

Campus Querétaro

Fundamentos de Robótica

Reporte final

Integrantes:

Saúl Abimael Gómez Martínez	A01700790
Paúl Andrés Pinos Naranjo	A01208530
Jonathan Daniel Resendiz Solis	A01700029
Diego Macías Gutiérrez	A01700247
Gerardo Naranjo	A01209499
Santiago Román	A01700321
Carlos Iván Cruz	A01370921

Índice

Índice	2
Documentación de planeación	3
Explicación del registro de planeación	3
Reflexión sobre la planeación	4
Archivos CAD	5
Imágenes del Rover completo	5
Imágenes del brazo robot	7
Diagrama mecánico del Rover	9
Diagrama completo de partes	9
Vistas superior, frontal y lateral del sistema completo	11
Vistas de partes individuales	12
Esquemáticos electrónicos de conexión	14
Control de versiones Github	15
Referencias	16

Documentación de planeación

Explicación del registro de planeación

En la siguiente tabla se puede apreciar las tareas realizadas por los encargados de la actividad y las fechas en que se llevaron a cabo, estas fechas no incluyen registro de las horas dedicadas en su totalidad, ya que no se realizó un registro formal de las horas dedicadas por cada uno de los integrantes en las mismas tareas. Por último, la columna de avance refleja si la actividad ya está completada, se encuentra en desarrollo o si aún no se ha iniciado.

Las tareas están divididas en etapas de acuerdo al tipo de actividad que se van a realizar en el momento. En total tenemos ocho etapas en las cuales se pueden observar las actividades a realizar, los responsables, la fecha de inicio y de término, al igual que el progreso.

Actividad	Responsable	Empieza	Termina	Avance (%)
Etapa 1: Organización del equipo		-	*	(Sec. 1)
Presentación del equipo	Todos			100
Conocer las habilidades de cada miembro del equipo	Todos	Y .		100
Definir los roles	Todos	Ye.		100
Etapa 2: Investigación Inicial	-	-		100
Buscar prototipos existentes	Todos			100
Lluvia de ideas inicial para la estructura del robot	Todos	Ye.		100
Construccion del prototipo	Todos	4		100
Pitch	Todos	1		100
Etapa 3: Rediseño del prototipo	-	-		100
Lluvia de ideas para la estructura del robot	Todos	20 de septiembre	25 de septiembre	100
Investigar cómo hacer el medidor de batería	Gerardo	20 de septiembre	27 de septiembre	100
Investigar llantas comerciales, con costos y fecha de entrega	Diego	20 de septiembre	27 de septiembre	100
Investigar precios y tamaños de imánes	Paul	20 de septiembre	27 de septiembre	100
Investigar el resto de los materiales necesarios	Todos	20 de septiembre	27 de septiembre	100
Investigar acerca de la suspensión	Saul	20 de septiembre	27 de septiembre	100
Investigar los componentes y tornilleria necesarios.	Todos	20 de septiembre	27 de septiembre	100
Investigar mecanicos de acople del brazo	Carlos	20 de septiembre	27 de septiembre	100
Esquema de circuito interno	Daniel	20 de septiembre	27 de septiembre	100
Esquema de componentes electronicos	Santiago	20 de septiembre	27 de septiembre	100
Revisar el diseño establecido previamente	Todos	27 de septiembre	27 de septiembre	100
Etapa 4: Diseño a detalle	-			100
Comprar materiales / Solicitarlos a Rick	Líder de equipo	27 de septiembre	30 de septiembre	100
Medición de componentes internos del Rover	Todos	27 de septiembre	27 de septiembre	100
Distribución de componentes internos del Rover	Todos	27 de septiembre	27 de septiembre	100
Diseñar el chasis con sus distrubuciones internas	Todos	27 de septiembre	27 de septiembre	100
Diseñar sistemas de acople del chasis con la suspension	Todos	27 de septiembre	27 de septiembre	100
Diseñar cuerpo de suspension	Lider de proyecto	27 de septiembre	13 de noviembre	100
Análisis del diseño CAD	Lider de proyecto	27 de septiembre	13 de noviembre	100
Planificación del corte y ensamble de la estructura del Rover	Lider de proyecto	27 de septiembre	2 de octubre	100
Terminar diseño de la bandad de rodamiento de las llantas	Todos	15 de noviembre	20 de noviembre	100
Diseño final del brazo y gripper	Carlos	15 de noviembre	20 de noviembre	100
Diseño de acoplamiento del brazo	Carlos	15 de noviembre	20 de noviembre	100
Etapa 5: Programacion	-			100
Desarrollo Código Arduino	Gerardo	30 de octubre	6 de noviembre	100
Desarrollo visión	Todos	27 de noviembre	3 de diciembre	100
Codigo fuente stepper	Gerardo/Santiago	27 de noviembre	3 de diciembre	100
Codigo fuente de motores	Gerardo/Santiago	30 de octubre	15 de noviembre	100
Etapa 6: Manufactura	-			100
Hacer corte de láminas para chasis	Lider de proyecto	15 de noviembre	22 de noviembre	100
Compra de llantas	Lider de proyecto	19 de noviembre	19 de noviembre	100
Perforar las laminas o componentes	Todos	20 de noviembre	20 de noviembre	100
Impresion 3D de piezas	Lider de proyecto	18 de noviembre	19 de noviembre	100
Corte de eies	Todos	24 de noviembre	24 de noviembre	100
Comora de tornilleria	Lider de proyecto	23 de noviembre	23 de noviembre	100
Compra de amortiguadores	Saúl	23 de noviembre	23 de noviembre	100
Compra de juego de poleas y bandas	Lider de proyecto	11 de noviembre	16 de noviembre	100

Etapa 7: Ensamblado		(e)		100
Ensamblado de suspensión	Todos	24 de noviembre	24 de noviembre	100
Ensamblado del chasis	Todos	23 de noviembre	23 de noviembre	100
Ensamblado de ruedas y motores	Todos	24 de noviembre	24 de noviembre	100
Ensamblado de amortiguadores	Todos	24 de noviembre	24 de noviembre	100
Construccion del juego de poleas	Todos	24 de noviembre	24 de noviembre	100
Inclusión de sistema de vision	Todos	27 de noviembre	3 de diciembre	100
Ensamble de todos los componentes	Todos	27 de noviembre	27 de noviembre	100
Etapa 8: Pruebas				100
Prueba de la comunicación del control remoto con la computadora	Gerardo/Santiago	15 de noviembre	20 de noviembre	100
Prueba de la comunicación inalámbrica de la laptop con la Raspberry	Gerardo/Santiago	8 de noviembre	15 de noviembre	100
Funcionamiento de motores con juego de poleas	Todos	27 de noviembre	27 de noviembre	100
Prueba de soporte de peso	Todos	27 de noviembre	27 de noviembre	100
Prueba de avance con peso	Todos	27 de noviembre	27 de noviembre	100
Prueba de suspensión	Todos	27 de noviembre	27 de noviembre	100
Prueba de vision	Todos	27 de noviembre	3 de diciembre	100

[Tabla 1. Planeación del equipo "Los Rovertos"]

Reflexión sobre la planeación

Con esta tabla nos fue posible tener las metas que nos propusimos definidas, con fechas de inicio y final, y los integrantes que las realizaron, esto nos ayuda a tener de una manera tangible nuestras ideas y poder ir avanzando paso a paso con un plan, que desde un principio se pensó para que fuera flexible sobre la marcha, para que se modificara de acuerdo a la manera en que avanzamos junto con el proyecto.

Archivos CAD

Imágenes del Rover completo

Imagen 1. Vista Isométrica de ROVERTO.

Imagen 2. Vista lateral de ROVERTO.

Imagen 3. Vista superior de ROVERTO.

Imagen 4. Vista trasera de ROVERTO.

Imágenes del brazo robot

Imagen 5. Vista isométrica del brazo robótico.

Imagen 6. Vista lateral del brazo robótico.

Imagen 7. Vista trasera del brazo robótico.

Imagen 8. Vista isométrica del gripper.

Diagrama mecánico del Rover

Diagrama completo de partes

Imagen 9. Diagrama de partes enumerado.

.º DE ELEMENTO	N.º DE PIEZA	CANTIDAD
1	FLECHA	1
2	UNION BRAZOS	2
3	SEPARADOR ROCKER	8
4	SEPARADOR ROCKER LLANTA	2
5	TAPA BALERO	2
6	PIERNA DELANTERA	2
7	CUBITOS FLECHA	24
8	FLECHITA	8
9	PIERNA DELANTERA ROBUSTA	2
10	BP BUG GY	2
11	M_R O LLERS UP P O RT	2
12	MOTOR SERVOCITY - HEAVY DUTTY	4
13	LLANTA COMERCIAL	6
14	GT2 60 TEETH PULLEY - WHEEL	4
1.5	ACOPLE DE LLANTA	4
16	GT2 40 TEETH PULLEY - MOTOR	4:
17	BP BUGGY BACK PLATE	2
18	SPACER	2
19	UNION FINAL	2
20	PIERNA TRAS ERA ROBUSTA	4
21	FRONTAL	2
22	PANEL LATERAL	15
23	PLACA CIRCUITOS	1
24	BARRA ESTRUCTURA	3
2.5	L BARRA ESTRUCTURA	14
26	BATERIA 24V	1
27	BARRA ESTRUCTURA 2	2
28	TAPA CHASE	1
29	C-CHUPI-UCP-201-008-C	2
30	PANEL LATER ALSIMETRÍA	1

Imagen 10. Tabla de partes enumerado.

Vistas superior, frontal y lateral del sistema completo

Imagen 11. Vistas del sistema completo dimensionadas.

Vistas de partes individuales

Imagen 12. Vista superior y lateral de las ruedas dimensionadas.

Imagen 13. Vistas superior, lateral y frontal del chasis dimensionadas.

Esquemáticos electrónicos de conexión

Imagen 14. Conexión electrónica de los motores.

Imagen 15. Conexión por ROS de los componentes de control del Rover.

Control de versiones Github

Para el control de versiones anexamos la liga del Git para que puedan tener acceso a todas las modificaciones que se han hecho:

Link: https://bitbucket.org/rovertos/motores/src/master/

Referencias

- Gustavo B. (6 de mayo de 2019). *Comandos básicos de GIT*. Obtenido de Hostinger: https://www.hostinger.mx/tutoriales/comandos-de-git
- Naylamp Mechatronics SAC. (2016). *Tutorial de Uso del Módulo L298N*. Obtenido de naylampmechatronics: https://naylampmechatronics.com/blog/11_Tutorial-de-Uso-del-Módulo-L298N.html
- Solvetic Sistemas. (25 de abril de 2017). Cómo habilitar login automático sin contraseña en Ubuntu. Obtenido de Solvetic: https://www.solvetic.com/tutoriales/article/3760-como-habilitar-login-automatico-sin-p assword-ubuntu/