LAST NAME:				FIRST NAME:				CIRCLE:						
								Makl 8:30a	-	Makhijan 11:30am		Iakhija :30pm		Zweck 11:30am
1	/12	2	/12	3	/12	4	/12	5	/15	6	/12	Т	/75	

MATH 2415 [Spring 2019] Exam II, Apr 5th

No books or notes! **NO CALCULATORS!** Show all work and give **complete explanations**. Don't spend too much time on any one problem. This 90 minute exam is worth 75 points.

- (1) [12 pts]
- (a) Calculate the (level set) equation of the tangent plane to the graph of $z = f(x, y) = x^2 + 2y^2 + 3x + y$ at (x, y) = (2, 1).

(b) Use your answer to (a) to estimate f(2.1, 0.8).

((2))	12	nts	Let	f (r	บ) =	e^x	_	n^2
١	Δ.	,	14	pus	Let	J	ω ,	y) —	C	_	y

(a) What is the direction of steepest ascent at (x, y) = (0, 1)?

(b) Sketch the level curve f(x,y) = 0, together with the direction of steepest ascent of f at (x,y) = (0,1).

(c) In which directions is that rate of change of f equal to zero at (x, y) = (0, 1)?

(d) Let $(x,y) = \mathbf{r}(t)$ be a curve with $\mathbf{r}(2) = (0,1)$ and $\mathbf{r}'(2) = (-2,3)$. Let $z = f(\mathbf{r}(t))$. Find $\frac{dz}{dt}$ at t = 2.

- (3) [12 pts]
- (a) Show that

$$(x, y, z) = \mathbf{r}(u, v) = (v, 2\cos u, 3\sin u)$$

is a parametrization of an elliptical cylinder. **Hint:** Find an equation of the form F(x, y, z) = 0 for this surface by eliminating u and v from the equations above.

(b) Find a parametrization of the tangent plane to this surface at the point where $(u, v) = (\frac{\pi}{4}, 2)$.

(4) [12 pts] Let D be the triangular domain in the xy-plane with vertices (0,0), (2,2) and (2,4). Calculate $\iint_D (x^2 + y^2) dA$.

(5) [15 pts] Find and classify all critical points of $z = f(x, y) = y^3 - 6xy + 8x^3$.

(6) [12 pts] Use the Method of Lagrange Multipliers to find the absolute maximum and minimum of the function $z = x + 2y$ on the circle $(x - 1)^2 + (y - 3)^2 = 5$.