Chapter 4: Introduction to Machine Learning – Optimization, Deep Feed Forward Networks, Backpropagation, Regularization

Christian Heumann (credits go to Nina Poerner, Benjamin Roth, Marina Speranskaya)

CIS LMU München, Department of Statistics LMU München

October 2021

Optimization

- Optimization: Minimize some function $J(\theta)$ by altering θ .
- Maximize $f(\theta)$ by minimizing $J(\theta) = -f(\theta)$
- $J(\theta)$:
 - "criterion", "objective function", "cost function", "loss/risk function", "error function"
 - In a probabilistic machine learning setting often the (conditional) negative log-likelihood:

$$-\log p(\boldsymbol{X};\boldsymbol{\theta})$$

or

$$-\log p(\mathbf{y}|\mathbf{X};\boldsymbol{\theta})$$

as a function of θ is used.

 $\bullet \ \theta^* = \arg\min_{\theta} J(\theta)$

Optimization

- ullet If $J(oldsymbol{ heta})$ is convex (figure left), it is minimized where $abla_{oldsymbol{ heta}}J(oldsymbol{ heta})=oldsymbol{0}$
- If $J(\theta)$ is not convex (figure right), the gradient can help us to improve our objective nevertheless (and find a local optimum).
- Many optimization techniques were originally developed for convex objective functions, but are found to be working well for non-convex functions too.
- Use the fact that gradient indicates the slope of the function in the direction of steepest increase.

Gradient-Based Optimization

• Derivative: Given a small change in input, what is the corresponding change in output?

$$f(x + \epsilon) \approx f(x) + \epsilon f'(x)$$

• $f(x - \epsilon \operatorname{sign} f'(x)) < f(x)$ for small enough ϵ

Gradient Descent

- ullet For $J(oldsymbol{ heta}): \mathbb{R}^n
 ightarrow \mathbb{R}$
- If partial derivative $\frac{\partial J(\theta)}{\partial \theta_j} > 0$, $J(\theta)$ will increase for small increases of θ_j \Rightarrow go in opposite direction of gradient (since we want to minimize)
- Steepest descent: iterate

$$\boldsymbol{\theta}_{t+1} \leftarrow \boldsymbol{\theta}_t - \eta \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}_t)$$

where θ_t is the actual parameter, $J(\theta_t)$ is the objective function evaluated at θ_t and θ_{t+1} is the updated parameter.

- \bullet η is the learning rate (set to a small positive constant).
- Converges if $\nabla_{\theta} J(\theta)$ is (close to) **0**

Local Minima

• If the function is non-convex, different results can be obtained at convergence, depending on the initialization of θ (in DL often: randomly initialized weights).

Local Minima

Minima can be global or local:

• Critical (stationary) points: f'(x) = 0

 For (complex) neural networks, only good (not perfect) parameter values can be found.

Gradient Descent for Logistic Regression

$$\nabla_{\boldsymbol{\theta}} NLL(\boldsymbol{\theta}) = -\nabla_{\boldsymbol{\theta}} \sum_{i=1}^{m} y^{(i)} \log \sigma(\boldsymbol{\theta}^{T} \boldsymbol{x^{(i)}}) + (1 - y^{(i)}) \log(1 - \sigma(\boldsymbol{\theta}^{T} \boldsymbol{x^{(i)}}))$$

$$= -\sum_{i=1}^{m} (y^{(i)} - \sigma(\boldsymbol{\theta}^{T} \boldsymbol{x^{(i)}})) \boldsymbol{x^{(i)}}$$

The gradient descent update becomes:

$$\boldsymbol{\theta}_{t+1} := \boldsymbol{\theta}_t + \eta \sum_{i=1}^m (y^{(i)} - \sigma(\boldsymbol{\theta}_t^T \boldsymbol{x}^{(i)})) \boldsymbol{x}^{(i)}$$

• Note: Which feature weights are increased, which are decreased?

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

Derivation of Gradient for Logistic Regression

This is a great exercise! Use the following facts:

Gradient
$$(\nabla_{\theta}f(\theta))_j = \frac{\partial f(\theta)}{\partial \theta_j}$$

Derivative of a sum $\frac{d}{dz}\sum_i f_i(z) = \sum_i \frac{df_i(z)}{dz}$

Chain rule $F(z) = f(g(z)) \Rightarrow F'(z) = f'(g(z))g'(z)$

Derivative of logarithm $\frac{d\log z}{dz} = 1/z$

D. of logistic sigmoid $\frac{d\sigma(z)}{dz} = \sigma(z)(1-\sigma(z))$

Partial d. of dot-product $\frac{\partial \theta^T x}{\partial \theta_j} = x_j$

Gradient Descent: Summary

- Iterative method for function minimization.
- Gradient indicates the rate of change in the objective function, given a local change to feature weights.
- Substract the gradient:
 - decrease parameters that (locally) have positive correlation with objective
 - increase parameters that (locally) have negative correlation with objective
- Gradient updates only have the desired properties in a small region around previous parameters θ_t . Control locality by the learning rate η .
- Gradient descent is slow: For relatively small steps in the right direction, all training data has to be processed.
- This version of gradient descent is often also called batch gradient descent.

Stochastic Gradient Descent (SGD)

• Batch gradient descent is slow: For relatively small steps in the right direction, all of training data has to be processed.

$$\boldsymbol{\theta}_{t+1} \leftarrow \boldsymbol{\theta}_t + \eta \nabla_{\boldsymbol{\theta}} \sum_{i=1}^m \log p(y_i | \boldsymbol{x}_i; \boldsymbol{\theta})$$

- Stochastic gradient descent in a nutshell:
 - For each update, only use random sample \mathbb{B}_t of training data (mini-batch).

$$\boldsymbol{\theta}_{t+1} \leftarrow \boldsymbol{\theta}_t + \eta \nabla_{\boldsymbol{\theta}} \sum_{i \in \mathbb{B}_t} \log p(y_i | \boldsymbol{x}_i; \boldsymbol{\theta})$$

▶ Mini-batch size can also just be 1.

$$\theta_{t+1} \leftarrow \theta_t + \eta \nabla_{\theta} \log p(y_t | x_t; \theta)$$

→ More frequent updates.

4□ > 4問 > 4 = > 4 = > = 900

Stochastic Gradient Descent (SGD)

- The actual gradient is approximated using only a sub-sample of the data.
- For objective functions that are highly non-convex, the random deviations of these approximations may even help to escape local minima.
- Treat batch size and learning rate as hyper-parameters.

Deep Feedforward Networks

- Function approximation: find good mapping $\hat{y} = f(x; \theta)$ (or more exactly $f(x; \hat{\theta})$, but we omit the hat in future).
- Network: Composition of functions $f^{(1)}, f^{(2)}, f^{(3)}$ with multi-dimensional input and output
- Each $f^{(i)}$ represents one layer $f(x) = f^{(1)}(f^{(2)}(f^{(3)}(x)))$
- Feedforward:
 - ▶ Input \rightarrow intermediate representation \rightarrow output
 - No feedback connections
 - Cf. recurrent networks

Deep Feedforward Networks: Training

- Loss function defined on output layer, e.g. $(y f(x; \theta))^2$
- Quality criterion on other layers not directly defined.
- Training algorithm must decide how to use those layers most effectively (w.r.t. loss on output layer)
- Non-output layers can be viewed as providing a feature function $\phi(x)$ of the input, that is to be learned.

"Neural" Networks

- Inspired by biological neurons (nerve cells)
- Neurons are connected to each other, and receive and send electrical pulses.
- "If the [input] voltage changes by a large enough amount, an all-or-none electrochemical pulse called an action potential is generated, which travels rapidly along the cell's axon, and activates synaptic connections with other cells when it arrives." (Wikipedia)

Activation Functions with Non-Linearities

- Linear Functions are limited in what they can express.
- Famous example: XOR
- Simple layered non-linear functions can represent XOR.

Design Choices for Output Units

- Can typically be interpreted as probabilities.
 - Logistic sigmoid
 - Softmax
 - mean and variance of a Gaussian, ...
- Trained with negative log-likelihood.

Softmax

- Logistic sigmoid
 - Vector y of binary outcomes, with no contraints on how many can be 1.
 - Bernoulli distribution.
- Softmax
 - Exactly one element of y is 1.
 - Multinoulli (categorical) distribution.

$$p(Y = i | \phi(\mathbf{x}))$$

$$\sum_{i} p(Y = i | \phi(\mathbf{x})) = 1$$
 $softmax(\mathbf{z})_{i} = \frac{exp(z_{i})}{\sum_{j} exp(z_{j})}$

Parametrizing a Gaussian Distribution

- Use final layer to predict parameters of Gaussian mixture model.
- Weight of mixture component: softmax.
- Means: no non-linearity.
- Precisions $(\frac{1}{\sigma^2})$ need to be positive: softplus

$$softplus(z) = ln(1 + exp(z))$$

Rectified Linear Units

Rectified Linear Unit:

$$relu(z) = max(0, z)$$

$$z = \mathbf{x}^T \mathbf{w} + b$$

- Consistent gradient of 1 when unit is *active* (i.e. if there is an error to propagate).
- Default choice for hidden units.

A Simple ReLU Network to Solve XOR

$$f(x; oldsymbol{W}, oldsymbol{c}, oldsymbol{w}) = oldsymbol{w}^T max(0, oldsymbol{W}^T x + oldsymbol{c})$$
 $oldsymbol{W} = egin{bmatrix} 1 & 1 \ 1 & 1 \end{bmatrix}$ $oldsymbol{c} = egin{bmatrix} 0 \ -1 \end{bmatrix}$ $oldsymbol{w} = egin{bmatrix} 1 \ -2 \end{bmatrix}$

Other Choices for Hidden Units

- A good activation function aids learning, and provides large gradients.
- Sigmoidal functions (logistic sigmoid)
 - have only a small region before they flatten out in either direction.
 - Practice shows that this seems to be ok in conjunction with Log-loss objective.
 - But they don't work as well as hidden units.
 - ReLU are a better alternative since gradient stays constant.
- Other hidden unit functions:
 - maxout: take maximum of several values in previous layer.
 - purely linear: can serve as low-rank approximation.

- Forward propagation: Input information x propagates through network to produce output \hat{y} (and cost $J(\theta)$ in training)
- Back-propagation:
 - compute gradient w.r.t. model parameters
 - Cost gradient propagates backwards through the network
- Back-propagation is part of learning procedure (e.g. stochastic gradient descent), not learning procedure in itself.

Chain Rule of Calculus: Real Functions

Let

$$x, y, z \in \mathbb{R}$$
 $f, g : \mathbb{R} \to \mathbb{R}$
 $y = g(x)$
 $z = f(g(x)) = f(y)$

Then

$$\frac{dz}{dx} = \frac{dz}{dy}\frac{dy}{dx}$$

Chain Rule of Calculus: Multivariate Functions

Let

$$x \in \mathbb{R}^m, y \in \mathbb{R}^n, z \in \mathbb{R}$$
 $f : \mathbb{R}^n \to \mathbb{R}$
 $g : \mathbb{R}^m \to \mathbb{R}^n$
 $y = g(x)$
 $z = f(g(x)) = f(y)$

Then

$$\frac{\partial z}{\partial x_i} = \frac{\partial z}{\partial y_1} \frac{\partial y_1}{\partial x_i} + \frac{\partial z}{\partial y_2} \frac{\partial y_2}{\partial x_i} + \ldots + \frac{\partial z}{\partial y_n} \frac{\partial y_n}{\partial x_i} = \sum_{j=1}^n \frac{\partial z}{\partial y_j} \frac{\partial y_j}{\partial x_i}$$

 In order to write this in vector notation, we need to define the Jacobian matrix.

Jacobian

 The Jacobian matrix is the matrix of all first-order partial derivatives of a vector-valued function.

$$J = \frac{\partial g(x)}{\partial x} = \begin{bmatrix} \frac{\partial g(x)_1}{\partial x_1} & \cdots & \frac{\partial g(x)_1}{\partial x_m} \\ \frac{\partial g(x)_2}{\partial x_1} & & \frac{\partial g(x)_2}{\partial x_m} \\ \vdots & & \ddots & \vdots \\ \frac{\partial g(x)_n}{\partial x_1} & \cdots & \frac{\partial g(x)_n}{\partial x_m} \end{bmatrix}$$

- How to write in terms of gradients?
- We can write the chain rule as:

$$\nabla_{\mathbf{x}}z =$$

Jacobian

 The Jacobian matrix is the matrix of all first-order partial derivatives of a vector-valued function.

$$\boldsymbol{J} = \frac{\partial \boldsymbol{g}(\boldsymbol{x})}{\partial \boldsymbol{x}} = \begin{bmatrix} \frac{\partial \boldsymbol{g}(\boldsymbol{x})_1}{\partial x_1} & \cdots & \frac{\partial \boldsymbol{g}(\boldsymbol{x})_1}{\partial x_m} \\ \frac{\partial \boldsymbol{g}(\boldsymbol{x})_2}{\partial x_1} & & \frac{\partial \boldsymbol{g}(\boldsymbol{x})_2}{\partial x_m} \\ \vdots & \ddots & \vdots \\ \frac{\partial \boldsymbol{g}(\boldsymbol{x})_n}{\partial x_1} & \cdots & \frac{\partial \boldsymbol{g}(\boldsymbol{x})_n}{\partial x_m} \end{bmatrix}$$

- How to write in terms of gradients?
- We can write the chain rule as:

$$\nabla_{\mathbf{x}}z = \left(\frac{\partial \mathbf{y}}{\partial \mathbf{x}}\right)^T \nabla_{\mathbf{y}}z$$

Christian Heumann (CIS & Statistics LMU) Chapter 4: Introduction to Machine Learning October 2021 26 / 44

Viewing the Network as a Graph

- Nodes are function outputs (can be scalar or vector valued)
- Arrows are inputs
- Example: Scalar multiplication z = xy.

Which Function?

Graph with Cost

Which Function?

• Parameter vectors can be converted to matrix as needed.

• Green: known or computed.

• Green: known or computed.

• Green: known or computed.

• End of forward pass (some steps skipped).

Backward Pass

• Red: gradient of cost computed for node.

Backward Pass

• Red: gradient of cost computed for node.

Backward Pass

• Red: gradient of cost computed for node.

End of Backward Pass

• We have the gradients for all parameters, let's use them for SGD.

Summary

- Gradient descent: Minimize loss by iteratively substracting gradient from parameter vector.
- Stochastic gradient descent: Approximate gradient by considering small subsets of examples.
- Regularization: penalize large parameter values, e.g. by adding L2-norm of parameter vector.
- Feedforward networks: layers of (non-linear) function compositions.
- Output non-linearities: interpreted as probability densities (logistic sigmoid, softmax, Gaussian)
- Hidden layers: Rectified linear units (max(0, z))
- Backpropagation: Compute gradient of cost w.r.t. parameters using chain rule.

Regularization

- Overfitting vs. underfitting
- Regularization: Any modification to a learning algorithm for reducing its generalization error but not its training error
- Solution space is still the same

L2-Regularization

ullet Large parameters o overfitting

- Prefer models with smaller feature weights.
- Popular regularizers:
 - Penalize large L2 norm.
 - Penalize large L1 norm (aka LASSO, induces sparsity)

Regularization

- Add term that penalizes large L2 norm.
- ullet The amount of penalty is controlled by a parameter λ
 - Linear regression:

$$J(\boldsymbol{\theta}) = MSE(\boldsymbol{\theta}) + \frac{\lambda}{2}\boldsymbol{\theta}^{\mathsf{T}}\boldsymbol{\theta}$$

Logistic regression:

$$J(\boldsymbol{\theta}) = NLL(\boldsymbol{\theta}) + \frac{\lambda}{2}\boldsymbol{\theta}^T\boldsymbol{\theta}$$

 From a Bayesian perspective, L2-regularization corresponds to a Gaussian prior on the parameters.

L2-Regularization

 The surface of the objective function is now a combination of the original cost, and the regularization penalty.

L2-Regularization

• Gradient of regularization term:

$$\nabla_{\boldsymbol{\theta}} \frac{\lambda}{2} \boldsymbol{\theta}^{\mathsf{T}} \boldsymbol{\theta} = \lambda \boldsymbol{\theta}$$

• Gradient descent for regularized cost function:

$$egin{aligned} oldsymbol{ heta}_{t+1} &:= oldsymbol{ heta}_t - \eta
abla_{oldsymbol{ heta}}(extsf{NLL}(oldsymbol{ heta}_t) + \lambda oldsymbol{ heta}_t^{\mathsf{T}} oldsymbol{ heta}_t) \ &\Leftrightarrow \ oldsymbol{ heta}_{t+1} &:= (1 - \eta \lambda) oldsymbol{ heta}_t - \eta
abla_{oldsymbol{ heta}} extsf{NLL}(oldsymbol{ heta}_t) \end{aligned}$$