## Multivariable Calculus Practice Set III

## Paul Beggs

## March 17, 2025

1. (3 points) Determine the absolute extrema for the function  $f(x,y) = x^2 + 3y^2 - 2x - y - xy$  on the triangular region with vertices (0,0), (2,0), and (0,1).

Solution. We first find the critical points of the function:

$$\nabla f(x,y) = \langle 2x - 2 - y, 6y - 1 - x \rangle = \mathbf{0}$$

$$\implies y = 2x - 2 \quad \text{and} \quad x = 6(2x - 2) - 1 - x$$

$$\implies y = \frac{4}{11} \quad \text{and} \quad x = \frac{13}{11}$$

This gives the critical point  $\left| \left( \frac{13}{11}, \frac{4}{11} \right) \right|$ . We also need to check the boundary of the region. Thus:

- $f(\ell_1)$ : y = 0,  $0 \le x \le 2 \implies f(x,y) = g(x) = x^2 + 3(0)^2 2x (0) x(0) = x^2 2x \implies g'(x) = 2x 2$ . Therefore, the critical points are (1,0).
- $(\ell_2)$ : x = 0,  $0 \le y \le 1 \implies f(x,y) = h(y) = (0)^2 + 3y^2 (0) y 0 = 3y^2 y \implies h'(y) = 6y 1$ . Hence, the critical points are  $\left(0, \frac{1}{6}\right)$ .
- ( $\ell_3$ ):  $y = 1 \frac{1}{2}x$ ,  $0 \le x \le 2 \implies f(x,y) = k(x) = x^2 + 3\left(1 \frac{1}{2}x\right)^2 2x \left(1 \frac{1}{2}x\right) x\left(1 \frac{1}{2}x\right)$ . Solving this equation for x:

$$k(x) = x^{2} + 3\left(1 - \frac{1}{2}x - \frac{1}{2}x + \frac{1}{4}x^{2}\right) - 2x - 1 + \frac{1}{2}x - x + \frac{1}{2}x^{2}$$

$$= x^{2} + 3\left(1 - x + \frac{1}{4}x^{2}\right) - 2x - 1 + \frac{1}{2}x - x + \frac{1}{2}x^{2}$$

$$= \left[x^{2} + \frac{3}{4}x^{2} + \frac{1}{2}x^{2}\right] + \left[-3x - 2x - \frac{1}{2}x\right] + \left[3 - 1\right]$$

$$= \frac{9}{4}x^{2} - \frac{7}{2}x + 2$$

$$= \frac{1}{4}(9x^{2} - 22x + 8)$$

$$\implies k'(x) = \frac{1}{4} \cdot \frac{d}{dx}[9x^{2} - 22x + 8]$$

$$0 = \frac{1}{2}(9x - 11)$$

$$x = \frac{11}{9}$$

Using this x-value, we plug it back into our equation for y to get the critical point |

$$\left( \frac{11}{9}, \frac{7}{18} \right)$$

Now that we have our critical points, we can evaluate the function at each of these points to determine the absolute extrema:

| Critical Point                                     | Evaluation                                                                         |   | Solution                             |
|----------------------------------------------------|------------------------------------------------------------------------------------|---|--------------------------------------|
| $\frac{}{\left(\frac{13}{11},\frac{4}{11}\right)}$ | $\frac{169}{121} + \frac{48}{121} - \frac{26}{11} - \frac{4}{11} - \frac{52}{121}$ | = | $-\frac{15}{11} \approx -1.363\dots$ |
| (1,0)                                              | 1 + 0 - 2 - 0 - 0                                                                  | = | -1                                   |
| $\left(0,\frac{1}{6}\right)$                       | $0 + \frac{1}{12} - 0 - \frac{1}{6} - 0$                                           | = | $-\frac{1}{12} \approx -0.083\dots$  |
| $\left(\frac{11}{9}, \frac{7}{18}\right)$          | $\frac{121}{81} + \frac{49}{108} - \frac{22}{9} - \frac{7}{18} - \frac{77}{162}$   | = | $-\frac{49}{36} \approx -1.361\dots$ |



With these values, we can see that the absolute maximum is  $\boxed{-0.083}$  at the point  $\boxed{\left(0,\frac{1}{6}\right)}$  and the

absolute minimum is  $\boxed{-1.363}$  at the point  $\boxed{\left(\frac{13}{11},\frac{4}{11}\right)}$ 

- 2. (1 point each) Convert each as indicated; leave each answer as exact:
  - (a) Convert the rectangular point (-5,1) to polar coordinates.
  - (b) Convert the cylindrical point  $(5, \frac{7\pi}{6}, 2)$  to rectangular.
  - (c) Convert the rectangular point (-2, 4, -1) to spherical.
  - (d) Convert the spherical point  $(4, \frac{11\pi}{6}, \frac{3\pi}{4})$  to cylindrical.
- 3. (3 points) Determine the value of each given integral. You need to do the work here by hand, but of course can check any answers with technology.
  - (a)  $\iint_D (x^2 + 6xy) dA$  where D is the triangle with vertices (0,0), (4,0), and (0,12).
  - (b)  $\int_0^2 \int_{x^2}^4 4x^3 \cos(y^3) \, dy \, dx$
  - (c)  $\int_{-3}^{3} \int_{0}^{\sqrt{9-x^2}} \sin(5x^2 + 5y^2) \, dy \, dx$
  - (d)  $\int_0^1 \int_0^{\sqrt{1-x}} \int_0^{\sqrt{1-x^2-y^2}} \sqrt{x^2+y^2+z^2} \, dz \, dy \, dx$
- 4. (3 points) Find the volume of the solid described by  $x^2 + y^2 \le 1$ ,  $x \ge 0$ ,  $0 \le z \le 4 y$ .
- 5. (3 points) Find the average value of the function  $f(x,y) = x \sin(y)$  over the region enclosed by y = 0,  $y = x^2$ , and x = 1.
- 6. (3 points) Find the volume of the solid that lives within both the cylinder  $x^2 + y^2 = 1$  and sphere  $x^2 + y^2 + z^2 = 9$ .

2