Додаток 1

Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 1 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження лінійних алгоритмів»

Варіант 12

Виконав	студент	111-13 Дойчев Костянтин Миколайович
	•	(шифр, прізвище, ім'я, по батькові)
Перевірив		
P		(прізвище, ім'я, по батькові)

Лабораторна робота №3

Тема: Дослідження ітераційних циклічних алгоритмів

Мета – дослідити подання операторів повторення дій та набути практичних навичок їх використання під час складання циклічних програмних специфікацій.

Варіант 12

1) Постановка задачі:

Із заданою точністю обчислити значення функції $\sin(x)$ за рекурентною формулою.

$$f(x) = \sin x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots$$

Розв'язання

Крок 1. Визначимо основні дії.

Крок 2. Деталізуємо дію обчислення першого члена сигми

Крок 3. Деталізуємо дію обчислення п-го члена сигми

2) Побудова математичної моделі:

Таблиця імен змінних

Змінна Тип	Ім'я	Призначення
------------	------	-------------

Синус значення	Дійсний	sin	Вихідні дані
Аргумент синуса	Дійсний	sinArgument	Вхідні дані
Точність обчислення	Дійсний	accuracy	Вхідні дані
Номер ітерації	Цілий	iteration	Проміжні дані
Попереднє значення синуса	Дійсний	prevValue	Проміжні дані
Модуль різниці попереднього та теперішнього значення синуса	Дійсний	difference	Проміжні дані
Чисельник синуса	Дійсний	sinNumerator	Проміжні дані
Функція знаходження степеня числа	Дійсний	pow(чило, показник)	Проміжні дані
Функція знаходження факторіалу числа	Цілий	fact(число)	Проміжні дані
Функція знаходження модуля	Дійсний	abs(число)	Проміжні дані

Таким чином, математичне формулювання задачі зводиться до знаходження синуса числа за рекурентною(рекурсивною) формулою за рядом Тейлора. Для цього необхідно отримати аргумент синуса (sinArgument) та точність обчислення(ассигасу). Після цього на кожній ітерації рахувати значення синуса, поки модуль різниці попереднього та теперішнього числа (difference) не буде менший за точність. Формула за якою будуть проходити обчислення:

$$f(x) = \sin x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots$$

Для знаходження степеня числа будемо користуватися функцією **pow**. Для знаходження факторіалу числа будемо користуватися функцією **fact**. Для знаходження модуля числа будемо використовувати функцію **abs**.

3) Псевдокод алгоритму

Крок 1:

Початок

Введення даних

Декларування змінних

Обчислення та присвоєння першого значення сигми до sin

Обчислення та присвоєння n-го значення сигми до sin

Виведення sin

Кінець

Крок 2:

Початок

Введення даних

iteration := 0;

Обчислення та присвоєння першого значення сигми до sin

Обчислення та присвоєння n-го значення сигми до sin

Виведення sin

Кінець

Крок 3:

Початок

Введення даних

iteration:= 0;

sin:=sinArgument

Обчислення та присвоєння n-го значення сигми до sin

Виведення sin

Кінець

Крок 4:

Початок

```
Введення даних iteration:= 0; sin:=sinArgument; повторити prevValue:= sin; iteration:= iteration + 1; sinNumerator:= pow(-1, iteration) * pow(sinArgument, 2 * iteration + 1); sin:= sin + sinNumerator / fact(2*iteration + 1); difference:= abs(sin - prevValue); поки difference > accuracy все повторити Виведення sin
```

Кінець

4) Блок схема алгоритм

5) Випробування алгоритму:

Блок	Дія
	Початок
1	sinArgument:= 2, accuracy:= 0.0001
2	iteration:= 0;
3	sin:=2;
4	prevValue:= 2;
5	iteration:=1
6	sinNumerator:= -8;
7	sin:=0.6;
8	difference:= 1.3;
9	difference > accuracy == true
10	prevValue:=0.6;
11	iteration:=2;
12	sinNumerator:=32
13	sin:= 0.93
14	difference:= 0.26
15	difference > accuracy == true
16	prevValue:= 0.93
17	iteration:=3
18	sinNumerator:= -128
19	sin:= 0.9

20	difference:= 0.025
21	difference > accuracy == true
22	prevValue:= 0.9
23	iteration:= 4
24	sinNumerator:=512
25	sin:=0.9
26	difference:= 0.0014
27	difference > accuracy == true
28	prevValue:=0.9
29	iteration:=5
30	sinNumerator:=-2048
31	sin:=0.9
32	difference:=0.0000513195992
33	difference > accuracy == false
34	sin:=0.909296095
	Кінець

6) Виновки:

Дослідив подання операторів повторення дій та набув практичних навичок їх використання під час складання циклічних програмних специфікацій. Побудував мат. модель, псевдокод, блок схему. Протестував алгоритм.