

<220>
<221> MOD_RES
<222> (7)..(7)
<223> PHOSPHORYLATION

<400> 4

Ile Leu Ser Arg Pro Pro Tyr Tyr Arg
1 5

<210> 5
<211> 13
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<220>
<221> MOD_RES
<222> (11)..(11)
<223> PHOSPHORYLATION

<400> 5

Lys Arg Arg Glu Ile Leu Ala Arg Arg Pro Ser Tyr Arg
1 5 10

<210> 6
<211> 9
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<220>
<221> MOD_RES
<222> (8)..(8)
<223> PHOSPHORYLATION

<400> 6

Ile Leu Ala Arg Arg Pro Ser Tyr Arg
1 5

<210> 7
<211> 11
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<220>
<221> MOD_RES
<222> (10)..(10)
<223> PHOSPHORYLATION

<400> 7

Lys Glu Glu Pro Pro Ser Pro Pro Gln Ser Pro
1 5 10

<210> 8
<211> 11

<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<220>
<221> MOD_RES
<222> (10)..(10)
<223> PHOSPHORYLATION

<400> 8

Lys Glu Glu Pro Pro Ala Pro Pro Gln Ser Pro
1 5 10

<210> 9
<211> 11
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<220>
<221> MOD_RES
<222> (10)..(10)
<223> PHOSPHORYLATION

<400> 9

Lys Glu Ala Pro Pro Ala Pro Pro Gln Ser Pro
1 5 10

<210> 10
<211> 11
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 10

Lys Glu Glu Pro Pro Ala Pro Pro Gln Ser Pro
1 5 10

<210> 11
<211> 11
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 11

Lys Glu Glu Pro Pro Ala Pro Pro Gln Glu Pro
1 5 10

<210> 12
<211> 7
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<220>
<221> MOD_RES
<222> (6)..(6)
<223> PHOSPHORYLATION

<400> 12

Pro Ala Pro Pro Gln Ser Pro
1 5

<210> 13
<211> 8
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 13

Glu Pro Pro Ala Pro Arg Arg Glu
1 5

<210> 14
<211> 6
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 14

Glu Pro Pro Ala Pro Arg
1 5

<210> 15
<211> 26
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<220>
<221> MOD_RES
<222> (21)..(21)
<223> PHOSPHORYLATION

<400> 15

Tyr Arg Arg Ala Ala Val Pro Pro Ser Pro Ser Leu Ser Arg His Ser
1 5 10 15

Ser Pro Ser Gln Ser Glu Asp Glu Glu Glu
20 25

<210> 16
<211> 12
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<220>
<221> misc_feature
<223> N'-myristolated peptide

<220>
<221> MOD_RES
<222> (11)..(11)
<223> PHOSPHORYLATION

<400> 16

Gly Lys Glu Ala Pro Pro Ala Pro Pro Gln Ser Pro
1 5 10

<210> 17
<211> 13
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<220>
<221> misc_feature
<223> N'-myristolated peptide

<400> 17

Gly Lys Glu Ala Pro Pro Ala Pro Pro Gln Ser Glu Pro
1 5 10

<210> 18
<211> 12
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 18

Gly Lys Glu Ala Pro Pro Ala Pro Pro Gln Ser Pro
1 5 10

<210> 19
<211> 5
<212> PRT
<213> Artificial sequence

<220>
<223> Inhibitory peptide minimal consensus sequence

<220>
<221> misc_feature
<222> (2)..(4)
<223> Xaa can be any naturally occurring amino acid

<220>
<221> MOD_RES
<222> (5)..(5)
<223> PHOSPHORYLATION

<400> 19

Ser Xaa Xaa Xaa Ser
1 5