Algorithm 3 Algorithme de Ricart Agrawala, local au site i- Variables $etat_i \in \{E, SC, S\}$. Initialisé à S. h_i : entier initialisé à 0. C'est la dernière date connue de i et provenant des autres sites. $last_i$: entier initialisé à 0. C'est la date de la dernière demande d'entrée en SC de i. $differe_i$: ens. des sites dont l'envoi de la permission est retardée. Initialisé à \emptyset . $attendu_i$: ens. des sites dont i attend la permission. Initialisé à \emptyset . $priorite_i$: booléen qui est à vrai si i est prioritaire par rapport à la demande en cours de traitement. Initialisé à faux. ——— Algorithme -Sur demande d'entrée en section critique \rightarrow $etat_i \longleftarrow E$ $last_i \longleftarrow h_i + 1$ $attendu_i \leftarrow$ tous les sites sauf i for all $j \in attendu_i$ do Envoyer $Dem(last_i, i)$ à jSur réception de Dem(h', j) de $j \rightarrow$ $h_i \longleftarrow \max(h_i, h')$ $priorite_i \leftarrow (etat_i = SC) \vee [(etat_i = E) \wedge (last_i, i) < (h', j)]$ if $priorite_i = vrai$ then $differe_i \leftarrow differe_i \cup \{j\}$ else Envoyer Perm à j Sur réception de Perm de $j \rightarrow$ $attendu_i \leftarrow attendu_i \setminus \{j\}$ if $attendu_i = \emptyset$ then $etat_i \longleftarrow SC$

$$etat_i \longleftarrow SC$$
Sur sortie de section critique \rightarrow
 $etat_i \longleftarrow S$
for all $j \in differe_i$ do

for all $j \in differe_i$ do Envoyer $Perm \ à \ j$ $differe_i \longleftarrow \emptyset$

Exécution Simple : une seule demande

S:(0,0)

La suite : deux processus demandent quasi en même temps (à partir de la configuration en (6)).

