Copyright Notice

These slides are distributed under the Creative Commons License.

<u>DeepLearning.Al</u> makes these slides available for educational purposes. You may not use or distribute these slides for commercial purposes. You may make copies of these slides and use or distribute them for educational purposes as long as you cite <u>DeepLearning.Al</u> as the source of the slides.

For the rest of the details of the license, see https://creativecommons.org/licenses/by-sa/2.0/legalcode

Object Detection

Object localization

What are localization and detection?

Image classification

" Car"

Classification with localization

"Cw

bjert

Detection

Classification with localization

4 - background

Defining the target label y

Object Detection

Landmark detection

Landmark detection

If we want to detect

 b_x , b_y , b_h , b_w

Object Detection

Object detection

Car detection example

Training set:

 \mathbf{X}

У

These are the closely cropped images of the dataset and

Sliding windows detection Corportation cost

Object Detection

Convolutional implementation of sliding windows

Turning FC layer into convolutional layers

Below Slide: Let's say our input is 16x16x3 and our window is 12x12x3 then we will need to slide our window 4 times assuming stride of 2. As we see with different colured windows here, there involves a lot of duplic

Convolution implementation of sliding windows

[Sermanet et al., 2014, OverFeat: Integrated recognition, localization and detection using convolutional networks]

Andrew Ng

Convolution implementation of sliding windows

Sliding window approach may result in a rectangle such that none of the rectangle fits the object although it is there as shown below. So to overcome that

deeplearning.ai

Object Detection

Bounding box predictions

Output accurate bounding boxes

Specify the bounding boxes

Used to determine how well is our algorithm is doing in detecting the objects. If red is actual and our model predicts purple box, then we take ratio of inte

deeplearning.ai

Object Detection

Intersection over union

Evaluating object localization

More generally, IoU is a measure of the overlap between two bounding boxes.

Object Detection

Non-max suppression

Non-max suppression example

To avoid detecting same object twice we

Andrew Ng

Non-max suppression example

the real centre is at the marked position bu

19x19

Non-max suppression example

Pc

Non-max suppression algorithm

Each output prediction is:

Discard all boxes with $p_c \leq 0.6$

- While there are any remaining boxes:
 - Pick the box with the largest p_c Output that as a prediction.
 - Discard any remaining box with $IoU \ge 0.5$ with the box output in the previous step

19×19

Jo pichle mein finally box chuna usse IOU nikalo au

What if our square box contains more than 1 object. In that case anchor boxes helps. We define 2 anchor boxes of different orientation and for each square

Object Detection

Anchor boxes

Overlapping objects:

$$\mathbf{y} = \begin{bmatrix} b_{c} \\ b_{x} \\ b_{y} \\ b_{h} \\ b_{w} \\ c_{1} \\ c_{2} \\ c_{3} \end{bmatrix}$$

Anchor box 1:

Anchor box 2:

[Redmon et al., 2015, You Only Look Once: Unified real-time object detection]

Anchor box algorithm

Previously:

Each object in training image is assigned to grid cell that contains that object's midpoint.

With two anchor boxes:

Each object in training image is assigned to grid cell that contains object's midpoint and anchor box for the grid cell with highest IoU.

Output 9: $3 \times 3 \times 16$ $3 \times 3 \times 2 \times 8$ Andrew A

Anchor box example

Anchor box 1: Anchor box 2:

Andrew Ng

Object Detection

Putting it together: YOLO algorithm

[Redmon et al., 2015, You Only Look Once: Unified real-time object detection]

Andrew Ng

Making predictions

Outputting the non-max supressed outputs

- For each grid call, get 2 predicted bounding boxes.
- Get rid of low probability predictions.
- For each class (pedestrian, car, motorcycle) use non-max suppression to generate final predictions.

Instead of running sliding window everywhere where there are clearly no object we run our algo only on some regions of interest where objects can be

deeplearning.ai

Object Detection

Region proposals (Optional)

Region proposal: R-CNN

Faster algorithms

 \rightarrow R-CNN:

Propose regions. Classify proposed regions one at a time. Output <u>label</u> + bounding box.

Fast R-CNN:

Propose regions. Use convolution implementation of sliding windows to classify all the proposed regions.

Faster R-CNN: Use convolutional network to propose regions.

[Girshik et. al, 2013. Rich feature hierarchies for accurate object detection and semantic segmentation] [Girshik, 2015. Fast R-CNN]

[Ren et. al, 2016. Faster R-CNN: Towards real-time object detection with region proposal networks]

Andrew Ng

Convolutional Neural Networks

Semantic segmentation with U-Net

Object Detection vs. Semantic Segmentation

Input image

Object Detection

Semantic Segmentation

what segmentatic does it tries to find out what each pixel is doing. Where, for example, rather than detectingthe road and trying to drawa bour

Motivation for U-Net

Chest X-Ray

Brain MRI

Per-pixel class labels

We want 0/1 for every pixel.

Car
 Not Car

Per-pixel class labels

- 1. Car
- 2. Building
- 3. Road

```
22222222222222222222222
22222222222222222222222
22222222222222222222222
22222222222222222222222
22222222222222222222222
  13333333333331
```

Segmentation Map

Deep Learning for Semantic Segmentation

Input image, . one key point in semantic segmentation is that as we progress len and width goes decreasing and depth keeps on increasing. So

Transpose convolution helps us to make the input image blow up to higher shape and dimension. like blowing up 2x2 image to a 4x4 image.

Transpose Convolution

Normal Convolution

Transpose Convolution

Output bigger than the input.

*

=

In the regular convolution, you would take the filter and place it on top of the inputs and then multiply and sum up. In the transpose convolution, instead of

Transpose Convolution

filter f x f = 3 x 3

 $\frac{\text{padding p} = 1}{\text{padding p}} = \frac{1}{\text{stride s}} = \frac{2}{\text{stride s}}$

Padding applied to the out

Deep Learning for Semantic Segmentation

See it looks like a U and that's why callled u-net.

