Числено интегриране. Квадратурни формули на Нютон-Коутс

Задача: (**a** и **b** са съответно предпоследната и последната цифра от факултетния номер) Дадена е функцията $f(x) = \frac{b+2-x}{2\,x^2+a+1}$

- 1. Табулирайте функцията f(x) в интервала [a, a+b+1], като разделите интервала на b+5 равни части.
- 2. Пресметнете $\int_a^{a+b+1} f(x) \, dx$ по формулата на **левите правоъгълници**, използвайки точките получени в 1. Каква е грешката на полученото приближение?
- 3. Пресметнете $\int_a^{a+b+1} f(x) \, dx$ по формулата на **десните правоъгълници**, използвайки точките получени в 1. Каква е грешката на полученото приближение?
- 4. Пресметнете $\int_a^{a+b+1} f(x) \, dx$ по формулата на **средните правоъгълници**, използвайки точките получени в 1. Каква е грешката на полученото приближение?
- 5. Пресметнете $\int_a^{a+b+1} f(x) \, dx$ по формулата на **трапеците**, използвайки точките получени в 1. Каква е грешката на полученото приближение?
- 6. Може ли по построената в 1 таблица да се използва квадратурната формула на **Симпсън** за изчисляване на интеграла $\int_a^{a+b+1} f(x) \, dx$? Обосновете отговора си. Ако може, го изчислете и пресметнете каква е грешката на полученото приближение?
- 7. Пресметнете $\int_a^{a+b+1} f(x) \, dx$ по формулата на **левите правоъгълници** с точност 0.00001.
- 8. Пресметнете $\int_a^{a+b+1} f(x) \, dx$ по формулата на **десните правоъгълници** с точност 0.00001.
- 9. Пресметнете $\int_a^{a+b+1} f(x) \, dx$ по формулата на **средните правоъгълници** с точност 0.00001.
- 10. Пресметнете $\int_a^{a+b+1} f(x) \, dx$ по формулата на **трапеците** с точност 0.00001.
- 11. Пресметнете $\int_a^{a+b+1} f(x) \, dx$ по формулата на **Симпсън** с точност 0.00001.

Съставяне на мрежата

```
In[*]:= f[x_] := \frac{11-x}{2x^2+2}
       a = 1.; b = 11.;
       n = 14;
       Print["Мрежата е с брой подинтервали n = ", n, " и стъпка h = ", h]
       xt = Table[a + i * h, {i, 0, n}]
       Мрежата е с брой подинтервали n = 14 и стъпка h = 0.714286
Out[0]=
       {1., 1.71429, 2.42857, 3.14286, 3.85714, 4.57143, 5.28571,
        6., 6.71429, 7.42857, 8.14286, 8.85714, 9.57143, 10.2857, 11.}
 In[*]:= f[xt]
Out[0]=
       \{2.5, 1.17876, 0.621302, 0.361163, 0.224936, 0.146785, 0.0987306, 0.0675676,
        0.0465013, 0.0317835, 0.021225, 0.0134857, 0.00771265, 0.00334416, 7.28015 \times 10^{-18}
```

Леви правоъгълници

$$ln[\cdot]:=$$
 $a=1.;$ $b=11.;$ $h=\frac{b-a}{n};$ $n=14;$ $f[x_{-}]:=\frac{11-x}{2x^2+2}$ Itochno $=\int_a^b f[x] \, dx;$ I1 $=h*\sum_{i=0}^{n-1} f[a+i*h];$ $M1=Abs[f'[a]];$ $R1=\frac{(b-a)^2}{2n}*M1;$ Print["Мрежата е със стъпка ", h, " и брой подинтервали ", n] Print["Приближената стойност по формулата на левите правоъгълници е ", I1] Print["Точната стойност е ", Itochno] Print["Чостинската грешка по формулата на левите правоъгълници е ", R1] Print["Истинската грешка по формулата на левите правоъгълници е ", R1] Print["Истинската грешка по формулата на левите правоъгълници е ", R1] Сината стойност е 2.79334 Точната стойност е 2.79334 Теоретичната грешка по формулата на левите правоъгълници е 9.82143 Истинската грешка по формулата на левите правоъгълници е 1.00901

Десни правоъгълници

In[a]:=
$$a = 1.$$
; $b = 11.$;
 $h = \frac{b-a}{n}$;
 $n = 14$;
 $f[x_{-}] := \frac{11-x}{2x^{2}+2}$
Itochno = $\int_{a}^{b} f[x] dx$;
 $I2 = h * \sum_{i=0}^{n} f[a+i*h]$;
 $M2 = Abs[f'[a]]$;
 $R2 = \frac{(b-a)^{2}}{2n} * M2$;
Print["Мрежата е със с

Print["Мрежата е със стъпка ", h, " и брой подинтервали ", n]

Print["Приближената стойност по формулата на левите правоъгълници е ", I2]

Print["Точната стойност e ", Itochno]

Print["Теоретичната грешка по формулата на левите правоъгълници е ", R2]

Print["Истинската грешка по формулата на левите правоъгълници е ",

Abs [I2 - Itochno]]

Мрежата е със стъпка 0.714286 и брой подинтервали 14

Приближената стойност по формулата на левите правоъгълници е 3.80235

Точната стойност е 2.79334

Теоретичната грешка по формулата на левите правоъгълници е 9.82143

Истинската грешка по формулата на левите правоъгълници е 1.00901

Средни правоъгълници

In[*]:= Plot[Abs[f''[x]], {x, a, b}]

Out[•]=

$$ln[\cdot]:=a=1.;b=11.;$$
 $h=\frac{b-a}{n};$ $n=14;$ $f[x_{-}]:=\frac{11-x}{2\,x^2+2}$ Itochno $=\int_a^b f[x]\,dx;$ I3 $=h*\sum_{i=0}^{n-1}f\Big[a+i*h+\frac{h}{2}\Big];$ M3 $=Abs[f''[a]];$ R3 $=\frac{(b-a)^3}{24\,n^2}*M3;$ Print["Мрежата е със стъпка ", h, " и брой подинтервали ", n] Print["Приближената стойност по формулата на левите правоъгълници $=$ ", Itochno] Print["Точната стойност $=$ ", Itochno] Print["Истинската грешка по формулата на левите правоъгълници $=$ ", R3] Print["Истинската грешка по формулата на левите правоъгълници $=$ ", R3] Print["Истинската грешка по формулата на левите правоъгълници $=$ ", R3] Рифолижената стойност по формулата на левите правоъгълници $=$ ", R3] Точната стойност по формулата на левите правоъгълници $=$ 2.73552 Точната стойност по формулата на левите правоъгълници $=$ 2.73334 Теоретичната грешка по формулата на левите правоъгълници $=$ 0.637755

e 0.0578239

Трапеци

In[*]:= Plot[Abs[f''[x]], {x, a, b}] Out[0]= 0.6 0.4 0.2

Истинската грешка по формулата на левите правоъгълници

$$ln[\cdot]:= a = 1.; b = 11.;$$
 $h = \frac{b-a}{n};$
 $n = 14;$
 $f[x_{-}] := \frac{11-x}{2x^2+2}$

Itochno = $\int_a^b f[x] dx;$

IT = $\frac{h}{2} * \left(f[a] + 2\sum_{i=1}^{n-1} f[a+i*h] + f[b]\right);$
 $M2 = Abs[f''[a]];$
 $RT = \frac{(b-a)^3}{12\,n^2} * M2;$

Print["Мрежата е със стъпка ", h, " и брой подинтервали ", n]
Print["Приближената стойност по формулата на трапците е ", IT]
Print["Точната стойност е ", Itochno]
Print["Истинската грешка по формулата на трапците е ", RT]
Print["Истинската грешка по формулата на трапците е ", Abs[IT-Itochno]]

Мрежата е със стъпка 0.714286 и брой подинтервали 14
Приближената стойност по формулата на трапците е 2.90949
Точната стойност е 2.79334
Теоретичната грешка по формулата на трапците е 0.116153

Симпсън

Може да използваме формулата на Симпсън, тъй като броят на подинтервалите е четно число - в случая 14.

In[348]:= Plot[Abs[f''''[x]], {x, a, b}] Out[348]=


```
In[1]:= a = 1.; b = 11.;
     h = \frac{b - a}{n};
     n = 14;
     f[x_{-}] := \frac{11-x}{2x^2+2}
     Itochno = \int_a^b f[x] dx;
     IS = \frac{h}{3} * \left( f[a] + 4 \sum_{i=1}^{m} f[a + (2i - 1) * h] + 2 \sum_{i=1}^{m-1} f[a + (2i) * h] + f[b] \right);
     M4 = Abs[f''''[a]];
     RS = \frac{(b-a)^5}{180 \text{ n}^4} * \text{M4};
     Print["Мрежата е със стъпка ", h, " и брой подинтервали ", n]
     Print["Приближената стойност по формулата на Симпсън е ", IS]
     Print["Точната стойност
                                                                      e ", Itochno]
     Print["Теоретичната грешка по формулата на Симпсън
                                                                      e ", RS]
     Print["Истинската грешка по формулата на Симпсън
                                                                      e ", Abs[IS - Itochno]]
     Мрежата е със стъпка 0.714286 и брой подинтервали 14
     Приближената стойност по формулата на Симпсън е 2.79818
     Точната стойност
     Теоретичната грешка по формулата на Симпсън е 0.216924
                                                    e 0.00483789
     Истинската грешка по формулата на Симпсън
```

Пресмятане с предварително зададена точност

Леви правоъгълници

```
In[345]:=
            eps = 10^{-5};
           Reduce \left[\frac{(b-a)^2}{2n} * M1 \le eps, n\right]
```

••• Reduce: Reduce was unable to solve the system with inexact coefficients. The answer was obtained by solving a corresponding exact system and numericizing the result.

Out[347]= $n < 0 \mid | n \ge 1.375 \times 10^7$

In[S4]:=
$$a=1.; b=11.;$$
 $h=\frac{b-a}{n};$
 $n=1.375*10^7;$
 $f[x_{-}]:=\frac{11-x}{2x^2+2}$
Itochno = $\int_a^b f[x] dx;$
I1 = $h*\sum_{i=0}^{n-1} f[a+i*h];$
M1 = Abs[f'[a]];
R1 = $\frac{(b-a)^2}{2n}*M1;$
Print["Мрежата е със стъпка ", h, " и брой подинтервали ", n]
Print["Почната стойност по формулата на левите правоъгълници е ", II]
Print["Точната стойност е ", Itochno]
Print["Истинската грешка по формулата на левите правоъгълници е ", R1]
Print["Истинската грешка по формулата на левите правоъгълници е ", R1]
Print["Истинската грешка по формулата на левите правоъгълници е 2.79334
Точната стойност по формулата на левите правоъгълници е 2.79334
Точната стойност е 2.79334
Точната стойност е 2.79334
Точната грешка по формулата на левите правоъгълници е 0.00001
Истинската грешка по формулата на левите правоъгълници е 9.11591×10⁻⁷

Десни правоъгълници

eps =
$$10^{-5}$$
;
Clear[n]
Reduce $\left[\frac{(b-a)^2}{2n} * M2 \le eps, n\right]$

error Reduce: Reduce was unable to solve the system with inexact coefficients. The answer was obtained by solving a corresponding exact system and numericizing the result.

Out[331]=

$$n < 0 \mid \mid n \ge 1.5 \times 10^7$$

```
In[332]:=
        a = 1.; b = 11.;
       h = \frac{b - a}{n};
       n = 1.5 * 10^7;
       f[x_{-}] := \frac{11-x}{2x^2+2}
       Itochno = \int_a^b f[x] dx;
       I2 = h * \sum_{i=0}^{n} f[a + i * h];
       M2 = Abs[f'[a]];
       R2 = \frac{(b-a)^2}{2n} * M2;
        Print["Мрежата е със стъпка ", h, " и брой подинтервали ", n] // N
        Print["Приближената стойност по формулата на левите правоъгълници е ", I2]
                                                                                     e ", Itochno]
        Print["Точната стойност
        Print["Теоретичната грешка по формулата на левите правоъгълници
                                                                                     e ", R2]
        Print["Истинската грешка по формулата на левите правоъгълници
         Abs[I2 - Itochno]]
       Мрежата е със стъпка 6.66667 \times 10^{-7} и брой подинтервали 1.5 \times 10^{7}
        Приближената стойност по формулата на левите правоъгълници е 2.79334
        Точната стойност
                                                                        e 2.79334
```

Средни правоъгълници

Теоретичната грешка по формулата на левите правоъгълници

Истинската грешка по формулата на левите правоъгълници

```
In[323]:=
            eps = 10^{-5};
            Reduce \left[\frac{(b-a)^3}{24 n^2} * M3 \le eps, n\right]
```

... Reduce: Reduce was unable to solve the system with inexact coefficients. The answer was obtained by solving a corresponding exact system and numericizing the result.

e 9.16667 \times 10⁻⁶

e 8.35833 \times 10⁻⁷

Out[325]=

$$n \le -3535.53 \mid \mid n \ge 3535.53$$

$$a = 1.; b = 11.;$$
 $n = 3535.53;$
 $h = \frac{b-a}{n};$
 $f[x_{-}] := \frac{11-x}{2\,x^2+2}$
Itochno = $\int_a^b f[x] \, dx;$
 $I3 = h * \sum_{i=0}^{n-1} f\Big[a+i*h+\frac{h}{2}\Big];$
 $M3 = Abs[f''[a]];$
 $R3 = \frac{(b-a)^3}{24\,n^2} * M3;$
Print["Мрежата е със стъпка ", h, " и брой подинтервали ", n]
Print["Приближената стойност по формулата на левите правоъгълници е ", I3]
Print["Точната стойност е ", Ito

... Reduce: Reduce was unable to solve the system with inexact coefficients. The answer was obtained by solving a

e ", Itochno]

e ", R3]

Out[239]=

$$n \le -3535.53 \mid \mid n \ge 3535.53$$

Abs[I3 - Itochno]]

Мрежата е със стъпка 0.00282843 и брой подинтервали 3535.53

Приближената стойност по формулата на левите правоъгълници е 2.79334

Print["Теоретичната грешка по формулата на левите правоъгълници

Print["Истинската грешка по формулата на левите правоъгълници

Точната стойност e 2.79334

Теоретичната грешка по формулата на левите правоъгълници e 0.00001

Истинската грешка по формулата на левите правоъгълници e 9.17408×10^{-7}

Трапеци

In[307]:=

eps =
$$10^{-5}$$
;
Clear[n]
Reduce $\left[\frac{(b-a)^3}{12 n^2} * M3 \le eps, n\right]$

... Reduce: Reduce was unable to solve the system with inexact coefficients. The answer was obtained by solving a corresponding exact system and numericizing the result.

Out[309]=

$$n \leq$$
 $-5000 . \mid \mid n \geq$ $5000 .$

In[310]:=

$$a=1.; b=11.;$$
 $n=5000;$
 $h=\frac{b-a}{n};$
 $f[x_{-}]:=\frac{11-x}{2x^2+2}$
Itochno $=\int_a^b f[x] \, dx;$
 $IT=\frac{h}{2}*\left(f[a]+2\sum_{i=1}^{n-1}f[a+i*h]+f[b]\right);$
 $M2=Abs[f''[a]];$
 $RT=\frac{(b-a)^3}{12n^2}*M2;$
Print["Мрежата е със стъпка ", h, " и брой подинтервали ", n]
Print["Приближената стойност по формулата на трапците е ", IT]
Print["Точната стойност е ", Itochno]
Print["Точната стойност е ", RT]
Print["Истинската грешка по формулата на трапците е ", Abs[IT-Itochno]]
Мрежата е със стъпка 0.002 и брой подинтервали 5000
Приближената стойност по формулата на трапците е 2.79334
Точната стойност е 2.79334
Теоретичната грешка по формулата на трапците е 0.00001
Истинската грешка по формулата на трапците е 9.17801×10⁻⁷

Симпсън

In[290]:=

eps =
$$10^{-5}$$
;
Clear[n]
Reduce $\left[\frac{(b-a)^{5}}{180 n^{4}} * M4 \le eps, n\right]$

... Reduce: Reduce was unable to solve the system with inexact coefficients. The answer was obtained by solving a corresponding exact system and numericizing the result.

Out[292]=

$$n \le -169.904 \mid \mid n \ge 169.904$$

a = 1.; b = 11.;
n = 169.904;
h =
$$\frac{b-a}{n}$$
;
 $f[x_{-}] := \frac{11-x}{2x^{2}+2}$
Itochno = $\int_{a}^{b} f[x] dx$;
m = n / 2;
IS = $\frac{h}{3} * \left(f[a] + 4 \sum_{i=1}^{m} f[a + (2i-1) * h] + 2 \sum_{i=1}^{m-1} f[a + (2i) * h] + f[b]\right)$;
M4 = Abs[f''''[a]];
RS = $\frac{(b-a)^{5}}{180 n^{4}} * M4$;

Print["Мрежата е със стъпка ", h, " и брой подинтервали ", n]

Print["Приближената стойност по формулата на Симпсън е ", IS]

Print["Точната стойност e ", Itochno]

Print["Теоретичната грешка по формулата на Симпсън е ", RS]

Print["Истинската грешка по формулата на Симпсън е ", Abs[IS-Itochno]]

Мрежата е със стъпка 0.0588568 и брой подинтервали 169.904

Приближената стойност по формулата на Симпсън е 2.79331

Точната стойност е 2.79334

Теоретичната грешка по формулата на Симпсън е 0.0000100001

Истинската грешка по формулата на Симпсън е 0.0000352253