微积分 A-1 期中考试试题 (2022)

一、填空题 (共15题,满分45分)

1. 设 y=y(x) 是由方程 $y=1+\arctan\frac{x}{y}$ 在点 (x,y)=(0,1) 附近确定的可导函数,则导数 y'(0)=_____.

2. 设
$$f'(0)$$
 存在,且 $\lim_{x\to 0} \frac{1}{x} \left[f(x) - f\left(\frac{x}{4}\right) \right] = \frac{3}{2}$,则 $f'(0) =$ ______.

4. 极限
$$\lim_{x \to +\infty} \frac{x^{\ln x}}{(\ln x)^x} = \underline{\qquad}$$

5. 设
$$f(x) = x^2 \sin(3x)$$
,则 $f^{(100)}(0) =$ _____.

6. 记
$$[x]$$
 为不大于 x 的最大整数,则极限 $\lim_{y o 0} y \left\lceil \frac{1}{y} \right\rceil = \underline{\qquad}$

7. 设

$$f(x)=egin{cases} e^{-rac{1}{x^2}},&x
eq 0,\ 0,&x=0, \end{cases}$$

n 为任意正整数,则 $f^{(n)}(0) =$ ______.

8. 设

$$f(x) = egin{cases} rac{x^2 - x}{|x| \, (x^2 - 1)}, & x
eq 0, x^2
eq 1, \ rac{1}{2}, & x = 0, x^2 = 1, \end{cases}$$

则函数 f(x) 的间断点个数总共有_____个.

9. 设 f(x) 在点 x=1 处可导,且 f'(1)=1,则极限 $\lim_{x\to 1} \frac{f(x)-f(1)}{\sqrt{x}-1}=$ ______.

10. 极限
$$\lim_{x\to 0} \frac{\sin x - \arctan x}{\tan x - \arcsin x} = \underline{\qquad}$$

11. 极限
$$\lim_{n o +\infty} \left(n + \sqrt[3]{9n^2 - n^3}\right) =$$
______.

12. 设函数 f(x) 在开区间 (-1,1) 上定义,满足 $|f(x)| \leq (\sin x)^2, \ orall x \in (-1,1)$,则 $f'(0) = (\sin x)^2$

13. 极限
$$\lim_{x \to 0} \frac{6x - \sin 2x - \sin 4x}{x^3} =$$

14. 设 $f(x)=5(\sqrt{1+x}-1),$ $g(x)=\dfrac{k\ln(1+x)}{x+2}(x\neq -2)$,k 为常数. 若当 $x\to 0$ 时,f(x) 和 g(x) 为等价无穷小,则 k=______.

15. 极限
$$\lim_{n \to +\infty} \frac{8}{\ln n} \left(1 + \frac{1}{3} + \frac{1}{5} + \dots + \frac{1}{2n-1} \right) = \underline{\hspace{1cm}}$$

二、选择题 (共10题,满分30分)

- 1. 设 f(x) 在实轴 \mathbb{R} 上可导,则下列说法哪一个是错误的.
 - **A.** 若 f(x) 是周期函数,则 f'(x) 也是周期函数;
 - **B.** 若 f(x) 是偶函数,则 f'(x) 是奇函数;
 - **C.** 若 f(x) 在 \mathbb{R} 上有界,则 f'(x) 在 \mathbb{R} 上也有界;
 - **D.** 若 f(x) 是奇函数,则 f'(x) 是偶函数.
- 2. 极限 $\lim_{x o 0} \left(rac{2^x + 3^x + 4^x}{3}
 ight)^{rac{3}{x}}$ 等于
 - **A.** 24;
 - $\mathbf{B}.+\infty$;
 - **c**. 2;
 - **D.** 4.
- 3. 记 (x_0,y_0) 为旋轮线 $x=t-\sin t,\ y=1-\cos t\ (0\leq t\leq 2\pi)$ 上对应参数 $t=\frac{\pi}{2}$ 的点,则旋轮线在点 (x_0,y_0) 处的切线方程为
 - A. $y = \frac{\pi}{2}x$;
 - **B.** y = 2;
 - C. $y=x+rac{\pi}{2}$;
 - **D.** $y = x \frac{\pi}{2} + 2$.
- 4. 当 $n\to +\infty$ 时,将无穷大量 $n^{100},\,e^n,\,\ln\left(1+n^{1000}\right),\,n!$,按它们趋于正无穷的速度由低到高排列,正确的顺序为
 - **A.** $\ln (1 + n^{1000}), n^{100}, n!, e^n;$
 - **B.** $\ln (1 + n^{1000}), n^{100}, e^n, n!;$
 - **c.** n^{100} , $\ln (1 + n^{1000})$, n!, e^n ;
 - **D.** n^{100} , $\ln \left(1 + n^{1000}\right)$, e^n , n!.
- 5. 函数 $\frac{1}{\cos x}$ 在 x=0 处带 Peano 余项的四阶 Taylor 展式为
 - **A.** $\frac{1}{\cos x} = 1 \frac{1}{2}x^2 + \frac{5}{24}x^4 + o(x^4);$
 - **B.** $\frac{1}{\cos x} = 1 \frac{1}{2}x^2 + \frac{1}{24}x^4 + o(x^4);$
 - **c.** $\frac{1}{\cos x} = 1 + \frac{1}{2}x^2 \frac{5}{24}x^4 + o\left(x^4\right)$;
 - **D.** $\frac{1}{\cos x} = 1 + \frac{1}{2}x^2 + \frac{5}{24}x^4 + o(x^4).$
- 6. 设 f(x) 在 $(-\infty, +\infty)$ 上单调有界, $\{x_n\}$ 为一数列,则下述命题正确的是
 - **A.** 若 $\{f(x_n)\}$ 收敛,则 $\{x_n\}$ 收敛;
 - **B.** 若 $\{x_n\}$ 收敛,则 $\{f(x_n)\}$ 收敛;
 - **C.** 若 $\{x_n\}$ 单调,则 $\{f(x_n)\}$ 收敛;
 - **D.** 若 $\{f(x_n)\}$ 单调,则 $\{x_n\}$ 收敛.

$$f(x) = egin{cases} ax+b, & x>1 \ x^2, & x\leqslant 1 \end{cases}$$

假设 f(x) 在点 x=1 处可导,则

A.
$$(a,b) = (-2,-1);$$

B.
$$(a,b) = (2,1);$$

$$\mathbf{c.}(a,b) = (-2,1);$$

D.
$$(a,b) = (2,-1).$$

8. 函数 $x^{\frac{1}{x}}$ (x>0) 的导函数为

A.
$$x^{\frac{1}{x}-1}$$
;

B.
$$x^{\frac{1}{x}-2}(1-\ln x)$$
;

C.
$$x^{\frac{1}{x}}$$
;

D.
$$x^{\frac{1}{x}-2}$$

9. 函数 $x^2 \cos x$ 的 100 阶导函数 $(x^2 \cos x)^{(100)}$ 为

A.
$$x^2 \cos x + 200x \sin x + 9900 \cos x$$
;

B.
$$x^2 \cos x - 200x \sin x + 9900 \cos x$$
;

c.
$$x^2 \cos x + 200x \sin x - 9900 \cos x$$
;

D.
$$x^2 \cos x - 200x \sin x - 9900 \cos x$$
.

10. 函数 $x \ln(1+x)$ 在 x=0 处的 n 阶泰勒(Taylor)多项式为

A.
$$\sum_{k=2}^{n} \frac{(-1)^k x^k}{k-1}$$
;

B.
$$\sum_{k=2}^{n} \frac{(-1)^{k-1}x^k}{k-1}$$
;

c.
$$\sum_{k=2}^{n} \frac{(-1)^{k-1}x^k}{k}$$
;

D.
$$\sum_{k=2}^{n} \frac{(-1)^k x^k}{k}$$
.

三、解答题 (共3题,满分25分)

- 1. **(a)** 证明函数 $f(x)=x+\arctan x$ 在整个实轴上 $\mathbb R$ 上存在反函数,记作 $x=g(y),\,y\in\mathbb R$,并且反函数 g(y) 为二次连续可微;
 - **(b)** 计算 g''(y).
- 2. 设 $n \geq 2$ 为正整数.
 - (a) 证明方程 $x+x^2+\cdots+x^{n-1}+x^n=1$ 在开区间 $(\frac{1}{2},1)$ 内有且仅有一个实根,记作 x_n ;
 - (b) 证明 $\lim_{n o\infty}x_n=rac{1}{2}.$
- 3. 设 f(x) 在 [0,1] 上二阶连续可导.

(a) 若
$$f(0)=f(1)$$
,且 $\displaystyle\max_{0\leq x\leq 1}|f''(x)|\leq 2$,证明 $\displaystyle\max_{0\leq x\leq 1}|f'(x)|\leq 1$;

(b) 构造一个 [0,1] 上的二阶连续可微函数 f(x),使得 f(0)=f(1), $\max_{0\leq x\leq 1}|f'(x)|=1$,以及 $\max_{0\leq x\leq 1}|f''(x)|=2$.

答案

填空题: 1, 2, 2, 0, 0, 1, 0, 2, 2, 1, 3, 0, 12, 5, 4

选择题: CADBD CDBCA

解答题:

1. (a) 略;

(b)
$$g''(y) = rac{2x(x^2+1)}{{(x^2+2)}^3}.$$

2. (a) 设
$$f_n(x) = x + x^2 + \dots + x^n - 1$$
, $f_n\left(\frac{1}{2}\right) = -\frac{1}{2^n} < 0$, $f_n(1) = n - 1 > 0$, $f_n(x)$ 在 $\left(\frac{1}{2},1\right)$ 上单调递增且连续。由介值定理,有一个实根,由单调性,这个实根是唯一的.

(b)
$$orall a,b \in \left(rac{1}{2},1
ight), |f_n(a)-f_n(b)| = |a-b+a^2-b^2+\cdots+a^n-b^n| > |a-b|.$$
 $\lim_{n o +\infty} f_n\left(rac{1}{2}
ight) = 0$,故 $orall arepsilon > 0, \exists N \in \mathbb{N}, orall n > N, \left|f_n\left(rac{1}{2}
ight)\right| < arepsilon,$ 故 $\left|x_n-rac{1}{2}
ight| < \left|f_n(x_n)-f_n\left(rac{1}{2}
ight)
ight| = \left|f_n\left(rac{1}{2}
ight)
ight| < arepsilon$,即 $\lim_{n o +\infty} x_n = rac{1}{2}.$

3. (a)
$$\forall x \in [0,1], \exists \xi_1 \in (0,x), s.\, t.\, f(0) = f(x) + f'(x)(0-x) + \frac{f''(\xi_1)}{2}(0-x)^2,$$
 $\exists \xi_2 \in (x,1), s.\, t.\, f(1) = f(x) + f'(x)(1-x) + \frac{f''(\xi_2)}{2}(1-x)^2.$ 两式相减,得 $f'(x) = \frac{x^2 f''(\xi_1) - (1-x)^2 f''(\xi_2)}{2} \leq \frac{2x^2 - 2(1-x)^2}{2} \leq 1.$

(b)
$$f(x) = \left(x - \frac{1}{2}\right)^2$$
.

整理人: yqr