Name: Solutions	GTID:
MSE 2001 B: Princij	ples and Applications of Engineering Materials
Midter	m exam 3, July 15, 2014, 10am – 11am
Please read this cover sheet car	efully before continuing with the exam.
Please remove everything from calculator.	n your desk except this test itself, writing instruments, and a
including this cover page (p.1). You can use the back side of the	e bottom of the page. Make sure that you have all 9 pages Work all problems in the spaces below the problem statement. e pages for scratch, but I will not grade answers written on the aple or tear out any pages except the last two pages (p.8 & p.9). fail to sign on the line below.
integrity by refusing to betray t	for taking this exam. I commit to uphold the ideals of honor and the trust bestowed upon me as a member of the Georgia Tech hat I have not violated the Honor Code during this examination.
Student's signature:	

1. Circle the correct answer (15 p	oints)
(1) At high altitudes the boiling p	oint of water is
(a) above 100 °C	(b) pelow 100 °C
	tains 10% weight percentage of copper. The atomic mass of Cunic percentage of copper in this alloy is
(a) above 10%	(b) below 10%;
(3) When there is a clustering ter solidus boundary will bend	ndency in the solid phase of a two-component system, the
(a) downward	(b) upward
(4) The general formula for a per	itectoid reaction is
(a) $\gamma + \beta \leftrightarrow \alpha$	(b) $\gamma \leftrightarrow \alpha + \beta$
(5) The lower the temperature is,	, the faster the rate of solidification will be.
(a) True	(b) False
(6) When the amount of underco	oling ΔT is increased, the critical radius r^* for homogeneous
(a) increase	(b)decrease
(7) In cloud seeding, silver iodide	is added to trigger
(a) homogeneous nucleation	(b) neterogeneous nucleation
	o a soda drink, small carbon dioxide bubbles will emerge se your skin provides for the evaporation of CO ₂ :
(a) preferred nucleation sites	(b) heat as activation energy
(9) The most important phase tra	insformation in a 0.77% (wt% of C) steel is a
(a) eutectic reaction	(b) eutectoid reaction
(10) Which of the following mixtu	ures of ferrite + cementite has a layered texture?
(a) pearlite	(b) bainite
(11) Pearlite formed at higher ter This results from the temperature	mperature is coarser than that formed at lower temperature. e dependence of
(a) diffusion of carbon atoms	(h) thermal expansion of the alloy

(a) less	(b) more			
(13) For a eutectoid steel, process.	the transformation from auste	enite (γ) to is a diffusionless		
(a) martensite	(b) spheroidite			
(d) indicensite	(b) spliciolaite			
(14) The process to transfo	orm martensite into spheroidit	e is called		
(a) temping;	(b) quenching	(b) quenching		
(15) "Coring" usually occur	s during			
(a) equilibrium solidification	n (b) non-equilibrium	solidification		
	1200 -			
2. (10 points)		Liquid		
The figure shows the Ag-Cu p	1000 - Nhase diagram.			
(a) Write down the type and	800			
invariant reaction in the diag		(Cu) (Cu)		
(b-d) Sketch the cooling curv				
(b) 0% Cu (pure Ag)	400 -			
(c) 29% Cu	200 -			
(d) 50% Cu				
	0- 0 A	0 10 20 30 40 50 60 70 80 90 10		
(a) The invariant reaction		[L→Ag+Cu, eute		
(b)	(c)	(d)		
\uparrow	^ ,	^ .		
1000-	1000	1000		
(C)	(C)	O ₂		
cure	cure	.ure		
oerat) verat) oerat		
Temperature (°C)	Temperature (°C)	Temperature (°C)		
400 -	400	400		
time	time	time		
une	ume	time		

3. (25 points)

Answer the following questions based on the Nb-Ge phase diagram on page 8.

(a, 10 pt) Find five invariant reactions. Express each reaction in the following format (a fake example): Eutectic at 1234 °C with composition 56% Ge, $L \rightarrow \alpha + Nb_7Ge_8$

eutectic ______ at _1865_°C with composition _27_%Ge, ___L
$$\rightarrow$$
 β + Nb₅Ge₃ ______ eutectic _____ at _1580_°C with composition _59_%Ge, ___L \rightarrow Nb₅Ge₃+ NbGe₂ _____ peritectic _____ at _1900_°C with composition _18_%Ge, ___L+Nb \rightarrow β ______ congruent melting at __2180_°C with composition _37_%Ge, ___L \rightarrow Nb₅Ge₃ _____ congruent melting at __1680 °C with composition _66 %Ge, __L \rightarrow NbGe₂

(b, 5 pt)

Calculate the Gibbs degrees of freedom for the following state points:

Point 1:
$$X_0$$
 = 18%Ge at 1900 °C, F = ____0___; Point 2: X_0 = 90%Ge at 1000 °C, F = ___1____
Point 3: X_0 = 40%Ge at 1600 °C, F = ____2___; Point 4: X_0 = 30%Ge at 2000 °C, F = ___1____
Point 5: X_0 = 60%Ge at 2000 °C, F = ____2___

(c, 10 pt)

An Nb-Ge alloy with X_0 = 50%Ge is slowly heated from 1400°C to 2200°C. Sketch (1) The composition of the liquid phase (X_L) as a function of temperature; (2) The fraction of the liquid phase (X_L) as a function of temperature.

Page 4 of 9

4. (20 points)

The phase diagram for the Cu-Ag binary system is shown on p.9.

(a) For an alloy of composition 40 wt%Ag cooled slowly from the melt, what is the mass fraction of $\frac{\text{pro-eutectic}}{\text{pro-eutectic}} \alpha$ -phase at the room temperature?

(note: pro-eutectic α means the α -phase formed before the eutectic isotherm)

Using the lever at a temperature just above the eutectic temperature will give us the mass fractions of the pro-eutectic phase:

$$M_{PRO-\alpha} = \frac{C_{BUT} - C_0}{C_{BUT} - C_{\alpha}} = \frac{71.9 - 40.0}{71.9 - 8.0} = 50\%.$$

(b) An alloy of composition 20 wt%Ag is heated to a temperature within the (α + Liquid) phase region. If the composition of the liquid phase is 50 wt%Ag, determine (1) the temperature of the alloy; (2) the mass fraction of the liquid phase (f_L) at this temperature.

Draw a vertical line at 50% wt%Ag, and it intersects with the liquidus boundary of the (α +L) zone at the temperature of 875 °C

Draw a tie line at this temperature, and we find $f_L = (20-8)/(50-8) = 0.286$

5. (15 points)

The figure shows the isothermal transformation diagram for a eutectoid steel.

A: Austenite

B: Bainite

M: Martensite

P: Pearlite

(a) Describe the phases present and the microstructures that would occur with quench path:

Instantaneously quench to 450° C \rightarrow hold for 10 seconds \rightarrow quench to room temperature.

450°C for 10s: ~50% of austenite is transformed to bainite and ~50% remaining austenite. After quenched to room temperature, 50% bainite and 50% martensite.

(b) A piece of carbon steel (unknown microstructure) with the eutectoid composition (0.77% C) is to be recycled. Describe a heat treatment that would result in 100% fine pearlite.

Above 727°C hold to form 100% austenite (γ), then instantaneously quench to 550°C (or up until 600°C). Hold for at least 8 seconds.

(c) A piece of eutectoid carbon steel is held at 800°C for sufficiently long. The steel is then to be quenched at a constant cooling rate. Estimate the slowest possible cooling rate (unit: °C/second) that would result in 100% martensite.

To avoid the starting C curve for ($\gamma \rightarrow \alpha + Fe_3C$) transformation, the minimum rate is approximately (800 °C – 500 °C)/1 sec = 300°C/s

We see again the isothermal transformation diagram for a eutectoid steel.

(a, 10 pt) Based on the C curves, sketch the fraction transformed as a function of time for the Austenite → Bainite transformation at the temperature of 250°C

(b, 5 pt) The fraction of transformed material can be described by the JMA equation:

$$X = 1 - \exp[-(kt)^n]$$

In this reaction, $n \approx 2$.

Estimate the constant k.

Look at the 50% point:

n = 2

X = 0.5

t ≈ 1000 sec

Solve for k,

we get k = 0.00083/sec

Page **7** of **9**

(Please feel free to tear out this page)

Nb-Ge phase diagram for problem #3

(Please feel free to tear out this page)

Cu-Ag phase diagram for problem #4

