Assignment 25

Problem Statement

In this assignment students need to predict whether a person makes over 50K per year or not from classic adult dataset using XGBoost.

The description of the dataset is as follows:

Data Set Information:

Extraction was done by Barry Becker from the 1994 Census database. A set of reasonably clean records was extracted using the following conditions: ((AAGE>16) && (AGI>100) && (AFNLWGT>1)&& (HRSWK>0))

Attribute Information:

- (>50K, <=50K)
- · age: continuous
- workclass: Private, Self-emp-not-inc, Self-emp-inc, Federal-gov, Local-gov, State-gov, Without-pay, Never-worked
- · fnlwgt: continuous
- education: Bachelors, Some-college, 11th, HS-grad, Prof-school, Assoc-acdm, Assoc-voc, 9th, 7th-8th, 12th, Masters, 1st-4th, 10th, Doctorate, 5th-6th, Preschool
- education-num: continuous.
- marital-status: Married-civ-spouse, Divorced, Never-married, Separated, Widowed, Married-spouse-absent, Married-AF-spouse
- occupation: Tech-support, Craft-repair, Other-service, Sales, Exec-managerial, Prof-specialty, Handlers-cleaners, Machine-op-inspct, Adm-clerical, Farming-fishing, Transport-moving, Priv-house-serv, Protective-serv, Armed-Forces
- · relationship: Wife, Own-child, Husband, Not-in-family, Other-relative, Unmarried
- race: White, Asian-Pac-Islander, Amer-Indian-Eskimo, Other, Black
- · sex: Female, Male
- capital-gain: continuous
- capital-loss: continuous
- · hours-per-week: continuous
- native-country: United-States, Cambodia, England, Puerto-Rico, Canada, Germany, Outlying-US(Guam-USVI-etc), India, Japan, Greece, South, China,
 Cuba, Iran, Honduras, Philippines, Italy, Poland, Jamaica, Vietnam, Mexico, Portugal, Ireland, France, Dominican-Republic, Laos, Ecuador, Taiwan, Haiti,
 Columbia, Hungary, Guatemala, Nicaragua, Scotland, Thailand, Yugoslavia, El-Salvador, Trinadad&Tobago, Peru, Hong, Holand-Netherlands

```
In [136]: import numpy as np
    import matplotlib.pyplot as plt
    %matplotlib inline
    import pandas as pd
    from sklearn.model_selection import train_test_split, cross_val_score
    import xgboost as xgb
    from sklearn.metrics import confusion_matrix, accuracy_score
    from sklearn.preprocessing import StandardScaler
```

In [96]: # Load the training dataset from the URL
train_set = pd.read_csv('http://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.data', header = None)

In [97]: # Load the test data set from the URL
 test_set = pd.read_csv('http://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.test', skiprows = 1, h
 eader = None)

Out[98]:

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
0	39	State-gov	77516	Bachelors	13	Never-married	Adm-clerical	Not-in- family	White	Male	2174	0	40	United- States	<=50K
1	50	Self-emp-not- inc	83311	Bachelors	13	Married-civ- spouse	Exec-managerial	Husband	White	Male	0	0	13	United- States	<=50K
2	38	Private	215646	HS-grad	9	Divorced	Handlers- cleaners	Not-in- family	White	Male	0	0	40	United- States	<=50K
3	53	Private	234721	11th	7	Married-civ- spouse	Handlers- cleaners	Husband	Black	Male	0	0	40	United- States	<=50K
4	28	Private	338409	Bachelors	13	Married-civ- spouse	Prof-specialty	Wife	Black	Female	0	0	40	Cuba	<=50K

In [99]: # Display the top five rows of the test dataset
test_set.head()

Out[99]:

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
0	25	Private	226802	11th	7	Never-married	Machine-op- inspct	Own- child	Black	Male	0	0	40	United- States	<=50K.
1	38	Private	89814	HS-grad	9	Married-civ- spouse	Farming-fishing	Husband	White	Male	0	0	50	United- States	<=50K.
2	28	Local- gov	336951	Assoc-acdm	12	Married-civ- spouse	Protective-serv	Husband	White	Male	0	0	40	United- States	>50K.
3	44	Private	160323	Some- college	10	Married-civ- spouse	Machine-op- inspct	Husband	Black	Male	7688	0	40	United- States	>50K.
4	18	?	103497	Some- college	10	Never-married	?	Own- child	White	Female	0	0	30	United- States	<=50K.

In [100]: # I am going to combine the two datasets together and split them later when I build the Machine Learning Model
dataset = pd.concat([train_set, test_set])

In [102]: # Add the labels
dataset.columns = col_labels

In [103]: dataset.head()

Out[103]:

	age	workclass	fnlwgt	education	education_num	marital_status	occupation	relationship	race	sex	capital_gain	capital_loss	hour
0	39	State-gov	77516	Bachelors	13	Never-married	Adm- clerical	Not-in-family	White	Male	2174	0	
1	50	Self-emp- not-inc	83311	Bachelors	13	Married-civ- spouse	Exec- managerial	Husband	White	Male	0	0	
2	38	Private	215646	HS-grad	9	Divorced	Handlers- cleaners	Not-in-family	White	Male	0	0	
3	53	Private	234721	11th	7	Married-civ- spouse	Handlers- cleaners	Husband	Black	Male	0	0	
4	28	Private	338409	Bachelors	13	Married-civ- spouse	Prof- specialty	Wife	Black	Female	0	0	
4													>

Out[158]: (48842, 15)

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 48842 entries, 0 to 16280
Data columns (total 15 columns):
                  48842 non-null int64
age
                  48842 non-null object
workclass
fnlwgt
                  48842 non-null int64
                  48842 non-null object
education
                  48842 non-null int64
education num
                  48842 non-null object
marital status
occupation
                  48842 non-null object
relationship
                  48842 non-null object
                  48842 non-null object
race
                  48842 non-null object
sex
capital_gain
                  48842 non-null int64
capital_loss
                  48842 non-null int64
hours_per_week
```

dtypes: int64(6), object(9)

memory usage: 6.0+ MB

native country

wage_class

dataset.info()

In [106]:

In [105]:

See the statistics of the numeric columns dataset.describe()

48842 non-null int64

48842 non-null object

48842 non-null object

Out[106]:

	age	fnlwgt	education_num	capital_gain	capital_loss	hours_per_week
count	48842.000000	4.884200e+04	48842.000000	48842.000000	48842.000000	48842.000000
mean	38.643585	1.896641e+05	10.078089	1079.067626	87.502314	40.422382
std	13.710510	1.056040e+05	2.570973	7452.019058	403.004552	12.391444
min	17.000000	1.228500e+04	1.000000	0.000000	0.000000	1.000000
25%	28.000000	1.175505e+05	9.000000	0.000000	0.000000	40.000000
50%	37.000000	1.781445e+05	10.000000	0.000000	0.000000	40.000000
75%	48.000000	2.376420e+05	12.000000	0.000000	0.000000	45.000000
max	90.000000	1.490400e+06	16.000000	99999.000000	4356.000000	99.000000

```
In [107]: # Count the number of null values in the columns
           dataset.isnull().sum(axis=0)
Out[107]: age
                             0
          workclass
                             0
          fnlwgt
                             0
          education
                             0
          education num
                             0
          marital_status
          occupation
          relationship
                             0
          race
                             0
          sex
          capital_gain
          capital_loss
                             0
          hours_per_week
                             0
          native_country
          wage_class
          dtype: int64
```

Exploratory Data Analysis

See the anomolies, patterns, trends, and relationship in our dataset.

In [108]: # Count the number of people by Native Country.
pd.value_counts(dataset['native_country'])

Out[108]:	United-States	43832
	Mexico	951
	?	857
	Philippines	295
	Germany	206
	Puerto-Rico	184
	Canada	182
	El-Salvador	155
	India	151
	Cuba	138
	England	127
	China	122
	South	115
	Jamaica	106
	Italy	105
	Dominican-Republic	103
	Japan	92
	Guatemala	88
	Poland	87
	Vietnam	86
	Columbia	85
	Haiti	75
	Portugal	67
	Taiwan	65
	Iran	59
	Greece	49
	Nicaragua	49
	Peru	46
	Ecuador	45
	France	38
	Ireland	37
	Hong	30
	Thailand	30
	Cambodia	28
	Trinadad&Tobago	27
	Yugoslavia	23
	Laos	23
	Outlying-US(Guam-USVI-etc)	23
	Scotland	21
	Honduras	20
	Hungary	19
	Holand-Netherlands	1
		int64

```
In [109]: # I tried replacing the ? in Native Country column with Unknown and couldn't. See if there are whitespaces in the d
           ataset.
          white space = dataset['native country'].str.isalpha()
In [110]: print(white_space.head(20))
          0
                False
          1
                False
                False
                False
                False
          5
                False
          6
                False
          7
                False
          8
                False
          9
                False
          10
                False
          11
                False
          12
                False
          13
                False
          14
                False
          15
                False
          16
                False
          17
                False
          18
                False
          19
                False
          Name: native country, dtype: bool
In [111]: # Apparently the data in the native column has whitepce. Just to be cautious I will strip the white space from all
           # the non numeric columns
          dataset = dataset.apply(lambda x: x.str.strip() if x.dtype == "object" else x)
          # I am going to replace ? in the Native Country with Unknown
In [112]:
          dataset['native country'].replace('?', 'Unknown', inplace=True)
```

In [113]: pd.value_counts(dataset['native_country'])

Out[113]:	United	-States		43832
	Mexico			951
	Unknow	n		857
	Philip	pines		295
	German			206
	Puerto	-Rico		184
	Canada			182
	El-Sal	vador		155
	India			151
	Cuba			138
	Englan	d		127
	China			122
	South			115
	Jamaic	a		106
	Italy			105
	Domini	can-Republic		103
	Japan			92
	Guatem	ala		88
	Poland			87
	Vietna	m		86
	Columb	ia		85
	Haiti			75
	Portug	al		67
	Taiwan			65
	Iran			59
	Nicara	gua		49
	Greece			49
	Peru			46
	Ecuado	r		45
	France			38
	Irelan	d		37
	Hong			30
	Thaila	nd		30
	Cambod	ia		28
	Trinad	ad&Tobago		27
	Outlyi	ng-US(Guam-USVI	-etc)	23
	Laos			23
	Yugosl	avia		23
	Scotla	nd		21
	Hondur	as		20
	Hungar	у		19
	Holand	-Netherlands		1
	Name:	native_country,	dtype:	int64

```
pd.value counts(dataset['wage class'])
In [114]:
Out[114]: <=50K
                     24720
          <=50K.
                     12435
          >50K
                      7841
                      3846
          >50K.
          Name: wage class, dtype: int64
In [115]:
          # Looks like the wage class column has values with a period at the end.
          # Replace those so there is no error when building my model.
          dataset['wage class'].replace(['<=50K.','>50K.'],['<=50K','>50K'], inplace=True)
          pd.value counts(dataset['wage class'])
In [116]:
Out[116]: <=50K
                    37155
                    11687
          >50K
          Name: wage class, dtype: int64
In [117]: # Replace the wage class column with 1 if person makes more than 50K and 0 if less than or equal to 50K
          dataset['wage class'].replace(['<=50K','>50K'],[0,1], inplace=True)
In [118]: | pd.value counts(dataset['wage class'])
Out[118]: 0
                37155
               11687
          Name: wage class, dtype: int64
          pd.value_counts(dataset['workclass'])
In [119]:
Out[119]: Private
                               33906
          Self-emp-not-inc
                                3862
          Local-gov
                                3136
          ?
                                2799
          State-gov
                                1981
          Self-emp-inc
                                1695
          Federal-gov
                                1432
          Without-pay
                                  21
          Never-worked
                                  10
          Name: workclass, dtype: int64
```

```
In [120]: # Replace ? with Unknown in work class column
          dataset['workclass'].replace('?','Unknown', inplace=True)
In [121]:
          dataset.isnull().sum(axis=0)
Out[121]: age
                             0
          workclass
          fnlwgt
                             0
          education
          education num
          marital_status
                             0
          occupation
                             0
          relationship
          race
          sex
          capital_gain
          capital_loss
          hours_per_week
          native country
          wage_class
                             0
          dtype: int64
In [122]:
          pd.value counts(dataset['marital status'])
Out[122]: Married-civ-spouse
                                    22379
          Never-married
                                    16117
                                     6633
          Divorced
          Separated
                                     1530
          Widowed
                                     1518
          Married-spouse-absent
                                      628
                                       37
          Married-AF-spouse
          Name: marital status, dtype: int64
```

Building the XGBoost ML Model

Split the dataset into training set and test set

```
In [124]: # Split the feature set and target set
           features = dataset.drop(columns='wage class')
           targets = dataset['wage class']
In [126]: # Label and Onehot encode the categorical values in features set
           features = pd.get dummies(features, drop first=True)
In [127]:
           features.head()
Out[127]:
                                                                                                                              workclass
                                                                              workclass_Local- workclass_Never-
                    fnlwgt education_num capital_gain capital_loss hours_per_week
                                                                                                              workclass_Private
                                                                                                      worked
                                                                                         gov
               39
                    77516
                                     13
                                              2174
                                                            0
                                                                          40
                                                                                           0
                                                                                                           0
                                                                                                                           0
                50
                    83311
                                     13
                                                             0
                                                                          13
                                                                                           0
                                                                                                           0
               38 215646
                                      9
                                                 0
                                                                          40
                                                                                           0
                                                                                                           0
                                      7
                53 234721
                                                                          40
                                                                                                                           1
                                     13
                                                             0
                                                                          40
                                                                                           0
                                                                                                           0
                                                                                                                           1
                28 338409
           5 rows × 100 columns
In [133]:
           # Split the data into 70% training set and 30% test set
           X_train, X_test, y_train, y_test = train_test_split(features, targets, test_size = 0.30, random_state = 0)
           print(X train.shape)
           print(X test.shape)
           print(y train.shape)
           print(y test.shape)
           (34189, 100)
           (14653, 100)
           (34189,)
           (14653,)
```

Create the Model

```
In [152]: xgb model = xgb.XGBClassifier()
          xgb model.fit(X train,y train)
Out[152]: XGBClassifier(base score=0.5, booster='gbtree', colsample bylevel=1,
                 colsample_bytree=1, gamma=0, learning_rate=0.1, max_delta_step=0,
                 max depth=3, min child weight=1, missing=None, n estimators=100,
                 n jobs=1, nthread=None, objective='binary:logistic', random state=0,
                 reg alpha=0, reg lambda=1, scale pos weight=1, seed=None,
                 silent=True, subsample=1)
In [153]: # Make predictions
          y pred = xgb model.predict(X test)
In [154]:
          conf_mat = confusion_matrix(y_test,y_pred)
          print(conf mat)
          [[10611
                    589]
           [ 1426 2027]]
In [155]: # Evaluate the model performance metric
          accuracy = accuracy_score(y_test, y_pred)
          print(accuracy)
```

0.8624854978502696

```
In [180]:
          # Extract the feature importances into a dataframe
          feature results = pd.DataFrame({'feature': list(features.columns),
                                           'importance': xgb model.feature importances })
           # Show the top 20 most important features of our dataset
          feature results = feature results.sort values('importance', ascending = False).reset index(drop=True)
          print(feature results.head(20))
                                         feature importance
          0
                                                    0.153179
                                             age
          1
                                    capital gain
                                                    0.151734
           2
                                    capital loss
                                                    0.135838
                                   education num
           3
                                                    0.117052
                                  hours per week
          4
                                                    0.088150
          5
              marital status Married-civ-spouse
                                                    0.057803
                                          fnlwgt
          6
                                                    0.037572
          7
                               relationship Wife
                                                    0.028902
          8
                      workclass Self-emp-not-inc
                                                    0.026012
          9
                          relationship Unmarried
                                                    0.021676
                     occupation Exec-managerial
          10
                                                    0.021676
                        occupation Other-service
          11
                                                    0.015896
          12
                                        sex Male
                                                    0.014451
                      occupation Farming-fishing
          13
                                                    0.014451
                          relationship Own-child
          14
                                                    0.011561
                      occupation Prof-specialty
          15
                                                    0.011561
                             workclass Local-gov
          16
                                                    0.010116
          17
                           native country Mexico
                                                    0.008671
                    occupation_Handlers-cleaners
          18
                                                    0.008671
                         occupation Tech-support
          19
                                                    0.007225
          # Using the given Census data, our XGBoost Machine Learning Model can predict if a person makes above 50K
In [173]:
           # or at or below 50K with an 86% accuracy.
  In [ ]:
```