World Models

Hao Sun

Mar 2019

Background: RL

• RL considers a discrete-time Markov Decision Process (MDP), defined by $(S, A, P, \rho_0, r, \gamma)$

• A stochastic policy π is $S \times A \rightarrow [0,1]$, is to optimize the expected return $\eta(\pi) = E_{\tau}[\sum_{t=0}^{\infty} \gamma^{t} r(s_{t}, a_{t})]$

Model-Free/ Model-Based

- Model Free (MF): Learning a policy from interactions with the environment directly.
 - Pros:
 - Do not rely on models learned but from samples (learn a Q function)
 - Fast inference
 - Cons:
 - Unstable in optimization
 - Week generalization ability
 - E.g. REINFORCE, DQN, DDPG, A3C ···

Model-Free/ Model-Based

- Model Based (MB): Learning a transition model, or P mentioned above, so that one may use such transition model to optimize a policy.
 - Pros:
 - Learning Q value is hard, but learning transition model is relatively easy (SL)
 - Fast transfer into new environment
 - Cons:
 - Error accumulation
 - E.g. World Models

World Models, David Ha, 2018

• The image of the world around us, which we carry in our head, is just a model. Nobody in his head imagines all the world, government or country. He has only selected concepts, and relationships between them, and uses those to represent the real system.

-Jay Wright Forrester, the father of system dynamics

A bottleneck of MF

- Many MF methods use small neural networks
- Bottlenecked by the credit assignment problem
- It is hard to learn millions of weights of large models

Details:

- MF methods optimize a q-function or q-value estimator, and leverage the trajectory samples collected by running a policy to revise the estimator. (Temporal Difference, TD-methods)
- The process is unstable, especially in case of sparse reward problems.

Solution of World Models

- Back Propagation methods can be used to train large NN based agents efficiently.
- Credit assignment?
 - Split the problem into two parts:
 - Learning a world model using VAE and RNN, with large NN
 - Optimize in the world model using evolution algorithms, with small NN
 - Model based method

The world Model

- Three parts
 - Vision Model
 - Memory Model
 - Controller

Three parts

Vision Module: VAE

- Memory Module:
 RNN (with MDN)
- Controller:

$$a_t = W_c[z_t, h_t] + b_c$$

Putting them together

- observation-> z
- z, a -> h
- [z, h] -> a
- a -> observation

Experiments

- CarRacing-v0, gym
 - Collect 10,000 rollouts from a random policy.
 - Train VAE (V) to encode frames into $z \in R^{32}$.
 - Train MDN-RNN (M) to model $P(z_{t+1}|a_t,z_t,h_t)$.
 - Define Controller (C) as $a_t = W_c[z_t, h_t] + b_c$.
 - Use CMA-ES to solve for a W_c and b_c that maximizes the expected cumulative reward.
- VizDoom

Results

CarRacing

VizDoom

Метнор	Avg. Score
DQN (PRIEUR, 2017)	343 ± 18
A3C (CONTINUOUS) (JANG ET AL., 2017)	591 ± 45
A3C (DISCRETE) (KHAN & ELIBOL, 2016)	652 ± 10
CEOBILLIONAIRE (GYM LEADERBOARD)	838 ± 11
V MODEL	632 ± 251
V MODEL WITH HIDDEN LAYER	788 ± 141
FULL WORLD MODEL	$\textbf{906} \pm \textbf{21}$

Table 1. CarRacing-v0 scores achieved using various methods.

Temperature $ au$	VIRTUAL SCORE	ACTUAL SCORE
0.10 0.50 1.00 1.15 1.30	2086 ± 140 2060 ± 277 1145 ± 690 918 ± 546 732 ± 269	193 ± 58 196 ± 50 868 ± 511 1092 ± 556 753 ± 139
RANDOM POLICY GYM LEADER	N/A N/A	$210 \pm 108 \\ 820 \pm 58$

Table 2. Take Cover scores at various temperature settings.

Cheating behaviors

- Training inside of the dream
- 'Bugs' of the environment
- Iteratively training

References & Extensions

- Ha D , Schmidhuber, Jürgen. World Models[J]. 2018.
- Hafner D, Lillicrap T, Fischer I, et al. Learning Latent Dynamics for Planning from Pixels[J]. 2018.
- https://worldmodels.github.io/
- https://planetrl.github.io/