DIMENSION FINIE

SOUS-ESPACES VECTORIELS DE DIMENSION FINIE

 $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

1 Dimension d'un sous-espace vectoriel

Théorème 1 Soient E un \mathbb{K} -espace vectoriel de dimension finie et F un sous-espace vectoriel de E. Alors,

- 1. F est dimension finie et $\dim(F) \leq \dim(E)$.
- 2. $\dim(F) = \dim(E) \Leftrightarrow F = E$

Corollaire 1 Soient E un \mathbb{K} -espace vectoriel de dimension finie, F et G deux sous-espaces vectoriels de E tels que $F \subset G$. Alors :

- 1. $\dim(F) \leq \dim(G)$.
- 2. $F = G \Leftrightarrow \dim(F) = \dim(G)$.

2 Théorème des quatre dimensions

Théorème 2 (*Théorème des quatre dimensions*) Soient E un espace vectoriel de dimension finie et F, G des sous-espaces vectoriels de E. On a

$$\dim(F+G) = \dim(F) + \dim(G) - \dim(F \cap G).$$

Corollaire 2 1. Si $E = F \oplus G$, alors $\dim(F + G) = \dim(F) + \dim(G)$.

2. Tout sous-espace vectoriel ${\cal F}$ d'un espace vectoriel ${\cal E}$ de dimension finie admet un supplémentaire.

1 IONISX