Fiche BIMA

Charles Vin

Décembre 2022

Table des matières

1	Edge Detection with filtering	1
	1.1 Sobel Edge filter	1
	1.2 Second order	1
	1.3 Approche pyramidale	2
	1.4 Canny-Deriche	2
	1.5 Post processing	2
2	Corner Detection	2
	2.1 Moravec keypoint detection	2
	Gausienne 2D :	
	$\frac{1}{\sqrt{2\pi\sigma}}e^{-\frac{x^2+y^2}{2\sigma^2}}$.	
	$\sqrt{2\pi\sigma}$	

1 Edge Detection with filtering

- Un bord dans une image peut ressembler à une marche d'escalier ou à une rampe : il est plus ou moins nette
- On regarde la direction du gradient : $\|\nabla f\| = \sqrt{(\frac{\delta f}{\delta x})^2 + (\frac{\delta f}{\delta y})^2}$ que l'ont normalise $\frac{\nabla f}{\|\nabla f\|}$ pour obtenir un vecteur unitaire
- Par une méthode mathématique obscure nommée différence finis, on peut approximer les dérivés des images pas une convolution

1.1 Sobel Edge filter

$$G_x = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \times \begin{bmatrix} 1 & 0 & -1 \end{bmatrix}.$$

$$G_y = G_x^T.$$

- la réponse impulsionnel de Sobel est en faite composé d'une matrice qui approxime la gaussienne et la matrice de dérivation horizontale $\begin{pmatrix} 1 & 0 & -1 \end{pmatrix}$
- $\|G\|=\sqrt{G_x^2+G_y^2}$ cette norme est plus forte au niveau des contours (car dérivé d'un escalier $=+\infty$)

1.2 Second order

$$\begin{pmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{pmatrix} \text{ ou } \begin{pmatrix} 1 & 1 & 1 \\ 1 & -8 & 1 \\ 1 & 1 & 1 \end{pmatrix}.$$

1

- Ici on regarde quand la dérivée seconde s'annule pour trouver le max de la dérivé
- On utilise un laplacien pour approximer la matrice hessienne $\Delta f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial u^2}$

- Detecter les passages par zéros :
 - Fenetre $3x3 \rightarrow max$ et min
 - zéro crossing = max > 0, min < 0, max min > S
- Plus précis et moins sensible à la threshold que gradient
- Pas invariant par rotation!
- Thick edge
- bruit $++ \rightarrow$ filtrage nécessaire \rightarrow **On peut combiner les deux en une convolution** avec le laplacien de la gaussienne 2D

1.3 Approche pyramidale

Filtre gaussien \rightarrow subsample 2 \rightarrow filtre \rightarrow ...

1.4 Canny-Deriche

Filtre gaussien plus optimisé + implémentation récursive possible pour éviter de faire deux fois la convolution(x et y)

1.5 Post processing

- Binarization Threshold: thick edge + bruit ou missed detection ⇒ Gaussian smoothing
- Gaussian smoothing + Threshold :
 - flou ++ = moins de bruit // thick edge (imprecise localization)
 - Flou = bruit // bonne localisation
- Non maxima suppression
 - Arrondie sur une des 8 directions
 - Interpolation à partir des deux voisins
 - \longrightarrow Bord fin

2 Corner Detection

2.1 Moravec keypoint detection