Lab 3: Transient Lab

Name:	Student ID:	
Date:	TA's signature:	

Part I: First-Order Circuit:

- R1 = $1k\Omega$, C = 0.1μ F;
- Steps:
- 1. Turn on the function generator. Set a square wave at 1 $\,V_{ppk}\,$ and 100 Hz. Apply it to the circuit as the input signal.
- 2. Monitor the input signal in Channel 1 and the output in Channel 2 of the oscilloscope. Complete the table.

For the **fastest** circuit response, set $R_P = \mathbf{0}$, and set the oscilloscope:

- a) Vertical scale for the input signal 200mV/div;
- b) Vertical scale for the output signal 200mV/div;
- c) Horizontal scale 5ms/div;

For the **slowest** circuit response, set $R_P = 10 \text{ k}\Omega$, and set the oscilloscope:

- a) Vertical scale for the input signal 200mV/div;
- b) Vertical scale for the output signal 50mV/div;
- c) Horizontal scale 5ms/div;

The	setting	of	the	Fastest circuit response	Slowest circuit response
potentiometer Corresponds to			nds to		
the					
Peak-t	o-peak vol	tage o	f the		
Input square wave, V_{ppk} [V]					
Peak-t	o-peak vol	tage o	f the		
Outpu	t square wa	ve, $\mathbf{V}_{\mathbf{p}\mathbf{r}}$	_{ok} [V]		
Period	of the Inpu	t squar	e		
wave,	T [ms]				
Rise Ti	me of the O	utput			
wavefo	orm, [ms]				
Fall Tir	ne of the O	utput			
wavefo	orm, [ms]				

Part II: Second-Order Circuit:

- L = 1mH, R2= 100 Ω , R_P= 10k Ω , C = 820pF;
- Steps:
- 1. On the function generator, set a square wave at $\mathbf{1}V_{ppk}\,$ and $\mathbf{10}$ kHz as the input signal.
- 2. Vary R_P to generate three kinds of plot on the oscilloscope. (Under-damped, critically damped, over-damped response).
- 3. Observe and save the graph from the oscilloscope.
- 4. Record: **Fall time** and **Rise time**, the time interval between the neighboring peaks, Δt , and the resistance of the potentiometer, R_P .

	Resistance,	Rise Time, [ms]	Fall Time, [ms]	time interval, ∆t
Under-damped				
critically damped				
over-damped				