KORSZERŰ SZÁMÍTÁSTECHNIKAI MÓDSZEREK A FIZIKÁBAN jegyzőkönyv

Simonová Alexandra

Perkoláció számolása NxN-es rácson

Beadás időpontja: 2021. május 7.

Bevezetés

A jegyzőkönyvben a Korszerű számítástechnikai módszerek a fizikában c. tárgyhoz készült beadandó feladat elméleti leírását és működési elvét ismertetem.

Elméleti leírás

Algoritmus és működési elv

Először többféle módszerrel próbáltam végigmenni a rácson, de nem vezetett eredményre az, hogy "tényleges rácsként" kezeltem a rácsot. Majd megtaláltam Quick Union és Quick Find algoritmusokat, amivel már sokkal egyszerűbb volt a rács elemek kezelése és összekötése.

Ezeknek a működése azon alapul, hogy kialakítunk egy array-t, aminek az indexei reprezentálják az $N \times N$ elemet. Az array elemei pedig az adott elem origin-je, ami megváltozik, ha összekapcsolódik két elem. Az origin értéke a kezdeti állapotban maga az elem. Az összekapcsolásokat a join függvény végzi. Két elem akkor van összekötve, ha egyenlő az origin-jük. A join függvényb súlyozást is végez, annak érdekében, hogy ne alakuljanak hosszú fák az egymás alá kapcsoláskor, hogy ezzel javítsa az algoritmus hatékonyságát. A WQUni nevű osztály tartalmazza az ezekhez kapcsolódó tagokat és függvényeket.

A rács reprezentációja és a nyitott és egymás melletti elemek összekötése Percolation nevű osztály által valósul meg, ezen végzi aztán a WQUni nevű osztály a Quick Union- és Quick Find-al kapcsolatos műveleteket. A PerkStats nevű osztály computePcrit függvényében történik az elemek randomizált kinyitása, random szám generátorral, egyenletes eloszlásból, addig amíg a rendszer nem perkolál, az alsó és felső virtuális elem(sor) nem ér össze a nyílt elemeken keresztül. A random sor és oszlop értékek átadódnak az open függvénynek, ami elvégzi a kapcsolatok kinyitását és megnöveli a nyitott elemek számát 1-el. A main függvényben ebből az értékből számolódik a kritikus valószínűség értéke.

A rács nagyon egyszerű megjelenítését a nyitott elemek pozíciójával készítettem.

Felhasznált irodalom

- Union-Find data type[1]
- S-ayanide Percolation[2]
- Algorithms Robert Sedgewick and Kevin Wayne[3]
- egyéb posztok és youtube videók