Potentiometer, Drucksensor

Aufgabe:

Der Druck auf eine Platte der Fläche A soll gemessen werden. Dazu wird ein Schiebepotentiometer (L, U_{ges}) und eine Feder (k) verwendet. Die Feder sei bei einem Druck p=0 entspannt.

Wie groß ist der maximal messbare Druck? Wie groß ist dann U_x ?

Gegeben: k, A, L, U_{ges}

Gesucht: P_{max} , U_x

Federkonstante k	10	N/m
Fläche A	100	cm ²
Länge des Potentiometers L	0,05	М
Versorgungsspannung U _{ges}	20	V

Metallischer Temperatur-Sensor (1)

Aufgabe:

Ein Platin-Temperatursensor zeigt über den zu messenden Temperaturbereich eine konstante Empfindlichkeit. Der Widerstand bei der Referenztemperatur beträgt dabei $R_0=100~\Omega$. Wir messen einen Widerstandswert von $R=140~\Omega$.

Wie groß sind der Temperaturkoeffizient und die gemessene Temperatur? (in °C)

Gegeben: E, R₀, R

Gesucht: T, α

konstante Empfindlichkeit	0,5	Ohm/°C
R ₀	100	Ohm
R	140	Ohm

Metallischer Temperatur-Sensor (2)

Aufgabe:

Ein metallischer Leiter (Material unbekannt) zeigt hinsichtlich seines Widerstandswertes ein lineares Temperaturverhalten $\alpha=0.01\frac{1}{^{\circ}C}$

Bei einer Temperatur T_1 messen wir einen Widerstand $R(T_1)$.

Bei einer weiteren Temperatur T_2 messen wir einen Widerstand $R(T_2)$.

Berechnen Sie die Temperatur T₂

Gegeben: α , T₁, R(T₁), R(T₂)

Gesucht: T₂

Temperaturverhalten α	0,01	1/°C
T ₁	10	°C
$R(T_1)$	50	Ohm
$R(T_2)$	80	Ohm

PTC-Temperatursensor

Aufgabe:

Ein PTC-Sensor dient der Temperaturmessung. Dabei wird ein Widerstand R(T...) gemessen. Für die Beschreibung der R(T)-Kurve gelten die untenstehenden Parameter für den ansteigenden Bereich.

Welche Temperatur gehört zu dem gemessenen Widerstand? (in °C)

Gegeben: b, T_0 , $R(T_0)$, $R(T_1)$

Gesucht: T₁

b	0,05	1/K
T ₀	293,15	K
$R(T_0)$	100	Ohm
gemessen: R(T ₁)	100000	Ohm

NTC

Aufgabe:

Ein Heißleiter zeigt ein näherungsweise exponentielles Verhalten. Sein Verhalten soll deshalb mit Hilfe einer Exponentialfunktion bei einer Referenztemperatur T_0 dargestellt werden.

Bestimmen Sie mit Hilfe der gegeben Kennlinie die Materialkonstante B.

Gegeben: T₀
Gesucht: B

Referenztemperatur T ₀	273,15	K

Magnetoresistiver Sensor

Aufgabe:

Ein Standard-AMR-Widerstandssensor liefert bei einem parellel zur Sensorausrichtung verlaufendem externen Magnetfeld den Wert: $130~\Omega$.

Der minimal mögliche Wert beträgt: 125Ω .

Bei einer Winkelmessung erhalten wir einen Widertstand R.

Berechnen Sie den gemessenen Winkel (in Grad) und die Empfindlichkeit.

Gegeben: $R_{0,minimal}$, $R_{0,maximal}$, R

Gesucht: α , E

Minimaler Wert bei 90°: R ₀	125	Ohm
Maximaler Wert bei 0°: R_0^* (1+ β)	130	Ohm
Gemessener Wert: R	129	Ohm

Instrumentenverstärker

Aufgabe:

Ein Instrumentenverstärker (interner Elektrometer-Widerstand R₁) soll die Diagonalspannung einer Messbrücke verstärken,

bei einer Diagonalspannung von U_d soll der Betrag der Ausgangsspannung des Verstärkers $U_A = -2\,V$ betragen.

Dimensionieren Sie den von außen beschaltbaren Widerstand entsprechend.

Gegeben: $R_{0,minimal}$, $R_{0,maximal}$, R

Gesucht: α , E

U _d = U ₁ -U ₂	0,04	V
UA	-2	V
R ₁	10000	Ohm