第一題:使用 Cifar10 影像集, 參考 tf01_beginner.ipynb 製作一個只有三層全連結層, 沒有卷積層的網路模型, 跟 tf04_Cifar_CNN2.ipynb 比較辨識準確度。

	tf04_Cifar_CNN2.ipynb	我的模型
測試集準確度	0.730	0.135

第二題:以相同的影像集, 自行創建網路架構, 評估其表現, 並繪製您的網路架構圖(例如下圖)。可調整的參數有:(1)filter 數, (2)層數, (3)步幅(stride), (4)批量, (5)dropout, (6)優化器的選用, (7)影像擴增(參考 tf08_data_augmentation.ipynb)等。

● 架構圖:

● 訓練與驗證集的 Accuracy, Loss 曲線圖:

● 模型在訓練集與測試集的表現:

train loss: 0.5530202388763428 train acc: 0.815060019493103

test loss: 0.808371901512146 test acc: 0.7319999933242798

第三題: 參考 tf07_transfer_learning.ipynb, 使用 MobileNet 作遷移式學習, 比較其效果。注意, 要先將影像轉換成適合的尺寸。

● 訓練與驗證集的 Accuracy, Loss 曲線圖:

● 模型在訓練集與測試集的表現:

train loss: 0.19347383081912994 train acc: 0.9509999752044678

test loss: 0.44914501905441284 test acc: 0.8970000147819519

● 混淆矩陣:

綜合以上所嘗試的模型, 其準確率比較如下表格:

	tf04_Cifar_CNN2.ipynb	第一題	第二題	第三題
測試集準確度	0.730	0.135	0.732	0.897