Experimental methodology for testing effects of variation in naturally structured fine fuel loads on fire intensity

Whalen W. Dillon * 1 Drew T. Hiatt 1 S. Luke Flory 1

```
<sup>1</sup>Agronomy Department, University of Florida, Gainesville, FL, 32611, USA
6
9
10
     corresponding author: wdillon@ufl.edu/whalendillon@gmail.com
```

Write your abstract here.

3

11

Keywords: experiment, fire intensity, fuel load, fuel characteristics, Fire Aboveground Biomass Incineration Organizer

INTRODUCTION

- 1. Fuel characteristics load (mass), structure, type, moisture, particle size drive fire intensity and 16 severity. 17
- 2. Studies in fire ecology that experimentally manipulate fuel characteristics often only change the 18 fuel load and/or type of fuel, sacrificing some realism in fuel structure. 19
- 3. We present a methodology for maintaining realism in fuel structure in experiments where fine 20 fuels with typical vertical structure, e.g. grasses, are manipulated. 21
- 4. We demonstrate how the Fire Aboveground Biomass Incineration Organizer (FABIO) maintains 22 realistic fuel structure while experimentally manipulating other fuel characteristics. 23

Compare Temperature Metrics to Bowman et al. 2017

(Bowman 2017) Differential demographic filtering by surface fires: How fuel type and fuel load affect sapling mortality of an obligate seeder savanna tree.

- 27 In this study, "Grass fuels had to be laid horizontally rather than standing vertically." The context
- 28 provided is that the native sorghum flattens easily after it dries and does not remain vertical
- 29 throughout the dry season.
- $_{30}$ This reads like a response to a reviewer comment, which might indicate a gap that the FABIO
- $_{
 m 32}$ Average flame height was measured "when the fire was within 15cm of the tree stem using a me
- 33 Additional references given where fuels have been laid flat when testing flammability:
- 1. (JAUREGUIBERRY et al. 2011)
- 2. (Simpson 2016)

31

- 3. (Conard et al. 2016)
- 37 [1] "biomass" "tempC" "location" "biomass_type"
- 38 [5] "source"

40 [1] "biomass" "s_abv100" "location" "biomass_type"

1 [5] "source"

- Write your introduction here. You can cite bibliography like this (Yan and Gerstein 2011, Sutherland et al. 2011), if you provide a BibTeX file with references. See
- ${\tt http://rmarkdown.rstudio.com/authoring_bibliographies_and_citations.html~for~more~information.}$
- ⁴⁶ Or you could also use knitcitations or RefManageR to fetch bibliographic metadata automatically from
- 47 the web. For example, citing a paper can be as easy as providing its DOI (Clark and Gelfand 2006) or
- even just a few keywords (Ricklefs 2008). They will then automagically appear in the list of cited

- 49 references.
- You can even specify the desired output format for your bibliography by including a style file for a
- 51 specific journal (e.g. "ecology.csl"). Many different bibliography styles (CSL files) can be obtained at
- http://citationstyles.org/or https://github.com/citation-style-language/styles.

53 METHODS

- 54 Study Area
- 55 We worked in a **beautiful** place with lots of trees, like *Quercus suber* and *Laurus nobilis*.
- 56 Data collection and analysis
- 57 We applied a linear model where

$$y_i = \alpha + \beta * x_i$$

- We used the statistical language R (R Core Team 2017) for all our analyses. These were implemented in
- 59 dynamic rmarkdown documents using knitr (Xie 2014, 2015, 2017) and rmarkdown (Allaire et al.
- 60 2017) packages. All the multilevel models were fitted with lme4 (Bates et al. 2015).

61 RESULTS

- Trees in forest A grew taller than those in forest B (mean height: 25 versus 13 m). And many more
- 63 cool results that get updated dynamically.

64 DISCUSSION

65 Discuss.

66 CONCLUSIONS

67 ACKNOWLEDGEMENTS

68 REFERENCES

- 69 Allaire, J., J. Cheng, Y. Xie, J. McPherson, W. Chang, J. Allen, H. Wickham, A. Atkins, R. Hyndman,
- and R. Arslan. 2017. Rmarkdown: Dynamic documents for r.
- Bates, D., M. Mächler, B. Bolker, and S. Walker. 2015. Fitting linear mixed-effects models using lme4.
- Journal of Statistical Software 67:1–48.
- ₇₃ Bowman, J. P. 2017. Contributions to microbial systematics and ecology. PhD thesis, University of
- 74 Queensland Library.
- ⁷⁵ Clark, J. S., and A. E. Gelfand. 2006. A future for models and data in environmental science. Trends
- 76 in Ecology & Evolution 21:375–380.
- ⁷⁷ Conard, S. G., S. Doerr, and J. Foster. 2016. Twenty-five years of international journal of wildland fire.
- ⁷⁸ International Journal of Wildland Fire 25:i.
- JAUREGUIBERRY, P., G. BERTONE, and S. DÍAZ. 2011. Device for the standard measurement of
- shoot flammability in the field. Austral Ecology 36:821–829.
- 81 R Core Team. 2017. R: A language and environment for statistical computing. R Foundation for

- 82 Statistical Computing, Vienna, Austria.
- Ricklefs, R. E. 2008. Disintegration of the ecological community. The American Naturalist 172:741–750.
- Simpson, C. 2016. Understanding macroevolution through the origin of higher taxa. Ecology
- 85 97:3246-3248.
- Sutherland, W. J., D. Goulson, S. G. Potts, and L. V. Dicks. 2011. Quantifying the impact and
- 87 relevance of scientific research. PLoS ONE 6:e27537.
- ⁸⁸ Xie, Y. 2014. Knitr: A comprehensive tool for reproducible research in R. in V. Stodden, F. Leisch,
- and R. D. Peng, editors. Implementing reproducible computational research. Chapman; Hall/CRC.
- 90 Xie, Y. 2015. Dynamic documents with R and knitr. 2nd editions. Chapman; Hall/CRC, Boca Raton,
- 91 Florida.
- ⁹² Xie, Y. 2017. Knitr: A general-purpose package for dynamic report generation in r.
- 93 Yan, K.-K., and M. Gerstein. 2011. The spread of scientific information: Insights from the web usage
- statistics in plos article-level metrics. PLoS ONE 6:e19917.

95 List of Tables

96	1	A glimpse of the famous Iris dataset	9
97	2	Now a subset of mtcars dataset	10

Table 1: A glimpse of the famous *Iris* dataset.

Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
5.1	3.5	1.4	0.2	setosa
4.9	3.0	1.4	0.2	setosa
4.7	3.2	1.3	0.2	setosa
4.6	3.1	1.5	0.2	setosa
5.0	3.6	1.4	0.2	setosa
5.4	3.9	1.7	0.4	setosa

Table 2: Now a subset of mtcars dataset.

	mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear	carb
Merc 280	19.2	6	167.6	123	3.92	3.440	18.30	1	0	4	4
Merc 280C	17.8	6	167.6	123	3.92	3.440	18.90	1	0	4	4
Merc 450SE	16.4	8	275.8	180	3.07	4.070	17.40	0	0	3	3
Merc 450SL	17.3	8	275.8	180	3.07	3.730	17.60	0	0	3	3
Merc 450SLC	15.2	8	275.8	180	3.07	3.780	18.00	0	0	3	3
Cadillac Fleetwood	10.4	8	472.0	205	2.93	5.250	17.98	0	0	3	4
Lincoln Continental	10.4	8	460.0	215	3.00	5.424	17.82	0	0	3	4

98 List of Figures

99	1	Just my first figure with a very fantastic caption	12
100	2	Second figure in landscape format	13

Figure 1: Just my first figure with a very fantastic caption.

