For each $e \in E$, define $\{\{e\}\} \subseteq M$ such that:

- 1. $\forall s \in M, s \in \{\{s\}\}$.
- 2. $\forall s,s'\in M$ if $s'\in\{\{s\}\}$ then s'=s.
- 3. if $e \not\in W$ then $\{\{e\}\} = \emptyset$.
- 4. Special case 1, the Zugzwang paper stream:
 - i. $e \supseteq s \Rightarrow s \in \{\{e\}\}$.
 - ii. $e \subseteq s \Rightarrow s \in \{\{e\}\}.$
- 5. Special case 2, Levenshtein distance:
 - i. We know that $x_0 = \min\{d_L(s,s'): s,s' \in M, s'
 eq s\} > 1.$ But need to prove.
 - ii. $\{\{e\}\}_x = \{s \in M : d_L(e,s) \leq x\}.$
 - iii. For x=0 we get a distribution with all mass in M; what "others" are doing when define a probability on M.
 - iv. We can set

$$\{\{e\}\}' = \{s \in M : d_L(e,s) = \min d_L(e,M)\}$$

and then consider two cases:

- If $\{\{e\}\}'$ has more than one element, $\{\{e\}\}=\emptyset$, or not.
- 6. Is there any relation with the Hamming distance and code correction?