Yakeen NEET 2.0 2026

Physics by Saleem Sir

Vectors

DPP: 3

Q1 What is the length of projection of

$$\overrightarrow{A}=3\hat{i}+4\hat{j}+5\hat{k}$$
 on xy plane?

- (A) 5
- (B)3
- (c) $5\sqrt{2}$
- (D) 4
- **Q2** Two vectors \mathbf{A} and \mathbf{B} have equal magnitudes. The magnitude of $(\mathbf{A} + \mathbf{B})$ is 'n' times the magnitude of $(\mathbf{A} - \mathbf{B})$. The angle between \mathbf{A} and ${f B}$ is

(A)
$$\sin^{-1}\left(rac{n^2-1}{n^2+1}
ight)$$

(B)
$$\sin^{-1}\left(\frac{n-1}{n+1}\right)$$

(C)
$$\cos^{-1}\left(\frac{n^2-1}{n^2+1}\right)$$

- (D) $\cos^{-1}\left(\frac{n-1}{n+1}\right)$
- Q3 At what angle the two vectors of magnitudes (A+B) and (A-B) must act, so that resultant is $\sqrt{A^2+B^2}$?

(A)
$$_{\mathrm{COS}}^{-1}$$
 $\frac{\mathrm{(A+B)}}{\mathrm{A-B}}$

(B)
$$\cos^{-1}\left(\frac{(A^2+B^2)}{2(B^2-A^2)}\right)$$

(C)
$$\cos^{-1}\left(\frac{A^2+B^2}{A^2-B^2}\right)$$

- (D) None of these
- If a vector $\overset{\displaystyle \rightarrow}{A}$ makes an angles α , β and γ **Q4** respectively with the x, y and z axis respectively. Then $\sin^2\alpha + \sin^2\beta + \sin^2\gamma$ is equal to:
 - (A) 0

(B) 1

(C) 2

(D) 3

- If three forces $\stackrel{
 ightarrow}{F} \;=\; 3\hat{i} \,4\hat{j} \,+\, 5\hat{k}$, $ec{F}_2 = -3\hat{i} + 4\hat{j}$ and $ec{F}_3 = 5\hat{k}$ are acted on a body, then the direction of resultant force on the body is:
 - (A) Along x-axis
 - (B) Along y-axis
 - (C) Along z-axis
 - (D) In indeterminate form
- Q6 If a unit vector is represented by $0.5\hat{i} - 0.8\hat{j} + C\hat{k}$, then the value of C is
 - (A) $\sqrt{0.01}$
 - (B) $\sqrt{0.11}$
 - (C) 1
 - (D) $\sqrt{0.39}$
- Q7 A boy walks uniformly along the sides of a rectangular park of size $400 \text{ m} \times 300 \text{ m}$, starting from one corner to the other corner diagonally opposite. Which of the following statement is incorrect?
 - (A) He has travelled a distance of 700 m
 - (B) His displacement is $700 \mathrm{m}$
 - (C) His displacement is $500 \mathrm{\ m}$
 - (D) His velocity is not uniform throughout the walk
- **Q8** $\frac{d}{dx} (\sin 30^{\circ})$ is equal to
 - (A) $\cos 30^{\circ}$
- (B) $\csc 30^{\circ}$

(C) 0

- (D) $\sin 30^{\circ}$
- ${\bf Q9}\quad {\bf Force}\ F_1\ {\bf and}\ F_2\ {\bf act}\ {\bf on}\ {\bf a}\ {\bf point}\ {\bf mass}\ {\bf in}\ {\bf two}$ mutually perpendicular directions. The resultant

force on the point mass will be

- (A) $F_1 + F_2$
- (B) $F_1 F_2 \over (C) \sqrt{F_1^2 + F_2^2}$
- (D) $F_1^2 + F_2^2$
- **Q10** The sum of two forces acting at a point is $16\ N$. If the resultant force is $8\ N$ and its direction is perpendicular to minimum force then the forces are
 - (A) $6~\mathrm{N}$ and $10~\mathrm{N}$
 - (B) $8\ N$ and $8\ N$
 - (C) $4~\mathrm{N}$ and $12~\mathrm{N}$
 - (D) $2\ N$ and $14\ N$
- **Q11** If vectors \vec{P} , \vec{Q} and \vec{R} have magnitudes 5,12 and 13 units respectively and $\vec{P} + \vec{Q} = \vec{R}$, then angle between $ec{Q}$ and $ec{R}$ is

 - (A) $\cos^{-1} \frac{5}{12}$ (B) $\cos^{-1} \frac{5}{13}$ (C) $\cos^{-1} \frac{12}{13}$ (D) $\cos^{-1} \frac{7}{13}$
- **Q12** Two force $F_1=1~\mathrm{N}$ and $F_2=2~\mathrm{N}$ act along the lines x=0 and y=0 respectively. Then the resultant of forces would be
 - (A) $\hat{i}+2\hat{j}$
 - (B) $\hat{i} + \hat{j}$
 - (C) $3\hat{i}+3\hat{j}$
 - (D) $2\hat{i} + \hat{j}$
- Q13 A body is at rest under the action of three forces, two of which are $ec{F}_1=4\hat{i}\,,ec{F}_2=6\hat{j}$, the third force is
 - (A) $4\hat{i}+6\hat{j}$
 - (B) $4\hat{i}-6\hat{j}$
 - (C) $-4\hat{i}+6\hat{j}$
 - (D) $-4\hat{i}-6\hat{j}$

Answer I	Key
-----------------	------------

Q1	(A)	Q8	(C)
Q2	(C)	Q9	(C)
Q3	(B)	Q10	(A)
Q4	(C)	Q11	(C)
Q5	(C)	Q12	(D)
Q6	(B)	Q13	(D)
Q7	(B)		

