Test: Analys av andragradsfunktioner

Viktor Arohlén

13 juni 2025

Uppgifter

- 1. För funktionen $f(x) = -2x^2 + 4x + 6$:
 - a) Bestäm funktionens nollställen
 - b) Bestäm symmetrilinjen
 - c) Bestäm extrempunkten och avgör om det är ett maximum eller minimum
- 2. Nedan visas grafen till en andragradsfunktion $f(x) = ax^2 + bx + c$:

- a) Bestäm funktionens nollställen
- b) Bestäm symmetrilinjen
- c) Bestäm funktionsuttrycket $f(x) = ax^2 + bx + c$
- 3. En boll sparkas iväg från marken och dess höjd h i meter efter t sekunder ges av $h(t) = -4t^2 + 16t$.
 - a) Efter hur lång tid når bollen sin högsta punkt?
 - b) Hur högt upp är den då?
 - c) När träffar bollen marken igen?
- 4. En andragradsfunktion $f(x) = x^2 + bx + c$ har en extrempunkt i (3, -2). Bestäm konstanterna b och c.

Facit

1. a)
$$-2x^2 + 4x + 6 = 0$$

 $2x^2 - 4x - 6 = 0$

pq-formeln:
$$x = 1 \pm \sqrt{1+3} = 1 \pm 2$$

Svar:
$$x = 3$$
 och $x = -1$

b) Symmetrilinje:
$$x = -\frac{4}{-4} = 1$$

c) Extrempunkt:
$$(1, f(1)) = (1, -2 + 4 + 6) = (1, 8)$$

Maximum

- **2.** a) Nollställena avläses: x = 1 och x = 3
 - b) Symmetrilinje: x = 2
 - c) Funktionsuttryck: $f(x) = x^2 4x + 3$

3. a) Högsta punkten:
$$t=-\frac{16}{2\cdot(-4)}=2$$
 b) $h(2)=-4\cdot2^2+16\cdot2=-16+32=16$

b)
$$h(2) = -4 \cdot 2^2 + 16 \cdot 2 = -16 + 32 = 16$$

c) När träffar bollen marken?
$$-4t^2 + 16t = 0 \Rightarrow t(-4t + 16) = 0 \Rightarrow t = 0$$
 eller $t = 4$. Svar: $t = 4$ (bollen träffar marken igen efter 4 sekunder)

4. Extrempunkt:
$$x = 3$$

4. Extrempunkt:
$$x = 3$$

 $x = -\frac{b}{2a} \Rightarrow 3 = -\frac{b}{2}$
 $b = -6$

$$b=-6$$

$$f(3) = 9 - 18 + c = -2 \Rightarrow c = 7$$