

System plików - wprowadzenie

- System plików umożliwia na dostęp do przechowywanych:
 - programów i danych,
 - dla systemu operacyjnego i użytkowników.
- System plików składa się z dwóch części:
 - kolekcji plików do bezpośredniego przechowywania danych,
 - struktury katalogów, która organizuje pliki i przechowuje informacje o nich.
- Zwykle system plików znajduje się na urządzeniach z pamięcią nieulotną, ale w szczególnych przypadkach może to być np. pamięć RAM.

Koncepcja pliku

- Komputer może przechowywać informacje na różnych nośnikach: dysk twardy, taśma magnetyczna, dysk optyczny, pamięć USB, urządzenie NVM.
- System operacyjny dostarcza mechanizm nadający logiczny widok na przechowywane informacje tworzy abstrakt między własnościami fizycznymi urządzenia do przechowywania, a logiczną strukturą pliku. W ten sposób pliki są mapowane przez system operacyjny na urządzenie fizyczne.
- Dla użytkownika plik to kolekcja informacji zapisana w pamięci zapasowej, która nie może być zapisana dopóki nie jest zawarta do postaci pliku.
- Pliki zwykle reprezentują programy (zarówno źródłowe, jak i binarne) oraz dane.
- Pliki mogą być w formie luźnej, jak pliki tekstowe, albo ściśle ustrukturyzowane (źródła, binaria).

Atrybuty plików

- Nazwa pliku (kwestia wielkości liter, kwestia rozszerzenia).
- Plik jest bytem niezależnym od procesu, użytkownika, a nawet systemu operacyjnego plików.
- Atrybuty plików zależą od systemu plików, zwykle są to:
 - Nazwa symboliczna nazwa pliku, jedyna informacja o pliku w zrozumiałym dla człowieka zapisie.
 - o Identyfikator unikalne oznaczenie, zwykle liczba, która identyfikuje plik w systemie plików.
 - o Typ rozróżnienie pliku.
 - o Położenie informacja o położeniu pliku na dysku.
 - o Rozmiar bieżący rozmiar pliku (w bajtach, słowach lub blokach).
 - Zabezpieczenia informacje o kontroli dostępu dotyczące czytania, pisania i uruchamiania (itp.).
 - Znacznik czasu informacje o znacznikach czasu mogą obejmować utworzenie, ostatnią modyfikację oraz ostatnie użycie pliku.
 - Identyfikator użytkownika i grupy informacje dot. właściciela pliku.
- Informacje o plikach przechowywane są w strukturze katalogów (w pliku katalogu).

Operacje na plikach

- Tworzenie pliku dwa kroki: rezerwacja miejsca, wpis w katalogu.
- Otwieranie sprawdzenie uprawnień, itp. i wywołanie open ().
- Zapis wywołanie systemowe z danymi do zapisu oraz open (). Zapis odbywa się sekwencyjnie, więc system musi przechowywać informację o wskaźniku miejsca do zapisu. Przypadek nadpisywania i dopisywania.
- Czytanie wywołanie systemowe z wskaźnikiem do pliku oraz informacją, gdzie do pamięci zawartość pliku ma zostać wczytana. Podobnie, jak przy zapisie, system potrzebuje wskaźnika odczytu (i zwykle jest to ten sam wskaźnik).
- Pozycjonowanie w pliku wskaźnik położenia w pliku, ang. seek.
- Usuwanie pliku znalezienie pliku w katalogu, zwolnienie miejsca, oznaczenie w katalogu (wymazanie wpisu). Niektóre systemy plików: kwestia twardych dowiązań.
- Obcinanie pliku np. usuwanie zawartości, ale zachowanie atrybutów.

Typy plików

• Typ pliku rozpoznawany po rozszerzeniu nie jest tym samym, co typ pliku rozpoznawany w atrybutach pliku.

file type	usual extension	function
executable	exe, com, bin or none	ready-to-run machine- language program
object	obj, o	compiled, machine language, not linked
source code	c, cc, java, perl, asm	source code in various languages
batch	bat, sh	commands to the command interpreter
markup	xml, html, tex	textual data, documents
word processor	xml, rtf, docx	various word-processor formats
library	lib, a, so, dll	libraries of routines for programmers
print or view	gif, pdf, jpg	ASCII or binary file in a format for printing or viewing
archive	rar, zip, tar	related files grouped into one file, sometimes com- pressed, for archiving or storage
multimedia	mpeg, mov, mp3, mp4, avi	binary file containing audio or A/V information

Źródło: A. Silberschatz, Operating Systems Concepts Essentials

Struktura katalogu

Operacje:

- Szukanie pliku.
- Tworzenie pliku.
- Usuwanie pliku.
- Listowanie zawartości katalogu.
- Zmiana nazwy pliku.
- Trawers systemu plików.

Źródło: A. Silberschatz, Operating Systems Concepts Essentials

Zaawansowane struktury katalogów

Rodzaje dostępu

Podstawowe:

- Read odczyt.
- Write zapis.
- Execute wykonywanie.
- Append dopisywanie na końcu.
- **Delete** usuwanie.
- **List** listowanie nazwy i atrybutów pliku.
- Attribute change zmiana wartości atrybutów.

A także:

- Renaming zmiana nazwy.
- **Copying** kopiowanie.
- Editing edycja.

Uprawnienia do plików w Linux ext

```
krz@zinc:~/abc$ ls -al
razem 44
drwxrwxr-x 2 krz krz 4096 paź 9 18:40 .
drwx----- 98 krz krz 28672 paź 9 18:40 .
-rw-rw-r-- 1 krz krz 0 paź 9 18:40 file.txt
krz@zinc:~/abc$
```

- Katalog bieżący: ~/abc oraz .
- Katalog nadrzędny: . .

Ustawianie uprawnień:

\$ chmod uprawnienia plik
\$ chmod 644 file.txt
\$ chmod a+rx,a-w directory

Uprawnienia, przykład:

```
drwxr-x---
0123456789
```

Pozycja 0: d (dir), I (link), b (block), c (character) Pozycja 1, 2 i 3: uprawnienia właściciela 'u' Pozycja 4, 5 i 6: uprawnienia grupy 'g' Pozycja 7, 8 i 9: uprawnienia pozostałych 'o' Pozycje 1..9: uprawnienia wszystkich 'a'

```
rwx - read, write, eXecute
421 - zapis numeryczny
np. r-x = 5, rw- = 6, r-- = 4.
```

Uprawnienia do plików w Linux ext

```
blokada
--- brak uprawnień
                                   nieprzydatne
--x wykonywanie
                                   zbieranie sekretnych logów (plik)
-w- zapis
-wx zapis i wykonywanie
                                   zbieranie sekretnych logów (dir)
r-- odczyt
                                   stała konfiguracja
                                   pliki wykonywalne, katalogi
r-x odczyt i uruchamianie
                              pliki edytowalne
rw- odczyt i zapis
rwx odczyt, zapis i uruchamianieskrypty i katalogi usera :-)
??s bit suid
                                   programy specjalne
                                   katalog specjalny
??t sticky bit
```

Struktura systemu plików

Założenia:

- Dysk może być nadpisywany w miejscu; możliwy jest odczyt bloku, modyfikacja bloku zapis bloku w to samo miejsce.
- 2. Możliwe jest sięgnięcie w dowolny blok (sektorów) na dysku, czyli dostęp do pliku może być realizowany sekwencyjnie lub swobodnie.

Transfer danych z/na dysk zorganizowany jest w bloki wielkości zwykle 512 lub 4096 bajtów.

Źródło: A. Silberschatz, Operating Systems Concepts Essentials

Struktura systemu plików

- I/O sterownik urządzenia oraz przerwań do transferu danych.
- Podstawowy system plików blokowy sybsystem I/O w Linux.
- Moduł organizacji plików posiada wiedzę na temat plików oraz logicznych bloków, a także wolnego miejsca.
- Logiczny system plików zarządza metadanymi, strukturą katalogów, wykorzystuje FCB (file control block) w np. Linux poprzez inode.

Źródło: A. Silberschatz, Operating Systems Concepts Essentials

Operacje systemu plików

- Blok kontrolny ładowania (ang. *Boot control block*), Główny rekord rozruchowy (ang. *Master Boot Record*) informacje zapisane w pierwszym sektorze dysku (CHS = 0,0,1), zajmuje jeden sektor, czyli 512 bajtów i zawiera (w przypadku Linux) program rozruchowy systemu operacyjnego (446 bajtów) oraz tablicę partycji.
 - Polecenie podglądu MBR: hd -n 512 /dev/sda
 Polecenie podglądu partycji: cat /proc/partitions
- GPT, ang. Globally Unique Partition Table nowszy typ rekordu ładowania.
- Blok kontrolny wolumenu (ang. *Volume control block*) informacje o partycji/wolumenie, jak liczbę bloków w wolumenie, rozmiar bloków, liczba wolnych bloków, itp.
- Struktura katalogów zawierająca informacje o organizacji plików.
- Blok kontrolny pliku (ang. *File Control Block*) zawiera wiele informacje o pliku. Posiada unikalny identyfikator.

Otwarcie/odczyt pliku

- (a) Otwarcie pliku
- (b) Odczyt pliku

Źródło: A. Silberschatz, Operating Systems Concepts Essentials

Metody alokacji plików

Na kolejnych slajdach:

- Alokacja ciągła ang. Contiguous Allocation
- Alokacja połączona ang. Linked Allocation
- Alokacja indeksowana ang. Indexed Allocation

Alokacja ciągła

directory

start	length
0	2
14	3
19	6
28	4
6	2
	0 14 19 28

Alokacja połączona

Alokacja indeksowana

Tworzenie pliku na urządzenie blokowe

• Utworzenie pustego pliku (100 MB), z którego zrobimy urządzenie blokowe:

```
$ dd if=/dev/zero of=disc0 bs=1M count=100
```

```
$ file -s disc0
disc0: data
$ ls -sh disc0
101M disc0
```

Tworzenie urządzenia blokowego z pliku

• Znajdź pierwsze wolne urządzenie blokowe:

```
$ losetup -f
np.:
/dev/loop12

$ sudo file -s `losetup -f`
/dev/loop12: empty
```

Utworzenie z pliku urządzenia blokowego:

```
$ losetup `losetup -f` disc0
```

```
$ file -s /dev/loop12
/dev/loop12: data
```

Zakładanie partycji na urządzeniu blokowym

Podział tak utworzonego urządzenia na 2 partycje po 50 MB:

```
$ sudo fdisk /dev/loop12
n, [Enter], p, 3 x [Enter], +50M, Enter
n + [Enter], p, 4 x [Enter], p, [Enter], w, [Enter]
```

• Synchronizacja z jądrem systemu operacyjnego:

```
$ sudo partprobe /dev/loop12
```

```
$ sudo file -s /dev/loop12
/dev/loop12: DOS/MBR boot sector; partition 1 : ID=0x83, start-CHS
(0x0,32,33), end-CHS (0x6,127,57), startsector 2048, 102400 sectors;
partition 2 : ID=0x83, start-CHS (0x6,127,58), end-CHS (0xc,190,50),
startsector 104448, 100352 sectors

$ sudo file -s /dev/loop12p1
/dev/loop12p1: data
```

Formatowanie (zakładanie systemu plików)

• Utworzenie systemu plików na pierwszej z partycji:

```
$ mkfs.ext4 /dev/loop12p1
```

```
$ file -s /dev/loop12p1
/dev/loop0p1: Linux rev 1.0 ext4 filesystem data,
UUID=c22af2f0-449d-4119-a117-45edfa32e287 (extents) (64bit)
(large files) (huge files)
```

Narzędzia do serwisowania systemu plików:

```
    $ e2fsck
    - sprawdzanie i/lub naprawa systemu plików
    $ fsck.ext4
    - alias do j.w.
    $ tune2fs
    - zmiana konfiguracji systemu plików
    $ resize2fs
    - zmiana wielkości systemu plików
    - debugging, w tym przeglądanie i edycja systemu plików
```

Zarządzanie systemem plików

• Podłączenie pliku jako urządzenia blokowego:

```
$ losetup /dev/loop12 disc0 // już jest z poprzednich slajdów
```

Podmontowanie systemu plików z pierwszej partycji:

```
$ mkdir mntdir
```

\$ sudo mount /dev/loop12p1 mntdir

```
$ df -h mntdir
/dev/loop12p1 43M 24K 40M 1% /home/krz/mntdir
```

Odmontowanie systemu plików:

```
$ sudo umount mntdir
```

• Odłączanie urządzenia loopback

```
$ losetup -d /dev/loop12
```

Szyfrowanie partycji urządzenia blokowego

Podłączenie pliku jako urządzenia blokowego (jak poprzednio), czyli:

```
$ losetup `losetup -f` disc0 // załóżmy, że to znów loop12
```

Zaszyfrowanie urządzenia blokowego (druga z partycji):

```
$ sudo cryptsetup luksFormat /dev/loop12p2
```

```
$ sudo file -s /dev/loop12p2
/dev/loop12p2: LUKS encrypted file, ver 2 [, , sha256] UUID:
5bbf82ca-613b-4a32-8c1d-b18b2ad6f520
```

• Podłączenie zaszyfrowanej partycji, jako urządzenie blokowe:

```
$ sudo cryptsetup luksOpen /dev/loop12p2 encrypted_partition
```

```
$ ls -l /dev/mapper/encrypted_partition
/dev/mapper/encrypted partition -> ../dm-0
```

Formatowanie zaszyfrowanej partycji

• Podłączenie pliku jako urządzenia blokowego (jak poprzednio), czyli:

```
$ losetup `losetup -f` disc0 // załóżmy, że to znów loop12
Podłączenie zaszyfrowanej partycji jako urządzenie blokowe (jak poprzednio):
$ sudo cryptsetup luksOpen /dev/loop12p2 encrypted partition
```

- Utworzenie systemu plików na zaszyfrowanej partycji:
 - \$ mkfs.ext4 /dev/mapper/encrypted partition
- Montowanie zaszyfrowanej partycji:
 - \$ mkdir mntdir enc
 - \$ sudo mount /dev/mapper/encrypted partition mntdir enc

```
$ df -h mntdir
/dev/mapper/encrypted partition 27M 24K 25M 1% /home/krz/mntdir enc
```

Odłączanie zaszyfrowanej partycji

- Odmontowanie:
 - \$ sudo umount mntdir enc
- Odłączanie zmapowania kryptograficznego:
 - \$ sudo cryptsetup luksClose encrypted_partition
- Odłączanie urządzenia blokowego:
 - \$ losetup -d /dev/loop12

Zadanie dodatkowe

- Zaprojektować i napisać program, który we wskazanych miejscach urządzenia blokowego odczyta zawartość bloków, zabezpieczy i nadpisze celem utworzenia sztucznego uszkodzenia.
- Następnie, oprogramowaniem do naprawy systemu plików naprawić uszkodzenie.
- Porównać systemy plików pod względem odporności na uszkodzenia.
- Opracować wynik w formie sprawozdania.

