EE214A Design Project

Jay Smith

November 13, 2019

The amplifier under evaluation has 3 stages: Common Gate (CG), Common Source (CS), and Common Drain (CD). In order to analyze, the circuit is broken down into its 3 stages and key parameters are summarized.

Parameter	Spec
Transresistance gain	42.5k
Output load resistance	20k
Output load capacitance	250fF

Common Gațe:

Low Frequency Characteristics		
Transimpedance Gain	R _u parallel R _d	
Rin	1/gm1	
Rout	high	

Common Source:

The source of the common source stage is referenced to virtual, small-signal ground in the DM half circuit.

Where:

$$A_1 = \frac{gm_2}{gm_{L2}} \tag{1}$$

Low Frequency Characteristics		
Av	$-gm_2*R_{L2}$	
Rin	inf	
Rout	$1/\mathrm{gm_{L2}}$	

Common Drain:

Where:

$$C_L = 250 fF \tag{2}$$

$$R_L = 20k\Omega \tag{3}$$

Assuming $R_{\rm L}/2$ much less than $1/{\rm gm}3$

$$A_2 \approx -\frac{g_{m3}}{g'_{m3}} \approx -0.84 \tag{4}$$

Low Frequency Characteristics		
Av	approx. 0.84	
Rin	inf	
Rout	1/gm ₃ '	

Low Frequency Transimpedance Gain:

$$\frac{v_{out}}{i_{in}} = (R_u || R_d) * (-\frac{gm_2}{gm_{L2}}) * 0.84$$
(5)

TIA Amp Small-Signal Model

ZVTC bandwidth (conservative approximation)

$$b1 = \frac{1}{g_{m1}} * C_1 + (R_u || R_d) * C_2 + g m_{L2} * C_3 + (g m_3' || R_L / 2) * C_4 (6)$$

where

$$C_1 = 100fF + cstot_M1 + cdtot_MB1 \tag{7}$$

$$C_2 = cdtot_ML1 + cdtot_M1 + C_{qs2} + (1 + A_1) * C_{qd2}$$
 (8)

$$C_3 = (1 + 1/A_1) * C_{gd2} + C_{db2} + cstot_ML2 + C_{gd3} + (1 + A_2) * C_{gs3}(9)$$

$$C_4 = (1 + 1/A_2) * C_{gs3} + C_{sb3} + cdtot_M3B + 500fF$$
 (10)

Where:

$$A_1 = \frac{gm_2}{gm_{L2}} \tag{11}$$

$$A_2 \approx -\frac{g_{m3}}{g'_{m3}} \approx -0.84$$
 (12)