III B. Tech II Semester Supplementary Examinations, November -2018 DIGITAL SIGNAL PROCESSING

(Electronics and Communication Engineering)

Time: 3 hours Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

- 2. Answering the question in **Part-A** is compulsory
- 3. Answer any THREE Questions from Part-B

PART -A			
1	a)	Test the given system for time invariance : $y(n) = n x(n)$.	[3M]
	b)	State any four properties of DFT	[4M]
	c)	Find the Z-transform of $x(n) = (1/8)^n u(n)$ and its ROC.	[4M]
	d)	Draw the direct form structure of $y(n) = \sum_{k=0}^{N-1} h[k]x[n-k]$	[4M]
	e)	What is the significance of Multirate Signal processing? What are the applications	[3M]
	f)	What are the differences between fixed point processors and floating point Processors?	[4M]
PART -B			
2	a)	Find the solution to the following linear constant coefficient difference equation with initial conditions $y(-1)=4$ and $y(-2)=10$	[8M]
		$y(n) - \frac{3}{2}y(n-1) + \frac{1}{2}y(n-2) = \left(\frac{1}{2}\right)^n \text{ for } n \ge 0$	
	b)	Explain the frequency domain representation of Discrete time signals	[8M]
3	a)	Given $x(n) = \{1, 2, 3, 4, 4, 3, 2, 1\}$, find $X(k)$ using DIF FFT algorithm.	[8M]
	b)	State and prove time – shifting and time scaling property of DFT.	[8M]
	- /		F- 1
4	a)	Determine the ZT of $x[n] = -na^n u$ [-n-1].	[8M]
	b)	What are the basic structures of FIR systems? Explain	[8M]
5	a) b)	What are the effects of windowing? Comparing various windowing techniques. Design a High Pass FIR filter whose cut-off frequency is 1.2 radians/sec and $N=9$ using Hamming Window.	[8M] [8M]
6	a) b)	Derive the frequency domain representation of decimator. Explain the following terms: i) Up – sampling ii) Down- sampling	[8M] [8M]
7	a) b)	What is MAC? Explain its operation in detail. Explain about Special addressing modes	[8M]
