1 CCINP 1

2 Centrale/Mines 3

 $3 ext{ X/ENS}$

1 CCINP

Exercice 1:

Soit $A \in \mathcal{M}_n(\mathbb{R})$ et $f: X \in \mathcal{M}_n(\mathbb{R}) \mapsto AXA$.

Etudier le rang de f lorsque A = diag(1, ..., 1, 0, ..., 0) (r coefficients 1), puis dans le cas général.

Exercice 2:

- 1. Existence et valeur de $\int_0^{+\infty} te^{-nt} dt$, $n \in \mathbb{N}^*$.
- 2. Existence et valeur de $\int_0^{+\infty} \frac{e^{-\sqrt{t}}}{1 e^{-\sqrt{t}}} dt$.

Exercice 3:

Etudier la limite de $x \sum_{n=1}^{+\infty} \frac{1}{n^{1+x}}$ quand $x \to 0^+$.

Exercice 4:

- 1. Soit $A \in \mathcal{M}_3(K)$ nilpotente de rang 2. Montrer que A est semblable à $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$.
- 2. Soient $A, B \in \mathcal{M}_3(K)$ nilpotentes. Montrer que A et B sont semblables si et seulement si rg(A) = rg(B).

Exercice 5:

Rayon de convergence et calcul dans]-R,R[de $\sum_{n=1}^{+\infty}n^2x^n$.

Exercice 6:

$$A = \begin{pmatrix} a & b & c & d \\ 1 & e & f & g \\ 0 & 1 & h & i \\ 0 & 0 & 1 & j \end{pmatrix} \in \mathcal{M}_4(K).$$

Montrer que A est diagonalisable dans $\mathcal{M}_n(K)$ si et seulement si elle possède quatre valeurs propres distinctes dans K.

Exercice 7:

- 1. Intervalle de définition I de $f: x \mapsto \int_0^{+\infty} \frac{dt}{t + e^{xt}}$.
- 2. Déterminer $\lim_{t\to\infty} f$ puis un équivalent simple de f en $+\infty$ (changement de variable).
- 3. Déterminer $\lim_{n \to \infty} f$.

Exercice 8:

On dispose de deux dés "pipés". On se demande si la somme S des numéros des deux dés peut vérifier $\forall k \in [2, 12], P(S = k) = \frac{1}{11}$?

En d'autres termes, on se donne X, Y variables aléatoires indépendantes à valeurs dans $\{1, ..., 6\}$ (non nécessairement de même loi), et on pose S = X + Y.

On suppose $\forall k \in [2, 12], P(S = k) = \frac{1}{11}$.

On note $G_X(t) = \sum_{k=0}^{+\infty} P(X=k)t^k$ la fonction caractéristique de X.

- 1. Donner $G_S(t)$, et une relation entre $G_X(t)$, $G_Y(t)$, et $G_S(t)$.
- 2. Etablir une contradiction (considérer les racines).

Exercice 9:

 $m, n \in \mathbb{N}^*$. On munit $\Omega = \mathcal{F}(\{1, ..., m\}, \{1, ..., n\})$ de l'équiprobabilité.

Si $\omega \in \Omega$, $X(\omega)$ est le nombre de points de $\{1,...,n\}$ sans antécédents par ω .

Déterminer E(X) et V(X).

On pourra utiliser les variables aléatoires $X_i(\omega) = \begin{cases} 1 \text{ si i n'a pas d'antecedent par } \omega \\ 0 \text{ sinon} \end{cases}$.

Déterminer E(Y) où $Y(\omega) = card(Im(\omega))$.

Exercice 10:

Soient $a, b \in \mathbb{R}$ avec |a| < 1. (u_n) vérifie $u_{n+1} = a\sin(u_n) + b$.

Montrer que $|u_{p+1} - u_p| \le |a|^p |u_1 - u_0|$. En déduire que (u_n) converge.

Exercice 11:

Résoudre, sur un intervalle à préciser, $4xy'' - 2y' + 9x^2y = 0$ (séries entières)

Exercice 12: Soit E un K-ev de dimension finie et $f \in \mathcal{L}(E)$.

On suppose qu'il existe $P \in K[X]$ tel que P(f) = 0, P(0) = 0, et $P'(0) \neq 0$.

Montrer que $Im(f) \oplus Ker(f) = E$.

Que peut-on dire si E n'est pas supposé de dimension finie?

Exercice 13:

1. Soient $f, g: I \to \mathbb{R}$ croissantes, où I est une partie de \mathbb{R} .

Soit X une variable aléatoire à valeurs dans I, et Y une variable aléatoire indépendante de même loi.

En considérant (f(X) - f(Y))(g(X) - g(Y)), montrer que $Cov(f(X), g(X)) \ge 0$.

2. Si
$$a_1 \leq ... \leq a_n$$
 et $b_1 \leq ... \leq b_n$ sont des réels, montrer que
$$\frac{1}{n} \sum_{i=1}^n a_i b_i \geq \frac{1}{n^2} \left(\sum_{i=1}^n a_i \right) \left(\sum_{i=1}^n b_i \right).$$

Exercice 14: CCP

1. Soit $A \in \mathcal{M}_n(\mathbb{R})$ et $B = diag(1, 0, ..., 0) \in \mathcal{M}_n(\mathbb{R})$.

On note C la matrice extraite de A obtenue en supprimant la première ligne et la première colonne. $C \in \mathcal{M}_{n-1}(\mathbb{R})$.

Montrer que det(A + B) = det(A) + det(C).

2. Soient $A, B \in \mathcal{M}_n(\mathbb{R})$ avec rg(B) = 1. Montrer que $\det((A - B)(A + B)) \leq \det(A^2)$.

Exercice 15:

Etude du domaine de définition, de la continuité, du caractère \mathcal{C}^1 de

$$x \mapsto \sum_{n=0}^{+\infty} \frac{x}{(1+n^2x)^2}.$$

Exercice 16:

Soit $f \in \mathcal{L}(\mathbb{C}^n)$ tel que f^2 est diagonalisable. On note $\lambda_1, ..., \lambda_p$ les valeurs propres distinctes de f^2

- 1. On suppose $det(f) \neq 0$. Trouver un polynôme annulateur de f, et montrer que f est diagonalisable.
- 2. On suppose det(f) = 0, et $Ker(f) = Ker(f^2)$. Montrer que f est diagonalisable.

Exercice 17:

 $m, n \in \mathbb{N}^*, m \le n.$

1. Une urne contient n boules numérotées 1, ..., n.

On tire sans remise m boules, $m \leq n$.

Chercher la loi du plus petit numéro, ie, en notant X la variable aléatoire donnant le plus petit numéro du tirage, calculer P(X > k) si $k \in \{0, ..., n\}$.

2. Idem pour un tirage avec remise de m boules. On pourra introduire n variables aléatoires indépendantes $X_1, ..., X_m$ et considérer $X = \min(X_1, ..., X_m)$.

Exercice 18:

Soit $f \in \mathcal{C}^1(\mathbb{R}^+)$ telle que $f + f' \in L^2(\mathbb{R}^+)$.

Montrer que $f(x) \xrightarrow[x \to +\infty]{} 0$.

Exercice 19:

Soit
$$f: x \in]0, 1[\mapsto \int_0^\pi \frac{t \sin(t)}{1 - x \cos(t)} dt$$
.

- 1. Montrer que f est définie et \mathcal{C}^1 .
- 2. Calculer xf'(x) + f(x).

2 Centrale/Mines

Exercice 20: Soient E un K-ev de dimension finie, et $u \in \mathcal{L}(E)$ nilpotent.

- 1. Montrer que pour tout $\lambda \in K$, $\lambda u id \in GL(E)$
- 2. Soit $v \in \mathcal{L}(E)$ commutant avec u. Montrer que $\det(u+v) = \det(v)$

Exercice 21:

Soit $A, B \in \mathcal{M}_n(\mathbb{C})$ telle que AB = 0.

Vérifier que Ker(A) est stable par B, puis que A et B ont un vecteur propre commun, puis que A et B sont simultanément trigonalisables

Exercice 22:

Soient $A, B \in S_n^+(\mathbb{R})$.

- 1. Montrer qu'il existe $P \in O(n)$, D diagonale, et $C \in S_n^+(\mathbb{R})$ telle que $A = PD^{-t}P$ et $B = PC^{-t}P$.
- 2. Montrer que $0 \le tr(AB) \le tr(A)tr(B)$.

Exercice 23:

- 1. Soit $n \in \mathbb{N}^*$. Montrer que $\forall (A, t) \in \mathcal{M}_n(\mathbb{R}) \times \mathbb{R}^+$, $\det(A^2 + tI_n) \geq 0$.
- 2. On suppose $n \in \mathbb{N}$ impair. Montrer que $-I_n$ n'est pas somme de deux carrés dans $\mathcal{M}_n(\mathbb{R})$.

Exercice 24: Soient $A \in GL_n(\mathbb{C})$, $B = \begin{pmatrix} A & A^2 \\ A^{-1} & I_n \end{pmatrix}$. Donner une condition nécessaire et suffisante sur A pour que B soit diagonalisable.

Exercice 25: Soient $E = \mathcal{C}([0,1],\mathbb{C})$, g une surjection continue croissante de [0,1] sur luimême et Φ l'endomorphisme de E défini par $\forall f \in E$, $\Phi(f) = f \circ g$. Soit V un sous-espace de dimension finie de E stable par Φ . Montrer que Φ induit un automorphisme ϕ de V dont la seule valeur propre est 1. En déduire que $\phi = id_V$.

Exercice 26: Soient $n \in \mathbb{N}^*$, $U_n(\mathbb{C})$ l'ensemble des matrices $M \in \mathcal{M}_n(\mathbb{C})$ telles que ${}^t\overline{M}M = I_n$.

- 1. Soit $A \in U_n(\mathbb{C})$ symétrique. En considérant les parties réelle et imaginaire de A, montrer que A s'écrit e^{iS} où $S \in S_n(\mathbb{R})$. Réciproque ?
- 2. Soit $A \in \mathcal{M}_n(\mathbb{C})$. Montrer que $A \in U_n(\mathbb{C})$ si et seulement si A s'écrit Oe^{iS} avec $O \in O_n(\mathbb{R})$ et $S \in S_n(\mathbb{R})$.

Exercice 27 : Soient $p \in]0,1[,(X_k)_{k\geq 1}$ une suite i.i.d. de variables aléatoires de Bernoulli de paramètre p. On pose $L_1=\max\{k\in\mathbb{N}^*;\ X_1=X_2=\ldots=X_k\}$ si cet ensemble est fini, $+\infty$ sinon.

- 1. Montrer que L_1 est presque sûrement fini, donner sa loi, son espérance et sa variance.
- 2. Si $L_1 < +\infty$, soit $L_2 = \max\{l \in \mathbb{N}^*; \ X_{L_1+1} = X_{L_1+2} = \dots = X_{L_1+l}\}$ si cet ensemble est fini, $+\infty$ sinon.

Montrer que L_2 est presque sûrement fini, donner sa loi, son espérance et sa variance.

Exercice 28 : Soit (u_n) une suite réelle positive et $S_n = \sum_{k=0}^n u_k$.

On suppose $\forall n \in \mathbb{N}^*, S_{2n} \leq \left(1 + \frac{1}{n}\right) S_n$.

Montrer que $\sum_{n} u_n$ converge.

Exercice 29 : Soient C une partie convexe d'un espace normé réel E, D une partie de E telle que $C \subset D \subset \overline{C}$. Montrer que D est connexe par arcs.

Exercice 30:

- 1. $A \in GL_n(\mathbb{R})$. Montrer qu'il existe $U, V \in O(n)$ et D diagonale telles que A = UDV. (utiliser tAA)
- 2. Soient E, F deux espaces euclidiens et $f \in \mathcal{L}(E)$. Montrer qu'il existe $(e_1, ..., e_n)$ une BON de E telle que $(f(e_1), ..., f(e_n))$ soit orthogonale. On commencera par le cas $\dim(E) = \dim(F)$ et f bijective, en utilisant la question 1.

Exercice 31:

E est un \mathbb{C} -ev de dimension $n \in \mathbb{N}^*$.

Soit A une sous-algèbre de $\mathcal{L}(E)$ (i.e. A sous espace vectoriel de $\mathcal{L}(E)$ stable par composition), commutative $(\forall f, g \in A, f \circ g = g \circ f)$, et dont tous les éléments sont nilpotents.

- 1. Montrer qu'il existe $d \in \mathbb{N}^*$ tel que $\forall f_1, ..., f_d \in A, f_1 \circ ... \circ f_d = 0$.
 - Notons $I = vect\left(\bigcup_{f \in A} Im(f)\right)$. Soit S un supplémentaire de I dans E.
- 2. Soit $f \in A$ telle que $\forall x \in S$, f(x) = 0. Montrer que f = 0.
- 3. En considérant $\theta: f \in A \mapsto f_{|S|} \in \mathcal{L}(S, I)$, montrer que dim $(A) \leq \frac{n^2}{4}$.
- 4. Si n est pair, montrer qu'il existe A sous-algèbre de $\mathcal{L}(E)$ commutative et dont tous les éléments sont nilpotents de dimension $\frac{n^2}{4}$.

Exercice 32:

- 1. Soit $A \in \mathcal{M}_n(\mathbb{Z})$ telle que tous les coefficients de $A I_n$ soient pairs, et qu'il existe $k \in \mathbb{N}^*$ tel que $A^k = I_n$.
 - (a) Soit $B = \frac{1}{2}(A I_n)$.

 Montrer que toute les valeurs propres complexes de B sont dans le cercle de centre -1/2 et de rayon 1/2.
 - (b) Si $P, Q \in \mathbb{Z}[X]$, avec Q unitaire, montrer que quotient et reste de la division euclidienne de P par Q, a priori dans $\mathbb{Q}[X]$, sont dans $\mathbb{Z}[X]$.
 - (c) Montrer qu'il existe $P \in \mathbb{Z}[X]$ et $a, b \in \mathbb{N}$ tels que $\chi_B = X^a(X+1)^b P$, P unitaire, et $P(0)P(-1) \neq 0$. $(\chi_B = \det(XI_n B))$
 - (d) Montrer que P est constant et $A^2 = I_n$.
- 2. p est un entier > 3.

Soit $A \in \mathcal{M}_n(\mathbb{Z})$ telle que tous les coefficients de $A - I_n$ soient divisibles par p, et qu'il existe $k \in \mathbb{N}^*$ tel que $A^k = I_n$. Montrer que $A = I_n$.

Exercice 33:

E est un espace euclidien et $f \in \mathcal{L}(E)$.

Si
$$x \in E$$
 et $r \ge 0$, $B(x,r) = \{y \in E \mid ||x - y|| \le r\}$.

Soit $x \in E \setminus \{0\}$ et $r \in]0, ||x||[$. On note K = B(x, r). On suppose que $f(K) \subset K$.

Soit $a \in K$.

Si
$$n \in N^*$$
, on pose $y_n = \frac{1}{n} \sum_{k=0}^{n-1} f^k(a)$.

- 1. Montrer que $\forall n \in \mathbb{N}^*, y_n \in K$, et que $f(y_n) y_n \xrightarrow[n \to +\infty]{} 0$.
- 2. Montrer qu'il existe $w \in K$ tel que f(w) = w.
- 3. Montrer que $1 \in Sp(f)$, et $Sp(f) \subset [-1, 1]$.
- 4. Montrer avec un exemple en dimension 3 que f n'est pas nécessairement diagonalisable.

Exercice 34:

 C_1 est l'espace des fonctions continues de \mathbb{R} dans \mathbb{R} 1-périodiques, C_1^2 est l'espace des fonctions de classe C^2 de \mathbb{R} dans \mathbb{R} 1-périodiques, C est l'espace des fonctions continues de \mathbb{R} dans \mathbb{R} , C^2 est l'espace des fonctions de classe C^2 de \mathbb{R} dans \mathbb{R} .

 $a, b, c \in \mathcal{C}_1$ vérifient $a > 0, c \le 0$ et $c \ne 0$.

Si
$$f \in \mathcal{C}^2$$
, on pose $T(f) = af'' + bf' + cf$.

On pose $E = \{ f \in C^2 \mid T(f) = 0 \}.$

- 1. Soit $f \in \mathcal{C}^2$. On suppose que f admet en un $x_0 \in \mathbb{R}$ un maximum local tel que $f(x_0) \geq 0$. Quel est le signe de $T(f)(x_0)$?
- 2. Justifier que l'image de C^2 par T est C.
- 3. Soit $g \in \mathcal{C}^2$ telle que $T(g) \geq 0$. Montrer que $\forall [x,y] \subset \mathbb{R}$, $\max_{[x,y]} g \leq \max(0,g(x),g(y))$. On pourra commencer par le cas T(g) > 0 et utiliser la question 2 pour le cas général.
- 4. Montrer que la restriction de T à \mathcal{C}_1^2 est injective.
- 5. Montrer que l'application $f \mapsto (f(0) f(1), f'(0) f'(1))$, de E dans \mathbb{R}^2 , est un isomorphisme.
- 6. Montrer que l'application $f \mapsto T(f)$, de \mathcal{C}_1^2 dans \mathcal{C}_1 est un isomorphisme.

Exercice 35:

1. Soient (a_n) et (b_n) deux suites de $\mathbb{R}^{\mathbb{N}}$ vérifiant :

$$\forall n \in \mathbb{N}, \ a_{n+1} = \frac{a_n}{(n+1)^2} \text{ et } b_{n+1} = \frac{b_n}{(n+1)^2} + 2\frac{a_{n+1}}{n+1}$$

Calculer a_n , et montrer qu'il existe $C \in \mathbb{R}_+^*$ tel que $\forall n \in \mathbb{N}^*$, $|b_n| \leq \frac{C}{n^4}$

2. Soient $a, b \in \mathbb{R}$. Montrer qu'il existe $f \in \mathcal{C}^2(\mathbb{R}^+, \mathbb{R})$ telle que $\forall x \in \mathbb{R}^+, f''(x) = e^{-x}f(x)$ et $f(x) - (ax + b) \xrightarrow[x \to +\infty]{} 0$.

On cherchera f sous la forme $f(x) = \sum_{n=0}^{+\infty} (a_n x + b_n) e^{-nx}$.

3. Soient $a, b \in \mathbb{R}$. Montrer qu'il existe une unique fonction $f \in \mathcal{C}^2(\mathbb{R}, \mathbb{R})$ telle que $\forall x \in \mathbb{R}$, $f''(x) = e^{-x} f(x)$ et $f(x) - (ax + b) \xrightarrow[x \to +\infty]{} 0$.

Exercice 36:

 $\alpha, \beta \in \mathbb{R}, \ \alpha < \beta. \ (a_n)$ et (b_n) sont deux suites réelles.

- 1. Montrer qu'il existe D > 0 tel que $\forall n \in \mathbb{N}$, $D\sqrt{a_n^2 + b_n^2} \le \int_{\alpha}^{\beta} |a_n \cos(nx) + b_n \sin(nx)| dx.$
- 2. On suppose que pour tout $x \in [\alpha, \beta]$, $\sum_{n} |a_n \cos(nx) + b_n \sin(nx)|$ converge, et qu'il existe C > 0 telle que $\forall x \in [\alpha, \beta]$, $\sum_{n=0}^{+\infty} |a_n \cos(nx) + b_n \sin(nx)| \leq C$.

 Montrer que $\sum_{n} |a_n|$ et $\sum_{n} |b_n|$ convergent.

Exercice 37:

Soient E un \mathbb{C} -espace vectoriel de dimension finie, f et g deux endomorphismes de E.

- 1. On suppose dans cette question et dans les deux suivantes que fg gf = f. Montrer que ker(f) est stable par g.
- 2. Montrer que $ker(f) \neq \{0\}$. On pourra raisonner par l'absurde et utiliser la trace. En déduire que f et g ont un vecteur propre commun.
- 3. Montrer qu'il existe une base de E dans laquelle les matrices de f et q sont triangulaires supérieures.
- 4. On suppose maintenant que $fg gf \in Vect(f, g)$. Montrer qu'il existe une base de E dans laquelle les matrices de f et g sont triangulaires supérieures.

Exercice 38:

Soient R > 0 et f une fonction DSE sur D(0, R). Soit $r \in]0, R[$.

- 1. Montrer que $h: z \mapsto \int_0^{2\pi} \frac{Im(f(re^{i\theta}))}{r ze^{i\theta}} d\theta$ est DSE sur D(0, r).
- 2. Calculer h(z) en fonction de f(z) et f(0).
- 3. On suppose que $\forall z \in \mathbb{C}, |z| = r \Longrightarrow Im(f(z)) = 0$. Que dire de f?

Exercice 39:

$$(a_n) \in \mathbb{C}^{\mathbb{N}}.$$

On suppose
$$RC\left(\sum_{n}a_{n}x^{n}\right) > 1$$
, et on note $f(x) = \sum_{n=0}^{+\infty}a_{n}x^{n}$.
Montrer que $\int_{-1}^{1}f^{2} = -i\int_{0}^{\pi}(f(e^{i\theta}))^{2}e^{i\theta}d\theta$.

Exercice 40:

- 1. Montrer que $\int_0^{+\infty} e^{it^2} dt$ existe.
- 2. Déterminer un équivalent de $\int_x^{+\infty} e^{it^2} dt$ quand $x \to +\infty$.

Exercice 41:

Soient
$$a_n = \operatorname{card}(\{\sigma \in S_n \mid \sigma \circ \sigma = id\})$$
 et $b_n = \frac{a_n}{n!}$.

1. Montrer que le rayon de $\sum_{n} b_n x^n$ est ≥ 1 .

On pose
$$f(x) = \sum_{n=0}^{+\infty} b_n x^n$$
.

- 2. Montrer que $a_n = a_{n-1} + (n-1)a_{n-2}$.
- 3. Calculer f(x) si $x \in]-1,1[$.
- 4. Déterminer un équivalent de a_n quand $n \to +\infty$.

Exercice 42:

On considère $K = \mathbb{Q}(i\sqrt{3})$, c'est-à-dire

$$K = \left\{ z \in \mathbb{C}, \exists (a, b) \in \mathbb{Q}^2, z = a + ib\sqrt{3} \right\}$$

et on note A l'ensemble des complexes de K qui sont racines d'un polynôme unitaire à coefficients dans \mathbb{Z} .

On admet que A est un sous-anneau de \mathbb{C} .

- 1. Montrer que K est un sous-corps de \mathbb{C} .
- 2. Montrer que $\mathbb{Q} \cap A = \mathbb{Z}$.
- 3. En déduire que, si $(a,b) \in \mathbb{Q}^2$, alors

$$a+ib\sqrt{3}\in A$$
 si et seulement si
$$\left\{ \begin{array}{l} 2a\in\mathbb{Z}\\ \text{et}\\ a^2+3b^2\in\mathbb{Z} \end{array} \right.$$

- 4. Montrer que dans ce cas, on a $2b \in \mathbb{Z}$.
- 5. Montrer que $A = \left\{ z \in \mathbb{C}, \exists (u, v) \in \mathbb{Z}^2, z = u + \frac{v}{2}(1 + i\sqrt{3}) \right\}.$

Exercice 43:

Soient (e_1, \ldots, e_n) la base canonique de \mathbb{C}^n et H l'hyperplan défini par

$$H = \{(x_1, \dots, x_n) \in \mathbb{C}^n, x_1 + \dots + x_n = 0\}$$

On note S_n le groupe symétrique d'indice n et pour tout permutation σ de S_n , on définit l'endomorphisme f_{σ} de E par

$$f_{\sigma}(e_i) = e_{\sigma(i)}$$

Enfin, on note P l'endomorphisme canoniquement associé à la matrice dont tous les coefficients sont égaux à $\frac{1}{n}$.

- 1. Montrer que P est un projecteur ; déterminer son noyau et son image.
- 2. Vérifier que $P \in \text{Vect}\{f_{\sigma}, \sigma \in \mathcal{S}_n\}$.
- 3. Soit u un vecteur non nul de H. Montrer que $H = \text{Vect}\{f_{\sigma}(u), \sigma \in \mathcal{S}_n\}$.
- 4. Déterminer les sous-espaces vectoriels de \mathbb{C}^n stables par tous les f_{σ} , c'est-à-dire les sous-espaces E de \mathbb{C}^n tels que

$$\forall \sigma \in \mathcal{S}_n, f_{\sigma}(E) \subset E$$

5. Soit g un endomorphisme de E. Montrer que g commute avec f_{σ} pour tout $\sigma \in \mathcal{S}_n$ si et seulement si $g \in \text{Vect}\{id_{\mathbb{C}^n}, P\}$.

Exercice 44:

Soit G un groupe fini de cardinal $n \geq 2$ dont la loi de composition interne est notée multiplicativement. On note e l'élément neutre de G, p un nombre premier divisant n et on considère l'ensemble E défini par

$$E = \{(x_1, \dots, x_p) \in G^p, x_1 x_2 \dots x_p = e\}$$

- 1. Montrer que E est ensemble contenant n^{p-1} éléments.
- 2. On note σ le cycle $\begin{pmatrix} 1 & 2 & \dots & p \end{pmatrix}$, ie la permutation de $\{1, 2, \dots, p\}$ telle que $\sigma(k) = \begin{cases} k+1 & \text{si } 1 \leq k \leq p 1 \\ 1 & \text{si } k = p \end{cases}$ Si $X = (x_1, \dots, x_p) \in E$ et $k \in \mathbb{Z}$, on note $\sigma^k X = (x_{\sigma^k(1)}, \dots, x_{\sigma^k(p)})$. Montrer que si $X \in E$ et $k \in \mathbb{Z}$ alors $\sigma^k X \in E$.
- 3. Pour $X \in E$, on note o(X) le sous-ensemble de E défini par

$$o(X) = \{ \sigma^k . X \mid k \in \mathbb{Z} \}$$

Montrer que si $Y \in o(X)$ alors o(X) = o(Y).

Montrer qu'il existe X_1, X_2, \ldots, X_m , des éléments de E, tels que $(o(X_i))_{1 \le i \le m}$ constitue une partition de E (ie une famille de parties de E deux à deux disjointes dont la réunion est égale à E).

- 4. Montrer que si $X \in E$, o(X) contient 1 seul élément ou p éléments et en déduire que G contient un élément d'ordre p.
- 5. Soit p et q deux nombres premiers distincts et G un groupe de cardinal pq. Montrer que G est cyclique si et seulement si G est commutatif.

Exercice 45:

On considère une fonction $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ de classe \mathcal{C}^1 sur \mathbb{R}^n , canoniquement euclidien, et telle que $\lim_{\|x\| \to +\infty} \frac{f(x)}{\|x\|} = +\infty$, c'est-à-dire telle que

$$\forall A \in \mathbb{R}, \exists B \in \mathbb{R}, \forall x \in \mathbb{R}^n, ||x|| \ge B \Rightarrow f(x) \ge A||x||$$

- 1. Montrer que f admet un minimum sur \mathbb{R}^n et en déduire qu'il existe $u \in \mathbb{R}^n$ tel que le vecteur gradient de f en u, noté gradf(u), soit nul.
- 2. Soit $u_0 \in \mathbb{R}^n$ fixé et $g : x \in \mathbb{R}^n \longmapsto f(x) (u_0|x)$, où (|) désigne le produit scalaire de \mathbb{R}^n . En utilisant g, montrer que l'application $\operatorname{grad} f : \begin{cases} \mathbb{R}^n \to \mathbb{R}^n \\ u \mapsto \operatorname{grad} f(u) \end{cases}$ est surjective.
- 3. On suppose à partir de maintenant que f est, de plus, strictement convexe, c'est-à-dire :

$$\forall (x,y) \in (\mathbb{R}^n)^2, \forall \lambda \in]0,1[,x \neq y \Rightarrow f(\lambda x + (1-\lambda)y) < \lambda f(x) + (1-\lambda)f(y)$$

Montrer que l'application grad f est bijective. (utiliser $t \mapsto f(a + t(b - a)), a, b \in \mathbb{R}^n$.

- 4. Montrer que $\lim_{\|x\|\to+\infty}\|\operatorname{grad} f(x)\|=+\infty$
- 5. Montrer que grad f est un homéomorphisme de \mathbb{R}^n sur \mathbb{R}^n (application bijective continue dont la réciproque est continue). On pourra commencer par montrer que l'image directe de tout fermé de \mathbb{R}^n par grad f est un fermé de \mathbb{R}^n .

Exercice 46:

Tous les tirages sont indépendants.

On lance un dé jusqu'à obtenir 6. La variable aléatoire réelle X comptabilise le nombre de lancers effectués. Si X=n, on tire n boules dans une urne, avec une probabilité p d'avoir une boule blanche et 1-p d'avoir une boule rouge. La variable aléatoire réelle Y comptabilise le nombre de boules blanches obtenues.

1. Donner la loi, l'espérance et la variance de X.

- 2. Donner la loi du couple (X, Y).
- 3. En déduire la loi et l'espérance de Y.

Exercice 47: $a_1,...,a_n \in \mathbb{Z}$ sont distinct deux à deux. Montrer que $1 + \prod_{i=1}^n (X - a_i)^2$ est irréductible dans $\mathbb{Z}[X]$.

Exercice 48: E est un evn de dimension finie. $f \in \mathcal{L}(E)$ vérifie $\forall x \in E, ||f(x)|| \le ||x||$. Montrer que $E = Ker(f - id) \oplus Im(f - id)$.

Exercice 49: Soit $n \in \mathbb{N}^*$. Si $M \in \mathcal{M}_n(\mathbb{C})$, soit Com(M) la comatrice de M.

- 1. Déterminer la comatrice de $J_n(r)$.
- 2. Si $A, B \in \mathcal{M}_n(\mathbb{C})$, montrer que Com(AB) = Com(A)Com(B).
- 3. Pour $M \in \mathcal{M}_n(\mathbb{C})$, quel est le rang de Com(M)?
- 4. L'application Com est-elle injective? Quelle est son image?

Exercice 50: Soient $n \in \mathbb{N}^*$ et $f \in \mathcal{L}(\mathcal{M}_n(\mathbb{C}))$.

- 1. Montrer qu'une matrice $A \in \mathcal{M}_n(\mathbb{C})$ est nilpotente si et seulement si pour tout $\mu \in \mathbb{C}$, $I_n \mu A$ est inversible.
- 2. On suppose que $f(GL_n(\mathbb{C})) \subset GL_n(\mathbb{C})$. Montrer que, pour $M \in \mathcal{M}_n(\mathbb{C})$, rg(f(M)) = rg(M).

Exercice 51: Soient $n \geq 2$ un entier et $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} . On note $d_n(\mathbb{K})$ la dimension maximale d'un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{K})$ ne contenant que des matrices diagonalisables.

- 1. Que dire du spectre réel d'une matrice antisymétrique réelle ? Dans le cas où n est impair, peut-on être plus précis ?
- 2. Déterminer $d_n(\mathbb{R})$.
- 3. Déterminer $d_2(\mathbb{C})$.

Exercice 52: Soit $f: x \mapsto \int_x^{+\infty} \frac{\sin(t)}{t^2} dt$.

- 1. Montrer que f est définie et dérivable sur \mathbb{R}_+^* .
- 2. Établir que $g: t \mapsto \frac{\sin(t) t}{t^2}$ est bornée sur \mathbb{R}_+^* . En déduire que $f(x) \underset{x \to 0+}{\sim} \ln(x)$.
- 3. Montrer que f est intégrable sur \mathbb{R}_+^* et que $\int_0^{+\infty} f = \int_0^{+\infty} \frac{\sin(t)}{t} dt$.

Exercice 53: Soit c > 0. On considère l'équation d'inconnue $x \in \mathbb{R}$, (E): $x \sin(x) - c \cos(x) = 0$. On note pour tout $n \in \mathbb{N}$, $I_n =]n\pi, n\pi + \pi/2[$.

- 1. Montrer que (E) possède une unique solution x_n dans chaque I_n et que l'ensemble des x_n coïncide avec l'ensemble des solutions positives de (E).
- 2. Donner un développement asymptotique à trois termes de x_n .

Exercice 54: Soient $\theta_1, ..., \theta_p$ des réels deux à deux distincts modulo 2π et $m_1, ..., m_p$ des complexes non tous nuls. Le but de l'exercice est de montrer que $m_1 e^{i\theta_1 n} + ... + m_p e^{i\theta_p n}$ ne tend pas vers 0 quand $n \to +\infty$. On suppose par l'absurde que $m_1 e^{i\theta_1 n} + ... + m_p e^{i\theta_p n} \xrightarrow[n \to +\infty]{} 0$

1. On note
$$M_n = \begin{pmatrix} e^{i\theta_1 n} & \dots & e^{i\theta_p n} \\ e^{i\theta_1(n+1)} & \dots & e^{i\theta_p(n+1)} \\ \vdots & & \vdots \\ e^{i\theta_1(n+p-1)} & \dots & e^{i\theta_p(n+p-1)} \end{pmatrix}$$
. Montrer que $Y_n := M_n \begin{pmatrix} m_1 \\ \vdots \\ m_p \end{pmatrix} \xrightarrow[n \to +\infty]{} 0$.

- 2. Montrer que $|\det(M_n)|$ est une constante non nulle.
- 3. A l'aide du théorème de Cayley-Hamilton, trouver une contradiction.

Exercice 55: Soient $n \in \mathbb{N}^*$, A et B dans $\mathcal{M}_n(\mathbb{R})$. On suppose que le rang de B est 1. Comparer $\det(A+B) \times \det(A-B)$ et $\det(A^2)$.

Exercice 56: G est un sous-groupe fini de $GL_n(\mathbb{C})$ tel que $G \cap SL_n(\mathbb{C}) = \{I_2\}$. Montrer que G est cyclique.

Exercice 57: E est un espace euclidien. $a, b \in E \setminus \{0\}$. $f: x \in E \setminus \{0\} \mapsto \frac{\langle a, x \rangle \langle b, x \rangle}{||x||^2}$. Déterminer $\inf(f)$ et $\sup(f)$.

3 X/ENS

Exercice 58: Soient $n \in \mathbb{N}^*$, $A \in GL_n(\mathbb{Z})$. Montrer que soit A a une valeur propre de module strictement supérieur à 1, soit il existe $k \in \mathbb{N}^*$ tel que $A^k - I_n$ est nilpotente.

Exercice 59 : Soient E un \mathbb{R} -espace vectoriel de dimension finie, $v_1, ..., v_p$ des vecteurs de E et $C = \mathbb{R}^+v_1 + ... + \mathbb{R}^+v_p$. Montrer que C est fermé dans E.

Exercice 60 : Soit f une fonction continue et de carré intégrable de \mathbb{R}^+ dans \mathbb{R} . Déterminer la limite en $+\infty$ de $x\mapsto e^{-x}\int_0^x f(t)e^tdt$.

Exercice 61: Soit f une fonction de \mathbb{R} dans \mathbb{R} . On suppose qu'il existe une suite $(P_n)_{n\geq 0}$ de polynômes à coefficients dans \mathbb{R}^+ convergeant simplement vers f sur \mathbb{R} . Montrer que f est de classe \mathcal{C}^{∞} sur \mathbb{R} .

Exercice 62 : Soit $k \in \mathbb{N}$, $(a_n)_{n \ge k+1}$ une suite réelle telle que $\sum_n |a_n|$ converge et, pour $x \in \mathbb{R}$,

$$f(x) = \sum_{n=k+1}^{+\infty} a_n \cos(nx)$$
. Montrer que f possède au moins $k+1$ zéros dans $[0,\pi]$.

Exercice 63: Soit G un groupe fini. Pour $x \in G$, on note \overline{x} la classe de conjugaison de x: $\overline{x} = \{gxg^{-1}; g \in G\}$. On dit que x est ambivalent ssi $x^{-1} \in \overline{x}$.

- 1. Montrer que si une classe de conjugaison contient un élément ambivalent, alors tous ses éléments le sont.
- 2. Pour $x \in G$, soit $\rho(x)$ le nombre de $g \in G$ tels que $g^2 = x$. Montrer que $\frac{1}{|G|} \sum_{x \in G} \rho(x)^2$ est le nombre de classes de conjugaison ambivalentes de G.

Exercice 64: Soient $\lambda_1, ..., \lambda_d$ des nombres complexes de module au plus 1, $P = \prod_{i=1}^d (X - \lambda_i)$.

Pour $n \in \mathbb{N}$, soit $f(n) = \sum_{i=1}^d \lambda_i^n$. On suppose que $P \in \mathbb{Z}[X]$.

- 1. Montrer que $f(\mathbb{N}) \subset \mathbb{Z}$.
- 2. Montrer que f est périodique à partir d'un certain rang.
- 3. Montrer que, pour tout i, λ_i est nul ou racine de l'unité.

Exercice 65: L'ensemble des permutations de N est-il dénombrable?

Exercice 66:

On pose, si $m, n \in \mathbb{N}^*$, $f(n, m) = \sum_{k=1}^n m^{k \wedge n}$.

- 1. Réexprimer f(n, m) en utilisant l'indicatrice d'Euler.
- 2. $n_1 \wedge n_2 = 1$. Montrer que si n_1 divise tous les $f(n_1, m), m \in \mathbb{N}^*$, alors n_1 divise tous les $f(n_1 n_2, m)$, $m \in \mathbb{N}^*$.
- 3. Montrer que n divise f(n, m).

Exercice 67: Soit E un \mathbb{C} -ev de dimension finie.

 $f \in \mathcal{L}(E)$ est dit cyclique si et seulement si il existe $x \in E$ tel que $\{P(f)(x) \mid P \in \mathbb{C}[X]\} = E$.

- 1. On suppose que f est cyclique. Montrer que tout endomorphisme induit par f est cyclique et que l'ensemble des sous-espaces de E stables par f est fini.
- 2. On suppose que l'ensemble des sous-espaces de E stables par f est fini. Montrer que f est cyclique.

Exercice 68:

Trouver les $f: \mathcal{M}_n(\mathbb{R}) \to \mathbb{R}$ telles que $\forall A, B \in \mathcal{M}_n(\mathbb{R}), f(AB) \leq \min(f(A), f(B)).$

Exercice 69: Soit G un groupe.

- 1. On suppose que G possède un nombre fini de sous-groupes. Montrer que G est fini.
- 2. Le résultat de la question précédente subsiste-t-il en remplaçant "fini" par "dénombrable"?

Exercice 70: Soient $A \in \mathcal{M}_n(\mathbb{C})$ et $P = \det(XI_n - A)$.

On pose
$$P = X_n + c_1 X_{n-1} + \dots + c_n = (X - z_1) \dots (X - z_n)$$
.
$$\begin{pmatrix} tr(A) & 1 & 0 & \dots & 0 \\ tr(A^2) & tr(A) & 2 & 0 & \dots \end{pmatrix}$$

On pose $P = X_n + c_1 X_{n-1} + \dots + c_n = (X - z_1) \dots (X - z_n)$ On note $S_k = \det \begin{pmatrix} tr(A) & 1 & 0 & \dots & 0 \\ tr(A^2) & tr(A) & 2 & 0 & \dots \\ \vdots & & & & \\ tr(A^{k-1}) & \dots & tr(A) & k-1 \\ tr(A^k) & \dots & tr(A^2) & tr(A) \end{pmatrix}$

- 1. Calculer de deux façons $\sum_{k=1}^{n} \frac{P(x)}{x-z_k}$ pour $x \in \mathbb{C}$ avec $|x| > \max_{1 \le \le n} |z_i|$, dont l'une fera intervenir les $tr(A^k)$.
- 2. Montrer que $c_k = \frac{(-1)^k}{k!} S_k$

Exercice 71: Soient $E = C([0,1], \mathbb{R})$ et, pour $n \in \mathbb{N}$ et $f \in E$, $M_n(f) = \int_0^1 t^n f(t) dt$.

- 1. Soient f et g dans E telles que $\forall n \in \mathbb{N}, M_n(f) = M_n(g)$. Montrer que f = g.
- 2. Existe-t-il $f \in E$ positive telle que $\forall n \in \mathbb{N}, M_n(f) = \exp(-n^2/10)$?
- 3. Existe-t-il $f \in E$ telle que $\forall n \in \mathbb{N}, M_n(f) = \frac{1}{1+10n^2}$?

Exercice 72 : Déterminer la limite en $+\infty$ de $\left(\sum_{k=1}^{+\infty} \frac{x^k}{k^k}\right)^{1/x}$.

Exercice 73 : Pour $\lambda \in]0,1[$, soit A_{λ} l'ensemble des k de \mathbb{N}^* tels que le nombre de 9 dans l'écriture décimale de k soit majoré par λn_k , où n_k est le nombre de chiffres de k. Étudier la sommabilité de $\left(\frac{1}{k}\right)_{k \in A_k}$.

Exercice 74 : Soient $f_1, ..., f_n$ des fonctions de \mathbb{R} dans \mathbb{C} périodiques telles que $f_1 + ... + f_n \xrightarrow[+\infty]{} 0$. Montrer que $f_1 + ... + f_n = 0$.

Exercice 75:

- 1. Montrer que l'on ne peut partitionner \mathbb{R}^2 en cercles de rayons strictement positifs.
- 2. Peut-on partitionner \mathbb{R}^2 en disques ouverts de rayons strictement positifs?

Exercice 76: Soit f une fonction convexe de \mathbb{R}^+ dans \mathbb{R}^+ telle que f(0) = 0.

- 1. Montrer que f est continue et croissante.
- 2. On note E l'ensemble des fonctions $g:\mathbb{R}\to\mathbb{R}$ continues par morceaux telles que $f\circ |g|$ soit intégrable sur \mathbb{R} .

Montrer que E est un sous-espace vectoriel de $\mathbb{R}^{\mathbb{R}}$ si et seulement si il existe C > 0 tel que : $\forall x \in \mathbb{R}_+^*, f(2x) \leq Cf(x)$.

Exercice 77: Soient s > 0 et $(u_n)_{n \ge 1}$ la suite définie par $u_1 = 1$, $u_2 = s$ et $\forall n$, $u_{n+2} = \frac{u_n u_{n+1}}{n}$. Étudier la convergence de (u_n) .

Exercice 78: Le but de l'exercice est de montrer que $\ln(2)$ est irrationnel. On raisonne par l'absurde en considérant a et b dans \mathbb{N}^* tels que $\ln(2) = \frac{a}{b}$.

- 1. Pour $n \in \mathbb{N}$, montrer qu'il existe $c_n \in \mathbb{Z}$ tel que $\int_0^1 \frac{x^n}{1+x} dx = (-1)^n \ln(2) + \frac{c_n}{ppcm(1,2,...,n)}$.
- 2. Soient $n \in \mathbb{N}^*$ et $P_n = \frac{1}{n!} (X^n (1 X)^n)^{(n)}$.

 Montrer qu'il existe $A_n \in \mathbb{Z}^*$ tel que $\int_0^1 \frac{P_n(x)}{1 + x} dx = \frac{A_n}{b \times ppcm(1, 2, ..., n)}$.
- 3. Soit, pour $n \in \mathbb{N}$, π_n le nombre de nombres premiers inférieurs ou égaux à n. On admet que $\pi_n \underset{n \to +\infty}{\sim} n \ln(n)$. Montrer que, pour n assez grand, $ppcm(1, 2, ..., n) \leq 3n$.
- 4. Conclure.

Exercice 79: Soient $A, B \in \mathcal{M}_n(\mathbb{R})$ telles que $B^2 = B$. Montrer que $rg(AB - BA) \le rg(A + B)$.

Exercice 80: Soient $A, B \in S_n(\mathbb{R})$. Comparer tr(ABAB) et $tr(A^2B^2)$.

Exercice 81: Soient $n \geq 2$ un entier, A et B dans $\mathcal{M}_n(\mathbb{R})$, $t_1, ..., t_{n+1}$ des nombres réels deux à deux distincts. Montrer que $\forall i \in \{1, ..., n+1\}$, $\det(A + t_i B) = 0$ si et seulement si il existe deux sous-espaces vectoriels V et W de \mathbb{R}^n tels que $A(V) \subset W$, $B(V) \subset W$ et $\dim(W) < \dim(V)$.

Exercice 82:

- 1. Soit α un nombre réel irrationnel. Montrer que, pour tout $n \in \mathbb{N}^*$, il existe $(p,q) \in \mathbb{Z} \times [\![1,n]\!]$ tel que $|\alpha p/q| < \frac{1}{nq}$.
- 2. Soit $d \in \mathbb{N}^*$. On suppose que d n'est pas un carré parfait. Montrer qu'il existe $K \in \mathbb{N}^*$ tel que $\{(a,b) \in \mathbb{Z} \times \mathbb{N}^* \mid a^2 - db^2 = K\}$ est infini.

Exercice 83: Soient a et b dans \mathbb{N}^* , $(x_n)_{n\in\mathbb{Z}}$ et $(y_n)_{n\in\mathbb{Z}}$ deux suites à valeurs dans un ensemble E, respectivement a-périodique et b-périodique. On suppose qu'il existe $a+b-a\wedge b$ entiers relatifs n consécutifs tels que $x_n=y_n$. Montrer que $(x_n)=(y_n)$. On pourra commencer par le cas $a\wedge b=1$.

Exercice 84: Soit $n \in N^*$. On considère une famille $(X_{i,j})_{1 \le i,j \le n}$ de variables aléatoires indépendantes suivant toutes la loi de Bernoulli de paramètre 1/2. On note A l'événement : la matrice $(X_{i,j})_{1 \le i,j \le n}$ est inversible.

Montrer que $P(A) \ge \prod_{k=1}^{+\infty} \left(1 - \frac{1}{2^k}\right)$.

On pourra dénombrer $GL_n(\mathbb{Z}/2\mathbb{Z})$.

Exercice 85: Quelles sont les $M \in \mathcal{M}_n(\mathbb{C})$ telles que M soit semblable à 2M?

Exercice 86: Soient $n \in \mathbb{N}^*$, M une matrice aléatoire de $M_{n+1}(\mathbb{R})$ dont les coefficients sont des variables aléatoires i.i.d. suivant la loi uniforme sur $\{-1,1\}$, \mathbb{N} une matrice aléatoire de $M_n(\mathbb{R})$ dont les coefficients sont des variables aléatoires i.i.d. suivant la loi uniforme sur $\{0,1\}$. Montrer que $P(M \in GL_{n+1}(\mathbb{R})) = P(N \in GL_n(\mathbb{R}))$.

Exercice 87: Soient $n \in \mathbb{N}^*$, $P = (P_{i,j})_{1 \leq i,j \leq n}$ dans $\mathcal{M}_n(\mathbb{R})$ telle que : $\forall i, j, P_{i,j} \geq 0$ et $\forall i, P_{i,1} + ... + P_{i,n} = 1$.

Montrer qu'il existe $v = (v_1, ..., v_n) \in \mathbb{R}^n_+$ tel que $\sum_{i=1}^n v_i = 1$ et vP = v. Interprétation probabiliste ?

Exercice 88: Soit $n \in \mathbb{N}^*$.

- 1. Montrer que $\sum_{k=1}^{+\infty} \frac{kn^{k-1}}{(n+k)!} = \frac{1}{n!}$
- 2. Soient $X_1, ..., X_n$ des variables aléatoires i.i.d. suivant la loi de Poisson de paramètre 1. On pose $S_n = \sum_{k=1}^n X_k \text{ et } T_n = \frac{S_n n}{\sqrt{n}}.$

Montrer que $\int_0^{+\infty} P(T_n \ge x) dx = \sqrt{n} \left(\frac{n}{e}\right)^n \frac{1}{n!}$.

Exercice 89 : Déterminer les fonctions dérivables f de \mathbb{R}^+ dans \mathbb{R} telles que : f(1) = 1 et $\forall (x, y) \in (\mathbb{R}_+)^2$, $f(x)f(y) \leq f(xy)$.

Exercice 90: Soit $A \in M_n(\mathbb{R})$. Comparer les polynômes minimaux de A dans $M_n(\mathbb{R})$ et $M_n(\mathbb{C})$.

Exercice 91: Soit $(X_n)_{n\geq 1}$ une suite i.i.d. de variables aléatoires à valeurs dans $\{-1,1\}$. On pose $S_n = \sum_{k=1}^n X_k$. Donner une condition nécessaire et suffisante sur la loi de X_1 pour que la série $\sum_{k=1}^n P(S_n \in A)$ soit convergente pour toute partie bornée A de \mathbb{R} .

Exercice 92: Si $f: \mathbb{N}^* \to \mathbb{R}$, on pose $M(f): n \in \mathbb{N}^* \mapsto \frac{1}{n} \sum_{k=1}^n f(k)$.

Soit $f: \mathbb{N}^* \to \mathbb{R}$. Montrer que, pour tout $n \in \mathbb{N}^*$, $(M^k)(f)(n) \xrightarrow[k \to +\infty]{n-1} f(1)$, M^k étant l'itéré k-ième de l'opérateur M.

Exercice 93:

- 1. Soit X une variable aléatoire de moyenne nulle, à valeurs réelles dans un intervalle [a,b]. Montrer que pour tout $t \in \mathbb{R}$, on a $E(\exp(tX)) \le \exp\left(\frac{t^2(b-a)^2}{8}\right)$. Indication : on pourra utiliser la convexié de la fonction $x \mapsto \exp(tx)$.
- 2. Soient $X_1, ..., X_n$ des variables aléatoires indépendantes, telles que X_i soit à valeurs dans l'intervalle $[a_i, b_i]$. Montrer que pour tout s > 0, on a $P\left(\sum_i (X_i E(X_i)) > s\right) \le \exp\left(-\frac{2s^2}{\sum_i (b_i a_i)^2}\right)$.
- 3. En déduire que la probabilité de tirer au moins $\frac{3}{4}$ de "face" en N lancers de pile ou face est majorée par exp(-N/8). Que donnerait l'inégalité de Tchebychev ?

Exercice 94: $n \ge 2$.

- 1. Montrer que le nombre moyen de points fixes d'une permutation de $\{1, ..., n\}$ est 1.
- 2. Calculer l'écart-type.

Exercice 95: On considère une suite infinie de tirages à pile ou face avec une pièce équilibrée. On considère la variable aléatoire T donnant le premier instant k pour lequel: "il existe $i \in [1, k-1]$ tel que k-i soit pair, les lancers aux instants k et i ont donné face, et les lancers à tous les instants strictement compris entre k et i ont donné pile". Montrer que T est d'espérance finie, et calculer son espérance.

Exercice 96 : On lance une pièce équilibrée jusqu'à ce que le nombre de Pile soit égal au double du nombre de Face. Quelle est la probabilité de ne jamais s'arrêter?

Exercice 97: Soit $A(n) = \max\{ordre(s) \mid s \in S_n\}$. Montrer que pour tout $k \in \mathbb{N}$, $\frac{A(n)}{n^k} \xrightarrow[n \to +\infty]{} +\infty$.

Exercice 98 : Montrer que tout automorphisme de S_4 est intérieur.

Exercice 99: Soient A l'anneau $C([0,1], \mathbb{R}), c \in [0,1]$ et $I_c = \{f \in A; f(c) = 0\}.$

- 1. Montrer que I_c est un idéal de A et que les seuls idéaux de A contenant I_c sont A et I_c .
- 2. Montrer que I_c n'est pas de la forme fA pour un f de A.

3. Montrer que I_c n'est pas de la forme $f_1A + ... + f_mA$ où $m \in \mathbb{N}^*$ et où les f_i sont des éléments de A.

Exercice 100 : On définit un graphe aléatoire : soit S un ensemble fini de n points (les sommets) et pour toute paire x, y d'éléments de S ($x \neq y$), on note $T_{x,y}$ une variable de Bernoulli de paramètre p; les arêtes du graphe sont les paires x, y ($x \neq y$) telles que $T_{x,y} = 1$. Les variables $T_{x,y}$ sont supposées indépendantes.

- 1. Quel est le nombre maximal d'arêtes de G ?
- 2. Soit $x \in S$ un sommet. On considère la variable aléatoire deg(x) égale au nombre d'arêtes issues du sommet x. Déterminer la loi de deg(x).
- 3. Un sommet x est dit isolé si deg(x) = 0. On note Z la variable aléatoire comptant les sommets isolés de G. Montrer que $E(Z) = n(1-p)^{n-1}$.
- 4. Montrer que $P(Z=0) \leq \frac{V(Z)}{E(Z)^2}$. $\ln(n)$

On suppose dorénavant que $p = c \frac{\ln(n)}{n}$, avec c réel > 0.

- 5. Déterminer le comportement asymptotique de E(Z) lorsque $n \to +\infty$.
- 6. Déterminer le comportement asymptotique de $P(Z \ge 1)$ lorsque $n \to +\infty$.

Exercice 101: Soient $A, B \in GL_2(\mathbb{C})$ telles que $\det(AB^{-1} - I_2) = 0$. Montrer l'équivalence entre

- i) A et B possèdent une valeur propre commune
- ii) A et B possèdent un vecteur propre commun.

Exercice 102 : $\mathcal{M}_n(\mathbb{R})$ et \mathbb{R}^n sont munis des produits scalaires canoniques, et des normes associées.

Soit $A: \mathbb{R}^+ \to \mathcal{M}_n(\mathbb{R})$ continue. On considère le système $(S): \begin{cases} X'(t) = A(t)X(t) \\ X(0) = X_0 \end{cases}$.

Si X est la solution de (S), on pose $f: t \mapsto ||X(t)||^2$.

Trouver une condition nécessaire et suffisante sur A pour que, pour tout $X_0 \in \mathbb{C}^n$, la fonction f soit constante.

Exercice 103: $\lim_{A\to +\infty} \frac{1}{A} \int_1^A A^{1/x} dx$?

Exercice 104: $p_0 = p_1 = 1$ et $\forall n \geq 2, \ p_n = \int_0^1 \int_0^{1-x_1} ... \int_0^{1-x_{n-1}} dx_n dx_{n-1} ... dx_1$. Calculer $\sum_{n=0}^{+\infty} p_n (\pi/6)^n$.

Exercice 105: Nature de $\sum_{n>1} \frac{\cos(\ln(n))}{n}$ et de $\sum_{n>1} \frac{\cos(\sqrt{n})}{n}$.

Exercice 106 : Un parfait de IR est une partie non vide, fermée, sans point isolé.

- 1. Construire un parfait de IR d'intérieur vide.
- 2. Construire un parfait de R d'intérieur vide ne contenant pas de rationnel.