. (C) 0

 $2\ln|\sec x| + c$

2 ln tan x + c

02234010/CAPE 2013

GO ON TO THE NEXT PAGE

Re

(B) 3

 $\frac{1}{2}\ln|\tan x| + c$

 $\frac{1}{2}\ln\left|\sec^2x\right|+c$

6. If
$$f(x) = \ln 2x$$
, then $f'(x) = 9$. If $x^2y - xy^2 = 10$, then $\frac{dy}{dx}$ is equal to

(A) $\frac{2}{x}$

(B) $\frac{1}{x^2}$

(C) $\frac{-2}{x^2}$

(C) $\frac{-2}{x^2}$

(D) $\frac{-1}{x^2}$

(E) $\frac{y^2 - 2xy}{x^2}$

(C) $\frac{y^2 - 2xy}{x^2}$

(D) $\frac{-1}{x^2}$

(E) $\frac{y^2 - 2xy}{x^2 - 2xy}$

(E) $\frac{y^2 - 2xy}{x^2 - 2xy}$

(E) $\frac{y^2 - 2xy}{x^2 - 2xy}$

(E) $\frac{2x^{d^2}}{x^2 - 2xy}$

(E) $\frac{y^2 - 2xy}{x^2 - 2xy}$

(D) $\frac{x^2 - 2xy}{x^2 - 2xy}$

(E) $\frac{y^2 - 2xy}{x^2 - 2xy}$

(E

 \overline{z} is the conjugate of z. Which of the 4. following are always true?

The expression $i [(1+i)^2 - (1-i)^2]$ is equal to

I. $|\overline{z}| = |z|$ II. $\arg z = \arg \overline{z}$ III. $z \overline{z}$ is real

9388

If $f(x) = \ln 2x$, then f''(x) =

- is real
- I and II only
 I and III only
 II and IV only
 III and IV only
- expressed as The complex number $z = \sqrt{3} + i$ can be $\sqrt{2}\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)$ $\sqrt{2}\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$ represented on an Argand diagram as The complex number $z = \frac{1}{1-i}$ can be

 $2\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$

 $2\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)$

(B) E

 $\frac{2-i}{3+2i} =$

13 | 8+1

 $\frac{7-4i}{13}$ $\frac{4-7i}{13}$

			19.
ma	rela	u .,	=======================================
may be expressed as	tion u	n - u -	the
	" = " +3	, u	terms
	, 72	satu	of
	l, then	sfy the	the
	relation $u_{n-1} = u_q + 3$, $n \ge 1$, then the n^{th} term	$u_1, u_2, u_3,, u_n$ satisfy the recurrence	If the terms of the sequence

22. series is Let a_n and S_n denote respectively, the value of the n^{a_n} term and the n^{a_n} partial sum of a series. The value of $S_{n-2} - S_n$ when calculated on the

3000 $u_1 + 6n$ $u_1 + 3n$ $u_1 + 6(n-1)$ $u_1 + 3(n-1)$

The function $f(x) = x^3 - 3x - 1$ has NO real root in the open interval

20.

9092 (-2, -1)(-1, 0)(0, 1)(1, 2)

is $\frac{1}{1-2x}$. The range of x is The sum to infinity of a geometric series

21.

(B) -2 < x < 2

9 0 x>1 $\frac{1}{2} < x < \frac{1}{2}$ 3 -1 < x < 1

23. 3995 E Which of the following is an arithmetic series? (B) $\sum_{r=1}^{n} (7+4r)$

0 $\sum_{n=1}^{\infty} 2(4^n)$

9 $\sum_{r=1}^{n} \ln (r+1)$

In how many ways can a student council consisting of 8 students be formed from 40 students if 2 particular students must be on the council?

24.

3806 ؠؙٞٞؠؙٞؠؙٞؠؙ

GO ON TO THE NEXT PAGE

02234010/CAPE 2013

(B)

0

9

If $I_n = \int \tan^n(x) dx$ may be expressed as

3 $I_{n} = \frac{\tan^{e-1} x}{n-1} - I_{n-2}$, then $\int \tan^{3}(x) dx$ is

 $\frac{\tan^2 x}{2} - \int \tan^2 x \, dx$ $\frac{\tan^2 x}{2} - \int \tan x \, dx$

(B)

0 $\frac{\tan^2 x}{2} + \int \tan^2 x \, dx$

9 $\frac{\tan^2 x}{2} + \int \tan x \, dx$

15 $x(x^2+6x+17)$ may be expressed as 2+5

1 16 15 4 13 16 3

3 $\frac{P}{x} + \frac{Q}{(x-1)} + \frac{R}{x+17}$

> 9 0 (B) A

(B)

 $\frac{P}{x} + \frac{Qx + R}{(x-1)(x+17)}$

0 $\frac{P}{x} + \frac{Qx + R}{x^2 + 6x + 17}$

0 $\frac{P}{x} + \frac{Qx}{x^2 + 6x + 17}$

GO ON TO THE NEXT PAGE

02234010/CAPE 2013

A curve is given parametrically by the equations x=f-2t, y=f+2t. The simplest expression for the gradient of the tangent in terms of t is 16. (2) For -1 < 2n < 1, $\sum_{n=0}^{\infty} (2n)^n =$

13.

3

0 (B)

9

 $\begin{array}{c|c} r-1 & r+1 \\ 2i-2 & 2i+2 \\ \hline 1+1 & r+1 \\ \hline 1+1 & r+1 \\ \hline 1+1 & r+1 \\ \hline 2i-2 & r+1 \\ \hline 1+1 & r+1 \\ \hline 2i-2 & r+1 \\ \hline 1+1 & r+1 \\ \hline 2i-2 & r+1 \\ \hline 1+1 & r+1 \\ \hline 2i-2 & r+1 \\ \hline 2i-2$

17. Which of the following sequences is the first four terms of an arithmetic progression? $\begin{array}{c|c}
2 \\
\hline
1-n \\
1 \\
\hline
1 \\
2n \\
\hline
1+2n \\
2n \\
\hline
1-2n \\
1-2n \\
\end{array}$

B n, n-2.n-4.n-6

9 0 n, 2n + 1, 2n + 3, 2n + 8 n, -(n+1). (n+2), -(n+3)

18.

The sum of the first n terms of a series is $1 - \left(\frac{1}{4}\right)^n$. The value of the SECOND

term is

In how many ways could this team be chosen?	 A team of five teachers is to be chosen from a group of fifteen teachers.
ım be	34
(S)	X and Y are mutually exclusive events. If $P(X) = \frac{1}{A}$ and $P(Y) = \frac{1}{E}$ then $P(X \cup Y) = \frac{1}{A}$

-7-

Two events A and B are such
$$P(A) = 0.5, P(B) = 0.16, P(A \cup B)$$
 $P(A \cap B) =$

32.

g

9 0 \mathbb{B}

20 5 20 9

Two events A and B are such that
$$P(A)=0.5, P(B)=0.16, P(A\cup B)=0.48.$$
 $P(A\cap B)=$

0

 $\left(\frac{6}{10} \times \frac{4}{9}\right) + \left(\frac{4}{10} \times \frac{3}{9}\right)$

(B)

10 × 3

3

10 × 3

33.

3909

0.14 0.18 0.26 0.82

(B) ("P₂) ("P₂)
(C)
$$\frac{11!}{3!2!}$$

(D) $\frac{11!}{3!}$

(D)
$$\frac{\left(\frac{6}{10} \times \frac{4}{9}\right) \times \left(\frac{4}{10} \times \frac{3}{9}\right)}{\left(\frac{10}{10} \times \frac{3}{9}\right)}$$
 Given that $\frac{1}{10}$ is a gas size of $\frac{3}{10}$

(B)
$$\frac{1}{2}|H|$$

A

2 H

GO ON TO THE NEXT PAGE

02234010/CAPE 2013

õ

(A)
$$\binom{n}{1} + \binom{n}{1}$$

(B)

(B)
$$\binom{n}{n-2}$$
 (C) $\binom{n-2}{n}$

(C)
$$\binom{n-2}{n}$$

(D) $\binom{n}{n+2}$

26. The value of the term independent of x in the expansion of
$$\left(x-\frac{3}{x}\right)^4$$
 is

By using the Newton-Raphson method with a first approximation
$$x_n$$
, the second approximation x_{n+1} for a root of the equation $x^2 = x^2 + 25$ may be expressed as

30.

(A)
$$\frac{x_{x} - x_{x}^{5} - x_{x}^{3} + 25}{5x_{x}^{4} - 3x_{x}^{3}}$$
(B)
$$\frac{x_{x} - x_{x}^{5} - x_{x}^{3} - 25}{5x_{x}^{4} - 3x_{x}^{3}}$$

(C)
$$\frac{4x_n^3 - 4x_n^3 - 25}{5}$$

(C)
$$\frac{12x_0^3 - 2x_0^3 + 25}{5}$$
(D)
$$\frac{4x_0^3 - 2x_0^3 + 25}{5x_0^4 - 3x_0^2}$$

25. The binomial coefficient
$$\binom{n}{2}$$
 is equivalent 28. to

The Maclaurin series for $\sin x$, up to the term in x^2 , is

(A)
$$x-\frac{x^3}{6}$$

 $^{\mathbb{B}}$

(C)
$$1+x+\frac{x^2}{2} + \frac{x^2}{6}$$

(D) $1+x-\frac{x^2}{2} - \frac{x^3}{6}$

A continuous function is defined by
$$f(0) = 1$$
 and $f(0.8) = -0.76$.

29.

GO ON TO THE NEXT PAGE

02234010/CAPE 2013

- 43. Given that y = 0 at x = 0, the general solution of the differential equation y'' + 6y' + 9y = 0 is
- 45. The general solution of the differential equation $\frac{dv}{dx} = \frac{\mathcal{V}}{x}$ is
- 3606 $y = e^{3x} + Bx$ $y = xBe^{-3x}$ $y = e^{3x} (A + Bx)$ $y = e^{-3x} + Bx$

4

differential equation $\frac{d^3y}{dx^2} - 3\frac{dy}{dx} + 2y = 0$ is The general solution for the second-order

 $y = Ae^{2x} + x Be^x$ $y = Ae^{2x} + Be^x$ $y = e^x (A + Bx)$ $y = e^{2x} (A + Bx)$

- 39098 $y = e^x$ y = kx y = x + k $y = \ln x + k$

END OF TEST

IF YOU FINISH BEFORE TIME IS CALLED, CHECK YOUR WORK ON THIS TEST.

38. 37. The FIRST ROW of the product PQ of the If $M = \begin{pmatrix} 1 & 1 & 4 \\ 3 & 2 & -1 \end{pmatrix}$, then the co-factor of (D) 0 (B) 25 B the element 3 in M above may be written 0 0 0-(6 0 5 4 2 40. 41. The general solution of a second order ordinary differential equation is $y(t) = c_1 \cos 2t + c_2 \sin 2t$. How many solutions result from applying the boundary conditions $y(t) = y(2\pi) = b$ where b is a $IfM = \begin{cases} 1 & 2 & 0 \\ 3 & 1 & 1 \\ 5 & 0 & 2 \end{cases}$, then the determinant of 9 0 M is (B) (A) 0 = 0 7 $\begin{vmatrix} 1 & 1 \\ 0 & 2 \end{vmatrix} + \begin{vmatrix} 2 & 0 \\ 0 & 2 \end{vmatrix} + \begin{vmatrix} 2 & 0 \\ 1 & 1 \end{vmatrix}$ 2 -2 0 2 + 2 1 + 3 2 2 + 3 0 $\frac{1}{2} - \frac{3}{0}$ 0 + 5 2 2+52 _ 0 - 0 __ 0

00 -

two 3 x 3 matrices

$$P = \begin{pmatrix} 2 & 3 & 1 \\ 5 & -6 & 5 \\ -1 & 2 & 3 \end{pmatrix} \text{ and } Q = \begin{pmatrix} 2 & 1 & 3 \\ 5 & 0 & -1 \\ -3 & -2 & 4 \end{pmatrix}$$

constant?

39085

one solution no solution

two solutions infinitely many solutions

- 3505 35.53 -5 -5 -35 -

42

If the auxiliary equation for a second order

are NOT together is The letters of the word 1 R R E G U L A R are to be arranged in a line. The number of possible arrangements in which the 3 Rs

39.

- E 71
- (B)
- $\frac{9!}{3!} 7!$
- 0 9! - 7! × 3!

0

9! - 7!

02234010/CAPE 2013

02234010/CAPE 2013

9 8 G differential equation with real, constant coefficients is given by $\lambda^2+6\lambda+50=0$, then the general solution of the differential equation may be given by $y = e^{\alpha x} (A \cos \beta x + B \sin \beta x)$ $y = Ae^{\lambda_1 x} + Be^{\lambda_2 x}$ $y_i e^{i \lambda(x) \pm t} = \int Q(x) e^{i \lambda(x) \pm t} dx + C$ $y = e^{\lambda x} (A + Bx)$

GO ON TO THE NEXT PAGE