Format of ramp-constrained Unit Commitment instances

Antonio Frangioni

Introduction

This document describes a proposed format for instances of the ramp-constrained, hydro-thermal Unit Commitment problem in electric power generation. Randomly generated, "realistic" instances encoded in this format are publicly available, and have been used to test some algorithmic approaches to the problem in several papers, among which

- Frangioni, C. Gentile, F. Lacalandra "Solving Unit Commitment Problems with General Ramp Contraints" *International Journal of Electrical Power and Energy Systems*, to appear, 2008
- Frangioni, C. Gentile "Solving Nonlinear Single-Unit Commitment Problems with Ramping Constraints" *Operations Research* **54**(4), p. 767 775, 2006
- A. Borghetti, A. Frangioni, F. Lacalandra, C.A. Nucci "Lagrangian Heuristics Based on Disaggregated Bundle Methods for Hydrothermal Unit Commitment", *IEEE Transactions on Power Systems* 18(1), pp 313-323, 2003
- A. Borghetti, A. Frangioni, F. Lacalandra, C.A. Nucci, P. Pelacchi, "Using of a cost-based Unit Commitment algorithm to assist bidding strategy decisions" *Proceedings IEEE 2003 Powerteck Bologna Conference*, A. Borghetti, C.A. Nucci and M. Paolone editors, Paper n. 547, 2003
- A. Frangioni, C. Gentile **"Perspective Cuts for a class of convex 0-1 Mixed Integer Programs"** *Mathematical Programming* 106(2), p. 225 236, 2006

Those papers describe also the model of unit commitment which the instance generator refers to.

File format

To better describe the format, we refer to the following small example instance.

```
0
ProblemNum
                20
HorizonLen
NumThermal
                2
NumHydro
                3
NumCascade
LoadCurve
MinSystemCapacity 132.63
MaxSystemCapacity
                       965.27
MaxThermalCapacity
                       405.588
Loads 2
               10
307.841 309.775 251.72 151.575 151.575 159.417 227.897 288.606 341.329 362.633
151.575 151.575 151.575 151.575 151.575 178.404 232.075 280.024 323.124 372.474
SpinningReserve 10

      0.0793793
      0.0971151
      0.0827699

      0.0784057
      0.0654399
      0.0984396

                                                  0.0947514
                                                                  0.0703931
                                                  0.0601816
                                                                  0.0886065
ThermalSection
0 0.000125959 8.47794 447.838 80.8008 233.187 4
                                                                           6
208.931 192.879 1.00858 5 58940.1 93380.2 167.727
1 0.0485937 7.14811 345.723 51.8293 172.401 1
                                                                          3
239.531 178.164 1.88141 5 40302.3 51170.5 68.5504
```

HydroSection									
0	1.01484	6.08508	162.173	159.802	225.449	45.6677	421.628		
30.4096	34.1051	36.1312	26.7482	26.6108	16.7201	41.1853	21.8502	40.0673	31.246
42.9469	33.5477	26.4026	42.5321	22.4477	30.5453	22.4912	41.0752	26.4598	27.5061
1	1.03721	5.45551	201.851	194.609	298.024	61.7249	559.204		
42.4451	34.1532	47.4486	20.6062	41.965	28.1956	44.7556	48.4131	25.2792	45.2077
34.1126	33.1938	24.3282	36.8212	35.3214	36.0302	22.316	47.9132	49.4681	38.1734
2	1.02544	5.19619	195.658	190.804	349.244	70.1036	607.1		
21.9377	48.5681	22.1609	29.6121	40.0042	40.8806	35.4053	30.8747	45.5579	33.3071
19.7163	26.2798	47.1741	32.1546	43.7074	31.5493	50.9241	43.1662	34.9967	45.297
HydroCascadeSection									
0 CascadeLen			2						
0 1.018	41	5.21441	216.38	212.469	509.141	149.037	906.007		
40.6101	37.0902	49.199	57.2977	31.3688	35.1657	54.8012	48.0506	52.4852	55.0929
38.3713	54.4982	48.7372	23.6957	24.9768	45.6881	36.0201	31.2145	55.1723	25.8256
51.6954	57.3079	44.8995	31.6343						
1 1.0315 5						95.5917			
42.0132	43.4855	29.4877	17.3825	36.915	20.3604	42.5424	42.6423	22.496	29.8054
18.7045	37.5917	43.6889	29.251	30.1771	25.8726	31.3146	29.3248	31.266	23.7991
18.5776	23.1008	44.8408	30.2239						
1 CascadeLen			-						
				203.311		86.1507			
	51.9972						38.2636		
	28.8918			52.7399	40.2311	54.0559	40.7849	35.7195	48.5681
	22.7699								
1 1.00422						116.11			
				59.2582	40.524	26.056	40.1177	41.9317	56.2651
	43.9295			51.9497	22.933	31.5482	32.7359	41.1431	35.6148
	37.0621								
2 1.020		5.30606				82.1554			
	44.0475				60.5558	48.2483	41.4621	48.0843	59.3605
	23.9837			42.8651	54.7408	48.4253	36.4388	52.199	37.1763
51.1582	40.7458	27.2028	33.3684						
3 1.01298 6.						124.1			
				51.0587					40.6595
	31.7532			50.2275	45.0141	51.825	51.1609	33.7067	44.5329
61.8139	26.12	41.7722	23.5782						

The file is subdivided in different sections, that we now analyze individually.

General information

Contains global information for the overall problem.

ProblemNum Seed used by the generator.

HorizonLen Length of problem temporal horizon (Gg * Breaks).

NumThermal Number of thermal units.
NumHydro Number of hydro units.

NumCascade Number of cascade hydro units.

Load curve

Loads

HydroSection

MinSystemCapacity Sum over minimum power generated by all units.

MaxSystemCapacity Sum over maximum power generated by all units.

MaxThermalCapacity Sum over maximum power generated by all thermal units.

For every day a row will be printed with a load value for each

breaks of the day.

SpinningReserve For each breaks of the day will be printed the percentage of loads

used as spinning reserve.

Thermal unit description

A row for each unit is printed. The row contains, in this mandatory order:

- **1.**A unit index.
- **2.**The quadratic, linear and constant coefficient used for the calculation of power generation cost.
- **3.**The minimum and maximum power.
- **4.**The initial unit status. A positive integer *t* to indicate that the unit is on by *t* unit times; a negative integer *-t* to indicate that the unit is off by *t* unit times.
- 5. The minimum up- and down-time of the unit (non-negative integers).
- **6.**The subsequent 6 parameters are used to calculate the start up cost. Let them be denoted as coolAndFuelCost, hotAndFuelCost, tau, tauMax, fixedCost, SUCC:
 - **6.1** the cool start up cost is equal to coolAndFuelCost * (1-exp(- downTime/tau)) + fixedCost;
 - **6.2** the hot start up cost is equal to hotAndFuelCost * downTime + fixedCost;

Note that the last parameter, SUCC, is unused but still present due to compatibility with an old format.

7. The final parameter, P0, is the power that the unit is producing if active prior to the start of the time horizont (i.e., if the initial status is positive, see 4.).

An optional sub-section can then follow with the form

RampConstraints RampUp RampDown

where the two parameters RampUp and RampDown represents respectively the maximum ranp-up rate and the maximum ramp-down rate of the unit.

Hydro unit description

A hydro unit is described with two rows. In the first row we will find the parameters id, volumeToPower, b_h, maxUsage, maxSpillage, initialFlood, minFlood, maxFlood:

id A unit index.

volumeToPower Liner conversion coefficient from water to power.

b h Unused.

maxUsage Maximum amount of water usable for power generation.

maxSpillage Maximum amount of spillable water.
initialFlood Initial amount of water into the basin.
minFlood Minimum amount of water into the basin.
maxFlood Maximum amount of water into the basin.

The second row of hydro unit description contains the amount of water that flows into the basin during the different breaks.

Hydro cascade unit description

Each cascade unit description is made of several rows. The first row contains:

- **1.**The cascade unit index.
- 2. The token CascadeLen.
- **3.**The number of single hydro unit composing the cascade.

Now for each composed hydro unit the description of a simple hydro unit is repeated.