Convolutional neural networks (CNNs) on Pneumonia Detection through Chest X-rays

Joy Zeng

2020-12-04

Overview

- Introduction
 - Background
 - Data
- Methodology
 - Data Preprocessing
 - Models
 - Supervised learning framework
 - More details on CNN
 - Visualizing the ConvNet via Saliency maps
 - Implementation
- 3 Experiments and Results
- 4 Conclusion

Introduction

Background:

- Pneumonia is an infection of the lungs
- Diseases such as COVID-19, SARS onset pneumonia in both lungs
- Chest X-rays is often used in detecting lung infection

Data:

- Chest X-ray that are labeled with either healthy or pneumonia
- https://www.kaggle.com/praveengovi/coronahack-chest-xraydataset

Figure: An Example Image in the dataset

- training set: 5286 images (3944 Pneumonia) test set: 624 images (390 Pneumonia)
- Goal: classify the X-rays into Healthy vs Pneumonia

Data Preprocessing

- **① Resized** all of the images to the size of 300×300
 - Since model training requires all the images are of the same size
- Normalized the images before modeling (substract both train/test sets by empirical mean and divided by standard deviation computed over the training data)
 - Classification loss is sensitive to the changes in weight matrix
- Split training data into $\begin{cases} 50\% \text{ training set} \\ 50\% \text{ validation set} \end{cases}$

Models (Supervised learning framework)

Supervised learning framework:

- Given a dataset: $\{(\mathbf{x}_i, y_i)\}_{i=1}^N$, the goal is to train a predictive function $f_{\theta}(\cdot)$ so that $f_{\theta}(\mathbf{x})$ will be able to predict labels y_i (healthy or Pneumonia).
- Define **Loss** (error measurement) as: $L(\theta) = \frac{1}{N} \sum_{i} L_{i}(f(\mathbf{x}_{i}; \theta), y_{i})$ where $L_{i} = -\log(\frac{e^{fy_{i}}}{\sum_{j} e^{f_{j}}})$ (**Cross-entropy loss**/Softmax classifier)

Optimization:

We want to find a set of parameters that minimize the loss function: $\hat{\theta} = \arg\min_{\theta \in \Theta} \frac{1}{n} \sum_{i=1}^{N} L(y_i, f_{\theta}(\mathbf{x}_i))$

- Most basic algorithm: stochastic gradient descent
- SGD performs poorly on high-dimentional non-convex optimization. so we used the improved version, **Adam**, [Kingma and Ba (2014)]
- **Regularization** to prevent overfitting (more details later)
- \bullet f here is CNN models, and x's are matrix representation of pixels

Models (Backprop)

 The key of SGD algorithm is computing the gradients of the loss with respect to the model parameters.

$$L(\boldsymbol{\theta}) = \frac{1}{N} \sum_{i} L_{i}(f(\boldsymbol{x}_{i}; \boldsymbol{\theta}))$$
$$\nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}) = \frac{1}{N} \sum_{i} \nabla_{\boldsymbol{\theta}} L_{i}(f(\boldsymbol{x}_{i}; \boldsymbol{\theta}), y_{i})$$

- Hard to compute gradients in deep networks
- Use **Backpropagation** to compute the gradients
 - recursively applies the chain rule during the backward pass to compute the gradients

Models (More details on CNN)

Architecture of CNN:

A series of convolutional layer + pooling layer, added by fully connected layers at the end.

Figure: The General Architecture of CNN

- Use ReLU as our activation function for non-saturating nonlinearity
- Weight Initialization: use He Init specifically derived for ReLU, [He et al. (2015)]
- Use Batch normalization to improve generalization on the test set (Regularization), [Loffe and Szegedy (2015)]
 - Normalizes each layer with zero-mean and unit variance
 - Robust to bad initialization
- Dropout (Regularization)

Models (More details on CNN)

We explored the followings:

- (fully connected layer) x 1 as the baseline model
- $oxed{2}$ (2D convolution layer + dropout + max/average pooling) x 2 + fully connected layer
- **3** (2D convolution layer + dropout + batch normalization + max/average pooling) \times 2 + (fully connected layer) \times 2

In particular:

 The final classification performance was evaluated based on accuracy, recall, and precision on the test set.

Visualizing the ConvNet via Saliency maps

To understand the networks:

- interested in knowing which pixels in the input image matter for the classification decision
- interested in knowing if there's any bias in the decision
- Saliency Maps, [Simonyan et al. (2013)]
 - computes the gradients of the predicted class scores with respect to the pixels of the input images
 - Gradients: for each pixel in the input images changes by a small amount, how much will the classification changes

Implementation

- Implemented using TensorFlow in Google Colab and trained via GPU
- Advantage of GPU: significantly reduced the training time
 - 10% of the data for 10 epochs via CPU: 30 hours
 - All data for 30 epochs via GPU: 20 minutes

More training details:

- During training, we used a fixed number of epochs as our stopping criterion
- Randomly shuffled the data after each epoch to create some randomness.
- The optimal set of parameters for each architecture was the set that has the minimum validation loss

Experiments and Results (Exploratory Analysis)

Figure: X-ray of a Normal Chest

Figure: Histogram and Contour

Figure: X-ray of a Pneumonia Chest

Figure: Histogram and Contour a C

Experiments and Results (Hyperparameters)

Table: Summary of Hyperparameters for each Neural Network

	Model 1	Model 2	Model 3
Batch size	64	64	64
# of epochs	30	30	30
Learning rate	10^{-3}	10^{-3}	10^{-3}
Filter size	NA	3×3	3×3
Stride (default)	NA	1	1
Dropout rate	NA	0.25	0.25

Experiments and Results (Final architecture)

The final architecture that was chosen

- Model 1:
 - FLAT \rightarrow [90000]
 - FC (Class scores)

Experiments and Results (Final architecture)

Model 2:

- CONV1: 64 3 \times 3 filters at stride 1, pad 0 \rightarrow [298, 298, 64]
- CONV2: 32 3 \times 3 filters at stride 1, pad 0 \rightarrow [296, 296, 32]
- MAX POOL: 2×2 filter at stride $1 \rightarrow [148, 148, 32]$
- FLAT → [700928]
- FC (Class scores)

Figure: The Architecture for Model 2 (Simple CNN)

Experiments and Results (Final architecture)

Model 3:

- CONV1: 64 3 \times 3 filters at stride 1, pad 0 \rightarrow [298, 298, 64]
- NORM1 \rightarrow [298, 298, 64]
- AVE POOL \rightarrow [149, 149, 64]
- CONV2: 64 3×3 filters at stride 1, pad 0 [147, 147, 64]
- MAX POOL: 2×2 filter at stride 1 [73, 73, 64]
- FLAT \rightarrow [341056]
- FC \rightarrow [128]
- FC (Class scores)

Figure: The Architecture for Model 3 (Complex CNN)

Experiments and Results (Results)

Table:	Experiment	Results	for	each	Neural	Network
--------	------------	---------	-----	------	--------	---------

	Model 1	Model 2	Model 3
Total # of parameters	180,002	1,420,962	43,693,634
Size	2MB	16MB	500MB
Training Time	pprox 39 sec	pprox 10min	pprox 13min
Accuracy	71.47%	81.25%	81.09%
Precision	0.6906	0.7874	0.7688
Recall	0.9846	0.9590	0.9974

- Model 2 achieved the highest accuracy 81.25% among those 3 models
- Accuracy decreased slightly when increasing the complexity of the CNN models (from Model 2 to Model 3)
- recall (of Pneumonia) > 0.95 while precision < 0.8
 (We care more on recall since we care among all the patients with Pneumonia, how many we detectd v.s predicted some healthy people as Pneumonia)

Experiments and Results (Results)

Figure: One of the Pneumonia X-ray and the Corresponding Saliency Map

- The white areas in Figure 9 represents the large values of absolute gradients
- seems like the network reacted mostly to the areas of opacity in the chest and classified the X-ray as Pneumonia (as expected)

Conclusion

- Overall, Model 2 has the highest performance among those 3 models and is sensitive in detecting patients with Pneumonia.
- With high accuracy and high recall, model 2 can be served as initial screening to speed up the diagnosis process and let doctors to further investigate the identified Pneumonia cases
- Saliency maps didn't indicate decision making bias

References

He, K., Zhang, X., Ren, S., & Sun, J. (2015).

Delving deep into rectifiers: Surpassinghuman-level performance on imagenet classification.

loffe, S., & Szegedy, C. (2015)

Batch normalization: Accelerating deep network training by reducing internal covariate shift

Diederik P Kingma and Jimmy Ba. (2014)

Adam: A method for stochastic optimization

Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman (2013)

Deep inside convolutional networks: Visualising image classification models and saliency maps

The End