Chaper 6 Laplace Transform

6.1 Laplace transform, inverse transform, linearity.

Def: if f(t) is a function of $t \ge 0$, the Laplace transform of f(t), denoted by F(s) or $\mathcal{L}\{f\}$ is defined:

$$\mathcal{L}{f(t)} \equiv F(s) \equiv \int_0^\infty e^{-st} \cdot f(t) dt$$

also f(t) is called the inverse Laplace transform F(s) and denoted by $\mathcal{L}^{-1}{F(s)}$, i.e.

$$f(t) = \mathcal{L}^{-1}{F(s)}$$

Ex: f(t) = 1 for $t \ge 0$

$$\mathcal{L}\lbrace f(t)\rbrace = \mathcal{L}(1) = \int_0^\infty e^{-st} dt = -\frac{1}{s} e^{-st} \bigg|_0^\infty = \frac{1}{s} \quad \text{for } s > 0$$

$$\mathcal{L}\{1\} = \frac{1}{s} \quad \text{for } s > 0$$

Ex: $f(t) = e^{at}$ for $t \ge 0$. a = constant

$$\mathcal{L}(e^{at}) = \int_0^\infty e^{-st} e^{at} dt = \frac{1}{a-s} e^{-(s-a)t} \Big|_0^\infty = \frac{1}{s-a} \quad , \quad s > a$$

$$\mathcal{L}(e^{at}) = \frac{1}{s-a} \quad \text{for } s > a$$

Linearity

$$\mathcal{L}\{af(t)+bg(t)\}=a\mathcal{L}\{f(t)\}+b\mathcal{L}\{g(t)\}$$
 a b constant.

Proof:
$$\mathcal{L}\{af(t) + bg(t)\} = \int_0^\infty e^{-st} [af(t) + bg(t)] dt$$

$$= a \int_0^\infty e^{-st} f(t) dt + b \int_0^\infty e^{-st} g(t) dt$$

$$= a \mathcal{L}(f) + b \mathcal{L}(g) = aF(s) + bG(s)$$

also
$$\mathcal{L}^{-1}{aF(s)+bG(s)}=af(t)+bg(t)$$

Ex:
$$f(t) = \cosh at = \frac{(e^{at} + e^{-at})}{2}$$

 $\mathcal{L}(\cosh at) = \frac{1}{2}\mathcal{L}(e^{at}) + \frac{1}{2}\mathcal{L}(e^{-st}) = \frac{1}{2}(\frac{1}{s-a} + \frac{1}{s+a})$
 $= \frac{s}{s^2 - a^2}$ also $\mathcal{L}(\sinh at) = \frac{a}{s^2 - a^2}$

$$\mathcal{L} \begin{Bmatrix} \cosh(at) \\ \sinh(at) \end{Bmatrix} = \begin{Bmatrix} \frac{s}{s^2 - a^2} \\ \frac{a}{s^2 - a^2} \end{Bmatrix} \quad \text{for s > a}$$

Ex. Since
$$\mathcal{L}(e^{i\omega t}) = \frac{1}{s - i\omega} = \frac{s + i\omega}{(s - i\omega)(s + i\omega)} = \frac{s}{s^2 + \omega^2} + i\frac{\omega}{s^2 + \omega^2}$$

Also $\mathcal{L}(e^{i\omega t}) = \mathcal{L}(\cos \omega t + i \sin \omega t) = \mathcal{L}(\cos \omega t) + i \mathcal{L}(\sin \omega t)$ Hence we have:

$$\mathcal{L}\begin{Bmatrix}\cos\omega t\\\sin\omega t\end{Bmatrix} = \begin{Bmatrix}\frac{s}{s^2 + \omega^2}\\\frac{\omega}{s^2 + \omega^2}\end{Bmatrix}$$

Ex: Given
$$F(s) = \frac{1}{(s-a)(s-b)}$$
 $a \neq b$, Find $f(t)$

$$f(t) = \mathcal{L}^{-1}[F(s)] = \mathcal{L}^{-1}\left\{\frac{1}{s-a} \cdot \frac{1}{s-b}\right\} = \mathcal{L}^{-1}\left[\frac{1}{a-b}(\frac{1}{s-a} - \frac{1}{s-b})\right]$$
$$= \frac{1}{a-b}\left[\mathcal{L}^{-1}(\frac{1}{s-a}) - \mathcal{L}^{-1}(\frac{1}{s-b})\right] = \frac{1}{a-b}(e^{at} - e^{bt})$$

Ex.
$$\mathcal{L}(t^a) = \int_0^\infty e^{-st} t^a dt = \int_0^\infty e^{-\tau} (\frac{\tau}{s})^a \frac{d\tau}{s} = \frac{1}{s^{a+1}} \int_0^\infty e^{-\tau} \tau^a d\tau$$

$$\mathcal{L}(t^a) = \frac{\Gamma(a+1)}{s^{a+1}}$$

if $a = \text{integer} = n \implies$

$$\mathcal{L}(t^n) = \frac{\Gamma(n+1)}{s^{n+1}} = \frac{n!}{s^{n+1}}$$
 n=1.2.3...

Def: piecewise continuous:

a function f(x) is said to be piecewise continuous (P.C.) if it satisfies the following conditions:

- 1. f(x) has finite number of discontinuity in the interval
- 2. f(x) has finite number of maximum and minimum in the interval

Fig. 107. Example of a piecewise continuous function f(t) (The dots mark the function values at the jumps.)

Def: Exponential order

A function f(t) is said to be of exponential order, if there are some finite number γ, M, T such that

$$|f(t)| \le Me^{\gamma t}$$
 for all $t > T$

Ex:
$$f(t) = e^{2t}$$

$$\therefore \left| e^{2t} \right| \le Me^{\gamma t} \text{ for } \gamma \ge 2; M = 1; T = 0$$

 $\rightarrow e^{2t}$ is a function of exponential order.

Ex:
$$f(t) = \sin(e^{t^2})$$

since $\left|\sin(e^{t^2})\right| \le 1 \rightarrow \text{exp.order.}$

however $f'(t) = 2t \cdot e^{t^2} \cos(e^{t^2}) \Rightarrow \text{not exp.order.}$

note: f(t) exp.order $\Rightarrow f'(t)$: may no loger exp.order.

but $\int f(t)dt$: still exp.order.

Theorem: (Sufficient condition)

If
$$f(t)$$
 is $\begin{cases} 1. \text{piecewise continuous} \\ 2. \text{of exponential order} \end{cases}$, then $\mathcal{L}\{f(t)\}$ exists.

Proof:

$$(2) \Rightarrow |f(t)| < M_1 e^{\alpha t} \quad t > T$$

$$(1) \Rightarrow |f(t)| < M_2 \quad 0 \le t \le T$$

choose $M = \max(M_1, M_2)$

then
$$|f(t)| < Me^{\alpha t}$$
 $0 \le t \le \infty$

Hence
$$\mathcal{L} [f(t)] = \int_0^\infty f(t)e^{-st}dt \le \int_0^\infty |f(t)|e^{-st}dt \le M \int_0^\infty e^{\alpha t}e^{-st}dt$$
$$= M \int_0^\infty e^{-(s-\alpha)t}dt = \frac{M}{s-\alpha} \quad \text{when} \quad s > \alpha$$

i.e. $\mathcal{L}{f(t)}$ is finite when $s > \alpha \rightarrow$ exists.

Note: this is a Sufficient condition but not necessary

Ex:

$$\mathcal{L}(t^{-1/2}) = \frac{1}{\sqrt{s}} \Gamma(\frac{1}{2}) = \sqrt{\frac{\pi}{s}} \quad \text{exists for} \quad s > 0 \quad \text{but} \quad (t^{-1/2}) \text{ is infinite at}$$

$$t = 0$$

Uniqueness:

Given $f(t) \rightarrow \text{if } \mathcal{L}\{f(t)\}\ \text{ exists, it is unique.}$

Given $F(s) \rightarrow \mathcal{L}^{-1}{F(s)}$ i.e. f(t), is essentially unique for t > 0, (i.e. they may differ at various isolated points.)

6.2 Transforms of derivatives and integrals

Theorem (Differential):

If f(t) is continuous and of exp. order.

and $\frac{df}{dt}$ is piecewise continuous.

Then $\mathcal{L}[f'(t)] = s \mathcal{L}[f] - f(0^+)$

Proof:

$$\mathcal{L}\lbrace f'\rbrace = \int_0^\infty e^{-st} f'(t)dt = e^{-st} \cdot f(t) \Big|_0^\infty - \int_0^\infty f(t)(-se^{-st})dt$$
$$= -f(0) + s \int_0^\infty f(t)e^{st}dt = s \mathcal{L}[f] - f(0)$$
also

$$\mathcal{L}[f''] = s \mathcal{L}(f') - f'(0) = s[s \mathcal{L}(f) - f(0)] - f'(0)$$

$$= s^2 \mathcal{L}(f) - sf(0) - f'(0)$$

$$\mathcal{L}[f'''] = s^3 \mathcal{L}(f) - s^2 f(0) - sf'(0) - f''(0)$$

$$\vdots$$

Thus \Rightarrow

$$\mathcal{L}[f^{(n)}] = s^n \mathcal{L}(f) - s^{n-1} f(0) - s^{n-2} f'(0) \dots + s f^{(n-2)}(0) - f'(0)$$

provided that $f, f', f'' \cdots f^{(n-1)} f^{(n)}$ are continuous and exp.order. and $f^{(n)}$ is piecewise continuous.

Ex:
$$f(t) = \sin^2 t$$
 Find $\mathcal{L}(f)$
since $f(0) = 0$; $f'(t) = 2\sin t \cos t = \sin 2t$
 $\Rightarrow \mathcal{L}[f'(t)] = \mathcal{L}(\sin 2t) = \frac{2}{s^2 + 2^2} = s \mathcal{L}(f) - f(0)$
 $\therefore \mathcal{L}(f) = \frac{2}{s(s^2 + 2^2)}$

• Application to Initial value problem

Consider
$$y'' + ay' + by = r(t)$$
 $y(0) = K_0$ $y'(0) = K_1$ $r(t)$:input(applied fore) $y(t)$: output (response)

Take the Laplace transform of the equation \rightarrow :

$$\mathcal{L}\{y'' + ay' + by\} = \mathcal{L}\{r(t)\}$$
by diffrential theorem : let $\mathcal{L}\{y(t)\} \equiv Y(s)$ $\mathcal{L}\{r(t)\} \equiv R(s)$

$$\Rightarrow [s^2Y - sy(0) - y'(0)] + a[sY - y(0)] + bY = R$$

$$\Rightarrow (s^2 + as + b)Y = (s + a)y(0) + y'(0) + R(s)$$
Hence
$$Y(s) = [(s + a)y(0) + y'(0) + R(s)] \cdot Q(s)$$
where $Q(s) = \frac{1}{s^2 + as + b}$ \leftarrow Transfer function

the solution of the equation can be obtained:

$$y(t) = \mathcal{L}^{-1}[Y(s)]$$

if the system is passive i.e. y(0) = y'(0) = 0

$$\Rightarrow Y(s) = R(s)Q(s) \Rightarrow Q(s) = \frac{Y(s)}{R(s)} = \frac{\text{Laplace tranform of output}}{\text{Laplace tranform of intput}}$$

Note: since Q(s) depends on a,b only but not depends $r(t) \implies$ it is a

Ex:
$$y'' + y = 2t$$

I.C. $y(\frac{\pi}{4}) = \frac{\pi}{2}$ $y'(\frac{\pi}{4}) = 2 - \sqrt{2}$

sol 1:
$$y = A\cos t + B\sin t + 2t$$

$$y(\frac{\pi}{4}) = \frac{\pi}{2} \implies A\sqrt{2} + \sqrt{2}B = 0 \implies A = -B$$

$$y'(\frac{\pi}{4}) = 2 - \sqrt{2} \implies -A\frac{\sqrt{2}}{2} + B\frac{\sqrt{2}}{2} + 2 = 2 - \sqrt{2}$$

$$\implies B = -1 \quad ; \quad A = 1$$

$$\therefore \quad y = \cos t - \sin t + 2t$$

sol 2: Take Laplace transform of the equation:

$$s^{2}Y - sy(0) - y'(0) + Y = \frac{2}{s^{2}}$$

$$\Rightarrow Y = \frac{2}{(s^{2} + 1)s^{2}} + y(0) \frac{s}{s^{2} + 1} + y'(0) \frac{1}{s^{2} + 1}$$

$$= 2(\frac{1}{s^{2}} - \frac{1}{s^{2} + 1}) + y(0) \frac{s}{s^{2} + 1} + y'(0) \frac{1}{s^{2} + 1}$$

$$\mathcal{L}^{-1}[Y(s)] \Rightarrow y(t) = 2t + y(0)\cos t + [y'(0) - 2]\sin t$$
$$= 2t + A\cos t + B\sin t \Rightarrow \text{sol. } 1$$

Theorem (integral)

If f(t) is P.C and of exp.order.

then
$$\mathcal{L}\{\int_0^t f(\tau)d\tau\} = \frac{1}{s}\mathcal{L}\{f(t)\}$$

Proof:

Since
$$|f(t)| \le Me^{\gamma t}$$
 Let $g(t) = \int_0^t f(\tau) d\tau$

$$\therefore |g(t)| \le \int_0^t |f(\tau)| d\tau \le M \int_0^t e^{\gamma \tau} d\tau = \frac{M}{\gamma} (e^{\gamma t} - 1) \le \frac{M}{\gamma} e^{\gamma t}$$

i.e. g(t) is of exp.order and continuous.

Also g'(t) is of exp.order and continuous.

Hence

$$\mathcal{L}[f(t)] = \mathcal{L}[g'(t)] = s \mathcal{L}(g(t)) - g(0)$$

$$\therefore g(0) = 0$$

$$\therefore \mathcal{L}(f(t)) = s \mathcal{L}(g(t)) = s \mathcal{L}(\int_0^t f(\tau) d\tau)$$

$$\Rightarrow \mathcal{L}\{\int_0^t f(\tau)d\tau\} = \frac{1}{s}\mathcal{L}\{f(t)\}$$
$$\therefore \mathcal{L}^{-1} \{\frac{1}{s}F(s)\} = \int_0^t f(\tau)d\tau$$

Ex:
$$\mathcal{L}(f) = \frac{1}{s(s^2 + \omega^2)}$$
 Find $f(t)$

$$\mathcal{L}^{-1}(\frac{1}{s^2 + \omega^2}) = \mathcal{L}^{-1}(\frac{\omega}{s^2 + \omega^2} \cdot \frac{1}{\omega}) = \frac{1}{\omega} \sin \omega t$$

$$\therefore \mathcal{L}^{-1}\left\{\frac{1}{s(s^2+\omega^2)}\right\} = \frac{1}{\omega}\int_0^t \sin\omega\tau \cdot d\tau = \frac{1}{\omega^2}(1-\cos\omega t)$$

6.3 s-shifting t-shifting Unit step function Theorem: (s-shifting)

if
$$\mathcal{L}{f(t)} = F(s)$$

then $\mathcal{L}{e^{at} f(t)} = F(s-a)$

Proof:

$$\mathcal{L}\{e^{at}f(t)\} = \int_0^\infty \{e^{at}f(t)\}e^{-st}dt = \int_0^\infty f(t)e^{-(s-a)t}dt = F(s-a)$$

:. $\mathcal{L}^{-1}[F(s-a)] = e^{at}f(t)$

Ex:

since
$$\mathcal{L}\lbrace t^n \rbrace = \frac{n!}{s^{n+1}} \rightarrow \mathcal{L}\lbrace e^{at}t^n \rbrace = \frac{n!}{(s-a)^{n+1}}$$

Since $\mathcal{L}\lbrace \cos \omega t \rbrace = \frac{s}{s^2 + \omega^2} \rightarrow \mathcal{L}\lbrace e^{at}\cos \omega t \rbrace = \frac{s-a}{(s-a)^2 + \omega^2}$

• Def : Unit step function : (Heaviside function)

$$H(t-a) \equiv U(t-a) \equiv \begin{cases} 0 & \text{when } t < a \\ 1 & \text{when } t \ge a \end{cases}$$

Fig. 110. Unit step function u(t)

Fig. 111. Unit step function u(t - a)

$$\therefore f(t-a)u(t-a) = \begin{cases} 0 & \text{when } t < a \\ f(t-a) & \text{when } t > a \end{cases}$$

Fig. 112. Effects of the unit step function: (a) Given function. (b) Switching off and on. (c) Shift.

If
$$\mathcal{L}{f(t)} = F(s)$$

then
$$\mathcal{L}{f(t-a)u(t-a)} = e^{-as}F(s)$$

Proof:

$$\mathcal{L}\{f(t-a)u(t-a)\} = \int_0^\infty f(t-a)U(t-a)e^{-st}dt$$

$$= \int_a^\infty f(t-a)e^{-st}dt \quad \text{let} \quad t-a=\tau$$

$$= \int_0^\infty f(\tau)e^{-s(\tau+a)}d\tau = e^{-as}\int_0^\infty f(\tau)e^{-s\tau}d\tau = e^{-as}F(s)$$

$$\therefore \mathcal{L}^{-1}\left\{e^{-as}F(s)\right\} = f(t-a)u(t-a)$$

Ex.
$$\mathcal{L}\{1\cdot\} = \frac{1}{s}$$
 \Rightarrow $\mathcal{L}\{u(t-a)\} = \frac{1}{s}e^{-as}$

Ex: Find
$$\mathcal{L}^{-1}\left\{e^{-3s}/s\right\}$$

Since
$$\mathcal{L}^{-1}\left\{\frac{1}{s^3}\right\} = \frac{t^2}{2!} = \frac{t^2}{2}$$

$$\therefore \mathcal{L}^{-1}\left\{\frac{e^{-3s}}{s^3}\right\} = \frac{1}{2}(t-3)^2 u(t-3) = \begin{cases} 0 & \text{when } t < 3\\ \frac{1}{2}(t-3)^2 & \text{when } t > 3 \end{cases}$$

6.4 short impulses, Dirac's delta function, Partial Fractions

Def. Dirac delta function: (Unit Impulse function) The Delta function $\delta(t-t_0)$ is defined (in generalized sense):

$$\int_{-\infty}^{\infty} \delta(t - t_0) \cdot g(t) dt = g(t_0)$$

For every ordinary function g(t)

Ex.
$$g(t) = t^2$$

then
$$\int_{-\infty}^{\infty} \delta(t-3) \cdot g(t) dt = t^2 \Big|_{t=3} = 9$$

The Delta function can be visualized as:

$$\delta(t - t_0) = \lim_{\varepsilon \to 0} \begin{cases} \frac{1}{2\varepsilon} & \text{When } t_0 - \varepsilon < t < t_0 + \varepsilon \\ 0 & \text{otherwise} \end{cases}$$

Since
$$\int_{-\infty}^{\infty} \delta(t - t_0) dt = 1$$

$$-\infty$$

$$\rightarrow \text{Unit impulse}$$

The Laplace transform of Dirac delta function:

For
$$t_0 \ge 0$$

$$\mathcal{L}\{\delta(t-t_o)\} = \int_0^\infty \delta(t-t_0) \cdot e^{-st} dt = \int_{-\infty}^\infty \delta(t-t_0) \cdot e^{-st} dt$$
$$= e^{-st} \Big|_{t=t_o} = e^{-st_o}$$

when
$$t_0 = 0$$
 we have $\mathcal{L}\{\delta(t)\} = 1$

Ex: Consider the following two problems:

(i)
$$m\ddot{y} + \dot{c}y + ky = 0$$
 I.C. $y(0) = 0$, $\dot{y}(0) = V_0$

(ii)
$$m\ddot{y} + \dot{c}y + ky = mV_0 \cdot \delta(t)$$
 I.C. $y(0) = 0$, $\dot{y}(0) = 0$
Sol:

(i) Take the Transform of the equation (i), we have:

$$m\{s^{2}Y - sy(o) - \dot{y}(0)\} - c\{sY - y(0)\} + kY = 0$$

$$Y = \frac{mV_{0}}{ms^{2} + cs + k} \Rightarrow y(t) = mV_{0}\mathcal{L}^{-1}\{\frac{1}{ms^{2} + cs + k}\}$$

(ii) Take the Transform of the equation (ii), we have:

$$m\{s^{2}Y - sy(o) - \dot{y}(0)\} - c\{sY - y(0)\} + kY = mV_{0}$$

$$Y = \frac{mV_{0}}{ms^{2} + cs + k} \Rightarrow \text{ same as (i)}$$

the physical sense of delta function $\delta(t)$ here, is a force such that it can produce a "unit" momentum change of the system at $t = 0^+$.

Ex:
$$y'' + y = \delta(t - 2\pi)$$
, I.C. $y(0) = 1$, $y'(0) = 0$

Take the Laplace transform the equation, we have:

$$s^{2}Y - s + Y(s) = e^{-2\pi s}$$

$$\Rightarrow Y(s) = \frac{s}{s^{2} + 1} + \frac{1}{s^{2} + 1} e^{-2\pi s}$$

$$\Rightarrow y(t) = \cos t + \sin(t - 2\pi)H(t - 2\pi)$$
i.e.

$$y(t) = \begin{cases} \cos t & 0 \le t \le 2\pi\\ \cos t + \sin(t - 2\pi) & t > 2\pi \end{cases}$$

Partial Fractions

If F(s) and G(s) are polynomials of s, with real codfficients, and G(s) is of higher degree than F(s).

Then Y(s) can be expressed as a sum of Partial Fraction.

Case 1. When (s-a) is a factor of G(s) i.e. G(s) has the form: $G(s) \equiv (s-a) \cdot r(s)$. Then (1) can be expressed as:

$$Y(s) = \frac{F(s)}{G(s)} = \frac{A}{s-a} + W(s) - - - - - (i)$$

where W(s) denotes the sum of the partial factions corresponding to all the other factors of G(s).

The coefficient A can be determined as following:

$$(s-a)\times(i) \Rightarrow$$

$$\frac{F(s)}{G(s)}(s-a) = A + W(s-a)$$
 taking limit $s \to a$ we have:

$$A = \lim_{s \to a} \frac{(s-a)F(s)}{G(s)} \quad \text{or}$$

$$A = \lim_{s \to a} \frac{(s-a)F(s)}{G(s)} = F(a) \lim_{s \to a} \frac{(s-a)}{G(s)} = \frac{F(a)}{G'(a)}$$

Ex.
$$Y(s) = \frac{s+1}{s^3 + s^2 - 6s}$$
 Find $y(t)$

Since
$$\frac{s+1}{s^3+s^2-6s} = \frac{s+1}{s(s+3)(s-2)}$$

 $\therefore Y(s)$ can be expressed as:

$$\frac{s+1}{s^3+s^2-6s} = \frac{A}{s} + \frac{B}{(s+3)} + \frac{C}{(s-2)}$$
since $F(s) \equiv s+1$ $G(s) \equiv s^3+s^2-6s$ $G'(s) \equiv 3s^2+2s-6s$

$$A = \frac{F(0)}{G'(0)} = -\frac{1}{6} \quad B = \frac{F(-3)}{G'(-3)} = -\frac{2}{15} \quad C = \frac{F(2)}{G'(2)} = \frac{3}{10}$$

$$\therefore Y(s) = -\frac{1}{6} \cdot \frac{1}{s} - \frac{2}{15} \cdot \frac{1}{(s+3)} + \frac{3}{10} \cdot \frac{1}{(s-2)}$$

$$\Rightarrow y(t) = -\frac{1}{6} - \frac{2}{15} e^{-3t} + \frac{3}{10} e^{2t}$$

Case 2. When $(s-a)^m$ is a factor of G(s) i.e. G(s) has the form: $G(s) \equiv (s-a)^m \cdot r(s)$. Then (1) can be expressed as:

$$Y(s) = \frac{F(s)}{G(s)} = \frac{A_1}{(s-a)} + \frac{A_2}{(s-a)^2} + \dots + \frac{A_m}{(s-a)^m} + W(s) - \dots - (ii)$$

where W(s) denotes the sum of the partial factions corresponding to all the other factors of G(s).

The coefficient $A_1, A_2,...A_m$ can be determined as following:

$$(s-a)^{m} \times (ii) \Rightarrow$$

$$\frac{F(s)(s-a)^{m}}{G(s)} = A_{1}(s-a)^{m-1} + A_{2}(s-a)^{m-2} + \dots$$

$$+ A_{m-1}(s-a) + A_{m} + W(s)(s-a)^{m} - \dots$$

$$(A)$$

let
$$Q_a(s) = \frac{F(s)(s-a)^m}{G(s)}$$
 then (A) \Rightarrow

$$A_m = Q_a(a); \ A_{m-1} = Q'_a(a); \ A_{m-2} = \frac{1}{2!}Q''_a(a); \ \dots$$

$$A_1 = \frac{1}{(m-1)!} \cdot \frac{d^{m-1}}{ds^{m-1}} Q_a(s) \bigg|_{s=a}$$

Ex.
$$Y(s) = \frac{s^2 + 2}{s(s+2)(s-4)^2}$$
 Find $y(t)$

$$\frac{s^2 + 2}{s(s+2)(s-4)^2} = \frac{A}{s} + \frac{B}{(s+2)} + \frac{C_1}{(s-4)} + \frac{C_2}{(s-4)^2}$$

we have

$$A = \lim_{s \to 0} \frac{(s^2 + 2)}{(s + 2)(s - 4)^2} = \frac{1}{16}$$

$$B = \lim_{s \to -2} \frac{(s^2 + 2)}{s(s - 4)^2} = \frac{-1}{12}$$

since

$$Q_4(s) = \frac{s^2 + 2}{s(s+2)} \implies$$

$$C_2 = \lim_{s \to 4} Q_4(s) = \frac{3}{4}$$

$$C_1 = \lim_{s \to 4} Q_4'(s) = \lim_{s \to 4} \frac{2s^2(s+2) - (s^2+2)(2s+2)}{s^2(s+2)^2} = \frac{1}{48}$$

$$\therefore Y(s) = \frac{1}{16} \frac{1}{s} - \frac{1}{12} \frac{1}{(s+2)} + \frac{1}{48} \frac{1}{(s-4)} + \frac{3}{4} \frac{1}{(s-4)^2}$$

$$\therefore y(t) = \frac{1}{16} - \frac{1}{12}e^{-2t} + \frac{1}{48}e^{4t} + \frac{3}{4}t \cdot e^{4t}$$

Case 3. When $(s^2 + ps + q)^m$ is a factor of G(s) i.e. G(s) has the form: $G(s) = (s^2 + ps + q)^m \cdot r(s)$. Then (1) can be expressed as:

$$Y(s) = \frac{F(s)}{G(s)} = \frac{A_1 s + B_1}{(s^2 + ps + q)} + \frac{A_2 s + B_2}{(s^2 + ps + q)^2} + \dots + \frac{A_m s + B_m}{(s^2 + ps + q)^m} + W(s) - \dots - (iii)$$

where W(s) denotes the sum of the partial factions corresponding to all the other factors of G(s).

When
$$(iii) \times G(s)$$
; since $G(s) = (s^2 + ps + q)^m \cdot r(s)$, we have:

$$F(s) = (A_1 s + B_1)(s^2 + ps + q)^{m-1} \cdot r(s) + (A_2 s + B_2)(s^2 + ps + q)^{m-2} \cdot r(s)$$

$$+ ... + (A_{m-1} s + B_{m-1})(s^2 + ps + q) \cdot r(s) + (A_m s + B_m) \cdot r(s)$$

$$+ (s^2 + ps + q)^m \cdot r(s)W(s) - - - - (A)$$

Comparing the coefficient of terms with same degree of s, we have 2m equations and can solve for A_i, b_i . (i = 1, 2...m).

Ex.
$$Y(s) = \frac{2s^2 - s}{(s^2 + 4)^2}$$
 Find $y(t)$

$$\frac{2s^2 - s}{(s^2 + 4)^2} = \frac{A_1s + B_1}{(s^2 + 4)} + \frac{A_2s + B_2}{(s^2 + 4)^2}$$

$$2s^2 - s = (A_1s + B_1)(s^2 + 4) + (A_2s + B_2)$$

$$= A_1s^3 + B_1s^2 + (4A_1 + A_2)s + (4B_1 + B_2)$$

$$A_1 = 0$$

$$B_1 = 0$$

$$4A_1 + A_2 = -1$$

$$4B_1 + B_2 = 0$$

$$\Rightarrow A_1 = 0; \quad A_2 = -1; \quad B_1 = 2; \quad B_2 = -8;$$

$$Y(s) = \frac{2}{(s^2 + 4)} + \frac{-s - 8}{(s^2 + 4)^2}$$

$$y(t) = \mathcal{L}^{-1}\left\{\frac{2}{(s^2 + 4)}\right\} + \mathcal{L}^{-1}\left\{\frac{-s}{(s^2 + 4)^2}\right\} + \mathcal{L}^{-1}\frac{-8}{(s^2 + 4)^2}$$
since
$$\mathcal{L}\left\{\sin 2t\right\} = \frac{2}{(s^2 + 4)} \quad ; \quad \mathcal{L}\left\{t \cdot \sin 2t\right\} = -\frac{d}{ds}\left[\frac{2}{(s^2 + 4)}\right] = \frac{4s}{(s^2 + 4)^2}$$

$$\mathcal{L}\left\{\sin 2t * \sin 2t\right\} = \frac{4}{(s^2 + 4)^2}$$

$$\therefore y(t) = \sin 2t - \frac{1}{4}t \cdot \sin 2t - 2\int_{0}^{t} \sin 2\tau \cdot \sin 2(t - \tau)d\tau$$

$$= \sin 2t - \frac{1}{4}t \cdot \sin 2t - \frac{1}{2}\cdot [\sin 2t - 2t\cos 2t]$$

$$= \frac{1}{2}\sin 2t - \frac{1}{4}t \cdot \sin 2t + t\cos 2t$$

6.5 convolution

The convolution integral of f(t) and g(t) is defined:

$$(f * g)(t) \equiv \int_{-\infty}^{\infty} f(\tau)g(t-\tau)d\tau \equiv \int_{-\infty}^{\infty} g(\tau)f(t-\tau)d\tau \equiv (g * f)(t)$$

if f(t) and g(t) is a function such that

 $f(t) = g(t) \equiv 0$ when t < 0, the convolution integral can be written as:

$$f * g = \int_{0}^{t} f(\tau)g(t-\tau)d\tau = \int_{0}^{t} f(t-\tau)g(\tau)d\tau = g * f$$

Theorem: if f(t) and g(t) are P.C. and of Exp. Order,

also
$$f(t) = g(t) \equiv 0$$
 when $t < 0$

then

$$\mathcal{L}{f * g} = \mathcal{L}{f(t)} \cdot \mathcal{L}{g(t)}$$

Proof:

$$\mathcal{L}\lbrace f * g \rbrace = \mathcal{L} \int_{0}^{t} f(t - \lambda)g(\lambda)d\lambda = \int_{0}^{\infty} \left[\int_{0}^{t} f(t - \lambda)g(\lambda)d\lambda \right] e^{-st}dt - - - (A)$$

$$\therefore u(t - \lambda) = \begin{cases} 1 & \text{when } \lambda < t \\ 0 & \text{when } \lambda > t \end{cases}$$

 \therefore (A) can be rewritten as:

$$\mathcal{L}\{f * g\} = \int_{0}^{\infty} \left[\int_{0}^{\infty} f(t - \lambda)g(\lambda)u(t - \lambda)d\lambda\right]e^{-st}dt$$
$$= \int_{0}^{\infty} g(\lambda)\int_{0}^{\infty} \left[f(t - \lambda)u(t - \lambda)e^{-st}dt\right]d\lambda$$

(let $t - \lambda = \tau$ in the inner integral)

$$\begin{split} &= \int\limits_{0}^{\infty} g(\lambda) [\int\limits_{0}^{\infty} f(\tau) u(\tau) e^{-s(\tau + \lambda)} d\tau] d\lambda \\ &= \int\limits_{0}^{\infty} g(\lambda) e^{-s\lambda} \int\limits_{0}^{\infty} [f(\tau) u(\tau) e^{-s\tau} d\tau] d\lambda = \int\limits_{0}^{\infty} g(\lambda) e^{-s\lambda} [\int\limits_{0}^{\infty} f(\tau) e^{-s\tau} d\tau] d\lambda \\ &= \int\limits_{0}^{\infty} g(\lambda) e^{-s\lambda} d\lambda \cdot \int\limits_{0}^{\infty} f(\tau) e^{-s\tau} d\tau = \mathcal{L} \{f(t)\} \cdot \mathcal{L} \{g(t)\} \\ &= \int\limits_{0}^{\infty} g(\lambda) e^{-s\lambda} d\lambda \cdot \int\limits_{0}^{\infty} f(\tau) e^{-s\tau} d\tau = \mathcal{L} \{f(t)\} \cdot \mathcal{L} \{g(t)\} \end{split}$$

Ex: Find
$$\mathcal{L}^{-1}\left\{\frac{1}{(s^2+k^2)^2}\right\}$$

Let $F(s) = \frac{1}{s^2+k^2}$ $G(s) = \frac{1}{s^2+k^2}$

$$\therefore \mathcal{L}\left\{\frac{1}{k}\sin kt\right\} = \frac{1}{s^2+k^2} = F(s) = G(s)$$

$$\mathcal{L}^{-1}\frac{1}{\left(s^2+k^2\right)^2}$$

$$= \mathcal{L}^{-1}\left\{F(s)G(s)\right\} = f * g = \frac{1}{k^2}\int_0^t \sin k\tau \cdot \sin k(t-\tau)d\tau$$

$$= \frac{1}{2k^2}\int_0^t [\cos k(2\tau-t) - \cos kt]d\tau = \frac{1}{2k^2}\left[\frac{1}{2k}\sin k(2\tau-t) - \tau\cos kt\right]_0^t$$

$$= \frac{\sin kt - kt\cos kt}{2k^3}$$

Ex: (Differential Equations)

Consider the following two problem:

(i)
$$m\ddot{y} + c\dot{y} + ky = r(t)$$
 I.C. $y(0) = \dot{y}(0) = 0$

(ii)
$$m\ddot{y} + c\dot{y} + ky = \delta(t)$$
 LC. $y(0) = \dot{y}(0) = 0$

(i) take the Laplace transform and by the Homogeneous I.C.of (i) ,we have:

$$Y(s) = \frac{R(s)}{ms^2 + cs + k} = R(s) \cdot H(s)$$

where
$$H(s) = \frac{1}{ms^2 + cs + k}$$
 $R(s) \equiv \mathcal{L}\{r(t)\}$

let
$$h(t) \equiv \mathcal{L}^{-1}\{H(s)\}\$$

then

$$y(t) = \mathcal{L}^{-1}(Y) = \int_{0}^{t} h(t - \tau) \cdot r(\tau) d\tau - - - - - - - (A)$$

(ii) take the Laplace transform and by the Homogeneous I.C.of (ii) ,we have

$$Y(s) = \frac{1}{ms^2 + cs + k} = H(s)$$

i.e. the solution of (ii) is $y(t) = h(t) - - - - - - (B)$

Compare (A) and (B), we conclude that : the response y(t) of (i) due to input r(t), can be computed by the convolution integral of r(t), and h(t), the response of the system due to unit impulse. \rightarrow Duhamel's Formula

Ex: (Integral Equation)

$$y(t) = t + \int_{0}^{t} y(\tau) \sin(t - \tau) d\tau$$

$$\Rightarrow$$
 $y(t) = t + y * \sin(t)$

take the Laplace transform of the equation

$$\Rightarrow Y = \frac{1}{s^2} + Y \cdot \frac{1}{s^2 + 1}$$

$$\Rightarrow Y(1 - \frac{1}{s^2 + 1}) = \frac{1}{s^2}$$

$$\Rightarrow Y(s) = \frac{s^2 + 1}{s^4} = \frac{1}{s^2} + \frac{1}{s^4}$$

$$\therefore y(t) = \mathcal{L}^{-1}(Y) = t + \frac{1}{6}t^3$$

6.6 Differentiation and Integration of transforms

Theorem (differentiation of F(s))

If
$$\mathcal{L}{f(t)} = F(s)$$

then $\mathcal{L}{t \cdot f} = -F'(s)$

Proof:

$$F'(s) = \int_{0}^{\infty} f(t)e^{-st}dt \implies F'(s) = \int_{0}^{\infty} f(t)(-t)e^{-st}dt = -\mathcal{L}\{t \cdot f\}$$

General
$$\mathcal{L}\lbrace t^n f(t)\rbrace = (-1)^n \frac{d^n}{ds^n} F(s)$$

Ex:

$$\mathcal{L}{y} = \ln \frac{s+1}{s-1} \implies y(t) = ?$$

$$\therefore \mathcal{L}\{-t \cdot y\} = \frac{d}{ds}(\ln \frac{s+1}{s-1}) = \frac{d}{ds}\{\ln(s+1) - \ln(s-1)\} = \{\frac{1}{s+1} - \frac{1}{s-1}\}$$

$$\therefore \{-t \cdot y\} = \{e^{-t} - e^t\} \quad \Rightarrow y(t) = \frac{e^t - e^{-t}}{t} = \frac{2\sinh t}{t}$$

Theorem (Integration of F(s))

If
$$\mathcal{L}{f(t)} = F(s)$$
, and $\frac{f(t)}{t}$ exists as $t \to 0$

then
$$\mathcal{L}\left\{\frac{f(t)}{t}\right\} = \int_{S}^{\infty} F(\overline{s}) d\overline{s}$$

Proof:

$$\int_{0}^{\infty} F(\overline{s}) d\overline{s} = \int_{0}^{\infty} \int_{0}^{\infty} f(t) \cdot e^{-\overline{s}t} dt d\overline{s} = \int_{0}^{\infty} \int_{0}^{\infty} e^{-\overline{s}t} f(t) d\overline{s} dt = \int_{0}^{\infty} f(t) \int_{0}^{\infty} e^{-\overline{s}t} d\overline{s} dt$$

$$= \int_{0}^{\infty} f(t) \frac{e^{-st}}{t} dt = \mathcal{L} \{ \frac{f(t)}{t} \}$$

Ex. Find
$$\mathcal{L}\{\frac{\sin \omega t}{t}\}$$

(i) By integral theorem:
$$\mathcal{L}\left\{\frac{f(t)}{t}\right\} = \int_{s}^{\infty} F(\overline{s}) d\overline{s}$$

let
$$f(t) \equiv \sin \omega t$$
 $\therefore \mathcal{L}\{\sin \omega t\} = \frac{\omega}{s^2 + \omega^2} = F(s)$
 $\therefore \mathcal{L}\{\frac{\sin \omega t}{t}\} = \int_{s}^{\infty} \frac{\omega}{\overline{s}^2 + \omega^2} d\overline{s} = \tan^{-1} \frac{s}{\omega}\Big|_{s}^{\infty} = \frac{\pi}{2} - \tan^{-1} \frac{s}{\omega}$
since $\frac{\pi}{2} - \tan^{-1} \frac{s}{\omega} = \tan^{-1} \frac{\omega}{s}$
we have $\mathcal{L}\{\frac{\sin \omega t}{t}\} = \tan^{-1} \frac{\omega}{s}$

(ii) By differential theorem: $\mathcal{L}\{\mathbf{t}\cdot\mathbf{f}\} = -F'(s)$

let
$$f(t) \equiv \frac{\sin wt}{t}$$

 $\Rightarrow \mathcal{L}\{t \cdot \frac{\sin \omega t}{t}\} = -F'(s) \Rightarrow -F'(s) = \frac{\omega}{s^2 + \omega^2}$
 $\Rightarrow -\int_0^s F'(\overline{s}) d\overline{s} = \int_0^s \frac{\omega}{\overline{s}^2 + \omega^2} d\overline{s}$
 $\Rightarrow -F(s) + F(0) = \tan^{-1} \frac{s}{\omega}$
since $F(0) = \int_0^\infty \frac{\sin \omega t}{t} e^{-st} dt \Big|_{s=0} = \int_0^\infty \frac{\sin \omega t}{t} dt = \int_0^\infty \frac{\sin \tau}{\tau} d\tau = \frac{\pi}{2}$
 $\therefore F(s) = \frac{\pi}{2} - \tan^{-1} \frac{s}{\omega} = \tan^{-1} \frac{\omega}{s}$

Ex. Differential equation with variable Coefficients

$$xy''+y'+4xy=0$$
 I.C. $y(0)=3$, $y'(0)=0$ since

$$\mathcal{L}\{xy\} = -\frac{d}{ds}\mathcal{L}\{y\} = -Y'$$

$$\mathcal{L}\{y'\} = sY - y(0)$$

$$\mathcal{L}\{xy''\} = -\frac{d}{ds}\mathcal{L}\{y''\} = -\frac{d}{ds}[s^2Y - sy(0) - y'(0)] = -2sY - s^2Y' + y(0)$$

Take the Laplace transform of the equation, we have:

$$[-2sY - s^2Y' + y(0)] + [sY - y(0)] - 4Y' = 0$$

$$\Rightarrow (s^2 + 4)Y' + sY = 0 \Rightarrow Y(s) = \frac{c}{\sqrt{s^2 + 4}}$$

since
$$\mathcal{L}{J_0(ax)} = \frac{1}{\sqrt{a^2 + s^2}}$$

$$\therefore y(x) = \mathcal{L}^{-1} \{ \frac{c}{\sqrt{s^2 + 4}} \} = cJ_0(2x)$$

$$y(0) = 3 \rightarrow cJ_0(0) = 3 \Rightarrow c = 3 \text{ since } J_0(0) = 1$$

$$\therefore y(x) = 3J_0(2x)$$

also
$$x \cdot \{xy'' + y' + 4xy\} = 0 \Rightarrow x^2 y'' + xy' + 4x^2 y = 0$$

$$\Rightarrow x^2 y'' + xy' + [(2x)^2 - n^2] = 0$$
 with $n = 0$

 \rightarrow the general solution is

$$y = AJ_0(2x) + BY_0(2x)$$

I.C.
$$y(0) = 3$$
, $y'(0) = 0$

$$\begin{cases} AJ_0(0) + BY_0(0) = 3 \\ 2AJ_0'(0) + BY_0'(0) = 0 \end{cases}$$

since
$$J_0(0) = 1$$
; $Y_0(0) = -\infty$; $J_0'(0) = 0$; $Y_0'(0) = \infty$
we have $A = 3$ $B = 0$

 \rightarrow the solution of the problem is $y = 3J_0(2x)$

6.7 System of Differential Equations

Ex.
$$\begin{cases} \dot{y}_1 = 2y_1 + 3y_2 \\ \dot{y}_2 = 2y_1 + y_2 \end{cases}$$
 I.C.
$$\begin{cases} y_1(0) = 4 \\ y_2(0) = 1 \end{cases}$$
$$sY_1 - 4 = 2Y_1 + 3Y_2 \Rightarrow \frac{(s-2)Y_1 - 3Y_2 = 4}{-2Y_1 + (s-1)Y_2 = 1}$$
$$\Rightarrow Y_1 = \frac{\begin{vmatrix} 4 & -3 \\ 1 & (s-1) \end{vmatrix}}{\begin{vmatrix} (s-2) & -3 \\ -2 & (s-1) \end{vmatrix}} = \frac{4s - 1}{s^2 - 3s - 4} = \frac{4s - 1}{(s-4)(s+1)} = \frac{3}{(s-4)} + \frac{1}{(s+1)}$$

$$\Rightarrow y_1 = 3e^{4t} + e^{-t}$$
 similarly $\Rightarrow y_2 = 2e^{4t} - e^{-t}$

Ex.
$$(m_1 v_1)' = -kv_1 + k$$

$$\begin{cases} m_1 y_1'' = -ky_1 + k(y_2 - y_1) \\ m_2 y_2'' = -k(y_2 - y_1) - ky_2 \end{cases}$$

$$\begin{cases} y_1(0) = 1 & y_1'(0) = \sqrt{3k} \\ y_2(0) = 1 & y_2'(0) = -\sqrt{3k} \end{cases}$$

Take the Laplace transform of the equations and by using the I.C., we have:

$$\begin{cases} s^2 Y_1 - s - \sqrt{3k} = -kY_1 + k(Y_2 - Y_1) \\ s^2 Y_2 - s + \sqrt{3k} = -k(Y_2 - Y_1) - kY_2 \end{cases}$$

Fig. 131. Example 3

$$\Rightarrow \begin{cases} Y_1 = \frac{(s+\sqrt{3k})(s^2+2k)+k(s-3k)}{(s^2+2k)^2-k^2} = \frac{s}{s^2+k} + \frac{\sqrt{3k}}{s^2+3k} \\ Y_2 = \frac{(s+2k)(s^2-\sqrt{3k})+k(s+\sqrt{3k})}{(s^2+2k)^2-k^2} = \frac{s}{s^2+k} - \frac{\sqrt{3k}}{s^2+3k} \end{cases}$$

$$\therefore y_1(t) = \mathcal{L}^{-1}(Y_1) = \cos\sqrt{kt} + \sin\sqrt{3kt}$$
$$y_2(t) = \mathcal{L}^{-1}(Y_2) = \cos\sqrt{kt} - \sin\sqrt{3kt}$$

6.8 Periodic function

Theorem. The Laplace transform of a piecewise continuous periodic function f(t) with period p is;

$$\mathcal{L}{f} = \frac{1}{1 - e^{-ps}} \int_{0}^{p} e^{-st} f(t) dt$$

Proof:

$$\mathcal{L}\lbrace f\rbrace = \int_{0}^{\infty} e^{-st} f(t)dt = \int_{0}^{p} e^{-st} f(t)dt + \int_{p}^{2p} e^{-st} f(t)dt + \cdots$$

f(t) is periodic with period p.i.e.

$$f(t) = f(t+p) = f(t+2p) = ... = f(t+np)$$

set $t = \tau + p$, $t = \tau + 2p \cdots$ in the integral, we have

$$\mathcal{L}(f) = \int_{0}^{p} e^{-s\tau} f(\tau) d\tau + \int_{0}^{p} e^{-s(\tau+p)} f(\tau) d\tau + \int_{0}^{p} e^{-s(\tau+2p)} f(\tau) d\tau + \cdots$$

$$= [1 + e^{-sp} + e^{-2sp} + \cdots] \int_{0}^{p} e^{-s\tau} f(\tau) d\tau$$

$$= \frac{1}{1 - e^{-sp}} \int_{0}^{p} e^{-s\tau} f(\tau) d\tau$$

Ex.
$$f(t) = \begin{cases} k & \text{when } 0 < t < a \\ -k & \text{when } a < t < 2a \end{cases}$$
 and $f(t) = f(t + 2a)$

$$\mathcal{L}\{f\} = \frac{1}{1 - e^{-2as}} \int_{0}^{2a} f(t)e^{-st}dt = \frac{1}{1 - e^{-2as}} [\int_{0}^{a} k \cdot e^{-st}dt + \int_{a}^{2a} (-k)e^{-st}dt]$$

$$= \frac{k}{s} \frac{1 - e^{-as}}{1 + e^{-as}} = \frac{k}{s} \tanh(\frac{as}{2})$$