

OPTIMIZACIÓN DE PROBLEMAS ECONÓMICOS

Introducción a la modelización

Curso 2015-2016

Contenidos

- Optimización
- 2. Ejemplo: Planificación de la producción
 - Paso I: Descripción textual del problema
 - Paso 2: Formulación matemática
 - Paso 3: Programación del modelo
 - Paso 4: Resolución
- 3. Metodología de la Investigación Operativa
- 4. Técnicas de la Investigación Operativa
- 5. Tipos de problemas más comunes
- 6. Aplicaciones

Optimización

 Procedimiento matemático que permite determinar la distribución óptima de recursos escasos

- Aplicaciones
 - Publicidad
 - Planificación de la producción
 - Logística
 - • •

Ejemplo: planificación de la producción

Una empresa fabrica dos modelos de televisores, A y B. A cada uno de ellos le dedica una línea de producción. La línea A puede producir 60 unidades diarias, mientras que la línea B tiene una capacidad de sólo 50 unidades al día.

Cada televisor del modelo A necesita un operario, por hora, mientras que cada televisor del modelo B requiere de dos personas por hora. La empresa dispone de un máximo de 120 horas de mano de obra para dedicar a la fabricación de estos televisores.

Si por la venta de cada unidad del modelo A obtiene un beneficio de 80 euros y por cada unidad del modelo B obtiene 120 euros de beneficio, ¿cuál es la producción diaria de cada modelo que proporciona a la empresa un mayor beneficio?

Paso I: Descripción textual del problema

- Maximizar el beneficio total
- La producción del modelo A debe ser menor o igual que la capacidad de la línea A
- La producción del modelo B debe ser menor o igual que la capacidad de la línea B
- No se puede dedicar a fabricar los televisores más horas de mano de obra de las disponibles

Paso 2: Formulación matemática

- x_A = unidades del modelo A fabricadas por día
- x_B = unidades del modelo B fabricadas por día
- Unidades de medida:
 - Beneficio: euros
 - Producción del modelo A: unidades
 - Producción del modelo B: unidades
 - Horas de mano de obra: horas

Paso 3: Programación del modelo

		Modelos			
		Α	В	Capacidad	Consumo
Requerimientos	Línea A	1	0	60	
	Línea B	0	1	50	
	Operarios	1	2	120	
	Beneficio	80	120		
	Producción				
	Benefic	io total		1	

		Modelos			
		Α	В	Capacidad	Consumo
ntos	Línea A	1	0	60	60
Requerimientos	Línea B	0	1	50	30
Requ	Operarios	1	2	120	120
	Beneficio	80	120		
	Producción	60	30		
	Benefic	io total	8400		

		Modelos			
		Α	В	Capacidad	Consumo
ntos	Línea A	1	0	60	60
Requerimientos	Línea B	0	1	50	30
Requ	Operarios	1	2	120	120
	Beneficio	80	120		
	Producción	60	30		
	Beneficio total		8400		

		Modelos			
	_	Α	В	Capacidad	Consumo
ntos	Línea A	1	0	60	60
Requerimientos	Línea B	0	1	50	30
Requ	Operarios	1	2	120	120
	Beneficio	80	120		
	Producción	60	30		
	Benefic	io total	8400		

Metodología de la Investigación Operativa

- 1. Formulación del modelo
 - Comprender y formular el problema real
 - Construir un modelo que represente el sistema en estudio
 - Generar los datos de entrada del problema
- 2. Derivar una solución a partir del problema
- 3. Validar el modelo e interpretar la solución
- 4. Implementar la solución en la vida real y establecer controles

Técnicas de la Investigación Operativa

Determinísticas	Estocásticas	Híbridas
Programación lineal	Filas de Espera	PERT
Transporte y asignación	Programación estocástica	Programación dinámica
Programación entera		Inventarios
Programación no	Cadenas de Markov	Simulación
Lineal	Procesos estocásticos	Simulacion
Optimización no lineal	Análisis de decisiones	Heurísticas
Teoría de redes	Teoría de Juegos	

- 1. Reparto, asignación y distribución de recursos
 - Tratan de repartir una serie de recursos disponibles entre diferentes actividades que los requieren, de manera que el resultado sea lo más satisfactorio posible (minimice pérdidas o maximice beneficios).
 - Estos problemas suelen resolverse mediante programación matemática.

2. Inventarios

- Se presentan cuando una empresa no produce en un momento dado la cantidad suficiente de bienes o servicios para satisfacer la demanda, debiendo realizar un almacenamiento protector contra posibles inexistencias.
- El problema, conocidos los costos de inventarios, reaprovisionamiento y rotura, así como la predicción de la demanda, consiste en controlar el nivel de inventario (cuándo hay que reaprovisionar y en qué cantidad).
- Usan técnicas analíticas.

3. Reemplazamiento y mantenimiento

- Cualquier equipo se deteriora con el tiempo; para mantenerlo a un nivel adecuado de funcionamiento hay que realizar ciertas operaciones de mantenimiento o incluso una política de reemplazamiento.
- El problema consiste en establecer una política adecuada de mantenimiento y reemplazamientos, de forma que la suma total de los costes sea mínima.

4. Itinerarios

- Muchas situaciones reales pueden esquematizarse mediante grafos y redes.
- Problema: determinar un camino o itinerario entre dos vértices.

5. Colas o filas de espera

- Tiene lugar cuando ciertas unidades (clientes) necesitan determinados servicios, para lo cual necesitan de unas ventanillas.
- El problema consiste en determinar el número de ventanillas necesarias para que la suma del tiempo perdido por los clientes en la fila y el de los empleados sea mínimo.
- Suelen resolverse por técnicas analíticas y de simulación.

6. Secuenciación, coordinación y ordenación

- Cuando un proyecto consta de varios trabajos o tareas, el orden de estos tiene gran importancia sobre el tiempo total requerido por dicho proyecto.
- Se pretende encontrar la secuencia de tareas que minimiza el tiempo o costo total de realización, teniendo en cuenta una serie de restricciones de diferentes tipos.

7. Competitivos

- Aparecen al considerar el comportamiento de partes externas al sistema que afectan a los objetivos del mismo, como abastecedores, clientes, competidores, etc.
- Los efectos de decisión pueden verse afectados por la que toma la otra parte.
- Estos problemas suelen resolverse mediante técnicas de la Teoría de Juegos.

Fiabilidad

- Determinar la probabilidad de que un sistema complejo funcione correctamente.
- Tiene cierta relación con el Control de Calidad.

9. Localización

- En estos problemas se intenta encontrar la mejor localización para un determinado establecimiento, como por ejemplo un almacén de distribución o un nuevo hospital.
- Para ello, se tienen en cuenta las distancias con respecto a aquellos lugares en los que se produce una demanda del servicio y el volumen de éste.

10. Multicriterio

En la formulación original de todos los problemas anteriores se suele considerar un solo objetivo, habitualmente el máximo beneficio o el mínimo coste. Un problema multicriterio se corresponde con cualquiera de los anteriores en el que se tienen en cuenta más aspectos o criterios para la toma de decisiones.

II. Mixtos

- Los problemas reales no suelen presentarse como alguno de los anteriores mencionados, sino que aparecen como combinaciones de los mismos.
- Aunque el procedimiento acostumbrado para la solución de procesos combinados consiste en resolverlos de uno en uno en alguna secuencia lógica, la Investigación Operativa debe combinar los métodos, técnicas y modelos precedentes para llegar a una solución óptima.

Aplicaciones

Problemas en Sector Público

Problemas en Medio Ambiente

> Problemas en Dirección de Operaciones

- Administración del tráfico
- Diseño de un programa educativo
- Selección y administración de proyectos
- Control del presupuesto de un proyecto
- Localización de hospitales, edificios o servicios públicos
- Selección de cultivos
- Selección de proyectos sujetos a estudio de impacto ambiental
- Priorización de alternativas ambientales
- Planificación de cuencas fluviales
- Decisiones sobre fuentes de aprovisionamiento
- Mezcla de productos
- Planificación y secuenciación de la producción
- Localización y distribución de plantas
- Políticas de control de inventarios
- Programación de actividades y turnos de personal
- Diseño de colas

Aplicaciones

Problemas en Logística

Problemas en Marketing

Problemas en Finanzas

- Planificación de transporte y rutas de viaje
- Administración de tráfico
- Localización de almacenes
- Optimización de plazas y horarios en líneas de vuelo
- Selección de campañas de publicidad
- Diseño de la política de precios
- Elección de un nombre de marca
- Elección de un segmento de mercado
- Selección de una herramienta de promoción
- Selección del modo de penetración en un nuevo mercado
- Reparto de presupuesto para promoción y publicidad
- Valoración de empresas
- Selección de cartera
- Previsión de la evolución de los precios
- Valoración del riesgo en créditos
- Identificación de falsificaciones
- Análisis de riesgo de una inversión