Estimating Haplotype Frequencies From Data With Incomplete Phase Information

Jurg Ott Rockefeller University, New York

ott@rockefeller.edu

Two Marker Loci (SNPs)

- Locus 1:Alleles C and A, genotype C/A
- Locus 2: Alleles G and A, genotype G/A
- **Haplotype** = set of alleles at different loci (inherited in a gamete from one parent)

Genotypes and Haplotypes

	Locus 2				
Locus 1	G/G	G/A	A/A		
C/C	C-G, C-G	C-G, C-A	C-A, C-A		
C/A	C-G, A-G	?	C-A, A-A		
A/A	A-G, A-G	A-G, A-A	A-A, A-A		

$$? = \begin{cases} C - G, A - A & \text{or} \\ C - A, A - G \end{cases}$$

Counting Haplotypes

	Locus 2				
Locus 1	G/G	G/A	A/A		
C/C	0	1	2		
C/A	0	1	2		
A/A	1	0	1		

Known haplotypes					
No. Freq					
C-G	1	0.071			
C-A	7	0.500			
A-G	2	0.143			
A-A	4	0.286			
Total	14	1			

New
counts
1.221
7.779
2.779
4.221
16

*) Assumes HV

Ambiguous	Frequency	Rel. freq.	New counts	s 🤏
1 C-G, 1 A-A	0.071×0.286	0.221	0.221 C-G,	0.221 A-A
1 C-A, 1 A-G	0.500×0.143	0.779	0.779 C-A,	0.779 A-G
Sum	0.092	1	1	1

or

EM Algorithm

- The iterative procedure shown on the previous slide is known to lead to maximum likelihood estimates.
- Originally called gene counting (Ceppellini, Siniscalco & Smith, 1955. The estimation of gene frequencies in a random mating population. *Ann Hum Genet* **20**, 97-115), later EM algorithm (Dempster AP, Laird NM, Rubin DB. 1977. Maximum likelihood from incomplete data via the EM algorithm. *J Roy Statist Soc* **39B**, 1-38).
- *Note*: In practice, start with equal phase probabilities the two possible pairs of haplotypes for doubly heterozygous individuals are given equal weight.

Implementation

- *snphap* computer program
- Dr. David Clayton, Cambridge UK
- Estimation of haplotype frequencies by MLE using different starting values. For individuals with multiple phases, genotypes with probability < 0.01 disregarded.
- Assign (infer) haplotypes to individuals using MCMC approach (Gibbs sampling). Assumes a prior distribution (Dirichlet) of haplotype frequencies.
- *Phase* program: Perhaps better. Modify default parameter values!

Example: LEPR Gene

- In 564 individuals, gene fully sequenced
- Found 83 SNPs
- Potential number of haplotypes = 2^{83} = 9.7×10^{24} .
- Most common haplotypes with estimated frequencies:

Estimation Results

- Total of 851 haplotypes estimated to be present.
- Of these, 295 with $f \ge 0.000,001$ and 556 with f < 0.000,001
- Smallest "real" frequency: $n = 564 \rightarrow 2n = 1128 \text{ haps} \rightarrow 1/1128 = 0.000,887$

Hap Frequencies > 0.000,001

Enlargement

Horizontal line: Many values of 0.000,887 "Real" number of haplotypes ≈ 240?

Potential Solution

- Work with assigned/inferred haplotypes
- Not the same as multiplying haplotype frequencies by total number of haps!
- Of the 1128 inferred haps, only 16 have assignment probabilities < 0.50.
- Total of <u>265 different haplotypes</u> inferred, compared with 240 haplotypes with frequencies $\geq 0.000,887$
- **Problem**: Different assignment schemes are based on different priors → diff. results.

Is it important to know the number of haplotypes?

- LR test for haplotype frequency differences between case and control individuals
- Number of df = (# haps in cases 1) +
 (# haps in controls 1) (# of haps in cases and controls 1)

	Hap 1	Hap 2	•••	Hap 20
cases	•••	•••	•••	•••
controls	•••	•••	•••	•••

Here, #df = 19

Dataset from Beijing

Assigned haplotypes, partial table

Number	Нар	cases	prop.	controls	prop.	OR	1/OR	chisquare
1	GCCIGCA	253	0.4765	608	0.4780	0.99	1.01	0.004
2	ATADATA	120	0.2260	263	0.2068	1.12	0.89	0.828
5	ACCIGCA	12	0.0226	60	0.0472	0.47	2.14	5.899
13	ACADATA	0	0	5	0.0039	0	inf	2.093
14	GCADATT	0	0	5	0.0039	0	inf	2.093
15	GCCIGTA	0	0	5	0.0039	0	inf	2.093
26	ACCDGCA	0	0	1	0.0008	0	inf	0.418
27	ACCIATT	0	0	1	0.0008	0	inf	0.418
36	GCCDGCT	2	0.0038	0	0	inf	0	4.796
37	GCCIGTT	1	0.0019	0	0	inf	0	2.397
38	GTCDATT	1	0.0019	0	0	inf	0	2.397
39	GTCIATT	1	0.0019	0	0	inf	0	2.397
		531	1	1272	1			25.832

Summary of Pooling Haplotypes

	Pearson				Chi-	
Data	chi-sq	df	table p	Fisher p	square	table p
No pooling of cells	53.75	38	0.0466	0.0217	64.24	0.0049
Cells with 0 in one group and 1 in the						
other group are merged	53.75	28	0.0024	0.0016	64.24	0.0001
Cells with 0 in one group are merged	53.75	21	0.0001	<0.0001	64.24	< 0.0001
Cells with freq<0.01 in each group are						
pooled to form "rare" category	10.37	9	0.3216	0.2946	11.18	
Cells with freq<0.05 in each group are						
pooled to form "rare" category	2.17	4	0.7046	0.7003	2.18	
The last row reflects results obtained by the PHASE program						

Solutions ...

- Work with inferred haplotypes (treat them as if observed): Not reliable unless different programs give similar results.
- Find null distribution of LR statistic via permutation sampling no need for # df! Implemented in *PHASE* program. *Note*: #repetitians (MCMC) and #permutations should be ≥ 5000 each.

LD across genome

- 4-gamete test: Pairs of adjacent SNPs. The more haplotypes, the smaller LD
- *GOLD* plot (heat map)
- LEPR gene, sliding window of *s* SNPs:

"Evolutionary" Tree

