0.1 数列求通项问题

如果已知通项公式,数列的任意一项就能通过首项和下标表示. 由数列的递推式可求数列的通项. 前文提到的等差数列和等比数列求通项分别对应累加法和累乘法,现将其写成更普遍的形式. 比如取数列 $\{a_n\}$ 满足 $a_{n+1}=a_n+f(n)$. $n\geq 2$ 时有

$$a_n = a_{n-1} + f(n-1), \dots, a_2 = a_1 + f(1)$$

把上述 n-1 个式子相加得

$$a_n+\cdots+a_2=a_{n-1}+\cdots+a_1+f(n-1)+\cdots+f(1) \Leftrightarrow a_n=a_1+f(n-1)+\cdots+f(1)$$

相加后的等式左边有从 2 到 n 的链,右边有从 1 到 n-1 的链,从 2 到 n-1 的部分被消去, a_n 和 a_1 从此建立起联系.对于满足 $a_{n+1}=a_n\cdot f(n)$ 的数列 $\{a_n\}$,也有类似方法.

累加法和累乘法

若数列
$$\{a_n\}$$
 满足 $a_{n+1}=a_n+f(n)$,由**累加法**,可得 $a_n=\sum_{i=1}^{n-1}f(n)+a_1$.

若数列
$$\{a_n\}$$
 满足 $a_{n+1}=a_n\cdot f(n)$,由**累乘法**,可得 $a_n=\prod_{i=1}^{n-1}f(n)\cdot a_1$.

数列
$$\{a_n\}$$
 满足 $a_1=1, \ \frac{a_n}{a_{n-1}}=\frac{n-1}{n+1}(n\geq 2, n\in \mathbb{N}^*),$ 求其通项公式.

 $n \geq 3$ 时有

$$\frac{a_n}{a_{n-1}} \cdot \frac{a_{n-1}}{a_{n-2}} \cdot \dots \cdot \frac{a_3}{a_2} \cdot \frac{a_2}{a_1} = \frac{n-1}{n+1} \cdot \frac{n-2}{n} \cdot \dots \cdot \frac{2}{4} \cdot \frac{1}{3} \Leftrightarrow \frac{a_n}{a_1} = \frac{2}{(n+1)n}$$

经验证, n=1,2 时满足. 故 $a_n=\frac{2}{(n+1)n}, n\in\mathbb{N}^*$.

上述方法的前提是 a_{n+1} 项与 a_n 项的系数相同. 那要是不同该怎么办呢? 给 a_n 项加个系数, 得到 $a_{n+1} = \lambda a_n + f(n)(\lambda \neq 0, 1)$, 这就是这种情况的通式. 下面是几个例子.

数列 $\{a_n\}$ 满足 $a_1=3,\ a_{n+1}=2a_n+3(n\in\mathbb{N}^*),\ 求其通项公式.$

设 $a_{n+1}+\alpha=2(a_n+\alpha)$,得 $\alpha=3$. $a_n+3=2^{n-1}(a_1+3)=3\cdot 2^n$. 故 $a_n=3\cdot 2^n-3, n\in\mathbb{N}^*$. 这里通过猜 a_n 加上一个常数能构成以 λ 为公比的等比数列,成功让

 a_n 与 a_1 建立起联系. 这种方法有风险,毕竟这个生造的通项后面还可能挂着 n 的一次、二次项甚至更多.

数列 $\{a_n\}$ 满足 $a_1=1,\ a_n=3a_{n-1}+3^{n-1}(n\geq 2,n\in \mathbb{N}^*)$,求其通项公式.

设 $a_n+\alpha\cdot 3^n=3(a_{n-1}+\alpha\cdot 3^{n-1}),$ 得 $a_n=3a_{n-1},$ 矛盾! 加上 n 的一次项试试. 设 $a_n+(\alpha n+\beta)\cdot 3^n=3(a_{n-1}+[\alpha(n-1)+\beta]\cdot 3^{n-1})(n\geq 2),$ 整理可得 $\alpha=-\frac{1}{3},$ $\beta=0.$ 经验证, n=1 时满足. 故 $a_n=n\cdot 3^{n-1}, n\in \mathbb{N}^*.$

不过对于这种 f(n) 中含有 λ 的 n 次幂的情况,更简便的做法是同除 λ^n ,转化成 $a_{n+1}=a_n+f(n)$ 的形式再用累加法.对于本题,有 $\frac{a_n}{3^n}=\frac{a_{n-1}}{3^{n-1}}+\frac{1}{3}$,这样就很好做了.接下来上点强度.

数列 $\{a_n\}$ 满足 $a_1=1$, $a_{n+1}=2a_n+n(1+2^n)(n\in\mathbb{N}^*)$, 求其通项公式.

首先试试上一题的同除 λ^n 的方法.

$$\frac{a_{n+1}}{2^{n+1}} = \frac{a_n}{2^n} + \frac{n}{2^{n+1}} + \frac{n}{2} \Leftrightarrow \frac{a_{n+1}}{2^{n+1}} - \frac{a_1}{2^1} = \frac{n(n+1)}{4} + \sum_{i=1}^n \frac{i}{2^{i+1}}$$

等差比数列求和过程略. 故 $a_n=2^{n-2}(n^2-n+6)-n-1, n\in\mathbb{N}^*.$

其实这题用待定系数法也能做. 设

$$\begin{split} a_{n+1} + [\alpha(n+1) + \beta] + [\gamma(n+1)^2 + \delta(n+1) + \mu] \cdot 2^{n+1} \\ = 2[a_n + (\alpha n + \beta) + (\gamma n^2 + \delta n + \mu) \cdot 2^n] \end{split}$$

则

$$\begin{split} a_{n+1} &= 2a_n + \alpha n + (\beta - \alpha) - (4\gamma n + 2\gamma + 2\delta) \cdot 2^n = 2a_n + n + n \cdot 2^n \\ \text{于是} \ \alpha &= 1, \beta = 1, \gamma = -\frac{1}{4}, \delta = \frac{1}{4}. \quad \text{取} \ \mu \neq -\frac{3}{2}, \\ a_n + (n+1) + (-\frac{1}{4}n^2 + \frac{1}{4}n + \mu) \cdot 2^n = 2^{n-1} \cdot (3 + 2\mu) \end{split}$$

化简即得.显然这很麻烦,而且在求出系数之前,含n项的最高次是未知的,需要慢慢尝试.不过待定系数法也因此具有了普适性,所有数列求通项都能用待定系数法.

待定系数法

若数列 $\{a_n\}$ 满足 $a_{n+1}=\lambda a_n+f(n)(\lambda\neq 0,1)$,可进行合理猜测,用**待定系数法** 设出 g(n),使得 $a_{n+1}+g(n+1)=\lambda[a_n+g(n)]$,从而求出 g(n). 若 g(n) 中含有 λ 的 n 次幂,优先考虑同除 λ^n ,转化成 $a_{n+1}=a_n+f(n)$ 的形式.

前文出现过的递推式还都长得慈眉善目,那就见识一下分式型的递推式吧.

数列
$$\{a_n\}$$
 满足 $a_1=\frac{1}{2},\ a_n=\frac{4a_{n-1}+3}{a_{n-1}+2}(n\geq 2,n\in\mathbb{N}^*),\ 求其通项公式.$

方程
$$x = \frac{4x+3}{x+2}$$
 的解为 $x_1 = -1, x_2 = 3$.

$$\frac{a_n+1}{a_n-3} = \frac{\frac{4a_{n-1}+3}{a_{n-1}+2}+1}{\frac{4a_{n-1}+3}{a_{n-1}+2}-3} = 5\frac{a_{n-1}+1}{a_{n-1}-3} \Leftrightarrow \frac{a_n+1}{a_n-3} = 5^{n-1} \cdot (-\frac{3}{5})$$

故 $a_n=rac{9\cdot 5^{n-2}-1}{3\cdot 5^{n-2}+1}, n\in\mathbb{N}^*$. 做这种题都按这个套路来就行. 下面来个三世同堂.

数列
$$\{a_n\}$$
 満足 $a_1=a_2=1,\ a_{n+1}=rac{2}{3}a_n-rac{1}{9}a_{n-1}(n\geq 2,n\in\mathbb{N}^*)$,求其通项公式.

用待定系数法尝试构造等比数列. 令 $a_{n+1}-\alpha a_n=\beta(a_n-\alpha a_{n-1})(n\geq 2),$ 则

$$a_{n+1} = (\alpha + \beta)a_n - \alpha\beta a_{n-1} = \frac{2}{3}a_n - \frac{1}{9}a_{n-1}$$

故 α,β 是方程 $x^2-\frac23x+\frac19=0$ 的两根. 解得 $\alpha=\beta=\frac13$. 故 $a_n=(2n-1)\cdot(\frac13)^{n-1}, n\in\mathbb{N}^*$. 对于更一般的情况,下面直接给出通法,等我学会了再回来推导.

不动点法和特征根法

满足 $a_{n+1}=\frac{pa_n+q}{ra_n+s}(r\neq 0,ps-rq\neq 0)$ 的数列 $\{a_n\}$ 称为分式线性递推数列, x_1,x_2 为方程 $x=\frac{px+q}{rx+s}$ 的两根,则由**不动点法**可知

$$x_1 \neq x_2$$
时 $\{\frac{a_n-x_1}{a_n-x_2}\}$ 为等比数列

4 github.com/juicyogurt/gaokao-mathnotes

$$x_1=x_2=x_0$$
时 $\{\frac{1}{a_n-x_0}\}$ 为等差数列

满足 $a_{n+1} = \lambda a_n + \mu a_{n-1} (n \ge 2)$ 的数列 $\{a_n\}$ 称为二阶线性齐次递推数列, x_1, x_2 为方程 $x^2 = \lambda x + \mu$ 的两根,则由**特征根法**可知

$$x_1 \neq x_2 \forall a_n = \alpha x_1^n + \beta x_2^n$$

$$x_1 = x_2 = x_0 \, \mathbb{N} a_n = (\alpha + \beta n) x_0^n$$

代入 a_1, a_2 即可解出 α, β .

累加法、累乘法、待定系数法、不动点法和特征根法是数列求通项最基本的方法.通过取倒数、取对数、平方和开方运算,可以把它们变得更恶心一点,但万变不离其宗.

数列 $\{a_n\}$ 满足 $a_1=1,\ a_{n+1}^2=4a_n(n\in\mathbb{N}^*),\ 求其通项公式.$

$$\ln a_{n+1} - 2 \ln 2 = \frac{1}{2} (\ln a_n - 2 \ln 2) \Leftrightarrow a_n = 4^{1-(\frac{1}{2})^{n-1}}.$$

数列 $\{a_n\}$ 满足 $a_1=\frac{5}{2},\ a_{n+1}=a_n^2-2(n\in\mathbb{N}^*),\ 求其通项公式.$

可令
$$a_n=b_n+\frac{1}{b_n}$$
,不妨设 $b_n\in(0,1), b_1=\frac{1}{2}$.则
$$a_{n+1}=a_n^2-2\Leftrightarrow b_{n+1}+\frac{1}{b_{n+1}}=b_n^2+\frac{1}{b_n^2}$$

由函数 $f(x) = x + \frac{1}{x}$ 在(0,1) ↓ 得

$$b_{n+1} = b_n^2 \Leftrightarrow \ln b_n = 2^{n-1} \cdot \ln \frac{1}{2} \Leftrightarrow b_n = (\frac{1}{2})^{2^{n-1}} \Leftrightarrow a_n = 2^{2^{n-1}} + (\frac{1}{2})^{2^{n-1}}$$

数列 $\{a_n\}$ 满足 $a_1=\frac{\pi}{4}, a_n\in (-\frac{\pi}{2},\frac{\pi}{2}), (2n+1)\sin(a_{n+1}-a_n)=\sin(a_{n+1}+a_n)(n\in\mathbb{N}^*),$ 求其通项公式.

展开并化简得

$$n\sin a_{n+1}\cos a_n = (n+1)\cos a_{n+1}\sin a_n \Leftrightarrow \frac{\tan a_{n+1}}{n+1} = \frac{\tan a_n}{n}$$

故

$$\frac{\tan a_n}{n} = \frac{\tan a_1}{1} = 1 \Leftrightarrow a_n = \arctan n$$