ISUP 2020 Final Exam, July 29th.

Machine Learning for Predictive Analytics in Business (CCMVI2085U)

Preamble

```
In [1]: v # Import Libraries
   import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt

# Set random seed to 73 corresponding to exam no.: S133708
   rs = 73
```

Section 1

1) Load the dataset into your Jupyter notebook and name it df

```
In [2]: df = pd.read_csv("CCMVI2085U_bike_sharing_rental.csv", header = 0)
df.head()
```

Out[2]:

	dteday	holiday	weekday	workingday	weathersit	temp	hum	windspeed	registered	casual
0	09/02/2012	0	4	1	1	0.265000	0.562083	0.194037	3667	163
1	27/12/2012	0	4	1	2	0.254167	0.652917	0.350133	1867	247
2	09/06/2011	0	4	1	2	0.808333	0.568333	0.149883	3352	563
3	27/02/2012	0	1	1	1	0.366667	0.490833	0.268033	4069	253
4	27/05/2012	0	0	0	1	0.690000	0.697083	0.215171	3308	3283

2) Report the dimension of df

```
In [3]: | df.shape
Out[3]: (500, 10)
```

The dataset consists of 500 observations and 10 variables (of which the first variable is the date)

3) Show the last 12 observations/rows of df

In [4]: df.tail(12)

Out[4]:

	dteday	holiday	weekday	workingday	weathersit	temp	hum	windspeed	registered	casual
488	09/08/2011	0	2	1	1	0.775000	0.570417	0.151121	3695	907
489	23/04/2011	0	6	0	2	0.460000	0.887917	0.230725	2574	1462
490	23/09/2011	0	5	1	2	0.609167	0.972500	0.078367	2137	258
491	03/10/2011	0	1	1	2	0.384167	0.760833	0.083346	3240	330
492	30/09/2011	0	5	1	1	0.564167	0.647500	0.206475	4372	830
493	09/12/2011	0	5	1	1	0.290833	0.695833	0.082717	3359	261
494	14/09/2011	0	3	1	1	0.673333	0.697083	0.167300	4138	647
495	02/07/2011	0	6	0	1	0.738333	0.444583	0.115062	2915	2204
496	16/04/2011	0	6	0	3	0.430833	0.888333	0.340808	674	121
497	28/10/2011	0	5	1	2	0.330833	0.585833	0.229479	3291	456
498	22/03/2012	0	4	1	1	0.554167	0.831250	0.117562	5537	1334
499	20/12/2012	0	4	1	2	0.330000	0.667917	0.132463	3814	314

4) Show the variable date types of df

```
In [5]:
          df.dtypes
Out[5]: dteday
                       object
        holiday
                        int64
        weekday
                        int64
        workingday
                         int64
        weathersit
                        int64
                      float64
        temp
                      float64
        hum
                      float64
        windspeed
        registered
                        int64
        casual
                        int64
        dtype: object
```

5) Summarize the numeric variables of df

The dataset consists of three continuous numeric variables: temp, hum and windspeed, as well as two discrete numeric variables: registered and casual.

Out[6]:

	temp	hum	windspeed	registered	casual
count	500.000000	500.000000	500.000000	500.000000	500.00000
mean	0.484558	0.627916	0.191074	3605.084000	810.03400
std	0.185145	0.143338	0.077243	1573.874688	671.70654
min	0.097391	0.000000	0.045404	20.000000	2.00000
25%	0.325625	0.518941	0.135580	2391.500000	280.25000
50%	0.474166	0.621666	0.183775	3664.500000	677.00000
75%	0.653541	0.731562	0.231664	4760.000000	1058.25000
max	0.861667	0.972500	0.507463	6898.000000	3410.00000

Section 2

Use the seaborn.PairGrid to draw a set of pairwise plots of all variables in df, where

- 1) Scatter plots in the upper triangle (in blue color)
- 2) Histograms on the diagonal (in gray color)
- 3) Correlation coefficients in the lower triangle

In [7]:

%matplotlib inline
import seaborn as sns

```
In [8]:
           g = sns.PairGrid(data = df.iloc[:,1:]) #excludes 'date' variable

    def corr(x, y, **kwargs):

               coef = np.corrcoef(x, y)[0][1]
                label = r'$\rho$ = ' + str(round(coef, 3))
                ax = plt.gca()
                ax.annotate(label, xy = (0.1, 0.45), size = 25, xycoords = ax.transAxes)
           g.map_lower(corr)
           g.map upper(plt.scatter, color = 'blue')
           g.map_diag(plt.hist, color = 'grey', edgecolor = 'k');
          0.6 -
               \rho = -0.101
               \rho = -0.261
                            \rho = 0.024
            3.0 -
               \rho = -0.004
                            \rho = 0.047
                                          \rho = 0.036
               \rho = -0.066
                            \rho = 0.027
                                          \rho = 0.061
                                                       \rho = -0.12
                                                                     __
               \rho = -0.037
                            \rho = -0.052
                                                                     \rho = 0.116
                                          \rho = -0.01
                                                       \rho = 0.569
```


Section 3

1) Create a dictionary and name it cc

```
In [14]:
           cc
Out[14]: {'target': array([ 163, 247, 563, 253, 3283, 775, 243, 1236, 227, 477, 1138,
                   247,
                          54,
                               665, 1488,
                                            95, 1027, 1026, 1434, 630, 137, 1077,
                                     968, 2345, 199,
                                                        515, 259,
                   833, 618, 1729,
                                                                    303, 155,
                                                                                 177,
                               713,
                                           440,
                                                  888,
                                                        775, 1582,
                                                                    991, 1448,
                                                                                 738,
                   205, 1405,
                                      86,
                                                        257,
                  1782, 620, 1100,
                                     373,
                                           532, 1023,
                                                              795,
                                                                    260,
                                                                           639,
                                                                                 676,
                         424, 1081,
                                     755,
                                             83,
                                                  106,
                                                        231,
                                                              888,
                                                                    203,
                                                                           349, 3410,
                   318,
                                     409,
                   754,
                         310,
                                           983,
                                                  968,
                                                        326,
                               123,
                                                              108, 1182, 1045, 1363,
                         244,
                               143,
                                     559,
                                           109, 834,
                                                        694,
                                                              333,
                   661,
                                                                    428, 642, 1504,
                                                         74,
                         467,
                               100,
                                     688, 1029, 1869,
                                                              149,
                   867,
                                                                    117, 2551, 1031,
                   159,
                         178,
                               331,
                                      347,
                                           767, 1005,
                                                        321,
                                                              126,
                                                                    192,
                                                                           316,
                         529,
                               955,
                                     178, 2355,
                                                  324, 2657, 1318,
                                                                    956, 1278,
                   569,
                                           150,
                                                   54,
                                                        203,
                   190, 2153,
                               472,
                                     616,
                                                              874, 1051, 1651, 2469,
                         684, 1298,
                                     762,
                                             57,
                                                  611,
                                                        692,
                                                              502, 275,
                  1140,
                                                                           337,
                                                                                 466,
                   429,
                          47,
                               486,
                                           884,
                                                  998, 3155,
                                                              909, 1060, 1383,
                                      46,
                                                                                 878,
                   841,
                         246,
                                88,
                                     632, 1038,
                                                  440, 2090,
                                                              998, 1965,
                                                                           166,
                                                                                 182,
                    92, 1246,
                                        9,
                                           130,
                                                         94,
                                                                           216,
                                                                                 196,
                               669,
                                                  449,
                                                              562, 663,
                                                              968, 2001,
                   140, 1008, 1988,
                                     284,
                                             25,
                                                  168, 2494,
                                                                           989,
                                                                                 751,
                        480, 1325,
                                     989,
                                           484,
                                                  746,
                                                        847,
                                                              532,
                                                                      47, 1263, 1935,
                   253,
                                        2,
                                                  547, 1532,
                   244,
                         109, 1192,
                                           174,
                                                              778, 1563, 413, 1433,
                   268,
                         240, 1017,
                                     438, 1249,
                                                  214,
                                                        126, 2252,
                                                                    667, 1658, 1139,
                                           305, 2132,
                   290,
                               982,
                                     315,
                                                         67,
                                                              533,
                         773,
                                                                    404,
                                                                           307,
                                                                                 204,
                         140,
                               419,
                                     701,
                                           221,
                                                  921,
                                                        188,
                                                              376,
                                                                    951, 2229, 1511,
                  1338,
                   491,
                        815, 1208, 1032,
                                           198,
                                                  935,
                                                        529,
                                                              370,
                                                                                 433,
                                                                    871,
                                                                           304,
                         769,
                               905,
                                     460, 1122,
                                                   41,
                  2708,
                                                        349,
                                                              139, 2234,
                                                                           848, 1173,
                   763, 1707,
                                88, 2006, 1259, 1058,
                                                        691,
                                                              410, 1207,
                                                                           325,
                                                                                  64,
                  1022, 470, 1026, 1467,
                                           191,
                                                         53,
                                                  614,
                                                               82,
                                                                      61,
                                                                           518, 2235,
                                           384,
                  1188, 2634, 2562,
                                                  439,
                                                        922, 2855, 1070,
                                                                                 784,
                                     435,
                                                                           834,
                  2301, 830, 1353, 1120, 1153, 2135,
                                                        644,
                                                              123, 1047, 2512,
                                                                                 288,
                   902, 599, 2806,
                                     153, 2015,
                                                  502,
                                                        787,
                                                              662,
                                                                           922,
                                                                    764,
                                                                                 653,
                  1455, 1033, 475,
                                     763, 1027, 2352,
                                                        555,
                                                              674,
                                                                    318,
                                                                           939,
                                                                                 209,
                                     333, 172, 968,
                                                                    745,
                                                                           921,
                                                                                 655,
                    74, 1417,
                               173,
                                                        664,
                                                              854,
                               836, 2589,
                                           148, 1544, 1829,
                                                              768, 1208,
                   107, 2224,
                                                                            81, 1249,
                               987,
                                     373,
                                           217,
                                                  246,
                                                        120,
                   425, 1094,
                                                              212,
                                                                   467, 1521,
                                                                                 103,
                   218, 892, 1338,
                                      78, 1807,
                                                        471,
                                                              721, 2613, 1052, 1095,
                                                  668,
                        709,
                                                        801,
                   667,
                               282,
                                     954, 1014,
                                                  734,
                                                              742,
                                                                    634, 254, 1045,
                        678,
                               676,
                                       9, 1128,
                                                  354, 1319,
                                                              254,
                                                                    710, 1050,
                  1558,
                                                                                 875,
                                     846, 819,
                                                  551, 1180,
                                                              220,
                                                                    118,
                   884, 2521,
                               686,
                                                                           603,
                                                                                 340,
                   727, 3160, 1198, 1483, 1415,
                                                  300, 1242, 1619, 2570, 724, 1070,
                   447, 879, 615, 1201,
                                                         50,
                                                              838,
                                           430,
                                                   42,
                                                                    167, 1401, 1965,
                   131, 2172,
                                38, 179, 1156,
                                                  289, 3065,
                                                              329,
                                                                    774,
                                                                           394,
                  1074, 1366, 1172, 898, 371,
                                                  307, 2454,
                                                              894,
                                                                    229, 441,
                                                                                 141,
```

```
38, 1001, 997, 1059, 439, 964, 2355, 226, 773,
      1275, 269,
      2207, 174, 952, 135, 659, 1065, 222, 449, 2230, 100, 221,
                                                            73, 2795,
       606, 377,
                   548, 695, 217, 969, 1040, 723, 480,
       255, 735, 466, 195, 907, 1462, 258, 330, 830, 261, 647,
      2204, 121, 456, 1334, 314], dtype=int64),
'data': array([[0.00000e+00, 4.00000e+00, 1.00000e+00, ..., 5.62083e-01,
       1.94037e-01, 3.66700e+03],
      [0.00000e+00, 4.00000e+00, 1.00000e+00, ..., 6.52917e-01,
       3.50133e-01, 1.86700e+03],
      [0.00000e+00, 4.00000e+00, 1.00000e+00, ..., 5.68333e-01,
       1.49883e-01, 3.35200e+03],
      [0.00000e+00, 5.00000e+00, 1.00000e+00, ..., 5.85833e-01,
       2.29479e-01, 3.29100e+03],
      [0.00000e+00, 4.00000e+00, 1.00000e+00, ..., 8.31250e-01,
       1.17562e-01, 5.53700e+03],
      [0.00000e+00, 4.00000e+00, 1.00000e+00, ..., 6.67917e-01,
       1.32463e-01, 3.81400e+03]]),
'feature name': array(['holiday', 'weekday', 'workingday', 'weathersit', 'temp', 'hum',
      'windspeed', 'registered'], dtype=object),
'target name': array(['casual'], dtype=object)}
```

2) Randomly split the data into training and test sets. The split ratio is 80:20 (i.e., 80% for training and 20% for testing). Use your allocated random seed if applicable. Name the training input feature data to x_{train} ; name the test input feature data to x_{train} ; name the training target data to x_{train} ; name the training target data to x_{train} ; name the test target data to x_{train} ; name the training target data to x_{train} ; name the test target data to x_{train} ; name the training target data to x_{train} ; name target data targe

3) Train linear regression, decision tree, random forest, neural network models using the training data and make predictions using the test data. You can either write your own functions or use third-party libraries such as sklearn to train and test your models. You can set the model hyperparameters with the values you think are appropriate and use your allocated random seed if applicable.

Note that as the target variable 'casual' is numerical with 438 unique values (using df.casual.unique().size) all models are implemented for regression.

```
In [17]: 
# Create dictionaries to save model predictions
y_pred_train = {}
y_pred_test = {}
model_list = {}
```

Linear Regression

```
In [18]: from sklearn.linear_model import LinearRegression
    lin_reg = LinearRegression() # No parameters changed.
    lin_reg.fit(x_train, y_train)

y_pred_train["LR"] = lin_reg.predict(x_train)
y_pred_test["LR"] = lin_reg.predict(x_test)
model_list["LR"] = lin_reg
```

Decision tree

```
In [19]: from sklearn.tree import DecisionTreeRegressor

    tree_reg = DecisionTreeRegressor(random_state=rs) # criterion is MSE as default
    tree_reg.fit(x_train, y_train)

y_pred_train["DT"] = tree_reg.predict(x_train)
    y_pred_test["DT"] = tree_reg.predict(x_test)
    model_list["DT"] = tree_reg
```

Random Forest

```
In [20]: from sklearn.ensemble import RandomForestRegressor

rf_reg = RandomForestRegressor(random_state=rs) # criterion is MSE as default

rf_reg.fit(x_train, y_train)

y_pred_train["RF"] = rf_reg.predict(x_train)
y_pred_test["RF"] = rf_reg.predict(x_test)
model_list["RF"] = rf_reg
```

Artificial Neural Networks: Multi-Layer Perception

4) Write your own Python function to calculate the mean squared error between the model predictions and the ground truth target values. The function name is mse_new. Use your own function mse_new to report the model's prediction performance for the test data. In the meantime, show the mean squared errors calculated from your mse_new function are equal to the sklearn library's mean squared error function. Compare and discuss the performance of these four models.

The formula for MSE is given by:

$$MSE = \frac{1}{n} = \sum_{i=1}^{n} (y_i - \hat{y}_i)$$

Where y_i is the observed value of the target variable, \hat{y}_i is the predicted value of target variable and n is the number of observations.

```
In [22]: 
    def mse_new(y, y_hat):
        n = len(y)
        sum_sq_error = 0
        for i in range (0,n):
            error = y[i] - y_hat[i]
            squared_error = error**2
            sum_sq_error = sum_sq_error
        MSE = sum_sq_error/n
        return(MSE)
```

Out[23]:

	mse_new	mean_squared_error
LR	117241.711259	117241.711259
DT	130416.070000	130416.070000
RF	84056.524257	84056.524257
MLP	325829.344695	325829.344695

Answer: In conclusion of the mse_new function, we can see that this outputs the same as sklearn 's built-in function.

When assessing the performance of the models, a lower MSE is preferred and most models' cost functions are related to this MSE measure. As out-of-sample prediction is the main objective of most Machine Learning work, measuring MSE on the training set is unnessesary and may lead to invalid conclusion, as a low in-sample MSE can be the result of overfitting.

For the selected models, the random forest model have the best out-of-sample fit (i.e. lowest MSE on the test set) and should be the prefered model. _However_, adjusting the hyperparameters in the models may be beneficial and provide better models for prediction, such adjustments could be (but not exclusively):

- · Determining max nodes and depth in Decision Tree and Random Forest to avoid overfitting
- · Using more layers and/or other activation functions in ANN
- Using another form of neural network (i.e. other than MLP)

Section 4

1) Decompose variable dteday of df into three new variables (i.e., day, month, year) into df and remove dteday from df.

Note that I do this in a new dataframe

Out[25]:

	holiday	weekday	workingday	weathersit	temp	hum	windspeed	registered	casual	day	month	year
0	0	4	1	1	0.265000	0.562083	0.194037	3667	163	2	9	2012
1	0	4	1	2	0.254167	0.652917	0.350133	1867	247	27	12	2012
2	0	4	1	2	0.808333	0.568333	0.149883	3352	563	6	9	2011
3	0	1	1	1	0.366667	0.490833	0.268033	4069	253	27	2	2012
4	0	0	0	1	0.690000	0.697083	0.215171	3308	3283	27	5	2012

2) Convert the data types of variables day, month, year into int64.

```
In [26]:
           df2.dtypes
Out[26]: holiday
                          int64
          weekday
                          int64
          workingday
                          int64
          weathersit
                          int64
                        float64
          temp
                        float64
          hum
                        float64
          windspeed
          registered
                          int64
          casual
                          int64
          day
                          int64
                          int64
          month
          vear
                          int64
          dtype: object
```

Answer: The variables for day month and year is already int64

3) Train and test the linear regression, decision tree, random forest, and neural network models in Section 3 using the same data split settings and model hyperparameter settings. Show and discuss if the model prediction performance can be improved and why.

```
In [27]: 
# Split data set
x_train2, x_test2, y_train2, y_test2 = train_test_split(x, y, test_size=0.2) # Random state = None by default
# Create dictionaries to save model predictions
y_pred_train2 = {}
y_pred_test2 = {}
```

Linear Regression

```
In [28]: lin_reg2 = LinearRegression() # No parameters changed.
lin_reg2.fit(x_train2, y_train2)

y_pred_train2["LR"] = lin_reg2.predict(x_train2)
y_pred_test2["LR"] = lin_reg2.predict(x_test2)
```

Decision tree

Random Forest

Artificial Neural Networks: Multi-Layer Perception

```
In [31]: mlp_reg2 = MLPRegressor(max_iter=1000)
# Default 'relu' choice of activation function and increased max number of iterations from 200.
mlp_reg2.fit(x_train2, y_train2)

y_pred_train2["MLP"] = mlp_reg2.predict(x_train2)
y_pred_test2["MLP"] = mlp_reg2.predict(x_test2)
```

```
In [32]:
    results2 = {}

v    for algo in algo_list:
        results2[algo] = {'mean_squared_error': mean_squared_error(y_test2, y_pred_test2[algo])}

df_results2 = pd.DataFrame.from_dict(results2).T
    df_results2
```

Out[32]:

	mean_squared_error
LR	141089.939367
DT	144299.500000
RF	95897.590095
MLP	405165.094624

Discussion: Removing the random state hyperparameter from sklearn 's train_test_split and in the estimations yields different results than in section 3. Random Forest is still the best model for out-of-sample prediction using MSE as the criterion.

Potential (model-specific) improvements of the models are discussed in Question 4 of Section 3, but two general improvements of the data could be:

- Changing the categorical weathersit variable into dummies.
- Standardizing the numerical variables, e.g. z-scores.

These improvements will be done in the following code:

In [33]:

```
improved_df = df.copy() # copy of dataset
improved_df['weathersit'] = improved_df['weathersit'].astype('object') # change weathersit to object
improved_df_temp = pd.get_dummies(improved_df['weathersit'], drop_first=True) # create dummies
improved_df = pd.concat([improved_df, improved_df_temp], axis=1, ignore_index=False) #concatenate
improved_df = improved_df.drop(columns=['weathersit']) #drop original weathersit
improved_df.head()
```

Out[33]:

	dteday	holiday	weekday	workingday	temp	hum	windspeed	registered	casual	2	3
0	09/02/2012	0	4	1	0.265000	0.562083	0.194037	3667	163	0	0
1	27/12/2012	0	4	1	0.254167	0.652917	0.350133	1867	247	1	0
2	09/06/2011	0	4	1	0.808333	0.568333	0.149883	3352	563	1	0
3	27/02/2012	0	1	1	0.366667	0.490833	0.268033	4069	253	0	0
4	27/05/2012	0	0	0	0.690000	0.697083	0.215171	3308	3283	0	0

In [34]:

```
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()

rescaled_np = improved_df[con_num_lst + dis_num_lst].to_numpy()

scaler.fit(rescaled_np)

improved_df[con_num_lst + dis_num_lst] = scaler.transform(rescaled_np)

improved_df.head()
```

Out[34]:

	dteday	holiday	weekday	workingday	temp	hum	windspeed	registered	casual	2	3
0	09/02/2012	0	4	1	-1.187062	-0.459747	0.038403	0.039379	-0.964234	0	0
1	27/12/2012	0	4	1	-1.245632	0.174594	2.061283	-1.105440	-0.839054	1	0
2	09/06/2011	0	4	1	1.750517	-0.416100	-0.533797	-0.160964	-0.368139	1	0
3	27/02/2012	0	1	1	-0.637390	-0.957323	0.997333	0.295056	-0.830112	0	0
4	27/05/2012	0	0	0	1.110739	0.483028	0.312283	-0.188949	3.685304	0	0

Answer: Unfortunately I didn't have time to run the models using the improved_df dataframe I just created. But basically what I have done is replacing 'weathersit' by two dummies (note that 'weathersit' = 1 is default) and then standardized (using standard scaler) the numerical variables in the feature set: temp, hum, windspeed, registered as well as the target variable casual. This should improve the performance as well as the validity of the results.