

大然机器人智能一体化关节C语言库函数说明

DrEmpower DR TELH

大然机器人 Dr Robot 2023 年 9 月 30 日修订

目录

第-	-章 简介	`	1
	1.1 简介		1
第二	章 设置	关节 ID 编号	2
	2.1	设置关节 ID 编号函数: set_id()	2
第三	三章 运动	控制	3
	3.1	单个关节绝对角度控制函数: set_angle()	3
	3.2	多个关节绝对角度控制函数: set_angles()	3
	3.3	单个关节相对角度控制函数: step_angle()	4
	3.4	多个关节相对角度控制函数: step_angles()	5
	3.5	单个关节力位混合(自适应)绝对角度控制函数: set_angle_adaptive()	6
	3.6	多个关节力位混合(自适应)绝对角度控制函数: set_angles_adaptive()	6
	3.7	单个关节阻抗控制函数: impedance_control()	7
	3.8	多个关节阻抗控制函数: impedance_control_multi()	7
	3.9	单个关节运动助力函数: motion_aid()	8
	3.10	多个关节运动助力函数: motion_aid_multi()	9
	3.11	检查并等待单个关节转动到目标角度函数: position_done()	10
	3.12	检查并等待多个关节转动到目标角度函数: positions_done()	10
	3.13	单个关节转速控制函数: set_speed()	10
	3.14	多个关节转速控制函数: set_speeds()	11
	3.15	单个关节力矩控制函数: set_torque()	12
	3.16	多个关节力矩控制函数: set_torques()	12
	3.17	急停函数: estop ()	13
第四	日章 参数	回读	14
	4.1	回读单个关节 ID 编号函数: get_id()	14
	4.2	回读多个关节 ID 编号函数: get_ids()	14
	4.3	回读关节当前角度函数: get_angle()	14
	4.4	回读关节当前转速函数: get_speed()	15
	4.5	同时回读关节当前角度和转速函数: get_state()	15
	4.6	回读关节当前输出力矩函数: get_torque()	15
	4.7	回读总线电压和 FOC q 轴电流函数: get_vol_cur()	16
	4.8	开启角度、转速、力矩实时反馈函数: enable_angle_speed_torque_state (() 16
	4.9	设置角度、转速、力矩反馈时间间隔函数: set_state_feedback_rate_ms()	17
	4.10	单个关节角度、转速、力矩实时反馈函数: angle_speed_torque_state ()	17
	4.11	多个关节角度、转速、力矩实时反馈函数: angle_speed_torque_states ()	18
	4.12	关闭角度、转速、力矩实时反馈函数: disable_angle_speed_torque_state (()18
	4.13	回读控制环位置增益 P、积分增益 I、转速增益 D 函数: get_pid()	19

4.14	回读配置参数函数: read_property()	19
第五章 参数	设置	21
5.1	设置当前角度为零点(断电重启后丢失)函数: set_zero_position_temp().	21
5.2	设置当前角度为零点(断电重启后不丢失)函数: set_zero_position()	21
5.3	设置本次运行期间关节角度限位函数: set_angle_range()	21
5.4	关闭本次运行期间关节角度限位函数: disable_angle_range()	22
5.5	设置关节角度限位属性函数: set_angle_range_config()	22
5.6	关闭关节角度限位属性函数: disable_angle_range_config()	23
5.7	设置本次运行期间转速限制函数: set_speed_limit()	24
5.8	设置本次运行期间力矩限制函数: set_torque_limit()	24
5.9	设置本次运行期间力位混合(自适应)转速函数: set_speed_adaptive()	25
5.10	设置本次运行期间力位混合(自适应)力矩函数: set_torque_adaptive()	25
5.11	设置本次运行期间位置增益 P、积分增益 I、转速增益 D 函数: set_pid()). 26
5.12	设置关节待机或闭环控制函数: set_mode()	26
5.13	设置 CAN 通信波特率函数: set_can_baud_rate()	27
5.14	写入关节配置参数函数: write_property()	27
5.15	保存关节配置参数函数: save_config()	28
第六章 辅助	功能	29
6.1	重启关节函数: reboot()	29
6.2	恢复出厂设置函数: init_config()	29
附录 关节开	放参数表	30

DR TETH

第一章 简介

1.1 简介

DrEmpower 智能一体化关节作为一款智能驱动器,不仅满足运动学控制的各项需求,同时也可满足动力学控制实践,使得用其开发的机器人产品更加贴近应用水平。

关节产品包括谐波减速器系列(HSA)、行星减速器系列(PDA)、中空系列(HCA)。具备运动智能特点,具备四大技能,包括运动控制、参数回读、参数设置和自主决策。

运动控制方面,除角度、转速、力矩控制外,还可进行运动助力控制、力位混合(自适应)控制、阻抗控制、急停控制。更多控制请见后续详情;

参数回读方面,可实时回读角度、转速、力矩。回读控制相关参数,如 PID 等。回读环境参数,如温度。更多参数请见后续详情;

参数设置方面,控制环中所有参数均可设置,也包括一些功能的使能设置。 更多参数请见后续详情;

自主决策方面,包括碰撞感知、堵转/过流/温度保护、角度/转速/力矩限制等;

第二章 设置关节 ID 编号

2.1 设置关节 ID 编号函数: set_id()

设置关节 ID 编号函数 set_id(),改变一体化关节 ID 编号(一次设定,关机后依然保存)。其原型及参数解释如表 2-1 和表 2-2 所示。

表2-1 设置关节 ID 编号函数原型说明

函数原型说明	
函数原型	void set_id(uint8_t id_num, int new_id)
返回值	无。

表2-2 设置关节 ID 编号函数参数解释说明

参数	解释
id_num	需要重新设置 ID 编号的一体化关节的 ID 编号,如果不知道当前一体化关节 ID 编号,可以用 0 广播。但是这时总线上只能连一个一体化关节,否则多个一体化关节会被设置成相同编号。
new_id	新一体化关节编号,一体化关节 ID 号范围为 1~63 内整数。

特别提醒:

- (1) 使用一体化关节前请先将其设置独有的 ID 号,以免在总线中出现相同 ID 号的多个关节,造成通信混乱;
 - (2) 该函数最好在正式使用关节之前使用,预先设置 ID 以便确定控制目标。
 - (3) 建议在无负载的情况下执行此命令,否则可能造成关节短暂卸载。

第三章 运动控制

3.1 单个关节绝对角度控制函数: set_angle()

单个关节角度控制函数 set_angle() 用于控制指定 ID 编号的一体化关节按照指定的转速转动到指定的角度(绝对角度,相对于用户设定的零点角度)。其原型及参数解释如表 3-1 和表 3-2 所示。

表3-1 单个关节角度控制函数原型说明

	函数原型说明
函数原型	void set_angle(uint8_t id_num, float angle, float speed, float param, int mode)
返回值	无。

表3-2 单个关节角度控制函数参数解释说明

参数	解释
id_num	一体化关节 ID 编号,如果不知道当前一体化关节 ID,可以用 0 广播,此时如果总 线上有多个一体化关节,则多个一体化关节都会执行该操作。
angle	一体化关节绝对角度 (°)。
gnood	一体化关节转速(r/min), 具体含义由 mode 的取值决定,
speed	mode=1: 目标转速; mode=0/2: 前馈转速。
	运动参数,由 mode 取值决定,
param	mode=0: 角度输入滤波带宽(<300);
	mode=1:启动和停止阶段角加转速(r/min/s); mode=2:前馈力矩 torque(Nm)。
	角度控制模,一体化关节支持三种角度控制模式,由 mode 取值决定,
	mode = 0: 轨迹跟踪模式,适合多个轨迹点输入后进行平滑控制,角度输入滤波带宽参数需设置为指令发送频率的一半;
mode	mode = 1: 梯形轨迹模式,这种模式下可以指定运动过程中的目标转速和启停加转速;
	mode = 2: 前馈控制模式,这种模式下的 speed 和 torque 分别为前馈控制量。前馈控制在原有 PID 控制基础上加入转速和力矩前馈,提高系统的响应特性和减少静态误差。

注: 在 mode=1 梯形轨迹模式中, speed 和 accel 都要大于 0; mode=0 时 speed 不起作用。

3.2 多个关节绝对角度控制函数: set_angles()

多个关节绝对角度控制函数: set_angles(),用于控制多个编号的一体化关节按照一定转速转动到指定的角度。其原型及参数解释如表 3-3 和表 3-4。

表3-3 多个关节绝对角度控制函数原型说明

	函数原型说明	
函数原	原型	void set_angles(uint8_t *id_list, float *angle_list, float speed, float param, int mode, size_t n)

	函数原型说明
返回值	无。

表3-4 多个关节绝对角度控制函数参数解释说明

参数	解释
id_list	一体化关节 ID 编号组成的列表。
angle_list	目标角度(°)组成的列表。
	指定转速 (r/min),由 mode 取值决定:
speed	mode=1,多个一体化关节中转速最大者的转速;
	mode=0/2,或前馈转速。
	运动参数,由 mode 取值决定:
	mode=0,角度输入滤波带宽(<300);
param	mode=1, 启动和停止阶段加转速(r/min/s);
	mode=2,前馈力矩(Nm)。
	控制模式选择,一体化关节支持三种角度控制模式,由 mode 取值决定:
	mode=0: 多个一体化关节轨迹跟踪模式,适合多个轨迹点输入后进行平滑控制,角度输入带宽参数需设置为指令发送频率的一半;
mode	mode=1: 多个一体化关节梯形轨迹模式,此时 speed 为这些一体化关节的最快转速 (r/min), param 为目标加转速 (r/min/s);
	mode=2: 前馈控制模式,这种模式下的 speed 和 torque 分别为前馈控制量。前馈控制在原有 PID 控制基础上加入转速和力矩前馈,提高系统的响应特性和减少静态误差。
n	总线上关节的数量

3.3 单个关节相对角度控制函数: step_angle()

单个关节相对角度控制函数 step_angle(),控制指定编号的一体化关节按照指定的转速相对转动指定的角度(相对角度,相对于发送该指令时的角度)。其原型及参数解释如表 3-5 和表 3-6。

表3-5 单个关节相对角度控制函数原型说明

函数原型说明	
函数原型	void step_angle(uint8_t id_num, float angle, float speed, float param, int mode)
返回值	无。

表3-6 单个关节相对角度控制函数参数解释说明

参数	解释
id_num	一体化关节 ID 编号,如果不知道当前一体化关节 ID,可以用 0 广播,此时如果总线上有多个一体化关节,则多个一体化关节都会执行该操作。
angle	一体化关节相对角度(°)
speed	指定转速(r/min),由 mode 取值决定:

参数	解释
	mode=1,目标转速;
	mode=0/2, 前馈转速(r/min)。
	运动参数,由 mode 取值决定,
	mode=0,角度输入滤波带宽(<300);
param	mode=1, 启动和停止阶段加转速(r/min/s);
	mode=2,前馈力矩 torque(Nm)。
	角度控制模,一体化关节支持三种角度控制模式,由 mode 取值决定,
	mode=0: 轨迹跟踪模式,适合多个轨迹点输入后进行平滑控制,角度输入滤波带宽参数需设置为指令发送频率的一半;
mode	mode=1: 梯形轨迹模式,这种模式下可以指定运动过程中的目标转速和启停加转速;
	mode=2: 前馈控制模式,这种模式下的 speed 和 torque 分别为前馈控制量,前馈控制
	在原有 PID 控制基础上加入转速和力矩前馈,提高系统的响应特性和减少静态误差。

3.4 多个关节相对角度控制函数: step_angles()

多个关节相对角度控制函数 step_angles(),控制多个一体化关节按照指定的时间先对转动给定角度。其原型及参数解释如表 3-7 和表 3-8。

表3-7 单个关节相对角度控制函数原型说明

函数原型说明	
函数原型	void step_angles(uint8_t *id_list, float *angle_list, float speed, float param, int mode, size_t n)
返回值	无。

表3-8 单个关节相对角度控制函数参数解释说明

参数	解释
id_list	一体化关节 ID 编号组成的列表。
angle_list	相对目标角度组成的列表。
	指定转速(r/min),由 mode 取值决定:
speed	mode=1, 目标转速;
	mode=0/2, 前馈转速(r/min)。
	运动参数,由 mode 取值决定,
	mode=0, 角度输入滤波带宽(<300);
param	mode=1, 启动和停止阶段加转速(r/min/s);
	mode=2,前馈力矩 torque(Nm)。
	角度控制模,一体化关节支持三种角度控制模式,由 mode 取值决定,
mode	mode=0: 轨迹跟踪模式,适合多个轨迹点输入后进行平滑控制,角度输入滤波带宽参
	数需设置为指令发送频率的一半;
	mode=1: 梯形轨迹模式,这种模式下可以指定运动过程中的目标转速和启停加转速;
	mode=2: 前馈控制模式,这种模式下的 speed 和 torque 分别为前馈控制量,前馈控制

参数	解释
	在原有 PID 控制基础上加入转速和力矩前馈,提高系统的响应特性和减少静态误差。
n	总线上关节的数量

3.5 单个关节力位混合(自适应)绝对角度控制函数: set_angle_adaptive()

单个关节力位混合(自适应)绝对角度控制函数 set_angle_adaptive(),控制指定 ID 编号的一体化关节按照限定的转速和力矩转动到指定的角度(绝对角度,相对于用户设定的零点角度)。注:当设置的转速相对于力矩过大,或力矩相对于转速过小,则关节无法在短时间内提供足够的加速度使得转速将为 0,此时若关节未遇阻力会出现在目标角度过冲现象,此为物理规律,暂时没有好的解决办法。其原型及参数解释如表 3-9 和表 3-10。

表3-9 单个关节力位混合(自适应)绝对角度控制函数原型说明

函数原型说明	
函数原型	void set_angle_adaptive(uint8_t id_num, float angle, float speed, float torque)
返回值	无。

表3-10 单个关节力位混合(自适应)绝对角度控制函数参数解释说明

参数	解释
id_num	一体化关节 ID 编号,如果不知道当前一体化关节 ID,可以用 0 广播,此时如果总 线上有多个一体化关节,则多个一体化关节都会执行该操作。
angle	一体化关节角度(°)。
speed	限定转速值(r/min)。
torque	限定力矩值(Nm)。

3.6 多个关节力位混合(自适应)绝对角度控制函数: set_angles_adaptive()

多个关节力位混合(自适应)绝对角度控制函数: set_angles_adaptive(),控制多个一体化关节按照限定的转速和力矩转动到指定的角度(绝对角度,相对于用户设定的零点角度)。注:当设置的转速相对于力矩过大,或力矩相对于转速过小,则关节无法在短时间内提供足够的加速度使得转速将为 0,此时若关节未遇阻力会出现在目标角度过冲现象,此为物理规律,暂时没有好的解决办法。其原型及参数解释如表 3-11 和表 3-12。

表3-11 多个关节力位混合(自适应)绝对角度控制函数原型说明

函数原型说明	
函数原型	void set_angles_adaptive(uint8_t id_list[], float angle_list[], float speed_list[], float torque_list[], size_t n)
返回值	无。

参数	解释
id_list	一体化关节 ID 编号组成的列表。
angle_list	一体化关节角度(°)组成的列表。
speed_list	限定转速值(r/min)组成的列表。
torque_list	限定力矩值(Nm)组成的列表。
n	总线上关节的数量

表3-12 多个关节力位混合(自适应)绝对角度控制函数参数解释说明

3.7 单个关节阻抗控制函数: impedance_control()

单个关节阻抗控制函数 impedance control(),对指定 ID 编号的一体化关节 进行阻抗控制。该函数执行结束后关节会停在目标角度 angle,并对外表现出一 定柔性。其原型及参数解释表 3-13 和表 3-14。

	1 1 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
函数原型说明	
函数原型	void impedance_control(uint8_t id_num, float pos, float vel, float tff, float kp, float kd)
返回值	无。

表3-13 单个关节阻抗控制函数原型说明

表3-14 单个关节阻抗控制函数参数解释说明

参数	解释
id_num	一体化关节 ID 编号,如果不知道当前一体化关节 ID,可以用 0 广播,此时如果总线上有多个一体化关节,则多个一体化关节都会执行该操作。
angle	一体化关节目标角度(°)。
speed	一体化关节目标转速(r/min)。
tff	前馈力矩(Nm)。
kp	角度刚度系数 (Nm/°), 需大于 0。
kd	转速阻尼系数 (Nm/(r/min)), 需大于 0。

注: 该函数直接控制关节输出力矩, 其目标输出力矩计算公式如下:

torque = kp*(angle - angle) + tff + kd*(speed - speed)

其中 angle 和 speed 分别为输出轴当前实际角度(°)和当前实际转速(r/min),kp 和 kd 为刚度系数和阻尼系数。

3.8 多个关节阻抗控制函数: impedance_control_multi()

多个关节阻抗控制函数 impedance control multi(), 对多个一体化关节进行 阻抗控制。该函数执行结束后被指定的各个关节会停在目标角度 angle,并对外 表现出一定柔性。其原型及参数解释如表 3-15 和表 3-16。

表3-15 多个关节阻抗控制函数原型说明

函数原型说明	
函数原型	void impedance_control_multi(uint8_t id_list[], float angle_list[], float speed_list[], float
	tff_list[], float kp_list[], float kd_list[], size_t n)
返回值	无。

表3-16 多个关节阻抗控制函数参数解释说明

参数	解释
id_num_list	一体化关节 ID 编号组成的列表。
angle_list	一体化关节目标角度组成的列表(°)。
speed_list	一体化关节目标转速组成的列表(r/min)。
tff_list	前馈力矩组成的列表(Nm)。
kp_list	角度刚度系数组成的列表(Nm/°),每个元素均需大于 0。
kd_list	转速阻尼系数组成的列表($Nm/(r/min)$),每个元素均需大于 0 。
n	总线上关节的数量

注: 该函数直接控制关节输出力矩, 其目标输出力矩计算公式如下:

torque = kp_list[i] * (angle_list[i] - angle_[i]) + tff_list[i] + kd_list[i] * (speed_list[i] - speed_[i]) 其中 angle_[i] 和 speed_[i] 分别为对应关节输出轴当前实际角度(度)和当前实际转速 (r/min), kp_list[i] 和 kd_list[i]为刚度系数和阻尼系数。

3.9 单个关节运动助力函数: motion_aid()

单个关节运动助力函数 motion_aid(), 指定 ID 编号的一体化关节进行运动助力。当关节在停止状态下检测到角度差 angle_err 和转速差 speed_err 时向目标角度 angle 方向提供力矩大小为 torque 的助力,并在到达 angle 后停止并保持位置。其原型及参数解释如表 3-17 和表 3-18。

表3-17 单个关节运动助力函数原型说明

函数原型说明	
函数原型	void motion_aid(uint8_t id_num, float angle, float speed, float angle_err, float speed_err, float torque)
返回值	无。

表3-18 单个关节运动助力函数参数解释说明

参数	解释
id_num	一体化关节 ID 编号,如果不知道当前一体化关节 ID,可以用 0 广播,此时总线上有多个一体化关节,则多个一体化关节都会执行该操作。
angle	助力目标角度(°),该值减去关节当前角度即为助力行程。
speed	限定转速(r/min),即助力的限定转速,防止助力力矩引起的加速导致转速过快

参数	解释
angle_err	角度差值(°),表示运动助力的角度灵敏度。
speed_err	转速差值(r/min),表示运动助力的转速灵敏度。
torque	助力力矩(Nm)。

注:

- a、当助力与外部驱动力之和大于阻力,关节会持续转动;
- b、当助力与外部驱动力之和小于阻力,关键开始减速,当转速小于 2 倍转速差值 speed err 时,关节停止输出助力;
- c、一般情况下,该功能为人进行助力,强烈建议用户将助力力矩设置在人力所能及的 范围内,即人力可使关节停止转动;
- d、若必须设置超出人力的力矩,则必须在合理位置设置牢固的机械限位,以避免超出 运动范围给人或物体带来损伤。

3.10多个关节运动助力函数: motion_aid_multi()

表3-19

多个关节运动助力函数 motion aid multi(),指定多个一体化关节进行运动助 力。当关节在停止状态下检测到角度差 angle er list[i] 和转速差 speed err list[i] 时向目标角度 angle list[i] 方向提供力矩大小为 torque list[i] 的助力,并在到达 angle list[i] 后停止并保持位置。其原型及参数解释如表 3-19 和表 3-20。

函数原型说明 void motion_aid_multi(uint8_t id_list[], float angle_list[], float speed_list[], float 函数原型 angle_err_list[], float speed_err_list[], float torque_list[], size_t n) 返回值 无。

多个关节运动助力函数原型说明

表3-20 多个关节运动助力函数参数解释说明

参数	解释
id_list	一体化关节 ID 编号组成的列表。
angle_list	助力目标角度组成的列表(°),该值减去关节当前角度即为助力行程。
speed_list	限定转速组成的列表(r/min),即助力的限定转速,防止助力力矩引起的加速导致转速过快。
angle_err_list	角度差值(°)组成的列表,表示运动助力的角度灵敏度。
speed_err_list	转速差值(r/min)组成的列表,表示运动助力的转速灵敏度。
torque_list	助力力矩(Nm)组成的列表。
n	总线上关节的数量

注:

- a、当助力与外部驱动力之和大于阻力,关节会持续转动;
- b、当助力与外部驱动力之和小于阻力,关键开始减速,当转速小于 2 倍转速差值

speed err list[i] 时, 关节停止输出助力;

- c、一般情况下,该功能为人进行助力,强烈建议用户将助力力矩设置在人力所能及的范围内,即人力可使关节停止转动;
- d、若必须设置超出人力的力矩,则必须在合理位置设置牢固的机械限位,以避免超出运动范围给人或物体带来损伤。

3.11检查并等待单个关节转动到目标角度函数: position_done()

检查并等待单个关节转动到目标角度函数 position_done(), 检查并等待单个一体化关节是否转动到指定角度。其原型及参数解释如表 3-21 和表 3-22。

表3-21 检查并等待单个关节转动到目标角度函数原型说明

函数原型说明	
函数原型	void position_done(uint8_t id_num)
返回值	无。

表3-22 检查并等待单个关节转动到目标角度函数参数解释说明

参数	解释
id_num	一体化关节 ID 编号,如果不知道当前一体化关节 ID,可以用 0 广播,此时如果总
	线上有多个一体化关节,则多个一体化关节都会执行该操作。

3.12检查并等待多个关节转动到目标角度函数: positions_done()

检查并等待多个个关节转动到目标角度函数 positions_done(),检查并等待单个一体化关节是否转动到指定角度。其原型及参数解释如表 3-23 和表 3-24。

表3-23 检查并等待多个个关节转动到目标角度函数原型说明

函数原型说明	
函数原型	<pre>void positions_done(uint8_t *id_list,size_t n)</pre>
返回值	无。

表3-24 检查并等待多个个关节转动到目标角度函数参数解释说明

参数	解释
id_list	一体化关节 ID 编号组成的列表。
n	总线上关节的数量

3.13单个关节转速控制函数: set_speed()

单个关节转速控制函数 set_speed(),控制指定 ID 编号的一体化关节按照指定的转速连续整周转动(转动到关节支持的极限角度后自动停止)。其原型及参数解释如表 3-25 和表 3-26。

表3-25 单个关节转速控制函数原型说明

函数原型说明	
函数原型	void set_speed(uint8_t id_num, float speed, float param, int mode)
返回值	无。

表3-26 单个关节转速控制函数参数解释说明

参数	解释
id_num	一体化关节 ID 编号,如果不知道当前一体化关节 ID,可以用 0 广播,此时如果总 线上有多个一体化关节,则多个一体化关节都会执行该操作。
	目标转速(r/min)。
	运动参数,由 mode 取值决定:
param	mode=0,前馈力矩(Nm);
	mode!=0,目标加转速(r/min/s)。
mode	控制模式选择,由 mode 取值决定:
	mode=0,转速直接控制模式,将一体化关节目标转速直接设为 speed;
	mode!=0, 匀加速控制模式,一体化关节将按照目标角加速变化到 speed。

3.14多个关节转速控制函数: set_speeds()

多个关节转速控制函数 set_speeds(),控制多个一体化关节按照指定的转速连续整周转动(转动到关节支持的极限角度后自动停止)。其原型及参数解释如表 3-27 和表 3-28。

表3-27 多个关节转速控制函数原型说明

函数原型说明	
函数原型	void set_speeds(uint8_t *id_list, float *speed_list, float param, float mode, size_t n)
返回值	无。

表3-28 多个关节转速控制函数参数解释说明

参数	解释
id_list	一体化关节 ID 编号组成的列表。
speed_list	一体化关节目标转速(r/min)组成的列表。
	运动参数,由 mode 取值决定:
param	mode=0,前馈力矩(Nm);
	mode!=0,目标加转速(r/min/s)。
	控制模式选择,由 mode 取值决定:
mode	mode=0,转速直接控制模式,将一体化关节目标转速直接设为 speed;
	mode!=0, 匀加速控制模式,一体化关节将按照目标角加速变化到 speed。
n	总线上关节的数量

3.15单个关节力矩控制函数: set_torque()

单个关节力矩控制函数 set_torque(),控制指定 ID 编号的一体化关节输出指定的力矩(Nm),若阻力不足以抵抗该力矩,则关节会持续转动(转动到关节支持的极限角度后自动停止)。其原型及参数解释如表 3-29 和表 3-30。

表3-29 单个关节力矩控制函数原型说明

函数原型说明	
函数原型	void set_torque(uint8_t id_num, float torque, float param, int mode)
返回值	无。

表3-30 单个关节力矩控制函数参数解释说明

参数	解释			
id_num	一体化关节 ID 编号,如果不知道当前一体化关节 ID,可以用 0 广播,此时如果总线上有多个一体化关节,则多个一体化关节都会执行该操作。			
torque	目标力矩(Nm)。			
	运动参数,由 mode 取值决定:			
param	mode=0,参数不起作用;			
	mode!=0,力矩在单位时间内的增量(Nm/s)。			
	控制模式选择,由 mode 取值决定:			
mode	mode=0, 力矩直接控制模式,将一体化关节目标转速直接设为 torque;			
mode	mode!=0,力矩匀速增加模式,一体化关节将按照指定的单位时间内的增量匀速变化到			
	torque.			

3.16多个关节力矩控制函数: set_torques()

多个关节力矩控制函数 set_torques(),控制多个一体化关节输出指定的力矩,若阻力不足以抵抗该力矩,则关节会持续转动(转动到关节支持的极限角度后自动停止)。其原型及参数解释如表 3-31 和表 3-32。

表3-31 多个关节力矩控制函数原型说明

	函数原型说明
函数原型	void set_torques(uint8_t *id_list, float *torque_list, float param, int mode, size_t n)
返回值	无。

表3-32 多个关节力矩控制函数参数解释说明

参数	解释		
id_list	一体化关节 ID 编号组成的列表。		
torque_list	一体化关节目标力矩(Nm)组成的列表。		
param	运动参数,由 mode 取值决定:		

参数	解释			
	mode=0,参数不起作用;			
	mode!=0, 力矩在单位时间内的增量(Nm/s)。			
	控制模式选择,由 mode 取值决定:			
mode	mode=0, 力矩直接控制模式, 将一体化关节目标转速直接设为 torque;			
mode	mode!=0,力矩匀速增加模式,一体化关节将按照指定的单位时间内的增量匀速变化到			
	torque.			
n	总线上关节的数量			

3.17急停函数: estop ()

急停函数 estop(),控制一体化关节紧急停止。如果想控制多个关节同时急停,则可使 id_num=0。其原型及参数解释如表 3-33 和表 3-34。

表3-33 多个关节运动助力函数原型说明

函数原型说明		
函数原型	void estop(uint8_t id_num)	
返回值	无。	

表3-34 多个关节运动助力函数参数解释说明

参数	解释			
id_num	一体化关节 ID 编号。如果不知道当前一体化关节 ID, 可以用 0 广播,此时如果总			
	线上有多个一体化关节,则多个一体化关节都会执行该操作。			

第四章 参数回读

4.1 回读单个关节 ID 编号函数: get_id()

回读关节 ID 编号函数 get_id(),读取一体化关节 DI 编号。注意使用该函数时总线上只能接 1 个一体化关节。其原型及参数解释如表 3-33 和表 3-34。

表4-1 回读关节 ID 编号函数原型说明

函数原型说明		
函数原型	uint8_t get_id(uint8_t id_num)	
返回值	id: 关节 ID 编号。	

表4-2 回读关节 ID 编号函数参数解释说明

参数	解释
id_num	通常为0

4.2 回读多个关节 ID 编号函数: get_ids()

4.3 回读关节当前角度函数: get_angle()

回读关节当前角度函数 get_angle(),读取一体化关节当前角度,单位为度(°)。 其原型及参数解释如表 4-5 和表 4-6。

表4-5 回读关节当前角度函数原型说明

	函数原型说明
函数原型	float get_angle(uint8_t id_num)
返回值	angle: 当前关节角度(°)。

表4-6 回读关节当前角度函数参数解释说明

参数	解释		
id_num	一体化关节 ID 编号,如果不知道当前一体化关节 ID 编号,可以用 0广播。但此时		
	如果总线上有多个一体化关节,会造成总线通信干扰,不可使用 0 广播。		

4.4 回读关节当前转速函数: get_speed()

回读关节当前转速函数 get_speed(),读取一体化关节当前转速,单位为转每分钟(r/min)。其原型及参数解释如表 4-7 和表 4-8。

表4-7 回读关节当前转速函数原型说明

函数原型说明		
函数原型	float get_speed(uint8_t id_num)	
返回值	speed: 关节当前转速(r/min)。	

表4-8 回读关节当前转速函数参数解释说明

参数	解释
id_num	一体化关节 ID 编号,如果不知道当前一体化关节 ID 编号,可以用 0广播。但此时
	如果总线上有多个一体化关节,会造成总线通信干扰,不可使用 0 广播。

4.5 同时回读关节当前角度和转速函数: get_state()

同时回读关节当前角度和转速函数 get_state(),读取一体化关节当前角度和转速,单位为读(°)和转每分钟(r/min)。其原型及参数解释如表 4-9 和表 4-10。

表4-9 同时回读关节当前角度和转速函数原型说明

函数原型说明	
函数原型	struct servo_state get_state(uint8_t id_num)
返回值	输出轴角度(°)和转速 (r/min) 组成的结构体

表4-10 同时回读关节当前角度和转速函数参数解释说明

参数	解释
id_num	一体化关节 ID 编号,如果不知道当前一体化关节 ID 编号,可以用 0广播。但此时
	如果总线上有多个一体化关节,会造成总线通信干扰,不可使用 0 广播。

4.6 回读关节当前输出力矩函数: get_torque()

回读关节当前输出力矩函数 get_torque(),读取一体化关节当前输出力矩,单位为牛米(Nm)。其原型及参数解释如表 4-11 和表 4-12。

表4-11 回读关节当前输出力矩函数原型说明

函数原型说明	
函数原型	float get_torque(uint8_t id_num)
返回值	torque: 关节当前输出力矩(Nm)。

表4-12 回读关节当前输出力矩函数参数解释说明

参数	解释
id_num	一体化关节 ID 编号,如果不知道当前一体化关节 ID 编号,可以用 0广播。但此时
	如果总线上有多个一体化关节,会造成总线通信干扰,不可使用 0 广播。

4.7 回读总线电压和 FOC q 轴电流函数: get_vol_cur()

回读总线电压和 FOC q 轴电流函数 get_vol_cur(),读取一体化关节当前电压和 q 轴电流,单位分别为伏(V)和安(A)。其原型及参数解释如表 4-13 和表 4-14。

表4-13 回读总线电压和 FOC q 轴电流函数原型说明

函数原型说明	
函数原型	struct servo_volcur get_volcur(uint8_t id_num)
返回值	母线电压"float vol"和 FOC q 轴电流"float cur"组成的结构体。

表4-14 回读总线电压和 FOC q 轴电流函数参数解释说明

参数	解释
id_num	一体化关节 ID 编号,如果不知道当前一体化关节 ID 编号,可以用 0广播。但此时
	如果总线上有多个一体化关节,会造成总线通信干扰,不可使用 0 广播。

4.8 开启角度、转速、力矩实时反馈函数: enable_angle_speed_torque_state()

开启角度、转速、力矩实时反馈函数 enable_angle_speed_torque_state (),用于开启关节的角度、转速、力矩通过 CAN 总线实时反馈。其原型及参数解释如表 4-15 和表 4-16。

表4-15 开启角度、转速、力矩实时反馈函数原型说明

函数原型说明	
函数原型	void enable_angle_speed_torque_state(uint8_t id_num)
返回值	无。

表4-16 开启角度、转速、力矩实时反馈函数参数解释说明

参数	解释
id_num	一体化关节 ID 编号,如果不知道当前一体化关节 ID 编号,可以用 0 广播。但此时如果总线上有多个一体化关节,会造成总线通信干扰,不可使用 0 广播。

4.9 设置角度、转速、力矩反馈时间间隔函数: set_state_feedback_rate_ms()

设置角度、转速、力矩反馈时间间隔函数: set_state_feedback_rate_ms(),用于设置角度、转速、力矩反馈时间间隔,单位为ms,默认为 2ms。其原型及参数解释如表 4-17 和表 4-18。

表4-17 开启角度、转速、力矩实时反馈函数原型说明

函数原型说明	
函数原型	void set_state_feedback_rate_ms(uint8_t id_num, uint32_t n_ms)
返回值	无。

表4-18 开启角度、转速、力矩实时反馈函数参数解释说明

参数	解释
id_num	一体化关节 ID 编号,如果不知道当前一体化关节 ID 编号,可以用 0广播。但此时
	如果总线上有多个一体化关节,会造成总线通信干扰,不可使用 0 广播。

特别提醒: 当总线中不同 ID 号关节数量为 n 时,建议将所有关节的将该值统一设置为 2n。

4.10单个关节角度、转速、力矩实时反馈函数: angle_speed_torque_state ()

单个关节角度、转速、力矩实时反馈函数 angle_speed_torque_state (),用于指定单个关节的角度(°)、转速(r/min)、力矩(Nm)通过 CAN 总线实时反馈。其原型及参数解释如表 4-19 和表 4-20。

表4-19 角度、转速、力矩实时反馈函数原型说明

函数原型说明	
函数原型	struct angle_speed_torque angle_speed_torque_state(uint8_t id_num)
返回值	关节的角度(°)"float"、转速(r/min) "float"、力矩(Nm) "float"组成的结构体。

表4-20 角度、转速、力矩实时反馈函数参数解释说明

参数	解释
id_num	一体化关节 ID 编号,注意使用该函数时最好已经将总线中的关节设置为 1~63 号,
	并且没有相同 ID 号的关节。

特别提醒:

- 1. 由于总线实时发送数据,读取的第一组数据可能出错,因此该函数连续运行第二次之后才能保证数据有效性。
- 2. 运行任何其他回读参数的函数前,须先运行后面的disable_angle_speed_torque_state()关闭实时反馈,否则由于总线实时占用有较大概率无法得到正确的数值。

3. 使用该函数时最好已经将总线中的关节设置为 1~63 号,并且没有相同 ID 号的关节。

4.11多个关节角度、转速、力矩实时反馈函数: angle_speed_torque_states ()

4.12关闭角度、转速、力矩实时反馈函数: disable_angle_speed_torque_state ()

关闭角度、转速、力矩实时反馈函数 disable_angle_speed_torque_state (),用于关闭关节的角度、转速、力矩通过 CAN 总线实时反馈。其原型及参数解释如表 4-23 和表 4-24。

表4-23 关闭角度、转速、力矩实时反馈函数原型说明

函数原型说明	
函数原型	void disable_angle_speed_torque_state(uint8_t id_num)
返回值	无。

表4-24 关闭角度、转速、力矩实时反馈函数参数解释说明

参数	解释
id_num	一体化关节 ID 编号,如果不知道当前一体化关节 ID 编号,可以用 0广播。但此时
	如果总线上有多个一体化关节,会造成总线通信干扰,不可使用 0 广播。

特别提醒:

1. 运行任何其他回读参数的函数前,须先运行这里的disable_angle_speed_torque_state()关闭实时反馈,否则由于总线实时占用有较大概率无法得到正确的数值。

4.13 回读控制环位置增益 P、积分增益 I、转速增益 D 函数: get_pid()

回读控制环位置增益 P、积分增益 I、转速增益 D 函数: get_pid(), 读取一体化关节控制环的位置增益 P、积分增益 I、转速增益 D。其原型及参数解释如表 4-25 和表 4-26。

表4-25 回读控制环位置增益 P、积分增益 I、转速增益 D 函数原型说明

函数原型说明	
函数原型	struct PID get_pid(uint8_t id_num)
返回值	P"float"、D"float"、I"float"组成的结构体。

表4-26 回读控制环位置增益 P、积分增益 I、转速增益 D函数参数解释说明

参数	解释
id_num	一体化关节 ID 编号,如果不知道当前一体化关节 ID 编号,可以用 0广播。但此时
	如果总线上有多个一体化关节,会造成总线通信干扰,不可使用 0 广播。

4.14 回读配置参数函数: read_property()

回读配置参数函数 read_property(), 读取一体化关节属性参数, 这里的属性参数为一体化关节控制参数, 存放于 parameter_interface.py 文件。其原型及参数解释如表 4-27 和表 4-28。

表4-27 回读配置参数函数原型说明

函数原型说明	
函数原型	float read_property(uint8_t id_num,int param_address, int param_type)
返回值	value: 返回对应属性参数的值。

表4-28 回读配置参数函数参数解释说明

参数	解释
id_num	一体化关节 ID 编号,如果不知道当前一体化关节 ID 编号,可以用 0广播。但此时如果总线上有多个一体化关节,会造成总线通信干扰,不可使用 0 广播。
property	需要设置的属性参数名称,例如"dr.voltage","dr.config.can_id"等,具体参数名称见

参数	解释
	parameter_interface.py 文件里 property_address 字典里的键值。

第五章 参数设置

5.1 设置当前角度为零点(断电重启后丢失)函数: set_zero_position_temp()

设置当前角度为零点(断电重启后丢失)函数: set_zero_position_temp(),设置当前角度为一体化关节输出轴零点,设置完后当前角度为 0 度。其原型及参数解释如表 5-3 和表 5-4。(中空关节无此功能)**注意该函数后不可以使用save config()**,否则会改变原定的零点位置。

表5-1 设置当前角度为零点(断电重启后不丢失)函数原型说明

函数原型说明	
函数原型	void set_zero_position_temp(uint8_t id_num)
返回值	无。

表5-2 设置当前角度为零点(断电重启后丢失)函数参数解释说明

解释
一体化关节 ID 编号,如果不知道当前一体化关节 ID,可以用 0 广播,此时如果总 线上有多个一体化关节,则多个一体化关节都会执行该操作。
_

5.2 设置当前角度为零点(断电重启后不丢失)函数: set_zero_position()

设置当前角度为零点(断电重启后不丢失)函数: set_zero_position(),设置当前角度为一体化关节输出轴零点,设置完后当前角度为 0 度。其原型及参数解释如表 5-3 和表 5-4。注意最好在修改其他参数前使用该函数,因该函数中包含 save_config() 函数,会将其他参数一并保存。

表5-3 设置当前角度为零点(断电重启后不丢失)函数原型说明

函数原型说明	
函数原型	void set_zero_position(uint8_t id_num)
返回值	无。

表5-4 设置当前角度为零点(断电重启后不丢失)函数参数解释说明

参数	解释
id_num	一体化关节 ID 编号,如果不知道当前一体化关节 ID,可以用 0 广播,此时如果总
	线上有多个一体化关节,则多个一体化关节都会执行该操作。

注:建议在无负载的情况下执行此命令,否则可能造成关节短暂卸载。

5.3 设置本次运行期间关节角度限位函数: set_angle_range()

设置本次运行期间关节角度限位函数 set_angle_range(),设置一体化关节运行过程中的极限角度,设置成功后一体化关节的可控制的转动角度将限定在

[angle_min, angle_max]范围内。关机重启后失效。其原型及参数解释如表 5-5 和表 5-6。

表5-5 设置本次运行期间关节角度限位函数原型说明

函数原型说明	
函数原型	int8_t set_angle_range(uint8_t id_num, float angle_min, float angle_max)
返回值	1: 设置成功; 0: 设置失败。

表5-6 设置本次运行期间关节角度限位函数参数解释说明

参数	解释
id_num	一体化关节 ID 编号,如果不知道当前一体化关节 ID,可以用 0 广播,此时如果总线上有多个一体化关节,则多个一体化关节都会执行该操作。
angle_min	最小限位角度(°)。
angle_max	最大限位角度(°)。

注:

- a、使用该函数时输出轴角度必须在[angle min, angle max]范围内,否则将设置失败;
- b、该功能只在本次开机运行过程中有效,对应地将在关节重启后失效;
- c、关节本身还有一个极限角度属性,默认生效范围为[-180.5°,180.5°],该属性不受该函数影响,且每次开机重启均有效,如需重新设置或取消该属性,请使用 set_angle_range_config()和 disable angle range config(),详见对应函数说明。

5.4 关闭本次运行期间关节角度限位函数: disable_angle_range()

关闭本次运行期间的关节角度限位函数 disable_angle_range(),取消本次运行期间一体化关节运行过程中的角度限位。其原型及参数解释如表 5-7 和表 5-8。

表5-7 关闭本次运行期间的关节角度限位函数原型说明

函数原型说明	
函数原型	int8_t disable_angle_range(uint8_t id_num)
返回值	1: 取消成功; 0: 取消失败。

表5-8 关闭本次运行期间的关节角度限位函数参数解释说明

参数	解释
id_num	一体化关节 ID 编号,如果不知道当前一体化关节 ID,可以用 0 广播,此时如果总
	线上有多个一体化关节,则多个一体化关节都会执行该操作。

5.5 设置关节角度限位属性函数: set_angle_range_config()

设置关节角度限位属性函数 set angle range config(),设置一体化关节极限

角度属性,设置成功后一体化关节的可控制的转动角度将限定在[angle_min, angle_max]范围内;如该函数执行完成后再执行 save_config() 函数则该设置将会保存,每次开机重启均默认有效;如不执行 save_config()函数则该设置将在关机重启后失效。其原型及参数解释如表 5-9 和表 5-10。

表5-9 设置本次运行期间关节角度限位函数原型说明

函数原型说明	
函数原型	int8_t set_angle_range_config(uint8_t id_num, float angle_min, float angle_max)
返回值	1: 设置成功; 0: 设置失败。

表5-10 设置本次运行期间关节角度限位函数参数解释说明

参数	解释
id_num	一体化关节 ID 编号,如果不知道当前一体化关节 ID,可以用 0 广播,此时如果总线上有多个一体化关节,则多个一体化关节都会执行该操作。
angle_min	最小限位角度(°)。
angle_max	最大限位角度(°)。

注:

- a、使用该函数时输出轴角度必须在[angle min, angle max]范围内, 否则将设置失败;
- b、限位范围设置成功后,再执行 save config() 函数,则每次开机重启后均有效;
- c、如需取消该属性影响,请使用 disable_angle_range_config() 函数将该属性关闭,则本次开机该属性不起作用;若随后使用 save_config() 则该属性将永久失去,如需找回该属性,则再次使用本函数即可。

5.6 关闭关节角度限位属性函数: disable_angle_range_config()

关闭关节角度限位属性函数 disable_angle_range_config(), 取消一体化关节角度限位属性; 如该函数执行完成后再执行 save_config() 函数则该设置将会保存,每次开机重启均默认有效; 如不执行 save_config()函数则该设置将在关机重启后失效。其原型及参数解释如表 5-11 和表 5-12。

表5-11 关闭关节角度限位属性函数原型说明

函数原型说明	
函数原型	int8_t disable_angle_range_config(uint8_t id_num)
返回值	1: 取消成功; 2: 取消失败。

表5-12 关闭关节角度限位属性函数参数解释说明

参数	解释
id_num	一体化关节 ID 编号,如果不知道当前一体化关节 ID,可以用 0 广播,此时如果总
	线上有多个一体化关节,则多个一体化关节都会执行该操作。

5.7 设置本次运行期间转速限制函数: set_speed_limit()

设置本次运行期间转速限制函数 set_speed_limit(),设置一体化关节转速限制 speed_limit (r/min),此后关节转速绝对值不超过 speed_limit。该函数执行完转速限制在本次开机运行期间有效,关机或重启后将失效。如决定永久保持转速限制 speed_limit,请紧接着使用 save_config 函数(慎用)。其原型及参数解释如表 5-13 和表 5-14。

表5-13 设置本次运行期间转速限制函数原型说明

函数原型说明	
函数原型	void set_speed_limit(uint8_t id_num, float speed_limit)
返回值	无。

表5-14 设置本次运行期间转速限制函数参数解释说明

参数	解释
id_num	一体化关节 ID 编号,如果不知道当前一体化关节 ID,可以用 0 广播,此时如果总线上有多个一体化关节,则多个一体化关节都会执行该操作。
speed_limit	转速限制(r/min)(必须大于 0)。

特别提醒:

1. 若想关机重启前取消该限制,只需设置一个非常大的数值,比如令 speed_limit = 100000。

5.8 设置本次运行期间力矩限制函数: set_torque_limit()

设置本次运行期间力矩限制函数 set_torque_limit(),设置一体化关节力矩限制 torque_limit (Nm),此后关节力矩绝对值不超过 torque_limit。该函数执行完力矩限制在本次开机运行期间有效,关机或重启后将失效。如决定永久保持力矩限制 torque_limit,请紧接着使用 save_config 函数(慎用)。其原型及参数解释如表 5-15 和表 5-16。

表5-15 设置本次运行期间力矩限制函数原型说明

函数原型说明	
函数原型	<pre>void set_torque_limit(uint8_t id_num, float torque_limit)</pre>
返回值	无。

表5-16 设置本次运行期间力矩限制函数参数解释说明

参数	解释
id_num	一体化关节 ID 编号,如果不知道当前一体化关节 ID,可以用 0 广播,此时如果总线上有多个一体化关节,则多个一体化关节都会执行该操作。
torque_limit	力矩限制(Nm)(必须大于 0)。

特别提醒:

1. 若想关机重启前取消该限制,只需设置一个非常大的数值,比如令 torque_limit = 100000。

5.9 设置本次运行期间力位混合(自适应)转速函数: set_speed_adaptive()

设置本次运行期间力位混合(自适应)转速函数 set_speed_adaptive(),设置一体化关节力位混合(自适应)转速限制 speed_adaptive (r/min),此后关节力位混合(自适应)转速绝对值不超过 speed_adaptive。该函数将在除 set_angle_adaptive()、set_angles_adaptive()、motion_aid()、motion_aid_multi() 之外的其他运动控制函数之后失效,关机或重启后也将失效。其原型及参数解释如表 5-17 和表 5-18。

表5-17 设置本次运行期间力位混合(自适应)转速函数原型说明

函数原型说明	
函数原型	void set_speed_adaptive(uint8_t id_num, float speed_adaptive)
返回值	无。

表5-18 设置本次运行期间力位混合(自适应)转速函数参数解释说明

参数	解释
id_num	一体化关节 ID 编号,如果不知道当前一体化关节 ID,可以用 0 广播,此时如果总线上有多个一体化关节,则多个一体化关节都会执行该操作。
speed_adaptive	力位混合(自适应)转速(r/min)(必须大于 0)。

特别提醒:本函数需在运动指令之后运行。

5.10设置本次运行期间力位混合(自适应)力矩函数: set_torque_adaptive()

设置本次运行期间力位混合(自适应)力矩函数 set_torque_adaptive(),设置一体化关节力位混合(自适应)力矩限制 torque_adaptive (Nm),此后关节力位混合(自适应)转速绝对值不超过 torque_adaptive。该函数将在除set_angle_adaptive()、set_angles_adaptive()、motion_aid()、motion_aid_multi()之外的其他运动控制函数之后失效,关机或重启后也将失效。其原型及参数解释如表 5-19 和表 5-20。

表5-19 设置本次运行期间力位混合(自适应)力矩函数原型说明

函数原型说明	
函数原型	void set_torque_adaptive(uint8_t id_num, float torque_adaptive)
返回值	无。

表5-20 设置本次运行期间力位混合(自适应)力矩函数参数解释说明

参数	解释
id_num	一体化关节 ID 编号,如果不知道当前一体化关节 ID,可以用 0 广播,此时如果总线上有多个一体化关节,则多个一体化关节都会执行该操作。
torque_adaptive	力位混合(自适应)力矩(Nm)(必须大于 0)。

特别提醒:本函数需在运动指令之后运行。

5.11设置本次运行期间位置增益 P、积分增益 I、转速增益 D 函数: set_pid()

设置本次运行期间位置增益 P、积分增益 I、转速增益 D 函数 set_pid(),设置一体化关节控制环的位置增益 PD、积分增益 I、转速增益,以便实现调整关节控制性能的目的。该函数执行完 PID 的值在本次开机运行期间有效,关机或重启后将失效。如决定永久使用某组 PID 则可在使用该函数设置 PID 后,紧接着使用 save_config 函数。其原型及参数解释如表 5-21 和表 5-22。

表5-21 设置本次运行期间位置增益 P、转速增益 D、积分增益 I 函数原型说明

函数原型说明	
函数原型	void set_pid(uint8_t id_num, float P, float I, float D)
返回值	无。

表5-22 设置本次运行期间位置增益 P、积分增益 I、转速增益 D 函数参数解释说明

参数	解释
id_num	一体化关节 ID 编号,如果不知道当前一体化关节 ID,可以用 0 广播,此时如果总
	线上有多个一体化关节,则多个一体化关节都会执行该操作。

5.12设置关节待机或闭环控制函数: set_mode()

设置关节模式函数 set_mode(),设置一体化关节进入不同的控制模式。其原型及参数解释如表 5-23 和表 5-24。

表5-23 设置关节模式函数原型说明

	函数原型说明
函数原型	void set_mode(uint8_t id_num, int mode)
返回值	无。

表5-24 设置关节模式函数参数解释说明

参数	解释
id_num	一体化关节 ID 编号,如果不知道当前一体化关节 ID,可以用 0 广播,此时如果总线上有多个一体化关节,则多个一体化关节都会执行该操作。
mode	一体化关节模式编号,

参数	解释
	mode=1: 待机模式,一体化关节卸载; mode=2: 闭环控制模式,运动控制函数必须
	在闭环控制模式下才能进行控制。(一体化关节上电后的默认模式)

5.13设置 CAN 通信波特率函数: set_can_baud_rate()

设置 CAN 通信波特率函数 set_can_baud_rate(),设置 CAN 波特率;该函数执行后不会在本次开机生效,需接着执行 save_config() 函数将配置保存,再重新开机后生效。其原型及参数解释如表 5-25 和表 5-26。

表5-25 设置 CAN 通信波特率函数原型说明

函数原型说明	
函数原型	void set_can_baud_rate(uint8_t id_num, int baud_rate)
返回值	无。

表5-26 设置 CAN 通信波特率函数参数解释说明

参数	解释
id_num	一体化关节 ID 编号,如果不知道当前一体化关节 ID,可以用 0 广播,此时如果总线上有多个一体化关节,则多个一体化关节都会执行该操作。
baud_rate	CAN 波特率,支持 125k、250k、500k、1M 中任意一种,修改成功后需手动将上位 机 CAN 波特率也修改为相同值。

注: 建议在无负载的情况下执行此命令, 否则可能造成关节短暂卸载。

5.14写入关节配置参数函数: write_property()

写入关节配置参数函数 write_property(),修改一体化关节属性参数,这里的属性参数为一体化关节控制参数,存放于 parameter_interface.py 文件。其原型及参数解释如表 5-27 和表 5-28。

表5-27 写入关节配置参数函数原型说明

函数原型说明								
函数原型	void write_property(uint8_t id_num, unsigned short param_address,int8_t param_type, float value)							
返回值	无。							

表5-28 写入关节配置参数函数参数解释说明

参数	解释							
id_num	一体化关节 ID 编号,如果不知道当前一体化关节 ID,可以用 0 广播,此时如果总线上有多个一体化关节,则多个一体化关节都会执行该操作。							
property	需要设置的属性参数名称,例如"dr.voltage","dr.config.can_id"等,具体参数名称见 parameter_interface.py 文件里 property_address 字典里的键值。							

参数	解释						
value	对应参数的目标值。						

5.15保存关节配置参数函数: save_config()

保存关节配置参数函数 save_config(),保存一体化关节属性参数,这里的属性参数存放于 parameter_interface.py 文件。一般通过 write_property 函数修改的属性一体化关节关机或重启之后,会恢复为修改前的值;如果想永久保存,需要用 save_config 函数将相关参数保存到 flash 中,关机或重启后不丢失。其原型及参数解释如表 5-29 和表 5-30。 save_config() 函数是将所有参数整体一次性保存,所以只需将所有目标参数全部修改后再执行一次 save_config() 函数,便可将所有参数保存。

表5-29 保存关节配置参数函数原型说明

函数原型说明							
函数原型	void save_config(uint8_t id_num)						
返回值	无。						

表5-30 保存关节配置参数函数参数解释说明

参数	解释								
id num	一体化关节 ID 编号,如果不知道当前一体化关节 ID, 可以用 0 广播,此时如果总								
Id_IIdIII	线上有多个一体化关节,则多个一体化关节都会执行该操作。								

注: 建议在无负载的情况下执行此命令, 否则可能造成关节短暂卸载。

第六章 辅助功能

6.1 重启关节函数: reboot()

重启关节函数: reboot(),设置一体化关节软件重启,效果与重新上电类似。 其原型及参数解释如表 6-1 和表 6-2。

表6-1重启关节函数原型说明

	函数原型说明							
函数原型	函数原型 void reboot(uint8_t id_num)							
返回值	无。							

表6-2重启关节函数参数解释说明

参数	解释						
id num	一体化关节 ID 编号,如果不知道当前一体化关节 ID 编号,可以用 0广播,此时如						
ıd_num	果总线上有多个一体化关节,则多个一体化关节都会执行该操作。						

6.2 恢复出厂设置函数: init_config()

恢复出厂设置函数 init_config(), 恢复出厂时的参数配置,不改变用户配置的 ID 号。其原型及参数解释如表 6-3 和表 6-4。

表6-3恢复出厂设置函数原型说明

函数原型说明							
函数原型	void init_config(id_num=0)						
返回值	无。						

表6-4恢复出厂设置函数参数解释说明

参数	解释
id num	一体化关节 ID 编号,如果不知道当前一体化关节 ID 编号,可以用 0广播,此时如
id_num	果总线上有多个一体化关节,则多个一体化关节都会执行该操作。

注: 建议在无负载的情况下执行此命令, 否则可能造成关节短暂卸载。

附录 关节开放参数表

注,对于以下参数:

- (1) 读写列 1 表示可读可写, 0 表示只读;
- (2) 名称中带 config 的参数均可由 save_config() 函数保存并在重启后依然有效;
- (3) 使用 read_property() 函数读取;
- (4) 使用 write_property() 函数改写。
- (5) 数据类型代号: float (0); uint16 (1); int16 (2); uint32 (3); int32 (4)

序号	含义	名称	单位	类型	键码	读写	备注
1	电压	dr.voltage	V	float	1	0	
2	电流	dr.i	A	float	2	0	
3	CAN 总线波特率	dr.can.config.baud_rate	bit/s	uint32	21001	1	
4	是否开启 CAN 实时状态反馈	dr.can.config.enable_state_feedback		uint32	22001	1	1表示开启,0表示不开启
5	固件版本日期	dr.version_date		uint32	30004	0	固件版本号为 231207 及以后版本可用
6	CAN 总线 ID 号	dr.config.can_id		uint32	31001	1	取值范围: 1~63
7	CAN 总线实时状态反馈时间间隔	dr.config.state_feedback_rate_ms	ms	uint32	31002	1	比如设置 3ms,则每隔 3ms 反馈一次状态
8	关节型号	dr.config.product_model		uint32	31003	0	参照手册中的关节型号代码
9	是否开启角度限制属性	dr.config.enable_angle_limit		uint32	31201	1	1表示开启,0表示不开启
10	最小角度限位	dr.config.angle_min	0	float	31202	1	
11	最大角度限位	dr.config.angle_max	0	float	31203	1	
12	减速比	dr.config.gear_ratio		float	31204	0	
13	堵转电流	dr.config.stall_current_limit	A	float	31205	1	
14	是否开启碰撞检测	dr.config.enable_crash_detect		uint32	31206	1	
15	碰撞检测灵敏度	dr.config.crash_detect_sensitivity		float	31207	1	该值需大于 0, 越小越灵敏

序号	含义	名称	单位	类型	键码	读写	备注
16	是否开启多圈计数角度限制	dr.config.enable_encoder_circular_limit		uint32	31208	1	超出该限制关节将无法记住重启前的角度, 需重新设置零点。若关闭该限制则务必将编 码器供电线拔掉,即默认系统不需要关机后 零点位置。 该参数只针对具有多圈计数功能关节有效。
17	是否运动到指定位置	dr.controller.position_done		uint32	32002	0	为1表示到达指定位置,为0则未到达
18	判定运动到位的定位精度	dr.controller.position_precision	0	float	32003	1	固件版本号为 231207 及以后版本可用
19	是否启用转速限制	dr.controller.config.enable_speed_limit		uint32	32101	1	1表示启用,0表示不启用
20	位置增益 P	dr.controller.config.angle_gain		float	32102	1	
21	转速增益 D	dr.controller.config.speed_gain		float	32103	1	
22	积分增益I	dr.controller.config.speed_integrator_gain		float	32104	1	
23	最大限制转速	dr.controller.config.speed_limit	r/min	float	32105	1	该限制值对象是电机,输出端需除以减速比
24	超速容忍度	dr.controller.config.speed_limit_tolerance	%	float	32106	1	比如设为 1.2 则超出 20%后才会报错
25	负载转动惯量	dr.controller.config.inertia		float	32107	1	默认为 0
26	输入滤波带宽	dr.controller.config.input_filter_bandwidth		float	32108	1	
27	电机极对数	dr.motor.config.pole_pairs		int32	33101	0	
28	电机相电感	dr.motor.config.phase_inductance		float	33102	0	
29	电机相电阻	dr.motor.config.phase_resistance		float	33103	0	
30	电机力矩常数	dr.motor.config.torque_constant		float	33104	0	
31	最大限制电流	dr.motor.config.current_limit		float	33105	1	
32	过流容忍度	dr.motor.config.current_limit_margin	A	float	33106	1	比如设为 1.2 则超出 1.2A 后才会报错
33	最大限制力矩	dr.motor.config.torque_limit	Nm	float	33107	1	该限制值对象是电机,输出端需乘以减速比
34	电流控制带宽	dr.motor.config.current_control_bandwidth		float	33108	1	
35	FOC Q 轴电流	dr.motor.Iq_measured	A	float	33201	0	
36	FOC D 轴电流	dr.motor.Id_measured	A	float	33202	0	
37	设置零点后输出轴编码器零位值	dr.encoder.pos_zero_output		int32	34101	0	中空关节专属

序号	含义	名称	单位	类型	键码	读写	备注
38	刚启动时读取到的输出轴编码器值	dr.encoder.abs_pos_power_on		int32	34102	0	中空关节专属
39	绝对位置误差的前半个周期长度	dr.encoder.first_half_T		float	34103	1	中空关节专属,标定后误差补偿使用
40	绝对位置误差的前半个周期幅值	dr.encoder.first_half_M		float	34104	1	中空关节专属,标定后误差补偿使用
41	绝对位置误差的后半个周期幅值	dr.encoder.second_half_M		float	34105	1	中空关节专属,标定后误差补偿使用
42	绝对位置误差截距	dr.encoder.intercept		float	34106	1	中空关节专属,标定后误差补偿使用
43	绝对位置误差前半个周期幅值是否向 上	dr.encoder.first_half_up		uint32	34107	1	中空关节专属,标定后误差补偿使用
44	驱动板温度	dr.board_temperature	°C	float	36002	0	
45	是否开启驱动板温度保护	dr.board_temperature.config.enabled		uint32	36101	1	
46	驱动板温度保护下限	dr.board_temperature.config.temp_limit_lower	°C	float	36102	1	
47	驱动板温度保护上限	dr.board_temperature.config.temp_limit_upper	°C	float	36103	1	
48	电机温度	dr.motor_temperature	°C	float	37002	0	
49	是否开启电机温度保护	dr.motor_temperature.config.enabled		uint32	37101	1	
50	电机温度保护下限	dr.motor_temperature.config.temp_limit_lower	°C	float	37102	1	
51	电机温度保护上限	dr.motor_temperature.config.temp_limit_upper	°C	float	37103	1	
52	输出轴角度	dr.output_shaft.angle	0	float	38001	0	
53	输出轴转速	dr.output_shaft.speed	r/min	float	38002	0	
54	输出轴力矩	dr.output_shaft.torque	Nm	float	38003	0	
55	输出轴最小临时角度限位	dr.output_shaft.angle_min	0	float	38004	1	
56	输出轴最大临时角度限位	dr.output_shaft.angle_max	0	float	38005	1	
57	是否开启临时角度限位	dr.output_shaft.enable_angle_limit		uint32	38006	1	