International IOR Rectifier

IRF6674TRPbF DirectFET™ Power MOSFET ②

Typical values (unless otherwise specified)

$V_{ m DSS}$	V_{GS}	$R_{DS(on)}$
60V max	±20V max	9.0 m Ω @ 10 V
$Q_{g tot}$	\mathbf{Q}_{gd}	$V_{gs(th)}$

• RoHS Compliant ①

- Lead-Free (Qualified up to 260°C Reflow)
- Application Specific MOSFETs
- Ideal for High Performance Isolated Converter Primary Switch Socket
- Optimized for Synchronous Rectification
- Low Conduction Losses
- High Cdv/dt Immunity
- Dual Sided Cooling Compatible ①
- Compatible with existing Surface Mount Techniques ①

Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details) ①

-								
	SH	SJ	SP	MZ	MN			

Description

The IRF6674PbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFET™ packaging to achieve the lowest on-state resistance in a package that has the footprint of an Micro8 and only 0.7 mm profile. The DirectFET package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%.

The IRF6674PbF is optimized for primary side sockets in forward and push-pull isolated DC-DC topologies, for 48V and 36V-60V input voltage range systems. The reduced total losses in the device coupled with the high level of thermal performance enables high efficiency and low temperatures, which are key for system reliability improvements, and makes this device ideal for high performance isolated DC-DC converters.

Absolute Maximum Ratings

	Parameter	Max.	Units
V _{DS}	Drain-to-Source Voltage	60	V
V_{GS}	Gate-to-Source Voltage	±20	
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V ③	13.4	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 10V ③	10.7	Α
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V @	67	
I _{DM}	Pulsed Drain Current ©	134	
E _{AS}	Single Pulse Avalanche Energy ®	98	mJ
I _{AS}	Avalanche Current ©	13.4	Α

Fig 1. Typical On-Resistance vs. Gate Voltage

Fig 2. Typical Total Gate Charge vs. Gate-to-Source Voltage

- ① Click on this section to link to the appropriate technical paper.
- ② Click on this section to link to the DirectFET Website.
- 3 Surface mounted on 1 in. square Cu board, steady state.
- T_C measured with thermocouple mounted to top (Drain) of part.
- S Repetitive rating; pulse width limited by max. junction temperature.
- © Starting $T_J = 25^{\circ}C$, L = 0.272mH, $R_G = 25\Omega$, $I_{AS} = 13.4A$.

Electrical Characteristic @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
BV _{DSS}	Drain-to-Source Breakdown Voltage	60			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta \mathrm{BV}_{\mathrm{DSS}} / \Delta \mathrm{T}_{\mathrm{J}}$	Breakdown Voltage Temp. Coefficient		0.07		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		9.0	11	mΩ	V _{GS} = 10V, I _D = 13.4A ⑦
$V_{GS(th)}$	Gate Threshold Voltage	3.0	4.0	4.9	V	$V_{DS} = V_{GS}$, $I_D = 100\mu A$
$\Delta V_{GS(th)}/\Delta T_J$	Gate Threshold Voltage Coefficient		-11		mV/°C	
I _{DSS}	Drain-to-Source Leakage Current			20	μΑ	$V_{DS} = 60V, V_{GS} = 0V$
				250		$V_{DS} = 48V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 20V
	Gate-to-Source Reverse Leakage			-100	1	V _{GS} = -20V
gfs	Forward Transconductance	16			S	$V_{DS} = 25V, I_D = 13.4A$
Q_g	Total Gate Charge		24	36		
Q _{gs1}	Pre-Vth Gate-to-Source Charge		5.4			$V_{DS} = 30V$
Q _{gs2}	Post-Vth Gate-to-Source Charge		1.9		nC	$V_{GS} = 10V$
Q_gd	Gate-to-Drain Charge		8.3	12		I _D = 13.4A
Q_{godr}	Gate Charge Overdrive		8.4		1	See Fig. 15
Q_{sw}	Switch Charge (Q _{gs2} + Q _{gd})		10.2			
Q _{oss}	Output Charge		14		nC	$V_{DS} = 16V, V_{GS} = 0V$
R_G	Gate Resistance		1.0		Ω	
t _{d(on)}	Turn-On Delay Time		7.0			$V_{DD} = 30V, V_{GS} = 10V$ ⑦
t _r	Rise Time		12			I _D = 13.4A
t _{d(off)}	Turn-Off Delay Time		12		ns	$R_G = 6.2 \Omega$
t _f	Fall Time		8.7			
C _{iss}	Input Capacitance		1350			$V_{GS} = 0V$
C _{oss}	Output Capacitance		390		рF	V _{DS} = 25V
C _{rss}	Reverse Transfer Capacitance		105		1	f = 1.0MHz
C _{oss}	Output Capacitance		1580			$V_{GS} = 0V, V_{DS} = 1.0V, f=1.0MHz$
C _{oss}	Output Capacitance		290		1	$V_{GS} = 0V, V_{DS} = 48V, f=1.0MHz$

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions			
I _S	Continuous Source Current			67		MOSFET symbol			
	(Body Diode) T _J = 25°C				Α	showing the			
I _{SM}	Pulsed Source Current			134		integral reverse			
	(Body Diode) ⑤					p-n junction diode.			
V_{SD}	Diode Forward Voltage			1.3	V	$T_J = 25^{\circ}C$, $I_S = 13.4A$, $V_{GS} = 0V$?			
t _{rr}	Reverse Recovery Time		32	48	ns	$T_J = 25^{\circ}C$, $I_F = 13.4A$, $V_{DD} = 50V$			
Q _{rr}	Reverse Recovery Charge		36	54	nC	di/dt = 100A/µs ①			

Notes:

⑤ Repetitive rating; pulse width limited by max. junction temperature.

 $\ensuremath{{\mbox{${\mathcal O}$}}}$ Pulse width $\le 400 \mu s;$ duty cycle $\le 2\%.$

Absolute Maximum Ratings

	Parameter	Max.	Units
P _D @T _A = 25°C	Power Dissipation 3	3.6	W
P _D @T _A = 70°C	Power Dissipation 3	2.3	
P _D @T _C = 25°C	Power Dissipation ®	89	7
T _P	Peak Soldering Temperature	270	°C
TJ	Operating Junction and	-40 to + 150	7
T _{STG}	Storage Temperature Range		

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JA}$	Junction-to-Ambient 3 ®		35	
$R_{\theta JA}$	Junction-to-Ambient ® ®	12.5		
$R_{\theta JA}$	Junction-to-Ambient 9 ®	20		°C/W
$R_{\theta JC}$	Junction-to-Case 4 0		1.4	
$R_{\theta J\text{-PCB}}$	Junction-to-PCB Mounted	1.0		

Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Case ①

Notes:

- 3 Surface mounted on 1 in. square Cu board, steady state.
- ④ T_C measured with thermocouple incontact with top (Drain) of part.
- ® Used double sided cooling, mounting pad with large heatsink.
- Mounted on minimum footprint full size board with metalized back and with small clip heatsink.
- $^{\circledR}$ R $_{\theta}$ is measured at T $_{J}$ of approximately 90°C.

3 Surface mounted on 1 in. square Cu board (still air).

 Mounted on minimum footprint full size board with metalized back and with small clip heatsink. (still air)

IRF6674TRPbF

International TOR Rectifier

Fig 4. Typical Output Characteristics

Fig 6. Typical Transfer Characteristics

Fig 8. Typical Capacitance vs.Drain-to-Source Voltage

Fig 5. Typical Output Characteristics

Fig 7. Normalized On-Resistance vs. Temperature

Fig 9. Typical On-Resistance vs. Drain Current

www.irf.com

IRF6674TRPbF

Fig 10. Typical Source-Drain Diode Forward Voltage

Fig11. Maximum Safe Operating Area

Fig 12. Maximum Drain Current vs. Ambient Temperature

Fig 13. Typical Threshold Voltage vs. Junction Temperature

Fig 14. Maximum Avalanche Energy vs. Drain Current

Vds

Fig 15a. Gate Charge Test Circuit

Fig 16a. Unclamped Inductive Test Circuit

Fig 16b. Unclamped Inductive Waveforms

Fig 17a. Switching Time Test Circuit

Fig 17b. Switching Time Waveforms

6 www.irf.com

Fig 18. Diode Reverse Recovery Test Circuit for HEXFET® Power MOSFETs

DirectFET™ Substrate and PCB Layout, MZ Outline (Medium Size Can, Z-Designation).

Please see AN-1035 for DirectFET assembly details and stencil and substrate design recommendations

Note: For the most current drawing please refer to IR website at http://www.irf.com/package www.irf.com

DirectFET™ Outline Dimension, MZ Outline (Medium Size Can, Z-Designation).

Please see AN-1035 for DirectFET assembly details and stencil and substrate design recommendations

DirectFET™ Part Marking

Note: For the most current drawing please refer to IR website at http://www.irf.com/package

DirectFET™ Tape & Reel Dimension (Showing component orientation).

NOTE: Controlling dimensions in mm Std reel quantity is 4800 parts. (ordered as IRF6674MTRPBF). For 1000 parts on 7" reel, order IRF6674MTR1PBF

	REEL DIMENSIONS								
S.	TANDARI	OPTION	I (QTY 48	00)	TR	OPTION	(QTY 10	00)	
	ME	TRIC	IMP	ERIAL	ME	TRIC	IMP	ERIAL	
CODE	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
Α	330.0	N.C	12.992	N.C	177.77	N.C	6.9	N.C	
В	20.2	N.C	0.795	N.C	19.06	N.C	0.75	N.C	
С	12.8	13.2	0.504	0.520	13.5	12.8	0.53	0.50	
D	1.5	N.C	0.059	N.C	1.5	N.C	0.059	N.C	
E	100.0	N.C	3.937	N.C	58.72	N.C	2.31	N.C	
F	N.C	18.4	N.C	0.724	N.C	13.50	N.C	0.53	
G	12.4	14.4	0.488	0.567	11.9	12.01	0.47	N.C	
Н	11.9	15.4	0.469	0.606	11.9	12.01	0.47	N.C	

LOADED TAPE FEED DIRECTION

NOTE: CONTROLLING DIMENSIONS IN MM

DIMENSIONS								
	MET	TRIC	IMPERIAL					
CODE	MIN	MAX	MIN	MAX				
Α	7.90	8.10	0.311	0.319				
В	3.90	4.10	0.154	0.161				
С	11.90	12.30	0.469	0.484				
D	5.45	5.55	0.215	0.219				
Е	5.10	5.30	0.201	0.209				
F	6.50	6.70	0.256	0.264				
G	1.50	N.C	0.059	N.C				
Н	1.50	1.60	0.059	0.063				

Data and specifications subject to change without notice.

This product has been designed and qualified for the Consumer market.

Qualification Standards can be found on IR's Web site.

International

TOR Rectifier

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.