Governing Equations of Classical Gas Dynamics

From Euler form to the Characteristics form

Manuel Diaz¹

¹National Taiwan University Institute of Applied Mechanics

August 31th, 2011 / Weekly Meeting

Governing Equations

Manuel Diaz

Introduction: Euler Equations

Integral and Conservation form

Vector-Matrix Notati

Wave Models

Vector Wave Model

The Characteristic Form

Simple Waves

Expansion Waves
Compresion Waves/Sh

Contact Discontinuities

Wave Models

Simple Waves

Summary

Introduction: Euler Equations Integral and Conservation form

Vector-Matrix Notation

Primitive Variable Form

Wave Models

Scalar Wave Model

Vector Wave Model

The Characteristic Form

Simple Waves

Isotropic Flow

Expansion Waves

Compresion Waves/Shock Waves

Contact Discontinuities

Introduction: Fuler

Equations
Integral and Conservatorm
Vector-Matrix Notation

Wave Models

Vector Wave Model The Characteristic Form

Simple Waves

Compresion Waves/Sh Waves

Contact Discontinuit

Summary

Introduction: Euler Equations Integral and Conservation form

Vector-Matrix Notation Primitive Variable Form

Wave Models

Scalar Wave Model Vector Wave Model

The Characteristic Form

Simple Waves

Isotropic Flow

Expansion Waves

Compresion Waves/Shock Waves

Contact Discontinuities

Vector Wave Model
The Characteristic Form

Simple Waves

Compresion Waves/Sho Waves

Contact Disconti

Summary

Conservation of Mass: "All mass in the universe is constant"

Figure 2.1 An illustration of conservation of mass.

In a space-time (x,t) plane a control volume is depicted.

Change in total mass in [a,b] in time interval $[t_1,t_2]$ = net mass passing through boundaries of [a,b] in time interval $[t_1,t_2]$.

$$\int_{a}^{b} [\rho(x, t_2) - \rho(x, t_1) dx =$$

$$-\int_{t_1}^{t_2} [\rho(b, t) u(b, t) - \rho(a, t) u(a, t)] dt$$
(1)

form
Vector-Matrix Notation

Wave Models

Scalar Wave Model
Vector Wave Model
The Characteristic Form

Simple Waves

Expansion Waves

Compresion Waves/Shock

Waves

Change in total momentum in [a,b] in time interval $[t_1,t_2]$ = net momentum passing through boundaries of [a,b] in time interval $[t_1,t_2]$ + net momentum change due to pressure on boundaries of [a,b].

$$\int_{a}^{b} [\rho(x, t_{2})u(x, t_{2}) - \rho(x, t_{1})u(x, t_{1})]dx =$$

$$-\int_{t_{1}}^{t_{2}} [\rho(b, t)u^{2}(b, t) - \rho(a, t)u^{2}(a, t)]dt$$

$$-\int_{t_{1}}^{t_{2}} [\rho(b, t) - \rho(a, t)]dt \qquad (2)$$

Governing Equations

Manuel Diaz

Introduction: Euler Equations

Vector-Matrix Notation
Primitive Variable Form

Wave Models

Vector Wave Model
The Characteristic Form

Simple Waves

pansion Waves mpresion Waves/Shoc

Contact Discontin

Simple Waves

Summary

for Energy

Change in total Energy in [a,b] in time interval $[t_1,t_2]$ = net Energy passing through boundaries of [a,b] in time interval $[t_1, t_2]$ + net Energy change due to pressure on boundaries of [a,b].

$$\int_{a}^{b} [\rho(x, t_{2})e_{T}(x, t_{2}) - \rho(x, t_{1})e_{T}(x, t_{1})]dx =
- \int_{t_{1}}^{t_{2}} [\rho(b, t)u(b, t)e_{T}(b, t) - \rho(a, t)u(a, t)e_{T}(b, t)]dt
- \int_{t_{1}}^{t_{2}} [\rho(b, t)u(b, t) - \rho(b, t)u(b, t)]dt$$
(3)

By 2nd Law of Thermodynamics we know: The total entropy of the universe never decreases.

how is Entropy defined for an Ideal Gas?

$$\Delta S = \int_{T_0}^{T} \frac{Cv}{T} dT + \int_{V_0}^{V} \left(\frac{\partial p}{\partial T}\right)_{V} dV$$

$$\Delta S = C_{V} Nkln\left(\frac{T}{T_0}\right) + Nkln\left(\frac{V}{V_0}\right)$$

$$\Delta S = C_{V} Nkln(T) + Nkln(V)$$

Introduction: Euler Equations

form
Vector-Matrix Notation

Wave Models

Scalar Wave Model
Vector Wave Model
The Characteristic Form

Simple Waves

Expansion Waves
Compresion Waves/Shod
Waves

Scalar Wave Model
Vector Wave Model
The Characteristic Form

Simple Waves

Expansion Waves
Compresion Waves

Contact Discontinuiti

Summary

Ideal gas equation of state:

$$p = \rho RT$$

$$e = c_{v}T$$

$$h = c_{p}T$$

$$\gamma = \frac{c_{p}}{c_{v}}$$

$$c_{p} = R + c_{v}$$

Entropy and 2nd Law

Wave Models

Simple Waves

Summary

the equation of state giving specific entropy s as a fuction of specific internal energy and density:

$$s = c_V lne - Rln\rho + const.$$

 $s = c_V lnp - c_p ln\rho + const.$ (4)

Scalar Wave Model
Vector Wave Model
The Characteristic Form

Simple Waves

Compresion Waves/Sł Waves

Contact Discontinuit

Summary

for homentropic conditions, we conclude:

$$p = (const.)
ho^{\gamma}$$
 $T = (const.)
ho^{\gamma-1}$
 $a = (const.)
ho^{(\gamma-1)/2}$

Wave Models Scalar Wave Model

Vector Wave Model
The Characteristic Form

Simple Waves

Expansion Waves

Compresion Waves/Shock

Waves

Contact Discontini

Summary

The change in total entropy in [a,b] in time interval $[t_1,t_2] \ge$ net entropy passing through boundaries of [a,b] in time interval $[t_1,t_2]$.

$$\int_{a}^{b} [\rho(x, t_{2})s(x, t_{2}) - \rho(x, t_{1})s(x, t_{1})]dx \ge - \int_{t_{1}}^{t_{2}} [\rho(b, t)u(b, t)s(b, t) - \rho(a, t)u(a, t)s(b, t)]dt (5)$$

Equations

Wave Models

Scalar Wave Model
Vector Wave Model
The Characteristic Form

Simple Waves

Compresion Waves/Sho Waves

Contact Discontinuities

Summary

Vector Notation

► Define the Vectors of conserved quantities:

$$\vec{u} = \begin{bmatrix} \rho \\ \rho u \\ \rho e_T \end{bmatrix} = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} \tag{6}$$

$$\vec{f} = \begin{bmatrix} \rho u \\ \rho u^2 + p \\ (\rho e_T + p)u \end{bmatrix} = \begin{bmatrix} f_1 \\ f_2 \\ f_3 \end{bmatrix}$$
 (7)

Scalar Wave Model
Vector Wave Model
The Characteristic Form

Simple Waves

Compresion Waves/Sho Waves

_

Summary

We can rewrite more compactly the conservation equations 1 to 3:

$$\int_{a}^{b} [\vec{u}(x,t_{2}) - \vec{u}(x,t_{1})dx = -\int_{t_{1}}^{t_{2}} [\vec{f}(b,t) - \vec{f}(a,t)dx$$
 (8)

Simple Waves

- Take the mass integral conservation (Ec.1)
- Asume that $\rho(x,t)$ is differentiable in time.
- Using the fundamental theorem of calculus we can rewrite:

$$\rho(\mathbf{x}, t_2) - \rho(\mathbf{x}, t_1) = \int_{t_1}^{t_2} \frac{\partial \rho}{\partial t} dt$$
 (9)

Scalar Wave Model
Vector Wave Model
The Characteristic Form

Simple Waves

Expansion Waves

Compresion Waves/Shock

Waves

Contact Discontin

Summary

Similarly, if $\rho(x,t)u(x,t)$ is differtiable in space the we can rewrite:

$$\rho(b,t)u(b,t) - \rho(a,t)u(a,t) = \int_{a}^{b} \frac{\partial \rho u}{\partial t} dt \qquad (10)$$

Scalar Wave Model
Vector Wave Model
The Characteristic Form

Simple Waves

Compresion Waves/Sho Waves

Summary

Assuming integration in space is reversible with integration in time, Ec. 1 becomes:

$$\int_{a}^{b} \int_{t_{1}}^{t_{2}} \left[\frac{\partial \rho}{\partial t} + \frac{\partial \rho u}{\partial x} \right] dt dx = 0$$
 (11)

Simple Waves

Summary

The conservation form of the Euler Equations:

$$\frac{\partial \rho}{\partial t} + \frac{\partial \rho u}{\partial x} = 0, \tag{12}$$

$$\frac{\partial \rho u}{\partial t} + \frac{\partial (\rho u^2 + p)}{\partial x} = 0, \tag{13}$$

$$\frac{\partial \rho e_T}{\partial t} + \frac{\partial (\rho u e_T + \rho u)}{\partial x} = 0, \tag{14}$$

$$\frac{\partial \rho s}{\partial t} + \frac{\partial \rho us}{\partial x} = 0. \tag{15}$$

Vector-Matrix Notation

Wave Models

Scalar Wave Model

Vector Wave Model

Simple Waves

Isotropic Flow

Expansion Waves

Compresion Waves/Shock Waves

Introduction: Fuler Equations

Wave Models

Simple Waves

Integral and Conservation form

Primitive Variable Fo

Wave Models

Scalar Wave Model
Vector Wave Model
The Characteristic Form

Simple Waves

Expansion Waves

Compresion Waves/Si

Contact Discontinuities

Summary

Using againg the vector notation the conservation equation can be written as:

$$\frac{\partial \vec{u}}{\partial t} + \frac{\partial \vec{f}}{\partial x} = 0 \tag{16}$$

Wave Models

Simple Waves

Summary

The by the chain rule

$$\frac{\partial \vec{u}}{\partial x} = \frac{d\vec{f}}{d\vec{u}} \frac{\partial \vec{u}}{\partial x} \tag{17}$$

where

$$\frac{\partial \vec{u}}{\partial x} = \begin{bmatrix} \frac{\partial f_1}{\partial u_1} & \frac{\partial f_1}{\partial u_2} & \frac{\partial f_1}{\partial u_3} \\ \frac{\partial f_2}{\partial u_1} & \frac{\partial f_2}{\partial u_2} & \frac{\partial f_2}{\partial u_3} \\ \frac{\partial f_3}{\partial u_1} & \frac{\partial f_3}{\partial u_2} & \frac{\partial f_3}{\partial u_3} \end{bmatrix}$$
(18)

Vector-Matrix Notati

Wave Models

Scalar Wave Model Vector Wave Model

Simple Waves

Expansion Waves
Compresion Waves/Shock

Contact Discontini

Summary

► To simplify, we call the Jacobian Matrix: A

$$\frac{\partial \vec{u}}{\partial t} + A \frac{\partial \vec{u}}{\partial x} = 0 \tag{19}$$

Computing A we obtain:

$$A = \begin{bmatrix} 0 & 1 & 0 \\ \frac{\gamma - 3}{2} u^{2} & (3 - \gamma) u & \gamma - 1 \\ \gamma u e_{T} + (\gamma - 1) u^{3} & \gamma e_{T} - \frac{3}{2} (\gamma - 1) u^{2} & \gamma u \end{bmatrix}$$
(20)

Integral and Conservation form Vector-Matrix Notation

Primitive Variable Form

Wave Models
Scalar Wave Model
Vector Wave Model
The Characteristic Form

Simple Waves
Isotropic Flow
Expansion Waves
Compresion Waves/Shock Waves

Introduction: Euler Equations

form

Vector-Matrix Notation

Wave Models

Scalar Wave Model Vector Wave Model The Characteristic Form

Simple Waves

Expansion Waves Compresion Waves/Sh Waves

Contact Discontinuities

Simple Waves

Summary

► The Primite variable from is not commonly used in gasdynamics.

- The Primite variables are those flow variable that we can dyrectly measure.
- This is a lagrangean description of the variables.

The Material Derivate:

$$\frac{D}{Dt} = \frac{\partial}{\partial t} + u \frac{\partial}{\partial x} \tag{21}$$

- The material derivate is rate of change a long the pathlines.
- Using the material derivate we rewrite the Euler Equations as:

The Material Derivate:

$$\frac{D\rho}{Dt} + \rho \frac{\partial u}{\partial x} = 0 \tag{22}$$

$$\frac{D\rho}{Dt} + \frac{1}{\rho} \frac{\partial p}{\partial x} = 0 \tag{23}$$

$$\frac{D\rho}{Dt} + \rho a^2 \frac{\partial u}{\partial x} = 0 {24}$$

$$\frac{Ds}{Dt} \ge 0$$
 (25)

form

Vector-Matrix Notation

Wave Models

Scalar Wave Model

Vector Wave Model

The Characteristic Form

Simple Waves

Compresion Waves/Sho Waves

Contact Discontinuities

Summary

VECTOR-MATRIX FORM

▶ Define the vector of primitive variables:

The Material Derivate:

$$\vec{w} = \begin{bmatrix} \rho \\ u \\ \rho \end{bmatrix} \tag{26}$$

form

Primitive Variable

Wave Models

Scalar Wave Model
Vector Wave Model
The Characteristic Form

Simple Waves

Compresion Waves/Sh

Contact Discontinuities

Summary

Then primitive form of the Euler equations can be written as:

$$\frac{\partial \vec{w}}{\partial t} + C \frac{\partial \vec{w}}{\partial x} = 0 \tag{27}$$

Where:

$$C = \begin{bmatrix} u & \rho & 0 \\ 0 & u & \frac{1}{\rho} \\ 0 & \rho a^2 & u \end{bmatrix}$$
 (28)

Wave Models

Simple Waves

Summary

Relations between A and C: First notice that:

$$d\vec{u} = Qd\vec{w} \tag{29}$$

where

$$Q = \frac{d\vec{u}}{d\vec{w}} = \begin{bmatrix} 1 & 0 & 0\\ u & \rho & 0\\ \frac{1}{2}u^2 & \rho u & \frac{1}{\gamma - 1} \end{bmatrix}$$
(30)

form
Vactor-Matrix Notation

Wave Models

Scalar Wave Model
Vector Wave Model
The Characteristic Form

Simple Waves

Expansion Waves

Compresion Waves/Shock

Waves

Contact Discontinui

Summary

▶ Relations between A and C: Or:

$$d\vec{w} = Qd^{-1}\vec{u} \tag{31}$$

where

$$Q^{-1} = \frac{d\vec{w}}{d\vec{u}} = \begin{bmatrix} 1 & 0 & 0\\ -\frac{1}{\rho}u & \frac{1}{\rho} & 0\\ 1/2(\rho - 1)u^2 & -(\rho - 1)u & \gamma - 1 \end{bmatrix}$$
(32)

Simple Waves

Summary

Relations between A and C:

$$Q\frac{\partial \vec{w}}{\partial t} + AQ\frac{\partial \vec{w}}{\partial x} = 0$$
 (33)

$$\frac{\partial \vec{w}}{\partial t} + Q^{-1}AQ\frac{\partial \vec{w}}{\partial x} = 0 {34}$$

$$\frac{\partial \vec{w}}{\partial t} + C \frac{\partial \vec{w}}{\partial x} = 0 \tag{35}$$

In other words, A and C are similar matrices!

Vector-Matrix Notation

Wave Models Scalar Wave Model

Vector Wave Model

Simple Waves Isotropic Flow **Expansion Waves** Compresion Waves/Shock Waves

Introduction: Fuler Equations

Wave Models

Simple Waves

Integral and Conservation form

Vector-Matrix Notation

Wave Models

Vector Wave Model
The Characteristic Forn

Simple Waves

Isotropic Flow

Compresion Waves/S Waves

Contact Discontinuit

Integral and Conservation form

Vector-Matrix Notation

Wave Models

Vector Wave Model
The Characteristic Forn

Simple Waves

Isotropic Flow

Compresion Waves/S Waves

Contact Discontinuit

Integral and Conservation form Vector-Matrix Notation

Primitive Variable Form

Wave Models

Scalar Wave Model

Vector Wave Model

The Characteristic Form

Simple Waves

Isotropic Flow

Expansion Waves

Compresion Waves/Shock Waves

Contact Discontinuities

Introduction: Euler Equations

form
Vector-Matrix Notation

Vector-Matrix Notation Primitive Variable Form

Wave Models

Vector Wave Model
The Characteristic Form

Simple Waves

sotropic Flow Expansion Waves Compresion Waves/Sh

Contact Discontinu

Integral and Conservation form

Vector-Matrix Notal

Wave Models

Vector Wave Model

The Characteristic Form

Simple Waves

Isotropic Flow

Compresion Waves/Sho Waves

Contact Disconti

Integral and Conservation form

Vector-Matrix Notal

Wave Models

Vector Wave Model

The Characteristic Form

Simple Waves

Isotropic Flow

Compresion Waves/Sho Waves

Contact Disconti

Wave Models

Scalar Wave Mode Vector Wave Mode

Simple Waves

Expansion Waves
Compresion Waves/S

Contact Discontini

Summary

Introduction: Euler Equations

Integral and Conservation forn

Vector-Matrix Notation

Primitive Variable Form

Wave Models

Scalar Wave Model Vector Wave Model

The Characteristic Form

Simple Waves

Isotropic Flow

Expansion Waves

Compresion Waves/Shock Waves

Contact Discontinuities

Integral and Conservation form

Vector-Matrix Notat

Wave Models

Scalar Wave Mod Vector Wave Mod

Simple Waves

Isotropic Flow

Compresion Way

Contact Discontinuiti

Integral and Conservation form

Vector-Matrix Notat

Wave Models

Scalar Wave Mod Vector Wave Mod

Simple Waves

Isotropic Flow

Compresion Way

Contact Discontinuiti

Scalar Wave Model Vector Wave Model

Vector Wave Model The Characteristic Form

Simple Waves

Compresion Waves/Shoo Waves

Contact Discontin

Summary

Introduction: Euler Equations

Integral and Conservation forn Vector-Matrix Notation

Primitive Variable Form

Wave Models
Scalar Wave Model
Vector Wave Model

Simple Waves Isotropic Flow

Expansion Waves
Compresion Waves/Shock Waves
Contact Discontinuities

Integral and Conservatio form

Vector-Matrix Notation

Wave Models

Scalar Wave Model
Vector Wave Model
The Characteristic Forr

Simple Waves

Expansion Waves Compresion Waves/Sho Waves

Contact Discontin

Integral and Conservatio form

Vector-Matrix Notation

Wave Models

Scalar Wave Model
Vector Wave Model
The Characteristic Forr

Simple Waves

Expansion Waves Compresion Waves/Sho Waves

Contact Discontin

Simple Waves Isotropic Flow

Compresion Waves/Shoc Waves

Contact Discontinuitie

Summary

Introduction: Euler Equations
Integral and Conservation for
Vector-Matrix Notation

Wave Models
Scalar Wave Model
Vector Wave Model
The Characteristic Form

Simple Waves

Isotropic Flow

Expansion Waves

Compresion Waves/Shock Waves
Contact Discontinuities

Integral and Conservation form

Vector-Matrix Notat

Wave Models

Scalar Wave Model
Vector Wave Model
The Characteristic Forn

Simple Waves

Isotropic Flow

Compresion Waves/Sho

Contact Disconti

Integral and Conservation form

Vector-Matrix Notat

Wave Models

Scalar Wave Model
Vector Wave Model
The Characteristic Forn

Simple Waves

Isotropic Flow

Compresion Waves/Sho

Contact Disconti

Wave Models

Simple Waves

Summary

Vector-Matrix Notation

Wave Models

Scalar Wave Model Vector Wave Model

Simple Waves

Isotropic Flow **Expansion Waves**

Compresion Waves/Shock Waves

Integral and Conservation form

Primitive Variable F

Wave Models

Scalar Wave Model Vector Wave Model The Characteristic Form

Simple Waves

Isotropic Flow

Expansion Waves
Compresion Wave

Contact Discontinuitie

Integral and Conservation form

Primitive Variable F

Wave Models

Scalar Wave Model Vector Wave Model The Characteristic Form

Simple Waves

Isotropic Flow

Expansion Waves
Compresion Wave

Contact Discontinuitie

Vector Wave Model
The Characteristic Form

Simple Waves

Expansion Waves

Compresion Waves/Shock

Waves

Contact Discontinuitie

Summary

Introduction: Euler Equations

Integral and Conservation forn

Vector-Matrix Notation Primitive Variable Form

Wave Models Scalar Wav

Scalar Wave Model Vector Wave Model

The Characteristic Form

Simple Waves

Isotropic Flow Expansion Waves

Expansion waves

Compresion Waves/Shock Waves

Contact Discontinuities

Integral and Conservation form

Vector-Matrix Notation

Wave Models

Scalar Wave Model
Vector Wave Model
The Characteristic Forn

Simple Waves

Isotropic Flow Expansion Wave

Compresion Waves/Sho Waves

ontact Discontinuitie

Integral and Conservation form

Vector-Matrix Notation

Wave Models

Scalar Wave Model
Vector Wave Model
The Characteristic Forn

Simple Waves

Isotropic Flow Expansion Wave

Compresion Waves/Sho Waves

ontact Discontinuitie

Equations

- The first main message of your talk in one or two lines.
- The second main message of your talk in one or two lines.
- ▶ Perhaps a third message, but not more than that.

- Outlook
 - Something you haven't solved.
 - Something else you haven't solved.