

# Generating Natural Images with Direct Patch Distributions Matching

Ariel Elnekave and Yair Weiss The Hebrew University of Jerusalem, Israel





#### Overview

#### **Abstract**

By efficiently matching the distribution of patches between images we can solve a broad spectrum of single-image generative tasks without training a per-image GAN or computing patch nearest neighbors.

#### Single image generative models

In a wide variety of tasks a model needs to capture the statistics of a single reference image in order to resample or manipulate it.



## References

- 1. Simakov, Denis, et al. "Summarizing visual data using bidirectional similarity." 2008 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2008.
- 2. Shaham, Tamar Rott, Tali Dekel, and Tomer Michaeli. "Singan: Learning a generative model from a single natural image." *Proceedings of the IEEE/CVF International Conference on Computer Vision*. 2019.
- 3. Granot, Niv, et al. "Drop the gan: In defense of patches nearest neighbors as single image generative models." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern 1. Recognition. 2022.

#### Method

#### Patch distribution matching:

Many single image generative models try to match the patch distribution of a reference image using objectives like the Bidirectional similarity or patch-discriminators.

We use efficiently compute the SWD between patches using 2d convolutions:



# Patch SWD $p_0 \quad p_1 \quad p_2 \quad p_n \quad q_0 \quad q_1 \quad q_2 \quad q_n$ Random projection ( $\omega$ )



$$SWD(\{p_i\}, \{q_i\}) = \sum_{i=0}^{n} |\omega p_{\sigma(i)} - \omega q_{\pi(i)}|$$

## **Synthesis proces:**

We syntesis an image in a multi-scale manner: at each level an initial guess is optimize to match the patch distribution of the scaled reference imag.



#### Results

#### Computation efficiency

Our method scales more efficiently with the size of the image. Computing SWD is O(nlog(n)) while nearest-neighbor based approaches scale quadratically



# **Comparison to other methods:**

We visually and quantitatively compare our to other method. GPDM compares to GPNN outperforms SinGAN.









