PRACTICE EXAM

- (1) List all the elements in the group D_4 as permutations in S_4 .
- (2) Let $\sigma = (1, 2, 3, 4, 5, 6) \in S_7$.
 - (a) Compute σ^{103} .
 - (b) Write σ^{14} as a product of disjoint cylces.
- (3) Let $H = \{ \sigma \in S_5 \mid \sigma(3) = 3 \}$. Show that H is a subgroup of S_5 ; moreover, show that H is isomorphic to S_4 .
- (4) Let G be a group and let $H \leq G$ be a subgroup of G.
 - (a) Suppose (G:H)=2. Prove gH=Hg for every $g\in G$.
 - (b) Prove or disprove by an example: suppose (G:H)=3, then every right coset is a left coset.
- (5) Let G be a group. Show that G is isomorphic to a subgroup of S_G .
- (6) Let $K \leq H \leq G$ and assume that (G:K) is finite. Prove that (G:H) and (H:K) are finite.