Distributions from flexsurv:

"gengamma"	Generalized gamma (stable)	mu	AFT	
"gengamma.orig"	Generalized gamma (original)	scale	AFT	
"genf"	Generalized F (stable)	mu	AFT	
"genf.orig"	Generalized F (original)	mu	AFT	,
"weibull"	Weibull	scale	AFT	V,
"gamma"	Gamma	rate	AFT	V
"exp"	Exponential	rate	PH	,
"llogis"	Log-logistic	scale	AFT	√,
"lnorm"	Log-normal	meanlog	AFT	J,
"gompertz"	Gompertz	rate	PH	/

[&]quot;exponential" and "lognormal" can be used as aliases for "exp" and "lnorm", for compatibility with <u>survreg</u>.

MRL formulas from paper GAMMA:

$$m(x) = \frac{x^{\alpha} exp\left[-\frac{x}{\lambda}\right]}{\lambda^{\alpha-1}\Gamma(\alpha)S_{\mathbf{X}}(x)} + \lambda\alpha - x$$

Compertz with Shape/Scale 0, 20 !

$$\Rightarrow m(x) = \frac{e^{\lambda/\alpha} \left(\frac{1}{\alpha}\right) \Gamma_{inc}(0, z(x))}{exp \left[\frac{\lambda}{\alpha} \left(1 - e^{\alpha x}\right)\right]} = e^{z(x)} \left(\frac{1}{\alpha}\right) \Gamma_{inc}(0, z(x))$$

$$\left(\text{where } z(x) = \frac{\lambda}{\alpha} e^{\alpha x}\right) \quad \text{where } \Gamma_{inc}(a, x) = \int_{x}^{\infty} t^{a-1} e^{-t} dt \text{ where } x, a \ge 0$$

Log-logistic with shape/scale a, 1 > 0:

$$z(t) = z = \frac{\left(\frac{t}{\lambda}\right)^{\alpha}}{1 + \left(\frac{t}{\lambda}\right)^{\alpha}}.$$

$$\left(\frac{\lambda}{\alpha}\right)\Gamma\left(1-\frac{1}{\alpha}\right)\Gamma\left(\frac{1}{\alpha}\right)\underbrace{\int_{z(x)}^{1}\frac{\Gamma\left(1-\frac{1}{\alpha}+\frac{1}{\alpha}\right)}{\Gamma\left(1-\frac{1}{\alpha}\right)\Gamma\left(\frac{1}{\alpha}\right)}(1-z)^{\left(1-\frac{1}{\alpha}\right)-1}z^{\frac{1}{\alpha}-1}dz}_{\text{survival function of a beta}}$$

$$= \left(\frac{\lambda}{\alpha}\right) \Gamma\left(1 - \frac{1}{\alpha}\right) \Gamma\left(\frac{1}{\alpha}\right) S_{\mathbf{Z}}\left(z(x); 1 - \frac{1}{\alpha}, \frac{1}{\alpha}\right) \left(1 + \left(\frac{x}{\lambda}\right)^{\alpha}\right)$$

log-Normal

$$m(x) = \frac{e^{\left(\mu + \frac{\sigma^2}{2}\right)} \left[1 - \Phi\left(\frac{\ln(x) - (\mu + \sigma^2)}{\sigma}\right)\right]}{1 - \Phi\left(\frac{\ln(x) - \mu}{\sigma}\right)} - x$$

Truncated Normal

$$\begin{split} S_{\mathbf{Y}}(y) &= 1 - \Phi\left(\frac{y - \mu}{\sigma}\right) \\ m_{\mathbf{X}}(x) &= \frac{\frac{\sigma}{\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x - \mu}{\sigma}^{2}\right)} + \mu S_{\mathbf{Y}}(z(x))}{S_{\mathbf{Y}}(x)} - x \end{split}$$

Weibull with shape/scale & , \ > 0

$$S(x) = exp\left[-\left(\frac{x}{\lambda}\right)^{\alpha}\right]$$
. Let $z(t) = z = t^{\alpha}$,

$$\frac{1}{\alpha} \int_{z(x)}^{\infty} z^{\frac{1}{\alpha} - 1} e^{-\frac{z}{\lambda^{\alpha}}} dz = \frac{1}{\alpha} \left(\lambda^{\alpha}\right)^{\frac{1}{\alpha}} \Gamma\left(\frac{1}{\alpha}\right) \int_{z(x)}^{\infty} \frac{z^{\frac{1}{\alpha} - 1} e^{-\frac{z}{\lambda^{\alpha}}}}{\left(\lambda^{\alpha}\right)^{\frac{1}{\alpha}} \Gamma\left(\frac{1}{\alpha}\right)}$$

$$Z \sim \Gamma \left(\mathrm{shape} = \frac{1}{\alpha}, \mathrm{scale} = \lambda^{\alpha} \right).$$

$$m(x) = \frac{\left(\frac{\lambda}{\alpha}\right) \Gamma\left(\frac{1}{\alpha}\right) S_{\mathbf{Z}}(z(x))}{S_{\mathbf{X}}(x)}$$

Summary:

Mean Residual Life $\alpha < 1$ INC	
1 (1)	
$\alpha = 1 \operatorname{constant}(\lambda)$	
$\alpha > 1$ DCR	
α DCR	
$\alpha \le 1$ undefined	
$\alpha \le 1$ underlined $\alpha > 1$ BT	
BT	
DCR	
$\alpha = 1 \operatorname{constant}(\lambda)$	
$\alpha > 1$ DCR	
3	