Exercices supplémentaires du 18/09/2018 POUR LA L2 BIOLOGIE-CHIMÍE

UE M257 - GROUPE BC1

Frédéric Menous - Raphaël Tinarrage - Benjamin Tron raphael.tinarrage@u-psud.com http://pages.saclay.inria.fr/raphael.tinarrage/

Quelques remarques didactiques :

- ça fait du bien au cerveau d'écrire/de recopier et de ne pas seulement voir ce que vous
- Les méthodes et la rédaction sont dans cette correction très disséqués. Avec l'habitude vous pourrez résoudre les exercices plus rapidement. D'ici-là, prenez le temps de bien effectuer chaque étape.
- C'est beaucoup moins intéressant de lire une correction si l'on a pas essayé de résoudre les exercices soi-même.

Exercice 1

Méthode - Dérivation d'une fonction composée

Objectif: dériver une fonction

- (1) On cherche deux fonctions u et v telles que la fonction f s'écrive $f = v \circ u$
- (2) On calcule les dérivées u' et v'

Conclusion : la dérivée de f est $f' = u' \times v' \circ u$.

Exemple - Dérivation d'une fonction composée

On veut dériver la fonction $f(t) = \sin(2t)$

- (1) Soit u(t) = 2t et $v(t) = \sin(t)$. Alors $v \circ u(t) = v(u(t)) = \sin(2t)$, et ceci vaut bien f(t).
- (2) On calcule: u'(t) = 2 et $v'(t) = \cos(t)$

Conclusion : la dérivée de f est $f'(t) = u'(t) \times v' \circ u(t) = 2 \times \cos(2t)$.

Question 1 : On veut dériver $f(t) = \cos(t)^2$. On applique la méthode de dérivation d'une fonction composée.

Soit
$$\begin{cases} u(t) = \cos(t), \\ v(t) = t^2. \end{cases}$$
 On a bien $v \circ u(t) = \cos(t)^2 = f(t).$
Ensuite, on dérive : $\begin{cases} u'(t) = -\sin(t), \\ v'(t) = 2t. \end{cases}$

On sait alors que la dérivée de f(t) est :

$$f'(t) = u'(t) \times v' \circ u(t) = -\sin(t) \times 2\cos(t) = -2\sin(t)\cos(t).$$

Question 2: On veut dériver $f(t) = \cos(t)^3$. On applique la méthode de dérivation d'une fonction composée.

Soit
$$\begin{cases} u(t) = \cos(t), \\ v(t) = t^3. \end{cases}$$
 On a bien $v \circ u(t) = \cos(t)^3 = f(t).$
Ensuite, on dérive :
$$\begin{cases} u'(t) = -\sin(t), \\ v'(t) = 3t^2. \end{cases}$$

Ensuite, on dérive :
$$\begin{cases} u'(t) = -\sin(t) \\ v'(t) = 3t^2. \end{cases}$$

On sait alors que la dérivée de f(t) est :

$$f'(t) = u'(t) \times v' \circ u(t) = -\sin(t) \times 3\cos(t)^2 = -3\sin(t)\cos(t)^2.$$

Question 3: On veut dériver $f(t) = \cos(t)^4$. On applique la méthode de dérivation d'une fonction composée.

Soit
$$\begin{cases} u(t) = \cos(t), \\ v(t) = t^4. \end{cases}$$
 On a bien $v \circ u(t) = \cos(t)^4 = f(t).$
Ensuite, on dérive : $\begin{cases} u'(t) = -\sin(t), \\ v'(t) = 4t^3. \end{cases}$

Ensuite, on dérive :
$$\begin{cases} u'(t) = -\sin(t) \\ v'(t) = 4t^3. \end{cases}$$

On sait alors que la dérivée de

$$f'(t) = u'(t) \times v' \circ u(t) = -\sin(t) \times 4\cos(t)^{3} = -4\sin(t)\cos(t)^{3}.$$

Question 4 : On veut dériver $f(t) = \cos(t)^5$. On applique la méthode de dérivation d'une

Soit
$$\begin{cases} u(t) = \cos(t), \\ v(t) = t^5. \end{cases}$$
 On a bien $v \circ u(t) = \cos(t)^5 = f(t).$
Ensuite, on dérive : $\begin{cases} u'(t) = -\sin(t), \\ v'(t) = 5t^4. \end{cases}$

Ensuite, on dérive :
$$\begin{cases} u'(t) = -\sin(t) \\ v'(t) = 5t^4. \end{cases}$$

On sait alors que la dérivée de

$$f'(t) = u'(t) \times v' \circ u(t) = -\sin(t) \times 5\cos(t)^4 = -5\sin(t)\cos(t)^4$$
.

Exercice 2

Méthode - Intégration par parties

Objectif: trouver une primitive d'une fonction f

- (1) On cherche deux fonctions u et v' telles que la fonction f s'écrive $f = u \times v'$.
- (2) On calcule la dérivée u' de u, et une primitive v et v'.
- (3) On pose la fonction $g = u' \times v$, et on cherche une primitive de g que l'on note G.

Conclusion : une primitive de f est $F = u \times v - G$.

Exemple - Intégration par parties

On cherche une primitive de $f(t) = t \exp(t)$

- (1) Soit u(t) = t et $v'(t) = \exp(t)$. On a $u(t) \times v'(t) = t \exp(t)$, ce qui vaut bien f(t).
- (2) On calcule : la dérivée de u est u'(t) = 1, et une primitive v' est $v(t) = \exp(t)$.
- (3) Soit $g(t) = u'(t) \times v(t) = 1 \times \exp(t) = \exp(t)$. Une primitive de g est $G(t) = \exp(t)$.

Conclusion: une primitive de f est $F(t) = u(t) \times v(t) - G(t) = t \times \exp(t) - \exp(t)$.

Remarque: il y a toujours plusieurs possibilités pour choisir u et v. L'intuition = le talent vient avec l'habitude;)

Question 1 : On cherche une primitive de $f(t) = t\sin(t)$. On utilise la méthode de l'intégration par parties.

Soit u(t) = t et $v'(t) = \sin(t)$. On a $u(t) \times v'(t) = t \sin(t)$, ce qui vaut bien f(t).

On calcule: u'(t) = 1, et $v(t) = -\cos(t)$.

Soit $g(t) = u'(t) \times v(t) = -\cos(t)$. Une primitive de g est $G(t) = -\sin(t)$.

On sait alors qu'une primitive de f est

$$F(t) = u(t) \times v(t) - G(t) = -t \times \cos(t) + \sin(t).$$

Question 2 : On cherche une primitive de $f(t) = \ln(t)$. On utilise la méthode de l'intégration par parties.

Soit $u(t) = \ln(t)$ et v'(t) = 1. On a $u(t) \times v'(t) = \ln(t)$, ce qui vaut bien f(t).

On calcule: $u'(t) = \frac{1}{t}$, et v(t) = t.

Soit $g(t) = u'(t) \times v(t) = \frac{1}{t} \times t = 1$. Une primitive de g est G(t) = t.

On sait alors qu'une primitive de f est

$$F(t) = u(t) \times v(t) - G(t) = t \times \ln(t) - t.$$

Question 3 : On cherche une primitive de $f(t) = t^2 \ln(t)$. On utilise la méthode de l'intégration par parties.

Soit $u(t) = \ln(t)$ et $v'(t) = t^2$. On a $u(t) \times v'(t) = \ln(t)t^2$, ce qui vaut bien f(t).

On calcule: $u'(t) = \frac{1}{t}$, et $v(t) = \frac{t^3}{3}$.

Soit $g(t) = u'(t) \times v(t) = \frac{1}{t} \times \frac{t^3}{3} = \frac{1}{3}t^2$. Une primitive de g est $G(t) = \frac{1}{9}t^3$. On sait alors qu'une primitive de f est

$$F(t) = u(t) \times v(t) - G(t) = \frac{1}{3}\ln(t)t^3 - \frac{t^3}{9}.$$

Méthode - Recherche de primitive par reconnaissance de la forme $u' \times v' \circ u$ Objectif: trouver une primitive d'une fonction f

- (1) On cherche deux fonctions u et v' telles que la fonction f s'écrive $f = u' \times v' \circ u$
- (2) On calcule une primitive v de v'.

Conclusion : une primitive de f est $F = v \circ u$.

Exemple - Recherche de primitive par reconnaissance de la forme $u' \times v' \circ u$ On cherche une primitive de $f(t) = \cos(t)(\sin(t))^2$

- (1) Soit $u(t) = \sin(t)$ et $v'(t) = t^2$. On a $u'(t) = \cos(t)$. On remarque que $u'(t) \times v'(u(t)) = \cos(t)$ $\cos(t)(\sin(t))^2$, ce qui vaut bien f(t).
- (2) On calcule: une primitive de v' est $v(t) = \frac{t^3}{3}$.

Conclusion : une primitive de f est $F(t) = v(u(t)) = \frac{1}{3}(\sin(t))^3$.

Question 4 : On cherche une primitive de $f(t) = (1+t)^{100}$. On utilise la méthode de la reconnaissance de la forme $u' \times v' \circ u$.

Soit u(t) = 1 + t et $v'(t) = t^{100}$. On a u'(t) = 1. On remarque que $u'(t) \times v'(u(t)) = 1$ $1 \times (1+t)^{100}$, ce qui vaut bien f(t).

On calcule: une primitive de v' est $v(t) = \frac{t^{101}}{101}$

On sait alors qu'une primitive de f est

$$F(t) = v(u(t)) = \frac{1}{101}(1+t)^{101}.$$

Question 5 : On cherche une primitive de $f(t) = t^2 \exp(t^3)$. On utilise la méthode de la reconnaissance de la forme $u' \times v' \circ u$.

Soit $u(t) = t^3$ et $v'(t) = \frac{1}{3} \exp(t)$. On a $u'(t) = 3t^2$. On remarque que $u'(t) \times v'(u(t)) = 3t^2 \times \frac{1}{3} \exp(t^3)$, ce qui vaut f(t).

On calcule: une primitive de v' est $v(t) = \frac{1}{3} \exp(t)$.

On sait alors qu'une primitive de f est

$$F(t) = v(u(t)) = \frac{1}{3} \exp(t^3).$$

Question 6 : On cherche une primitive de $f(t) = \frac{1}{t \ln(t)}$. On utilise la méthode de la reconnaissance de la forme $u' \times v' \circ u$.

Soit $u(t) = \ln(t)$ et $v'(t) = \frac{1}{t}$. On a $u'(t) = \frac{1}{t}$. On remarque que $u'(t) \times v'(u(t)) = \frac{1}{t} \times \frac{1}{\ln(t)}$, ce qui vaut bien f(t).

On calcule : une primitive de v' est $v(t) = \ln(t)$.

On sait alors qu'une primitive de f est

$$F(t) = v(u(t)) = \ln(\ln(t)).$$

Exercice 3

Méthode - Résolution d'une équation différentielle linéaire homogène d'ordre un à coefficients non-constants

Objectif : Trouver toutes les solutions d'une équation différentielle

- 1 On écrit l'équation sous la forme y'(t) = a(t)y(t)
- 2 On calcule une primitive A(t) de a(t)

Conclusion : les solutions de l'équation sont de la forme $y(t) = c \exp(A(t))$ avec c une constante réelle.

Exemple - Résolution d'une équation différentielle linéaire homogène d'ordre un à coefficients non-constants

On cherche les solutions de y'(t) + ty(t) = 0

- ① On reformule l'équation : y'(t) = a(t)y(t) avec a(t) = -t.
- (2) On calcule : une primitive de a est $A(t) = -\frac{t^2}{2}$.

Conclusion : les solutions de l'équation sont de la forme $y(t) = c \exp(-\frac{t^2}{2})$ avec c une constante réelle.

Question 1 : On considère l'équation y' + 2y = 0 avec la condition initiale y(1) = 0. On applique la méthode de résolution d'une équation différentielle linéaire homogène d'ordre un à coefficients non-constants.

On réécrit l'équation sous la forme y'(t) = a(t)y(t) avec a(t) = -2.

On calcule: une primitive de a est A(t) = -2t.

On sait alors que les solutions de l'équation sont de la forme

$$y(t) = c \exp(-2t).$$

On détermine maintenant la constante c grâce à la condition initiale y(1) = 0. En utilisant la forme des solutions obtenue précédemment, on a $y(0) = c \exp(0) = c$. On en

déduit qu'il faut choisir c = 0.

Finalement, la solution de l'équation avec condition initiale est :

$$y(t) = 0 \times \exp(-2t) = 0.$$

Remarque : On aurait pu remarquer dès le début que y(t) = 0 est solution de l'équation avec condition initiale, et répondre à l'exercice en une ligne.

Question 2 : On considère l'équation $y' + t^2y = 0$ avec la condition initiale $y(2) = \frac{1}{2}$. On applique la méthode de résolution d'une équation différentielle linéaire homogène d'ordre un à coefficients non-constants.

On réécrit l'équation sous la forme y'(t) = a(t)y(t) avec $a(t) = -t^2$.

On calcule: une primitive de a est $A(t) = -\frac{t^3}{3}$.

On sait alors que les solutions de l'équation sont de la forme :

$$y(t) = c \exp(-\frac{1}{3}t^3).$$

On détermine maintenant la constante c grâce à la condition initiale $y(2) = \frac{1}{2}$. En utilisant la forme des solutions obtenue précédemment, on a $y(2) = c \exp(-\frac{1}{3} \times 2^3) = c \exp(-\frac{8}{3})$. On en déduit qu'il faut choisir $c \exp(-\frac{8}{3}) = \frac{1}{2}$. C'est à dire que $c = \frac{1}{2} \frac{1}{\exp(-\frac{8}{3})} = \frac{1}{2} \exp(\frac{8}{3})$. Finalement, la solution de l'équation avec condition initiale est :

$$y(t) = \frac{1}{2} \exp(\frac{8}{3}) \times \exp(-\frac{1}{3}t^3)$$

Méthode - Résolution d'une équation différentielle linéaire d'ordre un avec second membre

Objectif: trouver toutes les solutions d'une équation différentielle

- (1) On écrit l'équation sous la forme y'(t) = a(t)y(t) + b(t)
- ② On considère l'équation homogène y'(t) = a(t)y(t) (équation obtenue en supprimant le second membre). On note $y_h(t)$ les solutions de cette équation.
- (3) On cherche une solution particulière à l'équation globale y'(t) = a(t)y(t) + b(t), que l'on note $y_p(t)$.

Conclusion : les solutions de l'équation y'(t) = a(t)y(t) + b(t) sont de la forme $y(t) = y_h(t) + y_p(t)$.

Exemple - Résolution d'une équation différentielle linéaire d'ordre un avec second membre

On cherche les solutions de y'(t) + ty(t) = t

- 1 On écrit l'équation sous la forme y'(t) = a(t)y(t) + b(t) avec a(t) = -t et b(t) = t.
- ② On considère l'équation homogène y'(t) = -ty(t). On a vu précédemment que les solutions sont de la forme $y_h(t) = c \exp(-\frac{t^2}{2})$ avec c une constante réelle.
- ③ On cherche une solution particulière à l'équation globale y'(t) = -ty(t) + t. On remarque que l'on peut choisir $y_p(t) = 1$. En effet, dans ce cas, $y'_p(t) = 0$, et $-ty_p(t) + t = -t \times 1 + t = 0$, donc $y'_p(t) = -ty_p(t) + t$.

Conclusion : les solutions de l'équation y'(t) + ty(t) = t sont de la forme $y(t) = c \exp(-\frac{t^2}{2}) + 1$ avec c une constante réelle.

Question 3 : On considère l'équation $y'(t) + 2y(t) = \cos(t)$ avec la condition initiale y(1) = 1. On applique la méthode de résolution d'une équation différentielle linéaire d'ordre un avec second membre.

On réécrit l'équation sous la forme y'(t) = a(t)y(t) + b(t) avec a(t) = -2 et $b(t) = \cos(t)$. On considère l'équation homogène y'(t) + 2y(t) = 0. On a vu précédemment que les solutions sont de la forme

$$f_h(t) = c \exp(-2t)$$

On cherche maintenant une solution particulière de $y'(t)+2y(t)=\cos(t)$. Comme je vous l'ai dit, on peut essayer de chercher une solution particulière de la forme $y_p(t)=\alpha\cos(t)+\beta\sin(t)$. Il faut que l'on détermine les constantes α et β . Pour cela, on calcule : $y'_p(t)=-\alpha\sin(t)+\beta\cos(t)$. Donc pour avoir $y'_p(t)+2y_p(t)=\cos(t)$, il faut avoir :

$$-\alpha \sin(t) + \beta \cos(t) + 2(\alpha \cos(t) + \beta \sin(t)) = \cos(t)$$

En regroupant les termes, on obtient :

$$(2\alpha + \beta - 1)\cos(t) + (2\beta - \alpha)\sin(t)) = 0$$

Il suffirait donc d'avoir $\begin{cases} 2\alpha + \beta - 1 = 0, \\ 2\beta - \alpha = 0. \end{cases}$ En résolvant ce système, on obtient $\begin{cases} \alpha = \frac{2}{5}, \\ \beta = \frac{1}{5}. \end{cases}$ La fonction suivante est donc une solution particulière à l'équation :

$$y_p(t) = \frac{2}{5}\cos(t) + \frac{1}{5}\sin(t).$$

En conclusion de la méthode, les solutions de l'équation $y'(t) + 2y(t) = \cos(t)$ s'écrivent

$$y(t) = y_h(t) + y_p(t) = c \exp(-2t) + \frac{2}{5}\cos(t) + \frac{1}{5}\sin(t).$$

On détermine maintenant la constante c grâce à la condition initiale y(1)=1. En utilisant la forme des solutions obtenue précédemment, on a $y(1)=c\exp(-2\times 1)+\frac{2}{5}\cos(1)+\frac{1}{5}\sin(1)$. On en déduit qu'il faut choisir c telle que $c\exp(-2)+\frac{2}{5}\cos(1)+\frac{1}{5}\sin(1)=1$, c'est-à-dire $c=\exp(2)(1-\frac{2}{5}\cos(1)-\frac{1}{5}\sin(1))$.

Finalement, la solution de l'équation avec condition initiale est :

$$y(t) = \exp(2)(1 - \frac{2}{5}\cos(1) - \frac{1}{5}\sin(1))\exp(-2t) + \frac{2}{5}\cos(t) + \frac{1}{5}\sin(t)$$

Remarque : Un bon enseignant aurait sûrement choisi une condition initiale qui aurait donné une constante c simple. Là je l'ai choisie un peu au hasard, du coup la constante est un peu moche.

Question 4 : On considère l'équation y'(t) + ty(t) = 2t avec la condition initiale y(2) = 1. On applique la méthode de résolution d'une équation différentielle linéaire d'ordre un avec second membre.

On réécrit l'équation sous la forme y'(t) = a(t)y(t) + b(t) avec a(t) = t et b(t) = 2t.

On considère l'équation homogène y'(t) + ty(t) = 0. On a vu précédemment (exemple de résolution d'une équation différentielle linéaire homogène d'ordre un à coefficients non-constants) que les solutions sont de la forme

$$f_h(t) = c \exp(-\frac{t^2}{2}).$$

On cherche maintenant une solution particulière de y'(t) + ty(t) = 2t. On remarque que si on prend $y_p(t) = 2$, alors $y'_p(t) = 0$, et alors $y'_p(t) + ty_p(t) = 0 + t \times 2 = 2t$. On a donc trouvé une solution particulière à l'équation.

En conclusion de la méthode, les solutions de l'équation $y'(t) + 2y(t) = \cos(t)$ s'écrivent

$$y(t) = y_h(t) + y_p(t) = c \exp(-\frac{t^2}{2}) + 2.$$

On détermine maintenant la constante c grâce à la condition initiale y(2) = 1. En utilisant la forme des solutions obtenue précédemment, on a $y(2) = c \exp(-\frac{2^2}{2}) + 2 = c \exp(-2) + 2$. On en déduit qu'il faut choisir $c \exp(-2) + 2 = 1$, c'est-à-dire $c = -\exp(2)$.

Finalement, la solution de l'équation avec condition initiale est :

$$y(t) = -\exp(2)\exp(-\frac{t^2}{2}) + 2.$$