Laboratorio di Fisica 1 R5: Misura del modulo di scorrimento di un filo

Gruppo 17: Bergamaschi Riccardo, Graiani Elia, Moglia Simone

$$22/11/2023 - 29/11/2023$$

Sommario

Il gruppo di lavoro ha misurato la costante torsionale di quattro fili metallici, al fine di verificare il modulo di scorrimento dei rispettivi materiali.

1 Materiali e strumenti di misura utilizzati

Strumento di misura	Soglia	Portata	Sensibilità
Sensore di rotazione	$0.002\mathrm{rad}$	N./A.	$0.002\mathrm{rad}$
Cronometro	$0.001\mathrm{s}$	N./A.	$0.001\mathrm{s}$
Metro	$0.1\mathrm{cm}$	$300.0\mathrm{cm}$	$0.1\mathrm{cm}$
Calibro ventesimale	$0.05\mathrm{mm}$	$150.00\mathrm{mm}$	$0.05\mathrm{mm}$
Micrometro ad asta filettata	$0.01\mathrm{mm}$	$25.00\mathrm{mm}$	$0.01\mathrm{mm}$
Bilancia di precisione	0.01 g	6200.00 g	0.01 g

Altro	Descrizione/Note	
Quattro fili inestensibili	Distinguibili per diametro e materiale. Li indicheremo con 1, 2, 3, 4.	
Tre cilindri (con masse e raggi distinti)	Indicheremo con A, B, C i tre cilindri e con $0, A + B, A + C, B + C$ e $A + B + C$ le loro combinazioni.	
Struttura portante e parti mobili	Un disco, ruotando, provoca una deformazione elastica al filo ad esso fissato lungo l'asse di rotazione.	

2 Esperienza e procedimento di misura

1. Misuriamo le masse dei cilindri con la bilancia di precisione e i rispettivi diametri con il calibro ventesimale.

- 2. Con il metro a nastro e il micrometro ad asta filettata misuriamo, rispettivamente, lunghezza e diametro dei fili.
- 3. Per ogni filo e per ogni combinazione di cilindri:
 - (a) Fissiamo il filo al sistema, in modo tale che l'estremità inferiore sia vincolata alla struttura, mentre quella superiore al disco rotante; posizioniamo poi i cilindri sopra al disco, con l'asse centrale allineato a quello del disco stesso.
 - (b) Avviamo l'acquisizione dell'angolo in funzione del tempo $(\theta(t), lo definiremo formalmente più avanti).$
 - (c) Ruotando il disco di un angolo prefissato θ_0 , diamo inizio al moto armonico del pendolo. Acquisiamo dati fino all'arresto del moto.

3 Analisi dei dati raccolti e conclusioni

Nota. Avendo valutato gli errori sulle grandezze misurate direttamente come piccoli, casuali e indipendenti, per svolgere ogni calcolo abbiamo utilizzato la tradizionale propagazione degli errori.

3.1 Costante torsionale e modulo di scorrimento

Di seguito riportiamo massa, diametro e momento d'inerzia¹ dei tre cilindretti:

i	m_i (g)	d_i (cm)	$I_i \ (10^{-4} \mathrm{kg} \mathrm{m}^2)$
A	344.07 ± 0.01	9.045 ± 0.005	3.519 ± 0.004
В	429.65 ± 0.01	5.985 ± 0.005	1.924 ± 0.003
С	473.02 ± 0.01	5.200 ± 0.005	1.599 ± 0.003

Fissiamo un sistema di riferimento inerziale, solidale all'apparato, a coordinate cilindriche (θ, r, h) , con versore \hat{z} giacente lungo l'asse di rotazione del filo (antiparallelo a \vec{g}), origine O e versore \hat{x} contenuti nel piano sul quale vengono appoggiati i cilindri. Sia inoltre P un punto materiale qualunque solidale all'estremità superiore del filo (e quindi anche ai cilindretti) che, con il filo a riposo, si trovi sul piano xOz. Allora, trascurando gli attriti, il moto di P è caratterizzato da:

$$\theta(t) = \theta_0 \cos(\omega t)$$

$$I_i = \frac{1}{2} m_i \left(\frac{d_i}{2}\right)^2 = \frac{1}{8} m_i d_i^2$$

 $^{^1}$ Il momento d'inerzia è stato calcolato approssimando questi oggetti a cilindri di densità uniforme e raggio e altezza costanti, in rotazione attorno ad un asse verticale passante per il loro centro:

 $^{^2}$ Le coordinate di un punto P in questo sistema di riferimento sono definite come segue: detta \vec{r} la proiezione di \overrightarrow{OP} sul piano per O normale a $\hat{z},\,\theta$ è l'angolo piano orientato fra \hat{x} e $\vec{r},\,r$ è la norma di \vec{r} e h è la posizione lungo \hat{z} della proiezione di P su \hat{z} stesso.

La pulsazione ω di questo moto armonico dipende dal momento d'inerzia complessivo I_{tot} dei corpi solidali all'estremità mobile del filo, nonché dalle caratteristiche del filo stesso. Queste ultime vengono riassunte nella costante torsionale C. In particolare:

$$C = I_{\text{tot}} \omega^2$$

Detto $T=2\pi/\omega$ il periodo del moto armonico, si ottiene:

$$I_{\rm tot} = \frac{C}{4\pi^2} T^2$$

Detto I_0 il momento d'inerzia che rimane costante³, al variare dei cilindretti (Cil) posizionati sopra al filo, si ha:

$$\sum_{i \in \text{Cil}} I_i = \frac{C}{4\pi^2} T^2 - I_0$$

Da questa relazione, tramite una regressione lineare (pesata⁴), è possibile ottenere una stima piuttosto precisa dei valori di C e I_0 .

 $^{^3}I_0$ include, ad esempio, il momento d'inerzia del disco su cui era possibile appoggiare i cilindretti, nonché quello della parte mobile del sensore di rotazione. $^4{\rm Gli}$ errori assoluti su I variano da punto a punto.

Figura 1: I dati raccolti, assieme alle rette di regressione lineare (in rosa, le regioni di incertezza).

Riportiamo di seguito i risultati delle regressioni lineari, dove $\xi=\frac{C}{4\pi^2}$ è il coefficiente angolare.

j	$I_0 (10^{-4} \mathrm{kg}\mathrm{m}^2)$	$\xi (10^{-4} \mathrm{J})$	C (mJ)
1	1.620 ± 0.006	2.015 ± 0.002	7.956 ± 0.010
2	1.581 ± 0.006	9.587 ± 0.012	37.85 ± 0.05
3	1.582 ± 0.006	28.56 ± 0.03	112.75 ± 0.14
4	1.587 ± 0.006	39.86 ± 0.05	157.38 ± 0.20

La costante torsionale C dipende da caratteristiche del filo, come la lunghezza l e il diametro d. In particolare, vale:

$$C = \frac{\pi}{2l} \left(\frac{d}{2}\right)^4 G = \frac{\pi d^4}{32l} G$$

dove la grandezza G (dimensionalmente, una pressione) è detta "modulo di scorrimento" del materiale di cui è composto il filo. Allora:

$$G = \frac{32l}{\pi d^4} C$$

Di seguito riportiamo, in una tabella, le misure di l e d dei vari fili e i corrispondenti valori della costante di scorrimento.

j	l (cm)	d (mm)	C(J)	G (GPa)
1	43.3 ± 0.1	0.81 ± 0.01	7.956 ± 0.010	82 ± 4
2	43.1 ± 0.1	1.20 ± 0.01	37.85 ± 0.05	80 ± 3
3	43.0 ± 0.1	1.57 ± 0.01	112.75 ± 0.14	81 ± 2
4	42.7 ± 0.1	1.97 ± 0.01	157.38 ± 0.20	45.4 ± 1.1

3.2 Attrito

Il moto del pendolo di torsione è condizionato dalla presenza di attriti, che ne riducono l'ampiezza. In particolare, il modello di riferimento è il seguente:

$$\theta(t) = \theta_0 \cos(\omega t) e^{-\lambda t}$$

dove λ è un parametro legato, appunto, agli attriti. Per stimare λ , il gruppo di lavoro ha proceduto su un'acquisizione come segue:

- 1. Per prima cosa, abbiamo calcolato $|\theta(t)|$. Ciò ci ha permesso di trattare massimi e minimi "insieme", evitando di ripetere l'analisi.
- 2. Poi, abbiamo individuato i massimi dei nostri dati, ovvero gli insiemi di punti della forma $\{t_i, t_{i+1}, \dots, t_j\} \times \{|\theta_k|\}$ tali che $|\theta_{i-1}| < |\theta_k| > |\theta_{j+1}|$.
- 3. Per ogni massimo, ne abbiamo calcolato il punto medio, prendendo come $\delta t_{\rm picco}$ la semidispersione $\frac{1}{2}(t_j t_i) + \delta t$.
- 4. Infine, abbiamo graficato i punti su scala logaritmica e abbiamo effettuato una regressione lineare (pesata⁵) sulle nuove ordinate.

 $^{^5\}delta \ln |\theta|$ è tutt'altro che costante.