

Reliable Firmware Updates for the Information-Centric Internet of Things

ACM ICN 2021, Virtual Event, Paris, France

Cenk Gündoğan¹ Chr

Christian Amsüss

Thomas C. Schmidt¹

Matthias Wählisch²

¹HAW Hamburg ²Freie Universität Berlin

Common IoT Deployment

Device Characteristics

- Cloud services and gateways are powerful and resource-abundant
- ▶ IoT devices have low energy budgets and are resource-constrained

Network characteristics

- Connectivity between cloud services and gateways is perpetual
- Connectivity between gateways and IoT devices is intermittent

Lifecvcle Management

- General purpose devices require software updates

A secure and reliable firmware propagation in low-power regimes is mandatory

Challenges of Firmware Propagation

- ▶ Updates are resource-consuming and show as peak loads in the Internet
- ▶ IoT firmware images are 1–2 orders of magnitude larger than sensor values
- ▶ Bandwidth limitation on constrained networks calls for new approaches

Update propagations can lead to DDoS and break security

Research Question

Can we leverage the benefits of NDN to perform secure and reliable firmware roll-outs at large-scale for the IoT?

Outline

Reliable Firmware Updates with NDN

Protocol Performance Evaluation

Conclusion & Outlook

Reliable Firmware Updates

with NDN

Building Blocks for Reliable Firmware Updates with NDN

SUIT as blueprint and involvement of multiple stakeholders

Naming Scheme and Firmware Versioning

Hierarchy allows for FIB aggregation

- Version number is timestamp
- ► Release cycles per device class
- Devices request on schedule

SUIT-based Manifest

- Contains meta information on a specific firmware version
- References the actual firmware binary and chunks

Firmware Retrieval

- Successful version discovery triggers firmware retrieval
- Complete images verify against message digest in signed manifest

Retrieval Strategies

Concurrent Retrievals

- Nodes retrieve missing chunks and also forward to downstream nodes
- Multiple nodes on a path perform update concurrently

Cascading Retrievals

- Nodes block downstream chunk requests while local retrieval is running
- Single node on a path performs update at a time

Indirect Version Discovery

 Forwarders detect valid version request and implicitly add face_{app} to PIT

Indirect Version Discovery

- Forwarders detect valid version request and implicitly add face_{app} to PIT
- Returning manifest triggers upcall to update process and also propagates downstream to face_{in}

Local Buffer Management

- Chunks reside in persistent memory (e.g., embedded flash, SD card, ...)
- ▶ NDN serves cache hits from same buffer to minimize RAM usage

Local Buffer Management

- Chunks reside in persistent memory (e.g., embedded flash, SD card, ...)
- ▶ NDN serves cache hits from same buffer to minimize RAM usage
- Forwarder locally delivers chunks from overlapping update processes

Experiment Setup

Hardware M3 node in IoT Lab testbed, IEEE 802.15.4

Topology 30 devices, 1 gateway

Scenario Devices request new firmware version

Experiment Setup

Hardware M3 node in IoT Lab testbed, IEEE 802.15.4

Topology 30 devices, 1 gateway

Scenario Devices request new firmware version

Update completion time [sec]

Conclusion & Outlook

Conclusion & Outlook

Takeaways

- Inf.-centric content replication fosters efficient, reliable chunk dissemination
- Concurrent, uncoordinated distribution results in high link stress
- Cascading delivery relaxes strain on network resources
- Deployments with common binaries benefit from in-network caching

Next Steps

- Evaluate distribution of partial firmware updates
- Explore enhanced security measures to ease voluminous data transfers

Thank You!

We support reproducible research.

https://github.com/inetrg/ACM-ICN-2021-FWUPDATE

Backup

Overhead of Chunk-wise Signatures

- ▶ IEEE 802.15.4 MTU of 127 bytes with 23 MAC header overhead
- EdDSA with 64-byte signatures, NDN name and header with 31 bytes
- Payload size: 9 bytes (w/o ICNLoWPAN)

Overhead of Chunk-wise Signatures

- IEEE 802.15.4 MTU of 127 bytes with 23 MAC header overhead
- EdDSA with 64-byte signatures, NDN name and header with 31 bytes
- Payload size: 9 bytes (w/o ICNLoWPAN), 35 bytes (w/ ICNLoWPAN)

Overhead of Chunk-wise Signatures

▶ IEEE 802.15.4 MTU of 127 bytes with 23 MAC header overhead

Enhanced Integrity Verification

- Asymmetric crypto is slow and energy-exhaustive (w/o crypto processor)
- Signatures reside in content store to serve cache hits for protected data

Enhanced Integrity Verification

- HMAC with pre-shared key is fast, but requires out-of-band channel
- Signatures are reproducible and can be discarded on reception

