ATM 651 Exam 1: vocabulary. Name
50 rows, 2 points for each row. Fill in the white boxes, 2 per row. gray box: no response asked

Word	Symbol	<u>Units</u>	Math	Relevant sketch
	<u> </u>	<u> </u>	definition	or extra space for more
			or concept	words
			(explained)	
latitude	φ (a scalar coordinate varying only in one spatial direction)	degrees (or radians)	Latitude is an angle from the center of the Earth. That's why we take its sine and cosine.	North Pole
distance north from origin	y (Cartesian coordinate used similar to the above)	meters	distance on a tangent plane, in the direction of the j unit vector	North Pole
Temperature	T(x,y,t)	K or °C (accepted Joules)	a measure of the energy of molecular motion ("heat")	
del operator				
	∇	m ⁻¹	$i\frac{\partial}{\partial x} + j\frac{\partial}{\partial y} + k\frac{\partial}{\partial z}$	< write i,j,k to the <i>left</i> , since things on the right of the derivative get <i>operated</i> on. A <i>sum</i> .
Local or Eulerian tendency of T(x,y,t)	$\left. \frac{\partial T}{\partial t} \right _{x,y}$	K s ⁻¹		
Local or Eulerian tendency of T(x,y,t)			Rate of change of T with time for a thermometer at a given location	T at a point Slope of T(t) curve

Gradient of p(x,y) where p is pressure	∇р	Pa/m Kg m ⁻² s ⁻²	sketch some contours with H and L, & indicate vectors that illustrate> concept	
Gradient of $\Phi(x,y,t)$ $(\Phi = gZ)$		m s ⁻²	$i\frac{\partial\Phi}{\partial x} + j\frac{\partial\Phi}{\partial y} + k\frac{\partial\Phi}{\partial z}$	< use i,j,k (Cartesian unit vectors). This is the geopotential.
Laplacian of T(x,y,t)	(use nabla): $\nabla^2 T$	K m ⁻²		
Laplacian of p(x)			using p(x) notation: d not ∂ because p is a function of one variable only $\frac{d^2p}{dx^2}$	curvature. Smile-like is positive (slope increasing) p x
speed of wind whose components are u(x,y), v(x,y)		m s ⁻¹	Speed = $\sqrt{u^2 + v^2}$	
vector velocity of a baseball in x,y,z coordinates	V	m s ⁻¹	(use \dot{x} , \dot{y} , \dot{z}) $V = i\dot{x} + j\dot{y} + k\dot{z}$ $= \dot{x}i + \dot{y}j + \dot{z}k$	
vector velocity field of pure divergence	$V_{div}(x,y)$	m s ⁻¹		Pare unt devergence plus 1-2 10 10 10 10 10 10 10 10 10 1
omega	ω	Pa s ⁻¹	p, vertical velocity of air in p coord.	draw vector for ω>0: downward motion
Laplacian of Z(x,y)	divergence of the	m ⁻¹	$\nabla^2 Z$	

	gradient of $Z(x,y)$			
vector velocity	V	m s ⁻¹	iu+jv+kw	
		m s ⁻¹ (or knot)	10 knot southwesterly wind	from SW
Flux of specific momentum (velocity)		(<i>m/s</i>) m ⁻² s ⁻¹	How much momentum (per unit mass) carried through a unit area per second	(quantity in parentheses) per square meter per second
Energy flux (e.g. an irradiance)		W m ⁻² (Joules) m ⁻² s ⁻¹	How much (energy) passing through per unit area per second	
Vertical	W	m s ⁻¹	other answers	like a humidity measure from
velocity Mass flux	(intent: ż)		accepted	another chapter Mass flux in Mass flux out
	ho V	(<i>kg</i>) m ⁻² s ⁻¹	How much (mass) moving through a unit area per second	$F_{x} - \frac{\partial F_{x}}{\partial x} \frac{\Delta x}{2}$ $F_{x} + \frac{\partial F_{x}}{\partial x} \frac{\Delta x}{2}$ $F_{x} + \frac{\partial F_{x}}{\partial x} \frac{\Delta x}{2}$ $F_{x} + \frac{\partial F_{x}}{\partial x} \frac{\Delta x}{2}$
vertical component of vector vorticity	ζ	s ⁻¹	use nabla & \mathbf{k} : $\mathbf{k} \cdot \nabla \times \mathbf{V}$	
Circulation, the path integral around a closed curve of the curve-tangential component of the flow	С		$ \oint_{loop} V_s ds $	irculation is defined as the line integral of the velocity around any closed curve
Circulation. What is it equal to (Stokes' theorem):	С	$m^2 s^{-1}$	area- integrated vorticity = ∫∫ □ ζ dA area bounded by loop	
dot product of a force and velocity	suggest W	(Nm) s ⁻¹ Joule s ⁻¹ Watts	$ec{m{F}}_{PGF} \cdot ec{m{V}}$	took any rational MKS answer and of course any letter, explained. Few if any saw the

(explain letter you choose >	for work rate, or power	kg m ² s ⁻³		<pre>energy = force*distance or work = force*velocity. That's physics, not math/vocab.</pre>
meridional flux of zonal momentum	ρυν or just uv	(momentum) m ⁻² s ⁻¹ or just m ² s ⁻²	amount of zonal momentum passing northward through a unit area in the x-z plane, per second	Positive for southwesterly wind, negative for northeasterly wind. See below.
vertical advection of meridional momentum	$-w\frac{\partial}{\partial z}(v)$	m s ⁻²	rate of change of v due to advection by vertical wind component	Yes unfair!! Simon didn't say "specific" momentum! Get used to fluid physics presuming per unit mass.
curl operator		m ⁻¹	(use nabla) ∇ ×	Just the operator. It has units.
PGF		m s ⁻²	$\frac{-1}{\rho} \nabla p$ or $-\nabla \Phi$	
troposphere the layer of air that radiation cools, so that surface solar heating must warm it with weather motion			the lowest ~10km of the atmosphere; where most weather occurs. dT/dz < 0	Z
Coriolis force (per unit mass)	C _o f k x V	m s ⁻²		
Coriolis parameter	f	s ⁻¹	$f = 2\Omega\sin(\varphi)$	
planetary vorticity	f	s ⁻¹		
temperature anomaly	T'(t,x,y)	K or °C or °F	Deviation from time-averaged T	not "trend" or "tendency", not "change", not "variance",
(name) Planetary boundary layer	(acronym) PBL		the layer of air in contact w/ the surface	
horizontal advection of	$-\vec{V}\cdot\vec{\nabla}q$	(units of q) s ⁻¹	< (kg _{water} /kg _{air})	is q "dimensionless"? formally yes, I suppose,

specific				
humidity q				
horizontal convergence of horizontal flux of (moisture) q	$-\vec{\nabla}\cdot(q\rho\vec{V})$	(units of q) s ⁻¹	"	Hey, does it mean anything that $\overrightarrow{\nabla}$ is sometimes written with/without an arrow over it? No, it is just one thing.
local (Eulerian) tendency of q	$rac{\partial q}{\partial t}$	(units of q) s ⁻¹	"	Hey, don't I sometimes see some subcript on \overrightarrow{V} or $\overrightarrow{\nabla}$? Yes, like \overrightarrow{V}_h for horizontal wind, or $\overrightarrow{\nabla}_p$ for partial space derivatives taken @constant p
total (Lagrangian) tendency of q	dq dt	(units of q) s ⁻¹	"	"
vertical shear of zonal wind		s ⁻¹	∂u/∂z	
confluence without convergence			sketch> carefully (streamlines and isotachs)	L
Mass of 1 cc = 1 ml of water in MKS	(<oops my typo)</oops 	1 g	$1cc = 10^{-6} \text{ m}^3$ mass 10^{-3} kg	
streamfunctio n $\psi(x, y)$ of a nondivergent 2D horizontal flow $(\vec{V} = \hat{k} \times \nabla \psi)$	$\psi(x,y)$	$m^2 s^{-1}$ $m^2 s^{-1}$	sketch contours and a few velocity vectors>	$\begin{array}{c} \psi_1 \\ \psi_2 \\ \psi_3 \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
wavelength	λ	m	a number measuring something about a spatial sinusoid>	A A
amplitude	A	freebie	indicate on sketch above	(see above)
cause and effect				https://xkcd.com/552/

			"correlation is not causation"	THE BOOK OF WHY THE NEW SCIENCE
Shear	One unit of vorticity plus one unit of deformatio			OF CAUSE AND EFFECT Pure unit vorticity plus deformation1 10.0 7.5 5.0 2.5 -2.5 -3.0 -10.0
Splat with a twist	One unit of divergence plus one unit of vorticity	poor ask but it's a velocity field, m s ⁻¹		Verticity plan Divergence with Vi-2 320 75 50 -23 60 -25 -180
A flow field with curvature but not vorticity. Sketch it carefully as vectors at the indicated points.	Remember, arrows for vectors apply at their tail point, and length is proportiona I to speed.		Practice on the back of page, then Just do it>	pure deformation for instance Pure unit defi 100 -125 -125 -126 -126 -126 -126 -126 -127 -128 -1
Radius of earth in MKS units	a	m	$(10^7 \text{m}) / (\pi/2)$ = 6341 km	