Analyse à Plusieurs Variables

JAD DABAGHI

Enseignant-Chercheur en Mathématiques iad.dabaghi@devinci.fr

- 1 Différentielle et dérivées partielles
- **2** Fonctions de classe C^1
- Fonctions plusieurs fois différentiables
- Extrema locaux

Fonctions \mathcal{C}^1

Definition

Soit U un ouvert de \mathbb{R}^n et $f: U \to \mathbb{R}^m$. On dit que f est de classe \mathcal{C}^1 sur U si f est différentiable et si df est continue, c-a-d si les dérivées partielles de f sont continues.

Propriété

Si $f: U \subset \mathbb{R}^n \to \mathbb{R}^m$ admet des dérivées partielles en tout point et les dérivées partielles sont continues, alors f est de classe C^1 .

Remarque: Pour montrer qu'une fonction n'est pas de classe \mathcal{C}^1 , il suffit que l'une de ses dérivées partielles ne soit pas continue ou que la fonction ne soit pas continue.

$$f(x,y) = \begin{cases} \frac{x^2y^2}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{sinon.} \end{cases}$$

et elle de classe C^1 sur \mathbb{R}^2 ?

Correction:

Example

$$f(x,y) = \begin{cases} \frac{x^2y^2}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{sinon.} \end{cases}$$
 et elle de classe \mathcal{C}^1 sur \mathbb{R}^2 ?

Correction:

• Etude sur $\mathbb{R}^2 \setminus \{0,0\}$: la fonction f est une fraction rationnelle donc elle est \mathcal{C}^1 .

$$\forall (x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}, \frac{\partial f}{\partial x}(x,y) = \frac{2xy^4}{(x^2+y^2)^2} \quad \text{et} \quad \frac{\partial f}{\partial y}(x,y) = \frac{2yx^4}{(x^2+y^2)^2}$$

Example

$$f(x,y) = \begin{cases} \frac{x^2y^2}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{sinon.} \end{cases}$$
 et elle de classe \mathcal{C}^1 sur \mathbb{R}^2 ?

Correction:

• Etude sur $\mathbb{R}^2 \setminus \{0,0\}$: la fonction f est une fraction rationnelle donc elle est \mathcal{C}^1 .

$$\forall (x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}, \frac{\partial f}{\partial x}(x,y) = \frac{2xy^4}{(x^2+y^2)^2} \quad \text{et} \quad \frac{\partial f}{\partial y}(x,y) = \frac{2yx^4}{(x^2+y^2)^2}$$

• Etude de la continuité en (0,0) :

$$0 \le |f(x,y) - f(0,0)| = |\frac{x^2y^2}{x^2 + y^2}| \le y^2 \underset{y \to 0}{\to} 0.$$
 \Rightarrow f continue en $(0,0)$

Fonctions de classe C^1

$$\lim_{t \to 0} \frac{f((0,0) + t(1,0)) - f(0,0)}{t} = \lim_{t \to 0} \frac{f(t,0) - f(0,0)}{t} = 0$$

$$\lim_{t \to 0} \frac{f((0,0) + t(0,1)) - f(0,0)}{t} = \lim_{t \to 0} \frac{f(0,t) - f(0,0)}{t} = 0$$

Ainsi, f admet des dérivées partielles en (0,0) et $\frac{\partial f}{\partial x}(0,0)=0$ et $\frac{\partial f}{\partial v}(0,0)=0$.

• Existence des dérivées partielles en (0,0) :

$$\lim_{t \to 0} \frac{f((0,0) + t(1,0)) - f(0,0)}{t} = \lim_{t \to 0} \frac{f(t,0) - f(0,0)}{t} = 0$$

$$\lim_{t \to 0} \frac{f((0,0) + t(0,1)) - f(0,0)}{t} = \lim_{t \to 0} \frac{f(0,t) - f(0,0)}{t} = 0$$

Ainsi, f admet des dérivées partielles en (0,0) et $\frac{\partial f}{\partial x}(0,0) = 0$ et $\frac{\partial f}{\partial y}(0,0) = 0$.

Continuité des dérivées partielles en (0,0):

$$\begin{aligned} &|\frac{\partial f}{\partial x}(x,y) - \frac{\partial f}{\partial x}(0,0)| \le \frac{2|x|y^4}{(x^2 + y^2)^2} \le 2|x| \underset{x \to 0}{\to} 0. \\ &|\frac{\partial f}{\partial y}(x,y) - \frac{\partial f}{\partial y}(0,0)| \le \frac{2|y|x^4}{(x^2 + y^2)^2} \le 2|y| \underset{y \to 0}{\to} 0. \end{aligned}$$

Ainsi, $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial v}$ sont continues en (0,0).

Opérations sur les fonctions C^1 à valeurs réelles

Propriété (Somme, produit, quotient)

Soient $f,g:U\subset\mathbb{R}^n\to\mathbb{R}$. Soit $a\in U$ et soit $\lambda\in\mathbb{R}$.

- Si f et g sont de classe C^1 , alors $\lambda f + g$ est de classe C^1 .
- Si f et g sont de classe C^1 , alors fg est de classe C^1 .
- Si de plus, g ne s'annule pas sur U, alors $\frac{f}{g}$ est de classe \mathcal{C}^1 .

Propriété (Composition)

Soient U un ouvert de \mathbb{R}^n et V un ouvert de \mathbb{R} . Soient $f: U \to \mathbb{R}$, $g: V \to \mathbb{R}$, avec $f(U) \subset V$. Si f et g sont de classe C^1 , alors $g \circ f$ sont de classe C^1 .

Opération sur les fonctions vectorielles \mathcal{C}^1

Propriété

Soit U une partie de \mathbb{R}^n et $f \in \mathcal{F}(U, \mathbb{R}^p)$ une application définie par

$$f:(x_1,\cdots,x_n)\mapsto (f_1(x_1,\cdots,x_n),\cdots,f_p(x_1,\cdots,x_n))$$

Alors, f est de classe C^1 si et seulement si, les composantes f_i , $i \in \{1, ..., p\}$ sont C^1 .

Definition

On appelle matrice jacobienne de f en $a \in U$, la matrice de l'application linéaire df_a dans les bases canoniques de \mathbb{R}^n et \mathbb{R}^p notée $J_f(a)$. Plus précisément, $\left[J_f(a)\right]_{ij} = \frac{\partial f_i}{\partial x_i}(a)$.

7/24

Pour $(r, \theta) \in]0, +\infty[\times]0, 2\pi[$, soit f la fonction définie par $f(r, \theta) = (r \cos \theta, r \sin \theta)$. Alors,

$$J_f(r,\theta) = \begin{pmatrix} \cos(\theta) & -r\sin(\theta) \\ \sin(\theta) & r\cos(\theta) \end{pmatrix}$$

Propriété

 $f,g:U\subset\mathbb{R}^n\to\mathbb{R}^m$, $\alpha\in U$, $\lambda\in\mathbb{R}$, $i\in[1,n]$. Supposons l'existence de $\frac{\partial f}{\partial x_i}(\alpha)$ et $\frac{\partial g}{\partial x_i}(\alpha)$.

- $\frac{\partial(\lambda f+g)}{\partial x_i}(a)$ est définie et $\frac{\partial(\lambda f+g)}{\partial x_i}(a) = \lambda \frac{\partial f}{\partial x_i}(a) + \frac{\partial g}{\partial x_i}(a)$.
- $\frac{\partial (fg)}{\partial x_i}(a)$ est définie et $\frac{\partial (fg)}{\partial x_i}(a) = \frac{\partial f}{\partial x_i}(a)g(a) + f(a)\frac{\partial g}{\partial x_i}(a)$.
- Si $g(a) \neq 0$, alors $\frac{\partial (f/g)}{\partial x_i}(a)$ est définie et on a $\frac{\partial (f/g)}{\partial x_i}(a) = \frac{\frac{\partial f}{\partial x_i}(a)g(a) f(a)\frac{\partial g}{\partial x_i}(a)}{g(a)^2}$

9/24

Composition d'applications \mathcal{C}^1

Propriété

Soit U un ouvert de \mathbb{R}^n et V un ouvert de \mathbb{R}^m . Soient $f:U\subset\mathbb{R}^n\to\mathbb{R}^m$, $g:V\subset\mathbb{R}^m\to\mathbb{R}^p$. On suppose $f(U) \subset V$. On pose $h = g \circ f : \mathbb{R}^m \to \mathbb{R}^p$ où $h = (h_1, \dots, h_p)$. Soit $a \in U$. Si fadmet des dérivées partielles en a et g admet des dérivées partielles en f(a) alors h admet des dérivées partielles en a et

•
$$\frac{\partial h_k}{\partial x_i}(a) = \sum_{j=1}^m \frac{\partial g_k}{\partial y_j}(f(a)) \frac{\partial f_j}{\partial x_i}(a) \quad \forall k \in \{1, \dots, p\}$$
 Dérivation en chaîne

•
$$J_{g \circ f}(a) = J_g(f(a)) \times J_f(a) \in M_{p,n}(\mathbb{R})$$

Attention: La notation $\frac{\partial g_k}{\partial v_i}(f(a))$ correspond à la dérivée partielle de g_k par rapport à j-ème variable évaluée en f(a).

Application concrète : Soient des fonctions différentiables $f: \mathbb{R}^2 \to \mathbb{R}$, et $\varphi: \mathbb{R} \to \mathbb{R}^2$ et $h = f \circ \varphi$. Alors,

$$h'(t) = \varphi_1'(t) \frac{\partial f}{\partial x}(\varphi_1(t), \varphi_2(t)) + \varphi_2'(t) \frac{\partial f}{\partial y}(\varphi_1(t), \varphi_2(t)).$$

Application concrète : Soient des fonctions différentiables $f: \mathbb{R}^2 \to \mathbb{R}$, et $\varphi: \mathbb{R} \to \mathbb{R}^2$ et $h = f \circ \varphi$. Alors,

$$h'(t) = \varphi_1'(t) \frac{\partial f}{\partial x}(\varphi_1(t), \varphi_2(t)) + \varphi_2'(t) \frac{\partial f}{\partial y}(\varphi_1(t), \varphi_2(t)).$$

Example

Soit $h: \mathbb{R} \to \mathbb{R}$ définie par $h(t) = \sin^2(t) + 3\cos(t)\sin(t) + 5\cos^2(t)$. Calculer h'(t).

Application concrète : Soient des fonctions différentiables $f: \mathbb{R}^2 \to \mathbb{R}$, et $\varphi: \mathbb{R} \to \mathbb{R}^2$ et $h = f \circ \varphi$. Alors,

$$h'(t) = \varphi_1'(t) \frac{\partial f}{\partial x}(\varphi_1(t), \varphi_2(t)) + \varphi_2'(t) \frac{\partial f}{\partial y}(\varphi_1(t), \varphi_2(t)).$$

Example

Soit $h: \mathbb{R} \to \mathbb{R}$ définie par $h(t) = \sin^2(t) + 3\cos(t)\sin(t) + 5\cos^2(t)$. Calculer h'(t).

Corrigé:

Application concrète : Soient des fonctions différentiables $f: \mathbb{R}^2 \to \mathbb{R}$, et $\varphi: \mathbb{R} \to \mathbb{R}^2$ et $h = f \circ \varphi$. Alors,

$$h'(t) = \varphi_1'(t) \frac{\partial f}{\partial x}(\varphi_1(t), \varphi_2(t)) + \varphi_2'(t) \frac{\partial f}{\partial y}(\varphi_1(t), \varphi_2(t)).$$

Example

Soit $h: \mathbb{R} \to \mathbb{R}$ définie par $h(t) = \sin^2(t) + 3\cos(t)\sin(t) + 5\cos^2(t)$. Calculer h'(t).

Corrigé: Soit $f: \mathbb{R}^2 \to \mathbb{R}$ définie par $f(x,y) = x^2 + 3xy + 5y^2$ et soit $\varphi: \mathbb{R} \to \mathbb{R}^2$ définie par $\varphi(t) = (\sin(t), \cos(t))$. Alors, $h = f \circ \varphi$ vérifie

$$h'(t) = \cos(t)\frac{\partial f}{\partial x}(\sin(t),\cos(t)) - \sin(t)\frac{\partial f}{\partial y}(\sin(t),\cos(t))$$

$$= \cos(t)(2\sin(t) + 3\cos(t)) - \sin(t)(3\sin(t) + 10\cos(t))$$

$$= 3\cos^2(t) - 3\sin^2(t) - 8\cos(t)\sin(t)$$

Fonctions plusieurs fois différentiables

Différentiabilité d'ordre 2

Quelques notations : Pour E et F deux espaces vectoriels, on note $\mathcal{L}(E,F)$ l'espace des applications linéaires de E dans F.

Definition

Soit $f: U \subset \mathbb{R}^n \to \mathbb{R}^m$ une fonction différentiable, et soit $a \in U$.

- 1 On dit que f est deux fois différentiable en $a \in U$ si df est différentiable en a et on note $(d^2f)_a = d(df)_a$ et on l'appelle la différentielle seconde de f en a.
- 2 On dit que f est deux fois différentiable sur U, si elle est deux fois différentiable en tout point $a \in U$ et note d^2f la différentielle seconde de f.

Remarque : Si $f: U \subset \mathbb{R}^n \to \mathbb{R}^m$ est différentiable, $df: U \to \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$. De même,

$$d^2f:U\to \mathcal{L}(\mathbb{R}^n,\mathcal{L}(\mathbb{R}^n,\mathbb{R}^m))$$

Fonctions de classe C^2

Definition

On dit que f est de classe C^2 si f est deux fois différentiable et d^2f est continue.

Fonctions plusieurs fois différentiables

Fonctions de classe C^2

Definition

On dit que f est de classe C^2 si f est deux fois différentiable et d^2f est continue.

Attention: Si f est C^2 , alors f est deux fois différentiable. La réciproque est fausse.

Definition

On dit que f est de classe C^2 si f est deux fois différentiable et d^2f est continue.

Attention: Si f est C^2 , alors f est deux fois différentiable. La réciproque est fausse.

Fonctions plusieurs fois différentiables

Propriété (Formule de Taylor-Young)

Si f est deux fois différentiable en a, on a un DL à l'ordre 2 :

$$f(a+h) = f(a) + df_a(h) + \frac{1}{2}d^2f_a(h,h) + o(\|h\|^2)$$

Fonctions de classe C^2

Definition

On dit que f est de classe C^2 si f est deux fois différentiable et d^2f est continue.

Attention: Si f est \mathcal{C}^2 , alors f est deux fois différentiable. La réciproque est fausse.

Fonctions plusieurs fois différentiables

Propriété (Formule de Taylor-Young)

Si f est deux fois différentiable en a, on a un DL à l'ordre 2 :

$$f(a+h) = f(a) + df_a(h) + \frac{1}{2}d^2f_a(h,h) + o(\|h\|^2)$$

Theorem (Schwartz)

Soit U un ouvert de \mathbb{R}^n et $a \in U$. Si f est deux fois différentiable en a, alors l'application $d^2f_a: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^m$ est symétrique i.e. $d^2f(h,h') = d^2f(h',h)$

Fonctions plusieurs fois différentiables

Dérivées partielles d'ordre 2

Dérivées partielles d'ordre 2

Definition

Soit U un ouvert de \mathbb{R}^n et $a \in U$. Soit $f: U \to \mathbb{R}^m$. Si les dérivées partielles de f sont définies au voisinage de a et si elles admettent elles-mêmes des dérivées partielles en a, ces dérivées sont appelées dérivées partielles secondes de f en a. On les note

$$\frac{\partial^2 f}{\partial x_i^2} = \frac{\partial}{\partial x_i} \left(\frac{\partial f}{\partial x_i} \right) \quad \text{pour} \quad i \in [\![1,n]\!] \quad \text{et} \quad \frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial}{\partial x_i} \left(\frac{\partial f}{\partial x_j} \right) \quad \text{pour} \quad 1 \leq i \neq j \leq n$$

Dérivées partielles d'ordre 2

Definition

Soit *U* un ouvert de \mathbb{R}^n et $a \in U$. Soit $f: U \to \mathbb{R}^m$. Si les dérivées partielles de f sont définies au voisinage de a et si elles admettent elles-mêmes des dérivées partielles en a, ces dérivées sont appelées dérivées partielles secondes de f en a. On les note

Fonctions plusieurs fois différentiables

$$\frac{\partial^2 f}{\partial x_i^2} = \frac{\partial}{\partial x_i} \left(\frac{\partial f}{\partial x_i} \right) \quad \text{pour} \quad i \in [\![1,n]\!] \quad \text{et} \quad \frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial}{\partial x_i} \left(\frac{\partial f}{\partial x_j} \right) \quad \text{pour} \quad 1 \le i \ne j \le n$$

Example

 $f:(x,y)\mapsto \ln\left(\frac{x}{y}\right)$. Calculez les dérivées partielles premières et secondes de f.

Dérivées partielles d'ordre 2

Definition

Soit *U* un ouvert de \mathbb{R}^n et $a \in U$. Soit $f: U \to \mathbb{R}^m$. Si les dérivées partielles de f sont définies au voisinage de a et si elles admettent elles-mêmes des dérivées partielles en a, ces dérivées sont appelées dérivées partielles secondes de f en a. On les note

Fonctions plusieurs fois différentiables

$$\frac{\partial^2 f}{\partial x_i^2} = \frac{\partial}{\partial x_i} \left(\frac{\partial f}{\partial x_i} \right) \quad \text{pour} \quad i \in [\![1, n]\!] \quad \text{et} \quad \frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial}{\partial x_i} \left(\frac{\partial f}{\partial x_j} \right) \quad \text{pour} \quad 1 \leq i \neq j \leq n$$

Example

 $f:(x,y)\mapsto \ln\left(\frac{x}{y}\right)$. Calculez les dérivées partielles premières et secondes de f.

Corrigé:
$$\frac{\partial f}{\partial x}(x,y) = \frac{1}{x}$$
, $\frac{\partial f}{\partial y}(x,y) = -\frac{1}{y}$, $\frac{\partial^2 f}{\partial y^2}(x,y) = \frac{1}{y^2}$, $\frac{\partial^2 f}{\partial x \partial y}(x,y) = 0$, $\frac{\partial^2 f}{\partial y \partial x}(x,y) = 0$.

IAD DABAGHI

Definition

Soit $f \in \mathcal{F}(U, \mathbb{R})$, avec U un ouvert de \mathbb{R}^n . On appelle *matrice hessienne* de f la matrice des dérivées partielles secondes (lorsqu'elles existent). On la note H_f et on pour $a \in U$:

$$H_{f}(a) = \begin{pmatrix} \frac{\partial^{2} f}{\partial x_{1}^{2}}(a) & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}}(a) & \dots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}}(a) \\ \frac{\partial^{2} f}{\partial x_{2} \partial x_{1}}(a) & \frac{\partial^{2} f}{\partial x_{2}^{2}}(a) & \dots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}}(a) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2} f}{\partial x_{n} \partial x_{1}}(a) & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}}(a) & \dots & \frac{\partial^{2} f}{\partial x_{n}^{2}}(a) \end{pmatrix}$$

Remarque : La matrice hessienne $H_f(a)$ est symétrique.

Lien entre dérivées partielles secondes et différentielle seconde

Fonctions plusieurs fois différentiables

Propriété

Soit $f: U \subset \mathbb{R}^n \to \mathbb{R}$ deux fois différentiable en $a \in U$. Alors la Hessienne $H_f(a)$ est la matrice de $(d^2f)_a: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ dans la base canonique de \mathbb{R}^n . Autrement dit $(d^2f)_a(h,h') = {}^thH_f(a)h' \quad \forall h \in \mathbb{R}^n \quad \forall h' \in \mathbb{R}^n$

Propriété

Soit $f:U\subset\mathbb{R}^n\to\mathbb{R}$ deux fois différentiable en $a\in U$. Alors la Hessienne $H_f(a)$ est la matrice de $(d^2f)_a:\mathbb{R}^n\times\mathbb{R}^n\to\mathbb{R}$ dans la base canonique de \mathbb{R}^n . Autrement dit

$$(d^2f)_a(h,h') = {}^thH_f(a)h' \quad \forall h \in \mathbb{R}^n \quad \forall h' \in \mathbb{R}^n$$

Démonstration : Soit (e_1, \ldots, e_n) une base de \mathbb{R}^n .

$$(d^2f)_a(h,h') = (d^2f)_a(\sum_{i=1}^n h_i e_i, \sum_{j=1}^n h_j' e_j) = \sum_{i=1}^n \sum_{j=1}^n h_i h_j'(d^2f)_a(e_i,e_j) = {}^t h H_f(a)h'$$

Fonctions plusieurs fois différentiables

Lien entre dérivées partielles secondes et différentielle seconde

Propriété[']

Soit $f: U \subset \mathbb{R}^n \to \mathbb{R}$ deux fois différentiable en $a \in U$. Alors la Hessienne $H_f(a)$ est la matrice de $(d^2f)_a: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ dans la base canonique de \mathbb{R}^n . Autrement dit

$$(d^2f)_a(h,h') = {}^thH_f(a)h' \quad \forall h \in \mathbb{R}^n \quad \forall h' \in \mathbb{R}^n$$

Démonstration : Soit (e_1, \ldots, e_n) une base de \mathbb{R}^n .

$$(d^2f)_a(h,h') = (d^2f)_a(\sum_{i=1}^n h_i e_i, \sum_{j=1}^n h_j' e_j) = \sum_{i=1}^n \sum_{j=1}^n h_i h_j' (d^2f)_a(e_i,e_j) = {}^t h H_f(a) h'$$

Corollaire (Schwartz)

Soit $f: U \subset \mathbb{R}^n \to \mathbb{R}$, deux fois différentiable en $a \in U$. Alors,

$$\frac{\partial^2 f}{\partial x_i \partial x_i}(a) = \frac{\partial^2 f}{\partial x_i \partial x_i}(a) \quad \forall i, j \in \{1, \dots, n\}$$

En dimension 1, si f est deux fois dérivable en un point x_0 , alors f a un DL à l'ordre 2 en x_0 . Si, de plus, $f'(x_0) = 0$, le DL s'écrit

$$f(x) = f(x_0) + \frac{1}{2}f''(x_0)(x - x_0)^2 + o((x - x_0)^2)$$

En dimension 1, si f est deux fois dérivable en un point x_0 , alors f a un DL à l'ordre 2 en x_0 . Si, de plus, $f'(x_0) = 0$, le DL s'écrit

$$f(x) = f(x_0) + \frac{1}{2}f''(x_0)(x - x_0)^2 + o((x - x_0)^2)$$

Conclusion:

- \bigcirc Condition nécessaire d'extremum local : Si f admet un minimum local resp. maximum local en x_0 , alors $f''(x_0) \ge 0$, resp. $f''(x_0) < 0$.
- 2 Condition suffisante d'extremum local strict : Si $f''(x_0) > 0$, resp. $f''(x_0) < 0$, alors $f''(x_0) < 0$ admet un minimum local strict, resp. un maximum local strict en x_0 .

En dimension 1, si f est deux fois dérivable en un point x_0 , alors f a un DL à l'ordre 2 en x_0 . Si, de plus, $f'(x_0) = 0$, le DL s'écrit

$$f(x) = f(x_0) + \frac{1}{2}f''(x_0)(x - x_0)^2 + o((x - x_0)^2)$$

Conclusion:

- 1 Condition nécessaire d'extremum local : Si f admet un minimum local resp. maximum local en x_0 , alors $f''(x_0) \ge 0$, resp. $f''(x_0) \le 0$.
- 2 Condition suffisante d'extremum local strict : Si $f''(x_0) > 0$, resp. $f''(x_0) < 0$, alors f admet un minimum local strict, resp. un maximum local strict en x_0 .

Comment généraliser ce résultat à plusieurs variables?

◆ロ > 4 回 > 4

Extremas locaux pour une fonction de plusieurs variables

Definition

- 1 f admet un minimum local, resp. maximum local en a si $\forall x \in \mathcal{V}_a$, $f(\alpha) \leq f(x)$, resp. $f(a) \geq f(x)$.
- 2 f admet un extremum local en a si f admet un minimum local ou un maximum $local en \alpha$.
- 3 f admet un minimum local strict, resp. maximum local strict en a si $\forall x \in \mathcal{V}_a$ privé de a, f(a) < f(x), resp. f(a) > f(x).

Soit $f: U \subset \mathbb{R}^n \to \mathbb{R}$. On dit que a est un point critique de f si : $df_a = 0$, c'est-à-dire

$$\frac{\partial f}{\partial x_i}(a) = 0 \quad \forall i \in \{1, \dots, n\} \quad \text{ou} \quad \nabla f = 0.$$

Soit $f: U \subset \mathbb{R}^n \to \mathbb{R}$. On dit que a est un point critique de f si : $df_a = 0$, c'est-à-dire

$$\frac{\partial f}{\partial x_i}(a) = 0 \quad \forall i \in \{1, \dots, n\} \quad \text{ou} \quad \nabla f = 0.$$

Example

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ définie par $f(x,y) = x^2 - 2x + y^2 - 2y$. Déterminez les points critiques de f.

Soit $f: U \subset \mathbb{R}^n \to \mathbb{R}$. On dit que a est un point critique de f si : $df_a = 0$, c'est-à-dire

$$\frac{\partial f}{\partial x_i}(a) = 0 \quad \forall i \in \{1, \dots, n\} \quad \text{ou} \quad \nabla f = 0.$$

Example

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ définie par $f(x,y) = x^2 - 2x + y^2 - 2y$. Déterminez les points critiques de f.

Corrigé:

Soit $f: U \subset \mathbb{R}^n \to \mathbb{R}$. On dit que a est un point critique de f si : $df_a = 0$, c'est-à-dire

$$\frac{\partial f}{\partial x_i}(a) = 0 \quad \forall i \in \{1, \dots, n\} \quad \text{ou} \quad \nabla f = 0.$$

Example

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ définie par $f(x,y) = x^2 - 2x + y^2 - 2y$. Déterminez les points critiques de f.

Corrigé: On a

$$\nabla f(x,y) = 0 \iff (2x-2,2y-2) = (0,0) \iff (x,y) = (1,1)$$

On suppose que f est de classe C^1 et admet un extremum local en a. Alors $d_a f = 0$, ou de manière équivalente $\nabla f(a) = 0$.

On suppose que f est de classe \mathcal{C}^1 et admet un extremum local en a. Alors $d_a f = 0$, ou de manière équivalente $\nabla f(a) = 0$.

Démonstration : On suppose que f admet un maximum local en a. Soit $i \in [1, n]$. L'application $g: t \mapsto f(a + te_i)$ est définie et dérivable au voisinage de 0 et admet un extremum en 0.

On suppose que f est de classe C^1 et admet un extremum local en a. Alors $d_a f = 0$, ou de manière équivalente $\nabla f(a) = 0$.

Démonstration : On suppose que f admet un maximum local en a. Soit $j \in [1, n]$. L'application $g : t \mapsto f(a + te_j)$ est définie et dérivable au voisinage de 0 et admet un extremum en 0. Alors,

$$g'(0) = \lim_{t \to 0} \frac{g(t) - g(0)}{t} = \lim_{t \to 0} \frac{f(a + te_j) - f(a)}{t} = \frac{\partial f}{\partial x_j}(a)$$

On suppose que f est de classe \mathcal{C}^1 et admet un extremum local en a. Alors $d_a f = 0$, ou de manière équivalente $\nabla f(a) = 0$.

Démonstration: On suppose que f admet un maximum local en a. Soit $i \in [1, n]$. L'application $g: t \mapsto f(a + te_i)$ est définie et dérivable au voisinage de 0 et admet un extremum en 0. Alors,

$$g'(0) = \lim_{t \to 0} \frac{g(t) - g(0)}{t} = \lim_{t \to 0} \frac{f(a + te_j) - f(a)}{t} = \frac{\partial f}{\partial x_j}(a)$$

Or $f(x) \le f(a) \ \forall x \in \mathcal{V}_a$. Pour $x = a + te_i$ avec $t \to 0^+$ on a $f(a + te_i) - f(a) \le 0$ et

$$\lim_{t\to 0^+}\frac{f(a+te_j)-f(a)}{t}=0^+$$

Pour $x = a + te_i$ avec $t \to 0^-$ on a $f(a + te_i) - f(a) < 0$ et

$$\lim_{t\to 0^-}\frac{f(a+te_j)-f(a)}{t}=0^-\qquad \text{Conclusion}: \nabla f=0$$

IAD DABAGHI

Soit a un point critique de f. On dit que f admet un point col ou un point selle en a si

- $\exists v_1 \in \mathbb{R}^n \setminus \{0\}$ tels que $t \mapsto f(a + tv_1)$ admet un minimum local strict en t = 0
- $\exists v_2 \in \mathbb{R}^n \setminus \{0\}$ tels que $t \mapsto f(a + tv_2)$ admet un maximum local strict en t = 0.

$$f(x,y) = x^2 - y^2$$

(0,0) : point-selle de la fonction

Condition d'obtention d'un extremum

Propriété

Soit $f: U \subset \mathbb{R}^n \to \mathbb{R}^m$, deux fois différentiable en $a \in U$.

- Si f admet un minimum local en a alors a est un point critique de f et $H_f(a)$ est positive c-a-d: $h^T H_f(a) h \ge 0$.
- Si f admet un maximum local en a alors a est un point critique de f et $H_f(a)$ est négative c-a-d : $h^T H_f(a) h \le 0$

Soit $f: U \subset \mathbb{R}^n \to \mathbb{R}^m$, deux fois différentiable en $a \in U$.

- Si f admet un minimum local en a alors a est un point critique de f et $H_f(a)$ est positive c-a-d: $h^T H_f(a) h \ge 0$.
- Si f admet un maximum local en a alors a est un point critique de f et $H_f(a)$ est négative c-a-d : $h^T H_f(a) h \le 0$

Démonstration:

Soit $f: U \subset \mathbb{R}^n \to \mathbb{R}^m$, deux fois différentiable en $a \in U$.

- Si f admet un minimum local en a alors a est un point critique de f et $H_f(a)$ est positive c-a-d: $h^T H_f(a) h \ge 0$.
- Si f admet un maximum local en a alors a est un point critique de f et $H_f(a)$ est négative c-a-d : $h^T H_f(a) h \le 0$

Démonstration : Formule de Taylor-Young :

 $0 \le f(a+h) - f(a) = \underset{h \to 0}{=} df_a(h) + \frac{1}{2}h^T H_f(a)h + o(\|h\|^2)$. Pour h = tv où $v \in \mathbb{R}^n \setminus \{0\}$ et

t > 0 petit on trouve

$$0 \leq \frac{f(a+tv)-f(a)}{t^2} = \frac{1}{2}v^T d^2 f_a(v,v)v + o(1).$$

Soit $f: U \subset \mathbb{R}^n \to \mathbb{R}^m$, deux fois différentiable en $a \in U$.

- Si a est un point critique de f et si $H_f(a)$ est définie positive ($h^T H_f(a)h > 0$), alors f admet un minimum local strict en a.
- Si a est un point critique de f et si $H_f(a)$ est définie négative ($h^T H_f(a) h < 0$), alors f admet un maximum local strict en a.

Démonstration: Puisque a est un point critique, la formule de Taylor-Young donne

$$f(a+h)-f(a) \underset{h\to 0}{\sim} h^{\mathsf{T}} H_f(a)h > 0.$$

Donc f admet un minimum local strict en a.

Cas pratique n=2

Corollaire

Soit $f: U \subset \mathbb{R}^2 \to \mathbb{R}$ deux fois différentiable en $a \in U$. On suppose que a est un point critique de f. On note:

$$r = \frac{\partial^2 f}{\partial x^2}(a), \quad s = \frac{\partial^2 f}{\partial x \partial y}(a), \quad t = \frac{\partial^2 f}{\partial y^2}(a) \quad \text{et} \quad H_f(a) = \begin{pmatrix} r & s \\ s & t \end{pmatrix} \quad \delta = \det(H_f(a)) = rt - s^2.$$

- Si $\delta > 0$ et r > 0 alors $H_f(a)$ est définie positive et f a un minimum local strict en a.
- Si $\delta > 0$ et r < 0 alors $H_f(a)$ est définie négative et f a un maximum local strict en a.
- Si δ < 0 alors f présente un point selle en a, et donc n'a pas d'extremum en a.

Remarque : Si $\delta = 0$ alors on ne peut pas conclure sur la présence ou non d'un extremum de f en a par cette méthode.

Etudier les extremas de la fonction $f \in \mathcal{F}(\mathbb{R}^2, \mathbb{R})$ définie par $f(x, y) = x^4 + y^4 - 4xy$.

Etudier les extremas de la fonction $f \in \mathcal{F}(\mathbb{R}^2, \mathbb{R})$ définie par $f(x, y) = x^4 + y^4 - 4xy$.

Détermination des points critiques :

$$\begin{cases} \frac{\partial f}{\partial x}(a,b) = 0 \\ \frac{\partial f}{\partial y}(a,b) = 0 \end{cases} \Leftrightarrow \begin{cases} 4a^3 - 4b = 0 \\ 4b^3 - 4a = 0 \end{cases} \Leftrightarrow \begin{cases} b = a^3 \\ a(a^8 - 1) = 0 \end{cases} \underbrace{(0,0),(1,1),(-1,-1)}_{\text{points critiques}}.$$

Etudier les extremas de la fonction $f \in \mathcal{F}(\mathbb{R}^2, \mathbb{R})$ définie par $f(x, y) = x^4 + y^4 - 4xy$.

Détermination des points critiques :

$$\begin{cases} \frac{\partial f}{\partial x}(a,b) = 0 \\ \frac{\partial f}{\partial y}(a,b) = 0 \end{cases} \Leftrightarrow \begin{cases} 4a^3 - 4b = 0 \\ 4b^3 - 4a = 0 \end{cases} \Leftrightarrow \begin{cases} b = a^3 \\ a(a^8 - 1) = 0 \end{cases} \underbrace{(0,0),(1,1),(-1,-1)}_{\text{points critiques}}.$$

Etude de la hessienne en les points critiques

$$H_f(x,y) = \begin{pmatrix} 12x^2 & -4 \\ -4 & 12y^2 \end{pmatrix}$$
 $\det(H_f)(x,y) = 144x^2y^2 - 16$

Etudier les extremas de la fonction $f \in \mathcal{F}(\mathbb{R}^2, \mathbb{R})$ définie par $f(x, y) = x^4 + y^4 - 4xy$.

• Détermination des points critiques :

$$\begin{cases} \frac{\partial f}{\partial x}(a,b) = 0\\ \frac{\partial f}{\partial y}(a,b) = 0 \end{cases} \Leftrightarrow \begin{cases} 4a^3 - 4b = 0\\ 4b^3 - 4a = 0 \end{cases} \Leftrightarrow \begin{cases} b = a^3\\ a(a^8 - 1) = 0 \end{cases} \underbrace{(0,0),(1,1),(-1,-1)}_{\text{points critiques}}.$$

Etude de la hessienne en les points critiques

$$H_f(x,y) = \begin{pmatrix} 12x^2 & -4 \\ -4 & 12y^2 \end{pmatrix} \det(H_f)(x,y) = 144x^2y^2 - 16$$

- Pour (x,y) = (0,0), $\delta = -16 < 0$ donc (0,0) est un point selle.
- Pour (x,y) = (1,1), $\delta = 128 > 0$ et r = 12 > 0 donc (1,1) est un minimum local.
- Pour (x,y) = (-1,-1), $\delta = 128$ et r = 12 donc (-1,-1) est un minimum local.

< = > = 4)Q(3