

Master 2 Recherche AIC & SETI Reconnaissance et interaction vocale

Quelques bases de traitement du signal

G. Richard

Le « traitement du Signal » dans la reconnaissance vocale

Le « traitement du Signal » dans la reconnaissance vocale

Capture du son Localisation de la source sonore Débruitage, déréverbération Séparation de sources Décodage Séquence de mots reconnue

signal de parole

Le « traitement du Signal » dans la reconnaissance vocale

Capture du son Localisation de la source sonore Modèles acoustiques Débruitage, déréverbération Séparation de sources séquence de Décodage Analyse mots reconnue signal de parole **Paramétrisation** Modèles linguistiques •MFCC, LPCC,... •DNN,...

Contenu

Objectif du cours:

Présenter quelques bases du traitement du signal

Contenu

- Représentation de Fourier
- Échantillonnage
- Transformée en Z
- Transformée de Fourier Discrète
- Filtrage
- La représentation cepstrale

Représentation des signaux

Qu'est-ce qu'un signal ?

- Signal déterministe: $x(t) = A\cos(2\pi f_0 t)$
- Signal aléatoire

Représentation de Fourier

■ Séries de Fourier

Tout signal périodique x(t) de période T peut être décomposé sous la forme d'une série de Fourier :

$$x(t) = \sum_{-\infty}^{\infty} X_n e^{2j\pi nt/T}$$

$$X_n = \frac{1}{T} \int_{-T/2}^{T/2} x(t)e^{-2j\pi nt/T} dt$$

Soit x(t) et y(t) deux signaux périodiques de période T

Soit
$$z(t) = x(t).y^*(t)$$

Soit
$$z(t) = x(t).y^*(t)$$
 Alors $Z_n = \sum_{-\infty}^{\infty} X_k Y_{k-n}^*$

(Exercice)

Formule de Parseval

Soit x(t) et y(t) deux signaux périodiques de période T

Soit
$$z(t) = x(t).y^*(t)$$
 Alors $Z_n = \sum_{-\infty}^{\infty} X_k Y_{k-n}^*$

En faisant *n*=0, on obtient

$$\sum_{k=-\infty}^{\infty} X_k Y_{k-n}^* = \frac{1}{T} \int_{-T/2}^{T/2} x(t) y^*(t) dt$$

En faisant x(t) = y(t) on obtient

G. Richard

$$P = \sum_{k=-\infty}^{\infty} |X_k|^2 = \frac{1}{T} \int_{-T/2}^{T/2} |x(t)|^2 dt$$

Interprétation: La puissance d'un signal est égale à la somme des puissances élémentaires de chacune de ses composantes.

Composante = signal « sinusoidal »
$$\chi_n e^{2j\pi nt/T}$$

9

Représentation de Fourier (temps continu)

■ Soit x(t) appartenant à $L_2 \cap L_1$ la transformée de Fourier existe et appartient à L_2

$$X(f) = \int_{-\infty}^{+\infty} x(t)e^{-2j\pi ft}dt$$

$$x(t) = \int_{-\infty}^{+\infty} X(f)e^{2j\pi ft}df$$

Propriétés Propriétés

Properties	x(t)	X(f)
Convolution	$x(t) \star y(t)$	X(f)Y(f)
Similitude	x(at)	$\frac{1}{ a }X(f/ a)$
Translation	$x(t-t_0)$	$X(f)\exp(-2j\pi t_0 f)$
Modulation	$x(t)\exp(2j\pi f_0 t)$	$X(f-f_0)$
	real	$X(f) = X^*(-f)$

mportant?

Exercice

Parseval

$$E = \int_{-\infty}^{+\infty} |x(t)|^2 dt = \int_{-\infty}^{+\infty} |X(f)|^2 df$$

lacksquare Spectre (ou densité spectrale d'énergie): $|X(f)|^2$

Exemple: Spectre de quel signal?

Exemple: Spectre d'un segment de /i/

Représentation du signal

■ Soit un signal x(t) à valeurs continues dans le temps:

■ Soit x(nT) le signal échantillonné à des valeurs discrêtes *t=nT*

Échantillonnage: Formule de Poisson

■ Interprétation: Echantillonnage → périodisation du spectre

$$X_d(f) = \frac{1}{T} \sum_{m=-\infty}^{\infty} X_a(f+m/T) = \sum_{n=-\infty}^{\infty} x(n)e^{-2j\pi f nT}$$

G. Richard

Reconstruction

■ 2 situations:

Échantillonnage d'un signal à bande illimitée

■ Nécessité de filtrer le signal analogique pour obtenir un signal à bande limitée avant échantillonnage

$$\begin{array}{c|c} x(t) & x_1(t) & x_1(nT_e) \\ \hline & nT_e & \end{array}$$

Transformée en Z / TFTD

■ La transformée en Z d'un signal x(n) est donnée par:

$$X(z) = \sum_{n=-\infty}^{+\infty} x(n)z^{-n} \quad \text{avec} \quad z \in \mathcal{C} = \{z \in \mathbb{C} : R_1 < |z| < R_2\}$$

■ La Transformée de Fourier à Temps Discrêt (TFTD) est donnée par:

$$X(e^{2j\pi f}) = \sum_{n=-\infty}^{\infty} x(n)e^{-2j\pi nf}$$
 $x_n = \int_{-1/2}^{1/2} X(e^{2j\pi f})e^{2j\pi nf}df$

 $ightharpoonup X(e^{2j\pi f})$ est périodique de période 1

Quelques résultats

■ Le domaine de convergence D_c est une couronne circulaire

- Si x(n) est de durée finie D_c est le plan tout entier $D_c = R_1 \le |z| < \infty$
- Causalité: si *x(n)* est nul à gauche (*x(n)*= *0 pour n<0*) on a
 - Exemple:

$$x(n) = a^n u(n) \longrightarrow X(z) = \frac{1}{1 - az^{-1}}$$
 Converge pour $|z| > a$

Quelques propriétés

- Linéarité
- Symétrie hermitienne

$$x(n) \text{ real } \rightleftharpoons X(e^{2j\pi f}) = X^*(e^{-2j\pi f})$$

Convolution

$$y(n) = h(n) \star x(n) = \sum_{k=-\infty}^{\infty} h(k) x(n-k) \rightleftarrows \left\{ \begin{array}{l} Y(z) = H(z) X(z) \\ Y(e^{2j\pi f}) = H(e^{2j\pi f}) X(e^{2j\pi f}) \end{array} \right.$$

Décalage fréquentiel

$$y(n) = x(n) \exp(2j\pi f_0 n) \rightleftharpoons Y(e^{2j\pi f}) = X(e^{2j\pi (f - f_0)})$$

Décalage temporel (retard)

$$y(n) = x(n - n_0) \rightleftharpoons Y(e^{2j\pi f}) = e^{2j\pi f n_0} X(e^{2j\pi f})$$

 $Y(e^{2j\pi f}) = e^{-2j\pi f n_0} X(e^{2j\pi f})$

- Par définition, la TFTD est une fonction périodique de période 1.
- En pratique, nous prenons N échantillons, et on discrétise l'intervalle de fréquences [0-1] en L valeurs telles que:

$$f = k/L$$
 avec $k \in \{0,1,..L-1\}$

On obtient:

$$X_e(k/L) = \sum_{n=0}^{N-1} x_n e^{-2j\pi nk/L}$$

$$\{x_0, \cdots, x_{N-1}\} \rightleftharpoons \{X_0, \cdots, X_{N-1}\}$$
 with
$$\begin{cases} X_k = \sum_{n=0}^{N-1} x_n e^{-2j\pi nk/N} \\ x_n = \frac{1}{N} \sum_{k=0}^{N-1} X_k e^{2j\pi nk/N} \end{cases}$$

Relation TZ <-> TFD

Cela correspond à un échantillonnage de la transformée en z en N points régulièrement espacés autour du cercle unité

$$X(k) = X(z)|_{z=e^{2j\pi k/N}}$$

Représentation temps-fréquence

■ Transformée de Fourier discrête

$$X_k = \sum_{n=0}^{N-1} x_n e^{-2j\pi nk/N}$$
$$x_n = \frac{1}{N} \sum_{k=0}^{N-1} X_k e^{2j\pi nk/N}$$

 $|X_k|$

Spectrogramme

Droits d'usage autorisé

Paramétrisation: paramètres spectraux

■ Paramétrisation spectrale: analyse d'un signal audio (d'après Laroche)

Description du signal de parole

Importance de la taille de la fenêtre d'analyse

Bande étroite

Large bande

Spectrogrammes sur une voyelle /a/ avec un pitch montant

Spectrogramme des voyelles / a e i o u/

Représentations du signal audio

■ Exemple sur un signal audio: note Do (262 Hz) jouée par un piano et un violon.

- Exploitation de propriétés perceptives: Echelles fréquentielles non linéaires
 - Transformée à « Q » constant
 - Transformée temps- log(fréquence)

Notions de Filtrage

Système linéaire invariant dans le temps

Filtre est caractérisé par sa réponse impulsionnelle h(n) et sa fonction de transfert H(z)

 La convolution permet de caractériser la transformation entrée/sortie réalisée par un filtre linéaire invariant.

$$y(n) = \sum_{-\infty}^{\infty} x(k)h(n-k) = \sum_{-\infty}^{\infty} x(n-k)h(k)$$
$$y(n) = x(n) * h(n)$$

Notions de Filtrage (2)

Equation récurrente entrée/sortie (pour un filtre RIF)

$$y(n) = h(n) * x(n) = \sum_{i=0}^{N-1} a_i x(n-i)$$

■ Par transformée en Z:

$$Y(z) = \sum_{-\infty}^{\infty} y(n)z^{-n} \longrightarrow Y(z) = H(z)X(z)$$

■ Réponse en fréquence

$$H(e^{2j\pi f}) = \sum_{k=-\infty}^{\infty} h(k)e^{-2j\pi kf} = H(z)|_{z=e^{2j\pi f}}$$

$$H(e^{2j\pi f}) = |H(e^{2j\pi f})|e^{j\phi(f)}$$
Module Phase

Modèle source-filtre

■ enveloppe spectrale, source

Echelle Mel

- Correspond à une approximation de la sensation psychologique de hauteur d'un son (Tonie)
- Existence de formules analytiques:

$$mel(f) = 1000 \log_2(1 + \frac{f}{1000})$$

- **Exemples:**
 - Gamme mel

Gamme Hertz

Filtre en échelle Mel

■ Filtrage Mel (d'après Rabiner93)

Représentation cepstrale

■ Intérêt

Modèle source filtre de la parole

$$s(t) = g(t) * h(t)$$

Modèle source filtre dans le domaine spectral

$$S(\omega) = G(\omega)H(\omega)$$

✓ Cepstre (réél): somme de 2 termes

$$c(\tau) = FFT^{-1}\log|S(\omega)| = FFT^{-1}\log|G(\omega)| + FFT^{-1}\log|H(\omega)|$$

$$c_n = \frac{1}{N} \sum_{k=0}^{N-1} \log |X(k)| e^{2j(\pi)kn/N}$$

では、

Représentation cepstrale (d'après Furui2001)

Exemples:

- de Spectres à court terme (gauche)
- et de cepstre c(τ)
 (droite)
- τ est homogène à un temps et est appelé quéfrence

Représentation cepstrale

■ Séparation de la contribution du conduit vocal et de la source par liftrage

Cepstre réel

Représentation cepstrale

Contribution de la source

$$p_n = \sum_{i=-\infty}^{\infty} \alpha_i \delta(n-iT) \qquad \longrightarrow \qquad \hat{p}_n = \sum_{i=-\infty}^{\infty} \beta_i \delta(n-iT)$$

- Contribution du conduit vocal
- (hypothèse: filtre causal, stable, minimum de phase)

$$F(z) = K \frac{\prod_{j=1}^{M} (1 - a_j z^{-1})}{\prod_{j=1}^{N} (1 - b_j z^{-1})}$$

$$|a_j| < 1$$

$$|b_j| < 1$$

Représentation cepstrale

Contribution du conduit vocal

$$\log(F(z)) = \sum_{n=0}^{\infty} c_n z^{-n}$$

■ Développement en série

$$\log(1-a) = -\sum_{n=1}^{\infty} a^n/n \quad pour \quad |a| < 1$$

$$\hat{c}_n = \begin{cases} \log(K) & n = 0\\ -\sum_{j=1}^{M} \frac{a_j^n}{n} + \sum_{j=1}^{N} \frac{b_j^n}{n} & n > 0 \end{cases}$$
 $|z| > |a_j|, |b_j|$

一般复数

Représentation cepstrale

■ Exemples de liftres (d'après Calliope89)

(1) filtre rectangulaire
$$\begin{cases}
F_n = 1 & \text{si } n < n_0 \\
F_n = 0 & \text{si } n \ge n_0
\end{cases}$$

ou (2) filtre adouci
$$\begin{cases}
F_n = 1 & \text{si } n < n'_0 < n_0 \\
F_n = 1 - e^{-\alpha(n - n'_0)} & \text{si } n \ge n'_0
\end{cases}$$

ou (3) filtre de Combs
$$F_n = \hat{C}_n - C_{n-n_0}$$

F

Paramétrisation MFCC « Mel-Frequency Cepstral Coefficients »

Paramétrisation MFCC

Calcul des coefficients MFCC

$$\tilde{c}_n = \sum_{k=1}^K (\log \tilde{S}_k) \cos \left[n(k - \frac{1}{2}) \frac{\pi}{K} \right]$$
pour $n = 1, 2, \dots, L$

■ Une implémentation classique:

- 13 Coefficients (sans C0)
- Filtres Mels espaces de 150 Mel (largeur de bandes 300 Mels)
- Utilisation des dérivées premières et secondes
- Soit des vecteurs de 39 paramètres acoustiques

Lissage cepstral

■ Estimation de l'enveloppe par le cepstre:

- Calcul du cepstre réel Cn, puis lifrage basses quéfrences
- Reconstruction de l'enveloppe spectrale d'amplitude E =FFT(Cn)

■ MFCC toujours possible mais souvent remplacé par :

- Spectrogramme
- Mel-spectrogramme (plusieurs fenêtres successives autour de la fenêtre courante comme entrée du DNN): le plus courant
- Des « bancs de filtres perceptifs »
- Un réseau spécifique pour des features discriminants

- ... voir le signal de parole brut (mais pas encore aussi performant)

■ Pour en savoir plus:

- G. Blanchet, M. Charbit, « Signaux et images sous Matlab », Ed. Hermès, 2001
- (existe en anglais chez ISTE, 2006)

Quelques transparents supplémentaires pour le théorème d'échantillonnage

Système linéaire invariant dans le temps

Soit
$$x(t)$$
 u $x(t)$ $y(t)$

$$x(t) \to y(t) = \int_{\mathbb{R}} x(u)h(t-u)du = \int_{\mathbb{R}} h(u)x(t-u)du = y(t) \star h(t)$$

$$\Leftrightarrow Y(f) = H(f)X(f)$$

Échantillonnage

■ Soit x(n) la version échantillonnée de x_a(t) :

$$x(n) = x_a(nT)$$

■ Peut-on reconstruire $x_a(t)$ à partir de x(n) ?

$$x_a(t) = \sum_{n} x(n)h(t - nT)$$

■ En prenant la Transformée de Fourier

$$X_{a}(f) = \int_{-\infty}^{\infty} \sum_{n} x(n)h(t - nT)e^{-2j\pi ft}dt$$
$$= \sum_{n} x(n)e^{-2j\pi fnT}.H(f)$$
$$= X_{d}(f).H(f)$$

■ où

$$X_d(f) = \sum_{n} x(n)e^{-2j\pi f nT}$$

Échantillonnage (2)

\blacksquare Or $X_d(f)$ est périodique:

$$X_d(f) = X_d(f + 1/T)$$

■ Et est donc développable en série de Fourier

$$X_d(f) = \sum_{-\infty}^{\infty} X_n e^{-2j\pi f nT} = \sum_n x(n) e^{-2j\pi f nT}$$

avec

$$x(n) = \frac{1}{(1/T)} \int_{-1/2T}^{1/2T} X_d(f) e^{2j\pi f nT} df$$

Echantillonnage (3)

or
$$x_a(t) = \int_{-\infty}^{\infty} X_a(f)e^{2j\pi ft}df$$

Posons t=nT

$$x_a(nT) = \int_{-\infty}^{\infty} X_a(f)e^{2j\pi fnT}df$$
$$= \sum_{m=-\infty}^{\infty} \int_{\frac{2m-1}{2T}}^{\frac{2m+1}{2T}} X_a(f)e^{2j\pi fnT}df$$

$$x_{a}(nT) = \sum_{m=-\infty}^{\infty} \int_{-1/2T}^{1/2T} X_{a}(\nu + m/T) e^{2j\pi\nu nT} d\nu$$

$$= \int_{-1/2T}^{1/2T} \sum_{m=-\infty}^{\infty} X_{a}(\nu + m/T) e^{2j\pi\nu nT} d\nu$$

$$X_d(f) = \frac{1}{T} \sum_{m=-\infty}^{\infty} X_a(f + m/T)$$

Reconstruction (2)

Sans perte d'information possible uniquement si

$$\frac{1}{T} > 2B$$

En choisissant

$$H(f) = Trect_{2B}(f)$$
 \longrightarrow $h(t) = T.\frac{\sin(2\pi Bt)}{\pi t}$

■ Formule de reconstruction

$$x_a(t) = T \sum_{n=-\infty}^{\infty} x_a(nT) \frac{\sin(2\pi B(t-nT))}{\pi(t-nT)}$$

Reconstruction pratique

Bloqueur d'ordre zéro

$$x_0(t) = \sum_{k=-\infty}^{+\infty} x_a(kT_e)h(t - kT_e) \quad \text{où} \quad h(t) = \text{rect}_{(0,T_e)}(t)$$

$$X_0(F) = \frac{H(F)}{T_e} \sum_{n=0}^{+\infty} X_a(F - \frac{n}{T_e}) \quad \text{où} \quad H(F) = \frac{\sin(\pi F T_e)}{\pi F} e^{-j\pi F T_e}$$

