Ключевое пространство криптосистемы Мак-Элиса-Сидельникова

Дипломная работа

Чижов Иван Владимирович Научный руководитель: к.ф.-м.н. доцент Карпунин Григорий Анатольевич

Московский государственный университет имени М. В. Ломоносова Факультет вычислительной математики и кибернетики Кафедра информационной безопасности

23 мая 2022 г.

Содержание

Криптосистема Мак-Элиса

Криптосистема Мак-Элиса-Сидельникова

Устройство криптосистемы Мак-Элиса–Сидельникова Пространство ключей

Описание множества открытых ключей

Случай произвольного числа блоков

Случай двух блоков

О полиномиальной эквивалентности криптосистем Мак-Элиса и Мак-Элиса-Сидельникова с ограничениями на ключевое пространство.

Восстановление части ключа

Заключение

Список публикаций

▶ Криптосистема с открытым ключом. Предложена в 1978 году Р.Дж. Мак-Элисом.

- ▶ Криптосистема с открытым ключом. Предложена в 1978 году Р.Дж. Мак-Элисом.
- Стойкость основана на трудности некоторых задачах теории кодов, исправляющих ошибки.

- ▶ Криптосистема с открытым ключом. Предложена в 1978 году Р.Дж. Мак-Элисом.
- Стойкость основана на трудности некоторых задачах теории кодов, исправляющих ошибки.
- ▶ Р.Дж. Мак-Элис предложил использовать семейство кодов Гоппы с параметрами [1024, 524, 101];

- ▶ Криптосистема с открытым ключом. Предложена в 1978 году Р.Дж. Мак-Элисом.
- Стойкость основана на трудности некоторых задачах теории кодов, исправляющих ошибки.
- ▶ Р.Дж. Мак-Элис предложил использовать семейство кодов Гоппы с параметрами [1024, 524, 101];
- ▶ Г. Нидеррайтер в 1986 году предложил использовать обобщённые коды Рида–Соломона. В 1992 году В.М. Сидельников и С.О. Шестаков взломали криптосистему Мак-Элиса на основе этих кодов.

- Криптосистема с открытым ключом. Предложена в 1978 году Р.Дж. Мак-Элисом.
- ▶ Стойкость основана на трудности некоторых задачах теории кодов, исправляющих ошибки.
- ▶ Р.Дж. Мак-Элис предложил использовать семейство кодов Гоппы с параметрами [1024, 524, 101];
- ▶ Г. Нидеррайтер в 1986 году предложил использовать обобщённые коды Рида–Соломона. В 1992 году В.М. Сидельников и С.О. Шестаков взломали криптосистему Мак-Элиса на основе этих кодов.
- В.М. Сидельников в 1994 году предложил использовать двоичные коды Рида–Маллера RM(r, m).

Содержание

Криптосистема Мак-Элиса

Криптосистема Мак-Элиса-Сидельникова

Устройство криптосистемы Мак-Элиса-Сидельникова

Пространство ключей

Описание множества открытых ключей

Случай произвольного числа блоков

Случай двух блоков

О полиномиальной эквивалентности криптосистем Мак-Элиса и Мак-Элиса—Сидельникова с ограничениями на ключевое пространство

Восстановление части ключа

Заключение

Список публикаций

Общие сведения

▶ Предложена В.М. Сидельниковым в 1994 году как альтернатива криптосистеме Мак-Элиса.

Общие сведения

- ▶ Предложена В.М. Сидельниковым в 1994 году как альтернатива криптосистеме Мак-Элиса.
- ightharpoonup Оригинальная криптосистема строится на основе двоичных кодов Рида-Маллера RM(r,m).

Секретный и открытый ключ.

- Параметры:
 - ightharpoonup r натуральное число;
 - ightharpoonup m натуральное число, $m \ge r$;
 - ightharpoonup R порождающая матрица кода Рида–Маллера RM(r,m);
 - ightharpoonup u натуральное число.

Секретный и открытый ключ.

- Параметры:
 - ightharpoonup r натуральное число;
 - ightharpoonup m натуральное число, $m \ge r$;
 - ightharpoonup R порождающая матрица кода Рида–Маллера RM(r, m);
 - ightharpoonup u натуральное число.
- Секретный ключ:
 - ▶ H_1, \ldots, H_u невырожденные $(k \times k)$ -матрицы над полем GF(2).
 - ▶ Γ перестановочная ($un \times un$)-матрица, $\Gamma \in S_{u \cdot n}$.

Секретный и открытый ключ.

- Параметры:
 - ightharpoonup r натуральное число;

 - ightharpoonup R порождающая матрица кода Рида–Маллера RM(r, m);
 - *u* натуральное число.
- Секретный ключ:
 - ▶ H_1, \ldots, H_u невырожденные $(k \times k)$ -матрицы над полем GF(2).
 - ▶ Γ перестановочная ($\mathit{un} \times \mathit{un}$)-матрица, $\Gamma \in \mathcal{S}_{u \cdot n}$.
- Открытый ключ матрица

$$G' = (H_1R||H_2R||\dots||H_uR)\Gamma.$$

Содержание

Криптосистема Мак-Элиса

Криптосистема Мак-Элиса-Сидельникова

Устройство криптосистемы Мак-Элиса-Сидельникова

Пространство ключей

Описание множества открытых ключей

Случай произвольного числа блоков

Случай двух блоков

О полиномиальной эквивалентности криптосистем Мак-Элиса и Мак-Элиса—Сидельникова с ограничениями на ключевое пространство

Восстановление части ключа

Заключение

Список публикаций

Основные определения.

ightharpoonup Секретные ключи $(H'_1,\ldots,H'_u,\Gamma')$ и $(H''_1,\ldots,H''_u,\Gamma'')$ называются эквивалентными, если

$$(H'_1R||...||H'_uR)\Gamma' = (H''_1R||...||H''_uR)\Gamma''$$

▶ $[(H_1, ..., H_u, \Gamma)]$ — класс эквивалентности с представителем $(H_1, ..., H_u, \Gamma)$.

Основные определения.

Секретные ключи $(H'_1, \ldots, H'_u, \Gamma')$ и $(H''_1, \ldots, H''_u, \Gamma'')$ называются эквивалентными, если

$$(H'_1R||\dots||H'_uR)\Gamma' = (H''_1R||\dots||H''_uR)\Gamma''$$

- ▶ $[(H_1, ..., H_u, \Gamma)]$ класс эквивалентности с представителем $(H_1, ..., H_u, \Gamma)$.
- ▶ Введём множество $\mathcal{G}(H_1, \ldots, H_u)$:

$$\mathcal{G}(H_1,\dots,H_u) = \{\Gamma \in S_{un} | \exists H_1',\dots,H_u'$$
 такие, что $(H_1R\|\dots\|H_uR)\Gamma = (H_1'R\|\dots\|H_u'R)\}$

Оценка мощности множества открытых ключей

Теорема 1

Справедливы неравенства для числа $|\mathcal{E}|$ открытых ключей криптосистемы Мак-Элиса–Сидельникова с u>1 блоками на основе кодов Рида–Маллера RM(r,m)

$$\frac{(u\cdot n)!h_k}{(u!)^n|Aut(RM(r,m))|} \leq |\mathcal{E}| < \frac{(u\cdot n)!(h_k)^u}{u!|Aut(RM(r,m))|^u}.$$

Здесь

- ightharpoonup n длина кода Рида–Маллера RM(r, m),
- \blacktriangleright h_k число обратимых $(k \times k)$ -матриц над полем GF(2),
- ▶ Aut(RM(r, m)) группа автоморфизмов кода RM(r, m).

Оценка сверху принадлежит Г.А. Карпунину (2004).

Содержание

Криптосистема Мак-Элиса

Криптосистема Мак-Элиса-Сидельникова

Устройство криптосистемы Мак-Элиса-Сидельникова

Пространство ключей

Описание множества открытых ключей

Случай произвольного числа блоков

Случай двух блоков

О полиномиальной эквивалентности криптосистем Мак-Элиса и Мак-Элиса—Сидельникова с ограничениями на ключевое пространство

Восстановление части ключа

Заключение

Список публикаций

Множество эквивалентных ключей.

Теорема 2а

Пусть

- матрицы D_1, D_2, \ldots, D_u задают автоморфизмы $\sigma_1, \sigma_2, \ldots, \sigma_u$ кода Рида–Маллера RM(r, m);
- ightharpoonup $\sigma_j[i]$ расширенный автоморфизм, соответствующий σ_j ,
- ► Н любая невырожденная матрица.

Тогда класс эквивалентности $[(HD_1, HD_2, \dots, HD_u, \Gamma)]$ состоит из кортежей вида

$$(HA_1, HA_2, \ldots, HA_u, \gamma_1^{-1}[1] \cdot \gamma_2^{-1}[2] \ldots \gamma_u^{-1}[u]\Gamma' \cdot \sigma_1[1] \cdot \sigma_2[2] \ldots \sigma_u[u]\Gamma),$$

здесь для Γ' выполнено $(R||R||\dots||R)\Gamma' = (R||R||\dots||R)$.

Содержание

Криптосистема Мак-Элиса

Криптосистема Мак-Элиса—Сидельникова Устройство криптосистемы Мак-Элиса—Сидельникова Пространство ключей

Описание множества открытых ключей

Случай произвольного числа блоков

Случай двух блоков

О полиномиальной эквивалентности криптосистем Мак-Элиса и Мак-Элиса-Сидельникова с ограничениями на ключевое пространство.

Восстановление части ключа

Заключение

Список публикаций

Специальный тип матриц.

Рассмотрим матрицу $T_{\widetilde{A}}^I, I = \{i_1, i_2, \dots, i_p\}$ вида

Первый случай.
$$|I| = 1$$
, $I = \{i\}$.

Теорема 2b

Класс эквивалентности $[(H,HT^i_{\widetilde{\alpha}},\Gamma)]$ состоит из кортежей вида

$$(HT^{i}_{\widetilde{\beta}}D_{1}, HT^{i}_{\widetilde{\gamma}}D_{2}, \sigma_{L}^{-1}[1]\sigma_{R}^{-1}[2]\Gamma'^{-1}\Gamma).$$

Здесь σ_L , σ_R — автоморфизмы кода Рида–Маллера RM(r,m), соответствующие матрицам D_1 и D_2 , а для перестановки Γ' выполняются два условия

- 1) Если $R' (k-1) \times n$ -матрица, получающаяся удалением строки с номером i из матрицы R, то $(R'\|R')\Gamma' = (R'\|R')$;
- 2) Если $\overrightarrow{r_i}$ строка матрицы R с номером i, то

$$(\overrightarrow{r_i} \| \widetilde{\alpha} R)\Gamma' = (\widetilde{\beta} R \| \widetilde{\gamma} R) \in RM(r, m) \times RM(r, m).$$

Третий случай. |I| > 1

Теорема 2с

Пусть Γ_g^{-1} — перестановка из $\mathcal{G}(E,T_{\widetilde{A}}^I)$, представимая в виде $\Gamma'\sigma_L[1]\sigma_R[2]$, где Γ' такая перестановка, что $(R'\|R')\Gamma'=(R'\|R')$. Тогда класс эквивалентности $[(H,HT_{\widetilde{A}}^I,\Gamma)]$, содержит кортежи вида

$$(HT_{\widetilde{B}}^{I}D_{1}, HT_{\widetilde{C}}^{I}D_{2}, \sigma_{L}^{-1}[1]\sigma_{R}^{-1}[2]\Gamma'^{-1}\Gamma).$$

Здесь σ_L , σ_R — автоморфизмы кода Рида–Маллера RM(r,m), соответствующие матрицам D_1 и D_2 , $\widetilde{B} = \{\widetilde{\beta}^{i_1}, \widetilde{\beta}^{i_2}, \dots, \widetilde{\beta}^{i_p}\}$, $\widetilde{C} = \{\widetilde{\gamma}^{i_1}, \widetilde{\gamma}^{i_2}, \dots, \widetilde{\gamma}^{i_p}\}$, а для перестановки Γ' выполняется условие

$$(\overrightarrow{r_i} \| \widetilde{\alpha}^i R)\Gamma' = (\widetilde{\beta}^i R \| \widetilde{\gamma}^i R) \in RM(r,m) \times RM(r,m)$$
 для любого $i \in I$.

Задача тсКМі

Вход

Число m большее 2r и $1 \le i \le k$, матрица $G = H' \cdot R' \cdot \gamma'$, где H' — невырожденная двоичная $(k-1) \times (k-1)$ -матрица, $R' = ((k-1) \times n)$ -матрица, получающаяся из порождающей матрицы R кода Рида–Маллера RM(r,m) выкидыванием строки с номером i и γ' — перестановочная $(n \times n)$ -матрица.

Найти

Невырожденную матрицу M' размера $(k-1) \times (k-1)$ и перестановочную $(n \times n)$ -матрицу σ' , для которых найдётся невырожденная $((k-1) \times (k-1))$ -матрица L', что

$$M' \cdot G \cdot \sigma' = L' \cdot R'$$
.

Задача mcSRM

Вход

Матрица $G = (H_1 \cdot R \| H_2 \cdot R) \cdot \Delta$, где H_1 и H_2 — невырожденные двоичные $(k \times k)$ -матрицы, принадлежащие классу эквивалентности $[(H, HT_{\widetilde{\alpha}}^i, \Gamma)]$ и Δ — перестановочная $(2n \times 2n)$ -матрица.

Найти

Невырожденные матрицы H_1' и H_2' размера $(k \times k)$ и перестановочную $(2n \times 2n)$ -матрицу Δ' такие, что

$$G \cdot \Delta' = (H_1'R||H_2'R).$$

Эквивалентность

Теорема 3

Пусть существует алгоритм, который решает задачу mcRMi за полиномиальное время. Тогда существует алгоритм, который решает задачу mcSRM за полиномиальное время.

Восстановление части ключа

Определение

 $\widehat{\mathcal{A}}_{u}(RM(r,m))$ — это множество перестановок вида $\nabla \gamma$, где γ — это перестановка из группы расширенных автоморфизмов $\mathcal{A}_{u}(RM(r,m))$, а ∇ — это произвольная перестановка блоков матрицы $(H_{1}R\|\ldots\|H_{u}R)$.

Утвеждение

Справедливо равенство

$$\bigcap_{H_1,\ldots,H_u\in GL(k,2)}\mathcal{G}(H_1,\ldots,H_u)=\widehat{\mathcal{A}}_u(RM(r,m)),$$

Восстановление части ключа

Теорема 4

Пусть перестановка $\Gamma = \Gamma_{I \leftrightarrow J} \gamma [1] \sigma [2]$ принадлежит множеству $\mathcal{G}(E,H)$. Тогда используя эту перестановку, можно построить $p_{\overline{I}} + p_{\overline{J}}$ линейно независимых уравнений относительно n неизвестных HR_1, HR_2, \ldots, HR_n . Здесь R_i столбец с номером i порождающей матрицы кода Рида–Маллера RM(r,m).

Основные результаты диссертации

- 1) Получена нижняя оценка мощности множества открытых ключей криптосистемы Мак-Элиса-Сидельникова Теорема 1;
- 2) Описан ряд классов эквивалентности секретных ключей криптосистемы Мак-Элиса-Сидельникова Теорема 2a, Теорема 2b, Теорема 2c;
- 3) Доказана полиномиальная эквивалентность задачи восстановления секретного ключа по открытому оригинальной криптосистемы Мак-Элиса и аналогичной задачи для криптосистемы Мак-Элиса-Сидельникова с ограничениями на ключевое пространство Теорема 3;
- 4) Предложен метод восстановления части секретного ключа криптосистемы Мак-Элиса–Сидельникова, использующий знание структуры класса эквивалентности, в который попадает секретный ключ Теорема 4.

Список публикаций (3 из 7), в журналах ВАК — 2.

Из списка ВАК

Другие

