ECE

MOBILE ROBOTICS

(CAMERA CALIBERATION ASSIGNMENT)

REPORT

- Read all the five images using, the function "detectCheckerboardPoints()" and commands like "imread()";
- This will read and put the detected points in array of size (48*2) for every image in imagepoints array in the code.
- Next generate the "World co-ordinates" using generateCheckerboardPoints(boardSize, squareSize); command.
 - We get a (48*2) array of world points.
- We take corners of board for every image and then, take world points and image points corresponding to those corners as X(),Y(), and x(),y() 's respectively.
- As a part of Zhang's method ,construct matrix "M"(here a for each image,from the definition given for Mp=0), perform SVD of it to obtain "h"(Homographies h1,h2,h3).
- Later, construct matrix "V"(6*1)(using linear combinations of elements of 'h' matrix from it's definition).
- Perform it's SVD and get matrix "B".Later apply Chol() on it to get inverse(K).
- Finally we obtain the camera calibration matrix "K".
- Obtaining R,t from "K":
 - Multiply inv(K) and H for each image to get 'R' corresponding to each rotation and 't'.(last column in obtained matrix after multiplication=t)
 - The third column of rotation matrix(R) can be found by taking sum of norms of columns 1,2.

The results obtained for selected 4 points i.e corners of the checker board in world coordinates and image co-ordinates are as follows,

hhhhhhhhhh -0.0010 0.0024 0.7770 -0.0023 -0.0013 0.6294 0.0000 -0.0000 0.0020 hhhhhhhhhhh 0.0021 -0.0001 0.4805 -0.0018 0.0013 0.8770 -0.0000 -0.0000 0.0029 hhhhhhhhhhhh 0.0006 0.0030 0.6252 -0.0029 -0.0012 0.7805 0.0000 -0.0000 0.0020

This gives the "H" matrices corresponding to 3 images used.(1,2,3)

The matrix "V" to be solved

1.0e-04 *

-0.0239	-0.0414	0.0000	0.0285	-0.0000	-0.0000
-0.0239	-0.0414	0.0000	0.0205	-0.0000	-0.0000
-0.0458	0.1053	-0.0000	0.0364	-0.0000	0.0000
-0.0031	0.0303	-0.0001	-0.0233	0.0000	0.0000
0.0449	-0.0723	-0.0001	0.0152	0.0001	-0.0000
0.0170	-0.0952	0.0001	0.0361	0.0000	-0.0000
-0.0897	0.0436	0.0001	0.0684	-0.0002	0.0000

The matrix B on which chol is to be applied

0.0000 0.0000 -0.0005 0.0000 0.0000 -0.0005 -0.0005 -0.0005 1.0000

These are intermediate matrices constructed "V" and "B" (matrix to solve for K).

The K matrix

Rotation matrices R1,2|t

-0.0000	0.0000	0.0005
-0.0000	0.0000	0.0005
-0.0000	-0.0000	0.0003
0.0000	-0.0000	0.0017
0.0000	0.0000	-0.0002
-0.0000	0.0000	0.0004
-0.0000	-0.0000	0.0025
-0.0000	0.0000	0.0003
-0.0000	-0.0000	0.0006
0.0000	-0.0000	0.0018

The obtained matrices "K" (camera calibration matrix), matrices corresponding to 3 images with first 2 columns of rotation matrix and their last column being 't'.

For different set of points taken, (other than corners of checker board),we get, (Set #2)

(1,5,43,48)

hhhhhhhhhhh	1				
-0.0010	0.0023	0.7770			
-0.0023	-0.0012	0.6294			
0.0000	-0.0000	0.0020			
hhhhhhhhhhh	n				
-0.0022	0.0001	-0.4805			
0.0018	-0.0013	-0.8770			
0.0000	0.0000	-0.0029			
hhhhhhhhhhh	ı				
0.0005	0.0030	0.6252			
-0.0029	-0.0012	0.7805			
0.0000	-0.0000	0.0020			
The matrix	"V" to be	solved			
1.0e-04	*				
-0.0242	-0.0410	0.0000	0.0285	-0.0000	-0.0000
-0.0445	0.1057	-0.0000	0.0370	-0.0000	0.0000
-0.0024	0.0310	-0.0001	-0.0238	0.0000	0.0000
0.0466	-0.0734	-0.0001	0.0131	0.0001	-0.0000
0.0163	-0.0941	0.0001	0.0361	0.0000	-0.0000
-0.0876	0.0434	0.0001	0.0688	-0.0002	0.0000

Set #3 (1,5,46,48)

	5					
	0.0024	0.7770				
	-0.0012	0.6294				
0.0000	0.0000	0.0020				
hhhhhhhhhhh						
0.0020	-0.0001	0.4805				
-0.0019	0.0013	0.8770				
-0.0000	-0.0000	0.0029				
hhhhhhhhhhh						
0.0004	0.0032	0.6252				
-0.0030	-0.0011	0.7805				
0.0000	-0.0000	0.0020				
The matrix	"V" to be s	olved				
1.0e-04	*					
-0.0251	-0.0442	0.0000	0.0277	-0.0000	0.0000	
-0.0490	0.1060	-0.0000	0.0393	-0.0000	0.0000	
-0.0025	0.0291	-0.0001	-0.0246	0.0000	0.0000	
0.0412	-0.0728	-0.0001	0.0177	0.0001	-0.0000	
0.0127	-0.1013	0.0001	0.0329	0.0000	-0.0000	
-0.1021	0.0466	0.0001	0.0788	-0.0002	0.0000	
The matrix	B on which	chol is t	to be app.	lied		
0.0000	0.0000	-0.0008				
0.0000	0.0000	-0.0007				
-0.0008	-0.0007	1.0000				
The K matri	x					
609.2821	-17.4664	355.2613				
0	636.2633	365.3505				
0	0	1.2997				
Rotation ma	trices Rl	,2 t				
-0.0000	0.0000					
-0.0000	-0.0000	0.0001				
0.0000	0.0000	0.0015				
0.0000	0.0000	-0.0005				
-0.0000	0.0000	0.0001				
-0.0000	-0.0000	0.0022				
-0.0000	0.0000	0.0001				
-0.0000	-0.0000	0.0001				
0.0000	-0.0000	0.0015				