

FIG. 1-1

1/7

FIG. 1-2

2/7

FIG. 2-1

3/7

FIG. 2-2

4 / 7

FIG. 3

AMINO-ACID SEQUENCE OF THE HUMAN B3-ADRENERGIC RECEPTOR GENE

10	20	30	40	50	60	70	80
MAPWPHENSS	LAPWPDPLTL	APNTANTSGL	PGVPWEAALA	GALLALAVLA	TVGGNLLVIV	AIAWTPRLQT	MTNVFVTSLA
90	100	110	120	130	140	150	160
AADLVMGLLV	VPPAATLALT	GHWPLGATGC	ELWTSVDVLC	VTASIETLCA	LAUDRYLAVT	NPLRYGALVT	KRCARTAVVL
170	180	190	200	210	220	230	240
VVVVSAAVSF	APIMSQWWRV	GADAEAQRCRCH	SNPRCCAFAS	NMPYVLLSSS	VSFYLPPLLVM	LFVYARVFVV	ATRQLRLLRG
250	260	270	280	290	300	310	320
ELGRFPPEES	PPAPSRSRSLAP	APVGTCAPPE	GVPACGRRPA	RLLPLREHRA	LCTLGLIMGT	FTLCWLPPFL	ANVLRALGGP
330	340	350	360	370	380	390	400
SLVPGPAFLA	LNWLGYANSA	FNPLIYCRSP	DFRSAFRRL	CRCGRRLPPE	PCAAARPALF	PSGVPAARSS	PAQPRLCQRL
DGASWGVS							

FIG. 4

AMINO-ACID SEQUENCE OF THE MOUSE B3-ADRENERGIC RECEPTOR GENE

10	20	30	40	50	60	70	80
MAPWPHRNNGS	LALWSDAPTL	DPSAANTSGL	PGVPWAALA	GALLALATVG	GNLLVIIAIA	RTPRLQTITN	VFVTSLAAAD
90	100	110	120	130	140	150	160
LVVGLLVMPP	GATLALTGHW	PLGETGCELW	TSVDVLCVTA	SIETLCALAV	DRYLAVTNPL	RYGTLVTKRR	ARAAVVLVWI
170	180	190	200	210	220	230	240
VSAAVSFAPI	MSQWWRVGAD	AEAQECHSNP	RCCSFASNMP	YALLSSSVF	YLPLLVMLFV	YARVFVVAKR	QRHLLRRELG
250	260	270	280	290	300	310	320
RFSPEESPPS	PSRSPSPATG	GTPAAPDGVP	PCGRRPARLL	PLREHRALRT	LGLIMGIFSL	CWLPFFLANV	LRALAGPSLV
330	340	350	360	370	380	390	400
PSGVFIALNW	LGYANSAFNP	VIYCRSPDFR	DAFRRLLCSY	GGRGPEEPRA	VTFPASPVEA	RQSPLNRFD	GYEGARPFT

FIG. 5A

... CCC AGG CTT TGC CAA CGG CTC GAC GG G GCT TCT TGG GGA GTT TCT taggcctgaaggacaagaag...
... Pro Arg Leu Cys Gin Arg Leu Asp Gl y Ala Ser Trp Gly Val Ser-408

7/7

FIG. 5B