

Data Science Training – Introduction and Data Visualization

Presenter: Max Cohen

Adviser: Dionisios G. Vlachos

6/23/2020

What is Data Science?

- Field of study focusing on extracting insights from data
- Common related phrases:
 - Machine learning, statistics, data analytics
- Extremely interdisciplinary field:
 - Mathematics, statistics, computer science, information science
 - Domain knowledge
- · Set of tools and techniques to learn from data

How to Apply Data Science?

- All tools can be misused
- Created a flowchart to provide structure for applying techniques
- Goal of these training sessions: teach you how to use the flowchart and listed techniques
 - Provide foundation

Explore Data

Generate a datadriven model

Model Usage

Explore Data

Explore Data – Visualize

- Obtain visual understanding of data trends
- Identify possible concerns before modeling

Explore Data – Outliers

- Outlier removal
 - Improve training for models
- Outlier identification and focus
 - Determine what causes outliers, if desirable

Explore Data – Clusters

- Identify clusters in data
- Clusters reveal trends and subsets in data
 - Can help discriminate subsets to model

Explore Data – Dimensionality

Visualize data structure

VES

Scatter plot, Histogram, Covariance matrix

NO

Detect outliers?

VIsualize clusters?

VES

Isolation treat.
Gaussian minute
(GMM)

NO

Explore Data

Outliers?

Visualize clusters?

VES

K-means

Not Working

Gaussian minute
(GMM)

NO

PCA-Varimax rotation

- Determine how many intrinsic dimensions exist in data
 - Identify trends in data
 - Reduce inputs into models

Data Driven Models

Data Driven Models – Standardization

- Should standardize or normalize before building a model
- Think of it as "preprocessing" data
 - Scales data into comparable range

Data Driven Models – Splitting Data

- Should split data to ensure model is appropriate trained and validated
 - Guards against overfitting
 - Gives confidence in model accuracy

Data Driven Models – Regression/Classification

- Constructing model to accurately predict
 - Prediction can be a class or a continuous variable

Regression

What is the temperature going to be tomorrow?

30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 2

Model Usage

Model Usage – Comparison

- Each technique has the appropriate metric to be used for evaluation
 - Some can be compared against each other

Model Usage – Predictions

Model comparisor Compare metrics Model Usage Identify optima Bayesian optimization

- Process input data to obtain predictions
- Interpolate, don't extrapolate

Model Usage – Optimization

- Determine optimal values from model
- Apply Bayesian optimization to identify optima

How to Apply Data Science?

- All tools can be misused
- Created a flowchart to provide structure for applying techniques
- Goal of these training sessions: teach you how to use the flowchart and listed techniques
 - Provide foundation

Explore Data

Generate a datadriven model

Model Usage

Explore Data – Visualize

- Why visualize your data?
- Cover fundamentals of:
 - Histograms
 - Scatter plots
 - Correlation matrices
- Workshop examples of each in Python

Why Visualize Data?

- Identify important patterns and trends
 - Helps target your model construction
- Identify outliers or errors in data entry
 - Help eliminate troublesome datapoints
- Gives a familiarity with the data structure

Fundamentals – Histogram

- Approximate representation of the distribution of data
 - Visualizes a single variable at a time
 - Visualization changes with different bin sizes
 - Normalized histograms = probability distributions

Fundamentals – Scatter Plot

- Mathematical diagram representing multivariate data as discrete points
 - Can be various dimensions
 - We will stick to two dimensions
- Visualize relationships between variables

Fundamentals – Correlation Matrix

- Measurement of how when one variable changes another changes along with it
 - Miles run vs. calories burned will have a positive correlation
 - Miles run vs. shows watched will have a negative correlation
- Ranges from -1 to 1 for ease of comparison

To Jupyter!