Chapitre 1

Représentation de l'information

Définitions

☐ Architecture d'un système ?

➤ Représente l'organisation des différentes unités/ composants d'un système et leurs interconnexions

☐ Un ordinateur?

- ➤ Une machine de traitement de l'information, capable de:
 - Recevoir une information à travers un périphérique d'entrée.
 - Mémoriser une information sur une mémoire.
 - Effectuer automatiquement un traitement sur une information suivant un programme.
 - Délivrer une information sur un périphérique de sortie.

Besoin du codage d'information

Un ordinateur manipule toute sorte d'information :

- Numérique
- Alphabétique
- Graphique
- Audio
- Vidéo
- Programmes.
- •

Besoin du codage d'information

- Information numérique = information binaire
 = 1 bit (l'unité de de l'information)
- Représentée par 2 signaux électriques
- Chaque signal élémentaire peut alors se trouver dans l'un de ces deux états 0 ou 1.
- Codage : Codée par « 0 » logique ou « 1 » logique
- Différents codages pour représenter une information

Historique

- Intérêt : codage des nombres dans un but de calcul
- Apparition du calcul : préhistoire (comptage avec les cailloux et les doigts)...
- Systèmes et bases de numérotation pour représenter des nombres
- Méthodes pour compter et calculer
- Un système de numération est un ensemble de conventions et règles qui permet de former les nombres, les dire, les écrire et calculer.
- **Exemple:** Représentation usuelle du **145 = ?**

$$= 1 \times 10^2 + 4 \times 10^1 + 5 \times 10^0$$

Les systèmes de numération les plus courants :

- Le système décimal (base 10) : utilise les 10 chiffres : 0, 1, 2, 3, 4, 5,
 6, 7, 8 et 9.
- Le système binaire (base 2) : utilise les 2 chiffres : 0 et 1.
- Le système octal (base 8) : utilise les 8 chiffres : 0, 1, 2, 3, 4, 5, 6 et 7.
- Le système hexadécimal (base 16): utilise les 16 chiffres: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E et F.

- Trois notions interviennent dans un système:
 - La base B du système, c'est un nombre entier quelconque.
 - Les **digits** du système sont des caractères tous différents et représentent chacun un élément de la base; il y en a donc B au total.
 - **Poids** du digit selon son rang.
- Expression d'un nombre X en base B :

$$\mathbf{X} = \mathbf{a_N} \mathbf{B^N} + \mathbf{a_{N-1}} \mathbf{B^{N-1}} + \dots + \mathbf{a_1} \mathbf{B^1} + \mathbf{a_0} \mathbf{B^0}$$

- $0 \le a_i \le B$, quelque soit l'indice i (de $0 \ge N$).
- On écrit X, en ignorant les puissances de B : $X = (a_N a_{N-1} ... a_1 a_0)_B$

• Expression d'un nombre X en base B :

$$X = a_N B^N + a_{N-1} B^{N-1} + ... + a_1 B^1 + a_0 B^0$$

Exemple:

$$> 98_{10} = ?$$
 $/101_2 = ?$ $/136_8 = ?$ $/ (127,65)_8 = ?$ $/ (1A7,6)_{16} = ?$

- **98**₁₀ = $9 \times 10^1 + 8 \times 10^0$
- $\mathbf{136_8} = 1 \times 8^2 + 3 \times 8^1 + 6 \times 8^0 = 64 + 24 + 6 = 94_{10}$
- $(127,65)_8 = 1 \times 8^2 + 2 \times 8^1 + 7 \times 8^0 + 6 \times 8^{-1} + 5 \times 8^{-2} = (87.828125)_{10}$
- $(1A7,6)_{16} = 1 \times 16^2 + A \times 16^1 + 7 \times 16^0 + 6 \times 16^{-1} = (423.375)_{10}$

□ Décimal vers base B:

On procède par une série de divisions entières par B

- Division du nombre décimal N par B: donne une valeur v_0 et un reste r_0
- On divise v_0 par B : donne v_1 et reste r_1
- On recommence pour v₁ et ainsi de suite
- Quand $v_i < B$, c'est fini
- Le résultat de la prochaine division donnera 0
- On écrit: $(N)_B = r_i r_{i-1} ... r_1 r_0$

□ Décimal vers base B:

 \Rightarrow Exemple : $(1234)_{10}$ en décimal

$$1234 \div 10 = 123$$
, reste **4**
 $123 \div 10 = 12$, reste **3**
 $12 \div 10 = 1$, reste **2**
 $1 < 10$, donc on arrêt la division
On a donc: $(1234)_{10} = (1234)_{10}$

□ Décimal vers base B:

 \Leftrightarrow Exemple : $(25)_{10}$ en binaire

$$25 \div 2 = 12$$
, reste **1**
 $12 \div 2 = 6$, reste **0**
 $6 \div 2 = 3$, reste **0**
 $3 \div 2 = 1$, reste **1**
 $1 < 2$, donc on arrêt la division
On a donc : $(25)_{10} = (11001)_2$

□ Décimal vers base B:

 \Leftrightarrow Exemple: $(203)_{10}$ en Octal

$$203 \div 8 = 25$$
, reste **3**
 $25 \div 8 = 3$, reste **1**
 $3 < 8$, donc on arrêt la division
On a donc : $(203)_{10} = (313)_{16}$

☐ Décimal vers base B:

❖ Exemple : (7172)₁₀ en hexadécimal

7172 ÷ 16 = 448, reste **4**
448 ÷16 = 28, reste **0**
28 ÷16 = 1, reste **12 = C**
1 < 16, donc on arrêt la division
On a donc :
$$(7172)_{10} = (1C04)_{16}$$

- ☐ Cas particuliers : Conversion du binaire à l'octal
- 1 chiffre octal = un groupe de 3 chiffres binaires
- Avec 3 bits on code les 8 chiffres de la base octale

$$(000)_2 = 0$$

 $(001)_2 = 1$
 $(010)_2 = 2$
 $(011)_2 = 3$
 $(100)_2 = 4$
 $(101)_2 = 5$
 $(110)_2 = 6$
 $(111)_2 = 7$

- ☐ Cas particuliers : Conversion du binaire en octal
- **Exemple 1**: (10110001101)₂ en octal
 - On regroupe par groupes de 3 bits : **0**10 110 001 101
 - On rajoute des zéros au début au besoin
 - $(10110001101)_2 = (2615)_8$

- **Exemple 2:** (1111100110)₂ en octal
 - $(11111100110)_2 = (001\ 111\ 100\ 110)_2 = (1746)_8$

- ☐ Cas particuliers : Conversion du l'octal en binaire
- **Exemple 1**: (254) ₈ en binaire
 - $2 = (010)_2$, $5 = (101)_2$, $4 = (100)_2$
 - On concatène dans l'autre base ces groupes de 3 bits :

$$(254)_8 = (10101100)_2$$

- **Exemple 2**: (761)₈ en binaire
 - $(761)_8 = (1111110001)_2$
- **Exemple 3**: (831) en binaire
 - (831) ce n'est pas un nombre en octal!

☐ Cas particuliers : Conversion du binaire en hexadécimal

■ 1 chiffre hexadécimal = un groupe de 4 chiffres binaires

$$(0000)_2 = 0$$
 $(1000)_2 = 8$
 $(0001)_2 = 1$ $(1001)_2 = 9$
 $(0011)_2 = 3$ $(1011)_2 = 11 = (B)$
 $(0100)_2 = 4$ $(1100)_2 = 12 = (C)$
 $(0110)_2 = 5$ $(1101)_2 = 13 = (D)$
 $(0110)_2 = 6$ $(1110)_2 = 14 = (E)$
 $(0111)_2 = 7$ $(1111)_2 = 15 = (F)$

- ☐ Cas particuliers : Conversion du binaire en hexadécimal
- **Exemple 1**: (10110001101)₂ en hexadécimal
 - On regroupe par groupes de 4 bits : **0**101 1000 1101
 - $(10110001101)_2 = (58D)_{16}$

- **Exemple 2** : (11111111100111)₂ en hexadécimal
 - $(111111111100111)_2 = (1FE7)_{16}$

- ☐ Cas particuliers : Conversion du hexadécimal en binaire
- **Exemple 1**: (D46C)₁₆ en binaire
 - $D = 13 = (1101)_2$, $4 = (0100)_2$, $6 = (0110)_2$, $C = 12 = (1100)_2$
 - On concatène dans l'autre base ces groupes de 4 bits : $(D46C)_{16} = (1101010001101100)_2$

- **Exemple 2**: (EF2A)₁₆ en binaire
 - $(EF2A)_{16} = (11101111100101010)_2$

☐ Conversion d'une base p à une base q

- Pour convertir un nombre N écrit en base **p**, vers une base **q**, on utilise la base intermédiaire **10**.
- Mais si p et q s'écrivent respectivement sous la forme d'une puissance de 2 (4, 8, 16, 32,), on peut passer par **la base 2** (plus rapide)
- **Exemple** : $(34)_5 = (?)_7$

$$(34)_5 = 3*5^1 + 4*5^0 = 15 + 4 = (19)_{10} = (?)_7$$

- Les opérations arithmétiques (addition, soustraction, multiplication, division) sont réalisables dans toute base B.
 - Avec mêmes règles que pour la base décimale
 - Retenues également mais dépendant de la base
 - Quand on additionne 2 chiffres a et b dans la base B
 - Si la somme des valeurs décimales de a et b dépasse ou égale B alors il y a une retenue

☐ Principes de l'addition binaire

- 0 + 0 = 0
- 0 + 1 = 1
- 1 + 1 = 10 soit 0 avec une retenue de 1

□ Addition binaire

Addition de 2 nombres de 4 bits :

- on a besoin dans cet exemple de 5 bits
- Potentiel problème de débordement

☐ Addition binaire

Exemple:

11	11111	
00011010 26	00010011	19
+ 00001100 12	+00111110	62
00100110 38	01010001	81

- ☐ Principes de la soustraction binaire
 - 0 0 = 0
 - 0-1=1 et on prend 1 à gauche
 - 1 0 = 1
 - 1 1 = 0

Exemple:

00100101 37

- 00010001 17

1

00010100 20

☐ Principes de la multiplication binaire

- $0 \times 0 = 0$
- $0 \times 1 = 0$
- $1 \times 0 = 0$
- $1 \times 1 = 1$

Exemple: 41 x 6

00101001

x 00000110

0000000

00101001

00101001

0 0 1 1 1 1 0 1 1 0 246

☐ Principes de la division binaire

- Division obtenue par itération de soustractions jusqu'à ce que le résultat de la soustraction soit inférieur au diviseur :
 - Quotient = nombre de soustractions
 - Reste = résultat de la dernière soustraction
- On peut aussi faire comme une division classique en décimal

- **Exemple** : 7/3
- Résultat : quotient = 2 et reste = 1

- ☐ Principes de la division binaire
 - Exemple : 37/5

- **☐** Addition en octale
 - **Exemple**: (4365)8 + (451)8 = ?

$$=(5036)8$$

☐ Soustraction en octale

• **Exemple**: (347)8 - (271)8 = ?

$$=(056)8$$

347₈ Emprunter un 8
- 1271₈ 8+4=12
056 12-7=5

☐ Multiplication en octale

• **Exemple**: $(24)8 \times (7)8 = ?$

$$=(214)8$$

☐ Division en octale

• Exemple: (651)8/(3)8 = ?

$$= (215)8 R = 2$$

X /:	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7
2	0	2	4	6	10	12	14	16
3	0	3	6	11	14	17	22	25
4	0	4	10	14	20	24	30	34
5	0	5	12	17	24	31	36	43
6	0	6	14	22	30	36	44	52
7	0	7	16	25	34	43	52	61

$$5 \times 3 = 15 = (17)8$$

Exercices d'application

☐ En octale

721 +604 676

+666

516

+401

414

+253

567

+337

☐ Addition en Hexadécimal

• **Exemple** : *A*803₁₆+2*D*35₁₆

																_
±	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
0	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
1	1	2	3	4	5	6	- 7	8	9	Α	В	С	D	Е	F	10
2	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F	10	11
3	3	4	5	6	7	8	9	Α	В	С	D	Е	F	10	11	12
4	4	5	6	7	8	9	Α	В	С	D	Е	F	10	11	12	13
5	5	6	7	8	9	Α	В	С	D	Е	F	10	11	12	13	14
6	6	7	8	9	Α	В	С	D	Е	F	10	11	12	13	14	15
7	7	8	9	Α	В	С	D	Е	F	10	11	12	13	14	15	16
8	8	9	Α	В	С	D	Е	F	10	11	12	13	14	15	16	17
9	9	Α	В	С	D	Е	F	10	11	12	13	14	15	16	17	18
Α	Α	В	С	D	Е	F	10	11	12	13	14	15	16	17	18	19
В	В	С	D	Е	F	10	11	12	13	14	15	16	17	18	19	1A
С	С	D	Е	F	10	11	12	13	14	15	16	17	18	19	1A	1B
D	D	Е	F	10	11	12	13	14	15	16	17	18	19	1A	1B	1C
E	Е	F	10	11	12	13	14	15	16	17	18	19	1A	1B	1C	1D
F	F	10	11	12	13	14	15	16	17	18	19	1A	1B	1C	1D	1E

- **☐** Soustraction en Hexadécimal
 - **Exemple**: *A*80316 2*D*3516

	±	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
	0	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
•	1	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F	10
	2	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F	10	11
	3	3	4	5	6	7	8	9	Α	В	С	D	Е	F	10	11	12
	4	4	5	6	7	8	9	Α	В	С	D	Е	F	10	11	12	13
	5	5	6	7	8	9	Α	В	С	D	Е	F	10	11	12	13	14
	6	6	7	8	9	Α	В	С	D	Е	F	10	11	12	13	14	15
	7	7	8	9	Α	В	С	D	Е	F	10	11	12	13	14	15	16
	8	8	9	Α	В	С	D	Е	F	10	11	12	13	14	15	16	17
	9	9	Α	В	С	D	Е	F	10	11	12	13	14	15	16	17	18
	Α	Α	В	С	D	Е	F	10	11	12	13	14	15	16	17	18	19
	В	В	С	D	Е	F	10	11	12	13	14	15	16	17	18	19	1A
	С	С	D	Е	F	10	11	12	13	14	15	16	17	18	19	1A	1B
	D	D	Е	F	10	11	12	13	14	15	16	17	18	19	1A	1B	1C
	Е	Е	F	10	11	12	13	14	15	16	17	18	19	1A	1B	1C	1D
	F	F	10	11	12	13	14	15	16	17	18	19	1A	1B	1C	1D	1E

- **☐** Multiplication en Hexadécimal
 - Exemple : (A10)₁₆ x (5)₁₆
 (C1DF)₁₆ x (8)₁₆

3 6 67
A 10 C 1 D F
× 5 × 8

3 2 5 0 6 0 E F 8

X	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9	Α	В	O	D	Е	II.
2	0	2	4	6	8	Α	С	Е	10	12	14	16	18	1A	1C	1E
3	0	3	6	9	С	IL.	12	15	18	1B	1F	21	24	27	2A	2D
4	0	4	8	O	10	14	18	1C	20	24	28	2C	30	34	38	3C
5	0	5	Α	F	14	19	1E	23	28	2D	32	37	3C	41	46	4B
6	0	6	С	12	18	1E	24	2A	30	36	3C	42	48	4E	54	5A
7	0	7	Е	15	1C	23	2A	31	38	3F	46	4D	54	5C	63	6A
8	0	8	10	18	20	28	30	38	40	48	50	58	60	68	70	78
9	0	9	12	1B	24	2D	36	3F	48	51	5A	63	6C	75	7E	87
Α	0	Α	14	1E	28	32	3C	46	50	5A	64	6C	78	82	8C	96
В	0	В	16	21	2C	37	42	4D	58	63	6E	79	84	8F	9A	A5
O	0	С	18	24	30	3C	48	54	60	6C	78	84	90	9C	A8	B4
O	0	D	1A	27	34	41	4E	5B	68	75	82	8F	9C	A 9	В6	C 3
Е	0	Е	1C	2A	38	46	54	62	70	7E	8C	9A	A8	В6	C4	D2
F	0	F	1E	2D	3C	4B	5A	69	78	87	96	A5	B4	C3	D2	E1

☐ Division en Hexadécimal

• **Exemple**: 1EC7F416 / 7F16

	Х	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1	0	1	2	3	4	5	6	7	8	9	Α	В	C	D	Е	F
	2	0	2	4	6	8	Α	С	Е	10	12	14	16	18	1A	1C	1E
Ī	3	0	3	6	9	С	F	12	15	18	1B	1F	21	24	27	2A	2D
Ī	4	0	4	8	С	10	14	18	1C	20	24	28	2C	30	34	38	3C
Ī	5	0	5	Α	F	14	19	1E	23	28	2D	32	37	3C	41	46	4B
Ī	6	0	6	С	12	18	1E	24	2A	30	36	3C	42	48	4E	54	5A
Ī	7	0	7	Е	15	1C	23	2A	31	38	3F	46	4D	54	5C	63	6A
Ī	8	0	8	10	18	20	28	30	38	40	48	50	58	60	68	70	78
ı	9	0	9	12	1B	24	2D	36	3F	48	51	5A	63	6C	75	7E	87
Ī	Α	0	Α	14	1E	28	32	3C	46	50	5A	64	6C	78	82	8C	96
Ī	В	0	В	16	21	2C	37	42	4D	58	63	6E	79	84	8F	9A	A5
Ī	С	0	С	18	24	30	3C	48	54	60	6C	78	84	90	9C	A8	B4
Ī	D	0	D	1A	27	34	41	4E	5B	68	75	82	8F	9C	A 9	В6	C 3
ľ	Е	0	Е	1C	2A	38	46	54	62	70	7E	8C	9A	A8	В6	C4	D2
Ī	F	0	F	1E	2D	3C	4B	5A	69	78	87	96	A5	B4	C3	D2	E1

$$\frac{\mathsf{CA9EC}_{16}|\mathsf{5C}_{16}}{\mathsf{233D}_{16}}$$

$$185850_{16} \frac{|56_{16}|}{4878_{16}}$$

- ☐ Entiers non-signés : ensemble d'entiers positifs
- ☐ Entiers signés: ensemble d'entiers positifs et négatifs

Comment représenter des entiers négatifs ?

- Convention de recodage des chaînes de bits
 - > Valeur signée
 - ➤ Complément à 1
 - ➤ Complément à 2

☐ Représentation par valeur signée

- Réserver un bit pour le signe (le bit le plus à gauche appelé le bit de poids fort), les autres bits codent la valeur absolue du nombre.
 - 0 = positif et 1 = négatif
- **Exemple** (sur 4 bits) :
 - $+3_{10} = 0011_2$
 - $-3_{10} = 1011_2$
- **Exemple** (sur 8 bits) :
 - $+25_{10} = 000110012$
 - $-25_{10} = 100110012$

☐ Représentation par valeur signée

Réserver un bit pour le signe (le bit le plus à gauche appelé le bit de poids fort), les autres bits codent la valeur absolue du nombre. Chaîne non valeur

- Difficultés: Deux représentations de la valeur zéro
 - $+0_{10} = 000000000_2$
 - $-0_{10} = 100000000_2$
- Sur 8 bits: -127.....+127

aîne		non	valeu
bits		signé	signé
11		15	-7
10		14	-6
01		13	-5
00		12	-4
11		11	-3
10		10	-2
01		9	-1
000		8	-0
11		7	7
10		6	6
01		5	5
00		4	4
11		3	3
10		2	2
01		1	1
000		0	0

☐ Complément à 1

- Le bit de poids fort correspond au signe :
- 0 = positif 1 = négatif
- Un nombre négatif s'obtient en complémentant bit à bit sa valeur absolue avec 1. Ou on prend la représentation de la partie entière et on inverse tous les bits.
- **Exemple**: représentation de -4_{10} sur 4 bits $4_{10} = 0100_2$ donc $-4_{10} = 1011_2$

1111 0100 1011

Exemple: représentation de -25_{10} sur 8 bits :

$$25_{10} = 00011001_2$$
 donc $-25_{10} : 11100110_2$

11111111 - 00011001 11100110

☐ Complément à 1

- Le bit de poids fort correspond au signe :
- 0 =**positif** 1 =**négatif**
- Deux représentations pour 0 :
 000000002 et 1111111112
- Nombres représentés sur 8 bits : -127.....+127
- Valeur max (complément à 1):
 - **Positive** de 00000000_2 à $011111111_2 => de$ **0**à**127**₁₀
 - **Négative** de 10000000_2 à $111111111_2 => de -127$ à -0_{10}

chaîne non complémer					
de bits	i	signé		à 1	
1111		15		-0	
1110		14		-1	
1101		13		-2	
1100		12		-3	
1011		11		-4	
1010		10		-5	
1001		9		-6	
1000		8		-7	
0111		7		7	
0110		6		6	
0101		5		5	
0100		4		4	
0011		3		3	
0010		2		2	
0001		1		1	
0000		0		0	

- ☐ Complément à 2
 - Le bit de poids fort correspond au signe :
 - $0 = \mathbf{positif}$ $1 = \mathbf{n\acute{e}gatif}$
- Un nombre négatif s'obtient en ajoutant 1 au complément à 1 de sa valeur absolue. Ou on prend la représentation de la partie entière et on soustrait 1 puis on inverse tous les bits.
- **Exemple (sur 4 bits):** représentation de -6_{10}
 - $+6_{10}=0110_2$
 - Complément à 1 de $+6_{10} = 1001_2$
 - Ajout de 1: $1001_2 + 1 = 1010_2$
 - $-6_{10} = 1010_2$

☐ Complément à 2

- Le bit de poids fort correspond au signe :
- $0 = \mathbf{positif}$ $1 = \mathbf{n\acute{e}gatif}$
- Un nombre négatif s'obtient en ajoutant 1 au complément à 1 de sa valeur absolue. Ou on prend la représentation de la partie entière et on soustrait 1 puis on inverse tous les bits.
- **Exemple** (sur 8 bits): représentation de −25₁₀
 - $+25_{10} = 00011001_2$
 - Complément à 1 de $+25_{10} = 11100110_2$
 - Ajout de 1: $11100111_2 + 1 = 11100111_2$
 - $-25_{10} = 11100111_2$

☐ Complément à 2

- Le bit de poids fort correspond au signe :
- 0 =**positif** 1 =**négatif**
- Une seule représentation pour 0 : 00000000₂
- Nombres représentés sur 8 bits : -128..+127
- Valeur max (complément à 2):
 - **Positive** de 00000000_2 à $011111111_2 => de$ **0**à**127**₁₀
 - Négative de 10000000_2 à $111111111_2 => de -128$ à -1_{10}

			non signé	cor	nplém à 2	en
	1111		15		-1	
	1110		14		-2	
	1101		13		-3	
	1100		12		-4	
	1011		11		-5	
	1010		10		-6	
	1001		9		-7	
	1000		8		-8	
	0111		7		7	
	0110		6		6	
	0101		5		5	
	0100		4		4	
	0011		3		3	
	0010		2		2	
	0001		1		1	
	0000		0		0	

Exercice:

- Convertir en décimal:
 - (11001000)CA2
 - (00100111)CA2

☐ Capacité de représentation

- Les valeurs positives: intervalle [0, 2 nombre bits -1]
- Les valeurs négative (complément à 1): intervalle [1-(2 nombre bits)/2, -1+(2 nombre bits)/2]
- Pour négative (complément à 2): intervalle [-(2 nombre bits)/2, -1+(2 nombre bits)/2]

☐ Exemple pour 3 bits:

- Valeurs positifs: intervalle $[0, 2^3 1] = > [0, 7]$
- Valeurs négatives (complément à 1): intervalle [1-(2³)/2, -1+(2³)/2]

$$=>[1-4, -1+4] = [-3,3]$$

■ Valeurs négatives (complément à 2): intervalle [-(2³)/2, -1+(2³)/2]

$$=>[-4, -1+4] = [-4,3]$$

☐ Application: Compléter le tableau suivant !

	Décimal				
	Valeur signée	Complément à 1	Complément à 2		
011					
010					
001					
000					
111					
110					
101					
100					

☐ Application:

	Valeur signée	Complément à 1	Complément à 2
011	3	3	3
010	2	2	2
001	1	1	1
000	0	0	0
111	-3	-0	-1
110	-2	-1	-2
101	-1	-2	-3
100	-0	-3	-4

Binaire	Décimal	Valeur signée	Complément à 1	Complément à 2
0000	0	0	0	0
0001	1	1	1	1
0010	2	2	2	2
0011	3	3	3	3
0100	4	4	4	4
0101	5	5	5	5
0110	6	6	6	6
0111	7	7	7	7
1000	8	-0	-7	-8
1001	9	-1	-6	-7
1010	10	-2	-5	-6
1011	11	-3	-4	-5
1100	12	-4	-3	-4
1101	13	-5	-2	-3
1110	14	-6	-1	-2
1111	15	-7	-0	-1

Retenu & Débordement

- ☐ Retenu est rencontrée lorsqu'une retenue existe à la fin de l'opération d'addition ou soustraction(comme décimal).
- ☐ **Débordement** : la taille allouée (8, 16 ... bits) au codage d'un nombre est trop petite pour coder ou stocker correctement le résultat d'un calcul.
- Exemple avec addition, sur 8 bits, non signé :
 - $1011\ 0011 + 1000\ 0101 = 100111000$
 - Besoin de 9 bits pour coder le nombre
 - Stockage du résultat impossible sur 8 bits
- Exemple avec addition, sur 8 bits, signé :
 - 01110011 + 01000101 = 10111000
 - Addition de 2 positifs donne un négatif!

Retenu & Débordement

- ☐ Exemple 1 : (4bits signé)
 - 7 + 3 = ?
 - 0111
 - + 0 0 1 1

1010

-6!!!

- 110 + 43 = ?
 - **0** 1 1 0 1 1 1 0
- + **0** 0 1 0 1 0 1 1

10011001

Non signé		Signé	
0111	7	0111	7
+ 0001	1	+ 0001	1
1000	8	1000	-8

Détection : Opérandes de même signe Résultat de signe différent

(-103) !! (et non 153)

110

43

- ☐ Méthode de la virgule fixe
- ☐ Méthode de la virgule flottante

☐ Méthode de la virgule fixe

- La position de la virgule reste inchangée.
- On code un nombre réel R sur 3 champs :
 - Le bit de poids fort (MSB) est réservé pour le signe de R.
 - La partie entière de R est codé en binaire (sur un nombre de bits précis).
 - La partie fractionnaire de R est également codé en binaire (sur un nombre de bits précis).

Bit de signe	Partie entière en binaire	Partie fractionnaire en binaire
--------------	---------------------------	---------------------------------

☐ Méthode de la virgule fixe

• Exemple 1:

- R = -10.25
- Signe = donc MSB = 1
- Partie entière de $R = 10 = (1010)_2$
- Partie fractionnaire de $R = 0.25 = (01)_2$
 - $0.25 \times 2 = 0.5$
 - $0.5 \times 2 = 1$
- La représentation complète de R sur 2 octets (1 octet pour la partie entière plus le signe et 1 octet pour la partie fractionnaire):
- R = 1000101001000000

☐ Méthode de la virgule fixe

- **Exemple :** conversion de 14.375₁₀ en base 2 ?
 - $14_{10} = 1110_2$
 - $0.375_{10} = (?)_2$
 - $0.375 \times 2 = 0.75$
 - $0.75 \times 2 = 1.5$
 - $0.5 \times 2 = 1.0$
 - Résultat = 14.375_{10} = 1110.011_2
- Exemple de conversion binaire en virgule fixe :
 - $110.011_2 = ?$
 - $1x2^2 + 1x2^1 + 0x2^0 + 0x2^{-1} + 1x2^{-2} + 1x2^{-3} = 6.375_{10}$

☐ Méthode de la virgule fixe

Exercice:

- ☐ Trouver la représentation binaire de 0.2357 sur 8 bits?
- $0.2357 \times 2 = 0 + 0.4714$
- $0.4714 \times 2 = 0 + 0.9428$
- $0.9428 \times 2 = 1 + 0.8856$
- $0.8856 \times 2 = 1 + 0.7712$
- $0.7712 \times 2 = 1 + 0.5424$
- $0.5424 \times 2 = 1 + 0.0848$
- $0.0848 \times 2 = 0 + 0.1696$
- $0.1696 \times 2 = 0 + 0.3392$
- $(0.2357)10 = (0.00111100)_2$

☐ Méthode de la virgule flottante

- La position de la virgule est variable.
- On écrit le nombre réel sous la forme :

$$R = (\pm 1) \times M \times 2^{E}$$

- un bit de signe
- une mantisse M
- un exposant E

- Exemple de représentation
 - $0.0000111010 \cdot 2^0$
 - $0.000000111010 \cdot 2^2$
 - $1.111010 \cdot 2^{-5}$

☐ Méthode de la virgule flottante

- Codage IEEE 754
 - Le signe + est représenté par 0 et le signe par 1
 - La mantisse appartient à l'intervalle [1, 2[
 - L'exposant est un entier relatif et il est établi de manière à ce que la mantisse soit de

la forme « 1,... »

n-1

exposant mantisse normalisé

Plusieurs formats:

- Simple précision : **32** bits (soit 4 octets) 1 bit de signe, 8 bits d'exposant, 23 bits de mantisse
- Double précision : **64** bits (soit 8 octets) 1 bit de signe, 11 bits d'exposant, 52 bits de mantisse

- **☐** Méthode de la virgule flottante
- Codage IEEE 754 (simple précision)
 - Au lieu de coder \mathbf{E} (en binaire), on code $\mathbf{E} + 127$.
 - C'est l'exposant biaisé $E_b : E_b = E + 127$
 - Cela permet d'avoir un exposant non signé

- ☐ Méthode de la virgule flottante
- Codage IEEE 754 (simple précision 32 bits)
- Application:
 - R = -6.625
 - $6.625_{10} = 110.101_2$
 - $110.1010_2 = 1.10101 \times 2^2$

 - $E= 2 => E_b = 2+127 = 129_{10} = 10000001_2$

- ☐ Méthode de la virgule flottante
- Codage IEEE 754 (simple précision 32 bits)
- Application:
 - R = -0.75
 - $0.75_{10} = 0.11_2$
 - $0.11_2 = 1.1 \times 2^{-1}$

 - $E=-1 => E_b = -1+127 = 126_{10} = 11111110_2$

□ Définition

- Codage : Opération consistant à représenter des informations à l'aide d'un code.
- Les codes sont des combinaisons de bits permettant de représenter sous forme binaire des informations quelconques.
- **Le Code binaire pur ou code binaire naturel**
- **❖** Le code BCD (décimal codé binaire)
- **❖** Le code gray ou code binaire reflechi
- **❖** Le Code ASCII

Le code binaire pur ou code binaire naturel

- Le code binaire naturel est utilisé pour représenter un nombre dans la base de numération binaire.
- Pour une représentation sur 4 bit, les nombres sont codés par:

CODE	EQUIVALENT
BINAIRE	DECIMAL
0000	0
0001	1
0010	2
:	:
1110	14
1111	15

Le code BCD (décimal codé binaire)

- Un digit décimal peut atteindre la valeur 9, il faut donc nécessairement 4 bits pour coder chaque digit.
- Il suffit de transformer chaque chiffre en binaire naturel sur 4 bits, sans faire de calcul.
- Exemple :
 - (1995)**10** = $(0001\ 1001\ 1001\ 0101)$ **BCD**
 - (874)**10** = $(1000\ 0111\ 0100)$ **BCD**
 - $(1001\ 0011)$ **BCD** = (93)**10**
- **✓ RQ: BCD # binaire pur**
 - $(137)10 = (10001001)2 = (0001\ 0011\ 0111)BCD$

- **Le code BCD (décimal codé binaire)**
- ☐ L'addition des nombres en BCD
- Il y a deux cas possible:
 - la somme est un chiffre BCD valide (0 à 9); ou,
 - la somme est égale ou supérieure à dix.
- Dans le premier cas, aucune action n'est requise.
- Dans le deuxième cas, il faut ajouter +6 à la somme obtenue. La combinaison de la retenue et de la somme finale produit alors un résultat correct.

Le code BCD (décimal codé binaire)

- ☐ L'addition des nombres en BCD
- Exemple : addition 3 + 4 en BCD :

3 0011

$$+4$$
 $+0100$
07 **0** | 0111 \leftarrow somme inférieure à dix, résultat correct (retenue 0, somme 7)

Exemple: addition 7 + 8 en BCD:

7 0111
+8 +1000
15
$$\mathbf{0} \mid 1111 \leftarrow \text{somme sup\'erieure à 9, il faut ajouter +6}$$

 $+0110 + 6$
 $\mathbf{1} \mid 0101 \leftarrow \text{r\'esultat correct, retenue de 1, somme de 5}$

■ Exemple : addition 9 + 8 en BCD :

```
9 1001

+8 +1000

17 1 | 0001 ← somme supérieure à 9, il faut ajouter +6

+0110 + 6

1 | 0111 ← résultat correct, retenue de 1, somme de 7
```

Le code gray ou code binaire reflechi

C'est un code de même densité que le code binaire pur (avec n bit, on code 2n Nombre)

• On passe d'un nombre à son suivant en modifiant un seul bit.

Conversion binaire en code réfléchi (Gray):

- o Ecrire le nombre binaire à convertir.
- O Reproduire le bit binaire de plus fort bit, pour obtenir celui du code réfléchi.
- Le reste des bits du code de réfléchi sont obtenus en additionnant binaires deux à deux, à partir de la gauche, sans tenir compte de la retenue.
- **Exemple:** 110100 = ? gray

Code binaire: 1—	→ 1—	→ 0	→ 1—	→ 0-	→ 0
\downarrow	\downarrow	$\downarrow \downarrow$	$\downarrow \downarrow$	$\downarrow \downarrow$	$\downarrow \downarrow$
Code réfléchi: 1	0	1	1	1	0

Le code gray ou code binaire reflechi

- Code réfléchi (Gray) en code binaire :
- Ecrire le nombre binaire à convertir.
- Reproduire le bit de plus fort poids du nombre réfléchi, pour obtenir celui du code de binaire
- Le reste des bits du code binaire sont obtenus en additionnant les bits sans retenue, deux à deux, à partir de la gauche, le bit du rang i du code binaire avec celui du rang i-1, est ainsi de suite.
- **Exemple:** (101110)g en binaire

Systèmes de codage - Représentation des caractères

- ☐ La mémoire de l'ordinateur conserve toutes les données sous forme numérique. Il n'existe pas de méthode pour stocker directement les caractères.
- ☐ Plusieurs formats pour représenter des caractères (symboles alphanumériques) sous forme binaire :

- **ASCII** (American Standard Code for Information Interchange)
 - Représentation sur 7 bits (pas d'accents)
 - ASCII étendu : sur 8 bits mais pas de normalisation
- Unicode : encodage sur 16 bits (65536 possibilités) pour représenter tous les caractères de toutes les langues (Arabic, Basic Latin...)

Représentation des caractères

☐ Exemple: Table code ASCII

Le code de U (majuscule) est représenté par:

- 85 en code décimale
- 55 en code hexadécimal
- u (minuscule) est 1110101(2), soit 117(10) soit 75(16).
- Le code ascii 1000001 = 41(16) = 65(10).

```
Dec Hx Oct Html Chr
                   Dec Hx Oct Html Chr Dec Hx Oct Html Chr
32 20 040   Space
                    64 40 100 @ 0
                                     96 60 140 `
33 21 041 !
                    65 41 101 A 🗛
                                     97 61 141 4#97;
34 22 042 @#34;
                    66 42 102 B B
35 23 043 4#35; #
                    67 43 103 C C
                                     99 63 143
                    68 44 104 a#68; D
                                    100 64 144 d d
   24 044 $ $
   25 045 @#37: %
                    69 45 105 E E
                                    101 65 145 @#101;
   26 046 & &
                    70 46 106 F F
                                    102 66 146 f f
                                    103 67 147 @#103; g
39 27 047 '
                                    104 68 150 h h
                                       69 151 i i
  2A 052 *
                    74 4A 112 @#74; J
                                    106 6A 152 j j
                    75 4B 113 @#75; K
                                    107
                                       6B 153 k k
                    76 4C 114 L L
                                    108 6C 154 l 1
                    77 4D 115 @#77; M
45 2D 055 -
                                    109 6D 155 m M
   2E 056 .
                    78 4E 116 @#78; N
                                    110 6E 156 &#ll0; n
                                    111 6F 157 o 0
                                        70 160 p p
                                    113 71 161 q q
                                    114 72 162 @#114; r
   33 063 3 3
                                        73 163 s 3
                    84 54 124 @#84; T
                                        74 164 @#116; t
                                    117 75 165 @#l17; u
53 35 065 &#53: 5
                    85 55 125 U <del>U</del>
                                    118 76 166 v V
   36 066 6 6
                    86 56 126 V V
                                        77 167
                                        78 170 x ×
                    89 59 131 Y Y
                                    121 79 171 y Y
                    90 5A 132 @#90; Z
                                        7A 172
                      5B 133 [ [
                                        7B 173 {
   3B 073 &#59; ;
                    92 5C 134 \
60 3C 074 < <
                                    124 70 174 @#124;
                    93 5D 135 ] ]
                                    125 7D 175 } )
61 3D 075 &#6l; =
   3E 076 > >
                    94 5E 136 ^ ^
                                    126 7E 176 ~
                                    127 7F 177  DEL
63 3F 077 ? ?
                    95 5F 137 _
```

Projet de Module: Programmation en C

□Programmes de conversion

- ➤ Un programme permettant de convertir un nombre d'une base A vers une base B (A et B compris entre 2 et 16).
- ➤ Un programme permettant de représenter les nombres négatifs en utilisant les 3 méthodes : VS, Cà1, Cà2
- > +Tester des cas (retenu et débordement)
- Un programme permettant de représenter les nombres à virgule fixe et virgule flottante.