振り返りと導入

• [TODO]

1 Amari-Chentsov テンソル

Amari-Chentsov テンソルを定義する。

命題-定義 1.1 (Amari-Chentsov テンソル). \mathcal{P} は開であるとし、D を $\Theta^{\mathcal{P}}$ 上の標準的な [TODO] とは?平坦アファイン接続、 θ^{i} ($i=1,\ldots,m$) を $\Theta^{\mathcal{P}}$ 上の D-アファイン座標とする。 $\Theta^{\mathcal{P}}$ 上の写像 S: $\Theta^{\mathcal{P}} \to T^{(0,3)}\Theta^{\mathcal{P}}$ を

$$\theta \mapsto S_{\theta} := E_{P(\theta)}[(T - E_{P(\theta)}[T])^{\otimes 3}] \tag{1.1}$$

で定めると [TODO] 値域あってる?、座標 θ^i に関する S の成分表示は

$$S = \partial_i \partial_i \partial_k \psi \, d\theta^i d\theta^j d\theta^k \tag{1.2}$$

となる。とくに ψ の C^{∞} 性より S は対称 (0,3)-テンソル場となる。S を Amari-Chentsov テンソル (Amari-Chentsov tensor) と呼ぶ。

証明 成分表示は **0516**_ 資料.pdf の系 2.4 を使って式変形すればわかる。

命題-定義 1.2 (\mathcal{P} の Amari-Chentsov テンソル). \mathcal{P} は開であるとする。 \mathcal{P} の最小次元実現 (V,T,μ) をひとつ 選ぶと、 $\Theta^{\mathcal{P}}_{(V,T,\mu)}$ 上の Amari-Chentsov テンソル S を θ で引き戻して \mathcal{P} 上の対称 (0,3)-テンソル場 θ^*S が 定まる。このテンソル場は最小次元実現のとり方によらない。これを \mathcal{P} 上の Amari-Chentsov テンソル (Amari-Chentsov tensor) と呼ぶ。

証明 S の定義より $L^{\otimes 3}S'_{\theta'}=S_{\theta}$ が成り立つから、Fisher 計量の場合と同様の議論により $\theta^*S=\theta'^*S'$ が成り立つ。

2 期待値パラメータ空間

定義 2.1 (期待値パラメータ空間). 集合 $M_{(V,T,\nu)}$

$$\mathcal{M}_{(V,T,\nu)} := \left\{ \mu \in V \mid \exists p : X \perp \mathcal{O}$$
確率分布 s.t. $p \ll \nu, E_p[T] = \mu \right\}$ (2.1)

を (V,T,ν) の期待値パラメータ空間 (mean parameter space) という。

期待値パラメータ空間 M は、 φ に属する確率分布に関する T の期待値をすべて含んでいる (一般には真に含んでいる)。

命題 2.2. $\mu \in V$ がある $p \in \mathcal{P}$ に関する T の期待値ならば (すなわち $\mu = E_v[T]$ ならば)、 μ は $\mathcal{M}_{(V,T,v)}$ に属する。

証明 [TODO]

命題 2.3 (M は凸集合). $M_{(V,T,v)}$ は V の凸集合である。

証明 [TODO]

3 Fisher 計量

例 3.1 (正規分布族). [TODO] ちゃんと書く \mathcal{P} を $\mathcal{X}=\mathbb{R}$ 上の正規分布族とし、実現 (V,T,μ) を $V=\mathbb{R}^2$, $T(x)=(x,x^2)$, $\mu=\lambda$ とおく。これは条件 A をみたす。

自然パラメータ空間は $\Theta = \Theta^{\circ} = \mathbb{R} \times \mathbb{R}_{< 0}$ である。

対数分配関数は

$$\psi(\theta) = \frac{\mu^2}{2\sigma^2} + \log \sigma + \frac{1}{2}\log 2\pi \tag{3.1}$$

である。ただし $\theta^1 = \frac{\mu}{\sigma^2}$, $\theta^2 = -\frac{1}{2\sigma^2}$ とおいた。よって

$$d\psi = \frac{\mu}{\sigma^2} d\mu + \frac{\sigma^2 - \mu^2}{\sigma^3} d\sigma \tag{3.2}$$

$$= -\frac{\theta^1}{2\theta^2} d\theta^1 + \left(-\frac{1}{2\theta^2} + \frac{(\theta^1)^2}{4(\theta^2)^2} \right) d\theta^2$$
 (3.3)

$$Hess \psi = Dd\psi \tag{3.4}$$

$$= \left(-\frac{1}{2\theta^2} d\theta^1 + \frac{\theta^1}{2(\theta^2)^2} d\theta^2 \right) d\theta^1 + \left(\frac{\theta^1}{2(\theta^2)^2} d\theta^1 + \left(\frac{1}{2(\theta^2)^2} - \frac{(\theta^1)^2}{2(\theta^2)^3} \right) d\theta^2 \right) d\theta^2$$
 (3.5)

$$= \frac{1}{\sigma^2} (d\mu)^2 + \frac{2}{\sigma^2} (d\sigma)^2 \tag{3.6}$$

である。Fisher 計量 $g:=\operatorname{Hess}\psi$ から定まる Levi-Civita 接続 $\nabla^{(g)}$ の、座標 μ,σ に関する接続係数を求めてみる。

$$\Gamma^{(g)}_{11}^{1} = 0, \qquad \Gamma^{(g)}_{12}^{1} = \Gamma^{(g)}_{21}^{1} = -\frac{1}{\sigma}, \qquad \Gamma^{(g)}_{22}^{1} = 0,$$
 (3.7)

$$\Gamma^{(g)}_{11}^2 = \frac{1}{2\sigma}, \qquad \Gamma^{(g)}_{12}^2 = \Gamma^{(g)}_{21}^2 = 0, \qquad \Gamma^{(g)}_{22}^2 = -\frac{1}{\sigma}$$
 (3.8)

測地線の方程式は

$$\begin{cases} x'' - \frac{2}{y}x'y' = 0\\ y'' + \frac{1}{2y}(x')^2 - \frac{1}{y}(y')^2 = 0 \end{cases}$$
(3.9)

である。これを直接解くのは少し大変である。その代わりに、既知の Riemann 多様体との間の等長同型を利用して測地線を求める。 (Θ,g) は、上半平面 H に計量 $\S=\frac{(dx)^2+(dy)^2}{2y^2}$ を入れた Riemann 多様体との間に等長同型 $(\Theta,g)\to (H,\S)$, $(x,y)\mapsto (x,\sqrt{2}y)$ を持つ。Levi-Civita 接続に関する測地線は等長同型で保たれるから、 (H,\S) の測地線を求めればよい。 (H,\S) の測地線は、y 軸に平行な直線と x 軸上に中心を持つ半円で尽くされることが知られている。これらを等長同型で写して、 (Θ,g) の測地線として y 軸に平行な直線と x 軸上に長軸を持つ半楕円が得られる。

今後の予定

• [TODO]

参考文献

[Ama16] Shun-ichi Amari, **Information Geometry and Its Applications**, Applied Mathematical Sciences, vol. 194, Springer Japan, Tokyo, 2016 (en).