▼ Imports

Importing the required libraries and the data and displaying a small description of the data.

```
1 import pandas as pd
2 import numpy as np
3
4 import matplotlib.pyplot as plt
5 %matplotlib inline
6
7 data = pd.read_csv('Amazon - Movies and TV Ratings.csv')
8 data.head()
```

	user_id	Movie1	Movie2	Movie3	Movie4	Movie5	Movie6	Movie7	Movie8	Movie9	Movie10	Movie11	Movie12	Movie13	Movie14	Movie15	Movie16	Movie17	Movie18
0	A3R5OBKS7OM2IR	5.0	5.0	NaN															
1	AH3QC2PC1VTGP	NaN	NaN	2.0	NaN														
2	A3LKP6WPMP9UKX	NaN	NaN	NaN	5.0	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
3	AVIY68KEPQ5ZD	NaN	NaN	NaN	5.0	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
4	A1CV1WROP5KTTW	NaN	NaN	NaN	NaN	5.0	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
5 ro	5 rows × 207 columns																		

1 display(data.describe())

	Movie1	Movie2	Movie3	Movie4	Movie5	Movie6	Movie7	Movie8	Movie9	Movie10	Movie11	Movie12	Movie13	Movie14	Movie15	Movie16	Movie17	Movie18	Movie19 M
count	1.0	1.0	1.0	2.0	29.000000	1.0	1.0	1.0	1.0	1.0	2.0	5.0	1.0	1.0	1.0	320.000000	1.0	1.0	2.00000
mean	5.0	5.0	2.0	5.0	4.103448	4.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	4.0	5.0	4.518750	3.0	5.0	3.50000
std	NaN	NaN	NaN	0.0	1.496301	NaN	NaN	NaN	NaN	NaN	0.0	0.0	NaN	NaN	NaN	0.795535	NaN	NaN	2.12132
min	5.0	5.0	2.0	5.0	1.000000	4.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	4.0	5.0	1.000000	3.0	5.0	2.00000
25%	5.0	5.0	2.0	5.0	4.000000	4.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	4.0	5.0	4.000000	3.0	5.0	2.75000
50%	5.0	5.0	2.0	5.0	5.000000	4.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	4.0	5.0	5.000000	3.0	5.0	3.50000
75%	5.0	5.0	2.0	5.0	5.000000	4.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	4.0	5.0	5.000000	3.0	5.0	4.25000
max	5.0	5.0	2.0	5.0	5.000000	4.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	4.0	5.0	5.000000	3.0	5.0	5.00000
8 rows ×	206 colun	nns																	

▼ Exploratory Data Analysis Tasks

▼ Task 1 - Which movies have maximum views/ratings?

For this task, I create a data frame of number of not null ratings for each movie, then find the row(movie) with max ratings.

```
1 movie_notNAN = pd.DataFrame()
2 movie_notNAN['Number of Ratings'] = data.notnull().sum(axis=0).drop('user_id')
3 display(movie_notNAN)
```

	Number	of	Ratings
Movie1			1
Movie2			1
Movie3			1
Movie4			2
Movie5			29
Movie202			6
Movie203			1
Movie204			8
Movie205			35
Movie206			13
206 rows × 1	columns	;	

```
1 print("Movie with Maximum Views/Ratings:\n")
2 display(movie_notNAN[movie_notNAN['Number of Ratings'] == movie_notNAN['Number of Ratings'].max()])
```

Movie with Maximum Views/Ratings:

Number of Ratings

Movie127 2313

▼ Task 2 - What is the average rating for each movie? Define the top 5 movies with the maximum ratings.

For this task, I take the mean of all movie ratings along the row, and then find the max five values after sorting them in descending order.

2 display(movie_notNAN)

	Number of	Ratings	Average Ratings
Movie1		1	5.000000
Movie2		1	5.000000
Movie3		1	2.000000
Movie4		2	5.000000
Movie5		29	4.103448
Movie202		6	4.333333
Movie203		1	3.000000
Movie204		8	4.375000
Movie205		35	4.628571
Movie206		13	4.923077
206 rows × 2	columns		

1 display(movie_notNAN.sort_values(by = 'Number of Ratings', ascending=False).head(n=5))

	Number of Ratings	Average Ratings
Movie127	2313	4.111976
Movie140	578	4.833910
Movie16	320	4.518750
Movie103	272	4.562500
Movie29	243	4.806584

For this task, I sort by the <code>Number of Ratings</code> in ascending order and find the first 5.

1 display(movie_notNAN.sort_values(by = 'Number of Ratings').head(n=5))

	Number	of	Ratings	Average	Ratings
Movie1			1		5.0
Movie71			1		4.0
Movie145			1		5.0
Movie69			1		1.0
Movie68			1		5.0

▼ Tasks for building a Recommendation Model

Some of the movies hadn't been watched and therefore, are not rated by the users. Netflix would like to take this as an opportunity and build a machine learning recommendation algorithm which provides the ratings for each of the users.

- Task 4 Divide the data into training and test data
 - First, I fill null values with 0, invert the dataframe to get a user_id vs Movie Number dataframe, and then divide the data.
 - I've used the surprise module from the scikit-surprise library.

1 data = data.fillna(0)

2 display(data)

	user_id	Movie1	Movie2	Movie3	Movie4	Movie5	Movie6	Movie7	Movie8	Movie9	Movie10	Movie11	Movie12	Movie13	Movie14	Movie15	Movie16	Movie17	Movie
0	A3R5OBKS7OM2IR	5.0	5.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	(
1	AH3QC2PC1VTGP	0.0	0.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	(
2	A3LKP6WPMP9UKX	0.0	0.0	0.0	5.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	(
3	AVIY68KEPQ5ZD	0.0	0.0	0.0	5.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	(
4	A1CV1WROP5KTTW	0.0	0.0	0.0	0.0	5.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	(
4843	A1IMQ9WMFYKWH5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	(
4844	A1KLIKPUF5E88I	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	(
4845	A5HG6WFZLO10D	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	(
4846	A3UU690TWXCG1X	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	(
4847	Al4J762Yl6S06	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	(
4848 ro	ws × 207 columns																		

¹ data_inverted = pd.melt(data,id_vars='user_id') #pd.melt() method to combine Movies and user_id in a single row

² data_inverted.rename(columns={'variable':'Movie Number', 'value':'Rating'}, inplace=True)

³ display(data_inverted)

```
user_id Movie Number Rating
              A3R5OBKS7OM2IR
                                        Movie1
               AH3QC2PC1VTGP
                                        Movie1
                                                   0.0
             A3LKP6WPMP9UKX
       2
                                        Movie1
                                                   0.0
       3
                AVIY68KEPQ5ZD
                                        Movie1
                                                   0.0
       4
             A1CV1WROP5KTTW
                                        Movie1
                                                   0.0
             A1IMQ9WMFYKWH5
     998683
                                     Movie206
                                                   5.0
     998684
                                     Movie206
                                                   5.0
                A1KLIKPUF5E88I
                                                   5.0
     998685
               A5HG6WFZLO10D
                                     Movie206
     998686
             A3UU690TWXCG1X
                                      Movie206
                                                   5.0
     998687
                  AI4J762YI6S06
                                      Movie206
1 display(data_inverted[data_inverted['Movie Number'] == 'Movie69']) #Random movie
                        user_id Movie Number Rating
     329664
              A3R5OBKS7OM2IR
                                      Movie69
                                                   0.0
     329665
               AH3QC2PC1VTGP
                                      Movie69
                                                   0.0
     329666
             A3LKP6WPMP9UKX
                                      Movie69
                                                   0.0
     329667
                AVIY68KEPQ5ZD
                                      Movie69
                                                   0.0
     329668
            A1CV1WROP5KTTW
                                      Movie69
                                                   0.0
     334507 A1IMQ9WMFYKWH5
                                      Movie69
                                                   0.0
     334508
                                                   0.0
                A1KLIKPUF5E88I
                                       Movie69
     334509
               A5HG6WFZLO10D
                                      Movie69
                                                   0.0
     334510
             A3UU690TWXCG1X
                                       Movie69
                                                   0.0
     334511
                  AI4J762YI6S06
                                      Movie69
                                                   0.0
    4848 rows × 3 columns
1 display(data_inverted[data_inverted['user_id'] == 'A3LKP6WPMP9UKX']) #random user_id
                       user_id Movie Number Rating
             A3LKP6WPMP9UKX
       2
                                       Movie1
                                                   0.0
      4850
             A3LKP6WPMP9UKX
                                       Movie2
                                                   0.0
      9698
             A3LKP6WPMP9UKX
                                       Movie3
                                                   0.0
     14546
             A3LKP6WPMP9UKX
                                       Movie4
                                                   5.0
     19394
             A3LKP6WPMP9UKX
                                                   0.0
                                       Movie5
     974450 A3LKP6WPMP9UKX
                                     Movie202
                                                   0.0
            A3LKP6WPMP9UKX
                                     Movie203
                                                   0.0
     984146 A3LKP6WPMP9UKX
                                     Movie204
                                                   0.0
     988994 A3LKP6WPMP9UKX
                                     Movie205
                                                   0.0
     993842 A3LKP6WPMP9UKX
                                     Movie206
                                                   0.0
    206 rows × 3 columns
1 !pip install scikit-surprise
                                   #Install recommended library for such tasks
    Collecting scikit-surprise
     Downloading <a href="https://files.pythonhosted.org/packages/97/37/5d334adaf5ddd65da99fc65f6507e0e4599d092ba048f4302fe8775619e8/scikit-surprise-1.1.1.tar.gz">https://files.pythonhosted.org/packages/97/37/5d334adaf5ddd65da99fc65f6507e0e4599d092ba048f4302fe8775619e8/scikit-surprise-1.1.1.tar.gz</a> (11.8MB)
                                          11.8MB 268kB/s
    Requirement already satisfied: joblib>=0.11 in /usr/local/lib/python3.6/dist-packages (from scikit-surprise) (0.16.0)
    Requirement already satisfied: numpy>=1.11.2 in /usr/local/lib/python3.6/dist-packages (from scikit-surprise) (1.18.5)
    Requirement already satisfied: scipy>=1.0.0 in /usr/local/lib/python3.6/dist-packages (from scikit-surprise) (1.4.1)
    Requirement already satisfied: six>=1.10.0 in /usr/local/lib/python3.6/dist-packages (from scikit-surprise) (1.15.0)
    Building wheels for collected packages: scikit-surprise
     Building wheel for scikit-surprise (setup.py) ... done
      Created wheel for scikit-surprise: filename=scikit_surprise-1.1.1-cp36-cp36m-linux_x86_64.whl size=1670974 sha256=05f773c2ffadb93a62b83b4a65c8cbf4eaa4fa2fb70283c7544901b85
     Stored in directory: /root/.cache/pip/wheels/78/9c/3d/41b419c9d2aff5b6e2b4c0fc8d25c538202834058f9ed110d0
    Successfully built scikit-surprise
    Installing collected packages: scikit-surprise
    Successfully installed scikit-surprise-1.1.1
1 from surprise import Reader, Dataset
2 from surprise.model_selection import train_test_split
4 reader = Reader()
5 model_data = Dataset.load_from_df(data_inverted[['user_id','Movie Number','Rating']], reader)
7 train, test = train_test_split(model_data, test_size = 0.2)
```

Task 5 - Build a recommendation model on training data

I have used a SVD model for this particular task.

```
1 from surprise import SVD, accuracy
2 \mod el = SVD()
3 model.fit(train)
```

<surprise.prediction_algorithms.matrix_factorization.SVD at 0x7f60e267b978>

▼ Task 6 - Make predictions on the test data

For this task, I use the test() method for prediction on test data, and show the root mean square error using rmse() method of the accuracy module.

- 1 predicted_values = model.test(test) #Get list of predictions
- 2 predicted_values_df = pd.DataFrame(predicted_values)
 3 predicted_values_df.rename(columns={'iid':'Predicted Movie Number', 'uid':'user_id'}, inplace=True)
- 4 display(predicted_values_df)

	user_id	Predicted Movie Number	r_ui	est	details
0	AQ7V1UO19U1N9	Movie37	0.0	1.0	{'was_impossible': False}
1	AAQB00CK6R301	Movie35	0.0	1.0	{'was_impossible': False}
2	A2T2HPQ16WP4XD	Movie196	0.0	1.0	{'was_impossible': False}
3	A1GLOXDN9N406Z	Movie116	0.0	1.0	{'was_impossible': False}
4	A1FQPOYRBTTK1	Movie146	0.0	1.0	{'was_impossible': False}
199733	A3PHVQMJR57DFY	Movie100	0.0	1.0	{'was_impossible': False}
199734	A2KJ92GG58CZNR	Movie204	0.0	1.0	{'was_impossible': False}
199735	A2NL42GF3KGW9	Movie58	0.0	1.0	{'was_impossible': False}
199736	AWUL6M6NGT6QH	Movie107	0.0	1.0	{'was_impossible': False}
199737	A3M672PZX4TG5O	Movie49	0.0	1.0	{'was_impossible': False}
199738 rc	ws × 5 columns				

 $1\ {\tt accuracy.rmse(predicted_values)} \quad \ {\tt \#Calculate\ root\ mean\ square\ error}$

RMSE: 1.0253 1.0252521305939741