

CHEMISTRY

3rd class Date: 20-09-2021

Dr. K. Ananthanarayanan
Associate Professor (Research)
Department of Chemistry
Room No 319, 3rd Floor, Raman Research Park

Email: ananthak@srmist.edu.in Phone: +91-9840154665

21CYB101J-Chemistry

Page 1

Dr K Ananthanarayanan

Last class...

SRM

SINUTE OF SCIENCE A TELENOLOG

(Blomad as he University) with 3 of vice. 6n. 100

☐ General introduction – Course

General information, 21CYB101J

	, <u> </u>	
	6 classes / week (I day order: 9.00 – 10.40 am, III day order: 10.50 – 11.40 am, V day order: 1.20 – 2.10 pm. 5 cred course (incl. 2 lab class). Lab.: III day order: 2.10 – 3.50 pr	<u>it</u>
	Location and contact : Virtual classroom (Google Meet mobile and email.),
	<u>Activities</u> : Teach the entire syllabus, provide lectur material as hand outs, announce assignments, tak laboratory sessions & conduct CLA's, end semester.	
	<u>Grading/weightage:</u> Assessment test I – 15%, Assessment test II – 15%, Assessment test III – 20% & Assignments 10%, End Semester – 40%.	
210	YB101J-Chemistry Page 3 Dr. K Ananthanarayanan	

General information, 21CYB101J

Kindly join 1-2 minutes prior to the start of the session
Attendance – 'in' and 'out' times are recorded automatically
Please choose "join Meeting" and do not choose "present" in the meeting option
As you join the session, kindly mute your audio and video
If you have any queries, please unmute yourself and ask or type in the chat box !
If the internet is disconnected (or any issues on my side), please alert me!

Preface, 21CYE	3101J	SRM NIIITI OI SUUNA A TOROSOOO Damarin sa hannay a sala faa salamii	
☐ Syllabus – following	AICTE norms, first	t time at SRMIST !!	
☐ Refer SRMIST curric	ulum		
☐ Weightage : Both the	eory and lab.		
☐ Continuous learning	assessment (CLA	A) pattern	
☐ Attendance (minimum 75% is a must)			
21CYB101J-Chemistry	Page 5	Dr. K Ananthanarayanan	

Preface, 21CYB101J

usual textbooks. (Other reference material if any will be provided).
☐ Effort will be made to present as much visual information as possible and make the class more interactive.
☐ Important slides will be marked with a "X" symbol in one of the corners of the slide.
☐ The entire course material is intended for learning and understanding of the subject matter (not merely for 'exams' or 'syllabus coverage').
☐ Lecture slides, notes and handouts will be provided in a regular basis (Google Classroom)

X

21CYB101J-Chemistry

Page 6

Reference text books, 21CYB101J

- □ B. H. Mahan, R. J. Meyers, University Chemistry, 4th ed., Pearson publishers, 2009.
- □ Peter W. Atkins, Julio de Paula, James Keeler, Physical Chemistry, 11th ed., Oxford publishers, 2018
- W. D. Callister, D. G. Rethwisch, Materials Science and Engineering: An Introduction, 8th ed., Wiley, 2009
- ☐ M. J. Sienko, R. A. Plane, Chemistry: Principles and Applications, 3rd ed., McGraw-Hill publishers, 1980

21CYB101J-Chemistry

Page 7

Dr. K Ananthanarayanan

Goals & purpose

- ☐ Brief introduction to concepts in chemistry (level 2 hybrid undergraduate course)
- ☐ Utilize concepts in chemistry for technological advancement based on atomic and molecular level modification
- ☐ This course will help you as an engineer to:
- 1) Fundamental understanding of concepts
- 2) Importance of chemistry in various technological applications and in industries
- 3) As a M.Tech (Int.) student : 5 credits, good for CGPA ©

21CYB101J-Chemistry

Page 8

What is Chemistry?

- ☐ The study of matter (composition, structure, properties, changes,.....)
- □ Science → Pure (Knowing)
 - > Does not necessarily have an application
- □ Technology → Applied (Doing)
 - Has practical applications in the society, engineering
- ☐ Interdisciplinary field: Material chemistry, pharma, agro, engineering etc. Everything we see and use is made from materials: metals, polymers, ceramics, semiconductors and composites (basis set is chemistry)

21CYB101J-Chemistry

Page 9

Dr. K Ananthanarayanan

Syllabus overview		SRM NUITTI OF SUING & TOPOSOLOGY District in Statement of 1 of Col. (Col. Col.)
Total FIVE chapters		
☐ Inorganic chemistry		
☐ Physical chemistry		
☐ Organic chemistry		
□ Polymers		
☐ Advanced engineering m	ıaterials	
21CYB101J-Chemistry	Page 13	Dr. K Ananthanarayanan

Inorganic chemi	stry	SRM NUMBER OF STREET OF ST
☐ Coordination compl	lexes, introduction	
Crystal field theory magnetism and opt	: different complexes ical properties	s, low and high spin,
☐ Periodic properties	: Slater's rule, electr	onic configurations
☐ Variation in periods ionisation energy &		electronegativity,
☐ HSAB principle		
21CYB101J-Chemistry	Page 14	Dr. K Ananthanarayanan

F	Physical chemistry	SRV SHITTLE OF SCHING & THO PRODUCE (Brend in bit Deverying split of first for, re-
	Thermodynamics : U, Q, W, T, H, S, Δ G, Gibbs-He equation	lmholtz
	Electrochemistry: Nernst equation, Applications	
	Corrosion : Types, Pourbaix diagram	
	Chemical equilibrium and solubility product	

Page 15

21CYB101J-Chemistry

Dr. K Ananthanarayanan

Organic chemistry □ Isomerism : Structural, Configurational and Conformational □ Absolute configuration : CIP rules (naming enantiomers) □ Conformational analysis □ Reactions : Substitution, Elimination, Oxidation, Reduction, Addition, Cyclisation and C-C bond formation reactions □ Synthesis of pharmaceutical products, few examples

Polymers		SRM NITHT OF KINKA I TOROGOO
☐ Introduction to conce Polymers	ept of macromolecu	les - Classification of
☐ Types of Polymeriza condensation polyme	•	lition and
☐ Synthesis and prope Teflon, Nylon, PET, F		ne, polystyrene, PVC, ynthetic rubber
☐ Conducting polymers	s – introduction, typ	es
21CYB101J-Chemistry	Page 17	Dr. K Ananthanarayanan

Advanced engineering materials Mechanical properties of solid – stress-strain relationship Tensile strength, Hardness, Fatigue, Impact strength, Creep Composite materials - introduction and types (FRC, MMC, CMC) – Applications Surface characterisation techniques - XRD and XPS

©SRM Summary, CLR ☐ Exploit the <u>periodic properties of elements</u> for bulk property manipulation towards technological advancement ☐ Address concepts related to electrochemistry, such as corrosion, using thermodynamic principles ☐ Employ various organic reactions towards the design of fine chemical and drug molecules for industries ☐ Brief outline, reaction types and applications of polymers ☐ Properties, surface characterization and applications of advanced engineering materials ☐ Utilize the **basic chemistry principles** applied in various engineering problems and identify appropriate solutions 21CYB101J-Chemistry Dr. K Ananthanarayanan Page 19

Chapter 1, cont	ents	SRM NATITITE OF SURVEY & TORONOLOGY Shareful to be briefly on he for the property of the first to be property.
□ Coordination comp	lexes – introduction	
	: different complexes tical properties (coord	
☐ Slater's rule, electr	onic configurations	
☐ Variation in periods ionisation energy &	s and groups - Size, e s electron affinity	electronegativity,
21CYB101J-Chemistry	Page 20	Dr. K Ananthanarayanan

Coordination compounds

- Main group elements the valence electrons of the isolated atoms combine to form chemical bonds that satisfy the octet rule. The one valence electron leaves sodium and adds to the seven valence electrons of chlorine to form the ionic formula unit NaCl.
- ☐ Transition metals do not normally bond in this fashion. They primarily form coordinate covalent bonds, a form of the Lewis acid-base interaction in which both of the electrons in the bond are contributed by a donor (Lewis base) to an electron acceptor (Lewis acid).
- ☐ The Lewis acid in coordination complexes, often called a central metal ion (or atom), is often a transition metal or inner transition metal
- ☐ The Lewis base donors, called <u>ligands</u>, can be a wide variety of chemicals—atoms, molecules, or ions.
- ☐ The only requirement is that they have one or more electron pairs, which can be donated to the central metal.

Coordination complex

□ Species where transition metal ion is surrounded by a certain number of ligands

Transition metal ion : <u>Lewis acid</u>

Ligands: <u>Lewis bases</u>

- <u>They primarily form coordinate covalent bonds</u>, a form of the Lewis acidbase interaction in which both of the electrons in the bond are contributed by a donor (Lewis base) to an electron acceptor (Lewis acid)
- Brackets in a formula enclose the <u>coordination sphere</u>; species outside the brackets are not part of the <u>coordination</u> sphere. <u>The coordination</u> <u>number of the central metal ion or atom is the number of donor atoms</u> <u>bonded to it</u>

Coordination number, ligands

Ligands in Coordination Compounds

Table 23.7 Some Common Ligands in Coordination Compounds Ligand

Type Examples

Polydentate

Bidentate $H_2C - CH_2$ C - C - C - C

diethylenetriamine triphosphate

ethylenediaminetetraaceta (EDTA) ion

Coordination number

$$\begin{bmatrix} H & H \\ H - N - Ag - N - H \\ H & H \end{bmatrix}$$

- \square The coordination number for the silver ion in $[Ag(NH_3)_2]^+$ is two
- \Box For the copper(II) ion in [CuCl₄]²⁻, the coordination number is four, whereas for the cobalt(II) ion in $[Co(H_2O)_6]^{2+}$ the coordination number is six
- □ Each of these ligands is monodentate, from the Greek for "one toothed," meaning that they connect with the central metal through only one atom. In this case, the number of ligands and the coordination number are equal

Coordination number

$$\begin{array}{c} \vdots \\ \vdots \\ \text{NH}_2 \\ \text{CH}_2 \\ \text{NH}_2 \\ \text{CH}_2 \\ \text$$

Tris(ethylenediamine)cobalt(III) chloride

oordination	number	DSITUTE OF S (thereoff in he think
Coordination Number	Molecular Geometry	Example
2	linear	[Ag(NH ₃) ₂] ⁺
3	trigonal planar	[Cu(CN) ₃] ²⁻
4	tetrahedral(d^0 or d^{10}), low oxidation states for M	[Ni(CO) ₄]
4	square planar (d ⁸)	[NiCl ₄] ²⁻
5	trigonal bipyramidal	[CoCl ₅] ²⁻
5	square pyramidal	[VO(CN) ₄] ²⁻
6	octahedral	[CoCl ₆] ³⁻
7	pentagonal bipyramid	$[ZrF_7]^{3-}$
8	square antiprism	[ReF ₈] ²⁻
8	dodecahedron	[Mo(CN) ₈] ⁴⁻
9 and above	more complicated structures	$[ReH_9]^{2-}$

Orbitals and quantum numbers

Name	Symbol	Allowed Values	Property
principal	n	positive integers (1, 2, 3,)	orbital energy (size)
angular momentum	I	integers from 0 to <i>n-</i> 1	orbital shape (<i>I</i> values of 0, 1, 2 and 3 correspond to <i>s</i> , <i>p</i> , <i>d</i> and <i>f</i> orbitals, respectively.)
magnetic	m_l	integers from -I to 0 to +I	orbital orientation
spin	m_{S}	+1/2 or -1/2	direction of e ⁻ spin

Each electron in an atom has its own unique set of four (4) quantum numbers.

Transition metal complex, d orbitals

- between the x and the
- lie between the x and the
- lie between the y and the
- $\underline{\mathbf{d}_{\mathbf{x}^2-\mathbf{y}^2}}$: lobes lie on the
- $\underline{\mathbf{d}_{z}^{2}}$: there are two lobes on the z axes and there is a donut shape ring that lies on the xy plane around the other

Thank you all for your attention

Information presented here were collected from various sources – textbooks, articles, manuscripts, internet and newsletters. All the researchers and authors of the above mentioned sources are greatly acknowledged.

18CYB101J-Chemistry

Page 31

CHEMISTRY

4th and 5th class Date: 20-09-2021

Dr. K. Ananthanarayanan
Associate Professor (Research)
Department of Chemistry
Room No 319, 3rd Floor, Raman Research Park

Email: ananthak@srmist.edu.in

Phone: 9840154665

18CYB101J-Chemistry

Page 32

Last class	SRM INSTITUT OF SURVICE AT TICHOGOLOGY (Standard in Colorestry) of 1 of first, on, and
☐ Coordination complexes – introduction	

ı	n this class, laborator	y component	SRM SHITTED OF SELECT AT TAXABLE OF SELECTION OF SE
	Lab. : III day order : 2.10 -	3.50 pm (14 weeks	<u>s, 1+8+2+2+1)</u>
	Experiments: 8 in total		
	Grading/weightage: Each	experiment carries 1	0 marks
	Model practical exam and L – dynamic, on campus ??)	Jniversity practical e	xam (situation
210	SYB101J-Chemistry	Page 34	Dr. K Ananthanarayanan

Outline

- ☐ Aim, principle, theoretical background, the experimental details, precautions to be taken, procedure and finally calculations will be outlined and explained in class.
- ☐ Lab. Manual is already provided (GCR)
- ☐ Video of the experiment will be provided in advance (GCR)
- ☐ You need to remember/recollect the following words: Titration, equivalent weight, normal solution, end point, indicator, burette, pipette, conical flask, funnel etc
- ☐ Safety is important (when you are inside a lab.)

Outline, practical component

In this practical component of the course you will be introduced to various <u>titration</u> methods (<u>volumetric</u> <u>analysis</u>)
In titrimetry we add a reagent, called the titrant , to a solution containing another reagent, called the titrand , and allow them to react.
The type of reaction provides us with a simple way to divide titrimetry into the following five categories:
Acid-base, redox, conductometric, precipitation and complexometric titrations

Outline

Acid-base	titrations,	in	which	an	acidic	or	basic	titrant	reacts
with a titran	d that is a b	ase	e or an	acio	d.				

 $\hfill \Box$ <u>Complexometric titrations</u> based on metal–ligand complexation.

■ Redox titrations, in which the titrant is an oxidizing or reducing agent.

☐ Precipitation titrations, in which the titrand and titrant form a precipitate.

☐ Conductometric titration : type of titration in which the electrolytic conductivity of the reaction mixture is continuously monitored as one reactant is added.

Some terms (recap)

- ☐ <u>Titration:</u> A technique where a solution of known concentration is used to determine the concentration of an unknown solution. Typically, the titrant (the known solution) is added from a burette to a known quantity of the analyte (the unknown solution) until the reaction is complete.
- Equivalent Weight (acid and base): The equivalent weight of an acid is that weight which yields one mole of hydrogen ions in the reaction employed whereas the equivalent weight of a base is that weight which reacts with one mole of hydrogen ions in the reaction.
- □ Normal solution: A solution containing one equivalent weight of solute per litre of solution.

39

Some terms (recap)

- ☐ Equivalence Point: When the number of equivalents of acid (respectively base) added is equal to the number of equivalents of base (respectively acid) taken initially.
- □ Acid-Base Indicators: Weak organic acids or bases having different colours for their dissociated or undissociated forms

e.g., Methyl Orange - Red (acidic solution),

Orange - yellow (basic solution)

pH: 3.1 - 4.6

Some terms (recap)

colourless (Acid)

pink (Base)

- ☐ Under acidic conditions, the equilibrium is to the left, and the concentration of the anions is too low for the pink colour to be observed in the case of phenolphthalein.
- □ However, under alkaline conditions, the equilibrium is to the right, and the concentration of the anion becomes sufficient for the pink colour to be observed. pH range: 8 9.8

41

Equivalence point & end point

- ☐ The equivalence point is the <u>exact point in a titration when</u> <u>moles of one titrant equal the moles of the substance</u> being titrated.
- The endpoint is the point where the <u>system changes when</u> the moles of the reacting titrant exceed the moles of the substance being titrated.
- ☐ This can be seen as a sharp change in pH, a surge of voltage, a change in the color of the indicator, etc.
- ☐ The difference between the equivalence point and the endpoint is <u>an indeterminate error in all titrations</u> (indicator error).

List of experiments
lue Determination of the amount of sodium carbonate and sodium
hydroxide in a mixture by titration.
☐ Estimation of amount of chloride content of a water sample.
☐ Determination of hardness (Ca ²⁺) of water using EDTA –
complexometric method
☐ Determination of strength of an acid using pH meter.
☐ Determination of strength of an acid by conductometry.
☐ Determination of the strength of a mixture of acetic acid and
hydrochloric acid by conductometry.
☐ Determination of ferrous ion using potassium dichromate by
potentiometric titration.
☐ Determination of molecular weight of polymer by viscosity
average method.
18CYB101J-Chemistry Page 43 Dr. K Ananthanarayanan

Acid-base titration

A <u>quantitative analysis</u> of acids and bases; through this process, an acid or base of <u>known concentration</u> neutralizes an acid or base of <u>unknown concentration</u> .
The titration progress can be monitored by <u>visual indicators</u>
The reaction's <u>equivalence point</u> is the point at which the titrant has <u>exactly neutralized</u> the acid or base in the unknown analyte; if you know the volume and concentration of the titrant at the equivalence point, <u>you can calculate the concentration</u> of a base or acid in the unknown solution.

Complexometric titration

- ☐ A titration based on the formation of coordination complexes between a **metal ion and complexing agent** (or chelating agent) to form soluble complexes. (*Hardness in water*)
- □ Complex-forming reactions involving <u>many metal ions</u> can serve as a basis for accurate and convenient titrations for such metal ions. <u>High accuracies</u> and offer the possibility of determinations of metal ions at the <u>millimole levels</u>.

Eriochrome Black-T + Ca^{2+}/Mg^{2+} Eriochrome Black-T- Ca^{2+}/Mg^{2+} (Wine red)

Eriochrome Black-T-Ca²⁺/Mg²⁺ + EDTA → EDTA-Ca²⁺/Mg²⁺ + Eriochrome Black-T (Wine red) (Steel blue)

Argentometric titration (precipitation)

- ☐ A titration involving the **silver(I) ion.**
- Used to determine the <u>amount of chloride</u> present in a sample. The sample solution is titrated against a solution of silver nitrate of known concentration.
- The indicator (potassium chromate) is added to visualize the endpoint, demonstrating presence of silver ions, solubility product of silver chromate exceeded and it forms a reddishbrown precipitate. This stage is taken as evidence that all chloride ions have been consumed and only excess silver ions have reacted with chromate ions:

Conductometric titration

- ☐ Electrolytic conductivity of the reaction mixture is continuously monitored as one reactant is added.
- ☐ The equivalence point is the point at which the conductivity undergoes a sudden change. Marked increase or decrease in conductance are associated with the changing concentrations of the two most highly conducting ions—the hydrogen and hydroxyl ions.
- ☐ The method can be used for <u>titrating coloured solutions</u> or homogeneous suspension which cannot be used with normal indicators.

49

Conductometric titration, contd.

Redox titration

- <u>Oxidation-reduction reaction</u> between the titrand and the tirant. Here the end point is detected using a potentiometer
- □ Potentiometric titrations involves the <u>measurement of the</u> <u>potential of a suitable indicator electrode with respect to a reference electrode</u> as a function of titrant volume.
- □ <u>SCE is used as the reference electrode</u>. Platinum metal foil, dipped in Fe²⁺ solution is used as <u>the indicator electrode</u>.

$$Cr_2O_7^{2-} + 6 Fe^{2+} + 14H^+ \Rightarrow 6 Fe^{3+} + 2Cr^{3+} + 7 H_2O$$

51

Molecular weight of a polymer

- ☑ <u>Viscosity</u> is an internal property of a fluid that offers resistance to flow.
- ☐ Ostwald method : viscosity of liquid is measured by comparing the viscosity of an unknown liquid with that of liquid whose viscosity is known.
- ☐ In this method viscosity of liquid is measured by comparing the flow times of two liquids of equal volumes using same viscometer.

Work schedule	TICTLOF SCIENCE & TECHNOLOGY and as inc University 1/4 3 of 100 dec, 1000				
☐ A day before the virtual lab. class, video of the experperformed by a faculty member will be shared in Lab. manual is already shared in GCR.	iment GCR.				
☐ Aim, principle, methodology, procedure and calculations will be explained in the online class					
□ <u>Practice session</u> – The students shall be asked calculations by giving model observation values for experiment (<u>small lab. book and graph sheets are need</u>	each				
☐ If and when you are back in campus experiments cac <u>carried out in the laboratories (??)</u>	an be				
18CYB101J-Chemistry Page 53 Dr. K Ananthana	arayanan				
	TITLE OF SCINCE & TECHNOLOGY and as the University uply 2 of USE Sea, 1990)				
☐ From next week (III order) virtual lab. sessions will be he	eld.				
☐ Same day the calculations and graph (if any) should be completed.					
☐ Google form will be circulated. Deadline - 9 pm .					
 □ Google form will be circulated. <u>Deadline - 9 pm</u>. □ Any clarifications needed ? 					

Thank you all for your attention

Information presented here were collected from various sources – textbooks, articles, manuscripts, internet and newsletters. All the researchers and authors of the above mentioned sources are greatly acknowledged.

18CYB101J-Chemistry

Page 55