Paths of analysis*

Synthia

October 10, 2022

1 Analysis parameters

Analysis type: Automatic Retrosynthesis

Rules: none selected

Filters: Exclude Diastereoselecitve reactions, Tunnels, FGI, FGI with protec-

tions

Max. paths returned: 50

Max. iterations: 2000

Commercial:

1. Max. molecular weight - 1000 g/mol

2. Max. price - 1500 \$/g

Published:

- 1. Max. molecular weight 1000 g/mol
- 2. Popularity 5

My Stockroom:

1. Max. molecular weight - 1000 g/mol

Reaction scoring formula: TUNNEL_COEF*FGI_COEF*STEP*20+1000 000*(CONFLICT+NON SELECTIVITY+FILTERS+PROTECT)

Chemical scoring formula: SMALLER^ 3,SMALLER^ 1.5

Min. search width: 400

Max. reactions per product: 60

^{*}The results stated herein were generated using the proprietary platform owned and maintained by Grzybowski Scientific Inventions, Inc., a subsidiary of Merck KGaA, Darmstadt Germany. The results are provided on an as is basis, and shall be used solely in connection with the rights afforded in the license agreement and for no other purpose.

 ${f Strategies:}\ {f none}\ {f selected}$

FGI Coeff: 0

Tunnels Coeff: 0

JSON Parameters: {}

2 Paths

 $4~{\rm paths}$ found. Paths are sorted by score. Reactions are sorted in appearance order for each path.

2.1 Path 1

Score: 132.89

Figure 1: Outline of path 1

2.1.1 Shapiro reaction followed by reaction with weinreb's amide

Substrates:

1. N,4-Dimethoxy-N-methylbenzamide - available at Sigma-Aldrich

2. 1-(furan-3-yl)propan-1-one - available at Sigma-Aldrich

Products:

1. CC=C(C(=O)c1ccc(OC)cc1)c1ccoc1

 $\textbf{Typical conditions:}\ 1. TsNH2NH2.2. Mes 2 Mg. LiCl. THF. heating\ then\ we in reb$

amide

Protections: none

Reference: 10.1016/S0040-4020(03)00936-0 and 10.1021/ol300652k

Retrosynthesis ID: 9990447

2.1.2 Conjugate addition of organocuprate

Substrates:

1. Vinylmagnesium bromide solution - available at Sigma-Aldrich

2. CC=C(C(=O)c1ccc(OC)cc1)c1ccoc1

Products:

 $1. \ C{=}CC(C)C(C({=}O)c1ccc(OC)cc1)c1ccoc1$

Typical conditions: 1.CuCN.LiCl.2.Eletrophile.3.NH4Cl

Protections: none

Reference: 10.1021/ol036071v AND 10.1016/j.tet.2011.12.046 AND 10.1002/anie.201007644 AND 10.1002/anie.201007644 AND 10.1055/s-1997-1371

2.1.3 Oxidation furans to 2-(5H)-furanones

Substrates:

1. C=CC(C)C(C(=O)c1ccc(OC)cc1)c1ccoc1

Products:

 $1. \ C=CC(C)C(C(=O)c1ccc(OC)cc1)C1=CCOC1=O$

Typical conditions: 1. NBS.CHCl3.EtOH.rt 2. HCl.acetone.H2O.rt

Protections: none

Reference: DOI: 10.1055/s-2005-869865

Retrosynthesis ID: 50717

2.1.4 Alkenylation-Acylation of enones and enoate esters

Substrates:

 $1. \ C=CC(C)C(C(=O)c1ccc(OC)cc1)C1=CCOC1=O$

2. Bromoethylene - available at Sigma-Aldrich

3. Acetyl chloride - available at Sigma-Aldrich

Products:

$1. \ C = CC(C)C(C(=O)c1ccc(OC)cc1)C1(C(C)=O)C(=O)OCC1C = C$

Typical conditions: 1.RCuLi.2.AcCl.HMPA

Protections: none

Reference: 10.1246/cl.1989.1063 AND 10.1248/cpb.33.1815 AND 10.1021/ja0320018 AND 10.1016/S0040-4039(01)80891-1 AND 10.1016/S0040-4020(01)82115-3

Retrosynthesis ID: 13032

2.1.5 Ring-Closing Metathesis

Substrates:

 $1. \ C=CC(C)C(C(=O)c1ccc(OC)cc1)C1(C(C)=O)C(=O)OCC1C=C$

Products:

 $1. \ \ COc1ccc(C(=O)C2C(C)C=CC3COC(=O)C32C(C)=O)cc1$

Typical conditions: catalyst e.g. Hoveyda-Grubbs . solvent e.g. CH2Cl2

Protections: none

Reference: DOI: 10.1002/anie.200800693 and 10.1021/acs.orglett.8b04003 and

10.1021/jo0264729 and 10.1021/ja072334v and 10.1002/ejoc.201001102

2.2 Path 2

Score: 173.93

Figure 2: Outline of path 2

2.2.1 Oxidation of primary alcohols with DMP

Substrates:

1. 2-Methyl-3-buten-1-ol - available at Sigma-Aldrich

Products:

1. 2-methyl-but-3-enal

Typical conditions: DMP.DCM.0-25 $\rm C$

Protections: none

Reference: 10.1016/j.bmc.2020.115469 p. 3, 9 and 10.1021/acs.jmedchem.8b01878 SI p. S43

Retrosynthesis ID: 50426

2.2.2 Condensation of esters with aldehydes

Substrates:

1. 2-methyl-but-3-enal

2. 4-ethenyloxolan-2-one - available at Sigma-Aldrich

Products:

1. C=CC(C)/C=C1/C(=O)OCC1C=C

Typical conditions: 1.LDA.2RCHO

Protections: none

Reference: 10.1021/jo970387x AND 10.1021/jo00076a051 AND 10.1016/S0040-4039(97)10827-9 AND 10.1055/s-2002-25767 AND 10.1039/P19920003277

Retrosynthesis ID: 14981

2.2.3 Ring-Closing Metathesis

Substrates:

1. C=CC(C)/C=C1/C(=O)OCC1C=C

Products:

1. CC1C=CC2COC(=O)C2=C1

Typical conditions: catalyst e.g. Hoveyda-Grubbs . solvent e.g. CH2Cl2

Protections: none

Reference: DOI: 10.1002/anie.200800693 and 10.1021/acs.orglett.8b04003 and

10.1021/jo0264729 and 10.1021/ja072334v and 10.1002/ejoc.201001102

2.2.4 Stetter reaction

Substrates:

- $1. \ \mathrm{CC1C}{=}\mathrm{CC2COC}(=\mathrm{O})\mathrm{C2}{=}\mathrm{C1}$
- 2. AubA(c)pine available at Sigma-Aldrich

Products:

 $1. \ \operatorname{COc1ccc}(\operatorname{C}(=\operatorname{O})\operatorname{C2C}(\operatorname{C})\operatorname{C}=\operatorname{CC3COC}(=\operatorname{O})\operatorname{C32})\operatorname{cc1}$

 ${\bf Typical\ conditions:}\ {\bf NaCN.DMF\ or\ thiazolium\text{-}NHC.catalyst}$

Protections: none

Reference: 10.1002/0471264180.or040.04 and 10.1021/ja058337u and 10.1021/ja805680z and 10.1002/anie.200301702

Retrosynthesis ID: 23588

2.2.5 Synthesis of oximes

Substrates:

 $1. \ COc1ccc(C(=O)C2C(C)C=CC3COC(=O)C32)cc1 \\$

Products:

 $1. \ COc1ccc(C(=NO)C2C(C)C=CC3COC(=O)C32)cc1 \\$

Typical conditions: NH2OHxHCl.NaOAc.EtOH or NH2OHxHCl.pyridine.MeOH.reflux

Protections: none

Reference: 10.1016/j.ejmech.2019.111885 p. 4, 15 and

10.1016/j.ejmech.2020.112933 p. 4, 12, 15

Retrosynthesis ID: 5128

2.2.6 Claisen Condensation

Substrates:

- $1. \ COc1ccc(C(=NO)C2C(C)C=CC3COC(=O)C32)cc1 \\$
- 2. Methyl acetate available at Sigma-Aldrich

Products:

 $1. \ \ COc1ccc(C(=NO)C2C(C)C=CC3COC(=O)C32C(C)=O)cc1$

Typical conditions: Base.Solvent

Protections: none

Reference: 10.1021/cr020703u and 10.1021/cr60088a002

2.2.7 Oxidative cleavage of oximes

Substrates:

 $1. \ \ COc1ccc(C(=NO)C2C(C)C=CC3COC(=O)C32C(C)=O)cc1$

Products:

 $1. \ \ COc1ccc(C(=O)C2C(C)C=CC3COC(=O)C32C(C)=O)cc1$

Typical conditions: IBX or Oxone or Ozone

Protections: none

Reference: 10.1055/s-1998-1835 and 10.1080/00397919708005905 and

10.1002/chem.201100605 (Scheme 2)

Retrosynthesis ID: 245558

2.3 Path 3

Score: 185.63

Figure 3: Outline of path 3

2.3.1 Keto-enol Tautomerism

Substrates:

1. 4-Methoxyphenacyl bromide - available at Sigma-Aldrich

Products:

1. COc1ccc(C(O)=CBr)cc1

Typical conditions: solvent

Protections: none

Reference: 10.1021/ja01065a003 AND 10.1021/jo8012385

2.3.2 Enolate O-Alkylation

Substrates:

1. crotyl bromide

 $2. \ \mathrm{COc1ccc}(\mathrm{C}(\mathrm{O}){=}\mathrm{CBr})\mathrm{cc1}$

Products:

 $1. \ \mathrm{CC}{=}\mathrm{CCOC}(=\mathrm{CBr})\mathrm{c1ccc}(\mathrm{OC})\mathrm{cc1}$

Typical conditions: Cs2CO3.DMF

 ${\bf Protections:}\ {\rm none}$

Reference: 10.1016/j.bmcl.2012.05.070 and 10.1039/b612336h

2.3.3 Claisen Rearrangement

Substrates:

 $1. \ \mathrm{CC}{=}\mathrm{CCOC}(=\mathrm{CBr})\mathrm{c1ccc}(\mathrm{OC})\mathrm{cc1}$

Products:

1. C=CC(C)C(Br)C(=O)c1ccc(OC)cc1

Typical conditions: heat

Protections: none

Reference: DOI: 10.1021/ja00206a017 and 10.1016/S0022-1139(98)00313-3

Retrosynthesis ID: 1226

2.3.4 Opening of epoxides with carboxylic acids

Substrates:

1. 2-Vinyloxirane - available at Sigma-Aldrich

2. Lithium acetoacetate - available at Sigma-Aldrich

Products:

1. C=CC(O)COC(=O)CC(C)=O

Typical conditions: RCOOH.catalyst

Protections: none

Reference: 10.1021/ol051051+ AND 10.1016/j.tet.2005.05.050 and US2011/86912 A1 (P.13) and 10.1055/s-2003-42416 and 10.5012/bkcs.2013.34.8.2286

Retrosynthesis ID: 15151

2.3.5 Appel Reaction

Substrates:

1. C=CC(O)COC(=O)CC(C)=O

Products:

1. C=CC(Br)COC(=O)CC(C)=O

Typical conditions: PPh3.CBr4

Protections: none

Reference: 10.1016/j.jfluchem.2015.03.009 and 10.1016/j.tet.2005.12.006 and 10.1021/jm00161a029 and 10.1055/s-1995-5215

Retrosynthesis ID: 9990042

2.3.6 Acetoacetic Ester Synthesis

Substrates:

1. C=CC(Br)COC(=O)CC(C)=O

 $2. \ C{=}CC(C)C(Br)C(=O)c1ccc(OC)cc1\\$

Products:

 $1. \ C = CC(C)C(C(=O)c1ccc(OC)cc1)C1(C(C)=O)C(=O)OCC1C = C$

Typical conditions: Exess Typical bases LDA, NaHMDS, LiHMDS.THF

Protections: none

Reference: 10.1002/9780470638859.conrr003

Retrosynthesis ID: 5037

2.3.7 Ring-Closing Metathesis

Substrates:

 $1. \ C=CC(C)C(C(=O)c1ccc(OC)cc1)C1(C(C)=O)C(=O)OCC1C=C$

Products:

 $1. \ \ COc1ccc(C(=O)C2C(C)C=CC3COC(=O)C32C(C)=O)cc1$

Typical conditions: catalyst e.g. Hoveyda-Grubbs . solvent e.g. CH2Cl2

Protections: none

Reference: DOI: 10.1002/anie.200800693 and 10.1021/acs.orglett.8b04003 and 10.1021/jo0264729 and 10.1021/ja072334v and 10.1002/ejoc.201001102

Retrosynthesis ID: 31014187

2.4 Path 4

Score: 193.93

Figure 4: Outline of path 4

2.4.1 Enantioselective crotylation of aldehydes

Substrates:

1. 1,3-Butadiene - available at Sigma-Aldrich

2. 3-Furaldehyde - available at Sigma-Aldrich

Products:

 $1. \ C{=}CC(C)C(O)c1ccoc1$

Typical conditions: RuH2(CO)(PPh3)3.dppf.chiral.acid.THF.95C

Protections: none

Reference: 10.1126/science.1219274

Retrosynthesis ID: 10014312

2.4.2 Appel Reaction

Substrates:

1. C=CC(C)C(O)c1ccoc1

Products:

 $1. \ C{=}CC(C)C(Br)c1ccoc1$

Typical conditions: PPh3.CBr4

Protections: none

Reference: 10.1016/j.jfluchem.2015.03.009 and 10.1016/j.tet.2005.12.006 and

10.1021/jm00161a029 and 10.1055/s-1995-5215

Retrosynthesis ID: 9990042

2.4.3 Grignard reaction with acyl chlorides

Substrates:

1. C=CC(C)C(Br)c1ccoc1

2. 4-Anisoyl chloride - available at Sigma-Aldrich

Products:

1. C=CC(C)C(C(=O)c1ccc(OC)cc1)c1ccoc1

Typical conditions: 1.i-PrMgCl.LiCl 2.ZnCl2 3. CuCl

Protections: none

Reference: 10.1016/0040-4039(94)85361-4 and 10.1016/0040-4039(96)00258-4

and 10.1021/jo3005556 AND 10.1016/0040-4039(96)00689-2

Retrosynthesis ID: 5032

2.4.4 Oxidation furans to 2-(5H)-furanones

Substrates:

1. C=CC(C)C(C(=O)c1ccc(OC)cc1)c1ccoc1

Products:

1. C=CC(C)C(C(=O)c1ccc(OC)cc1)C1=CCOC1=O

Typical conditions: 1. NBS.CHCl3.EtOH.rt 2. HCl.acetone.H2O.rt

Protections: none

Reference: DOI: 10.1055/s-2005-869865

2.4.5 Alkenylation-Acylation of enones and enoate esters

Substrates:

- $1. \ C=CC(C)C(C(=O)c1ccc(OC)cc1)C1=CCOC1=O$
- 2. Bromoethylene available at Sigma-Aldrich
- 3. Acetyl chloride available at Sigma-Aldrich

Products:

 $1. \ C = CC(C)C(C(=O)c1ccc(OC)cc1)C1(C(C)=O)C(=O)OCC1C = C$

Typical conditions: 1.RCuLi.2.AcCl.HMPA

Protections: none

Reference: 10.1246/cl.1989.1063 AND 10.1248/cpb.33.1815 AND 10.1021/ja0320018 AND 10.1016/S0040-4039(01)80891-1 AND 10.1016/S0040-4020(01)82115-3

2.4.6 Ring-Closing Metathesis

Substrates:

 $1. \ C=CC(C)C(C(=O)c1ccc(OC)cc1)C1(C(C)=O)C(=O)OCC1C=C$

Products:

 $1. \ \ COc1ccc(C(=O)C2C(C)C=CC3COC(=O)C32C(C)=O)cc1$

 $\textbf{Typical conditions:} \ \ \text{catalyst e.g.} \ \ \text{Hoveyda-Grubbs} \ \ . \ \ \text{solvent e.g.} \ \ \text{CH2Cl2}$

Protections: none

 $\textbf{Reference:} \ \ DOI: \ \textit{10.1002/anie.200800693} \ \ \text{and} \ \ \textit{10.1021/acs.orglett.8b04003} \ \ \text{and}$

10.1021/jo0264729 and 10.1021/ja072334v and 10.1002/ejoc.201001102