Concept and Logic (Agents Principles)

Agents

Al metaphor

Dr. Bilal Hoteit

Introduction to Artificial Intelligence

Table of contents

- Agents and Environments
- Rationality
- PEAS (Performance measure, Environment, Actuators, Sensors)
- Environment types
- Agent types

Confused

Agent Concept

- ☐ An agent is anything that can be viewed as perceiving its environment through sensors and acting upon that environment through actuators.
- Human agent:
 - a. eyes, ears, and other organs for *sensors*;
 - b. hands, legs, mouth, and other body parts for actuators.
- Robotic agent
 - a. cameras and infrared range finders for sensors;
 - b. various motors for actuators

Agent Model

An agent includes all aspects of AI in one object-oriented model:

Prerequisites Purpose

Al définitions

Al Types Trendings Confused

Agents and environments

The agent function maps from percept histories to actions:

Prerequisites Purpose

Al définitions

Al Types **Trendings** Confused

The agent program runs on the physical architecture to produce f

$$[f: \mathcal{P}^{\star} \rightarrow \mathcal{A}]$$

- Percepts: location and contents, e.g., [A, Dirty], [A, Clean]
- Actions: Left, Right, Suck, No-Op

Rational agents

Prerequisites Purpose

Al définitions

Al Types **Trendings**

- Agent success ('rationality') is evaluated based on performance measure.
- Factors in rationality:
 - PEAS: Performance measure, Environment, Actuators, Sensors.
- performance measure goals may be in conflict can't all be achieved. a)
- perceptions agent may not have all the facts. (environment modelling). b)
- actions available. (outcome of actions are not known).
- experience agent may not yet have accumulated all available relevant d) data. (autonomous learn from experience).

performance measure

performance measure of a vacuum-cleaner agent could be:

Prerequisites

Trendings Confused

- a. amount of dirt cleaned up,
- b. amount of time taken,
- c. amount of electricity consumed,
- d. amount of noise generated,
- e. etc.

Context

Environments

- real or virtual.
- may contain other agents. (Multi-Agent: competitive, cooperative, etc.).
- factors relevant to the agent are called the state of the environment
 - a. perceptions give agent information about the state.
 - b. actions of agent change the state.
- Environment types :
 - a. fully partly observable (state of the environment)
 - b. static dynamic. (environment and agent deliberating)
 - c. deterministic stochastic. (current state and action)
 - d. sequential episodic. (agent's experience)
 - e. discrete continuous. (percepts and actions)
 - f. Single agent (vs. multi-agent).

Environment types

Fully observable
Deterministic
Episodic
Static
Discrete
Single agent

Chess with a clock	Chess without a clock	Taxi driving
Yes	Yes	No
Strategic	Strategic	No
No	No	No
Semi	Yes	No
Yes	Yes	No
No	No	No

- The environment type largely determines the agent design.
- □ The real world is (of course) partially observable, stochastic, sequential, dynamic, continuous, multi-agent

Prerequisites Purpose

Agent Structure

- An agent is completely specified by the <u>agent function</u>. (find a way to implement the rational agent function concisely).
- Several types based on functionalities and PEAS:
 - a. Table-lookup agents
 - b. Simple reflex agents
 - c. Model-based reflex agents
 - d. Goal-based agents (Solving-problem or Planning agents)
 - e. Utility-based agents
 - f. Learning agents

Table-Driven agent

- Drawbacks:
 - a. Huge table
 - b. Take a long time to build the table
 - c. No autonomy
 - d. Even with learning, need a long time to learn the table entries

Prerequisites

Confused

Simple reflex agents

- Criteria:
 - a. based on current perception only. (NO percepts history)
 - b. i.e., no instance variables in the agent object; (No state)
 - c. 'condition-action' rules (if then else algorithm)

Model-based agents

Prerequisites Purpose

Al définitions

Al Types Trendings Confused

Criteria:

- a. uses percepts to build internal model of environment -
- b. internal state is 'memory' of environment
- c. algorithm based on percepts and internal state

Goal-based agents

- Criteria:
 - a. internal state representing environment.
 - b. goals expressed in terms of environment and/or agent states.
 - c. NOT REFLEX; 'tries' actions internally and tests results against goals.

Utility-based agents

- Criteria:
 - a. internal state representing environment
 - b. goals expressed in terms of environment and/or agent states
 - c. performance measure rationality
 - d. 'tries' actions internally and tests results against goals & performance measure

Learning agents

- Criteria:
 - a. extra component to evaluate performance and change program (if necessary) to act differently in same state.
 - b. many kinds of learning agents

, 2022

Prerequisites
Purpose
Al définitions
Al Types
Trendings
Confused

Conclusion

Thank you for your attention!

Questions?