



# Data Generator for SAP Solutions using Benerator Tool

Supervised by **Tim Böttcher** 



Baba Pakruddin Tailor Julian Reddy Allam Naga Sai Krishna Ayinampudi Sai Rajesh Vanimireddy





# Agenda:

- 1) Aim for data generation
- 2) Global bike INC.
- 3) Literature research
- 4) Benerator configuration
- 5) Generating data and Analysis
- 6) Conclusion
- 7) References





### AIM FOR DATA GENERATION





### **Aim For Data Generation:**

- •Real-world data is often subject to several privacy constraints.
- Under these constraints, researchers often resort to generate data to verify the efficacy.
- The generated data must be realistic and correct in terms of size and distributions.
- Methods of generating datasets for different purposes can be quite different.
- Our work concentrates on generation of test instances to analyze business process.





### **Aim For Data Generation:**

- Realistic represents things in a way that is accurate and true to life.
- Synthetic (of a proposition) having truth or falsity determinable by recourse to experience.
- Synthetic data generators allow us to generate large volumes of data with well-understood characteristics.
- We can easily vary the characteristics of the generated data by varying the input parameters of the data generator.









• GBI is an eminent bicycle company producing bikes and accessories for both touring and off-road racing.







### • **CUSTOMERS**

| 10014                 | NEW YORK CITY | BIG APPLE BIKES      | 2000  | US00  |            |                 |       |      |
|-----------------------|---------------|----------------------|-------|-------|------------|-----------------|-------|------|
| 18033                 | BOSTON        | BEANTOWN BIKES       | 5000  | US00  |            |                 |       |      |
| 19073                 | PHILADELPHIA  | PHILLY BIKES         | 3000  | US00  |            |                 |       |      |
| 20004                 | WASHINGTON DC | DC BIKES             | 11000 | US00  |            |                 |       |      |
| 30319                 | ATLANTA       | PEACHTREE BIKES      | 4000  | US00  |            |                 |       |      |
| 32804                 | ORLANDO       | THE BIKE ZONE        | 25011 | US00  |            |                 |       |      |
| 48076                 | DETROIT       | MOTOWN BIKES         | 8000  | 04227 | LEIPZIG    | DRAHTESEL       | 18000 | DE00 |
| 49504                 | GRAND RAPIDS  | FURNITURE CITY BIKES | 7000  | 16341 | BERLIN     | CAPITAL BIKES   | 16000 | DE00 |
| 60515                 | CHICAGO       | WINDY CITY BIKES     | 6000  | 17389 | ANKLAM     | OSTSEERAD       | 21000 | DE00 |
|                       |               | ROCKY MOUNTAIN BIKES |       | 22760 | HAMBURG    | ALSTER CYCLING  | 14000 | DE00 |
| 80111                 | DENVER        |                      |       | 22767 | HAMBURG    | RED LIGHT BIKES | 23000 | DE00 |
| 92612                 | IRVINE        | SOCAL BIKES          | 9000  | 30627 | HANNOVER   | CRUISER BIKES   | 17000 | DE00 |
| 94304                 | PALO ALTO     | SILICON VALLEY BIKES | 10000 | 39130 | MAGDEBURG  | VELODOM         | 24000 | DE00 |
| 98004                 | SEATTLE       | NORTHWEST BIKES      | 12000 | 44784 | BOCHUM     | FAHRPOTT        | 19000 | DE00 |
|                       |               |                      |       | 60549 | FRANKFURT  | AIRPORT BIKES   | 13000 | DE00 |
|                       |               |                      |       | 69115 | HEIDELBERG | NECKARAD        | 20000 | DE00 |
|                       |               |                      |       |       | STUTTGART  | RÄDLELAND       | 22000 | DE00 |
| Source: GBI material. |               |                      |       | 92275 | MÜNCHEN    | BAVARIA BIKES   | 15000 | DE00 |





• SALES ORDER CREATION IN ERP:







### • DATA MODEL:







# Literature Research

23-08-2019

Title: Data Generator using Benerator Tool





### Literature Research:

- In order to generate realistic data we have researched for certain rules which affects the sales.
- MONTHLY DISTRIBUTION:

Cyclist traffic fatalities by month or day of week and by time of day, EU, 2005-2010



Source: OECD/International transport forum.





### MONTHLY DISTRIBUTION:

Figure 4.2 Cyclist traffic fatalities by month or day of week and by time of day, USA, 2005-2011



Source: OECD/International transport forum.





### MONTHLY DISTRIBUTION:

Figure 4.3 Percentage of all reported fatal bicycle crashes occurring by month, selected European countries.



Source: EU CARE database, 2005-2010 and USA FARS database 2005-2011

Source: OECD/International transport forum.



### • DISTRIBUTION BY CITIES:



Radverkehr in Deutschland - Zahlen, Daten, Fakten



Source: Radverkehr in Deutschland zahlen, Daten, Fakten.



### • DISTRIBUTION BY CITIES:







### **Literature Research:**

• DISTRIBUTION BY CITY:

# THE MOST BICYCLISTS

**THESE** cities have the largest number of bicyclists riding on their streets.

| CITY                   | POPULATION | NUMBER OF<br>BIKE COMMUTERS | % OF BIKE COMMUTERS |
|------------------------|------------|-----------------------------|---------------------|
| NEW YORK, NY           | 8,336,697  | 36,496                      | 1%                  |
| CHICAGO, IL            | 2,714,844  | 19,147                      | 1.6%                |
| PORTLAND, OR           | 603,650    | 18,912                      | 6.1%                |
| LOS ANGELES, CA        | 3,857,786  | 17,223                      | 1%                  |
| SAN FRANCISCO CITY, CA | 825,863    | 16,864                      | 3.8%                |
| SEATTLE CITY, WA       | 634,541    | 15,007                      | 4.1%                |
| PHILADELPHIA, PA       | 1,547,607  | 13,726                      | 2.3%                |
| WASHINGTON, D.C.       | 632,323    | 13,493                      | 4.1%                |
| MINNEAPOLIS, MN        | 392,871    | 9,688                       | 4.5%                |
| DENVER, CO             | 634,265    | 9,416                       | 2.9%                |
| MADISON, WI            | 240,315    | 8,375                       | 6.2%                |
| AUSTIN, TX             | 842,595    | 6,999                       | 1.6%                |

| SAN DIEGO, CA    | 1,338,354 | 6,929 | 1.1%  |
|------------------|-----------|-------|-------|
| BOULDER, CO      | 101,812   | 6,560 | 12.1% |
| BOSTON, MA       | 637,516   | 6,536 | 2%    |
| FORT COLLINS, CO | 148,634   | 6,190 | 7.9%  |
| TUCSON, AZ       | 524,278   | 6,189 | 2.8%  |
| EUGENE, OR       | 157,984   | 6,121 | 8.7%  |
| DAVIS, CA        | 66,009    | 5,830 | 19.1% |
| CAMBRIDGE, MA    | 106,456   | 5,067 | 8.5%  |
| SACRAMENTO, CA   | 475,524   | 5,016 | 2.6%  |
| OAKLAND, CA      | 400,740   | 5,012 | 2.7%  |
| PHOENIX, AZ      | 1,488,759 | 4,784 | 0.7%  |
| BERKELEY, CA     | 115,417   | 4,290 | 7.6%  |
| TEMPE, AZ        | 166,862   | 3,966 | 4.5%  |

Source: 2013 American Community Survey data report.





### **Literature Research:**

- PRODUCT DISTRIBUTION:
- Sales distribution per gender.
- Colour preferences.
- Percentage of sales by bikes, parts and accessories.

- YEARLY DISTRIBUTION:
- Population variation from 2009-2011.
- Number of bike users in particular year.









### • OVERVIEW:







• DESCRIPTOR.XML FILE:

**Populating Database** 

**Creating Tables** 

**Date Specification** 

**Generating Entities and Analysing** 





• **POPULATING DATABASE:** Establishing connection for data base.

```
<database id="db"
url="jdbc:mysql://localhost:3306/datagenerator"
Driver="com.mysql.jdbc.Driver"
schema="datagenerator"
catalog="datagenerator"
user="*****"
password="******"/>
```





• **CREATING TABLES:** Tables are created to assign a path for generating entities.

| Salesorders Table:              | Orderdetails lable:                      |
|---------------------------------|------------------------------------------|
| <execute target="db"></execute> | <execute target="db"></execute>          |
| create table salesorders(       | create table ordersdetails(              |
| orderid int AUTO_INCREMENT,     | orderdetailid int unique AUTO_INCREMENT, |
| customerid int,                 | productid int,                           |
| sale_time varchar(100),         | orderid int,                             |
| PRIMARY KEY(orderid))           | count int)                               |
|                                 |                                          |

Orderdetails Table:





- Date Specification: Each month is specified with unique identity using bean classes to define them globally.
- Example: Date specification for January 2009





• Generating Entities: Entities can be generated as per user requirement.

```
<generate name="salesorders_us" type="salesorders_us" count="67" consumer="db,ConsoleExporter">
<id name="orderid" type="int" min="1" max="67" />
<variable name="weightings" source="weightings01.wgt.csv" distribution="weighted"/>
<reference name="customerid"type="int" targetType="salesorders us" source="db" selector="select id from</pre>
customer us" nullable="false" cyclic="true" script="{weightings}"/>
<attribute name="sale_time" type="datetime" nullable="false" generator="dtGen0901"/>
<generate name="ordersdetails_us" type="ordersdetails_us" minCount="1" maxCount="100"</pre>
consumer="db.ConsoleExporter">
<id name="orderdetailid" generator="new IncrementalIdGenerator" mode="ignored"/>
<reference name="orderid" script="salesorders_us.orderid"/>
<variable name="weightings01" source="Hproduct_us.wgt.csv" distribution="weighted"/>
<reference name="productid"type="int"targetType="salesorders us" source="db" selector="select pid from</pre>
product us" nullable="false" cyclic="true" script="{weightings01}"/>
<attribute name="count" type="int" min="1" max="20" />
</generate>
</generate>
```









### • TABLES CREATED:

### **Salesorders Table:**

|          | orderid | customerid | sale_time  |
|----------|---------|------------|------------|
| <b>•</b> | 1       | 1          | 2009-01-22 |
|          | 2       | 4          | 2009-01-31 |
|          | 3       | 12         | 2009-01-29 |
|          | 4       | 11         | 2009-01-07 |
|          | 5       | 12         | 2009-01-04 |
|          | 6       | 7          | 2009-01-05 |
|          | 7       | 7          | 2009-01-13 |

### **Orderdetails Table:**

|   | orderdetailid | productid | orderid | count |
|---|---------------|-----------|---------|-------|
| • | 1             | 15        | 1       | 17    |
|   | 2             | 11        | 1       | 6     |
|   | 3             | 6         | 1       | 20    |
|   | 4             | 9         | 1       | 20    |
|   | 5             | 12        | 1       | 5     |
|   | 6             | 18        | 1       | 12    |
|   | 7             | 13        | 1       | 20    |





• JOIN clause is used to combine Product, Customer, Salesorders, Orderdetails tables to return required rows in sales-order table.

| 1  | orderid | orderde | customerid | customername         | pid | pname                              | sale_time  | city          | postalcode | countrycode |
|----|---------|---------|------------|----------------------|-----|------------------------------------|------------|---------------|------------|-------------|
| 2  | 1       | 1       | 2          | BIG APPLE BIKES      | 15  | PROFESSIONAL TOURING BIKE (BLACK)  | 2009-01-08 | NEW YORK CITY | 10014      | US00        |
| 3  | 1       | 2       | 2          | BIG APPLE BIKES      | 6   | REPAIR KIT                         | 2009-01-08 | NEW YORK CITY | 10014      | US00        |
| 4  | 1       | 3       | 2          | BIG APPLE BIKES      | 7   | ROAD HELMET                        | 2009-01-08 | NEW YORK CITY | 10014      | US00        |
| 5  | 1       | 4       | 2          | BIG APPLE BIKES      | 14  | MEN'S OFF ROAD BIKE                | 2009-01-08 | NEW YORK CITY | 10014      | US00        |
| 6  | 1       | 5       | 2          | BIG APPLE BIKES      | 15  | PROFESSIONAL TOURING BIKE (BLACK)  | 2009-01-08 | NEW YORK CITY | 10014      | US00        |
| 7  | 1       | 6       | 2          | BIG APPLE BIKES      | 13  | DELUXE TOURING BIKE (SILVER)       | 2009-01-08 | NEW YORK CITY | 10014      | US00        |
| 8  | 1       | 7       | 2          | BIG APPLE BIKES      | 10  | WATER BOTTLE CAGE                  | 2009-01-08 | NEW YORK CITY | 10014      | US00        |
| 9  | 1       | 8       | 2          | BIG APPLE BIKES      | 14  | MEN'S OFF ROAD BIKE                | 2009-01-08 | NEW YORK CITY | 10014      | US00        |
| 10 | 1       | 9       | 2          | BIG APPLE BIKES      | 10  | WATER BOTTLE CAGE                  | 2009-01-08 | NEW YORK CITY | 10014      | US00        |
| 11 | 1       | 10      | 2          | BIG APPLE BIKES      | 13  | DELUXE TOURING BIKE (SILVER)       | 2009-01-08 | NEW YORK CITY | 10014      | US00        |
| 12 | 1       | 11      | 2          | BIG APPLE BIKES      | 15  | PROFESSIONAL TOURING BIKE (BLACK)  | 2009-01-08 | NEW YORK CITY | 10014      | US00        |
| 13 | 1       | 12      | 2          | BIG APPLE BIKES      | 13  | DELUXE TOURING BIKE (SILVER)       | 2009-01-08 | NEW YORK CITY | 10014      | US00        |
| 14 | 1       | 13      | 2          | BIG APPLE BIKES      | 17  | PROFESSIONAL TOURING BIKE (SILVER) | 2009-01-08 | NEW YORK CITY | 10014      | US00        |
| 15 | 1       | 14      | 2          | BIG APPLE BIKES      | 14  | MEN'S OFF ROAD BIKE                | 2009-01-08 | NEW YORK CITY | 10014      | US00        |
| 16 | 2       | 15      | 1          | ROCKY MOUNTAIN BIKES | 15  | PROFESSIONAL TOURING BIKE (BLACK)  | 2009-01-07 | DENVER        | 80111      | US00        |
| 17 | 2       | 16      | 1          | ROCKY MOUNTAIN BIKES | 13  | DELUXE TOURING BIKE (SILVER)       | 2009-01-07 | DENVER        | 80111      | US00        |
| 18 | 2       | 17      | 1          | ROCKY MOUNTAIN BIKES | 3   | FIRST AID KIT                      | 2009-01-07 | DENVER        | 80111      | US00        |
| 19 | 2       | 18      | 1          | ROCKY MOUNTAIN BIKES | 7   | ROAD HELMET                        | 2009-01-07 | DENVER        | 80111      | US00        |
| 20 | 2       | 19      | 1          | ROCKY MOUNTAIN BIKES | 18  | WOMEN'S OFF ROAD BIKE EN           | 2009-01-07 | DENVER        | 80111      | US00        |
| 21 | 2       | 20      | 1          | ROCKY MOUNTAIN BIKES | 13  | DELUXE TOURING BIKE (SILVER)       | 2009-01-07 | DENVER        | 80111      | US00        |
| 22 | 2       | 21      | 1          | ROCKY MOUNTAIN BIKES | 16  | PROFESSIONAL TOURING BIKE (RED)    | 2009-01-07 | DENVER        | 80111      | US00        |
| 23 | 2       | 22      | 1          | ROCKY MOUNTAIN BIKES | 9   | WATER BOTTLE                       | 2009-01-07 | DENVER        | 80111      | US00        |
| 24 | 2       | 23      | 1          | ROCKY MOUNTAIN BIKES | 15  | PROFESSIONAL TOURING BIKE (BLACK)  | 2009-01-07 | DENVER        | 80111      | US00        |
| 25 | 2       | 24      | 1          | ROCKY MOUNTAIN BIKES | 12  | DELUXE TOURING BIKE (RED)          | 2009-01-07 | DENVER        | 80111      | US00        |



























Analysis were done as per generated data.

# Number of Sales(USA) 67500 67000 r 66500 d 66000 e r 65500 s 65000 64500 2009 2010 Year

### **Number of Sales(Germany)**













# Performance and Limitations





# **Performance and Limitations:**

### • PERFORMANCE:

- Performance of benerator was tested for different number of datasets generated.
- Generating time increases as the number of entities to be generated increases.







# **Performance and Limitations:**

### • LIMITATIONS:

- •Development for the tool ended in 2009, with release v 0.9.8.
- The online forum is inactive and no longer accepts registrations.
- The documentation is not exhaustive enough to cover all use cases.





# Conclusion





### **Conclusion:**

• We have generated systematic data sets, which were organized in format using benerator tool, and data is extracted in Excel sheet. Later we have analyzed the data of increment and decrement in sales as per seasonal conditions, city wise distribution of bikes sales. Also found the differences of sales in Germany and in the USA on different time scales. These output realistic datasets can be used for analysis purposes.









- [1] V. Ayala-Rivera, P. McDonagh, T. Cerqueus, L. Murphy, Synthetic data generation using benerator tool, arXiv preprint arXiv:1311.3312 (2013).
- [2] P. K "u nzel, The radschnellweg regio velo 01 nsterland in westm "u. route, use, planning and financing.
- [3] K. McLeod, D. Flusche, A. Clarke, Where we ride: Analysis of bicycling in American cities (2013).
- [4] B. G. G. B. F. F. H. I. T. N. P. S. S. Members of national Bicycle Industry Associations in 14 different countries: Austria, Belgium, Turkey., European bicycle market (2015) 10–75.
- [5] C. Emond, W. Tang, S. Handy, Explaining gender differences in bicycle behavior, in: Active Living Research Conference February, volume 19.





- [6] M. Nezhad, K. Kavehnezhad, et al., Choosing the right color: a way to increase sales, International Journal of Asian Social Science 3 (2013) 1442–1457.
- [7] J. A. Bellizzi, R. E. Hite, Environmental color, consumer feelings, and purchase likelihood, Psychology & marketing 9 (1992) 347–363.
- [8] N. Torslov, Cycling, health and safety, OECD/International Transport Forum(2013), Cycling, Health and Safety OECD Publishing/ITF.
- [9] Houkjr, Kenneth, Kristian Torp, and Rico Wind. "Simple and realistic data generation." Proceedings of the 32nd international conference on Very large data bases. VLDB Endowment, 2006.





[10] Gabriel Ghinita, Yufei Tao, and Panos Kalnis. On the Anonymization of Sparse High-Dimensional Data. In ICDE, pages 715724. Ieee, April 2008.

[11] Lu, Qing Chang, et al. "Inter-city travel behavior adaptation to extreme weather events." Journal of Transport Geography 41 (2014): 148-153.

[12] Cui, Yuchen, Sabyasachee Mishra, and Timothy F. Welch. "Land use effects on bicycle ridership: a framework for state planning agencies." Journal of Transport Geography 41 (2014): 220-228.

[13] Phung, Justin, and Geoff Rose. "Temporal variations in usage of Melbourne's bike paths." Proceedings of 30th Australasian Transport Research Forum, Melbourne . Of 2007.





[14] Brandenburg, Christiane, Andreas Matzarakis, and Arne Arnberger. "Weather and cycling-a first approach to the effects of weather conditions on cycling" Meteorological applications (2007): 61-67.

[15] Whiting, Mark A., Jereme Haack, and Carrie Varley. "Creating realistic, scenario-based synthetic data for test and evaluation of information analytics software." Proceedings of the 2008 Workshop on BEyond time and errors: novel evaluation methods for Information Visualization. ACM, 2008.

[16] T Varga and Horst Bunke. Generation of synthetic training data for an HMM-based handwriting recognition system. Document Analysis and Recognition, 2003.





# Thank you for your attention