

WEBENCH® Design Report

VinMin = 6.0V VinMax = 18.0V Vout = 5.0V Iout = 2.0A Device = TPS54232DR Topology = Buck Created = 2017-12-30 03:12:45.359 BOM Cost = \$1.62 BOM Count = 15 Total Pd = 1.61W

Design: 4530725/56 TPS54232DR Leawood R2 TPS54232DR 6.0V-18.0V to 5.00V @ 2.0A

My Comments

No comments

Electrical BOM

#	Name	Manufacturer	Part Number	Properties	Qty	Price	Footprint
1.	Cboot	AVX	08053C104KAT2A Series= X7R	Cap= 100.0 nF ESR= 280.0 mOhm VDC= 25.0 V IRMS= 0.0 A	1	\$0.01	0805 7 mm ²
2.	Ccomp	Samsung Electro- Mechanics	CL21C431JBANNNC Series= C0G/NP0	Cap= 430.0 pF VDC= 50.0 V IRMS= 0.0 A	1	\$0.03	0805 7 mm ²
3.	Ccomp2	Kemet	C0805C100K5GACTU Series= C0G/NP0	Cap= 10.0 pF VDC= 50.0 V IRMS= 0.0 A	1	\$0.01	0805 7 mm ²
4.	Cin	MuRata	GRM32ER61E226KE15L Series= X5R	Cap= 22.0 uF ESR= 2.0 mOhm VDC= 25.0 V IRMS= 3.67 A	2	\$0.18	1210 15 mm ²
5.	Cout	TDK	C2012X5R1A476M125AC Series= X5R	Cap= 47.0 uF ESR= 2.94 mOhm VDC= 10.0 V IRMS= 3.80451 A	1	\$0.29	0805 7 mm ²
6.	Css	MuRata	GRM188R71E822KA01D Series= X7R	Cap= 8.2 nF ESR= 1.0 mOhm VDC= 25.0 V IRMS= 0.0 A	1	\$0.02	0603 5 mm ²
7.	D1	Fairchild Semiconductor	SS24FL	VF@Io= 550.0 mV VRRM= 40.0 V	1	\$0.07	SOD-123F 12 mm ²
8.	L1	Bourns	SDR0805-6R8ML	L= 6.8 µH DCR= 40.0 mOhm	1	\$0.23	
							SDR0805 96 mm ²
9.	Rcomp	Panasonic	ERJ-6ENF5622V Series= ERJ-6E	Res= 56.2 kOhm Power= 125.0 mW Tolerance= 1.0%	1	\$0.01	0805 7 mm ²
10.	. RenB	Panasonic	ERJ-6ENF9532V Series= ERJ-6E	Res= 95.3 kOhm Power= 125.0 mW Tolerance= 1.0%	1	\$0.01	0805 7 mm ²

# Name	Manufacturer	Part Number	Properties	Qty	Price	Footprint
11. RenT	Panasonic	ERJ-6ENF1693V Series= ERJ-6E	Res= 169.0 kOhm Power= 125.0 mW Tolerance= 1.0%	1	\$0.01	0805 7 mm ²
12. Rfbb	Panasonic	ERJ-6ENF1961V Series= ERJ-6E	Res= 1.96 kOhm Power= 125.0 mW Tolerance= 1.0%	1	\$0.01	0805 7 mm ²
13. Rfbt	Panasonic	ERJ-6ENF1022V Series= ERJ-6E	Res= 10.2 kOhm Power= 125.0 mW Tolerance= 1.0%	1	\$0.01	0805 7 mm ²
14. U1	Texas Instruments	TPS54232DR	Switcher	1	\$0.55	

D0008A 57 mm²

Operating Values

Ope	rating values			
#	Name	Value	Category	Description
1.	BOM Count	15		Total Design BOM count
2.	Total BOM	\$1.62		Total BOM Cost
3.	Cin IRMS	400.173 mA	Current	Input capacitor RMS ripple current
4.	Cout IRMS	166.469 mA	Current	Output capacitor RMS ripple current
5.	IC lpk	2.288 A	Current	Peak switch current in IC
6.	lin Avg	644.8 mA	Current	Average input current
7.	L lpp	576.667 mA	Current	Peak-to-peak inductor ripple current
8.	M1 Irms	1.098 A	Current	Q lavg
9.	FootPrint	259.0 mm ²	General	Total Foot Print Area of BOM components
10.	Frequency	1000.0 kHz	General	Switching frequency
11.	M Vds Act	150.661 mV	General	Voltage drop across the MosFET
12.	Mode	CCM	General	Conduction Mode
13.	Pout	10.0 W	General	Total output power
14.	D1 Tj	76.092 degC	Op_Point	D1 junction temperature
15.	Low Freq Gain	61.521 dB	Op_Point	Gain at 1Hz
16.	Vout Actual	4.963 V	Op_Point	Vout Actual calculated based on selected voltage divider resistors
17.	Vout OP	5.0 V	Op_Point	Operational Output Voltage
18.	Cross Freq	42.84 kHz	Op_point	Bode plot crossover frequency
19.	Duty Cycle	30.164 %	Op_point	Duty cycle
20.	Efficiency	86.16 %	Op_point	Steady state efficiency
21.	Gain Marg	-16.048 dB	Op_point	Bode Plot Gain Margin
22.	IC Tj	96.193 degC	Op_point	IC junction temperature
23.	ICThetaJA	100.0 degC/W	Op_point	IC junction-to-ambient thermal resistance
24.	IOUT_OP	2.0 A	Op_point	lout operating point
25.	Phase Marg	55.699 deg	Op_point	Bode Plot Phase Margin
26.	VIN_OP	18.0 V	Op_point	Vin operating point
27.	Vout p-p	3.345 mV	Op_point	Peak-to-peak output ripple voltage
28.	Cin Pd	160.139 µW	Power	Input capacitor power dissipation
29.	Cout Pd	81.474 μW	Power	Output capacitor power dissipation
30.	Diode Pd	768.195 mW	Power	Diode power dissipation
31.	IC Pd	661.932 mW	Power	IC power dissipation

#	Name	Value	Category	Description
32.	L Pd	176.0 mW	Power	Inductor power dissipation
33.	Total Pd	1.606 W	Power	Total Power Dissipation
34.	Vout Tolerance	5.254 %		Vout Tolerance based on IC Tolerance (no load) and voltage divider resistors if applicable

Design Inputs

#	Name	Value	Description
1.	lout	2.0	Maximum Output Current
2.	VinMax	18.0	Maximum input voltage
3.	VinMin	6.0	Minimum input voltage
4.	Vout	5.0	Output Voltage
5.	base_pn	TPS54232	Base Product Number
6.	source	DC	Input Source Type
7.	Та	30.0	Ambient temperature

Design Assistance

1. TPS54232 Product Folder: http://www.ti.com/product/TPS54232: contains the data sheet and other resources.

Texas Instruments' WEBENCH simulation tools attempt to recreate the performance of a substantially equivalent physical implementation of the design. Simulations are created using Texas Instruments' published specifications as well as the published specifications of other device manufacturers. While Texas Instruments does update this information periodically, this information may not be current at the time the simulation is built. Texas Instruments does not warrant the accuracy or completeness of the specifications or any information contained therein. Texas Instruments does not warrant that any designs or recommended parts will meet the specifications you entered, will be suitable for your application or fit for any particular purpose, or will operate as shown in the simulation in a physical implementation. Texas Instruments does not warrant that the designs are production worthy.

You should completely validate and test your design implementation to confirm the system functionality for your application prior to production.

Use of Texas Instruments' WEBENCH simulation tools is subject to Texas Instruments' Site Terms and Conditions of Use. Prototype boards based on WEBENCH created designs are provided AS IS without warranty of any kind for evaluation and testing purposes and are subject to the terms of the Evaluation License Agreement.