





# **Summary Measures**





## Measures of Shape

- 1) Measures of Skewness
- 2) Measures of Kurtosis



- Measures of skewness describe the degree to which the data deviates from symmetry.
- If a distribution is not symmetrical, then it is called as asymmetrical or skewed.
- There are 2 types of skewness:
  - Positively skewed skewed to the right
  - Negatively skewed skewed to the left



# Distribution Shape and Box and Whisker Plot

Left-Skewed





Symmetric





Right-Skewed





# Relationship of the Three Measures of Central Tendency for Unimodal Distributions



**Figure 1.** Sketches showing general position of mean, median, and mode in a population.

 Source: Doane, D.P., Seward, L. E. (2011). Measuring Skewness: A Forgotten Statistic?, Journal of Statistics Education, Vol.19, No.2.

- If a distribution is symmetrical, it does not have to be bell-shaped.
- If a distribution is skewed, it does not have to be uni-modal (having only one mode).

 Source: Doane, D.P., Seward, L. E. (2011). Measuring Skewness: A Forgotten Statistic?, Journal of Statistics Education, Vol.19, No.2.



**Figure 2**. Illustrative prototype histograms.

# How to detect Skewness? Charts vs Statistical Measures?

- The simplest way to see if a distribution is skewed or symmetrical is to construct a histogram or a box-plot.
- A measure of skewness is a single value that indicates the degree and direction of asymmetry.
- Signs of skewness measures:
  - Skewness = 0 Symmetrical distribution
  - Skewness >0 Skewed to the right (positively skewed)
  - Skewness <0 Skewed to the lef (negatively skewed)</p>
- The larger the measure of skewness, the more skewed the distribution is.

#### Measures of Skewness

- There are a few measures for skewness:
  - Pearson's 1st coefficient of skewness: Based on the distance between the mean and the mode

$$Skewness_1 = \frac{\bar{X} - Mode}{\sigma}$$

 Pearson's 2nd coefficient of skewness: Based on the distance between the mean and the median

$$Skewness_2 = \frac{3(\bar{X} - Median)}{\sigma}$$

Skewness based on the quartiles (boxplot)

$$Skewness_4 = \frac{(Q_3 - Median) - (Median - Q_1)}{Q_3 - Q_1}$$



#### Measures of Skewness

- Most traditional measure for skewness:
  - Fisher-Pearson coefficient of skewness: Based on the 2nd and 3rd moments around the mean.

$$Skewness_3 = \alpha_3 = \frac{\mu_3}{\sigma^3}$$



### rth Moment Around the Mean

The rth moment around the mean is denoted by

$$\mu_r$$

and it is calculated as follows:

$$\mu_r = \frac{\sum (X_i - \bar{X})^r}{N} \qquad \mu_r = \frac{\sum f_i (X_i - \bar{X})^r}{N} \qquad \mu_r = \frac{\sum X_i (m_i - \bar{X})^r}{N}$$

Note that:

$$\mu_0 = 1$$
  $\mu_1 = 0$   $\mu_2 = Variance$ 





# Interpretation of Fisher-Pearson's Skewness Measure

- Bulmer, M. G., Principles of Statistics (Dover, 1979) — a classic — suggests this rule of thumb:
  - If skewness is less than -1 or greater than +1, the distribution is highly skewed.
  - If skewness is between -1 and  $-\frac{1}{2}$  or between  $+\frac{1}{2}$  and +1, the distribution is **moderately skewed**.
  - If skewness is between -½ and +½, the distribution is approximately symmetric.



# An Example

| i   | X   | X-Xmean | (X-Xmean)^2 | (X-Xmean)^3 | (X-Xmean)^4 | _ 480 _                                                                                |
|-----|-----|---------|-------------|-------------|-------------|----------------------------------------------------------------------------------------|
| 1   | 53  | 5       | 25          | 125         | 625         | $\bar{X} = \frac{480}{10} = 48$                                                        |
| 2   | 3   | -45     | 2025        | -91125      | 4100625     |                                                                                        |
| 3   | 47  | -1      | 1           | -1          | 1           | $\sum (X - \overline{X})^2$ 8838                                                       |
| 4   | 30  | -18     | 324         | -5832       | 104976      | $\sigma = \sqrt{\frac{\sum (X - \overline{X})^2}{N}} = \sqrt{\frac{8838}{10}} = 29.73$ |
| 5   | 58  | 10      | 100         | 1000        | 10000       | , , , , , , , , , , , , , , , , , , ,                                                  |
| 6   | 39  | -9      | 81          | -729        | 6561        | $\mu_3 = \frac{\sum (X - \bar{X})^3}{N} = \frac{111420}{10} = 11142$                   |
| 7   | 100 | 52      | 2704        | 140608      | 7311616     | $\mu_3 = \frac{11142}{N} = \frac{11142}{10}$                                           |
| 8   | 41  | -7      | 49          | -343        | 2401        | $\mu_2 = 11142$                                                                        |
| 9   | 96  | 48      | 2304        | 110592      | 5308416     | $\alpha_3 = \frac{\mu_3}{\sigma^3} = \frac{11142}{29.73^3} = 0.42$                     |
| 10  | 13  | -35     | 1225        | -42875      | 1500625     |                                                                                        |
| Sum | 480 | 0       | 8838        | 111420      | 18345846    | $\mu_4 = \frac{\sum (X - \bar{X})^4}{N} = \frac{18345846}{10} = 1834584.6$             |
|     | 48  |         |             |             |             | N 10                                                                                   |
|     |     |         |             |             |             | u. 1834584 6                                                                           |
|     |     |         |             |             |             | $\alpha_4 = \frac{\mu_4}{\sigma^4} = \frac{1834584.6}{29.73^4} = 2.35$                 |
|     |     |         |             |             |             | 25.73                                                                                  |

### Another example:

#### Female Life Expectancy at birth (years) High Income OECD (2009)

| Australia      | 84 | Japan           | 86 |
|----------------|----|-----------------|----|
| Austria        | 83 | Korea, Rep.     | 84 |
| Belgium        | 82 | Luxembourg      | 83 |
| Canada         | 83 | Netherlands     | 83 |
| Czech Republic | 80 | New Zealand     | 82 |
| Denmark        | 81 | Norway          | 83 |
| Estonia        | 80 | Poland          | 80 |
| Finland        | 83 | Portugal        | 82 |
| France         | 85 | Slovak Republic | 79 |
| Germany        | 83 | Slovenia        | 82 |
| Greece         | 83 | Spain           | 85 |
| Hungary        | 78 | Sweden          | 83 |
| Iceland        | 83 | Switzerland     | 84 |
| Ireland        | 82 | United Kingdom  | 82 |
| Israel         | 84 | United States   | 81 |
| Italy          | 84 |                 |    |
|                |    |                 |    |

Source: World Bank

| Female Life Expecta      | ncy at bi | irth (years) Su | ıb-Sa | haran Africa (2009)   |                        |
|--------------------------|-----------|-----------------|-------|-----------------------|------------------------|
| Angola                   | 52        | Gabon           | 63    | Niger                 | 54                     |
| Benin                    | 57        | Gambia, The     | 59    | Nigeria               | 52                     |
| Botswana                 | 52        | Ghana           | 64    | Rwanda                | 56                     |
| Burkina Faso             | 55        | Guinea          | 55    | Sao Tome and Principe | 66                     |
| Burundi                  | 51        | Guinea-Bissau   | 49    | Senegal               | 60                     |
| Cameroon                 | 52        | Kenya           | 57    | Seychelles            | 78                     |
| Cape Verde               | 78        | Lesotho         | 46    | Sierra Leone          | 48                     |
| Central African Republic | 48        | Liberia         | 56    | Somalia               | 52                     |
| Chad                     | 50        | Madagascar      | 68    | South Africa          | 52                     |
| Comoros                  | 62        | Malawi          | 53    | Sudan                 | 63                     |
| Congo, Dem. Rep.         | 49        | Mali            | 52    | Swaziland             | 48                     |
| Congo, Rep.              | 58        | Mauritania      | 60    | Tanzania              | 57                     |
| Cote d'Ivoire            | 55        | Mauritius       | 77    | Togo                  | 58                     |
| Eritrea                  | 63        | Mozambique      | 50    | Uganda                | 54                     |
| Ethiopia                 | 60        | Namibia         | 62    | Zambia                | 48                     |
|                          |           |                 |       | Zimbabwe              | <b>47</b> <sub>7</sub> |

|   |                                             | High Income OECD                       | Sub-Saharan Africa                              |         |
|---|---------------------------------------------|----------------------------------------|-------------------------------------------------|---------|
|   | N                                           | 31                                     | 46                                              |         |
| ' | $\sum X$                                    | 2557                                   | 2606                                            |         |
|   | $ar{X}$                                     | 2557/31 = 82 years                     | 2606/46 = 57 years                              |         |
|   | $\sum X^2$                                  | 211007                                 | 150384                                          |         |
|   | $\sigma^2 = \frac{\sum X^2}{N} - \bar{X}^2$ | $= \frac{211007}{31} - 82^2$ $= 3.088$ | $= \frac{150384}{46} - 57^2$ $= 59.748$         |         |
|   | $\sigma$                                    | $\sqrt{3.088} = 1.757$                 | $\sqrt{59.748} = 7.729$                         |         |
|   | $\mu_3 = \frac{\sum (X - \bar{X})^3}{N}$    | $=\frac{-91.49}{31}=-2.95$             | $=\frac{24591.87}{46}=534.61$                   |         |
|   | $\alpha_3 = \frac{\mu_3}{\sigma^3}$         | $=\frac{-2.95}{1.757^3}=-0.544$        | $=\frac{534.61}{7.729^3}=1.158$ Characteristics | ap 3-18 |



## 2) Measure of Kurtosis

- Karl Pearson introduced the following terms to classify a unimodal distribution according to the shape of its hump (kambur) as compared to a normal distribution with the same variance:
  - Kurtosis = 3 Symmetrical distribution (mesokurtic)
  - Kurtosis >3 Peaked distribution (leptokurtic)
  - Kurtosis <3</li>
    Flat distribution (platykurtic platus)
- The larger the measure of kurtosis, the more peaked or flattened the distribution is.
  - Kurtosis 3 shows the «excess kurtosis».



#### Measures of Kurtosis

- Most traditional measure for kurtosis:
  - Coefficient of kurtosis: Based on the 2nd and 4th moments around the mean.

$$Kurtosis = \alpha_4 = \frac{\mu_4}{\sigma^4}$$





Characteristic



|                                          | High Income OECD                      | Sub-Saharan Africa               |
|------------------------------------------|---------------------------------------|----------------------------------|
| N                                        | 31                                    | 46                               |
| $ar{X}$                                  | 2557/31 = 82 years                    | 2606/46 = 57 years               |
| $\sigma$                                 | $\sqrt{3.088} = 1.757$                | $\sqrt{59.748} = 7.729$          |
| $\mu_4 = \frac{\sum (X - \bar{X})^4}{N}$ | $=\frac{935.88}{31}=30.19$            | $=\frac{680201}{46}=14786.98$    |
| $\alpha_4 = \frac{\mu_4}{\sigma^4}$      | $=\frac{30.19}{1.757^4}=3.165$        | $=\frac{14786.98}{7.729^4}=4.14$ |
|                                          | Mesokurtic<br>Excess kurtosis = 0.165 | Leptokurtic<br>Excess K = 1.14   |