LINEAR PROGRAMMING (optimization)

Simplex Method

objective function: hiner

$$x_1, x_2 \dots x_n : x_1 = \begin{cases} x_1 \\ x_2 \end{cases} \quad \text{min} \quad (c_1 x_1 + c_2 x_2 + \dots + c_n x_n + c_0)$$
 $c_1 = \begin{cases} c_1 \\ c_2 \end{cases} \quad (c_1 = c_2 \dots c_n) \begin{cases} x_1 \\ x_2 \\ \vdots \\ \vdots \\ x_n \end{cases}$

The such that or subject to x

LP - STANDARD FORMULATION

Objective function and constraints are linear:

LP PROBLEMS

- Blending
- Transportation
- Resource allocation
- Production planning

SIMPLE EXAMPLE

- Assume that to stay healthy you have to take 4 units of vitamin D per day
- There are two natural sources for vitamin D. In source I you get I unit of vitamin D per gram and in source 2 you get 2 units of vitamin D
- The cost of source I per gram is 2 cost units and source 2 per gram is 3 cost units
- The question is how many grams (x) of food source I and how many grams
 (y) of food source 2 should one consume every day to stay healthy?

$$\min_{x,y} 2x + 3y$$
s. $t. x + 2y \ge 4; x \ge 0; y \ge 0$

• The optimal solution is $x^* = 0$, $y^* = 2$

Actual mone x.

Sa 51 52 2+3=5 1+261=3 Maren / Cm ust I gm 2+2(1)=4. 2(2)+ 12 Actual bought 1+2.(2)=5 2+6=8 2. Wani 0+26): 4 23=6 optimal ~ @ Actual wat dr at lest lemits Is there a dut that gives x+ 27 722 vitanin Dutamen port pas pour net? 2x £3y. Ter Wite 2 x = 0 is optimul solution 274 34 min xedy >4 5 = 2 S. b., 7 >,0 430

optimal points can be only on AB (not interior) wst: 2x + 3y. Alon AB. (x+ 2)= 4) Replan x by 4-2y in A threamy (B-y) along AB. 2x +3y = 2 (4-2y)+ 17 por 186. x=0. Of & Timereon y, cost t. $3 \rightarrow F \rightarrow D - A$. ust J(8-y) J. Slop at A: At: y=2 y Defined solution J $y \uparrow$ ust \uparrow .

ANOTHER EXAMPLE

- Two products A and B are produced. A sells at Rs. 0.50/unit and B sells at Rs. 0.6/unit.
- Time in mins for processing per unit product in 3 stages blending, cooking and packing.

	Product	Blending	Cooking	Packing '
7:	A	1 *	5	3 ,
4	B.	2 •	4 •	1 ,

- Equipment availability: Blending: I4 hrs, Cooking: 40 hrs, Packaging: I5 hrs.

• Objective: Maximize profit mome: mx
$$0.5 \times + 0.692$$
 min $-0.5 \times - 0.692$.

Blendry time: $\left(x + 2x_2\right) = \left(\frac{111}{112}\right) = 3x + x_2 \leq 900$

when time $5x_1 + 4x_2 \leq 40 \times 60$

LP FORMULATION

- met income
- Objective Min -0.5x₁ 0.6x₂ (maximize profit)
- Constraints on availability of equipment:

$$x_1 + 2x_2 \le 840$$
 (blending)
 $5x_1 + 4x_2 \le 2400$ (cooking)
 $3x_1 + x_2 \le 900$ (packing)

Non-negativity constraints

$$x_1, x_2 \geq 0$$

Slack/Surplus Variables

Convert constraints to equalities by adding slack/surplus variables

$$x_1 + 2x_2 + s_1 = 840$$
 (blending)
 $5x_1 + 4x_2 + s_2 = 2400$ (cooking)
 $3x_1 + x_2 + s_3 = 900$ (packing)

 $\mathbf{A} = \begin{bmatrix} 1 & 2 & 1 & 0 & 0 \\ 5 & 4 & 0 & 1 & 0 \\ 3 & 1 & 0 & 0 & 1 \end{bmatrix}$

Non-negativity constraints

$$x_1, x_2, s_1, s_2, s_3 \ge 0$$

GRAPHICAL REPRESENTATION

LP - OVERVIEW

• n = 5 variables, m = 3 constraints (in the equality form after

adding slack/surplus)

Optimum solution is at some vertex

• Vertex: Intersection of constraints.

• Number of zero variables at a vertex • • • \bullet = n-m = 2 called as non-basic variables

- The other variables are solved using the constraints
- This solution is called a basic solution and if it is feasible it is called the basic feasible solution
- Optimum is at a feasible vertex

LP - OVERVIEW

- Geometrically
 - Basic feasible solutions are the vertices
- Fundamental concept in Linear Programming
 - If there exists a feasible solution then there exists a basic feasible solution
 If there exists a optimal solution then there exists a basic optimal solution
- As a result the optimum solution can be obtained by just searching the vertices
- Simplex algorithm jumps from one vertex to another through an algebraic procedure

SIMPLEX - OVERVIEW

- Simplex starts with a basic feasible solution
- We will start the explanation of simplex assuming that we have an initial basic feasible solution
- This is called the phase 2 of simplex
- An initial basic feasible solution itself will be generated as a simplex problem
- This is called phase I of simplex

SIMPLEX - OVERVIEW

- Remember, basic feasible solutions are the vertices
- Simplex moves from one basic feasible solution to another as long as improvement to the objective function can be made
- The procedure terminates if
 - No further improvement can be made
 - Cost function can be improved without any bound

LP – PHASE 2

- Start with a feasible vertex : n-m variables as non-basic ($\mathbf{x}_N = x1, x2$) and others basic ($\mathbf{x}_B = s1, s2, s3$)
- x1 = x2 = 0

LP – BASIC FEASIBLE SOLUTION

- Columns of $\bf A$ corresponding to $\bf x_B$ denoted as $m \times m$ matrix $\bf B$ (basis matrix) and the columns corresponding to $\bf x_N$ denoted as $m \times (n-m)$ matrix $\bf N$
- Solution for \mathbf{x}_B : $\mathbf{B}\mathbf{x}_B = \mathbf{b}$; $\mathbf{x}_B = \mathbf{B}^{-1}\mathbf{b} = \mathbf{b}$

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 1 & 0 & 0 \\ 5 & 4 & 0 & 1 & 0 \\ 3 & 1 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x_N} \\ \mathbf{x_B} \end{bmatrix} = \begin{bmatrix} 800 \\ 2400 \\ 900 \end{bmatrix} \Rightarrow \mathbf{s_1} = 800, \mathbf{s_2} = 2400, \mathbf{s_3} = 900$$

• Objective function $\mathbf{c}^{\mathsf{T}}\mathbf{x} = \mathbf{c}_{\mathsf{B}}^{\mathsf{T}}\mathbf{x}_{\mathsf{B}} + \mathbf{c}_{\mathsf{N}}^{\mathsf{T}}\mathbf{x}_{\mathsf{N}} = 0$

LP – FEASIBLE SEARCH DIRECTION

• Choose a non-basic variable and increase it to θ . => Travel along edge of the polyhedron (simplex)

LP – EFFECT OF ENETERING VARIABLE ON BASIC SOLUTION

- xI > 0 travel along x-axis
- Examine how entering variable x_1 affects the basic solution

Column corresponding to x₁

$$Bx_{B}^{new} + \theta a_{1} = b$$

$$x_{B}^{new} = x_{B}^{old} - \theta B^{-1} a_{1}$$

$$\begin{bmatrix} s_1^{\text{new}} \\ s_2^{\text{new}} \\ s_3^{\text{new}} \end{bmatrix} = \begin{bmatrix} 800 \\ 2400 \\ 900 \end{bmatrix} - \theta \begin{bmatrix} 1 \\ 5 \\ 3 \end{bmatrix}$$

LP – CHOOSING ENTERING VARIABLE

Examine how entering variable affects the objective function

$$c_{B}^{T}x_{B}^{new} + \theta c_{1} = c_{B}^{T}x_{B}^{old} + \theta(c_{1} - c_{B}^{T}B^{-1}a_{1})$$

$$f^{new} = f^{old} + \theta d_{1}$$

$$d_{1} \text{ (reduced cost of } x_{1})$$

- If d₁ is negative then objective function decreases
- Compute d_j for all non-basic variables and chose a variable which has most negative d_j as entering variable (denoted as x_p)
- If all d_i 's are positive \Rightarrow OPTIMUM SOLUTION FOUND

LP – CHOOSING LEAVING VARIABLE

• Examine how entering variable x_p affects the basic solution

Column corresponding to x_p $Bx_B^{new} + \theta a_p^{new} = b$ $x_B^{new} = x_B^{old} - \theta B^{-1} a_p$ $\begin{bmatrix} s_1^{new} \\ s_2^{new} \\ s_3^{new} \end{bmatrix} = \begin{bmatrix} 800 \\ 2400 \\ 900 \end{bmatrix} - \theta \begin{bmatrix} 1 \\ 5 \\ 3 \end{bmatrix}$

- ullet As ullet increases some basic variables may decrease
- Maximum value of θ is when one of the basic variable becomes zero first (minimum ratio test). In above case s_3 corresponding to vertex h.
- If all basic variables increase then SOLUTION UNBOUNDED

LP – CHANGING BASIS

- Leaving variable denoted as x_q
- Replace column of x_q in B with column a_p

Column of x_q replaced corresponding to x_p

$$B^{\text{new}} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 5 \\ 0 & 0 & 3 \end{bmatrix}$$

New basis còrresponds to vertex h

ITERATION

- Drop x_q from basic set and replace it with x_p
- Update Basis matrix and basic feasible solution
- Iterate. Algorithm will converge (either OPTMIMUM or UNBOUNDED)

LP - PHASE I

- Find a feasible vertex solution
- Many approaches are possible
- One approach is to modify problem with more variables so that an obvious feasible solution is identified
- Solve a LP with a different objective function (artificial objective function)
- The solution to this problem will provide a basic feasible solution for the original problem or determine if the problem is infeasible

Sensitivity Analysis

• Is the optimal solution sensitive to changes in objective function and the right hand side of the constraints?

 Good to identify the robustness of the solutions to fluctuations in data

Sensitivity to cost coefficients

- Bounds on cost coefficients
 - The optimal solution will remain unchanged as long as
 - None of the reduced costs for the non-basic variables in the optimal solution become negative for a change in the original cost coefficient
 - The value of the objective function will change if the coefficient multiplies a variable whose value is nonzero.

Sensitivity Analysis for b

- Any change to the value of b for a constraint with zero slack or surplus (s_i) active constraint will change the optimal solution.
- Any change to the value of b for an inactive constraint that is less than its slack or surplus (s_i), will cause no change in the optimal solution.