NPTEL MOOC, JAN-FEB 2015 Week 8, Module 4

DESIGN AND ANALYSIS OF ALGORITHMS

Network Flows

MADHAVAN MUKUND, CHENNAI MATHEMATICAL INSTITUTE http://www.cmi.ac.in/~madhavan

Oil network

- * Network of pipelines
- * Ship as much oil as possible from s to t
- * No storage on the way
- * A flow of 7 is possible
- * Is this the maximum?

Oil network

- * Network of pipelines
- * Ship as much oil as possible from s to t
- * No storage on the way
- * A flow of 7 is possible
- * Is this the maximum?

Oil network

- * Network: graph G = (V,E)
- * Special nodes: s (source), t (sink)
- * Each edge e has capacity ce
- * Flow: fe for each edge e
 - * $f_e \le C_e$
 - * At each node, except s and t, sum of incoming flows equal sum of outgoing flows
- * Total volume of flow is sum of outgoing flow from s

LP formulation

- * Variable fe for each edge e
 - * fsa, fbd, fce, ...
- * Capacity constraints per edge
 - * $f_{ba} \le 10, ...$
- * Conservation of flow at each internal node
 - * $f_{ad} + f_{bd} = f_{dc} + f_{de} + f_{dt}$, ...
- * Objective: maximize volume
 - * maximize fsa + fsb + fsc

LP formulation

- * Simplex solves LP, provides maximum flow, by exploring vertices of feasible region
- * Moving from vertex to vertex actually corresponds to a more direct algorithm to find the maximum flow

- * Start with zero flow
- * Choose a path from s to t that is not saturated and augment the flow as much as possible
- Network on the right has max flow

- * Start with zero flow
- * Choose a path from s to t that is not saturated and augment the flow as much as possible
- Network on the right has max flow
- * What if one chooses a bad flow to begin with?

- * Add reverse edges to undo flow from previous steps
- * Residual graph: for each edge e with capacity ce and current flow fe
 - * Reduce capacity to ce fe
 - * Add reverse edge with capacity fe

- * Add reverse edges to undo flow from previous steps
- * Residual graph: for each edge e with capacity ce and current flow fe
 - * Reduce capacity to ce fe
 - * Add reverse edge with capacity fe

- * Start with zero flow
- * Choose a path from s to t that is not saturated and augment the flow as much as possible
- * Build residual graph
- * Repeat previous two steps till there is no feasible flow from s to t

- * Start with zero flow
- * Choose a path from s to t that is not saturated and augment the flow as much as possible
- * Build residual graph
- * Repeat previous two steps till there is no feasible flow from s to t

- * Start with zero flow
- * Choose a path from s to t that is not saturated and augment the flow as much as possible
- * Build residual graph
- * Repeat previous two steps till there is no feasible flow from s to t

* Start with flow 20, s-d-e-t

- * Start with flow 20, s-d-e-t
- * Build residual graph

- * Start with flow 20, s-d-e-t
- * Build residual graph
- * Add flow 10, s-e-d-t

- * Start with flow 20, s-d-e-t
- * Build residual graph
- * Add flow 10, s-e-d-t
- * Build residual graph

- * Start with flow 20, s-d-e-t
- * Build residual graph
- * Add flow 10, s-e-d-t
- * Build residual graph
- * No more feasible paths from s to t

Certificate of optimality

- * Edges {ad,bd,sc} disconnect
 s and t (s,t)-cut
- * Flow from s to t must go through this cut
 - * Cannot exceed cut capacity = 7
- * In general, max flow cannot exceed min cut capacity

Max flow-min cut theorem

- * In fact, max flow is always equal to min cut!
- * At max flow, no path from s to t in residual graph
 - * s can reach L, R can reach t
 - * Any edge e from L to R must be at full capacity
 - * Any edge f from R to L must be at zero capacity

- * Choose augmenting paths wisely
- * If we keep going through the middle edge, 200 iterations to find the max flow
 - * FF can take time proportional to max capacity
- * Use BFS to find augmenting path with fewest edges iterations bounded by |V|x|E|, regardless of capacities

