Prepare for coding test efficiently!

2019110627 CSE Kim MyeongJu 2016104131 CSE An YoungMin 2019110634 CSE Lee ChangRyeol

Index

BEGINNERS FACE VARIOUS DIFFICULTIES IN PREPARING FOR A CODING TEST.

MOST PROBLEM-SOLVING SITES SHOW OVERALL INFORMATION, SO IT IS DIFFICULT TO FIND INFORMATION THAT SUITS THE USER AT A GLANCE.

Motivation

Team Presentation

Kim MyeongJu

Team Leader

Scrum Master

Data Acquisition

Data Visualization

An YoungMin

Data Analysis

Data Storage

Optimizing Performance

Lee ChangRyeol

Data Acquisition

Data Analysis

Project Document

Gantt chart

Target & Goal/Problem

Problem: There is little information on companies for coding test

Goal: Show what types of problems do users need to solve more in order to go to a certain company

Development Environment

Architecture

Main Functions

WHAT TYPES OF PROBLEMS USERS HAVE SOLVED THE MOST

STUDY STRUCTURE WITH PEOPLE OF SIMILAR LEVEL

PASS PREDICTION

Analysis

The Process, we Analyzed

Batch Processing

Why we took the batch processing?

because all needed output is deterministic!!!

RAW Data

user.json

userId rank
type String Enum(RANK)
ex abc123 마스터

problem.json

	questionId	title	difficulty	type
type	Integer	String	Enum(RANK)	Slash-Seperated-Value
ex	1000	A+B	브론즈 5	수학/구현/사칙연산

company.json

	company	title	difficulty	type
type	String	String	Enum(RANK)	Slash-Seperated-Value
ex	kakao	추석 트래픽	실버 2	브루트포스/구현/자료구조

joined

В

Α

trials.csv

	user	user_rank*	questionId	title	result	memory	time	language	volume	date
ex	abc123	마스터	1000	A+B	틀렸습니 다!!	N/A	N/A	C++ 17	730	2022-05-14 00:00:00 PM

Monthly Top Algorithm Analysis

trial_df

Monthly Top Algorithm Analysis

순위	1월	제출합	2월	제출합	3월	제출합	4월	제출합	5월	제출합
1	구현	573055	구현	502249	구현	601114	구현	557489	구현	223313
2	수학	537963	수학	454039	수학	554561	수학	487943	수학	207147
3	사칙연산	275737	사칙연산	232013	사칙연산	305384	사칙연산	266794	사칙연산	108169
4	그래프 이론	132869	그래프 이론	157594	그래프 이론	182649	그래프 이론	163517	그래프 이론	62522
5	자료 구조	129680	자료 구조	137495	그래프 탐색	143376	그래프 탐색	129326	자료 구조	59980
6	문자열	126303	그래프 탐색	121482	다이나믹 프로 그래밍	138367	자료 구조	112730	문자열	52726
7	다이나믹 프로그래밍	117649	다이나믹 프로그래밍	120728	자료 구조	137610	다이나믹 프로그래밍	108485	다이나믹 프로그래밍	48256
8	정렬	103045	문자열	116597	문자열	123693	문자열	108205	그래프 탐색	48046
9	그래프 탐색	101461	정렬	103484	너비 우선 탐색	114599	너비 우선 탐색	105267	정렬	44291
10	브루트포스	96642	브루트포스	99322	정렬	109605	브루트포스	101127	브루트포스	38536

Monthly Top Algorithm Analysis

Top Algorithm per user and tier

trial_df

	user	type	 result	date
Ex)	abc123	수학/구현/사칙연산	틀렸습니다!!	2022-05-14 00:00:00 PM

['맞았습니다!!', '맞았습니다!! (2/3점)',..] -> correct ['틀렸습니다', '메모리 초과', '시간 초과'] -> wrong ['런타임 에러(..)', '컴파일 에러(..)', '출력 오류 ..'] -> error etc -> etc categorize_udf

categorized_df

	user	type	 result	date
Ex)	abc123	수학	wrong	2022-05-14 00:00:00 PM

groupBy('user', 'type', 'result')
agg(count)
sort(count.desc)

groupBy('user_rank', 'type', 'result')
agg(count)
sort(count.desc)

correct_stat_user.csv

correct_stat_rankgroup.csv

Top Algorithm per company

company_df

	company	difficulty	title	type	
Ex)	kakao	실버 5	문자열 압축	문자열/구현	

다이아몬드 2 = 24.0 다이아몬드 2 = 25.0

	company	type	count	avg_of_ difficulty
Ex)	coupang	문자열	22	10.36

순위	Naver	KaKao	Line	Coupang	Samsung
1	문자열	구현	구현	구현	구현
2	구현	문자열	브루트 포스	자료 구조	시뮬레이션
3	자료 구조	브루트 포스	문자열	문자열	브루트 포스
4	수학	그래프 이론	수학	수학	그래프 이론
5	그래프 탐색	다이나믹 프로그래밍	자료 구조	브루트 포스	그래프 탐색
6	그래프 이론	깊이 우선 탐색	그래프 탐색	백트래킹	백트래킹
7	해시	너비 우선 탐색	그래프 이론	두 포인터	자료 구조

Dimensionality Reduction

Dimensionality Reduction – Feature Selection

	type	다익스트 라	다이나믹 프로그래 밍	그래프 탐색	구현	파싱	수학	깊이 우 선 탐색	너비 우 선 탐색	그래프 이론	그리디 알고리즘	두 포인 터	문자열	백트래킹	자료 구 조	시뮬레이 션
	다익	1.000000	0.988020	0.993974	0.920017	0.989428	0.945196	0.987721	0.992501	0.994437	0.990049	0.999600	0.957273	0.963842	0.992050	0.977442
1	다이 나믹 프로 그래 밍	0.988020	1.000000	0.998983	0.969471	0.999956	0.984260	0.999998	0.999475	0.998779	0.999905	0.991992	0.990433	0.993419	0.999586	0.998326
	그래 프 탐색	0.993974	0.998983	1.000000	0.957429	0.999363	0.975290	0.998894	0.999919	0.999991	0.999508	0.996678	0.983204	0.987244	0.999867	0.994703
	구현	0.920017	0.969471	0.957429	1.000000	0.967122	0.997546	0.969942	0.961020	0.956176	0.966009	0.930737	0.994033	0.991177	0.962017	0.982029
1	파싱	0.989428	0.999956	0.999363	0.967122	1.000000	0.982554	0.999936	0.999736	0.999200	0.999991	0.993136	0.989091	0.992297	0.999813	0.997738
	수학	0.945196	0.984260	0.975290	0.997546	0.982554	1.000000	0.984598	0.978019	0.974329	0.981737	0.954056	0.999231	0.998024	0.978769	0.992833
	깊이 우선 탐색	0.987721	0.999998	0.998894	0.969942	0.999936	0.984598	1.000000	0.999411	0.998682	0.999877	0.991747	0.990697	0.993637	0.999529	0.998436

Dimensionality Reduction – Feature Selection

Select the correct ratio of each company's Top 5 algorithm

+	+	+	+	+	+
l user		브루트포스 알고리즘	문자열	자료 구조	· 수학[
1998phy 1dilumn0 1x2x257 20201785 2david2 4vm89092n7890 5gkfka5 aa4060	0.51428574 0.75 0.5652174 0.0 0.71428573 0.80487806 1.0 0.83333334 0.33333334	0.5 0.37209302 0.0 1.0 0.0 0.0 0.33333334 0.0	0.0 0.5 0.39130434 0.0 0.01 0.54545456 1.0 0.0	0.0 0.25 0.39215687 0.0 0.0 0.0 0.0 0.26666668	0.45454547 0.6 0.83333333 0.5 0.61764705 1.0 0.6 0.3
	0.0 n=engewoel		•	0.0 0.76470E01	0.0 0.07191 0.07191

Dimensionality Reduction – Truncated Singular Value Decomposition (5D -> 2D)

Dimensionality Reduction – Truncated Singular Value Decomposition (5D -> 2D)

```
from pyspark.mllib.linalg import Vectors
from pyspark.mllib.linalg.distributed import RowMatrix, DenseMatrix
from pyspark.ml.feature import VectorAssembler
```

mat = RowMatrix(temp_rdd)

svd = mat.computeSVD(2, computeU=True)

(m=NumOfUser, n=5(top5 correct))

user	구현	브루트포스 알고리즘	문자열	자료 구조	· 수학
1223hyo	0.51428574	0.0	0.0	0.0	0.5
1998phy	0.75	0.5	0.5	0.25	0.45454547
1dilumnO	0.5652174	0.37209302	0.39130434	0.39215687	0.6
1x2x257	0.0	0.0	0.0	0.0	0.8333333
20201785	0.71428573	1.0	0.0	0.0	0.5
2david2	0.80487806	0.0	0.54545456	0.0	0.61764705
4vm89092n7890	1.0	0.0	1.0	0.0	1.0
5gkfka5	0.8333333	0.33333334	0.0	0.26666668	0.6
aa4060	0.33333334	0.0	0.0	0.0	0.3
aaabbb4202	0.0	0.0	0.0	0.0	0.0
abvaan071	n eengewoel	0 6666671	n 71//205791	0.76/70601	n 71/2071/31

Truncated SVD using Spark MLlib

(m=NumOfUser, t=2(score1, score2))

1	L	ı
vectored_score1	vectored_score2	
[-0.0041346723130510875] [-0.004060063896791902] [-0.004966066530773475] [0.0] [-0.0026479857131488493] [-0.003262813488919546] [-0.0035749415369504337] [-0.003624507813647184] [-0.005084874603735277] [-0.005174017866012666]	[-4.608305899533307E-4] [-9.107137065034617E-4] [0.0] [0.004824286092871272] [0.005989079767576516] [0.0065604114561784305] [0.004064016054085769] [-0.003433330878991991]	

Standardization

from pyspark.ml.feature import StandardScaler

$$z=rac{x-\mu}{\sigma}$$

Predicting the probability of acceptance Riveriate Standard Normal Distribution score2 †

Bivariate Standard Normal Distribution

$$P(x_1, x_2) = \frac{1}{2 \pi \sigma_1 \sigma_2 \sqrt{1 - \rho^2}} \exp \left[-\frac{z}{2(1 - \rho^2)} \right],$$

Binomial Distribution Formula

If Company C have n applicants, and choose (n-k) applicants

The probability that k applicants are inferior to User A and (n-k) are superior to User B

$$B(n,p) = \binom{n}{k} p^k (1-p)^{n-k}$$

Then we can simply estimate the User A's probability of acceptance for Company C

$$P(Acceptance) = \sum_{i=k}^{n} {n \choose i} p^{i} (1-p)^{n-i}$$

Bivariate Standard Normal Distribution

$$Score2 - s_2 = -(Score1 - s_1)$$

$$Score2 = -Score1 + (s_1 + s_2)$$

$$Score1 + Score1 = (s_1 + s_2)^T$$

Assume Z = Score1 + Score2 and Score1, Score2 are independent than Z is also Normal distribution with $\sqrt{1^2 + 1^2}$ stddev

Calc each user's Probability of acceptance

$$P(Acceptance) = \sum_{i=k}^{n} {n \choose i} p^{i} (1-p)^{n-i}, p = N(score1 + score2; 0, \sqrt{2})$$

```
from scipy.stats import norm
square_root_two = 2 ** (1/2)
inferior_cdf_udf = F.udf(lambda x, y: norm.cdf((x+y) / square_root_two).tolist(), FloatType())
```

+	+	++	+		+
user +	scaled_score1 +	scaled_score2	inferior	superior	acceptance_probability_linel
Heth_shan beth_shan black_203 dongkum0417 bokunoeiyuu20 ty0603ty dozinguy dntlr03 ech913	-0.29130945 -0.83807826 2.1589222 0.5608738 0.18982783 0.0014598591 -0.028453182	-0.26445845 -0.3797844 -0.14632612 1.0903629 1.3889537 1.5354125 0.89547026	0.34716445 0.19457525 0.9226494 0.8785161 0.86786747 0.86142254 0.7300862	0.65283555 0.80542475 0.07735062 0.12148392 0.13213253 0.13857746	2.3850674E-16 5.6589176E-33 1.0 0.99987984 0.999541 0.9990533 0.37440872
tiaeld			0.116324541		!

Implementation

The Process, we Visualized

Visualization Architecture

BackEnd - Trend for Month

Mon, Type, Try

```
05,구현,223313
05,수학,207147
05,사칙연산,108169
05,그래프 이론,62522
05,자료 구조,59980
05,문자열,52726
05,다이나믹 프로그래밍,48256
05,그래프 탐색,48046
05,정렬,44291
05,브루트포스 알고리즘,38536
05,너비 우선 탐색,36830
05,그리디 알고리즘,30367
```

```
Client

GET /trend

data : {
    "cur": "CURRENT MONTH",
    "bef": "BEFORE MONTH"
}
```



```
Server
response
```

FrontEnd - Trend for Month

BackEnd - Analysis for User

User Stats

Group_Stats


```
for(var i=0; i<rows.length; i++){
   var temp=rows[i].split(",")
   if(temp[0]==req.query.name){
      user_rows.push(temp)
      total+=Number(temp[3])
      usum+=Number(temp[4])
   }
}

user_rows.sort(function(a,b){
   return Number(b[3])-Number(a[3])
});</pre>
```

```
for(var i=0; i<rows2.length; i++){
   var temp2=rows2[i].split(",")
   if(temp2[0]==tier){
      user_rows2.push(temp2)
      total2+=Number(temp2[2])
      usum2+=Number(temp2[3])
   }
}
apt.push(Math.round((usum2/total2)*100))</pre>
```

BackEnd - Analysis for User

```
Client
GET /analysis
data : {
    "name":"user id"
}
```



```
Response
          (생략) 10 data"
        "120",
        ...(생략) 10 data
        "0.35",
        ...(생략) 10 data
         .(생략) 10 data"
        "85672",
        ...(생략) 10 data
        ...(생략) 10 data
```

Server

FrontEnd - Analysis for User

FrontEnd - Analysis for User

정확도가 필요할 시점입니다! 같은 수준의 사람들 보다 현재 정답률이 낮습니다.

FrontEnd - Analysis for User

주의

정확도가 동일 티어 보다 떨어집니다. 알고리즘 유형이 동일 티어와 유사합니다. 상위 알고리즘의 정답률이 높습니다.

BackEnd - Study Group

Criteria

- 1. Same
- 2. Weak Algorithm

```
for(var i=0; i<rows.length; i++){
   var temp=rows[i].split(",")
   if(temp[1]==user_tier && temp[3]>=50){
      for(var j=0; j<5; j++)
            if(temp[2]==weak[j])
            arg.push(temp[0]);
   }
   if(arg.length>=5)
      break;
}
```

Server

FrontEnd - Study Group

mjoo1106

"알고리즘 능력"

"취약 알고리즘" 자료구조 완전탐색 클릭하면 자동으로 쪽지가 전송됩니다.

0321minji

054679860

0913vision

0h328

0xe82de

BackEnd - Enterprise Acceptance Prediction Rate

```
Client
GET /company
data : {
    "name":"user id",
    "company":"彭从"
}
```



```
Server response

{
    "percent":0.66,
    "weak":[
    "구현",
    "자료구조"
    ]
}
```

FrontEnd - Enterprise Acceptance Prediction Rate

https://bigdataserver.herokuapp.com/

You can Access with this Address!

THANKSI

Any questions?

