Fundamental Machine Learning

Dr. Andreas Hadiyono, ST, MMSI

Machine Learning Course

Deep Learning

Artificial Intelegence

Setiap teknik yang membuat komputer dapat memiliki pengetahuan seperti manusia

Machine Learning

Teknik untuk mengajari komputer tanpa secara langsung memprogram

Deep Learning

Belajar untuk memahami fitur dari data-data dengan menggunakan neural network (Jaringan syaraf tiruan)

Sejarah Machine Learning

Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence – first machine learning, then deep learning, a subset of machine learning – have created ever larger disruptions.

Figure 1-1. The traditional approach

Machine Learning Approach

Figure 1-2. Machine Learning approach

Automatic Machine Learning Approach

Figure 1-3. Automatically adapting to change

Artificial Intelligence (Kecerdasan Buatan)

Manfaat Machine Learning

Figure 1-4. Machine Learning can help humans learn

Manfaat Machine Learning

- Menyederhanakan permasalahan
 - Traditional approach: menggunakan berbagai macam rule
 - Machine learning approach: menggunakan beberapa baris kode serta dapat diterapkan di problem lain
- Machine learning dapat beradaptasi dengan data baru sedangkan traditional approach mengharuskan merubah banyak rule
- Mendapatkan wawasan tentang masalah kompleks dan data dalam jumlah besar.

Dataset Problem

Anjing dan Kain Pel

Chiuahua dan Kue Muffin?

Chiuahua dan Kue Muffin

Kakatua dan Buah

Donald Trump dan Ayam

Manfaat Machine Learning

Pemanfaatan Machine Leanring

- Face recognition
- Image classification
- Speech recognition
- Text-to-speech generation
- Handwriting transcription
- Machine translation
- Medical diagnosis
- Cars: drivable area, lane keeping
- Digital assistants
- Ads, search, social recommendations
- Game playing with deep RL

Jenis-Jenis Machine Learning

Jenis-Jenis Machine Learning

- Berdasarkan campur tangan manusia.
 - Supervised Learning
 - Unsupervised Learning
 - Reinforcement Learning
- Berdasarkan cara melakukan training
 - Batch Learning
 - Online Learning
- Berdasarkan komparasi data
 - Instance Based Learning
 - Model based Learning

Model Pembelajaran

Jenis ML

Berdasarkan Campur Tangan Manusia

Supervised Learning

Supervised Learning

Figure 1-5. A labeled training set for supervised learning (e.g., spam classification)

- Tipe Tugas dari Supervised Learning adalah Klasifikasi
- Tugas khas lainnya adalah memprediksi nilai numerik target, seperti harga mobil, diberikan serangkaian fitur (jarak tempuh, usia, merek, dll.) Yang disebut prediktor. Tugas semacam ini disebut regresi. Untuk melatih sistem, Anda perlu memberikan banyak contoh mobil, termasuk prediktor dan labelnya (mis., Harga mereka).

Algoritma Supervised Learning

- k-Nearest Neighbors
- Linear Regression
- Logistic Regression
- Support Vector Machines (SVMs)
- Decision Trees and Random Forests
- Neural networks
- Dan lain-lain

Regression vs Classification

Pengambilan Data

Pembersihan Data

Pembagian Data

Training Data

Evaluasi Model

Adjust Model Parameters

Deploy Model dgn Data Baru

Unsupervised Learning

Unsupervised Learning

Figure 1-7. An unlabeled training set for unsupervised learning

- Tipe unsupervised learning adalah Cluster
- Contohnya implementasi fraud pada kartu kredit
- Dapat dikombinasikan dengan algortima supervised learning

Unsupervised Learning

Hold Out Sets

Algoritma Unsupervised learning

Clustering

- K-Means
- Hierarchical Cluster Analysis (HCA)
- Expectation Maximization

Visualization and dimensionality reduction

- Principal Component Analysis (PCA)
- Kernel PCA
- Locally-Linear Embedding (LLE)
- t-distributed Stochastic Neighbor Embedding (t-SNE)

Association rule learning

- Apriori
- Eclat

Semi supervised Learning

- Algoritma yang dapat mengkombinasikan data dengan label dan tanpa label
- Example:
 - Faceboook photo
 - Google photo
- Contoh Algoritma seperti Deep Belief Network (DBN)

Reinforcement Learning

Figure 1-12. Reinforcement Learning

Deep learning is just like kids depend on your training.

Deep learning is big tool

TERIMA KASIH