## Stepped Wedge Cluster Randomized Trials

#### Kenny Chiu

Supervising Faculty: John Petkau

The University of British Columbia Department of Statistics

STAT 548 Qualifying Paper 2 Oral Presentation

December 9, 2021

#### Outline

- Introduction
- Analysis of stepped wedge cluster randomized trials
- 3 Investigation of simulation study
- Extensions to basic model
- 6 Conclusion

Introduction

Hussey and Hughes [1]

# Objective



## Primary SW-CRT setting

## Model and methods

#### Power calculation



#### Procedure

## Results



## Conclusion

### Multiple factor analysis

- Factor analysis: estimate latent factors underlying observed data
- Principal Component Analysis: given data matrix  $A \in \mathbb{R}^{n \times d}$ , returns scaled loadings  $V \in \mathbb{R}^{d \times d}$  and principal components (PCs)  $S \in \mathbb{R}^{n \times d}$  s.t.

$$S = AV$$

- $\Rightarrow$  Represent and estimate factors by the leading  $k \leq d$  PCs
- PCs are (orthogonal) vectors—difficult to interpret if there are many coefficients

### Multiple factor analysis

- Factor analysis: estimate latent factors underlying observed data
- Principal Component Analysis: given data matrix  $A \in \mathbb{R}^{n \times d}$ , returns scaled loadings  $V \in \mathbb{R}^{d \times d}$  and principal components (PCs)  $S \in \mathbb{R}^{n \times d}$  s.t.

$$S = AV$$

- $\Rightarrow$  Represent and estimate factors by the leading  $k \leq d$  PCs
- PCs are (orthogonal) vectors—difficult to interpret if there are many coefficients
- ? ]: rotate PCs to make coefficients as sparse as possible (i.e.,  $\approx 0$ )

#### References I

[1] Hussey, M. A. and Hughes, J. P. (2007). Design and analysis of stepped wedge cluster randomized trials. *Contemporary Clinical Trials*, 28(2):182–191.

## Key steps of factor rotation procedure

3. **SVD**: apply SVD to data matrix A to obtain

$$A \approx \widehat{U}\widehat{D}\widehat{V}^T$$

where  $\widehat{U} \in \mathbb{R}^{n \times k}$  and  $\widehat{V} \in \mathbb{R}^{d \times k}$  contain the first k singular vectors of A and  $\widehat{D}$  the first k singular values

4. **Maximize**: given matrix U to rotate, let g(U,R) be the criterion to maximize as a function of R. Compute optimal rotation

$$R_{\widehat{U}} = \underset{R}{\operatorname{arg\,max}} g(U, R)$$

5. Estimate: estimate latent matrices

$$\widehat{Z} = \sqrt{n}\widehat{U}R_{\widehat{U}} ,$$

$$\widehat{B} = \frac{1}{\sqrt{nd}}R_{\widehat{U}}^T\widehat{D}R_{\widehat{V}}$$