Regularity and Smoothness

Regularity and Smoothness

1 Modules of differentials and derivations

In this subsection, let R be a ring and A an R-algebra.

Definition 1 (Derivation). A derivation of A over R is an R-linear map $\partial: A \to M$ with an A-module such that for all $a, b \in A$, we have

$$\partial(ab) = a\partial(b) + b\partial(a).$$

Given the module M, the set of all derivations of A over R into M forms an A-module, denoted by $\mathrm{Der}_R(A,M)$.

Given a module homomorphism $f: M \to N$ of A-modules and a derivation $\partial \in \operatorname{Der}_R(A, M)$, the map $f \circ \partial$ is a derivation of A over R into N.

Proposition 2. The functor $Der_R(A, -)$ is

Proposition 3. Let A, R' be R-algebras and $A' := A \otimes_R R'$. Then the module of differentials $\Omega_{A'/R'}$ is isomorphic to $\Omega_{A/R} \otimes_A A'$.

Proposition 4. Suppose A is of finite type over R. Then the module of differentials $\Omega_{A/R}$ is a finitely generated A-module.

Theorem 5. Let A be an R-algebra and B an A-algebra. Then there is a short exact sequence

$$\Omega_{A/R} \otimes_A B \to \Omega_{B/R} \to \Omega_{B/A} \to 0.$$

Theorem 6. Let A be an R-algebra and I an ideal of A. Then there is a short exact sequence

$$I/I^2 \to \Omega_{A/R} \otimes_A A/I \to \Omega_{(A/I)/R} \to 0.$$

2 Zariski's tangent space

Definition 7. Let A be a noetherian ring. For every $\mathfrak{p} \in \operatorname{Spec} A$, $\mathfrak{p}/\mathfrak{p}^2$ is a vector space over $\kappa(\mathfrak{p})$. The Zariski's tangent space $T_{A,\mathfrak{p}}$ of A at \mathfrak{p} is defined as the dual $\kappa(\mathfrak{p})$ -vector space of $\mathfrak{p}/\mathfrak{p}^2$.

3 Jacobiian criterion

Definition 8 (Jacobian ideal). Let A be a ring and $f_1, \ldots, f_n \in A$. The Jacobian ideal of f_1, \ldots, f_n is the ideal

$$J(f_1, \ldots, f_n) = \left(\frac{\partial f_i}{\partial x_j} : 1 \le i \le n, 1 \le j \le n\right) \subseteq A.$$

The Jacobian ideal is a generalization of the Jacobian matrix in linear algebra.

Date: June 16, 2025, Author: Tianle Yang, My Website