[2]

Enrollment No.....

Faculty of Engineering

End Sem (Odd) Examination Dec-2017

EN2BS02 Mathematics-II

Programme: Diploma

Branch/Specialisation: All

Duration: 3 Hrs.

Maximum Marks: 60

1

1

1

1

1

P.T.O

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQ's) should be written in full instead of only a, b, c or d.

- $\lim_{x\to 0} \frac{\sin x}{x} = ?$ 1
 - (d) None of these
 - ii. $\frac{d}{dx}(x^n) = ?$ 1
 - (a) nx^n (c) nx^{n-1} (b) *nx* (d) nx^{n+1}
 - 1 $\int e^x dx = ?$
 - (a) $e^x + c$ (b) $-e^x + c$ (c) $e^{-x} + c$ (d) $-e^x + c$
 - (a) $x^2 + c$ (b) $\frac{x^2}{2} + c$ (c) $-x^2 + c$ (d) $-\frac{x^2}{2} + c$
 - If m and n are the order and degree of the equation 1 $\frac{d^3y}{dx^3} - 5(\frac{dy}{dx})^4 + 6y = x^2$ then:
 - (a) m=4, n=3 (b) m=1, n=3 (c) m=3, n=4 (d) m=3, n=1
 - The differential equation of the type $\frac{dy}{dx} + Py = Q$ is called: 1
 - (a) Homogenous
- (b) Linear
- (c) Non-homogenous
- (d) None of these
- vii. Modulus of the vector $4\hat{i} + 2\hat{j} 3\hat{k}$ is:
 - (a) 7
- (b) $2\sqrt{9}$
- (c) $\sqrt{29}$
- viii. If $\vec{a} \cdot \vec{b} = 0$ then angle between \vec{a} and \vec{b} will be:
 - (b) 90^{0} (c) 180^{0}

- (d) 360°

(d) 3

- The Mode of 4, 5, 9, 10, 11, 9, 7, 10, 9 is:
 - (a) 9
- (b) 10
- (c) 11
- (d) 4
- Which of the following is a measure of dispersion?
 - (a) Mean
- (b) Mode
- (c) Median
- (d) Standard Deviation

- Find the value of the $\lim_{x\to 2} \frac{x^2-5x+6}{x^2-4}$.
- Solve: $\frac{d}{dx}(x^2 \sin x)$

5

5

5

5

5

- iii. If $y = \frac{e^x}{1 + e^x}$ then find $\frac{dy}{dx}$. 5
- Q.3 Solve any two:
 - Evaluate : $\int_{1}^{2} (3x^{3} + 2x + 1) dx$ 5
 - Evaluate: $\int x e^x dx$
 - Evaluate: $\int \frac{e^{tan^{-1}x}}{1+x^2} dx$
- Q.4 Solve any two:
 - Solve by separation of variables: $\frac{dy}{dx} = (1+x)(1+y)$ 5
 - Solve the linear differential equation: $\frac{dy}{dx} + y = 1$
 - Solve the homogeneous differential equation: $\frac{dy}{dx} = \frac{-y^2}{x(x-y)}$
- Q.5 Solve any two:
 - Prove that $\vec{a} = 2\hat{\imath} \hat{\jmath} + \hat{k}$ and $\vec{b} = -\hat{\imath} + 3\hat{\jmath} + 5\hat{k}$ are mutually perpendicular. Also find the sum of \vec{a} and \vec{b}
 - Find the work done in moving a particle along a straight line from 5 (3, 2, -1) to (2, 1, -4) in a force field given by $\vec{F} = 5\hat{\imath} - 3\hat{\jmath} + 2\hat{k}$
 - Find a unit vector perpendicular to the vectors $2\hat{i} \hat{j} + \hat{k}$ and 5 $3\hat{\imath} + 4\hat{\jmath} - \hat{k}.$
- Q.6 Solve any two:
 - i. Find the median following of the data: 25,34,31,23,22,26,35,28,20,32
 - Calculate the standard deviation for the set of numbers 3.4.9.11.13.6.8.10
 - Find the mean of the following distribution.

	X	4	6	9	10	15
	f(x)	5	10	10	7	8

Medi-Caps University faculty of Engg. End Sem Exam Dec-2017 EN2BS02 Mathematics-II Mogramme Diploma Branch-All SOLUTION 21 (1) - (6) -1 (11)-(c)-n2n-1 (ili)-(a)-e"+c (iv) - (b) - $\frac{\chi^2}{2}$ + C (v) - (d) - m=3, n=1(vi)-(b) - Linear (vii)-(c)- \29 (Viii)-(b) - 90° (ix) - (a) - 9(x)-(d)- Standard deviation 12: (1) $\lim_{n\to 2} \frac{x^2 - 5n + 6}{n^2 - 4}$ = $\lim_{n\to 2} \frac{(n+2)(n-3)}{(n+2)(n+2)}$ $= \frac{(2-3)}{(2+2)} = -\frac{1}{4}$ 2 (11) Formula d(I-II) = I d I + I d I Applying the formula $-\frac{1}{(1)}$ $\frac{d}{dx}(x^2 \sin x) = x^2 \cos x + 2x \sin x - \frac{1}{(2)}$

Applying the formula

$$\frac{d}{dx}\left(\frac{1}{1}\right) = \frac{1}{1} \frac{x_1}{x_2} + \frac{x_1}{x_3} + \frac{x_2}{x_4} + \frac{x_3}{x_2} + \frac{x_4}{x_3} + \frac{x_4}{x_4} + \frac{x_4}{x_2} + \frac{x_4}{x_3} + \frac{x_4}{x_4} + \frac{x$$

Seperating the value $\frac{dy}{(1+y)} = (1+x) dx$ Integrating. $log(1+y) = x + \frac{x^2}{2} + c$ Std. form of L. D. E Comparing with

dy + Py = Q 24 $P = 1 \cdot Q = 1$ $I \cdot F = e^{\int P dx} = e^{\int I dx} = e^{\int I dx}$ Sol" is y. en = en + c y = -e 1 + ce-x put y = vex (111) 4 dy = v + x dre dr $v + x \frac{dv}{dx} = \frac{-(vx)^2}{x(x-vx)} = \frac{-v^2}{1-v^2}$ 22 dre = -20 (+2) 1-redo - 1 dr C1=ec] On eintegrating logre - re = -logr + C => rex=e => y=c,e/2

(f)
$$\vec{a} \cdot \vec{b} = -2 - 3 + 5 = 0$$
 $\vec{a} \cdot \vec{b} = 0 \Rightarrow \vec{a} \cdot \vec{b}$ are $\vec{b} \cdot \vec{b} = 0$
 $\vec{a} \cdot \vec{b} = 0 \Rightarrow \vec{a} \cdot \vec{b}$ are $\vec{b} = 0$
 $\vec{a} \cdot \vec{b} = 0 \Rightarrow \vec{a} \cdot \vec{b}$ are $\vec{b} = 0$
 $\vec{a} \cdot \vec{b} = 0 \Rightarrow \vec{a} \cdot \vec{b}$ are $\vec{b} = 0$
 $\vec{a} \cdot \vec{b} = 0 \Rightarrow \vec{a} \cdot \vec{b}$ are $\vec{b} = 0$
 $\vec{b} \cdot \vec{b} = 0 \Rightarrow \vec{a} \cdot \vec{b}$ are $\vec{b} = 0$
 $\vec{b} \cdot \vec{b} = 0 \Rightarrow \vec{a} \cdot \vec{b}$ are $\vec{b} = 0$
 $\vec{b} \cdot \vec{b} = 0 \Rightarrow \vec{a} \cdot \vec{b}$ are $\vec{b} \cdot \vec{b} = 0$
 $\vec{b} \cdot \vec{b} = 0 \Rightarrow \vec{a} \cdot \vec{b} = 0$
 $\vec{b} \cdot \vec{b} = 0 \Rightarrow \vec{a} \cdot \vec{b} = 0$
 $\vec{b} \cdot \vec{b} = 0 \Rightarrow \vec{a} \cdot \vec{b} = 0$
 $\vec{b} \cdot \vec{b} = 0 \Rightarrow \vec{a} \cdot \vec{b} = 0$
 $\vec{b} \cdot \vec{b} = 0 \Rightarrow \vec{a} \cdot \vec{b} = 0$
 $\vec{b} \cdot \vec{b} = 0 \Rightarrow \vec{a} \cdot \vec{b} = 0$
 $\vec{b} \cdot \vec{b} = 0 \Rightarrow \vec{a} \cdot \vec{b} = 0$
 $\vec{b} \cdot \vec{b} = 0 \Rightarrow \vec{a} \cdot \vec{b} = 0$
 $\vec{b} \cdot \vec{b} = 0 \Rightarrow \vec{a} \cdot \vec{b} = 0$
 $\vec{b} \cdot \vec{b} = 0 \Rightarrow \vec{a} \cdot \vec{b} = 0$
 $\vec{b} \cdot \vec{b} = 0 \Rightarrow \vec{a} \cdot \vec{b} = 0$
 $\vec{b} \cdot \vec{b} = 0 \Rightarrow \vec{a} \cdot \vec{b} = 0$
 $\vec{b} \cdot \vec{b} = 0 \Rightarrow \vec{a} \cdot \vec{b} = 0$
 $\vec{b} \cdot \vec{b} = 0 \Rightarrow \vec{a} \cdot \vec{b} = 0$
 $\vec{b} \cdot \vec{b} = 0 \Rightarrow \vec{a} \cdot \vec{b} = 0$
 $\vec{b} \cdot \vec{b} = 0 \Rightarrow \vec{a} \cdot \vec{b} = 0$
 $\vec{b} \cdot \vec{b} = 0 \Rightarrow \vec{a} \cdot \vec{b} = 0$
 $\vec{b} \cdot \vec{b} = 0 \Rightarrow \vec{a} \cdot \vec{b} = 0$
 $\vec{b} \cdot \vec{b} = 0 \Rightarrow \vec{a} \cdot \vec{b} = 0$
 $\vec{b} \cdot \vec{b} = 0 \Rightarrow \vec{b} = 0$
 $\vec{b} \cdot \vec{b} = 0 \Rightarrow \vec{b} = 0$
 $\vec{b} \cdot \vec{b} = 0 \Rightarrow \vec{b} = 0$
 $\vec{b} \cdot \vec{b} = 0$

Median = 5th + 6th Leur = 26+28 = 27 (x-M)2 Deviation = (x-M) (11) Number(n) 36 S.N. 25 3 16 4 2 01 3 09 4 13 25 5 04 6 00 8 04 2 10 E(x-M)=84 Ex=64 Total -(3)N=8. Mean $M = \frac{5x}{N} = \frac{64}{8} = 8$ du S.D $(\sigma) = \int \frac{\sum (x-M)^2}{N} = \int \frac{84}{8} = 3.24$ \$ x.f(x) f(x) (111) 06 X 20 5 4 60 10. 10 70 子 120 15 360 40 Total Mean $\bar{x} = \frac{\xi f x}{\xi f} = \frac{360}{40} = 90$ Dus.

a xx x -