30.4 Ideals, PID's, and Greatest Common Divisors

First, we introduce the fundamental concept of an ideal.

Definition 30.4. Given a ring A, an *ideal of* A is any nonempty subset \Im of A satisfying the following two properties:

- (ID1) If $a, b \in \mathfrak{I}$, then $b a \in \mathfrak{I}$.
- (ID2) If $a \in \mathfrak{I}$, then $ax \in \mathfrak{I}$ for every $x \in A$.

An ideal \Im is a principal ideal if there is some $a \in \Im$, called a generator, such that

$$\mathfrak{I} = \{ax \mid x \in A\}.$$

The equality $\mathfrak{I} = \{ax \mid x \in A\}$ is also written as $\mathfrak{I} = aA$ or as $\mathfrak{I} = (a)$. The ideal $\mathfrak{I} = (0) = \{0\}$ is called the *null ideal* (or *zero ideal*).

An ideal \Im is a maximal ideal if $\Im \neq A$ and for every ideal $\Im \neq A$, if $\Im \subseteq \Im$, then $\Im = \Im$. An ideal \Im is a prime ideal if $\Im \neq A$ and if $ab \in \Im$, then $a \in \Im$ or $b \in \Im$, for all $a, b \in A$. Equivalently, \Im is a prime ideal if $\Im \neq A$ and if $a, b \in A - \Im$, then $ab \in A - \Im$, for all $a, b \in A$. In other words, $A - \Im$ is closed under multiplication and $1 \in A - \Im$.

Note that if \mathfrak{I} is an ideal, then $\mathfrak{I}=A$ iff $1 \in \mathfrak{I}$. Since by definition, an ideal \mathfrak{I} is nonempty, there is some $a \in \mathfrak{I}$, and by (ID1) we get $0 = a - a \in \mathfrak{I}$. Then, for every $a \in \mathfrak{I}$, since $0 \in \mathfrak{I}$, by (ID1) we get $-a \in \mathfrak{I}$. Thus, an ideal is an additive subgroup of A. Because of (ID2), an ideal is also a subring.

Observe that if A is a field, then A only has two ideals, namely, the trivial ideal (0) and A itself. Indeed, if $\mathfrak{I} \neq (0)$, because every nonnull element has an inverse, then $1 \in \mathfrak{I}$, and thus, $\mathfrak{I} = A$.

Definition 30.5. Given a ring A, for any two elements $a, b \in A$ we say that b is a multiple of a and that a divides b if b = ac for some $c \in A$; this is usually denoted by $a \mid b$.

Note that the principal ideal (a) is the set of all multiples of a, and that a divides b iff b is a multiple of a iff $b \in (a)$ iff $(b) \subseteq (a)$.

Note that every $a \in A$ divides 0. However, it is customary to say that a is a zero divisor iff ac = 0 for some $c \neq 0$. With this convention, 0 is a zero divisor unless $A = \{0\}$ (the trivial ring), and A is an integral domain iff 0 is the only zero divisor in A.

Given $a, b \in A$ with $a, b \neq 0$, if (a) = (b) then there exist $c, d \in A$ such that a = bc and b = ad. From this, we get a = adc and b = bcd, that is, a(1 - dc) = 0 and b(1 - cd) = 0. If A is an integral domain, we get dc = 1 and cd = 1, that is, c is invertible with inverse d. Thus, when A is an integral domain, we have b = ad, with d invertible. The converse is obvious, if b = ad with d invertible, then (a) = (b).

It is worth recording this fact as the following proposition.