

FED-XXXG-NPT-I2C-3.3VDC Data Sheet

Product Naming & Performance Specifications

FED-XXXG-NPT-I2C-3.3VDC

HydroSmart Technologies Digital Pressure Transducer

Lower Range Limit: 0 PSI

Upper Range Limit: XXX PSI

Pressure Type: Gage

Fitting Type: ¼ - 18 NPT

Supply Voltage: 3.3V DC

Interface: I2C

Digital Output: 10-90%

Pressure:

Output: 24-bit signed integer

Accuracy: ± 0.2% of range

Output: 24-bit signed integer

Accuracy: ± 1.25 °C

Housing: 316L stainless steel

• Wetted Diaphragm: 316L stainless steel

• Overpressure: 2X

Burst pressure: 3X

Operating Temperature: -40 °C to +125 °C

• Media – Pressure: Liquids and gases compatible with 316/316L Stainless Steel

Figure 1 - Product Image

Product Wiring

Wiring Interface

Green: VDDBlue: SCLBlack: SDARed: GND

I2C Communication Protocol Specifications

• I2C Address

A7	A6	A5	A4	А3	A2	A1	W/R
1	1	0	1	1	0	1	0/1

• I2C Communication Pin Electrical Characteristics

SYMBOL	PARAMETERS	CONDITION	MIN	MAX	UNIT
f _{scl}	CLOCK FREQUENCY			400	kHz
	CLOCK LOW FREQUENCY				
t _{LOW}	HOLD TIME		1.3		μs
	CLOCK HIGH FREQUENCY				
t _{HIGH}	HOLD TIME		0.6		μs
t _{SUDAT}	SDA SETUP TIME		0.1		μs
t _{HDDAT}	SDA SETUP TIME		0.0		μs
t _{SUSTA}	DATA SETUP TIME		0.6		μs
t _{HDSTA}	START CONDITION				
CHOSTA	HOLD TIME		0.6		μs
t _{SUSTO}	STOP CONDITION SETUP TIME		0.6		μs
t _{BUS}	BUS FREE TIME BETWEEN STOP				
rBUS	AND START CONDITION		1.3		μs

Figure 3 - I2C Timing Diagram

• I2C Data Transfer Sequences

(1): Pressure Measurement

Measuring data is a 24-bit signed integer, stored in 3 registers of address 0x06, 0x07, 0x08.

Ī	0x06						0x07								0x08									
Ī	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Pressure Value (P) can be read as per below steps:

```
Lower\_Range\_Limit = 0;
                                                       //Set Lower Range Limit in PSI
Upper Range Limit = 200;
                                                       //Set Upper Range Limit in PSI
Range = Upper_Range_Limit - Lower_Range_Limit;
                                                       //Range is intermediate variable
float fadc;
                                                       //I2C start
iic_start();
iic_write(0xDA);
                                                       //Device address, write operation
                                                       //Write data start address
iic write(0x06);
iic_start();
                                                       //Restart
iic_write(0xDA+1);
                                                       //Device address, read operation
dat=iic_readbyte(1);
                                                       //Read firstbyte(0x06), ACK
dat <<= 8;
                                                       //Shift
                                                       //Read second byte(0x07), ACK
dat += iic readbyte(1);
dat <<= 8;
                                                       //Shift
dat += iic\_readbyte(0);
                                                       //Read third byte(0x08), NACK
iic_stop();
                                                       //Stop
//Calculate pressure value
if(dat & 0x800000)
     {
         fadc = dat - 16777216.0;
    else
         fadc = dat;
ADC = 3.3*fadc /8388608.0;
                                                      //ADC is intermediate variable
P = (Range * (ADC-0.5)/2.0) + Lower_Range_Limit;
                                                      //P: pressure value in PSI
```

	P.	SI	Comments						
ADC	1	.5	Example ADC value calculated from sensor I2C Value						
(ADC-0.5)/2.0	0	.5							
Transducer Range	0	200	Specified Transducer Operating Range (in PSI)						
Lower_Range_Limit	()							
Upper_Range_Limit	20	00							
Range	20	00	Range = Upper_Range_Limit - Lower_Range_Limit						
Р	10	00	P = (Range * (ADC-0.5)/2) + Lower_Range_Limit						

Figure 4 - Example P Calculation (in PSI)

(2): Temperature measurement

Measuring data is a 24-bit signed integer, stored in 3 registers of address 0x09, 0x0A, 0x0B.

	0x09							0x0A								0x0B							
23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Temperature Value (T) can be read as per below steps:

```
float fadc;
iic_start();
                                                          //I2C start
iic_write(0xDA);
                                                          //Device address, write operation
iic_write(0x09);
                                                          //Write data start address
iic start();
                                                          //Restart
                                                          //Device address, read operation
iic_write(0xDA+1);
dat=iic\_readbyte(1);
                                                          //Read firstbyte(0x09), ACK
dat <<= 8;
                                                          //Shift
dat += iic \ readbyte(1);
                                                          //Read second byte(0x0A), ACK
dat <<= 8;
                                                          //Shift
dat += iic\_readbyte(0);
                                                          //Read\ third\ byte(0x0B), NACK
iic_stop();
                                                          //Stop
//Calculate temperature value
if(dat & 0x800000)
          fadc = dat - 16777216.0;
     }
     else
          fadc = dat;
T = 25.0 + fadc / 65536.0;
                                                         // T: temperature value in {}^{\circ}C
```