Salient Object Detection in 360 videos

#	Title	Year	Venue	Description
	Salient Object Detection: A Survey [8]		Computational Visual Media	A review of SOD methods before 2014.
2	A Review of Eye Gaze in Virtual Agents, Social Robotics and HCI: Behaviour Generation, User Interaction and Perception [52]	2015	Comput.Graph.Forum	A report introduces exhaustive concepts of human eye; a review of eye-gaze-related researches edifies future CV development.
3	Saliency Prediction in the Deep Learning Era: Successes and Limitations [7]	2019	TPAMI	A review of deep learning-based models and datasets/metrics for 2D saleincy prediction.
4	Salient Object Detection in the Deep Learning Era: An In-Depth Survey [62]	2020	arXiv	A review of SOD methods before 2020.
5	VR content creation and exploration with deep learning: a survey [60]	2020	Computational Visual Media	A review of deep learning-based methods for VR images/videos processing.
6	On the Synergies between Machine Learning and Stereo: a survey [46]	2020	arXiv CVPR2019(tutorial)	A review of deep learning-based models for monocular depth estimation in panoramas.
7	Deep Audio-Visual Learning: A Survey [84]	2020	arXiv	A review of audio-visual learning methods before 2019.

Table 1: Summary of previous reviews.

No.	Model	Year	Pub.	Task	SL.	Base	Label	Loss	Metric	Training Set	# training	code
1	360-spatialization [42]	2018	NIPS	SS	Sel.	STFT/UNet	Non	STFT-distance	STFT/ENV/EMD	REC-STREET YT-ALL	123k 0.1s samples 3976k samples	py-o
2	AVE/AVOL-Net [4]	2018	ECCV	cmR/L	Sel.	CNN/FC	Non	AVC [3]	nDCG/heatmap [43]	AudioSet [26]	263K 10s clips	py-n/o
3	DMRFE/AVDLN [57]	2018	ECCV	EL/cmL	S/W	CNN/LSTM	Tem.	MCE/L_c	heatmap/accuracy	AVE [57]	4K(T.) ≥2s clips	ру-о
4	PixelPlayer [81]	2018	ECCV	SS/L	Sel.	ResNet/STFT	Non	SCE/L1	NSDR/SIR/SAR	MUSIC [81]	500 videos	ру-о
5	SoundLoc [53]	2018	CVPR	L	W	CNN/FC	bbox	SSL [53]	cIoU [53]	Flickr-SoundNet [5]	144K frames	Non
6	A/V-CoSeg [51]	2019	ICASSP	Seg/SS	Sel.	UNet/ResNet	pol.	BCE	IoU/SDR/SIR	AVE [57]	3,339 ≥2s clips	Non
7	VehicleTrack [21]	2019	ICCV	Track	Sel.	YOLOv2	bbox	Rank [6]/OD [50]	AP	AudioVideoTrack [21]	227K 1s clips	Non
8	DDT [80]	2019	ICCV	L/SS	Sel.	I3D [9]	Non	BCE(on spec.)	SDR/SIR/SAR/HE	MUSIC-21 [80, 81]	1,065 videos	Non
9	CO-SEPARATION [24]	2019	ICCV	SS	Sel.	UNet/STFT	Non	CE [24]/L1	SDR/SIR/SAR	[26, 81]/AVBench [22]	122K 10s clips	ру
10	MONO2BINAURAL [23]	2019	CVPR	m2b/SS	Sel.	UNet/STFT	Non	L2/L1	STFT/ENV-Dis. SDR/SIR/SAR	FAIR-Play [23]	1,497 10s clip	ру-о
11	VSLNet [76]	2020	ACL	NLVL	S	CNN	mom.	CE	IoU	[76]	60K moments	ру-о
12	IMGAUD2VID [25] IMGAUD-SKIMMING [25]	2020	CVPR	AR	U	LSTM/R21D distillation	cls	L1/KL	mAP	Kinetics [29]	300K 10s clips	py-o
13	Music-Gesture [20]	2020	CVPR	SS	U	CNN/GCN	KP	SCE	SDR/SIR	MUSIC	mix-2/3 samples	-

Table 2: Summary of recently proposed models for audio-visual learning. cmR = cross-modal retrieval. L = (sound source) localization. EL = event localization. cmL = cross-modal localization. SL. = supervision level. S = supervised. W = weakly supervised. U = un-supervised. Sel. = self supervised. T = traditional method. CNN = convolutional neural network. FC = fully connected layer. py = python. n/o = non official. Tem. = temporally labeled segments (viusal/audio). MCE = multi-class cross-entropy loss. L_c = contrastive loss function. SS = sound separation. STFT = Short- Time Fourier Transform. NSDR = Normalized Signal-to-Distortion Ratio. SIR = Signal-to-Interference Ratio. SAR = Signal-to-Artifact Ratio. SCE = sigmoid cross entropy. SSL = semi-supervised loss. frm = frames. BCE = binary cross entrophy. pol. = polygon. OD = object detection. HE = human evaluation. CE = cross entrophy. m2b = mono to binaural. AR = action recognition. cls = class. NLVL = natural language video localization. mom. = moments annotations. KP = key points.

No.	Dim.	Model	Year	Pub.	Task	Base	Training Set	Label	# training	F_{β}	$ F^{\omega}_{\beta} $	M	S_{α}	E_{ξ}	code
1	2D-RGB	SAM [54]	2020	CVPR	r-SOD	CNN	-	o-pw							
2	360-RGB	DDS [36]	2020	JSTSP	SOD	CNNs	360SOD [36]	o-pw	400 images	.650	.652	.023	-	-	py-o
3	2D-RGBD	UCNet [77]	2020	CVPR	SOD	CVAE [55]	AugedGT [77]	o-pw		.855~.919	-	.019~.066	.864~.934	.901~.967	-
4	2D-RGBD	JLDCF [18]	2020	CVPR	SOD	VGG16 ResNet101	NLPR NJU2K	o-pw	2,2K images	.862~.919	-	.022~.078	.854~.929	.893~.968	-
5	2D-RGBD	SSF [78]	2020	CVPR	SOD	CIM CAU/BSU	DUT-RGBD NLPR	o-pw	1,485 images 700 images	.867~.915		.025~.044	.859~.915	-	-
6	2D-RGB	F ³ Net [65]	2020	AAAI	SOD	CFD/CFM MLS	DUTS-TR	o-pw	10,533 images	.766~.925		.028~.062	.838~.924	.859~.953	-
7	2D-RGB	DFI [38]	2020	arXiv	SOD ed./sk.	CNNs PPM [82]	DUTS-TR [59]	o-pw	10,533 images	.829~.945	-	.031~.100	.802~.921	-	-
8	2D-RGB	SISO [31]	2019	WACV	SOD	3D FCN [30]	SESIV [31]	i-pw	58 videos (3,944 frames)	-	-	-	-	-	mo
9	2D-RGB	SVSNet [64]	2019	ACM MM	r-SOD	FCN	RVSOD [64]	o-pw	242 videos (7140 frames) DAVIS [45]/DUT [73]	.816 .745(DAVIS)	-	.089 .047(DAVIS)	-	-	ру-о
10	2D-RGB	RSDNet [2]	2018	CVPR	r-SOD	ResNet101	Pascal-S [37]	o-pw	425 images	.880	-	.090	-	-	ca-o

Table 3: Summary of recently proposed models for salient object detection. SOD = salient object detection. F_{β} = F-measure [1]. F_{β}^{ω} = weighted F-measure [39]. M = mean absolute error [44]. S_{α} = S-measure [15]. E_{ξ} = E-measure [16]. (n/)o = (non) official. o(i)-pw = object(instance)-level pixel-wise annotations. m. = matlab. ca = caffe. py = python. ed. = edge detection. sk. = skeleton detection. r-SOD = ranking SOD.

No.	Dim.	Model	Year	Pub.	Base	Training Set	# Training	Label	Code	Key Issue
1	2D	MD-SEM [17]	2020	CVPR	LSTM	-	-	-	-	multi-duration saliency prediction
2	2D	GradCAM [49]	2020	CVPR	-	-	-	-	-	class sensitive/meta-saliency
3	2D	STAViS [58]		CVPR	-	-	-	-	-	audio visual saliency
4	2D	[75]	2020	CVPR	-	-	-	-	-	trajectory
5	2D									
4	360	MT-DNN [47]	2020	TMM	CNNs/convLSTM	[72]	65 videos (3,501 viewports)	SalMap	ру-о	viewports influence fixations
5	2D	UVA-Net [19]	2020	AAAI	knowledge distillation	AVS1K	1K aerial videos	SalMap	-	accelerating SP
3	360	DHP [72]	2019	TPAMI	DRL [41]	PVS-HM [72]	61 videos	HM map	ру-о	-
4	2D	DAVE [56]	2019	arXiv	3D ResNet log mel-spectrogram	AVE [56]	150 videos	SalMap	ру-о	visual-audio SP
5	2D	SKD-DVA [35]	2019	TIP	knowledge distilation	-	-	SalMap	-	accelerating SP
6	2D	TASED-Net [40]	2019	ICCV	3D FCN (S3D [71])	DHF1K [63]	700 videos	Fixations	-	3D-FCN for video SP
7	360	E/H-SalPredict [85]	2019	TMM	EMP, HMP	Salient360! [48]	85 images	SalMap	-	-

Table 4: **Summary of recently proposed models for saliency prediction.** SP = saliency prediction. HM = head movement.

No.	Task	Method	Year	Pub.	Components	Training Set	#Training	Label
1		GaugeMeshCNNS [12]	2020	arXiv				
2		Jiang			•			
3		Zhang						
4		gaugeIcosaCNNS						
5	Classification SS	tangent-360 [14]	2020	CVPR	-	-	-	-
6	D-epth Estimation	(waiting for paper) [32]	2020	CVPR	-	-	-	-
7	Depth Estimation	OmniMVS [66]	2020	TPAMI	uncertainty prior	Weather/House/Thing	700/2048/9216 images	-
8	Depth Estimation	360SD-Net [61]	2020	ICRA	ASPP [10]	MP3D/SF3D	1602/800 images	-
9	Classification	SGCN [74]	2020	CVPR	GConv, HPool	ModelNet40 [69]	9843 samples	cls
10	VP	MDN [67]	2020	AAAI	s2cnn [67]	PanoUCF101 [67]	35 users records	cls
11	OD Evaluation	Rep R-CNN [83]	2020	AAAI	SphBB, SphIoU	ImageNet	-	bbox
12	VQA	V-CNN [34]	2019	CVPR	VP/VQ-Net	VQA-ODV [33]	432 impired videos	HM info.
13	OD/IS/SS	Pano-BlitzNet [28]	2019	arXiv	BlitzNet [13]	SUN360 [70]	400 images	i-pw
14	VQA	FAST-VQA [68]	2019	TMM	spatial quality degradation	-	-	tra.
15	Theory	[11]	2019	NeurIPS				

Table 5: **Summary of recent methods for 360 processing.** OD = object detection. IS = instance segmentation. SS= semantic segmentation. o(i)-pw = object(instance)-level pixel-wise annotations. cls = class. VP = viewport prediction. VQA = video quality assessment. tra. = salient trajectories.

No.	Task	Method	Year	Pub.	Data Label Training Key issue
1	Pose/Seg	PoseSeg [79]	2019	CVPR	

Table 6: Summary of recent human centric researches.

ID	Description
MP	Multiple Persons
	Occlusions
MB	Motion Blur (Fuzzy boundaries)
BP	Busy Persons (Persons holding objects)
LR	Low Resolution (Small objects)
SV	Scale Variation
MC	Moving Camera
SD	Serious Distortion (Objects touching ERP boundaries)
PCO	Persons Cut-off under ERP (Objects behind the camera)

Table 7: List of video attributes.

Model	Year	Pub.	Notes
PyramidCSA [27]	2020	AAAI	_

Table 8: VSOD methods.

References

- [1] Radhakrishna Achanta, Sheila Hemami, Francisco Estrada, and Sabine Süsstrunk. Frequency-tuned salient region detection. In *IEEE CVPR*, pages 1597–1604, 2009.
- [2] Md Amirul Islam, Mahmoud Kalash, and Neil D. B. Bruce. Revisiting salient object detection: Simultaneous detection, ranking, and subitizing of multiple salient objects. In *The IEEE Conference on Computer Vision and Pattern Recogni*tion (CVPR), June 2018.
- [3] Relja Arandjelovic and Andrew Zisserman. Look, listen and learn. In *The IEEE International Conference on Computer Vision (ICCV)*, Oct 2017.
- [4] Relja Arandjelovic and Andrew Zisserman. Objects that sound. In *The European Conference on Computer Vision (ECCV)*, September 2018.
- [5] Yusuf Aytar, Carl Vondrick, and Antonio Torralba. Soundnet: Learning sound representations from unlabeled video. In Advances in Neural Information Processing Systems, 2016.
- [6] Yusuf Aytar, Carl Vondrick, and Antonio Torralba. See, hear, and read: Deep aligned representations. arXiv preprint arXiv:1706.00932, 2017.
- [7] A. Borji. Saliency prediction in the deep learning era: Successes and limitations. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, pages 1–1, 2019.
- [8] Ali Borji, Ming-Ming Cheng, Huaizu Jiang, and Jia Li. Salient object detection: A survey. Computational Visual Media, 1411, 11 2014.
- [9] J. Carreira and A. Zisserman. Quo vadis, action recognition? a new model and the kinetics dataset. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 4724–4733, 2017.
- [10] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L Yuille. Semantic image segmentation with deep convolutional nets and fully connected crfs. arXiv preprint arXiv:1412.7062, 2014.
- [11] Taco S Cohen, Mario Geiger, and Maurice Weiler. A general theory of equivariant cnns on homogeneous spaces. In *Advances in Neural Information Processing Systems*, pages 9145–9156, 2019.
- [12] Pim de Haan, Maurice Weiler, Taco Cohen, and Max Welling. Gauge equivariant mesh cnns: Anisotropic convolutions on geometric graphs. arXiv preprint arXiv:2003.05425, 2020.
- [13] Nikita Dvornik, Konstantin Shmelkov, Julien Mairal, and Cordelia Schmid. BlitzNet: A real-time deep network for scene understanding. In *IEEE International Conference on Computer Vision (ICCV)*, 2017.
- [14] Marc Eder, Mykhailo Shvets, John Lim, and Jan-Michael Frahm. Tangent images for mitigating spherical distortion. CVPR, 2019.
- [15] Deng-Ping Fan, Ming-Ming Cheng, Yun Liu, Tao Li, and Ali Borji. Structure-measure: A new way to evaluate foreground maps. In *IEEE ICCV*, pages 4548–4557, 2017.
- [16] Deng-Ping Fan, Cheng Gong, Yang Cao, Bo Ren, Ming-Ming Cheng, and Ali Borji. Enhanced-alignment measure

- for binary foreground map evaluation. *IJCAI*, pages 698–704, 2018.
- [17] Camilo Fosco, Anelise Newman, Pat Sukhum, Yun Bin Zhang, Nanxuan Zhao, Aude Oliva, and Zoya Bylinskii. How much time do you have? modeling multi-duration saliency. In *The IEEE/CVF Conference on Computer Vision* and Pattern Recognition (CVPR), June 2020.
- [18] Keren Fu, Deng-Ping Fan, Ge-Peng Ji, and Qijun Zhao. Jl-dcf: Joint learning and densely-cooperative fusion framework for rgb-d salient object detection. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, 2020.
- [19] Kui Fu, Jia Li, Yafei Song, Yu Zhang, Shiming Ge, and Yonghong Tian. Ultrafast video attention prediction with coupled knowledge distillation. arXiv preprint arXiv:1904.04449, 2019.
- [20] Chuang Gan, Deng Huang, Hang Zhao, Joshua B Tenenbaum, and Antonio Torralba. Music gesture for visual sound separation. arXiv preprint arXiv:2004.09476, 2020.
- [21] Chuang Gan, Hang Zhao, Peihao Chen, David Cox, and Antonio Torralba. Self-supervised moving vehicle tracking with stereo sound. In *The IEEE International Conference on Computer Vision (ICCV)*, October 2019.
- [22] Ruohan Gao, Rogerio Feris, and Kristen Grauman. Learning to separate object sounds by watching unlabeled video. In ECCV, 2018.
- [23] Ruohan Gao and Kristen Grauman. 2.5d visual sound. In CVPR, 2019.
- [24] Ruohan Gao and Kristen Grauman. Co-separating sounds of visual objects. In *ICCV*, 2019.
- [25] Ruohan Gao, Tae-Hyun Oh, Kristen Grauman, and Lorenzo Torresani. Listen to look: Action recognition by previewing audio. In CVPR, 2020.
- [26] Jort F. Gemmeke, Daniel P. W. Ellis, Dylan Freedman, Aren Jansen, Wade Lawrence, R. Channing Moore, Manoj Plakal, and Marvin Ritter. Audio set: An ontology and humanlabeled dataset for audio events. In *Proc. IEEE ICASSP* 2017, New Orleans, LA, 2017.
- [27] Yuchao Gu, Lijuan Wang, Ziqin Wang, Yun Liu, Ming-Ming Cheng, and Shao-Ping Lu. Pyramid constrained selfattention network for fast video salient object detection.
- [28] Julia Guerrero-Viu, Clara Fernandez-Labrador, Cédric Demonceaux, and Jose J Guerrero. What's in my room? object recognition on indoor panoramic images. arXiv preprint arXiv:1910.06138, 2019.
- [29] W Kay, J Carreira, K Simonyan, B Zhang, C Hillier, S Vijayanarasimhan, F Viola, T Green, T Back, P Natsev, et al. The kinetics human action video dataset. arxiv 2017. arXiv preprint arXiv:1705.06950.
- [30] Trung-Nghia Le and Akihiro Sugimoto. Deeply supervised 3d recurrent fcn for salient object detection in videos. In Gabriel Brostow Tae-Kyun Kim, Stefanos Zafeiriou and Krystian Mikolajczyk, editors, *Proceedings of the British Machine Vision Conference (BMVC)*, pages 38.1–38.13. BMVA Press, September 2017.
- [31] Trung-Nghia Le and Akihiro Sugimoto. Semantic instance meets salient object: Study on video semantic salient instance segmentation. In 2019 IEEE Winter Conference on

- Applications of Computer Vision (WACV), pages 1779–1788. IEEE, 2019.
- [32] Jia Zheng Junfei Zhang Rui Tang Shugong Xu Jingyi Yu Shenghua Gao Lei Jin, Yanyu Xu. Geometric structure based and regularized depth estimation from 360° indoor imagery. In *The IEEE Conference on Computer Vision and Pattern Recognition*, 2020.
- [33] Chen Li, Mai Xu, Xinzhe Du, and Zulin Wang. Bridge the gap between vqa and human behavior on omnidirectional video: A large-scale dataset and a deep learning model. In *Proceedings of the 26th ACM International Conference on Multimedia*, MM '18, page 932–940, New York, NY, USA, 2018. Association for Computing Machinery.
- [34] Chen Li, Mai Xu, Lai Jiang, Shanyi Zhang, and Xiaoming Tao. Viewport proposal cnn for 360deg video quality assessment. In *The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, June 2019.
- [35] J. Li, K. Fu, S. Zhao, and S. Ge. Spatiotemporal knowledge distillation for efficient estimation of aerial video saliency. *IEEE Transactions on Image Processing*, 29:1902–1914, 2020.
- [36] J. Li, J. Su, C. Xia, and Y. Tian. Distortion-adaptive salient object detection in 360° omnidirectional images. *IEEE Jour*nal of Selected Topics in Signal Processing, 14(1):38–48, 2020.
- [37] Y. Li, X. Hou, C. Koch, J. M. Rehg, and A. L. Yuille. The secrets of salient object segmentation. In 2014 IEEE Conference on Computer Vision and Pattern Recognition, pages 280–287, 2014.
- [38] Jiang-Jiang Liu, Qibin Hou, and Ming-Ming Cheng. Dynamic feature integration for simultaneous detection of salient object, edge and skeleton. arXiv preprint arXiv:2004.08595, 2020.
- [39] Ran Margolin, Lihi Zelnik-Manor, and Ayellet Tal. How to evaluate foreground maps? In *IEEE CVPR*, pages 248–255, 2014
- [40] Kyle Min and Jason J. Corso. Tased-net: Temporally-aggregating spatial encoder-decoder network for video saliency detection. In *The IEEE International Conference on Computer Vision (ICCV)*, October 2019.
- [41] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement learning. In *International conference on machine learning*, pages 1928–1937, 2016.
- [42] Pedro Morgado, Nuno Nvasconcelos, Timothy Langlois, and Oliver Wang. Self-supervised generation of spatial audio for 360 video. In *Advances in Neural Information Processing Systems*, pages 362–372, 2018.
- [43] Maxime Oquab, Leon Bottou, Ivan Laptev, and Josef Sivic. Is object localization for free? - weakly-supervised learning with convolutional neural networks. In *The IEEE Conference* on Computer Vision and Pattern Recognition (CVPR), June 2015
- [44] Federico Perazzi, Philipp Krähenbühl, Yael Pritch, and Alexander Hornung. Saliency filters: Contrast based filtering for salient region detection. In *IEEE CVPR*, pages 733–740, 2012.

- [45] Federico Perazzi, Jordi Pont-Tuset, Brian McWilliams, Luc Van Gool, Markus Gross, and Alexander Sorkine-Hornung. A benchmark dataset and evaluation methodology for video object segmentation. In *The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, June 2016.
- [46] Matteo Poggi, Fabio Tosi, Konstantinos Batsos, Philippos Mordohai, and Stefano Mattoccia. On the synergies between machine learning and stereo: a survey. arXiv preprint arXiv:2004.08566, 2020.
- [47] M. Qiao, M. Xu, Z. Wang, and A. Borji. Viewport-dependent saliency prediction in 360° video. *IEEE Transactions on Multimedia*, pages 1–1, 2020.
- [48] Yashas Rai, Jesús Gutiérrez, and Patrick Le Callet. A dataset of head and eye movements for 360 degree images. In *MM-Sys*, pages 205–210. ACM, 2017.
- [49] Sylvestre-Alvise Rebuffi, Ruth Fong, Xu Ji, and Andrea Vedaldi. There and back again: Revisiting backpropagation saliency methods. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, June 2020.
- [50] J. Redmon and A. Farhadi. Yolo9000: Better, faster, stronger. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 6517–6525, 2017.
- [51] A. Rouditchenko, H. Zhao, C. Gan, J. McDermott, and A. Torralba. Self-supervised audio-visual co-segmentation. In ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 2357–2361, 2019.
- [52] K. Ruhland, C. E. Peters, S. Andrist, J. B. Badler, N. I. Badler, M. Gleicher, B. Mutlu, and R. McDonnell. A review of eye gaze in virtual agents, social robotics and hci: Behaviour generation, user interaction and perception. *Comput. Graph. Forum*, 34(6):299–326, Sept. 2015.
- [53] Arda Senocak, Tae-Hyun Oh, Junsik Kim, Ming-Hsuan Yang, and In So Kweon. Learning to localize sound source in visual scenes. In *The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, June 2018.
- [54] Avishek Siris, Jianbo Jiao, Gary K.L. Tam, Xianghua Xie, and Rynson W.H. Lau. Inferring attention shift ranks of objects for image saliency. In *IEEE/CVF Conference on Com*puter Vision and Pattern Recognition (CVPR), June 2020.
- [55] Kihyuk Sohn, Xinchen Yan, and Honglak Lee. Learning structured output representation using deep conditional generative models. In *Proceedings of the 28th International Conference on Neural Information Processing Systems - Volume 2*, NIPS'15, page 3483–3491, Cambridge, MA, USA, 2015. MIT Press.
- [56] Hamed R Tavakoli, Ali Borji, Esa Rahtu, and Juho Kannala. Dave: A deep audio-visual embedding for dynamic saliency prediction. arXiv preprint arXiv:1905.10693, 2019.
- [57] Yapeng Tian, Jing Shi, Bochen Li, Zhiyao Duan, and Chenliang Xu. Audio-visual event localization in unconstrained videos. In *The European Conference on Computer Vision (ECCV)*, September 2018.
- [58] Antigoni Tsiami, Petros Koutras, and Petros Maragos. Stavis: Spatio-temporal audiovisual saliency network. In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2020.

- [59] L. Wang, H. Lu, Y. Wang, M. Feng, D. Wang, B. Yin, and X. Ruan. Learning to detect salient objects with image-level supervision. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 3796–3805, 2017.
- [60] Miao Wang, Xu-Quan Lyu, Yufang Li, and Fang-Lue Zhang. Vr content creation and exploration with deep learning: A survey. Computational Visual Media, 6:28 – 3, 2020.
- [61] Ning-Hsu Wang, Bolivar Solarte, Yi-Hsuan Tsai, Wei-Chen Chiu, and Min Sun. 360sd-net: 360° stereo depth estimation with learnable cost volume. *ICRA* 2020, 2019.
- [62] Wenguan Wang, Qiuxia Lai, Huazhu Fu, Jianbing Shen, and Haibin Ling. Salient object detection in the deep learning era: An in-depth survey. arXiv preprint arXiv:1904.09146, 2019.
- [63] Wenguan Wang, Jianbing Shen, Fang Guo, Ming-Ming Cheng, and Ali Borji. Revisiting video saliency: A largescale benchmark and a new model. In *The IEEE Conference* on Computer Vision and Pattern Recognition (CVPR), June 2018.
- [64] Zheng Wang, Xinyu Yan, Yahong Han, and Meijun Sun. Ranking video salient object detection. In *Proceedings of the 27th ACM International Conference on Multimedia*, MM '19, page 873–881, New York, NY, USA, 2019. Association for Computing Machinery.
- [65] Jun Wei, Shuhui Wang, and Qingming Huang. F3net: Fusion, feedback and focus for salient object detection. AAAI, 2020
- [66] C. Won, J. Ryu, and J. Lim. End-to-end learning for omnidirectional stereo matching with uncertainty prior. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, pages 1–1, 2020.
- [67] Chenglei Wu, Ruixiao Zhang, Zhi Wang, and Lifeng Sun. A spherical convolution approach for learning long term viewport prediction in 360 immersive video. In *Thirty-Fourth* AAAI Conference on Artificial Intelligence, AAAI '20, New York, NY, USA, 2020.
- [68] J. Wu, Y. Liu, W. Dong, G. Shi, and W. Lin. Quality assessment for video with degradation along salient trajectories. *IEEE Transactions on Multimedia*, 21(11):2738–2749, 2019
- [69] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3d shapenets: A deep representation for volumetric shapes. In *The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, June 2015.
- [70] J. Xiao, K. A. Ehinger, A. Oliva, and A. Torralba. Recognizing scene viewpoint using panoramic place representation. In 2012 IEEE Conference on Computer Vision and Pattern Recognition, pages 2695–2702, 2012.
- [71] Saining Xie, Chen Sun, Jonathan Huang, Zhuowen Tu, and Kevin Murphy. Rethinking spatiotemporal feature learning: Speed-accuracy trade-offs in video classification. In *The European Conference on Computer Vision (ECCV)*, September 2018.
- [72] M. Xu, Y. Song, J. Wang, M. Qiao, L. Huo, and Z. Wang. Predicting head movement in panoramic video: A deep reinforcement learning approach. *IEEE Transactions on Pat-*

- tern Analysis and Machine Intelligence, 41(11):2693–2708, 2019.
- [73] Chuan Yang, Lihe Zhang, Huchuan Lu, Xiang Ruan, and Ming-Hsuan Yang. Saliency detection via graph-based manifold ranking. In *IEEE CVPR*, pages 3166–3173, 2013.
- [74] Qin Yang, Chenglin Li, Wenrui Dai, Junni Zou, GuoJun Qi, and Hongkai Xiong. Rotation equivariant graph convolutional network for spherical image classification. In *IEEE CVPR*, 2020.
- [75] Zhibo Yang, Lihan Huang, Yupei Chen, Zijun Wei, Seoyoung Ahn, Gregory Zelinsky, Dimitris Samaras, and Minh Hoai. Predicting goal-directed human attention using inverse reinforcement learning. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, June 2020.
- [76] Hao Zhang, Aixin Sun, Wei Jing, and Joey Tianyi Zhou. Span-based localizing network for natural language video localization. ACL 2020, 2020.
- [77] Jing Zhang, Deng-Ping Fan, Yuchao Dai, Saeed Anwar, Fatemeh Sadat Saleh, Tong Zhang, and Nick Barnes. Uc-net: Uncertainty inspired rgb-d saliency detection via conditional variational autoencoders. In *Proceedings of the IEEE con*ference on computer vision and pattern recognition, 2020.
- [78] Miao Zhang, Weisong Ren, Yongri Piao, Zhengkun Rong, and Huchuan Lu. Select, supplement and focus for rgb-d saliency detection. In CVPR, 2020.
- [79] Song-Hai Zhang, Ruilong Li, Xin Dong, Paul Rosin, Zixi Cai, Xi Han, Dingcheng Yang, Haozhi Huang, and Shi-Min Hu. Pose2seg: Detection free human instance segmentation. In *The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, June 2019.
- [80] Hang Zhao, Chuang Gan, Wei-Chiu Ma, and Antonio Torralba. The sound of motions. In *The IEEE International Conference on Computer Vision (ICCV)*, October 2019.
- [81] Hang Zhao, Chuang Gan, Andrew Rouditchenko, Carl Vondrick, Josh McDermott, and Antonio Torralba. The sound of pixels. In *The European Conference on Computer Vision* (ECCV), September 2018.
- [82] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, and Jiaya Jia. Pyramid scene parsing network. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017.
- [83] Pengyu Zhao, Ansheng You, Yuanxing Zhang, Jiaying Liu, Kaigui Bian, and Yunhai Tong. Spherical criteria for fast and accurate 360 object detection. In AAAI, 2020.
- [84] Hao Zhu, Mandi Luo, Rui Wang, Aihua Zheng, and Ran He. Deep audio-visual learning: A survey. *arXiv preprint arXiv:2001.04758*, 2020.
- [85] Y. Zhu, G. Zhai, X. Min, and J. Zhou. The prediction of saliency map for head and eye movements in 360 degree images. *IEEE Transactions on Multimedia*, pages 1–1, 2019.