Lab 3: Introduction to Biogeme

Meritxell Pacheco Paneque

Transport and Mobility Laboratory School of Architecture, Civil and Environmental Engineering École Polytechnique Fédérale de Lausanne

September 29, 2020

Outline

- Using Biogeme
 - Running Biogeme
 - Data file
 - Model file
- Today's lab
 - Case study (binary logit)
 - Reading and modifying files

Using Biogeme

BIOGEME

Import the modules

```
import pandas as pd
import biogeme.database as db
import biogeme.biogeme as bio
from biogeme.expressions import Beta, DefineVariable
from biogeme.models import loglogit
```

Jupyter notebooks

- We recommend using Jupyter notebooks for working with Biogeme
- Open a terminal or Anaconda prompt window and type:

jupyter notebook

Feel free to use any coding environment/editor you are familiar with

Biogeme files

- The Biogeme model notebook model.ipynb (or model python file model.py) contains the model specification, and reads:
 - a file containing the data data.dat
- Biogeme automatically generates:
 - A report file containing the results of the maximum likelihood estimation: model.html
 - A binary pickle file which can be loaded into Python, containing the same information: model.pickle

How to run Biogeme?

- Jupyter notebook: simply select the cell, and hit Run (or Shift + Enter on keyboard)
- Command line (using Python): Open a terminal or Anaconda prompt window and type

python model.py

Data file (1)

- File extension .dat
- It contains the data (observations)
- One observation per row
- First row contains column (variable) names
- Each row must contain a choice indicator
- Example: Netherlands transportation mode choice data
 - Choice between rail and car
 - 228 observations

Data file (2)

netherlands.dat

id	choice	rail_cost	rail_time	car_cost	car_time
1	0	40	2.5	5	1.167
2	0	35	2.016	9	1.517
3	0	24	2.017	11.5	1.966
4	0	7.8	1.75	8.333	2
5	0	28	2.034	5	1.267
219	1	35	2.416	6.4	1.283
220	1	30	2.334	2.083	1.667
221	1	35.7	1.834	16.667	2.017
222	1	47	1.833	72	1.533
223	1	30	1.967	30	1.267

Data file (3)

netherlands.dat

,	١				
id	choice	rail_cost	rail_time	car_cost	car_time
1	0	40	2.5	5	1.167
2	0	35	2.016	9	1.517
3	0	24	2.017	11.5	1.966
4	0	7.8	1.75	8.333	2
5	0	28	2.034	5	1.267
	Unique	identifier of	observations		
219	1	35	2.416	6.4	1.283
220	1	30	2.334	2.083	1.667
221	1	35.7	1.834	16.667	2.017
222	1	47	1.833	72	1.533
223	1 .	0.0	4 007	00	4 007
223	1	30	1.967	30	1.267

Data file (4)

netherlands.dat

	(
id	choice	rail_cost	rail_time	car_cost	car_time					
1	0	40	2.5	5	1.167					
2	0	35	2.016	9	1.517					
3	0	24	2.017	11.5	1.966					
4	0	7.8	1.75	8.333	2					
5	0	28	2.034	5	1.267					
		Choice indicator, 0: car and 1: train								
219	1	35	2.416	6.4	1.283					
220	1	30	2.334	2.083	1.667					
221	1	35.7	1.834	16.667	2.017					
222	1	47	1.833	72	1.533					
223	1	30	1.967	30	1.267					

Model file

- Jupyter notebook with file extension .ipynb (or python file with extension .py)
- Must be consistent with the data file
- Contains deterministic utility specifications, model type, etc.
- Example: Netherlands transportation mode choice data
 - Travel times and travel costs are used as explanatory variables
 - The deterministic utility specifications are

$$V_{\text{car}} = ASC_{\text{car}} + \beta_{\text{cost}} cost_{\text{car}} + \beta_{\text{time}} time_{\text{car}}$$

 $V_{\text{rail}} = \beta_{\text{cost}} \cos t_{\text{rail}} + \beta_{\text{time}} \text{time}_{\text{rail}}$

Today's lab

Binary Logit (the Netherlands case study) - files

- Open the instructions file 03Lab2020.pdf (under Instructions Lab 3)
- 2 Download the files for this case study (under Case study Lab 3) and copy them in a directory of your choice (e.g., Desktop)
 - binary_generic_netherlands.ipynb (model notebook)
 - binary_generic_netherlands.py (model Python file if needed)
 - 03Lab2020_solution.pdf (description file)
- The dataset (and its description) can be found in http://biogeme.epfl.ch/data.html

Binary logit (the Netherlands case study) - tasks

- Go through the Jupyter notebook (check the file 03Lab2020_solution.pdf to see the model specifications)
- 2 Run the notebook
- Open the generated .html file and interpret the results (check the file 03Lab2020_solution.pdf for help with the interpretations)
- Develop other model specifications following the instructions file

Appendix

Model file: setup (binary_generic_netherlands.py)

```
import pandas as pd
import biogeme.database as db
import biogeme.biogeme as bio
from biogeme.expressions import Beta, DefineVariable
from biogeme.models import loglogit
pandas = pd.read_table("netherlands.dat")
database = db.Database("netherlands",pandas)
pd.options.display.float_format = '{:.3g}'.format
globals().update(database.variables)
exclude = sp != 0
database.remove(exclude)
```

Model file: parameters (binary_generic_netherlands.py)

```
# Parameters to be estimated
# Arguments:
# 1 Name for report. Typically, the same as the variable
# 2 Starting value
# 3 Lower bound
# 4 Upper bound
# 5 0: estimate the parameter, 1: keep it fixed
ASC_CAR = Beta('ASC_CAR',0,None,None,0)
ASC_RAIL = Beta('ASC_RAIL',0,None,None,1)
BETA_COST = Beta('BETA_COST',0,None,None,0)
BETA_TIME = Beta('BETA_TIME',0,None,None,0)
```

Model file: expressions (binary_generic_netherlands.ipynb)

Model file: utilities, model (binary_generic_netherlands.ipynb)

```
# Utilities
Car = ASC_CAR + BETA_COST * car_cost_euro + BETA_TIME * car_time
Rail = ASC_RAIL + BETA_COST * rail_cost_euro + BETA_TIME * rail_time
V = {0: Car,1: Rail}
av = {0: 1,1: 1}

# The choice model is a logit, with availability conditions
logprob = loglogit(V,av,choice)
biogeme = bio.BIOGEME(database,logprob)
biogeme.modelName = "binary_generic_netherlands"
results = biogeme.estimate()
```

Model file: estimation, output (binary_generic_netherlands.ipynb)

```
# Get the results in a pandas table
pandasResults = results.getEstimatedParameters()
print(pandasResults)
print(f"Nbr of observations: {database.getNumberOfObservations()}")
print(f"LL(0) = {results.data.initLogLike:.3f}")
print(f"LL(beta) = {results.data.logLike:.3f}")
print(f"rho bar square = {results.data.rhoBarSquare:.3g}")
print(f"Output file: {results.data.htmlFileName}")
```

Output:.html file (binary_generic_netherlands.html)

Estimation report

```
Number of estimated parameters: 3
                              Sample size: 228
                    Excluded observations: 1511
                      Init log likelihood: -158.0376
                     Final log likelihood: -123.1331
Likelihood ratio test for the init. model: 69.80899
           Rho-square for the init, model: 0.221
      Rho-square-bar for the init, model: 0.202
            Akaike Information Criterion: 252.2661
           Bayesian Information Criterion: 262.5542
                      Final gradient norm: 1.1699E-03
                           Nbr of threads: 8
                                Algorithm: BFGS with trust region for simple bound constraints
            Proportion analytical hessian: 0.0%
              Relative projected gradient: 4,962596e-06
                     Number of iterations: 16
           Number of function evaluations: 43
           Number of gradient evaluations: 14
            Number of hessian evaluations: 0
                     Cause of termination: Relative gradient = 5e-06 <= 6.1e-06
                        Optimization time: 0:00:00.020760
```

Estimated parameters

Name	Value	Std err	t-test	p-value	Rob. Std err	Rob. t-test	Rob. p-value
ASC_CAR	-0.798	0.27	-2.95	0.00314	0.275	-2.9	0.00379
BETA_COST						-4.67	3.03e-06
BETA_TIME	-1.33	0.344	-3.86	0.000115	0.354	-3.75	0.00018

Correlation of coefficients

Coefficient1	Coefficient2	Covariance	Correlation	t-test	p-value	Rob. cov.	Rob. corr.	Rob. t-test	Rob. p-value
BETA_COST	ASC_CAR	0.00434	0.693	2.69	0.00712	0.00473	0.713	2.65	0.00813
BETA_TIME	ASC_CAR	0.0455	0.491	-1.67	0.0949	0.0464	0.476	-1.6	0.109
BETA_TIME	BETA_COST	0.000664	0.0834	-3.54	0.000398	0.000701	0.0822	-3.44	0.000584

Smallest eigenvalue: 6.82736 Largest eigenvalue: 4322.14

Condition number: 633.062