

GRUP A - Sessió 09-10

Tema 2. Àlgebra booleana i portes lògiques (II)

EXERCICI 1 (20 minuts)

Expressar aquestes funcions mitjançant:

- (1) La taula de veritat.
- (2) Diagrama de portes lògiques (poden ser de 1, 2 i 3 entrades).

1. Funció:
$$q = \overline{(ab + c)} x \bar{d}$$

2. Funció:
$$q = \overline{(a+b)} \oplus \overline{c} \oplus d$$

SOLUCIÓ

Exercici

1. Partint de la següent funció: $q = \overline{(ab+c)} \cdot \overline{d}$

Taula de veritat

\boldsymbol{a}	\boldsymbol{b}	C	d	q
0	0	0	0	
0	0	0	1	1 0
0	0	1	0	0
0	0	1		0
0	1	0	1 0	1
0	1	0		0
0	1	1	1 0	0
0	1	1	1	0
1	0	0	0	1
1	0	0	1	0
1	0	1	1 0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

Diagrama de portes lògiques

Exercici

2. Partint de la següent funció: $q = \overline{(a+b)} \oplus \overline{c} \oplus d$

Taula de veritat

a	b	С	d	$\overline{(a+b)}$	С	d	q
0	0	0	0	1	0	0	0
0	0	0	1	1	0	1	1
0	0	1	0	1	1	0	1
0	0	1	1	1	1	1	0
0	1	0	0	0	0	0	1
0	1	0	1	0	0	1	0
0	1	1	0	0	1	0	0
0	1	1	1	0	1	1	1
1	0	0	0	0	0	0	1
1	0	0	1	0	0	1	0
1	0	1	0	0	1	0	0
1	0	1	1	0	1	1	1
1	1	0	0	0	0	0	1
1	1	0	1	0	0	1	0
1	1	1	0	0	1	0	0
1	1	1	1	0	1	1	1

6	Inputs	outputs	
w	Х	Υ	Q = A⊕B⊕C
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

- 2.1. Algebra de Boole (4 POSTULATS)
- 2.2. Funcions booleanes
- 2.3. Operacions booleanes (portes lògiques)
- 2.4. Formes canòniques
- 2.5. Teoremes booleans

2.2. Funcions booleanes

Expressions algebraiques

Expressió algebraica canònica (2.4)

- Dos tipus:
 - Suma de conjunts de termes (SUMA de MINTERMS)
 - 2) Producte de conjunts de termes (PRODUCTE DE MAXTERMS)

Expressió algebraica simplificada

 Expressió en la que és impossible obtenir una altra expressió amb menys termes

2.2. Funcions booleanes

Expressions algebraiques

Expressió algebraica canònica (2.4)

- Dos tipus:
 - 1) Suma de conjunts de termes (SUMA de MINTERMS)
 - 2) Producte de conjunts de termes (PRODUCTE DE MAXTERMS)

Funció
$$\rightarrow$$
 q = a + b x \bar{c}

Taula de la veritat →

Exemple per 3 variables d'entrada

а	b	C	q
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

MAXTERMS

= Combinacions que faran que la sortida sigui **'0'**

M1NTERMS

= Combinacions que faran que la sortida sigui **'1'**

2.2. Funcions booleanes

Expressions algebraiques

Expressió algebraica canònica (2.4)

- Dos tipus:
 - Suma de conjunts de termes (SUMA de MINTERMS)
 - 2) Producte de conjunts de termes (PRODUCTE DE MAXTERMS)

Funció
$$\rightarrow$$
 q = a + b x \bar{c}

Taula de la veritat →

Exemple per 3 variables d'entrada

a	b	С	q
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

MAXTERMS

= Combinacions que faran que la sortida sigui **'0'**

2.2. Funcions booleanes

Expressions algebraiques

Expressió algebraica canònica (2.4)

- Dos tipus:
 - Suma de conjunts de termes (SUMA de MINTERMS)
 - 2) Producte de conjunts de termes (PRODUCTE DE MAXTERMS)

Funció
$$\rightarrow$$
 q = a + b x \bar{c}

Taula de la veritat →

3 variables d'entrada

a	b	C	<u>q</u>
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0 M1NTERMS
1	0	0	1 = Combinacions
1	0	1	
1	1	0	que faran que la
1	1	1	sortida sigui '1'

Tema 2. Àlgebra booleana i portes lògiques

2.4. Formes canòniques

(Expressió algebraica canònica)

 SUMA DE "M1NTERMS": suma de conjunts de termes en els quals en cada terme apareixen totes les variables d'entrada operades per producte:

$$\mathbf{q} = \mathbf{a} + \mathbf{b} \times \overline{\mathbf{c}} = (\overline{a} \times \mathbf{b} \times \overline{c}) + (\mathbf{a} \times \overline{b} \times \overline{c}) + (\mathbf{a} \times \overline{b} \times c) + (\mathbf{a} \times \mathbf{b} \times \overline{c}) + (\mathbf{b} \times \mathbf{b} \times$$

Per "N" variables d'entrada, tenim 2^N possibles Minterms.

Per tant, no són Minterm expressions del tipus:

$$\overline{(a \times b \times c)}$$
, o $(a \times \overline{b \times c})$,...

• **PRODUCTE DE "MAXTERMS": producte de conjunts de termes** on cada terme apareixen **totes les variables d'entrada** operades com a sumes i negades:

$$\mathbf{q} = \mathbf{a} + \mathbf{b} \times \overline{c} = (\mathbf{a} + \mathbf{b} + \mathbf{c}) \times (\mathbf{a} + \mathbf{b} + \overline{c}) \times (\mathbf{a} + \overline{b} + \overline{c})$$

Formes canòniques permeten un millor anàlisi per a la simplificació de les funcions. Això és de gran importància per a la minimització de circuits digitals.

SUMA DE "M1NTERMS" vs PRODUCTE DE "MAXTERMS":

Exemple per d'entrada

MINTERMS

a	b	C		q
0	0	0	$(\bar{a} \times \bar{b} \times \bar{c})$	0
0	0	1	$(\bar{a} \times \bar{b} \times c)$	0
0	1	0	$(\bar{a} \times b \times \bar{c})$	1
0	1	1	$(\bar{a} \times \bar{b} \times c)$	0
1	0	0	$(a \times \overline{b} \times \overline{c})$	1
1	0	1	$(a \times \overline{b} \times c)$	1
1	1	0	$(a \times b \times \overline{c})$	1
1	1	1	$(a \times b \times c)$	1

MAXTERMS

$$(a+b+c)$$

$$(a+b+\bar{c})$$

$$(a+\bar{b}+c)$$

$$(a+\bar{b}+c)$$

$$(\bar{a}+\bar{b}+\bar{c})$$

$$(\bar{a}+b+\bar{c})$$

$$(\bar{a}+\bar{b}+c)$$

$$(\bar{a}+\bar{b}+c)$$

$$(\bar{a}+\bar{b}+c)$$

$$q = a + b \times \overline{c} = (\overline{a} \times b \times \overline{c}) + (a \times \overline{b} \times \overline{c}) + (a \times \overline{b} \times c) + (a \times b \times \overline{c}) + (a \times b \times \overline{c}) + (a \times b \times \overline{c})$$

EQUIVALENTS!!!

Com obtenir les formes canòniques de MINTERMS i MAXTERM?

Exemple (2.6):
$$q(a,b,c) = \overline{(a \cdot \overline{b} + c)}$$

Expressió algebraica (no canònica)

> Expressió algebraica canònica

Mètode 1: TAULA DE LA VERITAT (expressions simples amb poques variables)

PAS 1: Avaluar la funció per determinar les combinacions per a les que la funció val 1 o bé $0 \rightarrow$ **MINTERMS** o **MAXTERM** corresponents.

Pas 2: determinar el valor de cada sortida.

Pas 3: determinar què és MINTERMS o MAXTERM en funció del valor de la sortida.

a	\boldsymbol{b}	C	q			$(\bar{a} \times \bar{b} \times \bar{c}) +$
0	0	0	1	$(a \wedge b \wedge c)$		$(\bar{a} \times b \times \bar{c}) +$
0	0	1	0	$(\alpha + b + c)$		$(a \times b \times \overline{c}) =$
0	1	0	1	$(\bar{a} \times b \times \bar{c})$ N	MINTERM	$(a + b + \overline{c}) x$
0	1	1	0	$(a+\bar{b}+\bar{c})$	//AXTERM	
1	0	0	0	(4 1 5 1 6)		$(a + \overline{b} + \overline{c}) x$
1	0	1	0	$\overline{(\bar{a}+b+\bar{c})}$	MAXTERM	$(\bar{a} + b + c) x$
1	1	0	1	$(a \times b \times \bar{c})$	MINTERM	$(\bar{a} + b + \bar{c}) x$
1	1	1	0	$\overline{(\bar{a}+\bar{b}+\bar{c})}$	JAXTERM	$(\overline{a} + \overline{b} + \overline{c})$
	a 0 0 0 0 1 1 1	$\begin{array}{c cccc} a & b & \\ \hline 0 & 0 & \\ \hline 0 & 0 & \\ \hline 0 & 1 & \\ \hline 0 & 1 & \\ \hline 1 & 0 & \\ \hline 1 & 1 & \\ \hline 1 & 1 & \\ \hline \end{array}$			$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Mètode 2: PROCESSOS ALGEBRAICS

- Desenvolupant la funció original fins a obtenir la forma canònica desitjada.
- Caldrà fer un procés de "manipulació algebraic" de la funció original:
 - → TRANSFORMACIONS
- Els passos seran diferents per obtenir els MINTERMS o els MAXTERMS.

Pel cas de la SUMA de "M1NTERMS"

- Desenvolupar la funció fins obtenir una suma de termes que incloguin productes de variables → (...) + (...) + (...)
- 2. Els termes trobats que no siguin MINTERMS es converteixen fins a completar l'aparició de totes les variables d'entrada. Per mantenir inalterat el valor de la funció haurem d'afegir la suma de cada variable i la variable complementada:

Exemple:
$$q(a, b, c) = (a) + (b \times \overline{c}) = (a \times (b + \overline{b}) \times (c + \overline{c})) + ((a + \overline{a}) \times b \times \overline{c})$$

El seu valor sempre serà 1 i no altera el producte \rightarrow **POSTULAT 4**.

1. Expandir l'expressió i eliminar els MINTERMS repetits.

Pel cas de PRODUCTE de MAXTERMS

- 1. Desenvolupem la funció fins a obtenir un producte de termes que incloguin sumes de variables \rightarrow (...) x (...) x (...)
- 2. Els termes que no siguin MAXTERMS es converteixen incloent les variables que falten fins a completar l'aparició de totes les variables d'entrada. Per mantenir inalterat el valor de la funció haurem d'afegir el producte de cada variable i la variable complementada.

Exemple:
$$q(a, b, c) = (a + b) x (a + \overline{c}) = (a + b + (c x \overline{c})) x (a + (b x b) + \overline{c})$$

El seu valor sempre serà 0 i no altera la suma.

1. Expandir l'expressió i eliminar els MAXTERMS repetits.

A part dels 4 POSTULATS, haurem d'aplicar TEOREMES de la Àlgebra de Boole. (els veurem més endavant)

Exemple: Buscar els MAXTERMS i MINTERMS per la funció: $q(a, b, c) = a + b \times \overline{c}$

Obtenció dels MINTERMS

1. PAS 1: Obtenir una expressió que sigui una suma de termes:

$$q(a, b, c) = a + b \times \overline{c} = (a) + (b \times \overline{c})$$

2. PAS 2: Per a cada terme incloure les variables d'entrada que faltin com a productes, fent ús del *postulat 4*:

$$q(a, b, c) = (a \times (b + \overline{b}) \times (c + \overline{c})) + ((a + \overline{a}) \times b \times \overline{c})$$

3. PAS 3: Desenvolupem les expressions + eliminar les repetides

$$\mathbf{q(a,b,c)} = (a \times b \times c) + (a \times \overline{b} \times c) + (a \times b \times \overline{c}) + (a \times \overline{b} \times \overline{c}) + (a \times \overline{b} \times \overline{c}) + (a \times b \times \overline{c}) + (a \times \overline{b} \times \overline{c}) + (a \times$$

$$\mathbf{q(a,b,c)} = (a \times b \times c) + (a \times \overline{b} \times c) + (a \times b \times \overline{c}) + (a \times \overline{b} \times \overline{c}) + (\overline{a} \times b \times \overline{c})$$

Exemple: Buscar els MAXTERMS i MINTERMS per la funció: $q(a, b, c) = a + b \times \overline{c}$

Obtenció dels MAXTERMS

1. PAS 1: Obtenir una expressió que sigui producte de termes:

(a, b, c) = a + b x
$$\overline{c}$$
 (hauré d'aplicar postulats)

$$\rightarrow$$
 Propietat distributiva de l'àlgebra de Boole \rightarrow a + (b x c) = (a + b) x (a + c)

$$q(a, b, c) = a + b \times \overline{c} = (a + b) \times (a + \overline{c})$$

Postulat 3. Operacions distributives

$$a \times (b + c) = (a \times b) + (a \times c)$$

$$a + (b \times c) = (a + b) \times (a + c) \leftarrow$$

Exemple: Buscar els MAXTERMS i MINTERMS per la funció: $q(a, b, c) = a + b \times \overline{c}$

Obtenció dels MAXTERMS

1. PAS 1: Obtenir una expressió que sigui producte de termes:

(a, b, c) = a + b x
$$\overline{c}$$
 (hauré d'aplicar postulats)

- \rightarrow Propietat distributiva de l'àlgebra de Boole \rightarrow a + (b x c) = (a + b) x (a + c) q(a, b, c) = a + b x \overline{c} = (a + b) x (a + \overline{c})
- 2. PAS 2: Per a cada terme incloure les variables d'entrada que faltin sumades, fen ús de *postulat 4*:

$$q(a, b, c) = (a + b + (c \times \overline{c})) \times (a + (b \times \overline{b}) + \overline{c})$$

3. PAS 3: Desenvolupem les expressions + eliminar les repetides

$$\mathbf{q(a,b,c)} = (\mathbf{a} + \mathbf{b} + \mathbf{c}) \times (\mathbf{a} + \mathbf{b} + \overline{\mathbf{c}}) \times (\mathbf{a} + \overline{\mathbf{b}} + \overline{\mathbf{c}}) \times (\mathbf{a} + \overline{\mathbf{b}} + \overline{\mathbf{c}}) = (\mathbf{a} + \mathbf{b} + \mathbf{c}) \times (\mathbf{a} + \mathbf{b} + \overline{\mathbf{c}}) \times (\mathbf{a} + \overline{\mathbf{b}} + \overline{\mathbf{c}})$$

EXERCICI 2 (20 minuts)

Donada la funció: $q(a, b, c) = (a + \overline{c}) \times b + \overline{a} \times c$

Es demana arribar a les formes canòniques:

- 1. Pel mètode 1: Avaluar la funció original per a cada possible combinació, trobant els MINTERMS associats a cada combinació (taula de la veritat).
- 2. Pel mètode 2: Realitzant transformacions algebraiques de la funció per arribar tant a la forma canònica de MINTERMS.

SOLUCIÓ

Exercici: Donada la funció: $q(a, b, c) = (a + \overline{c}) \times b + \overline{a} \times c$

MÈTODE 1:

<u>#</u>	a b c	q	MINTERMS	MAXTERMS
0	000	0	$(\bar{a} \times \bar{b} \times \bar{c})$	(a + b + c)
1	001	1	$(\bar{a} \times \bar{b} \times c)$	(a + b + c)
2	010	1	$(\bar{a} \times b \times \bar{c})$	(a + b + c)
3	011	1	$(\bar{a} \times b \times c)$	(a + b + c)
4	100	0	$(a \times \overline{b} \times \overline{c})$	$(\bar{a} + b + c)$
5	101	0	$(a \times \overline{b} \times c)$	$(\bar{a} + b + \bar{c})$
6	110	1	(a x b x \bar{c})	(a + b + c)
7	111	1	(a x b x c)	$(\overline{a} + \overline{b} + \overline{c})$

MINTERMS =
$$(\bar{a} \times \bar{b} \times c) + (\bar{a} \times b \times \bar{c}) + (\bar{a} \times b \times c) + (a \times b \times \bar{c}) + (a \times b \times c)$$

MAXTERMS =
$$(a + b + c) \times (\bar{a} + b + c) \times (\bar{a} + b + \bar{c})$$

Exercici: Donada la funció: $q(a, b, c) = (a + \overline{c}) \times b + \overline{a} \times c$

MÈTODE 1:

<u>a b c</u>	q	MINTERMS	MAXTERMS
000	0	$(\bar{a} \times \bar{b} \times \bar{c})$	(a + b + c)
001	1	$(\bar{a} \times \bar{b} \times c)$	(a + b + c)
010	1	$(\bar{a} \times b \times \bar{c})$	(a + b + c)
011	1	$(\bar{a} \times b \times c)$	(a+b+c)
100	0	$(a \times \overline{b} \times \overline{c})$	$(\overline{a} + b + c)$
101	0	$(a \times \overline{b} \times c)$	$(\bar{a} + b + \bar{c})$
110	1	(a x b x \bar{c})	(a + b + c)
111	1	(a x b x c)	$(\bar{a} + \bar{b} + \bar{c})$

MINTERMS =
$$(\bar{a} \times \bar{b} \times c) + (\bar{a} \times b \times \bar{c}) + (\bar{a} \times b \times c) + (a \times b \times \bar{c}) + (a \times b \times c)$$

MAXTERMS =
$$(a + b + c) \times (\overline{a} + b + c) \times (\overline{a} + b + \overline{c})$$

MÈTODE 2: MINTERMS

$$q(a, b, c) =$$
 $(a + \overline{c}) \times b + \overline{a} \times c$

 Amb MINTERMS no vull tenir multiplicacions a fora dels parèntesis, per tant, els haig de transformar en sumes

Postulat 3. Operacions distributives

$$a + (b \times c) = (a + b) \times (a + c)$$

Postulat 4. Complementada o inversa

$$a + \overline{a} = 1$$

$$a \times \overline{a} = 0$$

Exercici: Donada la funció: $q(a, b, c) = (a + \overline{c}) \times b + \overline{a} \times c$

MÈTODE 1:

<u>a b c</u>	q	MINTERMS	MAXTERMS
000	0	$(\bar{a} \times \bar{b} \times \bar{c})$	(a + b + c)
001	1	$(\overline{a} \times \overline{b} \times c)$	(a + b + c)
010	1	$(\bar{a} \times b \times \bar{c})$	(a + b + c)
011	1	$(\bar{a} \times b \times c)$	(a + b + c)
100	0	$(a \times \overline{b} \times \overline{c})$	$(\bar{a} + b + c)$
101	0	$(a \times \overline{b} \times c)$	$(\bar{a} + b + \bar{c})$
110	1	(a x b x \bar{c})	(a + b + c)
111	1	(a x b x c)	$(\bar{a} + \bar{b} + \bar{c})$

MINTERMS =
$$(\bar{a} \times \bar{b} \times c) + (\bar{a} \times b \times \bar{c}) + (\bar{a} \times b \times c) + (a \times b \times \bar{c}) + (a \times b \times c)$$

MAXTERMS =
$$(a + b + c) \times (\bar{a} + b + c) \times (\bar{a} + b + \bar{c})$$

MÈTODE 2: MINTERMS

q(a, b, c) =
(a +
$$\bar{c}$$
) x b + \bar{a} x c =
(a x b) + (\bar{c} x b) + (\bar{a} x c)

Postulat 3. Operacions distributives

$$a \times (b + c) = (a \times b) + (a \times c)$$

 $a + (b \times c) = (a + b) \times (a + c)$

Postulat 4. Complementada o inversa

$$a + \overline{a} = 1$$

$$a \times \overline{a} = 0$$

Exercici: Donada la funció: $q(a, b, c) = (a + \overline{c}) \times b + \overline{a} \times c$

MÈTODE 1:

<u>a b c</u>	q	MINTERMS	MAXTERMS	
000	0	$(\bar{a} \times \bar{b} \times \bar{c})$	(a + b + c)	MINTERMS = $(\bar{a} \times \bar{b} \times c) + (\bar{a} \times b \times \bar{c}) +$
001	1	$(\bar{a} \times \bar{b} \times c)$	(a + b + c)	$(\bar{a} \times b \times c) + (a \times b \times \bar{c}) + (a \times b \times c)$
010	1	$(\bar{a} \times b \times \bar{c})$	(a + b + c)	
011	1	$(\bar{a} \times b \times c)$	(a + b + c)	MAXTERMS = $(a + b + c) \times (\overline{a} + b + c) \times$
100	0	$(a \times \overline{b} \times \overline{c})$	$(\bar{a} + b + c)$	$(\bar{a} + b + \bar{c})$
101	0	$(a \times \overline{b} \times c)$	$(\bar{a} + b + \bar{c})$	
110	1	(a x b x \bar{c})	(a + b + c)	
111	1	(a x b x c)	$(\overline{a} + \overline{b} + \overline{c})$	

MÈTODE 2: MINTERMS

q(a, b, c) =
(a +
$$\bar{c}$$
) x b + \bar{a} x c =
(a x b) + (\bar{c} x b) + (\bar{a} x c) =
(a x b x (c+ \bar{c})) + ((a+ \bar{a}) x b x \bar{c}) + (\bar{a} x (b+ \bar{b}) x c)

Afegim les variables que falten a cada terme

Exercici: Donada la funció: $q(a, b, c) = (a + \overline{c}) \times b + \overline{a} \times c$

MÈTODE 1:

<u>a b c</u>	q	MINTERMS	MAXTERMS	
000	0	$(\bar{a} \times \bar{b} \times \bar{c})$	(a + b + c)	MINTERMS = $(\bar{a} \times \bar{b} \times c) + (\bar{a} \times b \times \bar{c}) +$
001	1	$(\overline{a} \times \overline{b} \times c)$	(a + b + c)	$(\bar{a} \times b \times c) + (a \times b \times \bar{c}) + (a \times b \times c)$
010	1	$(\bar{a} \times b \times \bar{c})$	(a + b + c)	
011	1	$(\bar{a} \times b \times c)$	(a + b + c)	MAXTERMS = $(a + b + c) \times (\overline{a} + b + c$
100	0	$(a \times \overline{b} \times \overline{c})$	$(\overline{a} + b + c)$	$(\bar{a} + b + \bar{c})$
101	0	$(a \times \overline{b} \times c)$	$(\bar{a} + b + \bar{c})$	(60 - 50 - 6)
110	1	(a x b x \bar{c})	(a + b + c)	
111	1	(a x b x c)	$(\overline{a} + \overline{b} + \overline{c})$	

MÈTODE 2: MINTERMS

$$q(a, b, c) = (a + \bar{c}) \times b + \bar{a} \times c = (a \times b) + (\bar{c} \times b) + (\bar{a} \times c) = Elimines (a \times b \times (c+\bar{c})) + ((a+\bar{a}) \times b \times \bar{c}) + (\bar{a} \times (b+\bar{b}) \times c) = (a \times b \times c) + (a \times b \times \bar{c}) + (\bar{a} \times b \times \bar{c}) + (\bar{a} \times b \times \bar{c}) + (\bar{a} \times b \times c) + (\bar{a} \times \bar{b} \times c)$$

Multipliquem + Eliminem repetits

Exercici: Donada la funció: $q(a, b, c) = (a + \overline{c}) \times b + \overline{a} \times c$

MÈTODE 1:

<u>a b c</u>	q	MINTERMS	MAXTERMS
000	0	$(\bar{a} \times \bar{b} \times \bar{c})$	(a + b + c)
001	1	$(\overline{a} \times \overline{b} \times c)$	(a + b + c)
010	1	$(\bar{a} \times b \times \bar{c})$	(a + b + c)
011	1	$(\bar{a} \times b \times c)$	(a + b + c)
100	0	$(a \times \overline{b} \times \overline{c})$	$(\overline{a} + b + c)$
101	0	$(a \times \overline{b} \times c)$	$(\bar{a} + b + \bar{c})$
110	1	(a x b x \bar{c})	(a + b + c)
111	1	(a x b x c)	$(\overline{a} + \overline{b} + \overline{c})$

MINTERMS =
$$(\bar{a} \times \bar{b} \times c) + (\bar{a} \times b \times \bar{c}) + (\bar{a} \times b \times c) + (a \times b \times \bar{c}) + (a \times b \times c)$$

MAXTERMS =
$$(a + b + c) \times (\overline{a} + b + c) \times (\overline{a} + b + \overline{c})$$

Comprovem que el resultat és el mateix

MÈTODE 2: MINTERMS

q(a, b, c) =
(a +
$$\bar{c}$$
) x b + \bar{a} x c =
(a x b) + (\bar{c} x b) + (\bar{a} x c) =
(a x b x (c+ \bar{c})) + ((a+ \bar{a}) x b x \bar{c}) + (\bar{a} x (b+ \bar{b}) x c) =

$$(a \times b \times c) + (a \times b \times \overline{c}) + (\overline{a} \times b \times \overline{c}) + (\overline{a} \times b \times c) + (\overline{a} \times \overline{b} \times c)$$

Exercici: Donada la funció: $q(a, b, c) = (a + \overline{c}) \times b + \overline{a} \times c$

MÈTODE 2: MAXTERMS

Aplicarem postulats per tenir coses que es multipliquen → (cosa) x (cosa) x ...

Coses → Expressions que incloguin una variable.

Expressions que incloguin dos o més variables que es sumen.

$$q(a, b, c) =$$

Exercici: Donada la funció: $q(a, b, c) = (a + \overline{c}) \times b + \overline{a} \times c$

MÈTODE 2: MAXTERMS

Aplicarem postulats per tenir coses que es multipliquen → (cosa) x (cosa) x ...

Coses → Expressions que incloguin una variable.

Expressions que incloguin dos o més variables que es sumen.

$$q(a, b, c) =$$
 $(a + \overline{c}) \times b + \overline{a} \times c =$

 Amb MAXTERMS no vull tenir sumes a fora dels parèntesis, per tant, els haig de transformar en multiplicacions

Exercici: Donada la funció: $q(a, b, c) = (a + \overline{c}) \times b + \overline{a} \times c$

MÈTODE 2: MAXTERMS

Aplicarem postulats per tenir coses que es multipliquen → (cosa) x (cosa) x ...

Coses → Expressions que incloguin una variable.

Expressions que incloguin dos o més variables que es sumen.

q(a, b, c) =
(a +
$$\bar{c}$$
) x b + \bar{a} x c = ((a + \bar{c}) x b) + (\bar{a} x c)

Exercici: Donada la funció: $q(a, b, c) = (a + \overline{c}) \times b + \overline{a} \times c$

MÈTODE 2: MAXTERMS

Aplicarem postulats per tenir coses que es multipliquen → (cosa) x (cosa) x ...

Coses → Expressions que incloguin una variable.

Expressions que incloguin dos o més variables que es sumen.

q(a, b, c) =
(a +
$$\bar{c}$$
) x b + \bar{a} x c = ((a + \bar{c}) x b) + (\bar{a} x c)

Si mirem d'aplicar el Postulat 3 tal qual veurem que no ens serveix.

$$a \times (b+c) = (a \times b) + (a \times c)$$
$$a + (b \times c) = (a+b) \times (a+c)$$

Exercici: Donada la funció: $q(a, b, c) = (a + \overline{c}) \times b + \overline{a} \times c$

MÈTODE 2: MAXTERMS

Aplicarem postulats per tenir coses que es multipliquen → (cosa) x (cosa) x ...

Coses → Expressions que incloguin una variable.

Expressions que incloguin dos o més variables que es sumen.

q(a, b, c) =
$$(a + \overline{c})xb + \overline{a}xc = (y \cdot z) + w \leftarrow Canvi de variable per veure-ho més clar$$

Amb les noves variables veiem que el podem aplicar però al revés.

$$a \times (b+c) = (a \times b) + (a \times c)$$
$$a + (b \times c) = (a+b) \times (a+c)$$

EXERCICI 3

Donada la funció: $q(a, b, c) = (a + \overline{c}) \times b + \overline{a} \times c$

Es demana arribar a les formes canòniques:

1. Pel mètode 2: Realitzant transformacions algebraiques de la funció per arribar tant a la forma canònica de MAXTERMS.

Aplicar POSTULATS + canvi de variables

* Entregar al pou "Exercici 3: Transformació a forma canònica de MAXTERMS".

