1. Экономия на порталах

В центре Москвы, неподалёку от станции «Маяковская», обнаружен офис Образовательного Фонда «Талант и успех» (55.769084 N, 37.584766 E). Обследовавшая местонахождение группа любопытных астрогеологов установила, что в подвале находится вход в прямой тоннель до Сириуса (43.400534 N, 39.964789 E).

- а. Вычислите длину тоннеля, его максимальную глубину и уклон вблизи входа (в метрах на километр) в модели шарообразной Земли.
- b. Оцените продолжительность свободного движения по тоннелю, пренебрегая всевозможными видами сопротивления, при нулевой начальной скорости на входе, и максимальную скорость относительно стенок тоннеля при таком движении.
- с. Каков диапазон углов, которые ось портала может составлять с направлением на Сириус (α Canis Majoris; прямое восхождение $6^{\rm h}\,45^{\rm m}$, склонение $-16^{\circ}\,43'$)?

2. Два астероида

По мотивам задачи школьного этапа ВсОШ по астрономии, 2021 г.

Два астероида обращаются вокруг Солнца по круговым орбитам, лежащим в плоскости эклиптики, так что их синодические периоды отличаются на 0.50 года от сидерического земного года и на 1.00 год друг от друга.

- а. Вычислите радиусы орбит этих астероидов и найдите отношение их сидерических периодов, а также их взаимный синодический период.
- b. Какова продолжительность прохождения внутреннего астероида по диску Солнца при наблюдении с внешнего?
- с. Какова наибольшая элонгация внутреннего астероида при наблюдении с внешнего?

3. ООО «Мой астероид»

Два астероида обращаются вокруг Солнца по круговым орбитам, лежащим в плоскости эклиптики, в одном направлении. Радиусы орбит составляют 0.50 a. e. и 1.75 a. e.

Таинственные астробюрократы предложили осуществить реорганизацию этих астероидов в форме слияния, для чего скорость внутреннего астероида за короткое время увеличивают на Δv , а скорость внешнего уменьшают на Δv таким образом, что точка столкновения оказывается апоцентром новой орбиты внутреннего астероида и перицентром новой орбиты внешнего астероида.

- а. Вычислите величину изменения скорости Δv .
- b. Найдите относительную орбитальную скорость астероидов в точке столкновения.

Взаимодействием астероидов с другими телами Солнечной системы, кроме Солнца, пренебрегите.

4. Сферическое альбедо

Вокруг похожей на Солнце звезды покоится тонкая сфера Дайсона радиусом 1.0 а.е., изготовленная из однородного теплопроводящего материала. Внешняя сторона сферы абсолютно чёрная, а внутренняя — абсолютно серая со степенью черноты $\varepsilon=0.2$. Считая, что поверхность сферы не испытывает сил сжатия или растяжения, найдите поверхностную плотность сферы. Звёздным ветром пренебречь.

5. До коллапса

Рассмотрим невращающееся облако молекулярного водорода со средней концентрацией молекул $2 \cdot 10^{12} \ \mathrm{m}^{-3}$ при температуре 12 К. Диаметр облака — 1 пк. Будет ли такое облако сжиматься под действием собственной гравитации? Ответ подтвердите вычислениями.

6. Балджи-джампинг

Перед тем как использовать в расчётах ту или иную модель потенциала Галактики, полезно проверить, согласуется ли получаемая по ней кривая вращения с наблюдаемой, а также посмотреть на вклад каждой компоненты потенциала в общую кривую вращения. В одной из работ предполагается использовать несколько вариантов моделей для потенциала балджа.

В основной модели потенциал балджа представлен моделью Пламмера:

$$Φ_P(r) = -\frac{GM}{\sqrt{r^2 + c^2}}, \quad M = 0.78 \cdot 10^{10} M_{\odot}, \quad c = 0.3 \text{ kHz},$$

где r — галактоцентрическое расстояние.

Также была рассмотрена модель с изохронным потенциалом

$$\Phi_i(r) = -rac{G\widetilde{M}}{b + \sqrt{b^2 + r^2}}, \quad b = 0.15 \; {
m KHK}.$$

Рассмотрим центральную область Галактики и изучим поведение кривой вращения, задаваемой только балджем.

- а. Чему равна максимальная круговая скорость V_{\max} в основной модели и на каком расстоянии r_v она достигается?
- b. Чему должна быть равна масса балджа \widetilde{M} , чтобы значение скорости в модели изохронного балджа на расстоянии r_v было равно тому же значению $V_{\rm max}$?

7. Познание начинается с удивления

Оцените, сколько звёзд, которые мог видеть Аристотель (около $5 \cdot 10^2$ лет до н. э.) можно увидеть невооружённым глазом в наши дни, находясь в пригороде Афин (38° с. ш.). Засветкой неба, рельефом и рефракцией пренебрегите.

8. Венера на сборах

Предположим, что поверхностная яркость Венеры не зависит от фазы.

- а. Оцените элонгацию Венеры, при которой создаваемая ей на Земле освещённость максимальна.
- b. Когда относительно нижнего соединения Венера имеет такую элонгацию?
- с. Оцените местное время восхода Венеры при такой элонгации 23 сентября в Риме (41° 54′ с. ш., 12° 30′ в. д.).

9. Эта задача создана и (или) распространена...

Два агента решили собрать всю информацию о некотором шаровом звёздном скоплении. Один остался на Земле и выяснил, что скопление содержит $N\gg 1$ аналогичных Солнцу звёзд и находится на расстоянии L при видимом характерном угловом размере $\delta\ll 1$. Второй пробрался в центр скопления и установил, что звёзды скопления распределены в пространстве по закону $n\propto \exp{[-r/r_0]}$, где r — расстояние до центра скопления.

- а. Найдите интегральные видимые звёздные величины данного скопления для обоих агентов и выражение для их разности.
- b. Найдите поверхностные яркости скопления для обоих агентов и выражение для их разности.
- с. Телескоп с каким диаметром объектива необходимо использовать первому агенту, чтобы видимый блеск скопления сравнялся с таковым для второго агента?

10. Не щекочи спящего дракона!

Линия Са I с лабораторной длиной волны 4226 Å в спектре некоторой звезды спектрального класса М наблюдается на длине волны 4227 Å. При этом длинноволновая граница линии отстоит на 0.11 Å от её центра. Звезда принадлежит к переменным типа ВҮ Дракона, поэтому по наблюдению пятен удалось получить угол наклона оси вращения к картинной плоскости, равный 30° . Известно, что средняя плотность звезды составляет 10 г/см^3 , а вследствие вращения на экваторе звезды поверхностная гравитация на 0.05% меньше, чем на полюсе. Оцените светимость звезды.