FD2203

Outline

FD2203 It is a half-bridge gate drive circuit chip,

Designed for high voltage, high speed driving N Power MOSFET

with IGBT It can be up to + 250V Work under voltage.

FD2203 Built-in undervoltage (UVLO)Protective function,

Preventing the power transistor operates at low voltage and improve efficiency.

FD2203 Built-in filtering the input signal, the input noise preventing

Sound interference.

FD2203 Built-in pass-through to prevent and dead time, preventing

Power tube through occurs, the effective protection of the power device.

Package

SOIC-8

250V Half-bridge gate driver

Features

- Suspension absolute voltage + 250V
- Output current + 1.6A / -2.3A
- 3.3V / 5V Input logic compatible
- VCC / VBS Undervoltage protection (UVLO)
- High-end and high-end output in phase with the input
- Low-side and low-side input inverter output
- Built-in pass-through prevention function
- Internal 250ns Dead time
- Channel matching igh and low end

apr ،د 'ion

Mc. arive

DC-DC converter

Ordering Information

Product Name	Package Ordering	
FD2203	SOIC-8	FD2203

1. Absolute Maximum Ratings (Unless otherwise noted, all pins are COM As a reference point)

parameter		symbol	range	unit
A high side floating absolute voltage		Vв	-0.3 ~ 275	V
A high side floating offset voltage		Vs	V _B - 25 ~ V _B + 0.3	V
High-side output voltage		V но	Vs- 0.3 ~ VB+ 0.3	V
The low side supply voltage		Vcc	-0.3 ~ 25	V
Low-side output voltage		VLO	-0.3 ~ V cc + 0.3	V
Logic input voltage (HIN, LIN	*)	Vın	-0.3 ~ V cc + 0.3	V
Offset voltage slew rate range		dVs/dt	≤ 50	V / ns
Power Dissipation @ T A ≤25 • C	SOIC-8	Ро	≤ 0.625	W
Thermal resistance junction on the envi	ronmentSOIC-8	R thJA	≤ 200	• C / W
Junction Temperature Range		Tj	≤ 150	•C
Storage temperature		T stg	- 55 ~ 150	• C

Note 1 : In any case, do not exceed P $\scriptstyle D$. Note 2 : Voltage exceeds the absolute maximum

ratings may damage the chip.

2. Recommended Operating Conditions (All voltages are COM As a reference point)

parameter	symbol	M) sim	Maximum	unit
A high side floating absolute voltage	Vв	√ s+}	Vs+20	V
A high side floating offset voltage	Vs		250	V
High-side output voltage	Vно	Vs	Vв	V
The low side supply voltage		8	20	V
Low-side output voltage	У.ГО	0	Vcc	V
Logic input voltage (HIN, LIN *)	Vin	0	Vcc	V
Ambient temperature	TA	- 40	125	• C

Note 1: Vs for(COM-2V) To 250V Time, h normal v Vs fo. "OM-2V) To (COM-Vss) Time, HO Logic state remains. Note 2: Vs for(COM-50V), width 50ns The negative voltage transient, HO normal work. Note 3: Chip long-term work outside recom. Indeed operating conditions may affect its reliability, the chip is not recommended for long-term work outside the recommended operating condition

3. static electrical parameters (Unless otherwise specified, Ta= 25 \cdot C , V ∞ = V $_{BS}$ = 15V , V $_{S}$ = COM)

parameter	symbol	Test Conditions	Min Typ N	lax Units		
High level input threshold voltage	Vн		2.4		V	
Low level input threshold voltage	VıL				0.8 V	
V cc Undervoltage protection voltage trip	V ccuv+		6.3	6.9	7.5 V	
V cc Reset voltage undervoltage protection	V ccuv-		5.9	6.5	7.1 V	
V cc Hysteresis voltage undervoltage protection	<u>V_.ccuvн</u>		0.2	0.4	V	
V BS Undervoltage protection voltage trip	V BSUV+		6.3	6.9	7.5 V	
V BS Reset voltage undervoltage protection	V BSUV-		5.9	6.5	7.1 V	
V _{BS} Hysteresis voltage undervoltage protection	V _{BSUVH}		0.2	0.4	V	
Floating power supply leakage current	Iцк	VB= VS= 250V		1.0	<u>10.0 μ</u> A	
V BS Quiescent Current	I QBS	V in = 0V or 5V	140		<u>250</u>	<u>μΑ</u>
V _{BS} Dynamic current	I PBS	f HIN = 20kHz	140		<u>250</u>	μA
V cc Quiescent Current	Lacc	V in = 0V or 5V	460		<u>700</u>	<u>uA</u>
V cc Dynamic current	I PCC	f in = 20kHz	460		<u>700</u>	μA
LIN * High input bias current	l lin +	V LIN*= 0V	. 20		40	<u>μΑ</u>
LIN * Low input bias current	l lin-	V LIN*= 5V		2		μA
HIN High input bias current	l HIN +	V HIN = 5V	20		40	μA
HIN Low input bias current	I HIN-	V HIN = 0V		2		μA
High-level output voltage	V он	I o = 20mA		0.09	<u>0.16</u>	V
Low Output Voltage	V ol	Io= 20mA		0.03	0.06	V
High short circuit output current pulse	Гон	Vo=0V,Pv \≤10µs	1.1	1.6	A	
Low short circuit output current pulse	l ol	Vo=15\	1.6	2.3	A	
V s Static negative pressure	Vsn			-6.0	V	

4. Dynamic electrical parame. 18 (U_L 18 off). ise specified, T_{A} = 25 $^{\circ}$ C , V_{CC} = V_{BS} = 15V , C_{L} = 1000pF , V_{S} = COM)

parameter	s, iool	Test Conditions	Min Typ N	lax Units		
The rising edge transit tin	t on	C L = 1000pF	350		<u>520</u>	ns
Falling outr pission. 9	t off	C L = 1000pF	100		<u>150</u>	ns
Out Rise Time	tr	C L = 1000pF	12		ns	
Outpu 3II 7 .e	tr	C L = 1000pF	8		ns	
Dead time	DT		250		<u>370</u>	ns
Delay matching the nigh and low side	MT			50		ns

The block circuit diagram

6. chip pin configuration

FIG package pins 6-1 of FIG.

Table 6-1 Pin Description

<u>í</u> 'umber	P Name	Pin Description	
1	VCC	The low side supply voltage	
2	HIN	A high side	
3	LIN *	Low-side input	
4	СОМ	Ground	
5	LO	Low-side output	
6	VS	A high side floating offset voltage	
7	НО	High-side output	
8	VB	A high side floating absolute voltage	

7. FIG logic timing

8. Switching Time Test Standard

9. The transmission time matching test standard

10. The dead time testing standards

11. A typical application circuit

C1 : Power supply filter capacitor circuit according to the case optionally $0.1\mu F \sim 3\mu F$

R : Gate drive resistor, the resistance depends on the driven element.

Dbs : Bootstrap diode should be selected high reverse breakdov e (> 2. '), The diode recovery time as short as possible.

Cbs: Bootstrap capacitor should be chosen ceramic or training the minimula papacitance value calculated according to the following equation:

among them: Q a A gate charge the hir' ade pow. Jevice;

I bs # Bootstrap capacitor leakage current;

perating frequency for the circuit;

V cc A low side supply voltage;

V_F Bootstrap diode forward voltage drop;

 $V_{\,ds\,(L)}$ Voltage drop for the low-side power device.

Note: The circuit parameters are for reference and actual application circuit setting parameters according to the measured results.

12. The package size (SOIC-8)

	T						
Symbol	Dimens ions In Mill imeters			Dime nsions In I nches			
Cymbol	Min	Non	Max	Min	Nom	Max	
Α	1.36	1.55	1.	0.053	0.061	0.069	
A1	0.10	10	າ.25	0.004	0.006	0.010	
A2	1.25	.40	1.65	0.049	0.055	0.065	
A3	7.50	0.	0.70	0.020	0.024	0.028	
b	0.3		0.51	0.015	-	0.020	
b1	1.37	42	0.47	0.015	0.017	0.019	
С	0	-	0.25	0.007	-	0.010	
c1	0.17	0.20	0.23	0.007	0.008	0.009	
	4 0	4.90	5.00	0.189	0.193	0.197	
E1	ა.80	6.00	6.20	0.228	0.236	0.244	
	3.80	3.90	4.00	0.150	0.154	0.157	
е			1.27E	SC			
L	0.45	0.60	0.80	0.018	0.024	0.031	
L1		1.04REF					
L2		0.25BSC					
R	0.07	-	-	0.003	-	-	
R1	0.07	-	-	0.003	-	-	
h	0.30	0.40	0.50	0.012	0.016	0.020	
θ	0°	-	8 °	0 °	-	8 °	
θ1	15 °	17 °	19 °	15 °	17 °	19 °	
θ2	11 °	13 °	15 °	11 °	13 °	15 °	
θ3	15 °	17 °	19 °	15 °	17 °	19 °	
θ4	11 °	13 °	15 °	11 °	13 °	15 °	

13. The top screen in the form of FIG.

Copyright Notice

Copyright by Fortior Technology (Shenzhen) Co., Ltd. All Rights Reserved.

Right to make changes -Fortior Technology (Shenzhen) Co., Ltd reserves the right make c. 3 in the products - including circuits, standard cells, and / or software - described or contained herein in order to improve sign and / or enformance The. information contained in this manual is provided for the general use by our customers our contained in this manual is provided for the general use by our customers our contained in this manual is provided for the general use by our customers our contained in this manual is provided for the general use by our customers our contained in this manual is provided for the general use by our customers our contained in this manual is provided for the general use by our customers our contained in this manual is provided for the general use by our customers our contained herein in order to improve sign and / or enformance The. information contained in this manual is provided for the general use by our customers our contained herein in order to improve sign and / or enformance The. information contained herein in order to improve sign and / or enformance The. information contained herein in order to improve sign and / or enformance The. information contained herein in order to improve sign and / or enformance The. information contained herein in order to improve sign and / or enformance The. information contained herein in order to improve sign and / or enformance The. information contained herein in order to improve sign and / or enformance The. information contained herein in order to improve sign and / or enformance The. information contained herein in order to improve sign and / or enformance The. information contained herein in order to improve sign and / or enformance The. information contained herein in order to improve sign and / or enformance The.

This manual is copyrighted by Fortior Technology, henzhen, Co., Ltd. You may not reproduce, transmit, transcribe, store in a retrieval system, or translate into any langue, in any mor by any means, electronic, mechanical, magnetic, optical, chemical, manual, or otherwise, any part of his pure ration, it hout the expressly written permission from Fortior Technology (Shenzhen) Co., Ltd.