

# Realtek AmebaZII+ Datasheet

This document provides features and information on AmebaZII+ series microcontroller.

Rev. 1.1

Sept., 2024



Realtek Semiconductor Corp.

No. 2, Innovation Road II, Hsinchu Science Park, Hsinchu 300, Taiwan

Tel.: +886-3-578-0211. Fax: +886-3-577-6047

www.realtek.com

#### COPYRIGHT

© 2024 Realtek Semiconductor Corp. All rights reserved. No part of this document may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language in any form or by any means without the written permission of Realtek Semiconductor Corp.

#### **DISCLAIMER**

Please Read Carefully:

Realtek Semiconductor Corp., (Realtek) reserves the right to make corrections, enhancements, improvements and other changes to its products and services. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

Reproduction of significant portions in Realtek data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Realtek is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions.

Buyers and others who are developing systems that incorporate Realtek products (collectively, "Customers") understand and agree that Customers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Customers have full and exclusive responsibility to assure the safety of Customers' applications and compliance of their applications (and of all Realtek products used in or for Customers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Customer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Customer agrees that prior to using or distributing any applications that include Realtek products, Customer will thoroughly test such applications and the functionality of such Realtek products as used in such applications.

Realtek's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation kits, (collectively, "Resources") are intended to assist designers who are developing applications that incorporate Realtek products; by downloading, accessing or using Realtek's Resources in any way, Customer (individually or, if Customer is acting on behalf of a company, Customer's company) agrees to use any particular Realtek Resources solely for this purpose and subject to the terms of this Notice.

Realtek's provision of Realtek Resources does not expand or otherwise alter Realtek's applicable published warranties or warranty disclaimers for Realtek's products, and no additional obligations or liabilities arise from Realtek providing such Realtek Resources. Realtek reserves the right to make corrections, enhancements, improvements and other changes to its Realtek Resources. Realtek has not conducted any testing other than that specifically described in the published documentation for a particular Realtek Resource.

Customer is authorized to use, copy and modify any individual Realtek Resource only in connection with the development of applications that include the Realtek product(s) identified in such Realtek Resource. No other license, express or implied, by estoppel or otherwise to any other Realtek intellectual property right, and no license to any technology or intellectual property right of Realtek or any third party is granted herein, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which Realtek products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of Realtek Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from Realtek under the patents or other Realtek's intellectual property.

Realtek's Resources are provided "as is" and with all faults. Realtek disclaims all other warranties or representations, express or implied, regarding resources or use thereof, including but not limited to accuracy or completeness, title, any epidemic failure warranty and any implied warranties of merchantability, fitness for a particular purpose, and non-infringement of any third party intellectual property rights.

Realtek shall not be liable for and shall not defend or indemnify Customer against any claim, including but not limited to any infringement claim that related to or is based on any combination of products even if described in Realtek Resources or otherwise. In no event shall Realtek be liable for any actual, direct, special, collateral, indirect, punitive, incidental, consequential or exemplary damages in connection with or arising out of Realtek's Resources or use thereof, and regardless of whether Realtek has been advised of the possibility of such damages. Realtek is not responsible for any failure to meet such industry standard requirements.

Where Realtek specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Customers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any Realtek products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death. Such equipment includes, without limitation, all medical devices identified by the U.S. FDA as Class III devices and equivalent classifications outside the U.S.

Customers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Customers' own risk. Customers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Customer will fully indemnify Realtek and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's

non-compliance with the terms and provisions of this Notice.

#### **TRADEMARKS**

Realtek is a trademark of Realtek Semiconductor Corporation. Other names mentioned in this document are trademarks/registered trademarks of their respective owners.

#### **USING THIS DOCUMENT**

This document is intended for the engineer's reference and provides detailed development information.

Though every effort has been made to ensure that this document is current and accurate, more information may have become available subsequent to the production of this document.

# **Contents**

| Cont  | ntents                                  | 4  |
|-------|-----------------------------------------|----|
| Orde  | dering Information                      | 6  |
| 1     | Product Overview                        | 7  |
| 1.1   | General Description                     |    |
| 1.2   | Features                                | 7  |
| 1.3   | Block Diagram                           | 7  |
| 1.4   | Power Architecture                      | 8  |
| 1.4.1 |                                         |    |
| 1.4.2 | -0                                      |    |
| 1.4.3 |                                         |    |
| 1.4.4 | · · ·                                   |    |
| 1.4.5 | <i>,</i>                                |    |
| 1.4.6 | ·                                       |    |
|       | Chip Pinout Information                 |    |
|       | ·                                       |    |
| 2.1   | •                                       |    |
| 2.2   |                                         |    |
| 2.2.1 | ·                                       |    |
| 2.2.2 |                                         |    |
| 2.2.3 |                                         |    |
| 2.2.4 |                                         |    |
| 2.2.5 | ·                                       |    |
| 2.2.6 | <i>G</i> ,                              |    |
| 3     | Memory Organization                     |    |
| 3.1   |                                         |    |
| 3.1.1 |                                         |    |
| 3.1.2 |                                         |    |
| 3.2   | /                                       |    |
| 3.2.1 |                                         |    |
| 3.2.2 | ,                                       |    |
| 3.2.3 | - · · · · · · · · · · · · · · · · · · · |    |
| 3.3   | SPI NOR Flash                           | 18 |
| 4     | Peripheral Interfaces                   | 19 |
| 4.1   | General Purpose DMA Controller          | 19 |
| 4.1.1 | .1 Features                             | 19 |
| 4.1.2 | .2 Block Diagram                        | 19 |
| 1.2   | General Purpose Timer (GTimer)          | 19 |
| 4.2.1 | .1 Features                             | 19 |
| 1.2.2 | .2 Block Diagram                        | 20 |
| 4.3   | GPIO Functions                          | 20 |
| 4.3.1 | .1 Features                             | 20 |
| 1.4   | UART Interface                          | 20 |
| 4.4.1 | .1 Features                             | 21 |
| 1.4.2 | .2 UART Specification                   | 21 |
| 4.5   | SDIO Device Mode Interface              | 22 |
| 4.5.1 | .1 Features                             | 22 |
| 1.5.2 |                                         |    |
| 1.6   |                                         |    |
| 4.6.1 |                                         |    |
| 1.6.2 |                                         |    |
| 4.7   |                                         |    |
| 4.7.1 |                                         |    |
| 4.7.2 |                                         |    |
| 4.8   |                                         |    |
|       |                                         |    |

| 4.8.1  | Features                                        | 25 |
|--------|-------------------------------------------------|----|
| 4.8.2  | Block Diagram                                   | 26 |
| 4.9    | Security Engine                                 | 26 |
| 5 RI   | RF Characteristics                              | 28 |
| 5.1    | RF Block Diagram                                | 28 |
| 5.2    | Wi-Fi Radio Characteristics                     | 28 |
| 5.2.1  | Wi-Fi 2.4GHz Band RF Receiver Specifications    | 28 |
| 5.2.2  | Wi-Fi 2.4GHz Band RF Transmitter Specifications | 29 |
| 5.3    | Bluetooth Radio Characteristics                 | 29 |
| 5.3.1  | BT RF Transmitter Specifications                | 29 |
| 5.3.2  | BT RF Receiver Specifications                   | 30 |
| 6 EI   | lectrical Characteristics                       | 31 |
| 6.1    | Temperature Limit Ratings                       | 31 |
| 6.2    | Power Supply DC Characteristics                 | 31 |
| 6.3    | Typical Digital I/O Pin DC Characteristics      | 31 |
| 6.4    | ESD Characteristics                             | 32 |
| 6.5    | Power Sequence                                  | 32 |
| 6.5.1  | Power-on or Resuming from Deep-Sleep Sequence   | 32 |
| 6.5.2  | Resuming from Standby Sequence                  | 33 |
| 6.5.3  | Shutdown Sequence                               | 33 |
| 6.5.4  | Power Down Sequence                             | 34 |
| 7 Pa   | Package Information                             | 35 |
| 7.1    | Package Outline                                 | 35 |
| 7.2    | Thermal Characteristics                         |    |
| Revisi | ion History                                     | 37 |

# **Ordering Information**



| _                |         |       |       |                   |        |
|------------------|---------|-------|-------|-------------------|--------|
| Part number      | Package | Flash | PSRAM | Operating Voltage | Status |
| RTL8720CF-VB1-CG | QFN40   | 2MB   | =     | 3.3V or 5V        |        |
| RTL8720CF-VB2-CG | QFN40   | 4MB   | -     | 3.3V or 5V        |        |

3.3V or 5V

RTL8720CF-VU2-CG

QFN40

4MB

# 1 Product Overview

# 1.1 General Description

The Realtek AmebaZII+ series is a highly integrated single chip with a low-power IEEE 802.11n Wireless LAN (WLAN) compatible network controller. It combines a Real-M300 (KM4) CPU that is based on ARMv8-M architecture, and integrates a WLAN MAC, a 1T1R capable WLAN baseband, an RF circuit, and Bluetooth Low Energy (BLE) in a single chip. It also provides configurable GPIOs that can be configured as digital peripherals for various applications and control usage.

The AmebaZII+ series integrates internal memory for full Wi-Fi protocol functions. The embedded memory configuration also enables simple application development.

#### 1.2 Features

| Item                       | Feature                                                                                        |
|----------------------------|------------------------------------------------------------------------------------------------|
| MCU                        | Real-M300 (KM4) clock frequency up to 100MHz                                                   |
|                            | Cache 32KB/D-Cache 16KB                                                                        |
|                            | Supports DMA                                                                                   |
|                            | eXecute In Place (XIP) on Flash                                                                |
| Internal Memory            | Supports 384KB ROM                                                                             |
|                            | Supports 384KB RAM                                                                             |
|                            | Supports external flash interface                                                              |
|                            | Supports MCM embedded Flash                                                                    |
| Secure                     | Supports secure boot                                                                           |
|                            | Crypto engine: MD5, SHA-1, SHA2-224, SHA2-256, HMAC, AES                                       |
| Wi-Fi                      | ● 802.11 b/g/n compatible 1x1, 2.4GHz                                                          |
|                            | 802.11e QoS Enhancement (WMM)                                                                  |
|                            | • Wi-Fi WEP, WPA, WPA2, WPA3, WPS. Open, shared key, and pair-wise key authentication services |
|                            | Supports low power Tx/Rx for short-range application                                           |
|                            | Supports antenna diversity                                                                     |
|                            | Frame aggregation for increased MAC efficiency (A-MSDU, A-MPDU)                                |
|                            | Low latency immediate High-Throughput Block Acknowledgement (HT-BA)                            |
|                            | Long NAV for media reservation with CF-End for NAV release                                     |
|                            | Integrated balun, PA/LNA                                                                       |
| Bluetooth Low Energy (BLE) | ● BLE 4.2                                                                                      |
|                            | Supports LE secure connections                                                                 |
|                            | Supports LE scatternet                                                                         |
|                            | Supports 1 Master/1 Slave                                                                      |
| Peripheral Interfaces      | 3 x UART interface, baud rate up to 4MHz and all of them can be configured as LOGUART          |
|                            | • 1 x I2C, max. clock 400Kbps                                                                  |
|                            | • 1 x SDIO 2.0 Device, up to 50MHz                                                             |
|                            | 1 x SPI, Master clock up to 25Mbps/Slave clock up to 5Mbps                                     |
|                            | 8 x PWM with configurable duration and duty cycle from 0 ~ 100%                                |
|                            | 16 x programmable GPIOs                                                                        |
|                            | 1 GDMA with 2 channels                                                                         |
| Clock Source               | 40MHz crystal oscillator                                                                       |
| Package Type               | QFN40, 5mm x 5mm x 0.85mm                                                                      |

# 1.3 Block Diagram

The AmebaZII+ diagram provides a general application scenario. External devices can be connected with various peripheral interfaces. The PMU and related blocks for low power application are also shown in Figure 1-1.



Figure 1-1 Block diagram

# 1.4 Power Architecture

Figure 1-2 illustrates the Power Management Control Unit (PMU) architecture of AmebaZII+. The PMU provides the following functions:

- SWR 1.1V output from 3.3V (optional for LDO mode)
- LDO 3.3V output from 5V
- LDO 2.5V output for writing E-fuse from 3.3V
- Wakeup system detector to resume from low power state

\*\*\*REALTEK Product Overview

# 1.4.1 Regulator Architecture



Figure 1-2 Regulator architecture

#### 1.4.2 Shutdown Mode

CHIP\_EN de-asserts to shut down the whole chip, without external power cut components required. CHIP\_EN pulled high triggers the system into active mode.



Figure 1-3 Power diagram of shutdown mode

# 1.4.3 Deep-Sleep Mode

CHIP\_EN remains high. Users can invoke the deep-sleep API to enter deep-sleep mode. Specified interrupts can wake up the system.

The wake flow is:

- (1) Wake up ISR is high
- (2) PMC
- (3) Enable CPU
- (4) Reboot flow



Figure 1-4 Power diagram of deep-sleep mode

Table 1-1 Wakeup source of deep-sleep mode

| Wakeup source       | Description                                                                                                                                                                                                                                                                                                                              |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Low Precision Timer | -                                                                                                                                                                                                                                                                                                                                        |
| Wake pins           | GPIOA_0, GPIOA_1, GPIOA_2, GPIOA_3, GPIOA_4, GPIOA_7 (depending on package), GPIOA_8 (depending on package), GPIOA_9 (depending on package), GPIOA_10 (depending on package), GPIOA_11 (depending on package), GPIOA_12 (depending on package), GPIOA_13, GPIOA_14, GPIOA_15, GPIOA_16, GPIOA_17, GPIOA_18, GPIOA_19, GPIOA_20, GPIOA_23 |

# 1.4.4 Standby Mode

CHIP\_EN remains high. Users can invoke the standby API to enter standby mode. Specified interrupts can wake up the system.

The wake flow is:

- (1) Wake up ISR is high
- (2) PMC
- (3) Enable CPU
- (4) Fast reboot flow



Figure 1-5 Power diagram of standby mode

Table 1-2 Wakeup source of standby mode

| Wakeup source       | Description                                                                                                                                                                                                                                                                                                                              |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Low Precision Timer | -                                                                                                                                                                                                                                                                                                                                        |
| Wake pins           | GPIOA_0, GPIOA_1, GPIOA_2, GPIOA_3, GPIOA_4, GPIOA_7 (depending on package), GPIOA_8 (depending on package), GPIOA_9 (depending on package), GPIOA_10 (depending on package), GPIOA_11 (depending on package), GPIOA_12 (depending on package), GPIOA_13, GPIOA_14, GPIOA_15, GPIOA_16, GPIOA_17, GPIOA_18, GPIOA_19, GPIOA_20, GPIOA_23 |
| UARTO               | -                                                                                                                                                                                                                                                                                                                                        |
| WLAN                | -                                                                                                                                                                                                                                                                                                                                        |
| PWM                 | -                                                                                                                                                                                                                                                                                                                                        |
| HS Timer            | -                                                                                                                                                                                                                                                                                                                                        |

# 1.4.5 Sleep Mode

CHIP\_EN remains high. Users can invoke sleep API to enter sleep mode. Specified interrupts can wake up the system.

The wake flow is:

- (1) Wake up ISR is high
- (2) PMC
- (3) Enable CPU
- (4) Execution of instructions continues



Figure 1-6 Power diagram of sleep mode

Table 1-3 Wakeup source of sleep mode

| Wakeup source       | Description                                                                                                                                                                                                                                                                                                                              |  |  |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Low Precision Timer | -                                                                                                                                                                                                                                                                                                                                        |  |  |
| Wake pins           | GPIOA_0, GPIOA_1, GPIOA_2, GPIOA_3, GPIOA_4, GPIOA_7 (depending on package), GPIOA_8 (depending on package), GPIOA_9 (depending on package), GPIOA_10 (depending on package), GPIOA_11 (depending on package), GPIOA_12 (depending on package), GPIOA_13, GPIOA_14, GPIOA_15, GPIOA_16, GPIOA_17, GPIOA_18, GPIOA_19, GPIOA_20, GPIOA_23 |  |  |
| UART0               | -                                                                                                                                                                                                                                                                                                                                        |  |  |
| WLAN                | -                                                                                                                                                                                                                                                                                                                                        |  |  |
| PWM                 | -                                                                                                                                                                                                                                                                                                                                        |  |  |
| HS Timer            | -                                                                                                                                                                                                                                                                                                                                        |  |  |
| SDIO Device         | -                                                                                                                                                                                                                                                                                                                                        |  |  |

## 1.4.6 Snooze Mode

CHIP\_EN remains high. Specified interrupts can wake up the system.

The wake flow is:

- (1) WLAN power on request
- (2) Receive particular beacon
- (3) Wake up ISR is high
- (4) PMC
- (5) Enable CPU
- (6) Execution of instructions continues or fast reboot occurs



Figure 1-7 Power diagram of snooze mode

**¾ REALTEK** AmebaZII+

# 2 Chip Pinout Information

# 2.1 Pin Assignments

The RTL8720CF series is a 40-pin, 5mm x 5mm quad flat no-leads package with 0.4mm pitch.

Green package is indicated by the letter 'G' in Figure 2-1.



Figure 2-1 RTL8720CF series pinout

## 2.2 Pin Definitions

The abbreviations of pin types are listed below:

- I/O: Input/output pin
- I: Input only pin
- O: Output only pin
- PI: Power input pin
- PO: Power output pin
- RST: Reset pin

## 2.2.1 Power-on Trap Pins

| Symbol                  | Туре | Pin number | Description                   |
|-------------------------|------|------------|-------------------------------|
| GPIOA_0 (TEST_MODE_SEL) | 1    | 15         | 1: Enter into test/debug mode |
|                         |      |            | 0: Normal operation mode      |

|                         |   |    | (GPIOA_0, GPIOA_13) = (1, 1): Enter into download image mode |
|-------------------------|---|----|--------------------------------------------------------------|
| GPIOA_1 (Autoload_Fail) | 1 | 16 | 1: eFuse settings are not loaded                             |
|                         |   |    | 0: eFuse settings are loaded                                 |
| GPIOA_23 (SPS_LDO_SEL)  | 1 | 3  | 1: LDO                                                       |
|                         |   |    | 0: SWR                                                       |

#### **2.2.2** RF Pins

| Symbol | Туре | Pin number | Description    |
|--------|------|------------|----------------|
| RF_IO  | 1/0  | 11         | WLAN RF signal |

#### 2.2.3 Power Pins

| Symbol     | Туре | Pin number | Description                                                               |
|------------|------|------------|---------------------------------------------------------------------------|
| VD33_SDIO  | PI   | 2          | 3.3V power for SDIO.                                                      |
| VA33_XTAL  | PI   | 4          | 3.3V power for XTAL.                                                      |
| VA33_SYN   | PI   | 7          | 3.3V power for Synthesizer.                                               |
| VA33_RF    | PI   | 9          | 3.3V power for RF.                                                        |
| VA33_PA    | PI   | 10         | 3.3V power for RF PA.                                                     |
| VA11_RF    | PI   | 12         | 1.15V power for RF.                                                       |
| VA33_TR    | PI   | 13         | 3.3V power for RF.                                                        |
| VD11_CORE  | PI   | 17         | 1.15V power for digital core.                                             |
| VD33_FLASH | PI   | 27         | 3.3V power for IO.                                                        |
| VD1833_LPC | PI   | 28         | 3.3V power for embedded MCM Flash.                                        |
| VD11_CORE  | PI   | 29         | 1.15V power for digital core.                                             |
| VDD_IN     | PI   | 30         | 5V/3.3V power input.                                                      |
| VD33_OUT   | PO   | 31         | <ul> <li>3.3V output from LDO (when PIN30 VDD_IN is 5V input).</li> </ul> |
|            | PI   |            | • 3.3V power (when PIN30 VDD_IN is 3.3V input).                           |
| SW_LX      | PO   | 32         | 1.15V output power from SWR/LDO.                                          |
| VD11_CORE  | PI   | 35         | 1.15V power for digital core.                                             |

# 2.2.4 Clock Pins

| Symbol | Туре | Pin number | Description                              |
|--------|------|------------|------------------------------------------|
| XI     | 1    | 6          | Input of 40MHz Crystal Clock Reference.  |
| XO     | 0    | 5          | Output of 40MHz Crystal Clock Reference. |

# 2.2.5 Chip Enable Pin

| Symbol  | Туре | Pin number | Description      |
|---------|------|------------|------------------|
| CHIP_EN | 1    | 14         | 1: Enable chip   |
|         |      |            | 0: Shutdown chip |

# 2.2.6 Digital I/O Pins

The AmebaZII+ supports a maximum of 20 GPIO pins and all of them are configurable. Refer to the following table for detailed information and pinmux rules.

| Symbol   | Туре | Pin number | Description |
|----------|------|------------|-------------|
| GPIOA_20 | 1/0  | 1          | GPIO pins   |
| GPIOA_23 | 1/0  | 3          |             |
| GPIOA_0  | 1/0  | 15         |             |
| GPIOA_1  | 1/0  | 16         |             |
| GPIOA_2  | 1/0  | 18         |             |
| GPIOA_3  | 1/0  | 19         |             |

| GPIOA 4  | I/O | 20 |
|----------|-----|----|
| GPIOA_7  | 1/0 | 21 |
| GPIOA_8  | 1/0 | 22 |
| GPIOA_9  | 1/0 | 23 |
| GPIOA_10 | 1/0 | 24 |
| GPIOA_11 | 1/0 | 25 |
| GPIOA_12 | 1/0 | 26 |
| GPIOA_13 | 1/0 | 33 |
| GPIOA_14 | 1/0 | 34 |
| GPIOA_15 | 1/0 | 36 |
| GPIOA_16 | 1/0 | 37 |
| GPIOA_17 | 1/0 | 38 |
| GPIOA_18 | 1/0 | 39 |
| GPIOA_19 | 1/0 | 40 |

#### **1** NOTE

Default states of all pins are High-impedance; unused pins should be kept floating.

The functions of each GPIO pin are listed in Table 2-1.

Table 2-1 GPIO pin function

| Pin Name | Flash/SDIO    | JTAG      | UART      | SPI/WL_LED | I2C     | PWM    |
|----------|---------------|-----------|-----------|------------|---------|--------|
| GPIOA_0  | -             | JTAG_CLK  | UART1_IN  | -          | -       | PWM[0] |
| GPIOA_1  | -             | JTAG_TMS  | UART1_OUT | BT_LED     | -       | PWM[1] |
| GPIOA_2  | -             | JTAG_TDO  | UART1_IN  | SPI_CSn    | I2C_SCL | PWM[2] |
| GPIOA_3  | -             | JTAG_TDI  | UART1_OUT | SPI_SCL    | I2C_SDA | PWM[3] |
| GPIOA_4  | -             | JTAG_TRST | UART1_CTS | SPI_MOSI   | -       | PWM[4] |
| GPIOA_7  | SPI_M_CS      | -         | -         | SPI_CSn    | -       | -      |
| GPIOA_8  | SPI_M_CLK     | -         | -         | SPI_SCL    | -       | -      |
| GPIOA_9  | SPI_M_DATA[2] | -         | UARTO_RTS | SPI_MOSI   | -       | -      |
| GPIOA_10 | SPI_M_DATA[1] | -         | UARTO_CTS | SPI_MISO   | -       | -      |
| GPIOA_11 | SPI_M_DATA[0] | -         | UARTO_OUT | -          | I2C_SCL | PWM[0] |
| GPIOA_12 | SPI_M_DATA[3] | -         | UARTO_IN  | -          | I2C_SDA | PWM[1] |
| GPIOA_13 | -             | -         | UARTO_IN  | -          | -       | PWM[7] |
| GPIOA_14 | SDIO_INT      | -         | UARTO_OUT | -          | -       | PWM[2] |
| GPIOA_15 | SD_D[2]       | -         | UART2_IN  | SPI_CSn    | I2C_SCL | PWM[3] |
| GPIOA_16 | SD_D[3]       | -         | UART2_OUT | SPI_SCL    | I2C_SDA | PWM[4] |
| GPIOA_17 | SD_CMD        | -         | -         | -          | -       | PWM[5] |
| GPIOA_18 | SD_CLK        | -         | -         | -          | -       | PWM[6] |
| GPIOA_19 | SD_D[0]       | -         | UART2_CTS | SPI_MOSI   | I2C_SCL | PWM[7] |
| GPIOA_20 | SD_D[1]       | -         | UART2_RTS | SPI_MISO   | I2C_SDA | PWM[0] |
| GPIOA_23 | -             | -         | -         | LED_0      | -       | PWM[7] |

#### **NOTE**

GPIOA\_13/GPIOA\_14 can operate at 3.3V or 5V in case selected as UART function when VDD\_IN is 5V input; other UART pins operate at 3.3V only.

# 3 Memory Organization

# 3.1 Memory Architecture

The AmebaZII+ integrates ROM, internal SRAM, and extended NOR Flash to provide applications with a variety of memory requirements.

#### 3.1.1 Internal ROM

The internal integration of 384KB ROM provides high access speed and low memory leak. The ROM memory clock speed is up to 100MHz.

The ROM lib provides the following functions:

- Boot Code and MCU initialization
- Peripheral Drivers & API
- Non-flash booting functions and drivers
- Security function libs

#### 3.1.2 Internal SRAM

The maximum internal integration of 384KB SRAM provides instruction, data, and buffer usage. The maximum clock speed is up to 100MHz.

# 3.2 Memory Mapping

The memory map includes all available memory and register offsets in AmebaZII+.

## 3.2.1 Programming Space

The programming space designed for software instruction storage is listed below.

| Start address | Size  | Secure       | Cache support? | IP function            |
|---------------|-------|--------------|----------------|------------------------|
| 0x0000_0000   | 384KB | Configurable | -              | ITCM ROM               |
| 0x1000_0000   | 384KB | Configurable | -              | TCM SRAM               |
| 0x2000 0000   | 32KB  | Non-Secure   | Υ              | Additional SRAM for BT |

## 3.2.2 I/O Space

The address map of each peripheral hardware is listed below.

| Start address | Size  | Secure     | Cache support? | IP function            |
|---------------|-------|------------|----------------|------------------------|
| 0x2000_0000   | 32KB  | Non-secure | Υ              | Additional SRAM for BT |
| 0x4000_0000   | 2KB   | Non-secure | -              | SYS Control (SYSON)    |
| 0x4000_1000   | 2KB   | Non-secure | -              | GPIO                   |
| 0x4000_1C00   | 1KB   | Non-secure | -              | PWM                    |
| 0x4000_2000   | 4KB   | Non-secure | -              | HS Timer               |
| 0x4000_3000   | 1KB   | Non-secure | -              | UARTO                  |
| 0x4000_3800   | 2KB   | Non-secure | -              | LP Timer               |
| 0x4002_0000   | 4KB   | Non-secure | -              | SPI Flash Controller   |
| 0x4004_0000   | 1KB   | Non-secure | -              | UART1                  |
| 0x4004_0400   | 1KB   | Non-secure | -              | UART2                  |
| 0x4004_2000   | 1KB   | Non-secure | -              | SPI                    |
| 0x4004_4000   | 1KB   | Non-secure | -              | 12C                    |
| 0x4005_0000   | 16KB  | Non-secure | -              | SDIO Device            |
| 0x4006_0000   | 2KB   | Non-secure | -              | GDMA                   |
| 0x4007_0000   | 16KB  | Non-secure | -              | Crypto Engine          |
| 0x4008_0000   | 256KB | Non-secure | -              | WLAN                   |

| 0x4060_0000 | 4KB  | Non-secure | - | PSRAM Controller    |
|-------------|------|------------|---|---------------------|
| 0x5000_0800 | 2KB  | Secure     | - | SYS Control (SYSON) |
| 0x5000_2000 | 4KB  | Secure     | - | HS Timer            |
| 0x5006_0000 | 2KB  | Secure     | - | GDMA                |
| 0x5007_0000 | 16KB | Secure     | - | Crypto Engine       |

# 3.2.3 Extension Memory Space

The external Flash memory address base is from 0x9800\_0000 to 0x9BFF\_FFFF. The address map of extension memory hardware is listed below.

| Name  | Physical address | Size | IP function           |
|-------|------------------|------|-----------------------|
| Flash | 0x9800_0000      | 64MB | External Flash memory |
|       | 0x9BFF_FFFF      |      |                       |

## 3.3 SPI NOR Flash

The AmebaZII+ supports NOR Flash via SPI interface.

SPI NOR Flash Features:

- SPI baud rate supports 50/33/25/20MHz
- Supports eXecute In Place (XIP)
- Supports memory-mapped I/O interface for read operation
- Supports 32K/16K I/D read cache, 4-way associative
- Supports decryption on the fly
- Supports SPI mode (SPI/Dual SPI/DIO SPI/Quad SPI/QIO SPI)
- Supported flash size: Up to 64MB

# 4 Peripheral Interfaces

# 4.1 General Purpose DMA Controller

The Realtek Direct Memory Access Controller (DMAC) is a DMA controller with AXI interface. Usually, the CPU sends sequential read/write commands controlling data transfer. However, the CPU cannot execute instructions when it is handling the transfer. To release CPU resources, the DMAC can manage the data transfer completely. The CPU configures DMAC registers to setup a transfer and then enables the channel to start the transfer. The CPU does not have to handle the transfer until there is a DMAC trigger interrupt. The DMAC interrupt is generated when the transfer is done, or the transfer encounters errors.

#### 4.1.1 Features

- Advanced eXtensible Interface 4 (AXI4) master interface and Advanced Peripheral Bus 3 (APB3) slave interface
- 32 bits data bus width
- Two channels. Each channel can be configured with an independent source address and destination address to initiate a transfer. The channel has a proprietary FIFO to push or pop data
- The maximum transfer length per transfer is up to 4095 data items. Each data item can be configured to 1 byte, 2 bytes, or 4 bytes width
- DMA hardware request interface
  - Handshake interface with peripherals to control data flow
- Transfer abort feature
  - The transfer can be stopped safely. The DMAC reports the correct data length already received or transmitted after the termination
- Secure mode access
  - Secure access control for master interface. Non-authorized access cannot access data

#### 4.1.2 Block Diagram



Figure 4-1 Block diagram of DMAC

# 4.2 General Purpose Timer (GTimer)

For various system timing or flow control usage, the general purpose timer provides a counter and timer mode that can be used for any type of time related event generation or timing measurement.

#### 4.2.1 Features

- 8 GTimers supported at HS domain; the source clock is from 40MHz
- 1 GTimer supported at LP domain; the source clock is from 32kHz
- Supports counter mode and timer mode
- Each GTimer supports 4 match events

#### 4.2.2 Block Diagram



Figure 4-2 Functional diagram of GTimer

#### 4.3 **GPIO Functions**

Each of the General Purpose Input/Output (GPIO) pins are software configurable as an output or as an input. In embedded system design, integration and control between different devices and the SoC are significant when planning a new architecture system. For the SoC, the most essential approach for interfacing external devices of the SOC is via the GPIO interfaces. This can provide simple digital input/output IO control. A simple IO pad architecture is shown in Figure 4-3.

#### 4.3.1 Features

- GPO and GPI functions
- Supports interrupt detection with configurable polarity per GPIO
- Internal weak pull up and pull low per GPIO
- Multiplexed with other specific digital functions



Figure 4-3 I/O pad architecture

#### 4.4 UART Interface

UART is a popular serial interface for system information, debug logs and device information exchange. UART supports hardware acceleration such as transmit/receive data FIFO, DMA transfer etc., which makes UART easier to use.

The UART signal level is 3.3V or 5V. The host provides the power source with the targeted power level to the UART interface via the I/O power.

#### 4.4.1 Features

- Supports 3 x UART (max. baud rate 4MHz and DMA mode)
- UART (RS232 Standard) Serial Data Format
- Programmable Asynchronous Clock Support
- 16 bytes Transmit Data FIFO and 32 bytes Receive Data FIFO
- Programmable Receive Data FIFO Trigger Level
- Auto Flow Control
- DMA data moving support to reduce CPU loading



Figure 4-4 Functional diagram of UART

#### **1** NOTE

Only the specified pins can operate in 5V. See section

The functions of each GPIO pin are listed in for details.

# 4.4.2 UART Specification

The UART interface is a standard 4-wire interface with RX, TX, CTS, and RTS. The default baud rate is 115.2k bit/s. Table 4-1 shows baud rate error calculations.

**Desired baud rate** Actual baud rate Error (%) 0.048523534 110 110.0533759 300 300.120048 0.040016006 600 600.240096 0.040016006 1200 1200.480192 0.040016006 2400 2400.960384 0.040016006 4800 4801.920768 0.040016006 9600 9603.841537 0.040016006 14400 14414.41441 0.1001001 19200 19230.76923 0.16025641 28800 28860.02886 0.208433542

Table 4-1 UART baud rate specification

38400

38461.53846

0.16025641

| 57600   | 57720.05772 | 0.208433542 |
|---------|-------------|-------------|
| 76800   | 76923.07692 | 0.16025641  |
| 115200  | 115243.583  | 0.037832489 |
| 128000  | 128205.1282 | 0.16025641  |
| 153600  | 153846.1538 | 0.16025641  |
| 230400  | 231092.437  | 0.300536881 |
| 380400  | 380952.381  | 0.145210555 |
| 460800  | 460732.9843 | 0.014543339 |
| 500000  | 500000      | 0           |
| 921600  | 922431.8658 | 0.090263219 |
| 1000000 | 1000000     | 0           |
| 1382400 | 1383647.799 | 0.090263219 |
| 1444400 | 1452145.215 | 0.536223658 |
| 1500000 | 1506849.315 | 0.456621005 |
| 1843200 | 1856540.084 | 0.723745898 |
| 2000000 | 2000000     | 0           |
| 2100000 | 2105263.158 | 0.250626566 |
| 2764800 | 2784810.127 | 0.723745898 |
| 3000000 | 3013698.63  | 0.456621005 |
| 3250000 | 3283582.09  | 1.033295063 |
| 3692300 | 3728813.559 | 0.988910959 |
| 3750000 | 3793103.448 | 1.149425287 |
| 4000000 | 4000000     | 0           |

# 4.5 SDIO Device Mode Interface

The SDIO (Secure Digital Input Output) is an extension of the SD specification to cover I/O functions.

#### 4.5.1 Features

- Supports SDIO 2.0 High Speed mode
- CIS can be configured with internal non-volatile memory for fast card detection
- Realtek SPI provides high efficiency SPI interface with interrupt and full duplex mode
- Supports high performance Ethernet to Wi-Fi transformation
- Supports non-flash booting when using an Ethernet to Wi-Fi transformation card

# 4.5.2 Bus Timing Specification



Figure 4-5 SDIO interface timing sequence

Table 4-2 SDIO interface timing parameters

| Name              | Parameter         | Mode    | Min. | Max. | Unit |
|-------------------|-------------------|---------|------|------|------|
| $f_{PP}$          | Clock Frequency   | Default | 0    | 25   | MHz  |
|                   |                   | HS      | 0    | 50   | MHz  |
| T <sub>WL</sub>   | Clock Low Time    | Default | 10   | -    | ns   |
|                   | Clock High Time   | HS      | 7    | -    | ns   |
| T <sub>WH</sub>   | Clock High Time   | Default | 10   | -    | ns   |
|                   |                   | HS      | 7    | -    | ns   |
| T <sub>ISU</sub>  | Input Setup Time  | Default | 5    | -    | ns   |
|                   | input Setup Time  | HS      | 6    | =    | ns   |
| T <sub>IH</sub>   | Input Hold Time   | Default | 5    | -    | ns   |
|                   |                   | HS      | 2    | -    | ns   |
| T <sub>ODLY</sub> | Output Delay Time | Default | =    | 14   | ns   |
|                   |                   | HS      | =    | 14   | ns   |

#### 4.6 SPI Interface

The Serial Peripheral Interface (SPI) enables data communication between microcontrollers and other peripherals. High throughput and full-duplex capability with a simple hardware interface makes the SPI very efficient for various applications. The SPI is widely adopted to communicate with a variety of peripherals including sensors, control devices, memory, LCD, SD cards etc.

#### 4.6.1 Features

- Supports 1 SPI port
- Supports Master/Slave mode
- Multiple Serial Interface Operations supported:
  - Motorola SPI
  - Texas Instruments SSI
  - National Semiconductor Microwire
- Supports DMA to offload CPU bandwidth
- Maximum speed support for each SPI interface:
  - Supports baud rate up to 25MHz (Master mode)
  - Supports baud rate up to 6.25MHz (Slave mode Rx only)
  - Supports baud rate up to 5MHz (Slave mode TRx)
- Programmable clock bit-rate
- Programmable clock polarity (SCPOL) and phase (SCPH) for SPI protocol
- Supports 8 bit and 16 bit data frame size
- Supports bit swapping and byte swapping features
- The transmit FIFO and receive FIFO depth is 1024 bit (up to 64 data frames)

#### 4.6.2 SPI Protocol

The SPI protocol mode can control via 2 parameters, SCPOL and SCPH. Both SCPOL and SCPH can be configured as 0 or 1 (SCPOL = 0/1, SCPH = 0/1) with a total of 4 modes as shown below.

- SCPOL defines inactive state of serial clock status:
  - 0: Low
  - 1: High
- SCPH defines serial clock toggle timing of the first data bit:
  - 0: Middle of the first data
  - 1: Start of the first data

**₩REALTEK** AmebaZII+

#### 4.6.2.1 SCPOL=0/SCPH=0



Figure 4-6 SPI protocol: mode 0 (SCPOL=0/SCPH=0)

#### 4.6.2.2 SCPOL=0/SCPH=1



Figure 4-7 SPI protocol: mode 1 (SCPOL=0/SCPH=1)

#### 4.6.2.3 SCPOL=1/SCPH=0



Figure 4-8 SPI protocol: mode 2 (SCPOL=1/SCPH=0)

#### 4.6.2.4 SCPOL=1/SCPH=1



Figure 4-9 SPI protocol: mode 3 (SCPOL=1/SCPH=1)

# 4.7 I2C Interface

For external device connection, I2C is another popular serial interface since all I2C devices can be connected together, and only two wires (data and clock pin) are required for the I2C protocol. In a pin-limited system, I2C would be the ideal interface to integrate different external elements.

#### 4.7.1 Features

- Supports maximum 1 x I2C ports
- Supports 3 different speeds:
  - Standard mode (0 to 100 Kb/s)
  - Fast mode (<400 Kb/s)
  - High-speed mode (<3.4 Mb/s) (with appropriate bus loading)
- Master or slave I2C operations
- 7-bit/10-bit addressing
- Supports Interrupt or polled mode operation
- Supports TX and RX DMA
- Transmit and receive buffers

#### 4.7.2 Block Diagram



Figure 4-10 Functional diagram of I2C

#### 4.8 PWM Interface

Pulse-Width Modulation (PWM) controllers generate pulse signals. The duty cycle, high time, and low time of pulse signals are programmable. In some particular applications, especially for LED and motor unit control, PWM is one of the most used interfaces. PWM interfaces can operate with GTimer, therefore PWM can work without involving the CPU.

## 4.8.1 Features

- Supports maximum 8 PWM functions
- 0 ~100% duty can be configured
- Use selected HS GTimer interrupt as counter source
- Minimum resolution is 50ns
- The period could be configured up to 8 seconds

#### 4.8.2 Block Diagram



Figure 4-11 Functional diagram of PWM

# 4.9 Security Engine

In order to enhance security levels in embedded systems, the security engine offers various authentication and encryption/decryption functions to meet different states of security usage. A crypto engine provides low SW computing and high performance cryptographic operation (such as authentication, encryption, and decryption).

The security engine supports the following features:

- Provides low SW computing and high performance encryption
- Supported authentication algorithms:
  - General cryptographic hash function
    - ◆ MD5
    - ◆ SAH1
    - ♦ SHA2-224
    - ♦ SHA2-256
    - Sequential hash
  - HMAC (Hash-based message authentication code)
    - ♦ HMAC\_MD5
    - ♦ HMAC\_SHA1
    - ♦ HMAC\_SHA2-224
    - ♦ HMAC\_SHA2-256
  - Cipher (Encryption/Decryption) algorithms
    - ◆ AES-128/192/256
    - ◆ ECB (Electronic Codebook) mode

- ◆ CBC (Cipher Block Chaining) mode
- ◆ CTR (Counter) mode
- ◆ CFB (Cipher Feedback) mode
- ◆ OFB (Output Feedback) mode
- ◆ GCTR (Galois CTR) mode
- ◆ GMAC (Galois MAC) mode
- ♦ GHASH (Galois HASH) mode
- ◆ GCM (Galois/Counter Mode) mode
- CRC

**₩REALTEK** AmebaZII+

# 5 RF Characteristics

The AmebaZII+ includes integrated WLAN RF transceiver architecture, and operates in 2.4GHz WLAN and Bluetooth systems.

# 5.1 RF Block Diagram

This section describes the AmebaZII+ RF block diagram. AmebaZII+ includes a Wi-Fi/BT subsystem that integrates a Wi-Fi/BT modem sharing a front-end RF (ADC, TRSW, LPF, PA, LNA, etc.), and this chip is compatible with IEEE 802.11 b/g/n protocol.



Figure 5-1 RF block diagram

# 5.2 Wi-Fi Radio Characteristics

Values in the following sections are typical values, and the reference point is the antenna port including front-end loss. These values may change slightly depending on different RF front-end designs or PCB designs.

# 5.2.1 Wi-Fi 2.4GHz Band RF Receiver Specifications

Table 5-1 Wi-Fi 2.4GHz band RF receiver specifications

| Parameter                | Description   | Min. | Тур.  | Max  | Unit |
|--------------------------|---------------|------|-------|------|------|
| Frequency Range          | -             | 2400 | -     | 2500 | MHz  |
| 802.11b                  | 1 Mbps DSSS   | -    | -99.0 | -    | dBm  |
| RX Sensitivity (8% PER)  | 2 Mbps DSSS   | -    | -95.5 | -    | dBm  |
|                          | 5.5 Mbps DSSS | -    | -93.5 | -    | dBm  |
|                          | 11 Mbps DSSS  | -    | -90.0 | -    | dBm  |
| 802.11g                  | 6 Mbps OFDM   | -    | -94.0 | -    | dBm  |
| RX Sensitivity (10% PER) | 9 Mbps OFDM   | -    | -93.0 | -    | dBm  |
|                          | 12 Mbps OFDM  | -    | -91.5 | -    | dBm  |
|                          | 18 Mbps OFDM  | -    | -89.0 | -    | dBm  |
|                          | 24 Mbps OFDM  | -    | -86.0 | -    | dBm  |
|                          | 36 Mbps OFDM  | -    | -82.5 | -    | dBm  |
|                          | 48 Mbps OFDM  | -    | -78.0 | -    | dBm  |
|                          | 54 Mbps OFDM  | -    | -76.5 | -    | dBm  |
| 802.11n                  | HT20 MCS0     | -    | -93.5 | -    | dBm  |
| RX Sensitivity (10% PER) | HT20 MCS1     | -    | -91.0 | -    | dBm  |
|                          | HT20 MCS2     | -    | -88.5 | -    | dBm  |
|                          | HT20 MCS3     | -    | -85.5 | -    | dBm  |
|                          | HT20 MCS4     | -    | -82.5 | -    | dBm  |
|                          | HT20 MCS5     | -    | -77.0 | -    | dBm  |
|                          | HT20 MCS6     | -    | -75.5 | -    | dBm  |

|                       | HT20 MCS7   | - | -74.0 | - | dBm |
|-----------------------|-------------|---|-------|---|-----|
| Maximum Receive Level | 1 Mbps DSSS | - | -     | 0 | dBm |
|                       | 6M bps OFDM | - | -     | 0 | dBm |

**1** NOTE

The above Rx performance values are based on 25 degree, 3.3V, 50ohm @LAB environment & Realtek EVB.

# 5.2.2 Wi-Fi 2.4GHz Band RF Transmitter Specifications

Table 5-2 Wi-Fi 2.4GHz band RF transmitter specifications

| Parameter             | Description  | Min  | Тур. | Max  | Unit    |
|-----------------------|--------------|------|------|------|---------|
| Frequency Range       | -            | 2400 | -    | 2500 | MHz     |
| TX power              | 1 Mbps DSSS  | -    | 21   | -    | dBm     |
|                       | 11 Mbps DSSS | -    | 21   | -    | dBm     |
|                       | 6 Mbps OFDM  | -    | 19   | -    | dBm     |
|                       | 54 Mbps OFDM | -    | 17   | -    | dBm     |
|                       | HT20 MCS0    | -    | 19   | -    | dBm     |
|                       | HT20 MCS7    | -    | 16   | -    | dBm     |
| TX EVM                | 1 Mbps DSSS  | -    | 8    | -    | %       |
|                       | 11 Mbps DSSS | -    | 8    | -    | %       |
|                       | 6 Mbps OFDM  | -    | -5   | -    | dB      |
|                       | 54 Mbps OFDM | -    | -25  | -    | dB      |
|                       | HT20 MCS0    | -    | -5   | -    | dB      |
|                       | HT20 MCS7    | -    | -28  | -    | dB      |
| Carrier suppression   | -            | -    | =    | -30  | dBc     |
| Harmonic Output Power | 2nd Harmonic | -    | -    | -45  | dBm/MHz |
|                       | 3rd Harmonic | -    | -    | -45  | dBm/MHz |

- **NOTE** 
  - The above Tx performance values are based on 25 degree, 3.3V, 50ohm @LAB environment & Realtek EVB.
  - Target TX power is configurable based on different applications or certification requirements. We recommend to back off 3dB for mass production pass rate, and include a corner case margin.

## 5.3 Bluetooth Radio Characteristics

Values in the following sections are typical values, and the reference point is the antenna port including front-end loss. These values may change slightly depending on different RF front-end designs or PCB designs. Both the transmitter specifications and the receiver specifications follow Bluetooth SIG specifications.

# **5.3.1** BT RF Transmitter Specifications

Table 5-3 Bluetooth transmitter performance (BLE)

| Parameter                 | Description      | Min. | Тур. | Max. | Unit     |
|---------------------------|------------------|------|------|------|----------|
| Frequency Range           | -                | 2402 | -    | 2480 | MHz      |
| Tx Output Power           | -                | 2.5  | 4.5  | 6.5  | dBm      |
| Adjacent channel transmit | F = F0 ± 1 MHz   | -    | -15  | -    | dB       |
| power                     | F = F0 ± 2 MHz   | -    | -53  | -    | dB       |
|                           | F = F0 ± 3 MHz   | -    | -56  | -    | dB       |
|                           | F = F0 ± > 3 MHz | -    | -57  | -    | dB       |
| Δ f1avg                   | -                | -    | 246  | -    | kHz      |
| Δ f2max                   | -                | -    | 220  | -    | kHz      |
| Δ f2avg/Δ f1avg           | -                | -    | 0.92 | -    | -        |
| ICFT                      | -                | -    | -15  | -    | KHz      |
| Drift rate                | -                | -    | 2    | -    | kHz/50μs |
| Initial drift rate        | -                | -    | -2   | -    | kHz      |

NOTE

The above Tx performance values are based on 25 degree, 3.3V, 50ohm @LAB environment & Realtek EVB.

# 5.3.2 BT RF Receiver Specifications

Table 5-4 Bluetooth receiver performance (BLE)

| Parameter                          | Description          | Min     | Тур.    | Max     | Unit  |
|------------------------------------|----------------------|---------|---------|---------|-------|
| Parameter                          | Description          | Minimum | Typical | Maximum | Units |
| Frequency Range                    | -                    | 2402    | -       | 2480    | MHz   |
| Rx Sensitivity @30.8% PER          | Without spur channel | -       | -100    | -       | dBm   |
| Maximum received signal @30.8% PER | -                    | 0       | -       | -       | dBm   |
| Co-channel C/I                     | Co-channel           | -       | 6       | -       | dB    |
| Adjacent channel selectivity C/I   | F = F0 + 1 MHz       | -       | -5      | -       | dB    |
|                                    | F = F0 - 1 MHz       | -       | -4      | -       | dB    |
|                                    | F = F0 + 2 MHz       | -       | -50     | -       | dB    |
|                                    | F = F0 - 2 MHz       | -       | -25     | -       | dB    |
|                                    | F = F0 + 3 MHz       | -       | -55     | -       | dB    |
|                                    | F = F0 - 3 MHz       | -       | -25     | -       | dB    |
| Out-of-band blocking performance   | 30 MHz ~ 2000 MHz    | -30     | -       | -       | dBm   |
|                                    | 2000 MHz ~ 2400 MHz  | -35     | -       | -       | dBm   |
|                                    | 2500 MHz ~ 3000 MHz  | -35     | -       | -       | dBm   |
|                                    | 3000 MHz ~ 12.5 GHz  | -30     | -       | -       | dBm   |
| Intermodulation                    | -                    | -       | -32     | -       | dBm   |



The above Rx performance values are based on 25 degree, 3.3V, 50ohm @LAB environment & Realtek EVB.

# **6** Electrical Characteristics

# **6.1** Temperature Limit Ratings

Table 6-1 Temperature limit ratings

| Symbol              | Parameter                          |                           | Min. | Тур. | Max. | Unit |
|---------------------|------------------------------------|---------------------------|------|------|------|------|
| Ts                  | Storage Temperature                |                           | -55  | -    | +150 | °C   |
| T <sub>A</sub>      | Ambient Operating Temperature      | Standard temperature IC   | -20  | -    | +85  | °C   |
|                     |                                    | Wide-range temperature IC | -40  | -    | +105 | °C   |
| T <sub>J</sub> max. | Maximum junction Temperature[1][2] |                           | -    | -    | +125 | °C   |

#### **1** NOTE

# **6.2** Power Supply DC Characteristics

Table 6-2 Power supply DC characteristics

| Symbol     | Parameter                                 | Min. | Тур.  | Max. | Unit |
|------------|-------------------------------------------|------|-------|------|------|
| VDD_IN     | DC Supply Voltage for VDD_IN (3.3V)       | 2.97 | 3.3   | 3.63 | V    |
| VDD_IN     | DC Supply Voltage for VDD_IN (5V)         | 4.5  | 5     | 5.5  | V    |
| VD33_SDIO  | DC Supply Voltage for 3.3V Power Rail     | 2.97 | 3.3   | 3.63 | V    |
| VA33_XTAL  |                                           |      |       |      |      |
| VA33_SYN   |                                           |      |       |      |      |
| VA33_RF    |                                           |      |       |      |      |
| VA33_PA    |                                           |      |       |      |      |
| VA33_TR    |                                           |      |       |      |      |
| VD33_FLASH |                                           |      |       |      |      |
| VD33_OUT   |                                           |      |       |      |      |
| VD11_CORE  | DC Supply Voltage for 1.1V Power Rail     | 1.09 | 1.146 | 1.20 | V    |
| VD1833_LPC | DC Supply Voltage for GPIO/Embedded Flash | 2.97 | 3.3   | 3.63 | V    |

# 6.3 Typical Digital I/O Pin DC Characteristics

Table 6-3 Typical digital I/O DC parameters

| Symbol          | Parameter                                    | Conditions      | Min.  | Тур.  | Max.  | Unit |
|-----------------|----------------------------------------------|-----------------|-------|-------|-------|------|
| $V_{IH}$        | Input-High Voltage                           | LVTTL           | 2.0   | -     | -     | V    |
| V <sub>IL</sub> | Input-Low Voltage                            | LVTTL           | -     | -     | 0.8   | V    |
| V <sub>OH</sub> | Output-High Voltage                          | LVTTL           | 2.4   | -     | -     | V    |
| V <sub>OL</sub> | Output-Low Voltage                           | LVTTL           | -     | -     | 0.4   | V    |
| V <sub>T+</sub> | Schmitt-Trigger High Level                   | -               | 1.377 | 1.683 | 1.908 | V    |
| V <sub>T-</sub> | Schmitt-Trigger Low Level                    | -               | 0.729 | 0.957 | 1.116 | V    |
| I <sub>IL</sub> | Input-Leakage Current                        | VIN = 3.3V or 0 | -10   | ±1    | 10    | μΑ   |
| -               | Driving for Normal Pins                      | -               | 4     | -     | 16    | mA   |
| I <sub>OH</sub> | Driving for 5V UART Pins (GPIOA_13/GPIOA_14) | 3.3V/5V         | 4/4   | -     | 8/8   | mA   |
| I <sub>OL</sub> | Driving for 5V UART Pins (GPIOA_13/GPIOA_14) | 3.3V/5V         | 4/4   | -     | 8/8   | mA   |
| -               | Driving for SDIO Device Pins                 | -               | 4     | -     | 16    | mA   |
| -               | Loading for Normal Pins                      | -               | -     | 15    | -     | pF   |
| -               | Loading for 5V UART Pins                     |                 | -     | 15    | -     | pF   |
|                 | (GPIOA_13/GPIOA_14)                          |                 |       |       |       |      |
| -               | Loading for SDIO Device Pins                 | -               | -     | 15    | -     | pF   |
| -               | Pull Resistance for Normal Pins              | 3.3V            | -     | 75    | -     | ΚΩ   |

<sup>[1]</sup> The junction temperature must not exceed  $T_J$  max. in all TA ranges. When TA is high and the power consumption of device is also high, a well-designed thermal management should be implemented to the board system to guarantee proper TJ. Refer to Section Thermal Characteristics to estimate TJ.

<sup>[2]</sup> The IC must not operate at junction temperature of 125°C for extended periods of time.

| - | Pull Resistance for 5V UART Pins (GPIOA_13/GPIOA_14) | 3.3V/5V | - | 80/120 | - | ΚΩ |
|---|------------------------------------------------------|---------|---|--------|---|----|
|   | Pull Resistance for SDIO Device Pins                 | 3.3V    | - | 50     |   | ΚΩ |

**1** NOTE

The pull resistance values are typical values checked in the manufacturing process, and are not tested.

# 6.4 ESD Characteristics

Table 6-4 ESD characteristics

| Reliability test          | Standard          | Test condition | Result |
|---------------------------|-------------------|----------------|--------|
| Human Body Model (HBM)    | JESD22-A114F-2008 | ±2000V         | Pass   |
| Machine Model (MM)        | JESD22-A115C-2010 | ±100V          | Pass   |
| Charge Device Model (CDM) | JESD22-C101F-2013 | ±500V          | Pass   |

# 6.5 Power Sequence

# 6.5.1 Power-on or Resuming from Deep-Sleep Sequence

The timing sequence of power-on or resuming from deep-sleep is given in Figure 6-1.



Figure 6-1 Power-on or resuming from deep-sleep sequence

Table 6-5 Timing specification for power-on sequence

| Symbol            | Parameter                        | Min. | Тур. | Max. | Unit |
|-------------------|----------------------------------|------|------|------|------|
| T <sub>PRDY</sub> | 3.3V Ready Time                  | 0.6  | -    | 5    | ms   |
|                   | 5V Ready Time                    | 1    | -    | 5    | ms   |
| T <sub>CORE</sub> | Core Power Ready Time            | ı    | 14   | -    | ms   |
| T <sub>XTAL</sub> | XTAL Ready Time after Core Power | -    | 5    | -    | ms   |

# 6.5.2 Resuming from Standby Sequence



Figure 6-2 Resuming from standby sequence

Table 6-6 Timing specification for resuming from standby Sequence

| Symbol            | Parameter             | Min. | Тур. | Max. | Unit |
|-------------------|-----------------------|------|------|------|------|
| T <sub>CORE</sub> | Core Power Ready Time | 1.5  | -    | -    | ms   |

# 6.5.3 Shutdown Sequence



Figure 6-3 Shutdown sequence

Table 6-7 Timing specification for shutdown sequence

| Symbol            | Parameter                                                 | Min. | Тур. | Max. | Unit |
|-------------------|-----------------------------------------------------------|------|------|------|------|
| $V_{RST}$         | Shutdown occurs after CHIP_EN is lower than this voltage  | -    | -    | 0.8  | V    |
| T <sub>RST</sub>  | Required time that CHIP_EN is lower than V <sub>RST</sub> | 1    | -    | -    | ms   |
| $V_{RDY}$         | Enable PMC after CHIP_EN is higher than this voltage      | 2    | -    | -    | V    |
| T <sub>CORE</sub> | Core Power Ready Time                                     | -    | 14   | -    | ms   |
| T <sub>XTAL</sub> | XTAL Ready Time after Core Power                          | -    | 5    | -    | ms   |

# 6.5.4 Power Down Sequence



Figure 6-4 Power down sequence

Table 6-8 Timing specification for power down sequence

| Symbol            | Parameter                                                         | Min. | Тур. | Max. | Unit |
|-------------------|-------------------------------------------------------------------|------|------|------|------|
| $V_{PD}$          | Power Down Voltage                                                | -    | -    | 0.5  | V    |
| T <sub>RST</sub>  | Required time that VD33x and VDD_IO is lower than V <sub>PD</sub> | 1    | -    | -    | ms   |
| T <sub>CORE</sub> | Core Power Ready Time                                             | -    | 14   | -    | ms   |
| TXTAL             | XTAL Ready Time after Core Power                                  | -    | 5    | -    | ms   |

# 7 Package Information

In order to meet environmental requirements, Realtek offers devices in different grades of ECOPACK® packages, depending on the level of environmental compliance.

# 7.1 Package Outline

The QFN40 is a 40-pin, 5mm x 5mm quad flat no-leads package with 0.4mm pitch.



Figure 7-1 QFN40 package outline

Table 7-1 QFN40 package mechanical data

| Symbol | Dimension (millimeter) |      |      |  |
|--------|------------------------|------|------|--|
|        | Min.                   | Nom. | Max. |  |
| Α      | 0.80                   | 0.85 | 0.90 |  |
| A1     | 0.00                   | 0.02 | 0.05 |  |
| A3     | 0.20 REF               |      |      |  |
| b      | 0.15                   | 0.20 | 0.25 |  |
| D/E    | 5.00 BSC               |      |      |  |
| D2/E2  | 3.35                   | 3.61 | 3.86 |  |
| е      | 0.40 BSC               |      |      |  |
| L      | 0.30                   | 0.40 | 0.50 |  |

#### **1** NOTE

- Dimensioning & Tolerances conform to ASME Y14.5M.-1994.
- Values in inches are converted from mm and rounded to 2 decimal digits.

# 7.2 Thermal Characteristics

| Symbol        | Parameter <sup>[1]</sup>               | Package     | Condition                               | Value <sup>[2][3]</sup> | Unit |
|---------------|----------------------------------------|-------------|-----------------------------------------|-------------------------|------|
| $\theta_{JA}$ | Junction-to-ambient thermal resistance | QFN, 40-pin | Based on the Realtek EVB with still air | 62.09                   | °C/W |
| $\Psi_{JT}$   | Junction-to-top center thermal         | QFN, 40-pin | Based on the Realtek EVB with still air | 0.93                    |      |

|             | characterization parameter                 |             |                                         |       |
|-------------|--------------------------------------------|-------------|-----------------------------------------|-------|
| $\Psi_{JB}$ | Junction-to-board thermal characterization | QFN, 40-pin | Based on the Realtek EVB with still air | 11.81 |
|             | parameter                                  |             |                                         |       |

#### Ø

#### NOTE

- [1] Refer to EIA/JESD51-2, Integrated circuits Thermal Test Method Environmental Conditions Natural Convection (Still Air) for more information.
- [2] These values are based on customized PCB systems designed by Realtek, and will vary in function of board thermal characteristics and other components on the board.
- [3] An ambient temperature of 85°C is assumed.

# **Revision History**

| Date       | Revision | Release Notes                           |
|------------|----------|-----------------------------------------|
| 2024-09-03 | 1.1      | Added the section: Ordering Information |
| 2024-07-12 | 1.0      | Initial release                         |