Homework #1

Eric Tao Math 233: Homework #1

February 5, 2023

Question 1. The following fact was tacitly used in this chapter: if A, B are disjoint subsets of the plane, A is compact, B is closed, then there exists a $\delta > 0$ such that, for all $\alpha \in A$, $\beta \in B$, $|\alpha - \beta| \ge \delta > 0$. Prove this for $A, B \subset X$ for X an arbitrary metric space.

Solution. Let X be a metric space, $A \subseteq X$ compact, $B \subseteq X$ closed, $A \cap B = \emptyset$

Suppose not. Then, there exist pairs of points (α_n, β_n) such that $d(\alpha_n, \beta_n) < \frac{1}{n}$. Now, consider the sequence of points $\{\alpha_n\}_{n=1}^{\infty}$. Since A is compact, we know that there exists a subsequence $\{\alpha_{n_k}\}_{k=1}^{\infty}$, convergent to α .

Let $\epsilon > 0$ be given. Since $\alpha_{n_k} \to \alpha$, choose N_k such that $d(\alpha, \alpha_{n_k}) < \frac{\epsilon}{2}$ for all $n_k > N_k$. Choose N such that $\frac{1}{n} < \frac{\epsilon}{2}$ for all n > N. Choose M_k such that $M = \max(N, N_k)$. Assume $m > M, m \in \{n_k\}_{k=1}^{\infty}$. Consider the sequence of $\{\beta_{n_k}\}_{k=1}^{\infty}$, and in particular, consider:

$$d(\alpha, \beta_m) \le d(\alpha, \alpha_m) + d(\alpha_m, \beta_m) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

Thus, we have that $\beta_{n_k} \to \alpha$. Since $\{\beta_{n_k}\}_{k=1}^{\infty} \subset B$, a closed set, $\alpha \subset B$, because closed sets contain its limit points. But, this is a contradiction. Thus, $\delta > 0$ exists.

Question 2.

Solution. \Box

Question 3. Suppose f, g are entire functions, and suppose that for all $z \in \mathbb{C}$, that $|f(z)| \leq |g(z)|$. What conclusion can you draw?

Solution. Claim: for some $m \in \mathbb{C}$, f = mg.

First suppose g = 0. Then, since $|f| \le |g| = 0$, this implies that f = 0 everywhere. Then, of course f = mg, for actually any m.

Now, suppose not. Then, define $Z(g) = \{z \in \mathbb{C} : g(z) = 0\}$, that is, the zero set of g, and consider the function $h = \frac{f}{g}$. By the algebra of holomorphic functions, we have that h is holomorphic on at least $\mathbb{C} \setminus Z(g)$.

Because $\mathbb C$ is of course a connected open set, we have the result that Z(g) has no limit points in $\mathbb C$. Then, let $a \in Z(g)$. Because a is not a limit point, there exists r>0 such that $D(a,r)\cap Z(g)=\emptyset$. We have then that h is holomorphic on $D(a,r)\setminus\{a\}$, a region. Further, on $\mathbb C\setminus Z(g)$, we have that $|h|=\frac{|f|}{|g|}\leq 1$. So, in particular, on $D'(a,\frac{r}{2})=\{z\in\mathbb C:0<|z-a|<\frac{r}{2}\}\subseteq\mathbb C\setminus Z(g)$, we have that h is bounded. Then, by Theorem 10.20 from Rudin, we have that f has a removable singularity at a.

Now, we recall from Theorem 10.18, that Z(g) is at most countable. So, we may patch h countably many times at each point in Z(g) to produce a holomorphic function everywhere, which we call \tilde{h} . Further, since \tilde{h} is holomorphic, it must be continuous everywhere. Thus, since $|\tilde{h}(z)| \leq 1$ at every point other than $z \in Z(g)$, we must have that $|\tilde{h}(z)| \leq 1$ everywhere by continuity. Thus, we have that \tilde{h} is a bounded, entire function, and by Liouville's Theorem, it must be constant, that is, $\tilde{h} = k$ for some $k \in \mathbb{C}$. Then, we have that at least on $\mathbb{C} \setminus Z(g)$, that f(z) = kg(z).

However, kg(z) is certainly holomorphic, and it agrees with f(z) almost everywhere, which of course is a set with limit points in Ω . Thus, f = kg everywhere.

Question 4. Suppose that f is an entire function, and

$$|f(z)| \le A + B|z|^k$$

for all z, where A, B, k are positive real numbers. Prove that f must be polynomial.

Solution. Because f is entire, it is analytic, specifically at a = 0, with infinite radius of convergence. Then, we may rewrite f as:

$$f(z) = \sum_{n=0}^{\infty} c_n z^n$$

Now, we apply Theorem 10.22. We have that:

$$\sum_{n=0}^{\infty} |c_n|^2 r^{2n} = \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(re^{i\theta})|^2 d\theta$$

Here, we use our hypothesis. Since we have that $|f(z)| \leq A + B|z|^k$, we must have that:

$$|f(re^{i\theta})| \le A + B|re^{i\theta}|^k = A + Br^k$$

Thus, using our first equation then, we have a bound:

$$\sum_{n=0}^{\infty} |c_n|^2 r^{2n} = \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(re^{i\theta})|^2 d\theta \le \frac{1}{2\pi} \int_{-\pi}^{\pi} (A + Br^k)^2 d\theta = (A + Br^k)^2$$

Now, suppose we have that $c_n \neq 0$ for some n > k. Then, we would have that:

$$\frac{|c_n|r^{2n}}{(A+Br^k)^2} = \frac{|c_n|r^{2(n-k)}}{(\frac{A}{r^k}+B)^2}$$

Now, since f is entire and thus the radius of convergence is infinite, we may take the limit as $r \to \infty$. But, since n > k, we have that:

$$\lim_{r \to \infty} \frac{|c_n| r^{2(n-k)}}{\left(\frac{A}{r^k} + B\right)^2} = \infty$$

Then, $c_n = 0$ for every n > k. Then, this implies that we have that

$$f(z) = \sum_{n=0}^{\lfloor k \rfloor} c_n z^n$$

and since this holds everywhere, with finite degree, f is polynomial.

Question 5.

Solution. \Box