Список заданий:

7.2	7.13	12.4	12.19	16.5	Поменем.
7.3	7.14	12.5	12.226	16.6	16.21
7.6	7.25	12.6	12.22в	16.8	16.25
7.7	7.28	12.11	12.23 внутри	16.8	16.32a
7.12	7.39	12.13	12.23 снаружи	16.9	16.326

- Все четко, списывай
- Списывай с умом (Там почему-то ответ не сходится)

Задача 16.20

ну в целом уник не

так уж и нужен...
(шучу,там есть
решение,
но его хер поймешь)

7.2

42 Dano	Demenue
Au Aa	4
A-? w-?	Ур-е голобитенного движения
A-: -	$\chi(4) = A\cos(\omega_0 + \epsilon \varphi_0)$
23 83	Воземен произбодные для ногождена уравнений сперости и устрених
	уравнений спорости и устрених
	2(4)= x'(4) = -Awo sin(wet + 40)
	$\alpha(t) = x''(t) = -A ue_3^2 \cos(ue_1 t + 4e_1)$
10 404 D	Die auneumygnore moren:
	Au = Awo Au = Awo!
	$u = \frac{Aa}{Aa}$, $A = \frac{A^3}{Aa}$
	Ombem: Wo = Aa; A = Av Aa

4.3 Дано	Pemenne
$T_{1} \times_{1} = \frac{A}{2}$ $X_{1} = -\frac{A}{2}$	В соответствии с ур-ем зарионических колеобомий:
7-?	$X(t) = A \cos(\omega_0 t)$
30000	Nogomabun znavenur Ke, Kz
2 1-25-25-3	$\left(\frac{A}{2} - A\cos(\omega_0 t_0) = \right) t_1 = \frac{\arccos(0,5)}{\omega_0} $ (1)
(4+14	$\left(-\frac{A}{2} = A \cos(\omega_0 \xi) = \right) + 2 = \frac{\arccos(-0.5)}{\omega_0} $ (2)
	Gemen, uno $ul = \frac{2\pi}{7}$ u nogemerbune $l(1), (2)$
	$f_1 = \frac{\pi \ T}{3 \ 2 \pi} = \frac{T}{6}$, $f_2 = \frac{2 \pi \ T}{3 \cdot 2 \pi} = \frac{T}{3}$
	$\ddot{z} = t_2 - t_1 = \frac{\tau}{3} - \frac{\tau}{6} = \frac{\tau}{6}$
2.12	Ombem: I

4.6 Dano	Pewerne	De la de la
T, A, X	Boend cypeu	парианических колобаний
2 + ?	X(1) = A cos (wot)	
	$Y = A \cos(\omega_0 t_1) = $	t= arccos (x)
	Bozenen rpombog	myso que noignemes
	2(1) = x'(1) = - A wo S	
	В монент врешен	u ti:
	$re(t_1) = -Awosin$	$\left(\begin{array}{c} w_o & arccos\left(\frac{\kappa}{H}\right) \\ w_o \end{array}\right)$
	Grmen, uno ue = 2	
	20(4) = - A. 2 T sing	(arccos(X))
	Omben: v = - 2AIT	$sin(arccos(\frac{x}{A}))$

4.4 Dano]	Pemerine
10, Aa, X	В соот-вие с ур-ем горионич, колебаний
	X(t) = A cos (wo t) (1)
	Возвием производите для нахоходения
	$2(t) = x'(t) = -A w_0 sin (w_0 t) (2)$ $a(t) = x''(t) = -A w_0^2 cos (w_0 t)$
	Morga $A\alpha = A co^2 = A = \frac{A\alpha}{co^2}$ (3)
	Hausey +, noscmable (3) & (1)
	$t = \frac{arccos\left(\frac{x\omega_0^2}{Aa}\right)}{\omega_0}$ (4)
	Regemorbien (4) 8 (2)
	20 = - Au Sin (arccos(xue,3))
	= - Aa sin (arccos (xw²))

7.12 – (ответ лучше расписать с найденными значениями, без ti)

7.12 Dano	Temenue !
$X = 5 \sin\left(\frac{\pi t}{2}\right)$ $Y_1 = 0$ $Y_2 = A$	В сответствии с ур-ен гарионич,
Y3 = 4/2	x(+) = A cos (wo+)
7, -? 7, -?	Подставин значения из условия:
73-?	1) $V_1 = 5 \sin(\frac{\pi t_1}{2}) = $ $t_1 = 2 \arcsin(\frac{t_2}{3})$
	2) $x_2 = 5 \sin(\frac{\pi t_2}{2}) \Rightarrow t_2 = \frac{2 \arcsin(\frac{x_2}{5})}{17}$
	3) $X_3 = 5 \sin\left(\frac{\pi t_3}{2}\right) = \frac{2 \arcsin\left(\frac{\kappa_3}{5}\right)}{\pi}$
	Tr= 12-11
Omlem:	$T_2 = t_3 - t_1$ rge $t_i = 2 \arcsin \left(\frac{v_i}{A}\right)$
	T3 = 42-43

4.13 Dano 1	Pemerine
Y,= 4 cost	петодан векториих диаграния
X3 = 3 cos [4+ 11]	истодан вектериих диограни.
w-? A-? J-?	Изобразии в-по в ненени времени
	t=0 Aug
19 10	A, X
1473	
	w= w,= we,= we
	$A = \left(A_1^2 + A_2^2 \right)$
	$4gL = arctg \frac{N_3}{\Delta_1}$

4,14 Dano	Pemerine
X1 = 30 COS T+	Для сложения рыболий воспольземся
Y2 = 30 cos (11 + 11)	nemogen beimophis guarpaini
Xp(+)-?	Uzoopousum 6-pm l'uomenm lepemenn +=0 de wo= ce=ce2
	epeweru +=0 1, wp=ce,=ce2
	5500 ×A, 7
	По правину сложила в-в и теорения
	Locurycol:
	$A_{p} = \sqrt{A_{1}^{2} + A_{2}^{2} + 2A_{1}A_{2}} \cos(30-0) = 58$
	Pp = 401 + Poz = 17
	Onclen: $X(+) = 58 \cos\left(\frac{11}{3} + \frac{11}{12}\right)$

7.25 Dano T= 4.8.10 ² AE-9390	Гешение Ур-е аппинудие затухающих конований:
P-3	$A(t) = A_0 \cdot e^{-\beta t} = \sum_{i=1}^{n} \ln \frac{A_i}{A_0} = -\beta t \qquad (1)$
	Эперия гарионических ресобаний
	$E = \frac{m \omega_0^2 A^2}{2} \Rightarrow \frac{E_1}{E_2} = \frac{m \omega_0^2 A_1^2}{2} = \frac{A_1}{A_2}^2$
Charles Control	Bycioline zagaru:
	$\frac{E_1}{E_1} = \frac{E_1}{E_1} = \frac{E_2}{E_1} = \frac{1}{100-aE}$
	$=\frac{100}{100-AE}=\left(\frac{A_1}{A_2}\right)^2$
	Uz (1) $\beta = -\frac{\ln \frac{A_1}{A_0}}{\overline{L}} = -\frac{\ln \frac{1}{100-\Delta E}}{\overline{L}}$
	Ombern: B = - Ln \(\frac{700}{700-AE} \)

7,28 Dano	Penenne
A0, A1	Ур-е анпинуда запухальных половиний
B-? 1-?	$A(1) = A_0 \cdot e^{-\beta t} = \lambda \ln \frac{A_1}{A_0} = -\beta t$
	Bycoluar zagaru t = NT
	$\ln \frac{At}{Ao} = -\beta NT \Rightarrow \beta = -\frac{\ln \frac{4t}{NT}}{NT}$
	Логоридонический декрешений зотухания
	1 = BT = - In An T = - In An
	Omlen; $\beta = -\frac{\ln \frac{At}{Ao}}{NT}$, $\lambda = -\frac{\ln \frac{At}{Ao}}{N}$

4,39 Dano	Penernie
Ar,), 20	Gp-e boener uneen lug:
) A Q	y(x,t) = A sin (uet + kx)
	ige h= 211 - Coencoboe ruces
	Sagrecome good Are = KX
	Cocmalua a penne aconomy yp-i:
	$\begin{cases} k = \frac{2\pi}{\lambda} \\ \varphi = kx \end{cases} \Rightarrow \varphi = \frac{2\pi x}{\lambda}, \text{ mo eans } \Delta \varphi = \frac{2\pi \Delta x}{\lambda}$
	3 maa, umo $\lambda = \frac{9}{5}$, $x \varphi = \frac{2\pi \Delta x}{5}$
	Bycioliu zagoru ax=ar
	Ombeni, aq = 2Trav 20

12.4

12.5

Pemenne
Cymapuri zapag mapa: q=eV
Nomenquae na nob-mu: 4 = 4 TT E. r
9 - eN 2 eN - eN - 411800 - 211800 d
Omkyga N = 2TI Eod 4
Omlen: N = 2 Tr Ee o d &

12,6 Dano 1	Demenne
T, e	de la
Δ φ-? \	Bapag emerxua enregeraemese 90-où:
	19 = Tdx
	Monenquae, cosgabaemen gracenton de
126 8 3	Brocke:
	$d\varphi = \frac{1}{4\pi r_0}$, $d\varphi = \frac{7dx}{4\pi g_0 x}$
	Unmerprepyen:
	Side = Stax Guesax
10 320	9 = T . Ln x 20 = T Ln 2
	Contract to the test of the second
	transmum ger moude B:
	42 = T Ln x 13e = 7 Cn 3 2
	$\Delta \varphi = \varphi_r - \varphi_2 = \frac{\tau}{4\pi\epsilon_0} \ln \frac{4}{3}$
	Omlem: I In 4 41780 Ln 3

12.11

12,11 Dano	1 Pemenne
4=āF	Inaa ypalnenne closu nanpamennocinu u nomenyuaia = - Te, rge T-rpaguenm
	Parnumen on β Sazure: $\bar{\alpha} = \alpha_{\chi} i + \alpha_{S} j + \alpha_{Z} \bar{k}$ Than $\chi_{Q} \bar{r} = \chi_{\bar{1}} + 3\bar{j} + Z\bar{k}$
	Morga φ=ār = ax x + ag y + az Z
	Busing and and the Company of the Co
	By you have 30 gara: $\nabla \varphi = Q_x \overline{i} + Q_y \overline{j} + Q_z \overline{i}$ Bugun, and $\nabla \varphi = Q_x$, and $\overline{E} = -\nabla \varphi$ $\overline{E} = -\overline{Q}$ Omben: $\overline{E} = -\overline{Q}$.

12.13

77	il lul 1
12,19 Dano	Demerine
9=012+h	Braa umo div E = 8 u Cocnous aboliment
90x3-?	мереной Годоса для энектростам, пава,
	(divE = & (1)
	E=-79 Bruncau V9
1300	Vq = 201 x i + 20 y j + 20 z 4
24	div E no enpegerences:
	$div \vec{E} = \frac{\partial \vec{E}x}{\partial x} + \frac{\partial \vec{E}x}{\partial \theta} + \frac{\partial \vec{E}z}{\partial z} = -2a - 2a - 2a = -6a$
	Topomakub P (1) unelli:
	-6Q = 9 => 8 = -6Q &o
	Omleni - 69 Es

12.22 Dano Pemenne 120 ds
S, R, R2
F3 CEXE
((),03)
P2
012
Электрастанического поса Таусса для
Flexing a commune con nois
\$ E(r) dS = \frac{q}{60}, rge q = 9V
Japag no remopery poconpegaces
$V = \pi r^2 \lambda - \pi R^2 \lambda$
acezolamentario e = g 1Th (r,2-R,2)/60
\$E(r)ds = E(r,) \$ds = E(r,) \$ 29e 5 -
2000 - Living yes = Elija 5 - 186 5 -
neousage planday not me yourseppe:
S= 211 rzh
Togomalul, nongrum
E(r,). 2 11 r, h = 8 11 h (r,2-R,2)/80
$E(r_i) = \frac{gh}{28_0} \left(r_i - \frac{R_i^2}{r} \right)$
280 7

12.22в

Bocockyence meopenon Tayoca gus surmpoemamurecoro nova: $S = ds = d$ $q = gv = g + h (R_s^2 - R_s^2)$ $S = ds = d$ $q = gv = g + h (R_s^2 - R_s^2)$ $S = ds = d$ $g = ds = d$	12.22 Dano Pemer 8, R1, R2	ene se de	
neorgage doedoir nob-mu guerrapo, paguycau (2) S=21/12 h Tagamolul, rengunu E(v2), 21/2 h = S11 h (l2-l2) E0	SEds = 2 Eo	28e 9=8V=	Stil (R3-R2)
	neorgage de r. S=2Tir.h Togomolul, Elr.).2Tr.	reignere L = Sil h (R2)	2 R2)

12.23(внутри и снаружи)

	12.23 Dano Demenue R, S=QV Elignip E
β $E(r_1)dS = \frac{9V}{60}$, $rge V - colsen μαρα$ § $E(V_1)dS = E(T_1)$ § $dS = E(T_1)S_1$, $rge S$, παριφαφε ποθ-πια αναρα, ρασμισσια r_1 $E(T_1)S_1 = E(T_1) \cdot 4\pi r_1^2$ περεπαθαθ, ανεσια: $4\pi r_1^2 \cdot E(T_1) = \frac{2r_1}{360}$ $E(r_1) = \frac{2r_1^2}{360}$ 2) Chapyria: Bocnowsyewan πεορειιού Γαγια gie γιεκπροεπασπανιστικού ποια: § $E(r_1)dS = \frac{q_1}{80}$, $rge S = \frac{q_1}{3}\pi R^3 \cdot g$ § $E(r_2)dS = E(T_1)S_1$, $rge S = \frac{q_1}{3}\pi R^3 \cdot g$ § $E(r_2)dS = E(T_1)S_1$, $rge S = recursage ποθ-πια εφρερίο, ρασμισσια r_2 E(T_2) = 4\pi r_2^2 = 4\pi R^3 \cdot g, rge S = recursage ποθ-πια εφρερίο, ρασμισσια r_2$	The second decrease of the second of the se
E(\vec{r}_1) $S_n = E(\vec{r}_1) \cdot 4\pi r_1^2$ The comabile, unless is $4\pi r_1^2 \cdot E(\vec{r}_1) = \frac{4r_1^2}{60} \cdot \frac{4\pi r_1^3}{7\pi r_1^3}$ $E(\vec{r}_1) = \frac{4r_1^2}{360}$ 2) Chapyrou: Beconsequency meoperior Tayora give such appearance neces; $SE(\vec{r}_1)dS = \frac{4r_1^2}{80} \cdot 188 \cdot \frac{4r_1^2}{80} \cdot \frac{4\pi r_1^3}{80} \cdot \frac{4r_1^2}{80} \cdot \frac{4r_1^2}{8$	$\oint \overline{E}(r_i)ds = \frac{gV}{60}$, rge V - oolsen mapa $\oint \overline{E}(V_i)ds = \overline{E}(\overline{r_i})\oint ds = \overline{E}(V_i)S_1$, rge S_1
E(r_1) = ar_1 $3\varepsilon_0$ 2) Chapyran: Bocnowygenca meopenoi Tayaca gua surmpoonamurecnoro nera; $SE(r)dS = \frac{q_{ex}}{80}$, $18l = \frac{q_{enen}}{8l} = \frac{9l}{3}R^3$. $9l$ $SE(r_1)dS = \frac{q_{ex}}{80}$, $18l = \frac{q_{enen}}{8l} = \frac{9l}{3}R^3$. $9l$ $SE(r_2)dS = E(r_3)S$, $18l = \frac{q_{ex}}{3}R^3$. $18l$ $SE(r_2)dS = \frac{q_{ex}}{3}R^3$. $18l$	$E(\overline{r_i}) S_i = E(\overline{r_i}) \cdot 4 \overline{11} r_i^2$ $Tegenalul, unean;$ $4 \overline{11} r_i^2 \cdot E(\overline{r_i}) = \frac{\alpha r_i}{\epsilon_0} \frac{4}{3} \overline{11} r_i^3$
$ \oint E(\vec{r}_2) ds = E(\vec{r}_1) S, rge S - newsage not me equepos, paguycau r_2 E(\vec{r}_2) = 4\pi R^3, g, g - q r no genobus $	2) снаружи: Воспользувися теореной Гаугов для электростостического пеля:
	\$ E(T,) ds = E(T,) 5, 2ge 5 - neousage not me
[[] , r 2 p 3. QR 5. 5. QU'	$E(\bar{r}_{2}) = 4\pi r_{2}^{2} = \frac{4}{3}\pi R^{3}, g, g = 0 r \text{ no genodad}$ $E(\bar{r}_{2}) \cdot r_{2}^{2} = R^{3} \cdot 0 R \Rightarrow E(\bar{r}_{2}) = \frac{0 R^{4}}{380 r_{2}^{2}}$

16.5 Dano	Demenno
16 1=e B-?	Morniemmora ungyptqua nova glieva.
	B= No 9 [10/1]
100 100	Byciolin zagomi:
	B= No 9 versingor No 9 20 (1)
	Banumen II 3. M. qua Breampona
	$F_{ne} = M_e \alpha_u \frac{ke^2}{r_0^2} = M_e \alpha_g \frac{1}{r_0^2}$
	$\frac{ke^2}{r_o^2} = \frac{m_e ve^2}{r_o} \Rightarrow ve = \sqrt{\frac{e^2 4^{-1}}{m_e v_o}} = e \sqrt{\frac{k^2}{m_e v_o}} $ (2)
	Regemalul (2) & (1) ances:
	B= Na . e \ k' \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	Omlem: B = 10 e'2 / K / Mero

16.6	Demenne
R, 6, w	Marninnaa angykuna
B-2	(ds) nova gluxuguseroca ?
	goopuigioù;
	B = 10 9 [10, 1] 4 17 13
	dB = Vo de [le, r]
36386	Yenen, umo 6 = 20 => 29 = 625
	Dia graco gracocha 15:
The same	dB = 10 we 6d5 4 ti r ² } => dB = 10 we ddr ds = 2 ti rdr] =>
	ds= 211 rdv] = 2
	Mangen unmerpar que Reero upyra
	IdB= Proweder
	5 5 R
	B= Noul & Sdr
	2 8
	B = No we GR
	2

10.0	
16,8 \ Pe	Eurence Curence
Ke, K2	nera glum, zapago onpogewience
8-7	Ves 1
	B= 50 . 212055, gua
	zhoro hereigo:
d	1B = 18 da [19, v] = 10 da v 16 da w
1	Blegen G= de => de= Gds, 29e ds= 211 rdr
3	Morga dB = No 6 wdr
	Bornemu anmerpai qua leero appra: Sobs = 5 voculdo Re 2
0	JOB = Slocalor
1384	B= No GW R R2 = No GW (R2-R7)
	$G = \frac{1}{3} = \frac{2}{7(R_2^2 - R_7^2)}$
8	2man; B = No we q 27/(R2+R1)

16.20 (друг, я в тебя верю 💪 💪 💪 🖒

or dB= Ko I [de rolp words sing of 2. sing or 2. sing
de B= Just 8,5in36, hdg. 1.5in4 4. 0. 23,35.5in4 - 4. 25in4. dy - 4. 25in4. dy
$\frac{Sin \varphi_{o} = \frac{\sqrt{3}}{2}}{cory \varphi_{o} = \frac{1}{2}} = \frac{y_{o}J \cdot \left(\frac{1}{2} + \frac{1}{2}\right)}{2\sqrt{1} \alpha \sqrt{3}} = \frac{y_{o}J}{2\sqrt{1} \alpha \sqrt{3}}$
B = 4.80.0054 = 4.05 = 2.05 $B = 4.80.0054 = 4.005$ $2.00053.53 = 3.0005$

Прямой длинный провод на одном из участков переходит в полуокружность радиусом R. По проводу проходит ток I. Определить магнитную индукцию \overrightarrow{B} поля в центре полуокружности.

Дано:

Пр.дл.пров., R, I $\overrightarrow{B}-?$

Примечания:

1. Мы «идём по проводнику» от о до половины длины окружности: $\frac{2\pi r}{2} = \pi r$

Решение:

Разобъём проводник на три участка: 1, 2, 3 – до полуокружности, полуокружность, после полуокружности.

По закону Био́ — Сава́ра — Лапла́са:

$$\overrightarrow{dB} = \frac{\mu_0}{4\pi} \frac{I[\overrightarrow{dl}, \overrightarrow{r}]}{r^2}; dB = \frac{\mu_0}{4\pi} \frac{I \sin \alpha}{r^2} dI$$

Для участков l и 3: $\overrightarrow{dl} \parallel \overrightarrow{r} \rightarrow [\overrightarrow{dl}, \overrightarrow{r}] = 0$, иначе говоря $\sin \alpha = \sin 0^\circ = 0 - const \rightarrow \overrightarrow{dB} = 0 \rightarrow \overrightarrow{B}_1 = \overrightarrow{B}_3 = 0$ Для участка 2:

 $\sin \alpha = \sin 90^{\circ} = 1 - const, r = R - const \rightarrow$

$$dB = \frac{\mu_0}{4\pi} \frac{I}{r^2} dl; B = \int dB = \frac{\mu_0}{4\pi} \frac{I}{r^2} \int_0^{\frac{2\pi r}{2}} dl = \frac{\mu_0}{4\pi} \frac{I}{r^2} l \Big|_0^{\pi r}$$

$$B = \frac{\mu_0}{4\pi} \frac{I}{r^2} \pi r = \frac{\mu_0 I}{4r}$$

Направление \overrightarrow{B} можно определить по правилу правой руки (правого винта):

$$\vec{B} = \frac{\mu_0 I}{4r} \vec{J}$$

Ответ: $\vec{B} = \frac{\mu_0 I}{4r} \vec{J}$.

16,32 Dono	Demenno	
a, 3 B-?	a) k Q , Q , Q , Q , Q , Q , Q , Q , Q , Q	Thockoury 6-pr B1 4 B2 possioncompolierur a polius no enogreso, B = B1 + B2 = 0
	0)	
	y de 2 2 y	
	No zarong Buo d B = 1/3 [[r.de] 411 r3	- Colapa - Janeaca
	В условин задачи	· 1B, = 104 de
	B1 = Noy Sde B= B1+B2 = 2B1=	