F-VICE: Forecasting Velocity of Ice in Glaciers Using Machine

Rodrigo S. Cortez Madrigal rcortez@enesmorelia.unam.mx PCIC CDMX, México

Luis V. Ruiz Hernández lruiz@ciencias.unam.mx **PCIC** CDMX, México

Learning

Figura 1: Seattle Mariners at Spring Training, 2010.

Resumen

El deshielo de los glaciares es un fenómeno natural que ha aumentado en las últimas décadas debido al cambio climático. Este proceso tiene un impacto significativo en el nivel del mar y en los ecosistemas locales. En este trabajo, proponemos un enfoque basado en aprendizaje automático para predecir la serie de tiempo de la velocidad de deshielo de los glaciares. Utilizamos un conjunto de datos del proyecto ITSLIVE (Time Series of Land Ice Velocity and Elevation) del Jet Propulsion Laboratory de la NASA, que a partir de imágenes satelitales, proporciona información sobre la velocidad de deshielo de los glaciares. Finalmente comparamos los resultados de distintos modelos de aprendizaje automático y discutimos los resultados obtenidos.

CCS Concepts

ullet Do Not Use This Code \to Generate the Correct Terms for Your Paper; Generate the Correct Terms for

Unpublished working draft. Not for distribution.

Your Paper; Generate the Correct Terms for Your Paper; Generate the Correct Terms for Your Paper.

Palabras claves

Do, Not, Us, This, Code, Put, the, Correct, Terms, for, Your, Paper

ACM Reference Format:

Rodrigo S. Cortez Madrigal and Luis V. Ruiz Hernández. 2025. F-VICE: Forecasting Velocity of Ice in Glaciers Using Machine Learning. In Proceedings of Aprendizaje de Máguina (PCIC: ML '25). ACM, New York, NY, USA, 3 pages. https://doi.org/ XXXXXXXXXXXXXX

Introduction

La predicción de series de tiempo es una tarea importante en el ámbito del aprendizaje automático y la ciencia de datos. Desde la predicción de precios de acciones hasta la predicción del clima, las series de tiempo son una herramienta valiosa para la toma de decisiones y la planificación. No obstante, el estudio de series de tiempo en el contexto de los glaciares es un tema menos explorado.

El deshielo de los glaciares es un fenómeno natural que ha aumentado en las últimas décadas debido al cambio climático. Este proceso tiene un impacto significativo en el nivel del mar y en los ecosistemas locales. Por lo tanto, es crucial comprender y predecir la velocidad de deshielo de los glaciares para mitigar sus efectos negativos. En este contexto, la modelación de series de tiempo se convierte en una herramienta esencial para predecir la velocidad de deshielo de los glaciares. No obstante, para comprender plenamente cómo responden los glaciares al cambio medioambiental se necesitarán nuevos

Both authors contributed equally to this research.

Both authors contributed equally to this research.

métodos que nos ayuden a identificar el inicio de los fenómenos de aceleración del hielo y a observar cómo se propagan las señales dinámicas dentro de los glaciares [3].

En ese sentido, la velocidad de los glaciares es un parámetro importante que nos permite comprender el comportamiento dinámico de los glaciares y su respuesta al cambio climático [5]. Estudiar la velocidad de los glaciares es crucial para comprender cómo responden al cambio climático y cómo afectan al nivel del mar.

En este trabajo, proponemos un enfoque basado en aprendizaje automático para predecir la serie de tiempo de la velocidad de deshielo de los glaciares. Utilizamos un conjunto de datos del proyecto ITSLIVE (Time Series of Land Ice Velocity and Elevation) del Jet Propulsion Laboratory de la NASA, que a partir de imágenes satelitales, proporciona información sobre la velocidad de deshielo de los glaciares. Compararemos los resultados de distintos modelos de aprendizaje automático y discutiremos los resultados obtenidos.

2 Antecedentes

Durante la última década, el número de observaciones por satélite disponibles ha aumentado considerablemente, lo que ha permitido realizar mediciones mucho más frecuentes de la velocidad de los glaciares. Proyectos como el de Intermission Time Series of Land Ice Velocity and Elevation (ITS_LIVE) de la NASA aceleran la comprensión de los procesos críticos de los glaciares y las capas de hielo proporcionando a la comunidad científica registros globales, de baja latencia, exhaustivos y de última generación de las velocidades y elevaciones de la superficie observadas desde el espacio [4] .

Estos datos por lo tanto permiten a través de la modelación de series de tiempo, predecir la velocidad de los glaciares y su evolución en el tiempo.

Trabajos como el de derkacheva [2] han utilizado métodos como Lowess para el estudio de estas series de tiempo, mientras que anteriormente ya se habían utilizado modelos de regresión lineal y modelos ARIMA para la predicción de series de tiempo [1] sobre otros conjuntos de datos no ITSLIVE.

3 Metodología

Para la predicción de la velocidad de los glaciares, utilizamos el conjunto de datos del proyecto ITSLIVE de la NASA. Este conjunto de datos contiene información sobre la velocidad de deshielo de los glaciares a partir de imágenes satelitales.

Cada observación de velocidad de deshielo de los glaciares se registra en un intervalo de tiempo específico, lo que nos permite construir una serie de tiempo. Para la modelación de series de tiempo, utilizamos distintos modelos de aprendizaje automático, incluyendo modelos de regresión lineal, modelos ARIMA y redes neuronales recurrentes (RNN).

3.1 Línea Base

Para establecer una línea base para la predicción de la velocidad de los glaciares, utilizamos un modelo de regresión

lineal simple. Este modelo se basa en la suposición de que la velocidad de deshielo de los glaciares sigue una tendencia lineal a lo largo del tiempo. El modelo de regresión lineal se ajusta a los datos de velocidad de deshielo de los glaciares y se utiliza para predecir la velocidad futura.

3.2 ARIMA

El modelo ARIMA (Autoregressive Integrated Moving Average) es un modelo de series de tiempo que combina componentes autorregresivos, de media móvil e integración. El modelo ARIMA se utiliza para modelar series de tiempo estacionarias y no estacionarias. Para aplicar el modelo ARIMA a la serie de tiempo de la velocidad de deshielo de los glaciares, primero es necesario transformar la serie de tiempo en una serie estacionaria. Para ello, se aplican técnicas de diferenciación y transformación de Box-Cox.

3.3 XGBoost

XGBoost (Extreme Gradient Boosting) es un algoritmo de aprendizaje automático basado en árboles de decisión que se ha utilizado con éxito en diversas tareas de predicción. XGBoost es un algoritmo de boosting que combina múltiples árboles de decisión para mejorar la precisión de las predicciones. Se ha utilizado en diversas aplicaciones, incluida la predicción de series de tiempo.

3.4 LSTM

Las redes neuronales recurrentes (RNN) son un tipo de modelo de aprendizaje automático que se utiliza para procesar datos secuenciales, como series de tiempo. Las RNN son capaces de capturar patrones temporales en los datos y se han utilizado con éxito en diversas aplicaciones, incluida la predicción de series de tiempo. En este trabajo, utilizamos una variante de las RNN llamada LSTM (Long Short-Term Memory), que es especialmente eficaz para modelar dependencias a largo plazo en los datos.

3.5 Compración de Resultados

Para comparar los resultados de los distintos modelos de aprendizaje automático, utilizamos métricas de evaluación como el error cuadrático medio (MSE). Los resultados se presentan en forma de gráficos que muestran la predicción de la velocidad de deshielo de los glaciares a lo largo del tiempo, junto con las observaciones reales.

4 Experimentos y Resultados

Para evaluar el rendimiento de los modelos de aprendizaje automático en la predicción de la velocidad de deshielo de los glaciares, realizamos una serie de experimentos utilizando el conjunto de datos del proyecto ITSLIVE. Los experimentos consistieron en entrenar y evaluar los modelos de regresión lineal, ARIMA, XGBoost y LSTM en la serie de tiempo de la velocidad de deshielo de los glaciares.

El conjunto de datos se dividió en un conjunto de entrenamiento y un conjunto de prueba. Los modelos se entrenaron

2025-05-30 00:34. Page 2 of 1-3.

291

292

296

297

298

299

300

302

303

304

305

306

307

308

309

310

311

312

315

316

317

318

319

321

322

323

324

325

329

330

331

332

333 334 335

336

337

338

340 341

342

343

344

345

346

347

348

238

239

utilizando el conjunto de entrenamiento y se evaluaron en el

240 241 242

243

conjunto de prueba. Línea Base 4.1

244 245 246

247

ARIMA

4.3 248 249

LSTM

250 251

252

253

254

255

257

258

259

260

261

262 263

264

265

266

267

271

272

273

274

275

278

279

280

281

284

285

286

287

288

289

290

4.5 Comparación de Resultados

XGBoost

Conclusiones

En este trabajo, hemos propuesto un enfoque basado en aprendizaje automático para predecir la serie de tiempo de la velocidad de deshielo de los glaciares. Encontramos que los modelos de aprendizaje automático, son herramientas valiosas para la predicción de series de tiempo en el contexto de los glaciares. Los resultados obtenidos muestran que los modelos de aprendizaje automático pueden capturar patrones temporales en la velocidad de deshielo de los glaciares y Uniplibitair dist proporcionar predicciones precisas.

Appendices

Expresiones de gratitud

Agradecemos a la clase de la Maestría en Ciencias e Ingenierías de la Computación de la UNAM por su apoyo y orientación en este trabajo. Agradecemos al Jet Propulsion Laboratory de la NASA por proporcionar el conjunto de datos del proyecto ITSLIVE.

Referencias

[1] 2022. Time Series ARIMA Study of Antarctic Glacier Melting. In Proceedings of the International Conference on Industrial Engineering and Operations Management. IEOM Society International, Asuncion, Paraguay, 507–516. doi:10.46254/SA03.20220147

Anna Derkacheva, Jeremie Mouginot, Romain Millan, Nathan Maier, and Fabien Gillet-Chaulet. 2020. Data Reduction Using Statistical and Regression Approaches for Ice Velocity Derived by Landsat-8, Sentinel-1 and Sentinel-2. Remote Sensing 12, 12 (June 2020), 1935. doi:10.3390/rs12121935

Chad A. Greene, Alex S. Gardner, and Lauren C. Andrews. 2020. Detecting seasonal ice dynamics in satellite images. doi:10.5194/tc-2020-122

Yang Lei, Alex S. Gardner, and Piyush Agram. 2021. Processing methodology for the ITS_LIVE Sentinel-1 ice velocity product. doi:10.5194/essd-2021-393

Jing Zhang, Yang Lei, Laurane Charrier, Amaury Dehecq, and Alex S. Gardner. 2024. Validation of the Surface Velocity Field of Mountain Glaciers from Its_Live V2 with in Situ GPS Data. In IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium. IEEE, Athens, Greece, 9-13. doi:10. 1109/IGARSS53475.2024.10642917

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009