5 PLUS LOIN, PLUS FORT

- **Exercice 45** (Lemme de Cesàro, applications et compléments). Cet exercice s'inscrit dans la continuité de l'exercice 37.
 - 1. Utiliser le lemme de Cesàro pour calculer la limite de la suite de terme général

$$v_n := \sum_{k=1}^n \frac{1}{kn}.$$

2. Soit $(w_n)_{n\geqslant 0}$ une suite réelle telle que

$$w_{n+1} - w_n \xrightarrow[n \to +\infty]{} \ell \in \mathbb{R}.$$

Montrer que $\frac{w_n}{n} \xrightarrow[n \to +\infty]{} \ell$.

- 3. Montrer que le lemme de Cesàro est valable si $(u_n)_{n\in\mathbb{N}^*}$ tend vers $\pm\infty$.
- 4. Montrer que la réciproque du lemme de Cesàro est fausse en établissant que la suite divergente $(s_n)_{n\in\mathbb{N}^*} = \left((-1)^n\right)_{n\in\mathbb{N}^*}$ vérifie pourtant

$$\frac{1}{n} \sum_{k=1}^{n} s_k \xrightarrow[n \to +\infty]{} 0.$$

5. Montrer qu'en revanche, si $(u_n)_{n\in\mathbb{N}^*}$ est une suite réelle monotone telle que

$$\frac{1}{n} \sum_{k=1}^{n} u_k \xrightarrow[n \to +\infty]{} \ell$$

pour un certain $\ell \in \mathbb{R} \cup \{\pm \infty\}$, alors $u_n \xrightarrow[n \to +\infty]{} \ell$.

- **Exercice 46.** Montrer que si $(b_n)_{n\geqslant 0}$ est une suite réelle convergeant vers $b\in\mathbb{R}$ et si $a\in[0,1[$, alors toute suite $(u_n)_{n\geqslant 0}$ vérifiant la relation de récurrence $u_{n+1}=au_n+b_n$ converge vers $\frac{b}{1-a}$.
- **Exercice 47.** Soit A une partie de \mathbb{R} . On dit que A est $dense\ dans\ \mathbb{R}$ si pour tous $x, x' \in \mathbb{R}$ tels que x < x' il existe $y \in A$ tel que x < y < x'. Montrer que A est dense dans \mathbb{R} si et seulement si tout élément de \mathbb{R} est limite d'une suite d'éléments de A.

Exercice 48 (Caractérisation séquentielle de la borne supérieure).

Soit A une partie non vide et majorée de \mathbb{R} et soit $\ell \in \mathbb{R}$. Montrer que

$$\ell = \sup(A) \quad \Longleftrightarrow \quad \begin{cases} \forall x \in A, \ x \leqslant \ell \\ \exists (u_n)_{n \in \mathbb{N}} \in A^{\mathbb{N}} : u_n \xrightarrow[n \to +\infty]{} \ell, \end{cases}$$

où l'on rappelle que $A^{\mathbb{N}}$ est l'ensemble des suites réelles à valeurs dans A.

Exercice 49 (Méthode de Héron). Soit a > 0. On se propose dans cet exercice d'approcher le réel \sqrt{a} par la méthode de Héron. On choisit un point de départ $x \ge \sqrt{a}$ et on définit la suite $(u_n)_{n \in \mathbb{N}}$ par

$$u_0 = x$$
 et $\forall n \in \mathbb{N}$, $u_{n+1} = \frac{u_n + \frac{a}{u_n}}{2}$.

- 1. Montrer que $u_n \geqslant \sqrt{a}$ pour tout $n \in \mathbb{N}$.
- 2. Montrer que $(u_n)_{n\in\mathbb{N}}$ est décroissante.
- 3. Déduire que $(u_n)_{n\in\mathbb{N}}$ converge vers une limite $\ell\in\mathbb{R}_+$ et passer à la limite dans la relation de récurrence définissant la suite pour déterminer ℓ .
- 4. (a) Montrer que pour tout $n \in \mathbb{N}$,

$$0 \leqslant u_{n+1} - \sqrt{a} \leqslant \frac{(u_n - \sqrt{a})^2}{2\sqrt{a}}.$$

On dit que la vitesse de convergence de $(u_n)_{n\in\mathbb{N}}$ vers \sqrt{a} est quadratique.

- (b) Commenter ce terme et la rapidité de convergence de $(u_n)_{n\in\mathbb{N}}$ vers sa limite.
- (c) Montrer que pour tout $n \in \mathbb{N}$,

$$0 \leqslant u_n - \sqrt{a} \leqslant \frac{(u_0 - \sqrt{a})^{2^n}}{(2\sqrt{a})^{2^n - 1}}.$$

Dans son ouvrage Metrica (Les Métriques), Héron souhaite calculer la racine de a = 720, ce qui revient à calculer le côté d'un carré d'aire 720. Pour cela, il considère une suite de rectangles d'aire 720 « de plus en plus carrés », ce qui permet d'obtenir asymptotiquement un carré de côté $\sqrt{720}$. Héron remarque tout d'abord que 720 est proche de $729 = 27^2$. Il considère donc un rectangle de côtés $u_0 = 27$ et $\frac{720}{27}$, qu'il entreprend de rendre « plus carré » en considérant un nouveau rectangle dont la largeur u_1 est la moyenne arithmétique des deux côtés précédents, c'est-àdire $u_1 = \frac{u_0 + \frac{720}{u_0}}{2} = \frac{161}{6}$, et dont la longueur vaut $\frac{720}{u_1}$, et ainsi de suite. Cette méthode converge très vite : l'approximation de $\sqrt{720} = 26,8328...$ donnée par $u_1 = 26,8333...$ est déjà correcte jusqu'à la troisième décimale!

Exercice 50 (Méthode de Héron généralisée). Soient a > 0 et $N \ge 2$. On souhaite généraliser la méthode de Héron étudiée dans l'exercice précédent pour approcher $\sqrt[N]{a}$. On choisit $x \ge \sqrt[N]{a}$ et on définit la suite $(u_n)_{n \in \mathbb{N}}$ par

$$u_0 = x$$
 et $\forall n \in \mathbb{N}$, $u_{n+1} = \frac{(N-1)u_n + \frac{a}{u_n^{N-1}}}{N}$.

- 1. Montrer en utilisant la dérivation que $u_n \geqslant \sqrt[N]{a}$ pour tout $n \in \mathbb{N}$.
- 2. Montrer que $(u_n)_{n\in\mathbb{N}}$ est décroissante.
- 3. Déduire que $(u_n)_{n\in\mathbb{N}}$ converge vers une limite $\ell\in\mathbb{R}_+$ et passer à la limite dans la relation de récurrence définissant la suite pour déterminer ℓ .
- **Exercice 51.** On considère les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ définies par

$$u_0 = \frac{1}{4}$$
 et $v_0 = 2$ ainsi que : $\forall n \in \mathbb{N}$, $u_{n+1} = \frac{2}{u_n + v_n}$ et $v_{n+1} = \frac{u_n + v_n}{2}$.

- 1. Montrer que les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont bien définies et strictement positives.
- 2. Montrer que pour tout $n \in \mathbb{N}$ on a $u_n \leqslant 1 \leqslant v_n$ et $u_n + v_n \geqslant 2$.
- 3. Montrer que $(u_n)_{n\in\mathbb{N}}$ est croissante et que $(v_n)_{n\in\mathbb{N}}$ est décroissante.
- 4. En déduire que $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ admettent une limite.
- 5. Montrer que

$$\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} v_n = 1.$$

Exercice 52 (Méthode de dichotomie). On souhaite approcher $\sqrt{2}$ par une méthode de dichotomie. On remarque tout d'abord que $\sqrt{2}$ est l'unique racine sur \mathbb{R}_+ de la fonction polynomiale $f: x \mapsto x^2 - 2$, qui est à valeurs négatives sur $[0, \sqrt{2}]$ et positives sur $[\sqrt{2}, +\infty[$. On se donne ensuite un intervalle (éventuellement grossier) de \mathbb{R}_+ encadrant $\sqrt{2}$, puis à chaque étape on transforme l'une des deux bornes de l'intervalle en le point médian de l'intervalle précédent, de sorte que l'intervalle obtenu contienne toujours $\sqrt{2}$.

Formellement, on se donne $a, b \in \mathbb{R}_+$ tels que $a < \sqrt{2} < b$ puis on pose

$$u_0 = a, v_0 = b$$
 et $\forall n \in \mathbb{N}$,
$$\begin{cases} u_{n+1} = u_n & \text{et } v_{n+1} = \frac{u_n + v_n}{2} & \text{si } \left(\frac{u_n + v_n}{2}\right)^2 - 2 \geqslant 0 \\ u_{n+1} = \frac{u_n + v_n}{2} & \text{et } v_{n+1} = v_n & \text{si } \left(\frac{u_n + v_n}{2}\right)^2 - 2 < 0. \end{cases}$$

- 1. Représenter graphiquement les premiers termes des suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ lorsque a=1 et b=2.
- 2. Montrer que les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont adjacentes et que leur limite commune est $\sqrt{2}$.
- 3. Pour tout $n \in \mathbb{N}$, majorer l'erreur d'estimation $\max(|u_n \sqrt{2}|, |v_n \sqrt{2}|)$ de $\sqrt{2}$ après n itérations. Si a = 1 et b = 2, combien d'itérations faut-il pour être certain d'obtenir une estimation de $\sqrt{2}$ à 10^{-3} près?
- 4. Proposer une procédure d'estimation de $\sqrt[3]{5}$ et du nombre d'or $\varphi = \frac{1+\sqrt{5}}{2}$, dont on rappelle qu'il s'agit de l'unique solution positive de l'équation du second degré $x^2 = x + 1$.