Introduction to Computer Programming Lecture 11.4:

Review: Imported modules – Numpy & Matplotlib

Hemma Philamore

Department of Engineering Mathematics

Import

Import modules using import keyword

import numpy

import numpy as np

Renaming

import matplotlib.pyplot

Importing sub-modules

from numpy import pi

Importing specific functions, variables

Numpy

Numpy Array

Elementwise operation

Pure Python

```
1 x = [2, 3, 4, 5, 6]
2 y = [a + 2 for a in x]
3 print(y)
```

[4, 5, 6, 7, 8]

Numpy

```
import numpy as np

x = np.array([2, 3, 4, 5, 6])
y = x + 2
print(y)
```

[4 5 6 7 8]

Creating Numpy arrays

Create 1D array from list

```
1 x = [2, 3, 4, 5, 6]
2 nums = np.array(x)
3 print(nums)
```

[2 3 4 5 6]

arange

```
1 x = np.arange(1, 10)
2 print(x)
```

[1 2 3 4 5 6 7 8 9]

ones

[1. 1.]]

```
1 y = np.ones((2, 2))
2 print(y)

[[1. 1.]
```

linspace

```
1 u = np.linspace(1, 10, 10)
2 print(u)
[ 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.]
```

Reshape

```
1 x = np.arange(0, 20)
1 x = x.reshape(4, 5)
2 print(x)
```

```
[[ 0 1 2 3 4]
[ 5 6 7 8 9]
[10 11 12 13 14]
[15 16 17 18 19]]
```

Numpy Functionality

Trigonometry

```
1 x = np.pi
2 print(np.sin(x))
```

1.2246467991473532e-16

Exponents and logarithms

```
1 np.exp(0) 1 np.log(1)
1.0 0.0
1 np.log10(100)
2.0
```

Test if all or any elements in a data structure are non-zero

```
1 y = [1, 0, 2]
2 np.all(y)
```

False

```
1 np.any(y)
```

True

Find instances of a value in an array

```
1    u = np.array([2, 5, 2])
2    v = u==2
3    v

array([ True, False, True])
```

Linear algebra

```
1  x = np.arange(3)
2  y = np.arange(3)
3  x, y

(array([0, 1, 2]), array([0, 1, 2]))
1  x.dot(y)
```


Q.11.4.A

Create the numpy array:

```
[[6, 8, 10], [12, 14, 16], [18, 20, 22]]
```

Q.11.4.B

Find sin(x) for each value, x, in the list: $\left[\frac{\pi}{2}, \pi, \frac{\pi}{4}\right]$

Q.11.4.C

Add [6, 4, 2] to each row of the array in your answer to Q.11.4.A to get:

```
[[12, 12, 12],
[18, 18, 18],
[24, 24, 24]]
```

Q.11.4.D

Find the dot product of the four elements in the upper left corners of the 3x3 arrays in Q.11.4.A and Q.11.4.C

Matplotlib

Visualising data

Import the module

Line plot

Required to display plot

import matplotlib.pyplot as plt

3 x = [-1, 3, 4, 8, 10] 4 f = [-1, -2, 7, 13, 1]

plt.plot(x, f)
plt.show()

Output displayed in:

- Plots window (run in Spyder)
- Separate window (run in terminal)

In [4]: runfile('/Users/hemma/Documents/Teach

Week8_Lecture_8/plot_examples.py', wdir='/Use

hemma/Documents/Teaching /UoB/Intro_to_Prog/

UoB/Intro_to_Programming /Folders_Weeks/

Line plot

```
import matplotlib.pyplot as plt
import numpy as np

# data
num_points = 100
x = np.linspace(0, 4*np.pi, num_points)
f = np.sin(x)

# plot
plt.plot(x, f);

# use start and end values in x as x limits
plt.xlim(x[0], x[-1])

# label axis
plt.xlabel('$x$')
plt.ylabel('$\sin(x)$')

plt.show()
```


Scatter plot

```
import matplotlib.pyplot as plt

#data
x = [1, 5, 10]
y = [6, 12, 18]

# plot
plt.scatter(x, y, c='m', marker='*');

# label axis
plt.xlabel('X')
plt.ylabel('Y')

plt.show()
```


Bar Chart

```
import matplotlib.pyplot as plt
# data
year_groups = ['B1', 'B2', 'B3', 'M1', 'M2']
num_students = [500, 332, 425, 300, 200]
# 1. create an arry with posiytion of x ticks
x_pos = np.arange((len(year_groups)))
# 2. bar chart
plt.bar(x_pos, num_students)
# 3. replace x ticks with year group name
plt.xticks(x_pos, year_groups)
# 4. axis labels
plt.xlabel('year group')
plt.ylabel('number of students')
plt.show()
```


Histogram

```
import numpy as np
import matplotlib.pyplot as plt

# 500 values in the range 0 to 100
R = np.random.randint(0, 100, 500)

# Produce histogram with 20 bins
n, bins, patches = plt.hist(R, 20, facecolor='green')

# Add label
plt.xlabel('value')
plt.ylabel('frequency')

plt.show()
```


Q.11.4.E

Create a line plot of row 1 against row 0 of the numpy array:

[[6, 8, 10], [18, 23, 12]]

Q.11.4.F

Create a scatter plot of the exponential function, e^x , for x in the range 0 to 10 inclusive.

Going further with Numpy, Matplotlib and other python modules

Numpy

Mathematical modelling, scientific computing

Matplotlib

Overlaying plots e.g. error bars, subplots, 3D plotting, simulation, animated plots

Scipy: Numerical routines e.g numerical integration, interpolation, optimization, linear algebra, statistics

Sympy: Symbolic mathematics

Pandas: Data analysis and manipulation