Approved for use through 10/31/2002. OMB 0651-003

U.S. Patent & Trademark Office: U.S. DEPARTMENT OF COMMERCE

Underene

Under the Paperwork Reduction Action of 1995, no persons are required to response to a collection of information unless it contains a valid OMB number.

Application Number GSB48,727 Filing Oate S20201 First Named Inventor GSB48,727 Filing Oate S20201 First Named Inventor GSB48,727 Filing Oate S20201 First Named Inventor GSB48,727 GSB	~	79/												
Filing Date 5/3/2001 Filing Date 5/3/2001 Filing Date 5/3/2001 Filing Date 5/3/2001 Filing Maried Inventor Good Normal Jean-Ir Good and Inventor Good Normal Jean-Ir Foreign Patent Document Initiatis* Good Normal Jean-Ir	PRADEM	AFR						COMP	PLETE IF KNOWN					
INFORMATION DISCLOSURE STATEMENT BY APPLICANT (use as many sheets necessary) Examiner SHEET 1 OF 1 Docket Number (First Named Inventor Sursephane) Examiner Cate No. 1 Docket Number (First Named Inventor Sursephane) U.S. Patent Document Kind Code 1 (if No. 1 Number (Code 1 (if No. 2) Foreign Patent Document Kind Code 3 (if No. 2) Foreign Patent Document Kind Code 3 (if No. 2) Foreign Patent Document Kind Code 3 (if No. 2) Foreign Patent Document Kind Code 3 (if No. 2) Foreign Patent Document Kind Code 5 (if No. 2) Foreign Patent Document Kind Code 5 (if No. 2) Foreign Patent Document Kind Code 5 (if No. 2) Foreign Patent Document Kind Code 5 (if No. 2) Foreign Patent Document Kind Code 5 (if No. 2) Foreign Patent Document Kind Code 5 (if No. 2) Foreign Patent Document Kind Code 5 (if No. 2) Foreign Patent Document Kind Code 5 (if No. 2) Foreign Patent Document Kind Code 6 (if No. 2) Foreign Patent Document Kind Code 6 (if No. 2) Foreign Patent Document Kind Code 6 (if No. 2) Foreign Patent Document Kind Code 6 (if No. 2) Foreign Patent Document Kind Code 6 (if No. 2) Foreign Patent Document Kind Code 6 (if No. 2) Foreign Patent Document Kind Code 7 (if No. 2) Foreign Patent Document Kind Code 6 (if No. 2) Foreign Patent Document Kind Code 7 (if No. 2) Foreign Patent Document Kind Code 7 (if No. 2) Foreign Patent Document Kind Code 7 (if No. 2) Foreign Patent Document Kind Code 7 (if No. 2) Foreign Patent Document Kind Code 7 (if No. 2) Foreign Patent Document Kind Code 7 (if No. 2) Foreign Patent Document Kind Code 7 (if No. 2) Foreign Patent Document Kind Code 7 (if No. 2) Foreign Patent Document Kind Code 7 (if No. 2) Foreign Patent Document Kind Code 7 (if No. 2) Foreign Patent Document Kind Code 7 (if No. 2) Foreign Patent Document Kind Code 7 (if No. 2) Foreign Patent Document Kind Code 7 (if No. 2) Foreign Patent Document MM-DO-YYYY Date of Pages, Columns, Lines, Where Relevant Figure Appear To Ale of Cited Document Kind Code 7 (i					Applic	ation Number	09/848,727	09/848,727						
STATEMENT BY APPLICANT (aus as many abeais necessary) Examiner Name My-Chau T. Tran OF 1 Docket Number Grain My-Chau T. Tran U.S. Patient Document Number (in Nu						Date	5/3/2001	5/3/2001						
Street 1 OF 1 Docket Number Examiner Name My-Chau T. Tran	INFORMATION DISCLOSURE					amed Inventor	Gau, Vincent	Gau, Vincent Jen-Jr						
Examiner Name My-Chau T. Tren	S	TATEMENT	BY APPLIC	CANT	Group	Art Unit								
SHEET I OF I Docket Number GF1100 U.S. PATENT DOCUMENTS U.S. Patent Document Citle No.1 Number Gods (if known) FOREIGN PATENT DOCUMENTS To ficial Document of Citled Doc		(use as man)	sheets necessa	ary)	<u> </u>									
U.S. Patent Document Cite No.1 U.S. Patent Document Name of Patenties or Applicant of Cited Document MM-DD-YYYY Relevant Passages or Relevant Figures Appear	CUEET	14	OF	1			 							
Examiner Initials* Cite No.¹ Number Codes (If Known) Foreign Patent Document (Initials* No.¹ Cited Document (Initials*) Foreign Patent Document (Initials*) Name of Patentee or Applicant of Cited Document (Initials*) Foreign Patent Document (Initials*) No.¹ Office Number (Initials*) No.¹ Initials* (Initials*) No.¹ Initials* (Initials*) No.¹ Barger et al., Surface Sizes in the Self-Assembly of Alkanethiols in Gold Probed by a Force Microscopy Technique, Appt. Phys. A 66, S55-S59 (1998). 1 Surface Sizes in the Self-Assembly of Microphysic Self-Assembled Monoleyers, Journal of Collection (Initials*) No.¹ (Sold in al., Effects of Solvents on Interactions Between Hydrophobic Self-Assembled Monoleyers, Journal of Collection (Initials*) No.¹ (Solvents al., Effects of Solvents on Interactions Between Hydrophobic Self-Assembled Monoleyers, Part 2-Analysis of the Chromoemperometric response to Potentials Selection (Initials*) No.¹ (Solvents al., Effects of Solvents on Interactions Between Hydrophobic Self-Assembled Monoleyers, Fert 2-Analysis of the Chromoemperometric response to Potentials Selection (Initials*) No.¹ (Solvents al., Effects of Solvents on Interactions Between Hydrophobic Self-Assembled Monoleyers, Fert Christians (Initials*) No.	SHEET	SHEET ,												
Examiner Initials* Cite No.1 Number Cite No.1 Number Cite No.1 Number Foreign Patent Document Number Foreign Patent Document Name of Patentee or Applicant of Cited Document MMADD-YYYY Foreign Patent Document Foreign Patent Document Name of Patentee or Applicant of Cited Document Figures Appear Foreign Patent Document Name of Patentee or Applicant of Cited Document No.1 Cite Initials* Offices Number Number Cite Initials* OTHER PRIOR ART - NON PATENT LITERATURE DOCUMENTS Examiner Initials* No.1 OTHER PRIOR ART - NON PATENT LITERATURE DOCUMENTS Examiner No.1 Berger et al., Surface Stress in the Saff-Assembly of Namenthiosts in Gold Probed by a Force Microscopy Technique, Appl. Phys. A 66, SSS-SS9 (1988). A Knobler et al., Phase Transitions in Manologyers, Annu. Rev. Phys. Chem. 1992, 25:207-36. Kokkoi et al., Effects of Solvents on Interactions Between Pytrophobic Self-Assembled Monologyers, Journal of Colloid and Interface Sciences 209, 6045 (1998). Lyons, Michael E.G., Mediated Electron Transfer at Redox Active Monologyers, Part 2-Analysis of the Chromosamperometric response to Potential Step Pages, Columns, Lines, Where Relevant Pages, Columns, Lines, Columns, Lines, Where Relevant Pages, Columns, Lines, Clied Lines, Lines, Columns, Lines, Michael Edenter Pages, Lines, Lines, Lines, Lines, Clied Lines, Lines														
Examiner Initials* Cite No.! Number FOREIGN PATENT DOCUMENTS FOREIGN PATENT DOCUMENTS FOREIGN PATENT DOCUMENTS FOREIGN PATENT DOCUMENTS Foreign Patent Document Number* No.! Offices Number* Number* No.! Number* No.! Number* No.! Number* No.! Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, risks) No.! Begrer et al., Surface Stress in the Self-Assembly of Alkanethiots in Gold Probed by a Fore Microscopy Technique, Appl. Phys. A 66, S55-S59 (1988). Dubois et al., Synthesis, Structure, and Proprehies of Model Organic Surfaces, Annu. Rev. Phys. Chem. 1992, 43:437-63. Knobler et al., Phese Transitions in Monolayers, Annu. Rev. Phys. Chem. 1992, 25:207-36. Knobler et al., Phese Transitions in Monolayers, Annu. Rev. Phys. Chem. 1992, 25:207-36. Lyons, Michael E.G., Mediated Electron Transfer at Redox Active Monolayers, Part 2:Analysis of the Ortomocomperometric response to Potential Sepe Perturbision, Sensors 2002, 2, 314-330. Lyons, Michael E.G., Mediated Electron Transfer at Redox Active Monolayers, Part 2:Analysis of the Ortomocomperometric response to Potential Sepe Perturbision, Sensors 2002, 2, 314-303. Lyons, Michael E.G., Mediated Electron Transfer at Redox Active Monolayers, Part 2:Analysis of the Ortomocomperometric response to Potential Sepe Perturbision, Sensors 2002, 2, 314-303. Lyons, Michael E.G., Mediated Electron Transfer at Redox Active Monolayers, Part 2:Analysis of the Ortomocomperometric response to Potential Sepe Perturbision, Sensors 2002, 2, 314-303. No. Sensors 2003, 3, 134-2. Sensors 2003, 3, 134-2. No. Sensors 2003,								1 (Date of Publication	Pages, Columns, Lines, Where				
FOREIGN PATENT DOCUMENTS Foreign Patent Document Name of Patentee or Applicant of Cited Document Name of Patentee or Applicant of Cited Document No. Offices Number Kind Codes (It known) OTHER PRIOR ART - NON PATENT INTERATURE DOCUMENTS Examiner Initials* OTHER PRIOR ART - NON PATENT INTERATURE DOCUMENTS To OTHER PRIOR ART - NON PATENT INTERATURE DOCUMENTS Examiner Cite Include name of the author (in CAPITAL LETTERS), site of the article (when appropriate), but of the item (book, magazine, journal, serial, symposium, catalog etc.), dater, page(s), volume-issue number(s), publisher, city and/or country where published MCT 1 Berger et al., Surface Stress in the Self-Assembly of Alkanethiols in Gold Probed by a Force Microscopy Technique, Appl. Phys. A 66, S55-S59 (1999). 1 2 Dubos et al., Synthesis, Structure, and Properties of Model Organic Surfaces, Annu. Rev. Phys. Chem. 1992, 43-437-63. 3 Knobler et al., Phase Transitions in Monolayers, Annu. Rev. Phys. Chem. 1992, 25-207-38. 4 Knokoli et al., Effacts of Solvents on Interactions Between Hydrophobic Self-Assembled Monolayers, Journal of Colicid and Interface Sciences 209, 60-55 (1999). 5 Lyons, Michael E.G., Mediated Electron Transfer at Redox Active Monolayers. Part 2-Analysis of the Chromoamperometric response to Potential Step Perhutabion, Sensors 2002, 2, 314-330. 7 Lyons, Michael E.G., Mediated Electron Transfer at Redox Active Monolayers. Part 3: Biomolecular Outer-Sphere, First Order Koutecky-Levich and Adduct Formation Mechanisms, Sensors 2002, 2, 473-506. 8 Lyons, Michael E.G., Mediated Electron Transfer at Redox Active Monolayers. Part 4: Kinetics of Redox Enzymes Coupled with Electron Mediators, Sensors 2003, 3, 19-42. 9 Minish et al., Using Self-Assembled Monolayers to Understand the Interactions of Man-Made Surfaces with Proteins and Cells, Annu. Rev. Biophys. Bioma. Sinct. 1998, 25,55-78. 10 Rue et al., Measurement of the Repulsive Force Between Polyelectrolyte Molecules in Ionic Solution: Hydration Forces Between Parallel DNA Do		Cite No 1	Number		,			of Cited Document	Relevant Passages or Relevant					
FOREIGN PATENT DOCUMENTS Foreign Patent Document Name of Patentee or Applicant of Cited Document No.¹ Office* Number* Name of Patentee or Applicant of Cited Document MM-DD-YYYY Office* Number* Number* Name of Patentee or Applicant of Cited Document MM-DD-YYYY Office* Number* No.¹ Include name of the author (in CAPITAL LETTERS), title of the atride (when appropriate), title of the Item (book, magazine, journal, serial, symposium, catalog etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published No.¹ Barger et al., Surface Stress in the Self-Assembly of Alkianethiotis in Gold Probed by a Force Microscopy Technique, Appl. Phys. A 66, S55-S59 [1989]. Dubois et al., Synthesis, Structure, and Properties of Model Organic Surfaces, Annu. Rev. Phys. Chem. 1992, 43:437-43. Knobler et al., Phase Transitions in Monolbyers, Annu. Rev. Phys. Chem. 1992, 25:207-36. Knobler et al., Phase Transitions in Interactions Between Hydrophobic Self-Assembled Monolayers, Journal of Colioid and Interface Sciences 209, 60-55 [1999]. Source Self-Assembled Monolayers. Part 2:Analysis of the Chromoamperometric response to Potential Step Parturbation, Sensors 2002, 2, 473-506. By Lyons, Michael E.G., Mediated Electron Transfer at Redox Active Monolayers. Part 3: Biomolecular Outer-Sphere, First Order Koutecky-Levich and Adduct Gramiston Mechanisms, Sensors 2002, 2, 473-506. Michael E.G., Mediated Electron Transfer at Redox Active Monolayers. Part 4: Kinelics of Redox Enzymes Coupled with Electron Mediators, Sensors 2003, 3, 19-42. Michael E.G., Mediated Electron Transfer at Redox Active Monolayers. Part 4: Kinelics of Redox Enzymes Coupled with Electron Mediators, Sensors 2003, 3, 19-42. Michael E.G., Mediated Electron Transfer at Redox Active Monolayers. Part 4: Kinelics of Redox Enzymes Coupled with Electron Mediators, Sensors 2003, 3, 19-42. Michael E.G., Mediated Electron Transfer at Redox Active Monolayers. Part 4: Kinelics of Redox Enzymes Coupled with Electron Mediators, Sensors 2	fnitials*					of Cited Do	cument	MM-DD-YYYY						
Examiner Initials* Cite No.1 Office3 Number* Kind Code5 (fit known) Name of Patentee or Applicant of Cited Document MM-DD-YYYY Where Relevant Passages or Relevant Figures Appear To Televant Figures Appear OTHER PRIOR ART - NON PATENT LITERATURE DOCUMENTS Examiner Cite Include name of the author (in CAPITAL LETTERS), itile of the article (when appropriate), title of the item (book, magazine, journal, serial, initials* No.1 Surface Stress in the Self-Assembly of Alkanethiots in Gold Probed by a Force Microscopy Technique, Appl. Phys. A 66, S55-S59 (1998). MCT Berger et al., Surface Stress in the Self-Assembly of Alkanethiots in Gold Probed by a Force Microscopy Technique, Appl. Phys. A 66, S55-S59 (1998). 2 Dubois et al., Synthesis, Structure, and Properties of Model Organic Surfaces, Annu. Rev. Phys. Chem. 1992, 43:437-63. 3 Knobler et al., Phase Transitions in Monolayers, Annu. Rev. Phys. Chem. 1992, 25:207-36. 4 Kokkoii et al., Effects of Solvents on Interactions Between Hydrophobic Self-Assembled Monolayers, Journal of Colloid and Interface Sciences 209, 60-65 (1999). 5 Lyons, Michael E.G., Mediated Electron Transfer at Redox Active Monolayers, Part 2:Analysis of the Chromoamperometric response to Potential Step Perturbation, Sensors 2002, 2, 473-506. 8 Lyons, Michael E.G., Mediated Electron Transfer at Redox Active Monolayers, Part 3: Biomolecular Outer-Sphere, First Order Koutecky-Levich and Addud Formation Mechansims, Sensors 2002, 2, 473-506. 9 Minister et al., Using Self-Assembled Monolayers: Form Simple Model Systems to Biofunctionalized Interfaces, J. Phys.: Condens. Mater 16 (2004) Schwartz, Daniel K., Mechansims and Kinetics of Self-Assembled Monolayer Formation, Annu. Rev. Phys. Chem. 2001, 52:107-37. 10 Schwartz, Daniel K., Mechansims and Kinetics of Self-Assembly of DiN4-Lined Micrometer-Sized Colloids, PNAS, March 22, 2005, vol. 102, no.			1											
Examiner Initials* Cite No.1 Office Number* Kind Code* (fit known) Name of Patentae or Applicant of Cited Document Name of Patentae or Applicant Name of Patentae or Applicant		1		1						1				
Examiner Initials* Cite No.! Foreign Patent Document Name of Patentae or Applicant of Cited Document Name of Patentae or Applicant Name of Patentae Inc. Security Name of Patentae Inc. Name of Cited Document Name of Cited Documentae Name of Cited Documentae Name of Cited Documentae Name of Cited Documenta									7_1					
Examiner Initials* Cite No.! Foreign Patent Document Name of Patentae or Applicant of Cited Document Name of Patentae or Applicant Name of Patentae Inc. Security Name of Patentae Inc. Name of Cited Document Name of Cited Documentae Name of Cited Documentae Name of Cited Documentae Name of Cited Documenta			J								<u></u>			
Examiner Initials* Cite No.1 Office Number* Kind Code* (fit known) Name of Patentae or Applicant of Cited Document Name of Patentae or Applicant Name of Patentae or Applicant										<u> </u>				
Cite Initials* No.¹ Number¹ Kind Codes (Ift known) OTHER PRIOR ART - NON PATENT LITERATURE DOCUMENTS Examiner Initials* Cite Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published MCT 1 Berger et al., Surface Stress in the Self-Assembly of Alkanethiols in Gold Probed by a Force Microscopy Technique, Appl. Phys. A 66, S55-S59 (1998). 2 Dubois et al., Synthesis, Structure, and Properties of Model Organic Surfaces, Annu. Rev. Phys. Chem. 1992, 43:437-83. 3 Knobler et al., Phase Transitions in Monolayers, Annu. Rev. Phys. Chem. 1992, 25:207-35. 4 Kokkoli et al., Effects of Solvents on Interactions Between Hydrophobic Self-Assembled Monolayers, Journal of Colloid and Interface Sciences 209, 60-65 (1999). 5 Lyons, Michael E.G., Mediated Electron Transfer at Redox Active Monolayers, Sensors 2001, 1, 215-228. Lyons, Michael E.G., Mediated Electron Transfer at Redox Active Monolayers. Part 2:Analysis of the Chromoamperometric response to Potential Step Perturbation, Sensors 2002, 2, 314-330. 1 Lyons, Michael E.G., Mediated Electron Transfer at Redox Active Monolayers. Part 3: Biomolecular Outer-Sphere, First Order Koutecky-Levich and Adduct Formation Mechanisms, Sensors 2002, 2, 473-506. 8 Lyons, Michael E.G., Mediated Electron Transfer at Redox Active Monolayers. Part 4: Kinetics of Redox Enzymes Coupled with Electron Mediators, Sensors 2003, 3, 19-42. 9 Mrtsich et al., Using Self-Assembled Monolayers to Understand the Interactions of Man-Made Surfaces with Proteins and Cells, Annu. Rev. Biophys. Biomol. Struct. 1996, 25:55-78. 10 Rau et al., Measurement of the Repulsive Force Between Polyelectrolyte Molecules in Ionic Solution: Hydration Forces Between Parallel DNA Double Helices, Pros. Natl. Acad. Sci. USA, Vol. 81, pp 2621-2625, May 1984, Blochemistry. 11 Schwartz, Daniel K, Mechansims and Kinelics of Self	FOREIGN PATENT DOCUMENTS													
Offices Number* Kind Codes of Cited Document MM-DD-YYYY or Relevant Figures Appear or Relevant Figures			Fo	reign Patent	Document	Name of Br	stantaa or Apolio	nnt	Date of Publication	Pages, Columns, Lines,				
OTHER PRIOR ART - NON PATENT LITERATURE DOCUMENTS Examiner Initials* Cite Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published MCT 1 Berger et al., Surface Stress in the Self-Assembly of Alkanethiots in Gold Probed by a Force Microscopy Technique, Appl. Phys. A 66, S55-S59 (1998). 2 Dubois et al., Synthesis, Structure, and Properties of Model Organic Surfaces, Annu. Rev. Phys. Chem. 1992, 43:437-63. Knobler et al., Phase Transitions in Monolayers, Annu. Rev. Phys. Chem. 1992, 25:207-36. Kokkoli et al., Effects of Solvents on Interactions Between Hydrophobic Self-Assembled Monolayers, Journal of Colloid and Interface Sciences 209, 60-65 (1999). 5 Lyons, Michael E.G., Mediated Electron Transfer at Redox Active Monolayers, Sensors 2001, 1, 215-228. Lyons, Michael E.G., Mediated Electron Transfer at Redox Active Monolayers. Part 2:Analysis of the Chromoemperometric response to Potential Step Perturbeition, Sensors 2002, 2, 314-330. 7 Lyons, Michael E.G., Mediated Electron Transfer at Redox Active Monolayers. Part 3: Biomolecular Outer-Sphere, First Order Koutecky-Levich and Adduct Formation Mechanisms, Sensors 2002, 2, 473-506. 8 Lyons, Michael E.G., Mediated Electron Transfer at Redox Active Monolayers. Part 4: Kinetics of Redox Enzymes Coupled with Electron Mediators, Sensors 2003, 3, 19-42. 9 Mitsich et al., Using Self-Assembled Monolayers to Understand the Interactions of Man-Made Surfaces with Proteins and Cells, Annu. Rev. Biophys. Biomol. Struct. 1996, 25:55-78. 10 Rau et al., Measurement of the Repulsive Force Between Polyelectrolyte Molecules in Ionic Solution: Hydration Forces Between Parallel DNA Double Helices, Prank. Self-Assembled Monolayers: From 'Simple' Model Systems to Biofunctionalized Interfaces, J. Phys.: Condens. Matter 16 (2004) R881-R900. 11 Schwartz, Daniel K., Mechansims and Kine			0451	Mumban	Kind C	ا قمامہ	• •	3111	of Cited Document		T6			
Examiner Indias* Cite Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published MCT 1 Berger et al., Surface Stress in the Self-Assembly of Alkanethiols in Gold Probed by a Force Microscopy Technique, Appl. Phys. A 66, S55-S59 (1998). 2 Dubois et al., Synthesis, Structure, and Properties of Model Organic Surfaces, Annu. Rev. Phys. Chem. 1992, 43:437-63. 3 Knobler et al., Phase Transitions in Monolayers, Annu. Rev. Phys. Chem. 1992, 25:207-36. 4 Kokkoli et al., Effects of Solvents on Interactions Between Hydrophobic Self-Assembled Monolayers, Journal of Colloid and Interface Sciences 209, 60-65 (1999). 5 Lyons, Michael E.G., Mediated Electron Transfer at Redox Active Monolayers, Sensors 2001, 1, 215-228. 6 Lyons, Michael E.G., Mediated Electron Transfer at Redox Active Monolayers. Part 2:Analysis of the Chromoemperometric response to Potential Step Perturbation, Sensors 2002, 2, 314-330. 7 Lyons, Michael E.G., Mediated Electron Transfer at Redox Active Monolayers. Part 3: Biomolecular Outer-Sphere, First Order Koutecky-Levich and Adduct Formation Mechanisms, Sensors 2002, 2, 473-506. 8 Lyons, Michael E.G., Mediated Electron Transfer at Redox Active Monolayers. Part 4: Kinetics of Redox Enzymes Coupled with Electron Mediators, Sensors 2003, 3, 19-42. 9 Mrksich et al., Using Self-Assembled Monolayers to Understand the Interactions of Man-Made Surfaces with Proteins and Cells, Annu. Rev. Biophys. Biomol. Struct. 1996, 25:55-78. 10 Rau et al., Measurement of the Repulsive Force Between Polyelectrolyte Molecules in Ionic Solution: Hydration Forces Between Parallel DNA Double Helices, Proc. Natl. Acad. Sci. USA, Vol. 81, pp 2621-2625, May 1984, Biochemistry. 11 Schwartz, Daniel K., Mechansims and Kinelics of Self-Assembled Monolayer Formation, Annu. Rev. Phys. Chem. 2001, 52:107-37. 12 Schwartz, Daniel K., Mecha	inioais	I NO.	Ottice,	Number	(If kno	own) Olch	lea Document		MM-DD-YYYY	or Relevant Figures Appear	L			
Examiner Indias* Cite Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published MCT 1 Berger et al., Surface Stress in the Self-Assembly of Alkanethiols in Gold Probed by a Force Microscopy Technique, Appl. Phys. A 66, S55-S59 (1998). 2 Dubois et al., Synthesis, Structure, and Properties of Model Organic Surfaces, Annu. Rev. Phys. Chem. 1992, 43:437-63. 3 Knobler et al., Phase Transitions in Monolayers, Annu. Rev. Phys. Chem. 1992, 25:207-36. 4 Kokkoli et al., Effects of Solvents on Interactions Between Hydrophobic Self-Assembled Monolayers, Journal of Colloid and Interface Sciences 209, 60-65 (1999). 5 Lyons, Michael E.G., Mediated Electron Transfer at Redox Active Monolayers, Sensors 2001, 1, 215-228. 6 Lyons, Michael E.G., Mediated Electron Transfer at Redox Active Monolayers. Part 2:Analysis of the Chromoemperometric response to Potential Step Perturbation, Sensors 2002, 2, 314-330. 7 Lyons, Michael E.G., Mediated Electron Transfer at Redox Active Monolayers. Part 3: Biomolecular Outer-Sphere, First Order Koutecky-Levich and Adduct Formation Mechanisms, Sensors 2002, 2, 473-506. 8 Lyons, Michael E.G., Mediated Electron Transfer at Redox Active Monolayers. Part 4: Kinetics of Redox Enzymes Coupled with Electron Mediators, Sensors 2003, 3, 19-42. 9 Mrksich et al., Using Self-Assembled Monolayers to Understand the Interactions of Man-Made Surfaces with Proteins and Cells, Annu. Rev. Biophys. Biomol. Struct. 1996, 25:55-78. 10 Rau et al., Measurement of the Repulsive Force Between Polyelectrolyte Molecules in Ionic Solution: Hydration Forces Between Parallel DNA Double Helices, Proc. Natl. Acad. Sci. USA, Vol. 81, pp 2621-2625, May 1984, Biochemistry. 11 Schwartz, Daniel K., Mechansims and Kinelics of Self-Assembled Monolayer Formation, Annu. Rev. Phys. Chem. 2001, 52:107-37. 12 Schwartz, Daniel K., Mecha					امسا									
Examiner Indias* Cite Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published MCT 1 Berger et al., Surface Stress in the Self-Assembly of Alkanethiols in Gold Probed by a Force Microscopy Technique, Appl. Phys. A 66, S55-S59 (1998). 2 Dubois et al., Synthesis, Structure, and Properties of Model Organic Surfaces, Annu. Rev. Phys. Chem. 1992, 43:437-63. 3 Knobler et al., Phase Transitions in Monolayers, Annu. Rev. Phys. Chem. 1992, 25:207-36. 4 Kokkoli et al., Effects of Solvents on Interactions Between Hydrophobic Self-Assembled Monolayers, Journal of Colloid and Interface Sciences 209, 60-65 (1999). 5 Lyons, Michael E.G., Mediated Electron Transfer at Redox Active Monolayers, Sensors 2001, 1, 215-228. 6 Lyons, Michael E.G., Mediated Electron Transfer at Redox Active Monolayers. Part 2:Analysis of the Chromoemperometric response to Potential Step Perturbation, Sensors 2002, 2, 314-330. 7 Lyons, Michael E.G., Mediated Electron Transfer at Redox Active Monolayers. Part 3: Biomolecular Outer-Sphere, First Order Koutecky-Levich and Adduct Formation Mechanisms, Sensors 2002, 2, 473-506. 8 Lyons, Michael E.G., Mediated Electron Transfer at Redox Active Monolayers. Part 4: Kinetics of Redox Enzymes Coupled with Electron Mediators, Sensors 2003, 3, 19-42. 9 Mrksich et al., Using Self-Assembled Monolayers to Understand the Interactions of Man-Made Surfaces with Proteins and Cells, Annu. Rev. Biophys. Biomol. Struct. 1996, 25:55-78. 10 Rau et al., Measurement of the Repulsive Force Between Polyelectrolyte Molecules in Ionic Solution: Hydration Forces Between Parallel DNA Double Helices, Proc. Natl. Acad. Sci. USA, Vol. 81, pp 2621-2625, May 1984, Biochemistry. 11 Schwartz, Daniel K., Mechansims and Kinelics of Self-Assembled Monolayer Formation, Annu. Rev. Phys. Chem. 2001, 52:107-37. 12 Schwartz, Daniel K., Mecha						-		_						
Initials* No.1 symposium, catalog etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published MCT 1 Berger et al., Surface Stress in the Self-Assembly of Alkanethiols in Gold Probed by a Force Microscopy Technique, Appl. Phys. A 66, S55-S59 (1998). 2 Dubois et al., Synthesis, Structure, and Properties of Model Organic Surfaces, Annu. Rev. Phys. Chem. 1992, 43:437-63. Knobler et al., Phase Transitions in Monolayers, Annu. Rev. Phys. Chem. 1992, 25:207-36. Kokkoli et al., Effects of Solvents on Interactions Between Hydrophobic Self-Assembled Monolayers, Journal of Colloid and Interface Sciences 209, 60-65 (1999). 5 Lyons, Michael E.G., Mediated Electron Transfer at Redox Active Monolayers, Sensors 2001, 1, 215-228. Lyons, Michael E.G., Mediated Electron Transfer at Redox Active Monolayers. Part 2:Analysis of the Chromoamperometric response to Potential Step Perturbation, Sensors 2002, 2, 314-330. 7 Lyons, Michael E.G., Mediated Electron Transfer at Redox Active Monolayers. Part 3: Biomolecular Outer-Sphere, First Order Koutecky-Levich and Adduct Formation Mechansims, Sensors 2002, 2, 473-506. 8 Lyons, Michael E.G., Mediated Electron Transfer at Redox Active Monolayers. Part 4: Kinetics of Redox Enzymes Coupled with Electron Mediators, Sensors 2003, 3, 19-42. Mrisch et al., Using Self-Assembled Monolayers to Understand the Interactions of Man-Made Surfaces with Proteins and Cells, Annu. Rev. Biophys. Biomol. Struct. 1996, 25:55-78. 10 Rau et al., Measurement of the Repulsive Force Between Polyelectrolyte Molecules in Ionic Solution: Hydration Forces Between Parallel DNA Double Helices, Proc. Nat. Acad. Sci. USA, Vol. 81, pp 2621-2625, May 1984, Biochemistry. Schreiber, Frank, Self-Assembled Monolayers: From 'Simple' Model Systems to Biofunctionalized Interfaces, J. Phys.: Condens. Matter 16 (2004) R881-R900. 12 Schwartz, Daniel K., Mechansims and Kinetics of Self-Assembled Monolayer Formation, Annu. Rev. Phys. Chem. 2001, 52:107-37. Valignant et al., Reversible Self-	OTHER PRIOR ART - NON PATENT LITERATURE DOCUMENTS													
Initials* No.1 symposium, catalog etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published MCT 1 Berger et al., Surface Stress in the Self-Assembly of Alkanethiols in Gold Probed by a Force Microscopy Technique, Appl. Phys. A 66, S55-S59 (1998). 2 Dubois et al., Synthesis, Structure, and Properties of Model Organic Surfaces, Annu. Rev. Phys. Chem. 1992, 43:437-63. Knobler et al., Phase Transitions in Monolayers, Annu. Rev. Phys. Chem. 1992, 25:207-36. Kokkoli et al., Effects of Solvents on Interactions Between Hydrophobic Self-Assembled Monolayers, Journal of Colloid and Interface Sciences 209, 60-65 (1999). 5 Lyons, Michael E.G., Mediated Electron Transfer at Redox Active Monolayers, Sensors 2001, 1, 215-228. Lyons, Michael E.G., Mediated Electron Transfer at Redox Active Monolayers. Part 2:Analysis of the Chromoamperometric response to Potential Step Perturbation, Sensors 2002, 2, 314-330. 7 Lyons, Michael E.G., Mediated Electron Transfer at Redox Active Monolayers. Part 3: Biomolecular Outer-Sphere, First Order Koutecky-Levich and Adduct Formation Mechansims, Sensors 2002, 2, 473-506. 8 Lyons, Michael E.G., Mediated Electron Transfer at Redox Active Monolayers. Part 4: Kinetics of Redox Enzymes Coupled with Electron Mediators, Sensors 2003, 3, 19-42. Mrisch et al., Using Self-Assembled Monolayers to Understand the Interactions of Man-Made Surfaces with Proteins and Cells, Annu. Rev. Biophys. Biomol. Struct. 1996, 25:55-78. 10 Rau et al., Measurement of the Repulsive Force Between Polyelectrolyte Molecules in Ionic Solution: Hydration Forces Between Parallel DNA Double Helices, Proc. Nat. Acad. Sci. USA, Vol. 81, pp 2621-2625, May 1984, Biochemistry. Schreiber, Frank, Self-Assembled Monolayers: From 'Simple' Model Systems to Biofunctionalized Interfaces, J. Phys.: Condens. Matter 16 (2004) R881-R900. 12 Schwartz, Daniel K., Mechansims and Kinetics of Self-Assembled Monolayer Formation, Annu. Rev. Phys. Chem. 2001, 52:107-37. Valignant et al., Reversible Self-	Evaminas	Cito	Indudo	name of the	author (in CAE	ITAL LETTERS) title	of the article (wh	en annmnri	iate) title of the item (book	manazine journal serial	_			
MCT 1 Berger et al., Surface Stress in the Self-Assembly of Alkanethiols in Gold Probed by a Force Microscopy Technique, Appl. Phys. A 66, S55-S59 (1998). 2 Dubois et al., Synthesis, Structure, and Properties of Model Organic Surfaces, Annu. Rev. Phys. Chem. 1992, 43:437-63. 3 Knobler et al., Phase Transitions in Monolayers, Annu. Rev. Phys. Chem. 1992, 25:207-36. 4 Kokkoli et al., Effects of Solvents on Interactions Between Hydrophobic Self-Assembled Monolayers, Journal of Colloid and Interface Sciences 209, 60-65 (1999). 5 Lyons, Michael E.G., Mediated Electron Transfer at Redox Active Monolayers, Sensors 2001, 1, 215-228. 6 Lyons, Michael E.G., Mediated Electron Transfer at Redox Active Monolayers. Part 2:Analysis of the Chromoamperometric response to Potential Step Perturbation, Sensors 2002, 2, 314-330. 7 Lyons, Michael E.G., Mediated Electron Transfer at Redox Active Monolayers. Part 3: Biomolecular Outer-Sphere, First Order Koutecky-Levich and Adduct Formation Mechansims, Sensors 2002, 2, 473-506. 8 Lyons, Michael E.G., Mediated Electron Transfer at Redox Active Monolayers. Part 4: Kinetics of Redox Enzymes Coupled with Electron Mediators, Sensors 2003, 3, 19-42. 9 Mrksich et al., Using Self-Assembled Monolayers to Understand the Interactions of Man-Made Surfaces with Proteins and Cells, Annu. Rev. Biophys. Biomol. Struct. 1996, 25:55-78. 10 Rau et al., Measurement of the Repulsive Force Between Polyelectrolyte Molecules in Ionic Solution: Hydration Forces Between Parallel DNA Double Helices, Proc. Natl. Acad. Sci. USA, Vol. 81, pp 2621-2625, May 1984, Biochemistry. 11 Schreiber, Frank, Self-Assembled Monolayers: From 'Simple' Model Systems to Biofunctionalized Interfaces, J. Phys.: Condens. Matter 16 (2004) R881-R900. 12 Schwartz, Daniel K., Mechansims and Kinelics of Self-Assembled Monolayer Formation, Annu. Rev. Phys. Chem. 2001, 52:107-37. 13 Valignant et al., Reversible Self-Assembly and Directed Assembly of DNA-Lined Micrometer-Sized Colloids, PNAS, March 22, 2005, vol. 102, no.			symposium catalog etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published											
1			<u> </u>											
2 Dubois et al., Synthesis, Structure, and Properties of Model Organic Surfaces, Annu. Rev. Phys. Chem. 1992, 43:437-63. 3 Knobler et al., Phase Transitions in Monolayers, Annu. Rev. Phys. Chem. 1992, 25:207-36. 4 Kokkoli et al., Effects of Solvents on Interactions Between Hydrophobic Self-Assembled Monolayers, Journal of Colloid and Interface Sciences 209, 60-55 (1999). 5 Lyons, Michael E.G., Mediated Electron Transfer at Redox Active Monolayers, Sensors 2001, 1, 215-228. Lyons, Michael E.G., Mediated Electron Transfer at Redox Active Monolayers. Part 2:Analysis of the Chromoamperometric response to Potential Step Perturbation, Sensors 2002, 2, 314-330. 7 Lyons, Michael E.G., Mediated Electron Transfer at Redox Active Monolayers. Part 3: Biomolecular Outer-Sphere, First Order Koutecky-Levich and Adduct Formation Mechansims, Sensors 2002, 2, 473-506. 8 Lyons, Michael E.G., Mediated Electron Transfer at Redox Active Monolayers. Part 4: Kinetics of Redox Enzymes Coupled with Electron Mediators, Sensors 2003, 3, 19-42. 9 Mrksich et al., Using Self-Assembled Monolayers to Understand the Interactions of Man-Made Surfaces with Proteins and Cells, Annu. Rev. Biophys. Biomol. Struct. 1996, 25:55-78. 10 Rau et al., Measurement of the Repulsive Force Between Polyelectrolyte Molecules in Ionic Solution: Hydration Forces Between Parallel DNA Double Helices, Proc. Natl. Acad. Sci. USA, Vol. 81, pp 2621-2625, May 1984, Biochemistry. Schreiber, Frank, Self-Assembled Monolayers: From 'Simple' Model Systems to Biofunctionalized Interfaces, J. Phys.: Condens. Matter 16 (2004) R881-R900. 12 Schwartz, Daniel K., Mechansims and Kinetics of Self-Assembled Monolayer Formation, Annu. Rev. Phys. Chem. 2001, 52:107-37. Valignant et al., Reversible Self-Assembly and Directed Assembly of DNA-Lined Micrometer-Sized Colloids, PNAS, March 22, 2005, vol. 102, no.	MCT	1												
3 Knobler et al., Phase Transitions in Monolayers, Annu. Rev. Phys. Chem. 1992, 25:207-36. 4 Kokkoli et al., Effects of Solvents on Interactions Between Hydrophobic Self-Assembled Monolayers, Journal of Colloid and Interface Sciences 209, 60-65 (1999). 5 Lyons, Michael E.G., Mediated Electron Transfer at Redox Active Monolayers, Sensors 2001, 1, 215-228. 6 Lyons, Michael E.G., Mediated Electron Transfer at Redox Active Monolayers. Part 2:Analysis of the Chromoamperometric response to Potential Step Perturbation, Sensors 2002, 2, 314-330. 7 Lyons, Michael E.G., Mediated Electron Transfer at Redox Active Monolayers. Part 3: Biomolecular Outer-Sphere, First Order Koutecky-Levich and Adduct Formation Mechansims, Sensors 2002, 2, 473-506. 8 Lyons, Michael E.G., Mediated Electron Transfer at Redox Active Monolayers. Part 4: Kinetics of Redox Enzymes Coupled with Electron Mediators, Sensors 2003, 3, 19-42. 9 Mrksich et al., Using Self-Assembled Monolayers to Understand the Interactions of Man-Made Surfaces with Proteins and Cells, Annu. Rev. Biophys. Biomol. Struct. 1996, 25:35-78. 10 Rau et al., Measurement of the Repulsive Force Between Polyelectrolyte Molecules in Ionic Solution: Hydration Forces Between Parallel DNA Double Helices, Proc. Natl. Acad. Sci. USA, Vol. 81, pp 2621-2625, May 1984, Biochemistry. 11 Schreiber, Frank, Self-Assembled Monolayers: From 'Simple' Model Systems to Biofunctionalized Interfaces, J. Phys.: Condens. Matter 16 (2004) R881-R900. 12 Schwartz, Daniel K., Mechansims and Kinetics of Self-Assembled Monolayer Formation, Annu. Rev. Phys. Chem. 2001, 52:107-37. Valignant et al., Reversible Self-Assembly and Directed Assembly of DNA-Lined Micrometer-Sized Colloids, PNAS, March 22, 2005, vol. 102, no.		2												
Kokkoli et al., Effects of Solvents on Interactions Between Hydrophobic Self-Assembled Monolayers, Journal of Colloid and Interface Sciences 209, 60-65 (1999). Lyons, Michael E.G., Mediated Electron Transfer at Redox Active Monolayers, Sensors 2001, 1, 215-228. Lyons, Michael E.G., Mediated Electron Transfer at Redox Active Monolayers. Part 2:Analysis of the Chromoamperometric response to Potential Step Perturbation, Sensors 2002, 2, 314-330. Lyons, Michael E.G., Mediated Electron Transfer at Redox Active Monolayers. Part 3: Biomolecular Outer-Sphere, First Order Koutecky-Levich and Adduct Formation Mechansims, Sensors 2002, 2, 473-506. Lyons, Michael E.G., Mediated Electron Transfer at Redox Active Monolayers. Part 4: Kinetics of Redox Enzymes Coupled with Electron Mediators, Sensors 2003, 3, 19-42. Mrksich et al., Using Self-Assembled Monolayers to Understand the Interactions of Man-Made Surfaces with Proteins and Cells, Annu. Rev. Biophys. Biomol. Struct. 1996, 25:55-78. 10 Rau et al., Measurement of the Repulsive Force Between Polyelectrolyte Molecules in Ionic Solution: Hydration Forces Between Parallel DNA Double Helices, Proc. Natl. Acad. Sci. USA, Vol. 81, pp 2621-2625, May 1984, Biochemistry. Schreiber, Frank, Self-Assembled Monolayers: From 'Simple' Model Systems to Biofunctionalized Interfaces, J. Phys.: Condens. Matter 16 (2004) R881-R900. Schwartz, Daniel K., Mechansims and Kinetics of Self-Assembled Monolayer Formation, Annu. Rev. Phys. Chem. 2001, 52:107-37. Valignant et al., Reversible Self-Assembly and Directed Assembly of DNA-Lined Micrometer-Sized Colloids, PNAS, March 22, 2005, vol. 102, no.														
5 Lyons, Michael E.G., Mediated Electron Transfer at Redox Active Monolayers, Sensors 2001, 1, 215-228. Lyons, Michael E.G., Mediated Electron Transfer at Redox Active Monolayers. Part 2:Analysis of the Chromoemperometric response to Potential Step Perturbation, Sensors 2002, 2, 314-330. To Lyons, Michael E.G., Mediated Electron Transfer at Redox Active Monolayers. Part 3: Biomolecular Outer-Sphere, First Order Koutecky-Levich and Adduct Formation Mechanisms, Sensors 2002, 2, 473-506. Lyons, Michael E.G., Mediated Electron Transfer at Redox Active Monolayers. Part 4: Kinetics of Redox Enzymes Coupled with Electron Mediators, Sensors 2003, 3, 19-42. Mrksich et al., Using Self-Assembled Monolayers to Understand the Interactions of Man-Made Surfaces with Proteins and Cells, Annu. Rev. Biophys. Biomol. Struct. 1996, 25:55-78. MRau et al., Measurement of the Repulsive Force Between Polyelectrolyte Molecules in Ionic Solution: Hydration Forces Between Parallel DNA Double Helices, Proc. Natl. Acad. Sci. USA, Vol. 81, pp 2621-2625, May 1984, Biochemistry. Schreiber, Frank, Self-Assembled Monolayers: From 'Simple' Model Systems to Biofunctionalized Interfaces, J. Phys.: Condens. Matter 16 (2004) R881-R900. Schwartz, Daniel K., Mechansims and Kinetics of Self-Assembled Monolayer Formation, Annu. Rev. Phys. Chem. 2001, 52:107-37. Valignant et al., Reversible Self-Assembly and Directed Assembly of DNA-Lined Micrometer-Sized Colloids, PNAS, March 22, 2005, vol. 102, no.		1	Kokkoli et al	Effects of S	olvents on Inte	ractions Between Hy	drophobic Self-A	ssembled M	ionolayers, Journal of Colk	oid and Interface Sciences 209,				
Lyons, Michael E.G., Mediated Electron Transfer at Redox Active Monolayers. Part 2:Analysis of the Chromoamperometric response to Potential Step Perturbation, Sensors 2002, 2, 314-330. Lyons, Michael E.G., Mediated Electron Transfer at Redox Active Monolayers. Part 3: Biomolecular Outer-Sphere, First Order Koutecky-Levich and Adduct Formation Mechansims, Sensors 2002, 2, 473-506. Lyons, Michael E.G., Mediated Electron Transfer at Redox Active Monolayers. Part 4: Kinetics of Redox Enzymes Coupled with Electron Mediators, Sensors 2003, 3, 19-42. Mrksich et al., Using Self-Assembled Monolayers to Understand the Interactions of Man-Made Surfaces with Proteins and Cells, Annu. Rev. Biophys. Biomol. Struct. 1996, 25:55-78. Rau et al., Measurement of the Repulsive Force Between Polyelectrolyte Molecules in Ionic Solution: Hydration Forces Between Parallel DNA Double Helices, Proc. Natl. Acad. Sci. USA, Vol. 81, pp 2621-2625, May 1984, Biochemistry. Schreiber, Frank, Self-Assembled Monolayers: From 'Simple' Model Systems to Biofunctionalized Interfaces, J. Phys.: Condens. Matter 16 (2004) R881-R900. Schwartz, Daniel K., Mechansims and Kinetics of Self-Assembled Monolayer Formation, Annu. Rev. Phys. Chem. 2001, 52:107-37. Valignant et al., Reversible Self-Assembly and Directed Assembly of DNA-Lined Micrometer-Sized Colloids, PNAS, March 22, 2005, vol. 102, no.	ı	4	60-65 (1999)) .							 _			
Step Perturbation, Sensors 2002, 2, 314-330. Lyons, Michael E.G., Mediated Electron Transfer at Redox Active Monolayers. Part 3: Biomolecular Outer-Sphere, First Order Koutecky-Levich and Adduct Formation Mechansims, Sensors 2002, 2, 473-506. Lyons, Michael E.G., Mediated Electron Transfer at Redox Active Monolayers. Part 4: Kinetics of Redox Enzymes Coupled with Electron Mediators, Sensors 2003, 3, 19-42. Mrksich et al., Using Self-Assembled Monolayers to Understand the Interactions of Man-Made Surfaces with Proteins and Cells, Annu. Rev. Biophys. Biomol. Struct. 1996, 25:55-78. Rau et al., Measurement of the Repulsive Force Between Polyelectrolyte Molecules in Ionic Solution: Hydration Forces Between Parallel DNA Double Helices, Proc. Natl. Acad. Sci. USA, Vol. 81, pp 2621-2625, May 1984, Biochemistry. Schreiber, Frank, Self-Assembled Monolayers: From 'Simple' Model Systems to Biofunctionalized Interfaces, J. Phys.: Condens. Matter 16 (2004) R881-R900. Schwartz, Daniel K., Mechansims and Kinetics of Self-Assembled Monolayer Formation, Annu. Rev. Phys. Chem. 2001, 52:107-37. Valignant et al., Reversible Self-Assembly and Directed Assembly of DNA-Lined Micrometer-Sized Colloids, PNAS, March 22, 2005, vol. 102, no.		5	Lyons, Mich	ael E.G., Med	diated Electron	Transfer at Redox A	ctive Monolayers,	Sensors 20	001, 1, 215-228.					
To Lyons, Michael E.G., Medieted Electron Transfer at Redox Active Monolayers. Part 3: Biomolecular Outer-Sphere, First Order Koutecky-Levich and Adduct Formation Mechansims, Sensors 2002, 2, 473-506. Byons, Michael E.G., Mediated Electron Transfer at Redox Active Monolayers. Part 4: Kinetics of Redox Enzymes Coupled with Electron Mediators, Sensors 2003, 3, 19-42. Mrksich et al., Using Self-Assembled Monolayers to Understand the Interactions of Man-Made Surfaces with Proteins and Cells, Annu. Rev. Blophys. Biomol. Struct. 1996, 25:55-78. Rau et al., Measurement of the Repulsive Force Between Polyelectrolyte Molecules in Ionic Solution: Hydration Forces Between Parallel DNA Double Helices, Proc. Natl. Acad. Sci. USA, Vol. 81, pp 2621-2625, May 1984, Biochemistry. Schreiber, Frank, Self-Assembled Monolayers: From 'Simple' Model Systems to Biofunctionalized Interfaces, J. Phys.: Condens. Matter 16 (2004) R881-R900. Schwartz, Daniel K., Mechansims and Kinetics of Self-Assembled Monolayer Formation, Annu. Rev. Phys. Chem. 2001, 52:107-37. Wolth 13 Valignant et al., Reversible Self-Assembly and Directed Assembly of DNA-Lined Micrometer-Sized Colloids, PNAS, March 22, 2005, vol. 102, no.							ctive Monolayers.	Part 2:Ana	lysis of the Chromoamper	metric response to Potential				
Adduct Formation Mechansims, Sensors 2002, 2, 473-506. Lyons, Michael E.G., Mediated Electron Transfer at Redox Active Monolayers. Part 4: Kinetics of Redox Enzymes Coupled with Electron Mediators, Sensors 2003, 3, 19-42. Mrksich et al., Using Self-Assembled Monolayers to Understand the Interactions of Man-Made Surfaces with Proteins and Cells, Annu. Rev. Biophys. Biomol. Struct. 1996, 25:55-78. Rau et al., Measurement of the Repulsive Force Between Polyelectrolyte Molecules in Ionic Solution: Hydration Forces Between Parallel DNA Double Helices, Proc. Natl. Acad. Sci. USA, Vol. 81, pp 2621-2625, May 1984, Biochemistry. Schreiber, Frank, Self-Assembled Monolayers: From 'Simple' Model Systems to Biofunctionalized Interfaces, J. Phys.: Condens. Matter 16 (2004) R881-R900. Schwartz, Daniel K., Mechansims and Kinetics of Self-Assembled Monolayer Formation, Annu. Rev. Phys. Chem. 2001, 52:107-37. WCIT: 13 Valignant et al., Reversible Self-Assembly and Directed Assembly of DNA-Lined Micrometer-Sized Colloids, PNAS, March 22, 2005, vol. 102, no.											 _			
Lyons, Michael E.G., Mediated Electron Transfer at Redox Active Monolayers. Part 4: Kinetics of Redox Enzymes Coupled with Electron Mediators, Sensors 2003, 3, 19-42. 9 Mrksich et al., Using Self-Assembled Monolayers to Understand the Interactions of Man-Made Surfaces with Proteins and Cells, Annu. Rev. Biophys. Biomol. Struct. 1996, 25:55-78. 10 Rau et al., Measurement of the Repulsive Force Between Polyelectrolyte Molecules in Ionic Solution: Hydration Forces Between Parallel DNA Double Helices, Proc. Natl. Acad. Sci. USA, Vol. 81, pp 2621-2625, May 1984, Biochemistry. 11 Schreiber, Frank, Self-Assembled Monolayers: From 'Simple' Model Systems to Biofunctionalized Interfaces, J. Phys.: Condens. Matter 16 (2004) R881-R900. 12 Schwartz, Daniel K., Mechansims and Kinetics of Self-Assembled Monolayer Formation, Annu. Rev. Phys. Chem. 2001, 52:107-37. 13 Valignant et al., Reversible Self-Assembly and Directed Assembly of DNA-Lined Micrometer-Sized Colloids, PNAS, March 22, 2005, vol. 102, no.	ŀ	7												
Sensors 2003, 3, 19-42. 9 Mrksich et al., Using Self-Assembled Monolayers to Understand the Interactions of Man-Made Surfaces with Proteins and Cells, Annu. Rev. Biophys. Biomol. Struct. 1996, 25:55-78. 10 Rau et al., Measurement of the Repulsive Force Between Polyelectrolyte Molecules in Ionic Solution: Hydration Forces Between Parallel DNA Double Helices, Proc. Natl. Acad. Sci. USA, Vol. 81, pp 2621-2625, May 1984, Biochemistry. 11 Schreiber, Frank, Self-Assembled Monolayers: From 'Simple' Model Systems to Biofunctionalized Interfaces, J. Phys.: Condens. Matter 16 (2004) R881-R900. 12 Schwartz, Daniel K., Mechansims and Kinetics of Self-Assembled Monolayer Formation, Annu. Rev. Phys. Chem. 2001, 52:107-37. WCIT: 13 Valignant et al., Reversible Self-Assembly and Directed Assembly of DNA-Lined Micrometer-Sized Colloids, PNAS, March 22, 2005, vol. 102, no.		├ ──												
9 Mrksich et al., Using Self-Assembled Monolayers to Understand the Interactions of Man-Made Surfaces with Proteins and Cells, Annu. Rev. Biophys. Biomol. Struct. 1996, 25:55-78. 10 Rau et al., Measurement of the Repulsive Force Between Polyelectrolyte Molecules in Ionic Solution: Hydration Forces Between Parallel DNA Double Helices, Proc. Natl. Acad. Sci. USA, Vol. 81, pp 2621-2625, May 1984, Biochemistry. 11 Schreiber, Frank, Self-Assembled Monolayers: From 'Simple' Model Systems to Biofunctionalized Interfaces, J. Phys.: Condens. Matter 16 (2004) R881-R900. 12 Schwartz, Daniel K., Mechansims and Kinetics of Self-Assembled Monolayer Formation, Annu. Rev. Phys. Chem. 2001, 52:107-37. 13 Valignant et al., Reversible Self-Assembly and Directed Assembly of DNA-Lined Micrometer-Sized Colloids, PNAS, March 22, 2005, vol. 102, no.		8												
Biophys. Biomol. Struct. 1996, 25:55-78. Rau et al., Measurement of the Repulsive Force Between Polyelectrolyte Molecules in Ionic Solution: Hydration Forces Between Parallel DNA Double Helices, Proc. Natl. Acad. Sci. USA, Vol. 81, pp 2621-2625, May 1984, Biochemistry. Schreiber, Frank, Self-Assembled Monolayers: From 'Simple' Model Systems to Biofunctionalized Interfaces, J. Phys.: Condens. Matter 16 (2004) R881-R900. Schwartz, Daniel K., Mechansims and Kinetics of Self-Assembled Monolayer Formation, Annu. Rev. Phys. Chem. 2001, 52:107-37. WCT 13 Valignant et al., Reversible Self-Assembly and Directed Assembly of DNA-Lined Micrometer-Sized Colloids, PNAS, March 22, 2005, vol. 102, no.														
Rau et al., Measurement of the Repulsive Force Between Polyelectrolyte Molecules in Ionic Solution: Hydration Forces Between Parallel DNA Double Helices, Proc. Natl. Acad. Sci. USA, Vol. 81, pp 2621-2625, May 1984, Biochemistry. Schreiber, Frank, Self-Assembled Monolayers: From 'Simple' Model Systems to Biofunctionalized Interfaces, J. Phys.: Condens. Matter 16 (2004) R881-R900. Schwartz, Daniel K., Mechansims and Kinetics of Self-Assembled Monolayer Formation, Annu. Rev. Phys. Chem. 2001, 52:107-37. WCTT 13 Valignant et al., Reversible Self-Assembly and Directed Assembly of DNA-Lined Micrometer-Sized Colloids, PNAS, March 22, 2005, vol. 102, no.		9	Biophys. Bio	mol. Struct. 1	1996, 25:55-78									
Schreiber, Frank, Self-Assembled Monolayers: From 'Simple' Model Systems to Biofunctionalized Interfaces, J. Phys.: Condens. Matter 16 (2004) R881-R900. 12 Schwartz, Daniel K., Mechansims and Kinetics of Self-Assembled Monolayer Formation, Annu. Rev. Phys. Chem. 2001, 52:107-37. Valignant et al., Reversible Self-Assembly and Directed Assembly of DNA-Lined Micrometer-Sized Colloids, PNAS, March 22, 2005, vol. 102, no.		10	Rau et al., M	Rau et al., Measurement of the Repulsive Force Between Polyelectrolyte Molecules in Ionic Solution: Hydration Forces Between Parallel DNA										
12 Schwartz, Daniel K., Mechansims and Kinetics of Self-Assembled Monolayer Formation, Annu. Rev. Phys. Chem. 2001, 52:107-37. Walignant et al., Reversible Self-Assembly and Directed Assembly of DNA-Lined Micrometer-Sized Colloids, PNAS, March 22, 2005, vol. 102, no.		11	Schreiber, Frank, Self-Assembled Monolayers: From 'Simple' Model Systems to Biofunctionalized Interfaces, J. Phys.: Condens. Matter 16 (2004)											
MCT 13 Valignant et al., Reversible Self-Assembly and Directed Assembly of DNA-Lined Micrometer-Sized Colloids, PNAS, March 22, 2005, vol. 102, no.								Formation. A	Annu. Rev. Phys. Chem. 20	001, 52:107-37.				
I EN TALLY TALLY.	MCT	 	Valignant et	al., Reversib	le Self-Assemi	ly and Directed Asse	mbly of DNA-Line	ed Micromet	er-Sized Colloids, PNAS,	March 22, 2005, vol. 102, no.				
		<u> </u>	12, 7225-72		· · · · · · · · · · · · · · · · · · ·									

Examiner Signature	/My Chau Tran/	Date Considered	05/01/2006

EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

¹Unique citation designation number. ²See attached Kinds of U.S. Patent Documents. ³Enter Office that issued the document, by the two letter-code (WIPO Standard ST.3). ⁴For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the serial number of the patent document. ⁵Kind of document by the appropriate symbols as indicated on the document under WIPO Standard St. 16 if possible. ⁶Applicant is to place a check mark here if English language translation is attached.