

TABLE OF CONTENTS

01

SPICE

02

Netlist Structure

03

Examples

Spice

■ SPICE

(Simulation Program with Integrated Circuit Emphasis) is a widely used computer software tool for simulating and analyzing electronic circuits. It is a general-purpose circuit simulation program that allows engineers and designers to model and simulate the behavior of analog and digital circuits.

□ Our Tool provide the following capabilities:

- Linear dc analysis
- AC Analysis
- Transient Analysis

Netlist Structure

☐ Passive Elements

Instance Name	Component Type	From Node	To Node	Value
R	resistor	-	-	(T G M K nothing m)
С	capacitor	-	-	(f p n u m nothing)
L	inductor	-	-	(f p n u m nothing)

☐ Independent Sources

Instance Name	Component type	From Node	To Node	Туре	Value
V	vsource	-	-	dc ac step	(m nothing)
I	Isource	-	-	dc ac	(m nothing)
V	Vcos	-	-	cos sin	(m nothing)

Netlist Structure

Dependent Sources:

Instance Name	Component type	К	k'	J	J'	Туре	Value
I	vccs	-	-	-	-	dc ac	(m nothing)
V	vcvs	-	-	-	-	dc ac	(m nothing)
I	cccs	-	-	-	-	dc ac	(m nothing)
V	ccvs	-	-	-	-	dc ac	(m nothing)

☐ Analysis Types:

Analysis Name	Analysis Name type		type	
dcOp	dc	AC Analysis	ac	

Analysis Name	type	Time step	Stoptime
Transient Analysis	tran	-	-

☐ Operational Amplifier (ideal):

Analysis Name	Component type	Negative terminal	Negative terminal	Output terminal
Operational_Amplifier	opamp	-	-	-

stop

dec

Start

Multiple Plot:

plot	V0	V1	V2		V#	I_V#
------	----	----	----	--	----	------

Netlist Structure

□ Diode

Instance Name	Component type	From Node	To Node
D	Diode	-	-

- ☐ Diode model
 - > Static model

$$I_d = I_S * (e^{\frac{\nu_b}{V_T}} - 1)$$

Dynamic model (large signal)

$$C_{D} = C_{d} + C_{J} = \begin{cases} \tau_{d}I_{d} + \frac{C_{j0}}{\left(1 - \frac{v_{d}}{V_{j}}\right)^{m}}, & v_{d} > FC * V_{j} \\ \left(1 - \frac{v_{d}}{V_{j}}\right)^{m}, & F_{2} = (1 - FC)^{1+m} \\ \tau_{d}I_{d} + \frac{C_{j0}}{F_{2}}\left(F_{3} + \frac{m * v_{d}}{V_{j}}\right), & v_{d} > FC * V_{j} \end{cases}$$

$$F_{3} = 1 - FC(1 + m)$$

Examples

Simple DC Circuit #1


```
// Simple DC Circuit
R1 resistor 1 2 3
R2 resistor 2 0 1
R3 resistor 3 4 2
R4 resistor 4 5 1
R5 resistor 5 0 5
V1 vsource 0 1 dc 10
V2 vsource 4 0 dc 15
V3 vsource 3 5 dc 5
I1 isource 0 2 dc 2
I2 isource 2 3 dc 5
dcOp dc
```

Circuit Schematic

Netlist

```
PS D:\Python Projects\Netlist> python.exe .\main.py
V1 = [-10.]
V2 = [-4.75]
V3 = [19.70588235]
V4 = [15.]
V5 = [14.70588235]
I_V1 = [-1.75]
I_V2 = [2.05882353]
I V3 = [2.64705882]
```

Simulation Result

Simple DC Circuit #2

Circuit Schematic

```
// Dependent Sources
R1 resistor 1 0 270
R2 resistor 1 2 330
R3 resistor 2 3 220
R4 resistor 3 4 470
I1 isource 1 0 dc 50m
Vdep ccvs 2 4 0 4 dc 100
dcOp dc
```

Netlist

```
PS D:\Python Projects\Netlist> python.exe .\main.py
V1 = [-6.21]
V2 = [2.7]
V3 = [1.83913043]
V4 = [-0.]
I_Vdep_1 = [0.027]
I_Vdep_2 = [-0.03091304]
```

Simulation Result

AC Analysis

Circuit Schematic


```
// 5th order 1dB Ripple Chebycheve HPF
C1 capacitor 1 2 10n
C2 capacitor 2 3 10n
R1 resistor 2 4 3612
R2 resistor 3 0 28170
Opamp1 opamp 3 4 4
C3 capacitor 4 5 10n
C4 capacitor 5 6 10n
R3 resistor 5 7 1380
R4 resistor 6 0 170219
Opamp2 opamp 6 7 7
C5 capacitor 7 8 10n
R5 resistor 8 0 4456
Opamp1 opamp 8 9 9
V vsource 1 0 ac 1
ac ac 100 10K 100
```

Netlist

plot V9

Non-linear Transient Analysis

Circuit Schematic

Simulation Result

```
//full wave rectifier
D1 diode 1 2
D2 diode 0 3
D3 diode 3 2
D4 diode 0 1
V vcos 1 3 cos 10 10K
R1 resistor 2 0 10
C1 capacitor 2 0 20u
tran tran 300n 300u
plot V2
```

Netlist