

Welcome

- Video: Welcome to Machine Learning!
 1 min
- Reading: Machine Learning
 Honor Code
 8 min

Introduction

- Video: Welcome
 6 min
- Video: What is Machine Learning?
- Reading: What is Machine Learning?
 5 min
- Reading: How to Use Discussion Forums
 4 min
- Video: Supervised Learning
 12 min
- Reading: Supervised Learning 4 min
- Video: Unsupervised Learning
 14 min
- Reading: Unsupervised Learning
 3 min
- Reading: Who are Mentors?
 3 min
- Reading: Get to Know Your Classmates
 8 min
- Reading: Frequently Asked Questions
 11 min

Review

- Reading: Lecture Slides 20 min
- **Quiz:** Introduction 5 questions

Model and Cost Function

- Video: Model
 Representation
 8 min
- Reading: Model Representation

<u>°=</u>

Inverse and Transpose

The **inverse** of a matrix A is denoted A^{-1} . Multiplying by the inverse results in the identity matrix.

A non square matrix does not have an inverse matrix. We can compute inverses of matrices in octave with the pinv(A) function and in Matlab with the inv(A) function. Matrices that don't have an inverse are singular or degenerate.

The **transposition** of a matrix is like rotating the matrix 90° in clockwise direction and then reversing it. We can compute transposition of matrices in matlab with the transpose(A) function or A':

$$A = egin{bmatrix} a & b \ c & d \ e & f \end{bmatrix}$$

$$A^T = \left[egin{array}{ccc} a & c & e \ b & d & f \end{array}
ight]$$

In other words:

$$A_{ij} = A_{ji}^T$$

```
1 % Initialize matrix A
2 A = [1,2,0;0,5,6;7,0,9]
3
4 % Transpose A
5 A_trans = A'
6
7 % Take the inverse of A
8 A_inv = inv(A)
9
10 % What is A^(-1)*A?
11 A_invA = inv(A)*A
Reset

Reset
```

✓ Complete

Go to next item

