Multiple and Partial Correlation

I sty of depends our sty and I Correlation -> Mutiple Correlation. -> Partial Correlation. Multiple correlation:-To measure: a variable x, which dependent on more than one variables May X2 and X3. 2) P. 125 7 19 Obd : 12 1 2524 Partial Correlation:-To examine the influence of One variable upon another, after eliminating The effects of Mird (or) other variables.

Formulas: Multiple Correlation Co. efficient If x, depends on x2 and x3 then, $R_{1.23} = 9_{12}^{2} + 9_{13}^{2} - 2_{12}9_{13}7_{23}$ $-2_{12}9_{13}7_{23}$ $-2_{12}9_{13}7_{23}$ 12 depends on 2, and 23. Then, $R_{2-13} = \sqrt{\frac{9n_{21}^{2} + 9n_{23}^{2} - 29n_{21}9n_{23}9n_{13}}{|-n_{13}^{2}|}}$

 $\frac{T_{3}}{T_{3}} = \sqrt{\frac{\pi_{31}^{2} + 9r_{32}^{2} - 29r_{31}\pi_{32}\pi_{12}}{1 - 9r_{12}^{2}}}$

Projerties: 1) 0 4 R 1-23 41 2) R_{1.23} > 92₁₂ and R_{1.23} >92₁₃. 3) If R₁₋₂₃ = 0 then 91,2=0 & 91,3=0 4) R1.23 = P1.32 but P 1.23 # P 2.13 not more algebras 5) 9211 = 9222 = 9233 = 1.

[Partial Correlation Coefficient] *) Correlation bluen 21, and 22, x3 kept Constant $\frac{97_{12.3}}{\sqrt{(1-\pi^2_{13})(1-\pi^2_{23})}}$ *) Correlation blum x, and x3, x2 kyt Constant. $9_{13.2} = \frac{9_{13} - 9_{12} \cdot 9_{32}}{\sqrt{(1-n_{12}^2)(1-n_{32}^2)}}$

*) Correlation blue χ_{2} and χ_{3} , χ_{1} kept Combant. $g_{123-1} = \frac{g_{123} - g_{121} \cdot g_{131}}{\sqrt{(1-g_{121}^{2})(1-g_{231}^{2})}}$ [Note: $-1 \leq g_{12.3} \leq 1$, Similarly for $g_{13.2}$ and $g_{123.1}$.

1. Given, $r_{12} = 0.70$, $r_{13} = 0.61$, $r_{23} = 0.40$, calculate: $r_{23.1}$, $r_{13.2}$, and $r_{12.3}$. Solution: We know that

$$r_{23.1} = \frac{r_{23} - r_{12} r_{13}}{\sqrt{(1 - r_{12}^2)} \sqrt{(1 - r_{13}^2)}}$$

$$\therefore r_{23.1} = \frac{0.4 - (0.7 \times 0.61)}{\sqrt{1 - (0.7)^2} \sqrt{1 - (0.61)^2}} = \frac{0.4 - 0.427}{\sqrt{0.51} \sqrt{0.6279}} = \frac{-0.027}{0.714 \times 0.792} = -0.048$$

$$r_{13.2} = \frac{r_{13} - r_{12} r_{23}}{\sqrt{(1 - r_{12}^2)} \sqrt{(1 - r_{23}^2)}}$$

$$r_{13.2} = \frac{0.61 - (0.7 \times 0.4)}{\sqrt{1 - (0.7)^2} \sqrt{1 - (0.4)^2}} = \frac{0.61 - 0.28}{\sqrt{1 - 0.49} \sqrt{1 - 0.16}} = \frac{0.33}{\sqrt{0.51} \sqrt{0.84}} = 0.504$$

$$r_{12.3} = \frac{r_{12} - r_{13} r_{23}}{\sqrt{1 - r_{13}^2} \sqrt{1 - r_{23}^2}}$$

$$r_{12.3} = \frac{0.7 - (0.61 \times 0.4)}{\sqrt{(1 - (0.61)^2)}\sqrt{1 - (0.4)^2}} = \frac{0.7 - 0.244}{\sqrt{1 - 0.3721}\sqrt{1 - 0.16}} = \frac{0.456}{\sqrt{0.6279}\sqrt{0.84}}$$
$$= \frac{0.456}{0.726} = 0.628.$$

2. The following zero-order correlation coefficients are given:

$$r_{12} = 0.98$$
, $r_{13} = 0.44$, and $r_{23} = 0.54$

Calculate the partial correlation coefficient between first and the third variables keeping the effect of second variable constant. Also, calculate multiple correlation coefficient.

Solution: The partial correlation coefficient between first and the third variables keeping the effect of second variable constant is given by $r_{13.2}$. Therefore, we have

$$r_{13.2} = \frac{r_{13} - r_{12}r_{23}}{\sqrt{1 - r_{13}^2}\sqrt{1 - r_{23}^2}}$$

$$= \frac{0.44 - (0.98)(0.54)}{\sqrt{1 - (0.98)^2}\sqrt{1 - (0.54)^2}} = \frac{0.44 - 0.5292}{\sqrt{1 - 0.9604}\sqrt{1 - 0.2916}}$$

$$= \frac{-0.0892}{\sqrt{0.0396}\sqrt{0.7084}} = \frac{-0.0892}{0.199 \times 0.842} = \frac{-0.0892}{0.1676} = -0.5322$$

VO.037 0 VO.7 00 1 0,177 11 010 12 01-

Multiple correlation coefficient, treating first variable as dependent and second and third as independent is given by

$$R_{1.23} = \sqrt{\frac{r_{12}^2 + r_{13}^2 - 2r_{12}r_{13}r_{23}}{1 - r_{23}^2}}$$

$$= \sqrt{\frac{(0.98)^2 + (0.44)^2 - 2(0.98)(0.44)(0.54)}{1 - (0.54)^2}} = \sqrt{\frac{0.9604 + 0.1936 - 0.4657}{1 - 0.2916}}$$

$$= \sqrt{\frac{1.154 - 0.4657}{0.7084}} = \sqrt{\frac{0.6883}{0.7084}} = \sqrt{0.9716} = 0.9857.$$

Problem 3:

$$\sigma_1 = 3$$
, $\sigma_2 = \sigma_3 = 5$, $r_{12} = 0.6$, and $r_{23} = r_{31} = 0.8$

Find (a) $r_{23.1}$ and (b) $R_{1.23}$.

Solution:

(a)
$$r_{23.1} = \frac{r_{23} - r_{12} r_{13}}{\sqrt{1 - r_{12}^2} \sqrt{1 - r_{13}^2}}$$
$$= \frac{0.8 - (0.6)(0.8)}{\sqrt{1 - (0.6)^2} \sqrt{1 - (0.8)^2}} = \frac{0.8 - 0.48}{\sqrt{0.64} \sqrt{0.36}} = \frac{0.32}{0.48} = 0.667.$$

(b)
$$R_{1.23} = \sqrt{\frac{r_{12}^2 + r_{13}^2 - 2r_{12} r_{13} r_{23}}{1 - r_{23}^2}}$$

$$= \sqrt{\frac{(0.6)^2 + (0.8)^2 - 2(0.6)(0.8)(0.8)}{1 - (0.8)^2}}$$

$$= \sqrt{\frac{0.36 + 0.64 - 0.768}{0.36}} = \sqrt{\frac{0.232}{0.36}} = \sqrt{0.6444} = 0.8028.$$

Problem 4:

Is there any consistency in the following data.

$$r_{12} = 0.6$$
, $r_{13} = -0.4$, $r_{23} = 0.8$.

Solution: We know that

$$r_{12.3} = \frac{r_{12} - r_{13} r_{23}}{\sqrt{(1 - r_{13}^2)(1 - r_{23}^2)}}$$

$$r_{12.3} = \frac{0.6 - (-0.4) \times 0.8}{\sqrt{\{1 - (-0.4)^2\}\{1 - (0.8)^2\}}} = \frac{0.6 + 0.32}{\sqrt{(1 - 0.16)(1 - 0.64)}} = \frac{0.92}{0.549} = 1.6757$$

Since, $r_{12.3} > 1$, there is inconsistency in the data.

Problem 5:

. On the basis of observations made on 39 cotton plants, the total correlation of yield of cotton (Y_1) , number of bolls, i.e., seed vessels (Y_2) and height (Y_3) are found to be:

$$r_{12} = 0.8$$
, $r_{13} = 0.65$, and $r_{23} = 0.7$

Comment on the partial correlation between yield of cotton and the number of bolls, eliminating the effect of height.

Solution. We are given

$$r_{12} = 0.8$$
, $r_{13} = 0.65$, and $r_{23} = 0.7$

We have to find the partial correlation between yield of cotton and the number of bolls, eliminating the effect of height, i.e., in terms of symbols, we have to calculate $r_{12.3}$, which is given by

$$r_{12.3} = \frac{r_{12} - r_{13} r_{23}}{\sqrt{(1 - r_{13}^2)} \sqrt{(1 - r_{23}^2)}}$$

$$r_{12.3} = \frac{0.8 - (0.65 \times 0.7)}{\sqrt{1 - (0.65)^2} \sqrt{1 - (0.7)^2}} = \frac{0.8 - 0.455}{\sqrt{1 - 0.4225} \sqrt{1 - 0.49}}$$

$$= \frac{0.345}{\sqrt{0.5775} \sqrt{0.51}} = \frac{0.345}{0.543} = 0.635.$$

Multiple Regression

Multiple regression:
To estimate the value of one
Variable from More of several others.

4) length her blanc X; and X formulas: Multiple regression equations The multiple regression Equation of y, on 42 and 43 is given by, $y = a_{1,23} + b_{12,3} + b_{13,2} + b_{13,2}$ (125-1) (120-1) h The values of b12.3, b13.2 and 91.23 are determined by two methods. Method 1:-By solving three hormal eguts. Method 2:-By using mean.

Y_1 on Y_2 and Y_3

The multiple regression equation of y, on y_2 and y_3 is given by, $y_1 = a_{1,2,3} + b_{12,3} + y_2 + b_{13,2} + y_3$

Method 1: Normal equations

The values of $b_{12.3}$ and $b_{13.2}$ are determined by solving simultaneously the following three normal equations.

$$\begin{split} \Sigma Y_1 &= n \, a_{1.23} + b_{12.3} \, \Sigma Y_2 + b_{13.2} \, \Sigma Y_3 \\ \Sigma Y_1 Y_2 &= a_{1.23} \, \Sigma Y_2 + b_{12.3} \, \Sigma Y_2^2 + b_{13.2} \, \Sigma Y_2 Y_3 \\ \Sigma Y_1 Y_3 &= a_{1.23} \, \Sigma Y_3 + b_{12.3} \, \Sigma Y_2 Y_3 + b_{13.2} \, \Sigma Y_3^2 \end{split}$$

$\overline{Y_2}$ on Y_1 and Y_3

The multiple regression equation of Y2 on Y1 and Y3 is given by

$$Y_2 = a_{2.13} + b_{21.3}Y_1 + b_{23.1}Y_3$$

The values of $b_{21.3}$ and $b_{23.1}$ are determined by solving simultaneously the following three normal equations.

$$\begin{split} \Sigma Y_2 &= n \, a_{2.13} + b_{21.3} \, \Sigma Y_1 + b_{23.1} \, \Sigma Y_3 \\ \Sigma Y_1 Y_2 &= a_{2.13} \, \Sigma Y_1 + b_{21.3} \, \Sigma Y_1^2 + b_{23.1} \, \Sigma Y_1 Y_3 \\ \Sigma Y_2 Y_3 &= a_{2.13} \, \Sigma Y_3 + b_{21.3} \, \Sigma Y_1 Y_3 + b_{23.1} \, \Sigma Y_3^2 \end{split}$$

$\overline{Y_3}$ on $\overline{Y_1}$ and $\overline{Y_2}$

The multiple regression equation of Y_3 on Y_1 and Y_2 is given by

$$Y_3 = a_{3,12} + b_{31,2}Y_1 + b_{32,1}Y_2$$

The values of $b_{31.2}$ and $b_{32.1}$ are determined by solving simultaneously the following three normal equations.

$$\Sigma Y_3 = n a_{3.12} + b_{31.2} \Sigma Y_1 + b_{32.1} \Sigma Y_2$$

$$\Sigma Y_1 Y_3 = a_{3.12} \Sigma Y_1 + b_{31.2} \Sigma Y_1^2 + b_{32.1} \Sigma Y_1 Y_3$$

$$\Sigma Y_2 Y_3 = a_{3.12} \Sigma Y_2 + b_{31.2} \Sigma Y_1 Y_2 + b_{32.1} \Sigma Y_2^2$$

We are given

$$\overline{Y}_1 = 28.02$$
, $\overline{Y}_2 = 4.91$, $\overline{Y}_3 = 594$

$$\sigma_1 = 4.4$$
, $\sigma_2 = 1.1$, $\sigma_3 = 80$

$$r_{12} = 0.8$$
, $r_{23} = -0.56$, $r_{34} = -0.4$

Find the correlation coefficients $r_{23,1}$ and $R_{1,23}$.

Solution. We know that

$$r_{23.1} = \frac{r_{23} - r_{13} r_{12}}{\sqrt{1 - r_{13}^2} \sqrt{1 - r_{12}^2}} \text{ and } R_{1.23} = \sqrt{\frac{r_{12}^2 + r_{13}^2 - 2 r_{12} r_{13} r_{23}}{1 - r_{23}^2}}$$

Substituting the values, we get

$$r_{23.1} = \frac{-0.56 - (-0.4)(0.8)}{\sqrt{1 - (-0.4)^2} \sqrt{1 - (0.8)^2}} = \frac{-0.56 + 0.32}{\sqrt{0.84} \sqrt{0.36}} = \frac{-0.24}{0.55} = -0.44$$

$$R_{1.23} = \sqrt{\frac{(0.8)^2 + (-0.4)^2 - 2(0.8)(-0.4)(-0.56)}{1 - (-0.56)^2}}$$

$$= \sqrt{\frac{0.64 + 0.16 - 0.3584}{1 - 0.3136}} = \sqrt{\frac{0.4416}{0.6864}} = \sqrt{0.6433} = 0.80$$

Find the multiple linear regression of Y₁ on Y₂ and Y₃ from the data relating to these variables given below.

Y.:	11	17	26	28	31	35	41	49	63	69
Y,:	2	4	6	5	8	7	10	11	13	14
Y ₁ : Y ₂ : Y ₃ :	2	3	4	5	6	7	9	10	11	13

Solution: The regression equation of Y1 on Y2 and Y3 is given by

$$Y_1 = a_{123} + b_{123}Y_2 + b_{132}Y_3$$

The values of the constants $a_{1,23}$, $b_{12,3}$, and $b_{13,2}$ are obtained by solving the following three normal equations.

$$\Sigma Y_1 = n a_{1,23} + b_{12,3} \Sigma Y_2 + b_{13,2} \Sigma Y_3$$

$$\Sigma Y_1 Y_2 = a_{1,23} \Sigma Y_2 + b_{12,3} \Sigma Y_2^2 + b_{13,2} \Sigma Y_2 Y_3$$

$$\Sigma Y_1 Y_3 = a_{1,23} \Sigma Y_3 + b_{12,3} \Sigma Y_2 Y_3 + b_{13,2} \Sigma Y_3^2$$

Computation of required values										
Υ,	Y ₂	Y ₃	Y, Y,	Y_1Y_2	Y_2Y_3	Y, 2	Y ₂ ²	Y,2		
11	2	2	22	22	4	121	4	4		
17	4	3	68	51	12	289	9	16		
26	6	4	156	104	24	676	16	36		
28	5	5	140	140	2.5	784	2.5	25		
31	8	6	248	186	48	961	36	64		
35	7	7	245	245	49	1225	49	49		
41	10	9	410	369	90	1681	81	100		
49	11	10	539	490	110	2401	100	121		
63	13	11	819	693	143	3969	121	169		
69	14	13	966	897	182	4761	169	196		
ΣΥ ₁ = 370	ΣΥ ₂ = 80	$\Sigma Y_3 = 70$	$\Sigma Y_1 Y_2 = 3613$	$\Sigma Y_1 Y_3 = 3197$	$\Sigma Y_2 Y_1 = 687$	$\Sigma Y_1^2 = 16868$	$\Sigma Y_{2}^{2} = 780$	$\Sigma Y_3^2 = 610$	Ī	

Substituting the values in the normal equations, we have

$$370 = 10a_{1,23} + 80b_{12,3} + 70b_{13,2}$$

$$3613 = 80a_{1,23} + 780b_{12,3} + 687b_{13,2}$$

$$3197 = 70a_{1,23} + 687b_{12,3} + 610b_{13,2}$$

... (iii)

Dividing each equation by the coefficient of $b_{12.3}$, we get

$$0.125a_{1,23} + b_{12,3} + 0.875b_{13,2} = 4.625$$

$$0.103a_{1.23} + b_{12.3} + 0.881b_{13.2} = 4.632$$

$$0.102a_{1,23} + b_{12,3} + 0.888b_{13,2} = 4.654$$

Substracting equation (iv) from (v) and from (vi), we get

$$-0.022a_{123} + 0.006b_{132} = 0.007$$

$$-0.001a_{1.23} + 0.007b_{13.2} = 0.022$$

Multiplying (vii) and (viii) by 1000, we get

$$-22a_{123} + 6b_{132} = 7$$

$$-a_{123} + 7b_{132} = 22$$

... (x)

Solving these equations, we get

$$a_{1,23} = 0.561$$
, $b_{12,3} = 1.735$, and $b_{13,2} = 3.223$

Hence, the required equation is

$$Y_1 = 3.561 + 1.735 Y_1 + 3.223 Y_1$$

Problem 3:

X	11	17	26	28	31	35	41	49	63
Y	12	14	16	20	23	27	30	35	43
Z	22	35	37	46	49	52	57	60	71

Find the followings for the above data

- 1. Multiple Correlation between the variables
- 2. Partial correlation between the variables
- 3. Multiple regression between the variables