Simulation and Analysis of Diode Clippers and Clampers Using eSIM

Submitted by:

Abdullah Najam

Indian Institute of Engineering Science and Technology, Shibpur

1. Introduction

Wave shaping circuits such as **clippers** and **clampers** play a crucial role in signal processing applications. Clippers (also known as limiters) are designed to remove portions of the waveform beyond a certain voltage level, altering its shape. Clampers, on the other hand, shift the entire waveform to introduce a DC bias without changing its form. These circuits are widely used in **communication systems, television receivers, and signal conditioning applications**.

This project focuses on simulating diode-based clipper and clamper circuits using **eSIM**, an open-source electronic simulation tool. The objective is to analyze the behavior of these circuits under different configurations and observe their impact on waveform transformation.

2. Circuit Theory and Description

2.1 Clipper Circuits

- **Series Positive Clipper**: Removes the positive half-cycle of the input waveform.
- Series Negative Clipper: Removes the negative half-cycle of the input waveform.
- **Biased Clippers**: Allows clipping at a voltage level other than zero by introducing a bias voltage.

2.2 Clamper Circuits

- Positive Clamper: Shifts the waveform upward by adding a positive DC level.
- Negative Clamper: Shifts the waveform downward by adding a negative DC level.

These circuits employ diodes, resistors, capacitors, and function generators to shape the signal.

3. Circuit Diagram(s)

Negative Clamper Circuit

Negative Clamper Output Waveform

Positive Clamper Circuit

Positive Clamper Output Waveform

Biased Clipper with diode Circuit

Biased Clipper with diode Circuit Output Waveform

Negative Clipper Circuit

Negative Clipper Circuit Output Waveform

Positive Clipper Circuit

Positive Clipper Circuit Output Waveform

4. Simulation Setup and Procedure

- 1. **Launching eSIM**: Open the eSIM software and create a new project.
- 2. **Circuit Construction**: Place the required components (**diodes**, **resistors**, **capacitors**, **and function generators**) in the circuit editor.
- 3. **Input Signal Configuration**: Apply a sinusoidal input signal of **1 kHz frequency and 5V amplitude**.
- 4. **Simulation Execution**: Run the simulation and analyze the output waveform using a virtual oscilloscope.

5. **Observations**: Compare the input and output waveforms to examine the clipping and clamping effects.

6. Conclusion

This project successfully **simulated diode-based clippers and clampers** using eSIM. The results validate the expected modifications in the waveform caused by clipping and clamping circuits. The study highlights the significance of these circuits in practical applications, such as **signal modulation**, **wave shaping**, **and noise reduction** in electronic systems.

7. References

- 1. IRE Journals Study and Analysis of Clipper and Clamper Circuits https://www.irejournals.com/paper-details/1701522
- 2. **CircuitBread Using Diodes as Clippers or Clampers**https://www.circuitbread.com/tutorials/using-diodes-as-clippers-or-clampers
- 3. IEEE Xplore Diode Applications in Nonlinear Wave Shaping Circuits https://ieeexplore.ieee.org/document/793507