Project Stage IV

Merging tables

Team

Anna Chang Sripradha Karkala Simmi Pateriya

Data Description

We used the songs and tracks tables from the movie-track-song dataset that was provided in the previous project stage. Each tuple in these tables describe a song entity. The original tables contained 961,593 tuples and 734,485 tuples for songs and tracks respectively. We reduced the size to 17,731 (*sample_A*) and 10,000 (*sample_B*) after downsampling.

Merging process

The downsampled datasets (sample_A and sample_B) and a matcher table (matches.csv) files were generated as a result of the previous stage on data matching. Schema of sample_A

id	title	artist_name	year
457	Mango Tree	Angus & Julia Stone	2006

Schema of sample_B

id	title	year	episode	song	artists
140954	Lockie Leonard	2007	New and Improved (#2.1)	Mango Tree	angus stone+julia stone+angus

Schema of the matcher table (*matches*)

ltable _id	rtable _id	Ltable _title	ltable_artist _name	Itabl e_ye ar	rtabl e_tit le	rtabl e_ye ar	rtabl e_ep isod e	rtable _song	rtable _artis ts	Lin. reg	Log reg	svm
457	14095 4	Mango Tree	Angus & Julia Stone	2006	Lock ie Leon ard	200 7	New and Impr oved (#2.1	Mango Tree	angus stone + julia stone + angus	1	1	1

Using the *ltable_id* and *rtable_id* from the matcher table, we merged the data from the downsized samples to generate a single merged table (*merged.csv*).

From the data matching stage we know that *artists_name* and *artists* from *sample_A* and *sample_B* respectively refer to the same real world entity. Similarly, *title* from *sample_A* and *song* from *sample_B* refer to the same real world entity. We pick the matcher for Logistic Regression as it has better accuracy.

The following rules were used for generating the merged table.

Column	Table	Rule
id	Sample_A	song_id
id	Sample_B	track_id
title	Sample_B	title
artist_name, artists	Sample_A, Sample_B	Take the longer string, which includes more information on the artists. Since this is based on string length, missing values are taken care of. This column is stored as artists
title, song	Sample_A, Sample_B	Take the longer string, which includes more information about the song. Since this is based on the string length, missing values are taken care of. This column is stored as song.
year	Sample_A	year

episode	Sample_B	episode
year	Sample_B	episode_year

The merged table contains 1303 tuples. And the final schema of the merged tables looks as follows:

song_id	track_id	title	artists	song	year	episode	episode _year
457	140954	Lockie Leonard	angus stone+jul ia stone+an gus	Mango Tree	2006	New and Improve d (#2.1)	2007
1203	444229	Frank Sinatra: A Man and His Music + Ella + Jobim	paul mann+st efan weiÃŒÃ ™+frank sinatra	Put Your Dreams Away	1958		1967
1935	121170	Interventi on	scott klass+th e davenpo rts	Five Steps	2000	Adam (#9.2)	2005
1935	121498	Interventi on	scott klass+th e davenpo rts	Five Steps	2000	Salina and Troy (#2.5)	2005
4202	541635	Ministry: Tapes of Wrath	ministry	The Land of Rape & Honey (Live)	0		2000
4432	208737	Shamele ss	the high strung	The Luck You Got	2005	The Sins of My Caretake r (#3.5)	2011

Source code

```
import pandas as pd
'''Rules:
save id from songs table as song_id
save id from tracks table as track_id
save title from tracks table
save artists name from whichever is long
save song from tracks if there else title
from songs
save year from songs
save episode from tracks
save episode year from tracks
def apply_rules(tup1, tup2):
    song id = tup1['id'].iloc[0]
    track_id = tup2['id'].iloc[0]
    title = tup2['title'].iloc[0]
    tup2_artist = tup2['artists'].iloc[0]
    tup1 artist = tup1['artist_name'].iloc[0]
    if len(tup2_artist) >= len(tup1_artist):
       artists = tup2_artist
    else:
        artists = tup1_artist
    tup2 song = tup2['song'].iloc[0]
    tup1_song = tup1['title'].iloc[0]
    if len(str(tup2_song)) >= len(tup1_song):
        song = tup2_song
    else:
        song = tup1_song
    year = tup1['year'].iloc[0]
    episode = tup2['episode'].iloc[0]
    episode_year = tup2['year'].iloc[0]
    data = [{'song_id':song_id, 'track_id':track_id, 'title':title, \
           'artists':artists, 'song':song , \
            'year':year, 'episode':episode, 'episode_year':episode_year}]
    return data
def save to csv(merged):
       merged.to_csv('./merged.csv', index=False)
'''create a schema as union of both tables
For the true matches we found in Linear regression
find corresponding tables from songs and tracks table.
Apply rules to combine the common attributes.
Write the final merged table as merged.csv
```

```
. . .
def merge_table(table1, table2, matcher):
    schema = ['song_id', 'track_id', 'title', 'artists', 'song', 'year',\
             'episode', 'episode_year']
    merged table = pd.DataFrame(columns=schema)
    for index, match in matcher.iterrows():
       if match['logistic regression'] == 1:
              tup_table1 = table1.loc[table1.id == match['ltable_id']]
              tup table2 = table2.loc[table2.id == match['rtable_id']]
              data = apply_rules(tup_table1, tup_table2)
              df = pd.DataFrame(data, columns=schema)
              merged_table = merged_table.append(df)
    save_to_csv(merged_table)
if __name__ == '__main__':
    '''Read downsampled files and matcher
    sampleA - downsampled song dataset
    sampleB - downsampled tracks dataset
    Matches - Our matcher's output
    111
    table1 = pd.read_csv('./sampleA.csv', index_col=False)
    #if pandas version more than 0.17 use table1.sort_values(by=['id'], ascending=True)
    table1.sort('id', ascending=True, inplace=True)
    table2 = pd.read_csv('./sampleB.csv', index_col=False)
    table2.sort('id', ascending=True, inplace=True)
    matcher = pd.read_csv('./Matches.csv', index_col=False)
    matcher.sort('ltable_id', ascending=True, inplace=True)
    merge_table(table1, table2, matcher)
```