Status

$$\bullet \quad \overrightarrow{IJ} \quad P(\omega^*) = u = \frac{f/m}{\sqrt{4\gamma^2(\omega^{*2} + \gamma^2)}}$$

$$f/m = P\left(\omega^*\right)\sqrt{4\gamma^2\left(\omega^{*^2} + \gamma^2\right)}$$

$$f = P\left(\omega^*\right)\sqrt{4\gamma^2\left(\omega^{*^2} + \gamma^2\right)} \cdot m$$

$$= P\left(\omega^*\right)\sqrt{4\gamma^2\left(\omega^{*^2} + \gamma^2\right)} \cdot \frac{1}{\left(\omega^{*^2} + \gamma^2\right)}$$

$$m = \frac{k}{\omega^2} \Rightarrow m \propto \frac{1}{\omega^2}$$

$$\frac{\sum_{j} f_{j}}{m_{i}} = \frac{\sum_{j} P(\omega^{*}_{j}) \sqrt{4\gamma_{j}^{2}(\omega^{*}_{j}^{2} + \gamma_{j}^{2})} \cdot \frac{1}{\omega^{*}_{i}^{2}} \cdot \omega^{*}_{i}^{2}}{\sqrt{4\gamma_{i}^{2}(\omega^{*}_{i}^{2} + \gamma_{i}^{2})}} = \frac{\sum_{j} P(\omega^{*}_{j}) \sqrt{4\gamma_{j}^{2}(\omega^{*}_{i}^{2} + \gamma_{i}^{2})}}{\sqrt{4\gamma_{i}^{2}(\omega^{*}_{j}^{2} + \gamma_{i}^{2})}} \cdot \frac{1}{\omega^{*}_{i}^{2}}$$

$$= \sum_{j} P(\omega^{*}_{j}) \cdot \frac{\sqrt{4\gamma_{j}^{2}(\omega^{*}_{j}^{2} + \gamma_{j}^{2})}}{\sqrt{4\gamma_{i}^{2}(\omega^{*}_{i}^{2} + \gamma_{i}^{2})}} \cdot \frac{\omega^{*}_{i}^{2}}{\omega^{*}_{j}^{2}}$$

Edit1:
$$\frac{\sum_{j} P(\omega^{*}_{j}) \cdot \frac{\sqrt{4\gamma_{j}^{2}(\omega^{*}_{j}^{2} + \gamma_{j}^{2})}}{\sqrt{4\gamma_{i}^{2}(\omega^{*}_{j}^{2} + \gamma_{i}^{2})} \cdot \frac{\omega^{*}_{i}^{2}}{\omega^{*}_{j}^{2}}} = \frac{\sum_{j} P(\omega^{*}_{j}) \cdot \sqrt{4\gamma_{j}^{2}(\omega^{*}_{j}^{2} + \gamma_{j}^{2})} \cdot \frac{1}{\omega^{*}_{j}^{2}}}{\sqrt{4\gamma_{j}^{2}(\omega^{*}_{j}^{2} + \gamma_{i}^{2})} \cdot \frac{\omega^{*}_{i}^{2}}{\omega^{*}_{j}^{2}}} = \frac{\sum_{j} P(\omega^{*}_{j}) \cdot \sqrt{4\gamma_{j}^{2}(\omega^{*}_{j}^{2} + \gamma_{j}^{2})} \cdot \frac{1}{\omega^{*}_{j}^{2}}}{\sqrt{4\gamma_{j}^{2}(\omega^{*}_{i}^{2} + \gamma_{i}^{2})} \cdot \frac{\omega^{*}_{i}^{2}}{\omega^{*}_{j}^{2}}}$$

Edit2:
$$\frac{\sum_{j} P(\boldsymbol{\omega}^{*}_{j}) \cdot \sqrt{4\gamma_{j}^{2}(\boldsymbol{\omega}^{*}_{j}^{2} + \gamma_{j}^{2})}}{\sqrt{4\gamma_{j}^{2}(\boldsymbol{\omega}^{*}_{j}^{2} + \gamma_{j}^{2})}}$$

Clean	Set a			Set b			Set c		
	Clean	0-20dB	-5db	Clean	0-20dB	-5db	Clean	0-20dB	-5db
Baseline	99.02	61.34	7.94	99.02	55.75	7.65	99.06	66.14	11.49
MS	99.00	66.18	12.50	99.00	70.82	13.66	99.12	64.88	13.09
	(-2.05)	(12.51)	(4.95)	(-2.05)	(34.05)	(6.51)	(5.85)	(-3.72)	(1.80)
MS+	99.03	68.14	12.98	99.03	72.23	13.81	98.98	67.06	13.65
CMC	(0.26)	(17.59)	(5.48)	(0.26)	(37.23)	(6.67)	(-9.04)	(2.72)	(2.33)
MS+	99.01	68.93	13.05	99.01	72.55	13.85	99.04	68.16	13.74
OMC	(-1.28)	(19.64)	(5.55)	(-1.28)	(37.96)	(6.66)	(-2.66)	(5.97)	(2.54)
MS+	99.04	68.09	12.73	99.04	71.73	13.62	99.08	67.20	13.49
Edit1	(2.56)	(17.47)	(5.21)	(2.56)	(36.11)	(6.46)	(2.12)	(3.12)	(2.26)
MS+	99.05	69.05	13.11	99.05	72.92	14.46	99.10	68.12	14.19
Edit2	(2.81)	(19.95)	(5.62)	(2.81)	(38.80)	(7.38)	(3.72)	(5.84)	(3.05)

• Normalize by the maximum magnitude response $k_i = 0.01 + \frac{1 - 0.01}{128} \cdot i$

$$u_{edit}(\omega) = \frac{u_{i}(\omega_{j}^{*})}{u_{i}(\omega_{i}^{*})} = \frac{\sqrt{4\gamma_{i}^{2}(\omega_{i}^{*2} + \gamma_{i}^{2})}}{\sqrt{(\omega_{j}^{*2} - \omega_{i}^{*2})^{2} + 4\gamma^{2}(\omega_{i}^{*2} + \gamma_{i}^{2})}} \frac{P(\omega_{j})}{\Sigma P(\omega_{i})} \frac{k_{i}}{k_{j}} \frac{\omega_{j}^{2}}{\omega_{i}^{2}} \qquad \omega^{*} = \sqrt{\omega^{2} - 2\gamma^{2}}$$

Band-limit

$$U\left(\omega\right) = \begin{cases} u_{edit}\left(\omega\right), & \omega\left(-1.3\right) \le \omega\left(\Omega\right) \le \omega\left(2.5\right) \\ 0, & \text{otherwise} \end{cases}$$

Estimate frequency masking curve by

$$N\left(\omega_{i}\right) = \sum_{k} P\left(\omega_{k}\right) U\left(\omega_{i} - \omega_{k}\right)$$

Compute the masked spectrum by the masking operation