UWO CS2214 Feb. 25, 2019

Assignment #3
Due: Mar. 5, 2017, by 23:55

Submission: on the OWL web site of the course

Problem 1 (Functions and matrices) [30 marks] Consider the set of ordered pairs (x, y) where x are y are real numbers. Such a pair can be seen as a point in the plane equipped with Cartesian coordinates (x, y).

1. For each of the following functions F_1, F_2, F_3, F_4 , determine a (2×2) -matrix A so that the point of coordinates $(x \ y)$ is sent to the point $(x' \ y')$ when we have

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = A \begin{pmatrix} x \\ y \end{pmatrix} \tag{1}$$

where

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \tag{2}$$

- (a) $F_1(x,y) = (2y,3x)$
- (b) $F_2(x,y) = (0,0)$
- (c) $F_3(x,y) = (y,y)$
- (d) $F_4(x,y) = (y+x, y-x)$

2. Determine which of the above functions F_1 , F_2 , F_3 , F_4 is injective? sur-jective? Justify your answer.

Problem 2 (Chinese Remaindering Theorem) [20 marks] Let m and n be two relatively prime integers. Let $s,t\in\mathbb{Z}$ be such that $s\,m+t\,n=1$. The Chinese Remaindering Theorem states that for every $a,b\in\mathbb{Z}$ there exists $c\in\mathbb{Z}$ such that

$$(\forall x \in \mathbb{Z}) \qquad \left\{ \begin{array}{ll} x \equiv a \mod m \\ x \equiv b \mod n \end{array} \right. \iff x \equiv c \mod m \, n \qquad (3)$$

where a convenient c is given by

$$c = a + (b - a) s m = b + (a - b)t n$$
 (4)

- 1. Prove that the above c satisfies both $c \equiv a \mod m$ and $c \equiv b \mod n$.
- 2. Let $x \in \mathbb{Z}$. Prove that if $x \equiv c \mod m n$ holds then $x \equiv a \mod m$ and $x \equiv b \mod n$ both hold as well.
- 3. Let $x \in \mathbb{Z}$. Prove that if both $x \equiv a \mod m$ and $x \equiv b \mod n$ hold then so does $x \equiv c \mod m n$.

Problem 3 (Solving congruences) [30 marks]

- 1. Find all integers x such that $0 \le x < 77$ and $5x + 9 = 10 \mod 77$. Justify your answer.
- 2. Find all integers x such that $0 \le x < 77$, $x \equiv 2 \mod 7$ and $x \equiv 3 \mod 11$. Justify your answer.
- 3. Find all integers x and y such that $0 \le x < 77$, $0 \le y < 77$, x + y = 33 mod 77 and $x y = 10 \mod 77$. Justify your answer.

Problem 4 (RSA) [20 marks] Let us consider an RSA Public Key Crypto System. Alice selects 2 prime numbers: p = 5 and q = 11. Alice selects her public exponent e = 3 and sends it to Bob. Bob wants to send the message M = 4 to Alice.

- 1. Compute the product n = pq and $\Phi(n)$
- 2. Is this choice for of e valid here?
- 3. Compute d, the private exponent of Alice.
- 4. Encrypt the plain-text M using Alice public exponent. What is the resulting cipher-text C?
- 5. Verify that Alice can obtain M from C, using her private decryption exponent.