Группа	P3207	К работе допущен	
Студент	Садовой Г. В.	. Работа выполнен	a
Преподаватель	Терещенко Г.В.	Отчет принят	

Рабочий протокол и отчет по лабораторной работе №3.08 "Эффект Холла в примесных полупроводниках"

1 Цель работы

Изучить эффект Холла в примесных полупроводниках. Ознакомиться с методом измерения концентрации и подвижности основных носителей тока в примесных полупроводниках с помощью эффекта Холла

2 Задачи, решаемые при выполнении работы

- 1. Исследовать зависимость электропроводности от температуры Т и определить диапазон температур, соответствующий одному типу проводимости.
- 2. Исследовать зависимость ЭДС Холла U_x от:
 - А) Магнитного поля В при постоянной силе тока І и температуре Т.
 - В) Силы тока I при постоянном магнитном поле В и температуре Т.
 - C) Температуры T при постоянных значениях I и В.
- 3. Определить постоянную Холла R_x , концентрацию носителей n и их подвижность μ для различных температур.
- 4. Определить тип полупроводника (n-тип или p-тип) по знаку ЭДС Холла U_x .

3 Объект исследования

Объектом исследования является эффект Холла в примесных полупроводниках.

4 Метод экспериментального исследования

- 1. Измерить продольное напряжение U_{12} при изменении температуры T от комнатной до 365 K.
- 2. Измерить U₃₄′ иU ₃₄″ при двух противоположных направлениях магнитного поля ВВ.
- 3. Измерить:
 - Зависимости U_x от В при постоянных I и Т.

- Зависимости U_x от I при постоянных В и Т.
- Зависимости U_x от T при постоянных I и В.

5 Рабочие формулы и исходные данные

Напряжение Холла:

$$U_{x} = R_{x} \frac{IB}{b} \tag{1}$$

где I – сила тока, протекающего через образец;

В – индукция магнитного поля;

b – толщина образца (размер по магнитному полю);

 R_{x} – постоянная Холла, зависящая от рода вещества.

Электропроводность:

$$\sigma = q_e n \mu$$
 (2)

где n - концентрация свободных электронов μ - подвижность носителей тока $\mu = \frac{V_{дp}}{E}$, где $V_{дp}$ - дрейфовая скорость носителей тока при напряженности электрического поля E Постоянная Холла:

$$R_{x} = a \frac{1}{q_{a} n'} \tag{3}$$

где a=1,93 - поправочный множитель (учитывает механизм рассеяния носителей тока в полупроводнике) $\mu \sim T^{-\frac{3}{2}}$

$$n= n_0 exp(\frac{-\Delta E_a}{k_6 T})$$

где: ΔE_a - энергия активации примеси k_6 - постоянная Больцмана

Электропроводность образца σ - величина, обратная удельному сопротивлению ρ - σ = $\frac{1}{\rho}$ Сопративление образца между точками 1 и 2:

$$R_{12} = \rho \frac{L_{12}}{bd}$$

где L_{12} = 10мкм-расстояние между точками 1 и 2,

bd = 2 на 2 мм - площадь поперечного сечения образца IR ₁₂ = U₁₂

Из полученной системы уравнений следует рабочая формула для экспериментального определения электропроводности:

$$\sigma = \frac{\text{IL}_{12}}{\text{U}_{12}\text{bd}} \tag{4}$$

При одном направлении индукции магнитного поля В

 $U_{34}' = U_x + \Delta U$

При обратном:

$$U_{34}'' = -U_x + \Delta U$$

Вычтем из первого выражения второе и выразим U_x

$$U_{x} = \frac{U_{34}' - U_{34}''}{2} \tag{5}$$

6 Измерительные приборы

Таблица 1: Измерительные приборы

Наименование средства измерения	Предел измерений	Цена деления	Погрешност ь
Блок амперметра-во льтметра AB1	Напряжение: 0–20 В Ток: 0–2000 мкА	0.01 В 1 мкА	±0.1 % ±0.2 %
Блок генератора напряжений ГНЗ	0-10 B	0.1 B	±0.5 %
Стенд с объектами исследования СЗ-ЭХ01	300–400 K	1 K	±1 K
Вольтметр (для измерения U ₁₂)	0-2 B	0.001 B	±0.01 B
Вольтметр (для измерения U ₃₄)	0-20 B	0.01 B	±0.05 B

7 Схема установки

Генератор тока

В состав установки входят:

- 1. Блок амперметра-вольтметра АВ1 1 шт.
- 2. Блок генератора напряжений ГН3 1шт.
- 3. Стенд с объектами исследования С3-ЭХ01 1 шт.
- 4. Соединительные провода с наконечниками 6 шт.

8 Результаты прямых измерений и их обработки

Таблица 1: I=1мA

Измерить	T, K	300	315	330	340	350	360
	U ₁₂ ,B	1,89	2,07	2,28	2,42	2,57	2,72
Вычислить	1/T, 1/K	0,00333	0,00317	0,00303	0,00294	0,00286	0,00278
	σ, сименс	0,00132	0,00121	0,00110	0,00103	0,00097	0,00092
	lnσ	-6,62804	-6,71901	-6,81564	-6,87523	-6,93537	-6,99210

Вычислим электропроводность σ по формуле (4) и величину $\ln \sigma$ для каждого значения Т. Пример расчета для T=300:

$$\sigma = \frac{\text{IL}_{12}}{\text{U}_{12}\text{bd}} = \frac{1*10^{-3} *10*10^{-6}}{1,89*2*10^{-3} *2*10^{-3}} \approx 0,00132$$

Вычислим ЭДС Холла U_x при постоянной силе тока I и постоянной температуре T из выбранного диапазона.

Таблица 2: T=300K, I=1200 мкA

Измерить	В, мТл	2	4	6	8	10	12
	U ₃₄ ,B	-0,014	-0,006	0,025	0,052	0,074	0,097
	U ₃₄ ,B	-0,062	-0,083	-0,106	-0,125	-0,15	-0,172
Вычислить	U _x ,B	0,024	0,039	0,066	0,089	0,112	0,135

Пример расчета для В=2мТл:

$$U_x = \frac{U_{34}' - U_{34}''}{2} = \frac{-0.014 - (-0.062)}{2} = 0.024B$$

Вычислим ЭДС Холла при постоянной величине магнитного поля В и постоянной температуре Т из выбранного диапазона.

Таблица 3: T=300K, B=12мTл

Измерить	І, мкА	413	502	610	718	814	919
	U ₃₄ ,B	0,031	0,038	0,046	0,054	0,061	0,076
	U ₃₄ ,B	-0,06	-0,073	-0,087	-0,103	-0,116	-0,125
Вычислить	U _x ,B	0,046	0,056	0,067	0,079	0,089	0,101

Вычислим ЭДС Холла при постоянной величине магнитного поля В и постоянном токе І.

Таблица 4: I=1мA, B=8мТл

Измерить	T, K	308	316	329	344	349	360
	U ₃₄ ,B	0,041	0,056	0,068	0,07	0,075	0,088
	U ₃₄ ,B	-0,109	-0,092	-0,086	-0,074	-0,07	-0,062
Вычислить	U _x ,B	0,075	0,074	0,077	0,072	0,0725	0,075

Вычислим по формуле (1) значения R_x для различных температур:

$$U_x = R_x \frac{IB}{b} => R_x = \frac{U_x b}{IB} = \frac{0.075*2*10^{-3}}{1*10^{-3} *8*10^{-3}} = 1875 \frac{M^3}{K\pi}$$

Таблица 5: Результаты вычислений

T, K	308	316	329	344	349	360
R _x ,м ³ /Кл	18,75	18,5	19,25	18	18,125	18,75
п,м ⁻³	6,43*10 ¹⁷	6,52*10 ¹⁷	6,27*10 ¹⁷	6,70*10 ¹⁷	6,66*10 ¹⁷	6,43*10 ¹⁷
µ,м ³ сименс/Кл	0,01285	0,01158	0,01094	0,00963	0,00914	0,00893

Оценим по формуле (3) значения n (концентрация свободных электронов) для различных температур:

$$R_{x} = a \frac{1}{q_{e}n} \Rightarrow n = a \frac{1}{q_{e}R_{x}}$$

$$n = a \frac{1}{q_{e}R_{x}} = 193* \frac{1}{1,6*10^{-19}*18,75} = 643*10^{-17} \text{M}^{-3}$$

Оценим по формуле (2) значения µдля разных тепмператур:

$$\sigma= \ q_e n \mu = \nu \ = \frac{\sigma}{q_e n} = \frac{\sigma R_x}{a}$$

$$\mu = \frac{0,00132*18,75}{1,93} \approx 0,01285 \text{м}^3 \text{сименс/Кл}$$

9 Графики

Рис.1

10 Окончательные результаты

Зависимость электропроводности от температуры Т показала снижение значения о при повышении температуры. Такое поведение противоречит теоретическим представлениям о свойствах полупроводников. Возможными причинами отклонения могут быть погрешности в проведении измерений либо особенности исследуемого образца.

Концентрация носителей n и подвижность μ рассчитаны для различных температур. Значения n находятся в диапазоне от $6.27*10^{17} \text{M}^{-3}$ до $6.7*10^{17} \text{M}^{-3}$, что соответствует примесному полупроводнику.

Экспериментально изучен эффект Холла в примесном полупроводнике. Установлено, что полупроводник относится к p-типу, так как во всех измерениях ЭДС Холла U_x имеет положительный знак.

11 Выводы и анализ результатов работы

В ходе работы был исследован эффект Холла в примесном полупроводнике. Были определены концентрация носителей заряда n, их подвижность μ, а также установлен тип полупроводника — p-тип. Полученные результаты в целом соответствуют теоретическим ожиданиям, за исключением аномального характера зависимости электропроводности σ от температуры.