CSE7850/CX4803 Machine Learning in Computational Biology

Lecture 17: Variant Effect Prediction

Yunan Luo

Understanding the effect of mutations/variants

Identify "bad" mutations (pathogenic variants in human disease)

Identify "good" mutations (function-enhancing variants in protein engineering)

Pathogenicity of disease variants

How to predict pathogenicity without labeled data?

• Evolutionary information revealed by sequence alignment:

```
LTYTDVPYIPCTGQCVGIMPPQVFFYVD
LTYMDVPYIPCTGQCVGIMPPQVFFYVD
LTYTDVPYIPCTGQCVDIMPPQVFFYVD
LTYTDVPYIPCTGQCVDIMPPQVFFYVD
LTYTDVPYIPCTGQCVDIMPPQVFFYVD
LTYTDVPYIPCTSQKVDIMPPQVFFYVD
LTYTDVPYIPCTSCKVDIMPPQVFFYVD
LTYTDVPYIPCTGQCVDIMPPQVFFYVD
LTYTDVPYIPCTGQCVDIMPPQVFFYVD
```

Any limitation of this method?

How to capture pairwise dependencies?

Amino acid i Amino acid j X_i X_i ADTLYMTKIHHQFQGD ADRLFITEVKOVFEGD ADTLYLTMIHOKF OAD TDTLYITHIDETF OGD ADTLYLTQIRNKF OGD ADRLYMTKIHHEFEGD Co-evolution

Multiple sequence alignment

Single potentials

Pairwise potentials

Local preference

Co-evolution strength

Markov random field Ising (Potts) model Undirected graphical model

How to capture more than 2-order dependencies

$$P(\mathbf{x}) = \frac{1}{Z} \exp \left(\sum_{i} e_{i}(x_{i}) + \sum_{i \neq j} e_{ij}(x_{ij}) \right)$$

- Co-evolution based methods only consider second order interaction
 - o Can we extend to model higher-order terms?

$$P(\mathbf{x}) = \frac{1}{Z} \exp \left(\sum_{i} e_i(x_i) + \sum_{i \neq j} e_{ij}(x_{ij}) + \sum_{i \neq j \neq k} e_{ijk}(x_{ijk}) + \cdots \right)$$

- Computationally hard
 - An exponential number of terms
- Latent-variable ML models capture higher-order interactions *implicitly*

$$p(\mathbf{x}|\boldsymbol{\theta}) = \int p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) p(\mathbf{z}) d\mathbf{z}$$

Pseudocode of VAE


```
class variational_autoencoder(nn.Module):
    def __init__(self, ...):
        super(variational_autoencoder,self).__init__()
        self.encoder = Encoder(...)
        self.decoder = Decoder(...)

def forward(self, x):
    mu, sigma = self.encoder(x)
    z = self.sample(mu, sigma)
    x_prime = self.decoder(z)
    return x
```

- Objective function: max $\mathbb{E}_q\left[\log p(\mathbf{x}|\mathbf{z})
 ight] \mathrm{D_{KL}}(q\|p)$
 - Reconstruction consistency: $\mathbb{E}_q[\log p(\mathbf{x}|\mathbf{z})] = -\frac{1}{2\sigma^2}\mathbb{E}_q[\|\mathbf{x} G_{\theta}(\mathbf{z})\|^2] + \text{const}$
 - KL divergence between p(z) and q(z): typically, p(z) = N(0, 1); The KL term encourages q(z) to be close to the standard normal distribution N(0, 1)

Paper #2

Article

Learning from prepandemic data to forecast viral escape

https://doi.org/10.1038/s41586-023-06617-0

Received: 20 July 2022

=

Accepted: 6 September 2023

Nicole N. Thadani^{1,6}, Sarah Gurev^{1,2,6}, Pascal Notin^{3,6}, Noor Youssef¹, Nathan J. Rollins^{1,5}, Daniel Ritter¹, Chris Sander^{1,4}, Yarin Gal³ & Debora S. Marks^{1,4™}

Escape

ACE2 Spike P(mutation maintains fitness)

Fitness

Deep learning of evolutionary sequences Accessibility

×

Dissimilarity

Biophysical information

Another way to predict mutation effect: language model

Masked language models

$$p(x) = \prod_{i=1}^{L} p(x_i|x_1 \dots x_{i-1}, x_{i+1} \dots x_L)$$

Language models capture higher-order interactions implicitly

MSKGEE??TGVVPI????DGDVNGHKFSVY

PLMs are trained on natural sequence data ...

but we have seen that structure can have an "evolutionary effect" on protein sequences

Can we leverage structure data in protein language models?

Structure-based PLM

Traditional PLM (sequence-based)

Structure-based PLM

Paper #1

RESEARCH

RESEARCH ARTICLE SUMMARY

MACHINE LEARNING

Accurate proteome-wide missense variant effect prediction with AlphaMissense

Jun Cheng*, Guido Novati, Joshua Pan†, Clare Bycroft†, Akvilė Žemgulytė†, Taylor Applebaum†, Alexander Pritzel, Lai Hong Wong, Michal Zielinski, Tobias Sargeant, Rosalia G. Schneider, Andrew W. Senior, John Jumper, Demis Hassabis, Pushmeet Kohli*, Žiga Avsec*

Almost identical to AlphaFold

Lecture:

Topic

Introduction

Racice in

	Basics in computational	No class (MLK day)
	biology	Sequence alignment I
		Sequence alignment II
	ML foundations Learning from sequence data Learning from high-dim data Learning from	No Class (PyTorch video + exercise)
		Regression & Gradient descent
		Classification & Toolbox for Applied ML
		Neural networks
		Deep learning
	Learning from sequence data Learning from high-dim data Learning from	Deep learning for Protein/DNA sequences
		Large language models (LLMs)
	Learning from	Clustering and dimensionality reduction
	high-dim data	Generative AI
		Network basics & ML for graphs
	network data	Graph neural network
	Learning from structure data	Protein structure prediction & protein design
	A	Protein language models for prediction and
	Advanced topics: ML for	generation
	Advanced topics: ML for sequence data	generation Disease variant prediction
	topics: ML for	generation Disease variant prediction Protein function prediction
	topics: ML for	generation Disease variant prediction Protein function prediction No class (Spring break)
	topics: ML for	generation Disease variant prediction Protein function prediction No class (Spring break) No class (Spring break)
	topics: ML for sequence data	generation Disease variant prediction Protein function prediction No class (Spring break)
	topics: ML for sequence data Advanced topics: ML for	generation Disease variant prediction Protein function prediction No class (Spring break) No class (Spring break)
	topics: ML for sequence data Advanced	generation Disease variant prediction Protein function prediction No class (Spring break) No class (Spring break) Deep learning for structure prediction
	topics: ML for sequence data Advanced topics: ML for	generation Disease variant prediction Protein function prediction No class (Spring break) No class (Spring break) Deep learning for structure prediction GNN for 3D structures
	Advanced topics: ML for structure data Advanced topics: ML for structure data	generation Disease variant prediction Protein function prediction No class (Spring break) No class (Spring break) Deep learning for structure prediction GNN for 3D structures Deep learning for structure generation
	Advanced topics: ML for structure data	generation Disease variant prediction Protein function prediction No class (Spring break) No class (Spring break) Deep learning for structure prediction GNN for 3D structures Deep learning for structure generation Embeddings (representation learning)
	Advanced topics: ML for structure data Advanced topics: ML for structure data	generation Disease variant prediction Protein function prediction No class (Spring break) No class (Spring break) Deep learning for structure prediction GNN for 3D structures Deep learning for structure generation Embeddings (representation learning) ML for protein design
	Advanced topics: ML for structure data Advanced topics: ML for structure data Advanced topics: ML for network data	generation Disease variant prediction Protein function prediction No class (Spring break) No class (Spring break) Deep learning for structure prediction GNN for 3D structures Deep learning for structure generation Embeddings (representation learning) ML for protein design ML for drug discovery

Contents

Introduction & Logistics

Molecular biology

Biology background

Intro to ML and DL

ML for bio data

ML in CompBio research

Hands-on exercise:

kaggle

Announcements: Midterm Survey

- Informal Midterm Course Feedback (anonymous)
 - Provide mid-term feedback for this course
 - Suggest your favorite topics! May be incorporated in the remaining lectures
- Access the survey form by one of the following:
 - https://tinyurl.com/mlb-ief-s24
 - Canvas -> Syllabus -> "Midterm Survey"
 - QR Code:

