Model Architectures

1) Classification Model Architecture

The model follows a sequential architecture:

- 1. An Embedding layer (input dim: vocabulary size, output dim: 256, input shape: (max_sequence_length,)) is used to convert token indices into dense vector representations. This is followed by a Bidirectional LSTM layer with 128 units and a 0.3 dropout rate to capture context from both directions. Then comes a Dense layer with 128 units and ReLU activation to learn non-linear feature combinations, followed by a Dropout layer with a 0.4 rate to reduce overfitting.
- 2. The **Output layer** has 3 units (for Science, Mathematics, and History) with a softmax activation to output class probabilities.
- 3. The model is compiled with **Categorical Cross-Entropy** loss (suitable for multi-class classification), **AdamW optimizer** (learning rate: 2.5e-4, weight decay: 0.003, beta_1: 0.9, beta_2: 0.999) for better generalization, and **Accuracy** as the evaluation metric.
- 4. The model was trained for **15 epochs**. It leverages bidirectional context understanding, dropout-based regularization, and AdamW optimization to balance generalization and efficiency in a compact architecture.

Layer (type)	Output Shape	Param #
embedding_2 (Embedding)	(None, 400, 256)	768,000
bidirectional_2	(None, 256)	394,240
dense_4 (Dense)	(None, 128)	32,896
dropout_2 (Dropout)	(None, 128)	0
dense_5 (Dense)	(None, 3)	387

Total params: 1,195,523 (4.56 MB) **Trainable params:** 1,195,523 (4.56 MB)

Non-trainable params: 0 (0.00 B)

2) Generation Model Architecture

The model follows a sequential architecture:

- The model begins with an Embedding layer that maps each token index to a 256-dimensional dense vector, with an input shape of (max_sequence_length 1,). This is followed by an LSTM layer with 192 units and return_sequences=True, allowing it to pass a sequence of hidden states to the next layer.
- 2. Next is a GRU layer with 192 units and return_sequences=False, which processes the output of the LSTM and outputs the final hidden state. A Dropout layer with a rate of 0.4 is applied for regularization, followed by a LayerNormalization layer to stabilize and accelerate training.
- A Dense layer with 128 units and GELU activation introduces non-linearity. Finally, a
 Dense output layer with vocab_size units and a softmax activation outputs a
 probability distribution over the vocabulary.
- 4. The model uses the AdamW optimizer with a learning rate of 5e-4 and gradient clipping (clipnorm=1.0). Mixed precision training is enabled using LossScaleOptimizer for numerical stability. The model is compiled with sparse categorical cross-entropy loss and is evaluated using both accuracy and perplexity metrics.

Layer (type)	Output Shape	Param #
embedding_5 (Embedding)	(None, 255, 256)	3,840,000
lstm_10 (LSTM)	(None, 255, 192)	344,832
gru (GRU)	(None, 192)	222,336
dropout_5 (Dropout)	(None, 192)	0
layer_normalization_5	(None, 192)	384
dense_10 (Dense)	(None, 128)	24,704
dense_11 (Dense)	(None, 15000)	1,935,000

Total params: 6,367,256 (24.29 MB) **Trainable params:** 6,367,256 (24.29 MB)

Non-trainable params: 0 (0.00 B)

Text Preprocessing Steps

- 1. **Remove special characters:** Only keep alphanumeric characters, whitespace, and punctuation (.,!?).
- 2. Remove standalone numbers: Eliminate isolated digits to reduce noise.
- 3. Normalize scientific terms: Replace "co2" with "carbon dioxide" for consistency.
- 4. **Convert to lowercase:** Standardize the text by making all characters lowercase.
- 5. **Remove extra spaces:** Trim redundant whitespaces for clean tokenization.

Tokenizer Usage

For Text Generation

- 1. A single large corpus (science_corpus) is created by joining all training texts.
- 2. Tokenizer(num_words=15000) is used to limit the vocabulary to the top 15,000 most frequent words.
- The tokenizer is fit on the entire joined corpus using fit_on_texts([science_corpus]).
- 4. The final vocabulary size total_words is calculated as the lesser of (vocab size + 1) and 15,000.
- 5. This setup ensures consistent token IDs for word prediction tasks.

For Text Classification

- Tokenizer(num_words=max_words) is initialized with a predefined vocabulary limit (e.g., max_words = 15000).
- 2. The tokenizer is fit on the list of individual training samples X_train using fit_on_texts(X_train).
- 3. This approach captures token frequencies across all input samples for classification tasks, where label supervision is involved.

Model Performance Commentary

Text Classification

- 1. Per-Class Performance:
 - a. **Science:** Precision 0.84, Recall 0.90, F1-score 0.87 slightly lower precision suggests occasional confusion with other subjects.
 - b. **Math:** Precision 0.94, Recall 0.93, F1-score 0.94 most consistently predicted class.
 - c. **History:** Precision 0.92, Recall 0.86, F1-score 0.89 minor recall dip hints at some missed history samples.
- 2. **Macro and Weighted Averages:** All hover around **0.90**, indicating balanced performance across classes.

Overall: Achieved a strong **90**% accuracy across all three classes, which is excellent for a sequential model, especially considering the interrelation between Science and Math, where certain topics overlap.

Text Generation Performance

- 1. **Training Accuracy:** Achieved around **41.4**% with a **loss of 3.01**, indicating moderate learning in token prediction.
- 2. **Perplexity:** The training perplexity is **20.4**, showing that the model is learning but still somewhat unsure about predicting the next word in many cases.
- 3. Validation Metrics:
 - a. **Validation Accuracy:** Drops to **33.8%**, which suggests potential overfitting or generalization issues.
 - b. **Validation Perplexity: 89.0**, indicating significant struggles when predicting unseen sequences.

Overall: The sequential LSTM model shows potential but falls short in capturing long-range dependencies, leading to higher perplexity. **Transformer models**, with their superior ability to handle such dependencies, could likely achieve a **perplexity under 50** and improve both accuracy and generalization.