

Geometry Workbook Solutions

Triangles

INTERIOR ANGLES OF TRIANGLES

■ 1. $\triangle LMN$ is a right, isosceles triangle where $\angle M$ is the vertex angle. Find $m\angle L$, $m\angle M$, and $m\angle N$.

Solution:

 $m \angle L = 45$, $m \angle M = 90$, and $m \angle N = 45$. If M is the vertex angle, it's where the legs of the isosceles triangle intersect. This must be our 90° angle. Because it's isosceles, the two base angles must be congruent. They must both be 45° .

■ 2. $\triangle ABC$ has $m \angle A = 3x + 5$, $m \angle B = 10x + 5$, and $m \angle C = 4x$. Find the value of x and determine whether this is an obtuse, acute, or right triangle.

Solution:

x=10 such that $m\angle A=35$, $m\angle B=105$, and $m\angle C=40$. $\triangle ABC$ is an obtuse triangle because it has one obtuse angle.

$$m \angle A + m \angle B + m \angle C = 180$$

$$3x + 5 + 10x + 5 + 4x = 180$$

$$17x + 10 = 180$$

$$17x = 170$$

$$x = 10$$

Substitute *x* to get the actual angle measures.

$$m \angle A = 3x + 5 = 3(10) + 5 = 30 + 5 = 35^{\circ}$$

$$m \angle B = 10x + 5 = 10(10) + 5 = 100 + 5 = 105^{\circ}$$

$$m \angle C = 4x = 4(10) = 40^{\circ}$$

■ 3. Find $m \angle 1$, $m \angle 2$, and $m \angle 3$ from the figure.

Solution:

 $m \angle 1 = 70$, $m \angle 2 = 30$, and $m \angle 80$. $m \angle 1 = 70$ because vertical angles are formed. $m \angle 3 = 80$ because a linear pair is formed. The sum of the angles in the triangle is 180, so

$$m \angle 2 = 180 - 70 - 80$$

$$m \angle 2 = 30$$

 \blacksquare 4. Find the value of x from the figure.

Solution:

x=115. The larger triangle and the smaller triangle share the measure 40° . The smaller triangle has a sum of angles of 180° and we know the corresponding angles in the figure are congruent, making one of the angles of this small triangle 75° . So the third angle in the small triangle is

$$180 - 40 - 75 = 65^{\circ}$$

This angle and x form a linear pair, which means

$$x = 180 = 65 = 115^{\circ}$$

PERPENDICULAR AND ANGLE BISECTORS

■ 1. \overline{AM} is an angle bisector of $\triangle ABC$. $m \angle BMA = 108$ and $m \angle MBA = 40$. Find x if $m \angle CAM = 2x + 12$.

Solution:

x=10. \overline{AM} is an angle bisector, therefore $m \angle BAM = m \angle CAM$. The interior angles of a triangle always sum to 180° . We can find $m \angle BAM = 32$ and because $m \angle BAM = m \angle CAM$, 2x + 12 = 32 and x = 10.

■ 2. \overline{AC} , \overline{DC} , and \overline{BC} are perpendicular bisectors of $\triangle NLM$. Give the special name for C and find the length of ND if NM = 14x - 22 and DM = 3x + 1.

Solution:

C is called a circumcenter. If \overline{DC} is a perpendicular bisector of \overline{NM} , then ND=DM, and ND+DM=NM.

$$3x + 1 + 3x + 1 = 14x - 22$$

$$6x + 2 = 14x - 22$$

$$x = 3$$

Substitute x = 3 and get

$$ND = 3x + 1$$

$$ND = 3(3) + 1$$

$$ND = 10$$

■ 3. Find the values of x, y, and z, given M is an incenter, MK = 6, FK = 8, and $m \angle EDF = 80$.

Solution:

x=8, y=10, and z=40. FL=FK because $\triangle LFM\cong \triangle KFM$. So x=FK=FL=8 and KM=LM=6. Using the Pythagorean theorem,

$$FK^2 + KM^2 = FM^2$$

$$8^2 + 6^2 = y^2$$

$$100 = y^2$$

$$10 = y$$

Because M is an incenter, we know that DM is a perpendicular bisector of $\angle EDF$. And because we were told that $m\angle EDF = 80$, we can say

$$z = \frac{80^{\circ}}{2} = 40^{\circ}$$

■ 4. $\triangle ABC$ has coordinates A(-3,1), B(3,3), and C(2,-2). Write the equation for the perpendicular bisector of \overline{AB} .

Solution:

y = -3x + 2. The slope of \overline{AB} is

$$m = \frac{3-1}{3-(-3)} = \frac{1}{3}$$

The midpoint of \overline{AB} is

$$\left(\frac{-3+3}{2}, \frac{1+3}{2}\right) = \left(\frac{0}{2}, \frac{4}{2}\right) = (0,2)$$

The perpendicular bisector of \overline{AB} passes through (0,2) and has a slope of -3. The equation for the line must be y=-3x+2.

CIRCUMSCRIBED AND INSCRIBED CIRCLES OF A TRIANGLE

■ 1. Equilateral triangle ABC is inscribed in $\odot D$. Find $m \angle ADC$.

Solution:

120. $m \angle ABC = 60$ because the triangle is equilateral.

$$m \angle ADC = 2(m \angle ABC)$$

$$m \angle ADC = 2(60)$$

$$m \angle ADC = 120$$

■ 2. $\triangle JKL$ is equilateral and is circumscribed about $\odot M$. The radius of $\odot M$ is 5. Find the perimeter of $\triangle JKL$.

Solution:

 $30\sqrt{3}$. The angles of the triangle are 60. Draw a line segment from M to L which bisects $\angle L$. Use the 30-60-90 rule to find half the length of one of the sides of the triangle to be $5\sqrt{3}$. Double this to find the length of one side and get $10\sqrt{3}$. The perimeter is

$$3(10\sqrt{3}) = 30\sqrt{3}$$

■ 3. If $\triangle ACE$ is an equilateral triangle, if $\odot B$ is inscribed in $\triangle ACE$, and if $\overline{AB} = 12$, find the length of the radius of $\odot B$. Hint: any triangle with three interior angles 30°, 60°, and 90° have a side length ratio of x, $\sqrt{3}x$, and 2x, respectively.

Solution:

Because $\triangle ACE$ is an equilateral triangle, D must be a midpoint of \overline{AC} , and the two interior triangles $\triangle ABD$ and $\triangle BCD$ are both 30 - 60 - 90.

The sides lengths of a 30-60-90 triangle are x, $\sqrt{3}x$, and 2x, respectively. Since we're told $\overline{AB}=12$, we can set

$$2x = 12$$

$$x = 6$$

If x=6, then the side of $\triangle ABD$ opposite $\angle DAB$ must have a length of 6. This is side \overline{BD} , and \overline{BD} is also the radius of $\odot B$, so the radius of $\odot B$ is $\overline{BD}=6$.

■ 4. R is the incenter of $\triangle PML$. Find $m \angle PMR$.

Solution:

70. \overline{RP} , \overline{RM} , and \overline{RL} bisect $\angle P$, $\angle M$, and $\angle L$ respectively. Use the Triangle Sum Theorem to find that $m \angle PMR = 70$.

W W W . KRISTAKING MATH. COM