Math 108. Topics in combinatorics: The probabilistic method.

Assignment 4. Due on Tuesday, 3/4/2008.

1. Fir $1 \le i \le n$ let X_i be independent random variables with $\Pr[X_i = 1] = 1/i$, $\Pr[X_i = 0] = 1 - 1/i$. Set $Y_n = \sum_{i=1}^n X_i$. Find precise formulas (as summations, there will not be a closed form) and asymptotic formulas for both $E[Y_n]$ and $Var[Y_n]$. Use Chebyshev's Inequality to show that for any $\epsilon > 0$,

$$\lim_{n \to \infty} \Pr[|Y_n - E[Y_n]| > \epsilon E[Y_n]] = 0.$$

- 2. (a) Let $G \sim G(n,p)$ with $p = cn^{-1/2}$. Let v,w be two fixed vertices of G. Let X be the number of paths of length two from v to w. Find the asymptotic values of E[X] and Var[X] as a function of c for fixed c as $n \to \infty$.
 - (b) Let $G \sim G(n, p)$ with $p = cn^{-2/3}$. Let v, w be two fixed vertices of G. Let X be the number of paths of length three from v to w. Find the asymptotic values of E[X] and Var[X] as a function of c for fixed c as $n \to \infty$.
- 3. Consider a drawing (in the intuitive sense) of a graph G on the plane with v vertices, e edges, and κ crossings (a crossing is a pair of edges with distinct endpoints that cross). In this exercise we find a lower bound for κ as a function of v, e.
 - (a) Show that if $\kappa = 0$ then $e \leq 3v$ (and in fact $e \leq 3v 6$ if $v \geq 3$).
 - (b) Show that $\kappa \geq e 3v$ (and in fact $\kappa \geq e (3v 6)$ if $v \geq 3$).
 - (c) Take a random subset U of the vertices, where for each vertex P, $\Pr[P \in U] = p$ and these events are mutually independent. Let X, Y, Z be the expected number of vertices, edges and crossings respectively in the restriction of the drawing to U. Show that E[X] = vp, $E[Y] = ep^2$, $E[Z] = \kappa p^4$.
 - (d) From parts (b) and (c) give a condition on κ of the form: For all $p \in [0,1]$ yadda yadda yadda.
 - (e) Use calculus to derive a theorem in the form: If e is at least blip blip blip then κ is a least blah blah blah. The blip blip blip condition will simply reflect that p must lie in [0,1].
- 4. Let A be a random $n \times n$ matrix of zeroes and ones where $\Pr[A_{ij} = 1] = p = cn^{-1/2}$ and the a_{ij} are independent. We consider asymptotics for c > 0 fixed and $n \to \infty$.
 - (a) Find the asymptotic probability that $a_{11} = 1$ and there is no 3×3 all ones submatrix that includes a_{11} . (Use Janson's Inequality, first conditioning on $a_{11} = 1$.)
 - (b) Revisit Problem 5 of Assignment 1, asking for the maximal number f(n) of ones in a ninefree $n \times n$ matrix. Use the above result to get a new asymptotic lower bound on f(n) with a different constant.

- 5. The van der Waerden function W(k) is the least n so that for any two coloring of $1, \ldots, n$ there is a monochromatic arithmetic progression $a, a+d, a+2d, \ldots, a+(k-1)d$ with k terms. The existence of W(k) is known as van der Waerden's Theorem. Here we look at lower bounds. So W(k) > n means there exists a coloring of $1, \ldots, n$ without a monochromatic arithmetic progression with k terms. Consider a random coloring and for each $S = \{a, a+d, a+2d, \ldots, a+(k-1)d\}$ let B_S be the event that S is monochromatic.
 - (a) Use standard probabilistic methods to derive a lower bound on W(k). Find the asymptotics of the lower bound.
 - (b) Use the Lovász Local Lemma to derive a lower bound on W(k). Find the asymptotics of the lower bound.