

TMSCA HIGH SCHOOL MATHEMATICS

TEST #2 ©

OCTOBER 27, 2018

GENERAL DIRECTIONS

- 1. About this test:
- A. You will be given 40 minutes to take this test.
- B. There are 60 problems on this test.
- 2. All answers must be written on the answer sheet/Scantron form/Chatsworth card provided. If you are using an answer sheet, be sure to use **BLOCK CAPITAL LETTERS**. Clean erasures are necessary for accurate grading.
- 3. If using a scantron answer form, be sure to correctly denote the number of problems not attempted.
- 4. You may write anywhere on the test itself. You must write only answers on the answer sheet.
- 5. You may use additional scratch paper provided by the contest director.
- 6. All problems have **ONE** and **ONLY ONE** correct [BEST] answer. There is a penalty for all incorrect answers.
- 7. Calculators used on this test must be conform to the UIL standards. Graphing calculators are allowed. Calculators need not be cleared.
- 8. All problems answered correctly are worth **SIX** points. **TWO** points will be deducted for all problems answered incorrectly. No points will be added or subtracted for problems not answered.
- 9. In case of ties, percent accuracy will be used as a tie breaker.

TMSCA TMSCA

- 1. Evaluate: $\sqrt[3]{729} \div (81)^{3/2} + 8 \times 2^{-1} 8$.
 - (A) $\frac{649}{81}$ (B) 6557 (C) $-\frac{34}{9}$ (D) $-\frac{323}{81}$ (E)

- 2. Caroline had a rope that was 20 feet long. She cut off three pieces such that the ratio of lengths of the pieces were 6:7:8 with 30 inches of string left over. How long was the longest piece?
 - (A) 6 ft 8 in
- (B) 5 ft 10 in
- (C) 8 ft
- (D) 2 ft 6 in
- (E) 5 ft
- 3. Find the sum of the multiples of 9 that are greater than 0 and less than 384.
 - (A) 8192
- **(B)** 8127
- (C) 8056
- **(E)** 8068
- 4. 1200 feet per second = _____ miles per hour. (nearest whole number)
 - (A) 1760
- **(B)** 880
- (C) 14
- (D) 2455
- **(E)** 818
- 5. Larry, Mark and Norman can each tile a floor in 6 hours, 8 hours and 9 hours respectively. How long would it take them to tile a floor that is twice as long and twice as wide together? (nearest minute)
- (A) 2 hr 29 min (B) 9 hr 56 min (C) 4 hr 58 min (D) 8 hr 46 min (E) 9 hr 38 min

- 6. If $S = \{s,q,u,a,r,e\}$, $H = \{h,e,x,a,g,o,n\}$ and $D = \{d,e,c,a,g,o,n\}$ then $(S \cup H) \cap (H \cup D)$ contains how many distinct elements?
 - (A) 2
- (\mathbf{B}) 4
- (C) 5
- **(D)** 7
- (\mathbf{E}) 9
- 7. $\angle P$ and $\angle Q$ are complementary. $\angle Q$ and $\angle R$ are supplementary. If $m\angle R = 148^{\circ}$, then $m\angle P = ?$
 - (A) 58°
- (B) 42°
- (C) 18°
- (D) 32°
- 48° **(E)**

- 8. Simplify: $\frac{n!}{(n-2)!} \div \frac{(n+2)!}{n(n-3)!}$.
 - (A) $\frac{n^2 3n}{n^2 n 2}$

- $(B) \quad \frac{n-3}{n^2-n-2}$
- (C) $\frac{1}{n^2-4}$

(D) $\frac{n^2 + 2n - 3}{n^2 + 2n}$

- (E) $\frac{n}{n^3 + n^2 + 4n + 4}$
- 9. Find the least common multiple of $2^3 \times 7^2$, $3^2 \times 2^7$ and $3^7 \times 2$.
 - (A) 1.959.552
- (B) 2,286,144
- (C) 326,592
- (D) 653.184
- (E) 13.716.864
- 10. The angles at each point on the star shown are congruent. What is m∠ABC?
 - (A) 30°
- (B) 32°
- (C) 36°
- (D) 42°

(A) 374

(B) 162

11. A m			l WO						Page 2
11. A moving sidewalk moves at a rate of 1.9 ft/s. A person walking on the moving sidewalk travels 102 ft forward in the time it takes them to travel 51 ft in the opposite direction. How fast would the person walk on a nonmoving sidewalk?									
A)	3.8 ft/s	(B)	1.9 ft/s	(C)	2.1 mph	(D)	5.7 ft/s	(E)	2.4 mph
mor resp	12. The four cousins Eleanor, Sarah, Kyle and Naomi wanted to go on a road trip, but Naomi had no money. Eleanor, Sarah and Kyle each gave Naomi one-fourth, one-fifth and one-eighth of her money respectively. If each gave Naomi the same amount, what fraction of the money did Naomi possess after the exchange?								
(A)	$\frac{23}{40}$	(B)	$\frac{1}{5}$	(C)	$\frac{1}{7}$	(D)	$\frac{67}{210}$	(E)	$\frac{3}{17}$
13. Let	f(x)=3x+2,	g(x)	=4x-7, $h($	(x)=6	-x, and $f($	g(h(a)))=29.	Find $6a-7$	7.
(A)	2	(B)	-3	(C)	5	(D)	2	(E)	1
	quare has side le cent change in t		ea of the shap	e?					lved, what is the
(A)	75%	(B)	50%	(C)	125%	(D)	200%	(E)	$133\frac{1}{3}\%$
15. A particle's movement along the number line is defined by $f(t) = t^4 - 4t^3 - 32t^2 + 30t + 20$. At which of the following times is the particle moving to the left?									
or u	ic rono wing time	162 12 I	ine particie m	oving t	o the left?				
(A)	-2	(B)	-1	(C)	2			(E)	
(A) 16. The	-2 line $ax + 7y = 1$	(B) 13 is p	–1 perpendicular	(C) to the	2 line $25x + 21$	y=32.	Find th	e value of a	•
(A) 16. The (A)	-2 line $ax + 7y = 1$ $-\frac{147}{3}$	(B) 13 is p (B)	–1 perpendicular	(C) to the	2 line $25x + 21$	y=32.	Find th	e value of a	•
(A) 16. The (A) 17. Sim	-2 line $ax + 7y = 1$ $-\frac{147}{3}$ plify: $\frac{\sqrt[5]{a^3b^2}}{\sqrt[4]{ab}}$.	(B) 13 is p (B)	-1 perpendicular $\frac{3}{25}$	(C) to the	2 line $25x + 21$, $-\frac{25}{3}$	y = 32. (D)	Find th -\frac{147}{25}	e value of a. (E)	$\frac{25}{3}$
(A) 16. The (A) 17. Sim	-2 line $ax + 7y = 1$ $-\frac{147}{3}$	(B) 13 is p (B)	-1 perpendicular $\frac{3}{25}$	(C) to the	2 line $25x + 21$, $-\frac{25}{3}$	y = 32. (D)	Find th -\frac{147}{25}	e value of a. (E)	$\frac{25}{3}$
(A) 16. The (A) 17. Sim (A)	$-2 \\ line ax + 7y = 1 -\frac{147}{3} plify: \frac{\sqrt[5]{a^3b^2}}{\sqrt[4]{ab}}. 2\sqrt[9]{a^{17}b^{13}}$	(B) 13 is p (B)	-1 perpendicular $\frac{3}{25}$ a^2b	(C) to the (C)	$ \begin{array}{r} 2 \\ \text{line } 25x + 21 \\ -\frac{25}{3} \end{array} $ $ \begin{array}{r} 20\sqrt{a^7b} \end{array} $	y = 32. (D)	Find th $-\frac{147}{25}$ $2\sqrt[3]{ab^3}$	e value of a. (E)	$\frac{25}{3}$
(A) 16. The (A) 17. Sim (A)	-2 line $ax + 7y = 1$ $-\frac{147}{3}$ plify: $\frac{\sqrt[5]{a^3b^2}}{\sqrt[4]{ab}}$ $2\sqrt[9]{a^{17}b^{13}}$ mathematical s	(B) 13 is p (B)	-1 perpendicular $\frac{3}{25}$ a^2b	(C) to the (C) (C) (4x-7)	$ \begin{array}{r} 2 \\ \text{line } 25x + 21 \\ -\frac{25}{3} \end{array} $ $ \begin{array}{r} 20\sqrt{a^7b} \end{array} $	y = 32. (D)	Find th $-\frac{147}{25}$ $\sqrt[20]{ab^3}$ 21 is an	e value of a. (E)	$\frac{25}{3}$ $\sqrt[20]{a^7b^3}$
(A) 16. The (A) 17. Sim (A) 18. The	-2 line $ax + 7y = 1$ $-\frac{147}{3}$ plify: $\frac{\sqrt[5]{a^3b^2}}{\sqrt[4]{ab}}$ $2\sqrt[0]{a^{17}b^{13}}$ mathematical so Associative	(B) 13 is p (B)	$ \begin{array}{c} -1 \\ \text{perpendicular} \\ \frac{3}{25} \\ a^2b \\ \text{ment } (2x-3)(6) \end{array} $ (B)	(C) to the (C) (C) (4x-7)	$ \frac{2}{1} = \frac{25}{3} $ $ \frac{20\sqrt{a^7b}}{3} $ $ \frac{20\sqrt{a^7b}}{3} $ $ \frac{20\sqrt{a^7b}}{3} $ $ \frac{20\sqrt{a^7b}}{3} $ mutative	y = 32. (D)	Find th $-\frac{147}{25}$ $\sqrt[20]{ab^3}$ 21 is an	e value of a (E) (E) example of	$\frac{25}{3}$ $\sqrt[20]{a^7b^3}$
(A) 16. The (A) 17. Sim (A) 18. The (A) (D)	-2 line $ax + 7y = 1$ $-\frac{147}{3}$ plify: $\frac{\sqrt[5]{a^3b^2}}{\sqrt[4]{ab}}$ $2\sqrt[0]{a^{17}b^{13}}$ mathematical so Associative	(B) (3 is p (B) (B)	-1 perpendicular $\frac{3}{25}$ $a^{2}b$ nent $(2x-3)(6)$ (B) (E)	(C) to the (C) (C) (Ax - 7) Common Distriction	2 line $25x + 21$ $-\frac{25}{3}$ $^{20}\sqrt{a^{7}b}$ $^{20} = 8x^{2} - 14x - 14x$ inutative fibutive	y = 32. (D)	Find th $-\frac{147}{25}$ $\sqrt[20]{ab^3}$ 21 is an	e value of a (E) (E) example of	$\frac{25}{3}$ $\sqrt[20]{a^7b^3}$
(A) 16. The (A) 17. Sim (A) 18. The (A) (D) 19. If $\frac{5}{3}$	-2 line $ax + 7y = 1$ $-\frac{147}{3}$ plify: $\frac{\sqrt[5]{a^3b^2}}{\sqrt[4]{ab}}$ $2\sqrt[9]{a^{17}b^{13}}$ mathematical so the second	(B) (B) (B) (B) statem $ax^2 + ax^2 + ax^$	oerpendicular $\frac{3}{25}$ $a^{2}b$ $\text{nent } (2x-3)($ (B) (E) $\frac{bx+c}{qx+r} \text{ then }$	(C) to the (C) (C) (Ax - 7) Compared $\frac{a+b+}{p+q+}$	$ \frac{2}{1 \text{ line } 25x + 21} $ $ -\frac{25}{3} $ $ \frac{20\sqrt{a^7b}}{3} $ $ = 8x^2 - 14x - 14x - 14x $ $ = 15 \text{ line } 25x + 21 = 14x - 14x - 14x $ $ = 15 \text{ line } 25x + 21 = 14x - 14x - 14x $ $ = 15 \text{ line } 25x + 21 = 14x - 14x $ $ = 15 \text{ line } 25x + 21 = 14x - 14x $ $ = 15 \text{ line } 25x + 21 = 14x $ $ = 15 l$	y = 32. (D) (D) $-12x +$	Find th $-\frac{147}{25}$ $^{20}\sqrt{ab^{3}}$ 21 is an (C) I	e value of a. (E) example of dentity	$\frac{25}{3}$ $\frac{20\sqrt{a^7b^3}}{2\sqrt{a^7b^3}}$ property.

(D) 59

(E) 309

(C) 809

(A) 480

(A) 32

(B) 720

(B) 18

23. If $\log_5(3x-8)-\log_5(x-4)=1$, then x=?

22. Let f''(x) = 6x + 6, f'(2) = 12 and f(2) = 3. Find f(-1).

(E) 360

(E) -15

	(A)	5	(B)	6	(C)	9	(D)	2	(E)	No solution
24	. Wha	t is the referen	ce an	gle of $\frac{32\pi}{3}$?						
	(A)	$\frac{2\pi}{3}$	(B)	$\frac{\pi}{6}$	(C)	$\frac{\pi}{3}$	(D)	π	(E)	$\frac{\pi}{2}$
25	. Find	the area of the	regio	on that is comp	letely	bounded by th	e two	functions $f(x)$	(x) = -1	$x^2 - 3x + 54$
		g(x) = -6x + 3								
	(A)	608	(B)	41	(C)	32	(D)	122	(E)	996
26	work		On th	ne first 4 days o	of the	week, her spee	ds we	re 22.2 mph, 31		ner commute to oh, 26.3 mph and
	(A)	28.7 mph	(B)	37.2 mph	(C)	33.7 mph	(D)	39.8 mph	(E)	35.8 mph
27	. Use 1	the Fibonacci c	harac	cteristic sequen	ce, –	$6, p, q, 4, r, s, \dots$	to fin	d $pq-rs$.		
	` ′			-16						
28	. If 3-	-2i is one of the	he zei	ros the polynor	nial <i>f</i>	$f(x) = 3x^3 - 13$	$3x^{2} + 9$	9x + 65, then a	nothe	er of its zeros is:
	(A)	$-\frac{5}{3}$	(B)	$-\frac{3}{2}$	(C)	$-\frac{3}{5}$	(D)	-1	(E)	$\frac{2}{5}$
29	to bu		to a p	orch that stan	_			_		on. Paul needs ould Paul make
	(A)	592 inches	(B)	585 inches	(C)	49 inches	(D)	51 inches	(E)	482 inches
30	. If <i>P</i> ,	Q and R are re	al nu	mbers such tha	at <i>P</i> +	Q+R=12, R	$rac{2}{r} = P^2$	$^2+Q^2$ and PQ	=6, tl	hen $R = ?$
	(A)	-5.5	(B)	6.5	(C)	-6.5	(D) 11	(E	E) 5.5
31		's Pizza offered nenu and 3 diff			_					re 12 toppings or the special?
	(A)	364	(B)	660	(C)	220	(D)	1092	(E)	1365
32	. Whi	ch of the follow	ing e	quations in rec	tangu	lar form can b	e writ	ten as $r-10\sin$	$\mathbf{n}\boldsymbol{\theta} = 0$	in polar form?
	(A)	$x^2 + y^2 = 25$		(B)	$x^2 + y$	$v^2 = 5$		$(C) x^2 + y^2$	$^{2}-10$	y = 0
	(D)	$x^2 - y^2 + 10y =$	= 0	(E)	$x^2 + y$	$v^2 = 10$				
		•		Coi	yrigh	nt © 2018 TMS	CA			
					. • •					

21. How many distinct 4-letter arrangements can be formed using the letters in "ALGEBRA"?

(C) 840

(C) 21

(D) 960

(D) 24

in simplified terms?

33. The slope of the line going through the points (-6, y), (-9,10) and (x,30) is $\frac{4}{3}$. Find x + y. **(B)** -520 (A) 11 34. Which of the following mathematicians developed a simple ancient algorithm for finding all prime numbers to a given limit? (C) Mersenne (A) Gauss (B) Germain (D) Euler **(E) Eratosthenes** 35. What is the perimeter of the quadrilateral ABCD? (nearest inch) (C) 54 in (D) 52 in (E) 39 in (A) 44 in (B) 46 in 36. Evaluate $\lim_{\theta \to 0} \frac{\sin \theta}{3\theta}$. (B) $\frac{1}{3}$ (C) 1 (A) 0 (\mathbf{D}) 3 **(E)** does not exist 37. Given the sequence 8, 6, 10, 20, 36, 58, ... find the 20th term. **(B)** 1108 (C) 790 (D) 824 38. Let A and B be the roots of $f(x) = 3x^2 + 13x - 10$. Find the value of $A + 4A^3B + 6A^2B^2 + 4AB^3 + B^4$. (B) $\frac{28561}{16}$ (C) $\frac{28561}{81}$ (D) $\frac{83521}{81}$ 39. What is the obtuse angle between the minute and hour hands on a circular clock at 2:45 pm? (B) 172.5° (C) 150° (D) 168.5° 40. The ratio of length to width of a rectangle is 17:4 and the perimeter is 546 ft. What is the area of the rectangle? (B) 2873 ft^2 (C) 5746 ft^2 (A) 11492 ft^2 (D) 8619 ft^2 (E) 9.984 ft^2 41. The number 777 in base 8 is equivalent to the number k in base 4. Find the sum of the digits in the number k. (C) 16 (A) 12 **(B)** 13 (\mathbf{D}) 8 (E) 21 42. How many distinct solutions exist for $2\sin^2\theta = 2 + \cos\theta$, where $0 \le \theta \le 2\pi$? **(B)** 1 (A) 0 (C) 2 (\mathbf{D}) 3 (\mathbf{E}) 4 43. Given $f(x) = ax^5 + bx^3 + cx - 12$ and f(5) = 25, calculate f(-5). (A) -37 (C) -52 (B) -39**(D) -49 (E)** -2844. The repeating decimal 0.3222... in base 5 can be written as which of the following fractions in base 5

(B) $\frac{24}{1205}$ (C) $\frac{12}{205}$ (D) $\frac{2}{105}$

- 45. Let f(x) be continuous on [a,b]. If F(x) is any antiderivative of f(x), then $\int_{a}^{b} f(x)dx = F(b) - F(a)$. This theorem is known as:
 - **Intermediate Value Theorem** (B) Sandwich Theorem (C) Mean Value Theorem
 - **Fundamental Theorem of Calculus** Fundamental Theorem of Algebra **(D) (E)**
- 46. If $f(x) = \tan(2x)$, then $\lim_{h \to 0} \frac{f(\frac{\pi}{3} + h) f(\frac{\pi}{3})}{h}$ is
 - (A) 8 (B) -2(C) 4 (\mathbf{D}) 1 **(E)** undefined
- 47. Kyle throws a dart that hits the circle with center O and having a diameter of 8'. What is the probability the dart hits in the shaded area? (nearest whole percent)
- (E) 19% (D) 16% (A) 14% **(B)** 17% (C) 18%
- 48. If $x \frac{1}{r} = 14$, then $x^3 \frac{1}{r^3} = ?$
 - (A) 2702 **(B)** 2772 (C) 2758 2786 **(D)** (E) 2730
- 49. Find the sum of the length of all the diagonals of a regular hexagon if the length of each side is 2 cm. (nearest centimeter)
 - (A) 42 cm
- (B) 12 cm
- (C) 33 cm

- (D) 44 cm
- (E) 54 cm
- 50. $\frac{1}{10} + \frac{1}{15} + \frac{1}{21} + \frac{1}{28} + \dots + \frac{1}{136} = \underline{\hspace{1cm}}$
- (B) $\frac{35}{136}$
- (C) $\frac{271}{1020}$
- 165 **(E)**
- 51. Thirty-seven percent of homes in the U.S. use electric heating. If 8 homes are chosen at random, what is the probability that at least 4 of them will use electric heating? (nearest percent)
 - A. 34%
- B. 37%
- 28%
- D. 13%
- E. 23%

- 52. The real solution set to $2|3x-7|-7 \le 11$ is:
- (A) $\left\{x \middle| \frac{2}{3} \le x \le \frac{16}{3}\right\}$ (B) $\left\{x \middle| -\frac{2}{3} \le x \le \frac{16}{3}\right\}$ (C) $\left\{x \middle| \left(x \le -\frac{16}{3}\right) \cup \left(x \ge \frac{2}{3}\right)\right\}$
- (D) $\left\{ x \middle| \left(x \le -\frac{2}{3} \right) \cup \left(x \ge \frac{16}{3} \right) \right\}$ (E) $\left\{ x \middle| -\frac{16}{3} \le x \le \frac{2}{3} \right\}$

(A) 81

(E) 71

1 MSCA 18-19 HSM	IA Test Two			Page o)
53. The measure of	one interior angle o	f a regular decagon is	s°.		
(A) 150	(B) 162	(C) 144	(D) 108	(E) 120	
54. If $y^2 = -5 - 12i$	and $y^3 = -46 - 9i$	where $y = a + bi$ then	a+b=?		
(A) -1	(B) -7	(C) 1	(D) 5	(E) 6	
55. Find the y-intero	cept of the tangent l	ine to $3x^2 + 4y^3 = 35$	at the point $(-1,2)$).	
(A) $\left(0,\frac{17}{8}\right)$	(B) (0,17)	(C) $\left(0,\frac{17}{4}\right)$	(D) $\left(0,\frac{1}{8}\right)$	(E) $\left(0,\frac{17}{4}\right)$	
56. Consider the poi	int $ig(a,\!big)$ in the Car	tesian plane. The tra	ansformation $\begin{bmatrix} \sqrt{2}/2 \\ -\sqrt{2}/2 \\ \end{bmatrix}$	$\begin{bmatrix} \sqrt{2} \\ \sqrt{2} \\ 2 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix}$ results in a	ì
rotation of	_about the origin.				
(A) 45° counter	r-clockwise (B) 90° clockwise	(C) 45° c	lockwise	
(D) 90° counter	-clockwise ((E) 60° clockwise			
		C such that $m \angle A = 3$ m^2 . (nearest square of		d BC = 16 cm. The area	
(A) 188	(B) 166	(C) 55	(D) 222	(E) 61	
		PQR are the roots of Find the area of trian			
(A) 9.1	(B) 6.4	(C) 10.5	(D) 6.2	(E) 7.8	
59. What is the dista	ance between the po	int (3,7) and the lin	e $12x + 5y = 27$?		
(A) $4\frac{7}{12}$	(B) $7\frac{7}{13}$	(C) $\frac{44}{169}$	(D) $3\frac{5}{13}$	$(E) \frac{98}{169}$	
60. The function f is	s such that $\int_{-1}^{8} f(x)$	dx = 12. What is the	e value of $\int_{-1}^{8} [3f(x)]$	(x)+5 dx?	

(B) 57 (C) 41 (D) 32

2018-2019 TMSCA Mathematics Test Two Answers

1. D	21. A	41. B
2. A	22. C	42. E
3. B	23. B	43. D
4. E	24. C	44. C
5. B	25. D	45. D
6. D	26. D	46. A
7. A	27. E	47. A
8. E	28. A	48. D
9. E	29. B	49. C
10. C	30. E	50. D
11. D	31. D	51. A
12. E	32. C	52. B
13. C	33. C	53. C
14. B	34. E	54. A
15. C	35. A	55. A
16. D	36. B	56. C
17. E	37. E	57. E
18. E	38. C	58. C
19. A	39. B	59. D
20. E	40. A	60. A

2018-2019 TMSCA Mathematics Test Two Solutions

5.
$$\frac{4}{\frac{1}{6} + \frac{1}{8} + \frac{1}{9}} \approx 9.93$$
 or 9 hours and 56 minutes. The 4 is in

the numerator because doubling the length and width makes the area of the job 4 times the original.

- 10. Imagine that the pentagon is inscribed in a circle. Then $m^2C = 72^\circ$ and the inscribed angle with that intercepted arc is 36°.
- 20. Use the mean value theorem for

$$\frac{1}{8 - (-2)} \int_{-2}^{8} f(x) dx = 309$$

21. There are two cases:

No repeating letters: $\binom{6}{4}(4!) = 360$

2-A's are in the word:
$$({}_5C_2)\left(\frac{4!}{2!}\right) = 120$$

For a total of 480 distinct arrangements.

22.
$$f'(x) = 3x^2 + 6x + A$$
 then use $f'(2) = 12$ to obtain $A = -12$ then $f(x) = x^3 + 3x^2 - 12x + B$ and use $f(2) = 3$ to solve for $B = 7$ and $f(-1) = 21$

24.
$$\frac{32\pi}{3} = 10\pi + \frac{2}{3}\pi$$
 where the 10π is 5 complete

revolutions and the reference angle for $\frac{2\pi}{3}$ is $\frac{\pi}{3}$.

26. Let the each trip have a distance of 1 mi, then the sum of the individual trips will be equal to the total time to make 5 trips at the average speed:

$$\frac{1}{22.2} + \frac{1}{31.8} + \frac{1}{26.3} + \frac{1}{25.7} + \frac{1}{x} = \frac{5}{28}$$
 for $x \approx 39.8$

28. The sum of the roots is $\frac{13}{3}$ and the pair of conjugates are known roots so the remaining root is

$$\frac{13}{3} - \left(3 - 2i + 3 + 2i\right) = -\frac{5}{3}.$$

30.
$$P+Q=12-R$$
 and $P^2+2PQ+Q^2-144-24PQ+R^2$
then $R^2+2(6)=144-24R+R^2$ solve for $R=5.5$

31.
$$_{12+3-1}C_3 \times 3 = 1092$$

36.
$$\frac{1}{3} \lim_{\theta \to 0} \frac{\sin \theta}{\theta} = \frac{1}{3} (1) = \frac{1}{3}$$

37. Use the method of finite differences to establish that this sequence can be modelled with a quadratic, then use a quadratic regression to get a model.

38. (sum of the roots)⁴ =
$$\left(-\frac{13}{3}\right)^4 = \frac{28561}{81}$$

46. This is the definition of derivative at
$$x = \frac{\pi}{3}$$
 and

$$f'\left(\frac{\pi}{3}\right) = 8$$

- 49. There are 3 diagonals with lengths of 4 cm each for a total of 12 cm. There are 6 more diagonals with lengths of $2\sqrt{3}$ cm each for a total of $12\sqrt{3}$ cm and a total of all 9 diagonals of about 33 cm.
- 51. Use a cumulative binomial distribution with 8 trials and a probability of 0.37 for 0-3 homes, then subtract from 1 for 34%.

58.
$$A = \sqrt{\frac{8.25 \text{g} f (8.25)}{2}} \approx 10.5$$

59. Use the formula for distance between a line and point

for
$$d = \frac{|36+35-27|}{\sqrt{12^2+5^2}} = \frac{44}{13} = 3\frac{5}{13}$$