

2003A509 US

三号

日本国特許庁
JAPAN PATENT OFFICE

P1282 US

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 2002年11月 5日
Date of Application:

出願番号 特願2002-321644
Application Number:

[ST. 10/C] : [JP2002-321644]

出願人 マツダ株式会社
Applicant(s):

2003年10月 6日

特許庁長官
Commissioner,
Japan Patent Office

今井康夫

【書類名】 特許願
【整理番号】 30726
【提出日】 平成14年11月 5日
【あて先】 特許庁長官殿
【国際特許分類】 B60J 5/04
【発明の名称】 車両のサイドドア構造
【請求項の数】 4
【発明者】
【住所又は居所】 広島県安芸郡府中町新地3番1号 マツダ株式会社内
【氏名】 守山 幸宏
【特許出願人】
【識別番号】 000003137
【住所又は居所】 広島県安芸郡府中町新地3番1号
【氏名又は名称】 マツダ株式会社
【代理人】
【識別番号】 100067828
【弁理士】
【氏名又は名称】 小谷 悅司
【選任した代理人】
【識別番号】 100075409
【弁理士】
【氏名又は名称】 植木 久一
【選任した代理人】
【識別番号】 100099955
【弁理士】
【氏名又は名称】 樋口 次郎
【手数料の表示】
【予納台帳番号】 012472
【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【包括委任状番号】 9908482

【ブルーフの要否】 要

【書類名】 明細書

【発明の名称】 車両のサイドドア構造

【特許請求の範囲】

【請求項 1】 前部に設けられたドアヒンジを介して開閉自在に支持されたフロントドアと、後部に設けられたドアヒンジを介して開閉自在に支持されたりヤドアとにより車両の側面開口部を覆うように構成された車両のサイドドア構造において、フロントドアを開放状態に保持するドアチェッカーを備え、このドアチェッカーによるフロントドアの保持位置をリヤドアの開閉軌跡の外方側近傍位置に設定したことを特徴とする車両のサイドドア構造。

【請求項 2】 ドアチェッカーによるフロントドアの保持位置を複数個所に設けるとともに、その最小開度の保持位置をリヤドアの開閉軌跡の外方側近傍位置に設定したことを特徴とする請求項 1 記載の車両のサイドドア構造。

【請求項 3】 ドアチェッカーにより保持される最小開度の保持位置の外方側に少なくとも 2 個所の保持位置を設けたことを特徴とする請求項 2 記載の車両のサイドドア構造。

【請求項 4】 リヤドアを開放状態に保持するドアチェッカーを備え、このドアチェッckerによるリヤドアの保持位置をフロントドアの開閉軌跡の外方側近傍位置に設定したことなどを特徴とする請求項 1～3 の何れかの 1 項に記載の車両のサイドドア構造。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】

本発明は、前部に設けられたドアヒンジを介して開閉自在に支持されたフロントドアと、後部に設けられたドアヒンジを介して開閉自在に支持されたりヤドアとにより車体の側面開口部を覆うように構成された車両のサイドドア構造に関するものである。

【0002】

【従来の技術】

従来、前部に設けられたドアヒンジを介してフロントドアが開閉自在に支持さ

れるとともに、後部に設けられたドアヒンジを介してリヤドアが開閉自在に支持されることにより、いわゆる観音開き式に開閉操作されるフロントドア及びリヤドアにより車体の側面開口部が覆われるよう構成された車両のサイドドア構造が知られている（例えば特許文献1参照）。

【0003】

【特許文献1】

特開平13-1388864号公報（図1）

【0004】

【発明が解決しようとする課題】

上記特許文献1に開示されているように観音開き式に開閉操作されるフロントドア及びリヤドアを備えた車両では、上記リヤドアを開放操作する場合に、まずドアロックによるフロントドアのロック状態を解放して、図14の仮想線で示すように、フロントドア2aを所定開度に開放してフロントドア2aとリヤドア4aとの連結状態を解除した後に、リヤドア4aを閉止状態から開放状態に移行させるように構成されている。

【0005】

上記フロントドア2a及びリヤドア4aは、一般的にデザイン上の理由により車両の正面から見て上端部が車体の内方側に位置するように傾斜した状態で設置されている。このように傾斜状態で設置されたフロントドア2a及びリヤドア4aを、図14に示すように、鉛直方向に設置されたヒンジ軸17a, 12aによって開閉自在に支持した場合には、フロントドア2a及びリヤドア4aの上端部が上記ヒンジ軸17a, 12aの軸心よりも車体の内方側に位置しているために、両ドア2a, 4aを開閉操作する際の初期段階で、フロントドア4aの後部上端が車体の後方側に揺動変位するとともに、リヤドア4aの前部上端が車体の前方側に揺動変位することになる。また、上記フロントドア2aの後端部とリヤドア4aの前端部とは、所定距離OLだけオーバラップした状態で設置されているため、フロントドア2aの後部上端の揺動軌跡とリヤドアの前部上端の揺動軌跡との重合範囲Aが大きくなることが避けられない。

【0006】

したがって、上記リヤドア4aの開放操作時に、その前端部がフロントドア2aの後端部に干渉し易く、この干渉を防止するためには、フロントドア2aを大きく開放した状態で、リヤドア4aの開放操作を行わなければならず、操作性が悪いという問題があった。

【0007】

本発明は、上記の点に鑑みてなされたものであり、観音開き式に設置されたりヤドアを所定開度に簡単な構成で安定して保持することができる車両のサイドドア構造を提供することを目的としている。

【0008】

【課題を解決するための手段】

請求項1に係る発明は、前部に設けられたドアヒンジを介して開閉自在に支持されたフロントドアと、後部に設けられたドアヒンジを介して開閉自在に支持されたリヤドアとにより車両の側面開口部を覆うように構成された車両のサイドドア構造において、フロントドアを開放状態に保持するドアチェックカーを備え、このドアチェックカーによるフロントドアの保持位置をリヤドアの開閉軌跡の外方側近傍位置に設定したものである。

【0009】

上記構成によれば、フロントドアがリヤドアの開閉軌跡の外方側近傍に位置した開放状態に保持されることにより、リヤドアを開放操作する際に、その前端部がフロントドアの後端部に干渉することが効果的に防止されることになる。

【0010】

請求項2に係る発明は、上記請求項1記載の車両のサイドドア構造において、ドアチェックカーによるフロントドアの保持位置を複数個所に設けるとともに、その最小開度の保持位置をリヤドアの開閉軌跡の外方側近傍位置に設定したものである。

【0011】

上記構成によれば、フロントドアを上記最小開度の保持位置に保持することにより、リヤドアを開放操作する際に、その前端部がフロントドアの後端部に干渉することが効果的に防止されることになる。

【0012】

請求項3に係る発明は、上記請求項2記載の車両のサイドドア構造において、ドアチェッカーにより保持される最小開度の保持位置の外方側に少なくとも2個所の保持位置を設けたものである。

【0013】

上記構成によれば、フロントドアを上記最小開度の保持位置に保持することにより、リヤドアを開放操作する際に、その前端部がフロントドアの後端部に干渉することが効果的に防止されるとともに、上記最小開度よりも大きな開度にフロントドアを保持することにより、前部席に対する乗員の乗降及び車室内に対する荷物を積み込み等が容易に行われることになる。

【0014】

請求項4に係る発明は、上記請求項1～3の何れかの1項に記載の車両のサイドドア構造において、リヤドアを開放状態に保持するドアチェッカーを備え、このドアチェッカーによるリヤドアの保持位置をフロントドアの開閉軌跡の外方側近傍位置に設定したものである。

【0015】

上記構成によれば、リヤドアがフロントドアの開閉軌跡の外方側近傍に位置した開放状態に保持されることにより、フロントドアを開放操作する際に、その後端部がリヤドアの前端部に干渉することが効果的に防止されることになる。

【0016】

【発明の実施の形態】

図1及び図2は、本発明に係る車両のサイドドア構造の実施形態を示している。このサイドドア構造は、前部に設けられた上下一対のドアヒンジ1を介して開閉自在に支持されたフロントドア2と、後部に設けられた上下一対のドアヒンジ3を介して開閉自在に支持されたリヤドア4とを有し、車両の側面に形成された開口部が上記フロントドア2及びリヤドア4により覆われるとともに、これらのフロントドア2及びリヤドア4が、いわゆる観音開き式に開閉操作されるように構成されている。

【0017】

上記フロントドア2は、その後部に設けられたドアラッチ51と、リヤドア4の前端部に設けられたストライカ52とからなるドアロック5を介してリヤドア4と連結されることにより、閉止状態に保持されるようになっている。一方、上記リヤドア4は、車体とリヤドア4との間に設けられた上下一対のドアロック6，7により閉止状態に保持されるように構成されている。また、上記フロントドア2の前部及びリヤドア4の後部には、各ドア2，4の開度が所定角度となった場合にその開度を保持するドアチェック8，9が上記ドアヒンジ1，3の下方にそれぞれ配設されている。

【0018】

上記リヤドア4用のドアヒンジ3は、リヤドア4の後部壁面に固着されたヒンジ金具10と、車体に形成された上記開口部の後部周壁面に固着されたヒンジ金具11と、両金具10，11を連結するヒンジ軸12とにより構成されている。そして、リヤドア4の前端部から所定距離だけ後方側に離間した位置においてドア内壁面に取り付けられた開閉操作用の操作ノブ14をもってリヤドア4を開閉操作することにより、上記ヒンジ軸12を支点にしてリヤドア4が閉止位置と開放位置との間で揺動変位するようになっている。上記ドアヒンジ3のヒンジ軸12は、図3に示すように車両の正面から見て、その上端部が車体の内方側に位置するように軸心120が傾斜した状態で設置されるとともに、車両の側面から見て、その上端部が車体の後方側に位置するように軸心120が傾斜した状態で設置されている（図1参照）。

【0019】

また、上記フロントドア2用のドアヒンジ1は、フロントドア2の前部壁面に固着されたヒンジ金具15と、車体に形成された上記開口部の前部周壁面に固着されたヒンジ金具16と、両金具15，16を連結するヒンジ軸17とにより構成され、このヒンジ軸17を支点にしてフロントドア2が閉止位置と開放位置との間で揺動変位するようになっている。フロントドア2用のヒンジ軸17は、上記リヤドア4用のヒンジ軸12と同様に車両の正面から見て、その上端部が車体の内方側に位置するように軸心170が傾斜した状態で設置されている。また、上記フロントドア2用のヒンジ軸17は、その軸心170が車両の側面から見て

略鉛直方向に設置されている。

【0020】

上記フロントドア2用のドアチェック8は、図4に示すように、フロントドア2の前部壁面に対向する位置において車体に取り付けられたブラケット18と、このブラケット18に設けられた支持軸19を支点にして揺動可能に支持されたチェックカープレート20と、フロントドア2の前部内方に固定された保持ケース21とを有し、この保持ケース21には、図5に示すように、上下一対の挟持体22と、両挟持体22を互いに接近させる方向に付勢する弾性体23とが保持されている。

【0021】

上記チェックカープレート20は、鋼板材等からなる芯材24と、この芯材24を被覆する合成樹脂材等からなる被覆材25と、先端部に設けられたストッパー部材26とを有している。そして、上記保持ケース21に形成された挿通孔を貫通した状態でチェックカープレート20が設置されることにより、上記両挟持体22が弾性体23の付勢力に応じてチェックカープレート20に表裏両面に圧接されるようになっている。また、チェックカープレート20の表裏両面には、上記被覆材25の厚みをチェックカープレート20の長手方向に変化させることにより、3個所の凸部27a～27cが設けられるとともに、それらの間に3個所の凹部28a～28cが配設されている。

【0022】

そして、フロントドア2の開閉操作時に、上記保持ケース21がチェックカープレート20の長手方向に摺動変位するとともに、上記弾性体23の付勢力に応じて両挟持体22がチェックカープレート20の表裏両面に圧接されることにより付与される摺動抵抗の大きさが、上記フロントドア2の開放角度に応じて変化するよう構成されている。

【0023】

すなわち、図4に示す平面視において、ドアチェック9の支持軸19が上記ヒンジ軸12の設置位置から所定距離だけ車体の内方側にオフセットした位置に配設されているため、上記ヒンジ軸12を支点にして図4の実線で示す閉止位置

と、仮想線で示す開放位置との間で、フロントドア2を開閉操作するのに応じ、このフロントドア2とともに保持ケース21が揺動変位するとともに、上記支持軸19を支点にしてチェックカープレート20が揺動変位する。また、両揺動支点が上記のようにオフセットしていることにより、フロントドア2の揺動変位時に、上記保持ケース21がチェックカープレート20の長手方向に沿って摺動変位するようになっている。

【0024】

そして、上記保持ケース21の摺動変位に応じ、その内部に保持された両挟持体22が、上記チェックカープレート20の表裏両面に設けられた上記凸部27a～28cを乗り越えて凹部28a～28cの設置部に向けて移動し、この際に、上記凸部27a～27cを構成する傾斜面によって上記両挟持体22が互いに離間する方向に押圧されるとともに、上記弾性体23が圧縮されることにより、この弾性体23の付勢力に対応した摺動抵抗が付与される。この弾性体23の付勢力が、両挟持体22を凹部28a～28cの設置位置に移動させる方向に作用し、これによってフロントドア2の開放操作時に、上記凹部28a～28cの設置部に挟持体22が位置した時点で所定の拘束力が付与され、この位置に対応した開度に上記フロントドア2が保持されることになる。

【0025】

また、リヤドア用のドアチェックカーリヤドア4の後部壁面に對向する位置において車体に取り付けられたブラケット18と、このブラケット18に設けられた支持軸19を支点にして揺動可能に支持されたチェックカープレート20と、リヤドア4の後部内方に固定された保持ケース21とを有し、この保持ケース21に上下一対の挟持体22と、両挟持体22を互いに接近させる方向に付勢する弾性体23とが保持されている。上記チェックカープレート20は、その先端側に位置する凸部27cが先拡がり形状に形成されるとともに、その先端部側に大径部29が形成され、この先端部に凹部28cが設けられていない点が、上記フロントドア2用のドアチェックカーリヤドア4と相違し、他の点はフロントドア用のチェックカープレート20と略同様に構成されている。また、上記リヤドア用のドアチェックカーリヤドア4の機能も、フロントドア用のドアチエ

ッカー8と同様に構成されている。

【0026】

上記構成において、後部席の乗員が閉止状態にあるリヤドア4を開放状態に移行させる場合には、上記ドアロック5によるフロントドア2のロックを解除した状態で、このフロントドア2を所定角度に開放した後、上記ドアロック6, 7によるリヤドア4のロックを解除した状態で、上記操作ノブ14をもってリヤドア4の前端部を車体の外方側に揺動変位させることにより開放操作する。

【0027】

そして、上記フロントドア2及びリヤドア4の開放操作時に、その開度が所定角度となった場合に、上記ドアチェックカーア8, 9からフロントドア2及びリヤドア4に付与される拘束力に応じ、各ドア2, 4がそれぞれ所定開度の開放状態に保持される。

【0028】

具体的には、図8に示すように、フロントドア2が、リヤドア4の開閉軌跡 α よりもやや外方側位置する最小開度 θ_1 の開放状態となった場合に、上記ドアチェックカーア8のチェックカープレート20に設けられた3個所の凹部28a～28cのうち、基端部側に配設された第1凹部28aの設置位置に上記挟持体22が到達してフロントドア2が上記最小開度 θ_1 に保持されるように構成されている。また、上記チェックカープレート20の中間部に設けられた第2凹部28bの設置位置に上記挟持体22が到達することにより保持されるフロントドア2の開放角度が、前部席に対して乗員が昇降する際に適した中間開度 θ_2 に設定されるとともに、上記チェックカープレート20の先端部に設けられた第3凹部28cの設置位置に上記挟持体22が到達することにより保持されるフロントドア2の開放角度が、フロントドア2の開放限度である最大開度 θ_3 に対応した値に設定されている。

【0029】

一方、上記リヤドア用のドアチェックカーア9は、リヤドア4が、フロントドア2の開閉軌跡 β よりもやや外方側位置する最小角度となった場合に、リヤドア用のドアチェックカーア9のチェックカープレート20に基端部側に設けられた第1凹部2

8 a の設置位置に上記挟持体 2 2 が到達してリヤドア 4 が上記最小開度に保持されるようになっている。また、上記チェックカープレート 2 0 の中間部に設けられた第 2 凹部 2 8 b の設置位置に上記挟持体 2 2 が到達することにより保持されるリヤドア 4 の開放角度は、後部席に対して乗員が昇降する際に適した中間開度に設定されるとともに、上記チェックカープレート 2 0 の先端部に設けられた大径部 2 9 の設置位置に上記挟持体 2 2 が到達することにより保持されるリヤドア 4 の開放角度は、リヤドア 4 の開放限度である最大開度に対応した値に設定されている。

【0030】

上記のように前部に設けられた上下一対のドアヒンジ 1 を介して開閉自在に支持されたフロントドア 2 と、後部に設けられた上下一対のドアヒンジ 3 を介して開閉自在に支持されたリヤドア 4 とにより車両の側面開口部を覆うように構成された車両のサイドドア構造において、フロントドア 2 を開放状態に保持するドアチェックカーアーム 8 を設け、このドアチェックカーアーム 8 により保持されるフロントドア 2 の保持位置を、図 8 に示すように、リヤドア 4 の開閉軌跡 α の外方側近傍位置に設定したため、上記リヤドア 4 の開放操作を容易かつ安全に行うことができるという利点がある。

【0031】

すなわち、上記リヤドア 4 を開放操作する前に、フロントドア 2 をわずかに開放してドアチェックカーアーム 8 により上記リヤドア 4 の開閉軌跡 α の外方側近傍位置に保持させることにより、リヤドア 4 の前端部がフロントドア 2 の後端部に干渉するという問題を生じることなく、リヤドア 4 の開放操作を行うことができる。したがって、後部席の乗員が車両から降りる際等に、その体を前方側に乗り出すようにしてフロントドア 2 を必要以上に大きく開放するという煩雑な操作を要することなく、リヤドア 4 を容易かつ安全に開放操作することができる。

【0032】

また、上記実施形態では、フロントドア用のドアチェックカーアーム 8 によるフロントドア 2 の保持位置を 3 個所に設定するとともに、その最小開度 θ_1 の保持位置、つまり上記ドアチェックカーアーム 8 のチェックカープレート 2 0 に基端部側に設けられた

第1凹部28aの設置位置に上記挟持体22が到達した時点で保持されるフロントドア2の保持位置を、リヤドア4の開閉軌跡 α の外方側近傍位置に設定したため、このリヤドア4を開放操作する前に、フロントドア2を開放してドアチェッカー8によりフロントドア2を上記最小開度 θ_1 に対応した位置に保持させることにより、リヤドア4の前端部がフロントドア2の後端部に干渉するという問題を生じることなく、リヤドア4の開放操作を行うことができる。

【0033】

そして、上記ドアチェッカー8のチェッカープレート20の中間部に設けられた第2凹部28bの設置位置に上記挟持体22が到達した時点で保持されるフロントドア2の保持位置を、乗員の乗降に適した中間角度 θ_2 に対応した位置に設定し、かつ上記ドアチェッcker8チェッカープレート20の先端部に設けられた第3凹部28cの設置位置に上記挟持体22が到達した時点で保持されるフロントドア2の保持位置をその最大開度 θ_3 に対応した位置に設定した場合には、フロントドア2を上記中間開度 θ_2 に保持させた状態で、前部席に対する乗員の昇降を容易に行うことができるとともに、フロントドア2を上記最大開度 θ_3 に保持させた状態で、車室内に対する荷物の出し入れ等を容易に行うことができるという利点がある。

【0034】

なお、上記フロントドア用のドアチェッcker8により保持されるフロントドア8の保持位置は、上記3個所に限定されることなく、種々の変更が可能であり、例えば上記最小開度 θ_1 の保持位置の外方側に3個所以上の保持位置を設け、あるいは上記最小開度 θ_1 の保持位置の外方側に1個所の保持位置を設けた構造としてもよい。

【0035】

また、上記実施形態に示すように、リヤドア用のドアチェッcker9により保持されるリヤドア4の最小角度、つまり上記ドアチェッcker9のチェッカープレート20に基端部側に設けられた第1凹部28aの設置位置に上記挟持体22が到達した時点で保持されるリヤドア4の開放角度を、フロントドア2の開閉軌跡 β よりもやや外方側位置する角度に設定した場合には、上記最小角度にリヤドア4

を保持した状態で、フロントドア2を開閉操作する際に、このフロントドア2がリヤドア4に干渉するのを効果的に防止できるという利点がある。

【0036】

さらに、上記ドアチャッカー9のチャッカープレート20の中間部に設けられた第2凹部28bの設置位置に上記挟持体22が到達した時点で保持されるリヤドア4の保持位置を、乗員の昇降に適した中間開度に対応した位置に設定することにより、この中間角度にリヤドア4を保持させた状態で、後部席に対する乗員の昇降を容易に行うことができる。さらに、上記ドアチャッカー9のチャッカープレート20の先端部に設けられた大径部29の設置位置に上記挟持体22が到達した時点で保持されるリヤドア4の保持位置を、リヤドア4の限界開度である最大開度に対応した位置に設定することにより、リヤドア4を限界まで開放した状態で、車室内に対する荷物の出し入れ等を容易に行うことができるという利点がある。

【0037】

また、上記実施形態に示すように、リヤドア用のアチャッカー9を構成するチャッカープレート20の最先端部に大径部29を形成し、リヤドア4の開放角度が図9に示す最大開度となった時点で、図10に示すように、保持ケース21内に保持された挟持体22が上記大径部29上に乗り上げた状態で、リヤドア4が上記最大角度に保持されるように構成した場合には、この最大開度に保持されたリヤドア4の閉止操作を容易に行うことができるという利点がある。

【0038】

すなわち、図10に示すように、上記大径部29上に挟持体22が乗り上げた状態では、弾性体23が大きく圧縮されることにより大きなエネルギーが蓄えられているため、リヤドア4を上記最大開度から閉止方向に少しでも移動させると、先拡がり形状の第3凸部27cを構成する傾斜面に沿って挟持体22が摺動することにより、リヤドア4を閉止方向に付勢する大きなアシスト力が得られることになる。したがって、図9に示すように最大開放状態にあるリヤドア4の操作ノブ14を後部席の乗員が持ってリヤドア4を閉止操作する場合に、人体の構造上の理由から、リヤドア4の閉止方向に大きな力を作用させることが困難である

にも拘わらず、比較的容易に上記リヤドア4の閉止操作を行うことができる。

【0039】

また、上記実施形態では、リヤドア4を開閉操作するための操作ノブ14を、リヤドア4の前端部から所定距離Wだけ車体の後方側に配設したため、図9に示すように最大開放位置にあるリヤドア4を閉止する場合に、後部席の乗員が上記操作ノブ14を把持するために大きく手を伸ばすことなく、自然な姿勢で上記操作ノブ14を把持することにより、開放状態にあるリヤドア4から閉止状態に容易に移行させることができるという利点がある。

【0040】

さらに上記実施形態では、リヤドア4を開閉自在に支持する上記ドアヒンジ3の設置部の下方にドアチェック9を配設したため、このドアチェック9を設置する際におけるレイアウトの自由度を確保して適正位置に上記ドアチェック9を設置することができる。すなわち、リヤドア4の後部に設けられた上下一対のドアヒンジ3の間にドアチェック10を配設される構成が一般的であるが、この構成では、両ドアヒンジ3の間におけるスペースが小さいため、ドアチェック9を設置する際にそのレイアウトの自由度が著しく制限されることになる。これに対して上記ドアヒンジ3の設置部の下方には、所定の空間部が設けられているため、この空間部を有効に利用することにより、上記ドアチェック9を設置する際におけるレイアウトの自由度を充分に確保することができる。また、上記チェックカープレート20の全長を大きくすることにより作動範囲が大きく設定されたドアチェック9をリヤドア4の下部に位置する上記空間部内に配設することが可能であり、このドアチェック9によって規制されるリヤドア4の最大開度を大きな値に設定することができるという利点がある。

【0041】

また、上記実施形態では、リヤドア用のヒンジ軸12を車両の正面から見た場合にその上端部が車体の内方側に位置するように上記ヒンジ軸12を傾斜させるとともに、このヒンジ軸12を車両の側面から見た場合にその上端部が車体の後方側に位置するように上記ヒンジ軸12を傾斜させたため、リヤドア4の開閉操作時に、その先端部がフロントドア2と干渉するのを回避しつつ、上記リヤドア

4を軽い力で開放操作することができるとともに、このリヤドア4を拘束力の小さいドアチャッカー9により所定開度の開放状態に保持することができる。

【0042】

すなわち、リヤドア4用のヒンジ軸12を、その上端部が車体の内方側に位置するように傾斜させたため、リヤドア4の上端部が上記ヒンジ軸12の内方側に位置した状態となることが防止され、上記ヒンジ軸12を支点にしてリヤドア4を閉止位置から開放位置に搖動変位させる場合に、その前端部が前方側に大きく移動するのを抑制することができる。したがって、車両の側面から見てヒンジ軸が鉛直方向に設置された図14に示す従来例に比べ、図11に示すように、上記のように傾斜したヒンジ軸12の軸方向から見た状態において、フロントドア2の後端部と、リヤドア4の前端部との搖動軌跡の重合範囲Aを、著しく小さくして両ドア2，4の干渉を効果的に防止することができる。

【0043】

また、リヤドア4用のヒンジ軸12を、その上端部が車体の後方側に位置するように傾斜させたため、上記ヒンジ軸12を側面から見て鉛直方向に設置した場合に比べ、リヤドア4の重心Gを通って鉛直方向に作用するリヤドア4の自重Mに応じ、ヒンジ軸12を支点としてリヤドア4の閉止方向に作用するモーメントの距離lを小さくすることができ、これによってリヤドア4を開放操作する場合の初期段階における操作力を効果的に低減することができる。しかも、図11に示すように、上記リヤドア4を90度未満の所定角度θに開放操作して上記自重Mの作用方向とヒンジ軸12の傾斜方向とが重なった状態となった時点で、リヤドア4の閉止方向に作用するモーメントが0になるため、リヤドア4を開放操作する場合の終期段階における操作力をも効果的に低減することができるという利点がある。なお、リヤドア4の重心を通る自重Mは鉛直方向に作用しており、この自重Mが図11において傾斜した状態で表示されているのは、図11が上記のようにヒンジ軸12の軸方向から見た状態を示すものであって、ヒンジ軸12の軸心と直交する面が図11により表示されているからである。

【0044】

そして、図3に示すように、上端部が車体の内方側に位置するように傾斜した

状態で設置された上記ヒンジ軸12よりも車体の内方側に上記ドアチェッカー9を配設した場合には、このドアチェッカー9の設置位置から大きく離れた位置を上記ヒンジ軸12の軸心120が通り、この軸心方向から見たヒンジ軸12の設置位置とドアチェッカー9の設置位置との離間距離Sが充分に確保されることになる。このため、リヤドア4の開閉操作時に、上記ドアチェッカー9により付与される拘束力と、上記離間距離との積からなる抵抗モーメントを大きな値に設定することができる。したがって、上記拘束力が小さいドアチェッカー9を用いた場合においても、このドアチェッカー9によりリヤドア4を所定の開度に安定して保持することができる。

【0045】

また、図13に示すように、後輪用のホイールアーチ（タイヤハウスの曲線部分）30の前方に上記リヤドア4が配設された車両において、リヤドア用のドアチェッカー9を上記ヒンジ軸12の設置位置よりも車体の前方側に所定距離だけオフセットした位置に配設した構造としてもよい。このように構成した場合には、上記ホイールアーチ30とドアチェッカー9とが干渉するのを防止しつつ、このドアチェッcker9を適正位置に設置してリヤドア4の開放操作時に所定の抵抗モーメントを効果的に付与できるという利点がある。

【0046】

【発明の効果】

以上説明したように、本発明は、前部に設けられたドアヒンジを介して開閉自在に支持されたフロントドアと、後部に設けられたドアヒンジを介して開閉自在に支持されたリヤドアとにより車両の側面開口部を覆うように構成された車両のサイドドア構造において、フロントドアを開放状態に保持するドアチェッckerを備え、このドアチェッckerによるフロントドアの保持位置をリヤドアの開閉軌跡の外方側近傍位置に設定したため、このリヤドアを開放操作する前に、フロントドアを開閉してドアチェッckerにより上記位置に保持させることにより、リヤドアの前端部がフロントドアの後端部に干渉するという問題を生じることなく、リヤドアの開放操作を容易かつ安全に行うことができる。

【図面の簡単な説明】

【図 1】

本発明に係るフロントドア構造の実施形態を示す側面図である。

【図 2】

上記フロントドア構造の実施形態を示す平面図である。

【図 3】

リヤドアを車両の正面から見た状態を示す説明図である。

【図 4】

フロントドア用のドアチェックバーの具体的構成を示す平面断面図である。

【図 5】

フロントドア用のドアチェックバーの具体的構成を示す側面断面図である。

【図 6】

リヤドア用のドアチェックバーの具体的構成を示す平面断面図である。

【図 7】

リヤドア用のドアチェックバーの具体的構成を示す側面断面図である。

【図 8】

フロントドアの開閉操作状態を示す説明図である。

【図 9】

リヤドアを最大開度位置に開放した状態を示す説明図である。

【図 10】

リヤドアを最大開度位置に開放した場合におけるドアチェックバーの状態を示す説明図である。

【図 11】

フロントドア及びリヤドアの開閉操作状態を示す説明図である。

【図 12】

フロントドア及びリヤドアを車両の側面から見た状態を示す説明図である。

【図 13】

本発明に係るフロントドア構造の別の実施形態を示す側面図である。

【図 14】

車両のサイドドア構造の従来例を示す説明図である。

【符号の説明】

- 1 フロントドア用のヒンジ
- 2 フロントドア
- 3 リヤドア用のヒンジ
- 4 リヤドア
- 8, 9 ドアチェックバー

【書類名】

図面

【図 1】

【図2】

【図3】

【図4】

【図 5】

【図6】

【図 7】

【図8】

【図9】

【図10】

【図11】

【図12】

【図13】

【図14】

【書類名】 要約書

【要約】

【課題】 観音開き式に設置されたリヤドアを所定開度に簡単な構成で安定して保持できるようにする。

【解決手段】 前部に設けられたドアヒンジ1を介して開閉自在に支持されたフロントドア2と、後部に設けられたドアヒンジ3を介して開閉自在に支持されたリヤドア4とにより車両の側面開口部を覆うように構成された車両のサイドドア構造において、フロントドア2を開放状態に保持するドアチェックサー8を備え、このドアチェックサー8によるフロントドア2の保持位置をリヤドア3の開閉軌跡 α の外方側近傍位置に設定した。

【選択図】 図1

特願 2002-321644

出願人履歴情報

識別番号 [000003137]

1. 変更年月日 1990年 8月22日

[変更理由] 新規登録

住 所 広島県安芸郡府中町新地3番1号
氏 名 マツダ株式会社