Problem	Set 8,	29	October	2018
---------	--------	----	---------	------

Name:	, Section:
-------	------------

Problem – (E34.30) A long solenoid has a diameter of 12.6 cm. When a current i is passed through its windings, a uniform magnetic field B = 28.6 mT is produced in its interior. By decreasing i, the field is caused to decrease at the rate 6.51 mT/s. Calculate the magnitude of the induced electric field

- a) 2.20 cm and
- b) 8.20 cm from the axis of the solenoid.

Problem – (P34.6)* The figure below shows two parallel loops of wire having a common axis. The smaller loop (radius r) is above the larger loop (radius R), by a difference $x \gg R$. Consequently the magnetic field, due to the current i in the larger loop, is nearly constant throughout the smaller loop and equal to the value on the axis. Suppose that x is increasing at the constant rate dx/dt = v.

- a) Determine the magnetic flux across the area bounded by the smaller loop as a function of *x*.
- b) Compute the emf generated in the smaller loop.
- c) Determine the direction of the induced current flowing in the smaller loop.

Problem - (P34.9)

- a) Find an expression for the energy density as a function of the radial distance r for a toroid of rectangular cross section.
- b) Integrating the energy density over the volume of the toroid, calculate the total energy stored in the field of the toroid.
- c) Using Eq. 36-10, evaluate the energy stored in the toroid directly from the inductance and compare with (b).

Problem – (E36.21) In the circuit shown in the figure below, $\mathcal{E}=10$ V, $R_1=5.0\Omega$, $R_2=10\Omega$, and L=5.0 H. For the two separate conditions

- (I) switch S just closed and
- (II) switch S closed for a long time,

calculate

- a) the current i_1 through R_1 ,
- b) the current i_2 through R_2 ,
- c) the current *i* through the switch,
- d) the potential difference across R_2 ,
- e) the potential difference across L, and
- f) di_2/dt .

Problem – ¶(P38.3) The capacitor in the figure below consisting of two circular plates with radius R=18.2 cm is connected to a source of emf $\mathscr{E}=\mathscr{E}_m\sin(\omega t)$, where $\mathscr{E}_m=225$ V and $\omega=128$ rad/s. The maximum value of the displacement current is $i_d=7.63~\mu\mathrm{A}$. Neglect fringing of the electric field at the edges of the plates.

- a) What is the maximum value of the current *i*?
- b) What is the maximum value of $d\Phi_E/dt$, where Φ_E is the electric flux through the region between the plates?
- c) What is the separation *d* between the plates?
- d) Find the maximum value of the magnitude of ${\bf B}$ between the plates at a distance r=11.0 cm from the center.

Problem – ¶Supplementary Problem 3 A parallel plate capacitor has circular plates of radius R and separation d. The capacitor is connected to a battery of voltage V and then disconnected so that the charge ought to remain constant. The air is humid, however, and therefore slightly conducting; thus the stored charge leaks back across the air gap between the capacitor plates at rate i_{leak} . Assume that this leakage current is uniformly distributed across the area of the plates. Find the magnetic field everywhere between the plates.

Problem – ¶Supplementary Problem 4 In a material of non-zero electrical resisitivity ρ , the relationship between electric field and current density is $\mathbf{E} = \rho \mathbf{j}$. For copper, $\rho = 2 \times 10^{-8} \ \Omega \cdot \mathrm{m}$. A copper wire with a circular cross-sectional area of 4 mm² carries a current of 40 A.

- a) What is the longitudinal electric field (field along the length of the wire) in the copper?
- b) If the current is changing at a rate of 5000 A/s, at what rate is **E** changing, and what is the resulting displacement current?
- c) Does the displacement current contribute significantly to the magnetic field outside the wire? Explain your answer.