Pour chacune des questions ci-dessous, une seule des réponses proposées est exacte. Vous devez cocher la réponse exacte sans justification. Une bonne réponse rapporte ${\bf 0,5}$ point. Une mauvaise réponse enlève ${\bf 0,25}$ point. L'absence de réponse ne rapporte ni n'enlève aucun point. Si le total des points est négatif, la note globale attribuée à l'exercice est ${\bf 0}$.

Questions	Réponses
1. Parmi les propositions suivantes, quelle est celle qui permet d'affirmer que la fonction exponentielle admet pour asymptote la droite d'équation $y=0$?	$ \Box \lim_{x \to +\infty} e^x = +\infty $ $ \Box \lim_{x \to -\infty} e^x = 0 $ $ \Box \lim_{x \to +\infty} \frac{e^x}{x} = +\infty $
2. Parmi les propositions suivantes, quelle est celle qui permet d'affirmer que l'inéquation $\ln(2x+1) \ge \ln(x+3)$ admet l'intervalle $[2 ; +\infty[$ comme ensemble de solution?	la fonction ln est positive sur $ \begin{bmatrix} 1 ; +\infty \\ \end{bmatrix} $ $ \begin{bmatrix} \ln \lim_{x \to +\infty} \ln x = +\infty \\ \end{bmatrix} $ la fonction ln est croissante $ \begin{bmatrix} \ln \lim_{x \to +\infty} \ln x = +\infty \\ \end{bmatrix} $
3. Parmi les propositions suivantes quelle est celle qui permet d'affirmer qu'une primitive de la fonction f définie sur \mathbb{R} par $x \mapsto (x+1)e^x$ est la fonction $g: x \mapsto x e^x$?	□ pour tout réel x , $f'(x) = g(x)$ □ pour tout réel x , $g'(x) = f(x)$ □ pour tout réel x , $g(x) = f'(x) + k$, k réel quelconque
4. L'équation $2e^{2x} - 3e^x + 1 = 0$ admet pour ensemble solution	$ \Box \left\{ \frac{1}{2} ; 1 \right\} $ $ \Box \left\{ 0 ; \ln \frac{1}{2} \right\} $ $ \Box \left\{ 0 ; \ln 2 \right\} $
5. Pour tout $n \in \mathbb{N}$	$\Box \lim_{x \to +\infty} \frac{e^x}{x^n} = 1$ $\Box \lim_{x \to +\infty} \frac{e^x}{x^n} = +\infty$ $\Box \lim_{x \to +\infty} \frac{e^x}{x^n} = 0$
6. Soit f la fonction définie sur $]0$; $+\infty[$ par $f(x) = 2 \ln x - 3x + 4$. Dans un repère, une équation de la tangente à la courbe représentative de f au point d'abscisse 1 est :	$\Box y = -x + 2$ $\Box y = x + 2$ $\Box y = -x - 2$ suite sur la page suivante

Questions	Réponses
7. La valeur moyenne sur [1;3] de la fonction f définie par : $f(x) = x^2 + 2x$ est :	$\Box \frac{50}{3}$
	$\Box \frac{25}{3}$
8. $\exp(\ln x) = x$ pour tout x appartenant à	
	$\square [0; +\infty[$
9. Soit f la fonction définie sur $]0$; $+\infty[$ par	$\Box \ y = -x + 2$
$f(x) = 2 \ln x - 3x + 4$. Dans un repère, une équation de la tangente à la courbe représentative de f au	$\square \ y = x + 2$
point d'abscisse 1 est :	$\square \ y = -x - 2$
10. La valeur moyenne sur [1; 3] de la fonction f définie par : $f(x) = x^2 + 2x$ est :	$\Box \frac{50}{3}$
	$\Box \frac{25}{3}$
11. $\exp(\ln x) = x$ pour tout x appartenant à	
	$\square [0; +\infty[$