$$\begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \xrightarrow{y} x^{y} = 0$$

$$\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \xrightarrow{y} x^{y} \xrightarrow{x} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \xrightarrow{y} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

- 5. For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.
- a) If A is a 2 \times 2 matrix and v is an eigenvector of A corresponding to an eigenvalue λ then 2v is an eigenvector of A corresponding to the eigenvalue 2λ .
- b) If V is a subspace of \mathbb{R}^2 and w is a vector such that $\operatorname{proj}_V w = -w$ then w must be the zero vector.
- c) If A is a square matrix which is both symmetric and orthogonal then A^2 is the identity matrix.
- d) If A and B are 2×2 matrices which are both orthogonally diagonalizable, then the matrix A + B is also orthogonally diagonalizable.

A + B is also orthogonally diagonalizable.

a) fulse because multiplying
$$A = \begin{bmatrix} \lambda & 1 \\ 0 & 1 \end{bmatrix} \lambda_1 = 1$$
 then $\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \rightarrow V_1 = \begin{bmatrix} 1 \\ 1 \\ 0 & 0 \end{bmatrix}$

then $\begin{bmatrix} 0 & 1 \\ 0 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} x_{1} = 0$ no $0 = 0$ 0

b) True, because DAMO for the proj to equal the original vector,

+3 the vector must, already fall on the projected plan with 0=-0 as the only vector that could & possibly be equal to it's negative proj

- c) fatse, because 1= [0 0 0] is a square, symmetric, 4 orthogonal matrix but A= [0007 which is not the Identity matrix
- D) True, because the resulting matrix will still be symmetrical which means that it will also be orthogonally diagonizable