Top-Down and LL(1) Parsing

Parse Table

Applicable Productions

For leftmost variable A and current input token $b \in \Sigma \cup \{\$\}$, the applicable productions are

- all productions $A \to \alpha$ s.t. $b \in \text{FIRST}(\alpha)$, and
- all productions $A \to \alpha$ s.t. $\epsilon \in \text{FIRST}(\alpha)$ and $b \in \text{FOLLOW}(A)$.

Let's construct the parse table for the grammar we've been looking at.

$$S \rightarrow XSa \mid Yc$$

$$X \rightarrow aY \mid YY$$

$$Y \rightarrow bSa \mid cX \mid \epsilon$$

$$\begin{aligned} \operatorname{FIRST}(XSa) &= \{a,b,c\} & \operatorname{FOLLOW}(S) &= \{a,\$\} \\ \operatorname{FIRST}(Yc) &= \{b,c\} & \operatorname{FOLLOW}(X) &= \{a,b,c\} \\ \operatorname{FIRST}(YY) &= \{b,c,\epsilon\} & \operatorname{FOLLOW}(Y) &= \{a,b,c\} \end{aligned}$$

LEFTMOST	CURRENT INPUT TOKEN				
VARIABLE	a	c	\$		
S	$S \to XSa$	$S \rightarrow XSa \mid Yc$	$S \rightarrow XSa \mid Yc$	none	
X	$X \to aY \mid YY$	$X \to YY$	$X \to YY$	none	
Y	$Y ightarrow \epsilon$	$Y \rightarrow bSa \mid \epsilon$	$Y \rightarrow cX \mid \epsilon$	none	

LEFTMOST	CURRENT INPUT TOKEN				
VARIABLE	a	b	c	\$	
S	$S \to XSa$	$S \rightarrow XSa \mid Yc$	$S \rightarrow XSa \mid Yc$	none	
X	$X \to aY \mid YY$	$X \to YY$	$X \to YY$	none	
Y	$Y ightarrow \epsilon$	$Y \rightarrow bSa \mid \epsilon$	$Y \rightarrow cX \mid \epsilon$	none	

Input string: aca

Note: There is no need to add $S' \rightarrow S$ \$ always. If we add this then an entry in the parse table with S' should exist!

STACK	CURRENT INPUT	PRODUCTION TO APPLY
S\$	aca\$	$S \to XSa$
XSa\$	aca\$	$X \to aY$ (backtrack $X \to YY$)
aYSa\$	aca\$	$\mathrm{match}\ a$
YSa\$	ca\$	$Y \to \epsilon$ (backtrack $Y \to cX$)
Sa\$	ca\$	$S \to Yc$ (backtrack $S \to XSa$)
Y ca\$	ca\$	$Y \to \epsilon$ (backtrack $Y \to cX$)
ca\$	ca\$	$\mathrm{match}\ c$
a\$	a\$	$\mathrm{match}\ a$
\$	\$	successful parse

LL(1) Grammar

 A grammar without left recursion is said to be LL(1), if there is atmost one production in every entry of the parsing table.

• So the previous grammar $X \rightarrow XSa \mid Yc$ $X \rightarrow aY \mid YY$ $Y \rightarrow bSa \mid cX \mid \epsilon$ LL(1).

$$\begin{array}{ccc} S & \rightarrow & XSa \mid Yc \\ X & \rightarrow & aY \mid YY \\ Y & \rightarrow & bSa \mid cX \mid \epsilon \end{array}$$

is not

$$E \rightarrow T E'$$

$$E' \rightarrow + T E' \mid \epsilon$$

$$T \rightarrow F T'$$

$$T' \rightarrow * F T' \mid \epsilon$$

$$F \rightarrow (E) \mid \mathbf{id}$$

$$(4.28)$$

Variable	FIRST
F	(, id
Т	(, id
E	(, id
E'	+, ε
T'	*, ε

$$\begin{aligned} & \text{Follow}(E) \ = \ \text{Follow}(E') \ = \ \{),\$\}. \\ & \text{Follow}(T) = \text{Follow}(T') = \{+,),\$\}. \\ & \text{Follow}(F) = \{+,*,),\$\}. \end{aligned}$$

$$E \rightarrow T E'$$

$$E' \rightarrow + T E' \mid \epsilon$$

$$T \rightarrow F T'$$

$$T' \rightarrow * F T' \mid \epsilon$$

$$F \rightarrow (E) \mid \mathbf{id}$$

$$(4.28)$$

NON -	INPUT SYMBOL					
TERMINAL	id	+	*	()	\$
E	$E \to TE'$			$E \to TE'$,
E'		$E' \rightarrow +TE'$			$E' \to \epsilon$	$E' \to \epsilon$
T	$T \to FT'$			$T \to FT'$		
T'		$T' ightarrow \epsilon$	T' o *FT'		$T' \to \epsilon$	$T' o \epsilon$
F	$F o \mathbf{id}$			$F \to (E)$		

Parse Table for Grammar (4.28)

So, the grammar is LL(1).

NON -	INPUT SYMBOL					
TERMINAL	id	+	*	()	\$
E	$E \rightarrow TE'$			$E \to TE'$		
E'		$E' \rightarrow +TE'$			$E' \to \epsilon$	$E' \to \epsilon$
T	$T \rightarrow FT'$			$T \to FT'$		
T'		$T' ightarrow \epsilon$	T' o *FT'	,	$T' \to \epsilon$	$T' o \epsilon$
$oldsymbol{F}$	$F o \mathbf{id}$			F o (E)		

MATCHED	STACK	INPUT	ACTION
	E\$	id + id * id\$	
	TE'\$	id + id * id id	output $E \to TE'$
	FT'E'\$	id + id * id \$	output $T \to FT'$
	id $T'E'$ \$	id + id * id\$	output $F \to \mathbf{id}$
id	T'E'\$	+ id * id\$	match id
id	E'\$	+ id * id\$	output $T' \to \epsilon$
id	+ TE'\$	$+\operatorname{id}*\operatorname{id}$	output $E' \to + TE'$
id +	TE'\$	id*id\$	match +
id +	FT'E'\$	id*id\$	output $T \to FT'$
id +	id <i>T'E'</i> \$	$\mathbf{id} * \mathbf{id} \$$	output $F \to \mathbf{id}$
id + id	T'E'\$	* i d\$	match id
id + id	*FT'E'\$	*id\$	output $T' \to *FT'$
id + id *	FT'E'\$	id\$	$\mathrm{match} \ *$
id + id *	id $T'E'$ \$	id\$	output $F \to id$
id + id * id	T'E'\$	\$	$\operatorname{match} \operatorname{\mathbf{id}}$
id + id * id	E'\$	\$	output $T' \to \epsilon$
id + id * id	\$	\$	output $E' \to \epsilon$

Moves made by LL(1) parser on input id + id * id

$$E \underset{lm}{\Rightarrow} TE' \underset{lm}{\Rightarrow} FT'E' \underset{lm}{\Rightarrow} \operatorname{id} T'E' \underset{lm}{\Rightarrow} \operatorname{id} E' \underset{lm}{\Rightarrow} \operatorname{id} + TE' \underset{lm}{\Rightarrow} \cdots \underset{lm}{\Rightarrow} \operatorname{id} + \operatorname{id} * \operatorname{id}$$