Hyperparameter search

Taehoon Ko (taehoonko@snu.ac.kr)

목표

- 하이퍼파라미터(Hyperparameter)의 의미를 이해한다.
- 하이퍼파라미터를 탐색하기 위한 방법을 이해한다.
 - Grid search
 - Randomized search

Hyperparameter search

Hyperparameter control

Hyperparameter tuning

Hyperparameter optimization

Club DJ, Pilot Data scientist

- DJ set, airplane → machine learning model
- Buttons, dials → Hyperparameters for the model

Control parameters of the model

Example: Ridge

sklearn.linear_model.Ridge

class sklearn.linear_model. Ridge (alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, max_iter=None, tol=0.001, solver='auto', random_state=None) [source]

Linear least squares with I2 regularization.

Initial parameters

This model solves a regression model where the loss function is the linear least squares function and regularization is given by the I2-norm. Also known as Ridge Regression or Tikhonov regularization. This estimator has built-in support for multi-variate regression (i.e., when y is a 2d-array of shape [n_samples, n_targets]).

http://scikit-

Control parameters of the model

Example: MLPClassifier

sklearn.neural_network.MLPClassifier¶

```
class sklearn.neural_network. MLPClassifier (hidden_layer_sizes=(100,), activation='relu', solver='adam', alpha=0.0001, batch_size='auto', learning_rate='constant', learning_rate_init=0.001, power_t=0.5, max_iter=200, shuffle=True, random_state=None, tol=0.0001, verbose=False, warm_start=False, momentum=0.9, nesterovs_momentum=True, early_stopping=False, validation_fraction=0.1, beta_1=0.9, beta_2=0.999, epsilon=1e-08, n_iter_no_change=10) [source]
```

Initial parameters

http://scikit-

Hyperparameters are very important!

- All machine learning models have hyperparameters.
- If you want to get good models, you have to control hyperparameters!

 Sadly, there is no perfect way to find optimal hyperparameters.

No Free Lunch (NFL) theorem

 We have dubbed the associated results NFL theorems because they demonstrate that if an algorithm performs well on a certain class of problems then it necessarily pays for that with degraded performance on the set of all remaining

http://ecmendenhall.blogspot.com/2006_02_10_archive.html

Trial and Error

- 여러 하이퍼파라미터를 이용해 모델을 학습
 - 여러 하이퍼파라미터 후보들을 이용
 - -많이 탐색할수록 좋은 결과를 얻을 수 있겠지만, 시간이 오래 소요될 것
 - Training set를 이용해 학습

- 학습된 모델을 평가 → 최적의 하이퍼파라미터를 결정
 - Validation set (a.k.a. development set) 을 이용하여 학습된 모델을 평가

Grid search vs. Randomized search

- 두 방법 모두 trial and error를 기본으로 함
- Grid search는 후보값을, Randomized search는 분포를 제시
- 두 방법 모두 Parallel processing이 가능함

하이퍼파라미터 탐색 시 유의할 점

- 하이퍼파라미터가 알고리즘에서 어떤 역할을 하는지 정확히 파악하는 것이 필요함.
 - Ex1) Ridge, Lasso 학습 시 'alpha'는 어떤 후보값 (혹은 어떤 분포) 을 주어야 하는가?
 - Ex2) MLPClassifier 학습 시 'learning_rate_init'에는 어떤 후보값 (혹은 어떤 분포) 을 주어야 하는가?

- 공부가 필요함.
- 경험치는 많은 도움이 됨. (사람이 trial and error로 학습되는 효과)

(참고) 또 다른 탐색 방법

Bayesian optimization

- 하이퍼파라미터를 맵핑하는 확률적 모델 (probabilistic model) 설계
 - -Validation set에 대한 평가를 활용
- GP EI MCMC라는 방법 제안 → Grid search, Randomized search보다 더
 최적값을 빠르게 찾는 것을 실험적으로 평가
 - -EI: Expected Improvement / MCMC: Markov Chain Monte Carlo

Using evolutionary algorithms

- Ex) 유전체 알고리즘 (Genetic Algorithm)
- 좋은 결과가 나온 하이퍼파라미터 집합 후보군을 섞어서 더 좋은 하이퍼파라 미터 집합를 계속 찾아나가는 방법