Insper

Ciência dos Dados

Aula 09

Variáveis aleatórias discretas

Distribuição de probabilidades Esperança e variância

Magalhães e Lima, 7ª. Edição. Seção 3.1 e Definição 4.2 (pág. 110) e Definição 4.5 (pág. 121).

Objetivos de Aprendizagem

Os alunos devem ser capazes de:

 Descrever e aplicar as propriedades de distribuições probabilísticas em variáveis aleatórias discretas.

Variáveis aleatórias

Quando **tomamos decisões** em face da incerteza, **raramente elas se baseiam apenas** na probabilidade descritas em **eventos**.

Na maioria dos casos, devemos **também** saber algo sobre as consequências potenciais da **tomada de decisão descritas em variáveis quantitativas** (tempo de execução de uma tarefa, perdas, lucros, penalidades ou recompensas).

Por exemplo, uma construtora precisa decidir se apresenta proposta para um projeto que lhe oferece a perspectiva de R\$ 250.000,00 de lucro com probabilidade de 20% ou de um prejuízo de R\$ 50.000,00 (em consequência de uma crise financeira no país) com 80% de probabilidade.

A probabilidade da construtora ter lucro não é muito grande, mas a quantia que ela pode ganhar é muito maior do que a que ela pode perder.

Este exemplo mostra a necessidade de um método que permita combinar probabilidades e consequências.

Insper

Variáveis aleatórias

Variável aleatória: função que associa um número real a cada ponto do espaço amostral (possível realização do experimento aleatório).

Insper

Tipos de Variáveis Aleatórias

- Variáveis Aleatórias Discretas
- Variáveis Aleatórias Contínuas
- Variável aleatória discreta: conjunto de possibilidades é um conjunto finito ou enumerável
- Exemplo: número de filhos, número de salas de aula, número de benefícios do Bolsa Família por família
- Variável aleatória contínua: conjunto de possibilidades num intervalo ou conjuntos de intervalos contínuos
- Exemplo: tempo de duração, temperatura

- ☆ Uma indústria de aviões recebe pedidos de um determinado tipo de jato comercial por ano (X: 0, 1, 2, 3, 4, ...)
- ☆ Um empresário com 20 escritórios comerciais quer saber o número de escritórios que estão alugados por mês (X: 0, 1, 2, 3,, 20)
- ↑ Número de vendas num dia de funcionamento de uma loja (X: 0, 1, 2, ...)
- ↑ Número de chamadas telefônicas recebidas numa central num dia (X: 0,1, 2, ...)
- ☆ Um vendedor de seguros aborda 5 clientes por dia, recebendo 50,00 de comissão a cada venda. A variável de interesse é o ganho diário do vendedor (X: 0,00; 50,00; 100,00; 150,00; 200,00; 250,00)
- ↑ Número de peças defeituosas num lote com 30 peças (X: 0, 1,..., 30)
- Número de papéis que fecharam em alta ao final de um pregão (X: 0, 1, ..., n)

Exemplo 1

- Uma corretora de seguros paga uma comissão de R\$50,00 a cada novo seguro que um corretor vende. A probabilidade de um cliente adquirir o seguro é de 0,20.
- a) Descreva como pode se comportar a comissão se um corretor ao abordar 2 clientes de maneira independente um do outro.
- b) Qual a probabilidade de um corretor ganhar apenas R\$50,00?

S_i: o cliente *i* compra o seguro

N_i: o cliente *i* não compra o seguro

Exemplo 1 (item a)

Espaço Amostral		Comissão
10 cliente 20 cliente		Comissão
S ₁	S ₂	100
S_1	N_2	50
N_1	S_2	50
N_1	N_2	0

S_i: o cliente *i* compra o seguro N_i: o cliente *i* não compra o seguro

Exemplo 1 (item a)

X: comissão recebida por um corretor com a tentativa de venda de duas apólices de seguro

Espaço Amostral

Distribuição de probabilidades de uma variável aleatória

Exemplo 1 (item b)

Uma corretora de seguros paga uma comissão de R\$50,00 a cada novo seguro que um corretor vende.

A probabilidade de um cliente adquirir o seguro é de 0,20.

- a) Descreva como pode se comportar a comissão se um corretor abordar 2 clientes de maneira independente um do outro.
- b) Qual a probabilidade de um corretor ganhar apenas R\$50,00?

S_i: o cliente *i* compra o seguro;

N_i: o cliente *i* não compra o seguro.

$$P(S_i) = 0.20$$

$$P(N_i) = 0.80$$

Exemplo 1 (item b)

Abordando dois clientes de forma aleatória, os eventos possíveis são:

1° Cliente	2º Cliente	Comissão	P(X=x)	
S ₁	S ₂	100	0,04	
S_1	N_2	50	0,16	P(X = 50) = 0.16 + 0.16 = 0.32
N_1	S_2	50	0,16	0,16+0,16=0,32
N_1	N_2	0	0,64	

A comissão que um corretor ganha é uma variável aleatória discreta.

Distribuição de probabilidades de uma v.a. discreta

É uma função que associa uma probabilidade a cada valor de uma variável aleatória.

Exemplo: X: Comissão de um corretor

Distribuição de probabilidades de X

X	P(X=x)
0	0,64
50	0,32
100	0,04
Soma	1,00

Definição:

(Função de Probabilidade – f.p.):

Seja uma variável aleatória (v.a.) discreta X, que assume valores x 's.

A função que associa a probabilidade de ocorrência em cada valor x, isto é,

$$f(x) = P(X = x) ,$$

chama-se função de probabilidade.

Definição: (Distribuição de uma v.a.) -

Seja uma variável aleatória (v.a.) discreta X, que assume valores x ´s.

A distribuição da v.a. X (ou distribuição de probabilidades da v.a. X) é o conjunto de todos os pares formados por

$$\{x, P(X = x)\},\$$

isto é, pelos valores de X e as respectivas probabilidades da variável assumir tais valores.

Propriedades da

Função de Probabilidades de uma Variável Aleatória Discreta

Seja X uma v.a. discreta assumindo valores x's:

$$0 \leq P(X = x) \leq 1$$

$$\sum_{x} P(X = x) = 1$$

Média e Variância de uma variável aleatória

Voltando ao Exemplo 1

Distribuição de probabilidades de X

(X: Comissão)

X	P(X=x)
0	0,64
50	0,32
100	0,04
Soma	1,00

Qual a comissão média recebida por um corretor ao abordar 2 clientes?

E o desvio padrão dessa comissão?

Insper

Valor Esperado (média ou esperança) de uma variável discreta

O valor esperado de uma <u>v.a. discreta</u> X é a soma dos produtos dos valores da variável pelas respectivas probabilidades da variável assumir tais valores, ou seja,

$$E(X) = \mu_X = \sum_{x} x P(X = x)$$

Voltando ao Exemplo 1

Distribuição de probabilidades de X

X	P(X=x)
0	0,64
50	0,32
100	0,04
Total	1,00

$$E(X) = 0x0,64 + 50x0,32 + 100x0,04 = 20$$
 reais (valor médio da comissão do corretor)

Voltando ao Exemplo 1

Distribuição de probabilidades de X

(X: Comissão)

X	P(X=x)
0	0,64
50	0,32
100	0,04
Soma	1,00

Qual a comissão média recebida por um corretor ao abordar 2 clientes?

E o desvio padrão dessa comissão?

Variância de uma variável discreta aleatória

A variância de uma v.a. discreta X é

$$Var(X) = \sigma^{2}_{X} = \sum_{x} (x - E(X))^{2} P(X = x)$$

ou ainda,
$$Var(X) = E[(X - E(X))^2] =$$

= $E(X^2) - [E(X)]^2$

em que
$$E(X^2) = \sum_{x} x^2 P(X = x)$$

Voltando ao Exemplo 1

Distribuição de probabilidades de X

X	P(X=x)	
0	0,64	E(X) = 20 reais
50	0,64 0,32	
100	0,04	
Total	1,00	

$$Var(X) = (0-20)^2x_{0,64} + (50-20)^2x_{0,32} + (100-20)^2x_{0,04}$$
$$= 800 \text{ reais}^2$$

 $\sigma_X = 28,28$ reais (desvio padrão da variável aleatória X)

3º. Hands On para próxima aula

Distribuição de probabilidades de X: Comissão atual de um corretor

X	P(X=x)
0	0,64
50	0,32
100	0,04
Total	1,00

Imagine que a corretora de seguros irá fornecer um aumento na comissão dos corretores. Entretanto, cada corretor poderá escolher uma das seguintes opções:

- 1. Nova comissão será a comissão atual mais um fixo de R\$ 20,00.
- 2. Nova comissão será o dobro da atual comissão

Calcule o valor esperado e a variância de cada opção.

Escolha qual delas é melhor para aumentar o ganho de um corretor.

Justifique sua resposta.

Insper

3º. Hands On para próxima aula

Distribuição de probabilidades de X: Comissão atual de um corretor

x	P(X=x)
0	0,64
50	0,32
100	0,04
Total	1,00

Distribuição de probabilidades Y: Comissão atual mais um fixo de R\$ 20,00.

у	P(Y=y)
20	0,64
70	0,32
120	0,04
Total	1,00

Distribuição de probabilidades W: Dobro da atual comissão

W	P(W=w)
0	0,64
100	0,32
200	0,04
Total	1,00

Propriedades da Esperança

Seja X uma variável aleatória qualquer, então

(i)
$$E(X + d) = E(X) + d$$
, onde d é uma constante.

(ii) E(c X) = c E(X), onde c é uma constante.

(iii) Combinando (i) e (ii):

$$E(cX+d)=cE(X)+d,$$

onde c e d são constantes.

Propriedades da Variância

Seja X uma variável aleatória qualquer, então

(i)
$$Var(X + d) = Var(X)$$
, onde d é uma constante.

(ii) $Var(c X) = c^2 Var(X)$, onde c é uma constante.

(iii) Combinando (i) e (ii):

$$Var(c X + d) = c^2 Var(X),$$

onde c e d são constantes.

Exemplo 2

Uma empresa de segurança visita, em um dia de trabalho, dois potenciais clientes para oferecer seus serviços.

A probabilidade de fechar contrato com o primeiro cliente visitado no dia é da ordem de 10%. Quando a primeira visita resulta em contrato, a probabilidade de se fechar contrato na segunda visita quadruplica, caso contrário, ela se mantém em 10%.

Admitindo que o **custo do dia de trabalho** seja da ordem de **R\$30,00** e que a receita obtida com **cada contrato fechado** seja da ordem de **R\$500,00**, pergunta-se:

- a) Encontre a distribuição de probabilidades da variável Lucro.
- b) Qual a probabilidade de se ter prejuízo num dia?
- c) Vale a pena manter essas visitas?
- d) Qual a variância do lucro?
- e) Qual valor esperado e variância do Lucro, se esse cair em 10%?

Exemplo 2 (item a)

Espaço Amostral		- Drobobilidada	
1 ^a visita	2 ^a visita	- Probabilidade	
F ₁	F ₂	0,04	F _i : fechar contrato na visita <i>i</i>
F ₁	N_2	0,06	N _i (=F _i ^c): não fechar contrato
N_1	F_2	0,09	na visita i
N_1	N_2	0,81	

Espaço A	Amostral	- Possita	Custo Fixo	Lucro	
1a visita	2a visita	Receila	Cusio Fixo		
F ₁	F ₂	1000	30	970	
F ₁	N_2	500	30	470	
N_1	F_2	500	30	470	
N_1	N_2	0	30	-30	

Exemplo 2 (item a)

Defina a v.a. *X* como sendo o lucro obtido durante o período de interesse. Assim,

Espaço I	Amostral	v	P(X=x)	
1a visita	2a visita	X		
F ₁	F ₂	970	0,04	
F_1	N_2	470	0,06	
N_1	F_2	470	0,09	
N_1	N_2	-30	0,81	

Exemplo 2 (item a)

Finalmente, a distribuição de probabilidades da v.a. X, definida anteriormente, fica dada por

X	P(X=x)
970	0,04
470	0,06+0,09=0,15
-30	0,81
Total	1,00

Exemplo 2

b) Qual a probabilidade de se ter prejuízo num dia?

$$P(X < 0) = P(X = -30) = 0.81$$

c) Vale a pena manter essas visitas?

$$E(X) = 970 \times 0.04 + 470 \times 0.15 + (-30) \times 0.81 = 85$$

d) Qual a variância do lucro?

$$Var(X) = (970-85)^{2}x0,04 + (470-85)^{2}x0,15 + (-30-85)^{2}x0,81$$

$$= 64.275 \text{ reais}^{2}$$

$$DP(X) = 253,53 \text{ reais}$$

e) Esperança e variância se lucro cair em 10%?

Y=0,9X
$$\rightarrow$$
 E(Y) = 0,9 x 85 = 76,50 reais
Var(Y) = 0,9² x 64.275 = 52.062,75 reais²
DP(Y) = 228,17 reais

Exemplo 3

Historicamente, as vendas mensais de uma loja têm média de \$25.000 e desvio-padrão \$4.000.

Os lucros correspondem a 30% das vendas menos um custo fixo de \$6.000.

Encontre o valor esperado e o desviopadrão do lucro.

Um rapaz está pensando em convidar sua namorada para sair. O problema é que as despesas correm por sua conta. Eles podem ir ao cinema ou ao teatro. 70% das vezes ela prefere ir ao cinema, nesse caso, ele gasta \$70,00 com os ingressos. Quando eles vão ao teatro, o gasto fica em \$190,00. Se eles forem ao cinema, ele sabe que em 80% das vezes ela pede para ir jantar, a despesa adicional do jantar fica em \$130,00; 20% das vezes, eles vão direto para casa. Levando a namorada ao teatro, em 40% das vezes ela pede para ir jantar e 60% das vezes eles vão direto para casa.

- Qual a distribuição de probabilidades do gasto que o rapaz tem com a namorada? Qual o gasto médio? E o seu desvio-padrão? R: E(G) = 194,40 reais e DP(G) = 63,88 reais
- Com a inflação deste ano, o gasto aumentou até agora \$9, mas com a crise geral, o casal resolveu reduzir esse novo gasto total em 15%. Calcule o novo gasto médio e respectivo desvio padrão. R: E(Y) = 172,89 reais e DP(Y) = 54,30 reais

A AirBrazil tem uma política de, rotineiramente, superlotar os vôos, porque, por experiências passadas, alguns passageiros não comparecem para o embarque. A variável aleatória X representa o número de passageiros que não podem ser embarcados por haver mais passageiros do que assentos.

X	0	1	2	3	4
P(X=x)	0,807	0,115	0,057	0,019	0,002

Considerando a distribuição de probabilidades da v.a. X, calcule:

- a) Calcule a E(X) e a Var(X). Resp: E(X) = 0.294 e Var(X) = 0.4596
- b) A cada passageiro não embarcado, a companhia aérea paga uma multa de R\$500,00. Qual a despesa média com multas da AirBrazil? E a variância? Resp: Y=500X; E(Y)=147; Var(Y)=114900
- c) A Infraero pretende alterar a taxação da multa, dobrando o valor pago por passageiro não embarcado. Neste caso, qual seria o valor médio gasto com multas? E a variância? Resp: Z=2Y; E(Z)=294; Var(Z)=459600
- d) A Infraero pretende alterar a taxação da multa, dobrando o valor pago por passageiro não embarcado no item b) e cobrando um valor fixo de R\$2000, sempre que houver overbooking. Neste caso, qual seria o valor médio gasto com multas? E a variância?

Resp: E(W)=680; Var(W)=2.031.600

A) O tempo *T*, em minutos, necessário para um operário processar certa peça, é uma v.a. com a seguinte distribuição de probabilidades:

t	2	3	4	5	6	Total
P (T=t)	0,1	0,1	0,4	0,2	0,2	1,0

O gerente de produção necessita estudar o tempo de produção das peças para decidir se contrata mais funcionários ou se pode dar um bônus em dinheiro para que os funcionários sejam mais rápidos. Qual o tempo médio de processamento e o desvio padrão do tempo gasto para processar uma peça?

R: E(T) = 4.3 minutos e DP(T) = 1.19 minutos

B) Para cada peça processada, o operário ganha um fixo de 2,00 u.m. (unidade monetária), mas se ele processa a peça em menos de 5 minutos, ganha 0,50 u.m. por cada minuto poupado. Por exemplo, se ele processa a peça em 4 minutos, recebe a quantia adicional de 0,50 u.m.

Qual a média e o desvio padrão da quantia (em u.m.) ganha por peça?

R: E(G) = 2,45 u.m.DP(G) = 0,47 u.m.

t	2	3	4	5	6	Total
P (T=t)	0,1	0,1	0,4	0,2	0,2	1,0
Ganho (u.m.)	3,50	3,00	2,50	2,00	2,00	

Insper

Um funcionário de uma corretora ganha um bônus de 30 u.m. a cada investimento bem sucedido e é penalizado em 15 u.m. a cada investimento mal sucedido.

Admita que ele tenha que propor 2 investimentos por dia. Sabe-se que se ele tem sucesso no 1o. investimento, a probabilidade de sucesso no 2o. é 0,80; caso ele fracasse no 1o., a probabilidade de sucesso no 2o. é 0,50.

Sabendo que a probabilidade de ser bem sucedido no 1o. é 0,60, determine a distribuição de probabilidades do seu ganho diário.

- A. Qual é o ganho médio diário? E o seu desvio-padrão?
- B. O funcionário comunica ao seu chefe que se demitirá caso seu ganho médio diário seja inferior a R\$32,00. Qual deveria ser a penalização máxima para que o funcionário não se demita?

A: $E(X) = 27.6 \text{ u.m. e } DP(X) = 34.90 \text{ u.m. } [Var(X) = 1218.24 \text{ u.m.}^2]$

B: 8,88