- **1.** Define the region of operation for the 2N5457 JFET using the range of I DSS and V P provided. That is, sketch the transfer curve defined by the maximum I DSS and V P and the transfer curve for the minimum I DSS and V P. Then, shade in the resulting area between the two curves.
- **2.** For the 2N5457 JFET, what is the power rating at a typical operating temperature of 45°C using the 5.0 mW/°C derating factor.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Units	
V _{DS}	Drain-Source Voltage 25		V	
V_{DG}	Drain-Gate Voltage	25	V	
V_{GS}	Gate-Source Voltage	-25	V	
I_{GF}	Forward Gate Current 10		mA	
T_j, T_{stg}	Operating and Storage Junction Temperature Range	-33 to ±130		

THERMAL CHARACTERISTICS

Symbol	Characteristic	M	F1-14-	
	Characteristic	2N5457	•MMBF5457	Units
P _D	Total Device Dissipation Derate above 25°C	625 5.0	350 2.8	mW mW/°C
$R_{\theta JC}$	Thermal Resistance, Junction to Case	125		°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	357	556	°C/W

ELECTRICAL CHARACTERISTICS T_A = 25°C unless otherwise noted

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units	
OFF CHARACTERISTICS							
$V_{(BR)GSS}$	Gate-Source Breakdown Voltage	$I_G = 10 \mu A, V_{DS} = 0$	-25			v	
I _{GSS}	Gate Reverse Current	$V_{GS} = -15 \text{ V}, V_{DS} = 0$ $V_{GS} = -15 \text{ V}, V_{DS} = 0, T_A = 100 ^{\circ}\text{C}$			-1.0 -200	nA nA	
V _{GS(off)}	Gate-Source Cutoff Voltage	V _{DS} = 15 V, I _D = 10 nA 5457	-0.5		-6.0	v	
V _{GS}	Gate-Source Voltage	$V_{DS} = 15 \text{ V}, I_D = 100 \mu\text{A}$ 5457		-2.5		v	

ON CHARACTERISTICS

IDSS	Zero-Gate Voltage Drain Current	$V_{DS} = 15 \text{ V}, V_{GS} = 0$	5457	1.0	3.0	5.0	mA

SMALL SIGNAL CHARACTERISTICS

g _{fs}	Forward Transfer Conductance	$V_{DS} = 15 \text{ V}, V_{GS} = 0, f = 1.0 \text{ kHz} - 5457$	1000		5000	μ mhos
g _{os}	Output Conductance	$V_{DS} = 15 \text{ V}, V_{GS} = 0, f = 1.0 \text{ MHz}$		10	50	μ mhos
Ciss	Input Capacitance	$V_{DS} = 15 \text{ V}, V_{GS} = 0, f = 1.0 \text{ MHz}$		4.5	7.0	pF
Crss	Reverse Transfer Capacitance	$V_{DS} = 15 \text{ V}, V_{GS} = 0, f = 1.0 \text{ MHz}$		1.5	3.0	pF
NF	Noise Figure	$V_{DS} = 15 \text{ V}, V_{GS} = 0, f = 1.0 \text{ kHz},$			3.0	dB
		$R_G = 1.0$ megohm, $BW = 1.0$ Hz				

3. Define the region of operation for the JFET below, if $VDS_{max} = 30 \text{ V}$ and $PD_{max} = 100 \text{ mW}$.

4.

a. Given VGS(Th) = 4 V and ID(on) = 4 mA at VGS(on) = 6 V, determine k and write the general expression for I D in the format of

$$I_D = k(V_{GS} - V_T)^2$$

b. Sketch the transfer characteristics for the device of part (a).
c. Determine I D for the device of part (a) at VGS = 2, 5, and 10 V.

5. Given the transfer characteristics of Fig. 6.55 , determine $V \tau$ and k and write the general equation for ID.

- 6. For the network determine:

 - **a.** I D. **b.** V DS. **c.** V D. **d.** V S.

7. Determine the value of R s for the network to establish $V_D = 10 \text{ V}$.

- 8. For the combination network of, determine:
 a. V B and V G.
 b. V E.
 c. IE, IC, and I D.

 - d. IB.
 e. Vc, Vs, and VD.
 f. V CE.
 g. V DS.

