CSCI 2270 Data Structures and Algorithms Binary Trees and Binary Search Trees

Elizabeth White

elizabeth.white@colorado.edu

Office hours: ECCS 112/128

Wed 9:30am-11:30am

Thurs 10am-11am

Administrivia

Read Trees chapter, pp.507-535

In lab this week, you'll write insert and count for the binary search tree class. You'll have a lot of code supplied already.

Destroying a binary tree

```
void tree_clear(binary_tree_node<ItemType>*& root_ptr) {
       binary_tree_node<ItemType>* child;
       if (root ptr != nullptr)
              child = root_ptr->left( );
              tree_clear( child );
              child = root ptr->right();
              tree clear(child);
              delete root ptr;
              root ptr = nullptr;
```

Copying a binary tree

```
binary tree node<ItemType>* tree copy(const
       binary tree node<ItemType>* root ptr) {
       binary_tree_node<ItemType> *I_ptr, *r_ptr;
       if (root_ptr == nullptr) return nullptr;
       else {
              l_ptr = tree_copy( root_ptr->left( ) );
              r ptr = tree copy(root ptr->right());
              return new binary_tree_node<ItemType>
                      (root ptr->data(), | ptr, r ptr);
```

Traversal order matters (post order)

```
Tree clear:
               child = root ptr->left(); tree clear(child);
               child = root ptr->right(); tree clear(child);
               delete root ptr; root ptr = nullptr;
               l_ptr = tree_copy( root_ptr->left( ) );
Tree copy:
               r ptr = tree copy(root ptr->right());
               return new binary tree node<ItemType>
                      (root ptr->data(), | ptr, r ptr);
```

Binary tree node access

In bintree.h, you have methods to get at the data and the children:

```
ItemType& data() { return data_field; }
binary_tree_node*& left() { return left_field; }
binary_tree_node*& right() { return right_field; }
```

Notice, please, that each of these returns a reference. This means that we can assign to them. THIS IS WEIRD.

```
root_ptr->left() = new binary_tree_node(entry);
root_ptr->data() = 2;
```

Inserting an Item

```
void BSTreeBag<ItemType>::insert(const ItemType& entry)
2 cases:
       empty tree (easy to find where the Item goes)
       non-empty tree: walk a pointer from the root to a leaf
              binary tree node<ItemType> *cursor;
              cursor = root ptr;
              bool done = false;
              while (!done)
                     // find where this entry goes
```

Inserting an Item

```
void BSTreeBag<ItemType>::insert(const ItemType& entry)
       cursor = root ptr; bool done = false;
       while (!done) {
               if (entry <= cursor->data()) {
                      // if cursor's left child is nullptr, add entry:
                              cursor->left() = new
binary tree node<ItemType> (entry); done = true;
                      // else keep looking
                              cursor = cursor->left();
               // else look in the right subtree
```

Counting Items

```
unsigned int BSTreeBag<ItemType>::count(const ItemType&
target) const
       unsigned int answer = 0;
       binary_tree_node<ItemType> *cursor;
       while (cursor != nullptr)
              // check if cursor has the target as its data
              // if so, count answer up
              // set cursor to the right child and look for more
```

Removing Items

Inserting is easy, removing is hard Reason: we need to keep the tree kosher after removals

2 cases:

we're removing a node with no left subtree

we delete this node and move the right subtree

up into its spot

we're removing a node with a left subtree
we find the maximum node in our left subtree,
delete that node,
and copy its data to the node we wanted to delete

Trees offer the chance for log(n) performance if you're lucky

For a binary search tree of n nodes,

Search: O(log n) average, O(n) worst case

Insert: O(log n) average, O(n) worst case

Remove: O(log n) average, O(n) worst case

Traverse: O(n)

Another tree ADT, the B-tree, ensures that the tree is perfectly balanced (and even full); this guarantees the O(log n) performance, worst case