

Towards Collaborative Multi-modal Federated Learning for Human Activity Recognition in Smart Workplace Environments

S. Mohammad Sheikholeslami¹, Pai Chet Ng¹, Huan Liu², Yanhao Yu², Konstantinos N. Plataniotis¹

¹ Department of Electrical and Computer Engineering, University of Toronto

² Huawei Noah's Ark Lab, Canada

Paper accepted in ICASSP Timely and Private Machine Learning over Networks Workshop April 2024

>>> Outline

☐ Introduction and Motivation

☐ Contributions

- ☐ System model and proposed Collaborative Multi-modal Federated Learning (CoMFL)
- ☐ Experimentations and results

>>>Introduction and Motivation

- > Data over networks comes
 - in form of different modalities
 - Is distributed over multiple devices

- ➤ RQ1: How can data distributed over multiple devices of a single user be combined to create a super model?
- RQ2: How can private data from different user can be combined to train a richer super model?

>>> Contributions

Contributions

- 1) Local (Intra-zone) training: Collaboration of multiple devices with different sensing inputs belonging to the same user to train a local multimodal HAR model
- 2) Global (Inter-zone) training: the cross-user cooperation of different users enriches the global model without sharing their private multimodal data
- 3) A robust feature reconstruction network to adaptively reconstruct the missing data.
- 4) a comparative analysis between unimodal and multimodal approaches within both centralized and distributed settings with missing features

>>> System model and proposed CoMFL

Multi-modal data fusion(RQ1): intermediate fusion

Private zone z_k : the set of devices belonging to user u_k

Dataset: Multi-modal human activity recognition

Problem of intermediate fusion: missing modality in the inference

 z_1 : Private zone of user u_1

>>> System model and proposed CoMFL (cont.)

Collaborative Multi-modal Federated Learning (RQ2)

>>> Experimentations and results

Experimentation setup)

Multi-modal HAR dataset

- > Each user possesses
 - Smartphone
 - Smartwatch
 - Smartspeaker
 - Computer
- Eight activity classes
- > Total 28 users:
 - 20 active users: participate in training
 - 8 passive users: do not participate in training

Table 1: List of activities in the multimodal HAR dataset.

Simple activities	Complex activities
(a1) walking around(a2) talking on the phone(a3) reading book(a4) stretching	(a8) walking and talking on the phone
(a5) writing(a7) browsing the monitor(a6) typing on the keyboard	(a9) writing and talking on the phone

>>> Experimentations and results (cont.)

Experiment 1)

Test accuracy vs Communication rounds (epochs) for active users

- In general, central training outperforms federated learning
- Phone modality provides the best accuracy among unimodal HAR models in both distributed and central settings
- Multi-modal fusion enhances performance of the HAR models

>>> Experimentations and results (cont.)

Experiment 2)

Performance on cross-domain data (passive users)

- The performance of the models trained over actives users reduces significantly over passive users
- Results illustrate weak generalization of local models
- The propose CoMFL enhances generalization
- CoMFL performs almost same as centralized case while preserving the privacy of users

>>> Experimentations and results (cont.)

Experiment 3)

Effect of missing modality

- Phone modality has the greatest effect on the performance of the super model when missing
- The proposed reconstruction model recovers the missing modality and enhances performance of the model

Table 2: Performance of the multimodal HAR models with missing modality.

training strategy modality	missing modality						
	watch		phone		speaker		full modality
	baseline	proposed	baseline	proposed	baseline	proposed	
MM centralized learning model	83.21%	90.83%	38.11%	46.17%	94.54%	98.14%	99.29%
MM federated learning model	74.03%	78.44%	28.33%	54.26%	79.21%	85.79%	91.37%

Thank you for your attention

Questions?