Feuille d'exercices séquence 2

S Exercice 1.

Soit z=2+i. Placer dans un plan le point M_z puis les points $M_{\overline{z}}$, M_{-z} et $M_{-\overline{z}}$. Même question pour z = -1 + 2i et z = 3 - i.

S Exercice 2.

Déterminer la relation vérifiée par tous les nombres complexes z = a + ib (avec $a, b \in \mathbb{R}$) solutions de l'équation |z|=1. Géométriquement, que représentent les solutions de cette équation dans le plan?

S Exercice 3.

Déterminer la forme exponentielle des nombres complexes suivants :

a)
$$z_1 = \frac{1}{2} + \frac{\sqrt{3}}{2}i$$
,

d)
$$z_4 = -1 + \sqrt{3}i$$
,

b)
$$z_2 = 1 + \sqrt{3}i$$
,

e)
$$z_5 = -\frac{1}{4} - \frac{1}{4}i$$
,

c)
$$z_3 = 3 - 3i$$
,

f)
$$z_6 = 3 + 3\sqrt{3}i - 3i + 3\sqrt{3}i$$

Correction:

a)
$$z_1 = e^{i\frac{\pi}{3}}$$

b)
$$z_2 = 2 e^{i\frac{\pi}{3}}$$
.

a)
$$z_1 = e^{i\frac{\pi}{3}}$$
.
b) $z_2 = 2e^{i\frac{\pi}{3}}$.
c) $z_3 = 3\sqrt{2}e^{-i\frac{\pi}{4}}$

d)
$$z_4 = 2 e^{i\frac{2\pi}{3}}$$

e)
$$z_5 = \frac{\sqrt{2}}{4} e^{i\frac{5\pi}{4}}$$
.

f)
$$z_6 = z_2 z_3 = 2 e^{i\frac{\pi}{3}} \times 3\sqrt{2} e^{i\frac{\pi}{4}} = 6\sqrt{2} e^{i\frac{\pi}{12}}$$
.

S Exercice 4.

Soient $\theta, \theta' \in \mathbb{R}$. Montrer que

$$\mathbf{a)} \ \mathbf{e}^{i\theta} + \mathbf{e}^{-i\theta} = 2\cos\theta,$$

$$\mathbf{d)} \ \overline{\mathbf{e}^{i\theta}} = \mathbf{e}^{-i\theta},$$

$$\mathbf{g}) \; \frac{\mathrm{e}^{i\theta}}{\mathrm{e}^{i\theta'}} = \mathrm{e}^{i(\theta - \theta')},$$

b)
$$e^{i\theta} - e^{-i\theta} = 2i\sin\theta$$
, e) $e^{-i\theta} = \frac{1}{e^{i\theta}}$,

$$\mathbf{e}) \ \mathbf{e}^{-i\theta} = \frac{1}{\mathbf{e}^{i\theta}}$$

$$\mathbf{f)} \ \mathbf{e}^{i\theta} \, \mathbf{e}^{i\theta'} = \mathbf{e}^{i(\theta+\theta')},$$

$$\mathbf{h)} \ (\mathrm{e}^{i\theta})^2 = \mathrm{e}^{i2\theta}.$$

S Exercice 5.

c) $|e^{i\theta}| = 1$,

Soient $z_1 = r_1 e^{i\theta_1}$ et $z_2 = r_2 e^{i\theta_2}$ avec $r_1, r_2 \in \mathbb{R}_+^*$ et $\theta_1, \theta_2 \in \mathbb{R}$.

- 1) Montrer que si $r_1 = r_2$ et $\theta_1 = \theta_2 + 2k\pi$ avec $k \in \mathbb{Z}$, alors $z_1 = z_2$.
- 2) Montrer que si $z_1 = z_2$, alors $r_1 = r_2$ et il existe $k \in \mathbb{Z}$ tel que $\theta_1 = \theta_2 + 2k\pi$.

Exercice 6.

Soit $z = \frac{2+2i}{1-i}$. Déterminer

a) sa partie réelle,

c) son module,

b) sa partie imaginaire,

d) sa forme exponentielle.

En déduire une simplification de z^5 .

Correction : On a $z = 2i = 2(\cos \frac{\pi}{2} + i \sin \frac{\pi}{2})$. D'où

a)
$$\mathcal{R}e(z) = 0$$
,

b)
$$\mathcal{I}m(z) = 2$$
,

c)
$$|z| = 2$$
,

d)
$$z = 2e^{i\frac{\pi}{2}}$$
.

S Exercice 7.

Calculer le module et les arguments des nombres complexes $u = \frac{\sqrt{6-i\sqrt{2}}}{2}$ et v = -1+i. En déduire le module et les arguments de w = uv.

Correction: On a

$$|u| = \sqrt{\frac{6}{4} + \frac{2}{4}} = \sqrt{2}, \quad \cos \theta_u = \frac{\frac{\sqrt{6}}{2}}{\sqrt{2}} = \frac{\sqrt{3}}{2}, \quad \sin \theta_u = \frac{\frac{\sqrt{2}}{2}}{\sqrt{2}} = \frac{1}{2}.$$

D'où, $\theta_u = \frac{\pi}{6} + 2k\pi, k \in \mathbb{Z}$. De plus,

$$|v| = \sqrt{2}$$
, $\cos \theta_v = \frac{-1}{\sqrt{2}}$, $\sin \theta_v = \frac{1}{\sqrt{2}}$.

Donc, $\theta_v = \frac{3\pi}{4} + 2k\pi, k \in \mathbb{Z}.$

Ainsi,
$$|w| = |u||v| = \sqrt{2}\sqrt{2} = 2$$
 et $\theta_w = \theta_u + \theta_v = \frac{\pi}{6} + \frac{3\pi}{4} = \frac{11\pi}{12} + 2k\pi, k \in \mathbb{Z}$.

S Exercice 8.

Simplifier $z = \left(\frac{-\sqrt{2} + 3\sqrt{2}i}{-2 + i}\right)^3$.

Correction: Posons $z' = \frac{-\sqrt{2} + 3\sqrt{2}i}{2+i}$. Alors $z' = 2e^{-\frac{\pi}{4}i}$. Ainsi

$$z = (z')^3 = 2^3 e^{-\frac{3\pi}{4}i} = -4\sqrt{2} - 4\sqrt{2}i.$$

S Exercice 9.

Soient $z = 2\sqrt{3} + 2i$, $z_1 = (1 + \sqrt{3}) + (1 - \sqrt{3})i$ et $z_2 = \frac{z}{z_1}$.

- 1) Donner la forme algébrique de z_2 , puis sa forme exponentielle.
- 2) Donner la forme exponentielle de z.
- 3) En déduire la forme exponentielle de z_1 , ainsi que les valeurs exactes de $\cos \frac{\pi}{12}$ et $\sin \frac{\pi}{12}$.

- 1) $z_2 = 1 + i = \sqrt{2}e^{i\frac{\pi}{4}}$. 2) $z = 4e^{i\frac{\pi}{6}}$.

3)
$$z_1 = \frac{4}{\sqrt{2}} e^{-i\frac{\pi}{12}}$$
. Donc

$$z_1 = \frac{4}{\sqrt{2}} \left(\cos \left(\frac{\pi}{12} \right) - i \sin \left(\frac{\pi}{12} \right) \right) = (1 + \sqrt{3}) + (1 - \sqrt{3})i.$$

D'où
$$\cos\left(\frac{\pi}{12}\right) = \frac{\sqrt{2}(1+\sqrt{3})}{4} = \frac{\sqrt{2}+\sqrt{6}}{4}$$
 et $\sin\left(\frac{\pi}{12}\right) = -\frac{\sqrt{2}(1-\sqrt{3})}{4} = -\frac{\sqrt{2}-\sqrt{6}}{4}$.

S Exercice 10.

Écrire les nombres complexes suivants sous forme exponentielle, puis sous algébrique :

1)
$$z = \left(-\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)^6$$
,

2)
$$z = (1+i)^9(1-i)^7$$
,

3)
$$z = \left(\frac{-3+3i}{\sqrt{6}-\sqrt{18}i}\right)^6$$
.

Correction:

- 1) Posons $v = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$ Puisque $v = e^{i\frac{2\pi}{3}}$, on a $z = v^6 = e^{i4\pi} = 1$.
- **2)** Posons $u=1+i=\sqrt{2}e^{i\frac{\pi}{4}}$ et $v=1-i=\sqrt{2}e^{-i\frac{\pi}{4}}$. Alors, $z=u^9v^7=2^8e^{i\frac{\pi}{2}}=256i$.
- 3) Posons u = -3 + 3i et $v = \sqrt{6} \sqrt{18}i$. On a $u = 3\sqrt{2}e^{i\frac{3\pi}{4}}$ et $v = 2\sqrt{6}e^{-i\frac{\pi}{3}}$. Ainsi,

$$\frac{u}{v} = -\frac{\sqrt{6}}{2} e^{i\frac{\pi}{12}}$$
 et $\left(\frac{u}{v}\right)^6 = \frac{3^3}{2^3} e^{i\frac{\pi}{2}} = \frac{27}{8}i$.

Exercice 11.

Soit $\delta = i$.

- 1) Déterminer la forme exponentielle de δ .
- 2) Soit $\Delta = r e^{i\theta}$ avec $r \in \mathbb{R}_+^*$, $\theta \in \mathbb{R}$. Quels sont les valeurs de r et de θ tels que $\Delta^2 = \delta$?

S Exercice 12.

Soit $\delta = -3 + \sqrt{3}i$.

- 1) Déterminer la forme exponentielle de δ .
- 2) Soit $\Delta = r e^{i\theta}$ avec $r \in \mathbb{R}_+^*$, $\theta \in \mathbb{R}$. Quelles sont les valeurs de r et de θ tels que $\Delta^2 = \delta$?