Grupo de Resposta a Incidentes de Segurança

Introdução a Honeypots

O que são Honeypots?

"A honeypot is an information system resource whose value lies in unauthorized or illicit use of that resource."

Lance Spitzner

- Honeypots são recursos que não tem qualquer valor de produção.
- Em tese, como não tem atividades legítimas não deve ter tráfego e, por isso, qualquer interação pode ser considerada não autorizada ou maliciosa.

O que são Honeypots?

Quais as vantagens de um honeypot?

- Pequena quantidade de informação com grande valor e facilidade de análise. Grandes honeypots bem configurados geram 1MB de dados e 10 alertas por dia.
- São preparados para capturar qualquer coisa que passe por eles, sejam ferramentas ou taticas inovadoras.
- Requerem recursos mínimos de hardware. Um velho Pentiun 233 com 128MB suporta uma rede de classe B inteira com facilidade.
- Simplicidade. Não precisam de algoritmos sofisticados, manutenção de tabelas ou atualização de assinaturas.

O que são Honeypots?

Por outro lado, só podem capturar as informações enviadas diretamente à eles. O tráfego precisa passar pelo honeypot para que seja possível extrair alguma informação.

São suscetíveis a falhas, mais específicamente, podem ser comprometidos e subvertidos. Como em qualquer tecnologia de segurança existem riscos, é possível que um atacante anule as proteções e subverta o honeypot.

Existem três tipos básicos de honeypot

- baixa interatividade
- alta interatividade
- média interatividade

A interação define que nível de atividade é passível de utilização.

Honeypots de baixa interatividade são ferramentas instaladas para emular sistemas e serviços. Por isso, o sistema operacional real deve ser instalado e configurado de forma segura para diminuir os seus riscos.

Características

- Fácil implementação e manutenção
- Baixo risco de comprometimento
- Informações capturadas são muito limitadas
- Capturam apenas atividades conhecidas
- Sua detecção é relativamente fácil

Exemplos de ferramentas: Specter, Honeyd, KFSensor

Como funciona o Honeyd?

- Quando detecta uma tentativa de conexão a um IP não utilizado, o honeyd intercepta a conexão e interage com o atacante como se fosse a vítima.
- Por padrão qualquer conexão em portas TCP ou UDP é detectada e é gerado um log.
- Além disso, é possível configurar o monitoramento de portas específicas. Desta forma, toda a interação com o serviço emulado é capturada.
- Pode se fazer passar, por exemplo, por um roteador CISCO, um XP Server ou um Linux DNS Server.

Exemplo de log do Honeyd

```
Microsoft Windows XP Professional SP1
or Windows 2000 SP3
     (/10.0.0.72/)
     139/tcp
     137/tcp
     135/tcp
     445/tcp
     593/tcp
     6129/tcp
     4444/tcp
     137/udp
     135/udp
     445/udp
Connection Counter
Total:
          10
 TCP:
 UDP:
ICMP:
```

```
Honeypot: 10.0.0.71
Source IP Resource Connections
192.168.100.130 21/tcp
192.168.131.157 11/icmp
192.168.139.133 11/icmp
    Resources Connections
IPs
Honeypot: 10.0.0.72
Source IP Resource Connections
192.168.100.130 21/tcp
192.168.207.84
               53/udp
192.168.217.41
               53/udp
IPs Resources Connections
```


Exemplo de log do Honeyd

Top	10	Source	Hosts
-----	----	--------	-------

Ra	ink Source IP	Connections
1	192.168.100.130) 3
2	192.168.139.133	3 2
3	192.168.50.20	1
4		7 1
5	192.168.217.41	1
6	192.168.207.84	1
7	192.168.177.253	3 1

Top 10 Accessed Resources

Rank Resource		Connections
1	21/tcp	4
2	11/icmp	4
3	53/udp	2

Top 10 ICMP > 40 bytes Senders

Ra	ınk Source IP	Connections
1	192.168.139.13	33 2
2	192.168.131.15	57 1
3	192.168.177.25	53 1

Connections per Hour

Hour Connections

Houi	Connections
00:00	1
01:00	1
02:00	3
03:00	0
04:00	0
05:00	0
06:00	0
07:00	4
08:00	0
09:00	0
10:00	0
11:00	0
12:00	0
13:00	0
14:00	0
15:00	0
16:00	1
17:00	0
18:00	0
19:00	0
20:00	0
21:00	0
22:00	0
23:00	0

Os honeypots de alta interatividade são sistemas reais, com aplicações e serviços reais onde o atacante interage diretamente com eles.

Características

- Grande quantidade de informação capturada
- Pode detectar tecnicas não conhecidas
- Captura todas as interações, previstas ou não
- Alto risco de comprometimento
- Dificil implementação e manutenção
- Precisa de mecanismos de contenção

Exemplos de ferramentas: Symantec Decoy Server e Honeynets

Como funciona o Honeynets?

- É uma arquitetura de rede desenhada para controlar todas as interações usando maquinas reais como vítimas.
- São capturados desde sessões SSH até e-mails e arquivos baixados apenas com a instalação de módulos do kernel nas vítimas.
- Usa o Honeywall Gateway, que permite o inbound mas controla o outbound

Honeypots de media interação são o meio termo entre baixa e alta. Eles continuam emulando os sistemas e serviços mas a quantidade de dados extraídos, sem que se tenha a exposição da alta interatividade, é substancialmente maior.

Em contra partida, seus riscos são um pouco mais elevados do que em um de baixa interação

Os honeypots são usados, basicamente, com duas finalidades:

- produção
- pesquisa

Em geral, honeypots de baixa interação são usados para produção e os de alta interação para pesquisa.

Honeypots servindo ao propósito de pesquisa são usados para coletar informações como tendências ou novas trends.

Um exemplo de honeypot de pesquisa é o Honeynet Project

Os honeypots com propósito de produção podem ser divididos em três áreas distintas:

- prevenção
- detecção
- resposta

Para as funções de prevenção e detecção é mais comum utilizar honeypots de baixa interação enquanto um de alta interação é mais usado para resposta. Isso se deve ao fato de que são necessárias informações mais detalhadas para responder a um incidente.

Honeypots para Prevenção:

- Focado em ataques automáticos como worms e port scan.
- Podem confundir o atacante e restringir suas ações apenas ao honeypot.
- Monitoram uma faixa de IP não utilizada, quando detectam atividade interagem e retardam o atacante. Em alguns casos é possível parar o ataque.
- Um exemplo de ferramenta para esse fim é o LaBrea Tarpit e Deception Toolkit

Honeypots para Detecção:

- Uma vez detectado o ataque, é possível reagir a ele impedindo que prossiga ou, pelo menos, mitigando os danos.
- As quantidades de falsos positivos são reduzidas devido à qualidade das informações geradas.
- São capazes de trabalhar com encriptação e em ambientes
 IPv6

Honeypots para Resposta:

- Podem ser retirados da rede para sofrem analise forense de forma rápida e fácil.
- São muito fáceis de analizar, visto que toda interação pode ser considerada maliciosa.
- Produz as informações necessárias para responder ao incidente de forma rápida e eficiente.

Honeypots dinâmicas

- Honeypot dinâmica é um "sistema" que automaticamente determina quantos honeypots são necessários, como serão implementados e com que sistemas se parecerão.
- Se adaptam às características da rede em que estão "plugados"
- Utilizam fingerprint para detecção de sistemas

Honeytokens

- São recursos cujo valor está no seu uso não autorizado.
- Ao contrário dos honeypots, eles não são computadores.
 São qualquer tipo de entidade digital, como um número de cartão, um apresentação powerpoint, uma base de dados ou um login.
- Um honeytoken trabalha de forma exatamente igual ao honeypot. Qualquer acesso pode ser considerado não autorizado ou malicioso.
- Não precisa de algoritmos sofisticados, assinaturas atualizadas ou regras para configurar.

Honeyclients

- Honeyclient se passa por um cliente normal e interage com o servidor para analizar as suas ações
- É comum encontrarmos honeyclients na forma de navegadores, entretanto, qualquer tipo de cliente que interage com o servidor pode ser utilizado.
- Exemplos de honeyclient são MITRE HoneyClient, Shelia, Honeymonkey e CaptureHPC

Como detectar Honeypots

- Qualquer honeypot pode, eventualmente, ser detectado.
- Existem algoritmos que testam se o sistema está em máquina virtual.
- Versões antigas do Honeyd, por exemplo, respondiam a um pacote SYN com um SYN/ACK sem nenhuma opção.

Projeto Milhouse

Referências

Honeypots – por Lance Spitzner
 http://www.tracking-hackers.com/papers/honeypots.html

Honeypots – A Segurança Através do Disfarce http://gris.dcc.ufrj.br/artigos/GRIS-2006-A-001.pdf

- Dynamic Honeypots
 http://www.securityfocus.com/infocus/1731
- Honeytokens: The Other Honeypot http://www.securityfocus.com/infocus/1713
- A Guide to Diferent Kinds of Honeypots http://www.securityfocus.com/print/infocus/1897

