Computer Vision

Lecture 7: Optical Flow

Oliver Bimber

Last Week: Segmentation

Types of Segmentation

JYU JOHANNES KEPLER UNIVERSITY LINZ

(by Classes and Objects)

Segmentation using CNNs

Upsampling: Strided Transposed Convolution (or Unpooling)

Predictions: H x W

JYU JOHANNES KEPLER UNIVERSITY LINZ

Example: Clustering by Graph Eigenvectors

$$\begin{bmatrix} w_{n,0} ... w_{n,j} \end{bmatrix} \begin{bmatrix} a_{0,0} & ... & a_{i,0} \\ ... & ... & ... \\ a_{0,j} & ... & a_{i,j} \end{bmatrix} \begin{bmatrix} w_{n,0} \\ ... \\ w_{n,j} \end{bmatrix}$$

JYU JOHANNES KEPLER UNIVERSITY LINZ

Connected Autoencoders (U-Nets)

Connected Autoencoder (U-Net)

Predicted Segmentation

- U-Nets overcome this problem by connecting corresponding encoder-decoder layers with skip connections:
- the output of an encoder level is skip-connected (concatenation) with the input of the corresponding decoder level

Course Overview

CW	Topic	Date	Place	Lab
41	Introduction and Course Overview	08.10.2024	Zoom	Lab 1
42	Capturing Digital Images	15.10.2024	Zoom	Lab 2
43	Digital Image Processing	22.10.2024	Zoom	Assignment 1
44	Machine Learning	29.10.2024	Zoom	
45	Feature Extraction	05.11.2024	Zoom	Open Lab 1
46	Segmentation	12.11.2024	Zoom	Assignment 2
47	Optical Flow	19.11.2024	Zoom	Open Lab 2
48	Object Detection	26.11.2024	Zoom	Assignment 3
49	Multi-View Geometry	03.12.2024	Zoom	Open Lab 3
50	3D Vision	10.12.2024	Zoom	Assignment 4
3	Trends in Computer Vision	14.01.2025	Zoom	Open Lab 4
4	Q&A	21.01.2025	Zoom	
5	Exam	28.01.2025	HS1 (Linz), S1/S3 (Vienna), S5 (Bregenz)	
9	Retry Exam	25.02.2025	HS1 (Linz), S1/S3 (Vienna), S5 (Bregenz)	

Given: are two image stacks, each stored in a .tif file, and each having 300 layers (individual images)

You can view these stacks, for example, in ImageJ (drag&drop): https://imagej.net/ij/, or simply implement a python script that loads and display them (you can use ChatGPT & co. to generate one)

Both images stacks encode focus / defocus of a scenery (plants). Focus changes from top (first layer in the stacks) to bottom (last layers in the stacks). See example layers in the following slides.

It appears, that out-of-focus regions always have a similar noise pattern (i.e. the standard deviation in such regions is similar) while in-focus regions have very different noise patterns (either extremely high at edge boundaries, or extreme low at surfaces) with corresponding standard deviations.

Task: Can you distinguish (segment) between out-of-focus (with common noise pattern for out-of-focus regions) and in-focus (with noise patterns that are very different from the out-of-focus patterns) regions?

Hint: Models, such as computing and comparing std. deviation, lead to noisy results. They are too simple to describe the noise statistics. Approach an ML-solution that learns how to describe the noise statistics better (e.g., via more than one (learned) operations, such as kernels in multiple conv. layers – as std. deviation is only one modeled (not learned) operation).

Hint 2: The noise statistics of out-of-focus and in-focus regions are "similar" within the same stack. They might be slightly different in other stacks.

Submission: Submit only (OK) working solutions (no solutions that don't work at all or deliver bad results). You need to submit your code, the segmented results (images), and a short description (you chose the format and length) on how you solved the problem. Any help (including LLMs) is allowed. Deadline: **10.12.2024**, **12 noon**, to oliver.bimber@jku.at (3 weeks).

General: At max. you can **gain 25% of your lab points** (which is **equivalent to one full assignment**) in addition. These points can be used to compensate for missing assignment points (to improve your grade), or to skip any upcoming assignments (and compensate for it with the points of the research challenge). Note, that points of the research challenge are on top the points of the regular assignments. Thus, the research challenge is optional, and all students doing only the regular assignments have a change to achieve 100% of their lab grade with them only. This research challenge is intended for motivated students that are underchallenged with the regular assignments and are interested in solving more research oriented tasks. You can approach this research challenge **alone or as team of two** (each getting the same points).

Final: You can contact me any time with questions: oliver.bimber@jku.at

Data: https://drive.google.com/file/d/1KwbC89ks9 h6PpRQjID5M5OviVrMSPue/view?usp=drive link (600 MB), 7Zip: https://7-zip.de/download.html

Close-Up for In-Focus Regions Example Layer of Stack 1

Close-Up for In-Focus Regions Example Layer of Stack 2

Close-Up for Out-of-Focus Regions Example Layer of Stack 1 Close-Up for Out-of-Focus Regions Example Layer of Stack 2

common noise pattern (std. deviation)

common noise pattern (std. deviation)

Can you see a Patter?

Sometimes Motion is the only Cue

Can you see a Patter?

Can you see a Patter?

Sometimes Motion is the only Cue (even for sparse Data)

What is Optical Flow?

Sparse Optical Flow (Flow Vector per Region)

Dense Optical Flow (Flow Vector per Pixel)

Motion Vector of Pixel in Time Series (two consecutive Video Frames at Times t and t+1)

Example: MPEG Compression

Example: Autonomous Driving

Example: Traffic Monitoring

Video: A Sequence of Frames over Time

Optical Flow

Want to estimate Pixel Motion from Image I(x,y,t) to Image I(x,y,t+1)

Assumption

Solve correspondence Problem: given Pixel at Time t, find **nearby** Pixels of the **same Color** at Time t+1

Key assumptions:

- Color/Brightness Constancy: Point at Time t looks same at Time t+1
- Small Motion: Points do not move very far

The Optical Flow Equation

Brightness Constancy:

$$0 \approx I(x + u, y + v, t + 1) - I(x, y, t)$$

The Optical Flow Equation

Brightness Constancy:

$$I(x + u, y + v, t + 1) = I(x, y, t)$$

$$0 \approx I(x+u,y+v,t+1) - I(x,y,t)$$

Taylor Expansion:

$$\approx I(x, y, t+1) + I_x u + I_y v - I(x, y, t)$$

$$= I(x, y, t + 1) - I(x, y, t) + I_x u + I_y v$$

The Optical Flow Equation

Brightness Constancy:

$$I(x + u, y + v, t + 1) = I(x, y, t)$$

$$0 \approx I(x+u,y+v,t+1) - I(x,y,t)$$

Taylor Expansion:

$$\approx I(x,y,t+1) + I_x u + I_y v - I(x,y,t)$$

$$= I(x, y, t + 1) - I(x, y, t) + I_x u + I_y v$$

Optical Flow Equation:

$$0 = I_t + I_x u + I_y v$$
$$= I_t + \nabla I \cdot [u, v]$$

Example

$$I_{\mathcal{X}}u + I_{\mathcal{Y}}v + I_{t} = 0$$

t+1

$$I_t = 0-1 = -1$$

What's u?

Example

$$I_{\chi}u + I_{\gamma}v + I_t = 0$$

$$\begin{array}{ccc}
I_t = 1-0 = 1 \\
I_y = 0 \\
I_x = 1-0 = 1
\end{array}$$

$$I_t = 0-1 = -1$$
 $I_y = 0$
 $I_x = 1-0 = 1$

What's u?

What's u?

Can only identify motion along gradient, but not along arbitrary directions!

How to overcome this Problem?

Lucas-Kanade 1981

$$I_t + I_x u + I_y v = 0$$

$$\begin{bmatrix} I_{x}(p_{1}) & I_{y}(p_{1}) \\ \vdots & \vdots \\ I_{x}(p_{25}) & I_{y}(p_{25}) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = - \begin{bmatrix} I_{t}(p_{1}) \\ \vdots \\ I_{t}(p_{25}) \end{bmatrix}.$$

- 2 Unknowns [u,v], 1 Equation per Pixel
- How do we get more Equations?
- Assume Spatial Coherence: Pixel's Neighbors have same [u,v] (same Optical Flow on local Region)
- Example: 5x5 Window gives 25 Equations

What if Motion is larger than one Pixel?

Reduce Resolution!

Using Gaussian Image Pyramids

Lucas-Kanade Optical Flow

Optical Flow Field is sparse

Dense Optical Flow

Key Assumption:

- Most Objects in the World are rigid or deform elastically and move together coherently
- We expect the flow fields to be SMOOTH

Basic Idea:

- Enforce Brightness Constancy for every Pixel
- Enforce Smoothness Constraint for Flow Vectors

Enforce Brightness Constancy

$$I_{x}u + I_{y}v + I_{t} = 0$$

$$\downarrow$$
For every Pixel (i,j):
$$\min_{u,v} \left[I_{x}(i,j)u_{ij} + I_{y}(i,j)v_{ij} + I_{t}(i,j) \right]^{2}$$

Enforce Smoothness Constraint

Objective Function

Horn-Schunck 1981

$$\min_{u,v} \sum_{i,j}^{\text{Brightness}} \underbrace{Smoothness}_{\text{Constancy}}$$

$$\underbrace{E_d(i,j)}_{\text{Weight}} + \lambda E_S(i,j) \}$$

λ = regularization
constant (larger →
more smooth optical
flow)

Brightness Constancy

$$E_d(i,j) = [I_x(i,j)u_{ij} + I_y(i,j)v_{ij} + I_t(i,j)]^2$$

Smoothness Constraint

$$E_s(i,j) = \frac{1}{4} \left[\left(u_{ij} - u_{i+1,j} \right)^2 + \left(u_{ij} - u_{i,j+1} \right)^2 + \left(v_{ij} - v_{i+1,j} \right)^2 + \left(v_{ij} - v_{i,j+1} \right)^2 \right]$$

Horn-Schunck Optical Flow

Optical Flow Field is dense

Optical Flow and Machine Learning

Encoder+Decoder Architectures (e.g. U-Nets)

Example: FlowNetS (Simple)

https://lmb.informatik.uni-freiburg.de/Publications/2015/DFIB15/flownet.pdf

Input: Tensor of 2 RGB Images

Example: FlowNetCorr (Correlation)

https://lmb.informatik.uni-freiburg.de/Publications/2015/DFIB15/flownet.pdf

Input: 2 Tensors of individual RGB Images (Feature Maps are computed later → Correlation Layer)

Course Overview

1	CW	Topic	Date	Place	Lab
ı	41	Introduction and Course Overview	08.10.2024	Zoom	Lab 1
	42	Capturing Digital Images	15.10.2024	Zoom	Lab 2
	43	Digital Image Processing	22.10.2024	Zoom	Assignment 1
	44	Machine Learning	29.10.2024	Zoom	
	45	Feature Extraction	05.11.2024	Zoom	Open Lab 1
	46	Segmentation	12.11.2024	Zoom	Assignment 2
	47	Optical Flow	19.11.2024	Zoom	Open Lab 2
>	48	Object Detection	26.11.2024	Zoom	Assignment 3
	49	Multi-View Geometry	03.12.2024	Zoom	Open Lab 3
	50	3D Vision	10.12.2024	Zoom	Assignment 4
	3	Trends in Computer Vision	14.01.2025	Zoom	Open Lab 4
	4	Q&A	21.01.2025	Zoom	
	5	Exam	28.01.2025	HS1 (Linz), S1/S3 (Vienna), S5 (Bregenz)	
	9	Retry Exam	25.02.2025	HS1 (Linz), S1/S3 (Vienna), S5 (Bregenz)	

Next Week: Object Detection

Predict "Corrections" to the Rol: 4 Numbers: (dx, dy, dw, dh)

Regional-Based (R)-CNN Bbox reg SVMs Classify Regions Problem: Very slow! with SVMs Bbox reg SVMs Need to do ~2k Bbox reg SVMs independent forward Forward each Conv Net Passes for each Region through Conv Net Image! ConvNet Conv Net Warped Image Regions (224x224 pixels) Regions of Interest (Rol) from a Proposal Method (~2k)

Single-Shot Object Detectors: YOLO/SSD/RetinaNet

JYU JOHANNES KEPLER

JYU JOHANNES KEPLER

Thank You

