

Never Stand Still

Faculty of Engineering

Enhanced Removal of Organic Pollutantswith Novel Adsorbent

Mitchell Grierson

Prof Rose Amal, Dr May Lim, Dr Sanly Liu

Resources and Infrastructure for the Future

Current Removal Methods

Coagulation - Ion Exchange Resin
Activated Carbon - Membrane
Filtration

Novel Adsorbent

I synthesised metal oxide/ TiO₂ nanoparticles with the aim of enhancing the removal of NOM from drinking water

Preparation and Testing of Novel Adsorbent

sample from Happy Valley (S.A.)
UV absorbance & organic carbon

Particles loaded in polluted water

UV absorbance & organic carbor content tested before and after

Performance testing

Key Findings

Nanoparticle Characterisation

Synthesis

Primary nanoparticle size of 10 nm

X-Ray Diffraction confirms TiO₂ and Fe₂O₃ mixed phase

Removal performance UV/Visible Spectrum Analysis

The lower absorbance of my particle shows its superior performance

Total Organic Carbon (TOC) Analysis

Increased pollutant removal efficiency of my particle

Results

Property	Commercial TiO ₂	Plain TiO ₂	My Particle (Fe-TiO ₂)
BET Surface Area	35 - 65 m ² /g	96 m ² /g	125 m ² /g
Average Particle Size	21 nm	10 nm	15 nm

Increased surface area and smaller particle size supports performance results of my particles.

Conclusion

The removal performance tests showed that my synthesised TiO₂ and Fe-TiO₂ nanoparticles outperformed the commercial TiO₂ in adsorption tests, therefore enhancing the removal of NOM from drinking water.

Importance and Recommendations

- More effective treatment of organic pollutants
- Less waste and more energy efficiency
- Future studies might involve testing the degradation performance of my particles.