9.8 Components of a graph

Task: Divide a graph into subgraphs that are isolated from each other.

Let (V, E) be an undirected graph. We define a relation \sim on the set of vertices V, where $a, b \in V$ satisfy $a \sim b$ iff \exists walk in the graph from a to b.

Lemma: Let (V, E) be an undirected graph. The relation $a \sim b$ or $a, b \in V$, which holds iff \exists walk in the graph between a and b is an equivalence relation.

Proof: We must show \sim is reflexive, symmetric, and transitive.

Reflexive: $\forall v \in V, v \sim v$ since the trivial walk is a walk from v to itself.

Symmetric: If $a \sim b$ for $a, b \in V$, then \exists walk $v_0v_1...v_n$ where $v_0 = a$ and $v_n = b$. This walk can be reversed to $v_nv_{n-1}...v_1v_0$, which now goes from $v_n = b$ to $v_0 = a$. Therefore, $b \sim a$ as needed.

Transitive: If $a \sim b$ and $b \sim c$, for $a, b, c \in V$, there \exists walk $av_1v_2...v_{n-1}b$ from a to b and \exists walk $bw_1w_2...w_{m-1}c$ from b to c. We put these two walks together (concatenate them) to yield the walk $av_1v_2...v_{n-1}bw_1w_2...w_{m-1}c$ from a to c. Therefore $a \sim c$.

qed

The equivalence relation \sim on V partitions it into disjoint subsets $v_1, v_2, ... v_p$, where

- 1. $v_1 \cup v_2 \cup ... \cup v_p = V$
- 2. $v_i \cap v_j = \emptyset$ if $i \neq j$
- 3. Two vertices $a, b \in v_i \Leftrightarrow a \sim b$, i.e. \exists walk in (V, E) from a to b

Note that an edge is a walk of length 1, so if $a, b \in V$ satisfy that $\exists ab \in E$, then a and b belong to the same v_i . As a result, we can partition the set of edges as follows:

$$E_i = \{ab \in E \mid a, b \in v_i\}$$

Clearly, $E_1 \cup E_2 \cup ... \cup E_p = E$ and $E_i \cap E_j = \emptyset$ if $i \neq j$. Furthermore, $(V_1, E_1), (V_2, E_2), ..., (V_p, E_p)$ are subgraphs of (V, E), and these subgraphs are disjoint since $V_i \cap V_j = \emptyset$ and $E_i \cap E_j = \emptyset$ if $i \neq j$. The subgraphs (V_i, E_i) are called the components (or connected components) of the graph (V, E).

Lemma: The vertices and edges of any walk in an undirected graph are all contained in a single component of that graph.

Proof: Let $v_0v_1...v_n$ be a walk in a graph (V, E), then $v_0v_1...v_r$ is a walk in $(V, E) \ \forall r \ 1 \leq r \leq n \Rightarrow v_0 \sim v_r \ \forall r \ 1 \leq r \leq n \Rightarrow v_r$ belongs to the same component of the graph as v_0 . The same is true for all the edges $v_{i-1}v_i$ for $1 \leq i \leq n$.

qed

Lemma: Each component of an undirected graph is connected.

Proof: Let (V, E) be a graph and let (V_1, E_i) be any component of (V, E). $\forall u, v \in V_i$, by definition \exists walk in (V, E) between u and v. By previous lemma, however, all vertices and edges of this walk are in $(V_i, E_i) \Rightarrow$ the walk between u and v is a walk in (V_i, E_i) , but this assertion is true $\forall u, v \in V_i \Rightarrow (V_i, E_i)$ is connected.

qed

Moral of the story Any undirected graph can be represented as a disjoint union of connected subgraphs, namely its components ⇒ the study of undirected graphs reduces to the study of connected graphs, as components don't share either vertices or edges.

9.9 Circuits

Task: Use closed walks to understand the structure of graphs better.

Definition: Let (V, E) be a graph. A walk $v_0v_1...v_n$ in (V, E) is called <u>closed</u> if $v_0 = v_n$, i.e. if it starts and ends at the same vertex.

Definition: Let (V, E) be a graph. A <u>circuit</u> is a nontrivial closed trail in (V, E), **i.e.** a closed walk with no repeated edges passing through at least two vertices.

Definition: A circuit is called <u>simple</u> if the vertices $v_0, v_1, v_2, ... v_{n-1}$ are distinct.

NB: This is the strangest condition regarding vertices that we can impose since $v_0 = v_n$.

Alternative terminology: Some authors use <u>cycle</u> to denote a simple circuit, which for others <u>cycle</u> denotes a circuit regardless of whether it is simple or not.

Q: When does a graph have simple circuits?

A: We can give 2 criteria for the existence of simple circuits:

- 1. Every vertex has degree ≥ 2 .
- 2. $\forall u, v \in V$ s.t. \exists 2 distinct paths from u to v.

Theorem: If (V, E) has no isolated or pendant vertices, i.e. $\forall v \in V \text{ deg } v \geq 2$, then (V, E) contains at least one simple circuit.

Proof: Consider all paths (V, E). The maximum length of a path is #(V) - 1 since a path of length p passed through p+1 vertices. Take a path $v_0v_1...v_m$ is (V, E) of maximum length, **i.e.** any other path in (V, E) has length $\leq m = \text{length of } v_0v_1...v_m$. Now consider the vertex v_m . deg $v_m \geq 2$ by assumption. We know v_{m-1} is adjacent to v_m since the edge $v_{m-1}v_m$ is part of the path $v_0v_1...v_m$, but deg $v_m \geq 2$ means $\exists w \in V$ s.t. $ww_m \in E$. If $w \neq v_i$ for $0 \leq i \leq m-2$, then $v_0v_1...v_mw$ is a path in (V, E) longer than $v_0v_1...v_m \Rightarrow \in$ to the fact that $v_0v_1...v_m$ was chosen of maximal length. Therefore, $w = v_i$ for some $0 \leq i \leq m-2$, but then $v_iv_{i+1}...v_mv_i$ is a simple circuit in the graph.

qed