MA-110 Linear Algebra and Differential Equations

Rekha Santhanam

Department of Mathematics Indian Institute of Technology Bombay Powai, Mumbai - 76

> February 5, 2024 Lecture 13 D3

Subspaces Associated to a Matrix

Associated to an $m \times n$ matrix A, we have four subspaces:

- The column space of A: $C(A) = \text{Span}\{A_{*1}, \dots A_{*n}\}$ $= \{v : Ax = v \text{ is consistent}\} \subseteq \mathbb{R}^m.$
- The **null space** of A: $N(A) = \{x : Ax = 0\} \subseteq \mathbb{R}^n$.
- The row space of $A = \text{Span}\{A_{1*}, \dots, A_{m*}\} = C(A^T) \subseteq \mathbb{R}^n$.
- The left null space of $A = \{x : x^T A = 0\} = N(A^T) \subseteq \mathbb{R}^m$.

Question: Why are the row space and the left null space subspaces?

Recall: Let *U* be the echelon form of *A*, and *R* its reduced form.

Then
$$N(A) = N(U) = N(R)$$
.

Observe: The rows of U(and R) are linear combinations of the rows of A, and vice versa ⇒ their row spaces are same, i.e.,

$$C(A^{\mathsf{T}}) = C(U^{\mathsf{T}}) = C(R^{\mathsf{T}}).$$

We compute bases and dimensions of these special subspaces.

An Example

We illustrate how to find a basis and the dimension of the Null Space N(A), the Column Space C(A), and the Row Space $C(A^T)$ by using the following example.

Let
$$A = \begin{pmatrix} 2 & 4 & 6 & 4 \\ 2 & 5 & 7 & 6 \\ 2 & 3 & 5 & 2 \end{pmatrix}$$
.

Recall:

- The reduced form of A is $R = \begin{pmatrix} 1 & 0 & 1 & -2 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix}$.
- The 1st and 2nd are pivot columns \Rightarrow rank(A) = 2.
- $v = (a \ b \ c)^T$ is in $C(A) \Leftrightarrow Ax = v$ is solvable $\Leftrightarrow 2a b c = 0$.
- We can compute special solutions to Ax = 0. The number of special solutions to Ax = 0 is the number of free variables.

The Null Space: N(A)

For
$$A = \begin{pmatrix} 2 & 4 & 6 & 4 \\ 2 & 5 & 7 & 6 \\ 2 & 3 & 5 & 2 \end{pmatrix}$$
, reduced form $R = \begin{pmatrix} 1 & 0 & 1 & -2 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix}$.

$$N(A) = \begin{cases} \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} = \begin{pmatrix} -c + 2d \\ -c - 2d \\ c \\ d \end{pmatrix} = c \begin{pmatrix} -1 \\ -1 \\ 1 \\ 0 \end{pmatrix} + d \begin{pmatrix} 2 \\ -2 \\ 0 \\ 1 \end{pmatrix} \}.$$

$$= \text{Span} \{ w_1 = \begin{pmatrix} -1 & -1 & 1 & 0 \end{pmatrix}^T, w_2 = \begin{pmatrix} 2 & -2 & 0 & 1 \end{pmatrix}^T \}.$$

$$w_1, w_2 \text{ are linearly independent (Why?)}$$

$$\Rightarrow \mathcal{B} = \{ w_1, w_2 \} \text{ forms a basis for } N(A) \Rightarrow \dim(N(A)) = 2.$$

A basis for N(A) is the set of special solutions.

dim(N(A)) = no. of free variables = no. of variables - rank(A)

dim(N(A)) is called nullity(A).

Show: $w = (-3, -7, 5, 1)^T$ is in N(A). Find $[w]_{\mathscr{B}}$.

The Column Space: C(A)

For
$$A = \begin{pmatrix} 2 & 4 & 6 & 4 \\ 2 & 5 & 7 & 6 \\ 2 & 3 & 5 & 2 \end{pmatrix}$$
, reduced form $R = \begin{pmatrix} 1 & 0 & 1 & -2 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix}$.

Write $A = \begin{pmatrix} v_1 & v_2 & v_3 & v_4 \end{pmatrix}$ and $R = \begin{pmatrix} w_1 & w_2 & w_3 & w_4 \end{pmatrix}$.

Recall: Relations between the column vectors of A are the same as the relations between column vectors of R.

 \Rightarrow $Ax = v_3$ has a solution has the same solution as $Rx = w_3$, and $Ax = v_4$ has a same solution as $Rx = w_{\Delta}$.

Particular solutions are $(1,1,0,0)^T$ and $(-2,2,0,0)^T$ respectively \Rightarrow $v_3 = v_1 + v_2$, $v_4 = -2v_1 + 2v_2$.

Observe:

- v_1 and v_2 correspond to the pivot columns of A.
- $\{v_1, v_2\}$ are linearly independent. Why?
- $C(A) = \operatorname{Span}\{v_1, \dots, v_4\} = \operatorname{Span}\{v_1, v_2\}.$

Thus $\mathcal{B} = \{v_1, v_2\}$ is a basis of C(A). Ques: What is $[v_i]_{\mathcal{B}}$?

The Rank-Nullity Theorem

More generally, for an $m \times n$ matrix A,

- Let rank(A) = r. The r pivot columns are linearly independent since their reduced form contains an $r \times r$ identity matrix.
- Each non-pivot column A_{*j} of A can be written as a linear combination of the pivots columns, by solving $Ax = A_{*j}$. Thus

A basis for C(A) is given by the pivot columns of A.

$$\dim(C(A)) = \text{no. of pivot variables} = \text{rank}(A).$$

• A basis for N(A) is given by the special solutions of A. Thus

$$dim(N(A)) = no.$$
 of free variables = nullity(A).

Rank-Nullity Theorem: Let A be an $m \times n$ matrix. Then

$$dim(C(A)) + dim(N(A)) = no. of variables = n$$

The Row Space: $C(A^T)$

Recall: If
$$A = \begin{pmatrix} 2 & 4 & 6 & 4 \\ 2 & 5 & 7 & 6 \\ 2 & 3 & 5 & 2 \end{pmatrix}$$
, then $R = \begin{pmatrix} 1 & 0 & 1 & -2 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix}$.

Recall: R is obtained from A by taking non-zero scalar multiples of rows and their sums $\Rightarrow C(R^T) = C(A^T)$.

Observe: The non-zero rows of R will span $C(A^T)$, and they contain an identity submatrix \Rightarrow they are linearly independent.

Thus, the non-zero rows of R form a basis for $C(R^T) = C(A^T)$.

Exercise: Give two different basis for $C(A^T)$.

Since the number of non-zero rows of R = number of pivots of A, we have:

dim
$$C(A^T)$$
 = no. of pivots of $A = rank(A)$.

Recall: dim $C(A^T) = \text{rank}(A^T)$. Thus,

$$rank(A^T) = dim (C(A^T)) = rank(A)$$

Extra Reading: The Left Null Space - $N(A^T)$

The no. of columns of A^T is m.

By Rank-Nullity Theorem, $rank(A^T) + dim(N(A^T)) = m$.

Hence:

$$\left(\operatorname{\mathsf{dim}}(\mathsf{N}(\mathsf{A}^\mathsf{T})) = \mathit{m} - \operatorname{\mathsf{rank}}(\mathsf{A}). \right)$$

Exercise: Complete the example by finding a basis for $N(A^T)$.

$$A = \begin{pmatrix} 2 & 4 & 6 & 4 \\ 2 & 5 & 7 & 6 \\ 2 & 3 & 5 & 2 \end{pmatrix}, \text{ reduced form } R = \begin{pmatrix} 1 & 0 & 1 & -2 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Question. Can you use R to compute the basis for $N(A^T)$? Why not?

A. Need the reduced form of A^T which is $\begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.

Matrices as Transformations: Examples

Let
$$A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
. Then
$$A \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1 \\ -x_2 \end{pmatrix}$$
. Let $\mathbf{x} = (2,1)^T$. What is $\mathbf{A} \times ?$ How does A transform $x ?$

A reflects vectors across the X-axis.

$$(2,1)$$

$$(2,-1)$$

Let
$$B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
. Then
$$B \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_2 \\ x_1 \end{pmatrix}$$
. If $\mathbf{x} = (-1, 0.5)^T$,

then $\mathbf{B}x = (0.5, -1)^T$. How does B transform x?

B reflects vectors across the line $x_1 = x_2$.

Q: Do reflections preserve scalar multiples? Sums of vectors?

Matrices as Transformations: Examples

•
$$P = \begin{pmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix}$$
 transforms $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ to $Px = \begin{pmatrix} \frac{x_1 + x_2}{2} \\ \frac{x_1 + x_2}{2} \end{pmatrix}$.

$$Pe_1 = {1/2 \choose 1/2} {1/2 \choose 1/2} = Pe_2.$$

P transforms the vector $\begin{pmatrix} -1\\1 \end{pmatrix}$ to the origin.

Question: Geometrically, how is P transforming the vectors?

Answer: Projects onto the line $x_1 = x_2$.

Question: What happens to sums of vectors when you project them? What about scalar multiples?

Question: Understand the effect of $P = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ on e_1 and e_2 and interpret what P represents geometrically!

Matrices as transformations: Examples

Let
$$Q = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} \cos(45^\circ) & -\sin(45^\circ) \\ \sin(45^\circ) & \cos(45^\circ) \end{pmatrix}$$
.

How does Q transform the standard basis vectors \mathbf{e}_1 and \mathbf{e}_2 ?

Q: What does the transformation $x = {x_1 \choose x_2} \mapsto Qx$ represent geometrically?

Rotations also map sum of vectors to sum of their images and a scalar multiple of a vector to the scalar multiple of its image.

Matrices as Transformations

- An $m \times n$ matrix A transforms a vector x in \mathbb{R}^n into the vector Ax in \mathbb{R}^m . Thus T(x) = Ax defines a function $T: \mathbb{R}^n \to \mathbb{R}^m$.
- The domain of T is _____. The codomain of T is _____.
- Let $b \in \mathbb{R}^m$. Then b is in $C(A) \Leftrightarrow Ax = b$ is consistent $\Leftrightarrow T(x) = b$, i.e., b is in the image (or range) of T.

Hence, the range of T is _____.

Example: Let
$$A = \begin{pmatrix} 2 & 4 & 6 & 4 \\ 2 & 5 & 7 & 6 \\ 2 & 3 & 5 & 2 \end{pmatrix}$$
. Then $T(x) = Ax$ is a function with

domain \mathbb{R}^4 , codomain \mathbb{R}^3 , and range equal to

$$C(A) = \{(a, b, c)^T \mid 2a - b - c = 0\} \subseteq \mathbb{R}^3.$$

Question: How does T transform sums and scalar multiples of vectors?

Ans. Nicely! For scalars a and b, and vectors x and y,

$$T(ax + by) = A(ax + by) = aAx + bAy = aT(x) + bT(y)$$
. Thus

T takes linear combinations to linear combinations.

Linear Transformations

Defn. Let V and W be vector spaces.

• A linear transformation from V to W is a function $T:V\to W$ such that for $x,y\in V$, scalars a and b,

$$T(ax + by) = aT(x) + bT(y)$$

i.e., T takes linear combinations of vectors in V to the linear combinations of their images in W.

Linear comb of vec. in V to linear comb of their images.