Line Graphs in Seaborn

```
In [1]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sns

In [2]: # plt.style.use('ggplot') # Other sytles to use; fivethirtyeight
   sns.set_theme(style="whitegrid")
   sns.set(rc={'figure.figsize':(20,10)}) # Set figure size
   sns.set(font_scale = 2)
```

Simple line graph

```
In [3]: ex_rate_df=pd.read_csv('Exchange_Rates.csv')
    ex_rate_df['TIME']=ex_rate_df['TIME'].astype(str)
    simple_line_graph_ex_rate_df=ex_rate_df.query("LOCATION=='AUS'")
    simple_line_graph_ex_rate_df.head()
```

Out[3]:

	LOCATION	INDICATOR	SUBJECT	MEASURE	FREQUENCY	TIME	Value	Flag Codes
0	AUS	EXCH	ТОТ	NATUSD	А	2000	1.724827	NaN
1	AUS	EXCH	ТОТ	NATUSD	А	2001	1.933443	NaN
2	AUS	EXCH	ТОТ	NATUSD	А	2002	1.840563	NaN
3	AUS	EXCH	ТОТ	NATUSD	А	2003	1.541914	NaN
4	AUS	EXCH	тот	NATUSD	Α	2004	1.359752	NaN

Multiple line graphs

Simple Linear Regression Line

Out[7]:						
		sepal_length	sepal_width	petal_length	petal_width	class
	0	5.1	3.5	1.4	0.2	Iris-setosa
	1	4.9	3.0	1.4	0.2	Iris-setosa
	2	4.7	3.2	1.3	0.2	Iris-setosa
	3	4.6	3.1	1.5	0.2	Iris-setosa
	4	5.0	3.6	1.4	0.2	Iris-setosa

```
In [8]: plt.rcParams['axes.labelsize'] = 20
sns.set(font_scale = 2)
sns.lmplot(data=iris_df[iris_df['class']=='Iris-setosa'], x="sepal_length", y="sepal_width",height=10)
plt.show()
```


Multiple Linear Regression

In [9]: sns.lmplot(data=iris_df,x="sepal_length", y="sepal_width", hue="class",height=10)
plt.show()

Bar Plot

Out[10]:

	Students	Math	Physics	Computer	Total
Tom	Tom	79.0	63.0	84.0	226.0
Peter	Peter	67.0	98.0	78.0	243.0
Simon	Simon	80.0	60.0	57.0	197.0
Mary	Mary	84.0	90.0	88.0	262.0
Jane	Jane	70.0	84.0	75.0	229.0
King	King	60.0	77.0	93.0	230.0
Hillary	Hillary	90.0	55.0	92.0	237.0
Ethan	Ethan	76.0	70.0	98.0	244.0
Page	Page	75.0	66.0	90.0	231.0

```
In [11]: plt.rcParams['axes.labelsize'] = 20
    sns.set(font_scale = 2)
    sns.barplot(x=score_df['Students'], y=score_df['Total'])
    plt.xticks(rotation=45)
    plt.show()
```


Horizontal Bar chart

Simply interchange x and y axes

Total

Out[13]:

	Students	variable	Score
0	Tom	Math	79.0
1	Peter	Math	67.0
2	Simon	Math	80.0
3	Mary	Math	84.0
4	Jane	Math	70.0

In [14]: plt.rcParams['axes.labelsize'] = 20
 sns.set(font_scale = 2)
 sns.catplot(data=score_melt_df, kind="bar", x="Students", y="Score", hue="variable",height=15, aspect=1.5)
 plt.xticks(rotation=45)
 plt.show()

Stacked Bar Chart

```
In [15]: plt.rcParams['axes.labelsize'] = 20
    sns.set(font_scale = 2)
    score_df[['Students','Math','Physics','Computer']].set_index('Students').plot(kind='bar', stacked=True)
    plt.xticks(rotation=45)
    plt.show()
```


Scatter Plot

In [16]: iris_df=pd.read_csv('iris.csv')
 iris_df.head()

Out[16]:

	sepal_length	sepal_width	petal_length	petal_width	class
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa

Simple Scatter plot

```
In [17]: setosa_df=iris_df[iris_df['class']=='Iris-setosa']

plt.rcParams['axes.labelsize'] = 20
sns.set(font_scale = 2)
sns.scatterplot(x="sepal_length", y="sepal_width", sizes=(1, 8), linewidth=0,data=setosa_df)
plt.show()
4.5
```



```
In [18]: plt.rcParams['axes.labelsize'] = 20
    sns.set(font_scale = 2)
    sns.scatterplot(x="sepal_length", y="sepal_width", sizes=(1, 8), linewidth=0,data=iris_df,hue='class')
    plt.show()
```


In [19]: gdpPercap_df=pd.read_csv('gdpPercap.csv')
 gdpPercap_2007_df=gdpPercap_df.query("year=='2007'")
 gdpPercap_2007_df.head()

Out[19]:

	4 -			P.C. E .		
	country	continent	year	lifeExp	pop	gdpPercap
11	Afghanistan	Asia	2007	43.828	31889923	974.580338
23	Albania	Europe	2007	76.423	3600523	5937.029526
35	Algeria	Africa	2007	72.301	33333216	6223.367465
47	Angola	Africa	2007	42.731	12420476	4797.231267
59	Argentina	Americas	2007	75.320	40301927	12779.379640

Pie Chart

In [21]: gdpPercap_df=pd.read_csv('gdpPercap.csv')
 gdpPercap_2007_df=gdpPercap_df.query("year=='2007'")
 gdpPercap_2007_df.head()

Out[21]:

		country	continent	year	lifeExp	рор	gdpPercap
,	11	Afghanistan	Asia	2007	43.828	31889923	974.580338
2	23	Albania	Europe	2007	76.423	3600523	5937.029526
;	35	Algeria	Africa	2007	72.301	33333216	6223.367465
4	17	Angola	Africa	2007	42.731	12420476	4797.231267
į	59	Argentina	Americas	2007	75.320	40301927	12779.379640

In [22]: gdpPercap_2007_df=pd.DataFrame(gdpPercap_2007_df.groupby('continent')['gdpPercap'].sum())
gdpPercap_2007_df

Out[22]:

	gdpPercap
continent	
Africa	160629.695446
Americas	275075.790634
Asia	411609.886714
Europe	751634.449078
Oceania	59620.376550

```
In [23]: plt.rcParams['axes.labelsize'] = 20
    sns.set(font_scale = 2)
    plt.rcParams['text.color'] = 'blue'
    plt.rcParams['font.size'] = 20
    plt.pie(gdpPercap_2007_df['gdpPercap'], labels =gdpPercap_2007_df.index, autopct='%.0f%%')
    plt.show()
```


Donought

Box Plot

```
In [26]: gdpPercap_df=pd.read_csv('gdpPercap.csv')
    gdpPercap_2007_df=gdpPercap_df.query("year=='2007'")
    gdpPercap_2007_df.head()
```

Out[26]:

	country	continent	year	lifeExp	рор	gdpPercap
11	Afghanistan	Asia	2007	43.828	31889923	974.580338
23	Albania	Europe	2007	76.423	3600523	5937.029526
35	Algeria	Africa	2007	72.301	33333216	6223.367465
47	Angola	Africa	2007	42.731	12420476	4797.231267
59	Argentina	Americas	2007	75.320	40301927	12779.379640

Simple Boxplot

```
In [27]: plt.rcParams['axes.labelsize'] = 20
    sns.set(font_scale = 2)
    plt.rcParams['text.color'] = 'blue'
    plt.rcParams['font.size'] = 20

    sns.boxplot(gdpPercap_2007_df['gdpPercap'])
    plt.show()
```

C:\Users\soongaya\Anaconda3\lib\site-packages\seaborn_decorators.py:43: FutureWarning: Pass the following variable a s a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

In [28]: sns.boxplot(x='continent', y='gdpPercap', data=gdpPercap_2007_df)
plt.show()

Heatmap

In [29]: gdpPercap_df=pd.read_csv('gdpPercap.csv')
 gdpPercap_heatmap_df=gdpPercap_df.pivot('year','country','gdpPercap')
 gdpPercap_heatmap_df.iloc[0:,0:12]

Out[29]:

country	Afghanistan	Albania	Algeria	Angola	Argentina	Australia	Austria	Bahrain	Bangladesh
year									
1952	779.445314	1601.056136	2449.008185	3520.610273	5911.315053	10039.59564	6137.076492	9867.084765	684.244172
1957	820.853030	1942.284244	3013.976023	3827.940465	6856.856212	10949.64959	8842.598030	11635.799450	661.637458
1962	853.100710	2312.888958	2550.816880	4269.276742	7133.166023	12217.22686	10750.721110	12753.275140	686.341554
1967	836.197138	2760.196931	3246.991771	5522.776375	8052.953021	14526.12465	12834.602400	14804.672700	721.186086
1972	739.981106	3313.422188	4182.663766	5473.288005	9443.038526	16788.62948	16661.625600	18268.658390	630.233627
1977	786.113360	3533.003910	4910.416756	3008.647355	10079.026740	18334.19751	19749.422300	19340.101960	659.877232
1982	978.011439	3630.880722	5745.160213	2756.953672	8997.897412	19477.00928	21597.083620	19211.147310	676.981866
1987	852.395945	3738.932735	5681.358539	2430.208311	9139.671389	21888.88903	23687.826070	18524.024060	751.979403
1992	649.341395	2497.437901	5023.216647	2627.845685	9308.418710	23424.76683	27042.018680	19035.579170	837.810164
1997	635.341351	3193.054604	4797.295051	2277.140884	10967.281950	26997.93657	29095.920660	20292.016790	972.770035
2002	726.734055	4604.211737	5288.040382	2773.287312	8797.640716	30687.75473	32417.607690	23403.559270	1136.390430
2007	974.580338	5937.029526	6223.367465	4797.231267	12779.379640	34435.36744	36126.492700	29796.048340	1391.253792

4

```
In [30]: heatmap_data = np.random.random(( 10 , 10 ))

plt.rcParams['axes.labelsize'] = 20
sns.set(font_scale = 2)
plt.rcParams['text.color'] = 'blue'
plt.rcParams['font.size'] = 20
sns.heatmap(heatmap_data,cmap='autumn')
plt.title('2-D Heatmap')
plt.show()
```


Heatmap with DataFrame

```
In [31]: plt.rcParams['axes.labelsize'] = 20
    sns.set(font_scale = 2)
    plt.rcParams['text.color'] = 'blue'
    plt.rcParams['font.size'] = 20
    sns.heatmap(gdpPercap_heatmap_df.iloc[0:,0:15], annot=True, fmt=".0f", linewidths=.5,cmap='summer')
    plt.show()
```

1952	779	1601	2449	3521	5911	10040	6137	9867	684	8343	1063	2677	974	851	2109
1957	821	1942	3014	3828	6857	10950	8843	11636	662	9715	960	2128	1354	918	2487
1962	853	2313	2551	4269	7133	12217	10751	12753	686	10991	949	2181	1710	984	3337
1967	836	2760	3247	5523	8053	14526	12835	14805	721	13149	1036	2587	2172	1215	3430
1972	740	3313	4183	5473	9443	16789	16662	18269	630	16672	1086	2980	2860	2264	4986
ਰੂ 1977	786	3533	4910	3009	10079	18334	19749	19340	660	19118	1029	3548	3528	3215	6660
1982	978	3631	5745	2757	8998	19477	21597	19211	677	20980	1278	3157	4127	4551	7031
1987	852	3739	5681	2430	9140	21889	23688	18524	752	22526	1226	2754	4314	6206	7807
1992	649	2497	5023	2628	9308	23425	27042	19036	838	25576	1191	2962	2547	7954	6950
1997	635	3193	4797	2277	10967	26998	29096	20292	973	27561	1233	3326	4766	8647	7958
2002	727	4604	5288	2773	8798	30688	32418	23404	1136	30486	1373	3413	6019	11004	8131
2007	975	5937	6223	4797	12779	34435	36126	29796	1391	33693	1441	3822	7446	12570	9066
	Afghanistan	Albania	Algeria	Angola	Argentina	Australia	Austria	Bahrain	Bangladesh	Belgium	Benin	Bolivia	Bosnia and Herzegovina	Botswana	Brazil
													ш		

- 35000

- 30000

- 25000

- 20000

- 15000

- 10000

- 5000

Correlation Heatmap

```
In [32]: plt.rcParams['axes.labelsize'] = 20
    sns.set(font_scale = 2)
    plt.rcParams['text.color'] = 'blue'
    plt.rcParams['font.size'] = 20

cmap = sns.diverging_palette(230, 20, as_cmap=True)
    sns.heatmap(gdpPercap_heatmap_df.corr().iloc[0:10,0:10], annot=True, fmt=".3f", linewidths=.5,cmap='winter')
    plt.show()
```

Afghanistan	1.000	0.364	0.178	0.310	0.071	-0.033	-0.059	0.151	0.079	-0.064		1.0
Albania	0.364	1.000	0.827	0.015	0.821	0.864	0.838	0.949	0.779	0.836		-0.8
Algeria	0.178	0.827	1.000	-0.395	0.815	0.843	0.889	0.882	0.567	0.886		-0.6
Angola	0.310	0.015	-0.395	1.000	-0.062	-0.279	-0.348	-0.098	-0.054	-0.351		0.0
≧ Argentina	0.071	0.821	0.815	-0.062	1.000	0.838	0.851	0.915	0.672	0.846		-0.4
Argentina Australia	-0.033	0.864	0.843	-0.279	0.838	1.000	0.989	0.949	0.888	0.991		-0.2
Austria	-0.059	0.838	0.889	-0.348	0.851	0.989	1.000	0.944	0.819	0.999		
Bahrain	0.151	0.949	0.882	-0.098	0.915	0.949	0.944	1.000	0.819	0.943		-0.0
Bangladesh	0.079	0.779	0.567	-0.054	0.672	0.888	0.819	0.819	1.000	0.827		0.2
Belgium	-0.064	0.836	0.886	-0.351	0.846	0.991	0.999	0.943	0.827	1.000		
	Afghanistan	Albania	Algeria	Angola	Argentina S	htry Australia	Austria	Bahrain	Bangladesh	Belgium	•	

Grouped Visualizations

Pairplot

```
In [33]: iris_df=pd.read_csv('iris.csv')
    iris_df.head()
```

Out[33]:

	sepal_length	sepal_width	petal_length	petal_width	class
C	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa

```
In [34]: plt.rcParams['axes.labelsize'] = 20
    sns.set(font_scale = 2)
    plt.rcParams['text.color'] = 'blue'
    plt.rcParams['font.size'] = 20

    sns.pairplot(iris_df,hue='class')
    plt.show()
```


class

Iris-setosa

Iris-versicolor

Iris-virginica

Joint plot

```
In [49]: plt.rcParams['axes.labelsize'] = 20
    sns.set(font_scale = 2)
    plt.rcParams['text.color'] = 'blue'
    plt.rcParams['font.size'] = 20

sns.jointplot(data=iris_df,x='sepal_length',y='sepal_width',hue='class',height=13)
    plt.show()
```


Distplot

```
In [60]: plt.rcParams['axes.labelsize'] = 20
         sns.set(font_scale = 2)
         plt.rcParams['text.color'] = 'blue'
         plt.rcParams['font.size'] = 20
         sns.displot(iris df, x="sepal length", col="class", height=5, facet kws=dict(margin titles=True))
         plt.plot()
Out[60]: []
```


Distribtuion Plot

In [35]: iris_df=pd.read_csv('iris.csv')
 iris_df.head()

Out[35]:

	sepal_length	sepal_width	petal_length	petal_width	class
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa

Histogram

Plotting univariate histogram

```
In [36]: plt.rcParams['axes.labelsize'] = 20
    sns.set(font_scale = 2)
    plt.rcParams['text.color'] = 'blue'
    plt.rcParams['font.size'] = 20

    sns.histplot(iris_df[iris_df['class']=='Iris-setosa'], x='sepal_length')
    plt.show()
```



```
In [37]: plt.rcParams['axes.labelsize'] = 20
    sns.set(font_scale = 2)
    plt.rcParams['text.color'] = 'blue'
    plt.rcParams['font.size'] = 20

    sns.histplot(iris_df[iris_df['class']=='Iris-setosa'], x='sepal_length',kde=True)
    plt.show()
```



```
In [38]: plt.rcParams['axes.labelsize'] = 20
    sns.set(font_scale = 2)
    plt.rcParams['text.color'] = 'blue'
    plt.rcParams['font.size'] = 20

    sns.histplot(iris_df, x='sepal_length',kde=True, hue='class')
    plt.show()
```


kernel density estimate (KDE) plot

A kernel density estimate (KDE) plot is a method for visualizing the distribution of observations in a dataset, analogous to a histogram. KDE represents the data using a continuous probability density curve in one or more dimensions.

Simple univariate kde distribution

```
In [39]: plt.rcParams['axes.labelsize'] = 20
    sns.set(font_scale = 2)
    plt.rcParams['text.color'] = 'blue'
    plt.rcParams['font.size'] = 20

    sns.kdeplot(data=iris_df[iris_df['class']=='Iris-setosa'], x='sepal_length')
    plt.show()
```



```
In [40]: plt.rcParams['axes.labelsize'] = 20
    sns.set(font_scale = 2)
    plt.rcParams['text.color'] = 'blue'
    plt.rcParams['font.size'] = 20

    sns.kdeplot(data=iris_df[iris_df['class']=='Iris-setosa'])
    plt.show()
```



```
In [41]: plt.rcParams['axes.labelsize'] = 20
    sns.set(font_scale = 2)
    plt.rcParams['text.color'] = 'blue'
    plt.rcParams['font.size'] = 20

    sns.kdeplot(data=iris_df, x='sepal_length',hue='class')
    plt.show()
```



```
In [42]: plt.rcParams['axes.labelsize'] = 20
    sns.set(font_scale = 2)
    plt.rcParams['text.color'] = 'blue'
    plt.rcParams['font.size'] = 20

sns.kdeplot(data=iris_df, x="sepal_length", hue="class",
        fill=True, common_norm=False, palette="crest",
        alpha=.5, linewidth=0,)
    plt.show()
```

