Serverless FPGA

Utilizing dynamic partial reconfiguration in an FPGA-accelerated FaaS architecture

Martin Lambeck Advisor: Dr. Atsushi Koshiba Chair of Computer Systems https://dse.in.tum.de/

15.07.2023 – 15.07.2024 (part time)

- Motivation
- Design
- Benchmark applications
- Evaluation
- Conclusion

Motivation

FPGAs

- Offer great computing performance
 - Excel at parallelizable/pipelinable tasks
- Difficult to program and integrate into system

Motivation

FPGAs

- Offer great computing performance
 - Excel at parallelizable/pipelinable tasks
- Difficult to program and integrate into system

Serverless functions (FaaS)

- Popular cloud deployment model
- Simplifies deployment greatly
- No infrastructure management by developer

Can we combine them?

- Motivation
- Design
- Benchmark applications
- Evaluation
- Conclusion

Design

- FPGA: Use Coyote shell as runtime
 - Multiple isolated slots (vFPGAs)
 - Multi tenancy
- Host: A minimal program on the host side is necessary
 - Relays input/output data between FPGA and invoker
 - Unikernel, confined to VM
- Cluster: OpenFaaS/Kubernetes for orchestration

Design

Hypercalls to exit VM

Communicate with vFPGA manager

Design

- Client/server architecture
- Receives invocation request from unikernel app
- Schedules invocations
- Manages reconfiguration
- Invoke user logic on FPGA
- Return completion signal

- Motivation
- Design
- Benchmark applications
- Evaluation
- Conclusion

Benchmarks

- Select popular algorithms
 - Port/implement FPGA implementation to Coyote
 - Baseline: CPU implementation
- 12 benchmark applications:

AddMul	AES (ECB mode)
SHA256	SHA3
GZIP	MATMUL (64x64)
Needleman-Wunsch	hls4ml
Hyperloglog	Harris Corner Detection
MD5 brute force	FFT Auto-Correlation

- Motivation
- Design
- Benchmark applications
- Evaluation
- Conclusion

Evaluation

- End-to-end evaluation
 - Evaluate all benchmarks
 - Measure duration from moment input data has been received until result is ready
 - No network overhead!
- Micro-benchmarks
 - Measure impact of huge pages
 - Measure parallel efficiency
 - Measure reconfiguration overhead

Results (End-to-end)

FPGA speed-up factors

	S	М	L		
addmul	0.12	0.13	0.12		
aes128	3.7	0.76	0.6		
sha256	2.4	1.2	1.0		
sha3	4.5	2.9	4.0		
hls4ml	91	29	7.2		
matmul64		0.11			
fft	1.3	1.4	1.1		
hll	0.12	0.10	0.11		
nw	6.9	6.7	6.9		
md5x	11	140	220		
gzip	4.2	7.8	8.0		
corner		4.6			

Results (Huge pages)

FPGA + huge pages speed-up factors

Results (Reconfiguration)

- Dynamic partial reconfiguration induces overhead
- Linear correlation between bitstream size and duration

Clock regions	8	16	24	32
Bitstream size	4.6 MB	6.6 MB	8.6 MB	9.9 MB

- Motivation
- Design
- Benchmark applications
- Evaluation
- Conclusion

Conclusion

- FPGAs offer excellent performance for some workflows
- Coyote shell enables multi-tenancy on the FPGA
- FaaS simplifies infrastructure management

=> FaaS + FPGA is a feasible deployment model

Thank you! Questions?

