9. Előadás Ajánló rendszerek

A hosszú farok eloszlás

- Az internet előtt az volt a jellemző, hogy pár termék generálta a forgalom nagy részét, és mivel a hely is limitált az üzlethelységben, a kevesek által keresett termékek nem kaptak helyet a polcon.
- Az internetes kereskedelem elterjedése helyet adott a vásárlók szűk csoportja számára vonzó, niche termékeknek, amik specifikus felhasználásukkal vonzzák be a vásárlókat.
- Ez a vásárlóknak szélesebb termékspektrumot, az eladóknak pedig nagyobb vásárlóközönséget jelentett.

Mik azok az ajánló rendszerek?

- Ez elég magától értetődő: ahogy a név is sugallja, olyan technikák vagy rendszerek, amelyek valamilyen terméket, szolgáltatást vagy entitást javasolnak a számukra rendelkezésre álló információ alapján.
- Más szóval: objektumok két csoportja közötti kapcsolatok felderítése.
- Pl. Filmek, termékek, könyvek ajánlása vásárlóknak

A probléma felírása

- Az alap elgondolás, hogy ajánlásokat szeretnénk tenni rendelkezésre álló adatok alapján.
- Különböző rendszertípusoknak különböző igénye van az adatok forrásával, milyenségével, folyamatos rendelkezésre állásával szemben.
- A rendszereket sem mindegy, milyen predikcióra optimalizáljuk. Ez a skála a népszerű, sokaknak megfelelő tartalomtól a személyre szabott, specifikus ajánlásokig terjedhet.

A predikciós probléma

- A feladatnak ebben a verziójában rendelkezünk egy m felhasználóból és n termékből álló mátrixszal. Az i-edik sor j-edik oszlopa jelenti azt, hogy adott felhasználó hogyan értékelte a vonatkozó terméket.
- Vegyünk egy komplexebb példát: ha a Netflix adatbázisában 20000 film és 5000 felhasználó található. Ez egy 20000 * 5000-es mátrixot ad eredményül.
- Viszont az egyes felhasználók a filmek töredékét sem látták: ez egy ritka-mátrix (sok üres értékkel).
- A feladat tehát a mátrix hiányzó értékeinek a megbecslése a filmekről és felhasználókról rendelkezésre álló információ alapján.
- Értékelések szempontjából megkülönböztetünk explicit és implicit értékeléseket.

	iı	i ₂	i ₃	i ₄	i ₅	i ₆
8	4	?	3	?	5	?
U2)	?	2	?	?	4	1
U3	?	?	1	?	2	5
Q	?	?	3	?	?	1
U 5	1	4	?	?	2	5
U ₆	5	?	2	1	?	4
UT	?	2	3	?	4	5

A rangsorolási probléma

A rangsorolás a predikciós problémának az intuitívabb megfogalmazása.

BHa adott n elem halmaza, a rangsorolási probléma megpróbálja megkülönböztetni a legjobban javasolható k elemet, amit javasolhat egy

Show all (2000+)

felhasználónak a rendelkezésre álló információ alapján.

Nem nehéz belátni, hogy a predikciós probléma gyakran a rangsorolási problémához vezet vissza.

AR típusok 1: Kollaboratív szűrők

- Azokat a rendszereket, amelyek a közösség által adott értékelésekből, használati metrikából állítanak össze javaslatokat, kollaboratív szűrőknek nevezzük.
- Két típusát lehet megkülönböztetni:

Felhasználó-alapú: azok a felhasználók, akik hasonló termékeket vásároltak, hasonló

termékeket fognak vásárolni a jövőben is.

Termék-alapú: ha a felhasználók a termékeket hasonlóan értékelték, hasonlónak kell lenniük.

Termék-alapú rendszerek eljárása

- Ahhoz, hogy megtaláljuk valamely termékhez a leginkább hasonlót, először kiszámoljuk, mennyiben hasonlít a többi termékhez, berendezzük növekvő sorrendbe, majd kiválasztjuk a hozzá legközelebb taláhatót.
- Előnye, hogy a döntéseit könnyen meg lehet indokolni: "ha tetszett ez, tetszeni fog az".

De hogyan számítódik ki a hasonlóság?

- Feltételezzük, hogy a hasonlóság statikus, tehát előzetesen, offline ki lehet őket számolni.
- Először az Amazon alkalmazta és publikálta ennek a módszertanát Greg Linden publikálta. A termék-termék kollaboratív szűrésre ezt az algoritmust hozta:

```
For each item in product catalog, I_1 For each customer C who purchased I_1 For each item I_2 purchased by customer C Record that a customer purchased I_1 and I_2 For each item I_2 Compute the similarity between I_1 and I_2
```

Ennek az eredménye egy olyan adatszerkezet, amelyben termékenként lehet keresni a hasonló egyedek között.

Példa hasonlósági tábla összeállítására

- Vegyünk egy hasonlósági mátrixot, és csináljuk meg hasonlósági táblát.
- Mindenki látta a MiB-et, ezért végig kell menni az összes felhasználón. Az első Sara, aki látta a Star-Trek-et, Braveheart-ot, Sense and Sensibility-t, és a Les Miserables-t.
- Ezeket a filmeket hozzáadjuk a MiB-bel együtt értékeltekhez, és végig megyünk az összes felhasználón. Az eredmény:

	Comedy	Action	Comedy	Action	Drama	Drama
Sara	5	3		2	2	2
Jesper	4	3	4		3	3
Therese	5	2	5	2	1	1
Helle	3	5	3		1	1
Pietro	3	3	3	2	4	5
Ekaterina	2	3	2	3	5	5

- MIB: [ST, B, SS, LM, AV]
- ST: [MIB, B, SS, LM, AV]
- B: [MIB, ST, SS, LM, AV]
- SS: [MIB, ST, B, LM, AV]
- LM: [MIB, ST, SS, B, AV]
- AV: [MIB, ST, B, SS, LM]

Két egyed hasonlóságának kiszámítása

- Ehhez a módosított koszinusz hasonlósági függvényt kell használnunk. Azért a módosítottat, mert normalizálja az eredményeket, hogy —1 és 1 közé essenek. Egyébként nagyon hasonlóan működik a Pearson korrelációs együtthatóhoz.
- A számításokhoz szükséges:
 - $colon r_{i,u}$: az i-edik film értékelése u felhasználótól
 - $cap r_u$: u felhasználó átlagos értékelése
 - $colon n r_{i,u} = r_{i,u} \bar{r}_{i,u}$: normalizáláshoz szükséges tényező

$$\operatorname{Sim}(\text{"MIB","ST"}) = \frac{\sum_{u} n r_{MIB,u} n r_{ST,u}}{\sqrt{\sum_{u} n r_{MIB,u}^2} \sqrt{\sum_{u} n r_{ST,u}^2}}$$

Korrelációs mátrix létrehozása

Ha a felhasználókra számított normalizált értékelésekre korrelációs együtthatót számítunk, megkapjuk a film-film hasonlósági mátrixot. Az 1-es jelenti a tökéletes hasonlóságot, a −1 a tökéletes különbözőséget. Az előbb felvázolt módszerrel felírható minden filmnek a normalizált értékelése a felhasználó átlagos értékelései szerint. A pozitív értékek a felhasználónál jobbnak számítanak, mint az átlagos, a negatívak pedig rosszabbat.

	PROTECTING THE EARTH FROM THE SOUM OF THE UNIVERSE MEN IN BLACK	STAR TREK	ME VENTAL	BRAVEHEART	00	In Munancas
MIB	1	0.63	1	-0.21	-0.88	-0.83
ST	0.63	1	0.35	-0.47	-0.64	-0.62
AV	1	0.35	1	0.01	-0.89	-0.83
В	-0.21	-0.47	0.01	1	-0.23	-0.32
SS	-0.88	-0.64	-0.89	-0.23	1	0.96
LM	-0.83	-0.62	-0.83	-0.32	0.96	1

AR típusok 2: Tartalom alapú rendszerek

- A kollaboratív szűrőkkel ellentétben a tartalom alapú szűrőknek nincs szükségi információra múltbeli vásárlásokról és információról. Ehelyett a javaslatokat a felhasználók profiljai és a termékek metaadatai alapján állítják össze.
- Példa erre a Netflix ajánló rendszere: mikor először bejelentkezünk, megkér rá, hogy értékeljünk olyan filmeket, amiket már korábban láttunk.
- Ezeknek a filmeknek a metaadatai alapjánfogja tudni összeállítani a javaslatokat.
- Probléma: a tartalomalapú rendszerek nem használják ki a közösség adta lehetőségeket, ezért a predikciók gyakran nyilvánvalóak.

Tartalom alapú rendszerek csővezetéke

Az alap elgondolás az, hogy ahogy 33a felhasználó érintkezik a rendszerrel, az megpróbál bizonyos elemekhez hasonlóakat mutatni neki anélkül, hogy a felhasználó bármikor véleményt adott volna a tartalommal kapcsolatban.

A releváns tartalom megtalálására egy gyakori megodás a tag: a Web2.0 idején megjelent weboldal tartalmára utaló kulcsszavak. Illetve a fact, ami tényszerűen

írja le az elemet pl.: év.

Egy másik lehet a TF-IDF vektorizáció: egy numerikus mutató, ami arra utal, hogy egy szó mennyire fontos adott dokumentumban egy szövegtörzsön vagy gyűjteményen belül.

Tartalom alapú rendszerek részei

- Tartalomelemző: a tartalom alapján készít modelleket az elérhető elemekről.
- Felhasználó profilozó: felhasználói profilokat készít. Ez gyakran egy egyszerű lista azokról az elemekről, amiket a felhasználó fogyasztott.
- Elem visszakereső: ennek a komponensnek fel kell keresnie a releváns tartalmakat azáltal, hogy a felhasználói profilokat összehasonlítja az elemek profiljaival.

AR típusok 3: Tudásalapú rendszerek

Az ajánló rendszereknek ez a fajtája olyan tételek esetén használatos, amiket az emberek nagyon ritkán vásárolnak.

Ebből az okból kifolyólag lehetetlen, hogy az előbb felsorolt típusok közül

valamelyikbe bekerüljenek ezek az egyedek. Például: ingatlan vásárlások.

- Ebben a renszerben való kereséshez a felhasznláló megadja a termék elvárt paramétereit, mint pl. szobák száma, alapterület stb..., és a rendszer megadja azokat az egyedeket, amelyekre jellemzőek az elvárt paraméterek.
- Hátránya, hogy a keresés nem fog váratlan, újszerű eredményeket adni, kiszámítható a működése.

AR típusok 4: hibrid megközelítések

Ahogy azt a név is sugallja, a hibrid rendszerek ötvözik az eddig felsorolt típusokat. Ahogy már láttuk az előző példákból, minden modell fajtának megvannak az előnyei és a hátrányai. A hibrid rendszerek megpróbálják ezek előnyeit megtartani, és a hátrányait kihagyni a rendszerből.

Három típusa:

- Monolitikus
- **Együttes**
- **@**Kevert

Monolitikus hibrid ajánló rendszerek

- Ezek az ajánló rendszerek Frankensteinjei. Egy ajánló rendszer általánosságban több komponenst tartalmaz különböző feladatok elvégzéséhez, mint a hasonlóság-számító, elemkiválasztó.
- Egy monolitikus ajánló különböző rendszerek komponenseit használja fel egy csővezetékbe építve. Gyakori, hogy extra lépéseket is hozzáad a folyamathoz annak érdekében, hogy javítsa a predikciókat.
- Például, tartalomalapú adatok keverése viselkedéshez köthető javaslatokkal:

	Sci-fi 1	Sci-fi 2	Sci-fi 3	Sci-fi 4
User 1	4	4		
User 2	5	4		
User 3			2	4
Sci-fi lover	5	5	5	5

Kevert hibrid ajánlók

- A kevert rendszerek valójában nem csinálnak túl sok keverést. Ebben az az eljárás, hogy a több, szigetszerűen működő ajánló rendszer predikcióinak unióját téríti vissza.
- Az ajánló rendszert fel lehet fogni úgy, mint a személyreszabottság mértékét. Az elsőt a lehető leg személy specifikusabb predikciók jellemzik, míg az utolsót a legnépszerűbbek. Gyakran a személyreszabott rendszerek 1-2 predikciót adnak, míg a nészerűek sokkal többet.
- Ha minden rendszer egy pontszámot térít vissza, ezt normalizálva rendezett listát lehet belőlük készíteni, amely megadja a fontosság sorrendjét.

Együttes hibrid ajánlók

- Ahogy az együttes tanulás esetében, úgy az együttes ajánlók is több különálló modell predikióit kombinálják össze eggyé. A válaszok aggregálása történhet különböző módszerekkel, mint a szavazás, súlyozás, kapcsolás.
- Az ábrán erre látunk egy példát: a Recommender 1 predikciói [1,5,6], a Recommender 2 predikciói [5,6,3]. Ekkor a hibrid végső eredménye [5,6,1] lesz.
- Ez az eredmény változhat attól függően, hogy hogyan számítjuk a döntetlent.

Kapcsolt és súlyozott együttesek

- A bal oldali ábrán egy kapcsolt modellt láthatunk, ami attól függően választ a modellek predikciói közül, hogy a kérdéses felhasználó kevesebb, vagy több terméket értékelt. A mögöttes elgondolás, hogy aki keveset értékelt, annak a vásárlói kosara több releváns információt tartalmazhat.
- A jobb oldali pedig egy súlyozott együttes: a benne jelen levő ajánlók megkülönböztetett súllyal számítanak bele a predikcióba. A probléma felvetése, hogy a tartalomalapú rendszer nem tesz különbséget jó és rossz minőség között, a kollaboratív szűrés pedig nem tesz különbséget fontosságban.

Egy komplexebb ajánló rendszer ökoszisztémája

- A felhasználói interakció a bal felső sarokban kezdődik, majd kerül bele a rendszerbe.
- Ez egy nem teljes ábra, hiányoznak pl. az adatgyűjtő, modelleket tanító komponensek.

