Zadaci za vježbu

Da sam prazna glava potpuno zdrava ne bih više ništa učio zabadava samo onolko kolko mi treba da još ostanem paf od tolikog neba

(Mile, HP)

Elastičnost

1 Zadatak: Homogeni štap duljine ℓ , načinjen od materijala gustoće ρ i Youngova modula elastičnosti E, obješen je o svoj kraj. Uslijed težine samog štapa dolazi do njegova produljenja. Izračunaj ukupno produljenje štapa $\Delta \ell$ pretpostavljajući $\Delta \ell \ll \ell$.

Rj:
$$\Delta \ell = \rho g \ell^2 / 2E$$

2 Zadatak: Izvedi izraz koji opisuje produljenje homogenog štapa duljine ℓ , načinjenog od materijala Youngova modula E i gustoće ρ , koji se okreće kutnom brzinom ω oko osi okomite na štap koja prolazi njegovim središtem mase.

Rj:
$$\Delta \ell = \rho \omega^2 \ell^3 / 12E$$

3 Zadatak: Tanki homogeni obruč polumjera R, načinjen od materijala gustoće ρ i Youngova modula elastičnosti E, okreće se oko svoje osi kutnom brzinom ω . Odredi povećanje polumjera obruča do kojeg dolazi uslijed centrifugalne sile.

Rj:
$$\Delta R = \rho \omega^2 R^3 / E$$

4 Zadatak: Izvedi izraz za konstantu torzije $(D = M/\phi)$, omjer momenta sile M i kuta zakreta ϕ) homogene cijevi duljine L, polumjera R, debljine stijenke $\Delta R \ll R$, načinjene od materijala modula torzije G. Zatim poopći izraz za konstantu torzije cijevi unutarnjeg polumjera R_1 i vanjskog polumjera R_2 .

Rj:
$$D_{\Delta} = 2GR^3\pi\Delta R/L$$
, $D_{12} = G(R_2^4 - R_1^4)\pi/2L$

5 Zadatak: Vodoravna žica promjera $d=0.7\,\mathrm{mm}$ i zanemarive mase napeta je silom $T_0=100\,\mathrm{N}$ i učvršćena je u krajnjim točkama. Zatim je ta žica na sredini raspona opterećena utegom mase $m=1\,\mathrm{kg}$, nakon čega kut otklona žice u odnosu na njen početni (vodoravni) položaj iznosi $\alpha=2^\circ$. Odredi Youngov modul elastičnosti E materijala od kojeg je žica načinjena. (ubrzanje grav. sile $g=9.81\,\mathrm{m\,s^{-2}}$)

Rj:
$$E = \frac{4}{d^2\pi} \left(\frac{mg}{2\sin\alpha} - T_0 \right) / \left(\frac{1}{\cos\alpha} - 1 \right) = 1.728 \times 10^9 \text{ Pa}$$

6 Zadatak: Predmet mase m vješamo o strop s pomoću dviju niti koje su za stop pričvršćene na razmaku 2a. Niti su jednakih duljina ℓ , površina poprečnog presjeka S, i načinjene od materijala Youngova modula E. Odredi vertikalni pomak obješenog tijela do kojeg dolazi uslijed rastezanja niti.

Rj:
$$\Delta h = \frac{mg\ell}{2ES} / \left(1 - \frac{a^2}{\ell^2}\right)$$

7 Zadatak: Odredi kut zakreta osovine koja povezuje brodski motor i elisu ako motor pri kutnoj brzini $\omega=180\times 2\pi$ rad min⁻¹ razvija snagu $P=12\,\mathrm{kW}$. Duljina osovine je $L=2\,\mathrm{m}$, promjer $2R=3\,\mathrm{cm}$, a načinjena je od čelika konstante torzije D=.

Rj:
$$\phi = 2PL/GR^4\pi\omega \simeq$$

Titranja

8 Zadatak: Tijelo mase m_1 nalijeće brzinom v_1 na tijelo mase m_2 koje je oprugom konstante k spojeno za čvrsto uporište i miruje. Odredi amplitudu titranja tijela na opruzi nakon sraza tijela m_1 i m_2 pod pretpostavkom da je sraz (a) elastičan, (b) savršeno neelastičan.

$$k$$
 m_1 m_1

Rj:
$$A_{(a)} = \frac{2m_1v_1}{m_1+m_2} \sqrt{\frac{m_2}{k}}, \quad A_{(b)} = \frac{m_1v_1}{\sqrt{(m_1+m_2)k}}$$

9 Zadatak: Dvjema jednakim oprugama zanemarivih masa, ravnotežnih duljina ℓ_0 i konstanti k, sitno tijelo mase m zakvačeno je za uporišta međusobno udaljena $d > 2\ell_0$ (u ravnotežnom položaju opruge su napete). Odredi kružnu frekvenciju malih titraja tijela (a) duž pravca koji prolazi uporištima i (b) u smjeru okomitom na pravac koji prolazi uporištima.

Rj:
$$\omega_{(a)}^2 = 2k/m$$
, $\omega_{(b)}^2 = 2k(1 - 2\ell_0/d)/m$

10 Zadatak: Pomični klip mase m i površine poprečnog presijeka S nalazi se u cilindru zatvorenom na oba kraja. Sa svake strane klipa nalazi se jednaka količina plina adijabatske konstante κ . Kada je klip u ravnotežnom stanju, plin s jedne i s druge strane klipa je pri istoj temperaturi i zauzima obujam V_0 pri tlaku p_0 . Pretpostavljajući da klip klizi bez trenja, da plin ne protječe pored klipa, te da je proces sažimanja/širenja plina adijabatski, odredi kružnu frekvenciju malih titraja klipa oko ravnotežnog položaja.

Rj:
$$\omega^2 = 2S^2 p_0 \kappa / mV_0$$

11 Zadatak: Homogena kugla polumjera r i mase m položena je na dno sferne udubine polumjera zakrivljenosti R > r. Odredi kružnu frekvenciju malih titraja ako kugla kotrljajući se bez klizanja "njiše" oko ravnotežnog položaja.

Rj:
$$\omega^2 = 5g/7(R-r)$$

12 Zadatak: Sustav koji se sastoji od dvaju jednakih masa m, dvaju jednakih opruga konstante k, te jedne opruge konstante k', prikazan je na slici u ravnotežnom položaju. Odredi omjer titrajnih vremena tog sustava u slučaju kada mase titraju (a) jednakim amplitudama u istom smjeru ('u fazi') i (b) kada one titraju jednakim amplitudama u suprotnim smjerovima ('u profufazi').

Rj:
$$\omega_{(a)}^2 = k/m$$
, $\omega_{(b)}^2 = (k+2k')/m$

13 Zadatak: Kada kruto tijelo njiše oko čvrste vodoravne osi (fizičko njihalo) njegov period pri malim titrajima neka je T. Koliki će biti period istog njihala ako se i tijelo i os nagnu tako da os zatvara kut α s vodoravnom ravninom.

Rj:
$$T' = T/\sqrt{\cos \alpha}$$

14 Zadatak: Kotač mase m čiji moment tromosti u odnosu na os simetrije možemo napisati kao $I_{\rm CM}=m\kappa^2$ može slobodno njihati oko vodoravne osi koja je paralelna s osi simetrije i koja ga probada na udaljenosti b od njegova središta. Odredi udaljenost b za koju je period malih titraja najkraći.

Rj:
$$b = \kappa$$

15 Zadatak: Sustav prikazan na slici titra oko ravnotežnog položaja tako da se utezi gibaju duž uspravne osi (kada se mase m podižu, masa M se spušta). Odredi frekvenciju malih titraja ako je razmak među koloturama d, a polumjer kolotura se može zanemariti.

Rj:
$$\omega^2 = \frac{g}{mMd}(2m-M)^{3/2}(2m+M)^{1/2}$$

16 Zadatak: Kada muzička vilica titra u zraku, ona titra frekvencijom $f = 440 \,\mathrm{Hz}$, a amplituda titranja se smanjuje na jednu polovinu početne vrijednosti u vremenu $\tau = 10 \,\mathrm{s}$. Kada bi ista vilica titrala u sredstvu u kojem bi njena frekvencija iznosila $f' = 439 \,\mathrm{Hz}$, koliko bi iznosilo vrijeme τ' ?

Rj:
$$\tau' = ((2\pi/\ln 2)^2 (f^2 - f'^2) + \tau^{-2})^{-1/2} = 3.72 \times 10^{-3} \text{ s}$$

17 Zadatak: Oscilator s kritičnim faktorom prigušenja δ pokrenut je u gibanje iz ravnotežnog položaja brzinom v_0 . Odredi maksimalnu elongaciju koju će oscilator postići.

Rj:
$$x_{\text{max}} = v_0/e\delta$$

18 Zadatak: Ovjes automobila možemo shvatiti kao oprugu s prigušenjem. Masa praznog automobila neka iznosi $m=1000\,\mathrm{kg}$, a rezonantna frekvencija $\omega_\mathrm{r}=2\pi\,\mathrm{rad\,s^{-1}}$. Opteretimo li taj automobil teretom mase $\Delta m=500\,\mathrm{kg}$ on će se spustiti ('sjesti') za $\Delta h=10\,\mathrm{cm}$. Kolika će biti rezonantna frekvencija tako opterećenog automobila?

Rj:
$$\omega_{\rm r}' = \sqrt{\frac{g}{\Delta h} \left(1 + (\frac{m}{m + \Delta m})^2 - \frac{2m}{m + \Delta m} \right) + \omega_{\rm r}^2 (\frac{m}{m + \Delta m})^2} = 5.333 \,{\rm rad \, s^{-1}}$$

Valovi

19 Zadatak: Gornji kraj homogene žice duljine ℓ i linijske gustoće mase μ je učvršćen, dok je o donji kraj žice obješen uteg mase M. Koliko vremena transverzalni valni paket putuje s gornjeg na donji kraj žice? Također razmotriti slučajeve $\mu\ell \ll M$ i $M \to 0$.

Rj:
$$t = \frac{2}{\sqrt{\mu g}} \left(\sqrt{M + \mu \ell} - \sqrt{M} \right), \quad t_{\mu \ell \ll M} = \ell \sqrt{\frac{\mu}{Mg}}, \quad t_{M \to 0} = 2\sqrt{\frac{\ell}{g}}$$

20 Zadatak: Transverzalni valni paket koji u trenutku t=0 ima oblik $y(x)=a\,\mathrm{e}^{-x^2/b^2},\,$ gdje su a i b konstante, putuje užetom linijske gustoće mase μ i napetosti T (u ravnoteži uže leži na x-osi). Odredi maskimalni iznos transverzalne brzine koju postižu čestice užeta.

Rj:
$$|v_y|_{\max} = \frac{a}{b} \sqrt{\frac{2T}{e\mu}}$$

21 Zadatak: Žica promjera 2R = 0.01'' načinjena od čelika Youngova modula elastičnosti $E = 2.2 \times 10^{11} \,\mathrm{Pa}$ i gustoće $\rho = 7700 \,\mathrm{kg} \,\mathrm{m}^{-3}$ razapeta je na rasponu duljine $\ell = 25.5''$. Odredi silu napetosti i odgovarajuće relativno produljenje žice ako ona u osnovnom modu titra frekvencijom $f = 330 \,\mathrm{Hz}$. $(1'' = 1 \,\mathrm{in} \simeq 2.54 \times 10^{-2} \,\mathrm{m}$, podaci odgovaraju gitarskoj žici 1E.)

Rj:
$$T = (2\ell f)^2 \rho R^2 \pi = 71.3 \,\text{N}, \quad \frac{\Delta \ell}{\ell} = (2\ell f)^2 \rho / E = 6.40 \times 10^{-3}$$

22 Zadatak: Avion leti duž vodoravnog pravca brzinom $v_a = v_0/2$, gdje je v_0 brzina širenja zvuka, odašiljući zvuk frekvencije $f_a = 100\,\mathrm{Hz}$. Izračunaj frekvenciju koju čuje mirni prijamnik na tlu u trenutku kada se avion nalazi točno iznad njega. (Uzeti u obzir 'kašnjenje zvuka'.)

Rj:
$$f_p = f_a/(1 - (v_a/v_0)^2)$$

23 Zadatak: Vozite se stalnom (dopuštenom) brzinom v_1 i slušate sirenu službenog vozila koje vas sustiže stalnom brzinom $v_2 > v_1$, prestiže vas i nastavlja svojim poslom. Pretpostavljamo $v_2 < v_0$, gdje je v_0 brzina zvuka. Označimo li s f frekvenciju sirene koju čujete prije, a s f' frekvenciju koju čujete nakon što vas službeno vozilo prestigne, odredite omjer f'/f. (Ako sirena 'zavija', neka f i f' označavaju u vremenu usrednjenu frekvenciju sirene koju čujete.)

Rj:
$$\frac{f'}{f} = \frac{1-\beta_1\beta_2-(\beta_2-\beta_1)}{1-\beta_1\beta_2+(\beta_2-\beta_1)}$$
, gdje je $\beta_{1,2} = v_{1,2}/v_0$

24 Zadatak: Mirni prijamnik čuje zvuk frekvencije $f_{\rm p}=1200\,{\rm Hz}$. Poznato je da zvuk potječe od izvora frekvencije $f_{\rm i}=1000\,{\rm Hz}$ koji se gibao brzinom $v_{\rm i}=250\,{\rm km\,h^{-1}}$. Brzina zvuka iznosi $v_0=340\,{\rm m\,s^{-1}}$. Pod kojim kutom u odnosu na pravac koji spaja izvor i prijamnik se gibao izvor?

Rj:
$$\cos \alpha = (1 - f_i/f_p)(v_0/v_i), \ \alpha \simeq 35.31^{\circ}$$

Elektromagnetizam

25 Zadatak: Dvije kuglice jednakih masa m obješene su u istoj točki o niti jednakih duljina ℓ . Niti su bezmasene, nerastezljive i nevodljive. Dovedemo li na svaku kuglicu naboj q, zbog elektrostatskog odbijanja niti će zatvarati kut 2α . Izrazi naboj q s pomoću m, ℓ , α i g, gdje je g ubrzanje gravitacijske sile, uz pretpostavku $\alpha \ll 1$.

Rj:
$$q = 2\ell\sqrt{(4\pi\epsilon_0)\,mg}\,\sin\alpha\,\sqrt{\tan\alpha} \simeq 2\ell\,((4\pi\epsilon_0)\,mg)^{1/2}\,\alpha^{3/2}$$

26 Zadatak: Električni naboj jednoliko je raspoređen duž tankog obruča polumjera R. Odredi udaljenost od središta obruča do točke na osi obruča u kojoj je iznos električnog polja maksimalan.

Rj:
$$d = R/\sqrt{2}$$

27 Zadatak: Dva beskonačna paralelna ravna linijska vodiča razmaknuta *d* vode u suprotnim smjerovima struje jakosti *I* i 2*I*. Razmatramo jakost magnetskog polja u ravnini u kojoj leže vodiči, i to u dijelu ravnine između dva vodiča. Na kojoj udaljenosti od vodiča kojim teče slabija struja je jakost magnetskog polja najmanja?

Rj:
$$r = (\sqrt{2} - 1)d$$

28 Zadatak: Duž pravca je raspoređen električni naboj linijske gustoće $\lambda = 2 \,\mathrm{C\,m^{-1}}$. Kolika bi električna struja I morala teći istim pravcem pa da iščezne elektromagnetska (Lorentzova) sila na nabijenu česticu koja se usporedno s pravcem giba brzinom v?

Rj:
$$I = \lambda c^2/v$$

29 Zadatak: Vodljivi štap duljine ℓ okreće se oko svog kraja kutnom brzinom ω u ravnini okomitoj na homogeno magnetsko polje B. Odredi iznos (napon) inducirane elektromotorne sile na krajevima štapa.

Rj:
$$\mathcal{E} = \ell^2 \omega B/2$$