

Cryptography: secure communication in the presence of adversaries

In this class, crypto is short for cryptography, not cryptocurrency or cryptoanalysis

Alice and Bob

I'VE DISCOVERED A WAY TO GET COMPUTER SCIENTISTS TO LISTEN TO ANY BORING STORY.

https://xkcd.com/1323/

Confidentiality

Confidentiality: only intended recipient can read a message

Confidentiality: only intended recipient can read a message

Integrity

Confidentiality: only intended recipient can read a message

Integrity: received message is unchanged from sender

Confidentiality: only intended recipient can read a message

Integrity: received message is unchanged from sender

Authenticity

Confidentiality: only intended recipient can read a message

Integrity: received message is unchanged from sender

Authenticity: identity of each communicating party can be confirmed

Confidentiality: only intended recipient can read a message

Integrity: received message is unchanged from sender

Authenticity: identity of each communicating party can be confirmed

Non-repudiation

Confidentiality: only intended recipient can read a message

Integrity: received message is unchanged from sender

Authenticity: identity of each communicating party can be confirmed

Non-repudiation: parties cannot deny previous commitments

Confidentiality: only intended recipient can read a message

Integrity: received message is unchanged from sender

Authenticity: identity of each communicating party can be confirmed

Non-repudiation: parties cannot deny previous commitments

Assume that attackers are capable of evesdropping, are capable of MITM, know your algorithms, and have NSA-scale compute power

MEET ME AT THE CLOCK TOWER

Encryption can use any function

that can be reversed by a decryption function

function in the mathematical sense i.e., deterministic

Encryption can use any function i.e., deterministic

that can be reversed by a decryption function

function in the mathematical sense i.e., deterministic

Encryption can use any function i.e., deterministic

that can be reversed by a decryption function

Goals:

functions that make ciphertext look random

functions with enough or to making guessing impractical

function in the mathematical sense i.e., deterministic

Encryption can use any function i.e., deterministic

that can be reversed by a decryption function

Goals:

functions that make ciphertext look random

functions with enough or to making guessing impractical

A good algorithm is one where this **brute force** strategy is the only one

Attack Modes

Ciphertext only: attacker has only ciphertext to work from, but maybe many of them

Known plaintext: attacker has an example plaintext and matching ciphertext to work from

Chosen plaintext: attacker can get its own plaintext encoded to its ciphertext

IFMMP XPSME

Substitution

IFMMP XPSME

HELLO WORLD

IFMMP XPSME

HELLO WORLD

A	В
В	\Box
С	D
D	E
Ε	F
F	റ
G	Н
Н	I
•••	•••
Χ	Y
Y	Z
Z	А

JGNNQ YQTNF

JGNNQ YQTNF

HELLO WORLD

JGNNQ YQTNF

HELLO WORLD

A C
B D
C E
D F
E G
F H
G I
H J
... ...
X Z
Y A
Z B

JGNNQ YQTNF

HELLO WORLD

A C
B D
C E
D F
E G
F H
G I
H J
... ...
X Z
Y A
Z B

Ceasar cipher

URYYB JBEYQ

HELLO WORLD

URYYB JBEYQ

HELLO WORLD

With only 26 possible keys guessing is easy

A N
B O
C P
D Q
E R
F S
G T
H U
... ...
X K
Y L
Z M

URYYB JBEYQ

HELLO WORLD

Can treat N letters in a row as base-26 digits:

$$HEL = 8 \times 26^2 + 5 \times 26 + 12$$

That gives us $26^{\rm N}$ keys

URYYB JBEYQ

Substitution by itself is weak, because it preserves patterns:

- Commonly used letters ⇒ commonly used replacements
- Local patterns like "II" in "hello" ⇒ local patterns in ciphertext

Permutation

A permutation can break up local patterns:

Permutation

A permutation can break up local patterns:

Permutation

A permutation can break up local patterns:

MEET ME AT THE CLOCK TOWER

Other examples of permutations: shifting with wraparound shuffling deterministically

M AHL EEMTEOTREE COT TCKW

Combining substitution and permutation is even better:

PBG GPXJ

Combining substitution and permutation is even better:

Combining substitution and permutation is even better:

Combining substitution and permutation is even better:

Still, small changes in plaintext trigger only small changes in ciphertext

is (columns, rotation)

Z VUY RRZARBGERR PBG GPXJ

Avalance effect via running total mod 27 ⇒ each position affects all later

RWAUUGLLMFFZGLLO ORBBVJFKB

Avalance effect via running total mod 27 ⇒ each position affects all later

MEET ME AT THE CLOCK TOWER

RWAUUGLLMFFZGLLO ORBBVJFKB

Can decrypt because + is reversible

The xor operation has the same property

Avalance effect via running total mod 27 ⇒ each position affects all later

MEET ME AT THE CLOCK TOWER

RWAUUGLLMFFZGLLO ORBBVJFKB

Can decrypt because + is reversible

The xor operation has the same property

but needs to be combined with other techniques

Avalance effect via running total mod 27 ⇒ each position affects all later

RWAUUGLLUHHAINNQBQTDDXLHMD

Could run it twice to make every position affect all positions...

 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +</t

V R S M G N Z K E M U V D R E V X N G K O L X E R V

Chaining plus Substitution plus Permutation

Chaining plus Substitution plus Permutation

Key Size

Substitution, permutation, and chaining are useful building blocks, and our example combination generates results that *look* random, but there's an easy way to see that it's insecure

 \bigcirc = \langle rotation, columns, init \rangle

Key Size

Substitution, permutation, and chaining are useful building blocks, and our example combination generates results that *look* random, but there's an easy way to see that it's insecure

$$\bigcirc$$
 = \langle rotation, columns, init \rangle

Assuming that up to 32 columns makes sense:

$$26 \times 32 \times 27 = 22,464$$
 possible keys

Key Size

Substitution, permutation, and chaining are useful building blocks, and our example combination generates results that *look* random, but there's an easy way to see that it's insecure

$$\bigcirc$$
 = \langle rotation, columns, init \rangle

Assuming that up to 32 columns makes sense:

$$26 \times 32 \times 27 = 22,464$$
 possible keys

So, **key size** is going to be an important metric

Block Size

For a long enough message, typically you want to encode only small parts at a time, as opposed to keeping the whole message in memory to rearrange all the bytes

Block Size

For a long enough message, typically you want to encode only small parts at a time, as opposed to keeping the whole message in memory to rearrange all the bytes

As our permutation example shows, though, it's useful to be able to mix large chunks to create confusion

Block Size

For a long enough message, typically you want to encode only small parts at a time, as opposed to keeping the whole message in memory to rearrange all the bytes

As our permutation example shows, though, it's useful to be able to mix large chunks to create confusion

So, **block size** is going to be an important metric