# 最优化理论与算法大作业

Jingwei Liang\*

November 21, 2021

### 1 Introduction

In this project, we will investigate how to use *gradient descent* to solve signal and image processing problem.

Consider the following observation model

$$\boldsymbol{b} = A\bar{\boldsymbol{x}} + \epsilon \tag{1.1}$$

where we have

- $\bar{x} \in \mathbb{R}^n$  is the ground truth signal/image;
- $A \in \mathbb{R}^{m \times n}$  is our observation matrix;
- $\epsilon \in \mathbb{R}^m$  is additive white Gaussian noise, and
- $\mathbf{b} \in \mathbb{R}^m$  is our observation.

Our goal is to recover x from the noise contaminated observation b. To this end, we can consider the following model

$$\min_{\pmb{x}} \ \mu h(\nabla \pmb{x}) + f(\pmb{x})$$

where

- $\mu > 0$  is the tradeoff parameter to balance the two terms;
- f(x) is the data fidelity term, typical choice of f takes

$$f(\boldsymbol{x}) = \frac{1}{2} \|\boldsymbol{A}\boldsymbol{x} - \boldsymbol{b}\|^2.$$

- $\nabla$  is the discrete gradient operator to be discussed.
- $h(\nabla x)$  is the regularization term whose form will be specified later.

### 1.1 Discrete gradient operator

In this part, we present the matrix form of the discrete gradient operator. In 1D case, the form of  $\nabla$  is rather simple, which reads

$$abla_{1d} = \begin{bmatrix} -1 & 1 & & & & & \\ & -1 & 1 & & & & & \\ & & \ddots & \ddots & & & \\ & & & -1 & 1 & & \\ & & & & -1 & 1 & \\ & & & & & 0 \end{bmatrix} \in \mathbb{R}^{n \times n}.$$

<sup>\*</sup>Institute of Natural Sciences, Shanghai Jiao Tong University. E-mail: jingwei.liang@sjtu.edu.cn

In Figure 1 below we provide an example of piecewise constant 1D signal. Its discrete gradient is provided in Figure 2. It is also easy to compute the transpose of  $\nabla_{1d}$ , which is



Figure 2: Gradient of the 1D signal.

The expression of  $\nabla$  becomes complicated for the 2D cases, since in this case we have two directions: vertical and horizontal. As we can see from Figure 3, the horizontal gradient and vertical gradient of an given image.



Figure 3: Gradient of the 1D signal.

Before the discussion, we need the following setups. First we have that  $\nabla$  can be written as

$$\nabla_{2d} = \begin{bmatrix} \nabla_h \\ \nabla_n \end{bmatrix},$$

where  $\nabla_h$  corresponds to horizontal discrete gradient, and  $\nabla_v$  for the vertical one. Apparently, we have

$$\nabla^T_{2d} = \begin{bmatrix} \nabla^T_h & \nabla^T_v \end{bmatrix}$$

Then given an square matrix  $\pmb{x} \in \mathbb{R}^{n \times n}$ , let  $\pmb{c}_i \in \mathbb{R}^n, i=1,...,n$  be its columns and  $\pmb{r}_i \in \mathbb{R}^{1 \times n}, i=1,...,n$ 

be its rows, that is

$$m{x} = [m{c}_1, m{c}_2, \cdots, m{c}_n] = egin{bmatrix} m{r}_1 \ m{r}_2 \ dots \ m{r}_n \end{bmatrix}$$

In general, there two approaches to represent the 2D discrete gradient operators — explicitly writing down the matrix, and implicitly implement the matrix.

• The first one is the same as the 1D case, that we explicitly store the matrix. For this approach, we store the image as an column vector, that is

$$ext{vec}(oldsymbol{x}) = egin{bmatrix} oldsymbol{c}_1 \ oldsymbol{c}_2 \ dots \ oldsymbol{c}_n \end{bmatrix} \in \mathbb{R}^{nn}.$$

Let  $Id \in \mathbb{R}^{n \times n}$  be the identity matrix, then we have

$$\nabla_h = \nabla_{1d} \otimes \operatorname{Id}$$
 and  $\nabla_v = \operatorname{Id} \otimes \nabla_{1d}$ ,

where  $\otimes$  stands for the "Kronecker product" of two matrices whose definition is provided below in the appendix.

Use the above expression, we need to solve the problem in the space of  $\mathbb{R}^{nn}$  and back to  $\mathbb{R}^{n\times n}$  once the problem is solved.

One problem of this approach is the dimension of  $\nabla_{2d}$ , which is  $2nn \times nn$ . Though it is a sparse matrix, this approach is not effective in practice.

• The second approach is that, no need to store  $\nabla_h$  and  $\nabla_v$ , only need to know the output once we apply them to an image. More precisely, we have

$$abla_h oldsymbol{x} = egin{bmatrix} oldsymbol{c}_1 - oldsymbol{c}_1 & oldsymbol{c}_3 - oldsymbol{c}_2 & \cdots & oldsymbol{c}_n - oldsymbol{c}_{n-1} & oldsymbol{0} \end{bmatrix} \in \mathbb{R}^{n imes n}$$

and

$$abla_v oldsymbol{x} = egin{bmatrix} oldsymbol{r}_2 - oldsymbol{r}_1 \ oldsymbol{r}_3 - oldsymbol{r}_2 \ dots \ oldsymbol{r}_n - oldsymbol{r}_{n-1} \ oldsymbol{0} \end{bmatrix} \in \mathbb{R}^{n imes n}.$$

Then for the transpose,

$$abla_h^T oldsymbol{x} = egin{bmatrix} -oldsymbol{c}_1 & oldsymbol{c}_1 - oldsymbol{c}_2 & oldsymbol{c}_2 - oldsymbol{c}_3 & \cdots & oldsymbol{c}_{n-2} - oldsymbol{c}_{n-1} & oldsymbol{c}_{n-1} \end{bmatrix}$$

and

$$abla_v^T oldsymbol{x} = egin{bmatrix} -oldsymbol{r}_1 \ oldsymbol{r}_1 - oldsymbol{r}_2 \ oldsymbol{r}_2 - oldsymbol{r}_3 \ dots \ oldsymbol{r}_{n-2} - oldsymbol{r}_{n-1} \ oldsymbol{r}_{n-1} \ \end{pmatrix}.$$

All the above computation can be easily realized in MATLAB using diff function.

#### **1.2** The choice of h

Now we discuss the choice of h(x). Recall that the absolute value function is not differentiable, below we discuss a smoothed version of it. Let  $\eta > 0$  be a strictly positive constant, and consider

$$\phi_{\eta}(x) = \begin{cases} |x| - \frac{\eta}{2}: & |x| \geq \eta, \\ \frac{1}{2\eta}x^2: & |x| < \eta. \end{cases}$$

It can be easily verified that  $\phi_{\eta}$  is smooth differentiable. Back to h, we take

$$h(\boldsymbol{x}) = \sum_{i=1}^{n} \phi_{\eta}(x_i). \tag{1.2}$$

Note that  $\eta > 0$  is a free parameter here.

We can also consider the following choice of h,

$$h(\mathbf{x}) = \|\nabla \mathbf{x}\|^2,\tag{1.3}$$

which is smooth differentiable.

### 2 Signal reconstruction

The first problem we consider is the 1D signal reconstruction. For this problem, consider the following settings for (1.1) which can be changed at your will

- (m,n) = (64,256) [you can also consider other choices of (m,n), but please make sure m < n/2].
- $\bar{x}$  is a piecewise constant signal with  $\kappa=8$  jumps [you can also consider other choices of  $\kappa$ , with  $\kappa< n/10$  and  $m>5\kappa$ ]. A pre-generated  $\bar{x}$  is available at ``x.txt'' file, or you can generate it using MATLAB function ``barx = func\_piecewise\_constant(n, kappa);''.
- A is a random Gaussian matrix with variance  $1/\sqrt{m}$ . In MATLAB, you can generate such an A using ``A = randn(m,n) /sqrt(m);''.
- $\epsilon$  is random Gaussian noise with variance 0.5. In MATLAB, you can generate such an  $\epsilon$  using ``epsilon = randn(m,1) /2;''.

With the above settings, we can generate our observation b of (1.1).

Now consider reconstruction  $\bar{x}$  using the following model

$$\min_{\mathbf{q}} \Phi(\mathbf{x}) = \mu h(\nabla \mathbf{x}) + \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|^2, \tag{2.1}$$

where we have the following tasks:

- 1. For h of (1.2):
  - Write down the gradient of the objective function  $\Phi(x)$ , and consequently the gradient descent scheme to solve (3.1).
  - What is the Lipschitz constant of the gradient of  $\Phi(x)$ .
  - Implement the gradient descent to solve (3.1), and observe the convergence behaviors of the algorithms in terms of

$$\|\boldsymbol{x}_k - \boldsymbol{x}_{k-1}\|$$
 and  $\Phi(\boldsymbol{x}_k) - \Phi(\boldsymbol{x}_{k-1})$ .

Use  $10^{-8}$  as the stopping criterion of the algorithm.

- Compare the effect of different  $\mu$ , and try to find or approximate the optimal  $\mu$  if there is. If there is such an optimal  $\mu$ , describe your approach of approximating it.
- Compare the effect of different  $\eta$ . How should we choose  $\eta$ , the larger the better or the smaller the better?
- 2. Compare the difference between h of (1.2) and h of (1.3), which one is better?
- 3. Suppose that the noise  $\epsilon$  is not Gaussian distributed, and rather uniformly distributed in [-0.1, 0.1],

## 3 Optional: image denoising

Let A be the identity operator in (1.1), the problem becomes image denoising. Consider the following settings for (1.1) which can be changed at your will

- Find a gray scale image (using the provided ones or find one yourself), better be a square image with resolution smaller than  $256 \times 256$ .
- After loading the image, the range of each pixel value should be in [0, 255] whichever platform you are suing.
- $\epsilon$  is random Gaussian noise with variance 20. In MATLAB, you can generate such an  $\epsilon$  using ``epsilon = 20\* randn(nn);''.

With the above settings, we can generate our observation b of (1.1).

Consider the following denoising model

$$\min_{\boldsymbol{x}} \; \varPhi(\boldsymbol{x}) = \mu h(\nabla \boldsymbol{x}) + \frac{1}{2} \|\boldsymbol{x} - \boldsymbol{b}\|^2, \tag{3.1}$$

where we have the following tasks: for h of (1.2):

• Implement the gradient descent to solve (3.1), and observe the convergence behaviors of the algorithms in terms of

$$\|\boldsymbol{x}_k - \boldsymbol{x}_{k-1}\|$$
 and  $\Phi(\boldsymbol{x}_k) - \Phi(\boldsymbol{x}_{k-1})$ .

Use  $10^{-8}$  as the stopping criterion of the algorithm.

- Compare the effect of different  $\mu$ , and try to find or approximate the optimal  $\mu$  if there is. If there is such an optimal  $\mu$ , describe your approach of approximating it.
- Compare the effect of different  $\eta$ . How should we choose  $\eta$ , the larger the better or the smaller the better?

# A Appendix

**Kronecker product** Let  $A \in \mathbb{R}^{m \times n}$  and  $B \in \mathbb{R}^{p \times q}$  be two matrices, with

$$\mathbf{A} = \begin{bmatrix} a_{1,1} & \cdots & a_{1,n} \\ \vdots & \ddots & \vdots \\ a_{m,1} & \cdots & a_{m,n} \end{bmatrix} \quad \text{and} \quad \mathbf{B} = \begin{bmatrix} b_{1,1} & \cdots & b_{1,q} \\ \vdots & \ddots & \vdots \\ b_{p,1} & \cdots & b_{p,q} \end{bmatrix}.$$

Their Kronecker product, denoted by  $A \otimes B$ , is an  $mp \times nq$  matrix with the block structure

$$\mathbf{\textit{A}} \otimes \mathbf{\textit{B}} = \begin{bmatrix} a_{1,1}\mathbf{\textit{B}} & \cdots & a_{1,n}\mathbf{\textit{B}} \\ \vdots & \ddots & \vdots \\ a_{m,1}\mathbf{\textit{B}} & \cdots & a_{m,n}\mathbf{\textit{B}} \end{bmatrix} \in \mathbb{R}^{mp \times nq}.$$

Moreover, we have

$$(\boldsymbol{A} \otimes \boldsymbol{B})^T = \boldsymbol{A}^T \otimes \boldsymbol{B}^T.$$