МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ

Національний аерокосмічний університет ім. М. Є. Жуковського «Харківський авіаційний інститут»

Кафедра систем управління літальними апаратами

Лабораторна робота № 2

з дисципліни «Об'єктно-орієнтоване проектування програм»

Тема: "Розробка структурованих програм з розгалуженням та повтореннями"

ХАІ.301 . 174. 322. № 2ЛР

Виконав студент гр. 322	
	Безпалова Світлана Вікторівна
(підпис, дата)	(П.І.Б.)
Перевірив	
	к.т.н., доц. О. В. Гавриленко
	ас. В.О.Білозерський
(пілпис, лата)	(П.І.Б.)

МЕТА РОБОТИ

Вивчити теоретичний матеріал щодо синтаксису на мові Python і поданням у вигляді UML діаграм діяльності алгоритмів з розгалуження та циклами, а також навчитися використовувати функції, інструкції умовного переходу і циклів для реалізації інженерних обчислень.

ПОСТАНОВКА ЗАДАЧІ

Завдання 1. Вирішити завдання на алгоритми з розгалуженням. Завдання представлено в табл.1.

Завдання 2. Дано дійсні числа (xi, yi), i = 1,2, ... n, – координати точок на площині. Визначити кількість точок, що потрапляють в геометричну область заданого кольору (або групу областей). Варіанти геометричних областей представлені в табл.2.

Завдання 3. Дослідити ряд на збіжність. Умова закінчення циклу обчислення суми прийняти у вигляді: | un | <E або | un | > G де е – мала величина для переривання циклу обчислення суми сходиться ряду (е = 10-5 ... 10-20); g —величина для переривання циклу обчислення суми розходиться ряду (g = 102...105). Варіанти представлено в табл.3.

ВИКОНАННЯ РОБОТИ

Завдання 1. Дано три числа. Знайти середнє з них (тобто число, розташоване між найменшим і найбільшим).

Вхідні дані:

- Три дійсних числа: a, b, c.
- Вихідні дані: середнє число серед трьох введених.

Алгоритм вирішення на рис 1.

```
[Початок]

|
[Введення чисел а, b, c]

|
[Сортування чисел а, b, c]

|
[Вибір середнього числа (друге в списку)]

|
[Виведення середнього числа]

|
[Кінець]
```

Рисунок 1.

Лістинг коду вирішення задачі наведено в дод. А (стр.7). Екран роботи програми показаний на рис. Б (стр.9).

Завдання 2. Дано дійсні числа (хі, уі), і = 1,2, ... n, – координати точок на площині. Визначити кількість точок, що потрапляють в геометричну область заданого кольору (або групу областей). Варіанти геометричних областей представлені в табл.2. (29 варіант)

Вхідні дані:

- Радіус кола г.
- Кількість точок п.
- Координати кожної точки (х,у).

Вихідні дані:

• Кількість точок, які належать чорній області (варіант 29).

Алгоритм вирішення на рис 2.

Рисунок 2.

Лістинг коду вирішення задачі наведено в дод. А (стр.7). Екран роботи програми показаний на рис. Б (стр.9).

Завдання 3. Дослідити ряд на збіжність. Умова закінчення циклу обчислення суми прийняти у вигляді: | un | <E або | un | > G де е – мала величина для переривання циклу обчислення суми сходиться ряду (е = 10-5... 10-20); g –величина для переривання циклу обчислення суми розходиться ряду (g = 102...105). Варіанти представлено в табл.3. (варіант 22)

$$\sum_{n=1}^{\infty} \frac{(2+n)!}{x^n 2^{2n+1}}$$

Вхідні дані:

- x дійсне число, x>0.
- ϵ мала величина для перевірки сходження (10^-5 $\leq \epsilon \leq$ 10^-20).
- g велика величина для перевірки розходження $(10^2 \le g \le 10^5)$.

Вихідні дані:

• Значення суми ряду до виконання умови сходження або розходження.

Алгоритм вирішення на рис 3.

```
[Початок]

|
[Введення x, epsilon, g]

|
[Ініціалізація n = 1, total_sum = 0]

|
[Обчислення поточного члена ряду]

|
[Перевірка |u_n| < epsilon?] --Так--> [Виведення суми, Кінець]

|
[Перевірка |u_n| > g?] --Так--> [Ряд розходиться, Кінець]

|
[Додати u_n до total_sum]

|
[Інкремент n]

|
[Повернення до обчислення члена ряду]
```

Рисунок 3.

Лістинг коду вирішення задачі наведено в дод. A (стр.8). Екран роботи програми показаний на рис. Б (стр.9).

ВИСНОВКИ

У ході виконання роботи було розв'язано три завдання за допомогою мови програмування Python, які демонструють роботу з різними типами даних та алгоритмами:

Перше завдання:

- Було розроблено алгоритм для знаходження середнього з трьох чисел.
- Програма коректно обробляє введені дані, сортує числа і знаходить середнє, що є другим за величиною числом у відсортованому списку.

Друге завдання:

- Було реалізовано алгоритм для перевірки приналежності точок до геометричної області (чорної області для варіанту 29).
- Програма успішно обробляє координати точок, перевіряє їх на відповідність умовам перебування в заданій області, використовуючи математичні рівняння.

Третє завдання:

• Реалізовано програму для дослідження ряду на збіжність, з використанням умов завершення обчислень ($|un| < \epsilon$ для сходження або |un| > g для розходження).

• Програма обчислює члени ряду та виконує перевірки відповідно до заданих параметрів. У результаті визначається, чи ряд сходиться, чи розходиться.

Результати:

Усі три завдання було виконано коректно. Отримані результати відповідають умовам задач. Кожна програма працює стабільно та демонструє необхідний функціонал.

ДОДАТОК А

Лістинг коду для Завдання 1.

```
def task1():
    # Знаходження середнього з трьох чисел
    print("\nЗадача 1: Знайти середне з трьох чисел.")
    a = float(input("Введіть перше число (a): "))
    b = float(input("Введіть друге число (b): "))
    c = float(input("Введіть третє число (c): "))

# Визначення середнього
numbers = [a, b, c]
numbers.sort() # Сортуємо числа
middle = numbers[1] # Середнє - друге в списку після сортування

print(f"Середнє число: {middle}\n")
```

Лістинг коду для Завдання 2.

```
def task2():
    # Визначення кількості точок у чорній області
   print("\nЗадача 2: Визначити кількість точок у чорній області (варіант
29).")
   r = float(input("Введіть радіус кола (r): "))
   n = int(input("Введіть кількість точок (n): "))
   points = []
    for i in range(n):
       x, y = map(float, input(f"Введіть координати точки {i + 1} (x y):
").split())
       points.append((x, y))
    def is in black area(x, y, r):
        # Умова перебування точки у чорній області (варіант 29)
        in circle = x**2 + y**2 <= r**2 # Точка всередині кола
       in lower half = y <= 0 # Точка у нижній напівплощині
       outside_triangle = y < -x and y < x # Точка поза трикутником
       return in circle and in lower half and outside triangle
   count = 0
    for x, y in points:
        if is in black area(x, y, r):
           count += 1
   print(f"Кількість точок у чорній області (варіант 29): {count}\n")
```

Лістинг коду для Завдання 3.

```
from math import factorial
def task3():
    # Дослідження ряду на збіжність
   print("\nЗадача 3: Дослідити ряд на збіжність.")
   x = float(input("Введіть значення x (x > 0): "))
   epsilon = float(input("Введіть значення \epsilon (epsilon): "))
   g = float(input("Введіть значення g (g): "))
   n = 1
   total sum = 0
   while True:
        # Обчислення поточного члена ряду
        term = factorial(2 + n) / (x**n * 2**(2 * n + 1))
        total sum += term
        # Перевірка умов зупинки
        if abs(term) < epsilon: # Сходження
            print(f"Ряд сходиться. Cyma: {total_sum:.10f}")
        elif abs(term) > g: # Розходження
            print("Ряд розходиться.")
        n += 1
```

ДОДАТОК Б

```
Выберите задачу для выполнения:
1: файти среднее из трёх чисел (задача 1)
2: Определить количество точек в области (задача 2)
3: Исследовать ряд на сходимость (задача 3)
0: Выход
Ваш выбор: 1
Задача 1: Найти среднее из трёх чисел.
Введите первое число: 3
Введите второе число: 4
Введите третье число: 5
Среднее число: 4.0
Выберите задачу для выполнения:
1: Найти среднее из трёх чисел (задача 1)
2: Определить количество точек в области (задача 2)
3: Исследовать ряд на сходимость (задача 3)
0: Выжод
Ваш выбор: 2
Задача 2: Определить количество точек в заданной области (чёрная зона, вариант 29).
Введите радиус окружности (r): 5
Введите количестф точек: 3
Введите координа точки 1 (х у): 0 -3
Введите координа точки 2 (х у): 2 -4
Введите координа точки 3 (х у): 4 1
Количество точек в чёрной области (вариант 29): 2
Выберите задачу для выполнения:
1: Найти среднее из трёх чисел (задача 1)
2: Определить количество точек в области (задача 2)
3: Исследовать ряд на сходимость (задача 3)
0: Выход
Ваш выбор: 3
Задача 3: Исследовать ряд на сходимость.
Введите значение х: 2
Введите epsilon (e): 1e-5
Введите д: 1е5
Ряд расходится.
Выберите задачу для выполнения:
1: Найти среднее из трёх чисел (задача 1)
2: Определить количество точек в офласти (задача 2)
3: Исследовать ряд на сходимость (задача 3)

 Выжод

Ваш выбор: 0
Выход из программы.
...Program finished with exit code 0
Press ENTER to exit console.
```