Simulation on Shape from Shading

EE 702 Course Project Choice-1

Submission deadline - February 14, 2014

1. Setting up simulation environment

- (a) The source is to be located at infinity. Choose a source direction, say \hat{s} . Assume viewing direction is same as \hat{s} .
- (b) Assume a known lambertian surface z = z(x, y). Our aim is to recreate z(x, y) from its orthographic projection.
- (c) Calculate the normal \hat{n} at each point on the surface and hence calculate $E(x,y) = \hat{n}.\hat{s}$
- (d) Save E(x, y) and \hat{s} . The surface recovery is to be done using only these two quantities.
- (e) Also save the value of z(x, y), (p, q) and (f, g) on a closed curve. These will be used as boundary conditions in various equations.

2. Recovery of shape from shading

- (a) Obtain estimates \hat{p} , \hat{q} and \hat{z} and compare with the original data.
- (b) Change the value of λ used in the objective function and repeat the previous step. Comment on the effect of λ on error in estimates.
- (c) Add additive white gaussian noise to E(x, y) and do reconstruction.
- (d) Observe the effect of varying noise variance(σ^2) on reconstruction error.
- (e) Obtain estimate of z(x, y) using equations in (f, g).
- (f) Perturb \hat{s} and observe its effect on reconstruction of z(x,y).
- (g) Assume viewing direction is different from \hat{s} and obtain estimate of z(x,y).
- (h) Put two sources with relative strength α and β , i.e, $E(x,y) = \alpha \hat{n}.\hat{s_1} + \beta \hat{n}.\hat{s_2}$. Assume $\hat{s_1}$ and $\hat{s_2}$ are known. Recover z(x,y).
- (i) Experiment with real data e.g, from internet or your own images.