Lecture 24 Image inpainting

Yuyao Zhang, Xiran Cai PhD

zhangyy8@shanghaitech.edu.cn caixr@shanghaitech.edu.cn

SIST Building 2 302-F/302-C

Course piazza link: piazza.com/shanghaitech.edu.cn/spring2021/cs270spring2021

Problem to solve

Image inpainting

Outline

- Photomontage
- PDE based image inpainting
- Patch based image inpainting

Image photomontage

Image photomontage

• Key problem: find a good seam (dividing line) between 2 images with similar scene, so that the intensity difference across seam is imperceptible.

Image photomontage

• Key problem: find a good seam (dividing line) between 2 images with similar scene, so that the intensity difference across seam is imperceptible.

Penalty function for image photomontage

- between 2 images with similar scene, so that the intensity difference across seam is imperceptible.
- Idea: "cost" of drawing line between pixels *i* and *j*.
 Where S(i) denote a pixel in the source image;
 T(i) denote a pixel in the target image

$$C(i,j) = ||S(i) - T(i)|| - ||S(j) - T(j)||$$

Penalty function for image photomontage

- Key problem: find a good seam (dividing line)
 between 2 images with similar scene, so that the intensity difference across seam is imperceptible.
- Idea: "cost" of drawing line between pixels *i* and *j*.
 Where S(i) denote a pixel in the source image;
 T(i) denote a pixel in the target image

$$C(i,j) = ||S(i) - T(i)|| + ||S(j) - T(j)||$$

Find best seam via graph cut

• We could modify this with image gradient:

$$w_{ij} = \frac{\|S(i) - T(i)\| + \|S(j) - T(j)\|}{\left|\vec{d} \cdot \nabla S(i)\right| + \left|\vec{d} \cdot \nabla T(i)\right| + \left|\vec{d} \cdot \nabla S(j)\right| + \left|\vec{d} \cdot \nabla T(j)\right|}$$

Numerator: pixels color should be the same on either side.

Denominator: \vec{d} is the vector pointing from i to j. Weight will be small if seam passed through gradient (parallel to edge). Weight will be large if seam passed along gradient (perpendicular to edge). Smooth areas will be in-between.

 Idea: "scribble" on regions of images that we want to keep in the final composite, let graph cut algorithm decide what to do with pixels.

Find best seam via graph cut

We could modify this with image gradient:

$$w_{ij} = \frac{||S(i) - T(i)|| - ||S(j) - T(j)||}{\left|\vec{d} \cdot \nabla S(i)\right| + \left|\vec{d} \cdot \nabla T(i)\right| + \left|\vec{d} \cdot \nabla S(j)\right| + \left|\vec{d} \cdot \nabla T(j)\right|}$$

Numerator: pixels color should be the same on either side.

Denominator: \vec{d} is the vector pointing from i to j. Weight will be small if seam passed through gradient (parallel to edge). Weight will be large if seam passed along gradient (perpendicular to edge). Smooth areas will be in-between.

 Idea: "scribble" on regions of images that we want to keep in the final composite, let graph cut algorithm decide what to do with pixels.

Image in-painting

- E.g. wire removal, removing artifact/creases from old portraits.
- Two easiest approaches:
- Partial Differential Equations (PDE).
- Patch-based methods.

PDE in-painting method

- A differential equation that tries to "punch" good colors from the boundary into the hole.
- The most important thing about image: image edges.
- Edges are particular important; we want to make sure they continue into the hole.
- Key equation:

$$\nabla L \cdot \vec{N} = 0$$

L: information we want to propagate; \vec{N} direction.

PDE inpainting method

PDE inpainting method

 \triangleright E.G.: We define L=smoothness estimator; \overrightarrow{N} = isophote direction:

$$\nabla \left(\nabla^2 I(x,y)\right) \cdot \nabla^P I(x,y) = 0, (x,y) \in \Omega$$

- Laplacian edge; the change in the edge; isophote direction (the direction going along the edge).
- Interpretation: change in Laplacian along isophote direction should be zeros. Want to preserve edge of 'arrival'.

Solution:
$$\frac{\partial I}{\partial t} = \nabla (\nabla^2 I(x, y)) \cdot \nabla^P I(x, y)$$

General algorithm

$$\frac{\partial I}{\partial t} = \nabla \left(\nabla^2 I(x, y) \right) \cdot \nabla^P I(x, y)$$

> Iteratively

- Continue edge of surrounding area into hole;
- Continue color of surrounding area into hole;

$$I_{i}(x,y) = I_{i-1}(x,y) + \nabla(\nabla^{2}I_{i-1}(x,y)) \cdot \nabla^{P}I_{i-1}(x,y)$$

PDE method performance

PDE method performance

PDE method performance

An example when PDE doesn't work

• PDE- based method works OK for very thin holes, and low-texture regions. But can't hallucinate high detail.

- > Determine a priority for each pixel on the hole boundary.
- \triangleright Select patch around pixel p with highest priority, Ψ_p .
- \triangleright Search remainder of image for the best matting patch Ψ_q .
- \succ Overwrite hole pixels in Ψ_p with corresponding pixel from Ψ_q , shrink the hole, update priority.

- Which pixel should have highest priority?
- \succ 1) confidence term: high confidence if pixel is surrounded by known pixels C(p).
- > Date term: highest strong edges from outside the hole hit the hole at right angles.
- $\triangleright D(p) = \|\nabla I(p)\|(\nabla^{\perp}I(p)\cdot \overrightarrow{n}(p))$

