

Automatic data collection at SPring-8/Japan

Kunio Hirata

RIKEN/SPring-8

Macromolecular Crystallography (MX) Beamlines at SPring-8

Bending magnet beamlines BL26B1/B2

Developed for structural genomic research in 2000s Automation at SP8 MX started from here

- Flux ~10¹¹ (ph/s)
- Data collection from well diffracting crystal

Undulator BL, BL45XU

Automated data collection, High flux beam

- High flux 2 x 10¹⁵ ph/s @ 20 x 20 µm
- Fully automated data collection, ZOO system

Undulator BL, BL32XU

Micro-beam minimum 1µm

- Micro-focus beam (1 µm; 6 x 10¹⁰ ph/s)
- Micro-crystallography / challenging target

Operated by three organizations, but with common data collection environment, data collection software, sample changer etc.

Undulator BL, BL44XU Low divergence beam

Macromolecular complex

Large unit cell > 500 A

Undulator BL, BL41XU

High flux beam

- High flux (4 x 10¹³ ph/s @ 2 x 20 µm)
- Ultra high resolution (A ~ 0.5 A, ID 3rd H)

ZOO system

Hirata, K., Yamashita, K. et al. (2019). Acta Cryst (2019). D75, 1–13.

Transition to 'unattended experiments'

80% public users conduct automatic data collection

MXCuBE & ISPvB meeting 2024

ZOO system

Program package with 'animal names' in

BSS (Beamline Scheduling Software)

Standard GUI for all MX beamlines at SPring-8

- All-in-one control
- Job list for multiple conditions
- Load text BL configuration file
- Language & library:C, GTK+2, OpenGL,

Platform: Linux

100u

m

Cryo-cooled protein crystal

> Sample Exchange, Centering

Like MXCuBe?

Diffraction

G. Ueno et al., J. Synchrotron Rad. (2005). 12, 380384surement

Control system for SPring-8 MX beamlines

- Unified beamline control with a GUI under C/S architecture
- Common storage & compute server on the network
- SR, BL, end station are seamlessly controlled via MADOCA

ZOO system

Program package with 'animal names' in

Available schemes in ZOO

Scheme

Rot. (/xtal)

"Small wedge" (SWSX)

5-10 deg.

"helical" or "single"

90-360 deg.

"mixed"

5-10 deg. + 30-360 deg.

small & large crystals

< 1 deg.

"SSROX"

Users should choose 'scheme' for each cryo-pin.

SPring-8

Available schemes in ZOO

"Small Wedge Synchrotron Crystallography"

SPring.

Many randomly oriented crystals on each loop

Many sub-datasets are merged into the final one in

Membrane protein structure analysis with ZOO

"Quantitative changes" make "Qualitative

Helical data collection

Movie at BL45XU

Keitaro Yamashita

KAMO

(Automatic data processing)

Merge & polish selected clusters

Data processing XDS (or DIALS)

Grouping

crystals with equivalent cells

Clustering

- BLEND (cell parameters)
- CC of intensities

Data back to users

Data back to users

Data back to users

BUTTAGIRI process (Chunk data processing?)

divides 'complete data' to 'small wedge data'

(Ex. : Full data $180^{\circ} = 30^{\circ} \times 6$ wedges)

Hierarchical clustering

(Select better data in 'merging process')

All types of processed/merged datasets is shipped back

Data collection from 'inhomogeneous crystal'

Is a human superior to 'automatic data collection', especially for 'inhomogenous crystal'?

This case is one of the answers to this question.

ta collection from 'inhomogeneous cryst

Automation can solve structure using 'inhomogeneous' crystals

Mixed scheme(HITO)

objective:

To apply optimal scheme for each crystal with different size and configuration

ZOO always does

SHIKA makes a crystal map

Small crystal → "SWSX"

Large crystal → "helical"

HITO recognizes crystal size/configuration

Rotation axis

HITO can choose 'suitable scheme' for each crystal

What HITO does?

Rotation axis

Crystal map from raster scan (from SHIKA)

Find 'overlapped crystals' along with a rotation axis and calculate gaps between them.

How to calculate 'oscillation range'

V beam size 15 μm

$$V_0 \cdot \cos \varphi = 2 \times 15$$

V₀ is from a crystal map from raster

Ex)
$$V_0 = 50 \, \mu \text{m}$$

HITO .vs. LCP crystals

Company users @ BL45XU (Oct 2021)

LCP crystals in a plate

HITO scheme map

Rotation data from mixed mode

PIN	Osc. range
Helical(no-align)	40° x 5
Helical part(align)	50° x 1
Multi	10° x 6
Single(full)	30° x 4
Single(no-align)	20° x 3
Single(align)	70° x 1, 50° x 1

Rotation data of 610° was collected from 1 loop.

User's feedback

8 times more redundancy (cf. SWSX)

Serial Synchrotron Rotation crystallography (SSROX)

2D raster scan with goniometer rotation

- Micro focused beam (1~5 μm)
- Translation+Rotation
 - ±45 deg./line
- High dose expose
 - 10 MGy/pts
- J. Synchrotron Rad. (2017). 24, 29-41
 - Still measurement requires exceedingly more crystals with the 'monochromatic' beam.

A single snapshot from a single crystal

Nano-sized PhC with SSROX

BL32XU	SSROX params.
Beam size	1 μm
Dose/point	10 MGy
Translation	360 μm
Rotation	-45 deg. ~ +45 deg.
# of frames	360
Translation / frame	1.0 μm
Oscillation width	0.25 deg. / frame
Exposure time	0.01 sec / frame
Attenuation	None.

Automated data collection with ZOO under cryo-condition

SSROX data using 600 nm crystals

# of loops	4
# of collected frames	330,480
# of hits	35,204
# of indexed	8,494
Resolution	1.95 Å
<i σi=""> (1.96-1.95Å)</i>	7.3 (1.23)
CC(1/2) (1.96-1.95Å)	0.9908 (0.6707)

1.95 Å resolution

Cell dimensions a~105Å (I23) Crystal size 600 nm = 6000 Å ~ 57 copies

57 copies ^ 3 = **1.9** x **10**⁵ copies

8,494 crystals : **1.6** x **10**⁹ copies

Available schemes in ZOO

Scheme

Rot. (/xtal)

"Small wedge" (SWSX)

5-10 deg.

"helical" or "single"

90-360 deg.

"mixed"

5-10 deg. + 30-360 deg.

"SSROX"

< 1 deg.

Possible 'goniometer based' experiments are available

Summary

- After COVID
 - Ratio of automatic data collection rapidly increases
- After CryoEM appears
 - The number of users is getting smaller
 - Especially for membrane proteins
- Nano-crystallography
 - 600 nm crystals at atomic resolution
 - Each crystal: unit cells 2 x 10⁵ copies
 - Total 1.6 x 10⁹ copies
- Near future
 - <u>Towards</u> "No spread sheet" experiments

Acknowledgements

JASRI

Kazuya Hasegawa Takashi Kumasaka Seiki Baba Nobuhiro Mizuno Hironori Murakami Yuki Nakamura

RIKEN

Keitaro Yamashita

Go Ueno Yoshiaki Kawano Naoki Sakai Masaki Yamamoto

Tokyo University

Takafumi Kato
Wataru Shihoya
Kaoru Kumazaki
(Astellas)
Hideaki Kato
Yoshiki Tanaka
(NAIST)
Tomohiro Nishizawa
Osamu Nureki

RIKEN Yokohama

Keitaro Yamashita

Hiroaki Tanabe

Kyoto University

Ryoji Suno Hidetsugu Asada Im Dohyun Yosuke Toyoda Takuya Kobayashi So Iwata

DECTRIS

Supporting staffs

