departamento de matemática

universidade de aveiro

- 1. Para cada uma das alíneas, determine a matriz da aplicação linear φ em relação às bases indicadas.
 - (a) $\varphi : \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ tal que $\varphi(x,y) = (x,y,x+y)$, para todo $(x,y) \in \mathbb{R}^2$, em relação às bases canónicas de \mathbb{R}^2 e de \mathbb{R}^3 ;
 - (b) $\varphi: \mathbb{R}^3 \longrightarrow \mathbb{R}^4$ tal que $\varphi(x,y,z) = (x+y,x+z,2x,0)$, para todo $(x,y,z) \in \mathbb{R}^3$, em relação à base $\mathcal{B} = ((1,0,0),(2,1,-1),(1,2,1))$ de \mathbb{R}^3 e à base canónica de \mathbb{R}^4 ;
 - (c) $\varphi: \mathbb{R}^4 \longrightarrow \mathbb{R}^3$ tal que $\varphi(x, y, z, w) = (0, x y, z w)$, para todo $(x, y, z, w) \in \mathbb{R}^4$, em relação à base $\mathcal{B} = ((1, 0, 0, 0), (1, 1, 0, 0), (1, 1, 1, 0), (1, 1, 1, 1))$ de \mathbb{R}^4 e à base $\mathcal{B}' = ((1, 0, 1), (0, 1, 1), (-1, 1, 2))$ de \mathbb{R}^3 ;
 - (d) $\varphi: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ tal que $\varphi(x, y, z) = (x + 2y, y + 2z, 3z)$, para todo $(x, y, z) \in \mathbb{R}^3$, em relação à base canónica de \mathbb{R}^3 ;
 - (e) $\varphi: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ tal que $\varphi(x, y, z) = (x + 2y + z, 2x y 3z, x 3y 4z)$, para todo $(x, y, z) \in \mathbb{R}^3$, em relação à base canónica de \mathbb{R}^3 ;
 - (f) $\varphi: \mathbb{R}^4 \longrightarrow \mathbb{R}$ tal que $\varphi(x, y, z, w) = x + y w$, para todo $(x, y, z, w) \in \mathbb{R}^4$, em relação à base $\mathcal{B} = ((1, 2, 0, 0), (0, 1, 2, 0), (0, 0, 2, 1), (2, 1, 1, 2))$ de \mathbb{R}^4 e à base $\mathcal{B}' = (2)$ de \mathbb{R} ;
 - (g) $\varphi: P_3[x] \longrightarrow P_2[x]$ tal que $\varphi(ax^3 + bx^2 + cx + d) = 3ax^2 + 2bx + c$, para todo $ax^3 + bx^2 + cx + d \in P_3[x]$, em relação às bases canónicas de $P_3[x]$ e de $P_2[x]$, respectivamente.
 - (h) $\varphi: P_2[x] \longrightarrow P_2[x]$ tal que $\varphi(ax^2 + bx + c) = -2ax^2 + (2a b)x + b$, para todo $ax^2 + bx + c \in P_2[x]$, em relação à base $\mathcal{B} = (1 + x, x^2, x x^2)$ de $P_2[x]$.
 - (i) $\varphi: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ tal que $\varphi(1,0)=(3,2)$ e $\varphi(1,1)=(0,3)$, em relação à base canónica de \mathbb{R}^2 .
- 2. Para cada uma das alíneas, determine a aplicação linear φ tal que:
 - (a) $\varphi: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ e $M(\varphi; \mathcal{B}_{\mathbb{R}^3}, \mathcal{B}_{\mathbb{R}^3}) = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{bmatrix}$, onde $\mathcal{B}_{\mathbb{R}^3}$ é a base canónica de \mathbb{R}^3 ;
 - (b) $\varphi : \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ e $M(\varphi; \mathcal{B}_{\mathbb{R}^3}, \mathcal{B}_{\mathbb{R}^3}) = \begin{bmatrix} -2 & 3 & -1 \\ 1 & -3 & 1 \\ -1 & 2 & -1 \end{bmatrix}$, onde $\mathcal{B}_{\mathbb{R}^3}$ é a base canónica de \mathbb{R}^3 ;
 - (c) $\varphi : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ e $M(\varphi; \mathcal{B}, \mathcal{B}) = \begin{bmatrix} -7 & 10 \\ 3 & -5 \end{bmatrix}$, onde $\mathcal{B} = ((1, -1), (2, -3))$ é uma base de \mathbb{R}^2 ;

5.4. matriz de uma aplicação linear//matriz de mudança de base

página 2/6

(d)
$$\varphi : \mathbb{R}^3 \longrightarrow \mathbb{R}^2 e M(\varphi; \mathcal{B}, \mathcal{B}') = \begin{bmatrix} 0 & 1 & 4 \\ 0 & 2 & 5 \end{bmatrix}$$
, onde $\mathcal{B} = ((1, 1, 0), (1, 1, 1), (0, 1, 0))$ é uma base de \mathbb{R}^3 e $\mathcal{B}' = ((1, 1), (-1, 1))$ é uma base de \mathbb{R}^2 ;

(e)
$$\varphi : \mathbb{R}^3 \longrightarrow \mathbb{R}^3 \in M(\varphi; \mathcal{B}, \mathcal{B}') = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 2 & 1 & 3 \end{bmatrix}$$
, onde $\mathcal{B} = ((-1, -1, -1), (0, -1, -2), (0, 0, 1))$
e $\mathcal{B}' = ((1, 1, 1), (1, 1, 0), (0, 1, 0))$ são bases de \mathbb{R}^3 .

(f)
$$\varphi: P_1[x] \longrightarrow \mathbb{R}^3$$
 e $M(\varphi; \mathcal{B}, \mathcal{B}') = \begin{bmatrix} 2 & 0 \\ 1 & -2 \\ -1 & 3 \end{bmatrix}$, onde $\mathcal{B} = (x, 1-x)$ é base de $P_1[x]$ e $\mathcal{B}' = ((1, 1, 1), (1, 1, 0), (1, 0, 0))$ é base de \mathbb{R}^3 .

(g)
$$\varphi: P_1[x] \longrightarrow P_2[x]$$
 e $M(\varphi; \mathcal{B}, \mathcal{B}') = \begin{bmatrix} 3 & 0 \\ 5 & 2 \\ -3 & -2 \end{bmatrix}$, onde $\mathcal{B}_{P_1[x]}$ é base canónica de $P_1[x]$ e $\mathcal{B}' = (x, 1 - x^2, 1 - x + x^2)$ é base de $P_2[x]$.

- 3. Determine as matrizes de mudança de base $M(\mathcal{B}, \mathcal{B}')$ e $M(\mathcal{B}', \mathcal{B})$, para cada um dos seguintes pares de bases dos espaços vectoriais indicados.
 - (a) $\mathcal{B} = ((1,0),(0,1)) \in \mathcal{B}' = ((1,1),(-2,3)) \text{ de } \mathbb{R}^2;$
 - (b) $\mathcal{B} = ((1,0),(1,-1)) \in \mathcal{B}' = ((1,3),(2,5)) \text{ de } \mathbb{R}^2$;
 - (c) $\mathcal{B} = ((1,0,0),(0,1,0),(0,0,1)) \in \mathcal{B}' = ((-1,-1,1),(1,1,1),(0,1,2)) \text{ de } \mathbb{R}^3;$
 - (d) $\mathcal{B} = ((1,0,0),(2,-1,1),(1,2,1)) \in \mathcal{B}' = ((1,0,1),(0,1,1),(-1,1,2)) \text{ de } \mathbb{R}^3;$
 - (e) $\mathcal{B} = ((1,2,0,0), (0,1,2,0), (0,0,2,1), (2,1,1,1))$ e $\mathcal{B}' = ((1,0,0,0), (1,1,0,0), (1,1,1,0), (1,1,1,1))$ de \mathbb{R}^4 ;
 - (f) $\mathcal{B} = (1, x, x^2) \in \mathcal{B}' = (1 + x, x^2, x x^2) \text{ de } P_2[x];$
- 4. Sejam $\mathcal{B} = ((1,1,0),(-1,0,1),(1,1,1))$ e $\mathcal{B}' = ((1,0,1),(-1,0,1),(0,1,0))$ bases de \mathbb{R}^3 .
 - (a) Determine a matriz de mudança de base $M(\mathcal{B}, \mathcal{B}')$.
 - (b) Seja $u \in \mathbb{R}^3$. Sabendo que $u = (1, 2, -1)_{\mathcal{B}}$, determine as coordenadas de u em relação à base \mathcal{B}' usando a matriz de mudança de base da alínea anterior.
- 5. Seja φ um endomorfismo de \mathbb{R}^2 tal que $A = \begin{bmatrix} -7 & 10 \\ 3 & -5 \end{bmatrix}$ é sua a matriz em relação à base $\mathcal{B} = ((1, -1), (2, -3))$ de \mathbb{R}^2 .
 - (a) Determine a matriz de mudança de base $M(\mathcal{B}, \mathcal{B}_{\mathbb{R}^2})$, onde $\mathcal{B}_{\mathbb{R}^2}$ é a base canónica de \mathbb{R}^2 .
 - (b) Utilizando a matriz calculada na alínea anterior, determine a matriz de φ em relação à base canónica de \mathbb{R}^2 , isto é, $M(\varphi; \mathcal{B}_{\mathbb{R}^2}, \mathcal{B}_{\mathbb{R}^2})$.

página 3/6

- 6. Considere o endomorfismo φ de \mathbb{R}^2 tal que por $\varphi(x,y)=(0,x+y),$ para todo $(x,y)\in\mathbb{R}^2.$
 - (a) Determine a matriz de φ em relação à base canónica do espaço considerado, isto é, $M(\varphi; \mathcal{B}_{\mathbb{R}^2}, \mathcal{B}_{\mathbb{R}^2})$.
 - (b) Determine a matriz de mudança de base $M(\mathcal{B}_{\mathbb{R}^2}, \mathcal{B})$, onde $\mathcal{B}_{\mathbb{R}^2}$ é a base canónica de \mathbb{R}^2 e $\mathcal{B} = ((1,1),(1,0))$ é uma base de \mathbb{R}^2 .
 - (c) Utilizando matriz de mudança de base da alínea anterior, determine a matriz de φ em relação à base \mathcal{B} , definida na alínea anterior, isto é, $M(\varphi; \mathcal{B}, \mathcal{B})$
- 7. Seja φ um endomorfismo de \mathbb{R}^3 cuja matriz em relação à base canónica de \mathbb{R}^3 é

$$M(\varphi; \mathcal{B}_{\mathbb{R}^3}, \mathcal{B}_{\mathbb{R}^3}) = \left[egin{array}{ccc} 3 & -1 & 1 \ 0 & 2 & 0 \ 1 & -1 & 3 \end{array}
ight].$$

Determine a matriz de φ em relação à base $\mathcal{B} = ((1,0,-1),(0,1,1),(1,0,1))$, usando o conceito de matriz de mudança de base.

8. Seja φ uma aplicação linear de \mathbb{R}^3 para $P_3[x]$ tal que, para todo $(a,b,c) \in \mathbb{R}^3$,

$$\varphi(a, b, c) = ax^{3} + (a - 2b - c)x^{2} - 2cx + (a + b).$$

- (a) Determine a matriz de φ em relação às bases canónicas dos espaços considerados.
- (b) Utilizando matrizes de mudança de base, determine a matriz de φ em relação à base canónica de \mathbb{R}^3 e à base $\mathcal{B} = (1 + x^3, x^2, x x^2, 1 + x x^3)$ de $P_3[x]$.
- 9. Considere φ e ψ dois endomorfismos de \mathbb{R}^3 tais que

$$\varphi(x, y, z) = (x, 2y, y - z), \quad \forall (x, y, z) \in \mathbb{R}^3$$

$$M(\varphi - 3\psi; \mathcal{B}_{\mathbb{R}^3}, \mathcal{B}_{\mathbb{R}^3}) = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 2 & 1 \end{bmatrix}$$

onde $\mathcal{B}_{\mathbb{R}^3}$ é a base canónica de \mathbb{R}^3 . Determine a matriz de ψ em relação à base canónica de \mathbb{R}^3 .

10. Sejam E e E' dois espaços vectoriais reais tais que $\mathcal{B} = (e_1, e_2, e_3)$ é uma base de E e $\mathcal{B}' = (e'_1, e'_2)$ é uma base de E'. Seja ainda φ uma aplicação linear de E em E' tal que

$$M(\varphi; \mathcal{B}_E, \mathcal{B}_{E'}) = \begin{bmatrix} 1 & -2 & 0 \\ -3 & 2 & -2 \end{bmatrix}.$$

(a) Determine a matriz de φ em relação à base $\mathcal{B}_1 = (e_1, e_1 + e_2, -e_2 + e_3)$ de E e à base $\mathcal{B}_1' = (e_1' + e_2', e_1' - e_2')$ de E'.

5.4. matriz de uma aplicação linear//matriz de mudança de base

página 4/6

- (b) Sendo $u=(1,-1,2)_{\mathcal{B}_1}$, determine as coordenadas de $\varphi(u)$ em relação à base \mathcal{B}_1' .
- 11. Sejam E e E' dois espaços vectoriais reais de dimensões 3 e 2, respectivamente, e tais que $\mathcal{B}=(e_1,e_2,e_3)$ é uma base de E e $\mathcal{B}'=(e_1',e_2')$ é uma base de E'. Seja ainda

$$M(\varphi; \mathcal{B}, \mathcal{B}') = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

Determine a base \mathcal{B}_1' de E' tal que

$$M(\varphi; \mathcal{B}, \mathcal{B}'_1) = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \end{bmatrix}.$$

1. (a)
$$M(\varphi; \mathcal{B}_{\mathbb{R}^{2}}, \mathcal{B}_{\mathbb{R}^{3}}) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix};$$
 (b) $M(\varphi; \mathcal{B}, \mathcal{B}_{\mathbb{R}^{4}}) = \begin{bmatrix} 1 & 3 & 3 \\ 1 & 1 & 2 \\ 2 & 4 & 2 \\ 0 & 0 & 0 \end{bmatrix};$ (c) $M(\varphi; \mathcal{B}, \mathcal{B}') = \frac{1}{2} \begin{bmatrix} -1 & 0 & 1 & 0 \\ 1 & 0 & -1 & 0 \\ -1 & 0 & 1 & 0 \end{bmatrix};$ (d) $M(\varphi; \mathcal{B}_{\mathbb{R}^{3}}, \mathcal{B}_{\mathbb{R}^{3}}) = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 3 \end{bmatrix};$ (e) $M(\varphi; \mathcal{B}_{\mathbb{R}^{3}}, \mathcal{B}_{\mathbb{R}^{3}}) = \begin{bmatrix} 1 & 2 & 1 \\ 2 & -1 & -3 \\ 1 & -3 & -4 \end{bmatrix};$ (f) $M(\varphi; \mathcal{B}, \mathcal{B}') = \frac{1}{2} \begin{bmatrix} 3 & 1 & -1 & 1 \end{bmatrix};$ (g) $M(\varphi; \mathcal{B}_{P_{3}[x]}, \mathcal{B}_{P_{2}[x]}) = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix};$ (h) $M(\varphi; \mathcal{B}, \mathcal{B}) = \begin{bmatrix} 1 & 0 & 1 \\ -2 & 0 & -2 \\ -2 & 2 & -4 \end{bmatrix};$

(i)
$$M(\varphi; \mathcal{B}_{\mathbb{R}^2}, \mathcal{B}_{\mathbb{R}^2}) = \begin{bmatrix} 3 & -3 \\ 2 & 1 \end{bmatrix}$$
.

2. (a)
$$\varphi(x,y,z) = (x+y+2z,2x+y+3z,x-y), \forall (x,y,z) \in \mathbb{R}^3;$$

(b) $\varphi(x,y,z) = (-2x+3y-z,x-3y+z,-x+2y-z), \forall (x,y,z) \in \mathbb{R}^3;$
(c) $\varphi(x,y) = (-3x-2y,-11x-9y), \forall (x,y) \in \mathbb{R}^2;$
(d) $\varphi(x,y,z) = (x-y-z,9y-9x+3z), \forall (x,y,z) \in \mathbb{R}^3;$
(e) $\varphi(x,y,z) = (2x-5y+2z,4x-12y+5z,z-2y), \forall (x,y,z) \in \mathbb{R}^3;$
(f) $\varphi(ax+b) = (2a+3b,3a+b,2a+2b), \forall ax+b \in P_1[x];$

(g) $\varphi(ax+b) = (-4a-8b)x^2 + (2a+6b)x + 2b, \forall ax+b \in P_1[x].$

3. (a)
$$M(\mathcal{B}, \mathcal{B}') = \frac{1}{5} \begin{bmatrix} 3 & 2 \\ -1 & 1 \end{bmatrix}$$
 e $M(\mathcal{B}', \mathcal{B}) = \begin{bmatrix} 1 & -2 \\ 1 & 3 \end{bmatrix}$;
(b) $M(\mathcal{B}, \mathcal{B}') = \begin{bmatrix} -5 & -7 \\ 3 & 4 \end{bmatrix}$ e $M(\mathcal{B}', \mathcal{B}) = \begin{bmatrix} 4 & 7 \\ -3 & -5 \end{bmatrix}$;
(c) $M(\mathcal{B}, \mathcal{B}') = \frac{1}{2} \begin{bmatrix} 1 & -2 & 1 \\ 3 & -2 & 1 \\ -2 & 2 & 0 \end{bmatrix}$ e $M(\mathcal{B}', \mathcal{B}) = \begin{bmatrix} -1 & 1 & 0 \\ -1 & 1 & 1 \\ 1 & 1 & 2 \end{bmatrix}$;
(d) $M(\mathcal{B}, \mathcal{B}') = \frac{1}{2} \begin{bmatrix} 1 & 4 & 0 \\ 1 & -2 & 6 \\ -1 & 0 & -2 \end{bmatrix}$ e $M(\mathcal{B}', \mathcal{B}) = \frac{1}{3} \begin{bmatrix} -2 & -4 & -12 \\ 2 & 1 & 3 \\ 1 & 2 & 3 \end{bmatrix}$;
(e) $M(\mathcal{B}, \mathcal{B}') = \begin{bmatrix} -1 & -1 & 0 & 1 \\ 2 & -1 & -2 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$ e $M(\mathcal{B}', \mathcal{B}) = \frac{1}{5} \begin{bmatrix} -3 & 1 & -1 & 3 \\ 2 & 1 & 4 & -2 \\ -4 & -2 & -3 & 4 \\ 4 & 2 & 3 & 1 \end{bmatrix}$;
(f) $M(\mathcal{B}, \mathcal{B}') = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 1 \\ -1 & 1 & 0 \end{bmatrix}$ e $M(\mathcal{B}', \mathcal{B}) = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & -1 \end{bmatrix}$.

5.4. matriz de uma aplicação linear//matriz de mudança de base

página 6/6

4. (a)
$$\frac{1}{2}\begin{bmatrix} 1 & 0 & 2 \\ -1 & 2 & 0 \\ 2 & 0 & 2 \end{bmatrix}$$
; (b) $u = \left(-\frac{1}{2}, \frac{3}{2}, 0\right)_{\mathcal{B}'}$.

5. (a)
$$\begin{bmatrix} 1 & 2 \\ -1 & -3 \end{bmatrix}$$
; (b) $\begin{bmatrix} -3 & -2 \\ -11 & -9 \end{bmatrix}$.

6. (a)
$$\begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}$$
; (b) $\begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix}$; (c) $\begin{bmatrix} 2 & 1 \\ -2 & -1 \end{bmatrix}$.

$$7. \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4 \end{bmatrix}.$$

8. (a)
$$\begin{bmatrix} 1 & 0 & 0 \\ 1 & -2 & -1 \\ 0 & 0 & -2 \\ 1 & 1 & 0 \end{bmatrix}$$
; (b) $\frac{1}{2} \begin{bmatrix} 2 & 1 & 0 \\ 2 & -3 & -6 \\ 2 & -3 & -2 \\ 0 & -1 & 0 \end{bmatrix}$.

$$9. \ \frac{1}{3} \left[\begin{array}{rrr} 0 & -1 & 0 \\ 0 & 1 & 0 \\ -1 & -1 & -2 \end{array} \right].$$

10. (a)
$$\begin{bmatrix} -1 & -1 & -1 \\ 2 & 0 & 3 \end{bmatrix}$$
; (b) $\varphi(u) = (-2, 8)_{\mathcal{B}'_1}$.

11.
$$\mathcal{B}'_1 = (e'_1 + e'_2, e'_2).$$