Contents

1	Functions			2
	1.1	factor.methods – factoring methods		
		1.1.1	factor – easiest way to factor	2
		1.1.2	ecm – elliptic curve method	S
		1.1.3	mpqs – multi-polynomial quadratic sieve method	3
		1.1.4	pmom - p - 1 method	3
		1.1.5	$rhomethod - \rho method \dots \dots$	9
				9

Chapter 1

Functions

1.1 factor.methods – factoring methods

It uses methods of **factor.find** module or some heavier methods of related modules to find a factor. Also, classes of **factor.util** module is used to track the factorization process. options are normally passed to the underlying function without modification.

This module uses the following type:

factorlist:

factorlist is a list which consists of pairs (base, index). Each pair means $base^{index}$. The product of these terms expresses prime factorization.

1.1.1 factor – easiest way to factor

```
\begin{array}{l} \text{factor(n: } \textit{integer}, \texttt{method: } \textit{string} = \text{'default'}, \text{ **options ')} \\ \rightarrow \text{factorlist} \end{array}
```

Factor the given positive integer n.

By default, use several methods internally.

The optional argument method can be:

- 'ecm': use elliptic curve method.
- 'mpqs': use MPQS method.
- 'pmom': use p-1 method.
- 'rhomethod': use Pollard's ρ method.
- 'trialDivision': use trial division.

(†In fact, the initial letter of method name suffices to specify.)

1.1.2 ecm – elliptic curve method

```
ecm(n: integer, **options) \rightarrow factorlist
```

Factor the given integer n by elliptic curve method.

(See ecm of factor.ecm module.)

1.1.3 mpqs – multi-polynomial quadratic sieve method

```
mpqs(n: integer, **options) \rightarrow factorlist
```

Factor the given integer n by multi-polynomial quadratic sieve method.

(See **mpqsfind** of **factor.mpqs** module.)

1.1.4 pmom -p-1 method

```
pmom(n: integer, **options) \rightarrow factorlist
```

Factor the given integer n by p-1 method.

The method may fail unless n has an appropriate factor for the method. (See **pmom** of **factor.find** module.)

1.1.5 rhomethod – ρ method

```
rhomethod(n: integer, **options) \rightarrow factorlist
```

Factor the given integer **n** by Pollard's ρ method.

The method is a probabilistic method, possibly fails in factorizations. (See **rhomethod** of **factor.find** module.)

1.1.6 trialDivision – trial division

```
trialDivision(n: integer, **options) \rightarrow factorlist
```

Factor the given integer n by trial division.

options for the trial sequence can be either:

- 1. start and stop as range parameters.
- 2. iterator as an iterator of primes.
- 3. eratosthenes as an upper bound to make prime sequence by sieve.

If none of the options above are given, the function divides **n** by primes from 2 to the floor of the square root of **n** until a non-trivial factor is found. (See **trialDivision** of **factor.find** module.)

Examples

```
>>> factor.methods.factor(10001)
[(73, 1), (137, 1)]
>>> factor.methods.ecm(1000001)
[(101L, 1), (9901L, 1)]
```

Bibliography