. Part of Paper No. 20050404 for 09/942,008

copy of claims from copending application 09/961, 895 dated
Please amend the claims so that they read as follows:

8/13/2004

1. (Currently Amended) A method for the preparation of a cathode active material comprising a mixing step of mixing starting materials for synthesis of a compound having the formula Li_xFePO_4 , where $0 < x \le 1$,

a milling step of simultaneously pulverizing and mixing a mixture resulting from said mixing step; and

a sintering step of firing the mixture resulting from said milling step; wherein

a carbon material is added at any one of the above steps;

 Li_3PO_4 and $\text{Fe}_3(\text{PO}_4)_2$ or a hydrate thereof $\text{Fe}_3(\text{PO}_4)_2 \cdot \text{nH}_2\text{O}$, where n denotes the number of hydrates, are used as said starting materials for synthesis; and wherein

the content of Fe^{3+} in the total iron in said $Fe_3(PO_4)_2$ or a hydrate thereof $Fe_3(PO_4)_2$ · nH_2O , where n denotes the number of hydrates, is set to 61 wt% or less and not less than 2 wt%.

- 2. (Original) The method for the preparation of a cathode active material according to claim 1 wherein the carbon content per unit volume of a Li_x FePO4 carbon composite material composed of said Li_x FePO₄, where $0 < x \le 1$, and said carbon material, is not less than 3 wt%.
- 3. (Original) The method for the preparation of a cathode active material according to claim 2 wherein, in the carbon material forming said Li_xFePO₄ carbon composite material, the strength area ratio A (D/G) of diffraction rays appearing at the number of waves of 1570 to 1590 cm⁻¹ with respect to diffraction lines appearing at the number of waves of the Raman spectrum of graphite in the Raman spectrographic method is not less than 0.3.
- 4. (Previously Amended) The method for the preparation of a cathode active material according to claim 2 wherein the powder density of said Li_xFePO₄ carbon composite material is not less than 2.2 gm/cm³.

- 5. (Previously Amended) The method for the preparation of a cathode active material according to claim 2 wherein the Bulnauer Brunauer Emmet Teller specific surface area of said Li_xFePO₄ carbon composite material is not less than 10.3 m²/g.
- 6. (Original) The method for the preparation of a cathode material according to claim 2 wherein the first-order particle of said Li_x FePO₄ carbon composite material is not larger than 3.1 μ m.
- 7. (Currently Amended) A method for the preparation of a non-aqueous electrolyte cell having a cathode having a cathode active material, an anode having an anode active material and a non-aqueous electrolyte, said method comprising a mixing step of mixing starting materials for synthesis of a compound having the formula Li_xFePO_4 , where $0 < x \le 1$.

a milling step of simultaneously pulverizing and mixing a mixture resulting from said mixing step; and

a sintering step of firing the mixture resulting from said milling step; wherein

a carbon material is added at any one of the above steps;

 Li_3PO_4 and $\text{Fe}_3(\text{PO}_4)_2$ or a hydrate thereof $\text{Fe}_3(\text{PO}_4)_2 \cdot \text{nH}_2\text{O}$, where n denotes the number of hydrates, are used as said starting materials for synthesis; and wherein

the content of Fe³⁺ in the total iron in said Fe₃(PO₄)₂ or a hydrate thereof Fe₃(PO₄)₂· nH₂O, where n denotes the number of hydrates, is set to 61 wt% or less and not less than 2 wt%.

8. (Original) The method for the preparation of a non-aqueous electrolyte cell according to claim 7 wherein the carbon content per unit volume of a Li_xFePO_4 carbon composite material composed of said Li_xFePO_4 , where $0 < x \le 1$, and said carbon material, is not less than 3 wt%.

- 9. (Original) The method for the preparation of a non-aqueous electrolyte cell according to claim 8 wherein, in the carbon material forming said Li_xFePO₄ carbon composite material, the strength area ration A (D/G) of diffraction rays appearing at the number of waves of 1570 to 1590 cm⁻¹ with respect to diffraction lines appearing at the number of waves of 1340 to 1360 cm⁻¹ of the Raman spectrum of graphite in the Raman spectrographic method is not less than 0.3.
- 10. (Previously Amended) The method for the preparation of a non-aqueous electrolyte cell according to claim 2 wherein the powder density of said Li_xFePO₄ carbon composite material is not less than 2.2 gm/cm³.
- 11. (Original) The method for the preparation of a non-aqueous electrolyte cell according to claim 8 wherein the Bulnauer Emmet Teller specific surface area of said Li_xFePO₄ carbon composite material is not less than 10.3 m²/g.
- 12. (Original) The method for the preparation of a non-aqueous electrolyte cell according to claim 8 wherein the first-order particle of said Li_x FePO₄ carbon composite material is not larger than 3.1 μ m.
- 13. (Original) The method for the preparation of a non-aqueous electrolyte cell according to claim 8 wherein said non-aqueous electrolyte is a liquid-based electrolyte employing a non-aqueous electrolyte solution composed of an electrolyte dissolved in a non-aqueous solvent.
- 14. (Original) The method for the preparation of a non-aqueous electrolyte cell according to claim 8 wherein said non-aqueous electrolyte is a solid electrolyte.
- 15. (Original) The method for the preparation of a non-aqueous electrolyte cell according to claim 14 wherein said solid electrolyte is composed of an electrolyte salt and a high molecular compound dissolving said electrolyte salt and wherein said high molecular compound is a gelated electrolyte matrix gelated on absorbing said non-aqueous electrolyte solution.

16. (Currently Amended) A producing method of Li_xFePO_4 , (0 < x ≤ 1) comprising the steps of:

mixing FeSO₄ and phosphate into Fe₃(PO₄)₂ wherein the content of Fe³⁺ in the total iron in said Fe₃(PO₄)₂ is not more than 61 wt% and not less than 2 wt%; mixing said Fe₃(PO₄)₂ and Li₃PO₄ into a mixture; adding carbon material to the mixture; sintering the mixture; and milling the mixture.