INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF4085B gates Dual 2-wide 2-input AND-OR-invert gate

Product specification
File under Integrated Circuits, IC04

January 1995

Dual 2-wide 2-input AND-OR-invert gate

HEF4085B gates

DESCRIPTION

The HEF4085B is a dual 2-wide 2-input AND-OR-invert gate, each with an additional input (A_4 or B_4) which can be used as either an expander input or an inhibit input. A HIGH on A_4 or B_4 forces the output (O_A or O_B) LOW independent of the other inputs (A_0 to A_3 or B_0 to B_3). The outputs O_A and O_B are fully buffered for highest noise immunity and pattern insensitivity of output impedance.

HEF4085BP(N): 14-lead DIL; plastic

(SOT27-1)

HEF4085BD(F): 14-lead DIL; ceramic (cerdip)

(SOT73)

HEF4085BT(D): 14-lead SO; plastic

(SOT108-1)

(): Package Designator North America

LOGIC FUNCTION

$$O_A = \overline{A_0 \cdot A_1 + A_2 \cdot A_3 + A_4}$$

$$O_B = \overline{B_0 \cdot B_1 + B_2 \cdot B_3 + B_4}$$

FAMILY DATA, I_{DD} LIMITS category GATES

See Family Specifications

Philips Semiconductors Product specification

Dual 2-wide 2-input AND-OR-invert gate

HEF4085B gates

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD} V	SYMBOL	TYP.	MAX.	TYPICAL EXTRAPOLATION FORMULA
Propagation delays					
$A_n, B_n \rightarrow O_n$	5		75	155 ns	48 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}	30	60 ns	19 ns + (0,23 ns/pF) C _L
	15		20	40 ns	12 ns + (0,16 ns/pF) C _L
	5		65	135 ns	38 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}	30	55 ns	19 ns + (0,23 ns/pF) C _L
	15		20	40 ns	12 ns + (0,16 ns/pF) C _L
Output transition times	5		60	120 ns	10 ns + (1,0 ns/pF) C _L
HIGH to LOW	10	t _{THL}	30	60 ns	9 ns + (0,42 ns/pF) C _L
	15		20	40 ns	6 ns + (0,28 ns/pF) C _L
	5		60	120 ns	10 ns + (1,0 ns/pF) C _L
LOW to HIGH	10	t _{TLH}	30	60 ns	9 ns + (0,42 ns/pF) C _L
	15		20	40 ns	6 ns + (0,28 ns/pF) C _L

	V _{DD}	TYPICAL FORMULA FOR P (μW)	
Dynamic power	5	750 $f_i + \sum (f_o C_L) \times V_{DD}^2$	where
dissipation per	10	$3200 f_i + \sum (f_o C_L) \times V_{DD}^2$	f _i = input freq. (MHz)
package (P)	15	9200 $f_i + \sum (f_o C_L) \times V_{DD}^2$	f _o = output freq. (MHz)
			C _L = load capacitance (pF)
			$\sum (f_oC_L)$ = sum of outputs
			V _{DD} = supply voltage (V)

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.