Application No.: 10/033,769

Office Action Dated: October 1, 2004

This listing of claims will replace all prior versions, and listings, of claims in the application.

Listing of Claims:

1. (Previously Presented) A polypodal chelant having the formula:

and pharmaceutically acceptable salts thereof, wherein

A is a spacer selected from the group consisting of R¹-C, R¹-Si, R¹-Ge, N, P and P(O),

R¹ is independently selected at each occurrence from the group consisting of H, C₁-C₆ alkyl,

 $C_3\text{-}C_6 \text{ cycloalkyl, } C_1\text{-}C_6 \text{ fluoroalkyl, } C_1\text{-}C_6 \text{ alkenyl, } C_3\text{-}C_6 \text{ cycloalkenyl, } C_1\text{-}C_6$

fluoroalkenyl, benzyl, fluorobenzyl, phenyl and fluorophenyl;

 E^1 , E^2 , and E^3 are chelating arms each independently having the formula:

$$(CR^{17}R^{18})_k$$
-Z-X- $(CR^{19}R^{20})_lNR^{21}R^{22}$

wherein

k is an integer selected from 0 to 3, provided that when A is N, k is 1-3;

1 is an integer selected from 1 to 3;

Z is selected from the group consisting of a bond, O, NH, NR¹NR¹, ONH and N(OR¹);

X is selected from the group consisting of C(O), $S(O)_2$ and $P(O)(OR^1)$;

 R^{17} , R^{18} , R^{19} , R^{20} , R^{21} and R^{22} are independently selected from the group consisting of H, C_1 - C_{10} alkyl substituted with 0-5 R^{23} , C_1 - C_{10} fluoroalkyl substituted with 0-5 R^{23} , C_2 - C_{10} alkenyl substituted with 0-5 R^{23} , C_2 - C_{10} fluoroalkenyl substituted with 0-5 R^{23} , aryl substituted with 0-5 R^{23} , C_7 - C_{16} alkaryl wherein the aryl is Page 2 of 18

Application No.: 10/033,769

Office Action Dated: October 1, 2004

substituted with 0-5 R^{23} , and fluoroaryl substituted with 0-5 R^{23} ; or R^{17} and R^{18} , R^{19} and R^{20} or R^{21} and R^{22} may be taken together to form a C_3 - C_{10} cycloalkyl or C_3 - C_{10} cycloalkenyl optionally interrupted with C(O)NH, NH, NHC(O), NHC(O)NH, NHC(S)NH, O, S, S(O), $S(O)_2$, $P(O)(OR^{24})$, $P(O)(OR^{24})O$ or $P(O)(NHR^{24})O$, or to form a =CH- R^{22a} group, wherein R^{22a} is aryl substituted with 0-5 R^{23} , or heterocycle substituted by 0-5 R^{23} ;

- R^{23} is selected from the group consisting of H, OH, C_1 - C_3 alkyl, C_1 - C_3 hydroxyalkyl, $C(=O)R^{24}$, $C(=O)OR^{24}$, $C(=O)NR^{24}$, $PO(OR^{24})_2$ and $S(O)_2OR^{24}$; and
- R²⁴ is selected from the group consisting of H, C₁-C₆ alkyl, C₃-C₆ cycloalkyl, C₁-C₆ fluoroalkyl, C₁-C₆ alkenyl, C₃-C₆ cycloalkyl, C₁-C₆ fluoroalkenyl, benzyl, fluorobenzyl, phenyl, and fluorophenyl,

with the proviso that when A is CH₃-C and E¹ is CH₂-NH-C(O)-C(CH₃)₂-NH₂, at least one of E2 or E3 is other than CH₂-NH-C(O)-C(CH₃)₂-NH₂.

- 2. (Canceled)
- 3. (Original) A polypodal chelant according to claim 1, characterized by being tripodal.
- 4. (Previously Presented) A tripodal chelant according to claim 3, wherein A is a spacer selected from the group consisting of R¹-C, N, P, and P(O) is selected from the group consisting of H, C₁-C₆ alkyl, C₃-C₆ cycloalkyl, C₁-C₆ alkenyl, C₃-C₆ cycloalkyl, benzyl, and phenyl; E¹, E², and E³ are chelating arms each independently having the formula:

DOCKET NO.: BMS-2204 (DM-6950)

Application No.: 10/033,769

Office Action Dated: October 1, 2004

$(CH_2)_k$ -NHCOCH₂NR²¹R²²

- R^{21} and R^{22} are independently selected at each occurrence from the group consisting of H, C_1 - C_{10} alkyl substituted with 0-2 R^{23} , C_2 - C_{10} alkenyl substituted with 0-2 R^{23} , aryl substituted with 0-2 R^{23} , and C_7 - C_{16} alkaryl, wherein the aryl is substituted with 0-2 R^{23} , or R^{21} and R^{22} may be taken together to form a =CH- R^{22a} group, wherein R^{22a} is aryl substituted with 0-5 R^{23} , or heterocycle substituted by 0-5 R^{23} :
- R^{23} is selected from the group consisting of H, OH, C_1 - C_3 alkyl, C_1 - C_3 hydroxyalkyl, $C(=O)R^{24}$, $C(=O)OR^{24}$, $C(=O)NR^{24}$, $PO(OR^{24})_2$ and $S(O)_2OR^{24}$; and
- R^{24} is selected from the group consisting of H, C_1 - C_6 alkyl, C_3 - C_6 cycloalkyl, C_1 - C_6 fluoroalkyl, C_1 - C_6 alkenyl, C_3 - C_6 cycloalkyl, benzyl and phenyl.
- 5. (Previously Presented) A tripodal chelant according to claim 4, wherein A is a spacer selected from the group consisting of N and P(O); E¹, E², and E³ are chelating arms each independently having the formula:

wherein R^{21} and R^{22} are independently selected from the group consisting of C_1 - C_{10} alkyl substituted with 0-2 R^{23} , or R^{21} and R^{22} may be taken together to form a =CH- R^{22a} group, wherein R^{22a} is aryl substituted with 0-5 R^{23} , or heterocycle substituted by 0-5 R^{23} ; R^{23} is selected from the group consisting of OH, C_1 - C_3 hydroxyalkyl, COOH, PO(OH)₂ and S(O)₂OH.

DOCKET NO.: BMS-2204 (DM-6950)

Application No.: 10/033,769

Office Action Dated: October 1, 2004

6. (Original) A tripodal chelant according to claim 5, wherein A is a spacer selected from the group consisting of N, and P(O); E¹, E² and E³ are chelating arms each independently having the formula:

- wherein k is 2-3; R²¹ is independently selected from the group consisting of CH₃, CH₂COOH, and CH₂PO(OH)₂; and R²² is independently selected from the group consisting of CH₂COOH, and CH₂PO(OH)₂.
- 7. (Original) A tripodal chelant according to claim 6, wherein A is N or P(O); E¹, E², and E³ are(CH₂)_k-NHCOCH₂N(CH₂COOH)₂, and k is 2-3.
- 8. (Original) A tripodal chelant according to claim 7, wherein A is N; E^1 , E^2 and E^3 are $(CH_2)_k$ -NHCOCH₂N(CH₂COOH)₂, and k is 2-3.
- 9. (Original) A tripodal chelant according to claim 7, wherein A is N; E^1 , E^2 and E^3 are $(CH_2)_k$ -NHCOCH₂N(CH₃)(CH₂COOH), and k is 2-3.
- 10-14. (Canceled)
- 15. (Original) A radiopharmaceutical compound comprising a polypodal chelant according to claim 1, chelated with a radionuclide selected from the group consisting of ^{52m}Mn, ⁵²Fe, ⁵⁵Co, ⁶⁴Cu, ⁶⁷Cu, ⁶⁷Ga, ⁶⁸Ga, ⁹⁰Y, ^{94m}Tc, ^{99m}Tc, ¹⁰⁵Rh, ¹⁰⁹Pd, ¹¹¹In, ^{117m}Sn, ¹⁴⁹Pr, ¹⁵³Sm, ¹⁵⁹Gd, ¹⁶⁶Ho, ¹⁶⁹Yb, ¹⁷⁷Lu, ¹⁸⁶Re, ¹⁸⁸Re, ²⁰³Pb, ²¹¹Pb, and ²¹²Bi.

Application No.: 10/033,769

Office Action Dated: October 1, 2004

16. (Canceled)

- 17. (Original) The radiopharmaceutical compound according to claim 15, wherein said polypodal chelant is characterized by being tripodal.
- 18. (Previously Presented) The radiopharmaceutical compound according to claim 17, wherein A of said tripodal chelant is a spacer selected from the group consisting of R¹-C, N, P, and P(O) is selected from the group consisting of H, C₁-C₆ alkyl, C₃-C₆ cycloalkyl, C₁-C₆ alkenyl, C₃-C₆ cycloalkyl, benzyl, and phenyl; E¹, E², and E³ are chelating arms each independently having the formula:

- R^{21} and R^{22} are independently selected at each occurrence from the group consisting of H, C_1 - C_{10} alkyl substituted with 0-2 R^{23} , C_2 - C_{10} alkenyl substituted with 0-2 R^{23} , aryl substituted with 0-2 R^{23} , and C_7 - C_{16} alkaryl, wherein the aryl is substituted with 0-2 R^{23} , or R^{21} and R^{22} may be taken together to form a =CH- R^{22a} group, wherein R^{22a} is aryl substituted with 0-5 R^{23} , or heterocycle substituted by 0-5 R^{23} ;
- R^{23} is selected from the group consisting of H, OH, C_1 - C_3 alkyl, C_1 - C_3 hydroxyalkyl, $C(=O)R^{24}$, $C(=O)OR^{24}$, $C(=O)NR^{24}$, $PO(OR^{24})_2$ and $S(O)_2OR^{24}$; and
- R^{24} is selected from the group consisting of H, C_1 - C_6 alkyl, C_3 - C_6 -cycloalkyl, C_1 - C_6 fluoroalkyl, C_1 - C_6 alkenyl, C_3 - C_6 cycloalkyl, benzyl and phenyl.

DOCKET NO.: BMS-2204 (DM-6950)

Application No.: 10/033,769

Office Action Dated: October 1, 2004

19. (Previously Presented) The radiopharmaceutical compound according to claim 18, wherein A is a spacer selected from the group consisting of N and P(O); E¹, E², and E³ are chelating arms each independently having the formula:

- wherein R^{21} and R^{22} are independently selected from the group consisting of C_1 - C_{10} alkyl substituted with 0-2 R^{23} , and aryl substituted with 0-2 R^{23} , or R^{21} and R^{22} may be taken together to form a =CH- R^{22a} group, wherein R^{22a} is aryl substituted with 0-5 R^{23} , or heterocycle substituted by 0-5 R^{23} ; R^{23} is selected from the group consisting of OH, C_1 - C_3 hydroxyalkyl, COOH, PO(OH)₂ and S(O)₂OH.
- 20. (Original) The radiopharmaceutical compound according to claim 19, wherein A is N or P(O); E^1 , E^2 and E^3 are chelating arms each independently having the formula:

- wherein k is 2-3; R²¹ is independently selected from the group consisting of CH₃, CH₂COOH, and CH₂PO(OH)₂; and R²² is independently selected from the group consisting of CH₂COOH, and CH₂PO(OH)₂.
- 21. (Original) The radiopharmaceutical compound according to claim 20, wherein A is N or P(O); k is 2-3; and E¹, E² and E³ are (CH₂)_k-NHCOCH₂N(CH₂COOH)₂.
- 22. (Original) The radiopharmaceutical compound according to claim 21, wherein A is N; $E^{1}, E^{2} \text{ and } E^{3} \text{ are } (CH_{2})_{k}\text{-NHCOCH}_{2}N(CH_{2}COOH)_{2}, \text{ and k is 2-3}.$

DOCKET NO.: BMS-2204 (DM-6950)

Application No.: 10/033,769

Office Action Dated: October 1, 2004

23-26. (Canceled)

- 27. (Original) An MRI contrast agent comprising a polypodal chelant according to claim 1, chelated with a paramagnetic metal ion of atomic number 21-29, 42-44 or 58-70.
- 28. (Canceled)
- 29. (Previously Presented) The MRI contrast agent according to claim 27, wherein said polypodal chelant is characterized by being tripodal.
- 30. (Previously Presented) The MRI contrast agent according to claim 29, wherein A of said tripodal chelant is a spacer selected from the group consisting of R¹-C, N, P, and P(O); R¹ is selected from the group consisting of H, C₁-C₆ alkyl, C₃-C₆ cycloalkyl, C₁-C₆ alkenyl, C₃-C₆ cycloalkyl, benzyl, and phenyl; E¹, E², and E³ are chelating arms each independently having the formula:

$$(CH_2)_k$$
-NHCOCH₂NR²¹R²²

- R^{21} and R^{22} are independently selected at each occurrence from the group consisting of H, C_1 - C_{10} alkyl substituted with 0-2 R^{23} , C_2 - C_{10} alkenyl substituted with 0-2 R^{23} , aryl substituted with 0-2 R^{23} , and C_7 - C_{16} alkaryl, wherein the aryl is substituted with 0-2 R^{23} , or R^{21} and R^{22} may be taken together to form a =CH- R^{22a} group, wherein R^{22a} is aryl substituted with 0-5 R^{23} , or heterocycle substituted by 0-5 R^{23} ;
- R^{23} is selected from the group consisting of H, OH, C_1 - C_3 alkyl, C_1 - C_3 hydroxyalkyl, $C(=O)R^{24}$, $C(=O)OR^{24}$, $C(=O)NR^{24}$, $PO(OR^{24})_2$ and $S(O)_2OR^{24}$; and

DOCKET NO.: BMS-2204 (DM-6950)

Application No.: 10/033,769

Office Action Dated: October 1, 2004

- R^{24} is selected from the group consisting of H, C_1 - C_6 alkyl, C_3 - C_6 cycloalkyl, C_1 - C_6 fluoroalkyl, C_1 - C_6 alkenyl, C_3 - C_6 cycloalkyl, benzyl and phenyl.
- 31. (Previously Presented) The MRI contrast agent according to claim 30, wherein A is a spacer selected from the group consisting of N and P(O); E¹, E², and E³ are chelating arms each independently having the formula:

- wherein R^{21} and R^{22} are independently selected from the group consisting of C_1 - C_{10} alkyl substituted with 0-2 R^{23} , and aryl substituted with 0-2 R^{23} , or R^{21} and R^{22} may be taken together to form a =CH- R^{22a} group, wherein R^{22a} is aryl substituted with 0-5 R^{23} , or heterocycle substituted by 0-5 R^{23} ; R^{23} is selected from the group consisting of OH, C_1 - C_3 hydroxyalkyl, COOH, PO(OH)₂ and S(O)₂OH.
- 32. (Original) The MRI contrast agent according to claim 31, wherein A is N or P(O); E^1 , E^2 and E^3 are chelating arms each independently having the formula:

$$(CH_2)_k$$
-NHCOCH₂NR²¹R²²

- wherein k is 2-3; R²¹ is independently selected from the group consisting of CH₃, CH₂COOH, and CH₂PO(OH)₂; and R²² is independently selected from the group consisting of CH₂COOH, and CH₂PO(OH)₂.
- 33. (Original) The MRI contrast agent according to claim 32, wherein A is N or P(O); k is 2-3; and E¹, E² and E³ are (CH₂)_k-NHCOCH₂N(CH₂COOH)₂.

DOCKET NO.: BMS-2204 (DM-6950)

Application No.: 10/033,769

Office Action Dated: October 1, 2004

- 34. (Original) The MRI contrast agent according to claim 33, wherein A is N; E¹, E² and E³ are (CH₂)_k-NHCOCH₂N(CH₂COOH)₂, and k is 2-3.
- 35-38. (Canceled)
- 39. (Original) An X-ray or CT contrast agent comprising a polypodal chelant according to claim 1, chelated with a heavy metal ion of atomic number 21-31, 39-50, 56-80, 82, 83 or 90.
- 40. (Canceled)
- 41. (Previously Presented) The X-ray or CT contrast agent according to claim 39, wherein said polypodal chelant is characterized by being tripodal.
- 42. (Previously Presented) The X-ray or CT contrast agent according to claim 41, wherein A of said tripodal chelant is a spacer selected from the group consisting of R¹-C, N, P, and P(O); R¹ is selected from the group consisting of H, C₁-C₆ alkyl, C₃-C₆ cycloalkyl, C₁-C₆ alkenyl, C₃-C₆ cycloalkyl, benzyl, and phenyl; E¹, E², and E³ are chelating arms each independently having the formula:

$$(CH_2)_k$$
-NHCOCH₂NR²¹R²²

 R^{21} and R^{22} are independently selected at each occurrence from the group consisting of H, C_1 - C_{10} alkyl substituted with 0-2 R^{23} , C_2 - C_{10} alkenyl substituted with 0-2 R^{23} , aryl substituted with 0-2 R^{23} , and C_7 - C_{16} alkaryl, wherein the aryl is substituted with 0-2

Application No.: 10/033,769

Office Action Dated: October 1, 2004

 R^{23} , or R^{21} and R^{22} may be taken together to form a =CH- R^{22a} group, wherein R^{22a} is aryl substituted with 0-5 R^{23} , or heterocycle substituted by 0-5 R^{23} ;

- R^{23} is selected from the group consisting of H, OH, C_1 - C_3 alkyl, C_1 - C_3 hydroxyalkyl, $C(=O)R^{24}$, $C(=O)OR^{24}$, $C(=O)NR^{24}$, $PO(OR^{24})_2$ and $S(O)_2OR^{24}$; and
- R^{24} is selected from the group consisting of H, C_1 - C_6 alkyl, C_3 - C_6 cycloalkyl, C_1 - C_6 fluoroalkyl, C_1 - C_6 alkenyl, C_3 - C_6 cycloalkyl, benzyl and phenyl.
- 43. (Previously Presented) The X-ray or CT contrast agent according to claim 42, wherein A is a spacer selected from the group consisting of N and P(O); E¹, E², and E³ are chelating arms each independently having the formula:

$$(CH_2)_k$$
-NHCOCH₂NR²¹R²²

wherein R^{21} and R^{22} are independently selected from the group consisting of C_1 - C_{10} alkyl substituted with 0-2 R^{23} , and aryl substituted with 0-2 R^{23} , or R^{21} and R^{22} may be taken together to form a =CH- R^{22a} group, wherein R^{22a} is aryl substituted with 0-5 R^{23} , or heterocycle substituted by 0-5 R^{23} ; R^{23} is selected from the group consisting of OH, C_1 - C_3 hydroxyalkyl, COOH, PO(OH)₂ and S(O)₂OH.

44. (Original) The X-ray or CT contrast agent according to claim 43, wherein A is N or P(O); E¹, E² and E³ are chelating arms each independently having the formula:

$$(CH_2)_k\text{-NHCOCH}_2NR^{21}R^{22}$$

wherein k is 2-3; R²¹ is independently selected from the group consisting of CH₃, CH₂COOH, and CH₂PO(OH)₂; and R²² is independently selected from the group consisting of CH₂COOH, and CH₂PO(OH)₂.

DOCKET NO.: BMS-2204 (DM-6950)

Application No.: 10/033,769

Office Action Dated: October 1, 2004

45. (Original) The X-ray or CT contrast agent according to claim 44, wherein A is N or P(O); k is 2-3; and E¹, E² and E³ are (CH₂)_k-NHCOCH₂N(CH₂COOH)₂.

46. (Original) The X-ray or CT contrast agent according to claim 45, wherein A is N; E¹, E² and E³ are (CH₂)_k-NHCOCH₂N(CH₂COOH)₂, and k is 2-3.

47-65. (Canceled)

- 66. (Original) A radiopharmaceutical composition for treating pathological processes involving angiogenic neovasculature in a patient in need thereof comprising a therapeutically effective amount of the radiopharmaceutical compound of claim 15 and a pharmaceutically acceptable carrier.
- 67. (Original) The composition of claim 66, wherein said radiopharmaceutical compound comprises a beta, alpha or Auger electron-emitting isotope.
- 68. (Original) A method for treating pathological processes involving angiogenic neovasculature in a patient in need thereof comprising administering to said patient a therapeutically effective amount of the radiopharmaceutical composition of claim 66.
- 69. (Original) A composition for radioactive imaging comprising an effective amount of the radiopharmaceutical compound of claim 15 and a pharmaceutically acceptable carrier.

DOCKET NO.: BMS-2204 (DM-6950) **PATENT**

Application No.: 10/033,769

Office Action Dated: October 1, 2004

70. (Original) A method for radioactive imaging comprising administering to a patient to be

imaged sufficiently in advance thereto an effective amount of the radioactive imaging

composition of claim 69.

71. (Original) A method according to claim 70, wherein said imaging method is gamma

scintigraphy or positron-emission tomography.

72. (Original) A composition for X-ray imaging comprising an effective amount of the

contrast agent of claim 39 and a pharmaceutically acceptable carrier.

73. (Original) A method for X-ray imaging comprising administering to a patient to be

imaged sufficiently in advance thereof an effective amount of the X-ray imaging

composition of claim 72.

74. (Original) A method according to claim 73, wherein said X-ray imaging method is CT

imaging.

75. (Original) A composition for magnetic resonance imaging comprising an effective

amount of the contrast agent of claim 27 and a pharmaceutically acceptable carrier.

Page 13 of 18

Application No.: 10/033,769

Office Action Dated: October 1, 2004

76. (Original) A method for magnetic resonance imaging comprising administering to a

patient to be imaged sufficiently in advance thereof an effective amount of the

PATENT

magnetic resonance imaging composition of claim 75.

77. (Original) A pharmaceutical composition for treating heavy metal toxicity in a patient in

need thereof, comprising a therapeutically effective amount of the polypodal chelant

of claim 1 and a pharmaceutically acceptable carrier.

78. (Original) A method for treating heavy metal toxicity in a patient in need thereof,

comprising administering to said patient a therapeutically effective amount of the

pharmaceutical composition of claim 77.

79. (Original) A radiopharmaceutical treatment kit comprising: a sterile, non-pyrogenic

formulation comprising a radiopharmaceutical composition according to claim 66, a

pH 3-9 buffering agent and optionally one or more additives selected from the group

consisting of ancillary ligands, reducing agents, transfer ligands, buffers,

lyophilization aids, stabilization aids, solubilization aids, bacteriostats and equipment

for administering said composition.

80. (Original) The treatment kit of claim 79, wherein said formulation is in the form of a

sterile solution or lyophilized solid.

DOCKET NO.: BMS-2204 (DM-6950)

Application No.: 10/033,769

Office Action Dated: October 1, 2004

81. (Original) A diagnostic kit comprising: a sterile, non-pyrogenic formulation comprising

a radiopharmaceutical composition according to claim 66, a pH 3-9 buffering agent

and optionally one or more additives selected from the group consisting of ancillary

ligands, reducing agents, transfer ligands, buffers, lyophilization aids, stabilization

aids, solubilization aids, bacteriostats and equipment for administering said

composition.

82. (Original) The diagnostic kit of claim 81, wherein said formulation is in the form of a

sterile solution or lyophilized solid.

83. (Original) A diagnostic kit comprising: a sterile, non-pyrogenic formulation comprising

an X-ray imaging composition according to claim 72, a pH 3-9 buffering agent and

optionally one or more additives selected from the group consisting of ancillary

ligands, reducing agents, transfer ligands, buffers, lyophilization aids, stabilization

aids, solubilization aids, bacteriostats and equipment for administering said

composition.

84. (Original) The diagnostic kit of claim 83, wherein said formulation is in the form of a

sterile solution or lyophilized solid.

85. (Original) A diagnostic kit comprising: a sterile, non-pyrogenic formulation comprising

a magnetic resonance imaging composition according to claim 75, a pH 3-9 buffering

agent and optionally one or more additives selected from the group consisting of

Page 15 of 18

DOCKET NO.: BMS-2204 (DM-6950)

Application No.: 10/033,769

Office Action Dated: October 1, 2004

ancillary ligands, reducing agents, transfer ligands, buffers, lyophilization aids, stabilization aids, solubilization aids, bacteriostats and equipment for administering said composition.

- 86. (Original) The diagnostic kit of claim 85, wherein said formulation is in the form of a sterile solution or lyophilized solid.
- 87. (Currently Amended) A compound having the formula:

$$A[(CR^{17}R^{18})_kNH_2]_m$$

wherein A is a spacer selected from the group consisting of R^1 -C, R^1 -Si, R^1 -Ge, N, P and P(O);

wherein

k is an integer selected from 0 to 3;

m is 3;

- R¹ is independently selected at each occurrence from the group consisting of H, C₁-C₆ alkyl, C₃-C₆ cycloalkyl, C₁-C₆ fluoroalkyl, C₁-C₆ alkenyl, C₃-C₆ cycloalkenyl, C₁-C₆ fluoroalkenyl, benzyl, fluorobenzyl, phenyl and fluorophenyl;
- R^{17} and R^{18} are independently selected from the group consisting of H, C_1 - C_{10} alkyl substituted with 0-5 R^{23} , C_1 - C_{10} fluoroalkyl substituted with 0-5 R^{23} , C_2 - C_{10} alkenyl substituted with 0-5 R^{23} , C_2 - C_{10} fluoroalkenyl substituted with 0-5 R^{23} , aryl substituted with 0-5 R^{23} , C_7 - C_{16} alkaryl wherein the aryl is substituted with 0-5 R^{23} , and fluoroaryl substituted with 0-5 R^{23} ; or R^{17} and R^{18} may be taken together to form a C_3 - C_{10} cycloalkyl or C_3 - C_{10} cycloalkenyl optionally interrupted with C(O)NH, NH,

DOCKET NO.: BMS-2204 (DM-6950)

Application No.: 10/033,769

Office Action Dated: October 1, 2004

NHC(O), NHC(O)NH, NHC(S)NH, O, S, S(O), S(O)₂, P(O)(OR²⁴), P(O)(OR²⁴)O or $P(O)(NHR^{24})O$, or to form a =CH-R^{22a} group, wherein R^{22a} is aryl substituted with 0-5 R²³ or heterocycle substituted by 0-5 R²³;

- R^{23} is selected from the group consisting of H, OH, C_1 - C_3 alkyl, C_1 - C_3 hydroxyalkyl, $C(=O)R^{24}$, $C(=O)OR^{24}$, $C(=O)NR^{24}$, $PO(OR^{24})_2$ and $S(O)_2OR^{24}$; and
- R^{24} is selected from the group consisting of H, C_1 - C_6 alkyl, C_3 - C_6 cycloalkyl, C_1 - C_6 fluoroalkyl, C_1 - C_6 alkenyl, C_3 - C_6 cycloalkyl, C_1 - C_6 fluoroalkenyl, benzyl, fluorobenzyl, phenyl, and fluorophenyl,
- with the proviso that when A is H-Si, k is other than 0, and when A is CH_3 -C and k is 1 and R_{17} is H, R_{18} is other than H.

88-110. (Canceled)