CSCI446/946 Big Data Analytics

Week 12 Advanced Analytical Theory and Methods: MapReduce and Hadoop

School of Computing and Information Technology
University of Wollongong Australia

Advanced Analytical Theory and Methods: MapReduce and Hadoop

- Overview
- Analytics for Unstructured Data
 - Use Cases, MapReduce, Hadoop
- The Hadoop Ecosystem
 - Pig, Hive, Hbase, Mahout
- NoSQL
- Summary

Overview

- The Apache Hadoop software library
 - A framework allows for the distributed processing of large datasets across clusters of computers using simple programming models
- Hadoop
 - How it stores data in a distributed system
 - How it implements a simple programming paradigm – MapReduce
 - How its tools help MapReduce programming

All the figures, tables and codes are from the book "<u>Data Science and Big Data Analytics:</u> <u>Discovering, Analyzing, Visualizing and Presenting Data</u>" unless indicated otherwise.

- Unstructured data (text, image, video, etc.)
 - Data that has no inherent, consistent structure
- MapReduce paradigm offers the means to
 - break a large task into smaller tasks
 - run tasks in parallel
 - consolidate the outputs of the individual tasks into the final output
- Apache Hadoop implements MapReduce

- Use Cases
 - IBM Waston won Jeopardy champions
 - Linkedin utilizes Hadoop for multiple tasks
 - Process daily production database transaction logs
 - Examine the users' activities (views and clicks)
 - Feed the extracted data back to the production systems
 - Yahoo!'s Hadoop applications involve
 - Search index creation, web page content optimization, web ad placement optimization, spam filters, ...

- MapReduce consists of two basic parts
 - A map step and a reduce step
- Map step
 - Applies an operation to a piece of data
 - Provides some intermediate output
- Reduce step
 - Consolidates the above intermediate outputs
 - Provides the final output

- Each step uses key/value pairs as input and output, denoted as <key, value>
- The pairs can take complex forms
 - For example, the key is a filename, and the value is the entire content of the file
- A simple illustration of MapReduce
 - The task is to count the number of times each word appears in a collection of documents

<1234, "For each word in each string">

<For, 1> <each, 1> <word, 1> <in, 1> <each, 1> <string, 1>

<For, 1>
<each, 2>
<word, 1>
<in, 1>
<string, 1>

- The map step parse the string into single words and emits a set of key/value pairs in the form <word, 1>;
- For each unique key, the reduce step sums the 1 values and outputs the <word, count> key/value pairs;

MapReduce

- Has the advantage of being able to distribute the workload over a cluster of computers and run the tasks in parallel
- The documents, or even their pieces, could be processed simultaneously during the map step
- The processing of one portion of the input can be carried out independently of the others

- MapReduce
 - A simple paradigm to understand, but not easy to implement, esp. in a distributed system
- Executing a MapReduce job requires
 - Management and coordination of activities of
 - Scheduling jobs, monitoring jobs
 - Spreading data, conducting the map step across
 - Collecting numerous intermediate outputs
 - Making the final output

- Apache Hadoop
 - Handles these activities and more, and make most of them transparent to the users
 - An open source project managed and licenced by the Apache Software Foundation
- The development of MapReduce proceeds easily because
 - The MapReduce paradigm has already been implemented in Apache Hadoop

- Apache Hadoop
 - Hadoop Distributed File System (HDFS)
 - How data is stored in a Hadoop environment
 - Structuring a MapReduce job in Hadoop
 - How a MapReduce job is run
 - Additional considerations
 - Developing a Hadoop MapReduce program

- Hadoop Distributed File System (HDFS)
 - Provides the capability to distribute data across a cluster to use parallel processing of MapReduce
 - HDFS is not an alternative to common file systems,
 but depends on each disk drive's file system
 - HDFS breaks a file into blocks and stores the blocks across the clusters
 - The blocks of a file are stored on different machines
 - By default, creates three copies of each block across

- HDFS uses three Java daemons (background processes)
 - NameNode determines and tracks where the blocks of a data file are stored. It runs on a single machine and resides in its memory
 - DataNode manages data stored on each machine
 - Secondary NameNode provides the capability to perform some of the NameNode tasks to reduce the load of NameNode
 - But it is not a backup or redundant NameNode

Master Nodes

8 Worker Nodes across 2 Racks

NameNode

input_file.txt ⇒ Block 1,2,3

Secondary NameNode

- A MapReduce program has three classes
 - The driver class provides details such as
 - Input and output file locations
 - Names of the mapper and reducer Java classes
 - Various job configuration options
 - The mapper class provides the logic to be processed on each data block corresponding to the specified input files
 - The reducer class provides the logic to process the values for each key to emit a key/value pair

- Additional consideration in structuring a job
 - Combiner ("local reducer")
 - It is a useful option to apply between the map task and the shuffle and sort
 - It applies the same logic used in the reducer on the output of each map task

Partitioner

 It determines the reducers that receive keys and the corresponding list of values

Additional consideration in structuring a job

Shuffle and sort

Additional consideration in structuring a job

Paritioner Combiner

- Developing and executing a program (via Java)
 - A typical MapReduce program consists of three
 Java files, one each for the driver code, map code,
 and reduce code
 - Java files can be written for the combiner and partitioner
 - Jave code is compiled as a Java Archive (JAR) file
 - The JAR file is executed against the specified HDFS input files

- Three key challenges to a new developer
 - Defining the logic of the code to use the MapReduce paradigm
 - Learning the Apache Hadoop Java classes, methods, and interfaces
 - Implementing the driver, map, and reduce functionality in Java
- Some prior experience with Java will help

- Three key challenges to a new developer
 - Defining the logic of the code to use the MapReduce paradigm
 - Learning the Apache Hadoop Java classes, methods, and interfaces
 - Implementing the driver, map, and reduce functionality in Java
- Some prior experience with Java will help

- For non-Java developers
 - Hadoop Streaming API
 - Hadoop-streaming.jar file: accepts the HDFS paths for the input/output files and the paths for the files that implement the map and reduce functionality
 - There are some important considerations/limitations

Hadoop pipes

- A mechanism uses compiled C++ code for the map and reduce functionality
- An advantage of using C++ is the numerical libraries

- To directly work with data in HDFS
 - Use the C API (libhdfs) or the Java API provided with Apache Hadoop
 - These APIs allow reads and writes to HDFS data files outside the typical MapReduce paradigm
 - Such approach may be helpful when
 - Debug a MapReduce job by examining the input data
 - Transform the HDFS prior to running a MapReduce job

- MapReduce 2.0
 - Also called Yet Another Resource Negotiator (YARN)
- The two functionalities are separated
 - MapReduce functionality
 - Those to manage job running and associated responsibilities in a distributed environment
 - YARN makes it possible for utilizing the paradigms other than MapReduce in Hadoop

- Hadoop's proprietary and open source tools
 - Make Apache Hadoop easier to use
 - Provide additional functionality and features
- Hadoop-related Apache projects
 - Pig: A high-level data-flow programming language
 - Hive: Provide SQL-like access
 - Mahout: Provide analytical tools
 - Hbase: Provides real-time reads and writes

Apache Pig

- Consists of a data flow language, Pig Latin, and an environment to execute the Pig code
- Benefit is simplifying the tasks of developing and executing a MapReduce job
- When Pig commands are executed, the running of a job at background is transparent to the user
- Three main characteristics
 - Ease of programming, behind-the-scenes code optimization, and extensibility of capabilities

Apache Hive

- Similar to Pig, Hive enables users to process data without explicitly writing MapReduce code
- One key difference to Pig
 - Hive language (HiveQL) resembles Structured Query Language (SQL) rather than a script language
- Hive may be a good tool to use if
 - Data easily fits into a table structure
 - Data is already in HDFS
 - Developers are comfortable with SQL

Apache HBase

- Pig and Hive are intended for batch applications
- Differently, Hbase provides real-time read and write access to large-scale datasets
- Is built upon HDFS
- Share the workload over a large number of nodes in a distributed cluster
- Uses a key/value structure to store the contents of an HBase table

Apache Mahout

- Tools such as R may suffer from performance issues with the large datasets in stored in Hadoop
- Supports the application of analytical techniques within the Hadoop environment
- Provides Java libraries to apply analytical techniques in a scalable manner to Big Data
- Implemented algorithms
 - Classification, clustering, collaborative filtering

NoSQL

- NoSQL (Not only Structured Language)
 - A term used to describe those data stores that are applied to unstructured data
 - As the size of data grows, the solution can scale by adding machines to the distributed system
 - Four major categories of NoSQL tools
 - Key/value store, Document store, Column family store, Graph databases
 - The choice of data store is take-dependent

Summary

- The MapReduce paradigm and its implementation in Apache Hadoop
- The Hadoop Distributed File System (HDFS)
- Developing a Hadoop MapReduce program
- Apache projects in the Hadoop Ecosystem

