Lab 5

Due May 24, 11:59 PM

Overview

In this lab, we will be exploring various ways C++ represents data structures. You will accomplish the following:

- Gain experience with declaring, initializing, and using C-style structures.
- Gain experience with declaring, initializing, and using C++ classes and objects.

We will work through two different ways to implement a small library to help work with circles. Exercise 1 will focus on a C-style approach using structures, and Exercise 2 will focus on a C++ approach using classes.

For this lab, it may be useful to review the following sections:

- Data structures
- Other data types
- Classes (I)

Exercise 1

Download the template struct_template.cpp from Canvas. For this exercise, you will finish the implementation of the Circle struct and helper functions.

The structure $struct circle_st$ should have three fields: x, y, and radius. All fields should be of type float.

You must implement the following functions:

• printCircle - Print the circle structure in an easy to read format:

Center: (0, 0)
Radius: 1

- area Compute and return the area for the circle.
- circumference Compute and return the circumference for the circle.
- concentric Returns true if c1 and c2 are concentric (they have the same center), otherwise returns false.

Sample Output

Center: (0, 0)
Radius: 1

C1 Circumference 6.28 C1 Area 3.14

Center: (2.50, 2.50)

Radius: 1.00

C2 Circumference 6.28
C2 Area 3.14

Center: (0.00, 0.00)

Radius: 10.00

C3 Circumference 62.83
C3 Area 314.16

C1 and C2 are concentric? false C1 and C3 are concentric? true C2 and C3 are concentric? false

Exercise 2

Download the template class_template.cpp from Canvas. For this exercise, you will finish the implementation of the Circle class and helper methods.

The Circle class must have three members: x, y, and radius. All members should be of type float.

You must implement the following:

- Circle::Circle constructor Implement the constructor for the class. The constructor should ensure that the radius is not below 0.
- Circle::print Print the circle in the same format as Exercise 1.

- Circle::area Compute and return the area of the circle object.
- Circle::circumference Compute and return the circumference of the circle object.
- Circle::concentric Returns true if the circle object is concentric with circle object c, otherwise returns false. Use the same definition for concentric as Exercise 1.

Sample Output

Center: (0, 0)
Radius: 1

C1 Circumference: 6.28 C1 Area: 3.14

Center: (2.50, 2.50)

Radius: 1.00

C2 Circumference: 6.28
C2 Area: 3.14

Center: (0.00, 0.00) Radius: 10.00

C3 Circumference: 62.83 C3 Area: 314.16

C1 and C2 are concentric? false C1 and C3 are concentric? true C2 and C3 are concentric? false

Submission

Share your REPL with your TA by copying the shareable link and submitting it to Canvas.

To get your shareable link, click the large **Share** button near the top of the page, then copy the URL next to **Share Link** and submit that to Canvas.

Rubric

Exercise 1	6
Exercise 2	3
Comments	1
Total	10