ESPACIOS VECTORIALES

 UN ESPACIO VECTORIAL ES UN CONJUNTO NO VACÍO V DE OBJETOS, LLAMADOS VECTORES, EN EL QUE SE HAN DEFINIDO DOS OPERACIONES: LA SUMA (ENTRE ELEMENTOS DE V) Y EL PRODUCTO POR UN ESCALAR (UN NUMERO REAL MULTIPLICADO POR UN ELEMENTO DE V) SUJETAS A LOS DIEZ AXIOMAS QUE SE DARAN A CONTINUACIÓN.

ES DECIR NECESITAMOS TENER :

- UN CONJUNTO **V** FORMADO POR : VECTORES, MATRICES, POLINOMIOS, FUNCIONES, ETC. PERO QUE SE LLAMAN VECTORES
- UNA OPERACIÓN ENTRE ESOS ELEMENTOS DE V, LLAMADA SUMA
- Y SE DEBEN VERIFICAR LOS SIGUIENTES AXIOMAS, CINCO REFERIDOS A LA SUMA (ENTRE ELEMENTOS DE V) Y LOS OTROS CINCO REFERIDAS AL PRODUCTO POR UN ESCALAR.

AXIOMAS:

- AX 1. SI $x, y \in V$, ENTONCES $x + y \in V$ (CERRADURA BAJO LA SUMA)
- AX 2. SI $x, y \in V$, ENTONCES x + y = y + x (LEY CONMUTATIVA)
- AX 3. SI $x, y, w \in V$, ENTONCES (x + y) + w = x + (y + w) (LEY ASOCIATIVA)
- AX 4. EXISTENCIA DEL ELEMENTO IDENTIDAD (NEUTRO)ADITIVO. $\exists \ e \in V$ TAL QUE PARA TODO $x \in V$, x + e = e + x = x
- AX 5. EXISTENCIA DEL INVERSO (OPUESTO) ADITIVO: $\forall x \in V$, $\exists (-x) \in V$ tal que x + (-x) = e
- AX 6. SI $x \in V$ Y $\alpha \in R$, $\alpha.x \in V$
- AX 7. SI $x, y \in V$ Y $\alpha \in R$, $\alpha \cdot (x + y) = \alpha \cdot x + \alpha \cdot y$
- AX 8. SI $x \in V \ Y \alpha, \beta \in R$, $(\alpha + \beta)$. $x = \alpha . x + \beta . x$
- AX 9. SI $x \in V \ Y \alpha, \beta \in R$, (α, β) . $x = \alpha \cdot (\beta, x)$
- AX 10. PARA CADA VECTOR $x \in V$, $1 \cdot x = x$

EJEMPLOS DE ESPACIOS VECTORIALES

- R^n
- R^{2x^2} , R^{3x^3}
- $R^{m \times n}$
- EL CONJUNTO DE LOS POLINOMIOS DE GRADO MENOR O IGUAL A n: P_n
- EL CONJUNTO DE TODAS LAS FUNCIONES CONTINUAS EN EL INTERVALOS [0,1]

SUBESPACIO VECTORIAL

SEA V UN ESPACIO VECTORIAL Y H UN SUBCONJUNTO NO VACIO DE V.
 H SE DENOMINA SUBESPACIO VECTORIAL DEL V, SI ES EN SI MISMO UN ESPACIO VECTORIAL
 CON LA MISMA OPERACIÓN SUMA Y PRODUCTO POR UN ESCALAR

H es subespacio de V si: $0 \in H$ $Si \times y \in H$ entonces $x + y \in H$ $Si \times R, x \in H$ entonces $x \in H$

EJEMPLO DE SUBESPACIO EN R^2

$$A = \{(x, y) \in R^2 \text{ tal que } y = 2x\}$$

$$T = \left\{ \begin{pmatrix} a & b & c \\ 0 & d & e \\ 0 & 0 & f \end{pmatrix} \ con \ a, b, c, d, e, f \in R \right\} es \ un \ subespacio \ de \ R^{3x3}$$

• $\{(x,y) \text{ tal que } x \ge 0\} \text{ NO } es \text{ subespacio } deR^2$

EN R^2 LOS SUBESPACIOS SON:

- R^2
- {(0,0)}
- LAS RECTAS QUE PASAN POR EL ORIGEN $\{(x,y) \in R^2 \text{ } tal \text{ } que \text{ } y=mx\}$

EN R^3 LOS SUBESPACIOS SON:

- R^3
- {(0,0,0)}
- LAS RECTAS QUE PASAN POR EL ORIGEN
- LOS PLANOS QUE PASAN POR EL ORIGEN

$$\{(x,y,z)\in R^3\ tal\ que\quad ax+by+cz=0\}$$

DEMOSTRACION:

- 1. $\vec{0} \in S$ ya que S es un subespacio, $\vec{0} \in H$ ya que H es un subespacio. Entonces $\vec{0} \in S \cap H$
- 2. Sean \vec{u} y \vec{v} tales que \vec{u} , $\vec{v} \in S \cap H$, $\vec{\iota}$ \vec{u} + $\vec{v} \in S \cap H$?

 $\vec{u} \in S \cap H \Rightarrow \vec{u} \in S \wedge \vec{u} \in H$ $\vec{v} \in S \cap H \Rightarrow \vec{v} \in S \wedge \vec{v} \in H$ Como $\vec{u} \in S \wedge \vec{v} \in S \wedge S$ es subespacio $\Rightarrow \vec{u} + \vec{v} \in S$ Como $\vec{u} \in H \wedge \vec{v} \in H \wedge H$ es subespacio $\Rightarrow \vec{u} + \vec{v} \in H$ Entonces $\vec{u} + \vec{v} \in S \cap H$

3. Sea $\alpha \in R, \vec{u} \in S \cap H, \ \exists \alpha. \vec{u} \in S \cap H?$ $\vec{u} \in S \cap H \implies \vec{u} \in S \wedge \vec{u} \in H$ $Como \ \vec{u} \in S \wedge S \ es \ subespacio \implies \alpha. \vec{u} \in S$ $Como \ \vec{u} \in H \wedge H \ es \ subespacio \implies \alpha. \vec{u} \in H$ $Entonces \quad \alpha. \vec{u} \in S \cap H$

CON RESPECTO A LA UNION, NO SIEMPRE ES UN SUBESPACIO

Sean S, H dos subespacios vectoriales, donde

$$S = \{(x, y) \in R^2 \text{ con } y = x \}$$

 $H = \{(x, y) \in R^2 \text{ con } y = -x \}$

La unión $S \cup H = \{(x, y) \in \mathbb{R}^2 \ con \ y = x \ \lor y = -x\}$ NO ES SUBESPACIO PUES:

Sea
$$\vec{u} = (1,1) \in S \cup H$$
, $\vec{v} = (1,-1) \in S \cup H$
 $\vec{u} + \vec{v} = (2,0) \notin S \cup H$

Como falla la condición (2), entonces $S \cup H$ NO ES UN SUBESPACIO VECTORIAL DE \mathbb{R}^2

VECTORES LINEALMENTE DEPENDIENTES EN V

- Cierto conjunto de vectores x₁, x₂, ..., x_k de un espacio vectorial V es linealmente
 DEPENDIENTE si alguno de ellos "depende" de los demás en el sentido en el que puede ser escrito como combinación lineal de los restantes.
- Por ejemplo en el caso de (3,1,-8) = (3).(1,2,-1) + (-5).(0,1,1) por lo tanto, el conjunto de vectores $\{(3,1,-8),(1,2,-1),(0,1,1)\}$ es linealmente dependiente.
- Usaremos la siguiente definición:

El conjunto de vectores $x_1, x_2,, x_k$ de un espacio vectorial V se dice que es linealmente DEPENDIENTE si existen escalares $a_1, a_2,, a_k$ NO TODOS NULOS tal que

 $a_1x_1 + a_2x_2 + \dots + a_kx_k = 0$ (siendo 0 elemento neutro en V)

En otro caso, los vectores se dicen linealmente INDEPENDIENTES

 En el caso de que los vectores sean linealmente independientes, "la combinación del neutro"

$$a_1x_1 + a_2x_2 + \dots + a_kx_k = 0$$
 se da solo cuando todos los escalares $a_i = 0$.

- En la practica, procederemos de este modo:
 - 1) Planteamos la combinación lineal de neutro aditivo:

$$a_1x_1 + a_2x_2 + \dots + a_kx_k = 0$$

2) Esto nos lleva a un sistema de ecuaciones homogéneo, de incógnitas $\alpha_1, \alpha_2, \dots, \alpha_k$. Si admite solución trivial, es decir todos los $\alpha_i = 0$, los vectores son linealmente independientes.

En otro caso, los vectores son linealmente dependientes

¿EL CONJUNTO $\{(1,2,5), (1,5,14), (2,1,1)\}$ ES LINEALMENTE DEPENDIENTE O INDEPENDIENTE EN EL ESPACIO R^3 ?

1. Planteo la combinación lineal del vector nulo

$$(0,0,0) = \alpha. (1,2,5) + \beta. (1,5,14) + \gamma. (2,1,1)$$

2. Esto nos lleva al sistema:

$$\begin{pmatrix} 1 & 1 & 2 & 0 \\ 2 & 5 & 1 & 0 \\ 5 & 14 & 1 & 0 \end{pmatrix} \approx \begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 3 & -3 & 0 \\ 0 & 9 & -9 & 0 \end{pmatrix} \approx \begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 3 & -3 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

- 3. El sistema tiene infinitas soluciones
- 4. Por lo tanto el conjunto $\{(1,2,5), (1,5,14), (2,1,1)\}$ es linealmente dependiente

¿EL CONJUNTO $\{x^2 + x - 1, 2x + 1, x^2 + 2\}$ ES LINEALMENTE DEPENDIENTE O INDEPENDIENTE EN EL ESPACIO P_2 ?

1. Combinación lineal del elemento neutro en P_2

$$0x^2 + 0x + 0 = \alpha.(x^2 + x - 1) + \beta.(2x + 1) + \gamma.(x^2 + 2)$$

$$0x^{2}+0x+0 = (\alpha + \gamma).x^{2} + (\alpha + 2\beta).x + (-\alpha + \beta + 2\gamma)$$

2. De lo cual es sistema homogéneo es: $\begin{cases} \alpha+\gamma=0\\ \alpha+2\beta=0\\ -\alpha+\beta+2\gamma=0 \end{cases}$

$$\begin{pmatrix} 1 & 0 & 1 & 0 \\ 1 & 2 & 0 & 0 \\ -1 & 1 & 2 & 0 \end{pmatrix} \approx \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 2 & -1 & 0 \\ 0 & 1 & 3 & 0 \end{pmatrix} \approx \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 2 & -1 & 0 \\ 0 & 0 & 7 & 0 \end{pmatrix}$$

- 3. El sistema tiene solución **trivial** ($\alpha = 0$, $\beta = 0$, $\gamma = 0$)
- 4. Por lo tanto el conjunto $\{x^2 + x 1, 2x + 1, x^2 + 2\}$ es linealmente independiente