Dynamic Analysis of Railway tracks with and without disabled fasteners and Ballast

M Dheeraj Varma(ME19MTECH11008)

Sachin Garg(ME19MTECH11010)

Tharun Reddi(ME19MTECH11011)

Patil Ajiket J (ME19MTECH11013)

M Anand Kumar (ME19MTECH 11027

Introduction to Rail fastening systems

- A Rail fastening system is a means of fixing rails to railroad ties or sleepers
- Rail fastening systems typically include rail anchors, tie plates, chairs and track fasteners
- Rail fasteners keeps the rails fastened to the sleepers by transferring the forces
- They provide a proper slope (1:20, 1:40) of the rail foot in the transverse plane and thus prevent the rail from longitudinal movement
- Rail fasteners also damp vibrations and noise from the rails

Layout of Railway Track

Rail Track Fastening components

Functions of Rail Fastenings

- Hold rails securely in the rail seat
- Limit the rotation of the rail about the outer edges of the rail foot
- Minimise longitudinal movement of rails through creep and thermal forces
- Assist in retention of track gauge
- Prevent damage to the rail

What is Disabled and without Disabled Structure?

- We know that rails are attached to sleeper with the help of fastening components. Load of the railway comes onto the track, goes to sleeper and ballast and ultimately goes to ground.
- If in case the rail fastening gets loosened or the ballast which is in between the sleepers and below it gets collapsed or subsided, the resistance which they(rail fastening and ballast) offer gets reduced, and thus it increases the chances of derailment.
- In other words if rail fastening and ballast are replaced by spring and damper, loosening of fastening and collapsing of ballast leads to decrease their stiffness and damping value. Hence they will carry less load and more vibrations will be there.
- So disabled structure means loosening of fastening and collapsing of ballast, otherwise the structure is non-disabled.

CAD MODELS (Isometric view)

Passenger Car running on track

Front View

TOP view

Side View

Explode View

Components of the Railway track system

- 1) Carriage
- 2) Suspension II
- 3) Bogie frame
- 4) Suspension I
- 5) Wheelset
- 6) Rails
- 7) Sleepers
- 8) Ballast
- 9) Roadbed

Mathematical Modelling

 The model is designed as a multi (3 DOF system)

The equation of motion is

- $M\ddot{X} + C\dot{X} + KX = F_0$
- The masses are m1=Ballast and Roadbed m2=Sleepers m3=Rails

Equations of motion

Applying Generalized Newton's second law of motion

$$m_3\ddot{x}_3 = F_0 - k_3(x_3 - x_2) - C_3(\dot{x}_3 - \dot{x}_2)$$

$$m_2\ddot{x}_2 = -k_2(x_2 - x_1) - C_2(\dot{x}_2 - \dot{x}_1) + k_3(x_3 - \dot{x}_2) + C_3(\dot{x}_3 - \dot{x}_2)$$

$$m_1\ddot{x}_1 = k_2(x_2 - x_1) + C_2(\dot{x}_2 - \dot{x}_1) - k_1x_1 + C_1\dot{x}_1$$

The irregularities of the track are considered in the forcing term as the wave form of the sample irregularities from zhai et al.

Simulink Model

Displacement, Velocity and Acceleration of Rails

Displacement, Velocity and Acceleration of Sleepers

Displacement, Velocity and Acceleration of Ballast and Roadbed

Observations

- The displacements, velocity and acceleration are all in phase for Rails, Sleepers, Ballast and Roadbed
- The signals for Sleepers are uniform denoting the uniform spacing between the sleepers
- The disabled fasteners lower the stiffness and damping coefficients of the tracks

Vehicle track system excitation model

Normal Load without component failure

Results for Disabled fasteners

Table 4 Maximum track deformations that occurred

Disabled supporter Number	Gauge widening		Cross level		Turnover angle	
	Value (mm)	Increase (%)	Value (mm)	Increase (%)	Value (deg)	Increase (%)
1	2.064	63.680	0.224	9.804	0.439	9.476
2	3.506	178.033	0.258	26.471	0.540	34,663
3	5.683	350.674	0.276	35.294	0.691	72.319
4	9.191	628.866	0.374	83.333	0.850	111.970
5	12.790	914.274	0.584	186.275	1.042	159.850
6	22.124	1654.481	1.086	432.353	1.246	210.723

Maximum of L/V for disabled supporters

Maximum of $\frac{\Delta V}{V}$ for disabled supporters

Duration of L/V for disabled supporters

Maximum gauge widening for disabled fastener

Conclusion

- The disabled supports under the rails have significant effect on the derailment coefficients and contact situation of the wheels and the rails
- The derailment coefficients $\frac{L}{V}$, $\frac{\Delta V}{V}$ and the duration of $\frac{L}{V}$ increase quickly with the increasing number of symmetrical or right disabled supporters under the rails
- The track gauge widening increases quickly with increase in number of disabled supports
- The coupled multi DOF equations are solved with ODE-45 in simulink

References

- Driveline lecture notes by Dr. Ashok Kumar Pandey
- Xiao, X., Jin, X., and Wen, Z. (August 12, 2006). "Effect of Disabled Fastening Systems and Ballast on Vehicle Derailment." ASME. *J. Vib. Acoust*. April 2007; 129(2): 217–229. https://doi.org/10.1115/1.2424978
- Wanming Zhai, Kaiyun Wang & Chengbiao Cai (2009) Fundamentals of vehicle—track coupled dynamics, Vehicle System Dynamics, 47:11, 1349-1376, DOI: 10.1080/00423110802621561
- Zhai, W. M., 1996, "Two Simple Fast Integration Methods for Large-Scale Dynamic Problems in Engineering," Int. J. Numer. Methods Eng., **39**4, pp. 4199–4214.
- Matlab help