IND8200 – Organisation Industrielle

Cours 3 & 4– La planification en continue

par Catherine Laroche et Anis Berrada, Ing. M. Ing.

Définitions

Planification globale de la production (PGP): Planifier les capacités de production à moyen terme, période couvrant généralement entre 2 et 12 mois

Demande totale: Combinaison du plan de prévisions et du carnet de commandes

Planification de la production: Répartir ou affecter l'ensemble des ressources d'une entreprise en tenant compte des objectifs stratégiques et opérationnels (quantité, qualité, délais, lieux et coûts) des contraintes spécifiques et des prévisions

Ressources humaines, Ressources matérielles, Ressources financières (ex: agrandir bâtisse, acheter nouvelle bâtisse)

Organisation Industrielle -

Objectifs de la planification

- 1. Répartition des ressources matérielles
- 2. Répartition des ressources humaines
- 3. Tenir compte des objectifs stratégiques
- 4. Tenir compte de la demande prévue (les prévisions)

Planification = Équilibre

- Embauche/licenciement
- Hres suppl./congés
- Emplois à temps partiel
- Sous-traitance
- Production anticipée
- Capacité des équipements

- Prévisions
- •Commandes réelles

(influence du prix, des promotions, etc.)

Offre

Demande

En situation de déséquilibre... -> Coût d'opportunité (manque à gagner)

Organisation Industrielle Catherine Laroche et Anis
 Berrada,Ing.M.Ing.

Étapes de la planification de la production

- Préciser les quantités des ressources à utiliser afin de répondre le mieux possible aux objectifs opérationnels
- Déterminer les quantités de produits à réaliser
- Le tout sur un horizon à court et moyen terme (de 2 à 15 mois) et par intervalle d'un mois ou d'une semaine

Étapes de la planification de la production (suite)

Catherine Laroche et Anis Berrada, Ing. M. Ing.

Étapes de la planification de la production (suite)

Rappel: But de l'entreprise, faire de \$

Plan d'affaires: Déterminer les stratégies de production et de capacité à LT

Plan global de production: Déterminer la capacité de production

Plan directeur de production: Déterminer le calendrier précis de production des produits

Plan des besoins matières: Déterminer les besoins en composants et matières premières

Ordonnancement: Planification détaillée des commandes

Unité équivalente

Permet de ramener à un même dénominateur toute la gamme des produits d'une entreprise Ex: heures-personnes, heures-machines, dollars, litres, etc.

heures/unité (temps) pour fabriquer

Type	Demande annuelle	Heures-personne/unité
Contemporain	1200	20
Ultramoderne	400	14
Avant-gardiste	600	18
Haut de gamme	500	28

le défi est de mettre tout sur dénominateur commun

Choisissons l'unité "Contemporain" comme unité équivalente: ceci veut dire que tt les autres on va les mettre en 20 heures/unité

Type	Nombre d'unités équivalentes
Contemporain	20/20 * 1200 = 1200
Ultramoderne	14/20 * 400 = 280
Avant-gardiste	18/20 * 600 = 540
Haut de gamme	28/20 * 500 = 700
TOTAL:	2720 unités de Contemporain

Unité équivalente

 Si la gamme de produits est vaste et hétérogène, il est difficile d'établir une unité équivalente

 Si les intrants utilisés dans la production sont homogènes ou si l'un des intrants est un constituant important dans tous les produits fabriqués → unité équivalente = une unité de cet intrant

La planification de la production

Plan de production intégré ou agrégé ou global (famille X)

Mois (# sem.)	Sept.	Oct. (4)	Nov. (3.6)	Déc. (4.4)	Total
Production		720	648	792	2160
Vente		700	760	850	2310
Stock final	180	200	88	30	

Plan directeur de production (PDP) ou horaire maître de production ou la planification détaillée (produits de la famille X)

Mois		Octobre (4)				Novembre (3.6)				
Semaine (# jours)	1 (5)	2 (5)	3 (5)	4 (5)	Total	1 (4)	2 (5)	3 (4)	4 (5)	Total
Produit 1	180	180	60	-	420	144	156	-	-	300
Produit 2	-	-	120	80	200	-	24	96	80	200
Produit 3	-	-	-	100	100	-	-	48	100	148
Total	180	180	180	180	720	144	180	144	180	648

Le plan des besoin en matière (MRP) (produit 1)

Semaine		1	2	3	4	5	6	7	8
Plan des besoins commerciaux		180	180	60	1	144	156	-	ı
Commandes fermes clients		30	10						
Réceptions programmées			40				60		
Besoins nets				20					
Stocks projeté en main	400	400	230	40	380	380	296	140	140
Réceptions planifiés				400					
Lancements planifiés				400		·	·	·	

Les principaux modules d'un système MRP II

Les conditions d'application du plan intégré

- Horizon à moyen terme
- Le temps est divisé en unités de 1 mois ou de 1 semaine
- La planification porte sur l'ensemble des produits
- Les unités de produits sont les unités équivalentes
- Stratégies possibles de planification:

Nivellement, Synchrone ou mixte

Nivellement: on prends une moyenne et on nivelle, on produit un nb de produit tt l'année. Si à Noel les ventes augmentent, on aura déjà produit en été donc ca va compenser

- Les prévisions pour l'horizon de planification doivent être connues
- Options possibles pour la variation du taux de production:

Sous-traitance

Heures Supplémentaires

L'embauche

Le congédiement

Le plan intégré est un plan stratégique spécifiant comment l'entreprise s'organisera pour satisfaire la demande des clients

Nivellement ou synchronisation?

- Ligne pointillé: taux de production que devrait avoir un plan nivelé
- Ligne pleine: plan qui fluctue avec la demande

Gestion de stock: Nivellé ou synchrone?
--> Nivellé car les stocks vont dépendre.
Synchrone --> on a 0 génération de stocks

Organisation Industrielle -Catherine Laroche et Anis

Le plan nivelé

Avantage: Pas de variations de ce qu'on produit, main d'oeuvre stable, stock permet de palier au débalancement

- Taux de production pour tout l'horizon de planification
- Le taux correspond à la demande moyenne par période
- Les irrégularités de la demande sont aplanies par l'accumulation et l'utilisation des stocks
- Ne nécessite pas de modification dans l'emploi des ressources
- Plus coûteuse car moins flexible face à la demande

Le plan synchrone

Bcp de variations dans la production et main d'ouvre, très couteux d'embaucher et licencier des gens, désangagement des gens

- Taux de production qui suit parfaitement la demande
- Elle élimine les stocks
- Elle implique de fortes variations de l'effectif (embauche et licenciement), des heures supplémentaires et/ou recours à la sous-traitance
- Coûteuse à cause des problèmes d'implantation: coût de variation du niveau de production comme l'embauche, la formation, les mises à pied

Le plan mixte ou hybride

On a les avantages des 2 stratégies, la + avantageuse, génère cout d'implantations les plus optimiques

- Stratégie qui se situe entre le plan nivelé et synchrone
- Taux de production est moins variable que dans le plan synchrone
- La quantité moyenne en stock est moins grande que dans le plan nivelé
- Généralement la moins coûteuse
- Stratégie optimale si elle est obtenue rigoureusement

Le plan global – comparatif

Le plan global – Tableau comparatif

Plan Global de Production - Nivelé

Période	1	2	3	4	5	6	7	8	9	10
Demande	200	300	350	400	400	250	350	300	250	300
Production	310	310	310	310	310	310	310	310	310	310
Stocks	110	120	80	-10	-100	-40	-80	-70	-10	0

^{*}Dans ce tableau, le stock de départ est de zéro

Plan Global de Production - Synchrone

Période	1	2	3	4	5	6	7	8	9	10
Demande	200	300	350	400	400	250	350	300	250	300
Production	200	300	350	400	400	250	350	300	250	300
Stocks	0	0	0	0	0	0	0	0	0	0

^{*}Dans ce tableau, le stock de départ est de zéro

Plan Global	de Prod	uction -	Mixte							
Période	1	2	3	4	5	6	7	8	9	10
Demande	200	300	350	400	400	250	350	300	250	300
Production	300	300	300	400	400	400	250	250	250	250
Stocks	50	50	200	100	50	50	0			
* Dans ce ta	bleau, le	stock d	e départ	est de ze	éro					

demande = production

Critères de décision

Comparaison entre les éléments de stratégie :

- Couts de stockage et de pénurie;
- Couts de stockage et prime de temps supplémentaire (TS); overtime
- Prime de TS et couts d'embauche/mise a pied;
- Etc.

== »But : Détermination du SEUIL DE PRÉFÉRENCE

```
Régulier
1 employé:
10$/h
10h --> faire 1 produit
1 produit = 10 * 10 = 100$
```

Organisation Industrielle -Catherine Laroche et Anis Berrada,Ing.M.Ing.

Stockage vs Pénurie - Exercice

Coût d'entreposage = 5\$ par unité par mois électricité, employées pour aller chercher les coût : d'entroposer des stocks

Coût de pénurie = 15\$ par unité par mois

coût: j'ai rien fait et rupture de stocks

quand un client ne trouve pas produit sur walmart et va voir la concurrence et risque de ne pas revenir

Combien de périodes à l'avance peut-on produire et stocker afin d'éviter une pénurie ?

pour une durée de 3 mois c'est mieux d'entreposer, mais après 3 mois il est miex d'être en pénurie car le stocker va me coûter plus cher

Mois 1: stocker me coute 5\$ et j'ai pas vendu produit

Mois 2: stocker me coute 5\$ (total 10\$) et j'ai trjs pas vendu produit

Mois 3: 15 \$ pas vendu

Mois 4: 20\$ et là on vend (perte comparé à la méthode de pénurie)

Stockage vs Temps supplémentaire - Exercice

On produit 160 unités par mois

Coût d'entreposage = 5\$ par unité par mois

Temps régulier = 1800\$ par mois

Prime de TS = 50% de 1800\$ = 900\$/mois

(ou 900\$/mois / 160 = 5,63\$/unité)

Combien de périodes à l'avance peut-on produire et stocker afin d'éviter de **commencer** à payer du

1800\$ de salaire pour **Surfte m** pattendre de nière minute et faire entrer qq1 pour livrer

--> 11.25\$/heure / unité en temps régulier

Cmb coûte 1 unité en temps supplémentaire? 1 unité en TS coûte: 11.25 * 1.5 = 16.875\$

Différence de coût :

Coût d'embauche pour 1 employé = 1600\$

Coût de mise pour 1 employé = 2500\$

Prime de TS = 50% de 1800\$ = 900\$/mois/empl (avec l'hypothèse qu'on a besoin de 40 heures de temps supplémentaire par semaine)

Si on doit augmenter la capacité pour un nombre de périodes donné, doit-on embaucher pour ensuite mettre à pied ou faire faire du surtemps?

Mois	Embauche		TS
1	1600 (cout embauche)+2500 (coût li	Cencement) +1800 (salaire) =5900 Organisation Industrielle - Catherine Laroche et Anis	1800 * 1.5 = 2700
2	1800 (cumulatif 7700)		1800 * 1.5 = 2700 (cumulatif 5400)
3	1800 (cumulatif 9500)		1800 * 1.5 = 2700 (cumulatif 8100)
4	1800 (cumulatif 11300)		1800 * 1.5 = 2700 (cumulatif 10800)
5	1800 (cumulatif 13100)		1800 * 1.5 = 2700 (cumulatif 13500)

Berrada, Ing. M. Ing.

Coût d'embauche pour 1 employé = 1600\$

Coût de mise pour 1 employé = 2500\$

Prime de TS = 50% de 1800\$ = 900\$/mois/empl

Nb de		
périodes	Embauche	TS
1	5900	2700
2	7700	5400
3	9500	8100
4	11300	10800
4.55555556	12300	12300
5	13100	13500
6	14900	16200
7	16700	18900
8	18500	21600
9	20300	24300
10	22100	27000

Coût d'embauche pour 1 employé = 1600\$
Coût de mise pour 1 employé = 2500\$
On a besoin de 30 heures de TS par semaine
Quelle est maintenant la meilleure solution?

Mois	Embauche		TS
1 2 3 4 5	1600 (cout embauche) +1800 (salaire) =5900 1800 (cumulatif 7700) 1800 (cumulatif 9500) 1800 (cumulatif 11300) 1800 (cumulatif 13100)+2500 (coût licencement)	1800 * 1.5 = 2700	1800 * 1.5 = 2700 (cumulatif 5400) 1800 * 1.5 = 2700 (cumulatif 8100) 1800 * 1.5 = 2700 (cumulatif 10800) 1800 * 1.5 = 2700 (cumulatif 13500)

Coût d'embauche pour 1 employé = 1600\$ Coût de mise pour 1 employé = 2500\$ On a besoin de 30 heures de TS par semaine

	Nb de		
	périodes	Embauche	TS
	1	5900	2025
	2	7700	4050
	3	9500	6075
	4	11300	8100
	5	13100	10125
	6	14900	12150
	7	16700	14175
	8	18500	16200
	9	20300	18225
	10	22100	20250
	11	23900	22275
embauche devier	t 12	25700	24300
intéressante à la 13e période>	13	27500	26325
	14	29300	28350
	15	31100	30375
	16	32900	32400
	17	34700	34425
	18	36500	36450
	19	38300	38475
	20	40100	40500

Nh do

Organisation Industrielle -Catherine Laroche et Anis Berrada, Ing. M. Ing.

Vous disposez des données suivantes et vous devez préparer plusieurs plans de production en respectant les contraintes demandées

Nb heures par jour ouvrable	8
Salaire moyen	8\$/heure
Coût de pénurie	8\$/unité/mois
Coût de stockage	3\$/unité/mois
Coût d'embauche	400\$/personne
Coût de mise à pied	500\$/personne
Temps requis pour la fabrication	5h/unité
Prime de TS	50%
Coût de sous-traitance	10\$/unité
Nb actuel d'employés	40 employés

	Mai	Juin	Juillet	Aout	Septembre	Octobre
Prévisions	1850	1425	1000	850	1150	1850
Nb jours ouvrables	22	19	21	21	22	20

- a) Un plan où la production mensuelle correspond à la stratégie synchrone. Le nombre d'employés varie chaque mois. Aucune sous-traitance et pas de temps supplémentaire. La demande est toujours satisfaite (Stock initial = 570)
- b) Un plan où la production mensuelle correspond à la stratégie de nivellement. Il n'y a pas d'heures supplémentaires, ni de sous-traitance. Le nombre d'employés est constant et est égal à celui permettant la réalisation de la demande globale pendant la période visée.

 (Stack initial 570)

(Stock initial = 570)

a) Solution:

pas de contraintes pr le nb employés, donc on le fait varier

	Mai	Juin	Juillet	Aout	Septembre	Octobre
Prévisions	1850	1425	1000	850	1150	1850
Production	1850	1425	1000	850	1150	1850
Nb Employes	53	47	30	25	33	58
Stock	570	570	570	570	570	570

b) Solution:

	Mai	Juin	Juillet	Aout	Septembre	Octobre
Prévisions	1850	1425	1000	850	1150	1850
Production	1354	1354	1354	1354	1354	1354
Nb Employes	39	39	39	39	39	39
Stock	74	3	358	862	1066	570

c)Stock initial = 0

1/ Un plan où le nombre d'employés est constant et est égal à celui correspondant à la production nécessaire à la satisfaction de la demande mensuelle minimale. La demande est toujours satisfaite en faisant appel, en cas d'insuffisance de la production, à la sous-traitance.

2/Est-il préférable d'avoir recours à la sous-traitance ou au temps supplémentaire pour satisfaire la demande totale du mois de mai?

3/Pour le mois de mai, est-il préférable de recourir à la soustraitance pour les unités manquantes ou d'embaucher le personnel suffisant pour satisfaire toute la demande en temps régulier?

Catherine Laroche et Anis Berrada, Ing. M. Ing.

c) Solution

1/

	Mai	Juin	Juillet	Aout	Septembre	Octobre
Prévisions	1850	1425	1000	850	1150	1850
Production	915	790	874	874	915	832
Nb Employes	26	26	26	26	26	26
Stock	0	0	0	24	0	0
Production en ss- traitance	935	635	126	0	211	1018

2/ Pour le mois de Mai, 935 meubles sont à faire faire par la sous-traitance soit 935 * 10\$ = 9350\$ En TS, 935 * 5 heures/ meubles = 4675 heures de Temps supplémentaire = 4675 * 8\$/heure * (1.5) = 56100 \$

Donc sous-traitance

c) Solution

3/ Pour satisfaire la demande totale du mois de mai, on aurait eu besoin de 53 employés soit 27 de plus que dans le plan c1

Coût d'1 employé par jour ouvrable = 8h/jour * 8\$ de l'heure Nb de jours ouvrables en mai = 22

Coût d'embauche = 450

Cout des 27 employés de plus = 22*8*8*27 + 400 * 27 = 48816 \$

Donc sous-traitance

c) A faire à la maison

4/Pour le mois de septembre, 211 unités doivent normalement être produites en sous-traitance. Serait-il préférable de produire ces unités en temps régulier au mois d'août à la place?

5/Au mois d'août, jusqu'à combien d'unités peut-on fabriquer en temps supplémentaire avant qu'il ne soit préférable d'embaucher une personne supplémentaire pour réaliser ces unités en temps régulier?

6/Combien d'unités peut-on garder en inventaire pendant un mois avant qu'il ne soit préférable de faire une unité en surtemps?

c) A faire à la maison

7/Pendant combien de périodes peut-on garder une unité en inventaire plutôt que de la fabriquer en surtemps?

Nature des décisions prises au niveau du plan intégré

- Varier le niveau de la main-d'œuvre
- Temps supplémentaire nécessaire
- Augmenter ou réduire les niveaux de stocks
- Accepter les pénuries
- Recourir à la sous-traitance
- Influencer la demande par des efforts de publicité

Analyse des éléments de stratégie

ÉLÉMENTS DE STATÉGIE	COÛTS AFFÉRENTS
Main-d 'œuvre	
Variation de l'effectif	Embauche (recrutement, formation) et mise à pied (prime de départ)
Heures supplémentaires	Versement d'une prime
Équipes supplémentaires	Frais d'organisation, prime, augmentation des frais fixes
Équipement	
Variation de la vitesse de fonctionnement	Baisse de la fiabilité, augmentation des coûts d'entretien
Location temporaire	Location, efficacité moindre.
Désynchronisation	
Stocks	Coût d'opportunité, d'entreposage, de possession
Pénurie	Perte d'achalandage, compensation pour les retards, pertes de profits
Ressources externes	
Sous-traitance	Coûts supplémentaires.

Plan détaillé de Production (PDP) - Objectifs

- Ventes: établir et respecter les dates de livraisons
- Approvisionnement: déterminer les dates de commandes
- Opérations: Utiliser efficacement les capacités & Atteindre les objectifs du plan global de production
- Gestion d'entreprise: Effectuer les arbitrages entre la production et le marketing

Les intrants du PDP

- Les stocks de début ou initiaux (Si)
- Les prévisions pour chaque période couvertes par le PDP
- Les commandes clients (commandes déjà acceptées des clients)
- La capacité globale disponible selon le plan global de production

Les étapes du PDP

- Identification des produits
- Élaboration du tableau PDP pour chaque produit en unités réelles en fonction des données disponibles
- Sommaire des capacités en unités équivalentes (pour l'ensemble des produits)
- 4. Vérification du respect des contraintes (limites de capacité, niveau de stock, etc.)

Les variables du PDP

Fi: Prévision de la demande de la période i

Ci: Commandes acceptées à la période i

Si: Stock projeté à la période i

Pi: Production planifiée à la période i (fin de la production)

Li: Lancement planifiée à la période i (début de la production)

Élaboration du plan préliminaire

Définition: Le plan préliminaire s'assure que les stocks projetés sont supérieurs ou égaux à zéro. Il ne tient pas compte des contraintes de l'entreprise \rightarrow attention, tout est en <u>unité réelle</u>

Méthodologie:

- 1. Déterminer la valeur maximale entre Fi et Ci ; Max(Fi;Ci)
- 2. Calculer Si=Si-1 Max(Fi;Ci)
- Si $Si \ge 0 \rightarrow Pi = 0 \rightarrow Si = Si-1 Max(Fi;Ci)$
- SI $Si \le 0 \rightarrow Pi = lots de production planifiée$ $<math>\rightarrow Si = Si-1 - Max(Fi;Ci) + Pi$

Fi: Prévision de la demande de la période i

Ci: Commandes acceptées à la période i

3. Déterminer les Li en fonction des délais et des Pi

Démarche pour l'élaboration d'un PDP (exemple)

Nom du produit	Taille du lot	Délai	Stock (début)
X123D	200	1	310

Période	1	2	3	4
Prévisions (Fi)	250	250	250	250
, ,	230	230	230	230
Commandes Clients	220	240	200	450
(Ci)	230	240	280	150
Stock projeté (Si)	60	10	130	80
PDP (réception				
planifiée) (Pi)		200	400	200
Lancement planifié (Li)	200	400	200	

Démarche pour l'élaboration d'un PDP (suite)

- 1) Fi: Prévisions de la demande pour les produits à demande indépendantes
- 2) Ci: Commandes fermées reçues de la par des clients pour la période i
- 3) Identifier le Max entre les prévisions et les commandes acceptées
- 4) Si: Stock projeté = Si-1 + Production planifiée− Max(Fi;Ci)
- 5) Li: Lancements planifiés décalés du délai

EXERCICES

Article A

Période		1	2	3	4	5	6	7	8
Prévisions		50	45	45	50	50	50	40	40
Commandes Clients		25	60	15	55	25	35		
Stock projeté	100								
PDP (réception									
planifiée)									
Lancement planifié									

Stock de début = 100 Lot de 100 unités Délai de 1 semaine 1 unité équivalente

EXERCICES

Article B

Période		1	2	3	4	5	6	7	8
Prévisions		60	120	80	40	30	50	20	20
Commandes Clients		35	150	60	30	25	35		
Stock projeté	300								
PDP (réception									
planifiée)									
Lancement planifié									

Stock de début = 300 Lot de 100 unités Délai de 1 semaine 2 unités équivalentes

L'élaboration d'un plan final

Définition: Le plan final tient compte de l'ensemble des contraintes de l'entreprise. Entre autre de la **capacité de production** en unités équivalentes

Méthodologie:

- Équilibrer la fabrication des produits pour tenir compte de toutes les contraintes → déplacer les Pi si nécessaire (quand les Li sont supérieurs à la capacité de production de la période i)
- Recalculer les Si

Planification sommaire des capacités

- Équilibre approximatif entre la capacité et la demande établie en vue de vérifier la faisabilité d'un programme directeur de production
- On fait l'hypothèse que la capacité est utilisée pendant la semaine du lancement

EXERCICES – Planification sommaire des capacités

La capacité de production est de 200 unités équivalentes par période. Élaborez un plan final pour chacun des articles en respectant toutes les contraintes

Période	1	2	3	4	5	6	7	8
Article A - Lancement planifié								
Article B - Lancement planifié								
Sommes des capacités requises								
Capacité de production								

EXERCICES – Planification sommaire des capacités

Article A

Période		1	2	3	4	5	6	7	8
Prévisions		50	45	45	50	50	50	40	40
Commandes Clients		25	60	15	55	25	35		
Stock projeté	100								
PDP (réception planifiée)									
Lancement planifié									

EXERCICES – Planification sommaire des capacités

Article B

Période		1	2	3	4	5	6	7	8
Prévisions		60	120	80	40	30	50	20	20
Commandes Clients		35	150	60	30	25	35		
Stock projeté	300								
PDP (réception									
planifiée)									
Lancement planifié									

La stabilisation du PDP

Périodes

Limite de période: Borne, déterminée par l'entreprise,

fixant la date limite pour apporter des modifications dans le PDP

La planification des besoins-matières (PBM)

Organisation Industrielle Catherine Laroche et Anis
 Berrada,Ing.M.Ing.

Le système PBM/MRP (Material Requirements Planning)

PBM (MRP)

- Méthode de planification et de gestion de l'ensemble des besoins de composants (demande dépendante) nécessaires à la réalisation du PDP à partir des nomenclatures et de l'état des stocks
 - Quantité de composants et de matières premières à détenir pour réaliser les quantités requises de produits finis(compte tenu des niveaux de stock)
 - Quand passer les commandes d'achats et quand démarrer la fabrication
- La PBM, avec la planification des besoins en capacité, sert à vérifier si la capacité est suffisante pour répondre à la demande

Les intrants du PBM

Plan directeur

Fichier des nomenclatures

Fichier des stocks

Fichiers des délais de production

 Organisation Industrielle -Catherine Laroche et Anis Berrada,Ing.M.Ing.

Les extrants du PBM

Les extrants du module MRP ne sont en fait que des calculs de dates et de quantités, présentés sous forme de suggestions d'ordres de fabrication (OF) et d'ordres d'achat (OA).

Type de demande

- Demande indépendante
 - Produits finis ou pièces de rechange
 - Basé sur la demande du marché

Nécessite des prévisions

- Demande dépendante
 - Matières premières ou composantes qui entre dans la fabrication de produits finis
 - Dépend de la demande des produits finis

Nécessite des calculs, pas des prévisions

Éléments du PBM: La nomenclature du produit

«La nomenclature présente la structure du produit sous forme d'arbre ou de liste. Elle détaille les liens de dépendance entre les matières premières, les composants et les ensembles qui forment un produit fini»

Signification de cette nomenclature:

Pour chaque produit X, il faut 3 articles Y et 2 articles Z.

Pour chaque article Z, il faut 2 articles W et 1 article Y.

La nomenclature du produit - Exemple

Éléments du PBM: Techniques de lotissement

Il faut traiter le problème d'une façon différente de celle de la gestion des stocks car la demande n'est pas constante d'une période à l'autre

• Lot pour lot (LFL):

Commander la quantité exacte

Réduit le coût de stockage mais néglige le coût de commande

Produits à faible commande

Produits sur mesures

Quantité économique à commander (QEC):

Équilibre entre le coûts de commande et de stockage

Quantité déterminée (séance sur la gestion des stocks)

Éléments du PBM: Techniques de lotissement(suite)

- Lot minimum, maximum ou multiple d'une taille
 Quantité fixée souvent par le fournisseur ou la cadence de la machine
- Commande périodique (séance gestion des stocks):
 - Commande à intervalle fixe
 - Quantité commandée = sommes des besoins pour l'intervalle

Techniques de lotissement en fonction de la nature des produits

- ☐ Quantités fixes : produits finis à demande stable.
- Lot pour lot : produits intermédiaires ou peu en demande (sur mesure).
- □ Commandes périodiques : matières premières. Ce choix ne devrait être fait lorsque les autres aspects du système MRP sont fonctionnels et validés.

Avantages et inconvénients d'un PBM

☐ Avantages

- Réduction des en-cours et produits finis;
- contrôle des besoins en matières premières, composants et sousassemblages;
- contrôle des coûts;
- évaluation des besoins en capacité;
- meilleure allocation du temps de production.

☐ Inconvénients

- Nécessite l'utilisation de systèmes informatiques;
- nécessite beaucoup d'efforts pour maintenir l'intégrité et la fiabilité des données.

Les principes du PBM

- 1. Avoir le support de la direction
- 2. Responsabiliser les intervenants pour l'exactitudes des données
- 3. Déterminer des objectifs et moyens de mesures de la performance dans l'atteinte de ces derniers
- 4. Utiliser des ressources d'expérience pour prendre les décisions les plus critiques
- 5. Ne pas économiser sur la formation
- 6. Ne pas faire d'implantation improvisée
- 7. Ne pas sauter d'étape dans le processus du PBM

Élaboration d'un PBM

Étape préliminaire: approbation du PDP & mise à jour des fichiers des intrants au PBM

- 1. Soustraction des stocks de produits finis (niveau 0) des quantités de chacun des produits requis selon le PDP. Le résultat obtenu correspond à la demande nette pour chacun des produits finis pour chaque semaine.
- Décalage de la demande nette du nombre de semaines requis pour l'assemblage en produits finis des sous-ensembles de niveau immédiatement inférieur
- 3. Multiplication du nombre d'unités requis de chacun des produits finis par le nombre approprié de sous-ensembles ou composantes du niveau suivant selon le fichier des nomenclatures
- 4. Refaire les étapes 1 à 3 pour le niveau 1, puis le niveau 2 et ainsi de suite jusqu'au dernier niveau 1 niveau 1, puis le niveau 2 et ainsi de suite jusqu'au dernier niveau 1, puis le niveau 2 et ainsi de suite jusqu'au dernier niveau 1, puis le niveau 2 et ainsi de suite jusqu'au dernier niveau 1, puis le niveau 2 et ainsi de suite jusqu'au dernier niveau 1, puis le niveau 2 et ainsi de suite jusqu'au dernier niveau 1, puis le niveau 2 et ainsi de suite jusqu'au dernier niveau 2 et ainsi de suite de s

Élaboration d'un PBM: la grille d'enregistrement

- Plusieurs présentations possibles.
- Cette grille permet d'enregistrer les informations nécessaires à la détermination de la PBM
- Objectif : calcul du besoin net et des lancements par période;
- ☐ Calculs en cascade

depuis la demande pour le niveau 0.	Période								
ic mveau o.	1	2	3	4					
Besoins bruts									
Réceptions programmées									
Stocks en main									
Besoins nets									
Réceptions planifiées									
Lancements planifiés									

Définitions de la grille d'enregistrement

- Besoins bruts: demande totale du plan directeur
- Réceptions programmées: quantité de matières dont la réception est prévue pour le début de la période concernée
- Stocks projetés en main: quantité disponible en stock au début de la période i
- **Besoins nets:** demande ajustée en fonction des stocks et besoins bruts et des réceptions prévues
- Réceptions planifiées: Quantité que l'on planifie recevoir étant donné le délai de livraison & la technique de lotissement
- Lancements planifiés: quantité à lancer en fonction du délai de fabrication ou du délai d'approvisionnement

Formules et définitions à utiliser pour la grille d'enregistrement

Besoins bruts :

Ils se calculent en fonction de la nomenclature et des lancements planifiés. Ils se retrouvent à la même période que les lancements planifiés.

Besoins nets:

BNi= BBi – SPi-1 ou BNi est le besoin net à la période i, BBi le besoin brut à la période i et Spi-1 le stock projeté à la période précédente

• Réceptions planifiées :

Qd BNi>0, il faut planifier une réception qui aura la taille du lot.

• Stock projeté:

SPi=RPi + SPi-1 -BBi ou RPi sont les réceptions planifiées à la période i

Lancements planifiés:

Les lancements planifiés sont égaux aux réceptions planifiées reculées du délai requis pour la réception.

PBM - EXERCICE

	Lotissement	Stock	Délai (en semaines)
Α	Lot pour lot	0	1
D	Min 200	0	1
F	Lot pour lot	50	2
Z	x 200	25	1
Х	3 semaines	25	1
Υ	X 100	100	2

PBM – EXERCICE (suite)

PDP de l'article A

Période	1	2	3	4	5	6	7	8	9	10	11	12
Α			100		100		100	100			100	

Réceptions Programmées

Période	1	2	3	4	5	6	7	8	9	10	11	12
D	250											
F				200						200		
X	25											
Υ				25								
Z	200											

Prochaine Séance

• Lire Chapitre 16

Exercices à faire:

Chapitre 12 (p.485): Problèmes avec solution 2 et 3

Chapitre 12 (p.486): Problèmes 7 et 8

Chapitre 14 (p.569): Problèmes avec solution 1 et 2

Chapitre 14 (p.572): Problèmes 3,4 et 5

Références

- Notes IND5200 Javad Sadr
- Stevenson Benedetti
- Notes 2-500-09 (HEC Montréal)