

Lecture 7: Introduction to Probability-II

Dr. A. Ramesh

Department of Management Studies

Problem

- A company data reveal that 155 employees worked one of four types of positions.
- Shown here again is the raw values matrix (also called a contingency table)
 with the frequency counts for each category and for subtotals and totals
 containing a breakdown of these employees by type of position and by
 sex.

Contingency Table

COMPANY HUMAN RESOURCE DATA

		S		
		Male	Female	
	Managerial	8	3	11
Type of	Professional	31	13	44
of Position	Technical	52	17	69
	Clerical	9	22	31
	'	100	55	155

Solution

• If an employee of the company is selected randomly, what is the probability that the employee is female or a professional worker?

$$P(F \cup P) = P(F) + P(P) - P(F \cap P)$$

$$P(F \cup P) = .355 + .284 - .084 = .555.$$

Problem

- Shown here are the raw values matrix and corresponding probability matrix for the results of a national survey of 200 executives who were asked to identify the geographic locale of their company and their company's industry type.
- The executives were only allowed to select one locale and one industry type.

RAW VALUES MATRIX

		Geographic Location				
		Northeast D	Southeast E	Midwest F	West G	
	Finance A	24	10	8	14	56
Industry Type	Manufacturing B	30	6	22	12	70
,,	Communications C	28	18	12	16	74
		82	34	42	42	200

Questions

- a. What is the probability that the respondent is from the Midwest (F)?
- **b.** What is the probability that the respondent is from the communications industry (C) or from the Northeast (D)?
- **c.** What is the probability that the respondent is from the Southeast (E) or from the finance industry (A)?

PROBABILITY MATRIX

		Geographic Location				
		Northeast D	Southeast E	Midwest F	West G	
	Finance A	.12	.05	.04	.07	.28
Industry Type	Manufacturing B	.15	.03	.11	.06	.35
	Communications C	.14	.09	.06	.08	.37
		.41	.17	.21	.21	1.00

Mutually Exclusive Events

Total

44

69

31

155

Type of **Position** Managerial **Professional Technical** Clerical **Total**

Ger	Gender			
Male	Fer			
8				
21				

Male	<u> Female</u>
8	3
31	13
52	17
9	22
100	55

$$P(T \cup C) = P(T) + P(C)$$

$$= \frac{69}{155} + \frac{31}{155}$$

$$= .645$$

Mutually Exclusive Events

Type of
Position
Managerial
Professional
Technical
Clerical
Total

	Gend	der	
N	lale	<u>Female</u>	Total
	8	3	11
	31	13	44
	52	17	69
	9	22	31
•	100	55	155
P	$P(P \cup C)$	C) = P(P) + P(P)	(C)
		_ 44 _ 31	
		$=\frac{1}{155}+\frac{1}{155}$	

=.484

Law of Multiplication

$$P(X \cap Y) = P(X) \cdot P(Y|X) = P(Y) \cdot P(X|Y)$$

Problem

- A company has 140 employees, of which 30 are supervisors.
- Eighty of the employees are married, and 20% of the married employees are supervisors.
- If a company employee is randomly selected, what is the probability that the employee is married and is a supervisor?

		Mar		
		Y	N	Sub total
Supervisor	Υ	0.1143		30
	N			110
	Sub total	80	60	140

$$P(M) = \frac{80}{140} = 0.5714$$

$$P(S|M) = 0.20$$

$$P(M \cap S) = P(M) \cdot P(S|M)$$

$$= (0.5714)(0.20) = 0.1143$$

Law of Multiplication

$$P(\overline{S}) = 1 - P(S)$$
= 1 - 0.2143 = 0.7857
$$P(\overline{M} \cap \overline{S}) = P(\overline{S}) - P(M \cap \overline{S})$$
= 0.7857 - 0.4571 = 0.3286

$$P(M \cap \overline{S}) = P(M) - P(M \cap S)$$

$$= 0.5714 - 0.1143 = 0.4571$$

$$P(\overline{M} \cap S) = P(S) - P(M \cap S)$$

$$= 0.2143 - 0.1143 = 0.1000$$

$$P(\overline{M}) = 1 - P(M)$$

$$= 1 - 0.5714 = 0.4286$$

Special Law of Multiplication for Independent Events

General Law

$$P(X \cap Y) = P(X) \cdot P(Y \mid X) = P(Y) \cdot P(X \mid Y)$$

Special Law

If events X and Y are independent,

$$P(X) = P(X | Y)$$
, and $P(Y) = P(Y | X)$.

Consequently,

$$P(X \cap Y) = P(X) \cdot P(Y)$$

Law of Conditional Probability

The conditional probability of X given Y is the <u>joint</u> probability of X and Y <u>divided by</u> the <u>marginal</u> probability of Y.

$$P(X|Y) = \frac{P(X \cap Y)}{P(Y)} = \frac{P(Y|X) \cdot P(X)}{P(Y)}$$

Conditional Probability

A conditional probability is the probability of one event, given that another event has occurred:

$$P(A \mid B) = \frac{P(A \text{ and } B)}{P(B)}$$
The conditional probability of A that B has occur

probability of A given that B has occurred

$$P(B \mid A) = \frac{P(A \text{ and } B)}{P(A)}$$

The conditional probability of B given that A has occurred

Where P(A and B) = joint probability of A and B

P(A) = marginal probability of A

P(B) = marginal probability of B

Computing Conditional Probability

- Of the cars on a used car lot, 70% have air conditioning (AC) and 40% have a CD player (CD). 20% of the cars have both.
- What is the probability that a car has a CD player, given that it has AC?
- We want to find P(CD | AC).

Computing Conditional Probability

	CD	No CD	Total
AC	0.2	0.5	0.7
No AC	0.2	0.1	0.3
Total	0.4	0.6	1.0

$$P(CD \mid AC) = \frac{P(CD \text{ and } AC)}{P(AC)} = \frac{.2}{.7} = .2857$$

Given AC, we only consider the top row (70% of the cars). Of these, 20% have a CD player. 20% of 70% is about 28.57%.

Computing Conditional Probability: Decision Trees

Independent Events

- If X and Y are independent events, the occurrence of Y does not affect the probability of X occurring.
- If X and Y are independent events, the occurrence of X does not affect the probability of Y occurring.

If X and Y are independent events

$$P(X|Y) = P(X)$$
, and

$$P(Y|X) = P(Y)$$
.

Statistical Independence

Two events are independent if and only if:

$$P(A | B) = P(A)$$

 Events A and B are independent when the probability of one event is not affected by the other event

Independent Events Demonstration

	Geographic Location				
	Northeast D	Southeast E	Midwest F	West G	
Finance A	.12	.05	.04	.07	.28
Manufacturing B	.15	.03	.11	.06	.35
Communications C	.14	.09	.06	.08	.37
	.41	.17	.21	.21	1.00

Test the matrix for the 200 executive responses to determine whether industry type is independent of geographic location.

Independent Events Demonstration contd...

$$P(A|G) = \frac{P(A \cap G)}{P(G)} = \frac{0.07}{0.21} = 0.33 \qquad P(A) = 0.28$$
$$P(A|G) = 0.33 \neq P(A) = 0.28$$

Independent Events

D E
A 8 12 20
B 20 30 50
C 6 9 15
34 51 85

$$P(A|D) = \frac{8}{34} = .2353$$

$$P(A) = \frac{20}{85} = .2353$$

$$P(A|D) = P(A) = 0.2353$$

Revision of Probabilities: Bayes' Rule

- An extension to the conditional law of probabilities
- Enables revision of original probabilities with new information

$$P(X_i|Y) = \frac{P(Y|X_i)P(X_i)}{P(Y|X_1)P(X_1) + P(Y|X_2)P(X_2) + \cdots + P(Y|X_n)P(X_n)}$$

Problem

- A particular type of printer ribbon is produced by only two companies, Alamo Ribbon Company and South Jersey Products.
- Suppose Alamo produces 65% of the ribbons and that South Jersey produces 35%.
- Eight percent of the ribbons produced by Alamo are defective and 12% of the South Jersey ribbons are defective
- A customer purchases a new ribbon. What is the probability that Alamo produced the ribbon? What is the probability that South Jersey produced the ribbon?

Revision of Probabilities with Bayes' Rule: Ribbon Problem

$$P(Alamo) = 0.65 P(SouthJersey) = 0.35 P(d|Alamo) = 0.08 P(d|SouthJersey) = 0.12 P(Alamo|d) =
$$\frac{P(d|Alamo) \cdot P(Alamo)}{P(d|Alamo) \cdot P(Alamo) + P(d|SouthJersey) \cdot P(SouthJersey)}$$
$$= \frac{(0.08)(0.65)}{(0.08)(0.65) + (0.12)(0.35)} = 0.553$$
$$P(SouthJersey|d) = \frac{P(d|SouthJersey) \cdot P(SouthJersey)}{P(d|Alamo) \cdot P(Alamo) + P(d|SouthJersey) \cdot P(SouthJersey)}$$
$$= \frac{(0.12)(0.35)}{(0.08)(0.65) + (0.12)(0.35)} = 0.447$$$$

Revision of Probabilities with Bayes' Rule: Ribbon Problem

$P(E_i)$	$P(d E_i)$	Probability $P(E_i \cap d)$	Revised Probability $P(E_i d)$
0.65	0.08	0.052	<u>0.052</u> 0.094
			=0.553
0.35	0.12	0.042	<u>0.042</u> 0.094
		0.094	=0.447
	$P(E_i)$	0.65 0.08	$P(E_i)$ $P(d E_i)$ $P(E_i \cap d)$ 0.65 0.08 0.052 0.35 0.12 0.042

Revision of Probabilities with Bayes' Rule: Ribbon Problem

THANK YOU

