Digitális technika

IV. Szabályos alakok, Logikai függvények egyszerűsítése

4.1. Logikai függvények szabályos alakjai

Diszjunktív szabályos alak: szorzatok (mintermek) VAGY kapcsolata

Konjunktív szabályos alak: összegek (maxtermek) ÉS kapcsolata

pl.
$$F^3 = (A + \overline{B} + \overline{C}) * (A + \overline{B} + C) * (A + B + C)$$

$$100 \qquad 111$$

$$F^3 = \Pi^3 (4,5,7) \quad \text{Sorszámos konjunktív alak}$$

 Ugyanis jó ha van egy speciális algebrai alak, amelyet csak egyféleképpen lehet felírni → ez a szabályos alak (vagy normál alak vagy kanonikus alak) → és sajnos kétféle ilyen szabályos alak létezik :(

4.1. Logikai függvények szabályos alakjai

A szabályos alakok kiolvasása az igazságtáblázatból

4.1. Logikai függvények szabályos alakjai

Ha az igazságtáblázatot az alábbi szabályos formában vesszük fel (mintha a bemenetekhez helyi értékek lennének rendelve, és 2-es számrendszerben számolnánk) → akkor a sorszámos alakok könnyen kiírhatóak:

diszjunktív sorszámos alak

konjunktív sorszámos alak

4.2. Átalakítás egyik szabályos alakból a másikba

Ha az előző oldali táblázatot, a kétféle alak sorszámait megfigyeljük → az egyik alaknál az 1-es kimenetű, a másiknál a 0-s kimenetű sorokat kell nézni → egymás inverzei, tehát először invertálni kell a függvényt, így azok a sorszámok lesznek, amik az eredeti függvényben nem voltak.

Majd mivel a mintermek és maxtermek sorszámozása pont fordított, összegük minden sorban a legnagyobb lehető index lesz (3 változónál 7, 4 változónál 15) → úgy térünk át egyik alakról a másikra hogy a negált függvény sorszámait ki kell vonni a legnagyobb sorszámból

4.3. Minterm, maxterm

Diszjunktív szabályos alakban levő szorzatok → **mintermek** Konjunktív szabályos alakban levő összegek → **maxtermek**

<u>Minterm</u>: független változók (bemenetek) logikai szorzata, amelyben minden változó szerepel egyszer (pl. A*B*C, A*B*C, ...)

jelölése:
$$m_i^n \longrightarrow \text{változók száma}$$
 pl. $m_2^3 m_7^4$ index, sorszám pl. 2 bemenet esetén a mintermek: $\overline{A}^*\overline{B}$ \overline{A}^*B A^*B A^*B A^*B A^*B 3 bemenet $\rightarrow \overline{A}^*\overline{B}^*\overline{C}$ $\overline{A}^*\overline{B}^*C$ $\overline{A}^*B^*\overline{C}$ $\overline{A}^*B^*\overline{C}$

4.3. Minterm, maxterm

<u>Maxterm</u>: független változók (bemenetek) logikai összege, amelyben minden változó szerepel egyszer

pl. 2 bemenet esetén a maxtermek:
$$\overline{A}+\overline{B}$$
 $\overline{A}+B$ $A+\overline{B}$ $A+B$ M_0^2 M_1^2 M_2^2 M_3^2

3 bemenet
$$\rightarrow \overline{A} + \overline{B} + \overline{C}$$
 $\overline{A} + \overline{B} + C$ $\overline{A} + B + \overline{C}$ $\overline{A} + B + C$ $A + B + C$ M_0^3 M_1^3 M_2^3 M_3^3 M_7^3

A sorszámos alakoknál a mintermek illetve a maxtermek sorszámai szerepelnek

Olvasd ki a függvény szabályos alakjait az igazságtáblázatból!

Olvasd ki a függvény szabályos alakjait az igazságtáblázatból!

Olvasd ki a függvény diszjunktív szabályos alakját az igazságtáblázatból!

Α	В	С	D	Υ	
0	0	0	0	1	Diszjunktív szabályos alak !!
0	0	0	1	0	$Y = \overline{A} * \overline{B} * \overline{C} * \overline{D} + \overline{A} * \overline{B} * C * \overline{D} +$
0	0	1	0	1	T - A B C D + A B C D +
0	0	1	1	0	
0	1	0	0	0	+ $\overline{A}*B*C*\overline{D}$ + $\overline{A}*B*C*D$ -
0	1	0	1	0	
0	1	1	0	1	+ $A*\overline{B}*C*D + A*B*\overline{C}*\overline{D}$
0	1	1	1	1	
1	0	0	0	0	
1	0	0	1	0	+ A*B*C*D
1	0	1	0	0	
1	0	1	1	1	
1	1	0	0	1	
1	1	0	1	1	
1	1	1	0	0	
1	1	1	1	0	

4. feladat, Írd fel a sorszámos alakokat!

a,
$$Y^3 = A*B*\overline{C} + A*\overline{B}*C + \overline{A}*\overline{B}*\overline{C} + \overline{A}*B*\overline{C} + A*B*C$$

Helyiértékek:
$$110 = 6$$

$$101 = 5$$

$$000 = 0$$

$$010 = 2$$

$$111 = 7$$

$$Y^3 = \Sigma^3 (0,2,4,5,6,7)$$

b,
$$Y^4 = (A+B+\overline{C}+\overline{D})^*(\overline{A}+B+C+\overline{D})^*(\overline{A}+\overline{B}+C+\overline{D})^*(A+\overline{B}+\overline{C}+D)^*(A+\overline{B}+\overline{C}+D)$$

Helyiértékek:

1100 = 12

0110 = 6

0010 = 2

1001 = 9

1000 = 8

$$Y^4 = \Pi^4 (2,6,8,9,12)$$

5. feladat, Írd fel a teljes szabályos alakot!

Persze ezek a megoldások csak abban az esetben jók, ha így rendelünk helyi értékeket a változókhoz! Mert lehet pl. fordítva is, hogy az "A" változó a legkisebb helyi értékű

$$Y = \overline{A} \times \overline{B} \times \overline{C} \times D + \overline{A} \times \overline{B} \times C \times D + \overline{A} \times B \times \overline{C} \times \overline{D} + \overline{A} \times B \times C \times D + \overline{A} \times \overline{B} \times \overline{C} \times D + \overline{A} \times B \times C \times \overline{D}$$

6. feladat, Alakítsd át a másik sorszámos alakra!

a,
$$F^3 = \Sigma^3$$
 (0,3,4,6,7)
 $\overline{F}^3 = \Sigma^3$ (1,2,5) $\xrightarrow{7-i}$ $F^3 = \Pi^3$ (6,5,2)

b,
$$F^4 = \Pi^4$$
 (1,2,4,6,8,11,12,15)
$$\overline{F}^4 = \Pi^4$$
 (0,3,5,7,9,10,13,14)
$$\downarrow 15-i$$

$$F^4 = \Sigma^4$$
 (15,12,10,8,6,5,2,1)

A cél ?! → legyen a függvény a lehető legegyszerűbb → egyszerűbb hálózat, kevesebb kapuáramkör kell, olcsóbb

Az egyszerűsítés lehetőségei:

Egyszerűsítés algebrai alakból: a legkevesebb betű és művelet szerepeljen benne → átalakításokkal a Boole-algebra azonosságait felhasználva → lényeges az egy változóban különböző mintermek (maxtermek) összevonása

pl.
$$Y = \overline{A}*\overline{B}*C + A*\overline{B}*C + \overline{A}*B*C + A*B*C$$

($\overline{A} + A$)* $\overline{B}*C$ ($\overline{A} + A$)* $\overline{B}*C$
($\overline{A} + A$)* $\overline{B}*C$ ($\overline{A} + A$)* $\overline{B}*C$
($\overline{A} + A$)* $\overline{B}*C$ ($\overline{A} + A$)* $\overline{B}*C$

Grafikus minimalizálás, Karnaugh vagy Veitch táblával

lényege, hogy az egymás melletti celláknak megfelelő mintermek csak egy változóban térnek el egymástól → összevonhatók → és kiesik az a változó, amelyben különböznek

Karnaugh

lényege, hogy az egymás melletti celláknak megfelelő mintermek csak egy változóban térnek el egymástól → összevonhatók → és kiesik az a változó, amelyben különböznek

Veitch

Ezt a cellát nem tudjuk összevonni másikkal → marad a teljes szorzat!

Nagyobb tömbök is képezhetők, De mindig csak azok a változók maradnak meg, amelyek azonos értékűek a <u>tömb minden cellájában</u>

Nagyobb tömbök is képezhetők, De mindig csak azok a változók maradnak meg, amelyek azonos értékűek a <u>tömb minden cellájában</u>

4.6. Egyszerűsítés szabályai

Grafikus minimalizálás elvei, szabályai:

- nemcsak 2 szomszédos cella, hanem 4, 8, 16 is összevonható DE !! nem akármilyen alakban !! csak téglalap, négyzet ("L" "Z" stb. nem lehet)
- minden '1'-eket tartalmazó cella legalább egy tömbben szerepeljen (ha lehetséges)
- a lehető legnagyobb, de a lehető legkevesebb tömböt kell kialakítani

nem sok 2-es hanem 2db 4-es tömb

nem sok 2-es hanem egy 4-es és egy 8-as tömb

4.6. Egyszerűsítés szabályai

Grafikus minimalizálás elvei, szabályai:

4.6. Egyszerűsítés szabályai

Grafikus minimalizálás elvei, szabályai:

- 2-es tömb → 1 változó esik ki
- 4-es tömb → 2 változó esik ki
- 8-as tömb → 3 változó esik ki

Ha minden változó kiesik !! → Y = 1

4.7. Cellák számozása

4.7. Cellák számozása

Ha a változókat más sorrendben veszem fel (más helyi értékek tartoznak hozzá) az igazságtáblázatban, akkor a Karnaugh illetve Veitch tábláknál is cserélni kell a változókat, mert a cellák sorszáma (hogy melyik sorhoz tartoznak) csak így marad ugyanaz !! egyébként teljesen más sorrendben lesznek !!

4.7. Cellák számozása

Egyszerűsítsd a függvényeket!

1. feladat

2. feladat

 $Y^3 = \Sigma^3$ (0,1,2,3,7) az "C" változó a legnagyobb helyi értékű

3. feladat

CE AB	00	01	11	10
00	0 0	1 1	О з	1 2
01	1 4	0 5	0 7	1 6
11	1 12	1 13	0 15	1 14
10	0 8	1 9	0 11	1 10

4. feladat

 $Y^4 = \Sigma^4$ (1,3,5,7,8,10,11) az "A" változó a legnagyobb helyi értékű

Megoldások

1. feladat

$$Y = \overline{A} * \overline{C} + A * C + B$$

2. feladat

 $Y^3 = \Sigma^3$ (0,1,2,3,7) az "C" változó a legnagyobb helyi értékű

$$Y = \overline{C} + B*A$$

<u>Megoldások</u>

3. feladat

$$Y = B*\overline{D} + C*\overline{D} + \overline{A}*\overline{B}*C + A*\overline{C}*D$$

4. feladat

 $Y^4 = \Sigma^4$ (1,3,5,7,8,10,11) az "A" változó a legnagyobb helyi értékű

$$Y = \overline{A}*D + A*\overline{B}*\overline{D} + A*\overline{B}*C$$

Olvasd ki a függvények szabályos alakjait az igazságtáblázatokból!

3. feladat

1. feladat

Α	В	Υ
0	0	0
0	1	1
1	0	0
1	1	1

Α	В	С	Υ
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

Α	В	С	D	Υ
0	0	0	0	0
0	0	0	1	1
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	1
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	1
1	1	1	1	0

4. Írd fel a teljes szabályos alakokat!

a,
$$F^4 = \Sigma^4$$
 (0,2,5,7,10,12,13)

b,
$$F^3 = \Pi^3$$
 (6,5,3,0)

5. Írd fel a sorszámos alakokat!

a,
$$F^4 = (A+B+\overline{C}+D)*(\overline{A}+B+\overline{C}+D)*(\overline{A}+\overline{B}+C+\overline{D})*(\overline{A}+\overline{B}+\overline{C}+D)*(A+\overline{B}+\overline{C}+D)$$

b,
$$F^3 = A^*\overline{B}^*C + A^*\overline{B}^*\overline{C} + \overline{A}^*\overline{B}^*C + \overline{A}^*B^*\overline{C} + A^*B^*C$$

6. Alakítsd át a másik sorszámos alakra!

a,
$$F^4 = \Sigma^4 (0,1,4,7,8,10,14)$$

b,
$$F^3 = \Pi^3$$
 (1,3,5,6)

Egyszerűsítsd a függvényeket!

az "A" változó a legnagyobb helyi értékű mindegyik feladatnál

7. feladat

BC A	00	01	11	10
0	1 o	0 1	1 3	1 2
1	0 4	0 5	1 7	0 6

CE AB	00	01	11	10
00	0 0	1 1	0 3	1 2
01	1 4	1 5	1 7	1 6
11	1 12	0 ₁₃	0 ₁₅	1 ₁₄
10	0 8	1 9	0 11	0 10

9. feladat
$$Y^3 = \Sigma^3 (0,1,2,6,7)$$

10. feladat
$$Y^4 = \Sigma^4$$
 (1,3,5,7,10,11,13,14)

11. feladat
$$Y^4 = \Sigma^4$$
 (0,2,6,8,10,11,14,15)

12. feladat

Egy 4 bemenetű (A,B,C,D) kombinációs hálózat kimenete (Y) akkor 1-es értékű ha 1, vagy 2 darab bemenete egyidejűleg 0-ás értékű.

- a, add meg az igazságtáblázatot
- b, írd fel a függvény valamelyik szabályos alakját
- c, egyszerűsítsd a függvényt!