Constraint Satisfaction Problems

CZ3005: Artificial Intelligence

Shen Zhiqi

Outline

- What is the Constraint Satisfaction Problem?
- Backtracking search
- Forward checking and constraint propagation
- Most-constraining variable and leastconstraining value heuristics
- Search using min-conflict heuristics

Constraint Satisfaction Problem (CSP)

Goal: discover some state that satisfies a given set of constraints

Example: 8-Queens Problem

Example: Cryptarithmetic Puzzle

Constraint Satisfaction Problem (CSP) cont.

Example: Sudoku

Example: Minsweeper

Examples: Real-world CSPs

- Assignment problems
 - e.g., who teaches what class
- Timetabling problems
 - e.g., which class is offered when and where?
- Hardware configuration
- Transportation scheduling
- Factory scheduling
- Floor-planning

CSP

State

 \Box defined by variables V_i with values from domain D_i

Example: 8-queens

- Variables: locations of each of the eight queens
- Values: squares on the board

Goal test

 a set of constraints specifying allowable combinations of values for subsets of variables

Example: 8-queens

Goal test: No two queens in the same row, column or diagonal

Example: Cryptarithmetic Puzzle

- Variables: D, E, M, N, O, R, S, Y
- Domains: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
- Constraints
 - Y = D + E or Y = D + E 10, etc.
 - \Box D \neq E, D \neq M, D \neq N, etc.
 - □ $M \neq 0$, $S \neq 0$ (unary constraints: concern the value of a single variable)

Example: Minesweeper

- Variables: The cells
- Domains: {0; 1} representing {safe, mined}
- □ Constraints: Each cell has a number $m \in \{1, ..., 8\}$ indicating the number of mines nearby, so m is equal to sum of value of neighbour cells

Example: Map Coloring

Color a map so that no adjacent parts have the same color

- Variables: Countries Ci
- Domains: {Red, Blue, Green}
- □ Contraints: C1 ≠ C2, C1 ≠ C5, etc
 - binary constraints

Some Definitions

- A state of the problem is defined by an assignment of values to some or all of the variables
- An assignment that does not violate any constraints is called a consistent or legal assignment
- A solution to a CSP is an assignment with every variable given a value (complete) and the assignment satisfies all the constraints

Visualize a CSP as a Constraint Graph

Nodes: Variables; Arcs/Edges: Constraints.

Applying Standard Search

- States: defined by the values assigned so far
- Initial state: all variables unassigned
- Actions: assign a value to an unassigned variable
- Goal test: all variables assigned, no constraints violated

Question: How to represent constraints?

Answer: Explicitly (e.g., D \neq E)

Example

- □ Row the 1st queen occupies: $V_1 \in \{1, 2, 3, 4, 5, 6, 7, 8\}$ (similarly, for V_2)
- □ No-attack constraint for V_1 and V_2 : { <1, 3>, <1, 4>, <1, 5>, ..., <2, 4>, <2, 5>, ...}

Implicitly: use a function to test for constraint satisfaction

Applying Standard Search...

- Number of variables: n
- Max. depth of space: n
- \Box Depth of solution state: n (all variables assigned)
- Search algorithm: depth-first search

Backtracking Search

Backtracking search: Do not waste time searching when constraints have already been violated

- Before generating successors, check for constraint violations
- If yes, backtrack to try something else

Example (4-Queens)

Heuristics for CSPs

Plain backtracking is an uninformed algorithm!!

More intelligent search that takes into consideration

- Which variable to assign next
- What order of the values to try for each variable
- Implications of current variable assignments for the other unassigned variables
 - forward checking and constraint propagation

Constraint propagation: propagating the implications of a constraint on one variable onto other variables

Constraint Propagation for 8-Queens

Solution for 8-Queens

Search Tree of 4-Queens with Constraint Propagation

Example (Map Coloring)

Example (Map Coloring)...

Example (Map Coloring)...

Most Constrained Variable (or minimum remaining values (MRV) heuristic

To reduce the branching factor on future choices by selecting the variable that is involved in the **largest number of constraints** on unassigned variables.

Not covered in any exam

Least Constraining Value

Choose the value that leaves maximum flexibility for subsequent variable assignments

Not covered in any exam

Min-Conflicts Heuristic (8-queens)

- A local heuristic search method for solving CSPs
- Given an initial assignment, selects a variable in the scope of a violated constraint and assigns it to the value that minimizes the number of violated constraints

Not covered in any exam