

Introduction to metamodels & Polynomial chaos expansions

May 2020

Copyright EDF 2020 - Chu Mai (EDF R&D/MMC)

Outline

Metamodels

Definition, construction and validation Use for sensitivity analysis

Polynomial chaos expansion

Applications in non-destructive testing

Conclusions

Outline

Metamodels

Definition, construction and validation Use for sensitivity analysis

Polynomial chaos expansion

Applications in non-destructive testing

Conclusions

Metamodel - Definition

Meta: a prefix added to the name of something that consciously references or comments upon its own subject or features, e.g. metamodel: a model of another model

A metamodel is an approximation model that mimics the behaviour of a computationally expensive simulator by training on *observations* (data) of the latter.

Metamodel - Definition

Expensive simulator: $\mathbf{Y} = f(\mathbf{X})$

- X, Y are vectors of input and output,
- $X = (X_1, ..., X_M)$

Metamodel: $\mathbf{Y} = \hat{f}(\mathbf{X}, \theta)$, θ being its vector of parameters By definition, two requirements of a metamodel \hat{f} are:

- Usefully accurate when predicting away from known observation
- Being significantly cheaper to evaluate than the primary simulator

Metamodel - Objectives

- Show functional relationships between input parameters and the output quantity of interest: impacts of variables
- Augment results from single, expensive simulations: results can be predicted without use of the primary simulator; a continuous predictive function instead of discrete observations
- Optimize the output quantity of interest: determine configurations that maximize the response or achieve specifications or customer requirements
- Replace the primary simulator in uncertainty propagation (surrogate model): sensitivity analysis

Major steps for constructing a metamodel

Major steps for constructing a metamodel

Sampling (define an experimental design):

- A number of possible candidate designs are generated
- The designs are launched with the primary simulator

Constructing the metamodel:

- ► A type of metamodel is selected (among several available options)
- The metamodel is fitted to the available data
- The metamodel is validated (yes or no)
 - ► if yes: stop
 - if no, several solutions to be considered
 - change method for fitting: use advanced regression technique instead of least squares errors.
 - change metamodel parameters: increase polynomial degrees,
 - enrich the experimental design where the model is inaccurate or interesting behaviour is observed,
 - change the type of metamodel: polynomial chaos instead of second-order response surface

Some types of metamodels

Polynomial models: (response surface)

Second-order model

$$\tilde{Y} = \theta_0 + \sum_{i=0}^{M} \theta_i X_i + \sum_{i=0}^{M} \theta_{ii} X_i^2 + \sum_{i < j} \sum_{j=2}^{M} \theta_{ij} X_i X_j$$

Polynomial chaos expansion:

$$\tilde{\mathbf{Y}} = \sum_{0 \le |\mathbf{k}| \le p} \theta_{\mathbf{k}} \psi_{\mathbf{k}}(\mathbf{X})$$

where $\psi_{\mathbf{k}}()$ being polynomial chaos functions

Radial basis function:

$$\tilde{\mathbf{Y}} = \sum_{k=1}^{N} \theta_k \psi(\|\mathbf{X} - \mathbf{X}_k\|)$$

where $\psi()$ being a radial basis function with its centers taken at \mathbf{X}_k , $k=1,\ldots N$ in the experimental design

Some types of metamodels

Kriging: (Gaussian process regression)

Deterministic trend: linear regression on a fixed basis

$$m(\mathbf{X}) = \mathbf{r}(\mathbf{X})^{\mathsf{T}} \boldsymbol{\theta}$$

Random fluctuation: zero-mean stationary Gaussian process of covariance function

$$k(\mathbf{X}, \mathbf{X}') = \sigma^2 \rho(\|\mathbf{X} - \mathbf{X}'\|)$$

Artifical neural network: Radial basis function is a single layer neural network with radial coordinate neurons

Methods for fitting metamodels

Least square regression: minimize sum of squared errors of a linear regression model

$$\boldsymbol{\theta}^* = \arg\min_{\boldsymbol{\theta}} \; \sum_{i=1}^N \boldsymbol{\varepsilon}_i^2 = \arg\min_{\boldsymbol{\theta}} \; \sum_{i=1}^N (Y_i - \hat{\boldsymbol{f}}(\boldsymbol{X}_i, \boldsymbol{\theta}))^2$$

Regularized regression methods: minimize sum of squared errors under a constraint

$$oldsymbol{ heta}^* = rg \min_{oldsymbol{ heta}} \sum_{i=1}^N (Y_i - \hat{f}(oldsymbol{X}_i, oldsymbol{ heta}))^2 + \lambda \, R(oldsymbol{ heta})$$

- ► $R(\theta) = ||\theta||_2$: Ridge regression,
- ► $R(\theta) = \|\theta\|_1$: LASSO regression,
- \blacktriangleright λ : non-negative regularization coefficient

Methods for fitting metamodels

Maximum likelihood estimation: e.g. assume that the errors ϵ are independently randomly distributed according to a normal distribution with standard deviation σ

$$\mathcal{L} = \frac{1}{(2\pi\sigma^2)^{N/2}} \prod_{i=1}^{N} exp \left(-\frac{1}{2} \left(\frac{Y_i - \hat{f}(\boldsymbol{X}_i, \boldsymbol{\theta})}{\sigma} \right)^2 \right)$$

$$oldsymbol{ heta}^* = rg \max_{oldsymbol{ heta}} oldsymbol{\mathcal{L}}$$

K-fold cross-validation method:

 $\mathcal{K}: \{1, ..., N\} \mapsto \{1, ..., K\}$ partion of N observations to K roughly equal-sized parts, K = N: leave-one-out

 $\hat{f}^{-k}()$: fitted metamodel with k-th part of data set aside

Cross-validation estimate of prediction error:

$$CV(\hat{t}, \theta) = \frac{1}{N} \sum_{i=1}^{N} L(Y^{i}, \hat{t}^{-\mathcal{K}(i)}(X_{i}))$$
$$\theta^{*} = \arg\min_{\theta} CV(\hat{t}, \theta)$$

Overfitting

A metamodel that fits closely or exactly a specific set of data (training set) but fails to *predict* future data reliably

Validation of metamodels

Coefficient of determination R2

$$R^2 = 1 - Err$$
 , $Err \propto \sum_{i=1}^{N} (f(\xi^{(i)}) - \tilde{f}_{\mathbf{a}}(\xi^{(i)}))^2$

R² does not detect over-fitting and overestimates predictive performance

Validation of metamodels

Equivalent of R^2 on an independent validation set:

$$Q^2 = 1 - Err$$
 , $Err \propto \sum_{i=1}^{N_{val}} (f(\xi^{(i)}) - \hat{f}_a(\xi^{(i)}))^2$

Validation on an independent validation set is necessary

Validation of metamodels

Cross-validation consists in dividing the data sample into two sub-samples.

- A metamodel is built with the first sub-sample (training set)
- Its performance is assessed by comparing its predictions with the second sub-sample (test set)

Data are often scarce. Partition in training and validation set is a luxury.

K-fold cross-validation: the data sample is divided into K sub-samples of roughly equal size.

K = N: leave-one-out error

Variance-based sensitivity analysis

Consider the model Y = f(X) with random inputs $X = \{X_1, ..., X_M\}$

- ► The output dispersion is characterized by its variance Var [Y]
- ► Partial variance due to X_i:

$$\mathbb{V}ar_{X_i}\left[\mathbb{E}_{\boldsymbol{X}\sim X_i}\left[Y|X_i\right]\right]$$

 $\boldsymbol{X} \sim X_i$: set of all variables except X_i

Sobol index, interpretable as a variance percentage:

$$S_{i} = \frac{\mathbb{V}ar_{X_{i}}\left[\mathbb{E}_{\boldsymbol{X} \sim X_{i}}\left[Y|X_{i}\right]\right]}{\mathbb{V}ar\left[Y\right]}$$

Sobol indices to interactions can also be defined:

$$S_{ij} = \frac{\mathbb{V}ar_{X_{ij}}\left[\mathbb{E}_{\mathbf{X} \sim X_{ij}}\left[Y|X_{ij}\right]\right]}{\mathbb{V}ar\left[Y\right]}$$

PROBLEM: Estimating the partial variances may require many (costly) model evaluations

Solution: Use an analytic approximation of the model - Metamodel

Outline

Metamodels

Polynomial chaos expansion

Applications in non-destructive testing

Conclusions

Polynomial chaos expansion

Let us consider the model: $\mathbf{Y} = f(\mathbf{X})$, \mathbf{X} , \mathbf{Y} are random vectors

Decomposition of Y onto an orthonormal polynomial basis

Polynomial chaos basis

Assumption: Independent input random variables X_1, \ldots, X_M

Componentwise transform: $\xi_i = \mathcal{T}_i(X_i)$ (often based on CDFs, i.e.

$$\mathcal{T}_i(\cdot) \equiv \mathcal{F}_{\xi_i}^{-1}(\mathcal{F}_{X_i}(\cdot)))$$

- Several possible choices for each (ξ_i, \mathcal{T}_i)
- A given ξ_i dictates the choice of a family $(\pi_k^{(i)})_{k\geq 0}$ of orthonormal polynomials

Given a uniform random variable $X \sim \mathcal{U}([0,10])$, the transform $\xi = X/5-1$ leads to $\xi \sim \mathcal{U}([-1,1])$ for which Legendre polynomials are used:

$$\pi_0(\xi) = 1 \ , \ \pi_1(\xi) = \sqrt{3}\xi \ , \ \pi_2(\xi) = \frac{\sqrt{5}}{2}(3\xi^2 - 1) \ , \ \dots$$

Given a normal random variable $X \sim \mathcal{N}(5,1)$, the transform $\xi = X - 5$ leads to a standard normal RV $\xi \sim \mathcal{N}(0,1)$ and Hermite polynomials:

$$\pi_0(\xi)=1 \ , \ \pi_1(\xi)=\xi \ , \ \pi_2(\xi)=\frac{\sqrt{2}}{2}\Big(\xi^2-1\Big) \ , \ \ldots$$

Polynomial chaos basis

Legendre polynomials

Hermite polynomials

Properties:
$$\pi_0^{(i)} = 1$$
, $\mathbb{E} \left[\pi_k^{(i)}(\xi_i) \right] \equiv \int_{\mathcal{D}_{\xi}} \pi_k^{(i)}(u) \, f_{\xi_i}(u) \, du = 0 \quad \forall k \geq 1$

$$\mathbb{E} \left[\pi_k^{(i)}(\xi_i) \, \pi_l^{(i)}(\xi_i) \right] \equiv \int_{\mathcal{D}_{\xi}} \pi_k^{(i)}(u) \, \pi_l^{(i)}(u) \, f_{\xi_i}(u) \, du = 1 \quad \text{if} \quad k = l \quad \text{else} \quad 0$$

Relevant for analytical estimation of first-order moments and Sobol' sensitivity indices

Polynomial chaos basis

Multivariate orthonormal polynomials:

$$\psi_{\mathbf{k}}(\xi) = \pi_{k_1}^{(1)}(\xi_1) \times \cdots \times \pi_{k_M}^{(M)}(\xi_M)$$

 $\boldsymbol{\xi} = (\xi_1, \dots, \xi_M)$: input vector; $\boldsymbol{k} = (k_1, \dots, k_M)$: indices vector

Bivariate Legendre-Hermite polynomials:

$$\begin{array}{lcl} \psi_{0,0}(\xi_1,\xi_2) & = & \pi_0^{(1)}(\xi_1) \times \pi_0^{(2)}(\xi_2) = 1 & & \stackrel{10}{_{0}} \\ \psi_{1,0}(\xi_1,\xi_2) & = & \pi_1^{(1)}(\xi_1) \times \pi_0^{(2)}(\xi_2) = \sqrt{3}\xi_1 & & \\ \psi_{1,2}(\xi_1,\xi_2) & = & \pi_1^{(1)}(\xi_1) \times \pi_2^{(2)}(\xi_2) = \frac{\sqrt{6}}{2}\xi_1(\xi_2^2 - 1) & & \end{array}$$

$$\psi_{3,3}(\xi_1,\xi_2)$$

Polynomial chaos expansion:

$$\tilde{\mathbf{Y}} = \sum_{0 \le |\mathbf{k}| \le p} a_{\mathbf{k}} \psi_{\mathbf{k}}(\xi) = \sum_{0 \le |\mathbf{k}| \le p} a_{\mathbf{k}} \pi_{k_1}^{(1)}(\xi_1) \times \cdots \times \pi_{k_M}^{(M)}(\xi_M)$$

Estimation of polynomial chaos coefficients

Caution: the input sample X must respect the PDF of X

Least squares

Well-posed problem if N > P

Least angle regression

Least angle regression

In each iteration:

- Find the vector ψ_{α_j} which is as correlated with the current residual as active vectors
- Move jointly coefficients until another vector is equi-correlated with the current residual

Error indicator

- ► Q² cross-validation on independent test data set
- Due to its linear-regression form, leave-one-out error for polynomial chaos expansions can be obtained without calculating N metamodels:

$$Err_{L00} = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{f(\xi^{(i)}) - \hat{f}_{\mathbf{a}}(\xi^{(i)})}{1 - h_i} \right)^2$$

where \hat{f}_a is the metamodel computed on the entire data set, h_i is i-th diagonal term of the matrix $\Psi \left(\Psi^T \Psi \right)^{-1} \Psi^T$

Post-processing: closed-form mean and variance

Post-processing: closed-form Sobol indices

Interaction indices can also be derived!

Outline

Metamodels

Polynomial chaos expansion

Applications in non-destructive testing

Conclusions

Primary circuit - Bent tube weld

Inspection configuration and modelling

Weld description with 7 homogeneous domains

Chassignole et al. , QNDE, 1999 & Chassignole et al., Ultrasonics, 2009

Finite element model (Athena 2D code)

Inspection configuration

- L 45° waves
- Detection of a sided drilled hole after passing through the weld

Quantities of interest: inspection results

Uncertain input data

Problem : What is the sensitivity of the NDT output to each input parameter? **Strategy:** Evaluate the Sobol sensitivity indices

Specification of the input PDFs and chaos basis

Input variables: $X_1, ..., X_8$ (independent)

Construction of the polynomial chaos

► Design of experiments: quasi-random sample of size *N* = 2 000

► Distributed calls to the FE model (cluster)

- ► Fit of chaos proxies with varying degree (70% of the sample points)
 - \rightarrow optimal degree p = 3
- ► Validation with the 30% remaining points

Sensitivity analysis – Signal-to-noise ratio

0.40

Almost no interaction effect (additive structure)

Variability mostly due to the orientations (plus C_{11}) θ_3 plays a major role here \rightarrow Check a finer weld description

RSB

Outline

Metamodels

Polynomial chaos expansion

Applications in non-destructive testing

Conclusions

Metamodels & Polynomial chaos

- ► For a given problem, ideally test several types of metamodels
- Polynomial chaos expansion and Kriging are in OpenTurns
- It is worth assessing carefully the metamodel quality prior to going further

Thank you

