Задачи 6 сет, 24.11.2021

Рассмотрим однородную марковскую цепь ξ_0, ξ_1, \ldots , определенную на вероятностном пространстве $(\Omega, \mathcal{F}, \mathbb{P})$ с (конечным либо счетным) множеством состояний X (так что $\xi_j:\Omega\mapsto X$). Рассмотрим случайную величину τ на том же вероятностном пространстве, такую что для каждого $n\geq 0$ событие $\{\tau=n\}$ лежит e алгебре, порожденной случайными величинами ξ_0,\ldots,ξ_n . Это означает, что для каждого n существует такое множество $A_n\subset X^{n-1}$, что множество $\{\omega\in\Omega:\tau(\omega)=n\}$ имеет вид $\{\omega\in\Omega:(\xi_0,\ldots,\xi_n)(\omega)\in A_n\}$. Такая случайная величина τ называется момент остановки (stopping time). Говоря неформально, τ — момент остановки, если для каждого n мы можем определить произошло ли событие $\{\tau=n\}$ зная траекторию марковской цепи вплоть до момента времени n. К примеру, случайная величина $\tau_A=\inf\{n\geq 0:\xi_n\in A\}$, где $A\subset X$, является моментом остановки (ее смысл — первый момент времени, когда процесс входит в множество A; здесь и далее $\inf\emptyset:=\infty$). А случайная величина $\widetilde{\tau}_A=\inf\{n\geq 0:\xi_{n+1}\in A\}$ не является моментом остановки. Отмечу, что константа — также момент остановки.

1. Рассмотрим однородную марковскую цепь ξ_0, ξ_1, \ldots с вероятностями перехода (p_{ij}) и момент остановки τ . Докажите *сильное марковское свойство (strong Markov property)*:

$$\mathbb{P}(\xi_{\tau+1} = j | \xi_{\tau} = i, (\xi_{\tau-1}, \dots, \xi_0) \in B_{<\tau}, \tau < \infty) = \mathbb{P}(\xi_{\tau+1} = j | \xi_{\tau} = i, \tau < \infty) = p_{ij},$$

для всех i, j и произвольного набора множеств $B_{< n} \subset X^{\times n}, n \ge 1$.

Комментарий: Если $\tau = const$, то сильное марковское свойство превращается в обычное марковское свойство. Можно показать, что сильное марковское свойство переговаривается следующим образом: при условии, что $\tau < \infty$ и $\xi_{\tau} = i$, случайный процесс $(\xi_{\tau+n})_{n\geq 1}$ не зависит от процесса $(\xi_n)_{n\leq \tau}$ и имеет такое же распределение, как исходный процесс $(\xi_n)_{n\geq 0}$, взятый при условии, что $\xi_0 = i$. Отсюда становится понятным, почему сильное марковское свойство столь часто используется при решении различных задач, связанных с марковскими цепями. В частности, оно позволяет дать ответ на вопрос как ведет себя цепь начиная с момента ее входа в некоторое множество $A \subset X$, то есть начиная с момента τ_A : она ведет себя так же, как исходная цепь, с начальным условием в точке, через которую вы вошли в A.

2. * Рассмотрим экспоненциально эргодическую марковскую цепь с множеством значений $X = \{1, 2, \ldots\}$ и стационарным состоянием π . Допустим, что $\pi_1 > 0$. Рассмотрим следующую последовательность моментов остановки:

$$\tau_1 = \{\inf k \ge 0 : \xi_k = 1\}, \quad \tau_n = \{\inf k > \tau_{n-1} : \xi_k = 1\}, \quad n \ge 2,$$

где $\inf \emptyset := \infty$. Таким образом, $\tau_n - n$ -ый момент попадания процесса в состояние 1.

 $^{^{1}}$ Здесь написано прямое произведение n копий множества X.

а) Докажите, что для каждого начального распределения $p^{(0)}$ верно $\mathbb{E}(\tau_1)^r < \infty$ для любого $r \geq 0$ (говорят, что случайная величина τ_1 имеет конечные моменты). Как следствие, покажите, что при каждом начальном распределении $p^{(0)}$ имеем $\mathbb{P}(\tau_1 < \infty) = 1$.

Указание: используя сходимость переходных вероятностей за п шагов $p_{ij}^{(n)} \to \pi_j$ при $n \to \infty$, следующую из эргодичности цепи, оцените сверху вероятность $\mathbb{P}(\tau_1 > k)$.

- б) Докажите, что случайные величины τ_1 и $\tau_2 \tau_1$ независимы, а если начальное распределение удовлетворяет $p_1^{(0)} = 1$ (то есть, в начальный момент времени мы сидим в состоянии 1), то они одинаково распределены. Выведите отсюда, что, в частности, $\mathbb{E}(\tau_2)^r < \infty \ \forall r > 0$.
- в) Рассуждая аналогично, докажите, что $\tau_1, \tau_2 \tau_1, \tau_3 \tau_2, \ldots$ последовательность независимых случайных величин. Покажите, что эти случайные величины, кроме τ_1 , имеют одинаковое распределение, а в случае, когда $p_1^{(0)} = 1$, и τ_1 имеет то же распределение. Покажите, что, в частности, $\mathbb{E}(\tau_n)^r < \infty \ \forall r > 0$.
- г) Докажите, что $\tau_n/n \to \mathbb{E}(\tau_2 \tau_1)$ при $n \to \infty$, п.н.
- д) Сфорулируем эту задачу сейчас, а сделать ее нужно будет после того, как обсудим ЗБЧ: Докажите, что $\mathbb{E}(\tau_2 \tau_1) = (\pi_1)^{-1}$.

Таким образом, мы получаем замечательный неочевидный факт: среднее время между первым и вторым посещением данного состояния составляет стационарную вероятность этого состояния в степени -1. Качественно этот результат интуитивен, а вот количественно, пожалуй, совсем нет.