Accepted Manuscript

Prevalence, sequence types, antibiotic resistance and, *gyrA* mutations of *Salmonella* isolated from retail fresh chicken meat in Singapore

Ye Htut Zwe, Vivien Chia Yen Tang, Kyaw Thu Aung, Ramona Alikiiteaga Gutiérrez, Lee Ching Ng, Hyun-Gyun Yuk

PII: S0956-7135(18)30101-4

DOI: 10.1016/j.foodcont.2018.03.004

Reference: JFCO 6018

To appear in: Food Control

Received Date: 5 January 2018

Revised Date: 27 February 2018

Accepted Date: 1 March 2018

Please cite this article as: Zwe Y.H., Yen Tang V.C., Aung K.T., Gutiérrez R.A., Ng L.C. & Yuk H.-G., Prevalence, sequence types, antibiotic resistance and, *gyrA* mutations of *Salmonella* isolated from retail fresh chicken meat in Singapore, *Food Control* (2018), doi: 10.1016/j.foodcont.2018.03.004.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Prevalence, sequence types, antibiotic resistance and, gyrA mutations of
2	Salmonella isolated from retail fresh chicken meat in Singapore
3	
4	Ye Htut Zwe ^a , Vivien Chia Yen Tang ^a , Kyaw Thu Aung ^{b,c} , Ramona Alikiiteaga
5	Gutiérrez b, Lee Ching Ng b,d, Hyun-Gyun Yuk e,*
6	
7	^a Food Science and Technology Programme, Department of Chemistry, National
8	University of Singapore, Science Drive 4, Singapore 117543
9	^b Environmental Health Institute, National Environment Agency, 11 Biopolis Way,
10	Helios Block #06-05/08 Singapore 138667
11	^c School of Chemical and Biomedical Engineering, Nanyang Technological University,
12	62 Nanyang Drive Singapore 637459
13	^d School of Biological Science, Nanyang Technological University, 60 Nanyang Drive
14	Singapore 637551
15	^e Department of Food Science and Technology, Korea National University of
16	Transportation, 61 Daehak-ro, Jeungpyeong-gun, Chungbuk, Republic of Korea 27909
17	
18	
19	
20	* Corresponding author. Department of Food Science and Technology, Korea National
21	University of Transportation, 61 Daehak-ro Jeungpyeong-gun, Chungbuk, Republic of
22	Korea 27909
23	Tel: +82-43-820-5244; <i>E-mail address</i> : yukhg@ut.ac.kr (H.G. Yuk)

ABSTRACT

25	
----	--

Salmonellosis, caused by multidrug-resistant Salmonella species, in particular, is one of
the leading notifiable foodborne diseases in Singapore and an emerging public health
concern worldwide. The objectives of this study were to determine the prevalence,
antibiotic resistance and the presence of gyrA and parC mutations in Salmonella isolated
from retail fresh chicken meat in Singapore. A significantly higher prevalence of
Salmonella was found in chicken meat from the wet markets (25%, 30/120), as compared
to supermarkets (12.7%, 19/150). The top four serovars isolated in this study were S .
Saintpaul (32.7%, 17/52), followed by S. Brancaster (21.2%, 11/52), S. Albany (11.5%,
6/52), and S. Stanley (9.6%, 5/52). More than 80% of Salmonella isolates exhibited
resistance to at least one of eleven antibiotics tested. The most common phenotypic
resistances exhibited were towards ampicillin (78.8%, 41/52), tetracycline and
chloramphenicol (61.5%, 32/52), sulfamethoxazole-trimethoprim (55.8%, 29/52) and
nalidixic acid (30.8%, 16/52). Of the 52 Salmonella isolates, 59.6% (31/52) were multi-
drug resistant strains, resistant to 3 or more antibiotic classes. No mutation in parC gene
was found in any of the isolates that expressed phenotypic resistance or reduced
susceptibility towards quinolone and/or fluoroquinolone. Mutations at two different sites
of gyrA gene were found in 7 isolates, which further discriminates the quinolone
resistance genotype in Salmonella isolates from fresh chicken meat. Our findings provide
opportunities for risk assessment and management of salmonellosis and antibiotic-
resistant Salmonella species in the country and the region.

- 47 Keywords: Salmonella, chicken, sequence types, antibiotic resistance, quinolone
- 48 resistance

1. Introduction

_	\sim
۲,	"
. 1	.,

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

49

Non-typhoidal salmonellosis caused by Salmonella is one of the most common foodborne diseases worldwide. In the United States, salmonellosis has been estimated to be responsible for 1 million illnesses and attributed to 400 deaths each year (Scallan, et al., 2011), and up to 155,000 deaths globally (Majowicz, et al., 2010). In Singapore, nontyphoidal salmonellosis contributed 56% of all notifiable foodborne and waterborne diseases from 2001 to 2010 (Kondakci & Yuk, 2012). The incidence (per 100,000 population) of non-typhoidal salmonellosis in Singapore has been rising from 26.5 in 2011 to 35.9 in 2015 due, in part, to the mandatory notification requirement of salmonellosis implemented in 2008 (MOH, 2012, 2016; Zwe & Yuk, 2017). Chicken meat is one of the most commonly implicated food for human salmonellosis (Vandeplas, Dauphin, Beckers, Thonart, & Thewis, 2010). Owing to its ability to reside in healthy chickens without causing illness (de Jong, et al., 2014), Salmonella may go unnoticed in the farm, thereby posing the risk of salmonellosis through contaminated chickens. The administration of antibiotics in livestock as growth promoters has been a longstanding agricultural practice and is primarily associated with the emergence of antibiotic resistance in foodborne and livestock-associated bacteria (Thames, Pruden, James, Ray, & Knowlton, 2012). In particular, multidrug-resistant (MDR) Salmonella has been consistently reported in food-producing animals and food globally in the recent decade (Abd-Elghany, Sallam, Abd-Elkhalek, & Tamura, 2015; Anjum, et al., 2011; Lettini, et al., 2016; Nguyen, et al., 2016; Oueslati, et al., 2016; Rodriguez-Rivera, et al., 2016),

72	resulting in humans being exposed to MDR Salmonella through food. Although mostly
73	causing self-limiting gastroenteritis, Salmonella infections can be invasive and potentially
74	fatal, especially in children, elderly and immunocompromised individuals (Arshad, et al.,
75	2008). Administration of antibiotics becomes essential in these cases, with the drugs of
76	choice being fluoroquinolones in most cases (Kariuki, Gordon, Feasey, & Parry, 2015).
77	Hence, reports indicating evidence of increasing resistance to fluoroquinolones in
78	Salmonella (Lettini, et al., 2016; Veldman, et al., 2011; Zhang, et al., 2014) are of
79	concern because it could mean a limited choice of therapeutics in the near future.
80	In Singapore, the Ministry of Health (MOH) annually reports surveillance data of
81	reported cases of human salmonellosis. However, to our knowledge, there is no report on
82	the contamination rates and antibiotic resistance of Salmonella in raw meat in Singapore.
83	Thus, the objectives of this study were to determine the prevalence, sequence
84	types/serovars and antibiotic resistance patterns of Salmonella from fresh chicken meat
85	available in wet markets and supermarkets in Singapore. Furthermore, possible
86	mechanisms of fluoroquinolone and quinolone resistance in Salmonella isolated from
87	chicken meat were investigated. Findings from this study may help authorities in
88	assessing the possible exposure risk of Salmonella from contaminated chicken meat for
89	developing risk mitigation measures, and in evaluating the risk of antibiotic resistance
90	hazard in the food supply chain in Singapore and elsewhere. In addition, they also serve
91	as valuable data points in future long-term surveillance programs of Salmonella
92	contamination patterns and/or antibiotic resistance patterns in the region.

93

94

2. Materials and methods

95	
96	2.1. Sample collection and preparation
97	
98	Sample collection was done between June 2015 and April 2016. Two types of
99	markets, namely wet markets and supermarkets, were included in this study for sample
100	collection. A total of 120 fresh (chilled) chicken samples were collected (30 breasts, 30
101	drum sticks, 30 thighs, 30 whole) from more than 30 different poultry vendors across 10
102	wet markets. A total of 150 fresh (chilled) chicken meat samples were collected (30
103	breasts, 30 drum sticks, 30 minced, 30 thighs, 30 whole) from 9 outlets across 3 different
104	supermarket chains. Each sample of approximately 100 g was individually wrapped
105	separately in new and clean plastic bags and transported on ice to the Food Microbiology
106	Laboratory of the National University of Singapore. All samples were either tested
107	immediately, or stored at 4 °C before being processed within 12 hours from the time of
108	collection.
109	
110	2.2. Isolation and serogrouping of Salmonella species
111	
112	Isolation of Salmonella from chicken meat samples was carried out according to the
113	ISO 6579:2002 (ISO, 2002) as performed previously (Zheng, Mikš-Krajnik, Yang, Xu, &
114	Yuk, 2014). Knives, steel trays and wooden chopsticks used to handle the chicken sample
115	during the portioning were all sterilized by autoclaving at 121 °C for 15 min in wrapped
116	aluminum foil prior to the experiment. The outer packaging of the samples was
117	decontaminated with 70% ethanol and left to dry in the biosafety cabinet (BSC; Esco

118	Class II, Type A2, E-Series, Esco Micro Pvt. Ltd., Singapore) before handling to prevent
119	cross-contamination from the outer packaging to the sample. A 25 g portion of each
120	sample was aseptically cut, portioned in the steel trays and weighed on a sterile Petri dish
121	in the BSC. Bones were not included in the portions in this experiment. For whole
122	chicken carcasses, the sample rinsate was obtained as recommended by the United States
123	Department of Agriculture in the document MLG 4.08 (USDA, 2014). Briefly, the whole
124	chicken carcass was transferred into a large sterile bag with a filter. A 400 ml of sterile
125	BPW was poured into the cavity of the carcass to rinse inside out with a rocking motion
126	for 1 min. A 30 ml portion of the sample rinsate was then transferred into a sterile bag
127	containing 30 ml of sterile BPW and incubated at 37 °C for 24 h. Up to three presumptive
128	Salmonella colonies from each of the xylose lysine deoxycholate agar (Oxoid) and
129	brilliant green agar (Oxoid) were plated onto nutrient agar (Oxoid) to analyze their
130	biochemical characteristics using API 20E (BioMérieux®, Inc., Marcy I'Etoile, France)
131	that were interpreted by APIWEB software (BioMérieux®). Only colonies that displayed
132	$a \ge 95\%$ probability of being identified as Salmonella were taken for the study. If more
133	than one Salmonella colony with identical biochemical fingerprints were isolated from a
134	common sample, only one Salmonella colony per sample was chosen for further
135	characterization. Serogrouping of the Salmonella isolates was carried out using the
136	Wellcolex TM Colour Salmonella Rapid Latex Agglutination Kit (Thermo Fisher
137	Scientific, Waltham, MA, USA) according to manufacturer's instructions.
138	
139	2.3. Multilocus sequence typing (MLST) of Salmonella species

141	Genomic DNA was extracted from the isolates using the GeneJET Genomic DNA
142	Purification Kit (Thermo Fisher Scientific). MLST was performed by amplifying and
143	sequencing the seven housekeeping gene fragments with primers as described in Table 1.
144	Amplifications were carried out in 50 μl reaction volume containing 10 μl of 5x Phusion
145	HF buffer (Thermo Fisher Scientific), 1 μl of 10 mM dNTP mix (1st BASE, Selangor,
146	Malaysia), 1 μ l each of 10 μ M forward and reverse primers and 0.5 μ l of Phusion Hot
147	Start II Taq DNA polymerase (Thermo Fisher Scientific) topped up with 31.5 μ l
148	nuclease-free water (Ambion®, Thermo Fisher Scientific). The PCR was performed as
149	follows: 98 °C for 30 sec followed by 35 cycles of denaturation (98 °C for 10 sec),
150	annealing (55 °C for 30 sec) and extension (72 °C for 30 sec). A final extension step was
151	carried out at 72 °C for 10 min using a Veriti 96 Well Thermal Cycler (Applied
152	Biosystems, Carlsbad, CA, USA). The PCR products were visualized by gel
153	electrophoresis in 2% agarose (1 st BASE).
154	PCR amplicons of the MLST genes were purified using the GeneAll Expin TM Gel
155	SV kit (GeneAll Biotechnology, Seoul, Korea) and sequenced with sequencing primers
156	as shown in Table 1 using capillary electrophoresis with Applied Biosystems®
157	3730/3730xl DNA Analyzer and BigDye Terminator v3.1 (Thermo Fisher Scientific).
158	The reference templates for the seven MLST genes were obtained from the University of
159	Warwick (UoW) MLST database (Warwick). Sequences of the PCR products were then
160	assembled using the SeqMan Pro version 8.0 (DNASTAR). The obtained consensus
161	sequence of each gene was then entered into the UoW MLST database to obtain the
162	corresponding allele number for each gene sequence. Sequence type (ST) of each
163	Salmonella isolate was obtained by entering in the combination of allele types of the

164	seven genes into the UoW MLST database. The corresponding serovar to the obtained ST
165	was then ascertained by referring to the database (Achtman, et al., 2012). Serovars of
166	ST3633 isolates that could not be ascertained with confidence from the database alone
167	were serotyped by slide agglutination test using Salmonella antisera (Bio-Rad
168	Laboratories, Hercules, CA, USA).
169	A dendrogram displaying the phylogenetic relationships between different
170	Salmonella isolates was constructed using Molecular Evolutionary Genetics Analysis
171	(MEGA) version 7.0, using the Neighbour-Joining (NJ) method based on concatenated 7
172	house-keeping genes determined by MLST.
173	
174	2.4. Antibiotic susceptibility testing (AST) of Salmonella species
175	
176	The antibiotic susceptibilities of the Salmonella isolates to 11 types across 7 classes
177	of antibiotics were tested using the disk diffusion method and the results were interpreted
178	according to the breakpoints described by the Clinical and Laboratory Standards Institute
179	(CLSI, 2014). The antibiotic disks (Oxoid) used in the study were as follows: 10 μg
180	ampicillin (AMP), 20 μg amoxicillin and 10 μg clavulanate (AMC), 30 μg ceftriaxone
181	(CRO), 30 µg tetracycline (TE), 5 µg ciprofloxacin (CIP), 10 µg norfloxacin (NOR), 30
182	μg nalidixic acid (NAL), 23.75 μg sulfamethoxazole and 1.25 μg trimethoprim (SXT), 30
183	μg chloramphenicol (C), 30 μg amikacin (AMK) and 10 μg gentamicin (CN). The
184	isolates were classified as either susceptible, intermediate or resistant as per the CLSI
185	breakpoints. Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 25923
186	were used as quality control organisms in the AST. A multidrug-resistant (MDR) isolate

187	was defined as an isolate exhibiting resistance towards three or more different antibiotic
188	classes as previously described (Nguyen, et al., 2016).
189	
190	2.5. Detection of mutations in gyrA and parC genes
191	
192	The genetic features associated with resistance of the isolates to quinolone and
193	fluoroquinolone were assessed as previously described by Šeputienė, et al. (2006). The
194	32 isolates that displayed either resistant or intermediate phenotype towards nalidixic
195	acid and/or ciprofloxacin was analyzed for the presence of any mutations in gyrA and
196	parC genes. The quinolone resistance determining region (QRDR) of gyrA and parC
197	were amplified using the primers (Table 1) in reaction volumes as per the MLST
198	methodology described in this study. The PCR protocol used for the amplification was as
199	described by Šeputienė, et al. (2006). The PCR products were purified and sequenced as
200	described previously. The reference templates of gyrA and parC were downloaded from
201	GenBank at the National Centre for Biotechnology Information (NCBI) website
202	(https://www.ncbi.nlm.nih.gov) from a S. Saintpaul whole genome with accession
203	number GCA_000170215.1. The PCR product sequences were then aligned to the
204	reference gene templates, trimmed and assembled as described previously and converted
205	into protein sequences using the online translation tool publicly available at ExPASy
206	(http://web.expasy.org/translate). The mutations in the QRDR of gyrA and parC amino
207	acid sequences leading to quinolone and fluoroquinolone resistance were assessed by
208	referring to a panel of known mutations previously compiled and published in
209	supplementary materials by Stoesser, et al. (2013).

210	
211	2.6. Statistical analysis
212	
213	Statistical comparison of the prevalence of Salmonella by market type and parts was
214	carried out using Fisher's exact test available online at the GraphPad Software
215	(https://graphpad.com/quickcalcs/contingency1.cfm) with a significance level set at $P <$
216	0.05. The 95% confidence intervals were calculated using the Adjusted Wald method
217	available online at MeasuringU (https://measuringu.com/wald/).
218	
219	3. Results
220	
221	3.1. Prevalence of Salmonella species in chicken meat from wet markets and
222	supermarkets
223	
224	Of the 270 chicken meat samples collected from wet markets and supermarkets, 52
225	Salmonella isolates were obtained from 49 samples, resulting in a prevalence of 18.1%
226	(Table 2). Of the 49 samples detected with Salmonella, 30 samples were from wet
227	markets, while 19 samples were from supermarkets, resulting in a prevalence of 25.0%
228	(30/120) and 12.7% (19/150), respectively. The prevalence of Salmonella in chicken
229	meat from wet markets was significantly higher ($P < 0.05$) than that from supermarkets.
230	No significant difference ($P \ge 0.05$) in the prevalence between different chicken parts
231	was observed.

232	A total of 11 different serovars were detected among the 52 Salmonella isolates, with
233	the four most frequently isolated serovars being S. Saintpaul (32.7%, 17/52), followed by
234	S. Brancaster (21.2%, 11/52), S. Albany (11.5%, 6/52), and S. Stanley (9.6%, 5/52)
235	(Table 3). A wider variety of serovars was isolated from the chicken meat samples
236	collected from wet markets (10 serovars) as compared to the samples from supermarkets
237	(3 serovars). S. Saintpaul and S. Brancaster were detected in both market types and 70%
238	(14/20) of all Salmonella isolates from supermarkets' samples were S. Saintpaul as
239	opposed to 9.4% (3/32) of isolates from wet markets' samples. Isolates of ST3633 were
240	found to be <i>S</i> . Albany from the slide agglutination test.
241	
242	3.2. Distribution of sequence types and serovars based on MLST
243	
244	A total of 12 distinct sequence types (STs) across 11 serovars were isolated in this
245	study (Fig. 1). Two distinct STs (292 and 3633) were found among the S. Albany
246	isolates.
247	
248	3.3. Antibiotic resistance of Salmonella in fresh chicken meat
249	
250	Antibiotic susceptibility testing (AST) revealed that 80.8% (42/52) of isolates were
251	resistant to at least one of the antibiotics tested in this study. The most common
252	phenotypic resistance exhibited was towards ampicillin followed by tetracycline,
253	chloramphenicol, sulfamethoxazole-trimethoprim and nalidixic acid (Fig. 2). Relatively
254	low resistance rates (< 10%) were found for ceftriaxone and ciprofloxacin while no

255	resistance towards amikacin and norfloxacin was found. Of the 52 isolates, 59.6%
256	(31/52) of them were multidrug resistant (MDR) isolates (Table 4). The percentage of
257	MDR isolates resistant to 3, 4, 5 and 6 classes of antibiotics were 1.9, 17.3, 28.8 and
258	11.5% respectively. All S. Albany isolates (n=6) were found to be resistant to at least five
259	different classes of antibiotics while all S. Agona isolates (n=4) were susceptible to all
260	antibiotics tested. One isolate of S. Albany was found to be resistant to 8 antibiotics with
261	a resistance phenotype of AMC-AMP-C-CRO-CIP-NA-SXT-TE. The most common
262	resistance phenotype among MDR isolates was AMP-C-SXT-TE (7 isolates, 13.5%)
263	followed by AMP-C-CN-SXT-TE (6 isolates, 11.5%) (Table 4).
264	
265	3.4. Investigation of genetic resistance determinants to quinolones
266	
267	No mutation in the QRDR of parC gene was observed in any of the isolates tested
268	(Table 5). A gyrA mutation responsible for changing the aspartic acid to asparagine
269	residue at the 87 th position (Asp87Asn) was found in S. Albany isolates (n=6) while a
270	mutation causing a change in serine to tyrosine residue at the 83 rd position (Ser83Tyr)
271	was found in S. Give isolate (n=1). S. Brancaster and S. Stanley isolates which displayed
272	a resistant phenotype to nalidixic acid did not display any mutations in either gyrA or
273	parC genes. One isolate (WB2) among S. Albany isolates carrying the Asp87Asn
274	mutation, and the S. Give isolate carrying the Ser83Tyr mutation, displayed phenotypic
275	resistance towards both nalidixic acid and ciprofloxacin.
276	
277	4. Discussion

2	7	8
_	•	•

279	To our knowledge, there is no other comparable published study on Salmonella
280	contamination rates of raw meat items in Singapore. Hence, the prevalence rate found in
281	this study could not be compared to any local past data to establish any trend.
282	Internationally, this Salmonella prevalence rate of 18.1% in raw chicken in Singapore is
283	lower compared to values reported in Vietnam (21.0 % to 65.3% in poultry; Huong, et al.,
284	2006; Nguyen, et al., 2016; Phan, et al., 2005; Ta, et al., 2014; Van, Moutafis, Istivan,
285	Tran, & Coloe, 2007), Egypt (34% in chicken; Abd-Elghany, et al., 2015), Louisiana,
286	United States (21.7% in chicken; Lestari, Han, Wang, & Ge, 2009), Maryland, United
287	States (56% in chicken; Cui, Ge, Zheng, & Meng, 2005), Anatolia (34% in chicken;
288	Yildirim, Gonulalan, Pamuk, & Ertas, 2011), Mexico (35.3% in poultry; Miranda,
289	Mondragon, Martinez, Guarddon, & Rodriguez, 2009) and Penang, Malaysia (23.5% in
290	ducks; Adzitey, Rusul, & Huda, 2012). The prevalence found in this study is higher
291	compared to those in New Zealand (3% in chicken; Wong, Nicol, Cook, & MacDiarmid,
292	2007) and United Kingdom (4% in chicken; Meldrum & Wilson, 2007). However, in
293	these countries, Campylobacter species tend to be the main contaminant of raw chicken
294	instead (Baker, et al., 2006; Meldrum & Wilson, 2007). The lower Salmonella prevalence
295	rate in Singapore as compared to many countries could be attributed to the governance of
296	food safety and hygiene in Singapore by the combined efforts of the Agri-Food &
297	Veterinary Authority of Singapore (AVA) and the National Environment Agency (NEA)
298	as succinctly documented by Ludher (2015).
299	Our study showed that the prevalence of Salmonella contamination in raw chicken
300	from wet markets was significantly higher than in those from the supermarkets. These

301	results suggest that the prevalence of Salmonella species may vary depending on the type
302	of retail establishments. Relatively inferior hygiene practices, such as cutting chicken
303	meat with shared knife and chopping board without proper cleaning, and displaying
304	chicken carcasses in the chillers without physical separation or individual packaging
305	could likely contribute to cross-contamination events leading to a significantly higher rate
306	of Salmonella contamination in fresh chicken meat sold in wet markets.
307	We found that S. Saintpaul, S. Brancaster, S. Albany, and S. Stanley represented up to
308	75% of all the isolates in fresh chicken meat from wet markets and supermarkets. The
309	most prevalent serovar from raw chicken vary widely across studies: S. Corvallis and S.
310	Albany in Vietnam (Nguyen, et al., 2016; Ta, et al., 2014) and S. Enteritidis in Egypt and
311	China (Abd-Elghany, et al., 2015; Li, Zhou, & Miao, 2017), suggesting geography-
312	dependent prevalence pattern of serovars. Based on Singapore's Ministry of Health's
313	epidemiological reports, the top four serovars in this study are attributed to approximately
314	10% of human salmonellosis cases in Singapore (MOH, 2015). On the other hand,
315	Salmonella Enteritidis, the most commonly reported serovar responsible for human
316	salmonellosis cases in the last decade in Singapore (Kondakci & Yuk, 2012), was not
317	detected in our cross-sectional study. This suggests that fresh chicken meat may not play
318	a major role in the epidemiology of salmonellosis due to S. Enteritidis in Singapore.
319	Further studies involving other food items such as eggs may be needed to explain the
320	observation. Alternatively, due to the detection limit of the culture method (1 CFU/25 g
321	or 0.04 CFU/g), any S. Enteritidis cells present in the fresh raw chicken below the
322	detection method may not be isolated but still might cause disease due to its higher
323	virulence (Teunis, et al., 2010).

In this study, we successfully used multilocus sequence typing (MLST) as an
alternative method to the conventional serotyping scheme of Salmonella isolates as
suggested by (Achtman, et al., 2012). This addressed the high cost needed to maintain a
large collection of 'O' and 'H' Salmonella antigens required in serotyping a wide array of
common and rare serovars alike. Although effective as a serotyping tool, the
determination of phylogeny using MLST may have some limitations in discriminating
power, due to the relatively low variable nature of the seven housekeeping genes. In our
study, apart from S. Albany which was isolated in the form of two different sequence
types (STs), for all other isolates, only one ST each was found for each serovar. In the
dendrograms based on MLST, isolates with identical STs are clustered together and no
further genotypic discrimination is possible even though they may be isolated from
different sources, market types and time period. An alternative genotyping method with a
higher resolution, such as whole genome sequencing (WGS) followed by the construction
of phylogenetic single nucleotide polymorphism (SNP) tree may help to determine the
genetic relationship between isolates of the same serovar from different sources as
previously demonstrated by Leekitcharoenphon, Nielsen, Kaas, Lund, and Aarestrup
(2014) and Holt, et al. (2010). Nevertheless, isolates displaying different STs such as S .
Albany (ST292 and ST3633) in this study appeared to be genetically different and hence
can be discriminated based on MLST.
We detected multidrug-resistant (MDR) Salmonella in 59.6% (31/52) of the isolates
obtained from fresh chicken meat sold in local wet markets and supermarkets. The most
common phenotypic resistance pattern among MDR isolates was AMP-C-SXT-TE.
Previous studies reported similar phenotypes in <i>Salmonella</i> isolates from food-producing

animals in Vietnam (Lettini, et al., 2016; Nguyen, et al., 2016; Ta, et al., 2014; Thai,
Hirai, Lan, & Yamaguchi, 2012; Thai & Yamaguchi, 2012; Tu, et al., 2015), Mexico
(Miranda, et al., 2009) and Thailand (Pulsrikarn, et al., 2012). The use of penicillin,
sulfonamides and tetracycline as primary treatment of various bacterial diseases in
poultry (Mathew, Cissell, & Liamthong, 2007; Singer & Hofacre, 2006) might have
contributed to the emergence of this phenotype as the dominant resistance pattern.
Considering the high rates of resistance towards these antibiotics found in this study and
several others, strict regulation and extensive education in the use of these drugs in
agriculture as well as in human and veterinary medicine should be implemented. This
will serve to prevent further emergence of resistance that could seriously limit their
usefulness in the near future.
To understand the genetic basis of resistance towards quinolone and fluoroquinolone
which are of clinical importance in the treatment of invasive salmonellosis (Acheson &
Hohmann, 2001), the presence of mutations of gyrA and parC in the QRDR were
assessed. There are several known mechanisms of resistance towards quinolones and
fluoroquinolones: target gene mutations, active efflux pumps, a decreased outer
membrane permeability and plasmid-mediated resistance genes (Hooper, 2001; Jacoby,
2005; Ruiz, 2003; Zgurskaya & Nikaido, 2000). In this study, we investigated the
stepwise mutations between alternating gene targets gyrA and parC (Hooper, 2001). We
found that S. Give (WB11) and S. Albany (WB2) isolates carried a single mutation in the
primary target (gyrA) but not in the secondary target (parC) despite exhibiting phenotypic
resistance to both nalidixic acid and ciprofloxacin (Table 5). This was not in agreement
with the findings of Šeputienė, et al. (2006) who reported that a first mutation in gyrA

gene conferred only nalidixic acid resistance while a second mutation in parC was
needed before developing ciprofloxacin resistance in Gram-negative bacteria.
Unexpected ciprofloxacin resistance in S. Give (WB11) and S. Albany (WB2) isolates in
this study in addition to the predicted resistance to nalidixic acid suggests the presence of
other resistance mechanisms synergistically at work with the <i>gyrA</i> mutation.
Furthermore, nalidixic acid resistance displayed by S. Stanley and S. Brancaster isolates
despite lack of any mutations in gyrA and parC genes also suggests the presence of other
resistance mechanisms such as the plasmid-borne qnr resistance genes. An investigation
of the presence of qnr genes should be carried out in these isolates next to further
establish a complete picture of quinolone resistance in these isolates.

5. Conclusion

This is the first report from Singapore that determines the prevalence and antibiotic resistance patterns of *Salmonella* isolated from retail fresh chicken meat. Significantly higher prevalence of *Salmonella* contamination was found in chicken meat from the wet markets than those from supermarkets, suggesting that the degree of *Salmonella* contamination might be market type-dependent. Of the 52 *Salmonella* isolates, 59.6% were multidrug resistant that exhibited high resistance rates towards ampicillin, chloramphenicol, tetracycline and sulfamethoxazole-trimethoprim. Two different mutations in *gyrA*, but no *parC* mutation, were found in quinolone-resistant *Salmonella* isolates. The data provide opportunities for risk assessment and management of antibiotic-resistant *Salmonella* in the country and the region.

393	
394	Acknowledgements
395	
396	This study was supported in part by the National University of Singapore (NUS),
397	and by the National Environment Agency (NEA), Singapore. The authors wish to thank
398	Professor Teo Yik Ying from the Saw Swee Hock School of Public Health, NUS for
399	guidance on the statistical analysis. No conflict of interest declared.
400	
401	References
402	
403	Abd-Elghany, S. M., Sallam, K. I., Abd-Elkhalek, A., & Tamura, T. (2015). Occurrence
404	genetic characterization and antimicrobial resistance of Salmonella isolated from
405	chicken meat and giblets. Epidemiology and Infection, 143(05), 997-1003.
406	Acheson, D., & Hohmann, E. L. (2001). Nontyphoidal salmonellosis. Clinical Infectious
407	Diseases, 32(2), 263-269.
408	Achtman, M., Wain, J., Weill, F.X., Nair, S., Zhou, Z., Sangal, V., Krauland, M. G.
409	Hale, J. L., Harbottle, H., & Uesbeck, A. (2012). Multilocus sequence typing as a
410	replacement for serotyping in Salmonella enterica. PLoS Pathog, 8(6), e1002776.
411	Adzitey, F., Rusul, G., & Huda, N. (2012). Prevalence and antibiotic resistance of
412	Salmonella serovars in ducks, duck rearing and processing environments in
413	Penang, Malaysia. Food Research International, 45(2), 947-952.
414	Anjum, M. F., Choudhary, S., Morrison, V., Snow, L. C., Mafura, M., Slickers, P.
415	Ehricht, R., & Woodward, M. J. (2011). Identifying antimicrobial resistance

416	genes of human clinical relevance within Salmonella isolated from food animals
417	in Great Britain. Journal of Antimicrobial Chemotherapy, 66(3), 550-559.
418	Arshad, M. M., Wilkins, M. J., Downes, F. P., Rahbar, M. H., Erskine, R. J., Boulton, M.
419	L., Younus, M., & Saeed, A. M. (2008). Epidemiologic attributes of invasive non-
420	typhoidal Salmonella infections in Michigan, 1995–2001. International Journal of
421	Infectious Diseases, 12(2), 176-182.
422	Baker, M., Wilson, N., Ikram, R., Chambers, S., Shoemack, P., & Cook, G. (2006).
423	Regulation of chicken contamination is urgently needed to control New Zealand's
424	serious campylobacteriosis epidemic. The New Zealand Medical Journal
425	(Online), 119(1243), U2264.
426	CLSI. (2014). Performance standards for antimicrobial susceptibility testing; 24th
427	informational supplement. CLSI document M100-S24.
428	Cui, S., Ge, B., Zheng, J., & Meng, J. (2005). Prevalence and antimicrobial resistance of
429	Campylobacter spp. and Salmonella serovars in organic chickens from Maryland
430	retail stores. Applied and Environmental Microbiology, 71(7), 4108-4111.
431	de Jong, A., Smet, A., Ludwig, C., Stephan, B., De Graef, E., Vanrobaeys, M., &
432	Haesebrouck, F. (2014). Antimicrobial susceptibility of Salmonella isolates from
433	healthy pigs and chickens (2008–2011). Veterinary Microbiology, 171(3-4), 298-
434	306.
435	Holt, K. E., Baker, S., Dongol, S., Basnyat, B., Adhikari, N., Thorson, S., Pulickal, A. S.,
436	Song, Y., Parkhill, J., & Farrar, J. J. (2010). High-throughput bacterial SNP
437	typing identifies distinct clusters of Salmonella Typhi causing typhoid in
438	Nepalese children. BMC Infectious Diseases, 10(1), 144.

439	Hooper, D. C. (2001). Emerging mechanisms of fluoroquinolone resistance. <i>Emerging</i>
440	Infectious Diseases, 7(2), 337-341.
441	Huong, L. Q., Reinhard, F., Padungtod, P., Hanh, T. T., Kyule, M. N., Baumann, M. P.,
442	& Zessin, K. H. (2006). Prevalence of Salmonella in retail chicken meat in Hanoi,
443	Vietnam. Annals of the New York Academy of Sciences, 1081(1), 257-261.
444	ISO. (2002). International Organization for Standardization 6579:2002(E). Microbiology
445	of Food and Animal Feeding Stuffs — Horizontal Method for the Detection of
446	Salmonella spp.
447	Jacoby, G. A. (2005). Mechanisms of resistance to quinolones. Clinical Infectious
448	Diseases, 41(Supplement 2), S120-S126.
449	Kariuki, S., Gordon, M. A., Feasey, N., & Parry, C. M. (2015). Antimicrobial resistance
450	and management of invasive Salmonella disease. Vaccine, 33, C21-C29.
451	Kondakci, T., & Yuk, H. G. (2012). Overview of foodborne outbreaks in the last decade
452	in Singapore: alarming increase in nontyphoidal salmonellosis. Food and
453	Beverage Asia. Pablo Publishing Pte Ltd., Singapore, 42-45.
454	Leekitcharoenphon, P., Nielsen, E. M., Kaas, R. S., Lund, O., & Aarestrup, F. M. (2014).
455	Evaluation of whole genome sequencing for outbreak detection of Salmonella
456	enterica. PloS one, 9(2), e87991.
457	Lestari, S. I., Han, F., Wang, F., & Ge, B. (2009). Prevalence and antimicrobial resistance
458	of Salmonella serovars in conventional and organic chickens from Louisiana retail
459	stores. Journal of Food Protection, 72(6), 1165-1172.
460	Lettini, A. A., Vo Than, T., Marafin, E., Longo, A., Antonello, K., Zavagnin, P., Barco,
461	L., Mancin, M., Cibin, V., & Morini, M. (2016). Distribution of Salmonella

- serovars and antimicrobial susceptibility from poultry and swine farms in central
- Vietnam. Zoonoses and Public Health, 63(7), 569-576.
- Li, S., Zhou, Y., & Miao, Z. (2017). Prevalence and antibiotic resistance of non-typhoidal
- Salmonella isolated from raw chicken carcasses of commercial broilers and spent
- hens in Tai'an, China. Frontiers in Microbiology, 8, 2106.
- Ludher, E. (2015). A Case study of Singapore's Smart Governance of Food.
- 468 Majowicz, S. E., Musto, J., Scallan, E., Angulo, F. J., Kirk, M., O'brien, S. J., Jones, T.
- F., Fazil, A., & Hoekstra, R. M. (2010). The global burden of nontyphoidal
- 470 Salmonella gastroenteritis. Clinical Infectious Diseases, 50(6), 882-889.
- 471 Mathew, A. G., Cissell, R., & Liamthong, S. (2007). Antibiotic resistance in bacteria
- associated with food animals: a United States perspective of livestock production.
- 473 Foodborne Pathogens and Disease, 4(2), 115-133.
- 474 Meldrum, R. J., & Wilson, I. G. (2007). Salmonella and Campylobacter in United
- Kingdom retail raw chicken in 2005. Journal of Food Protection, 70(8), 1937-
- 476 1939.
- 477 Miranda, J. M., Mondragon, A. C., Martinez, B., Guarddon, M., & Rodriguez, J. A.
- 478 (2009). Prevalence and antimicrobial resistance patterns of Salmonella from
- different raw foods in Mexico. *Journal of Food Protection*, 72(5), 966-971.
- 480 MOH. (2012). Communicable Disease Surveillance in Singapore 2011.
- 481 MOH. (2015). Communicable Disease Surveillance in Singapore 2014.
- 482 MOH. (2016). Communicable Disease Surveillance in Singapore 2015.
- 483 Nguyen, D. T. A., Kanki, M., Nguyen, P. D., Le, H. T., Ngo, P. T., Tran, D. N. M., Le,
- N. H., Dang, C. V., Kawai, T., Kawahara, R., Yonogi, S., Hirai, Y., Jinnai, M.,

485	Yamasaki, S., Kumeda, Y., & Yamamoto, Y. (2016). Prevalence, antibiotic
486	resistance, and extended-spectrum and AmpC β-lactamase productivity of
487	Salmonella isolates from raw meat and seafood samples in Ho Chi Minh City,
488	Vietnam. International Journal of Food Microbiology, 236, 115-122.
489	Oueslati, W., Rjeibi, M. R., Mhadhbi, M., Jbeli, M., Zrelli, S., & Ettriqui, A. (2016).
490	Prevalence, virulence and antibiotic susceptibility of Salmonella spp. strains,
491	isolated from beef in Greater Tunis (Tunisia). Meat Science, 119, 154-159.
492	Phan, T. T., Khai, L. T. L., Ogasawara, N., Tam, N. T., Okatani, A. T., Akiba, M., &
493	Hayashidani, H. (2005). Contamination of Salmonella in retail meats and shrimps
494	in the Mekong Delta, Vietnam. Journal of Food Protection, 68(5), 1077-1080.
495	Pulsrikarn, C., Chaichana, P., Pornruangwong, S., Morita, Y., Yamamoto, S., &
496	Boonmar, S. (2012). Serotype, antimicrobial susceptibility, and genotype of
497	Salmonella isolates from swine and pork in Sa Kaew province, Thailand. The
498	Thai Journal of Veterinary Medicine, 42(1), 21-28.
499	Rodriguez-Rivera, L. D., Cummings, K. J., Loneragan, G. H., Rankin, S. C., Hanson, D.
500	L., Leone, W. M., & Edrington, T. S. (2016). Salmonella prevalence and
501	antimicrobial susceptibility among dairy farm environmental samples collected in
502	Texas. Foodborne Pathogens and Disease, 13(4), 205-211.
503	Ruiz, J. (2003). Mechanisms of resistance to quinolones: target alterations, decreased
504	accumulation and DNA gyrase protection. Journal of Antimicrobial
505	Chemotherapy, 51(5), 1109-1117.

506 Scallan, E., Hoekstra, R. M., Angulo, F. J., Tauxe, R. V., Widdowson, M.-A., Roy, S. L., 507 Jones, J. L., & Griffin, P. M. (2011). Foodborne illness acquired in the United 508 States—major pathogens. *Emerging Infectious Diseases*, 17(1), 7-15. 509 Šeputienė, V., Povilonis, J., Ružauskas, M., Virgailis, M., Žlabys, P., & Sužiedėlienė, E. 510 (2006). Quinolone resistance among Salmonella enterica and Escherichia coli in 511 Lithuania. Biologija(3), 74-78. 512 Singer, R. S., & Hofacre, C. L. (2006). Potential impacts of antibiotic use in poultry 513 production. Avian Diseases, 50(2), 161-172. 514 Stoesser, N., Batty, E. M., Eyre, D. W., Morgan, M., Wyllie, D. H., Del Ojo Elias, C., Johnson, J. R., Walker, A. S., Peto, T. E. A., & Crook, D. W. (2013). Predicting 515 antimicrobial susceptibilities for Escherichia coli and Klebsiella pneumoniae 516 517 isolates using whole genomic sequence data. Journal of Antimicrobial 518 Chemotherapy, 68(10), 2234-2244. 519 Ta, Y. T., Nguyen, T. T., To, P. B., Pham, D. X., Le, H. T. H., Thi, G. N., Alali, W. Q., 520 Walls, I., & Doyle, M. P. (2014). Quantification, serovars, and antibiotic 521 resistance of Salmonella isolated from retail raw chicken meat in Vietnam. Journal of Food Protection, 77(1), 57-66. 522 523 Teunis, P. F. M., Kasuga, F., Fazil, A., Ogden, I. D., Rotariu, O., & Strachan, N. J. C. 524 (2010). Dose–response modeling of Salmonella using outbreak data. International 525 Journal of Food Microbiology, 144(2), 243-249. 526 Thai, T. H., Hirai, T., Lan, N. T., & Yamaguchi, R. (2012). Antibiotic resistance profiles 527 of Salmonella serovars isolated from retail pork and chicken meat in North 528 Vietnam. International Journal of Food Microbiology, 156(2), 147-151.

529	Thai, T. H., & Yamaguchi, R. (2012). Molecular characterization of antibiotic-resistant
530	Salmonella isolates from retail meat from markets in Northern Vietnam. Journal
531	of Food Protection, 75(9), 1709-1714.
532	Thames, C. H., Pruden, A., James, R. E., Ray, P. P., & Knowlton, K. F. (2012). Excretion
533	of antibiotic resistance genes by dairy calves fed milk replacers with varying
534	doses of antibiotics. Frontiers in Microbiology, 3, 139.
535	Tu, L. T. P., Hoang, N. V. M., Cuong, N. V., Campbell, J., Bryant, J. E., Hoa, N. T., Kiet,
536	B. T., Thompson, C., Duy, D. T., & Phat, V. V. (2015). High levels of
537	contamination and antimicrobial-resistant non-typhoidal Salmonella serovars on
538	pig and poultry farms in the Mekong Delta of Vietnam. Epidemiology and
539	Infection, 143(14), 3074-3086.
540	USDA. (2014). Isolation And Identification of Salmonella From Meat, Poultry,
541	Pasteurized Egg, and Catfish Products and Carcass and Environmental Sponges.
542	Van, T. T. H., Moutafis, G., Istivan, T., Tran, L. T., & Coloe, P. J. (2007). Detection of
543	Salmonella spp. in retail raw food samples from Vietnam and characterization of
544	their antibiotic resistance. Applied and Environmental Microbiology, 73(21),
545	6885-6890.
546	Vandeplas, S., Dauphin, R. D., Beckers, Y., Thonart, P., & Thewis, A. (2010).
547	Salmonella in chicken: current and developing strategies to reduce contamination
548	at farm level. Journal of Food Protection, 73(4), 774-785.
549	Veldman, K., Cavaco, L. M., Mevius, D., Battisti, A., Franco, A., Botteldoorn, N.,
550	Bruneau, M., Perrin-Guyomard, A., Cerny, T., & De Frutos Escobar, C. (2011).
551	International collaborative study on the occurrence of plasmid-mediated

552	quinolone resistance in Salmonella enterica and Escherichia coli isolated from
553	animals, humans, food and the environment in 13 European countries. Journal of
554	Antimicrobial Chemotherapy, 66(6), 1278-1286.
555	Warwick, U. o. MLST database at University of Warwick.
556	Wong, T. L., Nicol, C., Cook, R., & MacDiarmid, S. (2007). Salmonella in uncooked
557	retail meats in New Zealand. Journal of Food Protection, 70(6), 1360-1365.
558	Yildirim, Y., Gonulalan, Z., Pamuk, S., & Ertas, N. (2011). Incidence and antibiotic
559	resistance of Salmonella spp. on raw chicken carcasses. Food Research
560	International, 44(3), 725-728.
561	Zgurskaya, H. I., & Nikaido, H. (2000). Multidrug resistance mechanisms: drug efflux
562	across two membranes. <i>Molecular Microbiology</i> , 37(2), 219-225.
563	Zhang, Z., Meng, X., Wang, Y., Xia, X., Wang, X., Xi, M., Meng, J., Shi, X., Wang, D.,
564	& Yang, B. (2014). Presence of qnr, aac (6')-Ib, qep A, oqx AB, and mutations in
565	gyrase and topoisomerase in nalidixic acid-resistant Salmonella isolates
566	recovered from retail chicken carcasses. Foodborne Pathogens and Disease,
567	11(9), 698-705.
568	Zheng, Q., Mikš-Krajnik, M., Yang, Y., Xu, W., & Yuk, H. G. (2014). Real-time PCR
569	method combined with immunomagnetic separation for detecting healthy and
570	heat-injured Salmonella Typhimurium on raw duck wings. International Journal
571	of Food Microbiology, 186, 6-13.
572	Zwe, Y. H., & Yuk, H. G. (2017). Food quality and safety in Singapore: microbiology
573	aspects. Food Quality and Safety, 1(2), 101-105.
5 74	

Table 1. Primers used in this study.

Gene Target	Primer	Sequence (5'-3')	Amplicon size (bp)	Reference
MLST amplification				(Warwick)
aroC	aroCF	CCTGGCACCTCGCGCTATAC	826	
	aroCR	CCACACACGGATCGTGGCG		
dnaN	dnaNF	ATGAAATTTACCGTTGAACGTGA	833	
	dnaNR	AATTTCTCATTCGAGAGGATTGC	15	
hemD	hemDF	ATGAGTATTCTGATCACCCG	666	
	hemDR	ATCAGCGACCTTAATATCTTGCCA		
hisD	hisDF	GAAACGTTCCATTCCGCGCAGAC	894	
	hisDR	CTGAACGGTCATCCGTTTCTG		
purE	purEF	ATGTCTTCCCGCAATAATCC	510	
	purER	TCATAGCGTCCCCGCGGATC		
sucA	sucAF	AGCACCGAAGAGAAACGCTG	643	
	sucAR	GGTTGTTGATAACGATACGTAC		
thrA	thrAF	GTCACGGTGATCGATCCGGT	852	
	thrAR	CACGATATTGATATTAGCCCG		
MLST sequencing				(Warwick)
aroC	aroC_sF1	GGCGTGACGACCGGCAC		
	aroC_sR1	AGCGCCATATGCGCCAC		
dnaN	dnaN_sF	CCGATTCTCGGTAACCTGCT		
	dnaN_sR1	ACGCGACGGTAATCCGGG		
hemD	hemD_sF2	GCCTGGAGTTTTCCACTG		
	hemD_sR	GACCAATAGCCGACAGCGTAG		
hisD	hisD_sF	GTCGGTCTGTATATTCCCGG		

	hisD_sR	GGTAATCGCATCCACCAAATC	
purE	purE_sF1	ACAGGAGTTTTAAGACGCATG	£
	purE_sR1	GCAAACTTGCTTCATAGCG	
sucA	sucA_sF1	CCGAAGAGAAACGCTGGATC	
	sucA_sR	GGTTGTTGATAACGATACGTAC	
thrA	thrA_sF	ATCCCGGCCGATCACATGAT	
	thrA_sR1	ACCGCCAGCGCTCCAGCA	
Quinolone resi	stance-determining	g regions	(Šeputienė, et al., 2006)
gyrA	gyrAF	AAATCTGCCCGTGTCGTTGGT	343
	gyrAR	GCCATACCTACTGCGATACC	
parC	parCF	GTGGTAGCGAAGAGGTGGTT	964
	parCR	GACCGTGCG TTGCCGTTTAT	
Abbreviations: a	aroC, chorismate s	ynthase; dnaN, DNA polymerase III beta	subunit; <i>hemD</i> , uroporphyrinogen III cosynthase; <i>hisD</i> ,
histidinol dehyd	lrogenase; <i>purE</i> , pl	hosphoribosylaminoimidazole carboxylase	e; <i>sucA</i> , alpha ketoglutarate dehydrogenase; <i>thrA</i> ,

aspartokinase + homoserine dehydrogenase; gyrA, DNA gyrase subunit A; parC, topoisomerase subunit A.

580 581

Table 2. Prevalence^a of *Salmonella* spp. isolated from chicken meat in Singapore.

	No. of	No. (%) of Salmonella-positive	
Variable	samples	sample	95% CI (%)
Overall	270	49 (18.1)	14.0 – 23.2
Market Type			
Wet market	120	30 (25.0) ^A	18.1 – 33.5
Supermarket	150	19 (12.7) ^B	8.2 - 19.0
<u>Parts</u>			
Breast	60	15 (25.0) ^A	15.7 - 37.3
Drum Stick	60	9 (15.0) ^A	7.9 - 26.3
Minced	30	3 (10.0) ^A	2.7 - 26.4
Thigh	60	13 (21.7) ^A	13.0 - 33.8
Whole	60	9 (15.0) ^A	7.9 - 26.3

^aValues in columns within each variable that are followed by the same letter are not

significantly different $(P \ge 0.05)$.

584

Table 3. *Salmonella* serovars isolated from different types of markets.

	No. (%) of isolates	No. (%) of isolates	
Serovars	from wet markets	from supermarkets	Total no. (%)
Saintpaul	3 (5.8)	14 (26.9)	17 (32.7)
Brancaster	6 (11.5)	5 (9.6)	11 (21.2)
Albany	6 (11.5)	0 (0)	6 (11.5)
Stanley	5 (9.6)	0 (0)	5 (9.6)
Agona	4 (7.7)	0 (0)	4 (7.7)
Typhimurium	3 (5.8)	0 (0)	3 (5.8)
Gaminara	2 (3.8)	0 (0)	2 (3.8)
Bovismorbificans	1 (1.9)	0 (0)	1 (1.9)
Give	1 (1.9)	0 (0)	1 (1.9)
Newport	0 (0)	1 (1.9)	1 (1.9)
Weltevreden	1 (1.9)	0 (0)	1 (1.9)
Total no. (%)	32 (61.4)	20 (38.4)	52 (100 ^a)

587 Rounded up to 100

Table 4. Phenotypic resistance patterns of *Salmonella* isolates from raw chicken meat.

Resistance phenotype	Serovar (No. of isolates)	No. of antibiotic classes
Susceptible	Agona (4), Gaminara (2), Saintpaul (2),	0
	Newport (1), Weltevreden (1)	
AMP	Saintpaul (4)	1
AMC-AMP	Saintpaul (1)	1
AMP-C	Typhimurium (1)	2
AMP-CRO	Saintpaul (3)	2
AMP-TE	Saintpaul (1), Typhimurium (1)	2
C-CIP-NA-TE	Give (1)	3
AMP-C-SXT-TE	Stanley (4), Bovismorbificans (1),	4
	Typhimurium (1), Brancaster (1)	
AMC-AMP-C-CN-CRO	Saintpaul (1)	4
AMC-AMP-C-SXT-TE	Brancaster (1)	4
AMP-C-CN-SXT-TE	Saintpaul (5), Brancaster (1)	5
AMP-C-NA-SXT-TE	Albany (3), Stanley (1), Brancaster (1)	5
AMC-AMP-C-NA-SXT-TE	Brancaster (3), Albany (1)	5
AMP-C-CN-NA-SXT-TE	Brancaster (4), Albany (1)	6
AMP-AMC-C-CIP-CRO-NA-	Albany (1)	6
SXT-TE	,	

Abbreviations: AMC, Amoxicillin-clavulanate; AMP, Ampicillin; C, Chloramphenicol;

⁵⁹¹ CIP, Ciprofloxacin; CN, Gentamicin; CRO, Ceftriaxone; NA, Nalidixic acid; SXT,

⁵⁹² Sulfamethoxazole-trimethoprim; TE, Tetracycline.

Table 5. List of *gyrA* and *parC* mutations in quinolone and/or fluroquinolone resistantisolates.

Sample	Serovar	NA	CIP	gyrA mutation	parC mutation
WB17 ^a	Stanley	R	I	-	-
$M22^{b}$	Brancaster	R	I	-	- O
M24	Brancaster	R	I	-	
T24 ^c	Brancaster	R	S	-	
$W24^d$	Brancaster	R	I	-	
WW8A	Brancaster	R	I	-	-
WW8B	Brancaster	R	I	-)
WW28A	Brancaster	R	I	-	<u>-</u>
WW22	Brancaster	R	I	- 1	-
WB11	Give	R	R	Ser83Tyr	-
WB2	Albany	R	R	Asp87Asn	-
WB22	Albany	R	I	Asp87Asn	-
WB23	Albany	R	I	Asp87Asn	-
WB24	Albany	R	I	Asp87Asn	-
WB25	Albany	R	I	Asp87Asn	-
WT5	Albany	R	I	Asp87Asn	-

Abbreviations: NA, Nalidixic acid; CIP, Ciprofloxacin; R, Resistant; S, Susceptible, I,

Intermediate; ^aB denotes chicken breast meat sample while prefix W denotes wet market sample; ^bM denotes mince chicken meat sample and the lack of prefix W denotes supermarket sample; ^cT denotes thigh sample; ^dW denotes whole chicken sample.

601	Figure Legends
602	
603	Figure 1. Neighbor-joining dendrogram based on concatenated nucleotide sequences of 7
604	house-keeping genes of Salmonella determined by multilocus sequence typing (MLST).
605	Bootstrap values of >50% shown on the branches are calculated after 1,000 replicates.
606	
607	Figure 2. Frequency bar chart of percentage resistant Salmonella isolates to different
608	antibiotics.
609	

Highlights

- Salmonella contamination was higher in the wet markets than supermarkets.
- S. Saintpaul (32.7%) was most prevalent, followed by S. Brancaster (21.2%).
- Multi-drug resistance rate of Salmonella was 60%.
- Two separate mutations in *gyrA* for quinolone resistance were found.