Zadanie 1.

Łączna wartość szkód w pewnym portfelu ryzyk:

$$S = Y_1 + \ldots + Y_N,$$

ma złożony rozkład Poissona, gdzie E(N) = 100 i rozkład wartości pojedynczej szkody Y jest taki, że:

- $\bullet \quad E(Y) = 22$
- $E(Y^2) < \infty$
- Pr(Y > 20) = 0.40
- wartość oczekiwana nadwyżki szkody ponad 20 wynosi $E[(Y-20)_{+}]=10$

Niech teraz zmienna S_R oznacza łączną wartość nadwyżek każdej ze szkód ponad wartość 20, pokrywaną przez reasekuratora:

$$S_R = (Y_1 - 20)_+ + ... + (Y_N - 20)_+,$$

zaś zmienna $S_U = S - S_R$ oznacza pozostałą na udziale własnym ubezpieczyciela kwotę, a więc:

$$S_U = \min\{Y_1, 20\} + \dots + \min\{Y_N, 20\}$$

Ile wynosi $COV(S_R, S_U)$? (wybierz najtrafniejszą odpowiedź)

- (A) 8 000
- (B) 10 000
- (C) 16 000
- (D) 20 000
- (E) brakuje danych, by podać odpowiedź liczbową

Zadanie 2.

Łączna wartość szkód z polisy wynosi:

$$X = Y_1 + ... + Y_N$$
, (zero, jeśli $N = 0$).

Przy danej wartości parametru ryzyka $\Lambda=\lambda$ zmienna X ma rozkład złożony Poissona z oczekiwaną ilością szkód równą $E(N/\Lambda=\lambda)=\lambda$ oraz rozkładem pojedynczej

szkody o wartości oczekiwanej
$$E(Y/\Lambda = \lambda) = \frac{40}{3} \cdot e^{-\lambda}$$
.

Zróżnicowanie parametru ryzyka Λ w populacji ubezpieczonych opisuje rozkład Gamma o parametrach (2,10), tzn. o gęstości na półosi dodatniej danej wzorem: $f_{\Lambda}(\lambda) = 10^2 \cdot \lambda \cdot e^{-10 \cdot \lambda}$.

Wartość oczekiwana (bezwarunkowa) zmiennej X wynosi:

- (A) 2,00
- (B) 2,06
- (C) 2,13
- (D) 2,20
- (E) 2,27

Zadanie 3.

Ilość szkód z N pewnego ryzyka ma rozkład Poissona z wartością oczekiwaną równą λ , a wartości kolejnych szkód $Y_1,Y_2,...,Y_N$ są zmiennymi losowymi o identycznym rozkładzie, niezależnymi nawzajem i niezależnymi od zmiennej N.

Rozkład wartości pojedynczej szkody określony jest na przedziale (0,1] i ma wartość oczekiwaną równą $\mu \in (0,1)$.

Ubezpieczyciel wystawia na to ryzyko polisę z sumą ubezpieczenia 1, z pokryciem każdej kolejnej szkody proporcjonalnym do "nieskonsumowanej do tej pory" części sumy ubezpieczenia, a więc:

- za (ewentualną) szkodę Y_1 wypłaca odszkodowanie w pełnej wysokości Y_1
- za (ewentualną) szkodę Y_2 wypłaca odszkodowanie w wysokości $(1-Y_1)\cdot Y_2$
- za (ewentualną) szkodę Y_3 wypłaca odszkodowanie w wysokości $[1-Y_1-(1-Y_1)\cdot Y_2]\cdot Y_3$, co równe jest $(1-Y_1)\cdot (1-Y_2)\cdot Y_3$
- za (ewentualną) szkodę Y_4 wypłaca odszkodowanie w wysokości $[1-Y_1-(1-Y_1)Y_2-(1-Y_1)(1-Y_2)Y_3]\cdot Y_4$, co równa się $(1-Y_1)(1-Y_2)(1-Y_3)\cdot Y_4$, itd.

Składka netto za to ubezpieczenie wynosi:

(A)
$$1-e^{-\lambda\mu}$$

(B)
$$1 - \mu \cdot e^{-\lambda \mu}$$

(C)
$$\mu \cdot (1 - e^{-\lambda \mu})$$

(D)
$$\frac{\mu}{1-\mu} \cdot \left(1 - e^{-\lambda \cdot (1-\mu)}\right)$$

(E)
$$\frac{\mu}{1-\mu} \cdot e^{-\lambda\mu} \cdot \left(1 - e^{-\lambda \cdot (1-\mu)}\right)$$

Zadanie 4.

Pewne ryzyko generuje w kolejnych czterech kwartałach roku szkody o łącznej wartości X_1, X_2, X_3 X_4 . Zmienne losowe X_i mają identyczny rozkład wykładniczy i są nawzajem niezależne. Ubezpieczyciel pokrywa łączną wartość szkód za cały rok, ceduje jednak na reasekuratora łączną wartość szkód z jednego, wybranego przez siebie kwartału (oczywiście wybierze najgorszy z nich). Jaki jest udział składki reasekuracyjnej w składce ubezpieczeniowej (obie składki policzone są według ich wartości oczekiwanej)?

- (A) 19/48
- (B) 21/48
- (C) 23/48
- (D) 25/48
- (E) 27/48

Zadanie 5.

Łączna wartość szkód z polisy wynosi $X=Y_1+\ldots+Y_N$, (zero, jeśli N=0).

X ma złożony rozkład Poissona, z wartością oczekiwaną zmiennej N równą:

$$E(N) = \ln(1 + \frac{1}{3})$$

zaś Y ma rozkład logarytmiczny:

$$\Pr(Y = k) = \frac{1}{-\ln(1-c)} \cdot \frac{c^k}{k}, \qquad k = 1, 2, ...$$

z parametrem c = 0.25

Znajdź taką liczbę k, że:

$$\Pr(X > k) < \frac{1}{1000} < \Pr(X \ge k)$$

(A)
$$k = 3$$

(B)
$$k = 4$$

(C)
$$k = 5$$

(D)
$$k = 6$$

(E)
$$k = 7$$

Zadanie 6.

Ilość szkód z pewnego ryzyka ma rozkład Poissona z wartością oczekiwaną równą λ rocznie. Wartości szkód Y_i są niezależnymi zmiennymi losowymi o tym samym rozkładzie ciągłym, niezależnymi także od liczby szkód. W związku z istniejącym systemem zniżek ubezpieczony przyjmuje następującą strategię zgłaszania szkód w ciągu roku:

- nie zgłasza szkód, dopóki któraś z nich nie przekroczy liczby x_0
- jeśli wartość którejś szkody przekroczy liczbę x_0 , to jest ona zgłaszana, a następne (ewentualne) szkody zgłaszane są już bez względu na ich wysokość.

Przyjmujemy założenie, iż jeśli szkoda n-ta nie została zgłoszona, to tej decyzji nie można już zmienić w momencie zajścia (n+1)-szej szkody (decyzje o niezgłaszaniu szkód są nieodwołalne).

Oznaczmy dla uproszczenia przez F prawdopodobieństwo, iż wartość szkody nie przekroczy liczby x_0 .

Prawdopodobieństwo, iż ubezpieczony zgłosi dokładnie jedną szkodę (w ciągu roku) wynosi:

(A)
$$e^{-\lambda \cdot (1-F)}$$

(B)
$$e^{-\lambda \cdot (1-F)} \cdot \lambda \cdot (1-F)$$

(C)
$$e^{-\lambda \cdot (1-F)} \cdot \frac{1-F}{F} (1-e^{-\lambda F})$$

(D)
$$e^{-\lambda \cdot (1-F)} \cdot \lambda \cdot (1-F) \cdot (1-\frac{1}{2}\lambda F)$$

(E)
$$e^{-\lambda \cdot (1-F)} \cdot \frac{1-F}{F^2} \left(1 - e^{-\lambda F} - \lambda F \cdot e^{-\lambda F}\right)$$

Zadanie 7.

Rozważamy klasyczny proces nadwyżki ubezpieczyciela postaci:

 $U(t) = u + c \cdot t - S(t)$, gdzie:

- $Y_1, Y_2, ...$ są wartościami kolejnych szkód niezależnymi, o identycznych rozkładach danych dystrybuantą $F(\cdot)$
- N(t) jest procesem Poissona z parametrem częstotliwości λ .

Oznaczmy przez Ψ prawdopodobieństwo ruiny:

 $\Psi = \Pr(T < \infty)$, gdzie T oznacza moment zajścia ruiny:

$$T = \inf\{t: t \ge 0, U(t) < 0\}.$$

Rozważmy dwa warianty procesu, różniące się parametrami:

	С	λ	и	$F(\cdot)$
Wariant 1	2	4	2	$F_1(\cdot)$
Wariant 2	12	8	6	$F_2(\cdot)$

Relacja dystrybuanty F_1 do dystrybuanty F_1 jest postaci:

•
$$\forall x \in R$$
 $F_2(x) = F_1\left(\frac{1}{3} \cdot x\right)$

O procesie w wariancie 1 wiemy, że:

$$\{\Psi, E(T|T < \infty), E(U(T)|T < \infty)\} = \{0.2, 6, -2\}.$$

Wobec tego, w wariancie 2 procesu trójka $\{\Psi, E(T|T<\infty), E(U(T)|T<\infty)\}$ wyniesie:

- (A) $\{0.2, 3, -6\}$
- (B) $\{0.2, 6, -6\}$
- (C) $\{0.5, 3, -2\}$
- (D) $\{0.5, 2, -4\}$
- (E) $\{0.5, 2, -6\}$

Zadanie 8.

Likwidacja szkody zaistniałej w miesiącu t następuje w tym samym miesiącu z

prawdopodobieństwem
$$\frac{1}{4}$$
, a w miesiącu $t+k$ z prawdopodobieństwem $\frac{1}{4} \cdot \left(\frac{2}{3}\right)^{k-1}$.

Wartość każdej szkody wynosi 1. W miesiącach *t*, *t*+1 i *t*+2 zaistniało odpowiednio 33, 40 i 48 szkód. Wyznacz stan rezerwy szkodowej na koniec miesiąca *t*+2, jeśli na początku miesiąca *t* stan tej rezerwy wynosił 54.

- (A) 79
- (B) 81
- (C) 83
- (D) 85
- (E) brakuje danych o strukturze rezerwy na początku *t*-tego miesiąca

Zadanie 9.

Rozważamy klasyczny proces nadwyżki ubezpieczyciela postaci: $U(t) = u + c \cdot t - S(t)$, gdzie:

- $\bullet \qquad S(t) = \sum_{i=1}^{N(t)} Y_i ,$
- $Y_1, Y_2, ...$ są wartościami kolejnych szkód niezależnymi, o identycznym rozkładzie wykładniczym z wartością oczekiwaną μ
- N(t) jest procesem Poissona z parametrem częstotliwości λ .
- c = 1 oraz $\lambda \cdot \mu < 1$, (składka równa 1 na jednostkę czasu, oczekiwany przyrost łącznej wartości szkód mniejszy od 1).

Niech 0 < a < u. Niech

$$T_{a} = \begin{cases} \min\{t > 0 : U(t) < a\}, & gdy \quad \{t > 0 : U(t) < a\} \neq \emptyset; \\ \infty & gdy \quad \{t > 0 : U(t) < a\} = \emptyset, \end{cases}$$

$$T_0 = \begin{cases} \min\{t > 0 : U(t) < 0\}, & gdy \quad \{t > 0 : U(t) < 0\} \neq \emptyset; \\ \infty & gdy \quad \{t > 0 : U(t) < 0\} = \emptyset. \end{cases}$$

Obliczyć $Pr(T_a = T_0/T_0 < \infty)$.

- (A) $\exp[-a\lambda]$
- (B) $\exp[-a/\mu]$

(C)
$$\exp\left[-a\left(\frac{1}{\mu}-\lambda\right)\right]$$

- (D) $\exp[-a\lambda/u]$
- (E) $\exp\left[-\frac{a}{u\mu}\right]$

Zadanie 10.

Liczby szkód $N_1,...N_t,N_{t+1}$ w kolejnych latach są, dla ustalonej wartości parametru $\Lambda=\lambda$, niezależnymi zmiennymi losowymi o jednakowym rozkładzie Poissona z wartością oczekiwaną λ . Niech $N=N_1+...+N_t$. Parametr Λ jest zmienną losową o rozkładzie gamma o gęstości:

$$\pi(\lambda) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \cdot \lambda^{\alpha-1} \cdot e^{-\beta \cdot \lambda}, \ \lambda > 0.$$

Obliczyć $VAR(N_{t+1}/N_1,...,N_t)$.

(A)
$$\frac{\alpha}{\beta} + \frac{\alpha + N}{(\beta + t)^2}$$

(B)
$$\frac{\alpha+N}{\beta+t}$$

(C)
$$\frac{\alpha}{\beta} + \frac{\alpha}{\beta^2}$$

(D)
$$\frac{\alpha+N}{\beta+t} + \frac{\alpha+N}{(\beta+t)^2}$$

(E)
$$\frac{\alpha+N}{\beta+t} + \frac{\alpha}{\beta^2}$$

Egzamin dla Aktuariuszy z 9 grudnia 2000 r.

Matematyka ubezpieczeń majątkowych

${\bf Arkusz\ odpowiedzi}^*$

Imię i nazwisko	KLUCZ	ODPOWIEDZI
Dacal		

Zadanie nr	Odpowiedź	Punktacja⁴
1	D	
2	A	
3	A	
4	D	
5	В	
6	С	
7	A	
8	С	
9	A	
10	D	

^{*} Oceniane są wyłącznie odpowiedzi umieszczone w Arkuszu odpowiedzi.

^{*} Wypełnia Komisja Egzaminacyjna.