Лекция 1. АФФИННЫЕ ПРОСТРАНСТВА

 \overrightarrow{E} отображением $f: E \times E \to \overrightarrow{E}$. Обладает свойствами (вместо f(a,b) используются обозначения \overrightarrow{ab} или $\overrightarrow{a,b}$):

- 1. $(\forall a, b, c \in E) (\overrightarrow{ab} + \overrightarrow{bc} + \overrightarrow{ca} = \overrightarrow{0} \in \overrightarrow{E});$
- 2. ($\forall a \in E$) ($x \rightarrow \overrightarrow{ax}$ биекция на \overrightarrow{E});
- 3. $(\forall a \in E) (\overrightarrow{aa} = \overrightarrow{0});$
- 4. $(\forall a, b \in E) (\overrightarrow{ab} + \overrightarrow{ba} = \overrightarrow{0});$
- 5. $(\forall a \in E) (\forall \vec{h} \in \vec{E}) (\exists ! b \in E) (\overrightarrow{ab} = \vec{h});$
- 6. $(\forall a \in E) (\forall \vec{h}, \vec{k} \in \vec{E}) (a + (\vec{h} + \vec{k}) = (a + \vec{h}) + \vec{k})$.

Если а — точка аффинного пространства E, а \vec{h} — вектор связанного с ним векторного пространства \vec{E} , то пару (a, h) называют вектором \vec{h} , закрепленным в точке a.

Закрепленный вектор \overrightarrow{ab} изображают на рисунке стрелкой от а к b и называют направленным отрезком. В противоположность названию закрепленный вектор, для векторов из векторного пространства E используют название *свободный вектор*.

Прямой, проходящей через точки A, B аффинного пространства E, назовем множество точек I (A, B) = $\{M \in E \mid M = A + t \cdot \overrightarrow{AB}, t \in R\}$.

Размерностью аффинного пространства E называют размерность связанного с ним векторного пространства \vec{E} .

Аффинное пространство E - евклидово аффинное пространство или евклидово точечное пространство, если связанное с ним векторное пространство E евклидово (на этом векторном пространстве задано скалярное произведение и, следовательно, норма).

Аффинные координаты и преобразования:

Пусть E = Eⁿ, тогда вектор $\overrightarrow{OM} \in \overrightarrow{E} = R^n$ можно разложить по базису $(\overrightarrow{e^1}, ..., \overrightarrow{e^n})$ векторного пространства R^n :

$$M = O + \sum_{j=1}^{n} x_j \vec{e}_j.$$

Пусть $O \in E^n$, а $(\overrightarrow{e^1},...,\overrightarrow{e^n})$ — базис пространства R^n . Упорядоченная последовательность $(O,\overrightarrow{e^1},...,\overrightarrow{e^n})$ - репером пространства E^n .

Вещественные числа $x_1, ..., x_n$ в - аффинные координаты точки $M \in E^n$ относительно выбранного репера с началом $O \in E^n$ и базисом $(\overrightarrow{e^1}, ..., \overrightarrow{e^n})$.

Каждому базису аффинного пространства E^n отвечает его репер. Каждому реперу аффинного пространства E^n можно сопоставить базис. Вместо базиса можно задать аффинную систему координат — начало координат и упорядоченный набор прямых (оси).

Пусть (O, $\overrightarrow{e^1}$, ..., $\overrightarrow{e^n}$) — репер в пространстве ${\sf E^n}$, и пусть

$$M = O + \sum_{j=1}^{n} x_j \vec{e_j}, \quad N = O + \sum_{j=1}^{n} y_j \vec{e_j}$$

- представления точек M, N \in Eⁿ в этом репере. Используя \overrightarrow{MO} + \overrightarrow{ON} + \overrightarrow{NM} = $\overrightarrow{0}$ и \overrightarrow{MO} = - \overrightarrow{OM} , получим:

$$\overrightarrow{MN} = \overrightarrow{MO} + \overrightarrow{ON} = \overrightarrow{ON} - \overrightarrow{OM} = \sum_{j=1}^{n} (y_j - x_j) \vec{e}_j.$$

Связь между координатами точки в различных реперах: пусть

$$M = O + \sum_{j=1}^{n} x_{j} \vec{e}_{j} = O_{1} + \sum_{j=1}^{n} \tilde{x}_{j} \vec{e}_{j}, \quad O_{1} = O + \sum_{j=1}^{n} a_{j} \vec{e}_{j},$$

- тогда:

$$O + \sum_{j=1}^{n} x_j \vec{e}_j = O + \sum_{j=1}^{n} a_j \vec{e}_j + \sum_{j=1}^{n} \tilde{x}_j \vec{e}_j$$

$$x_j = \tilde{x}_j + a_j, \ j \in [1:n].$$

Ортонормированные базисы $(\overrightarrow{e'^1},...,\overrightarrow{e'^n}), (\overrightarrow{e''^1},...,\overrightarrow{e''^n})$ пространства \mathbb{R}^n связаны равенствами:

$$\vec{e}\,_i'' = \sum\nolimits_{j=1}^n p_{i,j} \vec{e}\,_j', \ i \in [1:n],$$

 $P = (p_{i,j})$ - числовая матрица удовлетворяющая условию ортогональности $P^T = P^{-1}$ или $P^TP = I$.

Если вектор $x' = (x'_1, ..., x'_n), x'' = (x''_1, ..., x''_n)$ — два разложения одного и того же вектора x по базисам $(\overrightarrow{e''_1}, ..., \overrightarrow{e''_n}), (\overrightarrow{e'''_1}, ..., \overrightarrow{e'''_n})$ соответственно, то $x'' = P \ x', x' = P \ T \ x''$.

Далее если

$$M = O + \sum_{j=1}^{n} x_{j}' \vec{e}_{j}' = O_{1} + \sum_{j=1}^{n} x_{j}'' \vec{e}_{j}'', \ O_{1} = O + \sum_{j=1}^{n} a_{j} \vec{e}_{j}',$$

получаем

$$O + \sum_{j=1}^{n} x_{j}' \vec{e}_{j}' = O + \sum_{j=1}^{n} a_{j} \vec{e}_{j}' + \sum_{i=1}^{n} x_{i}'' \vec{e}_{i}'' =$$

$$= O + \sum_{j=1}^{n} a_{j} \vec{e}_{j}' + \sum_{j=1}^{n} \vec{e}_{j}' \sum_{i=1}^{n} p_{i,j} x_{i}''$$

и, что

$$x'_{j} = a_{j} + \sum_{i=1}^{n} p_{i,j} x''_{i}, \quad j \in [1:n].$$

Аналогично:

$$x_j'' = \sum_{i=1}^n p_{j,i}(x_i' - a_i), \quad j \in [1:n].$$