Discrete Test 2 Review: first study quizzes!

- (1) Prove $\forall a, b \in \mathbb{Z}$, if $(a \mod 6 = 5 \text{ and } b \mod 4 = 3)$ then $4a + 6b \mod 8 = 6$. Use a Direct proof.
 - a) Write the assumption, translated to algebraic equations.
 - b) Write what we want to show, translated to algebraic equations.
 - c) Write the proof steps.
- (2) Suppose we were to prove the statement " $\forall y \in \mathbb{Z}, y$ is even $\Rightarrow (y^3 1)$ is odd." (Answer using algebraic equations, without using the word "not" or the symbol " \sim .")
 - a)For a direct proof we assume _____ and show _____.
 - b) For proof using the contrapositive we assume _____ and show ____
 - c) For proof by contradiction we assume _____ and show that we reach a false conclusion.
- (3) Use contradiction to prove: $\forall a, b \in \mathbb{Z}$, if (a is even and b is odd) then 4 does not divide $(a^2 + 2b^2)$.
 - a) Negate the statement.
 - b) What do we assume? Translate to algebraic equations.
 - c) Use the assumptions to prove that 4|2, as an algebraic equation.
- (4) Prove by induction that: $\forall n \in \mathbb{N}$, if $n \geq 2$ then $3|(2^{(4n-4)} + 2^{(2n-3)})$.
 - a) Show the base case.
 - b) State the induction assumption, translate to algebraic equations.
 - c) State what we need to show, translate to algebraic equations.
 - d) Do the proof steps.
- (5) Use a Direct proof to prove: $\forall z \in \mathbb{Z}, 3 | (z+1) \Rightarrow z^2 \mod 3 = 1$.
 - a) Write the assumption, translated to algebraic equations.
 - b) Write what to show, translated to algebraic equations.
 - c) Do the proof steps.

For your use:

(6) Given the one-time-pad sequence (2, 6, 13, 1) encrypt the word COOL. Your output will be letters.

(7) Use the BBS sequence $a_n = (a_{n-1})^2 \mod pq$ to encrypt the word ZAP. Use the seed $a_0 = 11$ and the constant pq = 7 * 13 = 91. Start the encryption with n = 1.

(8) Use the same BBS sequence to decrypt the word LLJ. Use the seed $a_0 = 11$ and the constant pq = 7*13 = 91.

(9) Use the sequence $a_n = 5 + 3(a_{n-1} \mod n)$; $a_0 = 7$ to encrypt the digits 1101. Start with n = 1.

(10) Use the sequence $a_n = n^2 - 1$ to decrypt the digits 1110. Start with n = 1.

- (11) Given universe $\mathcal{U} = \{1, 2, 3, 4, 5, 7, 9, 10, 21, 25\}$; $A = \{7, 9, 10, 21, 25\}$; and $B = \{5, 4, 7, 10, 21\}$. Find the following:
 - $\bullet \ \overline{A \cup \overline{B}}$
 - $\bullet (A B) \cup (B A)$
 - $\bullet \ \overline{\overline{(B-A)} \cap A}$
 - $\bullet |\mathcal{P}(A)|$
 - $|\mathcal{P}(A \times B) \times A|$
 - $|\mathcal{P}(A \cup B)|$
 - $\bullet |\overline{A \cup B}|$
- (12) How many PIN's are there with 7 digits, no repeated digits?
- (13) How many PIN's are there with 3 digits, repeated digits allowed, and such that the first digit is not 0 and the second digit is not 9?
- (14) How many ways can 7 students fill in the first row of 4 seats? (seated in order, leaving 3 students still standing.)
- (15) How many DNA sequences are there, using $\{A, G, T, C\}$, of length 5 where the sequence cannot start with G in 1st location, and cannot repeat two letters in the 4th and 5th location?
- (16) Also study the quizzes!