AI24BTECH11002 - K. Akshay Teja

c) 9

c) $\frac{\pi^2}{22}$

c) 27

c) 9999

d) 13

d) $\frac{\pi^2}{8\sqrt{2}}$

d) 23

d) 6666

d) 2

1) If 3, a, b, x are in A.P, and 2, a-1, b+1 are in G.P. Then arithmetic mean of a, b and c is

4) If $3, 7, 11, \dots, 403 = AP_1, 2, 5, 8, \dots, 401 = AP_2$ Find sum of common term of AP_1 and AP_2

b) 10

b) $\frac{\pi^2}{64}$

3) If $A = \begin{bmatrix} \sqrt{2} & 1 \\ -1 & \sqrt{2} \end{bmatrix}$, $B = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$, $C = ABA^T$, then |X| is equal to

b) 283

b) 6699

5) $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{8\sqrt{2}\cos x}{(1+e^{\sin x})(1+\sin^4 x)} dx = a\pi + b\log(3+2\sqrt{2}) \text{ then find } a + b.$

6) If $(t+1) dx = (2x + (t+1)^3) dt$ and x(0) = 2, then x(1) is equal to

2) The value of $\int_0^{\frac{\pi}{4}} \frac{xdx}{\sin^4(2x) + \cos^4(2x)}$ is equal to

a) 11

a) $\frac{\pi^2}{16\sqrt{2}}$

a) 729

a) 3366

a) 4

a) 5	b) 12	c) 6	d) 8		
	re distributed in four iden ways to distribute them.	atical rooms. A room ca	nn also contain zero people	. Find	
a) 47	b) 53	c) 43	d) 51		
8) $5f(x) + 4f(\frac{1}{x}) = x^2 - 4$ and $y = 9f(x)x^2$. If y is a strictly increasing function, find the interval of x.					
a) $\left(-\infty, \frac{-1}{\sqrt{5}}\right) \cup$ b) $\left(-\frac{-1}{\sqrt{5}}, 0\right) \cup \left(-\frac{-1}{\sqrt{5}}, 0\right)$	$\begin{pmatrix} \left(\frac{-1}{\sqrt{5}}, 0\right) \\ 0, \frac{-1}{\sqrt{5}} \end{pmatrix}$	c) $\left(0, \frac{-1}{\sqrt{5}}\right) \cup \left(\frac{1}{2}\right)$ d) $\left(-\sqrt{\frac{2}{5}}, 0\right) \cup \left(\frac{1}{2}\right)$	$O\left(\sqrt{\frac{2}{5}},\infty\right)$		
9) If the hyperbola $x^2 - y^2 \csc^2 \theta = 5$ and the ellipse $x^2 \csc^2 \theta + y^2 = 5$ has eccentricities e_H and e_e respectively, and $e_H = \sqrt{7}e_e$, then θ is equal to:					
a) $\frac{\pi}{3}$	b) $\frac{\pi}{6}$	c) $\frac{\pi}{2}$	d) $\frac{\pi}{4}$		
(W) and 2 blace			without replacement and 2 e number of white and black		

a) $\frac{1}{7}$	b) $\frac{2}{7}$	c) $\frac{3}{5}$	

11) If two circles $x^2 + y^2 = 4$ and $x^2 + y^2 - 4\lambda x + 9 = 0$ intersect at two distinct points, then find the range of λ .

a)
$$\left(-\infty, -\frac{13}{2}\right) \cup \left(-\frac{13}{2}, \infty\right)$$

b) $\left(-\infty, -\frac{13}{8}\right) \cup \left(-\frac{13}{8}, \infty\right)$
c) $\left[-\frac{13}{8}, \frac{13}{8}\right]$
d) $\lambda \in \left(\frac{3}{2}, \infty\right)$

12) If $S = \{x \in \mathbb{R} : 3\left(\sqrt{3} + \sqrt{2}\right)^x + \left(\sqrt{3} - \sqrt{2}\right)^x = \frac{10}{3}\}$, then the number of elements in set S is

b) 1 a) Zero c) 2 d) 3

13)
$$f(x) = \begin{cases} e^x, & x < 0 \\ \ln x, & x > 0 \end{cases} g(x) = \begin{cases} e^x, & x < 0 \\ x, & x > 0 \end{cases}$$
 The $g \circ f : A \to R$ is

a) Onto but not one-one

c) Onto and one-one

b) Into and many-one

d) Into and one-one

14) If
$$\tan A = \frac{1}{\sqrt{x^2 + x + 1}, \tan B = \frac{\sqrt{x}}{\sqrt{x^2 + x + 1}}}$$
 and $\tan C = \frac{1}{\sqrt{x(x^2 + x + 1)}}$, then A + B =

- b) πC c) $\frac{\pi}{2}$ – C a) 0 d) None
- 15) $\lim_{x\to 0} \frac{\cos^{-1}\left(1-\{x\}^2\right)\sin^{-1}(1-\{x\})}{\{x\}-\{x\}^3}$ where $\{\}$ is fractional part function. If L.H.L = L and R.H.L = R, then

a)
$$\sqrt{2}R = 4L$$
 b) $\sqrt{2}L = 4R$ c) $R = l$

b)
$$\sqrt{2}L = 4R$$

c)
$$R =$$

d)
$$R = 2L$$

d) $\frac{1}{2}$