Forced vibrations

COURSE NAME: Mechanics, Oscillations and Waves (MOW)

PHY F111

Instructor: Dr. Indrani Chakraborty

Semester II 2021

e-mail: indranic@goa.bits-pilani.ac.in

Forced oscillators

- An external driving force F(t) acts on an oscillator.
- Let the force be harmonic, so $F(t) = F_0 e^{i\omega t}$
- Some examples:
 - Tides affected by periodic gravity of sun/moon
 - An electrical oscillator (LCR circuit)
 - Magnetic Resonance Imaging (MRI)
 - Musical instruments
 - Lasers

Forced undamped oscillators

• Let's write the equation of an oscillator that is harmonic and is forced, but undamped.

$$m\frac{d^2x}{dt^2} + kx = F_0 \cos \omega t \tag{1}$$

Let's first look at what this equation implies qualitatively..

- Let the natural frequency of the oscillator without the force term be ω_0
- Then if $\omega < \omega_0$, the block moves 'in step' with the driving force. The restoring term kx dominates over the inertial term $m \frac{d^2x}{dt^2}$ In phase with the driving force.
- if $\omega > \omega_0$, the block moves opposite to the driving force. The inertial term $m \frac{d^2x}{dt^2}$ dominates over the restoring term kx 180° out of phase with the driving force.
- Check this yourself with a simple pendulum!

Forced undamped oscillators: solution

Let's write the equation in terms of complex numbers to solve it.

$$m\frac{d^2z}{dt^2} + kz = F_0 e^{i\omega t}$$
 (2)

We will try the solution $z = z_0 e^{i(\omega t + \alpha)}$

Substituting in (1) we get, $(-m\omega^2 z_0 + kz_0)e^{i(\omega t + \alpha)} = F_0e^{i\omega t}$

So,
$$(\omega_0^2 - \omega^2)z_0 = \frac{F_0}{m}e^{-i\alpha} = \frac{F_0}{m}cos\alpha - i\frac{F_0}{m}sin\alpha$$
 (3)

This clearly has two solutions:

$$(\omega_0^2 - \omega^2)z_0 = \frac{F_0}{m}\cos\alpha \quad (4)$$

$$0 = \frac{F_0}{m} sin\alpha \quad (5)$$

$$z_0 = \frac{F_0/m}{\omega_0^2 - \omega^2} \tag{6}$$

Forced undamped oscillators: A and δ vs ω

Now let's write $z = Ae^{(i\omega t + \alpha)}$ where we can see that:

•
$$A = |z_0| = \frac{F_0/m}{|\omega_0^2 - \omega^2|}$$
 (7)

•
$$\alpha = 0$$
 if $\omega < \omega_0$ (8)
$$\alpha = \pi \text{ if } \omega > \omega_0$$

Our observations:

• A depends on ω

• Resonance at
$$\omega = \omega_0 = \sqrt{\frac{k}{m}}$$

Forced undamped oscillators: problems

Problems in the model:

$$x = \frac{F_0/m}{|\omega_0^2 - \omega^2|} \cos(\omega t + \alpha)$$
 (9)

Are the initial conditions satisfied?

At
$$t = 0$$
, $x > 0$ or $x < 0$.

So at the instant when the force starts to act, the displacement is already positive or negative!

How can that be if the pendulum starts from rest?

Amplitude becomes infinity at resonance!

Forced undamped oscillators: answers

Answers to the problems in the model:

Solution is incomplete!

Complete solution is
$$x(t) = x_1(t) + x_2(t)$$
 (10)
$$x_1(t) = \frac{F_0/m}{|\omega_0^2 - \omega^2|} \cos(\omega t + \alpha) \qquad \text{"Particular solution"}$$

$$x_2(t) = B\cos(\omega_0 t + \theta) \qquad \text{Homogeneous solution}$$
 (general solution of a free undriven oscillator $m \frac{d^2 x}{dt^2} + kx = 0$)

This implies that the motion of a forced undamped oscillator is a 'superposition' of oscillations at two frequencies ω and ω_0 .

 The situation is unphysical! Real systems always have damping so amplitude can never become infinity!

Forced undamped oscillators: the general solution

Let's use the solution (10) with $\theta = 0$:

$$x(t) = C\cos(\omega t + \alpha) + B\cos(\omega_0 t)$$
 where $C = \frac{F_0/m}{|\omega_0^2 - \omega^2|}$

$$\frac{dx}{dt} = -\omega C sin(\omega t + \alpha) - \omega_0 B sin(\omega_0 t)$$

Putting the two boundary conditions:

$$x = 0$$
 and $\frac{dx}{dt} = 0$ at $t = 0$, we get:

$$C\cos(\alpha) + B = 0$$

$$sin(\alpha) = 0$$
, so $\alpha = 0$ or π

Taking $\alpha = 0$, B = -C

So,
$$x(t) = C(\cos(\omega t) - \cos(\omega_0 t)) = 2C \sin(\frac{\omega + \omega_0}{2}) t \sin(\frac{\omega - \omega_0}{2}) t$$
 (11)

Beats! This would continue indefinitely without damping!

For real systems, damping will kill the natural oscillations $Bcos(\omega_0 t)$ through a time interval known as the 'transient state'. Then the system will oscillate with the frequency of the driving force ω and reach the 'steady state'.

Forced Damped oscillators

This is equivalent to:
$$\frac{d^2x}{dt^2} + \gamma \frac{dx}{dt} + \omega_0^2 x = \frac{F_0}{m} \cos \omega t \quad \text{where } \gamma = \frac{b}{m} \text{ and } \omega_0^2 = \frac{k}{m}$$
 (13)

Let's write this equation in terms of complex numbers: $\frac{d^2z}{dt^2} + \gamma \frac{dz}{dt} + \omega_0^2 z = \frac{F_0}{m} e^{i\omega t}$ (14)

$$z = Ae^{i(\omega t - \delta)}$$
 (15)

Putting (15) in (14), we get: $(-\omega^2 + i\omega\gamma + \omega_0^2)Ae^{i(\omega t - \delta)} = \frac{F_0}{m}e^{i\omega t}$

$$(-\omega^2 + \omega_0^2)A + i\omega\gamma A = \frac{F_0}{m}e^{i\delta}$$

Forced Damped oscillators: the steady state solution

Separating the real and imaginary parts:

$$(-\omega^2 + \omega_0^2)A = \frac{F_0}{m}\cos\delta$$

$$\omega \gamma A = \frac{F_0}{m} \sin \delta$$

Therefore,

$$A(\omega) = \frac{F_0/m}{\left[(\omega_0^2 - \omega^2)^2 + (\gamma \omega)^2 \right]^{1/2}}$$
 (16)

$$\delta(\omega) = tan^{-1} \left(\frac{\gamma \omega}{\omega_0^2 - \omega^2} \right) \tag{17}$$

Taking the real part,

$$x = A\cos(\omega t - \delta) \tag{18}$$

Forced Damped oscillators: A and δ vs ω

$$A(\omega) = \frac{F_0/m}{\left[\left(\omega_0^2 - \omega^2\right)^2 + (\gamma\omega)^2\right]^{1/2}}$$

$$\delta(\omega) = tan^{-1} \left(\frac{\gamma \omega}{\omega_0^2 - \omega^2} \right)$$

This is the "steady state" solution!

Observations:

- A depends strongly on ω becoming max at resonance.
- For high damping, the max amplitude frequency becomes smaller than ω_0 (negligible difference in most cases of practical interest)
- As ω is varied through ω_0 a phase change of π

Forced damped

Forced undamped

Forced Damped oscillators: A and δ for different Q

What is the frequency ω_m at which the amplitude becomes maximum?

Putting,
$$\frac{dA}{d\omega} = 0$$
, we can find the maximum is at $\omega_m = \left(\omega_0^2 - \frac{\gamma^2}{2}\right)^{1/2}$ check this!

Remembering that Quality factor $Q = \frac{\omega_0}{\gamma}$,

$$\omega_m = \omega_0 \left(1 - \frac{1}{2Q^2}\right)^{1/2}$$
 (19) Table 4-1: Resonance parameters of damped systems

$$A_m = A_0 \frac{Q}{\left(1 - \frac{1}{4Q^2}\right)^{1/2}}$$
 (20)

Q	ω_m/ω_0	A_m/A_0
$1/\sqrt{2}$	0	1
1	$1/\sqrt{2} = 0.707$	$2/\sqrt{3} = 1.15$
2	$\sqrt{\frac{7}{8}} = 0.935$	$8/\sqrt{14} = 2.06$
3	$\sqrt{\frac{17}{18}} = 0.973$	$18/\sqrt{35} = 3.04$
5	$\sqrt{\frac{49}{50}} = 0.990$	$50/\sqrt{99} = 5.03$
≫1	$1-1/4Q^2$	$Q[1 + 1/(8Q^2)]$

Extras: The experiment that you did in Phys lab I

$$\omega_0 = 3.355 \, \text{rad/s}$$

$$\gamma_{\text{blue}} = 0.163 \text{ /s}$$

$$\gamma_{\rm orange} = 0.752 \, / \text{s}$$

$$Q_{\rm blue} = 20.6$$

$$Q_{\text{orange}} = 4.5$$

Extras: Some typical Q values

Car suspension	1
Tethered trolley	10
Simple pendulum	1,000
Guitar string	1,000
Quartz crystal of watch	105
Excited atom	107
Excited nucleus	1,012

spark.iop.org

Forced Damped oscillators: A and δ for different Q

Observations and interpretations

$$\omega \ll \omega_0$$
$$\delta \approx 0$$

$$\omega = \omega_0$$

$$\omega\gg\omega_0\\ \delta\approx\pi$$

Restoring term dominates over inertial term

Inertial term equal to restoring term and entire energy is spent to overcome damping

Inertial term dominates over restoring term

Observations and interpretations

The transient state

Let's look into the solution of the homogeneous equation: $m\frac{d^2x}{dt^2} + b\frac{dx}{dt} + kx = 0$ (21)

This has a solution of the form $x=e^{-\frac{\gamma t}{2}}\cos(\omega_1 t+\alpha)$ where $\omega_1^2=\omega_0^2-\frac{\gamma^2}{4}$ which is just the solution for an unforced damped oscillator.

So complete solution of the forced damped oscillator:

$$x = A\cos(\omega t - \delta) + Be^{-\frac{\gamma t}{2}}\cos(\omega_1 t + \alpha)$$
 (22)

Damping will kill the second term in the 'transient state'. Then the system will oscillate with the frequency of the driving force ω with a phase difference δ .

Transient behaviour off-resonance

Transient behaviour at resonance

Energy considerations

- Energy of a forced damped oscillator is NOT constant.
- Let's consider the steady state solution.

•
$$x = A\cos(\omega t - \delta)$$

•
$$\dot{x} = -\omega A \sin(\omega t - \delta)$$

•
$$E(t) = \frac{1}{2}m\dot{x}^2 + \frac{1}{2}kx^2$$

$$= \frac{1}{2}A^2(m\omega^2\sin^2(\omega t - \delta) + k\cos^2(\omega t - \delta))$$
 Here $k = m\omega_0^2$, so energy is a function of time!

$$= \frac{1}{2}A^{2}m(\omega_{0}^{2} + (\omega^{2} - \omega_{0}^{2})\sin^{2}(\omega t - \delta))$$

Energy considerations

The average energy:

$$\langle E \rangle = \left\langle \frac{1}{2} A^2 (m\omega^2 \sin^2(\omega t - \delta) + k\cos^2(\omega t - \delta)) \right\rangle$$

$$= \frac{1}{4} m A^2 (\omega^2 + \omega_0^2)$$

$$\langle E \rangle = \frac{F_0^2}{4m} \frac{\omega^2 + \omega_0^2}{(\omega_0^2 - \omega^2)^2 + (\gamma \omega)^2}$$
 (23)

Power absorbed by a driven oscillator

Instantaneous power input : P = F.v

$$F = F_0 cos\omega t$$

$$x = Acos(\omega t - \delta)$$

$$P = -\omega A F_0 cos\omega t sin(\omega t - \delta)$$

$$= -\omega A F_0 cos\omega t (sin\omega t cos\delta - cos\omega t sin\delta)$$

$$= -\omega A F_0 (cos\omega t sin\omega t cos\delta - cos^2\omega t sin\delta)$$

$$\int_{0}^{T} cos\omega t \sin\omega t \, dt = 0$$

$$\int_{0}^{T} cos^{2}\omega t \, dt = \frac{T}{2}$$

$$\omega \gamma A = \frac{F_{0}}{m} \sin\delta$$

Average power per cycle:
$$< P > = \frac{1}{T} \int_0^T P dt$$

$$= \frac{1}{T} \int_0^T (-\omega A \, F_0 \, cos\omega t \, sin\omega t cos\delta + \omega A \, F_0 cos^2 \omega t sin\delta) dt$$

$$= \frac{1}{2} \, \omega A \, F_0 sin\delta = \frac{1}{2} \, m \gamma \omega^2 A^2 \quad (24)$$

Power dissipated by a driven oscillator

Power dissipated by the damping present in the system : P = -bv. $v = -m\gamma v^2$

$$x = A\cos(\omega t - \delta)$$

$$v = \dot{x} = -\omega A \sin(\omega t - \delta)$$

So,
$$P = -bv$$
. $v = -m\gamma v^2 = -m\gamma \omega^2 A^2 \sin^2(\omega t - \delta)$

Average power dissipated per cycle: $\langle P \rangle = \frac{1}{T} \int_0^T P dt$

$$= -\frac{1}{T} \int_0^T m\gamma \omega^2 A^2 \sin^2(\omega t - \delta) dt$$

$$= -\frac{1}{2} m \gamma \omega^2 A^2$$

$$\int_0^T \sin^2(\omega t - \delta) dt = \frac{T}{2}$$

So at steady state, power absorbed per cycle = power dissipated per cycle!

Power absorbed by a driven oscillator

$$< P > = \frac{1}{2} \omega A F_0 \sin \delta$$

$$= \frac{F_0^2}{2m} \frac{\gamma \omega^2}{\omega^2 \gamma^2 + (\omega_0^2 - \omega^2)^2}$$

$$= \frac{F_0^2 \omega_0}{2kQ} \frac{1}{\left(\frac{\omega_0}{\omega} - \frac{\omega}{\omega_0}\right)^2 + \frac{1}{Q^2}}$$

The power is maximum when $\omega=\omega_0$

$$\langle P \rangle_{\text{max}} = \frac{F_0^2}{2m\gamma} \qquad (25)$$

Width of the resonance

$$< P > = \frac{F_0^2}{2m} \frac{\gamma \omega^2}{\omega^2 \gamma^2 + (\omega_0^2 - \omega^2)^2}$$

Since at resonance $\omega \approx \omega_0$

$$(\omega_0^2-\omega^2)^2=(\omega+\omega_0)^2(\omega-\omega_0)^2\cong 4\omega^2(\omega-\omega_0)^2$$

$$< P > = \frac{F_0^2 \gamma}{2m} \frac{1}{4(\omega_0 - \omega)^2 + \gamma^2}$$

Let at frequencies $\omega = \omega_0 \pm \Delta \omega$ the power fall to half of $\langle P \rangle_{\rm max}$

$$\frac{F_0^2}{4m\gamma} = \frac{F_0^2\gamma}{2m} \frac{1}{4(\Delta\omega)^2 + \gamma^2} \quad \text{so, } 4(\Delta\omega)^2 = \gamma^2$$

Full width of resonance at half maxima (FWHM):

$$2\Delta\omega = \gamma$$
 (26)

Width of the resonance

$$2\frac{\Delta\omega}{\omega_0} = \frac{1}{Q}$$

- So if the resonance is "sharp", that is $2\frac{\Delta\omega}{\omega_0}\ll 1$, Q is large.
- So if the resonance is "broad", that is $2\frac{\Delta\omega}{\omega_0}\gg 1$, Q is small.

An example: LCR circuit in a radio

Add voltage drop across each element:

$$L\frac{\mathrm{d}I}{\mathrm{d}t} + IR + \frac{q}{C} = V_0 \cos \omega t$$

$$\ddot{q} + \frac{R}{L}\dot{q} + \frac{1}{LC}q = V_0\cos\omega t$$

Mechanical analogy:

Mass $m \sim L$ (inductance) Friction $b \sim R$ (resistance) Spring constant $k \sim 1/C$ (C is capacitance)

Natural frequency of charge oscillation:

$$\omega_0 = \frac{1}{\sqrt{LC}}$$

Damping constant : $\gamma = \frac{R}{L}$

Quality factor:
$$Q = \frac{1}{R} \sqrt{\frac{L}{C}}$$

Use: AM/FM radios with analog tuners to tune to different frequencies