Key ID: 004

Name:

1. Problem

An experiment has $n_1 = 8$ plants in the treatment group and $n_2 = 4$ plants in the control group. After some time, the plants' heights (in cm) are measured, resulting in the following data:

	value1	value2	value3	value4	value5	value6	value7	value8
sample 1:	109	108	114	115	103	114	109	110
sample 2:	98	108	124	89				

- (a) Determine degrees of freedom.
- (b) Determine t^* for a 90% confidence interval.
- (c) Determine SE.

(i) no

- (d) Determine a lower bound of the 90% confidence interval of $\mu_2 \mu_1$.
- (e) Determine an upper bound of the 90% confidence interval of $\mu_2 \mu_1$.
- (f) Determine $|t_{\rm obs}|$ under the null hypothesis $\mu_2-\mu_1=0$.
- (g) Determine a lower bound of the two-tail *p*-value.
- (h) Determine an upper bound of two-tail p-value.
- (i) Do you reject the null hypothesis with a two-tail test using a significance level α = 0.1? (yes or no)

1.	(a)				3	-	0	0	0	
	(b)				2] .	3	5	0	
	(c)				7] .[6	3	2	
	(d)		-	2	2] .[9	3	5	
	(e)			1	2] .[9	3	5	
	(f)				0] .[6	5	5	
	(g)				0] .[2	0	0	
	(h)				1] .[0	0	0	

Key ID: 004

1. Solution

These data are unpaired. We might as well find the sample means and sample standard deviations (use a calculator's built-in function for standard deviation).

$$\overline{X_1} = 110$$

$$\overline{X_2} = 105$$

$$s_1 = 3.99$$

$$s_2 = 15$$

We make a conservative estimate of the degrees of freedom using the appropriate formula.

$$df = \min(n_1, n_2) - 1 = \min(8, 4) - 1 = 3$$

We use the t table to find t^* such that $P(|T| < t^*) = 0.9$

$$t^* = 2.35$$

We use the SE formula for unpaired data.

$$SE = \sqrt{\frac{(s_1)^2}{n_1} + \frac{(s_2)^2}{n_2}} = \sqrt{\frac{(3.99)^2}{8} + \frac{(15)^2}{4}} = 7.632$$

We find the bounds of the confidence interval.

$$CI = (\overline{x_2} - \overline{x_1}) \pm t^* SE$$

$$CI = (-22.935, 12.935)$$

We find t_{obs} .

$$t_{\text{obs}} = \frac{(\overline{x_2} - \overline{x_1}) - (\mu_2 - \mu_1)_0}{SE} = \frac{(105 - 110) - 0}{7.632} = -0.66$$

We find $|t_{obs}|$.

$$|t_{\rm obs}| = 0.66$$

We use the table to determine bounds on *p*-value. Remember, df = 3 and *p*-value = $P(|T| > |t_{\text{obs}}|)$.

$$0.2 < p$$
-value < 1

We should consider both comparisons to make our decision.

$$|t_{\sf obs}| < t^{\star}$$

$$p$$
-value $> \alpha$

Thus, we retain the null hypothesis. Also notice the confidence interval does contain 0.

- (a) 3
- (b) 2.35
- (c) 7.632
- (d) -22.935
- (e) 12.935
- (f) 0.655
- (g) 0.2
- (h) 1
- (i) no