DATA SCI 7030: Database and Analytics

Tozammel Hossain Oct 27, 2020

Agenda

- Programmatic Access to Postgres
- Workflow in a Database Design
 - The Entity-Relationship Model

Accessing database

- Module 1
 - psql: interactive shell for accessing dbase
 - Provides access at a raw level
 - Useful for running large sql script
 - sql magic function
 - Works only in Jupyter notebook
- 3rd way of accessing database
 - psycopg2 and SQLAlchemy
 - Works within and outside Jupyter notebook

The Entity-Relationship Model

Mapping your client's enterprise information needs and policies into a relational database design.

Steps in Database Design

- Requirements analysis
- Conceptual database design
- Logical database design
- Schema refinement
- Physical database design
- Application and security implementation

•

ER Diagrams

Conceptual design

- ER Model is used at this stage
- What are the entities and relationships in the enterprise?
- What information (i.e attributes) about these entities and relationships we should store in the database?
- What are the integrity constraints or business rules that hold?

Conceptual design

- A database schema in the ER Model can be represented pictorially (ER diagrams)
- We then can map an ER diagram into a relational schema

Why ER diagrams?

- Your client tells you
 - We would like to build a DB application software package such that we can query the system like who works in what department since when. The company is interested in keeping the following information:
 - Every employee has a SSN, name, and lot number
 - Each department has a department ID, name, and budget
- The above is the output of a requirement analysis

Why ER diagrams?

- Instead of coding SQL DDL directly, model the problem pictorially first
- "Translate" what users want to a more detail and precise description that can be implemented in a DBMS

Why ER diagrams?

Crow's Foot Notation

- We will be using Crow's Foot Notation
- Preferred Notation

Available Tools

- pen + paper
- power point
- MS Visio
- draw.io
- lucid diagram
- mermaid
 - https://mermaid-js.github.io/mermaid-liveeditor

ERD in Abstraction Level

Entity & Attributes

- What is an entity?
 - An object for which we need to store data
 - Physical existence vs conceptual existence
 - Physical: students, cars, houses, employees
 - Conceptual: courses, jobs, companies
- Entity vs Entity type vs Entity Sets
 - An entity is an object of an entity type (OOP)
 - E.g., E1 is an entity of type Employee
 - Defined by a set of properties (i.e. attributes)
 - Entity set is a collection of entities

Entity & Attributes

Attribute Types

- Simple attribute
 - cannot be further subdivided into components
- Composite attribute
 - can be splitted into components
- Single-valued attribute
 - Eg.??
- Multi-valued attribute
 - E.g.??
- Derived attributes
 - E.g. ??

Advantages and Disadvantages of Storing Derived Attributes

TABLE 4.2		
ADVANTAGES AND DISADVANTAGES OF STORING DERIVED ATTRIBUTES		
	DERIVED ATTRIBUTE	
	STORED	NOT STORED
Advantage	Saves CPU processing cycles Saves data access time Data value is readily available Can be used to keep track of historical data	Saves storage space Computation always yields current value
Disadvantage	Requires constant maintenance to ensure derived value is current, especially if any values used in the calculation change	Uses CPU processing cycles Increases data access time Adds coding complexity to queries

Relationships

- What is a relationship?
 - Association among two or more entities
 - E.g., John Smith works for Marketing
 Department since 2020-01-17

Constraints

 What are the integrity constraints or business rules that hold?

- Consider Works_In: An employee can work in many departments; a dept can have many employees
 - A prof could be affiliated with many departments
- Q: how to read the above diagram?

Constraints

ERD changes according to the business rules

Participation Constraint

Constraints

Connectivity and Cardinality

Weak Relationship

- Aka Non-Identifying
 - A class is for a course
 - An employee has dependents in his policy

Strong Relationship

Aka identifying relationship

Optional Relation

Mandatory Relationship

Relationship Degree

Unary Relation (aka recursive relation)

Relationship Degree: Unary

Unary Relation (aka recursive relation)

Binary Relationship

Ternary Relationship

Ternary Relationship

Quiz

- Q: How to conceptualize manages relationship?
 - Requirement: Each dept has at most one manager

Quiz

- You use the following notation to express your ER diagram
 - o: Zero
 - I: one
 - < or >: many
 - E.g. To express a many to many relationship between entities A & B, we can write
 - A >0----0< B

Constraints

- Q: How to conceptualize manages relationship?
 - Requirement: Each dept has at most one manager

Thanks