For You To Do Solution: Sets and Relations

William Deng

- Specifying using comprehension notation
 - Odd positive integers: $\{x : \mathbb{N} \mid \exists y (y \in \mathbb{N} \text{ and } x = 2y + 1)\}$. Or equivalently, $\{2k + 1 \mid k \in \mathbb{N}\}$.
 - The squares of integers: $\{x: \mathbb{Z} \mid \exists y(y \in \mathbb{Z} \text{ and } x = y^2) \}$. Or equivalently, $\{x^2 \mid x \in \mathbb{Z} \}$
- Express the following logic properties on sets without using the # operator. Assume the set is S.
 - Set has at least one element: $\exists x (x \in S)$. Or equivalently, $S \neq \emptyset$.
 - Set has no elements: $\forall x (x \notin S)$. Or equivalently, $S = \emptyset$.
 - Set has exactly one element: $\exists x(x \in S \text{ and } \forall y(y \in S \implies y = x))$. Or equivalently, $\exists x(x \in S \text{ and } S \setminus \{x\} = \emptyset)$.
 - Set has at least two elements: $\exists x (\exists y (\{x,y\} \subseteq S \text{ and } x \neq y))$. Or equivalently, $\exists x (x \in S \text{ and } S \setminus \{x\} \neq \emptyset)$.
 - Set has exactly two elements: $\exists x (\exists y (\{x,y\} \subseteq S \text{ and } x \neq y \text{ and } \forall z (z \in S \implies z = x \text{ or } z = y)))$. Or equivalently, $\exists x (\exists y (\{x,y\} \subseteq S \text{ and } x \neq y \text{ and } S \setminus \{x,y\} = \emptyset))$.
- Express the following properties of pairs of sets
 - Two sets are disjoint. Let assume the two sets are S_1 and S_2 . Answer: $S_1 \cap S_2 = \emptyset$.
 - Two sets form a partitioning of a third set. Let assume that S_1 and S_2 form a partitioning of S_3 . Answer: $S_1 \cap S_2 = \emptyset$ and $S_1 \cup S_2 = S_3$.
- Which of the following are functions?
 - Parent = {(John, Autumn), (John, Sam)}. No, Parent is not a function because Parent maps John to Autumn and Sam.
 - Square = $\{(1,1),(-1,1),(-2,4)\}$. Yes.
 - ClassGrades = $\{(Todd,A),(Virg,B)\}$. Yes.
- What kind of function/relation is Abs? Abs = $\{(x,y): \mathbb{Z} \times \mathbb{N} \mid (x < 0 \text{ and } y = -x) \text{ or } (x >= 0 \text{ and } y = x) \}$ Abs is a total function and surjective.

- What kind of function/relation is Squares? Squares : $\mathbb{Z} \times \mathbb{N}$, Squares = $\{(-1,1),(2,4)\}$ Squares is a partial function and is one-to-one.
- What operators (\cap, \cup, \setminus) preserve function-ness if an operator fails to preserve a property give an example.

```
- ∩ yes;

- ∪ no. Let S = \{1, 2\} and f, g : S \times S and f = \{(1, 1)\}, g = \{(1, 2)\}.

Then f \cup g = \{(1, 1), (1, 2)\}.

- \ yes;
```

- What operators (\cap, \cup, \setminus) preserve onto-ness if an operator fails to preserve a property give an example.
 - $-\cap$ no. Let $S=\{1,2\}$ and $f,g:S\times S$ and $f=\{(1,1),(2,2)\},g=\{(1,2),(2,1)\}.$ Then $f\cap g=\emptyset.$
 - $-\cup$ no. Let f,g be the ones defined above. Then $f\cup g$ is not a function.
 - $\setminus \text{no. Take any } f = g. \text{ Then } f \setminus g = \emptyset.$
- What operators (\cap, \cup, \setminus) preserve 1-1-ness if an operator fails to preserve a property give an example.
 - ∩ yes; - ∪ no, let $S = \{1,2\}$ and $f,g: S \times S$ and $f = \{(1,1),(2,2)\}, g = \{(1,2),(2,1)\}$. Then $f \cup g = \{(1,1),(1,2), (2,2),(2,1)\}$ which is not 1-to-1. - \ yes;
- What operators, composition (;), closure (+), transpose (~) preserve functionness if an operator fails to preserve a property give an example.
 - composition (;) yes;
 - closure (+) no; Let $S = \{1, 2\}$ and $f : S \times S$ and $f = \{(1, 2), (2, 1)\}$. Then $+f = \{(1, 1), (1, 2), (2, 1), (2, 2)\}$ which is not a function.
 - transpose (~) no; Let $S = \{1, 2\}$ and $f : S \times S$ and $f = \{(1, 1), (2, 1)\}$.
- What operators, composition (;), closure (+), transpose (~) preserve ontoness if an operator fails to preserve a property give an example.
 - composition (;) yes;
 - closure (+) no; Let $S = \{1,2\}$ and $f : S \times S$ and $f = \{(1,2),(2,1)\}$. Then $+f = \{(1,1),(1,2),(2,1),(2,2)\}$ which is not a function.
 - transpose ($\tilde{}$) no; Let $S = \{1, 2\}$ and $f : S \times S$ and $f = \{(1, 1), (1, 2)\}$.
- What operators, composition (;), closure (+), transpose (~) preserve 1-1-ness if an operator fails to preserve a property give an example.

- composition (;) yes;
- closure (+) no; Let $S=\{1,2\}$ and $f:S\times S$ and $f=\{(1,2),(2,1)\}.$ Then $+f=\{(1,1),(1,2),(2,1),(2,2)\}$ which is not a one-to-one.
- transpose ($\tilde{\ }$) yes.