Ejemplo 10

Determinar una ecuación para el plano que es perpendicular al vector $\mathbf{i} + \mathbf{j} + \mathbf{k}$ y contiene el punto (1, 0, 0).

Solución

Usando la forma general $A(x-x_0) + B(y-y_0) + C(z-z_0) = 0$, el plano es 1(x-1) + 1(y-0) + 1(z-0) = 0; esto es, x + y + z = 1.

Ejemplo 11

Hallar una ecuación para el plano que contiene estos tres puntos: (1, 1, 1), (2, 0, 0) y (1, 1, 0).

Solución

Método 1. Este es un método de "fuerza bruta" que se puede utilizar cuando se han olvidado los métodos vectoriales. La ecuación de cualquier plano es de la forma Ax + By + Cz + D = 0. Como los puntos (1, 1, 1), (2, 0, 0) y (1, 1, 0) están en el plano, tenemos que

$$A + B + C + D = 0,$$

 $2A + D = 0,$
 $A + B + D = 0.$

Por eliminación, reducimos este sistema de ecuaciones a

$$2A + D = 0$$
 (segunda ecuación)
 $2B + D = 0$ (2 × tercera – segunda),
 $C = 0$ (primera – tercera).

Puesto que los números A,B,C y D están determinados salvo por un múltiplo escalar, podemos fijar el valor de uno de ellos, por ejemplo, A=1, y entonces los otros quedarán determinados de manera única. Obtenemos A=1, D=-2, B=1, C=0. Así, una ecuación del plano que contiene a los puntos dados es x+y-2=0.

 $\emph{M\'etodo}~2$. Sean P=(1,1,1), Q=(2,0,0), R=(1,1,0). Cualquier vector normal al plano ha de ser ortogonal a los vectores \overrightarrow{QP} y \overrightarrow{RP} , que son paralelos al plano, ya que sus extremos se encuentran en el plano. Por tanto, $\mathbf{n}=\overrightarrow{QP}\times\overrightarrow{RP}$ es normal al plano. Calculando el producto vectorial, tenemos

$$\mathbf{n} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -1 & 1 & 1 \\ 0 & 0 & 1 \end{vmatrix} = \mathbf{i} + \mathbf{j}.$$

Como el punto (2, 0, 0) está en el plano, concluimos que la ecuación viene dada por $(x-2)+(y-0)+0\cdot(z-0)=0$; es decir, x+y-2=0.

Dos planos se llaman *paralelos* cuando sus vectores normales son paralelos. Así, los planos $A_1x + B_1y + C_1z + D_1 = 0$ y $A_2x + B_2y + C_2z + C_3z + C_4z + C_4z + C_5z +$