The Importance of Being Nonplanar: Street Network Representation in Urban Form Studies

Author Redacted 1

Journal Title
XX(X):1–8
(©The Author(s) 2018
Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

\$SAGE

Abstract

Keywords

street network, GIS, urban form, transportation, urban design

Introduction

In urban planning and urban design research, street networks are routinely used to calculate accessibility between origins and destinations or to compute indicators of the urban form, such as block sizes or intersection density and connectivity. Mathematical models of street networks, called graphs, have grown ubiquitous in the urban studies literature in recent years as they can be used to usefully model pedestrian volume, household travel patterns, urban design patterns and spatial morphology, access and equity, and location centrality and polycentricity (Marshall and Garrick 2010; Porta et al. 2014; Marshall et al. 2014; Hajrasouliha and Yin 2015; Parthasarathi et al. 2015; Knight and Marshall 2015; Gil 2016; Zhong et al. 2017).

This article presents two new measures of the degree of nonplanarity for urban street networks that can be generalized to any spatial network. It compares the results and interpretation of these nonplanarity indicators to the formal, mathematical planarity of street networks around the world. Despite common claims in the literature that street networks are planar graphs, this study finds that they generally are not and that planar graphs poorly model the street networks of many cities. Further, the magnitude of this bias varies substantially across cities and urbanization types.

This article is organized as follows. The following section introduces the relevant basics of graph theory urban studies, focusing on discussions in the research literature about street network planarity. The next section introduces the methods used to acquire and analyze the street networks in this study. Then this article presents the results of this analysis before concluding with a discussion of their ramifications for street network research and urban form studies.

Background

Graph theory is the mathematical study of networks (Newman 2010). Graphs can mathematically model real-world networks such as friendships or the Internet as well as spatial networks, such urban street networks (Barthélemy 2011). A graph G consists of a set of nodes N connected to one another by a set of edges E. An edge uv in a directed graph points in one direction from some node u to some node v, but an undirected graph's edges all mutually

point in both directions. In a street network, the nodes represent intersections and dead-ends, and the (directed) edges represent the street segments that connect them. How a graph's nodes and edges connect to one another defines its *topology*. For example, a node's *degree* is a topological trait that represents how many edges connect to that node. A *planar* graph can be drawn on a two-dimensional plane without any of its edges crossing each other, except where they intersect at nodes. If the graph *cannot* be drawn or redrawn to meet this criterion, then the graph is nonplanar (Trudeau 1994). Street networks are embedded in space, which provides them with geometry — such as geographical coordinates, lengths, and area — alongside their topology.

This creates a minor wrinkle when we consider planarity: we must distinguish between a graph's topological planarity, which we shall refer to as formal planarity, and the planarity of its particular spatial embedding, which we shall refer to as spatial planarity. A street network might be spatially nonplanar due to its embedding in space (i.e., it contains overpasses or underpasses in the real-world), but it could still be formally planar. For example, if we "redraw" the graph by moving its nodes and edges around in space without changing how they are connected to one another (i.e., altering its geometry without altering its topology), there may exist some spatial embedding that prevents edges crossing anywhere but nodes (for a more comprehensive discussion see Barthelemy 2017, pp. 6-10). In such a case, the street network is formally planar from a topological perspective, but its real-world embedding is spatially nonplanar.

Consider two theoretical examples: a medieval European city center and a modern American city center. The former's circulation network comprises a set of pedestrian paths and drivable streets without any grade separation, overpasses, or underpasses. In two-dimensions, its edges (i.e., streets and paths) cross each other only at nodes (i.e., intersections), so it is by definition planar. The latter's circulation network comprises pedestrian paths, drivable surface streets, and a

Corresponding author:

Author Redacted, Address Redacted

Email: Email Redacted

¹ Affiliation redacted

Table 1. Recent statements in the urban studies and urban physics literatures regarding the representation of street networks as planar graphs.

"In a planar graph, no links intersect, except by nodes. This feature represents a transportation network well." (Dill 2004, p. 6)

"Street networks are planar graphs composed of junctions and street segments..." (Batty 2005, p. 18)

"The number of long-range connections and the number of edges that can be connected to a single node are limited by the spatial embedding. This is particularly evident in planar networks e.g., those networks forming vertices whenever two edges cross, as urban streets or ant networks of galleries..." (Crucitti et al. 2006, p. 1)

"Any of these street networks (SNS) can be described by an embedded planar graph... Street networks are planar graphs and such planarity strongly constrains their heterogeneity..." (Buhl et al. 2006, pp. 514 & 521)

"Planar graphs are those graphs forming vertices whenever two edges cross, whereas nonplanar graphs can have edge crossings that do not form vertices. The graphs representing urban street patterns are, by construction, planar..." (Cardillo et al. 2006, p. 3)

"The connection and arrangement of a road network is usually abstracted in network analysis as a directed planar graph..." (Xie and Levinson 2007, p. 340)

"Urban street patterns form planar networks... The simplest description of the street network consists of a graph whose links represent roads and whose vertices represent road intersections and end points. For these graphs, links intersect essentially only at vertices and are thus planar." (Barthélemy and Flammini 2008, p. 1)

"Urban street networks as spatial networks are embedded in planar space, which give many constraints." (Hu et al. 2008, p. 1)

"...a street network is a strange network when compared to other social or biological networks in the sense that it is embedded in the Euclidian space and the edges do not cross each other. In graph theory, such a network is called a planar graph." (Masucci et al. 2009, p. 259)

"...street networks are embedded in space and are planar in nature..." (Porta et al. 2010, p. 114)

"Roads, rail, and other transportation networks are spatial and to a good accuracy planar networks. For many applications, planar spatial networks are the most important..." (Barthélemy 2011, p. 3)

"...urban road systems can be (in good approximation) considered as planar networks, i.e., links cannot 'cross' each other without forming a physical intersection (node) as long as there are no tunnels or bridges... The meaningful definition of link angles requires the presence of a planar network, which is assumed to be the case in urban road systems." (Chan et al. 2011, pp. 563 & 567)

"Road networks are planar graphs consisting of a series of land cells surrounded by street segments." (Strano et al. 2012, p. 3)

"Planar graphs are basic tools for understanding transportation systems embedded in two-dimensional space, in particular urban street networks... As these graphs are embedded in a two-dimensional surface, the planarity criteria requires that the links do not cross each other." (Masucci et al. 2013, p. 1)

"...street networks are essentially planar; in the absence of tunnels and bridges, the streets (the links) cannot cross without generating an intersection or a junction, that is, a node." (Gudmundsson and Mohajeri 2013, p. 1).

"Networks of street patterns belong to a particular class of graphs called planar graphs, that is, graphs whose links cross only at nodes." (Strano et al. 2013, p. 1074)

"In city science, planar networks are extensively used to represent, to a good approximation, various infrastructure networks... in particular, transportation networks and more recently streets patterns..." (Viana et al. 2013, p. 1)

"...finding a typology of street patterns essentially amounts to classifying planar graphs..." (Louf and Barthélemy 2014, p. 2)

"...we are dealing with spatial graphs, which tend to be planar..." (Zhong et al. 2014, p. 2191)

"Urban transport systems as networks can be represented as planar graphs..." (Wang 2015, p. 2)

"In graph theory, a spatial street network is a type of planar graph embedded in Euclidean space." (Law 2017, p. 168)

grade-separated freeway with overpasses over some of the surface streets. In two-dimensions, its edges occasionally cross each other at non-nodes (i.e., overpasses), so it is by definition nonplanar. However, we might call it *approximately* planar because its nonplanar edge crossings are relatively uncommon. Approximate planarity constrains this nonplanar spatial network such that it does not exhibit certain characteristics found among nonplanar aspatial graphs (e.g., small-world effects or power-law distributed node degrees).

In the urban studies and urban physics literature, street networks are commonly referred to as planar graphs. Table 1 presents a survey of statements and reasoning around this claim. Some authors prefer to hedge slightly, arguing that street networks are *approximately* or *essentially* planar graphs that are close enough to be well-modeled as such.

If street networks can be sufficiently well-modeled by planar graphs, there are certain methodological benefits to doing so. Planar graphs offer computational simplicity and tractability. They enable easy polygonal spatial analysis of city blocks and form (Fohl et al. 1996) as well as the Euler characteristic. In mathematics, there is a bijection between planar graphs and trees, and classifying planar graphs presents a trivial problem (Louf and Barthélemy 2014). Planar graphs are easier to visualize and can be faster to run algorithms on (Liebers 2001). Accordingly,

Author Redacted 3

Barthélemy (2011, p. 3) argues that "planar spatial networks are the most important and most studies have focused on these examples". But in contrast, Masucci et al. (2009) and Masucci et al. (2013) argue that planar graphs remain a compelling research domain for urban scholars because they were understudied until recently for two reasons: they appear topologically trivial and planarity does not lend itself to certain popular graph-theoretic analyses. Discussing the open research area around street networks as planar graphs, Viana et al. (2013, p. 1) state, "there is still a lack of global, high-level metrics allowing to characterize their structure and geometrical patterns."

Despite the computational and mathematical advantages of simple planar models, street networks are often nonplanar in reality: many include at least one overpass or underpass that results in the failure of formal proofs of their planarity, such as the Kuratowski (1930) theorem or the Hopcroft and Tarjan (1974) algorithm (cf. Gastner and Newman 2006). As Levinson (2012, p. 7) points out, "Real networks are neither perfect, nor planar, nor grids, though they may approximate them."

Other authors have commented on this characteristic of street networks. Mandloi and Thill (2010, p. 199) explain that "Quite often the transportation network has overpasses and underpasses that require a non-planar network representation." O'Sullivan (2014, p. 1258) explains that "For many infrastructure networks, [planarity] is approximately true, although bridges and tunnels in groundtransport networks are an obvious (but generally minor) exception." Twenty years ago, (Fohl et al. 1996, p. 18) claimed, "The most commonly used data model for transportation networks is the fully intersected, planar data model" and called for a nonplanar model to better represent truly nonplanar spatial networks. "The planar network data model has received widespread acceptance and use. Despite its popularity, the model has limitations for some areas of transportation analysis, especially where complex network structures are involved. One major problem is caused by the planar embedding requirement... intersections at grade cannot be distinguished from intersections with an overpass or underpass that do not cross at grade." (Fischer et al. 2004, p. 395)

If a planar graph models a street network poorly, it could do so in multiple ways. Forcing planarity on a nonplanar street network creates artificial nodes at bridges and tunnels, which breaks routing. As Kwan et al. (1996, p. 6) puts it, "the difficulty in accurately representing overpasses or underpasses may lead to problems when running various routing algorithms (e.g. recommending that a traveler make a left-turn at an intersection that proves to be an overpass)". Second, and accordingly, intersection counts and density will be overestimated. Similarly, edge lengths will be underestimated due to these artificial breakpoints. Finally, this bias would likely behave inconsistently across different kinds of cities and street network types.

Given these issues, what do approximately planar and well-modeled mean for street networks? How close is close enough for a planar graph to competently model a mathematically nonplanar street network? Do the biases of planar models remain consistent across geographies or do they misrepresent different places to different degrees? If

street networks are in general approximately planar, then how can we measure how planar or nonplanar a given street network is?

The graph theory literature offers some measures of how "far off" a nonplanar graph G is from being planar, such as its crossing number — the minimum number of edge crossings of any drawing of G — and the skewness — the minimum number of edges that must be removed from G to produce a planar graph (Liebers 2001; Székely 2004; Chimani and Gutwenger 2009). However, these measures are imperfect and hard to compute (Chimani et al. 2012; Székely 2004). In his discussion of road networks and approximate spatial planarity, Newman (2010, p. 133) argues that "no widely accepted metric for degree of planarity has emerged," and calls for the development of better indicators.

Such metrics would be particularly useful for street networks, as the extent to which a network is (or is not) planar can characterize the nature of its circulation infrastructure and urban form. For instance, late 20th-century freeway-oriented American cities might exhibit lower planarity than older walkable European cities. What about informal settlements in developing countries or rapidly urbanizing Chinese cities? Beyond the question of graph model goodness-of-fit, such indicators could provide useful information about urban development, civil infrastructure, and transportation system character.

Methods

In this study, we develop two new measures of the extent to which a spatial network is planar. We then analyze various world cities to better understand how well planar graphs model their street networks as well as the extent to which bias (i.e., model misrepresentation) varies across different places and types of urbanization. Finally, we consider what these indicators suggest about the nature of the urban form and transportation infrastructure in different cities.

Data

Following Jacobs (1995) and Cardillo et al. (2006), we analyze a consistently sized, square-mile network at the centers of 50 cities worldwide. This allows us to consistently examine central urban street networks without being swamped by metropolitan-scale variation or the idiosyncrasies of individual municipalities' spatial extents. For cities, such as Moscow, with a newer commercial central business district (CBD) that lies apart from an "old town" center, we use the modern CBD as the city center. We look separately at their drivable and their walkable street networks.

To acquire these street networks, we use OSMnx to download the data for each city and network type from OpenStreetMap. OpenStreetMap is a collaborative online mapping platform commonly used by researchers because of its good worldwide coverage (Haklay 2010; Jokar Arsanjani et al. 2015). OSMnx is a Python-based software tool that allows us to automatically download a street network from OpenStreetMap for any study site in the world, and automatically process it into a length-weighted nonplanar directed graph (citation redacted). It differentiates between walkable and drivable routes in the circulation network based

on individual elements' metadata that describe how the route may be used. Thus the walkable network may contain surface streets, paths through parks, pedestrian passageways between buildings or under roads, and other walkable paths. The drivable network may contain surface streets, grade-separated freeways, and other drivable paths.

OpenStreetMap graphs contain many interstitial nodes in the middle of street segments (forming an expansion graph) to allow streets to curve through space via a series of straight-line approximations. OSMnx automatically simplifies each graph's topology to retain nodes only at intersections and dead-ends, while faithfully retaining each edge's true spatial geometry. This provides us with an accurate count of intersections and an accurate measure of edge lengths for comparison between the planar and nonplanar representations of our networks.

Analysis

Once we have acquired and prepared our networks, we calculate three measures of planarity.

The first is a formal test of aspatial planarity using the algorithm described by Boyer (2012). That is, is it possible to rearrange the graph's nodes and edges in space — while preserving its topology — so that edges cross only at nodes? This binary true/false indicator tells us if the graph is formally planar, ignoring its real-world spatial embedding. However, street networks are spatially embedded, so we develop the following two continuous measures to assess the "extent" to which they are planar.

The second measure is the spatial planarity ratio (SPR). It represents the ratio of nonplanar intersections (i.e., non-dead-end nodes in the nonplanar, three-dimensional, spatially-embedded graph) to planar intersections (i.e., line crossings in the planar, two-dimensional, spatially-embedded graph). It indicates the extent to which planarity overstates intersections and connectivity in each street network. A truly planar network with no bridges or tunnels will thus have an SPR score of 1.0, while lower values suggest the extent to which the network is nonplanar.

The third measure is the edge length ratio (ELR). It represents the ratio of the mean edge length in the planar graph to the mean edge length in the nonplanar graph. It indicates the extent to which planarity understates edge lengths in each street network. A truly planar street network with no bridges or tunnels will thus have an ELR score of 1.0, while lower values suggest the extent to which the network is nonplanar.

Finally, we explore how these indicators might vary across a single municipality. To do so we analyze the drivable street network of Oakland, California, a reasonably representative midsized American city with a variety of urban form types from gridded street patterns in its flatlands, to winding culsde-sac in its hills, to freeways and dense blocks around its downtown. First we analyze the entire city of Oakland. Then we recreate the aforementioned methodology by randomly sampling 100 points within the city limits and analyzing the square-mile street network centered on each. The resulting statistical dispersion of planarity indicators demonstrates the extent to which agglomerating an entire city's neighborhoods into a single graph may obscure neighborhood-scale effects and characteristics.

Results

Worldwide Cities

Among drivable street networks, only x% pass the formal test of planarity. On average, they are only x% planar by the SPR measure and x% planar by the ELR measure. SPR values range from a high of 1.0 in x cities to a low of 57% in Moscow. ELR values range from a high of 1.0 in x cities to a low of 64% in Los Angeles.

Among walkable street networks, only x% pass the formal test of planarity. On average, they are only x% planar by the SPR measure and x% planar by the ELR measure. SPR values range from a high of 1.0 in x cities to a low of 74% in Atlanta. ELR values range from a high of 1.0 in x cities to a low of 72% in Atlanta.

Mogadishu is the only city to show perfect planarity across all three indicators and both network types. All three Italian cities show perfect planarity in their drivable networks, but not in their walkable networks.

A Closer Look: Oakland, California

We find that the street network of the entire city of Oakland is formally nonplanar when subjected to a formal mathematical test. In terms of the nonplanarity indicators, the city as a whole has a SPR score of 0.918, indicating that it is 91.8% planar, and a ELR score of 0.936. This suggests that the planar representation of Oakland's drivable street network overstates the number of intersections (and thus, the network's connectivity) by 8.9% city-wide (i.e., 1-1/0.918 and understates the average edge length by 6.4% city-wide (i.e., 1-0.936). However, these indicators' values vary across the city.

To explore this statistical variation, we examined 100 square-mile samples of Oakland's drivable street network. Table 3 presents descriptive statistics of these planarity indicators.

Discussion

Our findings suggest that the street networks in the centers of most major cities are formally and spatially nonplanar. However, this depends on the scale of measurement: across an entire city there is likely to be some underpass or overpass somewhere, while individual neighborhoods or small suburbs might be formally planar. The type and era of urbanization is another factor. Old medieval European towns or informal settlements in the global south contain fewer grade-separated roads (and thus greater planarity) than 20th-century American or 21st-century Chinese metropolises do. This is a result of prevailing transportation technologies when the urban form was built up, as well as terrain, costs, wealth, culture, and politics.

Street networks are frequently nonplanar in the formal sense because they are spatially embedded in three dimensions — not two — and have a z-coordinate along with their x and y. Because they are mostly planar, typically with only a few overpasses or underpasses, they could often be described accurately as *approximately planar*. However, claiming that urban street networks broadly are planar misrepresents them in several ways:

Author Redacted 5

Figure 1. Map of world cities in Table 2 grouped by SPR score tertiles (lower scores mean less planar).

Figure 2. Log-log plot of ELR vs SPR with simple regression lines: drive $r^2=0.98$ and walk $r^2=0.99$.

- 1. Forces false nodes where grade-separated edges cross.
- 2. Accordingly, underestimates average edge length (a proxy for street segment lengths and block sizes).
- 3. Misrepresents connectivity for routing, accessibility analysis, and other topological studies.

This is a bigger problem in Los Angeles than in Florence, but even in Florence, planar overcounts intersections around the *sottopassaggio*, or pedestrian subway, near its central train station, Stazione di Santa Maria Novella. This is a pedestrian walkway, not a drivable road, but in a walkable town like Florence, we would surely want to model pedestrian access as part the street network, not drivable roads only. In this case, the nonplanar public pedestrian network must be considered.

The problem is consistently and particularly pronounced around the downtowns of North American cities, due to the prevalence of freeways, bridges, and underpasses there. Driving networks are affected by these in particular. Walking networks are more affected by pedestrian flyovers and subways, as in Florence. Even networks of non-freeway, non-pedestrian-only surface streets will often be nonplanar due to bridges or tunnels in hilly neighborhoods or over rivers.

The effect is inconsistent across cities, and across different neighborhoods within individual cities.

Why are they approximately planar? Cost and politics. Expensive to build truly 3-D networks (with z-coordinates as extensive as their x- and y-coordinates) and politically infeasible.

Table 2. Planarity measures for the central street networks of 50 cities worldwide (SPR = spatial planarity ratio; ELR = edge length ratio; Planar = whether street network passed the formal test of planarity).

Country City Planar SPR ELR Planar SPR ELR Argentina Buenos Aires Yes 1.000 1.000 No 0.946 0.947 Australia Sydney No 0.741 0.749 No 0.990 0.90 Brazil Sao Paulo No 0.791 0.978 No 0.858 0.831 Canada Toronto Yes 0.930 0.958 No 0.832 0.834 Chile Santiago No 0.815 0.887 No 0.929 0.991 Chile Santiago No 0.846 0.835 No 0.842 0.848 China Beijing No 0.862 0.717 No 0.679 0.957 China Beijing No 0.862 0.717 No 0.670 0.659 Denmark Copenhagen Yes 0.990 0.918 No 0.991 0.989 Egypt <th></th> <th></th> <th></th> <th>Drive</th> <th></th> <th></th> <th>Walk</th> <th></th>				Drive			Walk	
Australia Sydney No 0.741 0.749 No 0.909 0.901 Brazil Sao Paulo No 0.791 0.790 No 0.852 0.831 Canada Toronto Yes 0.930 0.958 No 0.858 0.948 Chile Santiago No 0.875 0.887 No 0.842 0.971 Chile Beijing No 0.818 0.872 No 0.842 0.971 Chine Beijing No 0.846 0.835 No 0.840 0.818 Bering No 0.960 0.916 No 0.998 No 0.991 0.980 No 0.991 0.980 No 0.991 0.986 No 0.991 0.986 No 0.991 0.992 0.988 No 0.991 0.987 No 0.986 No 0.991 0.980 0.990 0.996 0.996 0.996 0.996 0.996 0.996 <	Country	City	Planar	SPR	ELR	Planar	SPR	ELR
Brazil Sao Paulo No 0.791 0.790 No 0.852 0.831 Canada Toronto Yes 0.930 0.958 No 0.858 0.848 Vancouver No 0.929 0.948 No 0.929 0.948 Chile Santiago No 0.846 0.835 No 0.842 0.848 China Beijing No 0.846 0.835 No 0.840 0.818 Bommark Copenhagen Yes 0.992 0.988 No 0.991 0.987 Egypt Cairo No 0.901 0.916 No 0.906 0.957 Faris No 0.988 0.993 No 0.906 0.957 Farnee Lyon No 0.991 0.980 No 0.901 0.996 0.950 Germany Berlin No 0.938 0.993 No 0.920 0.917 India Delhi Y	Argentina	Buenos Aires	Yes	1.000	1.000	No	0.946	0.947
Canada Toronto Yes 0.930 0.958 No 0.848 0.929 0.926 Chile Santiago No 0.875 0.887 No 0.972 0.971 China Beijing No 0.848 0.872 No 0.842 0.848 Hong Kong No 0.846 0.835 No 0.840 0.818 Beigh Copenhagen Yes 0.992 0.988 No 0.991 0.986 Egypt Cairo No 0.901 0.989 No 0.906 0.957 Farace Lyon No 0.993 No 0.920 0.917 Germany Berlin No 0.939 0.950 No 0.920 0.917 Germany Berlin No 0.939 0.950 No 0.923 0.950 0.90 0.916 No 0.923 0.950 0.960 0.973 No 0.924 0.931 India 0.916 <t< td=""><td>Australia</td><td>Sydney</td><td>No</td><td>0.741</td><td>0.749</td><td>No</td><td>0.909</td><td>0.901</td></t<>	Australia	Sydney	No	0.741	0.749	No	0.909	0.901
Chile Vancouver No 0.929 0.948 No 0.929 0.920 Chile Santiago No 0.875 0.887 No 0.842 0.971 China Beijing No 0.846 0.835 No 0.840 0.818 Denmark Copenhagen Yes 0.992 0.988 No 0.991 0.987 Egypt Cairo No 0.900 0.916 No 0.991 0.989 No 0.991 0.987 France Lyon No 0.990 0.950 No 0.902 0.957 Germany Berlin No 0.988 0.993 No 0.960 0.957 Germany Berlin No 0.939 0.950 No 0.942 0.993 India Delhi Yes 1.000 1.000 No 0.962 0.993 India Delhi Yes 1.000 1.000 No 0.962 0.96	Brazil	Sao Paulo	No	0.791	0.790	No	0.852	0.831
Chile Santiago No 0.875 0.887 No 0.972 0.971 China Beijing No 0.846 0.835 No 0.842 0.848 Hong Kong No 0.846 0.835 No 0.840 0.818 Bermark Copenhagen Yes 0.992 0.988 No 0.991 0.987 Egypt Cairo No 0.991 0.988 No 0.996 0.957 Faris No 0.998 0.993 No 0.906 0.957 Germany Berlin No 0.938 0.993 No 0.920 0.917 Germany Berlin No 0.938 0.993 No 0.920 0.917 Germany Berlin No 0.938 0.993 No 0.924 0.931 India Delhi Yes 1.000 1.000 Yes 0.996 0.996 Iran Tehran No 0.962	Canada	Toronto	Yes	0.930	0.958	No	0.858	0.848
China Beijing Hong Kong No 0.818 0.872 No 0.842 0.848 Denmark Copenhagen No 0.682 0.717 No 0.670 0.659 Denmark Copenhagen Yes 0.992 0.988 No 0.991 0.987 Egypt Cairo No 0.900 0.916 No 0.918 0.906 France Lyon No 0.991 0.988 No 0.960 0.957 Farnee Lyon No 0.991 0.989 No 0.960 0.957 Germany Berlin No 0.939 0.950 No 0.920 0.916 India Delhi Yes 1.000 1.000 Yes 0.993 0.992 0.992 India Delhi Yes 1.000 1.000 Yes 0.993 0.992 0.993 0.992 0.993 0.992 0.995 0.956 0.956 0.956 0.956 0.956		Vancouver	No	0.929	0.948	No	0.929	0.926
Hong Kong Shanghai No 0.846 0.835 No 0.840 0.818		Santiago	No	0.875	0.887	No	0.972	0.971
No	China		No	0.818	0.872	No	0.842	
Denmark Copenhagen Yes 0.992 0.988 No 0.991 0.987 Egypt Cairo No 0.900 0.916 No 0.906 0.907 France Lyon No 0.991 0.989 No 0.960 0.957 Germany Berlin No 0.939 0.950 No 0.934 0.936 India Delhi Yes 1.000 1.000 Yes 0.993 0.996 0.996 0.996 0.996 Indonesia Jakarta Yes 0.982 0.973 No 0.957 0.956 Iran Tehran No 0.962 0.973 No 0.957 0.956 Iran Tehran No 0.962 0.973 No 0.957 0.956 Iran Bologna Yes 1.000 1.000 No 0.978 0.978 Italy Bologna Yes 1.000 1.000 No 0.878		0 0	No	0.846	0.835	No		
Egypt Cairo No 0.900 0.916 No 0.960 0.957 France Lyon No 0.988 0.993 No 0.920 0.917 Germany Berlin No 0.939 0.950 No 0.943 0.936 India Delhi Yes 1.000 1.000 Yes 0.993 0.992 India Delhi Yes 1.000 1.000 Yes 0.993 0.996 Indonesia Jakarta Yes 0.983 0.986 No 0.962 0.960 Iran Tehran No 0.962 0.973 No 0.957 0.956 Italy Bologna Yes 1.000 1.000 No 0.950 0.996		Shanghai	No	0.682	0.717		0.670	0.659
France Lyon No 0.991 0.989 No 0.960 0.957 Germany Berlin No 0.938 0.993 No 0.920 0.917 Germany Berlin No 0.939 0.950 No 0.943 0.936 India Delhi Yes 1.000 1.000 Yes 0.990 0.990 Indonesia Jakarta Yes 0.983 0.986 No 0.962 0.960 Iran Tehran No 0.962 0.973 No 0.957 0.956 Italy Bologna Yes 1.000 1.000 No 0.950 0.996 Italy Bologna Yes 1.000 1.000 No 0.978 0.966 Italy Bologna Yes 1.000 1.000 No 0.978 0.996 0.996 0.996 0.996 0.996 0.996 0.996 0.996 0.996 0.996 0.997 0.981	Denmark	Copenhagen	Yes	0.992	0.988	No	0.991	0.987
Germany Berlin No 0.988 0.993 No 0.920 0.917 Germany Berlin No 0.939 0.950 No 0.943 0.936 India Delhi Yes 1.000 1.000 Yes 0.993 0.996 Indonesia Jakarta Yes 0.983 0.986 No 0.952 0.960 Iran Tehran No 0.962 0.973 No 0.957 0.956 Italy Bologna Yes 1.000 1.000 No 0.957 0.996 Italy Bologna Yes 1.000 1.000 No 0.957 0.960 Japan Osaka No 0.868 0.871 No 0.951 0.949 Japan Osaka No 0.927 0.923 No 0.922 0.912 No 0.921 0.941 No 0.949 0.943 0.941 No 0.949 0.943 0.941 No </td <td>Egypt</td> <td>Cairo</td> <td>No</td> <td>0.900</td> <td>0.916</td> <td>No</td> <td>0.918</td> <td>0.906</td>	Egypt	Cairo	No	0.900	0.916	No	0.918	0.906
Germany India Berlin No 0.939 0.950 No 0.943 0.936 India Delhi Yes 1.000 1.000 Yes 0.993 0.992 Indonesia Jakarta Yes 0.983 0.986 No 0.962 0.960 Iran Tehran No 0.962 0.973 No 0.957 0.956 Italy Bologna Yes 1.000 1.000 No 0.980 0.978 Mailan Yes 1.000 1.000 No 0.980 0.978 Japan Osaka No 0.868 0.871 No 0.951 0.949 Kenya Nairobi No 0.927 0.923 No 0.922 0.91 Kenya Nairobi No 0.940 0.952 No 0.913 0.917 Mexico Mexico City No 0.952 0.967 No 0.988 0.987 Peru Lima <td< td=""><td>France</td><td>Lyon</td><td>No</td><td>0.991</td><td>0.989</td><td>No</td><td>0.960</td><td>0.957</td></td<>	France	Lyon	No	0.991	0.989	No	0.960	0.957
India		Paris	No	0.988	0.993	No	0.920	0.917
Indonesia Jakarta Yes 0.983 0.986 No 0.962 0.960 Iran Tehran No 0.962 0.973 No 0.957 0.956 Italy Bologna Yes 1.000 1.000 Yes 0.996 0.996 Florence Yes 1.000 1.000 No 0.980 0.978 Milan Yes 1.000 1.000 No 0.980 0.978 Japan Osaka No 0.868 0.871 No 0.941 0.949 0.949 Kenya Nairobi No 0.974 0.974 No 0.949 0.943 Mexico Mexico City No 0.940 0.952 No 0.913 0.917 Nigeria Lagos No 0.952 0.967 No 0.988 0.987 Peru Lima No 0.939 0.941 No 0.932 0.931 Philippines Manila <t< td=""><td>Germany</td><td>Berlin</td><td>No</td><td>0.939</td><td>0.950</td><td>No</td><td>0.943</td><td>0.936</td></t<>	Germany	Berlin	No	0.939	0.950	No	0.943	0.936
Iran Tehran No 0.962 0.973 No 0.957 0.956 Italy Bologna Yes 1.000 1.000 Yes 0.996 0.996 Florence Yes 1.000 1.000 No 0.980 0.978 Milan Yes 1.000 1.000 No 0.980 0.978 Japan Osaka No 0.868 0.871 No 0.951 0.949 Japan Osaka No 0.868 0.871 No 0.951 0.949 Japan Nairobi No 0.927 0.923 No 0.922 0.913 Kenya Mairobi No 0.940 0.952 No 0.913 0.917 Mexico Mexico City No 0.952 0.967 No 0.988 0.987 Peru Lima No 0.939 0.941 No 0.932 0.931 Philippines Manila No 0.574 <td>India</td> <td>Delhi</td> <td>Yes</td> <td>1.000</td> <td>1.000</td> <td>Yes</td> <td>0.993</td> <td>0.992</td>	India	Delhi	Yes	1.000	1.000	Yes	0.993	0.992
Italy Bologna Yes 1.000 1.000 Yes 0.996 0.996 Florence Yes 1.000 1.000 No 0.980 0.978 Milan Yes 1.000 1.000 No 0.875 0.860 Japan Osaka No 0.868 0.871 No 0.951 0.949 Kenya Nairobi No 0.974 0.974 No 0.949 0.943 Mexico Mexico City No 0.940 0.952 No 0.913 0.917 Nigeria Lagos No 0.952 0.967 No 0.988 0.987 Peru Lima No 0.939 0.941 No 0.932 0.931 Philippines Manila No 0.946 0.953 No 0.966 0.855 Russia Moscow No 0.574 0.680 No 0.856 0.858 Singapore No 0.868 0.	Indonesia	Jakarta	Yes	0.983	0.986	No	0.962	0.960
Florence Yes 1.000 1.000 No 0.980 0.978	Iran	Tehran	No	0.962	0.973	No	0.957	0.956
Milan Yes 1.000 1.000 No 0.875 0.860	Italy	Bologna	Yes	1.000	1.000	Yes	0.996	0.996
Japan Osaka No 0.868 0.871 No 0.949 Kenya Nairobi No 0.927 0.923 No 0.922 0.912 Kenya Nairobi No 0.974 0.974 No 0.949 0.943 Mexico Mexico City No 0.940 0.952 No 0.913 0.917 Nigeria Lagos No 0.952 0.967 No 0.988 0.987 Peru Lima No 0.939 0.941 No 0.932 0.931 Philippines Manila No 0.946 0.953 No 0.906 0.895 Russia Moscow No 0.574 0.680 No 0.856 0.858 Singapore Singapore No 0.868 0.874 No 0.899 0.890 Somalia Mogadishu Yes 1.000 1.000 Yes 1.000 1.000 No 0.997 0.997		Florence	Yes	1.000	1.000	No	0.980	0.978
Kenya Nairobi No 0.927 0.923 No 0.922 0.912 Kenya Nairobi No 0.974 0.974 No 0.949 0.943 Mexico Mexico City No 0.940 0.952 No 0.913 0.917 Nigeria Lagos No 0.952 0.967 No 0.988 0.987 Peru Lima No 0.939 0.941 No 0.932 0.931 Philippines Manila No 0.946 0.953 No 0.906 0.895 Russia Moscow No 0.574 0.680 No 0.856 0.858 Singapore Singapore No 0.868 0.874 No 0.899 0.890 Somalia Mogadishu Yes 1.000 1.000 Yes 1.000 1.000 No 0.890 0.890 South Africa Johannesburg No 0.851 0.883 No 0.		Milan	Yes	1.000	1.000	No	0.875	0.860
Kenya Nairobi No 0.974 0.974 No 0.949 0.943 Mexico Mexico City No 0.940 0.952 No 0.913 0.917 Nigeria Lagos No 0.952 0.967 No 0.988 0.987 Peru Lima No 0.939 0.941 No 0.932 0.931 Philippines Manila No 0.946 0.953 No 0.906 0.895 Russia Moscow No 0.574 0.680 No 0.856 0.858 Singapore Singapore No 0.868 0.874 No 0.899 0.890 Somalia Mogadishu Yes 1.000 1.000 Yes 1.000 1.000 Yes 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 <	Japan	Osaka	No	0.868	0.871	No	0.951	0.949
Mexico Mexico City No 0.940 0.952 No 0.913 0.917 Nigeria Lagos No 0.952 0.967 No 0.988 0.987 Peru Lima No 0.939 0.941 No 0.932 0.931 Philippines Manila No 0.946 0.953 No 0.906 0.895 Russia Moscow No 0.574 0.680 No 0.856 0.858 Singapore Singapore No 0.868 0.874 No 0.899 0.890 Somalia Mogadishu Yes 1.000 1.000 Yes 1.000 1.000 Yes 1.000 1.000 No 0.997 0.997 Somalia Mogadishu Yes 1.000 1.000 Yes 1.000 1.000 No 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.997 <		Tokyo	No	0.927	0.923	No	0.922	0.912
Nigeria Lagos No 0.952 0.967 No 0.988 0.987 Peru Lima No 0.939 0.941 No 0.932 0.931 Philippines Manila No 0.946 0.953 No 0.906 0.895 Russia Moscow No 0.574 0.680 No 0.856 0.858 Singapore Singapore No 0.868 0.874 No 0.899 0.890 Somalia Mogadishu Yes 1.000 1.000 Yes 1.000 1.000 South Africa Johannesburg No 0.851 0.883 No 0.997 0.997 Spain Barcelona Yes 1.000 1.000 No 0.994 0.900 Switzerland Geneva No 0.985 0.982 No 0.828 0.813 Turkey Istanbul No 0.975 0.982 No 0.980 0.978 <t< td=""><td>Kenya</td><td>Nairobi</td><td>No</td><td>0.974</td><td>0.974</td><td>No</td><td>0.949</td><td>0.943</td></t<>	Kenya	Nairobi	No	0.974	0.974	No	0.949	0.943
Peru Lima No 0.939 0.941 No 0.932 0.931 Philippines Manila No 0.946 0.953 No 0.906 0.895 Russia Moscow No 0.574 0.680 No 0.856 0.858 Singapore Singapore No 0.868 0.874 No 0.899 0.890 Somalia Mogadishu Yes 1.000 1.000 Yes 1.000 1.000 South Africa Johannesburg No 0.851 0.883 No 0.997 0.997 Spain Barcelona Yes 1.000 1.000 No 0.994 0.900 Switzerland Geneva No 0.985 0.982 No 0.828 0.813 Thailand Bangkok No 0.988 0.988 No 0.993 0.989 Turkey Istanbul No 0.975 0.982 No 0.980 0.978	Mexico	Mexico City	No	0.940	0.952	No	0.913	0.917
Philippines Manila No 0.946 0.953 No 0.906 0.895 Russia Moscow No 0.574 0.680 No 0.856 0.858 Singapore Singapore No 0.868 0.874 No 0.899 0.890 Somalia Mogadishu Yes 1.000 1.000 Yes 1.000 1.000 South Africa Johannesburg No 0.851 0.883 No 0.997 0.997 Spain Barcelona Yes 1.000 1.000 No 0.990 Switzerland Geneva No 0.988 0.988 No 0.828 0.811 Turkey <td>Nigeria</td> <td>Lagos</td> <td>No</td> <td>0.952</td> <td>0.967</td> <td>No</td> <td>0.988</td> <td>0.987</td>	Nigeria	Lagos	No	0.952	0.967	No	0.988	0.987
Russia Moscow No 0.574 0.680 No 0.856 0.858 Singapore Singapore No 0.868 0.874 No 0.899 0.890 Somalia Mogadishu Yes 1.000 1.000 Yes 1.000 1.000 South Africa Johannesburg No 0.851 0.883 No 0.997 0.997 Spain Barcelona Yes 1.000 1.000 No 0.994 0.900 Switzerland Geneva No 0.985 0.982 No 0.828 0.813 Thailand Bangkok No 0.988 0.988 No 0.993 0.989 Turkey Istanbul No 0.975 0.982 No 0.980 0.978 UAE Dubai No 0.685 0.722 No 0.860 0.850 UK Edinburgh No 0.973 0.968 No 0.988 0.988 U	Peru	Lima	No	0.939	0.941	No	0.932	0.931
Singapore Singapore No 0.868 0.874 No 0.899 0.890 Somalia Mogadishu Yes 1.000 1.000 Yes 1.000 1.000 South Africa Johannesburg No 0.851 0.883 No 0.997 0.997 Spain Barcelona Yes 1.000 1.000 No 0.994 0.900 Switzerland Geneva No 0.985 0.982 No 0.828 0.813 Thailand Bangkok No 0.988 0.988 No 0.993 0.989 Turkey Istanbul No 0.975 0.982 No 0.980 0.978 UAE Dubai No 0.685 0.722 No 0.860 0.850 UK Edinburgh No 0.973 0.968 No 0.988 0.988 USA Atlanta No 0.736 0.777 No 0.738 0.724 USA	Philippines	Manila	No	0.946	0.953	No	0.906	0.895
Somalia Mogadishu Yes 1.000 1.000 Yes 1.000 1.000 South Africa Johannesburg No 0.851 0.883 No 0.997 0.997 Spain Barcelona Yes 1.000 1.000 No 0.994 0.990 Switzerland Geneva No 0.985 0.982 No 0.828 0.813 Thailand Bangkok No 0.988 0.988 No 0.993 0.989 Turkey Istanbul No 0.975 0.982 No 0.980 0.978 UAE Dubai No 0.685 0.722 No 0.860 0.850 UK Edinburgh No 0.973 0.968 No 0.988 0.988 USA Atlanta No 0.736 0.777 No 0.738 0.724 USA Atlanta No 0.736 0.777 No 0.738 0.724 USA	Russia	Moscow	No	0.574	0.680	No	0.856	0.858
Somalia Mogadishu Yes 1.000 1.000 Yes 1.000 1.000 South Africa Johannesburg No 0.851 0.883 No 0.997 0.997 Spain Barcelona Yes 1.000 1.000 No 0.994 0.900 Switzerland Geneva No 0.985 0.982 No 0.828 0.813 Thailand Bangkok No 0.988 0.988 No 0.993 0.989 Turkey Istanbul No 0.975 0.982 No 0.980 0.978 UAE Dubai No 0.685 0.722 No 0.860 0.850 UK Edinburgh No 0.973 0.968 No 0.988 0.988 USA Atlanta No 0.736 0.777 No 0.738 0.724 USA Atlanta No 0.776 0.814 No 0.807 0.804 USA	Singapore	Singapore	No	0.868	0.874	No	0.899	0.890
Spain Barcelona Yes 1.000 1.000 No 0.904 0.900 Switzerland Geneva No 0.985 0.982 No 0.828 0.813 Thailand Bangkok No 0.988 0.988 No 0.993 0.989 Turkey Istanbul No 0.975 0.982 No 0.980 0.978 UAE Dubai No 0.685 0.722 No 0.860 0.850 UK Edinburgh No 0.973 0.968 No 0.988 0.988 London No 0.979 0.981 No 0.865 0.847 USA Atlanta No 0.736 0.777 No 0.738 0.724 USA Atlanta No 0.736 0.777 No 0.807 0.804 Chicago No 0.730 0.757 No 0.931 0.927 Dallas No 0.598 0.650 <td>Somalia</td> <td>Mogadishu</td> <td>Yes</td> <td>1.000</td> <td>1.000</td> <td>Yes</td> <td>1.000</td> <td>1.000</td>	Somalia	Mogadishu	Yes	1.000	1.000	Yes	1.000	1.000
Switzerland Geneva No 0.985 0.982 No 0.828 0.813 Thailand Bangkok No 0.988 0.988 No 0.993 0.989 Turkey Istanbul No 0.975 0.982 No 0.980 0.978 UAE Dubai No 0.685 0.722 No 0.860 0.850 UK Edinburgh No 0.973 0.968 No 0.988 0.988 London No 0.979 0.981 No 0.865 0.847 USA Atlanta No 0.736 0.777 No 0.738 0.724 Chicago No 0.776 0.814 No 0.807 0.804 Cincinnati No 0.730 0.757 No 0.931 0.927 Dallas No 0.583 0.650 Yes 0.963 0.959 Los Angeles No 0.583 0.635 No 0.964	South Africa	Johannesburg	No	0.851	0.883	No	0.997	0.997
Thailand Bangkok No 0.988 0.988 No 0.993 0.989 Turkey Istanbul No 0.975 0.982 No 0.980 0.978 UAE Dubai No 0.685 0.722 No 0.860 0.850 UK Edinburgh No 0.973 0.968 No 0.988 0.988 London No 0.979 0.981 No 0.865 0.847 USA Atlanta No 0.736 0.777 No 0.738 0.724 Chicago No 0.776 0.814 No 0.807 0.804 Cincinnati No 0.730 0.757 No 0.931 0.927 Dallas No 0.598 0.650 Yes 0.963 0.959 Los Angeles No 0.583 0.635 No 0.793 0.799 Miami No 0.647 0.662 No 0.964 0.961	Spain	Barcelona	Yes	1.000	1.000	No	0.904	0.900
Turkey Istanbul No 0.975 0.982 No 0.980 0.978 UAE Dubai No 0.685 0.722 No 0.860 0.850 UK Edinburgh No 0.973 0.968 No 0.988 0.988 London No 0.979 0.981 No 0.865 0.847 USA Atlanta No 0.736 0.777 No 0.738 0.724 Chicago No 0.776 0.814 No 0.807 0.804 Cincinnati No 0.730 0.757 No 0.931 0.927 Dallas No 0.598 0.650 Yes 0.963 0.959 Los Angeles No 0.583 0.635 No 0.793 0.799 Miami No 0.647 0.662 No 0.964 0.961 New York No 0.881 0.901 No 0.942 0.941	Switzerland	Geneva	No	0.985	0.982	No	0.828	0.813
UAE Dubai No 0.685 0.722 No 0.860 0.850 UK Edinburgh No 0.973 0.968 No 0.988 0.988 London No 0.979 0.981 No 0.865 0.847 USA Atlanta No 0.736 0.777 No 0.738 0.724 Chicago No 0.776 0.814 No 0.807 0.804 Cincinnati No 0.730 0.757 No 0.931 0.927 Dallas No 0.598 0.650 Yes 0.963 0.959 Los Angeles No 0.583 0.635 No 0.793 0.799 Miami No 0.647 0.662 No 0.964 0.961 New York No 0.881 0.901 No 0.942 0.941 Phoenix No 0.935 0.941 No 0.948 0.944 Seattle	Thailand	Bangkok	No	0.988	0.988	No	0.993	0.989
UK Edinburgh No 0.973 0.968 No 0.988 0.988 London No 0.979 0.981 No 0.865 0.847 USA Atlanta No 0.736 0.777 No 0.738 0.724 Chicago No 0.776 0.814 No 0.807 0.804 Cincinnati No 0.730 0.757 No 0.931 0.927 Dallas No 0.598 0.650 Yes 0.963 0.959 Los Angeles No 0.583 0.635 No 0.793 0.799 Miami No 0.647 0.662 No 0.964 0.961 New York No 0.881 0.901 No 0.942 0.941 Phoenix No 0.955 0.962 No 0.979 0.977 San Francisco No 0.935 0.941 No 0.948 0.944 Seattle No	Turkey	Istanbul	No	0.975	0.982	No	0.980	0.978
USA London No 0.979 0.981 No 0.865 0.847 USA Atlanta No 0.736 0.777 No 0.738 0.724 Chicago No 0.776 0.814 No 0.807 0.804 Cincinnati No 0.730 0.757 No 0.931 0.927 Dallas No 0.598 0.650 Yes 0.963 0.959 Los Angeles No 0.583 0.635 No 0.793 0.799 Miami No 0.647 0.662 No 0.964 0.961 New York No 0.881 0.901 No 0.942 0.941 Phoenix No 0.955 0.962 No 0.979 0.977 San Francisco No 0.935 0.941 No 0.948 0.944 Seattle No 0.732 0.779 No 0.933 0.926 Washington DC No<	UAE	Dubai	No	0.685	0.722	No	0.860	0.850
USA Atlanta No 0.736 0.777 No 0.738 0.724 Chicago No 0.776 0.814 No 0.807 0.804 Cincinnati No 0.730 0.757 No 0.931 0.927 Dallas No 0.598 0.650 Yes 0.963 0.959 Los Angeles No 0.583 0.635 No 0.793 0.799 Miami No 0.647 0.662 No 0.964 0.961 New York No 0.881 0.901 No 0.942 0.941 Phoenix No 0.955 0.962 No 0.979 0.977 San Francisco No 0.935 0.941 No 0.948 0.944 Seattle No 0.732 0.779 No 0.933 0.926 Washington DC No 0.948 0.956 No 0.967 0.967	UK	Edinburgh	No	0.973	0.968	No	0.988	0.988
Chicago No 0.776 0.814 No 0.807 0.804 Cincinnati No 0.730 0.757 No 0.931 0.927 Dallas No 0.598 0.650 Yes 0.963 0.959 Los Angeles No 0.583 0.635 No 0.793 0.799 Miami No 0.647 0.662 No 0.964 0.961 New York No 0.881 0.901 No 0.942 0.941 Phoenix No 0.955 0.962 No 0.979 0.977 San Francisco No 0.935 0.941 No 0.948 0.944 Seattle No 0.732 0.779 No 0.933 0.926 Washington DC No 0.948 0.956 No 0.967 0.967		London	No	0.979	0.981	No	0.865	0.847
Cincinnati No 0.730 0.757 No 0.931 0.927 Dallas No 0.598 0.650 Yes 0.963 0.959 Los Angeles No 0.583 0.635 No 0.793 0.799 Miami No 0.647 0.662 No 0.964 0.961 New York No 0.881 0.901 No 0.942 0.941 Phoenix No 0.955 0.962 No 0.979 0.977 San Francisco No 0.935 0.941 No 0.948 0.944 Seattle No 0.732 0.779 No 0.933 0.926 Washington DC No 0.948 0.956 No 0.967 0.967	USA	Atlanta	No	0.736	0.777	No	0.738	0.724
Dallas No 0.598 0.650 Yes 0.963 0.959 Los Angeles No 0.583 0.635 No 0.793 0.799 Miami No 0.647 0.662 No 0.964 0.961 New York No 0.881 0.901 No 0.942 0.941 Phoenix No 0.955 0.962 No 0.979 0.977 San Francisco No 0.935 0.941 No 0.948 0.944 Seattle No 0.732 0.779 No 0.933 0.926 Washington DC No 0.948 0.956 No 0.967 0.967		Chicago	No	0.776	0.814	No	0.807	0.804
Los AngelesNo0.5830.635No0.7930.799MiamiNo0.6470.662No0.9640.961New YorkNo0.8810.901No0.9420.941PhoenixNo0.9550.962No0.9790.977San FranciscoNo0.9350.941No0.9480.944SeattleNo0.7320.779No0.9330.926Washington DCNo0.9480.956No0.9670.967		Cincinnati	No	0.730	0.757	No		0.927
MiamiNo0.6470.662No0.9640.961New YorkNo0.8810.901No0.9420.941PhoenixNo0.9550.962No0.9790.977San FranciscoNo0.9350.941No0.9480.944SeattleNo0.7320.779No0.9330.926Washington DCNo0.9480.956No0.9670.967		Dallas	No	0.598	0.650	Yes	0.963	0.959
New York No 0.881 0.901 No 0.942 0.941 Phoenix No 0.955 0.962 No 0.979 0.977 San Francisco No 0.935 0.941 No 0.948 0.944 Seattle No 0.732 0.779 No 0.933 0.926 Washington DC No 0.948 0.956 No 0.967 0.967		Los Angeles	No	0.583	0.635	No	0.793	0.799
Phoenix No 0.955 0.962 No 0.979 0.977 San Francisco No 0.935 0.941 No 0.948 0.944 Seattle No 0.732 0.779 No 0.933 0.926 Washington DC No 0.948 0.956 No 0.967 0.967		•	No	0.647	0.662	No	0.964	0.961
Phoenix No 0.955 0.962 No 0.979 0.977 San Francisco No 0.935 0.941 No 0.948 0.944 Seattle No 0.732 0.779 No 0.933 0.926 Washington DC No 0.948 0.956 No 0.967 0.967								
San Francisco No 0.935 0.941 No 0.948 0.944 Seattle No 0.732 0.779 No 0.933 0.926 Washington DC No 0.948 0.956 No 0.967 0.967								
Seattle No 0.732 0.779 No 0.933 0.926 Washington DC No 0.948 0.956 No 0.967 0.967								
Washington DC No 0.948 0.956 No 0.967 0.967								
e e e e e e e e e e e e e e e e e e e								
	Venezuela	•						

Are street networks planar graphs?

Contrary to some of the statements in the urban studies and urban physics literature, our results suggest that this cannot be universally claimed. But perhaps some of it comes down to vocabulary. If road is not synonymous with street, then a road network and a street network may not be synonymous. A road network, including freeways and boulevards, may frequently be nonplanar, but a street network, focusing on

Author Redacted 7

Table 3. Descriptive statistics of planarity indicators across 100 random samples in Oakland, California's drivable network.

	SPR	ELR
mean	0.930	0.947
σ	0.101	0.082
min	0.569	0.637
max	1.000	1.000

municipal streets lined by land parcels, may be at-grade and planar. But this ignores the fact that even residential streets sometimes include bridges and tunnels in hilly neighborhoods, and the fact that our analysis earlier showed that walkable circulation networks in city centers often include pedestrian tunnels and footbridges. A graph is not planar because its edges *usually* or *approximately* intersect only at nodes: it is planar because its edges *exclusively* intersect at nodes. Thus, street networks are not universally planar graphs.

Are street networks well-modeled by planar graphs?

As George Box famously stated, "All models are wrong but some are useful." Can street networks be simplified to planar graphs and still be usefully well-modeled? The answer depends on the study site and on the type of analysis. In limited circumstances, where the circulation network and built form exhibit few underpasses, overpasses, or grade-separation, then perhaps yes. But universally, we cannot answer yes.

Most egregiously, imposing planarity on a nonplanar street network forces pseudonodes at underpasses and overpasses, breaking routing and network-based accessibility modeling. For this reason, nonplanar graphs have been the standard for decades in transportation engineering, real-world traffic assignment models, and routing engines.

But planar graphs are often used in the literature to study urban form and morphology. So, aside from routing, do planar graphs offer *useful* models for this type of research? Again, only in limited circumstances, including examples such as the drivable networks in the three Italian cities we analyzed, which are both formally and spatially planar. The results in Table 2 show how common urban form measures such as intersection counts are overstated by planar models, while average edge lengths (a linear proxy for block size) is consequently understated. Moreover, this misrepresentation behaves inconsistently from place to place. Figure 1 demonstrates how the magnitude of bias varies across cities and eras of urbanization.

So then why use planar graphs? Tractable. In some cities it doesn't matter (Italy). Polygonal analysis of urban blocks. Otherwise use nonplanar, new tools make it easy.

Conclusion

The urban studies and urban physics literatures frequently use planar graphs to urban street networks. This study demonstrated that although in limited circumstances these models may be accurate, they behave inconsistently across different kinds of cities by misrepresenting connectivity,

accessibility, routing, intersection counts and densities, and street segment lengths. It found x, y, and z. It also demonstrated how these indicators can be used to characterize the type of urbanization, in particular its transportation infrastructure's three-dimensionality, of different cities. Future research can explore this latter finding, as it likely correlates with other measures of urbanization, development, and era. Finally, future research might examine how nonplanar intersection counts represent true intersections if multiple adjacent edges form multiple graph intersections at a point where only one true intersection exists from an urban design perspective.

References

Barthelemy, M. (2017). *Morphogenesis of Spatial Networks*. Springer, New York, NY.

Barthélemy, M. (2011). Spatial networks. *Physics Reports*, 499(1-3):1–101.

Barthélemy, M. and Flammini, A. (2008). Modeling Urban Street Patterns. *Physical Review Letters*, 100(13).

Batty, M. (2005). Network geography: Relations, interactions, scaling and spatial processes in GIS. In Unwin, D. J. and Fisher, P., editors, *Re-Presenting GIS*, pages 149–170. John Wiley & Sons, Chichester, England.

Boyer, J. M. (2012). Subgraph Homeomorphism via the Edge Addition Planarity Algorithm. *Journal of Graph Algorithms and Applications*, 16(2):381–410.

Buhl, J., Gautrais, J., Reeves, N., Solé, R. V., Valverde, S., Kuntz, P., and Theraulaz, G. (2006). Topological patterns in street networks of self-organized urban settlements. *The European Physical Journal B: Condensed Matter and Complex Systems*, 49(4):513–522.

Cardillo, A., Scellato, S., Latora, V., and Porta, S. (2006). Structural properties of planar graphs of urban street patterns. *Physical Review E*, 73(6).

Chan, S. H. Y., Donner, R. V., and Lämmer, S. (2011). Urban road networks — spatial networks with universal geometric features? *The European Physical Journal B*, 84(4):563–577.

Chimani, M. and Gutwenger, C. (2009). Non-planar core reduction of graphs. *Discrete Mathematics*, 309(7):1838–1855.

Chimani, M., Hliněný, P., and Mutzel, P. (2012). Vertex insertion approximates the crossing number of apex graphs. *European Journal of Combinatorics*, 33(3):326–335.

Crucitti, P., Latora, V., and Porta, S. (2006). Centrality measures in spatial networks of urban streets. *Physical Review E*, 73(3):036125.

Dill, J. (2004). Measuring network connectivity for bicycling and walking. In *Proceedings of the Transportation Research Board* 83rd Annual Meeting, Washington, DC.

Fischer, M. M., Henscher, D. A., Button, K. J., Haynes, K. E., and Stopher, P. R. (2004). GIS and Network Analysis. In *Handbook of Transport Geography and Spatial Systems*, volume 5 of *Handbooks in Transport*, pages 391–408. Pergamon Press, Oxford, England.

Fohl, P., Curtin, K. M., Goodchild, M. F., and Church, R. L. (1996). A non-planar, lane-based navigable data model for ITS. In *Proceedings, Seventh International Symposium on Spatial Data Handling*, pages 17–29, Delft, Netherlands.

Gastner, M. T. and Newman, M. E. J. (2006). The spatial structure of networks. *The European Physical Journal B: Condensed Matter and Complex Systems*, 49(2):247–252.

- Gil, J. (2016). Street network analysis "edge effects": Examining the sensitivity of centrality measures to boundary conditions. *Environment and Planning B: Urban Analytics and City Science*, page 0265813516650678.
- Gudmundsson, A. and Mohajeri, N. (2013). Entropy and order in urban street networks. Scientific Reports, 3.
- Hajrasouliha, A. and Yin, L. (2015). The impact of street network connectivity on pedestrian volume. *Urban Studies*, 52(13):2483–2497.
- Haklay, M. (2010). How Good is Volunteered Geographical Information? A Comparative Study of OpenStreetMap and Ordnance Survey Datasets. *Environment and Planning B: Planning and Design*, 37(4):682–703.
- Hopcroft, J. and Tarjan, R. (1974). Efficient Planarity Testing. *Journal of the ACM*, 21(4):549–568.
- Hu, Y., Wu, Q., and Zhu, D. (2008). Topological patterns of spatial urban street networks. In 4th International Conference on Wireless Communications, Networking and Mobile Computing, pages 1–4, Dalian, China. IEEE.
- Jacobs, A. (1995). Great Streets. MIT Press, Cambridge, MA, paperback edition edition.
- Jokar Arsanjani, J., Zipf, A., Mooney, P., and Helbich, M., editors (2015). *OpenStreetMap in GIScience*. Lecture Notes in Geoinformation and Cartography. Springer International, Cham, Switzerland.
- Knight, P. L. and Marshall, W. E. (2015). The metrics of street network connectivity: their inconsistencies. *Journal of Urbanism: International Research on Placemaking and Urban Sustainability*, 8(3):241–259.
- Kuratowski, K. (1930). Sur le problème des courbes gauches en topologie. *Fundamenta Mathematicae*, 15(1):271–283.
- Kwan, M.-P., Golledge, R. G., and Speigle, J. M. (1996). A Review of Object-Oriented Approaches in Geographical Information Systems for Transportation Modeling. Working Paper 412, University of California Transportation Center, Berkeley, CA.
- Law, S. (2017). Defining Street-based Local Area and measuring its effect on house price using a hedonic price approach. *Cities*, 60(A):166–179.
- Levinson, D. (2012). Network Structure and City Size. *PLoS ONE*, 7(1):e29721.
- Liebers, A. (2001). Planarizing graphs—a survey and annotated bibliography. *Journal of Graph Algorithms and Applications*, 5(1):1–74.
- Louf, R. and Barthélemy, M. (2014). A typology of street patterns. *Journal of The Royal Society Interface*, 11(101):1–7.
- Mandloi, D. and Thill, J.-C. (2010). Object-Oriented Data Modeling of an Indoor/Outdoor Urban Transportation Network and Route Planning Analysis. In Jiang, B. and Yao, X., editors, Geospatial Analysis and Modelling of Urban Structure and Dynamics, volume 99, pages 197–220. Springer, Dordrecht, Netherlands. DOI: 10.1007/978-90-481-8572-6_11.
- Marshall, W. and Garrick, N. (2010). Street network types and road safety: A study of 24 California cities. *Urban Design International*, 15(3):133–147.
- Marshall, W., Piatkowski, D., and Garrick, N. (2014). Community design, street networks, and public health. *Journal of Transport*

- & Health, 1(4):326-340.
- Masucci, A. P., Smith, D., Crooks, A., and Batty, M. (2009).
 Random planar graphs and the London street network. The European Physical Journal B: Condensed Matter and Complex Systems, 71(2):259–271.
- Masucci, A. P., Stanilov, K., and Batty, M. (2013). Limited Urban Growth: London's Street Network Dynamics since the 18th Century. *PLoS ONE*, 8(8):e69469.
- Newman, M. E. J. (2010). Networks: An Introduction. Oxford University Press, Oxford, England.
- O'Sullivan, D. (2014). Spatial Network Analysis. In Fischer, M. M. and Nijkamp, P., editors, *Handbook of Regional Science*, pages 1253–1273. Springer-Verlag, Berlin, Germany.
- Parthasarathi, P., Hochmair, H., and Levinson, D. (2015). Street network structure and household activity spaces. *Urban Studies*, 52(6):1090–1112.
- Porta, S., Latora, V., and Strano, E. (2010). Networks in Urban Design: Six Years of Research in Multiple Centrality Assessment. In Estrada, E., Fox, M., Higham, D. J., and Oppo, G.-L., editors, Network Science: Complexity in Nature and Technology, pages 107–129. Springer, London, England.
- Porta, S., Romice, O., Maxwell, J. A., Russell, P., and Baird, D. (2014). Alterations in scale: Patterns of change in main street networks across time and space. *Urban Studies*, 51(16):3383– 3400.
- Strano, E., Nicosia, V., Latora, V., Porta, S., and Barthélemy, M. (2012). Elementary processes governing the evolution of road networks. *Scientific Reports*, 2.
- Strano, E., Viana, M., da Fontoura Costa, L., Cardillo, A., Porta, S., and Latora, V. (2013). Urban Street Networks, a Comparative Analysis of Ten European Cities. *Environment and Planning B: Planning and Design*, 40(6):1071–1086.
- Székely, L. A. (2004). A successful concept for measuring non-planarity of graphs: the crossing number. *Discrete Mathematics*, 276(1-3):331–352.
- Trudeau, R. J. (1994). *Introduction to Graph Theory*. Dover Publications, New York, NY, 2nd edition.
- Viana, M. P., Strano, E., Bordin, P., and Barthelemy, M. (2013). The simplicity of planar networks. *Scientific Reports*, 3(3495):1–6.
- Wang, J. (2015). Resilience of Self-Organised and Top-Down Planned Cities—A Case Study on London and Beijing Street Networks. *PLoS ONE*, 10(12):e0141736.
- Xie, F. and Levinson, D. (2007). Measuring the structure of road networks. *Geographical Analysis*, 39(3):336–356.
- Zhong, C., Arisona, S. M., Huang, X., Batty, M., and Schmitt, G. (2014). Detecting the dynamics of urban structure through spatial network analysis. *International Journal of Geographical Information Science*, 28(11):2178–2199.
- Zhong, C., Schläpfer, M., Arisona, S. M., Batty, M., Ratti, C., and Schmitt, G. (2017). Revealing centrality in the spatial structure of cities from human activity patterns. *Urban Studies*, 54(2):437–455.