

UNIVERSIDAD AUTÓNOMA DE CHIHUAHUA FACULTAD DE INGENIERÍA LABORATORIO DE HIDRÁULICA

FORMATO 11. FLUJO GRADUALMENTE VARIADO

	 Integrantes	Matricula
Grupo:		
Equipo #:		
Fecha:		
Maestro:		
Calificación:		

Dibujar el perfil medido (anexar valores):						

Sección:	1	2
Tirante sección en m(Y):		
Área sección en m² (A):		
Radio hidráulico en m(Rh):		
Velocidad en m/seg(V):		
Altura de agua en m(Z):		

Gasto volumetrico (Qv):	m³/seg
Longitud de tramo medido(X):	m
Coeficiente de rugosidad (n):	-
Pendiente del canal (S_0):	-
Número de divisiones:	-
Incremento de y (Δy):	m

i	у	Α	P	Rh	V	$V^2/2g$	Ε	S_f	Tramo	$\overline{S_f}$	Δх	Х
1												
2												
3												
4												
5												
6												
7												
8												
9												
10												
11												
12												
13												
14												
15												

Ecuaciones:	$\Delta x = \frac{E_2 - E_1}{S_0 - \overline{S_f}}$	
$\overline{S_f} = \frac{1}{2}(S_{f1})$	$+ S_{f2}$)	$S_f = \left(\frac{Vn}{Rh^{\frac{2}{3}}}\right)^2$

Conclusión:			