

ESS302 Applied Geophysics II

Gravity, Magnetic, Electrical, Electromagnetic and Well Logging

Gravity 2: Survey and Data

Instructor: Dikun Yang Feb – May, 2019

Quiz

- Sort the items below from low to high in their densities:
 - Igneous rock, water, sandstone, natural gas, ice, iron rod
- True or false and why: The gravity effect of any sphere-shaped object can be treated as from a point with the same total mass at the sphere's center.
- A sphere buried below surface is specified by its density contrast, radius and depth. How would you change those three parameters so the observed gravity anomaly on the surface becomes "flatter"?

Contents

- Unit of gravity data
- Data measurement
- Two (or N) sphere problem
- Gravity data reduction

Unit of gravity field

$$G \approx 6.674 \times 10^{-8} \text{ cm}^3 \cdot \text{g}^{-1} \cdot \text{s}^{-2}$$

$$\boldsymbol{g} = \frac{GM}{r^3} \vec{\boldsymbol{r}} = \boldsymbol{F}$$

$$\frac{\text{cm}^3}{\text{g} \cdot \text{s}^2} \quad \frac{\text{g} \cdot \text{m}^3}{\text{cm}^3} \quad \frac{\text{m}}{\text{m}^3} \quad = \quad \frac{\text{m}}{\text{s}^2}$$

(unit of acceleration or gravity in SI)

The magnitude of gravity anomaly in applied geophysics is much smaller than 9.8 m/s², so we need a "smaller" unit.

1 **Gal** = 1 cm/
$$s^2$$
 = 10⁻² m/ s^2

1 mGal or milligal = 10^{-5} m/s²

Measurement of gravity field

Free fall (absolute)

Pendulum (absolute)

Spring (relative)

LaCoste-Romberg gravimeter

Two Sphere Gravity Problem

Programming assignment

Gravity of two (or N) spheres

N uniform spheres of different densities located in the 3D space

Be able to calculate the gravitational field F anywhere in the 3D space outside of the spheres

Bury the two spheres underground and compute g_z over a data grid on the surface and make the plot

Compute the potential U over the data grid and make the plot

Finish before next class

Experiment 1: One really big sphere

Density = 5.513 g/cm^3

Conclusion: Big numbers but almost constant

Experiment 2: A small sphere in a large sphere

Conclusion: The field from the entire earth does not help us in finding buried objects

Experiment 3: Two spheres in different sizes

Regional removal

- Separate signals with different wavelengths
- Isolate anomalies at the scales of our interest
 - Small and shallow: Near-surface cavity
 - Large and deep: Basin basement
- What are the approaches that can be used to carry out regional removal?
 - Moving window averaging
 - Wavenumber domain filtering
 - Best-fitting large sphere
 - Surface fitting low-order polynomials

Experiment 4: Many spheres

How many spheres are there? Create your own "puzzle"!

Gravity Data: Separate known and unknown

• Drift correction

- Drift correction
- Latitude correction

Earth: A spinning ellipsoid

- Drift correction
- Latitude correction
- Elevation correction

- Drift correction
- Latitude correction
- Elevation correction
 - a) Free-air
 - b) Bouguer
 - c) Terrain

- Drift correction
- Latitude correction
- Elevation correction
 - a) Free-air
 - b) Bouguer
 - c) Terrain

Bouguer Anomaly

- Drift correction
- Latitude correction
- Elevation correction
 - a) Free-air
 - b) Bouguer
 - c) Terrain

- Drift correction
- Latitude correction
- Elevation correction
 - a) Free-air
 - b) Bouguer
 - c) Terrain
- Tidal correction

- Drift correction
- Latitude correction
- Elevation correction
 - a) Free-air
 - b) Bouguer
 - c) Terrain
- Tidal correction
- Eötvös correction

Summary

Unit and instrument

Forward modeling of spheres: Superposition

Regional removal: Concept of scale

Gravity data correction