

Exercise 4D

Question 11:

Given: \triangle ABC in which AB = AC = 2a units and BC = a units Const: Draw AD \perp BC then D is the midpoint of BC.

$$BC = a$$
and
$$BD = \frac{BC}{2} = \frac{a}{2}$$

In
$$\triangle ADB$$
,

$$(AB)^2 = AD^2 + BD^2$$

$$AD^2 = (AB^2 - BD^2)$$

$$AD^2 = \left[(2a)^2 - \left(\frac{a}{2} \right)^2 \right]$$

$$AD^2 = \left[4a^2 - \frac{a^2}{4} \right] = \frac{15a^2}{4}$$

$$\Rightarrow AD = \frac{a\sqrt{15}}{2} \text{ units}$$

Question 12:

In an equilateral triangle all sides are equal.

Then, AB = BC = AC = 2a units

Const: Draw an altitude AD ⊥ BC

Given BC = 2a. Then, BD = a

$$\angle ADB = 90^{\circ}$$

$$(AB)^2 = (AD)^2 + (BD)^2$$

(by pythagoras theorem)

$$(AD)^2 = (AB^2 - BD^2)$$

= $[(2a)^2 - (a)^2]$ sq. units
= $(4a^2 - a^2)$ sq. unit = $3a^2$ sq. unit

*********** END ********