

Machine Learning

Prof. Dr. Fabian Brunner

<fa.brunner@oth-aw.de>

Amberg, 31. Mai 2021

Übersicht

Thema heute: Logistische Regression

- Grundidee
- Kostenfunktional
- Modell-Fitting
- Modellbewertung
- Logistische Regression mit Scikit-learn (Übung)

Problemstellung und Notation

Problemstellung

- Binäres Klassifikationsproblem
- p numerische Features ("unabhängige Variablen")
- Binäre Zielvariable ("abhängige Variable") mit den Klassen 0 und 1
- m Trainingsdatensätze

$$(x^{(1)}, y^{(1)}), \dots, (x^{(m)}, y^{(m)}),$$

wobei $\mathbf{x}^{(i)} \in \mathbb{R}^p$ und $\mathbf{y}^{(i)} \in \{0, 1\}$.

Modell-Training

Bestimme eine Funktion

$$f:\mathbb{R}^p\to\{0,1\}\ ,$$

die möglichst gut zu den Trainingsdaten "passt".

Modellanwendung

Für einen Query Point x_q prognostiziere das Label $f(x_q)$.

Idee

Fitte ein lineares Regressionsmodell der Form

$$f_{\theta}(\mathbf{x}) = \theta_0 + \theta_1 x_1 + \ldots + \theta_{\rho} x_{\rho}$$

und definiere den Klassifikator wie folgt:

- Falls $f_{\theta}(\mathbf{x}_q) \geq 0.5 \rightarrow \mathsf{Prognose}\ y = 1$
- Falls $f_{m{ heta}}(m{x}_q) < 0.5
 ightarrow \mathsf{Prognose} \; y = 0$

Idee

Fitte ein lineares Regressionsmodell der Form

$$f_{\theta}(\mathbf{x}) = \theta_0 + \theta_1 x_1 + \ldots + \theta_{\rho} x_{\rho}$$

und definiere den Klassifikator wie folgt:

- Falls $f_{\theta}(\mathbf{x}_q) \geq 0.5 \rightarrow \mathsf{Prognose}\ y = 1$
- Falls $f_{m{ heta}}(m{x}_q) < 0.5
 ightarrow \mathsf{Prognose} \; y = 0$

- Wertebereich des linearen Regressionsmodells ist ganz \mathbb{R} .
- Im Allgemeinen keine zufriedenstellenden Ergebnisse.

ldee

Fitte ein lineares Regressionsmodell der Form

$$f_{\theta}(\mathbf{x}) = \theta_0 + \theta_1 x_1 + \ldots + \theta_p x_p$$

und definiere den Klassifikator wie folgt:

- Falls $f_{\theta}(\mathbf{x}_q) \geq 0.5 \rightarrow \mathsf{Prognose}\ y = 1$
- Falls $f_{m{ heta}}(m{x}_q) < 0.5
 ightarrow \mathsf{Prognose} \; y = 0$

- Wertebereich des linearen Regressionsmodells ist ganz \mathbb{R} .
- Im Allgemeinen keine zufriedenstellenden Ergebnisse.

Idee

Fitte ein lineares Regressionsmodell der Form

$$f_{\boldsymbol{\theta}}(\boldsymbol{x}) = \theta_0 + \theta_1 x_1 + \ldots + \theta_{\boldsymbol{\rho}} x_{\boldsymbol{\rho}}$$

und definiere den Klassifikator wie folgt:

- Falls $f_{\theta}(\mathbf{x}_q) \geq 0.5 \rightarrow \mathsf{Prognose}\ y = 1$
- Falls $f_{m{ heta}}(m{x}_q) < 0.5
 ightarrow \mathsf{Prognose} \; y = 0$

- Wertebereich des linearen Regressionsmodells ist ganz \mathbb{R} .
- Im Allgemeinen keine zufriedenstellenden Ergebnisse.

Idee

Fitte ein lineares Regressionsmodell der Form

$$f_{\boldsymbol{\theta}}(\boldsymbol{x}) = \theta_0 + \theta_1 x_1 + \ldots + \theta_{\boldsymbol{\rho}} x_{\boldsymbol{\rho}}$$

und definiere den Klassifikator wie folgt:

- Falls $f_{\theta}(\mathbf{x}_q) \geq 0.5 \rightarrow \mathsf{Prognose}\ y = 1$
- Falls $f_{\theta}(\mathbf{x}_q) < 0.5 \rightarrow \mathsf{Prognose} \ y = 0$

- Wertebereich des linearen Regressionsmodells ist ganz \mathbb{R} .
- Im Allgemeinen keine zufriedenstellenden Ergebnisse.

Ansatz bei der Logistischen Regression

Ansatz bei der Logistischen Regression

Bei der Logistischen Regression hat die Modellfunktion die folgende Gestalt:

$$f_{\boldsymbol{\theta}}(\mathbf{x}) = g(\boldsymbol{\theta}^{\mathsf{T}}\mathbf{x}) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \ldots + \theta_p x_p).$$

Es geht aus dem linearen Regressionsmodell durch Transformation mit der logistischen Funktion

$$g(x) = \frac{1}{1 + e^{-x}}$$

hervor. Diese nimmt nur Werte zwischen 0 und 1 an:

Modellfunktion bei der Logistischen Regression

Interpretation

Der Wert $f_{\theta}(x)$ wird als Schätzwert für die bedingte Wahrscheinlichkeit

$$P(y=1|\mathbf{x};\boldsymbol{\theta})$$

angesehen, d.h. die Wahrscheinlichkeit, dass y=1 unter der Bedingung, dass die Eingabevariablen die Werte ${\bf x}$ annehmen (unter der Parametrisierung mit ${\boldsymbol \theta}$).

Entscheidungskriterium

- Statt eine direkte Klassenzuordnung liefert das Verfahren einen Schätzwert für die (bedingte) Wahrscheinlichkeit, dass es sich um die positive Klasse handelt.
- Diese kann wie folgt für die Klassenzuordnung eines unbekannten Datenpunkts x_q verwendet werden:

Klassenzuordnung bei der Logistischen Regression

Falls $f_{\theta}(\mathbf{x}_q) \geq 0.5 \rightarrow \mathsf{Zuordnung}\;\mathsf{zur}\;\mathsf{Klasse}\;y = 1$

Falls $f_{\theta}(\mathbf{x}_q) < 0.5 \rightarrow \text{Zuordnung zur Klasse } y = 0$

Kostenfunktional

Die Parameter θ werden beim der Logistischen Regression so bestimmt, dass die bedingte Wahrscheinlichkeit des Trainingsdatensatzes maximiert wird:

Maximum Likelihood-Methode zur Bestimmung der Modellparameter

$$\hat{\boldsymbol{\theta}} = \arg\max_{\boldsymbol{\theta}} \Big\{ \prod_{i=1}^m P(y = y^{(i)} | \boldsymbol{x}^{(i)}; \boldsymbol{\theta}) \Big\} = \arg\min_{\boldsymbol{\theta}} \Big\{ \underbrace{-\sum_{i=1}^m \log \left(P(y = y^{(i)} | \boldsymbol{x}^{(i)}; \boldsymbol{\theta}) \right)}_{=: \hat{\boldsymbol{J}}(\boldsymbol{\theta})} \Big\} \; .$$

Das Funktional $\tilde{J}(\theta)$ kann man folgendermaßen äquivalent darstellen:

$$\begin{split} \tilde{J}(\theta) &= -\sum_{i=1}^{m} y^{(i)} \log(P(y=1|\mathbf{x}^{(i)};\theta)) + (1-y^{(i)}) \log(P(y=0|\mathbf{x}^{(i)};\theta)) \\ &= -\sum_{i=1}^{m} y^{(i)} \log\left(f_{\theta}(\mathbf{x}^{(i)})\right) + (1-y^{(i)}) \log\left(1-f_{\theta}(\mathbf{x}^{(i)})\right) \end{split}$$

Das Kostenfunktional

Die Parameter $\hat{\theta}$ erhält man durch Minimierung des folgenden Funktionals:

Cross Entropy als Kostenfunktional bei der Logistischen Regression

$$J(\boldsymbol{\theta}) = -\frac{1}{m} \sum_{i=1}^{m} y^{(i)} \log \left(f_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)}) \right) + (1 - y^{(i)}) \log \left(1 - f_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)}) \right)$$

Interpretation

- Falls $y^{(i)}=1$, so nimmt J große Werte für $f_{\theta}(\mathbf{x}^{(i)}) \to 0$ und kleine Werte für $f_{\theta}(\mathbf{x}^{(i)}) \to 1$ an.
- Falls $y^{(i)} = 0$, so nimmt J große Werte für $f_{\theta}(\mathbf{x}^{(i)}) \to 1$ und kleine Werte für $f_{\theta}(\mathbf{x}^{(i)}) \to 0$ an.
- J kann daher als **Straffunktion** interpretiert werden, welche die Abweichungen zwischen den Labels $y^{(i)}$ und dem Modelloutput $f_{\theta}(\mathbf{x}^{(i)})$ auf dem Trainingsdatensatz "bestraft".
- Die Parameter θ werden durch Minimierung von J so bestimmt, dass die "Kosten"auf dem Trainingsdatensatz möglichst gering sind.

Gradientenverfahren für die Log. Regression

Parameterbestimmung

- Das Funktional J hängt nicht-linear von θ ab, sodass die Angabe einer analytischen Lösung i. A. nicht möglich ist.
- Die Parameter m

 üssen stattdessen durch ein iteratives Verfahren, z.B. das Gradientenverfahren, approximiert werden.
- ullet Setzt man $x_0^{(i)}:=1$, so kann man zeigen, dass der Gradient von J durch

$$\nabla J(\boldsymbol{\theta}) = \frac{1}{m} \sum_{i=1}^{m} \left(f_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)}) - y^{(i)} \right) \boldsymbol{x}^{(i)} \in \mathbb{R}^{p+1}$$

gegeben ist. Dazu nützlich: g'(x) = g(x)(1 - g(x)).

Gradientenverfahren für die Logistische Regression

$$\boldsymbol{\theta}^{k} = \boldsymbol{\theta}^{k-1} - \frac{\alpha}{m} \sum_{i=1}^{m} \left(f_{\boldsymbol{\theta}^{k-1}}(\boldsymbol{x}^{(i)}) - y^{(i)} \right) \boldsymbol{x}^{(i)}.$$

Decision Boundary

Struktur des Modells bei der Logistischen Regression

$$f_{\theta}(\mathbf{x}) = g(\theta^T \mathbf{x})$$
, wobei $g(\mathbf{x}) = \frac{1}{1 + e^{-\mathbf{x}}}$.

Vorhersage:

$$y = 1$$
 falls $f_{\theta}(\mathbf{x}) \ge 0.5$ \Leftrightarrow $\theta^{T} \mathbf{x} \ge 0$, $y = 0$ falls $f_{\theta}(\mathbf{x}) < 0.5$ \Leftrightarrow $\theta^{T} \mathbf{x} < 0$.

Verständnisfrage:

Welche Gestalt hat die Menge

$$\{ \boldsymbol{x} \in \mathbb{R}^p : \theta_0 + \theta_1 x_1 + \ldots + \theta_p x_p = 0 \}$$

geometrisch?

Decision Boundary

Struktur des Modells bei der Logistischen Regression

$$f_{\theta}(\mathbf{x}) = g(\theta^T \mathbf{x})$$
, wobei $g(\mathbf{x}) = \frac{1}{1 + e^{-\mathbf{x}}}$.

Vorhersage:

$$y=1$$
 falls $f_{m{ heta}}(m{x}) \geq 0.5$ \Leftrightarrow $m{ heta}^{ au} m{x} \geq 0$,

$$y = 0$$
 falls $f_{\theta}(\mathbf{x}) < 0.5$ \Leftrightarrow $\boldsymbol{\theta}^T \mathbf{x} < 0$.

Verständnisfrage:

Welche Gestalt hat die Menge

$$\{ \boldsymbol{x} \in \mathbb{R}^p : \theta_0 + \theta_1 x_1 + \ldots + \theta_p x_p = 0 \}$$

geometrisch?

Antwort: p-1-dimensionale Hyperebene.

Decision Boundary bei der Logistischen Regression

Bei der Logistischen Regression liegt ein linearer Decision Boundary vor.

Decision Boundary der Logistischen Regression am Beispiel des Schwertlilien-Datensatzes

Wir betrachten den Iris-Datensatz mit den beiden Klassen Setosa und Versicolor und den Features "sepal length" und "sepal width". Die Klassen lassen sich durch ein logistisches Regressionsmodell linear separieren (Ergebnis für die Parameter: $\theta_0 = -7.3$, $\theta_1 = 3.08$, $\theta_2 = -3.022$)

Decision Boundary

Verständnisfrage:

Für welche der folgenden binären Klassifikationsprobleme eignet sich ein Logistisches Regressionsmodell?

Decision Boundary

Verständnisfrage:

Für welche der folgenden binären Klassifikationsprobleme eignet sich ein Logistisches Regressionsmodell?

Interpretation der Koeffizienten

Modellgleichung in Abhängigkeit der bed. Wahrscheinlichkeiten:

Setzt man $P:=f_{\theta}(\mathbf{x})=P(y=1|\mathbf{x};\theta)$, so erhält man durch Auflösen der Modellgleichung die Darstellung

$$\theta_0 + \theta_1 x_1 + \ldots + \theta_\rho x_\rho = \ln\left(\frac{P}{1-P}\right) .$$

Interpretation der Koeffizienten:

- Erhöht man x_i um eine Einheit, so erhöht sich In $\left(\frac{P}{1-P}\right)$ um θ_i .
- Der Ausdruck $\frac{P}{1-P}$ wird auch **Chancenverhältnis** ("odds ratio") genannt.
- Der Koeffizient θ_i , $1 \le i \le p$ gibt also an, um wie viele Einheiten sich das logarithmierte Chancenverhältnis ändert, wenn man x_i um eine Einheit vergrößert.

Einordnung

Die Logistische Regression lässt sich wie folgt kategorisieren:

Einordnung

Die Logistische Regression lässt sich wie folgt kategorisieren:

- Supervised Learning
- Batch Learning
- Eager Learning
- Parametrisierte Methode

Sie kann als einschichtiges künstliches Neuronales Netzwerk aufgefasst werden:

Multiclass vs. Multilabel Classification

Bisher hatten wir mit dem Ansatz der Logistischen Regression binäre Klassifikationsprobleme behandelt. Im folgenden werden wir Strategien kennen lernen, um auch Probleme mit mehr als 2 möglichen Klassen zu behandeln. Folgende Begriffe sind zu unterscheiden:

Multiclass classification

- Es gibt mehr als zwei möglichen Klassen.
- Jedes Objekt kann genau einer Klasse angehören.
- Beispiel: Schwerlinien-Klassifikation (Setosa, Versicolor, Virginica)

Multilabel classification

- Es gibt mehr als zwei mögliche Labels.
- Jedes Objekt kann mit mehr als einem Label versehen werden.
- Beispiel: Zuordnung eines Films zu einer Rubrik (z.B. Action, Comdey, Horror, Thriller etc.)

Logistische Regression mit mehr als 2 Klassen

Strategie "One versus Rest" (OvR, auch OvA) Trainiere pro Klasse C_1, \ldots, C_n ein (binäres) Modell.

Logistische Regression mit mehr als 2 Klassen

Strategie "One versus Rest" (OvR, auch OvA) Trainiere pro Klasse C_1, \ldots, C_n ein (binäres) Modell.

Logistische Regression mit mehr als 2 Klassen

Strategie "One versus Rest" (OvR, auch OvA)

Trainiere pro Klasse C_1, \ldots, C_n ein (binäres) Modell.

Klassenzuordnung:

$$\hat{y} = \argmax_{c \in \{C_1, \dots, C_n\}} f_{\boldsymbol{\theta}_c}(\boldsymbol{x})$$

Multinomiale Logistische Regression

Multinomiale Logistische Regression

- Im Gegensatz zum Ansatz bei OvA wird bei der multinomiellen Logistischen Regression ein vektorwertiges Modell erstellt, welches für ein gegebenes x ein vektorwertiges Label y prognostiziert.
- Dazu werden die gegebenen Labels zunächst mittels One Hot Encoding als binäre Vektoren kodiert:

One Hot Encoding

$$C_1\mapsto \left(egin{array}{c}1\0\ dots\ \$$

 Anschließend wird in der Definition der Regressionsgleichung die logistische Funktion g durch die vektorwertige Softmax-Funktion ersetzt:

$$\operatorname{softmax}(\boldsymbol{z})_j := \frac{e^{\boldsymbol{z}_j}}{\sum_{k=1}^n e^{\boldsymbol{z}_k}} \ .$$

Multinomiale Logistische Regression

Fitting eines multinomialen Logistischen Regressionsmodells

• Beim Modell-Fitting werden Parameter $\mathbf{\Theta} \in \mathbb{R}^{(n,p+1)}$ simultan durch Mimierung der Cross-Entropie bestimmt.

Cross-Entropie bei multinomialer logistischer Regression

$$J(\boldsymbol{\Theta}) = -\sum_{i=1}^{m} \sum_{j=1}^{n} y_j^{(i)} \cdot \log(f_{\boldsymbol{\Theta}}(\boldsymbol{x}^{(i)})_j) .$$

wobei die Modellfunktion f_{Θ} gegeben ist durch

$$f_{\boldsymbol{\Theta}}(\boldsymbol{x}^{(i)})_i := \operatorname{softmax}(\boldsymbol{\Theta}\boldsymbol{x}^{(i)})_i$$
.

• Sind die Parameter Θ bestimmt, so erfolgt die Klassenzuordnung eines Query Points \mathbf{x}_{a} schließlich durch

$$\hat{y}^{(i)} := \arg \max f_{\Theta}(\mathbf{x}_q^{(i)})$$
,

d.h. es wird diejenige Klasse zugeordnet, die dem größten Wert in $f_{\Theta}(\mathbf{x}_q)$ entspricht.

"Bausteine" von Machine Learning-Ansätzen

Folgende Arbeitsschritte fallen typischerweise bei einer Maschine Learning-Aufgabenstellung an:

Preparation	DatenakquiseDatenvorbereitung	
Representation	ModellauswahlFestlegung eines Hypothesenraums	
Optimization	 Formulierung eines Optimierungsproblems Lösung des Optimierungsproblems 	
Validation	Festlegung einer FehlermetrikBewertung und Validierung	

Konfusionsmatrix

Zur Beurteilung eines binären Klassifizierer (mit positiver und negativer Klasse) kann man ihn auf einem Testdatensatz auswerten und die sog.

Konfusionsmatrix aufstellen:

Tatsächliche Klasse

Vorhergesagte Klasse

	Klasse 1 (positiv)	Klasse 0 (negativ)
Klasse 1 (positiv)	TP (true positive)	FP (false positive)
Klasse 0 (negativ)	FN (false negative)	TN (true negative)

Hinweis: die Definition der Konfusionsmatrix in sklearn lautet

$$C = \begin{pmatrix} TN & FP \\ FN & TP \end{pmatrix}$$
.

Precision und Recall

Precision und Recall sind zwei häufig verwendete Maße zur Beurteilung der Güte binärer Klassifikatoren (mit negativer und positiver Klasse).

Recall

$$Recall = \frac{TP}{TP + FN}$$

- Gibt den Anteil der Elemente der positiven Klasse an, die korrekt als positiv klassifiziert wurden.
- Zeigt die Fähigkeit des Klassifikators an, relevante Elemente zu finden.
- Synonyme Bezeichnungen: Sensitivität, True positive rate (TPR)

Precision

$$Precision = \frac{TP}{TP + FP}$$

- Gibt den Anteil der als positiv klassifizierten Elemente an, die tatsächlich der positiven Klasse angehören.
- Synonyme Bezeichnung: Positive predictive value (PPV)

Precision und Recall

Merkhilfe zu Precision und Recall (vgl. Wikipedia):

Anteil der positiven an den als positiv klassifizierten Items

Anteil aller positiven Items, die als positiv klassifiziert werden

Weitere Maße

False Positive Rate

$$FPR = \frac{FP}{FP + TN}$$

Anteil der negativen Items, die irrtümlich als positiv klassifiziert werden.

Accuracy

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

- Anteil aller Elemente der Grundgesamtheit, die korrekt klassifiziert wurden.
- Wenig aussagekräftig bei stark unbalancierten Daten

Specifity

$$\textit{Specifity} = \frac{\textit{TN}}{\textit{TN} + \textit{FP}}$$

- Gibt den Anteil der negativen Items an, die als negativ klassifiziert werden.
- Misst die Fähigkeit, negative Items korrekt zu erkennen.

ROC-Kurve

Idee

- Ein Logistisches Regressionsmodell prognostiziert nicht nur Klassen-Labels, sondern einen Score, der die Wahrscheinlichkeit der Zugehörigkeit zur positiven Klasse approximiert.
- Je größer dieser Zahlenwert ist, desto "sicherer" ist sich das Modell, dass ein Item der positiven Klasse angehört.
- Anstatt den Schwellwert 0.5 für die Zuordnung zur positiven Klasse zu verwenden, kann man auch einen höheren oder niedrigeren Schwellwert ansetzen.
- Verständnisfrage: wie verändert sich tendenziell Precision und Recall, wenn man den Schwellwert erhöht?
- In der ROC-Kurve (Receiver Operating Characteristics) werden die False Positive Rate (FPR) und der Recall, die sich auf einem Testdatensatz für verschiedenen Schwellwerte messen lassen, gegeneinander aufgetragen.
- Die resultierende Kurve erlaubt eine Beurteilung des Klassifikators unabhängig von der Wahl des Schwellwerts.

Beispiel zur ROC-Kurve

ROC AUC-Score

Der ROC AUC-Score

- Der ROC AUC-Score gibt die Fläche unter dem Graphen der ROC-Kurve an.
- Er dient als Maß für die Güte eines binären Klassifikators.
- Ein Zufallsmodell hat einen ROC AUC-Score von 0.5
- Ein perfektes Modell hätte einen ROC AUC-Score von 1.0

Precision-Recall-Kurve

- Neben der ROC-Kurve wird auch die Precision-Recall-Kurve zur Beurteilung der Güte eines binären Klassifikators eingesetzt.
- Für verschiedene Schwellwerte werden dazu die Precision und der Recall gegeneinander aufgetragen.

Precision-Recall-Kurve

- Der PR AUC-Score gibt die Fläche unter dem Graphen der Precision-Recall-Kurve an.
- Ein perfektes Modell hätte einen PR AUC-Score von 1.0
- Ein Zufallsmodell hätte einen PR AUC-Score von p, wobei p den Anteil der Datensätze mit positivem Label bezeichnet.

Bewertungskriterien bei der Multiclass Classification

Die bislang diskutierten Bewertungsmethoden beziehen sich auf binäre Klassifikatoren. Diese können durch Mikro- und Makro-Methoden zur Mittelwertbildung auf den Fall mehrerer Klassen erweitert werden.

Mikro-Durchschnitt der Precisions

Seien TP_1, \ldots, TP_n und FP_1, \ldots, FP_n die Anzahl der true positives bzw. false positives der einzelnen Klassen C_1, \ldots, C_n . Dann ist der Mikro-Durchschnitt der Precisions gegeben durch

$$Precision_{micro} = \frac{TP_1 + \ldots + TP_n}{TP_1 + \ldots TP_n + FP_1 + \ldots + FP_n}.$$

Makro-Durchschnitt der Precisions

Der Makro-Durchschnitt gewichtet alle Klassen gleich und berechnet sich einfach als Durchschnittswert aller Precisions für die einzelnen Klassen:

$$Precision_{macro} = \frac{Precision_1 + \ldots + Precision_n}{n}$$
.

Zusammenfassung

Logistische Regression

- Die Logistische Regression ist ein Vertreter der parametrisierten Verfahren.
- Sie eignet sich in der klassischen Formulierung zur binären Klassifikation.
- Das Modell-Fitting erfolgt durch Lösung eines Optimierungsproblems, bei dem die Cross-Entropie minimiert wird.
- Der Decision Boundary der Logistischen Regression ist linear.
- Logistische Regression kann durch die Strategie "OvA" oder durch Formulierung als multinomiale Logistische Regression auch zur Multiclass Classification eingesetzt werden.
- Die Methode erwartet numerische Features und setzt voraus, dass es keine fehlenden Werte gibt. Diese Voraussetzungen müssen ggf. im Rahmen der Datenvorbereitung und -transformation hergestellt werden (mehr dazu im weiteren Verlauf der Vorlesung).

Zusammenfassung

Beurteilung binärer Klassifikatoren

- Maße zur Beurteilung binärer Klassifikatoren (z.B. Precision, Recall, Accuracy, False positive rate)
- Mikro- und Makro-Durchschnitte der Precision zur Beurteilung von Klassifikatoren bei der Multiclass Classification.
- Die ROC-Kurve zur grafischen Beurteilung der Güte eines binären Klassifikators hinsichtlich des Recalls und der False Positive Rate.
- Die Precision-Recall-Kurve zur grafischen Beurteilung der Güte binärer Klassifikatoren hinsichtlich Precision und Recall.
- Der ROC AUC-Score und der PR AUC-Score als Kennzahlen zur Beurteilung der Güte binärer Klassifikatoren.