Seminar 7

In this seminar you will study:

- The Binomial Theorem
- Applications of the Binomial Theorem in:
 - Approximation
 - Error Analysis

The Binomial Theorem Formula 1: $x \in \mathbb{R}, n \in \mathbb{N}$

$$(1+x)^n = 1 + \binom{n}{1}x + \binom{n}{2}x^2 + \binom{n}{3}x^3 + \dots + x^n$$

The Binomial Theorem Formula 1: $x \in \mathbb{R}, n \in \mathbb{N}$

$$(1+x)^n = 1 + \binom{n}{1}x + \binom{n}{2}x^2 + \binom{n}{3}x^3 + \dots + x^n$$

Expand $\left(1+\frac{x}{2}\right)^4$ using the Binomial theorem.

UK | CHINA | MALAYSIA

The Binomial Theorem

The Binomial Theorem Formula 1: $x \in \mathbb{R}, n \in \mathbb{N}$

$$(1+x)^n = 1 + \binom{n}{1}x + \binom{n}{2}x^2 + \binom{n}{3}x^3 + \dots + x^n$$

Example: Expand $\left(1+\frac{x}{2}\right)^4$ using the Binomial theorem.

The Binomial Theorem Formula 1: $x \in \mathbb{R}, n \in \mathbb{N}$

$$(1+x)^n = 1 + \binom{n}{1}x + \binom{n}{2}x^2 + \binom{n}{3}x^3 + \dots + x^n$$

Example: Expand $\left(1+\frac{x}{2}\right)^4$ using the Binomial theorem.

$$\left(1 + \frac{x}{2}\right)^4 = 1 + \left(\frac{4}{1}\right) \cdot \frac{x}{2} + \left(\frac{4}{2}\right) \cdot \left(\frac{x}{2}\right)^2 + \left(\frac{4}{3}\right) \cdot \left(\frac{x}{2}\right)^3 + \left(\frac{4}{4}\right) \cdot \left(\frac{x}{2}\right)^4$$

The Binomial Theorem Formula 1: $x \in \mathbb{R}, n \in \mathbb{N}$

$$(1+x)^n = 1 + \binom{n}{1}x + \binom{n}{2}x^2 + \binom{n}{3}x^3 + \dots + x^n$$

Example: Expand $\left(1+\frac{x}{2}\right)^4$ using the Binomial theorem.

$$\left(1 + \frac{x}{2}\right)^4 = 1 + {4 \choose 1} \cdot \frac{x}{2} + {4 \choose 2} \cdot \left(\frac{x}{2}\right)^2 + {4 \choose 3} \cdot \left(\frac{x}{2}\right)^3 + {4 \choose 4} \cdot \left(\frac{x}{2}\right)^4$$

$$= 1 + 4 \cdot \frac{x}{2} + 6 \cdot \left(\frac{x}{2}\right)^2 + 4 \cdot \left(\frac{x}{2}\right)^3 + 1 \cdot \left(\frac{x}{2}\right)^4$$

The Binomial Theorem Formula 1: $x \in \mathbb{R}, n \in \mathbb{N}$

$$(1+x)^n = 1 + \binom{n}{1}x + \binom{n}{2}x^2 + \binom{n}{3}x^3 + \dots + x^n$$

Example: Expand $\left(1+\frac{x}{2}\right)^4$ using the Binomial theorem.

$$\left(1 + \frac{x}{2}\right)^4 = 1 + {4 \choose 1} \cdot \frac{x}{2} + {4 \choose 2} \cdot \left(\frac{x}{2}\right)^2 + {4 \choose 3} \cdot \left(\frac{x}{2}\right)^3 + {4 \choose 4} \cdot \left(\frac{x}{2}\right)^4$$

$$= 1 + 4 \cdot \frac{x}{2} + 6 \cdot \left(\frac{x}{2}\right)^2 + 4 \cdot \left(\frac{x}{2}\right)^3 + 1 \cdot \left(\frac{x}{2}\right)^4$$

$$= 1 + 2x + \frac{3x^2}{2} + \frac{x^3}{2} + \frac{x^4}{16}$$

The Binomial Theorem Formula 1: $x \in \mathbb{R}, n \in \mathbb{N}$

$$(1+x)^n = 1 + \binom{n}{1}x + \binom{n}{2}x^2 + \binom{n}{3}x^3 + \dots + x^n$$

Example: Expand $\left(1+\frac{x}{2}\right)^4$ using the Binomial theorem.

$$\begin{split} \left(1+\frac{x}{2}\right)^4 &= 1+\binom{4}{1}\cdot\frac{x}{2}+\binom{4}{2}\cdot\left(\frac{x}{2}\right)^2+\binom{4}{3}\cdot\left(\frac{x}{2}\right)^3+\binom{4}{4}\cdot\left(\frac{x}{2}\right)^4\\ &= 1+4\cdot\frac{x}{2}+6\cdot\left(\frac{x}{2}\right)^2+4\cdot\left(\frac{x}{2}\right)^3+1\cdot\left(\frac{x}{2}\right)^4\\ &= 1+2x+\frac{3x^2}{2}+\frac{x^3}{2}+\frac{x^4}{16} \quad \text{Note: final result of the expansion is a polynomial} \end{split}$$

The Binomial Theorem

$$(1+x)^n = 1 + \binom{n}{1}x + \binom{n}{2}x^2 + \binom{n}{3}x^3 + \dots + x^n \text{ where, } x \in \mathbb{R}, \ n \in \mathbb{N}.$$

1. Expand $\left(1 + \frac{x}{3}\right)^4$ using the binomial theorem.

2. Expand $\left(1 - \frac{x}{2}\right)^3$ using the binomial theorem.

3. Expand $(1+2x)^4$ using the binomial theorem.

4. Expand $(1-x)^5$ using the binomial theorem.

The Binomial Theorem

$$(1+x)^n = 1 + \binom{n}{1}x + \binom{n}{2}x^2 + \binom{n}{3}x^3 + \dots + x^n$$
 where, $x \in \mathbb{R}, n \in \mathbb{N}$.

1. Expand $\left(1+\frac{x}{2}\right)^4$ using the binomial theorem.

- **Answer:** $1 + \frac{4x}{3} + \frac{2x^2}{3} + \frac{4x^3}{27} + \frac{x^4}{81}$
- Expand $(1+2x)^4$ using the binomial theorem.

Answer: $1 + 8x + 24x^2 + 32x^3 + 16x^4$

2. Expand $\left(1-\frac{x}{2}\right)^3$ using the binomial theorem.

Answer:
$$1 - \frac{3x}{2} + \frac{3x^2}{4} - \frac{x^3}{8}$$

4. Expand $(1-x)^5$ using the binomial theorem.

Answer: $1-5x+10x^2-10x^3+5x^4-x^5$

The Binomial Theorem Formula 2: $a, b \in \mathbb{R}, n \in \mathbb{N}$

$$(a+b)^n = a^n + \binom{n}{1} a^{n-1} b + \binom{n}{2} a^{n-2} b^2 + \binom{n}{3} a^{n-3} b^3 + \dots + b^n$$

The Binomial Theorem Formula 2: $a, b \in \mathbb{R}, n \in \mathbb{N}$

$$(a+b)^n = a^n + \binom{n}{1} a^{n-1} b + \binom{n}{2} a^{n-2} b^2 + \binom{n}{3} a^{n-3} b^3 + \dots + b^n$$

Example: Expand $\left(3 + \frac{2}{x}\right)^4$ using the Binomial theorem.

The Binomial Theorem Formula 2: $a, b \in \mathbb{R}, n \in \mathbb{N}$

$$(a+b)^n = a^n + \binom{n}{1} a^{n-1} b + \binom{n}{2} a^{n-2} b^2 + \binom{n}{3} a^{n-3} b^3 + \dots + b^n$$

Example: Expand $\left(3+\frac{2}{x}\right)^4$ using the Binomial theorem.

Solution: Here, $a=3,\ b=\frac{2}{x},\ n=4.$

The Binomial Theorem Formula 2: $a, b \in \mathbb{R}, n \in \mathbb{N}$

$$(a+b)^n = a^n + \binom{n}{1} a^{n-1} b + \binom{n}{2} a^{n-2} b^2 + \binom{n}{3} a^{n-3} b^3 + \dots + b^n$$

Example: Expand $\left(3+\frac{2}{x}\right)^4$ using the Binomial theorem.

Solution: Here, $a=3,\ b=\frac{2}{x},\ n=4.$

$$\therefore \left(3 + \frac{2}{x}\right)^4 = 3^4 + \binom{4}{1} \cdot 3^3 \cdot \frac{2}{x} + \binom{4}{2} \cdot 3^2 \cdot \left(\frac{2}{x}\right)^2 + \binom{4}{3} \cdot 3 \cdot \left(\frac{2}{x}\right)^3 + \left(\frac{2}{x}\right)^4$$

The Binomial Theorem Formula 2: $a, b \in \mathbb{R}, n \in \mathbb{N}$

$$(a+b)^n = a^n + \binom{n}{1} a^{n-1} b + \binom{n}{2} a^{n-2} b^2 + \binom{n}{3} a^{n-3} b^3 + \dots + b^n$$

Example: Expand $\left(3+\frac{2}{x}\right)^4$ using the Binomial theorem.

Solution: Here, $a=3, b=\frac{2}{x}, n=4.$

$$\therefore \left(3 + \frac{2}{x}\right)^4 = 3^4 + \binom{4}{1} \cdot 3^3 \cdot \frac{2}{x} + \binom{4}{2} \cdot 3^2 \cdot \left(\frac{2}{x}\right)^2 + \binom{4}{3} \cdot 3 \cdot \left(\frac{2}{x}\right)^3 + \left(\frac{2}{x}\right)^4$$
$$= 81 + 4 \cdot 27 \cdot \frac{2}{x} + 6 \cdot 9 \cdot \frac{4}{x^2} + 4 \cdot 3 \cdot \frac{8}{x^3} + \frac{16}{x^4}$$

The Binomial Theorem Formula 2: $a, b \in \mathbb{R}, n \in \mathbb{N}$

$$(a+b)^n = a^n + \binom{n}{1} a^{n-1} b + \binom{n}{2} a^{n-2} b^2 + \binom{n}{3} a^{n-3} b^3 + \dots + b^n$$

Example: Expand $\left(3+\frac{2}{x}\right)^4$ using the Binomial theorem.

Solution: Here, $a=3, b=\frac{2}{x}, n=4.$

$$\therefore \left(3 + \frac{2}{x}\right)^4 = 3^4 + \binom{4}{1} \cdot 3^3 \cdot \frac{2}{x} + \binom{4}{2} \cdot 3^2 \cdot \left(\frac{2}{x}\right)^2 + \binom{4}{3} \cdot 3 \cdot \left(\frac{2}{x}\right)^3 + \left(\frac{2}{x}\right)^4$$

$$= 81 + 4 \cdot 27 \cdot \frac{2}{x} + 6 \cdot 9 \cdot \frac{4}{x^2} + 4 \cdot 3 \cdot \frac{8}{x^3} + \frac{16}{x^4}$$

$$= 81 + \frac{216}{x} + \frac{216}{x^2} + \frac{96}{x^3} + \frac{16}{x^4}$$

The Binomial Theorem Formula 2: $a, b \in \mathbb{R}, n \in \mathbb{N}$

$$(a+b)^n = a^n + \binom{n}{1} a^{n-1} b + \binom{n}{2} a^{n-2} b^2 + \binom{n}{3} a^{n-3} b^3 + \dots + b^n$$

Example: Expand $\left(3+\frac{2}{x}\right)^4$ using the Binomial theorem.

Solution: Here, $a=3, b=\frac{2}{x}, n=4.$

$$\therefore \left(3 + \frac{2}{x}\right)^4 = 3^4 + \binom{4}{1} \cdot 3^3 \cdot \frac{2}{x} + \binom{4}{2} \cdot 3^2 \cdot \left(\frac{2}{x}\right)^2 + \binom{4}{3} \cdot 3 \cdot \left(\frac{2}{x}\right)^3 + \left(\frac{2}{x}\right)^4$$

$$= 81 + 4 \cdot 27 \cdot \frac{2}{x} + 6 \cdot 9 \cdot \frac{4}{x^2} + 4 \cdot 3 \cdot \frac{8}{x^3} + \frac{16}{x^4}$$

$$= 81 + \frac{216}{x} + \frac{216}{x^2} + \frac{96}{x^3} + \frac{16}{x^4}$$
Note: final result of the expansion is a **polynomial**

The Binomial Theorem

$$(a+b)^n = a^n + \binom{n}{1} a^{n-1} b + \binom{n}{2} a^{n-2} b^2 + \binom{n}{3} a^{n-3} b^3 + \dots + b^n \text{ where, } a, b \in \mathbb{R}, \ n \in \mathbb{N}.$$

1. Expand $(5-2x)^4$ using the binomial theorem.

2. Expand $\left(\frac{x}{3} - 2\right)^4$ using the binomial theorem.

3. Expand $(x^2 - 2)^4$ using the binomial theorem.

4. Expand $(4x-3)^4$ using the binomial theorem

The Binomial Theorem

$$(a+b)^n = a^n + \binom{n}{1} a^{n-1} b + \binom{n}{2} a^{n-2} b^2 + \binom{n}{3} a^{n-3} b^3 + \dots + b^n \text{ where, } a, b \in \mathbb{R}, \ n \in \mathbb{N}.$$

1. Expand $(5-2x)^4$ using the binomial theorem. 2. Expand $\left(\frac{x}{2}-2\right)^4$ using the binomial theorem.

- Answer: $625 1000x + 600x^2 160x^3 + 16x^4$ Answer: $\frac{x^4}{81} \frac{8x^3}{27} + \frac{8x^2}{3} \frac{32x}{3} + 16x^4$
 - 3. Expand $(x^2 2)^4$ using the binomial theorem.

4. Expand $(4x - 3)^4$ using the binomial theorem

Answer: $x^8 - 8x^6 + 24x^4 - 32x^2 + 16$

Answer: $256x^4 - 768x^3 + 864x^2 - 432x + 81$

The Binomial Theorem: Finding the coefficient of x^n

Example: Find the coefficient of x^3 in the expansion of $\left(3 - \frac{2x}{5}\right)^5$.

The Binomial Theorem: Finding the coefficient of x^n

Example: Find the coefficient of x^3 in the expansion of $\left(3 - \frac{2x}{5}\right)^5$.

The Binomial Theorem: Finding the coefficient of x^n

Example: Find the coefficient of x^3 in the expansion of $\left(3 - \frac{2x}{5}\right)^5$.

$$\left(3 - \frac{2x}{5}\right)^5 = 3^5 + {5 \choose 1} \cdot 3^4 \cdot \frac{-2x}{5} + {5 \choose 2} \cdot 3^3 \cdot \left(\frac{-2x}{5}\right)^2$$

The Binomial Theorem: Finding the coefficient of x^n

Example: Find the coefficient of x^3 in the expansion of $\left(3 - \frac{2x}{5}\right)^3$.

$$\left(3 - \frac{2x}{5}\right)^5 = 3^5 + {5 \choose 1} \cdot 3^4 \cdot \frac{-2x}{5} + {5 \choose 2} \cdot 3^3 \cdot \left(\frac{-2x}{5}\right)^2$$

$$+ {5 \choose 3} \cdot 3^2 \cdot \left(\frac{-2x}{5}\right)^3 + {5 \choose 4} \cdot 3 \cdot \left(\frac{-2x}{5}\right)^4 + \left(\frac{-2x}{5}\right)^5$$

The Binomial Theorem: Finding the coefficient of x^n

Example: Find the coefficient of x^3 in the expansion of $\left(3 - \frac{2x}{5}\right)^3$.

$$\left(3 - \frac{2x}{5}\right)^{5} = 3^{5} + {5 \choose 1} \cdot 3^{4} \cdot \frac{-2x}{5} + {5 \choose 2} \cdot 3^{3} \cdot \left(\frac{-2x}{5}\right)^{2} + {5 \choose 3} \cdot 3^{2} \cdot \left(\frac{-2x}{5}\right)^{3} + {5 \choose 4} \cdot 3 \cdot \left(\frac{-2x}{5}\right)^{4} + \left(\frac{-2x}{5}\right)^{5}$$

Thus, the term in
$$x^3$$
 is $\begin{pmatrix} 5 \\ 3 \end{pmatrix} \cdot 3^2 \cdot \left(\frac{-2}{5} \right)^3 x^3$

The Binomial Theorem: Finding the coefficient of x^n

Example: Find the coefficient of x^3 in the expansion of $\left(3 - \frac{2x}{5}\right)^5$.

Solution:

$$\left(3 - \frac{2x}{5}\right)^{5} = 3^{5} + {5 \choose 1} \cdot 3^{4} \cdot \frac{-2x}{5} + {5 \choose 2} \cdot 3^{3} \cdot \left(\frac{-2x}{5}\right)^{2} + {5 \choose 3} \cdot 3^{2} \cdot \left(\frac{-2x}{5}\right)^{3} + {5 \choose 4} \cdot 3 \cdot \left(\frac{-2x}{5}\right)^{4} + \left(\frac{-2x}{5}\right)^{5}$$

Thus, the term in x^3 is $\begin{pmatrix} 5 \\ 3 \end{pmatrix} \cdot 3^2 \cdot \left(\frac{-2}{5}\right)^3 x^3$

$$\therefore$$
 The coefficient of x^3 is $\boxed{10} \cdot 9 \cdot \frac{-8}{125}$

The Binomial Theorem: Finding the coefficient of x^n

Example: Find the coefficient of x^3 in the expansion of $\left(3 - \frac{2x}{5}\right)^5$.

Solution:

$$\left(3 - \frac{2x}{5}\right)^{5} = 3^{5} + {5 \choose 1} \cdot 3^{4} \cdot \frac{-2x}{5} + {5 \choose 2} \cdot 3^{3} \cdot \left(\frac{-2x}{5}\right)^{2} + {5 \choose 3} \cdot 3^{2} \cdot \left(\frac{-2x}{5}\right)^{3} + {5 \choose 4} \cdot 3 \cdot \left(\frac{-2x}{5}\right)^{4} + \left(\frac{-2x}{5}\right)^{5}$$

Thus, the term in x^3 is $\begin{bmatrix} 5 \\ 3 \end{bmatrix} \cdot 3^2 \cdot \left(\frac{-2}{5}\right)^3 x^3$

$$\therefore$$
 The coefficient of x^3 is $\boxed{10} \cdot 9 \cdot \frac{-8}{125}$

The Binomial Theorem: Finding the coefficient of x^n

Example: Find the coefficient of x^3 in the expansion of $\left(3 - \frac{2x}{5}\right)^5$.

Solution:

$$\left(3 - \frac{2x}{5}\right)^{5} = 3^{5} + {5 \choose 1} \cdot 3^{4} \cdot \frac{-2x}{5} + {5 \choose 2} \cdot 3^{3} \cdot \left(\frac{-2x}{5}\right)^{2} + {5 \choose 3} \cdot 3^{2} \cdot \left(\frac{-2x}{5}\right)^{3} + {5 \choose 4} \cdot 3 \cdot \left(\frac{-2x}{5}\right)^{4} + \left(\frac{-2x}{5}\right)^{5}$$

Thus, the term in x^3 is $\begin{pmatrix} 5 \\ 3 \end{pmatrix} \cdot 3^2 \cdot \left[\left(\frac{-2}{5} \right)^3 \right] x^3$

$$\therefore$$
 The coefficient of x^3 is $\boxed{10} \cdot \boxed{9} \cdot \boxed{\frac{-8}{125}}$

The Binomial Theorem: Finding the coefficient of x^n

Example: Find the coefficient of x^3 in the expansion of $\left(3 - \frac{2x}{5}\right)^5$.

Solution:

$$\left(3 - \frac{2x}{5}\right)^{5} = 3^{5} + {5 \choose 1} \cdot 3^{4} \cdot \frac{-2x}{5} + {5 \choose 2} \cdot 3^{3} \cdot \left(\frac{-2x}{5}\right)^{2} + {5 \choose 3} \cdot 3^{2} \cdot \left(\frac{-2x}{5}\right)^{3} + {5 \choose 4} \cdot 3 \cdot \left(\frac{-2x}{5}\right)^{4} + \left(\frac{-2x}{5}\right)^{5}$$

Thus, the term in x^3 is $\begin{bmatrix} 5 \\ 3 \end{bmatrix} \cdot 3^2 \cdot \left[\left(\frac{-2}{5} \right)^3 \right] x^3$

The coefficient of
$$x^3$$
 is $\boxed{10} \cdot \boxed{9} \cdot \boxed{\frac{-8}{125}} = -\frac{144}{25}$

The Binomial Theorem: Finding the coefficient of x^n

1. Find the coefficient of
$$x^4$$
 in the expansion of $\left(2 - \frac{x}{5}\right)^6$.

2. Find the coefficient of
$$x^{-3}$$
 in the expansion of $\left(3 - \frac{2}{x}\right)^5$.

3. Find the coefficient of
$$x^3$$
 in the expansion of $\left(2x - \frac{1}{x}\right)^5$.

4. Find the constant term (coefficient of
$$x^0$$
)
in the expansion of $\left(\frac{1}{x} + 2x\right)^6$.

The Binomial Theorem: Finding the coefficient of x^n

1. Find the coefficient of
$$x^4$$
 in the expansion of $\left(2 - \frac{x}{5}\right)^6$.

Answer:
$$\frac{12}{125}$$

3. Find the coefficient of
$$x^3$$
 in the expansion of $\left(2x - \frac{1}{x}\right)^5$.

Answer:
$$-80$$

2. Find the coefficient of
$$x^{-3}$$
 in the expansion of $\left(3 - \frac{2}{x}\right)^5$.

Answer:
$$-720$$

4. Find the constant term (coefficient of
$$x^0$$
)
in the expansion of $\left(\frac{1}{x} + 2x\right)^6$.

The Generalised Binomial Theorem

The Generalised Binomial Theorem : $x, n \in \mathbb{R}, |x| < 1$

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!} \cdot x^2 + \frac{n(n-1)(n-2)}{3!} \cdot x^3 + \cdots$$

The Generalised Binomial Theorem

The Generalised Binomial Theorem : $x, n \in \mathbb{R}, |x| < 1$

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!} \cdot x^2 + \frac{n(n-1)(n-2)}{3!} \cdot x^3 + \cdots$$

Example: Expand $(1+x)^{-3}$ up to the term with x^3 , (|x|<1), using the Generalised Binomial Theorem.

UK | CHINA | MALAYSIA

The Generalised Binomial Theorem

The Generalised Binomial Theorem : $x, n \in \mathbb{R}, |x| < 1$

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!} \cdot x^2 + \frac{n(n-1)(n-2)}{3!} \cdot x^3 + \cdots$$

Example: Expand $(1+x)^{-3}$ up to the term with x^3 , (|x| < 1),

using the Generalised Binomial Theorem.

UK | CHINA | MALAYSIA

The Generalised Binomial Theorem

The Generalised Binomial Theorem : $x, n \in \mathbb{R}, |x| < 1$

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!} \cdot x^2 + \frac{n(n-1)(n-2)}{3!} \cdot x^3 + \cdots$$

Example: Expand $(1+x)^{-3}$ up to the term with x^3 , (|x|<1), using the Generalised Binomial Theorem.

$$(1+x)^{-3} = 1 + (-3) \cdot x + \frac{(-3)(-3-1)}{2!} \cdot x^2 + \frac{(-3)(-3-1)(-3-2)}{3!} \cdot x^3 + \cdots$$

The Generalised Binomial Theorem

The Generalised Binomial Theorem : $x, n \in \mathbb{R}, |x| < 1$

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!} \cdot x^2 + \frac{n(n-1)(n-2)}{3!} \cdot x^3 + \cdots$$

Example: Expand $(1+x)^{-3}$ up to the term with x^3 , (|x|<1), using the Generalised Binomial Theorem.

$$(1+x)^{-3} = 1 + (-3) \cdot x + \frac{(-3)(-3-1)}{2!} \cdot x^2 + \frac{(-3)(-3-1)(-3-2)}{3!} \cdot x^3 + \cdots$$

$$= 1 - 3x + \frac{(-3)(-4)}{2 \cdot 1} \cdot x^2 + \frac{(-3)(-4)(-5)}{3 \cdot 2 \cdot 1} \cdot x^3 + \cdots$$

The Generalised Binomial Theorem

The Generalised Binomial Theorem : $x, n \in \mathbb{R}, |x| < 1$

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!} \cdot x^2 + \frac{n(n-1)(n-2)}{3!} \cdot x^3 + \cdots$$

Example: Expand $(1+x)^{-3}$ up to the term with x^3 , (|x|<1), using the Generalised Binomial Theorem.

$$(1+x)^{-3} = 1 + (-3) \cdot x + \frac{(-3)(-3-1)}{2!} \cdot x^2 + \frac{(-3)(-3-1)(-3-2)}{3!} \cdot x^3 + \cdots$$
$$= 1 - 3x + \frac{(-3)(-4)}{2 \cdot 1} \cdot x^2 + \frac{(-3)(-4)(-5)}{3 \cdot 2 \cdot 1} \cdot x^3 + \cdots$$
$$= 1 - 3x + 6x^2 - 10x^3 + \cdots$$

The Generalised Binomial Theorem

The Generalised Binomial Theorem : $x, n \in \mathbb{R}, |x| < 1$

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!} \cdot x^2 + \frac{n(n-1)(n-2)}{3!} \cdot x^3 + \cdots$$

Example: Expand $(1+x)^{-3}$ up to the term with x^3 , (|x|<1), using the Generalised Binomial Theorem.

Solution:

$$(1+x)^{-3} = 1 + (-3) \cdot x + \frac{(-3)(-3-1)}{2!} \cdot x^2 + \frac{(-3)(-3-1)(-3-2)}{3!} \cdot x^3 + \cdots$$

$$= 1 - 3x + \frac{(-3)(-4)}{2 \cdot 1} \cdot x^2 + \frac{(-3)(-4)(-5)}{3 \cdot 2 \cdot 1} \cdot x^3 + \cdots$$

$$= 1 - 3x + 6x^2 - 10x^3 + \cdots \text{ Note: final result of the expansion is an infinite series}$$

Semester 1 :: 2022-2023

The Generalised Binomial Theorem

 $(1+x)^n = 1 + nx + \frac{n(n-1)}{2!} \cdot x^2 + \frac{n(n-1)(n-2)}{3!} \cdot x^3 + \cdots$ where $x, n \in \mathbb{R}, |x| < 1$.

- 1. Expand $(1+2x)^{\frac{5}{2}}$, $|x|<\frac{1}{2}$, up to the first four terms using the Generalized Binomial Theorem.
- 2. Expand $(1+x^2)^{-3}$, |x| < 1, up to the first four terms using the Generalized Binomial Theorem.

- 3. Expand $\frac{1}{\sqrt{1+x}}$, |x| < 1, up to the first four terms using the Generalized Binomial Theorem.
- 4. Expand $\frac{1}{(1-x)}$, |x| < 1, up to the first four terms using the Generalized Binomial Theorem.

The Generalised Binomial Theorem

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!} \cdot x^2 + \frac{n(n-1)(n-2)}{3!} \cdot x^3 + \cdots$$
 where $x, n \in \mathbb{R}, |x| < 1$.

2. Expand $(1+x^2)^{-3}$, |x| < 1, up to the first

1. Expand $(1+2x)^{\frac{5}{2}}$, $|x|<\frac{1}{2}$, up to the first four terms using the Generalized Binomial Theorem.

Answer:
$$1 + 5x + \frac{15}{2}x^2 + \frac{5}{2}x^3 + \cdots$$

four terms using the Generalized Binomial
Theorem.

Answer:
$$1 - 3x^2 + 6x^4 - 10x^6 + \cdots$$

3. Expand $\frac{1}{\sqrt{1+x}}$, |x| < 1, up to the first four terms using the Generalized Binomial Theorem.

Answer:
$$1 - \frac{1}{2}x + \frac{3}{8}x^2 - \frac{5}{16}x^3 + \cdots$$

4. Expand $\frac{1}{(1-x)}$, |x| < 1, up to the first four terms using the Generalized Binomial Theorem.

Answer:
$$1 + x + x^2 + x^3 + \cdots$$

Semester 1:: 2022-2023

Approximation using the Binomial Theorem

Approximation using the Binomial Theorem :

Approximation using the Binomial Theorem :

Given
$$(1+x)^n$$
, where $x, n \in \mathbb{R}, |x| < 1$,

Approximation using the Binomial Theorem :

Given $(1+x)^n$, where $x, n \in \mathbb{R}, |x| < 1$, apply the Generalised Binomial Theorem

Approximation using the Binomial Theorem :

Given $(1+x)^n$, where $x, n \in \mathbb{R}, |x| < 1$, apply the Generalised Binomial Theorem

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!} \cdot x^2 + \frac{n(n-1)(n-2)}{3!} \cdot x^3 + \cdots$$

Approximation using the Binomial Theorem :

Given $(1+x)^n$, where $x, n \in \mathbb{R}, |x| < 1$, apply the Generalised Binomial Theorem

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!} \cdot x^2 + \frac{n(n-1)(n-2)}{3!} \cdot x^3 + \cdots$$

Example 1: Use the first three terms of the Generalized Binomial Theorem to find an approximate value of $\frac{1}{1.05}$.

Approximation using the Binomial Theorem :

Given $(1+x)^n$, where $x, n \in \mathbb{R}, |x| < 1$, apply the Generalised Binomial Theorem

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!} \cdot x^2 + \frac{n(n-1)(n-2)}{3!} \cdot x^3 + \cdots$$

Example 1: Use the first three terms of the Generalized Binomial Theorem to find

an approximate value of $\frac{1}{1.05}$.

Solution:
$$\frac{1}{1.05} = (1.05)^{-1}$$

Approximation using the Binomial Theorem :

Given $(1+x)^n$, where $x, n \in \mathbb{R}, |x| < 1$, apply the Generalised Binomial Theorem

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!} \cdot x^2 + \frac{n(n-1)(n-2)}{3!} \cdot x^3 + \cdots$$

Example 1: Use the first three terms of the Generalized Binomial Theorem to find

an approximate value of $\frac{1}{1.05}$.

Solution:
$$\frac{1}{1.05} = (1.05)^{-1}$$

$$= (1 + 0.05)^{-1}$$
. Here $n = -1$, and $x = 0.05 \Rightarrow |x| < 1$.

Approximation using the Binomial Theorem :

Given $(1+x)^n$, where $x, n \in \mathbb{R}, |x| < 1$, apply the Generalised Binomial Theorem

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!} \cdot x^2 + \frac{n(n-1)(n-2)}{3!} \cdot x^3 + \cdots$$

Example 1: Use the first three terms of the Generalized Binomial Theorem to find an approximate value of $\frac{1}{1.05}$.

Solution: $\frac{1}{1.05} = (1.05)^{-1}$ $= (1+0.05)^{-1}. \text{ Here } n=-1, \text{ and } x=0.05 \Rightarrow |x| < 1.$

$$\therefore (1+0.05)^{-1} = 1 + (-1) \times 0.05 + \frac{(-1) \times (-1-1)}{2!} \times 0.05^2 + \cdots$$

Approximation using the Binomial Theorem :

Given $(1+x)^n$, where $x, n \in \mathbb{R}, |x| < 1$, apply the Generalised Binomial Theorem

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!} \cdot x^2 + \frac{n(n-1)(n-2)}{3!} \cdot x^3 + \cdots$$

Example 1: Use the first three terms of the Generalized Binomial Theorem to find an approximate value of $\frac{1}{1.05}$.

Solution: $\frac{1}{1.05} = (1.05)^{-1}$

$$= (1 + 0.05)^{-1}$$
. Here $n = -1$, and $x = 0.05 \Rightarrow |x| < 1$.

$$\therefore (1+0.05)^{-1} = 1 + (-1) \times 0.05 + \frac{(-1) \times (-1-1)}{2!} \times 0.05^2 + \cdots$$
$$= 1 - 0.05 + 0.05^2 + \cdots$$

Approximation using the Binomial Theorem :

Given $(1+x)^n$, where $x, n \in \mathbb{R}, |x| < 1$, apply the Generalised Binomial Theorem

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!} \cdot x^2 + \frac{n(n-1)(n-2)}{3!} \cdot x^3 + \cdots$$

Example 1: Use the first three terms of the Generalized Binomial Theorem to find an approximate value of $\frac{1}{1.05}$.

Solution:
$$\frac{1}{1.05} = (1.05)^{-1}$$
 $= (1+0.05)^{-1}$. Here $n=-1$, and $x=0.05 \Rightarrow |x| < 1$.

$$\therefore (1+0.05)^{-1} = 1 + (-1) \times 0.05 + \frac{(-1) \times (-1-1)}{2!} \times 0.05^{2} + \cdots$$
$$= 1 - 0.05 + 0.05^{2} + \cdots$$
$$\approx 0.9525$$

Approximation using the Binomial Theorem:

Given $(1+x)^n$, where $x, n \in \mathbb{R}, |x| < 1$, apply the Generalised Binomial Theorem

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!} \cdot x^2 + \frac{n(n-1)(n-2)}{3!} \cdot x^3 + \cdots$$

Approximation using the Binomial Theorem:

Given $(1+x)^n$, where $x, n \in \mathbb{R}, |x| < 1$, apply the Generalised Binomial Theorem

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!} \cdot x^2 + \frac{n(n-1)(n-2)}{3!} \cdot x^3 + \cdots$$

Example 2: Use the first three terms of the Generalised Binomial Theorem to find an approximate value of $\sqrt[3]{0.99}$.

Approximation using the Binomial Theorem:

Given $(1+x)^n$, where $x, n \in \mathbb{R}, |x| < 1$, apply the Generalised Binomial Theorem

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!} \cdot x^2 + \frac{n(n-1)(n-2)}{3!} \cdot x^3 + \cdots$$

Example 2: Use the first three terms of the Generalised Binomial Theorem to find an approximate value of $\sqrt[3]{0.99}$.

Solution: $\sqrt[3]{0.99} = (1 - 0.01)^{\frac{1}{3}}$

Approximation using the Binomial Theorem:

Given $(1+x)^n$, where $x, n \in \mathbb{R}, |x| < 1$, apply the Generalised Binomial Theorem

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!} \cdot x^2 + \frac{n(n-1)(n-2)}{3!} \cdot x^3 + \cdots$$

Example 2: Use the first three terms of the Generalised Binomial Theorem to find an approximate value of $\sqrt[3]{0.99}$.

Solution:
$$\sqrt[3]{0.99} = (1 - 0.01)^{\frac{1}{3}}$$
 $= [1 + (-0.01)]^{\frac{1}{3}}$. Here $n = \frac{1}{3}$, and $x = -0.01 \Rightarrow |x| < 1$.

Approximation using the Binomial Theorem:

Given $(1+x)^n$, where $x, n \in \mathbb{R}, |x| < 1$, apply the Generalised Binomial Theorem

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!} \cdot x^2 + \frac{n(n-1)(n-2)}{3!} \cdot x^3 + \cdots$$

Example 2: Use the first three terms of the Generalised Binomial Theorem to find an approximate value of $\sqrt[3]{0.99}$.

Solution: $\sqrt[3]{0.99} = (1 - 0.01)^{\frac{1}{3}}$ $= [1 + (-0.01)]^{\frac{1}{3}}$. Here $n = \frac{1}{3}$, and $x = -0.01 \Rightarrow |x| < 1$. $\therefore (1 - 0.01)^{\frac{1}{3}} = [1 + (-0.01)]^{\frac{1}{3}} = 1 + \frac{1}{3} \times (-0.01) + \frac{\frac{1}{3} \times (\frac{1}{3} - 1)}{2!} \times (-0.01)^2 + \cdots$

Approximation using the Binomial Theorem :

Given $(1+x)^n$, where $x, n \in \mathbb{R}, |x| < 1$, apply the Generalised Binomial Theorem

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!} \cdot x^2 + \frac{n(n-1)(n-2)}{3!} \cdot x^3 + \cdots$$

Example 2: Use the first three terms of the Generalised Binomial Theorem to find an approximate value of $\sqrt[3]{0.99}$.

Solution:
$$\sqrt[3]{0.99} = (1 - 0.01)^{\frac{1}{3}}$$

$$= [1 + (-0.01)]^{\frac{1}{3}}. \text{ Here } n = \frac{1}{3}, \text{ and } x = -0.01 \Rightarrow |x| < 1.$$

$$\therefore (1 - 0.01)^{\frac{1}{3}} = [1 + (-0.01)]^{\frac{1}{3}} = 1 + \frac{1}{3} \times (-0.01) + \frac{\frac{1}{3} \times (\frac{1}{3} - 1)}{2!} \times (-0.01)^2 + \cdots$$

$$= 1 - \frac{0.01}{2} - \frac{0.0001}{0} + \cdots$$

Approximation using the Binomial Theorem :

Given $(1+x)^n$, where $x, n \in \mathbb{R}, |x| < 1$, apply the Generalised Binomial Theorem

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!} \cdot x^2 + \frac{n(n-1)(n-2)}{3!} \cdot x^3 + \cdots$$

Example 2: Use the first three terms of the Generalised Binomial Theorem to find an approximate value of $\sqrt[3]{0.99}$.

Solution:
$$\sqrt[3]{0.99} = (1 - 0.01)^{\frac{1}{3}}$$

$$= [1 + (-0.01)]^{\frac{1}{3}}. \text{ Here } n = \frac{1}{3}, \text{ and } x = -0.01 \Rightarrow |x| < 1.$$

$$\therefore (1 - 0.01)^{\frac{1}{3}} = [1 + (-0.01)]^{\frac{1}{3}} = 1 + \frac{1}{3} \times (-0.01) + \frac{\frac{1}{3} \times (\frac{1}{3} - 1)}{2!} \times (-0.01)^2 + \cdots$$

$$= 1 - \frac{0.01}{3} - \frac{0.0001}{9} + \cdots$$

$$\approx 0.9967$$

Approximation using the Binomial Theorem

- 1. Use the first four terms of the Generalised Binomial Theorem to find an approximate value of $(1.05)^{-3}$.
- 2. Use the first four terms of the Generalised Binomial Theorem to find an approximate value of $(1.01)^{-3}$.

- 3. Use the first four terms of the Generalised Binomial Theorem to find an approximate value of $(1.04)^{-2}$.
- 4. Use the first four terms of the Generalised Binomial Theorem to find an approximate value of $(1.01)^{-1}$.

Approximation using the Binomial Theorem

1. Use the first four terms of the Generalised Binomial Theorem to find an approximate value of $(1.05)^{-3}$.

2. Use the first four terms of the Generalised Binomial Theorem to find an approximate value of $(1.01)^{-3}$.

Answer: 0.8638

Answer: 0.9706

3. Use the first four terms of the Generalised Binomial Theorem to find an approximate value of $(1.04)^{-2}$.

4. Use the first four terms of the Generalised Binomial Theorem to find an approximate value of $(1.01)^{-1}$.

Answer: 0.9245

Answer: 0.9901

Application of the Binomial Theorem in Error Analysis

Example: The radius r of a circle is measured with an error $\delta r = 1.25\%$ of r.

Use the approximation $(1+x)^n \approx 1 + nx$ to find the resulting error δA in the

the calculated area. Area of a circle: $A = \pi r^2$.

UK | CHINA | MALAYSIA

CELEN036 :: Foundation Algebra for Physical Sciences & Engineering

Application of the Binomial Theorem in Error Analysis

Example: The radius r of a circle is measured with an error $\delta r = 1.25\%$ of r.

Use the approximation $(1+x)^n \approx 1 + nx$ to find the resulting error δA in the

the calculated area. Area of a circle: $A = \pi r^2$.

Solution:

Semester 1:: 2022-2023

Example: The radius r of a circle is measured with an error $\delta r=1.25\%$ of r. Use the approximation $(1+x)^n\approx 1+nx$ to find the resulting error δA in the the calculated area. Area of a circle: $A=\pi\,r^2$.

Application of the Binomial Theorem in Error Analysis

Example: The radius r of a circle is measured with an error $\delta r=1.25\%$ of r. Use the approximation $(1+x)^n\approx 1+nx$ to find the resulting error δA in the the calculated area. Area of a circle: $A=\pi\,r^2$.

$$\delta r = 1.25\% r \Rightarrow \delta r = 0.0125 r$$

Application of the Binomial Theorem in Error Analysis

Example: The radius r of a circle is measured with an error $\delta r=1.25\%$ of r. Use the approximation $(1+x)^n\approx 1+nx$ to find the resulting error δA in the the calculated area. Area of a circle: $A=\pi\,r^2$.

$$\delta r = 1.25\% r \implies \delta r = 0.0125 r$$

 $\Rightarrow A + \delta A = \pi (r + \delta r)^2$

Application of the Binomial Theorem in Error Analysis

Example: The radius r of a circle is measured with an error $\delta r=1.25\%$ of r. Use the approximation $(1+x)^n\approx 1+nx$ to find the resulting error δA in the the calculated area. Area of a circle: $A=\pi\,r^2$.

$$\delta r = 1.25\% r \implies \delta r = 0.0125 r$$

$$\Rightarrow A + \delta A = \pi (r + \delta r)^2$$

$$= \pi (r + 0.0125 r)^2$$

Application of the Binomial Theorem in Error Analysis

Example: The radius r of a circle is measured with an error $\delta r=1.25\%$ of r. Use the approximation $(1+x)^n\approx 1+nx$ to find the resulting error δA in the the calculated area. Area of a circle: $A=\pi\,r^2$.

$$\delta r = 1.25\% r \implies \delta r = 0.0125 r$$

$$\Rightarrow A + \delta A = \pi (r + \delta r)^2$$

$$= \pi (r + 0.0125 r)^2$$

$$= \pi r^2 (1 + 0.0125)^2$$

Application of the Binomial Theorem in Error Analysis

Example: The radius r of a circle is measured with an error $\delta r=1.25\%$ of r. Use the approximation $(1+x)^n\approx 1+nx$ to find the resulting error δA in the the calculated area. Area of a circle: $A=\pi\,r^2$.

$$\delta r = 1.25\% r \implies \delta r = 0.0125 r$$

$$\Rightarrow A + \delta A = \pi (r + \delta r)^2$$

$$= \pi (r + 0.0125 r)^2$$

$$= \pi r^2 (1 + 0.0125)^2$$

$$\approx A(1 + 2 \times 0.0125)$$

Application of the Binomial Theorem in Error Analysis

Example: The radius r of a circle is measured with an error $\delta r=1.25\%$ of r. Use the approximation $(1+x)^n\approx 1+nx$ to find the resulting error δA in the the calculated area. Area of a circle: $A=\pi\,r^2$.

$$\delta r = 1.25\% r \implies \delta r = 0.0125 r$$

$$\Rightarrow A + \delta A = \pi (r + \delta r)^2$$

$$= \pi (r + 0.0125 r)^2$$

$$= \pi r^2 (1 + 0.0125)^2$$

$$\approx A(1 + 2 \times 0.0125)$$

$$= A + 0.025 A$$

Example: The radius r of a circle is measured with an error $\delta r = 1.25\%$ of r. Use the approximation $(1+x)^n \approx 1 + nx$ to find the resulting error δA in the the calculated area. Area of a circle: $A = \pi r^2$.

$$\delta r = 1.25\% r \Rightarrow \delta r = 0.0125 r$$

$$\Rightarrow \mathcal{A} + \delta A = \pi (r + \delta r)^2$$

$$= \pi (r + 0.0125 r)^2$$

$$= \pi r^2 (1 + 0.0125)^2$$

$$\approx A(1 + 2 \times 0.0125)$$

$$= \mathcal{A} + 0.025 A$$

Example: The radius r of a circle is measured with an error $\delta r=1.25\%$ of r. Use the approximation $(1+x)^n\approx 1+nx$ to find the resulting error δA in the the calculated area. Area of a circle: $A=\pi\,r^2$.

$$\delta r = 1.25\% \, r \implies \delta r = 0.0125 \, r$$

$$\Rightarrow \mathcal{A} + \delta A = \pi (r + \delta r)^2$$

$$= \pi (r + 0.0125 \, r)^2$$

$$= \pi r^2 (1 + 0.0125)^2$$

$$\approx A (1 + 2 \times 0.0125)$$

$$= \mathcal{A} + 0.025 A$$

$$\Rightarrow \delta A = 0.025 A$$

Example: The radius r of a circle is measured with an error $\delta r=1.25\%$ of r. Use the approximation $(1+x)^n\approx 1+nx$ to find the resulting error δA in the the calculated area. Area of a circle: $A=\pi\,r^2$.

$$\delta r = 1.25\% \, r \implies \delta r = 0.0125 \, r$$

$$\Rightarrow \mathcal{A} + \delta A = \pi (r + \delta r)^2$$

$$= \pi (r + 0.0125 \, r)^2$$

$$= \pi r^2 (1 + 0.0125)^2$$

$$\approx A (1 + 2 \times 0.0125)$$

$$= \mathcal{A} + 0.025 A$$

$$\Rightarrow \delta A = 0.025 A$$

$$\Rightarrow \text{ The error in the area is } 2.5\% \text{ of } A$$

Application of the Binomial Theorem in Error Analysis

1. The diameter d of a circle is measured with an error of $\delta d = 1.5\%$ of d.

Use $(1+x)^n \approx 1 + nx$ to find the resulting error, δA , in the calculated area.

2. The side l of a square is measured with an error of $\delta l = 1.2\%$ of l.

Use $(1+x)^n \approx 1 + nx$ to find the resulting error δA , in the calculated area.

- 3. The radius r of the base of a right circular cone with fixed height h is measured with an error of $\delta r = 1.2\%$ of r.

 Use $(1+x)^n \approx 1 + nx$ to find the resulting error, δV , in the calculated volume.
- 4. The radius r of a sphere is measured with an error of $\delta r=1.3\%$ of r. Use $(1+x)^n\approx 1+nx+\frac{n(n-1)}{2}x^2\quad \text{to find the}$ resulting error, δV , in the calculated volume.

Application of the Binomial Theorem in Error Analysis

1. The diameter d of a circle is measured with an error of $\delta d = 1.5\%$ of d.

Use $(1+x)^n \approx 1 + nx$ to find the resulting error, δA , in the calculated area.

Area of a circle: $A = \pi r^2$

2. The side l of a square is measured with an error of $\delta l = 1.2\%$ of l.

Use $(1+x)^n \approx 1 + nx$ to find the resulting error δA , in the calculated area.

Area of a square: $A = l^2$

3. The radius r of the base of a right circular cone with fixed height h is measured with an error of $\delta r=1.2\%$ of r.

Use $(1+x)^n \approx 1 + nx$ to find the resulting error, δV , in the calculated volume.

Volume of a cone: $V = \frac{1}{3}\pi r^2 h$

4. The radius r of a sphere is measured with an error of $\delta r = 1.3\%$ of r. Use

$$(1+x)^n \approx 1 + nx + \frac{n(n-1)}{2}x^2$$
 to find the

resulting error, δV , in the calculated volume.

Volume of a sphere: $V = \frac{4}{3}\pi r^3$

1. The diameter d of a circle is measured with an error of $\delta d = 1.5\%$ of d.

Use $(1+x)^n \approx 1 + nx$ to find the resulting error, δA , in the calculated area.

Area of a circle: $A = \pi r^2$

Answer: 3% of A

3. The radius r of the base of a right circular cone with fixed height h is measured with an error of $\delta r = 1.2\%$ of r.

Use $(1+x)^n \approx 1 + nx$ to find the resulting error, δV , in the calculated volume.

Volume of a cone: $V = \frac{1}{3}\pi r^2 h$

Answer: 2.4% of V

2. The side l of a square is measured with an error of $\delta l = 1.2\%$ of l.

Use $(1+x)^n \approx 1 + nx$ to find the resulting error δA , in the calculated area.

Area of a square: $A = l^2$

Answer: 2.4% of A

4. The radius r of a sphere is measured with an error of $\delta r = 1.3\%$ of r. Use

$$(1+x)^n \approx 1 + nx + \frac{n(n-1)}{2}x^2$$
 to find the

resulting error, δV , in the calculated volume.

Volume of a sphere: $V = \frac{4}{3}\pi r^3$

Answer: 3.95% of V

Homework Questions

- 1. (i) Use the first four terms of the Generalised Binomial Theorem to find the expansion of $(1-x)^{\frac{1}{2}}$, |x| < 1.
 - (ii) By substituting $x = \frac{1}{2}$ in 1(i), find the approximate value of $\sqrt{2}$, give your answer in 4 d. p.

- 2. (i) Use the first four terms of the Generalised Binomial Theorem to find the expansion of $(1-x^3)^{\frac{1}{3}}$, |x| < 1.
 - (ii) By substituting $x = \frac{1}{5}$ in 2(i), find the approximate value of $\sqrt[3]{124}$, give your answer in 4 d. p.

- 3. (i) Use the first four terms of the Generalised Binomial Theorem to find the expansion of $(1-x^4)^{\frac{1}{4}}$, |x| < 1.
 - (ii) By substituting $x = \frac{1}{2}$ in 3(i), find the approximate value of $\sqrt[4]{15}$, give your answer in 4 d. p.

Homework Questions

- 1. (i) Use the first four terms of the Generalised Binomial Theorem to find the expansion of $(1-x)^{\frac{1}{2}}$, |x| < 1.
 - (ii) By substituting $x = \frac{1}{2}$ in 1(i), find the approximate value of $\sqrt{2}$, give your answer in 4 d. p.

Answer: (i)
$$1 - \frac{1}{2}x - \frac{1}{8}x^2 - \frac{1}{16}x^3 + \cdots$$
 (ii) 1.4219

- 2. (i) Use the first four terms of the Generalised Binomial Theorem to find the expansion of $(1-x^3)^{\frac{1}{3}}$, |x| < 1.
 - (ii) By substituting $x = \frac{1}{5}$ in 2(i), find the approximate value of $\sqrt[3]{124}$, give your answer in 4 d. p.

Answer: (i)
$$1 - \frac{1}{3}x^3 - \frac{1}{9}x^6 - \frac{5}{81}x^9 + \cdots$$
 (ii) 4.9866

- 3. (i) Use the first four terms of the Generalised Binomial Theorem to find the expansion of $(1-x^4)^{\frac{1}{4}}$, |x| < 1.
 - (ii) By substituting $x = \frac{1}{2}$ in 3(i), find the approximate value of $\sqrt[4]{15}$, give your answer in 4 d. p.

Answer: (i)
$$1 - \frac{1}{4}x^4 - \frac{3}{32}x^8 - \frac{7}{128}x^{12} + \cdots$$
 (ii) 1.9680

THANKS FOR YOUR ATTENTION