UNITS

This handbook uses the metric system of units. Ultimately, the FE examination will be entirely metric. However, currently some of the problems use both metric and U.S. Customary System (USCS). In the USCS system of units, both force and mass are called pounds. Therefore, one must distinguish the pound-force (lbf) from the pound-mass (lbm).

The pound-force is that force which accelerates one pound-mass at 32.174 ft/s². Thus, 1 lbf = 32.174 lbm-ft/s². The expression 32.174 lbm-ft/(lbf-s²) is designated as g_c and is used to resolve expressions involving both mass and force expressed as pounds. For instance, in writing Newton's second law, the equation would be written as $F = ma/g_c$, where F is in lbf, m in lbm, and a is in ft/s².

Similar expressions exist for other quantities. Kinetic Energy: $KE = mv^2/2g_c$, with KE in (ft-lbf); Potential Energy: $PE = mgh/g_c$, with PE in (ft-lbf); Fluid Pressure: $p = \rho gh/g_c$, with PE in (lbf/ft²); Specific Weight: $SW = \rho g/g_c$, in (lbf/ft³); Shear Stress: $\tau = (\mu/g_c)(dv/dy)$, with shear stress in (lbf/ft²). In all these examples, g_c should be regarded as a unit conversion factor. It is frequently not written explicitly in engineering equations. However, its use is required to produce a consistent set of units.

Note that the conversion factor g_c [lbm-ft/(lbf-s²)] should not be confused with the local acceleration of gravity g, which has different units (m/s²) and may be either its standard value (9.807 m/s²) or some other local value.

If the problem is presented in USCS units, it may be necessary to use the constant g_c in the equation to have a consistent set of units.

M	ETRIC PREFIXE	ES	COMMONLY USED EQUIVALENTS			
Multiple	Prefix	Symbol				
10^{-18}	atto	a	1 gallon of water weighs 8.34 lbf			
10^{-15}	femto	f	1 cubic foot of water weighs 62.4 lbf			
10^{-12}	pico	p	1 cubic inch of mercury weighs 0.491 lbf			
10 ⁻⁹	nano	n				
10 ⁻⁶	micro	μ	The mass of one cubic meter of water is 1,000 kilograms			
10^{-3}	milli	m				
10^{-2}	centi	c	TEMPERATURE CONVERSIONS			
10^{-1}	deci	d	$^{\circ}F = 1.8 (^{\circ}C) + 32$			
10 ¹	deka	da	$^{\circ}\text{C} = (^{\circ}\text{F} - 32)/1.8$			
10 ²	hecto	h	${}^{\circ}R = {}^{\circ}F + 459.69$ $K = {}^{\circ}C + 273.15$			
10^{3}	kilo	k				
10^{6}	mega	M				
10 ⁹	giga	G				
10 ¹²	tera	T				
10 ¹⁵	peta	P				
10 ¹⁸	exa	Е				

FUNDAMENTAL CONSTANTS

Quantity		Symbol	<u>Value</u>	<u>Units</u>
electron charge		e	1.6022×10^{-19}	C (coulombs)
Faraday constant		${\mathcal F}$	96,485	coulombs/(mol)
gas constant	metric	\overline{R}	8,314	$J/(kmol \cdot K)$
gas constant	metric	\overline{R}	8.314	$kPa \cdot m^3 / (kmol \cdot K)$
gas constant	USCS	\overline{R}	1,545	ft-lbf/(lb mole-°R)
		\overline{R}	0.08206	L-atm/mole-K
gravitation - newtonian constant		G	6.673×10^{-11}	$m^3/(kg\cdot s^2)$
gravitation - newtonian constant		G	6.673×10^{-11}	$N \cdot m^2 / kg^2$
gravity acceleration (standard) metric		g	9.807	m/s^2
gravity acceleration (standard)	USCS	g	32.174	ft/s^2
molar volume (ideal gas), $T = 273.15$ K, $p = 10$	1.3 kPa	V_{m}	22,414	L/kmol
speed of light in vacuum		c	299,792,000	m/s