Solution) (11:43)

Name:

Math 314/814 Matrix Theory, Section 001 Final Exam

Show all work. Include all steps necessary to arrive at an answer unaided by a mechanical computational device. The steps you take to your answer are just as important, if not more important, than the answer itself. If you think it, write it!

A.1. (20 pts.) Find the inverse of the matrix
$$A = \begin{pmatrix} 2 & 3 & 2 \\ 3 & 2 & -1 \\ 1 & 2 & 2 \end{pmatrix}$$
.

A.2. (15 pts.) Determine whether or not the vectors

$$\begin{bmatrix} 1\\1\\5\\0 \end{bmatrix}, \begin{bmatrix} 1\\3\\-3\\1 \end{bmatrix}, \begin{bmatrix} -1\\-1\\-1\\3 \end{bmatrix}, \begin{bmatrix} 0\\1\\2\\5 \end{bmatrix}$$

are linearly independent.

A.3. (20 pts.) Find an orthogonal basis for the column space of the matrix

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$\begin{pmatrix} 1 \\ 1 \\ 0 \\ 3 \end{pmatrix} \begin{pmatrix} 1 \\ -2 \\ 3 \\ 1 \end{pmatrix} \begin{pmatrix} -4 \\ 3 \\ 3 \\ 1 \end{pmatrix}$$

Find the least squares regression line which best approximates the data points

$$A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \\ 2 & 1 \end{pmatrix} \qquad \overrightarrow{y} = \begin{pmatrix} 1 \\ 0 \\ 3 \\ 5 \end{pmatrix}$$

$$\frac{1}{9} = \begin{pmatrix} 1 \\ 0 \\ 3 \\ 5 \end{pmatrix}$$

$$ATA = \begin{pmatrix} 0 & 1 & 23 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 1 \\ 3 & 1 \end{pmatrix} = \begin{pmatrix} 14 & 6 \\ 6 & 4 \end{pmatrix}$$

$$Ay = \begin{pmatrix} 0.123 \\ 1.11 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 3 \\ 5 \end{pmatrix} = \begin{pmatrix} 21 \\ 9 \end{pmatrix}$$

$$(\frac{9}{6}) = (474)^{-1}(475) = \frac{1}{20}(\frac{9}{-6}) = \frac{1}{14}(\frac{9}{9})$$

$$= \frac{3}{10} \left(\frac{2}{-3} - \frac{3}{7} \right) \left(\frac{7}{3} \right) = \frac{3}{10} \left(\frac{5}{0} \right) = \left(\frac{32}{6} \right)$$

$$\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} - \frac{2}{5} \begin{pmatrix} 1/3 \\ 1/3 \\ 1 \\ 1/3 \end{pmatrix} = \frac{1}{15} \begin{pmatrix} 0 - 10 - 2 \\ 15 - 10 + 4 \\ 15 - 10 - 2 \end{pmatrix} = \frac{1}{15} \begin{pmatrix} -12 \\ 9 \\ 3 \\ 1 \end{pmatrix} = \frac{1}{5} \begin{pmatrix} -4/3 \\ 3 \\ 1 \end{pmatrix}$$

B.1. (15 pts.) Find the orthogonal projection of the vector
$$\vec{b} = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$$
 onto the column space of the matrix

$$A = \begin{pmatrix} 2 & 2 \\ 3 & 1 \\ 1 & 1 \end{pmatrix}$$

$$A\vec{x} = A(A^TA)^T(A^Tb)$$

$$A^Tb = \begin{pmatrix} 231 \\ 211 \end{pmatrix} \begin{pmatrix} 2 \\ 4 \end{pmatrix} = \begin{pmatrix} 848 \\ 86 \end{pmatrix}$$

$$A^TA = \begin{pmatrix} 231 \\ 211 \end{pmatrix} \begin{pmatrix} 22 \\ 11 \end{pmatrix} = \begin{pmatrix} 6-8 \\ 14 \end{pmatrix} = \frac{1}{16}\begin{pmatrix} 3-4 \\ -47 \end{pmatrix}$$

$$A\vec{x} = \begin{pmatrix} 22 \\ 31 \end{pmatrix} \begin{pmatrix} 3-4 \\ 11 \end{pmatrix} \begin{pmatrix} 12 \\ 8 \end{pmatrix} = \begin{pmatrix} 22 \\ 31 \end{pmatrix} \begin{pmatrix} 44 \\ 8 \end{pmatrix} = \begin{pmatrix} 24 \\ 11 \end{pmatrix} \begin{pmatrix} 3-4 \\ 47 \end{pmatrix} \begin{pmatrix} 12 \\ 8 \end{pmatrix} = \begin{pmatrix} 22 \\ 31 \end{pmatrix} \begin{pmatrix} 44 \\ 8 \end{pmatrix} = \begin{pmatrix} 24 \\ 11 \end{pmatrix} \begin{pmatrix} 44 \\ 8 \end{pmatrix} = \begin{pmatrix} 24 \\ 11 \end{pmatrix} \begin{pmatrix} 44 \\ 8 \end{pmatrix} = \begin{pmatrix} 24 \\ 11 \end{pmatrix} \begin{pmatrix} 44 \\ 8 \end{pmatrix} = \begin{pmatrix} 24 \\ 11 \end{pmatrix} \begin{pmatrix} 44 \\ 8 \end{pmatrix} = \begin{pmatrix} 24 \\ 11 \end{pmatrix} \begin{pmatrix} 44 \\ 8 \end{pmatrix} = \begin{pmatrix} 24 \\ 11 \end{pmatrix} \begin{pmatrix} 44 \\ 8 \end{pmatrix} = \begin{pmatrix} 24 \\ 11 \end{pmatrix} \begin{pmatrix} 44 \\ 8 \end{pmatrix} = \begin{pmatrix} 24 \\ 11 \end{pmatrix} \begin{pmatrix} 44 \\ 8 \end{pmatrix} = \begin{pmatrix} 184 \\ 11 \end{pmatrix} \begin{pmatrix}$$

B.2. (15 pts.) If $T: \mathbb{R}^3 \to \mathbb{R}^2$ is a linear transformation with

$$T\begin{bmatrix} 1\\2\\0 \end{bmatrix} = \begin{bmatrix} 1\\1 \end{bmatrix} \quad , \quad T\begin{bmatrix} 1\\1\\1 \end{bmatrix} = \begin{bmatrix} 3\\4 \end{bmatrix} \quad , \quad \text{and } T\begin{bmatrix} 0\\1\\2 \end{bmatrix} = \begin{bmatrix} -1\\2 \end{bmatrix} \quad ,$$

what is $T \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$?

$$\binom{1}{3} = a \binom{1}{3} + b \binom{1}{1} + c \binom{1}{2}$$

$$\begin{pmatrix} 1 & 1 & 0 & 1 \\ 2 & 1 & 1 & 2 \\ 0 & 1 & 2 & 3 \end{pmatrix} \Longrightarrow \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & -1 & 1 & 3 \\ 0 & 1 & 2 & 3 \end{pmatrix}$$

$$\mathcal{E}_{0} \qquad \mathcal{E}_{0} \qquad \mathcal{E}_{0}$$

$$S = T(\frac{1}{3}) = O(\frac{1}{1}) + I(\frac{3}{4}) + I(\frac{1}{2}) = \frac{2}{6}$$

B.3. (15 pts.) For which values of
$$x$$
 is the matrix $A = \begin{pmatrix} 2 & 1 & 3 \\ 1 & 2 & x \\ x & 1 & -1 \end{pmatrix}$ not invertible?

$$dd(A) = 2 \begin{vmatrix} 2x \\ 1-1 \end{vmatrix} - 1 \begin{vmatrix} 1x \\ x-1 \end{vmatrix} + 3 \begin{vmatrix} 12 \\ x_1 \end{vmatrix}$$

$$= 2(-2-x) - 1(-1-x^2) + 3(1-2x)$$

$$= -4 = 2x + 1 + x^2 + 3 - 6x$$

$$= x^2 + 2x + 1 + x^2 + 3 - 6x$$

B.4. (15 pts.) Suppose that A is an invertible $n \times n$ matrix. Show that if A is diagonalizable then A^{-1} is diagonalizable, as well.

If A 15 Date the those v invotible and D diagonal or That A= PDP-1. But then $A^{-1} = (PDP^{-1})^{-1} = (PD^{-1}D)^{-1}(P)^{-1} = PD^{-1}P^{-1}$ BAP 13 AM overthe 1 and $D^{-1} = \alpha$ diagonal matric S A IS $\begin{pmatrix} 0 & 1/V \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1/V \\ 0 & 0 \end{pmatrix}$ diagonalizable. 805.51