Due Wednesday 10/3/01

1. Review of integration.

- (a) Evaluate the integrals $\int_0^{\pi} t \cos(t) dt$ and $\int_0^{\pi} t^2 \sin(t) dt$.
- (b) For a differentiable function f, derive the identity

$$\int_0^t f(t-\tau)d\tau = tf(t) - \int_0^t \tau f'(\tau)d\tau$$

(c) The figure below contains a picture of a function f(t). Find the function $g(t) = \int_{-\infty}^{t} f(\tau) d\tau$ and sketch it under f(t).

2. Review of complex numbers

(a) Find the following complex numbers (real and imaginary parts):

$$(1) e^{-\frac{27}{2}\pi i}, \quad (2) (i)^{i^6}$$

(b) Change these complex numbers into exponential form:

(1)
$$\alpha = \sqrt{3} - i$$
, (2) $\beta = -i$.

- (c) For the numbers in part (b), compute $\alpha^3/\bar{\beta}$, where $\bar{\beta}$ is the complex conjugate of β .
- (d) Find the complex roots to the polynomial equation $z^6 27 = 0$.

3. Given the differential equation for $t \geq 0$

$$\frac{dy(t)}{dt} + y(t) = \frac{dx(t)}{dt} - 2x(t)$$

- Let x(0) = 0 and y(0) = 0; solve for y(t) in terms of x(t).
- 4. For each of the following systems with input x(t) and output y(t), find out whether they are (i) linear, (ii) time invariant, (iii) causal. Justify your answer.
 - (a) y(t) = x(t+1) 3.
 - (b) $y(t) = e^t x(t)$.
 - (c) $y(t) = \int_{t}^{\infty} x(\tau) d\tau$.
 - (d) The system where y(t) is equal to x(t) when x(t) > 0, and zero otherwise.

Due Wednesday 10/10/01

1. Sketch f(t) and $\frac{df}{dt}(t)$. State what $\frac{df}{dt}(t)$ is in the simplest form (e.g., $u(t-2)\delta(t-7)$ should be simplified to $\delta(t-7)$).

(a)
$$f(t) = 1 - u(t+2) - u(t) + u(t-1)$$

(a)
$$f(t) = 1 - u(t+2) - u(t) + u(t-1)$$
.
(b) $f(t) = \begin{cases} 2t+2 & \text{for } t \in (-1,0) \\ 2t-2 & \text{for } t \in (0,1) \\ 0 & \text{otherwise} \end{cases}$. Here you should first write an expression for $f(t)$.

(c)
$$f(t) = (t+1)^2[u(t+1) - u(t)] + (t-1)^2[u(t) - u(t-2)].$$

2. Sketch $\frac{df}{dt}(t)$, and find an expression for f(t) and $\frac{df}{dt}(t)$.

(a)

(b)

3. Evaluate the following integrals.

(a)
$$\int_{-\infty}^{\infty} e^{\sin(\pi t)} \delta(t + \frac{1}{2}) dt$$

(b)
$$\int_{-\infty}^{3} e^{t^2-3t-4} \delta(t-4) dt$$

(c)
$$\int_{a^{-}}^{\infty} \cos(t)\delta(t-a) dt$$
, where $a \in \mathbb{R}$.

4. Consider the system defined by the input-output relationship

$$y(t) = \int_{-\infty}^{t} \cos(t+\sigma)x(\sigma-1)d\sigma.$$

- (a) Find the system impulse response function $h(t, \tau)$.
- (b) Is the system time invariant? Causal?
- 5. Consider a system described by the differential equation

$$\frac{dy(t)}{dt} + y(t) = \frac{dx(t)}{dt} - 2x(t),$$

studied in HW # 1. Signals are assumed to be zero for t < 0. i.e., the initial conditions are y(0-) = x(0-) = 0. Find the impulse response function h(t).

Due Wednesday 10/17/01

1. We consider a linear, time invariant system with impulse response h(t) depicted in the figure. The function is made of three identical curves in the intervals [0,1], [1,2], [2,3], and is zero outside that range. It is non-negative, and $\int_0^1 h(t)dt = 1$.

Sketch the response of the system to the input x(t) = u(t) - u(t-1).

Your sketch cannot be exact since you don't know h(t) exactly, but it must be consistent with the information given above.

- 2. Given the function $f(t) = e^{-t}u(t)$, where u(t) is the step function, find the convolutions:
 - (a) u * f;
 - (b) f * f;
 - (c) u * u.
- 3. Consider the cascade of linear, time-invariant systems S_1 and S_2 .

We know:

- The impulse response function $h_1(t) = u(t) u(t-2)$.
- The response of system S_2 to the ramp input y(t) = tu(t) is the function z(t) below.

Find and sketch the impulse response of the cascade.

Due Wednesday 10/24/01

1. Use the definition of the Laplace transform

$$F(s) = \int_0^\infty e^{-st} f(t) dt$$

to find the transform of the following functions. Do not invoke properties here; rather, perform the integration. In each case, specify the domain of convergence.

(a) $u(t-2)e^{2t}$.

(b)
$$u(t) - u(t-1) + u(t-2) - u(t-3)$$
.

2. Find the Laplace transforms of the following functions using the properties of Laplace transform. Specify the properties being used, and the DOC.

(a) $e^t u(t) + e^{-2t} u(t)$.

(b) $u(t-\pi)e^{(t-\pi)}\cos(t)$.

(c) $\int_0^t \sigma^2 e^{-\sigma} d\sigma$.

3. Consider the function f(t) in the figure.

(a) Find and sketch the derivatives $\frac{df}{dt}$, $\frac{d^2f}{dt^2}$.

(b) Find the Laplace transform of $\frac{d^2f}{dt^2}$, and deduce the Laplace transforms of $\frac{df}{dt}$ and f(t). Specify the domain of convergence.

4. Find f(t) given F(s).

a)
$$F(s) = \frac{s+11}{s^2 - 3s - 4}$$
; b) $F(s) = \frac{4s+10}{s^3 + 6s^2 + 10s}$; c) $F(s) = \frac{2s^2 - s - 5}{(s-1)^2(s+3)}$.

5. Consider the differential equation for $t \geq 0$:

$$\frac{d^2f}{dt^2} + \alpha \frac{df}{dt} + f(t) = 1, \qquad f(0-) = \frac{df}{dt}(0-) = 0.$$

Here $\alpha \in \mathbb{R}$ is a parameter.

- (a) Find the initial value $\lim_{t\to 0+} f(t)$; does your answer depend on α ? Hint: you don't need to solve the differential equation.
- (b) Repeat the above for the final value $\lim_{t\to+\infty} f(t)$.
- (c) Now let $\alpha = 1$; solve the differential equation.