5 Nash's theorem

Theorem 12. (Nash's theorem) Every strategic game with finitely many players and pure strategies has a Nash equilibrium.

Theorem 13. (Brouwer) Let X be a convex and compact set in a finite-dimensional Euclidean space. Let $f: X \to X$ be a continuous function. Then there exists $x_0 \in X$ such that $f(x_0) = x_0$.

Selection of X . We choose $X = \Delta$, the set of all mixed strategy profiles.

5.3 Main idea of applying Brouwer's theorem

Want a function $f: \Delta \rightarrow \Delta$ that maps one strategy profile to another. Each player is trying to improve their utility against the remaining players' profiles. Stay the same if they connet improve. A fixed point x^* satisfies $f(x^*)=x^*$. No player can improve by switching strategies, then x^* is a NE.

Example. Rock paper scissors.

	\mathbf{R}	P	\mathbf{S}
R	0,0	-1, 1	1, -1
P	1, -1	0,0	-1, 1
S	-1, 1	1, -1	0,0

Both can improve by switching to P.
Our function will move both awards P.

P2 has max utility, does not move.

P1 gains I for P, gains 2 for S

P1 moves towards both, but closer

to S than P-

5.4 Defining the function f

Define Φ : measuring improvement.

Given strategy profile x & \(\alpha \), a player i, a pure strategy s & \(\sigma \); define Time max fo, u:(s,xi) -u:(x)]. if utility how much utility increases does not increase

Note: 1 is continuous, (Check.)

Define f: moving towards improvement.

For player i and strategy $S \in S$: where $\Phi_S(x) > 0$, we want to increase The probability assigned to S. Say we replace x_s^i by $x_s^i + \overline{\mathbb{P}}_s^i(x)$. Normalize this by dividing the sum of all the new probabilities:

$$\sum_{i \in S^{c}} \left(x_{i}^{2i} + \underbrace{\Phi_{i}^{2i}}(x) \right) = 1 + \sum_{i \in S^{c}} \underbrace{\Phi_{i}^{2i}}(x)^{c}$$

Define $f: \triangle \rightarrow \triangle$ by $f(x) = \overline{x}$ where for each player i and strats $\in S_{ij}$ $\overline{X}_{S}^{i} = \frac{X_{S}^{i} + \underline{\Phi}_{S}^{i}(x)}{1 + \sum_{c' \in C} \underline{\Phi}_{c'}^{i}(x)}$ This is continuous

Example. Rock paper scissors.

PI plays rock, P2 plays paper,
$$X=((1,0,0),(0,1,0))$$
.
For P2, $\Phi_{R}^{2}(x)=\Phi_{P}^{2}(x)=\Phi_{S}^{2}(x)=0$, So $X^{2}=x^{2}$.
For P1, $\Phi_{R}^{2}(x)=0$, $\Phi_{P}^{2}(x)=1$, $\Phi_{S}^{2}(x)=2$.
 $X_{R}^{1}=\frac{1+0}{4}=\frac{1}{4}$, $X_{P}^{1}=\frac{0+1}{4}=\frac{1}{4}$, $X_{S}^{1}=\frac{0+2}{4}=\frac{1}{2}$
So $X_{R}^{1}=(\frac{1}{4},\frac{1}{4},\frac{1}{2})$.

Given $x \in \Delta$, consider Φ , f as defined above. Since f is continuous and Δ is convex and compact, we can apply Browner's fixed point theorem to conclude that there exists $\hat{X} \in \Delta$ where $f(\hat{X}) = \hat{X}$.

[Prove & is a NE by showing & EB: (2-1).]

For player i, we claim that there exists a pure strategy $S \in S_i$ such that $\hat{X}_s^i > 0$ and $u_i(S, \hat{X}^{-i}) \leq u_i(\hat{X})$:

$$u_{i}(\hat{X}) = \sum_{s \in S_{i}} \overset{\wedge_{i}}{x_{s}} u_{i}(s, \hat{x}^{-i})$$

$$= \sum_{s \in S_{i}} \overset{\wedge_{i}}{x_{s}} u_{i}(s, \hat{x}^{-i})$$

$$= \sum_{s \in S_{i}} \overset{\wedge_{i}}{x_{s}} u_{i}(s, \hat{x}^{-i})$$

If $u_i(s, x^{-i}) > u_i(x)$ for all such s, then this sum $> u_i(x)$, animadiation

Then $\mathbb{E}_{s}^{i}(\hat{x})=0$. Since \hat{x} is a fixed point,

$$\hat{x}_{s}^{i} = (f(\hat{x}))_{s}^{i} = \frac{\hat{x}_{s}^{i}}{1 + \sum_{s \in S_{i}} \frac{1}{2} (\hat{x})}$$
Since $\hat{x}_{s}^{i} > 0$, this equality hads

if and only if $\sum_{s' \in S} E^{i}(2) = 0$. Since \$ 13 non-negative,

 $\underline{\underline{T}}_{S'}(\hat{x}) = 0$ for all $s' \in S_i$. So $u_i(s', \hat{x}^{-i}) \leq u_i(\hat{x})$ for all $s' \in S_i$.

Playing \hat{x}^i gives the highest utility against \hat{x}^{-i} , so $\hat{x}^i \in B_i(\hat{x}^{-i})$. This holds for all players, so \hat{x}^i is a NE. \square

Note: This proof does not construct a NE, since proofs of Brower's theorem are not constructive.