

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/58

Video Solution on YouTube:-

https://youtu.be/uUgK5PMvkDo

Written Solutionon Website:-

https://physicsaholics.com/note/notesDetalis/82

- Q 1. A gas mixture consists of 2 moles of oxygen and 4 moles of argon at temperature T. Neglecting all vibrational modes, the total internal energy of the system is:
 - (a) 4 R T
- (b) 5 R T
- (c) 15 R T
- (d) 11 R T
- The molecules of an ideal gas have 6 degrees of freedom. The temperature of the gas Q 2. is T. The average translational kinetic energy of its molecules is:
 - (a) $\frac{3}{2}$ k T
- (c) k T
- (b) $\frac{6}{2}$ k T (d) $\frac{1}{2}$ k T
- The average translational kinetic energy of O₂ (molar mass 32) molecules at a Q 3. particular temperature is 0.048 eV. The translational kinetic energy of N₂ (molar mass 28) molecules in eV at the same temperature is -
 - (a) 0.0015
- (b) 0.003
- (c) 0.048
- (d) 0.768
- A gas sample is enclosed in a closed container, temperature of gas is continuously Q 4. increasing. Match the correct options in column-ll corresponding to column-l

	1	
Column I		Column II
(a)Internal energy of gas	(P)	Increases
(b)Average momentum of gas molecules	(q)	Decreases
(c)Number of molecules moving with most probable speed	(r)	Zero
(d) $\frac{V_{avg}}{V_{rms}}$	(s)	Remains constant

- Q 5. Temperature of an ideal gas is 300 K. The change in temperature of the gas when its volume changes from V to 2V in the process P = aV (Here, a is a positive constant) is:
 - (a) 900 K
- (b)1200 K
- (c) 600 K
- (d) 300 K
- Q 6. In the ρ -T graph shown in figure, match the following:

hysicsaholics

Table-1

Table-2

- (a) Process a-b
- (p) Constant volume
- Process b-c (b)
- $\Delta U = 0$ (q)
- (c) Process c-d
- (r) P increasing
- (d) Process d-a
- (s) P decreasing

 $\frac{1}{\sqrt{2}}$. Here, P₀ and V₀ are One mole of an ideal gas undergoes a process P: Q 7. constants. Change in temperature of the gas when volume is changed from $V = V_0$ to

 $V = 2V_0$ is: (a) $-\frac{2P_0V_0}{5R}$

$$(c) - \frac{5P_0V_0}{4R}$$

(d)
$$P_0V_0$$

Two containers of equal volume contain the same gas at pressures p₁ and p₂ and Q8. absolute temperatures T₁ and T₂ respectively. On joining the vessels, the gas reaches a common pressure p and a common temperature T. The ratio P/T is equal to

(a)
$$\frac{p_1}{T_1} + \frac{p_2}{T_2}$$

(b)
$$\frac{1}{2} \left[\frac{p_1}{T_1} + \frac{p_2}{T_2} \right]$$

(c)
$$\frac{p_1T_2 + p_2T_2}{T_1 + T_2}$$

(d)
$$\frac{p_1T_2-p_2T_1}{T_1-T_2}$$

Q9. What is the ratio of pressures on the left and right sides?

(b) p_1T_2/p_2T_1 (d) $\frac{p_1T_1}{p_2T_2}$

Q 10. What is the final equilibrium temperature?

Answer Key

Q.1	d	Q.2		Q.3	c	Q.4	a(p) , b(r ,	Q.5
			a				s), $c(q)$,	a
							d(s)	
	a(q, r), $b(p,$	Q.7		Q.8	b	Q.9	b	Q.10
	\mathbf{r}), $\mathbf{c}(\mathbf{q},\mathbf{s})$,		b					a
	d (p , s)							

