Today's material available at:

https://github.com/juliennelachance/ai4all_clustering

Clustering

Princeton Al4ALL

Icebreaker

- Everyone receives a slip of paper
- Your task:
 - Using the information about your person, form dog-walking groups
- Be prepared to justify your answers!
 - What features are important and why?

Overview:

- What is clustering?
- Applications of clustering
- Types of clustering
- k-means algorithm
- Recommendation system example

What is clustering?

What is clustering?

- From Wikipedia:
 - "Cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group (called a cluster) are more similar (in some sense) to each other than to those in other groups (clusters)."
- Thinking back to our first lecture on machine learning:
 This is an important type of unsupervised learning. Why?

Applications of clustering

Periodic Table of Elements

Earthquakes and Seismology

Medical Imaging

Recommendation Systems: Amazon

Recommendation Systems: Amazon

- Amazon doesn't know what it's like to read a book, or what you feel like when you read a particular book
- Amazon does know that people who bought a certain book also bought other books
- Patterns in the data can used to make recommendations
- If you've built up a long purchase history you'll often see pretty sophisticated recommendations

And even more nefarious purposes...

KEVIN POULSEN SCIENCE 01.21.14 06:30 AM

HOW A MATH GENIUS HACKED OKCUPID TO FIND TRUE LOVE

Discussion:

Can you come up with other applications of clustering?

Types of clustering

Two main types of clustering:

Hard clustering:

Each object is in exactly one class.

Soft clustering:

Objects are assigned a degree to which they are in each class.

• (Think of this as probability of being in a class)

Flat vs. Hierarchical clustering

- Flat = distinct clusters
- Hierarchical = clusters within clusters

More later on types of clustering *algorithms*. But first, an example...

Breakout Session:

Try out the demo at http://mlehman.github.io/kmeans-javascript/

Discuss with your table: how does the algorithm work?

(Note: this demo has a bug! Can't use more than 6 clusters)

k-means clustering

How can we automatically cluster campgrounds?

Goal: Assign each of the *n* points to one out of *k* clusters (defined by a cluster centroid).

Find 5 clusters for the 1000 points below!

Step 0: Pick k random points as the cluster centroids

Iteration 1

Step 1: Assign each point to closest cluster centroid

Iteration 1 continued

Step 2: Find cluster centroids as center of mass of elements

Iteration 2

Step 1: Assign each point to closest cluster centroid

Iteration 2 continued

Step 2: Find cluster centroids as center of mass of elements

Iteration 3

Step 1: Assign each point to closest cluster centroid

Iteration 3 continued

Step 2: Find cluster centroids as center of mass of elements

Iteration 4

Step 1: Assign each point to closest cluster centroid

No change in cluster assignment. TERMINATE!

k-means overview

- Choose the value of k
 - This is how many cluster centroids we're finding
- Choose k points in the set
 - These are the initial centroid locations
- For each point not selected, assign to its nearest centroid
 - Now all points have an initial cluster assignment
- Until "happy" do:
 - 1. Recompute centroids of clusters
 - 2. Reassign all points to closest centroid (forms new clusters)

Discussion:

Is this "hard" or "soft" clustering?

Is this "flat" or "hierarchical" clustering?

Discussion:

When would k-means fail? When would it succeed?

What are some drawbacks? What are some advantages?

Weaknesses:

Non-globular clusters

Weaknesses:

Wrong number of clusters

Weaknesses:

Outliers and empty clusters

Algorithm design: Distance metrics and features

- How do we determine what elements are "close"?
 - Spatial distance, similarity of campsite attributes,...
- "Features" are attributes that we use to mathematically compute closeness.
 - Height, age, hometown
- Weights for features
 - Are all features equally important or are some more important than others?
 - Are the features on different scales?

Types of features

- Categorical features take a fixed set of values. The values cannot be ordered.
 - For example, the type of phone (android, iphone, windows phone).
- Ordinal features take a fixed set of values. The values can be ordered.
 - For example, the ranks of football teams in the PAC-12 conference.
- Continuous features can take any real value.
 - For example, the distance of Princeton University from your hometown.

Main types of clustering algorithms

- Connectivity-based (hierarchical) clustering
- Centroid-based clustering
- Distribution-based clustering
- Density-based clustering

Connectivity-based (hierarchical) clustering

A hierarchy of clusters based on distance:

Typically, form a "dendogram"

Centroid-based clustering

k-means!

Distribution-based clustering

Cluster according to how likely it is that points lie in a certain distribution

Density-based clustering

Group together points that are closely spaced, and marks farther-out points

as outliers

Recommendation system example

Dataset: Movie critics

Critic	Star Wars	Raiders of the Lost Arc	Casablanca	Singin' in the Rain
Sam	****	****	*	**
Sandy	****	****	**	*
Matt	**	**	****	***
Julia	**	*	***	****
Sarah	****	?	?	**

- Could an algorithm use this data to recommend movies?
- How would you do it?

Dataset: Movie critics

Critic	Star Wars	Raiders of the Lost Arc	Casablanca	Singin' in the Rain
Sam	****	****	*	**
Sandy	****	****	**	*
Matt	**	**	****	***
Julia	**	*	***	****
Sarah	****	?	?	**

- Could an algorithm use this data to recommend movies?
- How would you do it?

Critics with similar taste

■ Preference space

Measuring distance

Measure similarity between points using a measure of distance

Finding critics with similar taste

 People who liked Star Wars are close in preference space to those who liked Raiders

Making a recommendation

- Sarah hasn't seen Raiders, but gave Star Wars five stars.
- Chances are she'll like Raiders too!

Features

- We used features to compare critics
- Feature: a data attribute used to make a comparison
- Quantify attributes of an object (size, weight, color, shape, density) in a way a computer can understand
- Quality is important

Apples vs. Oranges

- A good feature discriminates between classes
- Think: how well does a feature help us tell two things apart?
- Is mass a good feature? By itself?
- What about in conjunction with another feature like color?

Features to compare movies

Feature	Star Wars	Raiders of the Lost Arc	Casablanca	Singin' in the Rain

Can you suggest some features to compare movies?

Features to compare movies

Feature	Star Wars	Raiders of the Lost Arc	Casablanca	Singin' in the Rain
Action (1 to 5)	5	4	2	1
Romance (1 to 5)	1	2	4	3
Length (min)	121	115	102	103
Harrison Ford	Y	Y	N	N
Year	1977	1981	1942	1952

What type of features are these?

Comparing movies in feature space

```
Star Wars

Raiders of the Lost Arc

Singin' in the Rain

1 2 3 4 5 Romance
```

 Here we can "eyeball" the clusters, but what if we had more features? (i.e. higher dimensional data)?

Exercise time:

Jupyter notebook available at https://github.com/juliennelachance/ai4all_clustering