EE-125: Digital Signal Processing

Review Topic: Z Transform

MATLAB assignments

- The 'publish' command can be a handy way to do your assignments
 - see script 'publish_example_script.m' in Lecture 3 folder on Trunk
- Getting matlab:

https://it.tufts.edu/sw-matlabstudent

Reactivating last year's license may be tricky....

Z-transform

- Covering material from P&M 4.1
- Big picture: The Z-transform is like the Laplace transform, but for discrete-time (DT) signals and systems
- Why "z" transform?

Outline

- Definition of z transform
- Definition of Region of Convergence (ROC)
 - Points in z plane where transform X(z) doesn't blow up (sequence converges)
 - *Always* need to specify ROC
 - ROC for FIR vs IIR
- Z-transform properties

Z-transform is like the Laplace transform, but for discrete time

Continuous time (CT): Laplace (1782)

$$x(t) < ---- > X(s)$$

<u>Math</u>: use Laplace to solve constantcoefficient <u>differential</u> equations

Used to a) analyze systems (pole/ zero plots) and b) understand their stability

Discrete time (DT): Z (1950's)

$$x(n) < ---- > X(z)$$

<u>Math</u>: use Z to solve constantcoefficient <u>difference</u> equations

Used to a) analyze systems (pole/zero plots) and b) understand their stability

Regions of Convergence

Figure 3.1.1 Region of convergence for X(z) and its corresponding causal and anticausal components.

Common z transforms

TABLE 3.3 Some Common z-Transform Pairs

	Signal, $x(n)$	z-Transform, $X(z)$	ROC
1	$\delta(n)$	1	All z
2	u(n)	$\frac{1}{1-z^{-1}}$	z > 1
3	$a^n u(n)$	$\frac{1}{1-az^{-1}}$	z > a
4	$na^nu(n)$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z > a
5	$-a^nu(-n-1)$	$\frac{1}{1-\alpha z^{-1}}$	z < a
6	$-n\alpha^nu(-n-1)$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z < a
7	$(\cos \omega_0 n)u(n)$	$\frac{1 - z^{-1}\cos\omega_0}{1 - 2z^{-1}\cos\omega_0 + z^{-2}}$	z > 1
8	$(\sin \omega_0 n) u(n)$	$\frac{z^{-1}\sin\omega_0}{1 - 2z^{-1}\cos\omega_0 + z^{-2}}$	z > 1
9	$(a^n\cos\omega_0 n)u(n)$	$\frac{1 - az^{-1}\cos\omega_0}{1 - 2az^{-1}\cos\omega_0 + a^2z^{-2}}$	z > a
10	$(a^n \sin \omega_0 n) u(n)$	$\frac{az^{-1}\sin\omega_0}{1 - 2az^{-1}\cos\omega_0 + a^2z^{-2}}$	z > a

Z-transform: Brute force

•y(n) = 2 $(1/2)^{(n-2)}$ u(n-2). Find Y(z).

Soute force:
$$y = 2(\frac{1}{2})^{2}(\frac{1}{2})^{n} \ln(n-2)$$

$$= 8(\frac{1}{2})^{n} \ln(n-2)$$

$$= 8 \frac{2}{n-2}(\frac{1}{2})^{n}$$

$$= 8 \frac{2}{n-2}(\frac{1}{2})^{n}$$
Change variables: $m = n-2$, so so $n = m+2$

$$Y(2) = 8 \frac{2}{m-2}(\frac{1}{2}2)^{m+2}$$

$$= 8(\frac{1}{2}2)^{m+2} \frac{2}{m-2}(\frac{1}{2}2)^{m+2}$$

$$= 8(\frac{1}{2}2)^{m+2} \frac{2}{m-2}(\frac{1}{2}2)^{m+2}$$

$$= 22^{-2} \frac{1}{1-\frac{1}{2}2-1}(\frac{1}{2}1)^{n}$$

Example of using Z properties

OR: remember
$$a^{n} u(n) \iff \frac{1}{1-6z^{-1}}, |z| > a$$

time-shift:
 $(\frac{1}{2})^{n-2} u(n-2) \iff z^{-2} \frac{1}{1-1/2} z^{-1}, |z| > 1/2$
linearity: multiply by 2
 $Y(z) = 2z^{-2} \frac{1}{1-1/2} z^{-1}$ $|z| > 1/2$

Inverse Z-transform

- •Sadly, we won't do much with inverse Ztransform in this class: mainly we will use the Z transform to analyze X(z)
- Inverse Z-transforms can be done by:
 - Inspection (answer is easy for finite-length sequences)
 - Known Z-transform pairs (Table 3.3 of book, for example)
 - Partial fractions
 - Contour integration

Review: regions of Convergence

Anticausal signals (turn off at n=0) ROC: |z| < |a|

Causal signals (turn off at n>=0) ROC: |z| > |a|

Two-sided signals (nonzero both sides of n=0)

Z-transform: Brute force

•y(n) = 2 $(1/2)^{(n-2)}$ u(n-2). Find Y(z).

Sorute force:
$$y = 2(1/2)^2 (1/2)^n u(n-2)$$

$$= 8 (1/2)^n u(n-2)$$

$$= 8 (1/2)^n 2^n$$

$$= 9 (1/2)^n 2^n$$

$$= 1 (1/2)^n 2^n$$

Example of using Z properties

•y(n) = 2 $(1/2)^{(n-2)}$ u(n-2). Find Y(z).

OR: rewember a
$$u(n) \iff 1-az^{-1}$$
, $|z| > a$
time-shift:
 $(\frac{1}{2})^{n-2}u(n-2) \iff z^{-2} = \frac{1}{1-1/2}z^{-1}$, $|z| > 1/2$
linearity: multiply by 2
 $Y(z) = 2z^{-2} = \frac{1}{1-1/2}z^{-1}$