $\operatorname{Ker}(\Gamma_A^(M) \to \Gamma_A(N))$ is the ideal generated by $\{x^{[n]} : x \in K, n > 0\}$.

2.3

Based on the following two universal properties, one can show that $\Gamma_A^+(M)$ has a unique divided-power structure, which is rather non-trivial. Moreover, for any divided power A-algebra (B, J, δ) , we have natural bijection

$$\operatorname{Hom}_{\operatorname{PD-Alg}/A}\left((\Gamma_A^{\bullet}(M),\Gamma_A^+(M),-^{[n]}),(B,J,\delta)\right) \longrightarrow \operatorname{Hom}_{\operatorname{Mod}/A}(M,J)$$

²Morphisms $\tilde{M} \to \tilde{N}$ of sheaves of sets on the big Zariski set Zar(Spec A).

3 Pairing with symmetric algebra

There is a natural pairing

$$\operatorname{Sym}_{A}^{n}\left(\operatorname{Hom}_{A}(M,A)\right) \times \Gamma_{A}^{n}(M) \longrightarrow A$$

$$(\phi_{1}\phi_{2}\cdots\phi_{n}, x_{1}^{[q_{1}]}x_{2}^{[q_{2}]}\cdots x_{r}^{[q_{r}]}) \longmapsto \sum_{\alpha}\left(\prod_{j\in\alpha_{i}}\phi_{j}(x_{i})\right)$$

where $\sum q_i = n$ and $\alpha = \alpha_1 \sqcup \alpha_2 \sqcup \alpha_r$ is a partition of $\{1, \ldots, n\}$ with $\#\alpha_i = q_i$. The pairing is perfect if M is projective of finite rank.

References

[BO78] Pierre Berthelot and Arthur Ogus. *Notes on crystalline cohomology*. English. Mathematical Notes. Princeton, New Jersey: Princeton University Press. Tokyo: University of Tokyo Press. VI, not consecutively paged. \$ 9.50 (1978). 1978.