ECBS6001: Advanced Macroeconomics

Miklós Koren

Fall 2019

Outline

Outline

- ► Continuous-time Markov chains.
 - transition rate matrix
 - steady-state distribution
 - Poisson process

Example

▶ Take the following 2×2 transition matrix:

$$P = \begin{bmatrix} 0.9 & 0.1 \\ 0.3 & 0.7 \end{bmatrix}$$

► The steady-state distribution is

$$\pi^* = \begin{pmatrix} 0.75 \\ 0.25 \end{pmatrix}$$

Continuous time

Moving to continuous time

- ▶ Let us now take Δ to 0.
- ▶ The set of possible states is fixed, $S_1, ..., S_N$.
- ▶ What changes with Δ is the transition matrix: $P(\Delta)$.

The transition "rate" matrix

- ▶ More generally, we know that $P(\Delta) I$ is $O(\Delta)$.
- ► This means that

$$\lim_{\Delta \to 0} \frac{P(\Delta) - I}{\Delta} \equiv \Lambda$$

exists.

- ▶ Because $P(\Delta)\mathbf{1} = \mathbf{1}$ (P is stochastic), $\Lambda \mathbf{1} = \mathbf{0}$.
- ► The diagonal elements are negative,
- the off-diagonals are positive.
- \blacktriangleright We call the matrix Λ the transition rate matrix.
 - ▶ In more formal math, Λ is called the *generator matrix* or the Q-matrix.
 - Together with an initial distribution, π_0 , this fully characterizes the continuous-time Markov chain.

Examples

Example 1: Employment and unemployment

- ▶ The hazard rate of losing a job is δ .
 - ▶ The lifetime of a job is exponential with mean $1/\delta$.
 - Job loss is memoryless: you are just as likely to get fired on your 2nd day as on your 366th.
- ▶ The arrival rate of a new job for an unemployed is λ .
 - ▶ The spell of unemployment is exponential with mean $1/\lambda$.
 - Unemployment is memoryless: you are just as likely to find a job after 1 day of unemployment as after 365.

Example 1: continued

- ► State 0: employment.
- ► State 1: unemployment.

$$\Lambda = \begin{bmatrix} -\delta & \delta \\ \lambda & -\lambda \end{bmatrix}$$

Example 2: incoming emails

- Let n(t) be the number of emails in your inbox at time t.
- We want to characterize the dynamics of n.
- ► Suppose emails arrive at random (think of spam).
 - You never erase email:

$$\lambda_{i,j} = 0 \text{ if } j < i$$

No two emails arrive at the same time:

$$\lambda_{i,i+s}=0 \text{ for all } s\geq 2$$

Each new email arrives with a constant arrival rate:

$$\lambda_{i,i+1} = \lambda$$

- ▶ By construction, $\Lambda_i = \lambda$.
- This is called a Poisson process.

Example 2 (continued)

The transition rate matrix for the Poisson process:

$$\begin{bmatrix} -\lambda & \lambda & 0 & \cdots \\ 0 & -\lambda & \lambda & \cdots \\ 0 & 0 & -\lambda & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

Forecasting with Markov chains

More generally

▶ More generally, the Kolmogorov equation is

$$\dot{\pi}(t) = \pi(t)\Lambda.$$

- ▶ Given an initial $\pi(0)$ and a transition rate matrix Λ , we can calculate the probability of each state in any future t.
 - Often there is no analytical solution for this ODE.
 - However, in dynamic programming it is sufficient to only look at the *immediate* future.
 - ▶ The transition rates will be sufficient to do recursive optimization.

The stationary distribution

▶ A stationary distribution π^* satisfies $\dot{\pi} = 0$, so

$$\pi^*\Lambda = 0.$$

Examples

Exercises

Exercises

Take the 3 different email servers and

- 1. Write down the transition rate matrix.
- 2. Write down the Kolmogorov forward equation.
- 3. Solve for the steady-state distribution.

A geometric distribution

The Poisson process

The Poisson process

- ▶ The possible states are n = 0, 1, 2,
- ▶ The Poisson process is characterized by an *arrival rate* λ (aka hazard rate).
- ► The transition rate matrix is

$$\begin{bmatrix} -\lambda & \lambda & 0 & \cdots \\ 0 & -\lambda & \lambda & \cdots \\ 0 & 0 & -\lambda & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

The Poisson process

- ▶ The possible states are n = 0, 1, 2,
- ▶ The Poisson process is characterized by an arrival rate λ (aka hazard rate).
- ► The transition rate matrix is

$$\begin{bmatrix} -\lambda & \lambda & 0 & \cdots \\ 0 & -\lambda & \lambda & \cdots \\ 0 & 0 & -\lambda & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

▶ The Poisson process is used to characterize *rare, memoryless* events.

Examples

- ▶ Phone calls to emergency center.
- ▶ Particles emitted via radioactive decay.
- ▶ Views of the CEU website.

Characterizing the Poisson process

The two key characteristics of the Poisson process

- 1. No two events happen at the same time ("rare events").
- 2. The future arrival of events is independent of past events ("memoryless").

Characterizing the Poisson process

The Poisson process may arise

- ▶ from a truly memoryless process
 - radioactive decay
- from the law of small numbers
 - view of the CEU website from California

Visits to econ.ceu.hu from California

Export shipments of shirts from the U.S.

Export shipments of shirts from the U.S. to Iceland

Counterexamples

- Emergency phone calls during a natural disaster.
- Arrival of guests at a restaurant.
- ▶ Your phone calls to your mother.

Properties of the Poisson process

- ▶ The waiting time between the n-1sth and nth arrival is T_n .
- $ightharpoonup T_n$ is random, exponentially distributed with parameter λ :

$$\Pr(T_n \le t) = 1 - \exp(-\lambda t).$$

► Waiting times are independent.

Properties of the Poisson process

- Let N = n(t+h) n(t) denote the number of arrivals between t and t+h.
- ightharpoonup N is a Poisson-distributed random variable with parameter λh .
- lt takes on values 0, 1, 2, ... with pdf

$$Pr(n = k) = \frac{\exp(-\lambda h)(\lambda h)^k}{k!}$$

Properties of Poisson processes (continued)

- ▶ Take two independent Poisson processes with arrival λ_1 and λ_2 .
 - ▶ The sum is also a Poisson process with arrival $\lambda_1 + \lambda_2$.
 - ▶ The waiting time for the first arrival is exponential with parameter $\lambda_1 + \lambda_2$.

Properties of Poisson processes (continued)

- ▶ Take two independent Poisson processes with arrival λ_1 and λ_2 .
 - ▶ The sum is also a Poisson process with arrival $\lambda_1 + \lambda_2$.
 - ▶ The waiting time for the first arrival is exponential with parameter $\lambda_1 + \lambda_2$.
- ▶ Take a Poisson processes with arrival λ and a probability p.
- ightharpoonup Kill each arrival with probability 1-p.
 - ▶ The new process is Poisson with arrival $p\lambda$.

Notation

- Let J(t) denote the number of arrivals of a standard Poisson process between time 0 and time t.
- ▶ For any t, $J(t) \sim \text{Poisson(t)}$.
- Notation for a jump process of arrival λ and jumps of size x:

$$xJ(\lambda t)$$

Graph.

Poisson representation of Markov chains

- ▶ Think of a Markov chain with N states.
- ightharpoonup Starting in any given state, only N-1 things can happen (or nothing).
- ightharpoonup Each N-1 jump has its own arrival rate.
- ▶ The first jump occurs with a Poisson arrival $\lambda_1 + ... + \lambda_{n-1}$ (see above).

Poisson representation of Markov chains (continued)

- ▶ Once there *is* a jump, which one is it?
- lt could be any one of the 1, ..., n-1.
- ► The probability of jump 1 is

$$\frac{\lambda_1}{\lambda_1 + \dots + \lambda_{n-1}}.$$

Poisson representation of Markov chains (continued)

- ▶ Once there is a jump, which one is it?
- lt could be any one of the 1, ..., n-1.
- ▶ The probability of jump 1 is

$$\frac{\lambda_1}{\lambda_1 + \dots + \lambda_{n-1}}.$$

- ▶ This is a good old probability $\in [0, 1]$.
- ▶ This looks more like a discrete transition matrix.

Poisson representation of Markov chains (continued)

- ▶ Once there is a jump, which one is it?
- lt could be any one of the 1, ..., n-1.
- ► The probability of jump 1 is

$$\frac{\lambda_1}{\lambda_1 + \dots + \lambda_{n-1}}.$$

- ▶ This is a good old probability $\in [0, 1]$.
- ▶ This looks more like a discrete transition matrix.
- ▶ I find it useful to think about Markov chains as the sum of Poisson processes.

Checklist

By now you should understand

- 1. continuous-time Markov chain
- 2. arrival rate matrix
- 3. forward Kolmogorov equation
- 4. stationary distribution
- 5. Poisson process
- 6. Poisson distribution