1 Lista 12 - Exercícios

Exercícios: Potenciação e Radiciação em C 1.1

1. Determinar o menor número $n \in \mathbb{N}$ de modo que $(\sqrt{3} + i)^n$ seja:

(a) Imaginário puro

(b) Real e Negativo

(c) Real e Positivo

2. Calcular

(a) $\left(-\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)$

(b) $(3-3i)^{-12}$ (c) $(-\sqrt{3}-i)^{20}$

(d) $(-1+i)^6$

3. Calcular todas as raízes enésimas dos itens abaixo e esboçar no gráfico cartesiano.

(a) $\sqrt{-7+4i}$

(c) $\sqrt[3]{-11-2i}$

(e) $\sqrt[4]{16}$

(b) $\sqrt{5+12i}$

(d) $\sqrt{28-96i}$

(f) $\sqrt[3]{16}$

- 4. Chama-se Equação Binômia, toda equação redutível à forma $ax^n + b = 0$, onde $a,b\in\mathbb{C},\ a\neq 0$ e $n\in\mathbb{N}$. Para se resolver uma equação binômia deste tipo, basta isolar x^n e aplicar a definição de radiciação em \mathbb{C} . Diante disto, encontre todas as raízes da equação binômia $3x^6 + 12 = 0$.
- 5. Chama-se Equação Trinômia, toda equação redutível à forma $ax^{2n} + bx^n + c = 0$ onde $a,b,c\in\mathbb{C},\ a,b\neq 0$ e $n\in\mathbb{N}.$ Para resolver uma equação trinômia, basta fazer $x^n = y$, obter as raízes y_1 e y_2 da equação $ay^2 + by + c = 0$ e, finalmente, recair nas equações binômias $x^n = y_1$ e $x^n = y_2$ determinando as 2n raízes. Diante disto, resolver $x^6 + 7x^3 - 8 = 0$.

1.2 Fórmulas

1° Fórmula de Moivre

$$z = \rho \left(\cos(n\theta) + i \cdot \sin(n\theta)\right)$$

2° Fórmula de Moivre

$$z_k = \sqrt[n]{\rho} \left(\cos \left(\frac{\theta + 2k\pi}{n} \right) + i \cdot \sin \left(\frac{\theta + 2k\pi}{n} \right) \right)$$

Observações: Não serão dadas as fórmulas no simulado.