Intercepts of the Quadratic

Casel: $\triangle > 0$ $k_{1,2} = \frac{-b \pm \sqrt{b^2 - 4 \text{ ac}}}{2a}$ computes the k-intercepts of multiplicity 1.

Given a quadratic $x(k) = a k^2 + b k + c$ compute its discriminant \triangle :

x(0) = c computes the single x-intercept. Example 1.

$x(k) = -k^2 - 7 k + 18$ compute its discriminant \triangle : $\triangle = 121 > 0$

 $\triangle = \sqrt{b^2 - 4ac}$

 $k_{1,2}=2,-9$ x(0)=18 x-intercept.

$$x(0) = 18$$
 x-intercept.

$x(k) = 3 k^2 + 42 k + 147$ compute its discriminant \triangle :

∆=0

Example 2.

$$k_{1,2} = -7, -7$$

x(0) = 147 x-intercept.

$x\left(k\right)=-9\ k^{2}-126\ k-490$ compute its discriminant \triangle : $\triangle=-1764<0$

x(0) = -490 x-intercept.

However there is a x-intercept.

Example 3.

-3000