Surface Tension Measurement and Adsorption Isotherm Determination Using the Drop Weight Method

Teng-Jui Lin
Department of Chemical Engineering, University of Washington
Surface and Colloid Science

Surface tension calculation from the drop weight method

• Tate (1864)

$$W=2\pi r\sigma$$

• Harkins and Brown (1919)

$$W=2\pi r\sigma f=rac{r\sigma}{F} \ F\equivrac{1}{2}\pi f$$

• Heertjes et al. (1971)

$$F = 0.14782 + 0.27896 \left(rac{r}{V^{1/3}}
ight) - 0.1662 \left(rac{r}{V^{1/3}}
ight)^2$$
 Constraint: $\left(rac{r}{V^{1/3}}
ight) \in (0.3, 1.2)$

Surface tension

$$\sigma = rac{V |
ho_2 -
ho_1 |gF}{r}$$

Szyszkowski equation describes surface tension of binary aqueous solutions

• Szyszkowski equation

$$\sigma = \sigma_0 - RTB \ln \left(1 + rac{m_2}{a}
ight)$$

Adsorption isotherm is modeled by Gibbs adsorption equation

Gibbs adsorption equation: ideal solution

$$\Gamma_{2,1}=-rac{x_2}{RT}rac{d\sigma}{dx_2}$$

Gibbs adsorption equation: ideal dilute solution

$$\Gamma_{2,1} = -rac{m_2}{RT}rac{d\sigma}{dm_2}$$

General Gibbs adsorption equation

$$\Gamma_{2,1} = -rac{m_2}{RT\left[1+rac{d\ln\gamma_2^H}{d\ln m_2}
ight]}rac{d\sigma}{dm_2}$$

Objective: Determining concentration dependence of surface tension

Surface tension of water and aqueous solutions

$$egin{aligned} \circ & \sigma = rac{mg}{r} F(r,V) \ \circ & F = 0.14782 + 0.27896 \left(rac{r}{V^{1/3}}
ight) - 0.1662 \left(rac{r}{V^{1/3}}
ight)^2 \end{aligned}$$

- Surface tension of aqueous n-butanol solution vs. concentration
 - \circ Determine Szyszkowski parameters a and B

$$\circ \ \sigma = \sigma_0 - RTB \ln \left(1 + rac{m_2}{a}
ight)$$

Objective: Constructing adsorption isotherms

- Relative adsorption of n-butanol at air-water interface vs. concentration (adsorption isotherm)
- Ideal dilute Gibbs adsorption equation

$$\Gamma_{2,1} = -rac{m_2}{RT}rac{d\sigma}{dm_2}$$

General Gibbs adsorption equation

$$\Gamma_{2,1} = -rac{m_2}{RT\left[1+rac{d\ln\gamma_2^H}{d\ln m_2}
ight]}rac{d\sigma}{dm_2}$$

Molality	Activity Coefficient
$m_{_2}$	${\boldsymbol{\gamma}}_2^{\rm H}$
0.003	0.9971
0.006	0.9942
0.010	0.9906
0.020	0.9823
0.030	0.9753
0.040	0.9691
0.050	0.9638
0.070	0.9546
0.100	0.9433
0.150	0.9276
0.200	0.9161
0.250	0.9058

Objective: Determining factors affecting surface tension

- Surface tension of water vs. nozzle size
- Surface tension of water vs. drop formation time
- Surface tension of 0.01 mM Triton X-100 surfactant solution vs. drop formation time
- Compare surface tension measured by various techniques
 - Drop weight, du Noüy ring, Wilhelmy slide, sessile/pendant drop