Mathématiques pour physiciens : TD n°2

Fonctions analytiques et variables complexes

Emmanuel Baudin & Francesco Zamponi

1 Application des formules de Cauchy-Riemann

Soit f(z) une fonction analytique dans un domaine du plan complexe. On notera z = x + iy et f(z) = u(x, y) + i v(x, y) avec u, v les parties réelles et imaginaires de f.

- 1. On considère un point $z_0 = x_0 + \mathrm{i} y_0$ tel que $f'(z_0) \neq 0$. Montrer que les lignes $u(x,y) = u(x_0,y_0)$ et $v(x,y) = v(x_0,y_0)$ s'intersectent à angle droit en (x_0,y_0) . On suppose maintenant que $f'(z_0) = 0$ et $f''(z_0) \neq 0$. Quelle est l'allure de la surface u(x,y) au voisinage de (x_0,y_0) ?
- 2. Déterminer f(z) sachant que f(0) = 0 et :
 - a) $u(x,y) = e^x[(x^2 y^2)\cos y 2xy\sin y]$;
 - b) $v(x, y) = 3x^2y y^3$;
 - c) $v(x,y) = \frac{y}{(x-1)^2 + y^2}$.
- 3. Quelles sont les conditions sur les nombres réels a, b, c, d pour que la fonction p(x, y) = f(ax + by, cx + dy) soit holomorphe?

2 Dérivabilités au sens de \mathbb{R}^2 et de \mathbb{C}

- 1. Pour une fonction F(x,y) = f(z) (avec z = x + iy), y a-t-il équivalence entre la dérivabilité de F par rapport à x et y, et celle de f au sens complexe?
- 2. On introduit les opérateurs différentiels

$$\partial = \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right)$$
 et $\bar{\partial} = \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right)$

agissant sur les fonctions C^1 de deux variables réelles à valeurs complexes. Calculer ∂z , $\partial \bar{z}$, $\bar{\partial} z$ ainsi que $\bar{\partial} \bar{z}$.

3. Si f est holomorphe, montrer que

$$f'(z) = \frac{\partial F}{\partial x}(x, y) = \frac{1}{i} \frac{\partial F}{\partial y}(x, y),$$

où $z=x+\mathrm{i}y.$ Récrire les conditions d'analyticité de Cauchy-Riemann et calculer ∂F et $\bar{\partial} F.$

4. Calculer $\partial \bar{\partial}$. Montrer que si f est holomorphe, alors

$$\triangle(|f|^2) = 4 \left| \frac{\partial f}{\partial z} \right|^2.$$

3 Exemple d'une frontière essentielle

Soit $f(z) \stackrel{\text{def}}{=} \sum_{n=1}^{\infty} z^{2^n}$. Montrer qu'elle converge dans le disque |z| < 1 et qu'elle a une singularité en z = 1. Montrer que f satisfait les relations fonctionnelles $f(z) = z^2 + f(z^2)$, et plus généralement $f(z) = z^2 + z^4 + z^8 + \cdots + z^{2^p} + f(z^{2^p})$ pour tout p entier. En déduire que f a aussi des singularités en toute racine 2^p -ième de l'unité.

Singularités 4

Déterminer en quels points les fonctions suivantes ne sont pas holomorphes sur le plan complexe.

- a) $f(z) = \frac{1+z}{1-z}$ b) $g(z) = \frac{z}{i+z}$ c) $h(z) = \frac{3z^2-2}{z^2+2z+5}$ d) $l(z) = \exp 1/z$

Exercices maison 5

- 1. Soit f(z) = u(x,y) + iv(x,y) une fonction analytique. Trouver la partie imaginaire v(x,y)sachant que:
 - a) $u(x,y) = x^3 + 3x(1-y^2)$;
 - b) $u(x, y) = \cos y \cosh x$;
 - c) $u(x, y) = e^{-x}[(1+x)\cos y + y\sin y]$.
- 2. Trouver les singularités sur le plan complexe de fonctions suivantes et discuter leurs natures.
 - a) $f(z) = \frac{z^2 \pi^2}{\sin z}$ b) $g(z) = \frac{3z^2 + 4}{z^2 16}$ c) $h(z) = \cot z$

 - c) $l(z) = \frac{\sin z z}{z \sin z}$