Taya Harshith. A API9110010515 CSE-H

D. Write a c forogram to insert and delete an element at the nth and Kth fosition in a linked list where n and K is taken from the user.

```
#include Lstdio.h>
Solution:
          # include (malloc.h)
         #include / stdlit.h>
         struct node
                int my-data;
struct node * nescit;
           3;
           struct node * he ad = NULL;
           vold insert (int 30)
                struct nøde * new nøde;
                new node = (struct node *) mallor (size of (struct node *);
                frunt (" Enter my-data =");
                scanf ("1-d", & new node -> my-data).
                if (n ==1)
                      new node -> next = head
                       head = new node;
                else
                     struct nocle * temp = head;
                     for (1=1; 12=n; 1++)
                              temp = temp -> next;
```

Scanned with CamScanner

```
newnode -> next = itemp -> rext;
temp -> next = newnode;
void delete (int K)
      struct node * temps = head;
      $ (\==1)
$
             head = itemps 1 -> next;
         else
                for (3=1; 12 K-1; 1++)
                 temp = temp = reat;
struct made * tomp 2 = temp = reat;
temp = react = temp = react;
                 free (temp 2);
     void display ()
            struct node * new node;
            newnode = head;
            fount ("Linked list = \n");
            while (newnode ! = NULL)
                  frunt ("\n/.d" nownode -> data).
             z
     3
```

```
void main ()
       ~ M,
rohile (1)
§
        int m, K, ch;
               fount ("I. Insert \n 2. Delete \n 3. Disflay\n4. Fait");

fount ("Enter your choice =");

scanf ("%d" & ch);

switch (ch)
                      care 1: fount ("Entre fresition to insert =");
scanf ("/d" &m);
invent (an)
                               insert (n);
break;
                     case 2: fruit ("Enter frosition to delete =");
scarf ("/od", & b);
                      delete (16)
                    Case 3: display ()
break;
                     (are 4: exit(v)
                    default: fruit ("Infutis evrong"),
```

outfut of the frogram:

1. Insert

2. Delete

3. display

4. Exit

Enter your choice = 1

Enter frosition to insert = 1

Enter my-data = 5

Enter your choice = 1

Enter your choice = 1

Enter your choice = 1

Enter your choice = 2

Enter my-data = 10

Enter your choice = 3

5

```
Construct a new linked list by merging
     nodes of two lists.
           # include & stdio. h>
Solution:
           Hinclude 1 stalib. hr
           # include 1 malloc. h>
           struct node
                int my-data;
struct mode * nesct;
         void insert_at_ begin (struct node ** head int my_data)
             struct node * new node = (struct node *) malloc (size of (struct node));
             new node -> ydata
             new node -> my-data = my-data;
             newnode -> next = * chead;
             * chead = new node;
         void display (struct nede * head)
                 struct node * tomp = head;
                while (tomp)
                    fount (" . / d ->", temp -> my-data).
                    temp = temp -> next;
          Š
```

```
void merge (struct node * * x, struct node * * y)
     struct node * dail = & tempi;
     temp. next = NULL;
      while (1)
            if (* x == NULL)
                  tail -> reset = NULL;
             else if (*y == NULL)
                    tail -> next = *x;
               z
else
                      tail -7 meet = *30;
                      tail = *x;
                       * x = (*x) -> most
                       tail -> mext = * 1;
                        tål = *y;
                        *y = (*y) -> neset;
                   temp. next;
```

```
void main ()
      int i, a, b, m, n;
      struct node * list1=NULL, * list2 = NULL;
      fruit ("Enter number of elements to insert to list 1=");
      iscanf ("1.d", & N);
      for (i=1; i1=0; i++)
          fruit (" Enter the element to insert = ");
          scanf (":/·d", &m).
insert_at_begin (& list, m);
       fount ("First list = \n")
       display (list);
       hunt ("Enter number of elements to insert for Sist 2=");
       scanf (" 1 d", & b);
       for (1=1; 11= b; 1++)
            frint ("Enter element to insert;");
             scanf ("/d" &m);
            insert_at_begin (blist 2, n).
        fount (" seand list = \n").
         display (list 2);
         merge (&list 1, &list 2);
         fruit ("After merging = \n")
        fourth (" Murged list is = \n");
         display (list!)
```

outfut of the foregram:

Merged list is = 1 4 2 5 3 6

3. Find all the elements in the stack whose sum is equal to K. (rohere K is given from user).

Solution:

```
#include & stdio. h>
unt toh = -1;
intx;
 char stack [ 100];
 void frush (intx)
 char frofil)
  int main ()
     int i, n, w, t, K, it, sum = 0, Count = 1;
     fount ("Enter number of elements in the stack="),
      scant ("ofd", &m);
      for (i=0; i/m; i++)
           frunt ("Enter neset element=");
escaret ("of. d", &w);
             fush (a);
       froint ("Enter the sum to be chocked");
        scanf (" old", &K);
        for (i=0; i/n; i++)
              t = foh ();
              sum+=t;
               Count + = 1;
               if (sum == K)
                  for (int j=0; j, aunt; j++)
                      found ("I'd" stack[3]);
```

```
frint ("The climents in the stack don't add up to sum")
void fush (inta)

So if (top==99)
          fruntt (1 \n stack is full \n")

return;
             of (stack[toh] ==-1)

fount ("In Stack is empty in")

return o;
```

owtfut of the foregram:

Enter the number of elements in the stack = 5

Enter next olement = 1

Enter react element = 2

Enter next element = 3

Enter reset element = 4

Enter most element = 5

Enter the sum to be checked = 5

23

```
3. Write a forogram to fruint the elements in a
    queue .
    (i). in survise order.
     (ii). in alternate order.
            # include 1 stdio-h>
Solution:
            # Include 1 stalib. h>
            # define size 20
             unt queue [20] front =-1, rear =-1;
             void enqueux (unt K)
                  if ( near = = size-1)
                     fourth (" Queue's full");
                              front = 0;
                           rear++;
                           queue [viear] = K.
                       3
              void dequeue ()
                      if ( front = = rear)
                          foundt (" Ornene is enfity");
                       else
                          fount (" \n deleted : 1. cl", queue [front]).
                           forent ++;
if (front == near)
                                  front = rear =-1;
                         3
```

```
void display reverse ()
      fourth ("Ornem is errefity");
else
               frunt (" In Queue is: \n");
               for (i=rear; i>= front; i--)
                     fruitt ("1.d") queue [a]).
            fruit ("Queue is empty").
else
                     fount ("Quale alternate elements are m");

for (i=front: i'=rear; i++)

for (i=front: 1'=1:1" anomor:7)
                             fount (" % d" queue [i])
                        The Ham !
```

```
void main ()
      int K, choile;
      While (1)
          fruit ("1. Enquee m 2. Dequee m 3. Display reverse m
                          4. Display alternate (n.)
          fruit (" Enter your choice =")
          scart ("1.d", febria);
           switch (choice)
              Case 1: fruit ("Entir element to insert =")
                    iscart ("1.d", &K);
                     enguns (K)
                     L'roak'
               case 2: déqueue ();
                       break;
               Case 3; display recove ();
                        Break;
                Case 4: displayalternate ();
Sreak;
                  cases: excit (0);
                 default: fruit ("Infrut is wrong or choi a is wrong").
```

output of the program: 1. Enqueue 3. Display revourse 4. Dishlay alternate 5. Estit Enter your choice=1 3. Distrlay reverse 4. Disifilary alternate Enter your Choice = 1 Enter K=3 1. Enqueue 3. Display revorse 4. Display alternate 5 · Escit Enter your Choic = 1 Enter K=5 1. Enqueue 2. Dequeue 3. Display reverse 4. Display alternate 5. Escit Enter your choice = 4 Orueno elements are = Queue acternate elements are = 1. Enqueul 25 2. Dequeue 3. Display reverse 4. Drofilay Atternate

Scanned with CamScanner

1 True pair. A a

- 5). (i). How array is defferent from linked list
 (ii). Write a forogram to add the first element
 of one list to another list for exam

(i) Solution:).
Array: An averay is a Collection of elements stored in adjacent memory locations.	Linked list is con order Collection of nedes which have two farts data, next. Nodes are elements Connected by frointers.
Array uses static memory allocation. (that is fixed memory).	Linked list uses dynamic memory allocation. (memory allocated at execution)
Size et the averay must be befrecibied during i nitialisation.	Size of the linked Dist is adjusted according to insertion, deletion.
· Random acless is frossible in array	Random access is not fossible in linked list. Elements Can be accessed orderly.
No memory waste if the ordinal is full or almost full or almost full or almost full or almost great in much memory wastage.	there will be no

14 1

```
#include & stdio. h>
# include / stalib h>
Hinclude 2 malloc. h)
struct node
      int my data; struct node * meet;
 void invert_at_begin (struct-node ** head, unt-my-data)
      struct nede * new nede = (struct nede *) malloc
                                                 ( size of (strut node));
        new node -> my-date = my-date;
new node -> mext = * head;
* head = new node;
    veid movenede (struct node ** destination, struct node **sowice)
          if (* source == NULL)
           struct node * new node = * source;
            * 600026 = (*600026) -> meat;
           new node -> next = * dutination;
            * distination = new node;
```

```
void display (struct node * head)
    struct node * temp = head;
     while (temp
          fruit (" yod >", temp -> my-data);
          temp = temp -> most;
void main ()
        int n, n2, a, b, i;
       fourt ("Enter number of modes in list 1 = ").
       scanf (" of d" & mi);
       struct node * Ist 1 = NULL;
       for (i=1; iL=m1; itt)
           frunt ("Enter element to insert unto list 1=");
           scaref ("/od" & w)
          insert_at_begin (& list 1, a);
      fount ("Enter number of nodes in list 2=");
      scanf (" - bd", &m2);
      for (1=1; 12=n2; 1++)
          fruit ("Enter element to insert into list 2 = ");
           scanf (".td", & b)
           insert_ at - bigin (& liste, b);
      movenede (& Dist, & Listz);
       // Pounting after moving node
```

found ("Funt lat = m")'
Listlay (list i) frients ("In seand dut is = In");
die filay (diet 2); 1- 10 10 output of the foregram: a x har house large Enter number of nodes in list, list 2 = 2,3 First list = 3->2->1-> Selond list = 2->1-> 1 - too di manda tagé to a mate la a Commence the second of the second and comment (For) and

the state of the state of

the day to be and the best for for the

THE STREET

and the second