Chapitre 4

Généralités sur les fonctions

Sommaire

I	Rappels et compléments sur les fonctions	
	1) Vocabulaire	
	2) Opérations sur les fonctions	
II	Continuité, dérivabilité	
	1) Continuité	
	2) Dérivation	
	3) Plan d'étude d'une fonction	
III	I Primitives, intégrales	
	1) Généralités	
	2) Calculs d'intégrales et de primitives	
	3) Primitives de certaines fractions rationnelles	
IV	Solution des exercices	

Dans ce chapitre, les fonctions considérées sont définies sur un intervalle non trivial de \mathbb{R} .

I RAPPELS ET COMPLÉMENTS SUR LES FONCTIONS

Rappels:

- a) Deux fonctions sont égales lorsqu'elles ont le même ensemble de départ, le même ensemble d'arrivée, et le même graphe.
- b) Si $f: I \to \mathbb{R}$ est une fonction, on appelle « image de f », l'ensemble noté f(I) et défini par :

$$f(I) = \{ y \in \mathbb{R} \mid \exists x \in I, f(x) = y \},$$

c'est l'ensemble des images par f des éléments de I.

1) Vocabulaire

- Représentation graphique : soit \mathscr{P} un plan muni d'un répère $(O, \overrightarrow{t}, \overrightarrow{f})$, la représentation graphique de f est l'ensemble $\mathscr{C}_f = \{M(x, f(x)) \mid x \in I\}$. On dit que y = f(x) est une équation de la courbe représentative de f car $M(x; y) \in \mathscr{C}_f \iff y = f(x)$.
- Sens de variation : soit f : I → \mathbb{R} une fonction, on dit que f est :
 - constante sur I lorsque : $\forall x, y \in I, f(x) = f(y)$.
 - croissante sur I lorsque : $\forall x, y \in I, x \leqslant y \implies f(x) \leqslant f(y)$.
 - strictement croissante sur I lorsque : $\forall x, y \in I, x < y \implies f(x) < f(y)$.
 - décroissante sur I lorsque : $\forall x, y \in I, x \leq y \implies f(x) \geqslant f(y)$.
 - strictement décroissante sur I lorsque : $\forall x, y \in I, x < y \implies f(x) > f(y)$.
 - monotone sur I lorsque : f est ou bien croissante ou bien décroissante.
 - strictement monotone sur I lorsque : f est ou bien strictement croissante ou bien strictement décroissante.

★Exercice 4.1 Étudier le sens de variation de la composée de deux fonctions monotones, puis de la somme, puis du produit.

- Bornée : soit $f: I \to \mathbb{R}$ une fonction, on dit que f est :
 - majorée sur I lorsqu'il existe un réel M tel que $\forall x \in I, f(x) \leq M$. Si c'est le cas, la courbe de f est sous la droite y = M.
 - minorée sur I lorsqu'il existe un réel m tel que $\forall x \in I, f(x) \ge m$. Si c'est le cas, la courbe de f est au-dessus la droite y = m.
 - bornée sur I lorsque f est à la fois minorée et majorée, **ce qui équivaut à :** |f| **est majorée**.
- Parité : soit $f: I \to \mathbb{R}$ une fonction, on dit que f est :
 - paire lorsque : $\forall x \in I, -x \in I$ et f(-x) = f(x). Dans ce cas la courbe représentative de f admet l'axe des ordonnées comme axe de symétrie.
 - Plus généralement, si $\forall x \in I, 2a x \in I$ et f(2a x) = f(x), alors la courbe de f admet la droite d'équation x = a comme axe de symétrie.
 - impaire lorsque : $\forall x \in I, -x \in I$ et f(-x) = -f(x). Si c'est le cas, alors la courbe de f admet un centre de symétrie, l'origine du repère.
 - Plus généralement, si $\forall x \in I, 2a x \in I$ et f(2a x) = 2b f(x), alors la courbe de f admet le point A(a,b) comme centre de symétrie.
- Périodicité : soit $f: I \to \mathbb{R}$ une fonction et soit $a \in \mathbb{R}^*$, on dit que a est une période de f lorsque : $\forall x \in I, x \pm a \in I$ et f(x + a) = f(x). Si c'est le cas, le courbe de f est invariante par les translations de vecteurs $na\overrightarrow{i}$ où $n \in \mathbb{Z}$. Si f est périodique, on appelle période fondamentale de f la plus petite période strictement positive **si elle existe**.

\bigstarExercice 4.2 *Soit* $f: I \to \mathbb{R}$ *une fonction périodique, on note*

$$G_f = \{ T \in \mathbb{R} \mid \forall x \in I, x + T \in I, x - T \in I, f(x + T) = f(x) \}$$

Montrer que $(G_f, +)$ est un groupe (appelé groupe des périodes de f). Lorsque f admet une période fondamentale a, montrer que $G_f = a\mathbb{Z}$.

- Extremum global : on dit que f : I → \mathbb{R} admet un :
 - maximum global en $x_0 \in I$ lorsque : $\forall x \in I$, $f(x) \leq f(x_0)$. Si c'est le cas, on pose $f(x_0) = \max_{x \in I} f(x)$.
 - minimum global en $x_0 \in I$ lorsque : $\forall x \in I$, $f(x) \ge f(x_0)$. Si c'est le cas, on pose $f(x_0) = \min_{x \in I} f(x)$.

Une fonction même bornée n'a pas forcément de maximun ou de minimum. Par exemple, la fonction arctan a pour ensemble image $\operatorname{Im}(\arctan) =] - \frac{\pi}{2}; \frac{\pi}{2}[$, la fonction est donc bornée mais n'a ni maximum, ni minimum.

2) Opérations sur les fonctions

L'ensemble des fonctions de I vers \mathbb{R} est noté $\mathscr{F}(I,\mathbb{R})$.

🚀 Définition 4.1

Soient $f, g \in \mathcal{F}(I, \mathbb{R})$ et soit $\lambda \in \mathbb{R}$, on pose :

- f + g la fonction de I vers \mathbb{R} définie par : \forall x ∈ I, (f + g)(x) = f(x) + g(x).
- $f \times g$ la fonction de I vers ℝ définie par : $\forall x \in I$, $(f \times g)(x) = f(x)g(x)$.
- $-\lambda . f$ la fonction de I vers ℝ définie par : $\forall x \in I, (\lambda . f)(x) = \lambda f(x)$.

Propriétés

- a) Pour l'addition :
 - elle est commutative, associative,
 - elle admet un élément neutre : la fonction nulle (notée 0),
 - toute fonction f de I vers \mathbb{R} admet un opposé qui est la fonction −f : $x \mapsto -f(x)$,

donc $(\mathcal{F}(I,\mathbb{R}),+)$ est un groupe abélien.

- b) Pour le produit par un réel : si $f, g \in \mathcal{F}(I, \mathbb{R})$ et $\alpha, \beta \in \mathbb{R}$:
 - -1.f = f,
 - $(\alpha + \beta).f = \alpha.f + \beta.f,$
 - $-\alpha.(f+g)=\alpha.f+\alpha.g,$
 - $-\alpha.(\beta.f) = (\alpha\beta).f$,

donc $(\mathcal{F}(I,\mathbb{R}),+,.)$ est un \mathbb{R} - espace vectoriel.

- c) Pour la multiplication :
 - elle associative, commutative,
 - elle possède un élément neutre, la fonction constante qui à x donne 1 (notée 1),
 - elle est distributive sur l'addition,
 - seules les fonctions f qui **ne s'annulent jamais** ont un inverse (la fonction $\frac{1}{f}$).

donc $(\mathscr{F}(I,\mathbb{R}),+,\times)$ n'est pas un corps, mais seulement un anneau commutatif, celui - ci n'est pas intègre, par exemple $\chi_{\mathbb{Q}} \times (1 - \chi_{\mathbb{Q}}) = 0$.

Définition 4.2 (fonctions max et min)

Soient $f,g: I \to \mathbb{R}$ deux fonctions, on pose $\max(f,g)$ et $\min(f,g)$ les fonctions de I vers \mathbb{R} définies $par: \forall x \in I, \max(f, g)(x) = \max(f(x), g(x)) \ et \min(f, g)(x) = \min(f(x), g(x)).$ En particulier on pose $f^+ = \max(f, 0)$ et $f^- = \max(-f, 0)$, on a alors $f^+ - f^- = f$ et $f^+ + f^- = |f|$.

\(\section Exercise 4.3 Montrer que \max(f,g) = $\frac{f+g+|f-g|}{2}$ et que \min(f,g) = $\frac{f+g-|f-g|}{2}$.

CONTINUITÉ, DÉRIVABILITÉ

1) Continuité

Définition 4.3

- Une fonction $f: I \to \mathbb{R}$ est continue en $x_0 \in I$, lorsque $\lim_{x \to x_0} f(x) = f(x_0)$.
- On dit que f est continue sur I si elle est continue en tout point de I, et l'ensemble des fonctions continues sur I est noté $\mathscr{C}^0(I,\mathbb{R})$.

Remarque 4.1:

- Si f a une limite à gauche en x_0 égale à $f(x_0)$, on dit que f est continue à gauche en x_0 .
- Si f a une limite à droite en x_0 égale à $f(x_0)$, on dit que f est continue à droite en x_0 .
- Si f est continue à gauche et à droite en x_0 , alors f est continue en x_0 .

🚜 Définition 4.4 (prolongement par continuité)

Soit $a \in I$, si f est définie sur $I \setminus \{a\}$ et si f a une limite finie ℓ en a, alors la fonction $\tilde{f}: I \to \mathbb{R}$ définie $par \, \tilde{f}(x) = \begin{cases} f(x) & \text{si } x \neq a \\ \ell & \text{si } x = a \end{cases}, \text{ est appelée prolongement de } f \text{ par continuité en } a.$

Exemple: La fonction f définie sur \mathbb{R}^* par $f(x) = e^{-\frac{1}{x^2}}$ admet un prolongement par continuité en 0 car f a une limite finie (égale à 0 ici) en 0.

Théorème 4.1 (théorèmes généraux)

- Les fonctions usuelles vues jusque là, sont continues sur leur ensemble de définition.
- Si $f, g: I \to \mathbb{R}$ sont continues sur I alors les fonctions $f + g, f \times g, \lambda.f$ ($\lambda \in \mathbb{R}$) sont continues sur I.
- Si $f: I \to \mathbb{R}$ est continue sur I **et ne s'annule pas**, alors $\frac{1}{f}$ est continue sur I.
- Si $f: I \to \mathbb{R}$ est continue sur I, si $g: J \to \mathbb{R}$ est continue sur J, et si $f(I) \subset J$, alors la composée $g \circ f$ est continue sur I.
- **\bigstarExercice 4.4** Étudier la continuité de la fonction f définie par $f(x) = |x \ln(|x|)|$.

Théorème 4.2 (théorème des valeurs intermédiaires)

Si f est continue sur **l'intervalle** I, alors l'ensemble f(I) est un intervalle de \mathbb{R} . Plus précisément, soient $a, b \in I$, pour tout réel α compris entre f(a) et f(b), il existe un réel c compris entre a et b tel que $f(c) = \alpha$.

Théorème 4.3 (image d'un segment)

Si f est continue sur un **segment** [a;b] (avec a < b), alors f a un maximum (M) et un minimum (m). On a donc f([a;b]) = [m;M].

Une fonction continue sur un intervalle peut être majorée (ou minorée) sans avoir de maximum (ou de minimum). Par exemple, la fonction $x\mapsto \frac{1}{x}$ est continue sur $]0;+\infty[$, elle est minorée (par 0) mais n'a pas de minimum. La fonction $x \mapsto x$ et continue sur [0;1[, majorée, mais n'a pas de maximum.

Théorème 4.4 (de la bijection continue)

Si $f: I \to \mathbb{R}$ est continue sur l'intervalle I et est strictement monotone sur I, alors elle réalise une bijection entre I et f(I) (tout élément de f(I) a un unique antécédent par f dans I). De plus, la bijection réciproque est continue sur l'intervalle f(I). Dans un repère orthonormé, la courbe de la réciproque est l'image de la courbe de f par la symétrie orthogonale par rapport à la droite d'équation y = x.

Remarque 4.2 – Ce théorème sera exploité dans le prochain chapitre pour définir de nouvelles fonctions.

2) **Dérivation**

Définition 4.5

Une fonction $f: I \to \mathbb{R}$ est dérivable en $x_0 \in I$, lorsque le taux d'accroissement $\frac{f(x) - f(x_0)}{x - x_0}$ admet une limite **finie** en x_0 . Si c'est le cas, cette limite est notée $f'(x_0)$ et appelée nombre dérivé de f en x_0 , et dans le plan muni d'un repère, la droite d'équation $y = f'(x_0)(x - x_0) + f(x_0)$ est appelé tangente à la courbe \mathcal{C}_f au point d'abscisse x_0 .

Les fonctions usuelles vues jusque là sont dérivables sur leur ensemble de définition SAUF:

- La valeur absolue qui n'est pas dérivable en 0.
- La racine carrée qui pas dérivable en 0.

Théorème 4.5 (théorèmes généraux)

- Si f est dérivable en x_0 alors f est continue en x_0 (réciproque fausse).
- Si $f, g: I \to \mathbb{R}$ sont dérivables sur I alors les fonctions $f + g, f \times g, \lambda.f$ ($\lambda \in \mathbb{R}$) sont dérivables sur I, et on a les formules de dérivation :

$$(f+g)' = f'+g'; (fg)' = f'g+fg'; (\lambda f)' = \lambda f'.$$

• Si $f: I \to \mathbb{R}$ est dérivable sur I **et ne s'annule pas**, alors $\frac{1}{f}$ est dérivable sur I, et on a la formule :

$$\left(\frac{1}{f}\right)' = \frac{-f'}{f^2}.$$

 $\left(\frac{1}{f}\right)' = \frac{-f'}{f^2}.$ • Si $f: I \to \mathbb{R}$ est dérivable sur I, si $g: J \to \mathbb{R}$ est dérivable sur J, et si $f(I) \subset J$, alors la composée $g \circ f$ est dérivable sur I, et on a la formule :

$$(g \circ f)' = f' \times g' \circ f$$
 (ou encore $[g(f)]' = f' \times g'(f)$).

Remarque 4.3 – Si f et g sont dérivables et si g ne s'annule pas, alors $\frac{f}{g}$ est dérivable et $\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$.

Fonction	Dérivée
u^{α} (α constant)	$\alpha u' u^{\alpha-1}$
\sqrt{u}	$\frac{u'}{2\sqrt{u}}$
ln(u)	$\frac{u'}{u}$
e^u	$u'e^u$
sin(u)	$u'\cos(u)$
$\cos(u)$	$-u'\sin(u)$
tan(u)	$u'(1 + \tan^2(u)) = \frac{u'}{\cos^2(u)}$
sh(u)	$u'\operatorname{ch}(u)$
ch(u)	$u'\operatorname{sh}(u)$

★Exercice 4.5 Calculer la dérivée (si elle existe) des fonctions suivantes : $\frac{1}{1+x^2}$; $e^{\frac{1}{\sqrt{x}}}$; $\cos^3(\frac{e^x}{x})$; $\ln(x+\sqrt{1+x^2})$.

Théorème 4.6 (de la bijection dérivable)

Si $f: I \to \mathbb{R}$ est continue, dérivable sur l'intervalle I et est strictement monotone sur I, alors elle réalise une bijection entre I et f(I). On sait déjà que la bijection réciproque est continue sur l'intervalle f(I). Si de plus la dérivée de f n'annule pas sur I, alors la bijection réciproque (notée f^{-1}) est dérivable sur f(I), et on a la formule : $(f^{-1})' = \frac{1}{f' \circ f^{-1}}$.

Théorème 4.7 (sens de variation)

- Une fonction dérivable f sur un intervalle I est constante si et seulement si sa dérivée est nulle sur I.
- Si f est dérivable sur un intervalle I et $f' \ge 0$ (respectivement $f' \le 0$ alors f est croissante sur I (respectivement décroissante), et si de plus f' ne s'annule pas, alors la monotonie de f est stricte.

3) Plan d'étude d'une fonction

Ensemble de définition, ensemble d'étude

- \mathcal{D}_f est l'ensemble des réels de l'ensemble de départ ayant une image par f.
- Si \mathcal{D}_f est symétrique par rapport à un réel a, il se peut que la courbe de f présente une symétrie :
 - un axe d'équation x = a lorsque $\forall x \in \mathcal{D}_f$, f(2a x) = f(x).
 - un centre de symétrie de coordonnées (a,b) lorsque $\forall x \in \mathcal{D}_f, f(2a-x) = 2b-f(x)$.

Dans les deux cas, on peut restreindre l'étude à $\mathcal{D}_f \cap [a; +\infty[$.

- S'il existe un réel T > 0 tel que : $\forall x \in \mathcal{D}_f, x \pm T \in \mathcal{D}_f, f(x + T) = f(x)$, alors f est T-périodique. On peut restreindre l'étude à un intervalle de longueur une période : $\mathcal{D}_f \cap [a; a+T[(a \text{ peut être quelconque}),$ on complète ensuite la courbe avec les translations de vecteurs $nT\vec{\iota}$, $n \in \mathbb{Z}$.

Prolongements éventuels aux bords

Il se peut que f admette un prolongement par continuité aux bornes (finies) de \mathcal{D}_f . C'est un calcul de limite, si celle-ci existe dans ℝ, alors il y a un prolongement. Si celle-ci est infinie, alors il y a une asymptote

S'il y a un prolongement, on étudie la fonction prolongée, ce qui change l'ensemble de définition.

Continuité, dérivabilité

- On cherche à appliquer les théorèmes généraux, pour cela il faut regarder comment est faite la fonction (somme, produit, composée...).
- Il reste parfois des points où ces théorèmes ne s'appliquent as, on étudie alors la continuité en revenant à la définition (calcul de limite). S'il y a continuité, alors on étudie s'il y a dérivabilité en ce même point, il y a plusieurs méthodes : le théorème sur la limite de la dérivée, ou la définition (limite du taux d'accroissement).

Sens de variation

On rappelle que le théorème qui donne le sens de variation en fonction du signe de la dérivée, n'est valable que sur un intervalle.

- On peut parfois éviter l'étude du signe de la dérivée : sens de variation d'une somme, d'une composée, d'un produit... Par exemple, les fonctions $\ln(u)$, \sqrt{u} , e^u ont le même sens de variation que u.
- Lorsqu'on ne peut pas faire autrement, on étudie le signe de la dérivée (sur un intervalle).
- Les résultats sont consignés dans le tableau des variations, où doivent figurer :
 - l'ensemble d'étude,
 - les valeurs particulières qui sont intervenues dans l'étude de la continuité, la dérivabilité et l'étude du signe de la dérivée,
 - le signe de la dérivée (si on est passé par là),
 - les limites aux bornes de l'ensemble d'étude.

Étude des branches infinies

 \mathscr{C}_f désigne la courbe de f dans un repère orthogonal.

- Si x_0 est un réel de \mathcal{D}_f ou une borne et si f a une limite infinie en x_0 , alors on dit que \mathscr{C}_f admet une asymptote verticale d'équation $x = x_0$.
- Si ∞ est une borne de \mathcal{D}_f , et si $\lim_{t\to\infty} f = \ell \in \mathbb{R}$, alors on dit que \mathscr{C}_f admet une asymptote horizontale d'équation $y = \ell$.

Représentation graphique

- On commence par placer: les asymptotes, les tangentes remarquables, les points particuliers (anguleux, de rebroussement, d'intersection avec les axes...),
- On donne ensuite **l'allure** de la courbe d'après le tableau de variation. Il est parfois nécessaire d'étudier la position de la courbe par rapport à certaines tangentes ou asymptotes.

PRIMITIVES, INTÉGRALES

1) **Généralités**

Définition 4.6

Soit F, $f: I \to \mathbb{R}$ deux fonctions, on dit que F est une **primitive** de f sur I lorsque F est dérivable sur I et F'=f.

Marème 4.8

- Si F et G sont deux primitives de la fonction f sur l'intervalle I, alors il existe une constante $\alpha \in \mathbb{C}$ telle que : $\forall t \in I, F(t) = G(t) + \alpha$.
- Si f admet des primitives sur l'intervalle I, si $x_0 \in I$ et $a \in \mathbb{R}$, alors il existe une unique primitive F de f sur I telle que $F(x_0) = a$.

Preuve: On a F' = G' = f, d'où (F - G)' = 0 la fonction nulle, ce qui entraîne que la fonction F - G est constantes sur l'intervalle I.

Le théorème clé que nous établirons dans le chapitre sur l'intégration dit la chose suivante :

À retenir

Toute fonction $f: I \to \mathbb{R}$ continue sur un intervalle I, admet des primitives sur cet intervalle.

Les primitives usuelles se lisent dans le tableau des dérivées usuelles, en faisant une lecture de droite à gauche.

Exercice 4.6 Déterminer une primitive (en précisant l'intervalle) de : $x \mapsto \tan(x)$; $x \mapsto \tan^2(x)$; $x \mapsto x\sqrt{1+x^2}$; $x \mapsto \frac{\ln(x)}{x}$; $x \mapsto \frac{1}{x \ln(x)}$.

Calculs d'intégrales et de primitives

Rappel

Si $f: I \to \mathbb{R}$ est continue sur l'intervalle I, si F est une primitive de f sur I alors pour tous réels a et b de I, on a $\int_{a}^{b} f(t) dt = [F(t)]_{a}^{b} = F(b) - F(a)$

Propriétés à bien connaître

Soient $f, g: I \to \mathbb{R}$ continues sur l'intervalle I, et $a, b \in I$:

a)
$$\int_{b}^{a} f(t) dt = -\int_{a}^{b} f(t) dt = \int_{a}^{a} f(t) dt = 0.$$

b)
$$\int_{b}^{a} [\alpha f(t) + \beta g(t)] dt = \alpha \int_{a}^{b} f(t) dt + \beta \int_{a}^{b} g(t) dt$$
, c'est la **linéarité** de l'intégrale.

c) Si
$$0 \le f$$
 sur $[a;b]$ (avec $a \le b$), alors $0 \le \int_a^b f(t) \, dt$, c'est la **positivité** de l'intégrale. On en déduit que si $f \le g$ sur $[a;b]$ (avec $a \le b$) alors $\int_a^b f(t) \, dt \le \int_a^b g(t) \, dt$ (c'est la **croissance** de l'intégrale).

d) Si
$$a$$
, b , c sont dans I, alors $\int_a^b f(t) dt = \int_a^c f(t) dt + \int_c^b f(t) dt$, c 'est la **relation de Chasles** pour l'intégrale.

e) Si
$$a \le b$$
 alors $\left| \int_a^b f(t) \, dt \right| \le \int_a^b |f(t)| \, dt$, c'est la **majoration en valeur absolue** de l'intégrale.

★Exercice 4.7 Montrer que $\left| \int_{-1}^{1} \frac{t^n}{1+t^2} dt \right| \leqslant \frac{2}{n+1}$.

🌉 Théorème 4.9

Si $f: I \to \mathbb{R}$ est continue sur I, si $\lambda \in \mathbb{R}$ et $x_0 \in I$, alors l'unique primitive de f sur I qui prend la valeur λ en x_0 est la fonction F définie par : $\forall x \in I$, $F(x) = \lambda + \int_{x_0}^{x} f(t) dt$.

Preuve: Soit G une primitive de f sur I, on a $F(x) = \lambda + G(x) - G(x_0) = G(x) + \lambda - G(x_0)$, donc F est une primitive de fcar $\lambda - G(x_0)$ est une constante, et $F(x_0) = \lambda$.

Les deux outils fondamentaux pour le calcul d'intégrales, sont : le théorème de l'intégration par parties et le théorème du changement de variable dont voici les énoncés :

🚧 Théorème 4.10 (IPP)

Si f et g sont dérivables sur I avec leur **dérivée continue**, alors on a la formule **d'intégration par parties** (IPP): $\int_a^b f'(t)g(t) dt = [f(t)g(t)]_a^b - \int_a^b f(t)g'(t) dt.$

Preuve : Celle-ci est simple et laissée en exercice.

Théorème 4.11 (changement de variable)

Soit $f: I \to \mathbb{R}$ une fonction continue, $u: [a;b] \to I$ une fonction dérivable à **dérivée continue**, on $a: \int_a^b f(u(t))u'(t) \, \mathrm{d}t = \int_{u(a)}^{u(b)} f(x) \, \mathrm{d}x$

Preuve: Soit F une primitive de f sur I, alors F \circ u est une primitive de u'f(u) et donc $\int_a^b f(u(t))u'(t) dt = [F(u)]_a^b = \int_a^b f(u(t))u'(t) dt$ $F(u(b)) - F(u(a)) = \int_{u(a)}^{u(b)} f(x) dx.$

Dans la pratique on rédige ainsi : posons x = u(t) alors $\frac{dx}{dt} = u'(t)$ d'où dx = u'(t)dt et f(x) = f(u(t)). Pour les bornes : lorsque t = a on a x = u(a) et pour t = b on a x = u(b), puis on remplace dans l'intégrale, ce qui donne : $\int_{a}^{b} f(u(t))u'(t) dt = \int_{u(a)}^{u(b)} f(x) dx$.

Exemples:

- Calculer $\int_0^1 \sqrt{1-x^2} \, dx$. On pose $x = \sin(t)$ avec $t \in [0, \frac{\pi}{2}]$, alors $dx = \cos(t) dt$, pour t = 0 on a x = 0 et pour $t = \frac{\pi}{2}$ on a x = 1, d'où:

$$\int_{0}^{1} \sqrt{1 - x^{2}} dx = \int_{0}^{\pi/2} \sqrt{1 - \sin^{2}(t)} \cos(t) dt$$

$$= \int_{0}^{\pi/2} \cos^{2}(t) dt$$

$$= \int_{0}^{\pi/2} \frac{1 + \cos(2t)}{2} dt$$

$$= \left[\frac{t}{2} + \frac{\sin(2t)}{4} \right]_{0}^{\pi/2}$$

$$= \frac{\pi}{4}$$

- Calculer une primitive de la fonction $\ln \sup]0; +\infty[$. Une primitive est (par exemple) $x \mapsto \int_1^x \ln(t) dt$ pour x > 0, cette intégrale se calcule par parties en posant f'(t) = 1 et $g(t) = \ln(t)$:

$$\int_{1}^{x} \ln(t) dt = [t \ln(t)]_{1}^{x} - \int_{1}^{x} 1 dt$$
$$= x \ln(x) - (x - 1) = x \ln(x) - x + 1$$

donc une primitive de la fonction ln sur]0; $+\infty$ [est la fonction $x \mapsto x \ln(x) - x$ (on peut évidemment ajouter n'importe quelle constante).

★Exercice 4.8

1/ Déterminer une primitive de $x \mapsto x^2 e^x$ à l'aide d'IPPs.

2/ Déterminer une primitive de $x \mapsto \cos^5(x)$ avec la changement de variable $u = \sin(x)$.

Primitives de certaines fractions rationnelles

- Fractions du type $f(x) = \frac{1}{(x-a)^n}$ avec $a \in \mathbb{R}$ et $n \in \mathbb{N}^*$. Sur l'intervalle $I =]-\infty$; a[(ou $]a; +\infty[$), f est continue et admet donc des primitives. Si n = 1 alors une primitive est $F(x) = \ln(|x-a|)$ et si $n \ge 2$, une primitive est $F(x) = \frac{-1}{(n-1)(x-a)^{n-1}}$.
- Fractions du type $f(x) = \frac{\alpha x + \beta}{(x a)(x b)}$ avec α , β , a et b des réels tels que $a \neq b$

🍖 À retenir

Il existe c et d réels tels que $\frac{\alpha x + \beta}{(x-a)(x-b)} = \frac{c}{x-a} + \frac{d}{x-b}$, ce qui nous ramène au cas précédent.

En effet : en réduisant au même dénominateur, on a au numérateur (c+d)x - (bc+ad), il suffit donc de choisir c et d tels que $\begin{cases} c+d=\alpha \\ bc+ad=-\beta \end{cases}$ ce qui équivaut à $\begin{cases} c+d=\alpha \\ (b-a)d=\beta+b\alpha \end{cases}$ et on voit que ce système

a une unique solution puisque $a \neq b$.

- Fractions du type $f(x) = \frac{\alpha x + \beta}{(x-a)^2}$ avec α , β et a des réels.

🍿 - À retenir

On intègre ce type de fraction par parties, en posant $u'(x) = \frac{1}{(x-a)^2}$ et $v(x) = \alpha x + \beta$.

- Fractions du type $f(x) = \frac{ax+b}{x^2+px+q}$ avec $a, b, p \ q$ des réels tels que $p^2-4q < 0$. Le dénominateur n'a pas de racine réelle, f est donc définie sur \mathbb{R} . La méthode est la suivante :

🥱 - À retenir

ullet on fait apparaître la dérivée du trinôme x^2+px+q au numérateur et on compense les x en multipliant par un facteur adéquat, puis on compense les constantes en ajoutant ce qu'il faut, ce qui donne:

$$\frac{ax+b}{x^2+px+q} = \frac{a}{2} \frac{2x+p}{x^2+px+q} + (b-\frac{ap}{2}) \frac{1}{x^2+px+q}.$$

La première de ces deux fractions est facile à intégrer puisqu'elle est du type $\frac{u'}{u}$.

• Pour la deuxième fraction : on met le trinôme $x^2 + px + q$ sous forme canonique afin de mettre la fraction sous la forme : $\alpha \frac{u'}{1+u^2}$ où α est une constante et u est une fonction de x, cette fonction s'intègre en α arctan(u) a.

a. Les fonction arctan sera étudiée dans le chapitre suivant.

Par exemple, soit $f(x) = \frac{x-2}{x^2-x+1}$:

$$f(x) = \frac{x-2}{x^2 - x + 1} = \frac{1}{2} \frac{2x-1}{x^2 - x + 1} - \frac{3}{2} \frac{1}{x^2 - x + 1}$$

et:

$$\frac{1}{x^2 - x + 1} = \frac{1}{(x - \frac{1}{2})^2 + \frac{3}{4}} = \frac{2}{\sqrt{3}} \frac{2/\sqrt{3}}{\left(\frac{2x - 1}{\sqrt{3}}\right)^2 + 1}.$$

On en déduit qu'une primitive de f sur \mathbb{R} est F: $x \mapsto \frac{1}{2} \ln(x^2 - x + 1) - \sqrt{3} \arctan(\frac{2x-1}{\sqrt{3}})$.

IV SOLUTION DES EXERCICES

Solution 4.1

1/ $Si\ f: I \to \mathbb{R}\ et\ g: J \to \mathbb{R}\ sont\ monotones\ et\ si\ f(I) \subset J$, alors on vérifie que $g \circ f\ est:$

- croissante si f et g ont le même sens de variation;
- décroissante dans le cas contraire.

2/ Si $f: I \to \mathbb{R}$ et $I: J \to \mathbb{R}$ sont monotones, alors on vérifie que f + g est:

- croissante si f et g sont croissantes;
- décroissante si f et g sont décroissantes.

On ne peut rien dire en général sinon.

3/ Si $f: I \to \mathbb{R}^+$ et $I: J \to \mathbb{R}^+$ sont monotones et positives, alors on vérifie que f+g est:

- croissante si f et g sont croissantes;
- décroissante si f et g sont décroissantes.

On ne peut rien dire en général sinon.

Solution 4.2 Soient T et T' deux périodes de f, alors pour $x \in D_f$, on a $x+T+T'=(x+T)+T' \in D_f$, $x-(T+T')=(x-T)-T' \in D_f$ et f(x+T+T')=f(x+T)=f(x) car T' et T sont deux périodes de f, il en découle que $T+T' \in G_f$. L'addition est donc interne dans G_f , on sait qu'elle est associative et commutative dans \mathbb{R} , donc elle l'est dans G_f puisque $G_f \subset \mathbb{R}$. D'autre part $0 \in G_f$, il y donc un élément neutre pour l'addition dans G_f . Enfin, si $x \in D_f$, alors f(x-T)=f(x-T+T)=f(x), donc $-T \in G_f$: tout élément de G_f a un opposé dans G_f , donc G_f , est un groupe commutatif.

Solution 4.3 Simple vérification. Soit $x \in I$, supposons $f(x) \le g(x)$, alors $\frac{f(x) + g(x) + |f(x) - g(x)|}{2} = \frac{f(x) + g(x) - f(x) + g(x)}{2} = g(x)$ et c'est bien le maximum entre f(x) et g(x). L'autre cas se traite de la même façon en échangeant les rôles de f et de g, d'où $\max(f,g) = \frac{f + g + |f - g|}{2}$.

L'autre égalité se traite sur le même principe, ou bien en remarquant que pour tous réels a et b, min(a,b) = -max(-a,-b).

Solution 4.4 La fonction f est paire et définie $sur \mathbb{R}^*$. $Sur]0; +\infty [$ on a $f(x) = x | \ln(x) |$ donc g est continue $sur]0; +\infty [$ (en appliquant les théorèmes généraux); f étant paire, elle continue $sur \mathbb{R}^*$. On a $\lim_{x\to 0} f(x) = 0$, il y a donc un prolongement par continuité en g en posant g est continue g est g

Solution 4.5

$$1/\left[\frac{1}{1+x^2}\right]' = \frac{-2x}{(1+x^2)^2}, sur \mathbb{R}.$$
$$2/\left[e^{\frac{1}{\sqrt{x}}}\right]' = -\frac{1}{2x\sqrt{x}}e^{\frac{1}{\sqrt{x}}}, sur \mathbb{R}^{*+}.$$

$$3/\left[\cos^3(\frac{e^x}{x})\right]' = -\frac{e^x(x-1)}{x^2}\sin(\frac{e^x}{x})\cos^2(\frac{e^x}{x}), sur\,\mathbb{R}^{*+}.$$

4/
$$\left[\ln(x+\sqrt{1+x^2})\right]' = \frac{1}{\sqrt{1+x^2}}, sur \mathbb{R}.$$

Solution 4.6

- 1/ Une primitive sur] $-\frac{\pi}{2}$; $\frac{\pi}{2}$ [est F(x) = $-\ln(|\cos(x)|)$.
- 2/ Une primitive sur $]-\frac{\pi}{2}; \frac{\pi}{2}[$ est $F(x) = \tan(x) 1$.
- **3/** *Une primitive sur* \mathbb{R} *est* $F(x) = \frac{1}{3}(1+x^2)^{\frac{3}{2}}$.
- 4/ Une primitive sur]0; $+\infty$ [est $F(x) = \frac{1}{2} \ln^2(x)$.
- 5/ Une primitive sur]0;1[est $F(x) = \ln(-\ln(x))$.

Solution 4.7 $\left| \int_{-1}^{1} \frac{t^n}{1+t^2} dt \right| \leqslant \int_{-1}^{1} \left| \frac{t^n}{1+t^2} \right| dt$ (majoration en valeur absolue), or $\left| \frac{t^n}{1+t^2} \right| = \frac{|t|^n}{1+t^2} \leqslant |t|^n$ car $\frac{1}{1+t^2} \leqslant 1$, d'où $\left| \int_{-1}^{1} \frac{t^n}{1+t^2} dt \right| \leqslant \int_{-1}^{1} |t|^n dt = \int_{0}^{1} t^n dt + \int_{-1}^{0} (-1)^n t^n dt = \frac{2}{n+1}$.

Solution 4.8

- If Soit $f(x) = x^2 e^x$, f est continue sur \mathbb{R} , elle admet donc des primitives sur \mathbb{R} , la primitive qui s'annule en 0 (par exemple) est F définie par $F(x) = \int_0^x t^2 e^t \, dt$. On fait une IPP en posant $u' = e^t$ et $v = t^2$, d'où $u = e^t$ et v' = 2t (u et v sont bien dérivables à dérivée continue), on a $F(x) = [uv]_0^x \int_0^x uv' = x^2 e^x 2 \int_0^x t e^t \, dt$. Pour la deuxième intégrale on refait une IPP en posant $u' = e^t$ et v = t, d'où $u = e^t$ et v' = 1 (u et v sont bien dérivables à dérivée continue), on a $\int_0^x t e^t \, dt = [uv]_0^x \int_0^x uv' = xe^x \int_0^x e^t \, dt = xe^x e^x + 1$, d'où $F(x) = (x^2 2x + 2)e^x 2$.
- 2/ La fonction est continue $\sup \mathbb{R}$, elle admet donc des primitives. La primitive qui s'annule en 0 (par exemple) est F définie par $F(x) = \int_0^x \cos^5(t) dt = \int_0^x \cos^4(t) \cos(t) dt$. On pose $u = \sin(t)$ (continue dérivable, à dérivée continue $\sup \mathbb{R}$), d'où $du = \cos(t) dt$ et donc:

 $\mathbb{R}), \ d'ou \ du = \cos(t) \ dt \ et \ donc: \\ F(x) = \int_{\sin(0)}^{\sin(x)} (1-u^2)^2 \ du = \int_0^{\sin(x)} (u^4-2u^2+1) \ du \ \left[\frac{1}{5}u^5-\frac{2}{3}u^3+u\right]_0^{\sin(x)} = \frac{\sin^5(x)}{5} - \frac{2\sin^3(x)}{3} + \sin(x).$