

Quantum Portfolio Optimization

Corso di Quantum Computing (a.a. 2024/25)

Merenda Saverio Mattia

Contenuto della discussione

- Descrivere il problema di ottimizzazione del portafoglio finanziario
- Introdurre l'applicazione del quantum computing al problema
- · Analizzare i risultati ottenuti e confrontare le metodologie

Problema dell'ottimizzazione del portafoglio

- Obiettivo: selezionare un insieme di asset che <u>massimizzano</u> i rendimenti e <u>minimizzano</u> il rischio, rispettando un determinato budget
 - $x \in \{0,1\}^n$: vettore delle variabili decisionali binarie (quali asset selezionare)
 - $\circ \mu \in \mathbb{R}^n$: rendimenti attesi degli asset
 - \circ $\Sigma \in \mathbb{R}^{n \times n}$: relazione tra le variazioni dei prezzi degli asset (i.e., covarianza)

 - B: budget disponibile

$$\min_{x} \left(qx^{T} \Sigma x - x\mu^{T} + \left(1^{T} x - B \right)^{2} \right)$$

Problema dell'ottimizzazione del portafoglio

• Obiettivo: selezionare un insieme di asset che <u>massimizzano</u> i rendimenti e <u>minimizzano</u> il rischio, rispettando un determinato budget

$$\min_{x} \left(\begin{array}{c|c} risk & return & budget penalty \\ \hline min \left(\begin{array}{c|c} qx^T \Sigma x & -x\mu^T \\ \end{array} \right) + \left(1^T x - B\right)^2 \right)$$

Perché il quantum computing?

- · Limiti classici: complessità cresce <u>esponenzialmente</u> con il numero di asset
- Vantaggi:
 - O Capacità di esplorare simultaneamente più configurazioni
 - O Classe di complessità Bounded-error Quantum Polynomial (BQP)

Algoritmi proposti (1/3)

Branch-and-bound¹

- · Metodo classico di riferimento per calcolare la ground truth
- Complessità esponenziale: $O(2^n)$

Algoritmi proposti (2/3)

Variational Quantum Eigensolver (VQE)

· Algoritmo ibrido che utilizza un ansatz parametrizzato per esplorare lo spazio degli stati

$$E(\theta) = \frac{\langle \psi(\theta) | H | \psi(\theta) \rangle}{\langle \psi(\theta) | \psi(\theta) \rangle}$$

- \circ H: hamiltoniano che rappresenta il problema
- $| \psi(\theta) \rangle$: funzione d'onda parametrizzata

$$E_{min} = \min_{\theta} \langle \psi(\theta) | H | \psi(\theta) \rangle$$

- CPU: aggiorna iterativamente i parametri dell'ansatz quantistico θ
- QPU: calcola la funzione obiettivo

Algoritmi proposti (2/3)

Variational Quantum Eigensolver (VQE)

quantum computer

$$|0\rangle \longrightarrow \operatorname{ansatz}(\theta) \longrightarrow E(\theta) = \langle \psi(\theta) | H | \psi(\theta) \rangle$$

$$\theta_{new} \longleftarrow \operatorname{optimization}(\theta) \longleftarrow E(\theta)$$

classical computer

Algoritmi proposti (3/3)

Quantum Approximate Optimization Algorithm (QAOA)

- Algoritmo ibrido che opera attraverso una sequenza di layers (p) per approssimare la soluzione ottimale di un problema combinatorio
 - $\hat{U}_C(\gamma)=e^{-i\gamma\hat{H}_C}$: operatore di costo che codifica i vincoli e la funzione obiettivo
 - $\hat{U}_M(\beta) = e^{-i\beta \hat{H}_M}$: operatore di mixing che promuove l'esplorazione dello spazio delle soluzioni

$$|\psi_p(\gamma,\beta)\rangle = e^{-i\beta_p \hat{H}_M} e^{-i\gamma_p \hat{H}_C \dots e^{-i\beta_1 \hat{H}_M} e^{-i\gamma_1 \hat{H}_C} |s\rangle$$

- CPU: ottimizza i parametri γ e β per migliorare progressivamente il risultato
- QPU: calcola la funzione obiettivo

$$F_p(\gamma, \beta) = \langle \psi_p(\gamma, \beta) | \hat{H}_C | \psi_p(\gamma, \beta) \rangle$$

Algoritmi proposti (3/3)

Quantum Approximate Optimization Algorithm (QAOA)

quantum computer

$$|0\rangle \longrightarrow \operatorname{ansatz}(\gamma, \beta) \longrightarrow F(\gamma, \beta) = \langle \psi(\gamma, \beta) | H | \psi(\gamma, \beta) \rangle$$

$$(\gamma_{new}, \beta_{new}) \leftarrow \text{optimization}(\gamma, \beta) \leftarrow F(\gamma, \beta)$$

classical computer

Risoluzione del problema (1/6)

Configurazione:

- Numero di asset: 8
- O Budget: 5
- Rischio: 20%
- Ripetizioni: 50

Metodologie utilizzate:

- O Simulazione senza rumore (noiseless)
- O Simulazione con rumore (noisy) per rappresentare hardware reale

Risoluzione del problema (2/6)

Configurazione dei dati

- Generati i dati dei rendimenti con la classe
 RandomDataProvider
- 2. Calcolati μ e Σ con i dati degli andamenti
- 3. Impostato il problema con la classe PortfolioOptimization
- 4. Problema convertito in programma quadratico con to_quadratic_program()

```
dp = RandomDataProvider(
    # settings
).run()
stock_data = dp._data

mu = dp.get_period_return_mean_vector()
sigma = dp.get_period_return_covariance_matrix()

po = PortfolioOptimization(
    expected_returns=mu,
    covariances=sigma,
    risk_factor=risk_factor,
    budget=budget
)

qp = po.to_quadratic_program()
```

Risoluzione del problema (2/6)

Configurazione dei dati

Risoluzione del problema (3/6)

Risoluzione classica

- 1. Approccio basato su autovalori usando la classe NumPyMinimumEigensolver
- 2. Utilizzo del wrapper **MinimumEigenOptimizer** per il supporto alla risoluzione dei problemi quadratici

```
exact_mes = NumPyMinimumEigensolver()
exact_eigensolver = MinimumEigenOptimizer(exact_mes)
result_exact = exact_eigensolver.solve(qp)
```

Risoluzione del problema (4/6)

Risoluzione con VQE

- I. Generato ansatz con la classe TwoLocal
- 2. Ansatz integrato nel metodo SamplingVQE con l'uso di un campionatore Sampler() e l'ottimizzatore cobyla per la minimizzazione dei parametri
- 3. Utilizzo del wrapper MinimumEigenOptimizer

Risoluzione del problema (4/6)

Risoluzione con VQE

Risoluzione del problema (5/6)

Risoluzione con QAOA

- Circuito generato con la classe QAOA utilizzando il campionatore Sampler() e l'ottimizzatore cobyla
- 2. Utilizzo del wrapper MinimumEigenOptimizer

Risoluzione del problema (5/6)

Risoluzione con QAOA

Risoluzione del problema (6/6)

Introduzione del rumore

- Generato backend con la classe
 GenericBackendV2
- 2. Generato modello di rumore con la classe NoiseModel
- 3. Generato simulatore con rumore con la classe **AerSimulator**

Risultati senza rumore (noiseless)

- Il QAOA tende a concentrarsi su configurazioni ristrette
- II VQE esplora con maggiore diversificazione

Risultati con rumore (noisy)

- Diminuzione della precisione per VQE e QAOA
- Incremento dell'incertezza nelle distribuzioni degli asset selezionati

Conclusioni

- L'approccio quantistico offre un **potenziale significativo** per problemi complessi come l'ottimizzazione del portafoglio
- Limiti attuali della tecnologia quantistica:
 - O Problemi su larga scala, come il portafoglio con migliaia di qubit, rimangono impraticabili
 - Il rumore <u>compromette la qualità</u> delle soluzioni proposte, rendendo inefficace l'approccio quantistico

Quantum Portfolio Optimization

Corso di Quantum Computing (a.a. 2024/25)

Merenda Saverio Mattia

Bibliografia

- 1. Land, Ailsa H and Doig, Alison G (2010). An automatic method for solving discrete programming problems, Springer.
- 2. Blekos, Kostas et al., (2024). "A review on quantum approximate optimization algorithm and its variants", Physics Reports, Vol. 1068, pp. 1–66.
- 3. Buonaiuto, Giuseppe et al., (2023). "Best practices for portfolio optimization by quantum computing, experimented on real quantum devices", Scientific Reports, Vol. 13 No. 1, p. 19434.
- 4. Qiskit (2024). Portfolio Optimization using Qiskit Finance, <u>qiskit-community.github.io/</u> <u>qiskit-finance/tutorials/portfolio-optimization</u>