

Advanced Logic Design FPGA

Mingoo Seok Columbia University

(1) BV: Secs. B.6, B.10; (2) J. F. Wakerly "Digital Design: Principles and Practices," 4th Edition, Prentice Hall (2006), pp.850-862

Programmable Logic Array

• A early version of FPGA, which allows users to program a rather complicated logic function in a single chip

General Structure of a PLA

PLA: Detail

NOR-NOR PLA

- NOR is preferred for large fan-in gates
- Resistor-load is preferred over CMOS

F(ield)PLA

(b) A programmable switch

(c) EEPROM transistor

(a) Programmable NOR-plane

PAL: Programmable Array Logic

- The AND plane is programmable but the OR plane is fixed.
- To relieve the fabrication complexity of programmable switches

Complex PLD

Field Programmable Gate Array

LUT for Logic Function

- 3 inputs: 8-W latches
- 4 inputs: 16-W latches
- 5 inputs: 32-W latches
- Granularity vs
 overhead → 4 to 6
 inputs are
 commonly found

Another LUT Implementation

Pipelining/Sequencing

Configurable Logic Block (CLB)

Configurable Logic Block (CLB)

- 12 inputs, 4 outputs, 1 clock
- Three LUTs (G, F, H); 4-input and 3-input
- M9, M14 for rising, falling edge selection
- S/R: set and reset control
- Clocked and non-clocked output support
- LUTs can be programmed as a data storage during the start-up

IO Block

- M5, M7: clocked input and output selection
- Delay: slow down the input data relative to ICLK (FPGA internal clock) to avoid hold time violation
- M1-M4: polarity inversion
- Analog control: slew rate and passive pull-up and —down selection

Interconnect

- Direct: direct connection to nearby CLBs; unidirectional
- Double and single: respectively have hops (programmable switches) in every two and every CLBs
- Long: data travels all the way across a row or a column without hops, and driven by tri-state drivers near CLBs (something like a bus)

Interconnect

Connecting Interconnects

PSM: Programmable Switch Matrix

- Connecting the four wires in various ways
- Six exemplary connections

FPGA Programming Example

