Imputation of Incomplete Covariates in Longitudinal Data

Can Bayesian non-parametric methods prevent model-misspecification?

Nicole Erler and Dimitris Rizopoulos

Erasmus Medical Center, Rotterdam

15 July 2019

Motivation

What are risk factors for diabetic retinopathy?

important predictors:

- blood pressure
- haemoglobin A1c (HbA_{1c})

other covariates:

- age at baseline
- gender
- diabetes duration
- smoking history & status

Motivation

Challenge:

Missing values

retinopathy grade: 43% blood pressure: 20% Hb_{A1c}: 20% diabetes duration: 11% smoking history: 33% smoking status: 28%

Motivation

Challenge:

Missing values

retinopathy grade: 43% blood pressure: 20% Hb_{A1c}: 20%

diabetes duration: 11% smoking history: 33%

smoking status: 28%

Solution?

- Multiple Imputation
 - MICE / FCS
 - Joint Model (e.g. multivariate normal)
- Fully Bayesian

• ...

Fully Bayesian Analysis & Imputation

Joint distribution

$$\underbrace{\frac{p(y \mid X, b, \theta)}{\text{analysis}}}_{\text{model}} \underbrace{\frac{p(X \mid \theta)}{\text{proposition}}}_{\text{part}} \underbrace{\frac{p(b \mid \theta)}{\text{priors}}}_{\text{random}} \underbrace{\frac{p(\theta)}{\text{priors}}}_{\text{priors}}$$

Fully Bayesian Analysis & Imputation

Joint distribution

$$\underbrace{\frac{p(y \mid X, b, \theta)}{\text{analysis}}}_{\text{model}} \underbrace{\frac{p(X \mid \theta)}{\text{imputation}}}_{\text{part}} \underbrace{\frac{p(b \mid \theta)}{\text{priors}}}_{\text{random}} \underbrace{\frac{p(\theta)}{\text{priors}}}_{\text{priors}}$$

Imputation part

$$p(x_1, \dots, x_p, X_{compl.} | \theta) = p(x_1 | X_{compl.}, \theta)$$

$$p(x_2 | x_1, X_{compl.}, \theta)$$

$$p(x_3 | x_1, x_2, X_{compl.}, \theta)$$
...

Fully Bayesian Analysis & Imputation

Joint distribution

$$\underbrace{\frac{p(y\mid X,b,\theta)}{\text{analysis}}}_{\text{model}}\underbrace{\frac{p(X\mid \theta)}{\text{proposition}}}_{\text{part}}\underbrace{\frac{p(b\mid \theta)}{\text{priors}}}_{\text{priors}}\underbrace{\frac{p(\theta)}{\text{priors}}}_{\text{priors}}$$

Imputation part

$$p(x_1, \dots, x_p, X_{compl.} | \theta) = p(x_1 | X_{compl.}, \theta)$$

$$p(x_2 | x_1, X_{compl.}, \theta)$$

$$p(x_3 | x_1, x_2, X_{compl.}, \theta)$$

$$\dots$$

Software

Implemented in the R package JointAl

Handling Missing Values

Assumptions about

- association structure conditional distribution
- missingness process
- → linear, additive
- → normal (for continuous)
- → ignorable

Handling Missing Values

Assumptions about

- association structure conditional distribution
- missingness process
- → linear, additive
- → normal (for continuous)
- → ignorable

Violation of the implied assumptions may result in bias!

Real Data

Non-linear evolutions over time

Real Data

Non-linear associations among variables

Instead of
$$y \sim \beta_0 + \beta_1 x_1 + \dots$$

we assume

$$y \sim \beta_0 + \sum_{\ell=1}^d \beta_\ell B_\ell(x_1) + \dots$$

Instead of
$$y \sim \beta_0 + \beta_1 x_1 + \dots$$

we assume

$$y \sim \beta_0 + \sum_{\ell=1}^d \frac{\beta_\ell}{\beta_\ell} B_\ell(x_1) + \dots$$

Instead of
$$y \sim \beta_0 + \beta_1 x_1 + \dots$$

we assume

$$y \sim \beta_0 + \sum_{\ell=1}^d \beta_\ell B_\ell(x_1) + \dots$$

How many B_{ℓ} 's do we need?

$$y \sim \beta_0 + \sum_{\ell=1}^{d=4} \beta_\ell B_\ell(x_1) + \dots$$

How many B_{ℓ} 's do we need?

$$y \sim \beta_0 + \sum_{\ell=1}^{d=30} \beta_{\ell} B_{\ell}(x_1) + \dots$$

Idea: Use many functions but **restrict neighboring** β 's to be similar:

$$(\beta_1,\ldots,\beta_d) \sim MVN(\mathbf{0},1/\sigma^2\mathbf{D}^T\mathbf{D}),$$

with **penalty matrix D**, for example:

$$\mathbf{D} = \begin{bmatrix} 1 & -2 & 1 & 0 & 0 & 0 & \cdots \\ 0 & 1 & -2 & 1 & 0 & 0 & \cdots \\ & \ddots & \ddots & \ddots & \ddots & \ddots \\ \cdots & 0 & 0 & 1 & -2 & 1 & 0 \\ \cdots & 0 & 0 & 0 & 1 & -2 & 1 \end{bmatrix}$$

Simulation

Analysis model: $y \sim \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots$

Quadratic association between covariates: $x_1 \sim \alpha_0 + \alpha_1 x_2 + \alpha_2 x_2^2 + \dots$

Simulation

Analysis model: $y \sim \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots$

Quadratic association between covariates: $x_1 \sim \alpha_0 + \alpha_1 x_2 + \alpha_2 x_2^2 + \dots$

Real Data

Non-normal continuous distributions

Mixture of normal distributions

Mixture of normal distributions

Dirichlet Process Mixture Model

$$egin{aligned} x_{1i} \mid heta_i &\sim F(heta_i) \ & heta_i \mid G \sim G = \sum_{k=1}^\infty \pi_k \delta_{ heta_k^*} \ & G \mid lpha, G_0 \sim & DP(lpha, G_0) \ & ext{stick-breaking construction} \end{aligned}$$

e.g.
$$x_{1i} \sim N(\mu_k, \sigma_k^2)$$

Dirichlet Process Mixture Model

$$egin{aligned} x_{1i} \mid heta_i &\sim F(heta_i) \ heta_i \mid G \sim G = \sum_{k=1}^\infty \pi_k \delta_{ heta_k^*} \ G \mid lpha, G_0 \sim & DP(lpha, G_0) \ & ext{stick-breaking construction} \end{aligned}$$

Dirichlet Process Mixture Model

$$egin{aligned} x_{1i} \mid heta_i &\sim F(heta_i) \ & heta_i \mid G \sim G = \sum_{k=1}^\infty \pi_k \delta_{ heta_k^*} \ & G \mid lpha, G_0 \sim & DP(lpha, G_0) \ & ext{stick-breaking construction} \end{aligned}$$

e.g.
$$x_{1i} \sim N(\mu_k, \sigma_k^2)$$

 $x_i \sim N(\eta_i + \mu_k, \sigma_k^2),$ with $\eta_i = \alpha_1 x_{2i} + \alpha_2 x_{3i} + \dots$
 $p(\mu_k) p(\sigma_k^2)$
very flexible little contribution

Beta(a₀, a₀)

Beta(a ₀ , a ₀)	
Beta(a ₁ , a ₁)	Beta(a ₁ , a ₁)
Beta(a ₂ , a ₂)	Beta(a ₂ , a ₂)

• flexible fit needs observed data everywhere

• flexible fit needs observed data everywhere

• flexible fit needs observed data everywhere

- flexible fit needs observed data everywhere
- computational time

- flexible fit needs observed data everywhere
- computational time

Ideas:

- posterior predictive checks
 - χ^2 type of tests
 - Kolmogorov-Smirnoff test?
 - discordance tests?
- feasibility checks before running the model?

Preliminary Conclusion

reduce Can Bayesian non-parametric methods prevent model-misspecification?

Thank you for your attention.

- ✓ n.erler@erasmusmc.nl
 - N_Erler
- NErler
- www.nerler.com