Frequency, Processor Performance Equation

Module Outline

- Concept of frequency.
- Processor performance equation.

•

Basic Computer Organization

- Processor Executes programs
- Main Memory Holds program and data
- I/O For communication and data

Inside the Processor

Control Hardware: Hardware to manage instruction execution

Inside the Processor

- Control Hardware: Hardware to manage instruction execution
- ALU: Arithmetic and Logical Unit (hardware to do arithmetic and logic operations)

Inside the Processor

- Control Hardware: Hardware to manage instruction execution
- ALU: Arithmetic and Logical Unit (hardware to do arithmetic and logic operations)
- Registers: Small units of memory to hold data/instructions temporarily during execution

Inside the System

- Control Hardware: Hardware to manage instruction execution
- ALU: Arithmetic and Logical Unit (hardware to do arithmetic and logic operations)
- Registers: Small units of memory to hold data/instructions temporarily during execution
- Memory: Stores information being processed by the CPU

Inside the System

- Control Hardware: Hardware to manage instruction execution
- ALU: Arithmetic and Logical Unit (hardware to do arithmetic and logic operations)
- Registers: Small units of memory to hold data/instructions temporarily during execution
- Memory: Stores information being processed by the CPU
- Input: Allows the user to supply information to the computer

Inside the System

- Control Hardware: Hardware to manage instruction execution
- ALU: Arithmetic and Logical Unit (hardware to do arithmetic and logic operations)
- Registers: Small units of memory to hold data/instructions temporarily during execution
- Memory: Stores information being processed by the CPU
- Input: Allows the user to supply information to the computer
- Output: Allows the user to receive information from the computer

Concept of Time and Speed

- Frequency: Number of occurrences of a repeating event per unit time.
 - SI unit: Hertz (Hz)

Concept of Time and Speed

- Frequency: Number of occurrences of a repeating event per unit time.
 - SI unit: Hertz (Hz)
- The period is the duration of one cycle in a repeating event
 - Period = Cycle time

Concept of Time and Speed

- Frequency: Number of occurrences of a repeating event per unit time.
 - SI unit: Hertz (Hz)
- The period is the duration of one cycle in a repeating event
 - Period = Cycle time

$$Cycle\ Time = \frac{1}{Frequency}$$

- Clock is a special signal to hardware
- A well defined indication for event start and complete.

- Clock is a special signal to hardware
- A well defined indication for event start and complete.

- Clock is a special signal to hardware
- A well defined indication for event start and complete.

- Clock is a special signal to hardware
- A well defined indication for event start and complete.

- Clock is a special signal to hardware
- A well defined indication for event start and complete.

- Clock is a special signal to hardware
- A well defined indication for event start and complete.

- Clock is a special signal to hardware
- A well defined indication for event start and complete.

- Clock is a special signal to hardware
- A well defined indication for event start and complete.

- Clock is a special signal to hardware
- A well defined indication for event start and complete.

How is frequency related to performance?

How is frequency related to performance?

Program Execution Time =

Execution Time per Instruction × Total Program Instructions

How is frequency related to performance?

Program Execution Time =

Execution Time per Instruction × Total Program Instructions

CPU Time = Execution Time per Instruction \times Instruction Count

How is frequency related to performance?

```
Program Execution Time =
```

Execution Time per Instruction×Total Program Instructions

CPU $Time = Execution Time per Instruction <math>\times$ Instruction Count

```
Execution Time per Instruction = Cycles spent per Instruction × Cycle Time
```

How is frequency related to performance?

Program Execution Time =

Execution Time per Instruction \times Total Program Instructions

CPU $Time = Execution Time per Instruction <math>\times$ Instruction Count

Execution Time per Instruction = Cycles spent per Instruction × Cycle Time

 $CPU\ Time = IC \times Cycles\ per\ Instruction \times Cycle\ Time$

How is frequency related to performance?

Program Execution Time =

Execution Time per Instruction × Total Program Instructions

CPU Time = *Execution Time per Instruction* \times *Instruction Count*

Execution Time per Instruction = Cycles spent per Instruction × Cycle Time

 $CPU\ Time = IC \times Cycles\ per\ Instruction \times Cycle\ Time$

Example

What is the execution time of a program containing a million instructions each occupying 4 cycles in a 2 GHz processor?

CPU $Time = IC \times Cycles$ per $Instruction \times Cycle$ Time

 $CPU\ Time = IC \times Cycles\ per\ Instruction \times Cycle\ Time$

$$Cycle\ Time = \frac{1}{Frequency}$$

$$CPU\ Time = \frac{IC \times CPI}{Frequency}$$

 $CPU\ Time = IC \times Cycles\ per\ Instruction \times Cycle\ Time$

$$Cycle\ Time = \frac{1}{Frequency}$$

$$CPU Time = \frac{IC \times CPI}{Frequency}$$

$$CPU \ time = \frac{Instructions}{Program} * \frac{Clock \ cycles}{Instruction} * \frac{Seconds}{Clock \ cycle}$$

$$CPU time = \frac{Instructions}{Program} * \frac{Clock \ cycles}{Instruction} * \frac{Seconds}{Clock \ cycle}$$

$$CPU time = \underbrace{\frac{Instructions}{Program}} * \underbrace{\frac{Clock \ cycles}{Instruction}} * \underbrace{\frac{Seconds}{Clock \ cycle}}$$

COMPILER

Summary

- Inside the processor, system
- Frequency, Clock cycle
- IPC, CPI
- Iron Law of Processor Performance

Module Outline

- Concept of frequency.
- Processor performance equation.