AWS Mini Lab with Proxy, Patch Management, and DB Backup

Objective:

To design and deploy a secure, automated, and cost-effective hybrid infrastructure on AWS that includes:

- A public proxy EC2 instance for internet access,
- A private EC2 instance for internal services,
- Automated patch management using scripts or tools (e.g., Ansible),
- And **scheduled backup automation** of critical data to Amazon S3.

This setup simulates a real-world enterprise environment, focusing on **security**, **automation**, **and best practices** in AWS infrastructure management.

Tools & Technologies Used:

Cloud Platform AWS (EC2, VPC, S3, IAM)

OS & Scripting Ubuntu, Shell scripting, Cron

Proxy Service Squid Proxy

Patch Management Ansible

Database MySQL

Programming Language Python

Monitoring/Logging System logs, cron log, /var/log/

Process:

- > Create vpc for selected region
- Create subnets 1. Public subnet 2. Private subnet
- > Create a igw and attached public route table
- Launch ubuntu server 1. Public server 2. Private server
- > Change the security groups
 - o First public server sg

Give here custom private sg id

- ➤ Change the security groups:
 - o Private sg

Give here public sg id.

- ➤ Connect to public server
- > Executive this cmds:
 - o sudo apt update
 - o sudo apt install squid -y
 - o sudo nano /etc/squid/squid.conf (alt + /) paste this one acl allowed_ip src <pri>private server private ip>

http_access allow allowed_ip

Check the line number 1625---- http_access allow all

(Alt + Shift + #) # This will toggle line numbers ON or OFF.

Check the line number 2175 ---- http port 3128

- o ctrl+x
- o sudo systemetl restart squid
- o sudo systemetl enable squid
- ➤ Connect to private server
- > Attach a role ec2-s3
- > Execute this cmds:
 - o vi/etc/environment

```
Paste --- export http_proxy=http://<Public-server-pri-ip>:3128 export https_proxy=http://<Public-server-pri-ip>:3128 export no proxy="169.254.169.254,localhost,127.0.0.1"
```

- o source /etc/environment
- o curl -h google.com #just test only
- o Ping publicserver-pri-ip
- o sudo apt install python3 python3-pip -y
- o python3 --version
- o pip3 --version
- o sudo apt install mysql-server -y
- o sudo mysql_secure_installation
- o sudo systemctl status mysql
- o sudo systemetl start mysql
- sudo systemetl enable mysql
- o sudo mysql #insert the data in database
- o create bucket with disable block public access
- o aws s3 ls s3://ansible-proj
- o curl "https://awscli.amazonaws.com/awscli-exe-linux-x86_64.zip" -o "awscliv2.zip"
- o apt install unzip
- o unzip awscliv2.zip
- o sudo ./aws/install
- o aws -version
- o aws configure

```
    TOKEN=$(curl -X PUT "http://169.254.169.254/latest/api/token" \

           -H "X-aws-ec2-metadata-token-ttl-seconds: 21600")
        o curl -H "X-aws-ec2-metadata-token: $TOKEN" \
           http://169.254.169.254/latest/meta-data/iam/security-credentials/
        o aws s3 ls s3://ansible-proj
  > write a code in python
        o vi backup to s3.py
import boto3
import os
import datetime
#Define bucket name here
bucket name = 'ansible-proj' #here replace bucket name
timestamp = datetime.datetime.now().strftime('%Y-%m-%d_%H-%M')
backup file = f"/tmp/backup {timestamp}.sql"
#Perform MySQL dump
os.system(f'mysqldump -u root sampledb > {backup file}")
#Upload to S3
s3 = boto3.client('s3')
s3.upload file(backup file, bucket name, f"backup {timestamp}.sql")
print("Backup completed and uploaded to S3")
INSTALL ANSIBLE IN PUBLIC SERVER
    sudo apt update
    sudo apt upgrade -y
    sudo apt install ansible -y
    ansible --version
    sudo nano /etc/ansible/hosts
```

- here menstion the group inventory name and paste private ip

TEST CONNECTION:

create one playbook file vi apache.yml

- name: Simple Apache Web Server Setup

hosts: webservers

become: yes

tasks:

- name: Install Apache

yum:

name: httpd state: present

- name: Start Apache

service:

name: httpd state: started enabled: yes

- name: Create a simple index.html

copy:

dest: /var/www/html/index.html

content: "<h1>Hello from Ansible</h1>"

- ansible-playbook -i /etc/ansible/hosts apache.yml
- The ansible successfully execute the task in the private server using the squid proxy
- create an ALB, AUTOSCALING GROUP and Route53 for access the application securely, high available, scalable

(or)

- > For internet testing purpose we can use this also:
- ansible all -i hosts -m ping
- > crontab -e
 - o select 1
 - o paste----> */5 * * * * /root/bin/python3 /root/backup_to_s3.py >>
 /root/db backup.log 2>&1

- o cat /root/db_backup.log #check the logs
- o aws s3 ls s3://ansible-proj

Hello from Ansible

- For internet testing perpose I use ansible tool to install the apache2 web server in private server and I can access the apache2 application through the Load balancer
- > For distributing the traffic from public server to private server.
- > So finally I implement route53 to access the web application through global. wide.

Hello from Ansible

Please access this DNS onces----> http://ansible.ramcloud.shop (Note: check once access through http)

- so finally, the MySQL dB backup and server logs are sent into the s3 bucket using python code and crontab expression.

Benefits:

- > Secure Private Networking
 - o Keeps sensitive services (like the database) isolated from the internet.
- Centralized Internet Control
 - All traffic from the private subnet goes through the public proxy—enabling filtering logging, and monitoring.
- ➤ Automated Patch Management
 - o Ensures systems are always up-to-date with the latest security updates.
- Scheduled DB Backups
 - o Regular and automatic backups prevent data loss.
- Data Durability with S3
 - o Amazon S3 provides a secure, reliable backup storage solution.
- Limited External Exposure
 - o Only the proxy server has internet access, reducing attack surfaces.

Advantages:

- > Improved Security Posture
 - o Better control over traffic and access through subnet isolation and IAM policies.
- > Efficient Resource Management

 Public EC2 acts as a hub for managing updates and internet traffic. Reliability and Continuity
 Even if an instance is lost, backups on S3 can be used to restore data. Scalability
 Easily extendable architecture—more private instances can route traffic through the same proxy.
Customizability
 Tools like Ansible allow easy customization for updates and monitoring. Cost Efficiency