Bases du raisonnement Raisonnement par récurrence Bases du dénombrement Suites récurrentes linéaires Formulaire

Rappels mathématiques

Alix Munier-Kordon et Maryse Pelletier

LIP6 Université P. et M. Curie Paris

Algorithmique élémentaire

Plan du cours

- Bases du raisonnement
- Raisonnement par récurrence
- Bases du dénombrement
- Suites récurrentes linéaires
- 5 Formulaire

Le B-A BA du raisonnement

Trois parties:

- hypothèse
- démonstration
- conclusion

Un raisonnement doit être clair, rigoureux, construit. Toujours préférer la simplicité à d'inutiles complications.

Types de raisonnement

- Calculatoire
- Raisonnement logique
 - raisonnement direct
 - par l'absurde : pour montrer P on montre que (non(P)) donne une contradiction
 - par la contraposée : pour montrer que a ⇒ b on montre que non(b) ⇒ non(a)
- Par récurrence

Exemple 1

• Montrer que $(a+b)^2 + (a-b)^2 = 2(a+b)^2 - 4ab$ Enchaînement de calculs à bien présenter

Un peu de logique

Implication et contraposée

$$a \Rightarrow b \equiv non(a) \text{ ou } b$$

 $\equiv non[non(b)] \text{ ou } non(a)$
 $\equiv non(b) \Rightarrow non(a)$

Négation d'une implication

$$non(a \Rightarrow b) \equiv non[non(a) \text{ ou } b]$$

 $\equiv a \text{ et } non(b)$

Exemple 2

- Montrer que tout nombre premier supérieur à 2 est impair
 - raisonnement direct

$$P: \forall n \in \mathbb{N} \ [(n \text{ premier et } n > 2) \Rightarrow n \text{ impair }]$$

• par l'absurde

$$non(P)$$
: $\exists n \in \mathbb{N}$ [n premier, $n > 2$ et n pair]

• par la contraposée

$$\forall n \in \mathbb{N} [n \text{ pair } \Rightarrow (n \text{ non premier ou } n \leq 2)]$$

Exemple 3

Montrer que

$$[(a \text{ et } b) \Rightarrow c] \Leftrightarrow [(a \text{ et (non } c)) \Rightarrow (\text{non } b)]$$

C'est encore un enchaînement de calculs à bien présenter

Exemple 3: preuve

$$[(a \text{ et } b) \Rightarrow c] \equiv \text{non}(a \text{ et } b) \text{ ou } c$$
$$\equiv \text{non}(a) \text{ ou non}(b) \text{ ou } c$$

$$[(a \text{ et (non } c)) \Rightarrow (\text{non } b)] \equiv \text{non}(a \text{ et non}(c)) \text{ ou non}(b)$$
$$\equiv \text{non}(a) \text{ ou } c \text{ ou non}(b)$$

Exemple 4 : implications équivalentes

Les implications suivantes sont équivalentes

- $(n \text{ premier et } n > 2) \Rightarrow n \text{ impair}$
- (*n* premier et *n* pair) \Rightarrow $n \le 2$
- $(n > 2 \text{ et } n \text{ pair }) \Rightarrow n \text{ non premier}$
- n pair \Rightarrow (n non premier ou $n \le 2$)
- n premier \Rightarrow (n impair ou $n \le 2$)
- $n > 2 \Rightarrow (n \text{ non premier ou } n \text{ impair})$

Récurrence faible

Soit $\Pi(n)$, $n \in \mathbb{N}$ une propriété à démontrer.

Récurrence faible :

Base : montrer que la propriété est vérifiée pour n = 0.

Induction: montrer que

$$\forall n \in \mathbb{N} \quad [\Pi(n) \Rightarrow \Pi(n+1)]$$

Exemple.
$$\Pi(n) : \sum_{i=0}^{n} i = \frac{n(n+1)}{2}$$

Récurrence forte

Soit $\Pi(n)$, $n \in \mathbb{N}$ une propriété à démontrer.

Récurrence forte :

Base : montrer que la propriété est vérifiée pour n = 0.

Induction: montrer que,

$$\forall n_0 \geq 0 \quad [(\forall n \leq n_0, \Pi(n)) \Rightarrow \Pi(n_0 + 1)]$$

Exemple. Tout entier supérieur ou égal à 2 admet au moins un diviseur premier.

Permutations

Definition

Une *permutation* d'un ensemble E est une bijection de E dans E.

Theorem

Le nombre de permutations d'un ensemble à n éléments est égal à n!.

Par exemple il y a 6 permutations de l'ensemble {1,2,3}.

Arrangements

Definition

Un *arrangement* d'ordre k d'un ensemble E à n éléments $(k \le n)$ est une suite ordonnée de k éléments de E.

Remarque : dans un arrangement, il n'y a pas de répétition et l'ordre a de l'importance.

Par exemple, dans l'ensemble $\{1, 2, 3, 4, 5\}$:

- (2,3,5) est un arrangement d'ordre 3
- (5, 2, 3) en est un autre
- (5,2,5) n'est pas un arrangement.

Definition

Le nombre d'arrangements d'ordre k d'un ensemble E à n éléments est noté A_n^k .

Theorem

$$A_n^k = n(n-1)...(n-k+1) = \frac{n!}{(n-k)!}$$

Par exemple il y a 60 arrangements d'ordre 3 dans l'ensemble $\{1,2,3,4,5\}$, autrement dit $A_5^3=60$.

Permutations et arrangements

Une permutation d'un ensemble E à n éléments est un arrangement d'ordre n de E.

Par exemple:

• la permutation de {1,2,3,4} définie par :

$$1\mapsto 3$$
 , $2\mapsto 4$, $3\mapsto 1$, $4\mapsto 2$

est notée (3, 4, 1, 2)

les 6 permutations de {1,2,3} sont
 (1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2), (3,2,1).

Combinaisons

Definition

Une *combinaison* d'ordre k d'un ensemble E à n éléments est un sous-ensemble de E ayant k éléments.

Remarque : dans une combinaison, il n'y a pas de répétition et l'ordre n'a pas d'importance.

Par exemple, dans l'ensemble $\{1, 2, 3, 4, 5\}$:

- {2,3,5} est une combinaison d'ordre 3
- {5,2,3} est la même combinaison
- {5,2,5} n'est pas une combinaison.

Definition

Le nombre de combinaisons d'ordre k d'un ensemble E à n éléments est noté C_n^k .

Theorem

$$C_n^k = \frac{A_n^k}{k!} = \frac{n!}{k!(n-k)!}$$

Par exemple il y a 10 combinaisons d'ordre 3 dans l'ensemble $\{1,2,3,4,5\}$, autrement dit $C_5^3=10$.

Suites récurrentes linéaires homogènes

Definition

Une suite *récurrente linéaire homogène d'ordre 2* est une suite définie par une relation de récurrence :

$$u_n = au_{n-1} + bu_{n-2}$$
 si $n \ge 2$

et des conditions initiales :

$$u_0 = a_0$$
 $u_1 = a_1$

où a, b, a₀, a₁ sont des constantes réelles.

◆□▶◆圖▶◆量▶◆量▶ ■ 釣Qで

Un exemple

La suite de Fibonacci est définie par la relation de récurrence :

$$F_n = F_{n-1} + F_{n-2}$$
 si $n \ge 2$

et les conditions initiales :

$$F_0 = 0$$
 $F_1 = 1$

Polynôme caractéristique

Definition

Le polynôme caractéristique associé à la suite récurrente :

$$u_n = au_{n-1} + bu_{n-2}$$
 si $n \ge 2$

est le polynôme :

$$r^2 - ar - b$$

Par exemple, le polynôme caractéristique associé à la suite de Fibonacci est :

$$r^2 - r - 1$$

Solution d'une suite homogène : cas 1

Cas 1 : le polynôme caractéristique a deux racines r_1 et r_2 . Dans ce cas la solution générale de la récurrence :

$$u_n = au_{n-1} + bu_{n-2}$$
 si $n \ge 2$

est de la forme :

$$u_n = \alpha_1 r_1^n + \alpha_2 r_2^n$$

On détermine α_1 et α_2 en utilisant les conditions initiales :

$$\alpha_1 + \alpha_2 = a_0$$

$$\alpha_1 r_1 + \alpha_2 r_2 = a_1$$

Remarque : les racines peuvent être des nombres complexes

Solution d'une suite homogène : cas 2

Cas 2 : le polynôme caractéristique a une racine double r_1 . Dans ce cas la solution générale est de la forme :

$$u_n = \alpha_1 r_1^n + \alpha_2 n r_1^n$$

On détermine α_1 et α_2 en utilisant les conditions initiales, comme dans le cas 1.

Exemple: Fibonacci

- Le polynôme caractéristique est : $r^2 r 1$.
- Les racines sont : $\frac{1+\sqrt{5}}{2}$ et $\frac{1-\sqrt{5}}{2}$.
- La solution générale est de la forme :

$$\alpha_1(\frac{1+\sqrt{5}}{2})^n + \alpha_2(\frac{1-\sqrt{5}}{2})^n.$$

Les conditions initiales entraînent :

$$F_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^n$$

Suites linéaires d'ordre quelconque

La méthode du polynôme caractéristique se généralise aux suites linéaires d'ordre quelconque, définies par une relation de récurrence :

$$u_n = \lambda_1 u_{n-1} + \lambda_2 u_{n-2} + \dots + \lambda_k u_{n-k}$$
 si $n \ge k$

et des conditions initiales :

$$u_0 = a_0$$
 $u_1 = a_1$... $u_{k-1} = a_{k-1}$

Remarque : si r est une racine d'ordre m du polynôme caractéristique alors les suites r^n , nr^n , ..., $n^{m-1}r^n$ sont solutions de la relation de récurrence.

Cas particulier : suites d'ordre 1

Dans le cas d'une suite d'ordre 1, définie par

$$u_n = au_{n-1} \text{ si } n \ge 1 \text{ et } u_0 = a_0$$

la solution est la suite géométrique de raison a et de premier terme a_0 :

$$u_n = a^n a_0$$

Suites récurrentes linéaires non homogènes

Definition

Une suite *récurrente linéaire non homogène* est une suite définie par une relation de récurrence :

$$u_n = \lambda_1 u_{n-1} + \lambda_2 u_{n-2} + ... + \lambda_k u_{n-k} + f(n)$$
 si $n \ge k$

et des conditions initiales :

$$u_0 = a_0$$
 , $u_1 = a_1$, ... , $u_{k-1} = a_{k-1}$

où $\lambda_1, \ldots, \lambda_k$, a_0, \ldots, a_{k-1} sont des constantes réelles et f est une fonction de $\mathbb N$ dans $\mathbb R$.

◆□ > ◆圖 > ◆量 > ◆量 > ■ め < ○</p>

Suite non homogène d'ordre 1 (1)

$$u_n = au_{n-1} + b$$
 si $n \ge 1$ et $u_0 = a_0$

Il existe une méthode générale de calcul pour de telles suites mais on va faire le calcul "à la main".

$$u_n = au_{n-1} + b = a(au_{n-2} + b) + b$$

 $u_n = a^2u_{n-2} + (a+1)b$
 $u_n = a^3u_{n-3} + (a^2 + a + 1)b$
...
 $u_n = a^nu_0 + (a^{n-1} + ... + a^3 + a^2 + a + 1)b$

Si
$$a = 1$$
 alors $u_n = a_0 + nb$
Si $a \ne 1$ alors $u_n = a^n a_0 + \frac{a^n - 1}{a - 1}b$

(□) (□) (□) (□) (□)

Exemples

Exemple 1.
$$u_n = u_{n-1} + 3$$
 si $n \ge 1$ et $u_0 = 5$

$$u_n = u_{n-1} + 3 = u_{n-2} + 2 * 3 = \dots = u_0 + n * 3 = 5 + 3n$$

Exemple 2.
$$u_n = 2u_{n-1} + 3$$
 si $n \ge 1$ et $u_0 = 5$

$$u_n = 2u_{n-1} + 3 = 2^2u_{n-2} + 2 * 3 + 3$$

$$= 2^3u_{n-3} + 2^2 * 3 + 2 * 3 + 3$$

$$= \dots$$

$$= 2^nu_0 + 2^{n-1} + \dots + 2^2 * 3 + 2 * 3 + 3$$

$$= 5 * 2^n + 3(2^n - 1)$$

Et finalement:

$$u_n = 2^{n+3} - 3$$

Sommes

• Somme des entiers de 1 à n :

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

Somme algébrique :

$$\sum_{i=0}^{n} x^{i} = \frac{x^{n+1} - 1}{x - 1}$$

Combinaisons et permutations

• Égalité du triangle de Pascal :

$$C_n^k = C_{n-1}^k + C_{n-1}^{k-1}$$

Formule du binôme de Newton :

$$(a+b)^n = \sum_{k=0}^n C_n^k a^k b^{n-k}$$

- Conséquence de Newton : $\sum_{k=0}^{n} C_n^k = 2^n$
- Formule de Stirling :

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

