

Wprowadzenie

- Nauka o sieciach i systemy złożone
- Obliczeniowa nauka o sieciach
- Dlaczego nabrała znaczenia?
- Jakie stawiane są cele?
- Jakie nowe wyzwania?
- Analiza sieci złożonych
- Typy sieci
- Jakie korzyści?

Przykład (1): Media społecznościowe

:: Powiązania społeczne :: Dyfuzja informacji

Przykład (2): Epidemiologia

- Identyfikacja źródeł infekcji
- Monitorowanie dynamiki procesów
- · Ograniczanie zasięgu

https://www.researchgate.net/publication/322204357_Strengthening_Post_Ebola_Health_Systems_From_Response_to_Resilience_in_Guinea_Liberia_and_Sierra_Leone/figures?lo=1

Przykład (3): 15 sierpnia 2003 Blackout.

Sierpień 14, 2003:9: 29pm EDT 20 godzin przed Sierpień 15, 2003:9: 14pm EDT 7 godzin po

Przykład (4): Marketing wirusowy

- Rozpoczynanie akcji marketingowych
- Monitorowanie skuteczności

19 June 2020

Przykład (5): Fake news

- · Klasyfikacja źródeł informacji
- Analizy wpływu
- Przeciwdziałanie

Przykład (6): Sieci transportowe

Analiza sieci połączeń

https://i0.wp.com/flowingdata.com/wp-content/uploads/2016/05/airports-world-network.png?fit=720%2C480&ssl=1

I wiele innych ...

- · Sieci powiązań biznesowych
- · Powiązania publikacji i cytowania
- · Połączenia mózgowe
- Sieci komputerowe
- Sieć WWW
- · Sieci powiązań biologicznych

Powiązane tematy i kierunki badawcze

- Analizy statystyczne sieci
- · Wizualizacja struktur sieciowych
- · Teoretyczne modele sieciowe
- Sieci wielowarstwowe
- Sieci dynamiczne
- · Rozprzestrzenianie informacji w sieciach
- · Analizy rzeczywistych zbiorów danych

DUŻE SIECI SPOŁECZNE → MILIARDY WĘZŁÓW I POWIĄZAŃ. RÓŻNE TYPY WĘZŁÓW I

Celem wprowadzenia nie jest przedstawienie wszystkich aspektów tematu. Mogło by to być przedmiotem kompletnego cyklu wykładów. Głównie chodzi o wskazanie kluczowych metod, podejść, strategii i wybranych kierunków analiz i badań.

OBSZARY BADAŃ I ANALIZ

> 1.6 Miliarda

> 500 Milionów

> 200 Milionów

- Obserwacja całych sieci i zachodzących w nich zjawisk jest utrudniona lub wręcz niemożliwa.
- Załadowanie kompletnych złożonych struktur do pamięci komputera nie zawsze jest realne.
- Na tak dużych zbiorach danych problemem jest wyznaczenie nawet podstawowych miar sieciowych, długości ścieżek, średnicy sieci. Jeszcze trudniej wyznaczyć występujące wzorce czy struktury powiązań społecznych.

FACEBOOK -> NAJWIĘKSZA SIEĆ SPOŁECZNA

facebook.

- 1 + miliard węzłów
- Średnio 130 linków wchodzących do każdego
- Węzła (średnio 130 znajomych)

> 1TB Pamięci, aby te relacje zapisać w postaci grafu, bez atrybutów, etykiet i treści

Pojawia się problem z ekstrakcją informacji, przetwarzaniem i analizami

Dwa możliwe rozwiązania: Próbkowanie i Agregacja

PRÓBKOWANIE VS AGREGACJA

Próbkowanie sieci

- Informacja o węzłach/linkach jest pozyskana dopiero po pobraniu próbki
- Wymaga strategii eksploracji sieci i stopniowego powiększania próbki
- Celem jest stopniowa identyfikacja małego zbioru przedstawicieli węzłów i powiązań ze struktury sieciowej, przy posiadanej niewielkiej wiedzy o całej sieci.

Agregacja

- Znana jest cała struktura sieci apriori
- Celem są zagregowane miary, które umożliwią opis własności sieci na poziomie ogólnym, przy jak najmniejszej utracie informacji szczegółowych.

SIECI JEDNORODNE VS SIECI NIEJEDNORODNE

- Homogeniczne → Single Relational Network
 Pojedynczy typ obiektu i typ linków
- Heterogeniczne -> Multi-Relational Network
 Obiekty i linki różnych typów

Przykład

Jednorodne

Niejednorodne

PRÓBKOWANIE SIECI

- Załóżmy, że szczegółowe informacje dotyczące węzła są dostępne dopiero w wyniku próbkowania. Struktura całej sieci nie jest znana.
- Celem jest mniejsza sieć, próbka, która powstaje w wyniku pobierania wycinkowych informacji. W zależności od zastosowanej metody zachowuje ona niektóre właściwości sieci pierwotnej.

OCENA JAKOŚCI SAMPLINGU

- W jaki sposób można mierzyć jakość próbkowania sieci?
- Próbkowanie możemy uznać za efektywne jeśli:
 - Uzyskana próbka zachowuje określone własności sieci
 - Analizy własności próbki sieci, na przykład analiza centralności, ścieżek, daje wyniki podobne do analiz własności kompletnej sieci
 - Uzyskana próbka jest znacznie mniejsza niż sieć pierwotna

ZACHOWANE WŁAŚCIWOŚCI PRÓBEK (1/3)

- Homogeniczne sieci statyczne
 - Rozkład stopni wierzchołka in/out
 - Rozkład długości ścieżek
 - Rozkład współczynnika klastrowania
 - Eigenvecor
 - Rozkład rozmiarów komponentów słabo i silnie połączonych
 - Struktura skupisk węzłów
 - I inne podobne

ZACHOWANE WŁAŚCIWOŚCI PRÓBEK (2/3)

- Jednorodne sieci dynamiczne
 - Dynamika gęstości sieci
 np. proporcja krawędzie vs węzły w czasie
 - Zmiany średnicy sieci w czasie
 np. zmniejszanie lub stabilizacja w czasie
 - Zmiany w czasie współczynnika grupowania
 - Wielkość macierzy sąsiedztwa
 - I inne podobne

ZACHOWANE WŁAŚCIWOŚCI PRÓBEK(3/3)

• Sieci heterogeniczne

- Rozkład typów węzłów
- Rozkład inter i intra linków łączących typy węzłów
- Rozkład połączeń wyższego rzędu

METRYKI SIECIOWE

- Czy są zachowane właściwości sieci
 - Dla pojedynczych wartości np. współczynnik klastrowania, średnia długość ścieżki
 - Dla rozkładów właściwości np. rozkład stopnia, rozkład rozmiarów komponentów, odległości miedzy rozkładami miara np. KL divergence
- Realizacja procesów i zadań na samplach
 - Czy wyniki są podobne do zadań i procesów na sieciach kompletnych (np. procesy propagacji informacji, formowanie struktur i powiązań)

Próbkowanie sieci homogenicznych

DWIE GŁÓWENE STRATEGIE

 Wybór węzłów lub krawędzi o zadanych ełaściwościach

- Pobierania próbek w procesie eksploracji
 - Random Walk
 - Snow ball sampling
 - Poszukiwanie wzorców

Węzły początkowe (seeds)

WYBÓR WĘZŁA

- Losowy wybór węzła
 - Losowy zbiór węzłów
- Wybór podstawie stopnia wierzchołka [Adamic, 2001]
 - Prawdopodobieństwo proporcjonalne do jego degeee wyboru węzła jest (zakładamy, że degree jest znane)
- PageRank sampling [Leskovec, 2006]
 - Prawdopodobieństwo wyboru węzła jest proporcjonalne do wartości jego miary PageRank (zakładając, że jest znana)

1

WYBÓR KRAWĘDZI

- Random Edge Sampling (RE)
 - Krawędzie wybieramy losowo, a następnie włączone są powiązane nimi węzły
- Random Node-Edge Sampling (RNE)
 - Wybieramy węzły a następnie powiązane z nimi krawędzie
- Hybrid sampling [Leskovec, 2006]
 - Z prawdopodobieństwem p realizowany jest
 RE sampling, a z prawdopodobieństwem 1-p
 RNE sampling

WYBÓR KRAWĘDZI

- Induced Edge Sampling [Ahmed, 2012]
 - Krok 1: Jednolity wybór krawędzi (a w konsekwencji węzłów) przez kilka rund
 - Krok 2: Dodawane są krawędzie, które są powiązane z wybranymi węzłami
- Frontier sampling [Ribeiro, 2010]
 - Krok 0: Losowo wybieraj zestaw węzłów L jako seeds
 - Krok 1: Wybierz element u z L przy użyciu degree based sampling
 - Krok 2: Wybierz krawędzie węzła u (u, v)
 - Krok 3: Zastąp u Przez v w zbiorze i dodaj (u, v) do sekwencji próbkowanych węzłów
 - Powtórz kroki 1 do 3

- Snowball sampling
- Dla wskazanych początkowo węzłów, do próbki włączanych jest n sąsiadów wybieranych losowo. Proces postępuje iteracyjnie
- Węzły sąsiadujące są odwiedzane tylko wtedy, gdy nie zostały odwiedzone w poprzednich iteracjach
- Proces jest zrównoleglony, gdy w kroku pierwszym jest aktywowanych wiele węzłów

Random walk

- Dla aktywnego węzła jest wybierany losowo tylko jeden z jego sąsiadów i następuje do niego przejście.
- Próbka zawiera
 nadreprezentację węzłów z
 dużą liczba sąsiadów. Dla nich
 jest większe
 prawdopodobieństwo, że
 zostaną wybrane.

- Modyfikacje Random walk [Gjoka, 2010]
 - Węzeł z następnego przeskoku jest wybierany jednolicie wśród sąsiadów bieżącego węzła
- Random walk z restartem [Leskovec ' 06]
 - Wybór węzła, random walk i ponowne uruchomienie
- Random jump [Ribeiro, 2010]
 - Podobnie jak random walk, ale z dodatkowo z prawdopodobieństwem p następują przeskoki do innych losowo wybranych węzłów sieci
- Forest fire [Leskovec, 2006]
 - Wybór wezła u
 - Losowe generowanie liczby z (<= liczba linków węzła u)
 i selekcja "z" linków jeszcze nie odwiedzonych
 - Krok wykonywany rekursywnie dla wszystkich nowo 20 dodanych węzłów

- Ego-centric exploration & sampling (ECE)
 - Zmodyfikowany random walk z przypisanymi prawdopodobieństwami selekcji uzależnionymi od właściwości węzła.
 - Multi ECE rozpoczęcie procesu od wielu seedów
- Depth First/Breadth-First [Krishnamurthy, 2005]
 - Próbkowanie sąsiadów najczęściej odwiedzanych węzłów lub ostatnio odwiedzanych
- Sample Edge Count [Maiya, 2011]
 - Przekierowanie do sąsiada z najwyższym degree i kontynuacja od niego
- Expansion sampling [Maiya, 2011]
 - Konstruowanie próbek tak by maksymalizować ekspansję

SAMPLOWANIE EKSPANSYWNE

RANDOM WALK = NADREPREZENTACIA HIGH DEGREE

- Średnie degree dla całej sieci ~ 94, średnie degree dla próbki ~ 338
- Rozwiązanie: modyfikowanie prawdopodobieństwa przeiścia:

$$P_{v,\,w} = \begin{cases} \frac{1}{k_{v}} * \min{(1\frac{k_{v}}{k_{w}})} & \text{Jeśli w jest sąsiadem v} \\ 1 - \sum_{Y <>v} P_{v,\,y} & \text{Jeśli w przeciwnym razie} \end{cases}$$

METODA METROPOLIS

- Krok 1: Początkowo wybieramy próbkę S z losowo wybranymi n' węzłami
- Krok 2: Wykonywane iteracyjnie aż do konwergencji
 - 2.1: Usuwamy jeden węzeł z S
 - 2.2 : Losowo dodajemy jeden węzeł do S \rightarrow S'
 - 2.3 : Obliczamy współczynnik jakości $\text{Jeśli a > = 1: akceptujemy S := S'} \qquad \text{a} = \frac{\rho * (S ')}{\rho * (S)}$ Jeśli a < 1 : akceptujemy S := S' z prawdopodobieństwem a odrzucamy S := S' prawdopodobieństwem 1-a
 - $-\rho^*$ (S) mierzy podobieństwo przyjętej własności między siecią S i siecią kompletną G
 - Może być uzyskane rozwiązanie przybliżone poprzez symulowane wyżarzanie

24

PRÓBKOWANIE SIECI HETEROGENICZNYCH

- Sieci niejednorodne
 - Graf G = <V, E> ma n węzłów (v₁,v₂, ..., v_n), m skierowanych krawędzi (e₁, ..., e_m) i k różnych typów
 - Każdy węzeł/krawędź jest przypisana do jednego z k typów typu L = {L₁,..., L_k}
- Metody próbkowania HN
 - Multi-graph sampling [Gjoka,2010]
 - Pobieranie próbek z zachowaniem rozkładu typów [Li, 2011]
 - Próbkowanie z zachowaniem relacji [Yang, 2013]

26

MULTIGRAPH SAMPLING

Random walk na multigrafie wynikowym, który powstaje jako rezultat unii grafów

PRÓBKOWANIE Z ZACHOWANIEM ROZKŁADU TYPÓW

- Graf G i graf Gs utworzony w wyniku próbkowania
- Rozkład typów węzłów w grafie G_s opowinien być taki sam lub zbliżony do sieci pierwotnej G, d(Dist(Gs),Dist(G)) = 0
- d() Oznacza różnicę pomiędzy dwoma rozkładami

PRÓBKOWANIE Z ZACHOWANIEM TYPÓW POŁĄCZEŃ

- Połączenia heterogeniczne
 - Dla krawędzi E[v_i v_i]
 - Połączenie intra typ (v_i) = typ (v_i)
 - Połaczenie inter typ (v_i) != typ (v_i)
- Zachowanie relacji intra connection

Proporcje relacji wewnętrznych dla węzłów tych samych typów powinny być zachowane: d (IR (G_s), IR (G)) = 0

 Jeśli relacja wewnętrzna jest zachowana, to relacje zewnetrzna również jest zachowana

30

RESPONDENT-DRIVEN SAMPLING

- Zaproponowane dla badań ankietowych [Heck, 1999]
- Dwie główne fazy: próbkowanie Snowball → poprawianie charakterystyk macierzy w celu lepszego dopasowania rozkładów

PORÓWNANIE RÓŻNYCH METOD PRÓBKOWANIA

- Respondent driven sampling dobre efekty dla mniejszych próbek
- Próbkowanie losowe poprawia wyniki wraz ze wzrostem liczby wezłów

PRÓBKOWANIE Z ZACHOWANIEM RELACJI

- Zachowanie semantyki węzeł a nie struktury sieci
- Profil relacyjny uwzględnia równocześnie semantykę i strukturę powiązań
 - Brana jest pod uwagę zależność między typami węzłów i typami połączeń w sieci heterogenicznej
 - Składa się macierzy relacyjnych
 - Warunkowe prawdopodobieństwo P (T_j | T_i) (np. P (ET = CITES | NT = paper)
 - węzeł węzeł, węzeł krawędź, krawędź węzeł, krawędź krawędź

PRZYKŁAD PROFILU RELACYJNEGO

	Р	Α		J			
Р	0.44	0.22 .	0,22	0,11	0.44	0.33	0,22
Α	1						1
С	1					1	
J	1					1	
С	1				0,22	0,44	0,33
Р	0.5		0,33	0,17	0,66		0,33
Α	0.5	0,5			0.6.	0,4	
Α	0.5	0,5			0.6.	0,4	
Α	0.5 P	0,5 A	С	J	0.6. C	0,4 P	A
A P		А	C 0,091	J 0,273			A 0,364
	Р	А			С	Р	_
Р	P 0,182	А			С	Р	0,364
P A	P 0,182	А			С	P 0,364	0,364
P A C	P 0,182 1	А			С	P 0,364	0,364
P A C	P 0,182 1 1	А			С	P 0,364 1 1	0,364

OCENA JAKOŚCI PRÓBKOWANIA

- Zbiory danych: trzy rzeczywiste sieci złożone
- Podstawowe metody jako punkty odniesienia:
 - Losowe próbkowanie Random Walk (RW)
 - Próbkowanie na podstawie degree (HDS)
- Kryterium oceny I (Zachowanie właściwości): w jaki sposób próbka aproksymuje własności całej sieci
- Kryterium oceny II (Własności predykcyjne): czy model predykcyjny uczony z wykorzystaniem próbki umożliwi predykcję nieznanych własności:
 - Predykcja typu węzła: przewidywanie typu węzła w sieci kompletnej na podstawie danych z próbki
 - Przewidywanie brakujących relacji: predykcja i odzyskiwanie brakujących linków
 - Funkcje:
 - in/out deg; avg in/out deg)
 - Jaccard's Coefficient
 - P(type(v) | Gs)=

 $\frac{\#type(v)=t\forall v\in N(n)}{|N(n)|}$

• fRPnode = $\prod_{i=1}^{n} \frac{1}{Z} RP(type(i)|type(v) = t) P(type(v) = t)$

EKSPERYMENTY I ZACHOWANE WŁASNOŚCI

EKSPERYMENTY I PREDYKCJA

SAMPLING DEDYKOWANY

- Próbkowanie struktury społeczności [Maiya, 2010] [Satuluri,2011]
- Próbkowanie rdzenia sieci przy maksymalizacji wpływu [Mathioudakis, 2011]
- Pozyskiwanie danych na temat centralnych węzłów sieci [Maiya, ,2010]
- Predykcja rozkładu PageRank [Vattani, 2011]
- Predykcja linków [Ahmed, 2012]

PUBLIKACJE POWIĄZANE Z TEMATEM

	Sieci jednorodne	Sieci heterogeniczne	
Wybór węzłów i krawędzi	[Leskovec,2006] [Adamic,2001] [Ahmed, rocznik, 2012] [Ribeiro, rocznik , 2010]	[Kurant, 2012]	
Próbkowanie eksploracyjne	[Krishnamurthy, 2005] [Les wKoVEC, 2006] [Gjoka, 2010] [Ribeiro, 2010] [Maiya, 2011] [Kurant, 2011]	[Gjoka, 2011] [Li, 2011] [Kurant, 2012] [Yang, 2013]	
Próbkowanie dedykowane	[[Marya,2010] [Statati, 2011]		

Podsumowanie algorytmów i metod

Breadth/ Depth/ Random First Sampling (B-/D-/R-FS)
Snow-Ball Sampling (SBS)
Random Walk (RW)
Metropolis-Hastings Random Walk (MHRW)
Random Walk with Escaping (RWE)
Multiple Independent Random Walkers (MIRW)
Multi-Dimensional Random Walk (MDRW)
Forest Fire Sampling (FFS)
Respondent Driven Sampling (RDS) (RWRW)

Materialy źródłowe

Granovetter, M. (1976). Network sampling: Some first steps. *American journal of sociology*, 81(6), 1287-1303.

Hu, P., & Lau, W. C. (2013). A survey and taxonomy of graph sampling. arXiv preprint arXiv:1308.5865.

Lin, S. D., Yeh, M. Y., & Li, C. T. (2013). Sampling and summarization for social networks. In 17th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD)(tutorial).

Biblioteki programistyczne

https://rdrr.io/cran/igraph/man/random_walk.html

http://www.michelecoscia.com/?page_id=1390

https://www.rdocumentation.org/packages/netdep/versions/0.1.0/topics/snowball.sampling