System using OpenCV, MediaPipe and Palm's text-bison-001 project.

Hackathon Project Phases Template

Project Title:

Gesture-Based Human-Computer Interaction System using OpenCV, MediaPipe and Palm's text-bison-001

Team Name:

Tech-Trio

Team Members:

- Abhinaya Reddy Annadi
- Varsha Annam
- Dheekshitha Annam

Phase-1: Brainstorming & Ideation

Objective:

Develop an Al-powered gesture recognition system to enable intuitive and seamless humancomputer interaction using hand gestures.

Key Points:

1. Problem Statement:

- Traditional interfaces require physical interaction, limiting accessibility for individuals with disabilities and increasing hygiene concerns in public spaces.
- Many users require a touchless, gesture-based control system for enhanced accessibility, gaming, and smart home applications.

2. Proposed Solution:

 A gesture-controlled interface using OpenCV and MediaPipe for hand tracking, integrated with Palm's text-bison-001 for Al-powered contextual command recognition.

3. Target Users:

- People with **DISABILITIES** needing touchless interaction.
- Smart home and IoT users
- o Gamers requiring immersive experiences.

4. Expected Outcome:

 A fully functional gesture-based interaction system capable of recognizing hand gestures and translating them into meaningful commands for various applications.

Phase-2: Requirement Analysis

Objective:

Define the technical and functional requirements for the gesture-based interaction system.

Key Points:

1. Technical Requirements:

Programming Language: Python

Computer Vision Library: OpenCV, MediaPipe

o Al Model: Palm's text-bison-001

Frontend: Streamlit Web Framework

Hardware: Webcam for gesture tracking

2. Functional Requirements:

- o Real-time hand gesture recognition.
- Al-based gesture-to-command mapping.
- Customizable gesture sets for different applications.
- o Seamless integration with external applications.

3. Constraints & Challenges:

- Processing real-time gestures with minimal latency.
- Achieving high accuracy in gesture recognition.
- o Handling variations in lightening and background.

Phase-3: Project Design

Objective:

Develop the architecture and user flow of the application.

Key Points:

1. System Architecture:

- Webcam captures hand gestures.
- OpenCV and MediaPipe process the video feed.
- o Recognized gestures are sent to Palm's text-bison-001.
- Al interprets gestures and translates them into actions.
- The system executes or forwards commands to external applications.

2. User Flow:

- User performs a predefined gesture (e.g., moves hand to the right).
- The system recognizes the gesture and displays "Right" on the screen.
- The Al model refines the command based on context.
- The command is executed (e.g., opening an application, adjusting volume, etc.).

3. UI/UX Considerations:

- o Intuitive UI for gesture training and customization
- Real-time feedback on recognized gestures with displayed text (e.g., "Right" for right-hand movement)
- Support for multiple gesture profiles.

Phase-4: Project Planning (Agile Methodologies)

Objective:

Break down development tasks for efficient completion.

Sprint	Task	Priority	Duration	Deadline	Assigned To	Dependencies	Expected Outcome
Sprint 1	Environment Setup & Library Integration	High	6 hours	End of Day 1	Varsha Annam	Python, OpenCV, MediaPipe	Basic framework setup
Sprint 1	Hand Tracking Implementation	High	3 hours	End of Day 1	Dheekshitha Annam	Web cam setup	Real time hand tracking
Sprint 2	Al Gesture command mapping	High	4 hours	Mid-Day 2	Abhinaya Annadi	Palm's text-bison- 001	Al powered command

							execution
Sprint 2	UI development	─ Medium	4 hours	Mid-Day 2	Varsha Annam	Gesture recognition module	Gesture training UI
Sprint 3	Error handling & debugging	High	2 hours	Mid-Day 2	Dheekshitha Annam & Abhinaya Annadi	API logs, UI inputs	Improved accuracy & stability
Sprint 3	Final Presentation & Deployment	Low	2 hours	End of Day 2	Entire Team	Working prototype	Demo-ready project

Sprint Planning with Priorities

Sprint 1 – Setup & Integration (Day 1)

- (High Priority) Set up the environment & Library integration.
- (High Priority) Hand Tracking Implementation.

Sprint 2 – Core Features & Debugging (Day 2)

- (High Priority) Al Gesture command mapping.
- (Medium priority) UI deployment.

Sprint 3 – Testing, Enhancements & Submission (Day 2)

- (High Priority) Error handling &debugging.
- (Low Priority) Final demo preparation & deployment.

Phase-5: Project Development

Objective:

Implement core features of the gesture-based interaction system.

Key Points:

1. Technology Stack Used:

Frontend: Streamlit

o Backend: OpenCV, MediaPipe, Palm's text-bison-001

Programming Language: PythonHardware: Standard Webcam.

2. **Development Process:**

o Implement real-time hand tracking using OpenCV & MediaPipe.

o Integrate Palm's AI model for gesture-to-command mapping.

o Optimize performance for low latency.

3. Challenges & Fixes:

Challenge: Poor accuracy in low-light conditions.
Fix: Implement adaptive brightness detection.

o Challenge: Gesture misclassification.

Fix: Fine-tune model with more training data.

Phase-6: Functional & Performance Testing

Objective:

Ensure that the AutoSage App works as expected.

Test Case ID	Category	Test Scenario	Expected Outcome	Status	Tester
TC-001	Functional Testing	Perform "Swipe Left" gesture	System executes left navigation	V Passed	Varsha Annam
TC-002	Functional Testing	Perform "stop" gesture	System executes stop navigation	V Passed	Dheeks hitha Annam
TC-003	Performance Testing	Gesture recognition latency under 200ms	System responds in real-time		Abhinay a Annadi
TC-004	Bug Fixes & Improvements	Fix incorrect gesture mapping	Works on different screen sizes	▼ Fixed	Develop er

TC-005	Final Validation	Ensure UI responsiveness	UI should work on mobile & desktop.	X Failed - UI broken on mobile	Dheeks hitha Annam
		Host system for public	System accessible		
	Deployment	access	online		
TC-006	Testing			Deployed	DevOps

Final Submission

- 1. Project Report Based on the templates
- 2. Demo Video (3-5 Minutes)
- 3. GitHub/Code Repository Link
- 4. Presentation