```
In [30]:
```

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import GaussianNB
from sklearn.tree import DecisionTreeClassifier
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score,confusion_matrix,classification_report
from sklearn.model_selection import cross_val_score
import warnings
warnings.filterwarnings('ignore')
```

In [76]:

```
salary=pd.read_csv('salary.csv')
```

In [77]:

salary

Out[77]:

	salary	experience	education	management
0	13876	1	Bachelor	Υ
1	11608	1	Ph.D	N
2	18701	1	Ph.D	Υ
3	11283	1	Master	N
4	11767	1	Ph.D	N
5	20872	2	Master	Υ
6	11772	2	Master	N
7	10535	2	Bachelor	N
8	12195	2	Ph.D	N
9	12313	3	Master	N
10	14975	3	Bachelor	Υ
11	21371	3	Master	Υ
12	19800	3	Ph.D	Υ
13	11417	4	Bachelor	N
14	20263	4	Ph.D	Υ
15	13231	4	Ph.D	N
16	12884	4	Master	N
17	13245	5	Master	N
18	13677	5	Ph.D	N
19	15965	5	Bachelor	Υ
20	12336	6	Bachelor	N
21	21352	6	Ph.D	Υ
22	13839	6	Master	N
23	22884	6	Master	Υ
24	16978	7	Bachelor	Υ
25	14803	8	Master	N
26	17404	8	Bachelor	Υ
27	22184	8	Ph.D	Υ

28	aala4y	experience	education	management
29	14467	10	Bachelor	N
30	15942	10	Master	N
31	23174	10	Ph.D	Υ
32	23780	10	Master	Υ
33	25410	11	Master	Υ
34	14861	11	Bachelor	N
35	16882	12	Master	N
36	24170	12	Ph.D	Υ
37	15990	13	Bachelor	N
38	26330	13	Master	Υ
39	17949	14	Master	N
40	25685	15	Ph.D	Υ
41	27837	16	Master	Υ
42	18838	16	Master	N
43	17483	16	Bachelor	N
44	19207	17	Master	N
45	19346	20	Bachelor	N

In [78]:

```
salary.describe()
```

Out[78]:

	salary	experience
count	46.000000	46.000000
mean	17270.195652	7.500000
std	4716.631513	5.171503
min	10535.000000	1.000000
25%	13320.750000	3.000000
50%	16436.000000	6.000000
75%	20719.750000	11.000000
max	27837.000000	20.000000

In [79]:

```
salary.dtypes
```

Out[79]:

salary int64
experience int64
education object
management object
dtype: object

In [81]:

```
from sklearn.preprocessing import LabelEncoder
le=LabelEncoder()
list1=['salary','experience','education','management']
for val in list1:
    salary[val]=le.fit_transform(salary[val].astype(str))
```

In [82]:

--1----

Out[82]:

	salary	experience	education	management
0	15	0	0	1
1	3	0	2	0
2	28	0	2	1
3	1	0	1	0
4	4	0	2	0
5	34	9	1	1
6	5	9	1	0
7	0	9	0	0
8	6	9	2	0
9	7	11	1	0
10	19	11	0	1
11	36	11	1	1
12	32	11	2	1
13	2	12	0	0
14	33	12	2	1
15	10	12	2	0
16	9	12	1	0
17	11	13	1	0
18	13	13	2	0
19	21	13	0	1
20	8	14	0	0
21	35	14	2	1
22	14	14	1	0
23	38	14	1	1
24	24	15	0	1
25	17	16	1	0
26	25	16	0	1
27	37	16	2	1
28	12	16	0	0
29	16	1	0	0
30	20	1	1	0
31	39	1	2	1
32 33	40 42	1 2	1	1
34 35	18 23	3	0	0
36	41	3	2	1
37	22	4	0	0
38	44	4	1	1
39	27	5	1	0
40	43	6	2	1
40	45	7	1	1
41	29	7	1	0
42	29	7	0	0
43	30	8	1	0
45	31	10	0	0
40	31	10	U	U

In [83]:

```
sns.heatmap(salary.isnull())
```

Out[83]:

<matplotlib.axes._subplots.AxesSubplot at 0x21a47e776d0>

In [84]:

```
salary.isnull().sum()
```

Out[84]:

salary 0 experience 0 education 0 management 0 dtype: int64

In [85]:

salary.corr()

Out[85]:

	salary	experience	education	management
salary	1.000000	-0.080479	0.229857	0.730005
experience	-0.080479	1.000000	-0.131927	0.027792
education	0.229857	-0.131927	1.000000	0.196684
management	0.730005	0.027792	0.196684	1.000000

In [86]:

```
plt.figure(figsize=(10,6))
sns.heatmap(salary.corr(),annot=True)
```

Out[86]:

<matplotlib.axes._subplots.AxesSubplot at 0x21a478d27c0>

In [87]:

```
salary.skew()
```

Out[87]:

 salary
 0.000000

 experience
 -0.189173

 education
 0.038033

 management
 0.272071

dtype: float64

In [88]:

```
from scipy.stats import zscore
z_score=abs(zscore(salary))
print(salary.shape)
sal=salary.loc[(z_score<3).all(axis=1)]
print(sal.shape)</pre>
```

(46, 4) (46, 4)

In [89]:

sal

Out[89]:

	salary	experience	education	management
0	15	0	0	1
1	3	0	2	0
2	28	0	2	1
3	1	0	1	0
4	4	0	2	0
5	34	9	1	1
6	5	9	1	0
7	0	9	0	0
8	6	9	2	0
9	7	11	1	0
10	19	11	0	1
11	36	11	1	1
12	32	11	2	1
13	2	12	0	0
14	33	12	2	1
15	10	12	2	0
16	9	12	1	0
17	11	13	1	0
18	13	13	2	0

19	salary	experience	education	management
20	8	14	0	0
21	35	14	2	1
22	14	14	1	0
23	38	14	1	1
24	24	15	0	1
25	17	16	1	0
26	25	16	0	1
27	37	16	2	1
28	12	16	0	0
29	16	1	0	0
30	20	1	1	0
31	39	1	2	1
32	40	1	1	1
33	42	2	1	1
34	18	2	0	0
35	23	3	1	0
36	41	3	2	1
37	22	4	0	0
38	44	4	1	1
39	27	5	1	0
40	43	6	2	1
41	45	7	1	1
42	29	7	1	0
43	26	7	0	0
44	30	8	1	0
45	31	10	0	0

In [90]:

x=sal.iloc[:,0:-1]

In [91]:

Х

Out[91]:

	salary	experience	education
0	15	0	0
1	3	0	2
2	28	0	2
3	1	0	1
4	4	0	2
5	34	9	1
6	5	9	1
7	0	9	0
8	6	9	2
9	7	11	1
10	19	11	0
11	36	11	1
12	32	11	2
42	2	10	Λ

13	∠ salary	experience	education
14	33	12	2
15	10	12	2
16	9	12	1
17	11	13	1
18	13	13	2
19	21	13	0
20	8	14	0
21	35	14	2
22	14	14	1
23	38	14	1
24	24	15	0
25	17	16	1
26	25	16	0
27	37	16	2
28	12	16	0
29	16	1	0
30	20	1	1
31	39	1	2
32	40	1	1
33	42	2	1
34	18	2	0
35	23	3	1
36	41	3	2
37	22	4	0
38	44	4	1
39	27	5	1
40	43	6	2
41	45	7	1
42	29	7	1
43	26	7	0
44	30	8	1
45	31	10	0

In [92]:

```
x.shape
```

Out[92]:

(46, 3)

In [93]:

```
y=sal.iloc[:,-1]
```

In [94]:

```
у
```

Out[94]:

- 0 1 1 0
- 2 1
- 4 0

```
5
     1
      0
6
      0
8
      0
9
10
     1
11
     1
12
13
      0
14
      1
15
16
      0
17
      0
18
      0
19
      1
20
     0
21
     1
22
     0
23
     1
24
      1
25
     0
26
27
     1
28
     0
29
      0
30
      0
31
     1
32
     1
33
     1
34
      0
35
      0
36
     1
37
38
     1
39
     0
40
      1
41
     1
42
43
     0
44
     0
45
Name: management, dtype: int32
In [95]:
y.shape
Out[95]:
(46,)
In [96]:
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=.22,random_state=50)
In [97]:
lr=LogisticRegression()
In [98]:
lr.fit(x_train,y_train)
lr.score(x_train,y_train)
pred=lr.predict(x test)
print(accuracy_score(y_test,pred))
print(confusion_matrix(y_test,pred))
print(classification_report(y_test,pred))
0.7272727272727273
[[5 3]
 [0 3]]
              precision recall f1-score support
```

```
0
                  1.00
                           0.62
                                      0.77
                                                   8
          1
                  0.50
                            1.00
                                      0.67
                                                   3
                                     0.73
                                                 11
   accuracy
                  0.75
                        0.81
                                    0.72
  macro avg
                                                 11
                                      0.74
                  0.86
                           0.73
                                                 11
weighted avg
In [99]:
gnb=GaussianNB()
gnb.fit(x_train,y_train)
gnb.score(x_train,y_train)
predgnb=gnb.predict(x test)
print(accuracy_score(y_test,predgnb))
print(confusion_matrix(y_test,predgnb))
print(classification_report(y_test,predgnb))
0.6363636363636364
[[5 3]
 [1 2]]
             precision recall f1-score support
                          0.62
                                      0.71
          0
                  0.83
                                                   8
                  0.40
                          0.67
                                     0.50
                                                  3
          1
                                     0.64
                                                 11
   accuracy
                        0.65
                  0.62
                                      0.61
                                                 11
  macro avq
weighted avg
                  0.72
                            0.64
                                      0.66
                                                 11
In [100]:
svc=SVC(kernel='rbf')
svc.fit(x_train,y_train)
svc.score(x_train,y_train)
predsvc=svc.predict(x_test)
print(accuracy_score(y_test,predsvc))
print(confusion matrix(y test,predsvc))
print(classification_report(y_test,predsvc))
0.8181818181818182
[[6 2]
 [0 3]]
             precision
                        recall f1-score support
          0
                  1.00
                           0.75
                                      0.86
                                                   8
                  0.60
                          1.00
                                     0.75
                                      0.82
                                                  11
   accuracy
                          0.88
   macro avg
                  0.80
                                      0.80
                                                  11
                          0.82
                  0.89
                                     0.83
                                                 11
weighted avg
In [101]:
dtc=DecisionTreeClassifier()
dtc.fit(x_train,y_train)
dtc.score(x_train,y_train)
preddtc=dtc.predict(x_test)
print(accuracy_score(y_test,preddtc))
print(confusion_matrix(y_test,preddtc))
print(classification report(y test,preddtc))
0.9090909090909091
[[7 1]
```

recall f1-score support

0.93

3

0.86

0.88

1.00

[0 3]]

precision

1

1.00

0.75

```
      accuracy
      0.91
      11

      macro avg
      0.88
      0.94
      0.90
      11

      weighted avg
      0.93
      0.91
      0.91
      11
```

In [102]:

```
from sklearn.neighbors import KNeighborsClassifier
knn=KNeighborsClassifier()
knn.fit(x_train,y_train)
knn.score(x_train,y_train)
predknn=knn.predict(x_test)
print(accuracy_score(y_test,predknn))
print(confusion matrix(y test,predknn))
print(classification_report(y_test,predknn))
0.9090909090909091
[[7 1]
[0 3]]
             precision recall f1-score support
                         0.88
          0
                 1.00
                                   0.93
                                                 8
                 0.75
                          1.00
                                    0.86
                                                3
                                    0.91
   accuracy
                                               11
  macro avg
                 0.88
                       0.94
                                   0.90
                                               11
                 0.93
                          0.91
                                    0.91
                                               11
weighted avg
```

In [103]:

```
rf=RandomForestClassifier()
rf.fit(x_train,y_train)
rf.score(x_train,y_train)
predrf=rf.predict(x_test)
print(accuracy_score(y_test,predrf))
print(confusion_matrix(y_test,predrf))
print(classification_report(y_test,predrf))
```

0.9090909090909091

[[7 1] [0 3]]

support	f1-score	recall	precision	
8	0.93 0.86	0.88	1.00 0.75	0
11	0.91			accuracy
11	0.90	0.94	0.88	macro avg
11	0.91	0.91	0.93	weighted avg

In [104]:

```
from sklearn.ensemble import AdaBoostClassifier
ad=AdaBoostClassifier()
ad.fit(x_train,y_train)
ad.score(x_train,y_train)
predad=ad.predict(x_test)
print(accuracy_score(y_test,predad))
print(confusion_matrix(y_test,predad))
print(classification_report(y_test,predad))
```

0.9090909090909091

[[7 1] [0 3]]

	precision	recall	f1-score	support
0	1.00	0.88	0.93	8
1	0.75	1.00	0.86	3

```
accuracy 0.91 11
macro avg 0.88 0.94 0.90 11
weighted avg 0.93 0.91 0.91 11

In [105]:

import joblib
joblib.dump(ad, 'salary.pkl')

Out[105]:
['salary.pkl']

In []:
```