

LEVEL 2 CERTIFICATE Further Mathematics

8360/2 - Paper 2 Calculator Mark scheme

June 2018

Version/Stage: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aga.org.uk

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

M	Method marks are awarded for a correct method which could lead to a correct answer.
M dep	A method mark dependent on a previous method mark being awarded.
A	Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.
В	Marks awarded independent of method.
B dep	A mark that can only be awarded if a previous independent mark has been awarded.
ft	Follow through marks. Marks awarded following a mistake in an earlier step.
SC	Special case. Marks awarded within the scheme for a common misinterpretation which has some mathematical worth.
oe	Or equivalent. Accept answers that are equivalent.
	eg, accept 0.5 as well as $\frac{1}{2}$
[a, b]	Accept values between a and b inclusive.
3.14	Accept answers which begin 3.14 eg 3.14, 3.142, 3.1416

Examiners should consistently apply the following principles.

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a candidate has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the candidate. In cases where there is no doubt that the answer has come from incorrect working then the candidate should be penalised.

Questions which ask candidates to show working

Instructions on marking will be given but usually marks are not awarded to candidates who show no working.

Questions which do not ask candidates to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Candidates often copy values from a question incorrectly. If the examiner thinks that the candidate has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the candidate intended it to be a decimal point.

Q	Answer	Mark	Comments	
	$1420 - 5n = 0 \text{ or } 5n = 1420$ or $\frac{1420}{5}$	M1	oe eg 5(284 – n) = 0	
	284	A1		
	Ad	ditional G	Guidance	
1 (a)	$\frac{1420 - 5n}{1420 + 5n} = 0$			Zero
	1420 - 5n = 0(1420 + 5n)			Zero
	n = 284			M1A1
	1420 - 5n = 0 and $1420 + 5n = 0$ with correct equation not selected			Zero
	±284 is A0			
	Embedded answer			M1A0
	_1	B1		
	Ad	ditional G	iuidance	
1 (b)	$-\frac{5}{5}$			В0
	-1 <i>n</i> → ∞			B1
	-1 → ∞			В0
	$x \rightarrow -1$ (any letter other than n)			B1

Q	Answer	Mark	Comments	
	Any pair of integer values for a and b for which $b = 12a + 26$	B2	B1 Correct equation in any for $\frac{b-10}{a-3} = 12$ or $b+10=1$ or $\frac{y-10}{x-3} = 12$ or $y+10=1$ or $b=12a+c$ and $c=26$ or $y=12x+c$ and $c=26$ or $y=12x+c$ and $c=26$ or $y=12x+c$ and $c=26$ or $c=26$ o	2(<i>a</i> + 3)
	Additional Guidance			
2	Examples of B2 responses $a = -4$ and $b = -22$ or $a = -2$ and $b = 2$ or $a = -1$ and $b = 14$ or $a = 0$ and $b = 26$ or $a = 1$ and $b = 38$ or $a = 2$ and $b = 50$ or $a = 3$ and $b = 62$ or $a = 4$ and $b = 74$			B2
	a = -3 and $b = -10$ is point P so will not score B2 (B1 possible)			
	-3 + 1 and -10 + 12			B1
	-3 + 2 and -10 + 24			B1

Q	Answer	Mark	Comments	
	$-0.112 \text{ or } -\frac{14}{125}$	B1	oe fraction	
	Ad	ditional G	uidance	
3(a)	Ignore incorrect conversion between fr	action and	decimal if correct value seen	
	Ignore rounding or truncation after core	rect value :	seen	
	Answer $-\frac{3.5}{31.25}$			В0
	$2(m^2+1)=m+2$		oe equation without fractions	
	or $2m^2 + 2 = m + 2$ or $2m^2 = m$ or $2m^2 - m = 0$	M1		
	$m(2m-1) \ (=0)$		oe eg $\frac{1}{4} \pm \sqrt{\frac{1}{16}}$	
	$m(1-2m) \ (=0)$ or	M1dep	may be implied by both correct s	solutions
	$\frac{1\pm\sqrt{(-1)^2-4\times2\times0}}{2\times2}$			

	2×2		
3(b)	0.5 0 or $\frac{1}{2}$ 0	A1	oe

Additional Guidance				
0.5 0 in working but only one of these on answer line	M2A0			
Equation left in terms of p and m	Zero			
Answers only of 0.5 0	M2A1			
Answer only of 0.5				
Answer only of 0	Zero			
If using formula with an error seen the maximum mark is M1M0A0				
eg $2m^2 - m = 0$ $\frac{1 \pm \sqrt{(-1)^2 - 4 \times 1 \times 0}}{2 \times 2}$ Answers 0.5 0	M1M0A0			

but must of a line	
of a line	
rect length	
, 2) and (2, –2) -2) plotted e correct	
SC2 (-4, 0) and (0, 4) and (2, -2) and (5, -2) plotted (any other points plotted must be correct ones for the graph)	
M3A1	
M3A0	
M2A0	

Q	Answer	Mark	Comments		
	$f(x) \geqslant -7 \text{ or } -7 \leqslant f(x)$	B1			
	Ad	ditional G	Guidance		
	f(x) may be replaced by y or f or $f(x)$ or $g(x)$ or g or $g(x)$ or $g(x)$ or $g(x)$ or $g(x)$ or $g(x)$				
6(a)	<i>x</i> ≥ − 7	В0			
	≥ - 7			В0	
	Condone $-7 \leqslant f(x) < \infty$ or $-7 \leqslant f(x) \leqslant$	∞ or –7 ≤	$\leqslant f(x) < \text{or } -7 \leqslant f(x) \leqslant$	B1	
	[–7, ∞) or [–7, ∞]			В0	
	$-11 \le g(x) \le 13$ or $13 \ge g(x) \ge -11$	B2	B1 $g(x) \ge -11$ or $g(x) \le 13$ or embedded within an inequal or $-11 < g(x) < 13$ or $[-11, 13]$ or $-11 \le x \le 13$		
	Additional Guidance				
	g(x) may be replaced by y or g or gx or f(x) or f or fx or $1 - 3x$ in B2 or B1 responses				
	$g(x) \geqslant -11 \qquad g(x) \leqslant 13$			B1	
6(b)	-11 to 13 inclusive ('inclusive' must be Do not allow if 24 also seen	seen)		B1	
	B1 may be seen with an incorrect inequality eg1 $-11 < g(x) \le 13$ eg2 $-11 \le g(x) < 13$ eg3 $0 < g(x) \le 13$ eg4 $13 \le g(x) \ge -11$			B1 B1 B1 B1	
	[-11, 13) or (-11, 13] or (-11, 13)			В0	
	$-11 < x \le 13 \text{ or } -11 \le x < 13 \text{ or } -11 <$	<i>x</i> < 13		В0	
	{-11, -10, -9, 0, 1, 2, 3,,	12, 13}		В0	

Q	Answer	Mark	Comments		
	$2x^2 - 14$	M1			
	$2x^{2} + 3x - 15 (= 0)$ or $-2x^{2} - 3x + 15 (= 0)$ or $2x^{2} + 3x = 15$ or $-2x^{2} - 3x = -15$	A1			
	$\frac{-3 \pm \sqrt{3^2 - 4 \times 2 \times -15}}{2 \times 2}$ or $\frac{-3 \pm \sqrt{9 + 120}}{4}$ or $\frac{-3 \pm \sqrt{129}}{4}$	M1	oe eg $-\frac{3}{4} \pm \sqrt{\frac{15}{2} + \left(\frac{3}{4}\right)^2}$ correct method to solve their 3-term quadratic implied by correct solutions to their 3-term quadratic to at least 2 dp		
	2.089 –3.589 A1ft correct or ft M1A0M1 or M0A0M must both be rounded to 3 deci				
6(c)	Additional Guidance				
	2nd M1 Allow correct factorisation of the	neir 3-term	quadratic if it does factorise		
	2nd M1 Allow correct use of formula ev	en if discr	iminant is negative		
	Two 'correct' solutions to at least 2 dec eg 2.09 and -3.59	imal place	s implies M1A1M1	M1A1M1A0	
	2.089 and -3.589 in working but only of	ne on ans	wer line	M1A1M1A0	
	Answers only 2.089 –3.589			M1A1M1A1	
	Answer only 2.089			Zero	
	Answer only –3.589	Zero			
	$2x^2 - 7$ from incorrect expansion leading	M0A0M1A1ft			
	x^2 – 14 from incorrect expansion leading	M0A0M1A1ft			
	$2x^2 - 14$ and $2x^2 + 3x - 13$ (= 0) Answers 1.908 -3.408			M1A0 M1A1ft	

Q	Answer	Mark	Comments	
7	$\frac{1}{2} \times (8 + 4) \times a \ (= 63)$ or $\frac{1}{2} \times 12 \times a \ (= 63)$ or $6a \ (= 63)$ or $63 \div 6$	M1	any letter oe eg $12a = 126$ or $\frac{1}{2} \times 3 \times a + 4 \times a + \frac{1}{2} \times 1 \times a \ (= 63)$	
	10.5 or $10\frac{1}{2}$ or $\frac{21}{2}$	A1		
	Additional Guidance			
	M1 is for a full area calculation (= 63)			

Q	Answer	Mark	Comments	
	Alternative method 1			
	(x-coordinate of $P = 0.5$) and (y-coordinate of $P = 0.2$) 2.25	B2	oe may be seen on diagram B1 (x -coordinate of P =) 5.5 or (y -coordinate of P =) 2.25 or x -coordinate of P = 2.25 and y -coordinate of P = 5.5	
8	$(9 - \text{their } 5.5)^2 + (12 - \text{their } 2.25)^2$ or $3.5^2 + 9.75^2$ or $12.25 + 95.06(25)$ or $12.25 + 95.063$ or $107.3(125)$ or 107.313	M1	oe eg $\sqrt{3.5^2 + 9.75^2}$ or $\frac{1717}{16}$ 1 < their 5.5 < 7 1 < their 2.25 < 6	
	10.36	A1ft	correct or ft their 5.5 and/or their 2.25 must be rounded to 4 sig figs	
	Alternative method 2 Uses $AC = 10$, $BC = \sqrt{125}$ or $5\sqrt{5}$ or 11.18 and $AB = \sqrt{61}$ or 7.81			
	$\cos^{-1} \frac{10^2 + 7.81^2 - 11.18^2}{2 \times 10 \times 7.81}$ or [76.67, 76.71]	M1	oe eg cos ⁻¹ 0.23(0) or cos ⁻¹ 0.231 may be on diagram angle <i>BAC</i>	
	$(0.75 \times 7.81)^2 + 10^2$ - 2 × (0.75 × 7.81) × 10 × cos their [76.67, 76.71]	M1dep		
	[107.3, 107.4]	A1		
	10.36	A1		

Q	Answer	Mark	Comments	
	Alternative method 3 Uses $AC = 10$, $BC = \sqrt{125}$ or $5\sqrt{5}$ or 11.18 and $AB = \sqrt{61}$ or 7.81			
	$\cos^{-1} \frac{7.81^{2} + 11.18^{2} - 10^{2}}{2 \times 7.81 \times 11.18}$ or [60.49, 60.66]	M1	oe eg cos ⁻¹ [0.49, 0.4925] may be on diagram angle <i>ABC</i>	
	$(0.25 \times 7.81)^2 + 11.18^2$ - 2 × (0.25 × 7.81) × 11.18 × cos their [60.49, 60.66]	M1dep		
8	[107.3, 107.4]	A1		
	10.36	A1		
	Additional Guidance			
	If 5.5 is from gradient BC			В0
	Alt 1 P (4.5, 3.75)			В0
	$(9-4.5)^2 + (12-3.75)^2$			M1
	9.397			A1ft

Q	Answer	Mark	Comments	
	$\frac{2x^6}{3} \text{ or } \frac{2}{3}x^6$ or $\frac{15x}{3} \text{ or } 5x$	M1	implied by $\frac{2x^6 + a}{3}$ or $\frac{b + 15x}{3}$ a can be numerical or algebra b can be numerical or algebra allow 0.66 or 0.67 for $\frac{2}{3}$	ic
9	$6 \times \frac{2x^5}{3}$ or $\frac{12x^5}{3}$ or $4x^5$ or $\frac{15}{3}$ or 5	M1dep	correct differentiation of one of implied by $\frac{6 \times 2x^5 + a}{3}$ or $\frac{b+3}{3}$	
	$4x^{5} + 5 = 133$ or $4x^{5} = 128$ or $x^{5} = 32$ or $\sqrt[5]{32}$	A1	oe both correct terms differentiate simplified correctly and equate	
	2	A1		
	Ad	ditional G	Guidance	
	$\frac{14x^6 + 30x}{3}$			Zero

Q	Answer	Mark	Comments
	$\begin{pmatrix} a & b \\ 2a & 3b \end{pmatrix} \begin{pmatrix} 1 \\ -3 \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \end{pmatrix}$ $a - 3b = 1$	M1 A1	oe implied by a correct equation oe
	2a - 9b = 4	A1	may be implied by correct answers
10	Correct elimination of a variable from their 2 linear equations with both equations having the same two variables	M1	eg $3a - 2a = 3 - 4$ or $-6b9b = 2 - 4$
	$a = -1 \qquad b = -\frac{2}{3}$	A1	must be exact values

Additional guidance continues on the next page

	Q	Answer	Mark	Comments
--	---	--------	------	----------

	Additional Guidance	
	If the same method is used for both a and b (eg equates coefficients and eliminates a variable), mark the attempt that favours the student	
	Ignore commas and lines within matrices	
	Allow missing brackets if arrays are correct dimensions	
	Answers only $a=-1$ and $b=-\frac{2}{3}$	5 marks
	Allow use of $\binom{1}{3}$ as a misread	M1A0A0
	If solution $a = -1$ and $b = \frac{2}{3}$	M1A1ft (A1ft after
10	if solution $a = -1$ and $b = \frac{1}{3}$	misread)
	Transposing $\begin{pmatrix} 1 \\ -3 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ 4 \end{pmatrix}$ is not a misread (could still score 2nd M1)	
	$ \begin{pmatrix} 1 \\ -3 \end{pmatrix} \begin{pmatrix} a & b \\ 2a & 3b \end{pmatrix} = $	M1A1A1
	(could still score 2nd M1)	
	$\begin{pmatrix} 1 \\ -3 \end{pmatrix} \begin{pmatrix} a & b \\ 2a & 3b \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \end{pmatrix}$ with only one of $a - 3b = 1$ and $2a - 9b = 4$	M1A1A0
	(could still score 2nd M1)	
		M0A0A0
	(could still score 2nd M1)	

Q	Answer	Mark	Comments
	Alternative method 1 expands $(x + 2)$	2)(r ± 3) fir	ret
	$x^2 + 3x + 2x + 6$ or $x^2 + 5x + 6$	M1	oe must have a term in x^2 allow one error but no omissions or extras implied by $x^2 + 5x + k$ or $ax^2 + 5x + 6$
	$x^3 + 5x^2 + 6x + 4x^2 + 20x + 24$	M1dep	oe eg $x^3 + 3x^2 + 2x^2 + 6x + 4x^2 + 12x + 8x + 24$ allow one further error but no omissions or extras
11	$x^3 + 9x^2 + 26x + 24$	A1	
11	Alternative method 2 expands (x +	3)(x + 4) fi	rst
	$x^2 + 3x + 4x + 12$ or $x^2 + 7x + 12$	M1	oe must have a term in x^2 allow one error but no omissions or extras implied by $x^2 + 7x + k$ or $ax^2 + 7x + 12$
	$x^3 + 7x^2 + 12x + 2x^2 + 14x + 24$	M1dep	oe eg $x^3 + 3x^2 + 4x^2 + 12x + 2x^2 + 6x + 8x + 24$ allow one further error but no omissions or extras
	$x^3 + 9x^2 + 26x + 24$	A1	

Q	Answer	Mark	Comments		
	Alternative method 3 expands $(x + 2)(x + 4)$ first				
	$x^2 + 4x + 2x + 8$ or $x^2 + 6x + 8$	M1	oe must have a term in x^2 allow one error but no omissions or extra implied by $x^2 + 6x + k$ or $ax^2 + 6x + 8$		
	$x^3 + 6x^2 + 8x + 3x^2 + 18x + 24$	M1dep	oe eg $x^3 + 4x^2 + 2x^2 + 8x + 3x^2 + 12$ allow one further error but no extras		
11	$x^3 + 9x^2 + 26x + 24$	A1			
"	Additional Guidance				
	For M marks terms may be seen in a g				
	Correct answer followed by further wor	rk		M2A0	
	Ignore further simplification after 4 term eg Alt 1 $x^2 + 3x + 2x + 6 = x^2 + 6x + (x^2 + 6x + 6)(x + 4) \rightarrow x^3 + 4x^2 + 6x^2 +$	+ 18 (error)	M1 M1depA0		
	Second M1 Must be the product of a two term brace				
	Missing brackets may be recovered				

Q	Answer	Mark	Comments	
	Valid common denominator with at least one numerator correct	M1	eg $\frac{7x}{9x^2}$ and $\frac{a}{9x^2}$ or $\frac{7x+a}{9x^2}$ or $\frac{b}{9x \times 3x^2}$ and $\frac{2 \times 9x}{9x \times 3x^2}$ numerators and denominators seen as products a can be numerical or algebra b can be numerical or algebra	iic
12(a)	Valid common denominator with both numerators correct	M1dep	$\frac{7x}{9x^2}$ and $\frac{6}{9x^2}$ or $\frac{7 \times 3x^2}{9x \times 3x^2}$ and $\frac{2 \times 9x}{9x \times 3x^2}$ numerators and denominators seen as products	s may be
	$\frac{7x+6}{9x^2} \text{ or } \frac{7x+6}{(3x)^2}$ with no further work	A1		
	Ad	ditional G	Guidance	
	$\frac{21x^2 + 18x}{27x^3} \text{ or } \frac{21x + 18}{27x^2} \text{ or } \frac{7x^2 + 6x}{9x^3}$			M2A0
	$\frac{7x^{-1} + 6x^{-2}}{9}$			M2A0
	$7x + 6 / 9x^2$			M2A0

Q	Answer	Mark	Comments	
	Changes division to multiplication and inverts to $\frac{3x+12}{x^2}$ $(3x + 12 =) 3(x + 4)$	M1	may be implied may be implied	
12(b)	Correct expression written as a single fraction or a product must have factor (x + 4) in a numerator and denominator x + 4 or correct expression written as a single fraction or a product must have denominator x ³ or x ² or x or 1	A1	may be implied by final A1 eg $\frac{3x(x+2)(x+4)}{x+4}$ or $\frac{(3x^2+6x)(x+4)}{x+4}$ or $\frac{x}{x+4} \times \frac{x+2}{1} \times 3(x+4)$ or $\frac{x}{x+4} \times 3(x+2)(x+4)$ or $\frac{3x^4(x+2)}{x^3}$ or $x^4 \times \frac{x+2}{x} \times \frac{3}{x^2}$ or $\frac{(x+2)}{x^3} \times 3x^4$ or $\frac{3x^3(x+2)}{x^2}$ or $\frac{3x^2(x+2)}{x}$ or $\frac{3x(x+2)}{x}$ or $\frac{3x(x+2)}{x}$)
	$3x^2 + 6x$	A1	SC2 $\frac{x(x+2)(3x+12)}{x+4}$	
	Additional Guidance			
	The list of examples in the first A1 is no	ot exhaust	ive	
	$3x^2 + 6x$ with no incorrect working		4 mark	(S

Q	Answer	Mark	Comments	
	1	B1	allow in words	
13(a)	Ad	ditional G	Guidance	
	0	B1	allow in words eg none or zero)
13(b)	Ad	ditional G	Guidance	
	(0, 1) (90, 0) (270, 0)		B1 two answers, both correct	
	with no other points	B2	or three answers, two correct	
		11.11	or four answers, three correct	
13(c)		ditional G	Guidance	
	Condone 0, 1 for (0, 1) etc			
	0, 90, 270			В0
	(1, 0) (0, 90) (0, 270)			В0

Q	Answer	Mark	Comments	
	$6pq^2r(2q-3r+4)$	B2	B1 correct factorised expressi common factor involving at leavariables eg $pq(12q^2r - 18qr^2 + 24qr)$ or $2q^2r(6pq - 9pr + 12p)$ or common factor $6pq^2r$ with two three terms in the bracket correge $6pq^2r(2q - 3r + 4p)$	o out of the
14(2)	Additional Guidance			
14(a)	B2 answer followed by further work			B1
	$6pq^2r(2q-3r+4)$ in working with $6qp^2r(2q-3r+4)$ on answer line			B1
	B1 answer followed by further work		B1	
	$2q^2r(6pq-9pr+12p)$ in working with	2p ² r (6pq	-9pr + 12p) on answer line	B1
	Use of multiplication signs scores a ma	aximum of	B1	
	$qpq(12qr - 18r^2 + 24r)$			B1
	$6pqrq\left(2q-3r+4\right)$			B1

Q	Answer	Mark	Comments		
	Correct factorised expression with a common factor	M1	eg $(y + 3) [6(y + 3)^4 + 4(y + 3)^4]$ or $2[3(y + 3)^5 + 2(y + 3)^4]$ or $2(y + 3)^2 [3(y + 3)^3 + 2(y + 3)^4]$, -	
	$2(y+3)^{4} [3(y+3)+2]$ or $2(y+3)^{4} (3y+9+2)$ or $(y+3)^{4} [6(y+3)+4]$ or $(y+3)^{4} (6y+18+4)$ or $(y+3)^{4} (6y+22)$	A1			
	$2(y+3)^4(3y+11)$	A1			
14(b)	Additional Guidance				
	Use of multiplication signs scores a ma				
	Any combination of bracket shape may				
	Correct answer followed by further wor	M1A1A0			
	Incorrect notation eg $(y + 3)^4 2(3y + 1)^4$	M1A1A0			
	$(2)(y+3)^4(3y+11)$ or $(2(y+3)^4)(3y+11)$	M1A1A1			
	Allow substitution eg $n = (y + 3)$ for M1A1 but must revert to $(y + 3)$ for final mark				
	Missing brackets must be recovered eg $(y + 3)^4$ 6y + 22 with M1 not seen			Zero	

Q	Answer	Mark	Comments	
	$3(4+5x)(4-5x)$ or $3(-4-5x)(5x-4)$ or $-3(4+5x)(5x-4)$ or $-3(-4-5x)(4-5x)$ B1 Partial factorisation eg $3(16-25x^2)$ or $-3(25x^2-1)$ or $(12+15x)(4-5x)$ or $(12-1)$ Additional Guidance			,
	Brackets in either order for B2 or B1			
	$-(75x^2-48)$			В0
	(-5x + 4) is equivalent to $(4 - 5x)$ etc			
14(c)	Incorrect notation eg $(4 + 5x)3(4 - 5x)$			B1
	Use of surds eg $(\sqrt{48} + \sqrt{75}x)(\sqrt{48} - \sqrt{75}x)$ or $(4\sqrt{3} + 5\sqrt{3}x)(4\sqrt{3} - 5\sqrt{3}x)$			B1
	Use of multiplication signs scores a maximum of B1 eg $3 \times (4 + 5x)(4 - 5x)$			B1
	B2 answer followed by further work			B1
	B1 answer followed by further work			B1
	Missing brackets must be recovered	eg 3 × 16 ·	$-25x^2$	В0

Q	Answer	Mark	Comments	
	$x^4 - 9x^2$	M1		
	$4x^3$ or (-)2 × 9x or (-)18x		differentiates at least one of the	neir terms
		M1	their term must be a function of attempt to expand brackets $4x^3 - 18x$ implies M2	of x after an
	$4 \times (-2)^3 - 18 \times -2$		oe	
	or 4 × –8 – 18 × –2		dep on 2nd M1	
	or –32 + 36	M1dep	substitutes –2 into their $4x^3$ –	18 <i>x</i>
			their $4x^3 - 18x$ must be two te function of x	rms, each a
	4	A1		
	Additional Guidance			
	Allow recovery of brackets			
	4×-2^3 is allowed for $4 \times (-2)^3$			
15	3rd M can still be awarded even if further substitution seen			
	eg1 $4x^3 - 18x$ $4 \times (-2)^3 - 18 \times -2$ and $4^4 - 9 \times 4^2 = 112$			M3
	Answer 112			A0
	eg2 $4x^3 - 18x$ $4 \times (-2)^3 - 18 \times -2 = 4$ and $4 \times 4^3 - 18 \times 4 = 184$			M3
	Answer 184			A0
	Only substituting $x = -2$ into second derivative can score a maximum of M1M1M0A0			
	4 followed by answer $y = 4$			M3A1
	4 followed by answer $y = 4x$			M3A0
	Do not regard substitution of $x = 2$ as a misread			
	Beware that finding the gradient of the line through (-2, -20) and (3, 0) gives answer 4			Zero
	Beware that (–)18x may come from wrong method			
	eg1 $2x(2x - 9) = 4x^2 - 18x$			Zero
	$eg2 2x(x^2 - 9) = 2x^3 - 18x$			Zero

Q	Answer	Mark	Comments
	Alternative method 1		
	2(2-5x) + 3(3x-1) or $4-10x$ or $9x-3$	M1	
	4 - 10x + 9x - 3 = 1 - x	M1dep	
	$(1-x)^2 = 1 - 2x + x^2$	A1	must see working for M2
	$2 - 5x + 3x - 1 + x^2 = 1 - 2x + x^2$	B1	
	Alternative method 2		
16	$4(2-5x)^{2} + 6(2-5x)(3x-1) + 6(2-5x)(3x-1) + 9(3x-1)^{2}$	M1	oe allow + $12(2 - 5x)(3x - 1)$ for + $6(2 - 5x)(3x - 1) + 6(2 - 5x)(3x - 1)$
	$4(4-10x-10x+25x^{2})$ $+6(6x-2-15x^{2}+5x)$ $+6(6x-2-15x^{2}+5x)$ $+9(9x^{2}-3x-3x+1)$ $=16-40x-40x+100x^{2}+36x-12$ $-90x^{2}+30x+36x-12-90x^{2}$ $+30x+81x^{2}-27x-27x+9$	M1dep	oe must see expansions must see working for 1st M1 allow + $12(6x - 2 - 15x^2 + 5x)$ for + $6(6x - 2 - 15x^2 + 5x)$ + $6(6x - 2 - 15x^2 + 5x)$
	$1 - 2x + x^2$	A1	must see working for M2
	$2 - 5x + 3x - 1 + x^2 = 1 - 2x + x^2$	B1	

Answer	Mark	Comments	
Alternative method 3			
2(2-5x) + 3(3x-1) or $4-10x$ or $9x-3$	M1	oe	
$(4 - 10x + 9x - 3)^{2}$ $= 16 - 40x + 36x - 12 - 40x + 100x^{2}$ $- 90x^{2} + 30x + 36x - 90x^{2} + 81x^{2}$ $- 27x - 12 + 30x - 27x + 9$	M1dep	oe must see expansions	
$1 - 2x + x^2$	A1	must see working for M2	
$2 - 5x + 3x - 1 + x^2 = 1 - 2x + x^2$	B1		
Additional Guidance			
Allow working down both sides of an e	quation/ide	entity	
M2A1 is for working on $(2A + 3B)^2$			
B1 is for working on $A + B + C$			
$1 - 2x + x^2$ with working for M2 seen and $2 - 5x + 3x - 1 + x^2 = x^2 - 2x + 1$			4 marks
$1 - x^2 = 1 - 2x + x^2$ (do not allow missing brackets even if recovered)			
	Alternative method 3 $2(2-5x) + 3(3x - 1)$ or $4 - 10x$ or $9x - 3$ $(4 - 10x + 9x - 3)^{2}$ $= 16 - 40x + 36x - 12 - 40x + 100x^{2}$ $- 90x^{2} + 30x + 36x - 90x^{2} + 81x^{2}$ $- 27x - 12 + 30x - 27x + 9$ $1 - 2x + x^{2}$ $2 - 5x + 3x - 1 + x^{2} = 1 - 2x + x^{2}$ Allow working down both sides of an empty of the	Alternative method 3 $2(2-5x) + 3(3x-1)$ or $4-10x$ or $9x-3$ $(4-10x+9x-3)^2$ $= 16-40x+36x-12-40x+100x^2$ $-90x^2+30x+36x-90x^2+81x^2$ $-27x-12+30x-27x+9$ Allow working down both sides of an equation/ide Allow working down both sides of an equation/ide M2A1 is for working on $(2A+3B)^2$ B1 is for working on $A+B+C$ $1-2x+x^2$ with working for M2 seen and $2-5x+C$	Alternative method 3 $2(2-5x) + 3(3x-1) \text{ or } 4-10x \text{ or } 9x-3$ $(4-10x+9x-3)^2 = 16-40x+36x-12-40x+100x^2 -90x^2+30x+36x-90x^2+81x^2 -27x-12+30x-27x+9$ $1-2x+x^2 \text{ A1 must see working for M2}$ $2-5x+3x-1+x^2=1-2x+x^2 \text{ B1}$ Additional Guidance Allow working down both sides of an equation/identity M2A1 is for working on $(2A+3B)^2$ B1 is for working on $A+B+C$ $1-2x+x^2 \text{ with working for M2 seen and } 2-5x+3x-1+x^2=x^2-2x+1$

Q	Answer	Mark	Comments	
	$(-5)^2 + 2^2 = 29$		oe involving use of –5 and 2	
			eg $(-5-0)^2 + (2-0)^2 = 29$ or $(0-5)^2 + (0-2)^2 = 29$	
		B1	or $\sqrt{(-5)^2 + 2^2} = \sqrt{29}$	
		ы	or $29 - (-5)^2 = 2^2$ or $29 - 2^2 = (-5)^2$	
17(a)			or $\sqrt{29 - (-5)^2} = 2$	
			or $\sqrt{29-2^2} = -5$	
	Ad	ditional G	uidance	
	25 + 4 = 29			В0
	$-5^2 + 2^2 = 29$			В0
	Allow 29 to be written as $\sqrt{29}^2$			

Q	Answer	Mark	Comments		
	Alternative method 1 Using gradients				
	(gradient $OP = $) $\frac{2-0}{-5-0} \text{ or } -\frac{2}{5} \text{ or } -0.4$	M1	oe may be implied eg $y = -\frac{2}{5}x$ or gradient of tangent = $\frac{5}{2}$ (with gradient OP not seen)		
	(gradient tangent =) $\frac{-1}{\text{their } -\frac{2}{5}} \text{ or } \frac{5}{2} \text{ or } 2.5$	M1	oe correct or ft their $-\frac{2}{5}$		
17(b)	$y-2 = \text{their } \frac{5}{2} (x-5)$ or $0-2 = \text{their } \frac{5}{2} (x-5)$ or $2 = \text{their } \frac{5}{2} \times -5 + c$	M1dep	oe dep on 2nd M1 equation of their tangent with or without substitution of $y = 0$ implied by $y = \frac{5}{2}x + \frac{29}{2}$ oe or $0 = \frac{5}{2}x + \frac{29}{2}$ oe		
	$-\frac{29}{5}$ or -5.8	A1	oe allow $\left(-\frac{29}{5}, 0\right)$ SC2 answer -10 (grad tangent = $\frac{2}{5}$) SC2 answer $-\frac{21}{5}$ or -4.2 oe (grad tangent = $-\frac{5}{2}$)		

Q	Answer	Mark	Comments		
	Alternative method 2 Using similar triangles (see diagram in Additional Guidance)				
	$\frac{a}{2} = \frac{2}{5}$	M1	oe equation any letter		
	$a = \frac{2}{5} \times 2 \text{ or } a = \frac{4}{5}$	M1dep			
	-5 – their $\frac{4}{5}$	M1dep	dep on M2		
	$-\frac{29}{5}$ or -5.8		oe allow $\left(-\frac{29}{5}, 0\right)$	2 ,	
		A1	SC2 answer –10 (grad tanget SC2 answer $-\frac{21}{5}$ or –4.2 of	•	
			(grad tangent = $-\frac{5}{2}$)		
17(b)	Ad	ditional G	uidance		
	Alt 1 2nd M mark is not dependent but there must be a numerical value for grad <i>OP</i> to ft				
	grad $OP = -0.4$ and grad tangent = -0.4			M1M0M0A0	
	$\left(0,-\frac{29}{5}\right)$			МЗАО	
	Ignore any incorrect conversion between fraction and decimal after correct answer seen				
	Alt 2 diagram				
$Q \longleftarrow a \longrightarrow 5 O$					

Q	Answer	Mark	Comments	
	$-5 - 3 < 4x \le 13 - 3$ or $-8 < 4x \le 10$ or $-1.25 < x + 0.75 \le 3.25$ or $x \le 2.5$ or $x > -2$ or $x \le 2$ or $x \ge -1$	M1	could be embedded eg $-2 \le x$	≤ 2.5
18(a)	$\frac{\text{their} - 8}{4} < x \leqslant \frac{\text{their } 10}{4}$ or $\text{their } -1.25 - 0.75 < x \leqslant \text{their } 3.25 - 0.75$ or $-2 < x \leqslant 2.5$ or $-2 < x \leqslant 2$ or $-1 \leqslant x \leqslant 2.5$ or $-1 \leqslant x \leqslant 2$ or $x \leqslant 2.5$ and $x > -2$ or $x \leqslant 2$ and $x > -2$ or $x \leqslant 2$ and $x > -1$ or $x \leqslant 2$ and $x \geqslant -1$	M1dep	oe eg (– 2, 2.5] or [–1, 2.5]	
	with no incorrect working			
		ditional G	uidance	
	Answer only -1 0 1 2			M2A1
	Answer only -1 1 2			Zero
	x = 2.5 and $x = -2$ (from solving equations) followed by -1 0 1 2			M2A1
	x = 2.5 and $x = -2$ (from solving equations)			Zero
	-1 0 1 2 with no incorrect working and a correct inequality on answer line			M2A1
	-1 0 1 2 in working but -1 1 2 on answer line			M2A0
	Ignore repeated integers eg Answer o	nly –1 0	1 1 2 2	M2A1

Q	Answer	Mark	Comments	
	$(x-4)(x-7)$ or $\frac{11 \pm \sqrt{(-11)^2 - 4 \times 1 \times 28}}{2 \times 1}$ or $\frac{11}{2} \pm \sqrt{\frac{9}{4}}$	M1	oe	
	Identifies 4 and 7	A1	may be on a graph or implied inequality using 4 and 7	by an
18(b)	x < 4 x > 7	A1	do not allow incorrect notation eg $4 > x > 7$	n
	Additional Guidance			
	x < 4 with M1 not scored			Zero
	x > 7 with M1 not scored			Zero
	Both $x < 4$ and $x > 7$ in working but only one on answer line			M1A1A0
	x < 4 and $x > 7$			M1A2
	x < 4 or x > 7			M1A2

Q	Answer	Mark	Comments	
	Alternative method 1 C(BA)			
10	$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ and $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ and indication that $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ is the identity matrix	B5	for B5, products must be seen in correct order and results of products must be correct B4 a B5 response with no indication that $ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} $ is the identity matrix B3 (reflection in $y = -x$) $ \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} $ and (rotation) $ \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} $ and (reflection in x -axis) $ \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} $ B2 Any two of the above B1 Any one of the above	
19	Alternative method 2 (CB)A			
	$ \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} $ and $ \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} $ and $ \text{indication that } \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \text{ is the identity} $ $ \text{matrix} $	B5	for B5, products must be seen in correct order and results of products must be correct B4 a B5 response with no indication that $ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} $ is the identity matrix B3 (reflection in $y = -x$) $ \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} $ and (rotation) $ \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} $ and (reflection in x -axis) $ \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} $ B2 Any two of the above B1 Any one of the above	

Mark scheme continues on the next page

Q	Answer	Mark	Comments		
	Alternative method 3 transforms a general point				
	$\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -y \\ -x \end{pmatrix}$ and $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} -y \\ -x \end{pmatrix} = \begin{pmatrix} x \\ -y \end{pmatrix}$ and $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ -y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$ and indication that $\begin{pmatrix} x \\ y \end{pmatrix}$ has mapped to itself	B5	for B5, products must be seen in correct order and results of products must be correct B4 a B5 response with no indication that $ \begin{pmatrix} x \\ y \end{pmatrix} $ has mapped to itself B3 (reflection in $y = -x$) $ \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} $ and (rotation) $ \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} $ and (reflection in x -axis) $ \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} $ B2 Any two of the above B1 Any one of the above		
	Alternative method 4 transforms the unit square				
19	$\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix}$ $= \begin{pmatrix} 0 & 0 & -1 & -1 \\ 0 & -1 & -1 & 0 \end{pmatrix}$ and $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & -1 & -1 \\ 0 & -1 & -1 & 0 \end{pmatrix}$ $= \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & -1 & -1 \end{pmatrix}$ and $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & -1 & -1 \end{pmatrix}$ $= \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix}$ and indication that unit square has mapped to itself	B5	columns in 2 by 4 matrices can be in any order for B5, products must be seen in correct order and results of products must be correct B4 a B5 response with no indication that unit square has mapped to itself B3 (reflection in $y = -x$) $\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$ and (rotation) $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ and (reflection in x -axis) $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ B2 Any two of the above B1 Any one of the above		

Additional guidance continues on the next page

Q	Answer	Mark	Comments			
	Additional Guidance					
	For B3, B2 and B1 the matrices must r	not be the a	nswers to a product			
	Must use matrix multiplication					
	Ignore commas and lines within matric	es				
	Allow missing brackets if arrays are co	rrect				
	Examples of indication					
19	Alt 1 or 2 $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I$ or $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ which	n is the ide	ntity matrix			
	Alt 3 $\begin{pmatrix} x \\ y \end{pmatrix}$ which is the same as the original					
	nal					
	of the solution					
	Alt 3 $\begin{pmatrix} x \\ y \end{pmatrix}$ must be algebraic					

Q	Answer	Mark	Comments
	Alternative method 1		
	$12^{2} + \left(\frac{10}{2}\right)^{2} \text{ or } 12^{2} + 5^{2}$ or 144 + 25 or 169	M1	oe RM ²
20(a)	$\sqrt{\text{their 169}}$ or 13	M1dep	oe RM may be seen on diagram 13 implies M2
	$\tan x = \frac{7}{\text{their } 13}$	M1dep	any letter oe eg $\tan^{-1} \frac{7}{\text{their } 13}$
	28(.3)	A1	

Alternative method 2 $12^{2} + \left(\frac{10}{2}\right)^{2} + 7^{2}$ or $12^{2} + 5^{2} + 7^{2}$ or $144 + 25 + 49$ or 218 $\sqrt{\text{their 218}} \text{ or } [14.76, 14.8]$ Oe UM Oe UM	
$12^{2} + \left(\frac{10}{2}\right) + 7^{2}$ or $12^{2} + 5^{2} + 7^{2}$ or $144 + 25 + 49$ or 218 $\sqrt{\text{their 218}} \text{ or } [14.76, 14.8]$ Oe UM ²	
UM	
M1dep may be seen on diagram [14.76, 14.8] implies M2	
	1.8] ² – 7 ² 76,14.8]
28(.3) A1	
Additional Guidance	
Allow tan = $\frac{7}{\text{their } 13}$ etc	
Do not allow tan $\frac{7}{\text{their }13}$ etc unless recovered	
If using sine or cosine rule, must rearrange to make sin x or cos x the subject	
Allow up to M1M1dep from either alt 1 or alt 2 even if not subsequently used	

Q	Answer	Mark	Comments
20(b)	$\tan \alpha = \frac{10 \div 2}{12}$ or $\tan \alpha = \frac{5}{12}$ or $\sin \alpha = \frac{10 \div 2}{\text{their } 13}$ or $\sin \alpha = \frac{5}{\text{their } 13}$ or $\cos \alpha = \frac{12}{\text{their } 13}$	M1	any letter oe eg tan ⁻¹ $\frac{5}{12}$ their 13 = RM from (a) may be seen on diagram oe eg sin $\alpha = \frac{\sin 90}{\sqrt{12^2 + 5^2}} \times 5$ or sin $\alpha = \frac{\sin 90}{\text{their } 13} \times 5$ or cos $\alpha = \frac{12^2 + 5^2 + 12^2 - 5^2}{2 \times 12 \times \sqrt{12^2 + 5^2}}$ or cos $\alpha = \frac{\tanh 13^2 + 12^2 - 5^2}{2 \times 12 \times \text{their } 13}$
	22.6 Add Allow $tan = \frac{5}{12} etc$ Do not allow $tan \frac{5}{12} etc$ unless recove	A1ft ditional G	allow 23 with working correct or ft ft answers correct to at least 1 dp uidance
	If using sine or cosine rule, must rearra		tke $\sin \alpha$ or $\cos \alpha$ the subject

Q	Answer	Mark	Comments	
	(-1, 3) or (2, 1)	M1		
	(-1, 3) or (2, 1)	IVII		
	(-1, 3) max(imum)	A1		
21	(2, 1) (point of) inflection	A1	SC1 (3, -1) max(imum)	
			and (1, 2) (point of) inflection	
	Additional Guidance			
	One correct point and nature			M1A1
	Ignore reference to 'stationary points' or 'turning points' or 'local'			
	Condone p o i for point of inflection			

Q	Answer	Mark	Comments
	Alternative method 1		
22(a)	Divides trigonometric expression by cos <i>x</i> or rearranges equation	M1	eg $8 \frac{\cos x}{\cos x} + 5 \frac{\sin x}{\cos x}$ or $8 + 5 \frac{\sin x}{\cos x}$ or $8 \cos x = -5 \sin x$ or $\frac{\cos x}{\sin x} = -\frac{5}{8}$ or $8 \frac{\cos x}{\cos x} = -5 \frac{\sin x}{\cos x}$ or $5 \tan x = -8$
	$\tan x = -\frac{8}{5}$ or $\tan x = -1.6$ or $\cos x = -\frac{5}{\sqrt{89}}$ or -57.9 or -58	A1	oe eg tan ⁻¹ –1.6 may be implied by final answer
	with no other angle	A1	

Q	Answer	Mark	Comments	
	Alternative method 2			
	Divides trigonometric expression by cos <i>x</i> or rearranges equation	M1	eg $8 \frac{\cos x}{\cos x} + 5 \frac{\sin x}{\cos x}$ or $8 + 5 \frac{\sin x}{\cos x}$ or $8 \cos x = -5 \sin x$ or $\frac{\cos x}{\sin x} = -\frac{5}{8}$ or $8 \frac{\cos x}{\cos x} = -5 \frac{\sin x}{\cos x}$ or $5 \tan x = -8$	
	$\sin x = \frac{8}{\sqrt{89}}$ or 57.9 or 58	A1	oe eg $\sin^{-1} \frac{8}{\sqrt{89}}$ may be implied by final answe	er
22(a)	122.(0) with no other angle	A1		
	Additional Guidance			
	Allow division of expression by $k\cos x$ eg (k = 8) 1 + $\frac{5 \sin x}{8 \cos x}$			M1
	Answer only 122.(0)	M1A2		
	Embedded answer 122.(0)	M1A1A0		
	Answer only 121.9			Zero
	If working seen, use the alt method for the working seen			
	Answer only –58 (BOD alt 1)			M1A1A0
	Answer only 58 (BOD alt 2)			M1A1A0
	Allow cos for cos x etc			
	Allow c for cos x etc			

Q	Answer	Mark	Comments	
	Alternative method 1			
	$6(1 - \cos^{2} x) + 4 \cos^{2} x$ or $6 - 6 \cos^{2} x + 4 \cos^{2} x$ or $2(1 - \cos^{2} x) + 4$ or $6 - 2 \cos^{2} x$	M1	oe expression in terms of cos	² x
	A = 6 and B = -2 with no incorrect working	A1		
22(b)	Alternative method 2			
	$A \sin^2 x + A \cos^2 x + B \cos^2 x$ and A = 6 and A + B = 4	M1		
	A = 6 and B = -2 with no incorrect working	A1		
	Additional Guidance			
	A = 6 and $B = -2$ with no working			M1A1

Q	Answer	Mark	Comments	
	$(a^2+3)\times k \text{ or } ka^2+3k$	M1	oe eg $b = ka^2 + 3k$ may be seen on diagram	
	$(ak)^2 + 3 \text{ or } a^2k^2 + 3$	M1	oe eg $b = a^2k^2 + 3$ may be seen on diagram	
	$ka^2 + 3k = a^2k^2 + 3$	M1dep	oe equates and expands bracket dep on M2 may include $-b$ on each side	s correctly
23	$a^{2}(k - k^{2}) = 3 - 3k$ or $ka^{2}(1 - k) = 3 - 3k$ or $ka^{2} - a^{2}k^{2} = 3(1 - k)$ or $a^{2}(k - k^{2}) = 3(1 - k)$ or $ka^{2}(1 - k) = 3(1 - k)$ or $a^{2}(k^{2} - k) = 3k - 3$ or $ka^{2}(k - 1) = 3k - 3$ or $k^{2}a^{2} - ka^{2} = 3(k - 1)$ or $a^{2}(k^{2} - k) = 3(k - 1)$ or $ka^{2}(k - 1) = 3(k - 1)$	M1dep	oe eg $(a^2 =)$ $\frac{3-3k}{k-k^2}$ or $(a =)$ (\pm) or $(a^2 =)$ $\frac{3k-3}{k^2-k}$ or $(a =)$ (\pm) $\sqrt{\frac{3k-3}{k^2-k}}$ collects terms in a^2 and factor on at least one side must use a^2 as a factor if awar for factorising $ka^2-a^2k^2$ dep on M3	$\frac{3k-3}{k^2-k}$ ises correctly
	$(a^2 =) \frac{3(1-k)}{k(1-k)}$ or $(a^2 =) \frac{3}{k}$ or $(a =) (\pm) \sqrt{\frac{3(1-k)}{k(1-k)}}$	M1dep	oe eg $(a^2 =) \frac{3(k-1)}{k(k-1)}$ correct fraction with numerato denominator factorised correct dep on M4	
	$(a =) \sqrt{\frac{3}{k}} \text{ or } (a =) \left(\frac{3}{k}\right)^{\frac{1}{2}}$	A1	oe eg $(a =)$ $\frac{\sqrt{3}}{\sqrt{k}}$ or $(a =)$ $\left(\frac{k}{3}\right)^{-\frac{1}{2}}$ $(a =)$ $\pm\sqrt{\frac{3}{k}}$ M5A0 $(a =)$ $-\sqrt{\frac{3}{k}}$ M5A	
	Ad	dditional G	Buidance	
	Only one machine fully correct			M1 only
	Missing brackets must be recovered			

Q	Answer	Mark	Comments			
	Alternative method 1 Powers of 3					
	$(3^2)^{0.5p}$ or $(3^3)^{2p-1}$ or $3^{2\times 0.5p+4}$	M1	oe powers of 3 eg 3^p or 3^{6p-3} or 3^{p+4} brackets not needed if intention clear eg $3^{2^{0.5p}}$			
	$(3^2)^{0.5p}$ and 3^4 and $(3^3)^{2p-1}$ or $3^{2\times 0.5p+4}$ and $(3^3)^{2p-1}$	M1dep	oe powers of 3 $ eg \ 3^p \ and \ 3^4 \ and \ 3^{6p-3} $ or $ 3^{p+4} \ and \ 3^{6p-3} $			
	$2 \times 0.5p + 4 = 3(2p - 1)$ or $p + 4 = 6p - 3$	M1dep	oe equation dep on M2			
24	1.4 or $\frac{7}{5}$	A1	oe			
	Alternative method 2 Powers of 9					
	9 ^{0.5p+2} or (9 ^{1.5}) ^{2p–1}	M1	oe power of 9 eg $9^{3p-1.5}$ brackets not needed if intention clear eg $9^{1.5^{2p-1}}$			
	9^2 and $(9^{1.5})^{2p-1}$ or $9^{0.5p+2}$ and $(9^{1.5})^{2p-1}$	M1dep	oe powers of 9 eg 9^2 and $9^{3p-1.5}$ or $9^{0.5p+2}$ and $9^{3p-1.5}$			
	0.5p + 2 = 1.5(2p - 1) or $0.5p + 2 = 3p - 1.5$	M1dep	oe equation dep on M2			
	1.4 or $\frac{7}{5}$	A1	oe			
	Mark schome continues on the next rage					

Mark scheme continues on the next page

Q	Answer	Mark	Comments		
	Alternative method 3 Powers of 27				
	$\left(27^{\frac{2}{3}}\right)^{0.5 p}$	M1	oe power of 27		
24	$\left(27^{\frac{2}{3}}\right)^{0.5p}$ and $27^{\frac{4}{3}}$	M1dep	oe powers of 27 eg $27^{\frac{2}{3} \times 0.5 p}$ and $27^{\frac{4}{3}}$ or $27^{\frac{1}{3}p}$ and $27^{\frac{4}{3}}$ M2 $27^{\frac{2}{3} \times 0.5 p + \frac{4}{3}}$ or $27^{\frac{1}{3}p + \frac{4}{3}}$		
	$\frac{2}{3} \times 0.5p + \frac{4}{3} = 2p - 1$ or $\frac{1}{3}p + \frac{4}{3} = 2p - 1$	M1dep	oe equation dep on M2		
	1.4 or $\frac{7}{5}$	A1	ое		

Q	Answer	Mark	Comments	3
	Alternative method 4 Powers of 81			
24	$(81^{0.5})^{0.5p}$ or $(81^{0.75})^{2p-1}$ or $81^{0.5 \times 0.5p+1}$	M1	oe powers of 81 eg $81^{0.25p}$ or $81^{1.5p-0.75}$ or $81^{0.25p+1}$ brackets not needed if intereg $81^{0.5}$	ition clear
	$(81^{0.5})^{0.5p}$ and $(81^{0.75})^{2p-1}$ or $81^{0.5 \times 0.5p+1}$ and $(81^{0.75})^{2p-1}$	M1dep	oe powers of 81 eg $81^{0.25p}$ and $81^{1.5p}$ $^{-0.75}$ or $81^{0.25p+1}$ and $81^{1.5p}$ $^{-0.75}$	
	$0.5 \times 0.5p + 1 = 0.75(2p - 1)$ or $0.25p + 1 = 1.5p - 0.75$	M1dep	oe equation dep on M2	
	1.4 or $\frac{7}{5}$	A1	oe	
	Additional Guidance			
	Mark positively if potentially more that	an one sche	me used	
	Answer 1.4			M3A1
	Correct equation implies M3			
	Just seeing expressions not in an equation and not as powers scores zero eg Alt 1 $6p - 3$ and $p + 4$ not in an equation and not as powers of 3			МОМОМО
	Allow recovery of missing brackets			
	Use of logs with answer not 1.4 - escalate			