Computer Communications and Networks Topologies, Types, Switching BECE401L

Dr. Nitish Katal

Networks: Topologies

Physical topology

- Refers to the way in which a network is laid out physically.
- Two or more devices connect to a <u>link</u>;
- Two or more links form a <u>topology</u>.
- The geometric representation of the relationship of all the links and linking devices (nodes) to one another.

Networks: Topologies: Mesh Topology

Every device has a <u>dedicated point-to-point link</u> to every other device.

In a fully connected mesh network with n nodes

- Every Node must be connected to n-1 nodes.
- We need n(n-1) physical links.
- We need $\frac{n(n-1)}{2}$ duplex-mode links.
- To accommodate that many links, every device on the network must have n - 1 input/output (I/O) ports

Advantages:

- *Dedicated links:* Guarantees that each connection can carry its own data load)
- *Robust*: If one link becomes unusable, it does not incapacitate the entire system
- Secure: every message travels along a dedicated line
- Fault detection & diagnostics are easy

Disadvantages:

Installation
Sheer bulk of wiring
Expensive

Networks: Topologies: Star Topology

Each device has a <u>dedicated point-to-point link only</u> to a <u>central controller</u>, usually called a *hub*

- Unlike a mesh topology, a star topology does not allow direct traffic between devices.
- The controller acts as an exchange:
 - If one device wants to send data to another, it sends the data to the controller, which then relays the data to the other connected device

Advantages:

- Less expensive
- Less requirement of cabling
- Robust

Disadvantages:

Dependency on Hub

Networks: Topologies: Bus Topology

Multipoint Configuration

- One long cable acts as a <u>backbone</u> to link all the devices in a network
- Nodes are connected by <u>drop lines and taps</u>.
 - Drop line: Connection running between the device and the main cable.
 - Tap: is a connector to create a contact with the metallic core.

Advantages:

- Ease of installation
- Backbone cable is laid along the most efficient path
- Then connected to the nodes by drop lines of various lengths.
- A bus uses less cabling than mesh or star topologies.

Disadvantages:

Reconnection
Fault Identification & diagnosis
Usually designed to be optimally efficient at installation

Networks: Topologies: Ring Topology

Each device has a <u>dedicated point-to-point connection</u> with only the two devices on either side of it.

Each device in the ring incorporates a repeater

Each device is linked to only its immediate neighbors (either physically or logically).

Advantages:

Ease of installation, fault Identification & diagnosis

Disadvantages:

- Unidirectional Traffic
 - A break in the ring can disable the entire network.
 - Can be solved using dual rings or self healing rings
- Constraints are media and traffic considerations
 - Maximum ring length and number of devices

Networks: Topologies: Hybrid Topology

Networks: Types

Local Area Networks (LANs)

- Short distances
- Designed to provide local interconnectivity

Wide Area Networks (WANs)

- Long distances
- Provide connectivity over large areas

Metropolitan Area Networks (MANs)

Provide connectivity over areas such as a city etc.

	WAN	• ~ 100 - 1000 Km (Country, Continent)
	MAN	• ~10Km (City)
	LAN	~ 10, 100, 1 Km(Room, Building, Campus)
	PAN	BluetoothFew sq. meter (around a person)

Networks: LAN

Local Area Networks (LANs)

LAN is usually *privately owned* and *connects* some hosts in a single office, building, or campus.

Depending on the needs of an organization,

- Can be as simple as two PCs and a printer in someone's home office, or
- it can extend throughout a company and include audio and video devices.

Each host in a LAN has an identifier,

 an address, that uniquely defines the host in the LAN.

A packet sent by a host to another host carries both the source host's and the destination host's addresses.

Most LANs use a smart connecting switch

a. LAN with a common cable (past)

b. LAN with a switch (today)

A host (of any type) A switch A cable tap A cable end The common cable A connection

Networks: WANs

Wide Area Networks (WANs)

A wide area network (WAN) is also an interconnection of devices capable of communication.

- A LAN is normally limited in size, spanning an office, a building, or a campus;
- a WAN has a wider geographical span, spanning a town, a state, a country, or even the world.
- A LAN interconnects hosts;
- a WAN interconnects connecting devices such as switches, routers, or modems.
- A LAN is normally privately owned by the organization that uses it;
- a WAN is normally created and run by communication companies and leased by an organization that uses it.

Networks: WANs

Wide Area Networks (WANs)

Point-to-Point WAN

 A point-to-point WAN is a network that connects two communicating devices through a transmission media (cable or air).

Switched WAN

- A switched WAN is a network with more than two ends.
- A switched WAN, is used in the backbone of global communication today.
- Switched WAN is a combination of several point-topoint WANs that are connected by switches. Legend

Networks: Internetwork

When two or more networks are connected, they make an internetwork, or internet.

Internetwork

Example, assume that an organization has two offices, one on the east coast and the other on the west coast

Networks: Switching

- An internet is a switched network in which a switch connects at least two links together.
- Switch needs to forward data from a network to another network when required

Circuit Switched Network

- A dedicated connection, called a circuit, is always available between the two end systems;
- The switch can only make it active or inactive.
- Figure shows a very simple switched network that connects four telephones to each end.

- Circuit-switched network is efficient only when it is working at its full capacity;
- Most of the time, it is inefficient because it is working at partial capacity.

Networks: Switching

Packet Switched Network

- In a computer network, the communication between the two ends is done in blocks of data called packets.
 - Instead of the continuous communication, here the exchange of individual data packets between the two computers.
 - This allows to make the switches function for both storing and forwarding
 - A a packet is an independent entity that can be stored and sent later.
- A router in a packet-switched network has a queue that can store and forward the packet.

The Internet

Internet:

Standards, Administration & Protocols

Syntax

- Structure or format of the data
- Indicates how to read the bits field delineation

Semantics

- Interprets the meaning of the bits
- Knows which fields define what action

Timing

- When data should be sent and what
- Speed at which data should be sent or speed at which it is being received.

Internet:

Standards, Administration & Protocols

Internet Society (ISOC)

- is an international, nonprofit organization to provide support for the Internet standards process.
- Maintaining and supporting other Internet administrative bodies such as IAB, IETF, IRTF, and IANA
- Promotes research activities relating to the Internet.

Internet Architecture Board (IAB)

- Is the technical advisor to the ISOC.
- Main purposes of the IAB are to oversee the continuing development of the TCP/IP Protocol Suite.

Internet Engineering Task Force (IETF)

- IETF is responsible for identifying operational problems and proposing solutions to these problems.
- IETF also develops and reviews specifications intended as Internet standards.

Internet Research Task Force (IRTF)

• IRTF focuses on long-term research topics related to Internet protocols, applications, architecture, and technology.

Reference

Forouzan, A. Behrouz. *Data Communications & Networking*. 5th Edition. Tata McGraw-Hill Education.

Chapter 1

Topics: 1.1 - 1.3