

To diagnostically predict whether a patient has diabetes

ENSEMBLE LEARNING

Ensemble learning combines several base algorithms to form one optimised predictive algorithm.

Can be divided into two groups:

- Sequential Learners (AdaBoost)
- Parallel Learners (Random Forest)

Can be used for:

- Decrease Variance (Bagging)
- Decrease Bias (Boosting)
- Improve Predictions (Stacking)

SEQUENTIAL LEARNERS

Types of Boosting Algorithms:

- Adaboost (Adaptive Boosting
- Gradient Tree Boosting
- XGBoost

BOOSTING

Boosting algorithm tries to build a strong learner (predictive model) from the mistakes of several weak learners.

Step 1: Assign initial weights

Step 2: Create a decision stump for each variable

Step 4: Iterate from Step 2 until max iteration level has been reached

PSEUDO-CODE

Initially set uniform example weights.

for Each base learner do:
Train base learner with a weighted sample.
Test base learner on all data.
Set learner weight with a weighted error.
Set example weights based on ensemble predictions.
end for

CASE STUDY

To diagnostically predict whether a patient has diabetes

DATASET

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	Age	Outcome
0	6	148	72	35	0	33.6	0.627	50	1
1	1	85	66	29	0	26.6	0.351	31	0
2	8	183	64	0	0	23.3	0.672	32	1
3	1	89	66	23	94	28.1	0.167	21	0
4	0	137	40	35	168	43.1	2.288	33	1
763	10	101	76	48	180	32.9	0.171	63	0
764	2	122	70	27	0	36.8	0.340	27	0
765	5	121	72	23	112	26.2	0.245	30	0
766	1	126	60	0	0	30.1	0.349	47	1
767	1	93	70	31	0	30.4	0.315	23	0

768 rows × 9 columns

HISTOGRAMS

HISTOGRAMS

REPLACE INCORRECT DATA

```
def predict_with_regression(data, target_variable, predictor_variables):
   # Split the dataset into two parts: one with non-zero values and one with zero values
   training_data = data[data[target_variable] != 0]
   prediction_data = data[data[target_variable] == 0]
   # Separate the training data into features (X) and the target variable (y)
   X_train = training_data[predictor_variables]
   y_train = training_data[target_variable]
   # Create a Linear Regression model and fit it to the training data
   model = LinearRegression()
   model.fit(X_train, y_train)
   # Use the trained model to predict values for the zero entries in the prediction set
   X_pred = prediction_data[predictor_variables]
   predicted_values = model.predict(X_pred)
   # Replace the zero values in the original dataset with the predicted values
   data.loc[data[target_variable] == 0, target_variable] = predicted_values
    return data
```

DATA DISTRIBUTIONS AFTER TRANSFORMATIONS

DATA DISTRIBUTIONS AFTER TRANSFORMATIONS


```
from sklearn.ensemble import AdaBoostClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
# Split your data into features (X) and the target variable (y)
X = df.drop('Outcome', axis=1)
y = df['Outcome']
# Split your data into a training set and a testing set
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=123)
# Create an AdaBoostClassifier
adaboost_classifier = AdaBoostClassifier(n_estimators=1000, random_state=123)
# Train the AdaBoost classifier on the training data
adaboost_classifier.fit(X_train, y_train)
# Make predictions on the testing data
y_pred = adaboost_classifier.predict(X_test)
# accuracy
accuracy = accuracy_score(y_test, y_pred)
print(f'Accuracy: {accuracy:.2f}')
# classification report
report = classification_report(y_test, y_pred)
print("Classification Report:")
print(report)
# confusion matrix
confusion = confusion_matrix(y_test, y_pred)
print("\nConfusion Matrix:")
print(confusion)
```

AdaBoost

Accuracy: 0.77

Classification Report:

	precision	recall	f1-score	support
0	0.79	0.84	0.82	96
1	0.71	0.64	0.67	58
accuracy			0.77	154
macro avg	0.75	0.74	0.75	154
weighted avg	0.76	0.77	0.76	154

Confusion Matrix:

[[81 15] [21 37]]

```
from sklearn.model_selection import GridSearchCV
# Create an AdaBoostClassifier
adaboost_classifier = AdaBoostClassifier(n_estimators=1000, random_state=123)
# Define the hyperparameter grid for tuning
param_grid = {
    'n_estimators': [50, 100, 200, 500, 1000],
    'learning_rate': [0.01, 0.1, 0.5, 1.0, 1.5, 2, 2.5, 3.0, 4.0, 5.0]
# Create a GridSearchCV object
grid_search = GridSearchCV(estimator=adaboost_classifier, param_grid=param_grid, scoring='accuracy', cv=7)
# Perform hyperparameter tuning on the training data
grid_search.fit(X_train, y_train)
# Get the best estimator from the grid search
best_classifier = grid_search.best_estimator_
# Make predictions on the testing data using the best classifier
y_pred = best_classifier.predict(X_test)
# classification report
report = classification_report(y_test, y_pred)
# confusion matrix
confusion = confusion_matrix(y_test, y_pred)
print("Classification Report:")
print(report)
print("\nConfusion Matrix:")
print(confusion)
# Print the best hyperparameters
print("\nBest Hyperparameters:")
print(grid_search.best_params_)
```

AdaBoost with Grid Search CV

Accuracy: 0.75

Classification Report:

	precision	recall	f1-score	support
0	0.78	0.82	0.80	96
1	0.68	0.62	0.65	58
accuracy			0.75	154
macro avg	0.73	0.72	0.73	154
weighted avg	0.74	0.75	0.74	154

Confusion Matrix:

[[79 17] [22 36]]

Best Hyperparameters:

{'learning_rate': 0.1, 'n_estimators': 500}

```
import xgboost as xgb
# Create an XGBoost classifier
xgb_classifier = xgb.XGBClassifier(random_state = 123)
# Train the XGBoost classifier on the training data
xgb_classifier.fit(X_train, y_train)
# Make predictions on the testing data
y_pred = xgb_classifier.predict(X_test)
# accuracy
accuracy = accuracy_score(y_test, y_pred)
print(f'Accuracy: {accuracy:.2f}')
# classification report
report = classification_report(y_test, y_pred)
print("Classification Report:")
print(report)
# confusion matrix
confusion = confusion_matrix(y_test, y_pred)
print("\nConfusion Matrix:")
print(confusion)
```

XGBoost

Accuracy: 0.80

Classification Report:

		precision	recall	f1-score	support
	0	0.86	0.81	0.83	96
	1	0.71	0.78	0.74	58
accur	асу			0.80	154
macro a	avg	0.79	0.79	0.79	154
weighted a	avg	0.80	0.80	0.80	154

Confusion Matrix:

[[78 18] [13 45]]

```
# Create an XGBoost classifier
xgb_classifier = xgb.XGBClassifier(random_state = 123)
# Define the hyperparameter grid for tuning
param_grid = {
    'n_estimators': [50, 100, 200, 500, 1000],
    'learning_rate': [0.01, 0.1, 0.5, 1.0, 1.5, 2, 2.5, 3.0, 4.0, 5.0],
    'max_depth': [3, 4, 5, 7, 10, 15]
# Create a GridSearchCV object
grid_search = GridSearchCV(estimator=xgb_classifier, param_grid=param_grid, scoring='accuracy', cv=7)
# Perform hyperparameter tuning on the training data
grid_search.fit(X_train, y_train)
# Get the best estimator from the grid search
best_classifier = grid_search.best_estimator_
# Make predictions on the testing data using the best classifier
y_pred = best_classifier.predict(X_test)
# accuracy
accuracy = accuracy_score(y_test, y_pred)
print(f'Accuracy: {accuracy:.2f}')
# classification report
report = classification_report(y_test, y_pred)
print("Classification Report:")
print(report)
# confusion matrix
confusion = confusion_matrix(y_test, y_pred)
print("\nConfusion Matrix:")
print(confusion)
# Print the best hyperparameters
print("\nBest Hyperparameters:")
print(grid_search.best_params_)
```

XGBoost with Grid Search CV

Accuracy: 0.81

Classification Report:

	precision	recall	f1-score	support
0	0.84	0.85	0.85	96
1	0.75	0.72	0.74	58
accuracy			0.81	154
macro avg	0.79	0.79	0.79	154
weighted avg	0.80	0.81	0.80	154

Confusion Matrix:

[[82 14] [16 42]]

Best Hyperparameters:

{'learning_rate': 0.01, 'max_depth': 4, 'n_estimators': 500}

COMPARISON

Boosting Method

SUMMARY

ADABOOST

- Sensitive to noisy data and outliers
- Less parallelizable for large datasets
- May require additional techniques to prevent overfitting

XGBOOST

- Robust and scalable
- Highly parallelizable
- Built-in regularization techniques to help with overfitting
- Usually outperforms AdaBoost

Further reading:

An improved AdaBoost algorithm for identification of lung cancer based on electronic nose.

Lijun Haoa, Gang Huang

https://www.sciencedirect.com/science/article/pii/S240584402300840X

