

smart grids & e-mobility

lesmodule 4

- 1 Beveiligingen: algemeenheden
- 2 Elementen van beveiligingsinstallaties
- 3 Beveiligingsrelais
- 4 Lijnbeveiligingen

Overstroomrelais

Tijdvertraagde overstroomrelais

Tijdvertraagde richtingsgevoelige overstroomrelais

Afstandsrelais

Beveiligingen met televerbinding

- 5 Automatische herinschakeling
- 6 Beveiliging van transformatoren
- 7 opdracht 3: luchtleidingen

- 1 Beveiligingen: algemeenheden
- 2 Elementen van beveiligingsinstallaties
- 3 Beveiligingsrelais
- 4 Lijnbeveiligingen
 Overstroomrelais
 Tijdvertraagde overstroomrelais
 Tijdvertraagde richtingsgevoelige overstroomrelai
 Afstandsrelais
 Beveiligingen met televerbinding
- 5 Automatische herinschakeling
- 6 Beveiliging van transformatoren
- opdracht 3: luchtleidingen

Beveiligingen: algemeenheden

Doel van beveiligingen

Beveiligingen dienen om de nadelige gevolgen van het optreden van een fout zo gering mogelijk te houden.

https://www.youtube.com/watch?v=D8EQPx-ptKk

Beveiligingen: algemeenheden

De belangrijkste vereisten van de beveiligingen om dit doel te bereiken zijn:

- bedrijfszekerheid
 - \rightarrow we willen kunnen vertrouwen op de beveiligingen (testprogramma!)
- 2 selectiviteit
 - \rightarrow enkel het door een fout getroffen deel van het net wordt afgeschakeld
- 3 snelheid
 - ightarrow gevolgen minder erg als de fout snel afgeschakeld wordt
- 4 onafhankelijkheid van de bedrijfstoestand
 - ightarrow verschillende vermogenstromen en veranderende netstructuur
- gevoeligheid
 - ightarrow ook de kleinste kortsluitstroom moet gedetecteerd worden
- 6 mogelijkheid tot reserve-beveiliging
 - ightarrow bij falen van een beveiliging realiseert een ander toestel de uitschakeling

- Beveiligingen: algemeenheder
- 2 Elementen van beveiligingsinstallaties
- Beveiligingsrelais
- 4 Lijnbeveiligingen
 Overstroomrelais
 Tijdvertraagde overstroomrelais
 Tijdvertraagde richtingsgevoelige overstroomrelai
 Afstandsrelais
 Beveiligingen met televerhinding
- 5 Automatische herinschakeling
- 6 Beveiliging van transformatoren
- 7 opdracht 3: luchtleidinger

Elementen van beveiligingsinstallaties

- detectie van fouten en geven van uitschakelbevel gebeurt door de beveiligingsrelais
 - → hier ligt de moeilijkheid! Treedt er een fout op? Welke vermogenschakelaars moeten bediend worden?
 - \rightarrow op basis van metingen van stroom en spanning
- de vermogenschakelaars of lastscheiders verzorgen de uitschakeling zelf

Elementen van beveiligingsinstallaties

Meetzijde van de beveiligingsrelais

- spanningen en stromen worden aangebracht via spannings- en stroomtransfo's
 - → amplitude van de gemeten grootheid verlagen, maar met:
 - een zo goed mogelijke evenredigheid
 - een zo klein mogelijke fase-afwijking

Voeding van de beveiligingsrelais

- voeding van de beveiligingsinstallatie moet uitermate betrouwbaar zijn!
 - gebruik van batterijen
 - beveiligingen die elkaars reserve zijn niet aansluiten op dezelfde voeding

- Beveiligingen: algemeenheder
- 2 Elementen van beveiligingsinstallaties
- 3 Beveiligingsrelais
- 4 Lijnbeveiligingen
 Overstroomrelais
 Tijdvertraagde overstroomrelais
 Tijdvertraagde richtingsgevoelige overstroomrelai
 Afstandsrelais
 Beveiligingen met televerbinding
- 5 Automatische herinschakeling
- 6 Beveiliging van transformatoren
- opdracht 3: luchtleidinger

Beveiligingsrelais

Indeling van beveiligingsrelais

- verbinding van het relais met het net
 - primair relais: netstroom loopt rechtstreeks door relais
 - secundair relais: aansluiting via spannings- en/of stroomtransformatoren
- verbinding van het relais met de schakelaar
 - direct relais: stroom geleverd door relais zelf doorloopt uitschakelspoel van de schakelaar
 - indirect relais: relais sluit contacten, hulprelais levert stroom voor uitschakelspoel

Beveiligingsrelais

Indeling van beveiligingsrelais

- werkingsprincipe van het relais
 - elektromechanisch relais (verouderd)
 - analoge (elektronische) relais (verouderd)
 - digitale of numerieke relais
- meetprincipe van het relais
 - overstroomrelais: stromen ingelezen op één plaats
 - afstandsrelais: stromen én spanningen ingelezen zodat de afstand tot de fout kan geschat worden
 - differentieelrelais: meetwaarden op verschillende plaatsen en deze onderling vergelijken

Beveiligingsrelais

voorbeeld functionaliteiten van een digitaal relais

- Beveiligingen: algemeenheder
- 2 Elementen van beveiligingsinstallaties
- 3 Beveiligingsrelais
- 4 Lijnbeveiligingen

Overstroomrelais

Tijdvertraagde overstroomrelais

Tijdvertraagde richtingsgevoelige overstroomrelais

Afstandsrelais

Beveiligingen met televerbinding

- 6 Automatische herinschakeling
- 6 Beveiliging van transformatoren
- 7 opdracht 3: luchtleidinger

Lijn

Lijnen zijn de netelementen die als verbinding dienen tussen geografisch gescheiden netelementen. Er zijn twee types: luchtlijnen en kabels.

radiaal net gevoed vanuit één punt

beveiligingsprincipes (algemeen):

- selectiviteit: enkel en alleen het door een fout getroffen deel van de installatie wordt afgeschakeld
- redundantie: bij falen van een beveiligingstoestel moet een ander toestel de uitschakeling realiseren

radiaal net gevoed vanuit één punt beveiligen

- 1 Beveiligingen: algemeenheden
- 2 Elementen van beveiligingsinstallaties
- 3 Beveiligingsrelais
- 4 Lijnbeveiligingen

Overstroomrelais

Tijdvertraagde overstroomrelais
Tijdvertraagde richtingsgevoelige overstroomrelais
Afstandsrelais
Beveiligingen met televerbinding

- 5 Automatische herinschakeling
- 6 Beveiliging van transformatoren
- 7 opdracht 3: luchtleidingen

Overstroomrelais

radiaal net gevoed vanuit één punt: grootte van de kortsluitstroom afhankelijk van de plaats van de kortsluiting

 \rightarrow hoe dichter bij de voeding, hoe groter de kortsluitstroom

Overstroomrelais

hoe dichter bij de voeding, hoe groter de kortsluitstroom

→ selectieve beveiliging realiseren d.m.v. niet-vertraagde overstroomrelais (met verschillende instelwaarden)

Overstroomrelais

bezwaren bij dit principe:

- grootte van de kortsluitstroom is meestal afhankelijk van de exploitatieomstandigheden
- moeilijk onderscheid te maken tussen een kortsluiting op het einde van een sectie en een kortsluiting in het begin van de volgende sectie
- foutimpedantie kan de bepaling van de foutplaats vervalsen

- 1 Beveiligingen: algemeenheden
- 2 Elementen van beveiligingsinstallaties
- 3 Beveiligingsrelais
- 4 Lijnbeveiligingen

Overstroomrelais

Tijdvertraagde overstroomrelais

Tijdvertraagde richtingsgevoelige overstroomrelais Afstandsrelais

- Beveiligingen met televerbinding
- 5 Automatische herinschakeling
- 6 Beveiliging van transformatoren
- 7 opdracht 3: luchtleidingen

Tijdvertraagde overstroomrelais

realiseren van selectiviteit én redundantie via tijdvertraagde overstroombeveiligingen

radiaal net gevoed vanuit één punt beveiligen met tijdvertraagde overstroomrelais

- 1 Beveiligingen: algemeenheden
- 2 Elementen van beveiligingsinstallaties
- 3 Beveiligingsrelais
- 4 Lijnbeveiligingen

Overstroomrelais

Tijdvertraagde overstroomrelais

Tijdvertraagde richtingsgevoelige overstroomrelais

Afstandsrelais

Beveiligingen met televerbinding

- 5 Automatische herinschakeling
- 6 Beveiliging van transformatoren
- opdracht 3: luchtleidingen

overgang naar ring met éénzijdige voeding: parallelle feeders

selectiviteit gewenst: elke parallelle kabel moet apart ontkoppeld kunnen worden

→ beveiligingstoestellen aan begin én einde van beide kabels

overgang naar ring met éénzijdige voeding: parallelle feeders

selectiviteit gewenst: elke parallelle kabel moet apart ontkoppeld kunnen worden

- → beveiligingstoestellen aan begin én einde van beide kabels
- bij fout in één van beide kabels vloeit er foutstroom door elk van de vier beveiligingen!

overgang naar ring met éénzijdige voeding: parallelle feeders

selectiviteit gewenst: elke parallelle kabel moet apart ontkoppeld kunnen worden

- bij fout in één van beide kabels vloeit er foutstroom door elk van de vier beveiligingen
- → selectiviteit kan niet gegarandeerd worden!
- → onmogelijk (met zekerheid) de niet-getroffen kabel in dienst te houden.

overgang naar ring met éénzijdige voeding: parallelle feeders

selectiviteit gewenst: elke parallelle kabel moet apart ontkoppeld kunnen worden

- selectiviteit kan niet gegarandeerd worden met enkel tijdvertraagde overstroombeveiligingen
- oplossing: beveiligingstoestellen 2 en 4
 richtingsgevoelige overstroombeveiligingen
 maken
- → deze reageren enkel wanneer de vermogenstroom naar één specifieke kant gaat (aangeduid met pijlen)

overgang naar ring met éénzijdige voeding: parallelle feeders

→ oplossing: beveiligingstoestellen 2 en 4 richtingsgevoelige overstroombeveiligingen met kleinere tijdsvertraging dan 1 en 3

overgang naar ring met éénzijdige voeding: parallelle feeders

- → oplossing: beveiligingstoestellen 2 en 4 richtingsgevoelige overstroombeveiligingen met kleinere tijdsvertraging dan 1 en 3
- toestel 2 detecteert een foutstroom in de richting waarvoor deze gevoelig is en schakelt uit

overgang naar ring met éénzijdige voeding: parallelle feeders

- → oplossing: beveiligingstoestellen 2 en 4 richtingsgevoelige overstroombeveiligingen met kleinere tijdsvertraging dan 1 en 3
- toestel 2 detecteert een foutstroom in de richting waarvoor deze gevoelig is en schakelt uit
- er vloeit geen foutstroom meer door toestellen
 en 4 (dus zij onderbreken niet)

overgang naar ring met éénzijdige voeding: parallelle feeders

- oplossing: beveiligingstoestellen 2 en 4
 richtingsgevoelige overstroombeveiligingen
 met kleinere tiidsvertraging dan 1 en 3
- toestel 2 detecteert een foutstroom in de richting waarvoor deze gevoelig is en schakelt uit
- er vloeit geen foutstroom meer door toestellen
 en 4 (dus zij onderbreken niet)
- toestel 1 onderbreekt de resterende foutstroom
- de voeding van het onderliggende net is niet onderbroken geweest!

Oefening: middenspanningsring met eenzijdige voeding

Oefening: middenspanningsring met eenzijdige voeding

Zorg ervoor dat elke fout op een lijn selectief afgeschakeld wordt!

- duid de eventuele richtingsgevoeligheid van de beveiligingstoestellen aan
- plaats tijdvertragingen bij de beveiligingstoestellen: $t_a < t_b < t_c < \dots$

andere types lijnbeveiligingen

⚠ het stapelen van de tijdvertragingen kan voor onaanvaardbaar lange uitschakeltijden zorgen!

er zijn alternatieven ontwikkeld waarbij men niet (of minder lang) moet wachten:

- afstandsrelais
- beveiligingen met televerbinding
 - afstandsbeveiligingen met televerbinding
 - differentieelbeveiliging
 - communicerende richtingsrelais
 - fasevergelijkingsbeveiliging

- 1 Beveiligingen: algemeenheden
- 2 Elementen van beveiligingsinstallaties
- 3 Beveiligingsrelais
- 4 Lijnbeveiligingen

Overstroomrelai:

Tijdvertraagde overstroomrelais

Tijdvertraagde richtingsgevoelige overstroomrelais

Afstandsrelais

Beveiligingen met televerbinding

- 5 Automatische herinschakeling
- 6 Beveiliging van transformatoren
- opdracht 3: luchtleidingen

afstandsrelais

∧ zowel stroom- als spanningsmeting!

basisidee:

- de impedantie kan bepaald worden $(\overline{\overline{l}})$
- de gemeten impedantie wordt vergeleken met de "normale" lijnimpedantie
- gemeten impedantie < normale lijnimpedantie
 ⇒ fout ligt in de te beveiligen zone
- naarmate fout dichterbij is: V↓ en I↑
- een afstandsrelais hoeft niet te wachten!
- redundantie voor andere lijnen via tijdsvertraging

- zone 1: ≤ 80% van de normale lijnimpedantie
 ⇒ onmiddellijk uitschakelen
- zone 2: 80% tot 120% normale lijnimpedantie ⇒≈ 0,2 s wachten om zeker te zijn dat de fout niet net in de volgende zone (onder B) ligt!
- zone 3: backup voor als onderste afstandsrelais in B faalt
- <u>A</u> afstandsrelais kan richtingsgevoelig gemaakt worden

- 1 Beveiligingen: algemeenheden
- 2 Elementen van beveiligingsinstallaties
- 3 Beveiligingsrelais
- 4 Lijnbeveiligingen

Overstroomrelais

Tijdvertraagde overstroomrelais

Tijdvertraagde richtingsgevoelige overstroomrelais

Beveiligingen met televerbinding

- 5 Automatische herinschakeling
- 6 Beveiliging van transformatoren
- 7 opdracht 3: luchtleidingen

beveiligingen met televerbinding

doel van televerbindingen: informatie van beide uiteinden van de lijn kunnen combineren om selectiviteit én snelheid te kunnen verbeteren

- afstandsbeveiligingen met televerbinding
 - ightarrow fout tot 100% kan sneller uitgeschakeld worden
- differentieelbeveiliging
 - \rightarrow fase per fase de stromen aan begin en einde van de lijn met elkaar vergelijken
- communicerende richtingsrelais
 - ightarrow gebruik maken van logische selectiviteit

logische selectiviteit

- elke beveiliging die een foutstroom ziet stuurt een wachtsignaal naar de meteen stroomopwaarts gelegen beveiliging
- elke beveiliging die geen wachtsignaal ontvangt schakelt snel uit

voorbeeld: gesloten lus met communicerende richtingsrelais: veel sneller! (tijdvertraging wordt behouden als backup)

beveiligingen met televerbinding

- fasevergelijkingsbeveiliging
 - normaal bedrijf: fasehoek van de stromen aan beide uiteinden van de lijn is dezelfde
 - fout op de lijn: stromen aan beide uiteinden van de lijn zijn in tegenfase
 - fout buiten de lijn: fasehoek van de stromen aan beide uiteinden van de lijn is dezelfde

Geen fout

Fout op de lijn

Fout buiten de lijn

- Beveiligingen: algemeenheder
- 2 Elementen van beveiligingsinstallaties
- 3 Beveiligingsrelais
- 4 Lijnbeveiligingen
 Overstroomrelais
 Tijdvertraagde overstroomrelais
 Tijdvertraagde richtingsgevoelige overstroomrelais
 Afstandsrelais
 Beveiligingen met televerbinding
- 5 Automatische herinschakeling
- 6 Beveiliging van transformatoren
- 7 opdracht 3: luchtleidinger

Algemeenheden

een groot gedeelte van de storingen op het transmissienet is van voorbijgaande aard (> 90% bij luchtlijnen)

⇒ we kunnen (na automatisch uitschakelen) automatisch herinschakelen overwegen

voowaarden:

- uitschakeling moet zo snel mogelijk gebeuren (zo weinig mogelijk ionisatie van de lucht creëren)
- herinschakeling mag niet te snel gebeuren (tijd nodig voor deïonisatie)
- 3 onderbrekingstijd mag niet te lang zijn (stabiliteit van het net bewaren + verbruikers niet spanningsloos plaatsen)

Snelle enkelfasige herinschakeling

schakelaars in hoogspanningsnetten: afzonderlijke bediening van de polen mogelijk

- ⇒ indien enkelfasige fout:
 - getroffen fase wordt gedurende \sim 0,3 s onderbroken
 - twee niet-getroffen fasen worden niet onderbroken!

aan beide uiteinden van de lijn zelfde uitschakeltijd nodig

- → opletten bij afstandsrelais, 2 mogelijkheden:
 - snelle uitschakeling voor 100% lijnlengte i.p.v. tot 80% (enkel bij enkelfasige fout, geen wijziging bij meerfasige fout)
 verlies van selectiviteit mogelijk
 - tele-verbinding gebruiken

Snelle driefasige herinschakeling

meerdere fasen bestrokken bij de fout ⇒ driefasige uitschakeling

voor automatische herinschakeling moet er gelijktijdigheid zijn aan beide uiteinden!

 \Rightarrow televerbinding is dus noodzakelijk

★ gevaar op verlies van synchronisme

 \Rightarrow snellere herinschakeling (0,15 à 0,2s)

Schakelcyclus

- 1 Bij éénfasige fout is er een éénpolige uitschakeling; bij meerfasige fout is er een driefasige uitschakeling.
- 2 De uitgeschakelde polen sluiten na een ingestelde tijd (max 0,3s).
- 3 De eerste 15 à 30 seconden na een fout is het herinschakelautomatisme geblokkeerd; elke fout die door de beveiliging in deze periode wordt geïdentificeerd als op de lijn zijnde, wordt driefasig en definitief uitgeschakeld.

- Beveiligingen: algemeenheder
- 2 Elementen van beveiligingsinstallaties
- 3 Beveiligingsrelais
- 4 Lijnbeveiligingen
 Overstroomrelais
 Tijdvertraagde overstroomrelais
 Tijdvertraagde richtingsgevoelige overstroomrelai
 Afstandsrelais
 Beveiligingen met televerbinding
- 5 Automatische herinschakeling
- 6 Beveiliging van transformatoren
- 7 opdracht 3: luchtleidinger

- transformator is een belangrijk en duur netelement
- vermogenschakelaars aan hoogspannings- en laagspanningszijde zijn dichtbij opgesteld
 - ightarrow geen televerbinding nodig voor differentieelbeveiliging
- zeer grote transformatoren (> 15 MVA) zijn uitgerust met het volledige gamma beveiligingen
- kleinere transformatoren hebben sterk vereenvoudigde beveiligingen

verschillende types beveiligingen:

- 1 beveiligingen tegen interne fouten
- beveiligingen tegen overbelasting
- 3 reservebeveiliging tegen externe fouten

beveiligingen tegen interne fouten

- koeling: ventilatoren, waterpompen op oliekoelers, circulatiepompen, ...worden bewaakt
- Buchholz-beveiliging: gasvorming in koelolie detecteren

 differentieelbeveiliging: kortsluiting tussen fasen, kortsluting tussen windingen, enkelfasige aardsluitingen, isolatiefouten tussen primaire en secundaire

beveiligingen tegen interne fouten

schematische voorstelling van een differentieelbeveiliging van een ster-driehoektransformator

beveiligingen tegen overbelasting

- transformatoren hebben een grote thermische traagheid
- overbelastingen zijn dus gedurende beperkte tijd toelaatbaar
- maar elke overtemperatuur versnelt de de veroudering van de papierisolatie
- → overstroombeveiliging met verschillende vertragingen
- → thermisch beeldrelais

beveiligingen tegen uitwendige fouten

- uitwendige fouten moeten normaal onderbroken worden door andere beveiligingen
- eventueel toch extra backup voorzien
- → relais dat trager reageert dan de traagste normale beveiliging voor uitwendige fouten:
 - overstroomrelais met instelstroom iets lager dan de laagst mogelijke kortsluitstroom die niet door een andere beveiliging met zekerheid wordt uitgeschakeld
 - afstandsrelais met één enkele afstandsinstelling

- Beveiligingen: algemeenheder
- 2 Elementen van beveiligingsinstallaties
- Beveiligingsrelais
- 4 Lijnbeveiligingen
 Overstroomrelais
 Tijdvertraagde overstroomrelais
 Tijdvertraagde richtingsgevoelige overstroomrelais
 Afstandsrelais
 Beveiligingen met televerbinding
- 5 Automatische herinschakeling
- 6 Beveiliging van transformatoren
- 7 opdracht 3: luchtleidingen

opdracht 3: luchtleidingen [1/2]

- 1 lees de tekst *Van Dommelen hfdst 7 Openluchtleidingen.pdf* (beschikbaar op Toledo).
- 2 Beantwoord de vragen op de volgende slide.
- Oien een pdf-bestand met je antwoorden ("opdracht 3 - voornaam naam.pdf") in via Toledo.

opdracht 3: luchtleidingen [2/2]

- Waarom worden er voor secties boven 10 mm² enkel gevlochten geleiders gebruikt?
- Welke materialen en bijhorende constructiewijzen worden gebruikt voor openluchtlijnen?
- 3 Wat is de gangbare materiaalkeuze in België?
- Welke technische aspecten spelen mee bij het bepalen van de geleidersectie?
- Welke economische aspecten spelen mee bij het bepalen van de geleidersectie?
- 6 Welke voordelen bieden bundelgeleiders of meerdere draadstellen ten opzichte van één enkele geleider (met een equivalente sectie)?
- Wat is het corona-effect?
- 8 Waarom is het corona-effect ongewenst?
- 9 Hoe kan het corona-effect, bij een bepaalde spanning, vermeden worden?
- Welke positief effect kan het corona-effect hebben bij luchtlijnen?