Neural Networks Basics

Semana 2

Basics of Neural Network Programming

Logistic Regression Gradient descent

Logistic regression recap

$$\Rightarrow z = w^{T}x + b$$

$$\Rightarrow \hat{y} = a = \sigma(z)$$

$$\Rightarrow \mathcal{L}(a, y) = -(y \log(a) + (1 - y) \log(1 - a))$$

Logistic regression derivatives

Logistic regression derivatives

Logistic regression derivatives

y B se establece como B menos la tasa de aprendizaje por DB. Andrew Ng

In this video, what is the simplified formula for the derivative of the losswith respect to z?

- a y
- O a (1 y)
- O a/(1-a)

In this video, what is the simplified formula for the derivative of the losswith respect to z?

- 🔘 а-у
- O a (1 y)
- O a/(1-a)

Basics of Neural Network Programming

Gradient descent

 ${\sf deeplearning.ai}$ on m examples

Recap

 Cómo calcular las derivadas, pero con respecto a un solo ejemplo

Let's see

 Cómo se realiza el cálculo de las derivadas para m ejemplos de entrenamiento

Logistic regression on m examples

$$\frac{J(\omega,b)}{S} = \frac{1}{m} \sum_{i=1}^{m} \chi(\alpha^{(i)}, y^{(i)})$$

$$\Rightarrow \alpha^{(i)} = \varphi(z^{(i)}) = \varphi(\alpha^{(i)}, y^{(i)})$$

$$\frac{\partial}{\partial \omega_i} J(\omega,b) = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial \omega_i} \chi(\alpha^{(i)}, y^{(i)})$$

$$\frac{\partial}{\partial \omega_i} J(\omega,b) = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial \omega_i} \chi(\alpha^{(i)}, y^{(i)})$$

$$\frac{\partial}{\partial \omega_i} J(\omega,b) = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial \omega_i} \chi(\alpha^{(i)}, y^{(i)})$$

Logistic regression on m examples

$$J=0$$
; $d\omega_{i}=0$; $d\omega_{2}=0$; $db=0$
 $Z^{(i)}=\omega^{T}x^{(i)}+b$
 $Z^{$

$$d\omega_1 = \frac{\partial \omega_1}{\partial \omega_1}$$

Vectorization

n the for loop depicted	in the video, why is the	re only one dw	variable (i.e. no i	superscripts in the
for loop)?				

- The value of dw in the code is cumulative.
- Only one derivative is being computed.
- Only the derivative of one value is relevant.

In the for loop depicted in the video, why is there only one *dw* variable (i.e. no i superscripts in the for loop)?

- The value of dw in the code is cumulative.
- Only one derivative is being computed.
- Only the derivative of one value is relevant.

Next class

 Aplicar el algoritmo de GD vectorizado para evitar lo más que se pueda el uso de ciclos

Resources

Implementación en python

- https://github.com/perborgen/LogisticRegression/blob/master/logistic.py
- https://github.com/SSaishruthi/LogisticRegression_Vectorized_Implementation/blob/master/Logistic_Regression.ipynb