Java Wildcards Meet Definition-Site Variance

Christoph Reichenbach^{2,1} Yannis Smaragdakis^{3,1}

> ¹University of Massachusetts ²Google ³University of Athens

Java Wildcards Meet Definition-Site Variance - Altidor, Reichenbach, Smaragdakis

Outline

- Motivation for Variance.
- Brief History, Existing Approaches.
- What Is New Here:
 Combine Definition-Site and Use-Site Variance.
 - Both in a single language, each using the other
 - VarJ Formal Calculus
 - Insights on Formal Reasoning
- Summary.

Subtyping – Inclusion Polymorphism

- Promotes reusability.
- Example: Java inheritance.

```
class Animal {
  void speak() { }
}
class Dog extends Animal {
  void speak() { print("bark"); }
}
class Cat extends Animal {
  void speak() { print("meow"); }
}
```

Generics – Parametric Polymorphism

type parameter

```
class List<X>
{
  void add(X x) { ... }

  X get(int i) { ... }

  int size() { ... }
}
```

- List<Animal> = List Of AnimalS
- List<Dog>
 \[
 \]
 List of DogS

Generics – Parametric Polymorphism

type parameter

- List<Animal> = List Of Animals
- List<Dog>
 \[
 \]
 List of DogS

Generics – Parametric Polymorphism

type parameter class List<X> void add(X x) { ... } write X X get(int i) { ... } read X int size() { ... } }

- List<Animal> = List Of Animals
- List<Dog>
 \(\text{List Of DogS} \)

Generics – Parametric Polymorphism

- List<Animal> = List Of Animals
- List<Dog>
 \(\text{List Of DogS} \)

Generics – Parametric Polymorphism

```
type parameter
          class List<X>
            void add(X x) { ... }
                                        write X
            X get(int i) { ... }
                                       read X
             int size() { ... }
                                       no X

    List<Animal> = List Of AnimalS

                                          Customized
                                              Lists

    List<Dog> = List Of DogS
```

Generics and Subtyping

- Dog <: Animal (Dog is an Animal).
- Cat <: Animal (Cat is an Animal).
- List<Dog> <: List<Animal>

I MassAmherst

Generics and Subtyping

- Dog <: Animal (Dog is an Animal).
- Cat <: Animal (Cat is an Animal).
- List<Dog> <: List<Animal>

 A List<Animal> can add a Cat to itself. A List<Dog> cannot.

UMassAmherst Variance Introduction

When is c<Expr1> a subtype of c<Expr2>?

```
class RList<X>
{
    X get(int i) { ... }
    from
    but not
    int size() { ... }
    write to.
```

- It is safe to assume RList<Dog> <: RList<Animal>.
- Why?

Flavors of Variance - Covariance

Assuming Dog <: Animal (Dog is an Animal).

Generic<Dog> <: Generic<Animal>

Covariance

Flavors of Variance - Contravariance

Assuming Dog <: Animal (Dog is an Animal).

Contravariance

Four Flavors of Variance

Covariance: $T <: U \Rightarrow C < T > <: C < U >.$

Contravariance: $T <: U \Rightarrow C < U > <: C < T >$.

Bivariance: C<T> <: C<U>, for all T and U.

Invariance: C<T> <: C<U>, if T <: U and U <: T.

How do programmers specify variance?

- Programmer specifies variance in definition as in Scala and C#.
- Variance of a type position.
 - Return types: covariant.
 - Arguments types: contravariant.

```
class RList<+X> {
    X get(int i) { ... }
    int size() { ... }
    // no method to add
}

class WList<-X> {
    void add(X x) { ... }
    int size() { ... }
    // no method to get
}
```

- Programmer specifies variance in definition as in Scala and C#.
- Variance of a type position.
 - Return types: covariant.
 - Arguments types: contravariant.

```
class RList<+X> {
    X get(int i) { ... }
    int size() { ... }
    // no method to add
}

class WList<-X> {
    void add(X x) { ... }
    int size() { ... }
    // no method to get
}
```

- Programmer specifies variance in definition as in Scala and C#.
- Variance of a type position.
 - Return types: covariant.
 - Arguments types: contravariant.

```
class RList<+X> {
    X get(int i) { ... }
    int size() { ... }
    // no method to add
}

class WList<-X> {
    void add(X x) { ... }
    int size() { ... }
    // no method to get
}
```

- Programmer specifies variance in definition as in Scala and C#.
- Variance of a type position.
 - Return types: covariant
 - Arguments types: contravariant.

```
class RList<+X> {
    X get(int i) { ... }
    int size() { ... }
    // no method to add
}

class WList<-X> {
    void add((X x) { ... }
    int size() { ... }
    // no method to get
}
```

```
class List<X>
{
  void add(X x) { ... }

  X get(int i) { ... }

  int size() { ... }
}
```

```
class List<X>
{
  void add(X x) { ... }

  X get(int i) { ... }

int size() { ... }
}
```

```
class List<X>
{
  void add(X x) { ... }

  X get(int i) { ... }

int size() { ... }
}
```

Brief History: Definition-Site Variance

- Variance has been subject of many (ECOOP) papers.
- Definition-site variance has long history.
 - Introduced in late 80's:
 - Cook, ECOOP '89.
 - America & van der Linden, ECOOP '90.
 - Bracha & Griswold, OOPSLA, '93.
 - Formalized for C#: Emir et al, ECOOP '06.
 - Decidability of subtyping w/ variance: Kennedy & Pierce, FOOL '07.
 - Undecidable in general. Decidable fragment.

Brief History: Use-Site Variance

- Introduced: Thorup & Torgersen, ECOOP '99.
- Generalized and formalized: Igarashi & Viroli, ECOOP '02.
- Adopted by Java as Wildcards: Torgersen et al, SAC '04.
- Soundness of Java Wildcards: Cameron et al, ECOOP '08.
- Decidability still open:
 Kennedy & Pierce, FOOL '07.
- Decidable fragment: Tate et al, PLDI '11.

Definition-Site vs. Use-Site Variance

- Definition-Site Cons:
 - Redundant Types:
 - scala.collection.immutable.Map<A, +B>
 - scala.collection.mutable.Map<A, B>
 - Generic with n parameters $\Rightarrow 3^n$ interfaces (or 4^n if bivariance is allowed).
- Use-Site Variance Cons:
 - Type signatures quickly become complicated.

```
Iterator<? extends Map.Entry<? extends K, V>>
  createEntrySetIterator(
    Iterator<? extends Map.Entry<? extends K, V>>)
```

Wildcards Criticism

- "We simply cannot afford another wildcards" – Joshua Bloch.
- "Simplifying Java Generics by Eliminating Wildcards" – Howard Lovatt.

```
Iterator<? extends Map.Entry<? extends K, V>>
  createEntrySetIterator(
    Iterator<? extends Map.Entry<? extends K, V>>)
```

Our Approach: Take Best of Both Worlds

- Take advantages. Remove disadvantages.
 - Simpler type expressions in Java (burden off clients).
 - Less redundant type definitions in C# and Scala.
 - Adding explicit definition-site annotations to Java.
- VarJ Calculus.
 - Directly extends TameFJ with definition-site variance.
- Extends denotational approach:
 PLDI 2011 (Altidor, Huang, Smaragdakis)

Fewer Wildcard Annotations

```
Iterator<? extends Map.Entry<? extends K, V>>
    createEntrySetIterator(
    Iterator<? extends Map.Entry<? extends K, V>>)
```



```
Iterator<Map.Entry<K, V>>
   createEntrySetIterator(
        Iterator<Map.Entry<K, V>>)
```

Extending Java with Definition-Site Variance

 Both kinds of annotations: easier for programmer, harder to typecheck

```
class ROStack1<+X> {
   X pop() { ... }
   List<? extends X> toList() {... }
}
```

Extending Java with Definition-Site Variance

 Both kinds of annotations: easier for programmer, harder to typecheck

```
class ROStack1<+X> {
   X pop() { ... }
   List<? extends X> toList() {... }
}
```

Extending Java with Definition-Site Variance

 Both kinds of annotations: easier for programmer, harder to typecheck

```
class ROStack1<+X> {
   X pop() { ... }
   List<? extends X> toList() {... }
}
```


Extending Java with Definition-Site Variance

 Both kinds of annotations: easier for programmer, harder to typecheck

```
class ROStack1<+X> {
   X pop() { ... }
   List<? extends X> toList() {... }
}

class ROStack2<+X> {
   X pop() { ... }
   <Y extends X> List<Y> toList() { ... }
}
```

Method Type Parameter

Extending Java with Definition-Site Variance

 Both kinds of annotations: easier for programmer, harder to typecheck

```
class ROStack1<+X> {
   X pop() { ... }
   List<? extends X> toList() {... }
}

class ROStack2<+X> {
   X pop() { ... }
   <Y extends X> List<Y> toList() { ... }
}
```

Method Type Parameter

I MassAmherst

VarJ: Java Calculus modeling Wildcards and Definition-Site Variance

- Adding explicit definition-site annotations to Java.
 - Directly extends TameFJ with definition-site variance.
- Supports full complexities of the Java realization of variance.
 - Existential Types
 - Polymorphic Methods
 - Wildcard Capture
 - F-Bounded Polymorphism
- Type Stack<? extends String> modeled as $\exists x \rightarrow [\bot String]$. Stack<x > .

VarJ: Java Calculus modeling Wildcards and Definition-Site Variance

- Adding explicit definition-site annotations to Java.
 - Directly extends TameFJ with definition-site variance.
- Supports full complexities of the Java realization of variance.
 - Existential Types
 - Polymorphic Methods
 - Wildcard Capture
 - F-Bounded Polymorphism
- Type Stack<? extends String> modeled as $\exists x \rightarrow [\bot String]$ Stack<x > .

modeled as unknown (existential) type with lower and upper bound

UMassAmherst Standard Modeling: Variance Lattice

 Ordered by subtype constraint (convention: also consider variances to be binary predicates).

Variance of a Type

- When is C<Expr1> a subtype of C<Expr2>?
- What about existential types? ∃x->[⊥-String].Stack<x>
- We answer more general question: When is [U/X]T <: [U'/X]T?</p>
- Key: defined very general predicate:

```
var(x; T)
=
variance of type T with respect to type variable x.
```

Variance of a Type

- When is c<Expr1> a subtype of c<Expr2>?
- What about existential types? ∃X->[⊥-String].Stack<X>
- We answer more general question: When is [U/X]T <: [U'/X]T?</p>
- Key: defined very general predicate:

```
var(x; T)
```

variance of type **T** with respect to type variable **x**.

Variance of a Type

- When is C<Expr1> a subtype of C<Expr2>?
- What about existential types? ∃X->[⊥-String].Stack<X>
- We answer more general question: When is [U/X]T <: [U'/X]T?</p>
- Key: defined very general predicate:

```
var(x; T)
```

variance of type **T** with respect to type variable **x**.

Variance of a Type

- When is C<Expr1> a subtype of C<Expr2>?
- What about existential types? ∃X->[⊥-String].Stack<X>
- We answer more general question: When is [U/X]T <: [U'/X]T?</p>
- **Key**: defined very general predicate:

```
var(x; T)
```

_

variance of type **T** with respect to type variable **x**.

- We generalize Emir et al.'s subtype lifting lemma.
- Goal property of var.

```
If:
  (a)  v \leq var(X; T)
  (b)  v(U; U')
  Then: [U/X]T <: [U'/X]T

• var(X; Iterator<X>) = +
  and  +(Dog; Animal) = Dog <: Animal
  implies  Iterator<Dog>  <: Iterator<Animal>
```

- We generalize Emir et al.'s subtype lifting lemma.
- Goal property of var.

```
If:
  (a)  v \leq var(x; T)
  (b) v(U; U')
  Then: [U/X]T <: [U'/X]T

var(x; Iterator<X>) = +
  and + (Dog; Animal) = Dog <: Animal

implies Iterator<Dog> <: Iterator<Animal>
```

lf:

- We generalize Emir et al.'s subtype lifting lemma.
- Goal property of var.

```
(a)  v < var(X; T)
(b)  v(U; U')
Then: [U/X]T <: [U'/X]T

var(X; Iterator<X>) = +
and + (Dog; Animal) = Dog <: Animal
implies Iterator<Dog> <: Iterator<Animal>
```

- We generalize Emir et al.'s subtype lifting lemma.
- Goal property of var.

Variance Composition

- Variance of variable x in type A<B<C<x>>>?
- In general, variance of variable x in type c<E>?

- $V_1 \otimes V_2 = V_3$. If:
 - Variance of variable x in type expression E is v_2 .
 - The def-site variance of class c is v₁.
 - Then: variance of x in c < E > is v_3 .

Variance Composition

- Variance of variable x in type A<B<C<x>>>?
- In general, variance of variable x in type c<E>?

- $V_1 \otimes V_2 = V_3$. If:
 - Variance of variable x in type expression E is v_2 .
 - The def-site variance of class c is v₁.
 - Then: variance of x in c < E > is v_3 .

Variance Composition

- Variance of variable x in type A<B<C<x>>>?
- In general, variance of variable x in type c<E>?

Transform Operator

- $v_1 \otimes v_2 = v_3$. If:
 - Variance of variable x in type expression E is v_2 .
 - The def-site variance of class c is v₁.
 - Then: variance of \mathbf{x} in $\mathbf{c} < \mathbf{E} >$ is \mathbf{v}_3 .

Deriving Transform Operator

Example Case: $+ \otimes - = -$

- Class C is covariant.
- Type E is contravariant in X.
- Need to show C<E> is contravariant in X.
- For any T_1 , T_2 :

Deriving Transform Operator

Example Case: $+ \otimes - = -$

- Class C is covariant.
- Type E is contravariant in X.
- Need to show C<E> is contravariant in X.
- For any T_1 , T_2 :

Deriving Transform Operator

Example Case: $+ \otimes - = -$

- Class C is covariant.
- Type E is contravariant in X.
- Need to show C<E> is contravariant in X.
- For any T_1 , T_2 :

Deriving Transform Operator

Example Case: $+ \otimes - = -$

- Class C is covariant.
- Type E is contravariant in X.
- Need to show C<E> is contravariant in X.
- For any T_1 , T_2 :

Deriving Transform Operator

Example Case: $+ \otimes - = -$

- Class C is covariant.
- Type E is contravariant in X.
- Need to show C<E> is contravariant in X.
- For any T_1 , T_2 :

$$T_1 <: T_2 \implies$$
 (by contravariance of E)
$$E[T_2/\mathtt{X}] <: E[T_1/\mathtt{X}] \implies$$
 (by covariance of \mathtt{C})
$$\mathtt{C} < E[T_2/\mathtt{X}] > <: \mathtt{C} < E[T_1/\mathtt{X}] > \implies$$

$$\mathtt{C} < E>[T_2/\mathtt{X}] <: \mathtt{C} < E>[T_1/\mathtt{X}]$$

Summary of Transform

- Invariance transforms everything into invariance.
- Bivariance transforms everything into bivariance.
- Covariance preserves a variance.
- Contravariance reverses a variance.

Definition of variance transformation: \otimes

$$+ \otimes + = +$$
 $- \otimes + = * \otimes + = *$ $o \otimes + = o$
 $+ \otimes - = - \otimes - = +$ $* \otimes - = *$ $o \otimes - = o$
 $+ \otimes * = *$ $- \otimes * = *$ $* \otimes * = *$ $o \otimes * = o$
 $+ \otimes o = o$ $- \otimes o = o$ $* \otimes o = *$ $o \otimes o = o$

Definition of var predicate

Variance of Types and Ranges:
$$var(X; \phi)$$
, where $\phi : := B \mid R \mid \Delta$
 $var(X; X) = +$ (Var-XX)
 $var(X; Y) = *$, if $X \neq Y$ (Var-XY)
 $var(X; C \triangleleft \overline{T} \triangleright) = \prod_{i=1}^{n} (v_i \otimes var(X; T_i))$, if $VT(C) = \overline{vX}$ (Var-N)
 $var(X; \bot) = *$ (Var-B)
 $var(X; \exists \Delta . R) = var(X; \Delta) \sqcap var(X; R)$, if $X \notin dom(\Delta)$ (Var-T)
 $var(X; \overline{Y} \rightarrow \overline{[B_L \neg B_U]}) = \prod_{i=1}^{n} ((- \otimes var(X; B_{Li})) \sqcap (+ \otimes var(X; B_{Ui})))$ (Var-R)
 $[var(\overline{X}; \phi) = \overline{v}] \equiv [\forall i, var(X_i; \phi) = v_i]$, where $\phi : := B \mid R \mid \Delta$ (Var-Seq)

See paper for further cases.

Definition of var predicate

Variance of Types and Ranges:
$$var(X; \phi)$$
, where $\phi : := B \mid R \mid \Delta$ $var(X; X) = +$ $(VAR-XX)$ $var(X; Y) = *$, if $X \neq Y$ $(VAR-XY)$ $var(X; C \triangleleft T \triangleright) = \prod_{i=1}^{n} (v_i \otimes var(X; T_i))$, if $VT(C) = \overline{vX}$ $(VAR-N)$ $var(X; \bot) = *$ $(VAR-B)$ $var(X; \exists \Delta.R) = var(X; \Delta) \sqcap var(X; T_i)$ definition—site $var(X; \overline{Y} \rightarrow \overline{B_L - B_U}) = \prod_{i=1}^{n} ((- \triangleleft var(X_i; \phi) = \overline{v_i}), \text{ where } \phi : := B \mid R \mid \Delta$ $(VAR-R)$ $(VAR-R)$ $(VAR-R)$

See paper for further cases.

Type Checking Variance

$$CT(C) = \operatorname{class} C \langle \overline{\mathsf{vX}} \to \overline{[\dots]} \rangle \triangleleft \mathbb{N} \{ \dots \}$$

$$\overline{\overline{\mathsf{v}}} \leq var(\overline{\mathsf{X}}; \overline{\mathsf{T}}) \qquad \overline{\overline{-\otimes \mathsf{v}}} \leq var(\overline{\mathsf{X}}; \overline{\mathsf{Y}} \to \overline{[\mathsf{B}_L - \mathsf{B}_U]})$$

$$\overline{\overline{-\otimes \mathsf{v}}} \leq var(\overline{\mathsf{X}}; \overline{\mathsf{T}}_i), \text{ for each } i$$

$$\cdots$$

$$\overline{\mathsf{H}} \leq \overline{\mathsf{Y}} \to \overline{[\mathsf{B}_L - \mathsf{B}_U]} \rangle \text{ T m}(\overline{\mathsf{T}} \overline{\mathsf{x}}) \text{ {return e; }} OK \text{ in } C$$

$$(W-METH)$$

- Definition-site variance annotations are type checked using var predicate and assumed variances of each position.
- Soundness proof verifies variance reasoning is safe.

General Theory – Template for Adding Variance

Variance composition:

$$V_1 \otimes V_2 = V_3$$

Variance binary predicate:v(T; T')

Variance lattice:

$$V_1 \leq V_2$$

- Variance of a type: var(x; T)
- Relating variance to subtyping:
 Subtype Lifting Lemma
- Variance of a position: See paper

Summary of Contributions

- Generics and subtyping coexist fruitfully.
- Model full complexities of Java wildcards and interaction with definition-site.
- Generalizes all previous related work.
- Resolve central questions in the design of any language involving parametric polymorphism and subtyping.
 - Variance of various types (e.g. existential types).
 - Variance of a position (e.g. polymorphic type bounds).
- Paper explains a lot more.