I. Finding the Open Circuit Time Constants τ_j 's

A. Example: CE Amplifier

• Small signal model

B. Procedure

- Eliminate all independent sources (e.g., $V_s --> 0$)
- Open-circuit all capacitors
- Find Thevenin resistance by applying i_t and measuring v_t .

C. Time Constant for C_{π}

• Result: (by inspection)

$$R_{T\pi} = R_s || r_{\pi}$$

$$\tau_{C_{\pi o}} = R_{T\pi} C_{\pi}$$

D. Time Constant for C_{μ}

• Same procedure:

• Let $R'_{in} = R_s \parallel r_{\pi}$ and $R'_{out} = r_o \parallel r_{oc} \parallel R_L$

$$i_{t} = \frac{v_{t} + v_{\pi}}{R'_{out}} + g_{m}v_{\pi}$$

$$\frac{v_{\pi}}{R'_{in}} = -i_{t} \text{ eliminate } v_{\pi}$$

$$\frac{v_{t}}{i_{t}} = R_{T\mu} = R'_{out} + R'_{in} \left(1 + g_{m}R'_{out}\right)$$

$$\tau_{C_{\mu o}} = R_{T\mu}C_{\mu} = \left[R'_{out} + R'_{in} \left(1 + g_{m}R'_{out}\right)\right]C_{\mu}$$

E. Dominant Pole for CE Amplifier

• Sum Individual time constants

$$b_1 = (R_{T\pi}C_{\pi} + R_{T\mu}C_{\mu})$$

$$b_1 = R'_{in}C_{\pi} + R'_{in}\left(1 + g_m R'_{out}\right)C_{\mu} + R'_{out}C_{\mu}$$

• Assume $\tau_1 >> \tau_2$

$$b_1 = \tau_1 + \tau_2 \approx \tau_1$$

$$\omega_{3dB} \approx \frac{1}{b_1} = \frac{1}{R'_{in}C_{\pi} + R'_{in}\left(1 + g_m R'_{out}\right)C_{\mu} + R'_{out}C_{\mu}}$$

- Very similar result to the Miller effect calculation
- Addtional term $R'_{out}C_{\mu}$ is taken into account

II. Common Collector Frequency Response

A. Small Signal Model

- Add C_{μ} and C_{π} to the two-port model from Chapter 8

B. Low Frequency Voltage Gain

$$\frac{v_{out}}{v_S} = \left(\frac{R_{in}}{R_S + R_{in}}\right) (1) \left(\frac{R_L}{R_L + R_{out}}\right)$$

• Substituting values for input and output resistance

$$\frac{v_{out}}{v_s} = \left(\frac{r_{\pi} + \beta_o R_L}{R_S + r_{\pi} + B_o R_L}\right) (1) \left(\frac{R_L}{R_L + \left(1/g_m\right) + \left(R_S/\beta_o\right)}\right)$$

C. Use Miller Approximation to Find Dominant Pole

• Voltage gain from B to E across C_{π}

$$A_{vC\pi} = \frac{R_L}{R_{out} + R_L} = \frac{R_L}{1/g_m + R_L}$$

• Total Capacitance seen at the input $C_T = (1-A_{\nu C\pi})C_{\pi} + C_{\mu}$

$$C_T = C_{\pi} \left(\frac{1/g_m}{(1/g_m) + R_L} \right) + C_{\mu}$$

• The venin resistance seen by C_T

$$R_T = R_S || R_{in}$$

D. Common Collector Dominant Pole

• The dominant time constant for a CC amplifier is

$$\tau = \left(R_S \parallel R_{in} \right) \left[\frac{C_{\pi}}{1 + g_m R_L} + C_{\mu} \right]$$

• Substitute for R_{in} and look at ω_{3dB}

$$\omega_{3dB} = \frac{1}{\left[\left(R_S \| \left(r_{\pi} + \beta_o R_L \right) \right) \left(\frac{C_{\pi}}{1 + g_m R_L} + C_{\mu} \right) \right]}$$

- Effect of C_{π} is small
- In general $R_S < R_{in}$ ---> frequency response is dominated by $R_S C_{\mu}$

III. Common Base Amplifier Frequency Response

A. Small Signal Model

• DC Gain

$$\frac{i_{out}}{i_s} = \left(\frac{R_S}{R_{in} + R_S}\right) (1) \left(\frac{R_{out}}{R_L + R_{out}}\right)$$

B. Use Method of Open Circuit Time Constants

• The venin resistance across C_{π}

$$R_{T\pi} = R_S \| R_{in} = R_S \| \left(1/g_m \right) \approx 1/g_m$$

• The venin resistance across C_{μ}

$$R_{T\mu} = R_{out} \| R_L \approx \beta_o r_o \| R_L \approx R_L$$

• Summing the open circuit time constants and taking reciprocal

$$\omega_{3dB} \approx \frac{1}{\left(C_{\pi}/g_{m}\right) + R_{L}C_{\mu}}$$

IV. Summary of Frequency Response of Single-Stages

CE/CS: with voltage output - suffers from Miller effect

CE/CS: with current output - "wideband"

CB/CG: "wideband"

CC/CD: "wideband"

- "Wideband" means that the stage can operate near the frequency limit of the device $\dots f_T$
- Frequency limitation is set by external circuit R_S and R_L