Problem Reduction Search: AND/OR Graphs & Game Trees

Problem Reduction Search

- Planning how best to solve a problem that can be recursively decomposed into subproblems in multiple ways
 - Matrix multiplication problem
 - ◆ Tower of Hanoi
 - Blocks World problems
 - Theorem proving

Formulations

AND/OR Graphs

- An OR node represents a choice between possible decompositions
- An AND node represents a given decomposition

Game Trees

- Max nodes represent the choice of my opponent
- Min nodes represent my choice

The AND/OR graph search problem

- Problem definition:
 - Given: [G, s, T] where
 - G: implicitly specified AND/OR graph
 - S: start node of the AND/OR graph
 - T: set of terminal nodes
 - h(n) heuristic function estimating the cost of solving the sub-problem at n
 - To find:
 - A minimum cost solution tree

Algorithm AO*

1. Initialize: Set $G^* = \{s\}$, f(s) = h(s)

If $s \in T$, label s as SOLVED

2. Terminate: If s is SOLVED, then Terminate

3. Select: Select a non-terminal leaf node n

from the marked sub-tree

4. Expand: Make explicit the successors of n

For each new successor, m:

Set f(m) = h(m)

If m is terminal, label m SOLVED

5. Cost Revision: Call cost-revise(n)

6. Loop: Go To Step 2.

Cost Revision in AO*: cost-revise(n)

- 1. Create $Z = \{n\}$
- 2. If Z = { } return
- 3. Select a node m from Z such that m has no descendants in Z
- 4. If m is an AND node with successors

$$\mathbf{r}_{1}, \, \mathbf{r}_{2}, \, \dots \, \mathbf{r}_{k}$$
:
Set $\mathbf{f}(\mathbf{m}) = \sum \, \left[\, \mathbf{f}(\mathbf{r}_{i}) + \mathbf{c}(\mathbf{m}, \, \mathbf{r}_{i}) \, \right]$
Mark the edge to each successor of m
If each successor is labeled SOLVED, then label m as SOLVED

Cost Revision in AO*: cost-revise(n)

5. If m is an OR node with successors

 r₁, r₂, ... r_k:
 Set f(m) = min { f(r_i) + c(m, r_i) }
 Mark the edge to the best successor of m
 If the marked successor is labeled

6. If the cost or label of m has changed, then insert those parents of m into Z for which m is a marked successor

SOLVED, label m as SOLVED

7. Go to Step 2.

Searching OR Graphs

How does AO* fare when the graph has only OR nodes?

Searching Game Trees

- Consider an OR tree with two types of OR nodes, namely Min nodes and Max nodes
- In Min nodes, select the min cost successor
- In Max nodes, select the max cost successor
- Terminal nodes are winning or loosing states
 - ◆ It is often infeasible to search up to the terminal nodes
 - We use heuristic costs to compare nonterminal nodes

Shallow and Deep Pruning

Shallow Cut-off

Alpha-Beta Pruning

- Alpha Bound of J:
 - The max current val of all MAX ancestors of J
 - Exploration of a min node, J, is stopped when its value equals or falls below alpha.
 - In a min node, we update beta
- Beta Bound of J:
 - The min current val of all MIN ancestors of J
 - Exploration of a max node, J, is stopped when its value equals or exceeds beta
 - In a max node, we update alpha
- In both min and max nodes, we return when $\alpha \ge \beta$

Alpha-Beta Procedure: $V(J;\alpha,\beta)$

- If J is a terminal, return V(J) = h(J).
- 2. If J is a max node:

For each successor J_k of J in succession:

Set
$$\alpha = \max \{ \alpha, V(J_k; \alpha, \beta) \}$$

If $\alpha \geq \beta$ then return β , else continue

Return α

3. If J is a min node:

For each successor J_k of J in succession:

Set
$$\beta$$
 = min { β , V(J_k; α , β) }

If $\alpha \geq \beta$ then return α , else continue

Return β