CS61B Lectures #28

Today:

- Lower bounds on sorting by comparison
- Distribution counting, radix sorts

Readings: Today: DS(IJ), Chapter 8; Next topic: Chapter 9.

Better than N lg N?

- Can prove that if all you can do to keys is compare them, ther must take $\Omega(N \lg N)$.
- ullet Basic idea: there are N! possible ways the input data of scrambled.
- ullet Therefore, your program must be prepared to do N! differe binations of data-moving operations.
- ullet Therefore, there must be N! possible combinations of outcall the **if**-tests in your program, since those determine what gets moved where (we're assuming that comparisons are 2-w

 $rac{ extsf{sion Tree}}{ imes}$ Sorting time

Necessary Choices

- Since each **if**-test goes two ways, number of possible differ comes for k **if**-tests is 2^k .
- ullet Thus, need enough tests so that $2^k \geq N!$, which means $k \in \Omega$
- Using Stirling's approximation,

$$N! \in \sqrt{2\pi N} \left(\frac{N}{e}\right)^{N} \left(1 + \Theta\left(\frac{1}{N}\right)\right),$$

$$\lg(N!) \in 1/2(\lg 2\pi + \lg N) + N\lg N - N\lg e + \lg\left(1 + \Theta\left(\frac{1}{N}\right)\right)$$

$$= \Theta(N\lg N)$$

• This tells us that k, the worst-case number of tests needed N items by comparison sorting, is in $\Omega(N \lg N)$: there must be where we need (some multiple of) $N \lg N$ comparisons to things.

Beyond Comparison: Distribution

- But suppose can do more than compare keys?
- ullet For example, how can we sort a set of N integer keys whos range from 0 to kN, for some small constant k?
- ullet One technique: put the integers into N buckets, with an ir going to bucket $\lfloor p/k \rfloor$.
- ullet At most k keys per bucket, so catenate and use insertion sor will now be fast.
- E.g., k = 2, N = 10:

• Now insertion sort is fast. Putting in buckets takes time $\Theta(n)$ insertion sort takes $\Theta(kN)$. When k is fixed (constant), sorting in time $\Theta(N)$.

Distribution Counting

- ullet Another technique: count the number of items <1, <2, etc
- If $M_p = \#$ items with value < p, then in sorted order, the j with value p must be item $\#M_p + j$.
- Gives another linear-time algorithm.

• Suppose all items are between 0 and 9 as in this example:

- "Counts" line gives # occurrences of each key.
- "Running sum" gives cumulative count of keys < each value...
- ... which tells us where to put each key:
- ullet The first instance of key k goes into slot m, where m is the of key instances that are < k.

4 2	7	6	1	3	7	თ	5	9	1	9	1	9	0	4	0	7
nts	Col	3		0	3		1	1		2	2		1	3		3
		9		8	7		6	5		4	3		2	1		0
ning su	Ru	16		16	13		12	11		9	7		6	3		0
		9		8	7		6	5		4	3		2	1		0
kt posi	Ne	16		16	13		12	11		9	7		6	3		0
		9	•	8	7	·	6	5	•	4	3	•	2	1	•	0

7 4 2	6	1	3	7	3	5	9	1	9	1	9	0	4	0	7
Counts	3		0	3		1	1		2	2		1	3		3
	9		8	7		6	5		4	3		2	1		0
Running si	16)	16	13		12	11		9	7		6	3		0
	9	•	8	7	•	6	5	•	4	3	•	2	1	•	0
Next posi	16)	16	14		12	11		9	7		6	3		0
•	9	•	8	7	•	6	5	,	4	3	•	2	1	•	0

									_							
4 2	7	6	1	3	7	3	5	9	1	9	1	9	0	4	0	7
unts	Co	3		0	3		1	1		2	2		1	3		3
	-	9	•	8	7		6	5		4	3		2	1		0
ınning sı	Ru	16		16	13		12	11		9	7		6	3		0
	•	9	•	8	7	•	6	5		4	3	•	2	1	•	0
ext posi	Ne	16		16	14		12	11		9	7		6	3		1
	•	9	•	8	7	•	6	5		4	3	•	2	1	•	0

4 2	7	6	1	3	7	3	5	9	1	9	1	9	0	4	7 0
ounts	Co	3		0	3		1	1		2	2		1	3	3
	_	9		8	7		6	5		4	3		2	1	0
unning st	Ru	16		16	13		12	11		9	7		6	3	0
	_	9		8	7	•	6	5		4	3	_	2	1	0
ext posi	Ne	16		16	14		12	11)	10	7		6	3	1
	-	9		8	7		6	5		4	3	•	2	1	0

									_							
4 2	7	6	1	3	7	3	5	9	1	9	1	9	0	4	0	7
	_															
ounts	Co	3		0	3		1	1		2	2		1	3		3
	_	9		8	7		6	5		4	3		2	1		0
ınning sı] Ru	16		16	13		12	11		9	7		6	3		0
nning st											7					
		9		8	7		6	5		4	3		2	1		0
ext posi	Ne	16		16	14		12	11)	10	7		6	3		2
	_	9	_	8	7		6	5	_	4	3	_	2	1	_	0

0	0					4			7		
0		3		6		9		12		15	

7 4 2	6	1	3	7	3	5	9	1	9	1	9	0	4	7 0	
Counts	3		0	3		1	1		2	2		1	3	3	
	9	-	8	7		6	5		4	3	•	2	1	0	
Running su	16		16	13		12	11		9	7		6	3	0	
	9		8	7	•	6	5	·	4	3	•	2	1	0	
Next posi	17		16	14		12	11)	10	7		6	3	2	
	9	•	8	7	•	6	5	•	4	3	•	2	1	0	

7 () 4	0	9 1	9	1 9	5	3 7	3	1 6	7 4 2
3	3	1	2	2	1	1	3	0	3	Counts
0	1	2	3	4	5	6	7	8	9	
0	3	6	7	9	11	12	13	16	16	Running st
0	1	2	3	4	5	6	7	8	9	_
2	4	6	7	10	11	12	14	16	17	Next posi
0	1	2	3	4	5	6	7	8	9	_

7 4 2	6	1	3	7	3	5	9	1	9	1	9	0	4	7 0
Counts	3		0	3		1	1		2	2		1	3	3
	9		8	7	•	6	5	•	4	3		2	1	0
Running su	16)	16	13		12	11		9	7		6	3	0
	9	•	8	7	·	6	5	•	4	3	•	2	1	0
Next posi	18)	16	14	2	12	11)	10	7		6	4	2
	9	•	8	7	,	6	5	,	4	3	•	2	1	0

0	0	1				4			7		9	9
0		3		6		9		12		15		

4 2	6 7	1	3	7	3	5	9	1	9	1	9	0	4	7 0
counts	3 <i>Co</i>	3	0	3		1	1		2	2		1	3	3
	9	9	8	7		6	5		4	3		2	1	0
									T		1	T		
Running st	16 R	16	16	13		12	11		9	7		6	3	0
	9	9	8	7		6	5		4	3		2	1	0
						_								
Jext posi	18 N	18	16	14		12	11		10	7		6	5	2
	9	9	8	7		6	5		4	3		2	1	0

7 4 2	6	3 1	3 7	5 3	9	9 1	9 1	0 9) 4	7
Counts	3	0	3	1	1	2	2	1	3	3
	9	8	7	6	5	4	3	2	1	0
Running su	16	16	13	12	11	9	7	6	3	0
	9	8	7	6	5	4	3	2	1	0
Next posi	19	16	14	12	11	10	7	6	5	2
	9	8	7	6	5	4	3	2	1	0

0	0	1	1			4			7		9	9
0		3		6		9		12		15		

									_						
7 4 2	6 7	1	3	7	3	5	9	1	9	1	9	0	4	0	7
Counts	3 6		0	3		1	1		2	2		1	3	3	
	9		8	7		6	5		4	3	-	2	1	0	
Running sc	16 F		16	13		12	11		9	7		6	3	0	
	9	•	8	7	•	6	5	•	4	3	•	2	1	0	
Next posi	19 /		16	14		12	12)	10	7		6	5	2	
	9		8	7	•	6	5		4	3	•	2	1	0	

7 () 4	0	9 1	9	1 9	5	3 7	3	1 6	7 4 2
3	3	1	2	2	1	1	3	0	3	Counts
0	1	2	3	4	5	6	7	8	9	
0	3	6	7	9	11	12	13	16	16	Running su
0	1	2	3	4	5	6	7	8	9	-
2	5	6	8	10	12	12	14	16	19	Next posi
0	1	2	3	4	5	6	7	8	9	-

4 2	7	6	1	3	7	3	5	9	1	9	1	9	0	4	7 0
ounts	Co	3		0	3		1	1		2	2		1	3	3
	_	9		8	7		6	5		4	3		2	1	0
unning si	Ru	16		16	13		12	11		9	7		6	3	0
	-	9		8	7	•	6	5		4	3		2	1	0
ext posi	Ne	19		16	15		12	12)	10	8		6	5	2
	_	9		8	7		6	5		4	3		2	1	0

4 2	7	6	1	3	7	3	5	9	1	9	1	9	0	4	7 0
ounts	Co	3		0	3		1	1		2	2		1	3	3
	_	9		8	7		6	5		4	3		2	1	0
unning si	Ru	16		16	13	,	12	11		9	7		6	3	0
	-	9	•	8	7		6	5		4	3	-	2	1	0
ext posi	Ne	19		16	15		12	12)	10	9		6	5	2
	_	9		8	7		6	5		4	3		2	1	0

4 2	6 7	1	3	7	3	5	9	1	9	1	9	0	4	0	
Counts	3 <i>Co</i>	3	0	3		1	1		2	2		1	3	3	
	9	9	8	7		6	5		4	3		2	1	0	
Running si	6 R	16	16	13	2	12	11		9	7		6	3	0	
	9	9	8	7		6	5		4	3	-	2	1	0	
Next posi	9 N	19	16	15	2	12	12)	10	9		6	6	2	
	9	9	8	7		6	5		4	3	•	2	1	0	

4 2	7	6	1	3	7	3	5	9	1	9	1	9	0	4	0	7
ounts	Co	3		0	3		1	1		2	2		1	3		3
	_	9		8	7		6	5		4	3		2	1		
unning st	RL	16		16	13		12	11		9	7		6	3)	
	_	9	•	8	7	•	6	5	·	4	3	•	2	1)	
lext posi	Ne	19		16	15		13	12)	10	9		6	6		6
	_	9		8	7	,	6	5		4	3		2	1)	(

													_		
4 2	7	6	1	3	7	3	5	9	1	9	1	9	0	4	7 0
ounts	Co	3		0	3		1	1		2	2		1	3	3
	_	9		8	7		6	5		4	3		2	1	0
unning s	Ru	16		16	13		12	11		9	7		6	3	0
	•	9		8	7	•	6	5	•	4	3		2	1	0
lext posi	Ne	19		16	16		13	12)	10	9		6	6	2
	-	9	-	8	7		6	5		4	3		2	1	0

4 2	7	6	1	3	7	3	5	9	1	9	1	9	0	4	0	7
	_		_													
ounts	Co	3		0	3		1	1		2	2		1	3		3
	_	9		8	7		6	5		4	3		2	1		0
	-															
ınning sı	RL	16		16	13		12	11		9	7		6	3		0
	_	9		8	7		6	5		4	3		2	1		0
	_															
ext posi	Ne	19		16	16		13	12		11	9		6	6		2
	_	9		8	7		6	5		4	3		2	1		0

0	0	1	1	1		3	3	4	4	5	6	7	7	7	9	9
0		3			6			9			12			15		

4 2	7	6	1	3	7	3	5	9	1	9	1	9	0	4	0	7
	_															
ounts	Co	3		0	3		1	1		2	2		1	3		3
		9		8	7		6	5		4	3		2	1		0
	_						_			_						
unning st	RL	16		16	13		12	11		9	7		6	3		0
		9		8	7		6	5		4	3		2	1		0
	_															
ext posi	N	19		16	16		13	12		11	9	'	7	6		2
	_	9		8	7		6	5		4	3		2	1	_	0

0	0	1	1	1	2	3	3	4	4	5	6	7	7	7	9	9
0		3			6			9			12			15		

4 2	7	6	1	3	7	3	5	9	1	9	1	9	0	4	0	7
	_															
Counts		3		0	3		1	1		2	2		1	3		3
	_	9		8	7		6	5	,	4	3		2	1)	
	_															
unning s	RL	16		16	13	?	12	11		9	7		6	3		
	_	9	•	8	7	•	6	5		4	3	•	2	1)	
lext posi	Ne	19		16	16	3	13	12		11	9		7	6		3
	_	9	•	8	7	•	6	5		4	3	•	2	1)	

Radix Sort

Sort keys one character at a time.

- Can use distribution counting for each digit.
- Can work either right to left (LSD radix sort) or left to right radix sort)
- LSD radix sort is venerable: used for punched cards.

Initial: set, cat, cad, con, bat, can, be, let, bet

be, cad, con, can, set, cat, bat, let, bet

cad, can, cat, bat, be

bat, be, bet, cad, can, cat, con, let, set

MSD Radix Sort

- A bit more complicated: must keep lists from each step sep
- But, can stop processing 1-element lists

A	pos
* set, cat, cad, con, bat, can, be, let, bet	0
\star bat, be, bet / cat, cad, con, can / let / set	1
bat $/ *$ be, bet $/$ cat, cad, con, can $/$ let $/$ set	2
bat / be / bet / * cat, cad, con, can / let / set	1
bat / be / bet / * cat, cad, can / con / let / set	2
bat / be / bet / cad / can / cat / con / let / set	

Performance of Radix Sort

- ullet Radix sort takes $\Theta(B)$ time where B is total size of the key
- Have measured other sorts as function of #records.
- How to compare?
- ullet To have N different records, must have keys at least $\Theta(\lg why?)$
- ullet Furthermore, comparison actually takes time $\Theta(K)$ where K of key in worst case [why?]
- ullet So $N\lg N$ comparisons really means $N(\lg N)^2$ operations.
- ullet While radix sort would take $B=N\lg N$ time with minima keys.
- On the other hand, must work to get good constant factor
 radix sort.

And Don't Forget Search Trees

Idea: A search tree is in sorted order, when read in inorder.

- Need balance to really use for sorting [next topic].
- ullet Given balance, same performance as heapsort: N insertions $\lg N$ each, plus $\Theta(N)$ to traverse, gives

$$\Theta(N + N \lg N) = \Theta(N \lg N)$$

Summary

- ullet Insertion sort: $\Theta(Nk)$ comparisons and moves, where k is manual amount data is displaced from final position.
 - Good for small datasets or almost ordered data sets.
- Quicksort: $\Theta(N \lg N)$ with good constant factor if data is no logical. Worst case $O(N^2)$.
- ullet Merge sort: $\Theta(N\lg N)$ guaranteed. Good for external sorting
- ullet Heapsort, treesort with guaranteed balance: $\Theta(N\lg N)$ guar
- Radix sort, distribution sort: $\Theta(B)$ (number of bytes). Also general sorting.