WHAT IS CLAIMED IS:

1	1. A magnetic storage system, comprising:
2	a moveable magnetic recording medium;
3	an actuator disposed proximate to the moveable magnetic recording medium; and
4	a read head, coupled to the actuator, for reading data on the moveable magnetic
5	recording medium, the read head comprising
6	a spin valve structure including:
7	a ferromagnetic free layer structure that has a magnetic moment;
8	a ferromagnetic pinned layer structure having a magnetic moment;
9	a nonmagnetic conductive spacer layer between the free layer structure
0	and the pinned layer structure; and
1	an anti-ferromagnetic pinning layer coupled to the pinned layer
2	structure for pinning the magnetic moment of the pinned layer structure;
13	hard magnetic thin films disposed on both sides of the free layer structure; and
14	a hard bias seedlayer structure adjacent to at least a portion of the spin valve
15	structure, wherein the hard bias seedlayer structure comprises at least a layer comprising
16	silicon and a layer comprising chromium or chromium molybdenum.
	0.1: 1. 1. in the auti-formomographic
1	2. The magnetic storage system of claim 1, wherein the anti-ferromagnetic
2	pinning layer further comprises a layer of platinum manganese.
1	The magnetic storage system of claim 1, wherein the hard bias seedlayer
2	structure further comprises a layer of tantalum adjacent the silicon layer.
_	A

The magnetic storage system of claim 3, wherein the layer of tantalum 4. 1 adjacent the silicon layer further comprises equal thickness of the tantalum and silicon layers. 2 The magnetic storage system of claim 3, wherein the layer of tantalum 5. 1 adjacent the silicon layer further comprises a tantalum layer with a thickness half a thickness 2 of the silicon layer. 3 The magnetic storage system of claim 3, wherein the hard bias seedlayer 6. 1 structure further comprises a chromium alloy layer. 2 The magnetic storage system of claim 1, wherein the hard bias seedlayer 7. 1 structure further comprises a layer of tantalum, silicon and chromium. 2 The magnetic storage system of claim 1, wherein the hard bias seedlayer 8 1

structure further comprises a layer of tantalum, silicon and chromium-molybendum.

2

1	9. A magnetic storage system, comprising:		
2	a read head, coupled to the actuator, for reading data on the moveable magnetic		
3	recording medium, the read head comprising		
4	a spin valve structure including:		
5	a ferromagnetic free layer structure that has a magnetic moment;		
6	a ferromagnetic pinned layer structure having a magnetic moment;		
7	a nonmagnetic conductive spacer layer between the free layer structure		
8	and the pinned layer structure; and		
9	an anti-ferromagnetic pinning layer coupled to the pinned layer		
0	structure for pinning the magnetic moment of the pinned layer structure;		
1	hard magnetic thin films disposed on both sides of the free layer structure; and		
12	a hard bias seedlayer structure adjacent to at least a portion of the spin valve		
13	structure, wherein the hard bias seedlayer structure comprises at least a layer comprising		
14	silicon and a layer comprising chromium or chromium molybdenum.		
	C. 1 O subservin the enti ferromagnetic		
1	10. The magnetic storage system of claim 9, wherein the anti-ferromagnetic		
2	pinning layer further comprising a layer of platinum manganese.		
4	11. The magnetic storage system of claim 9, wherein the hard bias seedlayer		
1	·		
2	structure further comprises a layer of tantalum adjacent the silicon layer.		
1	12. The magnetic storage system of claim 11, wherein the layer of tantalum		
•	adjacent the silicon layer further comprises equal thickness of the tantalum and silicon layers.		
2	adjacent the silicon layer further comprises equal thickness of the tantalum and silicon layers.		

1	13.	The magnetic storage system of claim 11, wherein the layer of tantalum	
2	adjacent the sil	icon layer further comprises a tantalum layer with a thickness half a thickness	
3	of the silicon la	ayer.	
1	14. structure furthe	The magnetic storage system of claim 11, wherein the hard bias seedlayer er comprises a chromium alloy layer.	
1	15.	The magnetic storage system of claim 9, wherein the hard bias seedlayer	
2	structure furth	er comprises a layer of tantalum, silicon and chromium.	
1	16. structure furth	The magnetic storage system of claim 9, wherein the hard bias seedlayer er comprises a layer of tantalum, silicon and chromium-molybendum.	
1	17.	A spin valve sensor, comprising	
2	a spin	valve structure including a ferromagnetic free layer, a ferromagnetic pinned	
3	layer and an a	nti-ferromagnetic pinning layer;	
4	hard n	nagnetic thin films disposed on both sides of the spin valve structure; and	
5	a hard	bias seedlayer structure adjacent to at least a portion of the spin valve structure	
6	wherein the hard bias seedlayer structure comprises at least a layer comprising silicon and a		
7	layer compris	ing chromium or chromium molybdenum.	
1 2	18. platinum mai	The spin valve sensor of claim 17, wherein the pinning layer comprises	
_	Piatinum mai	7Dm11	

The spin valve sensor of claim 17, wherein the hard bias seedlayer structure 19. 1 further comprises a layer of tantalum adjacent the silicon layer. 2 The spin valve sensor of claim 19 wherein the layer of tantalum adjacent the 20. 1 silicon layer further comprises equal thicknesses of the tantalum and silicon layers. 2 The spin valve sensor of claim 19, wherein the layer of tantalum adjacent the 21. 1 silicon layer further comprises a tantalum layer with a thickness half a thickness of the 2 silicon layer. 3 The spin valve sensor of claim 19, wherein the hard bias seedlayer structure 22. 1 further comprises a chromium alloy layer. 2 The spin valve sensor of claim 17, wherein the hard bias seedlayer structure 23. 1 further comprises a layer of tantalum, silicon and chromium. 2 The spin valve sensor of claim 17, wherein the hard bias seedlayer structure 24. 1

further comprises a layer of tantalum, silicon and chromium-molybendum.

2

1	25. A read sensor, comprises:
2	means for providing a spin valve structure, means for providing a spin valve structure
3	further comprising:
4	means for providing a ferromagnetic free layer structure that has a magnetic
5	moment;
6	means for providing a ferromagnetic pinned layer structure having a magnetic
7	moment;
8	means for providing a nonmagnetic conductive spacer layer between the
9	means for providing a ferromagnetic free layer structure and the means for providing a
10	ferromagnetic pinned layer structure; and
11	means for providing an anti-ferromagnetic pinning layer coupled to the mear
12	for providing a pinned layer structure for pinning the magnetic moment of the pinned layer
13	structure;
14	means for providing hard magnetic thin films adjacent to at least a portion of the
15	means for providing a spin valve structure; and
16	means for providing a hard bias seedlayer structure adjacent the at least a portion of
17	the means for providing a spin valve structure, wherein the means for providing a hard bias
18	seedlayer structure comprises at least a layer comprising silicon and a layer comprising
19	chromium or chromium molybdenum.

1	26. A spin valve sensor, comprising	
2	means for providing a spin valve structure including free means, pinned means and an	
3	pinning means;	
4	means for providing hard magnetic thin films in an abutting relationship with the	
5	means for providing a spin valve structure on both sides of the means for providing a spin	
6	valve structure; and	
7	means for providing a hard bias seedlayer structure adjacent the means for providing	
8	a spin valve structure, wherein means for providing the hard bias seedlayer structure	
9	comprises at least a layer comprising silicon and a layer comprising chromium or chromium	
10	molybdenum.	
1	27. A hard bias seedlayer structure adjacent a pinning layer structure, the	
2	seedlayer structure comprising at least a layer comprising silicon and a layer comprising	
3	chromium or chromium molybdenum.	
1	28. The seedlayer structure of claim 27, wherein the seedlayer structure further	
2	comprises a layer of tantalum adjacent the silicon layer.	