Section 4.2 – Series Solutions near Ordinary Points

Example of a First-Order Equation

Find the series solution for the differential equation y' - 2xy = 0

Solution

We look for a solution of the form:
$$y(x) = \sum_{n=0}^{\infty} a_n x^n$$

$$y'(x) = \sum_{n=1}^{\infty} na_n x^{n-1}$$

$$y' - 2xy = 0$$

$$\sum_{n=1}^{\infty} n a_n x^{n-1} - 2x \sum_{n=0}^{\infty} a_n x^n = 0$$

$$\sum_{n=1}^{\infty} n a_n x^{n-1} - \sum_{n=0}^{\infty} 2a_n x^{n+1} = 0$$

$$\sum_{n=0}^{\infty} (n+1)a_{n+1}x^n - \sum_{n=0}^{\infty} 2a_n x^{n+1} = 0$$

$$a_1 + \sum_{n=0}^{\infty} (n+2)a_{n+2}x^{n+1} - \sum_{n=0}^{\infty} 2a_nx^{n+1} = 0$$

$$a_1 + \sum_{n=0}^{\infty} \left[(n+2)a_{n+2} - 2a_n \right] x^{n+1} = 0$$

$$\begin{cases} \underline{a_1 = 0} \\ (n+2)a_{n+2} - 2a_n = 0 \quad \Rightarrow \quad \underline{a_{n+2}} = \frac{2a_n}{n+2} \end{cases}$$

$$\Rightarrow Let \ a_0 = y(0) \qquad a_1 = 0$$

$$a_2 = \frac{2a_0}{2} = y(0) \qquad a_3 = \frac{2a_1}{3} = 0$$

$$a_4 = \frac{2a_2}{4} = \frac{1}{2}y(0) \qquad a_5 = \frac{2a_3}{5} = 0$$

$$a_6 = \frac{2a_4}{6} = \frac{1}{6}y(0)$$

$$a_8 = \frac{2a_6}{8} = \frac{1}{2.3.4} y(0)$$

$$y(x) = \sum_{k=0}^{\infty} a_{2k} x^{2k} = y(0) \sum_{k=0}^{\infty} \frac{x^{2k}}{k!}$$

Example

Find the general series solution to the equation

$$y'' + xy' + y = 0$$

Find the particular solution with y(0) = 0 and y'(0) = 2

Solution

$$y(x) = \sum_{n=0}^{\infty} a_n x^n$$

$$y'(x) = \sum_{n=1}^{\infty} na_n x^{n-1}$$

$$y''(x) = \sum_{n=2}^{\infty} n(n-1)a_n x^{n-2} = \sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2} x^n$$

$$y'' + xy' + y = 0$$

$$\sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2} x^n + x \sum_{n=1}^{\infty} na_n x^{n-1} + \sum_{n=0}^{\infty} a_n x^n = 0$$

$$\sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2} x^n + \sum_{n=0}^{\infty} na_n x^n + \sum_{n=0}^{\infty} a_n x^n = 0$$

$$\sum_{n=0}^{\infty} [(n+2)(n+1)a_{n+2} + na_n + a_n]x^n = 0$$

$$(n+2)(n+1)a_{n+2} + (n+1)a_n = 0$$

$$(n+2)(n+1)a_{n+2} = -(n+1)a_n \implies a_{n+2} = -\frac{1}{n+2}a_n$$

$$a_0 = y(0) = 0 \qquad a_1 = y'(0) = 2$$

$$a_2 = -\frac{1}{2}a_0 \qquad a_3 = -\frac{1}{3}a_1$$

$$a_4 = -\frac{1}{4}a_2 = \frac{1}{2 \cdot 4}a_0 \qquad a_5 = -\frac{1}{5}a_3 = \frac{1}{3 \cdot 5}a_1$$

$$a_6 = -\frac{1}{6}a_4 = -\frac{1}{2 \cdot 4 \cdot 6}a_0 \qquad a_7 = -\frac{1}{7}a_7 = -\frac{1}{3 \cdot 5 \cdot 7}a_1$$

The general solution can be written as:

$$y(x) = a_0 \left[1 - \frac{1}{2}x^2 + \frac{1}{2 \cdot 4}x^4 - \frac{1}{2 \cdot 4 \cdot 6}x^6 + \cdots \right] + a_1 \left[x - \frac{1}{3}x^3 + \frac{1}{3 \cdot 5}x^5 - \frac{1}{3 \cdot 5 \cdot 7}x^7 + \cdots \right]$$

For the given initial y(0) = 0 and y'(0) = 2, the solution is:

$$y(x) = 2\left(x - \frac{1}{3}x^3 + \frac{1}{3 \cdot 5}x^5 - \frac{1}{3 \cdot 5 \cdot 7}x^7 + \cdots\right)$$

Exercises Section 4.2 – Series Solutions near Ordinary Points

Find the series solution.

1.
$$y' = 3y$$

2.
$$y' = 4y$$

3.
$$y' = x^2 y$$

4.
$$y' + 2xy = 0$$

5.
$$(x-2)y' + y = 0$$

6.
$$(2x-1)y'+2y=0$$

7.
$$2(x-1)y'=3y$$

8.
$$(1+x)y'-y=0$$

9.
$$(2-x)y'+2y=0$$

10.
$$(x-4)y' + y = 0$$

11.
$$x^2y' = y - x - 1$$

12.
$$(x-3)y'+2y=0$$

13.
$$xy' + y = 0$$

14.
$$x^3y' - 2y = 0$$

15.
$$y'' = 4y$$

16.
$$y'' = 9y$$

17.
$$y'' + y = 0$$

18.
$$y'' - y = 0$$

19.
$$y'' + y = x$$

20.
$$y'' - xy = 0$$

21.
$$y'' + xy = 0$$

22.
$$y'' + xy' + y = 0$$

23.
$$y'' - xy' - y = 0$$

24.
$$y'' + x^2y = 0$$

25.
$$y'' + k^2 x^2 y = 0$$

26.
$$y'' + 3xy' + 3y = 0$$

27.
$$y'' - 2xy' + y = 0$$

28.
$$y'' - xy' + 2y = 0$$

29.
$$y'' - xy' - x^2y = 0$$

$$30. \quad y'' + x^2y' + xy = 0$$

$$31. \quad y'' + x^2y' + 2xy = 0$$

$$32. \quad y'' - x^2 y' - 3xy = 0$$

$$33. \quad y'' + 2xy' + 2y = 0$$

34.
$$2y'' + xy' + y = 0$$

35.
$$3y'' + xy' - 4y = 0$$

$$36. \quad 5y'' - 2xy' + 10y = 0$$

37.
$$(x-1)y'' + y' = 0$$

38.
$$(x+2)y'' + xy' - y = 0$$

39.
$$y'' - (x+1)y = 0$$

40.
$$y'' - (x+1)y' - y = 0$$

41.
$$(x^2+1)y''-6y=0$$

42.
$$(x^2 + 2)y'' + 3xy' - y = 0$$

43.
$$(x^2-1)y'' + xy' - y = 0$$

44.
$$(x^2+1)y''+xy'-y=0$$

45.
$$(x^2+1)y''-xy'+y=0$$

46.
$$(1-x^2)y'' - 6xy' - 4y = 0$$

47.
$$y'' + (x-1)^2 y' - 4(x-1) y = 0$$

48.
$$(2-x^2)y''-xy'+16y=0$$

49.
$$(x^2+1)y''+6xy'+4y=0$$

50.
$$(x^2-1)y''-6xy'+12y=0$$

51.
$$(x^2 - 1)y'' + 8xy' + 12y = 0$$

52.
$$(x^2-1)y'' + 4xy' + 2y = 0$$

53.
$$(x^2+1)y''-4xy'+6y=0$$

54.
$$(x^2 + 2)y'' + 4xy' + 2y = 0$$

55.
$$(x^2-3)y''+2xy'=0$$

56.
$$(x^2+3)y''-7xy'+16y=0$$

Find the series solution to the initial value problems

57.
$$y'' + 4y = 0$$
; $y(0) = 0$, $y'(0) = 3$

58.
$$y'' + x^2y = 0$$
; $y(0) = 1$, $y'(0) = 0$

59.
$$y'' - 2xy' + 8y = 0$$
; $y(0) = 3$, $y'(0) = 0$

60.
$$y'' + y' - 2y = 0$$
; $y(0) = 1$, $y'(0) = -2$

61.
$$y'' - 2y' + y = 0$$
; $y(0) = 0$, $y'(0) = 1$

62.
$$y'' + xy' + y = 0$$
 $y(0) = 1$ $y'(0) = 0$

63.
$$y'' - xy' - y = 0$$
 $y(0) = 2$ $y'(0) = 1$

64.
$$y'' - xy' - y = 0$$
 $y(0) = 1$ $y'(0) = 0$

65.
$$y'' + xy' - 2y = 0$$
 $y(0) = 1$ $y'(0) = 0$

66.
$$y'' + (x-1)y' + y = 0$$
 $y(1) = 2$ $y'(1) = 0$

67.
$$(x-1)y'' - xy' + y = 0$$
; $y(0) = -2$, $y'(0) = 6$

68.
$$(x+1)y'' - (2-x)y' + y = 0;$$
 $y(0) = 2,$ $y'(0) = -1$

69.
$$(1-x)y'' + xy' - 2y = 0$$
; $y(0) = 0$, $y'(0) = 1$

70.
$$(x^2+1)y''+2xy'=0$$
; $y(0)=0$, $y'(0)=1$

71.
$$(2+x^2)y'' - xy' + 4y = 0$$
 $y(0) = -1$ $y'(0) = 3$

72.
$$(2-x^2)y'' - xy' + 4y = 0$$
 $y(0) = 1$ $y'(0) = 0$

73.
$$(4-x^2)y'' + 2y = 0$$
 $y(0) = 0$ $y'(0) = 1$

74.
$$(x^2 - 4)y'' + 3xy' + y = 0$$
; $y(0) = 4$, $y'(0) = 1$

75.
$$(x^2+1)y''+2xy'-2y=0; y(0)=0, y'(0)=1$$

76.
$$(x^2 - 1)y'' + 3xy' + xy = 0$$
; $y(0) = 4$, $y'(0) = 6$

77.
$$(2x-x^2)y''-6(x-1)y'-4y=0; y(1)=0, y'(1)=1$$

78.
$$(x^2 - 6x + 10)y'' - 4(x - 3)y' + 6y = 0$$
; $y(3) = 2$, $y'(3) = 0$

79.
$$(4x^2 + 16x + 17)y'' - 8y = 0$$
; $y(-2) = 1$, $y'(-2) = 0$

80.
$$(x^2 + 6x)y'' + (3x + 9)y' - 3y = 0$$
; $y(-3) = 0$, $y'(-3) = 2$

Find the series solution near the given value

81.
$$y'' - (x-2)y' + 2y = 0$$
; near $x = 2$

82.
$$y'' + (x-1)^2 y' - 4(x-1)y = 0$$
; near $x = 1$

- **83.** $y'' + (x-1)y = e^x$; near x = 1
- **84.** y'' + xy' + (2x-1)y = 0; near x = -1 y(-1) = 2, y'(-1) = -2
- **85.** As a spring is heated, its spring "constant" decreases. Suppose the spring is heated so that the spring "constant" at time t is k(t) = 6 t N/m.

If the unforced mass-spring system has mass m=2 kg and a damping constant b=1 N-sec/m with initial conditions x(0)=3 m and x'(0)=0 m/sec, then the displacement x(t) is governed by the initial value problem

$$2x''(t) + x'(t) + (6-t)x(t) = 0$$
; $x(0) = 3$, $x'(0) = 0$

Find at least the first four nonzero terms in a power series expansion about t = 0 for the displacement.