1 problem 1

Since $L' \leq_m L$, we have a Polynomial time computable function f, $\forall x \in L'$ iff $f(x) \in L$.

Since L \in P, we have a det polynomial time algorithm M_L to solve L.

We construct a polynomial time algorithm to solve L'. for all input $\mathbf x$

compute f(x)

If $f(x) \in L$ then M_L accepts x, otherwise M_L rejects x. So if $L \in P$ and $L' \leq_m L$, clearly $L' \in P$.

2 problem 2

Since $L' \leq_m L$, we have a Polynomial time computable function f, $\forall x \in L'$ iff $f(x) \in L$.

So we know $\forall x' \in \overline{L}'$, $x' \notin L'$, $f(x') \notin L$, $f(x') \in \overline{L}$ So $\forall f(x') \in \overline{L}$, $f(x') \notin L$, $x' \notin L'$, $x' \in \overline{L}'$ So $x' \in \overline{L}'$ iff $f(x') \in \overline{L}$. So $\overline{L}' \leq_m \overline{L}$.

3 problem 3

We assume that recursive language is NP.

This means for any recursive language, there have an polynomial time algorithm accept it.

For example we construct a recursive language L, L=0ⁱ: 0^{i} is not accepted by Mi in 2^{nk} steps.

But L \notin DTIME(2^{nk}). So recursive language is not in NP.

4 problem 4

Let L be a recursive language and L1 = SAT and L2=L1 \cup L. Clearly we know that L1 is NP-complete, and L2 is not in NP.

5 problem 5

First we need show that problem Q is in NP:

Guess S' and check that S' \subseteq S, -S' - \le k, and S' contains at least one element from each subset in C. Guessing S' takes O(n) time and checking S' takes $O(n^2)$ time, so $Q \in NP$.

Secondly, we need show problem Q is NP-hard:

 $VC \leq_m Q$: The Vertex Cover problem is NP-complete, so if VC can be transformed into Q in polynomial time, then Q is NP-hard. Transform the Vertex Cover problem to Q as follows:

- 1. Start with a graph G=(V, E) and value k.
- 2. Set S=V.
- 3. For each $(v, v') \in E$, add the subset v, v' to C.

From S and C, form the set S'. The set S' is a vertex cover for G, where $-S'-\le k$. In the original VC problem, the size of the VC is k. If -S'-< k, then \exists S", where S' \subset S" \subseteq S, and -S"-=k. The set S" is formed by setting

S" = S' and adding elements of S until —S"—=k. S" is stille a VC for G. The transformation of VC to Q can be performed in deterministic polynomial time, so VC \leq_m Q. VC is NP-complete, so Q is NP-hard.

6 problem 6

If $L \in NP$ -complete, then $L \in NP$, and if $L \in co-NP$ -complete, then $L \in co-NP$.

Firstly, Np \subseteq co-NP: \forall L' \in NP, L' \leq_m L, since L \in NP-complete. So we know L' \in co-NP.

Secondly, co-NP \subseteq NP: \forall L' \in co-NP, L' \leq_m L. Since L \in NP, L' \in NP.

 $NP \subseteq \text{co-NP}$ and $\text{co-NP} \subseteq NP$, so we know NP = co-NP.

7 Problem 7

To show that problem R is NP-complete. We just need to show that problem R is NP and Problem R is NP-hard. Firstly, $R \in NP$: Guess spanning tree T and check that T is a spanning tree. To check that T is a spanning tree, check that T contains all vertices in G, that the degree of each vertex is no more than k, and that every edge in T is in G. Guessing T takes O(n) time and checking T takes $O(n^2)$ time, so $R \in NP$. Secondly, $HP \leq_m R$: THe Hamiltonian Path problem is concerned with finding a path through a graph that visits each vertex once. Transform the HP

problem to Q as follows:

- 1. Start with a graph G=(V,E).
- 2. Set k=2.

From G, find a spanning tree T where the degree of each vertex in T is \leq k. THe spanning tree T is a HP for G. The transformation of HP to R can be performed in deterministic polynomial time, so HP \leq_m R. HP is NP-complete, so R is NP-hard.