TD2: Algorithmes combinatoires

1 Parties d'un ensemble

1.1 Contrat

1.2 Raffinage fonctionnel

▷ Exercice 1

Donner une formulation récursive comptant le nombre de parties d'un ensemble de cardinal n.

▷ Exercice 2

- Écrire la fonction ajout, qui à partir d'un élément e et d'ensembles $\{E_1, \ldots, E_n\}$ renvoie l'ensemble $\{E_1, \{e\} \cup E_1, \ldots, E_n, \{e\} \cup E_n\}$.
- Écrire la fonction parties, qui renvoie l'ensemble des parties d'un ensemble.

2 Permutations d'une liste

2.1 Contrat

2.2 Raffinage fonctionnel

> Exercice 3

Donner une formulation récursive comptant le nombre de permutations d'un ensemble de taille n.

▷ Exercice 4

- Écrire la fonction insertions, qui insère un élément à toutes les positions d'une liste.
- Écrire la fonction permutations, qui renvoie l'ensemble des permutations d'un ensemble.

3 Combinaisons

3.1 Contrat

Le contrat donne quelque chose comme :

3.2 Raffinage fonctionnel

- ▷ Exercice 5 Donner une formulation récursive comptant le nombre de combinaisons de k éléments d'un ensemble à n éléments.
- - Écrire la fonction combinaisons (contrat+code+tests)

PF TD2 Atgorithmes combinatoires I/ Farties d'un ensemble Exercice 1 Pour un ensemble à 0 ell on a 1 peurlie Pour un ensemble à 2n+1 elt on a 2n+2 parties. 2n (ens sew nowel elt) 2n (ens and nowel eft) Exercice 2: let ajout e P = 4ist. fold-night (fon xq -> (e::>c)::>c::q) & t]; Pot ajour e ens = list map (For gt ->e: gt) & ens; Er perhier P_ List Fold-night ajout P [5] 1 2:19 - ajout t parkes q; Cer parties P. List Fold right (Fun Eat to ajour 4 at) P [[3] II/ Permutations d'une liste Exercice 3: Si o alt O parnatation Sin Ot n'. pemulation Exercice 4: Per rec permonion P maken Parith 13-17 16: g - Life Palan (list map (in zerhon t) pemiliahons q): List fold-right (for topt to List flather (Gist mup (methon () gt) P TO; Oher in sechon ? mekan Rwith (C) - (e)