简介:

LPD6803 是专为 LED 灯光系统设计的驱动芯片,它采用先进的高压 CMOS 工艺,提供三路恒流驱动和灰度调制输出,特别适合离散的多灰度全彩色灯光系统。

LPD6803 芯片包括串行移位寄存器和级联驱动电路,灰度数据在时钟上沿移入串行移位寄存器,转储后经脉宽调制转为3端口并行输出,串行移位寄存器和灰度计数器可以由不同的时钟信号控制。同时,LPD6803 将数据和控制信号经内部驱动后输出给下一级电路。

特性:

- ◆ 三路驱动输出,每路最大电流达 45mA, LED 灯电压可达 12V
- ◆ 输出级采用 IN-RUSH 在线反馈模式的恒流驱动结构,兼容恒压驱动模式,也可以外接器件转换成更高电压或电流的输出驱动
- ◆ 内置 LDO 稳压电路,供电范围可达 3-8V,并有 5V 稳压输出
- ◆ 采用自增码令牌技术的双线移位总线,移位时钟可达 25MHz
- ◆ 直接输入灰度数据,经内部 SUPER-PWM 技术转化为带反伽码校 正的 256 级输出,如采用内置振荡器作为灰度时钟,支持不间断 FREE-RUN 调制输出,特别适合低成本控制器应用
- ◆ 数据时钟信号经过内置锁相再生电路,强驱动后提供给下级芯片 以提高级联级数
- ◆ 高压 CMOS 工艺,工业级设计,抗干扰性能极强
- ◆ 符合 RoHS 环保要求的 SOP16 等无铅封装,也可提供 COB 封装或 DIE 裸片

管脚图:

管脚功能描述:

管脚	信号名称	信号功能解释	
1	DIN	串行数据输入。内置上拉。	
2	GMODE	灰度矫正方式: GMODE=1,采用线性调制, GMODE=0 采用Gmo采用反伽码 256 级非线性调制。内置上抄 须为0.否	】 de=0时,Cmode必 者,不然连续时钟
3	OMODE	控制输出极性: OMODE=1, 输出为内恒流/ 下闪烁 动模式, OMODE=0, 为外挂驱动模式。内置上拉。	
13	CMODE	选择内部灰度时钟源 GCLK: CMODE=0, GCLK=DCLK, CMODE=1, GCLK=内部振荡器输出。内置上拉	
4	DCLK	串行数据的时钟输入,内置上拉	
5, 7, 11	OUT1, OUT2, OUT3	三路驱动输出端	
6, 8, 10	FB1, FB2, FB3	恒流模式下反馈输入端	
15	DOUT	串行数据输出,经内部强驱动输出	
12	DCLKO	串行时钟输出,经内部锁相再生和强驱动输出	
16	VCC	LDO 的电源电压,范围在 4.5~8V	
14	VOUT	VCC>5V 时, 5V 稳压输出, VCC<5V 时, V0UT=VCC, 同时作内部工作电压, 建议外接一个 0.01uF—0.1uF的退耦电容到地	
9	GND	地	

功能框图:

基本时序:

- A. 先移入 32BIT 的'0'作为起始帧,再移入各数据帧,起始帧 和数据帧均是高位先移入,每个数据位在 DCLK 上升沿被打 入;
- B. 第1个数据帧是对应距移入端最近 LED 灯, 其格式包括1比 特起始位'1'+三组5 比特的灰度值;

性能参数:

● 极限参数:

参 数	符号	范 围	单 位
供电电压	$V_{ m DD}$	3~8	V
LED 灯电压	V_{LED}	3~12	V
数据时钟频率	F_{CLK}	25(兼灰度时钟时为 10)	MHz
最大驱动电流	I_{OMAX}	恒压 45, 恒流 30	mA
通道电流偏差	D_{IO}	片内<5%,片间<6%	%
功耗	P_{DMAX}	600	mW
焊接温度	T_{M}	300(8S)	${\mathbb C}$
工作温度	T_{OP}	-40~+80	${\mathbb C}$
存储温度	T_{ST}	-65~+120	${\mathbb C}$

● 建议工作参数:

参 数	符号	范 围	单 位
供电电压	$V_{ m DD}$	5~7.5	V
稳压输出电压	V _{OUT}	5±5%(典型值)	V
输入电压	$V_{\rm IN}$	-0.4~V _{OUT} +0.4	V
数据时钟频率	F_{CLK}	0~15	MHz
时钟高电平宽度	T_{CLKH}	>30	ns
时钟低电平宽度	T_{CLKL}	>30	ns
数据建立时间	T_{SETUP}	>10	ns
数据保持时间	T_{HOLD}	>5	ns
功耗	P_{D}	<350	mW
工作温度	T_{OP}	-30~+60	${\mathbb C}$

● **时序参数:**(T=25°C, V_{DD}=5V,OMODE=1, GMODE=0, CMODE=1)

参 数	符号	测试条件	范 围	单 位	
输入信号最大上升	T_R	V _{DD} =5V	< 500	ns	
和下降时间	T_{F}	v _{DD} -3 v	<400		
级联输出信号最大	T_{TLH}	$C_L = 30 pF, R_L = 1 K$	<15	ns	
上升和下降时间	T_{THL}	С[-30рг,К[-1К	<15		
级联输出信号最大	T_{PD}	C = 20nED $= 1V$	<12	12.0	
延迟时间	T _{CO}	$C_L=30pF,R_L=1K$	<12	ns	
驱动输出最小 PWM 开启宽度	T _{ONMIN}	I _{OUT} =20mA	200	ns	
驱动输出信号最大	Ton		<80	ns	
开启和关闭时间	T_{OFF}	I _{OUT} =20mA	<80		

典型应用电路:

▶ 内恒压驱动(兼容 ZQL9712) 模式:

该模式(OMODE=高电平或悬空)适用于 VDD 电压不大于 12V,

且每路电流不大于 40mA 的情况,如果 VDD<7.5V,也可以把上图中蓝色虚线框内部分省略,直接把 VDD 接到 VCC。

电流调节电阻计算: R_L = $(V_{DD}$ - V_{LED} - $V_{OUT}) /I_{LED}$

这里: R_L 为限流电阻阻值, V_{DD} 为 LED 灯供电电压, V_{LED} 为 LED

灯导通压降, V_{OUT} 为输出端对地饱和压降(约 0.4-0.8V), I_{LED}为 LED 工作电流(一般不超过 20mA)

LPD6803 有较强的驱动能力,某些多 LED 应用场合可以采用"先串再并"方式连接(如右图),但要注意耗散功率 Pp 不得超过最大值 Ppmax:

 $P_D = I_{LED1} *V_{OUT1} + I_{LED2} *V_{OUT2} + I_{LED3} *V_{OUT3} + P_{IC}$ 这里 P_{IC} 为 IC 基本功耗,一般不超过 25mW

> 内恒流驱动模式:

该模式(OMODE=高电平或悬空)适用的情况与上个模式基本一致,只是在 FB_X 端多了一个调节电流的 R_X ,这时流过 LED 的电流完全由 R_X 决定: $I_{LED}{\approx}0.7V/R_X$

图表 1: I_{LED}-R_X 曲线

注意导通后输出口的对地电压 V_{OUT} 必须在 1.1-6V 之间才能保持恒流状态,即满足:

$$V_{\text{LED}}$$
+6V+ I_{LED} * $R_{\text{L}} \ge V_{\text{DD}} \ge V_{\text{LED}}$ +1.1V+ I_{LED} * R_{L}

电路参数取值还必须注意耗散功率 PD 不会超过其最大值 PDMAX:

$$P_D = I_{LED1} * (V_{OUT1} - 0.7V) + I_{LED2} * (V_{OUT2} - 0.7V) + I_{LED3}$$

$$* (V_{OUT3} - 0.7V) + P_{IC}$$

这里 $I_{LED1}/I_{LED2}/I_{LED3}$ 分别是流过各路 LED 灯的电流值, $V_{OUT1}/V_{OUT2}/V_{OUT3}$ 分别是各输出口对地的电压。

 R_L 一般取值几十欧姆,对 I_{LED} 的大小没有影响,也可以不用,但加上适当大小的 R_L 有助于分担芯片耗散功率 P_D ,提高工作稳定性。

▶ 外挂恒压驱动模式:

该模式(OMODE=接地)适用于多 LED 或灯电压较高的情况,实际上是通过 OUT_x 输出电平控制外接的 NPN 三极管驱动多个 LED。

限流电阻计算: R_L= (V_{DD}-V_{LED}-V_{CE}) /20mA

这里三极管工作在开关区, V_{CE} 是三极管的饱和压降, 一般取

0.5V-0.8V,基极电阻 R_B 可取 2K-5K,其他信号连接方式与前面模式相同。

该模式常用于多路"先串再并"接法,鉴于串联支路里任意一个 LED 断路时,会导致该支路全部 LED 都不亮,所以使用该接法应遵循如下的原则:支路串联 LED 数不宜多(一般取 3—6 只),支路并联数不宜少。这样不仅缩小了烧断一只 LED 的故障影响面,而且将限流电阻化整为零,将大功率电阻变成多只小功率电阻,由集中安装变成分散安装,既利于电阻散热,又便于将灯具设计得更紧凑。

▶ 外挂恒流驱动模式:

该模式(OMODE=高电平或悬空)适用于单串多个 LED 且 V_{DD} 超过 $12\,V$ 的情况,其实质是保持电路的恒流驱动特性的同时,通过外接三极管提高驱动耐压能力。

流过 LED 的电流: $I_{LED}=I o*\beta/(\beta+1)$

这里 <u>Io 为 Rx 在图表 1 中对应的电流值</u>,<u>三极管工作在放大区</u>, β 是三极管的放大倍数,当 β 较大时,上式可近似为:

I_{LED}=Io (基极电阻 R_B可取 5K)

最高的 V_{DD} 耐压取决于 NPN 三极管的 V_{CEO} , 一般在 25V 以上。

> 级连信号的驱动和连接:

考虑到芯片间的级连传输距离可能会很长的情况,DOUT 和 DCLKO 输出端设计了推挽式强驱动电路,经试验时钟为 2M 时可以驱动达 6 米的信号线,为防止信号反射一般应用时请在 DOUT 和 DCLKO 口各串接一个 50 欧姆左右的电阻后再输出到下一级。

控制电路与软件设计参考:

通过 CMODE 管脚的设置,LPD6803 的灰度计数器可采用 DCLK 作为时钟源(CMODE=0),也可以用内置的 1.2MHz(误差±15%)振荡器输出作为时钟源(CMODE=1 或悬空),前者一般配合基于 CPLD/FPGA等成本较高的控制系统,后者则常用于低成本的单片机控制系统。

在 CMODE=1 模式,MCU 通过 SPI 或二根 GPIO 口线把显示数据打入芯片,其后各芯片按照打入的灰度值自动产生相应占空比的驱动输出,数据传输完毕后,MCU 可以处理其他事务,此期间各 LPD6803 将继续保持原占空比的驱动输出(FREE-RUN 模式),直至 MCU 发出下一组的更新数据为止。

注意:在 DCLK 的上沿把所有数据打入芯片的过程结束后,需要 多发送若干个 DCLK 脉冲 (DIN=0),原则上传输链中有多少组点就多 发相应数目的脉冲,这是为了让后续芯片内置的锁相再生电路能够正常工作所必须的。

为了使 LPD6803 仅用较少的数据产生更细腻的灰度层次,当 GMODE=0/CMODE=0 时,芯片内置的 SUPER-PWM 机制可以把 5 比特的数据转换为非线性的 256 级灰度输出,最小开启宽度为 1T,最大开启宽度为 256T (T 为灰度时钟源周期)。

当 GMODE=1 或悬空时,输出为线性 32 级灰度,最小开启宽度为4T,最大开启宽度为128T。

➤ C51 例程:

```
// SDO, SCLK 为数据和移位输出口,位变量,nDots 为灯的个数
// 本程序仅适用于 GMODE=1, CMODE=1 的情况
// 首先输出 32 个'0'的起始帧
   SCLK=0;
   SD0=0;
   for(i=0;i<32;i++) { SCLK=1;SCLK=0; }
// 再输出 nDots 点的数据,这里假设各点的颜色都是(dr, dg, db)
// dr, db, dg 为红绿兰的灰度值 0-31
   for (i=0; i \leq nDots; i++)
    { SD0=1; SCLK=1; SCLK=0; //首先输出1个'1'起始位
       //输出5位红色数据
       mask=0x10;
       for (j=0; j<5; j++)
        { if(mask & dr) SDO=1;
                SD0=0;
           else
           SCLK=1; SCLK=0;
           \max k >>=1; }
       //输出5位绿色数据
       mask=0x10;
       for (j=0; j<5; j++)
        { if(mask & dg) SDO=1;
           else
                SDO=0;
           SCLK=1; SCLK=0;
           mask >>=1; }
       //输出5位兰色数据
       mask=0x10;
       for (j=0; j<5; j++)
        { if(mask & db) SDO=1;
                SD0=0;
           else
           SCLK=1; SCLK=0;
           \max k >>=1;
   //输出完 nDots 的数据后,还要补 nDots 个脉冲
   SD0=0;
   for(i=0;i<nDots;i++) { SCLK=1;SCLK=0; }</pre>
   //传输结束
   delay();
   //这里加延时,或转去作其他处理,待到一定时间后(比如1/30秒),再过来刷新
```

▶ LPD6803 占空比对照表:

输入数据	输出占空比(单位: 1/256)		
0	0		
1	1		
2	3		
3	5		
4	8		
5	12		
6	16		
7	21		
8	26		
9	32		
10	38		
11	45		
12	52		
13	60		
14	68		
15	76		
16	85 95		
17			
18	105		
19	115		
20	125		
21	136 148		
22			
23	160		
24	172		
25	185		
26	198		
27	211		
28	225		
29	239		
30	254		
31	256		

注:此表为 GMODE=0 情况下,LPD6803 输入 32 级灰度对应的输出占空比,其数据对应 GAMMA=1.8 时的校正曲线。

SOP16 封装外形尺寸:

Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN	ISSUE DATE	
	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE
SOT109-1	076E07S	MS-012AC			+	95 01 23 97-05-22