HYPOTHESIS TESTING-3 ZTest

Burger Company

A company selling burgers claims that its burgers weigh 200 gms on an average, with std. of 5 gms.

An unsatisfied hungry customer wants to disprove this claim.

Ho:
$$\mu = 200$$

Ha: $\mu < 200$ $\mu > 200$
 $\mu = 200$

Al chip company

Google - TPV

The company wants to claim that it is better than GPU.

The training time for ResNet is 15 minutes on the GPU.

Ho : Training time
$$\mu = 15$$

TPU

Machine Learning Deployment

A ML model in deployment processes 1200 images/sec on average with Std. of 10 images/sec.

We want to show that the new model can process images at a higher rate.

Ho Rate of processing
$$\mu = 1200$$

Ta: $\mu > 1200$

Right tailed test.

Height from your state.

The average height of Indians is 65 inches, with std, of 2.5 inches.

You want to show that the height of people in your state is not 65

Ho
$$\mu = 65$$

Ta: $\mu < 65$
 $\mu = 65$
 $\mu = 65$

Two tailed lest.

Summary

Burgulompenny Ho: N=200 Ha: M<200 ML Model Ho: 1= 1200 Ha: M> 1200 Height Ho: N=65 Ha: M=65

G left failed TesV I Right tailed test y Two talled test.

Hypothesis Testing Framework

- 1) Setup the Null and Alternate Hypothesis
- 2) Choose the right test statistic
- 3) Left tailed vs Right tailed vs Two-Tailed
- 4) Compute P-value
- 5) If P- value is less than , then reject the null hypothesis.

Aug height of people = 65 inches $\sigma = 2.5$ inches $\mu = 65$, $SE = \frac{2.5}{\sqrt{50}}$ \leq individuals $\mu = 65$, $\mathcal{X} = \frac{2.5}{15}$ Let 'm' be my sampli mian
Is 'm' a random variable -Dishibution - Granssian Dishibution F(m) = 65

Ketail Fliphour $\mu = 1800$ $\sigma = 100$ 3 hampoo 2) M 2 Apply 5 Stores (1) WT Apply 50 Stres Aug Saler = 1900 Aug Sales = 1850 Ho: $\mu = 1800$ (marketing had no effect) Ha: $\mu > 1800$ (marketing had an affect)

Right failed test statistic: "m" Sample mean Dishibution: Gaustian E[m]= 1800 1800 P=P m 2 1850 | Ho ishue] p = 0.0002 $\alpha = 0.05$ 100/50 Reject Ho Zstat Zstatistic

teststatistic im Samplemean Dishibition. (nouman E[m] = 1800 SE = 100/5 1860 1900

* 95% Confident 0.05 = 2 Significan. Réject Ho P < 2 0.0022 Reject Ho P < 2 0.012# 99% Confidence m1 P = 0.6002 N = 0.01Mashing hadar
PLX Reject to p > x Fail to Reject p = 0.012

1% Chances 4 = 99% lonfiden i -> 5% & chances 95% (1/20) Wrong Judgenn

$$\chi = |800 + 1.64 \times 100| = 1823$$

$$\chi = |41 \times 25|$$

$$\chi = |41 \times 25|$$

$$\chi = |800 + 2.32| \times 100| = 1832.89$$

$$\chi = |800 + 2.32| \times 100| = 1832.89$$

$$\chi = |800 + 2.32| \times 100| = 1832.89$$

$$\chi = |800 + 2.32| \times 100| = 1832.89$$

$$\chi = |800 + 1.64 \times 100| = 1823$$

$$\chi = |41 \times 25|$$

$$\chi = |$$

Zq= = 1.64

98% - Reject Mo 99% - Fail to Reject Ho. N= 1800 008 2100

E(m)

(1) Romanial
(2) Normal

3 Porsson 9 Emponentia

$$0.025$$
 $2 = 0.05$
 $2 = 0.025$
 $2 = 0.025$
 $2 = 0.025$