

(19) RÉPUBLIQUE FRANÇAISE
INSTITUT NATIONAL
DE LA PROPRIÉTÉ INDUSTRIELLE
PARIS

(11) N° de publication :
(A n'utiliser que pour
le classement et les
commandes de reproduction.)

2.085.665

(21) N° d'enregistrement national :
(A utiliser pour les paiements d'annuités,
les demandes de copies officielles et toutes
autres correspondances avec l'I.N.P.I.)

71.07367

(13) DEMANDE
DE BREVET D'INVENTION

1^{re} PUBLICATION

(22) Date de dépôt..... 3 mars 1971, à 16 h 50 mn.

(41) Date de la mise à la disposition du
public de la demande B.O.P.I. — «Listes» n. 52 du 31-12-1971.

(51) Classification internationale (Int. Cl.) .. A 61 k 27/00//C 07 c 129/00.

(71) Déposant : Société dite : FARBENFABRIKEN BAYER AKTIENGESELLSCHAFT,
résidant en République Fédérale d'Allemagne.

Titulaire : *Idem* (71)

(74) Mandataire : Simonnot, Rinuy, Santarelli.

(54) Nouveaux biguanides substitués, doués d'activité antihyperglycémique.

(72) Invention de :

(33) (32) (31) Priorité conventionnelle : Demande de brevet déposée en République Fédérale d'Allemagne le
3 mars 1970, n. P 20 09 743.2 et demande de brevet d'amendement déposée le
13 octobre 1970 au nom de la demanderesse.

Il est connu que toute une série de biguanides substitués possède une activité hypoglycémique. C'est à ce titre que l'on trouve, dans le commerce, le phénétylbiguanide, le n-butyrbiguanide et le N,N-diméthylbiguanide, pour le traitement du diabète. Toutefois, tous ces composés présentent l'inconvénient que leur action hypoglycémique n'est exercée qu'à de fortes doses et que, pour cette raison, il existe le danger d'une intolérance en cas de traitement prolongé [voir H. Mehnert et H.S. Sadow "Oral Hypoglycaemic Agents", page 281, Academic Press, Londres, 1969]. L'invention concerne des biguanides de formule générale :

10

15

et leurs sels d'acides non toxiques ; dans cette formule, R et R₁ peuvent être semblables ou différents et représentent du fluor, un reste alkyle ou alcényle (en C₁ à C₆) à chaîne droite ou ramifiée, qui peut contenir éventuellement 1 à 3 atomes de fluor, 20 un reste cycloalkyle, cycloalkylalkyle ou cycloalcényle (en C₅ à C₈), un reste alkoxy ou alkylmercaptopo (en C₁ à C₄), un groupe alkylsulfonyle (en C₁ à C₄) ou un groupe nitrile, R₁ peut, en outre, désigner de l'hydrogène, du chlore ou du brome, R₂ représente 25 un groupe alkyle, alcényle, cycloalkyle ou alkoxyalkyle en C₁ à C₁₂, de préférence en C₂ à C₈, qui peut aussi être ramifié au cas où il contient plus de 3 atomes de carbone, et R₃ désigne de l'hydrogène ou a la même définition que R₂, les symboles R₂ et R₃ pouvant être semblables ou différents et ne pouvant pas contenir, ensemble, plus de 9 atomes de carbone.

Les composés conformes à l'invention exercent une action antihyperglycémique très supérieure à celle des biguanides connus ; c'est pourquoi on peut les utiliser à des doses plus faibles et par conséquent les manipuler sans danger comme produits du commerce.

35 La préparation des nouveaux biguanides s'effectue au moyen de procédés dont le principe est connu [voir F. Kurzer et E.D. Pichfork, "Fortschritte der chemischen Forschung", tome 10,

2

page 375 (1968)] ; ainsi, on peut additionner, par exemple, des amines de formule générale :

5

10

(dans laquelle R et R₁ ont les définitions données ci-dessus), telles quelles ou sous la forme de leurs sels avec des groupes nitrile de dicyandiamides de formule générale :

15

(dans laquelle R₂ et R₃ ont les définitions données ci-dessus), ou bien fixer des amines de formule générale :

20

telles quelles ou sous la forme de leurs sels, par addition sur des groupes nitrile de dicyandiamides de formule générale :

25

mais on peut aussi préparer les N₁-aryl-N₅-alkylbiguanides conformes à l'invention, en échangeant, dans des dérivés de thio-dithiobiuret ou dans leurs dérivés S-alkyliques; le groupe mercapto ou le groupe S-alkylmercaptopo contre un groupe amino, alkylamino ou arylamino, comme cela est représenté par les formules générales suivantes, dans lesquelles R, R₁, R₂ et R₃ ont les définitions indiquées et R₄ désigne de l'hydrogène ou un groupe alkyle (en C₁ à C₄) :

71 07367

2085665

3

25 L'action antihyperglycémique peut être mise en évidence
dans l'essai suivant :

Après plusieurs administrations par voie orale de la substance active, on fait absorber par voie orale à des rats à jeun, du glucose dissous dans une solution physiologique de chlorure de sodium. La glycémie des animaux traités avec un biguanide actif s'élève moins fortement, proportionnellement à la dose, que chez les animaux non traités. On effectue la mesure 30 et/ou 60 minutes après l'absorption du glucose. La dose indiquée est la dose individuelle administrée dans chaque cas, qui provoque une réduction de l'hyperglycémie, après l'absorption du glucose, significative par rapport à un groupe témoin non traité ($P < 0,05$).

Exemple 1

On mélange 18,8 g (0,1 mole) de p-éthylphényldicyandiamide et 8,2 g (0,1 mole) de chlorhydrate d'éthylamine et on chauffe le mélange pendant 1 heure à 160°. L'huile formée est dissoute à chaud dans 100 ml d'isopropanol. On obtient par refroidissement 15,6 g (58 %) de N₁-p-éthylphénol-N₅-éthylbiguanide sous la forme du chlorhydrate, fondant à 165-167°.

Exemple 2

On fait réagir, comme dans l'exemple 1, 17,4 g (0,1 mole) de p-tolyldicyandiamide et 16,6 g (0,1 mole) de chlorhydrate de n-octylamine. On obtient 16,2 g (48 %) de N₁-p-tolyl-N₅-n-octylbiguanide sous la forme du chlorhydrate fondant à 183-185°.

Exemple 3

On agite à 160° pendant 2 heures 16 g (0,1 mole) de chlorhydrate de p-anisidine et 14 g (0,1 mole) de n-butyldicyandiamide. Par recristallisation dans l'isopropanol, on obtient 11,3 g (34 %) de chlorhydrate de N₁-p-anisyl-N₅-n-butyldiguanide fondant à 186°.

Exemple 4

On agite dans un autoclave à 50° pendant 6 heures, 13,9 g de N-p-tolyl-N₁-n-pentylguanylthiourée, 12 g d'oxyde de mercure et 100 ml d'ammoniac à 17 % dissous dans du méthanol. On isole les substances insolubles par filtration à la trompe, on concentre, on ajoute 25 ml d'acide chlorhydrique 2N et on fait recristalliser le résidu dans de l'isopropanol, après une nouvelle concentration. On obtient 6 g (38 %) de N₁-p-tolyl-N₅-n-pentylbiguanide sous la forme du chlorhydrate fondant à 215°.

Le tableau suivant indique une série de biguanides conformes à l'invention. L'action antihyperglycémique de quelques substances est indiquée en vis-à-vis de celle du n-butylbiguanide (buformine) choisi comme substance de comparaison.

R	R_1	R_2	R_3	Point de fusion du chlorhydrat	Dose (rat) mg/kg	DL_{50} mg/kg
4-CH ₃	H	CH ₃	H	165-167°		
4-CH ₃	H	C ₂ H ₅	H	202-204°		
4-CH ₃	H	n-C ₃ H ₇	H	190-192°	4	198
4-CH ₃	H	n-C ₄ H ₉	H	207-209°	4	87
4-CH ₃	H	iso-C ₄ H ₉	H	227-229°	4	302
4-CH ₃	H	n-C ₅ H ₁₁	H	215°		
4-CH ₃	H	iso-C ₅ H ₁₁	H	212°		
4-CH ₃	H	n-C ₆ H ₁₃	H	201°		
4-CH ₃	H	n-C ₈ H ₁₇	H	183-185°		
4-CH ₃	H	-CH ₂ -	H	218-220°		
4-CH ₃	H	n-C ₃ H ₇	n-C ₃ H ₇	175-177°		
4-CH ₃	H	-CH ₂) ₃ OC ₂ H ₅	H	185-187°		
3-CH ₃	H	n-C ₄ H ₉	H	188°	3,5	360
3-CH ₃ 4-CH ₃	n-C ₄ H ₉	n-C ₄ H ₉	H	207-209°	10	600
3-CH ₃ 4-CH ₃	iso-C ₄ H ₉	iso-C ₄ H ₉	H	194-195°	10	288
4-C ₂ H ₅	H	C ₂ H ₅	H	165-167°		
4-C ₂ H ₅	H	n-C ₃ H ₇	H	160°	2,5	208

71 07367

2085665

6

R	R ₁	R ₂	R ₃	Point de fusion du chlorhydronate	Dose (rat) mg/kg	DL ₅₀ (rat) mg/kg
4-C ₂ H ₅	H	n-C ₄ H ₉	H	196-198°	4	204
4-C ₂ H ₅	H	iso-C ₄ H ₉	H	221-222°	2,5	233
4-C ₂ H ₅	H	n-C ₆ H ₁₃	H	194-196°		
4-C ₂ H ₅	H	-CH ₂ -CH ₂ -OCH ₃	H	146-149°	10	360*
4-C ₂ H ₅	H	-CH ₂ -	H	205-207°		
4-C ₂ H ₅	H	Allyl		207-208°		
4-F ₃ C	H			242-244°		
4-F ₃ C	H			193°		
4-n-C ₄ H ₉	H	n-C ₄ H ₉		186-188°	10	>1000
4-n-C ₄ H ₉	H	n-C ₅ H ₁₁		217-219°		
4-tert-C ₄ H ₉	H	iso-C ₄ H ₉				
4-F	H	iso-C ₄ H ₉		238°	5	367
4-CH ₃ O	H	C ₂ H ₅		162-164°		
4-CH ₃ O	H	n-C ₃ H ₇		169-171°		
4-CH ₃ O	H	n-C ₄ H ₉		186°		
4-CH ₃ O	H	iso-C ₄ H ₉		207-209°	10	808
4-CH ₃ O	H	iso-C ₄ H ₉		168-170°	2,5	452*
3-CH ₃ O	H	n-C ₄ H ₉		191-193°	2,5	552*
3-CH ₃ O	H	iso-C ₄ H ₉		165-167°		
4-C ₂ H ₅ O	H	n-C ₄ H ₉		226-228°		
4-C ₂ H ₅ O	H	iso-C ₄ H ₉		148-150°	5	450
3-CHF ₂	H	n-C ₄ H ₉		242-244°		
2-CH ₃ O	5-Cl n-C ₄ H ₉			253-255°		
2-CH ₃ O	5-Cl iso-C ₄ H ₉					
4-F	H	n-C ₄ H ₉	H	206-208°	5	
4-F	H	iso-C ₅ H ₁₁	H	213-215°	5	500

COPY

71 07367

2085665

7

3-Cl	4-CH ₃ O	iso-C ₄ H ₉	201-203°
3-CH ₃ O	4-CH ₃	iso-C ₄ H ₉	195-197°
3-Cl	4-CH ₃	n-C ₄ H ₉	187-188°
4-Cl	3-CH ₃	n-C ₄ H ₉	180°

5 Chlorhydrate de buformine

16

220

* LD₅₀, souris, voie orale

COPY

REVENDICATIONS

1. Nouveaux biguanides, et leurs sels d'acides non toxiques, caractérisés par le fait qu'ils répondent à la formule générale :

5

10 dans laquelle R et R₁ peuvent être semblables ou différents et représentent du fluor, un reste alkyle ou alcényle (en C₁ à C₆) à chaîne droite ou ramifiée, qui peut contenir éventuellement 1 à 3 atomes de fluor, un reste cycloalkyle, cycloalkylalkyle ou cycloalcényle (en C₅ à C₈), un reste alkoxy ou alkylmercapto 15 (en C₁ à C₄), un groupe alkylsulfonyle (en C₁ à C₄) ou un groupe nitrile, R₁ peut, en outre, désigner de l'hydrogène, du chlore ou du brome, R₂ représente un groupe alkyle, alcényle, cycloalkyle ou alkoxyalkyle en C₁ à C₁₂, de préférence en C₂ à C₈, qui peut aussi être ramifié au cas où il contient plus de 3 atomes de carbone, et R₃ désigné de l'hydrogène ou a la même définition que R₂, les symboles R₂ et R₃ pouvant être semblables ou différents et ne pouvant pas contenir, ensemble, plus de 9 atomes de carbone.

20 2. Médicament doué notamment d'activité antihyperglycémique, caractérisé par le fait qu'il présente une teneur en un composé suivant la revendication 1.

25 3. Médicament selon la revendication 2, caractérisé en ce qu'il est sous une forme administrable par voie orale.

30 4. Procédé de préparation de composés répondant à la formule générale donnée dans la revendication 1, caractérisé par le fait qu'on fait réagir des amines de formule générale :

telles quelles ou sous la forme de leurs sels, avec des composés de formule générale :

(les symboles R, R₁, R₂ et R₃ ayant les définitions données dans la revendication 1).

10 5. Procédé de préparation de composés répondant à la formule générale donnée dans la revendication 1, caractérisé par le fait qu'on fait réagir des amines de formule générale :

telles quelles ou sous la forme de leurs sels, avec des composés de formule générale :

25 (les symboles R, R₁, R₂ et R₃ ayant les définitions données dans la revendication 1).

6. Procédé de préparation de composés répondant à la formule générale donnée dans la revendication 1, caractérisé par le fait qu'on échange, dans des dérivés de thio- ou de dithiobiuret correspondants ou dans leurs dérivés S-alkyliques, les groupes mercapto et S-alkylmercaptopo, d'une façon connue en soi, contre des groupes amino, alkylamino ou arylamino (les symboles R, R₁, R₂ et R₃ ayant les définitions données dans la revendication 1).