Projeto 2: Soluções numéricas da equação de Schrödinger unidimensional

Anderson Araújo de Oliveira 11371311

1 Questão 1

1.1 Parte A

$$\frac{\hbar^2}{2m}\frac{d^2\psi}{dx^2} + V(x)\psi = E\psi \tag{1}$$

para V(x)=0

$$\frac{\hbar^2}{2m}\frac{d^2\psi}{dx^2} = E\psi\tag{2}$$

Solução.

$$\psi = Ae^{ikx} + Be^{-ikx} \tag{3}$$

Temos que a energia do sistema será.

$$E = \frac{\hbar^2 k^2}{2m} \tag{4}$$

1.2 Parte B

Analisando as dimensões da equação de Schrödinger, onde. $\frac{\hbar^2}{2m} \frac{d^2}{dx^2} = \frac{[L]^2}{[kg][x]^2} = [J]$, x é unidade de comprimento e L de momento angular.

$$-[J]\psi + [J]\psi = [J]\psi \tag{5}$$

Assim se dividimos tudo por um ϵ que tem unidade de energia, a equação ficará totalmente adimensional.

1.3 Parte C

Agora devemos encontrar k parar isso consideramos as condições iniciais, começando por $\psi(0)=0$

$$A = -B \tag{6}$$

isso resulta no $\sin(kx)$ e nas condições para $\psi'(0) = 0$

$$B = A \tag{7}$$

isso resulta no $\cos kx$. Normalizaremos a função de onda para ambos os casos a normalização é mesma.

$$\int_{-L}^{L} A^2 \cos(Kx)^2 dx = 1 \tag{8}$$

2 Questão 2

Utilizaremos outra solução para o problema.

$$\psi(x) = A\cos(kx) + B\sin(kx) \tag{9}$$

Temos a seguinte energia para o sistema $E = \frac{\hbar^2 k^2}{2m}$ para $\psi(-L) = 0$ e $\psi(L) = 0$.

$$A\cos kL = B\sin kL \tag{10}$$

e para -L.

$$A\cos kL = -B\sin kL \tag{11}$$

Se somamos os resultados chegamos a $2A\cos kx=0$ e fizemos a subtração em $2B\sin kx=B$, portanto teremos que ambas são soluções para o nosso problema, porem temos que encontrar um k para cosseno e seno, assim podemos normalizar a função.

$$\psi = \frac{1}{\sqrt{L}}(\cos k_+ x + \sin k_- x) \tag{12}$$

para condições y'(0)=0 o k_+

$$k_{+} = \frac{n\pi}{L} \tag{13}$$

e para y(0)=0 o k_{-}

$$k_{-} = \frac{(2n-1)\pi}{2L} \tag{14}$$

3 Parte 3

Para observar o erro de cada método fizemos a diferença entre a solução analítica em cada ponto para cada método fazendo a média dessa diferença como o erro. A análise será no estado fundamental onde as condições iniciais são L=0,5 ponto inicial $\psi(0)=1,\ \psi'(0)=0$ e a energia E=19,7392, teremos cerca de da seguinte função de onda $\psi(x)=\cos(\pi x)$.

Temos na tabela abaixo o erro relativo de cada método.

método	Erro
Discretização	$\pm 2.10^{-4}$
Numerov	$\pm 6.10^{-4}$

Tabela 1: Tabela de erro

Concluímos que Ambos os métodos tiveram um resultado na faixar de 10^{-4} , porem a discretização ficou um pouco nas mesmas condições.

4 Parte 4

Encontraremos as energias do sistema nas seguintes condições o tamanho da caixa L=0,5, $\psi(0) = 1$ e $\psi'(0) = 0$, portando os modos normais da caixa respeitará k_+ e a energia ficará $E = \frac{\hbar^2 k_+^2}{2m} = \frac{\hbar^2 n^2 \pi^2}{2mL^2}$. A tabela abaixo mostra o valor analítico e obtido numericamente e o seu erro relativo.

n	Numericamente	Analítico	erro
1	19,7340	19,7392	$\pm 0,0053$
2	78,9720	78,9568	$\pm 0,0152$
3	177,6880	177,6528	$\pm 0,0352$
4	315,8900	315,8273	$\pm 0,0627$
5	493,5780	493,4802	± 0.0978
6	710,7520	710,6115	$\pm 0,1405$
7	967,4130	967,2212	$\pm 0,1918$
8	1263,5590	1263,3093	$\pm 0,2497$
9	1599,1910	1598,8759	$\pm 0,3151$
10	1974,3090	1973,9208	$\pm 0,3885$

Tabela 2: Valores obtidos das 10 primeiras energias do sistema

Podemos ver o erro aumentando gradativamente quanto mais alto a energia vai ficando.

5 Parte 5

O potencial de Lennard Jones que será analisado nessa parte do projeto tem como função que representa ela sendo, $V(x) = 4\epsilon((\frac{\sigma}{x})^{12} - (\frac{\sigma}{x})^6)$, uma representação gráfica dessa função.

Figura 2: Potencial de Lennard Jones sendo $\sigma = \epsilon = 1$

Para calcular foi escolhido os pontos 0,5 e 7,0 a energia do potencial utilizamos $\epsilon = 11$ obtivemos a seguinte energia fundamental E = 2,3249 e para nos pontos 0,5 e 5,0 epsilon = 10 foi obtido E = -1,9279.

Figura 3: Função de onda quando E=-1,9279

Figura 4: Função de onda para E=-2,5

Figura 5: Descontinuidade no ponto de encontro

Figura 6: função de onda E=-0,5

Observamos que a função de onda de ambos os lados começam com amplitudes altas quando passamos da energia fundamental o sistema começa diminuir as amplitudes, como podemos ver nas figuras acima.