Public-key Cryptography I

CPA, CCA definitions, hybrid models (KEM/DEM)

Basic Definition

- A public key encryption scheme consists of 3 polytime algorithms:
 - (PK,SK) <— KeyGen (1ⁿ): randomized algorithm
 - C <- Encrypt (PK,M): randomized
 - M <- Decrypt (PK,SK,C): deterministic
- We'll use $E_{PK}(M)$, and $D_{SK}(C)$
- It is required that $D_{SK}(E_{PK}(M))$ —> M, except with negl. probability in n

IND-CPA Game

- Natural analogue of IND-CPA for shared-key crypto
- Played between adversary, A, and challenger
- Game:
 - Challenger runs KeyGen (1ⁿ) -> (PK,SK)
 - A given PK, outputs m₀,m₁
 - Challenger does $E_{PK}(m_b)$ —> C, C given to A
 - A outputs b'. If b'=b, A wins
- A public-key encryption scheme is IND-CPA secure if for all PPT adversaries, there is a negl. function, s.t.,

$$Pr[A(PK,n) = b'; b=b'] \le 1/2 + negl(n)$$

Deterministic PKE

- Deterministic PKE is CPA-insecure
- Similar to shared-key setting
- Grading example
 - Grades ∈ {A,B,C,D,F}, PK of instructor known
 - Adversary just does $C_A = E_{PK}(A)$, $C_B = E_{PK}(B)$, ... compare with any given encrypted grade
- Duh? Was used from mid-1970s-1984

IND-CCA Game

Played between adversary, A, and challenger

Game:

- Challenger runs KeyGen (1ⁿ) -> (PK,SK)
- A given (PK, decryption oracle Dec_{SK}(•)), outputs m₀,m₁
- Challenger does $E_{PK}(m_b)$ —> C, C given to A
- A queries Dec_{SK}(•), except A cannot ask decryption of C
- A outputs b'. If b'=b, A wins

IND-CCA Game

A public-key encryption scheme is IND-CCA secure
if for all PPT adversaries, there is a negl. function,
s.t.,

$$Pr[A(PK,n) = b'; b=b'] \le 1/2 + negl(n)$$

- "Oracle"...?
 - Just a black-box functionality¹
 - Used to provide access to restricted functionalities to A
 - Here, parametrized with SK

CPA/CCA for Multiple Encryptions

- Examines consequences of using same PK for encrypting multiple messages
- Turns out, any CPA/CCA-secure PKE scheme, automatically also has CPA/CCA-security for multiple messages!¹
- Single-message CPA/CCA-security implies multimessage CPA/CCA-security
- Very useful result! Do proofs in simple case, strong result follows...

Hybrid Encryption

- Basic idea: setup a shared key, K, using PKE, thereafter use K for all encryption
- Motivation: PKC too slow,
- Used extensively in practice
- Functionality of PKC + efficiency of SKC
- Hybrid algorithms: Key Encapsulation Mechanism (KEM), Data Encapsulation Mechanism (DEM) schemes

Key Encapsulation Mechanism (KEM)

- A KEM scheme consists of 3 poly-time algorithms
 - (PK,SK) <— KeyGen (1ⁿ): randomized algorithm
 - (C,K) <- Encapsulate (PK,1ⁿ,1^k): randomized, |K|=k
 - {K,⊥} <- Decapsulate (PK,SK,C): deterministic
- It is required that Decapsulate_{SK}(C) —> K, except with negl. probability in n
- DEM just regular shared-key encryption scheme (E,D,K)

KEM/DEM Paradigm

- Let Π be a KEM scheme, and Π' be a DEM scheme. Then a hybrid encryption scheme Π^{hy} is defined as:
- (PK,SK) <- KeyGen(1ⁿ): randomized
- (C,C') <- Encrypt (PK, M): randomized
 - do (C,K) <- Encapsulate(1ⁿ,1^k)
 - do C' \leftarrow E_K(M)
 - return (C,C')
- M < Decrypt(C,C'): deterministic
 - do K <— Decapsulate(C)
 - return $M \leftarrow D_K(C')$