

Recommendation Pricing Model at General Hospital

Mohammad Abu Talha Sunny

Package Pricing at General Hospitals

Package Pricing: A patient is provided a tailored quote on treatment cost at the time of admission for a group of related services, based on the expected costs for a clinically defined episode of care

Why Package Pricing at General Hospital?

Increase customer confidence and make pricing policies more transparent

Dr. Eric at General Hospital was at a crossroad to:

- Decide whether to use package pricing or traditional pricing
- Design a strategy as an accurate approach to predict the package price at time of admission
- How to use package pricing as a competitive strategy

Conceptual Model

Medical Data

Key complaint
codes

Past medical history code

Implant (Y/N)

Personal Data

Age

Gender

BMI

Marital Status

Stay at hospital

Total Length Of

Stay

Length of stay-ICU

Length of stay-Ward

Mode Of Arrival

State at Arrival

Type Of Admission

Symptoms

HR Pulse

BP -high

BP-low

RR

НВ

Urea

Creatinine

The five assumptions of regression analysis

- Linear relationship: There exists a linear relationship between the independent and dependent variable
- No or little multicollinearity: more than two explanatory variables should not be highly linearly related
- No autocorrelation: no correlation between residuals
- Normality: The residuals of the model are normally distributed
- **Homoscedasticity**: The residuals have constant variance at every level of independent variable

Data Preparation

Age Categories (per case study appendix)

age <10: Child

age 11-25: Young Adult

age 26-50: Adult

age >50: Old

Haemoglobin (per subject matter knowledge)

"normal": Female 12 to 15.5 and Men 13 to 17.5

Any value outside these limits will be "abnormal"

Derived Variables

BP Ranges (per subject matter knowledge)

Blood Pressure Category	Systolic mm Hg (upper #)		Diastolic mm Hg (lower #)
Normal	less than 120	and	less than 80
Elevated	120-129		less than 80
High Blood Pressure (Hypertension) Stage 1	130-139		80-89
High Blood Pressure (Hypertension) Stage 2	140 or higher		90 or higher
Hypertensive Crisis (Seek Emergency Care)	higher than 180	and/or	higher than 120
Source: American Heart Association			

Urea Categories (Per subject matter knowledge)

Female: 6 to 21 mg/dl: Normal

Male: Urea 7 to 20 mg/dl: Normal

Urea > 20 mg/dl: Abnormal

Data Preparation

BMI Categories (Per subject matter knowledge)

BMI <18.5: Underweight

BMI <25: Normal

BMI 25 - 30: Overweight

BMI > 30: Obese

Creatinine Categories (Per subject matter knowledge)

Age <3 & creatinine: 0.3-0.7 Normal

Age: 3-18 & creatinine: 0.5-1.0 Normal

Age >18 & Female & creatinine: 0.6 - 1.1 Normal

Age > 18 & Male & creatinine: 0.9 - 1.3 Normal

Else: Abnormal

Dependent Variable - Univariate

Total Cost to Hospital (in INR)

Data Preparation

- Total Length of Stay is highly correlated with dependent variable, Length of Stay in the ICU and Ward
- Body Height and Body Weight are highly correlated → created new variable BMI to avoid multicollinearity
- BP-High and BP-Low are correlated as well \rightarrow defined new variable with both BP variables

Handling NULL values

- BP imputed 'Normal' for null values with juvenile patients (age <10)
 - Urea Imputed 'Normal' for 11 null values and outliers
 (Assumption: Urea measurement is not critical for that patient)

Statistical Tests & Variable Reduction

Statistical tests were performed on variables and removed following variables on account of statistical insignificance

other-heart Haemoglobin

other-nervous PM-VSD

other-respiratory Gender

Diabetes1 CAD-SVD

Hypertension2 CAD-VSD

Hypertension3 Creatinine

Urea

Impact of Body Weight on Total Cost

- Body weight and total cost relationship
- Equation:
 Ln(Total Cost) = 11.745+0.0084 (Body Weight)
- With every unit increase in the weight, there will be 0.84% increase in the logarithmic total cost of the treatment
- The average cost for a patient weighing 50 kg is \$ 198,723
 - =198723*0.0084
 - =\$ 1669.27
- A patient weighing 51 kg will pay \$ 1,669 more than a patient weighing 50 kg

```
> linear <- lm(data$`Ln(Total Cost)`~data$`BODY WEIGHT`)</pre>
> summary.fit<- summary(linear)</pre>
> summary.fit
Call:
lm(formula = data$`Ln(Total Cost)` ~ data$`BODY WEIGHT`)
Residuals:
    Min
               10 Median
-1.35444 -0.28017 -0.02519 0.23823 1.51239
Coefficients:
                    Estimate Std. Error t value
                                                            Pr(>|t|)
(Intercept)
                  11.745190
                              0.056638 207.372 < 0.0000000000000000 ***
data$`BODY WEIGHT` 0.008442
                              0.001285
                                        6.568
                                                     0.000000000301 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Residual standard error: 0.4671 on 246 degrees of freedom
Multiple R-sauared: 0.1492. Adjusted R-sauared: 0.1457
F-statistic: 43.14 on 1 and 246 DF, p-value: 0.00000000003015
```

Multiple regression models to identify significant predictors

```
Call:
lm(formula = `Ln(Total Cost)` ~ MALE + UNMARRIED + BP_Cat + Diabetes1 +
   Diabetes2 + hypertension1 + hypertension2 + hypertension3 +
   other + ACHD + 'CAD-DVD' + 'CAD-SVD' + 'CAD-TVD' + 'OS-ASD' +
    `CAD-VSD` + `PM-VSD` + RHD + `other- respiratory` + `other-general` +
   ACHD + 'CAD-DVD' + 'CAD-SVD', data = train.data)
Residuals:
                   Median
-0.95413 -0.21414 -0.00657 0.21789 1.13104
Coefficients:
                           Estimate Std. Error t value
                                                                   Pr(>|t|)
(Intercept)
                           12.19355
                                       0.18734
                                               65.087 < 0.00000000000000000 ***
MALE
                           -0.03801
                                       0.06837
                                               -0.556
                                                                    0.57902
UNMARRIED
                           -0.17177
                                       0.08688
                                                                    0.04974 *
                                               -1.977
BP_CatHypertension Stage 1 -0.12165
                                       0 19774 -0 615
                                                                    0 53929
BP_CatHypertension Stage 2 -0.13300
                                       0.19542
                                               -0.681
                                                                    0.49712
BP CatNormal
                           -0.08730
                                       0.19674
                                                                    0.65783
                                               -0.444
Diabetes 11
                           -0.15693
                                       0.16261
                                               -0.965
                                                                    0.33598
                            0.36842
                                       0.18668
                                                                    0.05016
Diabetes21
                                               1.974
hypertension11
                           -0.02541
                                       0.12111 -0.210
                                                                    0.83408
                           -0.25074
                                       0.13321 -1.882
                                                                    0.06161
hypertension21
                            0.11730
                                       0.23591
hypertension31
                                                 0.497
                                                                    0.61970
other1
                           -0.11613
                                       0.12753 -0.911
                                                                    0.36385
ACHD1
                           -0.23655
                                       0.12783 -1.851
                                                                    0.06608
                            0.37528
                                       0.12559
                                                                    0.00325 **
CAD-DVD 1
                                               2.988
CAD-SVD'1
                                       0 30623
                                                1.032
                            0.31614
                                                                    0.30346
CAD-TVD 1
                            0.29642
                                       0.12563
                                                 2.360
                                                                    0.01950 *
OS-ASD'1
                           -0.10582
                                       0.13418
                                               -0.789
                                                                    0.43148
CAD-VSD'1
                           -0.08119
                                       0.39667 -0.205
                                                                    0.83808
PM-VSD 1
                           -0.08649
                                       0.20355
                                               -0.425
                                                                    0.67148
RHD1
                            0.44661
                                       0.10177
                                                4.388
                                                                  0.0000207 ***
other- respiratory 1
                           -0.16659
                                       0.12474 -1.336
                                                                    0.18361
other-general 1
                           -1.02470
                                       0.41983
                                               -2.441
                                                                    0.01575 *
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

```
lm(formula = `Ln(Total Cost)` ~ BMI + AGE_GROUP + AMBULANCE +
    `COST OF IMPLANT` + `LENGTH OF STAY - ICU` + `LENGTH OF STAY- WARD` +
    `IMPLANT USED (Y/N)` + `MODE OF ARRIVAL` + `STATE AT THE TIME OF ARRIVAL`,
    data = train.data)
Residuals:
                    Median
-0.91991 -0.09279 0.04334 0.14326 0.87071
Coefficients: (1 not defined because of singularities)
                                           Estimate Std. Error t value
                                                                                     Pr(>|t|)
                                       11.380417358    0.086036034    132.275    < 0.000000000000000000 ***
(Intercept)
BMIObese
                                       -0.007735352
                                                     0.078117731
                                                                  -0.099
                                                                                     0.921228
BMIOverweight
                                        0.008266533 0.069928652
                                                                   0.118
                                                                                     0.906026
                                       -0.048527874 0.067687767
BMIUnderweight
                                                                  -0.717
                                                                                     0.474317
AGE GROUPAdult
                                        0.027943650
                                                     0.082957340
                                                                   0.337
                                                                                     0.736617
AGE_GROUPOld
                                        0.193258934
                                                     0.074330352
                                                                   2.600
                                                                                     0.010075 *
AGE_GROUPYoungadult
                                                     0.057434923
                                                                   0.521
                                                                                     0.603208
                                        0.029905539
AMBULANCE
                                       -0.103882607
                                                     0.067215034
                                                                  -1.546
                                                                                     0.123928
 COST OF TMPLANT
                                        0.000005026
                                                     0.000001419
                                                                   3.543
                                                                                     0.000502 ***
 LENGTH OF STAY - ICU'
                                        0.083440314
                                                     0.005200084
                                                                  16.046 < 0.00000000000000000
 LENGTH OF STAY- WARD'
                                        0.034338061 0.005112132
                                                                   6.717
                                                                               0.000000000222 ***
 IMPLANT USED (Y/N) Y
                                        0.205508982 0.083255249
                                                                   2.468
                                                                                     0.014479 *
 MODE OF ARRIVAL TRANSFERRED
                                       -0.265754721 0.132008724
                                                                  -2.013
                                                                                     0.045547 *
 MODE OF ARRIVAL WALKED IN
 STATE AT THE TIME OF ARRIVAL CONFUSED 0.183725073 0.267501571
                                                                   0.687
                                                                                     0.493057
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.2562 on 185 dearees of freedom
  (1 observation deleted due to missingness)
Multiple R-squared: 0.7395,
                               Adjusted R-squared: 0.7212
F-statistic: 40.39 on 13 and 185 DF, p-value: < 0.00000000000000022
```

Recommended Model

Length of stay - ICU

Length of stay - Ward

Mode of Arrival: Transferred

Rheumatic Heart Disease (RHD)

Coronary Artery Disease - Double Vessel Disease (CAD-DVD)

Coronary Artery Disease - Triple Vessel Disease (CAD-TVD)

Cost of Implant

Age group: OLD

Unmarried

Model	Adjusted R- squared	RMSE
1: medical data	29.87%	0.5043
2: others	84.28%	0.2572
Ensemble	80.64%	0.2329

Recommended Model & Inferences

	97.5 %
(Intercept)	11.710760576637
UNMARRIED	0.081623656367
ACHD1	-0.081805955343
`CAD-DVD`1	0.293856441737
`CAD-TVD`1	0.333433720176
`other-general`1	-0.437994768502
`COST OF IMPLANT`	0.000009997105
`LENGTH OF STAY - ICU`	0.086768261208
`LENGTH OF STAY- WARD`	0.043175192270
AGE_GROUPAdult	0.095868638563
AGE_GROUPOld	0.244623495655
AGE_GROUPYoungadult	0.102291052774
`MODE OF ARRIVAL`TRANSFERRED	0.101009214297
`MODE OF ARRIVAL`WALKED IN	0.153457432745
RHD1	0.245653824249

Ln(Total Cost) $\sim a_1*$ Diabetes2 $+a_2*$ ACHD $+a_3*$ CAD-DVD $+a_4*$ CAD-TVD $+a_5*$ other-general $+a_6*$ COST OF IMPLANT $+a_7*$ LENGTH OF STAY - ICU $+a_8*$ LENGTH OF STAY-WARD $+a_9*$ IMPLANT USED (Y/N) $+a_{10}*$ AGE_GROUP

For a patient with CAD-DVD, predicted cost of treatment can increase by 29.38% when compared with a person who does not come in with CAD-DVD

If a patient spends one more day in the ICU, the cost increases by 8.67% and a day more in ward increases the cost by 4.31%

A patient aged 51 years will have the predicted cost of treatment increased by 24.4% when compared to a patient of 50 years

Should General Hospital adopt Package Pricing?

Potential Advantages	Affected Party
Decreased health care costs and improved care coordination	Payers, Patients
Discourage unnecessary care	Payers, Patients
Strong incentive to avoid complications and readmissions	Payers, Patients
Increase transparency for costs of care	Payers, Patients
Expanded referral base and increased market share due to preferred agreements	Providers

Potential Disadvantages	Affected Party
Difficulty defining discrete episodes of care for chronic conditions	Providers
Potential avoidance of necessary specialty care	Providers, Patients
May encourage unnecessary episodes of care	Payers, Patients
Unclear accounting for value of academic endeavors (teaching, research)	Providers
Implementation challenges	Payers, Providers