THEORY OF COMPUTATION

Decidability of ALLDFA

Sunil Kumar (12342170) Praveen Kumar Verma(12341630)

Problem Statement

Let $\mathtt{ALL}_{\mathtt{DFA}}$ be the language:

$$\mathtt{ALL}_{\mathtt{DFA}} = \{ \langle A \rangle \mid AisaDFA and \mathbf{L}(\mathbf{A}) = \Sigma^* \}$$

We want to prove that ALL_{DFA} is **decidable**.

What Does Decidable Mean?

A language L is **Turing-decidable** if there exists a Turing Machine M (called a decider) such that:

- M accepts all strings in L,
- M rejects all strings not in L,
- M halts on all inputs (i.e., it never loops).

Key Concepts Involved

- **DFA Complementation:** For any DFA A, we can construct a new DFA B such that $L(B) = \Sigma^* L(A)$ by swapping accepting and rejecting states.
- Complement of Σ^* : If $L(A) = \Sigma^*$, then its complement is $\Sigma^* \Sigma^* = \emptyset$.
- Emptiness Checking: There exists a decider TM (from Theorem 4.4) that checks whether $L(B) = \emptyset$ for a given DFA B.

Constructing the Complement of a DFA A

To construct the complement of a DFA $A = (Q, \Sigma, \delta, q_0, F)$, we follow these steps:

1. **States:** The set of states of the complement DFA A' is the same as the set of states of A, i.e., Q' = Q.

- 2. **Alphabet:** The alphabet Σ' of the complement DFA A' is the same as the alphabet Σ of A, i.e., $\Sigma' = \Sigma$.
- 3. **Transition Function:** The transition function δ' of the complement DFA A' is the same as the transition function δ of A, i.e., $\delta'(q, a) = \delta(q, a)$ for all $q \in Q$ and $a \in \Sigma$.
- 4. **Start State:** The start state of the complement DFA A' is the same as the start state of A, i.e., $q'_0 = q_0$.
- 5. Accepting States: The accepting states of A' are the non-accepting states of A, i.e., F' = Q F.

This construction ensures that A' accepts exactly those strings that A does not accept, i.e., $L(A') = \Sigma^* - L(A)$.

High-Level Idea

We want to construct a Turing Machine M that decides ALL_{DFA} . To determine whether DFA A accepts all strings (i.e., $L(A) = \Sigma^*$), we:

- 1. Construct DFA B, the complement of A.
- 2. Use a TM T to check whether $L(B) = \emptyset$.
- 3. If so, accept (because that means $L(A) = \Sigma^*$), otherwise reject.

Formal Description of the Decider TM M

Input: $\langle A \rangle$, where A is a DFA.

Procedure:

- 1. Construct DFA B by swapping accepting and non-accepting states of A.
- 2. Run a decider TM T (from Theorem 4.4) on input $\langle B \rangle$ to check if $L(B) = \emptyset$.
- 3. If T accepts (i.e., $L(B) = \emptyset$), then accept $\langle A \rangle$.
- 4. Otherwise, reject $\langle A \rangle$.

Description of the Emptiness Decider TM T

Given a DFA $B=(Q,\Sigma,\delta,q_0,F),$ the Turing Machine T decides whether $L(B)=\emptyset$ as follows:

- 1. Perform a Breadth-First Search (BFS) starting from the start state q_0 .
- 2. For each state visited, follow all transitions defined by δ .

- 3. If any accepting state $f \in F$ is reachable, then $L(B) \neq \emptyset$, so reject.
- 4. If no accepting state is reachable after the search, then $L(B) = \emptyset$, so accept.

This algorithm always halts and gives a correct yes/no answer.

Why This Works

- If $L(A) = \Sigma^*$, then $L(B) = \emptyset$, so T will accept and M accepts.
- If $L(A) \neq \Sigma^*$, then B will accept some string, so T rejects and M rejects.
- All steps are mechanical, finite, and guaranteed to halt.

Conclusion

The machine M decides the language $\mathtt{ALL}_\mathtt{DFA}.$ Therefore,

- ALL_{DFA} is recursive,
- That means it is **decidable**.