Problem Set 1 - Econometrics I 2016/2017

Vikrant Vig

Due: October 28th, 2016 (until 18h00 at Dimas' pigeon hole)

Analytical Exercises

- 1. (10pts) Let X and Y be two random variables. Consider the following definitions:
 - (I) X and Y are independent: $f_{X,Y}(X, Y) = f_X(X)f_Y(Y)$;
 - (II) X and Y are mean independent: E(Y|X) = E(Y);
 - (III) X and Y are linear independent: Cov(X, Y) = E(XY) E(X)E(Y) = 0.
 - (a) Show that $(I) \Rightarrow (II) \Rightarrow (III)$.
 - (b) Aside (Extra 5pts): Can you think of some counter examples to explain why the inverse does not always hold?
- 2. (15pts) Consider the joint pdf for random variables *X* and *Y* below:

$$f(x,y) = \begin{cases} \frac{2}{3}(x+2y) & 0 < x < 1, \ 0 < y < 1\\ 0 & \text{else} \end{cases}$$

- (a) Find the marginal pdfs.
- (b) Compute $\mathbb{P}(X \le \frac{1}{2}|Y = \frac{1}{2})$
- (c) Are *X* and *Y* independent?
- 3. (10pts) Let *X* be a continuous random variable with the pdf below, where *a* and *b* are constants.

$$f(x) = \begin{cases} \frac{1}{b-a} & a < x < b \\ 0 & \text{else} \end{cases}$$

1

- (a) Compute $\mathbb{E}[X]$.
- (b) Let $g(X) = X^2$. Compute $\mathbb{E}[g(X)]$.

4. (20pts) Suppose that random variables y and x only take the values 0 and 1 and have the following joint probability distribution.

	x=0	x=1
y=0	0.1	0.2
y=1	0.4	0.3

- (a) Find E(y|x), $E(y^2|x)$ and var(y|x) for x=0 and x=1
- (b) Now calculate E(y), $E(y^2)$ and var(y) using the Law of Iterated Expectations.
- 5. (15pts) Let t be a n x 1 vector and A a n x n matrix, show the following results from matrix calculus.
 - (a) $\frac{d(At)}{dt} = A$
 - (b) $\frac{d(t'A)}{dt} = A'$
 - (c) $\frac{\frac{d(t'At)}{dt}}{dt} = t'(A + A')$
 - (d) $\frac{d^2t'At}{dtdt'} = (A + A')$

(Hint: express the matrices multiplications in index notation and then apply the derivative)

Computational Exercises

- 6. (15pts) (Basic notions of matlab) Present these results using the Matlab's Publish functionality ¹
 - (a) Create the vector $\mathbf{a} = [1 \ 2 \ 3 \ 4]$
 - (b) Create matrix $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ as well as A^T and A^{-1} .
 - (c) Compute A^2 and compare the result to that obtained by typing A $\hat{.}2$
 - (d) Create matrix $B = \begin{pmatrix} -1 & 4 \\ 2 & 2 \end{pmatrix}$ and compute A·B.
 - (e) Create matrix

$$C = \left(\begin{array}{ccccc} 0.1 & 0.9 & 0 & 0 & 0 \\ 0.1 & 0 & 0.9 & 0 & 0 \\ 0 & 0.1 & 0 & 0.9 & 0 \\ 0 & 0 & 0.1 & 0 & 0.9 \\ 0 & 0 & 0 & 0.1 & 0.9 \end{array}\right)$$

using a loop (see function for).

¹For more information see:

- (f) Given $x = [3 \ 1 \ 5 \ 7 \ 9 \ 2 \ 6]$, explain what the following commands "mean" by summarizing the net result of the command.
 - x(3)
 - x(1:7)
 - -x(1:end)
 - x(1:end-1)
 - x(6:-2:1)
 - -x([16211])
 - sum(x)
- 7. (15pts) (Basic notions of Stata) Answer the following questions, many of which require use of the dataset "PS1_insurance.xlsx" These data contain personal information on people that participated in a lottery to gain access to the publicly provided healthcare (with winners having lottery=1 in the data). These include birth year, household income, sex, and the number of doctors visits in the period after the lottery.
 - (a) Import data and compute summary statistics for each variable including sample count, mean, standard deviation, minimum, maximum, 25th 50th, and 75th quantiles. Tip: see tabstat in Stata.
 - (b) Generate a new variable for each person's age (as of 2010), and a dummy variable that equals one if the person had at least one doctor visit after the lottery. Summarize these variables.
 - (c) To visualize the income distribution of the sample, plot a histogram with bin-widths of \$2500. Tip: see histogram in Stata.