edureka!

Hadoop Administration **

Hadoop Administration

Module 4: Backup, Recovery and Maintenance

Course Topics

edureka!

✓ Module 1

- ✓ Understanding Big Data
- √ Hadoop Components

✓ Module 2

- ✓ Different Hadoop Server Roles
- ✓ Hadoop Cluster Configuration

✓ Module 3

- √ Hadoop Cluster Planning
- ✓ Job Scheduling

✓ Module 4

- ✓ Securing your Hadoop Cluster
- √ Backup and Recovery

✓ Module 5

- ✓ Hadoop 2.0 New Features
- ✓ HDFS High Availability

✓ Module 6

- ✓ Quorum Journal Manager (QJM)
- ✓ Hadoop 2.0 YARN

✓ Module 7

- ✓ Oozie Workflow Scheduler
- ✓ Hive and Hbase Administration

✓ Module 8

- √ Hadoop Cluster Case Study
- ✓ Hadoop Implementation

Topics of the day

- Let's Revise
- Common Admin Commands
- Data Backup and Recovery
- Data Backup
- NameNode Recovery
- **Decommission/Commission of Data Node**
- Security and Kerberos

Let's Revise – Plan Your Hadoop CLuster

edureka!

- Plan You Hadoop Cluster
- Schedulers and their benefits

- developing.
- Not a practical implementation for large amounts of data.
- nodes.
- As the volume of data grows, more nodes can easily be added.

cluster needs to grow

- Increasing amount of computation power needed.
- Increasing amount of data which needs to be stored.
- Increasing amount of memory needed to process tasks.

Common Admin Commands

Cluster Balancing – usually after adding new Data Nodes

hadoop balancer [-threshold <threshold>]

HDFS Admin Client

hadoop dfsadmin -metasave <filename>

MapReduce Admin

yarn mradmin -refreshQueuesAcls

edureka!

√ Terabytes and Petabytes of data

- √ Risk of data loss Data Backup
- ✓ Problem of backup What data to backup, backup frequency, size of the backup
- ✓ Consistency

✓ Possible solutions

- ✓ Distributed Copy (distcp)
- ✓ Parallel copy to another cluster Parallel Data Ingestion (Flume)

Data Backup

Data

Applications

Configuration

Data and Meta-Data about data

System (Hadoop daemons) and User applications

System and Application Configurations for smooth running of system

HDFS – Fundamental (Recap)

edureka!

NameNode (Stores metadata only)

METADATA:

/user/doug/hinfo -> 1 3 5 /user/doug/pdetail -> 4 2 **NameNode:** Keeps track of overall file directory structure and the placement of Data Block

DataNodes:

Store Blocks from files

For Replication Factor = 3

Blocks are replicated to nodes throughout the cluster according to Replication Factor.

- a) True
- b) False

Replication can be configured with the:

- a) dfs.replication parameter in hdfs-site.xml
- b) fs.replication parameter in core-site.xml
- c) fs.replication parameter in mapred-site.xml

Answer: dfs.replication parameter in hdfs-site.xml

Backup options – In-built in Hadoop

hadoop distcp hdfs://<source NN> hdfs://<target NN>

distcp

Flume

Parallel Data ingestion

✓ Flume is a distributed, reliable, and available service for efficiently collecting, aggregating, and moving large amounts of streaming event data.

How to take the complete (full copy of Dataset) backup of the HDFS?

- a) Use a third party Storage tool to copy disks
- b) Use OS 'cp' command
- c) Use 'hadoop dfs -copyToLocal'

Answer: Use 'hadoop dfs -copyToLocal

You can edit Property 'dfs.block.size' in

- a) hdfs-site.xml
- b) core-site.xml

Annie's Answer

The Hadoop tool for cluster to cluster copy is:

- a) sqoop
- b) Dfsadmin
- distcp

Possible Problems - breakdown/failure causes

edureka!

✓ Application or User related

- ✓ Inadvertent Data deletion
- ✓ Corrupted Writes

✓ Data Center/Hardware Issues

- ✓ Natural disaster (Storm, Hurricane)
- ✓ Network or Power outages
- ✓ Disk crash or corruption
- ✓ Rack failure
- ✓ Server Hardware failure/crash

Safeguard Application level Problems

- ✓ Safeguard from Application or User related
 - ✓ Configure Name and Space Quotas
 - ✓ Access to only the 'must have' data

User Accounts and Quotas

edureka!

- ✓ Create 'home' directory for each user
 - >hadoop fs -mkdir /user/username
 - >hadoop fs -chown username:username /user/username
- ✓ Configure space limits on the directory

>hadoop dfsadmin -setSpaceQuota 1t /user/username

Recover from Application level Problems

edureka!

✓ Configure Trash server

- ✓ Configure Trash server using fs.trash.interval to set trash interval
 - √ When enabled, files are deleted into trash
- ✓ Trash deletion only works through fs shell programmatic deletes will not employ Trash
- ✓ Trash is a per user directory for restores each user has her own trash directory ".Trash"
- ✓ Can be expunged:
- √ >hadoop dfs -expunge

Safeguard from Data Center / Hardware failures

- ✓ Safeguard from recoverable failures such as Power or complete loss in case of a disaster such as fire
 - ✓ Backup the data and meta-data
 - ✓ Restore Storage
 - ✓ Server Recovery
 - ✓ Framework level features

NameNode Meta-Data backup

✓ Best practice configuration

- ✓ Configure the NameNode to store multiple copies of its metadata.
 - ✓ For example, by keeping two copies of the edit log and FSImage, on two separate hard disks, you can avoid bringing down the NameNode if one of those disks fails.

NameNode Safe mode

Data Nodes and Recovery

✓ Data Nodes:

Store Blocks from files

- ✓ Monitor node health
- Examine data node block scanner reports (http://datanode:50075/blockScannerReport)
- √ Hadoop fsck to repair the file system

HDFS will automatically delete files in trash folders.

- a) True
- b) False

Commission / Decommission Data Nodes

- ✓ Add New Data Nodes
- **✓ Remove faulty Data Nodes**

Add (Commission) DataNodes

Remove (Decommission) DataNodes

We can start the NameNode in recovery mode with:

- a) namenode -recover
- b) namenode -safemode
- c) namenode -recovery

Answer: namenode -recover

Secondary NameNode should run on a separate machine in a large production Hadoop Cluster.

- a) True
- b) False

To move blocks from old data nodes to new data nodes to balance the cluster, use:

- a) Balancer
- b) HDFS
- c) SNN

Cluster Membership

edureka!

- √ To aid the addition or removal of Data Nodes in a Cluster.
 - ✓ Create a file containing the authorized machines
 - ✓ For DataNodes: dfs.hosts and dfs.hosts.exclude
 - ✓ For JobTrackers: mapred.hosts and mapred.hosts.exclude

Upgrade guidelines

edureka!

- ✓ Save name node meta-data offsite
- ✓ Test upgrade on smaller cluster before pushing out
- ✓ Data layout upgrades support roll-back but need to be careful
- ✓ Backup all or important data to remote
- √ location before upgrade

System Upgrade

Storage Considerations

edureka!

✓ HDFS Block Size

- ✓ Property 'dfs.block.size' in hdfs-site.xml (default: 64 MB)
- √ 128 MB or even 256 MB in real cluster implementations to ease Memory Pressure on NameNode and to provide more data to Mappers to work upon

√ I/O buffer size

- ✓ Property 'io.file.buffer.size' in coresite.xml (default: 4 KB)
- ✓ Performance benefits with 128 KB

✓ Reserved storage space

Property 'dfs.datanode.du.reserved' to reserve storage for non-HDFS usage as by default DataNode try to use all the available storage volumes.

Copying	Teeing
Data is copied from production to replica as a separate step after processing	Send data during ingest phase to production and replica clusters
✓ Consistent data between both sites✓ Process once only	✓ Time delay is minimal between clusters✓ Bandwidth required could be larger
 ✓ Time delay for RPO objectives to do incremental copy ✓ More bandwidth needed 	 ✓ Requires re-processing data on both sides ✓ No consistency between sites

Security edureka!

- ✓ The Hadoop ecosystem has only partially adopted Kerberos but many services remain unprotected and use trivial authentication systems.
- ✓ Service-level authorization and web proxy capabilities in YARN.
- Most security tools fail to scale and perform with big data environments.

Security – Simple Flow

edureka!

√ Security Risks

- ✓ Insufficient Authentication
 - ✓ Do not authenticate users services
- ✓ No Privacy and No Integrity
 - ✓ Insecure Network Transport
 - ✓ No Message level security
- ✓ Arbitrary Code Execution
 - ✓ No User verification for MapReduce code execution, malicious users could submit a job

Kerberos to the rescue

edureka!

Kerberos Integration

- User Authentication
- User and Group access control list at cluster level

Tokens

- Delegation
- Job
- **Block Access**
- **Simple Authentication and Security Layer** (SASL) with RPC digest mechanism

Start Service Session

Running a HDFS command such as 'hadoop fs -ls' results in permission error, what can be the problem:

- a) DataNode not available
- b) 'You are trying to access 'Kerberos' enabled HDFS
- c) Encrypted file system

Answer: You are trying to access 'Kerberos' enabled HDFS

Hadoop Operations Book

✓ http://www.amazon.in/Hadoop-Operations-Eric-Sammer/dp/1449327052

Haoop Definitive Guide

✓ http://www.amazon.in/Hadoop-Definitive-Guide-Tom-White/dp/1449311520

Tasks for you

- Attempt the following Assignments as discussed in the class:
 - Do a graceful Addition and Removal of a Data node from the Cluster.
 - How can you control jobs that are not submitted to a particular task tracker, but that node is used only as a DataNode?
 - Bring a new NameNode up, without using data from secondary NameNode. You should not execute the NameNode -format command again.

Review Hadoop Blogs at

http://www.edureka.in/blog/?s=hadoop

Specially,

- http://www.edureka.in/blog/apachehadoop-2-0-and-yarn/
- http://www.edureka.in/blog/hadoop-2-0setting-up-a-single-node-cluster-in-15minutes/

edureka!

edureka!

Thank You

See You in Class Next Week