A Case for Redundant Arrays Of Inexpensive Disks

Paper By

David A Patterson

Garth Gibson

Randy H Katz

University of California, Berkeley.

Background

- Computer Speed depends on
 - CPU Speed
 - Memory Speed
 - I/O Activity
- The Pending I/O Crisis

Solution

- Array of Inexpensive Disks
 - Have small size and consume low power
 - Contains full track buffer and functions of Mainframe controllers
 - Unreliable
 MTTF of a disk array is given by
 MTTF of a single disk/Number of disks in the Array

A Better Solution: RAID

- Reliability
 - Arrays are divided into reliability groups
 - > Each group has check disks
- How to evaluate
 - Reliability Overhead Cost
 - Useable Storage Capacity Percentage
 - Performance

Different Levels of RAID

- RAID Level 1
- > RAID Level 2
- > RAID Level 3
- > RAID Level 4
- RAID Level 5
 and others

RAID Level 1 (Mirroring)

- Data duplicated, also the controller card
- Requires only two drives to implement
- Advantages
 - Random Read performance=better than single disk
 - Sequential Read Performance=fair, just as single disks
 - Sequential Write Performance=good
 - Random Write Performance=same as single disks
 - Simple to Implement
- Disadvantage high check disk overhead!

- Uses Bit-level striping with Hamming codes for ECC
- Number of disks required depends on exact implementation
- Only fair fault tolerance
- Advantages
 - Random Read performance=fair
 - Sequential Read Performance=very good
 - Sequential Write performance=good
- Disadvantages
 - Random Write Performance=poor
 - Requires a complex controller
 - High overhead for check disks
 - Not used in modern systems

- Uses byte-level striping with dedicated parity
- Requires minimum three drives to implement
- Has good fault-tolerance
- Advantages
 - Random Read Performance=good
 - Sequential Read performance=very good
 - Sequential Write performance=fair to good
 - Lowest overhead for check disks
- Disadvantages
 - Random Write performance=poor
 - Complex controller design

- Uses Block-level striping with dedicated parity
- Requires minimum of 3 drives to implement
- Has good fault-tolerance
- Advantages
 - Random Read Performance=very good
 - Sequential Read and Write performance=good
 - Lowest overhead of check disks
- Disadvantages
 - Quite complex controller design
 - Random write performance=poor
 - Not commonly used

- Uses Block-level striping with distributed parity
- Requires a minimum of 3 drives to implement
- Advantages
 - Random Read performance=very good
 - Random Write performance=fair
 - Sequential Read and Write performance=good
 - Lowest overhead of check disks
- Disadvantages
 - Most complex controller design
 - Difficult to rebuild in the event of a disk failure

Raid Level 6 uses Block-level striping with *dual* distributed parity

Uses Mirroring and striping without parity

RAID Level 0+1

Uses Mirroring and striping without Parity