Homework 5

Walker Bagley and Hayden Gilkinson

February 17, 2023

Section 7

1.
$$\langle gcd(2,3)\rangle = \langle 1\rangle = \{2,3,4,5,6,7,8,9,10,11,0,1\}$$

6.
$$\langle gcd(18, 24, 39) \rangle = \langle 3 \rangle = \{\dots, -9, -6, -3, 0, 3, 6, 9, \dots\}$$

7. (a)
$$(a^2b)a^3 = (a^2b)aaa = (ab)aa = baa = ba = a^3b$$

(b)
$$(ab)(a^3b) = (ab)aaab = baab = (a^3b)ab = (a^2b)b = a^2$$

(c)
$$b(a^2b) = baab = (a^3b)ab = (a^2b)b = a^2$$

		e	a	b	c	d	f
	\overline{e}	e	a	b	c	d	\overline{f}
	a	a	e	c	f	b	c
9.	b	b	c	e	a	f	d
	c	c	f	a	d	e	b
	d	d	b	f	e	c	a
	f	f	c	d	b	a	e
		e	a	b	c	d	f
	\overline{e}	$\begin{array}{ c c } e \\ \hline e \end{array}$	$\frac{a}{a}$	$\frac{b}{b}$	$\frac{c}{c}$	$\frac{d}{d}$	$\frac{f}{f}$
	$\frac{-e}{a}$						$\frac{f}{d}$
10.		e	a	b	c	d	$ \begin{array}{c} f \\ f \\ d \\ c \end{array} $
10.	a	$e \\ a$	a c	f	$c \\ e$	d b	
10.	$a \\ b$	$egin{array}{c} e \\ a \\ b \end{array}$	$\begin{array}{c} a \\ c \\ d \end{array}$	$egin{array}{c} b \ f \ e \end{array}$	c e f	d b a	c
10.	$egin{array}{c} a \\ b \\ c \end{array}$	$egin{array}{c} e \\ a \\ b \\ c \end{array}$	a c d e	$egin{array}{c} b \\ f \\ e \\ d \end{array}$	c e f a	d b a f	$egin{matrix} c \\ b \end{matrix}$

16. Let x - y represent x + 2 = y and x - -y represent x + 5 = y

17. (a) Starting from any vertex in the graph, travel until reaching the same vertex. This operation must then yield the identity and give a relation.

1

(b)
$$a^4 = e$$
, $b^2 = e$, $(ab)^2 = e$

19. Take the dihedral group D_4 which has 8 elements. This can be generated by μ_1 and δ_1 , which are both order 2.

Section 8

1.
$$\tau \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 1 & 3 & 6 & 5 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 4 & 5 & 6 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 3 & 6 & 5 & 4 \end{pmatrix}$$

5.
$$\sigma^{-1}\tau\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 6 & 1 & 3 & 4 & 5 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 3 & 6 & 5 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 6 & 1 & 5 & 4 & 3 \end{pmatrix}$$

6. $|\langle \sigma \rangle| = 0$ since there are no cycles in σ

$$8. \ \sigma^2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 4 & 5 & 6 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 4 & 5 & 6 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 3 & 5 & 6 & 2 & 1 \end{pmatrix}$$

$$\sigma^4 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 3 & 5 & 6 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 3 & 5 & 6 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 5 & 2 & 1 & 3 & 4 \end{pmatrix}$$

$$\sigma^8 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 5 & 2 & 1 & 3 & 4 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 5 & 2 & 1 & 3 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 3 & 5 & 6 & 2 & 1 \end{pmatrix} = \sigma^2$$

$$\sigma^{32} = (\sigma^{16})^2 = ((\sigma^8)^2)^2 = ((\sigma^2)^2)^2 = (\sigma^4)^2 = \sigma^8 = \sigma^2$$

$$\sigma^{64} = (\sigma^{32})^2 = (\sigma^2)^2 = \sigma^4$$

$$\sigma^{96} = \sigma^{64}\sigma^{32} = \sigma^4\sigma^2 = \sigma^6$$

$$\sigma^{98} = \sigma^{96}\sigma^2 = \sigma^6\sigma^2 = \sigma^8 = \sigma^2$$

$$\sigma^{100} = \sigma^{98}\sigma^2 = \sigma^2\sigma^2 = \sigma^4$$

$$\sigma^{100} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 5 & 2 & 1 & 3 & 4 \end{pmatrix}$$

- 10. 1: \mathbb{Z} under addition, $17\mathbb{Z}$ under addition, $3\mathbb{Z}$ under addition, $\langle \pi \rangle$ under multiplication
 - 3: \mathbb{Z}_6 , $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 4 & 1 & 2 \end{pmatrix}$
 - 4: \mathbb{R} under addition, \mathbb{R}^{+} under multiplication

Each remaining subcollection contains one of the remaining groups

- 11. $O_{1,\sigma} = {\sigma^n(1)|n \in \mathbb{Z}} = {1, 2, 3, 4, 5, 6}$
- 17. $m = {\sigma \in S_5 | \sigma(2) = 5}$ means 5 elements with 4 degrees of freedom, so |m| = 4! = 24

2

18. (a)
$$\langle p_1 \rangle = \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} \right\}$$

$$\langle p_2 \rangle = \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} \right\}$$

$$\langle \mu_1 \rangle = \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} \right\}$$

(b) remaining subgroups

$$\langle p_0 \rangle = \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} \right\}$$

$$\langle \mu_2 \rangle = \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} \right\}$$
$$\langle \mu_3 \rangle = \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} \right\}$$

- 23. \mathbb{Z}_2
- 24. Klein group
- 30. Is a permutation because all elements of \mathbb{R} are simply shifted up by 1
- 31. No, not one to one
- 35. (a) True
 - (b) False
 - (c) True
 - (d) True
 - () TD
 - (e) True
 - (f) True
 - (g) False(h) False
 - (i) False
 - (j) True
 - (3)

39. Proof.

Define $\phi: G \to S_G$ such that $\phi(x) = \lambda x$ where $\lambda_x(g) = xg$ for all $g \in G$. This means that λ_x is one to one and a permutation of G. This means that ϕ is one to one and homomorphic, so it must be onto Then $\phi[G]$ is a subgroup of S_G , a group of permutations

- 41. $\{\sigma \in S_A \mid \sigma(b) \in B\}$ is not a subgroup since it is not closed
- 43. This is a subgroup. Since $\phi[B] = B$, it is a permutation of B, which must be in S_A
- 47. Proof.

Suppose $\sigma \neq \iota$

Then for some a, b with $a \neq b$ and $1 \leq a, b \leq n$, $\sigma(a) = b$

Since $n \geq 3$, there exists some other element $c \neq a$ and $c \neq b$ s.t. $\gamma(b) = c$ and $\gamma(a) = a$

Then
$$(\sigma \gamma)(a) = \sigma(\gamma(a)) = \sigma(a) = b$$

And
$$(\gamma \sigma)(a) = \gamma(\sigma(a)) = \gamma(b) = c$$

Thus if $\sigma \neq c$ then there exists $\gamma \in S$ s.t. $\sigma \gamma \neq \gamma \sigma$

This is a contradiction and therefore $\sigma = \iota$ if $\sigma \gamma = \gamma \sigma$