RUHR-UNIVERSITÄT BOCHUM

BESTÜCKUNG VON PLATINEN

Entwurf und Herstellung von Platinen im Digitallabor des RUB-Makerspace

(mit *KiCad* und dem Platinendrucker *Voltera* V-One)

ABLAUF

- Einführung
- Entwurf von Platinen mit *KiCad*
- Voltera V-one
- Sicherheitshinweise
- Voltera Software
 - Surface Mount Technology
 - Through hole Technology

Einführung

- Eine Platine (auch Leiterplatte genannt) ist ein Träger für elektronische Bauteile. Sie dient der mechanischen Befestigung und elektrischen Verbindung.
- Platinen bestehen aus einem elektrisch isolierendem Material mit daran haftenden, leitenden Verbindungen (Leiterbahnen).
- Je nach Schaltung lassen sich auf der Platine verschiedene Bauteile anbringen:
 - Passive Bauteile (Widerstand, Kondensator, usw.),
 - Aktorik (Relais, Transistor, usw.),
 - Sensoren,
 - Mikrocontroller
 - ...

URL: File:Stripboardexample.jpg - Wikimedia Commons (Public Domain)

Einseitige Leiterplatte, Doppelseitige Leiterplatte, Mehrschichte Leiterplatte, Flexible Leiterplatte,...

Einführung

- Substrat aus FR4, FR-1(e), FR-2(e), CEM-1(e), CEM-3(d), Polyimid(f), Pre-preg
- Zwei Technologien : Through Hole (THT) and Surface Mount (SMT)
- Productionsverfahren
 - Lithographie
 - Printed Board
- Printed Board braucht eine leifähige Tinte als alternativ zu Kupfer

Inductiveload: Through-Hole mounted Component

URL: https://commons.wikimedia.org/wiki/ File:Through-Hole Mounted Component.svg (Public Domain)

Alex Khimich: SMD (Surface Mounted Device) Capacitor

URL: https://commons.wikimedia.org/wiki/File:SMD capacitor.jpg (Public Domain)

Einführung

 Zur Herstellung einer Platine werden eine Stückliste, ein Montageplan und eine Gerber-Datei gebraucht

Lorna Ngole, Bill of materials (CC BY-SA 4.0)

Lorna Ngole, Montageplan (CC BY-SA 4.0)

Lorna Ngole, Gerber-Datei (CC BY-SA 4.0)

ENTWURF VON PLATINEN MIT KiCad

Entwurf von Platinen mit

KiCad

Electronic Design Automation (EDA)

- 1. Menü
- 2. Schnellzugriff
- 3. Navigator
- 4. Log Panel
- 5. Funktionen für die Bearbeitung von Schaltkreisen
- 6. Funktion für die Bearbeitung von PCB
- 7. Weitere Funktionen

Lorna Ngole, Hompage von KiCad (CC BY-SA 4 0)

Entwurf von Platinen mit KiCad EEschema

- 1. Menü und Schnellzugriff
- 2. Tools für die Einstellung der Arbeitsfläche
- 3. Design Tools
- 4. Arbeitsfläche

Lorna Ngole, Eeschema von KiCad fürs Zeichnen von Schaltkreisen (CC BY-SA 4.0)

Entwurf von Platinen mit KiCad

Schaltkreis unter EEschema zeichnen

- 1. Bauteile platzieren (tippen) dann im Schaltplan antippen
- 2. Bauteile verbinden (/ tippen) dann Anschlüsse der Bauteile verbinden
- 3. Bauteile annotieren 📝
- 4. ERC ausführer
- 5. Bauteile mit dem Footprint verknüpfer 🐂
- 6. Netzliste herstellen

Dann PCB bearbeiten

Entwurf von Platinen mit KiCad

Entwurf von Platinen mit *KiCad* PCBnew

- 1. Menü und Schnellzugriff
- Tools zurEinstellung derArbeitsflache
- 3. Design Tools
- 4. Arbeitsfläche

Lorna Ngole, PCBNew von KiCad fürs Design von Leiterplatten (CC BY-SA 4.0)

Entwurf von Platinen mit KiCad

- Platine herstellen unter PCBneviii
 - 1. Netzliste einleser 🕌
 - 2. Footprint einordnen und/oder hinzufüger
 - 3. Route Leiterbahner
 - 4. Design rules check ausführe
 - 5. Gerber-Datei exportieren

Jetzt drucken!

VOLTERA V-ONE

- 4 Funktionen: Drucken, Löten, Heizen und Bohren
- Surface oder Trough-hole Printing
- Max. Druckplatte: 128mm × 116mm
- Standard Ink, Flexibel Ink, Kupfer PCB und HASL PCB (kompatibel fürs Löten)
- Gerber-Datei
- Min. Breite von Leiterlinie: 0.2mm
- Minimum Pin-to-Pin Pitch: 0.65mm

Lorna Ngole, Voltera V-One (CC BY-SA 4.0)

X-Axis

Support

Y-Axis

Arbeitsfläche / Heizplatte

Start-Button

Lorna Ngole, XYZ- Kaibrierstelle auf *Voltera* V-One (CC BY-SA 4.0)

- 1. Lötmittel + Spender
- 2. Leitfähige Tinte+ Spender
- 3. Sonde (Ausrichten)
- 4. Reinigungsmitte
- 5. Pinzetten
- 6. Schrauben + Klammer
- 7. Voltera V-one

8. Muster

9. Schutzbrille

10.

Nietwerkzeuge

- 11. Netzteil
- 12. Bohrer
- 13. Niete
- 14. Bohrgerät

Lorna Ngole, Voltera V-One und Zubehör (CC BY-SA 4.0)

Voltera V-One - Einrichtung

- Rechner und Voltera V-One mit USB-Kabel verbinden
- Voltera-Software starten
- Start-Button auf dem *Voltera* drücken

- Lötmittel und Leitfähige Tinte nicht verwechseln
- Lötmittel und Leitfähige Tinte im Kühlschrank lagern
- Lötmittel und Leitfähige Tinte 15
 Min vorm Einsatz aus dem
 Kühlschrank holen
- Kalibrierstelle und Substrat mit Isopropanol Reinigen

Lorna Ngole, Reinigungsmittel, Lötmittel und Leitfähige Tinte für Voltera V-One (CC BY-SA 4.0)

SICHERHEITSHINWEISE

Sicherheitshinweise

- Gefahr von Verletzung. Hände weg von Laufbahnen (XY-Axis)
- Brandgefahr beim Löten und Heizen. Heizplatte geht bis 240°C
- Lötmittel ist gesundheitsschädlich. Bei Behandlung von Lötmittel und leitfähiger Tinte Handschuhe tragen danach Hände waschen
- Gefahr von Verletzung durch Splitter beim Bohren (Schutzbrille tragen)
- Auf der Warnmeldungen der Software aufpassen

Lorna Ngole, Sicherheitshinweise auf Voltera V-One (CC BY-SA 4.0)

Sicherheitshinweise

Farbcode des Voltera V-One

VOLTERA-SOFTWARE

Voltera-Software

Status

NOT-Aus

Nullposition

Lorna Ngole, Software-Interface (CC BY-SA 4.0)

V-One

Voltera-Software

Lorna Ngole, Software-Interface nach Verbindung mit einem Voltera V-One (CC BY-SA 4.0)

Voltera-Software – Surface Mount Technology

Beispiel: Realisierung der "Hello World"-Leiterplatte von *Voltera*

"Hello World"-Platine von *Voltera* (CC BY-SA 4.0)

Voltera-Software - Surface Mount Technology

Schritt 1: Funktion "Drucken" (englisch: Print). Leiterbahnen werden gedruckt.

Auswahl des Boards:

"Simple" für eine leere Platine.

"Aligned" für eine Platine, welche bereits Leiterbahnen und Bohrungen hat.

Auswahl der Leitfähige Tinte. Ihre Name ist auf der Verpackung zu lesen

Schritt 2: Funktion "Löten" (englisch: Solder). Auftrag des Lötmittels.

Schritt 3: Bauteile platzieren. Manuell, ggf. mithilfe von Pinzetten

Schritt 4: Funktion "Heizen" (englisch: Heat) dann "Reflow". Verfestigung des Lötmittels

Anmerkung: Das Software-Interface ist gut aufgebaut und leitet den Anwender erfahrungsgemäß sehr gut durch die einzelnen Schritte der Herstellungsprozesses!

Beispiel: Realisierung der "Punk Console"-Leiterplatte von *Voltera*

Besonderheit: Wir müssen Bohren!

Lorna Ngole, Punk Console von Voltera (CC BY-SA 4.0)

Schritt 1: Funktion "Bohren" (*englisch:* Drill)

- Schutzbrille tragen
- Die Bohrunterlage (Opferschicht) ist zwischen der Arbeitsfläche und der Platine zu platzieren.
- Bohrer in der Halterung platzieren und anschalten
- .gtl-und .txt-Dateien hochladen

Lorna Ngole, richtige Platzierung des Bohrers im Bohrgerät (CC BY-SA 4.0)

Schritt 2: Funktion "Drucken" (*englisch:* Print). Leiterbahnen sollen auf der Oberseite gedruckt werden.

- Die Platine nicht bewegen
- "Aligned" Board verwenden
- In der Software muss die richtige Charge der leitfähigen Tinte ausgewählt werden. Der Name ist auf der Spritze vermerkt.
- Gleiche .gtl- und .txt-Dateien verwenden
- Vor "Baking" muss die Bohrunterlage entnommen werden.

Schritt 3: Funktion "Drucken" (*englisch:* Print). Leiterbahnen sollen auf der Unterseite gedruckt werden.

- Die Platine umdrehen
- "Aligned" Board verwenden
- In der Software muss die richtige Charge der leitfähigen Tinte ausgewählt werden. Der Name ist auf der Spritze vermerkt.
- Gleiche .gtl- und .txt-Dateien verwenden

Schritt 4: Fehlerhaft aufgetragene Lötpaste mit beiliegendem Schwamm entfernen

Schritt 5: Nieten platzieren

Schritt 6: Durchkontaktierung prüfen

Schritt 7: Funktion "Löten" für SMD Bauteile

.gtp-und .txt-Dateien nutzen

Schritt 8: Bauteile platzieren. Manuell, ggf. mithilfe von Pinzetten

Schritt 9: Funktion "Heizen" (englisch: Heat) dann "Reflow". Verfestigung des Lötmittels

Schritt 10: Through hole Bauteile unter 180-200°C manuell löten

Anmerkung: Das Software-Interface ist gut aufgebaut und leitet den Anwender erfahrungsgemäß sehr gut durch die einzelnen Schritte der Herstellungsprozesses! Im dem Fall, dass wir die Oberseite und die Unterseite mit SMD-Bauteilen bestücken wollen, muss eine Seite per Hand gelötet werden. Andernfalls würden die SMD-Bauteile der Oberseite auf die Heizplatte fallen.

makerspace@rub.de

https://makerspace.rub.de/

RUB Makerspace

@rubmakerspace

@rubmakerspace

