IN THIS STEP WE FIND THE CONCAVITY OF THE GRAPH.

HERE WE FIND THE INFLECTION POINTS AND WHERE THE GRAPH CONCAVES UP AND DOWN.

- -TO FIND THE INFLECTION POINTS OF THE GRAPH WE NEED TO SOLVE FOR $\mathsf{F}(\mathsf{X})" = \emptyset;$
- -NEXT WE FIND WHERE THE GRAPH IS CONCAVE UP AND DOWN ---->
 - -IF THE F(X)" > 0 THEN THERE IS A CONCAVE UP
 - -IF THE F(X)" < Ø THEN THERE IS A CONCAVE DOWN

Second Derivative:

$$f''(x) = 60x^3 - 30x = 30x(2x^2 - 1)$$

$$f''(x) = 0 \Rightarrow x = 0 \text{ or } x = \pm 1/\sqrt{2}$$

$$f(0) = 0$$
, $f(-1/\sqrt{2}) = (-1/\sqrt{2})^3 [3(1/2) - 5) = 7\sqrt{2}/8 \approx 1.24$

$$f(1/\sqrt{2}) = -7\sqrt{2}/8 \cong -1.24$$

x		$-1/\sqrt{2}$		0		$1/\sqrt{2}$	
f(x)	\cap	$7\sqrt{2}/8$	V	0	\cap	$-7\sqrt{2}/8$	45
f''(x)	1-	0	+	0	-	0	+

 $(-1/\sqrt{2}, 7\sqrt{2}/8)$ and $(1/\sqrt{2}, -7\sqrt{2}/8)$ are points of inflecti –).