Library

CS/B. TECH/CSE/ODD SEM/SEM-5/CS-501/2016-17

MAULANA ABUL KALAM AZAD UNIVERSITY OF TECHNOLOGY, WEST BENGAL

Paper Code: CS-501

DESIGN & ANALYSIS OF ALGORITHMS

Time Allotted: 3 Hours

Full Marks: 70

The figures in the margin indicate full marks. .

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for the following:

 $10 \times 1 = 10$

- i) Which of the following algorithm design techniques is used in quick sort algorithm?
 - a) Dynamic programming
 - b) Backtracking
 - c) Divide and Conquer
 - d) Greedy method.

5/50101

Turn over

- ii) Which of the following algorithms solves the All-Pair Shortest Path problem?
 - a) Dijkstra's
 - b) Floyd's Warshall's
 - c) Prim's
 - d) Kruskal's.
- iii) Travelling Salesman problem is
 - a) NP Hard
 - b) NF
 - c) NP Complete
 - d) None of these.
- iv) Complexity of the recurrence relation

$$T(n) = 8T(n/2) + n^2$$
 is

- a) O(n)
- b) $O(n^2)$
- c) $O(\log_2 n)$
- d) $O(n^3)$

v)	The	minimum number of colours needed to colour
	a gr	aph having $n > 3$ vertices and 2 edges is
	a)	2 b) 3
	c)	d) 1.
vi)	The	fractional Knapsack problem can be solved by
,	usir	ıg
	a)	Greedy method
·•	b)	Divide & Conquer Method
	c)	Dynamic Programming
	d)	None of these.
vii)	Tim	e complexity of Binary Search Algorithm on
	n ite	ems is
	a)	$O(n)$ b) $O(n^2)$
	c)	$O(n \log n)$ d) $O(\log n)$.
viii)	The	time factor when determining the efficiency of
	an a	algorithm is measured by
	a)	counting microseconds
	b)	counting number of key operations
	c)	counting number of statements
	d)	counting kilobyte of algorithm.
0101		3 [Turn over

- ix) The tight bound for building max heap is
 - a) O(n)

- b) $O(\log n)$
- c) $O(n \log n)$
- d) none of these.
- x) BFS of a graph G = (V, E) has running time
 - a) O(|V|+|E|)
- b) O(|V|)
- c) O(|E|)
- d) None of these.

GROUP - B

(Short Answer Type Questions)

Answer any *three* of the following $3 \times 5 = 15$

- 2. Find the best and worst case complexity of Quick sort.
- 3. State master's theorem and find the time complexity for the following recurrence : $T(n) = 2T(n^{\frac{1}{2}}) + \log n$
- 4. Given the weight vector (2, 3, 5, 7, 1, 4, 1) and the profit vector (10, 5, 15, 7, 6, 18, 3) and a Knapsack of capacity 15. Find at least three feasible solutions including optimal one for the knapsack problem of seven objects.

- 5. Solve the following recurrence relation using generating function $a_n = 6a_{n-1} 11a_{n-2} + 6a_{n-3}$ for $n \ge 3$ with initial condition $a_0 = 1$, $a_1 = -1$ and $a_2 = 1$.
- 6. Discuss Job Sequencing with Deadlines with an example.

GROUP - C

(Long Answer Type Questions)

Answer any three of the following. $3 \times 15 = 45$

7. a) Consider the evaluation of the product of n matrices:

$$M = M_1 * M_2 * \dots * M_n$$
.

Assuming that the multiplication of a p * q matrix by a q * r matrix requires pqr scalar multiplications. Write a dynamic programming algorithm for ordering this multiplication with minimum cost. Explain the algorithm in brief.

b) Critically comment on "Greedy strategy does not work for the 0-1 knapsack problem for all time".

Turn over

- c) What do you mean by non-deterministic algorithms? 7 + 5 + 3
- 8. a) State the general Knapsack problem. Write a greedy algorithm for this problem and derive its time complexity.
 - b) Write an algorithm to find out minimum spanning tree of a graph. Discuss its time complexity.

$$(2 + 6) + 7$$

9. a) Describe the Depth first search algorithm for a given graph and explain its time complexity.

- b) Write the algorithm for graph colouring problem.
- c) Apply backtracking technique to solve the 3-colouring problem for the following graph.

5 + 5 + 5

- 10. a) Define the classes P and NP.
 - b) Discuss what you mean by polynomial reductions.
 - c) Discuss diagrammatically the relations among *P* class, *NP* class, *NP* hard and *NP* complete.
 - d) Describe Clique Decision Problem (CDP).
 - e) Explain the max-flow min-cut theorem with an example. 2+2+2+7
- 11. Write short notes on any three of the following: 3×5
 - a) Vertex Cover Problem
 - b) Recursion Tree
 - c) Heap Creation Technique
 - d) Approximation schemes
 - e) Asymptotic notation.