

Europäisches Patentamt

European Patent Office

Office européen des brevets

(1) Veröffentlichungsnummer:

0 363 793

A1

12

EUROPÄISCHE PATENTANMELDUNG

(1) Anmeldenummer: 89118359.2

(1) Int. Cl.5: C07D 311/16 , A61K 31/37

- 2 Anmeldetag: 04.10.89
- (2) Priorität: 13.10.88 DE 3834861
- Veröffentlichungstag der Anmeldung: 18.04.90 Patentblatt 90/16
- Benannte Vertragsstaaten: AT BE CH DE FR GB IT LI NL

- Anmelder: BASF Aktiengeselischaft
 Carl-Bosch-Strasse 38
 D-6700 Ludwigshafen(DE)
- Erfinder: Rendenbach-Müller, Beatrice, Dr. Kapellenstrasse 8 D-6701 Waldsee(DE) Erfinder: Weifenbach, Harald, Dr.

Londoner Ring 71 D-6700 Ludwigshafen(DE)

Erfinder: Teschendorf, Hans-Jürgen, Dr.

Georg-Nuss-Strasse 5 D-6724 Dudenhofen(DE)

- Arylalkoxycumarine, Verfahren zu ihrer Herstellung und diese enthaltende therapeutische Mittel.
- Arylalkoxycumarine der allgemeinen Formel I

in der R¹ und R² unabhängig voneinander Wasserstoff, Niederalkyl, Phenyl, Halogen oder beide gemeinsam eine Alkylenbrücke mit 3 bis 5 Kohlenstoffatomen darstellen und

R³ Niederalkyl oder Halogen;

n eine ganze Zahl von 0 bis 3;

m eine ganze Zahl von 0 bis 4;

R4 Wasserstoff oder Niederalkyl;

Ar einen ein- bis dreifach durch Halogen, C₁-C₆-Alkyl- oder C₁-C₆-Alkoxy oder einfach durch Nitro, Cyano oder Trifluormethyl substituierten Phenyl- oder einen Naphthylring bedeuten, mit der Maßgabe, daß m nicht gleich 0 ist, wenn Ar einen unsubstituierten Phenylrest darstellt, Verfahren zu ihrer Herstellung und daraus hergestellte Heilmittel.

EP 0 363 793 A1

Arylalkoxycumarine, Verfahren zu ihrer Herstellung und diese enthaltende therapeutische Mittel

Gegenstand der Erfindung sind neue Arylalkoxycumarine der allgemeinen Formel I, die wertvolle therapeutische, insbesondere zur Behandlung zentralnervöser Erkrankungen geeignete Eigenschaften aufweisen, sowie Methoden zu ihrer Herstellung.

Herstellung und gewisse (mikrobizide und UV-absorbierende, jedoch nicht pharmakologische) Eigenschaften von 7-Benzoxycumarin und seinen in 3- oder 4-Stellung methylierten oder phenylierten Derivaten sind z.B. aus folgenden Literaturstellen bekannt:

J. Chem. Soc., Chem. Commun. (16), 1264-6 (CA 106:119499s);

Nippon Kagaku Kaishi (1), 96-9 (CA 82:149030k);

Phytochemistry 10 (12), 2965-70;

Experientia 26 (11), 1281-3;

J. Chem. Ecol. 13 (4), 917-24;

Chem. Pharm. Bull. 28 (12), 3662-4;

Indian J. Chem., Sect. B, 25B (12), 1253-4;

J. Indian Chem. Soc., 63 (4), 442-3;

5 Indian J. Chem., Sect. B, 25B (8), 862-5;

Curr. Sci. 53 (7), 369-71;

US 3 712 947; US 3 625 976; US 3 351 482.

Ferner ist für 7-Pentafluorphenylmethoxy-4-methylcumarin aus J. Agric. Food Chem. 34 (2), 185-8 eine fungizide Aktivität bekannt.

Der Erfindung lag die Aufgabe zugrunde, neue Therapeutika zur Behandlung zentral nervöser Erkrankungen zu entwickeln.

Die Lösung dieser Aufgabe besteht in den Alkoxycumarinen der allgemeinen Formel I nach Anspruch 1, in dem Verfahren zu deren Herstellung nach Anspruch 2 und den therapeutischen Mitteln nach den Ansprüchen 3 und 4.

In der allgemeinen Formel I

bedeuten R¹ und R², die gleich oder verschieden sein können, Wasserstoff, Niederalkyl, wobei R1 und R² eine gemeinsame Kette von 3 bis 5 Kohlenstoffatomen bilden können, Phenyl oder Halogen;

R³ Niederalkyl, Halogen;

n eine ganze Zahl von 0 bis 3;

m eine ganze Zahl von 0 bis 4;

R4 Wasserstoff oder Niederalkyl;

Ar einen ein- bis dreifach durch Halogen, C₁-C₆-Alkyl oder C₁-C₆-Alkoxy oder einfach durch Nitro, Cyano oder Trifluormethyl oder eine Kombination dieser Substituenten substituierten Phenyl- oder einen Naphthylring, mit der Maßgabe, daß m ≠ 0, wenn Ar = unsubstituiertes Phenyl.

Unter "Niederalkyl" ist hier C₁- bis C₅-Alkyl zu verstehen, unter "Halogen" Fluor, Brom und vor allem Chlor.

Die Verbindungen der allgemeinen Formel I lassen sich beispielsweise herstellen, indem man ein Hydroxycumarin der Formel II

25

in der R¹, R², R³ und n die oben angegebenen Bedeutungen haben, in an sich bekannter Weise mit einer Verbindung der Formel III

in der R⁴, m und Aryl wie eingangs definiert sind und Y für eine nucleofuge Abgangsgruppe wie Chlor, Brom oder R⁵SO₂O steht, umsetzt. R⁵ bedeutet hlerin Niederalkyl oder gegebenenfalls durch Niederalkyl oder Halogen substituiertes Phenyl. Die Umsetzung kann, wie beispielsweise in Houben-Weyl, Georg Thieme-Verlag, Stuttgart 1965, Bd. 6/3, S. 54 ff. beschrieben, durch Erhitzen der beiden Komponenten, vorzugsweise in Anwesenheit eines inerten Lösungsmittels wie Benzol, Toluol, Methylenchlorid, Aceton, einem niederen Alkohol, Dimethylformamid oder Wässer, auf Temperaturen zwischen Raumtemperatur und dem Siedepunkt des verwendeten Lösungsmittels gewünschtenfalls unter Zusatz katalytischer Mengen Natriumiodid durchgeführt werden. Die freiwerdende Säure wird im allgemeinen durch Zusatz von Basen wie Alkali- oder Erdalkalihydroxiden oder -carbonaten oder Aminen wie Pyridin oder Triethylamin abgefangen. Anstelle der Hydroxycumarine der Formel II können deren Alkalimetallsalze mit den Verbindungen der Formel III, vorzugsweise unter wasserfreien Bedingungen in aprotischen Lösungsmitteln wie Ether, Tetrahydrofuran, Dimethylformamid, Dimethoxyethan oder Dimethylsulfoxid, umgesetzt werden. Als Basen können in diesen Fällen Alkalimetallhydride oder -Alkoholate eingesetzt werden. Die Isolierung und Reinigung der Produkte erfolgt nach an sich bekannten Methoden, beispielsweise durch Umkristallisieren aus einem Lösungsmittel, durch Extraktion oder durch Säulenchromatographie.

Die Hydroxycumarine der allgemeinen Formel II können nach bekannten Methoden, wie sie zum Beispiel in Elderfield R.C., Heterocyclic Compounds, John Wiley-Verlag, New York 1951, Bd. 2, S. 174 f. beschrieben sind, hergestellt werden, beispielsweise durch Kondensation von Dihydroxybenzolen der Formel IV

in der R³ und n die oben angegenenen Bedeutungen haben, mit β-Ketocarbonsäuren der Formel V

in der R¹ und R² die angegebenen Bedeutungen besitzen, in Anwesenheit eines Kondensationsmittels wie Schwefelsäure, Phoshorpentoxid oder Aluminiumchlorid.

Die Arylverbindungen der allgemeinen Formel III sind bekannt und zum größten Teil kommerziell erhältlich.

Die Verbindungen der Formel I haben Monoaminoxidase(MAO)-inhibierende Aktivität. Aufgrund dies r Aktivität können die Verbindungen der Formel I zur Behandlung von zentralnervösen - insbesondere von neurodegenerativen - Erkrankungen und Parkinsonismus verwendet werden.

Die MAO hemmende Aktivität der erfindungsgemäßen Verbindungen kann unter Verwendung von Standardmethoden bestimmt werden. So erfolgte die Bestimmung der Monoaminooxidasen A und B in verdünntem Rattenhirnhomogenat, dem 1. unterschiedliche Konzentrationen der zu prüfenden Testsubstanzen und 2. ¹⁴C-Phenylethylamin bzw. ¹⁴C-Tryptamin in einer Konzentration von 0,4 μmol/l zugesetzt wurden. Dieser Ansatz wurde 20 min. bei 37 °C inkubiert. Die Reaktion wurde dann durch 0,1 normale HCl gestoppt und die Reaktionsprodukte nach Extraktion im Toluol-Szintillator (PPO + POPOP in Toluol) bestimmt. Der Blindwert wurde in analogen Ansätzen mit einer Inkubationszeit von t = 0 min bestimmt.

Aus den bei den verschiedenen Inhibitor-Konzentrationen gegen die Kontrolle ermittelten Hemmwerten

5

30

35

wurd durch lineare Regression nach logit-log-Transformation die mittlere Hemmkonzentration (IC50) berechnet.

Die so ermittelte Aktivität einiger erfindungsgemäßer Verbindungen ist aus der folgenden Tabelle ersichtlich:

Poissist	Beispiel IC50 [µmol/I] MAO A				
pershier	1030	[μπιοι/η]	WAO A		
	MAO A	MAO B	MAO A		
1	>10	0,007	>1400		
4	>10	0,011	> 900		
6	>10	0,032	> 300		
7	> 0,54	0,0011	490		
8	0,39	0,00089	430		
9	0,56	0,00087	640		
10	>10	0,0037	>2700		
12	2,1	0,00059	3500		
19	>10	0,0018	>5500		
20	0,3	0,0013	230		
23	>10	0,013	> 770		
26	>10	0,0018	>5600		
27	>10	0,0047	>2100		
28	>10	0,0028	>3600		
33	>10	0,0043	>2400		
34	1,5	0,0035	430		
- 35	1,2	0,0042	280		
38	>10	0,031	> 320		
Deprenyl	2,0	0,0078	256		
Ro 19-6327	>10	0,022	> 450		

30

5

10

15

20

25

Die erfindungsgemäßen Verbindungen können in üblicher Weise oral oder parenteral (subkutan, intravenös, intramuskulär, intraperitoneal) verabfolgt werden.

Die Dosierung hängt vom Alter, Zustand und Gewicht des Patienten sowie von der Applikationsart ab. In der Regel beträgt die tägliche Wirkstoffdosis zwischen etwa 10 und 500 mg pro Patient und Tag bei oraler und zwischen etwa 1 und 50 mg pro Patient und Tag bei parenteraler Gabe.

Die neuen Verbindungen können in den gebräuchlichen galenischen Applikationsformen fest oder flüssig angewendet werden, z.B. als Tabletten, Filmtabletten, Kapseln, Pulver, Granulate, Dragees, Suppositorien, Lösungen oder Sprays. Diese werden in üblicher Weise hergestellt. Die Wirkstoffe können dabei mit den üblichen galenischen Hilfsmitteln wie Tablettenbindern, Füllstoffen, Konservierungsmitteln, Tablettensprengmitteln, Fließreguliermitteln, Weichmachern, Netzmitteln, Dispergiermitteln, Emulgatoren, Lösungsmitteln, Retardierungsmitteln, Antioxidantien und/oder Treibgasen verarbeitet werden (vgl. H. Sucker et al: Pharmazeutische Technologie, Thieme-Verlag, Stuttgart, 1978). Die so erhaltenen Applikationsformen enthalten den Wirkstoff normalerweise in einer Konzentration von 1 bis 99 Gew.-%.

45

Beispiel 1

3,4-Dimethyl-7-(4-isopropylphenyl)-methoxycumarin

5,7 g 7-Hydroxy-3,4-dimethylcumarin in 25 ml DMF wurden bei Raumt mperatur zu iner Suspension von 1,05 g NaH (80 %) in 15 ml DMF zug tropft. Nach 45 min wurde mit 5,05 g 4-Isopropylbenzylchlorid gelöst in 20 ml DMF versetzt und üb r Nacht bei RT gerührt. Die Reaktionsmischung wurde mit Eiswasser hydrolysiert, der ausgefallene Feststoff abgesaugt und aus Methanol umkristallisiert.

Ausbeute: 4,3 g (45 %): Fp. 96°C

C ₂₁ H ₂₂ (322)				
Ber.	78,23 C	6,88 H	14,99 O	
Gef.	78,0 C	7,0 H	14,8 O-	

Beispiel 2

7-(4-Bromphenyl)-methoxy-3,4-dimethylcumarin

Ein Gemisch aus 5,0 g 7-Hydroxy-3,4-dimethylcumarin, 5,4 g 4-Brombenzylchlorid, 5,4 g K₂CO₃ und 100 ml Aceton wurde 4 Tage bei Raumtemperatur gerührt, eingeengt und der Rückstand in H₂O/Methylenchlorid verteilt. Nach Abtrennen der organischen Phase wurde noch zweimal mit Methylenchlorid extrahiert, die vereinigten organischen Phasen eingeengt und der Rückstand aus Methanol umkristallisiert.

Ausbeute: 5,9 g (62 %); Fp. 153°C

C ₁₈ H ₁₅ BrO ₃ (359)					
Ber.	60,18 C	4,21 H	22,24 Br	13,36 O	
Gef.	60,1 C	4,3 H	22,2 Br	13,5 O	

•

Beispiel 3

25

30

35

7-Benzyloxy-3,4-dimethylcumarin

Ausbeute: 61 %; Fp. 131-135°C (Methanol)

Analog Beispiel 1 wurden hergestellt:

C ₁₈ H ₁₆ O ₃ (280)				
Ber.	77,1 C	5,71 H	17,1 O	
Gef.	77,1 C	5,9 H	17,0 O	

Beispiel 4

3,4-dimethyl-7-(2-naphthyl)-methoxycumarin

Ausbeute: 62 %; Fp. 161-164°C (Methanol)

C22H1	₈ O ₃ (330)		
Ber.	79,50 C	6,06 H	14,44 O
Gef.	79,4 C	5,8 H	14,1 O

Beispiel 5

3,4-Dimethyl-7-(1-naphthyl)-methoxycumarin

Ausbeute: 45 %; Fp. 186-189°C (Methanol)

10

C ₂₂ H ₁₈ O ₃ (330)					
Ber.	79,5 C	6,06 H	14,44 O		
Gef.	79,3 C	5,7 H	14,5 O		

⁷⁵ Beispiel 6

7-(4-t-Butylphenyl)-methoxy-3,4-dimethylcumarin

Ausbeute: 47 %; Fp. 112-113°C (Methanol)

25

C ₂₂ H ₂₄ O ₃ (336)				
Ber.	78,54 C	7,19 H	14,27 O	
Gef.	78,4 C	7,5 H	13,9 O	

30 Beispiel 7

3,4-Dimethyl-7-(2-methylphenyl)-methoxycumarin

35 Ausbeute: 81 %; Fp. 145°C (Methanol)

C ₁₉ H ₁₈ O ₃ (294)					
Ber.	77,53 C	6,16 H	16,31 O		
Gef.	77,6 C	6,3 H	16,3 O		

Beispiel 8

3,4-Dimethyl-7-(3-methylphenyl)-methoxycumarin

Ausbeute: 85 %; Fp. 114°C (Methanol)

C ₁₉ H ₁₈ O ₃ (294)					
Ber.	77,53 C	6,16·H	16,31 O		
Gef.	77,8 C	6,1 H	16,1 O		

Beispiel 9

3,4-Dimethyl-7-(4-methylphenyl)-methoxycumarin

Die Reaktionsmischung wurde 3 h bei 60°C und über Nacht bei RT gerührt. Ansatz und Aufarbeitung erfolgten wie unter Beispiel 1 beschrieben.

Ausbeute: 76 %, Fp.: 123 °C (Methanol)

10

5

C ₁₉ H ₁₈ O ₃ (294)				
Ber.	77,53 C	6,16 H	16,31 O	
Gef.	77,6 C	6,3 H	16,2 O	

15

Beispiel 10

20

3,4-Dimethyl-7-(2,5-dimethylphenyl)-methoxycumarin

Die Reaktionsdurchführung erfolgte wie unter Beispiel 9 beschrieben. Ausbeute: 82 %, Fp. 173-175°C (Essigsäureethylester)

25

C ₂₀ H ₂₀ O ₃ (308)				
Ber.	77,90 C	6,54 H	15,56 O	
Gef.	77,7 C	6,6 H	15,2 O	

30

35 Beispiel 11

3,4-Dimethyl-7-(2,4,6-trimethylphenyl)-methoxycumarin

Die Reaktionsmischung wurde 3 h bei 60°C und über Nacht bei RT gerührt. Ansatz und Aufarbeitung erfolgten wie unter Beispiel 1 beschrieben.

Ausbeute: 50 %, Fp. 175-181°C (Essigsäureethylester)

45

C ₂₁ H ₂₂ O ₃ (322)					
Ber.	78,23 C	6,88 H	14,89 O		
Gef.	78,1 C	6,9 H	14,7 O		

50

Beispiel 12

7-(4-Methoxyphenyl)-methoxy-3,4-dimethylcumarin

Die Reaktionsdurchführung erfolgte wie unter Beispiel 9 beschrieben. Ausbeute: 66 %; Fp. 130-132°C (Essigsäureethylester)

C ₁₉ H ₁₈ O ₄ (310)				
Ber.	73,53 C	5,85 H	20,62 O	
Gef.	73,3 C	5,9 H	20,3 O	

5

Beispiel 13

3,4-Dimethyl-7-(4-nitrophenyl)-methoycumarin

Ansatz und Durchführung erfolgten wie unter Beispiel 1 beschrieben. Der nach der Hydrolyse ausgefallene Feststoff wurde abgesaugt, nacheinander mit je 500 ml Heptan und Aceton ausgekocht und der Rückstand im Vakuum getrocknet.

Ausbeute: 25 % Fp. 298-299°C

20

C ₁₈ H ₂₅ NO ₅ (335)				
Ber.	66,46 C	4,65 H	4,51 N	24,59 O
Gerf.	66,2 C	4,6 H	4,5 N	24,4 O

25

Beispiel 14

30

7-(4-Fluorphenyl)-methoxy-3,4-dimethylcumarin

Ausbeute: 44 %; Fp. 142°C (Essigsäureethylester)

35

C ₁₈	C ₁₈ H ₁₅ FO ₃ (298)				
Ber Get	1 .	·· · · · ·			16,09 O 16,0 O

40

Beispiel 15

7-(4-Chlorphenyl)-methoxy-3,4-dimethylcumarin

Ausbeute: 30 %; Fp. 148°C (Essigsäureethylester)

50

C ₁₈ H ₁₅ ClO ₃ (315)				
Ber.	68,69 C	4,8 H	11,26 CI	15,25 O
Gef.	68,2 C	4,9 H	11,2 CI	15,5 O

55

7-(4-Cyanophenyl)-methoxy-3,4-dimethylcumarin

Ausbeute: 67 %; Fp. 175-176°C (Methanol) .

 C₁₉H₁₅NO₃ (305)

 Ber.
 74,75 C
 4,96 H
 4,58 N
 15,7 O

 Gef.
 74,3 C
 4,9 H
 4,4 N
 16,2 O

10

5

Beispiel 17

7-(3-Chlorphenyl)-methoxy-3,4-dimethylcumarin

Ausbeute: 74 %; Fp. 141 °C (Essigsäureethylester)

20

C ₁₈ H ₁₅ ClO ₃ (315)				
Ber. Gef.	68,69 C 68.5 C	4,8 H 4.9 H	11,26 Cl 11,1 Cl	15,25 O 15,2 O
Gel.	00,5 0	4,3 11	11,1 01	10,20

25

Beispiel 18

30 7-(3-Cyanophenyi)-methoxy-3,4-dimethylcumarin

Ausbeute: 48 %; Fp. 178-183°C (Methanol)

35

C ₁₉ H ₁₅ NO ₃ (305)				
Ber.	74,75 C	4,96 H	4,58 N	15,7 O
Gef.	74,5 C	5,1 H	4,7 N	15,5 O

40

Beispiel 19

7-(4-Trifluormethylphenyl)-methoxy-3,4-dimethylcumarin

Ausbeute 62 %; Fp. 157-160°C (Methanol)

50

C19H15F3O (348)				
Ber.	65,52 C	4,34 H	16,36 F	13,78 O
Gef.	65,5 C	4,4 H	16,8 F	13,3 O

55

7-(3-Trifluormethylphenyl)-methoxy-3,4-dim thylcumarin

Ausbeute: 56 %; Fp. 136-138°C (Methanol)

5

C ₁₉ H ₁₅ F ₃ O (348)					
Ber.	65,52 C	4,34 H	16,36 F	13,78 O	
Gef.	65,4 C	4,4 H	16,9 F	13,3 O	

10

Beispiel 21

3,4-Dimethyl-7-(2-phenyl)-ethoxycumarin

Ansatz und Durchführung erfolgten wie unter Beispiel 1 beschrieben. Der nach Hydrolyse und Abdekantieren des Lösungsmittels verbleibende ölige Rückstand wurde in Methylenchlorid aufgenommen, mit 2N NaOH-Lösung und mit Wasser gewaschen und über Na₂SO₄ getrocknet. Der nach Filtration und Entfernen des Lösungsmittels verbleibende Feststoff wurde aus wenig Methanol umkristallisiert. Ausbeute: 20 %; Fp. 116°C

25

C ₁₉ H ₁₈ O ₃ (294)				
Ber.	77,53 C	6,16 H	16,31 O	
Gef.	77,4 C	6,3 H	16,6 O	

30

Beispiel 22

35 3,4-Dimethyl-7-[1-(4-isopropylphenyl)]-ethoxycumarin

Ansatz und Durchführung erfolgten wie unter Beispiel 1 beschrieben. Nach der Hydrolyse wurde mit Methyl-t-butylether extrahiert, die organische Phase mit H₂O gewaschen, getrocknet und der nach dem Einengen verbleibende Feststoff aus Methanol umkristallisiert.

a Ausbeute: 20 %; Fp. 152-153°C

Beispiel 23

6-Ethyl-3,4-dimethyl-7-(2-phenyl)-ethoxycumarin

Ausbeute: 35 %; Fp. 123°C (Methanol)

50

C ₂₁ H ₂₂ O ₃ (322)				
Ber.	78,23 C	6,88 H	14,99 O	
Gef.	78,5 C	7,2 H	14,4 O	

55

3,4,8-Trimethyl-7-(4-isopropylphenyl)-methoxycumarin

Ausbeute: 49 %, Fp. 172 °C (Methanol)

C ₂₂ H ₂₄ O ₃ (336)				
Ber.	78,54 C	7,19 H	14,27 O	
Gef.	78,4 C	7,4 H	14,2 O	

10

Beispiel 25

6-Ethyl-3,4-dimethyl-7-(4-isopropylphenyl)-methoxycumarin Ausbeute: 65 %; Fp. 129°C (Methanol)

20

C23H2	6O₃ (350)		
Ber.	78,85 C	7,42 H	13,71 O
Gef.	78,6 C	7,6 H	13,6 O

25

Beispiel 26

7-(4-Isopropylphenyl)-methoxycumarin

30 Ausbeute: 46 %; Fp. 127°C (Methanol)

35

C19H18O3 (294)				
Ber.	77,53 C	6,16 H	16,31 O	
Gef.	77,3 C	6,2 H	16,3 O	

Beispiel 27

4-methyl-7-(4-isopropylphenyl)-methoxycumarin

Ausbeute: 46 %; Fp. 156°C (Methanol)

C ₂₀ H ₂₀ O ₃ (308)				
Ber.	77,90 C	6,54 H	15,56 O	
Gef.	77,9 C	6,7 H	15,6 O	

50

Beispiel 28

3-methyl-7-(4-isopropylphenyl)-methoxycumarin

Ausbeute: 42 %; Fp. 129°C (Methanol)

 C₂₀H₂₀O₃ (308)

 Ber.
 77,90 C
 6,54 H
 15,56 O

 Gef.
 77,4 C
 6,6 H
 15,4 O

⁰ Beispiel 29

3-Ethyl-4-methyl-7-(4-isopropylphenyl)-methoxycumarin

Ausbeute: 64 %; Fp. 115°C (Methanol)

 C₂₀H₂₄O₃ (336)

 Ber.
 78,54 C
 7,19 H
 14,27 O

 Gef.
 78,6 C
 7,3 H
 14,3 O

25 Beispiel 30

20

4-Ethyl-3-methyl-7-(4-isopropylphenyl)-methoxycumarin

30 Ausbeute: %; Fp. 83 °C (Methanol)

Beispiel 31

35 3,4-Tetramethylen-7-(4-isopropylphenyl)-methoxycumarin

Ausbeute: 39 %; Fp. 129°C (Methanol)

40

45

C ₂₃ H ₂₄ O ₃ (348)				
Ber.	79,28 C	6,94 H	, 13,77 O	
Gef.	79,5 C	7,0 H	13,7 O	

Beispiel 32

4-Phenyl-7-(4-isopropylphenyl)-methoxycumarin

Ansatz und Durchführung erfolgten wie unter Beispiel 1 beschrieben. Nach der Hydrolyse wurde mit Methyl-t-butylether extrahlert und die organische Phase getrocknet und eingeengt. Ausb ute: 48 %; Fp. 85,5 °C (Methanol)

33

3-Chlor-4-methyl-7-(4-isopropylphenyl)-methoxycumarin

Ausbeute: 16 %; Fp. 124°C (Methanol)

5

C ₂₀ H ₁₉ ClO ₃ (343)				
Ber.	70,07 C	5,54 H	14,01 O	
Gef.	70,5 C	5,8 H	13,7 O	

10

Beispiel 34

7-(3-Phenyl)-propoxycumarin

Die Herstellung erfolgte wie unter Beispiel 21 beschrieben. Ausbeute: 43 %, Fp. 124-126 °C (Methanol)

20

Beispiel 35

3,4-Dimethyl-7-(3-phenyl)-propoxycumarin

Die Durchführung erfolgte wie unter Beispiel 21 beschrieben. Ausbeute: 51 %; Fp. 104 °C (Methanol)

30

C ₂₀ H ₂₀ O ₃ (308)				
Ber.	77,90 C	6,54 ⁻ H	15,56 O	
Gef.	77,8 C	6,6 H	15,4 O	

35

Beispiel 36

7-(5-phenyl)-pentoxycumarin

Die Durchführung erfolgte wie unter Beispiel 21 beschrieben. Ausbeute: 37 %; Fp. 103 °C (Methanol).

45

Beispiel 37

a 3,4-Dimethyl-7-(5-phenyl)-pentoxycumarin

Die Durchführung erfolgte wie unter Beispiel 21 beschrieben. Ausbeute: 32 %; Fp. 101 °C (Methanol)

55

6-Chlor-3,4-dimethyl-7-(4-isopropylphenyl)-methoxycumarin

Durchführung und Aufarbeitung erfolgten analog Beispiel 2. Ausbeute: 47 %; Fp. 168 °C (Essigsäureethylester)

C ₂₁ H ₂	21ClO ₃ (357)			
Ber.	70,68 C	5,93 H	9,94 CI	13,45 O
Gef.	70,3 C	6,0 H	9,8 CI	13,5 O

Beispiele für galenische Applikationsformen:

A) Auf einer Tablettenpresse werden in üblicher Weise Tabletten folgender Zusammensetzung gepreßt:

40 mg Substanz des Beispiels 1

120 mg Maisstärke

10

13,5 mg Gelatine

45 mg Milchzucker

2,25 mg Aerosil® (chemisch reine Kieselsäure in submikroskopisch feiner Verteilung)

6,75 mg Kartoffelstärke (als 6%ger Kleister)

B) 20 mg Substanz des Beispiels 3

60 mg Kemmasse

60 mg Verzuckerungsmasse

Die Kernmasse besteht aus 9 Teilen Maisstärke, 3 Teilen Milchzucker und 1 Teil Luviskol® VA 64 (Vinypyrrolidon-Vinylacetat-Misch-polymerisat 60 : 40, vgl. Pharm.lnd. 1962, 586). Die Verzuckerungsmasse besteht aus 5 Teilen Rohrzucker, 2 Teilen Maisstärke, 2 Teilen Calciumcarbonat und 1 Teil Talk. Die so hergestellten Dragees werden anschließend mit einem magensaftresistenten Überzug versehen.

Ansprüche

40

1. Arylalkoxycumarine der allgemeinen Formel I

in der R¹ und R² unabhängig voneinander Wasserstoff, Niederalkyl, Phenyl, Halogen oder beide gemeinsam eine Alkylenbrücke mit 3 bis 5 Kohlenstoffatomen darstellen und

R³ Niederalkyl oder Halogen;

n eine ganze Zahl von 0 bis 3;

m eine ganze Zahl von 0 bis 4;

R4 Wasserstoff oder Niederalkyl;

Ar einen ein- bis dreifach durch Halogen, C₁-C₆-Alkyl- oder C₁-C₆-Alkoxy oder einfach durch Nitro, Cyano oder Trifluormethyl substituierten Phenyl- oder einen Naphthylrest bedeuten, mit der Maßgabe, daß m nicht gleich 0 ist, wenn Ar einen unsubstituierten Phenylrest darstellt.

2. Verfahren zur Herstellung der Verbindungen der Formel I nach Anspruch 1, dadurch gekennzeichnet, daß ein Hydroxycumarin der Formel II

mit einer Verbindung der Formel III

10

5

wobei R¹ bis R⁴, Ar, n und m die im Anspruch 1 angegebenen Bedeutungen besitzen und Y ein nukleofuge Abgangsgruppe darstellt, in an sich bekannter Weise miteinander umsetzt und das Reaktionsprodukt der Formel I nach üblichen Methoden isoliert.

3. Orales therapeutisches Mittel, das als Wirkstoff pro Dosis 10 bis 500 mg einer Verbindung der allgemeinen Formel I nach Anspruch 1 neben üblichen galenischen Hilfsmitteln enthält.

4. Parenterales therapeutisches Mittel, das als Wirkstoff pro Dosis 1 bis 50 mg einer Verbindung der allgemeinen Formel I nach Anspruch 1 neben üblichen galenischen Hilfsmitteln enthält.

5. Mittel zur Behandlung von Erkrankungen des zentralen Nervensystems, das als Wirkstoff eine Verbindung der allgemeinen Formel I nach Anspruch 1 neben üblichen galenischen Hilfsmitteln enthält.

25

30

35

4n

45

50

EUROPÄISCHER RECHERCHENBERICHT

	EINSCHLÄG	EP 89118359.2		
Kategorie	Kennzeichnung des Dokumen der maßg	ts mit Angabe, soweit erforderlich, eblichen Teile	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int. CIX)
A	DE - A1 - 2 80 (BEECHAM GROUP * Ansprüche Beispiel	LTD.) 1,2,17,34;	1-5	C 07 D 311/16 A 61 K 31/3
A	US - A - 4 200 (BUCKLE et al. * Ansprüche	· ·	1-5	
A	Nr. 13, 26. Mär Columbus, Ohio MATSUSHITA ELEC STRIAL CO. "Con derivatives" Seite 635, Spar Zusammenfassung & Jpn. Kol	, USA CTRIC INDU- umarinyl ester Lte 1,	1-5	
A	Nr. 11, 12. Mäi Columbus, Ohio	, USA "Phenyl amino- nd their e" lte 2, Zu- Nr. 85 390h	1-5	RECHERCHIERTE SACHGEBIETE (Int. CI.) S
Der vo	rliegende Recherchenbericht wurde	o für alle Patentansprüche erstellt.		·
	Recherchenort WIEN	Abschlußdatum der Recherche 29-11-1989	. :	Prufer BRUS

EPA Form 1503 03 82

X: von besonderer Bedeutung allein betrachtet
 Y: von besonderer Bedeutung in Verbindung mit einer anderen Veröffentlichung derselben Kategorie
 A: technologischer Hintergrund
 O: nichtschriftliche Offenbarung
 P: Zwischenliteratur
 T: der Erfindung zugrunde liegende Theorien oder Grundsätze

D: in der Anmeldung angeführtes Dokument

L: aus andern Gründen angeführtes Dokument

&: Mitglied der gleichen Patentfamilie, übereinstimmendes Dokument