Map Based Localisation

A non-holonomic robot navigates in a partial unknown environment.

GIVEN	FIND
$\boldsymbol{\mu}_0 = \begin{bmatrix} s_{x,0} \\ s_{y,0} \\ s_{\theta,0} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \text{ robot initial position}$	Using Kalman filter estimate the position of the robot for three time steps, i.e.,
$\mathbf{\Sigma}_0 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \text{ initial covariance matrix}$	μ_1, μ_2, μ_3 and $\Sigma_1, \Sigma_2, \Sigma_3$.
$\boldsymbol{m} = \begin{bmatrix} m_x \\ m_y \end{bmatrix} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$ landmark position	
Assume the following conditions remain constant $\forall k$	
$Q_k = \begin{bmatrix} 0.5 & 0.01 & 0.01 \\ 0.01 & 0.5 & 0.01 \\ 0.01 & 0.01 & 0.2 \end{bmatrix} $ motion model covariance matrix	
$\mathbf{R_k} = \begin{bmatrix} 0.1 & 0 \\ 0 & 0.02 \end{bmatrix}$ observation model covariance matrix	
$V_k = 1m/s$ mobile robot linear velocity	
$\omega_k = 1rad/s$ mobile robot angular velocity	
$\Delta t = 0.1s$ sampling time	
Assumed measurements at each step k using the LiDAR	
$\mathbf{z}_{1,1} = [4.87 \ 0.8]^T$ $\mathbf{z}_{1,2} = [4.72 \ 0.72]^T$ $\mathbf{z}_{1,3} = [4.69 \ 0.65]^T$	

Figure 1 A non-holonomic robot moving in a 2D environment