

Introduction to Artificial Intelligence

Jaderick P. Pabico

Institute of Computer Science, College of Arts and Sciences University of the Philippines Los Baños, College 4031, Laguna

CMSC 170 – Introduction to Al 2nd Semester 2009-2010

• Number of inputs = i

..

Input Layer

• Number of outputs = k

. . .

Output Layer

How do we get from input to output?

• Hidden layer: number of nodes = j

Nodes at input layer are connected to nodes at hidden layer

Nodes at hidden layer are connected to nodes at output layer

A node at the hidden layer (3rd node)

x are inputs, a are weights

A node at the hidden layer (3rd node)

x are inputs, a are weights

A node at the hidden layer (3rd node)

x are inputs, a are weights

A node at the output layer (5th node)

y are outputs from the hidden nodes, b are weights

The output layer is compared to the target values

• The difference between z and t is the error e

$$\longrightarrow Z_2$$
?

$$\longrightarrow Z_3$$
 ? t_3

Output Layer

Target values

$$e_{1} = z_{1} - t_{1}$$

$$e_{2} = z_{2} - t_{2}$$

$$e_{3} = z_{3} - t_{3}$$

$$e_k = z_k - t_k$$

Error

• The error *E* contributed by the *k*th output is therefore:

$$dE/dz_k = z_k - t_k$$

The kth output with respect to the kth v:

$$\frac{\mathrm{d}z_{k}}{\mathrm{d}v_{k}} = z_{k} \left(1 - z_{k}\right)$$

• Therefore, the error *E* contributed by the *k*th *v* is:

$$dE/dv_{k} =$$

$$dE/dz_{k} \times dz_{k}/dv_{k} =$$

$$(z_{k} - t_{k}) z_{k} (1 - z_{k})$$

• The value of v_k with respect to $b_{j,k}$ is:

$$\frac{dv_{k}}{db_{0,k}} = 1$$

$$\frac{dv_{k}}{db_{j,k}} = y_{j}$$

For bias weight

• The value of v_k with respect to y_j is:

$$dv_k/dy_j = b_{j,k}$$

• Therefore, the error E contributed by $b_{j,k}$ is:

$$dE/db_{j,k} = dE/dz_k \times dz_k/dv_k \times dv_k/db_{j,k}$$

And the error E contributed by y_i is:

$$dE/dy_{j} = dE/dz_{k} \times dz_{k}/dv_{k} \times dv_{k}/dy_{j}$$

• The value of y_j with respect to u_j is:

$$dy/du_j = y_j (1 - y_j)$$

• The value of u_j with respect to $a_{i,j}$ is:

$$du/da_{0,j} = 1$$

$$du/da_{i,i} = x_{i}$$

For bias weight

Assignment:

$$dE/du_j = ?$$

$$dE/da_{i,j} = ?$$