PMATH 764: Solutions to Assignment 3

In this assignment, we assume the field k to be infinite.

- 1. Determine whether or not the following are varieties.
 - (a) The orthogonal group

$$O(n,k) = \{A \in M_{n \times n}(k) : AA^T = I_{n \times n}\} \subset M_{n \times n}(k),$$

when k has $char(k) \neq 2$.

Proof. Let $M_{n\times n}(k)$ be the set of $n\times n$ matrices with entries in k. If we identify a matrix $A=(a_{ij})$ with the point $(a_{11},\ldots,a_{1n},a_{21},\ldots,a_{2n},\ldots,a_{nn})\in\mathbb{A}^{n^2}(k)$, then $AA^T=I_{n\times n}$ is clearly a set of n^2 polynomial equations in n^2 variables, so that O(n,k) is an algebraic subset of \mathbb{A}^{n^2} . Nevertheless, any orthogonal matrix can either have determinant 1 or $-1\neq 1$. Hence,

$$O(n,k) = V(AA^{T} - I, \det A - 1) \cup V(AA^{T} - I, \det A + 1),$$

implying that O(n,k) is reducible and therefore not a variety.

(b) The special unitary group of complex 2×2 matrices

$$SU(2,\mathbb{C}) = \{ A \in M_{2\times 2}(\mathbb{C}) : A\bar{A}^T = I_{2\times 2}, \det A = 1 \} \subset M_{2\times 2}(\mathbb{C}).$$

Proof. Note that $SU(2,\mathbb{C})$ consists if 2×2 matrices of the form

$$A = \begin{pmatrix} a & b \\ -\bar{b} & \bar{a} \end{pmatrix}$$

with $a, b \in \mathbb{C}$ and $\det(A) = 1$. Hence, $SU(2, \mathbb{C})$ can be thought of as a subset of \mathbb{C}^4 as follows:

$$SU(2,\mathbb{C}) = \{(x,y,z,w) \in \mathbb{C}^4 : z = -\bar{y}, w = \bar{x} \text{ and } x\bar{x} + y\bar{y} = 1\}.$$

Let us show that $SU(2,\mathbb{C})$ is not algebraic, thus implying it is *not* a variety. Suppose instead that $SU(2,\mathbb{C})$ is algebraic. Then $SU(2,\mathbb{C}) \cap V(y,z)$ is also an algebraic subset of \mathbb{C}^4 , and in particular a closed subset of $V(y,z) = \mathbb{C}^2$. However,

$$SU(2,\mathbb{C}) \cap V(y,z) = \{(x,w) : w = \bar{x} \text{ and } xw = 1\} \subset V(y,z),$$

which can be identified with the unit circle in \mathbb{C} . Consequently, $SU(2,\mathbb{C}) \cap V(y,z)$ is an infinite proper closed subset of $V(xw-1) \subset V(y,z) = \mathbb{C}^2$, which is impossible since $V(xw-1) \subset \mathbb{C}^2$ is the zero set of the irreducible polynomial xw-1 (see Corollary 1.5.2 in the lecture notes). Therefore, $SU(2,\mathbb{C})$ is not algebraic.

(c) $V(xz - y^2, yz - x^3, z^2 - x^2y) \subset \mathbb{C}^3$.

Proof. Let $X=V(xz-y^2,yz-x^3,z^2-x^2y)$. Note that if $(x,y,z)\in X$, then x=y=z=0 or $xyz\neq 0$; one can also easily verify that $y^3=x^4,\ z^3=x^5$ and $z^4=y^5$. Let us construct a surjective polynomial map $\varphi:\mathbb{A}^1\to X\subset\mathbb{C}^3,t\mapsto (p(t),q(t),r(t))$. Since $y^3=x^4$ and $z^4=y^5$, a natural choice seems to be $\varphi(t)=(t^3,t^4,t^5)$. We clearly have $\varphi(\mathbb{A}^1)\subseteq X$. Let us show that φ is surjective. We have $(0,0,0)=\varphi(0)$. Let $(x_0,y_0,z_0)\neq (0,0,0)$ be any other point in X. Then, $x_0y_0z_0\neq 0$, so that $x_0\neq 0$, and $(x_0,y_0,z_0)=\varphi(y_0/x_0)$ since $y_0^3=x_0^4,$ $z_0^3=x_0^5$ and $z_0^4=y_0^5$, proving that φ is surjective. Thus, since \mathbb{A}^1 is irreducible, $X=\varphi(\mathbb{A}^1)$ is irreducible.

2. Show that $X = V(y^2 - x^3) \subset \mathbb{A}^2$ is not isomorphic to \mathbb{A}^1 .

Proof. We already know that $\Gamma(X) = k[\bar{x}, \bar{y}]$ with the residue classes \bar{x} and \bar{y} satisfying the relation $\bar{y}^2 = \bar{x}^3$. Let us show that $\Gamma(X) \not\simeq k[t] = \Gamma(\mathbb{A}^1)$ as a k-algebra, which will prove that $X \not\simeq \mathbb{A}^1$. Let us do this by showing that $\Gamma(X)$ is not a UFD (whereas k[t] is a UFD). Since $\bar{y}^2 = \bar{x}^3$, if we can show that \bar{x} and \bar{y} are irreducible, then we are done. Let us do it for \bar{x} , the proof for \bar{y} being similar. Let us assume instead that \bar{x} can be written as $\bar{x} = ab$ for some $a, b \in \Gamma(X)$. Consider the surjective polynomial map

$$\varphi: \quad \mathbb{A}^1 \quad \to \quad X \subset \mathbb{A}^2$$
$$\quad t \quad \mapsto \quad (t^2, t^3),$$

whose pullback is given by

$$\begin{array}{cccc} \phi^*: & \Gamma(X) & \to & k[t] \\ & \bar{x} & \mapsto & t^2 \\ & \bar{y} & \mapsto & t^3. \end{array}$$

Then, $\varphi^*(a)\varphi^*(b) = \varphi^*(\bar{x}) = t^2$. Since k[t] is a UFD, this means we have three possibilities:

- (i) $\varphi^*(a) = \alpha t^2$ and $\varphi^*(b) = 1/\alpha$ for some $\alpha \in k^*$;
- (ii) $\varphi^*(a) = \alpha t$ and $\varphi^*(b) = t/\alpha$ for some $\alpha \in k^*$;
- (iii) $\varphi^*(a) = \alpha$ and $\varphi^*(b) = t^2/\alpha$ for some $\alpha \in k^*$.

However, the image of φ^* does not contain t, so only (i) or (iii) can occur, say (i). Thus, $\varphi^*(a) = \alpha t^2$. But φ^* is injective since φ is surjective and therefore dominant (see 2.(a)). Hence, $a = \bar{x}/\alpha$ and $b = \alpha$, proving that \bar{x} is irreducible.

- 3. Let $X \subset \mathbb{A}^n$ and $Y \subset \mathbb{A}^m$ be two varieties, and $\phi: X \to Y$ be a polynomial map.
 - (a) Show that ϕ^* is injective if and only if $\overline{\phi(X)} = Y$.

Proof. For any $\bar{g} \in \Gamma(Y)$, $\phi^*(\bar{g}) = 0$ if and only if $\overline{g \circ \varphi} = 0$ in $\Gamma(X)$, which occurs if and only if $g(\phi(x)) = 0$ for all $x \in X$. In other words, $\phi^*(\bar{g}) = 0$ if and only if $g \in I(\phi(X))$, implying that the kernel of ϕ^* is $I(\phi(X))$. Nevertheless, ϕ^* is injective if and only if its kernel is I(Y). Consequently, ϕ^* is injective if and only if $I(Y) = I(\phi(X))$, which in turns happens if and only if I(Y) = I(Y)

(b) Show that ϕ^* is surjective if and only if ϕ has a polynomial left inverse (that is, a polynomial map $\psi: Y \to \mathbb{A}^n$ such that $\psi \circ \phi = \mathrm{id}_X$).

Proof. Suppose that ϕ^* is surjective. Then, if $X \subseteq \mathbb{A}^n$ and x_1, \ldots, x_n are ambient coordinates in \mathbb{A}^n , we have $\Gamma(X) = k[x_1, \ldots, x_n]/I(X)$ and, for every x_i , there exists $\bar{f}_i \in \Gamma(Y)$ such that $\phi^*(\bar{f}_i) = \bar{x}_i$. Let $\psi: Y \to \mathbb{A}^n$ be the map given by $y \mapsto (f_1(y), \ldots, f_n(y))$. Then, $\bar{f}_i = \psi^*(\bar{x}_i)$ and

$$(\psi \circ \phi)^*(\bar{x}_i) = \phi^* \circ \psi^*(\bar{x}_i) = \phi^*(\bar{f}_i) = \bar{x}_i,$$

for every i, implying that $(\psi \circ \phi)^* = \phi^* \circ \psi^*|_{\Gamma(X)} = id_{\Gamma(X)} = (id_X)^*$. Thus, $\psi \circ \phi = id_X$ and ψ is a left inverse of ϕ .

4. Let k be an algebraically closed field with characteristic p > 0. Consider the map $\phi : \mathbb{A}^1 \to \mathbb{A}^1$ defined by $t \mapsto t^p$; this is called the *Frobenius morphism*. Show that ϕ is bijective but not an isomorphism.

2

Proof. We first note that the equation $t^p = a$ has a solution for all $a \in \mathbb{A}^1$, since k is algebraically closed, implying that ϕ is surjective. Moreover, if $\phi(t_1) = \phi(t_2)$, then $t_1^p = t_2^p$. But the characteristic of k is p, so $(t_1 - t_1)^p = t_1^p - t_2^p = 0$, implying that $t_1 - t_2 = 0$ since k is a field. Hence, $t_1 = t_2$ and ϕ is a bijection. Nevertheless,

$$\begin{array}{ccc} \phi^*: k[t] & \to & k[t] \\ t & \mapsto & t^p \end{array}$$

is not surjective since t is not in the image of ϕ^* . Consequently, since ϕ^* is not an isomorphism, ϕ cannot be an isomorphism.

5. Let $X = V(y^2 - x^2(x+1)) \subset \mathbb{A}^2$. Let $z = \bar{y}/\bar{x} \in k(X)$. What are the pole sets of z and z^2 ? Are z and z^2 in $\Gamma(X)$? Justify your answer.

Proof. We first note that z may be undefined when $\bar{x} = 0$, which corresponds to the point (0,0) on X. Suppose, on the contrary that, that z is defined at (0,0). There then exist $a,b \in \Gamma(X)$ such that $b(0,0) \neq 0$ and z = a/b, or equivalently $a\bar{x} = b\bar{y}$. Lifting to k[x,y], we have

$$\tilde{a}x = \tilde{b}y + (y^2 - x^2(x+1))h,$$
 (*)

for some $\tilde{a}, \tilde{b}, h \in k[x, y]$. Since $\tilde{b}(0, 0) = b(0, 0) \neq 0$, \tilde{b} has a non-zero constant term, implying that the right-hand of (*) has a linear term in y, whereas every term on the right-hand side of (*) is a multiple of x, a contradiction. The point (0,0) is therefore the (only) pole of z; moreover, since z has a pole, $z \notin \Gamma(X)$. However, $z^2 = \bar{y}^2/\bar{x}^2 = \bar{x}^2(\bar{x}+1)/\bar{x}^2 = \bar{x}+1$ on X, which is defined everywhere, i.e., the pole set of z^2 is empty and $z^2 \in \Gamma(X)$.

- 6. Classification of irreducible conics in \mathbb{A}^2 . The zero set of an irreducible polynomial $f \in k[x,y]$ of degree two is called an *irreducible conic* in \mathbb{A}^2 . You may suppose that the field k is algebraically closed and has $\operatorname{char}(k) = 0$.
 - (a) Show that any irreducible conic in \mathbb{A}^2 is isomorphic to $V(y-x^2)$ or $V(x^2+y^2-1)$ under an appropriate affine coordinate change.

Proof. Let us show that the zero set of any irreducible conic in \mathbb{A}^2 is isomorphic to $V(y-x^2)$ or $V(x^2+y^2-1)$ under an appropriate affine coordinate change. Consider the irreducible quadratic polynomial

$$p(x,y) = ax^{2} + bxy + cy^{2} + dx + ey + f.$$

Let us first show that, after an appropriate affine transformation, p can be written as $au^2 + Bv^2 + du + Ev + f$. We can clearly only consider the case where $b \neq 0$, otherwise we are done. Let us first assume that a = c = 0 so that

$$p(x,y) = bxy + dx + ey + f = (bx + d)\left(y + \frac{e}{b}\right) + \left(f - \frac{de}{b}\right).$$

The affine coordinate change $\{bx+d=\alpha(u+iv),y+(e/b)=\alpha(u-iv)\}$, where $\alpha^2=(de/b-f)$, transforms p into $\alpha^2(u^2+v^2-1)$.

Let us now assume that $a \neq 0$. Then,

$$p(x,y) = a\left(x + \frac{by}{2a}\right)^2 + \left(c - \frac{b^2}{2a}\right)y^2 + d\left(x + \frac{by}{2a}\right) + \left(e - \frac{bd}{2a}\right)y + f.$$

The affine coordinate change $\{x + (by/2a) = u, y = v\}$ then transforms p into a polynomial of the desired form. Finally, if $c \neq 0$, the affine transformation $(x, y) \mapsto (y, x)$ takes us back to the previous case.

Let us now assume that p has the form

$$p(x,y) = ax^2 + by^2 + cx + dy + e.$$

If b = 0, then b can be written as

$$p(x,y) = \left(dy + e - \frac{c^2}{4a}\right) - \left(\alpha x + \frac{c}{2\alpha}\right)^2,$$

where $\alpha^2 - -a$, so that the affine coordinate change $\{dy + e - (c^2/4a) = u, \alpha x + (c/2\alpha) = v\}$ transforms p into $v - u^2$.

Finally, if $b \neq 0$, then

$$p(x,y) = \left(\alpha x + \frac{c}{2\alpha}\right)^2 + \left(\beta y + \frac{d}{2\beta}\right)^2 + \left(e - \frac{1}{4}\left(\frac{c^2}{a} + \frac{d^2}{b}\right)\right),$$

where $\alpha^2 = a$, $\beta^2 = b$ and $\gamma^2 = ((c^2/a) + (d^2/b))/4 - e$, so that the affine coordinate change $\{\alpha x + (c/2\alpha) = \alpha u, \beta y + (d/2\beta) = \gamma v\}$ takes p to $\gamma^2(u^2 + v^2 - 1)$.

Consequently, since affine transformations are isomorphisms, this shows that $V(p) \simeq V(y-x^2)$ or $V(x^2+y^2-1)$ for any irreducible quadratic polynomial p.

(b) Prove that although the parabola $V(y-x^2)$ is isomorphic to \mathbb{A}^1 , the unit circle $V(x^2+y^2-1)$ is not.

Proof. $V(y-x^2)$ is isomorphic to \mathbb{A}^1 since

$$\Gamma(V(y-x^2)) = k[\bar{x}] \simeq k[t] = \Gamma(\mathbb{A}^1).$$

However, $x^2+y^2-1=(x+iy)(x-iy)-1=st-1$ with s=x+iy and t=x-iy; the affine transformation $(x,y)\mapsto (x+iy,x-iy)$ therefore maps $V(x^2+y^2-1)$ isomorphically onto V(st-1). But we saw in class that $V(st-1)\not\simeq \mathbb{A}^1$. We have nonetheless shown in class that $V(y-x^2)$ and $V(x^2+y^2-1)$ are both birational to \mathbb{A}^1 . Since isomorphisms are birational equivalences, this means that any irreducible conic in \mathbb{A}^2 is birational to $V(y-x^2)$ or $V(x^2+y^2-1)$, and therefore birational to \mathbb{A}^1

(c) Consider the unit circle $X = V(x^2 + y^2 - 1)$. The stereographic projection of X from the north pole $N = (0,1) \in X$ onto the x-axis maps a point $P \in X$ to the point of intersection P' of the x-axis with the line passing through N and P (see). Verify that the stereographic projection is given by the rational map $\phi: X \to \mathbb{A}^1, (x,y) \mapsto x/(1-y)$, where the x-axis is identified with \mathbb{A}^1 by sending (x,0) to x. Show that ϕ is a birational equivalence, thus proving that X is a rational curve. Consequently, all irreducible conics in \mathbb{A}^2 are rational.

Proof. $V(y-x^2)$ is isomorphic to \mathbb{A}^1 since

$$\Gamma(V(y-x^2)) = k[\bar{x}] \simeq k[t] = \Gamma(\mathbb{A}^1).$$

However, $x^2+y^2-1=(x+iy)(x-iy)-1=st-1$ with s=x+iy and t=x-iy; the affine transformation $(x,y)\mapsto (x+iy,x-iy)$ therefore maps $V(x^2+y^2-1)$ isomorphically onto V(st-1). But we saw in class that $V(st-1)\not\simeq \mathbb{A}^1$. We have nonetheless shown in class that $V(y-x^2)$ and $V(x^2+y^2-1)$ are both birational to \mathbb{A}^1 . Since isomorphisms are birational equivalences, this means that any irreducible conic in \mathbb{A}^2 is birational to $V(y-x^2)$ or $V(x^2+y^2-1)$, and therefore birational to \mathbb{A}^1

Note. An affine variety is said to be rational if it is birational to \mathbb{A}^m for some $m \geq 1$.