Formal Languages: Concepts

- Alphabet (A) any finite non-empty set of letters (used to write the input) e.g. $A = \{0,1\}, E = \{a,b,c,...,z\}$
- ▶ Word (w) (akka string) finite sequence of letters (elements of the alphabet A) $w \in A^*$ (here A^* is the set of all finite sequences of elements of A)
 - $A^* = \{\varepsilon, 0, 1, 00, 01, 10, 11, 000, 001, ...\}$ (all words) We write sequence denoting a word by just writing one letter after another
 - arepsilon is the word of length zero (empty string)
 - Length of the word |w| is the number of symbols (repetitions count): |01011| = 5
- ▶ Language (L) a set of words (possibly empty, possibly infinite) $L \subseteq A^*$
 - e.g. $L_1 = \{1,11,111,\ldots\}$ (words of length one or more, containing only 1-s)
 - $L_2 = \{\varepsilon, 00, 01, 10, 11, 0000, 0001, 0010, \ldots\}$ (words of even length)
 - $L_3 = \{0,101,111,00000\}$ (finite language with these specific four words)

Definition of Words in Set Theory

Let A be the alphabet. We define words of length n, denoted A^n

Definition: $A^0 = \{\varepsilon\}$ (only one word of length zero, always denoted ε)

For n > 0, $A^n = \{f \mid f : \{0, ..., n-1\} \rightarrow A\}$

A non-empty word is just a function that tells us what the letters are and in which order.

For w = 1011 we thus have:

$$w(0) = \mathbf{1}$$
 $w(1) = \mathbf{0}$ $w(2) = \mathbf{1}$ $w(3) = \mathbf{1}$ (We also write the pretty $w_{(i)}$ instead of $w(i)$)

Set of all words:

$$A^* = \bigcup_{n \ge 0} A^n$$

which means: $w \in A^*$ if and only iff there exists n such that $w \in A^n$.

Note: sometimes people represent e.g. 1011 as (1,0,1,1), but we can think of *n*-tuple as a function $\{0,\ldots,n-1\}\to A$, so that is equivalent.

Word Equality

Words are equal when they have same length and same letters in the same order:

Let $u, v \in A^*$. Then

u = v if and only if both

- 1. |u| = |v| and
- 2. for all *i* where $0 \le i < |u|$ we have $u_{(i)} = v_{(i)}$

```
Words as Scala Lists
   sealed abstract class List[A] { // A is the alphabet
     def ::(t:A): List[A] = Cons(t. this)
     def length: BigInt = this match {
      case Nil() \Rightarrow BigInt(0)
      case Cons(h, t) \Rightarrow 1 + t.length }
     def apply(index: BigInt): A = {
      this match {
        case Cons(h.t) \Rightarrow
         if (index = BigInt(0)) h
         else t(index-1) } }
   case class Nil[A]() extends List[A]
   case class Cons[A](h: A, t: List[A]) extends List[A]
   val w = 1 :: 0 :: 1 :: 1 :: Nil[Int]() // 1011
   val n = w.length // 4
```

val z = w(1) // 0

Words as Inductive Structures

If $a \in A$ and $u \in A^*$, let $a \cdot u$ denote the word that starts with a and then follows with symbols from u (like Cons).

Theorem (Decomposing a word)

Given $w \in A^*$, either $w = \varepsilon$ or $w = a \cdot v$ where $a \in A$ and $v \in A^*$.

Theorem (Equality)

Given $u, v \in A^*$ we have u = v if and only if one of the following conditions hold:

- \triangleright $u = \varepsilon$ and $v = \varepsilon$.
- ▶ there exists $a \in A$ and $u', v' \in A^*$ such that $u = a \cdot u', v = a \cdot v'$ and u' = v'.

Theorem (Structural induction for words)

Given a property of words $P: A^* \to \{true, false\}$, if (1) $P(\varepsilon)$ and, (2) for every letter $a \in A$ and every u, P(u) implies $P(a \cdot u)$, then: $\forall u \in A^*.P(u)$.

Each Word is Finite. The Set of All of Them is Infinite

Each word has a finite length, and each symbol is an element from a finite set. Thus, each word is a finite object that can be written down using finitely many bits. That set of all words is countably infinite: it is as big as the set of natural numbers. For example, if $A = \{1\}$ then each word is of the form 1...1 and is uniquely given by its length n. Thus, there is a bijection between such words and non-negative integers n, which, by definition, means that these two sets have the same cardinality. Similarly, if $A = \{0,1\}$, we have a bijection between positive integers and words over A: given a word of length n of the form $k_1...k_n$ we can assign it to a strictly positive integer whose binary number representation is

$$\overline{1k_1\ldots k_n}$$

Such mapping establishes a bijection between A^* and postitive integers. More generally, we can show that, for any alphabet A the set of all words A^* is a countably infinite set. Intuitively, we can take any total ordering on A and use it to sort all words as in a dictionary. This defines a bijection with non-negative integers.

Concatenation

Concatenation is a fundamental operation on words, and denotes putting the words of one word after another. For example, concatenating words 01 and 10, denoted $01 \cdot 10$, results in the word 0110.

Concatenation of $u = u_{(0)} \dots u_{(n-1)}$ and $v = v_{(0)} \dots v_{(m-1)}$, denoted $u \cdot v$, or uv for short, is the word

$$u_{(0)} \dots u_{(n-1)} v_{(0)} \dots v_{(m-1)}$$

Definition

 $u \cdot v$ is the unique word w such that |w| = |u| + |v| and for all i where $0 \le i < |w|$,

$$w_{(i)} = \begin{cases} u_{(i)}, & \text{if } 0 \le i < |u| \\ v_{(i-|u|)}, & \text{if } |u| \le i < |u| + |v| \end{cases}$$

Note that it follows: $w \cdot \varepsilon = w$ and $\varepsilon \cdot w = w$

Associativity of Concatenation

Theorem

For all $u, v, w \in A$,

$$u \cdot (v \cdot w) = (u \cdot v) \cdot w$$

First, we show that the two words have the same length. Indeed. $|u\cdot(v\cdot w)|=|u|+|v\cdot w|=|u|+|v|+|w|$ and likewise $|(u \cdot v) \cdot w| = |u \cdot v| + |w| = |u| + |v| + |w|.$ Next, we show that the letters are same at all positions i where $0 \le i < |u| + |v| + |w|$. Pick any such i. There are three cases, depending on the interval to which i belongs. **Case** i < |u|. We have $(u \cdot (v \cdot w))_{(i)} = u_{(i)}$ by the definition of concatenation. Similarly, because $i < |u \cdot v|$, we have that likewise $((u \cdot v) \cdot w)_{(i)} = (u \cdot v)_{(i)} = u_{(i)}$. Case $|u| \le i < |u| + |v|$. We have $(u \cdot (v \cdot w))_{(i)} = (v \cdot w)_{i-|u|} = v_{i-|u|}$ and also $((u \cdot v) \cdot w)_{(i)} = (u \cdot v)_i = v_{i-|u|}.$ Case $|u| + |v| \le i$. We have $(u \cdot (v \cdot w))_{(i)} = (v \cdot w)_{i-|u|} = w_{i-|u|-|v|}$ and also $((u \cdot v) \cdot w)_{(i)} = w_{i-|u \cdot v|} = w_{i-|u|-|v|}.$

Free Monoid of Words

The neutral element and associativity law imply that the structure (A^*,\cdot,ε) is an algebraic structure called *monoid*. The monoid of words is called the *free monoid*. Word monoid satisfies, among others, the following additional properties (which do not hold in all monoids).

Theorem (Left cancellation law)

For every three words $u, v, w \in A^*$, if wu = wv, then u = v.

Theorem (Right cancellation law)

For every three words $u, v, w \in A^*$, if uw = vw, then u = v.

Reversal

Reversal of a word is a word of same length with symbols but in the reverse order. Example: the reversal of the word 011, denoted $(011)^{-1}$, is the word 110.

Definition

Given $w \in A^*$, its reversal w^{-1} is the unique word such that $|w^{-1}| = |w|$ and $w_{(i)}^{-1} = w_{(|w|-1-i)}$ for all i where $0 \le i < |w|$.

From definition it follows that $\varepsilon^{-1} = \varepsilon$ and that $a^{-1} = a$ for all $a \in A$.

Theorem

For all
$$u, v \in A^*$$
, $(u^{-1})^{-1} = u$ and $(uv)^{-1} = v^{-1}u^{-1}$.

Every law about words has a dual version.

Here is the dual of induction principle, where we peel off last elements.

Theorem (Structural induction for words (dual))

Given a property of words $P: A^* \to \{true, false\}$, if (1) $P(\varepsilon)$ and, (2) for every letter $a \in A$ and every u, P(u) implies $P(u \cdot a)$, then: $\forall u \in A^*.P(u)$.

Prefix, Postfix, and Slice

Definition

Let $u, v, w \in A^*$ such that uv = w. We then say that u is a prefix of w and that v is a suffix of w.

Definition

Given a word $w \in A^*$ and two integers p,q such that $0 \le p \le q \le |w|$, the [p,q)-slice of w, denoted $w_{[p,q)}$, is the word u such that |u|=q-p and $u_{(i)}=w_{(p+i)}$ for all i where $0 \le i < q-p$.

Theorem

Let $w \in A^*$ and $u = w_{[p,q)}$ where $0 \le p \le q \le |w|$. Then the exist words $x, y \in A^*$ such that |x| = p, |y| = |w| - q, and w = xuy.

Theorem

Let $w, u, x, y \in A^*$ and w = xuy. Then $x = w_{[0,|x|)}$, $u = w_{[|x|,|x|+|u|)}$ and $v = w_{[|x|+|u|,|w|)}$.

Slice in Scala

```
w \in A^*, 0 \le p \le q \le |w|, [p,q)-slice of w, denoted w_{[p,q)}, is u such that |u| = q - p and
u(i) = w(p+i) for all i where 0 \le i < q-p.
def slice(i: BigInt, j: BigInt): List[T] = {
 require(0 <= i && i <= j && j <= length)
 this match {
   case Nil() \Rightarrow Nil()
   case Cons(h.t) ⇒
     if (i = 0.86 i = 0.011()
     else if (i = 0) Cons(h, t.slice(0, j-1))
```

else t.slice(i-1. j-1)

ensuring(.size = j - i)