

AKADEMIA GÓRNICZO-HUTNICZA KATEDRA INFORMATYKI STOSOWANEJ I MODELOWANIA

METODY OPTYMALIZACJI

Optymalizacja z ograniczeniami funkcji wielu zmiennych metodami bezgradientowymi

1. Cel ćwiczenia.

Celem ćwiczenia jest wykorzystanie bezgradientowych metod optymalizacji do wyznaczenia minimum funkcji celu uwzględniając ograniczenia.

2. Testowa funkcja celu.

Funkcja celu dana jest wzorem:

$$f(x_1, x_2) = \frac{\sin\left(\pi\sqrt{\left(\frac{x_1}{\pi}\right)^2 + \left(\frac{x_2}{\pi}\right)^2}\right)}{\pi\sqrt{\left(\frac{x_1}{\pi}\right)^2 + \left(\frac{x_2}{\pi}\right)^2}}$$

Jej wykres przedstawiony jest poniżej.

Ograniczenia określone są funkcjami:

$$g_1(x_1) = -x_1 + 1 \le 0$$

$$g_2(x_2) = -x_2 + 1 \le 0$$

$$g_3(x_1,x_2) = \sqrt{x_1^2 + x_2^2} - a \le 0$$

gdzie: α jest parametrem, którego wartość należy przyjąć równą:

- a=4,
- a = 4.4934
- a = 5.

3. Problem rzeczywisty.

Piłka o masie m=600g i promieniu r=12cm spada z wysokości $y_0=100m$ (początkowa prędkość w kierunku pionowym $v_{0y}=0$). Piłka posiada poziomą prędkość początkową v_{0x} oraz rotację ω (początkowe położenie poziome $x_0=0$). Połączenie ruchu liniowego piłki z jej rotacją wywołuje efekt Magnusa powodujący występowanie siły, której kierunek i zwrot są zgodne z wektorem $\overrightarrow{v_p} \times \overrightarrow{\omega}$. Wektor $\overrightarrow{v_p}$ jest wektorem prędkości powietrza opływającego piłkę. Wektor ten jest przeciwnie skierowany niż wektor prędkości piłki. Przykładowa trajektoria lotu piłki przedstawiona jest na poniższym rysunku.

Równania ruchu piłki są następujące:

$$\begin{cases} m\frac{d^{2}x}{dt^{2}} + D_{x} + F_{Mx} = 0\\ m\frac{d^{2}y}{dt^{2}} + D_{y} + F_{My} = -mg \end{cases}$$

gdzie: $g=9.81\,{}^m/_{S^2}$, D jest siłą oporu powietrza, F_M jest siłą Magnusa. Siły są wyrażone następującymi wzorami:

$$\begin{split} D_x &= \frac{1}{2}C\rho S v_x^2, \qquad D_y = \frac{1}{2}C\rho S v_y^2 \\ F_{Mx} &= \rho v_y \omega \pi r^3, \qquad F_{My} = \rho v_x \omega \pi r^3 \end{split}$$

gdzie: C=0,47 jest współczynnikiem oporu uzależnionym od kształtu, $\rho=1,2$ $^{kg}/_{m^3}$ jest gęstością powietrza, $S=\pi r^2$.

Tarcie ruchu obrotowego piłki jest pominięte, tj. $\omega = const.$

Celem optymalizacji jest znalezienie takich wartości $v_{0x} \in [-10,10]\,^m/_S$ oraz $\omega \in [-20,20]\,^rad/_S$, które zapewnią największą wartość x_{end} . Dodatkowym ograniczeniem jest to, aby środek piłki minął punkt (5,50) w odległości nie większej niż 1m, tj. dla y=50m wartość $x\in [4,6]m$. Symulację spodku piłki należy przeprowadzać dla czasu $t_0=0$ s, dt=0,01s, $t_{end}=7$ s.

4. Algorytmy optymalizacji.

Do wyznaczenia minimum funkcji celu należy zastosować metodę sympleks Neldera – Meada. Ograniczenia należy uwzględnić stosując:

- a. dla testowej funkcji celu zewnętrzną oraz wewnętrzną funkcję kary,
- b. dla problemu rzeczywistego zewnętrzną funkcję kary.

Funkcje kary należy wyznaczyć według wzorów:

- $S(x_1,x_2) = \sum_{i=1}^n \left(max(0,g_i(x_1,x_2)) \right)^2$ dla zewnętrznej funkcji kary,
- $S(x_1, x_2) = -\sum_{i=1}^n \frac{1}{g_i(x_1, x_2)}$ dla wewnętrznej funkcji kary.

5. Zadanie do samodzielnego wykonania.

a. Testowa funkcja celu.

Zadanie polega na wykonaniu 100 optymalizacji dla każdej wartości parametru a startując z losowego punktu początkowego (punkt startowy musi leżeć w obszarze dopuszczalnym). Dopuszczalny błąd optymalizacji nie powinien być większy niż 1e-3. Wyniki należy zestawić pliku xlsx w tabeli 1. Wartości średnie należy przedstawić w tabeli 2. W kolumnie r należy podać odległość punktu od początku układu współrzędnych.

b. Problem rzeczywisty.

Zadanie polega na przeprowadzeniu jednej optymalizacji. Wyniki należy zestawić w tabeli 3. Dla znalezionych, optymalnych wartości v_{0x} oraz ω należy przeprowadzić symulację, a jej wyniki wstawić do arkusza Symulacja. Na ich podstawie należy narysować wykres przedstawiający trajektorię lotu piłki.

6. Sprawozdanie.

Sprawozdanie powinno zostać przygotowane w formacie docx (lub doc) albo pdf i powinno zawierać parametry poszczególnych algorytmów, dyskusję wyników oraz wnioski. Dodatkowo, w sprawozdaniu należy umieścić kod zaimplementowanych metod oraz funkcje main, diff i fit_fun. Wyniki optymalizacji należy przygotować w formacie xlsx (lub xls).