ΦΥΛΛΆΔΙΟ 1

ΟΙ ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ

- **1.1.** Να σημειώσετε ποιοι από τους παρακάτω αριθμούς είναι: α) φυσικοί, β) ακέραιοι, γ) ρητοί, δ) άρρητοι, ε) πραγματικοί.
- 0, 3, -5, $\frac{2}{3}$, $\sqrt{2}$, -7,13, $\frac{\sqrt{3}}{5}$, 4, $\bar{12}$
- 1.2. Να κάνετε απολοιφή των παρενθέσεων στις παρακάτω παραστάσεις:
- α) $-(\alpha+\beta+\gamma)$ β) $-(-\alpha-\beta)$ γ) $-\alpha\cdot(\beta-\gamma+\delta)$
- **1.3.** Να βρείτε τους πραγματικούς αριθμούς x, για τους οποίους ισχύει: $(2 \cdot x 6) \cdot (3 \cdot x + 12) = 0$
- **1.4.** Να βρείτε τους πραγματικούς αριθμούς y, για τους οποίους ισχύει: $(y+3)\cdot(18-3\cdot y)\neq 0$
- **1.5.** Να βρείτε την τιμή της παράστασης: $A = \frac{\frac{5}{4} \cdot \frac{3}{2} + \frac{9}{8} \frac{1}{4} \cdot \frac{1}{2}}{5 \frac{3}{2} \cdot \frac{2}{5}}$

Απ.: 2

1.6. Να κάνετε τις πράξεις στην παράσταση που ακολουθεί:

$$A = -2 \cdot [-3 \cdot (1-x) - (x+3)] - [-(-x-2) - 2 \cdot (x+1)]$$

 $A\pi$.: -3x+12

1.7. Να βρείτε την τιμή της παράστασης A, για $x = -\frac{2}{3}$ και $y = \frac{5}{6}$:

$$A = 6 \cdot x \cdot y - [-3 \cdot x \cdot (1 - 2 \cdot y) - 3 \cdot (x + 2 \cdot y)]$$

Απ.: 1

1.8. Αν οι αριθμοί α και β είναι αντίθετοι, να βρείτε την τιμή της παράστασης;

$$A = 2 \cdot (\alpha - 3 \cdot \beta) - 5 \cdot [\beta \cdot (\alpha - 1) - 1] - \alpha \cdot (3 - 5 \cdot \beta)$$

Απ.: 5

1.9. Να βρείτε για ποιες τιμές του x, ορίζεται η παράσταση: $A = \frac{\frac{x-1}{2x+6} + \frac{5}{x-2}}{1 - \frac{1}{x}}$

- 1.10. Αν α,β,γ,δ είναι, με τη σειρά που δίνονται, διαδοχικοί φυσικοί αριθμοί, να αποδείξετε ότι:
- α) $\beta y \alpha \delta = 2$
- β) βδ αγ είναι περιττός αριθμός
- γ) α + β + γ + δ είναι άρτιος, αλλά όχι πολλαπλάσιο του 4
- **1.11.** Αν ισχύει $\frac{\alpha}{\beta} = \frac{5}{4}$, να βρείτε τις τιμές των παραστάσεων
- α) $A = \frac{4\alpha 3\beta}{\beta}$ Aπ.: 2 β) $B = \frac{2\alpha + \beta}{\alpha 3\beta}$ Aπ.: -2
- **1.12.** Οι αριθμοί α και β είναι ανάλογοι των αριθμών 2 και 3 και ισχύει: $\alpha + \beta = 25$ Να βρείτε τους αριθμούς α και β.

Aπ.: α =10, β =15

- **1.13.** Δίνεται η παράσταση: $A = \frac{6}{2 \frac{3}{x}} \frac{3}{\frac{2x}{3} 1}$
- α) Να βρείτε για ποιες τιμές του x ορίζεται η παράσταση Α
- β) Να αποδείξετε ότι η παράσταση Α είναι ανεξάρτητη του χ
- **1.14.** Ισχύει ότι: $\frac{x}{\alpha} = \frac{y}{\beta} = 8$, (με α , $\beta \neq 0$) και $\alpha + \beta = 251$.
- α) Να βρείτε το άθροισμα x + y

Απ.: 2008

β) Να βρείτε την τιμή της παράστασης: $A = \frac{2008 - [6 - 10x + 2(4x - y - 3)]}{-3 \cdot (x - \omega) - 3 \cdot (y + \omega)}$

Απ.: -1

1.15. Έστω $\alpha \neq 0$. Αν ο β είναι ο αντίστροφος του α και ο γ είναι ο αντίθετος του β, να βρείτε την τιμή των παραστάσεων:

$$A = \alpha + \frac{1}{\gamma}$$
 $\kappa \alpha \iota B = \alpha \gamma$

ΔΥΝΑΜΕΙΣ

1.16. Να υπολογιστούν οι δυνάμεις:

$$\alpha$$
) $(-3)^3 =$

$$\beta$$
) $0^{5} =$

$$y) 5^{-2} =$$

$$\delta$$
) 8⁰=

$$\epsilon$$
) $0^0 =$

$$\sigma \tau (-2)^4 =$$

$$\zeta$$
) $-2^4 =$

$$\eta$$
) $-19^0 =$

1.17. Να βρείτε την τιμή της παράστασης: $A = 1^{2010} + (-1)^{2011} - (-1)^{2012} + 0^{2015} + 2004^{0}$

Απ.: 0

- **1.18.** α) Για τους πραγματικούς αριθμούς α και β ισχύει ότι: $\alpha^2 + \beta^2 = 0$. Τι συμπεραίνετε για τους αριθμούς α και β?
- β) Αν ισχύει: $(2x-6)^2+(3y+12)^2=0$, να βρείτε τους πραγματικούς αριθμούς x και y.
- **1.19.** Να βρείτε την τιμή της παράστασης: $A=8-3\cdot2^3-(-1)^7\cdot[(2^6:4+3^3:3):5-3^2]$
- 1.20. Να υπολογίσετε τις παρακάτω δυνάμεις:
- α) $10^6 =$
- β) $10^{-5} =$
- γ) $10^{-1} =$
- δ) $10^{0} =$
- 1.21. Να κάνετε τις παρακάτω πράξεις εφαρμόζοντας τις ιδιότητες των δυνάμεων:
- α) $2^{-6} \cdot 2^{11} =$
- β) 3²¹: 3¹⁸=

 $\gamma) \frac{(-6)^{-9}}{(-6)^{-11}}$

 δ) $2^{7} \cdot 5^{7} =$

 $\epsilon) \frac{18^4}{9^4} =$

 $\sigma \tau$) $(2^{-3})^2 =$

 ζ) $\left(\frac{3}{2}\right)^{-3}$ =

 η) $\left(-\frac{1}{2}\right)^{-6} =$

1.22. Να κάνετε τις πράξεις:

$$\alpha$$
) 8²⁰:4²⁸=

$$\beta$$
) 4^{12} : 0,5²⁶=

$$\gamma$$
) $8^{10} \cdot 9^{15} \cdot 6^{-30} =$

Απ.: α) 16, β) ¼. γ) 1

1.23. Av x, $y \ne 0$, να απλοποιήσετε τις παραστάσεις:

$$\alpha) A = \frac{2^7 \cdot x^8 \cdot y^{-5}}{2^5 \cdot x^6 \cdot y^{-2}}$$

β)
$$B = \frac{x \cdot y^9 + (x^2 \cdot y^3)^4}{x^6 \cdot y^7}$$

Aπ.: α)
$$\frac{4x^2}{y^3}$$
, β) $\frac{y^2}{x^5}$ + $x^2 \cdot y^5$

1.24. Αν x = 9 και $y = \frac{1}{27}$, να βρείτε την τιμή της παράστασης: $A = \frac{(x^{-3} \cdot y^{-2}) : (x^7 \cdot y^5)^{-2}}{(x^{-2} \cdot y^{-1})^2}$

Απ.: 1

1.25. Να λύσετε τις εξισώσεις:

$$\alpha$$
) 3^x=9

$$\beta$$
) $4^x \cdot 8^{-x+2} = \frac{1}{16}$

Aπ.: α) 2, β) 10

1.26. Να γράψετε ως δύναμη του 2 τον αριθμό: $\alpha = 2^{31} - 2^{30}$

1.27. Αν οι αριθμοί α και β είναι αντίθετοι και ο ν είναι ακέραιος, να βρείτε την τιμή της παράστασης $A = \alpha^{2\nu+1} + \beta^{2\nu+1}$

ΑΞΙΟΣΗΜΕΙΩΤΕΣ ΤΑΥΤΌΤΗΤΕΣ

1.28. Να βρείτε τα αναπτύγματα:

α)
$$(2x+3y)^2$$
 β) $(5x^2-y^3)^2$ γ) $(x^2+2y)^3$ δ) $(2x^3-1)^3$ ε) $(-\alpha-\beta)^2$ στ) $(-\alpha-\beta)^3$ ζ) $(-\alpha-\beta)\cdot(\alpha-\beta)$

- **1.29.** α) Να αποδείξετε την ταυτότητα: $(\alpha + \beta + \gamma)^2 = \alpha^2 + \beta^2 + \gamma^2 + 2\alpha\beta + 2\alpha\gamma + 2\beta\gamma$
 - **β)** Χρησιμοποιώντας την παραπάνω ταυτότητα, να βρείτε το ανάπτυγμα του $(\alpha \beta \gamma)^2$
- **1.30.** Να εφαρμόσετε την ταυτότητα: $\alpha^{\nu} \beta^{\nu} = (\alpha \beta) \cdot (\alpha^{\nu-1} + \alpha^{\nu-2} \beta + ... + \alpha \beta^{\nu-2} + \beta^{\nu-1})$, όπου ν θετικός ακέραιος, στις περιπτώσεις:

$$\alpha$$
) $\alpha^4 - \beta^4$ β) $\alpha^5 - \beta^5$ γ) $\alpha^5 + \beta^5$

- **1.31.** α) Να αποδείξετε τις ταυτότητες: i) $\alpha^2 + \beta^2 = (\alpha + \beta)^2 2\alpha\beta$ ii) $\alpha^2 + \beta^2 = (\alpha \beta)^2 + 2\alpha\beta$
 - β) Αν ισχύει $x + \frac{1}{x} = 5$, να βρείτε την τιμή της παράστασης $A = x^2 + \frac{1}{x^2}$
 - γ) Αν ισχύει $y \frac{3}{y} = 4$, να βρείτε την τιμή της παράστασης $B = y^2 + \frac{9}{y^2}$
- **1.32.** Να αποδείξετε την ταυτότητα: $(2\alpha \beta) \cdot (2\alpha + \beta) (\alpha + \beta)^2 (\alpha \beta)^2 = 2\alpha^2 3\beta^2$
- **1.33.** Να αποδείξετε την ταυτότητα: $(x-1)^3 + (2x)^2 = x \cdot (x+1)^2 (x-1)^2$
- **1.34.** Να αποδείξετε την ταυτότητα: $(\alpha \beta 1)^2 (\alpha \beta)^2 = (\alpha 1)(\beta 1)(\alpha + 1)(\beta + 1)$
- **1.35.** Αν για τους πραγματικούς αριθμούς α και β, με $\alpha \neq 0$, ισχύει: $(\alpha + \beta)^3 + \alpha(\alpha 3\beta)(\alpha + 3\beta) = (\beta \alpha)^3$, να αποδείξετε ότι: $\alpha^2 = \beta^2$.
- **1.36.** Αν ισχύει ότι α-β=3, να αποδείξετε ότι: $3\alpha \beta^2 3\beta + 2\alpha\beta = \alpha^2$

1.37. Αν ισχύει ότι α + β + γ =2τ, να αποδείξετε ότι: $(\tau - \alpha)^2$ + $(\tau - \beta)^2$ + $(\tau - \gamma)^2$ + τ^2 = α^2 + β^2 + γ^2

1.38. (Tautóthta Euler:
$$\alpha^3 + \beta^3 + \gamma^3 - 3\alpha\beta\gamma = \frac{1}{2}(\alpha + \beta + \gamma)[(\alpha - \beta)^2 + (\beta - \gamma)^2 + (\gamma - \alpha)^2]$$
)

- α) Αν $\alpha + \beta + \gamma = 0$, να αποδείξετε ότι $\alpha^3 + \beta^3 + \gamma^3 = 3 \alpha \beta \gamma$
- β) Αν $\alpha^3 + \beta^3 + \gamma^3 = 3 \alpha \beta \gamma$, να αποδείξετε ότι $\alpha + \beta + \gamma = 0$ ή $\alpha = \beta = \gamma$
- **1.39.** Έστω ένας φυσικός αριθμός α . Αν ο αριθμός $\alpha^2 + 2\alpha$ είναι άρτιος, να αποδείξετε ότι και ο α είναι άρτιος.
- **1.40.** Για τους αριθμούς α,β,γ ισχύει: $\alpha + \beta + \gamma = 0$ και $\alpha^3 + \beta^3 + \gamma^3 = 6$
- α) Να αποδείξετε ότι $(\alpha + \gamma)^2 = \beta^2$
- β) Να βρείτε την τιμή του γινομένου αβγ

Απ.: 2

γ) Να βρείτε την τιμή της παράστασης: $A = (\alpha y + \beta)^2 - (\alpha + y)^2 + (1 - \alpha y)(1 + \alpha y)$

Απ.: 5

- **1.41.** Οι αριθμοί α και β είναι αντίστροφοι και ισχύει $\alpha^2 + \beta^2 = 3$. Να βρείτε την τιμή της παράστασης $(\alpha \beta)^{2020}$ Απ.: 1
- **1.42.** Δίνονται οι αριθμοί $\alpha = x^2 y^2$, $\beta = 2xy$ και $\omega = x^2 + y^2$ (όπου x > y > 0). Να αποδείξετε ότι οι αριθμοί α,β,ω είναι πλευρές ορθογωνίου τριγώνου με υποτείνουσα την ω.
- **1.43.** Αν ισχύει ότι: $(\alpha+\beta)^2 = (\alpha-\beta)^2$, να βρείτε την τιμή της παράστασης $A = (\alpha\beta-1)^{2010}$.

Απ.: 1

1.44. Να αποδείξετε ότι: $(x-2y)^3+3(x-2y)^2(x+2y)+3(x-2y)(x+2y)^2+(x+2y)^3=8x^3$

ΠΑΡΑΓΟΝΤΟΠΟΙΗΣΗ

1.45. Να παραγοντοποιήσετε τις παραστάσεις:

i)
$$xy - 5x + x^2$$
 ii) $6\alpha^4\beta^2 + 9\alpha^3\beta^3 - 12\alpha^5\beta^6$ iii) $x(\alpha - \beta) + y(\beta - \alpha)$ iv) $\alpha^2 + \alpha\beta + \alpha\gamma + \beta\gamma$

v)
$$\alpha^{2\beta} - \alpha^2 - \alpha\beta + \alpha + \beta - 1$$
 vi) $x^2 - 16$ vii) $25\alpha^2 - 9\beta^2$ viii) $(2x + 3y)^2 - (x + y)^2$ ix) $x^4 - y^4$

x)
$$x^3+27$$
 xi) $1-8x^3$ xii) $4x^2+12x+9$ xiii) $(x-2)^2-6(x-2)+9$ xiv) $2x^3-4x^2+2x$ xv) x^2+5x+6 xvi) $x^2-7x+12$ xvii) $2x^2+5xy+3y^2$ xviii) $x^7+x^5-x^3-x$ xix) $x^2+6x-4y^2+9$ xx) $x+y-3x^2-6xy-3y^2$

1.46. Να απλοποιήσετε τις παρακάτω παραστάσεις:

$$\alpha) \frac{x^3 - 6x^2 + 9x}{2x^4 - 18x^2} \qquad \beta) \frac{(2x + y)^2 - (x - 3y)^2}{27x^4 - 8xy^3}$$

1.47. Δίνεται η παράσταση:
$$A = \frac{x^2 + 2}{x^2 + 3x} - \frac{3x - 2}{x^2 - 3x} + \frac{14}{x^2 - 9}$$

- α) Να βρείτε για ποιές τιμές του x, ορίζεται η παράσταση Α
- β) Να απλοποιήσετε την παράσταση Α
- **1.48.** Αν ισχύει $\beta(\alpha^2+2)=\alpha(\beta^2+2)$, να αποδείξετε ότι $\alpha=\beta$ ή $\alpha\beta=2$.
- **1.49.** Να βρείτε την τιμή του κλάσματος: $A = \frac{3+6+9...+300}{2+4+6+...+200}$

ΔΙΑΒΑΣΜΑ ΑΠΟ ΣΧΟΛΙΚΌ ΒΙΒΛΊΟ

ΘΕΩΡΙΑ

σελίδες: 44, 45, 46, 47, 50

ΑΣΚΗΣΕΙΣ

MUST SEE!!!

σελίδα 52: A1, A2, A4, A5, A6 σελίδα 53: B1, B2, B3, B4, B7

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ

Θέμα 2ο

12685. Αν για τους πραγματικούς αριθμούς α , $\beta \neq 0$, ισχύει ότι:

 $(\alpha+\beta)\left(\frac{1}{\alpha}+\frac{1}{\beta}\right)=4$, τότε να αποδείξετε ότι:

$$\alpha$$
) $\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = 2$.

$$\beta$$
) $\alpha = \beta$.

13088. Έστω x,y πραγματικοί αριθμοί. Ορίζουμε: $A = 2(x+y)^2 - (x-y)^2 - 6xy - y^2$

- α) Να αποδείξετε ότι : $A = x^2$
- β) Να αποδείξετε ότι ο αριθμός $B=2\cdot 2022^2-2020^2-6\cdot 2021-1$ είναι ίσος με το τετράγωνο φυσικού αριθμού τον οποίο να προσδιορίσετε.

13053. Έστω α , β , γ πραγματικοί αριθμοί για τους οποίους ισχύουν $\alpha + \beta + \gamma = 0$ και $\alpha\beta\gamma \neq 0$.

α) Να αποδείξετε ότι

i.
$$\beta + \gamma = -\alpha$$
.

ii.
$$\frac{\alpha^2}{\beta + \gamma} = -\alpha$$
.

β) Με παρόμοιο τρόπο να απλοποιήσετε τα κλάσματα $\frac{\beta^2}{\gamma+\alpha}$, $\frac{\gamma^2}{\alpha+\beta}$ και να αποδείξετε ότι

$$\frac{\alpha^2}{\beta + \gamma} + \frac{\beta^2}{\gamma + \alpha} + \frac{\gamma^2}{\alpha + \beta} = 0$$

13472. Έστω α, β πραγματικοί αριθμοί, διαφορετικοί μεταξύ τους, για τους οποίους ισχύουν $\alpha^2 = 2\alpha + \beta$ και $\beta^2 = 2\beta + \alpha$.

α) Να αποδείξετε ότι:

i.
$$\alpha^2 - \beta^2 = \alpha - \beta$$
.

ii.
$$\alpha + \beta = 1$$
.

β) Να βρείτε την τιμή της παράστασης $A = \alpha^2 + \beta^2$.

14458. Έστω x, γπραγματικοί αριθμοί για τους οποίους ισχύει:

$$(x+4y)(x+y)=9xy.$$

α) Να αποδείξετε ότι

i.
$$(2y-x)^2=0$$

ii.
$$y = \frac{x}{2}$$
.

β) Να αποδείξετε ότι $\left(2y - \frac{x}{2}\right)^2 + \left(2y + \frac{x}{2}\right)^2 = 10y^2$.

14473. Για τους πραγματικούς αριθμούς x και y ισχύει: $\frac{4x+5y}{x-4y} = -2$.

- α) Να δείξετε ότι y = 2x.
- β) Για y = 2x , να υπολογίσετε την τιμή της παράστασης $A = \frac{2x^2 + 3y^2 + xy}{xy}$.

14555. Αν για τους πραγματικούς αριθμούς x , y ισχύει η σχέση $(x-2y)^2-2(3-2xy)=5$ y^2-1

- α) Να αποδείξετε ότι $x^2 y^2 = 5$.
- β) Να υπολογίσετε την τιμή της παράστασης $P = (x+y)^3(x-y)^3$.

35388. Δίνονται οι πραγματικοί αριθμοί α , β , γ , δ με $\beta \neq 0$ και $\delta \neq \gamma$ ώστε να ισχύουν:

$$\frac{\alpha+\beta}{\beta}$$
=4 και $\frac{\gamma}{\delta-\gamma}=\frac{1}{4}$

- α) Να αποδείξετε ότι $\alpha = 3 \beta$ και $\delta = 5 \gamma$.
- β) Να βρείτε την τιμή της παράστασης: $\Pi = \frac{\alpha \gamma + \beta \gamma}{\beta \delta \beta \gamma}$

Θέμα 3ο

14329. Δίνονται οι αλγεβρικές παραστάσεις $A = \frac{-\alpha}{\beta}$, $B = \alpha^2$.

- α) Να βρείτε για ποιες τιμές των πραγματικών αριθμών α , β οι αλγεβρικές παραστάσεις A, B είναι πραγματικοί αριθμοί διαφορετικοί του 0.
- β) Να αποδείξετε ότι οι αριθμοί A, B είναι αντίθετοι, αν και μόνο, αν οι αριθμοί α, β είναι αντίστροφοι.

Θέμα 4ο

- **15052.** Στο παρακάτω σχήμα το τετράγωνο ΑΒΓΔ έχει πλευρά ίση με 6 και οι ευθείες ΕΖ και ΗΘ είναι παράλληλες στις πλευρές του. Αν KZ = x και KH = y, x, $y \in (0,6)$, τότε:
- α) Να υπολογίσετε τα E_1, E_2, E_3, E_4 με τη βοήθεια των x , y .
- β)Να βρείτε τα εμβαδά E_1 , E_2 , E_3 , E_4 των τεσσάρων ορθογωνίων του σχήματος όταν x=4 και y=2.
- γ) Αν επιπλέον ισχύει E_1 + E_3 = E_2 + E_4 , να αποδείξετε ότι:

i.
$$xy+9=3(x+y)$$
.

ii. Τουλάχιστον ένα από τα τμήματα ΕΖ και ΗΘ διέρχεται από το κέντρο Ο του τετραγώνου.

