## Computer Graphics 2019

### 6. Geometric Transformations

Hongxin Zhang
State Key Lab of CAD&CG, Zhejiang University

2019-10-23

### Contents

- Transformations
- Homogeneous Co-ordinates
- Matrix Representations of Transformations

### Transformations

- Procedures to compute new positions of objects
- Used to modify objects or to transform (map) from one co-ordinate system to another co-ordinate system

As all objects are eventually represented using points, it is enough to know how to transform points.

## Translation

• Is a Rigid Body Transformation

$$x => x + T_x$$

$$y \Longrightarrow y + T_y$$

$$z \Longrightarrow z + T_z$$



• Translation vector  $(T_x, T_y, T_z)$  or shift vector

## Scaling

Changing the size of an object

$$x => x * S_x$$

$$y => y * S_y$$

$$z \Longrightarrow z * S_z$$

• Scale factor  $(S_x, S_y, S_z)$ 









## Shearing

- Produces shape distortions
- Shearing in x-direction

$$x => x + a^* y$$

$$y => y$$
 $z => z$ 

$$z => z$$



### Rotation



### Rotate around (x<sub>r</sub>,y<sub>r</sub>)

$$newx = x-x_{r}$$

$$newy = y-y_{r}$$

$$newx' = newx \cos\theta - newy \sin\theta$$
  
 $newy' = newy \cos\theta + newx \sin\theta$ 



$$x' = newx' + x_{r}$$
$$y' = newy' + y_{r}$$

$$x' = x_r + (x - x_r)\cos\theta - (y - y_r)\sin\theta$$
$$y' = y_r + (y - y_r)\cos\theta + (x - x_r)\sin\theta$$

# General Linear Transformation

- Which of the following can be represented in this form?
  - Translation
  - Scaling
  - Rotation

# General Linear Transformation

$$x' = x \cos\theta - y \sin\theta$$
$$y' = y \cos\theta + x \sin\theta$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$x' = x Sx$$
$$y' = y Sy$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} Sx & 0 \\ 0 & Sy \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$x' = x + T_x$$
$$y' = y + T_y$$

## Homogeneous Co-ordinates

$$(x,y) \to (x,y,a)$$

$$x = \frac{x}{a}, y = \frac{y}{a}$$

$$(x,y) \to (x,y,1)$$

• Any point (x, y, z) in Cartesian co-ordinates is written as

$$(xw, yw, zw, w), w \neq 0$$

### in Homogeneous Co-ordinates

• The point (x, y, z, w) represents in Cartesian co-ordinates

$$(x/w, y/w, z/w), w \neq 0$$

What happens when w=0?

the point represented is a point at infinity

$$x' = x \cos\theta - y \sin\theta$$
  
 $y' = y \cos\theta + x \sin\theta$   
 $x' = x Sx$   
 $y' = y Sy$ 

$$x' = x + T_x$$
 $y' = y + T_y$ 

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & T_x \\ 0 & 1 & T_y \\ 0 & 0 & 1 \end{bmatrix} \bullet \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} Sx & 0 \\ 0 & Sy \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

# Matrix Notations for Transformations

- Point P (x,y,z) is written as the column vector P<sub>h</sub>
- A transformation is represented by a 4x4 matrix M
- The transformation is performed by matrix multiplication

$$Q_h = M * P_h$$

# Matrix Representations and Homogeneous Co-ordinates

- Each of the transformations defined above can be represented by a 4x4 matrix
- Composition of transformations is represented by product of matrices
- So composition of transformations is also represented by 4x4 matrix

Scaling

$$\begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} S_x & 0 & 0 & 0 \\ 0 & S_y & 0 & 0 \\ 0 & 0 & S_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

• Shearing (in X direction)

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 & a & b & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Rotation (around Z axis)



Computer Graphics 2019, ZJU

Rotation (around X axis)



Rotation (around Y axis)



# Properties of Transformations

| Type<br>Preserves | Rigid Body:            | Linear                | Affine                  | Projective                          |
|-------------------|------------------------|-----------------------|-------------------------|-------------------------------------|
|                   | Rotation & translation | General 3x3<br>matrix | Linear +<br>translation | 4x4 matrix with last row ≠(0,0,0,1) |
| Lengths           | Yes                    | No                    | No                      | No                                  |
| Angles            | Yes                    | No                    | No                      | No                                  |
| Parallelness      | Yes                    | Yes                   | Yes                     | No                                  |
| Straight lines    | Yes                    | Yes                   | Yes                     | Yes                                 |

## Simple Rotation



Suppose we wish to rotate the cat's head about its nose!

### To rotate the cat's head about its nose



## Composition...

This is an instance of a general rule: to apply transformation A to point p, and the transform result by transformation B, to obtain, say, q:

$$q = (B A) p = B (A p)$$

# Composite Transformation

- Resultant of a sequence of transformations
- Composite transformation matrix is equal to the product of the sequence of the given transformation matrices

$$Q_h = M_n^* \dots * M_2 * M_1 * P_h$$
  
=  $M * P_h$ 

## Rotation About Point P (Math)

Point about which to rotate  $P = \begin{vmatrix} t_x \\ T_y \end{vmatrix}$ 

$$P = \begin{bmatrix} T_{\mathcal{X}} \\ T_{\mathcal{Y}} \\ I \end{bmatrix}$$

Translate to Origin Rotate Translate Back

$$M_{\mathsf{I}} = \begin{bmatrix} \mathsf{I} & \mathsf{0} & -T_{\chi} \\ \mathsf{0} & \mathsf{I} & -T_{\chi} \\ \mathsf{0} & \mathsf{0} & \mathsf{I} \end{bmatrix}$$

$$M_{1} = \begin{bmatrix} 1 & 0 & -T_{x} \\ 0 & I & -T_{y} \\ 0 & 0 & I \end{bmatrix} \qquad M_{2} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & I \end{bmatrix} \qquad M_{3} = \begin{bmatrix} 1 & 0 & T_{x} \\ 0 & I & T_{y} \\ 0 & 0 & I \end{bmatrix}$$

$$M_3 = \begin{bmatrix} I & 0 & T_{\chi} \\ 0 & I & T_{y} \\ 0 & 0 & I \end{bmatrix}$$

Composition Maps a Point A to new Point B.  $B := M_4 A$ 

$$M_{4} = \begin{bmatrix} 1 & 0 & T_{x} \\ 0 & I & T_{y} \\ 0 & 0 & I \end{bmatrix} \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & I \end{bmatrix} \begin{bmatrix} 1 & 0 & -T_{x} \\ 0 & I & -T_{y} \\ 0 & 0 & I \end{bmatrix}$$

$$M_{4} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & -\cos(\theta) & T_{\chi} + \sin(\theta) & T_{y} + T_{\chi} \\ \sin(\theta) & \cos(\theta) & -\sin(\theta) & T_{\chi} - \cos(\theta) & T_{y} + T_{y} \\ 0 & 0 & I \end{bmatrix}$$

## Scaling About Point P

- Scaling also operates relative to the Origin.
- To make an object bigger without moving it
  - Translate P to origin.
  - Apply scaling.
  - Inverse translation.

$$M_{4} = \begin{bmatrix} I & 0 & T_{\chi} \\ 0 & I & T_{y} \\ 0 & 0 & I \end{bmatrix} \begin{bmatrix} S_{\chi} & 0 & 0 \\ 0 & S_{y} & 0 \\ 0 & 0 & I \end{bmatrix} \begin{bmatrix} I & 0 & -T_{\chi} \\ 0 & I & -T_{y} \\ 0 & 0 & I \end{bmatrix} = \begin{bmatrix} S_{\chi} & 0 & -S_{\chi} T_{\chi} + T_{\chi} \\ 0 & S_{y} & -S_{y} T_{y} + T_{y} \\ 0 & 0 & I \end{bmatrix}$$

### Matrix Multiplication is Not Commutative

First rotate, then translate => First translate, then rotate =>

Computer Graphics 2019, ZJU

# Composite of basic transformations

- Order of multiplication of the matrices is important because matrix multiplication is not commutative
- Most of the transformations that we normally deal with can be obtained as composite of the 3 basic transformations, i.e., translation, scaling, and rotation

# Rotation about arbitrary axis

• Given:

Axis:  $(x_1,y_1,z_1)$  to  $(x_2,y_2,z_2)$ 

Angle of rotation: θ

- Procedure
- 1. Transform so that the given axis coincides with the Z axis
- 2. Rotate by θ
- 3. Apply inverse of step 1. transforms



# Rotation example (contd.)

### Steps

 $T_{-(x_1,y_1,z_1)}$  Makes given axis pass through origin

 $R_{(x,\alpha)}$  Makes axis lie in ZX plane

 $R_{(y,\beta)}$  Makes axis coincide with the Z axis

 $R_{(z,\theta)}$  Applies given rotation

Apply inverses of aligning transformations

## Rotation About Arbitrary





### Alternative solution

- Quaternion (10 min reading)
  - what is?
  - basic operations
  - and how to perform rotation
- reference:
  - http://www.cs.ucr.edu/~vbz/resources/ quatut.pdf

## Reading and discussion

http://www.cad.zju.edu.cn/home/zhx/CG/2017/lib/exe/fetch.php?media=quatut-2-2.pdf

# Transformations in OpenGL

- Model-view matrix
- Projection matrix
- Texture matrix

# Programming Transformations

- In OpenGL, the transformation matrices are part of the state, they must be defined prior to any vertices to which they are to apply.
- In modeling, we often have objects specified in their own coordinate systems and must use transformations to bring the objects into the scene.
- OpenGL provides matrix stacks for each type of supported matrix (model-view, projection, texture) to store matrices.

### Current Transformation Matrix

Current Transformation Matrix (CTM)

Is the matrix that is applied to any vertex that is defined subsequent to its setting.

- If we change the CTM, we change the *state* of the system.
- CTM is a 4 x 4 matrix that can be altered by a set of functions.

## Changing CTM

```
    Specify CTM mode: glMatrixMode (mode);

            mode = (GL_MODELVIEW | GL_PROJECTION | GL_TEXTURE )

    Load CTM: glLoadIdentity (void); glLoadMatrix{fd} (*m);

             m = ID array of 16 elements arranged by the columns

    Multiply CTM : glMultMatrix{fd} (*m);

    Modify CTM: (multiplies CTM with appropriate transformation matrix)

             glTranslate {fd} (x, y, z);
             glScale \{fd\} (x, y, z);
             glRotate {fd} (angle, x, y, z);
  rotate counterclockwise around ray (0,0,0) to (x, y, z)
```

### Rotation About an Arbitrary Point

### Task:

Rotate an object by 45.0 degrees about the line from (4.0, 5.0, 6.0) to (5.0, 7.0, 9.0).  $(T_{-p1}, R_{45}, T_{+p1})$ 

```
glMatrixMode (GL_MODEVIEW);
glLoadIdentity ();
glTranslatef (4.0, 5.0, 6.0);
glRotatef (45.0, 1.0, 2.0, 3.0);
glTranslatef (-4.0, -5.0, -6.0);
```

### Order of Transformations

- The transformation matrices appear in *reverse* order to that in which the transformations are applied.
- In OpenGL, the transformation specified most recently is the one applied first.

### Matrix Stacks

 OpenGL uses matrix stacks mechanism to manage modeling transformation hierarchy.

```
glPushMatrix ( void );
glPopMatrix ( void );
```

- OpenGL provides matrix stacks for each type of supported matrix to store matrices.
  - Model-view matrix stack
  - Projection matrix stack
  - Texture matrix stack

### Example of Modeling Transform hierarchy



## Ex – Desk with 4 legs



By calling glutSolidCube() ...

# Hierarchal transformations





**Non-Linear Transforms!** 

## Homework 02

- Build a Solar System
  - requirement:
    - detailed computing steps
    - at least Earth, Moon and Sun
    - implement it in OpenGL/WebGL
    - handout demo and code
  - Deadline: 2019-11-13



旅行者I号已迈进 星际空间

## Thank You