Auxiliary Sections > Integral Transforms > Mellin Transforms: General Formulas

Mellin Transforms: General Formulas

No	Original function, $f(x)$	Mellin transform , $\hat{f}(s) = \int_0^\infty f(x)x^{s-1} dx$
1	$af_1(x) + bf_2(x)$	$a\hat{f}_1(s) + b\hat{f}_2(s)$
2	f(ax), a > 0	$a^{-s}\hat{f}(s)$
3	$x^a f(x)$	$\hat{f}(s+a)$
4	f(1/x)	$\hat{f}(-s)$
5	$f(x^{eta}), \ eta > 0$	$\frac{1}{\beta}\hat{f}\left(\frac{s}{\beta}\right)$
6	$f(x^{-eta}), \;\; eta > 0$	$\frac{1}{\beta}\hat{f}\left(-\frac{s}{\beta}\right)$
7	$x^{\lambda}f(ax^{\beta}), \ a, \beta > 0$	$\frac{1}{\beta}a^{-\frac{s+\lambda}{\beta}}\hat{f}\Big(\frac{s+\lambda}{\beta}\Big)$
8	$x^{\lambda}f(ax^{-\beta}), \ a, \beta > 0$	$\frac{1}{\beta}a^{\frac{s+\lambda}{\beta}}\hat{f}\left(-\frac{s+\lambda}{\beta}\right)$
9	$f_x'(x)$	$-(s-1)\hat{f}(s-1)$
10	$xf_x'(x)$	$-s\hat{f}(s)$
11	$f_x^{(n)}(x)$	$(-1)^n \frac{\Gamma(s)}{\Gamma(s-n)} \hat{f}(s-n)$
12	$\left(x\frac{d}{dx}\right)^n f(x)$	$(-1)^n s^n \hat{f}(s)$
13	$\left(\frac{d}{dx}x\right)^n f(x)$	$(-1)^n(s-1)^n\hat{f}(s)$
14	$x^{\alpha} \int_0^{\infty} t^{\beta} f_1(xt) f_2(t) dt$	$\hat{f}_1(s+\alpha)\hat{f}_2(1-s-\alpha+\beta)$
15	$x^{\alpha} \int_{0}^{\infty} t^{\beta} f_{1}\left(\frac{x}{t}\right) f_{2}(t) dt$	$\hat{f}_1(s+\alpha)\hat{f}_2(s+\alpha+\beta+1)$

Notation: $\Gamma(z)$ is the gamma function.

References

Bateman, H. and Erdélyi, A., *Tables of Integral Transforms. Vols. 1 and 2*, McGraw-Hill Book Co., New York, 1954.

Doetsch, G., *Einführung in Theorie und Anwendung der Laplace-Transformation*, Birkhäuser Verlag, Basel–Stuttgart, 1958.

Ditkin, V. A. and Prudnikov, A. P., *Integral Transforms and Operational Calculus*, Pergamon Press, New York, 1965.

Polyanin, A. D. and Manzhirov, A. V., *Handbook of Integral Equations*, CRC Press, Boca Raton, 1998.

Mellin Transforms: General Formulas