

Wyższa Szkoła Oficerska Sił Powietrznych

Podstawy Automatyki					
Rok akademicki	Rok studiów	Kierunek	Grupa		
2010/2011	2	Lotnictwo i Kosmonautyka	C9D2		
Sprawozdanie nr 5					
Nr 10	Łukasz Kusek				

Spis treści

1	Tra	nsmitancja	1				
2	Cha	Charakterystyki					
		Skokowa					
	2.3	Nyquista					
3	Nas	Nastawy regulatorów					
	3.1	Regulator PI	•				
	3.2	Regulator PID	•				
4	W_{Sl}	kaźniki jakości	4				

1 Transmitancja

2 Charakterystyki

2.1 Skokowa

2.2 Bode'go

2.3 Nyquista

3 Nastawy regulatorów

3.1 Regulator PI

$$K_r(s) = k * \frac{(s - z_1)}{s}$$

$$K_r(s) = 137,74 \frac{(s - (-5,31))}{s}$$

$$T_I = -\frac{1}{z_1} \qquad k_r = k *$$

$$T_I = -\frac{1}{-5,31} \qquad k_r = 137,74$$

$$T_I = 0,19 \qquad k_r = 137,74$$

3.2 Regulator PID

$$K_r(s) = k * \frac{s^2 + b_1 s + b_0}{s}$$

$$K_r(s) = 5,7592 \frac{s^2 + 31,9s + 254}{s}$$

$$T_I = \frac{b_1}{b_0} \qquad T_D = \frac{1}{b_1} \qquad k_r = \frac{k *}{T_D}$$

$$T_I = \frac{31,9}{254} \qquad T_D = \frac{1}{31,9} \qquad k_r = \frac{5,7592}{T_D}$$

$$T_I = 0.13$$
 $T_D = 0.031$ $k_r = 182.72$

4 Wskaźniki jakości

- Regulator P wprowadza uchyb, regulatory PI i PID nie
- Największe maksymalne przeregulowanie występuje dla regulatora PI, a najmniejsza dla P
- Najkrótszy czas regulacji występuje dla regulatora P, a największy dla PI
- Najkrótszy czas narastania pojawia się przy użyciu regulatora PID
- Najmniejsze pasmo przenoszenia ma regulator P, a największe PID
- Największy pik rezonansowy ma regulator PI, a najmniejszy regulator P
- Częstotliwość rezonansowa jest zbliżona dla wszystkich trzech regulatorów