	TP1 Multi - Blanchon Feyrit	Pt		АВС	D Note	
ı	Préparation du travail					Г
1	Compléter le schéma TI avec l'instrumentation et les liaisons nécessaires à la conception de la boucle de régulation.	2	Α		2	2
2	Quel est le nom de la grandeur réglée ?	1	Α	_	0,5	5
3	Quel est le principe utilisé pour mesurer la grandeur réglée ?	1	D		0,025	5
4	Quelle est la grandeur réglante ?	1	D	_	0,025	5
5	Donner une grandeur perturbatrice.	1	Α		0,5	5
6	Etablir le schéma de câblage complet en tenant compte de la nature des signaux utilisés. Prévoir les convertisseurs, alimentations, générateurs nécessaires. Faire apparaître les polarités.	1	Α		1	1
II.	Etude du procédé					
1	Paramétrer les entrées-sorties de votre régulateur en fonction de la nature des signaux utilisés.	1	Α		1	1
2	Tracer la caractéristique statique de votre procédé. On prendra au moins 6 mesures (3 pour les régulations de température et niveau).	1	Α		1	1
3	En déduire le gain statique du procédé autour du point de fonctionnement.	1	D		0,05	5
4	En déduire le sens d'action à régler sur le régulateur.	1	В		0,75	5
5	Déterminer le modèle de Broïda du procédé, en faisant un échelon de 10% autour du point de fonctionnement.	3	D		0,15	5
III.	Etude du régulateur			_	_	
1	Déterminer la structure interne (parallèle, série ou mixte) du correcteur PID utilisé par Lintools.	2	D		0,075	5
2	En déduire le réglage du régulateur en utilisant le tableau de réglage fourni dans le cours.	2	D		0,075	5
IV.	Performances et optimisation					
1	Programmer votre régulateur pour assurer le fonctionnement de la régulation.	1	D		0,05	5
2	Mesurer les performances de votre régulation en réponse à un échelon de consigne de 10%. On mesurera le temps de réponse à 10%, la valeur du premier dépassement et la précision relative.	2	D		0,075	5
3	Améliorer votre réglage pour réduire au maximum la valeur du temps de réponse. On donnera le nom et la valeur des paramètres modifiés.	1	D		0,05	5
4	Mesurer à nouveau les performances de votre régulation, comparer les avec celles obtenues à la question précédente.	2	D		0,075	
			Note	e sur : 20	7,4	4

TP MULTIBOUCLE

1-

2-Grandeur réglée :La température en sortie

Le principe utilisé est que si la pression augmente alors la température augmente.

4-Grandeur réglante: C'est la puissance de l'échangeur.

5- Grandeur perturbatrice :Le débit d'eau froide ou FIT2

6-

II. Étude du procédé

1-

sortie:

Op (%)	Pv (%)
0	20
50	38
100	51,8

3-Le gain statique =delta s / delta e=100/51,8=1,93

4Le sens d'action du régulateur est inverse car quand x augmente, y augmente.

5-

On sait $G(p) = Ke^-t/1+Tp$

III. Étude du régulateur

- 1-La structure interne est en série
- 2-Sachant que nous avons un modèle stable et que notre structure interne est en série, nous pouvons dire que A=100/Xp=0,83/k*kr

IV. Performances et optimisation

- 1-Je ne sais pas
- 2-Je ne sais pas
- 3-Pour réduire au maximum le temps de réponse, nous avons réduit Ti et Td.

4-Je ne sais pas