

Attorney Docket No. 03806.0517

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re	Application of:)	
Fra	ncis BLANCHE et al.)	
Appli	cation No.: 09/970,663)	Group Art Unit: 1635
Filed:	October 5, 2001)	Examiner: Brian Whiteman
For:	COMPOSITION FOR THE PRESERVATION OF INFECTIOUS RECOMBINANT ADENOVIRUSES))))	
	tant Commissioner for Patents ington, DC 20231		
Sir:			

DECLARATION UNDER 37 C.F.R. § 1.131

- I, Francis Blanche, state that I am one of the named applicants of the above-identified application and that I am a co-inventor of the subject matter described and claimed therein. Prior to November 16, 1998, we, the co-inventors had completed in France the invention as described and claimed in the above-identified application as evidenced by the following:
 - 1. Exhibit A: Laboratory Notebook Pages 51-55 and 176 (A1-A6) of Francis Blanche, showing, a composition comprising adenoviral particles and a glycerol buffer solution at pH 8.4, wherein the buffer solution does not contain added divalent metal cations or alkali metal cations. See pages 52-53 (A2-A3), formulation #2, for example, comprises Tris/HCl and 10% glycerol at pH 8.4 (hereinafter referred to as "formulation #2".) The addition of adjuvants, such as sucrose or Tween20 is shown, for example, at page 176, formulations C and D. Formulation #2 is shown to be

Application No. 09/970,663 Attorney Docket No. 03806.0517

useful for preserving adenoviruses. See page 55 (A5), stable viral titer after 15 days of storage in formulation #2. Some compositions were tested for stability after –20°C or 4°C storage, indicating that the –20°C frozen viral compositions were thawed to test viability. See page 176 (A6), last three lines from the bottom.

- 2. The present specification at page 17, first formulation in the Table, shows a formulation identical to formulation #2 of Exhibit A;
- 3. Example 3 of the present specification, at pages 18-19, shows that a formulation identical to formulation #2 of Exhibit A has a stable viral titer after 15 days of storage, similar to the 15-day storage stability of formulation #2 shown on page 55 (A5) of Exhibit A.

While the dates have been redacted, the undersigned testifies that all experiments described herein were conducted before November 16, 1998.

I declare further that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further, that the statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code, and that such willful false statements may jeopardize the validity of the application or any patents issuing thereon.

Dated: March <u>28</u>, 2003

By: Blanche

08588.0517

EXHIBIT A (6 pages) ATTURNEY DOCUMENT 08888.0517

ESSAI Nº ...

051

	•	
EEL 02051	•	

ESSAIS FORMULATIONS STABILITE

BUT: Observer la stabilité ou la précipitation éventuelle du virus Y28 dans différentes formulations.

MATERIEL VIRAL ETUDIE:

Solution virale Y28 produite en Cell Cube à l'échelle 8 Mer par l'équipe JF Chaubard et purifiée par chromatographie échangeuse d'anions, conserver dans le Tris 20mM pH8, MgCl- 1mM. NaCl 500mM et glycerol 10%. Le virus purifié titre 3,94.1011 pv/ml.

PREPARATION DES DIFFERENTS JAMPONS ETUDIES:

1. Solutions mères :

		PREPARATIONS:
	SOLUTIONS MERES:	
		10,07g Tris base + 6,60g Tris/Hel dans 250ml cau PPI
	Tris / HCl pH 8,4 & 500mM	(Tris base ref: T8524 et Tris HCL ref:T7149)
		Son-I d'ean PPI
	Sucrose à 50g/100ml	250g de sucrose dans 500ml d'eau PPI
	Sherose B 3 5 2	
	NaCl 5M	Sigma - Aldrich rcf, \$150
	Nact 214	42.020
	MgCl ₂ 1M	Signa - Aldrich ref.M1028
	MIECIS 1141	1000
	Glycerol	Sigma - Aldrich Tel. G5516
	Glycerol	63/0/45
	D-Mannitol	Sigma - Aldrich ref.M9647
	D-Maidette.	
	Tween 20	Sigma - Aldrich ref.P8074
<u>:</u>	1 Ween 20	NOU ON ON
	Tampon borate pH 7.4 100mM	Acide borique 100mM + NaOH 0,1N
1	Tampon corate pri 7.5	
	Tampon phosphate pH 7.4 10r	mM 130mg KH ₂ PO ₄ + 705mg K ₂ HPO ₄ dans 500ml cau

PAGE 1 of 6

052	ESSAI N°		1.65
81.	-	- - -	
	2. Formulations:		
	SOLUTIONS MERES:		
H	В С В	1 Eau PPI	_
	A · B C D E		-
	ESSAIS:	qsp 500ml	-
H	1 20ml + 50ml	qsp 500ml	₫
	2 20ml	1:5p 500ml	-
	3 20/10 3000	c sp 500ml	4
H	4 20ml 50ml 25g	csp 500ml	
	5 20ml S0ml	sp 500ml	4
	6 20ml 50ml 15ml, 0.5ml 25g	:60 500ml	7
;	7 20ml 50ml	isp 500ml	
	8 20ml 50ml 0.5ml 0.5ml		\exists
	9 50ml 0,5ml 50ml	18p 500ml	
; -	+ 50ml	500ml	-
	Salaria mirule observer an 22 me ringage lors de la diafiltration finale	<u>E.</u>	7
1	11 Solution Hase Control dans DPBS/ NaCl 150mM /glycerol 10% Tipe = 2.88.10 ¹¹ ps/ml dans DPBS/ NaCl 150mM /glycerol 10%		\exists
		÷.	4
	· ·		1
I \Box	,		
	3 Résumé des formulations étudiées :		
	Voir tableau ci-après.		-1
			1
	:		
1 1			1
1 -			-

A-2 Page 2 of 6

COCALNIA		053
ESSAI N°		-
FSSAIS 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
Tris 20mM 2H 8d + + + + + + + + + + + + + + + + + + +		
Tris 20mM pH 8d +		
Macy man		
MECh 1mM Sucrose 57% Threed2D 0.17% Madmitol 57% G	Y28 CE	1
Tweed20 0.1%	Y28 CELL CUBE BMEK ESSAIS DE FORMULATIONS	11111
195 Mannitol 576 Sept. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ATIONS	1
+ + + + + + + + + + + + + + + + + + +		
DPBS		1
Thomas between per7.4		4
Tangen 10mM pH74 phosphate		-
	•	1

A-3
PAGE 3 of 6

SAI Nº 054 MATERIELS UTILISES: →10 PD 10 pour la-distiluration équilibrées avec 5 × 5ml de tampon étudié. →Ultrafree 15 ml avec membrane Biomax 100 Kd (Millipore) (2x pour chaque essai). →Centrifugeuse réglée à 1500 tr/mn. MISE EN OEUVRE : POUR CHAQUE ESSAU; OPERATIONS: 10 PD10 x 2,5ml de solution virale Y28 à 3,94,1011 Elution par 10PD10 x 3,5ml du tampon étudié. pv/ml. DIAFTLTRATION: 2 Ultrafree 15ml 100Kd remplie à 15ml puis recharges avec 2,5ml de solution virale diafilute. svet 2,3 m or sometimes value manufer.

Soit 17,5 ml concentres à 500 µl (x2).

(soit une concentration à ≈ 1.10 ½ py/ml.) CONCENTRATION: Récuperation et pool des 2 Ultrafrée pour chaque essai. Filtration sur filtre Millex 0,2µ non stériles. RECUPERATION ET FILTRATION 0,2 mm; Stockage dans tubes on verre steriles. → 100µl dans tube Ependorff congrit à -26°C par essai. → 20µl + 980µl tampon clip anal, pour dosage. om, 900 pl conserves il +4°C pour érode de subilité. CIV. Nouth conseques a Ta C pour circo es statunic. ALIQUOTAGE: (=0) initiale est congelé à .26°C. directement concentré à 1,1013 pv/ml, récupéré et aliquoté comme les aures essais. TEMOINS PBS/glycern) 10%; Herita and down the

A-4
Pace 4 of 6

055

	:				E	SSA	u N	l°									
. TristMgClataucrosettween	Tampon 8	Tristaucrosctlwood	Tampon ?	Tamper & Tamper & Tris+NaCl+MgClr+rangemitel	Tris+MgCle+sucrose+manusos	Ташров 5		Trist sucrose	Tanana	Tampon 3 Tris+MgCl2+5waresc		Tangga 2 Tair glyceral	To's 20mM	Тамроп 1		POSAGES CLHP ANALYTIQUE:	
-	7,17. 1011		6,22, 1012	6,48. 10**		5,84, 1012			6,31, 10,11	0,2%, 10	Rose	7,71. 10**		4,97.1011		TITRE DYIDL 1-9	
	opacification à j=7		ուսահե մ ј 🕻 Տ	bienhim o' ,		normble à j=15			nommule & j=15	mais non procipité à j=15	Auscification 4 j=123			normale à j=15		AFFARENCE DE	
	filtre 0,2 pm:		non filtre : 9,53.1011	filtre 0,2µm:	oon filtre: non dose	illut 0,2 µm; 1,47.10 ¹³	101		non filted: 5,83.10 ¹²	filtré 0,2 ματ. 2,09.10"	1100 filtré: 2,33.1011.	Gitté 0,2 pau: 7,96.1012	mon Gites : \$, 12.10 ¹⁷	1000 (1000 : 1,0.10 filter 0,2μm: 9,1.10	a lali	TITRE PVIPIL =1	
	1	asymétries.0,95 et 0,83	sammet du pic arroads		Bytheu Mark 1, 20 co 1, 17	nbre pluteaux:17000	La sateur mic artémo traine		bic symptomec	asymucusty.93 et 0,86	montée du pic	•	pic symétrique	nbre plutemux 12000	le setour nic adéno trains	OBSERVATIONS CLIFF du dusage I=13	
	1		ournale				non dosé	esymptotics:1,28 ct 1,44	nhre piatesux:14000	Gira 1 87 11117	فعمل مورد	apprison	10 july : 7,88. 10 ¹³	عاديسويه	DHU duse	TITRE PYION 1-20 (-) Observations CLHP Apparence échantilion	
		1	1		1		1	transme transme	uhra plutehux - 4000	משח ווונהב :) נוא נוש	l	northale	المن عدولتأطيط على المنظمة على المنظمة		1	TITRE DV/ml 1-22 (*) Observation CLHP Anoneconce echantilius	

acta: pour le pie edéao étalon --sabre plateaux: 32000 saymétries: 1,1 et 1,16 (*) calcul des titres avec le noavet étalon,141 (*) calcul des titres avec le noavet étalon,141 (*) calcul des titres à 1-22 pour test bioactivité par M. sanicot

Tampon 11
DSBS+NaCl+glyctrol

5,37, 1011

précipité à t<1 jour

non filtré : non dost tiltré 0,2 µm:

Tannon 10 Phospinic + glycerol

Tampon B
TiestMgClat sucroset (ween

Tempon 2

Bornte+hdyCl7+sucrose

non détecté

7,20. 1011

virts retent sur te filtre
solution trouble des le
changement de lempon
opasification à f=2
précipite le tendemain

Blue 0,2µxx:

, non filter : non dose

1

aon filtré : ava dosé filtré v.2µm:

ł

A-5
PAGE 5 of 6

176	SSAI N°		์: sบม ะ า
SUJET : .	ADMONIRUS		
SUUL !		T	1
		+	
		+-	
7	MISE EN PLACE DES ESSAIS DE STABILITE ADENOVIRUS DANS DUTTERENTES FORMULATIONS	+-	
ľ	THE DESCRIPTION OF STABILITE ADENOVIRUS DANS DIFFERENCE	+	: 177
	MISE EN PLOSE DIS	+	
1	Echantillon de départ: 400ml fraction F3 (+10% glycérol) du DEMOBATCH 3 (CC16M-Ad5/CMV/P53/293), dosée	+-	
	Echantillon de dépant 400ml fraction F3 (+1996 gyests), es de la company de depant 400ml	+	
[* 3,6.10 ¹¹ pv/ml soit 1,44.10 ¹⁴ pv pour 400ml.	· +	
[Tampons studies (films 0.22 mm):	╁.	
		+	
1	-Tampon A.Tris 20mM-pH8,4+10% glycerol		
1	Tampon B :Tris 20mm-prior 1004 elvestor 5% sucruse	1	
	Tampon C: Tris 20mM-pH8,4+5% glyctrol+10% sucrose Tampon D: Tris 20mM-pH8,4+5% glyctrol+10% sucrose		
1	-Tampon D :Tris 20mM-pH8,4+10% gyccrol+1 mM MgCl ₂ -Tampon E :Tris 20mM-pH8,4+10% gyccrol+150mM NaCl+1mM MgCl ₂	+	· -
,			
1		<u> </u>	· 🗆
1	-Tampon H: Tris 20mM-prie, 4-71076 Santo-S	T	. 1
}	-Tampon I : Actinte d'ammonium 20mM-pH8+10% glycérol		
1	-Tampon J : Actinit d'ammonium 20mM-pil8+5% sucrose -Tampon J : Actinit d'ammonium 20mM-pil8+5% sucrose		1
ŀ	- Jampon - J		- -⊦
1	Misc en place des essais : dans labo L3 de recherches/B1 Monod		· 1-
	Mise en place se result de l'échantillon en utilisant 16 Últrafret 15ml/30Kd membrane biomex -l'échape : concentration de l'échantillon en utilisant 16 Últrafret 15ml/30Kd membrane biomex -l'échape : concentration de l'échantillon en utilisant 16 Últrafret 15ml/30Kd membrane biomex -l'échape : concentration de l'échantillon en utilisant 16 Últrafret 15ml/30Kd membrane biomex	<u>_</u>	· :
1	ATTVINIKAU MIIIIPOICI, WEBSTON TO THE TOTAL TOTA	. —	, 1-1
1	(i) fast environ 30mm pour le passage de '5 ml) (i) fast environ 30mm pour le passage de '5 ml) on recharge une dessoème fois les Ultrafree avec 10ml (on tourne à 1760m/mm-500G)	1_	` <u>}-</u>
	on recharge une demoème lois les Cidamet avec	1_	; H
1		 	. H
1	on tenine 1.21.10° pv/mi soil 1.27.10° pv pote 1.55.22.	. —	". H
	-2 ^{the} étape : changement de tampon su PD10 Pharmacia (4 PD10 par tampon, soit 4 fois 2,5ml du concentrat ou	· —	·
	-2°0° cupe: changement de tampon sui PD10 Pharmacia (4 + D10 pm tampet), 21.10 ¹⁵ pv/tampon), on récupère 14ml.	 -	
1	171 [[] [[] [] [] [] [] [] [] [] [] [] [] [+	" ⊢
ŀ	-3400 étape : on concentre les étuats PD10 sur un Ultrafree 15ml/30Kd (même réf. que étape 1) ,on amène le	⊢	
	volume à <1 ml.	-	; -
1	volume a < 1mi. on récupère le concentrat et on volume à 1ml avec le filtrat	 -	· ; [-
	on femper : on fair subir à chaque échantillon une filtration stérilisante sur an filtre Millipore (Sterile Millex-GV	 -	
	-4 empe; on fait subir a chaque exhaumon day more transported of the control of	<u> </u>	: [
			. [
	-5 ^{con} étape : sur chaque échantillon de l'ul après filtration →dosage HPLC (d1/50) pour les échantillons TpA à E , aliquoter 14 tubes de 50µl .dans tubes stériles,	<u> </u>	
l i	pour les échantillems 1 pri à 2 , and de soul	<u> </u>	
	pour les échantillons TpF à 3,11 y a 15 anquetes de 29per. les titres se situent entre 9,8.10 ¹² et 1,08.10 ¹³ pv/ml (voir cahier DOS-01 page 42)	<u> </u>	*
		T	*
	-6" cuspe: les aliquotes de 50µl sont mis ce jour en stabiliré à •20°C.	1	· L
	les reliquates soit -250 à 300 µl sont conservés à 4°C.		- ' \.
			- 1
	2000 1100 - 1 - 2000	I	<u> </u>
	ll est prévu un dosage pfu (labo D.Faucher) de chaque échantillon →1 tube de 50µ à -20°С	Ι	· •
		Γ	_
	, ; ,	\perp	}
		!	_ · }
1 :	· <u> </u>		1
 '		النال الم	
1 1	Note to the second seco		_ ,]
	the state of the s		

A-6

PAGE 6 of 6

U.S. Application No. 09/970,663 Attorney Docket No. 08888.0517

ENGLISH-LANGUAGE TRANSLATION OF EXHIBIT "A" (6 pages)

TRIAL	NO.	

CEL 02051

FORMULATION TRIALS: STABILITY.

OBJECTIVE: Observe the stability, or possible precipitation, of the Y28 virus in different formulations.

VIRAL MATERIAL STUDIED:

Y28 solution produced in a cell cube on an 8 mer scale by the J.F. Chaubard team, purified by ion exchange chromatography, and preserved in 20mM pH8 TRIS, 1mM MgCl₂, 500mM NaCl, and 10% glycerol. The purified virus titrates 3.94.10¹¹ pv/ml.

PREPARATION OF THE DIFFERENT BUFFER SOLUTIONS USED:

1. Stock solutions:

	STOCK SOLUTIONS:	PREPARATIONS:
Α	Tris / HCl pH 8.4 at 500mM	10.07g Tris base + 6.60g Tris/Hcl in 250ml water for injection (Tris base ref: T8524 and Tris HCL ref:T7149)
В	Sucrose at 50g/100ml	250g sucrose in 500ml of water for injection.
С	NaCl 5M	Sigma - Aldrich ref. S150
D	MgCl ₂ 1M	Sigma - Aldrich ref. M1028
E	Glycerol	Sigma - Aldrich ref. G5516
F	D-Mannitol	Sigma - Aldrich ref. M9647
G	Tween 20	Sigma - Aldrich ref. P8074
Н	100mM borate buffer solution pH 7.4	100mM boric acid + NaOH 0 ₂ 1N
I	10mM phosphate buffer solution pH 7.4	130mg KH₂PO₄ + 705mg K₂HPO₄ in 500ml water for injection.

TRI	AL	NO.	

2. Formulations:

	STOCK SOLUTIONS:												
	Α	В	С	D	Е	F	G	Н	I	Water for injection			
TRIAL:								_		1			
1	20ml						1			QS 500ml			
2	20ml				+ 50ml					QS 500ml			
3	20ml	50ml		0,5ml						QS 500ml			
4	20ml	50ml								QS 500ml			
5	20ml	50ml		0.5ml		25g				QS 500ml			
6	20ml	50ml	15ml	0.5ml		25g				QS 500ml			
7	20ml	50ml					0.5ml			QS 500ml			
8	20ml	50ml		0.5ml			0.5ml			QS 500ml			
9		50ml		0.5ml				50ml		QS 500ml			
10					+ 50ml				500ml	-			
11		Vira	l solution Titer = 2	obtained i	n the seco //ml in DPI	nd rinsing BS/1500n	during the	final dia	ifiltration.				

3. Summary of the formulations studied:

See the following tables.

U.S. Application No. 09/970,663

TRIAL NO.

Y28 CELL CUBE 8MER

FORMULATION TRIALS

	_	1	_	Т	т	Т	т-	Т	ı	Г	г -
10mM pH7.4 phosphate buffer solution										+	
10 mM borate pH7.4 buffer solution									+		
DPBS											+
Glycerol 10%		+					March 19		100	+	+
Mannitol 5%	E 12				+	+					ED STATE OF THE ST
Tween20 0.1%		7.0	10 10 10 10 10 10 10 10 10 10 10 10 10 1		145 VIII	in the second	+	+		1.	
Sucrose 5%			+	+	+	+	+	+	+	A Company	
MqCl ₂	i d		+		+	+	44	+	+	12.7	
NaCl 150mM			1			+					+
<u>Tris 20mM</u> pH 8(?)	+	+	+	+	+	+	+	+			
TRIAL	1	7	3	4	5	9	7	8	6	10	-

T	RI	Α	L	١	١	O			
---	----	---	---	---	---	---	--	--	--

MATERIALS USED:

- ightarrow 10 PD 10 for diafiltration balanced with 5 x 5ml of the buffer solution studied.
- ightarrow 15ml Ultrafree with 100 Kd Biomax (Millipore) membrane (2x for each trial).
- \rightarrow Centrifuge set at 1500 rev/min.

IMPLEMENTATION:

OPERATIONS:	FOR EACH TRIAL:
DIAFILTRATION:	10 PD10 x 2.5ml of Y28 viral solution at 3.94.10 ¹¹ pv/ml.
	Elution by 10PD10 x 3.5ml of the buffer solution studied.
CONCENTRATION:	15ml 100Kd 2 Ultrafree filled to 15ml and then refilled
	with 2.5 diafiltrated viral solution.
	17.5ml concentrated at 500μl (x2).
	(or a concentration at ≈ 1.10 ¹³ pv/ml.)
RECOVERY AND FILTRATION 0.2μm:	Recovery and pooling of the 2 Ultrafree for each trial.
	Filtration using unsterilized 0.2μ Millex filters.
	Storage in sterilized glass tubes.
ALIQUOTING: (t=0)	
ALIQUOTING . (I=U)	\rightarrow 100 μ l in Ependorff tube frozen at -26°C. \rightarrow *
	ightarrow 20µl + 980µl anal. HPCL buffer solution for dosing.
	→ About 900µl stored at +4°C to study stability.
	→ About 100µl of the initial chromate emerging Y28 viral
	is frozen at -26°C.
10% alvocrat/DDC Complex	LE 10 10 10 13 11 1
10% glycerol/PBS Samples:	Frozen directly at 1.10 ¹³ pv/ml, recovered and aliquoted
	in the same way as the other trials.

TRIAL NO.

ANALYTICAL HPLC MEASUREMENTS:

TITER DV/mi day=22(*) HPLC Observations Sample appears	I	unfiltered: 9.27.10 ¹² normal symmetrical peak	I	unfiltered: 1.09.10 ¹² plate number: 4,000 asymmetries: 0.87 and 0.68 (normal)		-	-			-	
TITER pV/ml day=20(*) HPLC Observations Sample appears	undosed normal	unfiltered: 7.88.10 ¹³ normal symmetrical peak	undosed clouding but not 1	unfiltered: 1.87.10 ¹² plate number: 14,000 asymmetries: 1.28 and 1.42 (normal)	undosed normal	I	undosed normal		1	-	_
OBSERVATIONS HPLC of the dosage, day=15	The adeno return peak trails plate number: 12,000 asymmetries: 1.25 and 1.50	symmetrical peak	asymmetrical rise of the peak plate number: 32,000 asymmetries: 0.93 at 0.86	symmetrical peak	The adeno return peak trails plate number: 17,000 asymmetries: 1.08 and 1.12	l	rounded peak top plate number: 9,000 asymmetries: 0.95 and 0.83	1	I		
TITER pV/mi day=15	unfiltered: 1.0.10 ¹² filtered 0.2µm: 9.1.10 ¹¹	unfiltered: 8.12.10 ¹² filtered 0.2µm: 7.96.10 ¹²	unfiltered: 2.33.10 ¹¹ filtered 0.2µm: 2.09.10 ¹¹	unfiltered: 5.83.10 ¹² filtered 0.2µm: 5.7.10 ¹²	unfiltered: 1.85.10 ¹² filtered 0.2µm: 1.47.10 ¹²	unfiltered: undosed filtered 0.2µm:	unfiltered: 9.53.10 ¹¹ filtered 0.2µm: 9.31.10 ¹¹	unfiltered: undosed filtered 0.2µm:	unfiltered: undosed filtered 0.2µm:	unfiltered: undosed filtered 0.2µm:	unfiltered: undosed filtered 0.2µm:
SAMPLE APPEARS	normal at day=15	normal at day=15	opacification at day=12³ but not precipitated at day=15	normal at day=15	normal at day=15	precipitated at day=7	normal at day=15	opacification at day=7 precipitated the next day.	virus held on the filter solution clouds once the buffer solution is changed.	opacification at day=2 precipitated the next day	precipitated at < 1 day
TITER pV/ml J=0	4.97.10 ¹²	7.71. 10 ¹²	6.29. 10 ¹²	6.31. 10 ¹²	5.84. 10 ¹²	6.48. 10 ¹²	6.22. 10 ¹²	7.17. 10 ¹²	Undetected		5.37. 10 ¹²
TRIALS/BUFFERS	Buffer 1 Tris 20mM	Buffer 2 Tris*glycerol	Buffer 3 Tris+MgCl ₃ + sucrose	Buffer 4 Tris+sucrose	Buffer 5 Tris+MgCl ₂ +sucrose+mannitol	Buffer 6 Tris+NaCl+MgCl ₂ +sucrose+ mannitol	Buffer 7 Tris+sucrose+Tween	Buffer 8 Tris+MgCl ₂ +sucrose+Tween	<u>B</u> uffer 9 Borate+MgCl₂+sucrose	<u>Buffer 10</u> Phosphate + glycerol	<u>Buffer 11</u> DPBS+NaCl+glycerol

Note: for the adeno return peak measurement standard → plate number 32,000/asymmetries: 1.1 and 1.16. (*) computation of titers with the new measurement standard: 141

A-5 Page 5 of 5

TRIAL NO.	

SUBJECT: ADENOVIRUS

CONDUCTING ADENOVIRUS STABILITY TRIALS IN DIFFERENT FORMULATIONS

<u>Starting sample</u>: 400ml fraction F3 (+10% glycerol) of DEMOBATCH 3 (CC16M-Ad5/CMV/P53/293) dosed at 3.6.10¹¹ pv/ml or 1.44.10¹⁴pv per 400ml.

Buffer solutions studied (0.22µm filtered):

- -Buffer solution A: Tris 20mM-pH8.4+10% glycerol
- -Buffer solution B: Tris 20mM-pH8 4+5% sucrose
- -Buffer solution C: Tris 20mM-pH8.4+10% glycerol+5% sucrose
- -Buffer solution D: Tris 20mM-pH8.4+5% glycerol+10% sucrose
- -Buffer solution E: Tris 20mM-pH8.4+10% glycerol+1mM MgCl₂
- -Buffer solution F: Tris 20mM-pH8.4+10% glycerol+150mM NaCl+1mM MgCl₂
- -Buffer solution G: Tris 20mM-pH8.4+5% glycerol
- -Buffer solution H: Tris 20mM-pH8.4+10% sucrose
- -Buffer solution 1: ammonium acetate 20mM-pH8+10% glycerol
- -Buffer solution 1: ammonium acetate 20mM-pH8+5% sucrose

Carrying Out the Trials: At Research Lab L3/Bt Monod

- 1st Step: Concentrating the sample by using 15ml/30Kd 16 Ultrafee biomax membrane (UFV2BTK40 Millipore), centrifuged at 1500rev/min. First run, volume brought to 5ml (5ml run requires @30 mins). The Ultrafree is filled a second time with 10ml (turning occurs at 1760 rv/min.-500G). The final total volume is brought to 105ml. 5ml is stored for 2D electrophoresis and HPLC (dl/10) measurement occurs. One then finds 1.21.10¹²pv/ml, or 1.27.10¹⁴ pv per 105ml.
- 2nd Step: Changing over the sample to PD10 Pharmacia (4 PD10 by buffer solution, i.e., 4 x 2.5ml of the concentrate or 1.21.10₁₃pv/buffer solution), 14ml are recovered.
- 3rd Step: The PD10 eluates are concentrated on a 15ml/30Kd Ultrafree (same ref. as Step 1) and the volume is brought to <1ml. The concentrate is recovered and the volume is increased to 1ml with filtrate.
- 4th Step: Each sample undergoes a sterilizing filtration on a Millipore film (Sterile Millex-GV 0.22μm) membrane (PVDF). Collected in a sterile tube.
- 5^{th} Step: On each 1ml sample after filtration \rightarrow HPLC (d1/50). For samples TpA to E, aliquot 14 tubes of 50µl in sterile tubes. For samples TpF to J, there are 15 aliquots of 50µl. The titers are located between $9.8.10^{12}$ and $1.08.10^{13}$ pv/ml (see Manual DOS-01 page 42).
- 6th Step: The 50µm aliquots are used while stable at -20°C. The carry-over, i.e., 250 to 300µl, is stored at 4°C.
 - A PFU (D. Faucher Lab) measurement of each sample is provided →1 tube of 50µl at -20°C.