ABES Institute of Technology, Ghaziabad

Subject Code: BAS103

Subject Name: Engineering Mathematics-I

Year - 1st, Branch-All

3rd ASSIGNMENT (ODD SEMESTER 2024-25)

[Time: 1 Hours] [Total Marks: 10]

COURSE OUTCOMES

C	CO	Statements
	1	Understand the concept of complex matrices, Eigen values, Eigen vectors and apply the
		concept of rank to evaluate linear simultaneous equations.

(SET-A)

SECTION-A

Q.1	Attempt one Questions. (1×1=1)	CO
a.	Show that the matrix A is Hermitian where $A = \begin{bmatrix} 2 & 3+2i & -4 \\ 3-2i & 5 & 6i \\ -4 & -6i & 3 \end{bmatrix}$.	1
b.	Show that the matrix $\begin{bmatrix} \alpha + i\gamma & -\beta + i\delta \\ \beta + i\delta & \alpha - i\gamma \end{bmatrix}$ is unitary if $\alpha^2 + \beta^2 + \gamma^2 + \delta^2 = 1$.	1

SECTION-B

Q.2	Attempt two Questions. (2x3=6)	CO	
a.	If $A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$, <i>calculate</i> A^{-1} & A^{-2} by using Cayley-Hamilton Theorem.	1	
b.	Find eigen value and eigen vector for the matrix $A = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$.		
c.	Express $A = \begin{bmatrix} i & 2-3i & 4+5i \\ 6+i & 0 & 4-5i \\ -i & 2-i & 2+i \end{bmatrix}$ as sum of a Hermitian & Skew-Hermitian matrices.	1	

SECTION-C

Q.3	Attempt one Questions.	(1x3=3)	CO
a.	Prove that the system of linear equations $-2x + y + z = a$, $x - 2y + z = b$, $x + y - 2z = c$ have no solution unless $a + b + c = 0$.		1
b.	Solve the equations using matrix method: $ x_1 + 3x_2 + 2 x_3 = 0 $ $ 2x_1 - x_2 + 3 x_3 = 0 $ $ 3x_1 - 5x_2 + 4 x_3 = 0 $ $ x_1 + 17 x_2 + 4 x_3 = 0 $		1

SECTION-A

Q.1	Attempt one Questions. (1×1=1)	co
a.	Show that the matrix iA is Skew-Hermitian where $A = \begin{bmatrix} 2 & 3+2i & -4 \\ 3-2i & 5 & 6i \\ -4 & -6i & 3 \end{bmatrix}$.	1
b.	Show that matrix A is unitary where $A = \begin{bmatrix} \frac{1+i}{2} & \frac{-1+i}{2} \\ \frac{1+i}{2} & \frac{1-i}{2} \end{bmatrix}$.	1

SECTION-B

Q.2	Attempt two Questions. (2x3=6)	CO
a.	If $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix}$, then <i>express</i> the polynomial $B = A^8 - 11A^7 - 4A^6 + A^5 + A^4 - 11A^3 - 3A^2 + 2A + I$ as a quadratic polynomial in A. Hence <i>find</i> the value of B by Cayley-Hamilton theorem.	1
b.	Find eigen values and eigen vectors of the Matrix $A = \begin{bmatrix} 3 & 10 & 5 \\ -2 & -3 & -4 \\ 3 & 5 & 7 \end{bmatrix}$.	1
c.	Express $A = \begin{bmatrix} 1+i & 2 & 5-5i \\ 2i & 2+i & 4+2i \\ -1+i & -4 & 7 \end{bmatrix}$ as sum of a Hermitian & Skew-Hermitian matrices.	1

SECTION-C

Q.3	Attempt one Questions. (1x3=3)	CO
a.	Solve the system of linear equations $4x_1 + 3x_2 - x_3 = 0$ $3x_1 + 4x_2 + x_3 = 0$ $x_1 - x_2 - 2x_3 = 0$	1
b.	$5x_1 + x_2 - 4x_3 = 0$ Prove that the system of linear equations $3x + 4y + 5z = a, 4x + 5y + 6z = b, 5x + 6y + 7z = c$ will have no solution unless $2b = a + c$.	1