Analisi Matematica II

Mattia Martelli

Indice

I Equazioni differenziali ordinarie del primo ordine	3				
I Introduzione alle equazioni differenziali del primo ordine	4				
II Equazioni differenziali del primo ordine a variabili separabili	azioni differenziali del primo ordine i del primo ordine a variabili separabili i lineari del primo ordine i non lineari del primo ordine risolvibili esplicitamente li ordinarie non lineari omogenee li				
III Equazioni differenziali lineari del primo ordine					
IV Equazioni differenziali non lineari del primo ordine risolvibili esplicitamente I Equazioni differenziali ordinarie non lineari omogenee	10				
V Modelli di crescita delle popolazioni I Modello di Malthus	12				
II Equazioni differenziali ordinarie del secondo ordine	14				
VI Introduzione alle equazioni differenziali lineari del secondo ordine	15				
/II Equazioni differenziali omogenee del secondo ordine a coefficienti costanti 1					
I Il caso $\Delta > 0$	17				
II Il caso $\Delta < 0$					
III Il caso $\Delta=0$	18				
IV Tabella riaccuntiva	10				

Indice delle Definizioni e dei Teoremi

1	Definizione (Equazione differenziale ordinaria del primo ordine)	4
2	Definizione (Forma normale di una EDO)	4
3	Definizione (Integrale generale e particolare di una EDO)	
4	Definizione (EDO a variabili separate)	5
1	Teorema (Risoluzione di EDO a variabili separabili)	
5	Definizione (EDO lineari del primo ordine)	7
2	Teorema (Integrale generale di una EDO lineare del primo ordine)	7
6	Definizione (Equazione omogenea associata ad una EDO del primo ordine)	8
3	Teorema (Principio di sovrapposizione per EDO lineari omogenee del primo ordine)	8
4	Teorema (Struttura dell'integrale generale di EDO lineari del primo ordine)	8
7	Definizione (Problema di Cauchy)	9
8	Definizione (EDO non lineari omogenee)	10
9	Definizione (Equazione di Bernoulli)	11
10	Definizione (Soluzione di un'equazione differenziale del secondo ordine)	15
5	Teorema (Teorema di Cauchy)	15
6	Teorema (Principio di sovrapposizione)	15
7	Teorema (Teorema di struttura)	16
8	Teorema (Teorema di struttura per equazioni complete)	16

PARTE I

EQUAZIONI DIFFERENZIALI ORDINARIE DEL PRIMO ORDINE

CAPITOLO I

Introduzione alle equazioni differenziali del primo ordine

Introduciamo il concetto di equazione differenziale.

Definizione 1 (Equazione differenziale ordinaria del primo ordine). Un'equazione differenziale ordinaria del primo ordine, per brevità EDO, è una relazione che coinvolge una funzione incognita y(x), dove $x \in \mathbb{R}$, e la sua derivata prima y'(x):

$$F(x, y(x), y'(x)) = 0.$$

In altre parole, una EDO è un'equazione nella quale l'incognita non è un numero, ma una funzione.

Definizione 2 (Forma normale di una EDO). *Una EDO del primo ordine in forma normale è una EDO nella forma*

$$y'(x) = f(x, y(x)).$$

Definizione 3 (Integrale generale e particolare di una EDO). Data la EDO

$$F(x, y(x), y'(x)) = 0,$$

chiamiamo integrale generale dell'equazione, più raramente soluzione generale, l'insieme di tutte le sue soluzioni.

Si chiama **integrale particolare** dell'equazione, più raramente soluzione particolare, una specifica soluzione.

Alcune osservazioni:

• Nel caso particolare di EDO del tipo

$$y'(x) = f(x),$$

cioè EDO del primo ordine in forma normale con $f(x, y \in \mathcal{I})$, basta integrare:

$$y(x) = \int f(x) \, \mathrm{d}x.$$

- Più in generale, risolvere una EDO non significa calcolare un integrale, ma comunque trovare y conoscendo delle informazioni relative a y'. Da qui il nome integrale generale.
- In generale, una EDO ha infinite soluzioni, proprio come la soluzione di un integrale indefinito.

CAPITOLO ${f II}$

Equazioni differenziali del primo ordine a variabili separabili

Introduciamo ora il concetto di equazione differenziale ordinaria del primo ordine a variabili separabili.

Definizione 4 (EDO a variabili separate). Una EDO del primo ordine in forma normale si dice a variabili separabili se è della forma

$$y'(x) = h(x) g(y(x)),$$

con $h: J_1 \subseteq \mathbb{R} \to \mathbb{R}$ e $g: J_2 \subseteq \mathbb{R} \to \mathbb{R}$ continue.

 $Cio \stackrel{\circ}{b} f(x,y) = h(\stackrel{\circ}{x}) \times g(y) \stackrel{\circ}{e} il$ prodotto di una funzione che dipende solo da x per una funzione che dipende solo da y.

A questo punto passiamo alla loro risoluzione.

Teorema 1 (Risoluzione di EDO a variabili separabili). Consideriamo la EDO a variabili separate

$$y'(x) = h(x) g(y(x)),$$

con $h: J_1 \subseteq \mathbb{R} \to \mathbb{R}$ e $g: J_2 \subseteq \mathbb{R} \to \mathbb{R}$ continue.

Possiamo dunque dividere le soluzioni in due categorie:

- I. Se g(D) = 0 per qualche $D \in \mathbb{R}$ allora la funzione costante $y(x) = D, \forall x \text{ è soluzione}.$
- II. Se $g(y) \neq 0, \forall y$ in un certo intervallo, una soluzione y(x) è definita implicitamente dall'equazione

$$\Gamma(y(x)) = H(x) + c,$$

dove

- $c \in \mathbb{R}$;
- *H* è una primitiva di h;
- Γ è una primitiva di $\frac{1}{q}$.

 $Se\ \Gamma\ non\ \grave{e}\ invertibile\ otteniamo\ eslicitamente$

$$y(x) = \Gamma^{-1}(H(x) + c),$$

 $con \ c \in \mathbb{R}$.

Dimostrazione. Dimostriamo entrambe le categorie:

- I. Sia g(D)=0 e $y(x)=D, \forall x.$ L'identità è soddisfatta:
 - (a) Sinistra: y'(x) = 0;
 - (b) Destra: $h(x) g(y(x)) = h(x) g(D) = h(x) \times 0 = 0$.
- II. Prendiamo un intervallo $[x_0, x]$ in cui la funzione g(y) non si annulla. Dunque,

$$\frac{y'(x)}{g(y(x))} = h(x).$$

Dati $x_0 < x$, con $x_0, x \in J_1$, integriamo:

$$\int_{x_0}^x \frac{y'(r)}{g(y(r))} dr = \int_{x_0}^x h(r) dr = H(x) + c.$$

Per il lato sinistro faccio il cambio di variabili:

$$y(r) = k,$$

$$y'(r) = dk,$$

quando

$$r = x_0 \Rightarrow k = y(x_0),$$

 $r = x \Rightarrow k = y(x).$

Dunque,

$$\int_{x_0}^x \frac{y'(r)}{g(y(r))} \, \mathrm{d}r = \int_{y(x_0)}^{y(x)} \frac{1}{g(k)} \, \mathrm{d}k = \Gamma(y(x)) + \mathrm{c}.$$

Uguagliando i due lati,

$$\Gamma(y(x)) = H(x) + c,$$

con $c \in \mathbb{R}$.

CAPITOLO III

Equazioni differenziali lineari del primo ordine

Introduciamo ora il concetto di equazione differenziale lineare ordinaria del primo ordine.

Definizione 5 (EDO lineari del primo ordine). *Un'equazione differenziale lineare ordinaria del primo ordine* è una EDO nella forma

$$c(x) y'(x) + a(x) y(x) = b(x),$$

 $con\ c, a, b : J \subseteq \mathbb{R} \to \mathbb{R}$ continue su J.

Ci occuperemo solo di EDO lineari del primo ordine in forma normale, cioè

$$y'(x) + a(x)y(x) = b(x).$$

A questo punto passiamo alla loro risoluzione.

Teorema 2 (Integrale generale di una EDO lineare del primo ordine). $Date\ a,b: J\subseteq \mathbb{R} \to \mathbb{R}$ continue, consideriamo

$$y'(x) + a(x)y(x) = b(x).$$

L'integrale generale di questa equazione è dato dalla formula

$$y(x) = e^{-A(x)} [B(x) + c],$$

dove

- $c \in \mathbb{R}$;
- A(x) è una qualunque primitiva di a(x): $A = \int a$;
- B(x) è una qualunque primitiva di $e^{A(x)} b(x)$: $A = \int e^{\int a} b$.

Dimostrazione. Moltiplichiamo tutto per a^A

$$\underbrace{y' e^A + a y e^A}_{(y e^A)'} = b e^A,$$

infatti

$$(y e^A)' = y' e^A + y (e^A)' = y' e^A + y e^A A' = y' e^A + y e^A a.$$

Quindi la nostra equazione è uguale a

$$\left(y(x) e^{A(x)}\right)' = e^{A(x)} b(x).$$

Ora integriamo tra x_0 e x:

$$\int_{x_0}^x \left(y(s) e^{A(s)} \right)' ds = \int_{x_0}^x e^{A(s)} b(s) ds.$$

Uso il teorema fondamentale del calcolo integrale per il lato sinistro:

$$y(x) e^{A(x)} \underbrace{-y(x_0) e^{A(x_0)}}_{-c} = \underbrace{\int_{x_0}^x e^{A(s)} b(s) ds}_{B(x)}.$$

Per ottenere la formula è sufficiente moltiplicare questa equazione per $e^{-A(x)}$.

Introduciamo ora le EDO omogenee del primo ordine con alcuni importanti teoremi.

Definizione 6 (Equazione omogenea associata ad una EDO del primo ordine). *Data una EDO lineare del primo ordine nella forma*

$$y'(x) + a(x)y(x) = b(x),$$

si chiama **equazione omogenea associata** la EDO

$$y'(x) + a(x)y(x) = 0.$$

Teorema 3 (Principio di sovrapposizione per EDO lineari omogenee del primo ordine). $Data\ a: J \subseteq \mathbb{R} \to \mathbb{R}$ continua, consideriamo la EDO omogenea

$$y'(x) + a(x)y(x) = 0.$$

Se y_1 e y_2 sono due soluzioni di questa equazione e $\alpha_1, \alpha_2 \in \mathbb{R}$, allora

$$\alpha_1 y_1(x) + \alpha_2 y_2(x)$$

è anch'essa soluzione dell'equazione.

Dimostrazione. Sapendo che

$$y_1'(x) + a(x)y_1(x) = y_2'(x) + a(x)y_2(x) = 0,$$

dobbiamo dimostrare che

$$(\alpha_1 y_1(x) + \alpha_2 y_2(x))' + a(x) (\alpha_1 y_1(x) + \alpha_2 y_2(x)) = 0.$$

Possiamo riarrangiare i termini per linearità:

$$(\alpha_1 y_1(x) + \alpha_2 y_2(x))' + a(x) (\alpha_1 y_1(x) + \alpha_2 y_2(x)) =$$

$$= \alpha_1 y_1'(x) + \alpha_2 y_2'(x) + a(x) \alpha_1 y_1(x) + a(x) \alpha_2 y_2(x)$$

$$= \alpha_1 (y_1'(x) + a(x) y_1(x)) + \alpha_2 (y_2'(x) + a(x) y_2(x))$$

$$= \alpha_1 \times 0 + \alpha_2 \times 0 = 0$$

Teorema 4 (Struttura dell'integrale generale di EDO lineari del primo ordine). Siano $a, b : J \subseteq \mathbb{R} \to \mathbb{R}$ continue:

I. L'integrale generale dell'equazione omogenea

$$y'(x) + a(x)y(x) = 0$$

è uno spazio vettoriale di dimensione unitaria, cioè

$$y_O(x) = C \times \overline{y_O}(x),$$

 $con C \in \mathbb{R}$.

II. L'integrale generale dell'equazione completa

$$y'(x) + a(x)y(x) = b(x)$$

 $equivale\ a$

$$y(x) = y_O(x) + y_P(x),$$

dove

- $y_O(x)$ è l'integrale dell'equazione omogenea, come al punto I;
- $y_P(x)$ è una soluzione particolare dell'equazione completa.

Introduciamo infine il concetto di problema di Cauchy.

Definizione 7 (Problema di Cauchy). Data la EDO del primo ordine in forma normale

$$y'(x) = f(x, y(x))$$

ed assegnata la coppia $(x_0, y_0) \in \mathbb{R}^2$ nella quale f è ben definita, si chiama **problema di Cauchy** il problema di determinare $y : I \subseteq \mathbb{R} \to \mathbb{R}$ che soddisfa

$$\begin{cases} y'(x) = f(x, y(x)) \\ y(x_0) = y_0 \end{cases}.$$

CAPITOLO ${ m IV}$

Equazioni differenziali non lineari del primo ordine risolvibili esplicitamente

Non tutte le equazione diferenziali non lineari del primo ordine sono risolvibili esplicitamente. Quelle che possono essere risolte sono:

- I. EDO a variabili separabili,
- II. EDO non lineari omogenee,
- III. Equazioni di Bernoulli.

Le equazioni a variabili separabili sono già state trattate nel **relativo capitolo**. Discutiamo dunque delle EDO non lineari omogenee.

I Equazioni differenziali ordinarie non lineari omogenee

Partiamo dalla definizione.

Definizione 8 (EDO non lineari omogenee). Una EDO non lineare omogenea è della forma

$$y'(x) = \frac{P(x, y(x))}{Q(x, y(x))},$$

con P e Q polinomi omogenei, ovvero composti solamente da monomi di uno stesso grado n.

Delineiamo quindi una strategia di risoluzione:

- I. Dividiamo ciascun monomio per x^n .
- II. Eseguiamo il cambio di variabile con

$$z(x) = \frac{y(x)}{x}.$$

- III. Otteniamo dunque un'equazione a variabili separabili che possiamo facilmente risolvere.
- IV. Infine torniamo alla variabile iniziale y, tenendo a mente che y(x) = x z(x), in base al cambio di variabile precedentemente fatto.

II Equazioni di Bernoulli

L'ultima categoria è quella delle equazioni di Bernoulli. Partiamo anche in questo caso dalla definizione. **Definizione 9** (Equazione di Bernoulli). *Chiamiamo equazione di Bernoulli una EDO non lineare del tipo*

$$y'(x) = f(x) y(x) + g(x) y(x)^{\alpha},$$

 $con\ f,\ g: \mathcal{I}\subseteq \mathbb{R} \to \mathbb{R}\ continue\ e\ \alpha\in \mathbb{R},\ con\ \alpha\notin \{0,\ 1\}.$

Le condizioni su α sono state imposte in quanto:

- Per $\alpha = 0$, l'equazione diventa y'(x) = f(x)y(x) + g(x), la quale è lineare;
- Per $\alpha = 1$, l'equazione diventa y'(x) = (f(x) + g(x)) y(x), la quale è lineare a variabili separabili. Delineiamo ora la strategia di risoluzione:
- I. Cerchiamo le soluzioni costanti:
 - Se $\alpha > 1$ poniamo

$$f(x) y + g(x) y^{\alpha} = 0,$$

che possiamo riscrivere come

$$y(f(x) + g(x)y^{\alpha-1}) = 0,$$

che implica

$$y(x) = 0 \quad \forall x.$$

• Se $0 < \alpha < 1$ poniamo

$$f(x) y + q(x) y^{\alpha} = 0,$$

che possiamo riscrivere come

$$y^{\alpha} \left(f(x) y^{1-\alpha} + g(x) \right) = 0,$$

che implica

$$y(x) = 0 \quad \forall x.$$

• Se f e g sono delle costanti in \mathbb{R} , troviamo un'ulteriore soluzione costante come

$$y(x) = \left(-\frac{f}{g}\right)^{\frac{1}{\alpha-1}} \quad \forall x.$$

II. Per cercare le soluzioni non costanti, dividiamo l'equazione per $y^{\alpha}(x)$, ottenendo

$$\frac{y'(x)}{y^{\alpha}(x)} = \frac{f'(x)}{y^{\alpha-1}(x)} + g(x).$$

Dunque l'equazione diventa

$$\frac{1}{1-\alpha} \left(\frac{1}{y^{\alpha-1}(x)}\right)' = \frac{1}{y^{\alpha-1}(x)} + g(x).$$

III. Effetuiamo il cambio di variabili con

$$z(x) = \frac{1}{y^{\alpha - 1}(x)}.$$

Sostituendo si ottiene

$$\frac{1}{1 - \alpha} z'(x) = f(x) z(x) + g(x),$$

o, più esplicitamente,

$$z'(x) - (1 - \alpha) f(x) z(x) = (1 - \alpha) f(x),$$

la quale è una EDO lineare con

- $a(x) = -(1 \alpha) g(x)$,
- $b(x) = (1 \alpha) q(x)$.
- IV. Si risolve l'equazione lineare in z e poi si torna alla variabile y(x).

CAPITOLO ${ m V}$

Modelli di crescita delle popolazioni

Tramite le equazioni differenziali, possiamo definire dei semplici modelli di crescita. In particolare, trattiamo il modello di Malthus e l'equazione logistica.

I Modello di Malthus

Il modello di Malthus è stato il primo modello di dinamica delle popolazioni a essere introdotto, per la precisione verso la fine del 1700, ed è il più semplice modello di crescita esponenziale. Il modello deve il suo nome al reverendo Thomas Robert Malthus, uno dei primi ad essersi dedicati allo studio demografico.

Il modello è il seguente: supponiamo che la densità di una certa popolazione possa essere rappresentata da una funzione regolare

$$y: \mathbb{R} \to \mathbb{R}_+ = \{ s \in \mathbb{R} : s \geqslant 0 \}$$

 $x \mapsto y(x)$

dove y(x) rappresenta la densità di popolazione al tempo x. Secondo Malthus la popolazione cresce ad un tasso proporzionae al suo numero di individuoi secondo la formula

$$y'(x) = k y(x),$$

dove

- I. y'(x) rappresenta il tasso di crescita,
- II. k è detta costante di crescita e dipende dalla natalità e dalla mortalità,
- III. il tasso di crescita di y è proporionale a y stesso.

Possiamo dunque risolvere questa equazione. Innanzitutto troviamo la soluzione costante

$$y(x) = 0 \quad \forall x.$$

Concentriamoci dunque sulle soluzioni non triviali:

$$\int_{x_0}^{x} \frac{y'(s)}{y(s)} ds = \int_{x_0}^{x} k ds$$
$$[\ln y(s)]_{x_0}^{x} = k (x - x_0)$$
$$\ln \frac{y(x)}{y(x_0)} = k (x - x_0)$$
$$y(x) = y(x_0) e^{k (x - x_0)}$$
$$y(x) = c e^{k x},$$

con

I. $c \in \mathbb{R}$,

II.
$$c = y(x_0) e^{-k x_0}$$
,

III. x > 0.

Riassumendo, questo modello prevede tre comportamenti possibili, in base a k:

- Se k > 0, cioè la natalità è superiore alla mortalità, la popolazione aumenta esponenzialmente;
- Se k=0, cioè la natalità è equivalente alla mortalità, la popolazione resta costante;
- Se k < 0, cioè la natalità è inferiore alla mortalità, la popolazione si estingue esponenzialmente.

II Equazione logistica

L'equazione logistica è stata introdotta dal matematico francese Pierre François Verhulst verso la metà del 1800. Questa è più articolata rispetto alla precedente.

La formulazione è la seguente: al crescere della popolazione, diventa più difficile procurarsi il cibo. Possiamo dunque definire un'equazione

$$y'(x) = k y(x) - g(y(x)),$$

con g funzione opportuna. una buona scelta di g risulta

$$g(s) = h s^2,$$

con h costante positiva. Dunque, l'equazione logistica diventa

$$y'(x) = k y(x) - h y^2(x).$$

Si tratta di un'equazione di Bernoulli con soluzioni:

• Soluzioni costanti:

$$y = 0,$$
$$y = \frac{k}{h};$$

• Soluzioni non costanti:

$$y(x) = \frac{k e^{k x}}{c + h e^{k x}},$$

dove x > 0 e c $\in \mathbb{R}$ e con

$$y(0) = \frac{k}{c+h}.$$

PARTE II

EQUAZIONI DIFFERENZIALI ORDINARIE DEL SECONDO ORDINE

CAPITOLO VI

Introduzione alle equazioni differenziali lineari del secondo ordine

Un'equazione differenziale del secondo ordine si presenta nella forma

$$a(t) y'' + b(t) y' + c(t) y = f(t),$$

con $t \in I$. Definiamo dunque una sua soluzione.

Definizione 10 (Soluzione di un'equazione differenziale del secondo ordine). Si dice soluzione dell'equazione differenziale nell'intervallo $I \subset \mathbb{R}$ una funzione $y : I \to \mathbb{R}$ derivabile due volte per cui, sostituendo nell'equazione differenziale i valori effettivi di y(t), y'(t) e y''(t), si ottiene che

$$a(t) y'' + b(t) y' + c(t) y = f(t) \quad \forall t \in I,$$

cioè un'identità su I.

Un'equazione differenziale del secondo ordine ha soluzioni infinite. Queste vengono racchiuse nella loro totalità in dipendenza da due parametri all'interno dell'integrale generale. Se a questo aggiungiamo una coppia di condizioni iniziali otteniamo una soluzione specifica. Il sistema formato dall'integrale generale e le condizioni iniziali è detto **problema di Cauchy** ed il teorema che garantisce l'unicità della soluzione è detto **teorema di Cauchy**.

Teorema 5 (Teorema di Cauchy). Data l'equazione differenziale

$$a(t) y'' + b(t) y' + c(t) y = f(t),$$

con $t \in I$, a, b, c e d funzioni continue in I e $a \neq 0$, allora, $\forall t_0 \in I$ e $\forall (y_0, v_0) \in \mathbb{R}^2$, il problema di Cauchy

$$\begin{cases} a(t) y'' + b(t) y' + c(t) y = f(t) \\ y(t_0) = y_0 \\ y'(t_0) = v_0 \end{cases}$$

ha una ed una sola soluzione definita su tutto l'intervallo I.

Introduciamo dunque un importante teorema che sfrutta la linearità delle equazioni: il principio di sovrapposizione.

Teorema 6 (Principio di sovrapposizione). Se y_1 è soluzione di $ay'' + by' + cy = f_1$ ed y_2 è soluzione di $ay'' + by' + cy = f_2$, allora la funzione

$$y(t) = C_1 y_1(t) + C_2 y_2(t)$$

è soluzione di

$$ay'' + by' + cy = C_1 f_1 + C_2 f_2.$$

Prendiamo ora un'equazione differenziale omogenea, ovvero con f=0. Possiamo a questo punto notare che l'insieme S delle soluzioni forma uno **spazio vettoriale** di dimensione due. Da questo ricaviamo il teorema di struttura.

Teorema 7 (Teorema di struttura). L'integrale generale di

$$a(t) y'' + b(t) y' + c(t) y = 0,$$

con a, b e c continue su I e $a(t) \neq 0$, è dato da tutte le combinazioni lineari

$$y(t) = C_1 y_1(t) + C_2 y_2(t) \quad \forall C_1, C_2 \in \mathbb{R},$$

dove y_1 ed y_2 sono due **soluzioni linearmente indipendenti** dell'equazione stessa.

Osserviamo adesso un'equazione con $f \neq 0$. Questa è detta completa o **non omogenea**. Se poniamo f = 0, otteniamo dunque l'equazione **omogenea associata**. Definendo y_P come una particolare soluzione dell'equazione completa e y_0 come una particolare soluzione dell'equazione omogenea associata, notiamo che queste soddisfano il principio di sovrapposizione. Con queste premesse possiamo dunque estendere il teorema di struttura alle equazioni non omogenee.

Teorema 8 (Teorema di struttura per equazioni complete). L'integrale generale di

$$a(t) y'' + b(t) y' + c(t) y = f(t),$$

con a, b, c e f continue su I e $a(t) \neq 0$, è dato da **tutte e sole** le funzioni

$$y(t) = C_1 y_1(t) + C_2 y_2(t) + y_P(t) \quad \forall C_1, C_2 \in \mathbb{R},$$

dove y₁ ed y₂ sono due **soluzioni linearmente indipendenti** dell'equazione omogenea associata

$$a(t) y'' + b(t) y' + c(t) y = 0$$

 $e y_P \ e$ una **soluzione particolare** dell'equazione completa

$$a(t) y'' + b(t) y' + c(t) y = f(t).$$

CAPITOLO m VII

Equazioni differenziali omogenee del secondo ordine a coefficienti costanti

Per studiare un'equazione differenziale omogenea a coefficienti costanti, possiamo sfruttare il teorema di struttura. Partiamo innanzitutto definendo il **polinomio caratteristico**: data una generica equazione differenziale ay'' + by' + cy = 0, il polinomio caratteristico associato è

$$P(\lambda) = a \lambda^2 + b \lambda + c.$$

Possiamo dunque facilmente definire l'equazione caratteristica come $P(\lambda) = 0$, o, più esplicitamente,

$$a\lambda^2 + b\lambda + c = 0.$$

Abbiamo dunque ricondotto la ricerca delle soluzioni dell'equazione differenziale omogenea a quella delle radici del polinomio caratteristico, ovvero alla risoluzione dell'equazione caratteristica. La natura delle radici dipende chiaramente dal discriminante $\Delta=b^2-4ac$.

I Il caso $\Delta > 0$

Nel caso di un discriminante positivo, possiamo ricavare due radici **reali e distinte** tramite la classica formula

$$\lambda_i = \frac{-b \pm \sqrt{\Delta}}{2a},$$

da cui ricaviamo le due soluzioni dell'equazione differenziale come

$$y_1(t) = e^{\lambda_1 t},$$

$$y_2(t) = e^{\lambda_2 t},$$

linearmente indipendenti poiché $\lambda_1 \neq \lambda_2$. Possiamo dunque sfruttare il teorema di struttura ed ottenere l'integrale generale dell'equazione di partenza come

$$y(t) = C_1 e^{\lambda_1 t} + C_2 e^{\lambda_2 t}.$$

II Il caso $\Delta < 0$

Nel caso di un discriminante negativo, possiamo ricavare due radici **complesse e coniugate** definite come

$$\lambda_1 = \alpha + i \beta,$$

$$\lambda_2 = \alpha - i \beta,$$

dove

$$\alpha = \frac{-b}{2a},$$
$$\beta = \frac{\sqrt{-\Delta}}{2a},$$

ricavabili dalla formula classica. Prendendo la generica soluzione $y(t) = e^{\lambda t}$ e ricordando la formula di Eulero per l'esponenziale complesso $e^{\alpha+i\beta} = e^{\alpha}(\cos\beta + i\sin\beta)$, possiamo dunque scrivere le soluzioni come

$$y_1(t) = e^{\alpha}(\cos \beta + i \sin \beta),$$

$$y_2(t) = e^{\alpha}(\cos \beta + i \sin \beta).$$

Ma poiché cerchiamo soluzioni reali, dobbiamo definire due funzioni che chiameremo u come

$$u_1(t) = \frac{y_1(t) + y_2(t)}{2},$$

$$u_2(t) = \frac{y_1(t) - y_2(t)}{2},$$

che possono dunque essere generalizzate come

$$u_1(t) = e^{\alpha t} \cos(\beta t),$$

$$u_2(t) = e^{\alpha t} \sin(\beta t).$$

L'integrale generale è dunque

$$y(t) = e^{\alpha t} \left(C_1 \cos(\beta t) + C_2 \sin(\beta t) \right).$$

III Il caso $\Delta = 0$

Nel caso di un discriminante nullo, possiamo ricavare due radici reali e concidenti definite come

$$\lambda_1 = \lambda_2 = -\frac{b}{2a},$$

come si può facilmente ricavare dalla formula classica. Poiché abbiamo una sola soluzione, abbiamo bisogno di cercare una funzione C(t) tale che

$$y_2(t) = C(t) e^{\lambda_1},$$

$$y_2(t)' = e^{\lambda_1} (C'(t) + \lambda_1 C(t)),$$

$$y_2(t)'' = e^{\lambda_1} (C''(t) + 2\lambda_1 C'(t) + 3\lambda_1 C(t)).$$

Se sostituiamo nell'equazione differenziale ci accorgiamo che tutti i termini contenenti C(t) e C'(t) si semplificano, risultando nell'equazione

$$C''(t) = 0 \quad \forall t \in \mathbb{R}.$$

La più semplice funzione che soddisfa l'equazione è la funzione identità, ovvero C(t) = t. Possiamo dunque generalizzare quanto trovato definendo l'integrale generale come

$$y(t) = C_1 e^{\lambda_1 t} + C_2 t e^{\lambda_2 t}.$$

IV Tabella riassuntiva

Riassumiamo quanto trovato in una tabella.

	Δ	Radici	Soluzioni		Integrale generale
			$y_1(t)$	$y_2(t)$	$\forall \mathrm{C}_1, \mathrm{C}_2 \in \mathbb{R}$
	$\Delta > 0$	$\lambda_1 \neq \lambda_2, \ \lambda_1, \ \lambda_2 \in \mathbb{R}$	$e^{\lambda_1 t}$	$e^{\lambda_2 t}$	$y(t) = C_1 e^{\lambda_1 t} + C_2 e^{\lambda_2 t}$
	$\Delta = 0$	$\lambda_1 = \lambda_2, \ \lambda_1, \ \lambda_2 \in \mathbb{R}$	$e^{\lambda_1 t}$	$t e^{\lambda_2 t}$	$y(t) = C_1 e^{\lambda_1 t} + C_2 t e^{\lambda_2 t}$
	$\Delta < 0$	$\lambda_{1,2} = \alpha \pm \beta, \ \alpha, \beta \in \mathbb{R}$	$e^{\alpha t}\cos(\beta t)$	$e^{\alpha t} \sin(\beta t)$	$y(t) = e^{\alpha t} \left(C_1 \cos(\beta t) + C_2 \sin(\beta t) \right)$

Queste formule generali valgono per la risoluzione di equazioni **omogenee**, siano esse associate o meno, con **coefficienti costanti**. Non si applicano se queste due condizioni non sono verificate.