

Session 5: Sigma Protocols and Zero-Knowledge

Yehuda Lindell Bar-llan University

Zero Knowledge

- Prover P, verifier V, language L
- ▶ P proves that $x \in L$ without revealing anything
 - Completeness: V always accepts when honest P and V interact
 - Soundness: V accepts with negligible probability when x∉L, for any P*
 - Computational soundness: only holds when P* is polynomial-time
- Zero-knowledge:
 - There exists a simulator S such that S(x) is indistinguishable from a real proof execution

ZK Proof of Knowledge

- Prover P, verifier V, relation R
- P proves that it knows a witness w for which (x,w)∈R without revealing anything
 - The proof is zero knowledge as before
 - There exists an extractor K that obtains w such that (x,w)∈R from any P* with the same probability that P* convinces V
- Equivalently:
 - The protocol securely computes the functionality

$$f_{zk}((x,w),x) = (-,R(x,w))$$

Zero Knowledge

- An amazing concept; everything can be proven in zero knowledge
- Central to fundamental feasibility results of cryptography (e.g., GMW)
- But, can it be efficient?
 - It seems that zero-knowledge protocols for "interesting languages" are complicated and expensive
- Zero knowledge is often avoided at significant cost

Sigma Protocols

- A way to obtain efficient zero knowledge
 - Many general tools
 - Many interesting languages can be proven with a sigma protocol

An Example - Schnorr DLOG

- Let G be a group of order q, with generator g
- ▶ P and V have input $h \in G$, P has w such that $g^w = h$
- P proves that to V that it knows $DLOG_g(h)$
 - P chooses a random r and sends $a=g^r$ to V
 - V sends P a random e∈{0,1}^t
 - P sends z=r+ew mod q to V
 - V checks that $g^z = ah^e$
- Completeness
 - $\circ g^z = g^{r+ew} = g^r(g^w)^e = ah^e$

Schnorr's Protocol

Proof of knowledge

- Assume P can answer two queries
 e and e' for the same a
- Then, have $g^z = ah^e$, $g^{z'} = ah^{e'}$
- Thus, $g^zh^{-e} = g^{z'}h^{-e'}$ and $g^{z-z'}=h^{e-e'}$
- Therefore $h = q^{(z-z')/(e-e')}$
- That is: DLOGg(h) = (z-z')/(e-e')

Conclusion:

 If P can answer with probability greater than 1/2^t, then it must know the dlog

Schnorr's Protocol

- What about zero knowledge? Seems not...
- Honest-verifier zero knowledge
 - Choose a random **z** and **e**, and compute $\mathbf{a} = \mathbf{g}^{\mathbf{z}}\mathbf{h}^{-\mathbf{e}}$
 - Clearly, (a,e,z) have same distribution, and $g^z=ah^e$
- This is not very strong, but we will see that it yields efficient general ZK

Definitions

- Sigma protocol template
 - Common input: P and V both have x
 - Private input: P has w such that (x,w)∈R
 - Protocol:
 - P sends a message a
 - V sends a <u>random</u> t-bit string e
 - P sends a reply z
 - V accepts based solely on (x,a,e,z)

Definitions

- Completeness: as usual
- Special soundness:
 - There exists an algorithm A that given any x and pair of transcripts (a,e,z),(a,e',z') with e≠e' outputs w s.t. (x,w)∈R
- Special honest-verifier ZK
 - There exists an M that given x and e outputs (a,e,z) which is distributed exactly like a real execution where V sends e

Sigma Protocol DH Tuple

Relation R of Diffie-Hellman tuples

- $(g,h,u,v) \in R$ iff exists w s.t. $u=g^w$ and $v=h^w$
- Useful in many protocols

Protocol

- P chooses a random r and sends a=g^r, b=h^r
- V sends a random e
- P sends z=r+ew mod q
- V checks that g^z=au^e, h^z=bv^e

Sigma Protocol DH Tuple

- Completeness: as in DLOG
- Special soundness:
 - Given (a,b,e,z),(a,b,e',z'), we have g^z=au^e,g^{z'}=au^{e'},h^z=bv^e,h^{z'}=bv^{e'} and so like in DLOG on both
 - w = (z-z')(e-e')

Special HVZK

- Given (g,h,u,v) and e, choose random z and compute
 - $a = g^z u^{-e}$
 - $b = h^z v^{-e}$

Basic Properties

- Any sigma protocol is an interactive proof with soundness error 2^{-t}
- Properties of sigma protocols are invariant under parallel composition
- Any sigma protocol is a proof of knowledge with error 2^{-t}
 - The difference between the probability that P* convinces V and the probability that K obtains a witness is at

most 2^{-t}

Tools for Sigma Protocols

- Prove compound statements
 - AND, OR, subset
- ZK from sigma protocols
 - Can first make a compound sigma protocol and then compile it
- ZKPOK from sigma protocols

AND of Sigma Protocols

- To prove the AND of multiple statements
 - Run all in parallel
 - Can use the same verifier challenge e in all
- Sometimes it's possible to do better than this
 - Statements can be batched
 - E.g. proving that many tuples are DDH can be done in much less time than running all
 - Batch all into one tuple and prove

This is more complicated

 Given two statements and two appropriate Sigma protocols, wish to prove that at least one is true, without revealing which

The solution – an ingenious idea from [CDS]

- Using the simulator, if e is known ahead of time it is possible to cheat
- We construct a protocol where the prover can cheat in one out of the two proofs

- The template for x_0 or x_1 :
 - P sends two first messages (a₀,a₁)
 - V sends a single challenge e
 - P replies with
 - Two challenges \mathbf{e}_0 , \mathbf{e}_1 s.t. $\mathbf{e}_0 \oplus \mathbf{e}_1 = \mathbf{e}_1$
 - Two final messages z_0, z_1
 - V accepts if $\mathbf{e}_0 \oplus \mathbf{e}_1 = \mathbf{e}$ and $(\mathbf{a}_0, \mathbf{e}_0, \mathbf{z}_0), (\mathbf{a}_1, \mathbf{e}_1, \mathbf{z}_1)$ are both accepting
- How does this work?

- \triangleright P sends two first messages (a₀,a₁)
 - **P** has a witness for x_0 (and not for x_1)
 - P chooses a random e_1 and runs SIM to get (a_1,e_1,z_1)
 - P sends (a₀,a₁)
- V sends a single challenge e
- Preplies with e_0,e_1 s.t. $e_0 \oplus e_1 = e$ and with z_0,z_1
 - P already has z_1 and can compute z_0 using the witness

Soundness

- P doesn't know a witness for x₁, so can only answer for a single e₁
- This means that \mathbf{e} defines a single challenge \mathbf{e}_0 , like in a regular proof

Special soundness

- Relative to first message $(\mathbf{a}_0, \mathbf{a}_1)$, and two different \mathbf{e}, \mathbf{e}' , at least one of $\mathbf{e}_0 \neq \mathbf{e}'_0$ or $\mathbf{e}_1 \neq \mathbf{e}'_1$ (because $\mathbf{e}_0 \oplus \mathbf{e}_1 = \mathbf{e}$ and $\mathbf{e}'_0 \oplus \mathbf{e}'_1 = \mathbf{e}'$)
- Thus, we will obtain two different continuations for at least one of the statements

Honest verifier ZK

- Can choose both e₀,e₁, so no problem
- Note: can carry out OR of different statements using different protocols

OR of Many Statements

Prove k out of n statements $x_1,...,x_n$

- A = set of indices that prover knows; others B
- Use secret sharing with threshold n-k
- Field elements $\alpha_1,...,\alpha_n$, polynomial **f** with free coefficient **s**
- Share of **s** for party P_i : $f(\alpha_1)$

Prover

- For every $i \in B$, prover generates (a_i, e_i, z_i) using SIM
- For every j∈A, prover generates a_j as in protocol
- Prover sends (a₁,...,a_n)

OR of Many Statements

- **Prover** sent $(a_1,...,a_n)$
- Verifier sends a random field element e∈ F
- ▶ **Prover** finds the polynomial **f** of degree n-k passing through all $(α_i,e_i)$ and (0,e) (for i ∈ B)
 - The prover computes $\mathbf{e}_{j} = \mathbf{f}(\alpha_{j})$ for every $\mathbf{j} \in \mathbf{A}$
 - The prover computes z_j as in the protocol, based on transcript a_j,e_j
- Soundness follows because there are | 7 possible vectors and the prover can only answer one

General Compound Statements

- This can be generalized to any monotone formula (meaning it contains AND/OR but no negations)
 - See Cramer, Damgård, Schoenmakers, Proofs of partial knowledge and simplified design of witness hiding protocols, CRYPTO'94.

The basic idea

 Have V first commit to its challenge e using a perfectly-hiding commitment

The protocol

- \circ **P** sends the 1st message α of the commit protocol
- V sends a commitment $c = Com_{\alpha}(e;r)$
- P sends a message a
- V sends (e,r)
- P checks that c=Com_α(e;r) and if yes sends a reply z
- V accepts based on (x,a,e,z)

Soundness:

 The perfectly hiding commitment reveals nothing about e and so soundness is preserved

Zero knowledge

- In order to simulate:
 - Send a' generated by the simulator, for a random e'
 - Receiver V's decommitment to e
 - Run the simulator again with e, rewind V and send a
 - Repeat until V decommits to e again
 - Conclude by sending z
- Analysis...

Question

 If computational soundness suffices, can we use a computationally-hiding commitment scheme?

No:

- Try to prove that cheating in the proof involves distinguishing commitments
- Receive a random commitment, and see if P* can cheat
 - The reduction fails because we only know if P* cheated after we opened the commitment

Pedersen Commitments

- Highly efficient perfectly-hiding
 commitments (2 exponentiations for string commit)
 - Parameters: generator g, order q
 - Commit protocol (commit to x):
 - Receiver chooses random z and sends h=g^k
 - Sender sends $c=g^rh^x$, for random r
 - Hiding:
 - For every x,y there exist r,s s.t. $r+kx = s+ky \mod q$
 - Binding:
 - If can find (x,r),(y,s) s.t. $g^rh^x=g^sh^y$, then k = (r-s)/(y-x) mod q

Efficiency of ZK

- Using Pedersen commitments, this costs only 5 additional group exponentiations
 - In Elliptic curve groups this is very little

- Is the previous protocol a proof of knowledge?
 - It seems not to be
 - The extractor for the Sigma protocol needs to obtain two transcripts with the same a and different e
 - The prover may choose its first message a differently for every commitment string, so if the extractor changes e, the prover changes a

- Solution: use a trapdoor (equivocal) commitment scheme
 - Given a trapdoor, it is possible to open the commitment to any value
- Pedersen has this property given the discrete log k of h, can decommit to any value
 - Commit to $x: c = g^r h^x$
 - To decommit to y, find s such that
 r+kx = s+ky
 - Compute $s = r + k(x y) \mod q$

The basic idea

 Have V first to its challenge e using a perfectlyhiding trapdoor (equivocal) commitment

The protocol

- **P** sends the 1st message α of the commit protocol
- V sends a commitment $c=Com_{\alpha}(e;r)$
- P sends a message a
- V sends (e,r)
- P checks that c=Com_α(e;r) and if yes sends the trapdoor and z
- V accepts if the trapdoor is correct and (x,a,e,z) is accepting

Why does this help?

- Zero-knowledge remains the same
- Extraction: after verifying the proof once, the extractor obtains k and can rewind back to the decommitment of c and send any (e',r')

Efficiency:

Just 6 exponentiations (very little)

ZK and Sigma Protocols

- We typically want zero knowledge, so why bother with sigma protocols?
 - We have many useful general transformations
 - · E.g., parallel composition, compound statements
 - The ZK and ZKPOK transformations can be applied on top of the above, so obtain transformed ZK
 - It is much harder to prove ZK than Sigma
 - ZK distributions and simulation
 - Sigma: only HVZK and special soundness

Using Sigma Protocols and ZK

- Prove that the El Gamal encryption (u,v) under public-key (g,h) is to the value m
 - By encryption definition u=g^r, v=h^r·m
 - ThUS (g,h,u,v/m) is a DH tuple
 - So, given (g,h,u,v,m), just prove that (g,h,u,v/m) is a DH tuple
- Database of ElGamal(K_i),E_{Ki}(T_i)
 - Can release T_i without revealing anything about T_i for j ≠ I

Efficient Coin Tossing

- P₁ chooses a random x, sends (g,h,g^r,h^rx)
- P₁ ZK-proves that it knows encrypted value
 - Suffices to prove that know discrete log of h
- $ightharpoonup P_2$ chooses a random \mathbf{y} and sends to \mathbf{P}_1
- $ightharpoonup P_1$ sends x (without decommitting)
- P₁ ZK-proves that encrypted value was x
- Both parties output x+y
- Cost: O(1) exponentiations

Pedersen Commitments

Recall the definition

- Parameters: generator g, order q
- Commit protocol (commit to x):
 - Receiver chooses random k and sends h=g^k
 - Sender sends $c=g^rh^x$, for random r

Prove Commitment Knowledge

- ▶ Relation: $((h,c),(x,r)) \in R$ iff $c=g^rh^x$
- Sigma protocol:
 - P chooses random α,β and sends $\mathbf{a}=\mathbf{h}^{\alpha}\mathbf{g}^{\beta}$
 - V sends a random e
 - P sends $\mathbf{u} = \alpha + \mathbf{e}\mathbf{x}$, $\mathbf{v} = \beta + \mathbf{e}\mathbf{r}$
 - V checks that hugv = ace
- Completeness:
 - $h^{u}g^{v} = h^{\alpha + ex}g^{\beta + er} = h^{\alpha}g^{\beta}(h^{x}g^{r})^{e} = ac^{e}$

Pedersen Commitment Proof

Special soundness:

- Given (a,e,u,v), (a,e',u',v'), we have $h^ug^v = ac^e$, $h^{u'}g^{v'} = ac^{e'}$ Thus, $h^ug^vc^{-e} = h^{u'}g^{v'}c^{-e'}$ and $h^{u-u'}g^{v-v'} = c^{e-e'}$
- Conclude: $\mathbf{x} = (\mathbf{u}-\mathbf{u'})(\mathbf{e}-\mathbf{e'})$ and $\mathbf{r} = (\mathbf{v}-\mathbf{v'})(\mathbf{e}-\mathbf{e'})$

$\frac{P((h,c),(x,r))}{a=h^{\alpha}g^{\beta}} \xrightarrow{e}$ $\frac{u=\alpha+ex,}{v=\beta+er}$ $h^{u}g^{v} \stackrel{?}{=} ac^{e}$

Special HVZK

Given (g,h,h,c) and e, choose random u,v and compute
 a = h^ug^vc^{-e}

Proof of Pedersen Value

- Prove that the Pedersen committed value is x
- ▶ Relation: $((h,c,x),(r)) \in R$ iff $c=g^rh^x$
 - Observe: $ch^{-x} = g^r$
 - Conclusion: just prove that you know the discrete log of ch-x
- Application: statistical coin tossing

Guillou-Quisquater

- Common input: RSA key (e,N), value y
- P proves that it knows x s.t. $x^e = y \mod N$
- Protocol
 - P chooses a random r and sends $\mathbf{a} = \mathbf{r}^{e} \mod \mathbf{N}$
 - V sends a random ε
 - P sends z=rx^ε mod N to V
 - V checks that $z^e = ay^{\epsilon}$
- Completeness:
 - $z^e = (rx^{\epsilon})^e = r^e(x^e)^{\epsilon} = ay^{\epsilon}$

Guillou-Quisquater

Special soundness:

- Given (a,ε,z) , (a,ε',z') , we have $z^e = ay^{\varepsilon}$, $z'^e = ay^{\varepsilon'}$
- Thus, $\mathbf{z}^{\mathbf{e}}\mathbf{y}^{-\epsilon} = \mathbf{z}'^{\mathbf{e}}\mathbf{y}^{-\epsilon'}$ and $\mathbf{z}^{\mathbf{e}}\mathbf{z}'^{-\mathbf{e}} = \mathbf{y}^{\epsilon-\epsilon'}$ and $\mathbf{y} = (\mathbf{z}\mathbf{z}'^{-1})^{\mathbf{e}/(\epsilon-\epsilon')}$
- Conclude: $x = (zz'^{-1})^{1/(\epsilon-\epsilon')}$

Special HVZK

Given (e,N,y) and ε, choose
 random z and compute a = z^ey^{-ε}

Not so Fast...

- To run special-soundness algorithm, need to compute $(zz'^{-1})^{1/(\epsilon-\epsilon')}$
 - This involves computing the inverse of $(\epsilon \epsilon')$ in the exponent
 - This requires knowing the order of the group
 - In RSA, this is $\emptyset(N)$ and is hard to compute!
- Likewise, the simulation requires computing

$$a = z^e y^{-\epsilon}$$

 This involves computing the inverse of ε which is hard

The Solution

• Choose ε randomly as 0 or 1

Special soundness

• Given (a,0,z), (a,1,z'), we have $z^e = a$, $z'^e = ay$ and so $z^e = z'^e/y$ implying that $y = z'^e/z^e$

Zero knowledge

- Given (e,N,y) and 0, choose random z and compute a = z^e
- Given (e,N,y) and 1, choose random z and compute a = ze/y

A Fundamental Difference

- This protocol has soundness of only ½
 - To get low soundness error (say 2⁻⁴⁰) need to repeat 40 times
 - These proofs are significantly more expensive
- In TCC 2010, it was shown that there are inherent difficulties going below soundness ½ in groups of hidden order

Non-Interactive ZK (ROM)

The Fiat-Shamir paradigm

- To prove a statement x
- Generate a, compute e=H(a,x), compute z
- Send (a,e,z)

Properties:

- Soundness: follows from random oracle property
- Zero knowledge: same
- Can achieve simulation-soundness (non malleability) by including unique sid in H

Commitments from Sigma

Hard relation R

• A generator G outputs $(x,w) \in R$ s.t. for every PPT algorithm A, $Pr[A(x) \in R]$ is negligible

Example

Output h=g^r for a random r (dlog relation)

Commitment Scheme

Commitment to a string e∈{0,1}^t

- Receiver samples a hard (x,w), and sends x
- Committer runs the sigma protocol simulator on (x,e) to get (a,e,z) and sends a

Decommitment:

- Committer sends (a,e,z)
- Decommitter verifies that is accepting proof for x

Hiding:

By HVZK, a is independent of e

Binding:

 Decommitting to two e,e' for the same a means finding w

Trapdoor Commitment

- The scheme is actually a trapdoor commitment scheme
 - Given w, can decommit to any value by running the real prover and not the simulator

Hash Functions

Need "strong" HVZK

- Simulator is given (e,z) and needs to find a
- This holds for many sigma protocols

Key for hash function

- A hard instance x of a hard relation
- Hash function
 - Upon input (e,z), let H(e,z)=a be the output of S(e,z)

Collision resistance

- Find (e,z),(e',z') s.t. H(e,z)=H(e',z')
- This gives (a,e,z),(a,e',z')

Summary

- Don't be afraid of using zero knowledge
 - Using sigma protocols, we can get very efficient ZK
- Sigma protocols are very useful:
 - Efficient ZK
 - Efficient ZKPOK
 - Efficient NIZK in the random oracle model
 - Commitments and trapdoor commitments
 - Hash functions
 - More... (e.g., witness hiding)