universidad torcuato di tella maestría en economía — maestría en econometría 2021

Microeconometría Problem Set 1 Modelo de Probabilidad Lineal, Logit y Probit

• Ejercicio 1. Porcentaje correctamente predicho.

Sea y una variable binaria y considere algún modelo de probabilidad $P(y = 1|x) = F(X\beta)$. Muestre que el porcentaje general predicho correctamente es un promedio ponderado del porcentaje predicho para la variable dependiente igual a 0 (\hat{q}_0) y del porcentaje predicho para la variable dependiente igual a 1 (\hat{q}_1) , donde las ponderaciones son las proporciones de ceros y de unos en la muestra, respectivamente.

• Ejercicio 2. Interpretación del Modelo de Probabilidad Lineal I.

Suponga que se estima el modelo

$$y_i = \beta_0 + \beta_1 x_i + u_i$$

donde x es una variable continua, mientras que y es una variable que sólo puede valer 0 o 1. El tamaño de la muestraes n y sea n_1 la cantidad de elementos que verifican $y_i = 1$. Llame \bar{x}_1 a la media de la variable x tomada solo para aquellos elementos que verifican $y_i = 1$ y \bar{x}_0 a la media de la variable x tomada sobre los valores restantes. Muestre que

$$\hat{\beta}_1 = \frac{p(1-p)(\bar{x}_1 - \bar{x}_0)}{\frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2}$$

donde $p = \frac{n_1}{n}$.

• Ejercicio 3. Interpretación del Modelo de Probabilidad Lineal II.

Sea y una resultado binario y sean d_1, d_2, \ldots, d_M variables binarias mutuamente excluyentes y colectivamente exhaustivas, es decir, cada persona de la población cae en una y sólo una categoría.

(a) Muestre que los valores ajustados de la regresión sin intercepto

$$y_i$$
 sobre $d_{1i}, d_{2i}, \ldots, d_{Mi}$

están siempre en el intervalo unitario. En particular, describa qué representa cada coeficiente y el valor ajustado para cada i.

- (b) ¿Qué ocurre si y_i se regresa sobre M combinaciones lineales de d_1, d_2, \ldots, d_M linealmente independientes entre sí? $Ayuda: considere \ 1, d_2, \ldots, d_M$.
- Ejercicio 4. Efectos marginales I.

Sea y un resultado binario y $\mathbf{x}=(x_1,\ldots,x_k)$ un vector de variables explicativas. Sea $G(\cdot)$ la función de distribución acumulada de una variable aletoria continua. Recuerde que si x_j es continua, su efecto marginal se obtiene como

$$\frac{\partial p(\mathbf{x})}{\partial x_j} = g(\beta_0 + \mathbf{x}\boldsymbol{\beta})\beta_j, \quad \text{donde } g(z) \equiv \frac{dG}{dz}(z)$$

- (a) Muestre que los efectos relativos de dos variables explicativas cualesquiera no dependen de \mathbf{x} .
- (b) Sea x_1 una variable binaria. ¿Cuál es el efecto parcial de cambiar x_1 de 0 a 1? ¿De qué depende? Interprete en el caso en el que y es un indicador de empleo y x_1 es una variable binaria que indica la participación en un programa de capacitación laboral.
- (c) Sea x_2 una variable discreta numérica. ¿Cuál es el efecto parcial de cambiar x_2 de cierto nivel c a c+1? ¿De qué depende? Interprete en el caso en el que y es un indicador de si la persona i fuma y x_2 la cantidad de cigarrillos que fuma por día.

Considere ahora el siguiente modelo

$$P(y = 1 \mid \mathbf{z}) = G(\beta_0 + \beta_1 z_1 + \beta_2 z_1^2 + \beta_3 \log(z_2) + \beta_4 z_3)$$

- (d) ¿Cuál es el efecto parcial de z_1 sobre $P(y = 1 \mid \mathbf{z})$?
- (e) ¿Cuál es el efecto parcial de z_2 sobre $P(y = 1 \mid \mathbf{z})$?
- (f) ¿Cuál es la elasticidad de z_3 sobre $P(y=1 \mid \mathbf{z})$? ¿Siempre tiene el mismo signo que β_4 ?
- (g) ¿Cuál es la elasticidad de z_1 sobre $P(y = 1 \mid \mathbf{z})$?
- (h) ¿Cómo obtendría errores estándar para todos estos efectos?

universidad torcuato di tella maestría en economía — maestría en econometría 2021

Microeconometría Ejercicios Introductorios a Stata 1 Modelo de Probabilidad Lineal, Logit y Probit

• Ejercicio 1. MPL, Logit y Probit en Stata I.

En este ejercicio usted va a demostrar algunas propiedades de las estimaciones para modelos con variable dependiente discreta.

- (a) Estime a ins contra retire, age, hstatusg, hhincome, educyear, married, hisp por OLS, Logit y Probit.
- (b) ¿Cuál es el problema de estimar el modelo por OLS?
- (c) Explique analíticamente cuál es la interpretación de un coeficiente β en un modelo de regresión lineal y en un modelo Probit/Logit. ¿Es constante el efecto marginal en los modelos no lineales?
- (d) Para evaluar la eficacia de los modelos Probit y Logit defina como el valor estimado de la variable dependiente y como

$$\hat{y} = \begin{cases} 1 \text{ si } P(\widehat{y=1}|x) > 0.5\\ 0 \text{ si } P(\widehat{y=0}|x) \le 0.5 \end{cases}$$
 (1)

Realice un cuadro de doble entrada con las variables y y \hat{y} . Comente.

- (e) En la literatura se sugiere que $\beta^{logit} \approx 4\beta^{ols}$ y $\beta^{probit} \approx 2.5\beta^{ols}$. Compruébelo para esta muestra.
- (f) Compute la probabilidad esperada que ins=1 cuando las variables están evaluadas en la media.
- (g) Defina el odds ratio como el cociente entre la probabilidad que y = 1 y y = 0. De este modo, un odds ratio de 2 implica que es dos veces más probable que y = 1 a que y = 0. Demuestre que para el caso de un modelo Logit se verifica que

$$\ln\left(\frac{P(y=1|x)}{P(y=0|x)}\right) = X\beta$$

Recuerde que para un modelo Logit

$$P(y = 1|x) = \frac{1}{1 + e^{-X\beta}}$$

• Ejercicio 2. MPL, Logit y Probit en Stata II.

Utilice la base de datos de Mroz, T.A. (1987): "The Sensitiviy of an Empirical Model of Married Women's Hours of Work to Economic and Statistical Assumptions", Econometrica, 55, 765-799.. La misma posee datos sobre el desempleo de las mujeres en Estados Unidos en 1975.

- (a) Para comenzar, realize un análisis exploratorio simple de los datos. Para esto, puede ayudarse de los comandos describe, summarize, browse, tab.
- (b) Cree una variable de educación centrada. Recuerde que se le llama variable centrada a una variable transformada como $\tilde{x}_i = x_i \bar{x}$.
- (c) Estudie gráficamente la relación entre el salario y la educación. Puede también desagregar por las variables *inlf, kidslt6*. Para esto, puede ayudarse de los comandos graph, twoway, scatter, lfit y sus opciones.
- (d) ¿Hay valores faltantes o duplicados en la muestra? Intente resolver esto sin el comando browse ni edit.
- (e) Estime un modelo de probabilidad lineal de *inlf* sobre *educ*, *city*, *exper*, *kidslt6*, *expersq*. Además, genere la predicción del modelo.
- (f) ¿Puede realizar inferencia con este modelo? Estime el modelo con errores estándares robustos. ¿Cómo cambian los resultdos?
- (g) ¿Qué ocurre si elimina la constante del modelo?
- (h) ¿Qué ocurre si estima el modelo solo para una ciudad?
- (i) Estime un modelo logit de inlf sobre educ, city, exper, kidslt6, expersq.
- (j) Calcule la predicción del modelo.
- (k) Genere la curva ROC.

- (l) Calcule los efectos marginales en las medias.
- (m) Calcule los efectos marginales en valores particulares de la variable que le resulten de interés.
- (n) Estime un modelo probit con las mismas variables que en (i) y cree una tabla con las estimaciones de todos los modelos.
- Ejercicio 3. Estimar el efecto de la educación sobre la probabilidad de estar desempleado.

Utilice la EPH con datos de individuos del segundo trimestre de 2015, disponible en http://www.indec.gob.ar/bases-de-datos.asp. Use la muestra de jefes de hogar, hombres, 25-65 años, para todos los conglomerados disponibles. Estudie como se define el desempleo de acuerdo al INDEC. Rentrinja la muestra a personas empleadas o desempleadas, es decir excluya aquellos que están fuera de la fuerza laboral (no buscan trabajo, estudian, retirados, etc.). Use las ponderaciones pondera.

- (a) Utilice un modelo de probabilidad lineal para estimar el efecto de la educación sobre la probabilidad de estar desempleado, controlando por ubicación geográfica, edad y estado civil. Construya las probabilidades para cada individuo. ¿Qué proporción de la muestra tiene probabilidades predecidas mayores a 1 o menores a 0 ?
- (b) Estimar el modelo del inciso (a) usando los modelos Probit y logit. ¿Cómo cambian los resultados?
- (c) Estimar la probabilidad de estar desempleado para un hombre universitario (de grado) completo, casado, para cada área metropolitana de la EPH, para todos los aos posibles de edad 25-65. Graficar los efectos marginales de la edad sobre la probabilidad de estar desempleado, junto con los errores estándar de la estimación.

<u>Trabajo Práctico Nº 1:</u> Modelo de Probabilidad Lineal, Logit y Probit.

Ejercicio 1: Porcentaje Correctamente Predicho.

Sea y una variable binaria y considerar algún modelo de probabilidad $P(y=1|x)=F(X\beta)$. Mostrar que el porcentaje general predicho correctamente es un promedio ponderado del porcentaje predicho para la variable dependiente igual a $\theta(\hat{q}_0)$ y del porcentaje predicho para la variable dependiente igual a $\theta(\hat{q}_0)$ y del porcentaje predicho para la variable dependiente igual a $\theta(\hat{q}_0)$ y del porcentaje predicho para la variable dependiente igual a $\theta(\hat{q}_0)$ y del porcentaje predicho para la variable dependiente igual a $\theta(\hat{q}_0)$ y del porcentaje predicho para la variable dependiente igual a $\theta(\hat{q}_0)$ y del porcentaje predicho para la variable dependiente igual a $\theta(\hat{q}_0)$ y del porcentaje predicho para la variable dependiente igual a $\theta(\hat{q}_0)$ y del porcentaje predicho para la variable dependiente igual a $\theta(\hat{q}_0)$ y del porcentaje predicho para la variable dependiente igual a $\theta(\hat{q}_0)$ y del porcentaje predicho para la variable dependiente igual a $\theta(\hat{q}_0)$ y del porcentaje predicho para la variable dependiente igual a $\theta(\hat{q}_0)$ y del porcentaje predicho para la variable dependiente igual a $\theta(\hat{q}_0)$ y del porcentaje predicho para la variable dependiente igual a $\theta(\hat{q}_0)$ y del porcentaje predicho para la variable dependiente igual a $\theta(\hat{q}_0)$ y del porcentaje predicho para la variable dependiente igual a $\theta(\hat{q}_0)$ y del porcentaje predicho para la variable dependiente igual a $\theta(\hat{q}_0)$ y del porcentaje predicho para la variable dependiente igual a $\theta(\hat{q}_0)$ y del porcentaje predicho para la variable dependiente igual a $\theta(\hat{q}_0)$ y del porcentaje predicho para la variable dependiente igual a $\theta(\hat{q}_0)$ y del porcentaje predicho para la variable dependiente igual a $\theta(\hat{q}_0)$ y del porcentaje predicho para la variable dependiente igual a $\theta(\hat{q}_0)$ y del porcentaje predicho para la variable dependiente igual a $\theta(\hat{q}_0)$ y del porcentaje predicho para la variable dependiente igual a $\theta(\hat{q}_0)$ y del porcentaje predicho para la variable dependiente igual a $\theta(\hat{q}_0)$ y d

$$\hat{q}_0 = \frac{cantidad\ de\ observaciones\ correctamente\ predichas\ cuando\ y=0}{cantidad\ de\ observaciones\ con\ y=0} = \frac{A}{n_0}.$$

$$\hat{q}_1 = \frac{cantidad\ de\ observaciones\ correctamente\ predichas\ cuando\ y=1}{cantidad\ de\ observaciones\ con\ y=1} = \frac{B}{n_1}.$$

$$\hat{q} = \frac{cantidad\ de\ observaciones\ correctamente\ predichas}{cantidad\ de\ observaciones} = \frac{A+B}{n_0+n_1}$$

$$\hat{q} = \frac{A+B}{n_0+n_1}$$

$$\hat{q} = \frac{a_0\hat{q}_0+n_1\hat{q}_1}{n_0+n_1}$$

$$\hat{q} = \frac{n_0\hat{q}_0+n_1\hat{q}_1}{n_0+n_1}$$

$$\hat{q} = \frac{n_0\hat{q}_0+n_1\hat{q}_1}{n_0+n_1}$$

$$\hat{q}_0 = \frac{n_0\hat{q}_0+n_1\hat{q}_1}{n_0+n_1}$$

Ejercicio 2: Interpretación del Modelo de Probabilidad Lineal I.

Suponer que se estima el modelo:

$$y_i = \beta_0 + \beta_1 x_i + u_i,$$

donde x es es una variable continua, mientras que y es una variable que sólo puede valer 0 o 1. El tamaño de la muestra es n y sea n_1 la cantidad de elementos que verican $y_i = 1$. Llamar \bar{x}_1 a la media de la variable x tomada sólo para aquellos elementos que verican $y_i = 1$ y \bar{x}_0 a la media de la variable x tomada sobre los valores restantes. Mostrar que:

$$\hat{\beta}_1 = \frac{p(1-p)(\bar{x}_1 - \bar{x}_0)}{\frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2},$$

donde
$$p = \frac{n_1}{n}$$
.

Partiendo del estimador de Mínimos Cuadrados Ordinarios (MCO) para el parámetro de pendiente (β_1) de este modelo, se tiene:

$$\begin{split} \hat{\beta}_{1} &= \frac{\sum_{i=1}^{n} x_{i}(y_{i} - \overline{y})}{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}} \\ \hat{\beta}_{1} &= \frac{\frac{1}{n} \sum_{i=1}^{n} x_{i}(y_{i} - \overline{y})}{\frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}} \\ \hat{\beta}_{1} &= \frac{\frac{1}{n} \sum_{i=1}^{n} x_{i}(y_{i} - \overline{n}_{1})}{\frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}} \\ \hat{\beta}_{1} &= \frac{\frac{1}{n} \sum_{i=1}^{n} x_{i}y_{i} - \frac{n_{1}}{n}}{\frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}} \\ \hat{\beta}_{1} &= \frac{\frac{1}{n} \sum_{i=1}^{n} x_{i}y_{i} - \sum_{i=1}^{n} x_{i} \frac{n_{1}}{n}}{\frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}} \\ \hat{\beta}_{1} &= \frac{\frac{1}{n} (\sum_{i=1}^{n_{1}} x_{i}y_{i} - \frac{n_{1}}{n} \sum_{i=1}^{n} x_{i})}{\frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}} \\ \hat{\beta}_{1} &= \frac{\frac{1}{n} (\sum_{i=1}^{n_{1}} x_{i} - \frac{n_{1}}{n} (n_{0} \overline{x}_{0} + n_{1} \overline{x}_{1})]}{\frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}} \\ \hat{\beta}_{1} &= \frac{\frac{1}{n} (n_{1} \overline{x}_{1} - \frac{n_{1}}{n} n_{1} n_{0} \overline{x}_{0} - \frac{n_{1}^{2}}{n} \overline{x}_{1})}{\frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}} \\ \hat{\beta}_{1} &= \frac{\frac{1}{n} (n_{1} \overline{x}_{1} - \frac{1}{n} n_{1} n_{0} \overline{x}_{0} - \frac{n_{1}^{2}}{n} \overline{x}_{1})}{\frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}} \\ \hat{\beta}_{1} &= \frac{\frac{1}{n} (n_{1} \overline{x}_{1} - \frac{1}{n} p(n - n_{1}) \overline{x}_{0} - \frac{1}{n} p n_{1} \overline{x}_{1}}{\frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}} \\ \hat{\beta}_{1} &= \frac{p \overline{x}_{1} - p(1 - p) \overline{x}_{0} - p^{2} \overline{x}_{1}}{\frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}} \\ \hat{\beta}_{1} &= \frac{p(1 - p) \overline{x}_{1} - p(1 - p) \overline{x}_{0}}{\frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}} \\ \hat{\beta}_{1} &= \frac{p(1 - p) \overline{x}_{1} - p(1 - p) \overline{x}_{0}}{\frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}} \\ \hat{\beta}_{1} &= \frac{p(1 - p) (\overline{x}_{1} - \overline{x}_{0})}{\frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}} . \end{cases}$$

Ejercicio 3: Interpretación del Modelo de Probabilidad Lineal II.

Sea y una resultado binario y sean d_1 , d_2 , ..., d_M variables binarias mutuamente excluyentes y colectivamente exhaustivas, es decir, cada persona de la población cae en una y sólo una categoría.

(a) Mostrar que los valores ajustados de la regresión sin intercepto y_i sobre d_{1i} , d_{2i} , ..., d_{Mi} están siempre en el intervalo unitario. En particular, describir qué representa cada coeficiente y el valor ajustado para cada i.

Cada coeficiente (1 .. k) representa la proporción de observaciones que tienen un resultado binario igual a 1 (y= 1) cuando la variable binaria independiente en cuestión es igual a 1 ($d_k=1$), es decir, $\bar{y}_k=\frac{\sum_{i=1}^{m_k}y_i}{m_k}$ (proporcion de "éxitos" de cada categoría), siendo m_k la cantidad de observaciones con $d_k=1$, $k=1,\ldots,M$.

El valor ajustado para cada i corresponde al coeficiente asociado a la variable d_k que para esa observación sea igual a 1.

(b) ¿Qué ocurre si y_i se regresa sobre M combinaciones lineales de d_{1i} , d_{2i} , ..., d_{Mi} linealmente independientes entre sí? Ayuda: Considerar I, d_2 , ..., d_M .

Lo que ocurre si y_i se regresa sobre M combinaciones lineales de d_{1i} , d_{2i} , ..., d_{Mi} linealmente independientes entre sí es que se omite una de las variables independientes porque existe multicolinealidad perfecta entre el intercepto y la combinación lineal de las variables independientes (mutuamente excluyentes y colectivamente exhaustivas).

Ejercicio 4: Efectos Marginales.

Sea y un resultado binario y $x = (x_1, ..., x_k)$ un vector de variables explicativas. Sea G (.) la función de distribución acumulada de una variable aleatoria continua. Recordar que, si x_i es continua, su efecto marginal se obtiene como:

$$\frac{\partial p(x)}{\partial x_i} = g (\beta_0 + x\beta) \beta_j$$
, donde $g(z) = \frac{\partial G}{\partial z}(z)$.

(a) Mostrar que los efectos relativos de dos variables explicativas cualesquiera no dependen de x.

$$\frac{\frac{\partial p(x)}{\partial x_1}}{\frac{\partial p(x)}{\partial x_2}} = g (\beta_0 + x\beta) \beta_1$$

$$\frac{\frac{\partial p(x)}{\partial x_2}}{\frac{\partial p(x)}{\partial x_2}} = g (\beta_0 + x\beta) \beta_2$$

$$\frac{\frac{\partial p(x)}{\partial x_1}}{\frac{\partial p(x)}{\partial x_2}} = \frac{g(\beta_0 + x\beta)\beta_1}{g(\beta_0 + x\beta)\beta_2}$$

$$\frac{\frac{\partial p(x)}{\partial x_1}}{\frac{\partial p(x)}{\partial x_1}} = \frac{\beta_1}{\beta_2}.$$

Por lo tanto, los efectos relativos de dos variables explicativas cualesquiera no dependen de x.

(b) Sea x_1 una variable binaria. ¿Cuál es el efecto parcial de cambiar x_1 de 0 a 1? ¿De qué depende? Interpretar en el caso en el que y es un indicador de empleo y x_1 es una variable binaria que indica la participación en un programa de capacitación laboral.

El efecto parcial de cambiar x_1 de 0 a 1 es:

$$\frac{\frac{\partial p(x)}{\partial x_1}}{\frac{\partial p(x)}{\partial x_1}} P(y=1 \mid x_1=1) - P(y=1 \mid x_1=0)$$

$$\frac{\frac{\partial p(x)}{\partial x_1}}{\frac{\partial p(x)}{\partial x_1}} g(\beta_0 + x\beta) \beta_1,$$

que depende de la función de densidad de la variable aleatoria continua y del coeficiente β_1 .

En el caso en el que y es un indicador de empleo y x_1 es una variable binaria que indica la participación en un programa de capacitación laboral, este efecto parcial indica en cuánto varía, céteris páribus, la probabilidad de obtener empleo al participar en un programa de capacitación laboral respecto a no participar.

(c) Sea x_2 una variable discreta numérica. ¿Cuál es el efecto parcial de cambiar x_2 de cierto nivel c a c+1? ¿De qué depende? Interpretar en el caso en el que y es un indicador de si la persona i fuma y x_2 la cantidad de cigarrillos que fuma por día.

$$\frac{\partial p(x)}{\partial x_2} = P(y=1 \mid x_2=c+1) - P(y=1 \mid x_2=c)$$

$$\frac{\partial p(x)}{\partial x_2} = g(\beta_0 + x\beta) \beta_2,$$

que depende de la función de densidad de la variable aleatoria continua y del coeficiente β_2 .

En el caso en el que y es un indicador de si la persona i fuma y x_2 la cantidad de cigarrillos que fuma por día, este efecto parcial indica en cuánto varía, *céteris páribus*, la probabilidad de que la persona i fume cuando la cantidad de cigarrillos que fuma por día aumenta en una unidad.

Considerar, ahora, el siguiente modelo:

$$P(y=1 \mid z) = G(\beta_0 + \beta_1 z_1 + \beta_2 z_1^2 + \beta_3 \log(z_2) + \beta_4 z_3).$$

(d) ¿Cuál es el efecto parcial de z_1 sobre $P(y=1 \mid z)$?

El efecto parcial de z_1 sobre P ($y=1 \mid z$) es:

$$\frac{\partial P(y=1|z)}{\partial z_1} = g(\beta_0 + \beta_1 z_1 + \beta_2 z_1^2 + \beta_3 \log(z_2) + \beta_4 z_3) \beta_1.$$

(e) ¿Cuál es el efecto parcial de z_2 sobre $P(y=1 \mid z)$?

El efecto parcial de z_2 sobre P (y= 1 | z) es:

$$\frac{\partial P(y=1 \mid z)}{\partial z_2} = g(\beta_0 + \beta_1 z_1 + \beta_2 z_1^2 + \beta_3 \log(z_2) + \beta_4 z_3) \beta_3 \frac{1}{z_2}$$

(f) ¿Cuál es la elasticidad de z_3 sobre P ($y=1 \mid z$)? ¿Siempre tiene el mismo signo que β_4 ?

La elasticidad de z_3 sobre P (y= 1 | z) es:

$$\varepsilon_{z_{3}} = \frac{\partial P(y=1|z)}{\partial z_{3}} \frac{z_{3}}{P(y=1|z)} = g (\beta_{0} + \beta_{1}z_{1} + \beta_{2}z_{1}^{2} + \beta_{3} \log (z_{2}) + \beta_{4}z_{3}) \beta_{4}$$

$$\frac{z_{3}}{G(\beta_{0} + \beta_{1}z_{1} + \beta_{2}z_{1}^{2} + \beta_{3}\log(z_{2}) + \beta_{4}z_{3})}.$$

No siempre tiene el mismo signo que β_4 , ya que éste también depende del valor que tome z_3 .

(g) ¿Cuál es la elasticidad de z_1 sobre $P(y=1 \mid z)$?

$$\begin{split} \varepsilon_{z_1} &= \ \frac{\partial^{p} \left(y = 1 \mid z\right)}{\partial z_1} \ \frac{z_1}{P\left(y = 1 \mid z\right)} = \ g \ \left(\beta_0 \ + \ \beta_1 z_1 \ + \ \beta_2 z_1^2 \ + \ \beta_3 \ \log \ (z_2) \ + \ \beta_4 z_3\right) \ \beta_1 \\ \frac{z_1}{G(\beta_0 + \beta_1 z_1 + \beta_2 z_1^2 + \beta_3 \log(z_2) + \beta_4 z_3)}. \end{split}$$

(h) ¿Cómo se obtendrían errores estándar para todos estos efectos?

Los errroes estándar para todos estos efectos se pueden obtener utilizando la matriz de varianzas y covarianzas de los coeficientes estimados del modelo, mediante métdos analíticos, siempre que la distribución de los estimadores sea conocida, o mediante métodos de remuestreo, siempre que la distribución de los estimadores no sea conocida.

Ejercicio 5: MPL, Logit y Probit en Stata I.

En este ejercicio, se van a demostrar algunas propiedades de las estimaciones para modelos con variable dependiente discreta.

(a) Estimar a ins contra retire, age, hstatusg, hhincome, educyear, married, hisp por OLS, Logit y Probit.

OLS:

Source	SS	df	MS	Number of obs F(7, 3198)	=	3,206 41.14
Model Residual	62.8403396 697.78505		8.97719137	Prob > F R-squared Adj R-squared	=	0.0000 0.0826 0.0806
Total	760.62539	3,205	.237324615	Root MSE	=	.46711
ins	Coefficient	Std. err.	t P>	> t [95% cd	onf.	interval]
1.retire age 1.hstatusg hhincome educyear 1.married 1.hisp _cons	0028955 .0655583 .0004921 .0233686 .1234699	.0182197 .0024189 .0194531 .0001375 .0028672 .0193618 .033666 .1605628	-1.20 0. 3.37 0. 3.58 0. 8.15 0. 6.38 03.59 0.	.025 .005123 .231007638 .001 .027416 .000 .000222 .000 .01774 .000 .085503 .00018703 .429187730	33 66 25 47 71	.0765743 .0018473 .1037001 .0007617 .0289903 .1614326 0549969 .4419021

Logit:

Logistic regre	Number of ob: LR chi2(7)	s = 3,206 = 289.79				
Log likelihood	= -1994.8784				Prob > chi2 Pseudo R2	= 0.0000 = 0.0677
ins	Coefficient	Std. err.	Z	P> z	[95% conf.	interval]
1.retire age 1.hstatusg hhincome educyear 1.married 1.hisp cons	.1969297 0145955 .3122654 .0023036 .1142626 .578636 8103059 -1.715578	.0842067 .0112871 .0916739 .000762 .0142012 .0933198 .1957522 .7486219	2.34 -1.29 3.41 3.02 8.05 6.20 -4.14 -2.29	0.019 0.196 0.001 0.003 0.000 0.000 0.000	.0318875 0367178 .1325878 .00081 .0864288 .3957327 -1.193973 -3.18285	.3619718 .0075267 .491943 .0037972 .1420963 .7615394 4266387 2483064

Probit:

Probit regression Number of obs = 3,206 LR chi2(7) = 292.30 Prob > chi2 = 0.0000 Log likelihood = -1993.6237 Pseudo R2 = 0.0683

ins	Coefficient	Std. err.	Z	P> z	[95% conf.	interval]
1.retire age	.1183567 0088696 .1977357	.0512678 .006899	2.31 -1.29	0.021	.0178736 0223914 .0889835	.2188397 .0046521 .3064878
1.hstatusg hhincome educyear	.001233	.0003866	3.56 3.19 8.34	0.000 0.001 0.000	.0889835	.0019907
1.married 1.hisp _cons	.362329 4731099 -1.069319	.0560031 .1104393 .4580794	6.47 -4.28 -2.33	0.000 0.000 0.020	.252565 689567 -1.967139	.4720931 2566529 1715002

Tabla comparativa:

	(1)	(2)	(3)
	OLS	Logit	Probit
main 0.retire	0	0	0
1.retire	0.0409**	0.197**	0.118**
	(0.0182)	(0.0842)	(0.0513)
age	-0.00290	-0.0146	-0.00887
	(0.00242)	(0.0113)	(0.00690)
0.hstatusg	0	0 (.)	0 (.)
1.hstatusg	0.0656***	0.312***	0.198***
	(0.0195)	(0.0917)	(0.0555)
hhincome	0.000492***	0.00230***	0.00123***
	(0.000138)	(0.000762)	(0.000387)
educyear	0.0234***	0.114***	0.0707***
	(0.00287)	(0.0142)	(0.00848)
0.married	0	0 (.)	0 (.)
1.married	0.123***	0.579***	0.362***
	(0.0194)	(0.0933)	(0.0560)
0.hisp	0	0 (.)	0 (.)
1.hisp	-0.121***	-0.810***	-0.473***
	(0.0337)	(0.196)	(0.110)
_cons	0.127	-1.716**	-1.069**
	(0.161)	(0.749)	(0.458)
N R-sq pseudo R-sq	3206 0.083	3206 0.068	3206 0.068

Standard errors in parentheses * p<0.10, ** p<0.05, *** p<0.01

(b) ¿Cuál es el problema de estimar el modelo por OLS?

Los problemas de estimar el modelo por OLS son que los valores estimados de la variable dependiente pueden caer fuera del rango [0, 1] y que los errores del modelo son heterocedásticos, lo cual resulta en estimadores ineficientes.

(c) Explicar, analíticamente, cuál es la interpretación de un coeficiente β en un modelo de regresión lineal y en un modelo Probit/Logit. ¿Es constante el efecto marginal en los modelos no lineales?

La interpretación de un coeficiente β en un modelo de regresión lineal es cuánto afecta un cambio en la variable independiente a la probabilidad de y= 1 (es decir, corresponde al efecto marginal, constante), mientras que, en un modelo Probit/Logit, es parte del efecto marginal, ya que, ahora, el efecto marginal refleja las diferentes pendientes de la curva, por lo que no es constante en los modelos no lineales.

(d) Para evaluar la eficacia de los modelos Probit y Logit, definir el valor estimado de la variable dependiente y como:

$$\hat{y} = \begin{cases} 1, si \ P \ (\hat{y} = 1) > 0.5 \\ 0, si \ P \ (\hat{y} = 0) \le 0.5 \end{cases}$$

Realizar un cuadro de doble entrada con las variables y y ŷ. Comentar.

ins	yhat_ 0	_probit 1	Total
0 1	+ 1,660 906	305 335	
Total	 2 , 566	640	3,206

(e) En la literatura, se sugiere que $\beta^{logit} \approx 4\beta^{ols}$ y $\beta^{probit} \approx 2.5\beta^{ols}$. Comprobarlo para esta muestra.

```
prueba logit[12,2]
                 Betas Logit 4 * Betas ~S
  ins:0b.retire
                   .19692966 .16340327
   ins:1.retire
                  -.01459553
                                -.01158219
      ins:age
ins:0b.hstatusq
                     0
ins:1.hstatusg
                  .31226537
                                .26223337
  ins:hhincome
                    .0023036
                                 .00196835
                               .00196835
  ins:educyear .11426256
 ins:0b.married
                      0
                  .57863605
0
  ins:1.married
                                .49387952
   ins:0b.hisp
    ins:1.hisp
                  -.81030593
                                -.48402374
     ins: cons
                  -1.7155784
                                 .50834278
prueba probit[12,2]
                Betas Probit 2,5 * Beta~S
                      0
  ins:0b.retire
                  .11835665
   ins:1.retire
                                .10212704
                  -.00886962
                                -.00723887
       ins:age
ins:0b.hstatusg
                       0
ins:1.hstatusg
  ins:hhincome
                  .19773566
                                 .16389585
                  .00123304
                                .00123022
                  .07074775
  ins:educyear
                                .05842157
ins:0b.married 0 0
ins:1.married .36232905 .3086747
ins:0b.hisp 0 0
ins:1.hisp -.47310993 -.30251484
      ins: cons
                  -1.0693194
                                .31771424
```

(f) Computar la probabilidad esperada que ins= 1 cuando las variables están evaluadas en la media.

La probabilidad esperada que ins= 1 cuando las variables están evaluadas en la media es:

- en el modelo OLS, 0,387;
- en el modelo Logit, 0,373; y
- en el modelo Probit, 0,374.

(g) Definir el odds ratio como el cociente entre la probabilidad que y = 1 y y = 0. De este modo, un odds ratio de 2 implica que es dos veces más probable que y = 1 a que y = 0. Demostrar que, para el caso de un modelo Logit, se verifica que:

$$\ln \left(\frac{P(y=1|x)}{P(y=0|x)} \right) = X\beta.$$

Recordar que para un modelo Logit:

$$P(y=1 \mid x) = \frac{1}{1+e^{-X\beta}}$$
.

P (y= 1 | x)=
$$\frac{e^{X\beta}}{1+e^{X\beta}}$$

P (y= 1 | x)= $\frac{e^{X\beta}}{e^{X\beta}(\frac{1}{e^{X\beta}}+1)}$
P (y= 1 | x)= $\frac{1}{1+\frac{1}{e^{X\beta}}}$
P (y= 1 | x)= $\frac{1}{1+e^{-X\beta}}$.

P (y= 0 | x)= 1 - P (y= 1 | x)
P (y= 0 | x)= 1 -
$$\frac{1}{1+e^{-X\beta}}$$

P (y= 0 | x)= $\frac{1+e^{-X\beta}-1}{1+e^{-X\beta}}$
P (y= 0 | x)= $\frac{e^{-X\beta}}{1+e^{-X\beta}}$.

$$\frac{\frac{P(y=1|x)}{P(y=0|x)}}{\frac{P(y=1|x)}{P(y=0|x)}} = \frac{\frac{1}{1+e^{-X\beta}}}{\frac{e^{-X\beta}}{1+e^{-X\beta}}}$$

$$\frac{\frac{P(y=1|x)}{P(y=0|x)}}{\frac{P(y=1|x)}{P(y=0|x)}} = e^{X\beta}$$

$$\ln\left(\frac{\frac{P(y=1|x)}{P(y=0|x)}\right) = \ln e^{X\beta}$$

$$\ln\left(\frac{\frac{P(y=1|x)}{P(y=0|x)}\right) = X\beta \ln e$$

$$\ln\left(\frac{\frac{P(y=1|x)}{P(y=0|x)}\right) = X\beta * 1$$

$$\ln\left(\frac{\frac{P(y=1|x)}{P(y=0|x)}\right) = X\beta.$$

Ejercicio 6: MPL, Logit y Probit en Stata II.

Utilizar la base de datos de Mroz, T. A. (1987): "The Sensitiviy of an Empirical Model of Married Women's Hours of Work to Economic and Statistical Assumptions", Econometrica, 55, 765-799. La misma posee datos sobre el desempleo de las mujeres en Estados Unidos en 1975.

(a) Para comenzar, realiza un análisis exploratorio simple de los datos. Para esto, se puede ayudar de los comandos describe, summarize, browse, tab.

Variable	Obs	Mean	Std. dev.	Min	Max
inlf	753	.5683931	.4956295	0	1
hours	753	740.5764	871.3142	0	4950
kidslt6	753	.2377158	.523959	0	3
kidsge6	753	1.353254	1.319874	0	8
age	753	42.53785	8.072574	30	60
educ	753	12.28685	2.280246	5	17
wage	753	2.374565	3.241829	0	25
repwage	753	1.849734	2.419887	0	9.98
hushrs	753	2267.271	595.5666	175	5010
husage	753	45.12085	8.058793	30	60
huseduc huswage faminc mtr motheduc	753 753 753 753 753	12.49137 7.482179 23080.59 .6788632 9.250996	3.020804 4.230559 12190.2 .0834955 3.367468	3 .4121 1500 .4415	17 40.509 96000 .9415
fatheduc	753	8.808765	3.57229	0	17
unem	753	8.623506	3.114934	3	14
city	753	.6427623	.4795042	0	1
exper	753	10.63081	8.06913	0	45
nwifeinc	753	20.12896	11.6348	0290575	96
lwage expersq	428 753	1.190173 178.0385	.7231978 249.6308	-2.054164	3.218876

(b) Crear una variable de educación centrada. Recordar que se le llama variable centrada a una variable transformada como $\tilde{x}_i = x_i - \bar{x}$.

Variable	Obs	Mean	Std. dev.	Min	Max
educ	, 753	12.28685	2.280246	5	17
educ_cent	753	-165.7517	2.280246	-173.0385	-161.0385

(c) Estudiar, gráficamente, la relación entre el salario y la educación. Se puede también desagregar por las variables inlf, kidslt6. Para esto, se puede ayudar de los comandos graph, twoway, scatter, lfit y sus opciones.

(d) ¿Hay valores faltantes o duplicados en la muestra? Intentar resolver esto sin el comando browse ni edit.

Variable	Missing	Total	Percent Missing
inlf	0	753	0.00
hours	0	753	0.00
kidslt6	0	753	0.00
kidsge6	0	753	0.00
age	0	753	0.00
educ	0	753	0.00
wage	0	753	0.00
repwage	0	753	0.00
hushrs	0	753	0.00
husage	0	753	0.00
huseduc	0	753	0.00
huswage	0	753	0.00
faminc	0	753	0.00
mtr	0	753	0.00
motheduc	0	753	0.00
fatheduc	0	753	0.00
unem	0	753	0.00
city	0	753	0.00
exper	0	753	0.00
nwifeinc	0	753	0.00
lwage	325	753	43.16
expersq	0	753	0.00
educ_cent	0	753	0.00

Sí, en la variable *lwage*, hay 325 valores faltantes en la muestra de 753 observaciones. No, no hay valores duplicados en la muestra.

(e) Estimar un modelo de probabilidad lineal de inlf sobre educ, city, exper, kidslt6, expersq. Además, generar la predicción del modelo.

OLS:

Source	SS	df	MS		ber of obs	=	753 37.62
Model Residual	37.1605056 147.56725	5 747	7.43210111 .19754652	Prol	o > F quared R-squared	=	0.0000 0.2012 0.1958
Total	184.727756	752	.245648611	_	t MSE	=	.44446
inlf	Coefficient	Std. err.	t t	P> t	[95% cor	nf.	interval]
educ city exper kidslt6 expersq _cons	.0388373 0574649 .0444919 1691606 0009058 1433578	.0073171 .0343425 .0058467 .031841 .0001881	-1.67 7.61 -5.31 -4.82	0.000 0.095 0.000 0.000 0.000 0.118	.0244729 1248842 .033014 2316691 0012751 323416	2 4 L L	.0532018 .0099544 .0559698 1066522 0005366 .036701

(f) ¿Se puede realizar inferencia con este modelo? Estimar el modelo con errores estándares robustos. ¿Cómo cambian los resultados?

OLS (con errores estándar robustos):

Linear regress	sion			Number of F(5, 747) Prob > F R-squared Root MSE	= =	753 52.82 0.0000 0.2012 .44446
inlf	 Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
educ city exper kidslt6 expersq _cons	.0388373 0574649 .0444919 1691606 0009058 1433578	.0069696 .0342117 .0055926 .0300823 .0001738 .0852798	5.57 -1.68 7.96 -5.62 -5.21 -1.68	0.000 0.093 0.000 0.000 0.000 0.093	.0251549 1246275 .0335128 2282165 001247 3107744	.0525197 .0096976 .055471 1101047 0005647 .0240588

Sí, se puede realizar inferencia con este modelo. Si se estima el modelo con errores estándares robustos, mejora la significatividad estadística de las variables.

(g) ¿Qué ocurre si se elimina la constante del modelo?

OLS (con errores estándar robustos y sin constate):

Linear regres:	sion			Number of F(5, 748) Prob > F R-squared Root MSE	= =	753 310.35 0.0000 0.6541 .44489
inlf	 Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
educ city exper kidslt6 expersq	0617278 .0425785 1700338	.0035986 .0340414 .005629 .0300221 .0001749	7.99 -1.81 7.56 -5.66 -4.91	0.000	.0216835 1285558 .0315281 2289713 0012023	.0358125 .0051002 .053629 1110963 0005154

Lo que ocurre si se elimina la constante del modelo es que aumenta la significatividad estadística de la variable *city*.

(h) ¿Qué ocurre si estima el modelo sólo para una ciudad?

OLS (con errores estándar robustos y sólo para una ciudad):

Linear regress	sion			Number of F(4, 479) Prob > F R-squared Root MSE	= =	484 46.75 0.0000 0.2065 .44379
inlf	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
educ city	.0413565	.0090158 (omitted)	4.59	0.000	.0236411	.0590718
exper	.0497399	.0068528	7.26	0.000	.0362745	.0632052
kidslt6	1426504	.0416024	-3.43	0.001	2243963	0609046
expersq	0009985	.0002023	-4.94	0.000	001396	000601
_cons	2781658	.1143471	-2.43	0.015	5028497	053482

Lo que ocurre si se estima el modelo sólo para una ciudad es que se omite la variable *city* porque existe multicolinealidad perfecta entre el intercepto del modelo y esta variable.

(i) Estimar un modelo Logit de inlf sobre educ, city, exper, kidslt6, expersq.

Logit:

Logistic regression	Number of obs = 753
	LR chi2(5) = 163.38
	Prob > chi2 = 0.0000
Log likelihood = -433.18195	Pseudo R2 = 0.1587

	Coefficient		Z	P> z	[95% conf.	interval]
educ city exper kidslt6 expersq _cons	.1991157 2786654 .2041167 8274419 0040423 -3.199722	.039264 .176285 .0302627 .1684161 .0009801 .5019472	5.07 -1.58 6.74 -4.91 -4.12 -6.37	0.000 0.114 0.000 0.000 0.000	.1221596 6241777 .144803 -1.157531 0059633 -4.18352	.2760717 .0668469 .2634304 4973525 0021213 -2.215924

(j) Calcular la predicción del modelo.

<mark>Stata.</mark>

(k) Generar la curva ROC.

(I) Calcular los efectos marginales en las medias.

Efectos marginales (condicionales en las medias) en Logit:

```
Conditional marginal effects
                                                                   Number of obs = 753
Model VCE: OIM
Expression: Pr(inlf), predict()
dy/dx wrt: educ city exper kidslt6 expersq
At: educ = 12.28685 (mean)
   city = .6427623 (mean)
exper = 10.63081 (mean)
    kidslt6 = .2377158  (mean)
    expersq = 178.0385 (mean)
______
                            Delta-method
              dy/dx std.err.
                                               z P>|z|
                                                                 [95% conf. interval]
______
        educ | .0485166 .0095555 5.08 0.000 .0297881 .0672452
        city | -.0678998 .0429316 -1.58 0.114 -.1520443 .0162447

      exper |
      .0497352
      .007403
      6.72
      0.000
      .0352256
      .0642448

      kidslt6 |
      -.201615
      .0411714
      -4.90
      0.000
      -.2823095
      -.1209206

      expersq |
      -.0009849
      .0002397
      -4.11
      0.000
      -.0014547
      -.0005152
```

(m) Calcular los efectos marginales en valores particulares de la variable que le resulten de interés.

Efectos marginales (condicionales en valores particulares) en Logit:

```
Conditional marginal effects
                                                                                         Number of obs = 753
Model VCE: OIM
Expression: Pr(inlf), predict()
dy/dx wrt: educ city exper kidslt6 expersq
At: educ = 10
     citv
                       1
     city = 1 exper = 20
     kidslt6 = 3
     expersq = 400
                                      Delta-method
                                                                      P>|z|
                             dy/dx std.err.
                                                                                      [95% conf. interval]
_______
          educ | .0296194 .0096332 3.07 0.002 .0107386 .0485001

      city | -.0414528
      .0272418
      -1.52
      0.128
      -.0948456
      .0119401

      exper | .0303633
      .0117144
      2.59
      0.010
      .0074035
      .0533231

      kidslt6 | -.1230858
      .0197055
      -6.25
      0.000
      -.1617079
      -.0844637

      expersq | -.0006013
      .0002532
      -2.37
      0.018
      -.0010976
      -.000105
```

(n) Estimar un modelo Probit con las mismas variables que en el inciso (i) y crear una tabla con las estimaciones de todos los modelos.

Probit:

Probit regress Log likelihood					Number of ob LR chi2(5) Prob > chi2 Pseudo R2	s = 753 = 163.97 = 0.0000 = 0.1592
inlf	Coefficient	Std. err.	z	P> z	[95% conf.	interval]
educ city exper kidslt6 expersq _cons	.1209674 169242 .1251388 5046704 0025089 -1.945429	.0231872 .1051678 .0181038 .1003243 .0005879 .294419	5.22 -1.61 6.91 -5.03 -4.27 -6.61	0.000 0.108 0.000 0.000 0.000	.0755213 3753671 .089656 7013024 0036611 -2.522479	.1664136 .0368831 .1606216 3080385 0013567 -1.368378

Tabla comparativa:

	(1)	(2)	(3)
	OLS	Logit	Probit
main educ	0.0388***	0.199***	0.121***
	(0.00697)	(0.0393)	(0.0232)
city	-0.0575*	-0.279	-0.169
	(0.0342)	(0.176)	(0.105)
exper	0.0445***	0.204***	0.125***
	(0.00559)	(0.0303)	(0.0181)
kidslt6	-0.169***	-0.827***	-0.505***
	(0.0301)	(0.168)	(0.100)
expersq	-0.000906***	-0.00404***	-0.00251***
	(0.000174)	(0.000980)	(0.000588)
_cons	-0.143*	-3.200***	-1.945***
	(0.0853)	(0.502)	(0.294)
N R-sq	753 0.201	753	753
pseudo R-sq		0.159	0.159

Standard errors in parentheses * p<0.10, ** p<0.05, *** p<0.01

Juan Menduiña

Ejercicio 7: Estimar el Efecto de la Educación sobre la Probabilidad de estar Desempleado.

Utilizar la EPH con datos de individuos del segundo trimestre de 2015, disponible en http://www.indec.gob.ar/bases-de-datos.asp. Usar la muestra de jefes de hogar, hombres, 25-65 años, para todos los conglomerados disponibles. Estudiar cómo se define el desempleo de acuerdo al INDEC. Rentrinjir la muestra a personas empleadas o desempleadas, es decir, excluir aquellos que están fuera de la fuerza laboral (no buscan trabajo, estudian, retirados, etc.). Usar las ponderaciones pondera.

(a) Utilizar un modelo de probabilidad lineal para estimar el efecto de la educación sobre la probabilidad de estar desempleado, controlando por ubicación geográfica, edad y estado civil. Construir las probabilidades para cada individuo. ¿Qué proporción de la muestra tiene probabilidades predecidas mayores a 1 o menores a 0?

Stata.

La proporción de la muestra que tiene probabilidades predecidas mayores a 1 y menores a 0 es 0 y 0,101, respectivamente.

(b) Estimar el modelo del inciso (a) usando los modelos Probit y Logit. ¿Cómo cambian los resultados?

Stata.

(c) Estimar la probabilidad de estar desempleado para un hombre casado, para cada área metropolitana de la EPH, para todos los años posibles de edad 25-65. Graficar los efectos marginales de la edad sobre la probabilidad de estar desempleado, junto con los errores estándar de la estimación.

Stata.

Universidad Torcuato Di Tella Maestrías en Economía y Econometría 2022

Microeconometría I Problem Set 2 Extensiones de Modelos Logit y Probit

- Ejercicio 1. Considere la siguiente afirmación. "La estimación de un modelo de probabilidad lineal es más robusta que probit o logit porque el modelo de probabilidad lineal no asume homocedasticidad ni tiene supuestos acerca de la distribución de los errores."
- Ejercicio 2. Probit con una variable no observable.

Considere el modelo Probit:

$$P(y = 1 \mid \mathbf{z}, q) = \Phi \left(\mathbf{z}_1 \delta_1 + \gamma_1 z_2 q \right),$$

donde q is independiente de \mathbf{z} y distribuido Normal(0,1); el vector \mathbf{z} es observado pero el escalar q no lo es.

- 1. Encuentre el efecto parcial de z_2 sobre la probabilidad de respueta, a saber, $\frac{\partial P(y=1|\mathbf{z},q)}{\partial z_2}$.
- 2. Muestre que $P(y=1\mid \mathbf{z}) = \Phi\left[\mathbf{z}_1\boldsymbol{\delta}_1/\left(1+\gamma_1^2z_2^2\right)^{1/2}\right]$.
- 3. Defina $\rho_1 \equiv \gamma_1^2.$ ¿Cómo testearía la hipótesis $H_0: \rho_1 = 0$?
- 4. Si tuviera motivos para creer que $\rho_1 > 0$, ¿cómo estimaría δ_1 junto con ρ_1 ?
- Ejercicio 3. Probit con endogeneidad.

Considere una gran muestra aleatoria de trabajadores en un momento dado. Sea $sick_i$ una variable que vale 1 si la persona i se reportó enferma durante los últimos 90 días, y vale 0 en caso contrario. Sea z_i un vector de características del individuo y del empleador. Sea $cigs_i$ el número de cigarrillos que fuma el individuo i por día (en promedio).

- 1. Explique el experimento subyacente de interés cuando queremos examinar los efectos del tabaquismo en los días de trabajo perdidos.
- 2. ¿Por qué $cigs_i$ podría estar correlacionada con variables no observables que afectan a $sick_i$?
- 3. Una forma de escribir el modelo de interés es

$$P(\text{ sick } = 1 \mid \mathbf{z}, \text{ cigs }, q_1) = \Phi(\mathbf{z}_1 \boldsymbol{\delta}_1 + \gamma_1 \text{ cigs } + q_1)$$

donde \mathbf{z}_1 es un subconjunto de \mathbf{z} y q_1 es una variable no observable que posiblemente esté correlacionada con cigs. ¿Qué sucede si se ignora q_1 y se estima el probit de sick sobre \mathbf{z}_1 y cigs?

- 4. ¿Puede cigs tener una distribución normal condicional en la población? Explique.
- 5. Explique cómo probar si *cigs* es exógeno. ¿Esta prueba se basa en *cigs* que tienen una distribución normal condicional?
- 6. Suponga que algunos de los trabajadores viven en estados que recientemente implementaron leyes de no fumar en el lugar de trabajo. ¿La presencia de las nuevas leyes sugiere un buen candidato IV para cigs?

Universidad Torcuato Di Tella Maestrías en Economía y Econometría 2022

Microeconometría I Problem Set 2 - Stata Extensiones de Modelos Logit y Probit

- Ejercicio 1. Utilice el conjunto de datos BWGHT.RAW para este problema.
 - 1. Defina una variable binaria, smokes, si la mujer fuma durante el embarazo. Estime un modelo probit que relacione smokes con motheduc, white y $\log(faminc)$. En white = 0 y faminc evaluado en el promedio de la muestra, ¿cuál es la diferencia estimada en la probabilidad de fumar para una mujer con 16 años de educación y uno con 12 años de educación?
 - 2. ¿Cree que faminc es exógena en la ecuación de smokes? ¿Qué pasa con motheduc?
 - 3. Suponga que motheduc y white son exógenos en el probit de la parte 1. Suponga también que fatheduc es exógeno a esta ecuación. Estime la forma reducida de $\log(faminc)$ para ver si fatheduc está parcialmente correlacionada $\log(faminc)$.
 - 4. Contraste la hipótesis nula de que log(faminc) es exógenA en el probit del inciso 1.

■ Ejercicio 2. Precios endógenos o exógenos

Una preocupación común cuando se utilizan precios autoinformados en la estimación de la prevalencia del tabaquismo con una base de datos de corte transversal (por ejemplo, Global Adult Tobacco Survey o GATS) es la potencial endogeneidad de esta variable. Para abordar este problema potencial, se construyen dos variables de precios diferentes. La primera variable de precio asigna a los fumadores el precio autoinformado pagado por la última compra y utiliza una imputación de regresión aleatoria (random regression imputation, a veces denominada imputación de regresión estocástica) para asignar un precio a los no fumadores de la muestra. La segunda variable de precio asigna a fumadores y no fumadores el promedio del precio autoinformado por unidad primaria de muestreo (UPM, o PSU por primary sampling unit). Siguiendo las recomendaciones en Economics of Tobacco Toolkit: Economic analysis of demand using data from the Global Adult Tobacco Survey (GATS) (John et al, 2019), se puede verificar la endogeneidad del precio autoinformado utilizando el test de Rivers-Vuong (1988).

- 1. ¿Por qué podrían ser endógenos los precios autoinformados?
- 2. Realice el test de Rivers-Vuong para los datos provistos en pricedata.dta utilizando las variables X en la primera etapa y Z en la segunda etapa.
- 3. En función de los resultados, estime la elasticidad de la prevalencia del tabaquismo con respecto a los precios.
- Ejercicio 3. Probit heterocedástico y simulaciones

Buscamos simular el siguiente modelo:

$$Pr(y = 1) = F\{(\beta_0 + \beta_1 x) / \exp(\gamma_1 x_{het})\}\$$

Genere un dataset vacío con 1000 obsevaciones. Genere las siguientes variables:

$$\begin{aligned} x &\sim \mathbb{U}(-1, 1) \\ x_{het} &\sim \mathbb{U}(0, 1) \\ \sigma &\sim e^{1, 5 \cdot x_{het}} \\ p &\sim \mathcal{N}\left(\frac{\beta_0 + \beta_1 \cdot x}{\sigma}\right) \end{aligned}$$

con $\beta_0 = 0.3$ y $\beta_1 = 2$ y defina la variable dependiente y como una variable binaria que vale 1 si p es mayor o igual a una variable aleatoria uniforme en el intervalo (0,1) y 0 en caso contrario. Estime el modelo probit heterocedástico y compare con las estimaciones del probit usual.

<u>Trabajo Práctico Nº 2:</u> Extensiones de Modelos Logit y Probit.

Ejercicio 1.

Considerar la siguiente armación: "La estimación de un modelo de probabilidad lineal es más robusta que Probit o Logit porque el modelo de probabilidad lineal no asume homocedasticidad ni tiene supuestos acerca de la distribución de los errores."

En esta afirmación, se propone una comparación que no es adecuada.

Ejercicio 2: Probit con una Variable no Observable.

Considerar el modelo Probit:

$$P(y=1 | z, q) = \Phi(z_1\delta_1 + \gamma_1z_2q),$$

donde q es independiente de z y distribuido normal (0, 1); el vector z es observado, pero el escalar q no lo es.

(a) Encontrar el efecto parcial de z_2 sobre la probabilidad de respuesta, a saber,

$$\frac{\partial P(y=1|z,q)}{\partial z_2} = \phi \left(z_1 \delta_1 + \gamma_1 z_2 q \right) \gamma_1 q.$$

(b) Mostrar que
$$P(y=1 \mid z) = \Phi(\frac{z_1\delta_1}{(1+\gamma_1^2z_2^2)^{\frac{1}{2}}})$$
.

Se escribe:

$$y^* = z_1 \delta_1 + r$$
,

con r= $\gamma_1 z_2 q + e$, donde $e \sim \mathcal{N}(0, 1)$ y es independiente de (z, q).

Como se asume que q es independiente de z, se tiene:

$$E(r \mid z) = E(\gamma_1 z_2 q + e \mid z)$$

$$E(r | z) = E(\gamma_1 z_2 q | z) + E(e | z)$$

$$E(r | z) = \gamma_1 z_2 E(q | z) + E(e)$$

$$E(r | z) = \gamma_1 z_2 E(q) + 0$$

$$E(r | z) = \gamma_1 z_2 * 0 + 0$$

$$E(r | z) = 0 + 0$$

$$E(r | z) = 0.$$

$$Var (r \mid z) = Var (\gamma_1 z_2 q + e \mid z)$$

$$Var(r | z) = Var(\gamma_1 z_2 q | z) + Var(e | z) + 2\gamma_1 z_2 Cov(q, e | z)$$

Var
$$(r \mid z) = \gamma_1^2 z_2^2$$
 Var $(q \mid z) + Var (e) + 2\gamma_1 z_2 * 0$

Var
$$(r \mid z) = \gamma_1^2 z_2^2$$
 Var $(q) + 1 + 0$
Var $(r \mid z) = \gamma_1^2 z_2^2 * 1 + 1 + 0$

Var
$$(r \mid z) = \gamma_1^2 z_2^2 * 1 + 1 + 0$$

Var
$$(r \mid z) = 1 + \gamma_1^2 z_2^2$$
.

Entonces, se puede armar la distribución de $\frac{r}{(1+\gamma_1^2z_2^2)^{\frac{1}{2}}}$ y ver que:

$$P(y=1 \mid z) = \Phi(\frac{z_1\delta_1}{(1+\gamma_1^2z_2^2)^{\frac{1}{2}}}).$$

(c) Definir $\rho_1 \equiv \gamma_1^2$. ¿Cómo se testearía la hipótesis H_0 : $\rho_1 = 0$?

Definiendo $\rho_1 \equiv \gamma_1^2$, la hipótesis H_0 : $\rho_1 = 0$ se podría testear usando un Score Test o un LM Test.

(d) Si se tuvieran motivos para creer que $\rho_1 > 0$, ¿cómo se estimaría δ_1 junto con ρ_1 ?

Si se tuvieran motivos para creer que $\rho_1 > 0$, δ_1 se estimaría junto con ρ_1 mediante el método de máxima verosimilitud.

Ejercicio 3.

Considerar una gran muestra aleatoria de trabajadores en un momento dado. Sea $sick_i$ una variable que vale 1 si la persona i se reportó enferma durante los últimos 90 días y vale 0 en caso contrario. Sea z_i un vector de características del individuo y del empleador. Sea cigs; el número de cigarrillos que fuma el individuo i por día (en promedio).

(a) Explicar el experimento subvacente de interés cuando se quieren examinar los efectos del tabaquismo en los días de trabajo perdidos.

El experimento subyacente de interés cuando se quieren examinar los efectos del tabaquismo en los días de trabajo perdidos es qué analizar qué efecto tendrá sobre la probabilidad de que una persona se reporte enferma durante los últimos 90 días el cambio exógeno del número de cigarrillos que fuma por día esa persona. En otras palabras, se quiere inferir causalidad, no sólo encontrar una correlación entre el ausentismo en el trabajo y el tabaquismo.

(b) ¿Por qué cigs; podría estar correlacionada con variables no observables que afectan a sic k_i ?

Dado que las personas eligen si fumar y cuánto, ciertamente, no se puede tratar a los datos como si provinieran del experimento que se tiene en mente en el inciso (a). Es decir, no se puede asignar a las personas, aleatoriamente, un consumo de cigarrillos diario.

El consumo de cigarrilos diario puede estar correlacionado con variables no observables que afectan la falta en el trabajo. Por ejemplo, los fumadores pueden ser menos saludables o tener otros atributos que les hagan faltar al trabajo con más frecuencia; o, por el contrario, el consumo de cigarrillos puede estar relacionado con rasgos de la personalidad que hacen que las personas trabajen más. En cualquier caso, el consumo de cigarrillos diarios podría estar correlacionado con elementos no observables de la ecuación.

(c) Una forma de escribir el modelo de interés es:

$$P (sick=1 \mid z, cigs, q_1) = \Phi (z_1\delta_1 + \gamma_1 cigs + q_1),$$

donde z_1 es un subconjunto de z y q_1 es una variable no observable que, posiblemente, esté correlacionada con cigs. ¿Qué sucede si se ignora q_1 y se estima el Probit de sick sobre z_1 y cigs?

Lo que sucede si se ignora q_1 y se estima el Probit de sick sobre z_1 y cigs es que los estimadores serán incosistentes.

(d) ¿Puede cigs tener una distribución normal condicional en la población? Explicar.

Dado que, en la población, hay muchas personas que no fuman, la distribución (condicional o incondicional) de consumo de cigarrillos diarios se "apila" en cero. Además, la variable cigs toma valores enteros positivos, por lo que no puede tener una distribución normal condicional en la población.

(e) Explicar cómo probar si cigs es exógeno. ¿Esta prueba se basa en cigs que tienen una distribución normal condicional?

Para probar si *cigs* es exógeno, se puede utilizar el procedimiento de dos etapas de Rivers y Vuong (1988).

(f) Suponer que algunos de los trabajadores viven en estados que, recientemente, implementaron leyes de no fumar en el lugar de trabajo. ¿La presencia de las nuevas leyes sugiere un buen candidato IV para cigs?

Suponiendo que las personas no se mudarán, inmediatamente, de su estado de residencia cuando el estado implemente leyes de no de fumar en el lugar de trabajo y que ese estado de residencia es, aproximadamente, independiente de la salud general de la población, un indicador dummy que diga si la persona trabaja en un estado con una nueva ley puede funcionar como una variable exógena. Estas situaciones, a menudo, se denominan "experimentos naturales". Además, es probable que la variable cigs esté correlacionada con el indicador de la ley estatal porque las personas no podrán fumar tanto como lo harían de no existir la ley. Por tanto, la presencia de las nuevas leyes sugiere un buen candidato IV para cigs.

Ejercicio 4.

Utilizar el conjunto de datos "BWGHT.dta" para este problema.

(a) Definir una variable binaria, smokes, si la mujer fuma durante el embarazo. Estimar un modelo Probit que relacione smokes con motheduc, white y log(faminc). En white= 0 y faminc evaluado en el promedio de la muestra, ¿cuál es la diferencia estimada en la probabilidad de fumar para una mujer con 16 años de educación y una con 12 años de educación?

Probit:

Probit regress					Number of ob LR chi2(3) Prob > chi2 Pseudo R2	s = 1,387 = 92.67 = 0.0000 = 0.0781
smokes	Coefficient	Std. err.	z	P> z	[95% conf.	interval]
motheduc white lfaminc _cons	1450599 .1896765 1669109 1.126276	.0207899 .1098805 .0498894 .2504611	-6.98 1.73 -3.35 4.50	0.000 0.084 0.001 0.000	1858074 0256853 2646923 .6353817	1043124 .4050383 0691296 1.617171

La diferencia estimada en la probabilidad de fumar para una mujer con 16 años de educación y una con 12 años de educación es -0,086.

(b) ¿faminc es exógena en la ecuación de smokes? ¿Qué pasa con motheduc?

faminc puede llegar a ser endógena en la ecuación de smokes.

(c) Suponer que motheduc y white son exógenos en el Probit del inciso (a). Suponer, también, que fatheduc es exógeno a esta ecuación. Estimar la forma reducida de log(faminc) para ver si fatheduc está parcialmente correlacionada con log(faminc).

Probit:

Source	SS	df	MS		er of obs	=	1,191 119.23
Model Residual	140.936735		46.9789115 .394010871	Prob R-sq	- /	= =	0.0000 0.2316 0.2296
Total	608.627639	1,190	.511451797	_	-	=	.6277
lfaminc	Coefficient		 t 		[95% co	nf.	interval]
motheduc white fatheduc _cons		.0098338 .050418 .008708 .1103648	7.21 6.85 7.08 11.25	0.000 0.000 0.000 0.000	.051610 .246293 .044577 1.02488	1 7	.090198 .4441298 .0787473 1.457945

(d) Contrastar la hipótesis nula de que log(faminc) es exógena en el Probit del inciso (a).

Probit regression

Log likelihood = -432.06242

Smokes | Coefficient Std. err. z P>|z| [95% conf. interval]

motheduc | -.0826247 .0465204 -1.78 0.076 -.173803 .0085536
white | .4611075 .1965245 2.35 0.019 .0759265 .8462886
lfaminc | -.7622559 .3652949 -2.09 0.037 -1.478221 -.046291
v2hat | .6107298 .3708071 1.65 0.100 -.1160387 1.337498
 _cons | 1.98796 .5996374 3.32 0.001 .8126927 3.163228

(1) [smokes]v2hat = 0

chi2(1) = 2.71Prob > chi2 = 0.0996

Por lo tanto, con un nivel de significancia del 10%, estos datos aportan evidencia suficiente para indicar que *log(faminc)* es endógena.

Ejercicio 5.

Una preocupación común cuando se utilizan precios autoinformados en la estimación de la prevalencia del tabaquismo con una base de datos de corte transversal (por ejemplo, Global Adult Tobacco Survey o GATS) es la potencial endogeneidad de esta variable. Para abordar este problema potencial, se construyen dos variables de precios diferentes. La primera variable de precio asigna a los fumadores el precio autoinformado pagado por la última compra y utiliza una imputación de regresión aleatoria (random regression imputation, a veces denominada imputación de regresión estocástica) para asignar un precio a los no fumadores de la muestra. La segunda variable de precio asigna a fumadores y no fumadores el promedio del precio autoinformado por unidad primaria de muestreo (UPM, o PSU por Primary Sampling Unit). Siguiendo las recomendaciones en "Economics of Tobacco Toolkit: Economic Analysis of Demand Using Data from the Global Adult Tobacco Survey (GATS)" (John et al., 2019), se puede verificar la endogeneidad del precio autoinformado utilizando el test de Rivers-Vuong (1988).

(a) ¿Por qué podrían ser endógenos los precios autoinformados?

Los precios autoinformados podrían ser endógenos porque pueden estar correlacionados con variables omitidas en el modelo, que, a su vez, correlacionen con la variable dependiente.

(b) Realizar el test de Rivers-Vuong para los datos provistos en "pricedata.dta" utilizando las variables X en la primera etapa y Z en la segunda etapa.

Adjusted Wald test

```
(1) [SmokeCigs]resid1 = 0

F(1, 5976) = 18.77

Prob > F = 0.0000
```

Por lo tanto, con un nivel de significancia del 1%, estos datos aportan evidencia suficiente para indicar que los precios autoinformados son endógenos.

(c) En función de los resultados, estimar la elasticidad de la prevalencia del tabaquismo con respecto a los precios.

Stata.

Ejercicio 6.

Se busca simular el siguiente modelo:

$$Pr(y=1) = F\{\frac{\beta_0 + \beta_1 x}{e^{\gamma_1 x} het}\}.$$

Generar un dataset vacío con 1000 obsevaciones. Generar las siguientes variables:

$$\begin{split} & x \sim U\left(-1,\ 1\right), \\ & x_{het} \sim U\left(0,\ 1\right), \\ & \sigma \sim e^{1,5x_{het}}, \\ & p \sim \mathcal{N}\ (\frac{\beta_0 + \beta_1 x}{\sigma}), \end{split}$$

con $\beta_0 = 0.3$ y $\beta_1 = 2$ y definir la variable dependiente y como una variable binaria que vale 1 si p es mayor o igual a una variable aleatoria uniforme en el intervalo (0, 1) y 0 en caso contrario. Estimar el modelo Probit heterocedástico y comparar con las estimaciones del Probit usual.

Probit heterocedástico:

Heteroskedasti	Number of Zero outo Nonzero o	comes	= = =	1,000 468 532			
Log likelihood	l = -563.0256			Wald chi2 Prob > ch	` '	=	78.21 0.0000
у	Coefficient			P> z	[95% cor	nf.	interval]
y x x _cons			8.84		1.934036		3.035342
lnsigma xhet	1.734142	.2630328	6.59	0.000	1.218608	3	2.249677
LR test of lns			Prob > c	chi:	2 = 0.0000		

Probit:

Probit regress	ion				Number of ob: LR chi2(1)	= 204.90
Log likelihood	= -588.64728				Prob > chi2 Pseudo R2	= 0.0000 = 0.1482
	Coefficient				[95% conf.	interval]
x	1.054521 .1085126	.0772801	13.65 2.56	0.000	.903055	1.205987 .1916742

Tabla comparativa:

	(1) Probit Het~o	(2) Probit			
У					
X	2.485***	1.055***			
	(0.281)	(0.0773)			
cons	0.288***	0.109**			
_	(0.0939)	(0.0424)			
lnsigma					
xhet	1.734***				
	(0.263)				
N	1000	1000			
pseudo R-sq		0.148			
Standard errors in parentheses * p<0.10, ** p<0.05, *** p<0.01					

Universidad Torcuato Di Tella Maestrías en Economía y Econometría 2022

Microeconometría I Problem Set 2 - Stata Modelos para Variables Categóricas No Ordenadas

- Ejercicio 1. Alternativas de pesca. La variable dependiente y toma el valor 1, 2, 3 o 4 dependiendo de cuál de los cuatro modos alternativos de pesca, respectivamente, playa, muelle, barco privado y barco chárter, se elija. En la base de datos, estos son beach, pier, private o charter. Los datos provienen de J. A. Herriges and C. L. Kling, "Nonlinear Income Effects in Random Utility Models", Review of Economics and Statistics, 81(1999): 62-72.
 - Abra la base y describa las categorías.
 - Estime un modelo logit multinomial.
 - Estime un modelo logit condicional.
- Ejercicio 2. Predicción de calificaciones de clientes

Net Promoter Score®, o NPS®, mide la experiencia del cliente y predice el crecimiento del negocio. Es utilizada por empresas que brindan servicios al consumidor final (bancos, telefónicas, etc). EL NPS se calcula usando la respuesta a una pregunta usando una escala de 0 a 10: ¿Qué tan probable es que recomiende a un amigo o colega? Los encuestados se agrupan de la siguiente manera:

- Los promotores (puntuación 9-10) son entusiastas leales que seguirán comprando y recomendarán a otros, lo que impulsará el crecimiento.
- Los neutrales (puntuación 7-8) son clientes satisfechos pero poco entusiastas que son vulnerables a las ofertas de la competencia.
- Los detractores (puntuación 0-6) son clientes insatisfechos que pueden dañar su marca e impedir el crecimiento a través del boca a boca negativo.

Al restar el porcentaje de detractores del porcentaje de promotores, se obtiene el puntaje neto del promotor, que puede oscilar entre un mínimo de -100 (si todos los clientes son detractores) y un máximo de 100 (si todos los clientes son promotores). Estas encuestas se utilizan para generar estrategias de originacion (nuevos clientes) y de reducción de *churn* (fuga de clientes). La base con la que se va a hacer la primera parte de la practica consiste en la encuesta de NPS que se le hace a los clientes de un Banco luego de efectuar una transacción en caja. En base a esto, utilizando la base NPS.dta responda las siguientes preguntas. L

- 1. Abra y describa la base.
- 2. Genere una variable que clasifique a los clintes en función de si son promotores, detractores o neutrales.
- 3. Analice cómo cambia la variable de espera en función de la clasificación de los clientes.
- 4. Tome una muestra del 10 % de los datos. Estime un logit multinomial para predecir cómo cambian las clasificaciones en función de la espera, condicionando en explicativas que considere relevantes.
- 5. Calcule los efectos marginales.
- 6. Repita el análisis con un probit multinomial y compare.
- 7. Realice un test de la significatividad de las variables.
- Ejercicio 3. Alternativas de pesca.
 - 1. Utilizando la EPH del cuarto trimestre de 2016, estime un modelo multinomial que le permita predecir la condición de actividad de una persona, entre inactivo, ocupado o desocupado.

La tabla 1 muestra los comandos de Stata utilizados para estos modelos.

Tabla 1: Modelos y comandos en Stata

Modelo	Comando
Logit multinomial	mlogit
Logit condicional	asclogit
Probit multinomial	mprobit
Logit ordenado	ologit
Probit ordenado	oprobit

<u>Trabajo Práctico Nº 3:</u> Modelos para Variables Categóricas No Ordenadas.

Ejercicio 1: Alternativas de Pesca.

La variable dependiente y toma el valor 1, 2, 3 o 4, dependiendo de cuál de los cuatro modos alternativos de pesca, respectivamente, playa, muelle, barco privado y barco chárter, se elija. En la base de datos, estos son beach, pier, private o charter. Los datos provienen de Herriges, J. A. y Kling, C. L. (1999): "Nonlinear Income Effects in Random Utility Models", Review of Economics and Statistics, 81, 62-72.

(a) Abrir la base y describir las categorías.

Fishing mode		N(income)	mean(income)	sd(income)
beach pier private charter	 	134 178 418 452	4.051617 3.387172 4.654107 3.880899	2.50542 2.340324 2.777898 2.050029

Fishing mode		mean(pbeach)	mean(ppier)	mean(pprivate)	mean(pcharter)
beach		35.69949	35.69949	97.80914	125.0032
pier		30.57133	30.57133	82.42908	109.7634
private		137.5271	137.5271	41.60681	70.58408
charter		120.6483	120.6483	44.56376	75.09694

Fishing mode		mean(qbeach)	mean(qpier)	mean(qprivate)	mean(qcharter)
beach pier private charter	 	.2791948 .2614444 .2082868 .2519077	.2190015 .2025348 .1297646 .1595341	.1593985 .1501489 .1775412 .1771628	.5176089 .4980798 .6539167 .6914998

(b) *Estimar un modelo logit multinomial.*

Logit multinomial (betas):

Multinomial lo	ogistic regres		Number of ob LR chi2(3) Prob > chi2 Pseudo R2	= 41.14 = 0.0000	
	Coefficient			=	interval]
beach		me)			
	1434029 .8141503				
private income _cons	.0919064 .7389208	.0406637			
	 0316399 1.341291			1136571 .9600457	

<u>Logit multinomial (relative-risk ratios):</u>

Log likelihood	d = -1477.1506				Number of ob LR chi2(3) Prob > chi2 Pseudo R2	= 41.14 = 0.0000
mode	RRR		Z		[95% conf.	interval]
beach	 (base outco: +	me)				
pier income _cons		.0461693 .516081			.7804799 1.442013	
private income _cons		.0445781 .4118906			1.012282 1.423808	
charter income _cons	.9688554 3.823979	.040543	-0.76 6.90	0.450	.8925639 2.611816	1.051668 5.598715

Note: $_{cons}$ estimates baseline relative risk for each outcome.

(c) Estimar un modelo logit condicional.

Logit condicional:

<u> </u>					of obs = of cases =	4,728
Alternatives variable: fishmode				Alts per	case: min = avg = max =	4.0
Log likelihood	d = -1215.1376				chi2(5) = > chi2 =	
d	Coefficient	Std. err.	z	P> z	[95% conf	. interval]
fishmode p q	 0251166 .357782					
beach	(base alter	native)				
charter income _cons	 0332917 1.694366				131958 1.255235	
pier income _cons	1275771 .7779593	.0506395			2268288 .3457992	
private income _cons	.0894398 .5272788	.0500671 .2227927			0086898 .0906132	

Ejercicio 2: Predicción de Calificaciones de Clientes.

Net Promoter Score®, o NPS®, mide la experiencia del cliente y predice el crecimiento del negocio. Es utilizada por empresas que brindan servicios al consumidor final (bancos, telefónicas, etc). EL NPS se calcula usando la respuesta a una pregunta usando una escala de 0 a 10: ¿Qué tan probable es que recomiende a un amigo o colega? Los encuestados se agrupan de la siguiente manera:

- Los promotores (puntuación 9-10) son entusiastas leales que seguirán comprando y recomendarán a otros, lo que impulsará el crecimiento.
- Los neutrales (puntuación 7-8) son clientes satisfechos pero poco entusiastas que son vulnerables a las ofertas de la competencia.
- Los detractores (puntuación 1-6) son clientes insatisfechos que pueden dañar su marca e impedir el crecimiento a través del boca a boca negativo.

Al restar el porcentaje de detractores del porcentaje de promotores, se obtiene el puntaje neto del promotor, que puede oscilar entre un mínimo de -100 (si todos los clientes son detractores) y un máximo de 100 (si todos los clientes son promotores). Estas encuestas se utilizan para generar estrategias de originacion (nuevos clientes) y de reducción de churn (fuga de clientes). La base con la que se va a hacer la primera parte de la práctica consiste en la encuesta de NPS que se le hace a los clientes de un Banco luego de efectuar una transacción en caja. En base a esto, utilizando la base "NPS.dta", responder las siguientes preguntas.

(a) Abrir y describir la base.

Variable	Obs	Mean	Std. dev.	Min	Max
nps marital_st~e	42 , 019	8.369975	2.263878	1	10
gender_code edad branch_desc	42 , 020	52.16497	12.56996	19	101
segmento	0				
operaciones mes nps anterior	42,020 42,020	1.728439 6.736292	1.476585 3.241668	1 1	31 12
hora	42,020	11.7812	1.743031	7	18
dia dia	42 , 020 0	14.91792	8.634796	1	31
espera cliente	42,020 42,020	10.89938 21372.36	10.70589 12335.51	0 1	60 42760

(b) Generar una variable que clasifique a los clientes en función de si son promotores, detractores o neutrales.

clasificaci on	Freq.	Percent	Cum.
Detractor Neutral Promotor	6,265 9,579 26,175	14.91 22.80 62.29	14.91 37.71 100.00
Total	42,019	100.00	

(c) Analizar cómo cambia la variable de espera en función de la clasificación de los clientes.

(d) Tomar una muestra del 10% de los datos. Estimar un logit multinomial para predecir cómo cambian las clasificaciones en función de la espera, condicionando en explicativas que se considere relevantes.

Logit (betas):

Multinomial log	3	ion			Number of obs LR chi2(14) Prob > chi2 Pseudo R2	= 4,202 = 418.26 = 0.0000 = 0.0542
clasificacion	Coefficient	Std. err.	Z	P> z	[95% conf.	interval]
Detractor	(base outco	ome)				
Neutral _Igender_co_2	0106823 12.80348 .0192837 7049277 5423917	.1117659 .0042832 730.9035 .1868698 .1983862 .2023154 .0044156 .2819115	-0.02 2.49 0.02 0.10 -3.55 -2.68 -5.30 1.62	0.984 0.013 0.986 0.918 0.000 0.007 0.000 0.105	2213368 .0022873 -1419.741 3469745 -1.093758 9389226 032066 0957557	.2167774 .0190772 1445.348 .3855418 3160979 0147573 1.009317
Promotor _Igender_co_2 _edad _Isegmento_2 _Isegmento_3 _Isegmento_4 _Isegmento_5 _espera _cons	13.38895 .254493 6899248 7035198	.0991182 .0038062 730.903 .1689136 .1774649 .1827513 .0040826 .2520943	-0.75 5.85 0.02 1.51 -3.89 -3.85 -11.74 4.25	0.455 0.000 0.985 0.132 0.000 0.000 0.000	2683366 .0147969 -1419.155 0765715 -1.03775 -1.061706 0559326 .5763835	.1201995 .0297169 1445.933 .5855575 3421 3453338 039929 1.564575

<u>Logit multinomial (relative-risk ratios):</u>

Multinomial log	-	sion			Number of obs LR chi2(14) Prob > chi2 Pseudo R2	= 4,202 = 418.26 = 0.0000 = 0.0542
clasificacion	RRR	Std. err.	Z	P> z	[95% conf.	interval]
Detractor	(base outco	ome)				
Neutral Igender_co_2 edad Isegmento_2 Isegmento_3 Isegmento_5 espera cons	.9977229 1.01074 363481.5 1.019471 .4941443 .5813562 .9768603 1.578982	.1115114 .0043292 2.66e+08 .1905084 .0980314 .1176173 .0043134 .4451333	-0.02 2.49 0.02 0.10 -3.55 -2.68 -5.30 1.62	0.984 0.013 0.986 0.918 0.000 0.007 0.000 0.105	.8014467 1.00229 0 .7068233 .3349555 .3910489 .9684427 .9086859	1.242068 1.01926 1.470411 .7289881 .8642781 .985351 2.743726
Promotor _Igender_co_2	.9286081 1.022506 652751.9 1.289808 .5016138 .4948405 .9531997 2.916777	.0920419 .0038919 4.77e+08 .217866 .0890188 .0904327 .0038915 .7353029	-0.75 5.85 0.02 1.51 -3.89 -3.85 -11.74 4.25	0.455 0.000 0.985 0.132 0.000 0.000 0.000	.7646504 1.014907 0 .9262867 .354251 .3458654 .9456029 1.779591	1.127722 1.030163 1.795992 .7102772 .707984 .9608576 4.780643

Note: _cons estimates baseline relative risk for each outcome.

(e) Calcular los efectos marginales.

Efectos marginales en Logit multinomial (detractor):

Marginal effects after mlogit

y = Pr(clasificacion==Detractor) (predict, pr outcome(1))

= .13172136

variable	dy/dx	Std. err.	Z	P> z	[95%	C.I.]	X
_Igend~2* edad _Isegm~2* _Isegm~3* _Isegm~4* _Isegm~5* espera	.0062526 0021919 1331684 0220274 .0931274 .0890482 .0047328	.01127 .0012 .00569 .02219 .05089 .04974	0.56 -1.83 -23.41 -0.99 1.83 1.79 1.92	0.579 0.067 0.000 0.321 0.067 0.073 0.055	015827 004541 144317 065524 006608 008432 000097	.028332 .000157 12202 .021469 .192863 .186529	.678486 52.2109 .000952 .567587 .183246 .148263 11.1349

^(*) $\mathrm{d}y/\mathrm{d}x$ is for discrete change of dummy variable from 0 to 1

Efectos marginales en Logit multinomial (neutral):

Marginal effects after mlogit

y = Pr(clasificacion==Neutral) (predict, pr outcome(2))

= .23194672

variable	dy/dx	Std. err.	Z	P> z	[95%	C.I.]	Х
_Igend~2* edad _Isegm~2* _Isegm~3* _Isegm~4* _Isegm~5* espera	.01049 001382 0628502 034214 02724 .0021924 .0029036	.01435 .00072 .1635 .02341 .02669 .02992 .00123	0.73 -1.91 -0.38 -1.46 -1.02 0.07 2.37	0.465 0.056 0.701 0.144 0.307 0.942 0.018	017644 002801 383304 08009 079548 056453 .000501	.038624 .000037 .257604 .011662 .025068 .060838	.678486 52.2109 .000952 .567587 .183246 .148263 11.1349

^(*) dy/dx is for discrete change of dummy variable from 0 to 1

Efectos marginales en Logit multinomial (promotor):

Marginal effects after mlogit

y = Pr(clasificacion==Promotor) (predict, pr outcome(3))

= .63633192

variable	dy/dx	Std. err.	z	P> z	[95%	C.I.]	X
_Igend~2* edad _Isegm~2* _Isegm~3* _Isegm~4* _Isegm~5* espera	0167426 .0035739 .1960187 .0562415 0658873 0912406 0076364	.01648 .0009 .16356 .02657 .04487 .04211	-1.02 3.99 1.20 2.12 -1.47 -2.17 -4.77	0.310 0.000 0.231 0.034 0.142 0.030 0.000		.015551 .005331 .516589 .108311 .022054 008712	.678486 52.2109 .000952 .567587 .183246 .148263 11.1349

^(*) dy/dx is for discrete change of dummy variable from 0 to 1

(f) Repetir el análisis con un Probit multinomial y comparar.

Probit multinomial:

Multinomial pro	-		Number of obs Wald chi2(14) Prob > chi2	•		
clasificacion	Coefficient	Std. err.	z	P> z	[95% conf.	interval]
Detractor	(base outco	ome)				
Neutral _Igender_co_2 edad _Isegmento_2 _Isegmento_3 _Isegmento_4 _Isegmento_5 espera _cons	.0092218 352632 .0867023 7015738 3109711	.0798336 .003062 .5757431 .1308623 .1429056 .1472973 .0033331 .2034099	-0.67 3.01 -0.61 0.66 -4.91 -2.11 -4.16 1.04	0.502 0.003 0.540 0.508 0.000 0.035 0.000 0.298	2100787 .0032205 -1.481068 1697831 9816635 5996685 020404 1867675	.1028631 .0152231 .7758037 .3431876 421484 0222737 0073386 .6105848
Promotor _Igender_co_2	097611 097611 .012833 -1.411541 .2629534 6144694 4984651 0350071 1.035228	.0738029 .002822 .6475008 .1220016 .1313595 .1378136 .0031476 .1878494	-1.32 4.55 -2.18 2.16 -4.68 -3.62 -11.12 5.51	0.186 0.000 0.029 0.031 0.000 0.000 0.000	242262 .007302 -2.680619 .0238348 8719294 7685749 0411763 .6670502	.0470399 .018364 1424626 .5020721 3570095 2283554 0288379 1.403406

Efectos marginales en Probit multinomial (detractor):

variable	dy/dx	Std. err.	Z	P> z	[95%	C.I.]	X
_Igend~2* edad	.0136968 0019418	.01125	1.22 -4.41	0.223	008346 002806	.03574	.677297 52.1844
_Isegm~2*	.2216672	.14863	1.49	0.136	06965	.512984	.002618
_Isegm~3* _Isegm~4*	0345801 .1251906	.01966 .02726	-1.76 4.59	0.079	07312 .071753	.00396 .178628	.578058 .183484
_Isegm~5* espera	.0823211 .0046788	.02707	3.04 9.74	0.002	.02926	.135382 .005621	.140171 11.1349

^(*) dy/dx is for discrete change of dummy variable from 0 to 1

Efectos marginales en Probit multinomial (neutral):

variable	dy/dx	Std. err.	z	P> z	[95%	C.I.]	X
Igend~2*	.0048601	.01424	0.34	0.733	023054	.032774	.677297
	00013	.00055	-0.24	0.812	0012	.00094	52.1844
	.1369606	.15124	0.91	0.365	159457	.433378	.002618
	0261368	.0229	-1.14	0.254	071021	.018747	.578058
	0571084	.02392	-2.39	0.017	103993	010224	.183484
	.0120419	.02754	0.44	0.662	041943	.066027	.140171
	.0029577	.00066	4.52	0.000	.001674	.004242	11.1349

^(*) dy/dx is for discrete change of dummy variable from 0 to 1

Efectos marginales en Probit multinomial (promotor):

Marginal effects after mprobit
 y = Pr(clasificacion==Promotor) (predict, pr outcome(3))

variable	dy/dx	Std. err.	z	P> z	[95%	C.I.]	X
_Igend~2* edad _Isegm~2*	0185569 .0020718 3586278	.01634 .00063 .15141	-1.14 3.31 -2.37	0.256 0.001 0.018	05058 .000845 655388		.677297 52.1844 .002618
_Isegm~3* _Isegm~4*	.0607169 0680822	.0265 .0313	2.29 -2.18	0.022	.008771	.112663	.578058
_Isegm~5* _espera	0943629 0076366	.03271	-2.88 -10.01	0.004	158476 009132	03025	.140171

^(*) dy/dx is for discrete change of dummy variable from 0 to 1

(g) Realizar un test de la significatividad de las variables.

Stata.

Juan Menduiña

Ejercicio 3.

Utilizando la EPH del cuarto trimestre de 2016, estimar un modelo multinomial que permita predecir la condición de actividad de una persona, entre inactivo, ocupado o desocupado.

<mark>Stata.</mark>

Universidad Torcuato Di Tella Maestrías en Economía y Econometría 2022

Microeconometría I Problem Set 4 - Stata Modelos para Variables Categóricas Ordenadas

- Ejercicio 1. Predicción de calificaciones de clientes Considere el ejercicio del Problem Set anterior con el mismo título que este. Repita el análisis utilizando un modelo ordenado.
- Ejercicio 2. Modelo secuencial
 - (a) Considere la base de datos nlsw88.dta. En la misma hay datos de un grupo de mujeres de entre 30 y 40 años para estudiar los patrones de la fuerza laboral. Estime un logit secuencial con la decisión de educación utilizando el comando seqlogit y muestre que puede obtener los mismos resultados estimando varios modelos logit por separado.
 - (b) Considere la base de datos gss.dta. La misma posee datos de la encuesta GSS (General Social Survey). Esta encuesta realiza investigaciones científicas básicas sobre la estructura y el desarrollo de la sociedad estadounidense con un programa de recopilación de datos diseñado tanto para monitorear el cambio social dentro de los Estados Unidos como para comparar a los Estados Unidos con otras naciones. Iniciado en 1972, el GSS contiene un "núcleo. estándar de preguntas demográficas, de comportamiento y de actitud, además de temas de especial interés. Muchas de las preguntas centrales se han mantenido sin cambios desde 1972 para facilitar los estudios de tendencias temporales, así como la replicación de hallazgos anteriores. En este ejercicio utilizamos datos de educación similares a los de la pregunta anterior.

Estime un logit secuencial, interprete los resultados y muestre el efecto de la educación del padre en las decisiones de educación en cada transición.

La tabla 1 muestra los comandos de Stata utilizados para estos modelos.

Tabla 1: Modelos y comandos en Stata

Modelo	Comando
Logit multinomial	mlogit
Logit condicional	asclogit
Probit multinomial	mprobit
Logit ordenado	ologit
Probit ordenado	oprobit

<u>Trabajo Práctico Nº 4:</u> Modelos para Variables Categóricas Ordenadas.

Ejercicio 1: Predicción de Calificaciones de Clientes.

Considerar el ejercicio del Problem Set anterior con el mismo título que éste. Repetir el análisis utilizando un modelo ordenado.

(a) Abrir y describir la base.

Variable	Obs	Mean	Std. dev.	Min	Max
nps marital_st~e	42,019	8.369975	2.263878	1	10
gender_code edad branch_desc	42,020	52.16497	12.56996	19	101
segmento	0				
operaciones	42,020	1.728439	1.476585	1	31
mes nps anterior	42 , 020 0	6.736292	3.241668	1	12
hora	42,020	11.7812	1.743031	7	18
dia dia	42 , 020 0	14.91792	8.634796	1	31
espera cliente	42,020 42,020	10.89938 21372.36	10.70589 12335.51	0 1	60 42760

(b) Generar una variable que clasifique a los clientes en función de si son promotores, detractores o neutrales.

clasificaci			
on	Freq.	Percent	Cum.
Detractor Neutral Promotor	6,265 9,579 26,175	14.91 22.80 62.29	14.91 37.71 100.00
Total	42,019	100.00	

(c) Analizar cómo cambia la variable de espera en función de la clasificación de los clientes.

(d) Tomar una muestra del 10% de los datos. Estimar un logit multinomial ordenado para predecir cómo cambian las clasificaciones en función de la espera, condicionando en explicativas que se considere relevantes.

Logit multinomial ordenado (betas):

Ordered logistic reg Log likelihood = -36			Number of obs LR chi2(7) Prob > chi2 Pseudo R2	s = 4,202 = 394.03 = 0.0000 = 0.0511
clasificacion Coef	ficient Std. err.	z P>	z [95% conf.	interval]
edad .0 Isegmento 2 .7 Isegmento 3 .2 Isegmento 4 Isegmento 5 3	667762 .0687925 163998 .0026606 313334 .8363563 147268 .1144579 478007 .1271562 697909 .1299945 359647 .0030773	6.16 0.0 0.87 0.3 1.88 0.1 -3.76 0.0 -2.84 0.0	201607 .000 .0111852 .3829078948 .0610096065 .0007272286 .0046245754 .000041996	.0680546 .0216144 2.370562 .4390601 2287855 1150063 0299333
,	429497 .178061 286401 .1758049		-1.77849 4732113	-1.080504 .2159311

Logit multinomial ordenado (odds ratios):

Ordered logist	3				Number of obs LR chi2(7) Prob > chi2 Pseudo R2	= 4,202 = 394.03 = 0.0000 = 0.0511
clasificacion	Odds ratio	Std. err.	Z	P> z	[95% conf.	interval]
_Igender_co_2	1.016535 2.077849	.0643488 .0027045 1.737822 .1418732 .0788391 .0898104 .0029686	-0.97 6.16 0.87 1.88 -3.76 -2.84 -11.69	0.332 0.000 0.382 0.061 0.000 0.004 0.000	.8174161 1.011248 .4033725 .9904395 .4832464 .5354887 .9588736	1.070424 1.02185 10.7034 1.551249 .7954992 .8913605 .9705103
/cut1 /cut2	-1.429497 1286401	.178061 .1758049			-1.77849 4732113	-1.080504 .2159311

Note: Estimates are transformed only in the first equation to odds ratios.

(e) Calcular los efectos marginales.

Efectos marginales en Logit multinomial ordenado (clasificación 1):

variable	dy/dx	Std. err.	z	P> z	[95%	C.I.]	X
_Igend~2*	.0079445 0019683 0671776 0261068 .063994 .0486811 .0043164	.00812 .00032 .05629 .0141 .01889 .01869	0.98 -6.13 -1.19 -1.85 3.39 2.60 11.41	0.328 0.000 0.233 0.064 0.001 0.009 0.000	007962 002597 177512 053748 .02698 .012049 .003575	.023851 001339 .043157 .001534 .101008 .085313	.682532 51.9412 .001666 .580438 .179914 .149929 11.1349

^(*) $\mathrm{d}y/\mathrm{d}x$ is for discrete change of dummy variable from 0 to 1

Efectos marginales en Logit multinomial ordenado (clasificación 2):

variable	dy/dx	Std. err.	Z	P> z	[95%	C.I.]	Х
Igend~2* edad _Isegm~2* _Isegm~3* _Isegm~4* _Isegm~5* espera	.0076247 0018677 0833501 0242958 .0511031 .0401242 .0040958	.00788 .00031 .08871 .01287 .01252 .01326 .00038	0.97 -6.00 -0.94 -1.89 4.08 3.03 10.66	0.333 0.000 0.347 0.059 0.000 0.002	007815 002478 25722 049518 .026558 .014131 .003342	.023064 001258 .09052 .000926 .075648 .066118	.682532 51.9412 .001666 .580438 .179914 .149929 11.1349

^(*) $\mathrm{d}y/\mathrm{d}x$ is for discrete change of dummy variable from 0 to 1

Efectos marginales en Logit multinomial ordenado (clasificación 3):

variable	dy/dx	Std. err.	 Z	P> z	[95%	C.I.]	X
Igend~2* edad _Isegm~2* _Isegm~3* _Isegm~4* _Isegm~5* espera	0155692 .003836 .1505277 .0504026 1150971 0888053 0084122	.01599 .00062 .14494 .02693 .0312 .03183	-0.97 6.17 1.04 1.87 -3.69 -2.79	0.330 0.000 0.299 0.061 0.000 0.005 0.000	.0 1 0 1	51197	.015 .005 .434 .103 053 026	054 608 183 948 414	.682532 51.9412 .001666 .580438 .179914 .149929

^(*) dy/dx is for discrete change of dummy variable from 0 to 1

(f) Repetir el análisis con un Probit multinomial ordenado y comparar.

Probit multinomial ordenado:

Ordered probit Log likelihood	3				Number of obs LR chi2(7) Prob > chi2 Pseudo R2	= 4,202 = 450.86 = 0.0000 = 0.0585
clasificacion	Coefficient	Std. err.	Z	P> z	[95% conf.	interval]
_Igender_co_2 edad _Isegmento_2 _Isegmento_3 _Isegmento_4 _Isegmento_5 _espera	.0079382 .0088488 .3043314 .1132939 3667121 3928859 0202896	.040891 .0015378 .5146773 .0664574 .0740819 .0764502 .0018409	0.19 5.75 0.59 1.70 -4.95 -5.14 -11.02	0.846 0.000 0.554 0.088 0.000 0.000	0722067 .0058348 7044176 0169602 5119099 5427255 0238977	.0880831 .0118628 1.31308 .2435479 2215144 2430463 0166814
/cut1 /cut2	9159207 1473535	.1025571			-1.116929 3467842	7149126 .0520771

<u>Efectos marginales en Progit multinomial ordenado (clasificación 1):</u>

variable	dy/dx	Std. err.	z	P> z	[95%	C.I.]	X
Igend~2* edad _Isegm~2* _Isegm~3* _Isegm~4* _Isegm~5* espera	001742 0019388 055947 0250324 .0905003 .099153	.00899 .00034 .07726 .01481 .02035 .02183	-0.19 -5.73 -0.72 -1.69 4.45 4.54 10.79	0.846 0.000 0.469 0.091 0.000 0.000	019358 002602 207383 054056 .050614 .05637 .003638	.015873 001276 .095489 .003991 .130386 .141936	.680866 52.1171 .001428 .567111 .186578 .147787 11.1349

^(*) $\mbox{dy/dx}$ is for discrete change of dummy variable from 0 to 1

Efectos marginales en Probit multinomial ordenado (clasificación 2):

variable	dy/dx St	d. err.	z	P> z	[95%	C.I.]	Х
edad (_Isegm~2* (_Isegm~3* (_Isegm~4* _Isegm~5*	0012622 0014084 0520378 0179079 0518055 .053895	.00025 .09116 .01044 .0091 .00872	-5.61 -0.57 -1.71 5.69 6.18		013992 001901 230701 038376 .033965 .036803	.011467 000916 .126626 .00256 .069646 .070987	.680866 52.1171 .001428 .567111 .186578 .147787

^(*) dy/dx is for discrete change of dummy variable from 0 to 1

Efectos marginales en Probit multinomial ordenado (clasificación 3):

Marginal effects after oprobit y = Pr(clasificacion==3) (predict, pr outcome(3)) = .6278671

variable	dy/dx	Std. err.	z	P> z	[95%	C.I.]	X
_Igend~2*	.0030042 .0033472 .1079848 .0429403 1423059 1530479 007675	.01548 .00058 .16839 .02522 .02913 .03018 .0007	0.19 5.75 0.64 1.70 -4.88 -5.07	0.846 0.000 0.521 0.089 0.000 0.000	212194	.033349 .004487 .43803 .092373 085205 093902 006308	.680866 52.1171 .001428 .567111 .186578 .147787

^(*) dy/dx is for discrete change of dummy variable from 0 to 1

(g) Realizar un test de la significatividad de las variables.

Stata.

Ejercicio 2: Modelo Secuencial.

(a) Considerar la base de datos "nlsw88.dta". En la misma, hay datos de un grupo de mujeres de entre 30 y 40 años para estudiar los patrones de la fuerza laboral. Estimar un logit secuencial con la decisión de educación utilizando el comando seqlogit y mostrar que se pueden obtener los mismos resultados estimando varios modelos logit por separado.

Logit secuencial:

Log likelihood	d = -2882.1386				Number of ob LR chi2(9) Prob > chi2	= 108.50
educ_cat	Coefficient	Std. err.	z	P> z	[95% conf.	interval]
_2_3_4v1 race	+ 					
Black Other	9151569 4910998	.1282466 .5511525	-7.14 -0.89	0.000 0.373	-1.166516 -1.571339	6637983 .5891394
south South _cons	 4175069 2.250353	.1259601	-3.31 23.61	0.001	6643841 2.063574	
_3_4v2	+ 					
race Black Other	 173837 1.745005	.1131414	-1.54 2.80	0.124	3955902 .5217389	.0479161 2.968271
south South _cons	 1495226 .1079773	.0968386	-1.54 1.75	0.123 0.080	3393228 0130691	.0402777
_4v3	+ 					
race Black Other	 3065161 3798123	.1648533	-1.86 -0.80	0.063 0.421	6296227 -1.305514	.0165905
south South _cons	.4052292 .0396236	.138966 .0855118	2.92	0.004	.1328609 1279765	.6775975 .2072237

Logit (High School):

Logistic regre					Number of ob LR chi2(3) Prob > chi2 Pseudo R2	= 78.50 = 0.0000	
hs	Coefficient		z	P> z	[95% conf.	interval]	
	9151569	.1282466	-7.14		-1.166516 -1.571339		
south South _cons	4175069	.1259601	-3.31 23.61	0.001	6643841 2.063574	1706298 2.437131	
Logit (Junior College):							
Logistic regre					Number of ob LR chi2(3) Prob > chi2 Pseudo R2	= 18.95 = 0.0003	
Log likelihood	d = -1314.2871			P> z	LR chi2(3) Prob > chi2	= 18.95 = 0.0003 = 0.0072	
Log likelihood sc race Black	d = -1314.2871 Coefficient +	Std. err. 	-1.54	0.124	LR chi2(3) Prob > chi2 Pseudo R2 [95% conf3955902	= 18.95 = 0.0003 = 0.0072 interval] 	
Log likelihood sc race Black Other south	d = -1314.2871 Coefficient 173837 1.745005	Std. err1131414 .6241267	-1.54 2.80	0.124 0.005	LR chi2(3) Prob > chi2 Pseudo R2 [95% conf. 3955902 .5217389 3393228	= 18.95 = 0.0003 = 0.0072 interval] .0479161 2.968271	

Logit (College):

Logistic regre					Number of ob LR chi2(3) Prob > chi2 Pseudo R2	= 11.05
c		Std. err.			[95% conf.	interval]
race Black Other	3065161 3798123	.1648533	-1.86 -0.80	0.063	6296227 -1.305514	.0165905
south South _cons	.4052292 .0396236	.138966 .0855118	2.92	0.004	.1328609 1279765	.6775974 .2072236

(b) Considerar la base de datos "gss.dta". La misma posee datos de la encuesta GSS (General Social Survey). Esta encuesta realiza investigaciones científicas básicas sobre la estructura y el desarrollo de la sociedad estadounidense con un programa de recopilación de datos diseñado tanto para monitorear el cambio social dentro de Estados Unidos como para comparar a Estados Unidos con otras naciones. Iniciado en 1972, el

GSS contiene un núcleo estándar de preguntas demográficas, de comportamiento y de actitud, además de temas de especial interés. Muchas de las preguntas centrales se han mantenido sin cambios desde 1972 para facilitar los estudios de tendencias temporales, así como la replicación de hallazgos anteriores. En este ejercicio, se utilizan datos de educación similares a los del inciso anterior. Estimar un logit secuencial, interpretar los resultados y mostrar el efecto de la educación del padre en las decisiones de educación en cada transición.

Logit secuencial:

Number of obs = 9,842 LR chi2(18) = 2461.15 Log likelihood = -9530.0004 Prob > chi2 = 0.0000

degree	Coefficient +	Std. err.	Z	P> z	[95% conf.	interval]
_1_2_3v0 south coh		.0736484	-10.82 2.19	0.000 0.028	9411116 .0790356	6524153 1.417575
c.coh#c.coh	0482221	.0400122	-1.21	0.228	1266445	.0302003
paeduc	.1124402	.0778119	1.45	0.148	0400684	.2649488
c.paeduc#c.coh	.0469452	.0369009	1.27	0.203	0253792	.1192696
c.paeduc#c.coh#c.coh	0050879	.0041484	-1.23	0.220	0132187	.0030428
_cons	 -1.782385 +	.6862366	-2.60	0.009	-3.127385	4373864
_2_3v1 south coh		.0521384	0.90 0.77	0.368 0.441	055262 498361	.1491166 1.144088
c.coh#c.coh	0371565	.0445171	-0.83	0.404	1244084	.0500954
paeduc	.1222627	.0808644	1.51	0.131	0362286	.280754
c.paeduc#c.coh	.0188174	.0344105	0.55	0.584	0486259	.0862607
c.paeduc#c.coh#c.coh	000731	.0035726	-0.20	0.838	0077331	.0062712
_cons	-3.497795 	.956858	-3.66	0.000	-5.373202	-1.622388
_3v2 south coh	.0710731 .0710731 .9594559	.0976914 .8457289	0.73 1.13	0.467 0.257	1203984 6981422	.2625446 2.617054
c.coh#c.coh	 1700969	.0872356	-1.95	0.051	3410755	.0008818
paeduc	.3357249	.1775429	1.89	0.059	0122528	.6837027
c.paeduc#c.coh	1217749	.0719208	-1.69	0.090	262737	.0191873
c.paeduc#c.coh#c.coh	.0155494	.0071984	2.16	0.031	.0014408	.0296579
_cons	6964155 	2.011413	-0.35	0.729	-4.638713	3.245882

Universidad Torcuato Di Tella Maestrías en Economía y Econometría 2022

Microeconometría I Problem Set 5 - Stata Modelos para Variables Dependientes Limitadas - Tobit

■ Ejercicio 1. Variables Censuradas: Modelo Tobit I

El modelo Tobit es relevante cuando la variable dependiente y de una regresión lineal se observa solo en algún intervalo de su soporte, porque en este caso los estimadores de MCC no son consistentes.

(a) Considere la base auto.dta. Estime el modelo

$$\mathsf{mpg} = \alpha + \beta \mathsf{wgt} + u$$

donde wgt=weight/1000. Luego estime el modelo generando una variable censurada suponiendo que no se observan autos con $mpg \le 17$. Estime por MCC y utilizando un modelo Tobit. Compare.

- (b) Repita el inciso anterior suponiendo que ahora no se observan autos con $mpg \geq 24$.
- (c) ¿Cómo se interpretan los coeficientes del modelo? Compute los efectos marginales.

■ Ejercicio 2. Variables Censuradas: Modelo Tobit II

El siguiente ejercicio está tomado de Cameron & Trivedi. La variable dependiente para el gasto ambulatorio (ambulatory expenditure, ambexp) y los regresores (age, female, educ, blhisp, totchr, and ins) se obtienen de la encuesta Medical Expenditure Panel Survey de 2001

- (a) Abra y describa la base mus16datav2. ¿Qué puede decir sobre el cumplimiento de las condiciones que requiere un Tobit?
- (b) Compute los efectos marginales.
- (c) Compute los efectos marginales haciendo las cuentas con los comandos de escalares y matrices de Stata.
- (d) Considere la variable dependiente en logaritmos. ¿Qué interpretación tiene esto sobre la variable dependiente? ¿Qué complicaciones introduce en el análisis? Estime un tobit para el logaritmo de ambexp.
- Ejercicio 3. Variables Censuradas: Modelo Tobit III Considere la base de datos mroz.dta, que posee datos que permiten estudiar la oferta laboral anual de mujeres casadas. Considere las horas trabajadas, hours, y las explicativas nwifeinc, educ, exper, expersq, age, kidslt6, kidsge6. Estime un modelo lineal y un modelo Tobit. Compare. Compute los efectos marginales.

<u>Trabajo Práctico Nº 5:</u> Modelos para Variables Dependientes Limitadas - Tobit.

Ejercicio 1: Variables Censuradas (Modelo Tobit I).

El modelo Tobit es relevante cuando la variable dependiente y de una regresión lineal se observa solo en algún intervalo de su soporte, porque, en este caso, los estimadores de MCC no son consistentes.

(a) Considerar la base "auto.dta". Estimar el modelo:

$$mpg = \alpha + \beta wgt + u$$
,

donde $wgt = \frac{weight}{1000}$. Luego, estimar el modelo generando una variable censurada suponiendo que no se observan autos con $mpg \le 17$. Estimar por MCC y utilizando un modelo Tobit. Comparar.

OLS:

Source	SS	df	MS	Number of ob F(1, 72)		74 134.62
Model Residual	851.469221		11.8259614	Prob > F	=	0.0000
Total				Root MSE		3.4389
mpg	Coefficient	Std. err.	t 	P> t [95%	conf.	interval]
				0.000 -7.041 0.000 36.22		
OLS (11(17)):						
Source	SS	df	MS	Number of ob $F(1, 72)$		74
Model Residual	1138.32073	72		Prob > F	=	0.0000 0.5690
Total	2000.54054					
mpg_a	Coefficient	Std. err.	t	P> t [95%	conf.	interval]
				0.000 -6.11 0.000 33.88		

<u>Tobit (ll(17)):</u>

Tobit regressi	on			Num	ber of obs	=	74
					Uncensore		56
Limits: Lower	= 17				Left-censore	d =	18
Upper	= +inf				Right-censore	d =	0
				LR	chi2(1)	=	72.85
				Pro	b > chi2	= (0.0000
Log likelihood	= -164.25438			Ps∈	eudo R2	= (0.1815
mpg_a	Coefficient	Std. err.	t	P> t	[95% conf.	inte	erval]
wgt	-6.87305	.700257	-9.82	0.000	-8.268661	 5	.47744
_cons	41.49856	2.058384	20.16	0.000	37.3962	45	.60091
var(e.mpg_a)	14.78942	2.817609			10.11698	21	.61977

Tabla comparativa:

	(1)	(2)	(3)
	OLS	OLS 11(17)	Tobit ll(17)
main			
wat	-6.009***	-5.081***	-6.873***
3	(0.518)	(0.521)	(0.700)
cons	39.44***	37.13***	41.50***
_	(1.614)	(1.624)	(2.058)
/			
<pre>var(e.mpg_a)</pre>			14.79***
			(2.818)
N	7 4	74	7 4
R-sq	0.652	0.569	, -
pseudo R-sq			0.182
Standard errors	in parentheses		

Standard errors in parentheses * p<0.10, ** p<0.05, *** p<0.01

(b) Repetir el inciso anterior suponiendo que, ahora, no se observan autos con $mpg \ge 24$.

OLS (ul(24)):

Source	SS	df	MS	Numb F(1,	er of obs	=	74 186.15
Model Residual		1 72		1 Prob 4 R-sq	,	=	0.0000 0.7211 0.7172
Total	958		13.123287	_	-	=	1.9264
mpg_b	Coefficient	Std. err.		P> t	[95% cc	onf.	interval]
wgt _cons	-3.958119 31.95138	.2901034 .9041273	-13.64 35.34	0.000	-4.53642 30.1490		-3.379808 33.75372

<u>Tobit (ul(24)):</u>

Tobit regressi Limits: Lower Upper					per of obs Uncensore Left-censore Right-censore	d = d =	74 51 0 23
Log likelihood	l = -129.8279			Prob	chi2(1) >> chi2 ado R2	=	90.72 0.0000 0.2589
mpg_b	Coefficient	Std. err.	t	P> t	[95% conf.	int	terval]
wgt cons	-5.080645 36.08037				-5.947461 33.22628		.213829
var(e.mpg_b)	5.689927	1.166256			3.781783	8 .	.560846

Tabla comparativa:

	(1)	(2)	(3)
	OLS	OLS ul(24)	` '
main			
wgt	-6.009*** (0.518)	-3.958*** (0.290)	-5.081*** (0.435)
_cons	39.44*** (1.614)	31.95*** (0.904)	36.08*** (1.432)
/			
<pre>var(e.mpg_b)</pre>			5.690*** (1.166)
N	74	74	74
R-sq pseudo R-sq	0.652	0.721	0.259
Standard errors * p<0.10, ** p<	s in parentheses 10.05, *** p<0.0		

(c) ¿Cómo se interpretan los coeficientes del modelo? Computar los efectos marginales.

Los coeficientes estimados miden cómo cambia la variable latente no observada con respecto a los cambios en las variables independientes, *céteris páribus*.

Efectos marginales (condicionales) con censura en Tobit (ll(17)):

```
Conditional marginal effects

Model VCE: OIM

Expression: E(mpg_a*|mpg_a>17), predict(ystar(17,.))

dy/dx wrt: wgt

1._at: wgt = 1

2._at: wgt = 2

3._at: wgt = 3

4._at: wgt = 4

| Delta-method | dy/dx std. err. z P>|z| [95% conf. interval]

wgt | at |

1 | -6.873035 | 1.389235 | -4.95 | 0.000 | -9.595886 | -4.150183 |

2 | -6.855268 | .7044715 | -9.73 | 0.000 | -8.236007 | -5.47453 |

3 | -5.797116 | .5880797 | -9.86 | 0.000 | -6.949731 | -4.644501 |

4 | -1.499391 | .3662326 | -4.09 | 0.000 | -2.217194 | -.7815884
```

Efectos marginales (condicionales) con truncamiento en Tobit (ll(17)):

```
Conditional marginal effects

Model VCE: OIM

Expression: E(mpg_a|mpg_a>17), predict(e(17,.))

dy/dx wrt: wgt

1._at: wgt = 1

2._at: wgt = 2

3._at: wgt = 3

4._at: wgt = 4

| Delta-method | dy/dx std. err. z P>|z| [95% conf. interval]

wgt | at |

-at |

-at |

1 | -6.872705 | .700472 | -9.81 | 0.000 | -8.245605 | -5.499805 |

2 | -6.718373 | .7348761 | -9.14 | 0.000 | -8.158703 | -5.278042 |

3 | -4.345679 | .4915117 | -8.84 | 0.000 | -5.309024 | -3.382334 |

4 | -1.560439 | .1287703 | -12.12 | 0.000 | -1.812825 | -1.308054
```

Efectos marginales (condicionales) con censura en Tobit (ul(24)):

```
Conditional marginal effects
                                                                                                           Number of obs = 74
Model VCE: OIM
Expression: E(mpg_b*|mpg_b<24), predict(ystar(.,24))</pre>
dy/dx wrt: wgt
1._at: wgt = 1
2._at: wgt = 2
3._{at: wgt = 3}
4. at: wgt = 4
                                   Delta-method
                                 dy/dx std. err.
                                                                          z P>|z| [95% conf. interval]
                     wgt
                _at |

    1
    | -.0085382
    .0114991
    -0.74
    0.458
    -.031076
    .0139997

    2
    | -1.069716
    .2842071
    -3.76
    0.000
    -1.626752
    -.5126807

    3
    | -4.610593
    .3715716
    -12.41
    0.000
    -5.33886
    -3.882326

    4
    | -5.079249
    .4349007
    -11.68
    0.000
    -5.931638
    -4.226859
```

Efectos marginales (condicionales) con truncamiento en Tobit (ul(24)):

Conditional marginal effects Number of obs = 74Model VCE: OIM Expression: E(mpg b|mpg b<24), predict(e(.,24))</pre> dy/dx wrt: wgt 1._at: wgt = 1 2. at: wgt = 2 $3._{at: wgt = 3}$ 4. at: wgt = 4Delta-method z P>|z| dy/dx std.err. [95% conf. interval] wgt _at | 3 | -3.681238 .3548315 -10.37 0.000 -4.376695 -2.985781 4 | -5.06274 .4362475 -11.61 0.000 -5.917769 -4.20771

Ejercicio 2: Variables Censuradas (Modelo Tobit II).

El siguiente ejercicio está tomado de Cameron & Trivedi. La variable dependiente para el gasto ambulatorio (ambulatory expenditure, ambexp) y los regresores (age, female, educ, blhisp, totchr, ins) se obtienen de la encuesta Medical Expenditure Panel Survey de 2001.

(a) Abrir y describir la base "mus16datav2.dta". ¿Qué se puede decir sobre el cumplimiento de las condiciones que requiere un Tobit?

V	ariable	Obs	Mean	Std. dev.	Min	Max
	ambexp	3,328	1386.519	2530.406	0	49960
	age	3,328	4.056881	1.121212	2.1	6.4
	female	3,328	.5084135	.5000043	0	1
	educ	3,328	13.40565	2.574199	0	17
	blhisp	3,328	.3085938	.4619824	0	1
	totchr	3,328	.4831731	.7720426	0	5
	ins	3,328	.3650841	.4815261	0	1
			ambexp			
	Percentiles	S	mallest			
1%	22		1			
5%	67		2			
10%	107		2	Obs		2,802
25%	275		4	Sum of wgt.		2,802
_ •						_,
50%	779			Mean	1	646.8
			Largest	Std. dev.	267	8.914
75%	1913		28269			
90%	3967		30920	Variance	71	76579
95%	6027		34964	Skewness		99312
99%	12467		49960	Kurtosis		81969
200	12407		1000	1101 00010	05.	0100

Lo que se puede decir sobre el cumplimiento de las condiciones que requiere Tobit es que, en principio, la asimetría y la curtosis no normal (alejadas de 0 y 3, respectivamente) de la variable dependiente *ambexp* podrían deberse a regresores que están sesgados.

Tobit:

Tobit regression	on			Numb	er of obs	•
Limits: Lower = Upper =					Uncensored Left-censored ight-censored	= 526
Log likelihood	= -26359.424			Prob	hi2(6) > chi2 do R2	= 694.07 = 0.0000 = 0.0130
ambexp	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
female educ blhisp		42.63366 92.85464 18.57365 104.2669 60.51376 96.46088 317.4305		0.000 0.000 0.000 0.000 0.000 0.083 0.000	230.557 502.9337 34.44865 -734.7448 1125.93 -356.6002 -2504.971	867.0498 107.2825 -325.8772 1363.226
var(e.ambexp)	6635296	179247.7			6292994	6996217

(b) Computar los efectos marginales.

Efectos marginales (promedio) con censura en Tobit:

Average marginal effects Number of obs = 3,328

Model VCE: OIM

Expression: E(ambexp*|ambexp>0), predict(ystar(0,.))

dy/dx wrt: age female educ blhisp totchr ins

_	a-method			
	d. err. z	P> z	95% conf. interv	7al]
female 439.2368 59. educ 45.4411 11. blhisp -340.0509 66. totchr 798.06 38.	29283 7.38 32556 7.40 89795 3.82 77218 -5.09 00729 21.00 86227 -1.74	0.000 33 0.000 23 0.000	47.9479 254.9 22.9608 555.5 2.12154 68.76 470.922 -209.1 23.5671 872.5 28.6354 13.86	5127 5066 1799 5529

Efectos marginales (promedio) con truncamiento en Tobit:

Average marginal effects Number of obs = 3,328

Model VCE: OIM

Expression: E(ambexp|ambexp>0), predict(e(0,.)) dy/dx wrt: age female educ blhisp totchr ins

	dy/dx	Delta-method std. err.	Z	P> z	[95% conf.	interval]
age female educ blhisp totchr ins	147.796 322.2656 33.33988 -249.4935 585.5322 -78.78967	20.14716 43.7895 8.742173 49.12834 29.01047 45.40264	7.34 7.36 3.81 -5.08 20.18 -1.74	0.000 0.000 0.000 0.000 0.000 0.083	108.3083 236.4397 16.20554 -345.7832 528.6727 -167.7772	187.2838 408.0914 50.47422 -153.2037 642.3917 10.19787

Efectos marginales (condicionales) con censura en Tobit:

Conditional marginal effects Number of obs = 3,328

Model VCE: OIM

Expression: E(ambexp*|ambexp>0), predict(ystar(0,.))

dy/dx wrt: age female educ blhisp totchr ins At: age = 4.056881 (mean)

At: age = 4.056881 (mean) female = .5084135 (mean) educ = 13.40565 (mean) blhisp = .3085938 (mean) totchr = .4831731 (mean) ins = .3650841 (mean)

| Delta-method | dy/dx std. err. z P>|z| [95% conf. interval] | dy/dx st

Efectos marginales (condicionales) con truncamiento en Tobit:

```
Conditional marginal effects

Model VCE: OIM

Expression: E(ambexp|ambexp>0), predict(e(0,.))
dy/dx wrt: age female educ blhisp totchr ins

At: age = 4.056881 (mean)
    female = .5084135 (mean)
    educ = 13.40565 (mean)
    blhisp = .3085938 (mean)
    totchr = .4831731 (mean)
    ins = .3650841 (mean)

Delta-method
```

	dy/dx	Delta-method std. err.	l z	P> z	[95% conf.	interval]
age female educ blhisp totchr ins	145.524 317.3113 32.82734 -245.658 576.5307 -77.57842	19.7808 42.99069 8.601086 48.29427 28.50492 44.7012	7.36 7.38 3.82 -5.09 20.23 -1.74	0.000 0.000 0.000 0.000 0.000 0.083	106.7543 233.0511 15.96952 -340.313 520.6621 -165.1912	184.2936 401.5716 49.68516 -151.0029 632.3993 10.03432

(c) Computar los efectos marginales haciendo las cuentas con los comandos de escalares y matrices de Stata.

Stata.

(d) Considerar la variable dependiente en logaritmos. ¿Qué interpretación tiene esto sobre la variable dependiente? ¿Qué complicaciones introduce en el análisis? Estimar un Tobit para el logaritmo de ambexp.

La variable dependiente en logaritmos introduce dos complicaciones en el análisis: un umbral distinto de cero y una variable dependiente lognormal.

Juan Menduiña

OLS (con variable dependiente en logaritmos):

Source	SS S	df	MS	Number F(6, 3	of obs	=	3,328 169.68
Model Residual	5772.79592		962.132653 5.67028725	Prob > R-squa	F	= =	0.0000 0.2346 0.2332
Total	24603.8199	3 , 327	7.39519683	Root M	-	=	2.3812
lambexp	Coefficient	Std. err.	t 1	 P> t 	[95% con:	f.	interval]
age female educ blhisp totchr ins _cons	1.144695	.038348 .0833418 .0165414 .0928854 .0553699 .0869061 .2812597	13.73 (6.90 (-7.90 (19.13 (2.39 (0.000 0.000 0.000 0.000 0.000 0.017 0.000	.2495436 .9812886 .0816757 9162938 .9508324 .0374394 1.177304		.3999199 1.308102 .1465403 5520571 1.167958 .3782293 2.280224

<u>Tobit (con variable dependiente en logaritmos):</u>

Tobit regression	ı			Number	of obs	•
Limits: Lower = Upper =					Uncensored eft-censored ght-censored	= 526
Log likelihood =	-7494.29				12(6) > chi2 > R2	= 831.03 = 0.0000 = 0.0525
lambexp	Coefficient	Std. err.	t	P> t	[95% conf	. interval]
female educ blhisp	.138446 8731611 1.161268	.0453222 .0986074 .0196568 .1102504 .0649655 .102613 .3350343	13.61 7.04 -7.92 17.88	0.000 0.000 0.000 0.000 0.000 0.011 0.006	1.148471 .0999054 -1.089327 1.033891	1.535146 .1769866 6569955 1.288644 .4624112
var(e.lambexp)	7.735265	.2181984			7.319064	8.175133

Tabla comparativa:

	(1) OLS (log)	(2) Tobit (log)
main age	0.325***	0.363***
female	1.145*** (0.0833)	1.342*** (0.0986)
educ	0.114*** (0.0165)	0.138*** (0.0197)
blhisp	-0.734*** (0.0929)	-0.873*** (0.110)
totchr	1.059*** (0.0554)	1.161*** (0.0650)
ins	0.208** (0.0869)	0.261** (0.103)
_cons	1.729*** (0.281)	0.924*** (0.335)
/ var(e.lamb~)		7.735*** (0.218)
N D	3328	3328
R-sq pseudo R-sq	0.235	0.053
Standard errors	in parentheses	

Standard errors in parentheses * p<0.10, ** p<0.05, *** p<0.01

Ejercicio 3: Variables Censuradas (Modelo Tobit III).

Considerar la base de datos "mroz.dta", que posee datos que permiten estudiar la oferta laboral anual de mujeres casadas. Considerar las horas trabajadas, hours, y las explicativas nwifeinc, educ, exper, expersq, age, kidslt6, kidsge6. Estimar un modelo lineal y un modelo Tobit. Comparar. Computar los efectos marginales.

OLS:

Source	SS	df	MS		ber of obs	=	753 38.50
Model Residual	151647606 419262118	7 745	21663943.7 562767.944	Prol R-s	b > F quared	=	0.0000 0.2656 0.2587
Total	570909724	752	759188.463	_	R-squared t MSE	=	750.18
hours	Coefficient	Std. err.	t	P> t	[95% cor	nf.	interval]
kidslt6 kidsge6 age educ exper nwifeinc expersq _cons	-442.0899 -32.77923 -30.51163 28.76112 65.67251 -3.446636 7004939 1330.482	58.8466 23.17622 4.363868 12.95459 9.962983 2.544 .3245501 270.7846	-1.41 -6.99 2.22 6.59 -1.35 -2.16	0.000 0.158 0.000 0.027 0.000 0.176 0.031 0.000	-557.6148 -78.2777 -39.07858 3.329283 46.11365 -8.440898 -1.337635 798.8906	7 3 3 5 5	-326.565 12.71924 -21.94469 54.19297 85.23138 1.547626 0633524 1862.074

Tobit:

Tobit regressi	on			Nu	mber of obs Uncensore	
Limits: Lower Upper					Left-censore Right-censore	d = 325
Log likelihood	= -3819.0946			Pr	chi2(7) ob > chi2 eudo R2	= 271.59 = 0.0000 = 0.0343
hours	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
kidsge6 age educ exper nwifeinc	80.64541 131.564 -8.814226 -1.864153	38.6413 7.418483 21.58318 17.27935 4.459089 .5376606	-7.99 -0.42 -7.33 3.74 7.61 -1.98 -3.47 2.16	0.675 0.000 0.000 0.000 0.048 0.001		59.64057 -39.84133 123.0164 165.486 0603706
var(e.hours)	1258927	93304.48			1088458	1456093

Tabla comparativa:

	(1) OLS	(2) Tobit
main kidslt6	-442.1*** (58.85)	-894.0*** (111.9)
kidsge6	-32.78 (23.18)	-16.22 (38.64)
age	-30.51*** (4.364)	-54.40*** (7.418)
educ	28.76** (12.95)	80.65*** (21.58)
exper	65.67*** (9.963)	131.6*** (17.28)
nwifeinc	-3.447 (2.544)	-8.814** (4.459)
expersq	-0.700** (0.325)	-1.864*** (0.538)
_cons	1330.5*** (270.8)	965.3** (446.4)
/ var(e.hours)		1258926.8***
N	753	753
R-sq pseudo R-sq	0.266	0.034
Standard errors	in parentheses	

^{\$\}text{standard errors in parentheses}
* p<0.10, ** p<0.05, *** p<0.01</pre>

Efectos marginales (promedio) con censura en Tobit:

Average marginal effects Number of obs = 753

Model VCE: OIM

Expression: E(hours*|hours>0), predict(ystar(0,.))

dy/dx wrt: kidslt6 kidsge6 age educ exper nwifeinc expersq

Delta-method	
	% conf. interval]
kidsge6 -9.546986	14056 35.04659 .4386 -23.61384 73558 72.21054 85199 97.04206 326490507514

Efectos marginales (promedio) con truncamiento en Tobit:

Average marginal effects Number of obs = 753

Model VCE: OIM

Expression: E(hours|hours>0), predict(e(0,.))

dy/dx wrt: kidslt6 kidsge6 age educ exper nwifeinc expersq

| Delta-method | dy/dx std. err. z P>|z| [95% conf. interval] | kidslt6 | -402.5505 50.74874 -7.93 0.000 -502.0162 -303.0848 | kidsge6 | -7.302504 17.40426 -0.42 0.675 -41.41423 26.80922 | age | -24.4969 3.362491 -7.29 0.000 -31.08726 -17.90654 | educ | 36.31221 9.703035 3.74 0.000 17.29461 55.32981 | exper | 59.23934 7.83368 7.56 0.000 43.88561 74.59308 | nwifeinc | -3.968782 2.007582 -1.98 0.048 -7.903569 -.0339945 | expersq | -.8393724 .2423183 -3.46 0.001 -1.314307 -.3644373

Efectos marginales (condicionales) con censura en Tobit:

```
Conditional marginal effects
                                                   Number of obs = 753
Model VCE: OIM
Expression: E(hours*|hours>0), predict(ystar(0,.))
dy/dx wrt: kidslt6 kidsge6 age educ exper nwifeinc expersq
At: kidslt6 = .2377158  (mean)
   kidsge6 = 1.353254  (mean)
   age = 42.53785 (mean) educ = 12.28685 (mean)
   exper = 10.63081 (mean)
   nwifeinc = 20.12896 (mean)
   expersq = 178.0385 (mean)
______
```

	 dy/dx	Delta-method std. err.	z	P> z	[95% conf.	interval]
kidslt6 kidsge6 age educ exper nwifeinc expersq	-540.2567	66.62387	-8.11	0.000	-670.8371	-409.6763
	-9.800576	23.36132	-0.42	0.675	-55.58792	35.98677
	-32.87691	4.457699	-7.38	0.000	-41.61384	-24.13998
	48.73405	12.9634	3.76	0.000	23.32625	74.14185
	79.50419	10.30495	7.72	0.000	59.30685	99.70153
	-5.32644	2.690724	-1.98	0.048	-10.60016	0527175
	-1.126508	.3232603	-3.48	0.000	-1.760087	49293

Efectos marginales (condicionales) con truncamiento en Tobit:

Conditional marginal effects Number of obs = 753Model VCE: OIM

Expression: E(hours|hours>0), predict(e(0,.))

dy/dx wrt: kidslt6 kidsge6 age educ exper nwifeinc expersq

At: kidslt6 = .2377158 (mean) kidsge6 = 1.353254 (mean) age educ = 42.53785 (mean) = 12.28685 (mean) exper = 10.63081 (mean)nwifeinc = 20.12896 (mean)expersq = 178.0385 (mean)

	dy/dx	Delta-method std.err.	z	P> z	[95% conf.	interval]
kidslt6 kidsge6 age educ exper nwifeinc expersg	-379.9678 -6.892841 -23.12265 34.27513 55.91608 -3.746137 7922845	46.79714 16.42951 3.130037 9.117076 7.239109 1.89236	-8.12 -0.42 -7.39 3.76 7.72 -1.98	0.000 0.675 0.000 0.000 0.000 0.048	-471.6885 -39.09409 -29.25741 16.40599 41.72769 -7.455095 -1.237871	-288.2471 25.3084 -16.98789 52.14427 70.10447 03718

Universidad Torcuato Di Tella Maestrías en Economía y Econometría 2022

Microeconometría I Problem Set 6 - Stata Modelos para Variables Dependientes Limitadas - Heckman

■ Ejercicio 1. Gastos ambulatorios

Retome la base de datos del Ejercicio 2 del Problem Set 5. Ahora estimaremos un modelo de dos partes de Heckman. Estos modelos sirven para muestras autoseleccionadas. Se modela explícitamente la ecuación que determina la selección y la ecuación de interés. En este ejercicio se pide estimar un modelo de Heckman para los gastos ambulatorios y comparar con las predicciones de un modelo Tobit.

■ Ejercicio 2. Ecuación salarial para las mujeres I

Considere la base de datos womenwk. Describa la base. Estime una ecuación salarial en función de la educación y la edad por Mínimos Cuadrados Clásicos. Repita utilizando un modelo de Heckman, utilizando las variables married, children, educ, age para la ecuación de selección. Utilice el comando heckman.

■ Ejercicio 2. Ecuación salarial para las mujeres I

Conceptualmente, vamos a repetir el ejercicio anterior utilizando la base de datos mroz.dta que ya hemos utilizado. Ahora se pide modelar explícitamente la ecuación de selección con un probit y la ecuación estructural con un modelo lineal aumentada por la inversa del ratio del Mills. Reporte el efecto marginal sobre las horas trabajadas correctamente estimado.

<u>Trabajo Práctico Nº 6:</u> Modelos para Variables Dependientes Limitadas - Heckman.

Ejercicio 1: Gastos Ambulatorios.

Retomar la base de datos del Ejercicio 2 del Problem Set 5. Ahora, se estimará un modelo de dos partes de Heckman. Estos modelos sirven para muestras autoseleccionadas. Se modela, explícitamente, la ecuación que determina la selección y la ecuación de interés. En este ejercicio, se pide estimar un modelo de Heckman para los gastos ambulatorios y comparar con las predicciones de un modelo Tobit.

Heckman (MLE):

Heckman selection model (regression model with sample selection)				S	of obs = elected = conselected =	3,328 2,802 526
Log likelihood = -5836.219					i2(6) = chi2 =	288.88
	Coefficient	Std. err.	Z	P> z	[95% conf.	interval]
lambexp	 					
age	.2119749	.0230072	9.21	0.000	.1668816	.2570682
female	.3481441	.0601142	5.79	0.000	.2303223	.4659658
educ	.018716	.0105473	1.77	0.076	0019563	.0393883
blhisp		.0596687	-3.66	0.000	3355199	101623
totchr		.0393324	13.73	0.000	.4628299	.61701
ins	•	.0510882	-0.59	0.557	1301182	.0701439
_cons	5.044056	.2281259	22.11	0.000	4.596938	5.491175
dambexp	+ 					
age	.0879359	.027421	3.21	0.001	.0341917	.14168
female	.6626649	.0609384	10.87	0.000	.5432278	.7821021
educ	.0619485	.0120295	5.15	0.000	.0383711	.0855258
blhisp	3639377	.0618734	-5.88	0.000	4852073	2426682
totchr	.7969518	.0711306	11.20	0.000	.6575383	.9363653
ins	.1701367	.0628711	2.71	0.007	.0469117	.2933618
income	.0027078	.0013168	2.06	0.040	.000127	.0052886
_cons	6760546	.1940288	-3.48	0.000	-1.056344	2957652
/athrho	+ 1313456	.1496292	-0.88	0.380	4246134	.1619222
/lnsigma	.2398173	.0144598	16.59	0.000	.2114767	.268158
rho	+ 1305955	.1470772			4008098	.1605217
sigma	•	.0183786			1.235501	1.307554
lambda		.1878698			5342072	.2022291
LR test of indep. eqns. (rho = 0): chi2(1) = 0.91					Prob > chi	2 = 0.3406

Heckman (Two Step):

Heckman selection model two-step estimates (regression model with sample selection)					of obs = Selected = Monselected =	3,328 2,802 526
				Wald ch	, ,	193.43 0.0000
	Coefficient	Std. err.	Z	P> z	[95% conf.	interval]
lambexp						
age	.2024668	.0242202	8.36	0.000	.1549961	.2499374
female	.2921341	.0725756	4.03	0.000	.1498886	.4343796
educ	.0123889	.0115682	1.07	0.284	0102844	.0350622
blhisp	1828659	.0653449	-2.80	0.005	3109396	0547922
totchr	.5006332	.0485548	10.31	0.000	.4054675	.5957988
ins	0465097	.0529742	-0.88	0.380	1503373	.0573179
_cons	5.288927 	.288522	18.33	0.000	4.723435	5.85442
dambexp						
age		.0274556	3.16	0.002	.0330032	.1406272
female	.6635053	.0609648	10.88	0.000	.5440165	.7829941
educ		.012039	5.14	0.000	.038288	.0854801
blhisp	3657835	.0619095	-5.91	0.000	4871239	2444432
totchr	.7957496	.0712174	11.17	0.000	.656166	.9353332
ins	.169107	.0629296	2.69	0.007	.0457673	.2924467
income	.0026773	.0013105	2.04	0.041	.0001088	.0052458
_cons	6686471	.1941247	-3.44	0.001	-1.049125	2881698
/mills						
lambda	4637133	.2825997	-1.64	0.101	-1.017598	.090172
rho	-0.35907					
sigma	1.2914258					

Tobit:

Tobit regression				Numbe	r of obs	
Limits: Lower = 0 Upper = +inf					Uncensored eft-censored ght-censored	= 1
Log likelihood =	-4642.5217				i2(6) > chi2 > R2	= 596.53 = 0.0000 = 0.0604
lambexp	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
female educ blhisp	.2172778 .3795502 .0221958 2384675 .5618619 0210413 4.908076	.0097527 .0551452 .0304802	7.82	0.000 0.000 0.023 0.000 0.000 0.674 0.000	.2843851 .0030726 346597 .502096 119006	.4747153 .0413191 1303381 .6216278 .0769234
var(e.lambexp)	1.608909	.0429988			1.526767	1.69547

Tabla comparativa:

	(1) Heckman (M~)	(2) Heckman (T~)	(3) Tobit
lambexp			
age	0.212*** (0.0230)	0.202*** (0.0242)	0.217** (0.0222)
female	0.348*** (0.0601)	0.292*** (0.0726)	0.380** (0.0485)
educ	0.0187* (0.0105)	0.0124 (0.0116)	0.0222** (0.00975)
blhisp	-0.219*** (0.0597)		-0.238** (0.0551)
totchr	0.540*** (0.0393)		0.562** (0.0305)
ins	-0.0300 (0.0511)	-0.0465 (0.0530)	-0.0210 (0.0500)
_cons	5.044*** (0.228)	5.289*** (0.289)	4.908** (0.168)
dambexp			
age	0.0879*** (0.0274)		
female	0.663*** (0.0609)	0.664*** (0.0610)	
educ	0.0619*** (0.0120)		
blhisp	-0.364*** (0.0619)	-0.366*** (0.0619)	
totchr	0.797*** (0.0711)	0.796*** (0.0712)	
ins	0.170*** (0.0629)		
income	0.00271** (0.00132)		
_cons	-0.676*** (0.194)	-0.669*** (0.194)	
/ athrho	-0.131 (0.150)		
lnsigma	0.240*** (0.0145)		
var(e.lamb~)			1.609**
/mills lambda		-0.464 (0.283)	
N pseudo R-sq	3328	3328	2802 0.060

Ejercicio 2: Ecuación Salarial para las Mujeres I.

Considerar la base de datos "womenwk.dta". Describir la base. Estimar una ecuación salarial en función de la educación y la edad por Mínimos Cuadrados Clásicos. Repetir utilizando un modelo de Heckman, utilizando las variables married, children, education y age para la ecuación de selección. Utilizar el comando heckman.

Descripción de la base:

Variable	1	Obs	Mean	Std. dev.	. Min	Max
county		2,000	4.5	2.873	0	9
age		2,000	36.208	8.28656	20	59
education		2,000	13.084	3.045912	10	20
married		2,000	.6705	.4701492	0	1
children		2,000	1.6445	1.398963	0	5
wage	1	1,343	23.69217	6.305374	5.88497	45.80979

□ ○ 1 1 12 T 7	1.12000	miccina	+	not	1.10 Y Z 1 Y C
HOULLV	waue,	missing,		110 L	WOIKING

Percentiles	Smallest		
9.728734	5.88497		
13.48302	6.739784		
15.69925	7.12612	Obs	1,343
19.30873	7.328383	Sum of wgt.	1,343
23.51122		Mean	23.69217
	Largest	Std. dev.	6.305374
28.05009	43.01642		
31.49893	43.97919	Variance	39.75775
33.98332	44.53403	Skewness	.1881963
40.34642	45.80979	Kurtosis	3.048037
	9.728734 13.48302 15.69925 19.30873 23.51122 28.05009 31.49893 33.98332	9.728734 5.88497 13.48302 6.739784 15.69925 7.12612 19.30873 7.328383 23.51122 Largest 28.05009 43.01642 31.49893 43.97919 33.98332 44.53403	9.728734 5.88497 13.48302 6.739784 15.69925 7.12612 Obs 19.30873 7.328383 Sum of wgt. 23.51122 Mean Largest Std. dev. 28.05009 43.01642 31.49893 43.97919 Variance 33.98332 44.53403 Skewness

OLS:

Source	SS	df	MS	Number of F(3, 1996)		-,
Model Residual			17518.4271 124.468775	Prob > F R-squared Adj R-squared	=	0.0000 0.1746
Total	•	1,999	150.572765	Root MSE	=	
wage	Coefficient	Std. err.	t :	P> t [95	% conf.	interval]
age education married _cons	369376 1.024154 1.269777 -11.7165	.0324995 .0863307 .5790207 1.411936	11.86 2.19	0.000 .85 0.028 .13	56395 648468 842283 48552	.4331124 1.193462 2.405325 -8.947476

Heckman (MLE):

Heckman selection model (regression model with sample selection)					of obs = elected = onselected =	2,000 1,343 657
Log likelihood	d = -5178.289			Wald ch Prob >	` '	508.52 0.0000
	 Coefficient +	Std. err.	Z	P> z	[95% conf.	interval]
wage age education married _cons	.9881493	.0213504 .0542321 .3758994 1.07856	9.94 18.22 0.18 0.46	0.000 0.000 0.860 0.645	.1702933 .8818563 6704452 -1.616605	.2539852 1.094442 .8030532 2.611273
	.0555733 .4499889 .4385259 -2.489276 	.0041745 .0107731 .072705 .0277979 .1896044 	8.73 5.16 6.19 15.78 -13.13 	0.000 0.000 0.000 0.000 0.000 0.000 0.000	.0282535 .0344585 .3074898 .384043 -2.860893 	.0446174 .0766882 .592488 .4930087 -2.117658 1.074382 1.847006 .7911065 6.340809 5.012092
Heckman (Two	Step):					
Heckman select	o Step): tion model odel with samp				of obs = elected = onselected =	2,000 1,343 657
Heckman select	tion model			S	elected = onselected = i2(3) =	1,343
Heckman select	tion model			S N Wald ch	elected = onselected = i2(3) =	1,343 657 442.08 0.0000
Heckman select	tion model odel with samp Coefficient + .2108123 .9804939 .0863959	Std. err0225447 .0546614 .3776478	9.35	S N Wald ch Prob >	elected = onselected = i2(3) = chi2 =	1,343 657 442.08 0.0000 interval]
Heckman selection model (regression model)	tion model odel with samp Coefficient .2108123 .9804939 .0863959 .730021 .0347211 .0583645 .4308575 .4473249	Std. err0225447 .0546614 .3776478	9.35 17.94 0.23 0.58 	Solution N	elected = onselected = i2(3) = chi2 = [95% conf	1,343 657 442.08 0.0000 interval] .254999 1.087628 .826572 3.178391 .0430105 .0798735 .5763025 .5036576
Heckman select (regression model) wage age education married _cons dwage education married children	tion model pdel with samp Coefficient .2108123 .9804939 .0863959 .730021 .0347211 .0583645 .4308575 .4473249 -2.467365	Std. err. .0225447 .0546614 .3776478 1.2491910042293 .0109742 .074208 .0287417	9.35 17.94 0.23 0.58 	S: N Wald ch Prob > P> z 0.000 0.000 0.819 0.559 0.000 0.000 0.000 0.000 0.000 0.000	elected = onselected = i2(3) = chi2 = [95% conf	1,343 657 442.08 0.0000 interval] .254999 1.087628 .826572 3.178391 .0430105 .0798735 .5763025 .5036576

Tabla comparativa:

	(1)	(2)	(3)
	OLS	Heckman (M~)	Heckman (T~)
main age	0.369*** (0.0325)	0.212*** (0.0214)	0.211*** (0.0225)
education	1.024*** (0.0863)	0.988*** (0.0542)	0.980*** (0.0547)
married	1.270** (0.579)	0.0663 (0.376)	0.0864 (0.378)
_cons	-11.72*** (1.412)	0.497 (1.079)	0.730 (1.249)
dwage age		0.0364*** (0.00417)	0.0347*** (0.00423)
education		0.0556*** (0.0108)	0.0584*** (0.0110)
married		0.450*** (0.0727)	0.431*** (0.0742)
children		0.439*** (0.0278)	0.447*** (0.0287)
_cons		-2.489*** (0.190)	-2.467*** (0.193)
/			
athrho		0.875*** (0.102)	
lnsigma		1.793*** (0.0276)	
/mills lambda			4.021*** (0.613)
N R-sq	2000 0.175	2000	2000
	0.175 rs in parenthese	s	

Standard errors in parentheses * p<0.10, ** p<0.05, *** p<0.01

Ejercicio 3: Ecuación Salarial para las Mujeres II.

Conceptualmente, se va a repetir el ejercicio anterior utilizando la base de datos "mroz.dta" que ya se ha utilizado. Ahora, se pide modelar, explícitamente, la ecuación de selección con un Probit y la ecuación estructural con un modelo lineal aumentada por la inversa del ratio de Mills. Reportar el efecto marginal sobre las horas trabajadas, correctamente, estimado.

OLS:

Source	SS	df	MS		of obs	=	753 33.05
Model Residual	119885614 451024110	6 746	19980935.6 604589.96	R-squa	F red	= =	0.0000 0.2100 0.2036
Total	570909724	752	759188.463	_	squared ISE	=	777.55
hours	Coefficient	Std. err.	t :	 P> t 	[95% con:	 f.	interval]
kidsge6 age educ exper nwifeinc expersq _cons	-13.56954 -17.10219 23.9582 74.12513 -4.336964 9264192 656.2857	23.87531 4.127445 13.41096 10.26049 2.633972 .3349462 264.8041	-4.14 1.79 7.22 -1.65 -2.77	0.570 0.000 0.074 0.000 0.100 0.006 0.013	-60.44032 -25.20499 -2.369512 53.98227 -9.507843 -1.583968 136.4358		33.30125 -8.999404 50.28591 94.268 .833916 2688699 1176.136

Heckman (Two Step):

Heckman selection model two-step estimates (regression model with sample selection)					of obs = Selected = Jonselected =	753 428 325
				Wald ch Prob >	, ,	26.17 0.0002
	Coefficient	Std. err.	Z	P> z	[95% conf.	interval]
hours	 					
kidsge6	-83.74795	33.16153	-2.53	0.012	-148.7433	-18.75256
age	-2.839866	6.990271	-0.41	0.685	-16.54054	10.86081
educ	-63.81931	21.02964	-3.03	0.002	-105.0366	-22.60196
exper	6.070658	21.16833	0.29	0.774	-35.4185	47.55982
nwifeinc	4.458736	4.03176	1.11	0.269	-3.443369	12.36084
expersq		.5265464	0.26	0.796	896155	1.167869
_cons	2477.33	425.3662	5.82	0.000	1643.627	3311.032
dhours	 					
kidsge6	.036005	.0434768	0.83	0.408	049208	.1212179
age	0528527	.0084772	-6.23	0.000	0694678	0362376
educ	.1309047	.0252542	5.18	0.000	.0814074	.180402
exper	.1233476	.0187164	6.59	0.000	.0866641	.1600311
nwifeinc	0120237	.0048398	-2.48	0.013	0215096	0025378
expersq	0018871	.0006	-3.15	0.002	003063	0007111
kidslt6	8683285	.1185223	-7.33	0.000	-1.100628	636029
_cons	.2700768	.508593	0.53	0.595	7267473	1.266901
/mills	 					 _
lambda	-621.8712	199.0294	-3.12	0.002	-1011.962	-231.7808
rho	-0.74244					 _
sigma	837.60041					

Tabla comparativa:

	(1) OLS	(2) Heckman (T~)
main		
kidsge6	-13.57 (23.88)	-83.75** (33.16)
age	-17.10*** (4.127)	-2.840 (6.990)
educ	23.96* (13.41)	-63.82** (21.03)
exper	74.13*** (10.26)	6.071 (21.17)
nwifeinc	-4.337 (2.634)	4.459 (4.032)
expersq	-0.926*** (0.335)	0.136 (0.527)
_cons	656.3** (264.8)	2477.3** (425.4)
 dhours		
kidsge6		0.0360 (0.0435)
age		-0.0529** (0.00848)
educ		0.131** (0.0253)
exper		0.123** (0.0187)
nwifeinc		-0.0120** (0.00484)
expersq		-0.00189** (0.000600)
kidslt6		-0.868** (0.119)
_cons		0.270 (0.509)
/mills lambda		-621.9** (199.0)
 N R-sq	753 0.210	753

Efectos marginales (promedio) con censura en Heckman (Two Step):

Average marginal effects Number of obs = 753

Model VCE: Conventional

Expression: E(hours*|hours>0), predict(ystar(0,.))

dy/dx wrt: kidsge6 age educ exper nwifeinc expersq kidslt6

	dy/dx	Delta-method std.err.	Z	P> z	[95% conf.	interval]
kidsge6 age educ exper nwifeinc expersq kidslt6	-81.38955 -2.759893 -62.02211 5.899704 4.333175 .132031 0	32.34639 6.777967 20.76646 20.52631 3.931451 .5124218 (omitted)	-2.52 -0.41 -2.99 0.29 1.10 0.26	0.012 0.684 0.003 0.774 0.270 0.797	-144.7873 -16.04446 -102.7236 -34.33112 -3.372327 8722971	-17.99179 10.52468 -21.32059 46.13052 12.03868 1.136359

Efectos marginales (promedio) con truncamiento en Heckman (Two Step):

Average marginal effects Number of obs = 753

Model VCE: Conventional

Expression: E(hours|hours>0), predict(e(0,.))

dy/dx wrt: kidsge6 age educ exper nwifeinc expersq kidslt6

	dy/dx	Delta-method std. err.	Z	P> z	[95% conf.	interval]
kidsge6 age educ exper nwifeinc expersq kidslt6	-73.14433 -2.4803 -55.73892 5.302031 3.894199 .1186556	29.50712 6.058449 19.50195 18.34814 3.565572 .4620408 (omitted)	-2.48 -0.41 -2.86 0.29 1.09 0.26	0.013 0.682 0.004 0.773 0.275 0.797	-130.9772 -14.35464 -93.96204 -30.65967 -3.094194 7869278	-15.31144 9.394042 -17.5158 41.26373 10.88259 1.024239

Efectos marginales (condicionales) con censura en Heckman (Two Step):

```
Conditional marginal effects
                                                                                 Number of obs = 753
Model VCE: Conventional
Expression: E(hours*|hours>0), predict(ystar(0,.))
dy/dx wrt: kidsge6 age educ exper nwifeinc expersq kidslt6
At: kidsge6 = 1.353254  (mean)
     age = 42.53785 (mean)
     educ = 12.28685 (mean)
exper = 10.63081 (mean)
     nwifeinc = 20.12896  (mean)
     expersq = 178.0385 (mean)
     kidslt6 = .2377158  (mean)
                                 Delta-method
                                                       z P>|z|
                          dy/dx std.err.
                                                                              [95% conf. interval]
                 kidsge6 | -81.62997 32.48895 -2.51 0.012 -145.3071 -17.9528

age | -2.768046 6.79893 -0.41 0.684 -16.0937 10.55761

educ | -62.20532 20.85318 -2.98 0.003 -103.0768 -21.33383

exper | 5.917131 20.58963 0.29 0.774 -34.4378 46.27207

nwifeinc | 4.345974 3.9435 1.10 0.270 -3.383144 12.07509

expersq | .1324211 .5138982 0.26 0.797 -.8748009 1.139643

kidslt6 | 0 (omitted)
```

Efectos marginales (condicionales) con truncamiento en Heckman (Two Step):

Number of obs = 753Conditional marginal effects Model VCE: Conventional

Expression: E(hours|hours>0), predict(e(0,.))

dy/dx wrt: kidsge6 age educ exper nwifeinc expersq kidslt6

At: kidsge6 = 1.353254 (mean) age = 42.53785 (mean) educ = 12.28685 (mean) exper = 10.63081 (mean) nwifeinc = 20.12896 (mean)expersq = 178.0385 (mean) kidslt6 = .2377158 (mean)

 	dy/dx	Delta-method std. err.	Z	P> z	[95% conf.	interval]
kidsge6 age educ exper nwifeinc expersq kidslt6	-73.52816 -2.493316 -56.03141 5.329854 3.914635 .1192782	29.74524 6.090065 19.67987 18.4439 3.586477 .4644865 (omitted)	-2.47 -0.41 -2.85 0.29 1.09 0.26	0.013 0.682 0.004 0.773 0.275 0.797	-131.8278 -14.42962 -94.60325 -30.81952 -3.114731 7910986	-15.22856 9.442992 -17.45957 41.47923 10.944 1.029655