

Improving Cross-modal Retrieval with Set of Diverse Embeddings

Dongwon Kim

kdwon@postech.ac.kr

Namyup Kim

namyup@postech.ac.kr

Suha Kwak

suha.kwak@postech.ac.kr

Cross-modal Retrieval

Text-to-image

Q Children riding bikes and skateboards

Image-to-text

Boys wearing helmets carry a bike up a ramp at a skate park.

Small children stand near bicycles at a skate park.

A group of young children riding bikes and skateboards.

Semantic Ambiguity

"Boys wearing helmets carry a bicycle up a ramp at a skate park."

"Small children stand near bicycles at a skate park."

"A group of young children riding bikes and skateboards."

An image or a sentence often illustrates multiple entities and their relations.

Semantic Ambiguity

"Boys wearing jelmets carry a bicycle up a ramp at a skate park."

"Small children stand near bicycles at a skate park."

"A group of young children riding bikes and skateboards."

It is impractical to manually annotate such entities and their correspondences.

Embedding Network Architectures

Single Cross-attention Encoder

Image Encoder + Text Encoder

Embedding Network Architectures

Single Cross-attention Encoder

Similarity: $g(\mathbf{x}, \mathbf{y})$

- (+) Boosting performance by finegrained image-text interaction
- (–) Impractical for large-scale image retrieval due to the prohibitively heavy computation at inference

Image Encoder + Text Encoder

Similarity:
$$s\left(f^{\mathcal{V}}(\mathbf{x}), f^{\mathcal{T}}(\mathbf{y})\right)$$

- (+) Appropriate for large-scale image retrieval thanks to the simple and efficient similarity computation
- (-) Limited performance due to the lack of image-text interaction

Our Approach

2 Embedding set representation+ set similarity metric for resolving the ambiguity issue

1 Separate encoders for efficient retrieval

Contribution

- A new set-based embedding architecture
 - Set-prediction modules based on slot attention
- A new set similarity metric
 - Smooth-Chamfer similarity
- Outstanding performance
 - State of the art in most settings on four public benchmarks
 - Leading to substantially less latency than cross-attention models

Proposed Architecture

Proposed Architecture: Set Prediction Modules

The element slots^[1] compete with each other to aggregate input features and thus reveal diverse contexts.

Proposed Architecture: Set Prediction Modules

Local features ψo (Key, Value) pairs: $\mathbf{k}, \mathbf{v} \in \mathbb{R}^{N \times D_h}$

Element slots $\mathbf{E}^{t-1} \rightarrow \text{Queries}$: $\mathbf{q} \in \mathbb{R}^{K \times D_h}$

Computing an attention map

$$A_{n,k} = \frac{\exp M_{n,k}}{\sum_{i=1}^{K} \exp M_{n,i}}$$
, where $M = \frac{\mathbf{kq}^{\mathsf{T}}}{\sqrt{D_h}}$

Normalization over the slots^[1]

Updating the element slots

$$\mathbf{E}^t = \mathrm{MLP}(\bar{\mathbf{E}}^t) + \bar{\mathbf{E}}^t$$
, where

$$\bar{\mathbf{E}}^t = \hat{A}^\mathsf{T} \mathbf{v} \, W_o + \mathbf{E}^{t-1} \quad \text{and} \quad \hat{A}_{n,k} = \frac{A_{n,k}}{\sum_{i=1}^N A_{n,k}}$$

Proposed Architecture: Set Prediction Modules

Adding the global feature to each element

$$\mathbf{S} = \mathrm{LN}(\mathbf{E}) + [\mathrm{LN}(\phi), \cdots, \mathrm{LN}(\phi)] \in \mathbb{R}^{K \times D}$$

K repetitions

- Embedding the global context in every element of the set
- Particularly useful when treating samples with little ambiguity

Set Similarity Metric: Smooth-Chamfer Similarity

$$s(\mathbf{S}^{\mathcal{V}}, \mathbf{S}^{\mathcal{T}}) = \frac{1}{2\alpha |\mathbf{S}^{\mathcal{V}}|} \sum_{\mathbf{e} \in \mathbf{S}^{\mathcal{V}}} \underbrace{\operatorname{LSE}_{\mathbf{e}' \in \mathbf{S}^{\mathcal{T}}} \left(\alpha \cos(\mathbf{e}, \mathbf{e}') \right) + \frac{1}{2\alpha |\mathbf{S}^{\mathcal{T}}|} \sum_{\mathbf{e}' \in \mathbf{S}^{\mathcal{T}}} \underbrace{\operatorname{LSE}_{\mathbf{e} \in \mathbf{S}^{\mathcal{V}}} \left(\alpha \cos(\mathbf{e}, \mathbf{e}') \right)}_{\log \left(\sum_{y \in \mathbf{S}_{2}} \exp[\alpha \cos(x, y)] \right)} \log \left(\sum_{x \in \mathbf{S}_{1}} \exp[\alpha \cos(x, y)] \right)$$

Set Similarity Metric: Smooth-Chamfer Similarity

$$s(\mathbf{S}^{\mathcal{V}}, \mathbf{S}^{\mathcal{T}}) = \frac{1}{2\alpha |\mathbf{S}^{\mathcal{V}}|} \sum_{\mathbf{e} \in \mathbf{S}^{\mathcal{V}}} \frac{\mathsf{LSE}}{\mathbf{e}' \in \mathbf{S}^{\mathcal{T}}} \left(\alpha \cos(\mathbf{e}, \mathbf{e}') \right) + \frac{1}{2\alpha |\mathbf{S}^{\mathcal{T}}|} \sum_{\mathbf{e}' \in \mathbf{S}^{\mathcal{T}}} \frac{\mathsf{LSE}}{\mathbf{e} \in \mathbf{S}^{\mathcal{V}}} \left(\alpha \cos(\mathbf{e}, \mathbf{e}') \right)$$

Chamfer similarity (MAX instead of LSE)

Smooth-Chamfer similarity

- Establishing soft
 correspondences
 between elements
- Improving retrieval performance

$$\mathcal{L}\left(\left\{\mathbf{S}_{i}^{\mathcal{V}},\mathbf{S}_{i}^{\mathcal{T}}\right\}_{i=1}^{N}\right) = \mathcal{L}_{\mathrm{tri}}\left(\left\{\mathbf{S}_{i}^{\mathcal{V}},\mathbf{S}_{i}^{\mathcal{T}}\right\}_{i=1}^{N}\right) + \mathcal{L}_{\mathrm{mmd}}\left(\left\{\mathbf{S}_{i}^{\mathcal{V}}\right\}_{i=1}^{N},\left\{\mathbf{S}_{i}^{\mathcal{T}}\right\}_{i=1}^{N}\right) + \mathcal{R}_{\mathrm{div}}$$

Metric learning

$$\mathcal{L}\left(\left\{\mathbf{S}_{i}^{\mathcal{V}},\mathbf{S}_{i}^{\mathcal{T}}\right\}_{i=1}^{N}\right) = \mathcal{L}_{\mathrm{tri}}\left(\left\{\mathbf{S}_{i}^{\mathcal{V}},\mathbf{S}_{i}^{\mathcal{T}}\right\}_{i=1}^{N}\right) + \mathcal{L}_{\mathrm{mmd}}\left(\left\{\mathbf{S}_{i}^{\mathcal{V}}\right\}_{i=1}^{N},\left\{\mathbf{S}_{i}^{\mathcal{T}}\right\}_{i=1}^{N}\right) + \mathcal{R}_{\mathrm{div}}$$

Closing the modality gap

$$\mathcal{L}\left(\left\{\mathbf{S}_{i}^{\mathcal{V}},\mathbf{S}_{i}^{\mathcal{T}}\right\}_{i=1}^{N}\right) = \mathcal{L}_{\mathrm{tri}}\left(\left\{\mathbf{S}_{i}^{\mathcal{V}},\mathbf{S}_{i}^{\mathcal{T}}\right\}_{i=1}^{N}\right) + \mathcal{L}_{\mathrm{mmd}}\left(\left\{\mathbf{S}_{i}^{\mathcal{V}}\right\}_{i=1}^{N},\left\{\mathbf{S}_{i}^{\mathcal{T}}\right\}_{i=1}^{N}\right) + \mathcal{R}_{\mathrm{div}}$$

Enhancing within-set diversity

$$\mathcal{L}\left(\left\{\mathbf{S}_{i}^{\mathcal{V}},\mathbf{S}_{i}^{\mathcal{T}}\right\}_{i=1}^{N}\right) = \mathcal{L}_{\mathrm{tri}}\left(\left\{\mathbf{S}_{i}^{\mathcal{V}},\mathbf{S}_{i}^{\mathcal{T}}\right\}_{i=1}^{N}\right) + \mathcal{L}_{\mathrm{mmd}}\left(\left\{\mathbf{S}_{i}^{\mathcal{V}}\right\}_{i=1}^{N},\left\{\mathbf{S}_{i}^{\mathcal{T}}\right\}_{i=1}^{N}\right) + \mathcal{R}_{\mathrm{div}}$$

Triplet rank loss with hard negative mining

$$\mathcal{L}_{\text{tri}}\left(\left\{\mathbf{S}_{i}^{\mathcal{V}}, \mathbf{S}_{i}^{\mathcal{T}}\right\}_{i=1}^{N}\right) = \sum_{i=1}^{N} \max_{j} \left[\delta + s\left(\mathbf{S}_{i}^{\mathcal{V}}, \mathbf{S}_{j}^{\mathcal{T}}\right) - s\left(\mathbf{S}_{i}^{\mathcal{V}}, \mathbf{S}_{i}^{\mathcal{T}}\right)\right]_{+} + \sum_{i=1}^{N} \max_{j} \left[\delta + s\left(\mathbf{S}_{i}^{\mathcal{T}}, \mathbf{S}_{j}^{\mathcal{V}}\right) - s\left(\mathbf{S}_{i}^{\mathcal{T}}, \mathbf{S}_{j}^{\mathcal{V}}\right)\right]_{+}$$

Maximum mean discrepancy^[2] loss

$$\mathcal{L}_{\mathrm{mmd}}\left(\left\{\mathbf{S}_{i}^{\mathcal{V}}\right\}_{i=1}^{N},\left\{\mathbf{S}_{i}^{\mathcal{T}}\right\}_{i=1}^{N}\right) = \mathrm{MMD}\left(\left\{\mathbf{S}_{i}^{\mathcal{V}}\right\}_{i=1}^{N},\left\{\mathbf{S}_{i}^{\mathcal{T}}\right\}_{i=1}^{N}\right)$$

Diversity regularizer

$$\mathcal{R}_{\text{div}} = \sum_{e,e' \in \mathbf{E}} \exp(-2\|e - e'\|_2^2)$$

Experiments

- Datasets
 - COCO^[3], Flickr30K^[4], ECCV Caption^[5], CrissCrossed Caption (CxC)^[6]
- Evaluation metrics
 - Recall@k: Percentage of the queries that have matching samples among top-k retrieval results
 - RSUM: Sum of Recall@k at $k \in \{1,5,10\}$ in both image-to-text and text-to-image settings
- 4 agg. blocks and 4 element slots for each set-prediction module
- [3] Lin et al., Microsoft COCO: Common Objects in Context, ECCV 2014.
- [4] Plummer et al., Flickr30k Entities: Collecting Region-to-phrase Correspondences for Richer Image-to-sentence Models, ICCV 2015.
- [5] Chun et al., ECCV Caption, Correcting False Negatives by Collecting Machine-and-human-verified Image-Caption Associations for MS-COCO, ECCV 2022.
- [6] Parekh et al., Crisscrossed Captions: Extended Intra-modal and Inter-modal Semantic Similarity Judgments for MS-COCO, EACL 2020.

Experiments: Performance on COCO

		1K Test Images						5K Test Images							
Mathad		Image-to-Text		Text-to-Image		RSUM	Image-to-Text		Text-to-Image		RSUM				
Method	CA	R@1	R@5	R@10	R@1	R@5	R@10	1150111	R@1	R@5	R@10	R@1	R@5	R@10	
ResNet-152 + Bi-GRU															
VSE++	X	64.6	90.0	95.7	52.0	84.3	92.0	478.6	41.3	71.1	81.2	30.3	59.4	72.4	355.7
PVSE	X	69.2	91.6	96.6	55.2	86.5	93.7	492.8	45.2	74.3	84.5	32.4	63.0	75.0	374.4
PCME	X	68.8	-	-	54.6	-	-	-	44.2	-	-	31.9	-	-	-
Ours	X	70.3	91.5	96.3	56.0	85.8	93.3	493.2	47.2	74.8	84.1	33.8	63.1	74.7	377.7
Faster R-C	Faster R-CNN + Bi-GRU														
SCAN [†]	/	72.7	94.8	98.4	58.8	88.4	94.8	507.9	50.4	82.2	90.0	38.6	69.3	80.4	410.9
${ m VSRN}^\dagger$	X	76.2	94.8	98.2	62.8	89.7	95.1	516.8	53.0	81.1	89.4	40.5	70.6	81.1	415.7
CAAN	1	75.5	95.4	98.5	61.3	89.7	95.2	515.6	52.5	83.3	90.9	41.2	70.3	82.9	421.1
${ m IMRAM}^\dagger$	1	76.7	95.6	98.5	61.7	89.1	95.0	516.6	53.7	83.2	91.0	39.7	69.1	79.8	416.5
${\sf SGRAF}^\dagger$	1	79.6	96.2	98.5	63.2	90.7	96.1	524.3	57.8	-	91.6	41.9	-	81.3	-
${ m VSE}_{\infty}$	X	78.5	96.0	98.7	61.7	90.3	95.6	520.8	56.6	83.6	91.4	39.3	69.9	81.1	421.9
$NAAF^{\dagger}$	1	80.5	96.5	98.8	64.1	90.7	96.5	527.2	58.9	85.2	92.0	42.5	70.9	81.4	430.9
Ours	X	79.8	96.2	98.6	63.6	90.7	95.7	524.6	58.8	84.9	91.5	41.1	72.0	82.4	430.7
\mathbf{Ours}^\dagger	X	80.6	96.3	98.8	64.7	91.4	96.2	528.0	60.4	86.2	92.4	42.6	73.1	83.1	437.8
ResNeXt-10	01 + BE	ERT													
VSE_{∞}	X	84.5	98.1	99.4	72.0	93.9	97.5	545.4	66.4	89.3	94.6	51.6	79.3	87.6	468.9
$ ext{VSE}_{\infty}{}^{\dagger}$	X	85.6	98.0	99.4	73.1	94.3	97.7	548.1	68.1	90.2	95.2	52.7	80.2	88.3	474.8
Ours	X	86.3	97.8	99.4	72.4	94.0	97.6	547.5	69.1	90.7	95.6	52.1	79.6	87.8	474.9
\mathbf{Ours}^\dagger	X	86.6	98.2	99.4	73.4	94.5	97.8	549.9	71.0	91.8	96.3	53.4	80.9	88.6	482.0

Experiments: Performance on Flickr30K

		In	nage-to-	text	Te	Text-to-image					
Method	CA	R@1	R@5	R@10	R@1	R@5	R@10	RSUM			
ResNet-152	ResNet-152 + Bi-GRU										
VSE++	X	52.9	80.5	87.2	39.6	70.1	79.5	409.8			
PVSE*	X	59.1	84.5	91.0	43.4	73.1	81.5	432.6			
$PCME^*$	X	58.5	81.4	89.3	44.3	72.7	81.9	428.1			
Ours	X	61.8	85.5	91.1	46.1	74.8	83.3	442.6			
Faster R-CNN + Bi-GRU											
SCAN [†]	/	67.4	90.3	95.8	48.6	77.7	85.2	465.0			
${ m VSRN^\dagger}$	X	71.3	90.6	96.0	54.7	81.8	88.2	482.6			
CAAN	/	70.1	91.6	97.2	52.8	79.0	87.9	478.6			
$IMRAM^{\dagger}$	✓	74.1	93.0	96.6	53.9	79.4	87.2	484.2			
$SGRAF^\dagger$	✓	77.8	94.1	97.4	58.5	83.0	88.8	499.6			
${ m VSE}_{\infty}$	X	76.5	94.2	97.7	56.4	83.4	89.9	498.1			
NAAF [†]	✓	81.9	96.1	98.3	61.0	85.3	90.6	513.2			
Ours	X	77.8	94.0	97.5	57.5	84.0	90.0	500.8			
\mathbf{Ours}^\dagger	X	80.9	94.7	97.6	59.4	85.6	91.1	509.3			
ResNeXt-101 + BERT											
$\overline{ ext{VSE}_{\infty}}$	X	88.4	98.3	99.5	74.2	93.7	96.8	550.9			
$ extsf{VSE}_{\infty}{}^{\dagger}$	X	88.7	98.9	99.8	76.1	94.5	97.1	555.1			
Ours	X	88.8	98.5	99.6	74.3	94.0	96.7	551.9			
\mathbf{Ours}^\dagger	X	90.6	99.0	99.6	75.9	94.7	97.3	557.1			

Experiments: Performance on Flickr30K

Computation Complexity

Latency in inference

^[7] Jiacheng et al., Learning the Best Pooling Strategy for Visual Semantic Embedding, CVPR 2021.

^[8] Zhang et al., Negative-aware Attention Framework for Image-text Matching., CVPR 2022.

^[9] Lee et al., Stacked Cross Attention for Image-text Matching, ECCV 2018.

Experiments: Performance on ECCV Caption and CxC

	In	nage-to	o-text		Text-to-image				
	ECCV	Capti	on	CxC	ECCV	CxC			
	mAP@R	R-P	R@1	R@1	mAP@R R-P R@			R@1	
VSRN	30.8	42.9	73.8	55.1	53.8	60.8	89.2	42.6	
VSE_{∞}	<u>34.8</u>	<u>45.4</u>	81.1	<u>67.9</u>	50.0	57.5	91.8	<u>53.7</u>	
Ours	36.0	46.4	84.7	72.3	51.0	<u>58.5</u>	91.6	55.5	

VSRN^[10] is one of the machine annotators used to construct the ECCV Caption dataset.

Experiments: Ablation Study on Flickr30K

Similarity	Arch.	RSUM
MIL ^[11]	Ours	491.7
$MP^{[12]}$	Ours	490.5
Ours (Chamfer)	Ours	499.6
Ours (S-Chamfer)	PIE-Net	483.3
Ours (S-Chamfer)	Ours	500.8

Impact of set-similarity metric

Smooth-Chamfer similarity is best suited to our framework.

Setting	log(Var.)	RSUM
PIE-Net [11,12]	-7.35	483.3
Ours \w MP	-5.27	490.5
Transformer [13] -2.27	496.1
Ours	-2.13	500.8

Impact of set-embedding architecture

Our architecture results in most diverse embeddings and best performance.

Circular variance
$$Var = 1 - \left\| \sum_{e \in S} \frac{e}{|S|} \right\|_2$$

^[11] Song and Soleymani, Polysemous Visual Semantic Embedding for Cross-modal Retrieval, CVPR 2019.

^[12] Chun et al., Probabilistic Embeddings for Cross-modal Retrieval, CVPR 2021.

^[13] Dosovitskiy et al., An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale, ICLR 2021.

Experiments: Ablation Study on Flickr30K

Evaluation $\mathbf{S}^{\mathcal{V}}(1) \ \mathbf{S}^{\mathcal{V}}(2) \ \mathbf{S}^{\mathcal{V}}(3) \ \mathbf{S}^{\mathcal{V}}(4) \ \mathbf{RSUM}$					Evaluation $\mathbf{S}^{\mathcal{T}}(1) \ \mathbf{S}^{\mathcal{T}}(2) \ \mathbf{S}^{\mathcal{T}}(3) \ \mathbf{S}^{\mathcal{T}}(4) \ \mathbf{RSUM}$					
✓	✓	✓	✓	500.8		✓	✓	✓	✓	500.8
✓				491.1		✓				481.9
	\checkmark			309.6			✓			483.0
		\checkmark		484.9				✓		481.7
			✓	486.0					✓	497.2

Contribution of each embedding element

Experiments: Qualitative Examples

R1: A park is full of patrons on a fall day.

R1: A country store with several teddy bears and geese there.

R1: Here is a soul in the image alone.

R1: A man in a robe eating a chocolate donut.

R1: A hairy man eating a chocolate doughnut in his house.

R1: A man is holding a chocolate dessert in his hand as he stares ahead.

Conclusion

Contributions

- A new set-based embedding architecture
- A new set similarity metric
- Outstanding performance on four public benchmarks
- Next on agenda
 - Adopting CLIP-pretrained weights^[14]
 - Adopting an advanced slot attention mechanism (e.g., [15])
 - Learning vision-language models with the proposed method

References

- [1] Locatello et al., Object-centric Learning with Slot Attention, NeurIPS 2020.
- [2] Gretton et al., A Kernel Two-sample Test, JMLR 2012.
- [3] Lin et al., Microsoft COCO: Common Objects in Context, ECCV 2014.
- [4] Plummer et al., Flickr30k Entities: Collecting Region-to-phrase Correspondences for Richer Image-to-sentence Models, ICCV 2015.
- [5] Chun et al., ECCV Caption, Correcting False Negatives by Collecting Machine-and-human-verified Image-Caption Associations for MS-COCO, ECCV 2022.
- [6] Parekh et al., Crisscrossed Captions, EACL 2020.
- [7] Jiacheng et al., Learning the Best Pooling Strategy for Visual Semantic Embedding, CVPR 2021.
- [8] Zhang et al., Negative-aware Attention Framework for Image-text Matching., CVPR 2022.
- [9] Lee et al., Stacked Cross Attention for Image-text Matching, ECCV 2018.
- [10] Li et al., Visual Semantic Reasoning for Image-text Matching, ICCV 2019.
- [11] Song and Soleymani, Polysemous Visual Semantic Embedding for Cross-modal Retrieval, CVPR 2019.
- [12] Chun et al., Probabilistic Embeddings for Cross-modal Retrieval, CVPR 2021.
- [13] Dosovitskiy et al., An Image is Worth 16x16 Words, ICLR 2021.
- [14] Radford et al., Learning Transferable Visual Models From Natural Language Supervision, ICML 2021.
- [15] Kim et al., Shatter and Gather: Learning Referring Image Segmentation with Text Supervision, ICCV 2023.

