

Лекция 4

Произведения ПЛФ

Содержание лекции:

В лекции рассматривается операция проиведения двух ПЛФ и ее алгебраические свойства, вводится определение новой структуры - внешней алгебры ПЛФ. Широкое практическое приложения имеет алгебра антисимметричных форм, однако введенная операция произведения ПЛФ не сохраняет антисимметричность результата. В связи с этим вводится операция внешнего произведения антисимметричных форм, которая индуцирует новую алгебраическую структуру - алгебру Грассмана.

Ключевые слова:

Произведение $\Pi \Pi \Phi$, свойства произведения $\Pi \Pi \Phi$, внешняя алгебра форм, внешнее произведение антисимметричных $\Pi \Pi \Phi$, свойства внешнего произведения, алгебра антисимметричных форм, алгебра Грассмана.

Авторы курса:

Трифанов А. И.

Москаленко М. А.

Ссылка на ресурсы: mathdep.ifmo.ru/geolin

4.1 Произведение ПЛФ

Пусть $U \in \Omega^{p_1}_{q_1}(\Bbbk)$ и $V \in \Omega^{p_2}_{q_2}(\Bbbk)$. Отображение $W = U \cdot V$ называется **произведением** ПЛФ U на ПЛФ V, если

$$W\left(x_{1}, x_{2}, \dots, x_{p_{1}}, x_{p_{1}+1}, \dots, x_{p_{1}+p_{2}}; y^{1}, y^{2}, \dots, y^{q_{1}}, y^{q_{1}+1}, \dots, y^{q_{1}+q_{2}}\right) = U\left(x_{1}, x_{2}, \dots, x_{p_{1}}; y^{1}, y^{2}, \dots, y^{q_{1}}\right) \cdot V\left(x_{1}, x_{2}, \dots, x_{p_{2}}; y^{1}, y^{2}, \dots, y^{q_{2}}\right)$$

Лемма 4.1. Отображение W - ПЛФ, причем $W \in \Omega^{p_1+p_2}_{q_1+q_2}(\Bbbk)$.

Очевидно. ◀

Свойства произведения ПЛФ

1. Некоммутативность: $U \cdot V \neq V \cdot U$:

$$W_1(x_1, x_2) = (f^1 \cdot f^2)(x_1, x_2) = f^1(x_1)f^2(x_2),$$

$$W_2(x_1, x_2) = (f^2 \cdot f^1)(x_1, x_2) = f^2(x_1)f^1(x_2).$$

- 2. Ассоциативность: $U \cdot (V \cdot W) = (U \cdot V) \cdot W = U \cdot V \cdot W$;
- 3. Дистрибутивность по сумме: $U \cdot (V + W) = U \cdot V + U \cdot W$;
- 4. Нуль-форма: $U\cdot\Theta_{\Omega_{q_2}^{p_2}}=\Theta_{\Omega_{q_1}^{p_1}}\cdot V=\Theta_{\Omega_{q_1+q_2}^{p_1+p_2}};$
- 5. Дистрибутивность по произведению: $(\alpha \cdot U) \cdot V = U \cdot (\alpha \cdot V)$;
- 6. Пусть $U \in \Omega_0^p$, тогда набор

$$^{s_1,s_2,\ldots,s_p}W=f^{s_1}\cdot f^{s_2}\cdot\ldots\cdot f^{s_p},$$

образует базис в Ω^p_0 , если $\left\{f^k\right\}_{k=1}^n$ образует базис в X^* .

Для произвольного набора векторов $\{x_i\}_{i=1}^p$ имеем:

$$f^{s_1, s_2, \dots, s_p} W(x_1, x_2, \dots, x_p) = \xi_1^{s_1} \xi_2^{s_2} \dots \xi_p^{s_p} = f^{s_1}(x_1) \cdot f^{s_2}(x_2) \cdot \dots \cdot f^{s_p}(x_p) = (f^{s_1} \cdot f^{s_2} \cdot \dots \cdot f^{s_p}) (x_1, x_2, \dots, x_p).$$

•

Nota bene Пусть $\left\{f^k\right\}_{k=1}^n$ - базис X^* и $\left\{\hat{x}_j\right\}_{j=1}^n$ - дуальный базис X^{**} , тогда базис $\Omega^p_a(\Bbbk)$ образуют ПЛФ вида

$$\frac{s_1, s_2, \dots, s_p}{t_1, t_2, \dots, t_q} W = f^{s_1} \cdot f^{s_2} \cdot \dots \cdot f^{s_p} \cdot \hat{x}_{t_1} \cdot \hat{x}_{t_2} \cdot \dots \cdot \hat{x}_{t_q}.$$

7. Пусть $U \in \Omega^p$ и $V \in \Omega^q$, тогда

$$\operatorname{Sym}(U \cdot V) = \operatorname{Sym}(\operatorname{Sym} U \cdot V) = \operatorname{Sym}(U \cdot \operatorname{Sym} V),$$

$$\operatorname{Asym}(U \cdot V) = \operatorname{Asym}(\operatorname{Asym} U \cdot V) = \operatorname{Asym}(U \cdot \operatorname{Asym} V).$$

Докажем данное свойство для операции Asym:

$$\operatorname{Asym}\left(\operatorname{Asym} U \cdot V\right) = \\ \operatorname{Asym}\left[\frac{1}{p!} \cdot \sum_{\sigma} (-1)^{[\sigma]} U\left(x_{\sigma(1)}, x_{\sigma(2)}, \dots, x_{\sigma(p)}\right) \cdot V\left(x_{p+1}, x_{p+2}, \dots, x_{p+q}\right)\right] = \\ \frac{1}{p!} \cdot \sum_{\sigma} (-1)^{[\sigma]} \operatorname{Asym}\left[U\left(x_{\sigma(1)}, x_{\sigma(2)}, \dots, x_{\sigma(p)}\right) \cdot V\left(x_{p+1}, x_{p+2}, \dots, x_{p+q}\right)\right].$$

В силу антисимметричности формы имеем

Asym
$$\left[U\left(x_{\sigma(1)}, x_{\sigma(2)}, \dots, x_{\sigma(p)} \right) \cdot V\left(x_{p+1}, x_{p+2}, \dots, x_{p+q} \right) \right] =$$

= $(-1)^{[\sigma]}$ Asym $\left[U\left(x_1, x_2, \dots, x_p \right) \cdot V\left(x_{p+1}, x_{p+2}, \dots, x_{p+q} \right) \right]$,

и тогда получаем

$$\frac{1}{p!} \cdot \sum_{\sigma} \operatorname{Asym} \left[U\left(x_{1}, x_{2}, \dots, x_{p}\right) \cdot V\left(x_{p+1}, x_{p+2}, \dots, x_{p+q}\right) \right] = \operatorname{Asym} \left(U \cdot V \right).$$

4.2 Внешнее произведение $\Pi \Pi \Phi$

Внешним произведением ПЛФ $U\in \Lambda^p$ на ПЛФ $V\in \Lambda^r$ называется отображение

$$U \wedge V = \frac{(p+r)!}{p! \cdot r!} \operatorname{Asym} (U \cdot V).$$

Лемма 4.2. Отображение $U \wedge V$ - антисимметричная $\Pi \Pi \Phi$, причем

$$U \wedge V \in \Lambda^{p+r}$$
.

Очевидно. ◀

Nota bene Имеет место следующее свойство:

$$p + r > n = \dim X \quad \Rightarrow \quad U \wedge V = \Theta.$$

ПРОИЗВЕДЕНИЯ ПЛФ

Свойства внешнего произведения

1. Антикоммутативность:

$$U \wedge V = (-1)^{pr} V \wedge U$$

▶

Имеет место:

$$(U \wedge V) (x_1, \dots x_p, x_{p+1}, \dots, x_{p+r}) =$$

$$\frac{(p+r)!}{p! \cdot r!} \sum_{\sigma} (-1)^{[\sigma]} U (x_{\sigma(1)}, \dots, x_{\sigma(p)}) \cdot V (x_{\sigma(p+1)}, \dots, x_{\sigma(p+r)})$$

Хотим получить:

$$(\sigma(1), \dots, \sigma(p), \sigma(p+1), \dots, \sigma(p+r)) \to (\sigma(p+1), \dots, \sigma(p+r), \sigma(1), \dots, \sigma(p))$$

для этого необходимо

$$p + p + p + \ldots + p = p \cdot r$$

транспозиций. И значит

$$(U \wedge V)(x_1, \dots x_p, x_{p+1}, \dots, x_{p+r}) = (-1)^{p \cdot r} (V \wedge U)(x_1, \dots x_p, x_{p+1}, \dots, x_{p+r}).$$

4

2. Вынесение скаляра:

$$(\alpha U) \wedge V = U \wedge (\alpha V) = \alpha \left(U \wedge V \right).$$

▶

Очевидно. ◀

3. Ассоциативность:

$$U \wedge (V \wedge W) = (U \wedge V) \wedge W = U \wedge V \wedge W = \frac{(p+r+s)!}{p! \cdot r! \cdot s!} \operatorname{Asym} (U \cdot V \cdot W).$$

▶

По определению:

$$\begin{split} (U \wedge V) \wedge W &= \left(\frac{(p+r)!}{p! \cdot r!} \operatorname{Asym} (U \cdot V)\right) \wedge W = \\ &\frac{((p+r)+s)!}{(p+r)! \cdot s!} \operatorname{Asym} \left(\frac{(p+r)!}{p! \cdot r!} \operatorname{Asym} ((U \cdot V) \cdot W)\right) = \\ &\frac{(p+r+s)!}{p! \cdot r! \cdot s!} \operatorname{Asym} \left(\operatorname{Asym} (U \cdot V) \cdot W\right) = \frac{(p+r+s)!}{p! \cdot r! \cdot s!} \operatorname{Asym} \left(U \cdot V \cdot W\right). \end{split}$$

ПРОИЗВЕДЕНИЯ ПЛФ

4. Дистрибутивность:

$$U \wedge (V + W) = U \wedge V + U \wedge W.$$

► Следует из дистрибутивности умножения и линейности Asym. **◄**

5. Нуль-форма:

$$U \wedge \Theta = \Theta \wedge V = \Theta$$
.

6. Пусть $\left\{f^i\right\}_{i=1}^n$ базис X^* , тогда

$$i_1, i_2, \dots, i_p F = f^{i_1} \wedge f^{i_2} \wedge \dots \wedge f^{i_p}, \quad 1 \le i_1 < i_2 < \dots < i_p \le n$$

Из определения следует:

$$i_{1,i_{2},\dots,i_{p}}F = p! \operatorname{Asym} (i_{1},i_{2},\dots,i_{p}W) = p! \operatorname{Asym} (f^{i_{1}} \cdot f^{i_{2}} \cdot \dots \cdot f^{i_{p}}) =$$

$$p! \operatorname{Asym} (\operatorname{Asym} (f^{i_{1}} \cdot f^{i_{2}}) \cdot \dots \cdot f^{i_{p}}) = \frac{p!}{2!} \operatorname{Asym} (f^{i_{1}} \wedge f^{i_{2}} \cdot \dots \cdot f^{i_{p}}) =$$

$$\frac{p!}{2!} \operatorname{Asym} (\operatorname{Asym} (f^{i_{1}} \wedge f^{i_{2}} \cdot f^{i_{3}}) \cdot \dots \cdot f^{i_{p}}) =$$

$$\frac{p!}{3!} \operatorname{Asym} (f^{i_{1}} \wedge f^{i_{2}} \wedge f^{i_{3}} \cdot \dots \cdot f^{i_{p}}) = \dots =$$

$$\operatorname{Asym} (f^{i_{1}} \wedge f^{i_{2}} \wedge \dots \wedge f^{i_{p}}) = f^{i_{1}} \wedge f^{i_{2}} \wedge \dots \wedge f^{i_{p}}.$$