Aperçu Introduction Architecture du processeur Simulation Mesure du temps Evaluation des performances

Simulateur d'horloge digitale

Clément L., Yu-Guan H., Teo S., François S.

17 janvier 2017

- Introduction
- 2 Architecture du processeur
 - Caractéristiques
 - Instructions
 - Schéma d'ensemble.
- Simulation
 - Gestion de la mémoire et des registres
 - Interface Simulateur / OCaml
 - Compilation
- Mesure du temps
 - Horloge
 - Décompte
- 5 Evaluation des performances

Table of Contents

- Introduction
- 2 Architecture du processeur
 - Caractéristiques
 - Instructions
 - Schéma d'ensemble
- Simulation
 - Gestion de la mémoire et des registres
 - Interface Simulateur / OCaml
 - Compilation
- 4 Mesure du temps
 - Horloge
 - Décompte
- 5 Evaluation des performances

Aperçu Introduction Architecture du processeur Simulation Mesure du temps Evaluation des performances

Introduction

• Processeur MIPS modifié

Introduction

- Processeur MIPS modifié
- Simulation avec un compteur d'horloge, mis à jour par OCaml

Introduction

- Processeur MIPS modifié
- Simulation avec un compteur d'horloge, mis à jour par OCaml
- Affichage OCaml.

Table of Contents

- Introduction
- 2 Architecture du processeur
 - Caractéristiques
 - Instructions
 - Schéma d'ensemble
- Simulation
 - Gestion de la mémoire et des registres
 - Interface Simulateur / OCaml
 - Compilation
- 4 Mesure du temps
 - Horloge
 - Décompte
- Evaluation des performances

Processeur MIPS

- Processeur MIPS
- Processeur 32-bits

- Processeur MIPS
- Processeur 32-bits
- 32 registres de données

- Processeur MIPS
- Processeur 32-bits
- 32 registres de données
- Collection d'instructions limitée : processeur spécialisé dans le calcul du temps.

Instructions disponibles

Opération	RegDst	Jump	Branch	MemToReg	ALUop	MemWrite	AluSrc	RegWrite
ADD	1	0	0	0	00	0	0	1
ADDI	0	0	0	0	01	0	1	1
BEQ	0	0	1	0	10	0	0	0
BGEZ	0	0	1	0	11	0	0	0
J	0	1	0	0	00	0	0	0
LW	0	0	0	1	01	0	1	1
SUB	1	0	0	0	00	0	0	1
SW	0	0	0	0	01	1	1	0
AND	1	0	0	0	00	0	0	1
OR	1	0	0	0	00	0	0	1

Schéma d'ensemble du processeur

Table of Contents

- Introduction
- 2 Architecture du processeur
 - Caractéristiques
 - Instructions
 - Schéma d'ensemble
- Simulation
 - Gestion de la mémoire et des registres
 - Interface Simulateur / OCaml
 - Compilation
- 4 Mesure du temps
 - Horloge
 - Décompte
- 5 Evaluation des performances

Gestion de la mémoire et des registres

• Le simulateur est codé entièrement avec MiniJazz

Gestion de la mémoire et des registres

- Le simulateur est codé entièrement avec MiniJazz
- Les 32 registres du processeur sont stockés dans la RAM

Gestion de la mémoire et des registres

- Le simulateur est codé entièrement avec MiniJazz
- Les 32 registres du processeur sont stockés dans la RAM
- Un registre est accessible depuis l'extérieur du programme de simulation : R30, qui sert d'horloge au processeur.

Compilation

- Compilation avec Python : obtention d'un fichier binaire à partir de langage assembleur
- Assembleur très simple, ressemblant à du pseudocode
- Pas d'optimisation, simple substitution des instructions par leur code binaire.

Table of Contents

- Introduction
- 2 Architecture du processeur
 - Caractéristiques
 - Instructions
 - Schéma d'ensemble
- Simulation
 - Gestion de la mémoire et des registres
 - Interface Simulateur / OCaml
 - Compilation
- Mesure du temps
 - Horloge
 - Décompte
- Evaluation des performances

 OCaml inscrit, une fois par seconde, une valeur de 0 dans le registre R30.

 OCaml inscrit, une fois par seconde, une valeur de 0 dans le registre R30. Cela représente l'horloge à quartz de l'ordinateur.

- OCaml inscrit, une fois par seconde, une valeur de 0 dans le registre R30. Cela représente l'horloge à quartz de l'ordinateur.
- Le programme boucle jusqu'à ce que cette valeur soit lue.

- OCaml inscrit, une fois par seconde, une valeur de 0 dans le registre R30. Cela représente l'horloge à quartz de l'ordinateur.
- Le programme boucle jusqu'à ce que cette valeur soit lue.
- Quand il la lit, il inscrit -1 dans le registre et incrémente le compteur des secondes.

- OCaml inscrit, une fois par seconde, une valeur de 0 dans le registre R30. Cela représente l'horloge à quartz de l'ordinateur.
- Le programme boucle jusqu'à ce que cette valeur soit lue.
- Quand il la lit, il inscrit -1 dans le registre et incrémente le compteur des secondes.
- A ce moment-là, l'ensemble des calculs de minute, heure, jour, etc... sont effectués.

 Secondes, minutes, heures: un simple compteur est remis à 0 lorsqu'il atteint 60 (ou 24).

- Secondes, minutes, heures: un simple compteur est remis à 0 lorsqu'il atteint 60 (ou 24).
- Mois : La mémoire contient une table réunissant les longueurs des mois selon les années bissextiles ou non. La valeur correspondant au mois en cours est chargée et comparée à la valeur du compteur du nombre de jours.

- Secondes, minutes, heures: un simple compteur est remis à 0 lorsqu'il atteint 60 (ou 24).
- Mois : La mémoire contient une table réunissant les longueurs des mois selon les années bissextiles ou non. La valeur correspondant au mois en cours est chargée et comparée à la valeur du compteur du nombre de jours.
- Trois compteurs, de période 4, 100 et 400 ans respectivement, permettent de déterminer si une année est bissextile ou non.
 Ces compteurs sont mis à jour chaque année.

- Secondes, minutes, heures: un simple compteur est remis à 0 lorsqu'il atteint 60 (ou 24).
- Mois : La mémoire contient une table réunissant les longueurs des mois selon les années bissextiles ou non. La valeur correspondant au mois en cours est chargée et comparée à la valeur du compteur du nombre de jours.
- Trois compteurs, de période 4, 100 et 400 ans respectivement, permettent de déterminer si une année est bissextile ou non.
 Ces compteurs sont mis à jour chaque année.
- Un quatrième compteur permet de déterminer le jour de la semaine.

Table of Contents

- Introduction
- 2 Architecture du processeur
 - Caractéristiques
 - Instructions
 - Schéma d'ensemble
- Simulation
 - Gestion de la mémoire et des registres
 - Interface Simulateur / OCaml
 - Compilation
- 4 Mesure du temps
 - Horloge
 - Décompte
- 5 Evaluation des performances

Aperçu Introduction Architecture du processeur Simulation Mesure du temps Evaluation des performances

• Nous testons les performances lors d'un changement d'année (31 dec. 2016 à 23h59, 59s).

- Nous testons les performances lors d'un changement d'année (31 dec. 2016 à 23h59, 59s).
- La vitesse de l'horloge est évaluée en envoyant le signal de la seconde plusieurs fois par seconde.

- Nous testons les performances lors d'un changement d'année (31 dec. 2016 à 23h59, 59s).
- La vitesse de l'horloge est évaluée en envoyant le signal de la seconde plusieurs fois par seconde.
- Fonctionne correctement (sans décalage observé) en temps réel.

- Nous testons les performances lors d'un changement d'année (31 dec. 2016 à 23h59, 59s).
- La vitesse de l'horloge est évaluée en envoyant le signal de la seconde plusieurs fois par seconde.
- Fonctionne correctement (sans décalage observé) en temps réel.
- Si on force l'horloge à tourner plus vite (deux fois le temps réel p.ex.), un décalage arrive lors du changement d'année : les nombreux tests de passage d'année ne sont pas finis lorsque OCaml envoie le signal de la seconde : le système "saute" une seconde.