

LightGBM算法研究

kimmyzhang@tencent.com

大纲

- 算法创新
 - ➤ bin & histogram
 - ➤ leaf-wise split
 - ▶分布式训练方法(communication efficient parallel voting)
 - ➤ DART(Dropout + GBDT)
 - ➤ GOSS(Gradient-based One-Side Sampling)
- 优点
- 缺点

Bin & Histogram

- xgboost等传统实现: pre-sort + 精确查找/分位点近似查找
 - ▶找分裂点时速度慢
 - ▶精确
- LightGBM: bin & histogram近似查找
 - ▶找分裂点时速度贼快
 - >不那么精确
 - ▶实际效果不差

Bin Mapper的构造

• 代码: DatasetLoader::ConstructBinMappersFromTextData

Bin Mapper的使用

- 读取instance时, feature value被映射为bin index
- 内存中保存bin mapper和bin中的所有instance index
- 所有的bin bound(除了最小和最大)将作为split candidate

- 给听众的问题:
- 1. 如果某些特征值不在bin mappers的范围内如何处理?
- 2. 分布式情况下, 各个机器如何构造全局一致的bin mappers?

传统的Layer-wise Split

LightGBM的Leaf-wise Split

- 代码:
 - ➤ GBDT::TrainOneIter
 - > SerialTreeLearner::Train
- 给听众的问题:
 - →每次分裂都要计算所有叶子节点的增益吗?

完全以增益为导向分裂 有更好的效果

分布式训练方法

- 传统的Attribute(Feature) Parallel
 - ▶通信量高
 - ▶精确
- LightGBM的Parallel Voting
 - ▶大部分计算在单个节点内, 通信量低
 - ▶不那么精确
 - ▶实际效果不差

传统的Feature Parallel

- 分布式分裂一个叶子节点的流程
 - ➤ WR并行找到local BSP(best split plan)
 - ➤ CD聚合并找到global BSP
 - ➤ 找到global BSP的worker进行 instance切分,将切分后的instance indices广播给所有WR

LightGBM的Parallel Voting

Algorithm 2 FindBestSplit Algorithm 3 PV-Tree_FindBestSplit Input: DataSet D **Input:** Dataset D for all X in D. Attribute do localHistograms = ConstructHistograms(D) ▶ Local Voting ▷ Construct Histogram H = new Histogram()splits = []for all x in X do for all H in localHistograms do H.binAt(x.bin).Put(x.label)splits.Push(H.FindBestSplit()) end for end for localTop = splits.TopKByGain(K)▶ Find Best Split □ Gather all candidates leftSum = new HistogramSum() for all bin in H do allCandidates = AllGather(localTop)▶ Global Voting leftSum = leftSum + H.binAt(bin)rightSum = H.AllSum - leftSum globalTop = allCandidates.TopKByMajority(2*K)split.gain = CalSplitGain(leftSum, rightSum) ▶ Merge global histograms bestSplit = ChoiceBetterOne(split,bestSplit) globalHistograms = Gather(globalTop, localHisend for tograms) bestSplit = globalHistograms.FindBestSplit() end for return bestSplit return bestSplit

LightGBM的Parallel Voting

- 分布式分裂一个叶子节点的流程
 - ➤ WR并行找到k个local BSP
 - ➤ CD聚合保留top 2k个BSP
 - ➤ CD向所有WR收集这top 2k个BSP的 histogram data
 - ➤ CD计算这top 2k个BSP的global 增益, 找 到global BSP
 - ➤ CD将global BSP广播给所有WR
 - ➤ WR基于bin mapper做本地数据切分

Histogram Data与Global增益

$$Gain = 2\mathcal{L}(\mathbf{b}^*, \mathbf{R}) - 2\mathcal{L}(\mathbf{b}^{*'}, \mathbf{R}')$$

$$= \frac{G_L^2}{H_L + \lambda} + \frac{G_R^2}{H_R + \lambda} - \frac{(G_L + G_R)^2}{H_L + H_R + \lambda} - \gamma$$

- 对于一个BSP, histogram data除了包含一些元信息外, 就是上面G_L, G_R, H_L, H_R.
- CD将收集到所有histogram data后, 可计算出global增益
- 核心代码: VotingParallelTreeLearner类

DART

Algorithm 1 The DART algorithm

Let N be the total number of trees to be added to the ensemble

$$S_1 \leftarrow \{x, -L_x'(0)\}$$

 T_1 be a tree trained on the dataset S_1

$$M \leftarrow \{T_1\}$$

for
$$t = 2, \ldots, N$$
 do

 $D \leftarrow$ the subset of M such that $T \in M$ is in Dwith probability p_{drop}

if $D = \emptyset$ then $D \leftarrow$ a random element from M

end if

$$\hat{M} \leftarrow M \setminus D$$

$$S_t \leftarrow \left\{ x, -L_x' \left(\hat{M}(x) \right) \right\}$$

 T_t be a tree trained on the dataset S_t

$$M \leftarrow M \cup \left\{ \frac{T_t}{|D|+1} \right\}$$

for $T \in D$ do

修正丟弃掉树的预测值

随机丢掉一些树

Multiply T in M by a factor of $\frac{|D|}{|D|+1}$ end for

end for

Output M

DART效果

测试集square loss

Ensemble size	25	50	100	250	500	1000
MART	35.13	31.79	30.92	30.07	29.76	29.28
DART	32.50	30.50	29.66	28.14	28.11	27.98
Random Forest	32.76	33.21	32.88	32.36	32.66	32.33

测试集AUC

Ensemble size	50	100	250	500	1000
MART	0.9687	0.9699	0.9707	0.9704	0.9695
DART	0.9676	0.9692	0.9714*	0.9693	0.9699
Random Forest	0.9627	0.9629	0.9629	0.9630	0.9628

代码: DART::TrainOneIter

GOSS

- Gradient-based One-Side Sampling
 - ▶一种新的Bagging(row subsample)方法
 - ▶前若干轮(1.0f / gbdt_config_->learning_rate)不Bagging
 - ➤之后Bagging时,采样一定比例g(梯度)大的样本
- 直观解释: g越大, 降低loss的能力越大
- 代码: GOSS::Bagging

优点

- 目前最先进的GBDT工具包
- 支持分布式
- 速度快
- 效果好
- 省内存
- openmp和MPI使用的淋漓尽致

缺点

- 分布式没有fault tolerance
- typo非常非常非常多
- c++写的很junior
 - ▶作者很多best practice都不会
- 代码构架差
 - ▶部分代码结构混乱, 函数有些长, 看起来费劲

参考文献

- https://github.com/Microsoft/LightGBM
- Qi Meng, et al., A Communication-Efficient Parallel Algorithm for Decision Tree, NIPS, 2016.
- K. V. Rashmi, et al., DART: Dropouts meet Multiple Additive Regression Trees, arXiv, 2015.

谢谢聆听

