UNIT 3

Classification: Basic concepts -General approach to Classification - Decision tree induction - Algorithm for Decision tree induction - Numerical example for Decision tree induction - Attribute selection measure - Tree pruning - Scalability and Decision tree induction - Bayes' Theorem - Naïve Bayesian Classification - IF-THEN rules for classification - Rule extraction from a decision tree - Metrics for evaluating classifier performance -Cross validation - Bootstrap - SLO-2 Ensemble methods-Introduction - Bagging and Boosting - Random Forests: Introduction.

	PART-A (Multiple Choice Questions)					
Q. No	Questions	Course Outcome	Competence BT Level			
1	Which of the following is a widely used and effective machine learning algorithm based on the idea of bagging? a. Decision Tree	CO3	BT 4			
	b. Regression.c. classificationd. Random Forest	CO3	D1 4			
2	To find the minimum or the maximum of a function, we set the gradient to zero because: a. The value of the gradient at extrema of a function is always zero. b. Depends on the type of problem	CO3	BT5			
2	c.Confusion Matrix d. Classification					
3	Which of the following is a disadvantage of decision trees? a.Factor analysis b.decision trees are robust to outliers c.decision trees are robust to outliers d.decision trees are prone to overfit	CO3	BT4			
4	Identify the kind of learning algorithm for "facial identities for facial expressions" a. Prediction b. Recognition patterns c. Recognition anomalies d. Generating patterns	CO3	BT4			
5	What is the application of machine learning methods to a large database called? a. Big data computing b. Internet of things c. Data Mining d. Artificial Intelligence	CO3	BT4			
6	What is Machine learning? a) The autonomous acquisition of knowledge through the use of computer programs b) The autonomous acquisition of knowledge through the use of manual programs c) The selective acquisition of knowledge through the use of computer programs d) The selective acquisition of knowledge through the use of manual	CO3	BT4			

	programs		
7	Which of the following machine learning techniques helps in detecting the		
′	outliers in data?		
	a. classfication.		
	b. Clustering.	CO3	BT4
	c. Anamoly detection		
	d. Regression		
8	A is a decision support tool that uses a tree-like graph or model		
0	of decisions and their possible consequences, including chance event		
	outcomes, resource costs, and utility.		
	a) Decision tree	CO3	BT4
	b) Graphs		
	c) Classifiers		
	d) Neural Networks		
9	is used for cutting or trimming the tree in Decision trees.		
	a. Pruning		
	b. Stemming	CO3	BT2
	c. classifiers		
	d. Regressors		
10	measure of the randomness in the information being processed in		
	the Decision Tree.		
	a. Entropy	CO3	BT4
	b. Information Gain	CO3	Б1
	c. Confusion matrix.		
	d. Accuracy		
11	is a statistical property that measures how well a given attribute		
	separates the training examples according to their target classification.		
	a Entropy	CO3	BT4
	b. Information Gain	COS	D14
	c. Confusion matrix.		
	d. Accuracy		
12	computes the difference between entropy before the split and		
	average entropy after the split of the dataset based on given attribute		
	values.		
	a. Information gain	CO3	BT5
	b. Gini ratio		
	c. Pruning		
	d. Accuracy		
13	Information gain is biased towards choosing attributes with a large		
	number of values as		
	a) Branch nodes	COS	D/E 4
	b) Root nodes	CO3	BT4
	c) Leaf nodes		
	d) internal nodes		
14	is an algorithm used for continuous target variables that are used		
	for regression problems in Decision Tree.		
	a) Reduction in Variance	CO3	BT4
	b) Collinearity	203	211
	c) Correlation		
	c) Correlation		

	d) Multicollinearity		
15	Decision tree is used for		
	a) Regression.		
	b) Classification.	CO3	BT4
	c) Regression and Classification		
	d) Clustering.		
16	Choose the correct sequence of typical decision tree structure –		
	(I) Take the entire data set as input		
	(II) Divide the input data into two part		
	(III) Reapply the split to every part recursively		
	(IV) Stop when meeting desired criteria	G 0.2	DTC
	(V) Cut the tree when we went too far while doing splits(pruning)	CO3	BT5
	a) (I), (II),(V),(IV),(III).		
	b) (V),(I),(III),(IV).		
	c) (I),(III),(II),(V),(IV).		
	d) (I),(II),(III),(IV),(V).		
17	denotes the entire population or sample and it further divides		
	into two or more homogeneous sets.		
	a) Leaf node.	G02	DTI4
	b) Terminal node.	CO3	BT4
	c) Root node.		
	d) Internal Nodes		
18	The Process of removing sub-nodes from a decision node is called		
	a) Splitting.	CO3	BT4
	b) Breaking.	CO3	D14
	c) Pruning.		
	d) Pooling		
19	is a measurement of likelihood of an incorrect classification		
	of a new instance for a random variable, if the new instance is randomly		
	classified as per the distribution of class labels from the data set.		
	a) Gini impurity.	CO3	BT4
	b) Entropy.		
	c) Information gain.		
	d) Regularization		
20	Which nodes have the maximum Gini impurity in a decision tree?		
	a. 0.6		
	b. 0.1	CO3	BT4
	c. 0.5		
	d. 0.2		
21	Where does the bayes rule can be used?		
	a) Solving queries		
	b) Increasing complexity	CO3	BT4
	c) Decreasing complexity		
	d) Answering probabilistic query		
22	How the bayesian network can be used to answer any query?		
	a) Full distribution	CO3	BT4
1	b) Joint distribution		

	a) Doutiel distribution		
	c) Partial distribution		
- 22	d) NULL		
23	Point out the wrong combination.		
	a) True negative=correctly rejected	000	DTI4
	b) False negative=correctly rejected	CO3	BT4
	c) False positive=correctly identified		
	d) True positive=wrongly rejected		
24	Which of the following is a categorical outcome?		
	a) RMSE		7.77
	b) RSquared	CO3	BT5
	c) Accuracy		
	d) Confusion Matrix		
25	Which of the following algorithm is not an example of an ensemble		
	method?		
	A. Extra Tree Regressor	CO3	BT5
	B. Random Forest	003	210
	C. Gradient Boosting		
	D. Decision Tree		
26	What is true about an ensembled classifier?		
	1. Classifiers that are more "sure" can vote with more conviction		
	2. Classifiers can be more "sure" about a particular part of the space		
	3. Most of the times, it performs better than a single classifier		
		CO3	BT4
	A. 1 and 2		
	B. 1 and 3		
	C. 2 and 3		
	D. 1, 2 and 3		
27	Which of the following option is / are correct regarding benefits of		
	ensemble model?		
	1. Better performance		
	2. Generalized models		
	3. Better interpretability	CO2	BT4
		CO3	D14
	A. 1 and 3		
	B. 2 and 3		
	C. 1 and 2		
L	D. 1, 2 and 3		
28	True positives is		
	a. These refer to the positive tuples that were correctly labeled by		
	the classifier.		
	b. These are the negative tuples that were correctly labeled by the	CO2	BT4
	classifier.	CO3	D14
	c. These are the negative tuples that were incorrectly labeled as		
	positive.		
	d. These are the positive tuples that were mislabeled as negative		
29	Specificity is called as		
	a. accuracy	CO3	BT5
	b. true positive rate		
	· -	1	

	c. true negativ	e rate						
	d. precision							
30		method sar	nples the	given training	tuples uniformly with			
	replacement.		•	- 0	-			
	a. bootstrap	a. bootstrap						
	b. Accuracy							
	c. precision							
	d. specificity							
	•			PART	B (5 Marks)	<u> </u>		
1	Discuss the s	teps in Ge	eneral ap	proach to Cla	assification.	CO3	BT4	
2	Write the basic	c algorithn	n for indu	cing a decision	n tree from training tuples.	CO3	BT3	
3	Compare on v	arious Attı	ribute Sele	ection Measur	es for building the decision	CO3	BT4	
	tree.					CO3	D14	
4	Explain, how	tree prunin	g avoid o	verfitting.		CO3	BT4	
5	Write the step	os followed	d in build	ling the decis	ion tree using Information	CO3	ВТ3	
	gain.					003	DIJ	
6	Discuss on N	aïve Baye	es Classif	fier.		CO3	ВТ3	
7	With a neat sketch explain a Cross-validation.						BT3	
8	Discuss on confusion Matrix.						BT3	
9	With suitable example, elaborate on Ensemble Method.						BT4	
10	Explain abou		CO3	ВТ3				
	•			PART (C (12 Marks)	l .		
1	Build a decision tree for the give dataset using ID3 algorithm.							
	age	income	student	credit_rating	Class: buys_computer			
	youth	high	no	fair	no			
	youth	high	no	excellent	no			
	middle_aged	high	no	fair	yes			
	senior	medium	no	fair	yes			
	senior	low	yes	fair	yes			
	senior	low	yes	excellent	no			
	middle_aged	low	yes	excellent	yes	CO3	BT6	
	youth	medium	no	fair	no			
	youth	low	yes	fair	yes			
	senior	medium	yes	fair	yes			
	youth	medium	yes	excellent	yes			
	middle_aged	medium	no	excellent	yes			
	middle_aged	high	yes	fair	yes			
	senior	medium	no	excellent	no			
	Identification	11. ou -4 1	4(V)	11 h	morton on west area. NT			
2		charte mon			military on mot vicino a Nicevial			
2	_			•	puter or not using Naive EDIUM, YES, FAIR, ?).	CO3	BT6	

age	income	student	$credit_rating$	Class: buys_computer		
youth	high	no	fair	no		
youth	high	no	excellent	no		
middle_aged	high	no	fair	yes		
senior	medium	no	fair	yes		
senior	low	yes	fair	yes		
senior	low	yes	excellent	no		
middle_aged	low	yes	excellent	yes		
youth	medium	no	fair	no		
youth	low	yes	fair	yes		
senior	medium	yes	fair	yes		
youth	medium	yes	excellent	yes		
middle_aged	medium	no	excellent	yes		
middle_aged	high	yes	fair	yes		
senior	medium	no	excellent	no		
Show how rul pruning.	es are extr	acted from	m the Decision	n tree, also discuss on Tree	CO3	BT5
Discuss the tec	chniques to	o improve	the classifica	tion accuracy.	CO3	BT4
Explain the N	Aetrics for	r evaluat	ing classifier	performance.	CO3	BT4