PŘEHLED FUNKCÍ MATLABU

SPECIÁLNÍ ZNAKY			
=	přiřazovací příkaz		
;	potlačení výstupu		
	desetinná tečka		
%	komentář		
pause	pozastavení do stisknutí klávesy		
Ctrl C	přerušení výpočtu		
	FORMÁT VÝSTUPU		
format long	výpis na čtrnáct desetinných míst		
format short	výpis na čtyři desetinná místa		
format compact	vynechá prázdné řádky		
format loose kolem výsledku budou prázdné řádl			
SP	ECIÁLNÍ PROMĚNNÉ		
ans	proměnná pro aktuální výsledek		
pi	Ludolfovo číslo		
eps	počítačové epsilon		
i, j	imaginární jednotka		
inf	nekonečno		
NaN	nedefinováno		
clock	hodiny		
etime	uplynulý čas		
date	datum		
cputime	CPU time		
nargin	počet vstupních parametrů funkce		
	zadaných uživatelem		
nargout	počet výstupních parametrů funkce		
	zadaných uživatelem		

	SKALÁRNÍ FUNKCE				
abs	absolutní hodnota	sin	sinus		
sqrt	odmocnina	cos	kosinus		
real	reálná část	tan	tangens		
imag	imaginární část	asin	arkus sinus		
conj	komplexně sdružené	acos	arkus kosinus		
round	zaokrouhlení	atan	arkus tangens		
floor	dolní celá část	exp	exponenciální funkce		
ceil	horní celá část	log	přirozený logaritmus		
sign	signum	$\log 10$	desítkový logaritmus		

	SPECIÁLNÍ MATICE
zeros	nulová matice
eye	jednotková matice
ones	jedničková matice
rand	náhodně vygenerované prvky mezi 0 a 1

	PRVKY MATIC A VEKTORŮ			
	x = [od:do]	vytvoří vektor $x = [od, od + 1, od + 2, \dots, do]$		
x	c = [od:krok:do]	vytvoří vektor $x = [od, od + krok, od + 2 * krok, \dots, do]$		
	x(i)	i-tá složka vektoru \boldsymbol{x}		
A(i,j)		prvek matice A na pozici (i, j)		
	A(i,:)	i-tý řádek matice A		
	A(:,j)	j-tý sloupec matice A		
	A([k,l],:)	k-tý a l -tý řádek matice A		

MATICOVÉ OPERACE			ALÁRNÍ OPERACE
+	sčítání	+	sčítání
-	odčítání		odčítání
*	násobení		násobení
^	umocnění		umocnění
$x = A \backslash b$	řešení soustavy $A * x = b$.\	dělení zleva
x = linsolve(A, b)	řešení soustavy $A * x = b$		
x = b/A	řešení soustavy $x * A = b$./	dělení

	MATICOVÉ FUNKCE				
size	velikost matice	A(:)	převedení matice A do sloupce		
length	délka vektoru	det	determinant matice		
sum	součet prvků ve sloupcích	inv	inverzní matice		
max	největší hodnota ve sloupci		LU rozklad		
min	nejmenší hodnota ve sloupci	eig	vlastní čísla a vlastní vektory		
sort seřazení prvků ve sloupcích		rank	hodnost matice		
,	hermitovská transpozice	null	báze nulového prostoru matice		
.,	transpozice	svd	singulární rozklad		

VEKTOROVÉ NORMY				
	druh normy výpočet			
norm(v, p)	l^p -norma	$sum \left(abs \left(v\right).^{p}\right)^{1/p}, \ 1 \le p < \infty$		
norm(v)	l^2 -norma, Eukleidovská	$sum\left(abs\left(v\right).^{2}\right)^{1/2}$		
norm(v,inf)	l^{∞} -norma	$max\left(abs\left(v ight) ight)$		
norm(v,-inf)		$min\left(abs\left(v ight) ight)$		

	MATICOVÉ NORMY				
p	druh normy	výpočet			
1	1-norma	$max\left(sum\left(abs\left(A\right)\right)\right)$			
2	2-norma	$max\left(svd\left(A\right) \right)$			
\inf	∞-norma	$\max\left(sum\left(abs\left(A'\right)\right)\right)$			
'fro'	Frobeniova norma	$sqrt\left(sum\left(diag\left(A^{\prime}*A\right)\right)\right)$			

	2D GRAFY				
Γ	TYP ČÁRY		BARVA		ZNAK
-	plná	r	červená	+	plus
	přerušovaná	g	zelená	О	kolečko
:	tečkovaná	b	modr á	*	hvězdička
	čárka tečka	c	zelenomodrá		tečka
		m	růžová	X	křížek
		у	žlutá	S	čtverec
		k	k černá		kosočtverec
		w bílá		p	pěticípá hvězda
				h	šesticípá hvězda

GRAFY			
figure	otevře grafické okno		
figure(n)	otevře grafické okno číslo \boldsymbol{n}		
xlim	rozsah hodnot na ose x		
ylim	rozsah hodnot na ose y		
title	titulek		
xlabel	popis osy x		
ylabel	popis osy y		
legend	legenda		
hold on	zachová graf		
hold off	nový graf přepíše starý		

	3D GRAFY		
meshgrid	vytvoří síť		
plot3	graf křivky		
mesh	graf pouze s hranami		
surf	graf plochy		
surfl	graf osvětlené plochy		
surfc	graf plochy a vrstevnic		
contour	zobrazí vrstevnice		
colormap	stanoví barevnou škálu		
colorbar	obdélník charakterizující hodnoty a barvy		
camlight	způsob osvětlení		
lighting	metoda osvětlení		

	POLYNOMY		
conv	násobení polynomů (konvoluce vektorů)		
deconv	dělení polynomů		
poly	polynom se zadanými kořeny		
polyder	derivace polynomu		
polyfit	polynomiální aproximace		
polyval	hodnota polynomu v bodě		
polyvalm	hodnota polynomu pro matice		
residue	rozklad na parciální zlomky		
roots	kořeny polynomu		

KALKULUS		
syms x	deklarace symbolické proměnné \boldsymbol{x}	
$\operatorname{sym}(x)$	převedení proměnné \boldsymbol{x} na symbolickou proměnnou	
double(x)	převedení symbolické proměnné \boldsymbol{x} na typ double	
subs(f,a)	hodnota funkce f v bodě a	
subs(f,x,a)	hodnota $f(x)$ pro $x = a$	
limit(f,x,a)	limita $f(x)$ pro $x \to a$	
limit(f,x,a,'left')	limita $f(x)$ pro $x \to a$ zleva	
limit(f,x,a,'right')	limita $f(x)$ pro $x \to a$ zprava	
$\operatorname{diff}(f)$	derivace funkce f	
diff(f,x)	derivace funkce f vzhledem k symbolické proměnné x	
diff(f,x,n)	$n\text{-}\mathrm{t\acute{a}}$ derivace funkce f vzhledem k symbolické proměnné x	
int(f)	neurčitý integrál funkce f	
int(f,x)	neurčitý integrál funkce f vzhledem k symbolické proměnné x	
int(f,x,a,b)	integrál od a do b funkce f vzhledem k symbolické proměnné x	
$\operatorname{symsum}(s,a,b)$	součet výrazu s od a do b	
$\operatorname{symsum}(s,k,a,b)$	součet $s(k)$ pro k od a do b	
taylor(f,n,v,a)	prvních n členů Taylorova rozvoje funkce f proměnné v v bodě a	
simplify(s)	zjednodušení výrazu s	
pretty(s)	matematický zápis výrazu s	

ŘEŠENÍ ALGEBRAICKÝCH A DIFERENCIÁLNÍCH ROVNIC		
solve('eq')	symbolické řešení rovnice eq	
solve('eq','var')	symbolické řešení rovnice eq vzhledem k proměnné var	
$[v1, \dots, vn] = solve('eq1', \dots, 'eqn')$	řešení soustavy rovnic $eq1, eq2,, eqn$	
	řešení soustavy rovnic $eq1, eq2, \dots, eqn$ vzhledem k proměnným $var1, \dots, varn$	
Dy	derivace funkce y	
D2y, D3y,	druhá, třetí, derivace funkce y	
dsolve('eq')	symbolické řešení diferenciální rovnice eq vzhledem k proměnné t	
dsolve('eq','var')	symbolické řešení diferenciální rovnice eq vzhledem k proměnné var	
dsolve('eq','cond1',, 'condn')	symbolické řešení diferenciální rovnice eq s podmínkami $cond1, \ldots, condn$	
dsolve('eq1',, 'eqn')	symbolické řešení soustavy diferenciálních rovnic $eq1, \dots, eqn$	
dsolve('eq1',, 'eqn', 'cond1',, 'condn', 'var')	symbolické řešení soustavy diferenciálních rovnic $eq1, \ldots, eqn$ s podmínkami $cond1, \ldots, condn$, vzhledem k proměnné var	

FUNKCE PRO PRÁCI S PAMĚTÍ		
clear var	odstraní proměnnou <i>var</i> z paměti	
clear all	odstraní všechny aktuální proměnné z paměti	
pack	uloží aktuální proměnné na disk a načítá je postupně	
save	uloží proměnnou do souboru	
load	načte uloženou proměnnou	

ŘÍDKÉ MATICE		
speye(n)	řídká jednotková matice velikosti $n\times n$	
$\operatorname{sprand}(m,n,d)$	řídká matice velikosti $m \times n$ s hustotou d , jejíž nenulové prvky jsou	
	náhodná čísla mezi nulou a jedničkou	
sparse	vytvoří matici typu sparse	
full	převede matici typu sparse na obyčejnou matici	
ind = find (A)	určí indexy nenulových prvků matice ${f A}$	
[r, c] = find (A)	určí řádkové a sloupcové indexy nenulových prvků matice ${f A}$	
nnz	počet nenulových prvků	
nonzeros	nenulové prvky matice	
$\operatorname{spalloc}(m,n,k)$	alokuje místo v paměti pro řídkou matici velikosti $m \times n$ s maximálně	
	k nenulovými prvky	
spy	zobrazí řídkou matici	
ŘEŠENÍ SOUSTAV LINEÁRNÍCH ALGEBRAICKÝCH ROVNIC S ŘÍDKOU MATICÍ		
pcg	metodou sdružených gradientů s předpodmíněním, matice soustavy	
	musí být symetrická a pozitivně definitní	
bicg	metodou bikonjugovaných gradientů	
bicgstab	metodou bikonjugovaných gradientů se stabilizací	
gmres	zobecněnou metodou minimálních reziduí	