W3 – 7.3 – Product and Quotient Laws of Logarithms

MHF4U

SOLUTIONS

1) Simplify using laws of logarithms and then evaluate.

a)
$$\log 9 + \log 6$$

b)
$$\log 48 - \log 6$$

a)
$$\log x + \log y + \log(2z)$$

b)
$$\log_2 a + \log_2(3b) - \log_2(2c)$$

=
$$\log_2\left(\frac{3ab}{2c}\right)$$

c)
$$\log_3 7 + \log_3 3$$

$$= \log_3(7x3)$$

c)
$$2\log m + 3\log n - 4\log y$$

=
$$\log m^2 + \log n^3 - \log y^4$$

= $\log \left(\frac{m^2 n^3}{y^4} \right)$

3) Evaluate using the product law of logarithms.

a)
$$\log_6 18 + \log_6 2$$

b)
$$\log 40 + \log 2.5$$

c)
$$\log_{12} 8 + \log_{12} 2 + \log_{12} 9$$

a)
$$\log_3 54 - \log_3 2$$

b)
$$\log 50\ 000 - \log 5$$

$$= \log\left(\frac{50000}{5}\right)$$

c)
$$\log_4 320 - \log_4 5$$

5) Evaluate, using the laws of logarithms

a)
$$3 \log_{16} 2 + 2 \log_{16} 8 - \log_{16} 2$$

$$= \log_{16}(2^3) + \log_{16}(8^2) - \log_{16}(2)$$

$$= \log_{16}(8) + \log_{16}(64) - \log_{16}(2)$$

$$= \log_{16}(8) + \log_{16}(64) - \log_{16}(2)$$

b)
$$\log 20 + \log 2 + \frac{1}{3} \log 125$$

= $\log (20 \times 2) + \log (125^{1/3})$
= $\log (40) + \log (5)$
= $\log (40 \times 5)$
= $\log (200)$
= 2.30

6) Write as a sum or difference of logarithms. Simplify, if possible.

a)
$$\log_7(cd)$$
 b) $\log_3\left(\frac{m}{n}\right)$ c) $\log(uv^3)$ d) $\log\left(\frac{a\sqrt{b}}{c^2}\right)$ e) $\log_2 10$
= $\log_7(c) + \log_7(d) = \log_3(m) - \log_3(n) = \log_3(u) + \log_3(v) = \log_3 + \log_3(b^{b_2}) - \log_2(c^2) = \log_2(a \times 5) = \log_2(u) + 3\log(v) = \log_2(a \times 5) = \log_2(a \times 5)$

7) Simplify
$$\log\left(\frac{x^2}{\sqrt{x}}\right) = \log x^2 - \log x^{1/2}$$

$$= 2\log x - \frac{1}{2}\log x$$

$$= \frac{3}{2}\log x$$

c)
$$\log(x^2 - 4) - \log(x - 2)$$

$$= \log\left(\frac{\chi^2 - 4}{\chi - 2}\right)$$

$$= \log\left(\frac{(\chi - 2)(\chi + 2)}{\chi - 2}\right)$$

$$= \log(\chi + 2)$$

b)
$$\log \sqrt{k} + \log(\sqrt{k})^3 + \log^3 \sqrt{k^2}$$

= $\log(k^{1/2}) + \log(k^{3/2}) + \log(k^{2/3})$
= $\frac{1}{3} \log k + \frac{2}{3} \log k + \frac{2}{3} \log k$
= $\frac{8}{3} \log k$
d) $\log(x^2 - x - 6) - \log(2x - 6)$
= $\log\left(\frac{\chi^2 - \chi - 6}{2\chi - 6}\right)$
= $\log\left(\frac{\chi^2 - \chi - 6}{2\chi - 6}\right)$
= $\log\left(\frac{\chi^2 - \chi - 6}{2\chi - 6}\right)$

ANSWER KEY

1) $\log 54 = 1.732$ b) $\log 8 = 0.903$ c) $\log_3 21 = 2.771$ 2)a) $\log (2xyz)$ b) $\log_2 \left(\frac{3ab}{2c}\right)$ c) $\log \left(\frac{m^2n^3}{y^4}\right)$ 2)a) 2 b) 2 c) 2 4)a) 3 b) 4 c) 3 5)a) 2 b) 2.301 6)a) $\log_7 c + \log_7 d$ b) $\log_3 m - \log_3 n$ c) $\log u + 3 \log v$ d) $\log a + \frac{1}{2} \log b - 2 \log c$ e) $1 + \log_2 5$ 7)a) $\frac{3}{6} \log x$ b) $\frac{8}{6} \log k$ c) $\log(x + 2)$ d) $\log\left(\frac{x + 2}{2}\right)$