

LA PRIMERA FORMA FUNDAMENTAL

ALAN REYES-FIGUEROA GEOMETRÍA DIFERENCIAL

(AULA 19) 19.MARZO.2024

Hasta ahora, hemos tratados a las superficies en \mathbb{R}^3 desde el punto de vista de la diferenciabilidad. Vamos ahora a introducir otras estructuras geométricas asociadas a una superficie S.

El producto interno $\langle \cdot, \cdot \rangle$ natural de $S \subseteq \mathbb{R}^3$ induce en cada plano tangente $T_{\mathbf{p}}S$ de una superficie regular un producto interno, que denotamos por $\langle \cdot, \cdot \rangle_{\mathbf{p}}$ dado por

$$\langle w_1,w_2\rangle_{\boldsymbol{p}}=\langle w_1,w_2\rangle,\quad \forall w_1,w_2\in T_{\boldsymbol{p}}S.$$

Este producto interno es una forma bilineal simétrica:

- $\langle a\mathbf{w}_1 + b\mathbf{w}_2, \mathbf{w}_3 \rangle_{\mathbf{p}} = a \langle \mathbf{w}_1, \mathbf{w}_3 \rangle_{\mathbf{p}} + b \langle \mathbf{w}_2, \mathbf{w}_3 \rangle_{\mathbf{p}};$
- $\langle \mathbf{w}_1, a\mathbf{w}_2 + b\mathbf{w}_3 \rangle_{\mathbf{p}} = a \langle \mathbf{w}_1, \mathbf{w}_2 \rangle_{\mathbf{p}} + b \langle \mathbf{w}_1, \mathbf{w}_3 \rangle_{\mathbf{p}};$
- $\langle \mathbf{W}_1, \mathbf{W}_2 \rangle_{\mathbf{p}} = \langle \mathbf{W}_2, \mathbf{W}_1 \rangle_{\mathbf{p}}$.

Si α es una curva diferenciable sobre la superficie S, cuando calculamos la longitud de arco de α

 $\ell(\alpha) = \int_a^b ||\alpha'(t)|| dt$

nos gustaría utilizar elementos intrínsecos a la superficie S, sin hacer referencia al espacio métrico ambiente.

Definición

Sea $S \subseteq \mathbb{R}^3$ una superficie regular, $\mathbf{p} \in S$. La **primera forma fundamental** de S en \mathbf{p} es la forma cuadrática $I_{\mathbf{p}}: T_{\mathbf{p}}S \to \mathbb{R}$ dada por

$$I_{\mathbf{p}}(\mathbf{v}) = \langle \mathbf{v}, \mathbf{v} \rangle_{\mathbf{p}} = ||\mathbf{v}||_{\mathbf{p}}^{2}, \quad \forall \mathbf{v} \in T_{\mathbf{p}}S.$$

Observaciones:

- I_p es apenas la expresión de cómo T_pS hereda la estructura de producto interno de \mathbb{R}^3 .
- Ip es el ejemplo más simple de una métrica Riemanniana.

Tenemos

$$\ell(\alpha) = \int_a^b \sqrt{I_{\alpha(t)}(\alpha'(t))} dt.$$

Sea $\mathbf{x}:U\subseteq\mathbb{R}^2\to V\cap S$ una parametrización de S, y sea $\alpha(t)=\mathbf{x}(u(t),v(t))$ una curva contenida en $V\cap S$. Como $\alpha'(t)=\mathbf{x}_u(\alpha(t))\cdot u'(t)+\mathbf{x}_v(\alpha(t))\cdot v'(t)$, entonces si $\alpha:(-\varepsilon,\varepsilon)\to V\cap S$ es tal que $\mathbf{p}=\alpha(\mathbf{0})=\mathbf{x}(u_\mathbf{0},v_\mathbf{0})$, y $\alpha'(\mathbf{0})=\mathbf{v}$. Entonces,

$$\mathbf{v} = \alpha'(\mathbf{o}) = \mathbf{x}_u(\mathbf{p}) \cdot u'(\mathbf{o}) + \mathbf{x}_v(\mathbf{p}) \cdot v'(\mathbf{o}),$$

y podemos escribir

$$\begin{split} I_{\mathbf{p}}(\mathbf{v}) &= \langle \mathbf{v}, \mathbf{v} \rangle_{\mathbf{p}} = \langle \mathbf{x}_{u} \cdot u'(0) + \mathbf{x}_{v} \cdot v'(0), \mathbf{x}_{u} \cdot u'(0) + \mathbf{x}_{v} \cdot v'(0) \rangle_{\mathbf{p}} \\ &= \left(u'(0) \right)^{2} \langle \mathbf{x}_{u}, \mathbf{x}_{u} \rangle_{\mathbf{p}} + 2u'(0)v'(0) \langle \mathbf{x}_{u}, \mathbf{x}_{v} \rangle_{\mathbf{p}} + \left(v'(0) \right)^{2} \langle \mathbf{x}_{v}, \mathbf{x}_{v} \rangle_{\mathbf{p}}. \end{split}$$

Si definimos los coeficientes

$$\begin{array}{lcl} E & = & E_{\textbf{p}} = \langle \textbf{x}_u(\textbf{p}), \textbf{x}_u(\textbf{p}) \rangle_{\textbf{p}} = \langle \textbf{x}_u, \textbf{x}_u \rangle_{\textbf{p}}, \\ F & = & F_{\textbf{p}} = \langle \textbf{x}_u(\textbf{p}), \textbf{x}_v(\textbf{p}) \rangle_{\textbf{p}} = \langle \textbf{x}_u, \textbf{x}_v \rangle_{\textbf{p}}, \\ G & = & G_{\textbf{p}} = \langle \textbf{x}_v(\textbf{p}), \textbf{x}_v(\textbf{p}) \rangle_{\textbf{p}} = \langle \textbf{x}_v, \textbf{x}_v \rangle_{\textbf{p}}, \end{array}$$

Entonces la ecuación anterior se escribe como

$$I_{\mathbf{p}}(\alpha'(\mathbf{0})) = E(u')^2 + 2Fu'v' + G(v')^2 = (u', v') \begin{pmatrix} E & F \\ F & G \end{pmatrix} \begin{pmatrix} u' \\ v' \end{pmatrix}, \tag{1}$$

donde todos los coeficientes involucrados son calculados en t = 0:

$$E = E(u_o, v_o), \quad F = F(u_o, v_o), \quad G = G(u_o, v_o).$$

En otras palabras, E, F, G son los coeficientes de la primera forma fundamental en la base $\{\mathbf{x}_u, \mathbf{x}_v\}$ de $T_p S$.

En términos de los parámetros t, en ocasiones en otros libros la ecuación (1) se escribe como

$$ds^2 = E du^2 + 2F du dv + G dv^2.$$
 (2)

Aquí, ds^2 (ó ds) es llamado el elemento de longitud de arco o elemento de línea. Para la curva $\alpha(t) = \mathbf{x}(u(t), v(t))$, la expresión

$$\ell(\alpha) = \int_{a}^{b} \sqrt{E\left(\frac{du}{dt}\right)^{2} + 2F\left(\frac{du}{dt}\right)\left(\frac{dv}{dt}\right) + G\left(\frac{dv}{dt}\right)^{2}} dt$$

da la longitud de arco.

Geometría de la primera forma fundamental.

Ejemplo 1: (El plano en \mathbb{R}^3).

Sea $\{\mathbf w_1, \mathbf w_2\}$ una base ortonormal de un plano $S \subset \mathbb R^3$. Sea $\mathbf p \in S$, y consideramos la parametrización $\mathbf x : \mathbb R^2 \to S$ dada por

$$\mathbf{x}(u, \mathbf{v}) = \mathbf{p} + u\mathbf{w}_1 + v\mathbf{w}_2, \quad u, v \in \mathbb{R}.$$

De ahí,
$$\mathbf{x}_u = \mathbf{w}_1$$
, $\mathbf{x}_v = \mathbf{w}_2$ y

$$E = E(u, v) = \langle \mathbf{x}_{u}, \mathbf{x}_{u} \rangle = \langle \mathbf{w}_{1}, \mathbf{w}_{1} \rangle = 1,$$

$$F = F(u, v) = \langle \mathbf{x}_{u}, \mathbf{x}_{v} \rangle = \langle \mathbf{w}_{1}, \mathbf{w}_{2} \rangle = 0,$$

$$G = G(u, v) = \langle \mathbf{x}_{v}, \mathbf{x}_{v} \rangle = \langle \mathbf{w}_{2}, \mathbf{w}_{2} \rangle = 1.$$

La 1a. forma fundamental es

$$I_{\mathbf{p}} = ds^2 = (u')^2 + (v')^2 = (u', v') \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} u' \\ v' \end{pmatrix}.$$

Ejemplo 2: (Superficies de revolución).

Considere la curva regular (f(v), o, g(v)), con f(v) > o, $\forall v \in I$, param. por longitud de arco. Parametrizamos una superficie de revolusión S por

$$\mathbf{x}(u,v) = (f(v)\cos u, f(v)\sin u, g(v)), \quad u \in (0,2\pi), \ v \in I.$$

Luego,
$$\mathbf{x}_u = (-f(v)\sin u, f(v)\cos u, o)$$
, $\mathbf{x}_v = (f'(v)\cos u, f'(v)\sin u, g'(v))$, y

$$E = \langle \mathbf{x}_u, \mathbf{x}_u \rangle = f(\mathbf{v})^2 (\cos^2 u + \sin^2 u) = f(\mathbf{v})^2,$$

$$F = \langle \mathbf{x}_u, \mathbf{x}_v \rangle = f(v)f'(v)(-\sin u \cos u + \cos u \sin u) = 0,$$

$$G = \langle \mathbf{x}_{v}, \mathbf{x}_{v} \rangle = f'(v)^{2}(\cos^{2}u + \sin^{2}u) + g'(v)^{2} = f'(v)^{2} + g'(v)^{2} = 1.$$

$$I_{\boldsymbol{p}} = (u',v') \begin{pmatrix} f'(v)^2 & \mathrm{O} \\ \mathrm{O} & f'(v)^2 + g'(v)^2 \end{pmatrix} \begin{pmatrix} u' \\ v' \end{pmatrix}.$$

Definición

Las parametrizaciones $\mathbf{x}(u, v)$ con F = 0, se llaman **ortogonales**.

Isometrías

Definición

Un difeomorfismo $f: S_1 \to S_2$ entre superficies es llamada una **isometría** si

$$\langle \textit{D} f(\textbf{p}) \cdot \textbf{u}, \textit{D} f(\textbf{p}) \cdot \textbf{v} \rangle_{f(\textbf{p})} = \langle \textbf{u}, \textbf{v} \rangle_{\textbf{p}}, \quad \forall \textbf{p} \in S_1, \ \forall \textbf{u}, \textbf{v} \in \textit{T}_{\textbf{p}} S_1.$$

$$f$$
 es isometría $\iff (I_{S_2})_{f(\mathbf{p})}(Df(\mathbf{p}) \cdot \mathbf{u}) = (I_{S_1})_{\mathbf{p}}(\mathbf{u}), \ \forall \mathbf{p} \in S_1, \ \forall \mathbf{u} \in T_{\mathbf{p}}S_1 \ \iff Df(\mathbf{p}) : T_{\mathbf{p}}S_1 \to T_{f(\mathbf{p})}S_2 \text{ es isometría lineal}, \ \forall \mathbf{u} \in T_{\mathbf{p}}S_1.$

Obs! $f: S_1 \to S_2$ es isometría, entonces las parametrizaciones \mathbf{x} de S_1 y $f \circ \mathbf{x}$ de S_2 , tienen los mismo coeficientes en la 1a. forma fundamental.

$$\begin{array}{lcl} E_{f\circ \mathbf{x}} & = & \langle (f\circ \mathbf{x})_u, (f\circ \mathbf{x})_u \rangle_{f(\mathbf{p})} = \langle Df(\mathbf{p})\cdot \mathbf{x}_u, Df(\mathbf{p})\cdot \mathbf{x}_u \rangle_{f(\mathbf{p})} = \langle \mathbf{x}_u, \mathbf{x}_u \rangle_{\mathbf{p}} = E_{\mathbf{x}}, \\ F_{f\circ \mathbf{x}} & = & \langle (f\circ \mathbf{x})_u, (f\circ \mathbf{x})_v \rangle_{f(\mathbf{p})} = \langle Df(\mathbf{p})\cdot \mathbf{x}_u, Df(\mathbf{p})\cdot \mathbf{x}_v \rangle_{f(\mathbf{p})} = \langle \mathbf{x}_u, \mathbf{x}_v \rangle_{\mathbf{p}} = F_{\mathbf{x}}, \\ G_{f\circ \mathbf{x}} & = & \langle (f\circ \mathbf{x})_v, (f\circ \mathbf{x})_v \rangle_{f(\mathbf{p})} = \langle Df(\mathbf{p})\cdot \mathbf{x}_v, Df(\mathbf{p})\cdot \mathbf{x}_v \rangle_{f(\mathbf{p})} = \langle \mathbf{x}_v, \mathbf{x}_v \rangle_{\mathbf{p}} = G_{\mathbf{x}}. \end{array}$$

Isometrías

Proposición

Sean $\mathbf{x}_1: U_1 \subseteq \mathbb{R}^2 \to V_1 \cap S_1$, $\mathbf{x}_2: U_2 \subseteq \mathbb{R}^2 \to V_2 \cap S_2$ parametrizaciones tales que $E_{\mathbf{x}_1}(u,v) = E_{\mathbf{x}_2}(u,v)$, $F_{\mathbf{x}_1}(u,v) = F_{\mathbf{x}_2}(u,v)$, $G_{\mathbf{x}_1}(u,v) = G_{\mathbf{x}_2}(u,v)$. Entonces, el mapa $f = \mathbf{x}_2 \circ \mathbf{x}_1^{-1}$ es una isometría.

Prueba:

$$\overline{\text{Si}\,f} = \mathbf{x}_2 \circ \mathbf{x}_1^{-1}, \text{ entonces } Df(\mathbf{p}) \cdot \mathbf{x}_{1u} = \mathbf{x}_{2u} \text{ y } Df(\mathbf{p}) \cdot \mathbf{x}_{1v} = \mathbf{x}_{2v}, \text{ y tenemos que}$$

$$\langle Df(\mathbf{p}) \cdot \mathbf{x}_{1u}, Df(\mathbf{p}) \cdot \mathbf{x}_{1u} \rangle_{f(\mathbf{p})} = \langle \mathbf{x}_{2u}, \mathbf{x}_{2u} \rangle_{f(\mathbf{p})} = E_{\mathbf{x}_2} = E_{\mathbf{x}_1} = \langle \mathbf{x}_{1u}, \mathbf{x}_{1u} \rangle_{\mathbf{p}},$$

$$\langle Df(\mathbf{p}) \cdot \mathbf{x}_{1u}, Df(\mathbf{p}) \cdot \mathbf{x}_{1v} \rangle_{f(\mathbf{p})} = \langle \mathbf{x}_{2u}, \mathbf{x}_{2v} \rangle_{f(\mathbf{p})} = F_{\mathbf{x}_2} = F_{\mathbf{x}_1} = \langle \mathbf{x}_{1u}, \mathbf{x}_{1v} \rangle_{\mathbf{p}},$$

$$\langle Df(\mathbf{p}) \cdot \mathbf{x}_{1v}, Df(\mathbf{p}) \cdot \mathbf{x}_{1v} \rangle_{f(\mathbf{p})} = \langle \mathbf{x}_{2v}, \mathbf{x}_{2v} \rangle_{f(\mathbf{p})} = G_{\mathbf{x}_2} = G_{\mathbf{x}_1} = \langle \mathbf{x}_{1v}, \mathbf{x}_{1v} \rangle_{\mathbf{p}}.$$

Como $\{\mathbf{x}_{1u}, \mathbf{x}_{1v}\}$ es base de $T_{\mathbf{p}}S_1$ y $\{\mathbf{x}_{2u}, \mathbf{x}_{2v}\}$ es base de $T_{f(\mathbf{p})}S_2$, el resultado se extiende por linealidad a todo vector. Portanto f es isometría. \Box

Isometrías

Definición

 $f: S_1 \to S_2$ es una **isometría local** si f es un difeomorfismo local.

Dos superficies son **localmente isométricas** si para todo punto $\mathbf{p} \in S_1$, existe un punto $\mathbf{q} \in S_2$ y vecindades abiertas $U_1 \subseteq S_1$ de \mathbf{p} , $U_2 \subseteq S_2$ de \mathbf{q} , tales que $f|_{U_1}: U_1 \to U_2$ es una isometría.

Ejemplo 3:

¿Existe alguna superficie S no contenida en un plano, que se localmente isométrica al plano?

Respuesta: Sí, hay muchas.

Por ejemplo, el cilindro circular recto $S = S^1 \times \mathbb{R}$, parametrizado por

$$\mathbf{x}(u, \mathbf{v}) = (\cos u, \sin u, \mathbf{v}), \quad u \in (0, 2\pi), \mathbf{v} \in \mathbb{R}.$$

Luego,
$$\mathbf{x}_u = (-\sin u, \cos u, o), \quad \mathbf{x}_v = (o, o, 1), y$$

$$E = \langle \mathbf{X}_u, \mathbf{X}_u \rangle = \sin^2 u + \cos^2 u = 1, \ F = \langle \mathbf{X}_u, \mathbf{X}_v \rangle = 0, \ G = \langle \mathbf{X}_v, \mathbf{X}_v \rangle = 1.$$

Así, el cilindro satisface $E=1, F=0, G=1, \forall (u,v) \Rightarrow$ tiene la misma 1a. forma fundamental que el plano \mathbb{R}^2 .

Isometría local entre el cilindro $S^1 \times \mathbb{R}$ y la región $(-\pi, \pi) \times \mathbb{R}$ del plano \mathbb{R}^2 .