WHAT IS CLAIMED IS:

1. A compound of Formula I, or an individual optical isomer enantiomer or diastereomer thereof, or a pharmaceutically acceptable salt thereof:

5

wherein:

Z is O or $N-R^9$;

10 R¹ is -C₁₋₆ alkyl substituted with R^J, wherein R^J is:

- (A) aryl or aryl fused to a 5- or 6-membered heteroaromatic ring containing from 1 to 4 heteroatoms independently selected from N, O and S, wherein the aryl or fused aryl is
 - (i) optionally substituted with from 1 to 5 substituents each of which is independently:

15

-C1-6 alkyl, which is optionally substituted with -OH, -O-C1-6 alkyl, -O-C1-6 haloalkyl, -CN, -NO2, -N(RA)RB, -C(=O)N(RA)RB, -C(=O)RA, -CO2RA, -S(O)nRA, -SO2N(RA)RB, -N(RA)C(=O)RB, -N(RA)CO2RB, -N(RA)SO2RB, -N(RA)SO2N(RA)RB, -OC(=O)N(RA)RB, or -N(RA)C(=O)N(RA)RB,

20

- (2) -O-C₁₋₆ alkyl,
- (3) $-C_{1-6}$ haloalkyl,
- (4) -O-C₁₋₆ haloalkyl,
- (5) -OH,
- (6) halo,

25

- (7) -CN,
- (8) $-NO_{2}$
- (9) -N(RA)RB,
- (10) -C(=O)N(RA)RB,
- (11) -C(=O)RA,

			(12)	-CO ₂ RA,	
			(13)	-SRA,	
			(14)	$-S(=O)R^A$,	
			(15)	-SO ₂ RA,	
5			(16)	$-SO_2N(R^A)R^B$,	
			(17)	$-N(R^A)SO_2R^B$,	
			(18)	$-N(R^A)SO_2N(R^A)R^B$,	
			(19)	-N(RA)C(=O)RB	
			(20)	-N(RA)C(=O)-C(=O)N(RA)RB, or	
10			(21)	-N(RA)CO ₂ RB, and	
		(ii)	optiona	ally substituted with 1 or 2 substituents each of which is independently:	
			(1)	aryl,	
			(2)	-C ₁₋₆ alkyl substituted with aryl,	
			(3)	-HetA,	
15			(4)	-C(=O)-HetA; or	
			(5)	-HetB;	
				wherein each HetA is independently a C4-7 azacycloalkyl or a	
				C ₃₋₆ diazacycloalkyl, either of which is optionally substituted with from	
				1 to 3 substituents each of which is independently oxo or C ₁₋₆ alkyl; and	
20				wherein each HetB is a 5- or 6-membered heteroaromatic ring	
				containing from 1 to 4 heteroatoms independently selected from N, O	
				and S, wherein the heteroaromatic ring is optionally substituted with	
				from 1 to 4 substituents each of which is independently halo, -C ₁₋₆	
				alkyl, -C ₁₋₆ haloalkyl, -O-C ₁₋₆ alkyl, -O-C ₁₋₆ haloalkyl, or hydroxy; or	
25	(B)	a 5- or	r 6-membered heteroaromatic ring containing from 1 to 4 heteroatoms		
		indeper	ndently s	selected from N, O and S; wherein the heteroaromatic ring is:	
		(i)	optiona	ally substituted with from 1 to 4 substituents each of which is	
			indeper	ndently halogen, -C ₁₋₆ alkyl, -C ₁₋₆ haloalkyl, -O-C ₁₋₆ alkyl, -O-C ₁₋₆	
			haloalk	yl, or hydroxy, and	
30		(ii)	optiona	ally substituted with 1 or 2 substituents each of which is independently	
			aryl or	-C ₁₋₆ alkyl substituted with aryl;	

R², R³, R⁴ and R⁵ are defined as follows:

(A) R^2 , R^3 , R^4 and R^5 are each independently:

20

- -H, (1) -C₁₋₆ alkyl, which is optionally substituted with -OH, -O-C₁₋₆ alkyl, -O-C₁₋₆ (2) haloalkyl, -CN, -N(RA)RB, -C(=O)N(RA)RB, -C(=O)RA, -CO₂RA, -S(O)_nRA, $-SO_2N(RA)RB$, -N(RA)C(=O)RB, $-N(RA)CO_2RB$, $-N(RA)SO_2RB$, $-N(RA)SO_2N(RA)RB$, -N(RA)C(=O)N(RA)RB, or -OC(=O)N(RA)RB, 5
 - -C₁₋₆ haloalkyl, (3)
 - (4) CycA,
 - AryA, **(5)**
 - HetC, or (6)
- -C₁₋₆ alkyl substituted with CycA, AryA, or HetC; 10 **(7)**
 - R² and R⁴ together with the carbon atoms to which each is attached form a carbon-(B) carbon double bond; and R³ and R⁵ are each independently as defined in part A above;
 - R² and R³ together with the carbon atom to which they are both attached form a 3- to 8-(C) membered saturated carbocyclic ring which is optionally substituted with from 1 to 4 substituents each of which is independently -OH, -C1-6 alkyl, -C1-6 haloalkyl, -O-C1-6 alkyl, or -O-C₁₋₆ haloalkyl; and R⁴ and R⁵ are each independently as defined in part A above; or
 - R⁴ and R⁵ together with the carbon atom to which they are both attached form a 3- to 8-(D) membered saturated carbocyclic ring which is optionally substituted with from 1 to 4 substituents each of which is independently -OH, -C1-6 alkyl, -C1-6 haloalkyl, -O-C1-6 alkyl, or -O-C₁₋₆ haloalkyl; and R² and R³ are each independently as defined in part A above;

R6 is:

25 **(1)** . -H,

- -C₁₋₆ alkyl, which is optionally substituted with -OH, -O-C₁₋₆ alkyl, -O-C₁₋₆ haloalkyl, (2) $-CN, -N(RA)RB, -C(=O)N(RA)RB, -C(=O)RA, -CO_2RA, -S(O)_nRA, -SO_2N(RA)RB,$ -N(RA)C(=O)RB, $-N(RA)CO_2RB$, $-N(RA)SO_2RB$, $-N(RA)SO_2N(RA)RB$, -N(RA)C(=O)N(RA)RB, or -OC(=O)N(RA)RB,
- -C₁₋₆ haloalkyl, 30 (3)
 - (4) CycA,
 - (5) AryA,
 - HetC, or (6)
 - -C₁₋₆ alkyl substituted with CycA, AryA, or HetC; (7)

R⁷ and R⁸ are each independently:

- (1) -H,
- -C1-6 alkyl, which is optionally substituted with -OH, -O-C1-6 alkyl, -O-C1-6 haloalkyl, -CN, -N(RA)RB, -C(=O)N(RA)RB, -C(=O)RA, -CO₂RA, -S(O)_nRA, -SO₂N(RA)RB, -N(RA)C(=O)RB, -N(RA)CO₂RB, -N(RA)SO₂RB, -N(RA)SO₂N(RA)RB, -N(RA)C(=O)N(RA)RB, or -OC(=O)N(RA)RB,
- (3) -C₁₋₆ haloalkyl,
- (4) -C(=O)RA,
- 10 (5) $-CO_2RA$,
 - (6) -C(=O)N(RA)RB,
 - (7) $-N(RA)SO_2N(RA)RB$,
 - (8) -RK,
 - (9) -C(=O)-RK,
- 15 (10) -C(=O)N(RA)-RK,
 - (11) $-C(=O)N(RA)-C_{1-6}$ alkylene-RK, or
 - -C₁₋₆ alkyl substituted with -R^K, -C(=O)-R^K, -C(=O)N(R^A)-R^K, or -C(=O)N(R^A)-C₁₋₆ alkylene-R^K;
- or alternatively R⁷ and R⁸ together with the carbon atom to which they are both attached form a 3- to 8-membered saturated carbocyclic ring which is optionally substituted with from 1 to 4 substituents each of which is independently halogen, -OH, -C₁₋₆ alkyl, -C₁₋₆ haloalkyl, -O-C₁₋₆ alkyl, or -O-C₁₋₆ haloalkyl;

R⁹ is:

- 25 (1) -H,
 - -C₁₋₆ alkyl, which is optionally substituted with -OH, -O-C₁₋₆ alkyl, -O-C₁₋₆ haloalkyl, -CN, -N(RA)RB, -C(=O)N(RA)RB, -C(=O)RA, -CO₂RA, -S(O)_nRA, -SO₂N(RA)RB, -N(RA)C(=O)RB, -N(RA)CO₂RB, -N(RA)SO₂RB, -N(RA)SO₂N(RA)RB, -N(RA)C(=O)N(RA)RB, or -OC(=O)N(RA)RB,
- 30 (3) -C₁₋₆ haloalkyl,
 - (4) CycA,
 - (5) AryA,
 - (6) HetC, or
 - (7) -C₁₋₆ alkyl substituted with CycA, AryA, or HetC;

each n is independently an integer equal to zero, 1, or 2;

each RA is independently H or C₁₋₆ alkyl;

5

each RB is independently H or C₁₋₆ alkyl;

each RK is independently CycA, AryA, or HetC;

10

each CycA is independently a C₃₋₈ cycloalkyl, which is optionally substituted with from 1 to 4 substituents each of which is halogen, -OH, -C1-6 alkyl, -C1-6 haloalkyl, -O-C1-6 alkyl, or -O-C1-6 haloalkyl;

each AryA is independently an aryl, which is

15

optionally substituted with from 1 to 5 substituents each of which is independently -C₁₋₆ (a) alkyl, -C1-6 alkylene-OH, -C1-6 alkylene-O-C1-6 alkyl, -C1-6 alkylene-O-C1-6 haloalkyl, -C₁₋₆ alkylene-N(RA)RB, -C₁₋₆ alkylene-C(=O)N(RA)RB, -C₁₋₆ alkylene-C(=O)RA, -C1-6 alkylene-CO2RA, -C1-6 alkylene-S(O) $_n$ RA, -O-C1-6 alkylene-S(O) $_n$ RA -C₁₋₆ haloalkyl, -O-C₁₋₆ haloalkyl, -OH, halo, -N(RA)RB, -C(=O)N(RA)RB, -C(=O)RA, -CO₂RA, -S(O)_nRA, or -SO₂N(RA)RB, and

20

optionally substituted with C3-8 cycloalkyl, aryl, HetD, or -C1-6 alkyl substituted with C3-8 cycloalkyl, aryl, or HetD;

25

each HetC is independently a 4- to 7-membered saturated or unsaturated heterocyclic ring containing at least one carbon atom and from 1 to 4 heteroatoms independently selected from N, O and S, wherein the heterocyclic ring is

(a)

optionally substituted with from 1 to 4 substituents each of which is halogen, -C₁₋₆ alkyl, -C₁₋₆ haloalkyl, -O-C₁₋₆ alkyl, -O-C₁₋₆ haloalkyl, OH, or oxo, and

30

optionally substituted with C3-8 cycloalkyl, aryl, HetD, or -C1-6 alkyl substituted with (b) C3-8 cycloalkyl, aryl, or HetD;

each HetD is independently a 4- to 7-membered saturated or unsaturated heterocyclic ring containing at least one carbon atom and from 1 to 4 heteroatoms independently selected from N, O and S; and

15

20

30

each aryl is independently (i) phenyl or (ii) a 9- or 10-membered bicyclic, fused carbocylic ring system in which at least one ring is aromatic.

- 2. The compound according to claim 1, or an individual enantiomer or diastereomer thereof, or a pharmaceutically acceptable salt thereof, wherein Z is N-R⁹.
 - 3. The compound according to claim 1, or an individual enantiomer or diastereomer thereof, or a pharmaceutically acceptable salt thereof, wherein R¹ is -CH₂-R^J, and R^J is phenyl, pyridyl, quinolinyl, isoquinolinyl, cinnolinyl, or quinazolinyl, any of which is
 - (a) optionally substituted with from 1 to 4 substituents each of which is independently:
 - (1) $-C_{1-4}$ alkyl,
 - (2) -O-C₁₋₄ alkyl,
 - (3) -C₁₋₄ haloalkyl,
 - (4) -O-C₁₋₄ haloalkyl,
 - (5) halo,
 - (6) -CN,
 - (7) $-N(R^A)R^B$,
 - (8) -C(=O)N(RA)RB,
 - (9) -S(=O)RA,
 - (10) $-SO_2R^A$,
 - (11) $-N(RA)SO_2RB$,
 - (12) $-N(RA)SO_2N(RA)RB$,
 - (13) -N(RA)C(=O)RB, or
 - (14) -N(RA)C(=O)-C(=O)N(RA)RB, and
- optionally substituted with phenyl, benzyl, -HetA, or -C(=O)-HetA; wherein each HetA is independently a C₄₋₇ azacycloalkyl or a C₃₋₆ diazacycloalkyl, either of which is optionally substituted with from 1 to 3 substituents each of which is independently oxo or C₁₋₄ alkyl; and with the proviso that when HetA is attached to the rest of the compound via the -C(=O)- moiety, the HetA is attached to the -C(=O)- via a ring N atom.
 - 4. The compound according to claim 1, or an individual enantiomer or diastereomer thereof, or a pharmaceutically acceptable salt thereof, wherein R², R³, R⁴ and R⁵ are defined as follows:
 - (A) R² and R⁴ are as defined in part A of claim 1, and R³ and R⁵ are both H;
 - (B) R² and R⁴ are as defined in part B of claim 1; and R³ and R⁵ are both H;

(C)

	(D)	R ⁴ and R ⁵ are as defined in part D of claim 1; and R ² and R ³ are both H.
		5. The compound according to claim 1, or an individual enantiomer or diastereomer
5	thereof, or a p	harmaceutically acceptable salt thereof, wherein R6 is:
	(1)	-H,
	(2)	-C ₁₋₆ alkyl,
	(3)	-C ₁₋₆ fluoroalkyl,
	(4)	CycA,
0	(5)	AryA, or
	(6)	-C ₁₋₆ alkyl substituted with AryA.
		6. The compound according to claim 5, or an individual enantiomer or diastereomer
	thereof, or a p	harmaceutically acceptable salt thereof, wherein R6 is H.
5		
		7. The compound according to claim 1, or an individual enantiomer or diastereomer
	thereof, or a p	pharmaceutically acceptable salt thereof, wherein R ⁷ and R ⁸ are each independently:
	(1)	-H,
	(2)	-C ₁₋₆ alkyl,
20	(3)	-CO ₂ RA,
	(4)	-C(=O)N(RA)RB,
	(5)	-RK,
	(6)	-C(=O)-RK
	(7)	$-C(=O)N(R^A)-R^K$, or
25	(8)	-C(=O)N(R^A)-C ₁₋₆ alkylene- R^K ;
	or alternative	ly R ⁷ and R ⁸ together with the carbon atom to which they are both attached form a 3- to 7-
	membered sat	curated carbocyclic ring.

R² and R³ are as defined in part C of claim 1; and R⁴ and R⁵ are both H; or

8. The compound according to claim 1, or an individual enantiomer or diastereomer

(1) -H,

30

- (2) $-C_{1-6}$ alkyl
- (3) -C₁₋₆ fluoroalkyl,

thereof, or a pharmaceutically acceptable salt thereof, wherein R⁹ is:

- (4) CycA, or
- (5) -C₁₋₆ alkyl substituted with CycA, AryA, or HetC.
- 9. A compound of Formula II, or an individual enantiomer or diastereomer thereof, 5 or a pharmaceutically acceptable salt thereof:

wherein:

15

20

25

 X^1 and X^2 are each independently -H, -C₁₋₄ alkyl, -O-C₁₋₄ alkyl, -C₁₋₄ haloalkyl, -O-C₁₋₄ haloalkyl, 10 halo, -CN, -N(RA)RB, -C(=O)N(RA)RB, or -S(O)_nRA, wherein n is an integer equal to zero, 1, or 2;

R², R³, R⁴ and R⁵ are defined as follows:

- (A) R² and R⁴ are each independently -H, -C₁₋₄ alkyl, -C₁₋₄ fluoroalkyl, C₃₋₆ cycloalkyl, phenyl, or benzyl; and R⁴ and R⁵ are both H;
- (B) R² and R⁴ together with the carbon atoms to which each is attached form a carbon-carbon double bond; and R³ and R⁵ are both H;
 - (C) R² and R³ together with the carbon atom to which they are both attached form cyclopropyl; and R⁴ and R⁵ are both H; or
 - (D) R⁴ and R⁵ together with the carbon atom to which they are both attached form cyclopropyl; and R² and R³ are both H;

R6 is H, -C₁₋₄ alkyl, CF₃, cyclopropyl, phenyl or benzyl;

 R^7 is H or -C₁₋₄ alkyl;

 R^8 is -H, -C₁₋₄ alkyl, -CO₂-C₁₋₄ alkyl, -C(=O)NH(C₁₋₄ alkyl), -C(=O)N(C₁₋₄ alkyl)₂, C₃₋₆ cycloalkyl, HetF, -C(=O)-HetE, or -C(=O)N(RA)-(CH₂)₁₋₂-HetF; wherein

HetE is a 4- to 7-membered saturated heterocyclic ring containing at least one carbon atom and from 1 to 4 heteroatoms selected from 1 to 4 N atoms, zero or 1 oxygen atom, and zero

or 1 sulfur atom, wherein the saturated heterocyclic is optionally substituted with from 1 to 3 substituents each of which is independently oxo or C₁₋₄ alkyl; and with the proviso that the saturated heterocyclic is attached to the -C(=O)- via a ring N atom; and

HetF is a 5- or 6-membered heteroaromatic ring containing from 1 to 4 heteroatoms independently selected from N, O and S, wherein the heteroaromatic ring is optionally substituted with 1 or 2 substituents each of which is independently a C₁₋₄ alkyl;

or alternatively R⁷ and R⁸ together with the carbon atom to which they are both attached form a 3- to 6-membered saturated carbocyclic ring;

 $R^9 \text{ is -H, -C$_{1-4} alkyl, -C$_{1-6} cycloalkyl, -C$_{1-6} cycloalkyl, or -C$_{1-6} cycloa$

- each RB is independently H or C₁₋₄ alkyl.
 - 10. A compound according to claim 9, or an individual enantiomer or diastereomer thereof, or a pharmaceutically acceptable salt thereof, wherein:
- 20 X¹ and X² are each independently H, fluoro, chloro, methyl, trifluoromethyl, methoxy, CN, -SO₂CH₃, -C(=O)NH(CH₃), or -C(=O)N(CH₃)₂;

R², R³, R⁴ and R⁵ are all H;

25 R⁶ is H, methyl, cyclopropyl, or phenyl;

R⁷ is H or methyl;

 R^8 is -H, -C₁₋₄ alkyl, -CO₂-C₁₋₄ alkyl, -C(=O)NH(C₁₋₄ alkyl), -C(=O)N(C₁₋₄ alkyl)₂, C₃₋₆ cycloalkyl, HetF, -C(=O)-HetE, or -C(=O)N(RA)-(CH₂)₁₋₂-HetF; wherein

10

15

*-N
$$\bigcirc$$
, and *-N \bigcirc S, wherein the asterisk * denotes the point of attachment to the -C(=O) moiety; and

HetF is selected from the group consisting of pyrrolyl, imidazolyl, triazolyl, tetrazolyl, oxazolyl, isooxazolyl, pyridyl, pyrimidinyl, and pyrazinyl;

or alternatively R⁷ and R⁸ together with the carbon atom to which they are both attached form cyclopropyl, cyclobutyl, cyclopentyl, or cyclohexyl; and

R⁹ is H, methyl, ethyl, n-propyl, isopropyl, -CH₂CF₃, cyclopropyl, or -CH₂-cyclopropyl.

- 11. A compound, or a pharmaceutically acceptable salt thereof, selected from the group consisting of:
- 2-(4-fluorobenzyl)-8-hydroxy-6-methyl-2,3,4,4a,5,6-hexahydro-2,6-naphthyridine-1,7-dione;
 - 2-(4-fluorobenzyl)-8-hydroxy-5,5,6-trimethyl-2,3,4,4a,5,6-hexahydro-2,6-naphthyridine-1,7-dione;
 - (+)-2-(4-fluorobenzyl)-8-hydroxy-5,5,6-trimethyl-2,3,4,4a,5,6-hexahydro-2,6-naphthyridine-1,7-dione;
- 20 (-)-2-(4-fluorobenzyl)-8-hydroxy-5,5,6-trimethyl-2,3,4,4a,5,6-hexahydro-2,6-naphthyridine-1,7-dione;
 - 2-(4-fluorobenzyl)-8-hydroxy-6-methyl-4a-phenyl-2,3,4,4a,5,6-hexahydro-2,6-naphthyridine-1,7-dione;
- (+)-2-(4-fluorobenzyl)-8-hydroxy-6-methyl-4a-phenyl-2,3,4,4a,5,6-hexahydro-2,6-naphthyridine-1,7-dione;
 - (-)-2-(4-fluorobenzyl)-8-hydroxy-6-methyl-4a-phenyl-2,3,4,4a,5,6-hexahydro-2,6-naphthyridine-1,7-dione;
- 5-(tert-butyloxycarbonyl)-2-(4-fluorobenzyl)-8-hydroxy-6-methyl-2,3,4,4a,5,6-hexahydro-2,6-naphthyridine-1,7-dione, and diastereomers and enantiomers thereof;

```
5-ethyl-2-(4-fluorobenzyl)-8-hydroxy-6-methyl-2,3,4,4a,5,6-hexahydro-2,6-naphthyridine-1,7-dione, and diastereomers and enantiomers thereof;
```

- 6-(cyclopropylmethyl)-2-(4-fluorobenzyl)-8-hydroxy-5,5-dimethyl-2,3,4,4a,5,6-hexahydro-2,6-naphthyridine-1,7-dione;
 - 5-(dimethylaminocarbonyl)-2-(4-fluorobenzyl)-8-hydroxy-6-methyl-2,3,4,4a,5,6-hexahydro-2,6-naphthyridine-1,7-dione, and diastereomers and enantiomers thereof
- 2-(3-chloro-4-fluorobenzyl)-8-hydroxy-5,5,6-trimethy-2,3,4,4a,5,6-hexahydro-2,6-naphthyridine-1,7-dione;
 - (+)-2-(3-chloro-4-fluorobenzyl)-8-hydroxy-5,5,6-trimethy-2,3,4,4a,5,6-hexahydro-2,6-naphthyridine-1,7-dione;
 - (-)-2-(3-chloro-4-fluorobenzyl)-8-hydroxy-5,5,6-trimethy-2,3,4,4a,5,6-hexahydro-2,6-naphthyridine-1,7-dione;
- 6'-(4-fluorobenzyl)-4'-hydroxy-2'-methyl-6',7',8',8a'-tetrahydro-2' *H*-spiro[cyclopentane-1,1'-20 [2,6]naphthyridine]-3',5'-dione;
 - (+)-6'-(4-fluorobenzyl)-4'-hydroxy-2'-methyl-6',7',8',8a'-tetrahydro-2' *H*-spiro[cyclopentane-1,1'-[2,6]naphthyridine]-3',5'-dione;
- (-)-6'-(4-fluorobenzyl)-4'-hydroxy-2'-methyl-6',7',8',8a'-tetrahydro-2' *H*-spiro[cyclopentane-1,1'-[2,6]naphthyridine]-3',5'-dione;
 - 2-(3,4-difluorobenzyl)-8-hydroxy-5,5,6-trimethy-2,3,4,4a,5,6-hexahydro-2,6-naphthyridine-1,7-dione;
- 6'-(4-fluorobenzyl)-4'-hydroxy-2'-methyl-6',7',8',8a'-tetrahydro-2' *H*-spiro[cyclobutane-1,1'-[2,6]naphthyridine]-3',5'-dione;
 - 5-[(2-methylpropyl)aminocarbonyl]-2-(4-fluorobenzyl)-8-hydroxy-6-methyl-2,3,4,4a,5,6-hexahydro-2,6-naphthyridine-1,7-dione, and diastereomers and enantiomers thereof;

- 5-(tert-butylaminocarbonyl)-2-(4-fluorobenzyl)-8-hydroxy-6-methyl-2,3,4,4a,5,6-hexahydro-2,6-naphthyridine-1,7-dione, and diastereomers and enantiomers thereof;
- 5 5-[(2-pyridylmethyl)aminocarbonyl]-2-(4-fluorobenzyl)-8-hydroxy-6-methyl-2,3,4,4a,5,6-hexahydro-2,6-naphthyridine-1,7-dione, and diastereomers and enantiomers thereof
 - 5-(pyrimidin-2-yl)-2-(4-fluorobenzyl)-8-hydroxy-6-methyl-2,3,4,4a,5,6-hexahydro-2,6-naphthyridine-1,7-dione, and diastereomers and enantiomers thereof;
- 2-(3-chloro-4-fluorobenzyl)-8-hydroxy-6-cyclopropyl-2,3,4,4a,5,6-hexahydro-2,6-naphthyridine-1,7-dione;
- (+)-2-(3-chloro-4-fluorobenzyl)-8-hydroxy-6-cyclopropyl-2,3,4,4a,5,6-hexahydro-2,6-naphthyridine-1,7-dione; and
 - (-)-2-(3-chloro-4-fluorobenzyl)-8-hydroxy-6-cyclopropyl-2,3,4,4a,5,6-hexahydro-2,6-naphthyridine-1,7-dione.
- 12. A pharmaceutical composition comprising an effective amount of a compound according to any one of claims 1 to 11, or an individual enantiomer or diastereomer thereof, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.
- 13. A method of inhibiting HTV integrase in a subject in need thereof which comprises administering to the subject an effective amount of the compound according to any one of claims 1 to 11, or an individual enantiomer or diastereomer thereof, or a pharmaceutically acceptable salt thereof.
- or delaying the onset of AIDS in a subject in need thereof which comprises administering to the subject an effective amount of the compound according to any one of claims 1 to 11, or an individual enantiomer or diastereomer thereof, or a pharmaceutically acceptable salt thereof.

- 15. Use of a compound according to any one of claims 1 to 11, or an individual enantiomer or diastereomer thereof, or a pharmaceutically acceptable salt thereof, for inhibiting HIV integrase in a subject in need thereof.
- 16. Use of a compound according to any one of claims 1 to 11, or an individual enantiomer or diastereomer thereof, or a pharmaceutically acceptable salt thereof, for preventing or treating infection by HIV or for preventing, treating or delaying the onset of AIDS in a subject in need thereof.
- 17. A compound according to any one of claims 1 to 11, or an individual enantiomer or diastereomer thereof, or a pharmaceutically acceptable salt thereof, for use in the preparation of a medicament for inhibiting HIV integrase in a subject in need thereof.
- 18. A compound according to any one of claims 1 to 11, or an individual enantiomer or diastereomer thereof, or a pharmaceutically acceptable salt thereof, for use in the preparation of a medicament for preventing or treating infection by HIV or for preventing, treating or delaying the onset of AIDS in a subject in need thereof.
- claims 1 to 11, or an individual enantiomer or diastereomer thereof, or a pharmaceutically acceptable salt thereof, and (ii) an HIV infection/AIDS antiviral agent selected from the group consisting of HIV protease inhibitors, non-nucleoside HIV reverse transcriptase inhibitors and nucleoside HIV reverse transcriptase inhibitors; wherein the compound of (i) or its pharmaceutically acceptable salt and the HIV infection/AIDS antiviral agent of (ii) are each employed in an amount that renders the combination effective for inhibiting HIV integrase, for preventing or treating infection by HIV, or for preventing, treating or delaying the onset of AIDS.