WHAT IS CLAIMED IS:

1		1.	An integrated circuit comprising:		
2		a cont	rol block comprising:		
3			a first series of delay elements coupled to a reference clock input;		
4			a phase detector coupled to the reference clock input and an output of the		
5	first series of delay elements; and				
6			a counter coupled to the phase detector and the series of delay elements;		
7		à stora	age circuit coupled to the control block and the output of the first series of		
8	delay elements; and				
9	a delay circuit coupled to the storage circuit.				
1	·	2.	The integrated circuit of claim 1 wherein the storage circuit comprises a		
2	plurality of flip-flops having an input coupled to the counter in the control block, an output				
3	coupled to the	e delay	circuit, and a clock input coupled to an output of the delay circuit.		
1		3.	The integrated circuit of claim 1 wherein the storage circuit comprises:		
2		a logic	gate coupled to an input and the output of the delay circuit, and further		
3	coupled to a latch, the latch coupled between the counter in the control circuit and the delay				
4	circuit.				
1		4.	The integrated circuit of claim 1 wherein the delay circuit comprises a		
2	series of delay elements, each having an input and an output,				
3	,	where	in the storage circuit comprises a logic gate coupled to an input of a delay		
4	element in the delay circuit and an output of a delay element in the delay circuit, and further				
5	coupled to a l	atch, th	e latch coupled between the counter in the control circuit and the delay		
6	circuit.				
1		5.	The integrated circuit of claim 4 wherein the logic gate is an exclusive-OR		
2	gate.				
1		6.	The integrated circuit of claim 1 wherein the delay circuit is a delay		
2	element.				

l		7.	The integrated circuit of claim 6 further comprising:			
2		a first	register having a clock input coupled to an output of the delay circuit; and			
3	a second register having a complementary clock input coupled the output of the					
4	delay circuit.					
1		8.	The integrated circuit of claim 7 wherein the first register has a first input			
2	and the second register has a second input, and the first and second inputs are coupled to a data					
3	input.	J				
1		9.	The integrated circuit of claim 8 wherein the integrated circuit is a field			
2	programmable gate array.					
1		10.	An integrated circuit comprising:			
2			rol circuit configured to receive a reference clock and provide a plurality of			
3	control bits;					
4	control ons,	a stora	age circuit coupled to receive and store the plurality of control bits, and			
5	further configured to provide the plurality of stored control bits; and					
6			y element configured to receive the plurality of stored control bits.			
1		11.	The integrated circuit of claim 10 wherein the control circuit comprises:			
2		a first	series of delay elements configured to receive the reference clock;			
3			se detector configured to compare the phases of the reference clock and an			
4	output of the first series of delay elements and provide an output signal; and					
5	a counter configured to receive the phase detector output and provide the control					
6	bits.					
1		12.	The integrated circuit of claim 11 wherein a polarity of the phase detector			
2	output depend	ds on th	the relative phase of the reference clock and the output of the first series of			
3	delay elements, and the counter is an up-down counter that counts up when the phase detector					
4	output has a first polarity, and counts down when the phase detector output has a second polarity					
1		13.	The integrated circuit of claim 10 wherein the storage circuit comprises a			
2	plurality of fl	ip-flops	s, each flip-flop having an input configured to receive and store one of the			

4	control bits to the delay element.				
1	14. The integrated circuit of claim 13 wherein each of the plurality of flip-				
2	flops in the storage circuit has a clock input configured to receive the output of the delay				
3	element.				
1	15. The integrated circuit of claim 11 further comprising a second series of				
2	delay elements including the delay element, each delay element in the second series of delay				
3	elements having an input, and				
4	wherein the storage circuit comprises a logic gate configured to receive a signal				
5	from an input of a delay element in the second series of delay elements and an output of the				
6	second series of delay elements, and further configured to provide an output to a plurality of				
7	latches, each latch configured to receive and store one of the plurality of control bits, and further				
.8					
1	16. The integrated circuit of claim 15 wherein the logic gate comprises an				
2	exclusive-OR gate.				
1	17. The integrated circuit of claim 10 wherein the control circuit is a delay-				
2	locked loop.				
	•				
1	18. A method of delaying a data strobe signal comprising:				
2	receiving a reference clock signal;				
3	delaying the reference clock signal a first duration, the first duration dependent or				
4	a plurality of control signals;				
5	comparing the phase the reference clock signal and the delayed reference clock				
6	signal to generate the plurality of control signals;				
7	storing the plurality of control signals;				
8	receiving a data strobe signal; and				
9	delaying the data strobe signal a second duration, the second duration dependent				
10	on the plurality of stored control signals.				

plurality of control bits, and further configured to provide the stored one of the plurality of

- 1 19. The method of claim 18 wherein the plurality of control signals are stored when the received data strobe signal has been delayed the second duration.
- 1 20. The method of claim 18 wherein the plurality of control signals are stored 2 when an edge of the data strobe signal is not being delayed.