1. 设
$$\mathbf{A} = \begin{pmatrix} 1 & -2 & 2 \\ -2 & -2 & 4 \\ 2 & 4 & -2 \end{pmatrix}$$
. 求矩阵 \mathbf{P} 使得 $\mathbf{P}^{-1}\mathbf{AP}$ 为对角矩阵.

2. 设矩阵
$$\mathbf{A} = \begin{pmatrix} -2 & 0 & 0 \\ 2 & x & 2 \\ 3 & 1 & 1 \end{pmatrix}$$
 与 $\mathbf{B} = \begin{pmatrix} -1 & & \\ & 2 & \\ & & y \end{pmatrix}$ 相似, (1) 求 x, y 的值. (2) 求可逆

矩阵 P 使得 $P^{-1}AP = B$

3. 设
$$A = \begin{pmatrix} 1 & -1 & 0 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & -1 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix}$$
, 试将 \boldsymbol{A}^{-1} 表示为 \boldsymbol{A} 的三次多项式.

- 4. 设 n 阶复方阵 \boldsymbol{A} , \boldsymbol{B} 满足 $\boldsymbol{A} + \boldsymbol{B} = \boldsymbol{A}\boldsymbol{B}$, 求证: \boldsymbol{A} 的特征值 $\lambda_1, \dots, \lambda_n$ 和 \boldsymbol{B} 的特征值 μ_1, \dots, μ_n 经过适当的排序后,可满足 $\lambda_i + \mu_i = \lambda_i \mu_i (1 \le i \le n)$. 特别地, \boldsymbol{A} 是幂零阵当且仅 当 \boldsymbol{B} 是幂零阵.
- 5. 设 A, B, AB 都是 n 阶实对称阵, 证明: 若 s 是 AB 的一个特征值, 则存在 A 的特征值 λ_0 和 B 的特征值 μ_0 , 使得 $s = \lambda_0 \mu_0$.
 - 6. 设 S 是某些 n 阶方阵构成的集合, 满足如下条件:
 - (1) $\boldsymbol{I}_n \in S$;
 - (2) 若 $\boldsymbol{A}, \boldsymbol{B} \in S$, 则 $\boldsymbol{AB} \in S$;
 - (3) 对任意的 $\mathbf{A}, \mathbf{B} \in S, (\mathbf{AB})^3 = \mathbf{BA}$ 成立.

证明: S 中的矩阵可以同时对角化, 并且 S 是有限集合.

- 7. (1) 若 n 阶实矩阵 \boldsymbol{A} 满足 $\boldsymbol{A}'\boldsymbol{A}=\boldsymbol{I_n}$, 则称为正交阵. 证明正交阵的特征值是模长等于 1 的复数.
 - (2) 设 A 是 3 阶正交阵且 |A| = 1, 求证: 存在实数 $t \in [-1,3]$, 使得

$$\boldsymbol{A}^3 - t\boldsymbol{A}^2 + t\boldsymbol{A} - \boldsymbol{I}_3 = \boldsymbol{O}.$$

- 8. 设 A 为 n 阶方阵, 证明: 若下列条件之一成立, 则矩阵方程 AX + XA = X 只有零解:
- (1) \boldsymbol{A} 为幂零阵, 即存在正整数 m, 使得 $\boldsymbol{A}^m = \boldsymbol{O}$;
- (2) **A** 的所有元素都为 1;
- (3) A 的特征值全为偶数;
- 9. 设 n 阶方阵 \boldsymbol{A} 适合多项式 $f(x) = a_m x^m + a_{m-1} x^{m-1} + \cdots + a_1 x + a_0$, 其中 $|a_m| > \sum_{i=0}^{m-1} |a_i|$. 证明: 矩阵方程 $2\boldsymbol{X} + \boldsymbol{A}\boldsymbol{X} = \boldsymbol{X}\boldsymbol{A}^2$ 只有零解.
- 10. 设 n 阶实方阵 $\boldsymbol{A}, \boldsymbol{B}$ 满足: $\boldsymbol{A}, \boldsymbol{B}$ 的特征值都大于零, 且 $\boldsymbol{A}^4 + 2\boldsymbol{A}^3\boldsymbol{B} = 2\boldsymbol{A}\boldsymbol{B}^3 + \boldsymbol{B}^4$, 证明: $\boldsymbol{A} = \boldsymbol{B}$.