- 1) Nos sistemas operacionais, o escalonamento de processos consiste em:
- R: A Priorizar o processo a ser executado.
- 2) São benefícios de threads, exceto:
- R: D Apesar de facilitar o compartilhamento dos recursos, não ocorre economia desses recursos pelo SO.
- 3) Com relação aos modelos de threads de usuários e kernel, é incorreto afirmar que no modelo muitos-para-um:
- R: C Várias threads podem acessar o kernel por vez, assim ocorre paralelismo
- 4) Com relação aos modelos de threads de usuários e kernel, é incorreto afirmar que no modelo um-para-um:
- R: D Apesar de cada thread de usuário necessitar da criação de um thread de kernel, não é custoso para o SO.
- 5) Com relação aos semáforos, é incorreto afirmar que:
- R: E Se a contagem for N (chegou no final), todos os processos ficam bloqueados esperando a liberação do recurso.
- 6) O problema de starvation pode acontecer nos semáforos, quando os processos obedecem que regra na fila de espera:
- R: B LIFO (Last In, First out)
- 7) O SO utiliza o algoritmo FCFS,

Processo	Duração do pico
P1	20
P2	21
P3	15
P4	19

Os processos chegam na ordem P1, P2, P3 e P4. Calcule o tempo médio de turnaround.

P1	P2	P3	P4	
0	20	21	15 1	9

R: Tempo médio = (0 + 20 + 21 + 15) / 4 = 14

8) O SO utiliza o algoritmo SJF com preempção,

Processo	Duração do pico	Tempo de chegada
P1	20 - decrementa 2 - finaliza	1
P2	11 - decrementa 1 - finaliza	2
P3	15 - decrementa 2 - finaliza	3
P4	19 - finaliza	5

Calcule o tempo médio de turnaround.

R:

roda 1	roda 1	roda 1	roda 2	roda 19 👚 ı	roda 10 r	oda 13	roda 18	
P1	P1	P2	P3	P4	P2	P3	P1	
0	1	2	3	5	24	34	47	65

Final do processo 1 = 65;

Final do processo 2 = 34;

Final do processo 3 = 47;

Final do processo 4 = 24;

Final do processo - chegada - duração

Processo 1 = 65 - 0 - 20 = 45

Processo 2 = 34 - 2 - 11 = 21

Processo 3 = 47 - 3 - 15 = 29

Processo 4 = 24 - 5 - 19 = 0

Tempo médio de espera: (45 + 21 + 29 + 0)/4 = 23,75 unidades de tempo.

9) O SO utiliza o algoritmo de Por prioridade sem preempção,

Processo	Duração	Tempo de chegada	prioridade
P1	16	5	1
P2	23	4	1
P3	22	3	3
P4	18	2	2

O processo com maior prioridade é o que tem o número menor de prioridade. Calcule o tempo médio de espera.

10) O SO utiliza o algoritmo Round-Robin, quantum=2,

Processo	Duração do pico	Tempo de chegada
P1	182222222	1
P2	16222222	4
P3	15222221	6
P4	22222222222	7

Calcule o tempo médio de espera.

R:

<u>r1</u>	r1	r1	r1	r1	r1	r1	r1	r1	r1							
P1	P1	P2	P2	P3	РЗ	P4	P4	P1	P1	P2	P2	P3	P3	P4	P4	->
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
r1	r1	r1	r1	r1	r1	r1	r1	r1	r1	r1	r1	r1	r1	r1	r1	
P1	P1	P2	P2	РЗ	РЗ	P4	P4	P1	P1	P2	P2	РЗ	РЗ	P4	P4	->
16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	
r1	r1	r1	r1	r1	r1	r1	r1	r1	r1	r1	r1	r1	r1	r1	r1	
P1	P1	P2	P2	РЗ	РЗ	P4	P4	P1	P1	P2	P2	РЗ	РЗ	P4	P4	->
32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	
r1	r1	r1	r1	r1	r1	r1	r1	r1	r1	r1	r1	r1	r1	r1	r1	
P1	P1	P2	P2	P3	РЗ	P4	P4	P1	P1	P2	P2	P3	P4	P4	P1	->
48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	
r1	r1	r1	r1	r1	r1	r1	r1	r1	r1	r1	r1	r1	r1	r1	r1	
P1	P4	P4	P4	P4	P4	P4										
64	65	66	67	68	69	70	- 71									

Final do processo 1 = 65;

Final do processo 2 = 60;

Final do processo 3 = 61;

Final do processo 4 = 71;

Final do processo - chegada - duração

Processo 1 = 65 - 0 - 18 = 47

Processo 2 = 60 - 2 - 16 = 42

Processo 3 = 61 - 4 - 15 = 42

Processo 4 = 71 - 6 - 22 = 43

Tempo médio de espera: (47 + 42 + 42 + 43) / 4 = 43,5 unidades de tempo.

11)

R: A.

P1	P2	P3	P4	P5	
0	13	24	31	39	55

R: B.

P1	P3	P4	P2	P5	
0	13	20	28	39	55

R: C.

P1	P3	P4	P2	P5	
0	13	20	28	39	55

R: D.

F	21	P2	P1	P3	P4	P2	P5	P1	P3	P4	P2	P5	P1	P5	P5
0		4	8	12	16	20	24	28	32	35	39	42	46	47	51 55