Classification and Naïve Bayes

Foundations of Data Analysis

January 28, 2020

Iris-sestosa

Iris_versicolor

Iris_virginica

Classification

Say we want to automatically identify an iris species based on its petal and sepal length measurements.

A Classifier is a Decision Rule

x ="petal length", C ="species"


```
if x < 2.5 : c = 'setosa'
if 2.5 < x < 4.7 : c = 'versicolor'
if x > 4.7 : c = 'virginica'
```

Classification Task

Training:

Learn a decision rule, based on training data, to predict a class C from features X.

Testing:

Use trained classifier to predict unknown class C^* from features of new testing data, X^* .

Classification Task

Training:

Learn a decision rule, based on training data, to predict a class C from features X.

Testing:

Use trained classifier to predict unknown class C^* from features of new testing data, X^* .

Important! Training and testing data should be completely separate!

Probabilistic Classifier

Features *X* and class *C* are random variables.

Learn a probability distribution from the training data:

$$P(C \mid X)$$

Probabilistic Classifier

Features *X* and class *C* are random variables.

Learn a probability distribution from the training data:

$$P(C \mid X)$$

Imaginary Example:

An iris test point X^* might give something like this:

C^*	setosa	versicolor	virginica
$P(C^* \mid X^*)$	0.80	0.15	0.05

Bayes' Rule for Classification

$$P(C \mid X) = \frac{P(X \mid C)P(C)}{P(X)}$$

 $P(X \mid C)$ **Likelihood** - learned from data

P(C) Prior - determined beforehand

P(X) **Evidence** - not needed for decision

Naïve Bayes

Multidimensional features $X = (X_1, X_2, \dots, X_d)$

Naïve Bayes

Multidimensional features $X = (X_1, X_2, \dots, X_d)$

"Naïve" Assumption:

Assume features X_i are independent, given the class C:

$$P(X \mid C) = P(X_1 \mid C) \times P(X_2 \mid C) \times \cdots \times P(X_d \mid C)$$

Gaussian or Normal Distribution

Probability density function:

$$p(x; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

Notation: $x \sim N(\mu, \sigma^2)$

Mean, μ , and variance, σ^2 , are parameters.

See https://en.wikipedia.org/wiki/Normal_distribution

How to "Train" a Normal Distribution

Given training data: x_1, x_2, \dots, x_n

How to "Train" a Normal Distribution

Given training data: x_1, x_2, \ldots, x_n

Set parameters:

Mean:
$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Variance:
$$\hat{\sigma}^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \hat{\mu})^2$$

Gaussian μ Parameter

Shifts the pdf, shape stays the same

Gaussian σ Parameter

Stretches/shrinks the pdf, position stays the same

Probabilities of Continuous Random Variables

Probability is given by area under the pdf:

$$P(a < X < b) = \int_{-b}^{b} p(x) dx$$

Gaussian Area

Units of horizontal axis are σ

Gaussian Area

Units of horizontal axis are σ

Gaussian Area

Units of horizontal axis are σ