



# তাপগতিবিদ্যা

**MCQ** 





# থার্মোমিতি Thermometry

তাপবিজ্ঞানের যে শাখায় **তাপমাত্রার** পরিমাপ নিয়ে আলোচনা করা হয় তাকে থার্মোমিতি বলা হয়।

তাপীয় অনুভূতির (thermal sensation) পরিমাপ

কোনো বস্তুকে সাধারণত স্পর্শ করলে একধরনের (গরম/ঠান্ডার) অনুভূতি হয়। একে আমরা তাপীয় অনুভূতি (thermal sensation) বলি। কোনো বস্তুকে সাধারণত স্পর্শ করলে একধরনের অনুভূতি হয়। একে আমরা তাপীয় অনুভূতি (thermal sensation) বলি। এই স্পর্শজনিত তাপীয়অনুভূতির মাধ্যমে আমরা বুঝতে পারি:

- [i] কোনো বস্তু গরম না ঠান্ডা অর্থাৎ কোনো বস্তুর তাপীয় অবস্থা।
- [ii] ভিন্ন ভিন্ন বস্তুর মধ্যে কোন্ বস্তুটি কোন্ বস্তুর তুলনায় গরম বা ঠান্ডা। যেমন, পুকুরের জল বরফের তুলনায় গরম কিন্তু কিছুক্ষণ ধরে উনুনে চাপানো জলের তুলনায় ঠান্ডা।

আবার, একটি গরম বস্তুর সংস্পর্শে যদি একটি ঠান্ডা বস্তু আনা হয়, তবে গরম বস্তুটি ঠান্ডা হতে থাকে ও ঠান্ডা বস্তুটি গরম হতে থাকে এবং একসময়ে বস্তু দুটি একই তাপীয় অনুভূতি সৃষ্টি করে।

তবে সাধারণ অভিজ্ঞতা থেকে সহজেই বোঝা যায়, স্পর্শানুভূতি কখনোই সম্পূর্ণ নির্ভরযোগ্য হতে পারে না। এর কারণ হল:

- [i] খুব গরম বা খুব ঠান্ডা জিনিসকে স্পর্শ করা যায় না।
- [ii] দীর্ঘক্ষণ পরস্পরের সংস্পর্শে বা একই পরিবেশে আছে এরকম দুটি জিনিসের মধ্যেও একটিকে গরম ও অন্যটিকে ঠান্ডা মনে হতে পারে; যেমন, শীতকালে একটুকরো কাঠের চেয়ে একটুকরো লোহাকে বেশি ঠান্ডা মনে হয়।
- [iii] ভিন্ন ভিন্ন লোকের গরম-ঠান্ডার অনুভূতি ভিন্ন হওয়ার সম্ভাবনা থাকে।

- A. থার্মিস্টার
- B. পাইরোমিটার
- C. থার্মোমিটার
- D. ক্যালোরিমিটার

- A. থার্মিস্টার
- B. পাইরোমিটার
- C. থার্মোমিটার
- ক্যালোরিমিটার

## তাপমাত্রা বনাম তাপ

# কোনটায় তাপমাত্রা বেশি?





# তাপমাত্রা বনাম তাপ

# কোনটায় তাপ বেশি?





# তাপমাত্রা বনাম তাপ



পদার্থবিজ্ঞান ২য় পত্র, ১ম অধ্যায়-তাপগতিবিদ্যা



অ্যালুমিনিয়াম পাত থেকে কেটে চিত্রে প্রদর্শিত একটি বলয়াকার অ্যালুমিনিয়াম রিং তৈরি করা হয়েছে। এটি গরম করলে কী ঘটে?



- A. অ্যালুমিনিয়াম বাইরের দিকে বর্ধিত হয় ও ছিদ্র একই আকারের থাকে
- B. ছিদ্রের ব্যাস কমে যায়
- C. ছিদ্রের ক্ষেত্রফল অ্যালুমিনিয়ামের যেকোনো অংশের ক্ষেত্রফলের সমান অনুপাতে বৃদ্ধি পায়
- D. ছিদ্রের ক্ষেত্রফল অ্যালুমিনিয়ামের যে কোনো অংশের ক্ষেত্রফলের চেযে বেশি অনুপাতে বৃদ্ধি পায়।

অ্যালুমিনিয়াম পাত থেকে কেটে চিত্রে প্রদর্শিত একটি বলয়াকার অ্যালুমিনিয়াম রিং তৈরি করা হয়েছে। এটি গরম করলে কী ঘটে?



- A. অ্যালুমিনিয়াম বাইরের দিকে বর্ধিত হয় ও ছিদ্র একই আকারের থাকে
- B. ছিদ্রের ব্যাস কমে যায়
- ﴿ ছিদ্রের ক্ষেত্রফল অ্যালুমিনিয়ামের যেকোনো অংশের ক্ষেত্রফলের সমান অনুপাতে বৃদ্ধি পায়
- D. ছিদ্রের ক্ষেত্রফল অ্যালুমিনিয়ামের যে কোনো অংশের ক্ষেত্রফলের চেযে বেশি অনুপাতে বৃদ্ধি পায়।

https://www.youtube.com/watch?v=z01ky1x7zZQ

### ক্যালরি ও জুলের মধ্যে সম্পর্ক কী?

A. 1 
$$Cal = 2.4 J$$

B. 
$$1 Cal = 0.24 J$$

C. 1 
$$Cal = 4.2 J$$

D. 1 
$$Cal = 42 J$$

[ঢাবি (৭ক) ১৭-১৮]

### ক্যালরি ও জুলের মধ্যে সম্পর্ক কী?

A. 1 
$$Cal = 2.4 J$$

B. 
$$1 Cal = 0.24 J$$

$$\checkmark$$
. 1  $Cal = 4.2 J$ 

D. 1 
$$Cal = 42 J$$

[ঢাবি (৭ক) ১৭-১৮]

আমরা জানি, গলন আর স্ফুটন শুধু তাপমাত্রার উপর নির্ভর করেনা বরং চাপের উপরও নির্ভর করে



আমরা জানি, গলন আর স্ফুটন শুধু তাপমাত্রার উপর নির্ভর করেনা বরং চাপের উপরও নির্ভর করে



কেননা-

■ চাপ ↑ গলনাফ ↓

■ চাপ ↑ স্ফটনাঙ্ক ↑



আমরা জানি, গলন আর স্ফুটন শুধু তাপমাত্রার উপর নির্ভর করেনা বরং চাপের উপরও নির্ভর করে



কেননা-

- চাপ ↑ গলনায় ↓
- চাপ ↑ স্ফুটনাঙ্ক 1

একই ভাবে-

- চাপ ↓ গলনায় ↑
- চাপ ↓ স্ফুটনাঙ্ক ↓



ত্রৈধ বিন্দু (TRIPLE POINT)

## পানির ত্রৈধ বিন্দুতে চাপের পরিমাণ –

- A. 4.58 mmHg
- B. 5.48 *mmHg*
- C. 6.58 *mmHg*
- D. কোনটিই নয়

### পানির ত্রৈধ বিন্দুতে চাপের পরিমাণ –



B. 5.48 *mmHg* 

C. 6.58 *mmHg* 

D. কোনটিই নয়

[জাবি ১১-১২]

- A. উচ্চতা
- B. বায়ু চাপের বৃদ্ধি
- C. স্ফুটনাংকের হ্রাস
- D. স্ফুটনাংকের বৃদ্ধি

- A. উচ্চতা
- B. বায়ু চাপের বৃদ্ধি
- 🐔 স্ফুটনাংকের হ্রাস
- D. স্ফুটনাংকের বৃদ্ধি

### কোনটি তাপের একক নয়?

- A. Calorie
- B. Erg
- C. Joule
- D. K

#### কোনটি তাপের একক নয়?

- A. Calorie
- B. Erg
- C. Joule



সমাধানঃ কেলভিন তাপমাত্রার একক।

#### কোন ব্যক্তি পর্বতের চূড়ায় পানি ফুটাতে চাইলে পানির পাত্রকে যে তাপমাত্রায় উত্তপ্ত করতে হবে তা-[ঢাবি ০৯-১০]

- A. higher than 100°C
- B. lower than 100°C
- C. to 100°C
- D. cannot be determined

### কোন ব্যক্তি পর্বতের চূড়ায় পানি ফুটাতে চাইলে পানির পাত্রকে যে তাপমাত্রায় উত্তপ্ত করতে হবে তা-[ঢাবি ০৯-১০]

- A. higher than 100°C
- √. lower than 100°C
  - C. to 100°C
  - D. cannot be determined

সমাধানঃ স্ফুটনাংক হ্রাস পাবে। সুতরাং 100°C এর কম তাপমাত্রায় পানি ফুটবে।

# তাপমিতিক বস্তু ও তাপমিতিক ধর্ম

পারদ থার্মোমিটারে,তাপমাত্রা বাড়ালে পারদের <mark>প্রসারণ</mark> হয়।

**↓** 

•

তাপমিতিক বস্তু

(যে বস্তুর)

তাপমিতিক ধর্ম (যে ধর্মের)

| Thermometer                          | Thermometric property |
|--------------------------------------|-----------------------|
| Constant vol. gas thermometer        | Pressure              |
| Constant pressure gas thermometer    | Volume                |
| Electrical Resistance<br>Thermometer | Resistance            |
| Thermocouple                         | Thermal e.m.f         |
| Mercury in glass thermometer         | Length                |



- A. কৈশিক নলে রক্ষিত পারদ
- B. প্লাটিনাম তার
- C. তাপযুগের পরিবাহী তার
- D. সকলেই

- A. কৈশিক নলে রক্ষিত পারদ
- B. প্লাটিনাম তার
- C. তাপযুগলের পরিবাহী তার
- ৵. সকলেই

সমাধানঃ তাপমাত্রা পরিমাপে পদার্থের যে সকল ভৌত ধর্ম কাজে লাগানো হয়, ঐ ধর্মগুলোকে উষ্ণতামিতিক বা তাপমিতিক বলে। যেমনঃ বৈদ্যুতিক রোধ।

- A. ক্যালরিমিটার
- B. থার্মোমিটার
- C. বাষ্পইঞ্জিন
- D. কোনোটিই নয়

- A. ক্যালরিমিটার
- ্য. থার্মোমিটার
- C. বাষ্পইঞ্জিন
- D. কোনোটিই নয়

সমাধানঃ উষ্ণতার বা তাপমাত্রার পরিবর্তনে এদের ধর্মের পরিবর্তন ঘটে। ফলে থার্মোমিটারে ব্যবহার করলে উষ্ণতার হ্রাস-বৃদ্ধির সাথে সাথে এদের উচ্চতার লেভেলের হ্রাস-বৃদ্ধি ঘটে।

### অত্যন্ত উত্তপ্ত বস্তুর তাপমাত্রা (> 1000°C) পরিমাপ করার জন্য যথোপযুক্ত থার্মোমিটার কোনটি?

- A. পারদ থার্মোমিটার
- B. রোধ থার্মোমিটার
- C. পাইরোমিটার
- D. কোনোটিই নয়

# অত্যন্ত উত্তপ্ত বস্তুর তাপমাত্রা (> 1000°C) পরিমাপ করার জন্য যথোপযুক্ত থার্মোমিটার কোনটি?

- A. পারদ থার্মোমিটার
- B. রোধ থার্মোমিটার
- পাইরোমিটার
- D. কোনোটিই নয়

তোমাকে সমান ভরের তৈরি একটি নিরেট গোলক, একটি নিরেট ঘনক ও একটি পাতলা গোলাকার চাকতি দেয়া হল। যদি 200°C তাপমাত্রায় উত্তপ্ত করে ঠাণ্ডা করা হয়, তবে নিচের কোনটি সবার আগে ঠাণ্ডা হবে?

- A. নিরেট গোলক
- B. পাতলা গোলাকর চাকতি
- C. নিরেট ঘনক
- D. সবগুলো একসাথে

তোমাকে সমান ভরের তৈরি একটি নিরেট গোলক, একটি নিরেট ঘনক ও একটি পাতলা গোলাকার চাকতি দেয়া হল। যদি 200°C তাপমাত্রায় উত্তপ্ত করে ঠাণ্ডা করা হয়, তবে নিচের কোনটি সবার আগে ঠাণ্ডা হবে?

- A. নিরেট গোলক
- ্র, পাতলা গোলাকর চাকতি
- C. নিরেট ঘনক
- D. সবগুলো একসাথে

# পরিমাপ এবং প্রসঙ্গ



আদর্শ প্রসঙ্গ এর অবস্থান ছাড়া যেমন লোকের অবস্থান মাপা যায়না তেমনি আদর্শ তাপমাত্রা ছাড়া অন্য তাপমাত্রা মাপা যায়না।

# পরিমাপ এবং প্রসঙ্গ



আমরা এক্ষেত্রে তাপমাত্রা পরিমাপেও একটি তাপমাত্রাকে আদর্শ ধরে অথবা দুটি তাপমাত্রাকে আদর্শ ধরে কাজ করতে পারি।

# তাপমাত্রা পরিমাপের মূলনীতি

মুলনীতি দুটি-

- i. এক স্থির বিন্দু-(একটি তাপমাত্রাকে আদর্শ ধরে যে পরিমাপ)
- ii. দ্বি স্থির বিন্দু-(দুটি তাপমাত্রাকে আদর্শ ধরে যে পরিমাপ)

# এক স্থির বিন্দু নীতি

(একটি তাপমাত্রাকে আদর্শ ধরে যে পরিমাপ)

□নির্দিষ্ট তাপমাত্রাটি - ত্রৈধ বিন্দু(triple point)

যে তাপমাত্রায় বিশুদ্ধ বরফ , পানি ও জলীয় বাষ্প একই সাথে বিরাজ করে তাকে ত্রৈধ বিন্দু বলে।

মানঃ কেলভিনে এর মান= 273.16K (চাপ = 0.006 atm)



## এক স্থির বিন্দু নীতিতে পরিমাপ

#### তাপমিতিক ধর্ম 🗙 তাপমাত্রা

$$X \propto T$$

$$X = kT$$

$$\frac{X}{T} = k$$

এখন, ত্রৈধ বিন্দুর তাপমাত্রা=273.16,এই তাপমাত্রায় তাপমিতিক ধর্ম=Xtr নির্নেয় তাপমাত্রা=T ,এই তাপমাত্রায় তাপমিতিক ধর্ম=X

$$\frac{X_{tr}}{273.16} = k = \frac{X}{T}$$

$$T = \frac{X}{X_{tr}} \times 273.16$$

T = নির্ণেয় তাপমাত্রা X = নির্ণেয় তাপমাত্রায় তাপমিতিক ধর্ম  $X_{tr} =$  ত্রেধ বিন্দুতে তাপমিতিক ধর্ম

পানির ত্রৈধবিন্দুতে কোনো রোধ থার্মোমিটারের রোধ  $10\Omega$ । যখন রোধ  $20\Omega$  হয়, তখন তাপমাত্রা কত?।



$$T = \frac{20}{10}(273.16) = 546.32K$$
 (Ans)

একটি নির্দিষ্ট রোধ থার্মোমিটারের রোধ পানির ত্রৈধ বিন্দুতে 32.12Ω এবং কোন তরলের স্ফুটনাংকে 27.316Ω হলে তরলের স্ফুটনাংক নির্ণয় কর?

এক স্থির বিন্দু পদ্ধতিতে বিশুদ্ধ প্লাটিনামের তৈরি থার্মোমিটারের রোধ 32.316 ওহম এবং অন্য পরিবেশে এর রোধ 27.316 ওহম হলে, পরিবেশের তাপমাত্রা কেলভিনে কত? জাবি ১৭-১৮]

A. 
$$\frac{32.316}{27.316} \times 273.16$$

B. 
$$\frac{27.316}{32.316} \times 273.16$$

C. 
$$\frac{27.316}{273.16} \times 27.316$$

D. 
$$\frac{32.316}{27.316 \times 273.16}$$

এক স্থির বিন্দু পদ্ধতিতে বিশুদ্ধ প্লাটিনামের তৈরি থার্মোমিটারের রোধ 32.316 ওহম এবং অন্য পরিবেশে এর রোধ 27.316 ওহম হলে, পরিবেশের তাপমাত্রা কেলভিনে কত? জাবি ১৭-১৮]

A. 
$$\frac{32.316}{27.316} \times 273.16$$

$$\sqrt[4]{.} \frac{27.316}{32.316} \times 273.16$$

C. 
$$\frac{27.316}{273.16} \times 27.316$$

D. 
$$\frac{32.316}{27.316 \times 273.16}$$

সমাধানঃ 
$$T = \frac{R_T}{R_{tr}} \times 273.16K = \frac{27.316}{32.316} \times 273.16K$$

# দি স্থির বিন্দু নীতি

(দুটি তাপমাত্রাকে আদর্শ ধরে যে পরিমাপ)

 $\square$ নিন্ম স্থিরবিন্দু $(T_{ice})$ -যে তাপমাত্রায় বিশুদ্ধ পানি  $\leftrightarrow$  বিশুদ্ধ বরফ তাকে নিন্ম স্থির বিন্দু বলে।

□উর্দ্ধ স্থিরবিন্দু( $T_{steam}$ )-যে তাপমাত্রায় বিশুদ্ধ পানি ↔ বিশুদ্ধ বাষ্প তাকে উর্দ্ধ স্থির বিন্দু বলে।

মৌলিক ব্যবধান,  $n = T_{steam} - T_{ice}$ 

|             | °C  | °F  | K   |
|-------------|-----|-----|-----|
| $T_{ice}$   | 0   | 32  | 273 |
| $T_{steam}$ | 100 | 212 | 373 |



## দি স্থির বিন্দু নীতিতে পরিমাপ

তাপমিতিক ধর্ম এর পরিবর্তন 🗙 তাপমাত্রা এর পরিবর্তন

$$dX \propto dT$$

এখন, নিন্ম স্থির বিন্দুর তাপমাত্রা= $T_{ice}$ , এই তাপমাত্রায় তাপমিতিক ধর্ম= $X_{ice}$ উর্দ্ধ স্থিরবিন্দুর তাপমাত্রা= $T_{steam}$ ,এই তাপমাত্রায় তাপমিতিক ধর্ম= $X_{steam}$ নির্নেয় তাপমাত্রা=T ,এই তাপমাত্রায় তাপমিতিক ধর্ম=X

so, 
$$T - T_{ice} \propto X - X_{ice}$$
  
 $T - T_{ice} = k(X - X_{ice}) \dots (1)$ 

again

$$T_{\text{steam}} - T_{\text{ice}} \propto X_{\text{steam}} - X_{\text{ice}}$$

$$T_{\text{steam}} - T_{\text{ice}} = \mathbf{k}(X_{\text{steam}} - X_{\text{ice}}) \dots (2)$$

$$\frac{T - T_{ice}}{T_{steam} - T_{ice}} = \frac{X - X_{ice}}{X_{steam} - X_{ice}}$$

T= নির্ণেয় তাপমাত্রা $T_{ice}=$  নিন্মস্থির বিন্দু $T_{steam}=$  উর্দ্ধস্থির বিন্দু

X = নির্ণের তাপমাত্রায় তাপমিতিক ধর্ম  $X_{ice} =$  নিন্মস্থির বিন্দুতে তাপমিতিক ধর্ম  $X_{steam} =$  উর্দ্ধস্থির বিন্দুতে তাপমিতিক ধর্ম

একটি নির্দিষ্ট রোধ থার্মোমিটারের রোধ বরফ বিন্দু ও স্টিম বিন্দুতে যথাক্রমে  $4.5\Omega$  ও  $9.5\Omega$ । কোনো তরলে স্থাপন করলে এর রোধ  $6.1\Omega$  হয়। তরলের তাপমাত্রা কত?



$$T = \frac{6.1 - 4.5}{9.5 - 4.5} \times 100 = \frac{1.6}{5.0} \times 100 = 32^{\circ}C$$
 (Ans)

যদি কোন পারদ থার্মোমিটারে হিমাঙ্ক ও স্কুটনাঙ্কে পারদ স্তম্ভের দৈর্ঘ্য যথাক্রমে  $4\times 10^{-2}m$  ও  $18\times 10^{-2}m$  হয়, তবে পারদ স্তম্ভের দৈর্ঘ্য যখন  $11\times 10^{-2}m$ , তখন তাপমাত্রায় কত?  $(50^{\circ}C)$ 

# বিভিন্নকেলের মধ্যে সম্পর্ক

নিৰ্দিষ্ট তাপমাত্ৰায়, 
$$rac{T$$
 -  $T_{ ext{ice}}}{T_{ ext{steam}}$  -  $T_{ ext{ice}}$  -  $T_{ ext{steam}}$  -  $T_{ ext{ice}}$  -  $T_{ ext{steam}}$  -  $T_{ ext{steam}}$  -  $T_{ ext{ice}}$ 

সম্পর্কটি সকল স্কেল ( প্রচলিত ও ক্রটিপূর্ণ ) এর ক্ষেত্রে প্রযোজ্য



$$\frac{C}{5} = \frac{F - 32}{9} = \frac{K - 273}{5}$$

#### কোন তাপমাত্রায় ফারেনহাইট স্কেলের পাঠ সেলসিয়াস স্কেলের পাঠের দ্বিগুণ হবে?



$$\frac{C}{5} = \frac{F - 32}{9}$$

$$\Rightarrow \frac{F}{10} = \frac{F - 32}{9}$$

$$\therefore F = 320^{\circ}F$$

উত্তরঃ 320°F বা 160°C

কোন তাপমাত্রায় ফারেনহাইট স্কেলের পাঠ ও সেলসিয়াস স্কেলের পাঠ সমাণ?

$$F = 2C$$

$$F = 2C$$

$$\Rightarrow C = \frac{F}{2}$$

#### কোন তাপমাত্রায় ফারেনহাইট স্কেলের পাঠ ও সেলসিয়াস স্কেলের পাঠ সমাণ?



$$\frac{C}{5} = \frac{F - 32}{9}$$

$$\Rightarrow \frac{F}{5} = \frac{F - 32}{9}$$

$$\therefore F = -40 \, ^{\circ}\text{F}$$

উত্তরঃ —40°F বা —40°C

$$F = C$$

#### কোন তাপমাত্রায় সেন্টিগ্রেড ও ফারেনহাইট স্কেলে একই পাঠ দেয়?

[ঢাবি (৭ক) ১৭-১৮]

- $A. -40^{\circ}$
- B. 40°
- C. 0°
- D. 100°

#### কোন তাপমাত্রায় সেন্টিগ্রেড ও ফারেনহাইট স্কেলে একই পাঠ দেয়?

[ঢাবি (৭ক) ১৭-১৮]



B. 40°

C. 0°

D. 100°

সমাধানঃ 
$$\frac{c}{5} = \frac{F-32}{9} = -40^\circ$$

#### কোন তাপমাত্রায় বিশুদ্ধ বরফ, পানি ও জলীয় বাষ্প একই তাপমাত্রায় সাম্যাবস্থায় থাকতে পারে?

[ঢাবি (৭ক) ১৭-১৮]

A. 0 K

B. 273 *K* 

C. 273.16 *K* 

D. 32 *K* 

# কোন তাপমাত্রায় বিশুদ্ধ বরফ, পানি ও জলীয় বাষ্প একই তাপমাত্রায় সাম্যাবস্থায় থাকতে পারে? [ঢাবি (৭ক) ১৭-১৮]

A. 0 K

B. 273 *K* 



D. 32 K

সমাধানঃ যে তাপমাত্রায় বরফ, পানি এবং জলীয় বাষ্প এক সাথে থাকতে পারে, তাকে ত্রৈধবিন্দু বলে।

- A. 160°
- B. 80°
- C. 320°
- D. 40°

A. 160°

₹. 80°

C. 320°

D. 40°

সমাধানঃ 
$$F = 3C$$
;  $\frac{C}{5} = \frac{F - 32}{9}$  বা,  $\frac{F}{15} = \frac{F - 32}{9}$  বা,  $6F = 480$  বা,  $F = 80^\circ$