Topic One | Introduction to Poly Degree and Types

- 1. Which of the following expressions is a polynomial?
 - **a** $3x^{\frac{1}{2}} 4x + 3$ **b** $4x^2 - 3\sqrt{x} + 5$
 - **c** $3x^2y 2xy + 5x^4$ **d** $2x^4 + \frac{3}{x^2} - 1$
- Which of the following expressions is a polynomial of degree two?
 - **a** $4x^2 2x + 5$
 - **b** $3x^{\frac{2}{3}} + 53\sqrt{x} + 2$
 - c $2xy^2 3xy + 2x^2y + 6$
 - **d** none
- The number of terms is a trinomial and a 3. monomial polynomial
 - **a** 1, 3
 - **b** 3, 2
 - c 3, 1
 - **d** 3, 3
- **4.** Bi-quadratic polynomial is based on which type of polynomial?
 - a Number of terms
 - **b** Number or degree
 - c Degree of polynomial
 - **d** Either a or b
- **5.** A rectangular field has its length and breadth are in the ratio 3:5. To find its sides when area of the field is 1500 square units, which type of polynomial will be formed? a Linear polynomial
 - **b** Quadratic polynomial
 - c Bi-quadratic polynomial
 - **d** None
- **6.** The degree of the polynomial $5x^3 - 6x^3y + 4y^2 - 8$ is
 - **a** 3
 - **b** 2
 - **c** 4
 - d Can't determined
- The maximum number of terms a polynomial of degree can have
 - **a** *n*
 - **b** n + 1
 - c n + 2
 - d Can't say

Polynomials

lynomials of Polynomial

- **8.** -7 is
 - a not a polynomial
 - **b** constant polynomial
 - c Polynomial of degree
 - d Both 'b' and 'c'
- **9.** $x^4 + x^3 + 7$ is an example of quadratic polynomial?
 - **a** True
 - **b** False
 - c Can't say
 - **d** none
- **10.** What is the coefficient of x^3 in the polynomial $x^2 + 5x + 6$?
 - a 1
 - **b** 2
 - **c** (
 - d can't say
- 11. Consider the statements given below

Assertion 2x - 6 is a linear polynomial and **Reason** $F(n) = ax^2 + bx + c$; is general form of quadratic polynomial.

Which of the following is correct.

- **a** A is true and R is correct explanation of A.
- **b** A and R both are true and R is not correct explanation of A.
- **c** A is true and R is false.
- d A and R both are false.
- **12.** Which of the following expressions is a polynomial of degree two?

a
$$4x^2 - 2x + 5$$

b
$$3x^{\frac{2}{3}} + 53\sqrt{x} + 2$$

c
$$2xy^2 - 3xy + 2x^2y + 6$$

- **d** none
- **13.** $x^4 + x^3 + 7$ is an example of quadratic polynomial?
 - **a** True
 - **b** False
 - c Can't say
 - **d** none
- **14.** The number of terms is a trinomial and a monomial polynomial
 - **a** 1, 3
 - **b** 3, 2
 - **c** 3, 1
 - **d** 3, 3

Topic Two | Zeroes of a Polyno Factorization and

- 1. A factor of $x^3 1$ is
 - $\mathbf{a} \quad x-1$ **b** $x^2 + x + 1$
 - **c** either 'a' or 'b' **d** none
- **2.** It x 2 is a factor of $x^2 + 3ax 2a$, then a is equal to?

 - **b** -2 c 1 **d** -1
- **3.** If (x + a) is a factor of P(x), then P(-a) is?
 - a 1 **b** 0
 - **c** a
- **4.** (x + 1) is a factor of $x^n + 1$ only if
 - **a** *n* is odd integer
 - **b** *n* is even integer **c** *n* is a negative integer
 - **d** *n* is a positive integer
- **5.** If both (x-2) and $\left(x-\frac{1}{2}\right)$ are factors of

$$Px^2 + 5x + r$$
 thin?
a $p = r$

- **b** p + r = 0
- **c** 2p + r = 0
- **d** p + 2r = 0
- **6.** If $(x^2 1)$ is a factor of $ax^4 + bx^3 + cx^2 + dx + c$ then the relation among a, b, c, d and e is?
 - **a** a + c + e = b + d
 - **b** b + d > a + c + e
 - **c** a + c + e > b + d
 - d none
- 7. Given that x = 2 is a solution of $x^3 7x + 6 = 0$.

The other solution are

- **a** -1, 3
- **b** 1, -3
- **c** 1, -2
- **d** -1, -2
- **8.** The zeroes of polynomial $x^2 2x$ are?
 - **a** 2
 - **b** 0
 - **c** 2 and 0
 - **d** 5

mials

Remainder Theorem

- **9.** What will be values of a and b so that the polynomial $x^3 + 10x^2 + ax + b$ is exactly divisible by x 1 as well as x 2?
 - **a** a = 37, b = 2b
 - **b** a = -37, b = 2b **c** a = 37, b = -2b**d** a = -37, b = -2b
- 10. For what value of a the polynomials $ax^3 + 4x^2 + 3x 4$ and $x^3 4x + a$. When
 - $ax^3 + 4x^2 + 3x 4$ and $x^3 4x + a$. When divided by (x 3) leave the same remainder?
 - **a** a = 1 **b** a = -1
 - **c** a = 0 **d** a = -2
- 11 The remainder when
- **11.** The remainder when
 - $P(x) = 4x^4 3x^3 2x^2 + x 7$
 - is divided by (x 1) is **a** -7
 - **b** -6
 - **c** 7
 - **d** 6
- **12.** If (x 1) and (x + 1) exactly divides $ax^2 + 3bx + 1$,
 - then a and b are?
 - i a anu b are:
 - **a** a = 0, b = -1
 - **b** a = b = -1
 - **c** a = -1, b = 0
 - **d** a = 1, b = -1
- **13.** If (x + a) is a factor of polynomial p(x) then
 - P(a) = 0.
 - a Trueb False
 - 0 1 4150
 - **c** Can't say
 - **14.** If $x^{49} + 49$ is divided by x + 1, the remainder is
 - 50.
 - **a** True
 - **b** False
 - c partially trued none
- **15.** A polynomial of degree n has at most n zeroes.
 - **a** True
 - **b** False
 - **c** Can't say
 - **d** none

Topic Three | Quadratic Equation using a continuous c

1.
$$f(x) = ax^2 + bx + c = 0$$
, is a quadratic equation if?

a
$$a = 0$$

b
$$a \neq 0$$

d
$$b = 0$$

a
$$b^2 \ge 4ac$$

b $b^2 \le 4ac$

c
$$b^2 = ac$$
 d none

3. Two factors of
$$6x^2 + 17x + 5$$
 are?

a
$$(3x-1)(2x-5)$$

b
$$(3x+1)(2x-5)$$

c
$$(2x + 5)(3x - 1)$$

d
$$(3x+1)(2x+5)$$

4. The factors of
$$15x^2 - 26x + 8$$
 are?

a
$$(3x-4)(5x+2)$$

b
$$(3x-4)(5x-2)$$

c
$$(3x + 4)(5x - 2)$$

d
$$(3x+1)(2x+5)$$

If sum of the roots of an equation (quadratic) is 5 and product of the roots is 6. Then quadratic equation is?

a
$$3x^2 - 12x + 18 = 0$$

b
$$3x^2 - 15x + 18 = 0$$

$$c 2x^2 - 10x + 14 = 0$$

d
$$x^2 - 5x + 8 = 0$$

The quadratic equation $x^2 - 4x + 3 = 0$ Using splitting the middle term for

factorization, then value of middle term is pair after splitting is?

b
$$(-1, -3)$$

c
$$(1, -3)$$

d
$$(3,-1)$$

7. The roots of quadratic equation $\sqrt{3}x^2 + 11x + 6\sqrt{3} = 0$ is obtained by using the factors?

a
$$(x - 3\sqrt{3})(\sqrt{3}x + 2)$$

b
$$(x - 3\sqrt{3})(\sqrt{3}x - 2)$$

c
$$(x + 3\sqrt{3})(\sqrt{3}x - 2)$$

d
$$(x + 3\sqrt{3})(\sqrt{3}x + 2)$$

on (Basic) ng Splitting the Middle Term

8. If the sum of the roots of the quadratic equation is 4 and product of the roots is 12.

Then the equation is?

- **a** $x^2 + 4x + 3 = 0$
- **b** $x^2 4x 12 = 0$ **c** $3x^2 - 12x + 9 = 0$
- **d** $3x^2 + 12x + 9 = 0$
- **9.** By using remainder theorem, the quadratic equation $3x^2 24x + 36 = 0$ has roots 6 and 2.

The given statement is

- **a** True
- **b** False
- **c** can't say
- **d** none
- 10. For roots of a quadratic equation to be real if and only if?a b² ≥ 4ac
 - **b** $b^2 \le 4ac$
 - $c b^2 = ac$
 - **d** none
- 11. Match the following

(A) If α and β are roots of

quadratic equation.

List I List II

quadratic equation. Then

(B) For root of a quadratic

1. D < 0

- (B) For root of a quadratic equation to be complex

 2. $\alpha + \beta = -\frac{b}{a}$ (C) Product of roots of a

 3. ac
- then which of the following is true.
 - **a** A-1, B-2, C-3
 - **b** A-2, B-1, C-3
 - **c** A-2, B-3, C-1
- **d** None
- **14.** If $x^3 + \frac{1}{x^3} = 110$, then value of $x + \frac{1}{x}$ is?
 - **a** 5
 - **b** 10
 - **c** 15
 - **d** 17
- **15.** If a + b + c = 4, ab + bc + ca = 5 and a + b + c = 0 then value of $a^3 + b^3 + c^3$ is equal to?
 - **a** 0
 - **b** 4
 - **c** 3*abc*
 - **d** 2

⊙ Topic Four | Algebraic Ident

1.
$$x^3 + y^3 + z^3 = 3xyz$$
, if and only if

a
$$x = y = z$$

b
$$x + y = z$$

c $x + y = -z$

2.
$$a^3 - b^3 = (a + b)(a^2 - ab + b^2)$$
. The given identity is?

3. If
$$a + b + c = 0$$
, then $a^3 + b^3 + c^3 - 3abc$ is equal to?

d None

$$a^2 + b^2 + c^2 - ab - bc - ca$$

5. Value of 101×99 can be calculated using which of the following algebraic identify?

a
$$a^2 + b^2 + 2ab = (a + b)^2$$

b $a^2 + b^2 = (a + b)^2 - 2ab$

$$(a + b)(a - b) = a^2 - b^2$$

c
$$(a+b)(a-b) = a^2 - b^2$$

6. If
$$x + \frac{1}{x} = 13$$
, then value of $x^2 + \frac{1}{x^2}$ is equal to?

7. Square root of the given expression
$$\frac{(5)^4 - (2)^4}{(5)^2 + (2)^2}$$
 is?

a
$$\sqrt{7}$$

b
$$\sqrt{3}$$
 c $\sqrt{21}$

d
$$\sqrt{29}$$

8. Value of
$$\frac{(1.5)^2 + (4.7)^2 + 2 \cdot (1.5)^2 (1.7)}{6.2}$$
 is equal to?

ities

9. If
$$P = (2 - a)$$
, then value of $a^3 + 6ap + p^3 - 8$ is?

- **a** 0
- **b** 1
- **c** 2 **d** 3
- **10.** If (a + b + c) = 9 and ab + bc + ca = 23, then value of $a^3 + b^3 + c^3 - 3abc$ is equal to?

 - **a** 108 **b** 207

 - **c** 669 **d** 729
- 11. The maximum number of terms a polynomial of degree can have
 - **a** *n*
 - **b** n + 1**c** n + 2
 - d Can't say
- **12.** Match the following

List I List II

A.
$$98 \times 102$$
 equals $1. a^3 + b^3 + c^3 - 3abc$

3.
$$\frac{1}{2}(a+b+c)\{(a-b)^2 + (b-c)^2 + (c-a)^2\}$$
 2. 18

C. If
$$a^{1/3} + b^{1/3} + c^{1/3} = 0$$
 3. 9996 then

D.
$$(-1)^3 - (2)^3 + (3)^3 = 0$$
 4. $(a + b + c)^3 = 27abc$

Then which of the following is true?

- a A-1, B-2, C-3, D-4
- **b** A-3, B-1, C-4, D-2 **c** A-2, B-4, C-1, D-3
- **d** A-4, B-2, C-1, D-3
- **13.** If $\frac{a}{b} + \frac{b}{a} = 1$, then value of $a^3 + b^3$ is?

 - a l
 - b 1
 - **c** 1/2
- **14.** If $x^3 + \frac{1}{x^3} = 110$, then value of $x + \frac{1}{x}$ is?
 - - **b** 10
 - **c** 15
 - **d** 17
- **15.** If a + b + c = 4, ab + bc + ca = 5 and a + b + c = 0then value of $a^3 + b^3 + c^3$ is equal to?
 - **a** 0
 - **b** 4
 - **c** 3*abc*
 - **d** 2