Infinite-Horizon Proactive Dynamic DCOPs

Khoi Hoang Ping Hou William Yeoh

Ferdinando Fioretto

Roie Zivan

Makoto Yokoo

- ➤ Distributed Constraint Optimization Problems
- > Dynamic DCOPs
- > Proactive Dynamic DCOPs
- ➤ Infinite-Horizon Proactive Dynamic DCOPs*
- ➤ Overview and Details

- ➤ Distributed Constraint Optimization Problems
- > Dynamic DCOPs
- > Proactive Dynamic DCOPs
- ➤ Infinite-Horizon Proactive Dynamic DCOPs*
- ➤ Overview and Details

- ➤ Distributed Constraint Optimization Problems
- > Dynamic DCOPs
- ➤ Proactive Dynamic DCOPs
- ➤ Infinite-Horizon Proactive Dynamic DCOPs*
- > Overview and Details

- ➤ Distributed Constraint Optimization Problems
- > Dynamic DCOPs
- ➤ Proactive Dynamic DCOPs
- ➤ Infinite-Horizon Proactive Dynamic DCOPs*
- Overview and Details

- ➤ Distributed Constraint Optimization Problems
- > Dynamic DCOPs
- ➤ Proactive Dynamic DCOPs
- ➤ Infinite-Horizon Proactive Dynamic DCOPs*
- Overview and Details

X _A	X _B	$f_{AB}(x_A,x_B)$
0	0	5
0	1	10

X _A	X _B	$f_{AB}(x_A,x_B)$
0	0	5
0	1	10

x _C	X _A	$f_{CA}(x_C,x_A)$
0	0	7
0	1	4

X B	x _C	$f_{BC}(x_B,x_C)$
0	0	3
0	1	12

Maximize $f_{AB} + f_{BC} + f_{CA}$

- Meeting scheduling problems
- Smart devices scheduling
- Resource allocation
- Sensor network

Limitations

- DCOPs
 - Static problem
 - Not consider possible changes

Limitations

- DCOPs
 - Static problem
 - Not consider possible changes
- Dynamic DCOPs
 - Reacting to changes of the problem

- DCOPs
 - Static problem
 - Not consider possible changes
- Dynamic DCOPs
 - Reacting to changes of the problem

- DCOPs
 - Static problem
 - Not consider possible changes
- Dynamic DCOPs
 - Reacting to changes of the problem

- DCOPs
 - Static problem
 - Not consider possible changes
- Dynamic DCOPs
 - Reacting to changes of the problem

- DCOPs
 - Static problem
 - Not consider possible changes
- Dynamic DCOPs
 - Reacting to changes of the problem

- DCOPs
 - Static problem
 - Not consider possible changes
- Dynamic DCOPs
 - Reacting to changes of the problem

- DCOPs
 - Static problem
 - Not consider possible changes
- Dynamic DCOPs
 - Reacting to changes of the problem

- DCOPs
 - Static problem
 - Not consider possible changes
- Dynamic DCOPs
 - Reacting to changes of the problem

- DCOPs
 - Static problem
 - Not consider possible changes
- Dynamic DCOPs
 - Reacting to changes of the problem

Limitations

- Dynamic DCOPs
 - Not take advantage of possible changes
 - Good for current, bad for future (myopic solutions)

Limitations

- Dynamic DCOPs
 - Not take advantage of possible changes
 - Good for current, bad for future (myopic solutions)
- How about if we know
 - How often the problems change
 - Knowledge about possible changes

Proactive Dynamic DCOPs

- Knowledge about changes of random events
 - Initial distribution and transition function
- Solve all the problems beforehand up to horizon h
- Keep the solution at time step h

$$P_0$$
 P_1 P_h

Proactive Dynamic DCOPs

- Knowledge about changes of random events
 - Initial distribution and transition function
- Solve all the problems beforehand up to horizon h
- Keep the solution at time step h

Limitations

Is this solution optimal from h onwards???

Key contributions

- Infinite-Horizon Proactive Dynamic DCOPs
 - Optimal solution from h onwards
 - Based on converged distribution at h*
 - Proactive vs. Reactive dynamic DCOP algorithms (first time!!!)

Key contributions

- Infinite-Horizon Proactive Dynamic DCOPs
 - Optimal solution from h onwards
 - Based on converged distribution at h*
 - Proactive vs. Reactive dynamic DCOP algorithms (first time!!!)

Key contributions

- Infinite-Horizon Proactive Dynamic DCOPs
 - Optimal solution from h onwards
 - Based on converged distribution at h*
 - Proactive vs. Reactive dynamic DCOP algorithms (first time!!!)

Content

- ➤ Distributed Constraint Optimization Problem
- Proactive Dynamic DCOPs
- Infinite-Horizon Proactive Dynamic DCOPs
- Algorithms
- Experiments
- Conclusions

X _A	X _B	$f_{AB}(x_A,x_B)$
0	0	5
0	1	10

x _C	X _A	$f_{CA}(x_C,x_A)$
0	0	7
0	1	4

X B	x _C	$f_{BC}(x_B,x_C)$
0	0	3
0	1	12

X _A	X _B	$f_{AB}(x_A,x_B)$
0	0	5
0	1	10

x _C	X _A	$f_{CA}(x_C,x_A)$
0	0	7
0	1	4

Distributed Meeting Scheduling Problem

Distributed Meeting Scheduling Problem

Person A	Utility
8:00	2
9:00	5
16:00	10

Distributed Meeting Scheduling Problem

Person A	Utility
8:00	2
9:00	5
16:00	10

Person A	Person B	Utility
8:00	8:00	0
8:00	9:00	- infinity
16:00	16:00	0

Maximize
$$f_A + f_B + f_C + f_{AB} + f_{BC} + f_{CA}$$

DCOP is a tuple <A, X, D, F>

•
$$A = \{a_1, a_2, ..., a_n\}$$

•
$$X = \{x_1, x_2, ..., x_m\}$$

•
$$D = \{D_1, D_2, ..., D_m\}$$

•
$$F = \{f_1, f_2, ..., f_l\}$$

•
$$F(\sigma) = \sum f_i$$

•
$$\sigma_{\text{max}} = \operatorname{argmax} F(\sigma)$$

Person A	Utility
8:00	2
9:00	5
16:00	10

•
$$A = \{a_1, a_2, ..., a_n\}$$

•
$$X = \{x_1, x_2, ..., x_m\}$$

•
$$D = \{D_1, D_2, ..., D_m\}$$

•
$$F = \{f_1, f_2, ..., f_l\}$$

•
$$F(\sigma) = \sum f_i$$

•
$$\sigma_{max} = argmax F(\sigma)$$

Person A	Utility
8:00	2
9:00	5
16:00	10

•
$$A = \{a_1, a_2, ..., a_n\}$$

•
$$X = \{x_1, x_2, ..., x_m\}$$

•
$$D = \{D_1, D_2, ..., D_m\}$$

•
$$F = \{f_1, f_2, ..., f_l\}$$

•
$$F(\sigma) = \sum f_i$$

•
$$\sigma_{max} = argmax F(\sigma)$$

Person A	Utility
8:00	2
9:00	5
16:00	10

•
$$A = \{a_1, a_2, ..., a_n\}$$

•
$$X = \{x_1, x_2, ..., x_m\}$$

•
$$D = \{D_1, D_2, ..., D_m\}$$

•
$$F = \{f_1, f_2, ..., f_l\}$$

•
$$F(\sigma) = \sum f_i$$

•
$$\sigma_{\text{max}} = \operatorname{argmax} F(\sigma)$$

Person A	Utility
8:00	2
9:00	5
16:00	10

•
$$A = \{a_1, a_2, ..., a_n\}$$

•
$$X = \{x_1, x_2, ..., x_m\}$$

•
$$D = \{D_1, D_2, ..., D_m\}$$

•
$$F = \{f_1, f_2, ..., f_l\}$$

•
$$F(\sigma) = \sum f_i$$

•
$$\sigma_{max} = argmax F(\sigma)$$

Person A	Utility
8:00	2
9:00	5
16:00	10

Content

- Distributed Constraint Optimization Problem
- ➤ Proactive Dynamic DCOPs
- Infinite-Horizon Proactive Dynamic DCOP
- Algorithms
- Experiments
- Conclusions

Proactive Dynamic DCOPs

- Random variables
 - Initial distribution
 - Transition function

Week 0	Raining		Week 1	Raining
	8:00	→		10:00

$$P = \begin{bmatrix} 0.9 & 0.075 & 0.025 \\ 0.15 & 0.8 & 0.05 \\ 0.25 & 0.25 & 0.5 \end{bmatrix}$$

Proactive Dynamic DCOPs

- Constraints with random variables
- Proactive: solve the whole problems beforehand
- Keep the solution at h onwards

Proactive Dynamic DCOPs

- $Y = \{y_1, y_2, ..., y_m\}$
 - $-\Omega$: event space
 - p⁰: initial distribution
 - T: transition function
- c: switching cost
- h: horizon

Content

- Distributed Constraint Optimization Problem
- Proactive Dynamic DCOPs
- ➤ Infinite-Horizon Proactive Dynamic DCOP
- Algorithms
- Experiments
- Conclusions

Limitations

Is this solution optimal from h onwards???

Infinite-Horizon Proactive Dynamic DCOPs

- Each random variable => Markov chain
- Optimal solutions from h onwards
- ➤ Markov chain convergence

Infinite-Horizon Proactive Dynamic DCOPs

- Under some specific conditions:
 - Markov chains converge at h*
 - Solve the problem at h with converged distribution

Content

- Distributed Constraint Optimization Problem
- Proactive Dynamic DCOPs
- Infinite-Horizon Proactive Dynamic DCOP
- ➤ Algorithms
- Experiments
- Conclusions

Algorithms

- Preprocessing
 - Eliminate random variables
 - Calculate expected utility
 - Regular DCOPs at every time step
- FORWARD
- BACKWARD

Preprocessing (cont.)

Constraints with random variables

x	у	
0	0	а
0	1	b
1	0	С
1	1	d

x	ts = k
0	a*prob(y=0) + b*prob(y=1)
1	c*prob(y=0) + d*prob(y=1)

Regular DCOPs at every time step

- Solve problem at h with converged distribution
- Solve from P₀ forward
- Online Offline algorithm

- Solve problem at h with converged distribution
- Solve from P₀ forward
- Online Offline algorithm

- Solve problem at h with converged distribution
- Solve from P₀ forward
- Online Offline algorithm

- Solve problem at h with converged distribution
- Solve from P₀ forward
- Online Offline algorithm

- Solve problem at h with converged distribution
- Solve from P₀ forward
- Online Offline algorithm

- Solve problem at h with converged distribution
- Solve from P_h backward
- Offline algorithm

- Solve problem at h with converged distribution
- Solve from P_h backward
- Offline algorithm

- Solve problem at h with converged distribution
- Solve from P_h backward
- Offline algorithm

- Solve problem at h with converged distribution
- Solve from P_h backward
- Offline algorithm

- Solve problem at h with converged distribution
- Solve from P_h backward
- Offline algorithm

Content

- Distributed Constraint Optimization Problem
- Proactive Dynamic DCOPs
- Infinite-Horizon Proactive Dynamic DCOP
- Algorithms
- > Experiments
- Conclusions

Experimental setup

- Random network
- Number of variables
 - Decision = Random: 8
- Horizon: 5
- Constraint density: 0.5
- Real distributed system, actual runtime

S-DPOP:

- Not consider switching cost

LS-SDPOP:

- Suffer from bad initial solutions

BACKWARD, FORWARD:

- Similar runtimes to S-DPOP
- Better solutions

LS-SDPOP:

- Slower, better solutions

Other algorithms:

- Start to differ

Switching cost = 1,000

- Small switching cost
- Agent sticks to initial solutions
- Similar quality, runtime

Online FORWARD

Online HYBRID

Reactive:

- Small switching cost
- Large time duration

FORWARD:

- Large switching cost
- Small time duration

Similar results

HYBRID > FORWARD

Conclusions

- Infinite-Horizon Proactive Dynamic DCOP:
 - Optimal solution at time step h onwards
 - Random variables as Markov chains
 - Markov chain convergence
- Experiments:
 - Comparison between proactive and reactive dynamic DCOP algorithms (first time!)

Thank you

Markov chains

Markov property: Memoryless

$$\Pr(x^{t} = j \mid x^{t-1} = i, x^{t-2} = r, \dots, x^{0} = s)$$
$$= \Pr(x^{t} = j \mid x^{t-1} = i)$$

A state j is said accessible from state i (i -> j)

$$\Pr(x^t = j \mid x^0 = i) > 0$$

- State i and state j communicate (i <-> j)
- A class of states: communicate each other

Period of a state i:

$$d(i) = \gcd\{t : P_{ii}^t > 0\}$$

Aperiodic: period = 1

- **Recurrent**: (i -> j) => (j -> i)
- Transient: otherwise
- Ergodic: Both aperiodic and recurrent

- **Recurrent**: (i -> j) => (j -> i)
- Transient: otherwise
- Ergodic: Both recurrent and aperiodic

- Unichain: A chain that contains
 - Single recurrent class
 - Probably some transient states

- Unichain: A chain that contains
 - Single recurrent class
 - Ergodic unichain: aperiodic
 - Probably some transient states

Markov chains

Convergence:

$$\pi^{t-1} \cdot P = \pi^t = \pi^*$$

- Conditions on convergence:
 - 1. Positive transition matrix
 - 2.All states: one single class and ergodic
 - 3. The chain is an ergodic unichain

FORWARD

Solve the last time step with stationary distribution

$$F^{h}(\mathbf{x}) = \sum_{\omega \in \Omega_{y}} f(\mathbf{x}|_{y=\omega}) \cdot p_{y}^{*}(\omega)$$

Solve from time step 0

$$C^{t}(x) = -c \cdot \Delta(x^{t-1}, x^{t})$$

- At time step h-1: $C^{h-1}(x) = -c \cdot \left(\Delta(x^{h-2}, x^{h-1}) + \Delta(x^{h-1}, x^*) \right)$
- Either online or offline algorithms

BACKWARD

Solve the last time step with stationary distribution

$$F^{h}(\mathbf{x}) = \sum_{\omega \in \Omega_{y}} f(\mathbf{x}|_{y=\omega}) \cdot p_{y}^{*}(\omega)$$

Solve from time step h-1 backwards

$$C^{t}(x) = -c \cdot \Delta(x^{t+1}, x^{t})$$

Offline algorithms

