Part 1: Theoretical Questions

1.

- (a) The statement is false. g gets T1 type and return T2 type so when g activates on the return value is T2 type, f gets T1 type as an argument but g return T2 type, so in our case f gets invalid argument type.
- (b) The statement is true. f gets T2 type as an argument and return T1 type. f activates on y that is T2 type, so the return value is T1 type as expected.
- (c) The statement is true. The statement receives and returns types like f. f receives 'x', that has no type until we will activate the procedure.
- (d) The statement is false. We do not know for sure if T2 type is a number, so we do not know if we can activate f on this closure.

2.

(a) ((lambda(x)(+x1))4)

Expression	Var
$\left(\left(lambda\left(x\right)(+x\ 1)\right)4\right)$	T_0
lambda(x)(+x1)	T_1
(+x 1)	T_2
1	T_{num1}
4	T_{num4}
+	T_{+}
x	T_{x}

Expression	Equation
$\left(\left(lambda (x)(+ x 1) \right) 4 \right)$	$T_1 = [T_{num4} \to T_0]$
lambda(x)(+x1)	$T_1 = [T_x \to T_2]$
(+x 1)	$T_2 = [T_x * T_{num1} \rightarrow T_2]$
+	$T_{+} = [number * number \rightarrow number]$
1	$T_{num1} = number$
4	$T_{num4} = number$
\boldsymbol{x}	$T_1 = [T_x \rightarrow T_2]$

Equation	Substitution
$T_1 = [T_{num4} \to T_0]$ $T_1 = [T_r \to T_2]$	
$T_{+} = [T_{x} * T_{num1} \rightarrow T_{2}]$ $T_{+} = [T_{x} * T_{num1} \rightarrow T_{2}]$	
$T_{+} = [number * number \rightarrow number]$ $T_{num1} = number$	
$T_{num1} = number$ $T_{num4} = number$	

Equation	Substitution
$T_{1} = [T_{x} \rightarrow T_{2}]$ $T_{+} = [T_{x} * T_{num1} \rightarrow T_{2}]$ $T_{+} = [number * number \rightarrow number]$ $T_{num1} = number$ $T_{num4} = number$	$T_1 = [T_{num4} \to T_0]$

Equation	Substitution
$T_{+} = [T_{x} * T_{num1} ightarrow T_{2}]$ $T_{+} = [number * number ightarrow number]$ $T_{num1} = number$ $T_{num4} = number$ $T_{num4} = T_{x}$ $T_{0} = T_{2}$	$T_1 = [T_{num4} \to T_0]$

Equation	Substitution
$T_{+} = [number * number \rightarrow number]$ $T_{num1} = number$ $T_{num4} = number$ $T_{num4} = T_{x}$ $T_{0} = T_{2}$	$T_1 = [T_{num4} \rightarrow T_0]$ $T_+ = [T_x * T_{num1} \rightarrow T_2]$

Equation	Substitution	
$T_{num1} = number$ $T_{num4} = number$ $T_{num4} = T_x$ $T_0 = T_2$ $T_x = number$ $T_2 = number$	$T_1 = [T_{num4} \to T_0]$ $T_+ = [T_x * T_{num1} \to T_2]$	→

Equation	Substitution
$egin{aligned} number &= T_x \ T_0 &= T_2 \ T_x &= number \ T_2 &= number \end{aligned}$	$T_1 = [number ightarrow T_0] \ T_+ = [T_x * number ightarrow T_2] \ T_{num1} = number \ T_{num4} = number$

$T_1 = [number \rightarrow T_2]$
$T_{+} = [number * number \rightarrow T_{2}]$ $T_{num1} = number$
$T_{num4} = number$
$T_0 = T_2$ $T_r = number$

Equation	Substitution
	$T_1 = [number \rightarrow number]$
	$T_+ = [number * number \rightarrow number]$
	$T_{num1} = number$
	$T_{num4} = number$
	$T_0 = T_2$
	$T_x = number$
	$T_2 = number$

Eventually we get the following answer: $((lambda(x)(+x1))4): number \rightarrow number$

(b) ((lambda (f1 x1)(f1 x1 1))4 +)

<u>Stage 1:</u> rename bound variables to get the following equation:

((lambda (f x)(f x 1))4 +)

Stage 2: variable type assignment:

Expression	Variable
$\left(\left((lambda (f x)(f x 1)) 4 + \right) \right)$	<i>T</i> 0
(lambda (f x)(f x 1))	<i>T</i> 1
(f x 1)	<i>T</i> 2
f	Tf
x	Tx
1	Tnum1
4	Tnum4
+	Tsum

Stage 3: equation construction:

Expression	Equation
$\left(\left((lambda (f x)(f x 1)) 4 + \right) \right)$	$T1 = Tnum4 * Tsum \rightarrow T2$
(lambda (f x)(f x 1))	$T1 = Tf * Tx \to T2$
$(f \times 1)$	$Tf = Tx * Tnum1 \rightarrow T2$
1	Tnum1 = number
4	Tnum4 = number
+	$Tsum = number * number \rightarrow number$

Stage 4: solving the equations:

Equation	Substitution
$T1 = Tf * Tx \to T2$	$ \{T1 = [Tnum4 * Tsum \rightarrow T2]\} $
$Tf = Tx * Tnum1 \rightarrow T2$	
Tnum1 = number	
Tnum4 = number	
$Tsum = number * number \rightarrow number$	

Equation	Substitution
$Tnum4 = Tx * Tnum1 \rightarrow T2$	$\{T1 = [Tnum4 * Tsum \rightarrow T2]\}$
Tnum1 = number	
Tnum4 = number	
$Tsum = number * number \rightarrow number$	
Tnum4 = Tf	
Tx = Tsum	

Equation	Substitution
Tnum1 = number	$\{T1 = [Tnum4 * Tsum \rightarrow T2]\}$
Tnum4 = number	$Tnum4 = Tx * Tnum1 \rightarrow T2$
$Tsum = number * number \rightarrow number$	
Tnum4 = Tf	
Tx = Tsum	

Equation	Substitution
$Tsum = number * number \rightarrow number$	$ \{T1 = [number * Tsum \rightarrow T2]\} $
number = Tf	$]$ number = $Tx * number \rightarrow T2$
Tx = Tsum	

At this point we encounter an error because of the substitution: $number = Tx * number \rightarrow T2$ which is incorrect. So we return a failure and exit.

Part 2: Async Fun with TypeScript

2.2 (b) - The wrapped function returns Promise<R> because asyncMemo helps to activate f more efficiently by returning the value of the computation if it has been already done. The benefit of Promise<R> is that we can run the program asynchronically and not waiting for the calculation of each closure.

Part 3: Type Inference System

3.1

Typing rule define:

For every: type environment _Tenv, variable _x1 expressions _e1 and type expressions _S1, _U1:

```
If _Tenv |- _x1: _S1, and _Tenv |- _e1: _U1, and _Tenv |- _e1: _U1|- _S1 = _U1

Then _Tenv |- (define _x1 _e1): Void Texp

Typing rule set!:
For every: type environment _Tenv, variable _x1
expressions _e1 and type expressions _S1, _U1:

If _Tenv |- _x1: _S1, and _Tenv |- _e1: _U1, and _Tenv |- _e1: _U1|- _S1 = _U1

Then _Tenv |- (set! _x1 _e1): Void Texp
```