

Lecture 8: Stability of Digital Control Systems

ELEN 472: Introduction to Digital Control

Lingxiao Wang, Ph.D.

Assistant Professor of Electrical Engineering Louisiana Tech University

Review

Steady-state Error:

- Stead-state error is the **difference** between the input (command) and the output of a system, as time goes to infinity.
- Equation to calculate steady-state error:

$$e(\infty) = \lim_{z \to 1} [(z - 1)E(z)]$$

$$= \lim_{z \to 1} \frac{(z - 1)R(z)}{1 + L(z)}$$

$$R(z): \text{Input signal}$$

$$L(z) = \frac{N(z)}{(z - 1)^n D(z)}: \text{Loop gain}$$

Steady-state Error for Various Input Signals & System Types

Signal	Type-0	Type-1	Type-2
Sampled step input	$\frac{1}{1+L(1)} \text{ or } \frac{1}{1+K_p}$	0	0
Sampled ramp input	∞	$\frac{T}{(z-1)L(z) _{z=1}} \text{ or } \frac{1}{K_{v}}$	0
Sampled parabolic input	∞	∞	$\frac{T^2}{(z-1)^2L(z) _{z=1}} \text{ or } \frac{1}{K_a}$

Definitions of Stability in Discrete-time Systems

- Stability Definition:
 - If the steady-state response is **bounded** -> System is **Stable**
 - If the steady-state response is **unbounded** -> System is **Unstable**.
- A bounded input satisfies the condition

$$|u(k)| < b_u, \quad k = 0, 1, 2, \dots$$

 $0 < b_u < \infty$

• For example, a **bounded** sequence satisfying the constraint |u(k)| < 3

Stable z-domain Pole Locations

• Consider the sampled exponential function f(k) and its z-transform

$$f(k) = p^k, k = 0, 1, 2, ...$$
 $F(z) = \frac{z}{z - p}$

- where p can be either real or complex numbers.
- Depending on the value of p, the time sequence for large k is given by

$$|p|^k \rightarrow \begin{cases} 0, & |p| < 1\\ 1, & |p| = 1\\ \infty, & |p| > 1 \end{cases}$$

Any time sequence can be described by

$$f(k) = \sum_{i=1}^{n} A_i p_i^k, \qquad k = 0, 1, 2, \dots$$

• where A_i are partial fraction coefficients.

Stable z-domain Pole Locations (Continued)

• Apply z-transfer on f(k), we will have:

$$f(k) = \sum_{i=1}^{n} A_i p_i^k, \qquad k = 0, 1, 2, \dots \longleftrightarrow F(z) = \sum_{i=1}^{n} A_i \frac{z}{z - p_i}$$

- Where p_i , $i = 1,2,3 \dots n$ are z-domain **poles**.
- Hence, we conclude that the sequence is bounded (i.e., stable) if its poles lie inside the closed unit disc (i.e., on or inside the unit circle).

$$|p|^k \to \begin{cases} 0, & |p| < 1\\ 1, & |p| = 1\\ \infty, & |p| > 1 \end{cases}$$
Unit Circle

Re[z]

Unit Circle

Unit Circle

Unit Circle

Unit Circle

- Note: if there is one pole on the unit circle -> marginally stable
- Note2: if there are repeated poles on the unit circle -> unstable

Examples

Determine the stability of the following systems:

$$H(z) = \frac{5(z - 0.3)}{(z - 0.2)(z - 0.1)}$$
$$H(z) = \frac{8(z - 0.2)}{(z - 0.1)(z - 1)}$$

Solution:

- System 1: all poles are inside the unit circle -> stable system.
- System 2: one pole is on the unit circle -> marginally stable system.

Practice Question

Determine the stability of the following system:

$$y(k+2) - 0.8y(k+1) + 0.07y(k) = 2u(k+1) + 0.2u(k)$$
 $k = 0, 1, 2, ...$

- Solution:
 - First, find the transfer function $G(z) = \frac{Y(z)}{U(z)}$

$$G(z) = \frac{2z + 0.2}{z^2 - 0.8z + 0.07} = \frac{2(z + 0.1)}{(z - 0.7)(z - 0.1)}$$

• Since |0.7|<1 and |0.1|<1, the system is stable.

Problem with Pole Location-based Stability Test

- A problem with the above pole location-based stability test is to find poles for high-order systems.
 - For instance, it is easy to find poles of low-order systems:

$$G(z) = \frac{2z + 0.2}{z^2 - 0.8z + 0.07} = \frac{2(z + 0.1)}{(z - 0.7)(z - 0.1)}$$

- However, for high-order systems, it is difficult to find the poles.
 - For instance, to find poles of the following system:

$$G(z) = \frac{z+1}{z^5 + 4z^4 + 3z^3 + 2z^2 + z + 1}$$

- We need to solve $z^5 + 4z^4 + 3z^3 + 2z^2 + z + 1 = 0$
- The calculation is not easy.
- Is there an easy way to determine system stability without calculating the pole locations?
 - Jury Test.

Jury test

- It is possible to investigate the stability of z-domain polynomials directly using the Jury test for real coefficients.
- Jury Test:
 - For the polynomial (the characteristic equation of TF)

$$F(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0 = 0, \qquad a_n > 0$$

the roots of the polynomial are inside the unit circle if and only if

• where the terms in the n+1 conditions are calculated from the **Jury Table.**

Jury Table

Table 4.1	Table 4.1 Jury Table							
Row	z^0	z^1	z^2		z^{n-k}		z^{n-1}	z^n
1	a_0	a_1	a_2		a_{n-k}		a_{n-1}	a_n
2	a_n	a_{n-1}	a_{n-2}		a_k		a_1	a_0
3	b_0	b_1	b_2		b_{n-k}		b_{n-1}	
4	b_{n-1}	b_{n-2}	b_{n-3}		b_k		b_0	
5	c_0	c_1	c_2			c_{n-2}		
6	c_{n-2}	c_{n-3}	c_{n-4}			c_0		
2 n - 5	s_0	s_1	s_2	<i>S</i> ₃				
2 n - 4	s_3	s_2	s_1	s_0				
2 n - 3	r_0	r_1	r_2					

$$b_{k} = \begin{vmatrix} a_{0} & a_{n-k} \\ a_{n} & a_{k} \end{vmatrix}, \quad k = 0, 1, ..., n-1$$

$$c_{k} = \begin{vmatrix} b_{0} & b_{n-k-1} \\ b_{n-1} & b_{k} \end{vmatrix}, \quad k = 0, 1, ..., n-2$$

$$\vdots$$

$$\vdots$$

$$r_{0} = \begin{vmatrix} s_{0} & s_{3} \\ s_{3} & s_{0} \end{vmatrix}, \quad r_{1} = \begin{vmatrix} s_{0} & s_{2} \\ s_{3} & s_{1} \end{vmatrix}, \quad r_{2} = \begin{vmatrix} s_{0} & s_{1} \\ s_{3} & s_{2} \end{vmatrix}$$

Jury Table Explanation

Row 1 is a listing of coefficients of the polynomial F(z) in order of **increasing** power of z

The coefficients of each even row are the same as the odd row above it with a reversed order.

Table 4.1	Jury Tab	le						
Row	z^0	z^1	z^2		z^{n-k}		z^{n-1}	z^n
1	a_0 a_n	a_1 a_{n-1}	a_2 a_{n-2}		a_{n-k} a_k		a_{n-1} a_1	a_n a_0
3 4	b_0 b_{n-1}	b_1 b_{n-2}	b_2 b_{n-3}		b_{n-k} b_k		b_{n-1} b_0	
5 6	c_0 c_{n-2}	c_1 c_{n-3}	c_2 c_{n-4}			c_{n-2} c_0		
2 n - 5	S ₀	s_1	s ₂	 \$3	•••			
2 n - 4 2 n - 3	r_0	r_1	r_2	<i>s</i> ₀				

$$b_{0} = \begin{vmatrix} a_{0} & a_{n} \\ a_{n} & a_{0} \end{vmatrix} \quad b_{1} = \begin{vmatrix} a_{0} & a_{n-1} \\ a_{n} & a_{1} \end{vmatrix}$$
$$c_{0} = \begin{vmatrix} b_{0} & b_{n-1} \\ b_{n-1} & b_{0} \end{vmatrix} \quad c_{1} = \begin{vmatrix} b_{0} & b_{n-2} \\ b_{n-1} & b_{1} \end{vmatrix}$$

Jury test Review

For the polynomial

$$F(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0 = 0, \qquad a_n > 0$$

The roots of the polynomial are inside the unit circle if and only if

There are n + 1 conditions that correspond to n + 1 coefficients of F(z)

- Condition (1) and (2) are calculated from F(z) directly.
 - If one of these two conditions is violated -> the system is unstable
- Conditions (3) \rightarrow (n+1) are calculated using the coefficient of the first column of the Jury table together with the last coefficient of the preceding row.

Example

Test the stability of the polynomial:

$$F(z) = z^5 + 2.6z^4 - 0.56z^3 - 2.05z^2 + 0.0775z + 0.35 = 0$$

- Solution:
 - First compare F(z) with the general format to determine coefficients $a_0, a_1, a_2 \dots$

$$F(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0 = 0, \qquad a_n > 0$$

- Exam the Jury Test one by one:
 - F(1) = 1.4175 > 0
 - $(-1)^5F(-1) = -0.3825 < 0$
- Since Condition (2) is unsatisfied -> unstable system.

- (1) F(1) > 0
- (2) $(-1)^n F(-1) > 0$
- (3) $|a_0| < a_n$
- (4) $|b_0| > |b_{n-1}|$
- (5) $|c_0| > |c_{n-2}|$

.

$$(n+1)$$
 $|r_0| > |r_2|$

Example 2

 Use the Jury Criterion to determine the stability of the following polynomial:

$$z^5 + 0.2z^4 + z^2 + 0.3z - 0.1 = 0$$

- Solution:
 - The system order n = 5, thus, we need to verify 6 conditions in Jury Test

$$\begin{array}{lll} (1) \ F(1) > 0 & (2) \ (-1)^5 F(-1) > 0 & (2) \ (-1)^5 F(-1) > 0 & (3) \ |a_0| < a_5 & (4) \ |b_0| > |b_4| & (5) \ |c_0| > |c_3| & (6) \ |d_0| > |d_2| & (n+1) \ |r_0| > |r_2| & (n+1) \ |r_0$$

- Check all conditions one by one. If one of these conditions are unsatisfied, then the system is unstable.
- The first 2 conditions:

(1)
$$F(1) = 1 + 0.2 + 1 + 0.3 - 0.1 = 2.4 > 0$$

(2)
$$(-1)^5 F(-1) - (-1)(-1 + 0.2 + 0.3 - 0.1) - 0.2 > 0$$

Example 2 (Continued)

$$F(z) = z^5 + 0.2z^4 + z^2 + 0.3z - 0.1 = 0$$

- Condition (3): $|a_0| < a_5$
 - $a_0 = -0.1$; $a_5 = 1$
 - Thus, condition (3) satisfied
- Condition (4): $|b_0| > |b_4|$
 - We need to build the Jury Table
 - **Note:** you don't need to calculate all values in Jury Table, just calculate the parameters you need.
 - For the demonstration purpose, here is the complete Jury Table:

Row	z^0	z^1	z^2	z^3	z^4	z^5
1	-0.1	0.3	1	0	0.2	1
2	1	0.2	0	1	0.3	-0.1
3	-0.99	-0.23	-0.1	-1	-0.32	
4	-0.32	-1	-0.1	-0.23	-0.99	
5	0.8777	0.0923	0.0067	0.9164		
6	0.9164	0.0067	0.0923	0.8777		
7	-0.0199	-0.1277	-0.131			

Example 2 (Continued)

$$F(z) = z^5 + 0.2z^4 + z^2 + 0.3z - 0.1 = 0$$

• Condition (4): $|b_0| > |b_4|$

$$b_k = \begin{vmatrix} a_0 & a_{n-k} \\ a_n & a_k \end{vmatrix}, \qquad k = 0, 1, \dots, n-1$$

• To calculate b_0 , we have:

$$b_0 = \begin{vmatrix} a_0 & a_5 \\ a_5 & a_0 \end{vmatrix} = \begin{vmatrix} -0.1 & 1 \\ 1 & -0.1 \end{vmatrix} = -0.99$$

• To calculate b_4 , we have:

$$b_4 = \begin{vmatrix} a_0 & a_1 \\ a_5 & a_4 \end{vmatrix} = \begin{vmatrix} -0.1 & 0.3 \\ 1 & 0.2 \end{vmatrix} = -0.32$$

• Condition (4), $|b_0| > |b_4|$, is satisfied.

Row	z^0	z^1	z^2	z^3	z^4	z^5
1	$_{-0.1}^{2}a_{0}$	$a_{0.3}$ a_{1}	1	0	$_{0.2}^{2} a_{4}$	$\frac{1}{1} a_5$
2	1	0.2	0	1	0.3	-0.1
3	$-0.99 b_0$	-0.23	-0.1	-1	$-0.32 b_4$	
4	-0.32	-1	-0.1	-0.23	-0.99	
5	0.8777	0.0923	0.0067	0.9164		
6	0.9164	0.0067	0.0923	0.8777		
7	-0.0199	-0.1277	-0.131			

Example 2 (Continued)

$$F(z) = z^5 + 0.2z^4 + z^2 + 0.3z - 0.1 = 0$$

• Condition (5): $|c_0| > |c_3|$

$$c_k = \begin{vmatrix} b_0 & b_{n-k-1} \\ b_{n-1} & b_k \end{vmatrix}, \quad k = 0, 1, \dots, n-2$$

• To calculate c_0 , we have:

$$c_0 = \begin{vmatrix} b_0 & b_4 \\ b_4 & b_0 \end{vmatrix} = \begin{vmatrix} -0.99 & -0.32 \\ -0.32 & -0.99 \end{vmatrix} = 0.8777$$

• To calculate c_3 , we have:

$$c_3 = \begin{vmatrix} b_0 & b_1 \\ b_4 & b_3 \end{vmatrix} = \begin{vmatrix} -0.99 & -0.23 \\ -0.32 & -1 \end{vmatrix} = 0.9164$$

Condition (5) is NOT satisfied -> System is NOT stable.

Row	z^0	z^1	z^2	z^3	z^4	z^5
1	-0.1	0.3	1	0	0.2	1
2	1	0.2	0	1	0.3	-0.1
3	$-0.99 b_0$	-0.23	-0.1	-1	$-0.32 b_4$	
4	-0.32	-1	-0.1	-0.23	-0.99	
5	0.8777	0.0923	0.0067	0.9164		
6	0.9164	0.0067	0.0923	0.8777		
7	-0.0199	-0.1277	-0.131			

Internal Stability

The previous definition of stability only considers open-loop cases.

- G(z) is stable if all poles of G(z) are within the unit circle.
- OR, the characteristic equation of G(z) satisfies the Jury Test
- Consider a Closed-loop Control System (with external disturbance):

Digital control system with disturbance D(z).

- The Closed-loop system is stable if all signals in the loop are bounded.
 - Include Internal signals: E(z), U(z)
 - and External signals: R(z), D(z), Y(z)

Internal Stability (Continued)

Digital control system with disturbance D(z).

• We consider that system as having two outputs, Y and U, and two inputs, R and D. The transfer function is:

$$\begin{bmatrix} Y(z) \\ U(z) \end{bmatrix} = \begin{bmatrix} \frac{C(z)G_{ZAS}(z)}{1 + C(z)G_{ZAS}(z)} & \frac{G_{ZAS}(z)}{1 + C(z)G_{ZAS}(z)} \\ \frac{C(z)}{1 + C(z)G_{ZAS}(z)} & -\frac{C(z)G_{ZAS}(z)}{1 + C(z)G_{ZAS}(z)} \end{bmatrix} \begin{bmatrix} R(z) \\ D(z) \end{bmatrix}$$

- For **bounded** input *R*, the output signals *Y* and *U* should also be **bounded**, if the system is **stable**.
- Moreover, when *D* is applied, *Y* should be **bounded**.
- This stability is referred to as Internal Stability.

Internal Stability Definition

- A closed-loop system is **internally stable** if the following two conditions hold:
 - The characteristic Polynomial $1 + C(z)G_{ZAS}(z)$ has no zeros **on** or **outside** the unit circle.
 - The loop gain $C(z)G_{ZAS}(z)$ has no pole-zero cancellation **on** or **outside** the unit circle.

$$\begin{bmatrix} Y(z) \\ U(z) \end{bmatrix} = \begin{bmatrix} \frac{C(z)G_{ZAS}(z)}{1 + C(z)G_{ZAS}(z)} & \frac{G_{ZAS}(z)}{1 + C(z)G_{ZAS}(z)} \\ \frac{C(z)}{1 + C(z)G_{ZAS}(z)} & -\frac{C(z)G_{ZAS}(z)}{1 + C(z)G_{ZAS}(z)} \end{bmatrix} \begin{bmatrix} R(z) \\ D(z) \end{bmatrix}$$

Example Question

Consider the following closed-loop system:

Digital control system with disturbance D(z).

• Where
$$D(z) = 0$$
; $G_{ZAS}(z) = \frac{-0.07(z-1.334)}{(z-0.81)(z-0.77)}$; $C(z) = \frac{-10(z-0.81)(z-0.77)}{(z-1)(z-1.334)}$

Determine the Internal Stability of this system.

Solution:

 The transfer function from the reference input to the system output is given by

$$\frac{Y(z)}{R(z)} = \frac{C(z)G_{ZAS}(z)}{1 + C(z)G_{ZAS}(z)} = \frac{0.75997}{z - 0.24}$$

The system is stable since all its poles inside the unit circle.

Example Question (Continued)

Solution (Continued):

 However, the system is not internally stable as seen by examining the transfer function:

$$\frac{U(z)}{R(z)} = \frac{C(z)}{1 + C(z)G_{ZAS}(z)} = \frac{-10(z - 0.8149)(z - 0.7655)}{(z - 0.24)(z - 1.334)}$$

- The transfer function has a pole at 1.334, which is outside of the unit circle.
- Thus, control variable U is unbounded even when the reference input R is bounded.
- In fact, this system violates Condition 2 of Internal Stability Definition (Page 9):
 - A closed-loop system is internal stable if the following two conditions hold:
 - The characteristic Polynomial $1 + C(z)G_{ZAS}(z)$ has no zeros **on** or **outside** the unit circle.
 - The loop gain $C(z)G_{ZAS}(z)$ has no pole-zero cancellation **on** or **outside** the unit circle.
 - The pole at 1.334 cancels in the loop gain **outside** the unit circle:

$$C(z)G_{ZAS}(z) = \frac{-10(z - 0.8149)(z - 0.7655)}{(z - 1)(z - 1.334)} \times \frac{-0.075997(z - 1.334)}{(z - 0.8149)(z - 0.7655)}$$

Practice Question

For a closed-loop system with

$$G_{ZAS}(z) = \frac{-0.1}{z - 1.01}$$
$$C(z) = -\frac{z - 1.01}{z - 1}$$

• Determine whether the closed-loop system is **internally stable**.

Solution:

 Not internally stable, due to the pole-zero cancellation on 1.01 in the loop gain.