## **Tables and results**

Item 1) Implement the Explicit Midpoint Method (EMP)

EMP.py

Item 2) Implement the Implicit Midpoint Method (IMP)

IMP.py

Item 3) Implement the Non-Standard Implicit Midpoint Method (NSIMP)

## NSIMP.py

**Item 4)** All three methods are second order and they do not differ much in terms of computational cost; demonstrate this numerically. I expect several tables with results.

For different time lapse, and steps, we have,

By Explicit Midpoint Method

| n    | h     | Run time | Rel. Error |
|------|-------|----------|------------|
| 100  | 0.050 | 0.0156   | 8.4008e-02 |
| 250  | 0.020 | 0.0468   | 2.2921e-02 |
| 500  | 0.010 | 0.0624   | 4.1966e-02 |
| 1000 | 0.005 | 0.1404   | 4.8404e-02 |
| 2000 | 0.003 | 0.2496   | 5.0935e-02 |

#### By Implicit Midpoint Method

| n    | h     | Run time | Rel. Error |
|------|-------|----------|------------|
| 100  | 0.050 | 0.0312   | 1.1235e-02 |
| 250  | 0.020 | 0.1092   | 3.6040e-02 |
| 500  | 0.010 | 0.2184   | 4.4923e-02 |
| 1000 | 0.005 | 0.3588   | 4.9095e-02 |
| 2000 | 0.003 | 0.2496   | 5.0935e-02 |

By Non-Standard Implicit Midpoint Method

| n    | h     | Run time | Rel. Error |
|------|-------|----------|------------|
| 100  | 0.050 | 0.0624   | 4.8671e-02 |
| 250  | 0.020 | 0.1560   | 2.8294e-02 |
| 500  | 0.010 | 0.3900   | 1.9808e-02 |
| 1000 | 0.005 | 0.7176   | 1.5603e-02 |
| 2000 | 0.003 | 0.2496   | 5.0935e-02 |

**Item 5)** For  $\gamma = 0$ , the implicit methods are equivalent, and we expect they are superior to the explicit method; check this numerically using long time simulations with various h,  $\omega$ ,  $x_0$ .



Figure 1: (X vs t). Exact vs Numerical solution by EMP, (1) with h=0.1, (2) with h=0.02, (3) with h=0.01, and (4) with h=0.002.  $\omega=0.5$  and  $\gamma=0$ , in color black the exact solution. t in [0,30]









Figure 2: (X vs t). Exact vs Numerical solution by IMP, (1) with h=0.1, (2) with h=0.02, (3) with h=0.01, and (4) with h=0.002.  $\omega=0.5$  and  $\gamma=0$ , in color black the exact solution. t in [0,30]









Figure 3: (X vs t). Exact vs Numerical solution by NSIMP, (1) with h=0.1, (2) with h=0.02, (3) with h=0.01, and (4) with h=0.002.  $\omega=0.5$  and  $\gamma=0$ , in color black the exact solution. t in [0,30]



Figure 4: (X vs t). Exact vs Numerical solution by EMP, (1) with h=0.1, (2) with h=0.02, (3) with h=0.01, and (4) with h=0.002.  $\omega=5.0$  and  $\gamma=0$ , in color black the exact solution. t in [0,10]



Figure 5: (X vs t). Exact vs Numerical solution by IMP, (1) with h=0.1, (2) with h=0.02, (3) with h=0.01, and (4) with h=0.002.  $\omega=5.0$  and  $\gamma=0$ , in color black the exact solution. t in [0,60]



Figure 6: (X vs t). Exact vs Numerical solution by NSIMP, (1) with h=0.1, (2) with h=0.02, (3) with h=0.01, and (4) with h=0.002.  $\omega=5.0$  and  $\gamma=0$ , in color black the exact solution. t in [0,60]

**Item 6)** Experiment on the long-time accuracy of the methods for small values of  $\gamma > 0$ .



Figure 7: (X vs t). Exact vs Numerical solution by EMP, (1) with h=0.1, (2) with h=0.02, (3) with h=0.01, and (4) with h=0.002.  $\omega=2.0$  and  $\gamma=0.01$ , in color black the exact solution. t in [0,120]









Figure 8: (X vs t). Exact vs Numerical solution by IMP, (1) with h=0.1, (2) with h=0.02, (3) with h=0.01, and (4) with h=0.002.  $\omega=2.0$  and  $\gamma=0.01$ , in color black the exact solution. t in [0,120]









Figure 9: (X vs t). Exact vs Numerical solution by NSIMP, (1) with h=0.1, (2) with h=0.02, (3) with h=0.01, and (4) with h=0.002.  $\omega=2.0$  and  $\gamma=0.01$ , in color black the exact solution. t in [0,120]



Figure 10: (X vs t). Exact vs Numerical solution by EMP, (1) with h=0.1, (2) with h=0.02, (3) with h=0.01, and (4) with h=0.002.  $\omega=0.4$  and  $\gamma=0.1$ , in color black the exact solution. t in [0,90]

-0.5

-1.0 -

20

40

t

60

80

-0.5

-1.0 -

20

40

t

60

80



Figure 11: (X vs t). Exact vs Numerical solution by IMP, (1) with h=0.1, (2) with h=0.02, (3) with h=0.01, and (4) with h=0.002.  $\omega=0.4$  and  $\gamma=0.1$ , in color black the exact solution. t in [0,90]

-0.5

-1.0 -

20

40

t

60

80

-0.5

-1.0 -

20

40

t

60

80



Figure 12: (X vs t). Exact vs Numerical solution by NSIMP, (1) with h=0.1, (2) with h=0.02, (3) with h=0.01, and (4) with h=0.002.  $\omega=0.4$  and  $\gamma=0.1$ , in color black the exact solution. t in  $\lceil 0,90 \rceil$ 

**Item 7:** Run experiments to help you fully understand what happens to the approximations as  $\gamma$  increases.



Figure 13: (X vs t). Exact vs Numerical solution by EMP, (1) with  $\gamma=0.1$ , (2) with  $\gamma=1$ , (3) with  $\gamma=5$ , and (4) with  $\gamma=10$ .  $\omega=11$  and h=0.01, in color black the exact solution. t in [0,10]









Figure 14: (X vs t). Exact vs Numerical solution by EMP, (1) with  $\gamma=0.1$ , (2) with  $\gamma=1$ , (3) with  $\gamma=5$ , and (4) with  $\gamma=10.0$  and t=10.0 and t=10.0 in color black the exact solution. t=10.0 in [0, 10]



Figure 15: (X vs t). Exact vs Numerical solution by IMP, (1) with  $\gamma=0.1$ , (2) with  $\gamma=1$ , (3) with  $\gamma=5$ , and (4) with  $\gamma=10.\omega=11$  and h=0.01, in color black the exact solution. t in [0,10]

0.0

-0.5

0.5

0.0









Figure 16: (X vs t). Exact vs Numerical solution by EMP, (1) with  $\gamma=0.1$ , (2) with  $\gamma=1$ , (3) with  $\gamma=5$ , and (4) with  $\gamma=10.\omega=25$  and h=0.001, in color black the exact solution. t in [0,10]









Figure 17: (X vs t). Exact vs Numerical solution by NSIMP, (1) with  $\gamma=0.1$ , (2) with  $\gamma=1$ , (3) with  $\gamma=5$ , and (4) with  $\gamma=10.\omega=11$  and h=0.01, in color black the exact solution. t=0.10









Figure 18: (X vs t). Exact vs Numerical solution by NSIMP, (1) with  $\gamma=0.1$ , (2) with  $\gamma=1$ , (3) with  $\gamma=5$ , and (4) with  $\gamma=10.\omega=25$  and h=0.001, in color black the exact solution. t in [0,10]

**Item 8)** If there is, in fact, a "breaking point" for any method as  $\gamma$  increases determine what it is and how it depends upon h or  $\omega$ .

if  $\gamma > \omega$ , by definition not possible for each method and

if  $\gamma = \omega$ , the approximations are not good

## Exact vs Numerical solution by EMP $\omega = 0.5$ and $\gamma = 0.5$



# Exact vs Numerical solution by IMP $\omega=5$ and $\gamma=5$

