Considerazioni...

- Non è solo sfortuna...!
- Murphy si può quantificare!!
- Pensate ai doppi errori nelle RAM, ai codici di errore, carte di credito etc

La sfortuna non esiste...?

??

Qui...

- Spiegazione informale/semplificata:
- Il problema delle reti (informatiche), rispetto a Murphy, è la loro velocità...!
- Per quanto la probabilità di un evento isolato sia bassa (quasi 0), quindi Murphy-like...
- ... quando lo stesso evento si ripete per molte volte, la probabilità che accada sale rapidamente a 1 (certezza)

Quindi...

- Visto che il progresso tecnologico ci porta a reti sempre più veloci...
- ♦... → gli eventi improbabili di Murphy sono sempre più probabili !!!

Altri Problemi delle Sliding Windows

Se vi ricordate, abbiamo detto che quando si fa piggybacking c'è un

problema quando il traffico è *sbilanciato*: rischiamo di aspettare troppo per mandare l'ack

Soluzione?

Ci sono comunque delle soluzioni: ad esempio, possiamo avere un altro timer supplementare anche nel receiver: quando il timer scade, rimandiamo, anche senza piggybacking

Però...

Occorre stare attenti, ovviamente, a settare bene la durata di questo timer: in particolare, dovrebbe essere più breve del timer usato per ritrasmettere i frame (!)

I timer del sender

- Gli altri timer da considerare sono quelli del sender: quale scelta fare?
- Se il tempo di ack è poco variabile, allora ci basta settare il timer a un pò di più del tempo medio di attesa
- Il problema è se il tempo di ack è invece molto variabile (!)

Che fare?

- Ci sono vari modi per scamparla, vediamone uno:
- Quando il tempo è variabile, si setta il timer del sender a un valore abbastanza largo, però si dà un'altra arma al receiver

II NAK!

- Il receiver misura il rischio che ci siano stati errori, e se questo rischio è troppo alto, si può sollecitare il sender, inviandogli un messaggio speciale:
- non un ACK, ma un NAK (Not AcK)

NAK

- Il NAK quindi è un avviso che per qualche motivo, non è stato ricevuto il pacchetto corrispondente
- In questo modo, il sender sa che non serve aspettare col suo timeout generoso: può ritrasmettere subito!
- ♦ → Un buon uso del NAK può velocizzare moltissimo una rete!

Quando si attiva un NAK?

- ◆Il NAK si può attivare tramite uno speciale timer nak, per ogni slot della sliding window, che tenga conto dell'aspettativa di ricevere il pacchetto col numero corrispondente
- Oppure anche in altre condizionicome ad esempio ricevere un pacchetto "fuori flusso"...

La struttura del frame (stuffing)

≥ 0	16	8

Data	Checksum	01111110

Vediamo meglio le componenti

- La parte **Data** è il *payload,* i dati effettivi
- La parte Checksum è calcolata usando CRC
- <u>> 0</u> 16 8

Data Checksum 0 1 1 1 1 1 0

Il Frame HDLC

La parte di Address serve per la componente di indirizzamento, se ci sono terminali multipli dentro la stessa rete che devono essere distinti

8 8

0 1 1 1 1 1 1 0 Address Control

Il Frame HDLC

La parte di Control è quella più interessante

8 8 8

0 1 1 1 1 1 1 0 Address Control

Control del Frame

- Essenzialmente, ci possono essere tre tipi di Frame:
- Information
- Supervisory
- Unnumbered

Control del Frame

Il controllo di flusso avviene tramite una sliding window di grandezza massima

3 bit (8 "spicchi")

Il Frame **Information**

Seq contiene il numero del controllo di flusso della sliding window

Notare

C'è anche una variante dove il controllo di flusso si fa con una sliding window grande 128 "spicchi", usata per

le comunicazioni satellitari

Frame Information (cont.)

- P/F sta per Poll/Final:
- Quando il bit indica P (Poll), si chiede al ricevente di iniziare la trasmissione
- Quando il bit indica F (Final) si segnala che la trasmissione va conclusa

Bits 1 3 1 3

(a) 0 Seq P/F Next

ipervisory (cont.)

ype 0 : ACK (in questo rotocollo, detto

ECEIVE READY)

i usa quando il flusso è *sbilanciato* e on si può fare ACK con piggybacking ricordate il timer extra)

	0	Туре	P/F	Next	
--	---	------	-----	------	--

Supervisory (cont.)

- **♦ Type 1 : REJECT**
- ◆E' un NAK generalizzato, segnala che vanno ritrasmessi tutti i frame a partire da quello indicato in poi nella sliding window
- Qui Next indica il primo frame

(b)	1	0	Туре	P/F	Next
-----	---	---	------	-----	------

Supervisory (cont.)

- **♦ Type 2 : RECEIVE NOT READY**
- Questo è qualcosa di concettualmente nuovo: segnala che ci sono problemi di congestione nel receiver, e quindi la trasmissione va bloccata, finchè il receiver non rimanda un ACK

(b)	1	0	Туре	P/F	Next
-----	---	---	------	-----	------

Supervisory (cont.)

- **♦**Type 3 : SELECTIVE REJECT
- ◆ Questo è il classico NAK

(b)	1	0	Туре	P/F	Next
-----	---	---	------	-----	------

Il Frame Unnumbered

Usato per ulteriori comandi di controllo, non vediamo tutti i dettagli perché le implementazioni nella famiglia HDLC variano, vediamo solo qualche comando

(c)	1	1	Type	P/F	Modifier	
-----	---	---	------	-----	----------	--

I comandi di Unnumbered

DISC: sta per DISConnect, segnala che la macchina sta uscendo dalla rete in maniera definitiva (quindi, diverso dal frame Supervisory di tipo 2, che

segnalava un problema temporaneo)

I comandi di Unnumbered

- **SNRM**: è il comando duale, segnala che una nuova macchina è entrata nella rete
- ♦SNRM = Set Normal Response Mode
 → indica un canale asimmetrico, dove il nuovo entrato è meno importante
- Retaggio storico, quando c'era sempre e solo un server centrale e terminali locali molto stupidi

I comandi di Unnumbered

SABM: Set Asynchronous Balanced Mode

E' il comando (introdotto successivamente nello standard) che invece crea una connessione bilanciata, dove chi entra ha gli stessi diritti degli altri