Worksheet 3 Answer Key

We will prove 3, 4, 5, 6, 10, and 11, and disprove 1, 2, and 9.

- 1. Let $A = C = \{0\}$ and $B = \{1\}$. We have $\{0\} \cap \{1\} = \emptyset$ while $\{0\} \cap \{0\} \neq \emptyset$.
- 2. Let $A = C = \{0\}$ and $B = \{1\}$. We have $\{0\} \nsubseteq \{1\}$ and $\{1\} \nsubseteq \{0\}$, while $\{0\} \subseteq \{0\}$.
- 3. Suppose that $A \subseteq \emptyset$. From $\emptyset \subseteq A$, we conclude that $A = \emptyset$.
- 4. Fix $x \in A \cap B$. By the definition of intersection, we have $x \in A$ and $x \in B$. From the inclusion $A \subseteq C$, it follows that $x \in C$.
- 5. Let $a, a' \in A$ and suppose that g(f(a)) = g(f(a')). By the injectivity of g we obtain f(a) = f(a'), and by the injectivity of f we conclude that a = a'.
- 6. Fix $c \in C$. The surjectivity of g implies the existence of a $b \in B$ with g(b) = c, while that of f yields an $a \in A$ with f(a) = b. Observe that, g(f(a)) = g(b) = c.
- 7. Consider $f: \mathbb{N} \to \mathbb{N}$ defined by

$$f(k) = k + 1.$$

8. Let $f: \mathbb{N} \to \mathbb{N}$ be given by

$$f(k) = \begin{cases} k - 1 & \text{if } k \ge 1\\ 0 & \text{if } k = 0. \end{cases}$$

9. Let $f:\{0\} \hookrightarrow \mathbb{N}$ be the inclusion map, and let $g:\mathbb{N} \to \{0\}$ be the constant map with value 0. Then

$$g \circ f : \{0\} \to \{0\}$$
$$0 \mapsto 0$$

is a bijection, while neither f nor q is a bijection.

- 10. Suppose for a contradiction that $f: A \to A$ is not injective. It follows that the size of the image of f is strictly less than the size of the domain A. Consequently, the image of f is not equal to A. This contradicts the surjectivity of f.
- 11. Let $x, x' \in A$ with f(x) = f(x'). By applying f to both sides of the preceding equality, we have

$$x = f \circ f(x) = f \circ f(x') = x'$$

whence f is injective. Now fix $y \in A$. From the identity f(f(y)) = y we conclude that f is surjective.