MA10174 - Semester 1, 2021/22

Problem Sheet 3

1. Prove that

a.
$$\lim_{n \to \infty} \frac{2n+3}{3n-7} = \frac{2}{3}$$
, b. Homework $\lim_{n \to \infty} \frac{n^4+3}{3n^5+2} = 0$.

by first principles.

2. Find the limit of the following sequences

$$(i) \quad a_n = \sqrt{n^2 + 1} - n, \quad (ii) \quad a_n = 1 + (\frac{1}{3})^n \quad (iii) \quad \text{Homework} \quad a_n = \frac{7^n (1 - n)}{(1 + n^2) 9^n}.$$
 [Hint for (i) : calculate first $(\sqrt{n^2 + 1} - n)(\sqrt{n^2 + 1} + n).$]

- 3. Let $(a_n)_{n\in\mathbb{N}}$ be a sequence of positive numbers.
 - a. **Homework** Prove that if $(a_n)_{n\in\mathbb{N}}$ converges to L>0, then $(\sqrt{a_n})_{n\in\mathbb{N}}$ converges to \sqrt{L} .
 - b. Prove that $(\sqrt{1+a_n^2})_{n\in\mathbb{N}}$ converges to $\sqrt{1+L^2}$.
- 4. **Homework** Let $(a_n)_{n\in\mathbb{N}}$ be a sequence and $L\in\mathbb{R}$. Prove that $\lim_{n\to\infty}a_n=L$ if and only if for any $\varepsilon>0$, the interval $(L-\varepsilon,L+\varepsilon)$ contains a_n for all but finitely many n.
- 5. a. Let $a \in (0,1)$. Show that $\lim_{n\to\infty} (1+a^n)^{\frac{1}{n}}=1$. [Hint: write $(1+a^n)^{\frac{1}{n}}=1+x_n$, with $x_n>0$ and show that $x_n\to 0$ as $n\to\infty$]
 - b. Let c > d > 0. Show that $\lim_{n \to \infty} (c^n + d^n)^{\frac{1}{n}} = c$
 - c. Compute $\lim_{n\to\infty} (3^{2n} + n^{17}3^n)^{\frac{1}{n}}$.
- 6. **Homework** Determine whether the following sequences are increasing or decreasing. Find their limits, if they exist.

$$a. \quad a_n = \left(\frac{n}{n^2 + 1}\right)_{n \in \mathbb{N}}, \quad b. \quad a_n = \left(\frac{5^{n+1}}{2^n 3^n}\right)_{n \in \mathbb{N}}, \quad c. \quad a_n = \left(\frac{n+1}{n+10}\right)_{n \in \mathbb{N}}$$

7. Determine whether the following sequences are increasing or decreasing.

$$a. \quad n^2 \sin\left(\frac{\pi}{2}n\right), \qquad b. \quad \frac{n^n}{n!}$$

8. Show that the following sequences are convergent by showing that they are monotone and bounded. Find their limits.

a.
$$a_1=\frac{1}{4}$$
, $a_{n+1}=\frac{a_n}{2}+a_n^2$, for all $n\geq 1$

b. Homework
$$a_1=1$$
, $a_{n+1}=-1+\frac{a_n}{2}$, for all $n\geq 1$