Development from Sheet Material

- Art of creating a 3-dimensional object from a 2-dimensional material
- Application
 - Sheet metal works (e.g. Air conditioning ducts)
 - Pipe fittings,
 - Boiler fittings,
 - Aeroplane construction (e.g. wings of the plane)
 - Automobile layout and
 - Chemical Engineering plant installations, etc..

AUXILIARY PROJECTION

- Auxiliary Views
 - planes that are inclined to the principal vertical and horizontal planes

98

TRUE LENGTH DETERMINATION BY RABATMENT

- Select two mutual views of the line (e.g. elevation and plan),
- Select one view as a fixed view (Elevation),
- Fix one end (B) of the line within the fixed view and rotate the free end (A) about the fixed point onto a horizontal line through the fixed point to obtain point A'.
- Project the new point A' vertically onto a horizontal line through its image (A¹) on the other view (plan) to obtain A².
- The true length of

•Important dimension within the fixed view is

TRUE LENGTH DETERMINATION BY AUXILIARY PROJECTION

INTERSECTION

• Intersection of two lines

FIRST ANGLE PROJECTION

X

VP

HP

TV

FV

LSV

Visibility

• Projecting in the "apparent" view from the apparent intersection onto its mutual view, the first point encountered will be obscured in the "apparent" view

Piercing Point of a line with a Plane

Piercing Point by Auxiliary Projection

Cutting Plane Method

True shape

NO LINE IS // TO XY IN ANY VIEW. MEANS NO TL IS AVAILABLE.

DRAW ONE LINE // TO XY IN ANY VIEW & IT'S OTHER VIEW CAN BE CONSIDERED AS TL FOR THE PURPOSE.

HERE a' 1' line in Fv is drawn // to xy. HENCE it's Tv a-1 becomes TL.

THEN FOLLOW SAME STEPS AND DETERMINE TRUE SHAPE. (STUDY THE ILLUSTRATION)

Intersection of a Line And a Solid by Cutting Plane Method

A machine component having two intersecting cylindrical surfaces with the axis at acute angle to each other.

An Industrial Dust collector. Intersection of two cylinders.

Intersection of a Cylindrical main and Branch Pipe.

A Feeding Hopper In industry.

Forged End of a Connecting Rod.

Two Cylindrical surfaces.

Pump lid having shape of a hexagonal Prism and Hemi-sphere intersecting each other.

Development

 Many articles such as cans, pipes, elbows, boxes, ducting, hoppers, etc.

Exposed edges
which may be
dangerous can be
wired or folded,
and these
processes also give
added strength

Cylinder: A Rectangle

Prisms: No.of Rectangles

Cone: (Sector of circle)

R=Base circle radius.

L=Slant height.

$$\theta = \frac{R}{L} \times 360^{\circ}$$

Pyramids: (No.of triangles)

Tetrahedron: Four Equilateral Triangles

Cube: Six Squares.

FRUSTUMS

DEVELOPMENT OF FRUSTUM OF CONE

R= Base circle radius of cone

L= Slant height of cone

 L_1 = Slant height of cut part.

DEVELOPMENT OF FRUSTUM OF SQUARE PYRAMID

L= Slant edge of pyramid L_1 = Slant edge of cut part.

CYLINDER STANDING & CYLINDER PENETRATING

CYLINDER STANDING & SQ. PRISM PENETRATING

CYLINDER STANDING & CONE PENETRATING

SQ.PRISM STANDING & SQ.PRISM PENETRATING

CYLINDER STANDING & TRIANGULAR PRISM PENETRATING

SQ. PRISM STANDING & SQ. PRISM PENETRATING (30⁰ SKEW POSITION)

CONE STANDING & SQ.PRISM PENETRATING (BOTH AXES VERTICAL)

CONE STANDING & CYLINDER PENETRATING

