- 1. Ispitati sve aksiome komutativne grupe za strukturu ($\{f_1, f_2, f_3, f_4\}$, \circ), gde su za $i \in \{1, 2, 3, 4\}$ funkcije $f_i : \mathbb{R}^2 \to \mathbb{R}^2$ definisane sa $f_1(x, y) = (-y, -x)$, $f_2(x, y) = (y, x)$, $f_3(x, y) = (x, y)$, $f_4(x, y) = (-x, -y)$.
- 2. Naći normirani polinom P(x) nad \mathbb{R} petog stepena koji je deljiv sa $Q(x) = x^2 + 4$, jedan koren mu je i, a ostatak pri deljenju P(x) sa x 1 je -20. Zatim polinom P(x) faktorisati nad poljima realnih i kompleksnih brojeva.
- 3. Rešiti po $z \in \mathbb{C}$ jednačinu $z \cdot \overline{z} + 1 = -i(z \overline{z})$.

A ALGEBRA - KOLOKVIJUM 1

05.12.2021.

- 1. Ispitati sve aksiome komutativne grupe za strukturu ($\{f_1, f_2, f_3, f_4\}$, \circ), gde su za $i \in \{1, 2, 3, 4\}$ funkcije $f_i : \mathbb{R}^2 \to \mathbb{R}^2$ definisane sa $f_1(x, y) = (-y, -x)$, $f_2(x, y) = (y, x)$, $f_3(x, y) = (x, y)$, $f_4(x, y) = (-x, -y)$.
- 2. Naći normirani polinom P(x) nad \mathbb{R} petog stepena koji je deljiv sa $Q(x) = x^2 + 4$, jedan koren mu je i, a ostatak pri deljenju P(x) sa x 1 je -20. Zatim polinom P(x) faktorisati nad poljima realnih i kompleksnih brojeva.
- 3. Rešiti po $z \in \mathbb{C}$ jednačinu $z \cdot \overline{z} + 1 = -i(z \overline{z})$.

A ALGEBRA - KOLOKVIJUM 1

05.12.2021.

- 1. Ispitati sve aksiome komutativne grupe za strukturu ($\{f_1, f_2, f_3, f_4\}$, \circ), gde su za $i \in \{1, 2, 3, 4\}$ funkcije $f_i : \mathbb{R}^2 \to \mathbb{R}^2$ definisane sa $f_1(x, y) = (-y, -x)$, $f_2(x, y) = (y, x)$, $f_3(x, y) = (x, y)$, $f_4(x, y) = (-x, -y)$.
- 2. Naći normirani polinom P(x) nad \mathbb{R} petog stepena koji je deljiv sa $Q(x) = x^2 + 4$, jedan koren mu je i, a ostatak pri deljenju P(x) sa x 1 je -20. Zatim polinom P(x) faktorisati nad poljima realnih i kompleksnih brojeva.
- 3. Rešiti po $z \in \mathbb{C}$ jednačinu $z \cdot \overline{z} + 1 = -i(z \overline{z})$.

A ALGEBRA - KOLOKVIJUM 1

05.12.2021.

- 1. Ispitati sve aksiome komutativne grupe za strukturu ($\{f_1, f_2, f_3, f_4\}$, \circ), gde su za $i \in \{1, 2, 3, 4\}$ funkcije $f_i : \mathbb{R}^2 \to \mathbb{R}^2$ definisane sa $f_1(x, y) = (-y, -x)$, $f_2(x, y) = (y, x)$, $f_3(x, y) = (x, y)$, $f_4(x, y) = (-x, -y)$.
- 2. Naći normirani polinom P(x) nad \mathbb{R} petog stepena koji je deljiv sa $Q(x) = x^2 + 4$, jedan koren mu je i, a ostatak pri deljenju P(x) sa x 1 je -20. Zatim polinom P(x) faktorisati nad poljima realnih i kompleksnih brojeva.
- 3. Rešiti po $z \in \mathbb{C}$ jednačinu $z \cdot \overline{z} + 1 = -i(z \overline{z})$.

A ALGEBRA - KOLOKVIJUM 1

05.12.2021.

- 1. Ispitati sve aksiome komutativne grupe za strukturu ($\{f_1, f_2, f_3, f_4\}$, \circ), gde su za $i \in \{1, 2, 3, 4\}$ funkcije $f_i : \mathbb{R}^2 \to \mathbb{R}^2$ definisane sa $f_1(x, y) = (-y, -x)$, $f_2(x, y) = (y, x)$, $f_3(x, y) = (x, y)$, $f_4(x, y) = (-x, -y)$.
- 2. Naći normirani polinom P(x) nad \mathbb{R} petog stepena koji je deljiv sa $Q(x) = x^2 + 4$, jedan koren mu je i, a ostatak pri deljenju P(x) sa x 1 je -20. Zatim polinom P(x) faktorisati nad poljima realnih i kompleksnih brojeva.
- 3. Rešiti po $z \in \mathbb{C}$ jednačinu $z \cdot \overline{z} + 1 = -i(z \overline{z})$.

1. Za skup $A = \{1, 2, 3, 4\}$ su permutacije $s_i : A \to A, i \in \{1, 2, 3, 4\}$ definisane sa

$$s_1 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix}, \quad s_2 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}, \quad s_3 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}, \quad s_4 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{pmatrix}.$$

Ispitati sve aksiome komutativne grupe na (S, \circ) , gde je $S = \{s_1, s_2, s_3, s_4\}$, a \circ je kompozicija funkcija.

- 2. Naći normirani polinom P(x) nad \mathbb{R} petog stepena koji je deljiv sa $Q(x) = x^2 + 9$, jedan koren mu je 2i, a ostatak pri deljenju P(x) sa x 2 je -10. Zatim polinom P(x) faktorisati nad poljima realnih i kompleksnih brojeva.
- 3. Rešiti po $w \in \mathbb{C}$ jednačinu $w \cdot \overline{w} + 1 = i(w + \overline{w})$.

B ALGEBRA - KOLOKVIJUM 1

05.12.2021.

1. Za skup $A = \{1, 2, 3, 4\}$ su permutacije $s_i : A \to A, i \in \{1, 2, 3, 4\}$ definisane sa

$$s_1 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix}, \quad s_2 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}, \quad s_3 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}, \quad s_4 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{pmatrix}.$$

Ispitati sve aksiome komutativne grupe na (S, \circ) , gde je $S = \{s_1, s_2, s_3, s_4\}$, a \circ je kompozicija funkcija.

- 2. Naći normirani polinom P(x) nad \mathbb{R} petog stepena koji je deljiv sa $Q(x) = x^2 + 9$, jedan koren mu je 2i, a ostatak pri deljenju P(x) sa x 2 je -10. Zatim polinom P(x) faktorisati nad poljima realnih i kompleksnih brojeva.
- 3. Rešiti po $w \in \mathbb{C}$ jednačinu $w \cdot \overline{w} + 1 = i(w + \overline{w})$.

B ALGEBRA - KOLOKVIJUM 1

05.12.2021.

1. Za skup $A = \{1,2,3,4\}$ su permutacije $s_i : A \to A, i \in \{1,2,3,4\}$ definisane sa

$$s_1 = \begin{pmatrix} 1 \ 2 \ 3 \ 4 \\ 1 \ 2 \ 3 \ 4 \end{pmatrix}, \quad s_2 = \begin{pmatrix} 1 \ 2 \ 3 \ 4 \\ 2 \ 3 \ 4 \ 1 \end{pmatrix}, \quad s_3 = \begin{pmatrix} 1 \ 2 \ 3 \ 4 \\ 3 \ 4 \ 1 \ 2 \end{pmatrix}, \quad s_4 = \begin{pmatrix} 1 \ 2 \ 3 \ 4 \\ 4 \ 1 \ 2 \ 3 \end{pmatrix}.$$

Ispitati sve aksiome komutativne grupe na (S, \circ) , gde je $S = \{s_1, s_2, s_3, s_4\}$, a \circ je kompozicija funkcija.

- 2. Naći normirani polinom P(x) nad \mathbb{R} petog stepena koji je deljiv sa $Q(x) = x^2 + 9$, jedan koren mu je 2i, a ostatak pri deljenju P(x) sa x 2 je -10. Zatim polinom P(x) faktorisati nad poljima realnih i kompleksnih brojeva.
- 3. Rešiti po $w \in \mathbb{C}$ jednačinu $w \cdot \overline{w} + 1 = i(w + \overline{w})$.

B ALGEBRA - KOLOKVIJUM 1

05.12.2021.

1. Za skup $A = \{1, 2, 3, 4\}$ su permutacije $s_i : A \to A, i \in \{1, 2, 3, 4\}$ definisane sa

$$s_1 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix}, \quad s_2 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}, \quad s_3 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}, \quad s_4 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{pmatrix}.$$

Ispitati sve aksiome komutativne grupe na (S, \circ) , gde je $S = \{s_1, s_2, s_3, s_4\}$, a \circ je kompozicija funkcija.

- 2. Naći normirani polinom P(x) nad \mathbb{R} petog stepena koji je deljiv sa $Q(x) = x^2 + 9$, jedan koren mu je 2i, a ostatak pri deljenju P(x) sa x 2 je -10. Zatim polinom P(x) faktorisati nad poljima realnih i kompleksnih brojeva.
- 3. Rešiti po $w \in \mathbb{C}$ jednačinu $w \cdot \overline{w} + 1 = i(w + \overline{w})$.

A REŠENJA

1. Izračunavanjem kompozicija funkcija f_1 , f_2 , f_3 , f_4 , gde je f_3 identička funkcija, dobijamo Kejlijevu tablicu

U unutrašnjosti tablice su svi elementi iz skupa $\{f_1, f_2, f_3, f_4\}$, te je $(\{f_1, f_2, f_3, f_4\}, \circ)$ grupoid. Kompozicija funkcija je asocijativna operacija (teorema). Neutralni element je identička funkcija f_3 (vidi se i iz tablice jer su mu vrsta i kolona jednaki graničnim). Iz tablice očitavamo da je $f_1^{-1} = f_1$, $f_2^{-1} = f_2$, $f_3^{-1} = f_3$ i $f_4^{-1} = f_4$. Tablica je simetrična u odnosu na glavnu dijagonalu te je operacija \circ komutativna na skupu $\{f_1, f_2, f_3, f_4\}$.

2. Kako je i koren polinoma P, to i $\overline{i}=-i$ mora biti koren polinom P, te je P deljiv i sa $(x-i)(x+i)=x^2+1$. Dakle, deljiv je sa $(x^2+4)(x^2+1)$. Kako je P polinom 5-og stepena, sledi da je oblika $P(x)=(x^2+4)(x^2+1)(x-\alpha)$. Ostatak pri deljenju P(x) sa x-1 je -20, što znači da je P(1)=-20. Uvrštavajući 1 u $P(x)=(x^2+4)(x^2+1)(x-\alpha)$ dobijamo $P(1)=(1^2+4)(1^2+1)(1-\alpha)=10-10\alpha=-20$, odakle dobijamo $\alpha=3$.

Kako su koreni polinoma $x^2 + 4$ kompleksni brojevi $\pm 2i$, a koreni polinoma $x^2 + 1$ su kompleksni brojevi $\pm i$, sledi da je $P(x) = (x^2 + 4)(x^2 + 1)(x - 3)$ faktorizacija polinoma P nad \mathbb{R} , a faktorizacija nad \mathbb{C} glasi P(x) = (x - 2i)(x + 2i)(x - i)(x + i)(x - 3).

3. Za z = x + iy, $x, y \in \mathbb{R}$ je

$$z \cdot \overline{z} + 1 = -i(z - \overline{z}) \quad \Leftrightarrow \quad (x + iy)(x - iy) + 1 = -i((x + iy) - (x - iy))$$

$$\Leftrightarrow \quad x^2 + y^2 + 1 = -2yi^2 \quad \Leftrightarrow \quad x^2 + y^2 - 2y + 1 = 0 \quad \Leftrightarrow \quad x^2 + (y - 1)^2 = 0 \quad \Leftrightarrow \quad (x = 0 \land y = 1)$$

$$\Leftrightarrow \quad z = i.$$

1. Računajući kompozicije navedenih funkcija, dobijamo Kejlijevu tablicu grupoida (S, \circ) , gde se iz tablice vidi zatvorenost operacije \circ na skupu S.

Kompozicija funkcija je uvek asocijativna operacija (što je teorema), a komutativna je na skupu S jer je tablica simetrična u odnosu na glavnu dijagonalu. Neutralni element je s_1 jer je to identička funkcija skupa S, a vidi se i po tome što su mu vrsta i kolona jednaki graničnoj vrsti tj. koloni. Iz tablice vidimo da je $s_1^{-1} = s_1$, $s_2^{-1} = s_4$, $s_3^{-1} = s_3$ i $s_4^{-1} = s_2$. Dakle, (S, \circ) je komutativna grupa.

2. Kako je 2i koren polinoma P, to i $\overline{2i}=-2i$ mora biti koren polinom P, te je P deljiv i sa $(x-2i)(x+2i)=x^2+4$. Dakle, deljiv je sa $(x^2+9)(x^2+4)$. Kako je P polinom 5-og stepena, sledi da je oblika $P(x)=(x^2+9)(x^2+4)(x-\alpha)$. Ostatak pri deljenju P(x) sa x-2 je -10, što znači da je P(2)=-10. Uvrštavajući 2 u $P(x)=(x^2+9)(x^2+4)(x-\alpha)$ dobijamo $P(2)=(2^2+9)(2^2+4)(1-\alpha)=104-104\alpha=-10$, odakle dobijamo $\alpha=\frac{114}{104}=\frac{57}{52}$.

Kako su koreni polinoma x^2+9 kompleksni brojevi $\pm 3i$, a koreni polinoma x^2+4 su kompleksni brojevi $\pm 2i$, sledi da je $P(x)=(x^2+9)(x^2+4)(x-\frac{57}{52})$ faktorizacija polinoma P nad \mathbb{R} , a faktorizacija nad \mathbb{C} glasi $P(x)=(x-3i)(x+3i)(x-2i)(x+2i)(x-\frac{57}{52})$.

3. Za w = x + iy, $x, y \in \mathbb{R}$ je

$$w \cdot \overline{w} + 1 = i \left(w + \overline{w} \right) \quad \Leftrightarrow \quad (x + iy) \cdot (x - iy) + 1 = i \left((x + iy) + (x - iy) \right)$$

$$\Leftrightarrow \quad x^2 + y^2 + 1 = 2xi \quad \Leftrightarrow \quad \left(x^2 + y^2 + 1 \right) - 2xi = 0$$

$$\Leftrightarrow \quad \left(x^2 + y^2 + 1 = 0 \right) \quad \wedge \quad -2x = 0 \right) \quad \Leftrightarrow \quad \left(x = 0 \quad \wedge \quad y^2 + 1 = 0 \right),$$

gde ne postoji $y \in \mathbb{R}$ takvo da je $y^2 + 1 = 0$, te polazna jednačina nema rešenja po $z = x + iy \in \mathbb{C}$.