Apresentação dos resultados

Nomes: Juliano Strelow Buss e Lucas Alviene Pereira

• SO: Windows 11

• Quantidade de Memória: 16GB

Cores Físicos: 4Cores Lógicos: 8GCC: 6.3.0

Tamanho do Cache

L1: 256kbL2: 1MBL3: 8MB

Começamos os testes com o -fopenmp ativado e realizamos os teste de **N** = {8, 9, 10, 11,12, 13, 14, 15, 16, 17} para cada tempo de execução paralela **t**= {1, 2, 3, 4, 5, 6}. Os valores das duas tabelas abaixo, representam o tempo real para **t** em **N**

Tempo Paralelo								
N	t(número de threads)							
	1	2	3	4	5	6		
8	0	0.001	0.001	0.001	0.002	0.002		
9	0.000999928	0.000999928	0.000999928	0.00200009	0.00199986	0.00200009		
10	0.00200009	0.00199986	0.00100017	0.00199986	0.00200009	0.00200009		
11	0.00700021	0.00300002	0.00399995	0.00300002	0.00400019	0.00600004		
12	0.03	0.0180001	0.0189998	0.0280001	0.0120001	0.0119998		
13	0.186	0.096	0.067002	0.0569999	0.063	0.059		
14	0.972	0.539	0.415	0.309	0.291	0.287		
15	5.98	3.8	2.759	2.285	1.871	1.605		
16	41.772	24.075	18.799	14.69	14.657	17.705		
17	290	192.491	138.948	109.64	109.356	93.804		

Como a diferença nos $N = \{8, 9, 10, 11, 12, 13\}$ são irrelevantes, iremos testar os tempos de execução paralelas $t = \{7, 8, 9, 10, 11, 12\}$ apenas com $N = \{14, 15, 16, 17\}$

Tempo Paralelo								
	t(número de threads)							
N	7	8	9	10	11	12		
14	0.275	0.24	0.244	0.236	0.239	0.259		
15	1.552	1.446	1.501	1.497	1.495	1.568		
16	12.634	11.298	11.271	11.729	11.434	11.841		
17	93.249	88.669	87.996	85.617	82.965	87.523		

Como os valores para $N = \{8, 9, 10, 11\}$ são irrelevantes, vamos calcular o speedup de $N = \{12, 13, 14, 15, 16, 17\}$.

Primeiro vamos calcular o tempo sequencial para cada $\bf N$ com o -fopenmp desativado equivalente a $\bf t=0$.

Tempo Sequencial							
1	N						
t	12	13	14	15	16	17	
0	0.012	0.049	0.287	1.823	12.012	84.525	

Para calcular o speedup, iremos dividir o t0 com t_n

SpeedUp							
	N						
t	12	13	14	15	16	17	
1	0.4	0.263	0.295	0.305	0.288	0.291	
2	0.667	0.510	0.532	0.480	0.499	0.439	
3	0.631	0.731	0.692	0.661	0.639	0.608	
4	0.429	0.860	0.929	0.798	0.818	0.771	
5	1.000	0.778	0.986	0.974	0.820	0.773	
6	1.000	0.831	1	1.136	0.678	0.901	
7	-	-	1.044	1.175	0.951	0.906	
8	-	-	1.196	1.261	1.063	0.953	
9	-	-	1.176	1.215	1.066	0.961	
10	-	-	1.216	1.218	1.024	0.987	
11	-	-	1.200	1.219	1.051	1.019	
12	-	-	1.108	1.163	1.014	0.966	

Obs: Os $N = \{12,13\}$ para $t = \{7, 8, 9, 10, 11, 12\}$ não foram testados, como informado anteriormente.