SISTEMA DIGITALEN DISEINUKO OINARRIAK ARIKETA KLASEAN 5. GAIA

1. Zirkuitu konbinazional bat diseinatu, bere funtzioa lantegi baten hiru langilen gako edo klabea noiz sartu den (lau biteko K₃K₂K₁K₀ zenbaki bitar baten bidez) detektatzea dena. Klabeak 7, 13 eta 15 dira; F sortutako funtzioa 1 da horietako zenbaki bat sartzen denean. (3 puntu)

K_3	K_2	K_{I}	K_0	F
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	1
1	1	1	0	0
1	1	1	1	1

$$F(K_3, K_2, K_1, K_0) = \sum m (7, 13, 15)$$

$$F = K_2 \cdot K_1 \cdot K_0 + K_3 \cdot K_2 \cdot K_0$$

$$4 \text{ AND , 1 OR}$$

$$F = K_0 \cdot K_2 \cdot (K_3 + K_1)$$

$$2 \text{ AND , 1 OR} \Rightarrow \text{Minimoa}$$

2. F funtzioa lantegia ixteko sistema baten aktibatzen duen seinalea izango da. Sistemak, Z₁ (atea ixten duena) eta Z₀ (argiak itzaltzen duena) seinaleak sortuko ditu. Sistema itxaron egoeran (bi seinaleak 0an) egongo da F seinalearen balioa 1 izan arte. Hurrengo erloju periodoan ez du ezer egingo, baina bigarren periodoan argiak itzaliko dira (Z₀=1) eta hirugarren periodoan ateak itxiko dira ere bai (Z₁ eta Z₀ 1ean). Egoera horretan mantenduko da lantegia berriro zabaltzeko ordua heldu arte, eta horretarako badago sarrera asinkrono bat I, hasierako itxaron egoerara itzultzeko. F 1ean badago ateak itxi eta argiak itzali duen egoeran, sistemak erroreren bat gertatu dela ulertuko du eta hasierako itxaron egoerara itzuliko da. (7 puntu)

Aholkua: Zirkuitu hau lau egoera duen kontagailu bat da, lehenengo eta bigarren egoerek irteera berdina izaten dute (Z_1 eta Z_0 0an). Moore eredua eta JK flip-flop erabil itzazue.

Oraingo egoera	F=0	F=1	Z ₁	$Z_{_{0}}$
A	A	В	0	0
В	C	C	0	0
C	D	D	0	1
D	D	A	1	1

Oraingo egoera	$Q_{_{I}}$	$\mathcal{Q}_{_{\scriptscriptstyle{ heta}}}$	
A	0	0	
В	0	1	
C	1	1	
D	1	0	

Ī

$Q_{\scriptscriptstyle I}Q_{\scriptscriptstyle 0}$	F=0	F=1	$Z_{_{I}}$	Z_{o}
00	00	01	0	0
01	11	11	0	0
11	10	10	0	1
10	10	00	1	1

$$Q_1^*Q_{\theta}^*$$

$$J_{I}K_{I}J_{0}K_{0}$$

$$Z_0 = Q_1$$

$$Z_1 = Q_1 \cdot \bar{Q}_0$$

