3/23/2023

Mathematics Project

Analysis on Dropout Rate of Students from School Over the Years

Sakhil Taneja (43) Dushyant Kumar Singh (23) Deepak Pal (21)

Sr. No.	<u>Topic</u>	Pg. No.
1	Modifying and Filtering The Data	04
2	Analysis Based upon Different Class Groups	06
3	Gender Based Analysis in Different States	11
4	Gender Based Analysis over Different Class Groups	14
5	Normality Check for Primary School Dropout rate	18

Dataset Description:

Title: Dropout rate of Students among different Classes of School

State_UT	year	Primary_B	Primary_G	Primary_T	Upper Prin	Upper Pri	Upper Prin	Secondary	Secondary
A & N Islai	2012-13	0.83	0.51	0.68	NR	1.09	1.23	5.57	5.55
A & N Islai	2013-14	1.35	1.06	1.21	NR	1.54	0.51	8.36	5.98
A & N Islai	2014-15	0.47	0.55	0.51	1.44	1.95	1.69	11.47	8.16
Andhra Pr	2012-13	3.3	3.05	3.18	3.21	3.51	3.36	12.21	13.25
Andhra Pr	2013-14	4.31	4.39	4.35	3.46	4.12	3.78	11.95	13.37
Andhra Pr	2014-15	6.57	6.89	6.72	5.09	5.32	5.2	15.81	15.6
Arunachal	2013-14	11.54	10.22	10.89	4.44	6.74	5.59	16.08	12.75
Arunachal	2012-13	15.84	14.44	15.16	5.86	9.06	7.47	13.99	11.77
Arunachal	2014-15	11.51	10.09	10.82	5.31	8.08	6.71	18.33	15.81
Assam	2012-13	7.02	5.46	6.24	7.89	6.55	7.2	25.65	27.79
Assam	2013-14	8.19	6.68	7.44	7.6	6.54	7.05	28.59	32.1
Assam	2014-15	16.07	14.65	15.36	10.45	10.56	10.51	24.64	29.28
Bihar	2012-13	NR	NR	NR	NR	NR	NR	29.11	31.28
Bihar	2013-14	2.38	1.79	2.09	2.77	3.19	2.98	24.67	26.05
Bihar	2014-15	0.35	NR	NR	4.14	4.01	4.08	25.21	26.62
Chandigar	2012-13	NR	NR	NR	NR	0.88	0.1	NR	NR
Chandigar	2013-14	NR	NR	NR	0.72	1.55	1.08	NR	NR
Chandigar	2014-15	NR	NR	NR	0.01	0.96	0.44	NR	NR
Chhattisga	2012-13	4.24	4.05	4.14	6.09	4.73	5.42	14.82	14.89
Chhattisga	2013-14	1.45	1.38	1.42	4.09	3.51	3.8	24.1	22.72

Source: data.gov.in

Links to our data: https://data.gov.in/resource/drop-out-rate-2012-13-2014-15

Brief Into to the Dataset: This is a Data Set of students dropping out of School among different Stated from years 2012-13 to 2014-15,

Classes are divided into four Class groups:

- Primary
- Upper Primary
- Secondary
- HrSecondary(Higher Secondary)

And each group is divided into Three Parts:

- Boys
- Girls
- Total

Importing Our Dataset into RStudio:

```
mydata1<-read.csv("DOR.csv")
```

Here mydata1 is a variable which contains our data

1) Modifying the datatype and Filtering the data based on Year:

#changing the datatype of all the columns of 'mydata1' except the first two.

#Since out data is of type 'Character' in columns with NR(empty) observation so we need to convert it into datatype 'Numeric'

```
mydata1 <- mutate_at(mydata1, vars(Primary_Boys, Primary_Girls, Primary_Total, `Upper_Primary_Boys`, `Upper_Primary_Girls`, `Upper_Primary_Total`, `Secondary_Boys`, `Secondary_Girls`, `Secondary_Total`, HrSecondary_Boys, HrSecondary_Total), as.numeric)
```

#extracting the data of different sessions from 'mydata1'

Here variable year1213 contains our data for year 2012-13, Similarly year1314 & year1415 contains data for year 2013-14 & 2014-15 simultaneously for our dataset mydata1

Data set for year 12-13

State_UT	year	Primary_E	Primary_6	Primary_T	Upper.Pri	Upper.Prii	Upper.Pri	Secondary	Secondary
A & N Islai	2012-13	0.83	0.51	0.68	NR	1.09	1.23	5.57	5.55
Andhra Pr	2012-13	3.3	3.05	3.18	3.21	3.51	3.36	12.21	13.25
Arunachal	2012-13	15.84	14.44	15.16	5.86	9.06	7.47	13.99	11.77
Assam	2012-13	7.02	5.46	6.24	7.89	6.55	7.2	25.65	27.79
Bihar	2012-13	NR	NR	NR	NR	NR	NR	29.11	31.28
Chandigar	2012-13	NR	NR	NR	NR	0.88	0.1	NR	NR
Chhattisga	2012-13	4.24	4.05	4.14	6.09	4.73	5.42	14.82	14.89
Dadra & N	2012-13	NR	0.47	NR	2.59	4.3	3.38	26.34	22
Daman & I	2012-13	NR	NR	NR	NR	NR	NR	10.84	12.25
Delhi	2012-13	NR	NR	NR	NR	0.31	NR	6.26	4.21
Goa	2012-13	NR	0.26	NR	NR	NR	NR	9.49	6.26
Gujarat	2012-13	0.21	1.35	0.74	2.75	8.19	5.2	13.96	12.95
Haryana	2012-13	1.48	1.06	1.29	0.18	0.8	0.46	8.22	9.93
Himachal	2012-13	0.51	0.39	0.45	0.52	0.49	0.51	8.35	8.4
Jammu &	2012-13	6.8	5.75	6.3	5.51	5.52	5.52	16.79	17.96
Jharkhand	2012-13	7.36	7.05	7.21	4.99	5.94	5.47	17.84	19.2
Karnataka	2012-13	3.4	2.51	2.97	4.96	5.15	5.05	40.7	39.07
Kerala	2012-13	NR	NR	NR	NR	NR	NR	12.31	6.38

Data set for year 13-14

State_UT	year	Primary_E	Primary_G	Primary_T	Upper.Pri	Upper.Pri	Upper.Pri	Secondary	Secondary	Secondary
A & N Isla	2013-14	1.35	1.06	1.21	NR	1.54	0.51	8.36	5.98	7.2
Andhra Pr	2013-14	4.31	4.39	4.35	3.46	4.12	3.78	11.95	13.37	12.65
Arunachal	2013-14	11.54	10.22	10.89	4.44	6.74	5.59	16.08	12.75	14.49
Assam	2013-14	8.19	6.68	7.44	7.6	6.54	7.05	28.59	32.1	30.43
Bihar	2013-14	2.38	1.79	2.09	2.77	3.19	2.98	24.67	26.05	25.33
Chandigar	2013-14	NR	NR	NR	0.72	1.55	1.08	NR	NR	NR
Chhattisga	2013-14	1.45	1.38	1.42	4.09	3.51	3.8	24.1	22.72	23.41
Dadra & N	2013-14	1.05	2.17	1.57	3.31	5.09	4.13	30.02	26.83	28.59
Daman &	2013-14	1.06	0.59	0.85	3.42	3.72	3.56	19.46	20.33	19.86
Delhi	2013-14	NR	NR	NR	3.13	2.37	2.78	10.8	6.64	8.9
Goa	2013-14	0.08	0.33	0.2	NR	NR	NR	11.68	7.19	9.58
Gujarat	2013-14	0.5	1.06	0.76	3.52	8.04	5.55	22.85	19.81	21.61
Haryana	2013-14	0.22	0.63	0.41	1.97	3.25	2.55	11.92	13.27	12.51
Himachal	2013-14	0.57	0.34	0.46	0.6	0.98	0.78	9.32	8.83	9.09
Jammu &	2013-14	5.53	5.37	5.46	3.86	4.8	4.3	14.7	16.14	15.36

Data set for year 14-15

State_UT	year	Primary_E	Primary_6	Primary_T	Upper.Pri	Upper.Pri	Upper.Pri	Secondary	Secondary
A & N Isla	2014-15	0.47	0.55	0.51	1.44	1.95	1.69	11.47	8.16
Andhra Pr	2014-15	6.57	6.89	6.72	5.09	5.32	5.2	15.81	15.6
Arunachal	2014-15	11.51	10.09	10.82	5.31	8.08	6.71	18.33	15.81
Assam	2014-15	16.07	14.65	15.36	10.45	10.56	10.51	24.64	29.28
Bihar	2014-15	0.35	NR	NR	4.14	4.01	4.08	25.21	26.62
Chandigar	2014-15	NR	NR	NR	0.01	0.96	0.44	NR	NR
Chhattisga	2014-15	3.08	2.74	2.91	6.47	5.22	5.85	22.62	19.92
Dadra & N	2014-15	1.6	1.31	1.47	3.7	4.4	4.02	18.19	15.08
Daman & I	2014-15	1.8	0.29	1.11	3.14	3.07	3.11	34.45	29.73
Delhi	2014-15	NR	NR	NR	0.95	0.55	0.76	13.55	9.8
Goa	2014-15	0.63	0.84	0.73	NR	0.21	0.07	14.15	7.68
Gujarat	2014-15	0.82	0.98	0.89	4.65	8.54	6.41	26.29	23.24
Haryana	2014-15	5.54	5.69	5.61	5.5	6.18	5.81	16.35	15.3
Himachal	2014-15	0.46	0.83	0.64	0.5	1.27	0.87	6.31	5.8
Jammu &	2014-15	6.98	6.59	6.79	4.98	5.95	5.44	16.97	17.65
Jharkhand	2014-15	5.91	5.03	5.48	9.01	8.96	8.99	23.45	24.56

2) Plotting the data to differentiate b/w dropout rate of States based upon different Class groups:

->plotting the bargraph for the dropout rate of PRIMARY CLASS students

```
compareable_data = rbind(year1213[,5],year1314[,5],year1415[,5] )
colnames(compareable_data) = year1213[,1]
rownames(compareable_data) = c("2012-13", "2013-14","2014-15")
barplot(compareable_data, beside=TRUE, legend=TRUE, cex.names = 0.5, las = 3)
```

->plotting the bargraph for the dropout rate of UPPER PRIMARY CLASS students

```
compareable_data2 = rbind(year1213[,8],year1314[,8],year1415[,8] )
colnames(compareable_data2) = year1213[,1]
rownames(compareable_data2) = c("2012-13", "2013-14","2014-15")
barplot(compareable_data2, beside=TRUE, legend=TRUE, cex.names = 0.5, las = 3)
```

->plotting the bargraph for the dropout rate of SECONDARY CLASS students

compareable_data3 = rbind(year1213[,11],year1314[,11],year1415[,11])
colnames(compareable_data3) = year1213[,1]
rownames(compareable_data3) = c("2012-13", "2013-14","2014-15")
barplot(compareable_data3, beside=TRUE, legend=TRUE, cex.names = 0.5, las = 3)

->plotting the bargraph for the dropout rate of HIGHER SCEONDARY CLASS students

compareable_data4 = rbind(year1213[,14],year1314[,14],year1415[,14]) colnames(compareable_data4) = year1213[,1] rownames(compareable_data4) = c("2012-13", "2013-14","2014-15") barplot(compareable_data4, beside=TRUE, legend=TRUE, cex.names = 0.5, las = 3)

Secondary Total

Hr Secondary Total

Now that we have data of Comparison of Drop Out rates in States we can observe that:

- For Primary School: Mizoram (2012-13) has Highest Dropout rate
- For Upper Primary School: Mizoram (2012-13) has the Highest Dropout rate
- For Secondary School: Odisha(2012-13) has the Highest Dropout rate with Odisha(2013-14) being 2nd close
- For Higher Secondary School: Daman and Diu (2014-15) has the Highest Dropout Rate

Since Students dropping School in Primary School is a really big Concern Let us focus at that for now:

3)Plotting the data to Differentiate b/w dropout rates of Boys and Girls in different States:

```
#Boys vs Girls 2012-13

compareable_data5 = rbind(year1213[,3],year1213[,4])

colnames(compareable_data5) = year1213[,1]

rownames(compareable_data5) = c("Primary_Boys", "Primary_Girls")

barplot(compareable_data5, beside=TRUE, legend=TRUE, cex.names = 0.5, las = 3)
```


- All India: Boys Dropout rate is slightly greater than girls
- Gujrat, Lakshadweep, Madhya Pradesh, Maharashtra, Puducherry, Rajasthan, Tamil
 Nadu, Uttarakhand are states with Girls Dropout rate Higher than Boys Dropout Rate

#Boys vs Girls 2013-14

compareable_data6 = rbind(year1314[,3],year1314[,4])

colnames(compareable_data6) = year1213[,1]

rownames(compareable_data6) = c("Primary_Boys", "Primary_Girls")

barplot(compareable_data6, beside=TRUE, legend=TRUE, cex.names = 0.5, las = 3)

- All India: Boys Dropout rate is greater than girls
- Dadar & Nagar Haveli, Goa, Gujrat, Haryana, Madhya Pradesh, Maharashtra, Manipur, Mizoram, Nagaland, Odisha, Rajasthan are states with Girls Dropout rate Higher than Boys Dropout Rate

#Boys vs Girls 2014-15

compareable_data7 = rbind(year1415[,3],year1415[,4])

colnames(compareable_data7) = year1415[,1]

rownames(compareable_data7) = c("Primary_Boys", "Primary_Girls")

barplot(compareable_data7, beside=TRUE, legend=TRUE, cex.names = 0.5, las = 3)

- All India: Boys Dropout rate is greater than girls
- A&N Islands, Goa, Gujrat, Haryana, Himachal Pradesh, Madhya Pradesh, Manipur, Puducherry, Punjab, Rajashthan are states with Girls Dropout rate Higher than Boys Dropout Rate

4)Comparison b/w All India Boys and Girls Dropout Rate as they get promoted in classes

```
->For Primary School of Year 2012-13
#Choosing the columns which are to be plotted
boysIndex = c(3, 6, 9)
girlsIndex = boysIndex+1
#storing the data of choosed
boysclassData = year1213[37,boysIndex]
girlsclassData = year1213[37,girlsIndex]
#defining labels to be shown on both the axes
x labels <- c("Primary", "Upper Primary", "Secondary")
y labels <- 0:15
#plotting the line graph with the 'girlclassdata' first
plot(1:3, girlsclassData, lwd=2, col ="red", type="o", xaxt = "n", yaxt="n", ylim=c(0,15), xlab =
"Class Groups", ylab="Students Dropped (%)", main="Graph to show the comparison of boys
and girls dropout rates of different groups")
axis(side = 2, at= y_labels, labels = y_labels, las=2)
axis(side = 1, at=1:3, label = x_labels)
#plotting the second line of 'boysclassdata'
lines(seq(1,3), boysclassData, col="green", lwd="2", type="o")
#defining the legends
legend("bottomright", title = "2012-13 Data", legend = c("Girls", "Boys"), fill = c("red",
"green"), cex = 0.7)
```

Graph to show the comparison of boys and girls dropout rates of different groups

Observations:

- Drop rate Increases Significantly in Secondary School
- Girls have Significantly higher drop rate than Boys in Upper_Primary School

-> For Primary School of Year 2013-14

```
#Choosing the columns which are to be plotted
boysIndex = c(3, 6, 9, 12)
girlsIndex = boysIndex+1
#storing the data of choosed
boysclassData = year1314[37,boysIndex]
girlsclassData = year1314[37,girlsIndex]
#defining labels to be shown on both the axes
x_labels <- c("Primary", "Upper_Primary", "Secondary", "Higher_Secondary")
y labels <- 0:18
#plotting the line graph with the 'girlclassdata' first
plot(1:4, girlsclassData, lwd=2, col ="red", type="o", xaxt = "n", yaxt="n", ylim=c(0,18), xlab =
"Class Groups", ylab="Students Dropped (%)", main="Graph to show the comparison of boys
and girls dropout rates of different groups")
axis(side = 2, at= y labels, labels = y labels, las=2)
axis(side = 1, at=1:4, label = x labels)
#plotting the second line of 'boysclassdata'
lines(seq(1,4), boysclassData, col="green", lwd="2", type="o")
#defining the legends
legend("topright", title = "2013-14 Data", legend = c("Girls", "Boys"), fill = c("red", "green"),
cex = 0.7)
```

Graph to show the comparison of boys and girls dropout rates of different groups

Observations:

"green"), cex = 0.7)

- Drop rate Increases Significantly in Secondary School and Decreases
 Significantly in Higher_Secondary School
- Girls have Significantly higher drop rate than Boys in Upper_Primary School

->For Primary School of Year 2014-15

```
#Choosing the columns which are to be plotted
boysIndex = c(3, 6, 9)
girlsIndex = boysIndex+1
#storing the data of choosed
boysclassData = year1415[37,boysIndex]
girlsclassData = year1415[37,girlsIndex]
#defining labels to be shown on both the axes
x_labels <- c("Primary", "Upper_Primary", "Secondary")</pre>
y labels <- 0:18
#plotting the line graph with the 'girlclassdata' first
plot(1:3, girlsclassData, lwd=2, col ="red", type="o", xaxt = "n", yaxt="n", ylim=c(0,18), xlab =
"Class Groups", ylab="Students Dropped (%)", main="Graph to show the comparison of boys
and girls dropout rates of different groups")
axis(side = 2, at= y_labels, labels = y_labels, las=2)
axis(side = 1, at=1:3, label = x labels)
#plotting the second line of 'boysclassdata'
lines(seq(1,3), boysclassData, col="green", lwd="2", type="o")
#defining the legends
legend("bottomright", title = "2014-15 Data", legend = c("Girls", "Boys"), fill = c("red",
```

Graph to show the comparison of boys and girls dropout rates of different groups

- Drop rate Increases Significantly in Secondary School and Decreases Significantly in Higher_Secondary School
- Girls have Significantly higher drop rate than Boys in Upper_Primary School, while the difference has decreased compared to previous years

5) Normality Check for Primary School Dropout rate

For Normality Check we will use Histogram and density plot

->For Primary School of Year 2012-13

#Creating a subset for the Primary_Total Data for year 2012-13

Primary_year1213<- subset(year1213,select = c(State_UT, Primary_Total))

#removing the row of All India data

Primary_year1213 <- Primary_year1213[-37,]

#removing the NA(s)

Primary_year1213 <- na.omit(Primary_year1213)</pre>

#storing the values of Primary_Total data in variable 'values

values = Primary_year1213[,2]

#Plotting a histogram using the data in variable 'values'

hist(values, freq = FALSE, main="Primary School data of year 2012-13")

#creating a curve using density function on 'values'

lines(density(values),lwd=2)

#Plotting the mean as a line parallel to y axis

abline(v = mean(values), col = 'blue', lwd = 2, lty = 2)

Primary School data of year 2012-13

Observations:

- Mizoram is only state with dropout rate> 20%
- Since this curve is not Bell Shaped Symmetrically distributed it is not Normal Distributed

->For Primary School of Year 2013-14

#Creating a subset for the Primary_Total Data for year 2013-14

Primary_year1314<- subset(year1314,select = c(State_UT, Primary_Total))</pre>

#removing the row of All India data

Primary_year1314 <- Primary_year1314[-37,]</pre>

#removing the NA(s)

Primary_year1314 <- na.omit(Primary_year1314)</pre>

#storing the values of Primary_Total data in variable 'values

values = Primary_year1314[,2]

hist(values, freq = FALSE, main="Primary School data of year 2013-14")

lines(density(values),lwd=2)

abline(v = mean(values), col = 'blue', lwd = 2, lty = 2)

Primary School data of year 2013-14

- Since this curve is not Bell Shaped Symmetrically distributed it is not Normal Distributed
- Nagaland and Manipur are the only states with dropout rate >15%

->For Primary School of Year 2014-15

#Creating a subset for the Primary_Total Data for year 2014-15

Primary_year1415<- subset(year1415,select = c(State_UT, Primary_Total))</pre>

#removing the row of All India data

Primary_year1415 <- Primary_year1415[-37,]

#removing the NA(s)

Primary_year1415 <- na.omit(Primary_year1415)</pre>

#storing the values of Primary_Total data in variable 'values

values = Primary_year1415[,2]

hist(values, freg = FALSE, main="Primary School data of year 2014-15")

lines(density(values),lwd=2)

abline(v = mean(values), col = 'blue', lwd = 2, lty = 2)

Primary School data of year 2014-15

- Since this curve is not Bell Shaped Symmetrically distributed it is not Normal Distributed
- Assam has the highest dropout rate >15%
- For all 3 years Mean is around 5 and decreasing every year