Directions:

- 1) Each question is worth 5 points (for a total of 150 points)
- 2) Calculators are allowed, but all cell phones/PDA devices must be put away. No calculator sharing.
- 3) Show all work for full credit.
- 4) Read all directions carefully and clearly indicate your final answer.
- 5) Round any approximate answers to 3 decimal places.
 - (1) Using the table of values for the function f(x)

	1							
f(x)	2.3	2.8	3.2	3.7	4.1	5.0	5.6	6.2

answer the following:

What is f(7)? _____

What is the value of x when f(x) = 2.3?

What is the average rate of change of f between x = 2 and x = 5?

- (2) Let $f(x) = -x^3 + x^2 + 6x$. Where is this function increasing?
- (3) Find the slope of a line perpendicular to the line passing through the points (-1,2) and (3,7).
- (4) An object is put outside on a cold day at time t = 0. Its temperature H = f(t) at time t (in minutes) is given in degrees C. What does the statement f(30) = 10 mean in terms of temperature? Include units for 30 and 10 in your answer.

(5) Let
$$f(x) = x^2 - 3x + 4$$
 and $g(x) = \frac{x}{2} + 8$.

Find
$$f(x) - g(x)$$
: $f(x) - g(x) =$ _____

Find f(g(-8)). Show work: $f(g(-8)) = \underline{\hspace{1cm}}$

(6) A deposit is made into an interest bearing account. The graph shows the balance B in the account t years later. Find the equation of the graph—you many assume the interest rate is compounded continuously. Note that B=2000 at time t=0 and that B=7000 after 20 years.

- (7) Solve for x using logarithms. $3^{5x} = 100$
- (8) Find a linear equation for y = f(x) if f(2) = 7 and f(-6) = -5.
- (9) How long will it take 50 grams of a substance to decay to 10 grams if the continuous rate of decay is k = -0.345 where time is measured in years?
- (10) The table below shows world gold production G = f(t) as a function of the year t.

(8)	1990				
G (mn troy ounces)	70.2	73.3	73.6	82.6	82.9

Estimate f'(1996). _____

Give units and interpret your answer in terms of gold production.

(11) The number of bacteria after t hours in a laboratory experiment is given by n = f(t). What are the units of the derivative f'(t)?

(12) A graph of f(x) is given below. Sketch the derivative f'(x).

(13) Find the equation of the line tangent to the graph of $y = 80t - 16t^2$ at t = 3.

Find the following derivatives:
(14)
$$y = x^4 + 8x^2 - 2x + 4$$
 $y' =$

(15)
$$f(x) = 5 \ln x$$
 $f'(x) =$

(16)
$$g(x) = e^{2x}$$
 $g'(x) =$

$$(17) \ \ y = \sqrt{x^4 + 1} \qquad y' = \underline{\hspace{1cm}}$$

(18)
$$f(x) = \frac{e^{2x}}{x^2 + 1}$$
 $f'(x) = \underline{\hspace{1cm}}$

(19)
$$f(x) = x^2 \ln x$$
 $f'(x) =$

(20) Find the global minimum for $f(x) = x^{10} - 10x$ for $0 \le x \le 2$

(21) 100 fish are released in a small pond. The rate of growth of the number of fish, r(t), is given by:

t (time in weeks)	0	2	4	6
r(t) (fish per week)	15	17	21	23

Use a left hand sum to estimate the number of fish after 6 weeks.

Use a right hand sum to estimate the number of fish after 6 weeks.

Give an good guess for the number of fish after 6 weeks.

(22) Compute the following definite integrals:

$$\int_0^2 x e^x \, dx = \underline{\qquad}$$

$$\int_{1}^{4} x\sqrt{x^2 + 1} \, dx = \underline{\qquad}$$

(23) Find the following antiderivatives:

$$\int x^3 + 4x + 8 \, dx = \underline{\qquad}$$

$$\int \frac{5}{x} dx = \underline{\qquad}$$

(24) Integrate by substitution:

$$\int x(x^2+9)^6 dx =$$

(25) Use the Fundamental Theorem of Calculus to evaluate the integral $\int_0^1 e^{-0.2t} dt$

(26) If f(t) is measured in inches per minute and t is measured in minutes, what are the units of $\int f(t)dt$?

(27) Find an antiderivative F(x) of $F'(x) = x^3 - 3$ with the added condition that F(2) = 8.

(28) Given the following graph of the derivative F'(x) sketch a possible graph for F(x).

(29) Find the area between the curves: $y = x^2$ and y = x + 6. These functions are graphed below. Shade the area you have been asked to find.

Area=____

(30) The rate that water is pumped into a tank is $r(t) = 6 - 5(.9)^t$ gallons per minute where t is the time in minutes since the pumping started.

What are the units on $\int_0^{30} r(t) dt$?

How much water was pumped into the tank in the first 30 minutes?