```
In [2]:
         import numpy as np
         import pandas as pd
         import matplotlib.pyplot as plt
         from matplotlib import rcParams
         from matplotlib.cm import rainbow
         %matplotlib inline
         import warnings
         warnings.filterwarnings('ignore')
In [3]: from sklearn.neighbors import KNeighborsClassifier
         df = pd.read_csv('dataset.csv')
         df.head()
In [5]:
Out[5]:
                         trestbps chol fbs
                                            restecg
                                                    thalach exang
                                                                  oldpeak slope ca
                                                                                    thal target
            age
                 sex
                      ср
          0
                       3
                              145
                                   233
                                                 0
                                                       150
                                                                0
                                                                       2.3
                                                                                  0
             63
                   1
                                         1
                                                                              0
                                                                                       1
                                                                                             1
          1
             37
                   1
                       2
                              130
                                   250
                                         0
                                                 1
                                                       187
                                                                0
                                                                       3.5
                                                                              0
                                                                                  0
                                                                                       2
                                                                                             1
                                                                      1.4
          2
             41
                   0
                       1
                              130
                                   204
                                         0
                                                 0
                                                       172
                                                                0
                                                                              2
                                                                                  0
                                                                                       2
                                                                                             1
                                   236
                                                                              2
                                                                                       2
          3
             56
                       1
                              120
                                         0
                                                 1
                                                       178
                                                                0
                                                                       8.0
                                                                                  0
                                                                                             1
             57
                       0
                              120
                                   354
                                         0
                                                 1
                                                       163
                                                                              2
                                                                                  0
                                                                                       2
                                                                                             1
                   0
                                                                1
                                                                       0.6
In [6]: df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 303 entries, 0 to 302
         Data columns (total 14 columns):
          #
              Column
                         Non-Null Count Dtype
          0
                         303 non-null
                                           int64
              age
          1
              sex
                         303 non-null
                                           int64
          2
                         303 non-null
              ср
                                           int64
          3
                         303 non-null
              trestbps
                                           int64
          4
                         303 non-null
              chol
                                           int64
          5
              fbs
                         303 non-null
                                           int64
          6
                         303 non-null
                                           int64
              restecg
          7
              thalach
                         303 non-null
                                           int64
          8
                         303 non-null
                                           int64
              exang
          9
              oldpeak
                         303 non-null
                                           float64
          10
              slope
                         303 non-null
                                           int64
          11
              ca
                         303 non-null
                                           int64
          12
              thal
                         303 non-null
                                           int64
              target
                         303 non-null
                                           int64
         dtypes: float64(1), int64(13)
```

memory usage: 33.3 KB

```
In [7]: df.describe()
```

Out[7]:

	age	sex	ср	trestbps	chol	fbs	restecg	tha
count	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.00
mean	54.366337	0.683168	0.966997	131.623762	246.264026	0.148515	0.528053	149.64
std	9.082101	0.466011	1.032052	17.538143	51.830751	0.356198	0.525860	22.90
min	29.000000	0.000000	0.000000	94.000000	126.000000	0.000000	0.000000	71.00
25%	47.500000	0.000000	0.000000	120.000000	211.000000	0.000000	0.000000	133.50
50%	55.000000	1.000000	1.000000	130.000000	240.000000	0.000000	1.000000	153.00
75%	61.000000	1.000000	2.000000	140.000000	274.500000	0.000000	1.000000	166.00
max	77.000000	1.000000	3.000000	200.000000	564.000000	1.000000	2.000000	202.00
4								•

In [8]: import seaborn as sns

```
In [9]: sns.set_style('whitegrid')
sns.countplot(x='target',data=df,palette='RdBu_r')
```

Out[9]: <matplotlib.axes._subplots.AxesSubplot at 0x136bf9184c0>


```
In [10]: dataset = pd.get_dummies(df, columns = ['sex', 'cp', 'fbs', 'restecg', 'exang',
```

```
In [11]: from sklearn.model_selection import train_test_split
    from sklearn.preprocessing import StandardScaler
    standardScaler = StandardScaler()
    columns_to_scale = ['age', 'trestbps', 'chol', 'thalach', 'oldpeak']
    dataset[columns_to_scale] = standardScaler.fit_transform(dataset[columns_to_scale)
```

```
In [12]: dataset.head()
```

Out[12]:

	age	trestbps	chol	thalach	oldpeak	target	sex_0	sex_1	cp_0	ср_1	 slop
0	0.952197	0.763956	-0.256334	0.015443	1.087338	1	0	1	0	0	
1	-1.915313	-0.092738	0.072199	1.633471	2.122573	1	0	1	0	0	
2	-1.474158	-0.092738	-0.816773	0.977514	0.310912	1	1	0	0	1	
3	0.180175	-0.663867	-0.198357	1.239897	-0.206705	1	0	1	0	1	
4	0.290464	-0.663867	2.082050	0.583939	-0.379244	1	1	0	1	0	

```
In [13]: y = dataset['target']
X = dataset.drop(['target'], axis = 1)

In [15]: y = dataset['target']
X = dataset.drop(['target'], axis = 1)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.33, randown and the standard and the standa
```

```
In [17]: plt.plot([k for k in range(1, 21)], knn_scores, color = 'red')
for i in range(1,21):
    plt.text(i, knn_scores[i-1], (i, knn_scores[i-1]))
    plt.xticks([i for i in range(1, 21)])
    plt.xlabel('Number of Neighbors (K)')
    plt.ylabel('Scores')
    plt.title('K Neighbors Classifier scores for different K values')
```

Out[17]: Text(0.5, 1.0, 'K Neighbors Classifier scores for different K values')

The score for K Neighbors Classifier is 87.0% with 8 nieghbors.

```
In [ ]:
```