PURDUE CS47100 SEPT 9, 2019 PROF. JENNIFER NEVILLE

INTRODUCTION TO AI

ADVERSARIAL GAMES

BEHAVIOR FROM COMPUTATION

TYPES OF GAMES

- Many different kinds of games
- Axes:
 - Deterministic vs. stochastic
 - One, two, or more players
 - Zero sum
 - Perfect information (can you see the state)
- Algorithms need to calculate a strategy (policy) which recommends a move from each state

DETERMINISTIC GAMES

- Problem formulation:
 - \triangleright States: S (start at s_0)
 - Players: P={1...N} (usually take turns)
 - Actions: A (may depend on player / state)
 - ▶ Transition Function: SxA → S
 - ► Terminal Test: $S \rightarrow \{t,f\}$
 - ▶ Terminal Utilities: SxP → R
- Solution for a player is a policy: S → A

ZERO-SUM GAMES

Zero-Sum Games

- Agents have opposite utilities (values on outcomes)
- Can then think of outcome as a single value that one maximizes and the other minimizes
- Adversarial, pure competition

General Games

- Agents have independent *utilities* (values on outcomes)
- Cooperation, indifference, competition, and more are all possible
- More later on non-zero-sum games

ADVERSARIAL SEARCH

SINGLE-AGENT TREES 2 0 ... 2 6 ... 4 6

VALUE OF A STATE

Value of a state:
The best achievable outcome (utility) from that state

Non-Terminal States:

MINIMAX VALUES

Terminal States:

$$V(s) = known$$

TIC-TAC-TOE GAME TREE

ADVERSARIAL SEARCH (MINIMAX)

- Deterministic, zero-sum games:
 - Tic-tac-toe, chess, checkers
 - One player maximizes result
 - The other minimizes result
- Minimax search:
 - A state-space search tree
 - Players alternate turns
 - Compute each node's minimax value: the best achievable utility against a rational (optimal) adversary

Minimax values: computed recursively

Terminal values: part of the game

MINIMAX IMPLEMENTATION

```
def max-value(state):
   initialize v = -∞
   for each successor of state:
     v = max(v, min-value(successor))
   return v
```



```
def min-value(state):
   initialize v = +∞
   for each successor of state:
     v = min(v, max-value(successor))
   return v
```

$$V(s') = \min_{s \in \text{successors}(s')} V(s)$$

MINIMAX IMPLEMENTATION (DISPATCH)

```
def value(state):
                     if the state is a terminal state: return the
                       state's utility
                     if the next agent is MAX: return max-value(state)
                     if the next agent is MIN: return min-value(state)
                                                        def min-value(state):
def max-value(state):
                                                          initialize v = +\infty
 initialize v = -\infty
                                                          for each successor of state:
 for each successor of state:
                                                           v = min(v, value(successor))
   v = max(v, value(successor))
                                                          return v
 return v
```

MINIMAX EXAMPLE

MINIMAX PROPERTIES

Optimal against a perfect player. Otherwise?

MINIMAX EFFICIENCY

- Efficient of minimax search
 - Just like (exhaustive) DFS
 - Time: O(bm)
 - Space: O(bm)
- Example: For chess, $b \approx 35$, $m \approx 100$
 - Exact solution is completely infeasible
 - But, do we need to explore the whole tree?

GAME TREE SIZES

Tic-tac-toe: 10⁵

Checkers: 10³¹

Chess: 10¹²³

▶ Backgammon: 10¹⁴⁴

Assume that a computer can evaluate 1 million board configurations per second.

Then it would take 0.1 seconds to search the entire tic-tac-toe game tree but it would still take 10¹⁸ years to search the full checkers tree.

Go: 10³⁶⁰

GAME TREE PRUNING

MINIMAX EXAMPLE

MINIMAX PRUNING

ALPHA-BETA PRUNING

- General configuration (MIN version)
 - ▶ When computing the MIN-VALUE at some node *n*
 - We loop over *n*'s children
 - ▶ n's estimate of the children's min is dropping
 - ▶ Who cares about *n*'s value? MAX
 - Let a be the best value that MAX can get at any choice point along the current path from the root
 - If *n* becomes worse than a, MAX will avoid it, so we can stop considering *n*'s other children (it's already bad enough that it won't be played)
- MAX version is symmetric

MAX

MIN

MAX

MIN

Alpha-Beta Implementation

```
\alpha: MAX's best option on path to root \beta: MIN's best option on path to root
```

```
def max-value(state, \alpha, \beta):
   initialize v = -\infty
   for each successor of state:
    v = \max(v, value(successor, \alpha, \beta))
    if v \ge \beta return v
    \alpha = \max(\alpha, v)
   return v
```

```
def min-value(state , \alpha, \beta):
    initialize v = +\infty
    for each successor of state:
    v = \min(v, value(successor, \alpha, \beta))
    if v \le \alpha return v
    \beta = \min(\beta, v)
    return v
```

ALPHA-BETA PRUNING PROPERTIES

- This pruning has **no effect** on minimax value computed for the root
- Values of intermediate nodes might be wrong
 - Important: children of the root may have the wrong value
 - > So the most naïve version won't let you do action selection
- Good child ordering improves effectiveness of pruning
- With "perfect ordering":
 - Time complexity drops to O(bm/2)
 - Doubles solvable depth
 - Full search of, e.g. chess, is still hopeless...
- This is a simple example of **metareasoning** (computing about what to compute)

RESOURCE LIMITS

RESOURCE LIMITS

- Problem: In realistic games, cannot search to leaves
- Solution: Depth-limited search
 - Instead, search only to a limited depth in the tree
 - Replace terminal utilities with an evaluation function for non-terminal positions
- **Example:**
 - Suppose we have 100 seconds, can explore 10K nodes / sec
 - So can check 1M nodes per move
- Guarantee of optimal play is gone
- More plies makes a BIG difference
- Use iterative deepening for an anytime algorithm

DEPTH MATTERS

- Evaluation functions are always imperfect
- The deeper in the tree the evaluation function is buried, the less the quality of the evaluation function matters
- An important example of the tradeoff between complexity of features and complexity of computation

EVALUATION FUNCTIONS

EVALUATION FUNCTIONS

Evaluation functions score non-terminals in depth-limited search

- Ideal function: returns the actual minimax value of the position
- In practice: typically weighted linear sum of features:

$$Eval(s) = w_1 f_1(s) + w_2 f_2(s) + \dots + w_n f_n(s)$$

e.g. $f_1(s) = \text{(num white queens - num black queens), etc.}$