Savitribai Phule Pune University Final Year of E & Tc Engineering (2019 Course) EPD (Elective-II) 404185

Unit II: Circuit Design & Testing Methods

Agend

- a
- ☐ Teaching and Exam Scheme
- Prerequisite Courses, if any
- Course Objectives
- □ □ Courses Outsonnes Substance
 - Convert Requirements Into Design
 - Reliability
 - ☐ Fault Tolerance
 - ☐ High Speed Design
 - Low Power Design,

- Noise And Error Budget
- Standard Data Buses And Networks
- Reset And Power Failure Detection
- Interface: Inputs and Outputs,
- Breadboards, Evaluation Boards and Prototypes.

Teaching and Exam

Scheme:

- Teaching Scheme: Theory: 03 hrs. / week
- Credit: 03
- Examination Scheme
 - In-Sem (Theory): 30 Marks
 - End Sem (Theory): 70 Marks

Prerequisite Courses, if any:

- 1. Digital Logic Design
- 2. Electronic Components and Hardware
- 3. Basics of Programming languages like C Language, JAVA.

Course

Objectives:

During the course study students will be able to

- To understand the stages of product (hardware/ software) design and development.
- To learn the different considerations of analog, digital and mixed circuit design.
- To be acquainted with methods of PCB design and different tools used for PCB Design.
- To understand the importance of testing in product design cycle.
- To understand the processes and importance of documentation.

Course

Outcomes:

On completion of the course, learner will be able to -

CO1: Understand and explain design flow of design of electronics

product CO2: Associate with various circuit design issues and testing

CO3: Inferring different software designing aspects and the Importance of product test

& test specifications.

CO4: Summarizing printed circuit boards and different

parameters CO5: Estimating assorted product design aspects

CO6: Exemplifying special design considerations and importance of documentation

Unit II Circuit Design & Testing Methods

- 1. From Symbols To Substance
- 2. Convert Requirements Into Design
- 3. Reliability
- 4. Fault Tolerance
- 5. High Speed Design
- 6. Low Power Design,
- 7. Noise And Error Budget
- 8. Standard Data Buses And Networks
- 9. Reset And Power Failure Detection
- 10. Interface: Inputs and Outputs,
- 11. Breadboards, Evaluation Boards and Prototypes.

1. From Symbols To

Substance

Fig: General Configuration for the circuits within a system.

Convert Requirements Into

Design

System concern	Requirement	Parameters		
Function	Response times	s, min, hr		
	Data rates	Mbytes/s, kbits/s		
	I/O drive	A, V		
	Reliability—MTBF	hr		
Regulations	FCC			
	UL			
	Military specifications			
Environment	Volume	in³, m³		
	Weight (mass)	lb, kg		
	Vibration	g, m/s ²		
	Shock	g, m/s ²		
peration	Bandwidth	Hz		
	Resolution	%, mV/LSB ns, μs, ms		
	Speed			
	Accuracy	%		
	Power consumption	mW		
	Noise	nV/√HZ, SNR		

Fig: Design Driving requirements

Convert Requirements Into

Design

- Throughput
- · Resolution and dynamic range
- Address space and available memory
- Language choice: code size, speed (compilation and actual execution)
- Predominant types of calculations: integer or floating point

Peripheral functions also drive the selection of a processor. These functions include the following:

- Math coprocessors
- Graphics accelerators
- Interrupt handlers
- Data transfer and communications:
 DMA, small computer system interface (SCSI), serial I/O ports
- Timers
- Analog-to-digital converters (ADCs)
- Digital-to-analog converters (DACs)
- Power drivers

Watchdog timing

Shashank D. Biradar, VPKBIET.

Convert Requirements Into

Design

On the other hand, the architecture of microprocessors does not include memory or peripherals, so you will have to include these components in your design, thereby increasing the parts count and complexity. You can estimate the amount of memory you need by adding up the possible sizes of the following:

- 1. Data Arrays
- 2. Stack
- 3. Temporary and permanent variables
- 4. Compiler overhead
- 5. I/O buffers

Finally, and probably most important,

what experience do you have, and what tools are available to support your development?

Do hardware emulators exist that will help you debug both circuits and code?

What software tools are available?

Do they provide good support?

Does the vendor have a good reputation?

Development tools that target specific microcontrollers or microprocessors can markedly affect either for good or bad, you design effort.

RELIABILI

TY

- 1. Complexity: Fewer parts are almost always better. Design margin: You must allow for stressing of components.
- 2. Design Margin: You must allow for stressing of components

$$\lambda = \lambda_b \pi \underset{a}{\pi} \pi_b$$

Reliability of a component is defined as a function of failure rate:

$$R(t) e^{-\lambda t}$$

Reliability of a system is the product of all component reliabilities:

$$R_{system} = \prod_{i=1}^{n} R$$

 λ = failure rate of component λ_b = base failure rate π_e = environmental factor π_q = quality factor π_q = acceleration factor

R(t)= reliability λ = failure rate t= time

R_{System} = reliability of the system

R_i = reliability of component i

RELIABILI

TY

We must consider the application and how some of these stresses and susceptibility factors might affect reliability:

- Corrosion
- Thermal cracks
- Electromigration
- Secondary diffusion
- Ionizing radiation
- Vibration
- High-voltage breakdown
- Aging

Tolerance

Fault tolerance goes beyond the design and analysis for reliable operation and reduces the possibility of dysfunction or damage from abnormal stresses and failures. It allows a measure of continued operation in the event of a problem. Fault tolerance is primarily a philosophy of system design and architecture.

It has three distinct considerations:

- a. Careful Design
- b. Testable Architecture
- c. Redundant Architectures

Tolerance Careful Design

We can avoid many failures from abnormal stresses by conservative and careful design. Here are some design techniques that can reduce the probability of failure

- 1. Reduce overstress from heat with cooling and lower-dissipation design.
- 2. Use **opto-isolation or transformer coupling** to stop overvoltage and leakage current.
- 3. Implement ESD protection.
- 4. Mount for shock (from accidental drops) and vibration.
- 5. Tie down wires and cables that flex frequently and use strain relief.
- **6. Prevent incorrect hook-up**; use keyed connectors.

All these techniques fortify a design, but blind application of them leads to costly "gold-plated" or overly conservative design. Analyse the function of $y_S o_h u_{as} r_{ha} p_{nk} ro_{D.} d_B u_{ir} c_{ad} t_{ar} a_{,V} n_P d_{KB} i_I t_E s_T$ use before picking the appropriate techniques to reduce the danger of abnormal stresses in the application.

Tolerance Testable Architecture

A testable architecture has two possible configurations.

- The simpler configuration provides probe points for a technician or instrument to stimulate circuits and record responses. Usually, trained personnel must disassemble the system and remove the circuit for testing.
- The more complex configuration has dedicated internal circuitry called built-in test (BIT) that tests the system and diagnoses problems without disassembly of the equipment.

Appropriate Calibration

Tolerance Redundant Architectures

- Most complex and fault-tolerant architectures
- Use multiple copies of circuitry and software to self-check between functions
- Justified only when downtime for repair and maintenance cannot be tolerated
 - A doubly redundant architecture -- indicates a failure in one of the sub systems; this allows for quick repair.
 - A triply redundant architecture -- uses voting between the outputs of three identical modules to select the correct value. It can have a failure and still operate correctly.
 - Dissimilar redundance architecture -- compares the output from modules with different software and hardware to select the correct output.

Tolerance > Output Module A₁ Input-Module A₂ Voting Input -> Output decision Difference Decision ➤ Output circuitry Input -A₃ Difference indicator В

a. A doubly redundant architecture

b. A triply redundant architecture

c. Dissimilar redundance architecture

High Speed

Design

Harmonics Generated – Factor of Concern

Two conservative criteria may be used to estimate when transmission line effects begin:

- 1. circuit dimensions versus signal wavelength
- 2. rise time versus propagation delay.

1.
$$l > \lambda/20$$
 | I = length of the signal path $\lambda = Max$, wavelength of the signal

$$t_r = ft$$
 t_r = rise time of the signal t_p = propagation delay of the signal path ground bounce,

Careful Design: with

- · transmission lines,
- including bandwidth limitation, decoupling,
- crosstalk,
- impedance mismatch,
- and timing skew or delay.

Fig: some sources of noise and the ease of remedies.

High Speed Design:

Considerations

- 1. Bandwidth
- 2. Decoupling
- 3. Ground Bounce
- 4. Crosstalk
- 5. Impedance Matching
- 6. Timing

	Reduces							
Guidelines	Signal reflections	Power- distribution noise	Ground	Crosstalk				
Control the rise time of signal pulses by selecting the appropriate logic family and technology.	1		- Source	Crosstalk				
Reduce signal frequency.	1		1	1				
Use decoupling capacitors.		1		1				
Use multilayer printed circuit boards with power and ground planes.	1		1	1				
Terminate transmission lines where $t_r/t_p < 4$.	1	The court of						
Keep stubs short.	· · · · · · · · · · · · · · · · · · ·							
Keep signal lines short and perpendicular on adjacent layers. Control spacing between traces.	1	atomicologia 27 Januari 28 Januari						
Group circuits into separate areas: analog circuits, high-speed logic, and high-current switching.		1						
Avoid parallel asynchronous lines, wire wrap, and sockets.			1					

Low – Power

Design
$$P = fCV^2$$

P = Power

f = Frequency

C = load capacitance

V = DC Supply Voltage

Guidelines in design to minimize power:

- Lower clock frequency.
- Lower supply voltage to digital logic.
- Shut down unused circuits.
- Put controller into sleep mode when not needed.
- Terminate all unused inputs. Don't allow any to float.
- Avoid slow signal transitions.

NOISE AND ERROR BUDGEI'S

NOISE AND ERROR

BUDGETS

Three types of errors occur in electronics.

Two of them are variations in parameters due to **production and environment**, the third is **noise** that is described statistically.

Anytime you design a system, you should know these fundamental limits.

$$V_{noise(rms)} = \sqrt{4kTRW}$$

$$I_{noise(rms)} = \sqrt{2qI_{DC}W}$$

$$V_{noise(rms)} = V \{0.392 + log_{10}(\frac{f_{high}}{f_{low}})\}$$

$$V_{total} = \sqrt{V_{1}^{2} + V_{2}^{2} + \dots + V_{n}^{2}}$$

$$SNR = 10log_{10}(V_{signal}^{2}/V_{noise}^{2})$$

Section	Component	Description of possible errors				
Input	Sensor	Inherent signal noise				
	Transmission line	Interference, crosstalk				
	Amplifier	Temperature dependence, linearity, CMRR, SNR				
	Filter	Variations in component values, bandwidth, pass-band and stop-band ripple, phase linearity				
Conversion and	Sample-and-hold	Aperture jitter, droop				
processing	Analog-to-digital conversion	Quantization error, differential nonlinearity, integral nonlinearity, aliasing				
	Digital filtering	Round-off error in calculations				
Output	Digital-to-analog conversion	Quantization error, differential nonlinearity, integral nonlinearity, aliasing				
	Level shifting amplifier	Temperature dependence, linearity, CMRR, SNR				
	Filter	Variations in component values, bandwidth pass-band and stop-band ripple, phase linearity				

Shashank D. Biradar, VPKBIET.

Networks

- a. Bus Architecture Concerns
- b. Serial Communications
- c. Instrumentation and I/O Buses
- d. Back-Plane Buses
- e. Local Area Networks

Networks

- TTL Driving Capacitive load on Bus
- Back-Plane transceiver logic b. interface circuit isolate cap. Load from the bus

Fig: 3 basic config. for serial

Tx

ba. **Start place**

Full duplex

Shashank D. Biradar, **VPKRIFT**

Fig: 2 implementations for serial Tx

- RS-232C single ended config.
- RS-422A differential config.

	Bus	Maximum data transfer (Mbytes/s)	Data width (bits)	Address width (bits)	Number of control lines	Number of peripheral devices	Connector pins	Maximum cable length (m)	Timing	Control
	IEEE-488 SCSI	1	8	_	8	15	24	20	A	Instrumentation networks
303	SCSI	2 (asynchronous) 5 (synchronous)	8 + parity		9	7	50	6 (single-ended) 24 (differential)	A, S	Primary to support computer peripheral like disk drives and CD-ROMs
- 8	SCSI-2	10, 40	16, 32	- 9	9	7	50	6, 24	A, S	
- 1	Sbus	100	32	32	18		96	Marcal Ma	A, S	I/O coprocessing, supports only three circuit boards
	Turbochan	nel 100	32	32	11	Appropriate Control of	96	THE REAL PROPERTY AND ADDRESS OF THE PERTY	S	I/O address = 27 bits, board size = $11.6 \times 14.4 \times 3.3$ cm.

Fig: Comparison of several peripheral I/O Buses

Networks

k-plane bus	Maximum data transfer (Mbytes/s)	Data width (bits)	Address width (bits)	Multiplexed data/ address	Timing	Drive type	Connector type	Connector pins	Interrupts	Physical dimensions W × L (cm)	Comments
STD 32	20	8, 16, 32	16, 32	_	A	TTL	CE	108	1	11.4×16.5	Wide industrial base; robotics process control
											data acquisition
G-64, G-96+	2, 40	8, 16, 32	24	-	A	TTL	DIN	96	6	9.9×16.0	Single Eurocard
VMEbus	40	16, 32	16, 32	1	A	TTL	DIN	96	7	23.3 × 16.0	Single or double Eurocard instrumentation computing
VXIbus	1000	8, 16, 32	16, 24, 32	9-1	A	TTL	DIN	192	7	23.3 × 34.0 or 36.6 × 34.0	Superset of VME instrumentation
	40	16.00	22	1	S	TTL	DIN	96	1	21.6 × 25.7	Instrumentation
Multibus II	40	16, 32	32	1	S	TTL	DIN	96	1	10.2×30.0	One interrupt per slot
Nubus	40	32	32	V	S	TTL	CE	198	11	10.7 × 34.3	PCs
EISA	33	8, 16, 32	16, 24			TTL	CE	198	11	7.9 × 29.2	IBM PS/2
Micro Channel	17	8, 16, 32	16, 24, 32		A		NA	192	NA	26.5 × 30.0	
Futurebus+	400	32, 64	32, 64	1	A	BTL	IVA	-			

Fig: Comparison of several back - plane bus configs.

Reset And Power Failure

a. A simple RESET circuit

b. MAX705(debounced manual reset and watchdog timer)

c. MAX690 (battery backup and watchdog timer)

Shashank D. Biradar,

Interface:

Inputs a. Switches

- Sensors
- Analog Pre-processing
- **ADCs**

Interface:

Outputs

- a. LEDs
- b. LCDs
- c. Lamps
- d. Relays and Solenoids
- e. Motors
- f. DACs
- g. Analog Drive

Breadboards, Evaluation Boards and **Prototypes**

Examples of a breadboard, an evaluation board, and a wire-wrapped prototype board.

Resourc

es

Textbooks:

- 1. Kim Fowler, "Electronic Instrument Design", Oxford university press.
- 2. Robert J. Herrick, "Printed Circuit board design Techniques for EMC Compliance", Second edition,

IEEE press.

Reference Books:

- 1. James K. Peckol, "Embedded Systems A Contemporary Design Tool", Wiley publication
- 2. J C Whitakar, "The Electronics Handbook", CRC press.

Thank