

Name			

Hinweise zur Personalisierung:

- Kreuzen Sie Ihre Matrikelnummer an (mit führender Null). Diese wird maschinell ausgewertet.
- Tragen Sie oben Ihren Namen ein.

Systemtheorie

 Klausur:
 EI00220 / GOP-Wiederholung
 Datum:
 Donnerstag, 7. Oktober 2021

 Prüfer:
 Dr.-Ing. Michael Joham
 Uhrzeit:
 15:00 – 16:30

 A 1
 A 2
 A 3
 A 4
 A 5

 I
 I
 I
 I
 I
 I

Bearbeitungshinweise

- Diese Klausur umfasst **18 Seiten** mit insgesamt **5 Aufgaben**. Bitte kontrollieren Sie jetzt, dass Sie eine vollständige Angabe erhalten haben.
- Die Gesamtpunktzahl in dieser Prüfung beträgt 90 Punkte.
- Das Heraustrennen von Seiten aus der Prüfung ist untersagt.
- Als Hilfsmittel sind zugelassen:
 - eine Formelsammlung mit maximal 10 DIN A4 Blättern
 - ein analoges Wörterbuch Deutsch \leftrightarrow Muttersprache ohne Anmerkungen
- Mit * gekennzeichnete Teilaufgaben sind ohne Kenntnis der Ergebnisse vorheriger Teilaufgaben lösbar.
- Es werden nur solche Ergebnisse gewertet, bei denen der Lösungsweg erkennbar ist. Auch Textaufgaben sind grundsätzlich zu begründen, sofern es in der jeweiligen Teilaufgabe nicht ausdrücklich anders vermerkt ist.
- Schreiben Sie weder mit roter / grüner Farbe noch mit Bleistift.
- Schalten Sie alle mitgeführten elektronischen Geräte vollständig aus, verstauen Sie diese in Ihrer Tasche und verschließen Sie diese.

Kenntnisnahme:
Hiermit bestätige ich, dass ich die auf der nächsten Seite abgedruckten "Informationen und Regelungen im
Zusammenhang mit der COVID-19-Pandemie" sowie die Hinweise zum "Verhalten im Brandfall" und dem
"Verhalten bei während der Prüfung auftretenden Erkrankung" zur Kenntnis genommen habe.
Unterschrift
Hörsaal verlassen von bis / Vorzeitige Abgabe um

Informationen und Regelungen im Zusammenhang mit der COVID-19-Pandemie

Teilnahme an der Prüfung

Der Prüfungsvorsitzende setzt Sie hiermit davon in Kenntnis,

- dass die Teilnahme an der Prüfung grundsätzlich freiwillig ist.
- Nur zur Prüfung angemeldete Personen an dieser teilnehmen dürfen.
- Von der Teilnahme an der Prüfung sind Personen ausgeschlossen,
 - die einer Quarantänemaßnahme unterliegen (z.B. nach Einreise oder Kontakt mit einer infizierten Person) oder
 - bei denen eine aktuelle Infektion mit dem Coronavirus durch Tests jedweder Art nachgewiesen worden ist oder
 - die für eine Infektion mit dem Coronavirus typische Symptome aufweisen.
- Personen, die einer Gruppe mit erhöhtem Risiko für einen schweren Verlauf angehören und an der Prüfung teilnehmen möchten, sind angehalten, die notwendigen Maßnahmen zum Eigenschutz zu treffen bzw. von einer Teilnahme abzusehen.

Einzuhaltende Hygieneregeln und Schutzmaßnahmen während und nach der Prüfung

Der Prüfer weist Sie hiermit auf die im Prüfungsraum und Wartebereich ausgehängten Hygieneregeln hin. Insbesondere weist Sie der Prüfungsvorsitzende darauf hin, dass

- vor und nach der Prüfung gründliches Händewaschen (bzw. Desinfizieren mit den bereitstehenden Desinfektionsmitteln) obligatorisch ist;
- zu jedem Zeitpunkt der Mindestabstand von 1,5 m zwischen je zwei Personen eingehalten werden muss;
- eine medizinischen Maske oder eine FFP2-Maske durchgehend d.h. auch während der Prüfung zu tragen ist;
- die Kontaktdatenerfassung mit Hilfe des QRONITON-QR-Codes an Ihrem Sitzplatz bzw. am Eingang / im Eingangsbereich verpflichtend ist;
- Arbeitsmittel oder Gegenstände (Stifte etc.) ausschließlich personenbezogen verwendet werden dürfen;
- das Verweilen auf dem Gelände der TUM nur für studienrelevante Zwecke erlaubt ist.
- Die Papierunterlage an Ihren Arbeitsplätzen dient Ihrem Schutz vor Schmierinfektionen. Bitte berühren Sie die Tischflächen nicht außerhalb dieser Unterlage. Bitte entsorgen Sie die Papierunterlage nach der Prüfung in die dafür vorgesehenen Sammelboxen am Ausgang des Prüfungssaals. Bitte knüllen Sie das Papier nicht, sondern legen es platzsparend flach ab. Danke!

Meldepflicht bei Verdachts- und Infektionsfällen

Sollten Sie im Nachgang der Prüfung erkranken und COVID-19-spezifische Symptome vorweisen, sind Sie verpflichtet, sich unverzüglich beim Krisenstab der TUM über krisenstab-coronavirus@tum.de zu melden. Bitte halten Sie sich an das unter http://go.tum.de/corona-faq beschriebene Vorgehen bei der Meldung.

Verhalten im Brandfall

Bewahren Sie die Ruhe, Melden Sie den Brand (112) und bringen Sie sich – möglichst unter Einhalten der Abstandsregeln – in Sicherheit. Warnen und helfen Sie gefährdeten Personen, schließen Sie die Türen und folgen Sie den gekennzeichneten Fluchtwegen. Aufzüge dürfen nicht benutzt werden. Suchen Sie die nächste Sammelstelle auf und achten Sie auf Anweisungen. Feuerlöscher befinden sich an den Hörsaalausgängen. Leben retten geht vor Einhaltung des Infektionsschutzgesetzes!

Verhalten bei während der Prüfung auftretenden Erkrankung

Im Falle einer plötzlich während der Prüfung auftretenden Erkrankung müssen Sie das Aufsichtspersonal umgehend informieren. Geben Sie Ihre Prüfung bei uns mit dem Vermerk ab, dass Sie aus gesundheitlichen Gründen die Prüfung abbrechen wollen. Dies wird im Prüfungsprotokoll vermerkt. Danach müssen Sie unverzüglich einen Rücktritt von der Prüfung beim zuständigen Prüfungsausschuss beantragen. Ein vertrauensärztliches Attest, ausgestellt am Prüfungstag, ist unverzüglich nachzureichen. Wird die Prüfung hingegen in Kenntnis der gesundheitlichen Beeinträchtigung dennoch regulär beendet, kann im Nachhinein kein Prüfungsrücktritt aufgrund von Krankheit beantragt werden. Wird die Prüfung wegen Krankheit abgebrochen, wird die Klausur als "5,0 - nicht erschienen" gemeldet und, unabhängig vom Rücktrittsantrag, nicht bewertet.

$Aufgabe\ 1\quad {\rm Schaltung\ ersten\ Grades\ (10\ Punkte)}$

Gegeben sei folgende Schaltung ersten Grades, mit $R_1, R_2, C > 0$.

a)* Geben Sie die stromgesteuerte Repräsentation des resistiven Anteils der Schaltung als lineare Q	
b) Geben Sie die Zeitkonstante τ der Schaltung in Abhängigkeit von R_1,R_2 und C an.	Я
c) Ist die Schaltung stabil? Begründen Sie Ihre Antwort.	
e) ist the Schallung Stabil. Degranden Sie line Philwort.	— Н
Nun sind folgende Bauelementewerte gegeben: $R_1=R_2=10\Omega$ und $C=1\mu {\rm F}.$	
d) Geben Sie die Sprungantwort $u_{C,\sigma}(t)$ der Schaltung an.	
Hinweis: Achten Sie auf korrekte Einheiten und es gilt: $u_C(0) = 0$.	—

f) Wie lange	auert es bis an der Kapazi	tät eine Spannung vo	n 10V anliegt?	
	. 1. 11	$\epsilon(t)$ für ein System er	esten Grades mit einer	allgemeinen l
			$(t \cdot r(1)) = (1)$	
	t die allgemeine Losung x in Abhängigkeit der Impu		It: $x(0) = 0$.	
			tt: $x(0) = 0$.	
			$\operatorname{lt:} x(0) = 0.$	

${\bf Aufgabe~2}~~{\bf Komplexe~Wechsels trom rechnung}$ - ${\bf Komplexe~Leistung}~({\bf 13~Punkte})$

Gegeben sei folgende Schaltung mit $G_0, R, C, L > 0$.

Der Strom $i_0(t)$ sei sinusoidal mit der Kreisfrequenz ω .	
a)* Geben Sie einen Zusammenhang zwischen $u_L(t)$ und $i_R(t)$ an.	
Nun sei I_R der komplexe Zeiger von $i_R(t)$, I_0 der komplexe Zeiger von $i_0(t)$, U_0 der komplexe Zeiger von $u_0(t)$ und U_L der komplexe Zeiger von $u_L(t)$.	
b)* Gegeben Sie U_L in Abhängigkeit von I_R an.	\bigcap_{1}^{0}
c) Bestimmen Sie U_0 in Abhängigkeit von I_R .	\bigcap_{1}^{0}
	2
d) Geben Sie nun I_0 in Abhängigkeit von U_0 an.	$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$
	2
d) Geben Sie nun I_0 in Abhängigkeit von U_0 an.	

Der komplexe Zeiger ${\cal U}_0$ in Abhängigkeit des komplexen Zeigers ${\cal I}_0$ sei nun gegeben:

$$U_0 = -\frac{1}{G_0}\,\frac{1+\mathrm{j}\,\omega/\omega_1 - \omega^2 LC}{1+\mathrm{j}\,\omega/\omega_2 - \omega^2 LC}\,I_0,$$

mit den Konstanten $\omega_1, \omega_2 > 0$, wobei $\omega_1 \neq \omega_2$.

R, L > 0 gegebene K		

Für die entsprechende Wahl von ${\cal C}$ erhält man

$$P = -\frac{1}{2} \, \frac{1}{G_0} \, \frac{R}{R + 1/G_0} \, |I_0|^2.$$

$\begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$	das korrespondiere und I_R an den en		rragen sie ane b	aueiementewerte,	sowie
2					

$Aufgabe~3~{\rm Lineare~Schaltung~zweiten~Grades~(33~Punkte)}$

Gegeben sei folgende Schaltung zweiten Grades, die aus einer konstanten Spannungsquelle u_0 , zwei Widerständen R_1 und R_2 und zwei Induktivitäten L_1 und L_2 besteht.

Der Ausgang der Schaltung sei u_{R_1} .	
a)* Geben Sie die Zustandsgrößen der Schaltung an.	
b)* Bestimmen Sie die Zustandsgleichungen der Schaltung.	
	H ³
c) Wie lautet die Zustandmatrix \boldsymbol{A} und der Einkoppelvektor \boldsymbol{b} der Schaltung?	
e) Wie kladet die Zastandinkurik 11 und der Einkoppervektor 6 der Seinkroung.	— H

e)* Skizzieren Sie die Schaltung, welche dual zur gegebenen Schaltung ist. Tragen Sie alle dualen Spann und Ströme, sowie die dualen Bauelementewerte ein. Für eine bestimmte Wahl der Bauelementewerte erhält man folgende normierte Zustandsmatrix $A = \begin{bmatrix} -1 & 1 \\ a_1 & -5 \end{bmatrix}$. f)* Geben Sie das charakteristische Polynom sowie die Eigenwerte der Zustandsmatrix A in Abhänder Variable a_1 an.	Für eine bestimmte Wahl der Bauelementewerte erhält man folgende normierte Zustandsmatrix $A = \begin{bmatrix} -1 & 1 \\ a_1 & -5 \end{bmatrix}.$ \mathbf{f} Geben Sie das charakteristische Polynom sowie die Eigenwerte der Zustandsmatrix \mathbf{A} in Abhängder Variable a_1 an.	Ċ	d) Geben Sie den Auskoppelvektor c und den Durchgriff d an, wenn u_{R_1} die Ausgangsspannung ist.
Für eine bestimmte Wahl der Bauelementewerte erhält man folgende normierte Zustandsmatrix $\pmb{A} = \begin{bmatrix} -1 & 1 \\ a_1 & -5 \end{bmatrix}.$ \mathbf{f} ' Geben Sie das charakteristische Polynom sowie die Eigenwerte der Zustandsmatrix \pmb{A} in Abhäng der Variable a_1 an.	Für eine bestimmte Wahl der Bauelementewerte erhält man folgende normierte Zustandsmatrix $A = \begin{bmatrix} -1 & 1 \\ a_1 & -5 \end{bmatrix}.$ \mathbf{f} Geben Sie das charakteristische Polynom sowie die Eigenwerte der Zustandsmatrix \mathbf{A} in Abhängder Variable a_1 an.		
Für eine bestimmte Wahl der Bauelementewerte erhält man folgende normierte Zustandsmatrix $\pmb{A} = \begin{bmatrix} -1 & 1 \\ a_1 & -5 \end{bmatrix}.$ \mathbf{f} ' Geben Sie das charakteristische Polynom sowie die Eigenwerte der Zustandsmatrix \pmb{A} in Abhäng der Variable a_1 an.	Für eine bestimmte Wahl der Bauelementewerte erhält man folgende normierte Zustandsmatrix $A = \begin{bmatrix} -1 & 1 \\ a_1 & -5 \end{bmatrix}.$ \mathbf{f} Geben Sie das charakteristische Polynom sowie die Eigenwerte der Zustandsmatrix \mathbf{A} in Abhängder Variable a_1 an.		
Für eine bestimmte Wahl der Bauelementewerte erhält man folgende normierte Zustandsmatrix $\pmb{A} = \begin{bmatrix} -1 & 1 \\ a_1 & -5 \end{bmatrix}.$ f)* Geben Sie das charakteristische Polynom sowie die Eigenwerte der Zustandsmatrix \pmb{A} in Abhängder Variable a_1 an.	Für eine bestimmte Wahl der Bauelementewerte erhält man folgende normierte Zustandsmatrix $A = \begin{bmatrix} -1 & 1 \\ a_1 & -5 \end{bmatrix}.$ \mathbf{f} Geben Sie das charakteristische Polynom sowie die Eigenwerte der Zustandsmatrix \mathbf{A} in Abhängder Variable a_1 an.		
Für eine bestimmte Wahl der Bauelementewerte erhält man folgende normierte Zustandsmatrix ${\pmb A} = \begin{bmatrix} -1 & 1 \\ a_1 & -5 \end{bmatrix}.$ f)* Geben Sie das charakteristische Polynom sowie die Eigenwerte der Zustandsmatrix ${\pmb A}$ in Abhängder Variable a_1 an.	Für eine bestimmte Wahl der Bauelementewerte erhält man folgende normierte Zustandsmatrix $A = \begin{bmatrix} -1 & 1 \\ a_1 & -5 \end{bmatrix}.$ \mathbf{f} Geben Sie das charakteristische Polynom sowie die Eigenwerte der Zustandsmatrix \mathbf{A} in Abhängder Variable a_1 an.		
Für eine bestimmte Wahl der Bauelementewerte erhält man folgende normierte Zustandsmatrix $\pmb{A} = \begin{bmatrix} -1 & 1 \\ a_1 & -5 \end{bmatrix}.$ \mathbf{f} Geben Sie das charakteristische Polynom sowie die Eigenwerte der Zustandsmatrix \pmb{A} in Abhäng der Variable a_1 an.	Für eine bestimmte Wahl der Bauelementewerte erhält man folgende normierte Zustandsmatrix $m{A} = egin{bmatrix} -1 & 1 \ a_1 & -5 \end{bmatrix}.$ f)* Geben Sie das charakteristische Polynom sowie die Eigenwerte der Zustandsmatrix $m{A}$ in Abhängder Variable a_1 an.		
$m{A}=egin{bmatrix} -1 & 1 \\ a_1 & -5 \end{bmatrix}.$ f)* Geben Sie das charakteristische Polynom sowie die Eigenwerte der Zustandsmatrix $m{A}$ in Abhäng der Variable a_1 an.	$m{A}=egin{bmatrix} -1 & 1 \ a_1 & -5 \end{bmatrix}.$ f)* Geben Sie das charakteristische Polynom sowie die Eigenwerte der Zustandsmatrix $m{A}$ in Abhäng der Variable a_1 an.		ind Strome, sowie die dualen Dauelementewerte ein.
$m{A}=egin{bmatrix} -1 & 1 \\ a_1 & -5 \end{bmatrix}.$ f)* Geben Sie das charakteristische Polynom sowie die Eigenwerte der Zustandsmatrix $m{A}$ in Abhäng der Variable a_1 an.	$m{A}=egin{bmatrix} -1 & 1 \ a_1 & -5 \end{bmatrix}.$ f)* Geben Sie das charakteristische Polynom sowie die Eigenwerte der Zustandsmatrix $m{A}$ in Abhäng der Variable a_1 an.		
$m{A}=egin{bmatrix} -1 & 1 \\ a_1 & -5 \end{bmatrix}.$ f)* Geben Sie das charakteristische Polynom sowie die Eigenwerte der Zustandsmatrix $m{A}$ in Abhäng der Variable a_1 an.	$m{A}=egin{bmatrix} -1 & 1 \ a_1 & -5 \end{bmatrix}.$ f)* Geben Sie das charakteristische Polynom sowie die Eigenwerte der Zustandsmatrix $m{A}$ in Abhäng der Variable a_1 an.		
$m{A}=egin{bmatrix} -1 & 1 \\ a_1 & -5 \end{bmatrix}.$ f)* Geben Sie das charakteristische Polynom sowie die Eigenwerte der Zustandsmatrix $m{A}$ in Abhäng der Variable a_1 an.	$m{A}=egin{bmatrix} -1 & 1 \ a_1 & -5 \end{bmatrix}.$ f)* Geben Sie das charakteristische Polynom sowie die Eigenwerte der Zustandsmatrix $m{A}$ in Abhäng der Variable a_1 an.		
$m{A}=egin{bmatrix} -1 & 1 \\ a_1 & -5 \end{bmatrix}.$ f)* Geben Sie das charakteristische Polynom sowie die Eigenwerte der Zustandsmatrix $m{A}$ in Abhäng der Variable a_1 an.	$m{A}=egin{bmatrix} -1 & 1 \ a_1 & -5 \end{bmatrix}.$ f)* Geben Sie das charakteristische Polynom sowie die Eigenwerte der Zustandsmatrix $m{A}$ in Abhäng der Variable a_1 an.		
$m{A}=egin{bmatrix} -1 & 1 \\ a_1 & -5 \end{bmatrix}.$ f)* Geben Sie das charakteristische Polynom sowie die Eigenwerte der Zustandsmatrix $m{A}$ in Abhäng der Variable a_1 an.	$m{A}=egin{bmatrix} -1 & 1 \ a_1 & -5 \end{bmatrix}.$ f)* Geben Sie das charakteristische Polynom sowie die Eigenwerte der Zustandsmatrix $m{A}$ in Abhäng der Variable a_1 an.		
$m{A}=egin{bmatrix} -1 & 1 \\ a_1 & -5 \end{bmatrix}.$ f)* Geben Sie das charakteristische Polynom sowie die Eigenwerte der Zustandsmatrix $m{A}$ in Abhäng der Variable a_1 an.	$m{A}=egin{bmatrix} -1 & 1 \ a_1 & -5 \end{bmatrix}.$ f)* Geben Sie das charakteristische Polynom sowie die Eigenwerte der Zustandsmatrix $m{A}$ in Abhäng der Variable a_1 an.		
$m{A}=egin{bmatrix} -1 & 1 \\ a_1 & -5 \end{bmatrix}.$ f)* Geben Sie das charakteristische Polynom sowie die Eigenwerte der Zustandsmatrix $m{A}$ in Abhäng der Variable a_1 an.	$m{A}=egin{bmatrix} -1 & 1 \ a_1 & -5 \end{bmatrix}.$ f)* Geben Sie das charakteristische Polynom sowie die Eigenwerte der Zustandsmatrix $m{A}$ in Abhäng der Variable a_1 an.		
$m{A}=egin{bmatrix} -1 & 1 \\ a_1 & -5 \end{bmatrix}.$ f)* Geben Sie das charakteristische Polynom sowie die Eigenwerte der Zustandsmatrix $m{A}$ in Abhäng der Variable a_1 an.	$m{A}=egin{bmatrix} -1 & 1 \ a_1 & -5 \end{bmatrix}.$ f)* Geben Sie das charakteristische Polynom sowie die Eigenwerte der Zustandsmatrix $m{A}$ in Abhäng der Variable a_1 an.		
$m{A}=egin{bmatrix} -1 & 1 \\ a_1 & -5 \end{bmatrix}.$ f)* Geben Sie das charakteristische Polynom sowie die Eigenwerte der Zustandsmatrix $m{A}$ in Abhäng der Variable a_1 an.	$m{A}=egin{bmatrix} -1 & 1 \ a_1 & -5 \end{bmatrix}.$ f)* Geben Sie das charakteristische Polynom sowie die Eigenwerte der Zustandsmatrix $m{A}$ in Abhäng der Variable a_1 an.		
der Variable a_1 an.	der Variable a_1 an.		$m{A} = egin{bmatrix} -1 & 1 \ a_1 & -5 \end{bmatrix}.$
g) Wie muss a_1 gewählt werden, sodass sich konjugiert komplexe Eigenwerte ergeben?	g) Wie muss a_1 gewählt werden, sodass sich konjugiert komplexe Eigenwerte ergeben?		
g) Wie muss a_1 gewählt werden, sodass sich konjugiert komplexe Eigenwerte ergeben?	g) Wie muss a_1 gewählt werden, sodass sich konjugiert komplexe Eigenwerte ergeben?		
g) Wie muss a_1 gewählt werden, sodass sich konjugiert komplexe Eigenwerte ergeben?	g) Wie muss a_1 gewählt werden, sodass sich konjugiert komplexe Eigenwerte ergeben?		
g) Wie muss a_1 gewählt werden, sodass sich konjugiert komplexe Eigenwerte ergeben?	g) Wie muss a_1 gewählt werden, sodass sich konjugiert komplexe Eigenwerte ergeben?		
g) Wie muss a_1 gewählt werden, sodass sich konjugiert komplexe Eigenwerte ergeben?	g) Wie muss a_1 gewählt werden, sodass sich konjugiert komplexe Eigenwerte ergeben?		
g) Wie muss a_1 gewählt werden, sodass sich konjugiert komplexe Eigenwerte ergeben?	g) Wie muss a_1 gewählt werden, sodass sich konjugiert komplexe Eigenwerte ergeben?		
g) Wie muss a_1 gewählt werden, sodass sich konjugiert komplexe Eigenwerte ergeben?	g) Wie muss a_1 gewählt werden, sodass sich konjugiert komplexe Eigenwerte ergeben?		
g) Wie muss a_1 gewählt werden, sodass sich konjugiert komplexe Eigenwerte ergeben?	g) Wie muss a_1 gewählt werden, sodass sich konjugiert komplexe Eigenwerte ergeben?		
g) Wie muss a_1 gewählt werden, sodass sich konjugiert komplexe Eigenwerte ergeben?	g) Wie muss a_1 gewählt werden, sodass sich konjugiert komplexe Eigenwerte ergeben?		
g) Wie muss a_1 gewählt werden, sodass sich konjugiert komplexe Eigenwerte ergeben?	g) Wie muss a_1 gewählt werden, sodass sich konjugiert komplexe Eigenwerte ergeben?		
g) Wie muss a_1 gewählt werden, sodass sich konjugiert komplexe Eigenwerte ergeben?	g) Wie muss a_1 gewählt werden, sodass sich konjugiert komplexe Eigenwerte ergeben?		
g) Wie muss a_1 gewanit werden, sodass sich könjugiert kömplexe Eigenwerte ergeben?	g) wie muss a_1 gewamt werden, sodass sich konjugiert komplexe Eigenwerte ergeben?		NW: Discount of the second of the sec
		8	g) whe muss a_1 gewantt werden, so ass sich konjugiert komplexe Eigenwerte ergeben?

) Kann a_1 so gewählt werden, dass sich ein Wirbelpunkt im Phasenportrait ergibt? Begründen antwort.	Sie Ihre
Wie muss a_1 gewählt werden, sodass sich ein stabiler Knoten im Phasenportrait ergibt?	
Fun gilt, dass $a_1 = 12$ ist.	
Geben Sie die Eigenwerte der Zustandsmatrix an. Welches Phasenportrait ergibt sich?	
) Berechnen Sie zwei Eigenvektoren, deren zweite Komponente 12 ist.	
,	
ür eine gewisse Wahl der Erregung u_0 ergeben sich folgende normierte Zustandsgleichungen:	
$\dot{x}_1 = -x_1 + x_2 + 7,$ $\dot{x}_2 = 12x_1 - 5x_2.$	
* Wie lautet der Gleichgewichtspunkt x_{∞} des normierten Systems?	

Gegeben	sei nun	ein anderes	normiertes	System	mit folgenden	Eigenwerten	und Eigen	vektoren
Gegeben	sei nun	em anderes	morniner res	DVSUCIII	mit forgenden	Digenwerten	und Engen	VERTOLETT

$$\lambda_1 = 2$$

$$\lambda_2 = -4$$

$$\lambda_1 = 2$$
$$\boldsymbol{q}_1 = \begin{bmatrix} 1\\1 \end{bmatrix}$$

$$\lambda_2 = -4$$
 $q_2 = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$.

Es sei keine Erregung im System vorhanden: v(t) = 0.

		(.)		c 1 1	E	1 1731 17
n)* Cobo	, Sio dio I ögur	$\alpha = \alpha(t)$ dog S_{T}	atoma mithili			
	Sie die Lösur		stems mithili	te der gegebenen	Eigenwerte un	a Eigenvektore
	n Sie die Lösur Anfangswerte		stems mithil:	te der gegebenen	Eigenwerte un	d Eigenvektore
			stems mithil:	te der gegebenen	Eigenwerte un	d Eigenvektore
			stems mithil:	te der gegebenen	Eigenwerte un	d Eigenvektore
			stems mithil	te der gegebenen	Eigenwerte un	a Eigenvektore
			stems mithil	te der gegebenen	Eigenwerte un	d Eigenvektore
			stems mithil	te der gegebenen	Eigenwerte un	d Eigenvektore
			stems mithil	te der gegebenen	Eigenwerte un	d Eigenvektore
			zstems mithil	te der gegebenen	Eigenwerte un	d Eigenvektore
			stems mithil	te der gegebenen	Eigenwerte un	d Eigenvektore
			stems mithil	te der gegebenen	Eigenwerte un	d Eigenvektore

Da keine Erregung im System vorhanden ist, lautet die Ausgangsgleichung des Systems wie folgt:

$$y(t) = \boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}(t).$$

$Aufgabe\ 4\quad {\it Federschwinger\ mit\ D\"{a}mpfungsglied,\ Laplace-Transformation\ (21\ Punkte)}$

Gegeben sei folgende Bewegungsgleichung eines Federschwingers mit Dämpfungsglied. Auf die Masse wirkt eine zusätzliche Kraft F(t) als Erregung:

$$m\ddot{x} + d\dot{x} + kx = F(t),$$

wohei m	die Masse	des Körr	ners d die	Dämpfun	oskonstante	und k	die Fede	erkonstante ist
WODEL III	arc masse	uco itoi	pers, a are		Comonisonano	una n	arc r cac	TITOTIDUCTIOU IDU

Zunächst sei F(t) konstant F(t) - F

machst sei $F(t)$ konstant, $F(t) = F$. * Geben Sie ein Zustandsgleichungssystem mit Differentialgleichungen erster Ordnung in Mathation unter Verwendung der Substitution $s = \dot{x}$ an. Geben Sie hierbei explizit die Zustandsmatstandsvektor \boldsymbol{x} und den Einkoppelvektor \boldsymbol{b} an.	
istandsvektor x und den Einkoppervektor b an.	
Ist die betrachtete Differentialgleichung autonom? Begründen Sie Ihre Antwort.	
Kann die Lösung der Differentialgleichung als	
$oldsymbol{x}(t) = oldsymbol{x}_{\infty} + \exp(oldsymbol{A}(t-t_0))[oldsymbol{x}_0 - oldsymbol{x}_{\infty}],$	
gegeben werden? Begründen Sie Ihre Antwort.	
gegeben werden: Degrunden die inte Antwort.	

	$\mathcal{L}\left\{\frac{\mathrm{d}}{\mathrm{d}t}a(t)\right\} = pA(p) - a(0),$
wobei $A(p)$ die Lap	place-Transformierte von $a(t)$ ist.
d)* Geben Sie bas Ableitung nach der	sierend auf dieser Transformations-Regel für die Ableitung eine Regel für die zweifact r Zeit, $\frac{d}{dt}\frac{d}{dt}a(t)$, an.
Folgende Laplace-T	Transformationspaare sind gegeben:
	$\mathcal{L}\{\cos(\omega t)\} = \frac{p}{p^2 + \omega^2}$ $\qquad \qquad \mathcal{L}\{\sin(\omega t)\} = \frac{\omega}{p^2 + \omega^2}.$
Die Erregung sei n	nun $F(t) = F\cos(\omega t)$ mit $\omega > 0$. Zudem sei $x_0 = x(0)$ und $v_0 = x'(0)$ gegeben.
e) Transformieren	Sie die Bewegungsgleichung des Federschwingers in den Laplace-Bereich.
	ass $d = 0$ ist.
Von nun an gilt, da	
	für den Fall $F = 0$ an.
Geben Sie $x(t)$ f	für den Fall $F=0$ an. ie die Gleichung zunächst im Laplace-Bereich und verwenden Sie die Substitution $\omega_0=\sqrt{1}$
Geben Sie $x(t)$ f	
Geben Sie $x(t)$ f	

Für $F\neq 0$ und $x_0=v_0=0$ erhält man folgenden Zusammenhang:

$$X(p) = \frac{F}{m} \frac{p}{(p^2 + \omega_0^2)(p^2 + \omega^2)}.$$

	$\frac{1}{(n^2+\omega_0^2)(n^2+\omega_0^2)}$	$\frac{1}{\omega^2} = \frac{c_1 p + c_2}{(p^2 + \omega_0^2)} + \frac{c_3 p + c_4}{(p^2 + \omega^2)}.$	
		$(p + \omega)$	
	erwendung Ihrer Lö	isung aus Teilaufgabe g) an.	
Geben Sie $X(p)$ unter V			
Geben Sie $X(p)$ unter V			
Geben Sie $X(p)$ unter V			
Geben Sie $X(p)$ unter V			
Geben Sie $X(p)$ unter V			
Geben Sie $X(p)$ unter V			
Geben Sie $X(p)$ unter V			

Aufgabe 5 Praktikumsaufgaben (13 Punkte)

Gegeben sei folgende Zustandsgleichung für den Preis einer bestimmten Ware:

$$\dot{p}(t) = -k(d+a)p(t) + k(c+b),$$

mit a, b, c, d, k > 0.

	zabil? Begründen Sie Ihre Antwort.
dürfen Sie maximal	in Simulink Blockdiagramm, welches die gegebene Zustandsgleichung beschreibt. I einen Integrator-Block, einen Gain-Block, eine konstante Quelle und einen Add-Esoll die Zustandsvariable mit einem Scope-Block verbunden werden.
	lgender Graph, welcher die Entwicklung des Preises bei fixen Werten für a, b, c uerschiedlichen Werten für k beschreibt $(k_1 \text{ und } k_2)$.
c) Zeigen Sie rechne	erisch, dass k keinen Einfluss auf den Preis im Äquilibrium hat.
d) Hat k einen Einf	luss darauf, wann sich der Preis im Äquilibrium einstellt? Begründen Sie Ihre Antw

Gegeben sei folgende Netzliste eines Schaltplans in LT
spice.

 $*\ Praktikumsaufgabe.asc$ $1\mu F$ C1out in 75 R10 out SINE(0 10V 50Hz) V12 0 SINE(0 2V 5kHz) V20 0.02s 0s uic.tran .backanno $.\mathrm{end}$

e)* Skizzieren Sie die entsprechende Schaltung. Beschriften Sie die Elemente und Knoten!	

Sie starten nun die Simulation und beobachten folgende Signalverläufe:

f) Welche Funktion erfüllt diese	Schaltung? Begründen	Sie Ihre Antwort, in	ndem Sie über	die gegebenen
Signalverläufe argumentieren.				

nd Ausgang der S					
ren Sie Ihre Antv	wort aus der Te	ilaufgabe f), in	dem Sie die Ül	oertragungsfun	aktion $H(\mathrm{j}\omega)$ für
	wort aus der Te	ilaufgabe f), in	dem Sie die Ül	pertragungsfun	ıktion $H(\mathrm{j}\omega)$ fü
	wort aus der Te	ilaufgabe f), in	dem Sie die Ül	pertragungsfun	ıktion $H(\mathrm{j}\omega)$ für
	wort aus der Te	ilaufgabe f), in	dem Sie die Ül	oertragungsfun	aktion $H(\mathrm{j}\omega)$ für
	wort aus der Te	ilaufgabe f), in	dem Sie die Ül	pertragungsfun	aktion $H(\mathrm{j}\omega)$ für

Zusätzlicher Platz für Lösungen. Markieren Sie deutlich die Zuordnung zur jeweiligen Teilaufgabe. Vergessen Sie nicht, ungültige Lösungen zu streichen.

