---- Roland Boss DR-110 Dr Rhythm Graphic SERVICE MANUAL DOCUMENTS

<---->

From the DR-110 Information Homepage @ http://members.aol.com/leviathant/dr110.html

Since you've taken the time to read this, I'd much appreciate it that if you do some kind of nifty (or even minimal) modification to the DR-110, please email me and let me know what you've done, and if you'd be so kind to provide schemes and/or instructions as a sort of 'thanks for letting me have the DR-110 schemes Matt' kind of gesture. Please send em to levithnt@nfdc.net and let me know if you would mind if I posted them publicly on the same web site that these schemes are available from. Enjoy, happy modding!

Oh, here's the parts list, painstakingly hand typed by myself.

IC		
15179122	HD44790a44P	2k x 4bit CMOS CPU with LCD driver
15179305	(mu)PD444C	1k x 4bit static RAM
15159140h0	HD14006BP	18-bit static shift register
15159104h0	HD14011BP	quadruple 2-input NAND gate
15159116T0	TC4069UBP	Hex inverter
15159117H0	HD14070bp	quadruple exclusive-OR gate
15189102	NJM4558DD	OP amp (pcb 2291084302-UP)
15199521	M51501L Power a	mp (pcb 2291084302-UP)
15199517	LM-386N-1	Power amp (pcb up to 2291084300)
TRANSISTOR		
15119125	2SA1115-F	
15119602	2SB647-C	
15119607	2SB642-R	
15129137	2SC2603-F	
15129145	2SC945-K (or 2S	C1815-BL)
DIODE		
15019125	1ss-133	
15019530	s5500g	
15129137	RD6.8eb-2	zener
15019138	DAN 201 diode a	rray
15019139	DAP 201 diode a	rray

DISASSEMBLY

Exposing PCBs

- 1. Remove 4 rotary knobs.
- Remove 3 x 12mm P type screws on Bottom case.
- Open Top case, first at the rear end ①, gently push rearwards (unlock), then open at the front end ②. Insert a cloth between panels to protect the rear surface of top panel from scratching. This allows troublishooting for both PCBs while maintaining the unit operative from built-in drycells.

Dismounting VOICING Board

- Remove Battery compartment cover and remove the dry cells.
- Unlatching Battery clips (4), raise Bottom case.

LCD ASSEMBLY

Avoid unnecessary service to LCD Ass'y,

When reassembling, make sure that the face (not rear) of Rear Polarizer touches LCD.

The correct layer makes display dark when the LCD and polarizer are placed crosswise.

7313204006 (pcb 2291084300) SN up to 361000

DR 110 CIRCUIT DIAGRAM approx. 16-110ms VOICING CPU BOARD 12 clocks= J DAP201x4 10ms2SB642R **ૼૄઙમા೯**Τ**૽**ૄ 100K **STOP** TEMP(R4 100K 5.4V 6 V START CY BANK + C7 R12 0.47μF/50V 100K /// x3 - AC #IC3 **▼** D7B **Y** D6B HD14011BP 100µF/6.3V **◄--**400ms 2.2ms₃ D6A CLKR37 33N 400kHz CH DAN201x4 **W**i 0.1μF **1**50K OH 1001 SD [-C3 **HH P** BD R22 33K **-^^** R35 BD AC 0VHLT D3 D2 D.1 D0 osc2 RESET oscı GND 100 KÇY lms I/01[14]R4C 33K **-VM** R3S 100F | [3 | [2 1/04]] CPII COM1 27 IC 1 CABL IC2 COM4 SEG1 31 **MEMORY** ш CPU 18P $\mu PD444C$ 15 6 A9 7 34-35-36-37-SEG8 38-HD44790A-44 we 10 cs 8 SEG32 R109 33K **CP TRIG** R101 100K 100K ¶ R104 33K Some capacitances are expressed as RUBBER CONNECTOR 343-203 R10; 68K follows: $0.001\mu F - 102$ $0.033\mu F - 333$ 9 10 11 12 13 14 15 16 R84 33K: C. HIHAT O. HIHAT LCD 1008 SNARE DRUM 9201 BASS DRUM AC/CY/HCP SONG RHYTHM MEASURE BANK MODE SONG PLAY PATTERN PLAY C35 102 SONG WRITE STEP WRITE C29 TAP WRITE

WAVEFORMS

Т
0.87ms
1.22ms
3.15ms
2.15ms

•	
•	

Т	E
700ms	6V
80ms	6V
60ms	6V
900ms	6V
1.4s	2.7V
140ms	5V
700ms	5V
100ms	5.7V
120ms	5.7V
	80ms 60ms 900ms 1.4s 140ms 700ms

Check Point	ACCENT	E
15	MIN	1.5V
15	MAX	4.5V

VOL. MAX

Check Point	ACCENT	Ε
16	MIN	0.8V
10	MAX	1.9V

Check Point 10

NOTE: Intermitent DC supply (such as loose AC adaptor or battery connection or quick turning OFF-ON of the power switch) may upset Power-ON Reset when a transient of DC voltage is shorter than the time constant of RESET circuit. The resultant will be loss of noise sound.

CY SOUND GENERATOR

Four generators oscillate at different frequencies which are determined based on analyses of live symbal sounds. Interrelations between frequencies are so critical that slight deviation of one frequency can cause beat sound or distortion. To let the generators stay in a specific frequency, C1, C4, C12 and C13 should be less than 5%(J) of tolerance.

VOICE GENERATORS

The voice generators are categorized into two groups: Damping oscillator for drum sound and a combination of Swing type VCA and Envelope generator for metalic sounds.

CIRCUIT DESCRIPTIONS

CPU IC1

HD44790A44 is a 2K word by 4 bit one chip CMOS microcomputer equipped with internal LCD drivers.

Symbol	Name	Description	
R00			
R01	Input Port	Read in Key switches and TEMPO CLOCK.	
R02			
R03			
R10			
R11		External Memory Data Bus	
R12		(Rhythm patterns A/B, Songs I/II)	
R13	I/O Port		
R20	1/O Full		
R21			
R22			
R23	.	External Memory Address Bus	
R30		P20-P23: Used as OUTPUT Port.	
R31	Output Port		
R32	Output to the		
R33		<u> </u>	
D0			
D1			
D2	, •	Output Switches and Tempo Clock Scanning signals.	
D3			
D4		External Memory Address Bus	
D5		External Welloty Address Bus	
D6		WE Memory Write Enable	
D7	Descrete I/O terminals	CS Memory Chip Select	
D8		СН	
D9		OH	
D10		SD	
D11		BD Output Trigger pulse to VOICEs.	
D12		AC Cathat (rigger paise to voices.	
D13		CY	
D14		CPI	
D15		CP[]	
INT 0	Interrupt Inputs	Interrupt Input for Switch Scanning	
!NT 1	monapt mpata	OPEN-pulled up internally	
RESET	Reset Input	Accepts 400ms-width pulse on Power-up.	
HLT	11.14 1	When "low", the CPU retains all internal	
HLI	Halt Input	circuit status as they are.	
TEST	Test Input	No customer usable terminal.	
V1		<u> </u>	
V2	LCD DC Supply Inputs	Used as LCD driver signals.	
V3	ZOD DO OOPPI) mpata	O 200 de 100 de l'el signola.	
Vcc	DC Supply Input	+5V (±10%) also used as LCD DC supply	
GND	Ground Input	GND	
	around riput	1 119	
SEG 1	SEGMENT Outputs	Output LCD drive signals	
SEG 32		Sashar Fam arrivo prigrand	
COM 1			
	Common Outputs	Output LCD drive signals in 1/4 duty, 1/3 bias.	
	•		

SWITCH MATRIX (See Fig. below)

- 1 The CPU enters external interrupt routine on a rising edge of INT CLK from IC2a, b which also serve as a part of CY Sound Generator, and reads in TEMPO CLK and key switches through ports D0-D3 and through R00-R03.
- ② In reading the aboves, the CPU first turns ports D0-D3 "H", cutting off D5A-D8A, D5B-D8B and D1B-D4B, disconnecting the diodes from IC3 NAND gates and the ports R00-R03. With an H being applied on one input pin, each gate of IC3 will turn its output to "L" when the other input pin is H (closing of STOP, START or BANK, or during H period of TEMPO CLK). Ports R00-R03 are pulled up internally and go low when their mate IC3 outputs turn to L.
- (3) Next, the CPU IC1 sets port D0 to "L" which pulls one inputs of IC3 down to low, turning all IC3 outputs to "H", reverse biasing D1A-D4A which in turn isolate IC3 from the read-in ports. Each of ports R00-R03 can be connected to port D0 through closed contacts (of CH, OH, SD or BD) and through D8B. Then the program returns to the main routine.
- 4 On the next rising edge of INT CLK, the program enters interrupt routine again and gates IC3.
- (5) Having reading IC3 outputs, this time the program sets D1 to L and reads SHIFT, CP, CY and AC switches through R0 ports.

The CPU repeats the same procedures for the remaining D ports and returns to ①, cycling TEMPO CLK, STOP, START and BANK readings at 2.2ms internals, and other switch groups at 8.8ms intervals.

MEMORY BACKUP

IC2 μ PD444C is a 1K-word by 4 bits static RAM. It is used in DR-110 for storing BANKs A/B, SONGs I/II and STEPs 12/16 data. (BANKs C/D containing factory-set rhythms are stored into CPU's internal ROM.) The RAM memory is backed up by built-in battery which bypasses power switch and connects to RAM's VCC, WE and $\overline{\text{CS}}$ pins.

During the power OFF HLT pin of IC1 CPU is kept L, maintaining all its input and output pins high impedance, isolating its circuits from peripheral circuits and thus retains all the data so far obtained. When the CPU is repowered, it initializes internal circuits but still keeps some data intact.