R Competency Check #4

Scott Dolan

9/15/2020

PMF of a 5 Question True/False Test

A test consists of five true-false problems. A reasonable model for the answer given by a student who has not studied assumes that each question is marked T or F by flipping a coin. Thus, any 5-long binary sequence of 0's (incorrect) and 1's (correct), that is, points received in each of the five questions, is equally likely. Let X denote the test score of such a student. Use R to do the following:

1. Create an expanded grid of all possible outcomes (0's and 1's).

```
allOutcomes <- expand.grid(X1=0:1, X2=0:1, X3=0:1, X4=0:1, X5=0:1) allOutcomes
```

```
##
       X1 X2 X3 X4 X5
## 1
           0
               0
                   0
##
        1
                      0
        0
           1
               0
                      0
        1
               0
## 5
        0
           0
               1
                   0
                      0
## 6
        1
           0
               1
## 7
        0
            1
## 8
        1
           1
                      0
## 9
        0
               0
## 10
        1
           0
               0
                      0
        0
                      0
## 11
## 12
               0
                   1
                      0
        1
## 13
        0
                      0
##
   14
        1
           0
   16
        1
            1
                      1
   18
        1
           0
                      1
## 20
                   0
        1
            1
               0
                      1
##
   21
        0
## 22
        1
           0
   23
        0
           1
   24
##
        1
##
   25
        0
           0
               0
## 26
        1
           0
## 27
        0
            1
               0
                   1
## 28
        1
            1
               0
                   1
## 29
        0
           0
               1
                  1
```

```
## 30 1 0 1 1 1
## 31 0 1 1 1 1
## 32 1 1 1 1 1
```

2. Create a PMF (probability mass function) for X=test score. Name this pmf.p.

```
allOutcomes %>%
  attach()
  X=X1+X2+X3+X4+X5
  pmf.p <- table(X)/length(allOutcomes)</pre>
 pmf.p
## X
     0
         1
             2
                 3
## 0.2 1.0 2.0 2.0 1.0 0.2
      3. Using the PMF, use R to construct a histogram of "test scores."
hist(X, breaks=seq(-0.5, 5.5, 1), freq=F, col="darkblue", xaxt="n", yaxt="n", ylab = 'Density [units]',
     main="Probability Distribution for all Outcomes of Test Score", cex.main=1.5, cex.axis=1, cex.lab=
axis(2, tck=1, col.ticks="light gray", lwd.ticks="1")
axis(2, tck=-0.015)
axis(1,tck=-.015)
box()
hist(X, add=TRUE, breaks=seq(-0.5, 5.5, 1), freq=F, col="darkblue", xaxt="n", yaxt="n", ylab = 'Density
```

main="Probability Distribution for all Outcomes of Test Score", cex.main=1.5, cex.axis=1, cex.lab=

Probability Distribution for all Outcomes of Test Scor

4. Use R to calculate the population mean and population standard deviation of test scores.

```
mu.p <- mean(X)
sigma.p <- sqrt(var(X)*((length(X)-1)/length(X)))
cat(pasteO('The population mean is: ',mu.p))

## The population mean is: 2.5
cat(pasteO('The population standard deviation is: ',sigma.p))</pre>
```

The population standard deviation is: 1.11803398874989

5. Set the seed to (111) and based on your pmf.p, take a SRS of size 1000 of "test scores." Use this sample to create the PMF of the sample (call it pmf.s).

```
set.seed(111)
size.s = 1000
s <- sample(0:5,size=size.s,replace=T,prob=pmf.p)
pmf.s <- table(s)/length(s)</pre>
```

6. Use R to calculate the sample mean and sample standard deviation of your 1000 sampled "test scores."

```
mu.s <- mean(s)
sigma.s <- sd(s)
cat(paste0('The sample mean is: ',mu.s))</pre>
```

```
## The sample mean is: 2.477
cat(paste0('The sample standard deviation is: ',sigma.s))
```

The sample standard deviation is: 1.10665970184863

7. Using the sample PMF (pmf.s), use R to construct a histogram of sampled "test scores."

Probability Distribution for Sample of 1000 Test Score

8. Compare and contrast the Shape, Center and Spread of the pmf.p and the pmf.s.

The shape of both histograms show a normal distribution which appears Gaussian having a bell shaped curve. However, the sample of 1000 better shows the center to be a test score of 2 while the population is centered on a test score of 2 and 3. The spread of both appear to be very similar with highest probabilities being near the center.