

Clinical Support Mobile
Application Development
Metin eklemek içir tıklayın for Histopathology Images
of Lung Cancer

Senior Design Project 2021-2022 Emre Taşkın

Goal-Motivation

 Developing a mobile application to assist pathologists in diagnosing lung cancer.

Market Analysis

Benefits

• Can be carried in pocket

• Easy to access and use

• Beneficial for human health.

First semester

- Data prepared
- TUBITAK 2209-A
- I created the environment for development
- I created the prototype of the mobile app
- Second semester TUBITAK 2242 was also applied

Data

• The data was downloaded from the kaggle as 10,000 malignant and 5,000 benign images.

Android App Part

 Mobile application was developed in the android studio environment using the kotlin language.

android studio

Mobile App Interface

Building Model

- TensorFlow and Keras are used to build and create a machine learning model.
- TFLite is used to deploy the model to an Android application.

Tensorflow with Keras Deep Learning model

 Using Convolutional Neural Networks, I developed algorithms and models to distinguish between benign and malignant lung cancers. For source code editing, I utilise Colab.

Model Information

 To use the Tensorflow hub module, the model can be trained with the inception v3 or Mobilenet options. I used the MobileNet model. Building model with https://tfhub.dev/google/tf2-preview/mobilenet-v2/feature-vector/2
Model: "sequential_4"

Layer (type)	Output	Shape	Param #
keras_layer_10 (KerasLayer)	(None,	======================================	2257984
flatten_11 (Flatten)	(None,	1280)	0
dense_22 (Dense)	(None,	512)	655872
dropout_11 (Dropout)	(None,	512)	0
dense_23 (Dense)	(None,	2)	1026
T	:======		

Total params: 2,914,882 Trainable params: 656,898

Non-trainable params: 2,257,984

Training Model

Validate each step by training the model with the validation dataset. I achieve 99% accuracy after 15 epochs

```
Epoch 1/15
656/656 [============ ] - 1905s 3s/step - loss: 0.0283 - accuracy: 0.9919 - val loss: 0.0095 - val accuracy: 0.9978
656/656 [============] - 656s 1000ms/step - loss: 0.0182 - accuracy: 0.9954 - val loss: 0.0138 - val accuracy: 0.9951
656/656 [============] - 652s 993ms/step - loss: 0.0125 - accuracy: 0.9967 - val loss: 0.0064 - val accuracy: 0.9976
Epoch 4/15
656/656 [============] - 648s 987ms/step - loss: 0.0090 - accuracy: 0.9975 - val_loss: 0.0148 - val_accuracy: 0.9967
Epoch 6/15
656/656 [==========] - 649s 989ms/step - loss: 0.0099 - accuracy: 0.9980 - val loss: 0.0200 - val accuracy: 0.9960
Epoch 8/15
656/656 [========] - 643s 980ms/step - loss: 0.0091 - accuracy: 0.9980 - val loss: 0.0147 - val accuracy: 0.9962
Epoch 11/15
Epoch 13/15
656/656 [==========] - 642s 979ms/step - loss: 0.0049 - accuracy: 0.9988 - val_loss: 0.0289 - val_accuracy: 0.9942
Epoch 15/15
656/656 [=============] - 651s 992ms/step - loss: 0.0087 - accuracy: 0.9978 - val loss: 0.0346 - val accuracy: 0.9944
```

Graph Results

i P N o	Name and Targets of Business Packages	By Who(s) It Will Be Performed	Time (Month)	Success Criterion and Contribution to the Success of the Project
1	Data Preprocessing	Emre Taşkın	0-1 Mo	Success criterion: Preparing at least 1 high-quality image for machine learning model from at least 50 patients in all 3 sub-cancer types. Contribution: 40%
2	Application of Learning Algorithms	Emre Taşkın	1-2 Mos	Success criterion: Creation of a learning model by ready-made machine learning libraries with images of at least 2 of 3 sub-cancer types. Contribution: 30%
3	Mobile Application Interface Design	Emre Taşkın	2-3 Mos	Success criterion: Design of easy-to-use interfaces on at least one platform (Android or Apple). Contribution: 5%
4	Testing the Learning Mechanism and Getting Feedback	Emre Taşkın	3-6 Mos	Success criterion: The model we trained predicts risk with at least 70% accuracy on the test data. Contribution: 20%
5	Dissemination of the Application	Emre Taşkın	6-7 Mos	Success criterion:Preparing an English paper and presenting the results as a poster or oral presentation at the international conference. Contribution: 5%

