

Network and Web Security

Malware

Dr Sergio Maffeis
Department of Computing

Course web page: https://331.cybersec.fun

Imperial College London

MALicious softWARE

- By infection vector
 - Virus: malicious code that copies itself into existing programs
 - Worm: self-replicating program that infects other machines over the network or removable devices
 - Trojan: malicious program that provides some useful service in order to pose as legitimate
 - Spoofed software: fake antivirus or fake software updates
 - Drive-by download: code executed by visiting a malicious website

By purpose

- Rootkit: modifies the OS to hide malicious activity of itself or other malware
- Backdoor: opens a network connection for repeated access by the attacker
- RAT: remotely control the machine in a targeted attack
- Botnet: recruit the machine into a botnet
- Keylogger: log keystrokes to steal user credentials
- Spyware: steal sensitive documents
- Ransomware: block access to machine or data until ransom is paid
- Cryptominer: mines cryptocurrency using victim resources
- Adware: displays intrusive advertisement

Imperial College

Malware attributes

Format

- Injected code added to a legitimate program (virus)
- DLL that is called by a legitimate program (fake software updates)
- Script run by an application (macro virus)
- Standalone executable that is run by the user or automatically by the system (trojan)
- Malicious code loaded in volatile memory only (fileless malware)

Propagation

- Installed by the attacker
 - Self-replication (worm)
 - Exploiting vulnerabilities (drive-by download)
- Installed by the user
 - Social engineering (fake antivirus)
 - Compromised certificate (fake software updates)

Privileges

- Root: it owns the machine (rootkit)
- User: can do limited damage (spyware), but can also attempt elevation of privilege to become root

APTs

Imperial College London

- APTs: Advanced Persistent Threats
- Targeted attacks
 - Aim to infect high-value victims
 - Company executive, politician, activist, nuclear power plant workstation
 - Specific to the victim, often humandriven
 - Compromise intermediate systems in order to reach victim host
- Avoid detection
 - Use of rootkits to hide presence
 - Exfiltrate large dataset a bit at a time using covert channels
- Exploit target over time
 - Wait for interesting information to enter the system
 - Retain access in order to exploit system at a later date

Botnets

- Generic attacks infect as many machines as possible
 - Deliver low-cost attacks with low chance of success.
 - Value in numbers: build a botnet
- One attacker (the botmaster) can control hundred of thousands of infected machines (bots)
- Bots connect to a *command-and-control (C&C)* server to receive instructions on what to do: code to execute, attack parameters
- Sophisticated *C&C* architectures
 - Peer-to-peer, hierarchical, star topology
 - Encrypted and stealthy communication of commands and results
 - Botmaster server may keep changing IP to avoid detection (fast flux/domain flux)
- Recommended reading: researchers from UCSB infiltrated a botnet to study its behaviour

(Stone-Gross et al., CCS 2009) Mebroot Vulnerable web server drive-by-download server Mebroot C&C server <iframe> Torpig DLLs GET /?gnh5 (1)gnh5.exe Torpig C&C server (3) Stolen data **GET** (6)(becomes a bot) Config Victim client URL (7)Phishing HTML Injection server NWS - Malware

Botnet goals

- Data theft: steal sensitive data from users
 - Credit card numbers
 - Passwords (email, social networks, gaming)
- Spam: deliver unrequested email
 - Advertising illegal, counterfeit goods
 - Spread malicious attachments
 - Fraud, deception: romance scams, phishing
- **Distributed denial of service** (DDOS): flood web servers with requests
 - Take down servers or slow them down significantly
 - Blackmail companies under attack
 - Disrupt communications on the target network
- Credential stuffing: attempt to login with leaked credentials to see which works
- Card cracking: bruteforce missing information for card payments
- Network scanning: attempt to probe other hosts
- Click fraud: generate advertising revenue from bogus user clicks
 - Startup from Imperial students, bought by Google: http://www.spider.io
- **Cryptojacking**: use bot resources to mine cyptocurrencies

The botnet economy

- Botnets have their own sophisticated economy
 - Botmaster can rent spare capacity to other criminals on the market
 - \$1 = 10 machines in the US, 100 machines in Asia
 - Very organized: 24/7 technical support, training, complaints department..

Commoditised malware

- Exploit kits: "commercial" malware toolkits sold or rented out to criminals
 - Capabilities: automated vulnerability analysis, exploitation and post-exploitation
 - Include Anti-Virus evasion techniques
 - Exploiting CVE-2013-7331 to find files in the system: kl1.sys => Kaspersky AV installed
 - Operator needs to subscribe to traffic from spam and malicious ads
 - Comes with administration console fine tune parameters, select victims
 - Users with a certain demographic, from a certain geographical area

Malware analysis

- Samples are captured
 - Cleaning up after an infection
 - Running honeypots: intentionally vulnerable machines that attract attacks
- Look for effects on storage, system settings, network traffic
- Often analysis is done in a VM sandbox
- Challenges
 - Sometimes hard to trigger malicious behaviour
 - Malware can try and kill logging processes and IDSs in the guest OS
 - Approx 16% of malware detects virtualization and behaves differently

Imperial College

Malware detection

- Extract signatures from analysed malware samples
- Static signatures
 - Sequences of bytes typical of the malware code
 - Motivated by speed and portability
 - Collecting millions of signatures is also good for Antivirus marketing
 - Moral hazard
 - Evasion
 - *Metamorphic* malware: samples are made artificially different from each other using different obfuscation parameters
 - Crypting services scan existing malware and against malware detection services, and transform it (encryption, obfuscation) until it is no longer detected: FUD (fully undetctable malware)
- Dynamic signatures (behavioural analysis)
 - Monitor host for patterns of system calls typically made by malware
 - Read file, open network connection, send data, ...
 - Evasion
 - Malware mixes malicious behaviour with spurious legitimate behaviour

Imperial College London

Malware prevention

Defenses

- Antivirus: scan existing and downloaded files for static signatures
- End-Point Protection (EPP): monitor host for dynamic signatures
- Browser-deployed blacklists: prevent access to web pages known to host phishing and malware
 - Google Safe Browsing
- Network based filtering based on Cyber Threat Intelligence feeds
 - https://abuse.ch, CIRCL, Facebook Threat Exchange, ...
- Signatures and blacklists are based on previous infections or proactive threat hunting
 - Either way, the attacker gets a window of opportunity before detection

Prevention

- Educate humans to avoid direct installs
- Update and patch software in response to vulnerability disclosures
 - Most malware uses known vulnerabilities from CVE database
 - Although "serious" malware can contain zero-days (Stuxnet had 5!)
- Research on Certified secure systems
 - Vision: hardware and software should come with proof of correctness and/or security
 - Harvard, Upenn, MIT, INRIA, NICTA, Microsoft Research, etc.
 - Imperial's contribution: JSCert, RIAPAV/RIVESST