正弦交流电路的功率

第11章

主讲人: 邹建龙

时间: 年月日

11 正弦交流电路的功率——主要内容

- □引言
- □ 11.1 瞬时功率
- □ 11.2 平均功率 (有功功率)
- □ 11.3 无功功率
- □ 11.4 复功率
- □ 11.5 视在功率和功率因数
- □ 11.6 交流电流功率的守恒性和相互关系
- □ 小结

11 正弦交流电路的功率——引言

瞬时功率的定义:

支路的瞬时功率定义为电压与电流的乘积

$$p(t) = u(t)i(t)$$

瞬时功率是功率的通用定义,既适用于正弦交流电路,也适用于其他电路。

正弦交流电路任意支路瞬时功率的表达式:

$$u(t) = \sqrt{2}U\cos(\omega t + \varphi_u)$$

$$i(t) = \sqrt{2}I\cos(\omega t + \varphi_i)$$

$$p(t) = u(t)i(t)$$

$$= \sqrt{2}U\cos(\omega t + \varphi_u) \times \sqrt{2}I\cos(\omega t + \varphi_i)$$

$$= UI\cos(2\omega t + \varphi_u + \varphi_i) + UI\cos(\varphi_u - \varphi_i)$$

正弦交流电路瞬时功率为周期函数,其角频率等于 电压和电流角频率的两倍,且与电压、电流相位有关。

正弦交流电路电阻瞬时功率的表达式:

$$u(t) = \sqrt{2}U\cos(\omega t + \varphi_u)$$

$$i(t) = \sqrt{2}I\cos\left(\omega t + \varphi_u\right)$$

$$p_R(t) = UI \cos(2\omega t + 2\varphi_u) + UI \cos 0^{\circ}$$
$$= UI \left[1 + \cos(2\omega t + 2\varphi_u)\right]$$

在关联参考方向下, 电阻电压与电流同相位。

电阻瞬时功率始终大于0,

意味着电阻始终吸收功率。

正弦交流电路电感瞬时功率的表达式:

在关联参考方向下,电感电流滞后电压90度。

电感吸收和发出功率 交替进行,吸收=发出, 意味着电感平均功率为0

正弦交流电路电容瞬时功率的表达式:

在关联参考方向下,电容电流超前电压90度。

电容发出和吸收功率 交替进行,发出=吸收, 意味着电容平均功率为0

正弦交流电路支路平均功率的定义:

瞬时功率在一个周期内的平均值,即

 $P = UI \cos \varphi$, $\exists \psi \varphi = \varphi_u - \varphi_i$

$$p(t) = u(t)i(t)$$

$$= \sqrt{2}U\cos(\omega t + \varphi_u) \times \sqrt{2}I\cos(\omega t + \varphi_i)$$

$$= UI\cos(2\omega t + \varphi_u + \varphi_i) + UI\cos(\varphi_u - \varphi_i)$$

$$P = \frac{1}{T} \int_0^T p(t) dt = UI\cos(\varphi_u - \varphi_i)$$

- □正弦交流电路支路平均功率是做功的功率,又称有功功率
- □ 平均功率的定义适用于任意周期电路,包括正弦交流电路

- □平均功率(有功功率)与瞬时功率的单位均为瓦特(W)
- □ 支路电压与电流的相位差对平均功率(有功功率)影响很大
- □ 在关联参考方向下, 平均功率代表吸收的平均功率
- □ 在非关联参考方向下, 平均功率代表发出的平均功率

电阻、电感、电容的有功功率

$$u(t)$$
 支路 $P = UI\cos\varphi$, 式中 $\varphi = \varphi_u - \varphi_i$

$$P_R = UI\cos 0^\circ = UI \ge 0$$
 W □ 电阻始终吸收有功功率

$$P_L = UI \cos 90^\circ = 0 \, \text{W}$$
 电感有功功率为0, 平均不做功

$$P_C = UI\cos(-90^\circ) = 0$$
 W 口 电容有功功率为0, 平均不做功

有功功率表达式总结

电路模型	有功功率表达式
任意一个支路	$P = UI\cos\varphi, \ \varphi = \varphi_u - \varphi_i$
电阻	$P_R = UI = I^2R = U^2 / R$
电感	$P_L = 0\mathrm{W}$
电容	$P_C = 0 \mathrm{W}$

与有功功率测量相关的功率表简介

* 端子代表电压正极和电流流入

功率表读数表达式:

$$P = UI \cos \varphi$$
 $\varphi = \varphi_u - \varphi_i$

用功率表测量支路吸收有功功率的电路原理图

与有功功率测量相关的功率表简介

- □ 在正弦交流电路中,如果功率表的电压与电流恰好是某一 支路的电压和电流,则功率表的读数代表支路有功功率;
- □如果功率表的电压与电流不是某一支路的电压和电流,则此时功率表读数不代表支路有功功率,其真正的含义要具体问题具体分析 [*

· i * W * 文路

例题1(基础)

已知正弦交流电路电压源电压有效值为10 V, 求电阻吸收的有功功率。

例题1(基础)

已知正弦交流电路电压源电压有效值为10 V, 求电阻吸收的有功功率。

$$I = \left| \frac{\dot{U}_{\rm s}}{4 + j3} \right| = \frac{10}{5} = 2 \,\mathrm{A}$$

$$P = I^2 R = 2^2 \times 4 = 16 \text{ W}$$

同步练习题1(基础)

已知正弦交流电路电压源电压有效值 为10 V, 求电阻吸收的有功功率。

同步练习题1(基础)

已知正弦交流电路电压源电压有效值 为10 V, 求电阻吸收的有功功率。

答案: 12 W

例题2(基础)

图示为正弦交流电路。已知电压表、电流表和功率表的读数分别为 $200\,\mathrm{V}$ 、 $1\,\mathrm{A}$ 和 $100\,\mathrm{W}$,求R和 $1/\omega C$

例题2(基础)

图示为正弦交流电路。已知电压表、电流表和功率表的读数分别为 $200\,\mathrm{V}$ 、 $1\,\mathrm{A}$ 和 $100\,\mathrm{W}$,求R和 $1/\omega C$

$$P = I^2 R = 1^2 \times R = 100 \implies R = 100 \Omega$$

$$I = \left| \frac{\dot{U}_{s}}{R - \dot{j} \frac{1}{\omega C}} \right| = \frac{200}{\sqrt{100^{2} + \left(\frac{1}{\omega C}\right)^{2}}} = 1 \implies \frac{1}{\omega C} = 100\sqrt{3} \Omega$$

同步练习题2 (基础)

图示为正弦交流电路。已知电压表、电流表和功率表的读数分别为 $200\,\mathrm{V}$ 、 $1\,\mathrm{A}$ 和 $100\,\mathrm{W}$,求R和 ωL

同步练习题2(基础)

图示为正弦交流电路。已知电压表、电流表和功率表的读数分 别为200 V、1 A和100 W,求R和 ωL

答案:

$$R = 400\Omega$$
,

$$R = 400 \Omega,$$
 $j\omega L$

$$\omega L = \frac{400}{3} \sqrt{3} \Omega$$

最大(有功)功率传输问题

- □ 当交流电路参数变化时,负载的有功功率随之改变, 求负载获得最大有功功率的条件和数值称为最大有 功功率传输问题,简称最大功率传输问题。
- □最大功率传输问题的答案与哪些参数变化有关, 如果变化的参数不同,答案也不同,

最大(有功)功率传输问题-负载阻抗可变

最大(有功)功率传输问题-负载阻抗可变

$$Z_{\rm L} = Z_{\rm eq}^{}$$
时负载获得最大功率 $P_{\rm max} = \frac{U_{\rm oc}^2}{4R_{\rm eq}}$

$$P = \frac{R_{L}}{\left(R_{eq} + R_{L}\right)^{2}} U_{oc}^{2}$$

$$= \frac{R_{L}}{R_{eq}^{2} + R_{L}^{2} + 2R_{eq}R_{L}} U_{oc}^{2}$$

$$= \frac{1}{\frac{R_{eq}^{2}}{R_{L}^{2}} + R_{L}^{2} + 2R_{eq}} U_{oc}^{2}$$

$$\leq \frac{U_{oc}^{2}}{4R_{eq}}$$

$$\leq \frac{U_{oc}^{2}}{4R_{eq}}$$

最大(有功)功率传输问题-负载阻抗仅模值可变,阻抗角不变

最大(有功)功率传输问题-负载阻抗仅模值可变,阻抗角不变

$$\left|Z_{L}\right| = \sqrt{R_{eq}^{2} + X_{eq}^{2}} = \left|Z_{eq}\right|$$
时,负载阻抗获得最大有功功率

例题3(基础)

图示为正弦交流电路,

已知电压源电压有效值为10 V。

(1) 如果负载阻抗可以任意改变,

求负载阻抗为何值时可获得最大功率?并求此最大功率。

(2) 如果负载阻抗为纯电阻,且电阻值可变,

求可变电阻为何值时可获得最大功率?并求此最大功率。

例题3(基础)

图示为正弦交流电路,

已知电压源电压有效值为10 V。

(1) 如果负载阻抗可以任意改变,

求负载阻抗为何值时可获得最大功率?并求此最大功率。

(2) 如果负载阻抗为纯电阻,且电阻值可变,

求可变电阻为何值时可获得最大功率?并求此最大功率。

例题3 (基础)

图示为正弦交流电路, 已知电压源电压。

已知电压源电压有效值为10 V。

(1) 如果负载阻抗可以任意改变,

求负载阻抗为何值时可获得最大功率?并求此最大功率。

(2) 如果负载阻抗为纯电阻,且电阻值可变,

求可变电阻为何值时可获得最大功率?并求此最大功率。

$$\dot{U}_{oc} = \frac{jl}{1+jl}\dot{U}_{s} = \frac{jl}{1+jl}\dot{U}_{s} \times 10 = 5\sqrt{2}\angle 45^{\circ} \text{ V} \qquad Z_{eq} = \frac{1\times jl}{1+jl} = 0.5+j0.5\Omega$$

$$Z_{\text{eq}} = \frac{1 \times j1}{1 + j1} = 0.5 + j0.5\Omega$$

(1) 如果负载阻抗可以任意改变,

$$Z_{\rm L} = Z_{\rm eq}^* = 0.5 - {
m j} 0.5 \Omega$$
时,获得最大功率 $P_{\rm max} = \frac{U_{
m oc}^2}{4R_{
m eq}} = 25 \, {
m W}$

$$P_{\text{max}} = \frac{U_{\text{oc}}^2}{4R_{\text{eq}}} = 25 \,\text{W}$$

(2) 如果负载阻抗为可变纯电阻,

$$R_{\rm L} = \left| Z_{\rm eq} \right| = 0.5\sqrt{2}\,\Omega$$
时,获得最大功率

$$P_{\rm max} = 20.71 \, {\rm W}$$

同步练习题3(基础)

图示为正弦交流电路, 已知电压源电压。

已知电压源电压有效值为10 V。

(1) 如果负载阻抗可以任意改变,

求负载阻抗为何值时可获得最大功率?并求此最大功率。

(2) 如果负载阻抗为纯电阻,且阻值可变,

求可变电阻为何值时可获得最大功率?并求此最大功率。

同步练习题3(基础)

图示为正弦交流电路, 已知电压源电压。

已知电压源电压有效值为10 V。

(1) 如果负载阻抗可以任意改变,

求负载阻抗为何值时可获得最大功率?并求此最大功率。

(2) 如果负载阻抗为纯电阻, 且阻值可变,

求可变电阻为何值时可获得最大功率?并求此最大功率。

(1) 如果负载阻抗可以任意改变,

$$Z_{L}=Z_{c}^{*}=0.5-\mathrm{j}0.5\Omega$$
时,获得最大功率

$$P_{\text{max}} = 25 \,\text{W}$$

(2) 如果负载阻抗为可变纯电阻,

$$R_{\rm L} = \left| Z_{\rm eq} \right| = 0.5\sqrt{2}\,\Omega$$
时,获得最大功率

$$P_{\text{max}} = 20.71 \text{ W}$$

例题4(提高) (电感值可变)

图示为正弦交流电路。已知 Z_1 =12 – $j6\Omega$, Z_L =6 – $j3\Omega$, ω = 100 rad/s, 开端 S 断开时电压 表读数为 50V。当开关 S 闭合时,改变图中可变电感 L,负载 Z_L 的有功功率会随之发生改变。求当 L 为何值时,负载 Z_L 可以获得最大有功功率?并求此最大有功功率。。

例题4(提高) (电感值可变)

图示为正弦交流电路。已知 Z_1 =12 – $j6\Omega$, Z_L =6 – $j3\Omega$, ω = 100 rad/s, 开端 S 断开时电压 表读数为 50V。当开关 S 闭合时,改变图中可变电感 L,负载 Z_L 的有功功率会随之发生改变。求当 L 为何值时,负载 Z_L 可以获得最大有功功率?并求此最大有功功率。。

$$Z_{eq} = \frac{Z_1 Z_L}{Z_1 + Z_L} = 8 - j4\Omega$$

$$U_{L} = \left| \frac{j\omega L}{Z_{eq} + j\omega L} \dot{U}_{oc} \right| = \frac{\omega L}{\sqrt{8^2 + (\omega L - 4)^2}} \times 50 = \frac{50}{\sqrt{\left(\frac{8}{\omega L}\right)^2 + \left(1 - \frac{4}{\omega L}\right)^2}}$$

$$= \frac{50}{\sqrt{5 \times \left(\frac{4}{\omega L} - \frac{1}{5}\right)^2 + \frac{4}{5}}} \qquad \frac{4}{\omega L} - \frac{1}{5} = 0 \qquad L = \frac{20}{\omega} = 0.2 \,\text{H} \qquad U_{Lmax} = 25\sqrt{5} \,\text{V}$$

$$P_{Lmax} = \left(\frac{U_{Lmax}}{|Z_L|}\right)^2 \times 6 = \frac{(25\sqrt{5})^2}{6^2 + 3^2} \times 6 = \frac{1250}{3} \approx 416.67 \,\text{W}$$

同步练习题4 (提高) (角频率可变)

图示为正弦交流电路,角频率可变。

已知两个电阻阻值均为10Ω,

电感值为10mH, 电容值为1nF。

当角频率为何值时,

电阻负载R_L可获得最大功率?

并求此最大功率。

同步练习题4(提高) (角频率可变)

图示为正弦交流电路, 角频率可变。

已知两个电阻阻值均为10Ω,

电感值为10mH, 电容值为1nF。

当角频率为何值时,

电阻负载R_L可获得最大功率? 并求此最大功率。

答案: $\omega = 10^6 \text{ rad/s}, P_{\text{max}} = 10 \text{ W}$

引言

正弦交流电路支路无功功率的定义过程:

正弦交流电路支路无功功率的定义过程:

$$p(t) = u(t)i(t)$$

$$= \sqrt{2}U\cos(\omega t + \varphi_u) \times \sqrt{2}I\cos(\omega t + \varphi_i)$$

$$= UI\cos(2\omega t + \varphi_u + \varphi_i) + UI\cos(\varphi_u - \varphi_i)$$

$$= UI\cos[2\omega t + 2\varphi_u - (\varphi_u - \varphi_i)] + UI\cos(\varphi_u - \varphi_i)$$

$$p(t) = UI\cos\varphi\left[1+\cos\left(2\omega t + 2\varphi_u\right)\right] + UI\sin\varphi\sin\left(2\omega t + 2\varphi_u\right)$$
 该项恒大于零,或恒小于零 该项平均值为零,实际不做功代表实际做功的功率 代表吞吐的功率

□ 为了定量衡量支路吞吐功率的能力, 所以定义无功功率为

$$Q = UI \sin \varphi$$
, $\Rightarrow \varphi = \varphi_u - \varphi_i$

- □ 无功功率的"无功"的含义是"平均不做功",单位为乏(var)
- □ 无功功率并非是无用的功率,其意义在于吞吐,类似港口吞吐货物

对正弦交流电路支路无功功率的进一步理解:

电阻、电感、电容的无功功率

$$Q = UI \sin \varphi$$

$$Q = UI \sin \varphi$$
, $\Rightarrow \varphi = \varphi_u - \varphi_i$

$$Q_R = UI \sin 0^\circ = 0 \text{ var}$$

- □ 电阻无功为0
- □电阻不能吞吐功率
- $Q_I = UI \sin 90^\circ = UI \ge 0$
- □ 电感无功功率恒大于等于零,
- □电感可吞吐功率

$$Q_C = UI \sin(-90^\circ) = -UI$$
 □ 电容无功功率恒小于等于零,

- □电容可吞吐功率

电感、电容的无功功率比较:

$$Q_L = UI \sin 90^\circ = UI \ge 0$$

$$Q_C = UI \sin(-90^{\circ}) = -UI \le 0$$

- □以上电感和电容无功功率表达式在关联参考方向时成立
- □ 关联参考时,功率含义为吸收的功率
- □ 电感实际吸收无功, 电容实际发出无功
- □ 无功功率是吞吐的功率,并非是实际做功的功率
- □ 称电感吸收无功, 电容发出无功是一种约定俗成的习惯

无功功率表达式总结

电路模型	无功功率表达式		
任意一个支路	$Q = UI\sin\varphi, \ \varphi = \varphi_u - \varphi_i$		
电阻	$Q_R = 0 \text{ var}$		
电感	$Q_L = UI = \omega LI^2 = \frac{U^2}{\omega L}$		
电容	$Q_C = -UI = -\omega CU^2 = -\frac{I^2}{\omega C}$		

例题5 (基础)

图示为正弦交流电路,已知电压源电压有效值为10 V,求电感的无功功率。

例题5(基础)

图示为正弦交流电路,已知电压源电压有效值为10 V,求电感的无功功率。

$$I = \left| \frac{\dot{U}_{s}}{j1 + \frac{1 \times (-j1)}{1 + (-j1)}} \right| = \frac{10}{\sqrt{0.5^{2} + 0.5^{2}}} = 10\sqrt{2} \text{ A}$$

$$Q_L = \omega LI^2 = 1 \times \left(10\sqrt{2}\right)^2 = 200 \text{ var}$$

同步练习题5(基础)

 $\dot{U}_{
m s}$ $\dot{U}_{
m s}$ $\dot{U}_{
m s}$

图示为正弦交流电路,

已知电压源电压有效值为25 V,

求电容和电压源的无功功率。

同步练习题5(基础)

图示为正弦交流电路,

已知电压源电压有效值为25 V, 求电容和电压源的无功功率。

答案: 电容无功-100 var, 电压源无功100 var。

11.4 复功率

$$P = UI \cos \varphi$$
, $\exists \psi \varphi = \varphi_u - \varphi_i$

$$Q = UI \sin \varphi$$
, $\exists \psi \varphi = \varphi_u - \varphi_i$

定义复功率

$$\overline{S} = P + jQ$$

$$= UI \cos(\varphi_u - \varphi_i) + jUI \sin(\varphi_u - \varphi_i)$$

$$= UI e^{j(\varphi_u - \varphi_i)} = Ue^{j\varphi_u} I e^{j(-\varphi_i)} = UI^*$$

- □复功率的单位是VA
- □ 复功率是复数,同时包含了有功功率和无功功率的信息
- □对于阻抗而言,复功率的表达式为

$$\overline{S} = \dot{U}\dot{I}^* = Z\dot{I}\dot{I}^* = I^2Z$$

11.5 视在功率和功率因数

视在功率定义为电压有效值与电流有效值的乘积,即 S=UI

- □视在功率的单位是VA
- □视在功率的物理意义是容量(做功的潜力)

功率因数定义为有功功率与视在功率的比值,即

$$\lambda = \frac{P}{S} = \frac{UI\cos\varphi}{UI} = \cos\varphi, \quad \exists \psi = \varphi_u - \varphi_i$$

- □功率因数无量纲
- □功率因数的物理意义是潜力的发挥程度

11.5 视在功率和功率因数

功率因数定义为有功功率与视在功率的比值,即

$$\lambda = \frac{P}{S} = \frac{UI\cos\varphi}{UI} = \cos\varphi, \quad \exists \psi \varphi = \varphi_u - \varphi_i$$

- □支路的功率因数角等于电压与电流的相位差
- □对于阻抗而言,功率因数角即阻抗角
- □ 如果功率因数角大于零,称为滞后(感性)功率因数
- □ 如果功率因数角小于零, 称为超前(容性)功率因数
- □功率因数越高越好,最大值为1
- □ 如果功率因数偏低,需要提高功率因数

11.5 视在功率和功率因数

提高功率因数的重要意义

11.5 视在功率和功率因数——提高功率因数

例题6 (基础)

图示为正弦交流电路,

已知电压源电压有效值为U,

角频率为 ω ,

感性负载的有功功率为P。

如果将电路的功率因数

由cosφ₁提高到cosφ₂,

求至少需要在感性负载两端并联多大的电容。

11.5 视在功率和功率因数——提高功率因数

例题6 (基础)

图示为正弦交流电路,

已知电压源电压有效值为U,

角频率为 ω ,

感性负载的有功功率为P。

如果将电路的功率因数

由cosφ₁提高到cosφ₂,

求至少需要在感性负载两端并联多大的电容。

11.5 视在功率和功率因数——提高功率因数

例题6

图示为正弦交流电路,

已知电压源电压有效值为U,

角频率为 ω ,

感性负载的有功功率为P。 \dot{U}

如果将电路的功率因数

感性如果将电路的√。 如果将电路的√。 由 cosφ₁提高到cosφ2, □ 本至少需要在感性← D 求至少需要在感性负载两端并联多大的电容。

$$P = UI_{1}\cos\varphi_{1} = UI_{2}\cos\varphi_{2} \quad I_{1} = \frac{P}{U\cos\varphi_{1}}, \quad I_{2} = \frac{P}{U\cos\varphi_{2}} \quad \dot{I}_{C} = \dot{I}_{2} - \dot{I}_{1}$$

$$j\omega CU = I_2 \cos(-\varphi_2) + jI_2 \sin(-\varphi_2) + I_1 \cos(-\varphi_1) + jI_1 \sin(-\varphi_1)$$

$$\omega CU = I_1 \sin \varphi_1 - I_2 \sin \varphi_2$$

$$C = \frac{I_1 \sin \varphi_1}{\omega U} - \frac{I_2 \sin \varphi_2}{\omega U} = \frac{\frac{P}{U \cos \varphi_1} \sin \varphi_1}{\omega U} - \frac{\frac{P}{U \cos \varphi_2} \sin \varphi_2}{\omega U} = \frac{P}{\omega U^2} (\tan \varphi_1 - \tan \varphi_2)$$

同步练习题6(基础)

已知正弦交流电路中感性负载阻抗等于100+j100 Ω, 求感性负载阻抗的功率因数。

如果在感性负载阻抗旁并联一个电容,并且已知电路的角频率 ω =100 rad/s,求并联多大电容才能使等效阻抗的功率因数等于1。

同步练习题6(基础)

已知正弦交流电路中感性负载阻抗等于100+j100 Ω, 求感性负载阻抗的功率因数。

如果在感性负载阻抗旁并联一个电容,并且已知电路的角频率 ω =100 rad/s,求并联多大电容才能使等效阻抗的功率因数等于1。

答案: 感性负载阻抗的功率因数等于0.707, 需要并联的电容值等于50 µF。

11.6 交流电路功率的守恒性和相互关系

根据特勒根定理, 时域中任意集总电路瞬时功率守恒, 即

$$\sum_{k=1}^{b} u_k(t)i_k(t) = 0$$

根据时域特勒根定理的证明过程,可证明在相量域中,复功率守恒,即

$$\sum_{k=1}^{b} \overline{S}_{k} = \sum_{k=1}^{b} \dot{U}_{k} \dot{I}_{k}^{*} = 0$$

$$\sum_{k=1}^{b} \overline{S}_{k} = \sum_{k=1}^{b} (P_{k} + jQ_{k}) = 0 \Rightarrow \sum_{k=1}^{b} P_{k} = 0, \quad \sum_{k=1}^{b} Q_{k} = 0$$

在正弦交流电路中, 有功功率和无功功率守恒

视在功率不守恒, 因为证明不了。

11.6 交流电路功率的守恒性和相互关系

正弦交流电路功率的定义和特点

功率类型	定义式	物理意义	単位	守恒性
瞬时功率	p(t) = u(t)i(t)	任意一个时刻的功率	W	守恒
有功功率	$P = UI \cos \varphi$	平均做功的功率	W	守恒
无功功率	$Q = UI \sin \varphi$	中转的功率	var	守恒
复功率	$\overline{S}=\dot{U}\dot{I}^*$	无	VA	守恒
视在功率	S = UI	功率的潜力	VA	不守恒

11.6 交流电路功率的守恒性和相互关系

正弦交流电路各功率的相互关系

$$S = |\overline{S}|, \ \overline{S} = P + jQ, \ S = \sqrt{P^2 + Q^2}$$

11 正弦交流电路的功率——小结

- □ 正弦交流电路的功率有5种类型: 瞬时功率; 平均功率 (有功功率); 无功功率; 复功率; 视在功率
- □ 正弦交流电路5种功率的定义式、物理意义、单位、守 恒性等详见11.6节的表格
- □ 功率因数等于有功功率与视在功率的比值,功率因数越 大越好,最大值为1
- □ 如果功率因数较低,需要提高功率因数,提高功率因数等价于降低无功功率的大小,又称为无功功率补偿。

11 正弦交流电路的功率

感谢大家聆听

らら、区、フトカノナトラー

主讲人: 邹建龙

时间: 年月日

