Table 9.1. Theoretical and Experimental Investigation of Condensation

Presence of noncondensable gas			Pure Vapor				Vapor - noncondensable gas						
Vapor-gas boundary layer condition	Stationary Moving vapor(a) vapor					Stationary (b) vapor-gas		Moving vapor-gas Laminar To		Turbulent			
Interface condition	Smooth	Smooth	Wavy	(c) Smooth	1	Smooth(d)	Sm	ooth	W	avy			
Solution of conservation equations	Sparrow & Gr Koh et al Chen	regg (1959) (1961) (1961)	Cess	(1960)	****	Sparr Mink	ow & Ecke ow & Lin owycz & arrow	(1964)) Koh	(1962) et al (197	1)	k Renz	Kim(1990)
Approximate solution	Nusselt	(1961)	Shekriladze & Gomelauri Mayhew et al	(1966) (1966)	****	Rose		(1969)	Rose	(1979)	Whitley	(1976)	Kim(1990)
Experimental work	Mills&Seban Slegers & Seban	(1967) (1969) Goodyk	Mayhew & Aggarwal coontz & Dorsh Jacobs et al	(1966) (1967)	(1973) (1935)	Rose DuVi	050n (1960) an (1970) iwany &	(1929) (1951) Asano (1973) (1984)	et al (1978	(1971)	Dallmey		Barry(1987) ntiniemi(1993)

⁽a) Since there is no heat resistance in a pure vapor boundary layer, the classification of a laminar or turbulent moving vapor are not needed.(b) For the case of the presence of noncondensable gas, the natural convection flow will be generated from the temperature and the concentration difference on the air-vapor boundary layer.

⁽c) Even though the wavy interface does not mean the turbulent condensate film, both phenomena enhance the condensation.

⁽d) The wavy interface with laminar moving vapor-gas mixture is not considered.

^{*****}The analysis or data is sparse and will be discussed in the text.