## Graphs

tikz grid command











Triangle DAN is graphed on the set of axes below. The vertices of  $\triangle DAN$  have coordinates D(-6,-1), A(6,3), and N(-3,10).

Figure 1: x and y axes for grid





What is the area of  $\triangle DAN$ ?



#### plot functions

Use brackets around expressions, especially those having parenthesis



Axis numbering



|  |      |                                                   |     |             |      |        |      |  |     |          | $\Box$         |     |
|--|------|---------------------------------------------------|-----|-------------|------|--------|------|--|-----|----------|----------------|-----|
|  |      |                                                   |     |             |      |        |      |  |     |          |                |     |
|  |      |                                                   |     |             |      |        |      |  |     |          |                |     |
|  |      |                                                   |     |             |      |        |      |  |     |          |                |     |
|  |      |                                                   |     |             |      |        |      |  |     |          |                |     |
|  |      |                                                   |     |             |      |        |      |  |     |          |                |     |
|  |      |                                                   |     |             |      |        |      |  |     |          |                |     |
|  |      |                                                   |     |             |      |        |      |  |     |          | +              |     |
|  |      |                                                   |     |             |      |        |      |  |     |          |                |     |
|  |      |                                                   |     |             |      |        |      |  |     |          |                |     |
|  |      |                                                   |     |             |      |        |      |  |     |          | +              |     |
|  |      |                                                   |     |             |      |        |      |  |     |          | $\blacksquare$ |     |
|  |      |                                                   |     |             |      |        |      |  |     |          |                |     |
|  |      |                                                   |     |             |      |        |      |  |     |          |                |     |
|  |      |                                                   |     |             |      |        |      |  |     |          | +              |     |
|  |      |                                                   |     |             |      |        |      |  |     |          |                | ### |
|  |      |                                                   |     |             |      |        |      |  |     |          |                |     |
|  |      | +++                                               | +++ | +           | +++7 |        |      |  |     |          | +H             | +++ |
|  |      |                                                   |     |             |      |        |      |  |     |          |                |     |
|  |      |                                                   |     |             |      |        | 44   |  |     | ш        | ш              |     |
|  |      |                                                   |     |             |      |        |      |  |     |          |                | +++ |
|  |      |                                                   |     |             |      |        |      |  |     |          |                |     |
|  |      |                                                   |     |             |      |        |      |  |     |          |                |     |
|  |      |                                                   |     |             |      |        |      |  |     |          |                |     |
|  | +    | $+\!\!+\!\!\!+\!\!\!\!+\!\!\!\!\!+$               |     |             |      |        |      |  |     | +        | $+\Pi$         | +H  |
|  |      |                                                   |     |             |      |        |      |  |     |          | -              |     |
|  |      |                                                   |     |             |      |        |      |  |     |          |                |     |
|  |      |                                                   |     |             |      |        |      |  |     |          | +              |     |
|  |      |                                                   |     |             |      |        |      |  |     |          | +              |     |
|  |      |                                                   |     |             |      |        |      |  |     |          |                |     |
|  |      |                                                   |     |             |      |        |      |  |     |          |                |     |
|  |      |                                                   |     |             |      |        |      |  |     | $\vdash$ | +              |     |
|  |      |                                                   |     |             |      |        |      |  |     |          |                |     |
|  |      |                                                   |     |             |      |        |      |  |     |          |                |     |
|  |      |                                                   |     |             |      |        | <br> |  |     |          | +              |     |
|  |      |                                                   |     |             |      |        |      |  |     |          |                |     |
|  |      |                                                   |     |             |      |        |      |  |     |          |                |     |
|  |      |                                                   |     |             |      |        |      |  |     |          | +              |     |
|  | ++++ | <br>                                              |     |             |      |        | +    |  |     |          | +              |     |
|  |      |                                                   |     |             |      |        |      |  |     |          |                |     |
|  |      |                                                   |     |             |      |        |      |  |     |          | $\top$         |     |
|  |      |                                                   |     |             |      |        |      |  |     |          | +H             | +++ |
|  |      |                                                   |     |             |      |        |      |  |     |          |                |     |
|  |      |                                                   |     |             |      |        |      |  |     |          | $\top$         |     |
|  |      |                                                   |     |             |      |        |      |  |     |          |                |     |
|  | ++++ | +++                                               | +++ | + + + + = 1 |      | $\Box$ |      |  |     | $\Box$   | +H             | +++ |
|  |      | $\Box$                                            |     |             |      |        |      |  |     |          | Ħ              |     |
|  |      |                                                   |     |             |      |        |      |  |     |          |                |     |
|  |      |                                                   |     |             |      |        |      |  |     |          |                |     |
|  |      | + $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ |     |             |      |        |      |  |     |          |                | +   |
|  |      |                                                   |     |             |      |        |      |  |     |          |                | ### |
|  |      |                                                   |     |             |      |        |      |  |     |          |                |     |
|  | +++  | +++                                               | +++ | +++         | +++7 |        |      |  |     |          | +H             | ++- |
|  |      |                                                   |     |             |      |        |      |  |     |          |                |     |
|  |      |                                                   |     |             |      |        | 444  |  |     | ш        | 1              |     |
|  |      |                                                   |     |             |      |        |      |  |     |          |                |     |
|  |      | ++T                                               |     |             |      |        | +    |  | +++ |          | $+\Pi$         | +   |
|  |      |                                                   |     |             |      |        |      |  |     |          |                |     |

#### Drawing lines and shapes

tikz draw command, node labeling function







Given  $\triangle ABC$  with  $\overline{AC} \cong \overline{BC}$ . AC = x + 7 and BC = 2x + 1. Find AC.





### Triangles

Shift using coordinates



Shift and rotate







### Complex Regents angle problems





Given the rectangle ABCD with  $\overline{AB}\cong \overline{CD}$  and  $\overline{BC}\cong \overline{DA}$ . AB=x+7 and  $CD=\frac{4x+2}{2}$ . Find AB.



## Plane geometry

Identify two lines in the given plane.



# Marking angles







## Circles



#### foreach examples (circular)



Use the image of the protractor to measure each of the angles.



### Images

