Université de Picardie Jules Verne. Année 2024-2025.

M1: Optimisation

TD5

Exercice 1

Soit $\alpha > 0$. On considère la suite de nombres réels (x_k) définie par

$$x_{k+1} = \frac{1}{2}(x_k + \frac{\alpha}{x_k}), \quad x_0 \in \mathbb{R}_+^*.$$

- 1. Étudier la convergence de (x_k) .
- 2. Quelle méthode itérative a-t-on illustréà la question précédente ?

Exercice 2

On rappelle que si $A \in M_n(\mathbb{R})$, ||A|| < 1, ||.|| norme matricielle quelconque, alors la matrice Id - A est inversible, et de plus, son inverse est donnée par $\sum_{n=0}^{+\infty} A^k$.

Pour $A \in GL_n(\mathbb{R})$ et $A_0 \in M_n(\mathbb{R})$, on définie la méthode itérative suivante pour $k \geq 0$

$$A_{k+1} = 2A_k - A_k A A_k.$$

0. Montrer que

$$\operatorname{Id} - AA_{k+1} = (\operatorname{Id} - AA_k)^2,$$

puis que, sous l'hypothèse $\rho(\text{Id-A}A_0) < 1$, la matrice A_k est inversible pour tout $k \ge 1$.

- 1. Montrer que la suite matricielle (A_k) converge vers A^{-1} si et seulement si $\rho(\mathrm{Id} AA_0) < 1$.
- 2. Montrer qu'il existe une constante C > 0 telle que

$$||A_{k+1} - A^{-1}|| \le C||A_k - A^{-1}||^2$$
.

(indication : développer $(A^{-1} - A_k)A(A^{-1} - A_k)$). Qu'en déduisez-vous ?

3. On pose

$$A_0 = \frac{A^*}{\|A\|.\|A^*\|}.$$

Montrer que la méthode converge avec cette valeur initiale.

4. On considère l'application \mathcal{F} définie par pour $M \in GL_n(\mathbb{R})$ par

$$\mathcal{F}(M) = M^{-1} - A.$$

Montrer que \mathcal{F} est différentiable et que

$$\mathcal{F}'(M).N = -M^{-1}NM^{-1}.$$

- 5. Décrire la méthode de Newton appliquée à \mathcal{F} .
- 6. À quelle condition sur la donnée initiale A_0 la méthode obtenue en 5. converge-t-elle?

Exercice 3

On se donne une famille d'éléments

$$A_k(x) \in \text{Isom}(X;Y), k \in \mathbb{N}; x \in \Omega.$$

On définit alors la suite (x_k) par $x_0 \in \Omega$ et

$$x_{k+1} = x_k - A_k(x_k)^{-1} f(x_k) \ k \ge 0.$$

On suppose l'espace X complet et la fonction f dérivable dans Ω . On suppose par ailleurs qu'il existe trois constantes r, M, β telles que :

$$r > 0$$
 et $B = \{x \in X; ||x - x_0|| \le r\} \subset \Omega$,

$$\sup_{k \ge 0} \sup_{x \in B} ||A_k^{-1}(x)|| \le M,\tag{1}$$

$$\sup_{k \ge 0} \sup_{x, x' \in B} \|f'(x) - A_k(x')\| \le \frac{\beta}{M}, \quad \beta < 1,$$
 (2)

et

$$||f(x_0)|| \le \frac{r}{M}(1-\beta).$$
 (3)

1. Établir par récurrence les inégalités suivantes :

$$||x_k - x_{k-1}|| \le M||f(x_{k-1})||, \tag{4}$$

$$||x_k - x_0|| \le r,\tag{5}$$

$$||f(x_k)|| \le \frac{\beta}{M} ||x_k - x_{k-1}||.$$
 (6)

- 2. En déduire que la suite (x_k) est une suite de Cauchy.
- 3. Montrer que f admet au moins un zéro dans B.
- 4. Montrer l'unicité du zéro de f dans B.

Indication : supposer que f admet deux zéros a et b et utiliser l'identité

$$b - a = -A_0^{-1}(x_0)(f(b) - f(a) - A_0(x_0)(b - a)).$$