Clustering

I create new dataset with the models. The dataset includes artist name, rank, future growth. Finally I recommend artists for our advertisement clients.

```
Import Packages
```

```
In [1]: import pickle
        import numpy as np
        import matplotlib.pyplot as plt
        import pandas as pd
        from scipy.cluster.hierarchy import linkage, dendrogram
        from sklearn.cluster import AgglomerativeClustering
        from sklearn.preprocessing import MinMaxScaler
```

```
Load Data
In [2]: with open('../data/final/rank_df.pickle', 'rb') as rank:
            rank_df = pickle.load(rank)
            rank.close()
        with open('../data/final/future_growth.pickle', 'rb') as growth:
            growth dict = pickle.load(growth)
            growth.close()
```

Billie Eilish

Drake

Ariana Grande

In [3]: rank_df.head()

Out[3]:	F	Rank
_	Artist	
	Post Malone	1
	Ed Sheeran	2
	Rillie Filish	3

In [4]: rank_df['Future Growth'] = growth_dict.values()

Create New Dataset

In [5]: rank_df.head() Out[5]:

Post Malone

Ed Sheeran

Future Growth

	Billie Eilish	3	3.318439		
	Drake	4	0.014655		
	Ariana Grande	5	1.241825		
In [21]:	<pre>rank_df.loc['Lil Mosey']</pre>				
Out[21]:	Rank		.000000		

In [6]: rank_df['Future Growth'].plot(kind='box', figsize=(4,8));

100 0

75

50

```
25
         -25
         -50
         -75
                       Future Growth
In [7]: q1, q3 = np.percentile(rank_df['Future Growth'], [25, 75])
         iqr = q3 - q1
         lower_bound = q1 - (iqr * 1.5)
         upper_bound = q3 + (iqr * 1.5)
```

In [9]: rank_df.drop(artists_outliers, inplace=True) Clustering

rank df.loc[:, ['Rank', 'Future Growth']] = sc.fit transform(rank df)

artists outliers = outliers df.index

Artist Dendograms

2.5 2.0 1.5 1.0 0.5 cluster.fit_predict(rank_df); <matplotlib.collections.PathCollection at 0x121f42610>

0.8 0.6 0.4 0.2 0.0 0.8 0.6 1.0 0.2 0.4 0.0 In [15]: rank_df.iloc[:, 0:2] = sc.inverse_transform(rank_df) In [16]: rank_df['label'] = cluster.labels_ In [17]: rank_df.groupby('label').mean() Out[17]: **Rank Future Growth** label

0 58.428571 0.065065

	-				
	2	20.695652	0.005791		
	3	34.800000	0.500323		
	4	92.200000	0.347846		
	5	10.000000	0.222892		
In [18]:	rank_	_df.loc[ran	k_df.label ==	3, :].ind	dex
Out[18]:	<pre>Index(['Lady Gaga', 'Queen', 'Pop Smoke',</pre>				
In [19]:	rank_	_df.loc[ran	k_df.label ==	4, :].ind	dex
0+[10].	Index	(['benny b	lanco', 'A Bo	ogie Wit o	da H

Conclusion

Out[20]:

A Boogie Wit da Hoodie', 'SAINt JHN', 'Lil Mosey', 'Tyga'], dtype='object', name='Artist') In [20]: rank_df.loc[rank_df.label == 5, :].index

Index(['Post Malone', 'Bad Bunny', 'Juice WRLD', 'Travis Scott', 'Dua Lipa', 'Khalid', 'Marshmello'],

dtype='object', name='Artist') In [32]: rank_df.loc[rank_df.label == 1].index

Index(['Logic', 'Jonas Blue', 'Hailee Steinfeld', 'Piso 21', 'Shakira', 'Nio Garcia', 'Miley Cyrus', 'Major Lazer', 'French Montana', 'Kodak Black', 'Alan Walker', 'Manuel Turizo', 'Danny Ocean',

Group 4: 'benny blanco', 'A Boogie Wit da Hoodie', 'SAINt JHN', 'Lil Mosey', 'Tyga'

Group 5: 'Post Malone', 'Bad Bunny', 'Juice WRLD', 'Travis Scott', 'Dua Lipa', 'Khalid', 'Marshmello'

Rank Future Growth Artist

0.153796

-0.036148

0.275643

5

Name: Lil Mosey, dtype: float64 **Outliers**

outliers = np.where((rank_df['Future Growth'] > upper_bound)|(rank_df['Future Growth'] < lower_bound))

In [8]: outliers_df = rank_df.iloc[outliers]

Out[14]:

In [10]: sc = MinMaxScaler()

- In [11]: link = linkage(rank_df, method='ward')
- In [12]: plt.figure(figsize=(10, 7)) plt.title("Artist Dendograms") dend = dendrogram(link)
 - 3.0
- In [13]: cluster = AgglomerativeClustering(n_clusters=6, affinity='euclidean', linkage='ward') In [14]: plt.figure(figsize=(10, 7)) plt.scatter(rank_df.iloc[:, 0], rank_df.iloc[:, 1], c=cluster.labels_, cmap='rainbow') 1.0

- **1** 87.500000 -0.009393 91
- 46 392
 - en', 'Pop Smoke', 'KAROL G', 'BTS'], dtype='object', name='Artist')
 - el == 4, :].index

dtype='object', name='Artist')

Group 3: 'Lady Gaga', 'Queen', 'Pop Smoke', 'KAROL G', 'BTS'

- - 'Chris Brown'],
- Finally, I recommend 17 artists from top 100 artists.