Quiz 8

Form A	Name		
Math 130B, 5 PM Please justify all your answers Please also write your full name or	n the back	May 25, 2022	
 Suppose X and Y are independent functions. 	endent random variables v $m_X(t)=e^{2t^2}, m_Y(t)=$	with the following moment generating $= \frac{3}{3-t}.$	
(a) What kinds of random quiz).	variables are X and Y ?	(There's a table on the back of the	
(b) Find $\mathbb{E}[(X+Y)^2]$ (there			
2. Let X and Y be jointly bive that $X + Y$ and $X - Y$ are in		iables with $Var(X) = Var(Y)$. Show	

Quiz 8

Form B	Name		
Math 130B, 6 PM			
Please justify all your answers	May 25, 2022		
Please also write your full name on the back			
functions.	dom variables with the following moment generating $[-1)$, $m_Y(t) = \left(\frac{1}{3}e^t + \frac{2}{3}\right)^5$.		
(a) What kinds of random variables a quiz).	are X and Y ? (There's a table on the back of the		
(b) Find $\mathbb{E}[(X+Y)^2]$ (there are a cou	ple of ways to do it).		

2. Let X and Y be jointly bivariate normal random variables with Var(X) = Var(Y). Show

that X + Y and X - Y are independent.

Table 7.1 Discrete	e Probability Distribution.			
	Probability mass function, $p(x)$	Moment generating function, $M(t)$	Mean	Variance
Binomial with parameters n, p ; $0 \le p \le 1$	$\binom{n}{x} p^{x} (1-p)^{n-x}$ $x = 0, 1, \dots, n$	$(pe^t+1-p)^n$	np	np(1-p)
Poisson with parameter $\lambda > 0$	$e^{-\lambda} \frac{\lambda^x}{x!}$ $x = 0, 1, 2, \dots$	$\exp\{\lambda(e^t-1)\}$	λ	λ
Geometric with parameter $0 \le p \le 1$	$p(1-p)^{x-1}$ $x = 1, 2, \dots$	$\frac{pe^t}{1-(1-p)e^t}$	$\frac{1}{p}$	$\frac{1-p}{p^2}$
Negative binomial with parameters r, p ; $0 \le p \le 1$	$\binom{n-1}{r-1}p^r(1-p)^{n-r}$ $n = r, r+1,$	$\left[\frac{pe^t}{1-(1-p)e^t}\right]^r$	$\frac{r}{p}$	$\frac{r(1-p)}{p^2}$

Table 7.2 Continuous Probability Distribution.						
	Probability density function, $f(x)$	Moment generating function, $M(t)$	Mean	Variance		
Uniform over (a, b)	$f(x) = \begin{cases} \frac{1}{b-a} & a < x < b \\ 0 & \text{otherwise} \end{cases}$	$\frac{e^{tb} - e^{ta}}{t(b - a)}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$		
Exponential with parameter $\lambda > 0$	$f(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0\\ 0 & x < 0 \end{cases}$	$\frac{\lambda}{\lambda - t}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$		
Gamma with parameters $(s,\lambda), \lambda > 0$	$f(x) = \begin{cases} \frac{\lambda e^{-\lambda x} (\lambda x)^{s-1}}{\Gamma(s)} & x \ge 0\\ 0 & x < 0 \end{cases}$	$\left(\frac{\lambda}{\lambda-t}\right)^s$		$\frac{s}{\lambda^2}$		
Normal with parameters (μ, σ^2)	$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/2\sigma^2} -\infty < x < \infty$	$\exp\left\{\mu t + \frac{\sigma^2 t^2}{2}\right\}$	μ	σ^2		