Taylorreihen: Teil 1

Andreas Henrici

MANIT2 IT18ta_ZH

30.04.2019

- Einführung
- 2 Potenzreihen
- Taylorreihen
- Bestimmung der Taylorkoeffizienten

Zur Einführung

Überblick

Erinnerung: Die Tangente t(x) an eine Funktionskurve y = f(x) an der Stelle x₀ hat die Eigenschaften:

$$t(x_0) = f(x_0), \quad t'(x_0) = f'(x_0)$$

Verallgemeinerung: Können wir eine Funktion $p_2(x)$ finden mit den Eigenschaften

$$p_2(x_0) = f(x_0), \quad p_2'(x_0) = f'(x_0), \quad p_2''(x_0) = f''(x_0) ?$$

Beispiel

Bestimmen Sie ein Polynom $p_2(x)$ vom Grad n=2, das mit der Funktion $f(x) = e^x$ an der Stelle $x_0 = 0$ in den Ableitungen bis zur Ordnung 2 übereinstimmt.

Potenzreihen: Idee/Motivation

- Zur Lösung von solchen Approximationsproblemen brauchen wir Polynome von beliebig hohem Grad.
- Im Grenzfall brauchen wir Polynome "vom Grad unendlich": Potenzreihen
- Mit solchen Potenzreihen lassen sich viele Eigenschaften von komplizierten Funktionen besser verstehen als mit den ursprünglich gegebenen Funktionen.
- Z.B. ist diese Technik die Grundlage der numerischen Berechnung gewisser Integrale bei Funktionen, die keine analytisch darstellbare Stammfunktion besitzen.
- Auch gewisse Differentialgleichungen werden oft erst dann verständlich, wenn man eine Potenzreihe als Lösung annimmt oder wenn die Differentialgleichung durch den Einsatz von Polynomen/Potenzreihen vereinfacht wird.
- Wir betrachten hauptsächlich das Problem, eine gegebene Funktion durch eine Potenzreihe zu approximieren; dies ist dann die *Taylorreihe* der gegebenen Funktion.

Definition

Überblick

 Spezielle Potenzreihe: Eine Potenzreihe ist eine unendliche Reihe vom Typ

$$p(x) = a_0 + a_1 x + a_2 x^2 + \ldots = \sum_{k=0}^{\infty} a_k x^k$$

Die reellen Zahlen a_0, a_1, \dots sind die *Koeffizienten* der Potenzreihe.

 Allgemeine Potenzreihe: Eine allgemeinere Form von Potenzreihen entsteht durch Verschiebung um x_0 , man spricht dann von einer *Potenzreihe mit Zentrum x*₀:

$$p(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + \ldots = \sum_{k=0}^{\infty} a_k(x - x_0)^k$$

Potenzreihen: Beispiele

Beispiel

Überblick

Koeffizienten a_k und Entwicklungszentrum x_0 verschiedener Potenzreihen:

a)
$$1 + x + x^2 + ...$$

$$a_k = 1$$
 für alle $k \in \mathbb{N}$, $x_0 = 0$

b)
$$1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$$

$$a_k=\frac{1}{k!}, \quad x_0=0$$

c)
$$(x-1) - \frac{(x-1)^2}{2} + \frac{(x-1)^3}{3} - \frac{(x-1)^4}{4} \pm \dots$$

$$a_k = (-1)^{k+1} \cdot \frac{1}{k}, \quad x_0 = 1$$

Potenzreihen: Konvergenz

- Erinnerung: Konstante Reihen $\sum_{k=0}^{\infty} a_k$: konvergent oder divergent
- Potenzreihe $\sum_{k=0}^{\infty} a_k x^k$: ist für jeden Wert von x eine andere konstante Reihe, die je nach x konvergiert oder divergiert.
- Die Menge

$$\left\{ x \in \mathbb{R} \left| \sum_{k=0}^{\infty} a_k x^k \text{ ist konvergent} \right. \right\}$$

heisst Konvergenzbereich der Potenzreihe.

Bestimmung des Konvergenzbereichs: später

Definition

Überblick

Die *Taylorreihe* oder *Taylorentwicklung* einer Funktion y = f(x) an der Stelle x_0 ist die Potenzreihe

$$t_f(x) = \sum_{k=0}^{\infty} a_k (x - x_0)^k,$$

deren Ableitungen an der Stelle x_0 für alle $k \in \mathbb{N}$ mit den Ableitungen von f(x) an der Stelle x_0 übereinstimmen.

D.h. die Taylorreihe $t_f(x)$ erfüllt die Bedingungen

$$f^{(k)}(x_0) = t_f^{(k)}(x_0), \quad k \in \mathbb{N}.$$

Die reellen Zahlen a_0 , a_1 , a_2 , ... sind die *Taylorkoeffizienten* von f(x).

Taylorpolynom: Definition

Definition

Wenn die Taylorreihe $t_f(x)$ nach dem Term *n*-ter Ordnung abgebrochen wird, erhält man das Taylorpolynom n-ter Ordnung von f(x) an der Stelle x_0 :

$$p_n(x) = \sum_{k=0}^n a_k (x - x_0)^k,$$

Dementsprechend gilt dann die Gleichheit

$$f^{(k)}(x_0) = \rho_n^{(k)}(x_0), \quad k \in \mathbb{N}.$$

nur für $k = 0, \ldots, n$.

Bemerkung: Die Tangente an eine Funktionskurve y = f(x) an der Stelle x_0 ist also exakt das Taylorpolynom 1. Ordnung von f(x) an der Stelle $x_0!$

Taylorreihe: Beispiel

Beispiel (Fortsetzung)

Bestimmen Sie die Taylorreihe $t_f(x) = \sum_{k=0}^{\infty} a_k x^k$ der Funktion $f(x) = e^x$ an der Stelle $x_0 = 0$. (Das Taylorpolynom 2. Ordnung wurde schon früher bestimmt!)

Taylorreihen

- Ziel: Berechnung der Koeffizienten a_k , $k \in \mathbb{N}$ der Taylorreihe $t_f(x) = \sum_{k=0}^{\infty} a_k x^k$ einer Funktion y = f(x)
- Methode: Wir nützen die Bedingung

$$\underbrace{t^{(k)}(x_0)}_{\text{gegeben}} = \underbrace{t^{(k)}_f(x_0)}_{\text{da versteckt sich } a_k}$$

zur Bestimmung des k-ten Koeffizienten a_k .

- Dazu müssen wir $t_f^{(k)}(x_0)$ berechnen für beliebige $k \in \mathbb{N}$ und noch unbekannte a_k 's.
- Wir beschränken uns in der Herleitung auf den Fall $x_0 = 0$; der Fall $x_0 \neq 0$ funktioniert genauso.
- Berechnung der Ableitungen $t_f^{(k)}$ von $t_f(x) = \sum_{i=1}^{\infty} a_k x^k$ durch gliedweise Ableitung und Einsetzen von x = 0; dabei bleibt von den unendlich vielen Termen jeweils nur einer übrig, und dieser enthält gerade das gesuchte $a_k!$

Taylorkoeffizienten: Detaillierte Berechnung

• k = 0: Aus $t_f(x) = \sum_{k=0}^{\infty} a_k x^k$ folgt

$$t_f(0) = a_0 + \underbrace{a_1 \cdot 0 + a_2 \cdot 0^2 + \dots}_{=0} = a_0$$

• k=1: Die 1. Ableitung von $t_f(x)=\sum_{k=0}^\infty a_k x^k$ ist $t_f'(x)=\sum_{k=1}^\infty k\cdot a_k x^{k-1}$, also erhalten wir durch Einsetzen von $x_0=0$ $t_f'(0)=a_1+\underbrace{2\cdot a_2\cdot 0+3\cdot a_3\cdot 0^2+\ldots}=a_1$

•
$$k = 2$$
: Die 2. Ableitung von $t_f(x) = \sum_{k=0}^{\infty} a_k x^k$ ist $t''(x) = \sum_{k=0}^{\infty} k(k-1) \cdot a_k x^{k-2}$ also erhalten wir durch

 $t_f''(x) = \sum_{k=2}^{\infty} k(k-1) \cdot a_k x^{k-2}$, also erhalten wir durch Einsetzen von $x_0 = 0$

$$t_f''(0) = 2a_2 + \underbrace{3 \cdot 2 \cdot a_3 \cdot 0 + 4 \cdot 3 \cdot a_4 \cdot 0^2 + \dots}_{2} = 2a_2$$

• k = 3: Ebenso erhält man

$$t_f^{(3)}(0) = 3 \cdot 2a_3 = 6a_3$$

• $k \in \mathbb{N}$ beliebig: Die k-te Ableitung von $t_f(x) = \sum_{m=0}^{\infty} a_m x^m$ ist

$$t_f^{(k)}(x) = \sum_{m=k}^{\infty} m(m-1) \dots (m-k+1) \cdot a_m x^{m-k},$$

• also erhalten wir durch Einsetzen von $x_0 = 0$

$$t_f^{(k)}(0) = k \cdot (k-1) \dots \cdot 1 \cdot a_k = k! \cdot a_k$$

- Es muss gelten: $t_f^{(k)}(0) = f^{(k)}(0)$
- Also erhalten wir aus $t_f^{(k)}(0) = k! \cdot a_k$ die folgende Formel für die a_k 's:

$$a_k = \frac{f^{(k)}(0)}{k!}, \qquad k \in \mathbb{N}.$$

Satz

Überblick

Die Taylorreihe einer beliebig oft differenzierbaren Funktion f(x) an der Stelle x_0 ist gegeben durch

$$t_{f}(x) = f(x_{0}) + f'(x_{0}) \cdot (x - x_{0}) + \frac{f''(x_{0})}{2!} \cdot (x - x_{0})^{2} + \frac{f^{(3)}(x_{0})}{3!} \cdot (x - x_{0})^{3} + \dots$$

$$= \sum_{k=0}^{\infty} \frac{f^{(k)}(x_{0})}{k!} \cdot (x - x_{0})^{k}$$

Bemerkung: In günstigen Fällen sind die Funktion f(x) und die auf diese Art erhaltene Taylorreihe $t_f(x)$ für alle $x \in \mathbb{R}$ identisch. Dies aber nicht immer der Fall.

Beispiel (Fortsetzung)

Die Taylorreihe $t_f(x) = \sum_{k=0}^{\infty} a_k x^k$ der Funktion $f(x) = e^x$ an der Stelle $x_0 = 0$ ist (vgl. früher)

$$t_f(x) = \sum_{k=0}^{\infty} \frac{x^k}{k!} = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \dots$$

Abbildung: Exponentialfunktion mit verschiedenen Taylor-Polynomen

Taylorreihe: Beispiele

Beispiel

Bestimmen Sie die Taylorreihe der Funktion $f(x) = \ln(x)$ an der Stelle $x_0 = 1$.

Beispiel

Bestimmen Sie die Taylorreihen der Funktionen $f(x) = \sin(x)$ und $f(x) = \cos(x)$ an der Stelle $x_0 = 0$.

Beispiel

Überblick

Taylorreihen von $f(x) = \sin(x)$ und $f(x) = \cos(x)$ an der Stelle $x_0 = 0$:

$$t_{\cos}(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} \mp = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!}$$

$$t_{sin}(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} \mp = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)!}$$

