M2M Wired/Wireless Protocols

Embedded Interface Design with Bruce Montgomery

Learning Objectives

- Students will be able to...
 - Recognize common M2M wired and wireless protocols
 - Compare and contrast protocol use in designs and applications

M2M/IoT Wireless Protocols – Network Types

- WAN: Wide Area Network longest range miles/kilometers
 - MAN: Metropolitan Area Network
 - CAN: Campus Area Network, Controller Area Network, or sometimes Cluster Area Network
- WLAN: Wireless Local Area Network buildings, local areas 10s to 100s of meters
- LAN: Local Area Network smaller, generally wired network 10s of meters
- PAN: Personal Area Network personal level devices ex. phone to earphones – directly adjacent
- https://www.lifewire.com/lans-wans-and-other-area-networks-817376

M2M Wired Protocols - Ethernet

- Generally used for Wired LANs (Local Area Networks)
- Ethernet (IEEE 802.3) [1]
 - 10BASE-T (10 Mbit/s) Unshielded twisted pair, 8 conductor, 100m range
 - Key network enabler for most of the planet
 - 10BASE-F 2 Strand Optical Fiber, 2 km range
 - 100BASE-T (100 Mbin/s) Unshielded twisted pair, 8 conductor, 100m (if cable supports)
 - 1000BASE-T (1 Gbit/s) Unshielded twisted pair, 8 conductor, 100m (if cable supports)
 - Also 10GBase-T, 100Base-T versions
- Networks: Bus or star topologies with hubs, switches, repeaters etc. supports many devices (based on IP addressing schemes)

OSI Model/ISO Layers for IP over Ethernet

- Application, Presentation, and Session layer protocols focus on presenting (HTTP, FTP) and managing data including encryption (TLS, SSL)
- Transfer manages segments (TCP handshakes or UDP datagrams)
- The network level focuses on packet transfer (IP)
- The datalink layer manages data frames (Ethernet)
- The physical layer provides for representing bits via hardware (10base-T)
- https://www.researchgate.net/figure/The-seven-layer-OSI-model-for-networking-showing-example-protocols-from-the-world-wide-fig5-290559621

M2M Wired Protocols

- Generally used for Wired LANs (Local Area Networks)
- USB (Universal Serial Bus) [2]
 - 1.5 Mbit/s up to 10 Gbit/s (SuperSpeed+), 5 meter maximum cable length
 - 4 wires plus shield (9 wires for SuperSpeed) – tiered star networks
 – 127 Devices

USB

- Generally a single host device and up to 127 slave devices
- 5 meter cables, 30 meter maximum distance using powered hubs
- Communications initiated by the host
 - Exception: USB On-The-Go gives a device limited host role
- Communications is as a bus either the host is transmitting OR a device is transmitting
- All devices receive packets sent from the host, but only the addressed device accepts the data
- Devices can transmit to the host hubs repeat data to the host as received from devices

Reference [3]

M2M Wired Protocols - Serial

- Older serial protocols [4]
 - RS-232 (EIA RS-232-C)
 - <20K bits/sec, 15m cable length maximum at 9600 bps (2500 pF capacitance)
 - Multi-wire serial cable (at least ground, rx, tx, RTS, CTS) point to point 2 devices
 - RS-422 (TIA/EIA-422)
 - 100 kbit/s to 10 Mbit/s
 - Twisted pair point-to-point or multi-drop 1 driver, 10 recievers
 - RS-485 (TIA/EIA-485)
 - Up to 10 Mbit/s
 - Balanced interconnected cable multi-drop/multi-point 32 devices

M2M Wired Protocols - Other

- Firewire (IEEE 1394) printers and storage interface [5] - shown
- MIDI custom musical instrument protocol [6]
- Thunderbolt high speed video (40 gb/sec, wired USB-C physical connection) [7]
- Industrial Control Protocols: BACnet, Modbus
- CANbus automotive control protocol (ISO 11898)

Microprocessor

https://allpinouts.org/pinouts/connectors/buses/ieee-1394-serial-bus-firewire/

M2M/IoT Wireless Protocols for (LP)WANs

- (LP)WAN (Low Power) Wide Area Network
 [More next lecture]
- Cellular
 - 2G (GSM), 3G, 4G, LTE (Cat 0, 1, 3), LTE-M,
 NB-IoT (Narrowband IoT), 5G
- LoRaWAN (several to 20 mile range) [8]
- SigFox (3 to 50 km range) [9]

M2M Wireless Protocols

- For a general or custom WLAN (Wireless Local Area Network)
- Wi-Fi IEEE 802.11a/b/g/n 2.4 GHz (b, g, n) or 5 GHz (a), 100 m range WiFi
 Alliance certification
- Wi-Fi HaLow (IEEE 802.11ah) <1 GHz, longer range, low power
- ZigBee 3.0 (IEEE 802.15.4) 915 MHz or 2.4 GHz ZigBee Alliance annual fee mesh of coordinators, routers, end devices [10]
- Z-Wave (also IEEE 802.15.4) 908.4; 916.0 MHz Z-Wave Alliance mesh network of 232 devices, with network bridging [11]
- 6LoWPAN (IPv6 over Low power Wireless Personal Area Networks), Thread
- EnOcean (ISO/IEC 14543-3-10) 902 MHz energy harvesting (100 operations/day for 25 years)
- Others: Wireless HART, DigiMesh

Zigbee vs. Z-Wave in the Home

- Both are popularly used in home automation solutions
- Zigbee is known for low power requirements but can require some technical prowess by users to install and connect to the device mesh network
- Z-Wave is easier to manage and setup, in a home system all devices are configured at a single hub, but it is known for being more expensive

Implementation issues with Zigbee and Z-Wave

 Both are mesh network based, so nodes act as both endpoints and repeaters

- Zigbee uses the 2.4 GHz ISM bands, which can interfere with Wi-Fi or Bluetooth
- Z-Wave uses the 915 MHz ISM band, which provides longer range for less power
- Zigbee had early interoperability issues between manufacturers
- Z-Wave is less prone to this, by using Z-Wave transceiver hardware elements for certified devices (Z-Wave 700 SiLabs Gecko - pictured)
 - https://www.silabs.com/support/getting-started/mesh-networking/z-wave/z-wave-700
- Have seen Zigbee system range issues between devices requiring extra devices to maintain the mesh connectivity

M2M Wireless Protocols - Custom

- Inovonics [14] uses EchoStream: a proprietary 902–928 MHz Frequencyhopping spread spectrum
- Communications between custom endpoints, repeaters, and gateways
- Broadcast and Directed versions of protocol
- For Directed, a self-organizing layered mesh network
- Why a custom network?
 - Interoperability is not needed for markets
 - Ease of installation and Reliability of Event Delivery are key differentiators
- Used in Security, Senior Care, Submetering Utility Use, Sensor & Control

M2M Wireless Protocols - PAN

- PAN (Personal Area Network) protocols
- Bluetooth Basic Rate/Enhanced Data Rate (2.0, 2.1, 3.0) 2.4 GHz, ~3 Mbit/s (3.0 adds a 24 Mbit/s 802.11 link), <= 10m range, 1 master and 7 slaves active (200+ inactive), standard device profiles and advertising methods
- Bluetooth Low Energy (BLE) (4.0, 4.1, 4.2) 2.4 GHz, 25 Mbit/s, 60m range
- Bluetooth 5.0 2.4 GHz, up to 50 Mbit/s, 240m range moving into WANs
- NFC 13.56 MHz 106 to 424 kbit/s, 10 to 20cm max range
- RFID various bands, ranges from 10 cm to 200 m (with active tags)
- ANT/ANT+ 2.4GHz, 12.8 kbit/s to 60 kbit/s bursts, 30m range, many network topologies possible, 65k devices in net

Bluetooth vs. NFC [15]

- Both Bluetooth and NFC are ubiquitous, both are supported on most mobile devices
- NFC became popular as it became available on phones for mobile payments (on iPhone 6 and later)
- NFC connectivity is easier, sets up more quickly – Bluetooth requires pairing
- NFC typically requires much less power for connectivity
- Could be used well in combination – use NFC to establish a connection, hand over to Bluetooth?

Aspect	NFC	Bluetooth	Bluetooth Low Energy
RFID compatible	ISO 18000-3	active	active
Standardisation body	ISO/IEC	Bluetooth SIG	Bluetooth SIG
Network Standard	ISO 13157 etc.	IEEE 802.15.1	IEEE 802.15.1
Network Type	Point-to-point	WPAN	WPAN
Cryptography	not with RFID	available	available
Range	< 0.2 m	~100 m (class 1)	~50 m
Frequency	13.56 MHz	2.4–2.5 GHz	2.4–2.5 GHz
Bit rate	424 kbit/s	2.1 Mbit/s	25 Mbit/s
Set-up time	< 0.1 s	< 6 s	< 0.006 s
Power consumption	< 15mA (read)	varies with class	< 15 mA (read and transmit)

Bluetooth Mesh

- Key architecture decisions
 - Centralized vs. Decentralized/Distributed?
 - Decentralized no single failure point, easy device replacement, reduced setup and traffic
 - Message forwarding: Flood or Routing?
 - "Managed" Flood message caching, time to live counter, subnets, enable/disable relay, friend nodes for low power nodes to check in with
 - Addressing: Unicast or Publish/Subscribe?
 - Pub/sub but can unicast for configuration and maintenance
 - Complete Security
 - Device provisioning and disposal/blacklisting
 - Network/app layer security
 - Message privacy
 - Periodic Key Refresh
 - "80% of BLE Mesh Design was security issues"

Example: Control GPIO w/Bluetooth and Android app

- Libraries for application
 - Blueman a desktop interface to manage and control Bluetooth devices
 - Bluez official Bluetooth protocol stack, supports all the core Bluetooth protocols
 - Python-Bluetooth Python library for Bluetooth comms
 - Example code from
 https://electronicshobbyists.com/con
 trolling-gpio-through-android-app over-bluetooth-raspberry-pi bluetooth-tutorial/

```
import Bluetooth # Bluetooth Socket library
host = ""
port = 1 # Raspberry Pi uses port 1 for Bluetooth Comms
# Creating Socket Bluetooth RFCOMM communication
server = bluetooth.BluetoothSocket(bluetooth.RFCOMM)
print('Bluetooth Socket Created')
try:
        server.bind((host, port))
         print("Bluetooth Binding Completed")
except:
         print("Bluetooth Binding Failed")
server.listen(1) # One connection at a time
# Server accepts the clients request, assigns a mac address.
client, address = server.accept()
print("Connected To", address)
print("Client:", client)
```

References

- [1] http://www.itpro.co.uk/network-internet/30276/what-is-ethernet-the-standards-explained
- [2] https://en.wikipedia.org/wiki/USB (Physical)
- [3] http://www.usbmadesimple.co.uk/ums_1.htm
- [4] http://www.ni.com/white-paper/11390/en/
- [5] https://www.lifewire.com/what-is-firewire-2625918
- [6] https://www.cs.cmu.edu/~music/cmsip/readings/MIDI%20tutorial%20for%20programmers.html
- [7] https://thunderbolttechnology.net/consumer/
- [8] http://www.atim.com/en/technologies-2/lorawan/
- [9] https://www.ekito.fr/people/connecting-things-to-the-internet-with-sigfox/
- [10] https://www.zigbee.org/zigbee-for-developers/zigbee-3-0/
- [11] https://www.smarthome.com/sc-what-is-zwave-home-automation
- [12] http://rtcmagazine.com/articles/view/100656
- [13] http://www.eetimes.com/document.asp?doc_id=1279995
- [14] <u>www.inovonics.com</u>
- [15] https://www.slideshare.net/asertseminar/near-field-communication-nfc-32075681
- [16] https://www.ericsson.com/en/publications/white-papers/bluetooth-mesh-networking