Muter Theorem -

If the recurrence is of the form $T(n) = aT(\frac{n}{b}) + \Theta(n^k \log^p n)$, where $a \ge 1, b > 0$

 $1,k \ge 0$ and p is a real number, then:

1) If
$$a > b^k$$
, then $T(n) = \Theta(n^{\log b^a})$

2) If
$$a = b^k$$

a. If
$$p > -1$$
, then $T(n) = \Theta(n^{\log_b^a} \log^{p+1} n)$

b. If
$$p = -1$$
, then $T(n) = \Theta(n^{\log_b^a} \log \log n)$

c. If
$$p < -1$$
, then $T(n) = \Theta(n^{\log_b^a})$

3) If
$$a < b^k$$

a. If
$$p \ge 0$$
, then $T(n) = \Theta(n^k \log^p n)$
b. If $p < 0$, then $T(n) = O(n^k)$

b. If
$$p < 0$$
, then $T(n) = O(n^k)$

$$T(n) = 3 T(n/2) + n^2$$
.

$$T(C) = \Theta(n^{k} \log^{k} n)$$

$$= \Theta(n^{2} \log^{k} n) = \Theta(n^{2})$$

$$T(n) = 4T(n/2) + n^2$$

$$a=3$$
, $b=2$, $k=2$, $p=0$

$$\alpha=3$$
, $b=2$, $k=2$, $b=2=4$

T(n) = T(n-1) + 2

If the recurrence is of the form $T(n) = aT(\frac{n}{b}) + \Theta(n^k \log^p n)$, where $a \ge 1, b > 1$ $1,k \ge 0$ and p is a real number, then:

1) If
$$a > b^k$$
, then $T(n) = \Theta(n^{\log b})$

2) If
$$a = b^k$$

a. If
$$p > -1$$
, then $T(n) = \Theta(n^{\log_b^a} \log^{p+1} n)$

b. If
$$p = -1$$
, then $T(n) = \Theta(n^{\log_b^a} \log \log n)$

$$a=4,b^{k}=2=4, a=b^{k}$$

2) If
$$a = b^{\wedge}$$

a. If
$$p > -1$$
, then $T(n) = \Theta(n^{\log_b^a} \log^{p+1} n)$

b. If
$$p = -1$$
, then $T(n) = \Theta(n^{\log \frac{n}{b}} \log \log n)$

c. If
$$p < -1$$
, then $T(n) = \Theta(n^{\log a})$

- 3) If $a < b^k$
 - a. If $p \ge 0$, then $T(n) = \Theta(n^k \log^p n)$
 - b. If p < 0, then $T(n) = O(n^k)$

$$T(n) = \left(n \log_{b}^{2} \cdot \log_{n}^{2} \right) = \left(n \log_{2}^{4} \cdot \log_{n}^{4} \right) = 0$$

$$\left(n \log_{2}^{4} \cdot \log_{n}^{4} \right) = 0$$

Divide & Conquer - Technique to sotre deup algorithm.

Big Problem Pr-P3....Pu (Sub-Problems) Solutions of Sould Sub-problems Merge sort-Based on divide & conquer O Repeatedly Livide the array into 2 equal ports. (2) Combine 2 Carted ar sorted wrengs into 1 sorted avrey. Company

0 january Page 3

Company L[] R[j