Fall 2012: Algebra Graduate Exam

Peter Kagey

July 11, 2019

Problem 1. Use Sylow's theorems directly to find, up to isomorphism, all possible structures of groups of order $5 \cdot 7 \cdot 23$.

Proof. Sylow's theorems tell us that any group G must have

 r_5 Sylow 5-subgroups, r_7 Sylow 7-subgroups, and r_{23} Sylow 23-subgroups

where r_5, r_7 , and r_{23} divide $5 \cdot 7 \cdot 23$, and $r_p \equiv 1 \mod p$.

$$r_p = 1, 5, 7, 5 \cdot 7, 23, 5 \cdot 23, 7 \cdot 23, \text{ or } 5 \cdot 7 \cdot 23$$

considering the restriction on modulus, $r_5 \in \{1, 7 \cdot 23\}$, $r_7 = 1$, and $r_{23} = 1$. Let P and Q be the unique Sylow 23-subgroup and Sylow 7-subgroup respectively. Since $P \cap Q = 1$, $PQ \cong P \times Q$. Let R be a Sylow 5-subgroup.

Since $R \subseteq G$ (why?), and R has a complement $P \times Q$, G is a semidirect product of R by $P \times Q$, that is $G = R \ltimes (P \times Q)$.

By Rotman Lemma 7.21, there is a homomorphism

$$\theta \colon \underbrace{R \to \operatorname{Aut}(P \times Q)}_{\mathbb{Z}_5 \to \mathbb{Z}_{22} \times \mathbb{Z}_6}.$$

But since gcd(5,22) = gcd(5,6) = 1, the only homomorphism is trivial. Therefore there is only one group of order $5 \cdot 7 \cdot 23$, the abelian group

 $G \cong \mathbb{Z}_5 \oplus \mathbb{Z}_7 \oplus \mathbb{Z}_{23}$.

Problem 2. Let A, B, and C be finitely generated F[x] = R modules for F a field with C torsion free. Show that $A \otimes_R C \cong B \otimes_R C$ implies that $A \cong B$. Show by example that this conclusion can fail when C is not torsion free.

Proof. (From Nicolle)

R is a PID since F is a field, so by the structure theorem for finitely generated modules over a PID,

$$A \cong T(A) \oplus R^n$$
$$B \cong T(B) \oplus R^m$$
$$C \cong R^t,$$

were T(M) denotes the torsion submodule of M. Since $A \otimes_R C \cong B \otimes_R C$, it follows that

$$(T(A) \oplus R^n) \otimes_R R^t \cong (T(B) \oplus R^m) \otimes_R R^t$$
$$(T(A) \otimes_R R^t) \oplus (R^n \otimes_R R^t) \cong (T(B) \otimes_R R^t) \oplus (R^m \otimes_R R^t)$$

Thus the free part of $A \otimes_R C$ is isomorphic to the free part of $B \otimes_R C$:

$$R^n \otimes_R R^t \cong R^m \otimes_R R^t$$
,

so n=m. Similarly, the torsion submodules of $A \otimes_R C$ and $B \otimes_R C$ are isomorphic:

$$(T(A) \otimes_R R^t) \cong (T(B) \otimes_R R^t),$$

so T(A) = T(B). Therefore,

$$A \cong T(A) \oplus R^n \cong T(B) \oplus R^m \cong B,$$

as desired.

As a counterexample, consider $A = B \oplus \text{Ann}(C)$. Then

$$A \otimes_R C \cong B \otimes_R C \oplus \underbrace{\operatorname{Ann}(C) \otimes_R C}_{0} \cong B \otimes_R C,$$

but $A \not\cong B$.

Problem 3. Working in the polynomial ring $\mathbb{C}[x,y]$, show that some power of $(x+y)(x^2+y^4-2)$ is in (x^3+y^2,y^3+xy) .

Proof.

Problem 4. For integers $n, m > 1$, let $A \subseteq M_n(\mathbb{Z}_m)$ be a subring with the property that i $x^2 = 0$ then $x = 0$. Show that A is commutative. Is the converse true?	$f x \in A$	with
Proof.		

Problem 5. Let F be the splitting field of $f(x) = x^6 - 2$ over \mathbb{Q} . Show that $\operatorname{Gal}(F/\mathbb{Q})$ is isomorp dihedral group of order 12.	hic to the
Proof.	

Problem 6. Given that all groups of order 12 are solvable, show that any group of order $2^2 \cdot 3 \cdot 7^2$ is solvable.	ole
Proof.	