Introductory Applied Machine Learning

Ali Akbar Septiandri

November 3, 2017

for Astra Graphia IT

Daftar Isi

- 1. Pendahuluan
- 2. Konsep Data Mining
- 3. Tugas-tugas dalam Data Mining
- 4. Representasi Data
- 5. Tipe Data
- 6. Masalah pada Data

Pendahuluan

Materi

- 1. Konsep Data Mining
- 2. Tipe Data
- 3. Konsep Jarak Antardata
- 4. Eksplorasi Data
- 5. Klasifikasi
- 6. Regresi
- 7. Clustering
- 8. Dimensionality Reduction
- 9. Asosiasi / Sistem Rekomendasi

Referensi

VanderPlas, J. (2016). *Python Data Science Handbook*. O'Reilly Media.

Referensi

- 1. Witten, I. H., Frank, E., Hall, M. A., & Pal, C. J. (2016). Data Mining: Practical machine learning tools and techniques. Morgan Kaufmann. (slides tersedia online)
- 2. Leskovec, J., Rajaraman, A., & Ullman, J. D. (2014). *Mining of massive datasets*. Cambridge University Press. (tersedia online)
- 3. Provost, F., & Fawcett, T. (2013). *Data Science for Business*. O'Reilly Media, Inc.
- 4. Domingos, P. (2012). A few useful things to know about machine learning. *Communications of the ACM*, 55(10), 78-87. (tersedia online)

Administrasi

- Materi bisa dilihat di https://github.com/aliakbars/iaml
- 2. Pertemuan setiap hari Sabtu, pukul 09.00-16.00
- Bahasa/teknologi pengantar: Python, pandas, scikit-learn, Jupyter Notebook
- 4. Terdapat 3 tugas
- 5. Praktikum di tiap pertemuan

Belajar Python

A Whirlwind Tour of Python by Jake VanderPlas (OReilly). Copyright 2016 OReilly Media, Inc., 978-1-491-96465-1

Konsep Data Mining

Apa itu Data Mining?

Data Mining

• Generic: "the discovery of 'models' for data" [Leskovec, et al. 2014]

Data Mining

- Generic: "the discovery of 'models' for data" [Leskovec, et al. 2014]
- Statisticians: "the construction of statistical model, that is, an underlying distribution from which the visible data is drawn" [Leskovec, et al. 2014]

Data Mining

- Generic: "the discovery of 'models' for data" [Leskovec, et al. 2014]
- Statisticians: "the construction of statistical model, that is, an underlying distribution from which the visible data is drawn" [Leskovec, et al. 2014]
- Menemukan pola dalam data yang dapat memberikan wawasan atau memungkinkan pengambilan keputusan yang cepat dan akurat [Witten, et al. 2016]

Keterkaitan dengan Machine Learning

 Dalam prosesnya, algoritma machine learning sering digunakan untuk mempermudah proses data mining

Keterkaitan dengan Machine Learning

- Dalam prosesnya, algoritma machine learning sering digunakan untuk mempermudah proses data mining
- Machine learning dapat bekerja dengan baik jika pengetahuan yang kita miliki terbatas

Keterkaitan dengan Machine Learning

- Dalam prosesnya, algoritma machine learning sering digunakan untuk mempermudah proses data mining
- Machine learning dapat bekerja dengan baik jika pengetahuan yang kita miliki terbatas
- Jika polanya sudah *straightforward*, gunakan saja *if-then-else*!

Data Science Venn Diagram

Gambar 1: Pelatihan ini akan difokuskan pada machine learning

Data Mining & Big Data

Gambar 2: Dari

https://marketoonist.com/2014/01/big-data.html

Tren Data Mining

Gambar 3: Peningkatan minat data mining dilihat dari pustaka Python populer [Robinson, 2017]

Data Mining Deskriptif

- Tidak semua tugas dalam data mining memerlukan model yang melakukan prediksi
- Terdapat tugas yang sifatnya hanya deskriptif
- Salah satu contoh yang terkenal adalah algoritma PageRank (Page, et al. 1999)

PageRank

Gambar 4: Penerapan PageRank pada karakter serial Game of Thrones [Beveridge and Shan, 2016]

Heatmap

Gambar 5: Usia pernikahan [Yanurzha, 2017]

"First-timers are often surprised by how little time in a machine learning project is spent actually doing machine learning."

Sumber Data

Beberapa situs yang menyediakan data yang sudah siap diolah:

- 1. Kaggle (https://www.kaggle.com/datasets)
- 2. UCI Machine Learning Repository (https://archive.ics.uci.edu/ml/datasets.html)
- Portal Data Indonesia (http://data.go.id/)
- 4. SNAP (http://snap.stanford.edu/)

Sumber Data

Beberapa situs tidak menyediakan API untuk memberikan data karena:

- 1. tidak dikembangkan sejak awal;
- 2. tidak ingin datanya disebarkan, e.g. Instagram; atau
- 3. hanya bisa diakses terbatas, e.g. Microdata BPS

sehingga mungkin perlu dilakukan scraping.

"visible \neq accessible \neq storable \neq presentable" [Lavrenko, 2010]

Tugas-tugas dalam Data Mining

1. Memprediksi nilai yang sudah pasti

- 1. Memprediksi nilai yang sudah pasti
- 2. Biasanya direpresentasikan sebagai kelas biner $\{0, 1\}$ atau $\{-1, 1\}$

- 1. Memprediksi nilai yang sudah pasti
- 2. Biasanya direpresentasikan sebagai kelas biner $\{0, 1\}$ atau $\{-1, 1\}$
- 3. Membutuhkan label

- 1. Memprediksi nilai yang sudah pasti
- 2. Biasanya direpresentasikan sebagai kelas biner $\{0, 1\}$ atau $\{-1, 1\}$
- 3. Membutuhkan label
- 4. Mempunyai evaluation metrics yang jelas, e.g. akurasi

- 1. Memprediksi nilai yang sudah pasti
- 2. Biasanya direpresentasikan sebagai kelas biner $\{0, 1\}$ atau $\{-1, 1\}$
- 3. Membutuhkan label
- 4. Mempunyai evaluation metrics yang jelas, e.g. akurasi
- 5. Contoh: identifikasi spam, MNIST digit recognition

1. Membutuhkan label

- 1. Membutuhkan label
- 2. Memprediksi nilai kontinu

- 1. Membutuhkan label
- 2. Memprediksi nilai kontinu
- Evaluation metrics berupa error, e.g. Mean Squared Error (MSE), Mean Absolute Error (MAE)

- 1. Membutuhkan label
- 2. Memprediksi nilai kontinu
- Evaluation metrics berupa error, e.g. Mean Squared Error (MSE), Mean Absolute Error (MAE)
- 4. Contoh: prediksi nilai saham, jumlah RT dari suatu tweet

Klasifikasi vs Regresi

Gambar 6: Perbedaan klasifikasi dan regresi [Rossant, 2014]

Klasifikasi dan Regresi

Fungsi

Kedua tugas ini dapat dilihat sebagai fungsi f yang memetakan atribut x ke label y.

1. Mencoba memberikan deskripsi terhadap data

- 1. Mencoba memberikan deskripsi terhadap data
- 2. Tidak berhubungan dengan label

- 1. Mencoba memberikan deskripsi terhadap data
- 2. Tidak berhubungan dengan label
- 3. Menemukan pola yang "menarik" dalam data

- 1. Mencoba memberikan deskripsi terhadap data
- 2. Tidak berhubungan dengan label
- 3. Menemukan pola yang "menarik" dalam data
- 4. Tidak mempunyai evaluation metrics yang pasti

Gambar 7: Clustering buah lemon dan jeruk [Murray, 2011]

Gambar 8: Klaster dari dataset Iris

Gambar 8: Klaster dari dataset Iris

Gambar 8: Klaster dari dataset Iris

Gambar 8: Klaster dari dataset Iris

Perhitungan Jarak

1. Untuk mengetahui kedekatan, perlu diukur jarak antarcontoh (instances)

Perhitungan Jarak

- 1. Untuk mengetahui kedekatan, perlu diukur jarak antarcontoh (instances)
- 2. Jarak bernilai non-negatif

Perhitungan Jarak

- 1. Untuk mengetahui kedekatan, perlu diukur jarak antarcontoh (instances)
- 2. Jarak bernilai non-negatif
- 3. Contoh perhitungan jarak: *Jaccard distance*, *cosine similarity*, *Euclidean distance*

Asosiasi dengan Aturan

Jika diberikan sejumlah barang dalam beberapa keranjang belanja, tentukan aturan yang dapat menjelaskan adanya benda lain dalam keranjang tersebut!

Barang-barang

- 1. Roti, soda, susu
- 2. Bir, roti
- 3. Bir, soda, popok, susu
- 4. Bir, roti, popok, susu
- 5. Soda, popok, susu

Asosiasi dengan Aturan

Jika diberikan sejumlah barang dalam beberapa keranjang belanja, tentukan aturan yang dapat menjelaskan adanya benda lain dalam keranjang tersebut!

Barang-barang

- 1. Roti, soda, susu
- 2. Bir, roti
- 3. Bir, soda, popok, susu
- 4. Bir, roti, popok, susu
- 5. Soda, popok, susu

Aturan yang ditemukan

- $1. \ \{\mathsf{Susu}\} \to \{\mathsf{Soda}\}$
- $2. \ \{\mathsf{Popok}, \, \mathsf{susu}\} \to \{\mathsf{Bir}\}$

Sistem Rekomendasi

Gambar 9: Rekomendasi pada situs Amazon

Berikan rekomendasi sejumlah K konten kepada pengguna u, dari pilihan M konten yang tersedia!

Jenis-jenis Sistem Rekomendasi

1. Rekomendasi berdasarkan konten

"Pilih K konten yang variabelnya paling sesuai dengan variabel preferensi pengguna u"

Jenis-jenis Sistem Rekomendasi

1. Rekomendasi berdasarkan konten

"Pilih K konten yang variabelnya paling sesuai dengan variabel preferensi pengguna u"

2. Collaborative filtering

"Pilih K konten yang rating-nya paling sesuai dengan preferensi (rating) pengguna u"

Jenis-jenis Sistem Rekomendasi

1. Rekomendasi berdasarkan konten

"Pilih K konten yang variabelnya paling sesuai dengan variabel preferensi pengguna u"

2. Collaborative filtering

"Pilih K konten yang rating-nya paling sesuai dengan preferensi (rating) pengguna u"

3. Rekomendasi melalui klasifikasi

"Pilih K konten yang diklasifikasikan sebagai kelas positif untuk pengguna u"

Representasi Data

Variabel seperti apa yang dapat dipakai oleh sistem rekomendasi berdasarkan konten dari

aplikasi seperti Spotify?

Korelasi pada Spotify

Gambar 10: Hubungan cuaca dengan "keakustikan" musik [van Buskirk, 2017] yang dilihat dari bunyi-bunyi alat akustik, e.g. gitar dan tamborin, dibandingkan dengan bunyi-bunyi elektronik, e.g. synthesizer

Korelasi pada Spotify

Gambar 11: Hubungan cuaca dengan "energi" musik [van Buskirk, 2017] yang dilihat dari kecepatan, volume, dan kebisingan, misalnya perbandingan kontras antara musik *death metal* dan komposisi Bach

Data, Atribut, dan Objek

Data

Data merupakan kumpulan objek (*instances*) yang memiliki atribut-atribut tertentu

Data, Atribut, dan Objek

Data

Data merupakan kumpulan objek (*instances*) yang memiliki atribut-atribut tertentu

Atribut

Karakteristik dari suatu objek, dikenal juga dengan nama **variabel** atau **fitur**

Data, Atribut, dan Objek

Data

Data merupakan kumpulan objek (*instances*) yang memiliki atribut-atribut tertentu

Atribut

Karakteristik dari suatu objek, dikenal juga dengan nama **variabel** atau **fitur**

Objek

Dikenal juga dengan nama **record**, **poin**, **sampel**, **entitas**, atau **instance**

Dari contoh kasus Spotify tadi, mana yang merupakan atributnya dan mana yang merupakan objeknya?

Nilai dan Tipe dari Atribut

1. Nilai dari suatu atribut dapat berupa simbol maupun angka

Nilai dan Tipe dari Atribut

- 1. Nilai dari suatu atribut dapat berupa simbol maupun angka
- 2. Atribut yang sama dapat dipetakan ke beberapa nilai yang berbeda, misalnya karena beda satuan

Nilai dan Tipe dari Atribut

- 1. Nilai dari suatu atribut dapat berupa simbol maupun angka
- 2. Atribut yang sama dapat dipetakan ke beberapa nilai yang berbeda, misalnya karena beda satuan
- 3. Ada tiga tipe atribut secara umum: categorical/nominal, ordinal, numeric

Atribut Nominal

- 1. Atribut nominal bernilai saling lepas (mutually exclusive)
- 2. Perbandingan yang dapat dilakukan hanya menguji kesamaan $(=, \neq)$
- 3. Tidak dapat diurutkan maupun diukur jaraknya
- 4. Contoh: Warna mata, genre musik, pekerjaan

Atribut Ordinal

- Terdapat urutan yang ada secara natural, e.g. {kecil, sedang, besar} atau {tidak suka, netral, suka}
- 2. Dikodekan sebagai angka untuk mempertahankan urutan sehingga dapat dibandingkan (<,=,>)
- 3. Terkadang sulit untuk dibedakan dengan nominal, e.g. apakah ada urutan untuk {belum menikah, menikah, bercerai}?

Atribut Numerik

- Dapat bernilai bulat atau riil sehingga bisa dijumlahkan atau dirata-rata
- 2. Sensitif terhadap nilai ekstrem, e.g. tinggi: {165,171,182,1850}
- 3. Terkadang dibedakan sebagai ratio dan interval

Ratio vs Interval

Ratio

Punya referensi nilai nol, e.g. berat, tinggi, jarak, suhu dalam Kelvin

Ratio vs Interval

Ratio

Punya referensi nilai nol, e.g. berat, tinggi, jarak, suhu dalam Kelvin

Interval

Tidak punya referensi nilai nol, e.g. suhu dalam Celsius atau Fahrenheit, tahun

Kasus dalam Atribut Numerik

- 1. Distribusi yang memiliki kecondongan, e.g. *power law* distribution
- 2. Efek non-monotonik dari atribut, e.g. usia dalam menentukan pemenang marathon
- 3. Terkadang perlu dilakukan normalisasi (berpusat di nol atau $\left[0,\,1\right]$)

Distribusi yang Condong

Gambar 12: Power law distribution [Bersin, 2014]

Tipe Data

Data Matriks

Gambar 13: Data preferensi bubur ayam

Data Matriks

- 1. Bentuk data paling sederhana
- 2. Sudah siap diolah
- 3. Dikenal juga sebagai data terstruktur
- 4. Contoh lain: data transaksi, hasil penapisan verbal

Gambar

Gambar 14: Contoh data MNIST [O'Shea, 2016]

 Bagaimana cara merepresentasikan gambar?

Gambar

Gambar 14: Contoh data MNIST [O'Shea, 2016]

- Bagaimana cara merepresentasikan gambar?
- 2. Jika tiap pixel adalah atribut, berapa nilainya yang mungkin?

Gambar

Gambar 14: Contoh data MNIST [O'Shea, 2016]

- Bagaimana cara merepresentasikan gambar?
- 2. Jika tiap pixel adalah atribut, berapa nilainya yang mungkin?
- 3. Apa kelebihan dan kekurangannya?

Gambar: Object Recognition

Gambar 15: Dataset CIFAR-10 [Krizhevsky, 2009]

- Bagaimana dengan prediksi objek?
- 2. Tantangan: orientasi, skala, pencahayaan
- Menggunakan pixels saja (mungkin) tidak cukup!
- 4. Bisa dibagi berdasarkan "region"

Misklasifikasi dalam Pengenalan Objek

Gambar 16: Gedung yang dianggap sebagai burung unta setelah diterapkan *noise*

Teks

Contoh tugas:

- 1. berita \rightarrow topik
- $2. \ \text{e-mail} \to \text{spam}$
- 3. tweet \rightarrow sentimen

Bagaimana merepresentasikannya?

1. Representasi *bag-of-words* (BoW), i.e. **satu kata mewakili satu atribut**

- 1. Representasi *bag-of-words* (BoW), i.e. **satu kata mewakili satu atribut**
- 2. Bernilai 1 jika terdapat di contoh teks, 0 jika tidak

- 1. Representasi *bag-of-words* (BoW), i.e. **satu kata mewakili satu atribut**
- 2. Bernilai 1 jika terdapat di contoh teks, 0 jika tidak
- 3. Dapat diubah menjadi frekuensi atau bobot (TF-IDF)

- 1. Representasi *bag-of-words* (BoW), i.e. **satu kata mewakili satu atribut**
- 2. Bernilai 1 jika terdapat di contoh teks, 0 jika tidak
- Dapat diubah menjadi frekuensi atau bobot (TF-IDF)
- 4. **Catatan:** Dimensinya bisa jadi sangat besar dan matriksnya akan menjadi *sparse*

Jejaring Sosial

Gambar 17: Graf dari drama Romeo dan Juliet berdasarkan kemunculan karakter di satu babak yang sama

Struktur Kimia

Gambar 18: Struktur kimia benzena [Hardinger, 2017]

Adjacency Matrix

Gambar 19: Adjacency matrix dari graf [Easley dan Kleinberg, 2010]

Genomic Sequence

Gambar 20: Urutan genom [Global Biodefense, 2014]

Spatio-Temporal

Gambar 21: Peta perjalanan seseorang yang direkam oleh Google Maps

Masalah pada Data

Dealing with Structures

Gambar 22: Data yang strukturnya berbentuk pohon

- Atribut dapat berupa jalur dari akar ke daun
- 2. Contoh: {2-7-2-NA, 2-7-6-5, 2-7-6-11, ...}

Missing Values

- 1. Tipe: tidak diketahui, tidak tersimpan, tidak relevan
- 2. Penyebab: perubahan desain eksperimen, penggabungan dataset, dsb.
- 3. Sangat mungkin terjadi!

Missing Values - Solusi

- 1. Nominal: Gunakan label spesial, e.g. "NA"
- 2. Numerik: Diganti nilainya, e.g. rata-rata atau median atribut tersebut
- 3. Algoritma: Beberapa algoritma, e.g. Naïve Bayes dan *decision trees* dapat menyelesaikan kasus ini
- 4. Buang instance-nya

Inaccurate Values

- 1. Kasus-kasus pencilan, kesalahan pengukuran, duplikat
- 2. Pahami datanya!
- 3. Dapat dibuang dengan konsekuensi terhadap akurasi model

Imbalanced Data

- 1. Kasus umum pada klasifikasi, e.g. diagnosis pasien
- 2. Frekuensi salah satu kelas lebih banyak dibanding kelas lain
- 3. Mungkin perlu metrics selain akurasi
- 4. Ongkos kesalahan klasifikasi yang mungkin perlu dibuat tidak seimbang
- 5. Lihat [Kotsiantis, et al., 2006]!

Jure Leskovec, Anand Rajaraman, and Jeffrey D. Ullman (2014)

Mining of Massive Datasets

Cambridge University Press

Ian H. Witten, Eibe Frank, Mark A. Hall, and Christopher J. Pal (2016)

Data Mining: Practical machine learning tools and techniques

Morgan Kaufmann

Andrew Beveridge and Jie Shan (2016)

Network of Thrones

Math Horizons, 23(4): 18-22

David Robinson (14 September 2017)

Why is Python Growing So Quickly?

https://stackoverflow.blog/2017/09/14/python-growing-quickly/

Ramda Yanurzha (31 Mei 2017)

Berbagi Nama (Belakang)

https://medium.com/@ramda/ berbagi-nama-belakang-f91b75c4aa39

Victor Lavrenko (2010)

Text Technologies

http://www.inf.ed.ac.uk/teaching/courses/tts/pdf/crawl-2x2.pdf

Cyrille Rossant (2014)

Introduction to Machine Learning in Python with scikit-learn

http://ipython-books.github.io/featured-04/

Iain Murray (2011)

Oranges, Lemons and Apples dataset

http://homepages.inf.ed.ac.uk/imurray2/teaching/oranges_and_lemons/

Eliot Van Buskirk (7 Februari 2017)

Spotify, Accuweather Reveal How Weather Affects Music Listening

```
https://insights.spotify.com/us/2017/02/07/spotify-accuweather-music-and-weather/
```


Josh Bersin (19 Februari 2014)

The Myth Of The Bell Curve: Look For The Hyper-Performers

```
https:
```

```
//www.forbes.com/sites/joshbersin/2014/02/19/
the-myth-of-the-bell-curve-look-for-the-hyper-performe
```


Tim O'Shea (Juli 2016)

MNIST Generative Adversarial Model in Keras

Alex Krizhevsky (2009)

Learning Multiple Layers of Features from Tiny Images

https://www.cs.toronto.edu/~kriz/cifar.html

Steve Hardinger (diakses 27 Februari 2017)

Illustrated Glossary of Organic Chemistry

http://web.chem.ucla.edu/~harding/IGOC/B/benzene_ring.html

David Easley & Jon Kleinberg (2010)

Networks, crowds, and markets: Reasoning about a highly connected world

Cambridge University Press

Global Biodefense (25 Juni 2014)

USAMRIID Leads Effort on Viral Genome Sequencing Standards

https://globalbiodefense.com/2014/06/25/ usamriid-leads-effort-viral-genome-sequencing-standards

Sotiris Kotsiantis, Dimitris Kanellopoulos, Panayiotis Pintelas (2006)

Handling imbalanced datasets: A review

GESTS International Transactions on Computer Science and Engineering, 30(1), 25-36.

Terima kasih