"Oh dear! Oh dear!

I shall be too late!".- said the White Rabbit

Alice's Adventures in Wonderland, Lewis Carroll

4. Valores e Vectores Próprios

- Definição de valores e vectores próprios de uma matriz.
- Cálculo de valores e vectores próprios de uma matriz.
- Diagonalização.

Definição

Seja A uma matriz de ordem n. Diz-se que λ é um valor próprio de A se e só existir um vector¹ $x \in \mathbb{R}^{n \times 1}$, não nulo, tal que

$$Ax = \lambda x$$
.

Dizemos que x é um vector próprio associado ao valor próprio λ .

Exemplo

Sendo
$$A = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$$
 tem-se para $x = \begin{pmatrix} 0 \\ 3 \end{pmatrix}$ e $\lambda = 2$

$$Ax = \lambda x \Leftrightarrow \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 0 \\ 3 \end{pmatrix} = 2 \begin{pmatrix} 0 \\ 3 \end{pmatrix}$$

donde $\lambda = 2$ é um valor próprio de A associado ao vector próprio

$$x = \left(\begin{array}{c} 0 \\ 3 \end{array}\right)$$

¹Designamos por *vector* uma matriz coluna.

Exemplos:

1. Seja A a matriz nula O_n de ordem n. Então,

$$\{ \mbox{valores próprios de A} \} = \{ 0 \}$$

$$\{ \mbox{vectores próprios de A} \} = \mathbb{R}^n \backslash \{ 0 \}.$$

Cada elemento de $\mathbb{R}^n \setminus \{0\}$ é um vector próprio associado ao valor próprio 0 de A.

2. Para
$$A = \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}$$
 e $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$, tem-se
$$Ax = \begin{pmatrix} 3x_1 \\ 3x_2 \end{pmatrix} = 3\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = 3x$$

Portanto, 3 é valor próprio de A associado a cada vector de $\mathbb{R}^2 \setminus \{0\}$.

- Chama-se espectro da matriz A ao conjunto de todos os valores próprios da matriz A, que se representa por $\lambda(A)$.
- Um vector próprio está associado apenas a um valor próprio De facto, se λ' é outro valor próprio associado a x, então tem-se $Ax = \lambda x$ e $Ax = \lambda' x$.

Logo, $\lambda x = \lambda' x$ donde $(\lambda - \lambda') x = 0$. Dado que $x \neq 0$, deduz-se assim que $\lambda - \lambda' = 0$, ou seja, que $\lambda = \lambda'$.

• Um valor próprio está associado uma infinidade de vectores próprios.

Na verdade, se x é um vector próprio associado ao valor próprio λ , então, αx , com $\alpha \in \mathbb{R} \backslash \{0\}$, também é um vector próprio associado ao valor próprio λ .

$$Ax = \lambda x \Leftrightarrow A(\alpha x) = \lambda(\alpha x), \quad \alpha \in \mathbb{R} \setminus \{0\}$$

como calcular os valores próprios

Teorema

Seja A uma matriz de ordem n. Um escalar λ é um valor próprio de A se e só

$$det(A - \lambda I_n) = 0$$

Demonstração:

Para um número real λ são válidas as seguintes equivalências,

 λ é valor próprio de $A\Leftrightarrow Ax=\lambda x$ para algum $x\neq 0$ $\Leftrightarrow (A-\lambda I)x=0$ para algum $x\neq 0$ $\Leftrightarrow (A-\lambda I)x=0$ é um sistema indeterminado $\Leftrightarrow A-\lambda I$ é uma matriz não invertível $\Leftrightarrow |A-\lambda I|=0$

Corolário

Seja A uma matriz de ordem n. Então tem-se:

$$det(A) = 0 \Leftrightarrow \lambda = 0$$
 é um valor próprio de A .

Demonstração:

Se
$$\lambda = 0$$
 é um valor próprio de $A \Leftrightarrow det(A - 0I) = 0 \Leftrightarrow det(A) = 0$.

Deste corolário obtém-se de imediato o seguinte resultado.

Corolário

Seja A uma matriz quadrada de ordem n. Então, A é uma matriz invertível se e só se $\lambda=0$ não for valor próprio de A.

Exemplo

Seja
$$A = \begin{pmatrix} -3 & 1 & -1 \\ -7 & 5 & -1 \\ -6 & 6 & -2 \end{pmatrix}$$

$$\det(A - \lambda I_3) = \det \begin{pmatrix} -3 - \lambda & 1 & -1 \\ -7 & 5 - \lambda & -1 \\ -6 & 6 & -2 - \lambda \end{pmatrix}$$

$$= \det \begin{pmatrix} -2 - \lambda & 1 & -1 \\ -2 - \lambda & 5 - \lambda & -1 \\ 0 & 6 & -2 - \lambda \end{pmatrix}$$

$$= -(2 + \lambda) \det \begin{pmatrix} 1 & 1 & -1 \\ 1 & 5 - \lambda & -1 \\ 0 & 6 & -2 - \lambda \end{pmatrix}$$

$$= -(2 + \lambda) \det \begin{pmatrix} 1 & 1 & -1 \\ 1 & 5 - \lambda & -1 \\ 0 & 6 & -2 - \lambda \end{pmatrix}$$

$$= -(2 + \lambda) \det \begin{pmatrix} 0 & 4 - \lambda & 0 \\ 0 & 6 & -2 - \lambda \end{pmatrix}$$

$$= -(2 + \lambda)(4 - \lambda)(-2 - \lambda) = (2 + \lambda)^{2}(4 - \lambda)$$

Os valores próprios sao $\lambda = -2$ e $\lambda = 4$

• Designa-se por polinómio característico o polinómio, em λ ,

$$p(\lambda) = \det(A - \lambda I_n).$$

Este polinómio é de grau n, ordem da matriz A.

• Chama-se equação característica à equação

$$det(A-\lambda I_n)=0.$$

As raízes da equação característica são os valores próprios da matriz A. Se $\lambda_1, \lambda_2, \ldots, \lambda_m, (m \leq n)$, são raízes do polinómio característico (ou seja valores próprios de A), então este pode ser factorizado do seguinte modo:

$$p(\lambda) = (-1)^n (\lambda - \lambda_1)^{r_1} (\lambda - \lambda_2)^{r_2} \dots (\lambda - \lambda_n)^{r_n}.$$

em que $r_1 + r_2 + \cdots + r_n = n$.

Diz-se que $\lambda_1, \lambda_2, \dots, \lambda_m$ têm multiplicidade algébrica r_1, r_2, \dots, r_n , respectivamente.

polinómio característico:
$$p(\lambda) = (2 + \lambda)^2 (4 - \lambda)$$
 equação característica: $(2 + \lambda)^2 (4 - \lambda) = 0$

Donde os valores próprios de A são:

- $\lambda = -2$ de multiplicidade (algébrica) 2,
- $\lambda = 4$ de multiplicidade 1 (simples).

A matriz A é de ordem n = 2 + 1 = 3.

9/30

um conjunto importante

Se λ é um valor próprio de uma matriz A, de ordem n então o conjunto

$$U_{\lambda} = \{x : Ax = \lambda x\},\$$

contém todos os vectores próprios associados ao valor próprio λ .

Tendo-se

$$Ax = \lambda x \Leftrightarrow (A - \lambda I)x = 0$$

o conjunto U_{λ} é o conjunto das soluções do sistema homógeneo $(A - \lambda I)x = 0$, o qual é um sistema possivel indeterminado.

Chama-se **multiplicidade geométrica** do valor próprio λ ao grau de indeterminação deste sistema homógeneo, que é igual a:

$$n - car(A - \lambda I)$$
.

Para uma dado valor próprio a sua multiplicidade geométrica e menor ou igual à sua multiplicidade algébrica.

Exemplo

A matriz
$$A = \begin{pmatrix} -3 & 1 & -1 \\ -7 & 5 & -1 \\ -6 & 6 & -2 \end{pmatrix}$$
, com valores próprios $\lambda = -2$, de multiplicidade algébrica 2, e $\lambda = 4$ simples.

De modo a determinar o conjunto de vectores próprios a $\lambda = 4$ temos que resolver o sistema $(A - 4I_3)X = 0$, ou seja:

$$\begin{pmatrix} -7 & 1 & -1 \\ -7 & 1 & -1 \\ -6 & 6 & -6 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

O sistema reduz-se a x=0, y-z=0, sendo então o conjunto solução, constituído por vectores da forma:

$$\begin{pmatrix} 0 \\ y \\ y \end{pmatrix}$$
,

tendo-se $U_{\lambda=4}=\{(0,y,y),y\in\mathbb{R}\}$, sendo $\lambda=4$ de multiplicidade geométrica 1.

De modo a determinar o conjunto de vectores próprios associados a $\lambda = -2$ temos que resolver o sistema $(A + 2l_3)X = 0$, ou seja:

$$\begin{pmatrix} -1 & 1 & -1 \\ -7 & 7 & -1 \\ -6 & 6 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

O sistema reduz-se a x=y, z=0, sendo então o conjunto solução, constituído por vectores da forma:

$$\begin{pmatrix} x \\ x \\ 0 \end{pmatrix}$$
,

tendo-se:

$$U_{\lambda=-2} = \{(x, x, 0), x \in \mathbb{R}\},\$$

sendo $\lambda = -2$ de multiplicidade geométrica 1.

Propriedades

- Os valores próprios de uma matriz diagonal são os elementos da diagonal.
- Os valores próprios de uma matriz triangular superior (inferior) são os elementos da diagonal.
- Seja A uma matriz de ordem n. Se λ é valor próprio de A então $\alpha\lambda$ é valor próprio de αA , $\alpha \in \mathbb{R} \setminus \{0\}$.
- Se β é um número, então $\lambda + \beta$ é um valor próprio de $A + \beta I$ e x é um vector próprio associado.
- Seja A uma matriz de ordem n. Se λ é valor próprio de A associado ao vector próprio x, então λ^n é valor próprio de A^n associado ao vector próprio x.
- A é invertível se e só se $\lambda \neq 0$. Neste caso, $\frac{1}{\lambda}$ é um valor próprio de A^{-1} e x é um vector próprio associado.
- λ é um valor próprio de A^T .

Definição

Duas matrizes A e B dizem-se semelhantes se existir uma matriz S, invertível , tal que

$$B = S^{-1}AS$$

Teorema

Duas matrizes semelhantes têm os mesmos valores próprios.

Demonstração

Sejam A e B duas matrizes semelhantes. Então existe uma matriz S, invertível tal que $B = SAS^{-1}$.

Assim, vejamos que têm iguais polinómios característicos

Assim, veramos que tem iguais |
$$p_{B}(\lambda) = |B - \lambda I|$$

$$= |SAS^{-1} - \lambda(SS^{-1})|$$

$$= |SAS^{-1} - S\lambda S^{-1}|$$

$$= |S(A - \lambda I)S^{-1}|$$

$$= |S||(A - \lambda I)||S^{-1}|$$

$$= |S||(A - \lambda I)| \frac{1}{|S|}$$

$$= |A - \lambda I| = p_{A}(\lambda)$$

Teorema

Sejam A e B matrizes semelhantes.

Se x é um vector próprio de A associado ao valor próprio λ , então $S^{-1}x$ é vector próprio de B associado ao valor próprio λ .

Demonstração:

Seja B semelhante a A, ou seja, existe S, invertível, tal que: $B=S^{-1}AS$. Se x é um vector próprio de A associado ao valor próprio λ , então

$$Ax = \lambda x \quad \Rightarrow S^{-1}ASS^{-1}x = S^{-1}\lambda x$$
$$\Rightarrow (S^{-1}AS)(S^{-1}x) = \lambda(S^{-1}x)$$
$$\Rightarrow B(S^{-1}x) = \lambda(S^{-1}x)$$

ou seja $S^{-1}x$ é vector próprio de B associado ao valor próprio λ .

Definição

Uma matriz é diagonalizável se for semelhante a uma matriz diagonal. Ou seja se existir uma matriz S, invertível, tal que

$$D = S^{-1}AS$$

é uma matriz diagonal.

16 / 30

Teorema

1. Seja $A \in \mathbb{R}^{n \times n}$ com n valores próprios $\lambda_1, \ldots, \lambda_n$ (não necessariamente distintos) com vectores próprios associados, $\mathbf{v}_1, \ldots, \mathbf{v}_n$. Seja S a matriz que tem esses vectores próprios como colunas, i.e. $S = (\mathbf{v}_1 \ \mathbf{v}_2 \ \ldots \ \mathbf{v}_n)$. Se S é uma matriz invertível então

$$D = S^{-1}AS.$$

com D a matriz diagonal com elementos diagonais iguais aos valores próprios, ou seja $D = diag(\lambda_1, \dots, \lambda_n)$

Ou seja a matriz A é diagonalizável, sendo semelhante a uma matriz diagonal, cujos elementos da diagonal são os valores próprios e, a matriz que tem por colunas os vectores próprios é uma matriz diagonalizante de A.

Teorema

2. Reciprocamente, suponhamos que A é diagonalizável, isto é, que temos $S^{-1}AS = D$ para uma certa matriz $S \in \mathbb{R}^{n \times n}$, invertível e com D diagonal.

Nesse caso, os elementos da diagonal de D são valores próprios de A, tendo como vectores próprios associados as colunas de S.

Demonstração:

1. Tem-se $Av_i = \lambda_i v_i$, e

$$AS = A(v_1 \ v_2 \dots v_n)$$
= $(Av_1 \ Av_2 \dots Av_n)$
= $(\lambda_1 v_1 \ \lambda_2 v_2 \dots \lambda_n v_n)$
= $(v_1 \ v_2 \dots v_n) \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_1 & 0 & 0 \\ \vdots & \vdots & \dots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}$
= SD

De AS = SD vem, multiplicando ambos os membros, à esquerda, por S^{-1} (que existe já que por hipótese S é invertível), que $D = S^{-1}AS$.

Demonstração:

2. Suponhamos que $S^{-1}AS = D$, com $D = \text{diag}(d_1, d_2, \dots, d_n)$. Temos

$$S^{-1}AS = D \Rightarrow SS^{-1}AS = SD \Rightarrow AS = SD.$$

Sejam $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ as colunas de S. A igualdade AS = SD escreve-se como

$$A(\mathbf{v}_1 \ \mathbf{v}_2 \ \cdots \ \mathbf{v}_n) = (\mathbf{v}_1 \ \mathbf{v}_2 \ \cdots \ \mathbf{v}_n) \begin{pmatrix} d_1 & 0 & \cdots & 0 \\ 0 & d_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_n \end{pmatrix},$$

ou seja, temos

$$(A\mathbf{v}_1 \ A\mathbf{v}_2 \ \cdots \ A\mathbf{v}_n) = (d_1\mathbf{v}_1 \ d_2\mathbf{v}_2 \ \cdots \ d_n\mathbf{v}_n).$$

Demonstração (cont.)

Segue-se, então, que

$$\begin{cases}
A\mathbf{v}_1 = d_1\mathbf{v}_1 \\
A\mathbf{v}_2 = d_2\mathbf{v}_2 \\
\vdots \\
A\mathbf{v}_n = d_n\mathbf{v}_n
\end{cases}$$

Como os vectores $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ são não nulos (são vectore próprios), as igualdades acima mostram que d_1, d_2, \ldots, d_n são valores próprios de A com vectores próprios associados $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ (as colunas de S), tal como se pretendia provar.

O teorema seguinte indica-nos uma <u>condição suficiente</u> (mas não necessária) para que uma matriz seja diagonalizável.

Teorema

Seja A uma matriz, quadrada de ordem n. com n valores próprios $\lambda_1, \ldots, \lambda_n$ distintos e sejam $\mathbf{v}_1, \ldots, \mathbf{v}_n$ vectores próprios associados a $\lambda_1, \ldots, \lambda_n$, respectivamente.

Então, a matriz com esses vectores próprios como colunas é uma matriz invertível e, portanto, A é diagonalizável.

Quando A tem n valores próprios reais múltiplos, A pode ou não ser diagonalizável.

Tal dependerá de ser ou não possível encontrar n vectores próprios associados a valores próprios de A, que formem uma matriz quadrada de ordem n, invertível.

Corolário

Se uma matriz A, de ordem n, e suponhamos que $\lambda_1, \ldots, \lambda_k$ são valores próprios distintos de A ($k \le n$).

Então A é diagonalizável se e só se

o somatório das multiplicidades geométricas de $\lambda_1, \ldots, \lambda_k$ é igual a n.

Exemplo

A matriz
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
 não é diagonalizável.

Note-se que, sendo o polinómio característico de A, $p(\lambda) = (1 - \lambda)^2$, o único valor próprio é 1.

Sendo $U_{\lambda=1}=\{(x,0):x\in\mathbb{R}\}$, o conjunto dos valores próprios associados a $\lambda=1$, tem-se que a multiplicidade geométrica é igual a $1\neq n$, com n=2,

Observe-se que não é possivel determinar 2 vectores próprios que permitam definir uma matriz invertível.

Exemplo A matriz

$$\left(\begin{array}{ccc}
2 & -3 & 1 \\
1 & -2 & 1 \\
1 & -3 & 2
\end{array}\right)$$

é diagonalizável, uma vez que tem 3 valores próprios distintos -1,0 e 1 sendo a multiplicidade geométrica de cada um dos valores próprios igual a 1. Assim, a soma das multiplicidades geométricas é igual a 3=n. Considerando os três vectores próprios $\begin{pmatrix} 3 & 1 & 0 \end{pmatrix}^T$, $\begin{pmatrix} 1 & 1 & 1 \end{pmatrix}^T$ e $\begin{pmatrix} -1 & 0 & 1 \end{pmatrix}^T$, associados cada um a um distinto valor próprio, podemos

construir a matriz
$$S=\begin{pmatrix}3&1&-1\\1&1&0\\0&1&1\end{pmatrix}$$
 invertível tal que
$$S^{-1}AS=D\text{ com }D=\begin{pmatrix}-1&0&0\\0&0&0\\0&0&1\end{pmatrix}$$

A matriz D é uma matriz diagonal cujos elementos da diagonal principal são os valores próprios da matriz A.

Valores proprios de matrizes simétricas

Teorema Seja A uma matriz quadrada de ordem n, simétrica. Então existe uma matriz ortogonal Q tal que

$$Q^{\mathrm{T}}AQ=D,$$

onde D é a matriz diagonal cujos elementos diagonais são os valores próprios de A.

Exemplo

Consideremos a seguinte matriz simétrica $A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$. Temos

$$p_A(\lambda) = \begin{vmatrix} 2-\lambda & 1\\ 1 & 2-\lambda \end{vmatrix} = (2-\lambda)^2 - 1 = \lambda^2 - 4\lambda + 3$$

Emtão,

$$p_A(\lambda) = 0 \iff \lambda^2 - 4\lambda + 3 = 0 \iff \lambda = 1 \text{ ou } \lambda = 3.$$

Exemplo (cont.)

Resolvendo o sistema homogéneo $(A-1I)\mathbf{x} = \mathbf{0}$, obtém-se o seguinte conjunto de soluções

$$\left\{ \begin{pmatrix} -\alpha \\ \alpha \end{pmatrix} : \alpha \in \mathbb{R} \right\}.$$

Por outro lado, o sistema $(A-3I)\mathbf{x} = \mathbf{0}$ tem como soluções os vectores do conjunto

$$\left\{ \begin{pmatrix} \alpha \\ \alpha \end{pmatrix} : \alpha \in \mathbb{R} \right\}.$$

Escolhamos, então, um vector não nulo de cada um destes conjuntos, por $\begin{pmatrix} -1 \\ 1 \end{pmatrix}$

exemplo,
$$\mathbf{x}_1 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$
 e $\mathbf{x}_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

Temos $\mathbf{x}_1^{\mathrm{T}}\mathbf{x}_1 = \begin{pmatrix} -1 & 1 \end{pmatrix} \begin{pmatrix} -1 \\ 1 \end{pmatrix} = 2$, pelo que devemos considerar

$$\mathbf{v}_1 = rac{1}{\sqrt{2}}\mathbf{x}_1 = egin{pmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix}.$$

Temos, também, $\mathbf{x}_2^{\mathrm{T}}\mathbf{x}_2 = 2$, pelo que devemos considerar $\mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix}$.

Exemplo (cont.)

Obtemos, então, a seguinte matriz Q, ortogonal e diagonalizante para A:

$$Q = \begin{pmatrix} -1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{pmatrix}.$$

De facto, a matriz Q é ortogonal, já que

$$Q^{\mathrm{T}}Q = \begin{pmatrix} -1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{pmatrix} \begin{pmatrix} -1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

e além disso, Q diagonaliza A, já que:

$$Q^{\mathrm{T}}AQ = \begin{pmatrix} -1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} -1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}.$$

Formas quadráticas e valores próprios

É possível classificar uma matriz A (e portanto, uma forma Q) em d.p., d.n., s.d.p,.s.d.n. ou indefinida, em função dos valores próprios de A, de acordo com o seguinte teorema.

Teorema Seja A uma matriz simétrica de ordem n e sejam $\lambda_1, \ldots, \lambda_n$ os seus valores próprios (não necessariamente distintos). Então:

- A é definida positiva se e só se todos os seus v.p.'s são positivos;
- ② A é definida negativa se e só se todos os seus v.p.'s são negativos;
- A é semidefinida positiva se e só todos seus v.p.'s são não negativos;
- A é semidefinida negativa se e só se todos os seus v.p.'s são não positivos;
- A é indefinida se e só se A tem (pelo menos) um valor próprio positivo e (pelo menos) um valor próprio negativo.

Demonstração (apenas de 1.) Como A é simétrica, sabemos que existe uma matriz ortogonal Q tal que $Q^{\mathrm{T}}AQ=D$, com $D=\mathrm{diag}(\lambda_1,\ldots,\lambda_n)$. Mas, $Q^{\mathrm{T}}AQ=D\Rightarrow A=QDQ^{\mathrm{T}}$. Tem-se, então, para qualquer vector $\mathbf{x}\in\mathbb{R}^{n\times 1}$:

$$\mathbf{x}^{\mathrm{T}} A \mathbf{x} = \mathbf{x}^{\mathrm{T}} (Q D Q^{\mathrm{T}}) \mathbf{x} = \mathbf{x}^{\mathrm{T}} (Q^{\mathrm{T}})^{\mathrm{T}} D Q^{\mathrm{T}} \mathbf{x}$$

= $(Q^{\mathrm{T}} \mathbf{x})^{\mathrm{T}} D (Q^{\mathrm{T}} \mathbf{x}) = \mathbf{y}^{\mathrm{T}} D \mathbf{y}$,

com

$$\mathbf{y} = Q^{\mathrm{T}}\mathbf{x}.$$

Note-se que, sendo Q invertível, teremos

$$\mathbf{x} \neq \mathbf{0} \iff \mathbf{y} = Q^{\mathrm{T}}\mathbf{x} \neq \mathbf{0}.$$

Então, tem-se

$$A \in d.p. \iff \mathbf{x}^{T}A\mathbf{x} > 0, \forall \mathbf{x} \neq \mathbf{0}$$

$$\iff \mathbf{y}^{T}D\mathbf{y} > 0, \ \forall \mathbf{y} \neq 0$$

$$\iff \lambda_{1}y_{1}^{2} + \lambda_{2}y_{2}^{2} + \dots + \lambda_{n}y_{n}^{2} > 0, \ \forall \mathbf{y} \neq 0$$

$$\iff \lambda_{1} > 0, \lambda_{2} > 0, \dots, \lambda_{n} > 0.$$

como se pretendia mostrar.

- 4ロト 4個ト 4 差ト 4 差ト 差 めなぐ