

UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Addiese: COMMISSIONER FOR PATENTS P O Box 1450 Alexandria, Virginia 22313-1450 www.wepto.gov

| APPLICATION NO.                              | FILING DATE | FIRST NAMED INVENTOR | ATTORNEY DOCKET NO. | CONFIRMATION NO. |
|----------------------------------------------|-------------|----------------------|---------------------|------------------|
| 10/537,955                                   | 12/13/2005  | Maik Rabe            | 10191/4172          | 1384             |
| 26445<br>KENYON & KENYON LLP<br>ONE BROADWAY |             |                      | EXAMINER            |                  |
|                                              |             |                      | BERNSTEIN, ALLISON  |                  |
| NEW YORK, NY 10004                           |             |                      | ART UNIT            | PAPER NUMBER     |
|                                              |             |                      | 2824                |                  |
|                                              |             |                      |                     |                  |
|                                              |             |                      | MAIL DATE           | DELIVERY MODE    |
|                                              |             |                      | 07/09/2009          | PAPER            |

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

## Application No. Applicant(s) 10/537.955 RABE ET AL. Office Action Summary Examiner Art Unit ALLISON P. BERNSTEIN 2824 -- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --Period for Reply A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS. WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION. Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication. If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication - Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b). Status 1) Responsive to communication(s) filed on 04 May 2009. 2a) This action is FINAL. 2b) This action is non-final. 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11, 453 O.G. 213. Disposition of Claims 4) Claim(s) 11.13.14 and 18-23 is/are pending in the application. 4a) Of the above claim(s) is/are withdrawn from consideration. 5) Claim(s) \_\_\_\_\_ is/are allowed. 6) Claim(s) 11,13,14 and 18-23 is/are rejected. 7) Claim(s) \_\_\_\_\_ is/are objected to. 8) Claim(s) \_\_\_\_\_ are subject to restriction and/or election requirement. Application Papers 9) The specification is objected to by the Examiner. 10) The drawing(s) filed on is/are; a) accepted or b) objected to by the Examiner. Applicant may not request that any objection to the drawing(s) be held in abevance. See 37 CFR 1.85(a). Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d). 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152. Priority under 35 U.S.C. § 119 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f). a) All b) Some \* c) None of: Certified copies of the priority documents have been received. 2. Certified copies of the priority documents have been received in Application No. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)). \* See the attached detailed Office action for a list of the certified copies not received. Attachment(s)

1) Notice of References Cited (PTO-892)

Paper No(s)/Mail Date 5/4/2009.

Notice of Draftsperson's Patent Drawing Review (PTO-948)
Notice of Draftsperson's Patent Drawing Review (PTO-948)
Notice of Draftsperson's Patent Drawing Review (PTO-948)

Interview Summary (PTO-413)
Paper No(s)/Mail Date.

6) Other:

5) Notice of Informal Patent Application

Art Unit: 2824

### DETAILED ACTION

This Office Action is in response to the Request for Continued Examination, filed 4 May 2009.

Acknowledgment is made of applicant's amendment, filed on 4 May 2009. The changes and remarks disclosed therein have been considered.

Claims 11, 13, 14, and 18-23 are pending in the application. Claims 11, 13, and 22 are currently amended. Claims 1-10, 12 and 15-17 have been cancelled. Claims 11, 13, and 22 are independent claims.

### Information Disclosure Statement

Acknowledgment is made of applicant's Information Disclosure Statement (IDS), Form PTO-1449, filed 4 May 2009. The information therein was considered.

## Claim Rejections - 35 USC § 112

The following is a quotation of the first paragraph of 35 U.S.C. 112:

The specification shall contain a written description of the invention, and of the manner and process of making and using it, in such full, clear, concise, and exact terms as to enable any person skilled in the art to which it pertains, or with which it is most nearly connected, to make and use the same and shall set forth the best mode contemplated by the inventor of carrying out his invention.

Claims 11, 13, 14, 18-23 are rejected under 35 U.S.C. 112, first paragraph, as failing to comply with the enablement requirement. The claim(s) contains subject matter which was not described in the specification in such a way as to enable one skilled in the art to which it pertains, or with which it is most nearly connected, to make and/or use the invention. Claims 11, 13, and 22 recite the limitations "the non-magnetic

Art Unit: 2824

intermediate layer of the layer arrangement and the second non-magnetic intermediate layer of the magneto-resistive layer stack...are at least substantially made of the same material". It is unclear what is meant by "at least substantially made of the same material". What materials are "substantially" the same? No examples of materials that are substantially the same is give in the specification. Clarification is required.

The following is a quotation of the second paragraph of 35 U.S.C. 112:

The specification shall conclude with one or more claims particularly pointing out and distinctly claiming the subject matter which the applicant regards as his invention.

Claims 11, 13, 14, 18-23 are rejected under 35 U.S.C. 112, second paragraph, as being indefinite for failing to particularly point out and distinctly claim the subject matter which applicant regards as the invention.

Claims 11, 13, and 22 recite the limitations "the non-magnetic intermediate layer of the layer arrangement and the second non-magnetic intermediate layer of the magneto-resistive layer stack...are at least substantially made of the same material". It is unclear what is meant by "at least substantially made of the same material". What materials are "substantially" the same? The terms "at least substantially" render the claims vague and indefinite. Clarification is required.

## Claim Rejections - 35 USC § 103

- The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:
  - (a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and

Art Unit: 2824

the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.

- Claims 11, 13, 15, 17, and 20-23 are rejected under 35 U.S.C. 103(a) as being unpatentable over Sakakima et al. (US 5,841,611) ("Sakakima") in view of Haratani et al. (US 6,144,524) ("Haratani").
- 3 Regarding claim 11. Sakakima discloses, in figures 1B, 2B, and 24, a magnetoresistive layer system comprising: a magneto-resistive layer stack (including, for example, 103, 102, 103, 102 at the top of figure 24 or 1, 2, 3, 2 in figure 1B or 3, 2, 3' in figure 2B); and at least one layer arrangement situated in an environment of the magneto-resistive layer stack working on the basis of one of a GMR effect and an AMR effect, which generates a resulting magnetic field acting upon the magneto-resistive layer stack, the layer arrangement including a first magnetic layer (including 101, 102, 101 below magneto-resistive stack, or 1 below magneto-resistive stack in figure 1B, or 1 under 3' in figure 2B), a second magnetic layer (including 103, 102, 103 below magneto-resistive stack, or 3 below magneto-resistive stack in figure 1B, or 3, under 3' and 2), and a non-magnetic intermediate layer (including 102 below magneto-resistive stack, or 2 between 1 and 3 in figure 1B, or 2, between 3' and 3 in figure 2B) separating the first magnetic layer (including 101, 102, 101 below magneto-resistive stack, or 1 below magneto-resistive stack in figure 1B, or 1 under 3' in figure 2B) and the second magnetic layer (including 103, 102, 103 below magneto-resistive stack, or 3 below magneto-resistive stack in figure 1B, or 3, under 3' and 2) from one another, the first magnetic layer and the second magnetic layer being ferromagnetically exchangecoupled via the intermediate layer; wherein one of: (a) the first magnetic layer is a

Art Unit: 2824

magnetically soft layer, made of CoFe, Co, and magnetic alloys containing these materials (column 4 lines 25-26), and the second magnetic layer is a magnetically hard layer and (b) the first magnetic layer is a magnetically hard layer (for example 1 or 101), and the second magnetic layer (3 or 103) is a magnetically soft layer, made of CoFe. Co and magnetic alloys containing these materials (see also 1, 2, 3 in figure 1, and 103, 102-1, 102-2, 102-1, 101 in figure 22); wherein the magneto-resistive layer stack has a third magnetic layer (including 103, 3, or 3') and a fourth magnetic layer (including 103, 1, or 3) which are separated from one another by a second non-magnetic intermediate layer (including 102, 2), and the non-magnetic intermediate layer of the layer arrangement and the second non-magnetic intermediate layer of the magneto-resistive layer stack at least one of (a) are at least substantially made of the same material and (b) have a substantially equal thickness (column 4 lines 34-35); wherein the magnetoresistive layer stack is directly situated on the layer arrangement (in figure 24 layer arrangement 101/102/101 is directly on magneto-resistive stack 103/102/103/102, in figure 1B layer arrangement 1/2/3 is directly on magneto-resistive stack 1/2/3/2, in figure 2B layer arrangement 1/3'/2/3 is directly on magneto-resistive stack 3/2/3').

- Sakakima does not disclose wherein the magnetically hard layer is made of CoSm; and wherein the non-magnetic intermediate layer is made of CuAgAu.
- Haratani discloses a magnetically hard layer that is made of CoSm (column 6 lines 62-64) and a non-magnetic intermediate layer that is made of CuAgAu (column 5 lines 10-18).

Application/Control Number: 10/537,955 Page 6

Art Unit: 2824

6. At the time of the invention it would have been obvious to a person of ordinary skill in the art to modify the device of Sakakima with a magnetically hard layer that is made of CoSm in view of the teachings of Haratani since Co alloys are commonly used in the art for hard magnetic layers and Cu, Ag, and Au and alloys of these are commonly used in the art for non-magnetic layers.

7. Regarding claim 13, Sakakima discloses, in figure 24, a magneto-resistive layer system comprising: a magneto-resistive layer stack (including, for example, 103, 102, 103, 102 at the top of the figure); and at least one layer arrangement situated in an environment of the magneto-resistive laver stack working on the basis of one of a GMR effect and an AMR effect, which generates a resulting magnetic field acting upon the magneto-resistive layer stack, the layer arrangement including a first magnetic layer (including 101 below magneto-resistive stack), a second magnetic layer (including 101 below magneto-resistive stack), and a non-magnetic intermediate layer (including 102 below magneto-resistive stack) separating the first magnetic layer (including 101 below magneto-resistive stack) and the second magnetic layer (including 101 below magnetoresistive stack) from one another, the first magnetic layer and the second magnetic layer being ferromagnetically exchange-coupled via the intermediate layer; wherein each of the first magnetic layer (for example 101) and the second magnetic layer (for example 101) is a magnetically hard layer; wherein the magneto-resistive layer stack has a third magnetic layer (including 103) and a fourth magnetic layer (including 103) which are separated from one another by a second non-magnetic intermediate layer (including 102), and the non-magnetic intermediate layer of the layer arrangement and

Art Unit: 2824

the second non-magnetic intermediate layer of the magneto-resistive layer stack at least one of (a) are at least substantially made of the same material and (b) have a substantially equal thickness (column 4 lines 34-35); wherein the magneto-resistive layer stack is directly situated on the layer arrangement (in figure 24 layer arrangement 101/102/101 is directly on magneto-resistive stack 103/102/103/102.

- Sakakima does not disclose wherein the magnetically hard layer is made of CoSm; and wherein the non-magnetic intermediate layer is made of CuAgAu.
- Haratani discloses a magnetically hard layer that is made of CoSm (column 6 lines 62-64) and a non-magnetic intermediate layer that is made of CuAgAu (column 5 lines 10-18).
- 10. At the time of the invention it would have been obvious to a person of ordinary skill in the art to modify the device of Sakakima with a magnetically hard layer that is made of CoSm in view of the teachings of Haratani since Co alloys are commonly used in the art for hard magnetic layers and Cu, Ag, and Au and alloys of these are commonly used in the art for non-magnetic layers.
- 11. **Regarding claim 20**, the Sakakima/Haratani combination discloses, in figure 24, the magneto-resistive layer system according to claim 11, wherein, in response to a change in a temperature to which the magneto-resistive layer system (figure 24) is exposed, one of a changing sensitivity and a shifting working point of the magneto-resistive layer stack (including, for example, 103, 102, 103 at the top of the figure) with respect to an external magnetic field to be measured with respect to at least one of strength and direction, is at least partially compensated within a predefined temperature

Art Unit: 2824

interval by the resulting magnetic field generated by the layer arrangement (including 101/103, 102, and 101/103 below magneto-resistive stack), which also changes as a result of the temperature change (this is a recitation of intended use of the claimed invention).

- 12. Regarding claim 21, the Sakakima/Haratani combination discloses, in figure 24, the magneto-resistive layer system according to claim 20, wherein the compensation is performed completely and the temperature interval is -30°C to +200°C (this is a recitation of intended use of the claimed invention).
- 13. Regarding claim 22, Sakakima discloses, in figure 24, a sensor element comprising a magneto-resistive layer system, the magneto-resistive layer system including: a magneto-resistive layer stack (including, for example, 103, 102, 103, 102 at the top of figure 24 or 1, 2, 3, 2 in figure 1B or 3, 2, 3' in figure 2B); and at least one layer arrangement situated in an environment of the magneto-resistive layer stack working on the basis of one of a GMR effect and an AMR effect, which generates a resulting magnetic field acting upon the magneto-resistive layer stack, the layer arrangement including a first magnetic layer (including 101, 102, 101 below magneto-resistive stack, or 1 below magneto-resistive stack in figure 1B, or 1 under 3' in figure 2B), a second magnetic layer (including 103, 102, 103 below magneto-resistive stack, or 3 below magneto-resistive stack in figure 1B, or 3, under 3' and 2), and a non-magnetic intermediate layer (including 102 below magneto-resistive stack, or 2 between 1 and 3 in figure 1B, or 2, between 3' and 3 in figure 2B) separating the first magnetic layer (including 101, 102, 101 below magneto-resistive stack, or 1 below magneto-re

Art Unit: 2824

resistive stack in figure 1B, or 1 under 3' in figure 2B) and the second magnetic layer (including 103, 102, 103 below magneto-resistive stack, or 3 below magneto-resistive stack in figure 1B, or 3, under 3' and 2) from one another, the first magnetic layer and the second magnetic layer being ferromagnetically exchange-coupled via the intermediate layer; wherein one of: (a) the first magnetic layer is a magnetically soft layer, made of CoFe, Co, and magnetic alloys containing these materials (column 4 lines 25-26), and the second magnetic layer is a magnetically hard layer and (b) the first magnetic layer is a magnetically hard layer (for example 1 or 101), and the second magnetic layer (3 or 103) is a magnetically soft layer, made of CoFe. Co and magnetic alloys containing these materials (see also 1, 2, 3 in figure 1, and 103, 102-1, 102-2, 102-1, 101 in figure 22); wherein the magneto-resistive layer stack has a third magnetic layer (including 103, 3, or 3') and a fourth magnetic layer (including 103, 1, or 3) which are separated from one another by a second non-magnetic intermediate layer (including 102, 2), and the non-magnetic intermediate layer of the layer arrangement and the second non-magnetic intermediate layer of the magneto-resistive layer stack at least one of (a) are at least substantially made of the same material and (b) have a substantially equal thickness (column 4 lines 34-35); wherein the magneto-resistive layer stack is directly situated on the layer arrangement (in figure 24 layer arrangement 101/102/101 is directly on magneto-resistive stack 103/102/103/102, in figure 1B layer arrangement 1/2/3 is directly on magneto-resistive stack 1/2/3/2, in figure 2B layer arrangement 1/3'/2/3 is directly on magneto-resistive stack 3/2/3').

Art Unit: 2824

 Sakakima does not disclose wherein the magnetically hard layer is made of CoSm; and wherein the non-magnetic intermediate layer is made of CuAgAu.

- 15. Haratani discloses a magnetically hard layer that is made of CoSm (column 6 lines 62-64) and a non-magnetic intermediate layer that is made of CuAgAu (column 5 lines 10-18).
- 16. At the time of the invention it would have been obvious to a person of ordinary skill in the art to modify the device of Sakakima with a magnetically hard layer that is made of CoSm in view of the teachings of Haratani since Co alloys are commonly used in the art for hard magnetic layers and Cu, Ag, and Au and alloys of these are commonly used in the art for non-magnetic layers.
- 17. Regarding claim 23, the Sakakima/Haratani combination discloses, in figure 24, the sensor element according to claim 22, wherein the sensor element is for detecting magnetic fields with respect to at least one of strength and direction (this is a recitation of intended use of the claimed invention).
- 18. Claims 14, 18, and 19 are rejected under 35 U.S.C. 103(a) as being unpatentable over Sakakima et al. (US 5,841,611) ("Sakakima") in view of Haratani et al. (US 6,144,524) ("Haratani") as applied to claim 11 above, and further in view of Den (US 6.611.034).
- Regarding claim 14, the Sakakima/Haratani combination discloses the magneto-resistive layer system according to claim 11.

Application/Control Number: 10/537,955 Page 11

Art Unit: 2824

 The Sakakima/Haratani combination does not disclose expressly wherein the first magnetic layer has a different thickness than the second magnetic layer.

- Den discloses, in figure 2B, the magneto-resistive layer system according to claim 11, wherein the first magnetic layer (16) has a different thickness than the second magnetic layer (17) (column 5 lines 25-27).
- 22. At the time of the invention it would have been obvious to a person of ordinary skill in the art to modify the device of Sakakima/Haratani with a first magnetic layer that has a different thickness than the second magnetic layer in view of the teachings of Den for the purpose of increasing the stability of the hard (i.e. thicker) magnetic layer (column 7 lines 10-20 of Den).
- 23. **Regarding claim 18,** the Sakakima/Haratani/Den combination further discloses, in figure 2B of Den, the magneto-resistive layer system according to claim 11, wherein at least one of the first magnetic layer and the second magnetic layer has a thickness between 10 nm and 100 nm (column 6 lines 25-30 of Den).
- 24. Regarding claim 19, the Sakakima/Haratani/Den combination further discloses, in figure 2B of Den, the magneto-resistive layer system according to claim 18, wherein the thickness is between 20 nm and 50 nm (column 6 lines 25-30 of Den).

# Response to Arguments

 Applicant's arguments filed 4 May 2009 have been fully considered but they are not persuasive. Art Unit: 2824

 Applicant argues that figure 24 of Sakakima does not disclose a magnetoresistive layer stack situated directly on a layer arrangement.

27. In response, in Sakakima, magneto-resistive stack 103/102/103/102 is directly above layer arrangement 101/102/101/102/103/102/103. Where 101/102/101 is the magnetically hard layer, 103/102/103 is the magnetically soft layer. Also, in figure 1B, magneto-resistive stack 1/2/3/2 is directly above layer arrangement 1/2/3. In figure 2B, magneto-resistive stack 3/2/3' is directly above layer arrangement 1/or 1')/3'/2/3.

#### Conclusion

Any inquiry concerning this communication or earlier communications from the examiner should be directed to ALLISON P. BERNSTEIN whose telephone number is (571)272-9011. The examiner can normally be reached on M-Th 5:30am-4pm EST.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Richard Elms can be reached on 571-272-1869. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Application/Control Number: 10/537,955 Page 13

Art Unit: 2824

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

APB 7/5/2009

/ANH PHUNG/ Primary Examiner, Art Unit 2824