The Digital Logic Level

Chapter 3

Gates and Boolean Algebra

Α	В	X
0	0	0
0	1	0
1	0	0
1	1	1

Α	В	X
0	0	0
0	1	1
1	0	1
1	1	1

Α	X
0	1
1	0

Α	В	X
0	0	1
0	1	1
1	0	1
1	1	0

Α	В	X
0	0	1
0	1	0
1	0	0
1	1	0

Transistor

Gates and Boolean Algebra (1)

Circuit Equivalence

Construction of (a) NOT, (b) AND, and (c) OR gates using only NAND gates or only NOR gates.

Positive & Negative Logic

Α	В	F
0	0^	OV
0	5 ^V	0^
5 ^V	0	OV
5 ^V	5 ^V	5 ^V

Α	В	F
0	0	0
0	1	0
1	0	0
1	1	1

Α	В	F
1	1	*
1	0	1
0	1	1
0	0	0
	(c)	

(a)

(b)

(a) Electrical characteristics of a device.

- (b) Positive logic.
- (c) Negative logic.

Integrated Circuits

8-to-1 Multiplexer

4-bit Comparator

12-to-6 Programmable Logic Array (PLA)

1-bit Adder

Α	В	Sum	Carry
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

(a)

1-bit Full Adder

А	В	Carry in	Sum	Carry out
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

(a) (b)

1-bit Arithmetic Logic Units (ALU)

Arithmetic Logic Unit (ALU)

Latch

- (a) NOR latch in state 0
- (b) NOR latch in state 1
- (c) Truth table for NOR latch

Clock

a in

Clocked SR Latch

D Latch

Pulse Generator

D Flip-Flop

Logic Notations for D Latch & D Flip-Flop

Dual D Flip-Flop Chip with Preset/Clear

Octal D Flip-Flops with Clear

Buffer

- (a) A noninverting buffer.
- (b) Effect of (a) when control is high.
- (c) Effect of (a) when control is low.
- (d) An inverting buffer.

Memory Chips (1)

Two ways of organizing a 4-Mbit memory chip.

Memory Chips (2)

Two ways of organizing a 512 Mbit memory chip.

Typical CPU

CPU chip

Typical Computer System

Microprocessor Chips

Bus

Master	Slave	Example	
CPU	Memory	Fetching instructions and data	
CPU	I/O device	Initiating data transfer	
CPU	Coprocessor	CPU handing instruction off to coprocessor	
I/O	Memory	DMA (Direct Memory Access)	
Coprocessor	CPU	Coprocessor fetching operands from CPU	

Synchronous Bus Timing

Critical Times

Symbol	Parameter	Min	Max	Unit
T _{AD}	Address output delay		4	nsec
T _{ML}	Address stable prior to MREQ	2		nsec
T _M	\overline{MREQ} delay from falling edge of Φ in T_1		3	nsec
T _{RL}	RD delay from falling edge of Φ in T_1		3	nsec
T _{DS}	Data setup time prior to falling edge of Φ	2		nsec
T _{MH}	\overline{MREQ} delay from falling edge of Φ in T_3		3	nsec
T _{RH}	\overline{RD} delay from falling edge of Φ in T_3		3	nsec
T _{DH}	Data hold time from negation of RD	0		nsec

Asynchronous Bus Timing

Centralized Bus Arbitration (1 level)

Centralized Bus Arbitration (2 levels)

Block Memory Access

Typical Interrupt Controller

Intel 8051 (Physical Pinout)

Intel 8051 (Logical Pinout)

Intel 8051 (Logical Block Diagram)

Intel 8051 Memory Map

Byte Address

Intel Pentium 4 (Physical Pinout)

Intel Pentium 4 (Logical Pinout)

Intel Pentium 4 (Logical Block Diagram)

The PCI Bus - The ISA Bus

A Typical PCI Bus External Peripheral

The PCI Bus – The ISA Bus

The Universal Serial Bus

The USB root hub sends out frames every 1.00 ms.

PIO Chips

An 8255A PIO chip.