Minitab Commands:

Statistics

Descriptive Statistics:

Stat > Basic Statistics > Display Descriptive Statistics

Frequency and Cumulative Frequency:

Stat > Tables > Tally Individual Variables

Graphs

Pie Chart:

Graph > Pie Chart

Bar Chart:

Graph > Bar Chart

Histogram:

Graph > Histogram

Stem and Leaf plot:

Graph > Stem-and-Leaf

Boxplot:

Graph > Boxplot

Scatterplot:

Graph > Scatterplot

Normal Probability Plot:

Graph > Probability Plot

Hypothesis Test and Confidence Interval for parameter μ

Single population mean, μ , known σ :

Stat > Basic Statistics > 1-Sample Z

Single population mean, μ , unknown σ :

Stat > Basic Statistics > 1-Sample t

Two independent population means, μ_1 - μ_2 :

Stat > Basic Statistics > 2-Sample t

Two dependent population means, μ_d :

Stat > Basic Statistics > Paired t

Nonparametric Tests and Confidence Intervals

Sign Test for median:

Stat > Nonparametrics > 1- Sample Sign

Two Independent Samples Test: Wilcoxon Rank-Sum Test (Mann-Whitney U TEST)

Stat > Nonparametrics > Mann-Whitney

Two Dependent Samples Test: Wilcoxon Signed-Rank Test

Stat > Nonparametrics > 1-Sample Wilcoxon

Two dependent population means, μ_d:

Stat > Basic Statistics > Paired t

Hypothesis Test and Confidence Interval for parameter σ

Single population standard deviation, σ:

Stat > Basic Statistics > 1 Variance

Two population standard deviations, (H_0 : $\sigma_1 = \sigma_2$):

Stat > Basic Statistics > 2 Variances

More than Two population standard deviations, (H₀: $\sigma_1 = \sigma_2 = ... = \sigma_t$): Brown-Forsyth-Levene (BFL)

Stat > ANOVA > Test for Equal Variances

ANOVA

One Factor ANOVA:

Stat > ANOVA > One-Way

Nonparametric ANOVA: The Kruskal-Wallis Test:

Stat > ANOVA > Kruskal-Wallis

Two Factor ANOVA:

Stat > ANOVA > Two-Way

Hypothesis Test and Confidence Interval for parameter π

Single population proportion, π :

Stat > Basic Statistics > 1 Proportion

Two population proportions, π_1 - π_2 :

Stat > Basic Statistics > 2 Proportions

Linear Regression: Stat > Regression > Regression