

MATEMÁTICA DISCRETA 2

Aula 22 Subgrupos

Cristiane Loesch

Brasília 2025

CURIOSIDADE – GRUPOS DE PERMUTAÇÃO

GRUPO DE RUBIK

• Inventor: Ernő Rubik (Budapeste, 13.07.1944) em 1974 – professor de arquitetura

CURIOSIDADE – GRUPOS DE PERMUTAÇÃO

GRUPO DE RUBIK

• Grupo de Rubik - conjunto de todas as permutações das faces do cubo

$$(R, \leftrightarrow)$$

- \rightarrow número total de elementos de R = número de todas as possíveis configurações do cubo;
- \rightarrow *R* não necessariamente possui todas as permutações das facetas, mas apenas aquelas que podem ser atingidas por meio dos movimentos possíveis de serem realizados no cubo;
- → (↔) indica a operação das possíveis permutações sobre o Cubo de Rubik.

CURIOSIDADE – GRUPOS DE PERMUTAÇÃO

GRUPO DE RUBIK

- Simulador do cubo mágico (download)
 http://www.geometer.org/rubik/
- Vídeos com dicas de resolução por Renan Cerpe https://cubovelocidade.com.br/
- Grupo mágico e a teoria dos grupos por Waldeck Schützer https://www.dm.ufscar.br/profs/waldeck/rubik/

Estruturas Algébricas

Fonte: Paiva, C. R. (2010)

Estruturas Algébricas - Grupos

SUBGRUPOS

• a análise do subconjunto de um conjunto pode ser, por vezes, mais interessante do que a do próprio conjunto. No nosso caso, o interesse é por conjuntos que respeitem a estrutura algébrica de interesse.

EXEMPLO: Consideremos o grupo dos números inteiros com a operação adição $(\mathbb{Z}, +)$

e o subconjunto

$$H = \{ \text{número inteiros pares} \}$$

com a operação de adição

$$H$$
, também, é grupo. $(H, +)$

SUBGRUPOS

Seja G um grupo em relação a uma operação * e cujo elemento neutro seja e. Um subconjunto H de G é dito ser um subgrupo de G se for, também, por si só um grupo em relação à mesma operação, ou seja, se:

i)
$$e \in H$$

ii)
$$h_1 * h_2 \in H$$
 , $h_1, h_2 \in H$

iii)
$$h^{-1} \in H$$
 , $\forall h \in H$.

Todo grupo G possui pelo menos dois subgrupos: o próprio G e o $\{e\}$ formado pelo elemento neutro.

Estruturas Algébricas - Subgrupos

Teorema de Lagrange

Se G for um conjunto finito e H for um subgrupo de G, então |H| é um divisor de |G|.

$$|G|=|H|(G:H)$$

Anéis

Fonte: Paiva, C. R. (2010)

Anéis

- Estruturas algébricas
- Consistem de conjuntos munidos de duas operações binárias internas
 - → usualmente, as operações são adição e multiplicação

$$+:A\times A\rightarrow A \qquad (a,b)\rightarrow a+b$$

$$\cdot : A \times A \rightarrow A \qquad (a,b) \rightarrow a \cdot b$$

Anéis

DEFINIÇÃO:

Um conjunto não vazio A é chamado Anel (ou anel associativo) e representado por

$$\langle A, +, \cdot \rangle$$

se em A estiverem definidas as operações:

$$+:A\times A\rightarrow A \qquad (a,b)\rightarrow a+b$$

$$\cdot : A \times A \rightarrow A \qquad (a,b) \rightarrow a \cdot b$$

para as quais A é fechado e se forem válidas as seguintes propriedades:

Propriedades:

$$(A_1)$$
 a,b

 (A_2)

 (A_3)

 (A_4)

 (M_1)

(AM)

 $a,b \in A$

 $a, e \in A$

$$a,b,c \in A$$
 $(a+b)+c=a+(b+c)$

a+e=e+a=a

 $a, a' \in A$ a+a'=a'+a=e

 $a,b,c \in A$ $(a \cdot b) \cdot c = a \cdot (b \cdot c)$

 $a,b,c \in A$ $a \cdot (b+c) = a \cdot b + a \cdot c$

 $(b+c)\cdot a=b\cdot a+c\cdot a$

Elemento neutro da adição

Elemento simétrico da adição

Associativa da multiplicação

Distributiva da multiplicação em

relação à adição

Comutativa da adição

Anel Comutativo

Se além das propriedades para definir anel a estrutura algébrica,

$$\langle A, +, \cdot \rangle$$

também, for comutativa da multiplicação

$$(M_2)$$
 $a,b \in A$ $a \cdot b = b \cdot a$

<u> Anel Comutativo</u>

Se além das propriedades para definir anel a estrutura algébrica,

$$\langle A, +, \cdot \rangle$$

também, for comutativa da multiplicação

$$(M_2)$$
 $a,b \in A$ $a \cdot b = b \cdot a$

Anel com unidade

Se além das propriedades para definir anel a estrutura algébrica,

$$\langle A, +, \cdot \rangle$$

apresentar, também, elemento neutro e ele for único.

$$M_3$$
) $a \in A$ $a \cdot 1 = 1 \cdot a = a$

EXEMPLOS:

a) (IN, +, ·) não é anel, pois não satisfaz a propriedade do elemento simetrizável para a adição.

EXEMPLOS:

a) (IN, +, ·) não é anel, pois não satisfaz a propriedade do elemento simetrizável para a adição.

b) $\langle \mathbb{Q}, +, \cdot \rangle$ é anel, no qual o elemento neutro para adição é o número zero.

- 1º) verificar operação interna (fechamento)
- 2°) Associativa $\langle \mathbb{Z}, + \rangle$
- 3°) Comutativa $\langle \mathbb{Z}, + \rangle$
- 4°) Elemento Neutro $\langle \mathbb{Z}, + \rangle$
- 5°) Elemento Simétrico $\langle \mathbb{Z}, + \rangle$
- $6^{\rm o}$) Associativa $\langle \mathbb{Z}, \cdot \rangle$
- 7°) Distributiva

ANEL

8°) Comutativa $\langle \mathbb{Z}, \cdot \rangle$ ANEL COMUTATIVO

1°) verificar operação interna (fechamento):

+ :
$$\mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$$
 $(a,b) \rightarrow a+b$
· : $\mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$ $(a,b) \rightarrow a \cdot b$

$$\cdot : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \qquad (a,b) \to a \cdot b$$

1°) verificar operação interna (fechamento):

Admite operação interna!

+ :
$$\mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$$
 $(a,b) \rightarrow a+b$
· : $\mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$ $(a,b) \rightarrow a \cdot b$

$$\cdot : \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z} \qquad (a,b) \rightarrow a \cdot b$$

1°) verificar operação interna (fechamento):

$$+: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \qquad (a,b) \to a+b$$

$$\cdot : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \qquad (a,b) \to a \cdot b$$

2°) Associativa
$$\langle \mathbb{Z}, + \rangle$$
: $a,b,c \in \mathbb{Z}$ $(a*b)*c=a*(b*c)$

Admite operação interna!

1°) verificar operação interna (fechamento):

Admite operação interna!

$$+ : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \qquad (a,b) \to a+b$$
$$\cdot : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \qquad (a,b) \to a \cdot b$$

2°) Associativa
$$\langle \mathbb{Z}, + \rangle$$
: $a,b,c \in \mathbb{Z}$ $(a*b)*c=a*(b*c)$

$$(a+b)+c=a+b+c$$

1º) verificar operação interna (fechamento):

Admite operação interna!

$$+ : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \qquad (a,b) \to a+b$$
$$\cdot : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \qquad (a,b) \to a \cdot b$$

2º) Associativa
$$\langle \mathbb{Z}, + \rangle$$
: $a,b,c \in \mathbb{Z}$ $(a*b)*c=a*(b*c)$ $(a+b)+c=a+b+c$ $a+(b+c)=a+b+c$

1º) verificar operação interna (fechamento):

Admite operação interna!

1°) verificar operação interna (fechamento):

Admite operação interna!

$$+ : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \qquad (a,b) \to a+b$$
$$\cdot : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \qquad (a,b) \to a \cdot b$$

2°) Associativa
$$\langle \mathbb{Z}, + \rangle$$
: $a,b,c \in \mathbb{Z}$ $(a*b)*c=a*(b*c)$ $(a+b)+c=a+b+c$ $a+(b+c)=a+b+c$

1°) verificar operação interna (fechamento):

$$+: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z} \qquad (a,b) \rightarrow a+b$$

$$\cdot : \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z} \qquad (a,b) \rightarrow a \cdot b$$

2°) Associativa
$$\langle \mathbb{Z}, + \rangle$$
: $a,b,c \in \mathbb{Z}$ $(a*b)*c=a*(b*c)$

3°) Comutativa
$$\langle \mathbb{Z}, + \rangle$$
: $a,b \in \mathbb{Z}$ $a*b=b*a$

Admite operação interna!

EXEMPLO: Verifique se $(\mathbb{Z}, +, \cdot)$ é um anel comutativo.

1°) verificar operação interna (fechamento):

$$+ : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \qquad (a,b) \to a+b$$
$$\cdot : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \qquad (a,b) \to a \cdot b$$

2°) Associativa
$$\langle \mathbb{Z}, + \rangle$$
: $a,b,c \in \mathbb{Z}$ $(a*b)*c=a*(b*c)$

3°) Comutativa
$$\langle \mathbb{Z}, + \rangle$$
: $a,b \in \mathbb{Z}$ $a*b=b*a$ $a+b$ $b+a$

Admite operação interna!

1°) verificar operação interna (fechamento):

$$+ : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \qquad (a,b) \to a+b$$
$$\cdot : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \qquad (a,b) \to a \cdot b$$

2°) Associativa
$$\langle \mathbb{Z}, + \rangle$$
: $a,b,c \in \mathbb{Z}$ $(a*b)*c=a*(b*c)$

3°) Comutativa
$$\langle \mathbb{Z}, + \rangle$$
: $a,b \in \mathbb{Z}$ $a*b=b*a$ $a+b = b+a$

Admite operação interna!

1°) verificar operação interna (fechamento):

$$+ : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \qquad (a,b) \to a+b$$

$$\cdot : \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z} \qquad (a,b) \rightarrow a \cdot b$$

2°) Associativa
$$\langle \mathbb{Z}, + \rangle$$
: $a,b,c \in \mathbb{Z}$ $(a*b)*c=a*(b*c)$

3°) Comutativa
$$\langle \mathbb{Z}, + \rangle$$
: $a,b \in \mathbb{Z}$ $a*b=b*a$ $a+b = b+a$

Admite operação interna!

Admite associativa!

1°) verificar operação interna (fechamento):

$$+: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \qquad (a,b) \to a+b$$

$$\cdot : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \qquad (a,b) \to a \cdot b$$

2°) Associativa
$$\langle \mathbb{Z}, + \rangle$$
: $a,b,c \in \mathbb{Z}$ $(a*b)*c=a*(b*c)$

3°) Comutativa
$$\langle \mathbb{Z}, + \rangle$$
: $a,b \in \mathbb{Z}$ $a*b=b*a$

4°) Elemento Neutro
$$\langle \mathbb{Z}, + \rangle$$
: $a, e \in \mathbb{Z}$ $a * e = e * a = a$

Admite operação interna!

Admite associativa!

TA LESB Centro Universitário

EXEMPLO: Verifique se $\langle \mathbb{Z}, +, \cdot \rangle$ é um anel comutativo.

1°) verificar operação interna (fechamento):

$$+: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \qquad (a,b) \to a+b$$

$$\cdot : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \qquad (a,b) \to a \cdot b$$

2°) Associativa
$$\langle \mathbb{Z}, + \rangle$$
: $a,b,c \in \mathbb{Z}$ $(a*b)*c=a*(b*c)$

3°) Comutativa
$$\langle \mathbb{Z}, + \rangle$$
: $a,b \in \mathbb{Z}$ $a*b=b*a$

4°) Elemento Neutro
$$\langle \mathbb{Z}, + \rangle$$
: $a, e \in \mathbb{Z}$ $a*e=e*a=a$ $a+e=a \longrightarrow e=a-a \longrightarrow e=0$

Admite operação interna!

Admite associativa!

*já provou-se a comutativa

1°) verificar operação interna (fechamento):

$$+: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z} \qquad (a,b) \rightarrow a+b$$

$$\cdot : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \qquad (a,b) \to a \cdot b$$

2°) Associativa
$$\langle \mathbb{Z}, + \rangle$$
: $a,b,c \in \mathbb{Z}$ $(a*b)*c=a*(b*c)$

3°) Comutativa
$$\langle \mathbb{Z}, + \rangle$$
: $a,b \in \mathbb{Z}$ $a*b=b*a$

4°) Elemento Neutro
$$\langle \mathbb{Z}, + \rangle$$
: $a, e \in \mathbb{Z}$ $a*e=e*a=a$ $a+e=a \longrightarrow e=a-a \longrightarrow e=0$

Admite operação interna!

Admite associativa!

EXEMPLO: Verifique se $(\mathbb{Z}, +, \cdot)$ é um anel comutativo.

1°) verificar operação interna (fechamento):

$$+ : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \qquad (a,b) \to a+b$$
$$\cdot : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \qquad (a,b) \to a \cdot b$$

2°) Associativa
$$\langle \mathbb{Z}, + \rangle$$
: $a,b,c \in \mathbb{Z}$ $(a*b)*c=a*(b*c)$

3°) Comutativa
$$\langle \mathbb{Z}, + \rangle$$
: $a,b \in \mathbb{Z}$ $a*b=b*a$

4°) Elemento Neutro
$$\langle \mathbb{Z}, + \rangle$$
: $a, e \in \mathbb{Z}$ $a*e=e*a=a$

$$a+e=a \longrightarrow e=a-a \longrightarrow e=0$$

*já provou-se a comutativa

Admite operação interna!

Admite associativa!

Admite comutativa!

Admite elemento neutro!

1°) verificar operação interna (fechamento):

$$+: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \qquad (a,b) \to a+b$$

$$\cdot : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \qquad (a,b) \to a \cdot b$$

2°) Associativa $\langle \mathbb{Z}, + \rangle$: $a,b,c \in \mathbb{Z}$ (a*b)*c=a*(b*c)

3°) Comutativa
$$\langle \mathbb{Z}, + \rangle$$
: $a,b \in \mathbb{Z}$ $a*b=b*a$

4°) Elemento Neutro
$$\langle \mathbb{Z}, + \rangle$$
: $a, e \in \mathbb{Z}$ $a*e=e*a=a$

5°) Elemento Simétrico $\langle \mathbb{Z}, + \rangle$: $a,a' \in \mathbb{Z}$ a*a'=a'*a=e

Admite operação interna!

Admite associativa!

Admite comutativa!

Admite elemento neutro!

1°) verificar operação interna (fechamento):

$$+ : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \qquad (a,b) \to a+b$$
$$\cdot : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \qquad (a,b) \to a \cdot b$$

$$u, v \neq u$$
 $u, v \neq u \cdot v$

2°) Associativa
$$\langle \mathbb{Z}, + \rangle$$
: $a,b,c \in \mathbb{Z}$ $(a*b)*c=a*(b*c)$

3°) Comutativa
$$\langle \mathbb{Z}, + \rangle$$
: $a,b \in \mathbb{Z}$ $a*b=b*a$

4°) Elemento Neutro
$$\langle \mathbb{Z}, + \rangle$$
: $a, e \in \mathbb{Z}$ $a*e=e*a=a$

5°) Elemento Simétrico
$$\langle \mathbb{Z}, + \rangle$$
: $a,a' \in \mathbb{Z}$ $a*a'=a'*a=e$ $a+a'=e \longrightarrow a+a'=0 \longrightarrow a'=-a$

Admite operação interna!

Admite associativa!

Admite comutativa!

Admite elemento neutro!

1°) verificar operação interna (fechamento):

$$+ : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \qquad (a,b) \to a+b$$
$$\cdot : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \qquad (a,b) \to a \cdot b$$

2°) Associativa
$$\langle \mathbb{Z}, + \rangle$$
: $a,b,c \in \mathbb{Z}$ $(a*b)*c=a*(b*c)$

3°) Comutativa
$$\langle \mathbb{Z}, + \rangle$$
: $a,b \in \mathbb{Z}$ $a*b=b*a$

4°) Elemento Neutro
$$\langle \mathbb{Z}, + \rangle$$
: $a, e \in \mathbb{Z}$ $a*e=e*a=a$

5°) Elemento Simétrico
$$\langle \mathbb{Z}, + \rangle$$
: a , a ' $\in \mathbb{Z}$ $a*a$ ' $= a$ ' $*a = e$

$$a+a$$
' $= e \longrightarrow a+a$ ' $= 0 \longrightarrow a$ ' $= -a$
*já provou-se a comutativa

Admite operação interna!

Admite associativa!

Admite comutativa!

Admite elemento neutro!

1°) verificar operação interna (fechamento):

$$+: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z} \qquad (a,b) \rightarrow a+b$$

$$\cdot : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \qquad (a,b) \to a \cdot b$$

- 2°) Associativa $\langle \mathbb{Z}, + \rangle$: $a,b,c \in \mathbb{Z}$ (a*b)*c=a*(b*c)
- 3°) Comutativa $\langle \mathbb{Z}, + \rangle$: $a,b \in \mathbb{Z}$ a*b=b*a
- 4°) Elemento Neutro $\langle \mathbb{Z}, + \rangle$: $a, e \in \mathbb{Z}$ a*e=e*a=a
- 5°) Elemento Simétrico $\langle \mathbb{Z}, + \rangle$: $a,a' \in \mathbb{Z}$ a*a'=a'*a=e $a+a'=e \longrightarrow a+a'=0 \longrightarrow a'=-a$ *já provou-se a comutativa

Admite operação interna!

Admite associativa!

Admite comutativa!

Admite elemento neutro!

1°) verificar operação interna (fechamento):

$$+: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z} \qquad (a,b) \rightarrow a+b$$

$$\cdot : \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z} \qquad (a,b) \rightarrow a \cdot b$$

2°) Associativa
$$\langle \mathbb{Z}, + \rangle : a, b, c \in \mathbb{Z}$$
 $(a*b)*c=a*(b*c)$

3°) Comutativa
$$\langle \mathbb{Z}, + \rangle : a, b \in \mathbb{Z}$$
 $a*b=b*a$

4°) Elemento Neutro
$$\langle \mathbb{Z}, + \rangle$$
: $a, e \in \mathbb{Z}$ $a*e=e*a=a$

5°) Elemento Simétrico
$$\langle \mathbb{Z}, + \rangle$$
: $a,a' \in \mathbb{Z}$ $a*a'=a'*a=e$

Admite operação interna!

Admite associativa!

Admite comutativa!

Admite elemento neutro!

1°) verificar operação interna (fechamento):

$$+ : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \qquad (a,b) \to a+b$$
$$\cdot : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \qquad (a,b) \to a \cdot b$$

2°) Associativa
$$\langle \mathbb{Z}, + \rangle : a, b, c \in \mathbb{Z}$$
 $(a*b)*c=a*(b*c)$

3°) Comutativa
$$\langle \mathbb{Z}, + \rangle : a, b \in \mathbb{Z}$$
 $a*b=b*a$

4°) Elemento Neutro
$$\langle \mathbb{Z}, + \rangle$$
: $a, e \in \mathbb{Z}$ $a*e=e*a=a$

5°) Elemento Simétrico
$$\langle \mathbb{Z}, + \rangle$$
: $a,a' \in \mathbb{Z}$ $a*a'=a'*a=e$

6°) Associativa
$$\langle \mathbb{Z}, \cdot \rangle$$
: $a,b,c \in \mathbb{Z}$ $(a*b)*c=a*(b*c)$

Admite operação interna!

Admite associativa!

Admite comutativa!

Admite elemento neutro!

1°) verificar operação interna (fechamento):

$$+ : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \qquad (a,b) \to a+b$$
$$\cdot : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \qquad (a,b) \to a \cdot b$$

- 2°) Associativa $\langle \mathbb{Z}, + \rangle : a, b, c \in \mathbb{Z}$ (a*b)*c=a*(b*c)
- 3°) Comutativa $\langle \mathbb{Z}, + \rangle : a, b \in \mathbb{Z}$ a*b=b*a
- 4°) Elemento Neutro $\langle \mathbb{Z}, + \rangle$: $a, e \in \mathbb{Z}$ a*e=e*a=a
- 5°) Elemento Simétrico $\langle \mathbb{Z}, + \rangle$: $a,a' \in \mathbb{Z}$ a*a'=a'*a=e
- 6°) Associativa $\langle \mathbb{Z}, \cdot \rangle$: $a,b,c \in \mathbb{Z}$ (a*b)*c=a*(b*c) $(a \cdot b) \cdot c = a \cdot b \cdot c$

Admite operação interna!

Admite associativa!

Admite comutativa!

Admite elemento neutro!

1°) verificar operação interna (fechamento):

$$+: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z} \qquad (a,b) \rightarrow a+b$$

$$\cdot : \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z} \qquad (a,b) \rightarrow a \cdot b$$

- 2°) Associativa $\langle \mathbb{Z}, + \rangle : a, b, c \in \mathbb{Z}$ (a*b)*c=a*(b*c)
- 3°) Comutativa $\langle \mathbb{Z}, + \rangle$: $a,b \in \mathbb{Z}$ a*b=b*a
- 4°) Elemento Neutro $\langle \mathbb{Z}, + \rangle$: $a, e \in \mathbb{Z}$ a*e=e*a=a
- 5°) Elemento Simétrico $\langle \mathbb{Z}, + \rangle$: $a,a' \in \mathbb{Z}$ a*a'=a'*a=e
- 6°) Associativa $\langle \mathbb{Z}, \cdot \rangle$: $a,b,c \in \mathbb{Z}$ (a*b)*c=a*(b*c) $(a\cdot b)\cdot c=a\cdot b\cdot c$ $a\cdot (b\cdot c)=a\cdot b\cdot c$

Admite operação interna!

Admite associativa!

Admite comutativa!

Admite elemento neutro!

1°) verificar operação interna (fechamento):

$$+ : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \qquad (a,b) \to a+b$$
$$\cdot : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \qquad (a,b) \to a \cdot b$$

- 2°) Associativa $\langle \mathbb{Z}, + \rangle : a,b,c \in \mathbb{Z}$ (a*b)*c=a*(b*c)
- 3°) Comutativa $\langle \mathbb{Z}, + \rangle : a, b \in \mathbb{Z}$ a*b=b*a
- 4°) Elemento Neutro $\langle \mathbb{Z}, + \rangle$: $a, e \in \mathbb{Z}$ a*e=e*a=a
- 5°) Elemento Simétrico $\langle \mathbb{Z}, + \rangle$: $a,a' \in \mathbb{Z}$ a*a'=a'*a=e
- 6°) Associativa $\langle \mathbb{Z}, \cdot \rangle$: $a,b,c \in \mathbb{Z}$ (a*b)*c=a*(b*c) $(a\cdot b)\cdot c=a\cdot b\cdot c$ $a\cdot (b\cdot c)=a\cdot b\cdot c$

Admite operação interna!

Admite associativa!

Admite comutativa!

Admite elemento neutro!

Admite elemento simétrico!

1°) verificar operação interna (fechamento):

$$+: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z} \qquad (a,b) \rightarrow a+b$$

$$\cdot : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \qquad (a,b) \to a \cdot b$$

2°) Associativa
$$\langle \mathbb{Z}, + \rangle : a, b, c \in \mathbb{Z}$$
 $(a*b)*c=a*(b*c)$

3°) Comutativa
$$\langle \mathbb{Z}, + \rangle$$
: $a,b \in \mathbb{Z}$ $a*b=b*a$

4°) Elemento Neutro
$$\langle \mathbb{Z}, + \rangle$$
: $a, e \in \mathbb{Z}$ $a*e=e*a=a$

5°) Elemento Simétrico
$$\langle \mathbb{Z}, + \rangle$$
: $a,a' \in \mathbb{Z}$ $a*a'=a'*a=e$

6°) Associativa
$$\langle \mathbb{Z}, \cdot \rangle$$
: $a,b,c \in \mathbb{Z}$ $(a*b)*c=a*(b*c)$

7°) Distributiva
$$\langle \mathbb{Z}, \cdot \rangle$$
 : $a,b,c \in \mathbb{Z}$ $a \cdot (b+c) = a \cdot b + a \cdot c$ e $(b+c) \cdot a = b \cdot a + c \cdot a$

Admite operação interna!

Admite associativa!

Admite comutativa!

Admite elemento neutro!

Admite elemento simétrico!

1º) verificar operação interna (fechamento):

$$+: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z} \qquad (a,b) \rightarrow a+b$$

$$\cdot : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \qquad (a,b) \to a \cdot b$$

2°) Associativa
$$\langle \mathbb{Z}, + \rangle : a, b, c \in \mathbb{Z}$$
 $(a*b)*c=a*(b*c)$

3°) Comutativa
$$\langle \mathbb{Z}, + \rangle : a, b \in \mathbb{Z}$$
 $a*b=b*a$

4°) Elemento Neutro
$$\langle \mathbb{Z}, + \rangle$$
: $a, e \in \mathbb{Z}$ $a*e=e*a=a$

5°) Elemento Simétrico
$$\langle \mathbb{Z}, + \rangle$$
: $a,a' \in \mathbb{Z}$ $a*a'=a'*a=e$

6°) Associativa
$$\langle \mathbb{Z}, \cdot \rangle$$
: $a,b,c \in \mathbb{Z}$ $(a*b)*c=a*(b*c)$

7°) Distributiva
$$\langle \mathbb{Z}, \cdot \rangle$$
 : $a,b,c \in \mathbb{Z}$ $a \cdot (b+c) = \underline{a \cdot b} + a \cdot c$ e $(b+c) \cdot a = \underline{b \cdot a} + c \cdot a$ $\underline{a \cdot b} = \underline{b \cdot a}$

Admite operação interna!

Admite associativa!

Admite comutativa!

Admite elemento neutro!

Admite elemento simétrico!

Admite operação interna!

Admite associativa!

Admite comutativa!

EXEMPLO: Verifique se $(\mathbb{Z}, +, \cdot)$ é um anel comutativo.

- 1°) verificar operação interna (fechamento): $+: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \qquad (a,b) \to a+b$
 - $\cdot : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \qquad (a,b) \to a \cdot b$
- 2°) Associativa $\langle \mathbb{Z}, + \rangle : a, b, c \in \mathbb{Z}$ (a*b)*c=a*(b*c)
- 3°) Comutativa $\langle \mathbb{Z}, + \rangle$: $a,b \in \mathbb{Z}$ a*b=b*a
- 4°) Elemento Neutro $\langle \mathbb{Z}, + \rangle$: $a, e \in \mathbb{Z}$ a*e=e*a=a
- 5°) Elemento Simétrico $\langle \mathbb{Z}, + \rangle$: $a,a' \in \mathbb{Z}$ a*a'=a'*a=e
- 6°) Associativa $\langle \mathbb{Z}, \cdot \rangle$: $a,b,c \in \mathbb{Z}$ (a*b)*c=a*(b*c)
- 7°) Distributiva $\langle \mathbb{Z}, \cdot \rangle$: $a,b,c \in \mathbb{Z}$ $a \cdot (b+c) = \underline{a \cdot b} + \underline{a \cdot c}$ e $(b+c) \cdot a = \underline{b \cdot a} + \underline{c \cdot a}$

$$a \cdot b = b \cdot a$$

Admite associativa!

Admite elemento neutro!

Admite elemento simétrico!

 $a \cdot c = c \cdot a$

Admite operação interna!

Admite associativa!

Admite comutativa!

Admite elemento neutro!

Admite elemento simétrico!

Admite associativa!

EXEMPLO: Verifique se $(\mathbb{Z}, +, \cdot)$ é um anel comutativo.

- 1°) verificar operação interna (fechamento): + : $\mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ $(a,b) \to a+b$

- $\cdot : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \qquad (a,b) \to a \cdot b$
- 2°) Associativa $\langle \mathbb{Z}, + \rangle : a,b,c \in \mathbb{Z}$ (a*b)*c=a*(b*c)
- 3°) Comutativa $\langle \mathbb{Z}, + \rangle : a, b \in \mathbb{Z}$ a*b=b*a
- 4°) Elemento Neutro $\langle \mathbb{Z}, + \rangle$: $a, e \in \mathbb{Z}$ a*e=e*a=a
- 5°) Elemento Simétrico $\langle \mathbb{Z}, + \rangle$: $a,a' \in \mathbb{Z}$ a*a'=a'*a=e
- 6°) Associativa $\langle \mathbb{Z}, \cdot \rangle$: $a,b,c \in \mathbb{Z}$ (a*b)*c=a*(b*c)
- 7°) Distributiva $\langle \mathbb{Z}, \cdot \rangle : a, b, c \in \mathbb{Z} \ a \cdot (b+c) = \underline{a \cdot b} + \underline{a \cdot c} \ e \ (b+c) \cdot a = \underline{b \cdot a} + \underline{c \cdot a}$

Vale comutativa

- 1°) verificar operação interna (fechamento): $+: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \qquad (a,b) \to a+b$

- $\cdot : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \qquad (a,b) \to a \cdot b$
- 2°) Associativa $\langle \mathbb{Z}, + \rangle : a, b, c \in \mathbb{Z}$ (a*b)*c=a*(b*c)
- 3°) Comutativa $\langle \mathbb{Z}, + \rangle$: $a,b \in \mathbb{Z}$ a*b=b*a
- 4°) Elemento Neutro $\langle \mathbb{Z}, + \rangle$: $a, e \in \mathbb{Z}$ a*e=e*a=a
- 5°) Elemento Simétrico $\langle \mathbb{Z}, + \rangle$: $a,a' \in \mathbb{Z}$ a*a'=a'*a=e
- 6°) Associativa $\langle \mathbb{Z}, \cdot \rangle$: $a,b,c \in \mathbb{Z}$ (a*b)*c=a*(b*c)
- 7°) Distributiva $\langle \mathbb{Z}, \cdot \rangle : a, b, c \in \mathbb{Z}$ $a \cdot (b+c) = \underline{a \cdot b} + \underline{a \cdot c}$ e $(b+c) \cdot a = \underline{b \cdot a} + \underline{c \cdot a}$

Admite operação interna!

Admite associativa!

Admite comutativa!

Admite elemento neutro!

Admite associativa!

Admite elemento simétrico!

Admite distributiva!

Vale comutativa

$$+: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \qquad (a,b) \to a+b$$

$$\cdot : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \qquad (a,b) \to a \cdot b$$

2°) Associativa
$$\langle \mathbb{Z}, + \rangle : a, b, c \in \mathbb{Z}$$
 $(a*b)*c=a*(b*c)$

3°) Comutativa
$$\langle \mathbb{Z}, + \rangle : a, b \in \mathbb{Z}$$
 $a*b=b*a$

4°) Elemento Neutro
$$\langle \mathbb{Z}, + \rangle$$
: $a, e \in \mathbb{Z}$ $a*e=e*a=a$

5°) Elemento Simétrico
$$\langle \mathbb{Z}, + \rangle$$
: $a,a' \in \mathbb{Z}$ $a*a'=a'*a=e$

6°) Associativa
$$\langle \mathbb{Z}, \cdot \rangle$$
: $a,b,c \in \mathbb{Z}$ $(a*b)*c=a*(b*c)$

7°) Distributiva $\langle \mathbb{Z}, \cdot \rangle$: $a,b,c \in \mathbb{Z}$ $a \cdot (b+c) = a \cdot b + a \cdot c$ e $(b+c) \cdot a = b \cdot a + c \cdot a$ Admite distributiva!

Admite associativa!

Admite operação interna!

Admite comutativa!

Admite elemento neutro!

Admite elemento simétrico!

EXEMPLO: Verifique se $(\mathbb{Z}, +, \cdot)$ é um anel comutativo.

1º) verificar operação interna (fechamento):

$$+: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \qquad (a,b) \to a+b$$

$$\cdot : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \qquad (a,b) \to a \cdot b$$

- 2°) Associativa $\langle \mathbb{Z}, + \rangle : a, b, c \in \mathbb{Z}$ (a*b)*c=a*(b*c)
- 3°) Comutativa $\langle \mathbb{Z}, + \rangle$: $a,b \in \mathbb{Z}$ a*b=b*a
- 4°) Elemento Neutro $\langle \mathbb{Z}, + \rangle$: $a, e \in \mathbb{Z}$ a*e=e*a=a
- 5°) Elemento Simétrico $\langle \mathbb{Z}, + \rangle$: $a,a' \in \mathbb{Z}$ a*a'=a'*a=e

7°) Distributiva $\langle \mathbb{Z}, \cdot \rangle$: $a,b,c \in \mathbb{Z}$ $a \cdot (b+c) = a \cdot b + a \cdot c$ e $(b+c) \cdot a = b \cdot a + c \cdot a$

- 6°) Associativa $\langle \mathbb{Z}, \cdot \rangle$: $a,b,c \in \mathbb{Z}$ (a*b)*c=a*(b*c)
- 8°) Comutativa $\langle \mathbb{Z}, \cdot \rangle : a, b \in \mathbb{Z}$ a*b=b*a

Admite operação interna!

Admite associativa!

Admite comutativa!

Admite elemento neutro!

Admite elemento simétrico!

Admite associativa!

Admite distributiva!

EXEMPLO: Verifique se $(\mathbb{Z}, +, \cdot)$ é um anel comutativo.

- 1°) verificar operação interna (fechamento): $+: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \qquad (a,b) \to a+b$

 - $\cdot : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \qquad (a,b) \to a \cdot b$
- 2°) Associativa $\langle \mathbb{Z}, + \rangle : a, b, c \in \mathbb{Z}$ (a*b)*c=a*(b*c)
- 3°) Comutativa $\langle \mathbb{Z}, + \rangle$: $a,b \in \mathbb{Z}$ a*b=b*a
- 4°) Elemento Neutro $\langle \mathbb{Z}, + \rangle$: $a, e \in \mathbb{Z}$ a*e=e*a=a
- 5°) Elemento Simétrico $\langle \mathbb{Z}, + \rangle$: $a,a' \in \mathbb{Z}$ a*a'=a'*a=e6°) Associativa $\langle \mathbb{Z}, \cdot \rangle$: $a,b,c \in \mathbb{Z}$ (a*b)*c=a*(b*c)
- 7°) Distributiva $\langle \mathbb{Z}, \cdot \rangle$: $a,b,c \in \mathbb{Z}$ $a \cdot (b+c) = a \cdot b + a \cdot c$ e $(b+c) \cdot a = b \cdot a + c \cdot a$
- 8°) Comutativa $\langle \mathbb{Z}, \cdot \rangle : a, b \in \mathbb{Z}$ a*b=b*a

Admite operação interna!

Admite associativa!

Admite comutativa!

Admite elemento neutro!

Admite elemento simétrico!

Admite associativa!

Admite distributiva!

Admite operação interna!

EXEMPLO: Verifique se $(\mathbb{Z}, +, \cdot)$ é um anel comutativo.

7°) Distributiva $\langle \mathbb{Z}, \cdot \rangle$: $a,b,c \in \mathbb{Z}$ $a \cdot (b+c) = a \cdot b + a \cdot c$ e $(b+c) \cdot a = b \cdot a + c \cdot a$

- 1°) verificar operação interna (fechamento): $+: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \qquad (a,b) \to a+b$

 - $\cdot : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \qquad (a,b) \to a \cdot b$
- 2°) Associativa $\langle \mathbb{Z}, + \rangle : a, b, c \in \mathbb{Z}$ (a*b)*c=a*(b*c)
- 3°) Comutativa $\langle \mathbb{Z}, + \rangle$: $a,b \in \mathbb{Z}$ a*b=b*a
- 4°) Elemento Neutro $\langle \mathbb{Z}, + \rangle$: $a, e \in \mathbb{Z}$ a*e=e*a=a
- 5°) Elemento Simétrico $\langle \mathbb{Z}, + \rangle$: $a,a' \in \mathbb{Z}$ a*a'=a'*a=e
- 6°) Associativa $\langle \mathbb{Z}, \cdot \rangle$: $a,b,c \in \mathbb{Z}$ (a*b)*c=a*(b*c)
- 8°) Comutativa $\langle \mathbb{Z}, \cdot \rangle : a, b \in \mathbb{Z}$ a*b=b*a

- - Admite associativa!
- Admite comutativa!
- Admite elemento neutro!
- Admite elemento simétrico!
 - Admite associativa!
 - Admite distributiva!

- 1°) verificar operação interna (fechamento):
 - $+: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \qquad (a,b) \to a+b$
 - $\cdot : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \qquad (a,b) \to a \cdot b$
- 2°) Associativa $\langle \mathbb{Z}, + \rangle : a, b, c \in \mathbb{Z}$ (a*b)*c=a*(b*c)
- 3°) Comutativa $\langle \mathbb{Z}, + \rangle$: $a,b \in \mathbb{Z}$ a*b=b*a
- 4°) Elemento Neutro $\langle \mathbb{Z}, + \rangle$: $a, e \in \mathbb{Z}$ a*e=e*a=a
- 5°) Elemento Simétrico $\langle \mathbb{Z}, + \rangle$: $a,a' \in \mathbb{Z}$ a*a'=a'*a=e
- 6°) Associativa $\langle \mathbb{Z}, \cdot \rangle$: $a,b,c \in \mathbb{Z}$ (a*b)*c=a*(b*c)
- 7°) Distributiva $\langle \mathbb{Z}, \cdot \rangle$: $a,b,c \in \mathbb{Z}$ $a \cdot (b+c) = a \cdot b + a \cdot c$ e $(b+c) \cdot a = b \cdot a + c \cdot a$ 8°) Comutativa $\langle \mathbb{Z}, \cdot \rangle : a, b \in \mathbb{Z}$ a*b=b*a

Admite associativa!

Admite operação interna!

Admite comutativa!

Admite elemento neutro!

Admite elemento simétrico!

Admite associativa!

Admite distributiva!

Admite comutativa!

EXEMPLO: Verifique se $(\mathbb{Z}, +, \cdot)$ é um anel comutativo.

1º) verificar operação interna (fechamento):

$$+: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z} \qquad (a,b) \rightarrow a+b$$

$$\cdot : \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z} \qquad (a,b) \rightarrow a \cdot b$$

- 2°) Associativa $\langle \mathbb{Z}, + \rangle : a, b, c \in \mathbb{Z}$ (a*b)*c=a*(b*c)
- 3°) Comutativa $\langle \mathbb{Z}, + \rangle$: $a,b \in \mathbb{Z}$ a*b=b*a
- 4°) Elemento Neutro $\langle \mathbb{Z}, + \rangle$: $a, e \in \mathbb{Z}$ a*e=e*a=a
- 5°) Elemento Simétrico $\langle \mathbb{Z}, + \rangle$: $a,a' \in \mathbb{Z}$ a*a'=a'*a=e
- 6°) Associativa $\langle \mathbb{Z}, \cdot \rangle$: $a,b,c \in \mathbb{Z}$ (a*b)*c=a*(b*c)
- 7°) Distributiva $\langle \mathbb{Z}, \cdot \rangle$: $a,b,c \in \mathbb{Z}$ $a \cdot (b+c) = a \cdot b + a \cdot c$ e $(b+c) \cdot a = b \cdot a + c \cdot a$ Admite distributiva!
- 8°) Comutativa $\langle \mathbb{Z}, \cdot \rangle : a, b \in \mathbb{Z}$ a*b=b*a

Admite operação interna!

Admite associativa!

Admite comutativa!

Admite elemento neutro!

Admite elemento simétrico!

Admite associativa!

Admite comutativa!

- 1°) verificar operação interna (fechamento)
- 2°) Associativa $\langle \mathbb{Z}, + \rangle$
- 3°) Comutativa $\langle \mathbb{Z}, + \rangle$
- 4°) Elemento Neutro $\langle \mathbb{Z}, + \rangle$
- 5°) Elemento Simétrico $\langle \mathbb{Z}, + \rangle$
- $6^{\rm o}$) Associativa $\langle \mathbb{Z}, \cdot \rangle$
- 7°) Distributiva $\langle \mathbb{Z}, \cdot \rangle$
- 8°) Comutativa $\langle \mathbb{Z}, \cdot \rangle$

É ANEL COMUTATIVO!!!

- 1º) verificar operação interna (fechamento)
- 2°) Associativa $\langle \mathbb{Z}, + \rangle$
- 3°) Comutativa $\langle \mathbb{Z}, + \rangle$
- 4°) Elemento Neutro $\langle \mathbb{Z}, + \rangle$
- 5°) Elemento Simétrico ⟨ℤ, + ⟩
- $6^{\rm o}$) Associativa $\langle \mathbb{Z}, \cdot \rangle$
- 7°) Distributiva $\langle \mathbb{Z}, \cdot \rangle$
- 8°) Comutativa $\langle \mathbb{Z}, \cdot \rangle$

Lá no material voce Lá no material voce encontra o exemplo para encontra o exemplo com encontra o exemplo para encontra o exemplo para encontra o exemplo para unidade. Veja lá! unidade.

EXEMPLO: Outros exemplos de anel:

a)
$$\langle \mathbb{Z}, +, \cdot \rangle$$
 $\langle \mathbb{R}, +, \cdot \rangle$ $\langle \mathbb{C}, +, \cdot \rangle$ $\langle M_n(R), +, \cdot \rangle$ $\langle n\mathbb{Z}, +, \cdot \rangle$

b) operações de $I_2 = \{0,1\}$

+	0 0 1	1	0 1	0	1	7	,
0	0	1	0	0	0	$\langle I_{2,}$ + ,	\cdot \rangle
1	1	0	1	0	1		

Considere o mostrador do relógio:

→ Imagine que num determinado instante ele marca 11h

Considere o mostrador do relógio:

- → Imagine que num determinado instante ele marca 11h;
- → Três horas depois, o relógio marca 2h;
- → Seis horas depois, o relógio marca 5h;
- Onze horas depois, o relógio marca 10h;

Matematicamente, podemos indicar um conjunto $I_{12} = \{1, 2, 3, ..., 12\}$ no qual

$$11 + 3 = 2$$
, $11 + 6 = 5$ e $11 + 11 = 10$

Considere o mostrador do relógio:

- → Imagine que num determinado instante ele marca 11h;
- → Três horas depois, o relógio marca 2h;
- → Seis horas depois, o relógio marca 5h;
- Onze horas depois, o relógio marca 10h;

Matematicamente, podemos indicar um conjunto $I_{12} = \{1, 2, 3, ..., 12\}$ no qual

$$11 + 3 = 2$$
, $11 + 6 = 5$ e $11 + 11 = 10$

Imagine, ainda, que o ponteiro das horas marca 12h. Decorrido três vezes o intervalo de 7 h, tal ponteiro marcará 9h, ou seja, matematicamente $3 \cdot 7 = 9$.

Naturalmente, você observa que é possível definir as operações de adição e multiplicação dentro do conjunto $I_{12} = \{1, 2, 3, ..., 12\}$ e podemos criar tabelas operatórias para o conjunto

Naturalmente, você observa que é possível definir as operações de adição e multiplicação dentro do conjunto $I_{12} = \{1, 2, 3, ..., 12\}$ e podemos criar tabelas operatórias para o conjunto

					Adı	çao en	n I ₁₂					
+	1	2	3	4	5	6	7	8	9	10	11	12
1	2	3	4	5	6	7	8	9	10	11	12	1
2	3	4	5	6	7	8	9	10	11	12	1	2
3	4	5	6	7	8	9	10	11	12	1	2	3
4	5	6	7	8	9	10	11	12	1	2	3	4
5	6	7	8	9	10	11	12	1	2	3	4	5
6	7	8	9	10	11	12	1	2	3	4	5	6
7	8	9	10	11	12	1	2	3	4	5	6	7
8	9	10	11	12	1	2	3	4	5	6	7	8
9	10	11	12	1	2	3	4	5	6	7	8	9
10	11	12	1	2	3	4	5	6	7	8	9	10
11	12	1	2	3	4	5	6	7	8	9	10	11
12	1	2	3	4	5	6	7	8	9	10	11	12

Adicão om I

					Tuitip			12				
	1	2	3	4	5	6	7	8	9	10	11	12
1	1	2	3	4	5	6	7	8	9	10	11	12
2	2	4	6	8	10	12	2	4	6	8	10	12
3	3	6	9	12	3	6	9	12	3	6	9	12
4	4	8	12	4	8	12	4	8	12	4	8	12
5	5	10	3	8	1	6	11	4	9	2	7	12
6	6	12	6	12	6	12	6	12	6	12	6	12
7	7	2	9	4	11	6	1	8	3	10	5	12
8	8	4	12	8	4	12	8	4	12	8	4	12
9	9	6	3	12	9	6	3	12	9	6	3	12
10	10	8	6	4	2	12	10	8	6	4	2	12
11	11	10	9	8	7	6	5	4	3	2	1	12
12	12	12	12	12	12	12	12	12	12	12	12	12

Multiplicação em I

FONTE: Tábuas de Cayley. Evaristo e Perdigão (2002, p. 52)

Naturalmente, você observa que é possível definir as operações de adição e multiplicação dentro do conjunto $I_{12} = \{1, 2, 3, ..., 12\}$ e podemos criar tabelas operatórias para o conjunto

Adição em I₁₂

+	1	2	3	4	5	6	7	8	9	10	11	12
1	2	3	4	5	6	7	8	9	10	11	12	1
2	3	4	5	6	7	8	9 _	10	. 11	12	1	2
3	4	5	6	7	8	9	10	11	12	1	2	3
4	5	6	7	8	9	10	11	12	1	2	3	4
5	6	7	8	9	_10_	11	12	1	2	3	4	5
6	7	8	9	10	11	12	1	2	3	4	5	6
7	8	9	10	11	12	1	2	3	4	5	6	7
8	9	10	11	12	1	2	3	4	5	6	7	8
9	10	11	12	1	2	3	4	5	6	7	8	9
10	11	12	1	2	3	4	5	6	7	8	9	10
11	12	1	2	3	4	5	6	7	8	9	10	11
12	1	2	3	4	5	6	7	8	9	10	11	12

→ associativa da adição

EX.
$$(5+9)+8=5+(9+8)$$

 $2+8=5+5$
 $10=10$

Naturalmente, você observa que é possível definir as operações de adição e multiplicação dentro do conjunto $I_{12} = \{1, 2, 3, ..., 12\}$ e podemos criar tabelas operatórias para o conjunto

Adição em I,

						•	12					
+	1	2	3	4	5	6	7	8	9	10	11	12
1	2	3	4	5	6	7	8	9	10	11	12	1
2	3	4	5	6	7	8	9	10	11	12	1	2
3	4	5	6	7	8	9	10	11	12	1	2	3
4	5	6	7	8	9	10	11	12	1	2	3	4
5	6	7	8	9	10	11	12	1	2	3	4	5
6	7	8	9	10	11	12	1	2	3	4	5	6
7	8	9	10	11	12	1	2	3	4	5	6	7
8	9	10	11	12	1	2	3	4	5	6	7	8
9	10	11	12	1	2	3	4	5	6	7	8	9
10	11	12	1	2	3	4	5	6	7	8	9	10
11	12	1	2	3	4	5	6	7	8	9	10	11
12	1	2	3	4	5	6	7	8	9	10	11	12

→ associativa da adição

→ comutativa da adição

Naturalmente, você observa que é possível definir as operações de adição e multiplicação dentro do conjunto $I_{12} = \{1, 2, 3, ..., 12\}$ e podemos criar tabelas operatórias para o conjunto

Adição em I₁₂

						•	12					
+	1	2	3	4	5	6	7	8	9	10	11	12
1	2	3	4	5	6	7	8	9	10	11	12	1
2	3	4	5	6	7	8	9	10	11	12	1	2
3	4	5	6	7	8	9	10	11	12	1	2	3
4	5	6	7	8	9	10	11	12	1	2	3	_4
5	6	7	8	9	10	11	12	1	2	3	4	5
6	7	8	9	10	11	12	1	2	3	4	5	6
7	8	9	10	11	12	1	2	3	4	5	6	7_
8	9	10	11	12	1	2	3	4	5	6	7	88
9	10	11	12	1	2	3	4	5	6	7	8	9
10	11	12	1	2	3	4	5	6	7	8	9	10
11	12	1	2	3	4	5	6	7	8	9	10	11
12	_1_	2	3	4	5	6	7	8	9	10	11	12

- → associativa da adição
- → comutativa da adição
- → 12 é o elemento neutro aditivo \checkmark $a+e=a \rightarrow a+12=a, \forall a \in I_{12}$

Naturalmente, você observa que é possível definir as operações de adição e multiplicação dentro do conjunto $I_{12} = \{1, 2, 3, ..., 12\}$ e podemos criar tabelas operatórias para o conjunto

Adição em I₁₂

						-	12					
+	1	2	3	4	5	6	7	8	9	10	_11_	12
1	2	3	4	5	6	7	8	9	10	11	12	1
2	3	4	5	6	7	8	9	10	11	12	1	2
3	4	5	6	7	8	9	10	11	12	1	2	3
4	5	6	7	8	9	10	11	12	1	2	3	4
5	6	7	8	9	10	11	12	1	2	3	4	5
6	7	8	9	10	11	12	1	2	3	4	5	6
7	8	9	10	11	12	1	2	3	4	5	6	7
8	9	10	11	12	1	2	3	4	5	6	7	8
9	10	11	12	1	2	3	4	5	6	7	8	9
10	11	12	1	2	3	4	5	6	7	8	9	10
11	12	1	2	3	4	5	6	7	8	9	10	11
12	1	2	3	4	5	6	7	8	9	10	11	12

→ associativa da adição

→ 12 é o elemento neutro aditivo \checkmark $a+e=a \rightarrow a+12=a, \forall a \in I_{12}$

→ elemento simetrizável aditivo
$$\checkmark$$

 $a+a'=e \rightarrow a+a'=12, \forall a \in I_{12}$

Naturalmente, você observa que é possível definir as operações de adição e multiplicação dentro do conjunto $I_{12} = \{1, 2, 3, ..., 12\}$ e podemos criar tabelas operatórias para o conjunto

Multiplicação em I₁₂

								12				
	1	2	3	4	5	6	7	8	9	10	11	12
1	1	2	3	4	5	6	7	8	9	10	11	12
2	2	4	6	8	10	12	2	4	6	8	10	12
3	3	6	9	12	3	6	9	12	3	6	9	12
4	4	8	12	4	8	12	4	8	12	4	8	12
5	5	10	3	8	1	6	11	4	9	2	7	12
6	6	12	6	12	6	12	6	12	6	12	6	12
7	7	2	9	4	11	6	1	8	3	10	5	12
8	8	4	12	8	4	12	8	4	12	8	4	12
9	9	6	3	12	9	6	3	12	9	6	3	12
10	10	8	6	4	2	12	10	8	6	4	2	12
11	11	10	9	8	7	6	5	4	3	2	1	12
12	12	12	12	12	12	12	12	12	12	12	12	12

- → associativa da adição
- → comutativa da adição
- → 12 é o elemento neutro aditivo \checkmark $a+e=a \rightarrow a+12=a, \forall a \in I_{12}$
- → elemento simetrizável aditivo \checkmark $a+a'=e \rightarrow a+a'=12, \forall a \in I_{12}$
- → associativa da multiplicação EX. $(5 \cdot 8) \cdot 9 = 5 \cdot (8 \cdot 9)$ $4 \cdot 9 = 5 \cdot 12$

$$12 = 12$$

Naturalmente, você observa que é possível definir as operações de adição e multiplicação dentro do conjunto $I_{12} = \{1, 2, 3, ..., 12\}$ e podemos criar tabelas operatórias para o conjunto

Adição em I₁₂

+	1	2	3	4	5	6	7	8	9	10	11	12
1	2	3	4	5	6	7	8	9	10	11	12	1
2	3	4	5	6	7	8	9	10	11	12	1	2
3	4	5	6	7	8	9	10	11	12	1	2	3
4	5	6	7	8	9	10	11	12	1	2	3	4
5	6	7	8	9	10	11	12	1	2	3	4	5
6	7	8	9	10	11	12	1	2	3	4	5	6
7	8	9	10	11	12	1	2	3	4	5	6	7
8	9	10	11	12	1	2	3	4	5	6	7	8
9	10	11	12	1	2	3	4	5	6	7	8	9
10	11	12	1	2	3	4	5	6	7	8	9	10
11	12	1	2	3	4	5	6	7	8	9	10	11
12	1	2	3	4	5	6	7	8	9	10	11	12

- → associativa da adição
- → comutativa da adição
- → 12 é o elemento neutro aditivo \checkmark $a+e=a \rightarrow a+12=a, \forall a \in I_{12}$
- → elemento simetrizável aditivo \checkmark $a+a'=e \rightarrow a+a'=12, \forall a \in I_{12}$
- → associativa da multiplicação

→ distributiva
$$\checkmark$$
 EX. $5 \cdot (7+3) = 5 \cdot 7 + 5 \cdot 3$
 $5 \cdot 10 = 11 + 3$

Naturalmente, você observa que é possível definir as operações de adição e multiplicação dentro do conjunto $I_{12} = \{1, 2, 3, ..., 12\}$ e podemos criar tabelas operatórias para o conjunto

Multiplicação em I₁₂

	1	2	3	4	5	6	7	8	9	10	11	12
1	1	2	3	4	5	6	7	8	9	10	11	12
2	2	4	6	8	10	12	2	4	6	8	10	12
3	3	6	9	12	3	6	9	12	3	6	9	12
4	4	8	12	4	8	12	4	8	12	4	8	12
5	5	10	3	8	1	6	11	4	9	2	7	12
6	6	12	6	12	6	12	6	12	6	12	6	12
7	7	2	9	4	11	6	1	8	3	10	5	12
8	8	4	12	8	4	12	8	4	12	8	4	12
9	9	6	3	12	9	6	3	12	9	6	3	12
10	10	8	6	4	2	12	10	8	6	4	2	12
11	11	10	9	8	7	6	5	4	3	2	1	12
12	12	12	12	12	12	12	12	12	12	12	12	12

FONTE: Tábuas de Cayley. Evaristo e Perdigão (2002, p. 52)

- → associativa da adição
- → comutativa da adição
- → 12 é o elemento neutro aditivo \checkmark $a+e=a \rightarrow a+12=a, \forall a \in I_{12}$
- → elemento simetrizável aditivo \checkmark $a+a'=e \rightarrow a+a'=12, \forall a \in I_{12}$
- → associativa da multiplicação ✓

$$\rightarrow \text{ distributiva} \checkmark \text{EX. } 5 \cdot (7+3) = 5 \cdot 7 + 5 \cdot 3$$
$$\underline{5 \cdot 10} = 11 + 3$$

Naturalmente, você observa que é possível definir as operações de adição e multiplicação dentro do conjunto $I_{12} = \{1, 2, 3, ..., 12\}$ e podemos criar tabelas operatórias para o conjunto

Multiplicação em I₁₂

					_		_					
•	1	2	3	4	5	6	7	8	9	10	11	12
1	1	2	3	4	5	6	7	8	9	10	11	12
2	2	4	6	8	10	12	2	4	6	8	10	12
3	3	6	9	12	3	6	9	12	3	6	9	12
4	4	8	12	4	8	12	4	8	12	4	8	12
5	5	10	3	8	1	6	_11	4	9	2	7	12
6	6	12	6	12	6	12	6	12	6	12	6	12
7	7	2	9	4	11	6	1	8	3	10	5	12
8	8	4	12	8	4	12	8	4	12	8	4	12
9	9	6	3	12	9	6	3	12	9	6	3	12
10	10	8	6	4	2	12	10	8	6	4	2	12
11	11	10	9	8	7	6	5	4	3	2	1	12
12	12	12	12	12	12	12	12	12	12	12	12	12

FONTE: Tábuas de Cayley. Evaristo e Perdigão (2002, p. 52)

- → associativa da adição
- → comutativa da adição
- → 12 é o elemento neutro aditivo \checkmark $a+e=a \rightarrow a+12=a, \forall a \in I_{12}$
- → elemento simetrizável aditivo \checkmark $a+a'=e \rightarrow a+a'=12, \forall a \in I_{12}$
- → associativa da multiplicação

→ distributiva
$$\checkmark$$
 EX. $5 \cdot (7+3) = \frac{5 \cdot 7}{5 \cdot 10} = \frac{5 \cdot 7}{11 + 3}$

Estruturas Algébricas - Anéis

EXEMPLO: Evaristo e Perdigão (2002, p. 50)

Naturalmente, você observa que é possível definir as operações de adição e multiplicação dentro do conjunto $I_{12} = \{1, 2, 3, ..., 12\}$ e podemos criar tabelas operatórias para o conjunto

Adição em I₁₂

+	1	2	3	4	5	6	7	8	9	10	11	12
1	2	3	4	5	6	7	8	9	10	11	12	1
2	3	4	5	6	7	8	9	10	11	12	1	2
3	4	5	6	7	8	9	10	11	12	1	2	3
4	5	6	7	8	9	10	11	12	1	2	3	4
5	6	7	8	9	10	11	12	1	2	3	4	5
6	7	8	9	10	11	12	1	2	3	4	5	6
7	8	9	10	11	12	1	2	3	4	5	6	7
8	9	10	11	12	1	2	3	4	5	6	7	8
9	10	11	12	1	2	3	4	5	6	7	8	9
10	11	12	1	2	3	4	5	6	7	8	9	10
11	12	1	2	3	4	5	6	7	8	9	10	11
12	1	2	3	4	5	6	7	8	9	10	11	12

FONTE: Tábuas de Cayley. Evaristo e Perdigão (2002, p. 52)

- → associativa da adição
- → comutativa da adição
- → 12 é o elemento neutro aditivo \checkmark $a+e=a \rightarrow a+12=a, \forall a \in I_{12}$
- → elemento simetrizável aditivo \checkmark $a+a'=e \rightarrow a+a'=12, \forall a \in I_{12}$
- → associativa da multiplicação

→ distributiva
$$\checkmark$$
 EX. $5 \cdot (7+3) = 5 \cdot 7 + 5 \cdot 3$
 $5 \cdot 10 = 11 + 3$

Naturalmente, você observa que é possível definir as operações de adição e multiplicação dentro do conjunto $I_{12} = \{1, 2, 3, ..., 12\}$ e podemos criar tabelas operatórias para o conjunto

Adição em I₁₂

+	1	2	3	4	5	6	7	8	9	10	11	12
1	2	3	4	5	6	7	8	9	10	11	12	1
2	3	4	5	6	7	8	9	10	11	12	1	2
3	4	5	6	7	8	9	10	11	12	1	2	3
4	5	6	7	8	9	10	11	12	1	2	3	4
5	6	7	8	9	10	11	12	1	2	3	4	5
6	7	8	9	10	11	12	1	2	3	4	5	6
7	8	9	10	11	12	1	2	3	4	5	6	7
8	9	10	11	12	1	2	3	4	5	6	7	8
9	10	11	12	1	2	3	4	5	6	7	8	9
10	11	12	1	2	3	4	5	6	7	8	9	10
11	12	1	2	3	4	5	6	7	8	9	10	11
12	1	2	3	4	5	6	7	8	9	10	11	12

 $\langle I_{12}, +, \cdot \rangle$ É ANEL!

→ associativa da adição

→ comutativa da adição 🗸

→ 12 é o elemento neutro aditivo 🗸

→ elemento simetrizável aditivo ✓

→ associativa da multiplicação ✓

→ distributiva

Naturalmente, você observa que é possível definir as operações de adição e multiplicação dentro do conjunto $I_{12} = \{1, 2, 3, ..., 12\}$ e podemos criar tabelas operatórias para o conjunto

Multiplicação em I₁₂

	1	2	3	4	5	6	7	8	9	10	11	12
1	1	2	3	4	5	6	7	8	9	10	11	12
2	2	4	6	8	10	12	2	4	6	8	10	12
3	3	6	9	12	3	6	9	12	3	6	9	12
4	4	8	12	4	8	12	4	8	12	4	8	12
5	5	10	3	8	1	6	11	4	9	2	7	12
6	6	12	6	12	6	12	6	12	6	12	6	12
7	7	2	9	4	11	6	1	8	3	10	5	12
8	8	4	12	8	4	12	8	4	12	8	4	12
9	9	6	3	12	9	6	3	12	9	6	3	12
10	10	8	6	4	2	12	10	8	6	4	2	12
11	11	10	9	8	7	6	5	4	3	2	1	12
12	12	12	12	12	12	12	12	12	12	12	12	12

FONTE: Tábuas de Cayley. Evaristo e Perdigão (2002, p. 52)

- → associativa da adição
- → comutativa da adição 🗸
- → 12 é o elemento neutro aditivo 🗸
- → elemento simetrizável aditivo
- → associativa da multiplicação ✓
- → distributiva

$$\langle I_{12}, +, \cdot \rangle$$
 É ANEL!

→ comutativa da multiplicação

Naturalmente, você observa que é possível definir as operações de adição e multiplicação dentro do conjunto $I_{12} = \{1, 2, 3, ..., 12\}$ e podemos criar tabelas operatórias para o conjunto

Multiplicação em I₁₂

•	1	2	3	4	5	6	7	8	9	10	11	12
1	1	2	3	4	5	6	7	8	9	10	11	12
2	2	4	6	8	10	12	2	4	6	8	10	12
3	3	6	9	12	3	6	9	12	3	6	9	12
4	4	8	12	4	8	12	4	8	12	4	8	12
5	5	10	3	8	1	6	11	4	9	2	7	12
6	6	12	6	12	6	12	6	12	6	12	6	12
7	7	2	9	4	11	6	1	8	3	10	5	12
8	8	4	12	8	4	12	8	4	12	8	4	12
9	9	6	3	12	9	6	3	12	9	6	3	12
10	10	8	6	4	2	12	10	8	6	4	2	12
11	11	10	9	8	7	6	5	4	3	2	1	12
12	12	12	12	12	12	12	12	12	12	12	12	12

FONTE: Tábuas de Cayley. Evaristo e Perdigão (2002, p. 52)

- → associativa da adição √
- → comutativa da adição 🗸
- → 12 é o elemento neutro aditivo 🗸
- → elemento simetrizável aditivo ✓
- → associativa da multiplicação
- → distributiva

$$\langle I_{12}, +, \cdot \rangle$$
 É ANEL!

→ comutativa da multiplicação

→ 1 é o elemento neutro multiplicativo $a \cdot e = a \rightarrow a \cdot 1 = a$, $\forall a \in I_{12}$

Multiplicação em I,

 $I_{12} = \{1, 2, 3, ..., 12\}$

Adição em I

	12																								
+	1	2	3	4	5	6	7	8	9	10	11	12		1	2	3	4	5	6	7	8	9	10	11	12
1	2	3	4	5	6	7	8	9	10	11	12	1	1	1	2	3	4	5	6	7	8	9	10	11	12
2	3	4	5	6	7	8	9	10	11	12	1	2	2	2	4	6	8	10	12	2	4	6	8	10	12
3	4	5		7	8	9	10	11	12	1	2	3	3	3	6	9	12	3	6	9	12	3	6	9	12
			6	•					12	1	_		4	4	8	12	4	8	12	4	8	12	4	8	12
4	5	6	7	8	9	10	11	12	1	2	3	4		_			-								
5	6	7	8	9	10	11	12	1	2	3	4	5	5	5	10	3	8	1	6	11	4	9	2	7	12
6	7	8	9	10	11	12	1	2	3	4	5	6	6	6	12	6	12	6	12	6	12	6	12	6	12
7	8	9	10	11	12	1	2	3	4	5	6	7	7	7	2	9	4	11	6	1	8	3	10	5	12
8	9	10	11	12	1	2	3	4	5	6	7	8	8	8	4	12	8	4	12	8	4	12	8	4	12
9	10	11	12	1	2	3	4	5	6	7	8	9	9	9	6	3	12	9	6	3	12	9	6	3	12
10	11	12		2	3	,	5	-	7	8	9	10	10	10	8	6	4	2	12	10	8	6	4	2	12
10	11	12	1	2	3	4	5	6	1	0	9	10						_						_	
11	12	1	2	3	4	5	6	7	8	9	10	11	11	11	10	9	8	7	6	5	4	3	2	1	12
12	1	2	3	4	5	6	7	8	9	10	11	12	12	12	12	12	12	12	12	12	12	12	12	12	12
	FONTE: Tibure de Cauley Franciste e Pardinia (2002 e 52)												FO	NTF: Tá	huas de	Caylov	Evariet	n e Per	diaão (2	002 n	52)				

- → associativa da adição
- → comutativa da adição
- → 12 é o elemento neut ✓aditivo
- → elemento simetrizável aditivo
- → associativa da multiplicação
- → distributiva
- → comutativa da multiplicação
- → 1 é o elemento neutro multip ✓ ativo

É ANEL COMUTATIVO COM UNIDADE

$$\langle I_{12}$$
, + , \cdot \rangle

Seja A um anel, um elemento $a \in A$ é um divisor de zero se:

- i) $a \neq 0$
- $\exists b \in A, b \neq 0/a \cdot b = 0$

Seja A um anel, um elemento $a \in A$ é um divisor de zero se:

- i) $a \neq 0$
- ii) $\exists b \in A, b \neq 0/a \cdot b = 0$
- \rightarrow diz-se que A é sem divisores de zero quando $a \cdot b = 0$ $\begin{cases} a = 0 \\ \text{ou} \\ b = 0 \end{cases}$

Seja A um anel, um elemento $a \in A$ é um divisor de zero se:

- i) $a \neq 0$
- $\exists b \in A, b \neq 0/a \cdot b = 0$
- \rightarrow diz-se que A é sem divisores de zero quando $a \cdot b = 0$ $\begin{cases} a = 0 \\ \text{ou} \\ b = 0 \end{cases}$
- \rightarrow A será chamado **anel de integridade** se for comutativo, unitário e sem divisores de zero

Seja A um anel, um elemento $a \in A$ é um divisor de zero se:

i)
$$a \neq 0$$

$$\exists b \in A, b \neq 0/a \cdot b = 0$$

- → diz-se que A é sem divisores de zero quando $a \cdot b = 0$ $\begin{cases} a = 0 \\ \text{ou} \\ b = 0 \end{cases}$
- \rightarrow *A* será chamado **anel de integridade** se for comutativo, unitário e sem divisores de zero

EXEMPLO: Anéis de Integridade

$$\langle \mathbb{Z}, +, \cdot \rangle$$
 $\langle \mathbb{Q}, +, \cdot \rangle$ $\langle \mathbb{R}, +, \cdot \rangle$

Seja A um anel, um elemento $a \in A$ é um divisor de zero se:

- i) $a \neq 0$
- ii) $\exists b \in A, b \neq 0/a \cdot b = 0$
- → diz-se que A é sem divisores de zero quando $a \cdot b = 0$ $\begin{cases} a = 0 \\ \text{ou} \\ b = 0 \end{cases}$
- \rightarrow A será chamado **anel de integridade** se for comutativo, unitário e sem divisores de zero

Propriedades:

- → propriedades de anel
- → verifique notas de aula

<u>Ideal ou Subanel</u>

Seja A um anel, e B um subconjunto não vazio de A, se :

- i) Dados quaisquer $a,b \in B$, $a-b \in B$
- ii) $\forall a,b \in B$, $a \cdot b \in B$

<u>Ideal ou Subanel</u>

Seja A um anel, e B um subconjunto não vazio de A, se :

- i) Dados quaisquer $a,b \in B$, $a-b \in B$
- ii) $\forall a,b \in B$, $a \cdot b \in B$

Propriedades:

→ se o ideal contém elemento inversível do anel ele é todo o anel

<u>Ideal ou Subanel</u>

Seja A um anel, e B um subconjunto não vazio de A, se :

- i) Dados quaisquer $a,b \in B$, $a-b \in B$
- ii) $\forall a,b \in B$, $a \cdot b \in B$

Propriedades:

→ se o ideal contém elemento inversível do anel ele é todo o anel

EXEMPLO:

- \mathbb{Z} é subanel de \mathbb{Q}
- Q é subanel de IR

Anel Quociente

Sejam A um anel e I o ideal de A , denota-se

$$\frac{A}{l}$$

ao conjunto de todas as classes de equivalências módulo I, com:

i)
$$\bar{a}, \bar{b} \in \frac{A}{I} \longrightarrow \bar{a} + \bar{b} = \bar{a} + \bar{b}$$

ii)
$$\bar{a}, \bar{b} \in \frac{A}{I} \longrightarrow \bar{a} \cdot \bar{b} = \bar{a} \cdot \bar{b}$$

tal que, $\left(\frac{A}{I}, +, \cdot\right)$ é chamado Anel quociente do anel A pelo ideal I.

^{*}vide propriedades nas notas de aula.

Anel Quociente

Sejam A um anel e I o ideal de A , denota-se

$$\frac{A}{I}$$

ao conjunto de todas as classes de equivalências módulo I, com:

i)
$$\bar{a}, \bar{b} \in \frac{A}{I} \longrightarrow \bar{a} + \bar{b} = \bar{a} + \bar{b}$$

ii)
$$\bar{a}, \bar{b} \in \frac{A}{I} \longrightarrow \bar{a} \cdot \bar{b} = \bar{a} \cdot \bar{b}$$

tal que, $\left(\frac{A}{I}, +, \cdot\right)$ é chamado Anel quociente do anel A pelo ideal I.

Professora, o du alêmo classes de equivalemo classes módulo 1?!

^{*}vide propriedades nas notas de aula.

Dado um inteiro $n \ge 2$, diz-se que dois números inteiros a e b são equivalentes módulo n

$$a \equiv b \pmod{n}$$

se a-b for múltiplo de n

Dado um inteiro $n \ge 2$, diz-se que dois números inteiros a e b são equivalentes módulo n

$$a \equiv b \pmod{n}$$

se a-b for múltiplo de n

EXEMPLO:
$$11 \equiv 5 \pmod{3}$$

$$11-5=6=3.2$$

Dado um inteiro $n \ge 2$, diz-se que dois números inteiros a e b são equivalentes módulo *n*

$$a \equiv b \pmod{n}$$

se a-b for múltiplo de n

$$11 \equiv 5 \pmod{3}$$

 $21 \not\equiv 9 \pmod{5}$

$$21-9=1$$

$$21 - 9 = 12$$

11-5=6=3.2

Dado um inteiro $n \ge 2$, diz-se que dois números inteiros a e b são equivalentes módulo n

$$a \equiv b \pmod{n}$$

se a-b for múltiplo de n

EXEMPLO:
$$11 \equiv 5 \pmod{3}$$
 $11-5=6=3\cdot 2$

$$21 \neq 9 \pmod{5}$$
 $21-9=12$

Uma classe de equivalência de a módulo n é o conjunto de todos os inteiros que são equivalentes a a módulo n, ou seja,

$$\bar{a} = \{ x \in \mathbb{Z} / x \equiv a \pmod{n} \}$$

$$Z_n = \{\overline{0}, \overline{1}, \dots, \overline{n-1}\}$$

sendo $n \equiv 0 \pmod{n}$.

$$Z_n = \{\overline{0}, \overline{1}, \dots, \overline{n-1}\}$$

sendo $n \equiv 0 \pmod{n}$.

EXEMPLO: Montar uma tabela das operações de $Z_4 = \{\bar{0}, \bar{1}, \bar{2}, \bar{3}\}$

$$Z_n = \{\overline{0}, \overline{1}, \dots, \overline{n-1}\}$$

sendo $n \equiv 0 \pmod{n}$.

EXEMPLO: Montar uma tabela das operações de $Z_4 = \{\bar{0}, \bar{1}, \bar{2}, \bar{3}\}$

Adição:

Produto:

<u>0</u>+<u>0</u>=

$$Z_n = \{\overline{0}, \overline{1}, \dots, \overline{n-1}\}$$

sendo $n \equiv 0 \pmod{n}$.

EXEMPLO: Montar uma tabela das operações de $Z_4 = \{\bar{0}, \bar{1}, \bar{2}, \bar{3}\}$

Adição:

Produto:

$$\overline{0} + \overline{0} = \overline{0 + 0} =$$

$$Z_n = \{\overline{0}, \overline{1}, \dots, \overline{n-1}\}$$

sendo $n \equiv 0 \pmod{n}$.

EXEMPLO: Montar uma tabela das operações de $Z_4 = \{\bar{0}, \bar{1}, \bar{2}, \bar{3}\}$

Adição:

Produto:

$$\overline{0} + \overline{0} = \overline{0 + 0} = \overline{0}$$

$$Z_n = {\overline{0}, \overline{1}, \dots, \overline{n-1}}$$

sendo $n \equiv 0 \pmod{n}$.

1 dia 2 a .

EXEMPLO: Montar uma tabela das operações de $Z_4 = \{\bar{0}, \bar{1}, \bar{2}, \bar{3}\}$

Draduta:

Adição:	Produto:
$\overline{0} + \overline{0} = \overline{0 + 0} = \overline{0}$	$\overline{0} \cdot \overline{0} = \overline{0 \cdot 0} = \overline{0}$
$\overline{0} + \overline{1} = \overline{0+1} = \overline{1}$	$\overline{0} \cdot \overline{1} = \overline{0} \cdot \overline{1} = \overline{0}$
$\overline{0} + \overline{2} = \overline{0 + 2} = \overline{2}$	$\overline{0} \cdot \overline{2} = \overline{0} \cdot \overline{2} = \overline{0}$
$\overline{0} + \overline{3} = \overline{0 + 3} = \overline{3}$	$\overline{0} \cdot \overline{3} = \overline{0} \cdot \overline{3} = \overline{0}$
$\overline{1} + \overline{1} = \overline{1+1} = \overline{2}$	$\overline{1} \cdot \overline{1} = \overline{1} \cdot \overline{1} = \overline{1}$
$\overline{1}+\overline{2}=\overline{1+2}=\overline{3}$	$\overline{1} \cdot \overline{2} = \overline{1} \cdot \overline{2} = \overline{2}$
$\overline{1} + \overline{3} = \overline{1 + 3} = \overline{4} = \overline{0}$, $4 \equiv 0$	$\overline{1} \cdot \overline{3} = \overline{1} \cdot \overline{3} = \overline{3}$
$\overline{2}+\overline{2}=\overline{2+2}=\overline{4}=\overline{0}$, $4\equiv 0$	$\overline{2} \cdot \overline{2} = \overline{2} \cdot \overline{2} = \overline{4} = \overline{0}$, $4 \equiv 0 \pmod{4}$
$\overline{2} + \overline{3} = \overline{2+3} = \overline{3} = \overline{1}$, $5 \equiv 1$	$(mod 4) \qquad \qquad \bar{2} \cdot \bar{3} = \overline{2} \cdot \bar{3} = \bar{6} = \bar{2} \qquad , \qquad 6 \equiv 2 \pmod{4}$
$\bar{3} + \bar{3} = \bar{3} + \bar{3} = \bar{6} = \bar{2}$, $6 \equiv 2$	$(mod 4)$ $\overline{3} \cdot \overline{3} = \overline{3} \cdot \overline{3} = \overline{9} = \overline{1}$, $9 \equiv 1 \pmod{4}$

$$Z_n = {\overline{0}, \overline{1}, \dots, \overline{n-1}}$$

sendo $n \equiv 0 \pmod{n}$.

EXEMPLO: Montar uma tabela das operações de $Z_4 = \{\bar{0}, \bar{1}, \bar{2}, \bar{3}\}$

Adição: Produto:

+	$\bar{0}$	$\bar{1}$	$\bar{2}$	3
$\frac{+}{\bar{0}}$ $\bar{1}$ $\bar{2}$ $\bar{3}$	$ \begin{array}{c c} \hline \overline{0} \\ \hline \overline{0} \\ \hline 1 \\ \hline 2 \\ \hline 3 \end{array} $	1 2 3 0	2 3 0 1	$ \begin{array}{r} \overline{3} \\ \overline{3} \\ \overline{0} \\ \overline{1} \\ \overline{2} \end{array} $
$\bar{1}$	$\bar{1}$	$\bar{2}$	3	$\overline{0}$
2	$\bar{2}$	3	$\overline{0}$	$\overline{1}$
3	3	$\overline{0}$	1	$\overline{2}$

	$\overline{0}$	1	2	3
0 1 2 3	$ \overline{0} $ $ \overline{0} $ $ \overline{0} $ $ \overline{0} $	$\overline{0}$	$\overline{0}$	0 3 2 1
1	$\overline{0}$			3
$\bar{2}$	$\overline{0}$	$\bar{2}$	$\overline{0}$	$\overline{2}$
$\bar{3}$	$\overline{0}$	$\bar{3}$	$\bar{2}$	$\overline{1}$

Congruência

Sejam A um anel e I o ideal de A, diz-se que dois elementos $a,b \in A$ são equivalentes (ou congruentes) se $a-b \in I$, ou seja, $a \equiv b \pmod{I}$ e este é uma relação de equivalência.

i) reflexiva:
$$a \equiv a \pmod{I} \longrightarrow a - a = 0 \in I$$

ii)simétrica: se
$$a \equiv b \pmod{I} \longrightarrow a - b \in I \log o$$
,
 $-(a-b) \in I \Leftrightarrow b - a \in I \longrightarrow b \equiv a \pmod{I}$

iii) transitiva: se
$$a\equiv b \pmod{I}$$
 e $b\equiv c \pmod{I}$ temos: $a-b\in I$ e $b-c\in I$ sendo I um ideal tem-se $(a-b)+(b-c)\in I \rightarrow a-c\in I$ logo $a\equiv c \pmod{I}$

MATEMÁTICA DISCRETA

Corpos

Fonte: Paiva, C. R. (2010)

Corpos

Chama-se corpo todo anel abeliano, unitário K e para todo $x \in K$, com $x \neq 0$ $x^{-1} \in K$, ou seja, um corpo é um anel abeliano com unidade no qual todo elemento não nulo é inversível.

Propriedades

- i) K é um anel de integridade
- ii) se I é um ideal de $K \Rightarrow I = \{0\}$ ou I = K
- iii) $I = \{0\}$ é um ideal máximal de K

$$\bar{0} + \bar{0} = \bar{0}$$

$$\overline{0} + \overline{0} = \overline{0}$$

$$\overline{0} + \overline{2} = \overline{0 + 2} = \overline{2}$$

$$\overline{0} + \overline{4} = \overline{0 + 4} = \overline{4}$$

$$\bar{0}+\bar{0}=\bar{0}$$
 $\bar{0}+\bar{2}=\bar{0}+\bar{2}=\bar{2}$
 $\bar{0}+\bar{4}=\bar{0}+\bar{4}=\bar{4}$
 $\bar{2}+\bar{2}=\bar{2}+\bar{2}=\bar{4}$
 $\bar{2}+\bar{4}=\bar{2}+\bar{4}=\bar{6}=\bar{0}$
 $\bar{4}+\bar{4}=\bar{4}+\bar{4}=\bar{8}=\bar{2}$

Estruturas Algébricas- Corpos

EXEMPLO: Verifique se $B = \{\overline{0}, \overline{2}, \overline{4}\}$ é corpo

$$\begin{array}{c|ccccc} + & \overline{0} & \overline{2} & \overline{4} \\ \hline 0 & \overline{0} & \overline{2} & \overline{4} \\ \overline{2} & \overline{2} & \overline{4} & \overline{0} \\ \overline{4} & \overline{4} & \overline{0} & \overline{2} \\ \end{array}$$

Estruturas Algébricas- Corpos

EXEMPLO: Verifique se $B = \{\overline{0}, \overline{2}, \overline{4}\}$ é corpo

+	$\bar{0}$	$\bar{2}$	4
$\bar{0}$	$\overline{0}$	$\bar{2}$	$\overline{4}$
$\overline{2}$	$\bar{2}$	$\overline{4}$	$\overline{0}$
$\overline{4}$	4	$\overline{0}$	2

	$\overline{0}$	$\bar{2}$	$\overline{4}$
$\overline{0}$	$\overline{0}$	$\overline{0}$	$\overline{0}$
$\bar{2}$	$\overline{0}$	$\overline{4}$	$\overline{2}$
$\overline{4}$	$\overline{0}$	$\bar{2}$	$\overline{4}$

EXEMPLO: Verifique se $B = \{\overline{0}, \overline{2}, \overline{4}\}$ é corpo

 \rightarrow tem unidade (elemento $\overline{4}$); é comutativo; não tem divisores de zero; todo elemento não nulo é inversível => B é corpo.

EXEMPLO: Características dos conjuntos numéricos

Estrutura	Corpo	Grupo	Anel
(N, +, ·)			
(Z , +, ·)		✓	✓
(Q, +, ·)	✓	✓	✓
(R, +, ·)	✓	✓	✓
(C, +, ·)	✓	✓	✓

Fechamento adição
Associatividade adição
Identidade aditiva
Inverso aditivo

EXERCÍCIOS

1) Usando como base o exemplo do relógio discutido em aula, resolva o exercício a seguir:

Evaristo e Perdigão (2002, p. 53) Considere o conjunto $I_7 = \{1,2,3,4,5,6,7\}$ que refere-se aos dias da semana, associando os números naturais 1, 2, 3, 4, 5, 6 e 7 aos dias de domingo, segunda, terça, quarta, quinta, sexta e sábado, respectivamente. Verifique se $\langle I_7, +, \cdot \rangle$ é um anel.

2) Encontre o conjunto B de todos os números equivalentes a 3 módulo 4. Lembrese que $a \equiv b \pmod{n} \Rightarrow a - b = n \cdot k$, $k \in \mathbb{Z}$

RESOLUÇÃO DOS EXERCÍCIOS

1) se estivermos numa quinta, após o decurso de seis dias iremos para uma quarta

$$5+6=4 \longrightarrow quarta$$

se estivermos num domingo e forem decorridos sete dias iremos para outro domingo

$$1 + 7 = 7 \longrightarrow domingo$$

se estivermos num sábado e forem decorridos três vezes o período de quatro dias, a partir do domingo, iremos parar numa quinta-feira $\longrightarrow 3 \cdot 4 = 5$

Desta forma, estabelecemos duas operações no conjunto

$$I_7 = \{1, 2, 3, 4, 5, 6, 7\}$$

dadas pelas tabelas a seguir:

RESOLUÇÃO DOS EXERCÍCIOS

1)
$$I_7 = \{1, 2, 3, 4, 5, 6, 7\}$$

Adição em I,

					,		
+	1	2	3	4	5	6	7
1	2	3	4	5	6	7	1
2	3	4	5	6	7	1	2
3	4	5	6	7	1	2	3
4	5	6	7	1	2	3	4
5	6	7	1	2	3	4	5
6	7	1	2	3	4	5	6
7	1	2	3	4	5	6	7

Multiplicação em I₇

	1	2	3	4	5	6	7
1	1	2	3	4	5	6	7
2	2	4	6	1	3	5	7
3	3	6	2	5	1	4	7
4	4	1	5	2	6	3	7
5	5	3	1	6	4	2	7
6	6	5	4	3	2	1	7
7	7	7	7	7	7	7	7

FONTE: Tábuas de Cayley. Evaristo e Perdigão (2002, p. 54)

Do mesmo modo que I_{12} , o conjunto I_7 munido das operações acima é um anel.

RESOLUÇÃO DOS EXERCÍCIOS

4) Encontre o conjunto B de todos os números equivalentes a 3 módulo 4. Lembrese que $a \equiv b \pmod{n} \Rightarrow a - b = n \cdot k$, $k \in \mathbb{Z}$

$$x \equiv 3 \pmod{4}$$

$$x-3=4\cdot k$$
 , $k\in\mathbb{Z}$

$$B = \{.., -5, -1, 3, 7, 11, ...\}$$