

AFFINE MMSE ESTIMATORS

Why

1

Definition

We want to estimate a random variable $x: \Omega \to \mathbb{R}^n$ from a random variable $y: \Omega \to \mathbb{R}^n$ using an estimator $\phi: \mathbb{R}^m \to \mathbb{R}^n$ which is affine.² In other words, $\phi(\xi) = A\xi + b$ for some $A \in \mathbb{R}^{n \times m}$ and $b \in \mathbb{R}^n$. We will use the mean squared error cost.

We want to find A and b to minimize

$$\mathbf{E} \|Ax + b - y\|^2.$$

Proof. Express
$$\mathbf{E}(\|Ax+b-y\|^2)$$
 as $\mathbf{E}((Ax+b-y)^{\top}(Ax+b-y))$
+ $\operatorname{tr}(A\mathbf{E}(xx^{\top})A^{\top})$ + $\mathbf{E}(x)^{\top}A^{\top}b$ - $\operatorname{tr}(A^{\top}\mathbf{E}(yx^{\top}))$
+ $b^{\top}A\mathbf{E}(x)$ + $b^{\top}b$ - $b^{\top}\mathbf{E}(y)$
- $\operatorname{tr}(A\mathbf{E}(xy^{\top}))$ - $\mathbf{E}(y)^{\top}b$ + $\mathbf{E}(yy^{\top})$

The gradients with respect to b are

$$+ 0 + AE(x) - 0$$

 $+ AE(x) + 2b - E(y)$
 $- 0 - E(y) + 0$

so 2AE(x) + 2b - 2E(y). The gradients with respect to A are

¹Future editions will include an account.

²Actually, the development flips this. Future editions will correct.

so $2\mathsf{E}(xx^\top)A^\top + 2\mathsf{E}(x)b^\top - 2\mathsf{E}(xy^\top)$. We want A and b solutions to

$$A\mathbf{E}(x) + b - \mathbf{E}(y) = 0$$

$$\mathbf{E}(xx^{\top})A^{\top} + \mathbf{E}(x)b^{\top} - \mathbf{E}(xy^{\top}) = 0$$

so first get $b = \mathbf{E}(y) - A\mathbf{E}(x)$. Then express

$$\begin{split} \mathbf{E}(xx^\top)A^\top + \mathbf{E}(x)(\mathbf{E}(y) - A\mathbf{E}(x))^\top - \mathbf{E}(xy^\top) &= 0. \\ \mathbf{E}(xx^\top)A^\top + \mathbf{E}(x)\mathbf{E}(y)^\top - \mathbf{E}(x)\mathbf{E}(x)^\top A^\top - \mathbf{E}(xy^\top) &= 0. \\ (\mathbf{E}(xx^\top) - \mathbf{E}(x)\mathbf{E}(x)^\top)A^\top &= \mathbf{E}(xy^\top) - \mathbf{E}(x)\mathbf{E}(y)^\top. \\ &= \mathrm{cov}(x,x)A^\top = \mathrm{cov}(x,y). \end{split}$$

So $A^{\top} = \operatorname{cov}(x, x)^{-1} \operatorname{cov}(x, y)$ means $A = \operatorname{cov}(y, x) \operatorname{cov}(x, x)^{-1}$ is a solution. Then $b = \mathsf{E}(y) - \operatorname{cov}(y, x) \operatorname{cov}(x, x)^{-1} \mathsf{E}(x)$. So to summarize, the estimator $\phi(x) = Ax + b$ is

$$cov(y, x) (cov x, x)^{-1} x + E(y) - cov(y, x) cov(x, x)^{-1} E(x)$$

or

$$E(y) + cov(y, x) (cov x, x)^{-1} (x - E(x))$$

