PROBLEM SET 3

Zhiqiang Xie 77892769

Problem 1

- Find the median of an array:
 - Divide *n* elements into groups of 5
 - Find the median of each group
 - Recuisively, find the median \boldsymbol{x} of the $\lfloor n/5 \rfloor$ medians
 - \circ Partition the n elements around x and drop most of the smallest and largest.
 - The time complexity of finding the median is:
 - $T(n) = T(\lceil n/5 \rceil) + T(7n/10 + 6) + O(n)$, which is guaranteed $T(n) \in O(n)$
- Since all we want is to use as less bags as possible, as well more chocolates. In other word, we want those heaviest chocolates. Therefore, we have this divide procedure:

Python

```
def buy(choco, target):
    if sum(choco) < target:</pre>
        return False # it's impossible to achieve the goal
    plan = []
    def divide(sub, target):
        median = get_median(sub) # This function is illustrated above
        heavy, light = [], []
        for w in sub:
            if w >= median:
                heavy.append(x)
            else:
                light.append(x)
        sum heavy = sum(heavy)
        if 0 <= sum heavy - target < median: # Reach the best deal
            return heavy
        elif sum_heavy - target < 0:</pre>
            target -= sum heavy
            plan += heavy
            return divide(light, target)
            return divide(heavy, target)
    return plan += divide(choco, target)
```

The time complexity is $T(n) = T(n/2) + O(n) \in O(n)$

Problem 2: Binary Search Tree Practice

- 1. Firstly, let's specify some functions:
 - find_min: go down to the leftmost node of the BST, this node has the smallest value in the BST or sub-BST.
 - find_next: to find the successor that is only larger than the node in the BST or sub-BST:
 - If the node has a right child, then the leftmost node of the right sub-BST is the successor.
 - If the node has no right child, then:
 - If the node is its parent's left child, then the succesor is its parent.
 - If the node is its parent's right child, then we keep following the pointers to parents until an ancestor has a larger value. Once we reached the root node, terminate the traversal.

Thus, from this naive procedure above, we shall see that we'll visit any node in the BST at most 3 times during the in-order traversal. Therefore, the time complexity $T(n) = n * \Theta(1) = O(n)$

2.

1. Python

```
def isBST(self, root):
    """
    :type root: TreeNode
    :rtype: bool
    """
    self.inorder = []
    self.traverse(root)
    return all(self.inorder[i] <= self.inorder[i+1] for i in
    range(len(self.inorder)-1))

def traverse(self, root):
    if not root:
        return
    else:
        self.traverse(root.left)
        self.inorder.append(root.val)
        self.traverse(root.right)</pre>
```

The time complexity $T(n) = O(n) + O(n) \in O(n)$

2. Python

```
def isBalanced(self, root):

    def check(root):
        if root is None:
            return 0
        left = check(root.left)
        right = check(root.right)
        if left == -1 or right == -1 or abs(left - right) > 1:
            return -1
        return 1 + max(left, right)

return check(root) != -1
```

The time complexity $T(n) = n * O(1) \in O(n)$

Problem 3: Strongly 2-Universal Hashing

- 1. If H is strongly 2-universal, then for every pair of keys (x,y) where $x \neq y$ and for every $i \in \{0,1,\ldots,m-1\}$, we have:
 - $\circ \ \Pr[(h(x),h(y))=(i,i)]=rac{1}{m^2}$, for every $h\in H$

Therefore, here are axactly m possible ways to make two keys x,y collide:

- $\circ \ \ h(x) = h(y) = i$, for all $i \in \{0,1,\ldots,m-1\}$ and all $h \in H$
- \circ Thus, $\Pr[h(x)=h(y)]=\sum_{i=0}^{m-1}\Pr[(h(x),h(y))=(i,i)]=rac{m}{m^2}=rac{1}{m}$, for every $h\in H$

Thus, \boldsymbol{H} is universal by definition.

2. A simple eaxmple with m = |H| = |U| = 2:

	x	у
h_1	0	0
h_2	1	0

It's easy to see the probability that two keys x, y collide is 1/2 since only h_1 can cause the collision.

However, if H is a strongly 2-universal hash family, for a randomly choosen hash function h, all the possible pairs of (h(x), h(y)) must be equally likely.

• In this case, they're (0,0), (0,1), (1,0), (1,1).

But (h(x), h(y)) never equals to (0,1), (1,1) in our H.

Therefore, *H* is not strongly 2-universal.

- 3. Firstly, I assume H is a universal hash family. Thus we have $\Pr[h(x) = h(y)] = rac{1}{m}$, for every $h \in H$
 - \circ I denote the index of $h \in H$ by n, where n >= 0, therefore $H = \{h_0, h_1, \ldots, h_n\}$
 - Now we set a special x_s as a probe:
 - For every $h_i \in H$, we get $o = h_i(x_s)$. If $o \neq i$, we set $h_i(x_s) = i \mod m$, and then we traverse the U to find a key y which satisfies that $h_i(y) = i$. Once we get it, we set $h_i(y) = o$, otherwise, just over.
 - Now we have a new hash family H, where we can index the target hash functions by x_s :
 - $h_i(x_s) = i \mod m$, thus only $\lceil n/m \rceil$ hash functions are candidates. We can guarantee that the probability to make a collision to be greater than $\frac{1}{m}$ since we have the information of the target functions.
 - For all $h \in H$, $\Pr[h(x) = h(y)] = \frac{1}{m}$ for any pair of $(x,y), (x \in U, y \in U, x \neq y)$ is still satisfied. Since I don't change the number of pairs of collision in the output domian of any hash function $h_i \in H$.

Therefore, the new H maintains its universality via the transformation and we guarantee the collide probability to be greater that $\frac{1}{m}$ as well.

- 4. Konwing h(x) gives the adversary no information about h(y) if h is randomly choosed from a strongly 2-universal hash family H. We can format this problem like this:
 - $\circ \;\; X = h(x_s)$, where the X is our information towards the hash function h.

$$\circ \ \Pr[h(x) = h(y) | h(x) = X] = rac{\Pr[h(x) = h(y), h(x) = X]}{\Pr[h(x) = X]} = rac{1/m^2}{1/m} = rac{1}{m}$$

Therefore, no matter which x_s the adversary choose and which $X = h(x_s)$ the adversary knows, the probability of any particular y colliding with x is still 1/m.