Total No. of Printed Pages:2

Faculty of Engineering End Sem Examination Dec-2023 EE3CO50 Analog & Digital Electronics

Programme: B.Tech. Branch/Specialisation: EE

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d. Assume suitable data if necessary. Notations and symbols have their usual meaning.

Q.1	i.	The majority charge carries in an NPN transistors are-		1
		(a) Electrons	(b) Holes	
		(c) Trivalent atoms	(d) Pentavalent atoms	
	ii.	PNP transistor has the follow	ing arrangement	1
		(a) P type base, N type emitte	er, P type collector	
		(b) P type emitter, N type bas	se, P type collector	
		(c) P type collector, N type b	ease, N type emitter	
		(d) P type emitter, N type col	llector, P type base	
	iii.	The gain of an amplifier with	n feedback is known as gain.	1
		(a) High (b) Open loop	o (c) Closed loop (d) Low	
	iv.	Which oscillator is character	ized by a split capacitor in its tank	1
		circuit?		
		(a) RC phase shift oscillator	(b) Colpitts oscillator	
		(c) Wien bridge oscillator	(d) None of these	
	v.	NAND gate combination is:		1
		(a) OR and NOT gate	(b) NOT and NOR gate	
		(c) NOT and AND gate	(d) All of these	
	vi.	If $A = 1$ and $B = 0$, then in te	erms of Boolean algebra, $A + \overline{B} =$	1
		(a) B (b) \overline{A}	(c) A (d) None of these	
	vii.	Which of the following circu	it has its output dependent only upon	1
		the present input?		
		(a) Analog Circuits	(b) Flip Flops	
		(c) Combinational Circuits	(d) Sequential Circuits	

P.T.O.

[2]

	viii.	are an example of a combinational circuit.			
		(a) Shift Registers (b) Multiplexers			
		(c) Counters (d) Flip-Flops			
	ix.	A Shift register in which the output of the last flip-flop is connect			
		to the input of the first flip-flop			
		(a) BCD counter (b) Parallel counter			
		(c) Ripple counter (d) Ring counter			
	х.	In JK Flipflop, If the present state is 0 and the next state is 1, then:	1		
		(a) $J = 1 \& k = don't care$ (b) $J = 1 \& k = 1$			
		(c) $J = don't care & k = 1$ (d) $J = 0 & k = 0$			
Q.2	i.	Compare Bipolar Junction Transistor and Field Effect Transistor. 2			
	ii.	Explain the characteristics of JFET with a diagram.			
OR	iii.	Explain the Hybrid parameter configurations of BJT. 8			
		Attempt any two:			
Q.3	i.	Explain Darlington amplifier with a neat diagram. 5			
	ii.	Explain Class-A and Class-B Configuration of Power Amplifier.			
	iii.	Explain Colpitts Oscillator with a neat diagram.	5		
Q.4	i.	Define Ex-OR and Ex-NOR Gate with Truth Table	3		
	ii.	Compare Resistance Transistor Logic (RTL), Transistor Transistor 7			
		Logic (TTL) and Diode Transistor Logic (DTL).			
OR	iii.	Implement all Logic Gates using NAND & NOR Gates with Truth Table.	7		
Q.5	i.	Explain Full Adder with Truth Table and Logic Diagram.	4		
Q.J	ii.	Design Multiplexer for the following expression.	6		
	111,	F(A,B,C,D) = AB+CD	U		
OR	iii.	Solve the following expression using K-Map	6		
		$F(A,B,C,D) = \sum_{i=0}^{n} m(0,2,4,6,8,9,10,12,13,15)$			
Q.6	i.	Compare Combinational and Sequential Logic circuits.	4		
	ii.	Convert SR Flip-flop to JK Flip-flop.	6		
OR	iii.	Explain random access memory and read only memory with its characteristics.	6		
