Experiment -2 Design and Analysis of 2 input NAND Gate

Objectives:

- 1. To do DC analysis of NAND Gate.
- 2. Do Transient analysis of NAND Gate with different input combinations and prove that delay is input dependent.

Experimental Procedure:

- 1. Invoke Cadence Virtuoso tool
- 2. Construct the schematic as shown in Fig.
- 3. Invoke ADEL and perform DC analysis to plot VTC curve for different input transitions
- 4. Perform Transient analysis and calculate the propagation delays for different input transitions shown in tabulation section.

Schematic Circuit of NAND gate:

Results and Analysis:

1. DC analysis and finding Threshold point for inputs A,B.

Green Curve represents output Y and component parameter B and Threshold Point is 781.027~mV. Red Curve represents output Y and component parameter A and Threshold Point is 832.7801~mV. Blue Curve represents output Y and short both inputs A,B and Threshold Point is 1.0289V.

2. Finding Delays with Transient response:

Analysing Delays.

Input A	Input B	Output Y	Delay
1	1 to 0 2.525ns	0 to 1 Tplh = 2.53795ns	Td =12.94ps
1	0 to 1 3.015ns	1 to 0 Tphl = 3.021ns	Td= 6ps
0 to 1 3.015ns	1	1 to 0 Tphl = 3.021ns	Td= 6ps
1 to 0 2.525ns	1	0 to 1 Tplh = 2.535 ns	Td =10ps
0 to 1	0 to 1 10.05 ns	1 to 0 Tphl = 10.06691 ns	Td= 16.9ps
1 to 0	1 to 0 10.05ns	0 to 1 Tplh = 10.049676ns	Td= 0.324ps

<u>TASK -1</u> Design and Analysis of 2 input NOR Gate

Objectives:

- 1. To do DC analysis of NOR Gate.
- 2. Do Transient analysis of NOR Gate with different input combinations and prove that delay is input dependent.

Experimental Procedure:

- 1. Invoke Cadence Virtuoso tool
- 2. Construct the schematic as shown in Fig.
- 3. Invoke ADEL and perform DC analysis to plot VTC curve for different input transitions
- 4. Perform Transient analysis and calculate the propagation delays for different input transitions shown in tabulation section.

Schematic Circuit of NOR gate:

1. DC analysis

- 1. Output Y and component parameter B and Threshold Point is 990.2 mV.
- 2. Output Y and component parameter A and Threshold Point is 1.049 V.
- 3. Output Y and short both inputs A,B and Threshold Point is 792 mV.

2. Finding Delays with Transient response:

Analysing Delays.

Input A	Input B	Output Y	Delay
0 to 1 16.04 ns	0	1 to 0 Tphl = 16.059 ns	Td =19ps
1 to 0 15.05 ns	0	0 to 1 Tplh = 15.0572 ns	Td= 7.2ps
0	0 to 1 16.04ns	1 to 0 Tphl = 16.0523 ns	Td= 12.3 ps
0	1 to 0 12.04ns	0 to 1 Tplh = 12.0476 ns	Td =7.6ps
0 to 1	0 to 1 20.06ns	1 to 0 Tphl=20.0654ns	Td=5.4ps
1 to 0	1 to 0 20.02ns	0 to 1 Tplh= 20.0313ns	Td=11ps

TASK -2 Design and Analysis of 1 Bit Comparator

Objectives:

Design a 1 Bit Comparator using

a) CMOS logic or b) Transmission gate logic and plot its transient response. Verify the truth table.

Experimental Procedure:

- 1. Invoke Cadence Virtuoso tool.
- 2. Construct the schematic as shown in Fig.
- 3. Perform Transient analysis and verify its functionality.

Schematic Circuit:

Output analysis:

A	В	G (A>B)	L(A <b)< th=""><th>E(A=B)</th></b)<>	E(A=B)
0	0	0	0	1
0	1	0	1	0
1	0	1	0	0
1	1	0	0	1

Results and Analysis:

From the output graph of our comparator we can successfully verify that

- 1. Input a = Input b Output E=1, G=0, L=0.
- 2. Input a > Input b Output G=1, G=0, L=0.
- $3. \ \, \text{Input a} < \, \text{Input b} \ \, \text{Output L=1, G=0, L=0.}$

****** THANK YOU*****