HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY SCHOOL OF ENGINEERING PHYSICS

ADVANCED PROGRAMS - PHYSICS FINAL EXAM - SPRING 2020

Time: 90 minutes Class code: 114767 Subject code: PH1110

For Examiner's Use

Question:	1	2	3	4	5	6	7	8	Total
Points:	4	8	7	5	5	5	10	11	55
Score:									

_		
п	-	١.
	ж	и

speed of light in free space	$c = 3.00 \times 10^8 \mathrm{ms^{-1}}$
permeability of free space	$\mu_0 = 4\pi \times 10^{-7}\mathrm{Hm^{-1}}$
permittivity of free space	$\varepsilon_0 = 8.85 \times 10^{-12} \mathrm{F} \mathrm{m}^{-1}$
	$(\frac{1}{4\pi\varepsilon_0} = 8.99 \times 10^9 \mathrm{mF^{-1}})$
elementary charge	$e = 1.60 \times 10^{-19} \mathrm{C}$
the Planck constant	$h = 6.63 \times 10^{-34} \text{Js}$
unified atomic mass unit	$1 u = 1.66 \times 10^{-27} kg$
rest mass of electron	$m_{\rm e} = 9.11 \times 10^{-31} \rm kg$
rest mass of proton	$m_{\rm p} = 1.67 \times 10^{-27} \rm kg$
molar gas constant	$R = 8.31 \mathrm{J}\mathrm{K}^{-1}\mathrm{mol}^{-1}$
the Avogadro constant	$N_{\rm A} = 6.02 \times 10^{23} \rm mol^{-1}$
the Boltzmann constant	$k = 1.38 \times 10^{-23} \mathrm{J}\mathrm{K}^{-1}$
gravitational constant	$G = 6.67 \times 10^{-11} \mathrm{N}\mathrm{m}^2\mathrm{kg}^{-2}$
acceleration of free fall	$g = 9.81 \mathrm{m s^{-2}}$

Formulae

uniformly accelerated motion	$s = ut + \frac{1}{2}at^2$ $v^2 = u^2 + 2as$
work done on/by a gas	$W = p\Delta V$
gravitational potential	$\phi = -\frac{Gm}{r}$
hydrostatic pressure	$p = \rho g h$
pressure of an ideal gas	$p = \frac{1}{3} \frac{Nm}{V} \langle c^2 \rangle$
simple harmonic motion	$a = -\omega^2 x$
velocity of particle in s.h.m.	$v = v_0 \cos \omega t$ $v = \pm \omega \sqrt{(x_0^2 - x^2)}$
Doppler effect	$f_{\rm o} = \frac{f_{\rm s} v}{v \pm v_{\rm s}}$
electric potential	$V = \frac{Q}{4\pi\varepsilon_0 r}$
capacitors in series	$1/C = 1/C_1 + 1/C_2 + \dots$
capacitors in parallel	$C = C_1 + C_2 + \dots$
energy of charged capacitor	$W = \frac{1}{2} QV$
electric current	I = Anvq
resistors in series	$R = R_1 + R_2 + \dots$
resistors in parallel	$1/R = 1/R_1 + 1/R_2 + \dots$
Hall voltage	$V_{\rm H} = \frac{BI}{ntq}$
alternating current/voltage	$x = x_0 \sin \omega t$
radioactive decay	$x = x_0 \exp(-\lambda t)$
decay constant	$\lambda = \frac{0.693}{t_1}$

1. The position vector of an ion is initially $\vec{\mathbf{r}}_0 = 5.0 \,\hat{\mathbf{x}} - 6.0 \,\hat{\mathbf{y}} + 2.0 \,\hat{\mathbf{z}}$, and is $\vec{\mathbf{r}} = -2.0 \,\hat{\mathbf{x}} + 8.0 \,\hat{\mathbf{y}} - 2.0 \,\hat{\mathbf{z}}$ two minutes later, all in meters.

4 p

(a) In unit-vector notation, find the average velocity of the ion during the two minutes.

[2]

$$\Delta \vec{\mathbf{r}} = \vec{\mathbf{r}} - \vec{\mathbf{r}}_0 = -7.0 \,\hat{\mathbf{x}} + 14 \,\hat{\mathbf{y}} - 4.0 \,\hat{\mathbf{z}} \quad \dots$$
 [C1]

$$\vec{\mathbf{v}} = \Delta \vec{\mathbf{r}} / \Delta t = -0.058 \,\hat{\mathbf{x}} + 0.12 \,\hat{\mathbf{y}} - 0.033 \,\hat{\mathbf{z}} \quad \dots$$
 [A1]

(b) State and explain whether or not it is possible to determine the average speed of the ion with [2] the given information.

no, it is not possible[B1]

because it is not possible to determine the distance moved[B1]

2. You throw a ball toward a wall at speed $22.0 \,\mathrm{m\,s^{-1}}$ and at angle of $\theta_0 = 35^\circ$ above the horizontal, as shown in **Fig. 2.1**. The wall is distance $d = 25.0 \,\mathrm{m}$ from the release point of the ball.

8 p

[3]

Fig. 2.1

(a) How far above the release point does the ball hit the wall?

 $x = (22.0\cos 35^\circ)t = 18.02t$

 $y = (22.0 \sin 35^{\circ})t - gt^2/2 = 12.62t - 4.90t^2 \dots [C1]$

the ball hits the wall when x = d

 $18.02t = 25.0 \rightarrow t = 1.387 \,\mathrm{s} \dots [C1]$

the ball hits the wall at heigh

 $h = 12.62 \times 1.387 - 4.90 \times 1.387^2 = 8.08 \,\mathrm{m}$ [A1]

(b) Determine, for the velocity of the ball as it hits the wall,

i. the horizontal component, $v_x = 18.0\,\mathrm{m\,s^{-1}} \qquad [1]$

ii. the vertical component. [2] $v_y = \dot{y} = 12.62 - 9.81t \qquad \qquad [C1]$ $v_y = 12.62 - 9.81 \times 1.387 = -0.986 \, \mathrm{m \, s^{-1}} \qquad \qquad [A1]$

3. For a particle moving around a point, suppose that the net torque acting on the particle and the angular momentum of the particle about the point are $\vec{\tau}$ and \vec{L} , respectively.

 $7 \,\mathrm{p}$

[4]

(a) State the formulae for the definitions of $\vec{\tau}$ and \vec{L} . Explain your notations. $\vec{\tau} = \vec{r} \times \vec{F} \qquad \qquad [C1]$ $\vec{L} = \vec{r} \times \vec{p} \qquad \qquad [C1]$ $\vec{r} \text{ is the position vector and } \vec{p} \text{ is the momentum of the particle } \underline{\text{with respect to the point}}$ [C1] $\vec{F} \text{ is the net force acting on the particle} \qquad [A1]$

Page 2 of 7

(b) Use the results in (a) to show that

$$\vec{\tau} = \dot{\vec{L}} \equiv \frac{\mathrm{d}\vec{L}}{\mathrm{d}t}$$

$$\vec{F} = \dot{\vec{p}} \rightarrow \vec{r} \times \vec{F} = \vec{r} \times \dot{\vec{p}}$$
[C1]

$$\rightarrow$$
 $\vec{\mathbf{r}} \times \vec{\mathbf{F}} = \frac{d}{dt} (\vec{\mathbf{r}} \times \vec{\mathbf{p}}) \rightarrow \vec{\mathbf{\tau}} = \dot{\vec{\mathbf{L}}}$ [A1]

4. A 75-kg petty thief wants to escape from a third-story jail window. Unfortunately, a makeshift rope made of sheets tied together can support a mass of only 58 kg.

[3]

(a) How might the thief use this 'rope' to escape?

- the tension less than his weight \rightarrow net force downwards[B1]
- he might escape by accelerating downwards [B1]
- (\mathbf{b}) Give a quantitative answer.

$$F_{\text{net}} = (75 - 58) \times 9.8 = 167 \,\text{N}$$
 [C1]

$$a = F_{\text{net}}/m = 167/75 = 2.2 \,\text{m s}^{-2}$$
[A1]

(c) What is the *inertia* of an object?

the resistance to change in motion[B1]

5. A ball of mass $0.440 \,\mathrm{kg}$ moving east $(+x \,\mathrm{direction})$ with a speed of $3.80 \,\mathrm{m\,s^{-1}}$ collides head-on with a $0.220 \,\mathrm{kg}$ ball at rest. If the collision is perfectly elastic, what will be the speed and direction of each ball after the collision?

[5]

[5]

 $m_1 u_1 = m_1 v_1 + m_2 v_2$ [B1] $m_1 u_1^2 / 2 = m_1 v_1^2 / 2 + m_2 v_2^2 / 2$ [B1] $v_1 = (m_1 - m_2) u_1 / (m_1 + m_2) = (0.440 - 0.220) \times 3.80 / (0.440 + 0.220) = 1.27 \,\mathrm{m \, s^{-1}}$. . . [B1] $v_2 = 2 m_1 u_1 / (m_1 + m_2) = 2 \times 0.440 \times 3.80 / (0.440 + 0.220) = 5.07 \,\mathrm{m \, s^{-1}}$. . . [B1] both balls move east or both balls move in the +x direction . . [B1]

6. Rain is falling at the rate of $3.5\,\mathrm{cm\,h^{-1}}$ and accumulates in a pan. If the raindrops hit at $10.0\,\mathrm{m\,s^{-1}}$, estimate the force on the bottom of a $1.0\,\mathrm{-m^2}$ pan due to the impacting rain which we assume does not rebound. The density of water is $1.00\times10^3\,\mathrm{kg\,m^{-3}}$.

 $F = \Delta p/\Delta t$ [C1] $F = (\Delta m/\Delta t)v$ [C1] $F = [A(\Delta h/\Delta t)\rho]v$ [C1] $F = 1.0 \times (3.5 \times 10^{-2}/3.6 \times 10^{3}) \times 1.00 \times 10^{3} \times 10.0$ [C1] $F = 9.7(2) \times 10^{-2} \,\text{N}$ [A1]

Page 4 of 7 [Turn over

7. In Fig. 7.1, block 1 has mass $m_1 = 460 \,\mathrm{g}$, block 2 has mass $m_2 = 500 \,\mathrm{g}$, and the pulley, which is mounted on a horizontal axle with negligible friction, has radius $R = 5.00 \,\mathrm{cm}$.

10 p

When released from rest, block 2 falls 75.0 cm in 5.00 s without the cord slipping on the pulley.

(a) What is the magnitude of the acceleration of the blocks?

[5]

Down is taken to be positive	R
a is the magnitude of the acceleration [C1]	
$s = ut + at^2/2$ [C1]	
$75.0 \times 10^{-2} = a \times 5.00^{2}/2$ [C1]	T_1 — T_2
$a = 6.00 \times 10^{-2} \mathrm{m s^{-2}}$ [A1]	m_1 m_2

Fig. 7.1

(b) Calculate the tensions T_1 and T_2 .

[2]

$$T_1 - m_1 g = m_1 a$$
 and $m_2 g - T_2 = m_2 a$ [C1]
 $T_1 = 0.460 \times (9.81 + 6.00 \times 10^{-2}) = 4.54 \,\mathrm{N}$
and $T_2 = 0.500 \times (9.81 - 6.00 \times 10^{-2}) = 4.87 \,\mathrm{N}$ [A1]

[3]

(c) Determine the rotational inertia of the pulley.

$$\overrightarrow{\boldsymbol{\tau}}_{\mathrm{net}} = I \overrightarrow{\boldsymbol{\beta}}$$
 or $\tau_{\mathrm{net}} = I \beta$ [C1]
 $(T_2 - T_1)R = I(a/R) \rightarrow I = (T_2 - T_1)R^2/a$ [C1]

8. 11 p

- (a) The first law of thermodynamics may be expressed in the form $\Delta U = w + q$.
 - i. State, for a system, what is meant by: [2]

 - ii. State what is represented by a negative value of ΔU . [1]

decrease in internal energy[B1]

(b) An ideal gas, sealed in a container, undergoes the cycle of changes shown in Fig. 8.1.

Fig. 8.1

At point A, the gas has volume $2.4 \times 10^{-3} \,\mathrm{m}^3$, pressure $1.6 \times 10^5 \,\mathrm{Pa}$ and temperature 300 K.

The gas is compressed suddenly so that no thermal energy enters or leaves the gas during the compression. The amount of work done is $480 \,\mathrm{J}$ so that, at point B, the gas has volume $8.7 \times 10^{-4} \,\mathrm{m}^3$, pressure $6.6 \times 10^5 \,\mathrm{Pa}$ and temperature $450 \,\mathrm{K}$.

The gas is now cooled at constant volume so that, between points B and C, 1100 J of thermal energy is transferred. At point C, the gas has pressure 1.6×10^5 Pa and temperature 110 K.

Finally, the gas is returned to point A.

- iii. Complete Fig. 8.2 for the changes from point A to point B, point B to point C, and point C to point A.

change	+q/J	+w/J	ΔU/J
$A \rightarrow B$	0	480	480
$B \rightarrow C$	1100	0	1100
$C \rightarrow A$	860	240	620

Fig. 8.2

Director of the Department of Theoretical Physics

Leturer

Nam B. Le, Dr.

Page 7 of 7 [End of exam]