Работа 1.3.3

Измерение вязкости воздуха по течению в тонких трубках

Андрей Киркича, Б01-202, МФТИ, 2023

Цель работы: экспериментально исследовать свойства течения газов по тонким трубкам при различных числах Рейнольдса; выявить область применимости закона Пуазейля и с его помощью определить коэффициент вязкости воздуха.

В работе используются: система подачи воздуха (компрессор, подводящие трубки); газовый счётчик барабанного типа; спиртовой микроманометр с регулируемым наклоном; набор трубок различного диаметра с выходами для подсоединения микроманометра; секундомер.

Теоретичские сведения

Закон Ньютона:

$$\tau_{xy} = -\eta \frac{\partial v_x}{\partial y} \tag{1}$$

 au_{xy} - касательное напряжение между слоями, направленное вдоль оси $x; v_x$ - скорость течения, зависящая от координаты $y; \eta$ - коэффициент динамической вязкости (вязкость) среды

Объёмный расход Q - объём жидкости, протекающий через сечение трубы в единицу времени.

Число Рейнольдса:

$$Re = \frac{\rho ua}{\eta} \tag{2}$$

где ρ - плотность среды; u - характерная скорость потока; a - характерный размер системы; η - вязкость

$$\overline{u} = \frac{Q}{\pi r^2} \tag{3}$$

Формула Пуазейля:

$$Q = \frac{\pi r^4 \Delta P}{8\eta l} \tag{4}$$

$$l_{ycr} \approx 0.2r \cdot Re$$
 (5)

$$\left[l_{ycr} \approx 0.2r \cdot Re\right] \tag{5}$$

$$\eta \sim 1/3\rho\overline{v}\lambda, \lambda \sim \frac{1}{n\pi d^2}$$

Формулы (1) и (6) справедливы при $u \ll \overline{v}$ и характерных размерах, значительно превышающих длину свободного пробега молекул.

Методика измерений

Рисунок 1: схема экспериментальной установки

Поток воздуха под давлением, немного превышающим атмосферное, поступает через газовый счётчик в тонкие металлические трубки. Воздух нагнетается компрессором, интенсивность его подачи регулируется краном К. Трубки снабжены съёмными заглушками на концах и рядом миллиметровых отверстий, к которым можно подключать микроманометр. В рабочем состоянии открыта заглушка на одной (рабочей) трубке, микроманометр подключён к двум её выводам, а все остальные отверстия плотно закрыты пробками.

Перед входом в газовый счётчик установлен водяной U-образный мано-метр. Он служит для измерения давления газа на входе, а также предохраняет счётчик от выхода из строя. При превышении максимального избыточного давления на входе счётчика (≈30 см вод. ст.) вода выплёскивается из трубки в защитный баллон Б, создавая шум и привлекая к себе внимание экспериментатора.

Рисунок 2: схема барабанного газового счётчика

Результаты измерений

Таблица с результатами измерений зависимости потока от разности давлений представлена ниже. Давление переводится из делений манометра в паскали по формуле: $\Delta P = 9.8067 \cdot N \cdot K \cdot 0.9975~\Pi a$

$d_1 = 3.95 \text{ mm}$						$d_2 = 5.10 \text{ mm}$					
K	V, л	t, c	<i>Q</i> , л/с	N, дел	ΔP , Πa	K	V, л	t, c	<i>Q</i> , л/с	N, дел	ΔP , Πa
0.2	2.5	89.7	0.03	23	45	0.2	2.5	24.7	0.10	24	47
0.2	2.5	48.9	0.05	42	82	0.2	2.5	21.0	0.12	30	59
0.2	2.5	73.0	0.03	28	55	0.2	2.5	18.0	0.14	38	74
0.2	2.5	44.2	0.06	46	90	0.2	2.5	17.0	0.15	45	88
0.2	2.5	39.7	0.06	52	102	0.2	2.5	16.2	0.15	55	108
0.2	2.5	35.0	0.07	60	117	0.2	2.5	15.9	0.16	62	121
0.2	2.5	30.0	0.08	70	137	0.2	2.5	15.0	0.17	70	137
0.2	2.5	27.6	0.01	79	155	0.2	2.5	13.9	0.18	79	155
0.2	2.5	26.5	0.09	85	166	0.2	2.5	13.2	0.19	90	176
0.2	2.5	25.0	0.10	94	184	0.2	2.5	12.5	0.20	97	190
0.2	2.5	23.7	0.11	110	215	0.2	2.5	11.9	0.21	106	207
0.2	2.5	22.7	0.11	130	254	0.2	2.5	11.0	0.23	119	233
0.3	2.5	22.0	0.11	98	288	0.2	2.5	10.4	0.24	135	264
0.3	2.5	19.3	0.13	130	382	0.2	2.5	9.9	0.25	150	293
0.3	2.5	18.1	0.14	155	455	0.2	2.5	9.6	0.26	155	303
0.3	2.5	16.8	0.15	175	514						
0.3	2.5	16.0	0.16	194	569						

Таблица 1: результаты измерения зависимости объёмного расхода от разности давлений

По этим данным были построены графики. На них хорошо заметна точка, где характер зависимости меняется. Это граница перехода от ламинарного течения к турбулентному.

Пользуясь коэффициентами наклона линейных участков графиков, по формуле (4) можно определить вязкость среды:

- $\eta_1 = 2.14 \cdot 10^{-5} \; \Pi \text{a} \cdot \text{c}$
- $\eta_2 = 2.42 \cdot 10^{-5} \; \Pi \text{a·c}$

Первое значение находится ближе к табличному (при температуре 20 °C), поэтому в дальнейших вычислениях будем использовать именно его.

Критические числа Рейнольдса можно получить, используя формулу (2), в качестве a взять радиус трубки r, а в качестве u - величину $\frac{Q}{\pi r^2}$:

- $Re_{\text{kp}_1} = 904$
- $Re_{\kappa p_2} = 980$

Рисунок 3: график зависимости $Q(\Delta P)$ в трубке диаметром $d_1=3.95$ мм

Pисунок 4: график зависимости $Q(\Delta P)$ в трубке диаметром $d_2=5.10$ мм

Также были проведены измерения распределения давления газа вдоль трубки.

Ниже приведены результаты.

	d_1 :	= 3.95 мм	ſ	$d_2 = 5.10 \text{ mm}$				
K	L, M	N, дел	ΔP , Πa	K	L, M	N, дел	ΔP	
0.4	1.309	123	481	0.2	1.309	164	321	
0.4	0.809	86	337	0.2	0.809	122	239	
0.2	0.409	98	192	0.2	0.409	83	162	
0.2	0.109	46	90	0.2	0.109	47	92	

Таблица 2: результаты измерений перепада давления от длины участка трубы

Pисунок 5: график зависимости перепада давления от длины участка трубы диаметром $d_1=3.95~{\rm мm}$

Рисунок 6: график зависимости перепада давления от длины участка трубы диаметром $d_2=5.10~{\rm MM}$

Видно, что графики отражают линейную зависимость между ΔP и L. Значит, и давление в трубе $P(x)=P_0-\frac{\Delta P}{L}x$ линейно зависит от x.

Расчёт погрешностей

- K, π, ρ считаем константами без погрешности
- $\sigma_d = 0.05 \ \mathrm{mm}$
- $\sigma_r = 0.03 \text{ mm}$
- $\sigma_V = 0.02$ л
- $\sigma_t = 0.4 \text{ c}$

•
$$\sigma_Q = Q \cdot \sqrt{\left(\frac{\sigma_V}{V}\right)^2 + \left(\frac{\sigma_t}{t}\right)^2}$$
 $\varepsilon_Q \approx 1 - 3\%$

- $\sigma_N = 1$ дел
- $\sigma_{\Delta P} = 9.8067 \cdot K \cdot 0.9975 \cdot \sigma_N$ $\sigma_{\Delta P_{K=0,2}} = 2 \text{ }\Pi\text{a}, \ \sigma_{\Delta P_{K=0,3}} = 3 \text{ }\Pi\text{a}, \ \sigma_{\Delta P_{K=0,4}} = 4 \text{ }\Pi\text{a}$
- $\sigma_{\frac{dQ}{d(\Delta P)}}$ считается программно методом наименьших квадратов
- $\Delta L = 0.001 \text{ M}$

•
$$\varepsilon_{\eta} = \frac{\pi}{8} \sqrt{16 \left(\frac{\sigma_r}{r}\right)^2 + \left(\frac{\sigma_{dQ/d(\Delta P)}}{dQ/d(\Delta P)}\right)^2 + \left(\frac{\sigma_L}{L}\right)^2} \approx 3\%$$

•
$$\varepsilon_{Re} = \frac{\rho}{\pi} \cdot \sqrt{\left(\frac{\sigma_r}{r}\right)^2 + \left(\frac{\sigma_Q}{Q}\right)^2 + \left(\frac{\sigma_\eta}{\eta}\right)^2} \approx 1.3\%$$

Вывод

Были измерены зависимости потока в трубке от перепада давления и перепада давления от длины соответствующего участка трубы. В первом опыте отчётливо наблюдалась смена характера зависимости, свидетельствующая о переходе течения из ламинарного в турбулентный режим. С использованием графиков была расчитана вязкость воздуха в каждом опыте: $\eta_1 = (2.14 \pm$ $(0.07)\cdot 10^{-5}~\Pi a\cdot c$ и $\eta_2=(2.42\pm 0.08)\cdot 10^{-5}~\Pi a\cdot c$. Значения не сходятся в пределах погрешности, они также расходятся с табличными данными ($\eta = 1.8 \cdot 10^{-5}$ Па·с). Одной из причин может быть низкая точность измерения потока. В качестве погрешности времени была взята величина 0.4 с. 0.2 с - это среднее время реакции человека на визуальный сигнал, ещё 0.2 с добавлены с учётом того, что экспериментатор плохо спал и не позавтракал. Ещё одна причина низкая выборка точек во второй серии измерений. Большинство точек было снято в турбулентном режиме. Стоило обратить больше внимания на то, где флуктуации столбика микроманометра увеличились. Также были посчитаны критические числа Рейнольдса: $Re_{\mathrm{\kappa p}_1}=(904\pm12),\ Re_{\mathrm{\kappa p}_2}=(980\pm13).$ Они близки к 1000. По результатам второго опыта можно заключить, что давление в трубке линейно убывает с ростом координаты вдоль трубки. Перепад давления на определённом участке трубы зависит от диаметра трубы, так как графики $\Delta P(L)$ для разных труб имеют разный наклон.