TABLE 1: PHYSICAL CONSTANTS

NAME	SYMBOL	VALUE
Acceleration due to gravity	g	9,8 m·s ⁻²
Permittivity for free space	$arepsilon_0$	$8,85 \times 10^{-12} \ Fm^{-1}$

TABLE 2: FORMULAE

FORCE

F _{net} = ma	p=mv
$f_s^{max} = \mu_s N$	$f_k = \mu_k N$
$F_{\text{net}}\Delta t = \Delta p$	F -ma
$\Delta p = mv_f - mv_i$	$F_g = mg$

WORK, ENERGY AND POWER

$W = F\Delta x \cos \theta$	$U = mgh$ or $E_P = mgh$
$K = \frac{1}{2}mv^2$ or $E_k = \frac{1}{2}mv^2$	$\Delta K = K_f - K_i$ or $\Delta E_k = E_{kf} - E_{ki}$
$M_E = E_k + E_p$	$P = \frac{W}{\Delta t}$
$P_{ave} = Fv_{ave}$	

ELASTICITY, VISCOSITY AND HYDRAULICS

$\sigma = \frac{F}{A}$	$\varepsilon = \frac{\Delta \ell}{L}$
$\frac{\sigma}{\epsilon} = K$	$\frac{F_1}{A_1} = \frac{F_2}{A_2}$

ELECTROSTATICS

$C = \frac{\kappa \varepsilon_0 A}{d}$	and	$C = \frac{\varepsilon_{o} A}{d}$	$E = \frac{V}{d}$
$C = \frac{Q}{V}$			

IEB Copyright © 2019 PLEASE TURN OVER

CURRENT ELECTRICITY

$R = \frac{V}{I}$	$q = I \Delta t$
$W = VQ$ $W = VI \Delta t$ $W = I^{2}R \Delta t$ $W = \frac{V^{2}\Delta t}{R}$	$P = \frac{W}{\Delta t}$ $P = VI$ $P = I^{2}R$ $P = \frac{V^{2}}{R}$
$R_{s} = R_{1} + R_{2} + \dots$ $\frac{1}{R_{p}} = \frac{1}{R_{1}} + \frac{1}{R_{2}} + \dots$	

ELECTROMAGNETISM

φ = BA	$\epsilon = -N \frac{\Delta \phi}{\Delta t}$
$\frac{V_s}{V_p} = \frac{N_s}{N_p}$	