MATH 644

Chapter 4

SECTION 4.4: WEIERSTRASS' THEOREM

Contents

Weierstrass' Theorem	2
Integrating On Continuous Curves	4

Created by: Pierre-Olivier Parisé Spring 2023 **THEOREM 1.** Suppose (f_n) is a collection of analytic functions on a region Ω such that $f_n \to f$ uniformly on compact subsets of Ω . Then f is analytic on Ω . Moreover, $f'_n \to f'$ uniformly on compact subsets of Ω .

Lemma 2. If G is integrable on a piecewise continuously differentiable curve γ , then

$$g(z) := \int_{\gamma} \frac{G(\zeta)}{\zeta - z} d\zeta$$

is analytic in $\mathbb{C}\backslash\gamma$ and

$$g'(z) = \int_{\gamma} \frac{G(\zeta)}{(\zeta - z)^2} d\zeta.$$

Proof. Write, for z, z+h
$$\in C/y$$
 (h $\neq 0$)

 $\frac{g(z+h)-g(z)}{h} = \int_{\gamma} \frac{G(3)}{(3-z-h)(3-z)} d3$

As h->0, $\frac{G(3)}{(3-z-h)(3-z)} \longrightarrow \frac{G(3)}{(3-z)^2}$

uniformly on y. and so $g'(z)$ exists and

 $g'(z) = \lim_{h \to 0} \int_{\gamma} \frac{G(3)}{(3-z-h)(3-z)} d3 = \int_{\gamma} \frac{G(3)}{(3-z)^2} d3$

Horeover, g' is continuous and therefore g

D

is holomorphic on aly

Proof of Weierstrass's Theorem.

then,
$$f_n(z) = \frac{1}{2\pi i} \int_{\partial B} \frac{f_n(3)}{3-z} d3$$
, $z \in B$.

Since
$$\partial B \subseteq JZ$$
 is compact, fr -> f uniformly on ∂B . In particular, f is continuous.

Set
$$F(z) = \frac{1}{2\pi i} \int_{\partial B} \frac{f(3)}{3-z} d3$$
, $z \in B$.

By Lemma 2, F is analytic on B. But
$$f(z) = \lim_{n \to \infty} f_n(z) = \frac{1}{2\pi i} \int_{\partial B} \frac{\lim_{n \to \infty} f_n(3)}{3-2} d3$$

2) From Lemma Z,

$$f'_{n}(z) = \frac{1}{2\pi i} \int_{\partial B} \frac{f_{n}(3)}{(3-2)^{2}} d3$$
, ZEB

$$f'(z) = \frac{1}{2\pi i} \int_{\partial B} \frac{f(3)}{(5-z)^2} d3, \quad z \in B.$$

Proof of Weierstrass's Theorem. (con himsed)

By assumption, me obtain $f'_n \rightarrow f'$ unif. on some $B_0 \subseteq B$.

If $K \subseteq \mathcal{R}$ is compact, then cover K by such balls (\overline{Bo}) where $f_n \longrightarrow f$ unit. B

INTEGRATING ON CONTINUOUS CURVES

Goal:

• Extend the definition of the integral to continuous maps $\gamma:[a,b]\to\mathbb{C}.$

Lemma 3. Suppose Ω is a region and suppose $\gamma:[0,1]\to\Omega$ is continuous. Given $\varepsilon>0$ with $0<\varepsilon<\mathrm{dist}(\gamma,\partial\Omega)$, we can find a finite partition $0=t_0< t_1<\cdots< t_n=1$ so that

- a) $\gamma([t_{j-1}, t_j]) \subset B_j := \{z : |z \gamma(t_j)| < \varepsilon\}$ for every $j = 1, \dots, n$;
- **b)** $B_j \subset \Omega$ for every $j = 1, \ldots, n$.

Proof.

Construction:

THEOREM 4. Suppose Ω is a region and $\gamma:[0,1]\to\mathbb{C}$ is continuous with $\gamma\subset\Omega$. Let σ be the polygonal curve defined in the last page. If f is analytic on Ω , define

$$\int_{\gamma} f(z) \, dz = \int_{\sigma} f(z) \, dz.$$

Then this definition of $\int_{\gamma} f(z) dz$ does not depend on the choice of the polygonal curve σ and it agrees with our prior definition if γ is piecewise continuously differentiable.

Proof.