Proprietà delle potenze

La potenza di un numero è il prodotto di tanti fattori uguali a quel numero quanti ne indica l'esponente, ovvero:

$$a^3 = a \cdot a \cdot a$$
 $a^5 = a \cdot a \cdot a \cdot a \cdot a$

In a^b a è chiamata **base** mentre c è chiamato **esponente**

Condizione	Teoria	Esempio
$\mathbf{a}^{\mathbf{b}}\cdot\mathbf{a}^{\mathbf{d}}=\mathbf{a}^{(\mathbf{b}+\mathbf{c})}$	Se si moltiplicano due o più numeri con la stessa base (e esponenti uguali o diversi) il risultato è un numero con la stessa base e come esponenti la somma degli esponenti	$2^3 \cdot 2^2 \cdot 2^5 = 2^{(3+2+5)} = 2^{10}$
$\mathbf{a}^{\mathbf{b}}:\mathbf{a^{c}}=\mathbf{a^{(b-c)}}$	Se si dividono due o più numeri con la stessa base (e esponenti uguali o diversi) il risultato è un numero con la stessa base e come esponenti la differenza degli esponenti	$2^6 : 2^2 : 2^1 = 2^{(6-2-1)} = 2^3$ $3^8 : 3^2 : 3^5 = 3^{(8-2-5)} = 2^{10}$
$(\mathbf{a}^{\mathbf{b}})^{\mathbf{c}} = \mathbf{a}^{(\mathbf{b} \cdot \mathbf{c})}$	Una base elevata ad un esponente ed elevata nuovamente ad un esponente è uguale alla base stessa elevata al prodotto dei due esponenti	$(2^3)^4 = 2^{(3\cdot 4)} = 2^{12}$
$\mathbf{a^c \cdot b^c} = (\mathbf{a \cdot b})^\mathbf{c}$	La moltiplicazione tra due basi diverse ma con stesso esponente è uguale al prodotto delle basi elevato all'esponente	$2^3 \cdot 3^3 = (2 \cdot 3)^3 = 6^3$
$\mathbf{a}^{\mathbf{c}}:\mathbf{b}^{\mathbf{c}}=(\mathbf{a}:\mathbf{b})^{\mathbf{c}}$	La divisione tra due basi diverse ma con stesso esponente è uguale al rapporto delle basi elevato all'esponente	$4^3 \cdot 2^3 = (4:2)^3 = 2^3$
Casi particolari:		$a^{0} = 1 (a \neq 0)$ $0^{a} = 0 (a \neq 0)$ $0^{0} = indeterminato$ $a^{-b} = \frac{b}{a}$ $a^{\frac{b}{c}} = \sqrt[c]{a^{b}}$