Actividad 07. Ejemplos

1. Dada una red, con la siguiente IP:

192.168.200.0/24

Dividirla en 6 subredes.

Se pide:

- 1. Indicar el rango de direcciones de cada red, así como su máscara.
- 2. Indicar la dirección de red y broadcast de cada subred

SOLUCIÓN:

La dirección de res es:

Y la máscara es:

														ľ	ΜÁ	SC	4R/	٩														
:	L 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
			2	55							2	55								2	55							()			

Para obtener las subredes, hay que calcular cuantos bits hay que añadir a la máscara. Se debe obtener un número n que cumpla que: n -> nº de bits

$$2^{n}-2>=6$$

$$2^0 = 1$$

$$2^1=2$$

$$2^2 = 4$$

$$2^3 = 8$$

Por tanto, n=3. Lo que indica que hay que añadir 3 bits a la máscara:

														ı	ΜÁ	SC	AR	4															
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		1	1	1	1	1	1	1	1		1	1	1	0	0	0	0	0
			2	55							2	55								2	55				١.				22	24			

Por tanto, podemos obtener 8 combinaciones de bits, por lo que las 8 subredes posibles serán:

r Oi tai			e bits, poi io que ias o su	ibiledes posibles serail.
	192	168	200	0
1 1 (0 0 0 0 0 0 . 1 (0 1 0 1 0 0 0 .	1 1 0 0 1 0 0 0 .	0 0 0 0 0 0 0 0
	192	168	200	32
1 1 (0 0 0 0 0 0 . 1 (0 1 0 1 0 0 0 .	1 1 0 0 1 0 0 0 .	0 0 1 0 0 0 0 0
	192	168	200	64
1 1 (0 0 0 0 0 0 . 1 (0 1 0 1 0 0 0 .	1 1 0 0 1 0 0 0 .	0 1 0 0 0 0 0 0
	192	168	200	96
1 1 (0 0 0 0 0 0 . 1 0	0 1 0 1 0 0 0 .	1 1 0 0 1 0 0 0 .	0 1 1 0 0 0 0 0
	192	168	200	128
1 1 (0 0 0 0 0 0 . 1 (0 1 0 1 0 0 0 .	1 1 0 0 1 0 0 0 .	1 0 0 0 0 0 0 0
	192	168	200	160
1 1 (0 0 0 0 0 0 . 1	0 1 0 1 0 0 0 .	1 1 0 0 1 0 0 0 .	1 0 1 0 0 0 0 0
	192	168	200	192
1 1	0 0 0 0 0 0 . 1 0		1 1 0 0 1 0 0 0 .	1 1 0 0 0 0 0 0
	192	168	200	224

Con la máscara:

Utilizaremos las 6 primeras, por lo que las subredes, son:

Red	Dirección red	Broadcast	Primera IP	Última IP
192.168.200.0/27	192.168.200.0	192.168.200.31	192.168.200.1	192.168.200.30
192.168.200.32/27	192.168.200.32	192.168.200.63	192.168.200.33	192.168.200.62
192.168.200.64/27	192.168.200.64	192.168.200.95	192.168.200.65	192.168.200.94
192.168.200.96/27	192.168.200.96	192.168.200.127	192.168.200.97	192.168.200.126
192.168.200.128/27	192.168.200.128	192.168.200.159	192.168.200.129	192.168.200.158
192.168.200.160/27	192.168.200.160	192.168.200.191	192.168.200.161	192.168.200.190

2. Se quiere obtener 4 subredes que tengan 500 host cada una con la siguiente IP:

172.015.0.0/21

Se pide:

- 1. Indicar el rango de direcciones de cada red, así como su máscara.
- 2. Indicar la dirección de red y broadcast de cada subred

SOLUCIÓN:

La dirección de res es:

													D	ire	cci	ón	de	RE	D													
1	0	1	0	1	1	0	0	0	0	0	0	1	1	1	1		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
			1	72							1	5								()							()			

Y la máscara es:

														ı	ΜÁ	SC	4R/	4														
L 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0
			2	55							2	55								24	48							()			

Para obtener las subredes, hay que calcular cuantos bits hay que añadir a la máscara. Se debe obtener un número n que cumpla que: n -> nº de bits

$$2^{n}=4$$

$$2^0=1$$

$$2^1=2$$

$$2^2=4$$

Por tanto, n=2. Lo que indica que hay que añadir 2 bits a la máscara:

														1	ΜÁ	SC	AR/	4														
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
			2	55							2	55								2	54							()			

Por tanto, podemos obtener 4 combinaciones de bits, por lo que las 4 subredes posibles serán:

	, i													,															
	172							01	15								0								C)			
1 0 1	0 1 1	0	0 .	0	0	0	0	1	1	1 :	L	. [0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0
	172							0:	15			-					2				-				C)			
1 0 1	0 1 1	0	0 .	0	0	0	0	1	1	1 :	1	. [0	0	0	0	0	0	1	0		0	0	0	0	0	0	0	0
	172							0:	15			-					4				-				C)			
1 0 1	0 1 1	0	0 .	0	0	0	0	1	1 :	1 :	L	. [0	0	0	0	0	1	0	0		0	0	0	0	0	0	0	0
	172							0:	15			_					6				-				C)			
1 0 1	0 1 1	0	0 .	0	0	0	0	1	1	1 :	L	. [0	0	0	0	0	1	1	0		0	0	0	0	0	0	0	0
Con la m	áscara:																												
	255							25	55							2	55)							22	24			
1 1 1	1 1 1	1	1 .	1	1	1	1	1	1	1 :	L	. [1	1	1	1	1	1	1	0	. [0	0	0	0	0	0	0	0

Las subredes, son:

Red	Dirección red	Broadcast	Primera IP	Última IP
172.015.0.0/23	172.015.0.0	172.015.1.255	172.015.0.1	172.015.1.254
172.015.2.0/23	172.015.2.0	172.015.3.255	172.015.2.1	172.015.3.254
172.015.4.0/23	172.015.4.0	172.015.5.255	172.015.4.1	172.015.5.254
172.015.6.0/23	172.015.6.0	172.015.7.255	172.015.6.1	172.015.7.254

Cada red admite hasta:

 $2^9 - 2 = 510 \text{ host}$

3. Dada una red, con la siguiente IP:

192.168.0.0/24

Dividirla en 6 subredes, pero con nº de host variables:

2 subredes de 20 host

1 subred de 80 host

3 subredes de 2 host

Se pide:

- 1. Indicar el rango de direcciones de cada red, así como su máscara.
- 2. Indicar la dirección de red y broadcast de cada subred

SOLUCIÓN:

La dirección de res es:

											D	ire	cci	ón	de	RE	D									
1	1	C	Dirección de RED 0 0 0 0 0 0 . 1 0 1 0 1 0 0 0 . 1 1 0 0 1 0 0 0 . 0 0 0 0		0																					
				19	2		•		16	38								20	00		•		()		

Y la máscara es:

														١	ΛÁ	SC	٩R	4															
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		1	1	1	1	1	1	1	1		0	0	0	0	0	0	0	0
			2	55							2	55								2	55				•				()			

Hay que realizar varios pasos:

- 1. Ordenar las subredes de mayor a menor cantidad de host.
- 2. Modificar la máscara teniendo en cuenta la cantidad de host de cada subred
- 3. La siguiente subred es la dirección broadcast de la subred anterior + 1.

Para obtener las subredes, hay que calcular cuantos bits hay que añadir a la máscara. Se debe obtener un número n que cumpla que: n -> nº de bits

2ⁿ-2>= nº Host

Para obtener las subredes, hay que ordenar las redes de mayor a menor cantidad del número de host.

- 1. 1 subred de 80 host
- 2. 2 subredes de 20 host
- 3. 1 subred de 2 host
- 4. 1 subred de 2 host
- 5. 1 subred de 2 host

Se comienza por la **primera** subred. Para calcular cuantos bits hay que añadir a la máscara debe obtener un número n que cumpla que: n -> nº de hosts

$$2^0 = 1$$

$$2^1=2$$

$$2^2 = 4$$

$$2^3 = 8$$

$$2^4 = 16$$

$$2^5 = 32$$

$$2^6 = 64$$

Por tanto, n=7. Lo que indica que hay que hacen falta 7 para lograr una red de 126 equipos:

														1	ИÁ	SC	٩R	4														
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		1	1	1	1	1	1	1	1		1 0	0	0	0	0	0	0
			2	55							2	55								2	55				•			12	28			

Las subred será:

Red	Dirección red	Broadcast	Primera IP	Última IP
192.168.0.0/25	192.168.0.0	192.168.0.127	192.168.200.1	192.168.200.126

La **segunda** subred comienza a partir de la anterior, siguiendo el mismo proceso. Para calcular cuantos bits hay que añadir a la máscara debe obtener un número n que cumpla que:

n -> nº de hosts

$$2^n >= n^0$$
 de hosts=20

$$2^5 = 32$$

Por tanto, n=5. Lo que indica que hay que dejar 5 bits a cero, por tanto, hay que añadir 2 bit a la máscara:

Las subred será:

Red	Dirección red	Broadcast	Primera IP	Última IP
192.168.0.0/27	192.168.0.128	192.168.0.159	192.168.0.129	192.168.0.158

La **tercera** subred es también de 20 hosts, por lo que escogemos la misma máscara, e irá a continuación de la anterior:

Red	Dirección red	Broadcast	Primera IP	Última IP
192.168.0.0/27	192.168.0.160	192.168.0.191	192.168.0.161	192.168.0.190

La **cuarta** subred comienza a partir de la anterior, siguiendo el mismo proceso. Para calcular cuantos bits hay que añadir a la máscara debe obtener un número n que cumpla que:

n -> nº de hosts

$$2^2=4$$

Por tanto, n=2. Lo que indica que hay que dejar 2 bits a cero, por tanto, hay que añadir 3 bit a la máscara:

Las subredes serán:

Red	Dirección red	Broadcast	Primera IP	Última IP
192.168.0.0/30	192.168.0.192	192.168.0.195	192.168.0.193	192.168.0.194
192.168.0.0/30	192.168.0.196	192.168.0.199	192.168.0.197	192.168.0.198
192.168.0.0/30	192.168.0.200	192.168.0.203	192.168.0.201	192.168.0.202

Las subredes son:

Red	Dirección red	Broadcast	Primera IP	Última IP
192.168.0.0/25	192.168.0.0	192.168.0.127	192.168.0.1	192.168.0.126
192.168.0.0/27	192.168.0.128	192.168.0.159	192.168.0.129	192.168.0.158
192.168.0.0/27	192.168.0.160	192.168.0.191	192.168.0.161	192.168.0.190
192.168.0.0/30	192.168.0.192	192.168.0.195	192.168.0.193	192.168.0.194
192.168.0.0/30	192.168.0.196	192.168.0.199	192.168.0.197	192.168.0.198
192.168.0.0/30	192.168.0.200	192.168.0.203	192.168.0.201	192.168.0.202

