Appendix A

LTR Syntax

The full LTR syntax is as follows:

Variables	x,	y	\in	[a-z][a-z_]*
Positive types	P,	Q, R	::=	$1 \mid (P \times Q) \mid (P + Q) \mid \downarrow N$
				$\mu F \supset \alpha \Rightarrow t \mid \exists a : \tau . P \mid (P \land [\varphi])$
Negative types	N		::=	$(P \to N) \ \ \uparrow P \ \ \forall a : \tau \ . \ N \ \ [\varphi] \supset N$
Functors	F		::=	$(F \oplus F) \mid \hat{P}$
Product functors	\hat{P}		::=	$(\hat{B} \otimes \hat{P}) \mid I$
Base functors	\hat{B}		::=	[P] Id
Sorts	au		::=	$\mathbb{B} \ \ \mathbb{N} \ \ \mathbb{Z} \ \ (\tau,\tau)$
Numbers	n		\in	[0-9]+
Index variables	a,	b	\in	[a-z][a-z_]*
Index terms	t		::=	$a \mid n \mid +n \mid -n \mid (t+t) \mid (t-t)$
				$(t*t) \;\mid\; (t\;/\;t) \;\mid\; (t\;\%\;t) \;\mid\; (t,\;t)$
				$\pi_1 \ t \ \mid \ \pi_2 \ t \ \mid \ \varphi$
Propositions	φ		::=	$(t=t) \ \mid \ (t \neq t) \ \mid \ (t < t) \ \mid \ (t \leq t)$
				$(t>t) \ \mid \ (t\geq t) \ \mid \ (t\wedge t) \ \mid \ (t\vee t)$
				$\neg \varphi \mid T \mid F$
Algebras	α		::=	$(p_1 \Rightarrow t_1 \parallel p_2 \Rightarrow t_2 \parallel \cdots)$
Sum algebra patterns	p		::=	$\operatorname{inj}_1 p \mid \operatorname{inj}_2 p \mid q$
Product algebra patterns	q		::=	$() \mid (o,q)$
Base algebra patterns	0		::=	$\underline{} \mid a \mid \operatorname{pack}(a, o)$
Values	v,	w	::=	$x \ \ \langle \rangle \ \ \langle v, w \rangle \ \ \operatorname{inj}_1 \ v \ \ \operatorname{inj}_2 \ v$
				$into(v) \mid \{e\}$
Expressions	e		::=	return $v \mid \det x = g; e \mid \text{match } h \{r\}$
				$\lambda x \cdot e \mid \operatorname{rec} x : N \cdot e \mid \operatorname{unreachable}$
Heads	h		::=	$x \mid [v:P]$
Bound expressions	g		::=	$h(v,w,\dots) \mid (e:\uparrow P)$

Additionally, the main executable supports including a file by typing !!path/to/file and line comments starting with -- or #.

To support non-Unicode input devices, the following aliases are defined:

inj ₁	::=	inj1 inl	\rightarrow	::=	~	->
inj ₂	::=	inj2 inr	⇒	::=	'	=>
П 1	::=	п1 L		::=		
П ₂	::=	п2 R	\wedge	::=	&	
Id	::=	id	V	::=		
×	::=	X	\neg	::=	!	
\oplus	::=	(+)	A	::=	A	
\otimes	::=	(×) (X)	∃	::=	E	
≠	::=	!=	\supset	::=	S	
\leq	::=	<=	Т	::=	Τ	
>	::=	>=	\perp	::=	F	
λ	::=	fun	\mathbb{B}	::=	В	
μ	::=	fix	\mathbb{N}	::=	N	
↑	::=	^	\mathbb{Z}	::=	Z	
↓	::=	V				