Projeto 5

MC920 - Introdução ao Processamento de Imagem Digital

Caio Augusto Alves Nolasco - RA:195181

1. Introdução e especificação do problema

O objetivo do projeto 5 é unir duas imagens para formar só imagem panorâmica, através de técnicas de detecção de pontos de interesse e descritores que ligam os pontos comuns entre as imagens.

2. Estrutura geral do algoritmo

O programa lê do disco do usuário as duas imagens que serão unidas em um panorama, assim como parâmetros importantes que ditam o funcionamento do algoritmo como o tipo de algoritmo de detecção de descritores e o limiar máximo para distância entre descritores das duas imagens . Cada imagem é convertida para a escala de cinza e submetida aos algoritmos de detecção de pontos de interesse e descritores (SURF, SIFT, ORB ou BRIEF). O conjuntos de descritores das duas imagens são comparados para encontrar as melhores correspondências. O conjunto de descritores escolhidos é usado para calcular a matriz de homografia, que é usada para alinhar as duas imagens. Por fim, as imagens são combinadas para formar a imagem panorâmica final.

3. Pressupostos e decisões de design

O programa em Python recebe uma imagem de entrada para aplicar os operadores morfológicos e encontrar as partes com texto. Sobre essa imagem são feitos os seguintes pressupostos:

- Duas imagens são fornecidas, via seu caminho endereço, pelo usuário;
- As imagens estão salvas no disco do computador que executa o código;
- O usuário informa qual algoritmo de detecção de pontos de interesse e descritores deve ser usado (SURF, SIFT, ORB, BRIEF);
- O usuário fornece o limiar limite de distância entre descritores para selecionar as melhores;
- As imagens estão em formato '.jpg';
- O local de origem dos arquivos é dado pelo usuário (ex: /home/cnolasco/foto1A.jpg e /home/cnolasco/foto1B.jpg);
- O local de destino das imagens intermediárias do processo e a imagem final é dado pelo usuário (ex: /home/cnolasco/Outputs/);
- As imagens resultantes são salvas em formato '.jpg'.

 A versão usada da biblioteca OpenCV para testes é 3.4.2. Versões mais recentes, como a versão 4.3.0, não suportam alguns dos algoritmos de detecção por serem patenteados.

4. Padrões de implementação

A junção das imagens é feita usando principalmente funções da biblioteca OpenCV. As imagens são lidas, com o endereço dado pelo usuário, como objetos da imagem OpenCV pelo método **cv2.imread().**

As imagens então são convertidas para escala de cinza usando cv2.cvtColor(), e um objeto de detector de pontos de interesse e descritores é criado de acordo com o parâmetro lido (cv2.xfeature2d.SIFT_create(), cv2.xfeature2d.SURF_create(), cv2.xfeature2d.SURF_create(), cv2.oRB_create() para SIFT, SURF, ORB respectivamente). O algoritmo BRIEF contém somente um detector de descritores, então outro algoritmo, STAR, é usada para complementar a detecção de pontos de interesse

(cv2.xfeature2d.BriefDescriptorExtractor_create() e

cv2.xfeature2d.StarDetector_create()). Os pontos de interesse são desenhados na imagem original para visualização, e junto com os descritores, são submetidos a comparação entre os resultados das duas imagens.

A comparação entre pontos de interesse das duas imagens é feita por um objeto BFMatcher da biblioteca OpenCV (cv2.BFMatcher()). Os descritores são analisados, e a distância entre os objetos correspondentes são calculados. Caso a distância respeite o limiar dado pelo usuário, o ponto de interesse é salvo em uma lista de pontos selecionados. A distâncias selecionadas são desenhadas para visualização.

O algoritmo requer que sejam encontrados ao menos quatro pontos de correspondência. Com os pontos selecionados, é calculada a matriz de homografia com a função **cv2.findHomography()**, baseado no algoritmo RANSAC. A matriz de homografia é impressa no terminal.

Por fim, as imagens são alinhadas com a função **cv2.warpPerspective()** a partir da matriz de homografia, e unidas atribuindo os valores em uma só matriz representando da imagem panorâmica

5. Saída

O programa salva as seguintes imagens, para um algoritmo de detecção "feat": as duas imagens com os pontos de interesse desenhados ("featAkeypointsDrawn.jpg" e "featBkeypointsDrawn.jpg"); um imagem com as linha que ligam os pontos de correspondências entre as imagens ("featMatches.jpg"); e a imagem panorâmica ("featfinalPanoramic.jpg").

6. Resultados intermediários e imagem panorâmica final

Para os algoritmos SIFT, SURF e BRIEF, o limiar usado é 0.3. Para o algoritmo ORB, o valor usado é 0.6.

Pontos de interesse

a) Pontos de interesse SURF

b) Pontos de interesse SIFT

c) Pontos de interesse ORB

d) Pontos de interesse STAR & BRIEF

Linhas entre pontos de correspondências selecionados

a) Correspondências SURF

b) Correspondências SIFT

c) Correspondências ORB

d) Correspondências BRIEF

Panoramas finais

a) Panorama SURF

b) Panorama SIFT

c) Panorama ORB

d) Panorama BRIEF