

Lecture 2

Digital Devices and: Binary and Hexadecimal Numbers

https://tutorcs.com

Last Time: Computers

We have distinguished between

- General-purpose computers e.g., desktops, laptops
- Embedded computers e.g., microcontrollers

Two things both classes have in common is: They are digital electronic computers https://tutorcs.com

Digital computers process in farmation in discrete form, in particular binary two values: 0 and 1

Electronic computers as opposed to mechanical systems

Vacuum tubes
☐ Transistors ☐ MOSFET ☐ Integrated Chips (IC)

Quantum computers

????

Analog vs Digital

An analog signal takes a continuous range of values

A digital signal takes valves float a finite sets

Often this finite set has only two possible values **0** and **1**

aka logic signal or binary signal

The Digital Revolution

The digital revolution changed human civilization

Agricultural Rev. Industrial Rev.

~10,000 BCE ~1750-1850 ~1950

Assignment Project Exam Help
Agricultural Industrial Information

Age

Age

What is the digital revolution?

- Transition from analog to digital technology
- Transistor (1947) ⇒ Integrated Circuits (IC) ⇒ Computers
- Digital signals and digital logic
- Digital communication ⇒ The Internet

YET digital signals are a big fat lie only an abstraction

Digital Signals

Physical digital signals do not exist – a digital signal is an abstraction

ECE 2560 Introduction to Microcontroller-Based Systems – Irem Eryilmaz

Digital Signals

When a mixed signal oscilloscope displays a digital signal it is an abstraction

Digital Signals

This makes digital signals very resilient to noise

Digital signal is interpreted as

- 1 if (analog signal + noise) > blue voltage
- 0 if (analog signal + noise) < red voltage

Noise will have no effect as long as it is not too big

Listen to AM radio (analog) and HD radio and compare the sound quality (Slightly) scratch a vinyl recording and a CD and see what happens

ECE 2560 Introduction to Microcontroller-Based Systems – Irem Eryilmaz

Binary Numerals

Digital signals take two values: 0 and 1

Hardware can distinguish between **two stable states**: 0 and 1

- Transistor and capacitor (dynamic RAM)
- Flip-flops (static RAM)
- Magnetic material (Highment Project Exam Help
- Cells in solid-state drives (SSD) https://tutorcs.com
- ⇒ We have to learn to do l

What do computers do? Duh, they compute!

- Math Numbers and operations
- ⇒ We have to re-learn to do math using 0 and 1 only

Logic – True/False

Numbers and Numeral Systems

A **number** is a mathematical object (abstraction) used to count and measure

Physical objects https://tutorcs.comhematical abstraction

There are multiple symbolic Wayes to cestpress the number "five"

Tally marks

V

Roman numerals

5

Numerals we use in everyday life

101

Numerals used by computers

Numeral Systems

A **numeral system** is a mathematical notation for representing numbers We focus on **positional** numeral systems where the **value** of the expressed number depends on numeral symbols (digits) and their position

decimal base-10

"eleven"

binary base-2

$$= 1x2 + 1x1$$

"three"

hexadecimal base-16

$$= 1x16 + 1x1$$

"seventeen"

Decimal Numerals

Base 10 ("ten")

Why base 10?

- Each position is a power of 10
- **Digits** 0, 1, 2, ..., 9

Example:

Assignment Project Exam Help

https://tutorcs.com 55 WeChat: cstutorcs

But we all know this!

Binary Numerals

Base 2 ("two")

Why base 2?

- Each position is a power of 2

Digits 0 and 1 Binary digit = bit

Assignment Project Exam Help

Example:

4ht2ps:1//tuto2cs.2com

1 1 We Chat: estutores

represents value

 $1x8 + 1x4 + 0x2 + 1x1 + 0x \frac{1}{2} + 1x \frac{1}{4} = 13.25$ in decimal

 $(1011)_2$ Notation:

0b1011

1011b

Binary to Decimal Conversion

WeChat: cstutorcs

Decimal to Binary Conversion

e.g.
$$41 = 32 + 8 + 1$$

More systematically:

$$41 = 2 \times \text{MeChat: Ostutorcs}$$

$$5 = 2 \times 2 + 1$$

$$2 = 2 \times 1 + 0$$

$$1 = 2 \times 0 + 1$$

What about 52579? Bookmark your favorite decimal-to-binary converter!!

Hexadecimal Numerals

Base 16 ("sixteen")

Why base 16?

- Each position is a power of 16
- **Digits** 0, 1, 2, ..., 9, A, B, C, D, E, F

Example:

Assignment Project Exam Help

Ox 3AD WeChat: cstutorcs

represents value

$$3x256 + 10x16 + 13x1 = (941)_{10}$$

in binary

0011 1010 1101

0x3 0xA 0xD

Hexadecimal to Binary

One hexadecimal digit encodes four **bits** (i.e., four binary digits)

Decimal	Hexadecimal	Binary
0	0	0000
1	1	0001
Assign	ment Project	E%am Help
3	3	0011
4 btt	ps://tutorcs.co	0100
5	ps.//tutores.e	0101
6	6	0110
7 W	Chat: cstuto	68 1
8	8	1000
9	9	1001
10	Α	1010
11	В	1011
12	C	1100
13	D	1101
14	E	1110
15	F	1111

Hexadecimal ↔ Binary

	Binary	Hex
6FB	0000	0
	0001	1
	, 0010	2
Assignment Project Exam F	161011	3
OTTOBLE	0100	4
https://tutorcs.com	0101	4 5
	0110	6
001011wechat: estutores	0111	7
Woodhat. Ostatores	1000	8
	1001	9
\mathcal{L}	1010	A
	1011	В
	1100	С
	1101	D
	1110	E
okmark your favorite number converter!!	1111	F

Operations with Binary Numerals

We can easily add two binary numbers

Note that the result is 9 bits
This would be an overflow in a
8-bit register

Operations with Binary Numerals

We can easily multiply two binary numbers

Operations with Binary Numerals

We can subtract two binary numbers – as long as the result is not negative

At this point we do not know how to represent negative numbers with 0 and 1

Next time: 1's complement, 2's complement, signed numbers ...

https://tutorcs.com

WeChat: cstutorcs