Having Solution or Not

李宏毅

Hung-yi Lee

Learning Target

- Given A and b, sometimes x exists (having solution), and sometimes doesn't (no solution)
- New terms: "linear combination" and "span"

Solution

Given a system of linear equation

$$2x_1 - 3x_2 + x_3 = -10
x_1 + x_3 = 3$$

$$\begin{bmatrix} 2 \\ 5 \\ 1 \end{bmatrix}$$
 is a solution $\begin{bmatrix} -4 \\ 3 \\ 7 \end{bmatrix}$ is also a solution possible solutions

The **set** of **all solutions** of a **system of linear equations** is called the **solution set**.

Solution

- A system of linear equations is called consistent if it has one or more solutions.
- A system of linear equations is called inconsistent if its solution set is empty.

	$3x_1 + x_2 = 10 x_1 - 3x_2 = 0$	$3x_1 + x_2 = 10$ $6x_1 + 2x_2 = 20$	$3x_1 + x_2 = 10 6x_1 + 2x_2 = 0$
Solution set	$\left\{ \left[\begin{array}{c} 3\\1 \end{array}\right] \right\}$	$\left\{ \left[\begin{array}{c} 3\\1 \end{array}\right] + t \left[\begin{array}{c} -1\\3 \end{array}\right] : \forall t \in \mathcal{R} \right\}$	$\{\}$, or ϕ
Consistent or Inconsistent?	Consistent	Consistent	Inconsistent

Solution (High School)

More Variables?

 Considering any system of linear equations with 2 variables and 2 equations

$$a_{11}x_1 + a_{12}x_2 = b_1$$
 line 1
 $a_{21}x_1 + a_{22}x_2 = b_2$ line 2

Does a system of linear equations have solutions?

Linear Combination

Linear Combination A Bank

- Given a vector set $\{u_1, u_2, \cdots, u_k\}$
- The linear combination of the vectors in the set:
 - $v = c_1 u_1 + c_2 u_2 + \cdots + c_k u_k$
 - c_1, c_2, \cdots, c_k are scalars (Coefficients of linear combination)

vector set:
$$\left\{ \begin{bmatrix} 1\\1 \end{bmatrix}, \begin{bmatrix} 1\\3 \end{bmatrix}, \begin{bmatrix} 1\\-1 \end{bmatrix} \right\}$$

coefficients: $\{-3,4,1\}$

What is the result of linear combination?

Column Aspect

$$A\mathbf{x} = x_1 a_1 + x_2 a_2 + \dots + x_n a_n$$

Linear Combination

System of Linear Equations v.s. Linear Combination

$$A\mathbf{x} = \mathbf{b}$$

(A system of linear equations)

Non empty solution set?

Has solution or not?

Consistent?

Column Aspect

 $A\mathbf{x}$

$$= x_1 a_1 + x_2 a_2 + \dots + x_n a_n = b$$

the linear combination of columns of *A*

Is b the linear combination of columns of A?

$$3x_1 + 6x_2 = 3$$
$$2x_1 + 4x_2 = 4$$

Has solution or not?

$$A\mathbf{x} = \mathbf{b}$$

$$A = \begin{bmatrix} 3 & 6 \\ 2 & 4 \end{bmatrix} \quad x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \quad b = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$$

Is b the linear combination of columns of A?

$$\left\{ \begin{bmatrix} 3 \\ 2 \end{bmatrix}, \begin{bmatrix} 6 \\ 4 \end{bmatrix} \right\}$$

$$3x_1 + 6x_2 = 3$$
$$2x_1 + 4x_2 = 4$$

Has solution or not?

- Vector set: $\left\{ \begin{bmatrix} 3 \\ 2 \end{bmatrix}, \begin{bmatrix} 6 \\ 4 \end{bmatrix} \right\}$
- Is $\begin{bmatrix} 3 \\ 4 \end{bmatrix}$ a linear combination of $\left\{ \begin{bmatrix} 3 \\ 2 \end{bmatrix}, \begin{bmatrix} 6 \\ 4 \end{bmatrix} \right\}$? No

$$2x_1 + 3x_2 = 4$$
$$3x_1 + 1x_2 = -1$$

Has solution or not?

$$A\mathbf{x} = \mathbf{b}$$

$$A = \begin{bmatrix} 2 & 3 \\ 3 & 1 \end{bmatrix} \quad x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \quad b = \begin{bmatrix} 4 \\ -1 \end{bmatrix}$$

Is b the linear combination of columns of A?

$$\begin{bmatrix} 4 \\ -1 \end{bmatrix} \qquad \left\{ \begin{bmatrix} 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 3 \\ 1 \end{bmatrix} \right\}$$

 $2x_1 + 3x_2 = 4$ $3x_1 + 1x_2 = -1$

How about in \mathcal{R}^4 ?

- If \mathbf{u} and \mathbf{v} are any nonparallel vectors in \mathcal{R}^2 , then every vector in \mathcal{R}^2 is a linear combination of \mathbf{u} and \mathbf{v}
 - Nonparallel: **u** and **v** are nonzero vectors, and $\mathbf{u} \neq c\mathbf{v}$.

$$u_1 x_1 + v_1 x_2 = b_1 u_2 x_1 + v_2 x_2 = b_2$$

u and **v** are not parallel

• If \mathbf{u} , \mathbf{v} and \mathbf{w} are any nonparallel vectors in \mathcal{R}^3 , then every vector in \mathcal{R}^3 is a linear combination of \mathbf{u} , \mathbf{v} and \mathbf{w} ?

$$2x_1 + 6x_2 = -4$$
$$1x_1 + 3x_2 = -2$$

Has solution or not?

$$A\mathbf{x} = \mathbf{b}$$

$$A = \begin{bmatrix} 2 & 6 \\ 1 & 3 \end{bmatrix} \quad x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \quad b = \begin{bmatrix} -4 \\ -2 \end{bmatrix}$$

Is b the linear combination of columns of A?

$$\begin{bmatrix} -4 \\ -2 \end{bmatrix}$$

$$\left\{ \begin{bmatrix} 2\\1 \end{bmatrix}, \begin{bmatrix} 6\\3 \end{bmatrix} \right\}$$

$$2x_1 + 6x_2 = -4$$
$$1x_1 + 3x_2 = -2$$

• Vector set: $\left\{ \begin{bmatrix} 2\\1 \end{bmatrix}, \begin{bmatrix} 6\\3 \end{bmatrix} \right\}$

Has solution or not?

• Is
$$\begin{bmatrix} -4 \\ -2 \end{bmatrix}$$
 a linear combination of $\left\{ \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 6 \\ 3 \end{bmatrix} \right\}$? Yes

Does a system of linear equations have solutions? Span

- A vector set $S = \{u_1, u_2, \dots, u_k\}$
- Span of S is the vector set of all linear combinations of u_1, u_2, \cdots, u_k
 - Denoted by $Span\{u_1, u_2, \cdots, u_k\}$ or Span S
 - $Span S = \{c_1u_1 + c_2u_2 + \cdots + c_ku_k | for all c_1, c_2, \cdots, c_k\}$
- Vector set V = Span S
 - "S is a generating set for V" or "S generates V"
 - A vector set generated by another vector set is called *Space*

- Let $S_0 = \{ \begin{bmatrix} 0 \\ 0 \end{bmatrix} \}$, what is Span S_0 ?
 - Ans: $\{\begin{bmatrix} 0 \\ 0 \end{bmatrix}\}$ (only one member)
- Let $S_1 = \{ \begin{bmatrix} 1 \\ -1 \end{bmatrix} \}$, what is Span S_1 ?
 - If S contains a non zero vector, then Span S has infinitely many vectors

- Let $S_1 = \{ \begin{bmatrix} 1 \\ -1 \end{bmatrix} \}$, what is Span S_1 ?
- Let $S_2 = \{ \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \begin{bmatrix} -2 \\ 2 \end{bmatrix} \}$, what is Span S_2 ?

 $\operatorname{Span} S_1 = \operatorname{Span} S_2$

(Different number of vectors can generate the same space.)

• Let
$$S_3 = \{ \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \begin{bmatrix} -2 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \end{bmatrix} \}$$
, what is Span S_3 ?

Every vector in \mathcal{R}^2 is their linear combination

Span $S_3 = \Re^2$

- Let $S_3 = \{ \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \begin{bmatrix} -2 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \end{bmatrix} \}$, what is Span S_3 ?
- Let $S_4 = \{ \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \begin{bmatrix} -2 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 3 \end{bmatrix} \}$, what is Span S_4 ?

$$Span S_3 = \Re^2$$

Span $S_4 = \Re^2$

$$\mathbf{e}_1 = \left[egin{array}{c} 1 \\ 0 \\ 0 \end{array}
ight], \mathbf{e}_2 = \left[egin{array}{c} 0 \\ 1 \\ 0 \end{array}
ight], \mathbf{e}_3 = \left[egin{array}{c} 0 \\ 0 \\ 1 \end{array}
ight]$$

$$\begin{array}{rcl}
 a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n & = & b_1 \\
 a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n & = & b_2 \\
 \vdots & & & & \\
 a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n & = & b_m
 \end{array}$$

Has solution or not?

The same question

$$x_1 \begin{bmatrix} a_{11} \\ \vdots \\ a_{m1} \end{bmatrix} + x_2 \begin{bmatrix} a_{12} \\ \vdots \\ a_{m2} \end{bmatrix} + \dots + x_n \begin{bmatrix} a_{1n} \\ \vdots \\ a_{mn} \end{bmatrix} = \begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix}$$
 Is b the linear combination of columns of A ?

Is b the linear

The same question

$$\begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix} \in Span \left\{ \begin{bmatrix} a_{11} \\ \vdots \\ a_{m1} \end{bmatrix}, \begin{bmatrix} a_{12} \\ \vdots \\ a_{m2} \end{bmatrix} \dots \begin{bmatrix} a_{1n} \\ \vdots \\ a_{mn} \end{bmatrix} \right\}$$

Is b in the span of the columns of A?

Summary

$$A\mathbf{x} = \mathbf{b}$$

Does a system of linear equations have solution?

Is b a linear combination of columns of A?

Is *b* in the span of the columns of *A*?

YES Have solution