

MIT PROF. SCHWARZ

WIE IRRATIONAL DARF ES SEIN? VON HIMMLISCHER SPHÄRENMUSIK UND CHAOS IM DREIKÖRPERPROBLEM

> 11. DEZEMBER 2024 19:15 UHR, HÖRSAAL 3

Der Glühwein- und Punschverkauf startet 18:30 Uhr vor dem Ziegenledersaal (Innenhof). Dort wird es auch weihnachtliches Gebäck geben.

Bringt euch gern einen eigenen Becher mit :)

Diskrete Strukturen (WS 2024-25) - Halbserie 6

 $6.1 ag{4}$

Bitte direkt auf Moodle als Quiz antworten.

 $6.2 ag{3}$

Gegeben sei die Menge $M = \{0, 1, 2, 3, 4, 5\}$ und die **Ordnungsrelation** $R \subseteq M \times M$, dargestellt als **Hasse-Diagramm**:

- (a) Geben Sie R explizit als eine Teilmenge von $M \times M$ an. Geben Sie für R
- (b) <u>alle</u> maximalen Elemente,
- (c) alle oberen Schranken für $\{1, 2\}$,
- (d) alle unteren Schranken für $\{0, 1\}$,
- (e) eine Menge X sodass inf X existiert nicht.

 $6.3 ag{3}$

- (a) Sei R eine Ordnugsrelation auf einer Menge M. Beweisen Sie, dass R; R=R.
- (b) Seien $f:A\to B$ and $g:B\to C$ Funktionen. Beweisen Sie dass wenn f;g ist surjektiv dann g ist surjektiv.

6.4 Entscheiden Sie jeweils, ob es sich bei den folgenden Relationen um Abbildungen handelt. Begründen Sie Ihre Antworten.

$$R_1 = \{(m, n) \mid \exists k \ (km = n)\} \subseteq \mathbb{N} \times \mathbb{N}$$

$$R_2 = \{(m, n) \mid m + n = 0\} \subseteq \mathbb{Z} \times \mathbb{Z}$$

$$R_3 = \{(m, n) \mid n = \sqrt{m}\} \subseteq \mathbb{R} \times \mathbb{R}$$

- **6.5** Geben Sie vier Funktionen f_1, \ldots, f_4 mit $f_i \subseteq \mathbb{R} \times \mathbb{R}$ für alle $i \in \{1, 2, 3, 4\}$ an, sodass gilt:
- (a) f_1 ist surjektiv und injektiv,
- (b) f_2 ist surjektiv und nicht injektiv,
- (c) f_3 ist injektiv und nicht surjektiv,
- (d) f_4 ist nicht surjektiv und nicht injektiv.
- **6.6** Bestimmen Sie für die gegebenen Funktionen, ob sie surjektiv und/oder injektiv sind! Geben Sie im Falle, dass eine der Eigenschaften nicht gilt, ein Gegenbeispiel an!
- (a) $f_1: \mathbb{Z} \to \mathbb{Z}, x \mapsto x^2$
- (b) $f_2: \mathbb{N} \to \mathbb{N}, x \mapsto x^2$
- (c) $f_3: [0, 2\pi] \to [-1, 1], x \mapsto sin(x)$
- **6.7** Gegeben sei die Menge $M = \{x, y\}$.
- (a) Geben Sie alle **Ordnungsrelationen** auf M an.
- (b) Durch welche davon wird M total **geordnet**?
- **6.8** Sei (M, \preceq) eine **total geordnete Menge**. Beweisen Sie die folgende Aussage: für alle $x \in M$ gilt: x ist kleinstes Element von M genau dann, wenn x das minimale Element in M ist.