HOMEWORK 6

41. The tables below delineate all 16 possible (x_1, x_2) pairs, their probabilities, the value of \overline{x} for that pair, and the value of r for that pair. Probabilities are calculated using the independence of X_1 and X_2 .

(x_1, x_2) probability \overline{x} r	1,1 .16 1 0	1,2 .12 1.5	1,3 .08 2 2	1,4 .04 2.5 3	2,1 .12 1.5	2,2 .09 2 0	2,3 .06 2.5	2,4 .03 3 2
(x_1, x_2)	3,1	3,2	3,3	3,4	4,1	4,2	4,3	4,4
probability	.08	.06	.04	.02	.04	.03	.02	.01
\overline{x}	2	2.5	3	3.5	2.5	3	3.5	4
r	2	1	0	1	3	2	1	2

a. Collecting the \bar{x} values from the table above yields the pmf table below.

- **b.** $P(\overline{X} \le 2.5) = .16 + .24 + .25 + .20 = .85.$
- **c.** Collecting the *r* values from the table above yields the pmf table below.

d. With n = 4, there are numerous ways to get a sample average of at most 1.5, since $\overline{X} \le 1.5$ iff the sum of the X_i is at most 6. Listing out all options, $P(\overline{X} \le 1.5) = P(1,1,1,1) + P(2,1,1,1) + \dots + P(1,1,1,2) + P(1,1,2,2) + \dots + P(2,2,1,1) + P(3,1,1,1) + \dots + P(1,1,1,3) = (.4)^4 + 4(.4)^3(.3) + 6(.4)^2(.3)^2 + 4(.4)^2(.2)^2 = .2400.$

46.

- **a.** The sampling distribution of \overline{X} is centered at $E(\overline{X}) = \mu = 12$ cm, and the standard deviation of the \overline{X} distribution is $\sigma_{\overline{X}} = \frac{\sigma_{\overline{X}}}{\sqrt{n}} = \frac{.04}{\sqrt{16}} = .01$ cm.
- **b.** With n=64, the sampling distribution of \bar{X} is still centered at $E(\bar{X})=\mu=12$ cm, but the standard deviation of the \bar{X} distribution is $\sigma_{\bar{X}}=\frac{\sigma_{\bar{X}}}{\sqrt{n}}=\frac{.04}{\sqrt{64}}=.005$ cm.
- c. \overline{X} is more likely to be within .01 cm of the mean (12 cm) with the second, larger, sample. This is due to the decreased variability of \overline{X} that comes with a larger sample size.

50.

a.
$$P(9,900 \le \overline{X} \le 10,200) \approx P\left(\frac{9,900-10,000}{500/\sqrt{40}} \le Z \le \frac{10,200-10,000}{500/\sqrt{40}}\right)$$

= $P(-1.26 \le Z \le 2.53) = \Phi(2.53) - \Phi(-1.26) = .9943 - .1038 = .8905.$

b. According to the guideline given in Section 5.4, n should be greater than 30 in order to apply the CLT, thus using the same procedure for n = 15 as was used for n = 40 would not be appropriate.

53.

a. With the values provided,

$$P(\overline{X} \geq 51) = P\left(Z \geq \frac{51 - 50}{1.2/\sqrt{9}}\right) = P(Z \geq 2.5) = 1 - .9938 = .0062 \; .$$

b. Replace n = 9 by n = 40, and

$$P(\overline{X} \ge 51) = P\left(Z \ge \frac{51 - 50}{1.2/\sqrt{40}}\right) = P(Z \ge 5.27) \approx 0.$$

60. *Y* is normally distributed with $\mu_Y = \frac{1}{2}(\mu_1 + \mu_2) - \frac{1}{3}(\mu_3 + \mu_4 + \mu_5) = -1$, and

$$\sigma_{\gamma}^{2} = \frac{1}{4}\sigma_{1}^{2} + \frac{1}{4}\sigma_{2}^{2} + \frac{1}{9}\sigma_{3}^{2} + \frac{1}{9}\sigma_{4}^{2} + \frac{1}{9}\sigma_{5}^{2} = 3.167 \Rightarrow \sigma_{\gamma} = 1.7795.$$

Thus,
$$P(0 \le Y) = P(\frac{0 - (-1)}{1.7795} \le Z) = P(.56 \le Z) = .2877$$
 and

$$P(-1 \le Y \le 1) = P(0 \le Z \le \frac{2}{1.7795}) = P(0 \le Z \le 1.12) = .3686.$$