## 七、思考和小结

#### 特征值特征向量:

设A是n 阶方阵,  $0 \neq \alpha \in \mathbb{C}^n$ ,  $\lambda \in \mathbb{C}$  使得  $A\alpha = \lambda \alpha$ 

- (1) 称  $\lambda$  是矩阵 A 的一个特征值;
- (2) 称  $\alpha$  是矩阵 A 相应于特征值  $\lambda$  的一个特征向量.

#### 特征值子空间:

$$V_{\lambda} = \left\{ \alpha \in \mathbb{C}^n \,\middle|\, A\alpha = \lambda \alpha \right\}$$

 $\lambda$ 是A的特征值  $\Leftrightarrow V_{\lambda} \neq \{0\}$ 

 $V_{\lambda}$  称为A的特征值 $\lambda$ 的特征子空间



### 特征值的判定.

给定n阶矩阵A,则

λ是A的特征值

 $\Leftrightarrow \exists \alpha \neq 0, s.t. A\alpha = \lambda \alpha$ 

介

⇔ (λI-A)X=0 有非零解 α;

$$A \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} = \begin{pmatrix} \lambda \\ \vdots \\ \lambda \end{pmatrix} = \lambda \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$$

 $\Leftrightarrow |\lambda I - A| = 0;$ 

 $\bigcap$ 

 $\Leftrightarrow \lambda I - A$  不可逆;

A各行元之和为A

 $\Leftrightarrow R(\lambda I - A) < n;$ 

### 特征向量的判定.

给定n阶矩阵A, $\alpha$ 是非零列向量

$$\alpha$$
是A的特征向量  $\Leftrightarrow$   $A\alpha = \lambda \alpha$  对某个数 $\lambda$ 

 $\bigcap$ 

 $\Leftrightarrow \alpha, A\alpha$  线性相关;

A各行元之和为 $\lambda$ ,

$$\alpha = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix};$$

 $\Leftrightarrow \alpha \ \mathcal{L}(\lambda I - A)X = 0$  的非零解

# 特征值、特征向量的计算。

$$(1)$$
 求  $|\lambda I - A| = 0$  的根:  $\lambda_1, \lambda_2, \dots, \lambda_k$ 

$$(2)$$
 对每一 $\lambda_i$ ,求出 $(\lambda_i I - A)X = 0$  的一组基础解系  $\alpha_{i_1}, \alpha_{i_2}, \cdots, \alpha_{i_{r_i}}$ 

则A的对应于A,的特征向量为:

$$k_1 \alpha_{i_1} + k_2 \alpha_{i_2} + \cdots + k_{r_i} \alpha_{r_i}$$
  $k_1, k_2, \cdots, k_{r_i}$  不全为零

$$\lambda_1 + \dots + \lambda_n = a_{11} + a_{22} + \dots + a_{nn}$$
  $\lambda_1 \lambda_2 \dots \lambda_n = |A|$ 



代数重数: A作为A特征多项式根的重数

几何重数:特征子空间 $V_{\lambda}$ 的维数 $n-R(\lambda I-A)$ 

#### 1≤几何重数≤代数重数

 $\alpha$  是 A 的特征值  $\lambda$  的特征向量 ⇒

- (1)  $\alpha$  是 f(A) 的特征值  $f(\lambda)$  的特征向量.
- (2)  $f(A) = 0 \Rightarrow f(\lambda) = 0$ .
- A可逆时: (3)  $\alpha$  是 $A^{-1}$  的特征值 $\lambda^{-1}$  的特征向量.
  - (4)  $\alpha$  是  $A^*$  的特征值  $\frac{|A|}{4}$  的特征向量.

#### 思考题:

1. 是否任一数礼都是某矩阵A的特征值?

是.比如,

$$A = \begin{pmatrix} \lambda_0 & & \\ & \mathbf{0} & \\ & & \mathbf{0} \end{pmatrix}$$

2. 是否任一列向量  $\alpha$  都是某矩阵 A 的特征向量?

$$\alpha \neq 0 \Rightarrow I\alpha = 1\alpha$$