TUTORIAL 09

7CCMCS04 A. ANNIBALE AND G. SICURO

Problem 9.1 Consider the infinite-range Ising ferromagnet where $\sigma_i = \pm 1$, with $i = 1, \ldots, N$, denote spin variables, $\boldsymbol{\sigma} = (\sigma_1, \ldots, \sigma_N)$ is the microscopic state of the system and J/N > 0 is the strength of interactions between any pair of spins σ_i and σ_j . We assume that the system follows a random sequential Glauber dynamics, so that the microstate distribution $P_{\boldsymbol{\sigma}}(t)$ evolves according to the master equation

$$\dot{P}_{\sigma}(t) = \sum_{i} [W_{i}(F_{i}\sigma)P_{F_{i}\sigma}(t) - W_{i}(\sigma)P_{\sigma}(t)],$$

where F_i is the *i*-spin flip operator $F_i \boldsymbol{\sigma} = (\sigma_1, \dots, \sigma_{i-1}, -\sigma_i, \sigma_{i+1}, \dots, \sigma_N)$, and

$$W_i(\boldsymbol{\sigma}) = \frac{1 - \sigma_i \tanh \beta h_i(\boldsymbol{\sigma})}{2}, \qquad \beta = \frac{1}{T},$$

and h_i is the effective local field defined as

$$h_i(\boldsymbol{\sigma}) = \frac{J}{N} \sum_{j \neq i} \sigma_j.$$

a. Show that for $N \gg 1$ the equation for the moment $\mathbb{E}[\sigma_i(t)] = \sum_{\sigma} \sigma_i P_{\sigma}(t)$ is given, to orders O(1), by

$$\frac{\mathrm{d}\,\mathbb{E}[\sigma_i]}{\mathrm{d}\,t} = -\mathbb{E}[\sigma_i] + \mathbb{E}[\tanh\beta J m_\sigma],$$

where $m_{\sigma} = \frac{1}{N} \sum_{i} \sigma_{i}$ is the instantaneous magnetization.

b. Define the mean magnetization as $m = \mathbb{E}[m_{\sigma}] = \frac{1}{N} \sum_{i} \mathbb{E}[\sigma_{i}]$. Show that away from criticality, where the magnetization fluctuations $\delta m_{\sigma} = m_{\sigma} - m$ are small, the mean magnetization evolves, to linear orders in δm_{σ} , according to

$$\frac{\mathrm{d}\,m}{\mathrm{d}\,t} = -m + \tanh\beta J m.$$

c. Show that the system undergoes a thermodynamic phase transition at T=J, with the equilibrium phase at T>J given by the disordered paramagnetic state m=0 and the phase at T<J given by the ordered ferromagnetic state, where $m\neq 0$. Show in particular that m=0 is a stable fixed point of the dynamics for T>J, while it is unstable for T<J.

Date: February 13, 2025.

7CCMCS04

2

Problem 9.2 Consider the one-dimensional Ising model in which at each site i = 1, ..., N there is a spin $\sigma_i = \pm 1$ and periodic boundary conditions are imposed. Each spin interacts with spins on the two neighboring sites through a coupling J > 0, so that the Hamiltonian is

$$H(\boldsymbol{\sigma}) = -J \sum_{i} \sigma_{i} \sigma_{i+1}$$

where $\sigma = (\sigma_1, \dots, \sigma_N)$ is the microscopic state of the system. Assume that the system evolves according to random sequential Glauber dynamics, so that the master equation for the microstate distribution $P_{\sigma}(t)$ is given by

$$\dot{P}_{\sigma}(t) = \sum_{i} [W_{i}(F_{i}\sigma)P_{F_{i}\sigma}(t) - W_{i}(\sigma)P_{\sigma}(t)],$$

where F_i is the *i*-spin flip operator $F_i \boldsymbol{\sigma} = (\sigma_1, \dots, \sigma_{i-1}, -\sigma_i, \sigma_{i+1}, \dots, \sigma_N)$ and the transition rates are

$$W_i(\boldsymbol{\sigma}) = \frac{1 - \sigma_i \tanh \beta h_i(\boldsymbol{\sigma})}{2},$$

where $\beta = T^{-1}$ is the inverse temperature and h_i is the effective local field defined as

$$h_i(\boldsymbol{\sigma}) = J(\sigma_{i-1} + \sigma_{i+1}).$$

a. Show that the equation for the moments $m_i(t) = \mathbb{E}[\sigma_i] = \sum_{\sigma} \sigma_i P_{\sigma}(t)$, is given by

$$\partial_t m_i = -m_i + \gamma \frac{m_{i-1} + m_{i+1}}{2}, \qquad \gamma = \tanh 2\beta J.$$

b. Show that the solution of equation (), for the initial condition $m_i(0) = \delta_{i,0}$, is $m_i(t) = e^{-t} I_i(\gamma t)$.

Hint: You may use that the generating function of the *n*-th modified Bessel function of the first kind $I_n(t)$ is $\sum_{n=-\infty}^{\infty} I_n(t) z^n = e^{\frac{1}{2}(z+1/z)t}$.

- c. By using the asymptotics of $I_n(t)$ for large t, $I_n(t) \sim \frac{1}{\sqrt{2\pi t}} e^{t-\frac{n^2}{2t}}$, deduce that at T=0, the system is coarsening through the growth of a lengthscale $L(t) \sim t^z$, where z should be found.
- **d.** Write the equation for the equal-time correlation function $C_{ij} = \mathbb{E}[\sigma_i \sigma_j]$. Show that for homogenous systems, where $C_{ij} = C_k$ for |i j| = k, the correlation function evolves according to

$$\partial_t C_k = -2C_k + \gamma (C_{k+1} + C_{k-1})$$

with boundary condition $C_0(t) = 1 \ \forall \ t$.

e. By demanding that $C_k(\infty) = \eta^k$ is the stationary solution of equation for C_k , show that the equilibrium correlation function is $C_k(\infty) = e^{-\frac{k}{\xi}}$ where $\xi^{-1} = -\ln \tanh \beta$. Comment on the role of ξ as a correlation length and its behavior at criticality.

Hint: You may use, without proof, the identities $\sinh 2x = 2 \sinh x \cosh x$ and $\cosh 2x - 1 = 2 \sinh^2 x$.

Problem 9.3 A single pattern $\boldsymbol{\xi} \in \{-1,1\}^N$ is stored in a neural network of N binary neurons $\sigma_i \in \{-1,1\}, i=1,\ldots,N$ evolving according to sequential

dynamics. The macroscopic overlap $m=\frac{1}{N}\sum_i \xi_i^\mu \sigma_i$ of the system configuration with the stored pattern evolves, in the limit $N\to\infty$ according to

$$\frac{\mathrm{d}\,m}{\mathrm{d}\,t} = \tanh(\beta m) - m$$

where $\beta = T^{-1}$ is the inverse temperature.

- **a.** For T>1 show that the only stationary state is m=0. By solving the linearized equation about this state, show that for long time m(t) is proportional to $\exp(-t/\tau)$ where the characteristic timescale τ of the exponential decay to the stationary state should be found. In which temperature limit does the critical slowing down arise?
- b. Show, by graphical methods, that for T < 1 there are three stationary states $-m_{\star}, 0, m_{\star}$, where m_{\star} is the positive solution of $m_{\star} = \tanh(\beta m_{\star})$. Show that m = 0 is unstable for T < 1. Show, by linearizing the equation about the other two stationary states, that the convergence to the latter is again exponential, with characteristic time $\tau = \left(1 \frac{1 m_{\star}^2}{T}\right)^{-1}$. By using the stationarity condition, show that m_{\star} is proportional to $\sqrt{1 T}$ as $T \to 1^-$ where the proportionality constant should be found. Hence show that τ diverges as $\tau = \frac{1}{2(1-T)}$, as $T \to 1^{-1}$.
- **c.** Show that at T=1 the decay to the stationary state for long time is given by a power law that does not depend on any undetermined constant.

Problem 9.4 Consider random uniformly distributed binary vectors $\boldsymbol{\xi}^1, \dots, \boldsymbol{\xi}^p, \ \boldsymbol{\xi}^\mu = (\xi_1^\mu, \dots, \xi_N^\mu)$, with $\mu = 1, \dots, p$, where each component is distributed identically and independently according to $\rho(\xi_i^\mu) = \frac{1}{2}\delta_{\xi_i^\mu, +1} + \frac{1}{2}\delta_{\xi_i^\mu, -1} \ \forall i, \mu.$

a. Show for the random variable

$$C_{i}^{\nu} = -\frac{\xi_{i}^{\nu}}{N-1} \sum_{k(\neq i)}^{N} \sum_{\mu(\neq \nu)}^{p} \xi_{i}^{\mu} \xi_{k}^{\mu} \xi_{k}^{\nu}$$

that the first two moments are $\mathbb{E}[C_i^{\nu}] = 0$ and $\mathbb{E}[(C_i^{\nu})^2] = \frac{p-1}{N-1}$, where the expectation is taken with respect to the probability distribution $\rho(\boldsymbol{\xi}^1,\ldots,\boldsymbol{\xi}^p) = \prod_{i,\mu} \rho(\xi_i^{\mu})$.

b. The patterns $\boldsymbol{\xi}^1, \dots, \boldsymbol{\xi}^p$ are now stored in a noiseless network evolving via the parallel dynamics

$$\sigma_i(t+1) = \operatorname{sign}\left(\frac{1}{N} \sum_{k(\neq i)}^{N} \sum_{\mu=1}^{p} \xi_i^{\mu} \xi_k^{\mu} \sigma_k(t)\right), \ \forall i = 1, \dots, N$$

so that if the network is at time t in the configuration $\sigma(t) = \xi^{\nu}$, the network configuration at time t+1 is given by

$$\sigma_i(t+1) = \xi_i^{\nu} \text{sign}(1 - C_i^{\nu}), \ \forall i = 1, \dots, N.$$

Find an expression, without evaluating it, for the probability $P_{\rm error}$ that an error will occur in the *i*-th bit of the retrieval pattern, when the the network is presented with the pattern $\boldsymbol{\xi}^{\nu}$, assuming that $N \gg 1$, $p \gg 1$

4 7CCMCS04

and that C_i^{ν} is Gaussian in this limit. Estimate this probability for $p \ll N$.

Hint: You may use, if you wish, the result of the Gaussian integral $\int_{-\infty}^{\infty} dx \exp(-ax^2) = \sqrt{\frac{\pi}{a}}$ and the expansion $1 - \operatorname{erf}(x) \simeq \frac{\mathrm{e}^{-x^2}}{\sqrt{\pi}x}$, as $x \to \infty$, with $\operatorname{erf}(x) = \frac{1}{\sqrt{\pi}} \int_{-x}^{x} du \, \mathrm{e}^{-u^2}$.