Figure 1: Q01: $L_1 = (a+b)^*a$

Figure 2: Q01: $L_2 = b(a+b)^*$

Figure 4: Q01: $L_3 = b(b+aa^*b)^*$

Figure 5: Q02: $L_1 = (a+b)b(a+b)^*$

Figure 6: Q02: $L_2 = b(a+b)^*$

Figure 7: Q02: $L_1 \cap L_2$

Figure 8: Q02: $L_3 = ab(a+b)^*$

Figure 9: Q03: $L_1 = (b+ab)^*(a+A)$

Figure 10: Q03: $L_2 = (a+b)^*aa(a+b)^*$

Figure 11: Q02: $L_1 \cap L_2$

Figure 12: Q03: $L_3 = (b+ab)^*aa(bb^*a)^*$

Figure 13: Q04: $L_1 = (aa+ab+ba+bb)^*$

Figure 14: Q04: $L_2 = b(a+b)^*$

Figure 15: Q04: $L_1 \cap L_2$ AA start b ВС СВ a+b a+b b а AC AB b a+bа CC ВВ a+b

Figure 17: Q05: $L_1 = (aaa + bbb)^*$

Figure 18: Q05: $L_2 = a(a+b)^*$

Figure 19: Q05: $L_1 \cap L_2$

а

start \rightarrow (AA

Figure 21: Q06: *FA*₁

Figure 22: Q06: *FA*₂

Figure 23: Q06: $L_1 \cap L_2$

Not acceptable by $L_1 \cap L_2$: DC Acceptable by $L_1 \cap L_2$: AA, BA, CB,EB

Figure 24: Q07: *FA*₁

Figure 25: Q07: *FA*₂

The following are equivalent due to the below proofs in Figures 26–31:

Figure 26: Q07: *FA*₁'

Figure 27: Q07: *FA*₂

Figure 28: Q07: $(FA'_1 + FA_2)'$ No final states

Figure 29: Q07: *FA*₁

Figure 30: Q07: *FA*′₂

Figure 31: Q07: $(FA_1 + FA'_2)'$ No final states

Figure 32: Q08: *FA*₁

Figure 33: Q08: *FA*₂

Figure 34: Q08: $L_1 \neq L_2$

Not acceptable by $L_1 \cap L_2$: C1 Acceptable by $L_1 \cap L_2$: A2, B2 Acceptable by L_1 only: A1, B1 Acceptable by L_2 only: C2

Due to A1: $L_1 \neq L_2$

Figure 35: Q09: *FA*₁

Figure 36: Q09: *FA*₂

Not acceptable by $L_1 \cap L_2$: 1X,1Y,2X,2Y

Acceptable by $L_1 \cap L_2$: 3Z Acceptable by L_1 only: 3X, 3Y Acceptable by L_2 only: 1Z, 2Z Due to 3Y and 2Z: $L_1 \neq L_2$

Figure 38: Q10: Blue Paint

Figure 39: Q10: Step 1

Figure 40: Q10: Step 2

Figure 41: Q10: Step 3

Figure 42: Q10: Step 4

This machine accepts no words due to the fact that node ${\sf E}$ remains unpainted and is the only final state.

Figure 43: Q11: Blue Paint

