MATERIAL FOR AIRCRAFT STRUCTURAL APPLICATIONS

Group 14

14ME30053 Sanket Girhe

14ME30047 Shashank Vyas

14ME10022 Dhiraj Chaudhari

14ME30023 Kaustubh Naik

14ME30027 Amit Patil

14ME30013 Hrishikesh Danawe

Material properties for aircraft applications

- Weight to strength ratio
- Good thermal capability
- Low coefficient of thermal expansion
- Resistance to corrosion and wear
- Crack resistance and fatigue load resistance

Material properties for aircraft applications

 Due to their high strength to weight ratio
 Aluminium, Ti alloys and composite materials are the major manufacturing materials for aircrafts

Density / kg·m⁻³
Reference: https://gadgtecs.com/2016/01/02/new-alloy-strong-titanium-light-aluminum/

Reference:

http://aviation.stackexchange.com/questions/12958/what-materials-make-up-most-of-the-weight-of-an-aircraft

Timeline of aircrafts

The Wright Flyer

- Material used was spruce & ash wood with muslin covering the wings.
- Spruce wood has very favorable strength to weight ratio.

Al & Ni alloys

- Aluminum can be heated & easily molded.
- Nitinol used as vibration dampers as it is a shape memory alloy.

Use of carbon fiber

- It's incredibly light weight & strong.
- It was first used in passenger plane in 2003 by Boeing.

Nickel

- Immense strength at extremely high temperatures.
- Resistance to oxidation and corrosion.
- Low expansion at severe temperatures.
- Creep resistance under high stress conditions.

Aluminium

- The biggest advantage of Aluminium over other metals is its low density
- Lightweight and strong properties makes the aircraft fuel efficient
- It's high resistance to corrosion ensures the safety of aircraft

Drawback

It loses strength at high temperatures

Titanium alloy

- Lightweight yet strong, uniquely versatile metal with excellent weight-to-strength ratio resulting in fuel efficiency enhancement
- Highly resistant to corrosion
- Elevated and cryogenic temperature capabilities
- Low thermal coefficient
- Aerospace industry is the next largest user of Titanium and its alloys after chemical industry
- High cost limits its usage

Choice of Wood for Aircraft Use

- Aircraft Structural Wood is cut from the tree in such a way that most of the grain lies at 45° or more grains lies at wide dimension of the wood Plank.
- There are Certain Defects that aren't acceptable to be used such as Cross grain on the wood or using compression wood.

Types of Wood Used in Aircraft

The Different types of wood used in aircraft includes: Solid Wood,
 Laminated Wood and Plywood.

Aircraft Totally Made of Wood (dH-98 de Havilland Mosquito)

- **dH- 98** (de Havilland Mosquito) entirely made of **Wood** and one of the fastest aircraft in 1941.
- Due to its Speed it was nicknamed as **The Wooden Wonder**.
- It was able to carry up to 1900 kg of Bombs.

Fiber/Filament Reinforcement

Matrix

Composite

- High Strength
- High Stiffness
- Low Density

- Good shear properties
- Low density

- High Strength
- High Stiffness
- Good shear properties
- Low density

Uses of composites in Aircraft Structures

- Use of composites, we are going to the new heights of safety, comfort and efficiency.
- Increasingly, the aircraft designers have been turning to composites.
- This makes the vehicles lighter, more fuel efficient and more comfortable for the passengers.
- Half of the Boeing 787 and the Airbus 350 are constructed of composite materials.
- Other manufacturers, like Bombardier, are adopting composites for many aircraft sections.

Pros of composites

- Composites offer a very high stiffness to weight ratio.
- Development of cracks in the structures can be prevented by use of composites.
- Composites do not corrode and are not subjected to fatigue.
- Increased comfort of the passengers.

Cons of using composites

- Composites make it difficult to find out the interior damages of the aircraft .
- Repairing also becomes very difficult.
- Composite structures weakens at temperatures as low as 150 degrees.
- Composite structures can be expensive.