coterminous edges
$$\hat{a}$$
, \hat{b} and \vec{c} will be (in cu.units)-

(A) 6

(B) 4

(D) $\frac{1}{2}$

(D) $\frac{1}{2}$

(E) \vec{c}

(D) \vec{c}

(D) \vec{c}

(E) \vec{c}

(D) \vec{c}

(E) \vec{c}

(D) \vec{c}

Q If for unit vectors \hat{a} , \hat{b} and non-zero \vec{c} , $\hat{a} \times \hat{b} + \hat{a} = \vec{c}$ and $\hat{b} \cdot \vec{c} = 0$, then volume of parallelopiped with

ot with
$$\hat{b}$$
:
$$(\hat{a} \times \hat{b}) \cdot \hat{b} + \hat{a} \cdot \hat{b} = \hat{b} \cdot \hat{c} \Rightarrow \hat{a} \cdot \hat{b} = 0 \Rightarrow \theta \cdot (\hat{a} \wedge \hat{b}) = \frac{\pi}{2}$$

ot with
$$\hat{b}$$
:

 $(\hat{a}x\hat{b}).\hat{b} + \hat{a}.\hat{b} = \hat{b}.\hat{c}$
 \hat{a}

but with \hat{a} :

 \hat{c}
 \hat{c}

$$(\hat{a}x\hat{b}).\hat{b} + \hat{a}.\hat{b} = \hat{b}.\hat{c}$$

$$dot with \hat{a} :=$$

$$(\hat{a}x\hat{b}).\hat{a} + \hat{a}.\hat{a} = \hat{c}.\hat{a} \Rightarrow \vec{c}.\hat{a} = 1$$

dot with
$$\hat{a} := \hat{c} \cdot \hat{a}$$

 $\chi = c^2 + \chi - 2$

[]= 12] put in 3

ot with
$$\hat{a}$$
:

 \hat{c}
 $\hat{c$

$$(\hat{a} \times \hat{b}) \cdot \hat{a} + \hat{a} \cdot \hat{a} = c \cdot \hat{a}$$

$$(\hat{a} \times \hat{b})^{2} = (\hat{c} - \hat{a})^{2}$$

$$(a)^{2} = (c^{2} - a)^{2}$$

$$(b)^{2} = (c^{2} - a)^{2}$$

$$(\hat{\alpha} \times \hat{b})^2 = (\hat{c} - \hat{\alpha})^2$$

$$\hat{\alpha}^2 \hat{b}^2 \sin^2 \frac{\pi}{2} = c^2 + \hat{\alpha}^2 - \partial \hat{c} \cdot \hat{\alpha}$$

$$-\hat{\alpha}$$
) $=$ $\hat{\alpha}$ $=$ $\hat{\alpha}$ $=$ $\hat{\alpha}$ $=$ $\hat{\alpha}$ $=$ $\hat{\alpha}$ $=$ $\hat{\alpha}$ $=$ $\hat{\alpha}$

$$J = 2 - 1 = 1$$

Q Projection of line segment joining (2,3,4) and (5,6,7) on plane 2x + y + z = 1 is:
(A) 2

(B) $\sqrt{3}$ (C) 3

(D) $3\sqrt{3}$ (D) 3

Let shortest distance between two opposite edges of a tetrahedron is '4 unit' and the length of these opposite edges are same and equal to 6 unit. If angle between these two opposite edges is 30° and volume of tetrahedron is V, the value of $\frac{V}{\kappa}$ is AB & CD are oppedges

$$|\overrightarrow{AB}| = |\overrightarrow{CD}| = 6.$$

$$|\overrightarrow{AB}| = |\overrightarrow{CD}| = 6.$$

$$|\overrightarrow{S} \cdot D = |\overrightarrow{A} \cdot ((\overrightarrow{A} - \overrightarrow{b}) \times \overrightarrow{C})|$$

$$|\overrightarrow{B} - \overrightarrow{A}| = 6.$$

$$|\overrightarrow{S} \cdot D = |\overrightarrow{A} \cdot ((\overrightarrow{A} - \overrightarrow{b}) \times \overrightarrow{C})|$$

$$|\overrightarrow{AB}| = |\overrightarrow{CD}| = 6.$$

$$|\vec{b} - \vec{a}| = 6$$

$$|\vec{b} - \vec{a}| = 6$$

$$|\vec{c} - \vec{b}| \times \vec{c}|$$

$$|\vec{c} - \vec{c}| \times \vec{c}|$$

$$|\vec{c} - \vec{c}$$

$$||\vec{\alpha} - \vec{b}| \times \vec{c}| = |\vec{\alpha} - \vec{b}||\vec{c}| \leq \sin 3\vec{o}$$

$$= 6.6. \frac{1}{3}$$

$$= 18$$

$$||\vec{\alpha} - \vec{b}| \times \vec{c}|$$

$$= 6.6. \frac{1}{3}$$

$$= 18$$

$$= 18$$

$$\frac{\checkmark}{6} =$$

A plane passing through (1, 1, 1) cut positive direction of co-ordinate axes at A, B and C, then the volume of tetrahedron OABC (as V) satisfies

Q

(1)
$$V \leq \frac{9}{2}$$

(2) $V \geq \frac{9}{2}$

(3) $V = \frac{9}{2}$

(4) None

$$P: \frac{\times}{a} + \frac{1}{b} + \frac{2}{c} = 1$$

$$C(0,0,c)$$

$$V = \frac{1}{6} \left[\overrightarrow{OR} \overrightarrow{OB} \overrightarrow{OC} \right] = \frac{1}{6} \left(\overrightarrow{Abc} \right)$$

(Abc)

$$V = \frac{1}{6} \left[\overrightarrow{OR} \overrightarrow{OB} \overrightarrow{OC} \right] = \frac{1}{6} \left(\overrightarrow{Abc} \right)$$

(Abc)

$$V = \frac{1}{6} \left[\overrightarrow{OR} \overrightarrow{OB} \overrightarrow{OC} \right] = \frac{1}{6} \left(\overrightarrow{Abc} \right)$$

(Abc)

$$V = \frac{1}{6} \left[\overrightarrow{OR} \overrightarrow{OB} \overrightarrow{OC} \right] = \frac{1}{6} \left(\overrightarrow{Abc} \right)$$

Q Let $P_1 = x + y + z + 1 = 0$, $P_2 = x - y + 2z + 1 = 0$, $P_3 = 3x + y + 4z + 7 = 0$ be three planes. Find the distance of line of intersection of planes $P_1 = 0$ and $P_2 = 0$ from the plane $P_3 = 0$.

0. (A)
$$\frac{2}{\sqrt{26}}$$
 (C) $\sqrt{\frac{1}{26}}$ (D) $\frac{7}{\sqrt{26}}$ $\sqrt{z} = 0$ in both plans

Paragraph

A plane p contains the line $L_1: \frac{y}{b} + \frac{z}{c} = 1$, x = 0 and is parallel to the line $L_2: \frac{x}{a} - \frac{z}{c} = 1$, y = 0

- **1.** If the shortest distance between L_1 and L_2 is $\frac{1}{4}$ then the value of $\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}$ equals:
 - (A) 16
- (C) 128
- Distance of image of A(a, 0, 0) in the plane p from $M\left(-\frac{5}{3}, \frac{8}{3}, \frac{11}{3}\right)$ where a = b = c = 1 is equal
 - to:
 - (A) 1
- (B) 2

$$L_1: \frac{y}{b} - 1 = -\frac{z}{c} / x = 0$$

$$L_1: \frac{x-0}{0} = \frac{y-b}{-b} = \frac{z}{c}$$

$$L_2: \quad \frac{\chi - \alpha}{\alpha} = \frac{1}{\zeta} = \frac{Z}{\zeta}.$$

Equation of plane P:
$$\begin{vmatrix} x & y-b & z \\ 0 & -b & c \\ a & 0 & c \end{vmatrix} = 0$$

Image of A (a,0,0) (where a=b=c=1) in plane P=0 is $A'\left(-\frac{1}{3}, \frac{4}{3}, \frac{4}{3}\right)$

Hence distance between A' & M 183.

$$L_{1}: \overrightarrow{\gamma} = b \hat{j} + \lambda (-b \hat{j} + c \hat{k})$$

$$L_{2}: \overrightarrow{\gamma} = a \hat{j} + 4(a \hat{i} + c \hat{k})$$

$$S-D = \frac{1}{4} = \begin{vmatrix} -a & b & 0 \\ 0 & -b & c \\ a & 0 & c \end{vmatrix}$$

$$(ab)^{2} + (bc)^{2} + (ca)^{2}$$

 $\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} = 64.$

Q If three points
$$(2\vec{p} - \vec{q} + 3\vec{r})$$
, $(\vec{p} - 2\vec{q} + \alpha\vec{r})$ and $(\beta\vec{p} - 5\vec{q})$ (Where \vec{p} , \vec{q} , \vec{r} are noncoplanar vectors) are collinear, then $\frac{1}{(\alpha + \beta)}$ is

coplanar vectors) are collinear, then
$$(\alpha + \beta)$$
 is

(A) 4 (B) 5 (C) 6 (D) 7

$$A \left(2\vec{p} - \vec{q} + 3\vec{r} \right)$$

$$B \left(\vec{p} - 2\vec{q} + \alpha \vec{r} \right)$$

$$C \left(\beta \vec{p} - 5\vec{q} \right)$$

$$\vec{B}\vec{A} = \vec{p} + \vec{q} + (3 - \alpha)\vec{r}$$

$$\vec{B}\vec{A} = (\beta - 1)\vec{p} - 3\vec{q} - \alpha\vec{r}$$

$$\vec{B}\vec{A} = \lambda \vec{C}\vec{B}$$

$$\vec{B} = (\beta - 1)\vec{p} + \vec{q} (1 + 3\lambda) + \vec{r} (3 - \alpha + \alpha \lambda) = \vec{0}$$

$$3A = \lambda CB$$

 $3(1-\lambda(\beta-1)) + \overrightarrow{9}(1+3\lambda) + \overrightarrow{r}(3-\alpha+\alpha\lambda) =$

$$1-\lambda(\beta-1)=0$$
; $1+3\lambda=0$; $3-\alpha+\alpha\lambda=0$.
 $\lambda=-\frac{1}{3}$; $\beta=-2$; $\alpha=\frac{9}{4}$.