

Temporal Difference Learning

KENNETH TRAN

Principal Research Engineer, MSR AI

Temporal Difference Learning

Policy Evaluation

Outline

- Intro to model-free learning
- Monte Carlo Learning
- Temporal Difference Learning
- TD(λ)

Revisit notations

Episode

Return

Discount rate, e.g. 0.9
$$G_{t} \stackrel{\text{def}}{=} R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \cdots$$

$$= R_{t+1} + \gamma (R_{t+2} + \gamma R_{t+3} + \gamma^{2} R_{t+4} + \cdots)$$

$$= R_{t+1} + \gamma G_{t+1}$$

state-value function

$$v_{\pi}(s) \stackrel{\text{def}}{=} \mathbf{E}_{\pi}[G_{t}|S_{t} = s]$$

$$= \mathbf{E}_{\pi}[R_{t+1} + \gamma G_{t+1}|S_{t} = s]$$

$$= \mathbf{E}_{\pi}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) |S_{t} = s]$$

Recap: Dynamic Programming

• Bellman equation

$$Q^*(s,a) = \sum_{s'} P(s'|s,a) \left(R(s,a,s') + \gamma \max_{a'} Q^*(s',a') \right)$$

• DP: solve a known MDP

Policy Evaluation Monte Carlo Learning

Overview

- MC methods learn from episodes of experience
- MC is model-free: no knowledge of MDP equations
- MC learns from complete episodes
- MC uses the simplest possible idea: use empirical mean to approximate the expected value
- Caveat: can only apply MC to episodic MDPs

(i.e. all episodes must terminate)

MC for Policy Evaluation

• Goal: learn v_{π} from episodes of experience under π

$$S_1, A_1, R_2, \dots, S_k$$

Recall: return is the total discounted reward

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{T-1} R_T$$

Recall: value function is the expected return

$$v_{\pi}(s) = \mathbf{E}[G_t|S_t = s]$$

• MC policy evaluation uses empirical mean return instead of expected return

MC for Policy Evaluation

To evaluate $v_{\pi}(s)$

- Sample episodes of experience under π
- Every time t that state s is visited in an episode
 - Increment counter $N(s) \leftarrow N(s) + 1$
 - Increment total return $S(s) \leftarrow S(s) + G_t$
 - Value is estimated by mean return V(s) = S(s)/N(s)
- By law of large numbers: $V(s) \rightarrow v_{\pi}(s)$ as $N(s) \rightarrow 0$

Incremental MC Updates

• Update V(s) incrementally after episode

$$S_1, A_1, R_2, \dots, S_T$$

- For each state s, with return G_t
 - $N(S_t) \leftarrow N(S_t) + 1$
- $V(S_t) \leftarrow V(S_t) + \frac{1}{N(S_t)} (G_t V(S_t))$

Policy Evaluation

Temporal Difference Learning

Temporal Difference Learning

- Like MC, TD is model-free: no knowledge of MDP transition/rewards
- Unlike MC, TD learns from incomplete episodes, by bootstrapping
- TD updates a guess towards a guess

MC and TD

Goal: policy evaluation

For a given policy v_{π} , compute the state-value function v_{π}

Recall: simple every-visit Monte Carlo method

$$V(S_t) \leftarrow V(S_t) + \alpha [G_t - V(S_t)]$$
step-size target: the actual return after time t

Simplest temporal-difference learning method: TD(0)

$$V(S_t) \leftarrow V(S_t) + \alpha [R_{t+1} + \gamma V(S_{t+1}) - V(S_t)]$$
target: an estimate of the return

 $\delta_t \stackrel{\text{def}}{=} R_{t+1} + \gamma V(S_{t+1}) - V(S_t)$ is called the *TD error*

Example: Driving Home

State	Elapsed Time (minutes)	Predicted Time to Go	Predicted Total Time
leaving office	0	30	30
reach car, raining	5	35	40
exit highway	20	15	35
behind truck	30	10	40
home street	40	3	43
arrive home	43	0	43

Driving home example: MC vs TD

Changes recommended by Monte Carlo methods (α =1)

Changes recommended by TD methods (α =1)

Image Credit: Sutton and Barto, Reinforcement Learning, An Introduction 2017

Pros and Cons of MC vs. TD (1)

- TD can learn *before* knowing the final outcome
 - TD can learn online after every step
 - MC must wait until end of episode before return is known
- TD can learn without the final outcome
 - TD can learn from incomplete sequences
 - MC can only learn from complete sequences
 - TD works in continuing (non-terminating) environments
 - MC only works for episodic (terminating) environments

Bias/Variance Trade-Off

- Return $G_t = R_{t+1} + \gamma R_{t+2} + \cdots + \gamma^{T-1} R_T$ is unbiased estimate of $v_{\pi}(S_t)$
- TD target $R_{t+1} + \gamma V(S_{t+1})$ is biased estimate of $v_{\pi}(S_t)$

Pros and Cons of MC vs. TD (2)

- MC has high variance, zero bias
 - Not very sensitive to initial value
 - Very simple to understand and use
- TD has low variance, some bias
 - Usually more efficient than MC
 - More sensitive to initial value

Random Walk Example

Image Credit: Sutton and Barto, Reinforcement Learning, An Introduction 2017

Random Walk: MC vs. TD

Batch MC and TD

- MC and TD converge: $V(s) \rightarrow v_{\pi}(s)$ as experience $\rightarrow \infty$
- But what about batch solution for finite experience?

$$s_1^1, a_1^1, r_2^1, ..., s_{T_1}^1$$
...
 $s_1^K, a_1^K, r_2^K, ..., s_{T_1}^K$

- e.g. Repeatedly sample episode $k \in [1, K]$
- Apply MC or TD(0) to episode k
- Will they converge to the same value function?

AB Example

Two states A, B; no discounting; 8 episodes of experience

What is V(A), V(B)?

Certainty Equivalence

- MC converges to solution with minimum mean-squared error
 - Best fit to the observed returns

$$\sum_{k=1}^{K} \sum_{t=1}^{T_k} \left(G_t^k - V(s_t^k) \right)^2$$

- In the AB example, V(A) = 0
- TD(0) converges to solution of max likelihood Markov model
 - Solution to the MDP $\langle S, A, P, R, \gamma \rangle$ that best fits the data
 - In the AB example, V(A) = 0.75

Pros and Cons of MC vs. TD (3)

- TD exploits Markov property → more efficient
- MC does not exploit Markov property

Unified View of

- Exhaustive Search
- Dynamic Programming
- Monte Carlo
- and Temporal Difference Learning

Monte-Carlo Backup

$$V(S_t) \leftarrow V(S_t) + \alpha \left(G_t - V(S_t) \right)$$

Temporal-Difference Backup

$$V(S_t) \leftarrow V(S_t) + \alpha \left(R_{t+1} + \gamma V(S_{t+1}) - V(S_t) \right)$$

Image Credit: David Silver, Model-Free Prediction, UCL Course on RL

Dynamic Programming Backup

$$V(S_t) \leftarrow \mathbb{E}_{\pi} \left[R_{t+1} + \gamma V(S_{t+1}) \right]$$

Image Credit: David Silver, Model-Free Prediction, UCL Course on RL

Bootstrapping and Sampling

- Bootstrapping: update involves an estimate
 - MC does not bootstrap: it learns from complete episodes
 MC must wait until end of episode before return is known
 - DP bootstrap
 - TD bootstrap
- Sampling: update does not require computing exact expectation
 - MC samples
 - DP does not sample X
 - TD samples

Unified View of Reinforcement Learning

Image Credit: David Silver, Model-Free Prediction, UCL Course on RL

Policy Evaluation

 $TD(\lambda)$

n-Step Prediction

Let TD target look *n* steps into the future

n-Step Return

• Consider the following *n*-step returns for $n = 1, 2, \infty$:

$$n = 1 (TD) G_t^{(1)} = R_{t+1} + \gamma V(S_{t+1})$$

$$n = 2 G_t^{(2)} = R_{t+1} + \gamma R_{t+2} + \gamma V(S_{t+2})$$
...
$$n = \infty (MC) G_t^{(\infty)} = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{T-1} R_T$$

• Define the *n*-step return

$$G_t^{(n)} = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{n-1} R_{t+n} + \gamma^n V(S_{t+n})$$

• *n*-step temporal-difference learning

$$V(S_t) \leftarrow V(S_t) + \alpha \left(G_t^{(n)} - V(S_t)\right)$$

Large Random Walk Example

Image Credit: Sutton and Barto, Reinforcement Learning, An Introduction 2017

Averaging n-Step Returns

- We can average *n*-step returns over different *n*
- e.g. average the 2-step and 4-step returns

$$\frac{1}{2}G^{(2)} + \frac{1}{2}G^{(4)}$$

- Combines information from two different time-steps
- Can we efficiently combine information from all time-steps?

λ-return

- The λ -return G_t^{λ} combines all n-step returns G_t^n
- Using weight $(1 \lambda)\lambda^{n-1}$

$$G_t^{\lambda} = (1 - \lambda)$$

• Forward-view $TD(\lambda)$

$$V(S_t) \leftarrow V(S_t) + \alpha \left(G_t^{\lambda} - V(S_t) \right)$$

TD(λ)Weighting Function

Image Credit: Sutton and Barto, Reinforcement Learning, An Introduction 2017

Forward-view $TD(\lambda)$

- Forward-view looks into the future to compute G_t^{λ}
- Like MC, can only be computed from complete episodes

Backward View TD(λ)

- Forward view provides theory
- Backward view provides mechanism
- Update online, every step, from incomplete sequences

Eligibility Traces

- Credit assignment problem: did bell or light cause shock?
- Frequency heuristic: assign credit to most frequent states
- Recency heuristic: assign credit to most recent states
- Eligibility traces combine both heuristics

$$E_0(s) = 0$$

$$E_t(s) = \gamma \lambda E_{t-1}(s) + \mathbf{1}(S_t = s)$$

Image Credit: David Silver, Model-Free Prediction, UCL Course on RL

$TD(\lambda)$ Algorithm

At each time step *t* in the rollout

• Update eligibility trace for every state s

$$E_t(s) = \gamma \lambda E_{t-1}(s) + \mathbf{1}(S_t = s)$$

- Compute TD-error $\delta_t = R_{t+1} + \gamma V(S_{t+1}) V(S_t)$
- Update value function V(s) for every state s

$$V(s) \leftarrow V(s) + \alpha \delta_t E_t(s)$$

Image Credit: Sutton and Barto, Reinforcement Learning, An Introduction 2017

current state

$TD(\lambda)$ and TD(0)

• When $\lambda = 0$, only current state is updated

$$E_t(s) = \mathbf{1}(S_t = s)$$
$$V(s) \leftarrow V(s) + \alpha \delta_t E_t(s)$$

• This is exactly equivalent to TD(0) update

$$V(S_t) \leftarrow V(S_t) + \alpha \delta_t$$

$TD(\lambda)$ and MC

- TD(1) is roughly equivalent to MC
- Error is accumulated online, step-by-step
- If value function is only updated offline at end of episode
- Then total update is exactly the same as MC

Summary of Forward & Backward TD(λ)

- Batch Update
 - Updates are accumulated within episode, but applied in batch at the end of episode
 - \rightarrow Backward TD(λ) is equivalent to Forward TD(λ)
- Online Update
 - $TD(\lambda)$ updates are applied at each step within episode
 - Forward and backward-view $TD(\lambda)$ are slightly different
 - Backward $TD(\lambda)$ is typically more efficient
 - Analogy: SGD vs. batch GD

Outline

- Introduction
- On-policy Montel Carlo control
- On-policy Temporal Difference control
- Off-policy Learning
- Summary

Introduction

- Last lesson: model-free policy evaluation
 - Estimate the value function of an unknown MDP
- This lesson: model-free policy optimization
 - Optimize the value function of an unknown MDP

On and Off-Policy Learning

- On-policy learning
 - "Learn on the job"
 - Learn about policy π from experience sampled from π
- Off-policy learning
 - "Look over someone's shoulder"
 - Learn about policy π from experience sampled from μ

Generalised Policy Iteration (Refresher)

Policy evaluation Estimate v_{π} e.g. Iterative policy evaluation

Policy improvement Generate $\pi' \geq \pi$

e.g. Greedy policy improvement

Policy Optimization

On-Policy MC Control

Generalised Policy Iteration With Monte-Carlo Evaluation

Policy evaluation Monte-Carlo policy evaluation, $V = v_{\pi}$?

Policy improvement Greedy policy improvement?
Image Credit: Sutton and Barto, Reinforcement Learning, An Introduction 2017

Model-Free Policy Iteration Using Action-Value Function

• Greedy policy improvement over V(s) requires model of MDP

$$\pi'(s) = \operatorname*{argmax}_{a \in \mathcal{A}} \mathcal{R}_s^a + \mathcal{P}_{ss'}^a V(s')$$

• Greedy policy improvement over Q(s, a) is model-free

$$\pi'(s) = \underset{a \in \mathcal{A}}{\operatorname{argmax}} Q(s, a)$$

Generalised Policy Iteration with Action-Value Function

Policy evaluation Monte-Carlo policy evaluation, $Q=q_{\pi}$

Policy improvement Greedy policy improvement?

Image Credit: Sutton and Barto, Reinforcement Learning, An Introduction 2017

Example of Greedy Action Selection

"Behind one door is tenure - behind the other is flipping burgers at McDonald's."

- There are two doors in front of you.
- You open the left door and get reward 0 V(left) = 0
- You open the right door and get reward +1: V(right) = +1
- You open the right door and get reward +3: V(right) = +3
- You open the right door and get reward +2: V(right) = +2
- •
- Are you sure you've chosen the best door?

ϵ -Greedy Exploration

- Simplest idea for ensuring continual exploration
- All m actions are tried with non-zero probability
- With probability $1-\epsilon$ choose the greedy action
- With probability ϵ choose an action at random

$$\pi(a|s) = \left\{ egin{array}{ll} \epsilon/m + 1 - \epsilon & ext{if } a^* = rgmax \ Q(s,a) \ & a \in \mathcal{A} \ \epsilon/m & ext{otherwise} \end{array}
ight.$$

• Theorem: For any ϵ -greedy policy π , the ϵ -greedy policy π' with respect to Q_{π} is an improvement, i.e. $v_{\pi'}(s) \geq v_{\pi}(s)$

Monte Carlo Control

Every episode:

Policy evaluation Monte-Carlo policy evaluation, $Q \approx q_{\pi}$

Policy improvement ϵ -greedy policy improvement

Image Credit: Sutton and Barto, Reinforcement Learning, An Introduction 2017

GLIE

Definition: Greedy in the Limit with Infinite Exploration (GLIE)

• All state-action pairs are explored infinitely many times

$$\lim_{k\to\infty} N_k(s,a) = \infty$$

• The policy converges on a greedy policy

$$\lim_{k \to \infty} \pi_k(a|s) = \mathbf{1}(a = \underset{a' \in A}{\operatorname{argmax}} Q_k(s, a'))$$

• Example: ϵ -greedy is GLIE if ϵ reduces to zero at $\epsilon_k = \frac{1}{k}$

GLIE Monte-Carlo Control

- Sample k^{th} episode using $\pi: \{S_1, A_1, R_2, \dots, S_T\} \sim \pi$
- For each state S_t and action A_t in the episode,

$$N(S_t, A_t) \leftarrow N(S_t, A_t) + 1$$

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \frac{1}{N(S_t, A_t)} (G_t - Q(S_t, A_t))$$

• Improve policy based on new action-value function

$$\epsilon \leftarrow 1/k$$

$$\pi \leftarrow \epsilon \text{-greedy}(Q)$$

• Theorem: GLIE Monte-Carlo control converges to the optimal action-value function $Q(s,a) \rightarrow g_*(s,a)$

Policy Optimization

On-Policy TD Control

MC vs. TD Control

- Temporal-difference (TD) learning has several advantages over Monte-Carlo (MC)
 - Lower variance
 - Online
 - Incomplete sequences
- Natural idea: use TD instead of MC in our control loop
 - Apply TD to Q(S, A)
 - Use ϵ -greedy policy improvement
 - Update every time-step

Sarsa for updating action-value function

$$Q(S,A) \leftarrow Q(S,A) + \alpha (R + \gamma Q(S',A') - Q(S,A))$$

On-Policy Control With Sarsa

Every time-step:

Policy evaluation Sarsa, $Q \approx q_{\pi}$

Policy improvement ϵ -greedy policy improvement

Image Credit: Sutton and Barto, Reinforcement Learning, An Introduction 2017

Sarsa Algorithm for On-Policy Control

```
Initialize Q(s, a), \forall s \in S, a \in A(s), arbitrarily, and Q(terminal-state, \cdot) = 0
Repeat (for each episode):
   Initialize S
   Choose A from S using policy derived from Q (e.g., \varepsilon-greedy)
   Repeat (for each step of episode):
      Take action A, observe R, S'
      Choose A' from S' using policy derived from Q (e.g., \varepsilon-greedy)
      Q(S,A) \leftarrow Q(S,A) + \alpha [R + \gamma Q(S',A') - Q(S,A)]
      S \leftarrow S'; A \leftarrow A';
   until S is terminal
```

Convergence of Sarsa

Theorem: Sarsa converges to the optimal action-value function $Q(s,a) \rightarrow q_*(s,a)$

under the following conditions:

- GLIE sequence of policies $\pi_t(a|s)$
- Robbins-Monro sequence of step sizes α_t

$$\sum_{t=1}^{\infty} \alpha_t = \infty$$

$$\sum_{t=1}^{\infty} \alpha_t^2 < \infty$$

Windy Gridworld Example

- Reward = -1 per time step until reaching goal
- Undiscounted

Sarsa on the Windy Gridworld

Image Credit: Sutton and Barto, Reinforcement Learning, An Introduction 2017

$Sarsa(\lambda)$

n-Step Sarsa

• Consider the following *n*-step returns for $n = 1, 2, ..., \infty$:

$$n = 1 (Sarsa) q_t^{(1)} = R_{t+1} + \gamma Q(S_{t+1}, A_{t+1})$$

$$n = 2 q_t^{(2)} = R_{t+1} + \gamma R_{t+2} + \gamma^2 Q(S_{t+2}, A_{t+2})$$
...
$$n = \infty (MC) q_t^{(\infty)} = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{T-1} R_T$$

• Define the *n*-step Q-return

$$q_t^{(n)} = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{n-1} R_{t+n} + \gamma^n Q(S_{t+n}, A_{t+n})$$

• n-step Sarsa updates Q(s,a) towards the n-step Q-return

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left(q_t^{(n)} - Q(S_t, A_t)\right)$$

Forward View Sarsa(λ)

- The q^{λ} return combines all n-step Q-returns $q_t^{(n)}$
- Using weight $(1 \lambda)\lambda^{n-1}$

$$q_t^{\lambda} = (1 - \lambda) \sum_{n=1}^{\infty} \lambda^{n-1} q_t^{(n)}$$

• Forward-view Sarsa(λ)

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha (q_t^{\lambda} - Q(S_t, A_t))$$

Backward View Sarsa(λ)

- Just like $TD(\lambda)$, we use eligibility traces in an online algorithm
- But Sarsa(λ) has one eligibility trace for each state-action pair

$$E_0(s, a) = 0$$

 $E_t(s, a) = \gamma \lambda E_{t-1}(s, a) + \mathbf{1}(S_t = s, A_t = a)$

- Q(s,a) is updated for every state s and action a
- In proportion to TD-error δ_t and eligibility trace $E_t(s,a)$

$$\delta_t = R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t)$$

$$Q(s, a) \leftarrow Q(s, a) + \alpha \delta_t E_t(s, a)$$

Sarsa(λ) Algorithm

```
Initialize Q(s, a) arbitrarily, for all s \in S, a \in A(s)
Repeat (for each episode):
   E(s, a) = 0, for all s \in S, a \in A(s)
   Initialize S, A
   Repeat (for each step of episode):
       Take action A, observe R, S'
       Choose A' from S' using policy derived from Q (e.g., \varepsilon-greedy)
       \delta \leftarrow R + \gamma Q(S', A') - Q(S, A)
       E(S,A) \leftarrow E(S,A) + 1
       For all s \in \mathcal{S}, a \in \mathcal{A}(s):
           Q(s, a) \leftarrow Q(s, a) + \alpha \delta E(s, a)
           E(s,a) \leftarrow \gamma \lambda E(s,a)
       S \leftarrow S'; A \leftarrow A'
   until S is terminal
```

Sarsa(\(\lambda\)) Gridworld Example

Policy Optimization

Off-Policy Learning

Off-Policy Learning

- Evaluate target policy $\pi(a|s)$ to compute $v_{\pi}(s)$ or $q_{\pi}(s,a)$
- While following behaviour policy $\mu(a|s)$

$$\{S_1, A_1, R_2, \dots, S_T\} \sim \mu$$

- Why is this important?
 - Learn from observing humans or other agents
 - Re-use experience generated from old policies $\pi_1, \pi_2, ..., \pi_{t-1}$
 - Learn about optimal policy while following exploratory policy
 - Learn about *multiple* policies while following *one* policy

Off-Policy Control with Q-Learning

• The target policy π is greedy w.r.t. Q(s, a)

$$\pi(S_{t+1}) = \operatorname*{argmax}_{a'} Q(S_{t+1}, a')$$

- The behaviour policy μ is e.g. ϵ -greedy w.r.t. Q(s,a)
- The Q-learning target becomes:

$$R_{t+1} + \gamma \max_{a'} Q(S_{t+1}, a')$$

Q-Learning Control Algorithm

$$Q(S,A) \leftarrow Q(S,A) + \alpha \left(R + \gamma \max_{a'} Q(S',a') - Q(S,A) \right)$$

Theorem: Q-learning control converges to the optimal action-value function $Q(s,a) \rightarrow q_*(s,a)$

Image Credit: Sutton and Barto, Reinforcement Learning, An Introduction 2017

Q-Learning Algorithm

```
Initialize Q(s, a), \forall s \in S, a \in A(s), arbitrarily, and Q(terminal-state, \cdot) = 0
Repeat (for each episode):
   Initialize S
   Repeat (for each step of episode):
      Choose A from S using policy derived from Q (e.g., \varepsilon-greedy)
      Take action A, observe R, S'
      Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma \max_a Q(S', a) - Q(S, A)]
      S \leftarrow S':
   until S is terminal
```

References

Richard Sutton. Reinforcement Learning: An Introduction (2nd edition).

David Silver's course on Reinforcement Learning: http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html