ECUACIONES LINEALES DE ORDEN n

Definición Una ecuación diferencial lineal de orden n, es de la forma

$$a_n(x)y^{(n)} + a_{n-1}(x)y^{(n-1)} + \dots + a_1(x)y' + a_0(x)y = q(x)$$

Si en la edo q(x) = 0 entonces la ecuación se dice homogénea y si $a_0(x)$, $a_1(x)$, ..., $a_n(x)$ son constantes, la ecuación se dice a coeficientes constantes.

Teorema(De existencia y unicidad)

Si $a_0(x), \ldots, a_{n-1}(x), q(x)$ son continuas en un intervalo $I, x_0 \in I$ y si $y_0, y_1, \ldots, y_{n-1}$ son constantes, entonces existe una única solución y = f(x) de la ecuación:

$$a_n(x)y^{(n)} + a_{n-1}(x)y^{(n-1)} + \dots + a_1(x)y' + a_0(x)y = q(x)$$

que es válida para todo $x \in I$ y cumple que:

$$y(x_0) = y_0; \ y'(x_0) = y_1; \dots, y^{(n-1)}(x_0) = y_{n-1}$$

Operadores Diferenciales

Un operador diferencial de orden n se define como una función sobre $C^n(I)$ de las funciones con n-ésima derivada continua en un intervalo I:

$$L: \mathcal{C}^n(I) \longrightarrow \mathcal{C}(I)$$

definido por $L=a_n(x)D^n+a_{n-1}(x)D^{n-1}+\ldots+a_1(x)D+a_{\scriptscriptstyle 0}(x)$ donde $a_i(x)$ son funciones continuas en I. de esta forma:

$$L(f) = a_n(x)D^n(f) + a_{n-1}(x)D^{n-1}(f) + \dots + a_1(x)D(f) + a_0(x)f$$

= $a_n(x)\frac{d^n f}{dx^n} + a_{n-1}(x)\frac{d^{n-1} f}{dx^{n-1}} + \dots + a_1(x)\frac{df}{dx} + a_0(x)f$

En particular, si y = f(x), entonces :

$$L(y) = a_n(x)y^{(n)} + a_{n-1}(x)y^{(n-1)} + \dots + a_1(x)y' + a_0(x)y$$

Proposición

El operador diferencial $L: \mathcal{C}^n(I) \longrightarrow \mathcal{C}^n(I)$ es una transformación lineal, es decir:

$$L(\alpha f + \beta g) = \alpha L(f) + \beta L(g)$$
 para $f, g \in \mathcal{C}^n(I), \alpha, \beta \in \mathbb{R}$.

Demostración Consecuencia inmediata de la linealidad del operador derivación.

Observación Por lo anterior un a edo lineal de orden n:

$$a_n(x)y^{(n)} + a_{n-1}(x)y^{(n-1)} + \dots + a_1(x)y' + a_0(x)y = q(x)$$

podemos anotarla: L(y) = q(x)

Teorema

Dado un operador diferencial de orden $n, L : \mathcal{C}^n(I) \longrightarrow \mathcal{C}^n(I)$, se tiene que el kernel, $\operatorname{Ker}(L) = \{y \in \mathcal{C}^n(I) \mid L(y) = 0\} \leq \mathcal{C}^n(I)$ es un subespacio vectorial de dimensión n.

Observación

Una base del espacio Ker(L), $\mathcal{B} = \{\varphi_1, ..., \varphi_n\}$ se llama un conjunto fundamental de soluciones de la ecuación diferencial homogénea L(y) = 0.

Si $\{\varphi_1,....,\varphi_n\}$ es un conjunto fundamental de soluciones de L(y)=0 entonces la solución general es dada por $y=c_1\varphi_1+....+c_n\varphi_n$, para $c_1,...,c_n\in\mathbb{R}$

Ejemplo La ecuación y'' + y = 0, tiene conjunto fundamental de soluciones $\{\cos(x), \sin(x)\}$ debido a que la ecuación es de segundo orden y el conjunto es l.i., entonces la solución general es de la forma: $y = c_1 \cos(x) + c_2 \sin(x)$.

Ecuaciones Lineales Homogéneas y no Homogéneas

Del álgebra lineal sabemos que si $L:V\longrightarrow W$ es una transformación lineal entre espacios vectoriales, entonces se cumple que:

$$S = v_p + \mathit{Ker}(L)$$

donde $S=\{v\in V\ /\ L(v)=w\}$ para algún $w\in W$ y $v_p\in S$ es una solución particular de L(v)=w.

Aplicado a ecuaciones diferenciales se tiene que : dada una edo lineal no homogénea de orden n, L(y) = q(x) y se conoce una solución particular y_p . Entonces si $\{y_1, ..., y_n\}$ es un conjunto fundamental de soluciones de la ecuación homogénea L(y) = 0, entonces la solución general de la ecuación no homogénea es:

$$y = y_p + c_1 y_1 + \dots + c_n y_n$$

Esto divide el trabajo de buscar la solución general en dos partes: 1º hallar un conjunto fundamental de soluciones de la ecuación homogénea y 2º hallar una solución particular de la ecuación no homogénea.

Definición

Dadas las funciones $f_1(x), f_2(x), ..., f_n(x)$ con derivadas hasta el orden n-1, se define el **wronskiano** de las funciones por el determinante:

$$W(f_1,f_2,...,f_n) = egin{bmatrix} f_1 & f_2 & ... & f_n \ f_1' & f_2' & ... & f_n' \ dots & dots & dots \ f_1^{(n-1)} & f_2^{(n-1)} & ... & f_n^{(n-1)} \ \end{pmatrix}$$

Teorema

Si $y_1, y_2, ..., y_k$ son soluciones de la edo lineal homogénea de orden n, L(y) = 0 definidas en un intervalo I. Entonces el conjunto de soluciones es linealmente independiente en I, si y sólo si :

$$(\exists x \in I)(W(y_1, y_2, ..., y_k) \neq 0)$$

Ejemplo La ecuación y'' - y = 0 tiene las soluciones $y_1 = e^x$; $y_2 = e^{-x}$

y se tiene que:
$$W(y_1, y_2) = \begin{vmatrix} e^x & e^{-x} \\ e^x & -e^{-x} \end{vmatrix} = -2 \neq 0$$
, para todo $x \in \mathbb{R}$

Teorema

Dado $\{y_1, y_2, ..., y_n\}$ un conjunto linealmente independiente de soluciones de una ecuación lineal homogénea de orden n, L(y) = 0 en un intervalo I. Entonces la solución general de la ecuación es:

$$y = c_1 y_1(x) + c_2 y_2(x) + \dots + c_k y_k(x)$$

donde c_i son constantes arbitrarias, para $x \in I$.

Polinomios en el operador D

Si L es un operador diferencial con coeficientes constantes podemos tratarlo como un polinomio en D, esto es:

Si
$$p(x) = a_n x^n + ... + a_1 x + a_0$$
 y $L = a_n D^n + a_{n-1} D^{n-1} + ... + a_1 D + a_0$ entonces, $L = p(D)$.

De esta forma si p(x) se factoriza en $\mathbb{R}[x]$ como p(x) = r(x)q(x), entonces $p(D) = r(D) \circ q(D)$ que por simplicidad anotaremos: r(D)q(D)

Ejemplo

Dado
$$p(x) = x^2 - 3x + 2 = (x - 1)(x - 2)$$

comprobaremos que $p(D) = D^2 - 3D + 2 = (D - 1)(D - 2)$

$$(D-1)(D-2)y = (D-1)((D-2)y)$$

$$= (D-1)(y'-2y)$$

$$= D(y'-2y) - (y'-2y)$$

$$= y''-2y'-y'+2y$$

$$= y''-3y'+2y$$

$$= (D^2-3D+2)y$$

Resolución de Ecuaciones Lineales Homogéneas con Coeficientes Constantes

Consideremos una edo lineal homogénea de orden n con coeficientes constantes L(y)=0 donde L=p(D) con $p(x)\in\mathbb{R}_n[x]$

Caso1: p(D) se descompone en n factores lineales distintos

Si
$$p(D)=(D-r_1)(D-r_2)\cdots(D-r_n)$$
 con $r_i\neq r_j$ si $i\neq j$ la ecuación se puede resolver por aplicaciones reiteradas de la ecuación lineal de primer orden.

Ejemplo Resolver: y'' - 3y' + 2y = 0

Anotamos: $(D^2 - 3D + 2)y = (D - 1)(D - 2)y$ cambiando de variables: u = (D - 2)y se tiene la ecuación lineal de primer orden:

$$(D-1)u = 0$$

 $u' - u = 0$ $/ e^{-x}$

$$(e^{-x}u)' = 0 / \int \\ e^{-x}u = c_1 \\ u = c_1e^x$$

$$como u = (D-2)y (D-2)y = c_1e^x / e^{-2x} \\ (e^{-2x}y)' = c_1e^{-x} / \int \\ e^{-2x}y = c_1e^{-x} + c_2 \\ y = c_1e^x + c_2e^{2x}$$

Teorema

Si $p(D) = (D - r_1)(D - r_2) \cdots (D - r_n)$ con $r_i \neq r_j$ si $i \neq j$ entonces la solución general de la ecuación es:

$$y = c_1 e^{r_1 x} + c_2 e^{r_2 x} + \dots + c_n e^{r_n x}$$

Ejemplo Resolver: 3y''' - 2y'' - y' = 0

Solución: La ecuación es $(3D^3 - 2D^2 - D)y = 0$ D(3D+1)(D-1)y = 0 $D(D+\frac{1}{3})(D-1)y = 0$

y la solución general es: $y = c_1 + c_2 e^{-\frac{1}{3}x} + c_3 e^x$

Caso2: p(D) se descompone en factores lineales repetidos

Si
$$p(D) = (D - r_1)^{n_1} (D - r_2)^{n_2} \cdots (D - r_m)^{n_m} \text{ con } n_1 + n_2 + \dots + n_m = n$$

entonces la solución general de p(D)y = 0

$$y = e^{r_1 x} \left(c_1^1 + c_2^1 x + \dots + c_{n_1}^1 x^{n_1 - 1} \right) + \dots + e^{r_n x} \left(c_1^m + c_2^m x + \dots + c_{n_m}^m x^{n_m - 1} \right)$$

Ejemplo Resolver: y''' + 2y'' + y' = 0

Solución : Se tiene que $\begin{array}{c} (D^3+2D^2+D)y=0\\ D(D^2+2D+1)y=0\\ D(D+1)^2y=0 \end{array}$

entonces, $y = c_1 + e^{-x}(c_2x + c_3)$

Caso3: p(D) contiene factores irreducibles cuadráticos

En este caso usaremos la identidad de Euler en los números complejos:

$$e^{ix} = \cos(x) + i \sin(x)$$

obsérvese que :
$$\cos\left(k\frac{\pi}{2}\right)+i\mathrm{sen}\left(k\frac{\pi}{2}\right)=i^k$$
 , $k\in\mathbb{Z}$

entonces usando series de potencia en los complejos se tiene:

$$\cos(x) + i \operatorname{sen}(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n} + i \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}$$

$$= \sum_{k=0}^{\infty} \frac{\cos(k\frac{\pi}{2})}{k!} x^k + i \sum_{k=0}^{\infty} \frac{\sin(k\frac{\pi}{2})}{k!} x^k$$

$$= \sum_{k=0}^{\infty} \frac{\cos(k\frac{\pi}{2}) + i \operatorname{sen}(k\frac{\pi}{2})}{k!} x^k$$

$$= \sum_{k=0}^{\infty} \frac{i^k}{k!} x^k$$

$$= \sum_{k=0}^{\infty} \frac{(ix)^k}{k!}$$

$$= e^{ix}$$

Si z = a + ib es raíz de p(x), entonces $\overline{z} = a - ib$ también lo es, por tanto $(x - z)(x - \overline{z}) = x^2 - 2ax + a^2 + b^2$ es un factor de p(x)

Consideremos una ecuación: $(D^2 - 2aD + a^2 + b^2)y = 0$ (D - (a + ib))(D - (a - ib))y = 0resolviendo formalmente en los complejos, se tiene la solución general

$$\begin{split} y &= c_1 e^{(a+ib)x} + c_2 e^{(a-ib)x} \\ &= c_1 e^{ax} e^{ibx} + c_2 e^{ax} e^{-ibx} \\ &= e^{ax} \left(c_1 e^{ibx} + c_2 e^{-ibx} \right) \\ &= e^{ax} \left(c_1 (\cos(bx) + i \sin(bx)) + c_2 (\cos(bx) - i \sin(bx)) \right) \\ &= e^{ax} ((c_1 + c_2) \cos(bx) + (c_1 - ic_2) \sin(bx)) \end{split}$$

y reemplazando las constantes $c_1 + c_2$ por c_1 y $(c_1 - ic_2)$ por c_2

se tiene la solución general:
$$y = e^{ax}(c_1\cos(bx) + c_2\sin(bx))$$

 $y = c_1e^{ax}\cos(bx) + c_2e^{ax}\sin(bx)$

Entonces para una ecuación de la forma: p(D)y = 0 con:

$$p(D) = (D - r_1)^{n_1} \cdots (D - r_m)^{n_m} (D^2 + d_1 D + e_1)^{s_1} \cdots (D^2 + d_k D + e_k)^{s_k}$$

con $n_1 + n_2 + \ldots + n_m + 2(s_1 + \ldots + s_k) = n$
entonces la solución general es dada por:

$$y = e^{r_1 x} \left(c_1^1 + c_2^1 x + \dots + c_{n_1}^1 x^{n_1 - 1} \right) + \dots + e^{r_n x} \left(c_1^m + c_2^m x + \dots + c_{n_m}^m x^{n_m - 1} \right) + e^{a_1 x} \cos(b_1 x) \left(g_1^1 + g_2^1 x + \dots + g_{s_1}^1 x^{s_1 - 1} \right) + e^{ax} \sin(bx) \left(g_1^k + g_2^k x + \dots + g_{s_1}^k x^{s_1 - 1} \right)$$

 c_i^i ; g_i^i constantes.

Ejemplo Resolver: $D(D-5)^2(D^2+2D+4)y=0$

Resolución: factorizamos p(x) en \mathbb{C}

$$x(x-5)^2(x^2+2x+4)=x(x-5)^2\Big(x-\Big(-1+i\sqrt{3}\Big)\Big)\Big(x-\Big(-1-i\sqrt{3}\Big)\Big)$$
 entonces la solución general es:

$$y = c_1 + e^{5x}(c_2 + c_3x) + e^{-x}\cos\left(\sqrt{3}x\right)c_4 + e^{-x}\sin\left(\sqrt{3}x\right)c_5$$

Ejemplo Resolver: $(D^6 + 4D^4 + 4D^2)y = 0$

factorizando el polinomio:

$$(x^6 + 4x^4 + 4x^2) = x^2(x^4 + 4x^2 + 4) = x^2(x^2 + 2)^2 = x^2(x + i\sqrt{2})^2(x - i\sqrt{2})^2$$

se tiene la solución general:

$$y = c_1 + c_2 x + \cos\left(\sqrt{2}\right)(c_3 + c_4 x) + \sin\left(\sqrt{2}\right)(c_5 + c_6 x)$$

Polinomios Anuladores y Coeficientes Indeterminados

Dada una función f diferenciable hasta el orden n y L un operador lineal tal que

$$L(f) = 0$$

se dice que L es un anulador o un aniquilador para f.

De acuerdo a la solución de edos lineales homogéneas a coeficientes constantes, se tiene que:

 $L = (D - r)^n$ es un polinomio anulador para las funciones : e^{rx} , xe^{rx} , x^2e^{rx} , ..., $x^{n-1}e^{rx}$ por tanto anula a toda combinación lineal de ellas: $c_1e^{rx} + c_2 xe^{rx} + ... + c_n x^{n-1}e^{rx}$

En particular D^n anula a las funciones de la forma $c_1 + c_2 x + ... + c_n x^{n-1}, c_i \in \mathbb{R}$

 $L = (D^2 - 2aD + a^2 + b^2)^n$ anula a las funciones:

$$e^{ax}\cos(bx)$$
; $xe^{ax}\cos(bx)$; ...; $x^{n-1}e^{ax}\cos(bx)$; $e^{ax}\sin(bx)$; $xe^{ax}\sin(bx)$; ...; $x^{n-1}e^{ax}\sin(bx)$. y a todas sus combinaciones lineales.

Ejercicio

Determine un operador anulador para las funciones dadas:

a)
$$3x^2 + 5$$
 b) $e^{2x} + 5x^4$ c) $x^3 e^{6x} - 2e^{-x}$

d)
$$5\operatorname{sen}(x)$$
 e) $6e^{2x}\cos(3x) + e^{2x}\sin(3x)f) e^{-5x}\cos(-2x) + 5x^2e^{3x}\sin(x) + x$

Resolución

a)
$$L = D^3$$
 b) $L = (D-2)D^5$ c) $L = (D-6)^4(D+1)$ d) $L = (D^2+1)$ e) $L = (D^2-4D+4+9)$ f) $L = (D^2+10D+29)(D^2-6D+10)^3D^2$

Coeficientes Indeterminados

Sea L(y) = q(x) una ecuación lineal no homogénea con coeficientes constantes, tal que: q(x) es una combinación lineal de funciones de la forma: $x^m e^{ax} \cos(bx)$; $x^m e^{ax} \sin(bx)$ para $m \in \mathbb{N}_0$, $a, b \in \mathbb{R}$.

Entonces hallamos un operador L_1 anulador de q(x) y lo aplicamos a la ecuación.

$$L_1L(y) = 0$$

resolviendo esta ecuación homogénea se tiene la forma de una solución particular y_p de la ecuación original y sustituyendo en la ecuación original se obtiene una solución particular de la ecuación.

Ejemplo Resolver y'' - 3y' + 2y = x + 1

La solución complementaria de la ecuación homogénea

$$(D^2 - 3D + 2)y = (D - 1)(D - 2)y = 0$$
 es $y_c = c_1 e^x + c_2 e^{2x}$

Aplicando el operador anulador de $x+1, L_1=D^2$ se tiene :

$$L(y) = x + 1 / L_1$$

 $L_1L(y) = D^2(D-1)(D-2)y = 0$

cuya solución general es: $y = c_1x + c_2 + c_3e^x + c_4e^{2x}$

Por tanto una solución particular de L(y) = x + 1 es,

$$y_p = c_1 x + c_2 + c_3 e^x + c_4 e^{2x}$$

Pero como $L(c_3e^x + c_4e^{2x}) = 0$ entonces $L(y_p) = L(c_1x + c_2)$

esto implica que podemos considerar la solución particular sólo de la forma (Ax + B)

Así basta resolver (D-1)(D-2)(Ax+B) = x+1

consideramos
$$y_p = Ax + B \Rightarrow y_p'' - 3y_p' + 2y_p = x + 1$$

$$\Rightarrow -3A + 2(Ax + B) = x + 1$$

$$\Rightarrow 2Ax + 2B - 3A = x + 1$$

$$\Rightarrow 2A = 1 \land 2B - 3A = 1$$

$$\Rightarrow A = \frac{1}{2} \land B = \frac{5}{4}$$

 $\Rightarrow A=\frac{1}{2}\wedge B=\frac{5}{4}$ Por tanto una solución particular es $y_p=\frac{1}{2}x+\frac{5}{4}$ y la solución general es: $y=y_p+y_c=\frac{1}{2}x+\frac{5}{4}+c_1e^x+c_2e^{2x}$

Ejemplo Resolver $y'' - 3y' + 2y = 2\cos(4x)$

La solución complementaria es $y_c = c_1 e^x + c_2 e^{2x}$

un operador anulador para $2\cos(4x)$ es $(D^2 + 16)$

aplicando a ambos lado de la ecuación se tiene:

$$(D^2 + 16)(D - 1)(D - 2)y = 0$$

cuya solución $c_1\cos(4x) + c_2\sin(4x) + c_3e^x + c_4e^{2x}$ como $c_3e^x + c_4e^{2x}$ es solución de la ecuación homogénea asociada, la forma de la solución particular es $y_p = A\cos(4x) + B\sin(4x)$

$$y'_p = -4\text{sen}(4x) + 4\cos(4x)$$

$$y''_p = -16\cos(4x) + 16\text{sen}(4x)$$

entonces,
$$y_p'' - 3y_p' + 2y_p = 2\cos(4x)$$

 $(-14A - 12B)\cos(4x) + (12A - 14B) = 2\cos(4x)$

$$-14A - 12B = 2$$
$$12A - 14B = 0$$

de donde: $A = \frac{-7}{85}$ $B = \frac{-6}{85}$ y la solución general es: $y = \frac{-7}{85}\cos(4x) + \frac{-6}{85}\sin(4x) + c_1e^x + c_2e^{2x}$

Ejemplo Resolver $y'' - 2y' + y = e^x$

La ecuación homogénea es: $(D-1)^2y=0$ la solución complementaria es : $y_c=e^x(c_1+c_2x)$ aplicando el operador anulador se tiene: $(D-1)^3y=0$ con solución: $y=e^x(c_1+c_2x+c_3x^2)$

entonces la forma de la solución particular es: $y_p = Ax^2e^x$

$$y'_p = Ax^2e^x + 2Axe^x$$

$$y''_p = Ax^2e^x + 4Axe^x + 2Ae^x$$

igualando se tiene:
$$2Ae^x=e^x \Rightarrow A=\frac{1}{2}$$
 así la solución particular es: $y_p=\frac{1}{2}x^2e^x$ y la solución general es: $y=\frac{1}{2}x^2e^x+e^x(c_1+c_2x)$.

Resolución de Ecuaciones Lineales con Coeficientes Variables

Teorema (Fórmula de Abel)

Sean $y_1(x), ..., y_n(x)$ soluciones sobre un intervalo I de la ecuación de orden n:

$$y^{(n)} + a_{n-1}(x)y^{(n-1)} + \dots + a_0(x)y = 0$$

Entonces, existe una constante real c tal que:

$$W(y_1(x),...,y_n(x))=ce^{-\int a_{n-1}(x)dx}$$

Demostración (para el caso n=2)

Sean $y_1(x), y_2(x)$ soluciones de la ecuación: y'' + p(x)y' + q(x)y = 0 entonces,

$$\frac{d}{dx}W(y_1, y_2) = \frac{d}{dx} \begin{pmatrix} \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} \end{pmatrix} = \frac{d}{dx} (y_1 y_2' - y_2 y_1')$$

$$= y_1' y_2' + y_1 y_2'' - y_2' y_1' - y_2 y_1''$$

$$= y_1 y_2'' - y_2 y_1''$$

$$= y_1 (-p(x)y_2' - q(x)y_2) - y_2 (-p(x)y_1' - q(x)y_1)$$

$$= -y_1 p(x)y_2' - y_1 q(x)y_2 + y_2 p(x)y_1' + y_2 q(x)y_1$$

$$= -y_1 p(x)y_2' + y_2 p(x)y_1'$$

$$= p(x) (y_2 y_1' - y_1 y_2')$$

$$= -p(x)W(y_1, y_2)$$

$$\frac{d}{dx}W(y_1, y_2) + p(x)W(y_1, y_2) = 0$$

el factor integrante es: $e^{\int p(x)dx}$

$$\begin{split} &\frac{d}{dx}\big(W(y_1,y_2)\big)e^{\int p(x)dx}+e^{\int p(x)dx}p(x)W(y_1,y_2)=0\\ &\frac{d}{dx}\bigg(W(y_1,y_2)e^{\int p(x)dx}\bigg)=0\\ &W(y_1,y_2)e^{\int p(x)dx}=c \end{split}$$

$$W(y_{\scriptscriptstyle 1},y_{\scriptscriptstyle 2})=ce^{\,-\,\int p(x)dx}$$

Teorema (Reducción de Orden)

Sea $y_1(x) \neq 0$ una solución de la ecuación: y'' + p(x)y' + q(x)y = 0 entonces una segunda solución $y_2(x)$ li de la ecuación es dada por:

$$y_{\scriptscriptstyle 2} = y_{\scriptscriptstyle 1} \int rac{1}{y_{\scriptscriptstyle 1}^2} e^{-\int p dx} dx$$

Demostración

$$\begin{aligned} & \text{Como } W(y_1,y_2) = ce^{\displaystyle -\int p(x) dx} \\ & y_2' y_1 - y_2 y_1' = ce^{\displaystyle -\int p(x) dx} \\ & y_2' - y_2 \frac{y_1'}{y_1} = \frac{c}{y_1} e^{\displaystyle -\int p(x) dx} \end{aligned}$$

el factor integrante es: $e^{-\int \frac{y_1'}{y_1} dx} = e^{-ln(y_1)} = \frac{1}{y_1}$

$$\frac{1}{y_1}y_2' - y_2 \frac{y_1'}{y_1^2} = \frac{c}{y_1^2} e^{-\int p(x) dx}$$

$$\frac{d}{dx}\left(\frac{1}{y_1}y_2\right) = \frac{c}{y_1^2}e^{-\int p(x)dx} \qquad /\int dx$$

$$\frac{1}{y_1}y_2 = c \int \frac{1}{y_1^2} e^{-\int p(x)dx} dx + k$$

tomando c = 1; k = 0 se tiene:

$$y_{\scriptscriptstyle 2} = y_{\scriptscriptstyle 1} \! \int rac{1}{y_{\scriptscriptstyle 1}^2} e^{-\int p dx} dx$$

que es la fórmula de reducción de orden para edos homogéneas de 2º orden.

$$y'' + p(x)y' + q(x)y = 0$$

Ejemplo Resolver
$$(x^2 - 1)y'' - 2xy' + 2y = 0$$

Tomando una solución particular de la forma: y = ax + b

$$y' = a; y'' = 0$$
$$-2xa + 2(ax + b) = 0$$
$$b = 0$$

así, y = ax son soluciones de la ecuación.

Consideremos $y_1(x) = x$, solución de la edo.

Normalicemos la ecuación dividiendo por $(x^2 - 1)$,

$$y'' - \frac{2x}{x^2 - 1}y' + \frac{2}{x^2 - 1}y = 0$$

en la ecuación normalizada aplicamos la fórmula de reducción de orden,

entonces,
$$y_{2} = x \int \frac{e^{-\int -\frac{2x}{x^{2}-1}dx}}{x^{2}} dx$$

$$= x \int \frac{e^{\ln(x^{2}-1)}}{x^{2}} dx$$

$$= x \int \frac{x^{2}-1}{x^{2}} dx$$

$$= x \left(x + \frac{1}{x}\right)$$

$$= x^{2} + 1$$

luego $y_2 = x^2 + 1$ es una 2^a solución l.i. de la ecuación,

entonces la solución general es:

$$y = c_1 x + c_2 (1 + x^2)$$

Ejercicio Resolver
$$(x^2 + x)y'' + 2y' - 2y = 0$$

Respuesta:
$$y_1 = \frac{1}{x}$$
; $y_2 = x^2 + 3x + 3$

Ejercicio Resolver
$$y'' + \frac{\cos(x)}{\sin(x)}y' + 2y = 0$$

Respuesta:
$$y_{\scriptscriptstyle 1} = \cos(x)$$
 ; $y_{\scriptscriptstyle 2} = \cos(x) \ln\left(\frac{1+\cos(x)}{1-\cos(x)}\right) - 2$

La Ecuación de Euler-Cauchy

La ecuación de Euler-Cauchy es de la forma:

$$a_n x^n y^{(n)} + a_{n-1} x^{n-1} y^{(n-1)} + \dots + a_2 x^2 y'' + a_1 x y' + a_0 y = 0$$

con a_i constantes.

Consideremos una solución de la forma $y = x^k$, reemplazando queda:

$$a_n x^n k(k-1) \cdots (k-(n-1)) x^{k-n} + \ldots + a_2 x^2 k(k-1) x^{k-2} + a_1 x k x^{k-1} + a_0 x^k = 0$$

se obtiene, entonces, la ecuación polinomial en k

$$a_n x^n k(k-1) \cdots (k-(n-1)) + a_2 k(k-1) + a_1 k + a_0 = 0$$

y si la solución tiene n raíces reales distintas : $r_1, r_2, ..., r_n$, entonces la ecuación tiene la solución general : $y = c_1 x^{r_1} + \cdots + c_n x^{r_n}$

En particular la ecuación de Euler de segundo orden es:

$$x^2y'' + pxy' + qy = 0$$

y la ecuación asociada es:

$$k(k-1) + pk + q = 0$$

Sean k_1 , k_2 las soluciones de la ecuación:

Caso I: $k_1, k_2 \in \mathbb{R} \text{ con } k_1 \neq k_2$

entonces: $y = c_1 x^{k_1} + c_2 x^{k_2}$ es su solución general.

Caso II: $k_1, k_2 \in \mathbb{R}$ con $k_1 = k_2$

entonces usando reducción de orden, se tiene una 2^a solución $y_2 = x^{k_1} ln(x)$ y la solución general es: $y = c_1 x^{k_1} + c_2 x^{k_1} ln(x)$

Caso III: $k_1, k_2 \in \mathbb{C}$ con $k_1 = a + bi$; $k_2 = a - bi$

entonces
$$x^{a\pm bi}$$
 = $e^{(a\pm bi)ln(x)}$
= $e^{aln(x)} \cdot e^{\pm biln(x)}$
= $x^a[\cos(bln(x) \pm i\sin(bln(x)))]$

y la solución general en variable real es dada por:

$$y = c_1 x^a \cos(bln(x)) + c_2 x^a \sin(bln(x))$$

Ejemplo Resolver $x^2y'' + 7xy' + 13y = 0$

la ecuación asociada es k(k-1)+7k+13=0 que tiene las soluciones : $k=-3\pm 2i$

entonces la solución general es:

$$y = c_1 x^{-3} \cos(2ln(x)) + c_2 x^{-3} \sin(2ln(x))$$

Ejercicios:
$$y'' - 4y' + 4y = 0$$
; $y_1 = e^{2x}$
 $4x^2y'' + y = 0$; $y_1 = \sqrt{x}$
 $x^2y'' - xy' = 0$
 $x^2y'' + 7xy' + 25y = 0$

Método de Variación de Parámetros

Dada la ecuación de segundo orden no homogénea

$$y'' + p(x)y' + q(x)y = r(x)$$

si y_1 , y_2 son soluciones l.i. de la ecuación homogénea, consideramos una solución particular de la forma:

$$y_p = c_1 y_1 + c_2 y_2$$
, donde $c_1 = c_1(x)$ y $c_2 = c_2(x)$

entonces,

$$y'_p = c'_1 y_1 + c_1 y'_1 + c'_2 y_2 + c_2 y'_2 = c_1 y'_1 + c_2 y'_2 + \underbrace{c'_1 y_1 + c'_2 y_2}_{0}$$

$$y_p'' = c_1 y_1'' + c_1' y_1' + c_2 y_2'' + c_2' y_2' = c_1 y_1'' + c_2 y_2'' + (c_1' y_1' + c_2' y_2')$$

como $y_1\,,\,y_2$ son soluciones de la ecuación homogénea, se cumple que:

$$y_1'' = -p(x)y_1' - q(x)y_1$$

 $y_2'' = -p(x)y_2' - q(x)y_2$, reemplazando, se tiene:

$$y_p'' = -c_1 p(x) y_1' - c_1 q(x) y_1 - c_2 p(x) y_2' - c_2 q(x) y_2 + (c_1' y_1' + c_2' y_2')$$

$$y_p'' = -p(x) \left[c_1 y_1' + c_2 y_2' \right] - q(x) \left[c_1 y_1 + c_2 y_2 \right] + c_1' y_1' + c_2' y_2'$$

si se cumple que: $c_1'y_1 + c_2'y_2 = 0$ y $c_1'y_1' + c_2'y_2' = r(x)$ entonces,

$$y_p'' = -p(x) \left[c_1 y_1' + c_2 y_2' + \underbrace{c_1' y_1 + c_2' y_2}_{0} \right] - q(x) \left[c_1 y_1 + c_2 y_2 \right] + r(x)$$

es decir:

$$(c_1y_1 + c_2y_2)'' = -p(x)(c_1y_1 + c_2y_2)' - q(x)\left[c_1y_1 + c_2y_2\right] + r(x)$$

por tanto, $c_1y_1 + c_2y_2$ es solución de la ecuación si se cumple el sistema:

$$c'_1 y_1 + c'_2 y_2 = 0$$

$$c'_1 y'_1 + c'_2 y'_2 = r(x)$$

y usando la Regla de Cramer se tiene:

$$c_1'(x) = \frac{\begin{vmatrix} 0 & y_2 \\ r(x) & y_2' \end{vmatrix}}{\begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix}} \Rightarrow c_1(x) = \int \frac{\begin{vmatrix} 0 & y_2 \\ r(x) & y_2' \end{vmatrix}}{W(y_1, y_2)} dx$$

$$c_2'(x) = \frac{\begin{vmatrix} y_1 & 0 \\ y_1' & r(x) \end{vmatrix}}{\begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix}} \Rightarrow c_2(x) = \int \frac{\begin{vmatrix} y_1 & 0 \\ y_1' & r(x) \end{vmatrix}}{W(y_1, y_2)} dx$$

Luego la solución general de la ecuación es:

$$y = c_1(x)y_1 + c_2(x)y_2 + c_3y_1 + c_4y_2$$

Ejemplo Resolver : y'' + y = tg(x)

Ejercicio Resolver: $x^2y'' - 2xy' + 2y = \frac{6}{x}$