Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the

application:

Listing of Claims:

Claims 1-3 (Canceled).

4. (Currently amended) The method as claimed in claim 2,

A method of producing a real-time video stream from stored MPEG encoded video clips, the MPEG encoded video clips being contained in data storage of a video

server, the method comprising:

reading segments of the MPEG encoded video clips from the data storage, the

segments of the MPEG encoded video clips being decoded by respective first and second

decoders in a decoder pair, the first decoder decoding at least a portion of a first MPEG

encoded video clip and the second decoder decoding at least a portion of a second MPEG

encoded video clip, the real-time video stream being obtained by operating a video switch

to switch between a video output of the first decoder and a video output of the second

decoder to select a specified In-point frame in the second MPEG encoded video clip that

is selectable as any MPEG frame type at any location in an MPEG group of pictures

(GOP) structure;

2

which includes operating the decoders and the video switch in response to control commands from the video server;

wherein the control commands include configuration commands used by the video server for configuring the decoders by determining a configuration of the decoders and to set up configuration parameters for the decoders the video server obtaining configuration status of the decoders and by the video server setting operational modes of the respective decoders.

- 5. (Currently Amended) The method as claimed in claim [[2]] <u>6</u>, which further includes transmitting asynchronous edit requests <u>between from</u> the video server <u>and to</u> the decoders.
 - 6. (Presently amended) The method as claimed in claim 2,

A method of producing a real-time video stream from stored MPEG encoded video clips, the MPEG encoded video clips being contained in data storage of a video server, the method comprising:

reading segments of the MPEG encoded video clips from the data storage, the segments of the MPEG encoded video clips being decoded by respective first and second decoders in a decoder pair, the first decoder decoding at least a portion of a first MPEG encoded video clip and the second decoder decoding at least a portion of a second MPEG encoded video clip, the real-time video stream being obtained by operating a video switch

to switch between a video output of the first decoder and a video output of the second decoder to select a specified In-point frame in the second MPEG encoded video clip that is selectable as any MPEG frame type at any location in an MPEG group of pictures (GOP) structure;

which includes operating the decoders and the video switch in response to control commands from the video server, and

which further includes transmitting asynchronous status reports between of decoding events from the decoders and to the video server when the decoding events occur.

- 7. (Currently amended) The method as claimed in claim [[1]] <u>6</u>, which includes the decoders requesting and obtaining MPEG encoded data from the video server.
- 8. (Currently amended) The method as claimed in claim [[1]] 6, wherein the video server maintains decoder data buffers of the decoders in a substantially full condition.
- 9. (Currently amended) The method as claimed in claim [[1]] 6, wherein the decoders detect loss of data during transmission from the video server to the decoder array.

- 10. (Currently amended) The method as claimed in claim [[1]] 6, wherein the video switch is operated to switch between a video output of the first decoder and a video output of the second decoder to a specified In-point frame in the second MPEG encoded video clip to switch between a video output of the first decoder and a video output of the second decoder to select a specified In-point frame in the second MPEG encoded video clip at the occurrence of a specified time code.
 - 11. (Currently amended) The method as claimed in claim 1,

A method of producing a real-time video stream from stored MPEG encoded video clips, the MPEG encoded video clips being contained in data storage of a video server, the method comprising:

reading segments of the MPEG encoded video clips from the data storage, the segments of the MPEG encoded video clips being decoded by respective first and second decoders in a decoder pair, the first decoder decoding at least a portion of a first MPEG encoded video clip and the second decoder decoding at least a portion of a second MPEG encoded video clip, the real-time video stream being obtained by operating a video switch to switch between a video output of the first decoder and a video output of the second decoder to select a specified In-point frame in the second MPEG encoded video clip that is selectable as any MPEG frame type at any location in an MPEG group of pictures (GOP) structure;

Reply to Official Action of Nov. 22, 2005

wherein each decoder obtains MPEG encoded data from the video server by sending a request for data including a decoder data buffer free space value and an offset value indicating any MPEG encoded data previously received from the video server, and the video server responds to the request for data by sending MPEG encoded data sufficient to substantially fill the data buffer free space taking into consideration MPEG encoded data previously sent but not yet received by said each decoder when said each decoder sent the request for data.

- 12. (Currently amended) The method as claimed in claim [[1]] <u>6</u>, wherein each decoder receives MPEG encoded data from the video server by receiving data packets, each of the data packets including a respective offset value indicating an amount of data transmitted in at least one previous data packet to said each decoder, and said each decoder computes an expected offset value from the offset value in a received data packet and compares the expected offset value to an offset value in a subsequently received data packet to recognize that at least one data packet has been lost in transmission from the video server to said each decoder.
- 13. (Currently amended) The method as claimed in claim [[1]] 6, which includes the video server preparing for the switching from the video output from the first decoder to the video output from the second decoder by fetching MPEG encoded data of the second MPEG encoded video clip from disk storage to buffer memory in the video

Reply to Official Action of Nov. 22, 2005

server, and later initiating a stream of MPEG encoded data to the second decoder in response to a request from the second decoder.

- 14. (Currently amended) The method as claimed in claim [[1]] <u>6</u>, which includes the video server preparing for the switching from the video output from the first decoder to the video output from the second decoder by initiating a stream of MPEG encoded data from the second MPEG encoded video clip in the video server, and wherein the decoders have sufficient buffer memory so that streaming of MPEG encoded data of the first MPEG encoded video clip from the video server to the first decoder is not overlapped with streaming of MPEG encoded data of the second MPEG encoded video clip from the video server to the second decoder.
- 15. (Currently Amended) The method as claimed in claim [[1]] 6, which includes the video server preparing for the switching from the video output from the first decoder to the video output from the second decoder by initiating a stream of MPEG encoded data from the second MPEG encoded video clip in the video server, and wherein the video server fetches MPEG encoded data from storage of the video server beginning with an I frame referenced by the In-point frame and preceding the In-point frame in decode order when the specified In-point frame is not an I-frame.

Reply to Official Action of Nov. 22, 2005

16. (Currently amended) The method as claimed in claim [[1]] 6, which includes synchronizing the video server and the decoders to a common house clock signal and switching between a video output of the first decoder and a video output of the second decoder to a specified In-point frame in the second MPEG encoded video clip at the occurrence of a specified time code in the house clock signal.

17. (Canceled).

- 18. (Currently amended) The method as claimed in claim [[17]] <u>20</u>, wherein the control commands include configuration commands used by the video server for <u>configuring the decoders by determining a configuration of the decoders and to set up configuration parameters for the decoders the video server obtaining configuration status of the decoders and by the video server setting operational modes of the respective <u>decoders</u>.</u>
- 19. (Currently amended) The method as claimed in claim [[17]] <u>20</u>, which further includes transmitting asynchronous edit requests between the video server and the decoders, and transmitting asynchronous status reports between of decoding events from the decoders and to the video server when the decoding events occur.

Reply to Official Action of Nov. 22, 2005

20. (Currently amended) The method as claimed in claim 17,

A method of producing a real-time video stream from stored MPEG-2 encoded video clips, the MPEG-2 encoded video clips being contained in data storage of a video server, the method comprising:

reading segments of the MPEG-2 encoded video clips from the data storage, the segments of the MPEG-2 encoded video clips being decoding by respective first and second decoders in a decoder pair, the first decoder decoding at least a portion of a first MPEG-2 encoded video clip and the second decoder decoding at least a portion of a second MPEG-2 encoded video clip, the real-time video stream being obtained by operating a video switch to switch between a video output of the first decoder and a video output of the second decoder at an occurrence of a specified time code to select a specified In-point frame in the second MPEG-2 encoded video clip that is selectable as any MPEG-2 frame type at any location in an MPEG-2 group of pictures (GOP) structure.

which includes operating the decoders and the video switch in response to control commands from the video server, the control commands include streaming commands used to control the In-point of the second MPEG-2 encoded video clip included in the real-time video stream,

which includes the decoders requesting and obtaining MPEG-2 encoded data from the video server, and

Reply to Official Action of Nov. 22, 2005

which includes each decoder obtaining MPEG-2 encoded data from the video server by sending a request for data including a decoder data buffer free space value and an offset value indicating MPEG-2 encoded data previously received from the video server, and the video server responds to the request for data by sending MPEG-2 encoded data sufficient to substantially fill the data buffer free space taking into consideration MPEG-2 encoded data previously sent but not yet received by said each decoder when said each decoder sent the request for data.

21-22 (Canceled).

- 23. (Currently amended) The method as claimed in claim [[17]] 20, which includes the video server preparing for the switching from the video output from the first decoder to the video output from the second decoder by initiating a stream of MPEG-2 encoded data from the second MPEG-2 encoded video clip in the video server, and wherein the decoders have sufficient buffer memory so that streaming of MPEG-2 encoded data from the video server to the first decoder is not overlapped with streaming of MPEG-2 encoded data from the video server to the second decoder.
- 24. (Currently amended) The method as claimed in claim [[17]] <u>20</u>, which includes the video server preparing for the switching from the video output from the first decoder to the video output from the second decoder by initiating a stream of MPEG-2

encoded data from the second MPEG-2 encoded video clip in the video server, and wherein the video server fetches MPEG-2 encoded data from storage of the video server beginning with an I frame referenced by the In-point frame and preceding the In-point frame in decode order when the specified In-point frame is not an I-frame.

25. (Currently amended) The method as claimed in claim [[17]] <u>20</u>, which includes synchronizing the video server and the decoders to a common house clock signal.

Claims 26-52. (Cancelled)

- 53. (Currently amended) The apparatus as claimed in claim [[52]] 58, which includes at least one respective a first dedicated data link between each decoder in the decoder pair and the video server for transmission of MPEG encoded data from the video server to the decoder pair, and at least one a second dedicated data link between the video server and the decoder pair for transmission of the control commands.
- 54. (Currently amended) The apparatus as claimed in claim [[52]] <u>53</u>, which further includes at least one additional a third dedicated data link between the video

Reply to Official Action of Nov. 22, 2005

server and the decoder pair for transmission of asynchronous status reports and edit requests.

- 55. (Currently amended) The apparatus as claimed in claim [[52]] <u>58</u>, wherein the control commands include configuration commands to allow the video server to determine a configuration of the decoder pair and to set up configuration parameters configure the decoder pair by the video server obtaining configuration status of the decode pair and by the video server setting operational modes of the decoder pair, and streaming commands to control the In-points of the MPEG encoded video clips included in the real-time video stream.
- 56. (Currently amended) The apparatus as claimed in claim [[52]] <u>58</u>, wherein the video server and the decoder pair are further programmed for the video server to receive asynchronous status reports of significant <u>decoding</u> events from the decoder pair <u>when the significant decoding events occur</u>; and for the video server to send edit commands to the decoder pair for editing content of the real-time video stream.
- 57. (Currently amended) The apparatus as claimed in claim [[52]] <u>58</u>, wherein the video server is programmed to maintain decoder data buffers of the decoders in a substantially full condition, and the decoders are programmed to detect loss of data during transmission from the video server to the decoder pair.

Reply to Official Action of Nov. 22, 2005

58. (Currently amended) The apparatus as claimed in claim 52,

An apparatus for producing a real-time video stream from stored MPEG encoded video clips, said apparatus comprising:

a video server including data storage containing the MPEG encoded video clips; and

an MPEG decoder pair having a video switch for switching from a video output of one decoder in said decoder pair to a video output of the other decoder of said decoder pair at an occurrence of a specified time code, the video server and the decoder pair being programmed for switching said video switch for selecting a specified In-point frame that is selectable as any MPEG frame type at any location in an MPEG group of pictures (GOP) structure,

wherein the video server and the decoder pair are programmed for the video server to control the decoder pair by sending control commands from the video server to the decoder pair, and the video server and the decoder pair are programmed for the decoder pair to request and obtain MPEG-encoded data from the video server, and

wherein each decoder is programmed to obtain MPEG encoded data from the video server by sending a request for data including a decoder data buffer free space value and an offset value indicating any MPEG encoded data previously received from the video server, and the video server is programmed to respond to the request by sending MPEG encoded data sufficient to substantially fill the data buffer free space taking into

consideration MPEG encoded data previously sent but not yet received by said each decoder when said each decoder sent the request for data.

59-61 (Canceled).

62. (Currently amended) The apparatus as claimed in claim 61,

An apparatus for producing a real-time video stream from MPEG encoded video clips, said apparatus comprising:

a video server for storing the MPEG encoded video clips, and

an MPEG decoder pair coupled to the video server for producing a real-time

video stream from the MPEG encoded video clips stored in the video server:

wherein the video server includes cached disk storage for storing the MPEG
encoded video clips, a data mover computer coupled to the cached disk storage for
streaming segments of the MPEG encoded video clips from the cached disk storage to the
MPEG decoder pair, and a controller server computer coupled to the data mover
computer for controlling the data mover computer; and

output from either one of the decoders in the decoder pair for production of said realtime video stream by switching from the video output from one of the decoders in the
decoder pair to a specified In-point frame in the video output from the other of the
decoders in the decoder pair, wherein the In-point frame is selectable as any frame and

Reply to Official Action of Nov. 22, 2005

any frame type in a group of pictures (GOP) structure of the MPEG encoded video, and the decoders in the decoder pair are coupled to the data mover computer for receiving segments of the MPEG encoded video clips for the production of the real-time video stream;

which further includes a decoder controller coupled to the decoders and to the video switch for controlling the decoders and the video switch, the decoder controller being coupled to data mover computer for receiving control commands for the production of the real-time video stream; and.

wherein the control commands include configuration commands to allow the video server to determine a configuration of the decoder pair and to set up configuration parameters configure the decoder pair by the video server obtaining configuration status of the decode pair and by the video server setting operational modes of the decoder pair, streaming commands to control the In-points of the MPEG encoded video clips included in real-time video stream, asynchronous status report commands to enable the video server to receive asynchronous status reports of significant decoding events from the decoder pair when the significant decoding events occur, and edit commands to allow the decoders in the decoder pair to be controlled for editing content of the real-time video stream.

63. (Currently amended) The apparatus as claimed in claim [[60]] 62, further including an operator control station coupled to the controller server for transmitting a

Reply to Official Action of Nov. 22, 2005

play list and edit commands from an operator to the controller server for controlling and editing content of the real-time video stream.

- 64. (Currently amended) The apparatus as claimed in claim [[60]] 62, which further includes a house clock generator coupled to the data mover computer and the decoders for scheduling and switching to the specified In-point frames when the house clock generator provides respective specified time code values.
- 65. (Currently amended) The apparatus as claimed in claim [[60]] 62, wherein the data mover computer is programmed to prepare for switching from the video output from one of the decoders in the decoder pair to a specified In-point frame in the video output from the other of the decoders in the decoder pair by fetching MPEG encoded data for the other of the decoders in the decoder pair from the cached disk storage to buffer memory in the data mover computer in response to a request from the controller server, and later initiating a stream of MPEG encoded data to the other of the decoders in the decoder pair in response to a request from the other of the decoders in the decoder pair.
- 66. (Currently amended) The apparatus as claimed in claim [[60]] 62, wherein the data mover computer is programmed to prepare for switching from the video output from one of the decoders in the decoder pair to a specified In-point frame in the

Reply to Official Action of Nov. 22, 2005

video output from the other of the decoders in the decoder pair by initiating a stream of MPEG encoded data to the other of the decoders in the decoder pair, and wherein the decoders have sufficient buffer memory so that streaming of MPEG encoded data from the data mover computer to said one of the decoders in the decoder pair is not overlapped with streaming of MPEG encoded data from the data mover computer to the other of the decoders in the decoder pair.

- 67. (Currently amended) The apparatus as claimed in claim [[60]] 62, wherein the data mover computer is programmed to prepare for switching from the video output from one of the decoders in the decoder pair to a specified In-point frame in the video output from the other of the decoders in the decoder pair by initiating a stream of MPEG encoded data to the other of the decoders in the decoder pair, and wherein the data mover computer is programmed to fetch MPEG encoded data from storage beginning with any I frame referenced by the In-point frame and preceding the In-point frame in decode order when the specified In-point frame is not an I-frame.
- 68. (Currently amended) The apparatus as claimed in claim [[60]] 62, wherein each decoder is programmed to obtain MPEG encoded data from the data mover computer by sending a request for data including a decoder data buffer free space value and an offset value indicating any MPEG encoded data previously received from the data mover computer, and the data mover computer is programmed to respond to the request

by sending MPEG encoded data sufficient to substantially fill the data buffer free space taking into consideration MPEG encoded data previously sent but not yet received by said decoder when said decoder sent the request for data.

- 69. (Currently amended) The apparatus as claimed in claim [[60]] 62, wherein each decoder is programmed to receive MPEG encoded data from the data mover computer by receiving data packets including a respective offset value indicating an amount of data transmitted in at least one previous data packet to said each decoder, and said each decoder is programmed to compute an expected offset value from the offset value in a received data packet and to compare the expected offset value from an offset value in a subsequently received data packet to recognize that at least one data packet has been lost in transmission from the data mover computer to said each decoder.
- 70. (Currently amended) An apparatus for producing a real-time video stream from MPEG-2 encoded video clips, said apparatus comprising:

a video server for storing the MPEG-2 encoded video clips, and

an MPEG-2 decoder pair coupled to the video server for producing the real-time video stream from segments of the MPEG-2 encoded video clips stored in the video server;

an operator control station coupled to the video server for transmitting a play list and edit commands from an operator to the video server for controlling and editing content of the real-time video stream; and

wherein the video server includes cached disk storage for storing the MPEG-2 encoded video clips, a data mover computer coupled to the cached disk storage for streaming the segments of the MPEG-2 encoded video clips from the cached disk storage to the MPEG-2 decoder pair, and a controller server computer coupled to the data mover computer for controlling the data mover computer in response to the play list and edit commands from the operator control station; and

further including a video switch coupled to the decoders in the decoder pair for selecting a video output from either one of the decoders in the decoder pair for production of the real-time video stream by switching from the video output from one of the decoders in the decoder pair to a specified In-point frame in the video output from the other of the decoders in the decoder pair, wherein the In-point frame is selectable as any frame and any frame type in a group of pictures (GOP) structure of the MPEG-2 encoded video, the decoders in the decoder pair being coupled to the data mover computer for receiving segments of the MPEG-2 encoded video clips for the production of the real-time video stream, and

further including a decoder controller coupled to the decoders and the video switch for controlling the decoders and the video switch, the decoder controller being coupled to the data mover computer for receiving control commands for the production

of the real-time video stream, wherein the control commands include configuration commands to allow the video server to determine a configuration of the decoder pair and to set up configuration parameters for configure the decoders in the decoder pair by setting operational modes of the decoders in the decoder pair, streaming commands to control the In-points of the MPEG-2 video clips included in the real-time video stream, asynchronous status report commands to enable asynchronous status reports of significant decoding events to be transmitted from the decoder pair to the video server when the decoding events occur, [[;]] and edit commands to allow the decoders in the decoder pair to be controlled for editing content of the real-time video stream; and

wherein the data mover computer is programmed to prepare for switching from the video output from one of the decoders in the decoder pair to a specified In-point frame in the video output from the other of the decoders in the decoder pair by initiating a stream of MPEG-2 encoded data from the data mover computer to the other of the decoders in the decoder pair in response to a request from the other of the decoders in the decoder pair; and

wherein the apparatus further includes a house clock generator coupled to the video server and the MPEG-2 decoder pair for switching to the specified In-point frames when the house clock generator provides respective specified time code values.

71. (Previously presented) The apparatus as claimed in claim 70, wherein the data mover computer is also programmed to prepare for switching from the video output

Reply to Official Action of Nov. 22, 2005

from one of the decoders in the decoder pair to a specified In-point frame in the video output from the other of the decoders in the decoder pair by fetching MPEG-2 encoded data for the other of the decoders in the pair from the cached disk storage to buffer memory in the data mover computer in response to a request from the controller server.

- 72. (Previously presented) The apparatus as claimed in claim 70, wherein the decoders have sufficient buffer memory so that streaming of MPEG-2 encoded data from the data mover computer to said one of the decoders in the decoder pair is not overlapped with streaming of MPEG-2 encoded data from the data mover computer to the other of the decoders in the decoder pair.
- 73. (Previously presented) The apparatus as claimed in claim 70, wherein the data mover computer is programmed to begin fetching of the MPEG-2 encoded data from any I frame referenced by the In-point frame and preceding the In-point frame in decode order when the specified In-point frame is not an I-frame.
- 74. (Previously presented) The apparatus as claimed in claim 70, wherein each decoder is programmed to obtain MPEG-2 encoded data from the data mover computer by sending a request for data including a decoder data buffer free space value and an offset value indicating any MPEG-2 encoded data previously received from the data mover computer, and the data mover computer is programmed to respond to the

Reply to Official Action of Nov. 22, 2005

request by sending MPEG-2 encoded data sufficient to substantially fill the data buffer free space taking into consideration MPEG-2 encoded data previously sent but not yet

received by said each decoder when said each decoder sent the request for data.

75. (Previously presented) The apparatus as claimed in claim 70, wherein

each decoder is programmed to receive MPEG-2 encoded data from the data mover

computer by receiving data packets including a respective offset value indicating an

amount of data transmitted in at least one previous data packet to said each decoder, and

said each decoder is programmed to compute an expected offset value from the offset

value in a received data packet and to compare the expected offset value from an offset

value in a subsequently received data packet to recognize that at least one data packet has

been lost in transmission from the data mover computer to said each decoder.

76. (New) The method as claimed in claim 6, which includes the decoders

transmitting asynchronous status reports when decoding of a first clip has started and

when decoding of a second clip has ended.

77. (New) The method as claimed in claim 19, which includes the decoders

transmitting asynchronous status reports when decoding of a first clip has started and

when decoding of a second clip has ended.

22

Reply to Official Action of Nov. 22, 2005

78. (New) The apparatus as claimed in claim 56, wherein the video server and

the decoder pair are further programmed for the video server to receive asynchronous

status reports from the decoder pair when decoding of a first clip has started and when

decoding of a second clip has ended.

79. (New) The apparatus as claimed in claim 62, wherein the control commands

include asynchronous status report commands to enable the video server to receive

asynchronous status reports from the decoder pair when decoding of a first clip by the

decoder pair has started and when decoding of a second clip by the decoder pair has

ended.

80. (New) The apparatus as claimed in claim 70, wherein the control commands

include asynchronous status report commands to enable the video server to receive

asynchronous status reports from the decoder pair when decoding of a first clip by the

decoder pair has started and when decoding of a second clip by the decoder pair has

ended.

23