PH126 Logic I Lecture 10

Lecturer: s.butterfill@warwick.ac.uk

Scope

Underlining shows the scope of the quantifiers

"All squares are blue" $\forall x \text{ (Square(x) } \rightarrow \text{Blue(x)) }$

"If everything is square, everything is blue" $\forall \mathbf{x} \ \mathsf{Square}(\mathbf{x}) \rightarrow \forall \mathbf{x} \ \mathsf{Blue}(\mathbf{x})$

Quantifiers bind variables

Read §9.2 of Barwise & Etchemendy

Multiple quantifiers: simple examples

"Something is above something" $\exists x \exists y \text{ Above}(x,y)$

"Everyone likes puffins" $\forall y \ \forall x \ (Puffin(x) \rightarrow Likes(y,x))$

Puffin(x): x is a puffin

b:Steve

Likes(x,y): x likes y

"Something makes someone want to die inside" $\exists x \exists y \text{ WantToDieInside}(x,y)$

WantToDieInside(x,y): x makes y want to die inside

Invalid use of ∃Elim

Proof example: ∃Elim

Tonk

Quantifiers and number

To translate statements involving number into FOL, use identity

E.g. Two objects are broken:

$$\exists x \exists y (Broken(x) \land Broken(y) \land \neg(x=y))$$

Ex. Translate ∀Three objects are broken into FOL∀