Exercice 1 — Triangles à côtés entiers

On dit qu'un triangle est *entier* si les longueurs de ses trois côtés sont des entiers naturels non nuls. On rappelle la propriété dite de l'**inégalité triangulaire** : dans tout triangle non aplati, la longueur de chaque côté est strictement inférieure à la somme des longueurs des deux autres.

- 1. a) Parmi les triplets suivants (x; y; z), expliquer lequel désigne les longueurs des côtés d'un triangle entier non aplati, puis comment tracer ce triangle et avec quels outils : (4; 4; 5), (3; 6; 9), (2; 2; 6).
- b) Quelles sont les valeurs possibles de l'entier z si (15; 19; z) désigne les longueurs des trois côtés d'un triangle entier non aplati rangées par ordre croissant?
- c) Étant donnés trois entiers naturels non nuls x, y, z tels que $x \le y \le z$, quelle condition faut-il ajouter pour que le triplet (x; y; z) désigne les longueurs des côtés d'un triangle entier non aplati?
- 2. Soit p un entier naturel non nul. On désigne par E_p l'ensemble des triplets d'entiers naturels rangés par ordre croissant $x \leq y \leq z$ et désignant les côtés d'un triangle entier non aplati de **périmètre** égal à p. Ainsi on obtient, par exemple,

$$E_9 = \{(1; 4; 4), (2; 3; 4), (3; 3; 3)\}.$$

- a) Si un triplet appartient à E_{18} , quelles sont les valeurs maximale et minimale possibles pour z?
- b) Donner la composition de E_{18} et représenter, dans un repère orthonormé, l'ensemble des couples (x, y) pour lesquels il existe un entier naturel z tel que $(x; y; z) \in E_{18}$. Vérifier que ces couples se situent à l'intérieur ou sur les bords d'un triangle dont les sommets ont des coordonnées entières.

3.

- a) Justifier que si $(x; y; z) \in E_p$ alors $(x+1; y+1; z+1) \in E_{p+3}$.
- b) Soit $(x; y; z) \in E_{p+3}$. Déterminer une condition sur (x, y, z) pour que $(x-1; y-1; z-1) \in E_p$.
- c) En déduire que si p est impair, alors E_p et E_{p+3} ont le même nombre d'éléments.
- 4. Étude de E_{2019} .
- a) E_{2019} contient-il un triplet (x; y; z) correspondant à un triangle équilatéral?
- b) E_{2019} contient-il des triplets correspondant à des triangles isocèles non équilatéraux? Si oui, combien?
- c) Montrer que si E_{2019} contient un triplet (x; y; z) correspondant à un triangle rectangle, alors

$$2019^2 = 4038(x+y) - 2xy.$$

- d) En déduire que E_{2019} ne contient pas de triangle rectangle.
- 5. Dénombrement de E_{2022} .
- a) Soit $(x; y; z) \in E_{2022}$. On rappelle $x \le y \le z$. Justifier que $x + y \ge 1012$ et $x + 2y \le 2022$.
- **b)** Réciproquement, montrer que si $x \le y$, $x+y \ge 1012$ et $x+2y \le 2022$, alors $(x; y; 2022-x-y) \in E_{2022}$.
- c) Justifier que, dans un repère orthonormé, l'ensemble des couples d'entiers naturels (x, y) tels que $x \le y$, $x + y \ge 1012$ et $x + 2y \le 2022$ constitue l'ensemble des points à coordonnées entières d'un triangle. Évaluer son aire et le nombre de points à coordonnées entières situés sur ses côtés.
- **6.** On admet le Théorème de Pick :

Théorème de Pick

Si un polygone P est tel que tous ses sommets sont à coordonnées entières dans un repère orthonormé, alors son aire est donnée par

$$A = i + \frac{j}{2} - 1,$$

où i désigne le nombre de points à coordonnées entières situés à l'intérieur de P et j le nombre de ceux situés sur les côtés de P.

En déduire le nombre de triplets de E_{2022} , puis celui de E_{2019} .

Une solution algorithmique.

1. De manière générale, concevoir un programme (à retranscrire sur la copie) qui énumère et dénombre les éléments de E_p . Le tester sur E_{2022} puis sur E_{2019} .