

LOUISIANA STATE UNIVERITY

College of Agriculture School of Plant, Environmental, and Soil Sciences AGRO 7075 Prediction-based Breeding

Variance and Genetic Effects

Prof. Roberto Fritsche-Neto

rfneto@agcenter.lsu.edu

Baton Rouge, Jan 30th, 2023

Non-inbred populations

- Population = a pool of shared alleles
- Only the allele is passed to the offspring, not the genotype
- Allele frequencies
- B = f(B) = p
- = $p^2 + \frac{1}{2}(2pq)$
- $= p^2 + pq$
- $= p^2 + p(1-p)$
- $\bullet = p^2 + p p^2$
- = p
- b = f(b) = q
- = $q^2 + \frac{1}{2} 2pq$
- $= q^2 + pq$
- $= q^2 + q(1-q)$
- $= q^2 + q q^2$
- \bullet = q

Genotype	f
BB	p ²
Bb	2pq
bb	q^2

- Under HWE these frequencies are kept constant
- Otherwise, with just one random mating this equilibrium is reached again

Inbred populations

- Inbred populations
- Alleles identical by descendent (IBD) copies of a shared ancestral
- Alleles identical by state (**IBS**) same allele, but different origin
- Inbreeding coefficient
- $F = P(B_i \equiv B_i)$
- $F = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$

Allele	В	b
В	BB (1/4) IBD	Bb (1/4)
b	bB (1/4)	bb (1/4) IBD

- Probability of IBD
- It is equal of the allele frequency times the inbreeding rate
- P(BB) = Fp
- P(bb) = Fq
- Non-inbred genotypes = 1 F
- **Inbred genotypes** = F

Inbred populations

•
$$= F(BB + bb) + (1 - F)(BB + Bb + bb)$$

• =
$$F(pBB + qbb) + (1 - F)(p^2BB + 2pqBb + q^2bb)$$

• =
$$FpBB + Fqbb + p^2BB + 2pqBb + q^2bb - Fp^2BB - 2FpqBb - Fq^2bb$$

• = BB[Fp +
$$p^2$$
 - Fp²] + Bb[2pq - 2Fpq] + bb[Fq + q^2 - Fq²]

• =
$$BB[p^2 + Fp - Fp(1-q)] + Bb[2pq - 2pqF] + bb[q^2 + Fq - Fq(1-p)]$$

Then, for any F

•
$$= BB[p2 + pqF] + Bb[2pq - 2pqF] + bb[q2 + pqF]$$

•
$$F = 1$$

•
$$p^2 + pqF$$

•
$$p^2 + pq$$

•
$$p^2 + p(1-p)$$

•
$$p^2 + p - p^2 = p$$

Genotype	f	F=0	F=1
ВВ	p ² + pqF	p ²	р
Bb	2pq – 2pqF	2pq	0
bb	q² + pqF	q ²	q

Genotypes and genic effects

- Intra population assuming HWE
- α = female *i* and male *j* allele effects at the *k* locus
- S = interaction between alleles i and j
- The sum of the α over k loci means Breeding value (BV)
- Substitution allele effect

•
$$\alpha_{B} = u_{B} - u_{pop}$$

•
$$\alpha_b = u_b - u_{pop}$$

- Crosses
- BB x population = $u_{\rm B}$
- bb x population = u_b
- $u_B = pa + qd$
- $u_h = q(-a) + pd$

•
$$u_{pop} = p^2a + q^2(-a) + 2pqd$$

• $= (p^2 - q^2)a + 2pqd$

• =
$$(p^2 - q^2)a + 2pqd$$

•
$$= (p - q)a + 2pqd$$

$$y_i = u + g_i + g_j + s_{ij}$$

$$G_{ij} = u + \propto_i + \propto_j + \delta_{ij}$$

Genotype	f	VG
BB	p ²	а
Bb	2pq	d
bb	q ²	-a

		a	
Genotype	f	Mean	Dominance
ВВ	p²	$\alpha_{\rm B} + \alpha_{\rm B}$	${\cal S}_{\scriptscriptstyle{\sf BB}}$
Bb	2pq	$\mathbf{\alpha}_{\mathrm{B}} + \mathbf{\alpha}_{\mathrm{b}}$	${\cal S}_{ t Bb}$

 $\alpha_b + \alpha_b$

 q^2

Bb

a

BB

bb

-a

bb

 $\mathcal{S}_{\mathsf{bb}}$

•	$(p^2 - q^2) =$	$(1-q)^2-q^2$	$= 1 - 2q + q^2 -$	$-q^2 = p + q$	-2q = p - q
---	-----------------	---------------	--------------------	----------------	-------------

Substitution allele effect

•
$$\alpha_{B} = u_{B} - u_{pop}$$

• =
$$pa + qd - [(p - q)a + 2pqd]$$

•
$$= pa + qd - pa + qa - 2pqd$$

•
$$= qa + qd - 2pqd$$

• =
$$q[a + (1 - 2p)d]$$

•
$$= q[a + (q + p - 2p)d]$$

• =
$$q[a + (q - p)d]$$

•
$$= q\alpha$$

•
$$\alpha_b = u_b - u_{pop}$$

• =
$$-qa + pd - [(p - q)a + 2pqd]$$

•
$$=$$
 -qa + pd - pa + qa - 2pqd

•
$$= pd - pa - 2pqd$$

•
$$=$$
 -p[a - d + 2qd]

• =
$$-p[a(2q-1)d]$$

• =
$$-p[a(2q-p+q)d]$$

• =
$$-p[a + (q - p)d]$$

•
$$=-p\alpha$$

Dominance effect

• BB =
$$u + 2\alpha_B + S_{BB} = a$$

•
$$S_{BB} = a - u - 2\alpha_B$$

• =
$$a - [(p - q)a + 2pqd] - 2[q[a + (q - p)d]$$

• =
$$a - pa + qa - 2pqd - 2qa - 2q(q - p)d$$

• =
$$a - pa - qa - 2pqd - 2q^2d + 2pqd$$

•
$$= a - pa - qa - 2q^2d$$

• =
$$a(1 - p - q) - 2q^2d$$

• =
$$a(p + q - p - p) - 2q^2d$$

•
$$= -2q^2d$$

• bb =
$$u + 2\alpha_b + S_{bb} = -a$$

•
$$S_{bb} = -a - u - 2\alpha_b$$

• = -a -
$$[(p - q)a + 2pqd] - 2[-p[a + (q - p)d]$$
 • = $d(2p - 2p^2)$

• =
$$-a - pa + qa - 2pqd + 2pa + 2p(q - p)d$$

• =
$$-a + pa + qa - 2pqd - 2p^2d + 2pqd$$

• = - a + pa + qa -
$$2p^2d$$

• =
$$a(p + q - 1) - 2p^2d$$

• =
$$a(p + q - p - q) - 2p^2d$$

•
$$= -2p^2d$$

• Bb =
$$u + \alpha_B + \alpha_b + S_{Bb} = d$$

•
$$S_{Bb} = d - u - \alpha_B - \alpha_b$$

• =
$$d - [(p - q)a + 2pqd] - [q[a + (q - p)d] - [-p[a + (q - p)d]]$$

• =
$$d - pa + qa + 2pqd - qa - q(q - p)d + pa - p(q - p)d$$

• =
$$d - 2pqd - q(q - p)d - p(q - p)d$$

• =
$$d - 2pqd - q^2d + pqd - p^2d + pqd$$

• =
$$d - q^2d - p^2d$$

• =
$$d(1 - q^2 - p^2)$$

• =
$$d(1 - (1 - p)^2 - p^2)$$

• =
$$d(1 - (1 + p^2 + 2p) - p^2)$$

• =
$$d(1 - 1 - p^2 - 2p - p^2)$$

$$\bullet = d(2p - 2p^2)$$

• =
$$2d[p - p(1 - q)]$$

•
$$= 2d[p - p + pq]$$

•
$$= 2d[pq]$$

•
$$= 2pqd$$

Genotype	f	Mean	Dominance
BB	p ²	$\alpha_{\rm B} + \alpha_{\rm B}$	${\cal S}_{\scriptscriptstyle{\sf BB}}$
Bb	2pq	$\mathbf{\alpha}_{\mathrm{B}} + \mathbf{\alpha}_{\mathrm{b}}$	${\cal S}_{\sf Bb}$
bb	q ²	$\alpha_b + \alpha_b$	${\cal S}_{\sf bb}$

Substitution allele effect

• α is the slope of the regression line

$$b = \frac{COV(x,y)}{V_x}$$

• Regression coefficient – \boldsymbol{b}

$$\sigma^2 = \sum_i f_i X_i^2 - \left(\sum_i f_i X_i\right)^2 \qquad COV_{xy} = \sum_i f_i X_i Y_i - \left(\sum_i f_i X_i \cdot \sum_i f_i Y_i\right)$$

Genotype	f	Alleles x	VG y
BB	p ²	2	a
Bb	2pq	1	d
bb	q ²	0	-a

- Thus, the variance of x is given by:
- $p^2(2^2) + 2pq(1^2) + q^2(0^2) = 4p^2 + 2pq$
- $[p^2(2) + 2pq(1) + q^2(0)]^2 = [2p^2 + 2pq]^2 = [2p^2 + 2p(1-p)]^2 = [2p^2 + 2p 2p^2]^2 = [2p]^2 = 4p^2$
- $Vx = 4p^2 + 2pq 4p^2 = 2pq$
- and the covariance by
- $p^2(a)(2) + 2pq(d)(1) + q^2(-a)(0) = 2p^2a + 2pqd$
- $p^2(2) + 2pq(1) + q^2(0) = 2p^2 + 2pq = 2p$
- $p^2(a) + 2pq(d) + q^2(-a) = p^2a + 2pqd q^2a = (p^2 q^2)a + 2pqd = (p q)a + 2pqd$
- $2p(2p^2a + 2pqd) = 2p(p q)a + 4p^2qd$
- $COV(x, y) = 2p^2a + 2pqd 2p(p q)a + 4p^2qd = 2pq[a + (q p)d]$

$$b = \frac{cov(x,y)}{v_x} = \frac{2pq[a + (q - p)d]}{2pq} = a + (q - p)d = \alpha$$

Additive variance

•
$$V(X) = E[X - E(X)]^2$$

•
$$Vg = E[G_{ij} - E(G_{ij})]^2$$

•
$$= E[u + \boldsymbol{\alpha}_i + \boldsymbol{\alpha}_i + \boldsymbol{S}_{ij} - u]^2$$

•
$$= E[\boldsymbol{\alpha}_i + \boldsymbol{\alpha}_j + \boldsymbol{S}_{ij}]^2$$

•
$$= E[\boldsymbol{\alpha}_i]^2 + E[\boldsymbol{\alpha}_i]^2 + E[\boldsymbol{S}_{ii}]^2 + ...$$

•
$$= E[\boldsymbol{\alpha}_i]^2 + E[\boldsymbol{\alpha}_j]^2 + E[\boldsymbol{S}_{ij}]^2$$

Additive variance = variance of the average allele effects

• =
$$E[\boldsymbol{\alpha}_i]^2 = E[p_i(\boldsymbol{\alpha}_i)^2 - E(p_i\boldsymbol{\alpha}_i)]^2$$

$$\bullet = \mathrm{E}[\mathrm{p}_{\mathrm{i}}(\boldsymbol{\alpha}_{\mathrm{i}})^{2} - 0]^{2}$$

•
$$= \sum p_i(\boldsymbol{\alpha}_i)^2 = \frac{1}{2} \text{ Va}$$

•
$$= E[\boldsymbol{\alpha}_i]^2 = E[p_i(\boldsymbol{\alpha}_i)^2 - E(p_i\boldsymbol{\alpha}_i)]^2$$

$$\bullet = \mathbb{E}[p_i(\boldsymbol{\alpha}_i)^2 - 0]^2$$

•
$$= \sum p_i(\boldsymbol{\alpha}_i)^2 = \frac{1}{2} \text{ Va}$$

$$G_{ij} = u + \propto_i + \propto_j + \delta_{ij}$$

$$\sigma_A^2 = 2 \sum_i p_i(\alpha_i)^2$$
• Va = 2.p. α_B^2 + 2.q. α_b^2
• 2.p. $(q\alpha)^2$ + 2.q. $(-p\alpha)^2$

$$Va = 2.p.\alpha_B^2 + 2.q.\alpha_b^2$$

• =
$$2.p.(q\alpha)^2 + 2.q.(-p\alpha)^2$$

• =
$$2pq^2\alpha^2 + 2qp^2\alpha^2$$

• =
$$2pq\alpha^2(q+p)$$

• =
$$2pq\alpha^2$$

• =
$$2pq[a + (q - p)d]^2$$

•
$$A = \alpha_i + \alpha_j = E(\alpha_B + \alpha_b) = 0$$

•
$$E(A) = E(\alpha_i + \alpha_i) = E(\alpha_i) + E(\alpha_i)$$

•
$$p_i \cdot \alpha_i + p_i \alpha_i$$

•
$$p_i(\boldsymbol{\alpha}_B) + p_i(\boldsymbol{\alpha}_b)$$

•
$$p(q\alpha) + q(-p\alpha)$$

•
$$p(q\alpha) + q(-p\alpha)$$

•
$$pq\alpha - pq\alpha = 0$$

Dominance

Dominance variance = interaction between allele effects within a locus

•
$$= E[S_{ij}]^2 = E[p_i(S_{ij})^2 - E(p_iS_{ij})]^2$$

$$\bullet = E[p_i(S_{ij})^2 - 0]^2$$

•
$$= p_i(S_{ij})^2 = Vd$$

$$G_{ij} = u + \propto_i + \propto_j + \delta_{ij}$$

$$\sigma_D^2 = \sum_i p_i p_j (S_{ij})^2$$

Genotype	f	value	Dominance
ВВ	p ²	-2q ² d	${\cal S}_{ extsf{BB}}$
Bb	2pq	2pqd	${\cal S}_{\sf Bb}$
bb	q ²	-2p ² d	${\cal S}_{\sf bb}$

• Vd =
$$p^2 \cdot S_{BB}^2 + 2pq \cdot S_{Bb}^2 + q^2 \cdot S_{bb}^2$$

• =
$$p^2(-2q^2d)^2 + 2pq(2pqd)^2 + q^2(-2p^2d)^2$$

• =
$$p^2(4q^4d^2) + 2pq(4p^2q^2d^2) + q^2(4p^4d^2)$$

• =
$$4p^2q^2d^2(q^2 + 2pq + p^2)$$

• =
$$4p^2q^2d^2(p+q)^2$$

•
$$= (2pqd)^2$$

•
$$E(D) = \sum_{ij} (p_i p_j S_{ij})$$

• =
$$p^2 \cdot S_{BB} + 2pq \cdot S_{Bb} + q^2 \cdot S_{bb}$$

• =
$$p^2 \cdot S_{BB} + 2pq \cdot S_{Bb} + q^2 \cdot S_{bb}$$

• = $p^2(-2q^2d) + 2pq(2pqd) + q^2(-2p^2d)$
• = $-2p^2q^2d + 4p^2q^2d + 2p^2q^2d$

• =
$$-2p^2q^2d + 4p^2q^2d + 2p^2q^2d$$

$$\bullet$$
 = 0

Mean in inbred populations

• IBD IBS
• =
$$F(BB + bb) + (1-F)(BB + Bb + bb)$$

• = $BB[p^2 + pqF] + Bb[2pq - 2pqF] + bb[q^2 + pqF]$
 $G_{ij} = u + \alpha_i + \alpha_j + \delta_{ij}$

Genotype	f	F=0	F=1
BB	p²+pqF	p ²	р
Bb	2pq – 2pqF	2pq	0
bb	q²+pqF	q²	q

- $E(G_{ij}) = F\sum_{i}p_{i}(u + \boldsymbol{\alpha}_{i} + \boldsymbol{\alpha}_{i} + \boldsymbol{S}_{ij}) + (1 F)\sum_{ij}p_{i}p_{j}(u + \boldsymbol{\alpha}_{i} + \boldsymbol{\alpha}_{j} + \boldsymbol{S}_{ij})$
- $= Fu + 2F\sum_{i}p_{i}\boldsymbol{\alpha}_{i} + F\sum_{i}p_{i}\boldsymbol{S}_{ii} + (1 F)u + (1 F)\sum_{i}p_{i}\boldsymbol{\alpha}_{i} + (1 F)\sum_{j}p_{j}\boldsymbol{\alpha}_{j} + (1 F)\sum_{ij}p_{i}p_{j}\boldsymbol{S}_{ij}$
- = Fu + $(1 F)u + (1 F)\sum_{i} p_{i} S_{ii}$
- $= u + F \sum_{i} p_{i} S_{ii}$
- Mean + inbreeding depression (ID)
- $F\sum_{i}p_{i}S_{ii} = FpS_{BB} + FqS_{bb}$
- $\bullet = \operatorname{Fp}(-2q^2d) + \operatorname{Fq}(-2p^2d)$
- $= F(-2pq^2d) + F(-2qp^2d)$
- = -2pqdF
- Thus,
- $u_F = u 2pqdF$
- $u_F = (p q)a + 2pqd 2pqdF$

Variance in inbred populations

•
$$Vg = E[G_{ij} - E(G_{ij})]^2$$

•
$$= E[u + \boldsymbol{\alpha}_i + \boldsymbol{\alpha}_i + \boldsymbol{S}_{ij} - u - F\sum_i p_i \boldsymbol{S}_{ii}]^2$$

•
$$= E[\boldsymbol{\alpha}_i + \boldsymbol{\alpha}_i + \boldsymbol{S}_{ij} - F \sum_i p_i \boldsymbol{S}_{ii}]^2$$

•
$$= E[\boldsymbol{\alpha}_i]^2 + E[\boldsymbol{\alpha}_j]^2 + E[\boldsymbol{S}_{ij}]^2 + E(-F\sum_i p_i \boldsymbol{S}_{ii})^2 + dp$$

•
$$= E[\boldsymbol{\alpha}_i]^2 = E[\sum p_i(\boldsymbol{\alpha}_i)^2 - E(p_i\boldsymbol{\alpha}_i)]^2$$

$$\bullet = \mathrm{E}[\mathrm{p}_{\mathrm{i}}(\boldsymbol{\alpha}_{\mathrm{i}})^2 - 0]^2$$

•
$$= \sum p_i(\boldsymbol{\alpha}_i)^2 = \frac{1}{2} \text{ Va}$$

•
$$= E[\boldsymbol{\alpha}_i]^2 = E[p_i(\boldsymbol{\alpha}_i)^2 - E(p_i\boldsymbol{\alpha}_i)]^2$$

•
$$= E[p_i(\boldsymbol{\alpha}_i)^2 - 0]^2$$

•
$$= \sum p_i(\boldsymbol{\alpha}_i)^2 = \frac{1}{2} \text{ Va}$$

•
$$= E[S_{ij}]^2 = (1 - F)\sum_{ij}p_ip_j(S_{ij})^2 - F\sum_ip_i(S_{ii})^2$$

non-inbred

inbred

• =
$$(1 - F)Vd - F\sum_{i}p_{i}(S_{i})^{2}$$

•
$$E(-F\sum_{i}p_{i}S_{i})^{2} = (F\sum_{i}p_{i}S_{i})^{2}$$

•
$$2E(\boldsymbol{\alpha}_{i}\boldsymbol{\alpha}_{j}) = 2(1 - F)E(\boldsymbol{\alpha}_{i})E(\boldsymbol{\alpha}_{j}) + 2F\sum_{i}p_{i}(\boldsymbol{\alpha}_{i})^{2}$$

$$\bullet = 0 + 2F \sum p_i(\boldsymbol{\alpha}_i)^2$$

• =
$$2F \frac{1}{2} Va = FVa$$

•
$$2E(\boldsymbol{\alpha}_{i}\boldsymbol{S}_{i}) = 2(1 - F)E(\boldsymbol{\alpha}_{i})E(\boldsymbol{S}_{i}) + 2F\sum_{i}p_{i}\boldsymbol{\alpha}_{i}\boldsymbol{S}_{i}$$

•
$$= 0 + 2F \sum_{i} p_{i} \alpha_{i} S_{i}$$

•
$$2E(\boldsymbol{\alpha}_{i}\boldsymbol{S}_{ij}) = 2(1 - F)E(\boldsymbol{\alpha}_{j})E(\boldsymbol{S}_{ij}) + 2F\sum_{j}p_{j}\boldsymbol{\alpha}_{j}\boldsymbol{S}_{jj}$$

$$\bullet = 0 + 2F \sum_{j} p_{j} \boldsymbol{\alpha}_{j} \boldsymbol{S}_{jj}$$

•
$$2E(\boldsymbol{\alpha}_{i}. - F\sum_{i}p_{i}\boldsymbol{S}_{ii}) = 2E(\boldsymbol{\alpha}_{i})(-F\sum_{i}p_{i}\boldsymbol{S}_{ii})$$

•
$$2E(\boldsymbol{\alpha}_{j}.-F\sum_{j}p_{j}\boldsymbol{\mathcal{S}}_{ij}) = 2E(\boldsymbol{\alpha}_{j})(-F\sum_{j}p_{j}\boldsymbol{\mathcal{S}}_{ij})$$

Variance in inbred populations

- $2E(S_{ij} F\sum_{i}p_{i}S_{ii}) = (1 F)E(S_{ij})(-F\sum_{i}p_{i}S_{ii}) + 2FE(S_{ii})(-F\sum_{i}p_{i}S_{ii})$ • $0 + (2F\sum_{i}p_{i}S_{ii})(-F\sum_{i}p_{i}S_{ii})$
- $= -2F^2(\sum_i p_i S_{ii})^2$
- Finally,
- $Vg = \frac{1}{2} Va + \frac{1}{2} Va + (1 F)Vd F\sum_{i} p_{i} (S_{ii})^{2} + 2F\sum_{i} p_{i} \alpha_{i} S_{ii} + 2F\sum_{i} p_{i} \alpha_{i} S_{ii} 2F^{2} (\sum_{i} p_{i} S_{ii})^{2}$
- $Vg = (1+F)Va + (1-F)Vd + 2F\sum_{i}p_{i}\boldsymbol{\alpha}_{i}\boldsymbol{\mathcal{S}}_{ii} + 2F\sum_{j}p_{j}\boldsymbol{\alpha}_{j}\boldsymbol{\mathcal{S}}_{jj} + (F\sum_{i}p_{i}\boldsymbol{\alpha}_{i}\boldsymbol{\mathcal{S}}_{ii})^{2} 2(F^{2}\sum_{i}p_{i}\boldsymbol{\mathcal{S}}_{ii}^{2})$
- $\mathbf{D_1} = \frac{1}{2} \left(\sum_i p_i \boldsymbol{\alpha}_i \boldsymbol{S}_{ii} + \sum_j p_i \boldsymbol{\alpha}_j \boldsymbol{S}_{jj} \right) = \sum_i p_i \boldsymbol{\alpha}_i \boldsymbol{S}_{ii}$
- Covariance between additive and dominance effects in the homozygotes
- $Vg = (1+F)Va + (1-F)Vd + 4FD_1 + F\sum_i p_i (S_{ii})^2 F^2 (\sum_i p_i S_{ii})^2$
- $Vg = (1+F)Va + (1-F)Vd + 4FD_1 + F[\sum_i p_i (S_{ii})^2 (\sum_i p_i S_{ii})^2] + F((1-F)(\sum_i p_i S_{ii})^2)$
- D_2 = Variance due to the dominance effects in the homozygotes
 - H =the square of the inbreeding depression
- $Vg = (1+F)Va + (1-F)Vd + 4FD_1 + FD_2 + F(1-F)H$

Variance at any level of inbreeding

- $Vg = (1 + F)Va + (1 F)Vd + 4FD_1 + FD_2 + F(1 F)H$
- $D_1 = COV(a,d)$
- $D_2 = V(S_{ii})$
- H =the square of the inbreeding depression
- F = 0
- $Vg = (1+0)Va + (1-0)Vd + 4.0.D_1 + 0D_2 + 0(1-0)H$
- Vg = Va + Vd
- F = 1
- $Vg = (1+1)Va + (1-1)Vd + 4.1.D_1 + 1D_2 + 1(1-1)H$
- $Vg = 2Va + 4D_1 + D_2$
- Inbred progenies = Normally, D_1 is negative, reducing the Vg
- On the other hand, the bigger F, the bigger Va

Mixed populations

- s = inbreeding rate
- s = 2F / (1 + F)
- F = s / (2 s)
- $Vg = (1 + F)Va + (1 F)Vd + 4FD_1 + FD_2 + F((1 F)H)$

$$Vg = \left(\frac{2}{2-s}\right)Va + \left(\frac{2-2s}{2s}\right)Vd + \left(\frac{4s}{2s}\right)D1 + \left(\frac{s}{2s}\right)D2 + \left[\frac{2(1-s)}{2s^2}\right]H$$

- Considering two alleles
- Va = $2 \sum p_i(\boldsymbol{\alpha}_i)^2 = 2pq\boldsymbol{\alpha}^2$
- Vd = $\sum_{ij} p_i p_i (S_{ij})^2 = (2pqd)^2$
- $D_1 = \sum_i p_i \boldsymbol{\alpha}_i \boldsymbol{S}_{ii} = 2pq(q-p)(a+(q-p)d)d = 2pq(q-p)\boldsymbol{\alpha}d$
- $D_2 = \sum_i p_i (S_{ii})^2 (\sum_i p_i S_{ii})^2 = 4pqd^2(q-p)^2$
- $H = (\sum_{i} p_{i} S_{ii})^{2} = (2pqd)^{2}$

- Parametric space
- Va > 0
- $Vd \ge 0$
- $-\infty \le D_1 \le +\infty$
- $D_2 \ge 0$
- H≥0

D_1 and D_2

```
• D_1 = \sum_i p_i \alpha_i S_{ii}

• = p\alpha_B S_{BB} + q\alpha_b S_{bb}

• = p(q\alpha)(-2q^2d) + q(-p\alpha)(-2p^2d)

• = 2pq^3\alpha d + 2p^3q\alpha d

• = -2pq(q - p)\alpha d

• D_2 = \sum_i p_i (S_{ii})^2 - (\sum_i p_i S_{ii})^2

• = [p(-2q^2d)^2 + q(-2p^2d)^2] - [p(-2q^2d) + q(-2p^2d)]^2

• = [4pq^4d^2 + 4qp^4d^2] - [-2pq^2d - 2qp^2d)]^2

• = [4pqd^2(p^3 + q^3)] - [-2pqd(q + p)]^2

• = [4pqd^2(p^3 + q^3)] - 4p^2q^2d^2

• = 4pqd^2(p^3 + q^3 - pq)

• = 4pqd^2(p^3 + (1 - p)^3 - p(1 - p))

• = 4pqd^2(p^3 + (1 - p)^3 - p + p^2)

• = 4pqd^2(1 - 2p)^2

• = 4pqd^2(q - p)^2
```