Exercise sheet 5

Curves and Surfaces, MTH201

Additional exercises

NOTE: These exercises repeat many of the concepts / exercises covered earlier and are meant for you to identify gaps in your understanding. They are not exhaustive and the mid-semester examination will not be restricted to these questions.

Let $S \subset \mathbb{R}^3$ be a part of a surface and $\sigma: U \to S$ be a regular surface patch.

- 1. For each of the surface patches below, identify the surface that they (partially) cover:
 - (a) $\sigma: \mathbb{R}^2 \to \mathbb{R}^3$, $\sigma(x,y) = (x,y,0)$.
 - (b) $\sigma: \mathbb{R}^2 \to \mathbb{R}^3$, $\sigma(x,y) = (x,y,x+y)$.
 - (c) $\sigma: \mathbb{R}^2 \to \mathbb{R}^3$, $\sigma(x, y) = (\cos(x), \sin(x), y)$.
 - (d) $\sigma: \mathbb{R}^2 \to \mathbb{R}^3$, $\sigma(x, y) = (x, y, \sqrt{r^2 x^2 y^2})$.
 - (e) $\sigma : \mathbb{R}^2 \to \mathbb{R}^3, \ \sigma(x,y) = (x, y, \sqrt{r^2 x^2 + y^2}).$
- 2. If U is an open subset in \mathbb{R}^2 and $f: U \to \mathbb{R}$ is a smooth function, then show that $\sigma(x,y) := (x,y,f(x,y))$ is a regular surface patch.
- 3. Consider a $\gamma:(a,b)\to S\subset\mathbb{R}^3$ parametrizing a curve that lies on the part of the surface covered by the surface patch. In other words, for each t, $\gamma(t)$ must, be in the image of σ , i.e. there is some x(t), and y(t) in U, so that $\gamma(t)=\sigma(x(t),y(t))$. Assuming that x(t) and y(t) are smooth,
 - (a) Consider the part of the surface covered by $\sigma: \mathbb{R}^2 \to \mathbb{R}^3$, $\sigma(x,y) = (\cos(x), \sin(x), y)$ and consider the curve $\gamma(t) = (0, 0, t)$. Note that it lies on the surface. Write it in the form, $\gamma(t) = \sigma(x(t), y(t))$ by finding suitable functions x(t) and y(t). Do the same for the curve $\gamma_2(t) = (\cos(t), -\sin(t), 0)$ which also lies on the surface.
 - (b) Show that

$$\dot{\gamma}(t_0) = x'(t_0)\sigma_x(x(t_0), y(t_0)) + y'(t_0)\sigma_y(x(t_0), y(t_0))$$

- 4. Show that $\sigma_x(x_0, y_0)$ and $\sigma_y(x_0, y_0)$ are each velocity vectors of curves that lie on the surface. Why are they linearly independent?
- 5. Why do the previous two exercises show that $\sigma_x(x_0, y_0)$ and $\sigma_y(x_0, y_0)$ are a basis for the tangent vectors?

- 6. Compute $\hat{n}(p)$ for any point p on a plane. Show that it is constant.
- 7. Compute $\hat{n}(p)$ for any point p on a sphere.
- 8. Consider a point p on the part of the surface covered by a surface patch. Therefore, it is of the form $p = \sigma(x_0, y_0)$ for some x_0 an y_0 . Consider $\hat{n}(p) = \sigma_x(x_0, y_0) \times \sigma_y(x_0, y_0)$ which is a vector in \mathbb{R}^3 based at p.
 - (a) Is it a tangent vector? Why or why not?
 - (b) Why is its dot product with $\sigma_x(x_0, y_0)$ and $\sigma_y(x_0, y_0)$ zero?
 - (c) Why is its dot product with any tangent vector (of the surface at p) zero?
- 9. Consider a smooth function from the surface to \mathbb{R} , $f: S \to \mathbb{R}$. Show that the rate of change along any parametrization γ , i.e. $\frac{\mathrm{d}}{\mathrm{d}t}|_{t=t_0} f(\gamma(t))$ depends on the partial derivatives of f at the point $\gamma(t_0)$ and the velocity of γ at t_0 . (*Hint:* This is just a way of interpreting chain rule)
- 10. Consider $\hat{n}(x,y) = \hat{n}(\sigma(x,y))$. Note that if $p = \sigma(x,y)$, then $\hat{n}(x,y) = \hat{n}(p)$, i.e. \hat{n} is simply \hat{n} written in terms of the coordinates provided by σ . Note also that if $\gamma(t) = \sigma(x(t), y(t))$, then $\hat{n}(x(t), y(t)) = \hat{n}(\gamma(t))$.
 - (a) Show that the rate of change of \hat{n} along a parametrization γ of a curve on the surface (i.e. $\frac{d}{dt}|_{t=t_0}\hat{n}(\gamma(t))$) depends only on \hat{n} at the point $\gamma(t_0)$ and the velocity of γ at t_0 . (*Hint:* Apply the previous exercise to each coordinate of the function \hat{n} . Why is it important to use \hat{n} and not \hat{n} ?)
- 11. From now on, we will assume that γ is a unit speed parametrization. Show that $\ddot{\gamma}(t_0).\hat{n}(\gamma(t_0)) = -\dot{\gamma}(t_0).\frac{\mathrm{d}}{\mathrm{d}t}|_{t=t_0}\hat{n}(\gamma(t))$. Along with the previous exercise, this shows that the component of the acceleration in the direction of the normal, (denoted $\kappa_n(t_0)$) depends only on the normal to the surface and the direction of a unit speed parametrization.
- 12. Consider the other component of the acceleration, $\ddot{\gamma}(t_0) \ddot{\gamma}(t_0).\hat{n}(\gamma(t_0))$. Why is $\ddot{\gamma}(t_0)$ perpendicular to $\hat{n}(\gamma(t_0))$? Why is $\ddot{\gamma}(t_0)$ parallel to $\mathbf{T}(t_0) \times \hat{n}(\gamma(t_0))$? Let the magnitude be denoted by $\kappa_q(t_0)$
- 13. Show that $\kappa^2(t_0) = \kappa_n^2(t_0) + \kappa_g^2(t_0)$.