Mean absolute correlation (MAC)

corr(X, X)

$corr(X_i, \tilde{X}_j) = corr(X_i, X_j) \text{ if } i \neq j$

$corr(X_i, X_j) = corr(X_i, X_j)$

 $\left| | \mathsf{corr}(X_i, \tilde{X}_i) | \right|$

 $MAC = \hat{-}$

has a non-negative lower bound because correlation matrix is positive definite

For any valid knockoff distribution

lower bound is computable but not necessarily achievable

Mean absolute correlation (MAC)

For any valid knockoff distribution $\mathbf{corr}(X_i, \tilde{X}_j) = \mathbf{corr}(X_i, X_j) \text{ if } i \neq j$ $\mathbf{corr}(\tilde{X}_i, \tilde{X}_j) = \mathbf{corr}(X_i, X_j)$

$$\mathbf{corr}(X, \tilde{X}) =$$

$$\mathbf{MAC} = \frac{1}{p} \sum_{j=1}^{p} |\mathbf{corr}(X_j, \tilde{X}_j)| = \frac{1}{p} \sum_{j=1}^{p} |?|$$

has a non-negative lower bound because correlation matrix is positive definite

lower bound is computable but not necessarily achievable

Power and MAC

Across different knockoff 0.21 sampling methods, MAC translates well to FDR and power

