	Proble					CQ.12.17	
	gey.		ee. 0	S ₄ S ₂ 0 1 0 1 0 0 0 0 0 1 0 0 0 0 1 0	0 0 0 0 0 1	$h_{1}(x) = 2x + 1 \mod 6$ $h_{2}(x) = 3x + 2 \mod 6$ $h_{3}(x) = 5x + 2 \mod 6$	
	Code	kile	nishouh	. signer ter	1 Pernetations		
	Jd. 01 2 3 4 5	SA 0 0 A 0 0 A			Peim S1 1 0 1 0 0 1	$h_{1}(0) = 1$ $h_{2}(0) = 2$ $h_{3}(0) = 2$ $h_{1}(1) = 3$ $h_{1}(1) = 5$ $h_{3}(1) = 1$ $h_{1}(2) = 5$ $h_{1}(2) = 2$ $h_{3}(2) = 0$ $h_{1}(3) = 1$ $h_{2}(1) = 5$ $h_{3}(3) = 5$ $h_{1}(4) = 3$ $h_{2}(4) = 2$ $h_{3}(4) = 4$ $h_{4}(5) = 5$ $h_{3}(5) = 3$	
			minhauh (s	ad minhouth	(S ₁) ~in! = 0		
set2	Calcolo	52 1 0 0	1, 0 1, 0 1, 0	signatures hz Perm Sz 1,0,0	for set by Perm S ₃	2, (ct 3, set 4) hy mintersh (Sz) = 1 hz mintersh (Sz) = 2 hz mintersh (Sz) = 1	
setz	hd. 0 1 2 3 4 5	53 0 0 1 1	Perm 55	0,0,1 0,1,0	Perm Si D D D O A A	huminheub $(S_3) = 1$ hyminheub $(S_3) = 2$ hyminheub $(S_3) = 4$	
ASKUMANEN SIS	1 2 3 4 5	X 0 1 0 1 0	1,0 0,1 1,0	1, 1, 1 0, 0, 0	0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	hamiheuh (Su) = 1 hamiheuh (Su) = 2 hamiheuh (Su) > 0	

-) minhauch Signatures

New York In the Page No. of the	5.1	52	53	54
h	5	1	1	1
h	2	2	2	2
ha	0	1	4	0

b) oney has is a true permutation on the two other hash forctors result in addisions.

The collisions can be seen in the Pernutations table on the last page.

C) Faccord Simlarity: Sim (S4,S4) = S4 US2

$$4m(S_{1},S_{2}) = \frac{0}{4} = 0$$

 $5im(S_{1},S_{3}) = \frac{9}{4} = 0$
 $5im(S_{1},S_{4}) = \frac{1}{4}$
 $5im(S_{2},S_{3}) = \frac{1}{4}$
 $5im(S_{2},S_{4}) = \frac{1}{4}$
 $5im(S_{3},S_{4}) = \frac{1}{4}$

Similarity of miterth signatures = fraction of hash forctions in which they agree

$$Sim_h (S_{1},S_{2}) = \frac{1}{3}$$

 $Sim_h (S_{1},S_{3}) = \frac{1}{3}$
 $Sim_h (S_{2},S_{4}) = \frac{2}{3}$
 $Sim_h (S_{2},S_{3}) = \frac{2}{3}$
 $Sim_h (S_{2},S_{4}) = \frac{2}{3}$
 $Sim_h (S_{3},S_{4}) = \frac{4}{3}$

ond simh (52,531 = 2/3. Obviously the similarity between the two sels should be zero, as they have nothing it corner.

Thus it is important to use good hour functions.