

FORMALE SYSTEME

ÜBUNG 8

Eric Kunze
eric.kunze@tu-dresden.de

TU Dresden, 10. Dezember 2021

ÜBUNGSBLATT 8

Aufgabe 1:

Kellerautomaten

Aufgabe 2

Permutationssprache kontextfrei?

Aufgabe 3

Deterministische Kellerautomaten

Aufgabe 4

Wiederholung

Aufgabe 1:

Kellerautomaten

KELLERAUTOMATEN

Ein **Kellerautomat** (PDA) \mathcal{M} ist ein Tupel $\mathcal{M} = \langle Q, \Sigma, \Gamma, \delta, Q_0, F \rangle$:

- ▶ Q: endliche Menge von Zuständen
- ► Σ: Eingabealphabet
- ► Γ: Kelleralphabet
- ▶ δ: totale Übergangsfunktion $Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \to 2^{Q \times \Gamma_{\varepsilon}}$
- ▶ Q_0 : Menge möglicher Startzustände $Q_0 \subseteq Q$
- ▶ F: Menge von Endzuständen $F \subseteq Q$

 $\langle q_2, \mathsf{D} \rangle \in \delta(q_1, \mathsf{a}, \mathsf{C})$ bedeutet: "Wenn der PDA in Zustand q_1 das Symbol a einliest und C oben vom Keller nimmt (pop), dann kann er in Zustand q_2 wechseln und dabei D auf den Keller legen (push)."

AUFGABE 1

Geben Sie einen Kellerautomaten \mathcal{M}_i für die Sprachen L_i ($i=1,\ldots,4$) sowie eine akzeptierende Folge von Konfigurationsübergängen für die gegebenen Wörter w.

(a)
$$L_0 = L(\mathcal{M}_0) = \{a^i b^j c^k \mid i = j \text{ oder } j = k \text{ mit } i, j, k \ge 1\}$$

 $w = aaabbcc$

(b)
$$L_1 = L(\mathcal{M}_1) = \{a^n b^m \mid n, m \ge 0, n = 3m\}$$

 $w = aaab$

(c)
$$L_2 = L(\mathcal{M}_2) = \{ w \in \{a, b\}^{\cdot} \mid |w|_a = |w|_b \}$$

 $w = aabbba$

(d)
$$L_3 = L(\mathcal{M}_3) = \{(ab)^n (ba)^n \mid n \ge 0\}$$

 $w = ababbaba$

Permutationssprache kontextfrei?

Aufgabe 2

AUFGABE 2

Beweisen oder widerlegen Sie folgende Aussage.

Ist $L \subseteq \Sigma$ eine kontextfreie Sprache, so ist auch

$$\pi(L) = \left\{ a_1 \dots a_n \in \Sigma^{\cdot} : \begin{array}{l} \text{ex. Permutation } (i_1 \dots i_n) \text{ von } (1 \dots n), \\ \text{sodass } a_{i_1} \dots a_{i_n} \in L \end{array} \right\}$$

kontextfrei.

ABSCHLUSS FÜR KONTEXTFREIE SPRACHEN

Satz: Wenn L, L_1 und L_2 kontextfreie Sprachen sind, dann beschreiben auch die folgenden Ausdrücke kontextfreie Sprachen: $L_1 \cup L_2$, $L_1 \circ L_2$, L^*

Aber:

Satz: Es gibt kontextfreie Sprachen L, L_1 und L_2 , so dass die folgenden Ausdrücke keine kontextfreien Sprachen sind:

 $L_1\cap L_2,\ \overline{L}$

Aber (nicht in VL):

Lemma: Es sei **L** kontextfrei und **R** regulär. Dann ist $\mathbf{L} \cap \mathbf{R}$ kontextfrei.

Beweisidee: Konstruiere einen Produktautomaten wie für reguläre Sprachen. Dieser wird wieder ein PDA sein.

Die Aussagen ist falsch. Wir betrachten die Sprache $L = \{(abc)^n : n > 0\}$, welche bekanntermaßen regulär und insbesondere also kontextfrei ist. Ihre Permutationssprache ist

$$\pi(L) = \{ w \in \Sigma^* : |w|_a = |w|_b = |w|_c \}.$$

Wir wollen nun also zeigen, dass $\pi(L)$ nicht kontextfrei ist.

(i) Wir nutzen Abschlusseigenschaften. Es gilt

$$\pi(L) \cap \underbrace{\left\{ a^n b^m c^k : n, m, k \ge 0 \right\}}_{\text{regulär}} = \underbrace{\left\{ a^n b^n c^n : n \ge 0 \right\}}_{\text{nicht kontextfrei}}.$$

Angenommen $\pi(L)$ wäre kontextfrei. Dann ist $\{a^n b^n c^n : n > 0\} = \text{kontextfrei} \cap \text{regulär auch kontextfrei} -$ Widerspruch.

(ii) Alternativ kann man das Pumping-Lemma bedienen. Dazu sei $n \ge 0$ die Zahl aus dem Pumping-Lemma und wir betrachten das Wort $z = a^n b^n c^n \in \pi(L)$. Damit läuft der Beweis wie das Musterbeispiel der Vorlesung für die Sprache $\{a^nb^nc^n : n \ge 0\}$ (d.h. Fallunterscheidung nach möglichen Positionen der Pump-Region und in jedem Fall verändern sich die Anzahlen von a, b und c unterschiedlich).

Deterministische Kellerautomaten

Aufgabe 3

DETERMINISTISCHE KELLERAUTOMATEN

Ein **deterministischer Kellerautomat** (DPDA) \mathcal{M} ist ein Tupel $\mathcal{M}=\langle Q, \Sigma, \Gamma, \delta, q_0, F \rangle$ mit den folgenden Bestandteilen:

- ► Q: endliche Menge von Zuständen
- ► Σ: Eingabealphabet
- ► Γ: Kelleralphabet
- ▶ δ : partielle Übergangsfunktion $Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \to Q \times \Gamma_{\varepsilon}$, so dass für alle $q \in Q$, $\mathbf{a} \in \Sigma$ und $\mathbf{A} \in \Gamma$ jeweils nur eines der folgenden definiert ist:

$$\delta(q, \mathbf{a}, \mathsf{A})$$
 $\delta(q, \mathbf{a}, \varepsilon)$ $\delta(q, \varepsilon, \mathsf{A})$ $\delta(q, \varepsilon, \varepsilon)$

- ▶ q_0 : ein Startzustand $q_0 \in Q$
- ▶ F: Menge von Endzuständen $F \subseteq Q$

AUFGABE 3

Gegeben sei die Sprache $L=\{w\in \Sigma^{\cdot}\mid |w|_a+|w|_b=|w|_c\}$ über dem Alphabet $\Sigma=\{a,b,c\}$, wobei $|w|_a$ der Anzahl der Vorkommen von a in w entspricht.

- (a) Entwerfen Sie einen Kellerautomaten \mathcal{M} mit $L(\mathcal{M}) = L$, der mittels Finalzustand akzeptiert.
- (b) Welcher andere Akzeptanzbegriff für Kellerautomaten ist laut Anmerkung in der Vorlesung auch möglich?
- (c) Wann ist eine Sprache deterministisch kontextfrei? Ist *L* deterministisch kontextfrei?

(a) $\mathcal{M}:=\langle Q, \Sigma, \Gamma, \delta, \{q_0\}, \{q_F\}\rangle$ mit $Q=\{q_0, q_1, q_2\}$, $\Sigma=\{a,b,c\}, \Gamma=\{S,A,C\}$ und δ :

- (b) Akzeptanz mittels leerem Keller
- (c) Eine Sprache *L* heißt deterministisch kontextfrei, falls ein deterministischer Kellerautomat existiert, der *L* akzeptiert.

Aufgabe 4

Wiederholung

Welche der folgenden Aussagen sind wahr und welche nicht? Begründen Sie Ihre Antworten – dabei dürfen Sie den gesamten Stoff und alle Resultate der Vorlesung und Übung verwenden.

- (a) ✓ Es gibt eine Sprache, die von einem nichtdeterministischen Kellerautomaten erkannt wird, nicht aber von einem deterministischen Kellerautomaten.
 Es gilt deterministisch ⊊ eindeutig ⊊ Typ 2.
- (b) X Mithilfe des Pumping-Lemmas für kontextfreie Sprachen kann bewiesen werden, dass eine Sprache L kontextfrei ist. Pumping ist notwendig, aber nicht hinreichend.
- (c) X Für eine beliebige Sprache L gilt: L ist regulär, wenn es eine natürliche Zahl $n_0 \ge 1$ gibt, so dass sich jedes Wort $w \in L$ mit $|w| \ge n_0$ zerlegen lässt in w = xyz mit $y \ne \varepsilon, xy^kz \in L$ für alle $k \ge 0$.

 Pumping ist notwendig, aber nicht hinreichend.