Econométrie TP7

Patrick Waelbroeck

Graphiqu

rendance

Ajustemen

Test de racine

Test de Chow

Econométrie TP7 Séries non stationnaires

Patrick Waelbroeck

Telecom Paris

March 20, 2020

Patrick Waelbroeck

Graphique

Tendan

Ajustem

saisonnie

Test de racine unitaire

Chow

Exercice 1

On utilise la base de données barium.raw. Représenter graphiquement la série d'importations. Discuter la stationnarité.

```
df = pd.read_csv('fertil3.raw', delim_whitespace=True, header=None)
barium=df[0]
plt.plot(barium)
```


Graphi

Tendance

Saisonnie

Test de racine

Chow

```
Exercice 2
```

Retirer une tendance linéaire par régression OLS et représenter la série ajusté à la tendance $\emph{o}1$

```
n=len(barium)
const=np.ones(n)
t=df[18]
X=np.column_stack((const, t))
y=barium
model=sm.OLS(y,X)
results = model.fit()
print(results.summary())
o1=results.resid
plt.plot(o1)
```

```
1000
600
400
200
-200
-400
```

Patrick Waelbroeck

Graphic

Tendance

Ajustem

Test de

racine

Chow

Exercice 3

Calculer la moyenne mobile d'ordre 12 centrée et faire un graphique de la série ajustée o2. Refaire ensuite une moyenne mobile d'ordre 2 et ajuster la série pour cette tendance. Faire un graphique de la série ajustée o3.

utiliser la commande rolling de textttpanda.

```
t2=barium.rolling(window=12).mean()
plt.plot(t2)
o2=barium-t2
plt.plot(o2)
t3=t2.rolling(window=2).mean()
plt.plot(t3)
o3=barium-t3
plt.plot(o3)
```

Ajustement saisonnier 1

Patrick Waelbroeck

Graphiq

Tendan

Ajustement saisonnier

Test de racine unitaire

Test de Chow

Exercice 4

A partir de la série o1, retirer les effets saisonnier par régression linéaire en prenant en compte des variables binaires pour les mois.

Den Var	ishla.		y R-squa	rad:		0.08
Dep. Variable: Model:		,		R-squared: Adj. R-squared:		
Method:				F-statistic:		
Date:				Prob (F-statistic):		
Date: Time:		u, 19 mar 20 18:15:				
No. Observations:				AIC:		
No. Ubservations: Df Residuals:			131 AIC:			1869 1903
DI Kesiduais:		,	11 810:			1903
Df Model: Covariance Type:		nonrobi				
Covarian	ce lype:	nonrobi	ıst			
	coef	std err	t	P> t	[0.025	0.975
const	56.7533	91.721	0.619	0.537	-124.863	238.36
x1	-155.7353	126.730	-1.229	0.222	-406.674	95.20
x2	26.4611	126.730	0.209	0.835	-224.478	277.40
x3	-247.0889	126.730	-1.950	0.054	-498.028	3.85
x4	-1.2973	126.730	-0.010	0.992	-252.236	249.64
x5	-104.6384	126.730	-0.826	0.411	-355.577	146.30
x6	-17.3946	126.730	-0.137	0.891	-268.333	233.54
x7	-83.4648	126.730	-0.659	0.511	-334.403	167.47
x8	28.4248	126.730	0.224	0.823	-222.514	279.36
x9	12.1883	126.730	0.096	0.924	-238.750	263.12
x10	-125.9495	126.730	-0.994	0.322	-376.888	124.98
x11	-7.3851	126.730	-0.058	0.954	-258.324	243.55
Omnibus:		16.0	91 Durbin	Durbin-Watson:		1.48
Prob(Omnibus):		0.0	000 Jarque	Jarque-Bera (JB):		17.96
Skew:		0.8	337 Prob(J	Prob(JB):		0.00012
Kurtosis:		3.7	700 Cond.	Cond. No.		13.

Patrick Waelbroeck

Graphiq

Tendar

Ajustement saisonnier

Test de racine unitaire

Chow

Exercice 5

A partir de la série o3, calculer l'effet saisonnier par moyenne mobile 3×3 . Ajuster la série de cet effet saisonnier et faire un graphique.

Test de racine unitaire

Exercice 6

Faire le test de racine unitaires de la série barium avec 1 délai et avec 4 délais. Utiliser ensuite le critère AIC pour déterminer le nombre de lags.

Utiliser la commande adfuller

```
from statsmodels.tsa.stattools import adfuller
adf_barium1=adfuller(barium, maxlag=1)
print(adf_barium1)
adf_barium4=adfuller(barium, maxlag=4)
print(adf_barium4)
adf_barium_aic=adfuller(barium, autolag='AIC')
print(adf_barium_aic)
```

(-2.5469235389871057, 0.10447061436564953, 5, 125, '1', ': -3.483779373695999')

Considérons le modèle $barium = \alpha + \beta_1 chempi + \beta_2 gas + \beta_3 rtwex + u$.

Exercice 7

Faire le test de Chow d'absence de changement de structure pour deux sous-périodes de tailles égales (0:65; 66:130). Déterminer ensuit le point de rupture en faisant une boucle avec un taux de trim de 15% au début et à la fin de la période.

Test de

Chow

```
chempi=df[8]
gas=df[9]
rtwex=df[10]
n=len(barium)
const=np.ones(n)
y=barium
X=np.column_stack((const,chempi,gas,rtwex))
model=sm.OLS(y,X)
results = model.fit()
print(results.summary())
u=results.resid
SSR=u.T@u
```

SSR, SSR1, SSR2, F=((SSR-(SSR1+SSR2))/(SSR1+SSR2))*(n-8)/4
11933904.283981122, 4574483.766613876, 6383551.015028423, 2.738446062170780