MATH 350-2 Advanced Calculus

W.R. Casper

Department of Mathematics California State University Fullerton

October 9, 2024

Outline

- Real Analysis Lecture 12
 - Metric Spaces
 - Subspaces

Outline

- Real Analysis Lecture 12
 - Metric Spaces
 - Subspaces

Problem

Write down each of the following:

• the definition of an open cover of a set A

Problem

- the definition of an open cover of a set A
- a compact set

Problem

- the definition of an open cover of a set A
- a compact set
- Lindelöf Covering Theorem

Problem

- the definition of an open cover of a set A
- a compact set
- Lindelöf Covering Theorem
- Bolzano-Weierstrass Theorem

Problem

- the definition of an open cover of a set A
- a compact set
- Lindelöf Covering Theorem
- Bolzano-Weierstrass Theorem
- Cantor Intersection Theorem

Problem

- the definition of an open cover of a set A
- a compact set
- Lindelöf Covering Theorem
- Bolzano-Weierstrass Theorem
- Cantor Intersection Theorem
- Heine-Borel Theorem

Definition

Definition

Definition

$$d(x,x) = 0$$
 for all $x \in M$

Definition

- d(x,x) = 0 for all $x \in M$
- **positivity:** d(x,y) > 0 for all $x, y \in M$ with $x \neq y$

Definition

- d(x,x) = 0 for all $x \in M$
- **@ positivity:** d(x,y) > 0 for all $x, y \in M$ with $x \neq y$
- **3 symmetry:** d(x,y) = d(y,x) for all $x, y \in M$

Definition

- d(x,x) = 0 for all $x \in M$
- **positivity:** d(x,y) > 0 for all $x, y \in M$ with $x \neq y$
- **8 symmetry:** d(x,y) = d(y,x) for all $x, y \in M$
- triangle inequality: $d(x, y) \le d(x, z) + d(z, y)$ for all $x, y, z \in M$

Definition

A **metric space** is a pair (M, d) consisting of a nonempty set M of "points", along with a distance function $d: M \times M \to \mathbb{R}$ with the following four properties.

- d(x,x) = 0 for all $x \in M$
- **@ positivity:** d(x,y) > 0 for all $x, y \in M$ with $x \neq y$
- **Symmetry:** d(x,y) = d(y,x) for all $x, y \in M$
- triangle inequality: $d(x,y) \le d(x,z) + d(z,y)$ for all $x, y, z \in M$

The value d(x, y) is called a **metric** and describes the "distance" between x and y.

Open balls

Open balls

Definition

Let (M, d) be a metric space. The open ball of radius r > 0 centered at $x \in M$ is

$$B_M(x; r) = \{ y \in M : d(x, y) < r \}.$$

$$d_{\mathsf{eucl}}(\vec{x}, \vec{y}) = |\vec{x} - \vec{y}| = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}$$

$$d_{\mathsf{eucl}}(\vec{x}, \vec{y}) = |\vec{x} - \vec{y}| = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}$$

Euclidean metric (2-norm)

$$d_{\mathsf{eucl}}(\vec{x}, \vec{y}) = |\vec{x} - \vec{y}| = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}$$

- Euclidean metric (2-norm)
- open balls are circles

$$d_{\mathsf{eucl}}(\vec{x}, \vec{y}) = |\vec{x} - \vec{y}| = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}$$

- Euclidean metric (2-norm)
- open balls are circles

$$d_{\text{taxi}}(\vec{x}, \vec{y}) = |x_1 - y_1| + |x_2 - y_2|$$

$$d_{\mathsf{taxi}}(\vec{x}, \vec{y}) = |x_1 - y_1| + |x_2 - y_2|$$

Taxi-cab metric (1-norm, distances on city streets)

$$d_{\mathsf{taxi}}(\vec{x}, \vec{y}) = |x_1 - y_1| + |x_2 - y_2|$$

- Taxi-cab metric (1-norm, distances on city streets)
- open balls are diamonds

$$d_{\text{taxi}}(\vec{x}, \vec{y}) = |x_1 - y_1| + |x_2 - y_2|$$

- Taxi-cab metric (1-norm, distances on city streets)
- open balls are diamonds

$$d_{\infty}(\vec{x}, \vec{y}) = \max\{|x_1 - y_1|, |x_2 - y_2|\}$$

$$d_{\infty}(\vec{x}, \vec{y}) = \max\{|x_1 - y_1|, |x_2 - y_2|\}$$

Chebyshev metric (infinity norm)

$$d_{\infty}(\vec{x}, \vec{y}) = \max\{|x_1 - y_1|, |x_2 - y_2|\}$$

- Chebyshev metric (infinity norm)
- open balls are squares

$$d_{\infty}(\vec{x}, \vec{y}) = \max\{|x_1 - y_1|, |x_2 - y_2|\}$$

- Chebyshev metric (infinity norm)
- open balls are squares

$$d_p(\vec{x}, \vec{y}) = \sqrt[p]{|x_1 - y_1|^p + |x_2 - y_2|^p}$$

$$d_p(\vec{x}, \vec{y}) = \sqrt[p]{|x_1 - y_1|^p + |x_2 - y_2|^p}$$

• p-norm, $1 \le p < \infty$

$$d_p(\vec{x}, \vec{y}) = \sqrt[p]{|x_1 - y_1|^p + |x_2 - y_2|^p}$$

- p-norm, $1 \le p < \infty$
- open balls are rounded squares

$$d_p(\vec{x}, \vec{y}) = \sqrt[p]{|x_1 - y_1|^p + |x_2 - y_2|^p}$$

- *p*-norm, $1 \le p < \infty$
- open balls are rounded squares

Challenge!

Let M be a nonempty set and define $d: M \times M \to \mathbb{R}$ by

$$d_{disc}(x,y) = \begin{cases} 1 & x \neq y \\ 0 & x = y \end{cases}$$

Let M be a nonempty set and define $d: M \times M \to \mathbb{R}$ by

$$d_{\mathsf{disc}}(x,y) = \begin{cases} 1 & x \neq y \\ 0 & x = y \end{cases}$$

Problem

Prove that d_{disc} is a metric.

Let M be a nonempty set and define $d: M \times M \to \mathbb{R}$ by

$$d_{\mathsf{disc}}(x,y) = \begin{cases} 1 & x \neq y \\ 0 & x = y \end{cases}$$

Problem

Prove that d_{disc} is a metric.

This is called the **discrete metric**.

Problem

What do the open balls with the discrete metric look like?

Definition

Definition

Let (M, d) be a metric space and $A \subseteq M$.

Definition

Let (M, d) be a metric space and $A \subseteq M$.

A point $x \in A$ is called an **interior point** if there exists r > 0 such that $B_M(x; r) \subseteq A$.

Definition

Let (M, d) be a metric space and $A \subseteq M$.

A point $x \in A$ is called an **interior point** if there exists r > 0 such that $B_M(x; r) \subseteq A$.

The set int(A) of interior points of A is called the **interior** of A.

Definition

Let (M, d) be a metric space and $A \subseteq M$.

A point $x \in A$ is called an **interior point** if there exists r > 0 such that $B_M(x; r) \subseteq A$.

The set int(A) of interior points of A is called the **interior** of A. The set A is **open** if every point in A is an interior point, or equivalently int(A) = A.

Problem

Consider the metric space $(\mathbb{R}, d_{\text{disc}})$ where d_{disc} is the discrete metric.

What sets are open sets?

Definition

Definition

Let (M, d) be a metric space and $A \subseteq M$.

Definition

Let (M, d) be a metric space and $A \subseteq M$.

A set $A \subseteq M$ is closed if the complement $M \setminus A$ is open.

Definition

Let (M, d) be a metric space and $A \subseteq M$.

A set $A \subseteq M$ is closed if the complement $M \setminus A$ is open.

A point $x \in M$ is an **adherent point** if for all r > 0 the ball $B_M(x; r)$ contains an element of M.

Definition

Let (M, d) be a metric space and $A \subseteq M$.

A set $A \subseteq M$ is closed if the complement $M \setminus A$ is open.

A point $x \in M$ is an **adherent point** if for all r > 0 the ball $B_M(x; r)$ contains an element of M.

A point $x \in M$ is an **accumulation point** if for all r > 0 the ball

 $B_M(x; r)$ contains an element of M different from x.

Definition

Let (M, d) be a metric space and $A \subseteq M$.

A set $A \subseteq M$ is closed if the complement $M \setminus A$ is open.

A point $x \in M$ is an **adherent point** if for all r > 0 the ball $B_M(x; r)$ contains an element of M.

A point $x \in M$ is an **accumulation point** if for all r > 0 the ball

 $B_M(x; r)$ contains an element of M different from x.

The set \overline{M} of all adherent points of M is called the **closure** of M.

Problem

Consider the metric space $(\mathbb{R}, d_{\text{disc}})$ where d_{disc} is the discrete metric.

Which sets are closed?

Problem

Prove the following (Apostol Theorem 3.36). If (M, d) is a metric space, $U \subseteq M$ is open, and $C \subseteq M$ is closed, then $U \setminus C$ is open and $C \setminus U$ is closed.

Theorem (Apostol Theorem 3.37)

Theorem (Apostol Theorem 3.37)

Let (M, d) be a metric space and $A \subseteq S$. Then the following are equivalent:

A is closed

Theorem (Apostol Theorem 3.37)

- A is closed
- A contains all of its adherent points

Theorem (Apostol Theorem 3.37)

- A is closed
- A contains all of its adherent points
- A contains all of its accumulation points

Theorem (Apostol Theorem 3.37)

- A is closed
- A contains all of its adherent points
- A contains all of its accumulation points
- \bigcirc $A = \overline{A}$

Theorem

Let (M, d) be a metric space and $\{U_i : i \in I\}$ be a family of open sets in M. The union $\bigcup_{i \in I} U_i$ is open.

Theorem

Let (M, d) be a metric space and $\{U_i : i \in I\}$ be a family of open sets in M. The union $\bigcup_{i \in I} U_i$ is open.

Proof.

Identical to the proof for \mathbb{R}^n .

Theorem

Let (M, d) be a metric space and $\{U_i : i \in I\}$ be a family of open sets in M. The union $\bigcup_{i \in I} U_i$ is open.

Proof.

Identical to the proof for \mathbb{R}^n .

Theorem

Let (M, d) be a metric space and U_1, U_2, \ldots, U_n be open sets in M. The intersection $\bigcap_{i=1}^n U_i$ is open.

Theorem

Let (M, d) be a metric space and $\{U_i : i \in I\}$ be a family of open sets in M. The union $\bigcup_{i \in I} U_i$ is open.

Proof.

Identical to the proof for \mathbb{R}^n .

Theorem

Let (M, d) be a metric space and U_1, U_2, \ldots, U_n be open sets in M. The intersection $\bigcap_{i=1}^n U_i$ is open.

Proof.

Identical to the proof for \mathbb{R}^n .

Theorem

Let (M, d) be a metric space and $\{C_i : i \in I\}$ be a family of closed sets in M. The intersection $\bigcap_{i \in I} C_i$ is closed.

Theorem

Let (M, d) be a metric space and $\{C_i : i \in I\}$ be a family of closed sets in M. The intersection $\bigcap_{i \in I} C_i$ is closed.

Proof.

Apply De Morgan's Laws.

Theorem

Let (M, d) be a metric space and $\{C_i : i \in I\}$ be a family of closed sets in M. The intersection $\bigcap_{i \in I} C_i$ is closed.

Proof.

Apply De Morgan's Laws.

Theorem

Let (M, d) be a metric space and C_1, C_2, \ldots, C_n be closed sets in M. The intersection $\bigcup_{i=1}^n C_i$ is closed.

Theorem

Let (M, d) be a metric space and $\{C_i : i \in I\}$ be a family of closed sets in M. The intersection $\bigcap_{i \in I} C_i$ is closed.

Proof.

Apply De Morgan's Laws.

Theorem

Let (M, d) be a metric space and $C_1, C_2, ..., C_n$ be closed sets in M. The intersection $\bigcup_{i=1}^n C_i$ is closed.

Proof.

Apply De Morgan's Laws.

Outline

- Real Analysis Lecture 12
 - Metric Spaces
 - Subspaces

Metric subspace

Definition

Let (M, d) be a metric space.

Metric subspace

Definition

Let (M, d) be a metric space.

If $S \subseteq M$ is a subset, then $d : M \times M \to \mathbb{R}$ restricts to a metric $d : S \times S \to \mathbb{R}$, called the **relative metric**.

Metric subspace

Definition

Let (M, d) be a metric space.

If $S \subseteq M$ is a subset, then $d : M \times M \to \mathbb{R}$ restricts to a metric $d : S \times S \to \mathbb{R}$, called the **relative metric**.

The space (S, d) with the relative metric is called a **metric** subspace.

Metric subspace

Definition

Let (M, d) be a metric space.

If $S \subseteq M$ is a subset, then $d : M \times M \to \mathbb{R}$ restricts to a metric $d : S \times S \to \mathbb{R}$, called the **relative metric**.

The space (S, d) with the relative metric is called a **metric** subspace.

Open balls in S:

$$B_{\mathcal{S}}(x;r) = B_{\mathcal{M}}(x;r) \cap \mathcal{S}.$$

Theorem

Let (M, d) be a metric space and let (S, d) be a subspace. Then V is an open subset of S if and only if there exists an open subset U of M with $V = U \cap S$.

Theorem

Let (M, d) be a metric space and let (S, d) be a subspace. Then V is an open subset of S if and only if there exists an open subset U of M with $V = U \cap S$.

Proof.

Theorem

Let (M, d) be a metric space and let (S, d) be a subspace. Then V is an open subset of S if and only if there exists an open subset U of M with $V = U \cap S$.

Proof.

 \Longrightarrow : Assume *V* is an open subset of *S*.

Theorem

Let (M, d) be a metric space and let (S, d) be a subspace. Then V is an open subset of S if and only if there exists an open subset U of M with $V = U \cap S$.

Proof.

 \Longrightarrow : Assume *V* is an open subset of *S*.

Then for all $x \in V$, there exists $r_x > 0$ such that $B_S(x; r_x) \subseteq V$.

Theorem

Let (M, d) be a metric space and let (S, d) be a subspace. Then V is an open subset of S if and only if there exists an open subset U of M with $V = U \cap S$.

Proof.

 \implies : Assume *V* is an open subset of *S*.

Then for all $x \in V$, there exists $r_x > 0$ such that $B_S(x; r_x) \subseteq V$.

This says $B_M(x; r_x) \cap S \subseteq V$.

Theorem

Let (M, d) be a metric space and let (S, d) be a subspace. Then V is an open subset of S if and only if there exists an open subset U of M with $V = U \cap S$.

Proof.

 \implies : Assume *V* is an open subset of *S*.

Then for all $x \in V$, there exists $r_x > 0$ such that $B_S(x; r_x) \subseteq V$.

This says $B_M(x; r_x) \cap S \subseteq V$.

Define

$$U=\bigcup_{x\in V}B_M(x;r_x).$$

Theorem

Let (M, d) be a metric space and let (S, d) be a subspace. Then V is an open subset of S if and only if there exists an open subset U of M with $V = U \cap S$.

Proof.

 \Longrightarrow : Assume *V* is an open subset of *S*.

Then for all $x \in V$, there exists $r_x > 0$ such that $B_S(x; r_x) \subseteq V$.

This says $B_M(x; r_x) \cap S \subseteq V$.

Define

$$U=\bigcup_{x\in V}B_M(x;r_x).$$

This is a union of open sets, and is therefore open.

Theorem

Let (M, d) be a metric space and let (S, d) be a subspace. Then V is an open subset of S if and only if there exists an open subset U of M with $V = U \cap S$.

Proof.

 \implies : Assume *V* is an open subset of *S*.

Then for all $x \in V$, there exists $r_x > 0$ such that $B_S(x; r_x) \subseteq V$.

This says $B_M(x; r_x) \cap S \subseteq V$.

Define

$$U=\bigcup_{x\in V}B_M(x;r_x).$$

This is a union of open sets, and is therefore open.

Furthermore $U \cap S = V$.

Theorem

Let (M, d) be a metric space and let (S, d) be a subspace. Then V is an open subset of S if and only if there exists an open subset U of M with $V = U \cap S$.

Theorem

Let (M, d) be a metric space and let (S, d) be a subspace. Then V is an open subset of S if and only if there exists an open subset U of M with $V = U \cap S$.

Proof.

Theorem

Let (M, d) be a metric space and let (S, d) be a subspace. Then V is an open subset of S if and only if there exists an open subset U of M with $V = U \cap S$.

Proof.

 \Leftarrow : Assume *U* is an open subset of *M*.

Theorem

Let (M, d) be a metric space and let (S, d) be a subspace. Then V is an open subset of S if and only if there exists an open subset U of M with $V = U \cap S$.

Proof.

 \Leftarrow : Assume *U* is an open subset of *M*.

We need to show that $V := U \cap S$ is open.

Theorem

Let (M, d) be a metric space and let (S, d) be a subspace. Then V is an open subset of S if and only if there exists an open subset U of M with $V = U \cap S$.

Proof.

 \Leftarrow : Assume *U* is an open subset of *M*.

We need to show that $V := U \cap S$ is open.

If $x \in V$, then $x \in U$ and there exists r > 0 such that

 $B_M(x;r) \subseteq U$.

Theorem

Let (M, d) be a metric space and let (S, d) be a subspace. Then V is an open subset of S if and only if there exists an open subset U of M with $V = U \cap S$.

Proof.

 \Leftarrow : Assume *U* is an open subset of *M*.

We need to show that $V := U \cap S$ is open.

If $x \in V$, then $x \in U$ and there exists r > 0 such that

 $B_M(x;r)\subseteq U$.

It follows that $B_S(x,r) = B_M(x,r) \cap S \subseteq U \cap S = V$.

Theorem

Let (M, d) be a metric space and let (S, d) be a subspace. Then V is an open subset of S if and only if there exists an open subset U of M with $V = U \cap S$.

Proof.

 \Leftarrow : Assume *U* is an open subset of *M*.

We need to show that $V := U \cap S$ is open.

If $x \in V$, then $x \in U$ and there exists r > 0 such that

 $B_M(x;r)\subseteq U.$

It follows that $B_S(x,r) = B_M(x,r) \cap S \subseteq U \cap S = V$.

This shows that x is an interior point of S in the metric subspace (S, d).

Theorem

Let (M, d) be a metric space and let (S, d) be a subspace. Then V is an open subset of S if and only if there exists an open subset U of M with $V = U \cap S$.

Proof.

 \Leftarrow : Assume *U* is an open subset of *M*.

We need to show that $V := U \cap S$ is open.

If $x \in V$, then $x \in U$ and there exists r > 0 such that

 $B_M(x;r)\subseteq U$.

It follows that $B_S(x,r) = B_M(x,r) \cap S \subseteq U \cap S = V$.

This shows that x is an interior point of S in the metric subspace (S, d).

Since $x \in V$ was arbitrary, this shows that V is open in S.

Theorem

Let (M, d) be a metric space and let (S, d) be a subspace. Then B is a closed subset of S if and only if there exists a closed subset A of M with $B = A \cap S$.

Theorem

Let (M, d) be a metric space and let (S, d) be a subspace. Then B is a closed subset of S if and only if there exists a closed subset A of M with $B = A \cap S$.

Proof.

Theorem

Let (M, d) be a metric space and let (S, d) be a subspace. Then B is a closed subset of S if and only if there exists a closed subset A of M with $B = A \cap S$.

Proof.

Let $B \subseteq S$.

Theorem

Let (M, d) be a metric space and let (S, d) be a subspace. Then B is a closed subset of S if and only if there exists a closed subset A of M with $B = A \cap S$.

Proof.

Let $B \subseteq S$.

B is closed in S if and only if $S \setminus B$ is open in B

Theorem

Let (M, d) be a metric space and let (S, d) be a subspace. Then B is a closed subset of S if and only if there exists a closed subset A of M with $B = A \cap S$.

Proof.

Let $B \subseteq S$.

B is closed in S if and only if $S \setminus B$ is open in B. This is true if and only if there exists an open subset U of M with $S \setminus B = U \cap S$.

Theorem

Let (M, d) be a metric space and let (S, d) be a subspace. Then B is a closed subset of S if and only if there exists a closed subset A of M with $B = A \cap S$.

Proof.

Let $B \subseteq S$.

B is closed in S if and only if $S \setminus B$ is open in B

This is true if and only if there exists an open subset U of M with $S \setminus B = U \cap S$.

This is true if and only if there exists an open subset U of M with $B = (M \setminus U) \cap S$.

Theorem

Let (M, d) be a metric space and let (S, d) be a subspace. Then B is a closed subset of S if and only if there exists a closed subset A of M with $B = A \cap S$.

Proof.

Let $B \subseteq S$.

B is closed in S if and only if $S \setminus B$ is open in B

This is true if and only if there exists an open subset U of M with $S \setminus B = U \cap S$.

This is true if and only if there exists an open subset U of M with $B = (M \setminus U) \cap S$.

this is true if and only if there exists a closed subset A of M with $B = A \cap S$.

Consider the metric space (\mathbb{R}, d) with $d = d_{\text{eucl}}$ the Euclidean metric, and the metric subspace (S, d) for S = [0, 1].

• [0, 1] is open in S and closed in S, but it is not open in M

- [0, 1] is open in S and closed in S, but it is not open in M
- [0, 1/2) is open in S, but not in M

- [0, 1] is open in S and closed in S, but it is not open in M
- [0, 1/2) is open in *S*, but not in *M*
- (0, 1/2) is open in both S and in M

- [0, 1] is open in S and closed in S, but it is not open in M
- [0, 1/2) is open in S, but not in M
- (0, 1/2) is open in both S and in M
- (1/2, 1] is open in S, but not in M