

FELIX ORLANDO MARIA JOSEPH

DEPARMENT OF ELECTRICAL ENGINEERING

Smart Needles for Percutaneous Interventions-II

Design 2

Kinematic Modeling

Kinematic Modeling

Denavit-Hartenberg (D-H) Parameters

Link	d _i	Θ_{i}	a _i	α_i
1	$D_1(JV)$	π/2	0	π/2
2	0	$\theta_2(JV)$	55	0
3	0	$\theta_3(JV)$	50	0
4	0	$\theta_4(JV)$	45	π/2

Shape Setting of SMAs

Actuation in SMAs

- Two ends of an SMA wire are connected across every joint.
- Revolute joint is realized as shown.
- SMA wire is heated by passing current and bends the joint as shown.

Joint Angle Detection using Image

Control Strategy

$$I_{i} = k_{p}(\alpha^{i}_{desired} - \alpha^{i}_{current}) + k_{d} \left\{ \frac{d(\alpha^{i}_{desired} - \alpha^{i}_{current})}{dt} \right\}$$

Fabricated Needle

Simulation 20 -15 -

Ref: Aman Malhotra, Prasant Shekar Singh, Krishna and M. Felix Orlando, "Design, Fabrication and Control of a Smart Flexible Needle For Minimal Invasive Surgical Procedures", IEEE/ASME Advanced Intelligent Mechatronics (IEEE/ASME-AIM) 2018, Auckland, New Zealand, 9-12 July 2018, pp. 226-231.

Working Demo

Sliding Mode Control of a Smart SMA Actuated Needle

Active Flexible Needle

Sliding Mode Control of a Smart SMA Actuated Needle (cont'd)

Sliding Mode Control of a Smart SMA Actuated Needle (cont'd)

Control Scheme

$$u=u_S+u_{eq}$$

$$u_{eq}\approx u_{PID}=Kp\ e\ +\ Ki\int e\ dt\ +\ Kd\ \dot{e}$$

$$Kp(k+1)=Kp(k)+\gamma_1\sigma e$$

$$Ki(k+1)=Ki(k)+\gamma_2\sigma\int e\ dt$$

$$Kd(k+1)=Kd(k)+\gamma_3\sigma\dot{e}$$

Experimental Setup

Results

Results (cont'd)

External Disturbance

Results (cont'd)

External Disturbance

Results (cont'd)

Conclusion

- Two active **smart needle** designs
- Control using **Inverse kinematics**, **PID** and **Sliding mode**
- Chattering elimination
- Future work -- experiment using heterogeneous tissue

Thank You!

