MAT1830 - Discrete Mathematics for Computer Science Tutorial Sheet #4 and Additional Practice Questions

Tutorial Questions

- 1. (a) Define a sequence of integers a_1, a_2, a_3, \ldots by $a_1 = 1, a_2 = 3$, and $a_t = a_{t-1} + a_{t-2}$ for each integer $t \geq 3$. (So the sequence goes $1, 3, 4, 7, 11, 18, \ldots$) How would you (informally) convince your friend Dwayne that every term in this sequence will be positive? How would you phrase this argument more formally.
 - (b) Prove by induction that 3 divides $n^3 7n + 6$ for all integers $n \ge 0$.
- 2. (a) Are the following true or false?

```
i. \mathbb{N} \subseteq \mathbb{Q}

ii. 2 \subseteq \mathbb{N}

iii. \{6,7\} \subseteq \mathbb{N}

iv. 3 \in \mathbb{Q}
```

v. $\{3\} \in \mathbb{Q}$

vi. $\mathbb{N} \subseteq \{x : x \in \mathbb{R}, x \ge 0\}$

vii. $\{\} \subseteq \mathbb{N}$

- (b) Let $S = \{-1, 0, 1\}$. What is $\mathcal{P}(S)$?
- (c) Let $T = \{1, 2, ..., 10\}$. How many elements would $\mathcal{P}(T)$ have? Which of the following would be elements of $\mathcal{P}(T)$?

```
i. \emptyset
ii. \{1,4,6\}
iii. 3
iv. \{2,4,12\}
v. \{1,2,\ldots,10\}
```

- 3. Let $A = \{1, 2\}$ and $B = \{-1, 0, 1\}$.
 - (a) What is $A \cup B$?
 - (b) What is $A \cap B$?
 - (c) What is $A \times B$?
 - (d) Is it true that, for any sets X, Y and Z, $(X \cup Y) \cap Z = X \cup (Y \cap Z)$? Why or why not?
 - (e) Is it true that, for any sets Y and Z, $\mathcal{P}(Y) \cap \mathcal{P}(Z) = \mathcal{P}(Y \cap Z)$? Why or why not?
- 4. (a) Scrooge McDuck has created his own currency, duckbucks, which has only \$4 and \$7 notes. Using induction prove that, for any $n \ge 18$, n duckbucks can be made from \$4 and \$7 notes.
 - (b) Dwayne doesn't understand induction but wants to be able to make change in duckbucks. Given your answer to (b), what (informal) instructions would you give him?

Practice Questions

1. Let U be some universal set and let P, Q and R be subsets of U. Let

$$S_1 = P \cup (\overline{Q \cap R})$$

$$S_2 = (P \cup (P \cap Q)) \cap \overline{R}.$$

- (a) Draw a Venn diagram to determine whether it is always the case that $S_1 = S_2$.
- (b) If this is not always the case, then does it ever happen? If so, when?
- (c) Let p, q and r be the propositions " $x \in P$ ", " $x \in Q$ " and " $x \in R$ ". Find formulas in logic which mean " $x \in S_1$ " and " $x \in S_2$ ". Find truth tables for these.
- (d) Do the truth tables contain the same information as you Venn diagrams? More? Less?
- 2. An L-tromino is like a domino, but made of three squares in the shape of an "L". Prove by induction that, for any n, if any one square is removed from a $2^n \times 2^n$ chess board, then the remaining squares can be completely covered by L-trominos.

(The following picture shows an example on a 4×4 board.)

Hint: A $2^{k+1} \times 2^{k+1}$ board can be split into four $2^k \times 2^k$ boards.

- 3. (a) How would you formally define intersections and unions of infinitely many sets?
 - (b) Can you find a collection of infinitely many sets of integers A_1, A_2, A_3, \ldots such that each set contains infinitely many integers, $A_{i+1} \subseteq A_i$ for $i = 1, 2, 3, \ldots$, and $A_1 \cap A_2 \cap A_3 \cap \cdots = \emptyset$?
- 4. As in 1(a) on the previous page, define a sequence of integers a_1, a_2, a_3, \ldots by $a_1 = 1, a_2 = 3$, and $a_{t+1} = a_t + a_{t-1}$ for each integer $t \geq 3$. Prove by strong induction that $a_n \leq (\frac{7}{4})^n$ for each integer $n \geq 1$.