CprE 381, Computer Organization and Assembly Level Programming

Team Contract – Project Part 1

Project Teams Group:	ACDC	
Team Members:	Colton Hazlett	
-	Dustin Heims	
_	Austin Collins	

Course Goals:

- To run instructions on the MIPS processor.
- Understand the computer architecture about the processor.
- To further my knowledge in hardware design
- To get an A in the course

Team Expectations:

- Conduct: General manners and communicate efficiently
- Communication: Teams Meetings, GroupMe. GitHub to save our project.
- **Group conventions:** Comment majority of the code and file comment about the file, naming for ports (output → o_Data, input → i_Data, signal → s_iData), organize into steps, and maybe .do file.
- **Meetings:** Group meeting Monday 12-1/2pm and lab Thursday 10am 12am. Plus any extra meetings that are needed (Saturday). Work together online using teams and individually on assigned responsibilities.
- **Peer Evaluation Criteria:** Responsiveness, time towards project, completed work, and respectfullness.

Role Responsibilities: Complete the following planning table. Each lab part should be the responsibility of one team member. Also make sure that no one team member is the lead on both the design and test aspects of a single lab part. These guidelines aid in all students having a complete view of the lab. Note that the non-lead is encouraged to participate and support the lead wherever possible, increasing both the quality of the lab part and each team member's knowledge.

Lab Dawt	Estimated Design		Design		Test	
Lab Part	Time	Lead	Timeline	Lead	Timeline	
High-level design	1 hr	Austin	March 7 th	Dustin	March 14 th	
Test programs	4 hr	Dustin	March 26 th	Austin	March 28 th	
Control logic *test bench*	2 hr	Colton	March 5 th	Austin	March 14 th	
Fetch logic *test bench*	3 hr	Austin	March 7 th	Colton	March 14 th	
Barrel shifter *test bench*	2 hr	Dustin	March 7 th	Austin	March 14 th	
ALU integration + Misc updates	2 hr	Colton	March 14 th	Dustin	March 18 th	
High-level integration	4 hr	Colton	March 19 th	Dustin	March 23 rd	
Synthesis (human effort)	1.5 hr	Dustin	March 27 th	Colton	March 27 th	

^{*}Run Quartus prime synthesis on personal computer*

Integrity of Work: We agree that the work we provide to other team members and ultimately submit for a grade is a direct result of our own work as described in the course syllabus. Specifically, we will generate all VHDL code ourselves and not copy VHDL code from online sources, other groups, book companion material, or past student projects to which anyone outside of my team has contributed.

Student Signature	Colton Hazlett	Date	2/25/2021	
Student Signature _	Dustin Heims	Date	2/25/2021	
Student Signature _	Austin Collins	Date	2/25/2021	