ESTRUTURAS AEROESPACIAIS II

Prof. Mauricio V. Donadon

ITA-IEA

Bibliografia

- 1. Donadon M.V., "Estruturas Aeroespaciais II", Notas de Aula, *Instituto Tecnológico de Aeronáutica-ITA*, 2013.
- 2. Rizzi, P., "Estabilidade de Estruturas Aeronáuticas", Apostila do Curso em Análise Estrutural, *Instituto Tecnológico de Aeronáutica-ITA*, 2007.

Obs: O material didático completo encontra-se disponível no site do departamento de aeronáutica, ftp://161.24.15.247/Donadon/EST-25

CRITÉRIOS DE FALHA PARA PLACAS SUJEITAS A FLAMBAGEM

Flambagem Inelástica de Placas (Revisão EST-15)

$$\sigma_{\rm cr} = \frac{\eta k \pi^2 E}{12 \left(1 - \nu_e^2\right)} \left(\frac{t}{b}\right)^2$$

$$\eta = \eta_p \eta_{clad}$$
 $\eta_p = \frac{\sigma_{cr}}{(\sigma_{cr})_{elástico}}; \quad \eta_{clad} \to \text{Tab. 5.3 da apostila}$

η_P= Fator de Correção de Plasticidade

η_c= Fator de Correção de Cladding

Fig. 5-52 Corte de uma Chapa Alclad

Fig. 5-53 Curvas Tensão-Deformação para o Clad, Núcleo e Combinações Clad-Núcleo

Tabela 5.3 Fatores de Redução de Cladding Simplificados

Loading	$\sigma_{ m cl} < \tilde{\sigma}_{ m cr} < \sigma_{ m pl}$	σ̄ > σ pl
Short Plate Columns	$\frac{1+\left(\frac{3\beta f}{4}\right)}{1+3f}$	1 1+3f
Long Plate Columns	1 1 + 3f	1 1 + 3f
Compression and Shear Panels	$\frac{1+3\beta f}{1+3f}$	1 1 + 3f

Tabela 5-1 Fatores de Correção de Plasticidade

$$j = (1 - v_e^2)/(1 - v^2)$$

1	Case	Type of Structure and Loading		Inelastic Factor, η/j			
1	A	Long plate, one un- loaded edge simply supported and one un- loaded edge free	Free b a	$\frac{E_s}{E_c}$			
	В	Long plate, one un- loaded edge clamped and one unloaded edge free	b &	$\frac{E_s}{E_c} \left(0.330 + 0.670 \sqrt{\frac{1}{4} + \frac{3E_t}{4E_s}} \right)$			
	For long	or long plates, the equations in this figure for η apply whether the loaded edges are simply supported or clamped.					
	С	Long plate, both un- loaded edges simply supported	b .	$\frac{E_s}{E_c} \left(\frac{1}{2} + \frac{1}{2} \sqrt{\frac{1}{4} + \frac{3\overline{E}_t}{4\overline{E}_s}} \right)$			
	D	Long plate, both un- loaded edges clamped	b a	$\frac{E_s}{E_c} \left(0.352 - 0.648 \sqrt{\frac{1}{4} + \frac{3E_t}{4E_s}} \right)$			
	E	Short plate loaded as a column, loaded edges simply supported: a/h << 1	Free	$\frac{E_s}{4E_c} + \frac{3E_t}{4E_c}$			
	F	Square plate loaded as a column. loaded edges simply supported: $a/b = 1$	Free Free	$0.114 \frac{E_3}{E_c} + 0.886 \frac{E_t}{E_c}$			
	G	Long plate loaded as a column	Free b a Free	$\frac{E_t}{E_c}$			
	н	Flat or curved plate; edge conditions may be either simply sup- ported or clamped	b a	<u>G</u>			
		Clamped edge Simply supported edge		E_s and G_s are the secant modulus for compression and shear, respectively. E_t is the tangent modulus.			

Comportamento de Placas Após a Flambagem

Fig. 5-54 Distribuição de Tensões e Deslocamentos em Placas Sujeitas a Encurtamento Uniforme das Extremidades. (a) Bordas Descarregadas Retas; (b) Bordas Descarregadas Livres de Tensão e Livres para Distrocer no Plano da Placa

Imperfeições Iniciais

Fig. 5-55 Comportamento de Placas Perfeitas e Imperfeitas Submetidas a Encurtamento Uniforme das Extremidades

Largura Efetiva de Chapa

Fig. 5-56 Distribuições de Tensão em Placa Flambada (a) Real; (b) Assumida

$$P = \sigma_e b_e t = t \int_0^b \sigma_{xx} dy \quad \Rightarrow \quad b_e = \frac{1}{\sigma_e} \int_0^b \sigma_{xx} dy$$

Largura Efetiva de Chapa

Koiter – placas longas; grandes cargas após a flambagem – $A_r/at = 0$ apoio simples, engaste e restrição elástica

$$b_e = b \left[1.2 \left(\frac{\sigma_{cr}}{\sigma_e} \right)^{0.4} - 0.65 \left(\frac{\sigma_{cr}}{\sigma_e} \right)^{0.8} + 0.45 \left(\frac{\sigma_{cr}}{\sigma_e} \right)^{1.2} \right]$$

Marguerre– placas quadradas; grandes cargas após a flambagem -A/at = 0

$$b_e = b \left[0.19 + 0.81 \left(\frac{\sigma_{cr}}{\sigma_e} \right)^{1/2} \right]$$

Largura Efetiva de Chapa

Argyris & Dunne – Cargas relativamente pequenas ($\sigma_{\rm e}/\sigma_{\rm cr} \le 3$) placas longas simplesmente apoiadas

Fig. 5-57 Larguras Efetivas de Placas em Compressão

Largura Efetiva de von Karman

$$\sigma_{\rm cr} = \frac{\eta k \pi^2 E}{12(1 - v_e^2)} \left(\frac{t}{b}\right)^2$$
 $k = 4, \ v = 0.3, \ b_e = b$

$$\sigma_{\rm b} = 3.615 \eta E \left(\frac{t}{b_e}\right)^2 \quad \Rightarrow \quad b_e = 1.90 t \sqrt{\frac{\eta E}{\sigma_b}}$$

Reforçadores leves
$$\Rightarrow b_e = 1.70 t \sqrt{\frac{\eta E}{\sigma_b}}$$

Boeing:
$$\eta = 1$$
 $\Rightarrow b_e = 1.70 t \sqrt{\frac{E}{\sigma_b}}$

Douglas:
$$\eta = (E_t/E)^{1/2} \implies b_e = 1.90 t \sqrt{\frac{E_t}{\sigma_b}}$$

Bordas engastadas
$$\sigma_b = 6.35 \eta E \left(\frac{t}{b_e}\right)^2 \Rightarrow b_e = 2.52 t \sqrt{\frac{\eta E}{\sigma_b}}$$

Largura Efetiva – Materiais Distintos

Curva 1 = reforçador

Curva 2 = chapa

$$b_e = \frac{\sigma_{\rm chapa}}{\sigma_{\rm reforçador}} (b_e)_{\rm material\ reforçador}$$

Mesma deformação

$$rac{\sigma_{
m chapa}/\mathcal{E}}{\sigma_{
m reforçador}/\mathcal{E}} = rac{\left(E_s
ight)_{
m chapa}}{\left(E_s
ight)_{
m reforçador}}$$

$$b_e = 1.90 t \frac{(E_s)_{\text{chapa}}}{(E_s)_{\text{reforçador}}} \sqrt{\frac{\eta E}{\sigma_b}}$$

Falha de Placas

Von Karman

$$P_u = b_e t \sigma_{cy}$$
 com $b_e = b_v \sqrt{\frac{\sigma_{cr}}{\sigma_{cy}}}$

$$k = 4 \longrightarrow P_u = 1.9\sigma_{cy}t^2\sqrt{\frac{E}{\sigma_{cy}}}$$

Winter

$$b_e = b \sqrt{\frac{\sigma_{cr}}{\sigma_{cy}}} \left(1 - 0.25 \sqrt{\frac{\sigma_{cr}}{\sigma_{cy}}} \right)$$

$$k = 4$$
 $\longrightarrow P_u = b_e t \sigma_{cy} = 1.9 \sigma_{cy} t^2 \sqrt{\frac{E}{\sigma_{cy}}} \left(1 - \frac{0.475}{b/t} \sqrt{\frac{E}{\sigma_{cy}}} \right)$

Falha de Placas – Método de Gerard

$$\frac{b_e}{b} = \alpha \left(\frac{\sigma_{cr}}{\sigma_e}\right)^r$$
, α , $r = \text{constantes empíricas a determinar}$

$$\overline{\sigma} = \sigma_e b_e / b = \alpha \sigma_e (\sigma_e / \sigma_{cr})^r \implies \overline{\sigma} / \sigma_{cr} = \alpha (\sigma_e / \sigma_{cr})^{r+1}$$

Seja $\overline{\sigma}_f$ a tensão média de falha $\overline{\sigma}_f/\sigma_{cr} = \alpha (\sigma_{cy}/\sigma_{cr})^n$ n=r+1

Flambagem inelástica \longrightarrow $\overline{\sigma}_f \approx \sigma_{cr}$

$$\frac{\overline{\sigma}_f}{\sigma_{cr}} = \alpha \left(\frac{\sigma_{cy}}{\sigma_{cr}}\right)^n \quad \text{para} \quad \sigma_{cr} \le \alpha^{1/n} \sigma_{cy} \qquad \frac{\overline{\sigma}_f}{\sigma_{cr}} = 1 \quad \text{para} \quad \sigma_{cr} > \alpha^{1/n} \sigma_{cy}$$

Falha de Placas – Método de Gerard

 $\overline{\sigma}_f/\sigma_{cr}$ e σ_{cy}/σ_{cr} correlacionados via ensaios

Tab. 5-5 Valores de α e n para Falha de Placas.

Condição	α	n
1. Teoria para placa simplesmente apoiada, com bordas descarregadas retas	0.78	0.80
2. Ensaios para placa simplesmente apoiada ou engastada, com bordas livres para empenar	0.80	0.58
3. Ensaios para placa de três painéis	0.80	0.65
4. Testes para flange simplesmente apoiado, com borda apoiada reta	0.81	0.80
5. Testes para flange simplesmente apoiado, com borda livre para empenar	0.68	0.58

Falha de Placas – Método de Gerard

$$\frac{\overline{\sigma}_{f}}{\sigma_{cr}} = \alpha \left(\frac{\sigma_{cy}}{\sigma_{cr}}\right)^{n} \Rightarrow \frac{\overline{\sigma}_{f}}{\sigma_{cy}} = \alpha \left(\frac{\sigma_{cy}}{\sigma_{cr}}\right)^{n-1} = \alpha \left|\frac{k\pi^{2}E}{12(1-\upsilon_{e}^{2})}\left(\frac{t}{b}\right)^{2}}{\sigma_{cy}}\right|^{n-1} = \alpha \left|\frac{k\pi^{2}E}{12(1-\upsilon_{e}^{2})}\left(\frac{t}{b}\right)^{2}$$

$$\alpha \left[\frac{k\pi^2}{12(1-\upsilon_e^2)} \right]^{1-n} \left[\frac{t}{b} \left(\frac{E}{\sigma_{cy}} \right)^{1/2} \right]^{2(1-n)} \longrightarrow$$

$$\frac{\overline{\sigma}_f}{\sigma_{cy}} = \beta \left[\frac{t}{b} \left(\frac{E}{\sigma_{cy}} \right)^{1/2} \right]^m \qquad \beta = \alpha \left[\frac{k\pi^2}{12(1 - \upsilon_e^2)} \right]^{1-n} \quad \mathbf{e} \quad m = 2(1 - n)$$