Roberto owns a small hotel and offers accommodation to guests. Over a period of 100 nights, the numbers of rooms, x, that are occupied each night at Roberto's hotel and the corresponding frequencies are shown in the following table.

Number of rooms occupied (x)	0	1	2	3	4	5	6	≥ 7
Number of nights	4	9	18	26	20	16	7	0

(i) Show that the mean number of rooms that are occupied each night is 3.25.

[1]

The following table shows most of the corresponding expected frequencies, correct to 2 decimal places, using a Poisson distribution with mean 3.25.

Number of rooms occupied (x)	0	1	2	3	4	5	6	≥ 7
Observed frequency	4	9	18	26	20	16	7	0
Expected frequency	3.88	12.60	20.48	22.18	18.02	11.72		

(ii) Show how the expected value of 22.18, for x = 3, is obtained and find the expected values for x = 6 and for $x \ge 7$.

(iii) Use a goodness-of-fit test at the 5% significance level to determine whether the Poisson distribution is a suitable model for the number of rooms occupied each night at Roberto's hotel.