National Chiao Tung University Computer Science Department

INTRODUCTION TO ELECTRIC AND ELECTRONIC CIRCUITS

Assignment [1]: Circuit Models and Coupling

Instructor: Prof. John K. Zao
Issuing date: Tuesday, November 27, 2012
Submission due date: Tuesday, December 11, 2012

Homework Reading

❖ Zao & Peng, "EE Circuit Notes", 2008.

pp. 7 - 15

Strum & Ward, "Electric Circuits and Networks", 1985.

Ch. 2, pp. 38 – 48; Ch. 10, pp. 338 - 384

Part 1. Conceptual Questions

1.1 Please define the following *characteristic parameters* of two-port electrical circuits.

Input Impedance under no load condition	2%
Output Impedance with respect to voltage and current inputs	$2\times2\%$
➤ Voltage Gain	2%
Current Gain	2%

Please specify the *necessary voltage/current conditions* at the output in order to measure current and voltage gains properly. Please give the reason why.

4%

- 1.2 Please describe the ways to determine *output impedance* of a linear electrical circuit based on the *law of reciprocity*.

 4%
- 1.3 Please define *DC* and *AC voltage coupling* between two circuits. Why AC coupling is also known as *capacitive coupling*? 6%
- 1.4 Please define *voltage* and *current coupling* between two circuits.

4%

Please explain the concept of perfect coupling.

What are the necessary conditions of *perfect voltage* and *current coupling* in terms of *input/output impedances* of the coupled circuits?

Where are the implications of *perfect voltage/current coupling* towards the design of *ideal voltage or current amplifiers*? 2×2%

Part 2. Analytical Questions

Given the linear electrical circuit on the next page, please use *KVL loop analysis* to determine the *current* through the 3Ω resistor.

10%

15%

2.2 In the following *RC circuit*, the voltages $v_1(t)$ and $v_2(t)$ at $t = t_0$ are given:

$$v_1(t_0) = +2V$$
, $v_2(t_0) = +5V$, $\frac{dv_2}{dt}|_{t=t_0} = -10V/s$

Please determine the value of resistor R.

 $R = \begin{cases} 1 \Omega & \text{if } v_2(t) \\ \vdots & \text{otherwise} \end{cases}$

- 2.3 Given the following Π -circuit, please determine the characteristics of this *two-port circuit*:
 - \triangleright Input impedance R_{in} with no load attached to v_0 ; 6%
 - ► Input impedance R_{in} with load R_L attached to v_0 ; 2%
 - \triangleright Output impedance R_{out} observed across v_0 ; 6%
 - > Thevenin equivalent of the entire circuit; 8%
 - \triangleright Voltage transfer function $A_v \stackrel{\text{def}}{=} v_o/v_i$ of the circuit. 4%

