

## Correction to Carbon Nanohoops: Excited Singlet and Triplet Behavior of [9]- and [12]-Cycloparaphenylene

Douglas A. Hines, Evan R. Darzi, Ramesh Jasti, and Prashant V. Kamat\* *J. Phys. Chem. A* **2014**, *118*, 1595–1600. DOI: 10.1021/jp4123562

In the abstract and main text of this manuscript, we inadvertently entered wrong estimates of the rate constants of energy transfer ( $k_{\rm et}$ ) to biphenyl as well as the rate constants of triplet state quenching by molecular oxygen. The correct  $k_{\rm et}$  values for reaction 5 are  $1.9\times10^4~{\rm M^{-1}~s^{-1}}$  and  $1.7\times10^4~{\rm M^{-1}~s^{-1}}$  for [9]CPP and [12]CPP, respectively. The corrected rates of triplet state quenching by oxygen are  $1.7\times10^9~{\rm M^{-1}~s^{-1}}$  and  $1.8\times10^9~{\rm M^{-1}~s^{-1}}$  for [9]CPP and [12]CPP, respectively. Figure 6 is revised to show these corrected values.



**Figure 6.** The average lifetime of the nanohoop/oxygen solution with different concentrations of dissolved oxygen. The filled dot represents the experimental data of [9]CPP, and the hollow dot represents [12]CPP. The experimental trends are fit to a straight line (red = [9]CPP; blue = [12]CPP), and the slope of the line is taken to be the bimolecular reaction rate of triplet quenching by oxygen.

Table 2 is revised to reflect the corrected values, and eq 1 is revised to reflect correct subscripts.

$$\Phi_{\rm f} = \Phi_{\rm std}(F_{\rm nh}/F_{\rm std})(1 - 10^{\rm Astd}/1 - 10^{\rm Anh})(n_{\rm nh}^2/n_{\rm std}^2)$$
 (1)

Table 2. Summary of Measured Extinction Coefficients and  $\Phi$  Values

| sample  | $\begin{pmatrix} \lambda_{\max} \\ (nm) \end{pmatrix}$ | $\varepsilon_{\mathrm{T}}~(\mathrm{M}^{-1}~\mathrm{cm}^{-1})$ | $(M^{-1}s^{-1})$    | $\Phi_{ m f}$ | $\Phi_{\mathrm{T}}$ | $\Phi_{ m nr}$ |
|---------|--------------------------------------------------------|---------------------------------------------------------------|---------------------|---------------|---------------------|----------------|
| [9]CPP  | 390                                                    | $25000 \pm 4000$                                              | $1.9 \times 10^{4}$ | 0.46          | 0.18                | 0.36           |
| [12]CPP | 680                                                    | $31000 \pm 1300$                                              | $1.7 \times 10^{4}$ | 0.83          | 0.13                | 0.04           |

Published: January 6, 2015