РЕШЕНИЕ ЗАДАЧ ГАЗОВОЙ ДИНАМИКИ С ИСПОЛЬЗОВАНИЕМ НЕЯВНОЙ СХЕМЫ МЕТОДОМ ЛАКСА-ФРИДРИХСА

Аннотация. В данной работе представлен вычислительный алгоритм для решения одномерной системы уравнений Эйлера газовой динамики. Неявная схема Годуновского типа положена в основу алгоритма и метод Лакса-Фридрихса для вычисления дискретных потоков. В работе представлено решение задачи Римана с начальными условиями Лакса и Сода.

Ключевые слова: уравнения Эйлера, неявная схема Годунова, задача Сода, задача Лакса, задача Римана о распаде произвольного разрыва, метод Лакса-Фридрихса.

Введение. Методы вычислительной математики всегда являлись эффективными средствами для решения большинства задач из прикладной области. В том числе задачи газовой динамики имеют очень большую важность и актуальность. Одним из наиболее эффективных численных методов решения задач газовой динамики является метод Лакса-Фридрихса.

Основной идеей метода Лакса-Фридрихса является комбинация неявной и явной разностных схем для аппроксимации членов по времени и пространству соответственно. Это позволяет получить численное решение, которое сочетает в себе преимущества обоих подходов: стабильность неявной схемы и точность явной схемы.

Одной из основных актуальных областей применения метода Лакса-Фридрихса является моделирование различных газодинамических процессов, таких как распространение ударных волн, сжатие газов и т.д.

Этот метод актуален и до сих пор очень эффективен тем, что позволяет получить быстрое и точное численное решение задачи Римана в условиях, когда аналитические методы недостаточно эффективны или не применимы.

Существует множество исследований, посвященных различным аспектам метода Лакса-Фридрихса. В частности, исследования направлены на улучшение сходимости метода, увеличение его эффективности, адаптацию к различным типам уравнений и условий задачи. Например, в работе [1] приводится гибридная схема для численного решения уравнения Эйлера. В которой используются схемы Лакса-Вендрофа и Лакса-Фридрихса.

Проблема исследования. Раздел газовой динамики имеет большой спектр различных задач. Основную цель данной работы составляет создание вычислительного алгоритма для решения задач из области CFD.

Одной из основных задач является расчет течения газа с конкретными параметрами в некоторой области. Для описания данной задачи используются уравнения Эйлера. В одномерном случае они записываются следующим образом [2]:

$$\begin{cases} \frac{\partial \rho}{\partial t} + \frac{\partial(\rho u)}{\partial x} = 0, \\ \frac{\partial(\rho u)}{\partial t} + \frac{\partial(\rho u^2 + p)}{\partial x} = 0, \\ \frac{\partial(\rho E)}{\partial t} + \frac{\partial((\rho E + p)u)}{\partial x} = 0, \end{cases}$$

$$p = \rho \varepsilon (\gamma - 1).$$
(1)

Здесь ρ — плотность, p — давление, u — скорость, $E = \varepsilon + \frac{u^2}{2}$ — полная энергия, ε — внутренняя энергия, (2) — уравнение состояния идеального газа.

Для решения уравнения (1) будет использоваться неявная разностная схема [3]:

$$\frac{U_m^{k+1} + U_m^k}{\Delta t} + \frac{F_{m+\frac{1}{2}}^{k+1} - F_{m-\frac{1}{2}}^{k+1}}{\Delta x} = 0,$$
(3)

$$U = \begin{pmatrix} \rho \\ \rho u \\ \rho E \end{pmatrix}, \quad F(U) = \begin{pmatrix} \rho u \\ \rho u^2 + p \\ (\rho E + p)u \end{pmatrix}. \tag{4}$$

В уравнениях (4) представлены консервативные переменные вектора U и элементы вектора потоков F(U). Существует множество вариантов нахождения дискретных потоков между ячейками. Например, в работе Годунова для нахождения этих потоков было предложено решение задачи о распаде произвольного разрыва [3].

Материалы и методы. Для того чтобы избежать решения задачи о распаде произвольного разрыва, в настоящей работе использовался метод Лакса-Фридрихса [3], особенность которого — добавление искусственной вязкости для избежания решения задачи Римана на границе раздела каждой ячейки сетки:

$$F_{m+\frac{1}{2}}^{k} = \frac{1}{2} \left(F_{m}^{k} + F_{m+1}^{k} \right) + \frac{\lambda_{\max}}{2} \left(U_{m}^{k} + U_{m+1}^{k} \right), \tag{5}$$

где

$$\lambda_{max} = \max\{|u_{m}| + c_{m}, |u_{m+1}| + c_{m+1}\},\ c_{m} = \sqrt{\frac{\gamma p_{m}}{\rho_{m}}}. \tag{6}$$

Потоки Лакса-Фридрихса вычисляются следующим образом:

$$F_{m+\frac{1}{2}}^{k+1} = F_{m+\frac{1}{2}}^{k} + \frac{1}{2} \left(\frac{\partial F}{\partial U} - \lambda_{max} E \right) \Big|_{m} \left(U_{m+1}^{k+1} - U_{m+1}^{k} \right) +$$

$$+ \frac{1}{2} \left(\frac{\partial F}{\partial U} - \lambda_{max} E \right) \Big|_{m} \left(U_{m}^{k+1} - U_{m}^{k} \right),$$
(7)

где Е – единичная матрица.

Используя переобозначения:

$$U_m^{k+1} - U_m^k = \Delta U_m,$$

$$\frac{1}{2} \left(\frac{\partial F}{\partial U} - \lambda_{max} E \right) \begin{vmatrix} (U_m^{k+1} - U_m^k) \\ m+1 \end{vmatrix} = A_{m+1}^-,$$

$$\frac{1}{2} \left(\frac{\partial F}{\partial U} + \lambda_{max} E \right) \begin{vmatrix} (U_m^{k+1} - U_m^k) \\ m \end{vmatrix} = A_m^+$$
(8)

и преобразования неявной схемы (3), получим систему уравнений [4]:

$$-A_{m-1}^{+} \Delta U_{m-1} + \left(\frac{\Delta x}{\Delta t} E - A_{m}^{+} - A_{m}^{-}\right) \Delta U_{m} + A_{m+1}^{-} \Delta U_{m+1} = F_{m-\frac{1}{2}}^{k} - F_{m+\frac{1}{2}}^{k}$$
(9)

Результаты. В качестве тестовой задачи была взята задача Римана с начальными условиями Лакса и Сода [5].

Таблица 1 Начальные данные Сода и Лакса

Задачи	Значения параметров слева			Значения параметров справа			Расчетное	Число
	ρ	и	р	ρ	и	р	время	ячеек
Sod problem	1	0	1	0.125	0	0.1	0.2	1000
Lax problem	0.445	0.698	3.528	0.5	0	0.571	0.2	1000

Рассмотрим решение задачи Римана с начальными условиями Сода и начальными условиями Лакса. Графики построены на основе решения с различными шагами по времени $\tau = 1.e - 4$, $\tau = 1.e - 5$, $\tau = 1.e - 6$ соответственно:

Рис. 1. Решение задачи Римана с начальными условиями Сода

Рассмотрим решение задачи Римана с начальными условиями Лакса:

Рис. 2. Решение задачи Римана с начальными условиями Лакса

Заключение. Было продемонстрировано решение с различными шагами по времени. В результате решения задачи Римана с начальными условиями Сода и Лакса можно сказать, что метод Лакса-Фридрихса очень эффективен и точен, данный метод позволяет находить дискретные потоки между ячейками с высокой точностью и при этом решение остается устойчивым.

СПИСОК ЛИТЕРАТУРЫ

- 1. Костиков Ю.А. Гибридная схема для численного решения нелинейного уравнения Эйлера / Ю.А. Костиков, А.М. Романенков. Текст: электронный // Дифференциальные уравнения и процессы управления. 2021. № 2. URL: https://diffjournal.spbu.ru/pdf/ 21205-jdecpromanenkov.pdf (дата обращения: 03.05.2024).
- 2. Самарский А.А. Разностные методы решения задач газовой динамики / А.А. Самарский, Ю.П. Попов. М.: Наука, 1992. 424 с. Текст: непосредственный.
- 3. Годунов С.К. Разностный метод численного расчета разрывных решений уравнений гидродинамики / С.К. Годунов // Математический сборник. 1959. Т. 47, № 3. С. 271-306 с. Текст: непосредственный.
- 4. Волков К.Н., Дерюгин Ю.Н., Емельянов В.Н., Козелков А.С., Тетерина И.В. Разностные схемы в задачах газовой динамики на неструктурированных сетках. М.: Физматлит, 2015. 416 с. Текст: непосредственный.
- 5. Ладонкина М.Е., Неклюдова О.А. Тишкин В.Ф. Использование усреднений для сглаживания решений в разрывном методе Галеркина // Препринты ИПМ им. М. В. Келдыша. 2017. № 89. URL: http://library.keldysh.ru/preprint.asp?id=2017-89 (дата обращения: 29.04.2024).