Modifying Model

Ref: Bishop, chapter 4.2.2

Maximum likelihood

Find μ^1 , μ^2 , Σ maximizing the likelihood $L(\mu^1,\mu^2,\Sigma)$

$$L(\mu^{1},\mu^{2},\Sigma) = f_{\mu^{1},\Sigma}(x^{1})f_{\mu^{1},\Sigma}(x^{2})\cdots f_{\mu^{1},\Sigma}(x^{79}) \times f_{\mu^{2},\Sigma}(x^{80})f_{\mu^{2},\Sigma}(x^{81})\cdots f_{\mu^{2},\Sigma}(x^{140})$$

 μ^1 and μ^2 is the same $\Sigma = \frac{79}{140} \Sigma^1 + \frac{61}{140} \Sigma^2$

Modifying Model

All: total, hp, att, sp att, de, sp de, speed

54% accuracy 73% accuracy

Three Steps

• Function Set (Model):

- Goodness of a function:
 - The mean μ and covariance Σ that maximizing the likelihood (the probability of generating data)
- Find the best function: easy

Probability Distribution

• You can always use the distribution you like ©

If you assume all the dimensions are independent, then you are using *Naive Bayes Classifier*.