Limpiar y bien formar siempre

Tema 3

AFD → AFD mínimo

- 1. Buscar Q/E_0 , que divide los estados en finales y no finales.
- 2. Hacer Q/E_1 , Q/E_2 ... pueden separarse, pero nunca juntarse de nuevo.
- 3. Cuando se repitan las particiones hemos terminado. Como máximo tendremos que hacer $Q/E_{(n-2)}$ iteraciones.

AFND → AFD

- 1. Calcular T*.
- 2. Quitar la columna λ y añadir la columna λ^* .
- 3. Sustituir la columna a, b... por λ^* a λ^* , λ^* b λ^* ...
- 4. El nuevo estado inicial será p λ^* .
- 5. Transformar los caminos múltiples en estados combinados (finales si alguna de las letras es final) y las transiciones no definidas en transiciones al sumidero.

Tema 4

G3 LD → G3 LI

- Quitar el axioma inducido (A → aS) introduciendo un nuevo símbolo (que haga lo mismo que el axioma pero no se copia lambda).
- 2. Construir un grafo dirigido en el que los nodos son los Σ_{NT} y las flechas son los Σ_{T} .
- 3. Intercambiar las etiquetas de λ y S, y dar la vuelta a las flechas.
- 4. Interpretar el grafo
 - Nota: las que iban de S van a λ , y de λ no puede salir nada.

Lenguaje vacío (G2)

1. Generar el árbol de derivación hasta llegar a n (número de estados). Si no genera sentencias y se repiten los Σ_{NT} , es un lenguaje vacío.

Lenguaje infinito (G2)

1. Construir un grafo cuyos nodos están etiquetados con los Σ_{NT} . Si existen ciclos accesibles desde el axioma, entonces es un lenguaje infinito.

Limpieza y bien-formación de gramáticas

- 1. Eliminar reglas innecesarias (A \rightarrow A)
- 2. Eliminar símbolos inaccesibles (para ello se construye un vector con los simbolos T y NT). Ir marcando desde el axioma los que vaya produciendo.
- 3. Eliminar reglas superfluas con el algoritmo de marcado:
 - a. Se marcan los $\Sigma_{NT} \rightarrow \Sigma_T y los \Sigma_{NT} \rightarrow \lambda$.
 - b. Se marcan los que contengan un Σ_{NT} marcado en la derecha.
 - c. Se repite hasta que no se puedan marcar más.
 - d. Se eliminan todas las reglas no marcadas.

- 4. Eliminar los símbolos no generativos, es decir, aquellos que solo aparecen en reglas superfluas.
- 5. Eliminar las reglas no generativas, las de tipo $A \to \lambda$. Cada vez que aparezca A en la λ . Se admite parte derecha, se añade la posibilidad de que sea $Axioma \to \lambda$, OJO si cuando eliminamos solo quedaba un simbolo (C->M y eliminamos M), ponemos lambda (C-> λ) y repetimos el proceso de eliminacion (para C).
- 6. Eliminar las reglas de redenominación, las de tipo A \rightarrow B. Por cada regla de la forma B \rightarrow x, se añade A \rightarrow x

$G2 \rightarrow FNC$

1. Se separa el primer simbolo de la derecha del resto, por ejemplo, de A \rightarrow aBb sacamos A \rightarrow DE y D \rightarrow a, E \rightarrow Bb \rightarrow BC, C \rightarrow b (previo paso debe estar limpia y bien formada).

$G2 \rightarrow FNG$

- 1. Limpiar y bien formar la gramática.
- 2. Quitar recursividad a izquierdas si la hay. λ no se toca en este paso.
- 3. Ordenar el α beto Σ_{NT} (A, B) y clasificar las reglas en G2 (AB) o G3(BA).
- 4. Pasar las de G3 a G2. Se hace por sustitución, no sustituir con las reglas que dan lambda.
 - a. Quitar recursividad a izquierdas si apareciese.
- 5. Pasar de G2 a G1, empezando por la que me deje meter un Σ_T en la cabeza.
- 6. Si hay un Σ_T que no esté en la cabeza, sustituirlo por un Σ_{NT} que dé ese Σ_T .

Quitar recursividad a izquierdas

Dada una regla de tipo A \rightarrow A α | β (donde α y β son cualquier cosa...)

Se transforma en:

- $A \rightarrow \beta \mid \beta X$
- $X \rightarrow \alpha X \mid \alpha$

Si tuviéramos varias (A \rightarrow A α | β_1 | β_2), entonces se transforma en:

- $A \rightarrow \beta_1 \mid \beta_2 \mid \beta_1 X \mid \beta_2 X$
- $X \rightarrow \alpha X \mid \alpha$

Paso de G3LD (FNG) → AF y viceversa

Por cada regla $A \rightarrow aB$:

• A y B son estados del autómata y se realiza la transición de A a B con 'a'.

Si tenemos una regla del tipo $A \rightarrow a$:

• Se realiza la transición de A a un estado final con 'a'.

Para pasar de AF a G3LD se hace exactamente igual.

Tema 5

Teorema de síntesis (Nota: $D_{ab}(\alpha) = D_b(D_a(\alpha))$

- 1. Derivar la expresión respecto de todos los símbolos y todas las que me vayan saliendo. Las voy llamando R_x , donde x es un número.
- 2. Si R_x puede ser λ , se añade una regla, $R_x \rightarrow \lambda$.
- 3. Si $D_y(R_{x1}) = R_{x2}$, se añade una regla $R_{x1} \rightarrow yR_{x2}$
- 4. Luego se aplica el paso de G3LD (FNG) a AF para obtener el AF correspondiente.

```
\begin{aligned} \text{Da(a)} &= \lambda \\ \text{Da(b)} &= \varnothing \\ \text{Da(RS)} &= \text{Da(R)S} + \text{d(R)Da(S)} \\ \text{Da(R+S)} &= \text{Da(R)} + \text{Da(S)} \\ \text{Da(R^*)} &= \text{Da(R)R^*} \\ \text{d(a)} &= \varnothing \\ \text{d(a^*)} &= \lambda \qquad \qquad \text{Si puede ser $\lambda$, es $\lambda$, si no $\varnothing$} \\ \text{d(a^*+a)} &= \lambda \end{aligned}
```

Tema 6

$APF \rightarrow APV$

- 1. Añadir un estado inicial nuevo con una transición y un nuevo "chivato" que nos indique cuándo se vacía la pila.
- 2. Añadir un estado "final" que desapile todo lo que pudiera quedar y el chivato.

$APV \rightarrow APF$

- 1. Añadir un estado inicial nuevo con su chivato.
- 2. Añadir un estado final al que se transita desapilando el chivato.

G2 (FNG) → APV

- 1. Tres tipos de reglas:
 - a. $A \rightarrow aBCD$: f(q, a, A) = (q, BCD)b. $A \rightarrow a$: $f(q, a, A) = (q, \lambda)$ c. $S \rightarrow \lambda$: $f(q, \lambda, S) = (q, \lambda)$
- 2. El autómata tendrá un único estado, q.

$APV \rightarrow G2$

- 1. Se pone una regla del tipo $S \rightarrow (q_0, A_0, pqr...)$
- 2. Se ponen reglas del tipo:
 - a. Tipo 1A: f(q, a, B) = (p, DEF)El molde será: $(qB_{_}) \rightarrow a(pD_{_})(_E_{_})(_F_{_})$
 - b. Tipo 1B: $f(p, \lambda, B) = (q, A)$ El molde será: $(pB_{-}) \rightarrow X(qA_{-})$
 - c. Tipo 2A: $f(p, a, B) = (q, \lambda)$ El molde será: $(pBq) \rightarrow a$
 - d. Tipo 2B: $f(p, \lambda, B) = (q, \lambda)$ El molde será: $(pBq) \rightarrow \lambda$

Equivalencia de EERR

```
1. (\alpha + \beta) + \sigma = \alpha + (\beta + \sigma)

2. \alpha + \beta = \beta + \alpha

3. (\alpha \cdot \beta) \cdot \sigma = \alpha \cdot (\beta \cdot \sigma)
```

4.
$$\alpha \cdot (\beta + \sigma) = (\alpha \cdot \beta) + (\alpha \cdot \sigma)$$

5.
$$\alpha \cdot \lambda = \lambda \cdot \alpha = \alpha$$

6.
$$\alpha + \emptyset = \emptyset + \alpha = \alpha$$

7.
$$\lambda^* = \lambda$$

8.
$$\alpha \cdot \emptyset = \emptyset \cdot \alpha = \emptyset$$

9.
$$Ø^* = \lambda$$

10.
$$\alpha^* \cdot \alpha^* = \alpha^*$$

11.
$$\alpha \cdot \alpha^* = \alpha^* \cdot \alpha$$

12.
$$(\alpha^*)^* = \alpha^*$$

13.
$$\alpha^* = \lambda + \alpha + \alpha^2 + ... + \alpha^n + \alpha^{n+1} \cdot \alpha^*$$

14.
$$\alpha^* = \lambda + \alpha \cdot \alpha^*$$

15.
$$\alpha^* = (\lambda + \alpha) n - 1 + \alpha n \cdot \alpha^*$$

16.
$$f(a, b, \sigma) + (\alpha + \beta + \sigma)^* = (\alpha + \beta + \sigma)^*$$

17.
$$(f(\alpha^*, \beta^*, \sigma^*))^* = (\alpha + \beta + \sigma)^*$$

18.
$$(\alpha^* + \beta^*)^* = (\alpha^* \cdot \beta^*)^* = (\alpha + \beta)^*$$

19.
$$(\alpha \cdot \beta)^* \cdot \alpha = \alpha \cdot (\beta \cdot \alpha)^*$$

20.
$$(\alpha^* \cdot \beta)^* \cdot \alpha^* = (\alpha + \beta)^*$$

21.
$$(\alpha^* \cdot \beta)^* = \lambda + (\alpha + \beta)^* \cdot \beta$$

22.
$$X = Ax + B \rightarrow X = A^* \cdot B$$

Analisis

1. Hacer la ecuaciones del Automata Finito.

De X0 a X1 con una 'a' : X0 = aX1

De X0 a X2 que es final con una 'b': X0 = bX2 + b Si hay varias transiciones se ponen en la misma ecuacion sumandose.

Si el estado final solo va al sumidero o no tiene ramas se le añade lambda

 Utilizar las equivalencias de EERR, empezando por las mas lejanas al inicial. Esencialmente se usa la regla de inferencia:

$$X0 = aX0$$
 $X0 = \emptyset$
 $X1 = bX1 + c$ $X1 = b*c$
 $X2 = c$ $X2 = c$

Formatos

AFD=(Alfabeto, Q, q0, f, F) F=EstadisFinales f=Funcion transicion

AFND=(Alfabeto, Q, q0, f, F, T) T=Transiciones con lambda

G=(Terminales, NoTerminales, S, P) S=Axioma P=Transiciones

AP=(AlfabetoCinta, AlfabetoPila, Q, A0, q0, f, F) A0=FondoPila

MT=(Alfabetoentrada, AlfabetoCinta, b, Q, q0, f, F) b=SimbolosEspeciales

Jerarquia Chomsky

Todos aceptan axioma para dar λ

G0: Lenguaje sin restricciones, puede ser cualquier cosa, se caracteriza por reglas compresoras (aVs -> d OJO tambien si no es axioma B-> λ) y estructura de frases (AS->SA).

G1: Sensible al contexto, puede ser cualquier cosa, sin reglas compresoras y CONTEXTO (aS-> aDC)

G2: De contexto libre, un simbolo a la izquierda pero cualquier cosa a la derecha. Tambien si hay

G3LD y G3LI en la misma gramatica.

G3: Gramatica regular, son la de la forma NT->T y un tipo de las siguientes

NT-> NT T G3LI

NT-> T NT G3LD