FT Representation of DT Signals:

Relating FT to DTFT

$$x_{\delta}(t) = x(t) \sum_{n=-\infty}^{\infty} \delta(t - nT_{s})$$

$$= \sum_{n=-\infty}^{\infty} x(nT_{s}) \delta(t - nT_{s})$$

$$=\sum_{n=-\infty}^{\infty}x(nT_s)\delta(t-nT_s)$$

$$= \sum_{n=0}^{\infty} x[n] \delta(t - nT_s) \leftarrow \text{CT representation of } x[n]$$

 $x[n] = x(t)|_{t=nT_n}$

 $n=-\infty$

a) DTFT of x[n]:
$$x[n] \xleftarrow{DTFT} X(e^{j\Omega}) = \sum_{n=0}^{\infty} x[n]e^{-j\Omega x}$$

b) FT of CT signal
$$x_{\delta}(t) = \sum_{n=-\infty}^{\infty} x[n] \delta(t-nT_s)$$
 $X_{\delta}(j\omega) = \int_{-\infty}^{\infty} x_{\delta}(t) e^{-j\omega t} dt$

$$X_{\delta}(j\omega) = \int_{-\infty}^{\infty} x_{\delta}(t)e^{-j\omega t}dt$$
$$= \int_{-\infty}^{\infty} \left[\sum_{n=-\infty}^{\infty} x[n]\delta(t-nT_{s})\right]e^{-j\omega t}dt$$

$$X_{\delta}(j\omega) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega T_{s}n}$$

$$X(e^{j\Omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega T_{s}n}$$

$$X(e^{j\Omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega T_{s}n}$$

- Sampling. The figure shown 2 slides earlier:
- Continuous-time representation of discrete-time signal x[n]

$$x_{\delta}(t) = \sum_{n=-\infty}^{\infty} x[n] \delta(t - nT_s)$$

$$= \sum_{n=-\infty}^{\infty} x(nT_s) \delta(t - nT_s)$$

$$= x(t) p(t)$$
(notice the difference between $x[n] \& x(nT_s)$)

$$p(t) = \sum_{n=-\infty}^{\infty} \delta(t - nT_s) - \text{impulse train}$$

$$x_{\delta}(t) = x(t)p(t)$$

$$\updownarrow$$

$$X_{\delta}(j\omega) = \frac{1}{2\pi} X(j\omega) * P(j\omega)$$

$$= \frac{1}{2\pi} X(j\omega) * \frac{2\pi}{T_s} \sum_{k=-\infty}^{\infty} \delta(\omega - k\omega_s)$$

$$X_{\delta}(j\omega) = \frac{1}{T_{s}} \sum_{k=-\infty}^{\infty} X(j(\omega - k\omega_{s}))$$

The FT of a sampled signal for different sampling frequencies. Spectrum of continuous-time signal.

Spectrum of sampled signal when $\omega_s = 3W$.

Spectrum of sampled signal when ω_s = 2W. (d) Spectrum of sampled signal when ω_s = 1.5W.

Observations:

- 1) FT of a sampled signal: $x(j\omega)$ shifted by integer multiples of ω_s
- 2) Let $X(j\omega) = 0$ for $|\omega| > W$ $\omega_s > 2W \to \text{no overlapping}$ $\omega_s = 2W \to \text{critical frequency (Nyquist rate)}$ $\omega_s < 2W \to \text{aliasing}$

$$p(t) = \sum_{n=-\infty}^{\infty} \delta(t - nT_s) \longleftrightarrow P(j\omega) = ?$$

•
$$1 \stackrel{FT}{\longleftrightarrow} 2\pi \delta(\omega)$$
 (p342)

•
$$e^{jk\omega_s t} \stackrel{FT}{\longleftrightarrow} 2\pi\delta(\omega - k\omega_s)$$

• FS representation of periodic signals

$$x(t) = \sum_{n = -\infty}^{\infty} X[k]e^{jk\omega_s t} \xleftarrow{FT} X(j\omega) = 2\pi \sum_{k = -\infty}^{\infty} X[k]\delta(\omega - k\omega_s)$$

• For $p(t) = \sum_{n=-\infty}^{\infty} \delta(t - nT_s)$, which is periodic with period T_s , $\omega_s = \frac{2\pi}{T_s}$, FT coefficients:

$$P[k] = \frac{1}{T_s} \int_{-T/2}^{T/2} \delta(t) e^{-jk\omega_s t} dt = \frac{1}{T_s}.$$
 Thus,

$$P(j\omega) = 2\pi \sum_{k=-\infty}^{\infty} \frac{1}{T_s} \delta(\omega - k \frac{2\pi}{T_s})$$
$$= \frac{2\pi}{T_s} \sum_{k=-\infty}^{\infty} \delta(\omega - k\omega_s)$$

DTFT of sampled signal x[n] and FT of $x_{\delta}(t)$

$$x[n] \stackrel{DTFT}{\longleftrightarrow} X(e^{j\Omega}) = X_{\delta}(j\omega)|_{\omega = \frac{\Omega}{T_{s}}}$$

Note : $X(e^{j\Omega})$ is periodic with period 2π . $\omega_s = 2\pi f_s = 2\pi \frac{1}{T_s}$ $X_{\delta}(j\omega)$ is periodic with period $\omega_s = 2\pi f_s$

Ε

$$x(t) = \cos(\pi t)$$
.
Find FT of $x_{\delta}(t)$ if (i) $T_s = 1/4$, (ii) $T_s = 1$, (iii) $T_s = 3/2$

$$X(t) \stackrel{\text{FT}}{\longleftrightarrow} \pi \delta(\omega + \pi) + \pi \delta(\omega - \pi)$$

$$X_{\delta}(j\omega) = \frac{\pi}{T_{s}} \sum_{k=-\infty}^{\infty} \left[\delta(\omega + \pi - k\omega_{s}) + \delta(\omega - \pi - k\omega_{s}) \right]$$

The effect of sampling a sinusoid at different rates

- (a) Original signal and FT.
- (b) Original signal, impulse sampled representation and FT for $T_s = \frac{1}{4}$.
- (c) Original signal, impulse sampled representation and FT for $T_s = 1$.
- (d) Original signal, impulse sampled representation and FT for $T_s = 3/2$. A cosine of frequency $\pi/3$ is shown as the dashed line.

(a)

Draw the FT of a sampled version of the CT signal having the FT depicted By the following figure for (a) Ts=1/2 and (b) Ts=2.

- (a) Ts=1/2, ω_s =4 π .
- (b) Ts=2, $\omega_s = \pi$.

Downsampling: Let y[n] = x[qn]How is $Y(e^{j\Omega})$ related to $X(e^{j\Omega})$?

Let both x[n] and y[n] be obtained from sampling signal x(t).

$$x[n]: \qquad \Delta(t) = \sum_{n=-\infty}^{\infty} \delta(t - nT_s)$$

$$y[n]: \qquad \Delta'(t) = \sum_{n=-\infty}^{\infty} \delta(t - qnT_s)$$

$$= \sum_{n=-\infty}^{\infty} \delta(t - nT_s'), \text{ where } T_s' = qT_s$$

$$x_{\delta}(t) = x(t) \sum_{n=-\infty}^{\infty} \delta(t - nT_s) \longleftrightarrow X_{\delta}(j\omega) = \frac{1}{T_s} \sum_{k=-\infty}^{\infty} X(j(\omega - k\omega_s))$$

$$y_{\delta}(t) = x(t) \sum_{n=-\infty}^{\infty} \delta(t - nT_s'), \quad T_s' = qT_s \Rightarrow \omega_s' = \frac{1}{q} \omega$$

 \uparrow

$$Y_{\delta}(j\omega) = \frac{1}{T_{s}} \sum_{k=-\infty}^{\infty} X(j(\omega - k\omega_{s})) = \frac{1}{qT_{s}} \sum_{k=-\infty}^{\infty} X(j(\omega - \frac{k}{q}\omega_{s}))$$

Let $\frac{k}{q} = l + \frac{m}{q}$, $l: (l: -\infty \sim \infty)$ integer portion of $\frac{k}{q}$, m: remainder $(m: 0 \sim q-1)$

$$Y_{\delta}(j\omega) = \frac{1}{q} \sum_{m=0}^{q-1} \left\{ \frac{1}{T_s} \sum_{l=-\infty}^{\infty} X(j(\omega - l\omega_s - \frac{m}{q}\omega_s)) \right\}.$$
 Obviously,
$$\frac{1}{T_s} \sum_{l=-\infty}^{\infty} X(j(\omega - l\omega_s - \frac{m}{q}\omega_s)) = X_{\delta}(j(\omega - \frac{m}{q}\omega_s))$$

Thus,
$$Y_{\delta}(j\omega) = \frac{1}{q} \sum_{m=0}^{q-1} X_{\delta}(j(\omega - \frac{m}{q}\omega_{s}))$$
. Obviously,
$$\frac{1}{T_{s}} \sum_{l=-\infty}^{\infty} X(j(\omega - l\omega_{s} - \frac{m}{q}\omega_{s})) = X_{\delta}(j(\omega - \frac{m}{q}\omega_{s})) \Rightarrow$$

$$[Y(e^{j\Omega}) = Y_{\delta}(j\omega)|_{\omega = (\Omega/(qT_{s}))}$$

$$\begin{cases} Y(e^{j\Omega}) = Y_{\delta}(j\omega)|_{\omega = (\Omega/(qT_{\delta}))} \\ X(e^{j\Omega}) = Y_{\delta}(j\omega)|_{\omega = (\Omega/T_{\delta})} \end{cases} \Rightarrow$$

$$Y(e^{j\Omega}) = \frac{1}{q} \sum_{m=0}^{q-1} X(e^{j\frac{1}{q}(\Omega - m2\pi)})$$

Note : sampling rate for y[n] is $1/(qT_s)$ and $\omega_s = 2\pi/T_s$

Effect of subsampling on the DTFT.

- (a) Original signal spectrum.
- (b) m = 0 term, $Xq(e^{j\Omega})$,
- (c) m = 1 term
- (d m = q 1 term)
- (e) $Y(e^{i\Omega})$, assuming that $W < \pi/q$.
- (f) $Y(e^{i\Omega})$, assuming that $W > \pi/q$.

Sampling theorem

Let $x(t) \stackrel{FT}{\longleftrightarrow} X(j\omega)$ be a bandwidth limited signal such that $X(j\omega) = 0$ for $|\omega| > \omega_m$

 $\omega_s = 2\omega_m$: Nyquist - rate sampling

 $\omega_s > 2\omega_m$: No aliasing, original signal can be

completely recovered from x[n]

 $\omega_s < 2\omega_m$: aliasing

Ε

Suppose $x(t) = \frac{\sin(10\pi t)}{\pi t}$. Determine $\omega_s = 2\pi/(T_s)$ so that x(t) can be uniquely represented by the DT sequence $x[n] = x(nT_s)$.

$$x(t) \xleftarrow{FT} X(j\omega) = \begin{cases} 1, & |\omega| \le 10\pi \\ 0, & |\omega| > 10\pi \end{cases}$$

Thus, $\omega_m = 10\pi$, minimum $\omega_s = 2\omega_m = 20\pi$ rads/s

Ideal reconstruction:

- (a) Spectrum of original signal. Spectrum of sampled signal.
 - (c) Frequency response of reconstruction filter.

$$H(j\omega) = \begin{cases} T_{s,} & |\omega| \le \omega_{s} / 2 \\ 0 & |\omega| > \omega_{s} / 2 \end{cases}$$

$$\updownarrow$$

$$h(t) = \frac{T_{s} \sin(\frac{\omega_{s}}{2}t)}{\pi t}$$

$$\frac{\sin(Wt)}{Wt} = \frac{W}{\pi} \sin c \left(\frac{Wt}{\pi}\right)$$

$$X(j\omega) = X_{\delta}(j\omega)H(j\omega)$$

$$\updownarrow$$

$$x(t) = x_{\delta}(t) * h(t)$$

$$= h(t) * \sum_{n=-\infty}^{\infty} x[n]\delta(t - bT_{s})$$

$$= \sum_{n=-\infty}^{\infty} x[n]h(t - nT_{s})$$

$$x(t) = \sum_{n=-\infty}^{\infty} x[n]\sin c(\omega_{s}(t - nT_{s})/(2\pi))$$

Ideal reconstruction in the time domain.

- Ideal reconstruction is not realizable
- Practical systems could use a zero-order hold block
- This distorts signal spectrum, and compensation is needed

Reconstruction via a zero-order hold.

