Democratizing Autonomous Driving

Cloudy Liu

Brandon Griffin

Anthony Clemens

Scenarios Considered

Can we...

- 1. train a model using CNN to make the car to finish a lap?
- 2. use a smaller dataset to achieve the similar result?
- 3. break through the hardware limitations?
- 4. optimize the model to drive more like a human, rather than swerve in the lane?
- 5. optimize the model to drive as fast as possible while still being able to stay in the lane?

The Process

Data Collection

- Source: Udacity driving simulator
- Dataset used:
 - Udacity-released driving data (big scale)
 - Self-generated data (smaller scale)

Exploratory Data Analysis

- Input: Center camera image
- Output: Steering Angle
- Assistance: Left and right camera images, using corrections

Exploratory Data Analysis - cont.

Unbalanced data: calls for image preprocessing & augmentations

Image Preprocessing

- Before being fed into the neural network each image requires preprocessing
 - Cropping
 - Resizing
 - Converting RGB to YUV color space
- Purpose: to increase the efficiency of input data

Image Augmentation

- Images are augmented ~60% of the time, including:
 - random flip
 - random translation
 - random shadow
 - random brightness
- Purpose: artificially introducing variance into the training, combat overfit

Example of random flip transformation on images

Image Augmentation

- Images are augmented ~60% of the time, including:
 - random flip
 - random translation
 - random shadow
 - random brightness
- Purpose: artificially introducing variance into the training, combat overfit

Example of random brightness transformation on images

Image Augmentation

- Images are augmented ~60% of the time, including:
 - random flip
 - random translation
 - random shadow
 - random brightness
- Purpose: artificially introducing variance into the training, combat overfit

Example of random shadow transformation on images

Generator

 Generator allows us to partition data into bite size chunks that are able to be loaded into memory.

Custom Loss Function

- Other models such as MSE, and Huber, featured a lot of swerving
- Idea: add additional penalties to the cost function in an attempt to change the behavior of the car and make it drive more human-like.

SHOW TIME (with speed limit)

SHOW TIME (without speed limit)

Model Evaluation

Model Evaluation

- Automated detection of important road features
 - Successful at maintaining lane without lane marks
- Single lap completion with speed limit enforced
 - Less than 30 mins of steering data sufficient for training the model
- Capital expenditure on Research & Development is reduced
 - Accelerate workloads: Entry level workstation GPU < \$350
 - Offload work entirely: cloud services < \$75 to run for 40 hours
- Model optimized to drive more "human-like"
 - Single lap completion at high-speeds not observed with current training parameters

Recommendations

- Mid-sized car companies:
 - Don't feel intimidated to compete in auto-tech market!
- Companies with long-hauls & fixed routes:
 - Postal service, trucking industry, ground transportation
- Driving co-pilot for all:
 - Inexpensive accident averting detection device
 - Reduce fatigued-driving related fatalities

Next Steps

Limitations

- Due to simplistic nature of design, model's applications are best suited for predictable road conditions
 - Remote highway
 - Rush hour traffic —
- Long train times:
 - ~40 min per epoch

THANK YOU

Cloudy Liu

Brandon Griffin

Anthony Clemens