Claims

٠,

- 1. A method for dissolving lignocellulosic material comprising mixing the lignocellulosic material with an ionic liquid solvent under microwave irradiation and/or under pressure in the substantial absence of water to completely dissolve the lignocellulosic material.
- 2. The method according to claim 1 wherein microwave irradiation is applied to assist in dissolution.
- 3. The method according to claim 1 wherein pressure is applied to assist in dissolution.
- 4. The method according to claim 1 wherein the ionic liquid solvent is molten at a temperature of below 200°C.
- 5. The method according to claim 1 wherein the cation of the ionic liquid solvent is selected from the group consisting of

wherein R^1 and R^2 are independently a C_1 - C_6 alkyl or C_2 - C_6 alkoxyalkyl group, and R^3 , R^4 , R^5 , R^6 , R^7 , R^8 and R^9 are independently hydrogen, a C_1 - C_6 alkyl, C_2 - C_6 alkoxyalkyl or C_1 - C_6 alkoxy group, and

wherein the anion of the ionic liquid solvent is halogen, pseudohalogen or C_1 - C_6 carboxylate.

6. The method according to claim 5 wherein said cation comprises

$$R^4$$
 R^5
 R^1
 R^3
 R^5

ř

wherein $R^3 - R^5$ are hydrogen and R^1 and R^2 are the same or different and represent C_1 - C_6 alkyl, and said anion is halogen, preferably chloride.

- 7. The method according to claim 1 wherein the lignocellulosic material is a material that has not been subjected to a pulping or defibering process.
- 8. The method according to claim 7 wherein the lignocellulosic material is untreated wood, such as softwood or hardwood, or untreated straw.
- 9. A solution comprising dissolved lignocellulosic material in an ionic liquid solvent that is substantially free of water.
- 10. The solution of claim 9 wherein the lignocellulosic material is present in an amount of about 1% to 30% by weight of the solution.
- 11. The solution according to claim 9 wherein the cation of the ionic liquid solvent is selected from the group consisting of

5

wherein R^1 and R^2 are independently a C_1 - C_6 alkyl or C_2 - C_6 alkoxyalkyl group, and R^3 , R^4 , R^5 , R^6 , R^7 , R^8 and R^9 are independently hydrogen, a C_1 - C_6 alkyl, C_2 - C_6 alkoxyalkyl or C_1 - C_6 alkoxy group, and

wherein the anion of the ionic liquid solvent is halogen, pseudohalogen or C_1 - C_6 carboxylate.

12. A method for separating cellulose from a lignocellulosic material comprising mixing the lignocellulosic material with an ionic liquid solvent under microwave irradiation and/or under pressure in the substantial absence of water to completely dissolve the lignocellulosic material, thereby obtaining a solution of the lignocellulosic material, and thereafter precipitating the cellulose by adding a non-solvent for the cellulose.

- 13. The method according to claim 12 wherein the lignin is removed from said solution before precipitating the cellulose.
- 14. The method according to claim 12 wherein said non-solvent for the ionic liquid solvent is water, an alcohol, a ketone or an ether.
- 15. The method according to claim 12 wherein the cation of the ionic liquid solvent is selected from the group consisting of

wherein R^1 and R^2 are independently a C_1 - C_6 alkyl or C_2 - C_6 alkoxyalkyl group, and R^3 , R^4 , R^5 , R^6 , R^7 , R^8 and R^9 are independently hydrogen, a C_1 - C_6 alkoxy group, and

4

wherein the anion of the ionic liquid solvent is halogen, pseudohalogen or C_1 - C_6 carboxylate.

- 16. A method for the delignification of a lignocellulosic material comprising mixing the lignocellulosic material with an ionic liquid solvent under microwave irradiation and/or under pressure in the substantial absence of water to completely dissolve the lignocellulosic material, thereby obtaining a solution of the lignocellulosic material, and thereafter subjecting the solution to extraction to separate lignin from the solution.
- 17. The method according to claim 16 wherein the cation of the ionic liquid solvent is selected from the group consisting of

wherein R^1 and R^2 are independently a C_1 - C_6 alkyl or C_2 - C_6 alkoxyalkyl group, and R^3 , R^4 , R^5 , R^6 , R^7 , R^8 and R^9 are independently hydrogen, a C_1 - C_6 alkoxy group, and

wherein the anion of the ionic liquid solvent is halogen, pseudohalogen or C_1 - C_6 carboxylate.

- 18. A method for the separation of extractives or a component thereof from a lignocellulosic material comprising mixing the lignocellulosic material with an ionic liquid solvent under microwave irradiation and/or under pressure in the substantial absence of water to completely dissolve the lignocellulosic material, thereby obtaining a solution of the lignocellulosic material, and thereafter separating the extractives or a component thereof from said solution.
- 19. The method according to claim 18 wherein the extractives or a component thereof are separated from said solution by extraction or by distillation.
- 20. The method according to claim 18 wherein the cation of the ionic liquid solvent is selected from the group consisting of

PCT/F12004/000476

wherein R^1 and R^2 are independently a C_1 - C_6 alkyl or C_2 - C_6 alkoxyalkyl group, and R^3 , R^4 , R^5 , R^6 , R^7 , R^8 and R^9 are independently hydrogen, a C_1 - C_6 alkoxy group, and

wherein the anion of the ionic liquid solvent is halogen, pseudohalogen or $C_1\text{-}C_6$ carboxylate.