Predict the equilibrium concentration of PCI $_{\rm s}$ in the reaction described below (for which Kc = 0.04200 at the reaction temperature) by constructing an ICE table, writing the equilibrium constant expression, and solving for the equilibrium concentration. Complete Parts 1-3 before submitting your answer.

$$PCl_{5}(g) \rightleftharpoons PCl_{3}(g) + Cl_{2}(g)$$

1 2 3 NEXT >

An initial quantity of 2.860 g of PCI_s decomposes in a 700.0 mL closed container. Fill in the ICE table with the appropriate value for each involved species to determine the concentrations of all reactants and products.

	PCl₅(g)	⇒ PCI₃(g)	+	Cl ₂ (g)
Initial (<u>M)</u>				
Change (M)				
Equilibrium (M)				

Predict the equilibrium concentration of PCI $_{\rm s}$ in the reaction described below (for which Kc = 0.04200 at the reaction temperature) by constructing an ICE table, writing the equilibrium constant expression, and solving for the equilibrium concentration. Complete Parts 1-3 before submitting your answer.

answer.
$$\mathsf{PCl}_{\mathtt{s}}(\mathtt{g}) \rightleftharpoons \mathsf{PCl}_{\mathtt{s}}(\mathtt{g}) + \mathsf{Cl}_{\mathtt{g}}(\mathtt{g})$$

An initial quantity of 2.860 g of PCl₅ decomposes in a 700.0 mL closed container. Fill in the ICE table with the appropriate value for each involved species to determine the concentrations of all reactants and products.

Predict the equilibrium concentration of PCI₅ in the reaction described below (for which Kc = 0.04200 at the reaction temperature) by constructing an ICE table, writing the equilibrium constant expression, and solving for the equilibrium concentration. Complete Parts 1-3 before submitting your answer.

$$PCl_{5}(g) \rightleftharpoons PCl_{3}(g) + Cl_{2}(g)$$

An initial quantity of 2.860 g of PCI₅ decomposes in a 700.0 mL closed container. Fill in the ICE table with the appropriate value for each involved species to determine the concentrations of all reactants and products.

	$PCI_{\scriptscriptstyle{5}}(g)$	PCI ₃ (g)	+ Cl ₂ (g)
Initial (M)	0.01967	۵	0
Change (M)	(-X)	(+ <u>X</u>)	(tX)
Equilibrium (M)	010 (962-1	(X)	(X)

(an we approximate? Kcis_____)
So