1 Syntax

```
:= \overline{cls} \ \overline{s}
program
cls
                                         ::= class \ C \ \{\overline{field} \ \overline{method}\}
                                         ::=T f;
field
                                         ::= T \ m(T \ x) \ contract \ \{\overline{s}\}
method
contract
                                         ::= requires \phi; ensures \phi;
T
                                         ::= int \mid C
                                         ::=x.f:=y; \mid x:=e; \mid x:=\text{new } C; \mid x:=y.m(z);
s
                                         | return x; | assert \phi; | release \phi; | T x;
                                         ::= true \mid e=e \mid e \neq e \mid acc(e.f) \mid x:T \mid \phi * \phi
φ
                                         := v \mid x \mid e.f
                                         := this | result | \langle other \rangle
\boldsymbol{x}
                                         := o \mid n \mid \mathtt{null}
                                         \in \mathbb{Z}
                                         \in \ (o \rightharpoonup (C, \overline{(f \rightharpoonup v)}))
H
                                         \in (x \rightharpoonup v)
ρ
                                         := \overline{(e,f)}
A_s
                                         := \overline{(o, f)}
A_d
                                         ::= (\rho, A_d, \overline{s}) \cdot S \mid nil
S
```

2 Assumptions

All the rules in the following sections are implicitly parameterized over a programp that is well-formed.

2.0.1 Well-formed program (program OK)

$$\frac{\overline{cls_i \ \mathtt{OK}}}{(\overline{cls_i} \ \overline{s}) \ \mathtt{OKPROGRAM}}$$

2.0.2 Well-formed class (cls OK)

$$\frac{\text{unique } field\text{-names} \quad \text{unique } method\text{-names} \quad \overline{method_i \text{ OK in } C}}{(\text{class } C \text{ } \{\overline{field_i} \text{ } \overline{method_i}\}) \text{ OK}} \text{ OKCLASS}$$

2.0.3 Well-formed method (method OK in C)

$$FV(\phi_1) \subseteq \{x, \texttt{this}\}$$

$$FV(\phi_2) \subseteq \{x, \texttt{this}, \texttt{result}\} \quad \vdash \{x : T_x * \texttt{this} : C * \phi_1\} \overline{s} \{x : T_x * \texttt{this} : C * \texttt{result} : T_m * \phi_2\}$$

$$\frac{\emptyset \vdash_{\texttt{sfrm}} \phi_1 \quad \emptyset \vdash_{\texttt{sfrm}} \phi_2 \quad \neg writesTo(s_i, x)}{(T_m \ m(T_x \ x) \ \texttt{requires} \ \phi_1; \ \texttt{ensures} \ \phi_2; \ \{\overline{s}\}) \ \texttt{OK} \ \texttt{in} \ C}$$
 OKMETHOD

3 Static semantics

3.1 Expressions $(A_s \vdash_{\mathtt{sfrm}} e)$

$$\frac{}{A \vdash_{\mathtt{sfrm}} x} \mathsf{WFVAR}$$

$$\frac{}{A \vdash_{\mathtt{sfrm}} v} \mathsf{WFVALUE}$$

$$\frac{(e,f) \in A \qquad A \vdash_{\mathtt{sfrm}} e}{A \vdash_{\mathtt{sfrm}} e.f} \text{ WFFIELD}$$

3.2 Formulas $(A_s \vdash_{\mathtt{sfrm}} \phi)$

$$\overline{A \vdash_{\mathtt{sfrm}} \mathtt{true}} \ \mathrm{WFTRUE}$$

$$\frac{A \vdash_{\mathtt{sfrm}} e_1 \qquad A \vdash_{\mathtt{sfrm}} e_2}{A \vdash_{\mathtt{sfrm}} (e_1 = e_2)} \text{ WFEQUAL}$$

$$\frac{A \vdash_{\mathtt{sfrm}} e_1 \quad A \vdash_{\mathtt{sfrm}} e_2}{A \vdash_{\mathtt{sfrm}} (e_1 \neq e_2)} \text{ WFNEQUAL}$$

$$\frac{A \vdash_{\mathtt{sfrm}} e}{A \vdash_{\mathtt{sfrm}} \mathtt{acc}(e.f)} \text{ WFAcc}$$

$$\overline{A \vdash_{\mathtt{sfrm}} (x:T)} \ \mathrm{WFTYPE}$$

$$\frac{A_s \vdash_{\mathtt{sfrm}} \phi_1 \qquad A_s \cup \lfloor \phi_1 \rfloor \vdash_{\mathtt{sfrm}} \phi_2}{A_s \vdash_{\mathtt{sfrm}} \phi_1 * \phi_2} \text{ WFSepOp}$$

3.2.1 Implication $(\phi_1 \Longrightarrow \phi_2)$

Conservative approx. of $\phi_1 \implies \phi_2$.

3.3 Footprint $(\lfloor \phi \rfloor = A_s)$

$$\begin{array}{ll} \lfloor \mathsf{true} \rfloor & = \emptyset \\ \lfloor e_1 = e_2 \rfloor & = \emptyset \\ \lfloor e_1 \neq e_2 \rfloor & = \emptyset \\ \lfloor \mathsf{acc}(e.f) \rfloor & = \{(e,f)\} \\ \vert \phi_1 * \phi_2 \vert & = \vert \phi_1 \vert \cup \vert \phi_2 \vert \end{aligned}$$

3.4 Type $(\phi \vdash e : T)$

$$\frac{}{\phi \vdash n : \mathtt{int}} \; \mathrm{STVALNUM}$$

$$\frac{}{\phi \vdash \mathtt{null} : T} \text{ STVALNULL}$$

$$\frac{\phi \implies (x:T)}{\phi \vdash x:T} \text{ STVAR}$$

$$\frac{\phi \vdash e : C \qquad \vdash C.f : T}{\phi \vdash e.f : T} \text{ STFIELD}$$

3.5 Hoare ($\vdash \{\phi\}\overline{s}\{\phi\}$)

$$\frac{\vdash \{\phi_p\}s_1\{\phi_{q1}\} \qquad \phi_{q1} \implies \phi_{q2} \qquad \emptyset \vdash_{\mathtt{sfrm}} \phi_{q2} \qquad \vdash \{\phi_{q2}\}s_2\{\phi_r\}}{\vdash \{\phi_p\}s_1; s_2\{\phi_r\}} \text{ HSec}$$

$$\frac{\phi \implies \phi' \quad \emptyset \vdash_{\mathtt{sfrm}} \phi' \quad x \not\in FV(\phi') \quad \phi \vdash x : C \quad \mathtt{fields}(C) = \overline{f}}{\vdash \{\phi\}x := \mathsf{new} \ C\{\overline{\mathtt{acc}(x,f_i)} * x : C * (x \neq \mathtt{null}) * \phi'\}} \ \mathrm{HNewOBJ}$$

$$\frac{\phi \implies \operatorname{acc}(x.f) * (x \neq \operatorname{null}) * \phi' \qquad \emptyset \vdash_{\operatorname{sfrm}} \phi' \qquad \phi \vdash x : C \qquad \phi \vdash y : T \qquad \vdash C.f : T}{\vdash \{\phi\} x.f := y\{x : C * \operatorname{acc}(x.f) * (x \neq \operatorname{null}) * (x.f = y) * \phi'\}} \text{ HFIELDASSIGN}$$

$$\frac{\phi \implies \phi' \qquad \emptyset \vdash_{\mathtt{sfrm}} \phi' \qquad x \not \in FV(\phi') \qquad x \not \in FVe(e) \qquad \phi \vdash x : T \qquad \phi \vdash e : T \qquad \lfloor \phi' \rfloor \vdash_{\mathtt{sfrm}} e}{\vdash \{\phi\}x := e\{\phi' * (x = e)\}} \text{ HVarAssign}$$

$$\frac{\phi \implies \phi' \qquad \emptyset \vdash_{\mathtt{sfrm}} \phi' \qquad \mathtt{result} \not\in FV(\phi') \qquad \phi \vdash x : T \qquad \phi \vdash \mathtt{result} : T}{\vdash \{\phi\}\mathtt{return} \ x\{\mathtt{result} : T * (\mathtt{result} = x) * \phi'\}} \ \mathrm{HRETURN}$$

$$\frac{\phi_1 \implies \phi_2}{\vdash \{\phi_1\} \text{assert } \phi_2 \{\phi_1\}} \text{ HASSERT}$$

$$\frac{\phi_1 \implies \phi_2 * \phi_r \qquad \emptyset \vdash_{\mathtt{sfrm}} \phi_r}{\vdash \{\phi_1\}\mathtt{release} \ \phi_2 \{\phi_r\}} \ \mathrm{HRELEASE}$$

$$\frac{\phi \implies \phi' \quad \emptyset \vdash_{\mathtt{sfrm}} \phi' \quad x \not\in FV(\phi')}{\vdash \{\phi\}T \ x\{x: T*(x = \mathtt{defaultValue}(T))*\phi'\}} \ \mathrm{HDECLARE}$$

3.5.1 Hoare revisited - pre-grad minification

$$\frac{\vdash \{\phi_p\}s_1\{\phi_{q1}\} \qquad \phi_{q1} \implies \phi_{q2} \qquad \emptyset \vdash_{\mathtt{sfrm}} \phi_{q2} \qquad \vdash \{\phi_{q2}\}s_2\{\phi_r\}}{\vdash \{\phi_p\}s_1; s_2\{\phi_r\}} \text{ HSec}$$

$$\frac{x \not\in FV(\phi) \qquad \mathtt{fields}(C) = \overline{f}}{\vdash \{(x:C) * \phi\}x := \mathtt{new} \ C\{\overline{\mathtt{acc}(x,f_i)} * (x:C) * (x \neq \mathtt{null}) * \phi\}} \ \mathsf{HNewObj}}$$

$$\frac{\vdash C.f:T}{\vdash \{(x:C)*(y:T)*\phi*\mathtt{acc}(x.f)\}x.f:=y\{(x:C)*\mathtt{acc}(x.f)*(x.f=y)*\phi\}} \text{ HFIELDASSIGN}$$

$$\frac{x \not\in FV(\phi) \qquad x \not\in FV(e) \qquad [e:T]_{T'}}{\vdash \{(x:T) * \llbracket e:T \rrbracket_{T'} * \phi\} x := e\{\llbracket e:T \rrbracket_{T'} * \phi * (x=e)\}} \text{ HVarAssign}$$

$$\frac{\texttt{result} \not\in FV(\phi)}{\vdash \{(x:T)*(\texttt{result}:T)*\phi\} \texttt{return} \ x\{(\texttt{result}:T)*(\texttt{result}=x)*\phi\}} \ \text{HReturn}$$

$$\frac{\texttt{mmethod}(C,m) = T_r \ m(T_p \ z) \ \texttt{requires} \ \phi_{pre}; \ \texttt{ensures} \ \phi_{post}; \ \{_\} \qquad x \not\in FV(\phi_r) \qquad x \neq y \land x \neq z'}{\vdash \{(x:T_r)*(y:C)*(z':T_p)*\phi_r*(y \neq \texttt{null})*\phi_{pre}[y,z'/\texttt{this},z]\}x := y.m(z')\{\phi_r*\phi_{post}[y,z',x/\texttt{this},z,\texttt{result}]\}} \ \texttt{Instance}(x,x) + (x,y) + (x,y)$$

$$\frac{\phi \implies \phi'}{\vdash \{\phi\} \text{assert } \phi'\{\phi\}} \text{ HASSERT}$$

$$\frac{}{\vdash \{\phi * \phi'\} \mathtt{release} \ \phi' \{\phi\}} \ \mathsf{HRelease}$$

$$\frac{x \not\in FV(\phi)}{\vdash \{\phi\}T \ x\{(x:T)*(x=\mathtt{defaultValue}(T))*\phi\}} \ \mathtt{HDeclare}$$

3.5.2 Hoare revisited - pre-grad minification with simple HSec

$$\frac{\vdash \{\phi_p\}s_1\{\phi_q\} \qquad \vdash \{\phi_q\}s_2\{\phi_r\}}{\vdash \{\phi_p\}s_1; s_2\{\phi_r\}} \text{ HSec}$$

(other rules not printed here: think of previous subsection, but with self-framed implication on every precondition)

4 Dynamic semantics

4.1 Expressions $(H, \rho \vdash e \Downarrow v)$

$$\overline{H, \rho \vdash x \Downarrow \rho(x)}$$
 EEVAR

$$\frac{}{H, \rho \vdash v \Downarrow v}$$
 EEVALUE

$$\frac{H, \rho \vdash e \Downarrow o}{H, \rho \vdash e.f \Downarrow H(o)(f)} \; \text{EEAcc}$$

4.2 Formulas $(H, \rho, A \vDash \phi)$

$$\overline{H, \rho, A \vDash \mathtt{true}}$$
 EATRUE

$$\frac{H, \rho \vdash e_1 \Downarrow v_1 \qquad H, \rho \vdash e_2 \Downarrow v_2 \qquad v_1 = v_2}{H, \rho, A \vDash (e_1 = e_2)} \text{ EAEQUAL}$$

$$\frac{H, \rho \vdash e_1 \Downarrow v_1 \qquad H, \rho \vdash e_2 \Downarrow v_2 \qquad v_1 \neq v_2}{H, \rho, A \vDash (e_1 \neq e_2)} \text{ EANEQUAL}$$

$$\frac{H, \rho \vdash e \Downarrow o \quad (o, f) \in A}{H, \rho, A \vDash \mathsf{acc}(e.f)} \text{ EAAcc}$$

$$\frac{\rho(x) = v \qquad H \vdash v : T}{H, \rho, A \vDash (x : T)} \text{ EATYPE}$$

$$\frac{A_1 = A \backslash A_2 \qquad H, \rho, A_1 \vDash \phi_1 \qquad H, \rho, A_2 \vDash \phi_2}{H, \rho, A \vDash \phi_1 * \phi_2} \text{ EASEPOP}$$

We give a denotational semantics of formulas as $\llbracket \phi \rrbracket = \{ (H, \rho, A) \mid H, \rho, A \vDash \phi \}$ Note: ϕ satisfiable $\iff \llbracket \phi \rrbracket \neq \emptyset$

4.2.1 Implication $(\phi_1 \implies \phi_2)$

$$\phi_1 \implies \phi_2 \qquad \iff \qquad \forall H, \rho, A : H, \rho, A \vDash \phi_1 \implies H, \rho, A \vDash \phi_2$$

Drawn from def. of entailment in "A Formal Semantics for Isorecursive and Equirecursive State Abstractions".

4.3 Footprint $(\lfloor \phi \rfloor_{H,\rho} = A_d)$

$$\begin{array}{lll} \lfloor \mathtt{true} \rfloor_{H,\rho} & = \emptyset \\ \lfloor e_1 = e_2 \rfloor_{H,\rho} & = \emptyset \\ \lfloor e_1 \neq e_2 \rfloor_{H,\rho} & = \emptyset \\ \lfloor \mathtt{acc}(x.f) \rfloor_{H,\rho} & = \{(o,f)\} \text{ where } H, \rho \vdash x \Downarrow o \\ \lfloor \phi_1 * \phi_2 \rfloor_{H,\rho} & = \lfloor \phi_1 \rfloor_{H,\rho} \cup \lfloor \phi_2 \rfloor_{H,\rho} \end{array}$$

4.4 Small-step $((H,S) \rightarrow (H,S))$

$$\frac{H,\rho \vdash x \Downarrow o \quad H,\rho \vdash y \Downarrow v_y \quad (o,f) \in A \quad H' = H[o \mapsto [f \mapsto v_y]]}{(H,(\rho,A,x.f := y; \overline{s}) \cdot S) \to (H',(\rho,A,\overline{s}) \cdot S)} \text{ ESFIELDASSIGN}$$

$$\frac{H, \rho \vdash e \Downarrow v \qquad \rho' = \rho[x \mapsto v]}{(H, (\rho, A, x := e; \overline{s}) \cdot S) \to (H, (\rho', A, \overline{s}) \cdot S)} \text{ ESVARASSIGN}$$

$$\frac{\text{fields}(C) = \overline{T} \ \overline{f} \qquad \rho' = \rho[x \mapsto o] \qquad A' = A * \overline{(o, f_i)} \qquad H' = H[o \mapsto [\overline{f} \mapsto \text{defaultValue}(\overline{T})]]}{(H, (\rho, A, x := \text{new } C; \overline{s}) \cdot S) \rightarrow (H', (\rho', A', \overline{s}) \cdot S)} \\ \text{ESNewObstantial} = \frac{(H, (\rho, A, x := \text{new } C; \overline{s}) \cdot S) \rightarrow (H', (\rho', A', \overline{s}) \cdot S)}{(H, (\rho, A, x := \text{new } C; \overline{s}) \cdot S)} \\ \text{ESNewObstantial} = \frac{(H, (\rho, A, x := \text{new } C; \overline{s}) \cdot S) \rightarrow (H', (\rho', A', \overline{s}) \cdot S)}{(H, (\rho, A, x := \text{new } C; \overline{s}) \cdot S)} \\ \text{ESNewObstantial} = \frac{(H, (\rho, A, x := \text{new } C; \overline{s}) \cdot S) \rightarrow (H', (\rho', A', \overline{s}) \cdot S)}{(H, (\rho, A, x := \text{new } C; \overline{s}) \cdot S)} \\ \text{ESNewObstantial} = \frac{(H, (\rho, A, x := \text{new } C; \overline{s}) \cdot S) \rightarrow (H', (\rho', A', \overline{s}) \cdot S)}{(H, (\rho, A, x := \text{new } C; \overline{s}) \cdot S)} \\ \text{ESNewObstantial} = \frac{(H, (\rho, A, x := \text{new } C; \overline{s}) \cdot S) \rightarrow (H', (\rho', A', \overline{s}) \cdot S)}{(H, (\rho, A, x := \text{new } C; \overline{s}) \cdot S)} \\ \text{ESNewObstantial} = \frac{(H, (\rho, A, x := \text{new } C; \overline{s}) \cdot S)}{(H, (\rho, A, x := \text{new } C; \overline{s}) \cdot S)} \\ \text{ESNewObstantial} = \frac{(H, (\rho, A, x := \text{new } C; \overline{s}) \cdot S)}{(H, (\rho, A, x := \text{new } C; \overline{s}) \cdot S)} \\ \text{ESNewObstantial} = \frac{(H, (\rho, A, x := \text{new } C; \overline{s}) \cdot S)}{(H, (\rho, A, x := \text{new } C; \overline{s}) \cdot S)} \\ \text{ESNewObstantial} = \frac{(H, (\rho, A, x := \text{new } C; \overline{s}) \cdot S)}{(H, (\rho, A, x := \text{new } C; \overline{s})} \\ \text{ESNewObstantial} = \frac{(H, (\rho, A, x := \text{new } C; \overline{s}) \cdot S)}{(H, (\rho, A, x := \text{new } C; \overline{s}) \cdot S)} \\ \text{ESNewObstantial} = \frac{(H, (\rho, A, x := \text{new } C; \overline{s}) \cdot S)}{(H, (\rho, A, x := \text{new } C; \overline{s})} \\ \text{ESNewObstantial} = \frac{(H, (\rho, A, x := \text{new } C; \overline{s}) \cdot S)}{(H, (\rho, A, x := \text{new } C; \overline{s})} \\ \text{ESNewObstantial} = \frac{(H, (\rho, A, x := \text{new } C; \overline{s}) \cdot S)}{(H, (\rho, A, x := \text{new } C; \overline{s})} \\ \text{ESNewObstantial} = \frac{(H, (\rho, A, x := \text{new } C; \overline{s}) \cdot S)}{(H, (\rho, A, x := \text{new } C; \overline{s})} \\ \text{ESNewObstantial} = \frac{(H, (\rho, A, x := \text{new } C; \overline{s}) \cdot S)}{(H, (\rho, A, x := \text{new } C; \overline{s})}$$

$$\frac{H, \rho \vdash x \Downarrow v_x \qquad \rho' = \rho[\mathtt{result} \mapsto v_x]}{(H, (\rho, A, \mathtt{return} \ x; \overline{s}) \cdot S) \to (H, (\rho', A, \overline{s}) \cdot S)} \text{ ESRETURN}$$

$$H, \rho \vdash y \Downarrow o$$

$$H, \rho \vdash z \Downarrow v \quad H(o) = (C, _) \quad \texttt{mmethod}(C, m) = T_r \ m(T \ w) \ \texttt{requires} \ \phi; \ \texttt{ensures} \ _; \ \{\overline{r}\}$$

$$\frac{\rho' = [\texttt{result} \mapsto \texttt{defaultValue}(T_r), \texttt{this} \mapsto o, w \mapsto v] \quad H, \rho', A \vDash \phi \quad A' = \lfloor \phi \rfloor_{H, \rho'}}{(H, (\rho, A, x := y.m(z); \overline{s}) \cdot S) \rightarrow (H, (\rho', A', \overline{r}) \cdot (\rho, A \setminus A', x := y.m(z); \overline{s}) \cdot S)} \ \texttt{ESAPP}$$

$$\frac{H(o) = (C, \underline{\hspace{0.5cm}}) \quad \text{mpost}(C, m) = \phi \quad H, \rho', A' \vDash \phi \quad A'' = \lfloor \phi \rfloor_{H, \rho'} \quad H, \rho' \vdash \text{result} \Downarrow v_r}{(H, (\rho', A', \emptyset) \cdot (\rho, A, x := y.m(z); \overline{s}) \cdot S) \rightarrow (H, (\rho[x \mapsto v_r], A * A'', \overline{s}) \cdot S)} \quad \text{ESAPPFINISH}$$

$$\frac{H, \rho, A \vDash \phi}{(H, (\rho, A, \mathtt{assert} \ \phi; \overline{s}) \cdot S) \to (H, (\rho, A, \overline{s}) \cdot S)} \ \mathtt{ESASSERT}$$

$$\frac{H, \rho, A \vDash \phi \qquad A' = A \setminus \lfloor \phi \rfloor_{H, \rho}}{(H, (\rho, A, \mathtt{release} \ \phi; \overline{s}) \cdot S) \to (H, (\rho, A', \overline{s}) \cdot S)} \text{ ESRelease}$$

$$\frac{\rho' = \rho[x \mapsto \mathtt{defaultValue}(T)]}{(H, (\rho, A, T \ x; \overline{s}) \cdot S) \to (H, (\rho', A, \overline{s}) \cdot S)} \text{ ESDECLARE}$$

5 Gradualization

5.1 Syntax

5.1.1 Gradual formula

$$\widetilde{\phi} \quad ::= \quad \phi \mid ? \, * \, \phi$$

Note: consider? in other positions as "self-framing delimiter", but with semantically identical meaning. As long as? is only legal in the front though: $\phi_1 * \widetilde{\phi_2}$ propagates the? to the very left in case $\widetilde{\phi_2}$ contains one.

5.1.2 Type judgment expansion

Motivation: Materialize and combine the requirements on ϕ . Designed so that

$$\begin{array}{cccc} \phi \vdash e : T & \wedge & \lfloor \phi \rfloor \vdash_{\mathtt{sfrm}} e \\ & & \Longleftrightarrow \\ [e : T]_C & \wedge & \phi \implies \llbracket e : T \rrbracket_G \end{array}$$

Expand into premise: $[e:T]_C$

Expand into formula: $[e:T]_C$

5.2 Concretization

Syntax $\hat{\phi} :=$ self-framed and satisfiable ϕ

$$\gamma(\hat{\phi}) \\ \gamma(? * \phi') \\ = \{ \hat{\phi} \mid \hat{\phi} \implies \phi' \} \text{ if } \phi' \text{ satisfiable }$$

$$\gamma(\phi) \text{ undefined otherwise }$$

5.3 Abstraction

$$\begin{array}{lll} \alpha(\emptyset) \text{ undefined} & & = \phi \\ \alpha(\overline{\phi} \text{ with maximum element } \phi) & & = ? * \phi \\ \alpha(\overline{\phi}) & & = ? \text{ otherwise} \end{array}$$

5.4 Gradual Lifting

5.4.1 Self framing

$$\frac{A \vdash_{\mathtt{sfrm}} \phi}{A \vdash_{\mathtt{sfrm}} \phi} \text{GSFRMNonGRAD}$$

$$\overline{A \vdash_{\mathtt{sfrm}} ? * \phi}$$
 GSFRMGRAD

5.4.2 Implication

$$\frac{\phi_1 \implies \phi_2}{\phi_1 \implies \widetilde{\phi_2}} \text{GIMPLNONGRAD}$$

$$\frac{\hat{\phi_m} \implies \phi_2 \qquad \hat{\phi_m} \implies \phi_1}{? * \phi_1 \overset{\frown}{\Longrightarrow} \widetilde{\phi_2}} \text{GIMPLGRAD}$$

 $\hat{\phi_m}$ is evidence!

Consistent transitivity

While \implies is transitive, $\stackrel{\smile}{\Longrightarrow}$ is generally not.

But maybe not even necessary with smarter hoare rules?

5.4.3 Equality

$$\frac{\phi_1 = \phi_2}{\phi_1 \approx \phi_2} \text{ GEQSTATIC}$$

at least one of
$$\widetilde{\phi_1}$$
 or $\widetilde{\phi_2}$ contains?
$$\frac{\widetilde{\phi_1} \Longrightarrow \widetilde{\phi_2}}{\widetilde{\phi_1} \approx \widetilde{\phi_2}} \xrightarrow{\widetilde{\phi_2}} \widetilde{\phi_1} \longrightarrow GEQGRADUAL$$

5.5 Gradual Hoare: minimal static rule approach

Example:

$$\frac{\emptyset \vdash_{\mathtt{sfrm}} \widetilde{\phi}' \qquad x \not \in FV(\widetilde{\phi}') \qquad x \not \in FV(e) \qquad \epsilon \vdash \widetilde{\phi} \vdash x : T \qquad \epsilon \vdash \widetilde{\phi} \vdash e : T \qquad \epsilon \vdash \lfloor \widetilde{\phi}' \rfloor \vdash_{\mathtt{sfrm}} e}{\vdash \{\widetilde{\phi}\}x := e\{\widetilde{\phi}' * (x = e)\}} \text{ GHVarAssign}$$

Collapsing (hidden) gradual implications into a single one:

$$\frac{\epsilon \vdash \widetilde{\phi} \Longrightarrow (x:T) * \llbracket e:T \rrbracket_C * \widetilde{\phi}' \qquad \emptyset \vdash_{\mathtt{sfrm}} \llbracket e:T \rrbracket_C * \widetilde{\phi}' \qquad x \not\in FV(\widetilde{\phi}') \qquad x \not\in FV(e) \qquad [e:T]_C}{\vdash \{\widetilde{\phi}\}x := e\{\llbracket e:T \rrbracket_C * \widetilde{\phi}' * (x=e)\}}$$

When shifting implication responsibility to GHSec:

$$\frac{x \notin FV(\widetilde{\phi}')}{\vdash \{(x:T) * \llbracket e:T \rrbracket_C * \widetilde{\phi}'\}x := e\{\llbracket e:T \rrbracket_C * \widetilde{\phi}' * (x=e)\}} \text{ GHVARASSIGN}$$

Example derivation:

$$\begin{split} & \{(x:T)*(y:C)*\operatorname{acc}(y.a)*\operatorname{acc}(y.a.b)*\operatorname{acc}(y.a.b.c)*\widetilde{\phi}'\} \\ & \{(x:T)*[\![y.a.b.c:T]\!]_C*\widetilde{\phi}'\} \\ & x := y.a.b.c; & x \not\in FV(\widetilde{\phi}') \\ & x := y.a.b.c; & x \not\in FV(y.a.b.c) \\ & [y.a.b.c:T]\!]_C = \ \vdash C_y = C \ \land \ \vdash C_y.a:C_a \ \land \ \vdash C_a.b:C_b \ \land \ \vdash C_b.c:T \\ & \{[\![y.a.b.c:T]\!]_C*\widetilde{\phi}'*(x = y.a.b.c)\} \\ & \{(y:C)*\operatorname{acc}(y.a)*\operatorname{acc}(y.a.b)*\operatorname{acc}(y.a.b.c)*\widetilde{\phi}'*(x = y.a.b.c)\} \end{split}$$

5.5.1 GHFieldAssign

$$\frac{ \vdash_{\mathtt{sfrm}} \phi \qquad \vdash C.f : T}{\widetilde{\phi_1} \approx (x:C) * (y:T) * (x \neq \mathtt{null}) * \phi * \mathtt{acc}(x.f) \qquad \widetilde{\phi_2} \approx (x:C) * \mathtt{acc}(x.f) * (x \neq \mathtt{null}) * (x.f = y) * \phi}{\widetilde{\vdash} \{\widetilde{\phi_1}\} x.f := y \{\widetilde{\phi_2}\}} \text{ GHFIELDARD CONTRACTION OF The property of the pro$$

5.5.2 GHSec - sound but obviously not complete!

$$\frac{\widetilde{\vdash}\{\widetilde{\phi_p}\}s_1\{\widetilde{\phi_{q1}}\} \qquad \phi_{q1} \implies \phi_{q2} \qquad \emptyset \vdash_{\mathtt{sfrm}} \phi_{q2} \qquad \widetilde{\vdash}\{\phi_{q2}\}s_2\{\widetilde{\phi_r}\}}{\widetilde{\vdash}\{\widetilde{\phi_p}\}s_1; s_2\{\widetilde{\phi_r}\}} \text{ GHSec}$$

5.6 Gradual Hoare: minimal HSec approach (implications per rule)

$$\frac{\phi_1 \implies (x:C)*(y:T)*\phi*\operatorname{acc}(x.f)}{\leftarrow \{\phi_1\}x.f := y\{\phi_2\}} \frac{\vdash C.f:T}{\phi_2 = (x:C)*\operatorname{acc}(x.f)*(x.f = y)*\phi} \text{ HFieldAssign}$$

$$\begin{array}{ccc} & \vdash_{\mathtt{sfrm}} \phi & \vdash C.f : T \\ \widetilde{\phi_1} \Longrightarrow (x:C) * (y:T) * \phi * \mathtt{acc}(x.f) & \widetilde{\phi_2} \approx (x:C) * \mathtt{acc}(x.f) * (x.f = y) * \phi \\ & \widetilde{\vdash} \{\widetilde{\phi_1}\} x.f := y \{\widetilde{\phi_2}\} \end{array}$$
 GHFIELDASSIGN

Note: With this alternative rule design \Longrightarrow is consistently used with static formulas as second argument. This plays nicely with the fact that \Longrightarrow does not care about the gradualness of that argument. Might make sense to define lifting of \Longrightarrow as lifting on only the first parameter in the first place.

Minimum runtime checks: For $\widetilde{\phi_1} \Longrightarrow \widetilde{\phi_2}$ to hold at runtime, practically just ϕ_2 needs to hold. So that would be a valid assertion to check. Yet, we know statically that ϕ_1 holds, so we can remove everything from the runtime check that is implied by ϕ_1 . So in a sense, we only need to check $\phi_2 \setminus \phi_1$ at runtime (the operator can be an approximation).

5.7 Gradual Hoare: deterministic approach

5.7.1 HFieldAssign

$$\frac{\phi_1 \implies (x:C)*(y:T)*\mathrm{acc}(x.f)}{\phi_2 = (x:C)*\mathrm{acc}(x.f)*(x.f = y)*\phi_1[\mathbf{w/o}\ \mathrm{acc}(x.f)]}{\vdash \{\phi_1\}x.f := y\{\phi_2\}}$$
 HFIELDASSIGN

Note: $\phi[\mathbf{w}/\mathbf{o} \ \mathsf{acc}(x.f)]$ removes $\mathsf{acc}(x.f)$ and all uses of x.f from ϕ . The result is self-framed given that ϕ is.

Attention: This version is weaker than the other (pairwise equivalent) versions of HFieldAssign! Explanation: Above operator may remove more information than necessary from ϕ . Example:

- Given: $\phi_1 = acc(x.f) * (x.f = a) * (x.f = b)$
- Goal: $\phi_2 \implies (a=b)$
- not provable with this deterministic version of HFieldAssign
- provable with all other versions

Probably it's possible to apply the operator without information loss after expanding formula using equalities (transitive hull).

5.7.2 GHFieldAssign

(= gradual lifting of GHFieldAssign as function)

$$\frac{\widetilde{\phi_2} = \alpha(\{\phi_2 \mid \phi_1 \in \gamma(\widetilde{\phi_1}) \land \vdash \{\phi_1\}x.f := y\{\phi_2\} \ \})}{\widetilde{\vdash}\{\widetilde{\phi_1}\}x.f := y\{\widetilde{\phi_2}\}} \text{ GHFIELDASSIGN}$$

Which should be equivalent to this:

$$\begin{array}{c} \vdash C.f:T\\ \phi_1 \implies (x:C)*(y:T)*{\tt acc}(x.f)\\ \underline{\phi_2 = (x:C)*(y:T)*{\tt acc}(x.f)*(x.f=y)*\phi_1[\mathbf{w/o}\;{\tt acc}(x.f)]}_{\widetilde{\vdash}\{\phi_1\}x.f:=y\{\phi_2\}} \text{ GHFA1} \end{array}$$

$$\begin{split} & \vdash C.f: T \\ ? * \phi_1 \xrightarrow{\Longrightarrow} \phi_m(x:C) * \operatorname{acc}(x.f) \\ \underline{\phi_2 = (x:C) * \operatorname{acc}(x.f) * (x.f = y) * \phi_m[\mathbf{w/o} \ \operatorname{acc}(x.f)]}_{\widetilde{\vdash}\{? * \phi_1\}x.f := y\{? * \phi_2\}} \text{ GHFA2} \end{split}$$

Which should be summarizable as this:

$$\begin{split} & \vdash C.f:T \\ & \widetilde{\phi_1} \Longrightarrow_{\widetilde{\phi_m}} (x:C) * (y:T) * \mathrm{acc}(x.f) \\ & \underbrace{\widetilde{\phi_2} = (x:C) * \mathrm{acc}(x.f) * (x.f = y) * \widetilde{\phi_m}[\mathbf{w/o} \ \mathrm{acc}(x.f)]}_{\widetilde{\vdash} \{\widetilde{\phi_1}\} x.f := y \{\widetilde{\phi_2}\}} \ \mathrm{GHFA} \end{split}$$

Which for well-formed programs is equivalent to:

$$\begin{array}{c} \vdash C.f:T \\ \phi_1 \implies (x:C)*(y:T) \quad \widetilde{\phi_1} \stackrel{\textstyle \longrightarrow}{\Longrightarrow} \operatorname{acc}(x.f) \\ \\ \widetilde{\phi_2} = (x:C)*(y:T)*\operatorname{acc}(x.f)*(x.f=y)*\widetilde{\phi_1}[\mathbf{w/o} \operatorname{acc}(x.f)] \\ \\ \widetilde{\vdash} \{\widetilde{\phi_1}\}x.f := y\{\widetilde{\phi_2}\} \end{array}$$
 GHFA

Observations:

- \bullet ϕ_m is the interior (first argument) of the implication, effectively the meet of first and second argument.
- for the gradual rules to work, the \mathbf{w}/\mathbf{o} -operator **must** be implemented with minimal information loss

- 5.8 Theorems
- 5.8.1 Soundness of α

$$\forall \overline{\phi} : \overline{\phi} \subseteq \gamma(\alpha(\overline{\phi}))$$

5.8.2 Optimality of α

$$\forall \overline{\phi}, \widetilde{\phi} : \overline{\phi} \subseteq \gamma(\widetilde{\phi}) \implies \gamma(\alpha(\overline{\phi})) \subseteq \gamma(\widetilde{\phi})$$

- 6 Theorems
- **6.1** Invariant $invariant(H, \rho, A_d, \phi)$
- 6.1.1 Phi valid

$$\vdash_{\mathtt{sfrm}} \phi$$

6.1.2 Phi holds

$$H, \rho, A_d \vDash \phi$$

6.1.3 Types preserved

$$\forall e, T : \phi \vdash e : T$$
$$\implies H, \rho \vdash e : T$$

6.1.4 Heap consistent

$$\begin{aligned} \forall o, C, \mu, f, T : H(o) &= (C, \mu) \\ &\implies \texttt{fieldType}(C, f) = T \\ &\implies H, \rho \vdash \mu(f) : T \end{aligned}$$

6.1.5 Heap not total

$$\exists o_{min}$$
 :
$$\forall o \geq o_{min} : o \not\in \mathtt{dom}(H)$$

$$\land \ \forall f, (o,f) \not\in A$$

- 6.2 Soundness
- 6.2.1 Progress

$$\forall \dots : \vdash \{\phi_1\}s'\{\phi_2\}$$

$$\implies invariant(H_1, \rho_1, A_1, \phi_1)$$

$$\implies \exists H_2, \rho_2, A_2 : (H_1, (\rho_1, A_1, s'; \overline{s}) \cdot S) \rightarrow^* (H_2, (\rho_2, A_2, \overline{s}) \cdot S)$$

6.2.2 Preservation

$$\forall \dots : \quad \vdash \{\phi_1\}s'\{\phi_2\}$$

$$\implies invariant(H_1, \rho_1, A_1, \phi_1)$$

$$\implies (H_1, (\rho_1, A_1, s'; \overline{s}) \cdot S) \rightarrow^* (H_2, (\rho_2, A_2, \overline{s}) \cdot S)$$

$$\implies invariant(H_2, \rho_2, A_2, \phi_2)$$