Kabinet výuky obecné fyziky, UK MFF

Fyzikální praktikum

Úloha č. A17

Název úlohy: Zeemanův jev

Jméno: Michal Grňo Obor: FOF

Připomínky opravujícího:

	Možný počet bodů	Udělený počet bodů
Práce při měření	0-3	
Teoretická část	0-2	
Výsledky a zpracování měření	0-9	
Diskuse výsledků	0-4	
Závěr	0-1	
Použitá literatura	0-1	
Celkem	max. 20	

Posuzoval: dne:

1 Pracovní úkoly

- 1. Proměřte závislost magnetické indukce na proudu magnetu.
- 2. Pomocí kamery změřte ve směru kolmém k magnetickému poli rozštěpení červené spektrální čáry kadmia pro 8-10 hodnot magnetické indukce. Snímky vyhodnoť te vhodným programem podle návodu. Určete polarizaci složek rozštěpené čáry.
- 3. Toté proveďte pro 6-8 hodnot indukce při pozorování ve směru magnetického pole. Opět určete polarizaci.
- 4. Výsledky obou sérií měření vzájemn porovnejte. Určete chyby měření.
- 5. Kvalitativně popište výsledky pozorování Zeemanova jevu na zelené čáře kadmia ($\lambda = 508.6 \,\mathrm{nm}$).

2 Teoretická část

V práci budeme měřit štěpení spektrálních čar při normálním Zeemanově jevu. K tomu dochází, když se spektrální čára o vlnové délce λ_0 vlivem externího magnetického pole rozštěpí na tři čáry $\lambda_0 - \Delta \lambda, \ \lambda_0, \ \lambda_0 + \Delta \lambda$. Tyto nově vzniklé čáry čáry budeme značit písmeny z, x, y (postupně od nejmenší vlnové délky po největší). Změna vlnové délky $\Delta \lambda$ je přímo úměrná síle magnetické indukce, platí pro ni vzorec

$$\Delta \lambda = \frac{e}{m_o} \frac{\lambda_0^2 B}{4\pi c} \,, \tag{1}$$

kde e je elementární náboj, $m_{\rm e}$ hmotnost elektronu, B magnetická indukce externího pole a c rychlost světla. [1] My budeme pro měření používat červenou spektrální čáru kadmiové výbojky s $\lambda_0=643.8\,\mathrm{nm}$. Protože experiment vyžaduje velmi citlivý aparát, budeme pracovat se spektrometrem s Lummerovou-Gehrckeovou deskou. V difrakčním obrazci spektrometru typicky jedna vlnová délka λ odpovídá několika interferenční maximům λ_k , kde k je přirozené číslo. Pro k-té interferenční maximum odpovídající čárám z, x, y budeme používat značení

$$z_k, x_k, y_k$$
.

Další význačná vlnová délka je tzv. velikost disperzní oblasti $\Delta\lambda_{\rm D}$, která udává, jak jsou od sebe na stupnici spektrometru vzdálená interferenční maxima jednotlivých řádů – je-li tedy například $\Delta\lambda = \Delta\lambda_{\rm D}$, potom maximum y_k splývá s maximem x_{k+1} . Velikost disperzní oblasti pro Lummerův-Gehrckeův spektrometr lze vypočítat jako

$$\Delta \lambda_{\rm D} = \frac{\lambda^2}{2d\sqrt{n^2 - 1}} \,,$$

kde $d=4.04\,\mathrm{mm}$ je tloušťka desky, $\lambda\approx\lambda_0=643.8\,\mathrm{nm}$ je vlnová délka světla které používáme k difrakci (v našem případě červená čára Cd) a n je index lomu destičky, v našem případě

$$n = 1.44263 + \frac{7.065}{\lambda/\text{nm} - 144} = 1.45677$$
. [1]

Pro použitý aparát tedy máme

$$\Delta \lambda_{\rm D} = 0.0484 \,\mathrm{nm} \,. \tag{2}$$

V difrakčním obrazu spektrometru ve skutečnosti neměříme přímo vlnovou délku, ale difrakční úhel, který budeme značit ϑ . V nejjednodušší aproximaci platí $\vartheta \propto \lambda$. V takové aproximaci platí:

$$\Delta \lambda = \frac{\alpha}{\beta} \, \Delta \lambda_D \; , \label{eq:delta}$$

kde α značí *úhlový posun*, tj. rozdíl mezi úhlem ϑ čar λ_0 a $\lambda_0 + \Delta \lambda$, a β značí *úhlovou odlehlost* sousedních řádů. [1] Aproximace $\vartheta \propto \lambda$ však není úplně přesná, obzvlášť v okolí úhlu $\vartheta = 90^\circ$, kde budeme měřit. Lepší odhad nám dává kvadratická závislost

$$\Delta \lambda = \left(\left(\varrho + \varrho^{-1} \right) \xi + \left(\varrho - \varrho^{-1} \right) \xi^2 \right) \Delta \lambda_{\mathrm{D}} , \qquad (3)$$

kde ϱ a ξ jsou proměnné, které lze odhadnout z poloh několika prvních interferenčních maxim:

$$\varrho = \frac{x_1 - x_0}{x_2 - x_1} \,, \quad \xi = \frac{y_1 - x_1}{x_2 - x_0} \,. \quad [1]$$

Tento odhad stále není ideální, protože ze všech identifikovaných peaků využijeme pouze x_0, x_1, x_2 a y_1 , pro naše účely ale poskytuje dostatečnou přesnost.

Obrázek 1: Kalibrace závislosti magnetické indukce na proudu, proložená lomenou čárou.

3 Měření a zpracování dat

Nejprve jsme proměřili kalibrační křivku cívky. Protože se jedná o cívku s jádrem [2], očekáváme, že pro nízké proudy půjde o lineární závislost s větší směrnicí, která se následně "zlomí" v bodě nasycení jádra. Naměřenou závislost (viz obrázek č. 1) jsme proložili dvakrát lomenou čárou, jako parametry regrese jsme použili směrnice i body lomu. Výsledná závislost je:

$$b(x) = 0.0808 x - 0.030 (x - 8.9) H(x - 8.9) - 0.023 (x - 11.1) H(x - 11.1),$$

$$(4)$$

kde b je magnetická inducke v jednotkách T, x je proud v jednotkách A a H(x) je Heavisidova schodová funkce. Odchylka naměřeného B od fitu se pohybuje pod $6\,\mathrm{mT}$.

Následně jsme měřili difrakční obrazce pro proudy cívkou 5 A až 14 A. Vypočítané odpovídající hodnoty magnetické inducke jsou v tabulce č. 1, chyba B v tabulce je vypočítaná pouze z chyby I a směrnice grafu v daném místě, chyba fitu B(I) není zohledněna.

I	[A]	$\mid E$	8[T]
5.00	± 0.10	0.404	± 0.008
6.05	± 0.10	0.489	± 0.008
7.00	± 0.10	0.566	± 0.008
8.04	± 0.10	0.650	± 0.008
10.06	± 0.10	0.778	$\pm \ 0.005$
11.00	± 0.10	0.825	$\pm \ 0.005$
12.00	± 0.10	0.856	± 0.003
13.06	± 0.10	0.886	± 0.003
14.16	± 0.10	0.917	± 0.003

Tabulka 1: Naměřené proudy a vypočítané magnetické indukce bodů, kde byl pořízen difrakční obrazec.

Výstupem byla sada digitálních obrázků jako je obrázek č. 2, které zachytil CCD čip v aparátu spektrometru. Pomocí programu Octave jsme z obrázků vybrali řez prostředkem obrázků, omezili se na červený kanál a do datových souborů exportovali průběh jasu a polohu maxim. Toho bylo dosaženo pomocí následujícího kódu:

```
pkg load signal

filenames = ls('data/images');
inputs = strcat('data/images/', filenames);
outputsRaw = strcat('zprac1/', filenames, '_raw.dat');
outputsPeaks = strcat('zprac1/', filenames, '_peaks.dat');

for i = 1:size(inputs)
```

```
disp(filenames(i,:));
data = imread(deblank(inputs(i,:)))(120:965,836,1);
[peaks idx] = findpeaks(
    double(data),
    "MinPeakHeight", 80);

file = fopen(deblank(outputsRaw(i,:)), 'w');
for j = 1:size(data)
    fdisp(file, [double(j), double(data(j))]);
end
fclose(file);

file = fopen(deblank(outputsPeaks(i,:)), 'w');
fdisp(file, [idx peaks]);
fclose(file);
end
```

Automaticky označená maxima bylo ještě potřeba ručně promazat – program Octave jako maximum označil i skoky v jasu, které způsobila komprese obrázků. Tím jsme pro každý proud I dostali sadu maxim z_k, x_k, y_k jako jsme předpokládali v teorii. Příklady získaných dat jsou v obrázcích číslo 3, 4 a 5.

Dále bylo třeba z naměřených peaků určit $\Delta\lambda$ pro jednotlivé proudy I. Dosazením do rovnice (3) jsme dostali hodnoty $\Delta\lambda/\Delta\lambda_{\rm D}$, viz tabulka č. 2. Dále jsme pomocí (2) a (4) vyjádřili závislost $\Delta\lambda(B)$ a vynesli ji do grafu v obrázku č. 7.

$I\left[\mathrm{A}\right]$	ρ	ξ	$\Delta \lambda / \Delta \lambda_{ m D}$
5.00	1.370	0.074	0.160
6.05	1.444	0.084	0.185
7.00	1.377	0.110	0.240
8.04	1.393	0.113	0.247
9.02	1.393	0.134	0.294
10.06	1.442	0.137	0.305
11.00	1.421	0.147	0.327
12.00	1.376	0.155	0.341
13.06	1.384	0.161	0.356
14.16	1.365	0.164	0.362

Tabulka 2: Výpočet změny vlnové délky pro různé proudy.

Body v grafu na obr. č. 7 jsme proložili přímkou která prochází počátkem. Směrnice fitu je:

$$a = (19.22 \pm 0.16) \, \text{pm/T}$$
.

Porovnáním s (1) potom dostáváme

$$\frac{e}{m_{\rm e}} = a\,\frac{4\pi c}{\lambda_0^2} = (1.747 \pm 0.015) \cdot 10^{11}\,{\rm C/kg}\,.$$

Nakonec jsme kvalitativně porovnali vliv orientace polarizačního filtru na pozorovaný difrakční obrazec. Nejrve jsme polarizační filtr umístili do polohy A, kde vymizely boční čáry y,z. Následně jsme filtr otočili o 90° do polohy B. Pozorovali jsme, že v této poloze se boční čáry opět objevily, naopak zmizela čára x (viz obrázek 8). To indikuje, že čáry jsou lineárně polarizované, centrální čára kolmo k bočním čarám.

Obrázek 8: Vliv orientace polarizačního filtru na pozorovaný difrakční obrazec.

Obrázek 2: Difrakční obrazec pro $I=5\,\mathrm{A.}$

Obrázek 3: Jas na řezu snímkem při $I=5\,\mathrm{A}.$

4

Obrázek 5: Jas na řezu snímkem při $I=14\,\mathrm{A}.$

Obrázek 6: Poloha naměřených peaků pro různé proudy. Hvězdička značí z_k , čtvereček x_k a kolečko y_k . Barvy odlišují jednotlivá interferenční maxima.

Obrázek 7: Rekonstruovaná závislost délkového posunu na magnetické indukci.

4 Diskuse

Ze 106 identifikovaných peaků (viz obrázek č. 6) jsme jich pro výpočet $\Delta \lambda/\Delta \lambda_{\rm D}$ pomocí vzorce (3) použili pouze $4\cdot 10=40$. Využitím všech peaků bychom jistě dosáhli přesnějšího výsledku, vyžadovalo by to ovšem sofistikovanější statistickou analýzu.

Fit v obrázku č. 7 jsme prováděli za předpokladu, že chyby všech bodů jsou stejné. Chybu $\Delta\lambda$ nedokážeme určit (protože je to hodnota získaná fitem funkce tří parametrů na tři body, viz (3)). Chybu B lze usoudit z grafu v obrázku č. 1 a z tabulky č. 1; vidíme, že na celém intervalu máme chybu řádově v jednotkách mT. Předpoklad stejných chyb je tedy oprávněný.

Při měření jsme nepracovali s předehřátým elektromagnetem, ani jsme nečekali, až se jeho teplota ustálí. V průběhu měření se tedy jeho teplota vlivem protékajícího proudu výrazně měnila. Protože jsme ovšem používali zdroj konstantního proudu, na sílu magnetického pole neměla tato změna teploty vliv.

V obrázcích 4 a 5 je vidět, že maxima vyšších řádů zanikají v důvodu příliš vysoké expozice. Snížením jasu výbojky, snížením citlivosti CCD čipu nebo zvýšením clonového čísla bychom dosáhli ještě vyššího počtu identifikovaných peaků. Protože jsme ovšem v této práci maxima vysokých řádů nezapočítávali, neměla by tato volba na současný výsledek vliv.

5 Závěr

Podařilo se proměřit normální Zeemanův jev pro červenou čáru kadmia v magnetickém poli od $0.4\,\mathrm{T}$ do $0.9\,\mathrm{T}$. V difrakčních obrazcích se podařilo identifikovat 106 peaků, z nich 40 bylo použito k vypčítání závislosti změny vlnové délky $\Delta\lambda$ na magnetické indukci B. Z této závislosti se poté podařilo odhadnout měrný náboj elektronu

$$\frac{e}{m_{\rm e}} = (1.747 \pm 0.015) \cdot 10^{11} \,{\rm C/kg} \,,$$

což je v souladu s tabulkovou hodnotou. Podařilo se demonstrovat, že čáry z,x,y jsou lineárně polarizované; x je polarizované kolmo kz,y.

6 Literatura

[1] Praktikum částicové a jaderné fyziky. Zeemanův jev. 2002. Dostupné z: https://physics.mff.cuni.cz/vyuka/zfp/_media/zadani/texty/txt_417.pdf.

[2] DANIŠ, Stanislav. Instrukce k absolvování distanční formy úlohy A-17 v rámci Praktika IV. 2020. Dostupné z: https://physics.mff.cuni.cz/vyuka/zfp/_media/zadani/texty/da_417.pdf.