MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2018 EXAMINATION

Subject Name: Applied Mathematics Model Answer

Subject Code:

22224

Important Instructions to Examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more importance (Not applicable for subject English and Communication Skills).
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answer and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.	Sub		Marking
No.	Q. N.	Answer	Scheme
1.		Attempt any <u>FIVE</u> of the following:	10
		$e^x + e^{-x}$	
	a)	State whether the function $f(x) = \frac{e^x + e^{-x}}{2}$ is odd or even.	02
	Ans	$f(x) = \frac{e^x + e^{-x}}{2}$	
		$f(x) = \frac{e^x + e^{-x}}{2}$ $\therefore f(-x) = \frac{e^{-x} + e^{-(-x)}}{2}$	1/2
		$=\frac{e^{-x}+e^x}{2}$	1/2
		=f(x)	1/2
		∴ function is even.	1/2
			/2
	b)	If $f(x) = \frac{x^2 + 1}{x^3 - 1}$ find $f\left(\frac{1}{2}\right)$	02
	Ans	$f\left(x\right) = \frac{x^2 + 1}{x^3 - 1}$	
		$- \therefore f\left(\frac{1}{2}\right) = \frac{\left(\frac{1}{2}\right)^2 + 1}{\left(\frac{1}{2}\right)^3 - 1}$	1
		$\left(\frac{1}{2}\right)^{-1}$	1
		$=\frac{-10}{7}$ OR -1.429	1

SUMMED 2018 EXAMINATION

SUMMI	LK – 2018 LAAMIINA HON		
Subject Name: Applied Mathematics	Model Answer	Subject Code:	22224

Q.	Sub		Marking
No.	Q. N.	Answer	Scheme
1.	c)	Find $\frac{dy}{dx}$, if $y = (x^2 + 1)^5$	02
	Ans	$y = \left(x^2 + 1\right)^5$	
		$\therefore \frac{dy}{dx} = 5\left(x^2 + 1\right)^4 \cdot \frac{d}{dx}\left(x^2 + 1\right)$	
		$=5(x^2+1)^4.(2x)$	1
		$=10x\left(x^2+1\right)^4$	1
	d)	Evaluate $\int (\tan x + \cot x)^2 dx$	02
	Ans	$\int (\tan x + \cot x)^2 dx$	
		$= \int (\tan^2 x + 2 \tan x \cot x + \cot^2 x) dx$	1/2
		$= \int \left(\tan^2 x + 2 + \cot^2 x\right) dx$	
		$= \int \left[\left(\sec^2 x - 1 \right) + 2 + \left(\cos \sec^2 x - 1 \right) \right] dx$	1/2
		$= \int (\sec^2 x + \cos \sec^2 x) dx$	
		$= \tan x - \cot x + c$	1/2 +1/2
	e)	Evaluate $\int \log x dx$	02
	Ans	$\int \log x dx = \int \log x \cdot 1 \ dx$	1/2
		$= \log x \int 1 dx - \int \left(\int 1 dx \frac{d}{dx} \log x \right) dx$	1/2
		$= \log x(x) - \int x \frac{1}{x} dx$	1/2
		$= x \log x - \int 1 dx$	17
		$= x \log x - x + c$	1/2
		$= x(\log x - 1) + c$	
	f)	Find the area between the lines $y = 3x$, x-axis and the ordinates $x = 1$ and $x = 5$	02
	Ans	Area $A = \int_{a}^{b} y dx$	
		$= \int_{0}^{5} 3x dx$	1/2
		J	/2

SUMMER – 2018 EXAMINATION

Q. No.	Sub Q. N.	Answer	Marking Scheme
1.	f)	$=3\int_{0}^{5}xdx$	
		1	
		$=3\left[\frac{x^2}{2}\right]_1^5$	1/2
			1/2
		$= 3 \left[\frac{5^2}{2} - \frac{1^2}{2} \right]$	
		= 36	
	g)	Show that there exist a root of the equation $x^2 - 2x - 1 = 0$ in $(-1,0)$ and find	02
		approximate value of the root by using Bisection method. (Use two iterations)	
	Ans	$x^2 - 2x - 1 = 0$	
		$f(x) = x^2 - 2x - 1$ $f(-1) = 2$	
		f(0) = -1	1/2
		root is in $(-1,0)$	/2
		$\therefore x_1 = \frac{-1+0}{2} = -0.5$	1/2
		$\therefore f(-0.5) = 0.25$	1/2
		$\therefore \text{ root is in } (-0.5,0)$	
		$\therefore x_2 = \frac{-0.5 + 0}{2} = -0.25$	1/2
		OR	
		$x^2 - 2x - 1 = 0$	
		$f(x) = x^2 - 2x - 1$	
		f(-1)=2	
		f(0) = -1	
		root is in $\left(-1,0\right)$	
		a b $x = \frac{a+b}{a}$ $f(x)$	
			1
		-1 0 -0.5 0.25	1
		-0.5 0 -0.25	

SUMMER – 2018 EXAMINATION

	T		
Q. No.	Sub Q. N.	Answer	Marking Scheme
2.		Attempt any <u>THREE</u> of the following:	12
	a)	Find $\frac{dy}{dx}$ if $\cos(x^2 + y^2) = \log(xy)$	04
	Ans	u.v	
	Alls	$\cos\left(x^2 + y^2\right) = \log\left(xy\right)$	
		$\therefore -\sin\left(x^2 + y^2\right) \left(2x + 2y\frac{dy}{dx}\right) = \frac{1}{xy} \left(x\frac{dy}{dx} + y\right)$	2
		$\therefore -2x\sin\left(x^2 + y^2\right) - 2y\sin\left(x^2 + y^2\right)\frac{dy}{dx} = \frac{1}{y}\frac{dy}{dx} + \frac{1}{x}$	
		$\therefore \frac{dy}{dx} \left(-2y\sin\left(x^2 + y^2\right) - \frac{1}{y} \right) = \frac{1}{x} + 2x\sin\left(x^2 + y^2\right)$	1
		$\therefore \frac{dy}{dx} = \frac{\frac{1}{x} + 2x\sin\left(x^2 + y^2\right)}{-2y\sin\left(x^2 + y^2\right) - \frac{1}{x}}$	1
		$\int dx -2y\sin\left(x^2+y^2\right)-\frac{1}{y}$	
	b)	If $x = a\cos^3\theta$, $y = a\sin^3\theta$, find $\frac{dy}{dx}$ at $\theta = \frac{\pi}{4}$	04
	Ans	$x = a\cos^3\theta \qquad \qquad y = a\sin^3\theta$	
		$\therefore \frac{dx}{d\theta} = -3a\cos^2\theta\sin\theta \qquad \qquad \frac{dy}{d\theta} = 3a\sin^2\theta(\cos\theta)$	1
		$\therefore \frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}}$	
		$\frac{dx}{d\theta}$	
		$\frac{dy}{dx} = \frac{3a\sin^2\theta\cos\theta}{\sin^2\theta\cos\theta}$	1
			1
		$\frac{dy}{dx} = -\tan\theta$	
		at $\theta = \frac{\pi}{4}$	
		$\frac{dy}{dx} = -\tan\frac{\pi}{4}$	
		$\frac{dy}{dx} = -1$	1

SUMMER – 2018 EXAMINATION

SCIVIIVI	ER-2010 EXAMILITATION		
Subject Name: Applied Mathematics	Model Answer	Subject Code:	22224

	Sub		Morleina
Q. No.	Q. N.	Answer	Marking Scheme
2.	c)	Find the maximum and minimum value of $2x^3 - 3x^2 - 36x + 10$	04
	Ans	Let $y = 2x^3 - 3x^2 - 36x + 10$	
		$\therefore \frac{dy}{dx} = 6x^2 - 6x - 36$	1/2
		$\therefore \frac{d^2y}{dx^2} = 12x - 6$	1/2
		Consider $\frac{dy}{dx} = 0$	
		$6x^2 - 6x - 36 = 0$	1/2
		$x^2 - x - 6 = 0$ $\therefore x = -2, \ x = 3$	1/2
		at x = -2 $at x = -2$	72
		$\frac{d^2y}{dx^2} = 12(-2) - 6 = -30 < 0$	1/2
		\therefore y is maximum at $x = -2$	
		$y_{\text{max}} = 2(-2)^3 - 3(-2)^2 - 36(-2) + 10$	17
		= 54	1/2
		at $x = 3$	
		$\frac{d^2y}{dx^2} = 12(3) - 6 = 30 > 0$	1/2
		$\therefore y \text{ is minimum at } x = 3$	
		$y_{\min} = 2(3)^3 - 3(3)^2 - 36(3) + 10$	1/2
		=-71	
	d)	A beam is bent in the form of the curve $y = 2\sin x - \sin 2x$ Find the radius of	04
		curvature of the beam at the point $x = \frac{\pi}{2}$	
	Ans	$y = 2\sin x - \sin 2x$	1/
		$\therefore \frac{dy}{dx} = 2\cos x - 2\cos 2x$	1/2
		$\therefore \frac{d^2y}{dx^2} = -2\sin x + 4\sin 2x$	1/2
		$\therefore \text{ at } x = \frac{\pi}{2}$	
		$\frac{dy}{dx} = 2\cos\left(\frac{\pi}{2}\right) - 2\cos 2\left(\frac{\pi}{2}\right) = 2$	1/2

SUMMED 2018 EXAMINATION

SUMME	R – 2018 EXAMINATION		
Subject Name: Applied Mathematics	Model Answer	Subject Code:	22224

Q. No.	Sub Q. N.	Answer	Marking Scheme
2.	d)	$\frac{d^2y}{dx^2} = -2\sin\left(\frac{\pi}{2}\right) + 4\sin 2\left(\frac{\pi}{2}\right) = -2$	1/2
		$\left 1 + \left(\frac{dy}{dx} \right) \right ^2$	
		∴ Radius of curvature is $\rho = \frac{\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{\frac{3}{2}}}{\frac{d^2y}{dx^2}}$	
		$\therefore \rho = \frac{\left[1 + (2)^2\right]^{\frac{3}{2}}}{-2}$	1
		$\rho = -5.590$ or 5.590	1
3.		Attempt any <u>THREE</u> of the following:	12
	a)	Find the points on the curve $y = x^3 + 3x^2 - 9x + 7$ at which tangents drawn are	04
	Ans	parallel to x – axis. $y = x^3 + 3x^2 - 9x + 7$	04
	7 1113	$\frac{dy}{dx} = 3x^2 + 6x - 9$	1
		$\frac{dx}{\therefore}$ tangent is parallel to x-axis	
		$\therefore \text{ slope of tangent} = \text{slope of } x\text{-axis}$	
		$\therefore \frac{dy}{dx} = 0$	1
		$\therefore 3x^2 + 6x - 9 = 0$	
		$\therefore x = 1 ; x = -3$	
		$\therefore y = 2 ; y = 34$	1
		\therefore points are $(1,2)$ and $(-3,34)$	1
	b)	Differentiate $\tan^{-1} \left(\frac{2x}{1-x^2} \right)$ w.r.t. $\sin^{-1} \left(\frac{2x}{1+x^2} \right)$	04
	Ans	Let $u = \tan^{-1} \left(\frac{2x}{1 - x^2} \right)$ and $v = \sin^{-1} \left(\frac{2x}{1 + x^2} \right)$	
		Put $x = \tan \theta \Rightarrow \tan^{-1} x = \theta$	
		$u = \tan^{-1} \left(\frac{2 \tan \theta}{1 - \tan^2 \theta} \right)$	1/2
		$u = \tan^{-1} \left(\tan 2\theta \right)$	1/2
		$u=2\theta$	
		$u = 2 \tan^{-1} x$	
L		Paga No O	(/21

SUMMER - 2018 EXAMINATION

	1	<u> </u>	
Q. No.	Sub Q. N.	Answer	Marking Scheme
3.	b)	$\frac{du}{dx} = \frac{2}{1+x^2}$	1/2
		$v = \sin^{-1}\left(\frac{2x}{1+x^2}\right)$	
		$v = \sin^{-1}\left(\frac{2\tan\theta}{1+\tan^2\theta}\right)$	1/2
		$v = \sin^{-1}(\sin 2\theta)$	1/2
		$v = 2\theta$ $v = 2 \tan^{-1} x$	
			1/2
		$\frac{dv}{dx} = \frac{2}{1+x^2}$	72
		$\therefore \frac{du}{dv} = \frac{\frac{du}{dx}}{\frac{dv}{dx}} = \frac{\frac{2}{1+x^2}}{\frac{2}{1+x^2}}$ $\therefore \frac{du}{dv} = 1$	1/2
		$\therefore \frac{du}{dv} = 1$	1/2
		$ \begin{aligned} OR \\ \text{Let } u &= \tan^{-1} \left(\frac{2x}{1 - x^2} \right) \\ \therefore \frac{du}{dx} &= \frac{1}{1 + \left(\frac{2x}{1 - x^2} \right)^2} \times \left[\frac{\left(1 - x^2 \right) 2 - 2x \left(-2x \right)}{\left(1 - x^2 \right)^2} \right] \end{aligned} $	1
		$ \frac{du}{dx} = \frac{\left(1 - x^2\right)^2}{\left(1 - x^2\right)^2 + 4x^2} \left[\frac{2 + 2x^2}{\left(1 - x^2\right)^2} \right] $ $ \frac{du}{dx} = \frac{2 + 2x^2}{\left(1 - x^2\right)^2 + 4x^2} $ $ \frac{du}{dx} = \frac{2\left(1 + x^2\right)}{\left(1 - x^2\right)^2 + 4x^2} $ $ \frac{du}{dx} = \frac{2\left(1 + x^2\right)}{\left(1 - x^2\right)^2 + 4x^2} $ $ \frac{du}{dx} = \frac{2\left(1 + x^2\right)}{\left(1 + x^2\right)^2} = \frac{2}{1 + x^2} $	1/2
		$\therefore v = \sin^{-1}\left(\frac{2x}{1+x^2}\right)$	

SUMMER – 2018 EXAMINATION

Semmi			
Subject Name: Applied Mathematics	Model Answer	Subject Code:	22224

Q. No.	Sub Q. N.	Answer	Marking Scheme
3.	b)	г, , э	1
3.	0)	$\therefore \frac{dv}{dx} = \frac{1}{\sqrt{1 + (1 + x^2)^2 - 2x(2x)}} \left \frac{(1 + x^2)^2 - 2x(2x)}{(1 + x^2)^2} \right $	1
		$\therefore \frac{dv}{dx} = \frac{1}{\sqrt{1 - \left(\frac{2x}{1 + x^2}\right)^2}} \times \left[\frac{\left(1 + x^2\right)2 - 2x(2x)}{\left(1 + x^2\right)^2}\right]$	
		$\therefore \frac{dv}{dx} = \frac{\left(1 + x^2\right)}{\sqrt{\left(1 + x^2\right)^2 - 4x^2}} \left[\frac{2 - 2x^2}{\left(1 + x^2\right)^2} \right]$	
		$\therefore \frac{dv}{dx} = \frac{\left(2 - 2x^2\right)}{\left(1 + x^2\right)\sqrt{\left(1 + x^2\right)^2 - 4x^2}}$	
		$\therefore \frac{dv}{dx} = \frac{2(1-x^2)}{(1+x^2)(1-x^2)}$	
		$\therefore \frac{dv}{dx} = \frac{2}{\left(1+x^2\right)}$	1/2
		$\therefore \frac{du}{dv} = \frac{\frac{du}{dx}}{\frac{dv}{dx}} = \frac{\frac{2}{(1+x^2)}}{\frac{2}{(1+x^2)}}$	1/2
		$\therefore \frac{du}{dv} = 1$	1/2
	c)	Find $\frac{dy}{dx}$ if $y = (\log x)^x + x^{\cos^{-1} x}$	04
	Ans	Let $u = (\log x)^x$	1.0
		$\log u = x \log (\log x)$	1/2
		$\frac{1}{u}\frac{du}{dx} = x\frac{1}{\log x}\frac{1}{x} + \log(\log x)$	1
		$\therefore \frac{du}{dx} = u \left(\frac{1}{\log x} + \log \left(\log x \right) \right)$	1/
		$\therefore \frac{du}{dx} = \left(\log x\right)^x \left[\frac{1}{\log x} + \log\left(\log x\right)\right]$	1/2
		Let $v = x^{\cos^{-1}x}$	4./
		$\log v = \cos^{-1} x \log x$	1/2

SUMMER – 2018 EXAMINATION

Subject Code: **Model Answer Subject Name: Applied Mathematics**

	0.1		
Q. No.	Sub Q. N.	Answer	Marking Scheme
3.	c)	$\frac{1}{v}\frac{dv}{dx} = \cos^{-1}x\left(\frac{1}{x}\right) + \log x\left(\frac{-1}{\sqrt{1-x^2}}\right)$	1/2
		$\therefore \frac{dv}{dx} = x^{\cos^{-1}x} \left[\left(\cos^{-1} x \right) \left(\frac{1}{x} \right) - \log x \left(\frac{1}{\sqrt{1 - x^2}} \right) \right]$ $\therefore dy = du + dv$	1/2
		$\therefore \frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx}$ $\therefore \frac{dy}{dx} = (\log x)^x \left[\frac{1}{\log x} + \log(\log x) \right] + x^{\cos^{-1} x} \left[(\cos^{-1} x) \left(\frac{1}{x} \right) - \log x \left(\frac{1}{\sqrt{1 - x^2}} \right) \right]$	1/2
	d)	Evaluate: $\int \frac{\sec x \cos ecx}{\log \tan x} dx$	04
	Ans	$\int \frac{\sec x \cos ecx}{\log \tan x} dx$ Put $\log \tan x = t$	1
		$\therefore \frac{1}{\tan x} \sec^2 x dx = dt$ $\therefore \frac{\cos x}{\cos x} = \frac{1}{\sin x} dx = dt$	
		$\therefore \frac{\cos x}{\sin x} \frac{1}{\cos^2 x} dx = dt$ $\therefore \sec x \cos ecx dx = dt$	1
		$=\int \frac{1}{t} dt$	1/2
		$= \log t + c$ $= \log (\log (\tan x)) + c$	1 1/2
			72
4.		Attempt any <u>THREE</u> of the following:	12
	a)	Evaluate: $\int \frac{1}{2x^2 + 3x + 1} dx$	04
	Ans	$\int \frac{1}{2x^2 + 3x + 1} dx$	
		$= \frac{1}{2} \int \frac{1}{x^2 + \frac{3}{2}x + \frac{1}{2}} dx$	1/2
<u> </u>	1	Dogo No O	

SUMMER – 2018 EXAMINATION

Subject Code: 2224 **Model Answer Subject Name: Applied Mathematics**

Q. No.	Sub Q. N.	Answer	Marking Scheme
4.	a)	Third term $= \left(\frac{1}{2} \times \frac{3}{2}\right)^2 = \frac{9}{16}$	
		$= \frac{1}{2} \int \frac{1}{x^2 + \frac{3}{2}x + \frac{9}{16} - \frac{9}{16} + \frac{1}{2}} dx$	1
		$= \frac{1}{2} \int \frac{1}{x^2 + \frac{3}{2}x + \frac{9}{16} - \frac{9}{16} + \frac{1}{2}} dx$ $= \frac{1}{2} \int \frac{1}{\left(x + \frac{3}{4}\right)^2 - \left(\frac{1}{4}\right)^2} dx$	1
		$= \frac{1}{2} \left[\frac{1}{2\left(\frac{1}{4}\right)} \log \left(\frac{x + \frac{3}{4} - \frac{1}{4}}{x + \frac{3}{4} + \frac{1}{4}} \right) \right] + c$	11/2
		$= \log\left(\frac{2x+1}{2x+2}\right) + c$ OR	
		$\int \frac{1}{2x^2 + 3x + 1} dx = \int \frac{1}{(2x+1)(x+1)} dx$	1/2
		Let $\frac{1}{(2x+1)(x+1)} = \frac{A}{2x+1} + \frac{B}{x+1}$ 1 = A(x+1) + B(2x+1)	
		$Put x = \frac{-1}{2}$	
		$\therefore A = 2$ Put $x = -1$	1/2
		$\therefore B = -1$ $1 \qquad 2 \qquad -1$	1/2
		$\frac{1}{(2x+1)(x+1)} = \frac{2}{2x+1} + \frac{-1}{x+1}$	1/2
		$\int \frac{1}{(2x+1)(x+1)} dx = \int \left(\frac{2}{2x+1} + \frac{-1}{x+1}\right) dx$	
		$= \frac{2\log(2x+1)}{2} - \log(x+1) + c$	1+1
		$= \log(2x+1) - \log(x+1) + c$	
		OR	

SUMMER – 2018 EXAMINATION

Q.	Sub	Amorrion	Marking
No.	Q. N.	Answer	Scheme
4.	a)	$\int \frac{1}{2x^2 + 3x + 1} dx$ Third term = $\frac{\left(M.T.\right)^2}{4\left(F.T.\right)} = \frac{9}{8}$	1/2
		$= \int \frac{1}{2x^2 + 3x + \frac{9}{8} - \frac{9}{8} + 1} dx$	1
		$= \int \frac{1}{\left(\sqrt{2}x + \frac{3}{\sqrt{8}}\right)^2 - \frac{1}{8}} dx$ $= \int \frac{1}{\left(\sqrt{2}x + \frac{3}{\sqrt{8}}\right)^2 - \left(\frac{1}{\sqrt{8}}\right)^2} dx$	1
			1/2
		$= \frac{1}{\sqrt{2}} \left[\frac{1}{2\left(\frac{1}{\sqrt{8}}\right)} \log \left(\frac{\sqrt{2}x + \frac{3}{\sqrt{8}} - \frac{1}{\sqrt{8}}}{\sqrt{2}x + \frac{3}{\sqrt{8}} + \frac{1}{\sqrt{8}}} \right) \right] + c$	1
		$= \log\left(\frac{2x+1}{2x+2}\right) + c$	
	b) Ans	Evaluate: $\int \frac{dx}{a^2 \sin^2 x + b^2 \cos^2 x}$ $\int \frac{dx}{a^2 \sin^2 x + b^2 \cos^2 x}$	04
		$= \int \frac{dx/\cos^2 x}{\frac{a^2 \sin^2 x + b^2 \cos^2 x}{\cos^2 x}}$	1/2
		$= \int \frac{\sec^2 x dx}{a^2 \tan^2 x + b^2}$ $Put \tan x = t$ $\therefore \sec^2 x dx = dt$	1/2
		$= \int \frac{dt}{a^2 t^2 + b^2}$ $\int dt$	1
		$= \int \frac{dt}{a^2 \left(t^2 + \frac{b^2}{a^2}\right)}$	1/2
	j		

SUMMER – 2018 EXAMINATION

Q.	Sub	Amorrion	Marking
No.	Q. N.	Answer	Scheme
4.	b)	$= \frac{1}{a^2} \int \frac{dt}{t^2 + \left(\frac{b}{a}\right)^2} = \frac{1}{a^2} \cdot \frac{1}{\frac{b}{a}} \tan^{-1} \left(\frac{t}{\frac{b}{a}}\right) + c$	1
		$= \frac{1}{ab} \tan^{-1} \left(\frac{a \tan x}{b} \right) + c$	1/2
		OR	
		$\int \frac{dx}{a^2 \sin^2 x + b^2 \cos^2 x}$	
		$= \int \frac{dx/\cos^2 x}{\frac{a^2 \sin^2 x + b^2 \cos^2 x}{\cos^2 x}}$	1/2
		$= \int \frac{\sec^2 x dx}{a^2 \tan^2 x + b^2}$ $Put \tan x = t$ $\therefore \sec^2 x dx = dt$	1/2
		$=\int \frac{dt}{a^2 t^2 + b^2}$	1
		$= \frac{1}{b} \tan^{-1} \left(\frac{at}{b} \right) \frac{1}{a} + c$	1½
		$= \frac{1}{ab} \tan^{-1} \left(\frac{a \tan x}{b} \right) + c$	1/2
	(c)	Evaluate: $\int x \cos ec^{-1}x dx$	04
	Ans	$\int x \cos ec^{-1}x dx$	
		$= \cos ec^{-1}x \int x dx - \int \left(\int x dx \frac{d}{dx} \cos ec^{-1}x \right) dx$	1/2
		$= \cos ec^{-1}x \cdot \frac{x^2}{2} - \int \frac{x^2}{2} \cdot \left(\frac{-1}{x\sqrt{x^2 - 1}}\right) \cdot dx$	1
		$= \cos ec^{-1}x \cdot \frac{x^2}{2} + \frac{1}{2} \int \frac{x}{\sqrt{x^2 - 1}} \cdot dx$	
		$= \cos ec^{-1}x \cdot \frac{x^2}{2} + \frac{1}{4} \int \frac{2x}{\sqrt{x^2 - 1}} \cdot dx$	1
		$= \cos ec^{-1}x \cdot \frac{x^2}{2} + \frac{1}{4}(2\sqrt{x^2 - 1}) + c$	1
		$= \cos ec^{-1}x \cdot \frac{x^2}{2} + \frac{1}{2}\left(\sqrt{x^2 - 1}\right) + c$	1/2
		Paga No 1	

SUMMER – 2018 EXAMINATION

	0.1		34.1.
Q. No.	Sub Q. N.	Answer	Marking Scheme
4.	d)	Evaluate: $\int \frac{1}{x(2-\log x)(2\log x - 1)} dx$	04
	Ans	$\int \frac{1}{x(2-\log x)(2\log x - 1)} dx$ $\int \frac{1}{x(2-\log x)(2\log x - 1)} dx$ $\int \frac{1}{(2-t)(2t-1)} dt$ $Put \log x = t$ $\therefore \frac{1}{x} dx = dt$	1/2
		$\int \frac{1}{(2-t)(2t-1)} dt$	1/2
		$\frac{1}{(2-t)(2t-1)} = \frac{A}{2-t} + \frac{B}{2t-1}$ $1 = A(2t-1) + B(2-t)$	
		$\therefore \text{ Put } t = 2 , A = \frac{1}{3}$	1/2
		Put $t = \frac{1}{2}$, $B = \frac{2}{3}$	1/2
		$\therefore \frac{1}{(2-t)(2t-1)} = \frac{\frac{1}{3}}{2-t} + \frac{\frac{2}{3}}{2t-1}$	
		$\int \frac{1}{(2-t)(2t-1)} dt = \int \left(\frac{\frac{1}{3}}{2-t} + \frac{\frac{2}{3}}{2t-1}\right) dt$	1/2
		$= -\frac{1}{3}\log[2-t] + \frac{2}{6}\log[2t-1] + c$	1
		$= -\frac{1}{3}\log[2 - \log x] + \frac{1}{3}\log[2\log x - 1] + c$	1/2
		$\int \frac{1}{x(2-\log x)(2\log x - 1)} dx$ $\begin{vmatrix} Put \log x = t \\ \therefore \frac{1}{x} dx = dt \end{vmatrix}$	1/2
		$\int \frac{1}{(2-t)(2t-1)} dt$	
		$= \int \frac{1}{-2t^2 + 5t - 2} dt$ $= \frac{-1}{2} \int \frac{1}{t^2 - \frac{5}{2}t + 1} dt$	
		$\frac{\iota^{-2}\iota^{+1}}{2}$	1/2

SUMMER - 2018 EXAMINATION

SUMME	LK – ZUIO EAAMIINATIUN		
Subject Name: Applied Mathematics	Model Answer	Subject Code:	22224

Q. No.	Sub Q. N.	Answer	Marking Scheme
4.	d)	$= \frac{-1}{2} \int \frac{1}{t^2 - \frac{5}{2}t + \frac{25}{16} - \frac{25}{16} + 1} dt$	1/2
		$= \frac{-1}{2} \int \frac{1}{t^2 - \frac{5}{2}t + \frac{25}{16} - \frac{25}{16} + 1} dt$ $= \frac{-1}{2} \int \frac{1}{\left(t - \frac{5}{4}\right)^2 - \left(\frac{3}{4}\right)^2} dt$	1
		$= \frac{-1}{2} \frac{1}{2\frac{3}{4}} \log \left \frac{t - \frac{5}{4} - \frac{3}{4}}{t - \frac{5}{4} + \frac{3}{4}} \right + c$	1
		$= \frac{-1}{3} \log \left \frac{t-2}{t-\frac{1}{2}} \right + c$	
		$= \frac{-1}{3} \log \left \frac{\log x - 2}{\log x - \frac{1}{2}} \right + c$	1/2
			04
	e)	Evaluate: $\int_{1}^{4} \frac{\sqrt[3]{9-x}}{\sqrt[3]{9-x} + \sqrt[3]{x+4}} dx$	04
	Ans	$I = \int_{1}^{4} \frac{\sqrt[3]{9 - x}}{\sqrt[3]{9 - x} + \sqrt[3]{x + 4}} dx (1)$	
		$I = \int_{1}^{4} \frac{\sqrt[3]{9 - (5 - x)}}{\sqrt[3]{9 - (5 - x)} + \sqrt[3]{(5 - x) + 4}} dx$	1
		$\therefore I = \int_{1}^{4} \frac{\sqrt[3]{x+4}}{\sqrt[3]{x+4} + \sqrt[3]{9-x}} dx - \dots (2)$	
		add (1) and (2), $I + I = \int_{1}^{4} \frac{\sqrt[3]{9 - x}}{\sqrt[3]{9 - x} + \sqrt[3]{x + 4}} dx + \int_{1}^{4} \frac{\sqrt[3]{x + 4}}{\sqrt[3]{x + 4} + \sqrt[3]{9 - x}} dx$	
		$\therefore 2I = \int_{1}^{4} \frac{\sqrt[3]{9-x} + \sqrt[3]{x+4}}{\sqrt[3]{9-x} + \sqrt[3]{x+4}} dx$	1
		$\therefore 2I = \int_{1}^{4} 1 \ dx$	
		$\therefore 2I = (x)_1^4$ $\therefore I = \frac{3}{2}$	1
		$\therefore I = \frac{3}{2}$	1

SUMMED 2018 EXAMINATION

SUMMI	2K – 2018 EXAMINATION		
Subject Name: Applied Mathematics	Model Answer	Subject Code:	22224

Q. No.	Sub Q. N.	Answer	Marking Scheme
5.		Attempt any <u>TWO</u> of the following:	12
	a)	Find the volume of the solid generated by revolving the ellipse $\frac{x^2}{9} + \frac{y^2}{4}$ about x – axis	06
	Ans	Consider $\frac{x^2}{9} + \frac{y^2}{4} = 1$	
		$\therefore y^2 = \frac{4}{9} \left(9 - x^2 \right)$	1
		Volume of solid $V = \pi \int_{-a}^{a} y^2 dx$	
		$V = \pi \int_{-3}^{3} \frac{4}{9} (9 - x^2) dx$ $\therefore V = 2\pi \int_{0}^{3} \frac{4}{9} (9 - x^2) dx$	1
		$\therefore V = 2\pi \int_0^3 \frac{4}{9} \left(9 - x^2\right) dx$	1
		$\therefore V = \frac{8\pi}{9} \left[9x - \frac{x^3}{3} \right]_0^3$	1
		$\therefore V = \frac{8\pi}{9} \left[\left(9(3) - \frac{3^3}{3} \right) - \left(9(0) - \frac{0^3}{3} \right) \right]$	1
		$V = 16\pi$ (Note: If student has considered/assumed other value than 1 and attempted)	1
		to solve the problem , give appropriate marks.	
	b)	Attempt the following:	06
	(i)	Form the diffrential equation by eliminating the arbitrary constants if	03
		$y = a\cos(\log x) + b\sin(\log x)$	
	Ans	$y = a\cos(\log x) + b\sin(\log x)$	
		$\therefore \frac{dy}{dx} = -a\sin(\log x)\frac{1}{x} + b\cos(\log x)\frac{1}{x}$	1
		$\therefore x \frac{dy}{dx} = -a \sin(\log x) + b \cos(\log x)$	
		$\therefore x \frac{d^2 y}{dx^2} + \frac{dy}{dx} = -a \cos(\log x) \frac{1}{x} - b \sin(\log x) \frac{1}{x}$	1
		$\therefore x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} = -\left(a\cos(\log x) + b\sin(\log x)\right)$	1/2
	<u> </u>	Dogo No 1	<u> </u>

SUMMER – 2018 EXAMINATION

22224 Subject Code: **Model Answer Subject Name: Applied Mathematics**

Q. No.	Sub Q. N.	Answer	Marking Scheme
5.	b)(i)	$\therefore x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} = -y$ $\therefore x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + y = 0$	1/2
	b)(ii)	Solve the differential equation: $\frac{dy}{dx} + y \tan x = \cos^2 x$	03
	Ans	$\frac{dy}{dx} + y \tan x = \cos^2 x$ Comparing with $\frac{dy}{dx} + Py = Q$	1/2
		$\therefore P = \tan x \text{and} Q = \cos^2 x$ $IF = e^{\int \tan x dx} = e^{\log(\sec x)} = \sec x$	1/2
		$\therefore y \cdot IF = \int Q \cdot IF dx + c$ $y \cdot \sec x = \int \cos^2 x \sec x dx + c$	
		$y \cdot \sec x = \int \cos x dx + c$ $y \cdot \sec x = \int \cos x dx + c$	1
	c)	$y \cdot \sec x = \sin x + c$	1
		In a single closed electrical circuit the current 'I' at time t is given by $E - RI - L \frac{dI}{dt} = 0$. Find the current I at time t, given that t=0, I=0 and	06
	Ans	L,R,E are constants.	
		$E - RI - L \frac{dI}{dt} = 0$ $\therefore \frac{dI}{dt} + \frac{R}{L}I = \frac{E}{L} \qquad \text{Comparing with } \frac{dy}{dx} + Py = Q$ $\therefore P = \frac{R}{L} \text{ and } Q = \frac{E}{L}$	1/2
		$IF = e^{\int \frac{R}{L} dt} = e^{\frac{R}{L}t}$	1
		$\therefore I \cdot IF = \int Q \cdot IF dt + c$ $I \cdot e^{\frac{R}{L}t} = \int \frac{E}{L} e^{\frac{R}{L}t} dt + c$	1
		$I \cdot e^{L} = \int \frac{1}{L} e^{L} dt + c$ $I \cdot e^{\frac{R}{L}t} = \frac{E}{L} \frac{e^{\frac{R}{L}t}}{\frac{R}{L}} + c$	1
		$I \cdot e^{\frac{R}{L}t} = \frac{E}{R}e^{\frac{R}{L}t} + c$	
		When $t = 0$, $I = 0$	

SUMMER – 2018 EXAMINATION

SUMMINI	EK - 2016 EXAMINATION		
Subject Name: Applied Mathematics	Model Answer	Subject Code:	22224

Q. No.	Sub Q. N.	Answer	Marking Scheme
5.	c)	$\therefore c = -\frac{E}{R}$	1
		$I \cdot e^{\frac{R}{L}t} = \frac{E}{R}e^{\frac{R}{L}t} - \frac{E}{R}$	1/2
		$I \cdot e^{\frac{R}{L}t} = \frac{E}{R} e^{\frac{R}{L}t} - \frac{E}{R}$ $I = \frac{E}{R} \left(1 - e^{-\frac{R}{L}t} \right)$	1
6.		Attempt any <u>TWO</u> of the following:	12
	a)	Attempt the following:	06
	(i)	Solve the following system of by equtions by Jacobi's -Iteration method. (Two iterations) $5x+2y+z=12$, $x+4y+2z=15$, $x+2y+5z=20$	03
	Ans	$x = \frac{1}{5} (12 - 2y - z)$	
		$x = \frac{1}{5}(12 - 2y - z)$ $y = \frac{1}{4}(15 - x - 2z)$ $z = \frac{1}{5}(20 - x - 2y)$	
		$z = \frac{1}{5}(20 - x - 2y)$	1
		Starting with $x_0 = y_0 = z_0 = 0$	
		$x_1 = 2.4$ $y_1 = 3.75$	
		$z_1 = 4$	1
		$x_2 = 0.1$	
		$y_2 = 1.15$	
		$z_2 = 2.02$	1
	a(ii)	Solve the following system of equation by using Gauss-Seidel method.	
		(Two iterations) 15x+2y+z=18, $2x+20y-3z=19$, $3x-6y+25z=22$	03
	Ans	$x = \frac{1}{15}(18 - 2y - z)$	
		$x = \frac{1}{15} (18 - 2y - z)$ $y = \frac{1}{20} (19 - 2x + 3z)$ $z = \frac{1}{25} (22 - 3x + 6y)$	
		$z = \frac{1}{2\pi}(22 - 3x + 6y)$	
		25 \	1
		Paga No 1'	

SUMMER – 2018 EXAMINATION

Subject Code: **Model Answer Subject Name: Applied Mathematics**

Q. No.	Sub Q. N.	Answer	Marking Scheme
6.	a)(ii)	Starting with $y_0 = z_0 = 0$	
		$x_1 = 1.2$	
		$y_1 = 0.83$	
		$z_1 = 0.935$	1
		$x_2 = 1.027$	
		$y_2 = 0.988$	
		$z_2 = 0.994$	1
	b)	Solve the following system of equations by using Gauss-elimination method	06
		6x - y - z = 19, $3x + 4y + z = 26$, $x + 2y + 6z = 22$	
	Ans	6x - y - z = 19	
		3x + 4y + z = 26	
		x + 2y + 6z = 22	
		6 10	
		6x - y - z = 19 $18x + 24y + 6z = 156$	
		3x + 4y + z = 26 and $x + 2y + 6z = 22$	
		+ $ -$	1 1
		$\therefore 3x + y = 15$	1+1
		66x + 22y = 330	
		17x + 22y = 134	
		49x = 196	1
		$\therefore x = 4$	1
		y = 3	1
		z = 2	1
		Note: In the above solution, first z is eliminated and then y is eliminated to find to value of x first. If in case the problem is solved by elimination of another unknow i. e., either first x or y, appropriate marks to be given as per above scheme of marking.	
			Jo 19/21

SUMMER – 2018 EXAMINATION

	C 1		
Q. No.	Sub Q. N.	Answer	Marking Scheme
6.	c)	Find the approximate root of the equation $x^4 - x - 10 = 0$, by Newton-Raphson	
		method(Carry out four iterations)	
	Ans	Let $f(x) = x^4 - x - 10$	
		f(1) = -10 < 0	
		f(1) = -10 < 0 $f(2) = 4 > 0$	1
		$f'(x) = 4x^3 - 1$	1
		Initial root $x_0=2$	
		$\therefore f'(2) = 31$	
		$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = 2 - \frac{f(2)}{f'(2)} = 1.871$	1
		$x_2 = 1.871 - \frac{f(1.871)}{f'(1.871)} = 1.856$	1
		$x_3 = 1.856 - \frac{f(1.856)}{f'(1.856)} = 1.856$	1
		$x_4 = 1.856 - \frac{f(1.856)}{f'(1.856)} = 1.856$	1
		OR	
		$\operatorname{Let} f(x) = x^4 - x - 10$	
		f(1) = -10 < 0 $f(2) = 4 > 0$	
		f(2) = 4 > 0	1
		$f'(x) = 4x^3 - 1$	1
		Initial root $x_0=2$	
		$\therefore f'(2) = 31$	
		$x_{i} = \frac{xf'(x) - [f(x)]}{f'(x)} = \frac{x(4x^{3} - 1) - [x^{4} - x - 10]}{4x^{3} - 1}$	
		$=\frac{3x^4+10}{4x^3-1}$	2
		$x_1 = 1.871$	1/2
		$x_1 = 1.856$	1/2
		$x_3 = 1.856$	1/2 1/2
		$x_4 = 1.856$	72
		OR	
_		Page No.1	10/21

SUMMER - 2018 EXAMINATION

Model Answer Subject Code: **Subject Name: Applied Mathematics**

Q. No.	Sub Q. N.	Answer	Marking Scheme
6.	c)	Let $f(x) = x^4 - x - 10$	
		f(-1) = -8 < 0	
		$f\left(-2\right) = 8 > 0$	1
		$f'(x) = 4x^3 - 1$	1
		Initial root $x_0 = -2$	
		$\therefore f'(-2) = -33$	
		$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = -2 - \frac{f(-2)}{f'(-2)} = -1.758$	1
		$x_2 = -1.758 - \frac{f(-1.758)}{f(-1.758)} = -1.700$	1
		$x_3 = -1.700 - \frac{f(-1.700)}{f'(-1.700)} = -1.697$	1
		$x_4 = -1.697 - \frac{f(-1.697)}{f(-1.697)} = -1.697$	1
		OR	
		Let $f(x) = x^4 - x - 10$	
		$f\left(-1\right) = -8 < 0$	1
		$f\left(-2\right) = 8 > 0$	1
		$f'(x) = 4x^3 - 1$	1
		Initial root $x_0 = -2$	
		$\therefore f'(-2) = -33$	
		$x_{i} = \frac{xf'(x) - [f(x)]}{f'(x)} = \frac{x(4x^{3} - 1) - [x^{4} - x - 10]}{4x^{3} - 1}$	
		$=\frac{3x^4+10}{4x^3-1}$	2
		$-\frac{4x^3-1}{}$	
		x = 1.759	1/2
		$ \begin{aligned} x_1 &= -1.758 \\ x_2 &= -1.700 \end{aligned} $	1/2
		$x_2 = -1.760$ $x_3 = -1.697$	1/2
		$x_4 = -1.697$	1/2
L	1	Paga No 2	<u> </u>

SUMMER – 2018 EXAMINATION

Subject Code: **Model Answer Subject Name: Applied Mathematics**

Q.	Sub	Answer	Marking
No.	Q. N.		Scheme
		Important Note In the solution of the question paper, wherever possible all the possible alternative methods of solution are given for the sake of convenience. Still student may follow a method other than the given herein. In such case, first see whether the method falls within the scope of the curriculum, and then only give appropriate marks in accordance with the scheme of marking.	

Page No.21/21