

第十一章 函数

马汝辉 副研究员、博导 上海交通大学 2024 年 12 月

函数

上一章研究了关系的自反、传递、对称等性质,并针对这些性质研究了一些特殊的关系,如等价关系、偏序关系。这一章研究的各类函数是另外一些特殊的关系,这是从它们的单值性、定义域和值域的性质来讨论的。函数是一个基本的数学概念。通常的实函数是在实数集合上讨论的。这里推广了实函数概念,讨论在任意集合上的函数。

- 11.1 函数和选择公理
- 2 11.2 函数的合成与函数的逆

定义 11.1.1

对集合 A 到集合 B 的关系 f , 若满足下列条件:

- ① 对任意的 $x \in dom(f)$,存在唯一的 $y \in ran(f)$,使 xfy 成立;
- $2 \, \operatorname{dom}(f) = A$

则称 f 为从 A 到 B 的函数,或称 f 把 A 映射到 B (有的书称 f 为全函数、映射、变换)。

- 一个从 A 到 B 的函数 f ,可以写成 $f:A\to B$ 。这时若 xfy ,则可记作 $f:x\mapsto y$ 或 f(x)=y 。
- 若 A 到 B 的关系 f 只满足条件 (1),且有 $dom(f) \subset A$,则称 f 为从 A 到 B 的部分函数(有的书上称 f 为函数)。

◆□▶ ◆□▶ ◆臺▶ ◆臺▶ 臺 り९○ 4/47

- 函数的两个条件可以写成
 - $(1) \quad (\forall x)(\forall y_1)(\forall y_2)((xfy_1 \land xfy_2) \to y_1 = y_2),$
 - (2) $(\forall x)(x \in A \to (\exists y)(y \in B \land xfy)).$
- 函数的第一个条件是单值性,定义域中任一 x 与 B 中唯一的 y 有关系。因此可以用 f(x) 表示这唯一的 y。第二个条件是 A 为定义域,A 中任一 x 都与 B 中某个 y 有关系。注意不能把单值性倒过来。对 A 到 B 的函数 f,当 x_1fy 且 x_2fy 成立时,不一定 $x_1=x_2$ 。因此,函数的逆关系不一定是函数。
- 如果一个关系是函数,则它的关系矩阵中每行恰好有一个 1,其余为 0,它的关系图中每个 A 中的顶点恰好发出一条有向边。

例 1

对实数集 \mathbb{R} , \mathbb{R} 上的关系 f 为

$$f = \{ \langle x, y \rangle \mid y = x^3 \}$$

f 是从 $\mathbb R$ 到 $\mathbb R$ 的函数,记作 $f:\mathbb R \to \mathbb R$,并记作 $f:x\mapsto x^3$ 或 $f(x)=x^3$.

例 2

集合 $A = \{1, 2, 3\}$ 上的两个关系

$$g = \{\langle 1, 2 \rangle, \langle 2, 3 \rangle, \langle 3, 1 \rangle, \langle 3, 2 \rangle\}$$

和

$$h = \{\langle 1, 2 \rangle, \langle 2, 3 \rangle\}$$

都不是从 A 到 A 的函数.

因为 g 没有单值性,即 $\langle 3,1 \rangle \in g$ 且有 $\langle 3,2 \rangle \in g$,而对关系 h,dom $(h)=\{1,2\}$ $\neq A$ 。但是,h 是从 $\{1,2\}$ 到 A 的函数。

定义 11.1.2

对集合 A 和 B , 从 A 到 B 的所有函数的集合记为 A_B (有的书记为 B^A)。于是, $A_B = \{f \mid f: A \to B\}$ 。

例 3

对 $A = \{1, 2, 3\}, B = \{a, b\}$ 。从 A 到 B 的函数有 8 个:

$$f_{1} = \{\langle 1, a \rangle, \langle 2, a \rangle, \langle 3, a \rangle\},\$$

$$f_{2} = \{\langle 1, a \rangle, \langle 2, a \rangle, \langle 3, b \rangle\},\$$

$$f_{3} = \{\langle 1, a \rangle, \langle 2, b \rangle, \langle 3, a \rangle\},\$$

$$f_{4} = \{\langle 1, a \rangle, \langle 2, b \rangle, \langle 3, b \rangle\},\$$

$$f_{5} = \{\langle 1, b \rangle, \langle 2, a \rangle, \langle 3, a \rangle\},\$$

$$f_{6} = \{\langle 1, b \rangle, \langle 2, a \rangle, \langle 3, b \rangle\},\$$

$$f_{7} = \{\langle 1, b \rangle, \langle 2, b \rangle, \langle 3, a \rangle\},\$$

$$f_{8} = \{\langle 1, b \rangle, \langle 2, b \rangle, \langle 3, b \rangle\}.$$

于是

$$A_B = \{f_1, f_2, f_3, \dots, f_8\}.$$

• 若 A 和 B 是有限集合,且 |A|=m, |B|=n, 则 $|A_B|=n^m$ 。从 \varnothing 到 \varnothing 的函数只有 $f=\varnothing$,从 \varnothing 到 B 的函数只有 $f=\varnothing$ 。若 $A\neq\varnothing$,从 A 到 \varnothing 的函数不存在。因此, $\varnothing_\varnothing=\varnothing_B=\{\varnothing\}$, $A_\varnothing=\varnothing$ (对 $A\neq\varnothing$)。

定义 11.1.3

设 $f: A \rightarrow B$, $A_1 \subseteq A$, 定义 A_1 在 f 下的象 $f[A_1]$ 为

$$f[A_1] = \{ y \mid (\exists x)(x \in A_1 \land y = f(x)) \}.$$

把 f[A] 称为函数的象。

设 $B_1 \subseteq B$,定义 B_1 在 f 下的完全原象 $f^{-1}[B_1]$ 为

$$f^{-1}[B_1] = \{x \mid x \in A \land f(x) \in B_1\}.$$

注意,在上一章中 f^{-1} 表示 f 的逆关系。这个定义中的 $f^{-1}[B_1]$ 表示完全原象,可以认为其中的 f^{-1} 是 f 的逆关系。因为函数的逆关系不一定是函数,所以 f^{-1} 一般只表示逆关系,不是逆函数(除非特别说明)。

例 4

函数 $f: \mathbb{Z} \to \mathbb{Z}$ 定义为

$$f(x) = egin{cases} rac{x}{2}, & \exists x \ extstyle \ rac{x-1}{2}, & \exists x \ extstyle \ extstyle \ extstyle \ extstyle \ \ extstyle \$$

则

$$f[\mathbb{N}] = \mathbb{N},$$

$$f[\{-1,0,1\}] = \{-1,0\},$$

$$f^{-1}[\{2,3\}] = \{4,5,6,7\}.$$

特别地

$$f[\varnothing] = f^{-1}[\varnothing] = \varnothing.$$

等价关系和函数都是特殊的关系。同样可以定义一些特殊的函数。它们是具有某种性质的函数。

定义 11.1.4

设 $f: A \rightarrow B$ 。

- ① 若 ran(f) = B,则称 f 是满射的,或称 f 是 A 到 B 上的;
- ② 若对任意的 $x_1, x_2 \in A, x_1 \neq x_2$, 都有 $f(x_1) \neq f(x_2)$, 则称 f 是单射的, 或内射的, 或一对一的;
- ③ 若 f 是满射的又是单射的,则称 f 是双射的,或一对一 A 到 B 上的,简称双射。 如果 $f:A\to B$ 是满射的,则对任意的 $y\in B$,存在 $x\in A$,使 f(x)=y。如果 $f:A\to B$ 是单射的,则对任意的 $y\in \operatorname{ran}(f)$,存在唯一的 $x\in A$,使 f(x)=y。

11.1.2 特殊的函数

例 5

函数 $f:\{1,2\}\to\{0\}$,定义为 f(1)=f(2)=0,是满射的,不是单射的。函数 $f:\mathbb{N}\to\mathbb{N}$,定义为 f(x)=2x,是单射的,不是满射的。函数 $f:\mathbb{Z}\to\mathbb{Z}$,定义为 f(x)=x+1,是双射的。

特别地, $\varnothing : \varnothing \to B$ 是单射的, $\varnothing : \varnothing \to \varnothing$ 是双射的。

• 给定两个集合 A 和 B,是否存在从 A 到 B 的双射函数?怎样构造从 A 到 B 的双射函数?这是两个很重要的问题。第一个问题在下一章讨论。下面举例说明第二个问题。

11.1.2 特殊的函数

例 6

对下列的集合 A 和 B, 分别构造从 A 到 B 的双射函数:

- ① $A = \mathbb{R}, B = \mathbb{R}, \mathbb{R}$ 是实数集。
- **2** $A = \mathbb{R}, B = \mathbb{R}_+ = \{x \mid x \in \mathbb{R} \land x > 0\}.$
- **3** $A = [0,1), B = (\frac{1}{4}, \frac{1}{2}]$ 都是实数区间。
- $A = \mathbb{N} \times \mathbb{N}, B = \mathbb{N}.$

解

- $\bullet \quad \mathbf{f}: \mathbb{R} \to \mathbb{R}, f(x) = x.$
- **3 �** $f:[0,1) \to \left(\frac{1}{4}, \frac{1}{2}\right], f(x) = \frac{1}{2} \frac{x}{4}$.

11.1.2 特殊的函数

④ $\mathbb{N} \times \mathbb{N}$ 是由自然数构成的所有有序对的集合。这些有序对可以排列在直角坐标系一个象限中,构成一个无限的点阵。如图 11.1.1 所示。构造要求的双射函数,就是在点阵中有序对与 \mathbb{N} 的元素间建立——对应,也就是把点阵中有序对排成—列并依次编号 $0,1,2,\cdots$ 。

在 $\mathbb{N} \times \mathbb{N}$ 中,元素的排列次序是: $\langle 0,0 \rangle, \langle 0,1 \rangle, \langle 1,0 \rangle, \langle 0,2 \rangle, \langle 1,1 \rangle, \langle 2,0 \rangle, \langle 0,3 \rangle, \ldots$ 。 图中用箭头表示次序,这相当于 $f(\langle 0,0 \rangle)=0$, $f(\langle 0,1 \rangle)=1$, $f(\langle 1,0 \rangle)=2$, $f(\langle 0,2 \rangle)=3$, \cdots 。

显然, $\langle m,n \rangle$ 所在的斜线上有 m+n+1 个点。在此斜线上方,各行元素分别有 $1,2,\cdots,m+n$ 个,这些元素排在 $\langle m,n \rangle$ 以前。在此斜线上,m 个元素排在 $\langle m,n \rangle$ 以前。排在 $\langle m,n \rangle$ 以前的元素共有 $[1+2+\cdots+(m+n)]+m$ 个。于是,双射函数 $f:\mathbb{N}\times\mathbb{N}\to\mathbb{N}$ 为

$$f(\langle m, n \rangle) = \frac{(m+n)(m+n+1)}{2} + m.$$

• 对无限集合 A,若存在从 A 到 $\mathbb N$ 的双射函数,就可仿照这种方法,把 A 中元素排成一个有序图形,按次序数遍 A 中元素。这就构造了从 A 到 $\mathbb N$ 的双射函数。

定义 11.1.5

设 $f:A\to B$, 如果存在一个 $y\in B$, 使得对所有的 $x\in A$, 有 f(x)=y, 即有 $f[A]=\{y\}$, 则称 $f:A\to B$ 为常函数。

定义 11.1.6

A 上的恒等关系 $I_A:A\to A$ 称为恒等函数。于是,对任意的 $x\in A$,有

$$I_A(x) = x$$
.

定义 11.1.7

对实数集 \mathbb{R} ,设 $f: \mathbb{R} \to \mathbb{R}$,如果 $(x \leq y) \to (f(x) \leq f(y))$,则称 f 为单调递增的;如果 $(x < y) \to (f(x) < f(y))$,则称 f 为严格单调递增的。类似可定义单调递减和严格单调递减的函数。

定义 11.1.8

对集合 $A, n \in \mathbb{N}$,把函数 $f: A^n \to A$ 称为 A 上的 n 元运算。 运算是算术运算概念的推广。在代数结构课程中将对运算作深入研究。运算的例子 有数字的运算,集合的运算,关系的运算,逻辑联结词是在 $\{T, F\}$ 上的运算。

定义 11.1.9

设 A,B,C 是集合, B_C 为从 B 到 C 的所有函数的集合,则 $F:A\to B_C$ 称为一个 泛函(有时 $G:B_C\to A$ 称为一个泛函)。

泛函 F 也是函数,它把 A 的元素 a 映射到从 B 到 C 的函数 $f:B\to C$ 。即函数 值 F(a) 是函数 $f:B\to C$ 。

例 7

泛函 $F: \mathbb{R} \to \mathbb{R}_{\mathbb{R}}, F(a) = (f(x) = x + a)$ 。或写成 $F: a \mapsto [x \mapsto x + a]$ 。于是

- F(2) 对应函数 $x \mapsto x + 2$,
- F(2)(3) = 3 + 2 = 5.
- F(6) 对应函数 $x \mapsto x + 6$,
- F(6)(3) = 3 + 6 = 9.

泛函值 F(2) 有双重含义: 一方面表示 2 下 F 的函数值为 F(2), 另一方面这个值是一个函数 $F(2): \mathbb{R} \to \mathbb{R}, F(2): x \mapsto x+2$ 。

定义 11.1.10

设 E 是全集,对任意的 $A \subseteq E$, A 的特征函数 χ_A 定义为:

$$\chi_A : E \to \{0, 1\}, \chi_A(a) = \begin{cases} 1, & a \in A \\ 0, & a \notin A. \end{cases}$$

例 8

设
$$E = \{a, b, c\}, A = \{a, c\}$$
, 则

$$\chi_A(a) = 1, \chi_A(b) = 0, \chi_A(c) = 1.$$

特征函数是集合的另一种表示方法。模糊集合论就是参照特征函数的思想,用隶属函数定义模糊集合。

定义 11.1.11

设 R 是 A 上的等价关系,令 $g:A\to A/R$, $g(a)=[a]_R$,则称 g 为从 A 到商集 A/R 的典型映射或自然映射。

例 9

设 $A=\{1,2,3\},\ R$ 是 A 上的等价关系,它诱导的等价类是 $\{1,2\},\ \{3\}$ 则从 A 到 A/R 的自然映射 g 为

$$g:\{1,2,3\} \to \{\{1,2\},\{3\}\},$$

$$g(1)=\{1,2\}, g(2)=\{1,2\}, g(3)=\{3\}.$$

11.1.4 选择公理

选择公理(形式1)

对任意的关系 R,存在函数 f,使得 $f \subseteq R$ 且 dom(f) = dom(R)。

- 选择公理是一个重要的数学公理,有时记作 AC。选择公理还有其他的等价形式, 这里的形式最直观,最容易理解。
- 一般的关系 R 不是函数,因为 R 不是单值的。也就是对某些 $x \in \text{dom}(R)$,有多于一个 y_1, y_2, \ldots ,使 $y_1 \in \text{ran}(R), y_2 \in \text{ran}(R), \cdots$,且 $\langle x, y_1 \rangle \in R$, $\langle x, y_2 \rangle \in R$, \cdots 。这时 x 有多个值 y_1, y_2, \ldots 与之对应。为了构造函数 f,只要对任意的 $x \in \text{dom}(R)$,从 $\langle x, y_1 \rangle, \langle x, y_2 \rangle, \cdots$ 中任取一个放入 f 中。则 f 是单值的, $f \subseteq R$,且有 dom(f) = dom(R)。f 是函数 f: $\text{dom}(R) \to \text{ran}(R)$ 。因为多个有序对中可任选其一,所以构造的 f 可以有多个。

11.1.4 选择公理

例 10

设关系 $R = \{\langle 1, a \rangle, \langle 1, b \rangle, \langle 2, b \rangle\}$, 则 $f_1 = \{\langle 1, a \rangle, \langle 2, b \rangle\}$ 和 $f_2 = \{\langle 1, b \rangle, \langle 2, b \rangle\}$ 都是满足条件的函数。

- 11.1 函数和选择公理
- 2 11.2 函数的合成与函数的逆

11.2 函数的合成与函数的逆

函数是特殊的关系,所以关于关系合成与关系的逆的定理,都适用于函数。下面讨论函数的一些特殊性质

11.2.1 函数的合成 11.2.1 函数的合成

定理 11.2.1

设 $g: A \to B, f: B \to C$, 则

- ① $f \circ g$ 是函数 $f \circ g : A \to C$,
- ② 对任意的 $x \in A$, 有 $(f \circ g)(x) = f(g(x))$.

证明

① 因为 $g:A\to B$, 则 $(\forall x)(x\in A\to (\exists y)(y\in B\land \langle x,y\rangle\in g))$. 又因 $f:B\to C$, 则 $(\forall y)(y\in B\to (\exists z)(z\in C\land \langle y,z\rangle\in f))$. 由任意的 $x\in A$, 存在 $y\in B$ 有 $\langle x,y\rangle\in g$, 对 $y\in B$ 存在 $z\in C$ 有 $\langle y,z\rangle\in f$, 因此对 $x\in A$ 存在 $z\in C$ 使 $\langle x,y\rangle\in g\land \langle y,z\rangle\in f$, 使 $\langle x,z\rangle\in f\circ g$. 所以 $\mathrm{dom}(f\circ g)=A$, 假设对任意的 $x\in A$, 存在 y_1 和 y_2 , 使得 $\langle x,y_1\rangle\in f\circ g$ 且 $\langle x,y_2\rangle\in f\circ g$. 则 $(\exists t_1)(\exists t_2)((xgt_1\land t_1fy_1)\land (xgt_2\land t_2fy_2))$. 因为 g 是函数,则 $x_1=x_2$,又因 x_2 0 是函数,则 $x_1=x_2$ 0 所以 x_2 0 是函数。

② 对任意的 $x \in A$, 因为 $\langle x, g(x) \rangle \in g$, $\langle g(x), f(g(x)) \rangle \in f$, 故 $\langle x, f(g(x)) \rangle \in f \circ g$. 又因 $f \circ g$ 是函数,则可写为 $(f \circ g)(x) = f(g(x))$. 函数的合成可以用图 11.2.1 表示.从图中可见 $\mathsf{dom}(g) = A$, $\mathsf{ran}(g) \subseteq B = \mathsf{dom}(f)$, $\mathsf{ran}(f) \subseteq C$. 而 $\mathsf{dom}(f \circ g) = A$, $\mathsf{ran}(f \circ g) \subseteq C$.

图: 11.2.1

定理 11.2.2

设 $g: A \rightarrow B, f: B \rightarrow C$, 则有

- ① 若 f, g 是满射的,则 $f \circ g$ 是满射的,
- ② 若 f, g 是单射的,则 $f \circ g$ 是单射的,
- **3** 若 f, g 是双射的,则 $f \circ g$ 是双射的。

证明

① 对任意的 $z \in C$, 因为 f 是满射的,故 $\exists y \in B$, 使 f(y) = z. 对这个 $y \in B$, 因为 g 是满射的,故 $\exists x \in A$, 使 g(x) = y. 所以, $z = f(y) = f(g(x)) = (f \circ g)(x)$, $f \circ g$ 是满射的。

- ② 对任意的 $z \in \text{ran}(f \circ g)$, 若存在 x_1, x_2 , 使 $(f \circ g)(x_1) = z$ 且 $(f \circ g)(x_2) = z$. 则 存在 y_1, y_2 , 使 $x_1gy_1 \wedge y_1fz$ 且 $x_2gy_2 \wedge y_2fz$. 因为 f 是单射的,故 $y_1 = y_2$; 又因 g 是单射的,故 $x_1 = x_2$. 所以, $f \circ g$ 是单射的。
- 3 由 (1)、(2) 得证。

这个定理的逆定理是否成立呢?请看下列定理。

定理 11.2.3

设 $g: A \rightarrow B, f: B \rightarrow C$, 则有

- ① 若 $f \circ g$ 是满射的,则 f 是满射的,
- ② 若 $f \circ g$ 是单射的,则 g 是单射的,
- ③ 若 $f \circ g$ 是双射的,则 f 是满射的,g 是单射的。

证明

① 对任意的 $z\in C$, 因为 $f\circ g$ 是满射的,故 $\exists x\in A$, 使 $x(f\circ g)z$. 则 $\exists y\in B$, 使 $xgy\wedge yfz$. 则 $\exists y\in B$, 使 f(y)=z. f 是满射的。

- ② 对任意的 $y \in \text{ran}(g)$, 若存在 $x_1, x_2 \in A$, 使 $x_1gy \wedge x_2gy$, 即 $g(x_1) = y = g(x_2)$. 对这个 $y \in B$, (因 $\text{ran}(g) \subseteq B$), 存在 $z \in C$, 使得 f(y) = z. 则 $f(g(x_1)) = z = f(g(x_2))$, 于是 $x_1(f \circ g)z \wedge x_2(f \circ g)z$. 因为 $f \circ g$ 是单射的,故 $x_1 = x_2$. 所以 g 是单射的。
- 3 由 (1), (2) 得证。

注意,当 $f \circ g$ 是满射的,g 不一定是满射的;当 $f \circ g$ 是单射的,f 不一定是单射的。

例 1

设 $g:A\to B, f:B\to C$, 其中 $A=\{a\}, B=\{b,d\}, C=\{c\}$. 且 $g=\{< a,b>\}, f=\{< b,c>,< d,c>\}$, 则 $f\circ g=\{< a,c>\}$. $f\circ g$ 是满射的,但是 g 不是满射的。

例 2

设 $g:A\to B, f:B\to C$, 其中 $A=\{a\}, B=\{b,d\}, C=\{c\}$, 且 $g=\{< a,b>\}, f=\{< b,c>,< d,c>\}$, 则 $f\circ g=\{< a,c>\}, f\circ g$ 是单射的,但是 f 不是单射的。

定理 11.2.4

设 $f: A \rightarrow B$, 则

$$f = f \circ I_A = I_B \circ f$$

证明留作思考题。

11.2.2 函数的逆

一个关系的逆不一定是函数,一个函数的逆也不一定是函数。

例 3

对 $A = \{a, b, c\}$. A 上的关系 R 为

$$R = \{ \langle a, b \rangle, \langle a, c \rangle, \langle a, a \rangle \},\$$

从 A 到 A 的函数 f 为

$$f = \{ \langle a, c \rangle, \langle b, c \rangle, \langle c, a \rangle \}.$$

则它们的逆为

$$R^{-1} = \{ \langle b, a \rangle, \langle c, a \rangle, \langle a, a \rangle \}$$
是 A 到 A 的函数,

$$f^{-1} = \{ \langle c, a \rangle, \langle c, b \rangle, \langle a, c \rangle \}$$
不是 A 到 A 的函数。

◀□▶ ◀□▶ ◀臺▶ ◀臺▶ 臺 ∽ ♀○ 35/47

定理 11.2.5

若 $f:A\to B$ 是双射的,则 f^{-1} 是函数 $f^{-1}:B\to A$.

证明:对任意的 $y \in B$, 因为 f 是双射的,所以存在 $x \in A$,使 $\langle x, y \rangle \in f$, $\langle y, x \rangle \in f^{-1}$.所以, $\operatorname{dom}(f^{-1}) = B$.

对任意的 $y \in B$, 若存在 $x_1, x_2 \in A$, 使得 $\langle y, x_1 \rangle \in f^{-1}$ 且 $\langle y, x_2 \rangle \in f^{-1}$, 则 $\langle x_1, y \rangle \in f$ 且 $\langle x_2, y \rangle \in f$. 因为 f 是双射的,故 $x_1 = x_2$. 所以, f^{-1} 是函数 $f^{-1} : B \to A$.

定义 11.2.1

设 $f: A \to A$ 是双射的,则称 $f^{-1}: B \to A$ 为 f 的反函数。

定理 11.2.6

若 $f: A \to B$ 是双射的,则 $f^{-1}: B \to A$ 是双射的。

证明:对任意的 $x \in A$, 因为 f 是从 A 到 B 的函数,故存在 $y \in B$,使 $\langle x,y \rangle \in f$, $\langle y,x \rangle \in f^{-1}$. 所以, f^{-1} 是满射的。

对任意的 $x \in A$, 若存在 $y_1, y_2 \in B$, 使得 $\langle y_1, x \rangle \in f^{-1}$ 且 $\langle y_2, x \rangle \in f^{-1}$, 则有 $\langle x, y_1 \rangle \in f$ 且 $\langle x, y_2 \rangle \in f$. 因为 f 是函数,故 $y_1 = y_2$. 所以, f^{-1} 是单射的,它是双射的。

例 4

 $f: [-\frac{\pi}{2}, \frac{\pi}{2}] \to [-1, 1], f(x) = \sin x$ 是双射函数。所以,

$$f^{-1}: [-1,1] \to [-\frac{\pi}{2}, \frac{\pi}{2}], \quad f^{-1}(y) = \arcsin y$$

是 f 的反函数。

对实数集合 R, 正实数集合 R_+ , $g:R\to R_+$, $g(x)=2^x$ 是双射的。所以,

$$g^{-1}: R_+ \to R, \quad g^{-1}(y) = \log_2 y$$

是 g 的反函数。

定理 11.2.7

若 $f:A\to B$ 是双射的,则对任意的 $x\in A,$ 有 $f^{-1}(f(x))=x,$ 对任意的 $y\in B,$ 有 $f(f^{-1}(y))=y$ 。

证明: 对任意的 $x \in A$,因为 f 是函数,则有 $\langle x, f(x) \rangle \in f$,有 $\langle f(x), x \rangle \in f^{-1}$,因为 f^{-1} 是函数,则可写为 $f^{-1}(f(x)) = x$ 。对任意的 $y \in B$,类似可证 $f(f^{-1}(y)) = y$ 。由定理,对任意的 $x \in A$, $f^{-1}(f(x)) = x$,则 $(f^{-1} \circ f)(x) = x$,于是 $f^{-1} \circ f = I_A$ 。同理也有, $f \circ f^{-1} = I_B$ 。对非双射的函数 $f: A \to B$,是否存在函数 $g: B \to A$ 使 $g \circ f = I_A$ 呢?是否存在函数 $h: B \to A$ 使 $f \circ h = I_B$ 呢?

定义 11.2.2

设 $f: A \to B, g: B \to A$, 如果 $g \circ f = I_A$, 则称 g 为 f 的左逆; 如果 $f \circ g = I_B$, 则 称 g 为 f 的右逆。

例 5

设

$$f_1: \{a, b\} \to \{0, 1, 2\},$$

 $f_2: \{a, b, c\} \to \{0, 1\},$
 $f_3: \{a, b, c\} \to \{0, 1, 2\},$

如图 11.2.2 所示,则 f_1 存在左逆 g_1 ,不存在右逆。 f_2 存在右逆 h_2 ,不存在左逆。 f_3 即存在左逆 g_3 ,又存在右逆 h_3 ,且 $g_3=h_3=f_3^{-1}$.如图 11.2.2 所示。

图: 11.2.2

定理 11.2.8

设 $f: A \to B, A \neq \Phi$, 则

- ❶ f 存在左逆,当且仅当 f 是单射的;
- ② f 存在右逆, 当且仅当 f 是满射的;
- **③** f 存在左逆又存在右逆,当且仅当 f 是双射的;
- **4** 若 f 是双射的,则 f 的左逆等于右逆。

证明

① 先证必要性。设存在 $x_1, x_2 \in A$, 使得 $f(x_1) = f(x_2)$. 设 g 为 f 的左逆,则

$$x_1 = (g \circ f)(x_1) = g(f(x_1)) = g(f(x_2)) = (g \circ f)(x_2) = x_2.$$

所以,f 是单射的。

再证充分性。因为 f 是单射的,所以 $f:A\to {\sf ran}(f)$ 是双射的,则 $f^{-1}:{\sf ran}(f)\to A$ 也是双射的。已知 $A\ne \Phi$,则 $\exists a\in A$,构造 $g:B\to A$ 为

$$g(y) = \begin{cases} f^{-1}(y), & \leqq y \in \operatorname{ran}(f) \\ a, & \leqq y \in B - \operatorname{ran}(f) \end{cases}$$

显然,g 是函数 $g:B\to A$. 对任一 $x\in A$,有 $(g\circ f)(x)=g(f(x))=f^{-1}(f(x))=x,$ 所以, $g\circ f=I_A,$ g 的构造如图,实箭头表示 g,虚箭头表示 f.

图: 11.2.3

② 先证必要性。设 f 的右逆为 $h:B\to A,$ 有 $f\circ h=I_B$. 则对任意的 $y\in B,$ 存在 $x\in A,$ 使 h(y)=x, 则

$$y = I_B(y) = (f \circ h)(y) = f(h(y)) = f(x),$$

所以,f 是满射的。

再证充分性。(注意,不能取 $h=f^{-1}$,因为 f^{-1} 不一定是函数,只是关系。)因为 f 是满射的,所以 $\operatorname{ran}(f)=\operatorname{dom}(f^{-1})=B$. 依据选择公理,对关系 f^{-1} ,存在函数 $h\subseteq f^{-1}$,且有 $\operatorname{dom}(h)=\operatorname{dom}(f^{-1})=B$,且 $\operatorname{ran}(h)\subseteq\operatorname{ran}(f^{-1})=A$. 即 $h:B\to A$,对任意的 $y\in B$,存在 $x\in A$,使 h(y)=x 且 f(x)=y. 则

$$(f \circ h)(y) = f(h(y)) = f(x) = y.$$

所以, $f \circ h = I_B$, h 是 f 的右逆。h 的构造如图 11.2.4, 实箭头表示 h, 虚箭头表示 f.

图: 11.2.4

↓□▶ ◀♬▶ ◀፮▶ ◀፮▶ ፮ ∽Q♠ 45/47

- 1 由 (1), (2) 得证.
- ② 设 f 的左逆为 $g: B \to A$, 右逆为 $h: B \to A$, 则 $g \circ f = I_A$, $f \circ h = I_B$.

$$g = g \circ I_B = g \circ (f \circ h) = (g \circ f) \circ h = I_A \circ h = h$$

所以, g = h.

谢谢

