PHYS 2321 Week5-6: Exam I / Capacitance

W6 Day 1 Outline

- 1) Hwk: Ch. 24 MiscQ. 1-13 odd Due Friday Prob. 1,5,6, (more to come)
- 2) Review Exam I (mean = 15.9/32)
- 3) Capacitors and capacitance
 - a. Examples of capacitors
 - b. $C \equiv Q/\Delta V = \text{charge per volt across capacitor}$
 - b. $C = A\epsilon_0/d$ for parallel plate capacitor

Notes:

PHYS 2321 Week6: Capacitance

W6 Day 2 Outline

- 1) Hwk: Ch. 24 MiscQ. 1-13 odd Due Friday Prob. 1,5,6,7,10,11,13,16,21,22,24,38,39,40,53
- 2) Capacitors and capacitance
 - a. Examples of capacitors
 - b. $C \equiv Q/\Delta V = \text{charge per volt across capacitor}$
 - c. $C = A\epsilon_0/d$ for parallel plate capacitor
 - d. Calculating capacitance
 - e. Parallel and series connections

Notes:

Try Practice Quiz for Ch. 24.

Types of capacitors

By Eric Schrader from San Francisco, CA, United States - 12739s, CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=37625896

Capacitors

Charge separation stores energy

- Parallel Plates
 - Uniform E field
 - V= Δ V between plates

 Capacitance: the "charge perplates volt" on a capacitor

(a) Parallel-plate capacitor

$$C \equiv \frac{Q}{V}$$

Capacitance governs ...

How much charge is required to produce 1 volt "on" the capacitor (Q=CV),

What the potential difference will be if +-Q of charge is on the plates. (V=Q/C)

Units: 1 Farad = 1 Coulomb/Volt

Compute Capacitance of P.Plate Capacitor

1) Determine E-field between plates.

$$E = \frac{\sigma}{2\epsilon_0} + \frac{\sigma}{2\epsilon_0} = \frac{\sigma}{\epsilon_0}$$

2) Find $|\Delta V|$.

$$\Delta V = Ed \equiv \frac{\sigma d}{\epsilon_0} = \frac{Qd}{A\epsilon_0}$$

- 3) Insert into C=Q/ Δ V, and
- 4) Eliminate Q:

$$C = \frac{QA\epsilon_0}{Qd} = \frac{A\epsilon_0}{d}$$

5) Add k for dielectric:

(a) Parallel-plate capacitor

For Parallel Plates only

$$\varepsilon_o = 8.85 \times 10^{-12} \frac{C^2}{N \cdot m^2}$$

Calculating Capacitance

- 1) Determine E inside capacitor. (May need Gauss's law.) $\Delta V = -\int_{a}^{b} \vec{E} \cdot d\vec{s}$
- 2) Determine ΔV between the plates.
- 3) Insert ΔV into $C = Q/\Delta V$.
- 4) Cancel the Q's.
- 5) Consider the dielectric filler. $(C = \kappa C_0)$

Example: concentric spheres

$$C_{spheres} = \frac{ab}{k_e(b-a)}$$

Calculating Capacitance

Other examples:

1) Parallel plates

$$C = \frac{A\epsilon_0}{d}$$

2) Concentric cylinders

 $\frac{a}{2k_{\rho}\ln(b/a)} = \frac{2\pi l\epsilon_{o}}{\ln(b/a)}$

3) single sphere

$$C = 4 \pi \epsilon_0 R$$

Example: concentric cylinders

Combining Capacitors

- Two fundamental arrangements: parallel and series.
- Characteristics of a <u>parallel</u> connection:

- 1) The same ΔV is across each capacitor.
- 2) If C1≠C2, than Q1≠Q2. (In general, the charges are unequal.)
- 3) Since the total area of the plates is greater for 2 capacitors than 1, the equivalent capacitance goes up.
- 4) For N capacitors in parallel:

$$Ceq = C_1 + C_2 + C_3 + ... + C_N$$

Combining Capacitors

• Characteristics of a series connection:

- 1) The same charge Q exists on each plate!
- 2) If $C_1 \neq C_2$, then $\Delta V_1 \neq \Delta V_2$. (In general, voltages are different on each cap..)
- 3) The sum of the ΔV 's is the ΔV across the battery.
- 4) The equivalent capacitance is less than even the smallest capacitor in series.
- 5) For N capacitors in series:

$$\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2} + \dots + \frac{1}{C_N}$$

Combining Capacitors

• Goal: combine them into one equivalent capacitance

Capacitors in Series

Equivalent capacitor

• Charge in each plate is the same

(a) Capacitors in series

$$C_1 = \frac{Q}{V_1}, C_2 = \frac{Q}{V_2}, C_3 = \frac{Q}{V_3}$$
 $V_1 = \frac{Q}{C_1}, V_2 = \frac{Q}{C_2}, V_3 = \frac{Q}{C_3}$ $V = V_1 + V_2 + V_3, V = \frac{Q}{C_3}$

Capacitors in Series

• Usually get C_s to get Q, then figure out the V's

Now expand the circuit back out

$$V_1 = \frac{Q}{C_1} V_2 = \frac{Q}{C_2} V_3 = \frac{Q}{C_3}$$

Capacitors in Parallel

• Voltage on each plate is the same $V=V_1=V_2=V_3$

$$V=V_1=V_2=V_3$$

Equivalent capacitor

(b) Capacitors in parallel

$$Q = Q_1 + Q_2 + Q_3$$

$$Q_1 = C_1 V Q_2 = C_2 V Q_3 = C_3 V$$

Combinations of Series and Parallel

• Get to one equivalent capacitor

First combine C_1 and C_2 that are in parallel Second combine C_{12} (C_p in diagram) and C_3 in series

CANNOT DO THE FOLLOWING:

 C_3 and C_1 in series, then C_2 in parallel or series C_3 and C_2 in series, then C_1

Equivalent Capacitance, Example

The 1.0- μ F and 3.0- μ F capacitors are in parallel as are the 6.0- μ F and 2.0- μ F capacitors

These parallel combinations are in series with the capacitors next to them The series combinations are in parallel and the final equivalent capacitance can be found

Energy in a capacitor

- It takes energy to separate charge (& create E-field)
- The battery provides it, but that involves chemistry.
- Instead imagine charging plates "by hand"
 - Work by hand to move charge dq: $dW = dq\Delta V = dqq/C$
 - Total work to move all charge:

$$W = \int_{0}^{Q} \frac{q}{C} dq = \frac{1}{C} \int_{0}^{Q} q dq = \frac{Q^{2}}{2C}$$

OR ... area under V vs Q is energy!

$$U_c = \frac{1}{2}QV = \frac{Q^2}{2C} = \frac{1}{2}CV^2$$

Energy of a charged capacitor

Dielectrics

- · Capacitor charged and battery disconnected
 - Q is constant nowhere to go!

TABLE 26.1

Approximate Dielectric Constants and Dielectric Strengths of Various Materials at Room Temperature

Material	Dielectric Constant <i>K</i>	Dielectric Strengtha $(10^6 { m V/m})$
Air (dry)	1.000 59	3
Bakelite	4.9	24
Fused quartz	3.78	8
Mylar	3.2	7
Neoprene rubber	6.7	12
Nylon	3.4	14
Paper	3.7	16
Paraffin-impregnated paper	3.5	11
Polystyrene	2.56	24
Polyvinyl chloride	3.4	40
Porcelain	6	12
Pyrex glass	5.6	14
Silicone oil	2.5	15
Strontium titanate	233	8
Teflon	2.1	60
Vacuum	1.000 00	_
Water	80	_

^a The dielectric strength equals the maximum electric field that can exist in a dielectric without electrical breakdown. These values depend strongly on the presence of impurities and flaws in the materials.

Dielectrics

- Determine whether κ is greater than or less than 1:
 - 1) Molecules in dielectric get polarized
 - 2) Electric field between plates is reduced (Q is constant)
 - 3) ΔV across plates is reduced (remember $\Delta V = -Ed$)
 - 4) U=1/2 Q Δ V is reduced, so must be U=1/2 Q/C
 - 5) Q is constant, so C must have increased.
 - 6) $C = \kappa C_0$ so $\kappa > 1$

Dielectrics

• Parallel Plates

$$C_o = \varepsilon_o \frac{A}{d}$$

$$C = \varepsilon \frac{A}{d} = K\varepsilon_o \frac{A}{d}$$

Dielectric **permittivity**

$$\varepsilon = K\varepsilon_{o}$$

