Porteføljeteori II Erhvervsøkonomi

Asger Lau Andersen

Økonomisk Institut, Københavns Universitet

Program

- Den formelle porteføljeteori
 - Forventet afkast og varians af porteføljer
 - Grænser for diversifikation
 - Efficiente porteføljer
 - Præferencer og valg af portefølje
- Anvendelse i praksis, begrænsninger og kritikpunkter.

Den formelle porteføljeteori

- Investorerne kan investere i n forskellige værdipapirer
- En portefølje er defineret ved n porteføljevægte $(w_1, w_2...w_n)$, hvor w_i angiver andelen for værdipapir i, $\sum_{i=1}^n w_i = 1$
- Det fremtidige afkast af værdipapir i er en stokastisk variabel
 R_i med tilhørende sandsynlighedsfordeling
- Investorerne kender de enkelte værdipapirers middelværdi, varians og deres kovarianser
- Investorerne har præferencer over porteføljens forventede afkast og varians
 - Jo højere forventet afkast, jo bedre (afkastsøgende)
 - Jo lavere varians, jo bedre (risikoaverse)
- Hvilke porteføljevægte skal investorerne vælge?

Porteføljens afkast

Betragt en portefølje defineret ved porteføljevægtene $(w_1, w_2...w_n)$:

- Afkastene af de enkelte værdipapirer i porteføljen, R₁, ...R_n, er hver især stokastiske variable
- Afkastet af porteføljen er et vægtet gennemsnit af de enkelte værdipapirers afkast. Altså en sammensat stokastisk variabel R_p:

$$R_p = w_1 R_1 + w_2 R_2 + ... + w_n R_n$$

Eksempel:

- Portefølje m. 40% i Novo, 35% i Vestas, 25% i Danske Bank
- Hvis realiserede afkast på hhv. 12%, 8% og -3% => porteføljeafkast på

$$R_p = 0,40 \cdot 0,12 + 0,35 \cdot 0,08 + 0,25 \cdot (-0,03) = 0,07$$

Porteføljens forventede afkast

Reminder #1: Hvis X og Y er stokastiske variable, og $Z = w_X X + w_Y Y$, gælder:

$$E(Z) = w_X E(X) + w_Y E(Y)$$

Ved at generalisere denne formel til en sum med n elementer får vi, at **det forventede afkast af porteføljen** er:

$$E[R_p] = w_1 E[R_1] + w_2 E[R_2] + ... + w_n E[R_n]$$

Altså et vægtet gennemsnit af de forventede afkast for de enkelte værdipapirer i porteføljen.

Porteføljens varians

Reminder #2: Hvis X og Y er stokastiske variable, og $Z = w_X X + w_Y Y$, gælder:

$$\sigma_Z^2 = w_X^2 \sigma_X^2 + w_Y^2 \sigma_Y^2 + 2w_X w_Y \sigma_{XY}$$

Variansen af porteføljens afkast findes ved at generalisere ovenstående formel til tilfældet med n elementer i summen:

$$\sigma_p^2 = \sum_i w_i^2 \sigma_i^2 + \sum_i \sum_{j \neq i} w_i w_j \sigma_{ij}$$

Porteføljevariansen afhænger altså af variansen af hver enkelt værdipapir i porteføljen samt af kovarianserne mellem værdipapirerne.

Checkspørgsmål

Betragt tre værdipapirer, A, B og C, med følgende varians-kovariansmatrix:

$$var(A, B, C) = \begin{bmatrix} \sigma_A^2 & \sigma_{BA} & \sigma_{CA} \\ \sigma_{AB} & \sigma_B^2 & \sigma_{CB} \\ \sigma_{AC} & \sigma_{BC} & \sigma_C^2 \end{bmatrix} = \begin{bmatrix} 1, 1 & 0, 6 & 0, 3 \\ 0, 6 & 0, 9 & 0, 2 \\ 0, 3 & 0, 2 & 2, 3 \end{bmatrix}$$

- Hvad er variansen af en portefølje med 40% af aktiv A og 60% af aktiv B?
- Wad er variansen af en portefølje med 40% af aktiv A, 40% af aktiv B og 20% af aktiv C?

Indtast svar i Socrative (room name: Erhvervsokonomi2021)

Hint: Diagonalelementerne i varians-kovariansmatricen angiver varianserne for de tre værdipapirer, de øvrige elementer angiver kovarianserne.

Lynquiz

Er det muligt, at man ved at tilføje et meget risikabelt værdipapir til en portefølje kan reducere porteføljens samlede risiko?

Diversifikation

Bemærk: En porteføljes forventede afkast er lig det vægtede gns. af elementernes forventede afkast.

MEN: Standardafvigelsen for porteføljens afkast er *mindre* end det vægtede gns. af elementernes standardafvigelser:

$$\sigma_p \le w_1 \sigma_1 + w_2 \sigma_2 + \dots + w_n \sigma_n$$

Vi har hermed formaliseret vores intuitive indsigt om diversifikation fra sidste gang: ved at sammensætte en portefølje af flere værdipapirer med samme forventede afkast, kan risikoen reduceres, uden at det forventede afkast bliver lavere.

Betydningen af kovarianser

Betragt igen formlen for porteføljens varians:

$$\sigma_p^2 = \sum_i w_i^2 \sigma_i^2 + \sum_i \sum_{j \neq i} w_i w_j \sigma_{ij}$$

Der er n varianser og n(n-1) kovarianser, fx

- 5 værdipapirer: 5 varianser og 20 kovarianser
- 100 værdipapirer: 100 varianser og 9900 kovarianser

Tilføjes et værdipapir til en portefølje med n elementer, får porteføljens varians:

- 1 yderligere variansled
- 2n yderligere kovariansled

Indsigt: Når antallet af værdipapirer i porteføljen (n) øges, bliver variansleddene mindre vigtige i forhold til kovariansleddene

Hvor meget kan risikoen reduceres ved diversifikation?

Porteføljens varians har to elementer

- varianserne → "individuel risiko"
- kovarianserne → "markedsrisiko"

Hvis antallet af værdipapirer i porteføljen øges \rightarrow individuel risiko forsvinder, men markedsrisiko forbliver.

Eksempel:

- risikoen forbundet med, om kunderne kan lide Carlsbergs nye øl, kan diversificeres væk ved at købe aktier i mange forskellige bryggerier
- risikoen forbundet med et generelt fald i ølsalget diversificeres ikke væk på denne måde

Forskellige værdipapirers afkast er typisk positivt korrelerede, fordi store "markedsbegivenheder" påvirker virksomhederne i samme retning \rightarrow noget risiko forbliver

Et illustrativt eksempel: Forudsætninger

Simpelt tilfælde: *n* værdipapirer med samme middelværdi og standardafvigelse, samme korrelation mellem alle:

$$E[R_i] = \mu$$
 for alle $i = 1, ..., n$
 $\sigma_i = \sigma$ for alle $i = 1, ..., n$
 $\rho_{ij} = \rho < 1$ for alle $i, j = 1, ..., n, j \neq i$

Implikationer:

$$E[R_p] = w_1\mu + w_2\mu + ... + w_n\mu = \mu$$

$$\sigma_p < w_1\sigma + w_2\sigma + ... + w_n\sigma = \sigma$$

Samme forventede afkast som for de enkelte værdipapirer, men mindre standardafvigelse: **Diversifikationsprincippet!**

Et illustrativt eksempel: Porteføljens varians

Porteføljens varians kan i det generelle tilfælde skrives som

$$\sigma_p^2 = \sum_{i=1}^n w_i^2 \sigma_i^2 + \sum_{i=1}^n \sum_{j \neq i} w_i w_j \rho_{ij} \sigma_i \sigma_j$$

Hvis $\sigma_i=\sigma$ og $\rho_{ij}=\rho$ for alle i=1,..., n, $j\neq i$, fås:

$$\sigma_p^2 = \sigma^2 \sum_{i=1}^n w_i^2 + \rho \sigma^2 \sum_{i=1}^n \sum_{j \neq i} w_i w_j$$

Et illustrativt eksempel: Valg af porteføljevægte

Illustrativt eksempel: Antag, at investoren fordeler sin investering ligeligt mellem de n værdipapirer \Longrightarrow porteføljevægt 1/n for hvert af dem, dvs.

$$w_i = \frac{1}{n}$$
 for alle $i = 1, ..., n$

Porteføljens varians bliver:

$$\sigma_{p}^{2} = \sigma^{2} \sum_{i=1}^{n} (\frac{1}{n})^{2} + \rho \sigma^{2} \sum_{i=1}^{n} \sum_{j \neq i} (\frac{1}{n})^{2}$$
$$= \frac{\sigma^{2}}{n} + \rho \sigma^{2} \frac{n-1}{n}$$

Et illustrativt eksempel: Hvad sker der, når antallet af værdipapirer i porteføljen øges?

- Antag først, at alle værdipapirerne er helt ukorrelerede $(\rho=0)$. Hvad sker der med porteføljens varians, når $n\to\infty$?
- ② Antag nu, at værdipapirerne er positivt korrelerede ($\rho > 0$). Hvad sker der med porteføljens varians, når $n \to \infty$?
- Nedenstående figur er taget fra bogen. Hvorfra kommer den ikke-diversificerbare, systemiske risiko, som er illustreret i figuren?

- Første skridt: Hvilke porteføljer kan investoren vælge?
- Mulige porteføljer: enhver kombination af $(w_1, w_2...w_n)$ hvor $\sum w_i = 1$ er en mulig portefølje
- ullet For hver mulig portefølje kan beregnes $E[R_p]$ og σ_p

 $\mathsf{Risk} = \sigma$

Dominerede vs efficiente porteføljer

- En portefølje siges at være domineret, hvis der findes en anden mulig portefølje med enten
 - samme forventede afkast, men lavere risiko
 - samme risiko, men højere forventet afkast
- Efficient portefølje: En portefølje er efficient, hvis den ikke er domineret af andre mullige porteføljer
- Den mulige portefølje med laveste risiko kaldes minimumsvariansporteføljen.
- En risikoavers investor vil aldrig vælge en domineret portefølje
 - ightarrow vi kan fokusere på mængden af efficiente porteføljer

Hvilken portefølje skal investoren vælge fra mængden af efficiente porteføljer?

Dette afhænger af investorens præferencer

- Hvor risikoavers er investoren?
- Hvor meget ekstra forventet afkast skal han have for at påtage sig en smule mere ekstra risiko?

Vi illustrerer investorens præferencer med indifferenskurver:

- Den optimale portefølje findes der, hvor mængden af efficiente porteføljer tangerer en indifferenskurve
- ullet Dette sikrer højest mulige nytte ullet den bedst mulige afvejning mellem risiko og forventet afkast

Checkspørgsmål

En investor kan vælge mellem fire porteføljer:

- Portefølje A har forventet afkast på 0, 12 og standardafvigelse 0, 06.
- Portefølje B har forventet afkast på 0,09 og standardafvigelse 0,05.
- Portefølje C har forventet afkast på 0, 10 og standardafvigelse 0, 04.
- Portefølje D har forventet afkast på 0, 11 og standardafvigelse 0, 06.
- Kan vi sige entydigt, hvilken af de fire porteføljer en risikoavers investor vil vælge?
- Wan vi sige entydigt, om der er én eller flere af de fire porteføljer, som en risikoavers investor ikke vil vælge?

Angiv svar i Socrative (room name: ERHVERVSOKONOMI2021)

Hvordan kan porteføljeteorien bruges i praksis?

- Ingen kender den sande sandsynlighedsfordeling for værdipapirers afkast $\rightarrow E[R_i]$, σ_i^2 og σ_{ij} er i princippet ukendte
- Vi kan lave statistiske analyser af de historiske afkast og estimere de teoretiske størrelser ved at beregne aritmetisk gns. af afkast, empiriske varianser og empiriske kovarianser
 - Vigtig implicit antagelse: Fremtidige afkast trækkes fra samme sandsynlighedsfordeling som historiske afkast.
 - Ikke altid en god antagelse husk kritisk sans.

Porteføljeteori - vigtige indsigter

- **Indsigt 1**: En porteføljes varians kan reduceres, uden at det forventede afkast mindskes, ved at sprede investeringen over flere værdipapirer \Longrightarrow diversifikationsprincippet
- **Indsigt 2**: Diversifikationsgevinsten er større, jo mindre korrelationen mellem værdipapirerne i porteføljen er.
- **Indsigt 3**: Når porteføljen består af mange værdipapirer, afhænger dens varians primært af værdipapirernes indbyrdes kovarians, og ikke af deres individuelle varianser.
- **Indsigt 4**: Ved at tilføje tilstrækkelig mange værdipapirer til porteføljen kan risiko fra individuelle virksomhedsforhold (variansled) elimineres, men risiko fra markedsforhold (kovariansled) kan ikke elimineres.

Reminder: Positiv vs. normativ teori

Vi kan opfatte Markowitz-modellen på to måder:

- En normativ teori for, hvordan investorer bør investere deres midler, såfremt modellens antagelser (herunder om risikoaversion) er opfyldt.
 - Evaluer modellen ved at diskutere gyldigheden af dens antagelser og resultaternes praktiske anvendelighed
- 2 En positiv teori om, hvordan investorer rent faktisk investerer
 - Evaluer modellen ved at diskutere gyldigheden af dens antagelser og ved at teste, om dens forudsigelser er i overensstemmelse med empiriske observationer

Begrænsninger og kritikpunkter I

Begrænsninger ved Markowitz-modellen som normativ teori:

- Ikke retvisende guide for investorer med andre præferencer end antaget i modellen
- Antager ingen risikofri aktiver (→ næste kapitel)
- Forudsætter kendskab til et meget stort antal parametre (mange kovarianser!)
- ullet Stor mængde af effciente porteføljer o ingen præcis angivelse af, hvilken én man bør vælge

Begrænsninger og kritikpunkter II

Begrænsninger ved Markowitz-modellen som positiv teori:

- Antager, at investorer udelukkende går op i porteføljens forventede afkast og varians
 - Det behøver ikke være tilfældet i praksis.
- Forudsiger stort omfang af internationale investeringer, fordi værdipapirer er mindre korrelerede mellem lande end indenfor lande
 - I praksis meget færre udenlandske aktier i porteføljer end teorien foreskriver ("home bias")
- Forudsiger høj grad af diversifikation blandt alle investorer
 - Tegn på alvorlig underdiversificering blandt nogle private investorer

Årsagen til "home bias"?

»Jeg er fra Roskilde, og så var det meget naturligt at have aktier i banken. Det gjorde man, hvis man var rigtig roskildenser«.

Taget fra artikel i Politiken, 16. november 2015: "Jane tabte 80.000 kr.: »Jeg skulle ikke en gang skrive under for at købe aktier«"

Er private investorer "økonomisk inkompetente"?

Gennemsnitlig portefølje for 18- til 65-årige danskere, der ejer mindst 1 aktie eller 1 investeringsforeningsbevis (tal fra 2010):

Diversificering Antal direkte ejede aktier i porteføljen 1.6 (2.3)Andel individer kun med egne bankaktier (%) 32.3 Andel af portefølje i bankaktier (%) 49.0 Andel af bankaktier i egeninvestering (%) 76.5 Andel af portefølje i investeringsforeninger (%) 25.7 Andel af investeringsforeninger i egeninvestering (%) 75.2 Antal observationer 785,274

Kilde: Steffen Andersen og Hans Jørgen Nielsen: "Ansvar for borgernes økonomiske inkompetence". Artikel forberedt til Nationaløkonomisk Forenings Årsmøde 2016.

Er private investorer "økonomisk inkompetente"?

Porteføljeegenskaber for svenske husholdningers private investeringer

Kilde: Laurent Calvet, John Campbell, Paolo Sodini: "Down or Out: Assessing the Welfare Costs of Household

Er private investorer "økonomisk inkompetente"?

Porteføljeegenskaber for svenske husholdningers private investeringer

Kilde: Laurent Calvet, John Campbell, Paolo Sodini: "Down or Out: Assessing the Welfare Costs of Household

En hellig pagt

