Computerphysik Hausarbeit 6

Friedrich Hübner 2897111 Fiona Paulus 2909625

5. August 2017

Aufgabe 1: Gammalinie

allgemeine Hinweise

Das Programm zu Aufgaben b) und c) wurde unter Linux-Mint mit 'g++-std=c++11-g-Wall -Wextra b.cpp -o b.exe' kompiliert.

a)

Das Plotten der Datei "profile.datërgibt das Spektrum eines Gammastrahlers. Es wird die Impulsrate gegen die Energie aufgetragen.

Spektrum eines Gammastrahlers

b

Aus dem Spektrum des Gammastrahlers aus a) soll der Kosmische Mikrowellen Hintergrund berechnet werden. Dazu wird eine Spline-Interpolation verwendet, welche mithilfe

von festglegten Stützstellen x_i und den dazugehörigen Stützwerten y_i ein Polynom 3.Grades an die Messdaten fittet ("b.cpp").

Dieses Polynom und seine Ableitungen werden für jedes Intervall berechnet.

$$S_i(x) = a_i(x - x_i)^3 + b_i(x - x_i)^2 + c_i(x - x_i) + d_i$$

$$S_i'(x) = 3a_i(x - x_i)^2 + 2b_i(x - x_i) + c_i$$

$$S_i''(x) = 6a_i(x - x_i) + 2b_i$$

n: Anzahl der Stützstellen

Um das Gleichungssystem zu lösen werden Bedingungen aufgestellt. Die Gesamtfunktion muss stetig sein, somit müssen die Polynome der Intervalle an den Stützstellen übereinstimmen.

$$S_i(x_i) = S_{i-1}(x_i)$$

$$S'_i(x_i) = S'_{i-1}(x_i)$$

$$S''_i(x_i) = S''_{i-1}(x_i)$$

Außerdem müssen die Funktionswerte an den Stützstellen mit den zugehörigen Stützwerten übereinstimmen.

$$S_i(x_i) = y_i$$
$$S_{n-1}(x_n) = y_n$$

Und die Krümmung an den Rändern der Gesamtfunktion soll verschwinden.

Die Interpolation wird mit folgenden Stützwerten und dazugehörigen Stützstellen durchgeführt:

Stützwert i	Messwert k	Stützstelle x_i	Stützwert y_i
0	15	F0	007 000
0	15	50	887.992
1	415	250	701.793
2	715	400	623.281
3	1015	550	486.757
4	1415	750	266.316
5	1715	900	209.190

Daraus werden die Abstände $h_i = x_{x+1} - x_i$ $0 \le i \le 4$ zwischen den Stützpunken berechnet, mit deren Hilfe die Koeffizienten A,B,C,D berechnet werden.

$$A_i = h_{i-1}$$
$$B_i = 2(hi - 1 + h_i)$$

$$C_{i} = h_{i}$$

$$D_{i} = g(\frac{y_{x+1} - y_{i}}{h_{i}} - \frac{y_{i} - y_{i-1}}{h_{i-1}})$$

Daraus werden weitere Koeffizienten berechnet:

$$B_i' = B_i - C_{i-1} \frac{A_i}{B_{i-1}}$$

$$D_i' = D_i - D_{i-1} \frac{A_i}{B_{i-1}}$$

mit $B_1 = B_1'$ und $D_1 = D_1'$ Außerdem gilt:

$$X_i = y_i''$$

$$X_4 = \frac{D_4'}{B_4'}$$

wodurch sich alle weiteren X_i rekursiv berechnen lassen.

Aus diesen Koeffizienten ergeben sich nun die Koeffizienten der Polynome a,b,c und d.

$$a_{i} = \frac{y_{i+1}'' - y_{i}''}{6h_{i}}$$

$$b_{i} = \frac{y_{i}''}{2}$$

$$c_{i} = \frac{y_{i+1} - y_{i}}{h_{i}} - \frac{h_{i}(y_{i+1}'' + 2y_{i}'')}{g}$$

$$d_{i} = y_{i}$$

Mit diesen Koeffizienten ergeben sich die Polynome mit denen die Funktion des Kosmischen Hintergrunds beschrieben wird.

Spektrum eines Gammastrahlers und Kosmischer Mikrowellenhintergrund

c)

Nun wird die Funktion des Kosmischen Hintergrunds von der Gammalinie subtrahiert um die reine Strahlung des Gammastrahlers zu erhalten.("b.cpp")

Spektrum eines Gammastrahlers ohne kosmischen Mikrowellenhintergrund

sonstige abgegebene Datein

plot.plt

Plotdateien für Aufgabenteile a),b) und c)

cmb.dat

Ausgabedatei des Programms "b.cpp"für den Aufgabenteil b)

profile-cmb.dat

Ausgabedatei des Programms "b.cpp"für den Aufgabenteil c)