

Exo III Generated Structures

FIG. 1

FIG. 2

Panel B.

Panel C.

Panel D.

FIG. 3

FIG. 4A

FIG. 4B

FIG. 5

GCCTATGTCG GCGTATATCG GCGTACGTGG AGCTACGTCG CGCGACACGG GTCGATGTTG GCCTATGTCG GCCTACATCG + n = 144 d.s oligos.:. (C::: <u>සු</u>ට CATGAACTAC TATGCACTAC GAAGCGCATG TTCGGAGATG CGCGGAGATG TAAGCGAATG CCGCGAGATG TTCGGAGATG TGGATTCGTT 124-2d AATGGACAAG AAACGTGTCC GTGTGTACAA AAGTTCTCGG AGGTGCTGGG AAATCGCCGG CGGTCTTCGG CCGTGCTCGA TGGGCGAGCG $8^{18} = 2x10^{16}$ Reassembled Gene Variants ∞ 20 Szzzzzzz (C 2000) nas A*cciminamentamentamentamente* CC c nas T*ciminamentamentamente* GG c Ligate CACCGCGTAG CGCTACATCG AAGTACCTAG AAGCGGATCG ATTGAGCTAT GTGGAAGTCC TTTCGGCGGT anns A connocentum anns T connocentum ∞ Select for full length ~ATGGAGAAA ACACGACAAG CGGGCAGCCG GCATCCGAGA ~ATGCCAGCG CCCCCATTAT CTACCCAAAA ∞ Consensus-124-1d 15112 rhod2 12412 myco1

FIG. 6A

TCCCACGTCG CCCCACGTCG CCCCACCTCG CCCGACTICC CCCCACGTCG CCCGACCTCG CCCGACGICG TCCGACCTCA -CC-AC-TC-AGCACGGCAA TGCACGGCAA TTCACGGCAA TGCACGGCAA TGCACGGTAA --CACGG-AA TTCACGGCAA TCCACGGAAA AACACGGCAA ATCGTGTTCC ATCATTTCC ATCGTCTTTC ATCGTACTCT ATCGTGTTCC GTCGTGTTCC GIGCIGIICC GTTCTGTTTC -L--L--L-GGGAGCGCCG GGGTGATTCC GGGCGACCCG GGGTGATCCC GGGTGACGCC GGGGACCCC T...CTTCCC TGGCACGCCT SACCGCGGGA ACACGGGCCA AAGTGGGACG ATACCGGCGA GCGTCGGCGA ACGTGGGAGA AGATGGGCGA ACGAAGGCAA

FIG. 6B

Represents 15% of gene

TCGCCCGATG TGGGACGCTG TCGGTCGCTG TAGGCCGCTG ACGCCAGATG AGCACCGGTG GTCATCGGTG TGGGCCGGCT GTAGCACCGA GTGACGGACG GTTGCCGGCT CTGGCGCCGT CTCGCGGATC GICGCIGGCC TTGGAAGGGC GTGCAACAGC CATCCCGCAT GATTCCCCAC GTTGCCGCAC GATCCCGCAC CATGCCGCAC CATCCCCTAT AATGCCTTTT CATGCCCCAT ---DD-L--GGCGCAACAT GGAGGGGCGT GGCGCAACAT GGCGCAACGT GGCGCAACGT GGCGGAACGT GGCGCAACAT GCCCAACAT 1-2---9-99 TCGTATCTGT ICCTACCTGT TCGTACCTGT TCTTACTTGT CGTACCTCT TCCTATCTTT TCTCACGTCT C--A--T-TTCGTACCTGT

FIG. 6C

SGTCG GCGTTGCCGT SGTCG GCGTTGCCGT CGTGG GCGTGGCCGT GAG GT	CGGAG GTTTTAGCGA CTGAG GTGCTGGCCA CGGAG GTGATGGAGA		CCACG GCATCATGTA CCACG GCATCATGTA CCACG GCATCATGTA CCC GG	CGTCGTGCC GGCGAGGAGA GACGGTGCCG GGTGAAGAGA GGCCATTCCG GGCGAAGAGA	1
GACACGGTCG	CAAGGCG <u>GAG</u>	GCATGAAGAC	TCGACCCACG	CGTCGTGCCC	CGAAAGTCTG
GACACGGTCG	CAAGGCTGAG	GCATGAAGAG	TCCACCCACG	GACGGTGCCG	CCAAGGTCTG
GATTGCGTGG	CCGCGCGGAG	GCATGAAGCG	TCCACCCACG	GGCCATTCCG	CCAACGTATG
ATCGAGC <u>AAT</u>	GCCTTCATAC	ATGATCGTCG	CCCGGAA <u>TAT</u>	ATACCGCGTC	TGCCGCAAGG
ATCGAGCAAT	GGCTTCACAC	ATGCTGGTCG	CCCGGAATAT	ACACGGCGTC	TGCCGCAAGG
CAGCAGCAAC	GGCTGCATAC	ATGGTCGTGG	CCCCGAGTAC	AAACCGCTTC	TGCCGCAAGG
GCGATATTTC	AAGATG <u>CCT</u> C	GATCGGC <u>GAG</u>	TGGTGATCTT	GAAATGTACG	TGCCGAA <u>GCC</u>
GCGACATTTC	AAGATGCCGC	GATCGCCGAC	TGGTGATCTT	GAGATGTACG	CGCCGAGGCC
GAGATATCTC	AAGATGCCGC	GATCGCCGAC	TGGTCATCTT	GAAATGTACG	CGCCGACGCC
NCOI CATGATGCACG CATGCATCACG CATGAGACACG	CGTGAAC <u>TAC</u> CGTGAACTAC CGTGAACTAC	ACGCCAGAAA ACTGCCGCAA ACGCCCGCAA	GGAATGGATC GGAATGGATC GGCATGGACC	CGACTCC <u>AAG</u> CGACTCCAAG CGACGCCAAG	CCGAGATTTT CCGAGATTTT CTGCTGTGTT
150am13_00	150am13 00	150am13_00	150am13_00	150am13_00	150am13_00
150aM7_001	150AM7 001	150AM7_001	150AM7_001	150AM7_001	150AM7_001
431am7_002	431am7 002	431am7_002	431am7_002	431am7_002	431am7_002

				AAAG	Ü
150am13 00	TCGCTCACCG	GCGAACGTCA	CGAGGAACAT	CCGAAGAAGG	GGCCCTACAA
$150AM7 \overline{0}01$	TCGCTGACCG	GCGAGCGCCA	CGAGGAGCAT	CCCAATAAAG	caccetacaa
431am7_002	TCGCTGACGG	GCGAGCGCCA	CGAAGAGCAC	CCGAACAAGG	CGCCGTACAA
1				CAG	AA
150am13 00	CACGCTGATC	CTGATGAACG	ACAAGGGCGA	GGTGGTCCAG	AAATACCGCA
$150 \text{AM7} \overline{0}01$	CACCCTGATC	CTGATGAACG	ACAAGGGTGA	AGTCGTTCAG	AAATATCGCA
431am7_002	CACGCTCATC	CTGATGAACA	ACAAGGGCGA	GATCGTGCAG	AAGTACCGCA
I				GGTA	
150am13 00	AGATCATGCC	GTGGGTTCCG	ATCGAGGGCT	GGTACCCGG	CAACTGCACC
$150 \text{AM7} \overline{0}01$	AGATCATGCC	GTGGGTGCCG	ATCGAAGGCT	GGTATCCCGG	CAACTGCACG
431am7_002	AGATCATGCC	CTGGGTGCCG	ATCGAAGGCT	GGTATCCGGG	CGATTGCACC
I			TGAAG		
150am13 00	TACGTCTCCG	ACGGCCCGAA	GGGCATGAAG	GTTTCGCTGA	TCATCTGCGA
150AM7 001	TACGTCTCCG	AAGGCCCGAA	GGGCATGAAG	ATGTCGCTGA	TCATCTGCGA
431am7_002	TATGTGTCGG	AAGGCCCCAA	GGGACTGAAG	ATCAGCCTCA	TCATCTGCGA
I			TCTGGCG		
150am13 00	TGACGGCAAC	TATCCGGAAA	TCTGGCGCGA	CTGCGCC <u>ATG</u>	AAGGCCCCG
$150 \text{AM7} \overline{0}01$	CGACGGCAAC	TACCCGGAAA	TCTGGCGTGA	CTGCGCGATG	AAGGCGCCG
431am7_002	CGACGGCAAT	TACCCCGAGA	TCTGGCGCGA	TTGCGCCATG	5005055050
I		CCAG			
150am13 00	AGCTGATCGT	GCGCTGCCAG	GGCTACATGT	ATCCGGCCAA	GGACCAG <u>CAG</u>
150AM7 001	AACTGATCAT	CCGCTGCCAG	GGCTACATGT	ATCCCGCCAA	GGATCAGCAG
431am7_002	AGCTGATCGT	GCGTTGCCAG	GGATACATGT	ACCCGGCCAA	GGACCAGCAG

																			•					
	ACGTCGCGGT	ATGTCGCGGT	ACGTGGCGGT		GGCCACTCGG	GGCCATTCGG	GGCCATTCGG		CGAGGAA <u>GAA</u>	CGAGGAGGAT	TGAAGAAGAC		GCGACGCCG	GCGACGCGCG	GCGACGCGCG	,	CATCGTGGCT	CACCGTGGCT	CACCGCGGCT		CCCCCCCC	CCCCCCLICC	CGCGGCATGC	
	AATAATTGTT	AACAACGTTT	AACAACGTCT		TTCGTAT <u>TTC</u>	CICGIATITC	TTCCTACTTC		GCGAATGCGG	GCGAATGCGG	GCGAATGCGG		ATGCTGATCC	TCGCTGATCC	AGCCTGATCC		CAAGCTG <u>GTG</u>	CAAGCTGGTG	CAAGCTGGTG		ACCGCGGTCT	ACCGCGGTGT	CCACCGGCGT	
	GGCGTGGGCG	GGCCTGGGCC	GGCGTGGATG		ATGGCGTCTA	ACGGCGTCTA	ACGGCGTGTA		CGCACGCTCG	CGTACCCTCG	CGCACGCTGG		GCTTTCGAAG	CATCTCCAAG	GCTCTCCACC		ACCATCTCTT	ACCATCTCT	ACCACTTGTT		GGCGAGGGCG	GGCGAGGGCG	GGCGAAGAGG	
ည္ဗ	CGAAGGCGAT	CGAAAGCAAT	CCAAGGCCAT	GGGCTTCG	GCGGGCTTCG	TCGGGCTTCG	GCGGCCTTCG	TTCGA	CTTCGATGGC	CTTCGACGGC	CTTCGACGGC	AGTA	AGTATGCCCA	AGTATGCCGC	AGTACGCCGA	CAATC	CAATCGGAAA	CAATCGGAAA	CAGTCGCAGA	GATCAA	GATCAACTCC	GATCAATTCC	GATCAATTCC	
	GTCATCATGG	GTGCTGATGG	GTCATGGTGT		TTCCAATGCC	CGCCAATGCC	GGCCAATGCC		CGATCATCGG	CGATCATCGG	CCATCATCGG	O	TACGGCATCC	TATGGCATCC	ATGGGCGTGC		CCGCACC <u>GGA</u>	CCGCACCGGC	CAAGAACATG		ACACCGGGTT	ACACCGGCAT	ACACCGGCAA	
	150am13_00	150AM7_001	431am7_002		150am13 00	150AM7 $\overline{0}$ 01	$431am7_002$		150am13 00	150AM7 001	431am7_002	l	150am13 00	$150AM7 \overline{0}01$	431am7_002	İ	150am13 00	$150AM7 \overline{0}01$	$431am7_002$		150am13 00	150AM7 001	431am7_002	

	TCTACAACAA ATGGATCGCC GATCCGGAAG GCACCCGCGA	GATCCCGAGG GTACACGCGA	TCTACGCCAA CTGGATCAAC GATCCGGAGG GCACGCGCAA		AATGGTCGAG TCCTTTACCC GGCCGACGGT GGGAACCGAT GAAGCGCCCA	GGGTGTGGAG GAATGCCCGA	<u>gatggt</u> cgaa tccttcaccc ggtccaccgt gggcacgccg gagtgcccca		IGA aagct	rgA aagct		トナトでは、コ
	GATCC		GATCC		GGGAAC	GGGTG1	GGGCAC		ACCGC1	ACCGC1	ACCGC1	
	ATGGATC <u>GCC</u>	ATGGATCGCC	CTGGATCAAC		GGCCGACGGT	GTCCGACGGT	GGTCCACCGT		GICGCGGIGC	GCCACCACGC	GACGCCAAGC	
	TCTACAACAA	TCTATTCGAA ATGGATCGCC	TCTACGCCAA		TCCTTTACCC	TCCTTCACGC GTCCGACGGT	TCCTTCACCC		CCCGAACAAG GTCGCGGTGC ACCGCTGA	TCCGAACAAG GCCACCACGC ACCGCTGA	CCCCAACGAG GACGCCAAGC ACCGCTAG	
TTA	CCTTATGAGT	CCGTATGATT	CCGTACAACT	ATGGT	AATGGTCGAG	GATGGTGGAA	GATGGTCGAA	TCGAG	TCGAAGGCAT	TCGAGGGCAT	TGGACGGCAT	
	150am13 00	$150AM7 \overline{0}01$	431am7_002		150am13 00	150AM7 $\overline{0}$ 01	431am7_002	l	150am13 00	$150AM7 \overline{0}01$	$431am7_002$	

FIG. 70

FIG. 8

FIG. 10

FIG. 11

77CGA 5`0H

5 m

5 m

5.P

FIG. 12

FIG. 13

Fig. 15. HOLISTIC ENGINEERING OF DIFFERENTIALLY ACTIVATABLE STACKED TRAITS IN NOVELTRANSGENIC PLANTS USING DIRECTED EVOLUTION AND WHOLE CELL MONITORING

For example, in one aspect, stacked traits can be comprised of genetically introduced enzymes. Because the stacked enzymes have different activity profile (including reaction specificities and reaction requirements) they can be selectively and differentially activated by adjusting the environment to which they are exposed.

Fig. 17. Harvesting, Processing, Storage

Differentially activated and/or selected enzymes respond to the environments of harvesting, processing and storage to activate environmentally action specific promoters.

Fig. 18. Processing

^{*} An example of a Gene Product might be a protein. Through processing/decorating the protein changes forms, eventually becoming active. It is at this point that specific traits can be expressed differentially.

Fig. 19. Cellular Mutagenesis.

Fig. 20. Differential Activation of Selected Precursor (Inactive) Gene Products

Differential activation of selected precursor (inactive) gene products by controlling the post-translational modifications that differentially transform selected molecules from inactive precursor form to active form. Deselection of particular molecules can also be achieved by degradation (ex. By proteoclytic cleavage).

Inactive precursor gene products (ex. pre-pro hormones, pro-hormones pre-pro proteins, or pro-proteins).									
LEGEND:									
	pre-pro								
	pro								
	active								
	•								

Figure 21. Starting population comprised of an organism strain to be subjected to improvement or evolution in order to produce a resultant population comprised of an improved organism strain that has a desired trait

Figure 22. Starting population comprised of a genomic sequence to be subjected to improvement or evolution in order to produce a resultant population comprised of an improved genomic sequence that has a desired trait

Fig. 23. Strain Improvement.

Fig. 24. Iterative Strain Incovement.

,