Energie textuelle de documents

Juan-Manuel TORRES
juan-manuel.torres@univ-avignon.fr

Micro introduction à la Physique Statistique...

La croissance de couches atomiques par jets moléculaires, c'est la technique de l'épitaxie. Crédit : phocea.CEA

Micro introduction à la Physique Statistique...

Nouveaux matériaux magnétiques

Mesures magnétiques et configuration de spins

Spin: représentation de chaque atome comme un petit aimant

Modèles théoriques de la Physique Statistique:

Modèle d'Ising: deux orientations possibles

Energie du système

E = E (interactions) + E(champ)

$$E_{ij} = J_{ij} s_i s_j + E_i = H s_i$$

$$J_{ij} = J_{ji}$$

Configuration de spin final : minimisation de E p(état du système) = f(E, T, Z); Z=fonction de partition ; T = température

† † † † † † † †

Mais... où entre le TALN dans toute cette histoire?

Applications *exotiques* de la physique statistique

Mémoire associative

(Hopfield, 1982)

Modèle de spins d'Ising

neurone = spin
$$\int_{ij}$$

$$E_{ij} = J_{ij} s_i s_j$$

Réseaux neuronaux

Règle d'Hebb $J_{ij} = s_i s_j$

Apprentissage

Récupération: minimisation de E

Limitations:

- Patrons corrélés → erreur de récupération
- Capacité ≈ 0 , 14 *N*

Les maisons bleues de ma tante. Un de mes tantes s'appelle Lulu. J'adore tellement sa maison. Le bleu est ma couleur préférée! J'ai des chaussures blues toutes neuves.

Codage des documents comme un système de spins

- Modèle vectoriel (sac de mots)
- Mots filtrés, normalisés et **lemmatisés**

(*Porter*, 1980; *Manning & Schutze*, 2000)

Interaction entre spins

mot \sim neurone \sim spin s_i

$$\begin{bmatrix} \mathbf{TF} & \mathbf{TF} & \mathbf{0} & \dots & \mathbf{0} \end{bmatrix} = \begin{bmatrix} \mathbf{S}_0 & \mathbf{S}_1 & \mathbf{S}_2 & \dots & \mathbf{S}_N \end{bmatrix}$$
 Phrase ~ chaîne de spins

$$J^{\mu} = \begin{pmatrix} s_{1}^{\mu} \\ \vdots \\ s_{i}^{\mu} \\ \vdots \\ s_{N}^{\mu} \end{pmatrix} \times \begin{pmatrix} s_{1}^{\mu} & \cdots & s_{i}^{\mu} & \cdots & s_{N}^{\mu} \end{pmatrix} = \begin{pmatrix} j_{1,1}^{\mu} & j_{1,j}^{\mu} & \cdots & j_{1,N}^{\mu} \\ \vdots & \vdots & \ddots & \vdots \\ j_{i,1}^{\mu} & j_{i,j}^{\mu} & \cdots & j_{i,N}^{\mu} \\ \vdots & \vdots & \ddots & \vdots \\ j_{N,1}^{\mu} & j_{N,j}^{\mu} & \cdots & j_{N,N}^{\mu} \end{pmatrix}$$

 $J = \sum J^{\mu} = (S^T \times S)$: c'est la mémoire d'Hopfield L'énergie n'est pas utilisée

Energie textuelle

$$E = - \begin{pmatrix} s_{1}^{1} & s_{2}^{1} & \cdots & s_{N}^{1} \\ s_{1}^{2} & s_{2}^{2} & \cdots & s_{N}^{2} \\ \vdots & \vdots & \ddots & \vdots \\ s_{1}^{P} & s_{2}^{P} & \cdots & s_{N}^{P} \end{pmatrix} \times J \times \begin{pmatrix} s_{1}^{1} & s_{1}^{2} & \cdots & s_{1}^{P} \\ s_{2}^{1} & s_{2}^{2} & \cdots & s_{2}^{P} \\ \vdots & \vdots & \ddots & \vdots \\ s_{N}^{1} & s_{N}^{2} & \cdots & s_{N}^{P} \end{pmatrix} = - S \times (S^{T} \times S) \times S^{T} \\ = - (S \times S^{T}) \times (S \times S^{T}) \\ \vdots & \vdots \\ e^{\mu,1} \dots & e^{\mu,P} \\ \vdots & \vdots \\ e^{P,1} \dots & e^{P,P} \end{pmatrix}$$

 $e^{\mu,\nu}$ = énergie entre la phrase μ et la phrase ν

Energie textuelle (phrase)

Energie textuelle (doc)

 $|E^{\mu}|$ des phrases : Résumé automatique

Concordance entre courbes : Segmentation thématique

Interprétation (théorie de graphes)

Energie textuelle :
$$E = -(S \times S^T) \times (S \times S^T)$$
 $\mathbf{O}(P^2)$ $\mathbf{i} - (S \times S^T)^2$

Exemple

$$\sigma_1 \cap \sigma_3 = \emptyset$$
 mais $\sigma_1 \cap \sigma_4 \neq \emptyset$ et $\sigma_4 \cap \sigma_3 \neq \emptyset$

 $O(P \log P)$

 \Rightarrow l'énergie entre σ_1 et σ_2 n'est pas nulle

Somme de trajets de longueur 2 dans le graphe

Interactions entre phrases ne partageant pas des mots (A,C) mais ayant des mots en commun avec des *phrases voisines* (B)

$$E = (S \times S^{\mathrm{T}})^2$$

Résultats: Frontières thématiques Résumé automatique

Detéction de frontières : W Kendall

Coefficient de concordance *W* de Kendall et sa probabilité *p*

Test non-paramétrique (Siege & Castellan 1988)

2 thématiques (en)

Erreurs en frontières

Texte avec 4 thématiques

Extraction de frontières : Kendall en fenêtre

Seuil test de Kendall =
$$0.01$$
 $\begin{cases} \text{pred++} & \text{si } p > 0.01 \\ \text{succ++} & \text{si } p < 0.01 \end{cases}$ $\text{pred}(i) = 2/3$ && $\text{succ}(i) = 3/3$

Frontières thématiques (français)

Taille du				Energie en fenêtre		
segment						
(en phrases)	Lcseg *	LIA_seg*	Energie		<front trouvées=""></front>	
9-11	0,3272	(0.3187- 0.4635)	0,4419	0,4134	7,1/9	
3-11	0,3837	(0,3685- 0,5105)	0,4403	0,4264	7,15 / 9	
3-5	0,4344	(0,4204-0,5856)	0,4167	0,4140	5,08 / 9	

^{*} Le nb moyen de frontières n'est pas rapporté par (Sitbon et Bellot, 2005)

Résumé générique

F-score – Rouge-SU4 normalisé (*Lin*, 2004)

Corpus	Energie	Cortex*	Baseline
3-mélanges (web, Fr) 27 phr, 826 mots, 25%, 8 réf	0,47150	0,43068	0,32936
puces (web, Fr) 29 phr, 653 mots, 25%, 8 réf	0,53574	0,55628	0,32723
J'accuse (E. Zola, Fr) 206 phr, 4936 mots, 12%, 6 réf	0,58479	0,60037	0,26152
Lewinsky (Wikipedia, En) 30 phr, 816 mots, 20%, 7 réf	0,47757	0,51076	0,29248
Québec (Wikipedia, En) 44 phr, 1190 mots,25%, 8 réf	0,51179	0,55656	0,35244

^{*}Torres et al. 2002

Conclusion

- Pont entre la Physique Statistique et le TALN
- Notion d'énergie textuelle
- Applications
 - Résumé générique
 - comparable au système Cortex (génerique) en termes de précision, rappel et *F*-score
 - Frontières thématiques
 - Combinaison avec une méthode non paramètrique (test de Kendall)
 - Extraction par fenêtre glissante

Perspectives

- Résumés guidés par des requêtes
- Multilinguisme
- Améliorer la détection des frontières
- Restructurer des paragraphes?
- Mesure de similitude... évaluer des systèmes produisant du langage naturel?

Perspectives exotiques

Champ externe

Température

p
$$(S_i = \pm 1) = 1/(1 + e^{(2\beta \ hi)})$$

 $\beta = 1/k_B T = \text{temp\'erature inverse}$
 $k_B = \text{cte de Boltzmann}$
 $\Rightarrow \text{Modifier le paysage d'énergie}$

References

- •S Fernández, E SanJuan, J-M Torres-Moreno, Textual Energy of Associative Memories: Performant Applications of Enertex Algorithm in Text Summarization and Topic Segmentation, MICAI 2007: pp 861-871
- I da Cunha, S Fernández, P Velázquez, J Vivaldi, E SanJuan, J-M Torres-Moreno, A New Hybrid Summarizer Based on Vector Space Model, Statistical Physics and Linguistics, MICAI 2007: MICAI 2007: Advances in Artificial Intelligence pp 872-882
- •S Fernandez, E SanJuan, JM Torres-Moreno, Énergie textuelle de mémoires associatives, Traitement Automatique des Langues Naturelles, 25-34