Plankton Image Recognition

Group 11 M102040016李翊瑄 M102040010許育禎

Content

- Introduction
- Data Preprocessing and Splitting
- Models
- Insight and Future Work

Introduction

Introduction -- Kaggle Competition

Identify images of 121 species of plankton, and calculate the probability of each species.

Evaluation

Image	Class 1	Class 2		Class 121
lmage1.jpg	0.01	0.03		0.09
Image2.jpg	0.05	-0.01	•••••	0.02

$$logloss = -\frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{M} y_{ij} \log(p_{ij}),$$

Flow Chart

Data Preprocessing and Splitting

Data Preprocessing and Splitting

- The datasets is monochromic image -> change 1 layer to 3 layer
- Enhance the edges with `ImageFilter.EDGE_ENHANCE_MORE` in PIL package
- Resize to (256,256)
- Split Training set (n=24322) andVal set(n = 6014) with 80/20 principal,Test set(n=130400)

After

Models

Model

Model	Optimizer	Learning Rate	Best Accuracy
CNN-1	SGD (momentum = 0.9)	10^-2	0.55
CNN-2	Adam (betas=(0.9, 0.999))	10^-5	0.65
CNN-2	SGD (momentum = 0.8)	10^-4	0.51
ResNet34 (pretrained = False)	SGD (momentum = 0.9)	10^-2	0.63
ResNet152 (pretrained = False)	SGD (momentum = 0.9)	10^-2	0.68

Big Model -> Small Model

Big Model

Split all Classes to 11 Categories in train set and validation set.

file_path	images_category	label	label_11	label2
protist_star_90.jpg	protist_star	30	protists	3
protist_star_78.jpg	protist_star	30	protists	3
:	:	:	:	:
artifacts_399.jpg	artifacts	100	unknown	9
artifacts_197.jpg	artifacts	100	unknown	9
:	:	:	:	:
hydromedusae_other_117.jpg	hydromedusae_other	85	gelatinous_zooplankton	11
hydromedusae_other_115.jpg	hydromedusae_other	85	gelatinous_zooplankton	11
:	:	:	:	:
copepod_calanoid_1097.jpg	copepod_calanoid	10	crustaceans	10
copepod_calanoid_639.jpg	copepod_calanoid	10	crustaceans	10

Big Model -- Flow Chart

Big Model -> Small Model

Take 1st small model for example:

Train Set

Get all training images in 1st Category, and randomly pick up 5 images in the rest of classes

Validation Set

Get all validation images in 1st Category, and randomly pick up 1 image in the rest of classes

Test Set

All test images predicted as 1st Category

Model	Kaggle Score
Model (ResNet152)	10.88
Big Model -> Small Model (ResNet152) -> (ResNet152)	5.85

Depends on the accuracy of big model

New Findings in Small Model Training

- Val Acc < Training Acc in the beginning of the training</p>
- Sometimes accuracy improves, but log loss does not

```
======== Epoch 1 ==========
Train Acc: (0.452481) Train Loss: 2.765803
 Val Acc: 0.565217
              Val Loss: 1.276544
Train Acc: 0.524806 Train Loss: 2.040130
 Val Acc: 0.668116
              Val Loss: 1,064313
Train Acc: 0.528093 Train Loss: 1.902031
 Val Acc: 0.475362
              Val Loss: 1.413311
Train Acc: 0.525403 Train Loss: 1.815078
 Val Acc: 0.626087
             Val Loss: 0.998090
```

```
============== Epoch 20 =============
Train Acc: 0.633592 Train Loss: 1.212397
 Val Acc: 0.614493
                  Val Loss: 1.036882
Train Acc: 0.637179 Tain Loss: 1.223277
 Val Acc: 0.668116
                  Val Loss: 1.235346
                 Epoch 24 ===========
Train Acc: 0.663479 Train Loss: 1.126488
 Val Acc: 0.591304
                  Val Loss: 1.582351
============
                 poch 25 ========
Train Acc: 0.661088 1
                 ain Loss: 1.119432
 Val Acc: 0.550725
                 Val Loss: 1.416806
```

Insight and Future Work

Insight and Future Work

Whether plankton unrelated to other species be included in the category of unknown species

Apply Semi-supervised Learning method.

After being divided into 11 categories, the amount of data in each category is unbalanced.

Categories with too many species can be subdivided.

The way to form a new training set and validation set.

THANKS!