HW_02_Gupta_S

Sumit Gupta

September 25, 2017

Question 1

```
a.
mean_x <- function(x)</pre>
ifelse(is.numeric(x), sum(x,na.rm=T)/length(x[!is.na(x)]),NaN)
mean_x(1:5)
## [1] 3
  b.
fn_input <- function(x)</pre>
  ifelse(sum(x[1:2]) > sum(x[3:4]), return(x), 0)
fn_input(1:6)
## [1] 0
fn_input(6:1)
## [1] 6 5 4 3 2 1
fn_fib<-function(n){</pre>
x=c(1,1)
for(i in 3:n){
  x[i]=x[i-1]+x[i-2]
return(x)
fn_fib(10)
## [1] 1 1 2 3 5 8 13 21 34 55
m1 <- matrix(1:16,4,4)
apply(m1,1,mean_x)
## [1] 7 8 9 10
apply(m1,2,mean_x)
## [1] 2.5 6.5 10.5 14.5
```

Question 2.

a.

airquality

##	Ozone	Solar.R	Wind	Temn	Month	Dav
## 1	41	190	7.4	67	5	1
## 2	36	118	8.0	72	5	2
## 3	12	149	12.6	74	5	3
## 4	18	313	11.5	62	5	4
## 5	NA	NA	14.3	56	5	5
## 6	28	NA	14.9	66	5	6
## 7	23	299	8.6	65	5	7
## 8	19	99	13.8	59	5	8
## 9	8	19	20.1	61	5	9
## 10	NA	194	8.6	69	5	10
## 11	7	NA	6.9	74	5	11
## 12	16	256	9.7	69	5	12
## 13	11	290	9.2	66	5	13
## 14	14	274	10.9	68	5	14
## 15	18	65	13.2	58	5	15
## 16	14	334	11.5	64	5	16
## 17	34	307	12.0	66	5	17
## 18	6	78	18.4	57	5	18
## 19	30	322	11.5	68	5	19
## 20	11	44	9.7	62	5	20
## 21	1	8	9.7	59	5	21
## 22	11	320	16.6	73	5	22
## 23	4	25	9.7	61	5	23
## 24	32	92	12.0	61	5	24
## 25	NA	66	16.6	57	5	25
## 26	NA	266	14.9	58	5	26
## 27	NA	NA	8.0	57	5	27
## 28	23	13	12.0	67	5	28
## 29	45	252	14.9	81	5	29
## 30	115	223	5.7	79	5	30
## 31	37	279	7.4	76	5	31
## 32	NA	286	8.6	78	6	1
## 33	NA	287	9.7	74	6	2
## 34	NA	242	16.1	67	6	3
## 35	NA	186	9.2	84	6	4
## 36	NA	220	8.6	85	6	5
## 37	NA	264	14.3	79	6	6
## 38	29	127	9.7	82	6	7
## 39	NA	273	6.9	87	6	8
## 40	71	291		90	6	9
## 41	39	323	11.5	87	6	10
## 42	NA	259	10.9	93	6	11
## 43	NA	250	9.2	92	6	12
## 44	23	148	8.0	82	6	13
## 45	NA	332	13.8	80	6	14
## 46	NA	322	11.5	79	6	15
## 47	21	191	14.9	77	6	16

##	48	37	284	20.7	72	6	17
##	49	20	37	9.2	65	6	18
##	50	12	120	11.5	73	6	19
##	51	13	137	10.3	76	6	20
##	52	NA	150	6.3	77	6	21
##	53	NA	59	1.7	76	6	22
##	54	NA	91	4.6	76	6	23
##	55	NA	250	6.3	76	6	24
##	56	NA	135	8.0	75	6	25
##	57	NA	127	8.0	78	6	26
##	58	NA	47	10.3	73	6	27
##	59	NA	98	11.5	80	6	28
##	60	NA	31	14.9	77	6	29
##	61	NA	138	8.0	83	6	30
##	62	135	269	4.1	84	7	1
##	63	49	248	9.2	85	7	2
##	64	32	236	9.2	81	7	3
##	65	NA	101	10.9	84	7	4
##	66	64	175	4.6	83	7	5
##	67	40	314	10.9	83	7	6
##	68	77	276	5.1	88	7	7
##	69	97	267	6.3	92	7	8
##	70	97	272	5.7	92	7	9
##	71	85	175	7.4	89	7	10
##	72	NA	139	8.6	82	7	11
##	73	10	264	14.3	73	7	12
##	74	27	175	14.9	81	7	13
##	75	NA	291	14.9	91	7	14
##	76	7	48	14.3	80	7	15
##	77	48	260	6.9	81	7	16
##	78	35	274	10.3	82	7	17
##	79	61		6.3			
			285		84	7	18
##	80	79	187	5.1	87	7	19
##	81	63	220	11.5	85	7	20
##	82	16	7	6.9	74	7	21
##	83	NA	258	9.7	81	7	22
##	84	NA	295	11.5	82	7	23
##		80	294	8.6	86	7	24
##	86	108	223	8.0	85	7	25
##	87	20	81	8.6	82	7	26
##	88	52	82	12.0	86	7	27
##	89	82	213	7.4	88	7	28
##	90	50	275	7.4	86	7	29
##	91	64	253	7.4	83	7	30
##	92	59	254	9.2	81	7	31
##	93	39	83	6.9	81	8	1
##	94	9	24	13.8	81	8	2
##	95	16	77	7.4	82	8	3
##	96	78	NA	6.9	86	8	4
##	97	35	NA	7.4	85	8	5
##	98	66	NA	4.6	87	8	6
##	99	122	255	4.0	89	8	7
##	100		229		90	8	8
##	101	110	207	8.0	90	8	9

##	102	NA	222	8.6	92	8	10
##	103	NA	137	11.5	86	8	11
##	104	44	192	11.5	86	8	12
##	105	28	273	11.5	82	8	13
##	106	65	157	9.7	80	8	14
##	107	NA	64	11.5	79	8	15
##	108	22	71	10.3	77	8	16
##	109	59	51	6.3	79	8	17
##	110	23	115	7.4	76	8	18
##	111	31	244	10.9	78	8	19
##	112	44	190	10.3	78	8	20
##	113	21	259	15.5	77	8	21
##	114	9	36	14.3	72	8	22
##	115	NA	255	12.6	75	8	23
##	116	45	212	9.7	79	8	24
##	117	168	238	3.4	81	8	25
##	118	73	215	8.0	86	8	26
##	119	NA	153	5.7	88	8	27
##	120	76	203	9.7	97	8	28
##	121	118	225	2.3	94	8	29
##	122	84	237	6.3	96	8	30
##	123	85	188	6.3	94	8	31
##	124	96	167	6.9	91	9	1
##	125	78	197	5.1	92	9	2
##	126	73	183	2.8	93	9	3
##	127	91	189	4.6	93	9	4
##	128	47	95	7.4	87	9	5
##	129	32	92	15.5	84	9	6
##	130	20	252	10.9	80	9	7
##	131	23	220	10.3	78	9	8
##	132	21	230	10.9	75	9	9
##	133	24	259	9.7	73	9	10
##	134	44	236	14.9	81	9	11
##	135	21	259	15.5	76	9	12
##	136	28	238	6.3	77	9	13
##	137	9	24	10.9	71	9	14
##	138	13	112	11.5	71	9	15
##	139	46	237	6.9	78	9	16
##	140	18	224	13.8	67	9	17
##	141	13	27	10.3	76	9	18
##	142	24	238	10.3	68	9	19
##	143	16	201	8.0	82	9	20
##	144	13	238	12.6	64	9	21
##	145	23	14	9.2	71	9	22
##	146	36	139	10.3	81	9	23
##	147	7	49	10.3	69	9	24
##	148	14	20	16.6	63	9	25
##	149	30	193	6.9	70	9	26
##	150	NA	145	13.2	77	9	27
##	151	14	191	14.3	75	9	28
##	152	18	131	8.0	76	9	29
##	153	20	223	11.5	68	9	30

```
library(dplyr)
## Warning: package 'dplyr' was built under R version 3.3.3
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
       intersect, setdiff, setequal, union
##
airquality<-na.omit(airquality)</pre>
airquality %>%
  group_by(Month) %>%
summarise(max wind=max(Wind), max ozone=max(Ozone))
## # A tibble: 5 x 3
   Month max wind max ozone
##
    <int>
             <dbl>
                        <dbl>
## 1
        5
              20.1
                         115
## 2
        6
               20.7
                           71
        7
## 3
               14.9
                          135
## 4
                          168
        8
              15.5
## 5
               16.6
                           96
Authors <- data.frame(surname = c("Tukey", "Venables", "Tierney", "Ripley", "McNeil"),
nationality = c("US", "Australia", "US", "UK", "Australia"))
Books <- data.frame(name = c("Tukey", "Venables", "Tierney", "Ripley", "Ripley", "McNeil", "R Core"),
title = c("Exploratory Data Analysis", "Modern Applied Statistics ...", "LISP-STAT", "Spatial Statistics
"Interactive Data Analysis", "An Introduction to R"))
merge(Authors, Books, by.x = "surname",by.y = "name", all = TRUE)
##
      surname nationality
                                                  title
## 1 McNeil Australia
                              Interactive Data Analysis
## 2 Ripley
                                     Spatial Statistics
                       IJK
## 3
      Ripley
                       UK
                                  Stochastic Simulation
## 4 Tierney
                       US
                                              LISP-STAT
## 5
        Tukey
                       US
                              Exploratory Data Analysis
              Australia Modern Applied Statistics ...
## 6 Venables
## 7
      R Core
                     <NA>
                                   An Introduction to R
text_str <- "To be, or not to be -- that is the question:</pre>
Whether 'tis nobler in the mind to suffer
The slings and arrows of outrageous fortune,
Or to take arms against a sea of troubles,
And by opposing end them. To die -- to sleep --
No more..."
text_str <- gsub("to",2, text_str, ignore.case = T)</pre>
```

```
text_str
```

[1] "2 be, or not 2 be -- that is the question:\nWhether 'tis nobler in the mind 2 suffer\nThe sling

Question 3.

a.

```
## Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
## 1949 112 118 132 129 121 135 148 148 136 119 104 118
## 1950 115 126 141 135 125 149 170 170 158 133 114 140
## 1951 145 150 178 163 172 178 199 199 184 162 146 166
## 1952 171 180 193 181 183 218 230 242 209 191 172 194
## 1953 196 196 236 235 229 243 264 272 237 211 180 201
## 1954 204 188 235 227 234 264 302 293 259 229 203 229
## 1955 242 233 267 269 270 315 364 347 312 274 237 278
## 1956 284 277 317 313 318 374 413 405 355 306 271 306
## 1957 315 301 356 348 355 422 465 467 404 347 305 336
## 1958 340 318 362 348 363 435 491 505 404 359 310 337
## 1959 360 342 406 396 420 472 548 559 463 407 362 405
## 1960 417 391 419 461 472 535 622 606 508 461 390 432
hist(AirPassengers, main = "Histogram distribution of Air Passengers")
```

Histogram distribution of Air Passengers

library(datasets) datasets::mtcars

```
##
                        mpg cyl disp hp drat
                                                  wt qsec vs am gear carb
## Mazda RX4
                              6 160.0 110 3.90 2.620 16.46
## Mazda RX4 Wag
                              6 160.0 110 3.90 2.875 17.02
                                                                          4
                       21.0
                                                             0
## Datsun 710
                       22.8
                              4 108.0 93 3.85 2.320 18.61
                                                                     4
## Hornet 4 Drive
                       21.4
                              6 258.0 110 3.08 3.215 19.44
                                                                Ω
                                                                          1
## Hornet Sportabout
                              8 360.0 175 3.15 3.440 17.02
                       18.7
                              6 225.0 105 2.76 3.460 20.22
## Valiant
                       18.1
                                                             1
                                                                          1
## Duster 360
                              8 360.0 245 3.21 3.570 15.84
                       14.3
                                                             0
                                                                          4
## Merc 240D
                                                                          2
                       24.4
                              4 146.7 62 3.69 3.190 20.00
                                                                0
## Merc 230
                       22.8
                              4 140.8 95 3.92 3.150 22.90
                                                                0
## Merc 280
                       19.2
                              6 167.6 123 3.92 3.440 18.30
                                                             1
                                                                0
                              6 167.6 123 3.92 3.440 18.90
## Merc 280C
                       17.8
                                                             1
                                                                     4
                                                                          4
## Merc 450SE
                              8 275.8 180 3.07 4.070 17.40
                                                                     3
                       16.4
## Merc 450SL
                       17.3
                              8 275.8 180 3.07 3.730 17.60
                                                                     3
                                                                          3
## Merc 450SLC
                       15.2
                              8 275.8 180 3.07 3.780 18.00
                                                                0
                                                                     3
                                                                          3
## Cadillac Fleetwood 10.4
                              8 472.0 205 2.93 5.250 17.98
                                                             0
                                                                0
                                                                     3
                                                                          4
                                                                     3
## Lincoln Continental 10.4
                              8 460.0 215 3.00 5.424 17.82
                              8 440.0 230 3.23 5.345 17.42
                                                                     3
## Chrysler Imperial
                       14.7
                                                             0
                                                                0
## Fiat 128
                       32.4
                              4 78.7 66 4.08 2.200 19.47
                                                             1
                                                                1
                                                                     4
                              4 75.7
## Honda Civic
                       30.4
                                       52 4.93 1.615 18.52
                                                                     4
                                                                          2
                                                                1
## Toyota Corolla
                       33.9
                              4 71.1 65 4.22 1.835 19.90
## Toyota Corona
                              4 120.1 97 3.70 2.465 20.01
                       21.5
                                                                          1
## Dodge Challenger
                              8 318.0 150 2.76 3.520 16.87
                                                                          2
                       15.5
## AMC Javelin
                                                                     3
                                                                          2
                       15.2
                              8 304.0 150 3.15 3.435 17.30
                                                                Ω
## Camaro Z28
                       13.3
                              8 350.0 245 3.73 3.840 15.41
## Pontiac Firebird
                       19.2
                              8 400.0 175 3.08 3.845 17.05
                                                             0
                                                                0
                                                                     3
                                                                          2
## Fiat X1-9
                       27.3
                              4 79.0 66 4.08 1.935 18.90
                                                                     4
                                                                          1
## Porsche 914-2
                              4 120.3 91 4.43 2.140 16.70
                                                                     5
                                                                          2
                       26.0
                                                               1
## Lotus Europa
                       30.4
                              4 95.1 113 3.77 1.513 16.90
                                                                          2
## Ford Pantera L
                              8 351.0 264 4.22 3.170 14.50
                                                                     5
                       15.8
                                                                          4
## Ferrari Dino
                       19.7
                              6 145.0 175 3.62 2.770 15.50
                                                             0
                                                                1
                                                                     5
                                                                          6
                                                                     5
## Maserati Bora
                       15.0
                              8 301.0 335 3.54 3.570 14.60
                                                                          8
## Volvo 142E
                       21.4
                              4 121.0 109 4.11 2.780 18.60
                                                                          2
                                                                     4
```

Scatterplot Example

c.

```
## Warning: package 'ggplot2' was built under R version 3.3.3

random_nos <- rnorm(1000)
  data<- data.frame(random_nos)

ggplot(data, aes(x=data)) + geom_histogram()+ggtitle("Normal Distribution")</pre>
### Daylor brown by the statement is allow sink and be for a biset of two plants from a Defaultion to the statement is allow sink and be for a biset of two plants from a Defaultion to the statement is allow sink and be for a biset of two plants from a Defaultion to the statement is allow sink and be for a biset of two plants from a Defaultion to the statement is allowed by the s
```

Don't know how to automatically pick scale for object of type data.frame. Defaulting to continuous.
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Normal Distribution

d.

library(lattice)

Warning: package 'lattice' was built under R version 3.3.3 diamonds

```
## # A tibble: 53,940 x 10
                 cut color clarity depth table price
##
      carat
                                                         Х
##
      <dbl>
                <ord> <ord>
                              <ord> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <</pre>
##
   1 0.23
               Ideal
                               SI2 61.5
                                                  326
                                                      3.95
                                                            3.98
                                                                  2.43
                         Ε
                                             55
##
   2 0.21
            Premium
                         Ε
                               SI1
                                    59.8
                                             61
                                                  326
                                                      3.89
                                                            3.84
                                                                  2.31
##
   3 0.23
                {\tt Good}
                         Ε
                               VS1 56.9
                                            65
                                                  327
                                                       4.05
                                                            4.07
                                                                  2.31
##
   4 0.29
            Premium
                               VS2 62.4
                                                  334
                                                       4.20
                                                            4.23 2.63
                         Ι
                                            58
##
   5 0.31
                Good
                               SI2 63.3
                                            58
                                                  335
                                                       4.34
                                                            4.35
                                                                   2.75
                          J
##
   6 0.24 Very Good
                          J
                               VVS2 62.8
                                                      3.94
                                                            3.96
                                            57
                                                  336
                                                                   2.48
                              VVS1
   7 0.24 Very Good
                         Ι
                                    62.3
                                            57
                                                  336
                                                      3.95
                                                            3.98 2.47
   8 0.26 Very Good
##
                         Н
                               SI1
                                    61.9
                                            55
                                                  337
                                                       4.07
                                                            4.11 2.53
## 9 0.22
                Fair
                         Ε
                               VS2 65.1
                                            61
                                                      3.87
                                                            3.78 2.49
                                                  337
## 10 0.23 Very Good
                         Н
                               VS1 59.4
                                             61
                                                  338 4.00 4.05 2.39
## # ... with 53,930 more rows
```

str(diamonds)

```
## Classes 'tbl_df', 'tbl' and 'data.frame': 53940 obs. of 10 variables:
## $ carat : num 0.23 0.21 0.23 0.29 0.31 0.24 0.24 0.26 0.22 0.23 ...
## $ cut : Ord.factor w/ 5 levels "Fair"<"Good"<..: 5 4 2 4 2 3 3 3 1 3 ...
## $ color : Ord.factor w/ 7 levels "D"<"E"<"F"<"G"<..: 2 2 2 6 7 7 6 5 2 5 ...</pre>
```

Diamond Price based on cut

e.

datasets::iris

##		Sepal.Length	Sepal.Width	${\tt Petal.Length}$	Petal.Width	Species
##	1	5.1	3.5	1.4	0.2	setosa
##	2	4.9	3.0	1.4	0.2	setosa
##	3	4.7	3.2	1.3	0.2	setosa
##	4	4.6	3.1	1.5	0.2	setosa
##	5	5.0	3.6	1.4	0.2	setosa
##	6	5.4	3.9	1.7	0.4	setosa
##	7	4.6	3.4	1.4	0.3	setosa
##	8	5.0	3.4	1.5	0.2	setosa
##	9	4.4	2.9	1.4	0.2	setosa
##	10	4.9	3.1	1.5	0.1	setosa

	11	5.4	3.7	1.5	0.2	setosa
##	12	4.8	3.4	1.6	0.2	setosa
##	13	4.8	3.0	1.4	0.1	setosa
##	14	4.3	3.0	1.1	0.1	setosa
##	15	5.8	4.0	1.2	0.2	setosa
##	16	5.7	4.4	1.5	0.4	setosa
##	17	5.4	3.9	1.3	0.4	setosa
##	18	5.1	3.5	1.4	0.3	setosa
##	19	5.7	3.8	1.7	0.3	setosa
##	20	5.1	3.8	1.5	0.3	setosa
##	21	5.4	3.4	1.7	0.2	setosa
##	22	5.1	3.7	1.5	0.4	setosa
##	23	4.6	3.6	1.0	0.2	setosa
##	24	5.1	3.3	1.7	0.5	setosa
##	25	4.8	3.4	1.9	0.2	setosa
##	26	5.0	3.0	1.6	0.2	setosa
##	27	5.0	3.4	1.6	0.4	setosa
##	28	5.2	3.5	1.5	0.2	setosa
##	29	5.2	3.4	1.4	0.2	setosa
##	30	4.7	3.2	1.6	0.2	setosa
##	31	4.8	3.1	1.6	0.2	setosa
##	32	5.4	3.4	1.5	0.4	setosa
##	33	5.2	4.1	1.5	0.1	setosa
##	34	5.5	4.2	1.4	0.2	setosa
##	35	4.9	3.1	1.5	0.2	setosa
##	36	5.0	3.2	1.2	0.2	setosa
##	37	5.5	3.5	1.3	0.2	setosa
##	38	4.9	3.6	1.4	0.1	setosa
##	39	4.4	3.0	1.3	0.2	setosa
##	40	5.1	3.4	1.5	0.2	setosa
##	41	5.0	3.5	1.3	0.3	setosa
##	42	4.5	2.3	1.3	0.3	setosa
##	43	4.4	3.2	1.3	0.2	setosa
##	44	5.0	3.5	1.6	0.6	setosa
##	45	5.1	3.8	1.9	0.4	setosa
	46	4.8	3.0	1.4	0.3	setosa
##		5.1	3.8	1.6	0.2	setosa
##	48	4.6	3.2	1.4	0.2	setosa
##		5.3	3.7	1.5	0.2	setosa
	50	5.0	3.3	1.4	0.2	setosa
	51	7.0	3.2	4.7	1.4 vers	
	52	6.4	3.2	4.5	1.5 vers	
	53	6.9	3.1	4.9	1.5 vers	
	54	5.5	2.3	4.0	1.3 vers	
	55	6.5	2.8	4.6	1.5 vers	
	56	5.7	2.8	4.5	1.3 vers	
	57	6.3	3.3	4.7	1.6 vers	
	58	4.9	2.4	3.3	1.0 vers	
	59	6.6	2.9	4.6	1.3 vers	
	60	5.2	2.7	3.9	1.4 vers	
	61	5.0	2.0	3.5	1.0 vers	
##		5.9	3.0	4.2	1.5 vers	
##		6.0	2.2	4.0	1.0 vers	
##		6.1	2.9	4.7	1.4 vers	
π#	O-I	0.1	۷. ن	I.1	T.4 ACT!	PICOTOT

0=				
## 65	5.6	2.9	3.6	1.3 versicolor
## 66	6.7	3.1	4.4	1.4 versicolor
## 67	5.6	3.0	4.5	1.5 versicolor
## 68	5.8	2.7	4.1	1.0 versicolor
## 69	6.2	2.2	4.5	1.5 versicolor
## 70	5.6	2.5	3.9	1.1 versicolor
## 71	5.9	3.2	4.8	1.8 versicolor
## 72	6.1	2.8	4.0	1.3 versicolor
## 73	6.3	2.5	4.9	1.5 versicolor
## 74	6.1	2.8	4.7	1.2 versicolor
## 75	6.4	2.9	4.3	1.3 versicolor
## 76	6.6	3.0	4.4	1.4 versicolor
	6.8	2.8	4.8	1.4 versicolor
## 78	6.7	3.0	5.0	1.7 versicolor
## 79	6.0	2.9	4.5	1.5 versicolor
## 80	5.7	2.6	3.5	1.0 versicolor
## 81	5.5	2.4	3.8	1.1 versicolor
## 82	5.5	2.4	3.7	1.0 versicolor
## 83	5.8	2.7	3.9	1.2 versicolor
## 84	6.0	2.7	5.1	1.6 versicolor
## 85	5.4	3.0	4.5	1.5 versicolor
## 86	6.0	3.4	4.5	1.6 versicolor
## 87	6.7	3.1	4.7	1.5 versicolor
## 88	6.3	2.3	4.4	1.3 versicolor
## 89	5.6	3.0	4.1	1.3 versicolor
## 90	5.5	2.5	4.0	1.3 versicolor
## 91	5.5	2.6	4.4	1.2 versicolor
## 92	6.1	3.0	4.6	1.4 versicolor
## 93	5.8	2.6	4.0	1.2 versicolor
## 93 ## 94	5.0	2.3	3.3	1.0 versicolor
## 95	5.6	2.7	4.2	1.3 versicolor
## 96	5.7	3.0	4.2	1.2 versicolor
## 97	5.7	2.9	4.2	1.3 versicolor
## 98	6.2	2.9	4.3	1.3 versicolor
## 99	5.1	2.5	3.0	1.1 versicolor
## 100	5.7	2.8	4.1	1.3 versicolor
## 101	6.3	3.3	6.0	2.5 virginica
## 102	5.8	2.7	5.1	1.9 virginica
## 103	7.1	3.0	5.9	2.1 virginica
## 104	6.3	2.9	5.6	1.8 virginica
## 105	6.5	3.0	5.8	2.2 virginica
## 106	7.6	3.0	6.6	2.1 virginica
## 107	4.9	2.5	4.5	1.7 virginica
## 108	7.3	2.9	6.3	1.8 virginica
## 109	6.7	2.5	5.8	1.8 virginica
## 110	7.2	3.6	6.1	2.5 virginica
## 111	6.5	3.2	5.1	2.0 virginica
## 112	6.4	2.7	5.3	1.9 virginica
## 112 ## 113	6.8	3.0	5.5	_
	5.7	2.5	5.0	2.0 virginica
## 115	5.8	2.8	5.1	2.4 virginica
## 116	6.4	3.2	5.3	2.3 virginica
## 117	6.5	3.0	5.5	1.8 virginica
## 118	7.7	3.8	6.7	2.2 virginica

```
## 119
                7.7
                             2.6
                                           6.9
                                                       2.3 virginica
## 120
                6.0
                             2.2
                                           5.0
                                                       1.5 virginica
## 121
                6.9
                             3.2
                                           5.7
                                                       2.3 virginica
## 122
                5.6
                             2.8
                                           4.9
                                                       2.0 virginica
## 123
                7.7
                             2.8
                                           6.7
                                                       2.0
                                                            virginica
## 124
                6.3
                             2.7
                                           4.9
                                                       1.8 virginica
## 125
                6.7
                             3.3
                                           5.7
                                                       2.1
                                                            virginica
                                                       1.8 virginica
## 126
                7.2
                             3.2
                                           6.0
## 127
                6.2
                             2.8
                                           4.8
                                                       1.8
                                                            virginica
## 128
                6.1
                             3.0
                                           4.9
                                                            virginica
                                                       1.8
## 129
                6.4
                             2.8
                                           5.6
                                                       2.1
                                                            virginica
## 130
                7.2
                             3.0
                                           5.8
                                                        1.6
                                                            virginica
## 131
                7.4
                             2.8
                                                            virginica
                                           6.1
                                                       1.9
## 132
                                                       2.0
                7.9
                             3.8
                                           6.4
                                                            virginica
## 133
                6.4
                             2.8
                                           5.6
                                                       2.2 virginica
## 134
                6.3
                             2.8
                                           5.1
                                                       1.5
                                                            virginica
## 135
                6.1
                             2.6
                                           5.6
                                                       1.4 virginica
## 136
                7.7
                             3.0
                                           6.1
                                                       2.3
                                                            virginica
## 137
                6.3
                             3.4
                                           5.6
                                                       2.4 virginica
## 138
                6.4
                             3.1
                                           5.5
                                                        1.8
                                                            virginica
## 139
                6.0
                             3.0
                                           4.8
                                                       1.8
                                                            virginica
## 140
                6.9
                             3.1
                                           5.4
                                                       2.1
                                                            virginica
## 141
                             3.1
                                                       2.4 virginica
                6.7
                                           5.6
## 142
                6.9
                             3.1
                                           5.1
                                                       2.3
                                                            virginica
## 143
                5.8
                             2.7
                                           5.1
                                                            virginica
                                                       1.9
## 144
                6.8
                             3.2
                                           5.9
                                                       2.3
                                                            virginica
## 145
                6.7
                             3.3
                                           5.7
                                                       2.5
                                                            virginica
## 146
                6.7
                             3.0
                                           5.2
                                                            virginica
                                                        2.3
## 147
                6.3
                             2.5
                                           5.0
                                                        1.9
                                                            virginica
## 148
                6.5
                             3.0
                                           5.2
                                                            virginica
                                                       2.0
## 149
                6.2
                             3.4
                                           5.4
                                                       2.3
                                                            virginica
## 150
                5.9
                             3.0
                                           5.1
                                                        1.8
                                                            virginica
```

```
ggplot(data = iris, aes(x=Sepal.Length, y=Sepal.Width))+
  geom_point(aes(color=Species, shape=Species))+
  xlab("Sepal Length")+ylab("Sepal Width")+
  ggtitle("Sepal Length Vs Sepal Width ")
```


