

**MORE LIKE GIVE ME A+** 

#### **BASIC PURPOSE**

A\* is a path finding algorithm

Path finding algorithms are designed to find the cheapest paths from point A to point B



#### **A\* INVENTORS**



Peter E. Hart



Nils John Nilsson



Bertram Raphael

Stanford Research Institute

#### **HOW IT WORKS**

You all know **Dijkstra's**.

This works like Dijkstra's but has a Heuristic (guess of expected cost to end).

They use the heuristic plus current cost to pick next vertex.

$$cost(v_n) = p(v_n) + h(v_n)$$

#### WHY A\*



#### COMPLEXITY

b = branching factor

m = path length

E= number of edges

V= number of vertices

 $O(b^m)$  perfect heuristic

O(E \* log(V)) if heuristic is worst admissible (i.e. 0)

#### **PROS AND CONS**

#### **PROS**

Much faster than
Dijkstra's if heuristic is
better than cost to
compute it.

#### CONS

Takes a more time to code than Dijkstra's

Takes more memory than Dijkstra's

Need to find a way to create a Heuristic

If there actually is no path... It won't end

## **APPLICATIONS**



# IDA\*

#### **IDDFS**

**Iterative Deepening Depth First Search** 

DFS with an increasing limited depth

Doesn't remember past execution

#### **IDA\* AUTHOR**



Richard Korf



Based off IDDFS.

In IDA\* the limit is not depth but instead cost. This works well with graphs of non-uniform shape

#### **ADI\* EXAMPLE**

http://qiao.github.io/PathFinding.js/visual/

## **QUESTIONS?**

#### **CITATIONS**

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, & Clifford Stein (2009). Introduction to Algorithms

http://us.blizzard.com/static/\_images/games/sc2/wallpapers/wall2/wall2-1920x1200.jpg

http://www.fightbookmma.com/tuf-brazil-3-finale-results/

http://en.wikipedia.org/wiki/Peter\_E.\_Hart

http://en.wikipedia.org/wiki/Nils\_John\_Nilsson

http://en.wikipedia.org/wiki/Bertram\_Raphael

http://en.wikipedia.org/wiki/A\*\_search\_algorithm

http://en.wikipedia.org/wiki/IDA\*

http://qiao.github.io/PathFinding.js/visual/



























































































**DEPTH LIMIT: 3** 



**DEPTH LIMIT: 4** 

