

Olimpiada Naţională de Matematică Etapa Naţională, Huşi, 3 aprilie 2024

CLASA a VII-a – soluții și bareme orientative

Problema 1. Pentru orice număr real x se notează $A(x) = x^2 + 4 \cdot [x]$.

- a) Determinați numerele reale x pentru care $A(x) = \{x\}^2$.
- b) Determinați numerele reale y>0 pentru care A(y) este pătratul unui număr natural.
- ([z] și $\{z\}$ reprezintă partea întreagă, respectiv partea fracționară a numărului real z)

Soluție. a) Din $([x] + \{x\})^2 + 4 \cdot [x] = \{x\}^2$ se obține $[x]^2 + 2 \cdot [x] \cdot \{x\} + 4 \cdot [x] = 0$ (*).

Dacă x < 0, egalitatea (*) conduce la $\{x\} = -\frac{[x]^2 + 4 \cdot [x]}{2 \cdot [x]} = -\frac{[x] + 4}{2}$. Deoarece $\{x\} \in [0,1)$ ajungem la $[x] \in \{-5,-4\}$ și astfel se obțin soluțiile $x_1 = -\frac{9}{2}, x_2 = -4$, care verifică egalitatea din enunț.

Pentru $y \geq 2$, condiția din enunț conduce la $y^2 \in \mathbb{N}$, așadar $y = \sqrt{m}$, cu $m \in \mathbb{N}, m \geq 4$, de unde se ajunge la $m + 4 \cdot [\sqrt{m}] = p^2$, cu $p \in \mathbb{N}$.

Notând $k=[\sqrt{m}]$, rezultă $k\geq 2$ și $k^2\leq m<(k+1)^2$, adică $m+4k=p^2$. 1p

Aşadar p=k+2 şi $m=(k+2)^2-4k=k^2+4$. Se obţine astfel $y=\sqrt{k^2+4}, k\in\mathbb{N}, k\geq 2$, numere care verifică egalitatea din enunț.....1p

Problema 2. Se consideră un triunghi ABC cu $\angle BAC = 120^{\circ}$ și triunghiurile isoscele PAB și NAC astfel încât $\angle APB = \angle ANC = \angle BAC$,

dreapta AB să separe punctele P și C și dreapta AC să separe punctele N și B.

Arătați că, dacă G este centrul de greutate al triunghiului ABC, atunci $GP=GN=\frac{AB+AC}{3}.$

Fie $PF||AC, F \in AB$ și $NE||AB, E \in AC$. Avem $\not APF = \not NAC = \not FAP$, prin urmare triunghiul FAP este isoscel , cu FA = FP (1)

Dacă BB' este mediana din B a triunghiului ABC, cum G este centrul de greutate al triunghiului ABC, avem $\frac{BG}{GB'} = 2$ (4). Relațiile (3) și (4) conduc, conform reciprocei teoremei lui Thales, la FG||AC, deci punctele P, F si G sunt coliniare. Obtinem $\not \subset GPN = 30^{\circ} \dots 2p$

Problema 3. Pentru orice număr natural nenul n se consideră mulțimea $A = \{n^2, n^2 + 1, n^2 + 2, \dots, (n+1)^2\}.$

Determinați numerele $a,b,c \in A, a < b < c$, știind că b este media geometrică a numerelor a și c.

Problema 4. Se consideră un pătrat ABCD și punctele E pe latura CD, M pe diagonala AC și P pe latura BC, astfel încât $\not \subset BAE = \not \subset AMP$. Arătați că:

- a) Triunghiul AMP este isoscel.
- b) EM = DE + PB.

Soluţie. a) Notăm $\angle BAE = \angle AEM = \angle AMP = \alpha$.

Prelungim latura CE cu segmentul DQ = BP. Din congruența triunghiurilor ADQ și ABP (C.C.) rezultă $\not \sim QAD = \not \sim PAB = 2 \cdot \alpha - 135^\circ$. $\not \sim EAQ = \not \sim EAD + \not \sim DAQ = \alpha - 45^\circ$, adică $\not \sim EAQ = \not \sim EAM$ $\mathbf{1p}$ Mai mult, avem congruența triunghiurilor EAQ și EAM (U.L.U), de unde rezultă EM = EQ = ED + DQ = ED + BP. $\mathbf{1p}$