RBE 521 Homework 2

Submitted By: Prasham Patel

Solution 1

- (a) Leg Length for ZYZ Euler angle: [128.3063, 141.8588, 156.4394, 157.3413, 143.6902, 129.2379]
- (b) Leg Length for XYZ Euler angle: [132.0922 ,151.6577 ,161.0500 ,151.0929 ,133.3069 ,123.8025]
- (c) Leg Length for both cases are not same because the sequence of rotation axis is not the same.

 Rotation Matrix for ZYZ is obtained as follows:

$$R_{zyz} = R_z * R_{y*} R_z$$

While Rotation Matrix for XYZ is obtained as follows:

$$R_{xyz} = R_x * R_y * R_z$$

Clearly, $R_{zyz} \neq R_{xyz}$. Due to this the translational position of the mobile platform remains same but the orientation of the mobile platform changes.

*	Solution 2 ites
otti	I stock sold point of thisty
	lmin = 100
	1max 2 200
	6 = 300 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	d = 500
	TEN O : NO (ii)
	For 0,=0,=0, we know that the mobile
100	and fixed platform ou horizontal
A. has	
a d	Velocity Jacobian &, Jri=[n; [R3; xn:]]
	Joven ide la sono diam
	R=[10], R is identity matrix become 01] mobile platform is always
	01 mobile platform is alchays
	horizont-1
.250	Bas = - 4/2 = -150 , B2= 6/2 : 150
U	0 0 0 0 0
	7 7 7
0	n' = Cos Ø, · · · · n' · · · Cos Ø 2
	gin Øi
1053	As the mobile platform is alcroys horizontal and chark space is a cold, whe can ignory the angular velocity part of Ivi
10	and chark space is a cold, whe can ignore
	the angular relocity post of Fri
	: Ty: = [n: T]
	$T_{v} = Cos \emptyset, Sin \emptyset,$ $Cos \emptyset, Sin \emptyset_{2}$
	[CN \$ SN B 2]

The polition about x-axis new y-axis con be represented as After rotation about x-axis new y-axis con be represented as Therefore, recease we = 0 is (as (a) sin (a)) After rotation about x-axis and then about y-axis, new 2-axis con be represented as: Z = Sin(b) x sin (a) Z = Sin(b) x sin (a)		Solution 3
After 1st rotation about x-axis new y-axis can be represented as Therefore, exerce Cuz = [0] (cos (a) Sin (a)] After rotation about x-axis and then about y-axis, new 2-axis con be represented as: Z = Sin(b) x Sin (a)	(i)	XYZ euler angles
After 1st rotation about x-axis new y-axis can be represented as Therefore, access Cos = [0] (cos (a) Sin (a) After rotation about x-axis and then about y-axis new 2-axis con be represented as: Z = Sin(b) x Sin (a)		For notation about x-axis
After 1st rotation about x-axis new y-axis can be represented as Therefore, access Cos = [0] (cos (a) Sin (a) After rotation about x-axis and then about y-axis new 2-axis con be represented as: Z = Sin(b) x Sin (a)	5/2	\rightarrow 1
After 1st rotation about x-axis new y-axis can be represented as (costa) Sin(a) Therefore, exerce Cuz = [0] (costa) Sin(a) After rotation about x-axis and then about y-axis, new 2-axis con be represented as: Z = Sintri -Cos(b) x Sin(a)		
After 1st rotation about x-axis new y-axis can be represented as [Cos(a)		0
Thurspare, record cuz = 0 6 Cos (a) Sin (a) Sin (a) After notation about x-axis and then about y-axis, new 2-axis con be represented as: Z = Sin(b) x Sin (a)		6 1 (1) 42 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Thurspare, record cuz = 0 6 Cos (a) Sin (a) Sin (a) After notation about x-axis and then about y-axis, new 2-axis con be represented as: Z = Sin(b) x Sin (a)		After 1st rotation about x-axis new
Costa) Sin (a) Thurspare, exerces $Ci_2 = \begin{bmatrix} 0 \\ \cos(a) \\ \sin(a) \end{bmatrix}$ After inotation about x-axis and then about y-axis, new 2-axis can be represented as: $Z = \begin{bmatrix} \sin(b) \\ \cos(b) \\ x \end{bmatrix}$		y-aris con le represented os
Costa) Sin (a) Thurspare, exerces $Ci_2 = \begin{bmatrix} 0 \\ \cos(a) \\ \sin(a) \end{bmatrix}$ After inotation about x-axis and then about y-axis, new 2-axis can be represented as: $Z = \begin{bmatrix} \sin(b) \\ \cos(b) \\ x \end{bmatrix}$		
Therefore, exerce $\overline{C}_2 = 0$ Cos (a) Sin (a) After inotation about x-axis and then about y-axis, new 2-axis can be represented as: $Z = Sin(b)$ Z = Sin(b) x Sin (a)		
After installion about x-axis and then about y-axis; new 2-axis can be represented as: Z = Sin(b) x Sin Ca)		
After installion about x-axis and then about y-axis; new 2-axis can be represented as: Z = Sin(b) x Sin Ca)		
After motation about x-axis and then about y-axis, new 2-axis can be represented as: Z = Sin(b) x Sin Ca)		There are the contraction of
Alter rolation about x-axis and then about y-axis, new 2-axis can be represented as: Z = Sin(b) - Con(b) x Sin Ca)		
about y-axis new 2-axis con tre represented as: Z = Sin(b) x Sin (a)		
about y-axis new 2-axis con tre represented as: Z = Sin(b) x Sin (a)		After rolation about x-axis and then
Z = Sin(b) x Sin (a)		about y-axis, new 2-axis con be
- Cos(b) x Sin (a)		represented as!
- Cos(b) x Sin (a)		Z = Sinlly
(cos (b) × rin cos (a)	84	- Cos(b) x Sin ca)
		(cos(b) × via cos(a)

	classmate Date Page
	$\frac{C_2}{C_2} = \frac{C_2}{C_2} = $
	B(d)= 0 - Sin a (on (o) (on (b)) 0 Con a (on (b) sin (o)) 1 0 - Sin b
91	of single of single of the sin
	believed as a six of the six of t

