Simplified Coherent Transceivers for Optical Communication Networks

Romil Patel

(romilkumar@ua.pt)

Department of Electronics, Telecommunications and Informatics,
University of Aveiro, Aveiro, Portugal
Instituto de Telecomunicações, Aveiro, Portugal

©2005, it - instituto de telecomunicações

instituto de telecomunicações

creating and sharing knowledge for telecommunications

INSTITUIÇÕES ASSOCIADAS:

Theocratical Overview

- Coherent optical schemes require two optical hybrids and four pairs of balanced photodetector. It formulate a solution for medium-to-longreach applications, however, cost of such receiver become an obstacle in short reach application like PON, inter-data-center communications and metropolitan network.
- Kramers-Kronig transceiver provides a solution for such short links. It allows the reconstruction of complex constellation from an intensity measurement using a single-photo-diode.
- The kramers-Kronig scheme relies on identifying a condition which ensures that the received signal is minimum phase.
- The following few slides would give a comprehensive overview about the working principle Kramers-Kronig receiver.

1. What is minimum phase signal?

- A necessary and sufficient condition for a complex signal $A(t) = A_s(t) + \bar{A}$ to be minimum phase is that the curve described in a complex plane by A(t) when $t \to -\infty$ to $t \to \infty$ does not encircle the origin. where, $A_t \to \text{Single}$ sideband (SSB) signal & $\bar{A} \to \text{DC}$ value.
- A minimum-phase signal has an useful property that the **natural logarithm** of the magnitude related to the phase angle by the Hilbert transform.

2. How we can use these signals and profit from them?

SSB Signal:

If we denote a SSB signal $A_s(t)$ as,

$$A_s(t) = A_{s,r}(t) + iA_{s,i}(t)$$

$$\tag{1}$$

then in the equation 1, the real and imaginary parts $A_{s,r}(t)$ and $A_{s,i}(t)$ are related through the Kramers-Kronig relation with each other as,

$$A_{s,r}(t) = -\frac{1}{\pi} p.v. \int_{-\infty}^{\infty} \frac{A_{s,i}(t')}{t - t'} dt'$$

$$A_{s,i}(t) = \frac{1}{\pi} p.v. \int_{-\infty}^{\infty} \frac{A_{s,r}(t')}{t - t'} dt'$$
(2)

Note: Single sideband signal is the frequency translated version of an analytical signal as,

$$A_s(t) = Re\{[s(t) + i\hat{s}(t)]e^{i2\pi f_0 t}\}$$

Minimum Phase Signal:

Given function $A(t) = A_s(t) + \bar{A}$ never encircles the origin for $t \in (-\infty, \infty)$.

$$G(t) = ln \left[\frac{A(t)}{\bar{A}} \right] \tag{3}$$

Under the hypothesis of signal being minimum phase, the phase information can be reconstructed by from its intensity as,

$$\phi(t) = \bar{\phi} + \frac{1}{2\pi} p.v. \int_{-\infty}^{\infty} \frac{\ln|A(t)|^2}{t - t'} dt'$$
 (4)

Simulation setup

Transmitter setup

Transmitter simulation setup

Simulation Results

S2 and S2b signals

S3 S4 signals

S5 signal

S6, S7 and S8 signals

Experimental setup

Envisioned lab setup

INSTITUIÇÕES ASSOCIADAS:

