ボリュームデータ生成 (1)

情報メディア工学特論2004年11月2日

ボリュームデータ生成 (1)

実験•計測

CT-MRI

実映像

ボリュームデータ生成 (2)

複数台のカメラを用いて 複数方向から対象物体 を撮影

コンピュータ内にボリューム データを生成・表示

複数画像からの3次元形状復元

3次元形状復元(1)

R.Hartley and A.Zisserman, "Multiple View Geometry", Cambridge University press, 2001.

3 次元形状復元 (2)

画像間の幾何情報(エピポーラ幾何)を応用した3次元形状復元

R.Hartley and A.Zisserman, "Multiple View Geometry", Cambridge University press, 2001.

実時間ボクセル生成

実時間ボクセル生成

Real-time

ボクセル生成処理手順

初期ボクセルモデル生成 (1)

撮影画像

初期ボクセルモデル

初期ボクセルモデル生成 (2)

物体領域 0

$$O = \bigcap_{i=1}^{n} F(C_i)$$

 C_i : カメラ $F(C_i)$: カメラ C_i における視体積

初期ボクセルモデル生成 (3)

初期ボクセルモデル生成 (4)

投影計算

$$\begin{bmatrix} x \\ y \\ f \end{bmatrix} = \begin{bmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \\ p_{31} & p_{32} & p_{33} & p_{34} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix} \Rightarrow \begin{bmatrix} x \\ y \\ f \end{bmatrix} = \begin{bmatrix} p_{11} & p_{12} & p_{14} \\ p_{21} & p_{22} & p_{24} \\ p_{31} & p_{32} & p_{34} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Y \\ 1 \end{bmatrix}$$

ボクセル可視判定 (1)

ボクセル可視判定 (2)

奥行きバッファを利用した可視判定

ボクセル可視判定 (3)

ボクセル色割当 (1)

$$V_{color} = color(C_1, C_2, C_3, \dots, C_i)$$

ボクセル色割当 (2)

光の反射モデル

$$I = R_d cos(i) + W(i) cos^n(r)$$
(Diffuse Reflection) (Specular Reflection)

ボクセル色割当 (3)

$$\frac{C_1 + C_2 + C_3}{3} = C_{mean}$$

Surface Voxel List (SVL)

並列処理

システム構成

- PC cluster:
 - 6 PCs (5 processing nodes and a control node)
 - CPU: Intel Xeon 3.06GHz, RAM: 2.0GB
 - NIC: Gigabit Ethernet
- Camera:
 - 5 cameras
 - IEEE1394 digital camera (Sony DFW-VL500)

Image capturing system

復元結果 (1)

復元結果 (2)

(a) 96x96x96 (10mm; 13,530 voxels)

(b) 107x107x107 (9mm; 18,130 voxels) (c) 120x120x1120 (8mm; 22,570 voxels)

(d) 137x137x137 (7mm; 33,355 voxels) (e) 160x160x160 (6mm; 50,220 voxels)

(f) 192x192x192 (5mm; 78,970 voxels)

平均スループット

平均処理時間 (1)

[msec]

	93 ³	107 ³	120 ³	137 ³	160 ³	192 ³
ICP Stage	0.38	0.42	0.36	0.45	0.44	0.48
ICR Stage	27.8	26.7	20.2	25.0	25.5	32.7
BSG Stage	12.5	13.7	17.0	16.0	20.0	20.9
SIG Stage	30.4	37.6	35.2	107.0	293.3	628.9
SID Stage	159.2	125.9	187.2	420.2	632.9	909.1
VMG Stage	223.2	236.4	311.5	483.1	588.2	885.0
IBG Stage	117.9	162.1	261.1	362.3	531.9	806.5
IBD Stage	211.9	230.9	320.5	444.4	526.3	806.5
CVG Stage	17.8	23.5	25.6	37.3	56.5	96.2
CVD Stage	133.2	120.0	280.9	404.9	480.8	813.0

平均処理時間(2)

形状復元デモビデオ

Single View Geometry

投影

ピンホールカメラモデル

Z: Optical axis

f: Focal length

透視投影

画像座標上の点:
$$p(x,y)$$
 $\Leftrightarrow x = f\frac{X_c}{Z_c}, y = f\frac{Y_c}{Z_c}$

$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \frac{1}{Z_c} \begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} X_c \\ Y_c \\ Z_c \\ 1 \end{bmatrix} \Leftrightarrow \tilde{\mathbf{p}} = \frac{1}{Z_c} \begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \tilde{\mathbf{P}}_{\mathbf{c}}$$

座標系

Camera coordinate

World coordinate

• 座標系

- ピクセル座標系: p'(u,v)

- 画像座標系: p (x,y)

- カメラ座標系: $P_c(X_c,Y_c,Z_c)$

- 世界座標系: $P_{w}(X_{w},Y_{w},Z_{w})$

カメラパラメータ

- 内部パラメータ
 - 焦点距離: f
 - 画像主点: (*u₀, v₀*)
 - ピクセルサイズ: $(k_w k_v)$
 - レンズ歪み係数: k₁, k₂

- 外部パラメータ
 - 平行移動ベクトル: T
 - 回転行列: R

内部パラメータ (1)

From Pixel coordinate to Image coordinate:

$$\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} k_u & -k_u \cot \theta & u_0 \\ 0 & k_v / \sin \theta & v_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \Leftrightarrow \tilde{\mathbf{p}}' = \begin{bmatrix} k_u & -k_u \cot \theta & u_0 \\ 0 & k_v / \sin \theta & v_0 \\ 0 & 0 & 1 \end{bmatrix} \tilde{\mathbf{p}}$$

内部パラメータ (2)

Lens distortion

$$\begin{bmatrix} x_d \\ y_d \end{bmatrix} = (1 + k_1 \cdot r^2 + k_2 \cdot r^4) \begin{bmatrix} x \\ y \end{bmatrix}$$
$$r = \sqrt{x^2 + y^2}$$

外部パラメータ (1)

From World coordinate to Camera coordinate:

$$P_c = RP_w + T$$

$$\Leftrightarrow \tilde{\mathbf{P}}_{\mathbf{c}} = \begin{vmatrix} \mathbf{R} & \mathbf{T} \\ 0 & 0 & 1 \end{vmatrix} \cdot \tilde{\mathbf{P}}_{\mathbf{w}} \qquad \begin{array}{c} \mathbf{R} : \text{ Rotation matrix (3x3 matrix)} \\ \mathbf{T} : \text{ Translation vector (3D vector)} \end{array}$$

外部パラメータ (2)

Camera coordinate

From World to Camera:

$$\mathbf{P} = \mathbf{RP}_{\mathbf{w}} + \mathbf{T}$$

$$\mathbf{T} = \begin{bmatrix} t_x \\ t_y \\ t_z \end{bmatrix}$$

$$\mathbf{R} = \mathbf{R}_{\alpha} \mathbf{R}_{\beta} \mathbf{R}_{\gamma} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{bmatrix} \begin{bmatrix} \cos \beta & 0 & -\sin \beta \\ 0 & 1 & 0 \\ \sin \beta & 0 & \cos \beta \end{bmatrix} \begin{bmatrix} \cos \gamma & -\sin \gamma & 0 \\ \sin \gamma & \cos \gamma & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} \cos\beta\cos\gamma & -\cos\beta\sin\gamma & \sin\beta \\ \sin\alpha\sin\beta\cos\gamma + \cos\alpha\sin\gamma & -\sin\alpha\sin\beta\sin\gamma + \cos\alpha\cos\gamma & -\sin\alpha\cos\beta \\ -\cos\alpha\sin\beta\cos\gamma + \sin\alpha\sin\gamma & \cos\alpha\sin\beta\sin\gamma + \sin\alpha\cos\gamma & \cos\alpha\cos\gamma \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}$$

世界座標からピクセル座標 (1)

$$\tilde{\mathbf{p}}' = \begin{bmatrix} k_u & -k_u \cot \theta & u_0 \\ 0 & k_v / \sin \theta & v_0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \tilde{\mathbf{p}} \qquad \tilde{\mathbf{p}} = \frac{1}{Z_c} \begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \cdot \tilde{\mathbf{P}}_{\mathbf{c}} \qquad \tilde{\mathbf{P}}_{\mathbf{c}} = \begin{bmatrix} \mathbf{R} & | \mathbf{T} \\ 0 & 0 & 0 | 1 \end{bmatrix} \cdot \tilde{\mathbf{P}}_{\mathbf{w}}$$

Image to Pixel

Camera to Image

World to Camera

$$\tilde{\mathbf{p}}' = \begin{bmatrix} k_u & -k_u \cot \theta & u_0 \\ 0 & k_v / sin \theta & v_0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \frac{1}{Z_c} \begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} \mathbf{R} & | \mathbf{T} \\ 0 & 0 & 0 | 1 \end{bmatrix} \cdot \tilde{\mathbf{P}}_{\mathbf{w}}$$

世界座標からピクセル座標 (2)

$$\tilde{\mathbf{p}}' = \frac{1}{Z_c} \begin{bmatrix} fk_u & -fk_u \cot \theta & u_0 \\ 0 & fk_v / \sin \theta & v_0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} \mathbf{R} & \mathbf{T} \end{bmatrix} \cdot \tilde{\mathbf{P}}_{\mathbf{w}} , \qquad \begin{cases} \alpha = fk_u \\ \beta = f k_v / \sin \theta \\ \gamma = -fk_u \cot \theta \\ s = Z_c \end{cases}$$

$$s \cdot \tilde{\mathbf{p}}' = \mathbf{A}\mathbf{M} \cdot \tilde{\mathbf{P}}_{\mathbf{w}}$$

$$\mathbf{A} = \begin{bmatrix} \alpha & \gamma & u_0 \\ 0 & \beta & v_0 \\ 0 & 0 & 1 \end{bmatrix}, \quad \mathbf{M} = \begin{bmatrix} \mathbf{R} & \mathbf{T} \end{bmatrix}$$

A: Intrinsic parameter matrix

M: Extrinsic parameter matrix

Two View Geometry

エピポーラ幾何

Essential 行列

 $\mathbf{x_1} = (x_1, y_1, f_1), \mathbf{x_2} = (x_2, y_2, f_2)$ とするとき、 $\mathbf{x_1}, \mathbf{T}, \mathbf{R} \mathbf{x_2} + \mathbf{T}$ は同一平面上に存在

$$\mathbf{x_1}^T \left\{ \mathbf{T} \times \left(\mathbf{R} \mathbf{x_2} + \mathbf{T} \right) \right\} = 0$$

$$\Leftrightarrow \mathbf{x_1}^T ([\mathbf{T}]_{\times} \mathbf{R}) \mathbf{x_2} = 0$$

$$\Leftrightarrow \mathbf{x_1}^T \mathbf{E} \mathbf{x_2} = 0$$

$$\begin{bmatrix} \mathbf{T} \end{bmatrix}_{\times} = \begin{bmatrix} 0 & -t_z & t_y \\ t_z & 0 & -t_x \\ -t_y & t_x & 0 \end{bmatrix} : 歪対称行列$$

エピポーラ方程式 $\mathbf{x_1}^T \mathbf{E} \mathbf{x_2} = 0$

Essential行列

$$\mathbf{E} = [\mathbf{T}]_{\times} \mathbf{R}$$

Fundamental 行列

カメラの内部パラメータが未知である場合

$$\mathbf{x_1}^T \mathbf{E} \mathbf{x_2} = 0$$

$$\Leftrightarrow \left(\mathbf{x_1}^T A_1^{-T}\right) \mathbf{E}\left(A_2^{-1} \mathbf{x_2}\right) = 0$$

$$\Leftrightarrow \mathbf{x_1}^T \mathbf{F} \mathbf{x_2} = 0$$

エピポーラ方程式
$$\mathbf{x_1}^T \mathbf{F} \mathbf{x_2} = 0$$

Fundamental行列

$$\mathbf{F} = \mathbf{A_1}^{-T} \mathbf{E} \mathbf{A_2}^{-1} = \mathbf{A_1}^{-T} [\mathbf{T}]_{\times} \mathbf{R} \mathbf{A_2}^{-1}$$

小テスト(氏名:)

• 画像からの3次元形状復元技術が有効だと思われる分野とそのアプリケーション例をあげよ。