國立臺灣大學工學院機械工程學研究所

碩士論文

Department of Mechanical Engineering

College of Engineering

National Taiwan University

Master Thesis

應用於機器人之三維重建與導航開發 Development of 3D Reconstruction and Navigation for Mobile Robots

王琮文

Tsung-Wun Wang

指導教授:黃漢邦 博士

Advisor: Han-Pang Huang, Ph.D.

中華民國 112 年 7 月 July, 2023

Abstract

This thesis investigates visual techniques for enhancing Simultaneous Localization and Mapping (SLAM), three-dimensional (3D) reconstruction, and navigation in mobile robots utilizing an RGB-D camera. The RGB-D module in ORB-SLAM3 delivers precise performance for autonomous vehicles and robotics, with minimal drift due to loop-closing detection, as demonstrated by our experiments on campus. We evaluate and augment prior work, such as GMapping, which accurately localizes in a two-dimensional (2D) grid map but fails to address loop closure. By incorporating the concept of a visual bag of words and combining a 2D LiDAR sensor with a monocular camera, we enable loop detection and pose correction.

In addition to 2D scenarios, we focus on colorful mesh reconstruction from RGB-D cameras and develop a real-time pipeline for 3D reconstruction. By integrating ORB-SLAM3 with SurfelMeshing, we determine not only the camera pose but also reconstruct the 3D environment. While most 3D navigation tasks necessitate a dense map, meshes composed of multiple 2D triangles simplify calculations in robotic navigation. Our mesh reconstruction facilitates the creation of navigation meshes (NavMesh), which can be employed to navigate a robot in 3D space due to the distinct map format. Unlike a 2D grid, it permits walkable areas that overlap above and below at different heights. Polygons of varying sizes and shapes in the form of NavMesh can represent arbitrary environments with greater accuracy than regular grids.

Prior work on DAO* and DDAO* provides effective navigation policies for robots on

2D grid maps, even in the presence of dynamic objects. However, the iteration process is inefficient. We have improved the iteration process of DAO* to reduce computation time for each path search for 2D navigation. Besides, NavMesh offers a comprehensible solution to 3D mapping, and we compare various pathfinding methods to demonstrate successful robot navigation in 3D space, even in the presence of additional obstacles.

The potential applications of this research include enhancing the capabilities of autonomous vehicles and robots in industries such as transportation, logistics, and manufacturing. It could also have implications for virtual and augmented reality, where accurate and efficient 3D mapping is essential. Overall, this research has the potential to contribute to the development of more advanced and capable mobile robots and autonomous systems.

Keywords: 3D Reconstruction, Navigation Mesh (NavMesh), Simultaneous Localization and Mapping (SLAM), Pathfinding

vi

Contents

Acknov	vledgments	i			
Abstract					
List of Tables					
List of 1	List of Figures				
Chapte	r 1 Introduction	1			
1.1	Motivation	1			
1.2	Contribution	2			
1.3	Thesis Structure	3			
Chapte	r 2 Visual SLAM	5			
2.1	Vision Sensors	5			
2.2	Simultaneous Localization and Mapping	7			
2.3	Visual Vocabularies and Bags of Words	9			
2.4	ORB-SLAM3	10			
2.5	Camera Pose Optimization	12			
	2.5.1 Pose-Graph Optimization	12			
	2.5.2 Bundle Adjustment	14			

2.6	Experi	ments	· / . /	16
	2.6.1	NTU Campus		16
Chapte	r 3 3D	Reconstruction	學是。學	21
3.1	Surface	e Reconstruction		23
	3.1.1	Poisson Surface Reconstruction		24
	3.1.2	Ball-Pivoting Surface Reconstruction		26
3.2	Surfel	Meshing		31
3.3	Real-T	ime SLAM-based 3D Reconstruction		35
	3.3.1	Evaluation on TUM RGB-D dataset		36
	3.3.2	Challenges		42
	3.3.3	Summary		47
3.4	Experi	ments		48
Chapte	r4 Lil	DAR SLAM		53
4.1	LiDAR	R Sensors		53
	4.1.1	2D VS 3D LiDAR Sensors		54
	4.1.2	Coordinate Systems for 3D LiDAR Sensors		54
	4.1.3	Coordinate Systems for 2D LiDAR Sensors		55
4.2	LiDAR	R SLAM		56
4.3	Particle	e Filter		56
	4.3.1	Mapping with Known Poses		57
	4.3.2	Mapping with Rao-Blackwellized Particle Filters .		60
	4.3.3	GMapping		62

4.4	Improvement of GMapping	64
	4.4.1 Experiments: 2D LiDAR SLAM	65
	4.4.2 Vision-based GMapping	65
4.5	3D LiDAR-based SLAM	70
4.6	Experiments of 3D-based LiDAR SLAM	77
4.7	Comparison of 3D Reconstruction	78
Chapte	r 5 Path Planning	83
5.1	Path Planning	84
5.2	Search Algorithms	87
	5.2.1 A* Pathfinding	88
	5.2.2 AO* Pathfinding	90
	5.2.3 WAO* Pathfinding	93
	5.2.4 DAO* Pathfinding	95
5.3	Path Planning in Dynamic Environments	98
	5.3.1 D* Lite Pathfinding	99
	5.3.2 DDAO* Pathfinding	100
	5.3.3 Examples	100
5.4	Navigation Mesh	101
	5.4.1 NavMesh Generation	108
5.5	Pathfinding on NavMeshes	114
	5.5.1 Examples of Pathfinding on NavMeshes	114
	5.5.2 Application to Navigation	118

Chapter	6 Navigation	121			
6.1	System Architecture	121			
	6.1.1 Experimental Setup	122			
	6.1.2 Pre-built Map	124			
6.2	Motion Control	124			
6.3	Navigation on 2D Grid Maps	126			
	6.3.1 Obstacle Avoidance	128			
6.4	Navigation on NavMeshes	130			
	6.4.1 Experiments: Indoor and Outdoor Cases	133			
6.5	Obstacle Avoidance on NavMeshes	134			
Chapter 7 Conclusions 139					
7.1	Conclusions	139			
7.2	Future Work	139			
References 1					