Independence Basis and Dimension

Gilbert Strang

September 23, 2017

Linear independence

Definition 1 (Independence). The set of vectors $v_1, v_2, \dots v_n$ are *linearly independent* if $c_1v_1 + c_2v_2 + \dots + c_nv_n = 0$ only when $c_1, c_2, \dots c_n$ are all 0.

Definition 2 (Span of a vector space). Vectors $v_1, v_2, \dots v_k$ span a vector space, if their linear combination fill the space.

Definition 3 (Basis of a vector space). A *basis* of a vector space is a sequence of vectors $v_1, v_2, \dots v_d$ with two properties:

- (i) $v_1, v_2, \dots v_d$ are independent
- (ii) $v_1, v_2, \dots v_d$ span the vector space

Given a vector space every basis for that space has same number of vectors; that number is the *dimension* of the space.

Definition 4 (Sum of two subspaces). If *S* and *T* are two subspaces of a vector space *V*. Then the sum S + T contains sums s + t for all $s \in S$, $t \in T$.

Remark 1. If *S* and *T* are two subspaces of a vector space *V*. Then $S \cap T$ is a subspace, while $S \cup T$ is not a subspace. The span of $S \cup T$ is the subspace S + T.

Definition 5. If *S* and *T* are two subspaces of a vector space *V*. Then

$$dim(S) + dim(T) = dim(S+T) + dim(S \cap T)$$

Four fundamental spaces associated with a matrix

For any $m \times n$ matrix A, with rank(A) = r, four fundamental subspaces are:

- 1. *Column space*, C(A), consists of all combinations of the columns of A and is a subspace of \mathbb{R}^m . dim(C(A)) = r
- 2. *Nullspace*, N(A), consists of all solutions x of the equation Ax = 0 and is a subspace of \mathbb{R}^n . dim(N(A)) = n r
- 3. *Row space* of A, $C(A^T)$, consists of combinations of the column vectors of A^T . $dim(C(A^T)) = r$.
- 4. *Left Nullspace* of A, $N(A^T)$, is the nullspace of A^T . $dim(N(A^T)) = m r$.