Examenul de bacalaureat național 2018

Proba E. c) Matematică *M mate-info*

Filiera teoretică, profilul real, specializarea matematică-informatică

Filiera vocațională, profilul militar, specializarea matematică-informatică

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I

(30 de puncte)

Varianta 2

- **1.** Determinați numărul complex z, știind că $2\overline{z} z = 1 3i$, unde \overline{z} este conjugatul lui z.
- **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 mx + 1$, unde m este număr real. Determinați numerele reale m, știind că vârful parabolei asociate funcției f se află pe axa Ox.
- 3. Rezolvați în mulțimea numerelor reale ecuația $\frac{\lg x}{\lg (x+2)} = \frac{1}{2}$
- 4. Calculați probabilitatea ca, alegând un număr din mulțimea numerelor naturale de două cifre, acesta să aibă cifrele distincte si impare.
- 5. În reperul cartezian xOy se consideră punctul A(-5,2) și dreapta d de ecuație y=x+1. Determinați ecuația dreptei care trece prin punctul A și este perpendiculară pe dreapta d.
- **6.** Arătați că $\sin\left(\frac{\pi}{4} + x\right) \cos\left(\frac{\pi}{4} x\right) = 0$, pentru orice număr real x.

SUBIECTUL al II-lea

- **1.** Se consideră matricea $M(m) = \begin{bmatrix} 1 & 2m & 1 \\ 1 & 1 & 2m \end{bmatrix}$ și sistemul de ecuații $\begin{cases} x + 2my + z = 0, \text{ unde } \\ x + y + 2mz = 1 \end{cases}$ *m* este număr real.
- a) Arătați că $\det(M(0)) = 2$. **5**p
- **b**) Determinați numerele reale m, știind că $\det(M(m)) = 0$.
- c) Pentru m=-1, demonstrați că, dacă (a,b,c) este o soluție a sistemului, cel mult unul dintre **5p** numerele a, b și c este întreg.
 - 2. Pe mulțimea numerelor reale se definește legea de compoziție asociativă $x * y = 4xy + 3x + 3y + \frac{3}{2}$.
- a) Demonstrați că $x * y = 4\left(x + \frac{3}{4}\right)\left(y + \frac{3}{4}\right) \frac{3}{4}$, pentru orice numere reale x și y.
- **b**) Determinați numărul real x pentru care $x * x * x = -\frac{1}{2}$. **5**p
- c) Determinați numerele reale a, știind că f(x)*f(y) = f(x+y), pentru orice numere reale x și **5p** y, unde $f: \mathbb{R} \to \mathbb{R}$, $f(x) = ae^x - \frac{3}{4}$.

SUBIECTUL al III-lea

- **1.** Se consideră funcția $f:(0,+\infty) \to \mathbb{R}$, $f(x) = 8x^2 \ln x$.
- **5p a)** Arătați că $f'(x) = \frac{(4x-1)(4x+1)}{x}, x \in (0,+\infty).$
- **b**) Demonstrați că punctul $A\left(\frac{2}{3},3\right)$ aparține tangentei la graficul funcției f în punctul de abscisă x = 1, situat pe graficul funcției f
- c) Demonstrați că $f\left(\frac{1}{3}\right) < f\left(\frac{1}{\sqrt{7}}\right) < f\left(\frac{1}{2}\right)$. 2. Se consideră funcția $f:(-3,+\infty) \to \mathbb{R}$, $f(x) = \frac{2x+3}{x+3}$.
- a) Arătați că $\int_{0}^{\infty} (x+3) f(x) dx = 4$.
- **5p b)** Arătați că $\int_{1}^{2} f(x) dx = 2 3 \ln \frac{4}{3}$.
- c) Pentru fiecare număr natural n, se consideră numărul $I_n = \int_0^\infty e^x (x+3)^n (f(x))^n dx$. Demonstrați că $I_n + 2nI_{n-1} = e \cdot 5^n - 3^n$, pentru orice număr natural $n, n \ge 1$.

Matematică M_mate-info

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 2

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$z = a + bi$, $\overline{z} = a - bi \Rightarrow 2\overline{z} - z = a - 3bi$, unde a şi b sunt numere reale	3p
	$a-3bi=1-3i \Rightarrow a=1$ și $b=1$, deci $z=1+i$	2 p
2.	$y_V = 0 \Leftrightarrow \Delta = 0$	3 p
	Cum $\Delta = m^2 - 4$, obţinem $m^2 - 4 = 0$, deci $m = -2$ sau $m = 2$	2 p
3.	$2\lg x = \lg(x+2) \Rightarrow x^2 - x - 2 = 0$	3 p
	x = -1, care nu convine, $x = 2$, care convine	2p
4.	Mulțimea numerelor naturale de două cifre are 90 de elemente, deci sunt 90 de cazuri posibile	1p
	Mulțimea numerelor naturale de două cifre, care au cifrele distincte și impare are 20 de elemente, deci sunt 20 de cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{20}{90} = \frac{2}{9}$	2p
5.	Panta dreptei d este $m_d = 1 \Rightarrow$ panta unei drepte perpendiculare pe dreapta d este $m = -1$	3p
	Ecuația dreptei care trece prin punctul A și este perpendiculară pe dreapta d este $y = -x - 3$	2 p
6.	$\sin\left(\frac{\pi}{4} + x\right) - \cos\left(\frac{\pi}{4} - x\right) = \sin\frac{\pi}{4}\cos x + \cos\frac{\pi}{4}\sin x - \left(\cos\frac{\pi}{4}\cos x + \sin\frac{\pi}{4}\sin x\right) =$	2p
	$= \frac{\sqrt{2}}{2} (\cos x + \sin x - \cos x - \sin x) = 0, \text{ pentru orice număr real } x$	3 p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$M(0) = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \Rightarrow \det(M(0)) = \begin{vmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{vmatrix} =$	
	$M(0) = \begin{vmatrix} 1 & 0 & 1 \end{vmatrix} \Rightarrow \det(M(0)) = \begin{vmatrix} 1 & 0 & 1 \end{vmatrix} =$	2 p
	$\begin{pmatrix} 1 & 1 & 0 \end{pmatrix}$ $\begin{vmatrix} 1 & 1 & 0 \end{vmatrix}$	
	=0+1+1-0-0-0=2	3 p
b)	$\begin{vmatrix} 2m & 1 & 1 \end{vmatrix}$	
	$\det(M(m)) = \begin{vmatrix} 1 & 2m & 1 \\ 1 & 1 & 2m \end{vmatrix} = 2(m+1)(2m-1)^2, \text{ pentru orice număr real } m$	3 p
	$\begin{vmatrix} 1 & 1 & 2m \end{vmatrix}$	
	$m=-1$ sau $m=\frac{1}{-1}$	2p
	2	-r
c)	$a-b=\frac{1}{3}, \ b-c=\frac{1}{3} $ şi $a-c=\frac{2}{3}$	3p
	Deoarece $a-b\notin\mathbb{Z}$, $b-c\notin\mathbb{Z}$ şi $a-c\notin\mathbb{Z}$ \Rightarrow cel mult unul dintre numerele a , b şi c este	20
	întreg	2 p
2.a)	$x * y = 4xy + 3x + 3y + \frac{9}{4} - \frac{3}{4} =$	2p
	$=4x\left(y+\frac{3}{4}\right)+3\left(y+\frac{3}{4}\right)-\frac{3}{4}=4\left(x+\frac{3}{4}\right)\left(y+\frac{3}{4}\right)-\frac{3}{4}, \text{ pentru orice numere reale } x \text{ $\frac{1}{4}$} \text{ $\frac{1}{4}$}$	3 p

b)	$x * x = 4\left(x + \frac{3}{4}\right)^2 - \frac{3}{4}$, $x * x * x = 16\left(x + \frac{3}{4}\right)^3 - \frac{3}{4}$, pentru orice număr real x	2p
	$16\left(x+\frac{3}{4}\right)^3 - \frac{3}{4} = -\frac{1}{2} \Leftrightarrow \left(x+\frac{3}{4}\right)^3 = \frac{1}{64}, \text{ de unde obținem } x = -\frac{1}{2}$	3 p
c)	$4\left(ae^x - \frac{3}{4} + \frac{3}{4}\right) \cdot \left(ae^y - \frac{3}{4} + \frac{3}{4}\right) - \frac{3}{4} = ae^{x+y} - \frac{3}{4}, \text{ pentru orice numere reale } x \text{ şi } y$	2p
	$4a^2 = a \text{, deci } a = 0 \text{ sau } a = \frac{1}{4}$	3 p

SUBIECTUL al III-lea

1.a)	$f'(x) = 16x - \frac{1}{x} = \frac{16x^2 - 1}{x} = \frac{(4x - 1)(4x + 1)}{x}, \ x \in (0, +\infty)$	3р
	$= \frac{16x^2 - 1}{x} = \frac{(4x - 1)(4x + 1)}{x}, \ x \in (0, +\infty)$	2p
b)	$f(1) = 8$, $f'(1) = 15$, deci ecuația tangentei este $y - f(1) = f'(1)(x-1) \Leftrightarrow y = 15x - 7$	3p
	$15 \cdot \frac{2}{3} - 7 = 3$, deci punctul $A\left(\frac{2}{3}, 3\right)$ aparține tangentei la graficul funcției f în punctul de abscisă $x = 1$, situat pe graficul funcției f	2 p
	abscisa $x-1$, situat pe granicui funcției y	
c)	$x \in \left(\frac{1}{4}, +\infty\right) \Rightarrow f'(x) > 0$, deci f este strict crescătoare pe $\left(\frac{1}{4}, +\infty\right)$	2p
	Cum $\frac{1}{4} < \frac{1}{3} < \frac{1}{\sqrt{7}} < \frac{1}{2}$, obținem $f\left(\frac{1}{3}\right) < f\left(\frac{1}{\sqrt{7}}\right) < f\left(\frac{1}{2}\right)$	3 p
2.a)	$\int_{0}^{1} (x+3) f(x) dx = \int_{0}^{1} (2x+3) dx = (x^{2}+3x) \Big _{0}^{1} =$	3 p
	=1+3-0=4	2p
b)	$\int_{0}^{1} f(x) dx = \int_{0}^{1} \frac{2x+3}{x+3} dx = \int_{0}^{1} \left(2 - \frac{3}{x+3}\right) dx = 2x \left \frac{1}{0} - 3\ln(x+3) \right _{0}^{1} =$	3p
	$=2-3(\ln 4 - \ln 3) = 2-3\ln\frac{4}{3}$	2p
c)	$I_n = \int_0^1 e^x (2x+3)^n dx = e^x (2x+3)^n \left \int_0^1 -2n \int_0^1 e^x (2x+3)^{n-1} dx \right $	3 p
	$=e\cdot 5^n-3^n-2nI_{n-1}$, deci $I_n+2nI_{n-1}=e\cdot 5^n-3^n$, pentru orice număr natural n , $n\geq 1$	2 p

Examenul de bacalaureat național 2018 Proba E. c) Matematică *M_șt-nat*

Varianta 2

Filiera teoretică, profilul real, specializarea științe ale naturii

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte

- **5p 1.** Determinați produsul primilor trei termeni ai progresiei geometrice $(b_n)_{n\geq 1}$, știind că $b_2=4$.
- **5p** 2. Se consideră funcțiile $f, g : \mathbb{R} \to \mathbb{R}$, $f(x) = (x-1)^2$ și g(x) = 2018 x. Calculați g(f(1)).
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $25^x = 5^{x^2}$.
- **5p 4.** Calculați probabilitatea ca, alegând un număr din mulțimea numerelor naturale de două cifre, acesta să aibă cifra zecilor egală cu 9.
- **5p 5.** În reperul cartezian xOy se consideră dreapta d de ecuație $(a-1)x-a^2y-a^2=0$, unde a este număr real nenul. Determinați numărul real nenul a, știind că dreapta d este paralelă cu axa Ox.
- **5p 6.** Arătați că $\operatorname{tg} x + \operatorname{ctg} x = \frac{5}{2}$, știind că $\sin x = \frac{1}{\sqrt{5}}$ și $x \in \left(0, \frac{\pi}{2}\right)$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricele $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ și $A(x) = \begin{pmatrix} x+2 & x \\ 1 & -2 \end{pmatrix}$, unde x este număr real.
- **5p** a) Arătați că $\det(A(1)) = -7$.
- **5p b**) Demonstrați că xA(y) yA(x) = (x y)A(0), pentru orice numere reale x și y.
- **5p** c) Determinați numerele reale a, știind că $(aA(-1)+A(a))A(0)=(a^2+7)I_2$.
 - **2.** Se consideră polinomul $f = 4X^3 6X + m$, unde m este număr real.
- **5p** a) Pentru m = 2, arătați că f(1) = 0
- **5p b**) Demonstrați că, oricare ar fi numărul real m, polinomul f **nu** se divide cu polinomul $X^2 + X + 1$.
- **5p** c) Determinați numărul real nenul m, știind că $\left(\frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3}\right)^2 = \frac{1}{x_1} \cdot \frac{1}{x_2} \cdot \frac{1}{x_3}$, unde x_1 , x_2 și x_3 sunt rădăcinile polinomului f.

SUBIECTUL al III-lea (30 de puncte)

- **1.** Se consideră funcția $f:(0,+\infty)\to\mathbb{R}$, $f(x)=1-\frac{\ln x}{x}-\frac{1}{x}$.
- **5p a)** Arătați că $f'(x) = \frac{\ln x}{x^2}, x \in (0, +\infty).$
- **5p b**) Determinați ecuația tangentei la graficul funcției f în punctul de abscisă x=1, situat pe graficul funcției f.
- **5p** c) Demonstrați că $\frac{\ln x}{2\sqrt{x}} \le 1 \frac{1}{\sqrt{x}}$, pentru orice $x \in (0, +\infty)$.
 - **2.** Se consideră funcția $f:(-1,+\infty) \to \mathbb{R}$, $f(x) = 3x^2 + \frac{1}{x+1}$.
- **5p a)** Arătați că $\int_{0}^{2} (x+1) f(x) dx = 22$.
- **5p b)** Calculați $\int_{0}^{1} \left(f(x) \frac{1}{x+1} \right) e^{x^3} dx$.
- **5p** c) Determinați numărul natural nenul n, știind că volumul corpului obținut prin rotația în jurul axei Ox a graficului funcției $g:[0,1] \to \mathbb{R}$, $g(x) = f(x) 3x^2$ este egal cu $\frac{\pi}{n}$.

Examenul de bacalaureat național 2018 Proba E. c) Matematică *M_şt-nat*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 2

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$b_1b_3=b_2^2$	2 p
	$b_1 b_3 = b_2^2$ $b_1 b_2 b_3 = b_2^3 = 4^3 = 64$	3 p
2.	f(1)=0	2p
	g(f(1)) = g(0) = 2018	3 p
3.	$5^{2x} = 5^{x^2} \Leftrightarrow x^2 - 2x = 0$	3 p
	x=0 sau $x=2$	2 p
4.	Mulțimea numerelor naturale de două cifre are 90 de elemente, deci sunt 90 de cazuri posibile	1p
	În mulțimea numerelor naturale de două cifre sunt 10 numere care au cifra zecilor egală cu 9, deci sunt 10 cazuri favorabile	2 p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{10}{90} = \frac{1}{9}$	2p
5.	$m_d = \frac{a-1}{a^2}$	2p
	Dreapta d este paralelă cu axa $Ox \Leftrightarrow \frac{a-1}{a^2} = 0$, deci $a = 1$	3 p
6.	Cum $\sin x = \frac{1}{\sqrt{5}}$ și $x \in \left(0, \frac{\pi}{2}\right)$, obținem $\cos x = \frac{2}{\sqrt{5}}$	2p
	$tg x + ctg x = \frac{\sin^2 x + \cos^2 x}{\sin x \cos x} = \frac{5}{2}$	3p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A(1) = \begin{pmatrix} 3 & 1 \\ 1 & -2 \end{pmatrix} \Rightarrow \det(A(1)) = \begin{vmatrix} 3 & 1 \\ 1 & -2 \end{vmatrix} = 3 \cdot (-2) - 1 \cdot 1 =$	3p
	=-6-1=-7	2 p
b)	$xA(y) - yA(x) = x \begin{pmatrix} y+2 & y \\ 1 & -2 \end{pmatrix} - y \begin{pmatrix} x+2 & x \\ 1 & -2 \end{pmatrix} = \begin{pmatrix} xy+2x-yx-2y & xy-yx \\ x-y & -2x+2y \end{pmatrix} =$	2 p
	$= \begin{pmatrix} 2(x-y) & 0 \\ x-y & -2(x-y) \end{pmatrix} = (x-y) \begin{pmatrix} 2 & 0 \\ 1 & -2 \end{pmatrix} = (x-y)A(0), \text{ pentru orice numere reale } x \text{ §i } y$	3 p
c)	$aA(-1)-(-1)A(a)=(a+1)A(0) \Rightarrow (aA(-1)+A(a))A(0)=(a+1)A(0)A(0)=4(a+1)I_2$	3 p
	$4(a+1) = a^2 + 7 \Leftrightarrow a = 1 \text{ sau } a = 3$	2 p
2.a)	$f = 4X^3 - 6X + 2 \Rightarrow f(1) = 4 \cdot 1^3 - 6 \cdot 1 + 2 =$	3 p
	=4-6+2=0	2p

b)	Restul împărțirii polinomului f la $X^2 + X + 1$ este egal cu $-6X + m + 4$	3p
	Cum pentru orice număr real m restul este nenul, polinomul f nu se divide cu $X^2 + X + 1$	2p
c)	$x_1x_2 + x_1x_3 + x_2x_3 = -\frac{3}{2}, \ x_1x_2x_3 = -\frac{m}{4} \Rightarrow \frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3} = \frac{x_1x_2 + x_2x_3 + x_3x_1}{x_1x_2x_3} = \frac{6}{m}$	3p
	$\left(\frac{6}{m}\right)^2 = -\frac{4}{m}$ și, cum m este număr real nenul, obținem $m = -9$	2p

SUBIECTUL al III-lea

4 \		
1.a)	$f'(x) = 0 - \frac{\frac{1}{x} \cdot x - \ln x}{x^2} - \left(-\frac{1}{x^2}\right) =$	3 p
	$= -\frac{1 - \ln x - 1}{x^2} = \frac{\ln x}{x^2}, \ x \in (0, +\infty)$	2p
b)	f(1) = 0, $f'(1) = 0$	2p
	Ecuația tangentei este $y - f(1) = f'(1)(x-1)$, adică $y = 0$	3 p
c)	$f'(x) \le 0$, pentru orice $x \in (0,1] \Rightarrow f$ este descrescătoare pe $(0,1]$ și $f'(x) \ge 0$, pentru orice $x \in [1,+\infty) \Rightarrow f$ este crescătoare pe $[1,+\infty)$	2p
	$f(x) \ge f(1) \Rightarrow f(x) \ge 0$, pentru orice $x \in (0, +\infty)$, deci $f(\sqrt{x}) \ge 0 \Rightarrow 1 - \frac{\ln \sqrt{x}}{\sqrt{x}} - \frac{1}{\sqrt{x}} \ge 0$, deci $\frac{\ln x}{2\sqrt{x}} \le 1 - \frac{1}{\sqrt{x}}$, pentru orice $x \in (0, +\infty)$	3р
2.a)	$\int_{0}^{2} (x+1)f(x)dx = \int_{0}^{2} (3x^{3} + 3x^{2} + 1)dx = \left(\frac{3x^{4}}{4} + x^{3} + x\right)\Big _{0}^{2} = 12 + 8 + 2 = 22$	3p
b)	$\int_{0}^{1} \left(f(x) - \frac{1}{x+1} \right) e^{x^{3}} dx = \int_{0}^{1} 3x^{2} e^{x^{3}} dx = e^{x^{3}} \Big _{0}^{1} = e - 1$	2p 3p 2p
c)	$g(x) = \frac{1}{x+1} \Rightarrow V = \pi \int_{0}^{1} g^{2}(x) dx = \pi \int_{0}^{1} \frac{1}{(x+1)^{2}} dx = -\frac{\pi}{x+1} \Big _{0}^{1} = -\frac{\pi}{2} + \pi = \frac{\pi}{2}$	3p
	$\frac{\pi}{n} = \frac{\pi}{2} \iff n = 2$	2p

Matematică M_tehnologic

Varianta 2

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că $30 \cdot \left(\frac{1}{3} 0, 3\right) = 1$.
- **5p 2.** Se consideră x_1 și x_2 soluțiile ecuației $x^2 x + a = 0$, unde a este număr real. Determinați valorile reale ale lui a pentru care $x_1x_2 1 < 0$.
- **5p 3.** Rezolvați în mulțimea numerelor reale ecuația $3^{x+1} = 9^x$.
- **5p 4.** Calculați probabilitatea ca, alegând un număr din mulțimea numerelor naturale de două cifre, acesta să aibă cifra unităților egală cu 3.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(-1,-1) și B(4,4). Demonstrați că punctele A, O și B sunt coliniare.
- **5p 6.** Demonstrați că $(\sin x + \cos x)^2 \sin 2x = 1$, pentru orice număr real x.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricele $A = \begin{pmatrix} 1 & -5 \\ 2 & 6 \end{pmatrix}$, $B = \begin{pmatrix} 6 & 5 \\ -2 & 1 \end{pmatrix}$ și $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.
- **5p** a) Arătați că det A = 16.
- **5p b**) Determinați numărul real a pentru care $A \cdot B = aI_2$.
- **5p** c) Demonstrați că $\det\left(xA + \frac{1}{x}B\right) \ge 49$, pentru orice număr real nenul x.
 - **2.** Pe mulțimea numerelor reale se definește legea de compoziție asociativă $x \circ y = 5xy + 15(x+y) + 42$.
- **5p** a) Arătați că $(-2) \circ (-2) = 2$.
- **5p b**) Demonstrați că $x \circ y = 5(x+3)(y+3)-3$, pentru orice numere reale x și y.
- **5p** c) Determinați numărul real x, pentru care $(x-3) \circ (x-3) \circ (x-3) = 197$.

SUBIECTUL al III-lea (30 de puncte)

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = (x-2)e^x$.
- **5p** a) Arătați că $f'(x) = (x-1)e^x$, $x \in \mathbb{R}$.
- $\mathbf{5p} \mid \mathbf{b}$) Arătați că $\lim_{x \to -\infty} f(x) = 0$.
- **5p** c) Demonstrați că $-e \le f(x) \le 0$, pentru orice $x \in (-\infty, 2]$.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 3x^2 + 1$.
- **5p a)** Arătați că $\int_{-1}^{1} (f(x)-1)dx = 2$.
- **5p b**) Demonstrați că orice primitivă a funcției f este crescătoare pe \mathbb{R} .
- **5p** c) Calculați $\int_{1}^{e} f(x) \ln x \, dx$.

Matematică *M_tehnologic*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 2

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$30 \cdot \left(\frac{1}{3} - 0, 3\right) = 30 \cdot \left(\frac{1}{3} - \frac{3}{10}\right) = 30 \cdot \frac{10 - 9}{30} =$	3 p
	$=30\cdot\frac{1}{30}=1$	2p
2.	$x_1 x_2 = a$	3p
	$a-1 < 0 \Leftrightarrow a \in (-\infty,1)$	2 p
3.	$3^{x+1} = 3^{2x} \iff x+1 = 2x$	3 p
	x = 1	2p
4.	Mulțimea numerelor naturale de două cifre are 90 de elemente, deci sunt 90 de cazuri posibile	1p
	Sunt 9 numere naturale de două cifre care au cifra unităților egală cu 3, deci sunt 9 cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{9}{90} = \frac{1}{10}$	2 p
5.	$AO = \sqrt{2}$, $OB = 4\sqrt{2}$	2p
	$AB = 5\sqrt{2} \Rightarrow AB = AO + OB$, deci punctele A, O şi B sunt coliniare	3 p
6.	$\sin^2 x + 2\sin x \cos x + \cos^2 x - 2\sin x \cos x =$	3 p
	$=\sin^2 x + \cos^2 x = 1$, pentru orice număr real x	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\det A = \begin{vmatrix} 1 & -5 \\ 2 & 6 \end{vmatrix} = 1 \cdot 6 - 2 \cdot (-5) =$ $= 6 + 10 = 16$	3p 2p
b)	$ \begin{pmatrix} 1 & -5 \\ 2 & 6 \end{pmatrix} \begin{pmatrix} 6 & 5 \\ -2 & 1 \end{pmatrix} = a \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \Leftrightarrow \begin{pmatrix} 16 & 0 \\ 0 & 16 \end{pmatrix} = \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} $	3p
	a = 16	2p
c)	$\det\left(xA + \frac{1}{x}B\right) = \begin{vmatrix} x + \frac{6}{x} & -5x + \frac{5}{x} \\ 2x - \frac{2}{x} & 6x + \frac{1}{x} \end{vmatrix} = 16x^2 + \frac{16}{x^2} + 17$	3 p
	$16x^2 + \frac{16}{x^2} + 17 \ge 49 \Leftrightarrow 16x^2 + \frac{16}{x^2} - 32 \ge 0 \Leftrightarrow 16\left(x - \frac{1}{x}\right)^2 \ge 0$, relație adevărată pentru orice număr real nenul x	2p

2.a)	$(-2) \circ (-2) = 5 \cdot (-2) \cdot (-2) + 15(-2 + (-2)) + 42 =$	3 p
	=20-60+42=2	2p
b)	$x \circ y = 5xy + 15x + 15y + 45 - 3 =$	2p
	=5x(y+3)+15(y+3)-3=5(x+3)(y+3)-3, pentru orice numere reale x şi y	3 p
c)	$(x-3)\circ(x-3)=5x^2-3, (x-3)\circ(x-3)\circ(x-3)=25x^3-3$	2p
	$25x^3 - 3 = 197 \Leftrightarrow x = 2$	3p

SUBIECTUL al III-lea

1.a)	$f'(x) = 1 \cdot e^x + (x-2)e^x =$	3 p
	$=e^{x}(1+x-2)=(x-1)e^{x}, x \in \mathbb{R}$	2 p
b)	$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{x - 2}{e^{-x}} =$	3p
	$=\lim_{x\to-\infty}\frac{1}{-e^{-x}}=0$	2p
c)	$f'(x) \le 0$, pentru orice $x \in (-\infty, 1] \Rightarrow f$ este descrescătoare pe $(-\infty, 1]$, $f'(x) \ge 0$, pentru orice $x \in [1, 2] \Rightarrow f$ este crescătoare pe $[1, 2]$	2 p
	$\lim_{x \to -\infty} f(x) = 0, \ f(1) = -e \ \text{si} \ f(2) = 0, \ \text{deci} \ -e \le f(x) \le 0, \ \text{pentru orice} \ x \in (-\infty, 2]$	3 p
2.a)	$\int_{-1}^{1} (f(x)-1) dx = \int_{-1}^{1} 3x^2 dx = x^3 \Big _{-1}^{1} =$	3 p
	=1-(-1)=2	2 p
b)	$F: \mathbb{R} \to \mathbb{R}$ este o primitivă a lui $f \Rightarrow F'(x) = f(x) = 3x^2 + 1$, $x \in \mathbb{R}$	2 p
	$F'(x) > 0$, pentru orice număr real x , deci F este crescătoare pe \mathbb{R}	3 p
c)	$\int_{1}^{e} f(x) \ln x dx = \int_{1}^{e} (3x^2 + 1) \ln x dx = (x^3 + x) \ln x \bigg _{1}^{e} - \int_{1}^{e} (x^3 + x) \cdot \frac{1}{x} dx = e^3 + e - \int_{1}^{e} (x^2 + 1) dx = e^3 + e$	3p
	$ = e^{3} + e - \left(\frac{x^{3}}{3} + x\right) \Big _{1}^{e} = e^{3} + e - \left(\frac{e^{3}}{3} + e\right) + \left(\frac{1^{3}}{3} + 1\right) = \frac{2e^{3} + 4}{3} $	2p

Matematică M_pedagogic

Varianta 2

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că $2 \cdot \left(0,1(6) + \frac{1}{3}\right) = 1$.
- **5p** 2. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, f(x) = 2x 2. Determinați numărul real a pentru care f(a) = a.
- **5p 3.** Rezolvați în mulțimea numerelor reale ecuația $5^{x^2+6} = 5^{5x}$.
- **5p 4.** Prețul unui obiect este 900 de lei. Determinați prețul obiectului după ce acesta se ieftinește de două ori, succesiv, cu câte 10%.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(2,-1), B(1,2) și C(-1,-2). Demonstrați că triunghiul ABC este dreptunghic isoscel.
- **5p 6.** Arătați că $\sin^2 30^\circ + \sin^2 45^\circ + \sin^2 60^\circ = \frac{3}{2}$.

SUBIECTUL al II-lea (30 de puncte)

Pe mulțimea numerelor reale se definește legea de compoziție x * y = 2(x + y) + xy + 2.

- **5p 1.** Arătați că 0*(-2) = -2.
- **5p 2.** Demonstrați că x * y = (x+2)(y+2)-2, pentru orice numere reale x și y.
- **5p** | **3.** Verificați dacă e = -1 este elementul neutru al legii de compoziție "*".
- **5p 4.** Determinați numerele reale x, știind că (x+1)*(x+1)=2.
- **5p 5.** Determinați numerele $x \in (0, +\infty)$ pentru care $\lg x * \lg(2x) = -2$.
- **5p 6.** Dați exemplu de numere raționale a și b, care nu sunt întregi, pentru care numărul a*b este întreg.

SUBIECTUL al III-lea (30 de puncte)

Se consideră matricele $A = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}$, $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ și $M(a) = aA + I_2$, unde a este număr real.

- **5p 1.** Arătați că det A = 2.
- **5p 2.** Demonstrați că $\det(M(a)) = (a+1)(2a+1)$, pentru orice număr real a.
- **5p 3.** Determinați inversa matricei M(-2).
- **5p 4.** Arătați că $M(1) \cdot M(2) = 3(A \cdot A + I_2)$.
- **5p** | **5.** Demonstrați că det $(M(a)-2aA) \neq 1$, pentru orice număr întreg nenul a.
- **5p 6.** Determinați matricea $X \in \mathcal{M}_{2,1}(\mathbb{R})$ pentru care $A \cdot X = \begin{pmatrix} 0 \\ -4 \end{pmatrix}$.

Matematică *M_pedagogic*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 2

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$0.1(6) = \frac{15}{90} = \frac{1}{6}$	3p
	$2 \cdot \left(\frac{1}{6} + \frac{1}{3}\right) = 2 \cdot \frac{1}{2} = 1$	2p
2.	f(a) = 2a - 2	2p
	$2a-2=a \Leftrightarrow a=2$	3 p
3.	$x^2 + 6 = 5x \Leftrightarrow x^2 - 5x + 6 = 0$	3p
	x=2 sau $x=3$	2 p
4.	După prima ieftinire cu 10%, prețul obiectului este 900 – 10% · 900 = 810 lei	3p
	După a doua ieftinire cu 10%, prețul obiectului este $810-10\% \cdot 810=729$ de lei	2p
5.	$AB = \sqrt{10}$, $AC = \sqrt{10}$, deci triunghiul ABC este isoscel	3 p
	$BC = \sqrt{20}$, şi cum $(\sqrt{20})^2 = (\sqrt{10})^2 + (\sqrt{10})^2$, obţinem că triunghiul ABC este dreptunghic	2p
6.	$\sin 30^\circ = \frac{1}{2}$, $\sin 45^\circ = \frac{\sqrt{2}}{2}$, $\sin 60^\circ = \frac{\sqrt{3}}{2}$	3 p
	$\sin^2 30^\circ + \sin^2 45^\circ + \sin^2 60^\circ = \frac{1}{4} + \frac{2}{4} + \frac{3}{4} = \frac{6}{4} = \frac{3}{2}$	2p

SUBIECTUL al II-lea (30 de puncte)

1.	$0*(-2) = 2(0+(-2))+0\cdot(-2)+2=$	3p
	=-4+2=-2	2 p
2.	x * y = xy + 2x + 2y + 4 - 2 =	2p
	= x(y+2)+2(y+2)-2=(x+2)(y+2)-2, pentru orice numere reale x şi y	3 p
3.	x*(-1)=(x+2)(-1+2)-2=x+2-2=x	2p
	(-1)*x = (-1+2)(x+2)-2 = x+2-2 = x = x*(-1), pentru orice număr real x , deci $e = -1$ este elementul neutru al legii de compoziție ,,*"	3 p
4.	$(x+3)(x+3)-2=2 \Leftrightarrow x^2+6x+5=0$	3p
	x = -5 sau $x = -1$	2p
5.	$(\lg x + 2)(\lg(2x) + 2) - 2 = -2 \Rightarrow \lg x + 2 = 0 \text{ sau } \lg(2x) + 2 = 0$	3 p
	$x = \frac{1}{100}$ sau $x = \frac{1}{200}$, care convin	2p
6.	$a*b \in \mathbb{Z} \Leftrightarrow (a+2)(b+2) \in \mathbb{Z}$	2p
	De exemplu, pentru $a+2=\frac{2}{3} \Leftrightarrow a=-\frac{4}{3} \in \mathbb{Q} \setminus \mathbb{Z}$ și $b+2=\frac{3}{2} \Leftrightarrow b=-\frac{1}{2} \in \mathbb{Q} \setminus \mathbb{Z}$, obținem	3 p
	a*b=-1, care este număr întreg	

SUBIECTUL al III-lea (.		uncte)
1.	$A = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix} \Rightarrow \det A = \begin{vmatrix} 1 & 1 \\ 0 & 2 \end{vmatrix} = 1 \cdot 2 - 0 \cdot 1 =$	3р
	=2-0=2	2 p
2.	$M(a) = a \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} a+1 & a \\ 0 & 2a+1 \end{pmatrix}$	3p
	$\det(M(a)) = \begin{vmatrix} a+1 & a \\ 0 & 2a+1 \end{vmatrix} = (a+1)(2a+1), \text{ pentru orice număr real } a$	2p
3.	$M(-2) = \begin{pmatrix} -1 & -2 \\ 0 & -3 \end{pmatrix} \Rightarrow \det(M(-2)) = 3$	2p
	$M^{-1}(-2) = \begin{pmatrix} -1 & \frac{2}{3} \\ 0 & -\frac{1}{3} \end{pmatrix}$	3р
4.	$M(1) \cdot M(2) = \begin{pmatrix} 2 & 1 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} 3 & 2 \\ 0 & 5 \end{pmatrix} = \begin{pmatrix} 6 & 9 \\ 0 & 15 \end{pmatrix} = 3 \begin{pmatrix} 2 & 3 \\ 0 & 5 \end{pmatrix}$	3p
	$A \cdot A + I_2 = \begin{pmatrix} 1 & 3 \\ 0 & 4 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 3 \\ 0 & 5 \end{pmatrix}$, deci $M(1) \cdot M(2) = 3(A \cdot A + I_2)$	2p
5.	$M(a) - 2aA = I_2 - aA = M(-a) \Rightarrow \det(M(a) - 2aA) = (1 - a)(1 - 2a)$	2p
	$(1-a)(1-2a)=1 \Leftrightarrow 2a^2-3a+1=1 \Leftrightarrow a(2a-3)=0$, ceea ce este imposibil dacă a este	
	număr întreg nenul, deci $\det(M(a)-2aA) \neq 1$, pentru orice număr întreg nenul a	3р
6.	$\begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ -4 \end{pmatrix} \Leftrightarrow \begin{cases} x + y = 0 \\ 2y = -4 \end{cases}$	2p
	$x=2$ şi $y=-2$, deci $X=\begin{pmatrix} 2\\ -2 \end{pmatrix}$	3p