FIG. 1

Constitutively Active Receptors

		1,	/27						_
Reference		(Robbins, Nadeau et al. 1993)		(Pauwels, Gouble et al. 1999)	(Egan, Herrick-Davis et al. 1998)	(Herrick-Davis, Egan et al. 1997)			
Assay / Cells		adenylyl cyclase activity/ HEK293, stably transfected		binding of [¹⁵ S]GTP[S] / CHO-KI	IP production / COS-7	PI hydrolysis / COS-7			
Sequence		92 VSIVL <u>R</u> TTIIL K		313 RERKA <u>T</u> KTLØI K, R, Q	322 NBQKAÇKVLGI K	312 Neddagkvlgi L	Ě		
Mutation Site		IMI		C-terminus of IC3	C-terminus of IC3	C terminus of IC3			
Receptor		melanocyte-stimulating hormone MSH		5-hydroxytryptamine _{1B}	5-hydroxytryptamine _{2A}	5-hydroxytryptamine _{ac}		,	
File Name	CLASS A GROUP I	MSHR_mouse	CLASS A GROUP II	5H1B_human	5H2A_human	2H2C_rat			

*0.g

.

ŦŢ.	
O1	
O1	
Ō	
F. 1	
<u>F</u>	
₹ .	
į.	
n.	
N	
÷	

		(Scheer, Fanelli et al. 1997)			(Scheer, Costa et al. 2000)		(Perez, Hwa et al. 1996)			(Hwa, Gaivin et al. 1997)		(Kjelsberg, Cotecchia et	al. 1992)	(Allen, Lefkowitz et al. 1991)	(Ren, Kurose et al. 1993)		(Högger, Shockley et al. 1995)		n (Liu, Blin et al. 1996)	
		IP / COS-7			IP / COS-7		IP / COS-1	£	arachidonic acid release	IP/COS-1		PI/COS-7		PI hydrolysis / rat fibroblast	adenylyl cyclase	mmondon / new 23	PI / HEK(U293)		IP production, inhibition	COS-7
		63 PAIVGNILVIL	١٨	142 CAISI <u>D</u> RYIGV A	143 CAISIDRYIGV	К	128 AVDVI <u>C</u> CTASI P	• 6	REKKAAKTLGI	ą	204 Brppyllpsslg V	293	SKEKKAAKT X=19 different substitutions	288 293 KPSREKKAAKTLGI K H I.	1 111 2	X=F, A, C, E, K	360 Slvkekkaartls	Ą	390	1-4 A inserted
:		TMDI		junction between TMDIII and IC2	junction between TMDIII and IC2		TMIII	onshown and of 102	cationayi cita oi too	TMV		C-terminal IC3		C-terminus IC3	C-terminal IC3 loop		C-terminal IC3 loop junction		junction of IC3 and TMVI	
FIG. 1 (2 of 15)		α ₁₈ -adrenergic	alpha 1B-AR		α ₁₈ -adrenergic	alpha 1B-AR	α _{is} -adrenergic					α ₁₈ -adrenergic		α ₁₈ -adrenergic	α ₂ C10-adrenergic	alpha-2AAR	muscarinic Hm1	muscarinic acetylcholine M1	muscarinic acetylcholine M2	
FIG. 1	CLASS A GROUP II	A1AB_human			A1AB_human		A1AB_human					A1AB_human		A1AB_human	A2AA_human		ACM1_human		ACM2-human	

FIG. 1 (3 of 15)

		T	T	3/27	,				
	(Blüml, Mutschler et al. 1994)	(Burstein, Spalding et al. 1996)	(Spalding, Burstein et al. 1998)	(Spalding, Burstein et al. 1997)	(Mason, Moore et al. 1999)	(Samama, Cotecchia et al. 1993); (Lefkowitz, Cotecchia et al. 1993)	(Charpentier, Jarvie et al. 1996)	(Cho, Taylor et al. 1996)	(Alewijnse, Timmerman et al. 2000)
	IP/COS-7	β-gal / NIH 3T3	β-gal; radioligand binding / NIH-3T3	β-gal; radioligand binding / NIH-3T3	adenylyl cyclase; agonist binding / CHW	adenylyl cyclase activation; agonist binding affinity / COS-7 or CHO	adenylyl cyclase; cAMP accumulation / HEK293	CAMP accumulation / COS-7	cAMP producti n / HEK-293
	507 TWLPYLWIT S	chimera composed of m21-69 m577-445 m2 391-466	ALLLA RIITW TPYNI MVLVST M L H C V S F	465 YNIMVLV <u>S</u> TFCDKCV X=V,F,R,K,+more	389 RKAFQGLLCCA R	266 272 FCLKEHKALKTLGI SR K A	264 SFKMSEKRETKVLKT I K 288 from DIB receptor APDTSIKKETKVLKT	286 FVCCWLPPFIL A	115 FMISL <u>D</u> RYCAV N,A
	TMVI	N-terminus to TMII TMVI	TMVI	junction of TMVI and EC3		C-terminal IC3 loop	carboxyl terminal IC3	TMVI	IC
	m3 muscarinic (rat) muscarinic acetylcholine M3	m5 muscarinic muscarinic acetylcholine M5	m5 muscarinic muscarinic acetylcholine M5	m5 muscarinic muscarinic acetylcholine M5	β ₁ -adrenergic	β ₂ -adrenergic beta-2AR	dopamine DIA	dopamine D1	histamine $ m H_2$
CLASS A GROUP II	ACM3_rat	ACM5_human	ACM5_human	ACM5_human	B1AR_human	B2AR_human	DADR_human	DADR_human	HH2R_rat

۹.

FIG. 1 (4 of 15)

		4,	/27			
Reference		(Rim and Oprian 1995)	(Acharya and Karnik 1996)	(Han, Smith et al. 1998)	(Govardhan and Oprian 1994); (Cohen, Yang et al. 1993)	(Cohen, Yang et al. 1993)
Assay / Cells		transducin; phosphorylation by rhodopsin kinase / COS	transducin; radioligand binding / COS	transducin, GTPyS uptake / COS	transducin; radioligand binding / COS	
Sequence		90 PMVLGGFTSTLY D 113 GCNLEGFFAT Q 292 296 MTIPAFFAKSAAIY E G, E, M 23Ala neutral a.a converted to carboxylate and competes with 113Glu for salt bridge with 236Lys	134 VVLAIERYVVV I,Q,S	257 RMVIIMVIAFL Y,N plus G113Q	296 PAFFAKSAAIY G X=E,M natural mutants + 10 different a.a. substitutions disrupts critical salt bridge between 296Lys(TMVII) and 113Glu(TMIII)	134 VVLAIERYVVV Q
Mutation Site		TMII TMIII	TMIII	TM6 plus TM3	TMVII	22
Receptor	÷.	opsin rhodopsin	opsin rhodopsin	opsin rhodopsin	opsin rhodopsin	
File Name	CLASS A GROUP III	OPSD_human	OPSD_human	OPSD_human	OPSD_human	

FIG. 1 (5 of 15)

(Matus-Leibovitch, Nussenzveig et al. 1995)		
"Ca 2" efflux, [Ca 2"] / Xenopus oocytes; IP formation / AtT20, stably transfected		
335 Frkl <u>c</u> nckok Stop		
carboxyl tail		
thyrotropin-releasing hormone carboxyl ta TRH-R		
TRFR_mouse		

FIG. 1 (6 of 15)

File Name	Receptor	Mutation Site Sequence	Sequence	Assay / Cells	Reference
CLASS A GROUP IV	CLASS A GROUP IV				
BRB2_human	bradykinin B ₂	TMII	113 AIISMNLY8SI	IP production / COS-7	(Marie, Koch et al. 1999)
	B2 bradykinin BK-2	TMVI	256		
			nut ii Çanes Çi		
				,	

ë.

FIG. 1 (7 of 15)

•
TMIII
C-terminus of TM7
other multiple mutations
formylmethionylleucylphenylal IC1
ICZ
වු
TMVI
TIM6
TMVI
TM3
<u>5</u>
···

osser acatem

FIG. 1 (8 of 15)	(8 of 15)				
PAFR_human	platelet-activating factor (PAF)	C-terminus of IC3	231 EVKRRALMNVCTVLAV R	IP production / COS-7	(Parent, Le Gouill et al. 1996)
PAFR_human	platelet-activating factor (PAF)	TMIII	100 CLFFINTYCSV A	arachnidonate release, IP production, adenylyl cylease inhibition / CHO	(Ishii, Izumi et al. 1997)
PE23_human	prostaglandin E,, EP3III EP3IV	C-terminal tail	360 FCQBEFWGN FCQMRKRRLREGEFWGN Tcruncated	inhibition of adenylyl cyclase / CHO-K1	(Jin, Mao et al. 1997)
PE23_mouse	prostaglandin E, EP3	carboxyl-terminal tail	336 KILLRKFCQIRDHI (3α) MANHL (3β) ↑truncated	inhibition of adenylate cyclase / CHO, stably expressed	(Hasegawa, Negishi et al. 1996)
THRR_human	thrombin	EC2 loop	259 268 CHDVINETLLEGYYAYY DLKD KOP I	43Ca 24 efflux, PI hydrolysis, reporter gene induction / COS-7	(Nanevicz, Wang et al. 1996)
TSHR_buman	thyrotropin (TSHR) thyroid stimulating hormone	BC1	486 YYNHALDWQTG F,M 568 YAKUSICLPMD	inositol phosphate diacylglycerol cascade / COS-7	(Parma, Van Sande et al. 1995)
TSHR_human	thyrotropin (TSHR) thyroid stimulating hormone	TMIII	ASBLSYYTLTV ASPLSYYTLTV A 672 YPLNSCANPFL	adenylyl cyclase activation / COS-7	(Duprez, Parma et al. 1994)
TSHR_human	thyrotropin (TSHR)	TMV	Y 597 VAFVI <u>V</u> CCCHV L	cAMP formation / COS-7 cells	(Esapa, Duprez et al. 1999)
TSHR_human	thyrotropin (TSHR) thyroid stimulating hormone	TMVII	AIFT	cAMP formation / CHO cells	(Russo, Wong et al. 1999)
TSHR_human	thyrotropin (TSHR) thyroid stimulating hormone	<u> </u>	613 621 VRNPQ <u>YNPGDKDTK</u> IAK deletion	cAMP formation / COS-7	(Wonerow, Schoneberg et al. 1998)

FIG. 1 (9 of 15)

TSHR_human	TSHR_human thyrotropin (TSHR)	IC3 / TMVI	623 632 KDTKIAKRMAVLIFIDFICM	cAMP activation /	(Paschke, Tonacchera et al. 1994)
	thyroid stimulating hormone		I V	-	•
V2R human	vasopressin V2	IC2	136	cAMP formation /	(Morin, Cotte et al. 1998)
1			LAMTLDRHRAI	COS-1	
			4		

FIG. 1 (10 of 15)

					1	O/	27	7					
Reference		(Cohen, Thaw et al. 1997)		(Schipani, Jensen et al. 1997)					(Tseng and Lin 1997)	(Hjorth, Orskov et al. 1998)		(Gaudin, Maoret et al. 1998) (Gaudin, Rouyer-Fessard et al. 1998)	
Assay / Cells		adenylyl cyclase cAMP production / COS-1		cAMP accumulation / COS-7					cAMP production / L293	cAMP accumulation / COS-7		cAMP production / COS-7 or CHO	
Sequence				223 TrnyiHmhlfl R, K	410 KLLKS <u>T</u> LVLMP C,others				340 VPAPV <u>T</u> EBQAR P	178 Trny i <u>H</u> gnlfa R	352 RLARS <u>T</u> UTLIP A	178 RNYIHMHLFI R requires functional integrity of the N-terminal BC domain	343 LARSILLIP X= K, P
Mutation Site		wild type (native) protein		junction of IC1 and TMII	junction of IC3 and TMVI				TMVI	junction of IC loop1 and TMII	IC end of TMVI	junction of IC loop 1 and TMII	junction of IC loop 3 and TMVI
Receptor		human calcitonin hCTR-1 hCTR-2		parathyroid hormone PTH / PTH-related peptide					glucose-dependent insulinotropic peptide (GIP-R)	glucagon		vasoactive intestinal peptide 1 (VIP)	
File Name	CLASS B GROUP I	CALR_human	CLASS B GROUP II	PTRR_human			CLASS B	GROUP III	GIPR_human	GLR_rat		VIPR_human	

FIG. 1 (11 of 15)

File Name	Receptor	Mutation Site	Sequence	Assay / Cells	Reference
CLASS C					
CASR_human	CASR_human calcium-sensing	N-terminal BC	TLSFVAONKIDSIANIDEFCNCSEHI IP/tsA various substitutions, in multiple combinations	IP/tsA	(Jensen, Spalding et al. 2000)

FIG. 1 (12 of 15)

					1	2	/2	27	.										
Reference		(Olesnicky, Brown et al. 1999)		(Konopka, Margarit et al.	1996)	(Dube, DeCostanzo et al.	2000)	•						(Boone, Davis et al. 1993)		(Sommers, Martin et al.	2000)		
Assay / Cells		heterologous yeast assay		lacZ reporter gene		lacZ reporter gene /	yeast							β-galactosidase		β-galactosidase			
Sequence		229 Plsay <u>o</u> iyigt	Ωŧ	258	QSLLV <u>PS</u> IIFI LL	223	MSFVLYVKLILAIR	ာ	247 251	DSFHI <u>LLIMS</u> COSLL	ຍ	double mutations	shaded double mutations	194	DVRDILHCTNS O	253 258	LIMSCOSLLVPSIIFI		
Mutation Site		TM6		TM6		double mutations TM5		and		TM6				IC3		TM6			
Receptor		pheromone		pheromone α-factor		pheromone α-factor								pheromone a-factor		pheromone α-factor			
File Name	CLASS D	O74283 RCB2	C. cinereus	STE2_yeast		STE2 yeast	1							STE3_yeast		STE2_yeast	•		

FIG. 1 (13 of 15) Bibliography

Alewijnse, A. E., H. Timmerman, et al. (2000). "The Effect of Mutations in the DRY Motif on the Constitutive Activity and Structural Instability of the Histamine H(2) Receptor." Acharya, S. and S. S. Karnik (1996). "Modulation of GDP release from transducin by the conserved Glu 134-Arg 135 sequence in rhodopsin." LBiol Chem 271(41): 25406-11. Mol Pharmacol 57(5): 890-898.

Allen, L. F., R. J. Lefkowitz, et al. (1991). "G-protein-coupled receptor genes as protooncogenes: constitutively activating mutation of the alpha 1B-adrenergic receptor enhances mitogenesis and tumorigenicity." Proc Natl Acad Sci U S A 88(24): 11354-8.

Amairuda, T. T., 3rd, S. Dragas-Graonic, et al. (1995). "Signal transduction by the formyl peptide receptor. Studies using chimeric receptors and site-directed mutagenesis define a novel domain for interaction with G-proteins." J. Biol Chem 270(47): 28010-3.

Blüml, K., E. Mutschler, et al. (1994). "Functional role in ligand binding and receptor activation of an asparagine residue present in the sixth transmembrane domain of all muscarinic acetylch line receptors." I Biol Chem 269(29): 18870-6.

Boone, C., N. G. Davis, et al. (1993). "Mutations that after the third cytoplasmic loop of the a-factor receptor lead to a constitutive and hypersensitive phenotype." Proc Natl Acad

Sci USA 90(21): 9921-5.
Bradbury, F. A., N. Kawate, et al. (1997). "Post-translational processing in the Golgi plays a critical role in the trafficking of the luteinizing hormone/human chorionic gonadotropin receptor to the cell surface." LBiol Chem 272(9): 5921-6.
Bradbury, F. A. and K. M. Menon (1999). "Evidence that constitutively active luteinizing hormone/human chorionic gonadotropin receptors are rapidly internalized."

13/27

Burger, M., J. A. Burger, et al. (1999). "Point mutation causing constitutive signaling of CXCR2 leads to transforming activity similar to Kaposi's sarcoma herpesvirus-G protein-Biochemistry 38(27): 8703-12.

Burstein, E. S., T. A. Spalding, et al. (1996). "Constitutive activation of chimeric m2/m5 muscarinic receptors and delineation of G-protein coupling selectivity domains." coupled receptor." Limmunol 163(4): 2017-22.

Cavalli, A., A. M. Babey, et al. (1999). "Altered adenylyl cyclase responsiveness subsequent to point mutations of Asp 128 in the third transmembrane domain of the delta-opioid Biochem Pharmacol 51(4): 539-44.

Charpentier, S., K. R. Jarvie, et al. (1996). "Silencing of the constitutive activity of the dopamine D1B receptor. Reciprocal mutations between D1 receptor subtypes delineate residues underlying activation properties." I Biol Chem 271(45): 28071-6. receptor." Neuroscience 93(3): 1025-31.

Cho, W., L. P. Taylor, et al. (1996). "Mutagenesis of residues adjacent to transmembrane prolines alters D1 dopamine receptor binding and signal transduction." Mol Pharmacol

Cohen, D. P., C. N. Thaw, et al. (1997). "Human calcitonin receptors exhibit agonist-independent (constitutive) signaling activity." <u>Endocrinology</u> 138(4): 1400-5. Cohen, G. B., T. Yang, et al. (1993). "Constitutive activation of opsin: influence of charge at position 134 and size at position 296." <u>Biochemistry</u> 32(23): 6111-5. Dube, P., A. DeCostanzo, et al. (2000), "Interaction between transmembrane domains five and six of the alpha -factor receptor." <u>Unic Chem</u> 275(34): 26492-9.

Duprez, L., J. Parma, et al. (1994). "Germline mutations in the thyrotropin receptor gene cause non- autoimmune autosomal dominant hyperthyroidism." Nat Genet 7(3): 396-401. Egan, C. T., K. Herrick-Davis, et al. (1998). "Creation of a constitutively activated state of the 5- hydroxytryptamine2A receptor by site-directed mutagenesis: inverse ag nist

activity of antipsychotic drugs." I Pharmacol Exp. Ther 286(1): 85-90.

Esapa, C. T., L. Duprez, et al. (1999). "A novel thyrotropin receptor mutation in an infant with severe thyrotoxicosis." Thyroid 9(10): 1005-10.

Fanelli, F., P. Barbier, et al. (1999). "Activation mechanism of human oxytocin receptor: a combined study of experimental and computer-simulated mutagenesis." Mol Pharmagol

Gaudin, P., J. J. Maoret, et al. (1998). "Constitutive activation of the human vasoactive intestinal peptide 1 receptor, a member of the new class II family of G protein-coupled receptors." J Biol Chem 273(9): 4990-6.

Gaudin, P., C. Rouyer-Fessard, et al. (1998). "Constitutive activation f the human VIP1 receptor." Ann N. Y. Acad Sci 865: 382-5.

Groblewski, T., B. Maigret, et al. (1997). "Mutation of Asn 111 in the third transmembrane domain of the AT1A angiotensin II receptor induces its constitutive activation." I Biol FIG. 1 (14 of 15)
Govardhan, C. P. and D. D. Oprian (1994). "Active site-directed inactivation of constitutively active mutants of rhodopsin." I Biol Chem 269(9): 6524-7.

Han, M., S. O. Smith, et al. (1998). "Constitutive activation of opsin by mutation of methionine 257 on transmembrane helix 6." Biochemistry 37(22): 8253-61

Hasegawa, H., M. Negishi, et al. (1996). "Two isoforms of the prostaglandin E receptor EP3 subtype different in agonist-independent constitutive activity." I Biol Chem 271(4):

Herrick-Davis, K., C. Egan, et al. (1997). "Activating mutations of the serotonin 5-HT2C receptor." INsurocham 69(3): 1138-44.

Hjorth, S. A., C. Orskov, et al. (1998). "Constitutive activity of glucagon receptor mutants." Mol Endoctinal 12(1): 78-86.

Högger, P., M. S. Shockley, et al. (1995). "Activating and mactivating mutations in N. and C-terminal 13 loop junctions of muscarinic acetylcholine Hm1 receptors." J Biol Chem

Hwa, J., R. Gaivin, et al. (1997). "Synergism of constitutive activity in alpha 1-adrenergic receptor activation." <u>Biochemistry</u> 36(3): 633-9.
Ishii, I., T. Izumi, et al. (1997). "Alanine exchanges of polar amino acids in the transmembrane domains of a platelet-activating factor receptor generate both constitutively active and inactive mutants." I Biol Chem 272(12): 7846-54.

Jensen, A. A., T. A. Spalding, et al. (2000). "Functional importance of the Alal 16-Pro136 region in the calcium-sensing receptor. CONSTITUTIVE ACTIVITY AND INVERSE AGONISM IN A FAMILY C G-PROTEIN-COUPLED RECEPTOR [In Process Citation]." I Biol Chem 275(38): 29547-55.

Jin, J., G. F. Mao, et al. (1997). "Constitutive activity of human prostaglandin B receptor BP3 isoforms." British I Pharmacol 121: 317-23.

Kjelsberg, M. A., S. Cotecchia, et al. (1992). "Constitutive activation of the alpha 1B-adrenergic receptor by all amino acid substitutions at a single site. Evidence for a region which constrains receptor activation." I Biol Chem 267(3): 1430-3.

Konopka, J. B., S. M. Margarit, et al. (1996). "Mutation of Pro-258 in transmembrane domain 6 constitutively activates the G protein-coupled alpha-factor receptor." Proc Nati Acad Sci U S A 93(13): 6764-9

Kosugi, S., C. Van Dop, et al. (1995). "Characterization of heterogeneous mutations causing constitutive activation of the luteinizing hormone receptor in familial male precocious puberty." Hum Mol Genet 4(2): 183-8.

Kudo, M., Y. Osuga, et al. (1996). "Transmembrane regions V and VI of the human luteinizing hormone receptor are required for constitutive activation by a mutation in the third intracellular loop." J Biol Chem 271(37): 22470-8.

Lefkowitz, R. J., S. Cotecchia, et al. (1993). "Constitutive activity of receptors coupled to guanine nucleotide regulatory proteins." Trands Pharmacol Sci 14(8): 303-7.

Liu, J., N. Blin, et al. (1996). "Molecular mechanisms involved in muscarinic acetylcholine receptor- mediated G protein activation studied by insertion mutagenesis." J Biol Chem 271(11): 6172-8.

Marie, J., C. Koch, et al. (1999). "Constitutive activation of the human bradykinin B2 receptor induced by mutations in transmembrane helices III and VI." Mol Pharmacol 55(1):

Mason, D. A., J. D. Moore, et al. (1999). "A gain-of-function polymorphism in a G-protein coupling domain of the human beta l-adrenergic receptor." I Biol Chem 274(18):

Matus-Leibovitch, N., D. R. Nussenzveig, et al. (1995). "Truncation of the thyrotropin-releasing hormone receptor carboxyl tail causes constitutive activity and leads to impaired responsiveness in Xenopus oocytes and A(T20 cells." I Biol Chem 270(3): 1041-7.

Morin, D., N. Cotte, et al. (1998). "The D136A mutation of the V2 vasopressin receptor induces a constitutive activity which permits discrimination between antagonists with partial agonist and inverse agonist activities." FEBS Lett 441(3): 470-5.

Nanevicz, T., L. Wang, et al. (1996). "Thrombin receptor activating mulations. Alteration of an extracellular agonist recognition domain causes constitutive signaling." <u>I Biol</u>

Olesnicky, N. S., A. J. Brown, et al. (1999). "A constitutively active G-protein-coupled receptor causes mating self- compatibility in the mushroom Coprinus." Embo 1 18(10):

Parent, J. L., C. Le Gouill, et al. (1996). "Mutations of two adjacent amino acids generate inactive and constitutively active forms of the human platelet-activating factor receptor." Biol Chem 271(14): 7949-55.

FIG. 1 (15 of 15)

Parnot, C., S. Bardin, et al. (2000). "Systematic identification of mutations that constitutively activate the angiotensin II type 1A receptor by screening a randomly mutated cDNA Parma, J., J. Van Sande, et al. (1995). "Somatic mutations causing constitutive activity of the thyrotropin receptor are the major cause of hyperfunctioning thyroid adenomas: identification of additional mutations activating both the cyclic adenosine 3,5-monophosphate and inositol phosphate-Ca2+ cascades." Mol Endocrinol 9(6): 725-33 library with an riginal pharmacological bioassay." Proc Natl Acad Sci USA 97(13): 7615-20.

Paschke, R., M. Tonacchera, et al. (1994). "Identification and functional characterization of two new somatic mutations causing constitutive activation of the thyrotropin receptor

Pauwels, P. J., A. Gouble, et al. (1999). "Activation of constitutive 5-hydroxytryptamine B receptor by a series of mutations in the BBXXB motif: positioning of the third intracellular loop distal junction and its goalpha protein interactions [In Process Citation]." Biochem J 343 Pt 2: 435-42. in hyperfunctioning autonomous adenomas of the thyroid." I Clin Endocrinol Metab 79(6): 1785-9.

Perez, D. M., J. Hwa, et al. (1996). "Constitutive activation of a single effector pathway: evidence for multiple activation states of a G protein-coupled receptor." Mol Pharmacol 49(1): 112-22.

Ren, Q., H. Kurose, et al. (1993). "Constitutively active mutants of the alpha 2-adrenergic receptor [published erratum appears in J Biol Chem 1994 Jan 14;269(2):1566]." J Biol Chem 268(22): 16483-7.

Robbins, L. S., J. H. Nadeau, et al. (1993). "Pigmentation phenotypes of variant extension locus alleles result from point mutations that alter MSH receptor function." Cell 72(6): Rim, J. and D. D. Oprian (1995). "Constitutive activation of opsin: interaction of mutants with rhodopsin kinase and arrestin." Biochemistry 34(37): 11938-45.

15/27

Russo, D., M. G. Wong, et al. (1999). "A Val 677 activating mutation of the thyrotropin receptor in a Hurthle cell thyroid carcinoma associated with thyrotoxicosis." Thyroid 9(1):

Samama, P., S. Cotecchia, et al. (1993). "A mutation-induced activated state of the beta 2-adrenergic receptor. Extending the ternary complex model." Journal of Biological

Chemistry 168(7): 4625-36.
Scheer, A., T. Costa, et al. (2000). "Mutational analysis of the highly conserved arginine within the Glu/Asp-Arg-Tyr motif of the alpha(1b)-adrenergic receptor: effects on receptor isomerization and activation." Mol Pharmacol 57(2): 219-31.

Scheer, A., P. Fancili, et al. (1997). "The activation process of the alphal B-adrenergic receptor: potential role of protonation and hydrophobicity of a highly conserved aspartate."

Proc Natl Acad Sci USA 94(3): 808-13. Schipani, E., G. S. Jensen, et al. (1997). "Constitutive activation of the cyclic adenosine 3', 5'-monophosphate signaling pathway by parathyroid hormone (PTH)/PTH-related Shenker, A., L. Laue, et al. (1993). "A constitutively activating mutation of the luteinizing hormone receptor in familial male precocious puberty [see comments]." Nature peptide receptors mutated at the two loci for Jansen's metaphyseal chondrodysplasia." Mol Endocrinol 11(7): 851-8.

Sommers, C. M., N. P. Martin, et al. (2000). "A limited spectrum of mutations causes constitutive activation of the yeast alpha-factor receptor." Biochemistry 39(23): 6898-909.

Spalding, T. A., E. S. Burstein, et al. (1998). "Identification of a ligand-dependent switch within a muscarinic receptor." J Biol Chem 273(34): 21563-8.
Spalding, T. A., E. S. Burstein, et al. (1997). "Constitutive activation of the m5 muscarinic receptor by a series of mutations at the extracellular end of transmembrane 6." Biochemistry 36(33): 10109-16.

Tseng, C. C. and L. Lin (1997). "A point mutation in the glucose-dependent insulinotropic peptide receptor confers constitutive activity." Biochem Biophys Res Commun 232(1):

Wonerow, P., T. Sch neberg, et al. (1998). "Deletions in the third intracellular loop of the thyrotropin receptor. A new mechanism for constitutive activation." LBiol Chem 273(14): 7900-5.

and the first term that the second of the se

A Point Mutation Confers Constitutive Activity to the Rat μ Opioid Receptor N=11 Wild type <u>11</u> 150K ¬ 100K -50K -0 FIG. 6 Light Units (CPS) (SRE-luc + Gq5i)

Mutant

20/27

 \square basal $l \mu$ opiod

pcDNA1

1 µM DAMGO

FIG 7

Target Residues Within Class I GPCR's

FIG. 8

о С П

FIG. 11

FIG.	12	26/27
erk		mesi prgepgetcaesactppessawppgwarf ingsaeseeac
orkr	3	MEST OFFICE SEAMER AND THE PROPERTY OF THE PRO
orm	1 M	MDSSAAPTNASNCTDAEAYSSCSPAPSEGSWUNLSHLDENLSEPCGPNRTDLEGRDSL
ormr ord	1 -	MDSSTGPGNTSDCSDPEAQASCSPAPGSWENLSHVDCNQSDPCGLNRTGLGGNDSL MEPAPSAGAERO.PPLFENASDAYPSACPSAGANASG
ATla	1 -	MALNSSAED@IKRI@
BK-2	1 -	mfspwkismflsvredsvptt a sfs ad mlnvtlogptln <mark>e</mark> .tfao
ork 🐺	49 I	LEPARISPARIPVERITANYSMVEVVGLMGNSLVMHVTHRYTKMKTATNIYLENLALADA
orkr	49 I	LEPARISPAI PVIITAMYSMYEVUGIMGNSLVMHVIMRYTKVKTAINIYIENLALADA LEPARISPAI PVIITAMYSMYEVUGIMGNSLVMHVIHRYTKVKTAINIYIENLALADA CPPTGS . PSMITAITIMALYSMYCVVGIFGNELVMMVIMRYTKVKTAINIYIENLALADA
orm	59 C	CPQTGS.PSMITAITIMALYSIIVCVVGIFGMFLVVKVVIQEYTKVKVKVXINIYIFMLALADA
ord	37 1	PPGARSASSIVALAITAN SAWCAVERSON NAVINGO IN TO VINCE SAVING TO THE PROPERTY OF T
ATla	16 I	DDCPRAGRHSYI FWW PPT PASIE TAYER FONSIAWI VIYFYM CHAVASWYLL MANADL
EK-2	45 5	SKCPOVEWLGWLNTHOPPFLWVFDVFATTENIFVFSVFCLHKSSCHVAETVIGNLAAADL
ork	107	LVTIITIN PEOSTVYLMN . SWPEGINLCKIVISIDYXNWETSIETLIN MSVDRYIAVCHPVK
orkr orm	107	WHITE PROSERVE WE TRUBERTH OF DUST DYVINETS FOR COMSUDEY AVERPUR
ormr	116	LVTHTMPFQSAVYLMN.SWPFGDYLCKIVISIDYYNWFTSIFTLTHMSVDRYIAVCHPVK LATSTLPFQSYNYLMG.HWPFGTHLCKIVISIDYYNWFTSIFTLCTMSVDRYIAVCHPVK LATSTLPFQSYNYLMG.HWPFGTHLCKIVISIDYYNWFTSIFTLCTMSVDRYIAVCHPVK
ord	97 [LATETINPFOSAKYLME. IMPEGET LCKAVISIDYYNMFTS LFTLTMMSVDRYLAVCHPVK CFLLTMPLWAYYTAMEYRWDFGNHLCKIASASVTENIYASMFLLMCISIDRYHAIVHPMK
ATLA BK-2	76 (105 !	CFILING LWAYYTAMEYRWIGGHILGCIASESVIEWIYASMILLACUSEDRYDALVKIYS ILACGIAPEWATISNNFDWLEGETICEVVNETISMWAYESICFLWLYSEDRYDALVKIYS
	-	-14 from DRY
ork	166	ALDERTELKAKI INI CIWELSSYGI SARVLEGTKVR. EDVDVI ECSLOFEDDDYSWD ALDERTELKAKI INI CIWELASSYGI SARVLEGTKVR. EDVDVI ECSLOFEDDEYSWD ALDERTERNAKI INFONWELSSALGI EVWEWATTKYR. O. GS ID CELTSHPTW. WE ALDERTERNAKI WAYONWELSSALGI EVWEWATTKYR. O. GS ID CELTSHPTW. WE
orkr	166 177	AMDERIPLKAKOTANI CIMPILASSI GITSAINA GITKUR. BDVD (1200-2140-220DE) SAMO
ormr	175	AND STANKE TO MENT SEATON PARTY THEY SEATON TO SHE CONTRIBUTE SHOTE
ord :-	156 !	[Jana] 4 (4 h 4 d 1 for 1 and 1 d 1 d 1 d 1 d 1 d 2 d 2 d 2 d 2 d 2
ATla BK-2	136	SRLRRIMLVAKVICIIIWWWAGLASTPAVIHRNVYFIENINTIVOAFHYESRN.SILP MGRMRGVRWAKYSLVIWGCTLLISSPWAVFRIMKEYSDEGHNVIACVISYPSLIWE
DI. Z		
ork	224	LEMKICVFIFAFYIPVLIIMVCYTLMILRLKSVRILSGSREKDRNLRRITRLVLVVVAVF LEMKICVFMFAFYIPVLIIMVCYTLMILRLKSVRILSGSREKDRNLRRITRUVLVVVAVF NLIKICVFIFAFIMPVLIIMVCYGLMILRLKSVRIMLSGSKEKDRNLRRITRUVLVVVAVF NLIKICVFIFAFIMPVLIIMVCYGLMILRLKSVRIMLSGSKEKDRNLRRITRUVLVVVAVF
orkr orm	224	ILPMKTCVFMFAFYTPVLITTUVCYTLMTLRLKSVRJLSGSREKDRNLRRTTRUVLVVAVE NUKTOVFTFAFTMPVLTTOVCYCLMTTRLKSVRMLSGSKEKDRNLRRTTRUVLVVVAVE
ormr	230	NLCKICVFIFAFILIPVLIIIVCYGLMILRLKSVRVLSGSKEKDRNLRRITRNVLVVVAVE
ord	211	TVT::eleviside/bitationnial/TVO/GROBING SERVICEINSGESCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCO
ATla BK-2	193 222	igigetknilgetepentetsynniwkalkkayeioknkprnddifraimalivlee vetnwlinivgemie.isviteciwoiwovlennewokekeiote.rraivúvlvvílde
ork	284	yvcwtpihifilivealgs.tshstaalssmyscialgytnssinpelyafidene tiicwtpihifilivealgs.tshstavilssmyscialgytnssimpvlyafidene tvcwtpihifydeikalytipshiffotvsmhscialgytnscinpvlyafidene
orkr	284	TUCOUPIE THE ALCS.TSHETAVLS MYTCLALGY INSSEMPLY AFLDENE
orm	290	Participancy as a style mark which is a second of the following the following second s
ord	271	FINE (OF EAST AND STANKE OF THE TALL OF THE TARKET AND THE TARKET
ATla	250	FFS@VPHOLETFUDVLIOLGVIHDCKISDIVDT&MPITICLEYFNMCLMPRFYGELGKKE
BK-2	280	EINOMER POR STEIN TEHREGILS SCODER INDVITQUAS FERREN SEAMOND VINGER BEING SEQ ID NO:
ork	778	
orkr	338	KRCERD FOF PEKMRMER OSTSRAR. NIVOD. PAYLRDIDGMNKPV 76 KRCERD FOF PEKMRMER OSTNRAR. NIVOD. PASMRDVGGMNKPV 77
orm	346	KRCHRESTINION ROMESTANTYDRING MEDICAL TO THE STANTYDRING MEDICAL TO THE STA
ormr	344	KRCERESCIPTSSNIE CONSURIERONY RDHESTANT DRIVED LENLEAETAPLP 78 KRCERESCIPTSSTIE CONSURVIRONY REHESTANT DRIVED LENLEAETAPLP 79 KRCEROLORKPCGRPDPSSFSRAREATARERVTACTPSDGPGGGAAA
ord ATla	310	「WYTELOLLKYTPPKAKSHELSLSTKELSTLEYNPSDNESSSAKKPASCFEVE- 81
BK-2	340	RKKSWEVYQGVCQKGGCRSEPIQMENSKGTLRTSISWERQIHKLQDWAGSRQ 82

FIG. 13		27/27
mCRmouse mORrat mORbovin mORhuman mORpig mORws ATla BK-2	1	MDSSAGEGNISDCSDPIA.FASCSPA.ESWUNLSHVDGNOSDPOGENEYGLGGSKSLO MDSSTGEGNTSDCSDPIA.OASCSPA.EGSWUNLSHVDGNOSDPOGENEYGLGGSKSLO MDSGAVETNASNCUDEFTHESGCSPAPSESWUNFSHLEGMLSDPOGENEYGLGGSDFLO MDSSAAETNASNCUDATAY.SSCSPAPSESWUNFSHLEGMLSDPOGENEYDLGGSDSLO MDSSADERNASNCUDEFSPSSMCSEVPSHESWUNFSHLEGMLSDPOGENEYDLGGSDSLO MDSSADERNASNCUDEFSPSSMCSEVPSHESWUNFSHLEGMLSDPOTRNEYELGGSDSLO METSGNISDFLYPISNEVMSNSSVLCRNFSNSTSFLNMNGSSRDSTD ——MALNSSAEDGIKRIODDC ——MFSEWKISMFLSVREDSVPTTASFSADMLNVTLOGETING.TFACSKC
mORmouse mORrat mORbovin mORhuman mORpig mORws ATla BK-2	61 60 61 48	POTGSPSWITALTIMALYS IVCVVGLEGNELVWYVIVRYTKVKTATNIYIENLALADALA POTGSPSWITALTIMALYS IVCVVGLEGNELVWYVIVRYTKVKTATNIYIENLALADALA PSAGSPSWITALTIMALYS IVCVVGLEGNELVWYVIVRYTKVKTATNIYIENLALADALA PPTGSPSWITALTIMALYS IVCVVGLEGNELWWYVIVRYTKVKTATNIYIENLALADALA PPTGSPSWITALTIMALYS IVCVVGLEGNELWWYVIVRYTKVKTATNIYIENLALADALA PPTGSPSWITALTIMALYS IVCVVGLEGNELWWYVIVRYTKVKTATNIYIENLALADALA PKAGRHSYIEVW. IPTIMSITTEVVGTEGNELWWIVITRYTKVKTATNIYIENLALADALA PKAGRHSYIEVW. IPTIMSITTEVVGTEGNELWWIVIVYYLERYTKVKTVASWELLALADALA PKAGRHSYIEVW. IPTIMSITTEVVGTEGNELWWIVIVYYLERYTKVKTVASWELLALADALGE POVEWLGWENTT. OPPFLWWIEVWTTLENIEVTSWFCLHKSSOTVAEIYTGNLAAADLIL
mORmouse mORrat mORbovin mORhuman mORpig mORws AT1a BK-2	118 118 121 120 121 107 78 107	TSTLPFQSVNYLMG. TWPFGNILCKIVISIDYYMFTSIFTLCTMSVDRYLAVCHPVKAL TSTLPFQSVNYLMG. TWPFGTILCKIVISIDYYMMFTSIFTLCTMSVDRYLAVCHPVKAL TSTLPFQSVNYLMG. TWPFGTILCKIVISIDYYMMFTSIFTLCTMSVDRYLAVCHPVKAL TSTLPFQSVNYLMG. TWPFGTILCKIVISIDYYMMFTSIFTLCTMSVDRYLAVCHPVKAL TSTLPFQSVNYLMG. TWPFGTILCKIVISIDYYMMFTSIFTLCTMSVDRYLAVCHPVKAL TSTLPFQSVNYLMG. TWPFGDVGCLVMSIDYYMMFTSIFTLTTMSÄDRYLAVCHPVKAL TSTLPFQSVNYLMG. TWPFGDVGCLVMSIDYYMMFTSIFTLTTMSÄDRYLAVCHPVKAL TMTLPLWSVYTAMEYRWPFGNHLCKIASASVTENTVASVETLTGTSTDRYTATVHRMKSR ACGLPFWATTISNNFDWLFGETLCTWVNTIISMNLYSSICFLMLVSTDRYTATVRMG
mORmouse mORrat mORbovin mORhuman mORpig mORws AT1a BK-2	177 177 180 179 180 166 138 167	DERTPRNAKI MNYCHWILSSAIGLPVMEMATTKYRC GSIDCTLTESHPTWYWE DERTPRNAKI MNYCHWILSSAIGLPVMEMATTKYRC GSIDCTLTESHPTWYWE DERTPRNAKI MECHWILSSAIGLPVMEMATTKYRC GSIDCTLTESHPTWYWE DERTPRNAKI MNYCHWILSSAIGLPVMEMATTKYRC GSIDCTLTESHPTWYWE DERTPRNAKI MNYCHWILSSAIGLPVMEMATTKYRK GSIDCALTESHPTWYWE DERTPRNAKI MNYCHWILSSAIGLPVMEMATTKYRK GSIDCALTESHPTWYWE DERTPRNAKI MNYCHWILSSAIGLPVMEMASTTIENONSPLOVSNEDCTLLEPHEPWYWE LREIMLVAKOTCIII WEMAGLASLEAVIHRNV YFIENTNITVCAFHYESRNSTLP RMRGVRWAKIYSLVIWGCTLLISSPMINFRIMK EYSDEGHNVTACVISYPS LIWE
mORmouse mORrat mORbovin mORhuman mORpig mORws AT1a BK-2	226 193	NLLKI CVFI FAPIMPVLI ITVCYGLMILRLKSVRMLSGSKEKDRNLRRITRMVLVVVAVF NLLKI CVFI FAPIMPVLI ITVCYGLMI LRLKSVRMLSGSKEKDRNLRRITRMVLVVVAVF NLLKI CVFI FAPIMPJLI ITVCYGLMI LRLKSVRMLSGSKEKDRNLRRITRMVLVVVAVF NLLKI CVFI FAPIMPVLI ITVCYGLMI LRLKSVRMLSGSKEKDRNLRRITRMVLVVVAVF NLLKI CVFI FAPIMPVLI ITVCYGLMI LRLKSVRMLSGSKEKDRNLRRITRMVLVVVAVF TLLKI CVFI DAPIMPVLI ITVCYGLMI LRLKSVRMLSGSKEKDRNLRRITRMVLVVVAVF IGLGTTKNILGFTSPFLI ILTSYTLIMKALKKAYETOKNKRRITRMVLVVVAVF VFTNALINVVGFTLF. LSVITFCTMOIMOVLRNNDVOKFKETOTE. RRATVLVLVVL
mORmouse mORrat mORbovin mORhuman mORpig mORws ATla BK-2	290 293 292 293 286 250	IVCWTPIHIYVIIKALŪTI PETTFQTVSWHFCIALGYTNSCLNPVLYAFLDENFIVCWTPIHIYVIIKALITI PETTFQTVSWHFCIALGYTNSCLNPVLYAFLDENF
mORmouse mORrat mORbovin mORhuman mORpig mORws AT1a EK-2	344 344 347 346 340 310	KRCFREFC TPTSSTTEQONSTRÜRONTREHPSTANTVORTNHOLENLEAETAPLE 79 KRCFREFC TPTSSTTEQONSTRÜRONTREHPSTANTVORTNHOLENLEAETAPLE 84 KRCFREFC TPTSSNTEQONSTRÜRONTREHPSTANTVORTNHOLENLEAETAPLE 85 KRCFREFC TPTSSTTEQONSARTRONTREHPSTANTVORTNHOLENLEAETAPLE 86 KRCFREFC PSSPSVLELONSTRUSNPOQESQESCHKVDRUNGOV 87 KKYFLOLLKYTEPKÄKSHS SLSTKMSTLSYRPSDAMSSSAKKPASCFEVE 81