GUJARAT TECHNOLOGICAL UNIVERSITY

BE- SEMESTER-I & II (NEW) EXAMINATION - WINTER 2020

Subject Code:3110014 Date:16/03/2021

Subject Name:Mathematics – I

Time:10:30 AM TO 12:30 PM Total Marks:47

Instructions:

- 1. Attempt any THREE questions from Q1 to Q6.
- 2. Q7 is compulsory.
- 3. Make suitable assumptions wherever necessary.
- 4. Figures to the right indicate full marks.

Marks

- Q.1 (a) Expand $\sin x$ in powers of $(x \pi/2)$.
 - (b) Evaluate $\lim_{x \to 0} \frac{\tan^2 x x^2}{x^2 \tan^2 x}$.
 - (c) (i) Check the convergence of $\int_{4}^{\infty} \frac{3x+5}{x^4+7} dx.$
 - (ii) The region between the curve $y = \sqrt{x}$, $0 \le x \le 4$ and the line x = 4 is revolved about the x axis to generate a solid. Find its volume.
- Q.2 (a) If $u = \cos ec^{-1} \left(\frac{x+y}{x^2+y^2} \right)$, show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \tan u$.
 - (b) Check the convergence of the series $\sum_{n=1}^{\infty} \frac{2^n + 5}{3^n}$.
 - (c) (i) Test the convergence of the series $\sum_{n=1}^{\infty} (\sqrt{n+1} \sqrt{n})$.
 - (ii) Test the convergence of $\sum_{n=1}^{\infty} \frac{2^n}{n^3 + 1}$.
- **Q.3** (a) Solve the following equations by Gauss' elimination method: 03 x + y + z = 6, x + 2y + 3z = 14, 2x + 4y + 7z = 30.
 - **(b)** If u = f(x y, y z, z x), prove that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$.
 - (c) (i) Find the equation of the tangent plane and normal line to the surface $x^2 + 2y^2 + 3z^2 = 12$ at (1, 2, -1).
 - (ii) For $f(x, y) = x^3 + y^3 3xy$, find the maximum and minimum values. **04**
- Q.4 (a) Find the rank of the matrix $\begin{bmatrix} 8 & 0 & 0 & 16 \\ 0 & 0 & 0 & 6 \\ 0 & 9 & 9 & 9 \end{bmatrix}$.
 - (b) If u = f(x + at) + g(x at), prove that $\frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2}$.

(c)
(i) Show that the function
$$f(x, y) = \begin{cases} \frac{2x^2y}{x^3 + y^3}, (x, y) \neq (0, 0) \\ 0, (x, y) = (0, 0) \end{cases}$$
 is not

continuous at the origin.

(ii) Find the shortest distance from the point (1,2,2) to the sphere $x^2 + y^2 + z^2 = 16$.

Q.5 (a) Use Gauss-Jordan method to find
$$A^{-1}$$
, if $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8 \end{bmatrix}$.

- Using Caley-Hamilton theorem find A^2 , if $A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$. Also find A^{-1} .
- (c) Find the Fourier cosine series for $f(x) = x^2, 0 < x < \pi$. Hence show that $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2} = \frac{\pi^2}{12}.$
- **Q.6** (a) Evaluate $\iint_R e^{2x+3y} dA$, where R is the triangle bounded by x = 0, y = 0, x + y = 1.
 - (b) Find the eigen values and eigen vectors for the matrix $\begin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}$.
 - (c) Evaluate $\int_{0}^{\infty} \int_{x}^{\infty} \frac{e^{-y}}{y} dA$ by changing the order of integration.
- Q.7 $\int_{0}^{\pi/2} \int_{a(1-\cos\theta)}^{a} r^2 dr d\theta.$ Evaluate $\int_{0}^{\pi/2} \int_{a(1-\cos\theta)}^{a} r^2 dr d\theta.$

Q.7 Find the area enclosed within the curves y = 2 - x and $y^2 = 2(2 - x)$. 05