FoSA: F* Seed-Growing Approach for Crack-Line Detection from Pavement Images

Qingquan Li, Qin Zou Daqiang Zhang, Qingzhou Mao

Revisado por

Paulo Henrique Muniz Ferreira

Conteúdo

- Introdução
- F* seed-growing
- FoSA Abordagem F* seed-growing para detecção
- Experimentos
- Conclusão

Motivação

- Rachaduras em pavimentos é um problema bastante comum
 - Informações sobre fissuras são importante para avaliar a condição e condução de manutenção das estradas.
 - O reparo da rachaduras pode reduzir custo de manutenção
- Tecnologia baseadas em imagem podem oferecer uma forma segura, eficiente e econômica para detecção

Objetivos

- Uma detecção automática de linhas de rachaduras
 - Supere a condições de contraste e de continuidade das rachaduras
 - Consiga extrair globalmente a rachadura

Figura: (a) Uma típica imagem de pavimento, (b) a abordagem de detecção de borda de Canny, (c) abordagem com transformadas de Wavelet, (d) abordagem FoSA

Algoritmo F*

- Algoritmo proposto por Ford
- É um algoritmo de busca do caminho mínimo em um dígrafo ponderado
- No contexto de imagem, cada pixel é um nodo no grafo, e intensidade é peso associado ao nodo

F* seed-growing

- Algoritmo baseado em F*
- Busca um caminho de custo mínimo que:
 - Passa em ponto específico S
 - Cruza toda a imagem (de uma borda a outra)

Visão Geral do FoSA

- O algoritmo FoSA consiste de duas etapas:
 - Oleta de sementes de rachaduras automaticamente.
 - Agregação de seções de rachadura
 - 2 Criação de elementos de rachaduras
 - Filtragem baseado no APC
 - Aplicar FoS
 - Aquisição do Rastro da Rachadura

Agregação de Seções de Rachaduras

Define-se o limiar:

$$T = \underset{k}{\operatorname{argmax}}[H(k)]$$

Figura: Na primeira linha tem as imagens originais. Na segunda linha, o histograma da diferença e o limiar (T). Na última, a imagem binarizada.

Criando Elemento de Rachaduras

Estrutura de dados que facilitará operações

Algorithm Elemento de Rachadura

- 1 POINT PtStart, PtEnd {Os dois pontos das pontas da rachadura}
- 2 INT nApc {Custo médio do caminho do PtStart até PtEnd}
- 3 POINT* pPtPath { Caminho de custo mínimo do PtStart até PtEnd}

end

Transformar Seções em Elementos

- Extrair os pontos das pontas da rachadura
- Buscar o caminho mínimo dos dois pontos através do F*

- Aplicar afinamento na imagem binarizada (algoritmo de Hilditch)
- Remover pontos de cruzamento (pontos com 3 ou mais vizinhos)
- Para cada par de pontos de pontas é feito um elemento
 - Calcular o caminho mínimo (pPtPath) e a média do custo (nApc) de PtStart a PtEnd através do F* usando somente a sub-imagem.

Transformar Seções em Elementos

Processamento em seção de rachadura. (a) Uma imagem de rachadura, (b) Seção de de rachadura correspondente a (a), (c) Resultado afinamento, (d) Remoção do ponto de cruzamento, (e) Três pares de pontos da ponta da rachadura, (f) Três retângulos elemento de rachadura, (g) Três sub-imagens, (h) Caminho elemento de rachadura.

Filtragem Baseada no APC

- Há a necessidade de remover os falso-positivos
- Então foi divido os elementos de rachaduras em dois grupos
 - Foi utilizado o método de agrupamento proposto por Otsu
 - O atributo usado para grupamento foi a média do custo do caminho nApc_i
 - O grupo descartado foi $C_2 = \{nApc_i | nApc_i > k\}$

Aquisição do Rastro da Rachadura

Assuma que C' é o conjunto gerado pela filtragem baseada no APC. Então para cada $CE_i \in C'$, faz-se:

- Corte uma sub-imagem quadrada da figura original, em que o centro seja PtStart e a largura seja 2 · r + 1.
- Aplique o algoritmo FoS com PtStart como ponto-semente para encontrar o caminho dessa semente. Com o resultado de FoS, crie um novo elemento de rachadura.
- **3** Aplique 1. e 2. no ponto PtEnd de CE_i atual e crie outro elemento.

Como não há garantias de exatidão sobre os novos elementos, é aplicado novamente a filtragem baseada no APC.

Experimentos com FoS

Figura com o resultados do FoS. (Esquerda) Imagem original. (No meio) Resultado da matriz de custo médio. (Direita) Rastro em branco é o resultado da detecção usando algoritmo FoS. O ponto-semente foi S=(117,113)

Experimentos com FoSA

Figura com o resultados do FoSA. (Linha1: Esquerada) Figura original. (Linha1: Meio) Resultado da binarização. (Linha1: Direita) Resultado do afinamento. (Linha2: Esquerda) Resultado da remoção dos pontos de junção. (Linha2: Direita) Rastro em branco é o resultado da detecção usando algoritmo FoSA.

Experimentos com FoSA

Figura com o resultados do FoSA. (Linha1: Esquerada) Figura original. (Linha 1: Meio) Resultado da binarização. (Linha 1: Direita) Resultado do afinamento. (Linha 2: Esquerda) Resultado da remoção dos pontos de junção. (Linha 2: Direita) Rastro em branco é o resultado da deteccão usando algoritmo FoSA.

Análise dos Resultados

- O resultado do FoS foi bastante satisfatório
- Os resultados do FoSA foram significante diferente
- Há duas etapas que tiveram influência neste resultado negativo
 - A binarização
 - A filtragem baseada no APC

Resultados do Artigo

Resultados do artigo original. (Linha 1) Imagens originais. (Linha 2) Resultados do FoSA, (Linha 3) Ground truth.

Análise dos Resultados do Artigo

Vantagens:

- Apresentou bons resultados
- Tempo de execução rápido e aplicável em sistema de tempo real

Desvantagem:

Rachaduras tipo branca não são detectáveis

Conclusões

- FoSA é um algoritmo para detecção automática de rachaduras
- FoSA apresentou bons resultados (no artigo)
- FoSA tem uma performance rápida

Trabalhos Futuros

- Em relação a nossa implementação:
 - Validar os procedimento de binarização e filtragem
 - Há a possibilidade de propor uma nova filtragem do falso-positivos
 - Pode-se filtra, no resultado da binarização, as regiões de área pequena
- Em relação ao FoSA
 - A partir dos resultados do FoSA, obter informações como largura, comprimento e tipo da rachadura
 - Implementação e análise de uma versão paralela do algoritmo

FoSA: F* Seed-Growing Approach for Crack-Line Detection from Pavement Images

Qingquan Li, Qin Zou Daqiang Zhang, Qingzhou Mao

Revisado por

Paulo Henrique Muniz Ferreira

