Chapter 2 Exercises

2.1 Prove that for every **nat** m, **nat** n, there exists a unique **nat** p satisfying the judgement $\max(m; n; p)$.

Proof. We define the function max : $\mathbf{nat} \times \mathbf{nat} \to \mathbf{nat}$ with the following rules:

$$\frac{\mathbf{nat}\ b}{\max(\mathbf{zero}; b)} \qquad \frac{\max(\mathbf{nat}\ n; \mathbf{nat}\ m; \mathbf{nat}\ p)}{\max(\mathbf{succ}(n); \mathbf{succ}(p))} \tag{1}$$

Let $\mathcal{P}(m)$ be the proposition that if **nat** n then $\exists p \text{ s.t. } \max(m; n; p)$.

To prove existence, we note that $\mathcal{P}(\mathbf{zero})$ for all **nat** n, given rule 1.1, which settles our base case. Now if we suppose that **nat** m, **nat** n, $\mathcal{P}(m)$, we conclude by rule 1.2 that $\mathcal{P}(\mathbf{succ}(m))$.

To prove uniqueness, we first note that if n is **zero** then for all **nat** m we have $\mathcal{P}(m)$ with p is m. Now suppose $\max(m; n; p_1)$ and $\max(m; n; p_2)$. Letting $n = \mathbf{succ}(n'), m = \mathbf{succ}(m'), p_1 = \mathbf{succ}(p'_1), p_2 = \mathbf{succ}(p'_2)$, we conclude by the inductive hypothesis that p'_1 is p'_2 and so p_1 is p_2 .

2.2 Prove that the judgement hgt defines a function from trees to natural numbers.

Proof. To show that **hgt** defines a function, we need to show that for all $t \in$ trees there exists some $n \in \mathbb{N}$, such that **hgt**(t; n). We use induction:

For our base case suppose t is **empty**. Then by our first rule we have that $\mathbf{hgt}(t; \mathbf{zero})$.

Now consider t tree, where $node(t_1; t_2)$ tree. By the inductive hypothesis, we have that $\mathbf{hgt}(t_1; n_1)$ and $\mathbf{hgt}(t_2; n_2)$ for some $\mathbf{nat}\ n_1$ and $\mathbf{nat}\ n_2$. By exercise 2.1, we know there exists some $\mathbf{nat}\ n$, such that $\max(n_1; n_2; n)$. Therefore by the second rule in this problem, we conclude that

$$\frac{\mathbf{hgt}(t_1; n_1) \ \mathbf{hgt}(t_2; n_2) \ \max(n_1; n_2; n)}{\mathbf{hgt}(\mathbf{node}(t_1; t_2); n)}$$

$$\mathbf{hgt}(t; n)$$

2.3 Give a simultaneous inductive definition of a ordered variadic trees.

$$\begin{array}{c} \textbf{empty forest} \\ \hline f \textbf{ forest} \\ \textbf{ node}(f) \textbf{ tree} \\ \hline f \textbf{ forest} \quad t \textbf{ tree} \\ \hline \cos(t;f) \textbf{ forest} \\ \end{array}$$

2.4 Give an inductive definition of the height of a variadic tree.

Solutions to PFPL Problems

		$\mathbf{hgtForest}(\mathbf{emp}$	$\mathbf{ty}; \mathbf{zero})$	
$\mathbf{hgtForest}(f; h)$				
$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$				
	hgtForest	$\frac{\mathbf{hgtForest}(con)}{\mathbf{hgtForest}(con)}$	$\frac{(t;h_2) \max(h)}{\mathrm{s}(t;f);h)}$	$_1;h_2;h)$
2.5 Give an inductive definit	ion of the bir	nary natural numb	ers.	
	zero bnn	$\frac{b \ \mathbf{bnn}}{twice(b) \ \mathbf{bnn}}$	$\frac{b \text{ bn}}{\text{twiceplusone}}$	
2.6 Give an induction definit	tion for the si	um of binary natur	al numbers.	
First the auxiliary defini	tion of succ (()p;q).		
				$\mathbf{succ}(p;q)$
$\mathbf{succ}(\mathbf{zero}; \mathbf{twicepluson})$	e(zero))	$\mathbf{succ}(twice(p);twice(p))$	$\operatorname{eplusone}(p))$	$\mathbf{succ}(twiceplusone(p); twice(q))$
Then we define each of t	he cases of in	nput for sum:		
-		sum(zero;zero)	$\mathbf{o};\mathbf{zero})$	
		$\operatorname{sum}(m; n)$;k)	
$\overline{\operatorname{sum}(\operatorname{twice}(m);\operatorname{twice}(n);\operatorname{twice}(k))}$				
		$\operatorname{sum}(m; n)$;k)	
$\operatorname{sum}(\operatorname{twice}(m); \operatorname{twiceplusone}(n); \operatorname{twiceplusone}(k))$				
		$\operatorname{sum}(m; n)$;k)	
$\overline{\text{sum}(\text{twiceplusone}(m); \text{twice}(\text{succ}(k)))}$				