Effective Programming Practices for Economists

Data management with pandas

Inspecting and summarizing data

Janoś Gabler and Hans-Martin von Gaudecker

Motivation

- So far we have looked at tiny DataFrames
- Real datasets don't fit on a screen
- Need quick ways to:
 - Look at subsets
 - Calculate summary statistics
 - Plot distributions

Example

	country	continen	tyear I	ife_e	хр	рор	Ć	gdp	_per_c	apis	o_alpł	naiso_	num
0	Afghanistar	Asia	19522	28.80	1000	842533	33 7	779.	445314	1 AF	=G	4	
1	Afghanistar	ıAsia	19573	30.33	2000	924093	34 8	320.	853030) AF	-G	4	
2	Afghanistar	ıAsia	19623	31.99 [.]	700C	102670	0838	353.	100710) AF	-G	4	
3	Afghanistar	nAsia	19673	34.02	0000	115379	9668	336.	197138	3 AF	-G	4	
4	Afghanistar	ıAsia	19723	36.08	8000	130794	1607	739.	981106	AF	=G	4	
5	Afghanistar	ıAsia	19773	38.43	8000	148803	3727	786.	113360) AF	=G	4	
1699	Zimbabwe	Africa	19876	52.35	1000	921641	L8 7	706.	157306	5 Z\	٧E	716	
1700	Zimbabwe	Africa	19926	60.37°	700C	107043	3406	693.	420786	5 Z\	VΕ	716	
170 1	LZimbabwe	Africa	19974	16.80	9000	114049	487	792.	449960) Z\	VΕ	716	
1702	2 Zimbabwe	Africa	20023	39.98	9000	119265	636	672.	038623	3 Z\	VΕ	716	
1703	3 Zimbabwe	Africa	20074	13.48 ⁻	700C	123111	434	46 ⁹ .	709298	3 Z\	VΕ	716	

Summarize an entire DataFrame

assume that `df` is the full gapminder data

```
>>> relevant = ["life_exp", "pop", "gdp_per_cap"]
>>> df[relevant].describe()
```

	life_exp	рор	gdp_per_cap
count	1704.00	1704.00	1704.00
mean	59.47	29601212.32	7215.33
std	12.92	106157896.74	9857.45
min	23.60	60011.00	241.17
25%	48.20	2793664.00	1202.06
50%	60.71	7023595.50	3531.85
75%	70.85	19585221.75	9325.46
max	82.60	1318683096.00	113523.13

- `.describe` can summarize entireDataFrames
- Result is again a DataFrame
- Often good idea to select a subset of columns

Calculate specific statistics

assume that `df` is the full gapminder data

- Standard summary statistics are implemented and named as expected:
 - `std`
 - `min` and `max`
 - median and quantile
- Vectorized and really fast implementations

Quick plotting: Series

```
>>> pd.options.plotting.backend = "plotly"
>>> df.groupby("year")["life_exp"].mean().plot()
```

- Any Series has a `.plot` method
- Any Series has a `.hist` method
- Summary statistics based on groupby return Series which can again be plotted

Quick plotting: DataFrames

- Any DataFrame has a `.plot` method
- Defaults to line plot, can access `.scatter` and many more
- Notebook gives you interactive plots

Statistics for categorical data

```
>>> df["country"].unique()[:2]

<ArrowStringArrayNumpySemantics>
['Afghanistan', 'Albania']
Length: 2, dtype: string

>>> df["country"].value_counts().sort_index()[:2]

country
Afghanistan 12
Albania 12
Name: count, dtype: int64
```