2º Teste de avaliação 2011/12

Review of attempt 1

Close this window

Started on	Wednesday, 4 January 2012, 02:01 PM
Completed on	Wednesday, 4 January 2012, 03:29 PM
Time taken	1 hour 27 mins
Marks	3.06/5
Grade	61.18 out of a maximum of 100 (61 %)

1 A tabela abaixo representa os valores de uma função f(x,y) calculados segundo uma grelha de igual espaçamento, em que a coordenada x deve ser lida segundo a horizontal, e y segundo a vertical.

1.8	6.3	1.5	1.2
0.9	2.1	4.9	2.2
0	1.1	1.4	2.6
y/x	0	0.9	1.8

Calcule o integral duplo da função, no domínio rectangular especificado na tabela,

$$\int_{D_x} \int_{D_y} f(x, y) \, dy \, dx$$

usando a Regra de Simpson.

Answer: 31.96800000000004

Basta aplicar a fórmula de Simpson que neste caso se reduz a

[(soma dos valores nos vértices) + 4*(soma dos valores nos pontos médios das arestas) + 16* (ponto interior)] * (hy*hx)/9

sendo hy = hx = 1

Comment: No ficheiro submetido não indica a resolução desta pergunta.

Incorrect

Correct answer: 10.66

Marks for this submission: 0/1. You were not penalized for this submission.

History of Responses:

#	Action	Response	Time	Raw score	Grade
2	Grade	31.968000000000004	15:29:25 on 4/01/12	0	0
3	Manual Grade	31.96800000000004	17:10:58 on 9/01/12	0	0

2 Seja dado o sistema de equações lineares:

Marks: 1

A. x = b

em que

ciii que							
A			A b		x0	x 1	x2
4.80000	-1.00000	-1.00000	1.00000	1.00000	0.00000	0.20833	0.12153
-1.00000	4.80000	1.00000	-1.00000	-1.00000	0.00000	-0.20833	-0.12153
-1.00000	2.00000	4.80000	-1.00000	-1.00000	0.00000	-0.20833	-0.07813
2.00000	-1.00000	-1.00000	4.80000	0.00000	0.00000	-0.20033	
-						<u> </u>	-0.17361
						0.00000	

a) Usando os valores iniciais x0, preencha a tabela calculando duas iterações pelo Método de Gauss-Seidel.

As respostas são numéricas, em vírgula fixa com 5 casas decimais, sendo o (.) ponto o separador decimal.

b) Quanto à convergência do processo iterativo

O método converge porque em cada linha da matriz A, o módulo do elemento da diagonal principal é superior ao módulo da soma dos restantes elementos da linha.

Comment: O ficheiro que submeteu não contém a resolução deste problema!

Partially correct

Marks for this submission: 0.3/1. You were not penalized for this submission.

History of Responses:

# Actio	on	Response	Time	Raw score	Grade
2 Grad	de	$0.20833, \ -0.20833, \ -0.20833, \ 0.00000, \ 0.12153, \ -0.12153, \ -0.07813, \ -0.17361, \ \dots$	15:29:25 on 4/01/12	0.3	0.3
3 Manu Grad		0.20833, -0.20833, -0.20833, 0.00000, 0.12153, -0.12153, -0.07813, -0.17361,	09:15:48 on 11/01/12	0.3	0.3

3 Marks: 1

Considere o seguinte sistema de equações lineares escrito na forma A.x=b

	A		b	
0.70	8.00	3.00	12.00	
0.70 -6.00 8.00	0.45	-0.25	15.00	
8.00	-3.10	1.05	23.00	

A solução do sistema, resolvido pelo método de Gauss, com 4 casas decimais é:

$$x_1 = \frac{1}{-4.3716}$$

$$x_2 = \frac{-4.3716}{-8.9325}$$

$$x_3 = \frac{28.8401}{2}$$

O estudo da estabilidade externa do sistema, para um erro de 0.5 em todos os dados, dá-nos os seguintes valores para δx

$$\delta x_1 = {}_{1.9598}$$

$$\delta x_1 = {}_{1.9598}$$
 $\delta x_2 = {}_{3.3766}$

Pode concluir-se que a incógnita mais sensível a erros nos dados é (x3 | \$ √

Correct

Marks for this submission: 1/1

4

Marks: 1

A equação diferencial:

$$\frac{dv}{du} = u \left(\frac{u}{2} + 1\right) v^3 + \left(u + \frac{5}{2}\right) v^2$$

modela o escoamento não isotérmico de um fluído newtoniano entre placas paralelas.

Para as condições iniciais:

$$v(1) = 0.1$$

Use o método de Euler para obter os seguintes valores:

(Os valores devem ser em virgula fixa, usando o (.) ponto como separador decimal e com pelo menos 6 casas decimais.)

h =	0.08	Usando h, v(1.8) =	0.146712
h' =	0.040000	Usando h', v(1.8) =	0.148542
h" =	0.020000 🗸	Usando h", v(1.8) =	0.149530
		QC =	1.851401
		Erro =	0.0003295

Comment: No ficheiro submetido não indica como calculou o erro.

Partially correct

Marks for this submission: 0.909/1. You were not penalized for this submission.

History of Responses:

# Action	Response	Time	Raw score	Grade
3 Grade	0.146712, 0.040000, 0.148542, 0.020000, 0.149530, 1.851401, 0.0003295	15:29:25 on 4/01/12	0.909	0.909
4 Manual Grade	0.146712, 0.040000, 0.148542, 0.020000, 0.149530, 1.851401, 0.0003295	17:10:49 on 9/01/12	0.909	0.909

5

Marks: 1

O integral impróprio,

$$\int_{a}^{+\infty} f(x)dx$$

quando convergente, pode ser aproximado numericamente recorrendo à sua decomposição numa soma de

$$\int_{a}^{+\infty} f(x)dx = \int_{a}^{a_{1}} f(x)dx + \int_{a_{1}}^{a_{2}} f(x)dx + \ldots + \int_{a_{n}}^{+\infty} f(x)dx$$

de tal maneira que a última parcela

$$\int_{a_{r}}^{+\infty} f(x)dx$$

seja negligível face ao valor já acumulado.

Os fragmentos de código abaixo, escritos em linguagem C, implementam essa decomposição, recorrendo a uma estratégia de passo constante:

```
b)
                           a)
float calculaintegral( float inf, float sup) { ...};
                                                            float calculaintegral(float inf, float sup) { ...};
float S = 0, S0 = 0, a = ..., c = ..., eps = ...;
                                                            float S = 0, S0 = 0, a = ..., c = ..., eps = ...;
float b = a+c;
                                                            float b = a+c;
do {
                                                            while (abs(S0 = calculaintegral(a,b)) > eps) {
      S0 = S;
                                                                  S + = S0;
      S += calculaintegral(a,b);
                                                                  a = b;
      a = b;
                                                                  b = a+c;
                                                            }
     b = a+c;
} while (abs(S-S0) > eps);
```

Supondo condições de execução idênticas, nomeadamente a, c e eps iguais em a) e b), aponte razões numéricas para que o valor final de S em cada um dos códigos possa ser diferente.

A resposta é um (pequeno) texto, submetido abaixo, que será corrigido manualmente.

Answer:

No primeiro fragmento, o valor do integral parcial obtido em cada iteração é reobtido através da subtracção do resultado anterior ao actual. Este procedimento pode induzir perdas de precisão no valor desse integral (que serão tão mais graves quanto menor for esse valor), o que leva a que o ciclo execute um número de iterações diferente do segundo fragmento, o qual não apresenta este problema, porque o valor do integral parcial é usado directamente para testar a condição de paragem.

Partially correct

Marks for this submission: 0.85/1. You were not penalized for this submission.

Close this window