Convolutional Neural Network (CNN)

PROF. ALCEU BRITTO

Definição

- Rede Neural Convolucional (ConvNet / Convolutional Neural Network / CNN)
 - Algoritmo de Aprendizado Profundo que pode captar uma imagem de entrada, atribuir importância (pesos e vieses que podem ser aprendidos) a vários aspectos da imagem e ser capaz de diferenciar um do outro.
- Composta por camadas (Layers) com funções específicas, organizadas em:
 - · Camadas de convolução (Convolutional Layers)
 - Aprendem a representação do problema, a extração de características.
 - Camadas totalmente conectadas (Dense Layers)
 - Realizam a classificação (ou regressão, se for o caso)

CNN Model

Exemplo (LeNet com 7 camadas)

Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel. Backpropagation applied to handwritten zip code recognition. Neural Computation 1989.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, november 1998

CNN usando Keras

Exemplo CNN (LeNet simples)

weight_decay = 1e-4 model = Sequential()

 $model. add (Conv2D(4, (5,5), padding='valid', kernel_regularizer=regularizers. l2(weight_decay), activation='relu', input_shape=x_train. shape[1:])) \\ model. add (MaxPooling2D(pool_size=(2,2)))$

 $model. add (Conv2D (12, (5,5), padding='valid', activation='relu', kernel_regularizer=regularizers. l2(weight_decay))) \\ model. add (MaxPooling2D (pool_size=(2,2)))$

model.add(Flatten()) model.add(Dense(300, activation='relu')) model.add(Dense(10, activation='softmax'))

Convolução

- -Parâmetros principais
 - Tamanho do kernel (máscara)
 - Valor do passo (stride)
 - Uso de padding (prenchimento)

- Link para documentação do Keras

Pooling (Agregação)

Redução de escala

- Principais parâmetros
 - Tipo: Max, Avg, Mean
 - Tamanho do filtro
 - Stride

Source: cs231n.stanford.edu

- Link para documentação do Keras

Regularizadores (link para documentação do keras)

Parâmetro de entrada

Aplicam penalidades aos parâmetros ou atividades das camadas da rede durante o treinamento.

Principais:

L1 (Lasso Regression)

Cost function

L2 (Ridge Regression)

$$\sum_{i=1}^{n}(y_{i}-\sum_{j=1}^{p}x_{ij}\beta_{j})^{2}+\frac{\lambda\sum_{j=1}^{p}\beta_{j}^{2}}{}$$

Objetivo: ambos reduzem os valores dos pesos. A diferença é que o Lasso reduz para zero os coeficientes de features com pequena importância na rede já o Ridge reduz para valores pequenos porém diferentes de zero.

Batch Normalization (link para documentação do keras)

Durante o treinamento é feito o seguinte:

• 1) Cálculo de média e variância dos 'm' exemplo no batch

$$\mu_B = \frac{1}{m}\sum_{i=1}^m x_i \qquad \text{Batch mean}$$

$$\sigma_B^2 = \frac{1}{m}\sum_{i=1}^m (x_i - \mu_B)^2 \qquad \text{Batch variance}$$

• 2) Normalização da entrada da camada

$$\overline{x_i} = \frac{x_i - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}}$$

o 3) Ajuste (escala e shift) para obter a saída da camada

 $y_i = \gamma \overline{x_i} + \beta$ Aprendido durante o treinamento Aprendido durante o treinamento

Dropout (link para documentação do keras)

Dropout proposto no artigo: A Simple Way to Prevent Neural Networks from Overfitting. Journal of Machine Learning Research 15 (2014) 1929-1958.

• Atribui zero de forma aleatória zeros para a saída de neurônios de camadas ocultas durante o treinamento da rede.

Compilando o modelo (Keras)

model.compile(loss=keras.losses.categorical_crossentropy, optimizer=keras.optimizers.Adadelta(), metrics=['accuracy'])

model.summary()

Link para documentação do keras

Model: "sequential_16"		
Layer (type)	Output Shape	Param #
conv2d_37 (Conv2D)	(None, 28, 28, 32)	832
batch_normalization_21 (Batc	(None, 28, 28, 32)	128
dropout_4 (Dropout)	(None, 28, 28, 32)	0
max_pooling2d_34 (MaxPooling	(None, 14, 14, 32)	0
conv2d_38 (Conv2D)	(None, 14, 14, 60)	48060
batch_normalization_22 (Batc	(None, 14, 14, 60)	240
dropout_5 (Dropout)	(None, 14, 14, 60)	0
max_pooling2d_35 (MaxPooling	(None, 7, 7, 60)	0
conv2d_39 (Conv2D)	(None, 7, 7, 128)	192128
batch_normalization_23 (Batc	(None, 7, 7, 128)	512
dropout_6 (Dropout)	(None, 7, 7, 128)	0
max_pooling2d_36 (MaxPooling	(None, 3, 3, 128)	0
flatten_14 (Flatten)	(None, 1152)	0
dense_17 (Dense)	(None, 100)	115300
dropout_7 (Dropout)	(None, 100)	0
dense_18 (Dense)	(None, 10)	1010
Total params: 358,210 Trainable params: 357,770 Non-trainable params: 440		

Loss Functions

Cross-Entropy (CE)

$$CE = -\sum_{i}^{C} t_{i} log(s_{i})$$

- onde: C = número de classes, ti: rótulo (label), si= score da rede

Categorical cross-entropy loss

Obs: CE precedida por softmax (função que normaliza scores da rede entre 0 e 1, tal que a soma dos scores seja = 1)

Treinando o modelo (Keras)

#model.fit para executar treinamento

es = EarlyStopping(monitor='val loss', mode='min', verbose=1)

results = model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs,verbose=1, callbacks=[es], #validation_data=(x_val, y_val) validation_split=0.2)

- link para documentação keras (EarlyStopping)
- link para documentação keras (fit)

CNN - Fine Tuning

Consiste em adaptar modelo pré-treinado para um novo domínio.

- Por exemplo: adaptar CNN (VGG 16) já treinada na base Imagenet (1000 classes) para um problema de classificação de imagens contendo apenas 10 classes.
- Objetivo: Transferência do aprendizado. Treina-se em base maior, utilizada em domínio no qual a base é pequena.
- Estratégia comum: congela-se a parte convolucional (Convolutional Layers, CL), retreina-se apenas a parte Fully Connected (FC)
- Roteiro (Fine Tuning -> FC Layers)
 - 1) Escolha um modelo pré-treinado: LeNet, VGG16, VGG19, Inception, ... Há vários no Keras.
 - 2) Carregue o modelo pré-treinado selecionado, apenas a parte convolucional
 - from keras.applications import VGG16
 - vgg_conv = VGG16(weights='imagenet', include_top=False, input_shape=(224, 224, 3))
 - vgg_conv.summary()

CNN - Fine Tuning

- Roteiro (Fine Tuning -> FC Layers)
 - 3) Adapte o modelo adicionando uma nova parte FC, considerando o número de classes do novo domínio.
 - model = Sequential()
 - model.add(vgg_conv)
 - model.add(Flatten())
 - model.add(Dense(1024, activation='relu'))
 - model.add(Dropout(0.5))
 - model.add(Dense(10, activation='softmax'))
 - 4) Congele as camadas convolucionais
 - for layer in model.layers[:-4]:
 - layer.trainable = False

CNN - Fine Tuning

- Roteiro (Fine Tuning -> FC Layers)
 - 5) Verifique o status das camadas
 - for layer in model.layers:
 - print(layer, layer.trainable)
 - 6) Compile o modelo adaptado
 - model.compile(loss=keras.losses.categorical_crossentropy, optimizer='adam', metrics=['accuracy'])
 - model.summary()
 - 7) Retreine o modelo
 - es = EarlyStopping(monitor='val_loss', mode='min', verbose=1)
 - history = model.fit(trainX, trainY,
 - batch_size=128,
 - epochs=50,
 - verbose=1,
 - validation_split=0.2, callbacks=[es])

CNN - Fine Tuning

- Roteiro (Fine-Tunning FC Layers)
 - 8) Avalie o modelo criado
 - _, acc = model.evaluate(testX, testY, verbose=0)
 - print('Final Accuracy: > %.3f' % (acc * 100.0))

Veja script de exemplo: VGG16_Fine_Tuning

Considerações finais:

- permite ajuste fino de modelo pré-treinado para novos problemas (*transfer learning*). Estratégia importante para tratar problemas onde temos poucos dados para treinar um novo modelo do zero.
- problema: modelo pode perder desempenho na tarefa anterior quando é adaptado. Ver artigo de nossa autoria:
 - https://arxiv.org/abs/1905.12082

Data Augmentation

- Aumento da base de treinamento, artificialmente.
- Objetivo: aumentar a representatividade da base de treinamento.
- Estratégia: gerar novas imagens a partir da base de treinamento original aplicando transformações (rotação, translação, filtragem, flip, ...). Isto pode ser feito "on the fly" como no exemplo abaixo (novas imagens a cada época de treinamento):
- # Create the data generator
 - $\circ \quad \text{datagen} = \text{ImageDataGenerator(width_shift_range=0.1, height_shift_range=0.1, horizontal_flip=True)}$
- # Apply the generator on the training data
 - datagen.fit(trainX)
- # prepare the iterator
 - it_train = datagen.flow(trainX, trainY, batch_size=64)
- # fit model
 - history = model.fit_generator(it_train, steps_per_epoch=len(trainX) / 64, epochs=15, validation_data=(testX, testY), verbose=1)
- # evaluate model
 - _, acc = model.evaluate(testX, testY, verbose=0)
 - print('> %.3f' % (acc * 100.0))

Ahmad, Jamil & Muhammad, Khan & Baik, Sung. (2017). Data augmentation-assisted deep learning of hand-drawn partially colored sketches for visual search. PLOS ONE. 12. e0183838. 10.1371/journal.pone.0183838.