» Stochastic Gradient Descent (SGD)

Recall our general iterative minimisation algorithm:

```
x=x0
for k in range(num_iters):
    step = calcStep(fn,x)
    x = x - step
```

and one way to choose the step, namely:

$$step = \alpha[\frac{\partial f}{\partial x_1}(x), \frac{\partial f}{\partial x_2}(x), \dots, \frac{\partial f}{\partial x_n}(x)]$$

- * We've spent a good deal of time looking at how to select step-size/learning rate lpha
- * Now let's go back and look at how we calculate $\frac{\partial f}{\partial x_1}(x)$ etc

» Approximate Derivatives

*
$$f(x) \approx f(x') + \frac{\partial f}{\partial x_1}(x')(x_1 - x_1') + \frac{\partial f}{\partial x_2}(x')(x_2 - x_2') + \dots + \frac{\partial f}{\partial x_n}(x')(x_n - x_n')$$

* Choosing
$$\mathbf{x}$$
 with $\mathbf{x}_1 = \mathbf{x}' - \alpha \frac{\partial f}{\partial \mathbf{x}_1} \mathbf{x}')$, $\mathbf{x}_2 = \mathbf{x}' - \alpha \frac{\partial f}{\partial \mathbf{x}_2} \mathbf{x}')$, ..., $\mathbf{x}_n = \mathbf{x}' - \alpha \frac{\partial f}{\partial \mathbf{x}_2} \mathbf{x}')$ then

$$f(\mathbf{x}) \approx f(\mathbf{x}') - \alpha \frac{\partial f}{\partial \mathbf{x}_1} (\mathbf{x}')^2 - \alpha \frac{\partial f}{\partial \mathbf{x}_2} (\mathbf{x}')^2 - \dots - \alpha \frac{\partial f}{\partial \mathbf{x}_n} (\mathbf{x}')^2$$

i.e. moving from point x' to x tends to decrease function $f(\cdot)$

 This is already an approximation, so why not also use an approximation to the derivative i.e.

$$\mathbf{x}_1 = \mathbf{x}' - \alpha D f_{\mathbf{x}_1}(\mathbf{x}'), \ \mathbf{etc}$$

with $Df_{x_1}(x') \approx \frac{\partial f}{\partial x_1}(x')$, etc

» Approximate Derivatives

* Let's swap from $\min_x f(x)$ to $\min_{\theta} J(\theta)$ to be consistent with our ML notation. Functions we want to minimise in ML are often of the form:

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} loss(\theta, x^{(i)}, y^{(i)})$$

where

- * $(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})$ is our training data
- $*\ \textit{loss}()$ is a function that measures how well our predictions match the training data
 - e.g. $loss(\theta, x^{(i)}, y^{(i)}) = (\theta^T x^{(i)} y^{(i)})^2$ in linear regression
- * Derivatives:

$$\frac{\partial J}{\partial \theta_1}(\theta) = \frac{1}{m} \sum_{i=1}^m \frac{\partial loss}{\partial \theta_1}(\theta, \mathbf{x}^{(i)}, \mathbf{y}^{(i)}), \ \frac{\partial J}{\partial \theta_2}(\theta) = \frac{1}{m} \sum_{i=1}^m \frac{\partial loss}{\partial \theta_2}(\theta, \mathbf{x}^{(i)}, \mathbf{y}^{(i)}) \text{ etc}$$

* Pick a random sample of b points from the training data. Let N be the set of indices. Then use approx derivatives

$$DJ_{ heta_1}(heta) = rac{1}{b} \sum_{i=1}^{n} rac{\partial loss}{\partial heta_1}(heta, \mathbf{x}^{(i)}, \mathbf{y}^{(i)}), \ DJ_{ heta_2}(heta) = rac{1}{b} \sum_{i=1}^{n} rac{\partial loss}{\partial heta_2}(heta, \mathbf{x}^{(i)}, \mathbf{y}^{(i)}) \ ext{etc}$$

* When b = m and $N = \{1, 2, ..., m\}$ then we get back exact derivatives.

» Approximate Derivatives: Example

- * Suppose we have m = 100 training data points $(x^{(i)}, y^{(i)})$, $i = 1, 2, \dots, 100$. Linear regression: $loss(\theta, x^{(i)}, y^{(i)}) = 0.5(\theta^T x^{(i)} y^{(i)})^2$, $\frac{\partial loss}{\partial \theta_k}(\theta, x^{(i)}, y^{(i)}) = (\theta^T x^{(i)} y^{(i)})x_k^{(i)}$ $J(\theta) = \frac{1}{100} \sum_{i=1}^{100} loss(\theta, x^{(i)}, y^{(i)})$, $\frac{\partial J}{\partial \theta_k}(\theta) = \frac{1}{100} \sum_{i=1}^{100} \frac{\partial loss}{\partial \theta_k}(\theta, x^{(i)}, y^{(i)})$
- * Sample b = 5 points randomly from training data e.g. $N = \{76, 75, 40, 66, 18\}$, approx derivative:

$$\textit{DJ}_{\theta_1}(\theta) = \frac{1}{5} \sum_{i \in \textit{N}} \frac{\partial \textit{loss}}{\partial \theta_1}(\theta, \textit{x}^{(i)}, \textit{y}^{(i)}) = \frac{1}{5} \sum_{i \in \textit{N}} (\theta^{\textit{T}} \textit{x}^{(i)} - \textit{y}^{(i)}) \textit{x}_1^{(i)}$$

and so on for $\theta_2, \ldots, \theta_n$

» Approximate Derivatives: Example

- * Example: $f = x^2$, training data is 100 points with $x^{(i)}$ random and $y^{(i)} = (x^{(i)})^2 + noise$.
- Draw 5 random training data points and calc approx derivative.
 Repeat 5 times (so get 5 different approximations to the derivative):

Now use 50 random training data points to calc approx derivative:

Observe the approximate derivatives tend to be more accurate now.

» How to Sample?

- In above example we sampled 5 points with replacement from the 100 training data points. But this might mean that we don't use some of our training data, even after drawing repeated samples.
- * Periodic sampling is more common:
 - * Shuffle (i.e. randomly permute) training data
 - st For first sample take points 1,2,...,5 from data
 - * For second sample take points 6,7,...,10 from data
 - * and so on
 - st After doing this n/5 times we will have used all of our training data

» Mini-Batch Stochastic Gradient Descent (SGD)

Modifying gradient descent to use approx derivatives and periodic sampling:

```
\begin{split} \theta &= \theta 0, \ \textit{batch\_size} = 5, \textit{n} = \texttt{\#training data points} \\ \text{for $k$ in range(num\_iters):} \\ \text{shuffle training data} \\ \text{for $i$ in np.arange(0,n,batch\_size):} \\ \text{sample $N$=np.arange($i$, $i$ + batch\_size)$} \\ \text{calc approx derivative $DJ(\theta) = [DJ_{\theta_0}(\theta), DJ_{\theta_1}(\theta), \ldots, DJ_{\theta_n}(\theta)]$} \\ \theta &= \theta - \alpha DJ(\theta) \end{split}
```

- * Each run through the inner for-loop is called an *epoch* (corresponding to one run through the full training data).
- * Why do this? When #training data points n is v large, calculating approx derivative from small sample can be much faster than calculating exact derivative, yet still good enough to find downhill direction.
- * Mini-batch SGD is the standard approach with neural nets

* Quadratic loss m = 1000 training data points, $y = \theta^T x + noise$ with $\theta = [3, 4]$, starting point x = [1, 1], constant $\alpha_0 = 0.5$

Mini-batch SGD, batch size 5

- * For SGD one epoch is one run through training data $\rightarrow x$ has been updated $m/batch_size$ times. For GD one iteration is one update of x.
- With SGD get fast initial convergence, but when close to minimum the "noise" in the approx derivative causes x to "wander"

Mini-batch SGD, batch size 5

- * Iteration here = an update to x, so one run of inner mini-batch loop
- * Epoch = one run through all the mini-batches, so one run of outer loop.
- * Epoch = $m/batch_size = 1000/5 = 200$ iterations, so 50 epochs = 10000 iterations

Mini-batch SGD, batch size 5

Mini-batch SGD, batch size 25

- Increasing batch size reduces the "noise" in the approx derivative and reduces wandering by x when close to minimum.
- * Also slows fast initial convergence?

- * Quadratic loss m = 1000 training data points, $y = \theta^T x + noise$ with $\theta = [3, 4]$, starting point x = [1, 1], constant $\alpha_0 = 0.5$
- * Output y noise std deviation 1, mini-batch SGD, batch size 5

Output y noise std deviation 5, mini-batch SGD, batch size 5

 More measurement noise causes mini-batch derivative estimate to get less accurate, x wanders a lot more

* Toy neural net $\emph{m}=100$ training data points, output y noise with std dev 0.05, starting point $\emph{x}=[1,1]$, constant $\alpha_0=0.75$

* Mini-batch SGD, batch size 5

Faster initial convergence with SGD

 Pick a random mini-batch sample from the training data. Let N be the indices. Then use approx derivatives:

$$DJ_{\theta_1}(\theta; N) = \sum_{i \in N} \frac{\partial loss}{\partial \theta_1}(\theta, \mathbf{x}^{(i)}, \mathbf{y}^{(i)}), \ DJ_{\theta_2}(\theta) = \sum_{i \in N} \frac{\partial loss}{\partial \theta_2}(\theta, \mathbf{x}^{(i)}, \mathbf{y}^{(i)}) \ \text{etc}$$

- * When $N = \{1, 2, ..., m\}$ then we get back exact derivatives.
- * Suppose we repeately draw random samples, calc $DJ_{\theta_1}(\theta)$ and plot the values. E.g. Quadratic loss and $y = \theta^T x + noise$, $\theta = [3, 4]$:

* The approximate derivatives DJ_{θ_i} take values around the exact derivatives $\frac{\partial J}{\partial \theta_i}$, i=0,1. Why?

Think about drawing balls from a bag:

- * Suppose I have a bag with m different balls in it.
- st I reach into the bag to draw out a ball, each ball has probability $1/\emph{m}$ of being picked.
- After picking a ball, I put it back in the bag i.e. sample with replacement
- * Repeat this b times, so selecting a batch of b balls.
- * Each ball in the bag will on average appear b/m times in the batch, e.g. m=100, b=5 and repeat experiment M=1000 times:

m=100; b=5; M=1000 count=np.zeros(m) for k in range(M): batch=[] for i in range(b): batch.append(np.random.randint(0,m)); count[batch] = count[batch]+1

* Pick a random mini-batch of b samples from the training data, repeat M times and let N_k be the indices of the k'th sample. The k'th approx derivative is:

$$DJ_{\theta_1}(\theta; N_k) = \frac{1}{b} \sum_{i \in N_k} \frac{\partial loss}{\partial \theta_1}(\theta, \mathbf{x}^{(i)}, \mathbf{y}^{(i)})$$

- * There are m training data points. Each point in the training data is selected to be in sample N_k with probability b/m (cf bag with m balls from which we draw batches of size b).
- * Over M runs training point i will on average be selected Mb/m times i.e.

$$\frac{1}{M} \sum_{k=1}^{M} \frac{1}{b} \sum_{i \in N_b} \frac{\partial loss}{\partial \theta_1}(\theta, \mathbf{x}^{(i)}, \mathbf{y}^{(i)}) \approx \frac{Mb/m}{Mb} \sum_{i=1}^{m} \frac{\partial loss}{\partial \theta_1}(\theta, \mathbf{x}^{(i)}, \mathbf{y}^{(i)}) = \frac{\partial J}{\partial \theta_1}(\theta)$$

- * So the way that we sample mini-batches ensures that the empirical mean of the approx derivative equals to the exact derivative.
- * Can think of $DJ_{\theta_1}(\theta; N_k) = \frac{\partial J}{\partial \theta_1}(\theta) + noise_k$, with $E[noise_k] = 0$
- * i.e. $\frac{1}{M}\sum_{k=1}^{M}DJ_{\theta_1}(\theta;N_k)=\frac{\partial J}{\partial \theta_1}(\theta)+\frac{1}{M}\sum_{k=1}^{M}noise_k \to \frac{\partial J}{\partial \theta_1}(\theta)$ as $M\to\infty$

* Quadratic loss $\emph{m}=100$ training data points, $\emph{y}=\emph{\theta}^{\emph{T}}\emph{x}+\emph{noise}$ with $\emph{\theta}=[3,4]$, starting point $\emph{x}=[1,1]$, constant $\alpha_0=0.5$

- * SGD plot: solid line is emprical mean over the *M* runs, error bars indicate one standard deviation, x-axis is mini-batch inner loop iterations, *not epochs*.
- See that on average the convergence rate of SGD matches that of gradient descent when we compare iterations (rather than epochs)
- One iteration of SGD is much cheaper than one iteration of gradient descent

* Toy neural net m = 100 training data points, output y noise with std dev 0.05, starting point x = [1, 1], constant $\alpha_0 = 0.75$

- * In above analysis we selected each training point *uniformly at* random with replacement and treat mini-batches independently.
 - Uniformly at random = every training point equally likely to be picked for inclusion in a mini-batch.
 - * With replacement = we put ball back in bag after picking it, so there's a chance the same ball will be picked again i.e. a mini-batch may contain the same training point multiple times
 - Treat mini-batches independently = we repeat this process independently for each mini-batch, so the same training data point can also appear in two consecutive mini-batches
 - st E.g. with $\emph{m}=10$ data points and mini-batch size 5 we might choose mini-batches:

$${5,3,5,1,2},{1,4,6,2,5},{3,2,6,4,4}$$

- * Alternative: selected each training point uniformly at random without replacement and treat mini-batches independently. .
 - Uniformly at random = every training point equally likely to be picked for inclusion in a mini-batch.
 - Without replacement = we don't put ball back in bag after picking it, so a training point can only appear once in a mini-batch
 - * When number of training data points is large (as it usually is when using SGD) then with/without replacement strategies are much the same (the chance of choosing the same training point multiple times in a mini-batch is really small)
 - * Treat mini-batches independently = we repeat this independently for each mini-batch, so the same training data point can also appear in two consecutive mini-batches even though the same point cannot appear twice within the same mini-batch
 - st E.g. with $\emph{m}=10$ data points and mini-batch size 5 we might choose mini-batches:

$$\{5, 3, 1, 2, 4\}, \{1, 4, 6, 2, 5\}, \{3, 2, 6, 1, 4\}$$

 Alternative (more common): select each training point once over an epoch, but in random order. E.g. its what this code does:

```
\theta=\theta 0,\ batch\_size=5,\ n= #training data points for k in range(num_iters): shuffle training data for i in np.arange(0,n,batch\_size): sample N=np.arange(i, i+batch\_size) calc approx derivative DJ(\theta)= [DJ_{\theta_0}(\theta),DJ_{\theta_1}(\theta),\dots,DJ_{\theta_n}(\theta) \theta=\theta-\alpha DJ(\theta)
```

- * At iteration 1 of inner loop the mini-batch $N_1 = \{1, 2, \dots, batch_size\}$.
- * Suppose we re-run above code many times. Due to the shuffling, the training points in mini-batch N_1 are selected uniformly at random without replacement.
- But the same training data point cannot appear in two consecutive mini-batches, so this shuffling sampling strategy is not quite the same as previous sampling without replacement strategy
- st E.g. with $\emph{m}=10$ data points and mini-batch size 5 we might choose mini-batches:

 Hard to analyse, but in practice behaves much the same as the "sample uniformly at random with replacement and treat mini-batches independently" strategy.

* To be avoided: select each training point once over an epoch, but in *fixed order*. E.g. its what this code does:

- * Note the lack of a shuffle at the start of each run of the inner loop.
- * Suppose our training data was ordered so that all the points of one type (e.g. all the examples with label +1) come first, then all points of a second type come next (e.g. all the examples with label -1) and so on.