Learning Predictive Models to Configure Planning Portfolios

Isabel Cenamor Tomás de la Rosa Fernando Fernández

June 11, 2013

Outline

- Introduction
 - Motivation
 - Objectives
- 2 Learning Predictive Models of Planner Performance
 - Data work-flow of the mining process
 - Data Mining Process
 - Data Modeling
 - Results of the models
- Strategies
- Results
 - Split Evaluation
 - Leave One Domain Out Evaluation
- 5 Conclusion and Future Work

Motivation

 The best planners for each domain in sequential satisfying track (IPC-2011)

Domain	Planner
barman	fd-autotune-1
elevators	forkuniform
floortile	fd-autotune-2
nomystery	arvand
openstacks	fd-autotune-2
parcprinter	arvand
parking	lama-2011

Domain	Planner
pegsol	lama-2011
scanalyzer	arvand
sokoban	fd-autotune-1
tidybot	lamar
transport	roamer
visitall	daeyahsp
woodworking	fdss1

 The portfolios of planners are interesting because there is not a best planner for all domains

Definition

Intuition: "Assign the available time to a sub-set of the available planners, and run this configuration"

The Definition of Planner Portfolio we will use

Given a set of base planners, $\{pl_1,\ldots,pl_n\}$, and a maximum execution time, T, a planning portfolio can be considered as a sequence of m pairs $< pl_1,t_1>,\ldots,< pl_m,t_m>$, where $pl_i\in\{pl_1,\ldots,pl_n\}$ and $\sum_{j=1}^m t_j=T$.

Portfolio Approaches

The portfolio configuration can be done:

- Over all seen benchmarks: unique configuration
- Per domain: same configuration per domains
- Per problem: different configuration per instance

Portfolio Approaches	Configuration
FD-Stone-Soup [Fawcett et al., 2011]	Over all
PbP [Gerevini et al., 2009, Gerevini et al., 2011]	Domain
Our approach	Instance

Objectives

- Configure a planning portfolio using predictive models
- Learn these models in function of the objective
 - Whether a planner will be able to find a solution
 - How long it will take
- Create some strategies to combine the models
- Study different evaluation procedures

Data Mining process

Data understanding Problem Features

We created some features to characterize the problem

- Some of them extracted from the PDDL files (3):
 - Number of goals
 - Number of literals
 - Number of objects
- A set of elaborated features generated from the problem translation to the SAS+ formalism (41)
 - Numbers of nodes in the causal graph
 - Ratio between weights and number of edges
 - etc.
- And the class is the solution of the problems (IPC 2011 solutions of Sequential Satisfying Track)(2)
 - Quality
 - 2 Time

Data Modeling

We use some algorithms from Weka [Hall et al., 2009] machine learning toolkit to train models and make predictions

For classification:

Decision trees J48 Instance-based learning algorithms (KNN) [$IBk\ k=1,3,5$] Support vector machine SMO

Por regression:

Regression rules M5Rules Instance-based learning algorithms (KNN) [$IBk\ k=1,3,5$] Support vector machine SMOreg

Evaluation

We define two different evaluations:

- Split evaluation: for problems in known domains
- 2 Leave one domain out evaluation: for problems in unknown domains

Split Evaluation

Split Evaluation

Split Evaluation

Results

$$R = \frac{1}{2} \sum_{n=1}^{2} C_n$$

- R: the global results
- \circ C_n : the results in each cycle

June 11, 2013

Results

$$R = \frac{1}{14} \sum_{n=1}^{14} C_n$$

- R: the global results
- C_n : the results in each domain

Classification Results

Given a problem p in a domain d, will the planner pl be able to find a solution in 1800 seconds? (yes-no question \rightarrow binary classification)

Accuracy results

Data set	Split Validation	Leave One Domain Out
J48	88.75 (1.05)	59.14 (12.13)
IBk -K 1	88.67 (1.29)	60.83 (10.13)
IBk -K 3	87.63 (1.07)	60.58 (11.76)
IBk -K 5	88.58 (1.07)	61.95 (11.10)
SMO	72.48 (1.58)	61.34 (10.10)

Regression Results

Given a problem p in a domain d, how long (in seconds) will the planner pl take for finding the best solution? Relative absolute error results

Algorithm	Split validation	Leave one Domain Out
M5Rules	73.66 (3.61)	985.64 (2200.93)
IBk -K 1	67.57 (4.07)	93.66 (23.38)
IBk -K 3	62.98 (3.12)	85.96 (22.26)
IBk -K 5	64.39 (3.00)	85.57 (19.21)
SMOreg	69.50 (2.87)	907.32 (2620.74)

Un-informed strategy (ET) Equal Time

Equal Time

Informed strategy - Best Confidence Estimation(BCE)

Informed strategy - Best 5 Confidence (B5C)

Informed strategy - Best 10 Confidence (B10C)

Informed strategy - Best 5 Regression (B5R)

Informed strategy - Best 10 Regression (B10R)

Experimental set up

- All planners in sequential satisfying track (27 planners)
- All domains in the same track (14 domains)
- Two evaluations (split and leave one domain out evaluation)
- One strategy without knowledge and five strategies with knowledge.
- The results are compared with lama-2011
- There is an upper bound to the best possible strategy (S)

Split Evaluation: Coverage

	ET	BCE	B5C	B10C	B5R	B10R	Lama11	S
Barman	20	20	20	20	20	20	20	20
Elevators	20	20	20	20	20	20	20	20
Floortile	8	8	8	8	8	8	6	9
Nomystery	15	18	17	17	18	17	10	19
Openstacks	20	20	20	20	20	20	20	20
Parcprinter	20	20	20	20	20	20	20	20
Parking	12	20	20	20	20	20	20	20
Pegsol	20	20	20	20	20	20	20	20
Scanalyzer	18	19	18	17	18	18	20	20
Sokoban	17	18	19	18	19	19	19	19
Tibybot	16	18	19	18	17	17	19	20
Transport	20	20	19	20	19	20	16	20
Visitall	20	20	20	20	20	20	20	20
Woodworking	20	20	20	20	20	20	20	20
Total	246	261	260	258	259	259	250	267

Split Evaluation: Quality improve over Lama

	ET		ВС	BCE		B5C		B10C	
	+	_	+	-	+	–	+	–	+
Barman	19	0	12	8	18	0	19	0	20
Elevators	16	2	14	6	17	2	20	0	20
Floortile	4	4	4	0	4	1	4	0	5
Nomystery	7	0	9	0	8	1	8	0	10
Openstacks	2	18	3	6	5	6	3	9	17
Parcprinter	0	20	8	2	8	1	11	0	11
Parking	3	16	0	20	1	16	4	12	9
Pegsol	0	8	0	2	0	2	0	2	0
Scanalyzer	2	14	9	5	8	4	8	6	13
Sokoban	5	10	2	6	4	1	4	2	6
Tibybot	5	9	6	5	6	7	7	4	13
Transport	9	11	11	9	10	8	14	6	18
Visitall	20	0	18	1	20	0	20	0	20
Woodworking	9	0	16	2	18	0	19	0	19
Total	101	112	112	72	127	49	141	41	181

Split Evaluation: Quality improve over Lama

	Е	Т	B5	R	B10R		S
	+	_	+	_	+	-	+
Barman	19	0	19	0	19	0	20
Elevators	16	2	16	2	19	0	20
Floortile	4	4	4	2	4	0	5
Nomystery	7	0	9	1	8	0	10
Openstacks	2	18	4	7	3	11	17
Parcprinter	0	20	8	1	11	0	11
Parking	3	16	1	16	4	13	9
Pegsol	0	8	0	2	0	2	0
Scanalyzer	2	14	8	6	10	3	13
Sokoban	5	10	4	1	5	1	6
Tibybot	5	9	4	7	6	4	13
Transport	9	11	10	8	14	6	18
Visitall	20	0	20	0	20	0	20
Woodworking	9	0	18	0	19	0	19
Total	101	112	125	53	142	40	181

Leave One Domain Out Evaluation: Coverage

	ET	BCE	B5C	B10C	B5R	B10R	Lama11	S
Barman	20	20	20	20	20	20	20	20
Elevators	20	20	17	20	18	20	20	20
Floortile	8	9	6	9	6	9	6	9
Nomystery	15	17	13	15	13	15	10	19
Openstacks	20	1	20	20	15	15	20	20
Parcprinter	20	20	20	20	20	20	20	20
Parking	12	20	20	20	20	20	20	20
Pegsol	20	20	20	20	20	20	20	20
Scanalyzer	18	17	17	17	18	17	20	20
Sokoban	17	19	18	19	18	19	19	19
Tibybot	16	18	19	17	15	16	19	20
Transport	20	13	16	13	13	13	16	20
Visitall	20	10	10	20	10	20	20	20
Woodworking	20	20	20	20	20	20	20	20
Total	246	224	236	250	226	244	250	267

Selection of Planners

Split Evaluation: Best 5 Confidence

Conclusions

- We demonstrate that predictive models have excellent results in known domains
- The predictive models are quite good to predict problems in previously unseen domains
- We have defined a set of strategies to configure the portfolio
- We have evaluated them with the problems of the IPC-2011 with two strategies

Future work

- Learn better models for unknown domains
 - learning with more domains
 - creating new features that characterize the problems
 - selection of the planners a priori

Learning Predictive Models to Configure Planning Portfolios

Isabel Cenamor Tomás de la Rosa Fernando Fernández

June 11, 2013

Fawcett, C., Helmert, M., Hoos, H., Karpas, E., Roger, G., and Seipp, J. (2011). Fd-autotune: Domain-specific configuration using fast downward. In *Booklet of the 7th International Planning Competition*.

Gerevini, A., Saetti, A., and Vallati, M. (2009).

An automatically configurable portfolio-based planner with macro-actions: PbP. In *Proceedings of the 19th International Conference on Automated Planning and Scheduling (ICAPS-09).*

Gerevini, A., Saetti, A., and Vallati, M. (2011).

Pbp2: Automatic configuration of a portfolio-based multi-planner.

The 2011 International Planning Competition.

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and Witten, I. H. (2009).

The weka data mining software: an update.

ACM SIGKDD Explorations Newsletter, 11(1):10-18.

36/35

Accuracy

 $\frac{(Correctly\ Classified\ Instances)}{Total\ instances}*100$

Absolute Relative Error

(Observed value – Accepted value)
Accepted value

Leave one domain out Evaluation: Quality improve over Lama I

	ET		ВС	Έ	B5C		B10C		S
	+	_	+	_	+	_	+	_	+
Barman	19	0	19	0	19	1	19	0	20
Elevators	16	2	16	1	14	4	18	0	20
Floortile	4	4	5	0	0	2	5	0	5
Nomystery	7	0	7	2	4	4	4	2	10
Openstacks	2	18	1	19	3	17	3	16	17
Parcprinter	0	20	11	0	5	12	11	0	11
Parking	3	16	4	12	2	12	4	12	9
Pegsol	0	8	0	2	0	2	0	2	0
Scanalyzer	2	14	8	4	4	6	4	7	13
Sokoban	5	10	5	1	1	7	4	1	6
Tibybot	5	9	5	4	6	3	4	7	13
Transport	9	11	12	7	8	7	10	7	18
Visitall	20	0	7	13	7	13	20	0	20
Woodworking	9	0	19	0	19	0	19	0	19
Total	101	112	119	65	92	90	125	54	181

Leave one domain out Evaluation: Quality improve over Lama II

		_			D1/		S
	E	I	B	B5R		B10R	
	+	_	+	_	+	_	+
Barman	19	0	18	0	18	0	20
Elevators	16	2	15	3	18	1	20
Floortile	4	4	0	0	5	1	5
Nomystery	7	0	4	5	5	1	10
Openstacks	2	18	1	19	2	16	17
Parcprinter	0	20	5	12	11	0	11
Parking	3	16	2	13	4	15	9
Pegsol	0	8	0	2	0	2	0
Scanalyzer	2	14	4	6	4	6	13
Sokoban	5	10	2	6	5	1	6
Tibybot	5	9	3	7	3	7	13
Transport	9	11	8	9	8	10	18
Visitall	20	0	7	13	20	0	20
Woodworking	9	0	19	0	19	0	19
Total	101	112	88	95	122	60	181