Ultra-sensitive variant detection with improved accuracy using variational inference for heterogeneous next-generation sequencing data

Fan Zhang

Worcester Polythechnic Institute, MA fzhang@wpi.edu

Abstract

We propose a variational inference algorithm to estimate variant allele frequency (VAF) and identify single nucleotide variants in heterogeneous next-generation sequencing data. We demonstrate our variational algorithm with higher sensitivity and specificity than Markov Chain Monte Carlo (MCMC) sampling method on a synthetic data set, and more efficient at relative low median read depths of 10x and 100x. We apply our algorithm on a longitudinal anti-cancer drug resistance sequencing data set and identify XXX variants that XXX. We also show that our model with variational algorithm has an improved performance in XXX on a longitudinal clinical data set compared with the state of arts approaches.

1 Introduction

XXX

We show that we develop a variational expectation-maximization (EM) algorithm for our Bayesian statistical model to achieve sufficient accuracy and efficiency to identify variants in heterogeneous call samples. First, our variational EM algorithm is able to accurately approximate the posterior distribution of latent variables for a pair of samples-the sample of interest and a known reference sample. Then, a hypothesis test calls a variant by a significant difference between the key model parameters of this pair of samples. We

compare the performance of variational inference algorithm to MCMC sampling method and several other variant detection methods. Finally, we demonstrate our variational algorithm on a longitudinal time-series DNA sequencing data to quantify the degree to which the variant modulates resistance to anti-cancer drug.

2 Model Structure

Our Bayesian statistical model is shown as a graphical representation in Figure 1. r_{ji} is the number of reads with a non-reference base at location j in experimental replicate i. n_{ji} is the total number of reads at location j in experimental replicate i. The model generative process is as follows:

Figure 1: Graphical model representation of our Bayesian model. μ_0 , a global error rate; M_0 , a global precision; μ_j , a local error rate. M_j , a local precision. μ_0 , a global error rate to estimate the expected error rate across all locations. M_0 , a global precision, estimates the variation in the error rate across locations. The local error rate, μ_j , estimates the expected error rate across replicates at location j. The local precision, M_j , estimates the variation in the error rate across replicates at location j

- 1. For each location *j*:
 - (a) Draw an error rate $\mu_j \sim \text{Beta}(\mu_0, M_0)$
 - (b) For each replicate *i*:
 - i. Draw $\theta_{ii} \sim \text{Beta}(\mu_i, M_i)$
 - ii. Draw $r_{ji}|n_{ji} \sim \text{Binomial}(\theta_{ji}, n_{ji})$

3 Inference and Hypothesis Testing

3.1 Variational Expectation Maximization (EM) Inference

RVD3 improves RVD2 in the way of posterior distribution inference. We develop a non-conjugate variational inference algorithm to approximate the posterior distrubtion,

$$p(\mu, \theta | r, n; \phi) = \frac{p(\mu, \theta, r | n; \phi)}{p(r | n; \phi)}, \tag{1}$$

where the parameters are $\phi \triangleq \{\mu_0, M_0, M\}$.

Factorization

We propose the following factorized variational distribution to approximate the true posterior over latent variables μ_j and θ_{ij} . $q(\mu_j)$ approximates the variational posterior distribution of μ_j , which represents the local error rate distribution in position j across different replicates. $q(\theta_{ij})$ approximates the posterior distribution of θ_{ij} , which is the error rate distribution in position j replicate i.

$$q(\mu, \theta) = q(\mu)q(\theta) = \prod_{j=1}^{J} q(\mu_j) \prod_{i=1}^{N} q(\theta_{ji}).$$
 (2)

Evidence Lower Bound (ELBO)

The log-likelihood of the data is lower-bounded according to Jensen's inequality:

$$\log p(r|\phi) = \log \int_{\mu} \int_{\theta} p(r,\mu,\theta) \, d\theta d\mu$$

$$= \log \int_{\mu} \int_{\theta} p(r,\mu,\theta) \, \frac{q(\mu,\theta)}{q(\mu,\theta)} d\theta d\mu$$

$$\geq \int_{\mu} \int_{\theta} q(\mu,\theta) \log \frac{p(r,\mu,\theta)}{q(\mu,\theta)} d\theta d\mu$$

$$= E_{q} [\log p(r,\mu,\theta)] - E_{q} [\log q(\mu,\theta)]$$

$$\triangleq \mathcal{L}(q,\phi).$$
(3)

where $\phi = (\mu_0, M_0, M)$.

The item $\mathcal{L}(q,\phi)$ is the evidence of lower bound (ELBO) of the log-likelihood of the data, which is the sum of q-expected complete log-likelihood and the entropy of the variational distribution q. The goal of variational inference is maximizing the ELBO. Equivalently, q is chosen by minimizing the Kullback-Liebler (KL) divergence between the variational distribution and the true posterior distribution.

Variational Distributions

The posterior distribution of θ_{ij} is a Beta distribution,

$$p(\theta_{ji}|r_{ji}, n_{ji}, \mu_j, M_j) \tag{4}$$

$$\sim \text{Beta}(r_{ji} + M_j \mu_j, n_{ji} - r_{ji} + M_j (1 - \mu_j)).$$
 (5)

Therefore, we propose Beta distribution with parameter vector δ_{ji} as variational distribution,

$$\theta_{ii} \sim \text{Beta}(\delta_{ii})$$

The posterior distribution of μ_i is given by its Markov blanket

$$p(\mu_i|\theta_{ii}, M_i, \mu_0, M_0) \propto p(\mu_i|\mu_0, M_0)p(\theta_{ii}|\mu_i, M_i).$$
 (6)

This is not in the form of any known distribution. Therefore, we propose Beta distribution with parameter vector γ_{ji} as variational distribution to simplify the variational derivation.

$$\mu_j \sim \text{Beta}(\gamma_j)$$

Variational Expectation Maximization (EM) Algorithm

Variational EM maximizes the ELBO on the true likelihood, by alternating between maximization over q (E-step) and maximization over ϕ (M-step).

Algorithm 1 RVD3 Variational Inference

```
1: Initialize q(\theta, \mu) and \hat{\phi}
 2: repeat
 3:
            repeat
                  for j = 1 to J do
 4:
 5:
                       for i = 1 to N do
                             Optimize \mathcal{L}(q, \hat{\phi}) over q(\theta_{ii}; \delta_{ii})
      Beta(\delta_{ji})
                        end for
 7:
 8:
                  end for
 9:
                  for i = 1 to J do
                        Optimize \mathcal{L}(q, \hat{\phi}) over q(\mu_i; \gamma_i) = \text{Beta}(\gamma_i)
10:
11:
            until change in \mathcal{L}(q, \hat{\phi}) is small
12:
           Set \hat{\phi} \leftarrow \arg \max_{\phi} \mathcal{L}(q, \phi)
13:
14: until change in \mathcal{L}(q, \hat{\phi}) is small
```

4 Posterior Distribution Test

4.1 Z-test for Gaussian Distribution

Variational inference provides variational distributions for $q(\mu_j|r^{control})$ and $q(\mu_j|r^{case})$, which are approximated to the posterior distributions for $p(\mu_j|r^{control})$ and $p(\mu_j|r^{case})$. We use Z-test based on Gaussian distribution.

$$\mu_i^{\triangle} = \mu_i | r^{case} - \mu_i | r^{control} \tag{7}$$

$$\sigma_j^{\triangle} = \sqrt{var_q[\mu_j|r^{case}] + var_q[\mu_j|r^{control}]}$$
 (8)

$$Z_j = \frac{\tau - \mu_j^{\triangle}}{\sigma_j^{\triangle}} \tag{9}$$

$$Pr(Z_i) < \alpha$$
 (10)

where τ is a detection threshold and α is a significance level. Here we set $\tau=0$ and $\alpha=0.05$. μ_j^{case} and $\mu_j^{control}$ are means of distributions. $var_q[\mu_j|r^{case}]$ and $var_q[\mu_j|r^{control}]$ are variances of distributions. A position is called as a variant when the p-value is less than the significant level α .

 χ^2 goodness-of-fit test for non-uniform base distribution is also used to distinguish a scenario of a true variant from a scenario of a random seuqencing error [cite RVD2].

5 Data Sets

5.1 Synthetic DNA Sequence Data

XXX XXX XXX

5.2 Longitudinal Drug Resistance Data

XXX XXX XXX

6 Results

6.1 Performance on Synthetic DNA Data

We use posterior distribution test with and without χ^2 test to detect variants for a broad range of median read depths and different variant allele frequencies (VAFs).

Comparison of Sensitivity and Specificity

We compare the performance of variational algorithm and MCMC sampling method in the performance of sensitivity and specificity (Figure 2). For variational algorithm, ELBO is considered as converged when the increased ELBO percent is less than 0.1%. Variational algorithm with χ^2 test works best compared with MCMC in sensitivity and specificity.

			Sen	sitivity		Specificity				
VAF	Median Depth	мсмс			ational	MCMC		Variational		
		no x ²	x ²	no x^2	x^2	no x^2	x^2	no x^2	χ^2	
0.1%	39	0.43	0.00	1.00	0.00	0.63	1.00	0.01	1.00	
	408	0.00	0.00	0.36	0.07	0.96	1.00	0.74	1.00	
	4129	0.50	0.14	0.43	0.29	0.95	1.00	0.97	1.00	
	41449	0.79	0.86	0.64	1.00	0.92	0.97	1.00	1.00	
0.3%	36	0.21	0.00	1.00	0.00	0.70	1.00	0.01	1.00	
	410	0.29	0.00	0.57	0.00	0.91	1.00	0.78	1.00	
	4156	1.00	1.00	1.00	1.00	0.69	0.99	0.90	0.98	
	41472	1.00	1.00	0.93	0.93	0.28	0.85	0.89	0.91	
1.0%	53	0.29	0.00	0.14	0.00	0.65	1.00	0.98	1.00	
	535	0.86	0.21	0.86	0.29	0.89	1.00	0.80	1.00	
	5584	1.00	1.00	1.00	1.00	0.64	0.98	0.92	0.98	
	55489	1.00	1.00	0.93	0.93	0.23	0.87	0.94	0.95	
10.0%	22	1.00	0.00	0.93	0.57	0.55	1.00	1.00	1.00	
	260	1.00	1.00	1.00	1.00	0.16	1.00	0.99	1.00	
	2718	1.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	
	26959	1.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	
100.0%	27	1.00	1.00	1.00	1.00	0.97	1.00	0.98	1.00	
	298	1.00	1.00	1.00	1.00	0.72	1.00	0.99	1.00	
	3089	1.00	1.00	1.00	1.00	0.14	1.00	1.00	1.00	
	30590	1.00	1.00	1.00	1.00	0.03	1.00	0.99	1.00	

Figure 2: Sensitivity/Specificity comparison of variational algorithm with MCMC on the synthetic DNA data set.

Comparison of Approximated Posterior Distribution

We show the approximated posterior distribution of variational algorithm and exact samples of MCMC. A true variant position 85 of sample of VAF=1.0% is taken as an example. Variational and MCMC both identify this position at median read depth of 5584 (Figure 3). The specificity of variational is higher than MCMC at the highest median read depth when VAF is 0.1%, 0.3%, and 1.0%, which shows that MCMC

calls more false positive positions. Here we show the approximated distribution of a false positive position 144 identified by MCMC, while it is not identified by variational algorithm (Figure 4). It is noticeable that the shape of variational distributions using Beta distribution is very close to Gaussian distribution.

Figure 3: Approximated posterior distribution by variational algorithm and MCMC for position 85 when median read depth is 5584.

Figure 4: Approximated posterior distribution of position 144 when median read depth is 41449. This is a false positive position identified by MCMC, while variational algorithm does not identify this as a variant.

Comparison of Timing

Time for approximating variational posterior distribution is increased by increasing the length of region of interest and the median read depth (Figure 5). Variational algorithm works faster than MCMC at low read depths (27x and 298x), while MCMC works faster than variational algorithm at high read depths (3089x and 30590x).

Timing profile for each parts of variational algorithm is also given in Figure 6. Optimizing γ function in E-step and optimizing M in M-step takes most of the time because an integration is needed.

Computation	Region	Load	Initializa	Initialization E-step				M-step					Total
resource	length	depth	Parameters	ELBO	Optmize γ	Optimize δ	Update ELBO	Optimize μ_0	Optimize M_0	Optimize M	Update ELBO	model	time (s)
	100	0.023	0.001	10.522	617.705	4.232	10.415	0.264	0.159	332.898	10.293	0.025	986.537
single	200	0.059	0.001	20.961	1124.818	8.936	18.644	0.418	0.256	569.952	18.374	0.025	1762.444
processor	300	0.073	0.001	31.102	1728.444	13.265	27.807	0.445	0.400	851.467	27.650	0.025	2680.679
	400	0.127	0.001	42.727	2433.169	17.987	38.552	0.737	0.635	1176.250	38.171	0.034	3748.390
	100	0.026	0.001	11.535	29.939	0.247	11.674	0.307	0.189	19.561	11.979	0.025	85.483
60	200	0.036	0.001	24.184	44.697	0.417	22.139	0.523	0.304	24.036	22.235	0.026	138.598
processors	300	0.040	0.001	35.480	63.470	0.716	33.306	0.562	0.504	29.410	33.238	0.027	196.754
	400	0.058	0.001	46.325	94.660	0.727	42.783	0.820	0.706	35.742	44.283	0.027	266.132

Figure 6: Timing profile for one iteration of variational EM algorithm. Single and multiple processors are both tested for timing to estimate the model on the synthetic data set.

XXX

XXX

XXX

XXX

XXX

XXX XXX XXX XXX

XXX

XXX

Figure 5: Timing figure for variational algorithm and MCMC method. 60 processes are used to estimate the model on the synthetic data set.

6.2 Variants Detection on the Longitudinal Drug Resistance Data

Detected Drug Resistance Variants

6.3 Discussion

Acknowledgments

Funding:

References

Comparison to the State of Arts Approaches

XXX XXX XXX