Ian Bertolacci

SOFTWARE AND PERFORMANCE GRADUATE RESEARCH ENGINEER

🖂 ian.bertolacci@gmail.com | 🄏 ian-bertolacci.github.io | 🗘 ian-bertolacci | in ianbertolacci | 💆 @ianbertolacci

Education

University of Arizona Tucson, AZ

• MASTERS OF SCIENCE IN COMPUTER SCIENCE, GPA: 3.8/4.0

May 2020

Colorado State University

Ft. Collins, CS

• BACHELOR OF SCIENCE IN COMPUTER SCIENCE

• BACHELOR OF SCIENCE IN PSYCHOLOGY: MIND, BRAIN, AND BEHAVIOR

May 2016

BACHELOR OF SCIENCE IN APPLIED COMPUTING TECHNOLOGY: HUMAN CENTERED COMPUTING

Skills __

Developer SkillsGit and GitHub, Linux, Parallel programming, Legacy applications, Performance profiling and analysis,

Code transformation and generation, Parsers and regular expressions, Agile development

Languages Python, Bash, C, Chapel, C++, Java, CUDA

Libraries and Frameworks MultiProcessing, OpenMP, OpenCL, MPI, ROSE, LLVM, ZeroMQ, GTest

Build and Packaging Systems Make, CMake, AutoTools, Module, Docker

Non-Technical Skills Public speaking, Technical and scientific writing, Teaching, Statistical analysis

Experience

University of Arizona Tucson, AZ

• Conducted and published research on methods in inter-loop optimization specified using extensions to OpenMP language

- Investigated performance of existing scientific application and propose changes to improved efficiency
- Planed API changes to provide path for shared-memory parallelization and automated inter-loop optimization of existing application
- Collaborated with interdisciplinary and cross-institutional research team
- · Worked with team exploring methods of extracting parallelizable loops in Python applications using dynamic analysis
- · Mentored undergraduate student in developing parallel scientific benchmarks as part of their undergraduate honors thesis

Cray Incorporated Seattle, WA

• Extended Chapel's compressed sparse-array data structure

- Explored a developer-friendly refactor to Chapel's Domain Standard Interface
- · Developed distributed matrix toposorting benchmark exploring different distributed work queuing strategies

Colorado State University

SOFTWARE ENGINEER INTERN

Ft. Collins, CO

Undergraduate Research Assistant

May 2014 - August 2016

June 2018 - August 2018

- Conducted and published research on methods of hiding time-tiling loop-optimizations using existing programming language features
- Developed benchmarks testing loop-optimizations in C and Chapel
- · Conducted performance experiments

Cray Incorporated Seattle, WA

SOFTWARE ENGINEER INTERN June 2015 - August 2015

- Implemented Chapel Linear Algebra Package interface module using custom automated C/Fortran-to-Chapel interface translation tool
- Developed Chapel programming language tutorial (learnxinyminutes.com/docs/chapel)

Colorado State University

Ft. Collins, CO

Undergraduate Teaching Assistant

August 2012 - May 2014

• Developed and lead hands-on instructional sessions in computer-lab setting

Projects

LowFlow Mini-App

github.com/ian-bertolacci/LowFlow_MiniApp

- · Scientific "mini-app" using computationally intensive loops extracted from ParFlow watershed hydrodynamics application
- · Explores methods of parallelizing loops using different frameworks, including OpenMP, OpenCL, and CUDA
- · Explores methods of hiding details of parallelization using custom preprocessor macro programming language
- · Custom CMake framework for integrating different source components and enabling different profiling code at compile-time

LoopChain

 $\verb|github.com/CompOpt4Apps/LoopChainToolDemo||$

github.com/CompOpt4Apps/LoopChainIR

github.com/ian-bertolacci/ISL_To_Sage

- · Source-to-source compiler based on ROSE implementing extensions to OpenMP providing inter-loop optimizations
- C++ library for representing loop sequences and data accesses, potimizing with inter-loop transformations, and generating new C/C++ code
- C++ library for converting from Integer Set Library's C AST format to ROSE's SAGE AST format
- Uses integer linear programming method of determining smallest shift extents to enable legal loop fusion
- · Custom test framework for testing legality and correctness of loops generated by the transformation library

Cellular Automata Simulator

github.com/ian-bertolacci/Cellular-Automata-Simulator

- · Personal summer project in Java diving into compilers, virtual machines, programming languages, graphics, and cellular automata
- Developed programming language and compiler to describe cellular automata rules
- Custom virtual machine and byte-code
- · Capable of executing arbitrary cellular automata rules of any dimensionality

Publications _

- I. Bertolacci, M. M. Strout, B. R. de Supinski, T. R. W. Scogland, E. C. Davis, and C. Olschanowsky. Extending OpenMP to Facilitate Loop Optimization. In B. R. de Supinski, P. Valero-Lara, X. Martorell, S. Mateo Bellido, and J. Labarta, editors, *Evolving OpenMP for Evolving Architectures*, volume 11128, pages 53–65. Springer International Publishing, 2018.
- I. J. Bertolacci, C. Olschanowsky, B. Harshbarger, B. L. Chamberlain, D. G. Wonnacott, and M. M. Strout. Parameterized Diamond Tiling for Stencil Computations with Chapel Parallel Iterators. In *Proceedings of the 29th ACM on International Conference on Supercomputing*, ICS '15, pages 197–206. ACM, 2015.
- I. J. Bertolacci, M. M. Strout, S. Guzik, J. Riley, and C. Olschanowsky. Identifying and Scheduling Loop Chains Using Directives. In 2016 Third Workshop on Accelerator Programming Using Directives (WACCPD), pages 57–67, 2016.
- I. J. Bertolacci, M. M. Strout, J. Riley, S. M. Guzik, E. C. Davis, and C. Olschanowsky. Using the loop chain abstraction to schedule across loops in existing code. *International Journal of High Performance Computing and Networking*, 13(1):86–104, 2018.

Awards _

Fall 2015

October

2014

Spring
2019

Graduate Service Award, College of Science and Department of Computer Science

Deans List, College of Natural Science

November 2014 3rd Place Undergraduate Research Poster, ACM Research Competition

Best Undergraduate Research Poster

University of Arizona

Colorado State University

SuperComputing 2014

Rocky Mountain Celebration of Women in Computing