Тема 1: сигма – алгебры.

Залача 1

Пусть $\mathcal F$ - сигма-алгебра, A и B – две совокупности подмножеств, содержащиеся в F, причем $A\subset B$.

По определению сигма-алгебры:

- если $B \in \mathcal{F} \Rightarrow B^c \in \mathcal{F}$;
- $-A \cup B^c \in \mathcal{F} \Rightarrow (A \cup B^c)^c \in \mathcal{F} \Rightarrow A^c \cap B \in \mathcal{F} \Rightarrow B \setminus A \in \mathcal{F}$

Задача 2

$$\mathbb{I}_{B} - \mathbb{I}_{A \cap B} = \begin{cases}
1, x \in B \\
0, x \notin B
\end{cases} - \begin{cases}
1, x \in A \cap B \\
0, x \notin A \cap B
\end{cases} = \begin{cases}
1, (x \in B) \land (x \notin A \cap B) \\
0, ((x \in B) \land (x \in A \cap B)) \lor ((x \notin B) \land (x \notin A \cap B))
\end{cases} = \begin{cases}
1, (x \in B) \land (x \notin A \cap B) \\
0, ((x \in B) \land (x \in A \cap B)) \lor ((x \notin B) \land (x \notin A \cap B))
\end{cases} = \begin{cases}
1, x \in B \land A \\
0, x \notin B \land A
\end{cases} = \mathbb{I}_{B \land A}$$

Задача 3

Пусть C и D принадлежат сигма — алгебре \mathcal{F} .

Тогда по определению сигма-алгебры:

- $D \in \mathcal{F} \Rightarrow D^c \in \mathcal{F}$
- $C \cup D^c \in \mathcal{F} \Rightarrow C^c \cap D \in \mathcal{F}$
- $-C \in \mathcal{F} \Rightarrow C^c \in \mathcal{F}$
- $D \cup C^c \in \mathcal{F} \Rightarrow D^c \cap C \in \mathcal{F}$
- $D^c \cap C \in \mathcal{F}, C^c \cap D \in \mathcal{F} \Rightarrow (C^c \cap D) \cup (D^c \cap C) \in \mathcal{F}$

Задача 4

Сигма-алгебра, порожденная множеством A:

$$\sigma(A) = \{\emptyset, A, A^c, \Omega\}$$

Задача 5

Сигма-алгебра, порожденная непересекающимися множествами A, B:

$$\sigma(A \cup B) = \{\emptyset, A, A^c, B, B^c, A \cup B, A^c \cap B^c, \Omega\}$$

Задача 6

a)
$$\mathbb{I}_A * \mathbb{I}_B = \begin{cases} 1, x \in A \\ 0, x \notin A \end{cases} * \begin{cases} 1, x \in B \\ 0, x \notin B \end{cases} = \begin{cases} 1, (x \in A) \land (x \in B) \\ 0, ((x \in A) \land (x \notin B)) \lor ((x \notin A) \land (x \in B)) \end{cases} = \begin{cases} 1, (x \in A) \land (x \in B) \\ 0, ((x \notin A) \land (x \notin B)) \lor ((x \notin A) \land (x \notin B)) \end{cases}$$

$$= \begin{cases} 1, x \in A \cap B \\ 0, x \notin A \cap B \end{cases} = \mathbb{I}_{A \cap B}$$

b)
$$\mathbb{I}_A + \mathbb{I}_B - \mathbb{I}_{A \cap B} = \begin{cases} 2, (x \in A) \land (x \in B) \\ 1, (x \in A) \lor (x \in B) \\ 0, (x \notin A) \lor (x \notin B) \end{cases} - \begin{cases} 1, (x \in A) \land (x \in B) \\ 0, x \notin A \cap B \end{cases} = \begin{cases} 1, x \in A \cup B \\ 0, x \notin A \cup B \end{cases} = \mathbb{I}_{A \cup B}$$

Задача 7

Пусть \mathcal{F}_1 и \mathcal{F}_2 две сигма алгебры.

- а) $\mathcal{G}=\mathcal{F}_1\cap\mathcal{F}_2$ является сигма-алгеброй, т.к.:
- 1. $\Omega \in \mathcal{F}_1$ и $\Omega \in \mathcal{F}_2 \Rightarrow \Omega \in \mathcal{F}_1 \cap \mathcal{F}_2 = \mathcal{G}$
- 2. Если $A\in\mathcal{G}=\mathcal{F}_1\cap\mathcal{F}_2\Rightarrow A^c\in\mathcal{F}_1$ и $A^c\in\mathcal{F}_2\Rightarrow A^c\in\mathcal{F}_1\cap\mathcal{F}_2=\mathcal{G}$
- 3. Пусть $A_i \in \mathcal{G} \ \forall i \in I \Rightarrow \cup A_i \in \mathcal{F}_1, \cup A_i \in \mathcal{F}_2 \Rightarrow \cup A_i \in \mathcal{G}$
- b) $\mathcal{G} = \mathcal{F}_1 \cup \mathcal{F}_2$ не является сигма-алгеброй в общем случае, например, если рассмотреть объединение сигма-алгебр, порожденных непересекающимися множествами A и B:

$$\sigma(A) \cup \sigma(B) = \{\emptyset, A, A^c, B, B^c, \Omega\}$$

оно не содержит $A^c \cup B^c$, а значит не все элементы множества имеют обратные элементы принадлежащие этому же множеству.

Задача 8

Пусть \mathcal{F} - сигма-алгебра и множество A ей не принадлежит.

$$\sigma(\mathcal{F} \cup A) = \{\emptyset, C, D, C^c, D^c, A, A^c, ..., \Omega\}$$

$$B = (C \cap A) \cup (D \cap A^c)$$

(i)
$$\bigcup_{n=1}^{\infty} [(A \cap C_n) \cup (D_n \cap A^c)] = (\bigcup_{n=1}^{\infty} C_n \cap A) \cup (\bigcup_{n=1}^{\infty} D_n \cap A^c)$$

(ii)
$$B^c = (C^c \cup A^c) \cap (D^c \cup A) = (C^c \cap D^c) \cup (C^c \cap A) \cup (D^c \cap A^c) = (C^c \cap D^c \cap A) \cup (C^c \cap D^c \cap A^c) \cup (C^c \cap A) \cup (C^c \cap A)$$

 σ -алгебра содержит любой элемент из B, B^c , а так же объединения множеств.

Задача 9

Пусть (X,Y) - пара независимых случайных величин, а (Z,T) – пара независимых случайных величин такая, что X=Z,Y=T (равенство по распределению).

- a) E(f(X)) = E(f(Z)),
- b) $E(X^2Y) = E(Z^2T)$,
- c) E(f(X)q(Y)) = E(f(Z)q(T)),
- d) E(f(X,Y)) = E(f(Z,T)), т.к. (X,Y) = (Z,T) по распределению.

Если отказаться от независимости Z и T это не всегда верно, т.к. $(X,Y) \neq (Z,T)$ по распределению.

Тема 2: условные математические ожидания.

Задача 1

$$E(YE(X|\mathcal{G})) = E(E(Y|\mathcal{G})E(X|\mathcal{G}))) = E(XE(Y|\mathcal{G}))$$

Задача 2

Пусть
$$X \in L^2$$
, $E(X|\mathcal{G}) = Y$ и $E(X^2|\mathcal{G}) = Y^2$.
Тогда $E([X-Y]^2|\mathcal{G}) = E(X^2-2XY+Y^2|\mathcal{G}) = E(X^2|\mathcal{G})-2YE(X|\mathcal{G})+Y^2=0$.
 $E[E([X-Y]^2|\mathcal{G})] = E([X-Y]^2) = 0 \Rightarrow X = Y$

Задача 3

Пусть (X, Y) независимы, X строго положительна и Z = XY.

$$E(\mathbb{I}_{\{Z < t\}} | X) = E(\mathbb{I}_{\{XY < t\}} | X) = E(\mathbb{I}_{\{Y < t/X\}} | X) = P(Y \le t/X | X) = F_Y(t/X)$$

Задача 4

Пусть X, Y две с.в. такие, что X-Y не зависит от сигма-алгебры $\mathcal{G}, E(X-Y)=m, Var(X-Y)=\sigma^2$. Предположим, что Y является \mathcal{G} – измеримой.

$$E(X-Y|\mathcal{G}) = E(X-Y) = m.$$

$$E(X-Y|\mathcal{G}) = E(X|\mathcal{G}) - Y = m \Rightarrow E(X|\mathcal{G}) = Y + m$$

$$E((X-Y)^2|G) = \sigma^2 + m^2$$

$$E((X-Y)^2|G) = E(X^2|\mathcal{G}) - 2YE(X|\mathcal{G}) + Y^2 = \sigma^2 + m^2 \Rightarrow E(X^2|\mathcal{G}) = \sigma^2 + 2Y^2 + 2Ym - Y^2 + m^2 = \sigma^2 + (Y+m)^2$$

Задача 5

Пусть $X = X_1 + X_2$. Предположим, что X_1 – гауссовская с.в., не зависящая от сигма-алгебры \mathcal{G} , а X_2 является \mathcal{G} – измеримой.

a)
$$E(X|\mathcal{G}) = E(X_1|\mathcal{G}) + E(X_2|\mathcal{G}) = E(X_1) + X_2$$

 $Var(X|\mathcal{G}) = E(X^2|\mathcal{G}) - (E(X|\mathcal{G}))^2 = E(X_1^2|\mathcal{G}) + 2X_2E(X_1|\mathcal{G}) + X^2 - E(X_1)^2 - 2X_2E(X_1) - X^2 = E(X_1^2) - -E(X_1)^2 = Var(X_1)$
b) $E(e^{\lambda X}|\mathcal{G}) = E(e^{\lambda X_1}e^{\lambda X_2}|\mathcal{G}) = e^{\lambda X_2}E(e^{\lambda X_1}) = e^{\lambda X_2}\exp(\lambda E(X_1) + \lambda^2/2Var(X_1))$

Задача 6

Пусть Z_1 , Z_2 две интегрируемые с квадратом с.в.

$$Cov(Z_1, Z_2|\mathcal{G}) = E(Z_1Z_2|\mathcal{G}) - E(Z_1|\mathcal{G})E(Z_2|\mathcal{G}) = E(Z_1Z_2|\mathcal{G}) - E(Z_2E(Z_1|\mathcal{G})|\mathcal{G}) = E(Z_1Z_2 - Z_2E(Z_1|\mathcal{G})|\mathcal{G}) = E[(Z_1 - E(Z_1|\mathcal{G}))Z_2|\mathcal{G}]$$

Задача 7

Пусть
$$Z = aY + b$$
.

$$\sigma(Z): Z^{-1}(A) = \{w|Z(w) \in A\} = \{w|aY(w)+b \in A\} = \{w|Y(w) \in B\}$$
, где A - борелевское, $B=\{x\in \mathbb{R}: ax+b\in A\}$ тоже борелевское, откуда следует $E(aX+b|Z)=E(aX+b|Y)=aE(X|Y)+b$

Задача 8

Пусть $\mathcal F$ - сигма-алгебра. Рассмотрим сигма-алгебру $\mathcal G$, порожденную с.в. $\tau \wedge 1$, где τ – с.в. со значениями в $\mathbb R^+$. X является $\mathcal F$ - измеримой с.в. Пользуясь леммой Дуба-Дынкина, имеем $h(1\wedge \tau)$ - борелевская.

$$E(X|\mathcal{G}) = E(X|\tau < 1)\mathbb{I}_{\{\tau < 1\}} + E(X|\tau \ge 1)\mathbb{I}_{\{\tau \ge 1\}}$$
$$E(X|\mathcal{G})\mathbb{I}_{\{\tau \ge 1\}} = E(X|\tau \ge 1)\mathbb{I}_{\{\tau \ge 1\}} = \frac{E(X\mathbb{I}_{\{\tau \ge 1\}})}{\mathbb{I}_{\{\tau \ge 1\}}}\mathbb{I}_{\{\tau \ge 1\}}$$

Задача 9

Пусть \mathcal{G}_1 и \mathcal{G}_2 две независимые сигма-алгебры, $\mathcal{G}=\mathcal{G}_1\wedge\mathcal{G}_2$ и X_i две ограниченные случайные величины такие, что X_i является \mathcal{G}_i измеримой, i=1,2. Доказать, что $E(X_1X_2|\mathcal{G})=E(X_1|\mathcal{G})E(X_2|\mathcal{G})=E(X_1|\mathcal{G}_1)E(X_2|\mathcal{G}_2)=X_1X_2$.