Practice Exercise Week #2 (part 1)

The even-numbered problems are selected from the required textbook. The answers to these problems are given in a separate file. The link to the answers to next to the link to this file.

Section 1.4.

Complete the following parts for each given function

- a) Graph the function.
- b) Draw lines tangent to the graph at the points with x-coordinates -2, 0, and 1.
- c) Find f'(x) by determining $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$.
- d) Find f'(-2), f'(0), and f'(1). These slopes should match those of the lines you drew in part (b).

14.
$$f(x) = 5x^2 - 2x + 7$$

16.
$$f(x) = \frac{1}{x}$$

Find the equation of the tangent line based on given conditions

20. Find an equation of the line tangent to the graph of
$$f(x) = -1/x$$
 at (a) $(-1, 1)$; (b) $(2, -\frac{1}{2})$; (c) $(-5, \frac{1}{5})$.

22. Find an equation of the line tangent to the graph of
$$f(x) = 4 - x^2$$
 at **(a)** $(-1, 3)$; **(b)** $(0, 4)$; **(c)** $(5, -21)$.

Find the derivative of the following functions

46.
$$f(x) = x^5$$

48.
$$f(x) = \sqrt{x}$$

50.
$$f(x) = \frac{1}{\sqrt{x}}$$

58. Let *F* be a function given by

$$F(x) = \begin{cases} x^2 + 1, & \text{for } x \le 2, \\ 2x + 1, & \text{for } x > 2. \end{cases}$$

- a) Verify that F is continuous at x = 2.
- **b)** Is *F* differentiable at x = 2? Why or why not?

60. Let *H* be a function given by

$$H(x) = \begin{cases} 2x^2 - x, & \text{for } x \le 3, \\ mx + b, & \text{for } x > 3. \end{cases}$$

Determine the values of m and b that make H differentiable at x = 3.

62. Let $f(x) = -x^3$ over [0, 5]. Find c such that 0 < c < 5, where $f'(c) = \frac{f(5) - f(0)}{5 - 0}$.