Отчет о выполнении лабораторной работы 1.2.3

Калашников Михаил, Б03-205

Целью работы является измерение момента ряда тел и сравнение результатов с расчетами по теоретической формуле, проверка аддитивности моментов инерции.

В работе использовались трифилярный подвес, счетчик числа колебаний с секундомером, набор тел.

1. Перед началом измерений периодов колебаний я измерил параметры установки (табл. 1).

Расстояние до точек подвеса	
подвижной платформы, R	$115.5 \pm 0.5 \ mm$
Расстояние до точек подвеса	
неподвижной платформы, r	$30.2 \pm 0.3 \ mm$
Масса ненагруженной	
платформы, m_0	$1026 \pm 0.5 \ g$
Радиус подвижной	
платформы, R_0	$124.5 \pm 1 \ mm$
Длина нити	
подвеса, L	$2150 \pm 10 \ mm$
Количество делений на	
подвижной платформе, N_0	25

Таблица 1: Параметры установки

На основе этих данных может быть вычислена константа установки k и ее погрешность σ_k по формуле $\sigma_Y = \sqrt{\sum_{i=1}^N \left(\frac{\delta Y}{\delta X_i} \sigma_{X_i}\right)^2}.$

$$z_0 = \sqrt{L^2 - (R - r)^2} = 2148 \ mm$$

$$\sigma_{z_0} = \frac{1}{z_0} \sqrt{L^2 \sigma_L^2 + (R - r)^2 (\sigma_R^2 + \sigma_r^2)} = 10 \ mm$$

$$k = \frac{gRr}{4\pi^2 z_0} = 4.03 \cdot 10^{-4} \frac{m^2}{s^2}$$

$$\sigma_k = k\sqrt{\left(\frac{\sigma_R}{R}\right)^2 + \left(\frac{\sigma_r}{r}\right)^2 + \left(\frac{\sigma_{z_0}}{z_0}\right)^2} = 0.05 \cdot 10^{-4} \frac{m^2}{s^2}$$

Измеренное время, t, s	Кол-во колебаний, N	Период колебаний $T_0,\ s$
92.7	21	4.41
88.2	20	4.41
88.0	20	4.40
88.0	20	4.40
88.2	20	4.41

Таблица 2: Измерение момента инерции ненагруженного подвеса

2. Измерим период колебаний ненагруженного подвеса. Результат занесем в таблицу 2.

Период найдем как среднее значение, а погрешность определим как среднеквадратическое отклонение. Момент инерции вычисляется по формуле $I=kmT^2$.

$$T_0 \pm \sigma_{T_0} = 4.41 \pm 0.002 \ s$$

 $I_0 \pm \sigma_{I_0} = 8.04 \pm 0.10 \ g \cdot m^2$

С другой стороны, момент инерции платформы может быть найден как момент инерции диска: $I_0=\frac{1}{2}mR_0^2=7.95~g\cdot m^2$. Значение попадает в пределы погрешности.

3. Из набора тел выберем два тела: кольцо и диск с небольшим цилиндром в центре. Измерим период колебаний подвеса и момент инерции системы с каждым из тел по отдельности и с двумя телами вместе.

Диск $(m_1 = 584.2 \pm 0.1 \ g)$		Кольцо $(m_2 = 737.5 \pm 0.1 \ g)$		Диск + Кольцо				
t, s	N	T_{01}, s	t, s	N	T_{02}, s	t, s	N	$T_{012}, \ s$
86.7	22	3.94	85.0	20	4.25	79.7	20	3.99
78.8	20	3.94	93.7	22	4.26	79.7	20	3.99
86.6	22	3.94	85.3	20	4.27	79.6	20	3.98
82.7	21	3.94	85.2	20	4.26	79.6	20	3.98
79.0	20	3.95	85.3	20	4.27	103.4	26	3.98
$T_{01} = 3.94 \pm 0.002 \ s$		$T_{02} = 4.26 \pm 0.004 \ s$		$T_{012} = 3.98 \pm 0.002 \ s$				
$I_{01} = 10.10 \pm 0.12 \ g \cdot m^2$ $I_{02} = 12.93 \pm 0.15 \ g \cdot m^2$		$2.93 \pm 0.15 \ g \cdot m^2$	$I_{012} = 15.04 \pm 0.18 \ g \cdot m^2$					

Таблица 3: Измерение момента инерции нагруженного подвеса

Теперь можно вычислить моменты инерции тел и убедиться, что аддитивность выполнена в пределах погрешности:

$$I_1 = I_{01} - I_0 = 2.06 \pm 0.22 \ g \cdot m^2$$

$$I_2 = I_{02} - I_0 = 4.89 \pm 0.25 \ g \cdot m^2$$

$$I_{12} = I_1 + I_2 = 6.95 \pm 0.37 \ g \cdot m^2$$

$$I_{12} = I_{012} - I_0 = 7.00 \pm 0.28 \ g \cdot m^2$$

Диск				
Радиус диска, R_d	85.2 mm			
Толщина диска, W_d	3.25 mm			
Радиус центрального цилиндра, г	6 mm			
Высота центрального цилиндра, h	27 mm			
Кольцо				
Внешний радиус кольца, R_{ex}	83.2 mm			
Внутренний радиус кольца, R_{in}	$78.2 \ mm$			

Таблица 4: Геометрические размеры исследуемых тел

Произведем расчет моментов инерции обоих тел теоретически. Занесем геометрические размеры тел в таблицу.

Момент инерции диска можно найти как сумму моментов инерций двух сплошных цилиндров:

$$m_{1a} = \frac{V_{1a}}{V_{1a} + V_{1b}} m_1 = \frac{R_d^2 W_d}{R_d^2 W_d + r^2 h^2} m_1, \ m_{2a} = \frac{V_{2a}}{V_{1a} + V_{1b}} m_1 = \frac{r^2 h}{R_d^2 W_d + r^2 h^2} m_1$$
$$I_{1th} = \frac{1}{2} m_{1a} R_d^2 + \frac{1}{2} m_{1b} r^2 = \frac{R_d^4 W_d + r^4 h}{R_d^2 W_d + r^2 h} \frac{m_1}{2} = 2.04 \ g \cdot m^2$$

Момент инерции кольца вычисляется по формуле:

$$I_{2th} = m_2 \frac{R_{ex}^2 + R_{in}^2}{2} = 4.81 \ g \cdot m^2$$

С учетом погрешности, моменты инерции, полученные в теории и на практике, совпадают.

4. Поместим на платформу диск, разрезанный по диаметру. Будем измерять период колебаний, постепенно раздвигая половинки. На основе периода и массы половинок ($m_3=1527.1\ g$) рассчитаем момент инерции системы, в зависимости от h. Результаты занесем в таблицу.

Расстояние до	Измеренное	Кол-во	Период,	Момент	
центра, h, cm	время, t, s	колебаний, N	T_{03}, s	инерции $I_{03}, \ g \cdot m^2$	
44.82	53.0	15	3.53	12.82	
41.02	70.5	20	0.00	12.02	
59.76	57.5	15	3.83	15.09	
95.10	57.5 15	3 .0 3	10.03		
69.72	61.2	15	4.08	17.13	
03.12	61.2	15		17.10	
79.68	65.2	15	4.34	19.38	
79.00	65.1	15			
89.64	69.6	15	4.64	22.15	
	83.5	18	4.04	22.10	

Таблица 5: Измерение момента инерции разрезанного диска

Построим график зависимости $I_{03}(h^2)$: проведем через полученные точки прямую с помощью МНК. Момент инерции диска может быть выражен следующим образом:

$$I_3 = I_{03}(0) - I_0 = 1.59 \ g \cdot m^2.$$

С другой стороны ($R_3 = 45.51 \ mm$):

$$I_{3th} = \frac{1}{2}m_3R_3^2 = 1.58 \ g \cdot m^2.$$

Точность составляет 0.6%.

Рис. 1: График зависимости $I(h^2)$