App vs Wild

Protection d'applications en environnement hostile

Stéphane Duverger 2 Juin 2016

Introduction

Conception

Gestion mémoire Niveaux de privilèges

Implémentation

Préparation d'une application Secret Fonctionnement de l'hyperviseur

Conclusion

Introduction

Conception

Gestion mémoire Niveaux de privilèges

Implémentation

Préparation d'une application Secret Fonctionnement de l'hyperviseur

Conclusion

Contexte

Objectif : protéger le code d'une application

- environnement hostile, non maintenu
- d'un noyau malveillant et d'elle-même
- sans modification, recompilation
- ni supposition sur le fonctionnement de l'OS
 - filtrage, classification des appels systèmes
 - identification, terminaison d'un processus

Contexte

Objectif : protéger le code d'une application

- environnement hostile, non maintenu
- d'un noyau malveillant et d'elle-même
- sans modification, recompilation
- ni supposition sur le fonctionnement de l'OS
 - filtrage, classification des appels systèmes
 - identification, terminaison d'un processus

Solution: virtualisation

- contrôler le CPU, la mémoire et les périphériques
- dépendances matérielles (x86)
- micro-virtualisation (déployable sur le *cloud*)
- fondée sur Ramooflax

Ramooflax 4tehwin

Rappel

- micro-hyperviseur de type 1 (bare-metal), à VM unique
- s'appuie sur Intel-VT et AMD-V
- présenté durant SSTIC 2011
- open-source https://github.com/sduverger/ramooflax

Ramooflax 4tehwin

Rappel

- micro-hyperviseur de type 1 (bare-metal), à VM unique
- s'appuie sur Intel-VT et AMD-V
- présenté durant SSTIC 2011
- open-source https://github.com/sduverger/ramooflax

Mode autonome

- sans interaction distante (python, gdbstub, drivers)
- dédié aux applications à protéger
- virtualiser la mémoire physique des applications

Vue d'ensemble de la protection

Que protège-t-on ?

- code, algorithmes
- pas les données
- ne gère pas les attaques avec accès physique

Vue d'ensemble de la protection

Que protège-t-on ?

- code, algorithmes
- pas les données
- ne gère pas les attaques avec accès physique

Principe

- applications déployées chiffrées (toolchain)
- présenter plusieurs vues de la mémoire physique
 - Secret(s), pour les applications protégées
 - Origine, pour le reste
- Ramooflax s'occupe
 - du déchiffrement à la volée
 - des transitions d'environnements mémoire

Introduction

Conception

Gestion mémoire

Niveaux de privilèges

Implémentation

Préparation d'une application Secret Fonctionnement de l'hyperviseur

Conclusion

Proposer deux vues de la mémoire physique

Nested Page Tables

- virtualisation de la MMU
- Intel EPT et AMD RVI
- mapping guest vers system physical
- création dynamique d'EPT Secret
- déchiffrement à la demande

Proposer deux vues de la mémoire physique

Nested Page Tables

- virtualisation de la MMU
- Intel EPT et AMD RVI
- mapping guest vers system physical
- création dynamique d'EPT Secret
- · déchiffrement à la demande

Propriété de sécurité

- page déchiffrée et intégrité vérifiée
 - marquée eXecute-only
 - Intel EPT uniquement
- autres pages marquées RWX
 - données, tas, pile
 - bibliothèques partagées
 - gdt, idt, tss, pgd, ptb

Introduction

Conception

Gestion mémoir

Niveaux de privilèges

Implémentation

Préparation d'une application Secret Fonctionnement de l'hyperviseur

Conclusion

AIRBUS GROUP INNOVATIONS

Changements de niveau de privilèges

Quand/comment basculer d'EPT ?

- si on schedule un processus Secret on installe son EPT dédié
- sinon on met en place l'EPT Origine
- identifier un processus Secret ?
- intercepter les transitions ring 3 <=> ring 0 ?

s.duverger :: app vs wild :: SSTIC 2016 10/26 ARBUS GROUP INNOVATIONS

Changements de niveau de privilèges

Quand/comment basculer d'EPT ?

- si on schedule un processus Secret on installe son EPT dédié
- sinon on met en place l'EPT Origine
- identifier un processus Secret ?
- intercepter les transitions ring 3 <=> ring 0 ?

Identification d'un processus

- sans paradigme lié à l'OS (thread info, task struct, etc)
- un espace d'adressage par processus (cr3 == pgd)
- filtrer les écritures dans cr3

Changements de niveau de privilèges

Quand/comment basculer d'EPT ?

- si on schedule un processus Secret on installe son EPT dédié
- sinon on met en place l'EPT Origine
- identifier un processus Secret ?
- intercepter les transitions ring 3 <=> ring 0 ?

Identification d'un processus

- sans paradigme lié à l'OS (thread info, task struct, etc)
- un espace d'adressage par processus (cr3 == pgd)
- filtrer les écritures dans cr3

Interception des transitions

- transition ring 3 vers ring 0
 - interruption matérielle IRQ
 - exception du processeur (#PF, #BP, etc)
 - appel système : int N, sysenter
- transition ring 0 vers ring 3
 - iret, sysexit

Intercepter les transitions de privilèges

Introduction

Conception

Gestion mémoire Niveaux de privilèges

Implémentation

Préparation d'une application Secret

Fonctionnement de l'hyperviseu

Conclusion

Préparation d'une application Secret

Toolchain

- supporte binaires ELF32 statiques, dynamiques, PIE/PIC
- outil de génération de clefs

```
$ ./genkey.bin -c
AES : 56fe883e73031f01a1765d57fb8f45034b19bc2f7837bed74ee0d4a4e2ba717e
IV : d85d85c0c05b09170cd5485342d94250d
HMAC : 0c617fe4fc90336ffc17e45a515b84c1cb1c9c4c6db6c479782ca83046985a62
```

• outil de chiffrement/modification

Modifications apportées au binaire

- chiffrement des sections de code
- signature des éléments chiffrés
- modification d'un program header
- ajout de méta-informations
- ajout d'un pré-chargeur minimaliste
- modification du point d'entrée

Chiffrement et signature des sections de code

- regroupe les sections de code par page(s) de 4KB
- facilite le déchiffrement à la demande
- crée des secret_process_block

- chiffrement AES-256-CBC/CFB
- signature SHA-256 HMAC

16/26

Injection et chargement des meta-data

Meta-data header

- spécifique au processus *Secret*
- à destination de l'hyperviseur
- offsets relatifs à l'adresse de chargement

Injection et chargement des meta-data

Meta-data header

- spécifique au processus *Secret*
- à destination de l'hyperviseur
- offsets relatifs à l'adresse de chargement

Modification d'un Program Header

- PT_NOTE présent mais optionnel
- remplacé par PT_LOAD
- référence toutes les meta-data (header, blocks)
- permet leur futur chargement

Injection et chargement des meta-data

Meta-data header

- spécifique au processus Secret
- à destination de l'hyperviseur
- offsets relatifs à l'adresse de chargement

Modification d'un Program Header

- PT_NOTE présent mais optionnel
- remplacé par PT_LOAD
- référence toutes les meta-data (header, blocks)
- permet leur futur chargement

Injection d'un pré-chargeur

- devient l'entry point
- force l'OS à mapper les meta-data
- exécute vmcall
- finalement saute sur l'OEP

Introduction

Conception

Gestion mémoire Niveaux de privilèges

Implémentation

Préparation d'une application Secret

Fonctionnement de l'hyperviseur

Conclusion

ntroduction Conception Implémentation Conclusion Conclusion

Fonctionnement de l'hyperviseur

Compilation

- embarque les clefs cryptographiques (AES, IV, HMAC)
- la définition des sec_blk_t, sec_phdr_t
- indépendant des applications Secret (nombre, nature)

Fonctionnement de l'hyperviseur

Compilation

- embarque les clefs cryptographiques (AES, IV, HMAC)
- la définition des sec_blk_t, sec_phdr_t
- indépendant des applications Secret (nombre, nature)

Gestionnaire d'évènements : #VMEXIT

- détection de processus Secret
- interception des écritures dans cr3
- traitement des Nested Page Fault (#NPF)
- interception des changements de privilèges (#GP, #NP)

Création d'un processus Secret

Création d'un processus Secret

Création d'un processus Secret

Physical Memory (RAM)

Gestion des Nested Page Fault (#NPF)

En bref

- fautes de page au niveau EPT (guest vers system physique)
- surviennent après les #PF traditionnels
- différentes natures : read/write/execute/present
- utilisation de deux primitives : sécuriser et rendre

s.duverger :: app vs wild :: SSTIC 2016 20/26 ARBUS GROUP INNOVATIONS

Gestion des Nested Page Fault (#NPF)

En bref

- fautes de page au niveau EPT (guest vers system physique)
- surviennent après les #PF traditionnels
- différentes natures : read/write/execute/present
- utilisation de deux primitives : sécuriser et rendre

Sécuriser une page

- validation du HMAC
- si le hash est invalide, rendre la page à la VM
- sinon marquage non présent dans EPT Origine
- déchiffrement in-situ
- marque la page eXecute-only dans EPT Secret

Gestion des Nested Page Fault (#NPF)

En bref

- fautes de page au niveau EPT (guest vers system physique)
- surviennent après les #PF traditionnels
- différentes natures : read/write/execute/present
- utilisation de deux primitives : sécuriser et rendre

Sécuriser une page

- validation du HMAC
- si le hash est invalide, rendre la page à la VM
- sinon marquage non présent dans EPT Origine
- déchiffrement in-situ
- marque la page eXecute-only dans EPT Secret

Rendre une page

- chiffrement in-situ si elle était déchiffrée
- on la marque *USER* | *RWX* dans EPT *Origine*
- on la marque non présente dans tous les EPTs Secret concernés (reverse-mapping)

Implémentation

Mécanisme d'interception

Basé sur la segmentation

- Ramooflax parcourt la GDT et détecte les segments de code ring 0/3
- crée un nouveau descripteur de code ring 3 (cs3 sec)
- mise à jour des descripteurs de segment : provoquer #NP

AIRBUS GROUP INNOVATIONS s.duverger :: app vs wild :: SSTIC 2016 21/26

Mécanisme d'interception

Basé sur la segmentation

- \bullet Ramooflax parcourt la GDT et détecte les segments de code ring 0/3
- crée un nouveau descripteur de code ring 3 (cs3 sec)
- ullet mise à jour des descripteurs de segment : provoquer #NP

Secret

```
CS0 dft
CS3 dft
CS3 sec
```

Mécanisme d'interception

Basé sur la segmentation

- \bullet Ramooflax parcourt la GDT et détecte les segments de code ring 0/3
- crée un nouveau descripteur de code ring 3 (cs3 sec)
- ullet mise à jour des descripteurs de segment : provoquer #NP

ntroduction Conception Implémentation Conclusion Conclusion

Mécanisme d'interception

Basé sur la segmentation

- Ramooflax parcourt la GDT et détecte les segments de code ring 0/3
- crée un nouveau descripteur de code ring 3 (cs3 sec)
- ullet mise à jour des descripteurs de segment : provoquer #NP

Mécanisme d'interception

Basé sur la segmentation

- Ramooflax parcourt la GDT et détecte les segments de code ring 0/3
- crée un nouveau descripteur de code ring 3 (cs3 sec)
- mise à jour des descripteurs de segment : provoquer #NP

Cas complexes

- terminaison de Secret et réutilisation de cr3
- détection implicite suite à un fork()
- sysenter/sysexit n'utilisent pas la GDT
- gestion des signaux, clone() qui modifient la pile noyau

Introductio

Conceptio

Gestion mémoire

Implémentation

Préparation d'une application Secret Fonctionnement de l'hyperviseur

Conclusion

Conclusion

Etat de la protection

Avez confiance

- proriété de sécurité repose sur EPT eXecute-only
- hardware cookies assurent l'exécution des processus Secret
 - interception des changements de privilèges
 - segment spécial cs3_sec
 - fork() et trampoline sysexit
 - Page Table magic
- confidentialité et intégrité, pas disponibilité
- peu importe que les mécanismes soient détournés

AIRBUS GROUP INNOVATIONS s.duverger :: app vs wild :: SSTIC 2016 23/26

État de la protection

Ayez confiance

- proriété de sécurité repose sur EPT eXecute-only
- hardware cookies assurent l'exécution des processus Secret
 - interception des changements de privilèges
 - segment spécial cs3_sec
 fork() et trampoline sys
 - fork() et trampoline sysexit
 - Page Table magic
- confidentialité et intégrité, pas disponibilité
- peu importe que les mécanismes soient détournés

Limitations

- pas d'I/O MMU donc AMT (ring -3), DMA, etc
- mode SMM > VMX
- side-channels
- jit-compiler et self-modifying code
- processeurs AMD (SEGMEXEC ?)

Scénario d'attaque

Prédiction d'instructions

- tentatives infinies
- analyser les effets sur les GPRs
- instruction par instruction

Scénario d'attaque

Prédiction d'instructions

- tentatives infinies
- analyser les effets sur les GPRs
- instruction par instruction

Contre-mesures

- filtrer #BP, #DB
- sauver/effacer/restorer les GPRs avant IRQ et exception
- difficile pour les appels systèmes
- est-il possible de deviner Insn X sachant :
 - fixe GPRs(E1)
 - Insn X
 - N Insn connues
 - int 0x80 ou sysenter/syscall
 - lit GPRs(E2)

Évolutions et Performances

John The Ripper 1.8.0

```
$ john-1.8.0/rum/relbench john.clear.bench john.sec.bench
Number of benchmarks: 13
Minimum: 0.93487 real, 0.93500 virtual
Maximum: 1.04503 real, 1.04293 virtual
Median: 0.98855 real, 0.98333 virtual
Median shoulte deviation: 0.02517 real, 0.01947 virtual
Geometric mean: 0.98990 real, 0.98371 virtual
Geometric standard deviation: 1.03304 real, 1.03151 virtual
```

Évolutions et Performances

John The Ripper 1.8.0

```
$ john-1.8.0/run/relbench john.clear.bench john.sec.bench
Number of benchmarks : 13
Minimum : 0.93487 real, 0.93500 virtual
Maximum : 1.04503 real, 1.04293 virtual
Median : 0.98855 real, 0.98333 virtual
Median absolute deviation : 0.02517 real, 0.01947 virtual
Geometric mean : 0.98990 real, 0.98371 virtual
Geometric standard deviation : 1.03304 real, 1.03151 virtual
```

Quelques idées

- Windows, PE, ELF64, syscall/sysret
- toolchain collaborative
 - sections spécifiques à chiffrer
 - sans appels systèmes
- protéger des bibliothèques partagées

Merci! Greetz

aux collègues pour les idées, la patience

... à ma compagne enceinte de jumelles : 35 SA, man fork

Challenge

https://github.com/sduverger/AppVsWild