Математическая модель разлета осколков при разрушении сосуда под давлением

1. Начальная скорость осколков

Начальная скорость осколков определяется на основе закона сохранения энергии, где кинетическая энергия осколков образуется за счет потенциальной энергии сжатого газа. Для цилиндрического и сферического сосудов используются различные коэффициенты преобразования энергии:

Цилиндрический сосуд:

$$U_0 = 0.37 \sqrt{\frac{P_0 V_0}{M_{00}}}$$

Сферический сосуд:

$$U_0 = 0.35 \sqrt{\frac{P_0 V_0}{M_{00}}}$$

где: - U_0 - начальная скорость осколков [м/с] - P_0 - избыточное давление [Π а] - V_0 - объем сосуда [\mathbf{m}^3] - M_{ob} - масса оболочки [\mathbf{K} \mathbf{F}]

Коэффициенты 0.37 и 0.35 получены экспериментальным путем и учитывают потери энергии при разрушении [1].

2. Эффективная энергия взрыва

Эффективная энергия взрыва определяется как:

$$E_{9\phi\phi} = 0.6 P_0 V_0$$

Коэффициент 0.6 учитывает потери энергии на деформацию оболочки и другие необратимые процессы [2].

3. Параметры движения осколка

Приведенный коэффициент сопротивления:

$$A = \frac{C_{x} S_{M} \rho_{e}}{2 m_{ock}}$$

где: - C_x - коэффициент лобового сопротивления - $S_{\scriptscriptstyle M}$ - площадь миделева сечения [м²] - $\rho_{\scriptscriptstyle 6}$ - плотность воздуха [кг/м³] - $m_{\scriptscriptstyle OCK}$ - масса осколка [кг]

Параметр W:

$$W = \frac{AU_0^2}{2g}k$$

где: - g - ускорение свободного падения [м/ c^2] - k - корректирующий коэффициент (0.1)

4. Максимальная дальность разлета

Максимальная дальность разлета определяется в зависимости от параметра W:

При W < 4.6:
$$R_{max} = \frac{U_0^2}{2g} e^{-0.45W}$$

При W
$$\geq$$
 4.6: $R_{max} = 0.13 \frac{U_0^2}{2g}$

5. Вероятность поражения

Вероятность поражения определяется с использованием бетараспределения:

$$P = \frac{dS \cdot f(r)}{2\pi R} \left(1 - \left(1 - P_1 \right)^n \right)$$

где: - dS - площадь поражения [м²] - f(r) - плотность бета-распределения - R - расстояние от центра взрыва [м] - n - количество осколков - P_1 - вероятность поражения одним осколком

Источники

- 1. Бесчастнов М.В. Промышленные взрывы. Оценка и предупреждение. М.: Химия, 1991.
- 2. Baker W.E., et al. Explosion Hazards and Evaluation. Elsevier, 1983.
- 3. ГОСТ Р 12.3.047-2012 Пожарная безопасность технологических процессов.

Примечание: Приведенные коэффициенты и формулы являются обобщением экспериментальных данных и могут требовать уточнения для конкретных условий применения.