МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №4 по дисциплине «Алгоритмы и структуры данных»

Тема: Сортировки

Студент гр. 9304	 Краев Д.В.
Преподаватель	 Филатов А.Ю

Санкт-Петербург

2020

Цель работы.

Изучить алгоритмы сортировки. Реализовать один из предложенных алгоритмов.

Задание.

Вариант 7

Цикличная сортировка

Выполнение работы.

1) Функции

Для реализации алгоритма цикличной сортировки были написаны несколько функций.

1.1) void swap(int& a, int& b)

Функция принимает на вход две ссылки на int и меняет значения находящиеся по этим ссылкам. Функция используется в алгоритме цикличной сортировки для обмена значений между буффером и элементом, на месте которого должно находится значение в буфере.

1.2) void print(std::vector<int> vec, int i)

Функция принимает вектор с элементами типа int и индекс буфера. Функция распечатывает все значения вектора и отмечает на каком месте находится буфер квадратными скобками. Исп

1.3) void cycle_sort(std::vector<int>& vec)

Функция принимает ссылку на вектор и осуществляет алгоритм цикличной сортировки и печатает состояние вектора на каждой итерации с помощью предыдущей функции.

1.4) std::vector<int> strtovec(std::string str)

Функция принимает строку, содержащую числа, разделенные пробелом, преобразует их в вектор целых чисел и возвращает полученный вектор.

1.5) void check(char* str)

Функция принимает строку и проверяет, на содержание лишних символов. Лишними символами считаются все, кроме цифр и пробела.

1.6) main

Функции main передается 1 аргумент командной строки, содержащий строку с числами. Далее идет проверка строки, с помощью функции check, преобразование строки в вектор с помощью функции strtovec и осуществляется цикличная сортировка с помощью функции cycle_sort.

Тестирование

Тестирование проводится с помощью скрипта, написанном на языке Python. Скрипт использует библиотеки unittest и subprocess. Скрипт проводит 5 тестов. Выходные данные сравниваются с корректным выводом программы, содержащимся в файлах test1-5.txt. Библиотека subprocess нужна для запуска программы с нужными входными данными, а библиотека unittest для проведения тестирования.

Скрипт можно запустить при помощи команды «make run_tests».

Таблица 1 — Результаты тестирования

№ п/п	Входные данные	Выходные данные
1.	2 111 5 0 4 7 9 12 6	[2] 111 5 0 4 7 9 12 6
		[111] 2 5 0 4 7 9 12 6
		[6] 2 5 0 4 7 9 12 111
		[4] 2 5 0 6 7 9 12 111
		[5] 2 4 0 6 7 9 12 111
		[0] 2 4 5 6 7 9 12 111
		0 [2] 4 5 6 7 9 12 111
		0 2 [4] 5 6 7 9 12 111
		0 2 4 [5] 6 7 9 12 111
		0 2 4 5 [6] 7 9 12 111
		0 2 4 5 6 [7] 9 12 111
		0 2 4 5 6 7 [9] 12 111
		0 2 4 5 6 7 9 [12] 111

		0 2 4 5 6 7 9 12 [111]	
2.	169a352g	ERROR: values must be int	
3.	987654321	[9] 8 7 6 5 4 3 2 1	
		[1] 8 7 6 5 4 3 2 9	
		1 [8] 7 6 5 4 3 2 9	
		1 [2] 7 6 5 4 3 8 9	
		1 2 [7] 6 5 4 3 8 9	
		1 2 [3] 6 5 4 7 8 9	
		1 2 3 [6] 5 4 7 8 9	
		1 2 3 [4] 5 6 7 8 9	
		1 2 3 4 [5] 6 7 8 9	
		1 2 3 4 5 [6] 7 8 9	
		1 2 3 4 5 6 [7] 8 9	
		1 2 3 4 5 6 7 [8] 9	
		1 2 3 4 5 6 7 8 [9]	
4.	1000 2000 100 60 4 111111 5555 88 66	[1000] 2000 100 60 4 111111 5555 88 66	
		[111111] 2000 100 60 4 1000 5555 88 66	
		[66] 2000 100 60 4 1000 5555 88 111111	
		[100] 2000 66 60 4 1000 5555 88 111111	
		[4] 2000 66 60 100 1000 5555 88 111111	
		4 [2000] 66 60 100 1000 5555 88 111111	
		4 [5555] 66 60 100 1000 2000 88 111111	
		4 [88] 66 60 100 1000 2000 5555 111111	
		4 [60] 66 88 100 1000 2000 5555 111111	
		4 60 [66] 88 100 1000 2000 5555 111111	
		4 60 66 [88] 100 1000 2000 5555 111111	
		4 60 66 88 [100] 1000 2000 5555 111111	
		4 60 66 88 100 [1000] 2000 5555 111111	
		4 60 66 88 100 1000 [2000] 5555 111111	
		4 60 66 88 100 1000 2000 [5555] 111111	
		4 60 66 88 100 1000 2000 5555 [111111]	
5.	975319753197531	[9] 75319753197531	
		[1] 75319753197539	
		[5] 7 1 3 1 9 7 5 3 1 9 7 5 3 9	

[3] 7 1 3 1 9 7 5 5 1 9 7 5 3 9)
[9] 7 1 3 1 3 7 5 5 1 9 7 5 3 9)
[3] 7 1 3 1 3 7 5 5 1 9 7 5 9 9)
[1] 7 1 3 3 3 7 5 5 1 9 7 5 9 9)
[7] 1 1 3 3 3 7 5 5 1 9 7 5 9 9	9
[9] 1 1 3 3 3 7 5 5 1 7 7 5 9 9	9
[5] 1 1 3 3 3 7 5 5 1 7 7 9 9 9	9
[7] 1 1 3 3 3 5 5 5 1 7 7 9 9 9	9
[1] 1 1 3 3 3 5 5 5 7 7 7 9 9 9)
1[1]1333555777999	9
11[1]333555777999	9
111[3]33555777999	9
1113[3]3555777999	9
11133[3]555777999	9
111333[5]55777999)
1113335[5]5777999)
11133355[5]777999)
111333555[7]77999)
1113335557[7]7999)
11133355577[7]999)
111333555777[9]99)
1113335557779[9])
11133355577799[9]

Вывод.

Были изучены различные алгоритмы сортировки. Была написана программа, реализующая алгоритм цикличной сортировки и предусматривающая все варианты входных данных.