Estabilidad absoluta

Pablo Monzón

Departamento de Sistemas y Control Instituto de Ingeniería Eléctrica (IIE) Facultad de Ingeniería - Universidad de la República Uruguay

Análisis y control de sistemas no lineales Primer semestre - 2023

Contenido

1 Introducción

2 Criterio del círculo

3 Criterio de Popov

Introducción

 Escribimos el sistema como un sistema lineal SISO en el camino directo y una no linealidad en la realimentación.

- También puede verse como el análisis de un sistema lineal con realimentación no lineal de estados.
- $\Psi(0) = 0$ para preservar el origen como punto de equilibrio.

Ejemplo

Saturación

$$\begin{cases} \dot{x}_1 &= x_2 \\ \dot{x}_2 &= x_1 + u \\ y &= 2x_1 + x_2 \\ u &= -sat(y) \end{cases} \Leftrightarrow \begin{cases} \dot{x} &= \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u \\ y &= \begin{bmatrix} 2 & 1 \end{bmatrix} x \\ u &= -sat(y) \end{cases}$$

$$G(s) = C(sI - A)^{-1}B = \frac{s+2}{(s+1)(s-1)}$$
, $\Psi(y) = sat(y)$

Ecuación de Rayleigh

$$\begin{cases} \dot{z}_1 = z_2 \\ \dot{z}_2 = -z_1 + \epsilon z_2 - \frac{1}{3} \epsilon z_2^3 \end{cases}$$

Tomando $y = z_2$,

$$G(s) = \frac{\epsilon s}{s^2 - \epsilon s + 1} \ , \ \Phi(y) = \frac{1}{3} y^3$$

(verificarlo, hallando las matrices A, B y C).

Definición

Dados α, β números reales, decimos que la no linealidad Ψ pertenece al sector $[\alpha, \beta]$ si

$$\alpha \le \frac{\Psi(y)}{y} \le \beta \Leftrightarrow \alpha.y^2 \le y.\Psi(y) \le \beta.y^2 \Leftrightarrow [\Psi(y) - \alpha.y].[\Psi(y) - \beta.y] \le 0$$

Notación: $\Psi \in [\alpha, \beta]$

Ejemplos

Saturación: $\alpha \leq 0$, $\beta \geq 1$.

No linealidad de sector

Ejemplos

Saturación con $\alpha>0,\ \beta\geq1.$ Decimos que $\Psi\in[\alpha,\beta]$ en un dominio finito.

No linealidad de sector

Ejemplos

Dead zone: $\alpha \leq 0$, $\beta > 0$.

Estabilidad absoluta (Lur'e problem)

El origen es un punto de equilibrio globalmente asintóticamente estable para toda no linealidad Ψ en el sector $[\alpha, \beta]$.

Si el sector es de dominio finito, entonces hablamos de estabilidad asintótica local.

Hipótesis generales de trabajo

- Trabajaremos con sistemas SISO, aunque algunos resultados pueden extenderse al caso MIMO.
- Asumiremos que tenemos una realización *minimal* de G(s), es decir, que tenemos (A,B) controlable y (A,C) observable.
- \bullet También asumiremos que la parte lineal satisface D=0 (no hay transferencia directa desde la entrada a la salida).

Aizerman

• Estabilidad absoluta equivale a que el sistema lineal se estabiliza para toda realimentación constante $K \in [\alpha, \beta]$.

<u>Ai</u>zerman

• En términos del Diagrama de Nyquist de G(s):

Conjeturas (falsas)

Kalman

ullet El sistema lineal se estabiliza para toda realimentación constante K con

$$\alpha \le \frac{\partial \Psi}{\partial y}(y) \le \beta$$

Función de Lyapunov candidata cuadrática

Buscamos una función de Lyapunov cuadrática, de la forma

$$V(x) = x^T P x$$
 , $P = P^T > 0$

- Por el momento asumiremos que $\alpha=0$. Por lo tanto, G(s) debe ser estable.
- ullet La derivada de V a lo largo de las trayectorias resulta ser

$$\dot{V}(x) = \dot{x}^T P x + x^T P \dot{x} = (Ax + Bu)^T P x + x^T P (Ax + Bu)$$

$$= x^{T}(A^{T}P + PA)x + u^{T}B^{T}Px + x^{T}PBu =$$
$$x^{T}(A^{T}P + PA)x + 2x^{T}PBu$$

Función candidata cuadrática

• Como $u = -\Psi(y)$, queda

$$\dot{V}(x) = x^T (A^T P + PA)x - 2x^T PB\Psi(y)$$

Sumamos el término positivo

$$-2\Psi(y).[\Psi(y) - \beta.y] = -2\Psi(y).[\Psi(y) - \beta.Cx] \ge 0$$

Obtenemos

$$\dot{V}(x) \leq x^T (A^T P + PA)x - 2x^T PB\Psi(y) - 2\Psi(y).[\Psi(y) - \beta.Cx]$$

 \Rightarrow

Función candidata cuadrática

$$\dot{V}(x) \le x^T (A^T P + PA)x + 2x^T [\beta C^T - PB] \Psi(y) - 2\Psi^2(y)$$

Si existen P>0, $\epsilon>0$ y L tales que

$$A^{T}P + PA = -L^{T}L - \epsilon P$$

$$PB = \beta C^{T} - \sqrt{2}L^{T}$$

Entonces

$$\dot{V}(x) \leq -\epsilon x^T P x - x^T L^T L x + 2\sqrt{2} x^T L^T \Psi(y) - 2\Psi^2(y)$$

$$\dot{V}(x) \le -\epsilon x^T P x - \|Lx - \sqrt{2}\Psi(y)\|^2 \le -\epsilon x^T P x$$

V resulta ser una función de Lyapunov global para el sistema no lineal.

Queremos

$$A^{T}P + PA = -L^{T}L - \epsilon P$$

$$PB = \beta C^{T} - \sqrt{2}L^{T}$$

Recordemos KYP

• Sea $Z(s)=\mathcal{C}(sI-\mathcal{A})^{-1}\mathcal{B}+\mathcal{D}$ controlable, observable, real positiva y A Hurwitz.

$$\mathcal{A}^T P + P \mathcal{A} = -L^T L - \epsilon P \quad , \quad P \mathcal{B} = \mathcal{C}^T - L^T W$$
$$W^T W = \mathcal{D} + \mathcal{D}^T$$

Función de Lyapunov cuadrática

Aplicamos KYP, con A = A, B = B, $C = \beta C$ y D = 1.

Función de Lyapunov cuadrática

- $\mathcal{A} = A$, $\mathcal{B} = B$, $\mathcal{C} = \beta C$ y $\mathcal{D} = 1$.
- Hallamos la transferencia

$$Z(s) = C(sI - A)^{-1}B + D = \beta C(sI - A)^{-1}B + 1 = 1 + \beta G(s)$$

- \bullet (A,B) debe ser controlable, $(A,\beta C)$ debe ser observable
- la función $Z(s)=1+\beta.G(s)$ debe ser estrictamente real positiva.

$$re\left[G(j\omega)\right] > -\frac{1}{\beta} \qquad (\alpha = 0)$$

Análisis gráfico ($\alpha = 0$)

El Diagrama de Nyquist de $G(j\omega)$ debe estar a la derecha de la recta vertical por $-\frac{1}{\beta}$.

Observar que existe naturalmente un β máximo admisible.

$$\tilde{G}(s) = \frac{G(s)}{1 + \alpha G(s)}$$
, $\tilde{\Psi}(y) = \Psi(y) - \alpha y \in [0, \beta - \alpha]$

Aplicamos lo va visto. Entonces \hat{G} debe ser estable y

$$1 + (\beta - \alpha)\tilde{G}(s) = 1 + (\beta - \alpha)\frac{G(s)}{1 + \alpha G(s)}$$
 real positiva

$\alpha \neq 0$

- $\tilde{G}(s)=rac{G(s)}{1+lpha G(s)}$ estable si el Nyquist de G encierra al punto $-rac{1}{lpha}$ la cantidad de vueltas necesarias.
- $1 + (\beta \alpha)\tilde{G}(s)$ real positiva:

$$re\left[1+(\beta-\alpha)\frac{G(j\omega)}{1+\alpha G(j\omega)}\right] = re\left[\frac{1+\beta G(j\omega)}{1+\alpha G(j\omega)}\right] > 0 , \forall \omega$$

$\alpha \neq 0$, α positivo

Caso $0 < \alpha < \beta$. G puede ser inestable.

$$re\left[\frac{\frac{1}{\beta} + G(j\omega)}{\frac{1}{\alpha} + G(j\omega)}\right] > 0 , \forall \omega$$

$$arg\left[\frac{1}{\beta} + G(j\omega)\right] - arg\left[\frac{1}{\alpha} + G(j\omega)\right] \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] , \forall \omega$$

El punto $G(j\omega)$ ve el segmento $\left[-\frac{1}{\alpha},-\frac{1}{\beta}\right]$ bajo un ángulo agudo.

El Nyquist de G debe estar fuera del círculo de diámetro $\left[-\frac{1}{\alpha},-\frac{1}{\beta}\right]$.

$\alpha \neq 0$, α negativo

Caso $\alpha < 0 < \beta$. G debe ser estable.

$$re\left[\frac{\frac{1}{\beta} + G(j\omega)}{\frac{1}{\alpha} + G(j\omega)}\right] < 0 , \forall \omega$$

$$arg\left[\frac{1}{\beta} + G(j\omega)\right] - arg\left[\frac{1}{\alpha} + G(j\omega)\right] \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right] , \forall \omega$$

El punto $G(j\omega)$ ve el segmento $\left[-\frac{1}{\alpha},-\frac{1}{\beta}\right]$ bajo un ángulo obtuso.

El Nyquist de G debe estar dentro del círculo de diámetro $\left[-\frac{1}{\alpha},-\frac{1}{\beta}\right]$.

Ejemplo (Khalil, pág. 413)

$$G(s) = \frac{24}{(s+1)(s+2)(s+3)}$$

Es estable, así que lpha puede ser negativo. El Diagrama de Nyquist es

Criterio del círculo y conjetura de Aizerman

- No alcanza con no tocar o encerrar el segmento $[-\frac{1}{\alpha},-\frac{1}{\beta}]$.
- Hay que contemplar todo el círculo que tiene como diámetro ese segmento.
- Ejercicio: buscar contraejemplos de Aizerman y Kalman.

Ejemplo (Khalil, pág. 413)

El sistema será absolutamente estable para no linealidades en sectores como

- : $[-0.25+\epsilon, 0.25+\epsilon]$
- : [-0.23,0.71]
- : [0,1.16] (incluye la saturación).

Retomemos el ejemplo de la saturación

$$\begin{cases} \dot{x}_1 &= x_2 \\ \dot{x}_2 &= x_1 + u \\ y &= 2x_1 + x_2 \\ u &= -sat(y) \end{cases} \Leftrightarrow \begin{cases} \dot{x} &= \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u \\ y &= \begin{bmatrix} 2 & 1 \end{bmatrix} x \\ u &= -sat(y) \end{cases}$$

$$G(s) = C(sI - A)^{-1}B = \frac{s+2}{(s+1)(s-1)}$$
, $\Phi(y) = sat(y)$

Criterio de Popov

Diagrama de Nyquist de $G(j\omega)=rac{j\omega+2}{(j\omega+1)(j\omega-1)}$

$$P = 1$$
 , $N \text{ debe ser } = -1$

Diagrama de Nyquist de $G(j\omega) = \frac{j\omega+2}{(j\omega+1)(j\omega-1)}$

- ullet Como G inestable, lpha debe ser positivo.
- La estabilidad absoluta a la que lleguemos por este camino, para la saturación, será en dominio finito
- Debemos meter un círculo dentro del Nyquist.
- Ver en Khalil diferentes sectores para los que hay estabilidad absoluta.

Otro ejemplo $G(s) = \frac{1}{s(s+1)}$

- \bullet Como G inestable por tener un polo en el origen, por lo que α debe ser positivo.
- $G_{\alpha}(s)=rac{\frac{1}{s(s+1)}}{1+lpha\frac{1}{s(s+1)}}=rac{1}{s^2+s+lpha}$ debe ser estable.
- Es estable para todo $\alpha > 0$ arbitrariamente pequeño.
- Un modelo en variable de estados para $G_{\alpha}(s)$ es:

$$A = \left[\begin{array}{cc} 0 & 1 \\ -\alpha & -1 \end{array} \right] \;,\; B = \left[\begin{array}{c} 0 \\ 1 \end{array} \right] \;,\; C = \left[\begin{array}{cc} 1 & 0 \end{array} \right] \;,\; \Psi(y) \in [0,\beta-\alpha]$$

Otro ejemplo $G(s) = \frac{1}{s(s+1)}$

- Definiendo $k = \beta \alpha$, el Diagrama de Nyquist de $G_{\alpha}(s)$ debe quedar a la derecha de la recta vertical por -1/k.
- Esto impone la condición

$$\frac{1}{k} + \frac{\alpha - \omega^2}{(\alpha - \omega^2)^2 + \omega^2} > 0 \quad \forall \omega \Rightarrow k < 1 + 2\sqrt{\alpha}$$

• Tenemos entonces estabilidad absoluta en el sector $[\alpha, 1+\alpha+2\sqrt{\alpha}-\epsilon],$ con $\alpha>0$ y $\epsilon>0$ arbitrariamente pequeños.

• Nos restringimos al caso $\alpha=0$ $(k=\beta-\alpha)$. Buscamos una función más general que la anterior:

$$V(x) = x^{T} P x + 2\eta \int_{0}^{y} k \Psi(\sigma) d\sigma$$

donde $P=P^T>0$ y $\eta\geq 0$ son parámetros a elegir.

Derivamos sobre las trayectorias:

$$\frac{d(x^T P x)}{dt} = x^T (A^T P + P A)x - 2x^T P B \Psi(y)$$

$$\frac{d\left(\int_{0}^{y=Cx} \Psi(\sigma)d\sigma\right)}{dt} = \Psi(y)C[Ax - B\Psi(y)]$$

$$\dot{V}(x) = x^T(A^TP + PA)x - 2x^TPB\Psi(y) + 2\eta k\Psi(y)C[Ax - B\Psi(y)]$$

Nuevamente sumamos el término no negativo

$$-2\Psi(y).[\Psi(y) - ky] = -2\Psi(y).[\Psi(y) - kCx]$$

y agrupamos términos:

$$\dot{V}(x) = x^{T} (A^{T} P + P A) x - 2x^{T} [P B - \eta k A^{T} C^{T} - k C^{T}] \Psi(y)$$
$$-2\Psi^{2}(y) [1 + \eta k C B]$$

Elijamos $\eta \geq 0$ que haga

$$0 < 2[1 + \eta kCB]$$

(ver que siempre es posible)

Definamos

$$W^2 = 2[1 + \eta kCB]$$

Al igual que antes, completamos cuadrados usando el Lema KYP. Supongamos que existen $P>0,\ \epsilon>0,\ W$ y L tales que

$$A^{T}P + PA = -L^{T}L - \epsilon P$$

$$PB = kC^{T} + \eta kA^{T}C^{T} - L^{T}W$$

Entonces

$$\dot{V}(x) = -\epsilon x^T P x - [Lx - W\Psi(y)]^T [Lx - W\Psi(y)] \le -\epsilon x^T P x$$

Para poder aplicar KYP, se debe cumplir que la siguiente transferencia sea real positiva

$$Z(s) = 1 + (1 + \eta s)kG(s)$$

siendo ${\cal Z}$ la transferencia correspondiente a la realización en variables de estados de matrices:

$$\mathcal{A} = A$$
 , $\mathcal{B} = B$, $\mathcal{C} = kC(I + \eta A)$, $\mathcal{D} = 1 + \eta kCB$

Obs: la pareja $(\mathcal{A},\mathcal{C})=(A,kC(I+\eta A))$ debe ser observable (alcanza con evitar que $-\eta^{-1}$ sea autovalor de A).

Debe ser

$$\frac{1}{k} + re\left[G(j\omega)\right] - \eta\omega.im\left[G(j\omega)\right] > 0 , \forall \omega$$

- Se obtiene una representación gráfica donde se plotea $y=\omega.im\left[G(j\omega)\right]$ contra $x=re\left[G(j\omega)\right]$ (contorno de Popov o Popov plot) .
- El contorno de Popov debe estar debajo de la recta que pasa por el punto $\left(-\frac{1}{k},0\right)$ y tiene pendiente $1/\eta$.

Ejemplo (Khalil, pág. 422)

$$G(s) = \frac{1}{s(s+1)} \Rightarrow G_{\alpha}(s) = \frac{1}{s(s+1) + \alpha}$$

Entonces, aplicando Popov, para tener estabilidad absoluta debe cumplirse que:

$$\frac{1}{\beta - \alpha} + \frac{\alpha(\eta - 1)\omega^2}{(\alpha - \omega^2)^2 + \omega^2} > 0 , \forall \omega$$

Tomando $\eta \geq 1$, sirve $\alpha \to 0$ y $\beta \to +\infty$ (comparar con lo obtenido aplicando el Criterio del Círculo).