Транспортные сети

Определение 1. Транспортной сетью называется орграф G = < V, X > c множеством вершин $V = \{v_1, \dots, v_n\}$ для которого выполняется:

- 1) \exists единственная вершина v_1 (источник): $\Gamma^{-1}v_1 = \emptyset$;
- 2) \exists единственная вершина v_n (сток): $\Gamma v_n = \emptyset$;
- 3) для каждой дуги $\langle v_i, v_i \rangle \in \Gamma$ задана пропускная способность $c(v_i, v_i) = c_{ii} \geq 0$.

Определение 2. Функцией потока (потоком в транспортной сети G) называется функция $\varphi: X \to R^+ \cup \{0\}$, удовлетворяющая следующим условиям:

- 1) для каждой дуги $< v_i, v_j > \in \Gamma$ выполняется $0 \le \varphi \big(v_i, v_j \big) \le c_{ij} \ \forall i, j = 1, \dots, n;$
- 2) для любой промежуточной вершины и:

$$\sum_{v \in \Gamma^{-1}\mathbf{u}} \varphi(v, \mathbf{u}) = \sum_{v \in \Gamma\mathbf{u}} \varphi(\mathbf{u}, v)$$

Величина потока равна сумме потоков по всем дугам, входящим в сток:

$$\Phi = \sum_{v \in \Gamma^{-1}v_n} \varphi(v, v_n).$$

Эта величина также равна сумме потоков по всем дугам, исходящим из источника:

$$\Phi = \sum_{v \in \Gamma v_1} \varphi(v_1, v).$$

Дуга называется насыщенной, если значение функции потока по ней равно пропускной способности.

Пример 1. На рис. 1 представлена транспортная сеть.

Рис.1

На рис.2 приведен пример функции потока по данной транспортной сети. Легко убедиться, что все условия определения 2 удовлетворяются.

Рис.2

Дуги
$$< v_1, v_2 >$$
, $< v_1, v_4 >$, $< v_1, v_6 >$, $< v_2, v_4 >$, $< v_4, v_5 >$ – насыщенные.

Величина потока $\Phi = 15$.

Определение 3. Поток называется полным, если любой путь из источника в сток содержит хотя бы одну насыщенную дугу.

Определение 4. Поток называется максимальным, если значение величины потока наибольшее по сравнению со всеми потоками в данной транспортной сети.

Обычно полный поток ищут как приближение к максимальному, в частном случае они могут совпасть. Полный поток используется как начальный для построения максимального.

Алгоритм построения полного потока

- 0. Выбираем нулевой поток в качестве начального $\varphi_{ij} = 0 \ \forall < v_i, v_j > \in \Gamma$.
- 1. Проверяем, является ли построенный поток полным, т.е. существует ли путь из v_1 в v_n , не содержащий насыщенных дуг. Если такого пути нет, полный поток построен, если есть, переходим к п.2.
- 2. Вдоль пути, не содержащего насыщенных дуг, увеличиваем поток на одну и ту же величину до тех пор, пока хотя бы одна дуга не станет насыщенной. Переходим к п.1.

Пример 2. Найти полный поток по транспортной сети, представленной на рис.3.

Построение полного потока

Ищем пути, не содержащие насыщенных дуг, и выбираем величину, на которую можно увеличить значения функции потока вдоль этих путей (рис. 4).

В качестве начального выбираем нулевой поток.

1.
$$v_1 - v_2 - v_3 - v_5 - v_6$$

min $\{6, 2, 6, 5\} = 2$;

2.
$$v_1 - v_2 - v_5 - v_6$$

min {(6-2), (4), (5-2)} = 3;

3.
$$v_1 - v_2 - v_4 - v_6$$

min {(6-5), (7), (7)} = 1.

Величина полного потока $\Phi_{\text{пол}} = 1 + 5 = 6$

Построение максимального потока

Для построения максимального потока введем понятие увеличивающей цепи.

Определение 5. Увеличивающей цепью называется последовательность вершин транспортной сети из v_1 в v_n :

$$v_1 = u_1, u_2, \dots, u_k = v_n$$
, (*)

где < $u_j,$ $u_{(j+1)}>\in \Gamma,$ либо < $u_{(j+1)},$ $u_j>\in \Gamma$ (< $u_j,$ $u_{(j+1)}>\in \Gamma^{-1}$), причем для каждой пары вершин цепи < $u_j,$ $u_{(j+1)}>$ определена положительная величина

$$\Delta_{j(j+1)} = \begin{cases} c_{j(j+1)} - \varphi_{j(j+1)} \,, & \text{если} < \mathbf{u}_j, \mathbf{u}_{(j+1)} > \in \Gamma \\ \varphi_{(j+1)j} \,, & \text{если} < \mathbf{u}_{(j+1)}, \mathbf{u}_j \,> \in \Gamma \,\, \text{и} \,\, \varphi_{(j+1)j} > 0 \end{cases}$$

Для увеличивающей цепи найдем величину

$$\triangle = \min_{j=1,\dots,k-1} \triangle_{j(j+1)}$$

Алгоритм поиска максимального потока в транспортной сети

- 0. Выбираем полный поток в качестве начального (можно любой, например нулевой).
- 1. Проверяем, является ли построенный поток максимальным, т.е. существует ли увеличивающая цепь из v_1 в v_n . Если такой цепи нет, максимальный поток построен, иначе переходим к п.2.
- Вдоль увеличивающей цепи изменяем поток на величину △, причем если идем по дуге, то увеличиваем на △, если против направления дуги уменьшаем на △. Переходим к п.1.

Пример 3. Найти максимальный поток по транспортной сети, представленной на рис.3.

Возьмём в качестве начального полный поток, построенный в примере 2 (рис. 5).

Рис. 5

Построение максимального потока

Найдем увеличивающие цепи и величины, на которые можно изменить значения функции потока вдоль этой цепи (рис. 6).

1.
$$v_1 - v_3 - v_2 - v_4 - v_6$$

$$\Delta_1 = \min \{5_+, 2_-, 6_+, 6_+\} = 2;$$

(Индексы «+» и «-» показывают, увеличивается или уменьшается значение функции потока по соответствующей дуге)

2.
$$v_1 - v_3 - v_5 - v_2 - v_4 - v_6$$

 $\Delta_2 = \min \{ (5-2)_+, (6-2)_+, 3_-, (7-3)_+, (7-3)_+ \} = 3;$

Больше цепей нет. $\boldsymbol{\Phi}_{\text{макс}} = \mathbf{6} + \mathbf{5} = \mathbf{6} + \mathbf{5} = \mathbf{11}$

Рис. 6

Величина полного потока может совпадать с величиной максимального потока.

Пример 3. Построим полный поток по транспортной сети, представленной на рис. 3, так, чтобы его величина совпала с величиной максимального потока.

Рис. 7

Ищем пути из источника в сток, не содержащие насыщенных дуг (рис. 7).

- 1. $v_1 v_2 v_4 v_6$ min $\{6, 7, 7\} = 6$;
- 2. $v_1 v_3 v_5 v_6$ min $\{5, 6, 5\} = 5$;

 Φ полн = Φ макс = 11

Задача о портовых перевозках

Классическая задача транспортной сети

Имеются портовые города $a_1,a_2,...,a_k$ с запасом некоторого товара $d_1,d_2,...,d_k$, и города $b_1,b_2,...,b_m$ с потребностью в этом товаре $p_1,p_2,...,p_m$. Из города a_i в b_j можно провести не более c_{ij} товара (i=1,...,k;j=1,...,m).

Как максимально обеспечить товаром города b_1 , ..., b_m ?

Для решения логистической задачи построим транспортную сеть с вершинами $\{a_1, a, ..., a_k, b_1, b, ..., b_m, v_1, v_2\}$, где v_1 – источник, v_2 – сток. Найдем максимальный поток по транспортной сети. Его значения по дугам соответствуют количеству перевозимого товара (рис. 8).

Двудольный граф. Паросочетания.

Определение 6. Двудольным графом называется неориентированный граф

 $G=< U\cup W, Q>$ с множеством вершин $U\cup W$ и множеством ребер Q, причем ребро $(u,w)\in Q \iff u\in U, w\in W.$

На рис. 9 приведен пример двудольного графа.

Рис. 9

Определение 7. Паросочетание – подмножество рёбер двудольного графа такое, что никакие два ребра не инцидентны одной вершине графа.

Определение 8. Максимальное паросочетание – паросочетание с наибольшим числом ребер среди всех паросочетаний в данном графе.

Алгоритм нахождения максимального паросочетания

Для нахождения максимального паросочетания построим максимальный поток в следующей транспортной сети.

Транспортная сеть: $G_{\text{тр}} = < V, \Gamma >$, где $V = \{v_1, v_2\} \cup U \cup W$, $\Gamma = \{< u_i, w_j >$, если $(u_i, w_j) \in Q\} \cup \{< v_1, u_i >\} \cup \{< w_j, v_2 >\}$ для всех $u_i \in U, w_j \in W$. Пропускные способности всех дуг положим равными единице (Рис. 10).

Рис. 10

Построим максимальный поток. Рёбра графа $G = < U \cup W$, Q >, соответствующие дугам с функцией потока равной единицам, входят в максимальное паросочетание.

Число ребер в максимальном паросочетании равно трем и равно величине максимального потока, но находится оно неоднозначно, например для графа, представленного на рисунках 9 и 10, получим два варианта максимального паросочетания.

Рис. 11