Quantum Mechanics

Homework Assignment 03

Fall, 2019

- 1. The Hamiltonian of a quantum system is given by $\hat{H} = \frac{\hat{\vec{p}}^2}{2m} + V(\vec{r})$ where $V(\vec{r})$ is the real-valued potential energy. The eigenvalue spectrum of \hat{H} is discrete with the eigenequation of \hat{H} given by $\hat{H}\psi_n(\vec{r}) = E_n\psi_n(\vec{r})$. Assume that $\psi_n(\vec{r})$'s are normalized.
 - (a) Evaluate the commutators $[\hat{H}, x]$ and $[[\hat{H}, x], x]$.
 - (b) Show that $\sum_{n'} (E_{n'} E_n) |(\psi_{n'}, x\psi_n)|^2 = \frac{\hbar^2}{2m}$ using the result for the commutator $[[\hat{H}, x], x]$.
- 2. The Hamiltonian $\hat{H}(\lambda)$ of a quantum system depends on the real parameter λ , which leads to the λ -dependence of the eigenvalues and eigenfunctions of $\hat{H}(\lambda)$. The eigenequation of $\hat{H}(\lambda)$ reads $\hat{H}(\lambda)\psi_n(\lambda) = E_n(\lambda)\psi_n(\lambda)$. The eigenvalue spectrum of $\hat{H}(\lambda)$ is assumed to be discrete. Here the variable \vec{r} in real space is suppressed. The eigenfunctions $\psi_n(\lambda)$'s are normalized.
 - (a) Show that $E_n(\lambda) = (\psi_n(\lambda), \hat{H}(\lambda)\psi_n(\lambda)).$
 - (b) Derive the Hellmann-Feynman theorem $\frac{\partial E_n(\lambda)}{\partial \lambda} = \left(\psi_n(\lambda), \frac{\partial \hat{H}(\lambda)}{\partial \lambda} \psi_n(\lambda)\right)$.
- 3. It is known that the eigenfunction of the position operator $\hat{\vec{r}}$ corresponding to the eigenvalue \vec{r}' is given by $\psi_{\vec{r}'}(\vec{r}) = \delta(\vec{r} \vec{r}')$ in real space.
 - (a) Find the eigenfunction $\varphi_{\vec{r}'}(\vec{p})$ of $\hat{\vec{r}}$ corresponding to the eigenvalue \vec{r}' in momentum space through the Fourier transformation $\varphi_{\vec{r}'}(\vec{p}) = \frac{1}{(2\pi\hbar)^{3/2}} \int d^3r \; \psi_{\vec{r}'}(\vec{r}) e^{-i\vec{p}\cdot\vec{r}/\hbar}$.
 - (b) The eigenequation of \hat{r} in momentum space reads $\hat{r}\varphi_{\vec{r}'}(\vec{p}) = \vec{r}'\varphi_{\vec{r}'}(\vec{p})$. Using the above-obtained expression of $\varphi_{\vec{r}'}(\vec{p})$, deduce the expression of \hat{r} in momentum space. Does the obtained expression of \hat{r} in momentum space satisfy the fundamental commutation relations $[\hat{r}_{\alpha}, \hat{p}_{\beta}] = i\hbar\delta_{\alpha\beta}$ with $\alpha, \beta = x, y, z$ in momentum space?
- 4. The Hamiltonian of a quantum system is given by $\hat{H} = \frac{\hat{\vec{p}}^2}{2m} + \hat{V}(\hat{\vec{r}})$ where $\hat{V}(\hat{\vec{r}})$ is the Hermitian potential energy operator. The eigenequation of \hat{H} reads $\hat{H}\psi_n = E_n\psi_n$. Assume that the eigenvalue spectrum of \hat{H} is discrete and that ψ_n 's are normalized. Take \hbar to be the parameter in the Hellmann-Feynman theorem.
 - (a) Apply the Hellmann-Feynman theorem in real space.
 - (b) Apply the Hellmann-Feynman theorem in momentum space.
 - (c) Using the results obtained in the previous two parts, derive the virial theorem $\left(\psi_n, \frac{\hat{p}^2}{2m}\psi_n\right) = \frac{1}{2}\left(\psi_n, \vec{r} \cdot \vec{\nabla}V(\vec{r})\psi_n\right)$; also written as $\langle \hat{T} \rangle_n = \frac{1}{2}\langle \vec{r} \cdot \vec{\nabla}V(\vec{r}) \rangle_n$ with $\hat{T} = \frac{\hat{p}^2}{2m}$ the kinetic energy operator.
- 5. The ladder operators of the orbital angular momentum are defined by $\hat{L}_{\pm} = \hat{L}_x \pm i\hat{L}_y$.
 - (a) Derive the expressions of \hat{L}_{\pm} in the spherical coordinate system.
 - (b) Show that $\hat{L}_{\pm}Y_{\ell m}(\theta, \phi) = \hbar \sqrt{\ell(\ell+1) m(m \pm 1)} Y_{\ell, m \pm 1}(\theta, \phi)$.
 - (c) Show that

$$\cos\theta Y_{\ell m} = \left[\frac{(\ell+m)(\ell-m)}{(2\ell-1)(2\ell+1)}\right]^{1/2} Y_{\ell-1,m} + \left[\frac{(\ell+m+1)(\ell-m+1)}{(2\ell+1)(2\ell+3)}\right]^{1/2} Y_{\ell+1,m},$$

$$\sin\theta e^{\pm i\phi} Y_{\ell m} = \pm \left[\frac{(\ell\mp m)(\ell\mp m-1)}{(2\ell-1)(2\ell+1)}\right]^{1/2} Y_{\ell-1,m\pm 1} \mp \left[\frac{(\ell\pm m+2)(\ell\pm m+1)}{(2\ell+1)(2\ell+3)}\right]^{1/2} Y_{\ell+1,m\pm 1}.$$