

Dynamická zbierka otázok a úloh

Mení sa v čase...

Obsah

1	Casť prvá		3
1.1	$ m \acute{U}loha$	 	3
1.2	Úloha	 	3
1.3	Otázka	 	3
1.4	Úloha		3
1.5	Otázka		3
1.6	Úloha		3
1.7	Úloha		3
1.8	Úloha		3
_			
1.9	Úloha		3
1.10	Úloha		3
1.11	Otázka		3
1.12	Otázka		3
1.13	Úloha		3
1.14	Otázka	 	4
1.15	Úloha	 	4
1.16	Otázka	 	4
2	Časť druhá		5
2.1	Otázka	 	5
2.2	Úloha	 	5
2.3	Úloha		5
2.4	Otázka		5
$\frac{2.4}{2.5}$	Úloha		5
2.6	Úloha		5
-	Úloha		5
2.7			5
2.8	Úloha		
2.9	Úloha		6
2.10	Úloha		6
2.11	Úloha	 • '	7
	Č		ດ
3	Časť tretia		8
3.1	Úloha		8
3.2	Úloha		8
$3 \cdot 3$	Úloha		9
3.4	Úloha	. 10	-
3.5	Úloha		1
3.6	Úloha	 . 1	1
3.7	Úloha	 . 12	2
3.8	Úloha	 . 12	2
3.9	Úloha	 . 14	4
00			
4	Časť štvrtá	15	5
4.1	Úloha	 . 18	5
4.2	Úloha		5
4.3	Úloha		
4.4	Úloha		
$4.4 \\ 4.5$	Úloha		-
$\frac{4.5}{4.6}$	Úloha		
4.0	C1011a	 . 10	J

4.7	Úloha	16
4.8	Úloha	16
4.9	Úloha	16
4.10	Úloha	16
4.11	Úloha	17
4.12	Úloha	19
5	Časť piata	20
5.1	Úloha	20
5.2	Úloha	20
5.3	Úloha	20
5.4	Úloha	20
5.5	Úloha	20
5.6	Úloha	21
5.7	Úloha	21
5.8	Úloha	21
5.9	Úloha	21
5.10	Úloha	21
5.11	Úloha	21
5.12	Úloha	22
5.13	Úloha	22
5.14	Úloha	22

Časť prvá

Úloha 1.1

Vlastnými slovami vysvetlite pojem Kybernetika.

Úloha 1.2

Vysvetlite pojem zosilnenie systému (alebo statické zosilnenie systému).

1.3 Otázka

Ako sa nazýva pomer medzi ustálenou hodnotou výstupného signálu systému a ustálenou hodnotou vstupného signálu systému?

Odpoveď: Zosilnenie systému.

1.4 Úloha

Vysvetlite rozdiel medzi bezzotrvačným a zotrvačným systémom.

Otázka 1.5

Čo sú to začiatočné podmienky dynamického systému?

1.6 Úloha

Napíšte vzťah (rovnicu), ktorým je definovaná Laplaceova transformácia.

1.7 Úloha

Napíšte Laplaceov obraz derivácie časovej funkcie $\frac{df(t)}{dt}$.

1.8 Úloha

Napíšte Laplaceov obraz jednotkového skoku.

Úloha

Napíšte Laplaceov obraz Dirackovho impulzu.

Úloha 1.10

Vysvetlite pojem prevodová charakteristika systému.

Otázka 1.11

Ako sa nazýva vzájomná závislosť medzi ustálenými hodnotami výstupného signálu systému a ustálenými hodnotami vstupného signálu?

Odpoveď: Prevodová charakteristika systému.

Otázka

Ktorý parameter systému súvisí so sklonom prevodovej charakteristiky systému?

Odpoveď: Zosilnenie systému.

1.13

Vysvetlite pojem prechodová charakteristika systému.

Otázka 1.14

Ako sa nazýva časový priebeh výstupného signálu systému po skokovej zmene vstupného signálu s jednotkovou veľkosťou?

Odpoveď: Prechodová charakteristika systému.

Úloha 1.15

Definujte prenosovú funkciu systému.

1.16 Otázka

Ako sa nazýva pomer Laplaceovho obrazu výstupného signálu systému k Laplaceovmu obrazu vstupného signálu systému pri nulových začiatočných podmienkach systému?

Odpoveď: Prenosová funkcia.

2 Časť druhá

2.1 Otázka

Čo je riešením obyčajnej diferenciálnej rovnice (vo všeobecnosti)?

Odpoveď: Riešením diferenciálnej rovnice je *funkcia* pričom v kontexte dynamických systémov ide o *funkciu času*.

Inými slovami, neznámou v rovnici je funkcia času (časová závislosť, signál). Diferenciálnou sa rovnica nazýva preto, že sa v nej nachádzajú aj derivácie neznámej funkcie. Obyčajnou sa diferenciálna rovnica nazýva preto, že neznámou je funkcia len jednej premennej (času).

2.2 Úloha

Vysvetlite pojem analytické riešenie obyčajnej diferenciálnej rovnice.

2.3 Úloha

Vysvetlite pojem $n\underline{u}merick\acute{e}$ $rie\check{s}enie$ obyčajnej diferenciálnej rovnice.

2.4 Otázka

Aký je rozdiel medzi analytickým a numerickým riešením diferenciálnej rovnice?

2.5 Úloha

Vysvetlite rozdiel medzi homogénnou a nehomogénnou obyčajnou diferenciálnou rovnicou.

Riešenie: Homogénnou nazývame diferenciálnu rovnicu vtedy, keď v nej figuruje len samotná neznáma funkcia. Nefigurujú v nej iné funkcie. V kontexte dynamických systémov ide typicky o prípad, keď systém nemá žiadny vstupný signál (vstupný signál je nulový). Ak sa členy rovnice obsahujúce neznámu a jej derivácie presunú na ľavú stranu rovnice, pravá strana bude nulová

Nehomogénnou nazývame diferenciálnu rovnicu vtedy, keď v nej figuruje aj iná funkcia ako samotná neznáma funkcia. V kontexte dynamických systémov ide o prípad, keď systém má vstupný signál. Ak sa členy rovnice obsahujúce neznámu a jej derivácie presunú na ľavú stranu rovnice, pravá strana bude nenulová, bude obsahovať členy obsahujúce vstupný signál (vrátane jeho derivácií).

2.6 Úloha

Uveďte príklad homogénnej obyčajnej diferenciálnej rovnice.

2.7 Úloha

Uveďte príklad nehomogénnej obyčajnej diferenciálnej rovnice.

2.8 Úloha

Nasledujúcu diferenciálnu rovnicu druhého rádu prepíšte na sústavu diferenciálnych rovníc prvého rádu.

$$a_2\ddot{y}(t) + a_1\dot{y}(t) + a_0y(t) = b_0u(t)$$
 $a_2, a_1, a_0, b_0 \in \mathbb{R}$

Riešenie: Ako prvé zvoľme

$$x_1(t) = y(t) \tag{2.1}$$

To znamená

$$\dot{x}_1(t) = \dot{y}(t) \tag{2.2}$$

čo však nie je v tvare aký hľadáme. Na pravej strane vystupuje pôvodná veličina y(t).

Druhou voľbou preto nech je

$$x_2(t) = \dot{y}(t) \tag{2.3}$$

pretože potom môžeme písať prvú diferenciálnu rovnicu v tvare

$$\dot{x}_1(t) = x_2(t) \tag{2.4}$$

Ostáva zostaviť druhú diferenciálnu rovnicu.

Keďže sme zvolili (2.3), tak je zrejmé, že platí

$$\dot{x}_2(t) = \ddot{y}(t) \tag{2.5}$$

Otázkou je $\ddot{y}(t) = ?$ Odpoveďou je pôvodná diferenciálna rovnica druhého rádu. Upravme (??) na tvar

$$\ddot{y}(t) + \frac{a_1}{a_2}\dot{y}(t) + \frac{a_0}{a_2}y(t) = \frac{b_0}{a_2}u(t)$$
(2.6)

$$\ddot{y}(t) = -\frac{a_1}{a_2}\dot{y}(t) - \frac{a_0}{a_2}y(t) + \frac{b_0}{a_2}u(t)$$
 (2.7)

To znamená, že

$$\dot{x}_2(t) = -\frac{a_1}{a_2}\dot{y}(t) - \frac{a_0}{a_2}y(t) + \frac{b_0}{a_2}u(t)$$
(2.8)

čo však stále nie je požadovaný tvar druhej hľadanej diferenciálnej rovnice. Na pravej strane rovnice (2.8) môžu figurovať len nové veličiny $x_1(t)$ a $x_2(t)$, nie pôvodná veličina y(t). Stačí si však všimnúť skôr zvolené (2.1) a (2.3). Potom môžeme písať

$$\dot{x}_2(t) = -\frac{a_1}{a_2} x_2(t) - \frac{a_0}{a_2} x_1(t) + \frac{b_0}{a_2} u(t)$$
(2.9)

čo je druhá hľadaná diferenciálna rovnica prvého rádu.

2.9 Úloha

Sústavu rovníc

$$\begin{split} \dot{x}_1(t) &= x_2(t) \\ \dot{x}_2(t) &= -a_0 x_1(t) - a_1 x_2(t) + b_0 u(t) \\ y(t) &= x_1(t) \end{split}$$

prepíšte do maticového tvaru:

$$\dot{x}(t) = Ax(t) + bu(t)$$
$$y(t) = c^{\mathsf{T}}x(t)$$

(definujte signálny vektor x(t), maticu A a vektory b a c).

2.10 Úloha

Schematicky znázornite dynamický systém daný v tvare diferenciálnej rovnice

$$\dot{y}(t) + ay(t) = bu(t) \qquad y(0) = y_0$$

kde a, b sú konštanty a u(t) je známy vstupný signál.

Riešenie:

2.11 Úloha

Podľa zadanej blokovej schémy zostavte diferenciálnu rovnicu, ktorá popisuje dynamický systém.

Riešenie: Diferenciálna rovnica je

$$\dot{y}(t) + ay(t) = 0$$
 $y(0) = y_0$ (2.10)

3 Časť tretia

3.1 Úloha

Nájdite analytické riešenie diferenciálnej rovnice

$$\dot{y}(t) + ay(t) = 0$$
 $y(0) = y_0$ $a \in \mathbb{R}, y_0 \in \mathbb{R}$

Riešenie: (metódou charakteristickej rovnice)

Prvým krokom je stanovenie charakteristickej rovnice. Tú je možné určiť nahradením derivácií neznámej funkcie mocninami pomocnej premennej, označme ju s. Napríklad prvú deriváciu $\dot{y}(t)$ nahradíme s^1 , nultú deriváciu y(t) nahradíme s^0 . Charakteristická rovnica pre danú diferenciálnu rovnicu bude

$$s + a = 0 \tag{3.1}$$

Druhým krokom je stanovenie fundamentálnych riešení diferenciálnej rovnice, ktoré sú dané riešeniami charakteristickej rovnice. Riešením charakteristickej rovnice je

$$s_1 = -a \tag{3.2}$$

Fundamentálne riešenie je teda len jedno

$$y_{f1}(t) = e^{-at} (3.3)$$

Tretím krokom je stanovenie všeobecného riešenia dif. rovnice. Je lineárnou kombináciou fundamentálnych riešení. Teda

$$y(t) = c_1 e^{-at} (3.4)$$

kde $c_1 \in \mathbb{R}$ je konštanta.

Štvrtým krokom je stanovenie konkrétneho riešenia dif. rovnice v prípade, ak sú dané začiatočné podmienky. Konkrétne ide o stanovenie hodnoty konštanty c_1 . Pre čas t=0 má všeobecné riešenie tvar

$$y(0) = c_1 e^{(-a)0} = c_1 (3.5)$$

Samotná hodnota y(0) je známa, keďže máme začiatočnú podmienku $y(0) = y_0$. Takže

$$c_1 = y_0 \tag{3.6}$$

To znamená, že riešenie úlohy je:

$$y(t) = y_0 e^{(-a)t} (3.7)$$

3.2 Úloha

Nájdite analytické riešenie diferenciálnej rovnice. Použite metódu charakteristickej rovnice.

$$\ddot{y}(t) + (a+b)\dot{y}(t) + aby(t) = 0$$
 $y(0) = y_0$ $\dot{y}(0) = z_0$ $a, b \in \mathbb{R}$

Riešenie: Prvým krokom je stanovenie charakteristickej rovnice. V tomto prípade

$$s^2 + (a+b)s + ab = 0 (3.8)$$

V druhom kroku pre stanovenie fundamentálnych riešení hľadáme riešenia charakteristickej rovnice. Vo všeobecnosti

$$s_{1,2} = \frac{-(a+b) \pm \sqrt{(a+b)^2 - 4ab}}{2} \tag{3.9}$$

avšak v tomto prípade tiež vidíme, že

$$s^{2} + (a+b)s + ab = (s+a)(s+b)$$
(3.10)

Riešenia charakteristickej rovnice teda sú

$$s_1 = -a \tag{3.11a}$$

$$s_2 = -b \tag{3.11b}$$

Zodpovedajúce fundamentálne riešenia sú

$$y_{f1}(t) = e^{-at} (3.12a)$$

$$y_{f2}(t) = e^{-bt} (3.12b)$$

Tretím krokom je stanovenie všeobecného riešenia dif. rovnice. Je lineárnou kombináciou fundamentálnych riešení. Teda

$$y(t) = c_1 e^{-at} + c_2 e^{-bt} (3.13)$$

kde $c_1, c_2 \in \mathbb{R}$ sú konštanty.

Vo štvrtom kroku je možné na základe začiatočných podmienok stanoviť konkrétne riešenie. Pre čas t=0 má všeobecné riešenie tvar

$$y(0) = c_1 e^{(-a)0} + c_2 e^{(-b)0} = c_1 + c_2$$
(3.14)

Derivácia všeobecného riešenia je

$$\dot{y}(t) = -ac_1e^{-at} - bc_2e^{-bt} \tag{3.15}$$

Pre čas t=0 má derivácia všeobecného riešenia tvar

$$\dot{y}(0) = -ac_1 - bc_2 \tag{3.16}$$

Z uvedeného vyplýva sústava dvoch rovníc o dvoch neznámych konštantách c_1 a c_2

$$c_1 + c_2 = y_0 \tag{3.17a}$$

$$-ac_1 - bc_2 = z_0 (3.17b)$$

Do druhej rovnice dosađme $c_1 = y_0 - c_2$

$$-a(y_0 - c_2) - bc_2 = z_0 (3.18a)$$

$$-ay_0 + ac_2 - bc_2 = z_0 (3.18b)$$

$$c_2(a-b) = z_0 + ay_0 (3.18c)$$

$$c_2 = \frac{z_0 + ay_0}{a - b} \tag{3.18d}$$

potom

$$c_1 = y_0 - c_2 (3.19a)$$

$$c_1 = y_0 - \frac{z_0 + ay_0}{a - b} \tag{3.19b}$$

$$c_{1} = \frac{y_{0}(a-b) - z_{0} - ay_{0}}{a-b}$$

$$c_{1} = \frac{y_{0}a - y_{0}b - z_{0} - ay_{0}}{a-b}$$

$$(3.19d)$$

$$c_1 = \frac{y_0 a - y_0 b - z_0 - a y_0}{a - b} \tag{3.19d}$$

$$c_1 = \frac{-y_0 b - z_0}{a - b} \tag{3.19e}$$

Konkrétne riešenie úlohy teda je

$$y(t) = \frac{-y_0b - z_0}{a - b}e^{-at} + \frac{z_0 + ay_0}{a - b}e^{-bt}$$
(3.20)

Úloha 3.3

Nájdite analytické riešenie diferenciálnej rovnice. Použite metódu charakteristickej

$$\ddot{y}(t) + 3\dot{y}(t) + 2y(t) = u(t)$$
 $y(0) = 3, \ \dot{y}(0) = -2$ $u(t) = 0$

Riešenie: Prvým krokom je stanovenie charakteristickej rovnice. V tomto prípade

$$s^2 + 3s + 2 = 0 (3.21)$$

V druhom kroku pre stanovenie fundamentálnych riešení hľadáme riešenia charakteristickej rovnice. Riešením charakteristickej rovnice sú

$$s_1 = -1$$
 (3.22a)

$$s_2 = -2$$
 (3.22b)

Zodpovedajúce fundamentálne riešenia sú

$$y_{f1}(t) = e^{-t} (3.23a)$$

$$y_{f2}(t) = e^{-2t} (3.23b)$$

Tretím krokom je stanovenie všeobecného riešenia dif. rovnice. Je lineárnou kombináciou fundamentálnych riešení. Teda

$$y(t) = c_1 e^{-t} + c_2 e^{-2t} (3.24)$$

kde $c_1, c_2 \in \mathbb{R}$ sú konštanty.

Vo štvrtom kroku je možné na základe začiatočných podmienok stanoviť konkrétne riešenie. Pre čas t=0 má všeobecné riešenie tvar

$$y(0) = c_1 e^{(-1)0} + c_2 e^{(-2)0} = c_1 + c_2$$
(3.25)

Tým sme takpovediac zúžitkovali informáciu o začiatočnej hodnote y(0) = 3. Druhá začiatočná podmienka sa týka derivácie riešenia. Derivácia všeobecného riešenia je

$$\dot{y}(t) = -c_1 e^{-t} - 2c_2 e^{-2t} \tag{3.26}$$

Pre čas t=0 má derivácia všeobecného riešenia tvar

$$\dot{y}(0) = -c_1 - 2c_2 \tag{3.27}$$

Z uvedeného vyplýva sústava dvoch rovníc o dvoch neznámych konštantách c_1 a c_2

$$c_1 + c_2 = 3 (3.28a)$$

$$-c_1 - 2c_2 = -2 \tag{3.28b}$$

Platí $c_2 = 3 - c_1$, a teda

$$-c_1 - 2(3 - c_1) = -2 (3.29a)$$

$$-c_1 - 6 + 2c_1 = -2 \tag{3.29b}$$

$$c_1 = 4$$
 (3.29c)

potom

$$c_2 = 3 - c_1 \tag{3.30a}$$

$$c_2 = 3 - 4 \tag{3.30b}$$

$$c_2 = -1$$
 (3.30c)

Našli sme funkciu y(t), ktorá je riešením diferenciálnej rovnice pre konkrétne začiatočné podmienky

$$y(t) = 4e^{-t} - e^{-2t} (3.31)$$

Úloha 3.4

Nájdite analytické riešenie diferenciálnej rovnice. Použite metódu charakteristickej rovnice.

te analyticke riesenie diferencialnej rovnice. Pouzite metodu charakter e.
$$\ddot{y}(t)+7\dot{y}(t)+6y(t)=u(t) \qquad y(0)=5, \ \dot{y}(0)=4 \qquad u(t)=0$$
 10 | MRS97 - ZS2024

3.5 Úloha

Nájdite analytické riešenie diferenciálnej rovnice. Použite metódu charakteristickej rovnice.

$$\ddot{y}(t) + 8\dot{y}(t) + 7y(t) = u(t)$$
 $y(0) = 6, \ \dot{y}(0) = 5$ $u(t) = 0$

3.6 Úloha

Nájdite analytické riešenie diferenciálnej rovnice s využitím Laplaceovej transformácie.

$$\dot{y}(t) + ay(t) = bu(t)$$
 $y(0) = y_0$ $a, b, y_0 \in \mathbb{R}$ $u(t) = 1$

Riešenie: Na jednotlivé členy diferenciálnej rovnice aplikujeme Laplaceovu transformáciu

$$\mathcal{L}\{\dot{y}(t)\} = sY(s) - y(0) \tag{3.32a}$$

$$\mathcal{L}\{ay(t)\} = aY(s) \tag{3.32b}$$

$$\mathcal{L}\{bu(t)\} = bU(s) = b \cdot \frac{1}{s}$$
(3.32c)

Potom rovnica v Laplaceovej oblasti bude

$$sY(s) - y(0) + aY(s) = b\frac{1}{s}$$
 (3.33a)

$$sY(s) - y_0 + aY(s) = b\frac{1}{s}$$
 (3.33b)

Členy obsahujúce Y(s) zoskupíme na ľavej strane rovnice

$$Y(s)(s+a) = y_0 + b\frac{1}{s}$$
 (3.34)

Obrazom riešenia dif. rovnice teda je

$$Y(s) = \frac{y_0}{s+a} + b \frac{1}{s(s+a)}$$
 (3.35)

Zaujíma nás však originál tohto obrazu. Prvý výraz je

$$Y_1(s) = \frac{y_0}{s+a} {(3.36)}$$

Súvisí so začiatočnou podmienkou a jeho originálom (podľa tabuľky Laplaceových obrazov) je funkcia

$$y_1(t) = y_0 e^{-at} (3.37)$$

Druhý výraz je

$$Y_2(s) = \frac{b}{s(s+a)} {(3.38)}$$

Súvisí so vstupným signálom u(t) a nie je možné priamo určiť jeho originál z tabuľky Laplaceových obrazov signálov. Preto je potrebné využiť rozklad na parciálne zlomky. V tomto prípade

$$Y_2(s) = \frac{b}{s(s+a)} = \frac{A}{s} + \frac{B}{s+a}$$
 (3.39)

kde A a B sú neznáme konštanty. To je možné zapísať aj v tvare

$$b = A(s+a) + Bs \tag{3.40}$$

Uvedené platí pre akékoľvek s, teda aj pre s=0 a s=-a. Pre s=0 dostaneme

$$b = Aa \tag{3.41a}$$

$$A = \frac{b}{a} \tag{3.41b}$$

Pre s = -a dostaneme

$$b = B(-a) \tag{3.42a}$$

$$B = \frac{-b}{a} \tag{3.42b}$$

Teda

$$Y_2(s) = \frac{b}{a} \left(\frac{1}{s}\right) - \frac{b}{a} \left(\frac{1}{s+a}\right) \tag{3.43}$$

a originálna funkcia je

$$y_2(t) = \frac{b}{a} - \frac{b}{a}e^{-at} \tag{3.44}$$

Súčet $y_1(t) + y_2(t)$ je riešením diferenciálnej rovnice

$$y(t) = y_0 e^{-at} + \frac{b}{a} - \frac{b}{a} e^{-at}$$
 (3.45)

3.7 Úloha

Nájdite analytické riešenie diferenciálnej rovnice. Použite Laplaceovu transformáciu.

$$\dot{y}(t) + ay(t) = bu(t)$$
 $y(0) = 0$ $u(t) = \delta(t)$ $a, b \in \mathbb{R}$

kde $\delta(t)$ je Dirackov impulz.

Riešenie: Na jednotlivé členy diferenciálnej rovnice aplikujeme Laplaceovu transformáciu.

$$\mathcal{L}\{\dot{y}(t)\} = sY(s) - y(0) \tag{3.46a}$$

$$\mathcal{L}\{ay(t)\} = aY(s) \tag{3.46b}$$

$$\mathcal{L}\{bu(t)\} = bU(s) = b \cdot 1 \tag{3.46c}$$

Potom rovnica v Laplaceovej oblasti bude

$$sY(s) - y(0) + aY(s) = b$$
 (3.47a)

$$sY(s) + aY(s) = b (3.47b)$$

Členy obsahujúce Y(s) zoskupíme na ľavej strane rovnice

$$Y(s)(s+a) = b (3.48)$$

Obrazom riešenia dif. rovnice teda je

$$Y(s) = \frac{b}{s+a} = b \frac{1}{s+a}$$
 (3.49)

Zaujíma nás však originál tohto obrazu. V tomto prípade je priamo z tabuľky Laplaceových obrazov signálov zrejmé, že originálom je funkcia

$$y(t) = b e^{-at} (3.50)$$

čím sme našli riešenie diferenciálnej rovnice.

3.8 Úloha

Nájdite analytické riešenie diferenciálnej rovnice. Použite Laplaceovu transformáciu.

$$\ddot{y}(t) + (a+b)\dot{y}(t) + aby(t) = 0$$
 $y(0) = y_0$ $\dot{y}(0) = z_0$ $a, b, y_0, z_0 \in \mathbb{R}$

Riešenie: Na jednotlivé členy diferenciálnej rovnice aplikujeme Laplaceovu transformáciu.

$$\mathcal{L}\{\ddot{y}(t)\} = s^2 Y(s) - sy(0) - \dot{y}(0)$$
(3.51a)

$$\mathcal{L}\{(a+b)\dot{y}(t)\} = (a+b)(sY(s) - y(0))$$
(3.51b)

$$\mathcal{L}\{aby(t)\} = abY(s) \tag{3.51c}$$

Potom rovnica v Laplaceovej oblasti bude

$$s^{2}Y(s) - sy(0) - \dot{y}(0) + (a+b)(sY(s) - y(0)) + abY(s) = 0$$
(3.52a)

$$s^{2}Y(s) - sy_{0} - z_{0} + (a+b)(sY(s) - y_{0}) + abY(s) = 0$$
(3.52b)

$$s^{2}Y(s) - sy_{0} - z_{0} + asY(s) + bsY(s) - ay_{0} - by_{0} + abY(s) = 0$$
(3.52c)

Členy obsahujúce Y(s) zoskupíme na ľavej strane rovnice

$$Y(s)(s^{2} + as + bs + ab) = sy_{0} + z_{0} + ay_{0} + by_{0}$$
(3.53)

Obrazom riešenia dif. rovnice teda je

$$Y(s) = \frac{sy_0 + z_0 + ay_0 + by_0}{s^2 + (a+b)s + ab}$$
(3.54)

Zaujíma nás však originál tohto obrazu. V uvedenom tvare obrazu však nie je možné nájsť jeho originál s využitím tabuľky Laplaceových obrazov signálov. Obraz je potrebné prepísať na jednoduchšie výrazy, typicky je účelným rozklad na parciálne zlomky. Menovateľ $s^2 + (a+b)s + ab$ je kvadratický polynóm, ktorý má dva rôzne korene a tie sú

$$s_1 = -a \tag{3.55a}$$

$$s_2 = -b \tag{3.55b}$$

Takže platí

$$Y(s) = \frac{sy_0 + z_0 + ay_0 + by_0}{s^2 + (a+b)s + ab} = \frac{sy_0 + z_0 + ay_0 + by_0}{(s+a)(s+b)} = \frac{A}{s+a} + \frac{B}{s+b}$$
(3.56)

kde A a B sú neznáme konštanty. To je možné zapísať aj v tvare

$$sy_0 + z_0 + ay_0 + by_0 = A(s+b) + B(s+a)$$
(3.57)

Uvedené platí pre akékoľvek s, teda aj pre s = -a a s = -b. Pre s = -a dostaneme

$$-ay_0 + z_0 + ay_0 + by_0 = A(-a+b) + B(-a+a)$$
(3.58a)

$$z_0 + by_0 = A(-a+b) (3.58b)$$

$$A = \frac{z_0 + by_0}{-a + b} \tag{3.58c}$$

Pre s = -b dostaneme

$$-by_0 + z_0 + ay_0 + by_0 = A(-b+b) + B(-b+a)$$
(3.59a)

$$z_0 + ay_0 = B(-b+a) (3.59b)$$

$$B = \frac{z_0 + ay_0}{-b + a} \tag{3.59c}$$

Obraz riešenia dif. rovnice potom je v tvare

$$Y(s) = \frac{z_0 + by_0}{-a + b} \left(\frac{1}{s+a} \right) + \frac{z_0 + ay_0}{-b+a} \left(\frac{1}{s+b} \right)$$
 (3.60)

Originálom k výrazu $\frac{1}{s+a}$ je v zmysle tabuľky Laplaceových obrazov signálov funkcia e^{-at} . Originálom k výrazu $\frac{1}{s+b}$ je v zmysle tabuľky Laplaceových obrazov signálov funkcia e^{-bt} . Preto originálom obrazu riešenia dif. rovnice je

$$y(t) = \frac{z_0 + by_0}{-a + b}e^{-at} + \frac{z_0 + ay_0}{-b + a}e^{-bt}$$
(3.61)

Našli sme riešenie diferenciálnej rovnice pre dané začiatočné podmienky.

Úloha 3.9

Nájdite analytické riešenie diferenciálnej rovnice s využitím Laplaceovej transformácie.

$$\ddot{y}(t) + 4\dot{y}(t) + 3y(t) = u(t)$$
 $y(0) = 3, \ \dot{y}(0) = -2$ $u(t) = 1$

$$y(0) = 3, \ \dot{y}(0) = -$$

$$u(t) = 1$$

4 Časť štvrtá

4.1 Úloha

Nájdite prenosovú funkciu dynamického systému daného diferenciálnou rovinou v tvare

$$a_1 \dot{y}(t) + a_0 y(t) = b_0 u(t)$$
 $a_0, a_1, b_0 \in \mathbb{R}$

4.2 Úloha

Nájdite prenosovú funkciu dynamického systému daného diferenciálnou rovnicou v tvare

$$\ddot{y}(t) + a_1 \dot{y}(t) + a_0 y(t) = b_0 u(t)$$
 $a_0, a_1, b_0 \in \mathbb{R}$

4.3 Úloha

Pre dynamický systém opísaný pomocou prenosovej funkcie nájdite zodpovedajúcu diferenciálnu rovnicu.

$$G(s) = \frac{b_0}{s + a_0}$$

Riešenie:

$$G(s) = \frac{Y(s)}{U(s)} \tag{4.1}$$

kde Y(s) je Laplaceov obraz výstupného signálu a U(s) je Laplaceov obraz vstupného signálu. V tomto prípade teda

$$Y(s) = G(s)U(s) = \frac{b_0}{s + a_0}U(s)$$
 (4.2a)

$$(s + a_0) Y(s) = b_0 U(s)$$
 (4.2b)

$$sY(s) + a_0Y(s) = b_0U(s)$$
 (4.2c)

$$sY(s) = -a_0Y(s)b_0U(s)$$
 (4.2d)

a teda diferenciálna rovnica je

$$\dot{y}(t) = -a_0 y(t) + b_0 u(t) \tag{4.3}$$

4.4 Úloha

Pre dynamický systém opísaný pomocou prenosovej funkcie nájdite zodpovedajúcu diferenciálnu rovnicu.

$$G(s) = \frac{b_1 s + b_0}{s^2 + a_1 s + a_0}$$

Riešenie: Systém je daný v tvare prenosovej funkcie

$$G(s) = \frac{Y(s)}{U(s)} \tag{4.4}$$

kde Y(s) je Laplaceov obraz výstupného signálu a U(s) je Laplaceov obraz vstupného signálu. Nech cieľom je prepis do tvaru diferenciálnej rovnice, potom

$$Y(s) = G(s)U(s) = \frac{b_1 s + b_0}{s^2 + a_1 s + a_0}U(s)$$
(4.5a)

$$(s^{2} + a_{1}s + a_{0})Y(s) = (b_{1}s + b_{0})U(s)$$
(4.5b)

$$s^{2}Y(s) + a_{1}sY(s) + a_{0}Y(s) = b_{1}sU(s) + b_{0}U(s)$$
(4.5c)

$$s^{2}Y(s) = -a_{1}sY(s) - a_{0}Y(s) + b_{1}sU(s) + b_{0}U(s)$$
 (4.5d)

a teda diferenciálna rovnica je

$$\ddot{y}(t) = -a_1 \dot{y}(t) - a_0 y(t) + b_1 \dot{u}(t) + b_0 u(t)$$
(4.6)

4.5 Úloha

Pre dynamický systém opísaný pomocou prenosovej funkcie nájdite zodpovedajúcu diferenciálnu rovnicu.

$$G(s) = \frac{b_0}{s^2 + a_1 s + a_0}$$

4.6 Úloha

Pre dynamický systém opísaný pomocou prenosovej funkcie nájdite zodpovedajúcu diferenciálnu rovnicu.

$$G(s) = \frac{b_1 s}{s^2 + a_1 s + a_0}$$

4.7 Úloha

Pre dynamický systém opísaný pomocou prenosovej funkcie nájdite zodpovedajúcu diferenciálnu rovnicu.

$$G(s) = \frac{b_1 s}{s^2 + a_1 s}$$

4.8 Úloha

Určte charakteristický polynóm prenosovej funkcie

$$G(s) = \frac{b_2 s^2 + b_1 s + b_0}{a_3 s^3 + a_2 s^2 + a_1 s + a_0}$$

4.9 Úloha

Určte póly dynamického systému daného prenosovou funkciou

4.10 Úloha

Dynamický systém daný prenosovou funkciu prepíšte do opisu v stavovom priestore (stanovte stavové veličiny).

$$G(s) = \frac{b_0}{s + a_0}$$

Riešenie: V stavovom priestore je potrebné zaviesť stavový vektor $x(t) \in \mathbb{R}^n$. Vo všeobecnosti je opis lineárneho systému v stavovom priestore v tvare

$$\dot{x}(t) = Ax(t) + bu(t) \tag{4.7a}$$

$$y(t) = c^{\mathsf{T}}x(t) \tag{4.7b}$$

kde $A \in \mathbb{R}^{n \times n}$, $b \in \mathbb{R}^n$ a $c \in \mathbb{R}^n$ sú matica a vektory a ide o parametre systému.

Pri stanovení vektora x(t) ide vo všeobecnosti o prepis diferenciálnej rovnice vyššieho rádu na sústavu rovníc prvého rádu. Vzniknú tak nové signály, ktoré sú neznámymi v sústave rovníc prvého rádu a sú prvkami stavového vektora x(t).

V tomto prípade dif. rovnicu získame uvážením

$$G(s) = \frac{Y(s)}{U(s)} = \frac{b_0}{s + a_0}$$
 (4.8a)

$$Y(s)(s + a_0) = b_0 U(s) (4.8b)$$

$$sY(s) + a_0Y(s) = b_0U(s)$$
 (4.8c)

$$sY(s) = -a_0Y(s) + b_0U(s)$$
 (4.8d)

a teda

$$\dot{y}(t) = -a_0 y(t) + b_0 u(t) \tag{4.9}$$

Formálne teda zvoľme

$$x_1(t) = y(t) \tag{4.10}$$

a teda

$$\dot{x}_1(t) = \dot{y}(t) = -a_0 x_1(t) + b_0 u(t) \tag{4.11}$$

je vlastne "sústava" jednej diferenciálnej rovnice. Formálne:

$$\dot{x}_1(t) = -a_0 x_1(t) + b_0 u(t) \tag{4.12a}$$

$$y(t) = x_1(t) \tag{4.12b}$$

je opis systému v stavovom priestore kde $x_1(t)$ je stavová veličina. Pre úplnosť, stavový vektor v tomto prípade je $x(t) = x_1(t)$ a matica $A = -a_0$, vektor $b = b_0$ a vektor c = 1.

4.11 Úloha

Dynamický systém daný prenosovou funkciu prepíšte do opisu v stavovom priestore (stanovte stavové veličiny).

$$G(s) = \frac{b_1 s + b_0}{s^2 + a_1 s + a_0}$$

Riešenie: V stavovom priestore je potrebné zaviesť stavový vektor $x(t) \in \mathbb{R}^n$. Vo všeobecnosti je opis lineárneho systému v stavovom priestore v tvare

$$\dot{x}(t) = Ax(t) + bu(t) \tag{4.13a}$$

$$y(t) = c^{\mathsf{T}}x(t) \tag{4.13b}$$

kde $A \in \mathbb{R}^{n \times n}$, $b \in \mathbb{R}^n$ a $c \in \mathbb{R}^n$ sú matica a vektory.

Pri stanovení vektora x(t) ide vo všeobecnosti o prepis diferenciálnej rovnice vyššieho rádu na sústavu rovníc prvého rádu.

Máme

$$\frac{Y(s)}{U(s)} = \frac{b_1 s + b_0}{s^2 + a_1 s + a_0} \tag{4.14}$$

Pre prípad, keď je v čitateli len konštanta (systém nemá nuly), je voľba stavových veličín značne intuitívna. Preto napíšme prenosovú funkciu (4.14) ako dve prenosové funkcie v sérii nasledovne

$$\frac{Z(s)}{U(s)} = \frac{1}{s^2 + a_1 s + a_0} \tag{4.15}$$

$$\frac{Y(s)}{Z(s)} = b_1 s + b_0 \tag{4.16}$$

kde sme zaviedli pomocnú veličinu Z(s), ktorá je obrazom z(t). Zjavne platí

$$\frac{Y(s)}{U(s)} = \frac{Y(s)}{Z(s)} \frac{Z(s)}{U(s)} \tag{4.17}$$

alebo explicitnejšie:

$$\frac{Y(s)}{U(s)} = (b_1 s + b_0) \frac{1}{s^2 + a_1 s + a_0}$$
(4.18)

Prvú prenosovú funkciu (4.15) možno prepísať na diferenciálnu rovnicu druhého rádu v tvare

$$\ddot{z}(t) + a_1 \dot{z}(t) + a_0 z(t) = u(t) \tag{4.19}$$

Túto je možné previesť na sústavu diferenciálnych rovníc prvého rádu - voľbou stavových veličín. Napríklad nech

$$x_1(t) = z(t) \tag{4.20}$$

kde $x_1(t)$ je prvá stavová veličina. Potom platí

$$\dot{x}_1(t) = \dot{z}(t) \tag{4.21}$$

Druhú stavovú veličinu zvoľme

$$x_2(t) = \dot{z}(t) \tag{4.22}$$

a teda

$$\dot{x}_2(t) = \ddot{z}(t) \tag{4.23}$$

V tomto bode môžeme ľahko písať

$$\dot{x}_1(t) = x_2(t) \tag{4.24}$$

To je prvá diferenciálna rovnica! Obsahuje len novo zavedené stavové veličiny $(x_1(t)$ a $x_2(t))$. Druhá diferenciálna rovnica je vlastne (4.23). Avšak, vieme signál $\ddot{z}(t)$ vyjadriť len pomocou novo zavedených stavových veličín? Vieme. Z (4.19) je zrejmé, že

$$\ddot{z}(t) = -a_1 \dot{z}(t) - a_0 z(t) + u(t) = -a_1 x_2(t) - a_0 x_1(t) + u(t)$$
(4.25)

takže (4.23) je

$$\dot{x}_2(t) = -a_1 x_2(t) - a_0 x_1(t) + u(t) \tag{4.26}$$

a to je druhá diferenciálna rovnica...

Obe rovnice spolu:

$$\dot{x}_1(t) = x_2(t) \tag{4.27}$$

$$\dot{x}_2(t) = -a_1 x_2(t) - a_0 x_1(t) + u(t) \tag{4.28}$$

V maticovom zápise:

$$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -a_0 & -a_1 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t) \tag{4.29}$$

Vrátme sa k prenosovej funkcii (4.16). Túto možno napísať ako diferenciálnu rovnicu v tvare

$$y(t) = b_1 \dot{z}(t) + b_0 z(t) \tag{4.30}$$

Avšak, my sme už urobili voľbu takú, že $\dot{z}(t) = x_2(t)$ a $z(t) = x_1(t)$. Takže diferenciálnu rovnicu (4.30) môžme písať ako

$$y(t) = b_1 x_2(t) + b_0 x_1(t) \tag{4.31}$$

alebo v maticovom tvare

$$y(t) = \begin{bmatrix} b_0 & b_1 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$$
 (4.32)

Celý systém s novo zavedenými stavovými veličinami teda je v tvare

$$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -a_0 & -a_1 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t) \tag{4.33}$$

$$y(t) = \begin{bmatrix} b_0 & b_1 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$$
 (4.34)

Ak označíme stavový vektor ako $x(t) = \begin{bmatrix} x_1(t) & x_2(t) \end{bmatrix}^\mathsf{T}$, potom je systém v známom tvare

$$\dot{x}(t) = Ax(t) + bu(t) \tag{4.35a}$$

$$y(t) = c^{\mathsf{T}} x(t) \tag{4.35b}$$

kde

$$A = \begin{bmatrix} 0 & 1 \\ -a_0 & -a_1 \end{bmatrix} \tag{4.36a}$$

$$b = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \tag{4.36b}$$

$$c = \begin{bmatrix} b_0 \\ b_1 \end{bmatrix} \tag{4.36c}$$

4.12 Úloha

Dynamický systém daný prenosovou funkciu prepíšte do opisu v stavovom priestore (stanovte stavové veličiny).

$$G(s) = \frac{b_0}{s^2 + a_1 s + a_0}$$

Riešenie: (uvedené bez postupu)

$$\dot{x}(t) = \begin{bmatrix} 0 & 1 \\ -a_0 & -a_1 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t)$$
 (4.37a)

$$y(t) = \begin{bmatrix} b_0 & 0 \end{bmatrix} x(t) \tag{4.37b}$$

5 Časť piata

5.1 Úloha

Vyšetrite stabilitu dynamického systému daného prenosovou funkciou

$$G(s) = \frac{5s}{s^2 + 5s + 6}$$

5.2 Úloha

Nájdite hodnoty koeficientov a a b, pre ktoré je dynamický systém stabilný

$$G(s) = \frac{1}{s^2 + (a+b)s + ab}$$

5.3 Úloha

Určte ustálenú hodnotu (konečnú hodnotu), na ktorej sa ustáli výstup systému daného prenosovou funkciou

$$G(s) = \frac{b_0}{s + a_0}$$

keď vstupom systému je jednotkový skok.

5.4 Úloha

Určte rád astatizmu dynamického systému daného prenosovou funkciou

$$G(s) = \underbrace{\frac{b_0}{s^2 + a_0 s}} \qquad \qquad \int \left(\mathbf{S} + \mathbf{a}_0 \right)$$

5.5 Úloha

Daná je nasledujúca bloková schéma s prenosovými funkciami $G_1(s)$ a $G_2(s)$. Určte prenosovú funkciu G(s) celého systému.

Riešenie: Pre signál e platí

$$e = u - G_2(s)y (5.1)$$

Potom

$$y = G_1(s)e (5.2a)$$

$$y = G_1(s) (u - G_2(s)y)$$
 (5.2b)

$$(1 + G_1(s)G_2(s)) y = G_1(s)u$$
(5.2c)

$$y = \frac{G_1(s)}{(1 + G_1(s)G_2(s))}u$$
 (5.2d)

Pre prenosovú funkciu celkového systému G(s) platí

$$G(s) = \frac{G_1(s)}{(1 + G_1(s)G_2(s))}$$
(5.3)

5.6 Úloha

Načrtnite prechodovú charakteristiku statického systému prvého rádu.

Obr. 1: Prechodová charakteristika statického systému prvého rádu

5.7 Úloha

Načrtnite prechodovú charakteristiku astatického systému prvého rádu.

Obr. 2: Prechodová charakteristika astatického systému prvého rádu

5.8 Úloha

Načrtnite prechodovú charakteristiku statického systému druhého rádu, ktorého charakteristický polynóm je v tvare $A(s) = s^2 + 2\beta\omega_0 s + \omega_0^2$ pričom $\beta = 0$.

5.9 Úloha

Uvažujme statický systém prvého rádu (SS1R) daný prenosovou funkciou v tvare

$$Y(s) = \frac{K}{Ts+1}U(s)$$

kde $K,T\in\mathbb{R}$ sú parametre systému. Stanovte časovú funkciu, ktorá je analytickým vyjadrením prechodovej charakteristiky tohto systému.

5.10 Úloha

Uvažujme statický systém prvého rádu (SS1R) daný prenosovou funkciou v tvare

$$Y(s) = \frac{b_0}{s + a_0} U(s)$$

kde $a_0,b_0\in\mathbb{R}$ sú parametre systému. Stanovte časovú funkciu, ktorá je analytickým vyjadrením prechodovej charakteristiky tohto systému.

5.11 Úloha

Majme L-obraz signálu: $Y(s)=\frac{b}{s+a} \ \frac{1}{s}.$ Nájdite originál v časovej oblasti, teda y(t)=?

5.12 Úloha

Uvažujme dynamický systém v tvare

$$\dot{x}(t) = a x(t) + b u(t)$$

$$y(t) = x(t)$$

kde x(t) je stavová veličina systému, u(t) je vstupná veličina systému a y(t) je výstupná veličina systému. Parameter b=1 a parameter a je neznáma konštanta.

- a) Stanovte veľkosť statického zosilnenia systému.
- b) Koľkého rádu je systém?
- c) Pre ktoré a je systém stabilný a pre ktoré a je nestabilný? Nájdite intervaly.
- d) Aký je charakteristický polynóm daného dynamického systému?
- e) Aké sú korene charakteristického polynómu?

Uvažujme dynamický systém v tvare

マ=ーのタナられ

kde y(t) je výstupná veličina systému, u(t) je vstupná veličina systému a nech u(t) je konštantný signál u(t)=1. Parameter b=1 a parameter a>0 je inak neznáma konštanta.

- a) Určte korene charakteristického polynómu.
- b) Stanovte hodnotu, na ktorej sa ustáli výstupná veličina.

5.14 Úloha

Majme homogénny dynamický systém daný rovnicou $\dot{x}(t) = Ax(t)$, kde $x(t) \in \mathbb{R}^n$ je vektor signálov. Určte ekvilibrium systému (ustálený stav) a uveďte nutnú a postačujúcu podmienku pre stabilitu ekvilibria.