Design Rules

Design Rules

- Allow translation of circuits (usually in stick diagram or symbolic form) into actual geometry in silicon
- Interface between circuit designer and fabrication engineer
- Compromise
 - designer tighter, smaller
 - fabricator controllable, reproducable

Design Rules

- Allow translation of circuits (usually in stick diagram or symbolic form) into actual geometry in silicon
- Interface between circuit designer and fabrication engineer
- Compromise
 - designer tighter, smaller
 - fabricator controllable, reproducable

Design Rules - The Reality

- Manufacturing processes have inherent limitations in accuracy and repeatability
- Design rules specify geometry of masks that provide reasonable yield
- Design rules are determined by experience

Problems - Manufacturing

- Photoresist shrinking / tearing
- Variations in material deposition
- Variations in temperature
- Variations in oxide thickness
- Impurities
- Variations across the wafer

Problems - Manufacturing

- Variations in threshold voltage
 - oxide thickness
 - ion implantation
 - poly variations
- Diffusion changes in doping (variation in R, C)
- Poly, metal variations in height and width -> variation in R, C
- Shorts and opens
- Via may not be cut all the way through
- Undersize via has too much resistance
- Oversize via may short

Meta Design Rules

- Basic reasons for design rules
- Rules that generate design rules
- Under worst case misalignment and maximum edge movement of any feature, no serious performance degradation should occur

Advantages of Generalised Design Rules

- Ease of learning because they are scalable, portable, durable
- Longevity of designs that are simple, abstract and minimal clutter
- Increase designer efficiency
- Automatic translation to final layout

Lambda Based Design Rules

- Design rules based on single parameter, λ
- Simple for the designer
- Wide acceptance
- Provide feature size independent way of setting out mask
- If design rules are obeyed, masks will produce working circuits
- Minimum feature size is defined as 2 λ
- Used to preserve topological features on a chip
- Prevents shorting, opens, contacts from slipping out of area to be contacted

Basic nMOS design Rules

Different widths	Value
Diffusion Region width	2λ
Polysilicon region width	2λ
Diffusion-Diffusion spacing	3λ
Poly-Poly spacing	2λ
Polysilicon gate extension	2λ
Contact extension	λ
Metal width	3λ

Size Rules

The minimum feature size of a device or interconnect is determined by the line patterning capability of lithographic equipment

Design rule must specify the minimum feature sizes on different layers to ensure a valid design of a circuit

Separation Rules

Different features on the same layer or in different layers must have some separations from each other

Most IC processes have a spacing rule for each layer and several rules for interlayer spacing

Overlap rules

Design rules must protect against fatal errors

Example of Fatal errors

- A short circuited channel caused by mismigration of poly or diffusion
- The formation of an enhancement mode FET in parallel with depletion device
- Misregistration of ion-implant area and source/drain diffusion

Incorrectly formed

Diffusion is not to decrease in width $< 2\lambda$ from polysilicon

Polysilicon to extend minimum 2λ beyond diffusion biundaries

Overlap rules for contact cuts: nMOS and CMOS

Overlap rules for contact cuts: nMOS and CMOS

Multiple Contact cuts

Overlap rules for contact cuts and via: nMOS and CMOS

Via:

- Contact from metal 2 to metal 1
- Contact through other layer

Metal 2 to diffusion

Design rules: NMOS It is sometimes advantageous to connect polysilicon to diffusion Output

Two basic contacts are there for these contacts

- (1) Butting contact
- (2) Buried Contact

Butting Contact: nMOS

Butting Contact: nMOS

Butting Contact

Buried Contact (nMOS pull up)

Buried Contact: Cross Section

NMOS Inverter: Circuit-stick diagram-mask

Metal2-via-Metal1-cut-ndiffusion connection

Design Rules: p-well CMOS

Design Rules: p-well CMOS

Design Rules: p-well CMOS Vin Vout Vdd Vss N+, for N-substrate P+ (for P-substrate\ contact) contact) pMOS N+ p well nMOS 3λ $4\lambda \\$ 2λ Metal 2λ V_{DD} contact to substrate

to p-type features

Design Rules: p-well CMOS Split contacts may also be made with separate cuts

Design Rules: p-well CMOS

p-well must overlap all enclosed thinox by 3λ minimum

Thinox must not cross well boundary

Design Rules: p-well CMOS

Aspects related to vias

Separation via to via

Overlap by metal1

Separation via to polysilicon

Separation via to thinox

Separation between different active areas

Polysilicon wire separation from cuts

Increase in polysilicon overlap

Polysilicon is to be extended in direction of metal

Example: 1 bit shift register: Circuit to stick diagram

Symbolic Form to Mask form: CMOS shift Register

