Algoritmos e Lógica de Programação Sistemas Operacionais

Agostinho Brito

Departamento de Engenharia da Computação e Automação
Universidade Federal do Rio Grande do Norte

25 de agosto de 2005

Introdução

- O que é um sistema operacional?
- História dos sistemas operacionais.
- Conceitos dos Sistemas Operacionais
- Estrutura dos Sistemas Operacionais

Introdução

- Sistema Computacional = hardware + software
- Software:
 - Programas do sistema: gerenciam a operação do computador.
 - Programas de aplicação: programas de usuário.

Sistema Operacional

principal programa do sistema, que controla todos os recursos do computador (dispositivos físicos e funções de software).

Definições

"É um programa de controle do computador. O Sistema Operacional é responsável por alocar recursos de hardware e escalonar tarefas. Ele também deve prover uma interface para o usuário. Ele fornece ao usuário uma maneira de acesso aos recursos do computador."Sobell.

"Um Sistema Operacional pode ser definido como um gerenciador dos recursos que compõem o computador (processador, memória, I/O, arquivos, etc). Os problemas centrais que o Sistema Operacional deve resolver são o compartilhamento ordenado, a proteção dos recursos a serem usados pelas aplicações do usuário e o interfaceamento entre este e a máquina."Stemmer.

Localização

Principais Atributos

- Abstração de Hardware
 ← Máquina Virtual (associações lógicas de dispositivos e controle do endereçamento de memória).
- Máquina virtual ou estendida é uma abstração criada pelo S.O. que apresenta ao usuário uma máquina mais simples e com as mesmas funções da máquina real.

Principais Atributos

- Coordenar Recursos (maximização do uso e proteção dos usuários)
 - Concorrência.
 - Proteção de memória.
 - Acesso a arquivos.
- Controle
 - Interações usuário recurso
 - Interações usuário usuário.
- Padronização de serviços.

Principais funções

- O Sistema Operacional é a porção de software que roda em modo kernel ou modo supervisor, protegendo o hardware da ação direta do usuário.
- Os demais programas rodam em modo usuário e fazem chamadas ao kernel para terem acesso aos dispositivos.
- S.O. visto como máquina estendida.
- Fornecer uma abstração de alto nível dos recursos de hardware da máquina, livrando o programador dos detalhes de funcionamento dos mesmos.
- Sistema Operacional funciona como uma máquina virtual.
- Visão top-down.

Principais funções

Exemplo

Fornecer uma visão dos discos como uma coleção hierárquica de arquivos, identificados por nomes e manipuláveis por funções de abertura/fechamento e leitura/escrita, escondendo os detalhes de acionamento dos motores das unidades, posicionamento dos cabeçotes, quantidade de trilhas e tamanho dos setores dos discos.

Principais funções

S.O. visto como um gerente de recursos

- Fornecer um esquema de alocação dos recursos (processadores, memórias, I/O, etc) entre os processos concorrentes.
- Estabelecer critérios de uso dos recursos e ordem de acesso aos mesmos, impedindo violação de espaço de memória de processos concorrentes e tentativas de acesso simultâneo a um mesmo recurso
- Gerência e proteção dos dispositivos.
- Visão bottom-up.

Tipos de Sistemas Operacionais

- Os tipos e sua evolução estão intimamente relacionados com a evolução do Hardware e das aplicações por ele suportadas.
- A evolução dos Sistemas Operacionais para PCs e Workstations popularizou vários conceitos e técnicas, antes só conhecidos em ambientes de grande porte.
- Principais tipos:
 - Sistemas Monoprogramáveis / Monotarefa
 - Sistemas Multiprogramáveis / Multitarefa
 - Sistemas com Multiplos processadores.

Tipos de Sistemas Operacionais

Sistemas Monoprogramáveis / Monotarefa

- Execução de um único programa (job).
- Qualquer outro programa, para ser executado, deveria aguardar o término do programa corrente
- Tipicamente relacionado ao surgimento dos mainframes;

Sistemas Multiprogramáveis / Multitarefa

- Mais complexos e mais eficientes.
- Vários programas dividem os mesmos recursos.
- Aumento da produtividade dos seus usuários e a redução de custos;

Tipos de Sistemas Operacionais

Sistemas Multiprogramáveis / Multitarefa

- Sistemas Batch.
- Sistemas de Tempo Compartilhado.
- Sistemas de Tempo Real.

Sistemas com Múltiplos Processadores

- Caracterizam por possui duas ou mais CPUs interligadas, trabalhando em conjunto.
- O fator chave neste tipo de S.O. é a forma de comunicação entre as CPUs e o grau de compartilhamento da memória e dos dispositivos de I/O (Entrada/Saída);

Sistemas com Múltiplos Processadores

- Sistemas Fortemente Acoplado: existem dois ou mais processadores compartilhando uma única memória e controlados por apenas um único SO.
 - Sistemas Simétricos: todos os processadores tem a mesma função, podendo executar o SO independentemente
 - Sistemas Assimétricos: processador primário, responsável pelo controle dos demais processadores (secundários) e pela execução do SO.
- Sistemas Fracamente Acoplado: dois ou mais sistemas de computação interligados, sendo que cada sistema possui o seu próprio SO.
 - Sistemas operacionais de rede: cada nó possui seu próprio HW, SW e SO.
 São independentes uns dos outros.
 - Sistemas Operacionais Distribuídos: para o usuário e suas aplicações, é como se não existisse uma rede de computadores, mas sim um único sistema centralizado.

Estrutura de um Sistema Operacional

Formado por um conjunto de rotinas (procedimentos) que oferecem serviços aos usuários do sistema e suas aplicações, bem como a outras rotinas do próprio sistema. Esse conjunto de rotinas é chamado núcleo do sistema ou kernel (cérebro).

Kernel

- Tratamento de interrupções.
- Criação e eliminação de processos.
- Sincronização e comunicação entre processos.
- Escalonamento e controle dos processos.
- Gerência de memória.
- Gerência do sistema de arquivos.
- Operações de entrada e saída.
- Contabilização e segurança do sistema.

Chamadas de Sistema

System Calls: mecanismo de proteção ao núcleo do sistema e de acesso aos seus serviços. O usuário (ou aplicação), quando deseja solicitar algum serviço do sistema, realiza uma chamada a uma de suas rotinas (ou serviços) através da system calls (chamadas ao sistema).

Chamadas de Sistema - Funções

- Gerência de Processos
 - Criação e eliminação de processos.
 - Alteração das características do processo.
 - Sincronização e comunicação entre processos.
- Gerência de Memória
 - Alocação e desalocação de memória.
- Gerência de I/O
 - Operações de I/O.
 - Manipulação de arquivos e diretórios.

Modos de Acesso do Sistema

- Existem certas instruções que não podem ser colocadas diretamente à disposição das aplicações, pois a sua utilização indevida ocasionaria sérios problemas à integridade do sistema.
- As instruções que têm o poder de comprometer o sistema são conhecidas como instruções privilegiadas (modo kernel), enquanto as instruções não-privilegiadas são as que não oferecem perigo ao sistema.
- Registrador da CPU, que indica o modo de acesso corrente.

Modos de Acesso do Sistema

Modos de acesso do usuário e do sistema

Organização do sistema

Sistemas monolíticos

- Não há estruturação visível.
- SO é escrito como uma coleção de processos cada processo podendo fazer chamadas a qualquer outro;
- Os serviços (system calls) são requisitados através da colocação dos parâmetros em lugares definidos (pilhas e registradores) e da execução de uma chamada de sistema especial (TRAP) ao kernel.

Organização do sistema

Sistemas em camadas

- Camadas sobrepostas.
- Cada módulo oferece um conjunto de funções que podem ser utilizadas por outros módulos.

Sistema em camadas

5	Operador
3	Operador
4	Programas do usuário
3	Gerência de dispositivos de
	I/O
2	Comunicação processo-
	operador
1	Gerência de memória e do
	tambor magnético
0	Alocação do processador e
	implementação da multipro-
	gramação

Sistemas Operacionais mais comuns

- Unix (Solaris, FreeBSD, OpenBSD, AIX, Linux) PCs e Workstations.
 - Prós: robusto, modular, livre (Linux), seguro, diversibilidade.
 - Contras: difícil para usuários iniciantes.
- Windows (95, 98, 2000, NT, XP ...) PCs
 - Prós: fácil de usar, variedade de aplicativos.
 - Contras: pago, inseguro (vírus), não modular, aplicativos também pagos.
- MacOS Computadores Apple
 - Prós: fácil de usar, preferido para edição eletrônica.
 - Contras: não funciona em PCs.