ST2131 AY21/22 SEM 2

github/jovyntls

01. COMBINATORIAL ANALYSIS

tricky - E18, E20-22, E23, E26

The Basic Principle of Counting

- combinatorial analysis → the mathematical theory of counting
- basic principle of counting \rightarrow Suppose that two experiments are performed. If exp1 can result in any one of m possible outcomes and if, for each outcome of exp1, there are n possible outcomes of exp2, then together there are mn possible outcomes of the two experiments.
- generalized basic principle of counting \rightarrow If r experiments are performed such that the first one may result in any of n_1 possible outcomes and if for each of these n_1 possible outcomes, and if ..., then there is a total of $n_1 \cdot n_2 \cdot \cdots \cdot n_r$ possible outcomes of r experiments.

Permutations

factorials - 1! = 0! = 1

N1 - if we know how to count the number of different ways that an event can occur, we will know the probability of the event.

N2 - there are n! different arrangements for n objects.

N3 - there are $\frac{n!}{n_1! n_2! \dots n_r!}$ different arrangements of n objects, of which n_1 are alike, n_2 are alike, ..., n_r are alike.

Combinations

N4 - $\binom{n}{r} = \frac{n!}{(n-r)! \, r!}$ represents the number of different groups of size r that could be selected from a set of n objects when the order of selection is not considered

N4b -
$$\binom{n}{r} = \binom{n-1}{r-1} + \binom{n-1}{r}, \quad 1 \le r \le n$$

Proof. If object 1 is chosen $\Rightarrow \binom{n-1}{r-1}$ ways of choosing the remaining objects. If object 1 is not chosen $\Rightarrow \binom{n-1}{n}$ ways of choosing the remaining objects.

N5 - The Binomial Theorem -
$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$$

Proof. by mathematical induction: n=1 is true; expand; sub dummy variable; combine using N4b; combine back to final term

Multinomial Coefficients

N6 - $\binom{n}{n_1,n_2,\dots,n_r}=\frac{n!}{n_1!\,n_2!\dots n_r!}$ represents the number of possible divisions of n distinct objects into r distinct groups of respective sizes n_1, n_2, \ldots, n_3 , where $n_1 + n_2 + \cdots + n_r = n$

$$\begin{array}{l} \textit{Proof.} \text{ using basic counting principle,} \\ &= \binom{n}{n_1} \binom{n-n_1}{n_2} \binom{n-n_1-n_2}{n_3} \cdots \binom{n-n_1-n_2-n_{r-1}}{n_r} \\ &= \frac{n!}{(n-n_1)!} \sum_{\substack{n_1 \mid n_1 \mid n_$$

$$\begin{array}{l} \text{N7 - The Multinomial Theorem: } (x_1 + x_2 + \dots + x_r)^n \\ = \sum\limits_{(n_1,\dots,n_r): n_1 + n_2 + \dots + n_r = n} \frac{n!}{n_1! \, n_2! \, \dots n_r!} x_1^{n_1} \, x_2^{n_2} \, \dots x_r^{n_r} \end{array}$$

Number of Integer Solutions of Equations

N8 - there are $\binom{n-1}{r-1}$ distinct *positive* integer-valued vectors (x_1, x_2, \dots, x_r) satisfying $x_1 + x_2 + \cdots + x_r = n$, $x_i > 0$, $i = 1, 2, \ldots, r$! cannot be directly applied to N8 as 0 value is not included

N9 - there are $\binom{n+r-1}{r-1}$ distinct *non-negative* integer-valued vectors (x_1, x_2, \dots, x_r) satisfying $x_1 + x_2 + \dots + x_r = n$

Proof. let
$$y_k = x_k + 1 \Rightarrow y_1 + y_2 + \cdots + y_r = n + r$$

02. AXIOMS OF PROBABILITY

Sample Space and Events

- sample space → The set of all outcomes of an experiment (where outcomes are not predictable with certainty)
- event → Any subset of the sample space
- **union** of events E and $F \to E \cup F$ is the event that contains all outcomes that are either in E or F (or both).
- intersection of events E and $F \to E \cap F$ or EF is the event that contains all outcomes that are both in E and in F.
- **complement** of $E \to E^c$ is the event that contains all outcomes that are *not* in E.
- **subset** $\to E \subset F$ is all of the outcomes in E that are also in F.
 - $E \subset F \land F \subset E \Rightarrow E = F$

DeMorgan's Laws

$$(\bigcup_{i=1}^n \mathbf{E_i})^c = \bigcap_{i=1}^n \mathbf{E_i^c}$$

Proof. to show LHS \subset RHS: let $x \in (\bigcup_{i=1}^n E_i)^c$ $\begin{array}{l} \Rightarrow x\notin \bigcup_{i=1}^n E_i \Rightarrow x\notin E_1 \text{ and } x\notin E_2\dots \text{ and } x\notin E_n\\ \Rightarrow x\in E_1^c \text{ and } x\in E_2^c\dots \text{ and } x\in E_n^c \end{array}$ $\begin{array}{c} \Rightarrow x \in \bigcap_{i=1}^n E_i^c \\ \text{to show RHS} \subset \text{LHS: let } x \in \bigcap_{i=1}^n E_i^c \end{array}$

$$(\bigcap_{i=1}^{n} \mathbf{E}_{i})^{\mathbf{c}} = \bigcup_{i=1}^{n} \mathbf{E}_{i}^{\mathbf{c}}$$

Proof. using the first law of DeMorgan, negate LHS to get RHS

Axioms of Probability

definition 1: relative frequency

$$P(E) = \lim_{n \to \infty} \frac{n(E)}{n}$$

problems with this definition:

- 1. $\frac{n(E)}{n}$ may not converge when $n \to \infty$
- 2. $\frac{n(E)}{n}$ may not converge to the same value if the experiment is repeated

definition 2: Axioms

Consider an experiment with sample space S. For each event E of the sample space S, we assume that a number P(E) is defined and satisfies the following 3 axioms:

- 1. 0 < P(E) < 1
- 2. P(S) = 1
- 3. For any sequence of mutually exclusive events E_1, E_2, \ldots (i.e., events for which $E_i E_i = \emptyset$ when $i \neq j$),

$$P(\bigcup_{i=1}^{\infty} E_i) = \sum_{i=1}^{\infty} P(E_i)$$

P(E) is the probability of event E

Simple Propositions

$$\mathbf{N1} \cdot P(\emptyset) = 0$$

N2 -
$$P(\bigcup_{i=1}^{n} E_i) = \sum_{i=1}^{n} P(E_i)$$
 (aka axiom 3 for a finite n)

N3 - strong law of large numbers - if an experiment is repeated over and over again, then with probability 1, the proportion of time during which any specific event E occurs will be equal to P(E).

N6 - the definitions of probability are mathematical definitions. They tell us which se functions can be called **probability functions**. They do not tell us what value a probability function $P(\cdot)$ assigns to a given event E.

probability function \iff it satisfies the 3 axioms.

N7 - $P(E_c) = 1 - P(E)$

N8 - if $E \subset F$, then P(E) < P(F)

N9 - $P(E \cup F) = P(E) + P(F) - P(E \cap F)$ **N10** - Inclusion-Exclusion identity where n=3

> $P(E \cup F \cup G) = P(E) + P(F) + P(G)$ -P(EF) - P(EG) - P(FG)+P(EFG)

N11 - Inclusion-Exclusion identity -

$$P(E_1 \cup E_2 \cup \dots \cup E_n) = \sum_{i=1}^n P(E_i) - \sum_{i_1 < i_2} P(E_{i_1} E_{i_2}) + \dots$$

$$+ (-1)^{r+1} \sum_{i_1 < i_2 < \dots < i_r} P(E_{i_1} E_{i_2} \dots E_{i_r}) + \dots$$

$$+ (-1)^{n+1} P(E_1 E_2 \dots E_n)$$

Proof. Suppose an outcome with probability ω is in exactly m of the events E_i , where m > 0. Then

LHS: the outcome is in $E_1 \cup E_2 \cup \cdots \cup E_n$ and ω will be counted once in $P(E_1 \cup E_2 \cup \cdots \cup E_n)$

- the outcome is in exactly m of the events E_i and ω will be counted exactly $\binom{m}{1}$ times in $\sum_{i=1}^{n} P(E_i)$
- the outcome is contained in ${m \choose 2}$ subsets of the type $E_{i_1}E_{i_2}$ and ω will be counted ${m \choose 2}$ times in $\sum_{i_1 < i_2} \overset{\frown}{P}(E_{i_1}E_{i_2})$
- ... and so on

hence RHS =
$$\binom{m}{1}\omega - \binom{m}{2}\omega + \binom{m}{3}\omega - \cdots \pm \binom{m}{m}\omega$$

$$= \omega \sum_{i=0}^m \binom{m}{i}(-1)^i = \text{binomial theorem where } x=-1, y=1$$

$$= 0 = \text{LHS}$$

e.g. For an outcome with probability ω and n=3

• Case 1. $w = P(E_1 E_2)$ LHS = ω RHS = $(\omega + \omega + 0) - (\omega + 0 + 0) + 0 = \omega$

• Case 2. $\omega = P(E_1 \cap E_2 \cap E_3)$ RHS = $(\omega + \omega + \omega) - (\omega + \omega + \omega) + \omega = \omega$

N12 -

(i) $P(\bigcup_{i=1}^n E_i) \le \sum_{i=1}^n P(E_i)$

(ii)
$$P(\bigcup_{i=1}^{n} E_i) \ge \sum_{i=1}^{n} P(E_i) - \sum_{j < i} P(E_i E_j)$$

(iii)
$$P(\bigcup_{i=1}^{n} E_i) \le \sum_{i=1}^{n} P(E_i) - \sum_{j < i} P(E_i E_j) + \sum_{k < j < i} P(E_i E_j E_k)$$

$$\begin{split} \textit{Proof.} \quad & \bigcup_{i=1}^{n} E_{i} = E_{1} \cup E_{1}^{c} E_{2} \cup E_{1}^{c} E_{2}^{c} E_{3} \cup \dots \cup E_{1}^{c} E_{2}^{c} \dots E_{n-1}^{c} E_{n} \\ & P(\bigcup_{i=1}^{n} E_{i}) = P(E_{1}) + P(E_{1}^{c} E_{2}) + P(E_{1}^{c} E_{2}^{c} E_{3}) + \dots + P(E_{1}^{c} E_{2}^{c} \dots E_{n-1}^{c} E_{n}) \end{split}$$

Sample Space having Equally Likely Outcomes

tricky - 14, 15, 16, 18, 19, 20

Consider an experiment with sample space $S = \{e_1, e_2, \dots, e_n\}$. Then

 $P(\{e_1\}) = P(\{e_2\}) = \cdots = P(\{e_n\}) = \frac{1}{n} \quad \text{or} \quad P(\{e_i\}) = \frac{1}{n}.$ N1 - for any event E, $P(E) = \frac{\# \text{ of outcomes in } E}{\# \text{ of outcomes in } S} = \frac{\# \text{ of outcomes in } E}{n}$

increasing sequence of events $\{E_n, n \geq 1\} \rightarrow$

 $E_1 \subset E_2 \subset \cdots \subset E_n \subset E_{n+1} \subset \cdots$

$$\begin{split} &\lim_{n\to\infty} E_n = \bigcup_{i=1}^{\infty} E_i \\ & \text{decreasing sequence of events } \{E_n, n \geq 1\} \to \\ &E_1 \supset E_2 \supset \cdots \supset E_n \supset E_{n+1} \supset \ldots \\ &\lim_{n\to\infty} E_n = \bigcap_{i=1}^{\infty} E_i \end{split}$$

03. CONDITIONAL PROBABILITY AND INDEPENDENCE

tricky - E6, urns (p.37)

Conditional Probability

N1 - if
$$P(F) > 0$$
. then $P(E|F) = \frac{P(E \cap F)}{P(F)}$

N2 - multiplication rule -
$$P(E_1E_2 \dots E_n) =$$

$$P(E_1)P(E_2|E_1)P(E_3|E_1E_2)\dots P(E_n|E_1E_2\dots E_{n-1})$$

N3 - axioms of probability apply to conditional probability

- 1. $0 \le P(E|F) \le 1$
- 2. P(S|F) = 1 where S is the sample space
- 3. If E_i $(i \in \mathbb{Z}_{\geq 1})$ are mutually exclusive events, then

$$P(\bigcup_{1}^{\infty} E_i|F) = \sum_{1}^{\infty} P(E_i|F)$$

N4 - If we define Q(E) = P(E|F), then Q(E) can be regarded as a probability function on the events of S, hence all results previously proved for probabilities apply.

- $Q(E_1 \cup E_2) = Q(E_1) + Q(E_2) Q(E_1E_2)$
- $P(E_1 \cup E_2|F) = P(E_1|F) + P(E_2|F) P(E_1E_2|F)$

Total Probability & Bayes' Theorem

conditioning formula - $P(E) = P(E|F)P(F) + P(E|F^c)P(F^c)$ tree diagram -

$$P(F) \xrightarrow{F} F \xrightarrow{D(E|F)} E \xrightarrow{E^c} P(F|E) = \frac{P(EF)}{P(E)} = \frac{P(F) \cdot P(E|F)}{P(E)}$$

$$P(F^c) \xrightarrow{F^c} E \qquad P(F^c|E) = \frac{P(EF^c)}{P(E)} = \frac{P(F^c) \cdot P(E|F^c)}{P(E)}$$

Total Probability

theorem of total probability - Suppose F_1,F_2,\ldots,F_n are mutually exclusive events such that $\bigcup\limits_{i=1}^n F_i=S$, then $P(E)=\sum\limits_{i=1}^n P(EF_i)=\sum\limits_{i=1}^n P(F_i)P(E|F_i)$

Baves Theorem

$$P(F_j|E) = \frac{P(EF_j)}{P(E)} = \frac{P(F_j)P(E|F_j)}{\sum_{i=1}^{n} P(F_i)P(E|F_i)}$$

application of bayes' theorem

$$P(B_1 \mid A) = \frac{P(A|B_1) \cdot P(B_1)}{P(A|B_1) \cdot P(B_1) + P(A|B_2) \cdot P(B_2)}$$

Let A be the event that the person test positive for a disease.

 B_1 : the person has the disease. B_2 : the person does not have the disease.

true positives:
$$P(B_1 \mid A)$$
 false negatives: $P(\bar{A} \mid B_1)$ false positives: $P(A \mid B_2)$ true negatives: $P(\bar{A} \mid B_2)$

Independent Events

 $\mathbf{N1}$ - E and F are independent $\iff P(EF) = P(E) \cdot P(F)$

N2 - E and F are independent $\iff P(E|F) = P(E)$

N3 - if E and F are independent, then E and F^c are independent.

 ${\bf N4}$ - if E,F,G are independent, then E will be independent of any event formed from F and G. (e.g. $F\cup G)$

N5 - if E, F, G are independent, then P(EFG) = P(E)P(F)P(G)

N6 - if E and F are independent and E and G are independent, $\Rightarrow E$ and FG are independent

 ${\bf N7}$ - For independent trials with probability p of success, probability of m successes before n failures, for $m,n\geq 1,$

recursive approach to solving probabilities: see page 85 alternative approach

04. RANDOM VARIABLES

• random variable \rightarrow a real-valued function defined on the sample space

Types of Random Variables

• X is a **Bernoulli r.v.** with parameter p if \rightarrow

$$p(x) = \begin{cases} p, & x = 1, \text{ ('success')} \\ 1 - p, & x = 0 & \text{ ('failure')} \end{cases}$$

- Y is a **Binomial r.v.** with parameters n and $p o Y = X_1 + X_2 + \cdots + X_n$ where X_1, X_2, \ldots, X_n are independent Bernoulli r.v.'s with parameter p.
 - $P(X = k) = \binom{n}{k} p^k (1-p)^{n-k}$
 - P(k successes from n independent trials each with probability p of success)
 - \bullet e.g. number of red balls out of n balls drawn with replacement
 - E(Y) = np, Var(Y) = np(1-p)
- Negative Binomial $\to X =$ number of trials until k successes are obtained
- ullet e.g. number of balls drawn (with replacement) until k red balls are obtained
- **Geometric** $\rightarrow X =$ number of trials until a success is obtained
 - $P(X=k) = (1-p)^{k-1} \cdot p$ where k is the number of trials needed
- e.g. number of balls drawn (with replacement) until 1 red ball is obtained **Hypergeometric** $\to X =$ number of trials until success, *without replacement*
- e.g. number of red balls out of n balls drawn without replacement

Summary

binomial	$X={\it \#}$ of successes in n trials ${\it w}/$ replacement	np
negative binomial	X= # of trials until k successes	k/p
geometric	X= # of trials until a success	1/p
hypergeometric	$X=\mbox{\#}$ of successes in n trials, no replacement	rn/N

Properties

 $\begin{array}{ll} \mathbf{N1} \text{ - if } X \sim \operatorname{Binomial}(n,p), \text{ and } Y \sim \operatorname{Binomial}(n-1,p), \\ \text{then} \qquad E(X^k) = np \cdot E[(Y+1)^{k-1}] \\ \mathbf{N2} \text{ - if } X \sim \operatorname{Binomial}(n,p), \text{ then for } k \in \mathbb{Z}^+, \\ P(X=k) = \frac{(n-k+1)p}{k(1-p)} \cdot P(X=k-1) \end{array}$

Coupon Collector Problem

Q. Suppose there are N distinct types of coupons. If T denotes the number of coupons needed to be collected for a complete set, what is P(T = n)?

$$\begin{array}{l} \textbf{\textit{A}}.\ P(T>n-1) = P(T\geq n) = P(T=n) + P(T>n) \\ \Rightarrow P(T=n) = P(T>n-1) - P(T>n) \ \text{Let} \\ A_j = \{ \text{no type } j \text{ coupon is contained among the first } n \} \\ P(T>n) = P(\bigcup_{i=1}^{n} A_j) \end{array}$$

Using the inclusion-exclusion identity,

$$\begin{split} P(T>n) &= \sum_{j} P(A_j) \quad \text{- coupon } j \text{ is not among the first } n \text{ collected} \\ &- \sum_{j_1} \sum_{j_2} P(A_{j_1} A_{j_2}) \quad \text{- coupon } j_1 \text{ and } j_2 \text{ are not the first } n \\ &+ \dots + (-1)^{k+1} \sum_{j_1} \sum_{j_2} \dots \sum_{j_k} P(A_{j_1} A_{j_2} \dots A_{j_n}) + \dots \\ &+ (-1)^{N+1} P(A_1 A_2 \dots A_N) \end{split}$$

$$P(A_{j_1}A_{j_2}\cdots A_{j_n}) = (\frac{N-k}{N})^n$$

Hence
$$P(T > n) = \sum_{i=1}^{N-1} {N \choose i} {N-1 \choose N}^n (-1)^{i+1}$$

Probability Mass Function

- for a discrete r.v., we define the **probability mass function** (pmf) of X by p(a) = P(X = a)
 - cdf, $F(a) = \sum_{i=1}^{n} p(x)$ for all x < a
- ullet if X assumes one of the values x_1,x_2,\ldots , then $\sum\limits_{i=1}^{\infty}p(x_i)=1$
- ullet the pmf p(a) is positive for at most a countable number of values of a
- e.g. $\frac{a}{p(a)} \begin{vmatrix} 1 & 2 & 4 \\ \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \end{vmatrix}$
- discrete variable → a random variable that can take on at most a countable number of possible values

Cumulative Distribution Function

- for a r.v. X, the function F defined by $F(x) = P(X \le x), \quad -\infty < x < \infty$, is called the **cumulative distribution function (cdf)** of X.
 - · aka distribution function
 - F(x) is defined on the entire real line

• e.g.
$$F(a) = \begin{cases} 0, & a < 1 \\ \frac{1}{2}, & 1 \le a < 2 \\ \frac{3}{4}, & 2 \le a < 4 \\ 1, & a \ge 4 \end{cases}$$

Expected Value

- aka population mean/sample mean, μ
- if X is a discrete random variable having pmf p(x), the **expectation** or the **expected value** of X is defined as $E(X) = \sum x \cdot p(x)$

N1 - if a and b are constants, then E(aX + b) = aE(X) + b

N2 - the n^{th} moment of of X is given as $E(X^n) = \sum_x x^n \cdot p(x)$

• I is an indicator variable for event A if $I=\begin{cases} 1, \text{ if } A \text{ occurs} \\ 0, \text{ if } A^c \text{ occurs} \end{cases}$. then E(I)=P(A).

Proof of N1.
$$E(aX + b) = \sum_{x} (aX + b)p(x)$$

= $a \cdot \sum_{x} xp(x) + b \cdot \sum_{x} p(x) = a \cdot E(X) + b$

finding expectation of f(x)

- method 1, using pmf of Y: let Y = f(X). Find corresponding X for each Y.
- method 2, using pmf of X: $E[g(x)] = \sum_i g(x_i)p(x_i)$
 - where X is a discrete r.v. that takes on one of the values of x_i with the respective probabilities of $p(x_i)$, and g is any real-valued function g

Variance

If X is a r.v. with mean $\mu=E[X]$, then the variance of X is defined by $Var(X)=E[(X-\mu)^2]$

$$=\sum_i x_i(x_i-\mu)^2\cdot p(x_i) \qquad \text{(deviation \cdot weight)}$$

$$=E(x^2)-[E(x)]^2$$

$$\bullet Var(aX+b)=a^2Var(x)$$

Poisson Random Variable

a r.v. X is said to be a **Poisson r.v.** with parameter λ if for some $\lambda > 0$,

$$P(X=i) = e^{-\lambda} \cdot \frac{\lambda^i}{i!}$$

- notation: $X \sim \mathsf{Poisson}(\lambda)$
- $\sum_{i=0}^{\infty} P(X=i) = 1$
- Poisson Approximation of Binomial if $X \sim \text{Binomial}(n, p), n$ is large and p is small, then $X \sim Poisson(\lambda)$ where $\lambda = np$.
 - For n independent trials with probability p of success, the number of successes is approximately a *Poisson r.v.* with parameter $\lambda = np$ if n is large & p is small.
 - Poisson approximation remains even when the trials are not independent. provided that their dependence is weak.
- 2 ways to look at the Poisson distribution
 - 1. an approximation to the binomial distribution with large n and small p
 - 2. counting the number of events that occur at random at certain points in time

Mean and Variance

if
$$X \sim \text{Poisson}(\lambda)$$
, then $E(X) = \lambda$, $Var(X) = \lambda$

Poisson distribution as random events

Let N(t) be the number of events that occur in time interval [0, t].

N1 - If the 3 assumptions are true, then $N(t) \sim \mathsf{Poisson}(\lambda t)$.

N2 - If λ is the rate of occurrences of events per unit time, then the number of occurrences in an interval of length t has a Poisson distribution with mean λt .

$$P(N(t)=k)=rac{e^{-\lambda t}(\lambda t)^k}{k!}, ext{ for } k\in\mathbb{Z}_{\geq 0}$$

o(h) notation

$$o(h)$$
 stands for any function $f(h)$ such that $\lim_{h \to 0} \frac{f(h)}{h} = 0$

- a function of h that is *small* compared to h when h is small
- o(h) + o(h) = o(h)
- $\frac{\lambda t}{n} + o(\frac{t}{n}) = \frac{\lambda t}{n}$ for large n

Expected Value of sum of r.v.

For a r.v. X, let X(s) denote the value of X when $s \in \mathcal{S}$

N1 -
$$E(x) = \sum\limits_i x_i P(X=x_i) = \sum\limits_{s \in S} X(s)p(s)$$
 where $S_i = \{s: X(s)=x_i\}$

N2 -
$$E(\sum_{i=1}^{n}) = \sum_{i=1}^{n} E(X_i)$$
 for r.v. X_1, X_2, \dots, X_n

examples

Selecting hats problem

Let n be the number of men who select their own hats. Let I_E be an indicator r.v. for E. E_i is the event that the *i*-th man selects his own hat. Let X be the number of men that select their own hats.

- $X = I_{E_1} + I_{E_2} + \cdots + I_{E_n}$
- $P(E_i) = \frac{1}{n}$
- $P(E_i|E_j) = \frac{1}{n-1} \neq P(E_j)$ for j < i (hence E_i and E_j are not independent)
 - but dependence is weak for large n
- \bullet X satisfies the other conditions for binomial r.v., besides independence (n trials with equal probability of success)
- Poisson approximation of $X: X \sim \mathsf{Poisson}(\lambda)$
 - $\lambda = n \cdot P(E_i) = n \cdot \frac{1}{n} = 1$
- $P(X = i) = \frac{e^{-1}1^i}{i!} = \frac{e^{-1}}{i!}$ $P(X = 0) = e^{-1} \approx 0.37$

No 2 people have the same birthday

For $\binom{n}{2}$ pairs of individuals i and j, $i \neq j$, let E_{ij} be the event where they have the same birthday. Let X be the number of pairs with the same birthday.

- $X = I_{E_1} + I_{E_2} + \cdots + I_{E_n}$
- Each E_{ij} is only pairwise independent. $P(E_{ij}) = \frac{1}{26E}$

- i.e. E_{ij} and E_{mn} are independent
- but E_{12} and $(E_{13} \cap E_{23})$ are not independent $\Rightarrow P(E_{12}|E_{13} \cap E_{23}) = 1$
- $X \sim \text{Poisson}(\lambda), \lambda = \frac{\binom{n}{2}}{365} = \frac{n(n-1)}{730}$ $\Rightarrow P(X=0) = e^{-\frac{n(n-1)}{730}}$ • for $P(X=0) \le \frac{1}{2}, n \ge 23$

distribution of time to next event

Q. suppose an accident happens at a rate of 5 per day. Find the distribution of time starting from now, until the next accident.

A. Let X = time (in days) until the next accident.

Let V =be the number of accidents during time period [0, t].

$$V \sim {\sf Poisson}(5t) \qquad \Rightarrow P(V=k) = \frac{e^{-5t} \cdot (5t)^k}{k!}$$

 $P(X > t) = P(\text{no accidents happen during } [0, t]) = P(V = 0) = e^{-5t}$ $P(X < t) - 1 - e^{-5t}$

05. CONTINUOUS RANDOM VARIABLES

X is a **continuous r.v.** \rightarrow if there exists a nonnegative function f defined for all real $x \in (-\infty, \infty)$, such that $P(X \in B) = \int_B f(x) dx$

N1 -
$$P(X \in (-\infty, \infty)) = \int_{-\infty}^{\infty} f(x) dx = 1$$

N2 - $P(a \le X \le b) = \int_a^b f(x) dx$

N3 - $P(X = a) = \int_a^a f(x) dx = 0$

N4 - $P(X < a) = P(X \le a) = \int_{-\infty}^{a} f(x) dx$ N5 - interpretation of probability density function

$$\begin{split} P(x < X < x + dx) &= \int_{x}^{x + dx} f(y) \, dy \\ &\approx f(x) \cdot dx \\ \text{pdf at } x, f(x) &\approx \frac{P(x < X < x + dx)}{dx} \end{split}$$

N6 - if X is a continuous r.v. with pdf f(x) and cdf F(x), then $f(x) = \frac{d}{dx}F(x)$. (Fundamental Theorem of Calculus)

N7 - median of X, x occurs where $F(x) = \frac{1}{2}$

Generating a Uniform r.v.

if X is a continuous r.v. with cdf F(x), then

• N8 - $F(X) = U \sim uniform(0, 1)$.

Proof. let
$$Y=F(X)$$
. then cdf of $Y,F_Y(y)=P(Y\leq y)=P(F(X)\leq y)=P(X\leq F^{-1}(y))=F(F^{-1}(y))=y.$ hence Y is a uniform r.v.

- N9 $X = F^{-1}(U) \sim \text{cdf } F(x)$.
 - generating a r.v. from a uniform(0, 1) r.v. and a r.v. with cdf F(x).

Expectation & Variance

expectation

N1 - expectation of X, $E(X) = \int_{-\infty}^{\infty} x \cdot f(x) dx$

N2 - if X is a continuous r.v. with pdf f(x), then for any real-valued function g, $E[g(x)] = \int_{-\infty}^{\infty} g(x)f(x) dx$

N2a $E[aX + b] = \int_{-\infty}^{\infty} (aX + b) \cdot f(x) dx = a \cdot E(X) + b$

N3 - for a non-negative r.v. $Y, E(Y) = \int_0^\infty P(Y > y) dy$

Proof. $\int_0^\infty P(Y>y)\,dy=\int_0^\infty \int_y^\infty f_Y(x)\,dx\,dy$ (because $f(x)=\frac{d}{dx}F(x)$) $=\int_0^\infty \int_0^x f_Y(x) dy dx$ (draw diagram to convert integration) $=\int_0^\infty f_Y(x)\int_0^x dy\,dx$ = $\int_0^\infty x f_Y(x) dx$ (because $\int_0^x dy = x$)

variance

N1 - variance of X, $Var(X) = E[(X - \mu)^2] = E(X^2) - [E(X)]^2$

example

 ${\it Q}$ - Find the pdf of (b-a)X+a where a,b are constants, b>a. The pdf of X is given by $f(x) = \begin{cases} 1, & 0 \le X \le 1 \\ 0, & \text{otherwise} \end{cases}$

A. Let
$$Y = (b-a)X + a$$
.

$$\operatorname{cdf}, F_Y(y) = P(Y \le y) = P((b-a)X + a \le y) = P(X \le \frac{y-a}{b-a})$$

$$F_Y(y) = \int_0^{\frac{y-a}{b-a}} 1 \, dx = \frac{y-a}{b-a}, \quad a < y < b$$

$$f_Y(y) = \frac{d}{dy} F_Y(y) = \begin{cases} \frac{1}{b-a}, & a < y < b \\ 0, & \text{otherwise} \end{cases}$$

Uniform Random Variable

X is a **uniform r.v.** on the interval (α, β) , $X \sim Uniform(\alpha, \beta)$ if its pdf is given by

$$f(x) = \begin{cases} \frac{1}{\beta - \alpha}, & \alpha < x < \beta \\ 0, & \text{otherwise} \end{cases}$$
$$E(X) = \frac{\alpha + \beta}{\beta}, \quad Var(X) = \frac{(\beta - \alpha)^2}{\beta - \alpha}$$

Normal Random Variable

X is a **normal r.v.** with parameters μ and σ^2 , $X \sim N(\mu, \sigma^2)$ if the pdf of X is given by

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}(\frac{x}{\mu}\sigma)^2}, \quad -\infty < x < \infty$$
$$E(x) = \mu, \quad Var(X) = \sigma^2$$

$$\text{if }X\sim N(\mu,\sigma^2)\text{, then }\frac{X-\mu}{\sigma}\sim N(0,1)$$
 if $Y\sim N(\mu,\sigma^2)$ and a is a constant, $F_y(a)=\Phi(\frac{a-\mu}{\sigma})$

 $P(X < a) = \int_0^a \lambda e^{-\lambda x} \, dx$

standard normal distribution $\to X \sim N(0,1)$

•
$$F(x) = P(X \le x) = \frac{1}{\sqrt{x\pi}} \int_{-\infty}^{x} e^{-\frac{1}{2}y^2} dy = \Phi(x)$$

Normal Approximation to the Binomial Distribution

if
$$S_n \sim Binomial(n,p)$$
, then $\frac{S_n-np}{\sqrt{np(1-p)}} \sim N(0,1)$ for large n .
$$\mu=np, \quad \sigma^2=np(1-p)$$

Exponential Random Variable

a continuous r.v. X is a exponential r.v., $X \sim Exponential(\lambda)$ or $Exp(\lambda)$ if for some $\lambda > 0$, its pdf is given by

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0 \\ 0, & \text{otherwise} \end{cases}$$

$$E(X) = \frac{1}{\lambda}, \quad Var(X) = \frac{1}{\lambda^2}$$

• an exponential r.v. is memoryless

• a non-negative r.v. is **memoryless**
$$\rightarrow$$
 if $P(X > s + t \mid X > t) = P(X > s)$ for all $s, t > 0$.

Gamma Distribution

a r.v. X has a **gamma distribution**, $X \sim Gamma(\alpha, \lambda)$ with parameters (α, λ) , $\lambda > 0$ and $\alpha > 0$ if its pdf is given by

$$f(x) \begin{cases} \frac{\lambda e^{-\lambda x} (\lambda x)^{\alpha - 1}}{\Gamma(\alpha)}, & x \ge 0\\ 0, & x < 0 \end{cases}$$
$$E(X) = \frac{\alpha}{\lambda} \quad Var(X) = \frac{\alpha}{\lambda^2}$$

where the gamma function $\Gamma(\alpha)$ is defined as $\Gamma(\alpha) = \int_0^\infty e^{-y} y^{\alpha-1} \, dy$.

N1 -
$$\Gamma(\alpha) = (\alpha - 1)\Gamma(\alpha - 1)$$

Proof. using integration by parts of LHS to RHS

N2 - if
$$\alpha$$
 is an integer n , then $\Gamma(n)=(n-1)!$ **N3** - if $X\sim Gamma(\alpha,\lambda)$ and $\alpha=1$, then

$$X \sim Exp(\lambda)$$
.

 ${
m N4}$ - for events occurring randomly in time following the 3 assumptions of poisson distribution, the amount of time elapsed until a total of n events has occurred is a gamma r.v. with parameters (n,λ) .

- time at which event n occurs, $T_n \sim Gamma(n, \lambda)$
- number of events in time period [0, t], $N(t) \sim Poisson(\lambda t)$

N5 - $Gamma(\alpha=\frac{n}{2},\lambda=\frac{1}{2})=\chi_n^2$ (chi-square distribution to n degrees of freedom)

Beta Distribution

a r.v. X is said to have a **beta distribution**, $X \sim Beta(a,b)$ if its density is given by

$$f(x) = \begin{cases} \frac{1}{\beta(a,b)} x^{a-1} (1-x)^{b-1}, & 0 < x < 1 \\ 0, & \text{otherwise} \end{cases}$$

$$E(X) = \frac{a}{a+b} \quad Var(X) = \frac{ab}{(a+b)^2(a+b+1)}$$

N1 -
$$\beta(a,b) = \int_0^1 x^{a-1} (1-x)^{b-1} dx$$

N2 -
$$\beta(a = 1, b = 1) = Uniform(0, 1)$$

N3 -
$$\beta(a,b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$$

Cauchy Distribution

a r.v. X has a cauchy distribution, $X \sim Cauchy(\theta)$ with parameter $\theta, \infty < \theta < \infty$ if its density is given by

$$f(x) = \frac{1}{\pi} \cdot \frac{1}{1 + (x - \theta)^2}, -\infty < x < \infty$$

Proof. $E(X^n)$ does not exist for $n \in \mathbb{Z}^+$

$$E(X) = \int_{-\infty}^{\infty} x \cdot f(x) dx = \infty - \infty$$
 (undefined)

06. JOINTLY DISTRIBUTED RANDOM VARIABLES

Joint Distribution Function

the joint cumulative distribution function of the pair of r.v. X and Y is \to $F(x,y) = P(X \le x, Y \le y), -\infty < x < \infty, -\infty < y < \infty$

N1 - marginal cdf of
$$X$$
, $F_X(x) = \lim_{y \to \infty} F(x, y)$.

N2 - marginal cdf of
$$Y$$
, $F_Y(y) = \lim_{x \to \infty} F(x, y)$.

$$\label{eq:N3-P} \begin{array}{l} \text{N3-}P(X>a,Y>b) = 1 - F_X(a) - F_Y(b) + F(a,b) \\ \text{N4-}P(a_1 < X \leq a_2,b_1 < Y \leq b_2) \end{array}$$

$$= F(a_2, b_2) + F(a_1, b_1) - F(a_1, b_2) - F(a_2, b_1)$$

Joint Probability Mass Function

if X and Y are both discrete r.v., then their **joint pmf** is defined by p(i,j) = P(X=i,Y=j)

N1 - marginal pmf of
$$X$$
, $P(X=i) = \sum_{j} P(X=i,Y=j)$

N2 - marginal pmf of Y,
$$P(Y = i) = \sum_{i}^{3} P(X = i, Y = j)$$

Joint Probability Density Function

the r.v. X and Y are said to be *jointly continuous* if there is a function f(x,y) called the **joint pdf**, such that for any two-dimensional set C,

$$P[(X,Y) \in C] = \iint_C f(x,y) dx dy$$

= volume under the surface over the region C

N1 - if
$$C=\{(x,y):x\in A,y\in B\}$$
, then $P(X\in A,Y\in B)=\int\limits_{B}\int\limits_{A}f(x,y)\,dx\,dy$

$$\mathbf{N2} \cdot F(a,b) = P\Big(X \in (-\infty,a], Y \in (-\infty,b]\Big) = \int\limits_{-\infty}^{b} \int\limits_{-\infty}^{a} f(x,y) \, dx \, dy$$

for double integral: when integrating dx, take y as a constant

N3 -
$$f(a,b) = \frac{\delta^2}{\delta a \delta b} F(a,b)$$

interpretation of pdf

$$P(x < X < x + dx) = \int_{x}^{x + dx} f(y) \, dy$$

$$\approx f(x) \, dx$$
 pdf at $x, f(x) \approx \frac{P(x < X < x + dx)}{dx}$

pdf at
$$x, f(x) \approx \frac{P(x < X < x + dx)}{dx}$$

N4 - pdf of
$$X$$
, $f_X(x) = \int_0^\infty f(x, y) dy$

N5 - pdf of Y, $f_Y(y) = \int_0^\infty f(x,y) dx$

interpretation of joint pdf

 $\begin{array}{l} P(a < X < a + da, b < Y < b + db) \\ = \int_b^{b+db} \int_a^{a+da} f(x,y) \, dx \, dy \\ \approx f(a,b) \, da \, db \qquad \text{(density of probability)} \\ \text{marginal pdf of } X, \, f_X(x) = \int_{-\infty}^{\infty} f(x,y) \, dy \\ \text{marginal pdf of } Y, \, f_Y(x) = \int_{-\infty}^{\infty} f(x,y) \, dx \end{array}$

how to do a double integral

e.g. find P(X < Y) where the joint pdf of X and Y are given by

$$f(x,y) = \begin{cases} 2e^{-x}e^{-y}, & 0 < x < \infty, 0 < y < \infty \\ 0, & \text{otherwise} \end{cases}$$

- 1. to get the bounds for dx and dy, plot X < Y
- 1.1. draw horizontal lines to determine the bounds for x, from x=a to x=b
- 1.2. draw vertical lines to determine the bounds for y, from y=c to y=d
- 2. integrate $\int_{c}^{d} \int_{a}^{b} f(x) dx dy$

example - given the joint pdf of X and Y, find the pdf of r.v. X/Y.

ans. set dummy variable W=X/Y, then $F_W(w)=P(W\leq w)=P(\frac{X}{Y}\leq w)$ and $P(\frac{X}{Y}\leq w)=\int_0^\infty \int_0^{wy} e^{-x-y}\,dx\,dy$

Independent Random Variables

N1 - X and Y are independent \rightarrow

$$P(X \in A, Y \in B) = P(X \in A) \cdot P(Y \in B)$$

N2 - X and Y are **independent** $\rightarrow \forall a, b,$

$$P(X \le a, Y \le b) = P(X \le a) \cdot P(Y \le b)$$

or $F(a,b) = F_X(a) \cdot F_Y(b)$ \Rightarrow joint cdf is the product of the marginal cdfs

N3 - discrete case: discrete r.v. X and Y are independent \iff

$$P(X = x, Y = y) = P(X = x) \cdot P(Y = y)$$
 for all x, y .

N4 - *continuous case*: jointly continuous r.v. X and Y are **independent** \iff $f(x,y) = f_X(x) \cdot f_Y(y)$ for all x,y.

 ${\bf N5}$ - independence is a ${\bf symmetric}$ relation $\to X$ is independent of $Y \iff Y$ is independent of X

Sum of Independent Random Variables

N1 - for independent, continuous r.v. X and Y having pdf f_X and f_Y ,

$$F_{X+Y}(a) = \int_{-\infty}^{\infty} F_X(a-y) f_Y(y) dy$$

$$f_{X+Y}(a) = \int_{-\infty}^{\infty} f_X(a-y) f_Y(y) dy$$

impt example - E52 (pdf of X + Y)

Distribution of Sums of Independent r.v.

for i = 1, 2, ..., n,

1.
$$X_i \sim Gamma(t_i, \lambda) \Rightarrow \sum_{i=1}^n X_i \sim Gamma(\sum_{i=1}^n t_i, \lambda)$$

2.
$$X_i \sim Exp(\lambda) \Rightarrow \sum_{i=1}^n X_i \sim Gamma(n, \lambda)$$

3.
$$Z_i \sim N(0,1) \Rightarrow \sum_{i=1}^n z_i^2 \sim \chi_n^2 = Gamma(\frac{n}{2}, \frac{1}{2})$$

4.
$$X_i \sim N(\mu_i, \sigma_i^2) \Rightarrow \sum_{i=1}^n X_i \sim N(\sum_{i=1}^n \mu_i, \sum_{i=1}^n \sigma_i^2)$$

- 5. $X \sim Poisson(\lambda_1), Y \sim Poisson(\lambda_2) \Rightarrow X + Y \sim Poisson(\lambda_1 + \lambda_2)$
- 6. $X \sim Binom(n, p), Y \sim Binom(m, p) \Rightarrow X + Y \sim Binom(n + m, p)$

Conditional Distribution (discrete)

for discrete r.v. X and Y, the **conditional pmf** of X given that Y = y is

$$P_{X|Y}(x|y) = P(X = x|Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)} = \frac{p(x,y)}{p_Y(y)}$$

for discrete r.v. X and Y, the **conditional pdf** of X given that Y = y is

$$F_{X|Y}(x|y) = P(X \le x|Y = y) = \sum_{a \le x} \frac{P(X=a,Y=y)}{P(Y=y)} = \sum_{a \le x} P_{X|Y}(a|y)$$

N0 - equivalent notation:

• $P_{X|Y}(x|y) = P(X = x|Y = y)$

• $P_X(x) = P(X = x)$

N1 - if X is independent of Y, then $P_{X|Y}(x|y) = P_X(x)$

Conditional Distribution (continuous)

for X and Y with joint pdf f(x,y), the **conditional pdf** of X given that Y=y is

$$\begin{split} f_{X|Y}(x|y) &= \frac{f(x,y)}{f_Y(y)} \quad \text{ for all } y \text{ s.t. } f_Y(y) > 0 \\ f_{X|Y}(a|y) &= P(X \leq a|Y=y) = \int\limits_{-\infty}^a f_{X|Y}(x|y) \, dx \end{split}$$

N1 - for any set A, $P(X \in A|Y=y) = \int f_{X|Y}(x|y) \, dy$

N2 - if X is independent of Y, then $f_{X|Y}(x|y) = f_X(x)$.

! "find the marginal/conditional pdf of $Y'' \Rightarrow$ must include the range too!! (see Ex. 69(b, c))

Joint Probability Distribution of Functions of r.v.

Let X_1 and X_2 be jointly continuous r.v. with joint pdf $f_{x_1,x_2}(x_1,x_2)$. Suppose $Y_1 = q_1(X_1, X_2)$ and $Y_2 = q_2(X_1, X_2)$ satisfy

- 1. the equations $y_1 = q_1(X_1, X_2)$ and $y_2 = q_2(X_1, X_2)$ can be uniquely solved for x_1, x_2 in terms of y_1 and y_2
- 2. $g_1(x_1, x_2)$ and $g_2(x_1, x_2)$ have continuous partial derivatives at all points

$$(x_1,x_2) \text{ such that } J(x_1,x_2) = \left| \begin{array}{c} \frac{\delta g_1}{\delta x_1} & \frac{\delta g_1}{\delta x_2} \\ \frac{\delta g_2}{\delta x_1} & \frac{\delta g_2}{\delta x_2} \end{array} \right| = \frac{\delta g_1}{\delta x_1} \cdot \frac{\delta g_2}{\delta x_2} - \frac{\delta g_2}{\delta x_1} \cdot \frac{\delta g_1}{\delta x_2} \neq 0$$

$$\begin{split} f_{Y_1,Y_2}(y_1,y_2) &= f_{X_1,X_2}(x_1,x_2) \frac{1}{|J(x_1,x_2)|} \\ \text{where } x_1 &= h_1(y_1,y_2), x_2 = h_2(y_1,y_2) \end{split}$$

07. PROPERTIES OF EXPECTATION

- for a discrete r.v. $X, E(X) = \sum_x x \cdot p(x) = \sum_x \cdot P(X=x)$ for a continuous r.v. $X, E(X) = \int_{-\infty}^{\infty} x \cdot f(x) \, dx$
- for a non-negative integer-valued r.v. $Y, E(Y) = \sum_{i=1}^\infty P(Y \ge i)$ for a non-negative r.v. $Y, E(Y) = \int_{-\infty}^\infty P(Y > y) \, dy$

Expectations of Sums of Random Variables

for
$$X$$
 and Y with joint pmf $p(x,y)$ and joint pdf $f(x,y)$,
$$E[g(x,y)] = \sum_y \sum_x g(x,y) p(x,y)$$

$$E[g(x,y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f(x,y) \, dx \, dy$$

N2 - if P(a < X < b) = 1, then a < E(X) < b

N3 - if E(X) and E(Y) are finite, E(X+Y)=E(X)+E(Y)

Proof. using N1, integrate $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x+y) f(x,y) \, dx \, dy$ $= \int_{-\infty}^{\infty} x \cdot f_X(x) \, dx + \int_{-\infty}^{\infty} y f_Y(y) \, dy = E(X) + E(Y)$

N4 - if, for r.v.s X and Y, if X > Y, then E(X) > E(Y)

N5 - let X_1, \ldots, X_n be independent and identically distributed r.v.s having distribution $P(X_i \le x) = F(x)$ and expected value $E(X_i) = \mu$.

if
$$ar{X} = \sum\limits_{i=1}^n rac{X_i}{n}$$
 , then $E(ar{X}) = \mu$

Proof.
$$E(\bar{X}) = E(\sum_{i=1}^{n} \frac{X_i}{n}) = \frac{1}{n}(\sum_{i=1}^{n} E(X_i)) = \frac{1}{n} \cdot n\mu = \mu$$

⇒ sample mean = population mean

N6 - \bar{X} is the sample mean.

N7 - if $X \sim Binom(n, p)$, then E(X) = np.

Proof. express X as a sum of Bernoulli r.v. \Rightarrow sum of indicator r.v. = np.

examples

! trick: express a r.v. as a sum of r.v. with easier to find expectation

- negative binomial = sum of geometric = k/p
- hypergeometric with r red balls out of N balls with n trials
 - indicator r.v. = 1 if the *i*th ball selected is red
 - $P(Y_i = 1) = \frac{r}{N} \Rightarrow E(Y_i) = \frac{r}{N} \Rightarrow E(X) = \sum_{i=1}^n Y_i = n \frac{r}{N}$
- hat throwing problem: expected number of people that select their own hat
 - P(select your own hat back) = $\frac{1}{N} \Rightarrow E(X) = N \cdot \frac{1}{N} = 1$
- · coupon collector problem:
 - let X = number of coupons collected for a complete set
 - let X_i = number of additional coupons that need to be collected to obtain another distinct type after i distinct types have been collected

• $X_i \sim Geometric(p = \frac{N-i}{N})$

•
$$E(X) = \sum_{i=1}^{N-1} E(X_i) = 1 + \frac{1}{\frac{N-1}{N}} + \frac{1}{\frac{N-2}{N}} + \dots + \frac{1}{\frac{1}{N}}$$

= $N(\frac{1}{N} + \frac{1}{N-1} + \dots + 1)$

Covariance, Variance of Sums and Correlations

if X and Y are independent, then for any functions h and q, $E[g(X)h(Y)] = E[g(X)] \cdot E[h(Y)]$

covariance → measure of *linear relationship*

$$Cov(X,Y) = E[(X - E[X])(Y - E[Y])]$$
$$Cov(X,Y) = E(XY) - E(X)E(Y)$$

N1 - X and Y are independent $\Rightarrow Cov(X,Y) = 0$

N2 - $Cov(X,Y) = 0 \not\Rightarrow X$ and Y are independent

Proof. let E(X) = 0, $E(XY) = 0 \Rightarrow Cov(X, Y) = 0$, but not independent e.g. non-linear relationship

Covariance properties

- 1. Cov(X,Y) = Cov(Y,X)
- 2. Cov(X, X) = Var(X)
- 3. Cov(aX, Y) = aCov(X, Y)
- 4. $Cov(\sum_{i=1}^{n} X_i, \sum_{i=1}^{m} Y_j) = \sum_{i=1}^{n} \sum_{i=1}^{m} Cov(X_i, Y_j)$

N1 -
$$Var(\sum_{i=1}^{n} X_i) - \sum_{i=1}^{n} Var(X_i) + 2\sum_{i < j} Cov(X_i, X_j)$$

N2 - if X_1, \ldots, X_n are pairwise independent (X_i, X_j) are independent $\forall i \neq j$, then $Var(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} Var(X_i)$

N3 - for n independent and identically distributed r.v. with expected value μ and variance σ^2 .

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} x_i \qquad S^2 \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$$
$$Var(\bar{X}) = \frac{\sigma^2}{n} \qquad E(S^2) = \sigma^2$$

 $\Rightarrow S^2$ is an unbiased estimator for σ^2

Correlation

N1 - $-1 \le \rho(X,Y) \le 1$ where -1 and 1 denote a perfect negative and positive linear relationship respectively.

N2 - $\rho(X,Y)=0 \Rightarrow$ no *linear* relationship - uncorrelated

N3 -
$$\rho(X,Y) = 1 \Rightarrow Y = aX + b, a = \frac{\delta y}{\delta x} > 0$$

N4 for events A and B with indicator r.v. I_A and I_B , then $Cov(I_A,I_B)=0$ when they are independent events.

N5 - deviation is not correlated with the sample mean. For independent & identically distributed r.v. X_1, X_2, \ldots, X_n with variance σ^2 , then $Cov(X_i - \bar{X}, \bar{X}) = 0$.

$$\begin{split} \textit{Proof. } Cov(X_i - \bar{X}, \bar{X}) &= Cov(X_i, \bar{X}) - Cov(\bar{X}, \bar{X}) \\ &= Cov(X_i, \frac{1}{n} \sum_{j=1}^n X_j) - Var(\bar{X}) \\ &= \frac{1}{n} \sum_{j=1}^n Cov(X_i, X_j) - Var(\bar{X}) \\ &= \frac{1}{n} Cov(X_i, X_i) - \frac{\sigma^2}{n} \quad \text{since } \forall i \neq j, Cov(x_i, x_j) = 0 \\ &= \frac{1}{n} Var(x_i) - \frac{\sigma^2}{n} = 0 \end{split}$$

Conditional Expectation

the **conditional expectation** of X.

given that Y = y, for all values of y such that $P_Y(y) > 0$ is defined by

$$E[X|Y=y] = \sum_{x} x \cdot P(X=x|Y=y) = \sum_{x} x \cdot p_{X|Y}(x|y)$$

$$E(X|Y=y) = \int_{-\infty}^{\infty} f_{X|Y}(x|y) dx = \int_{-\infty}^{\infty} \frac{f(x,y)}{f_{Y}(y)} dx$$

N1 - If $X, Y \sim Geometric(p)$,

then $P(X=i|X+Y=n)=\frac{1}{n-1}$, a uniform distribution

N2 -
$$E(X|X+Y=n) = \sum_{i=1}^{n-1} i \cdot P(X=i|X+Y=n) = \frac{n}{2}$$

Conditional expectations also satisfy properties of ordinary expectations. ⇒ an ordinary expectation on a reduced sample space consisting only of outcomes for which Y = y

discrete case:
$$E[g(x)|Y=y] = \sum\limits_{x} g(x) P_{X|Y}(x|y)$$
 continuous case: $E[g(x)|Y=y] = \int_{-\infty}^{\infty} g(x) f_{X|Y}(x|y)$ then $E(X) = E_{\text{W.t.t.}} \ y(E_{\text{W.r.t.}} \ x|Y=y(X|Y))$

Deriving Expectation

$$E(X) = E_Y(E_X(X|Y))$$

discrete case:
$$E(X) = \sum_{y} E(X|Y=y)P(Y=y)$$

continuous case: $E(X) = \int_{-\infty}^{\infty} E(X|Y=y)f_Y(y) \, dy$

N3 - 3 methods for finding E(X) given f(x,y)

- 1. using $E(g(x,y)) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f(x,y) dx dy \Rightarrow \text{let } g(x,y) = x$
- 2. using $E(X) = \int_{-\infty}^{\infty} x f_X(x) \, dx$
- 3. using $E(X) = \int_{-\infty}^{\infty} E(X|Y=y) f_Y(y) dy$

N4 -
$$E(\sum_{i=1}^{N} X_i) = E_N(E(\sum_{i=1}^{N} X_i | N)) = \sum_{n=0}^{\infty} E(\sum_{i=1}^{N} X_i | N = n) \cdot P(N = n)$$

Computing Probabilities by Conditioning

$$P(E) = \sum_y P(E|Y=y) P(Y=y) \text{ if } Y \text{ is discrete}$$

$$P(E) = \int\limits_0^\infty P(E|Y=y) f_Y(y) \, dy \text{ if } Y \text{ is continuous}$$

Proof. let X be an indicator r.v. for E. $\Rightarrow E(X) = P(E)$

$$E(X|Y = y) = P(X = 1|Y = y) = P(E|Y = y)$$

N5 - find $P((X,Y) \in C)$ given f(x,y): see p.57 also: $P(X < Y) = \int P(X < Y|Y = y) \cdot f_Y(y)$

Conditional Variance

$$Var(X|Y) = E[(X - E(X|Y))^{2} | Y]$$
$$Var(X|Y) = E(X^{2}|Y) - [E(X|Y)]^{2}$$

$$\begin{aligned} & \mathbf{N6} \cdot Var(X) = E[Var(X|Y)] + Var[E(X|Y)] \\ & \mathbf{N7} \cdot E(f(Y)) = E(f(Y)|Y=t) = E(f(y)|Y=t) \\ & = E(f(t)) \quad \text{if } N(t) \text{ and } Y \text{ are independent} \end{aligned}$$

Moment Generating Functions

moment generating function M(t) of the r.v. $X \rightarrow$ $M(t) = E(e^{tX})$ for all real values of t

- if X is discrete with pmf p(x), $M(t) = \sum_x e^{tx} \cdot p(x)$ if X is continuous with pdf f(x), $M(t) = \int_{-\infty}^{\infty} e^{tx} f(x) \, dx$

M(t) is called the **mgf** because all moments of X can be obtained by successively differentiating M(t) and then evaluating the result at t=0.

$$(M'(0) = E(X), M''(0) = E(X^2), \text{ etc.})$$
 in general,

•
$$M'(t) = E(X^n e^{tX}), \quad n \ge 1$$

•
$$M^n(0) = E(X^n), \quad n \ge 1$$

N8 - binomial expansion:
$$(a+b)^n = \sum\limits_{i=0}^n \binom{n}{i} a^i b^{n-i}$$

(see other series for useful expansions on other distributions)

N9 - integrating over a pdf from ∞ to $-\infty$ always gives 1

if X and Y are independent and have mgf's $M_X(t)$ and $M_Y(t)$ respectively,

N10 - the mgf of X + Y is $M_{X+Y}(t) = M_X(t) \cdot M_Y(t)$

$$\begin{array}{l} \textit{Proof.} \ M_{X+Y}(t) = E[e^{t(X+Y)}] = E[e^{tX} \cdot e^{tY}] = E(e^{tX})E(e^{tY}) \\ = M_X(t) \cdot M_Y(t) \end{array}$$

N11 - if $M_X(t)$ exists and is finite in some region about t=0, then the distribution of X is **uniquely** determined. $M_X(t) = M_Y(t) \iff X = Y$

Common mgf's

- $X \sim Normal(0,1), \quad M(t) = e^{e^2/2}$
- $X \sim Binomial(n, p), \quad M(t) = (pe^t + (1-p))^n$
- $X \sim Poisson(\lambda), \quad M(t) \exp[\lambda(e^t 1)]$
- $X \sim Exp(\lambda), \quad M(t) = \frac{\lambda}{\lambda t}$

08. LIMIT THEOREMS

Markov's Inequality \rightarrow if X is a non-negative r.v., for any a > 0, $P(X \ge a) \le \frac{E(x)}{a}$

Proof. let I be an indicator r.v. = 1 when X > a.

Then
$$I \leq \frac{X}{a}$$
, and $E(I) \leq \frac{E(X)}{a}$, and $P(X \geq a) \leq \frac{E(X)}{a}$.

Chebyshev's inequality \rightarrow if X is an r.v. with finite mean μ and variance σ^2 , then for any value of k > 0, $P(|X - \mu| \ge k) \le \frac{\sigma^2}{k^2}$.

Proof.
$$P[(X-\mu)^2 \ge k^2] \le \frac{E[(X-\mu)^2]}{k^2}$$
 by Markov's inequality

Since
$$(X - \mu)^2 \ge k^2 \iff |X - \mu| \ge k$$
, then $P(|X - \mu| \ge k) \le \frac{\sigma^2}{k^2}$

N1 - if Var(X) = 0, then P(X = E[X]) = 1

Proof. let $\mu = E[X]$. by Chebyshev's inequality, for any $n \geq 1$,

$$P(|X - \mu| > \frac{1}{n}) \le \frac{Var(X)}{(\frac{1}{n})^2} = 0$$

then
$$P(X \neq \mu) = 0 \Rightarrow P(X = \mu) = 1$$

weak law of large numbers o let X_1, X_2, \ldots be a sequence of independent and identically distributed r.v.s, each with finite mean $E[X_i] = \mu$. Then, for any $\epsilon > 0$, $P\{|\frac{X_1+\cdots+X_n}{T}-\mu|\geq\epsilon\}\to 0 \text{ as } n\to\infty$

central limit theorem \rightarrow let X_1, X_2, \dots be a sequence of independent and identically distributed r.v.s each having mean μ and variance σ^2 . Then the distribution of $\frac{X_1+\cdots+X_n-n\mu}{\sigma\sqrt{n}}$ tends to the standard normal as $n\to\infty$.

- aka: $\frac{\bar{x}-\mu}{\sigma/\sqrt{n}} \to z \sim N(0,1)$

• for
$$-\infty < a < \infty$$
,
$$P(\frac{X_1 + \dots + X_n - n\mu}{\sigma\sqrt{n}} \le a) \to \frac{1}{\sqrt{2\pi}} \int_{-\infty}^a e^{-x^2/2} \, dx = F(a) \text{ (cdf of standard normal) as } n \to \infty$$

N2 - Let Z_1, Z_2, \ldots be a sequence of r.v.s with distribution functions F_{Z_n} and moment generating functions M_{Z_n} , $n \ge 1$. Let Z be a r.v. with distribution function

If $M_{Z_n}(t) \to M_Z(t)$ for all t, then $F_{Z_n}(t) \to F_Z(t)$ for all t at which $F_Z(t)$ is

strong law of large numbers \rightarrow let X_1, X_2, \dots be a sequence of independent and identically distribution r.v.s, each having finite mean $\mu = E[X_i]$.

Then, with probability 1, $\frac{X_1+\cdots+X_n}{n} \to \mu$ as $n \to \infty$

Chernoff bounds \rightarrow

- $P(X > a) < e^{-ta}M(t)$ for all t > 0
- $P(X < a) < e^{-ta}M(t)$ for all t < 0

 $\begin{array}{lll} \textbf{commutative} & E \cup F = F \cup E & E \cap F = F \cap E \\ \textbf{associative} & (E \cup F) \cup G = E \cup (F \cup G) & (E \cap F) \cap G = E \cap (F \cap G) \\ \textbf{distributive} & (E \cup F) \cap G = (E \cap F) \cup (F \cap G) & (E \cap F) \cup G = (E \cup F) \cap (F \cup G) \\ \textbf{DeMorgan's} & (\bigcup_{i=1}^n E_i)^c = \bigcap_{i=1}^n E_i^c & (\bigcap_{i=1}^n E_i)^c = \bigcup_{i=1}^n E_i^c \\ \end{array}$