				-1-	$\frac{1+r_5-t_1)}{t_1)^2}$		$\frac{+2k^2t_1}{1)^2}$
$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{2ik}{t_1 + 2k^2t_1}$	$-\frac{i\sqrt{2}}{(t_1+2k^2t_1)^2}$	0	$\frac{-4k^4(r_1+r_5)+2k^2t_1}{(t_1+2k^2t_1)^2}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	$\frac{-2 k^2 (r_1 + r_5) + t_1}{(t_1 + 2 k^2 t_1)^2}$	0	$\frac{i\sqrt{2}k(2k^2(r_1+r_5)\cdot t_1)}{(t_1+2k^2t_1)^2}$
$\sigma_{1^-}^{\#1}{}_{\alpha}$	0	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	0	$-\frac{2ik}{t_1+2k^2t_1}$
$\tau_1^{\#1}_{+}\alpha\beta$	$\frac{i \sqrt{2} k(t_1-2t_2)}{(1+k^2)(3t_1t_2+2k^2(2r_1+r_5)(t_1+t_2))}$	$\frac{i k (6 k^2 (2 r_1 + r_5) + t_1 + 4 t_2)}{(1 + k^2)^2 (3 t_1 t_2 + 2 k^2 (2 r_1 + r_5) (t_1 + t_2))}$	$\frac{k^2 \left(6 k^2 (2 r_1 + r_5) + t_1 + 4 t_2\right)}{\left(1 + k^2\right)^2 (3 t_1 t_2 + 2 k^2 (2 r_1 + r_5) (t_1 + t_2)\right)}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha\beta}$	$\frac{\sqrt{2} (t_1 - 2t_2)}{(1 + k^2) (3t_1t_2 + 2k^2 (2r_1 + r_5)(t_1 + t_2))}$	$\frac{6 k^2 (2 r_1 + r_5) + t_1 + 4 t_2}{(1 + k^2)^2 (3 t_1 t_2 + 2 k^2 (2 r_1 + r_5) (t_1 + t_2))}$	$-\frac{i k (6 k^2 (2 r_1 + r_5) + t_1 + 4 t_2)}{(1 + k^2)^2 (3 t_1 t_2 + 2 k^2 (2 r_1 + r_5) (t_1 + t_2))}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	$\frac{2(t_1+t_2)}{3t_1t_2+2k^2(2r_1+r_5)(t_1+t_2)}$	$\frac{\sqrt{2} (t_1 - 2t_2)}{(1 + k^2) (3t_1 t_2 + 2k^2 (2r_1 + r_5) (t_1 + t_2))}$	$= \frac{i\sqrt{2}k(t_1-2t_2)}{(1+k^2)(3t_1t_2+2k^2(2t_1+t_5)(t_1+t_2))}$	0	0	0	0
	$r_1^{\#1} + \alpha \beta$	$r_1^{#2} + \alpha \beta$	$^{*1}_{1}$ $+^{\alpha\beta}_{1}$	$\sigma_{1}^{\#1} +^{\alpha}$	$\sigma_{1}^{\#2} +^{\alpha}$	$\tau_{1}^{\#1} + ^{lpha}$	$\tau_1^{\#2} + \alpha$

	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2^{+}\alpha\beta}^{\#1}$	$\omega_{2^{-}lphaeta\chi}^{\#1}$
$\omega_{2}^{\#1}\dagger^{lphaeta}$	<u>t</u> 1 2	$-\frac{ikt_1}{\sqrt{2}}$	0
$f_{2+}^{#1} \dagger^{\alpha\beta}$	$\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	0
$\omega_2^{\#1} \dagger^{lphaeta\chi}$	0	0	$k^2 r_1 + \frac{t_1}{2}$

_	$\sigma_{0}^{\#1}$	$ au_0^{\#1}$	$\tau_{0}^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0}^{\#1}$ †	$-\frac{1}{(1+2k^2)^2t_1}$	$\frac{i\sqrt{2} k}{(1+2k^2)^2 t_1}$	0	0
$ au_{0}^{\#1}$ †	$-\frac{i \sqrt{2} k}{(1+2k^2)^2 t_1}$	$-\frac{2k^2}{(1+2k^2)^2t_1}$	0	0
$\tau_{0}^{\#2}$ †	0	0	0	0
$\sigma_0^{\#1}$ †	0	0	0	$\frac{1}{t_2}$

Source constraints			
SO(3) irreps			
$\tau_{0^{+}}^{\#2} == 0$	1		
$\tau_{0^{+}}^{\#1} - 2 \bar{\imath} k \sigma_{0^{+}}^{\#1} == 0$	1		
$\tau_{1}^{\#2\alpha} + 2 \bar{i} k \sigma_{1}^{\#2\alpha} == 0$	3		
$\tau_{1}^{\#1\alpha} == 0$	3		
$ \tau_{1+}^{\#1\alpha\beta} + i k \sigma_{1+}^{\#2\alpha\beta} == 0 $	3		
$\tau_{2+}^{\#1\alpha\beta} - 2\bar{l}k\sigma_{2+}^{\#1\alpha\beta} == 0$	5		
Total #:			

Lagrangian density
$-t_1 \omega_i^{\alpha i} \omega_{\kappa \alpha}^{\kappa} - \frac{1}{3} t_1 \omega_i^{\kappa \lambda} \omega_{\kappa \lambda}^{i} + \frac{2}{3} t_2 \omega_i^{\kappa \lambda} \omega_{\kappa \lambda}^{i} + \frac{1}{3} t_1 \omega_{\kappa \lambda}^{i} \omega^{\kappa \lambda}_{i} +$
$\frac{1}{3} t_2 \omega_{\kappa\lambda}^{\prime} \omega^{\kappa\lambda}_{\prime} - r_5 \partial_{\iota} \omega^{\kappa\lambda}_{\kappa} \partial^{\iota} \omega_{\lambda}^{\alpha} - \frac{2}{3} r_1 \partial^{\beta} \omega^{\theta\alpha}_{\kappa} \partial_{\theta} \omega_{\alpha\beta}^{\kappa} -$
$\frac{2}{3} r_1 \partial_{\theta} \omega_{\alpha\beta}^{\ \ \kappa} \partial_{\kappa} \omega^{\alpha\beta\theta} + \frac{2}{3} r_1 \partial_{\theta} \omega_{\alpha\beta}^{\ \ \kappa} \partial_{\kappa} \omega^{\theta\alpha\beta} - r_5 \partial_{\alpha} \omega_{\lambda}^{\ \alpha}_{\ \ \theta} \partial_{\kappa} \omega^{\theta\kappa\lambda} +$
$r_5 \partial_\theta \omega_{\lambda \alpha}^{\alpha} \partial_\kappa \omega^{\theta \kappa \lambda} - r_5 \partial_\alpha \omega_{\lambda \theta}^{\alpha} \partial_\kappa \omega^{\kappa \lambda \theta} + 2 r_5 \partial_\theta \omega_{\lambda \alpha}^{\alpha} \partial_\kappa \omega^{\kappa \lambda \theta} -$
$\frac{1}{3} t_1 \partial^{\alpha} f_{\theta \kappa} \partial^{\kappa} f_{\alpha}^{\theta} + \frac{1}{6} t_2 \partial^{\alpha} f_{\theta \kappa} \partial^{\kappa} f_{\alpha}^{\theta} - \frac{2}{3} t_1 \partial^{\alpha} f_{\kappa \theta} \partial^{\kappa} f_{\alpha}^{\theta} -$
$\frac{1}{6}t_2 \partial^{\alpha} f_{\kappa\theta} \partial^{\kappa} f_{\alpha}^{\theta} - \frac{1}{3}t_1 \partial^{\alpha} f_{\kappa}^{\lambda} \partial^{\kappa} f_{\alpha\lambda} + \frac{1}{6}t_2 \partial^{\alpha} f_{\kappa}^{\lambda} \partial^{\kappa} f_{\alpha\lambda} + t_1 \omega_{\kappa\alpha}^{\alpha} \partial^{\kappa} f_{\alpha}^{\prime} + t_1 \omega_{\kappa\alpha}^{\alpha} \partial^{\kappa} f_{\alpha}^{\prime} + t_2 \partial^{\alpha} f_{\kappa}^{\lambda} \partial^{\kappa} f_{\alpha\lambda}^{\alpha} + t_2 \partial^{\alpha} f_{\kappa}^{\lambda} \partial^{\kappa} f_{\alpha\lambda}^{\alpha} + t_3 \omega_{\kappa\alpha}^{\alpha} \partial^{\kappa} f_{\alpha\lambda}^{\prime} + t_3 \omega_{\kappa\alpha}^{\alpha} \partial^{\kappa} f_{\alpha\lambda}^{\lambda} + t_3 \omega_{\alpha}^{\alpha} \partial^{\kappa} f_{\alpha\lambda}^{\lambda} + t_3 \omega_{\alpha}^{\lambda} \partial^{\kappa} f_{\alpha\lambda}^$

$$\begin{split} &\frac{1}{6}\,t_2\,\partial^\alpha f_{\,\kappa\theta}\,\partial^\kappa f_{\,\alpha}^{\ \theta} - \frac{1}{3}\,t_1\,\partial^\alpha f^\lambda_{\ \kappa}\,\partial^\kappa f_{\,\alpha\lambda} + \frac{1}{6}\,t_2\,\partial^\alpha f^\lambda_{\ \kappa}\,\partial^\kappa f_{\,\alpha\lambda} + t_1\,\,\omega_{\kappa\alpha}^{\ \alpha}\,\partial^\kappa f^\prime_{\ I} + \\ &t_1\,\,\omega_{\kappa\lambda}^{\ \lambda}\,\partial^\kappa f^\prime_{\ I} + 2\,t_1\,\partial^\alpha f_{\,\kappa\alpha}\,\partial^\kappa f^\prime_{\ I} - t_1\,\partial_\kappa f^\lambda_{\ \lambda}\,\partial^\kappa f^\prime_{\ I} + \frac{1}{3}\,t_1\,\,\omega_{I\theta\kappa}\,\partial^\kappa f^{I\theta} + \\ &\frac{1}{3}\,t_2\,\,\omega_{I\theta\kappa}\,\partial^\kappa f^{I\theta} + \frac{4}{3}\,t_1\,\,\omega_{I\kappa\theta}\,\partial^\kappa f^{I\theta} - \frac{2}{3}\,t_2\,\,\omega_{I\kappa\theta}\,\partial^\kappa f^{I\theta} - \frac{1}{3}\,t_1\,\,\omega_{\theta\iota\kappa}\,\partial^\kappa f^{I\theta} - \\ &\frac{1}{3}\,t_2\,\,\omega_{\theta\iota\kappa}\,\partial^\kappa f^{I\theta} + \frac{2}{3}\,t_1\,\,\omega_{\theta\kappa I}\,\partial^\kappa f^{I\theta} + \frac{2}{3}\,t_2\,\,\omega_{\theta\kappa I}\,\partial^\kappa f^{I\theta} - t_1\,\,\omega_{I\alpha}^{\ \alpha}\,\partial^\kappa f^\prime_{\ \kappa} - \\ &t_1\,\,\omega_{I\lambda}^{\ \lambda}\,\partial^\kappa f^\prime_{\ \kappa} + \frac{1}{3}\,t_1\,\partial^\alpha f^\lambda_{\ \kappa}\,\partial^\kappa f_{\lambda\alpha} - \frac{1}{6}\,t_2\,\partial^\alpha f^\lambda_{\ \kappa}\,\partial^\kappa f_{\lambda\alpha} + \frac{1}{3}\,t_1\,\partial_\kappa f^\lambda_{\ \theta}\,\partial^\kappa f_\lambda^{\ \theta} - \\ &\frac{1}{6}\,t_2\,\partial_\kappa f^\lambda_{\ \theta}\,\partial^\kappa f_\lambda^{\ \theta} + \frac{2}{3}\,t_1\,\partial_\kappa f^\lambda_{\ \theta}\,\partial^\kappa f_\lambda^{\ \theta} + \frac{1}{6}\,t_2\,\partial_\kappa f^\lambda_{\ \theta}\,\partial^\kappa f_\lambda^{\ \theta} - t_1\,\partial^\alpha f^\lambda_{\ \alpha}\,\partial^\kappa f_{\lambda\kappa} + \\ &\frac{1}{6}\,t_2\,\partial_\kappa f^\lambda_{\ \theta}\,\partial^\kappa f_\lambda^{\ \theta} - t_1\,\partial^\alpha f^\lambda_{\ \alpha}\,\partial^\kappa f_{\lambda\kappa} + \frac{1}{6}\,t_2\,\partial_\kappa f^\lambda_{\ \theta}\,\partial^\kappa f_\lambda^{\ \theta} - t_1\,\partial^\alpha f^\lambda_{\ \alpha}\,\partial^\kappa f_{\lambda\kappa} + \\ &\frac{1}{6}\,t_2\,\partial_\kappa f^\lambda_{\ \theta}\,\partial^\kappa f_\lambda^{\ \theta} - t_1\,\partial^\alpha f^\lambda_{\ \alpha}\,\partial^\kappa f_{\lambda\kappa} + \\ &\frac{1}{6}\,t_2\,\partial_\kappa f^\lambda_{\ \theta}\,\partial^\kappa f_\lambda^{\ \theta} - t_1\,\partial^\alpha f^\lambda_{\ \alpha}\,\partial^\kappa f_{\lambda\kappa} + \\ &\frac{1}{6}\,t_2\,\partial_\kappa f^\lambda_{\ \theta}\,\partial^\kappa f_\lambda^{\ \theta} - t_1\,\partial^\alpha f^\lambda_{\ \alpha}\,\partial^\kappa f_{\lambda\kappa} + \\ &\frac{1}{6}\,t_2\,\partial_\kappa f^\lambda_{\ \theta}\,\partial^\kappa f_\lambda^{\ \theta} - t_1\,\partial^\alpha f^\lambda_{\ \alpha}\,\partial^\kappa f_\lambda^{\ \phi} - t_1\,\partial^\alpha f^\lambda_{\ \alpha}\,\partial^\kappa f_\lambda^{\ \kappa} + \\ &\frac{1}{6}\,t_2\,\partial_\kappa f^\lambda_{\ \theta}\,\partial^\kappa f_\lambda^{\ \theta} - t_1\,\partial^\alpha f^\lambda_{\ \alpha}\,\partial^\kappa f_\lambda^{\ \kappa} + \\ &\frac{1}{6}\,t_2\,\partial_\kappa f^\lambda_{\ \theta}\,\partial^\kappa f_\lambda^{\ \theta} - t_1\,\partial^\alpha f^\lambda_{\ \alpha}\,\partial^\kappa f_\lambda^{\ \kappa} + \\ &\frac{1}{6}\,t_2\,\partial_\kappa f^\lambda_{\ \theta}\,\partial^\kappa f_\lambda^{\ \theta} - t_1\,\partial^\alpha f^\lambda_{\ \alpha}\,\partial^\kappa f_\lambda^{\ \kappa} + \\ &\frac{1}{6}\,t_2\,\partial_\kappa f^\lambda_{\ \theta}\,\partial^\kappa f_\lambda^{\ \theta} - t_1\,\partial^\alpha f^\lambda_{\ \alpha}\,\partial^\kappa f_\lambda^{\ \kappa} + \\ &\frac{1}{6}\,t_2\,\partial_\kappa f^\lambda_{\ \theta}\,\partial^\kappa f_\lambda^{\ \theta} - t_1\,\partial^\alpha f^\lambda_{\ \alpha}\,\partial^\kappa f_\lambda^{\ \kappa} + \\ &\frac{1}{6}\,t_2\,\partial^\alpha f^\lambda_{\ \theta}\,\partial^\kappa f_\lambda^{\ \theta} - t_1\,\partial^\alpha f^\lambda_{\$$

 $\frac{2}{3} r_1 \partial_{\kappa} \omega^{\alpha\beta\theta} \partial^{\kappa} \omega_{\alpha\beta\theta} - \frac{2}{3} r_1 \partial_{\kappa} \omega^{\theta\alpha\beta} \partial^{\kappa} \omega_{\alpha\beta\theta} + \frac{2}{3} r_1 \partial^{\beta} \omega_{i}^{\alpha\lambda} \partial_{\lambda} \omega_{\alpha\beta}' - \frac{8}{3} r_1 \partial^{\beta} \omega_{i}^{\lambda\alpha} \partial_{\lambda} \omega_{\alpha\beta}' + r_5 \partial_{\alpha} \omega_{\lambda}^{\alpha}{}_{\theta} \partial^{\lambda} \omega^{\theta\kappa}{}_{\kappa} - r_5 \partial_{\theta} \omega_{\lambda}^{\alpha}{}_{\alpha} \partial^{\lambda} \omega^{\theta\kappa}{}_{\kappa}$

Added source term: $f^{\alpha\beta} \tau_{\alpha\beta} + \omega^{\alpha\beta\chi} \sigma_{\alpha\beta\chi}$

. .							
$f_{1}^{\#2}$	0	0	0	$\bar{l} k t_1$	0	0	0
$f_{1^{-}}^{\#1}$	0	0	0	0	0	0	0
$\omega_{1}^{\#2} $	0	0	0	$\frac{t_1}{\sqrt{2}}$	0	0	0
$\omega_{1^{-}\alpha}^{\#1}$	0	0	0	$k^2 \left(r_1 + r_5 \right) - \frac{t_1}{2}$	$\frac{t_1}{\sqrt{2}}$	0	$-ikt_1$
$f_{1}^{\#1}$	$-\frac{ik(t_1-2t_2)}{3\sqrt{2}}$	$\frac{1}{3}\overline{l}k(t_1+t_2)$	$\frac{1}{3} k^2 (t_1 + t_2)$	0	0	0	0
$\omega_1^{\#2}$	$-\frac{t_1-2t_2}{3\sqrt{2}}$	$\frac{t_1+t_2}{3}$	$-\frac{1}{3}\bar{l}k(t_1+t_2)\bigg \frac{1}{3}k^2(t_1+t_2)$	0	0	0	0
$\omega_{1}^{\#1}_{\alpha\beta}$	$(6k^2)$	$-\frac{t_1-2t_2}{3\sqrt{2}}$	$\frac{ik(t_1-2t_2)}{3\sqrt{2}}$	0	0	0	0
	$\omega_1^{\#1} + ^{lphaeta}$	$\omega_{1}^{#2} + \alpha \beta$	$f_{1}^{\#1} + ^{lphaeta}$	$\omega_{1}^{\#1} +^{\alpha}$	$\omega_{1}^{\#2} +^{lpha}$	$f_{1^-}^{\#1} \dagger^\alpha$	$f_1^{\#2} +^{\alpha}$

Massive particle

Massive particle				
Pole residue:	$\frac{-3t_1t_2(t_1+t_2)+6r_1(t_1^2+2t_2^2)+3r_5(t_1^2+2t_2^2)}{(2r_1+r_5)(t_1+t_2)(-3t_1t_2+4r_1(t_1+t_2)+2r_5(t_1+t_2))} > 0$			
Polarisations:	3			
Square mass:	$-\frac{3t_1t_2}{2(2r_1+r_5)(t_1+t_2)} > 0$			
Spin:	1			
Parity:	Even			

Unitarity conditions $r_1 < 0 \&\& r_5 > -2 r_1 \&\& t_1 > 0 \&\& -t_1 < t_2 < 0$

(No massless particles)