2020 -2021 学年第一学期 概率论与数理统计 A 综合练习

一、填空题

					_	
4 :	已知 $P(A) = 1/2$,	D(D) 1/0	П 4	· · · · · · · · · · · · · · · · · · ·	Dil D (A D)	
I. 1	H 411 P(A) — 1 / 7	P(R) = 1/3.	\Box Δ	$\mathbf{R} \wedge \mathbf{P} = \mathbf{P} \wedge \mathbf{P} \wedge \mathbf{P} \wedge \mathbf{P}$	$ P(\Delta R) -$	
1	$\square \cap \cap I \setminus \{II\} = I \setminus \mathcal{L}_{\bullet}$	$I \setminus D \setminus -1 \setminus J_{\bullet}$	TT (1)	D	$\mathcal{N}(I(ID)) =$	

- **2、**设随机变量 X 的分布律为 $P\{X=k\}=a/N$, $k=1, 2, \dots, N$, 则常数 a=.
- 3、设随机变量 X 服从区间[0,5]上的均匀分布,则 $P\{X \le 3\} =$ _____.
- **4、**设二维随机变量 $(X,Y) \sim N(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$,且X与Y相互独立,则 $\rho = ____$.
- 5、设随机变量 $X \sim B(10,0.6)$,则 D(X) =______.
- **6、**设总体 $X \sim N(0, 1)$, X_1, X_2, \dots, X_n 为样本,则统计量 $\sum_{i=1}^{n} X_i^2$ 的抽样分布为_____.
- 7、设总体 X 服从正态分布 $N(\mu,1)$,且 μ 未知,设 (X_1,X_2,X_3,\cdots,X_n) 为来自该总体的

二、选择题

1、10个人依次排队抓10个阄,10个阄中有4个有物之阄,问第5个人抓到有物之 阄的概率为().

$$A) \quad 0 ; \qquad (B) \quad \overline{}$$

(B)
$$\frac{1}{4}$$
; (C) $\frac{2}{5}$; (D) $\frac{3}{5}$.

(C)
$$\frac{2}{5}$$
;

(D)
$$\frac{3}{5}$$
.

2、设随机变量变量 $X \sim N(\mu, \sigma^2)$,且 $P\{X \le c\} = P\{X > c\}$,则c = ()。

$$(A) \ 0 \ ;$$

$$(B)$$
 μ

(B)
$$\mu$$
 ; (C) $-\mu$; (D) σ .

(D)
$$\sigma$$

3、设X,Y是相互独立的随机变量,其分布函数分别为 $F_X(x),F_Y(y)$,则 $Z = \min(X,Y)$ 的分布函数是(

(A)
$$F_z(z) = \max[F_x(z), F_y(z)];$$
 (B) $F_z(z) = \min[F_x(z), F_y(z)];$

(B)
$$F_Z(z) = \min \left[F_X(z), F_Y(z) \right]$$
;

(C)
$$F_z(z) = 1 - [1 - F_x(z)][1 - F_y(z)]$$
; (D) $F_z(z) = F_y(y)$.

(D)
$$F_Z(z) = F_Y(y)$$

4、向上抛掷一枚硬币 n 次, 正面向上出现次数为 X,正面向下出现次数为 Y;则 X 和 Y的相关系数 $\rho_{xy} = ($).

$$(A)$$
 0;

(A)
$$\mathbf{0}$$
; (B) $\mathbf{0.5}$; (C) $\mathbf{1}$; (D) $\mathbf{-1}$.

$$(D)$$
 -1.

- 5、设随机变量 X 与 Y 都服从标准正态分布,则()。

 - (A) X+Y 服从正态分布; (B) X^2+Y^2 服从 χ^2 分布:
 - (C) $X^2 与 Y^2$ 均服从 χ^2 (1) 分布; (D) X^2/Y^2 服从 F 分布。
- **6、**已知总体 $X \sim N(\mu, o^2)$, 其中 o^2 已知,而 μ 未知,设 X_1, X_2, X_3 是取自总体 X 的样本, 下面哪个不是统计量()。

- (A) $X_1 + X_2 + X_3$; (B) $X_1 3\mu$; (C) $\max\{X_1, X_2, X_3\}$; (D) $X_1 + X_2 + 2\sigma$
- 7、在假设检验中,第 I 类错误是指 ()。
- (A) 当原假设正确时拒绝原假设; (B) 当原假设错误时拒绝原假设;
- (C) 当备择假设正确时未拒绝备择假设: (D) 当备择假设不正确时拒绝备择假设.

三、计算与应用题

1、设随机变量X的分布律为

- (1) 求X的分布函数; (2) 求X的方差D(X).
- 2、设随机变量 X 服从 (0.1) 内的均匀分布,求随机变量函数 $Y = e^{X}$ 的概率密度函数.

3、设
$$(X,Y)$$
的联合概率密度为 $f(x,y) = \begin{cases} Axy, & 0 < x < 1, 0 < y < x, \\ 0, & others. \end{cases}$

求(1)常数A的值;(2)判断X、Y的独立性;(3) $P{X+Y<1}$.

4、由 100 个相互独立起作用的部件组成的一个系统在运行过程中,每个部件能正常 工作的概率都为90%.为了使整个系统能正常运行,至少必须有85%的部件在正常工 作, 求整个系统能正常运行的概率. (利用中心极限定理, $\Phi(1.67) = 0.9525$,

 $\Phi(1.96) = 0.975$

5、设总体 X 的概率密度为 $f(x) = \begin{cases} \frac{1}{\theta - 1}, 1 < x < \theta; \\ 0, 其中 \theta > 1 是未知参数,分别用矩$

估计法和极大似然估计法求 θ 的估计量。

6、水泥厂用自动打包机包装化肥。现在随机抽取 9 包,测得各袋水泥质量(kg)为:

49. 7, 49. 8, 50. 3, 50. 5, 49. 7, 50. 1, 49. 9, 50. 5, 50. 4, (其中 $\bar{x}=50.1$, $S^2=0.1125$); 设每包水泥的质量 $X\sim N(\mu,\sigma^2)$,在显著性水平 $\alpha=0.05$ 下试问:是否可以认为包装的每包水泥平均质量为 50 (kg)?($\Phi(1.96)=0.975$, $t_{0.025}(8)=2.31$, $t_{0.025}(9)=2.26$)

四、证明题

- 1、已知事件A与事件B相互独立,证明事件A与事件 \overline{B} 相互独立。
- 2、设总体 X 的均值和方差分别为 μ 和 σ^2 ,证明 $S^2=\frac{1}{n-1}\sum_{i=1}^n \left(X_i-\bar{X}\right)^2$ 是 σ^2 的无偏估计量。

参考答案

一、填空题

$$1, \underline{1/3}; 2, \underline{1}; 3, \underline{3/5}; 4, \underline{0}; 5, \underline{2.4}; 6, \underline{\chi^2(n)}; 7, (\overline{X} - u_{\underline{\alpha}} \sqrt{\frac{1}{n}}, \overline{X} + u_{\underline{\alpha}} \sqrt{\frac{1}{n}})$$

二、选择题

 $1, (C) \quad 2, (B) \quad 3, (C) \quad 4, (D) \quad 5, (C) \quad 6, (B) \quad 7, (A)$

三、计算与应用题

1、解: (1)
$$X$$
的分布函数 $F(x) = \begin{cases} 0, & x < 0, \\ 0.2, & 0 \le x < 1, \\ 0.5, & 1 \le x < 2, \\ 1, & 2 \le x. \end{cases}$

(2)
$$E(X) = 0 \times 0.2 + 1 \times 0.3 + 2 \times 0.5 = 1.3$$
; $E(X^2) = 0^2 \times 0.2 + 1^2 \times 0.3 + 2^2 \times 0.5 = 2.3$; 所以 X 的方差 $D(X) = 2.3 - 1.3^2 = 0.61$.

2、解: 因为
$$X$$
 服从(0,1)内的均匀分布,所以分布函数 $F_X(x) = \begin{cases} 1, & x \ge 1, \\ x, 0 < x < 1, \\ 0, 其它 \end{cases}$

Y 的分布函数
$$F_Y(y) = P(Y \le y) = P(e^X \le y) = \begin{cases} 0, & y < 1, \\ P(X \le \ln y) = \ln y, & 1 \le y \le e, \\ 1, & y > e. \end{cases}$$

所以
$$f_{Y}(y) = F'_{Y}(y) = \begin{cases} 1/y, & 1 \le y \le e, \\ 0, & 其它 \end{cases}$$

3、解: (1)由归一性得
$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x,y) dx dy == \int_{0}^{1} dx \int_{0}^{x} Axy dy = \frac{A}{8} = 1$$
, 得 $A = 8$;

(2) 因为
$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy = \begin{cases} \int_0^x 8xy dy = 4x^3, & 0 < x < 1, \\ 0, & other. \end{cases}$$

$$f_{Y}(y) = \int_{-\infty}^{+\infty} f(x, y) dx = \begin{cases} \int_{y}^{1} 8xy dx = 4y(1 - y^{2}), & 0 < y < 1, \\ 0, & other. \end{cases}$$

 $f(x,y) \neq f_X(x) \times f_Y(y)$, 所以 **X、Y**不独立;

(3)
$$P\{X+Y<1\} = \iint_{x+y<1} 8xy dx dy = \int_0^{1/2} dy \int_y^{1-y} 8xy dx = \int_0^{1/2} 4y (1-2y) dy = \frac{1}{6}$$

4、解:设 100 个相互独立起作用的部件能正常工作的件数为X,则 $X \sim B(100, 0.9)$,

由中心极限定理得
$$\frac{X-np}{\sqrt{np(1-p)}}=\frac{X-90}{3}$$
近似服从 $N(0,1)$,

所求概率为
$$P(X \ge 85) = 1 - P(\frac{X - 100}{3} < -\frac{5}{3}) \approx 1 - \Phi(-\frac{5}{3}) = \Phi(\frac{5}{3}) \approx \Phi(1.67) = 0.9525$$

5、解: 矩估计:
$$:: E(X) = \frac{\theta+1}{2}, :: \theta = 2E(X)-1, \ \theta \in \Phi$$
 的矩估计量 $\hat{\theta} = 2\bar{X}-1$ 。

极大似然估计: 极大似然函数为
$$L(\theta) = \begin{cases} \frac{1}{(\theta-1)^n}, 1 < x_1, x_2, x_3, \cdots, x_n < \theta, \\ 0, 其它. \end{cases}$$

其最大值点为 $\theta = \max(x_1, x_2, x_3, \dots, x_n)$,

所以 θ 的极大似然估计量 $\hat{\theta} = \max(X_1, X_2, X_3, \dots, X_n)$

6、解: 假设 H_0 : $\mu = 50$, H_1 : $\mu \neq 50$,

取统计量
$$t = \frac{\bar{X} - 50}{S/\sqrt{9}}$$
, 拒绝域为 $\{|t| \ge t_{\alpha/2}(n-1) = t_{0.025}(8) = 2.31\}$;

 $\overline{m} = 50.1$, $S^2 = 0.1125$,|t| = 0.894 < 2.31,所以接受 H_0 ,

即可以认为包装的每包化肥平均质量为 50 kg

四、证明题

1、证明: 因为A与B相互独立,所以P(AB) = P(A)P(B),

$$P(A\overline{B}) = P(A) - P(AB) = P(A) - P(A)P(B) = P(A)P(\overline{B})$$
, 所以 $A 与 \overline{B}$ 相互独立。

2、证明: 因为
$$E(X_i) = \mu, D(X_i) = \sigma^2, E(\overline{X}) = \mu, D(\overline{X}) = \frac{\sigma^2}{n}$$

所以
$$E(S^2) = E(\frac{1}{n-1}\sum_{i=1}^n (X_i - \bar{X})^2) = \frac{1}{n-1}E(\sum_{i=1}^n (X_i - \bar{X})^2)$$

$$= \frac{1}{n-1} E(\sum_{i=1}^{n} X_i - \overline{X})^2 = \frac{1}{n-1} E[(\sum_{i=1}^{n} X_i^2) - n(\overline{X})^2] = \frac{1}{n-1} [(n-1)\sigma^2] = \sigma^2,$$

所以
$$S^2 = \frac{1}{n-1} \sum_{i=1}^n X_i$$
 是 σ^2 的无偏估计量。