求線性同餘方程式特殊解的說明

對於線性同餘方程式: $ax \equiv b \pmod{n}$ … (1)

若 $d = \gcd(a, n)$ 整除 b, 則存在 d 個解。

已知 $\gcd\left(\frac{a}{d}, \frac{n}{d}\right) = 1$ (互質),則存在一個特殊解 $x \equiv x_0 \pmod{\frac{n}{d}}$ 。

若 $\gcd\left(\frac{a}{d}, \frac{n}{d}\right) \neq 1$,則 $\gcd(a, n) > d$ 。

由貝祖定理得知,存在整數對 (s,t) (可用歐幾里得延伸演算法求得),使得 ns + at = d ··· (2)。

因此, $x_0 = (b/d)t$ 是方程式 (1) 的一個解。

 $ax_0 \equiv b \pmod{n} \Rightarrow a(b/d)t \equiv b \pmod{n} \Rightarrow at \equiv d \pmod{n}$

符合方程式 (2) 去 mod n 的結果。

由以上可知,其他的解满足 $ax \equiv b \pmod{n}$ 皆為這種形式 $\{x_0 + k \frac{n}{d} \mid k \in \mathbb{Z}\}$

(在模 $\frac{n}{d}$ 底下,同餘 x_0 的其他解)。