

Hajee Mohammad Danesh Science and Technology University, Dinajpur-5200

Department of Computer Science and Engineering Level: 3, Semester: II

A Report on A Cryptography Algorithm

Course Code: CSE 361
Course Title: Mathematical Analysis for Computer Science

Prepared By

Fariha Tasneem Feya ID: 2102006

Submitted To

Pankaj Bhowmik
Lecturer
Department of Computer Science and Engineering

Submission Date: 4 July 2025

Algorithm Name: Mod-X Cipher

1. Introduction

This is a simple symmetric encryption algorithm that combines modular arithmetic and bitwise XOR operations to provide basic confidentiality. It uses a single numeric key K shared between the sender and receiver to perform both encryption and decryption which makes it a symmetric algorithm. This algorithm operates on the ASCII values of characters.

2. Notations

P: Plaintext (original message)

C: Ciphertext (encrypted message)

K: Secret key (a positive integer, $0 \le K \le 255$)

P[i]: i-th character of plaintext

C[i]: i-th character of ciphertext

ord(x): ASCII value of character x

chr(x): Character corresponding to ASCII value x

3. Encryption Algorithm

Input:

A string P (plaintext) An integer key K

Output:

A string C (ciphertext)

Procedure:

- 1. Initialize empty string $C \leftarrow ""$
- 2. For each character P[i] in P:
- a. val \leftarrow (ord(P[i]) + K) mod 256
- b. $val \leftarrow val XOR K$
- c. $C \leftarrow C + chr(val)$
- 3. Return C

4. Decryption Algorithm

Input:

A string C (ciphertext) An integer key K

Output:

A string P (recovered plaintext)

Procedure:

- 1. Initialize empty string $P \leftarrow ""$
- 2. For each character C[i] in C:
- a. $val \leftarrow ord(C[i]) XOR K$
- b. val \leftarrow (val K + 256) mod 256
- c. $P \leftarrow P + chr(val)$
- 3. Return P

5. Flowchart

5.1 Encryption

Figure 5.1: Encryption Algorithm Flowchart

5.2 Decryption

Figure 5.2: Decryption Algorithm Flowchart

6. Example Test Case

Input:

Plaintext: "HELLO"

Key: K = 23

Encryption (step-by-step for 'H'):

ord('H') = 72

 $(72 + 23) \mod 256 = 95$

95 XOR 23 = 72

chr(72) = 'H'

Final Output:

Encrypted text: "HKttq" Decrypted text: "HELLO"

6. Conclusion

The Mod-X Cipher is symmetric, the same key is used for both encryption and decryption. It ensures reversibility by applying XOR and modular arithmetic. It can encrypt all standard ASCII characters (0–255).