The Lasso

or: How I learned to Stop Worrying and Love ℓ_1 -regularization.

Andrew Blandino

University of California, Davis Research Training Group Seminar

June 1st, 2018

- Goals of Talk
- 2 Introduction to Regression
 - The Regression Model
 - Least Squares: Definition, Pros & Cons
- Introduction to Regularization
 - General Concept
 - Ridge Regression, pros and cons
- Introduction to the Lasso
 - Definition of Lasso, pros and cons
 - Choosing λ
 - Real data example
 - Variants of Lasso
 - Implementing the Lasso and Other methods

By the end of this talk you will, hopefully, be able to answer these questions:

• What is regularization? Why is it useful?

By the end of this talk you will, hopefully, be able to answer these questions:

- What is regularization? Why is it useful?
- What is the Lasso? What are its pros and cons?

By the end of this talk you will, hopefully, be able to answer these questions:

- What is regularization? Why is it useful?
- What is the Lasso? What are its pros and cons?
- How do I use the Lasso for my model?

By the end of this talk you will, hopefully, be able to answer these questions:

- What is regularization? Why is it useful?
- What is the Lasso? What are its pros and cons?
- How do I use the Lasso for my model?
- Which Lasso is right for me and/or my dataset?

Recall the regression model

$$Y_i = \beta_0 + \beta_1 X_{i1} + \dots + \beta_p X_{ip} + \epsilon_i, \quad i = 1, \dots, n.$$
 (1)

where

• ϵ_i : unobservable random errors (typically assume ϵ_i are i.i.d.).

Recall the regression model

$$Y_i = \beta_0 + \beta_1 X_{i1} + \dots + \beta_p X_{ip} + \epsilon_i, \quad i = 1, \dots, n.$$
 (1)

- ϵ_i : unobservable random errors (typically assume ϵ_i are i.i.d.).
- Y_i : response for the *i*th subject.

Recall the regression model

$$Y_i = \beta_0 + \beta_1 X_{i1} + \dots + \beta_p X_{ip} + \epsilon_i, \quad i = 1, \dots, n.$$
 (1)

- ϵ_i : unobservable random errors (typically assume ϵ_i are i.i.d.).
- Y_i : response for the *i*th subject.
- $X_{i1},...,X_{ip}$: covariates from the *i*th subject.

Recall the regression model

$$Y_i = \beta_0 + \beta_1 X_{i1} + \dots + \beta_p X_{ip} + \epsilon_i, \quad i = 1, \dots, n.$$
 (1)

- ϵ_i : unobservable random errors (typically assume ϵ_i are i.i.d.).
- *Y_i*: response for the *i*th subject.
- $X_{i1},...,X_{ip}$: covariates from the *i*th subject.
- $\beta_1,...,\beta_p$: coefficients relating covariates to the response, with intercept β_0 .

Least Squares Regression

One popular method for fitting this model is using the Least Squares estimator. The Least Squares estimator, $\hat{\beta}$, minimizes objective function

$$Q(\mathbf{b}) = Q(b_0, ..., b_p)$$

= $\sum_{i=1}^{n} (Y_i - b_0 - b_1 X_{i1} - ... - b_p X_{ip})^2$. (2)

Least Squares Regression

One popular method for fitting this model is using the Least Squares estimator. The Least Squares estimator, $\hat{\beta}$, minimizes objective function

$$Q(\mathbf{b}) = Q(b_0, ..., b_p)$$

= $\sum_{i=1}^{n} (Y_i - b_0 - b_1 X_{i1} - ... - b_p X_{ip})^2$. (2)

Hence, the estimator is defined by:

$$\hat{\beta} = \arg\min_{\boldsymbol{b}} Q(\boldsymbol{b}). \tag{3}$$

Least-Squares regression is a very popular method for several reasons:

• Tradition: discovered in early 1800's: Gauss, Legendre.

Least-Squares regression is a very popular method for several reasons:

- Tradition: discovered in early 1800's: Gauss, Legendre.
- Simplicity: solution has explicit form.

Least-Squares regression is a very popular method for several reasons:

- Tradition: discovered in early 1800's: Gauss, Legendre.
- Simplicity: solution has explicit form.
- Theoretical properties: unbiased, consistent, central limit theorem.

Least-Squares regression is a very popular method for several reasons:

- Tradition: discovered in early 1800's: Gauss, Legendre.
- Simplicity: solution has explicit form.
- Theoretical properties: unbiased, consistent, central limit theorem.
- Statistical Inference: with normality assumption of residuals, can perform hypothesis tests, construct confidence / prediction intervals, etc.

There are downsides to using Ordinary Least Squares:

 Too-generous (Lack of Sparsity): estimated coefficients are (practically) never zero.

There are downsides to using Ordinary Least Squares:

- Too-generous (Lack of Sparsity): estimated coefficients are (practically) never zero.
- Multicollinearity: unstable estimates with correlated independent variables.

There are downsides to using Ordinary Least Squares:

- Too-generous (Lack of Sparsity): estimated coefficients are (practically) never zero.
- Multicollinearity: unstable estimates with correlated independent variables.
- Overfitting: when $p \approx n$, fits the data 'too-well' i.e. lack of generalization.

There are downsides to using Ordinary Least Squares:

- Too-generous (Lack of Sparsity): estimated coefficients are (practically) never zero.
- Multicollinearity: unstable estimates with correlated independent variables.
- Overfitting: when $p \approx n$, fits the data 'too-well' i.e. lack of generalization.
- High-dimensional: no unique solution when p > n.

There are downsides to using Ordinary Least Squares:

- Too-generous (Lack of Sparsity): estimated coefficients are (practically) never zero.
- Multicollinearity: unstable estimates with correlated independent variables.
- Overfitting: when $p \approx n$, fits the data 'too-well' i.e. lack of generalization.
- High-dimensional: no unique solution when p > n.

These problems motivated researchers to develop alternative methods to address these issues.

There are downsides to using Ordinary Least Squares:

- Too-generous (Lack of Sparsity): estimated coefficients are (practically) never zero.
- Multicollinearity: unstable estimates with correlated independent variables.
- Overfitting: when $p \approx n$, fits the data 'too-well' i.e. lack of generalization.
- High-dimensional: no unique solution when p > n.

These problems motivated researchers to develop alternative methods to address these issues. Hence, the use of regularization.

Regularization example: Curve estimation

• Regularization easily understood in curve estimation:

$$Y_i = f(x_i) + \epsilon_i, i = 1, ..., n.$$

Regularization example: Curve estimation

• Regularization easily understood in curve estimation:

$$Y_i = f(x_i) + \epsilon_i, i = 1, ..., n.$$

ullet Obtain cubic smoothing spline estimate \hat{f} from minimization of

$$\sum_{i=1}^n \left(Y_i - \hat{f}(x_i)\right)^2 + \lambda \int \hat{f}''(x)^2 dx,$$

Regularization example: Curve estimation

• Regularization easily understood in curve estimation:

$$Y_i = f(x_i) + \epsilon_i, i = 1, ..., n.$$

ullet Obtain cubic smoothing spline estimate \hat{f} from minimization of

$$\sum_{i=1}^n \left(Y_i - \hat{f}(x_i)\right)^2 + \lambda \int \hat{f}''(x)^2 dx,$$

$$\sum_{i=1}^{n} \left(Y_i - \hat{f}(x_i) \right)^2 = \text{Goodness-of-fit}$$

$$\lambda \int \hat{f}''(x)^2 dx = \text{Regularity}$$

Regularization: No regularity

Regularization: Too much regularity

Regularization: Just right

Ridge regression [Hoerl & Kennard (1970)] uses same objective function with constraint:

$$\min_{\boldsymbol{b}} Q(\boldsymbol{b}) \quad \text{subject to} \quad \sum_{i=1}^{p} |b_i|^2 \le s, \tag{4}$$

where $s \ge 0$ is an additional parameter. Can equivalently write Ridge estimator as

$$\hat{\beta}_{Ridge,\lambda} = \arg\min_{\boldsymbol{b}} \left\{ Q(\boldsymbol{b}) + \lambda \sum_{i=1}^{p} |b_i|^2 \right\}, \tag{5}$$

where $\lambda \geq 0$ is a tuning parameter.

Andrew Blandino (RTG)

The Lass

Ridge regression [Hoerl & Kennard (1970)] uses same objective function with constraint:

$$\min_{\boldsymbol{b}} Q(\boldsymbol{b}) \quad \text{subject to} \quad \sum_{i=1}^{p} |b_i|^2 \le s, \tag{4}$$

where $s \ge 0$ is an additional parameter. Can equivalently write Ridge estimator as

$$\hat{\beta}_{Ridge,\lambda} = \arg\min_{\boldsymbol{b}} \left\{ Q(\boldsymbol{b}) + \lambda \sum_{i=1}^{p} |b_i|^2 \right\}, \tag{5}$$

where $\lambda \geq 0$ is a tuning parameter. In this form we can see

$$Q(\mathbf{b}) = \text{Goodness-of-fit}$$

$$\lambda \sum_{i=1}^{p} |b_i|^2 = \mathsf{Regularity}$$

◆ロト ◆個ト ◆意ト ◆意ト ■ める○

$$\hat{\beta}_{\textit{Ridge},\lambda} = \arg\min_{\pmb{b}} \left\{ Q(\pmb{b}) + \lambda \sum_{i=1}^{p} |b_i|^2 \right\},$$

Because of the added control of the tuning parameter we have the following observations for different values of λ :

• $\lambda = 0$: we obtain the Least Squares solution.

$$\hat{\beta}_{\textit{Ridge},\lambda} = \arg\min_{\pmb{b}} \left\{ Q(\pmb{b}) + \lambda \sum_{i=1}^{p} |b_i|^2 \right\},$$

Because of the added control of the tuning parameter we have the following observations for different values of λ :

- $\lambda = 0$: we obtain the Least Squares solution.
- $\lambda = \infty$: we obtain the trivial solution, b = 0.

$$\hat{\beta}_{\textit{Ridge},\lambda} = \arg\min_{\pmb{b}} \left\{ Q(\pmb{b}) + \lambda \sum_{i=1}^{p} |b_i|^2 \right\},$$

Because of the added control of the tuning parameter we have the following observations for different values of λ :

- $\lambda = 0$: we obtain the Least Squares solution.
- $\lambda = \infty$: we obtain the trivial solution, b = 0.
- $0 < \lambda < \infty$: we have shrunk version of the Least Squares solution.

$$\hat{\beta}_{\textit{Ridge},\lambda} = \arg\min_{\pmb{b}} \left\{ Q(\pmb{b}) + \lambda \sum_{i=1}^{p} |b_i|^2 \right\},$$

Because of the added control of the tuning parameter we have the following observations for different values of λ :

- $\lambda = 0$: we obtain the Least Squares solution.
- $\lambda = \infty$: we obtain the trivial solution, b = 0.
- $0 < \lambda < \infty$: we have shrunk version of the Least Squares solution.

Hence, λ is also called a shrinkage parameter.

Inspection of Constraint

A few comments on the constraint posed:

$$\sum_{i=1}^p |b_i|^2 \leq s.$$

Inspection of Constraint

A few comments on the constraint posed:

$$\sum_{i=1}^p |b_i|^2 \leq s.$$

• No constraint on intercept b_0 .

Inspection of Constraint

A few comments on the constraint posed:

$$\sum_{i=1}^p |b_i|^2 \le s.$$

- No constraint on intercept b₀.
- Scale of covariates X_i will affect solution.

Inspection of Constraint

A few comments on the constraint posed:

$$\sum_{i=1}^p |b_i|^2 \leq s.$$

- No constraint on intercept b₀.
- Scale of covariates X_i will affect solution.

Hence, we typically center and standardize the covariates $(X_i$'s), and center the response $(Y_i$'s).

Pros:

• High-dimensional: unique solution when p > n.

Pros:

- High-dimensional: unique solution when p > n.
- Multicollinearity: works well in spite of multicollinear data.

Pros:

- High-dimensional: unique solution when p > n.
- Multicollinearity: works well in spite of multicollinear data.
- Better fit: doesn't overfit when $p \approx n$ (with proper λ).

Pros:

- High-dimensional: unique solution when p > n.
- Multicollinearity: works well in spite of multicollinear data.
- Better fit: doesn't overfit when $p \approx n$ (with proper λ).
- Closed-form: calculate standard errors, asymptotics, etc.

Pros:

- High-dimensional: unique solution when p > n.
- Multicollinearity: works well in spite of multicollinear data.
- Better fit: doesn't overfit when $p \approx n$ (with proper λ).
- Closed-form: calculate standard errors, asymptotics, etc.

Cons:

Pros:

- High-dimensional: unique solution when p > n.
- Multicollinearity: works well in spite of multicollinear data.
- Better fit: doesn't overfit when $p \approx n$ (with proper λ).
- Closed-form: calculate standard errors, asymptotics, etc.

Cons:

• Biased: for $\lambda > 0$.

Pros:

- High-dimensional: unique solution when p > n.
- Multicollinearity: works well in spite of multicollinear data.
- Better fit: doesn't overfit when $p \approx n$ (with proper λ).
- Closed-form: calculate standard errors, asymptotics, etc.

Cons:

- Biased: for $\lambda > 0$.
- Too-generous (lack of sparsity): like OLS, estimated coefficients are (practically) never zero.

Introduction to Lasso

Tibshirani (1996) introduced the Least Absolute Shrinkage and Selection Operator

$$\min_{\boldsymbol{b}} Q(\boldsymbol{b}) \text{ subject to } \sum_{i=1}^{p} |b_i| \le s \tag{6}$$

for some s > 0. Or, equivalently,

$$\hat{eta}_{Lasso,\lambda} = \operatorname*{arg\,min}_{m{b}} \left\{ Q(m{b}) + \lambda \sum_{i=1}^{p} |b_i|
ight\},$$

for tuning parameter $\lambda > 0$.

◆ロト ◆部ト ◆差ト ◆差ト 差 めなべ

Difference between Lasso and Ridge

Notice that the only difference between the Lasso and Ridge is the 'loss' used for the penalty, i.e. both have constraint of the form

$$\sum_{i=1}^p l(b_i) \leq s.$$

- Lasso: $I(b_i) = |b_i| (\ell_1$ -penalty)
- Ridge: $I(b_i) = |b_i|^2 (\ell_2$ -penalty)

This seemingly minor detail has major ramifications towards the utility and popularity of the Lasso.

◆ロト ◆個ト ◆差ト ◆差ト 差 めなべ

• Variable Selection (Sparsity): can estimate regression coefficients as 0 i.e. principle of parsimony.

- Variable Selection (Sparsity): can estimate regression coefficients as 0
 i.e. principle of parsimony.
- Fast: can perform variable selection much faster than best-subsets for large number of predictors (LARS algorithm).

- Variable Selection (Sparsity): can estimate regression coefficients as 0
 i.e. principle of parsimony.
- Fast: can perform variable selection much faster than best-subsets for large number of predictors (LARS algorithm).
- Better fit: doesn't overfit when $p \approx n$ (with proper λ).

- Variable Selection (Sparsity): can estimate regression coefficients as 0
 i.e. principle of parsimony.
- Fast: can perform variable selection much faster than best-subsets for large number of predictors (LARS algorithm).
- Better fit: doesn't overfit when $p \approx n$ (with proper λ).
- Valid in High-Dimensions: works for p > n.

Comparison between Lasso and Ridge

(Graphic from Tibshirani)

• The Lasso can be viewed as a Bayes estimate.

- The Lasso can be viewed as a Bayes estimate.
- ullet Put Laplace (Double exponential) priors on each eta_j

$$\beta_j \stackrel{i.i.d.}{\sim} f(\beta_j) = \frac{\lambda}{2} \exp(-\lambda |\beta_j|)$$

- The Lasso can be viewed as a Bayes estimate.
- ullet Put Laplace (Double exponential) priors on each eta_j

$$\beta_j \overset{i.i.d.}{\sim} f(\beta_j) = \frac{\lambda}{2} \exp(-\lambda |\beta_j|)$$

• Then, for errors $\epsilon_i \overset{i.i.d.}{\sim} \mathcal{N}(0, \sigma^2)$, we get

$$\hat{eta}_{\textit{Lasso}} = rg \max_{eta} p(eta | Y, \sigma^2, \lambda).$$

- The Lasso can be viewed as a Bayes estimate.
- ullet Put Laplace (Double exponential) priors on each eta_j

$$\beta_j \overset{i.i.d.}{\sim} f(\beta_j) = \frac{\lambda}{2} \exp(-\lambda |\beta_j|)$$

• Then, for errors $\epsilon_i \overset{i.i.d.}{\sim} \mathcal{N}(0, \sigma^2)$, we get

$$\hat{eta}_{\textit{Lasso}} = rg \max_{eta} p(eta | Y, \sigma^2, \lambda).$$

Similarly, for Ridge regression

$$\hat{\beta}_{Ridge} = \underset{\beta}{\operatorname{arg max}} p(\beta|Y, \sigma^2, \lambda),$$

- The Lasso can be viewed as a Bayes estimate.
- Put Laplace (Double exponential) priors on each β_j

$$\beta_j \overset{i.i.d.}{\sim} f(\beta_j) = \frac{\lambda}{2} \exp(-\lambda |\beta_j|)$$

• Then, for errors $\epsilon_i \overset{i.i.d.}{\sim} \mathcal{N}(0, \sigma^2)$, we get

$$\hat{eta}_{\textit{Lasso}} = rg \max_{eta} p(eta | Y, \sigma^2, \lambda).$$

Similarly, for Ridge regression

$$\hat{eta}_{\mathit{Ridge}} = rg\max_{eta} p(eta|Y, \sigma^2, \lambda),$$

when $\beta_j \overset{i.i.d.}{\sim} \mathcal{N}(0,\lambda)$.

• Biased: unless $\lambda = 0$.

- Biased: unless $\lambda = 0$.
- Numerical Solution: due to ℓ_1 penalty, closed-form solution not possible.

- Biased: unless $\lambda = 0$.
- Numerical Solution: due to ℓ_1 penalty, closed-form solution not possible.
- Statistical Inference: harder to perform hypothesis tests, confidence intervals, etc.

- Biased: unless $\lambda = 0$.
- Numerical Solution: due to ℓ_1 penalty, closed-form solution not possible.
- Statistical Inference: harder to perform hypothesis tests, confidence intervals, etc.
- Multicollinearity: will select correlated predictors 'randomly'.

• Depends on goals of modeling (prediction error, inference, etc.).

- Depends on goals of modeling (prediction error, inference, etc.).
- Cross-validation (CV): most popular for estimating prediction error.

- Depends on goals of modeling (prediction error, inference, etc.).
- Cross-validation (CV): most popular for estimating prediction error.
- Generalized Cross-validation (GCV): extension on Cross-validation.

- Depends on goals of modeling (prediction error, inference, etc.).
- Cross-validation (CV): most popular for estimating prediction error.
- Generalized Cross-validation (GCV): extension on Cross-validation.
- Information Criteria: AIC, BIC, MDL etc.

Prostate Data

Prostate Data (Stamey et. al): interested in associating level of prostate-specific antigen (lpsa) with following clinical measures:

- lcavol: log cancer volume.
- lweight: log prostate weight.
- age: patient's age.
- 1bph: log of amount of benign prostate hyperplasia.
- svi: seminal vesicle invasion.
- 1cp: log of capsular penetration.
- gleason: Gleason score.
- pgg45: percent of Gleason scores 4 or 5.

97 patients, then randomly split into training group (67) and testing group (30).

Prostate Data: Comparison

Term	LS	Best Subset	Ridge	Lasso
Intercept	2.45	2.45	2.45	2.45
lcavol	0.716	0.78	0.604	0.562
lweight	0.293	0.352	0.286	0.189
age	-0.143	0	-0.108	0
lbph	0.212	0	0.201	0.003
svi	0.31	0	0.283	0.096
lcp	-0.289	0	-0.154	0
gleason	-0.021	0	0.014	0
pgg45	0.277	0	0.203	0
Test Error	0.549	0.548	0.517	0.453

Evolutions of Lasso: Adaptive Lasso

• Adaptive Lasso (Zou, 2006) modified ℓ_1 -penalty:

$$Q(\boldsymbol{b}) + \lambda \sum_{i=1}^{p} \frac{|b_i|}{\left(\left|\hat{\beta}_i^*\right|\right)^{\gamma}},$$

where $\hat{\beta}_i^*$ are initial estimates of β_i (say, from Ridge).

Evolutions of Lasso: Adaptive Lasso

• Adaptive Lasso (Zou, 2006) modified ℓ_1 -penalty:

$$Q(\boldsymbol{b}) + \lambda \sum_{i=1}^{p} \frac{|b_i|}{\left(\left|\hat{\beta}_i^*\right|\right)^{\gamma}},$$

where $\hat{\beta}_{i}^{*}$ are initial estimates of β_{i} (say, from Ridge).

Asymptotic Normality,

Evolutions of Lasso: Adaptive Lasso

• Adaptive Lasso (Zou, 2006) modified ℓ_1 -penalty:

$$Q(\boldsymbol{b}) + \lambda \sum_{i=1}^{p} \frac{|b_i|}{\left(\left|\hat{\beta}_i^*\right|\right)^{\gamma}},$$

where $\hat{\beta}_{i}^{*}$ are initial estimates of β_{i} (say, from Ridge).

- Asymptotic Normality,
- Selection Consistency.

Fused Lasso: for data with an inherent-ordering, Tibshirani et. al
 (2005) proposed the following modification:

$$\min_{\boldsymbol{b}} Q(\boldsymbol{b}) \quad \text{subject to } \begin{cases} \sum_{i=1}^p |b_i| \leq s_1 \\ \sum_{i=2}^p |b_i - b_{i-1}| \leq s_2 \end{cases}$$

Fused Lasso: for data with an inherent-ordering, Tibshirani et. al
 (2005) proposed the following modification:

$$\min_{\boldsymbol{b}} Q(\boldsymbol{b}) \quad \text{subject to } \begin{cases} \sum_{i=1}^{p} |b_i| \leq s_1 \\ \sum_{i=2}^{p} |b_i - b_{i-1}| \leq s_2 \end{cases}$$

Sparsity in coefficients and their differences.

 Fused Lasso: for data with an inherent-ordering, Tibshirani et. al (2005) proposed the following modification:

$$\min_{\boldsymbol{b}} Q(\boldsymbol{b}) \quad \text{subject to } \begin{cases} \sum_{i=1}^p |b_i| \leq s_1 \\ \sum_{i=2}^p |b_i - b_{i-1}| \leq s_2 \end{cases}$$

- Sparsity in coefficients and their differences.
- E.g. Spectrometry data, graphical models, etc.

 Fused Lasso: for data with an inherent-ordering, Tibshirani et. al (2005) proposed the following modification:

$$\min_{\boldsymbol{b}} Q(\boldsymbol{b}) \quad \text{subject to } \begin{cases} \sum_{i=1}^{p} |b_i| \leq s_1 \\ \sum_{i=2}^{p} |b_i - b_{i-1}| \leq s_2 \end{cases}$$

- Sparsity in coefficients and their differences.
- E.g. Spectrometry data, graphical models, etc.
- Can outperform Lasso with ordered data.

How Do I Lasso my dataset?

- (R) glmnet: fits (general) linear models (including other regression models: logistic, multinomial, etc.) with Elastic-Net (mixture of Ridge and Lasso).
- (R) monomvn: Bayesian Lasso.
- (SAS) PROC GLMSELECT: by specifying the model selection method to use Lasso (SELECTION=Lasso).
- (STATA) LassoPACK: fits Lasso, Ridge, A-Lasso, and also does K-fold cross-validation.

Bibliography & References I

LASSOPACK: Stata module for lasso, square-root lasso, elastic net, ridge, adaptive lasso estimation and cross-validation.

Statistical Software Components, Boston College Department of Economics, Feb. 2018.

B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. LEAST ANGLE REGRESSION.

The Annals of Statistics, 32(2):407-499, 2004.

T. Hastie, R. Tibshirani, and J. Friedman. *The Elements of Statistical Learning*. 2009.

Bibliography & References II

Ridge Regression: Biased Estimation for Nonorthogonal Problems. *Technometrics*, 12(1):55, feb 1970.

T. Park and G. Casella.

The bayesian lasso.

Journal of the American Statistical Association, 103(482):681–686, 2008.

R. Tibshirani.

Regression shrinkage and selection via the lasso.

Journal of the Royal Statistical Society. Series B (Methodological), pages 267–288, 1996.

Bibliography & References III

The Lasso: A brief Review and a new significance test, 2014 (accessed June 1, 2018).

http://statweb.stanford.edu/~tibs/ftp/ubctalk.pdf.

R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, and K. Knight. Sparsity and smoothness via the fused lasso.

J. R. Statist. Soc. B, 67(1):91–108, 2005.

The adaptive lasso and its oracle properties.

Journal of the American Statistical Association, 101(476):1418–1429, 2006.