

Semaine 4 - Relations d'ordre

Informatique fondamentale

présenté par

Revekka Kyriakoglou

le

16 fevrier 2023

Relations sur les relations

Puisque les relations sont des ensembles (de paires), les relations s'appliquent également aux relations.

Relations sur les relations

Puisque les relations sont des ensembles (de paires), les relations s'appliquent également aux relations.

Soit E un ensemble et \mathcal{R} et \mathcal{S} des relations sur E.

 \blacksquare \mathcal{R} et \mathcal{S} sont égales si :

 $\forall x, y \in E, xRy$, si et seulement si xSy.

 \blacksquare \mathcal{R} est un sous-ensemble de S si :

 $\forall x, y \in E, xRy \text{ implique } xSy.$

Diagramme de Hasse

Un diagramme de Hasse est une représentation graphique d'un ordre partiel.

On obtient ce diagramme à partir du diagramme sagittal :

- Pas d'auto-boucles : par réflexivité, nous pouvons toujours les rajouter.
- Les éléments supérieurs sont plus grands que les éléments inférieurs éléments inférieurs : par antisymétrie, les arêtes ne peuvent aller que dans une seule direction.
- Pas d'arêtes redondantes : par transitivité, nous pouvons peut déduire les bords manquants.

Nous dirons que y est un successeur immédiat de x quand :

- $x \le y$ (c-à-d il y a une fléche de x à y),
- y est différent de x (c-à-d la fléche n'est pas une boucle), et
- il n'existe pas d'élement z tel que $x \le z$ et $z \le y$ (c-à-d en suivant les flèches, on ne peut pas aller de x à y par étape).

Nous dirons que y est un successeur immédiat de x quand :

- $x \le y$ (c-à-d il y a une fléche de x à y),
- y est différent de x (c-à-d la fléche n'est pas une boucle), et
- il n'existe pas d'élement z tel que $x \le z$ et $z \le y$ (c-à-d en suivant les flèches, on ne peut pas aller de x à y par étape).

Exemple

Soit (\mathbb{N}, \leq) l'ensemble ordonné. L'élément 3 est le seul successeur immédiat de 2.

Exemple

Soit \mathbb{N}^+ avec la relation de divisibilité |. Il existe une infinité de successeurs immédiats de 2 : 4, 6, 10, 14, 22, 26, 34, 36, etc.

Exemple

Soit l'ordre lexicographique. Le successeur immédiat de 100 est 1000 (et non pas 101 car $1000 \le 101$).

Exemple par CS103 de Standford

Data: http://www.london2012.com/medals/medal-count/

Jeux olympiques 2012

Or	Argent	Bronze	Total
46	29	29	104
38	27	23	88
29	17	19	65
24	26	32	82
13	8	7	28
11	19	14	44
11	11	12	34

Relation:

 $(or_0, total_0)\mathcal{R}$ $(or_1, total_1)$ si $or_0 \leqslant or_1$ et $total_0 \leqslant total_1$

Relations sur les relations

FIGURE - Diagramme sagittal

Figure – Diagramme de Hasse