Seminar 10 Formule integrale

1 Formula Green-Riemann

Fie $(K, \partial K)$ un compact cu bord orientat inclus în \mathbb{R}^2 și considerăm o 1-formă diferențială de clasă \mathcal{C}^1 pe o vecinătate a lui K. Atunci are loc *formula Green-Riemann*:

$$\int_{\partial K} P dx + Q dy = \iint_K \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy.$$

O consecință imediată este o formulă pentru arie:

$$A(K) = \frac{1}{2} \int_{\partial K} x dy - y dx.$$

2 Formula Gauss-Ostrogradski

Considerăm K o mulțime compactă, cu bord orientat după normala exterioară. Atunci, pentru orice 2-formă diferențială:

$$\omega = Pdy \wedge dz + Qdz \wedge dx + Rdx \wedge dy$$

de clasă C^1 pe o vecinătate a lui K are loc egalitatea:

$$\int_{\partial K} P dy \wedge dz + Q dz \wedge dx + R dx \wedge dy = \iiint_{K} \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} dx dy dz.$$

În notație vectorială, dacă $\vec{V} = P\vec{i} + Q\vec{j} + R\vec{k}$ este cîmpul vectorial asociat 2-formei diferențiale ω , atunci formula de mai sus poate fi scrisă:

$$\int_{\partial K} \vec{V} \cdot \vec{n} d\sigma = \iiint_{K} div \vec{V} dx dy dz,$$

unde \vec{n} este normala exterioară la ∂K . În membrul stîng avem fluxul cîmpului \vec{V} prin suprafața ∂K , motiv pentru care formula Gauss-Ostrogradski se mai numește *formula flux-divergență*.

3 Formula lui Stokes

Fie Σ o suprafață cu bord, orientată și fie:

$$\alpha = Pdx + Qdy + Rdz$$

o 1-formă diferențială de clasă \mathcal{C}^1 pe o vecinătate a lui Σ . Atunci are loc formula:

$$\int_{\partial \Sigma} P dx + Q dy + R dz = \int_{\sigma} \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} \right) dy \wedge dz + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} \right) dz \wedge dx + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx \wedge dy.$$

În notație vectorială, dacă $\vec{V} = P\vec{i} + Q\vec{j} + R\vec{k}$ este cîmpul vectorial asociat formei diferențiale α , atunci formula lui Stokes se scrie:

$$\int_{\partial \Sigma} \vec{\mathbf{V}} \cdot d\vec{\mathbf{r}} = \int_{\Sigma} (\nabla \times \vec{\mathbf{V}}) \cdot \vec{\mathbf{n}} d\sigma,$$

unde $\nabla \times \vec{V} = \text{rot} \vec{V}$ se numește *rotorul* cîmpului vectorial \vec{V} , calculat cu ajutorul produsului vectorial.

4 Exerciții

- 1. Să se calculeze direct și folosind formula Green-Riemann integrala curbilinie $\int_{\Gamma} \alpha$ în următoarele cazuri:
- (a) $\alpha = y^2 dx + x dy$, unde Γ este pătratul cu vîrfurile A(0,0), B(2,0), C(2,2), D(0,2);
- (b) $\alpha = y dx + x^2 dy$, unde Γ este cercul cu centrul în origine și rază 2;
- (c) $\alpha = y dx x dy$, unde Γ este elipsa de semiaxe α și β și de centru δ .
 - 2. Să se calculeze integralele, direct, apoi aplicînd formula Green-Riemann:

(a)
$$\int_{\Gamma} e^{\frac{x^2}{a^2} + \frac{y^2}{b^2}} (-y dx + x dy), \text{ unde } \Gamma = \{(x, y) \mid \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\};$$

(b) $\int_{\Gamma} xy dx + \frac{x^2}{2} dy$, unde Γ este obținută prin:

$$\Gamma = \{x^2 + y^2 = 1, x \le 0 \le y\} \cup \{x + y = -1, x, y \le 0\}.$$

- 3. Să se calculeze circulația cîmpului vectorial \vec{V} pe curba Γ în cazurile:
- (a) $\vec{V} = y^2 \vec{i} + xy \vec{j}$, unde:

$$\Gamma = \{x^2 + y^2 = 1, y > 0\} \cup \{y = x^2 - 1, y \le 0\};$$

- (b) $\vec{V} = e^x \cos y \vec{i} e^x \sin y \vec{j}$, unde Γ este o curbă arbitrară din semiplanul superior, ce unește punctele A(1,0), B(-1,0), cu sensul de la A către B.
 - 4. Să se calculeze integrala de suprafață $\int_{\Sigma} \omega$ în următoarele cazuri:
- (a) $\omega = x^2 dy \wedge dz 2xy dz \wedge dx + z^3 dx \wedge dy$, iar mulțimea $\Sigma = \{x^2 + y^2 + z^2 = 9\}$;
- (b) $\omega = yzdy \wedge dz (x+z)dz \wedge dx + (x^2 + y^2 + 3z)dx \wedge dy$, iar multimea:

$$\Sigma = \{x^2 + y^2 = 4 - 2z, z \ge 1\} \cup \{x^2 + y^2 \le 4 - 2z, z = 1\};$$

(c) $\omega = x(z+3)$ dy \wedge dz + yzd $z \wedge$ d $x - (z+z^2)$ d $x \wedge$ dy, iar mulțimea:

$$\Sigma = \{x^2 + y^2 + z^2 = 1, z \ge 0\}.$$

- 5. Să se calculeze, folosind formula lui Stokes, integrala curbilinie $\int_{\Gamma} \alpha$, în următoarele cazuri:
- (a) $\alpha = (y-z)dx + (z-x)dy + (x-y)dz$, iar multimea $\Gamma : z = x^2 + y^2$, z = 1;
- (b) $\alpha = y dx + z dy + x dz$, iar mulțimea:

$$\Gamma: x^2 + y^2 + z^2 = 1$$
, $x + y + z = 0$.

6. Să se calculeze circulația cîmpului vectorial:

$$\vec{V} = (y^2 + z^2)\vec{i} + (x^2 + z^2)\vec{j} + (x^2 + y^2)\vec{k},$$

pe curba $\Gamma : x^2 + y^2 + z^2 = R^2$, ax + by + cz = 0.