

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
23 October 2003 (23.10.2003)

PCT

(10) International Publication Number
WO 03/086456 A2

(51) International Patent Classification⁷: A61K 39/395,
C07K 16/30, C12N 5/20, G01N 33/574, A61P 35/00

M5J 1L1 (CA). DUAN, Xiaobo [CA/CA]; 116 Muirland
Cres., Brampton, Ontario L6X 4G2 (CA). GROVES,
Timothy, C. [CA/CA]; 3319 Dundas St. W, #4, Toronto,
Ontario M6P 2A6 (CA).

(21) International Application Number: PCT/CA03/00500

(74) Agent: SINGLEHURST, John, C.; Finlayson & Sin-
glehurst, 70 Gloucester Street, Ottawa, Ontario K2P 0A2
(CA).

(22) International Filing Date: 7 April 2003 (07.04.2003)

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE,
SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ,
VC, VN, YU, ZA, ZM, ZW.

(25) Filing Language: English

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,

(26) Publication Language: English
(30) Priority Data:
60/370,659 5 April 2002 (05.04.2002) US

(71) Applicant (for all designated States except US): ARIUS
RESEARCH, INC. [CA/CA]; 55 York Street, 16th Floor,
Toronto, Ontario M5J 1R7 (CA).

(72) Inventors; and

[Continued on next page]

(75) Inventors/Applicants (for US only): YOUNG, David
[CA/CA]; 33 University Avenue, #2407, Toronto, Ontario

(54) Title: ANTIGENIC PROFILING OF NEOPLASTIC CELLS, ONCOGENIC THERAPY UTILIZING FUNCTIONAL ANTI-BODIES THERETO AND CYTOTOXIC IMMUNE COMPLEXES FORMED THEREBY

(57) Abstract: The present invention relates to a method for producing patient specific anti-cancer antibodies using a novel paradigm of screening and characterizing the target antigen thereof. The invention further relates to the process by which the antibodies are made and to their methods of use. The antibodies can be used in aid of staging and diagnosis of a cancer, and can be used to treat primary tumors and their metastases. The anti-cancer antibodies can be combined with a variety of anti-neoplastic agents, e.g. Cisplatin, to derive a synergistic effect with regard to reduction in tumour growth kinetics and metastasis.

WO 03/086456 A2

ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

- *as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii)) for the following designations AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC, VN, YU, ZA, ZM, ZW, ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European*
- *patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG)*
- *as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(iii)) for all designations*
- *of inventorship (Rule 4.17(iv)) for US only*

Published:

- *without international search report and to be republished upon receipt of that report*

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

1 ANTIGENIC PROFILING OF NEOPLASTIC CELLS, ONCOGENIC THERAPY
2 UTILIZING FUNCTIONAL ANTIBODIES THERETO AND
3 CYTOTOXIC IMMUNE COMPLEXES FORMED THEREBY

4 **Reference to Related Applications:**

5 This application relates to S.N. 09/727,361, filed
6 November 29, 2000, and U.S. Patent 6,180,357, the contents
7 of which are herein incorporated by reference.

8 **Field of the Invention:**

9 This application is directed toward the use of
10 functional antibodies having the ability to bind to an
11 epitope of Cytokeratin 18 (CK18) either alone or as an
12 obligate heterodimer in combination with Cytokeratin 8
13 (CK8); to detection, localization and treatment of
14 neoplastic cells whose cell membrane possesses an
15 antigenic profile embodying the required binding site
16 necessary for formation of a cytotoxic immune complex upon
17 binding with said functional monoclonal antibodies, and to
18 oncogenic therapy of said cells via utilization of said
19 functional antibodies either alone or in combination with
20 traditional neoplastic agents.

21 **Background of the Invention:**

22 Each individual who presents with cancer is unique
23 and has a cancer that is as different from other cancers
24 as that person's identity. Despite this, current therapy
25 treats all patients with the same type of cancer, at the
26 same stage, in the same way. At least 30% of these
27 patients will fail the first line therapy, thus leading to
28 further rounds of treatment and the increased probability
29 of treatment failure, metastases, and ultimately, death.

30 A superior approach to treatment would be the
31 customization of therapy for the particular individual.
32 The only current therapy which lends itself to
33 customization is surgery. Chemotherapy and radiation
34 treatment can not be tailored to the patient, and surgery

1 by itself, in most cases is inadequate for producing
2 cures.

3 The development of anti-cancer monoclonal antibodies
4 (mAbs) has raised the possibility of tailoring them for
5 personalized therapy based on the antigenic profile of the
6 patient's tumor. By making use of a method for producing
7 functional anti-cancer mAbs through the use of patient
8 biopsy samples and a novel paradigm of screening (in
9 accordance with the teachings of U.S. 6,180,357), a
10 library of anti-cancer mAbs may be generated that can be
11 used alone, in combination with other mAbs based on the
12 expression of antigens on the patient's tumor, or
13 furthermore in combination with traditional neoplastic
14 agents in the hope of deriving an additive or possibly
15 even a synergistic effect.

16 Having recognized that a significant difference
17 between cancerous and normal cells is that cancerous cells
18 contain antigens that are specific to transformed cells,
19 the scientific community has long held that monoclonal
20 antibodies can be designed to specifically target
21 transformed cells by binding specifically to these cancer
22 antigens; thus giving rise to the belief that monoclonal
23 antibodies can serve as "Magic Bullets" to eliminate
24 cancer cells.

25 **Prior Art:**

26 U.S. Patent No. 5,750,102 discloses a process wherein
27 cells from a patient's tumor are transfected with MHC
28 genes which may be cloned from cells or tissue from the
29 patient. These transfected cells are then used to
30 vaccinate the patient.

31 U.S. Patent No. 4,861,581 discloses a process
32 comprising the steps of obtaining monoclonal antibodies
33 that are specific to an internal cellular component of
34 neoplastic and normal cells of the mammal but not to
35 external components, labeling the monoclonal antibody,

1 contacting the labeled antibody with tissue of a mammal
2 that has received therapy to kill neoplastic cells, and
3 determining the effectiveness of therapy by measuring the
4 binding of the labeled antibody to the internal cellular
5 component of the degenerating neoplastic cells. In
6 preparing antibodies directed to human intracellular
7 antigens, the patentee recognizes that malignant cells
8 represent a convenient source of such antigens.

9 U.S. Patent No. 5,171,665 provides a novel antibody
10 and method for its production. Specifically, the patent
11 teaches formation of a monoclonal antibody which has the
12 property of binding strongly to a protein antigen
13 associated with human tumors, e.g. those of the colon and
14 lung, while binding to normal cells to a much lesser
15 degree.

16 U.S. Patent No. 5,484,596 provides a method of cancer
17 therapy comprising surgically removing tumor tissue from a
18 human cancer patient, treating the tumor tissue to obtain
19 tumor cells, irradiating the tumor cells to be viable but
20 non-tumorigenic, and using these cells to prepare a
21 vaccine for the patient capable of inhibiting recurrence
22 of the primary tumor while simultaneously inhibiting
23 metastases. The patent teaches the development of
24 monoclonal antibodies which are reactive with surface
25 antigens of tumor cells. As set forth at col. 4, lines 45
26 et seq., the patentees utilize autochthonous tumor cells
27 in the development of monoclonal antibodies expressing
28 active specific immunotherapy in human neoplasia.

29 U.S. Patent No. 5,725,856 is directed toward
30 treatment of carcinomas which overexpress HER2 receptor
31 comprising administration of an antibody which binds to
32 the extracellular domain of the HER2 receptor, thereby
33 reducing or eliminating a patient's tumor burden. The
34 patent teaches conjugation of the antibody to a cytotoxic
35 moiety.

1 U.S. Patent No. 5,783,186 is drawn to Anti-Her2
2 antibodies which induce apoptosis in Her2 expressing
3 cells, hybridoma cell lines producing the antibodies,
4 methods of treating cancer using the antibodies and
5 pharmaceutical compositions including said antibodies.

6 U.S. Patent No. 5,849,876 describes new hybridoma
7 cell lines for the production of monoclonal antibodies to
8 mucin antigens purified from tumor and non-tumor tissue
9 sources.

10 U.S. Patent No. 5,869,045 relates to antibodies,
11 antibody fragments, antibody conjugates and single chain
12 immunotoxins reactive with human carcinoma cells. The
13 mechanism by which these antibodies function is two-fold,
14 in that the molecules are reactive with cell membrane
15 antigens present on the surface of human carcinomas, and
16 further in that the antibodies have the ability to
17 internalize within the carcinoma cells, subsequent to
18 binding, making them especially useful for forming
19 antibody-drug and antibody-toxin conjugates. In their
20 unmodified form the antibodies also manifest cytotoxic
21 properties at specific concentrations.

22 U.S. Patent No. 6,207,153 is directed towards antigen
23 binding fragments recognized by H11, described as the C-
24 antigen, nucleotides encoding the fragments, and their use
25 for prophylaxis and detection of cancers.

26 Eto et al, *Mapping and Regulation of the Tumor-*
27 *associated Epitope Recognized by Monoclonal Antibody RS-11*
28 *(Journal of Biological Chemistry, Vol. 275, No. 35,*
29 *9/2000, Pp. 27075-27083)* discloses an antibody recognized
30 by a tumor-associated antigen. The RS-11 antibody appears
31 to recognize an epitope of Keratin 18 and/or Keratin 8
32 expressed in neoplastic cells, but not present in normal
33 cells. In contrast, the antibody of the instant
34 invention, ARH460-23, appears to bind with an epitope of
35 CK18 within the cytoplasm or perinuclear region of normal

1 cells, while only recognizing a binding site residing upon
2 the cellular membrane of neoplastic cells.

3 Oshima et al, *Oncogenic Regulation and Function of*
4 *Keratins 8 and 18** (Cancer and Metastasis Reviews 15:445-
5 471, 1996, disclose the widespread expression of CK8 and
6 CK18 in carcinoma cells, and indicate that they are a
7 useful tool in the understanding of cancer and metastasis.

8

9 **Summary of the Invention:**

10 A variety of therapeutic anti-cancer monoclonal
11 antibodies (mAbs) are commonly generated involving a
12 strategy whereby mAbs are formed against a single target
13 and screened for their ability to bind a well-defined
14 tumor-associated antigen. Furthermore it is known to
15 generate functional therapeutic anti-cancer mAbs by using
16 tumor cells as immunogens to provide an extensive array of
17 target antigens and to screen for anti-cancer activity
18 instead of binding. The present invention has utilized a
19 method in accordance with U. S. Patent No. 6,180,357,
20 whereby anti-cancer mAbs are produced through the use of
21 patient biopsy samples and a novel model of screening that
22 selects for antibody-producing clones that discriminately
23 kill tumor cells and not normal cells. This strategy was
24 used to generate a plurality of mAbs, from which a
25 particular antibody designated ARH460-23, a murine IgM,
26 kappa mAb that was generated in response to a lung tumor
27 biopsy, was selected for further study. The binding
28 activity of ARH460-23 is characterized in accordance with
29 the instant invention and the in vivo efficacy of ARH460-
30 23 as an anti-tumor agent, having a particular activity
31 against the lung cancer line, NCI H460 is demonstrated.
32 The ARH460-23 antigen is identified as the well-defined
33 tumor-associated antigen, cytokeratin 18. The methodology
34 employed herein creates an opportunity for generating

1 functional mAbs towards tumor-associated antigens using
2 tumor tissue, instead of a defined target.

3 The anti-cancer antibodies of the instant invention
4 may be used alone, in combination with other mAbs based on
5 the expression of antigens on the patient's tumor, or
6 alternatively in combination with other neoplastic agents,
7 for example radioisotopes, vinca alkaloids, adriamycin,
8 bleomycin sulfate, Carboplatin, Cisplatin,
9 cyclophosphamide, Cytarabine, Dacarbazine, Dactinomycin,
10 Duanorubicin hydrochloride, Doxorubicin hydrochloride,
11 Etoposide, fluorouracil, lomustine, Mechlororethamine
12 hydrochloride, melphalan, mercaptopurine, methotrexate,
13 mitomycin, mitotane, pentostatin, pipobroman procarbaze
14 hydrochloride, streptozotocin, taxol, thioguanine, Uracil
15 mustard, and the like.

16 Antibodies produced in the context of the present
17 invention, were generated in mice immunized with fixed
18 cells from one of several types of tumor biopsies.

19 Functional mAbs were identified using a selective
20 screening process and evaluated for in vitro cytotoxicity
21 towards tumor cells, in vivo anti-tumor activity and
22 tissue specificity. Investigational techniques were
23 utilized to determine the formation of immune complexes
24 and the antigenic target of the antibody was thereby
25 determined.

26 Within the context of this application, anti-cancer
27 antibodies having either cell-killing (cytotoxic) or cell-
28 growth inhibiting (cytostatic) properties will hereafter
29 be referred to as cytotoxic. These antibodies can be used
30 in aid of staging and diagnosis of a cancer, and can be
31 used to treat tumor metastases. The antibodies may be
32 conjugated to other hematogenous cells, e.g. lymphocytes,
33 macrophages, monocytes, natural killer cells, etc.

34

35 Accordingly, it is an objective of the invention to

1 teach one or more novel anti-cancer antibodies which are
2 cytotoxic with respect to cancer cells while
3 simultaneously being relatively non-toxic to non-
4 cancerous cells.

5 It is an additional objective of the invention to
6 identify and characterize the antigenic target for the
7 anti-cancer antibody.

8 It is yet an additional objective of the instant to
9 determine the point of formation, at a sub-cellular level,
10 of the immune complex, wherein said point of formation
11 evidences an oncogenic variation in the cell.

12 A still further objective of the instant invention is
13 to produce anti-cancer antibodies which are useful for
14 diagnosis, prognosis, localization, and signaling of
15 oncogenic change at a cellular level.

16 It is yet an additional objective of the instant
17 invention to treat patients having primary cancers which
18 express CK18 and metastatic tumors thereof.

19 **Brief Description of the Figures**

20 Figure 1 is an outline of a strategy for Anti-Cancer
21 Antibody generation, purification, and target antigen
22 identification;

23 Figure 2 describes metastasis reduction in an orthotopic
24 implantation model;

25 Figure 3 is a 2-D gel analysis of NCI H460 membrane
26 proteins probed with ARH460-23;

27 Figure 4 is a 2-D gel analysis of membrane proteins from
28 Jurkat cells probed with ARH460-23;

29 Figure 5 is a graphical representation of flow cytometric
30 analysis showing differential reactivity of ARH460-23 for
31 Jurkat and NCI H460 cells;

32 Figure 6 portrays the effect of preventative therapy on
33 tumour growth kinetics utilizing a combination of antibody
34 and anti-neoplastic agent;

1 Figure 7 is a tabular analysis of an immunohistochemistry
2 study carried out on formalin-fixed, paraffin-embedded
3 human tissues to profile expression of the ARH460-23
4 antigen on normal and tumor tissues;
5 Figure 8 represents the result of immunohistochemical
6 staining of ARH460-23 with NCI H460 and Jurkat cell
7 pellets.

8 **Detailed Description of the Invention:**

9 It is to be understood that while a certain form of
10 the invention is illustrated, it is not to be limited to
11 the specific form or arrangement herein described and
12 shown. It will be apparent to those skilled in the art
13 that various changes may be made without departing from
14 the scope of the invention and the invention is not to be
15 considered limited to what is shown and described in the
16 specification.

17 Other objects and advantages of this invention will
18 become apparent from the following description wherein are
19 set forth, by way of illustration and example, certain
20 embodiments of this invention.

21 Traditionally, monoclonal antibodies have been made
22 according to fundamental principles laid down by Kohler
23 and Milstein. Mice are immunized with antigens, with or
24 without, adjuvants. The splenocytes are harvested from
25 the spleen for fusion with immortalized hybridoma
26 partners. These are seeded into microtitre plates where
27 they can secrete antibodies into the supernatant that is
28 used for cell culture. To select from the hybridomas that
29 have been plated for the ones that produce antibodies of
30 interest the hybridoma supernatants are usually tested for
31 antibody binding to antigens in an ELISA (enzyme linked
32 immunosorbent assay) assay. The idea is that the wells
33 that contain the hybridoma of interest will contain
34 antibodies that will bind most avidly to the test antigen,
35 usually the immunizing antigen. These wells are then

1 subcloned in limiting dilution fashion to produce
2 monoclonal hybridomas. The selection for the clones of
3 interest is repeated using an ELISA assay to test for
4 antibody binding. Therefore, the principle that has been
5 propagated is that in the production of monoclonal
6 antibodies the hybridomas that produce the most avidly
7 binding antibodies are the ones that are selected from
8 among all the hybridomas that were initially produced.
9 That is to say, the preferred antibody is the one with
10 highest affinity for the antigen of interest.

11 There have been many modifications of this procedure
12 such as using whole cells for immunization. In this
13 method, instead of using purified antigens, entire cells
14 are used for immunization. Another modification is the
15 use of cellular ELISA for screening. In this method
16 instead of using purified antigens as the target in the
17 ELISA, fixed cells are used. In addition to ELISA tests,
18 complement mediated cytotoxicity assays have also been
19 used in the screening process. However, antibody-binding
20 assays were used in conjunction with cytotoxicity tests.
21 Thus, despite many modifications, the process of producing
22 monoclonal antibodies relies on antibody binding to the
23 test antigen as an endpoint.

24 Most antibodies directed against cancer cells have
25 been produced using the traditional methods outlined
26 above. These antibodies have been used both
27 therapeutically and diagnostically. In general, for both
28 these applications, the antibody has been used as the
29 targeting agent that delivers a payload to the site of the
30 cancer. These antibody conjugates can either be
31 radioactive, toxic, or serve as an intermediary for
32 further delivery of a drug to the body, such as an enzyme
33 or biotin. Furthermore, it was widely held, until
34 recently, that naked antibodies had little effect *in vivo*.
35 Both HERCEPTIN and RITUXIMAB are humanized murine

11

1 killing need not be predicated upon screening of the
2 hybridomas for the best binding antibodies. Rather,
3 although not advocated by those who produce monoclonal
4 antibodies, the screening of the hybridoma supernatants
5 for cell killing or alternatively for cessation of growth
6 of the cancerous cells may be selected as a desirable
7 endpoint for the production of cytotoxic or cytostatic
8 antibodies. It is well understood that the *in-vivo*
9 antibodies mediate their function through the Fc portions
10 and that the utility of the therapeutic antibody is
11 determined by the functionality of the constant region or
12 attached moieties. In this case the FAb portion of the
13 antibody, the antigen-combining portion, will confer to
14 the antibody its specificity and the Fc portion its
15 functionality. The antigen combining site of the antibody
16 can be considered to be the product of a natural
17 combinatorial library. The result of the rearrangement of
18 the variable region of the antibody can be considered a
19 molecular combinatorial library where the output is a
20 peptide. Therefore, the sampling of this combinatorial
21 library can be based on any parameter. Like sampling a
22 natural compound library for antibiotics, it is possible
23 to sample an antibody library for cytotoxic or cytostatic
24 compounds.

25 The various endpoints in a screen must be
26 differentiated from each other. For example, the
27 difference between antibody binding to the cell is
28 distinct from cell killing. Cell killing (cytotoxicity) is
29 distinct from the mechanisms of cell death such as oncosis
30 or apoptosis. There can be many processes by which cell
31 death is achieved and some of these can lead either to
32 oncosis or apoptosis. There is speculation that there are
33 other cell death mechanisms other than oncosis or
34 apoptosis but regardless of how the cell arrives at death
35 there are some commonalities of cell death. One of these

10

1 monoclonal antibodies that have recently been approved for
2 human use by the FDA. However, both these antibodies were
3 initially made by assaying for antibody binding and their
4 direct cytotoxicity was not the primary goal during the
5 production of hybridomas. Any tendency for these
6 antibodies to produce tumor cell killing is thus through
7 chance, not by design.

8 Although the production of monoclonal antibodies have
9 been carried out using whole cell immunization for various
10 applications the screening of these hybridomas have relied
11 on either putative or identified target antigens or on the
12 selectivity of these hybridomas for specific tissues. It
13 is axiomatic that the best antibodies are the ones with
14 the highest binding constants. This concept originated
15 from the basic biochemical principle that enzymes with the
16 highest binding constants were the ones that were the most
17 effective for catalyzing a reaction. This concept is
18 applicable to receptor ligand binding where the drug
19 molecule binding to the receptor with the greatest
20 affinity usually has the highest probability for
21 initiating or inhibiting a signal. However, this may not
22 always be the case since it is possible that in certain
23 situations there may be cases where the initiation or
24 inhibition of a signal may be mediated through non-
25 receptor binding. The information conveyed by a
26 conformational change induced by ligand binding can have
27 many consequences such as a signal transduction,
28 endocytosis, among the others. The ability to produce a
29 conformational change in a receptor molecule may not
30 necessarily be due to the filling of a ligand receptor
31 pocket but may occur through the binding of another extra
32 cellular domain or due to receptor clustering induced by a
33 multivalent ligand.

34 As disclosed in U.S. Patent 6,180,357, and outlined
35 in Figure 1, the production of antibodies to produce cell

12

1 is the absence of metabolism and another is the
2 denaturation of enzymes. In either case vital stains will
3 fail to stain these cells. These endpoints of cell death
4 have been long understood and predate the current
5 understanding of the mechanisms of cell death.
6 Furthermore, there is the distinction between cytotoxic
7 effects where cells are killed and cytostatic effects
8 where the proliferation of cells are inhibited.

9 In a preferred embodiment of the present invention,
10 the assay is conducted by focusing on cytotoxic activity
11 toward cancerous cells as an end point. In a preferred
12 embodiment, a live /dead assay kit , for example the
13 LIVE/DEAD⁷ Viability/Cytotoxicity Assay Kit (L-3224) by
14 Molecular Probes, is utilized. The Molecular Probes kit
15 provides a two-color fluorescence cell viability assay
16 that is based on the simultaneous determination of live
17 and dead cells with two probes that measure two recognized
18 parameters of cell viability C intracellular esterase
19 activity and plasma membrane integrity. The assay
20 principles are general and applicable to most eukaryotic
21 cell types, including adherent cells and certain tissues,
22 but not to bacteria or yeast. This fluorescence-based
23 method of assessing cell viability is preferred in place
24 of such assays as trypan blue exclusion, Cr release and
25 similar methods for determining cell viability and
26 cytotoxicity.

27 In carrying out the assay, live cells are
28 distinguished by the presence of ubiquitous intracellular
29 esterase activity, determined by the enzymatic conversion
30 of the virtually nonfluorescent cell-permeant CALCEIN AM
31 to the intensely fluorescent Calcein. The polyanionic dye
32 Calcein is well retained within live cells, producing an
33 intense uniform green fluorescence in live cells (ex/em
34 ~495 nm/~515 nm). EthD-1 enters cells with damaged
35 membranes and undergoes a 40-fold enhancement of

13

1 fluorescence upon binding to nucleic acids, thereby
2 producing a bright red fluorescence in dead cells (ex/em
3 ~495 nm/~635 nm). EthD-1 is excluded by the intact plasma
4 membrane of live cells. The determination of cell
5 viability depends on these physical and biochemical
6 properties of cells. Cytotoxic events that do not affect
7 these cell properties may not be accurately assessed using
8 this method. Background fluorescence levels are inherently
9 low with this assay technique because the dyes are
10 virtually nonfluorescent before interacting with cells.

11 The antibodies are designed and can be used for
12 therapeutic treatment of cancer in patients. Ideally the
13 antibodies can be naked antibodies. They can also be
14 conjugated to toxins. They can be used to target other
15 molecules to the cancer. e.g. biotin conjugated enzymes.
16 Radioactive compounds can also be used for conjugation.

17 The antibodies can be fragmented and rearranged
18 molecularly. For example Fv fragments can be made; sFv-
19 single chain Fv fragments; diabodies etc.

20 It is envisioned that these antibodies can be used
21 for diagnosis, prognosis, localization and monitoring of
22 cancer and oncogenic changes at a cellular or sub-cellular
23 level. For example the patients can have blood samples
24 drawn for shed tumor antigens which can be detected by
25 these antibodies in different formats such as ELISA
26 assays, rapid test panel formats etc. The antibodies can
27 be used to stain tumor biopsies for the purposes of
28 diagnosis. In addition a panel of therapeutic antibodies
29 can be used to test patient samples to determine if there
30 are any suitable antibodies for therapeutic use.

31 In isolation of ARH460-23 customized anti-cancer
32 antibodies were produced to a patient's lung cancer cells,
33 but cultured cells were used in the antibody development
34 process to demonstrate the generality of the immunization
35 process. The samples were prepared into single cell

14

1 suspensions and fixed for injection into mice. After the
2 completion of three rounds of immunization with cells derived
3 directly from a patient's lung cancer, the mice were
4 immunized twice with a human lung large cell carcinoma cell
5 line (NCI-H460). Hybridomas were produced from splenocytes
6 and the supernatants were screened against a variety of
7 cancer cell lines and normal cells in standard cytotoxicity
8 assays. Those hybridomas that were reactive against cancer
9 cell lines but were not reactive against normal non-
10 transformed cells were selected for further propagation.
11 Clones that were considered positive were ones that
12 selectively killed the cancer cells but did not kill the non-
13 transformed cells. The antibodies are characterized for a
14 large number of biochemical parameters and then humanized for
15 therapeutic use.

16 The lung tumor cells isolated and cell lines were
17 cultured. Balb/c mice, A strain with H-2^d haplotype from
18 Charles River Canada, St. Constant, Quebec, Canada, female,
19 7-8 week old, were immunized with the human lung cancer cells
20 emulsified in an equal volume of either Freund's complete
21 adjuvant (FCA) for the first immunization and then in
22 Freund's incomplete adjuvant (FIA) for subsequent
23 immunizations at 0, 21, 45 days with 5x10⁵ cells. The mice
24 were immunized with fixed NCI H460 cells, which were prepared
25 from NCI H460 cells grown in T-75 cell culture flask by
26 scraping mono-layer cells into cell suspensions at 105, 150
27 and 170 days. Immunized mice were sacrificed 3-4 days after
28 the final immunization with NCI H460 cells, given intra-
29 peritoneally, in phosphate buffered saline buffer (PBS), pH
30 7.4. The spleens were harvested and the splenocytes were
31 divided into two aliquots for fusion with Sp2/0 myeloma
32 partners using the methods outlined in Example 1.

33 The screening was carried out 10 days after the fusion
34 against NCI H460 cells and CCD-27SK. Antibodies were

15

1 characterized for binding to different cell lines with a
2 cellular ELISA.

3 The wells that were considered positive were subcloned
4 and the same screening process was repeated 9 days and 18
5 days later. A number of monoclonal antibodies were produced
6 in accordance with the method of the present invention,
7 including that which produces the antibody designated ARH460-
8 23. The ARH460-23 antibody is produced by a hybridoma cell
9 line deposited on November 21, 2000 with the American Type
10 Culture Collection at 10801 University Boulevard, Manassas,
11 Va. having an ATCC Accession Number PTA-2700. Upon issuance
12 of a patent, access to this cell line will not be withheld.

13 Clones were able to produce antibodies that had a
14 greater than 15% killing rate for cancerous cells and at the
15 same time some of the clones were able to produce less than
16 eight percent killing of normal control fibroblasts.

17 The anti-cancer antibodies of the invention are useful
18 for treating a patient with a cancerous disease when
19 administered in admixture with a pharmaceutically acceptable
20 adjuvant, for example normal saline, a lipid emulsion,
21 albumen, phosphate buffered saline or the like and are
22 administered in an amount effective to mediate treatment of
23 said cancerous disease, for example with a range of about 1
24 microgram per milliliter to about 1 gram per milliliter.

25 The method for treating a patient suffering from a
26 cancerous disease may further include the use of conjugated
27 anti-cancer antibodies and would thus include conjugating
28 patient specific anti-cancer antibodies with a member
29 selected from the group consisting of toxins, enzymes,
30 radioactive compounds, and hematogenous cells; and
31 administering these conjugated antibodies to the patient;
32 wherein said anti-cancer antibodies are administered in
33 admixture with a pharmaceutically acceptable adjuvant, for
34 example normal saline, a lipid emulsion, albumen, phosphate
35 buffered saline or the like and are administered in an amount

16

1 effective to mediate treatment of said cancerous disease, for
2 example with a range of about 1 microgram per mil to about 1
3 gram per mil. In a particular embodiment, the anti-cancer
4 antibodies useful in either of the above outlined methods may
5 be a humanized antibody.

6 An experiment to determine the effects of antibody
7 administration in conjunction with anti-neoplastic agents ws
8 carried out and is summarized as follows:

9 MATERIALS AND METHODS

10

11 In Vivo Study Protocols

12

13

14 Heterotopic Tumour Cell Engraftment

15 For all animals, 1×10^6 cells (100 μ L of PBS containing
16 1×10^7 cell/mL) of the lung cancer cell line NCI-H460 were
17 implanted subcutaneously into the scruff of the neck of seven
18 week old female SCID mice.

19

20 Treatment

21 The study consisted of 4 groups of 10 mice. Treatment
22 was initiated 3 days after tumor cell engraftment. Group 1
23 received the chemotherapeutic drug cisplatin (3.5 mg/kg) on
24 treatment days 1, 5 and 9. Group 2 received injections of 25
25 mg/kg of antibody ARH460-23 three times a week for period of
26 three weeks. Group 3 received a combination of cisplatin
27 (3.5 mg/kg) on day 1, 5 and 11 as well as ARH460-23 (25
28 mg/kg) three times a week for a total of 3 weeks. The control
29 group (Group 4) received 500 μ L of 0.9% normal saline three
30 times a week for a total of three weeks.

31

17

1 Study Animal Observation and Endpoints

2

3 Animals were handled under in accordance with prescribed
4 practices as outlined by the Canadian Council on Animal Care
5 (CCAC). All mice were weighed and examined three times a
6 week for clinical signs of toxicity such as ruffled fur,
7 lethargy or skin lesions. Once the tumors grew to a size
8 that was palpable, measurements of tumor length (a) and width
9 (b) were made with calipers and recorded. Tumor volume was
10 calculated using the formula: V (tumor volume)= $ab^2/2$. Tumor
11 bearing animals were euthanized by CO₂ overdose when the
12 tumor mass compromised normal behavior/physiology, suffered
13 severe weight loss or tumors ulcerated according to the CCAC
14 and University Health Network guidance document on
15 experimental endpoints.

16

17 Orthotopic Tumour Engraftment

18 Green fluorescent protein (GFP)-labelled NCI H460 cells were
19 injected subcutaneously into five to six week old female NCr-
20 nu mice to generate stock tumor tissue. When the tumors grew
21 to log phase, they were harvested and cut into small
22 fragments of 1 mm³ each. One fragment of tumor tissue was
23 then surgically implanted orthotopically into 5-6 week old
24 female NCr-nu mice.

25

26

27

28 Treatment

29 The study consisted of 4 groups of 10 mice. Group 1
30 received the chemotherapeutic drug cisplatin (3.5 mg/kg) on
31 treatment days 1, 5 and 9. Group 2 received injections of 25
32 mg/kg of antibody ARH460-23 three times a week for period of
33 three weeks. Group 3 received a combination of cisplatin
34 (3.5 mg/kg) on day 1, 5 and 11 as well as ARH460-23 (25
35 mg/kg) three times a week for a total of 3 weeks. The control

18

1 group (Group 4) received normal saline three times a week for
2 a total of three weeks.

3

4 **Study Animal Observation and Endpoints**

5

6 Animal studies were conducted in accordance with the
7 principles and procedures outlined in the National Institutes
8 of Health Guide for the Care and Use of Laboratory Animals.
9 At the end of the study (day 42 post implantation), tumor
10 measurement of GFP imaging was determined by opening the
11 thoracic wall. The primary tumors were excised and weighed
12 at the end of the study.

13 In a xenograft tumor model of lung cancer, ARH460-23
14 has adjuvant potential when used in combination with
15 cisplatin. Combination therapy of both ARH460-23 and
16 cisplatin significantly reduced tumor volume in SCID mice
17 injected subcutaneously with NCI H460 cells. The
18 combination treatment also caused a trend towards disease-
19 free survival.

20 In a xenograft tumor model of lung cancer metastasis,
21 ARH460-23 significantly inhibited metastasis of NCI H460
22 tumor tissue following orthotopic transplantation.
23 ARH460-23 significantly reduced contralateral lung and
24 thoracic lymph nodes metastasis of GFP-labelled NCI H460
25 tissue as well as primary tumor size. This work was
26 performed in collaboration with Anti-Cancer Inc., San
27 Diego, CA.

28 **ARH460-23 Target Antigen**

29 Keratin 18 (K18), a type I keratin, is a member of
30 the intermediate filament protein family that exists as an
31 obligate heterodimer with Keratin 8 (K8), a type II
32 keratin. The gene was cloned in 1986 and its expression in
33 normal and cancer tissues has been studied extensively.
34 K18 and K8 form alpha helical coil-coil filaments that are
35 10 nm long and attach to the cytosolic nuclear and

19

1 cellular membrane. Along with other proteins such as actin
2 and microtubules, the keratins form the cytoskeleton of
3 many epithelial cells, and staining with antibodies show
4 that K18 is distributed in mammary cells, hepatocytes, and
5 epidermal cells, among others. There is increased
6 expression of K18 in many carcinomas including breast
7 cancer, transitional cell carcinoma, hepatocellular
8 carcinoma, pancreatic adenocarcinoma, colon adenocarcinoma
9 and prostate cancer. However, nonepithelial cancer can
10 also have aberrant K18 expression such as in the case of
11 melanoma, and lymphoma.

12 The normal function of intracellular simple
13 epithelial keratins may be to provide mechanical strength
14 to the cells, but there may also be less well-defined
15 functions. K18 may be involved in signal transduction
16 through interactions with protein kinase C, or through
17 interactions with the desmosome. There is some evidence
18 that K18 is involved in apoptosis as a target of caspases
19 when activated by other apoptotic stimuli and in
20 supporting resistance to FAS-mediated apoptosis in
21 hepatocytes.

22 The following table underscores the distribution of
23 K18 in various cancers.

Table 1: K18 Distribution in Cancer

Cancer Type	N	Incidence	Source
Warthins tumor	26	100.0	Schwerer, Histopathology: 347, 2001
Wilms tumor	9	88.9	Rehbandl, Med Pediatr Oncol: 357, 2001
Squamous cell carcinomas of the oesophagus	35	97.0	Lam, Virchows Arch: 345, 1995
Poorly differentiated thyroid carcinoma	153	60.0	Lam, Eur J Surg Oncol: 631, 2001
Anaplastic thyroid carcinoma	153	80.0	Lam, Eur J Surg Oncol: 631, 2001
Medullary thyroid carcinoma	153	85.0	Lam, Eur J Surg Oncol: 631, 2001
Breast: medullary carcinoma	31	100.0	Lam, Eur J Surg Oncol: 631, 2001
Cholangiocarcinoma	77	77.0	Shimonishi, Histopathology: 55, 2000
	min		
Epithelioid hemangioendotheliomas	137	100.0	Miettinen, Hum Pathol: 1062, 2000
	min		
Epithelioid angiosarcomas	137	50.0	Miettinen, Hum Pathol: 1062, 2000
	min		
Angiosarcomas	137	20.0	Miettinen, Hum Pathol: 1062, 2000
Synovial sarcoma	110	100.0	Miettinen, Virchows Arch: 275, 2000
Pancreatic carcinoma	48	8.3	Thorban, Ann Oncol: 111, 1999
Squamous cell carcinoma	26		Depondt, Eur J Oral Sci: 442, 1999
Hepatocellular carcinoma	30	100.0	Tsuji, Pathol Int: 310, 1999
Cholangiocarcinoma	10	100.0	Tsuji, Pathol Int: 310, 1999
Infiltrating ductal breast carcinoma	101	majority	Malzahn, Virchows Arch: 119, 1998
Invasive ductal breast carcinoma	100	100.0	Rejthar, Neoplasia: 370, 1997
Hepatocellular carcinoma	20	55.0	D'Errico, Hum Pathol: 599, 1996
Cholangiocarcinoma	15	80.0	D'Errico, Hum Pathol: 599, 1996
Prostate carcinoma	84	33.0	Oberneder, Urol Res: 3, 1994
Prostate carcinoma	13	38.5	Riesenbergs, Histochemistry: 61, 1993
Breast or gastrointestinal adenocarcinoma	532	33.0	Pantel, J Natl Cancer Inst: 1419, 1993
Melanoma	52	48.1	Fuchs, Am J Pathol: 169, 1992
Renal cell carcinoma	30	100.0	Dierick, Histopathology: 315, 1991
Hepatocellular carcinoma	34	100.0	Van Eyken, Hum Pathol: 562, 1988

1

2 There is also evidence for the extracellular
 3 expression of keratins. For example K18 has been
 4 identified as a hepatic receptor for thrombin-anti-
 5 thrombin complexes, and K8 on hepatocytes has been shown
 6 to bind plasminogen and tissue plasminogen activator.
 7 There is speculation that the extracellular expression of
 8 keratins may contribute to increased invasiveness in
 9 cancer.

21

1 Although K18 is well defined as a cancer marker, its
2 role in the oncogenesis is less certain. Transfection of
3 K8/K18 into melanoma increased their metastatic potential
4 and their invasiveness, but this was not universal for all
5 cancer types. Epithelium K8/K18 may provide resistance to
6 Fas-mediated apoptosis and studies have found that the
7 expression of K8 and K18 confer multiple drug resistance.

8 ARH460-23 is a monoclonal antibody that targets K18
9 and is being developed for therapeutic use in cancer. The
10 commercial attractiveness of the antibody is underscored
11 by the high percentage of cancers that express the H460-23
12 antigen. The predominant expression of the antigen on the
13 cell surface of cancers and not on normal cells suggests
14 the biology of the antigen is specifically drugable.

15

16 **Biochemical Identification of the H460-23 Antigen**

17 Identification of the H460-23 antigen involved two-
18 dimensional electrophoresis and Western blotting (See
19 Figs. 3 and 4). Membranes were prepared from ARH460-23
20 high (NCI H460) and ARH460-23 low (Jurkat) cell lines and
21 analyzed with 2-D polyacrylamide gel electrophoresis to
22 separate proteins according to their molecular weight and
23 pH. The goal was to isolate a spot from the NCI H460
24 membrane proteins that was uniquely reactive with ARH460-
25 23. Antibody 11E10 was used as a control.

26 ARH460-23 uniquely identified one protein spot from
27 the NCI H460 membrane proteins. The corresponding protein
28 to the one recognized on the Western blot was identified
29 on the Sypro-stained gel. The spot had a molecular weight
30 of 47.3 kDa and pI of 5.3. The protein was robotically
31 spotted, excised from the gel, and digested with trypsin
32 for matrix-assisted laser desorption/ionization (MALDI)/
33 mass spectrometry (MS) analysis. The MALDI/MS data were
34 submitted to ProFound (Proteometrics software package) for
35 peptide mass fingerprint searching. Twenty-six of the 45

22

1 peptides generated from the spot matched cytokeratin 18.
2 The peptides generated had 65% minimum sequence coverage
3 of cytokeratin 18. These results indicate that
4 cytokeratin 18 is likely the putative H460-23 antigen.
5

6 **ARH460-23 Binding to Human Cancer Cell Lines**

7 ARH460-23 binding was evaluated in 21 human cancer
8 cell lines using flow cytometry to explore the
9 distribution of the ARH460-23 target antigen across a
10 range of human cancers. Antibodies of the same isotype,
11 11E10 was used as a negative control and antibody EOS9.1
12 which recognizes the CD95 antigen was used to probe
13 whether the ARH460 target is CD95.
14 Figure 5 shows histogram profiles, and Table 2 summarizes
15 H460-23 staining relative to the controls. The lung cell
16 line, NCI H460, and umbilical vein epithelial cells, HUV-
17 EC-C, show a high level of ARH460-23 expression compared
18 to the other cell lines in this group. Overall, the
19 majority of the solid tumors tested showed moderate levels
20 of H460-23 antigen expression while the hematologic
21 cancers, leukemia Jurkat and K562 and the T cell lymphoma
22 K3P exhibited only marginal levels. The large cell lung
23 carcinoma cell line NCI H661, unlike the NCI H460 cells,
24 exhibited weak H460-23 staining. These findings suggest
25 that ARH460-23 recognizes an antigen that is distributed
26 differently on different types of cancer.

27

28

29

30

31

32

33

34

1

2

TABLE 2 Flow Cytometric Analysis of Cell Lines Stained with ARH460-23

3	Cell Line	Description	H460-23 Staining	EOS9.1 Staining
4	NCI H460	Large Cell Lung Cancer	Very Strong	Positive
5	Jurkat	Acute T cell Leukemia	Weak	Positive
6	K562	Chronic Myclogenous Leukemia	Weak	Negative
7	K3P	T cell Lymphoma	Weak	Positive
8	NCI H661	Large Cell Lung Cancer	Weak	Negative
9	HEY	Ovarian Epithelial Cancer	Strong	Positive
10	AU565	Mammary adenocarcinoma	Medium	Positive
11	T-47D	Mammary Ductal Carcinoma	Strong	Positive
12	MCF-7	Mammary Adenocarcinoma	Strong	Negative
13	EBV-transfected lymphocytes patient # 14725	Epstein Barr virus-in vitro transfected cells	Weak-Medium	Positive
14	EBV-transfected lymphocytes patient # 14935	Epstein Barr virus-in vitro transfected cells	Weak	Positive
15	HUV-EC-C	Human umbilical vein endothelial cells	Very Strong	Positive
16	A2058	Melanoma	Weak-Medium	Positive
17	Hs574.t	Mammary ductal carcinoma	Weak -Medium	Positive
18	Hs.888 Lu	Normal lung	Medium	N.D.
19	Hs574.Mg	Normal mammary	Medium	N.D.
20	SK-BR3	Mammary adenocarcinoma	Medium	Positive
21	CCD.27sK	Normal skin	Medium	N.D.
22	NCI-N87	Gastric carcinoma	Medium	Positive
23	BT-549	Mammary epithelial cancer	Medium	Positive
24	BxPC-8	Pancreatic adenocarcinoma	Strong	Positive

25

26

27

28

29

30

31

32

33

34

1 **Target Validation**

2 An immunohistochemistry study was carried out on
3 formalin-fixed, paraffin-embedded human tissues by Qualtek
4 Molecular Laboratories of Santa Barbara, CA to profile
5 expression of the ARH460-23 antigen on normal and tumor
6 tissues, and is summarized in Figure 7. Normal mouse
7 serum was run in parallel as a negative control. Scoring
8 of the specific antibody reactivity was done on the
9 standard pathology scale of 0 to 4. Whenever possible the
10 tissue was scored on a subcellular level to indicate
11 reactivity within the nucleus, cytoplasm and plasma
12 membrane.

13 Most tumor tissues tested were strongly positive for
14 ARH460-23. In the colon and prostate all tumors were
15 highly reactive and found to have both membranous and
16 cytoplasmic binding. The one ovarian carcinoma tested
17 yielded a similar result.

18 Lung and breast carcinomas and melanomas yielded more
19 mixed results. In the lung, both large cell carcinomas
20 were highly reactive on the cell membrane and in the
21 cytoplasm. Of the 2 adenocarcinomas examined, one was
22 positive for ARH460-23 and one negative. In breast, 7 of 9
23 carcinomas were positive. In medullary carcinomas where
24 lymphocytes were present, the lymphocytes were also
25 positive for ARH460-23. Two of the 4 melanomas tested were
26 positive and reactive in both the cell membrane and
27 cytoplasm.

28 In normal breast, skin, lung and ovary epithelia,
29 ARH460-23 was either positive or weakly positive but
30 confined to the cytoplasm and perinuclear regions of the
31 cell. In both colon and ovary the normal tissues tested
32 were negative for ARH460-23. However, normal colon
33 displayed inflammatory cell reactivity in the stroma that
34 was both membranous and cytoplasmic. When normal tissues
35 were positive it was mainly confined to the cytoplasm and

25

1 perinuclear membranes. Typically when a tumor was positive
2 for ARH460-23 it was found to be both reactive in the
3 membrane and cytoplasm (16 of 18 or 89%). In addition,
4 inflammatory cells found in proximity to tumor were
5 reactive to ARH460-23 on the cell membrane and in the
6 cytoplasm.

7 It was concluded that the antibody shows reactivity
8 in both normal and neoplastic cells as well as populations
9 of inflammatory cells in the colon and in proximity to
10 tumors. The antibody tends to be reactive to cell
11 membranes in many tumors and in lymphocytes but in normal
12 epithelia it is mainly confined to cytoplasm and
13 perinuclear regions.

14 All patents and publications mentioned in this
15 specification are indicative of the levels of those
16 skilled in the art to which the invention pertains. All
17 patents and publications are herein incorporated by
18 reference to the same extent as if each individual
19 publication was specifically and individually indicated to
20 be incorporated by reference.

21 It is to be understood that while a certain form of
22 the invention is illustrated, it is not to be limited to
23 the specific form or arrangement of parts herein described
24 and shown. It will be apparent to those skilled in the
25 art that various changes may be made without departing
26 from the scope of the invention and the invention is not
27 to be considered limited to what is shown and described in
28 the specification. One skilled in the art will readily
29 appreciate that the present invention is well adapted to
30 carry out the objects and obtain the ends and advantages
31 mentioned, as well as those inherent therein. Any
32 oligonucleotides, peptides, polypeptides, biologically
33 related compounds, methods, procedures and techniques
34 described herein are presently representative of the
35 preferred embodiments, are intended to be exemplary and

26

1 are not intended as limitations on the scope. Changes
2 therein and other uses will occur to those skilled in the
3 art which are encompassed within the spirit of the
4 invention and are defined by the scope of the appended
5 claims. Although the invention has been described in
6 connection with specific preferred embodiments, it should
7 be understood that the invention as claimed should not be
8 unduly limited to such specific embodiments. Indeed,
9 various modifications of the described modes for carrying
10 out the invention which are obvious to those skilled in
11 the art are intended to be within the scope of the
12 following claims.

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

27
CLAIMS

What is claimed is:

Claim 1. A method of treating a human tumor in a mammal, wherein said tumor expresses an antigen which specifically binds to a monoclonal antibody or antigen binding fragment thereof which has the identifying characteristics of a monoclonal antibody encoded by a clone deposited with the ATCC as accession number PTA-2700 comprising administering to said mammal said monoclonal antibody in an amount effective to reduce said mammal's tumor burden.

Claim 2. The method of claim 1 wherein said antibody is conjugated to a cytotoxic moiety.

Claim 3. The method of claim 2 wherein said cytotoxic moiety is a radioactive isotope.

Claim 4. The method of claim 1 wherein said antibody activates complement.

Claim 5. The method of claim 1 wherein said antibody mediates antibody dependent cellular cytotoxicity.

Claim 6. The method of claim 1 wherein said antibody is a murine antibody.

Claim 7. The method of claim 1 wherein said antibody is a humanized antibody

Claim 8. The method of claim 1 wherein said antibody is a chimerized antibody.

Claim 9. An isolated monoclonal antibody or antigen binding fragments thereof encoded by the clone deposited with the ATCC as PTA-2700.

Claim 10. The isolated antibody or antigen binding fragments of claim 9, wherein said isolated antibody or antigen binding fragments thereof is humanized.

Claim 11. The isolated antibody or antigen binding fragments of claim 9 conjugated with a member selected from the group consisting of cytotoxic moieties, enzymes, radioactive compounds, and hematogenous cells.

Claim 12. The isolated antibody or antigen binding fragments of claim 9, wherein said isolated antibody or antigen binding fragments thereof is a chimerized antibody.

Claim 13. The isolated antibody or antigen binding fragments of claim 9, wherein said isolated antibody or antigen binding fragments thereof is a murine antibody.

Claim 14. The isolated clone deposited with the ATCC as PTA-2700.

Claim 15. A binding assay to determine presence of cancerous cells in a tissue sample selected from a human tumor comprising:

providing a tissue sample from said human tumor ;

providing an isolated monoclonal antibody or antigen binding fragment thereof encoded by the clone deposited with the ATCC as PTA-2700;

contacting said isolated monoclonal antibody or antigen binding fragment thereof with said tissue sample; and

determining binding of said isolated monoclonal antibody or antigen binding fragment thereof with said tissue sample;

whereby the presence of said cancerous cells in said tissue sample is indicated.

Claim 16. The binding assay of claim 15 wherein the human tumor tissue sample is obtained from a tumor originating in a tissue selected from the group consisting of colon, ovarian, lung, and breast tissue.

Claim 17. A process of isolating or screening for cancerous cells in a tissue sample selected from a human tumor comprising:

providing a tissue sample from a said human tumor ;

providing an isolated monoclonal antibody or antigen binding fragment thereof encoded by the clone deposited with the ATCC as PTA-2700;

contacting said isolated monoclonal antibody or antigen binding fragment thereof with said tissue sample; and

determining binding of said isolated monoclonal antibody or antigen binding fragment thereof with said tissue sample;
whereby said cancerous cells are isolated by said binding and their presence in said tissue sample is confirmed.

Claim 18. The process of claim 17 wherein the human tumor tissue sample is obtained from a tumor originating in a tissue selected from the group consisting of colon, ovarian, lung, and breast tissue.

Strategy For Anti-Cancer Antibody Generation

ARH460-23 Alone Significantly Reduced Metastasis of Lung Tumor (NCI H460) In Orthotopic Implantation Model

Group	Mouse	Metastasis and sites			Final primary tumor weight (g)	
		Positive	Contralateral lung	Thoracic LN	Mean	SD
Cisplatin 3.5 mg/kg	Positive	6/9	1	1	1.52	0.36
	P value vs. control				0.27	
ARH460-23A 25 mg/kg	Positive	3/10		2/10	1.23	0.25
	P value vs. control				0.007	
Cisplatin 3.5 mg/kg and ARH460-23A 25 mg/kg	Positive	5/9		4/9	1.38	0.55
	P value vs. control				0.023	
Control	Positive	7/10		8/10	1.99	0.72
	P value vs. control				0.084	

NCr-nu mice were treated with antibody and/or cisplatin following orthotopic implantation of GFP-labelled NCI H460 cells. Mice were given ARH460-23 at 3 days post implantation and cisplatin at 1, 5, and 9 days post implantation. Primary tumor weights were recorded and tumor metastasis to the contralateral lung and thoracic lymph nodes (LN) was determined at 42 days post implantation. This work was done in collaboration with Anti-Cancer Inc., San Diego, CA.

2-D gel analysis of membrane proteins from Jurkat cells probed with ARH460-23. Jurkat cell membrane lysates were run on 2-D gels and stained with sypro ruby (gel above) or transferred to a membrane blot and probed with ARH460-23. Spot 5 (cytokeratin 18) was not detected in the 2-D blot.

BEST AVAILABLE COPY

Figure. Differential reactivity of ARH460-23 for Jurkat and NCI H460 cells. Cells were stained with either 2 μ g of purified ARH460-23 or the isotype control mouse IgM antibody 11E10 followed by Alexa Fluor 488 conjugated goat anti-mouse IgM. The histogram plots of isotype control staining (shaded) are compared with ARH460-23 staining (dark outline).

**Tumour Growth Kinetics
Cisplatin/ARH460-23 Preventative
Combination Therapy**

The effect of preventative therapy on tumour growth kinetics. Average tumor volumes are plotted as a function of time. Combination treatment of cisplatin and ARH460-23 significantly reduced the tumor growth rate ($p<0.05$).

BEST AVAILABLE COPY

WO 03/086456

PCT/CA03/00500

7/8

Immunohistochemistry staining results with ARIUS H460-23 (QML Project # 419)

Results from 20 minute SHIER / no enzyme tissue pretreatment (overnight H460-23 Incubation at 3.0µg/ml)

TISSUE TYPE	SAMPLE NO.	TISSUE PATHOLOGY	Reactivity	Cellular Stain location	Stain Scale 1-4	Mouse IgG Control	Comments
COLON	1	NORMAL epithelial glands	NEGATIVE			NEGATIVE	
	2	CARCINOMA	POSITIVE	Membranous, perinuclear and cytoplasm	4	NEGATIVE	
		NORMAL ADJACENT	NEGATIVE				
	3	CARCINOMA	POSITIVE	Membranous, perinuclear and cytoplasm	4	NEGATIVE	Inflammatory cells also positive
		NORMAL ADJACENT	NEGATIVE				
PROSTATE	4	NORMAL	POSITIVE	Cytoplasm	4	NEGATIVE	
	5	CARCINOMA	POSITIVE	Membranous, perinuclear and cytoplasm	4	NEGATIVE	Inflammatory cells also positive
	6	CARCINOMA	POSITIVE	Membranous, perinuclear and cytoplasm	4	NEGATIVE	Inflammatory cells also positive
	7	CARCINOMA GLEASON GRADE 6	POSITIVE	Membranous, perinuclear and cytoplasm	4	NEGATIVE	Inflammatory cells also positive
LUNG	8	NORMAL	POSITIVE	Cytoplasm and perinuclear	4	NEGATIVE	Bronchial Columnar Epithelial cells negative
	9	ADENOCARCINOMA	NEGATIVE		2	NEGATIVE	Inflammatory cells also positive
	10	ADENOCARCINOMA	POSITIVE	Membranous and cytoplasm	4	NEGATIVE	Inflammatory cells also positive
	11	LARGE CELL CARCINOMA	POSITIVE	Membranous and cytoplasm	4	NEGATIVE	Inflammatory cells also positive
	12	LARGE CELL CARCINOMA	POSITIVE	Membranous and cytoplasm	4	NEGATIVE	Inflammatory cells also positive
OVARY	13	NORMAL	NEGATIVE			NEGATIVE	Stroma light
	14	CARCINOMA	POSITIVE	Membranous and cytoplasm	4	NEGATIVE	Stroma Positive
SKIN	15	NORMAL	POSITIVE	Cytoplasm and perinuclear	4	NEGATIVE	
	16	MELANOMA - Metastasis to breast	POSITIVE	Cytoplasm	4	NEGATIVE	Inflammatory cells also positive
	17	NODULAR MELANOMA	POSITIVE	Membranous and cytoplasm	4	NEGATIVE	Positive melanin Melanocytes
	18	MELANOMA - residual recurrent invasive melanoma	NEGATIVE			NEGATIVE	
	19	MELANOMA - trabecular with lymphatic involvement	NEGATIVE			NEGATIVE	
BREAST	20	NORMAL	WEAKLY POSITIVE	Cytoplasm	2	NEGATIVE	
	21	DUCTAL INVASIVE CARCINOMA Moderate to poorly differentiated	WEAKLY POSITIVE	Membranous and cytoplasm	3	NEGATIVE	
	22	DUCTAL INVASIVE CARCINOMA well to moderately differentiated	NEGATIVE			NEGATIVE	
	23	DUCTAL INVASIVE CARCINOMA moderately differentiated	NEGATIVE			NEGATIVE	
	24	DUCTAL INVASIVE CARCINOMA poorly differentiated	POSITIVE	Cytoplasm and perinuclear	4	NEGATIVE	
	25	MEDULLARY CARCINOMA well differentiated	POSITIVE	Membranous and cytoplasm	3	NEGATIVE	Inflammatory cells also positive
	26	DUCTAL INVASIVE CARCINOMA well to moderately differentiated	NEGATIVE			NEGATIVE	
	27	DUCTAL INVASIVE CARCINOMA well to moderately differentiated	POSITIVE	Membranous and cytoplasm	4	NEGATIVE	
	28	NORMAL	WEAKLY POSITIVE	Cytoplasm	2	NEGATIVE	
	29	DUCTAL INVASIVE CARCINOMA well to moderately differentiated	POSITIVE	Membranous and cytoplasm	4	NEGATIVE	
	30	HYPERPLASIA	POSITIVE	Cytoplasm	4	NEGATIVE	
	31	MEDULLARY CARCINOMA well differentiated	POSITIVE	Membranous and cytoplasm	4	NEGATIVE	Inflammatory cells also positive
CONTROL CELL PELLETS	32	NCI-H360 Cells	POSITIVE	Membranous and cytoplasm	4	NEGATIVE	Figure 1
	33	Jurkat Cells	NEGATIVE			NEGATIVE	Figure 1

Figure A. Immunohistochemical staining of paraffin-embedded, formalin-fixed NCI H460 (top) and Jurkat (bottom) cell pellets with ARH460-23. ARH460-23 reacted with both the cell membrane (black arrows) and cytoplasm (blue arrows) of NCI H460 cells.

Figure B. Immunohistochemical staining of paraffin-embedded, formalin-fixed NCI H460 (top) cell pellets with ARH460-23. ARH460-23 reacted with both the cell membrane (black arrows) and cytoplasm (blue arrows) of NCI H460 cells.

BEST AVAILABLE COPY