

BÁO CÁO LABLO4

Về trò chơi Connect4

- Lưới: 6 hàng × 7 cột treo đứng
- Mục tiêu: Tạo đường thẳng 4 đĩa cùng màu (ngang, dọc, chéo)
- Người chơi: Đỏ (MAX/Player 1) và Vàng (MIN/Player
 -1)
- Đã được giải toán học (1988): Người chơi đầu luôn thắng nếu chơi tối ưu

Mục tiêu học tập

- Triển khai thuật toán Minimax và Alpha-Beta Pruning
- Thiết kế hàm đánh giá Heuristic hiệu quả cho trạng thái trung gian
- So sánh hiệu suất các chiến lược tác tử khác nhau
- Đánh giá sự đánh đổi giữa chất lượng quyết định và tốc độ tính toán

TASK 1: ĐỊNH NGHĨA BÀI TOÁN

Thành phần	Ý nghĩa
Trạng thái (State)	Mô tả toàn bộ bàn cờ hiện tại (ma trận 6×7).
Hành động (Action)	Người chơi chọn cột 0–6 để thả đĩa.
Mô hình chuyển đổi (Transition Model)	Xác định trạng thái kế tiếp sau khi đĩa được thả (rơi xuống vị trí trống thấp nhất).
Trạng thái kết thúc (Terminal State)	Khi một người chơi có 4 đĩa liên tiếp hoặc bảng đầy (hòa).
Utility (Giá trị)	Đánh giá kết quả của trạng thái cuối: thắng (+1), thua (-1), hòa (0).

TASK 1: ĐỊNH NGHĨA BÀI TOÁN

<u>Phân Tích Độ Phức Tạp</u>

a. Kích thước Không gian Trạng thái (State Space Size)

- Ước tính (Upper Bound): $3^{R \times C} = 3^{6 \times 7} = 3^{42} \approx 1.5 \times 10^{20}$ trạng thái.
- Giải thích: Mặc dù số lượng trạng thái thực tế khả dĩ (reachable states) nhỏ hơn do luật chơi, không gian vẫn quá lớn để sử dụng tìm kiếm vét cạn (brute-force search).

b. Kích thước Cây Trò chơi (Game Tree Size)

- Ước tính: Với hệ số phân nhánh (branching factor, b) ≈ 7 và độ sâu tối đa (depth, d) ≤ 42 , kích thước cây có thể lên tới $7^{42} \approx 1.6 \times 10^{35}$ node.
- Kết luận: Kích thước khổng lồ này khẳng định rằng thuật toán Minimax thô sơ là không khả thi. Các kỹ thuật tối ưu hóa như Alpha-Beta Pruning và giới hạn độ sâu là bắt buộc.

TASK 2: GAME ENVIRONMENT & RANDOM AGENT

Triển khai Cơ sở: Random Agent

- Mục đích: Kiểm tra tính năng của môi trường game và làm đối thủ benchmark cơ sở.
- Chiến lược: Tác tử random_agent chọn một hành động (cột) ngẫu nhiên từ danh sách các hành động hợp lệ.

Thiết kế hàm đánh giá Eval_function

- Ý tưởng Cốt lõi: Đánh giá trạng thái bằng cách định lượng các chuỗi đĩa liên tiếp có tiềm năng mở rộng thành chuỗi 4.
- Tính toán: Quét toàn bộ bảng theo 4 hướng (ngang, dọc, chéo chính, chéo phụ).
- Trọng số: Gán trọng số cao cho chuỗi 3 (mối đe dọa thắng gần) và thấp hơn cho chuỗi 2 (cơ hội phát triển).
- Giá trị Heuristic: Là hiệu số giữa tổng điểm Heuristic của Player 1 và Player -1.

TASK 3: TRIÊN KHAI MINIMAX VỚI ALPHA-BETA PRUNING

Thuật Toán Alpha-Beta

- α (Alpha): Giá trị tối đa mà MAX có thể đảm bảo trên đường đi hiện tại
- β (Beta): Giá trị tối thiểu mà MIN có thể đảm bảo trên đường đi hiện tại
- Điều kiện cắt tỉa: Dừng tìm kiếm khi α ≥ β

Logic MAX và MIN

MAX Player (max_value_alpha_beta):

- Tìm giá trị lớn nhất: v = max(v, min_value(...))
- Cắt tỉa Beta: Nếu v ≥ β → return v
- Cập nhật: $\alpha = \max(\alpha, v)$

MIN Player (min_value_alpha_beta):

- Tìm giá trị nhỏ nhất: v = min(v, max_value(...))
- Cắt tỉa Alpha: Nếu v ≤ α → return v
- Cập nhật: $\beta = \min(\beta, v)$

TASK 4: HEURISTIC ALPHA-BETA TREE SEARCH

```
env = Connect4Env(6,7)
agent_deep = MinimaxAgent(max_depth=4, eval_fn=heuristic_eval)
agent_shallow = MinimaxAgent(max_depth=2, eval_fn=heuristic_eval)
winner = play_game(agent_deep, agent_shallow, env, verbose=False)
print('Winner (deep vs shallow):', winner)
```


Winner (deep vs shallow): 1

Kỹ Thuật Tối Ưu Hóa

- Move Ordering: Sắp xếp nước đi để cắt tỉa hiệu quả hơn
- Heuristic cải tiến: Pattern recognition chính xác hơn
- Best First Move: Tối ưu nước đi đầu tiên

Hướng Phát Triển Nâng Cao

- Monte Carlo Tree Search (MCTS)
- Deep Learning cho hàm đánh giá
- Opening book và Endgame database