一所传感器附致响应 (掌握) $z \cdot y' + y = k x$
$\chi(s) = L[\chi(t)] = \int_{s}^{\infty} e^{-st} ds = \frac{1}{s}$
$y(s) = H(s) \times (s) = \frac{1}{s(ts+1)} = \frac{1/\tau}{(s+1/\tau)s}$ $P_1 = 0, P_2 = -\frac{1}{\tau}$
k1=1, k2=-1
$y^{(t)} = L^{-1}(y^{(s)}) = \left(1 - e^{-\frac{1}{\varepsilon}t}\right) \cdot S,$
$X = \sin \omega t$
$Y(S) = H(S) \times I(S) = \frac{1}{1 + x_S} \cdot \frac{W}{S^2 + w^2}$
$y(t) = \frac{w}{t} \frac{e^{t/z}}{(t/t)^2 + w^2} + \frac{1}{w} \sqrt{\frac{(w/t)^2}{(t/z)^2 + w^2}} \cdot sin/(wt + lp)$
↑
忽略快点"何色. ytt) = $\frac{1}{\sqrt{H \dot{w} t^2}} sin(wt + \varphi)$
中国频特性. $A(\omega) = \frac{1}{\int H \omega t^{\nu}}$
t=7时, y=ab32.ymax. T越小啊应越快, t=4t可以为达到预定。
一阶系统在 て≪1 时近似零阶系统特性. A(w) ≈ k(l), Ø(w) ≈ 0, yth 反映 x(t). 灵敏度下降到 3d B 时频率为工作频率的上限。
上限频率为 WH=1/7、 T越小,WH越高,工作频率越宽,响应越好.
WZ≪1时, 车前入输出关系接近线线,车前出较真实反映, 输入度化,
二 阶传感器. èg. 振动传感器.石分传感器 (掌握基本概念)
$a_2y'' + a_1y' + a_0y = b_0 x$
$\Rightarrow (z^2S^2 + 2 \notin zS + 1)y = kx$
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
第 = a/ _{从a-a} , 阻尼比多数
1000 = 1/元,直拔角频率.
$\left(S_{n}=\frac{b}{a_{s}}, $ 静孝灵敏度
二阶传感器微分方程: m y" + cy' + ky = b.x

$\Rightarrow y'' + 2 \le w_n y' + w_n^2 y = w^2 x$	
reper (jw) = k/(s²+2\sz+1)	
频率特性 $\mathcal{N}(jw) = k/(j-w^2z^2+2jwz\xi)$	
y語频特性 $k(\omega) = k/\sqrt{(-\omega^2 \tau^2)^2 + (2 \pm w \tau)^2}$	
預婚性 $\phi(w) = -\arctan(28wt/(-wt))$	
$H(s) = \frac{Y(s)}{X(s)} = \frac{b_o}{a_s s^2 + a_1 s + a_0} = \frac{k w n^2}{s^2 + 2 \xi w_m s + w n^2}$	
$W_n = \sqrt{a_0/a_0}$,为祖尼因有岁成本,多 $= \frac{a_1}{2\sqrt{a_0a_0}}$,所能也	
$S_{n}(k) = \frac{bo}{ao}$ 、静态灵敏度.	
M 联信号	
$\chi(t) = 1.$ $L(\chi(t)) = \frac{1}{8}$, $H(s) = \frac{k \omega^2}{8^2 + 2 \frac{4}{5} \omega_0 s + \omega_0^2}$	
$ \frac{1}{4} \frac{d}{dt} = 1 - \frac{e^{-\frac{\epsilon}{4} \omega_n t}}{\sqrt{1 - \frac{\epsilon}{4}}} \sin(\omega_n t + \varphi) $ $ \frac{1}{4} \frac{d}{dt} = 1 - \frac{e^{-\frac{\epsilon}{4} \omega_n t}}{\sqrt{1 - \frac{\epsilon}{4} \omega_n t}} \sin(\omega_n t + \varphi) $	
$\phi = -\arctan(\sqrt{1-\xi(\frac{ w_{\ell} }{ w_{h} })^{2}}/\xi) , w_{d} = w_{h}\sqrt{1-\xi^{2}}$	
多=1. 邻界阻尼, 预定时间最短。实际情况取3=0.6-0.g.	
上升时间, 输出从稳定值 yim) 而 0.1 ~ 0.9 所花时间.	
响应时间,输出过到。95 y(m) 或 a.98 y(m) 而时间.	
正线信号	
£<1 \$ \$<0.707, Aω, A(ω)≈1. φ(ω)=0.	
S<1 . Wn=W, 在 W/Wn=1 产生共振. 村販差9°-180°	
Wn 应为 W 3-5億, 避転支援。	