

Mechanics of Materials I: Fundamentals of Stress & Strain and Axial Loading

Dr. Wayne Whiteman Senior Academic Professional and Director of the Office of Student Services Woodruff School of Mechanical Engineering

Module 30 Learning Outcome

 Derive the strain transformation equations for the case of plane strain

Plane Strain

$$\varepsilon_z = \gamma_{xz} = \gamma_{zx} = \gamma_{yz} = \gamma_{zy} = 0$$

In general, \mathcal{E}_x , \mathcal{E}_y , and $\gamma_{xy} = \gamma_{yx}$ are known or can be found

Find:

$$\varepsilon_n, \gamma_{nt}$$
 for any angle θ

Georgia Tech

Y

Also note

$$(1+\varepsilon_n)^2 dn^2 = (1+\varepsilon_x)^2 dx^2 + (1+\varepsilon_y)^2 dy^2 - 2(1+\varepsilon_x) dx (1+\varepsilon_y) dy \cos\left(\frac{\pi}{2} + \gamma_{xy}\right)$$

$$\cos\left(\frac{\pi}{2} + \gamma_{xy}\right) = -\sin\gamma_{xy}$$

$$\frac{dy}{dx} = \sin\theta \longrightarrow dy = dn \sin\theta$$

$$(1+\varepsilon_n)^2 dn^2 = (1+\varepsilon_x)^2 dx^2 + (1+\varepsilon_y)^2 dy^2 + 2(1+\varepsilon_x) dx (1+\varepsilon_y) dy \sin\gamma_{xy}$$

 $dy = dn \sin \theta$ $dh^2\cos^2\theta$ $dh^2\sin^2\theta$ $dh^2\sin\theta\cos\theta$ **Substitute:**

 $(1+\varepsilon_n)^2 dn^2 = (1+\varepsilon_x)^2 dx^2 + (1+\varepsilon_y)^2 dy^2 + 2(1+\varepsilon_x) dx(1+\varepsilon_y) dy \sin \gamma_{xy}$

$$(1+\varepsilon_n)^2 dn^2 = (1+\varepsilon_x)^2 dx^2 + (1+\varepsilon_y)^2 dy^2 + 2(dx)^2 dy + (1+\varepsilon_y)(1+\varepsilon_y)\sin\gamma_{xy}$$

$$\gamma_{xy}$$

$$1 + 2\varepsilon_n + \varepsilon_n^{t} = (1 + 2\varepsilon_x + \varepsilon_x^{t})\cos^2\theta + (1 + 2\varepsilon_y + \varepsilon_y^{t})\sin^2\theta + 2(1 + \varepsilon_x^{t} + \varepsilon_y^{t} + \varepsilon_y^{t})\sin^2\gamma_{xy}\sin\theta\cos\theta$$

Note that strains are very small

Also note $dx = dn \cos \theta$

Note that strains are very small
$$\mathcal{E}^2 << \mathcal{E}$$

 $\sin \gamma \approx \gamma$

$$\mathcal{E}\gamma \ll \mathcal{E} \text{ or } \gamma$$

$$1 + 2\varepsilon_n = (1 + 2\varepsilon_r)\cos^2\theta + (1 + 2\varepsilon_y)\sin^2\theta + 2\gamma_{ry}\sin\theta\cos\theta$$

$$1 + 2\varepsilon_n = (1 + 2\varepsilon_x)\cos^2\theta + (1 + 2\varepsilon_y)\sin^2\theta + 2\gamma_{xy}\sin\theta\cos\theta$$

$$1 + 2\varepsilon_n = 1(\sin^2\theta + \cos^2\theta) + 2\varepsilon_x \cos^2\theta + 2\varepsilon_y \sin^2\theta + 2\gamma_{xy} \sin\theta \cos\theta$$

Normal Strain Transformation Equation

$$\varepsilon_n = \varepsilon_x \cos^2 \theta + \varepsilon_y \sin^2 \theta + \gamma_{xy} \sin \theta \cos \theta$$

Normal Strain Transformation Equation

$$\varepsilon_n = \varepsilon_x \cos^2 \theta + \varepsilon_y \sin^2 \theta + \gamma_{xy} \sin \theta \cos \theta$$

Trig Identities:
$$\cos 2\theta = 2\cos^2 \theta - 1$$

$$\cos 2\theta = 1 - 2\sin^2 \theta$$

$$\sin 2\theta = 2\sin \theta \cos \theta$$

$$\left(\frac{1 + \cos 2\theta}{2}\right) \quad \left(\frac{1 - \cos 2\theta}{2}\right) \quad \left(\frac{\sin 2\theta}{2}\right)$$

$$\varepsilon_n = \varepsilon_x \cos^2 \theta + \varepsilon_y \sin^2 \theta + \gamma_{xy} \sin \theta \cos \theta$$

$$\varepsilon_n = \frac{\varepsilon_x + \varepsilon_y}{2} + \frac{\varepsilon_x - \varepsilon_y}{2} \cos 2\theta + \frac{\gamma_{xy}}{2} \sin 2\theta$$

In general, \mathcal{E}_x , \mathcal{E}_y , and $\gamma_{xy}=\gamma_{yx}$ are known or can be found

Georgia

Find: ε_n, γ_n for any angle θ

Normal Strain Transformation Equation

$$\varepsilon_n = \varepsilon_x \cos^2 \theta + \varepsilon_y \sin^2 \theta + \gamma_{xy} \sin \theta \cos \theta$$

$$\varepsilon_n = \frac{\varepsilon_x + \varepsilon_y}{2} + \frac{\varepsilon_x - \varepsilon_y}{2} \cos 2\theta + \frac{\gamma_{xy}}{2} \sin 2\theta$$