Dr. Nijat Aliyev

BHOS

Calculus

November 16, 2023

A sequence can be thought of as a list of numbers written in a definite order:

$$a_1, a_2, a_3, a_4, \ldots, a_n, \ldots$$

A sequence can be thought of as a list of numbers written in a definite order:

$$a_1, a_2, a_3, a_4, \ldots, a_n, \ldots$$

The number a_1 is called the *first term*, a_2 is the *second term*, and in general a_n is the *nth term*. We will deal exclusively with infinite sequences and so each term a_n will have a successor a_{n+1} .

A sequence can be thought of as a list of numbers written in a definite order:

$$a_1, a_2, a_3, a_4, \ldots, a_n, \ldots$$

The number a_1 is called the *first term*, a_2 is the *second term*, and in general a_n is the *nth term*. We will deal exclusively with infinite sequences and so each term a_n will have a successor a_{n+1} .

Notice that for every positive integer n there is a corresponding number a_n and so a sequence can be defined as a function whose domain is the set of positive integers. But we usually write a_n instead of the function notation f(n) for the value of the function at the number n.

A sequence can be thought of as a list of numbers written in a definite order:

$$a_1, a_2, a_3, a_4, \ldots, a_n, \ldots$$

The number a_1 is called the *first term*, a_2 is the *second term*, and in general a_n is the *nth term*. We will deal exclusively with infinite sequences and so each term a_n will have a successor a_{n+1} .

Notice that for every positive integer n there is a corresponding number a_n and so a sequence can be defined as a function whose domain is the set of positive integers. But we usually write a_n instead of the function notation f(n) for the value of the function at the number n.

NOTATION The sequence $\{a_1, a_2, a_3, \ldots\}$ is also denoted by

$$\{a_n\}$$
 or $\{a_n\}_{n=1}^{\infty}$

(a)
$$\left\{\frac{n}{n+1}\right\}_{n=1}^{\infty}$$
 $a_n = \frac{n}{n+1}$ $\left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \dots, \frac{n}{n+1}, \dots\right\}$

(b)
$$\left\{\frac{(-1)^n(n+1)}{3^n}\right\}$$
 $a_n = \frac{(-1)^n(n+1)}{3^n}$ $\left\{-\frac{2}{3}, \frac{3}{9}, -\frac{4}{27}, \frac{5}{81}, \dots, \frac{(-1)^n(n+1)}{3^n}\right\}$

(c)
$$\{\sqrt{n-3}\}_{n=3}^{\infty}$$
 $a_n = \sqrt{n-3}, n \ge 3 \{0, 1, \sqrt{2}, \sqrt{3}, \dots, \sqrt{n-3}, \dots\}$

(d)
$$\left\{\cos\frac{n\pi}{6}\right\}_{n=0}^{\infty}$$
 $a_n = \cos\frac{n\pi}{6}, \ n \ge 0$ $\left\{1, \frac{\sqrt{3}}{2}, \frac{1}{2}, 0, \dots, \cos\frac{n\pi}{6}, \dots\right\}$

V EXAMPLE 2 Find a formula for the general term a_n of the sequence

$$\left\{\frac{3}{5}, -\frac{4}{25}, \frac{5}{125}, -\frac{6}{625}, \frac{7}{3125}, \ldots\right\}$$

assuming that the pattern of the first few terms continues.

SOLUTION We are given that

$$a_1 = \frac{3}{5}$$
 $a_2 = -\frac{4}{25}$ $a_3 = \frac{5}{125}$ $a_4 = -\frac{6}{625}$ $a_5 = \frac{7}{3125}$

Notice that the numerators of these fractions start with 3 and increase by 1 whenever we go to the next term. The second term has numerator 4, the third term has numerator 5; in general, the *n*th term will have numerator n + 2. The denominators are the powers of 5,

so a_n has denominator 5^n . The signs of the terms are alternately positive and negative, so we need to multiply by a power of -1. In Example 1(b) the factor $(-1)^n$ meant we started with a negative term. Here we want to start with a positive term and so we use $(-1)^{n-1}$ or $(-1)^{n+1}$. Therefore

$$a_n = (-1)^{n-1} \frac{n+2}{5^n}$$

FIGURE 1

FIGURE 2

FIGURE 1

FIGURE 2

From Figure 1 or Figure 2 it appears that the terms of the sequence $a_n = n/(n+1)$ are approaching 1 as n becomes large. In fact, the difference

$$1 - \frac{n}{n+1} = \frac{1}{n+1}$$

Definition A sequence $\{a_n\}$ has the **limit** L and we write

$$\lim_{n\to\infty} a_n = L \quad \text{or} \quad a_n \to L \text{ as } n\to\infty$$

if we can make the terms a_n as close to L as we like by taking n sufficiently large. If $\lim_{n\to\infty} a_n$ exists, we say the sequence converges (or is convergent). Otherwise, we say the sequence diverges (or is divergent).

3 Theorem If $\lim_{x\to\infty} f(x) = L$ and $f(n) = a_n$ when n is an integer, then $\lim_{n\to\infty} a_n = L$.

5 Definition $\lim_{n\to\infty} a_n = \infty$ means that for every positive number M there is an integer N such that

if
$$n > N$$
 then $a_n > M$

If $\lim_{n\to\infty} a_n = \infty$, then the sequence $\{a_n\}$ is divergent but in a special way. We say that $\{a_n\}$ diverges to ∞ .

If $\{a_n\}$ and $\{b_n\}$ are convergent sequences and c is a constant, then

$$\lim_{n\to\infty} (a_n + b_n) = \lim_{n\to\infty} a_n + \lim_{n\to\infty} b_n$$

$$\lim_{n\to\infty} (a_n - b_n) = \lim_{n\to\infty} a_n - \lim_{n\to\infty} b_n$$

$$\lim_{n\to\infty} ca_n = c \lim_{n\to\infty} a_n$$

$$\lim_{n\to\infty} c = c$$

$$\lim_{n\to\infty}(a_nb_n)=\lim_{n\to\infty}a_n\cdot\lim_{n\to\infty}b_n$$

$$\lim_{n\to\infty}\frac{a_n}{b_n}=\frac{\lim_{n\to\infty}a_n}{\lim_{n\to\infty}b_n}\quad\text{if }\lim_{n\to\infty}b_n\neq0$$

$$\lim_{n\to\infty} a_n^p = \left[\lim_{n\to\infty} a_n\right]^p \text{ if } p>0 \text{ and } a_n>0$$

If $a_n \leq b_n \leq c_n$ for $n \geq n_0$ and $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = L$, then $\lim_{n \to \infty} b_n = L$.

6 Theorem

If
$$\lim_{n\to\infty} |a_n| = 0$$
, then $\lim_{n\to\infty} a_n = 0$.

EXAMPLE 4 Find $\lim_{n\to\infty} \frac{n}{n+1}$.

EXAMPLE 4 Find
$$\lim_{n\to\infty} \frac{n}{n+1}$$
.

Divide numerator and denominator by the highest power of n that occurs in the denominator and then use the Limit Laws.

EXAMPLE 4 Find
$$\lim_{n\to\infty} \frac{n}{n+1}$$
.

Divide numerator and denominator by the highest power of n that occurs in the denominator and then use the Limit Laws.

$$\lim_{n \to \infty} \frac{n}{n+1} = \lim_{n \to \infty} \frac{1}{1+\frac{1}{n}} = \frac{\lim_{n \to \infty} 1}{\lim_{n \to \infty} 1 + \lim_{n \to \infty} \frac{1}{n}}$$
$$= \frac{1}{1+0} = 1$$

EXAMPLE 5 Is the sequence $a_n = \frac{n}{\sqrt{10 + n}}$ convergent or divergent?

SOLUTION As in Example 4, we divide numerator and denominator by n:

$$\lim_{n\to\infty} \frac{n}{\sqrt{10+n}} = \lim_{n\to\infty} \frac{1}{\sqrt{\frac{10}{n^2} + \frac{1}{n}}} = \infty$$

because the numerator is constant and the denominator approaches 0. So $\{a_n\}$ is divergent.

EXAMPLE 6 Calculate
$$\lim_{n\to\infty} \frac{\ln n}{n}$$
.

SOLUTION Notice that both numerator and denominator approach infinity as $n \to \infty$. We can't apply l'Hospital's Rule directly because it applies not to sequences but to functions of a real variable. However, we can apply l'Hospital's Rule to the related function $f(x) = (\ln x)/x$ and obtain

$$\lim_{x \to \infty} \frac{\ln x}{x} = \lim_{x \to \infty} \frac{1/x}{1} = 0$$

Therefore, by Theorem 3, we have

$$\lim_{n\to\infty}\frac{\ln n}{n}=0$$

EXAMPLE 7 Determine whether the sequence $a_n = (-1)^n$ is convergent or divergent.

SOLUTION If we write out the terms of the sequence, we obtain

$$\{-1, 1, -1, 1, -1, 1, -1, \ldots\}$$

The graph of this sequence is shown in Figure 8. Since the terms oscillate between 1 and -1 infinitely often, a_n does not approach any number. Thus $\lim_{n\to\infty} (-1)^n$ does not exist; that is, the sequence $\{(-1)^n\}$ is divergent.

FIGURE 8

EXAMPLE 8 Evaluate $\lim_{n\to\infty} \frac{(-1)^n}{n}$ if it exists.

SOLUTION We first calculate the limit of the absolute value:

$$\lim_{n\to\infty}\left|\frac{(-1)^n}{n}\right|=\lim_{n\to\infty}\frac{1}{n}=0$$

Therefore, by Theorem 6,

$$\lim_{n\to\infty}\frac{(-1)^n}{n}=0$$

Theorem If $\lim_{n\to\infty} a_n = L$ and the function f is continuous at L, then

$$\lim_{n\to\infty} f(a_n) = f(L)$$

EXAMPLE 9 Find $\lim_{n\to\infty} \sin(\pi/n)$.

SOLUTION Because the sine function is continuous at 0, Theorem 7 enables us to write

$$\lim_{n\to\infty}\sin(\pi/n)=\sin\biggl(\lim_{n\to\infty}(\pi/n)\biggr)=\sin 0=0$$

9 The sequence $\{r^n\}$ is convergent if $-1 < r \le 1$ and divergent for all other values of r.

$$\lim_{n \to \infty} r^n = \begin{cases} 0 & \text{if } -1 < r < 1 \\ 1 & \text{if } r = 1 \end{cases}$$

10 Definition A sequence $\{a_n\}$ is called **increasing** if $a_n < a_{n+1}$ for all $n \ge 1$, that is, $a_1 < a_2 < a_3 < \cdots$. It is called **decreasing** if $a_n > a_{n+1}$ for all $n \ge 1$. A sequence is **monotonic** if it is either increasing or decreasing.

EXAMPLE 12 The sequence $\left\{\frac{3}{n+5}\right\}$ is decreasing because

$$\frac{3}{n+5} > \frac{3}{(n+1)+5} = \frac{3}{n+6}$$

and so $a_n > a_{n+1}$ for all $n \ge 1$.

EXAMPLE 13 Show that the sequence $a_n = \frac{n}{n^2 + 1}$ is decreasing.

SOLUTION 1 We must show that $a_{n+1} < a_n$, that is,

$$\frac{n+1}{(n+1)^2+1} < \frac{n}{n^2+1}$$

This inequality is equivalent to the one we get by cross-multiplication:

$$\frac{n+1}{(n+1)^2+1} < \frac{n}{n^2+1} \iff (n+1)(n^2+1) < n[(n+1)^2+1]$$

$$\iff n^3+n^2+n+1 < n^3+2n^2+2n$$

$$\iff 1 < n^2+n$$

Since $n \ge 1$, we know that the inequality $n^2 + n > 1$ is true. Therefore $a_{n+1} < a_n$ and so $\{a_n\}$ is decreasing.

SOLUTION 2 Consider the function $f(x) = \frac{x}{x^2 + 1}$:

$$f'(x) = \frac{x^2 + 1 - 2x^2}{(x^2 + 1)^2} = \frac{1 - x^2}{(x^2 + 1)^2} < 0 \quad \text{whenever } x^2 > 1$$

Thus f is decreasing on $(1, \infty)$ and so f(n) > f(n+1). Therefore $\{a_n\}$ is decreasing.

11 Definition A sequence $\{a_n\}$ is bounded above if there is a number M such that

$$a_n \le M$$
 for all $n \ge 1$

It is bounded below if there is a number m such that

$$m \le a_n$$
 for all $n \ge 1$

If it is bounded above and below, then $\{a_n\}$ is a bounded sequence.

12 Monotonic Sequence Theorem Every bounded, monotonic sequence is convergent.

SERIES

What do we mean when we express a number as an infinite decimal? For instance, what does it mean to write

$$\pi = 3.14159\ 26535\ 89793\ 23846\ 26433\ 83279\ 50288\dots$$

The convention behind our decimal notation is that any number can be written as an infinite sum. Here it means that

$$\pi = 3 + \frac{1}{10} + \frac{4}{10^2} + \frac{1}{10^3} + \frac{5}{10^4} + \frac{9}{10^5} + \frac{2}{10^6} + \frac{6}{10^7} + \frac{5}{10^8} + \cdots$$

where the three dots (\cdots) indicate that the sum continues forever, and the more terms we add, the closer we get to the actual value of π .

SERIES

In general, if we try to add the terms of an infinite sequence $\{a_n\}_{n=1}^{\infty}$ we get an expression of the form

$$a_1 + a_2 + a_3 + \cdots + a_n + \cdots$$

which is called an infinite series (or just a series) and is denoted, for short, by the symbol

$$\sum_{n=1}^{\infty} a_n \quad \text{or} \quad \sum a_n$$

Does it make sense to talk about the sum of infinitely many terms? It would be impossible to find a finite sum for the series

$$1+2+3+4+5+\cdots+n+\cdots$$

because if we start adding the terms we get the cumulative sums 1, 3, 6, 10, 15, 21, ... and, after the *n*th term, we get n(n + 1)/2, which becomes very large as *n* increases.

However, if we start to add the terms of the series

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \frac{1}{64} + \dots + \frac{1}{2^n} + \dots$$

we get $\frac{1}{2}$, $\frac{3}{4}$, $\frac{7}{8}$, $\frac{15}{16}$, $\frac{31}{32}$, $\frac{63}{64}$, ..., $1 - 1/2^n$, The table shows that as we add more and more

п	Sum of first n terms
1	0.50000000
2	0.75000000
3	0.87500000
4	0.93750000
5	0.96875000
6	0.98437500
7	0.99218750
10	0.99902344
15	0.99996948
20	0.99999905
25	0.99999997

п	Sum of first n terms
1	0.50000000
2	0.75000000
3	0.87500000
4	0.93750000
5	0.96875000
6	0.98437500
7	0.99218750
10	0.99902344
15	0.99996948
20	0.99999905
25	0.9999997

The table shows that as we add more and more terms, these partial sums become closer and closer to 1.

2 Definition Given a series $\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + \cdots$, let s_n denote its *n*th partial sum:

$$s_n = \sum_{i=1}^n a_i = a_1 + a_2 + \cdots + a_n$$

If the sequence $\{s_n\}$ is convergent and $\lim_{n\to\infty} s_n = s$ exists as a real number, then the series $\sum a_n$ is called **convergent** and we write

$$a_1 + a_2 + \cdots + a_n + \cdots = s$$
 or $\sum_{n=1}^{\infty} a_n = s$

The number s is called the sum of the series. If the sequence $\{s_n\}$ is divergent, then the series is called **divergent**.

Thus the sum of a series is the limit of the sequence of partial sums. So when we write $\sum_{n=1}^{\infty} a_n = s$, we mean that by adding sufficiently many terms of the series we can get as close as we like to the number s. Notice that

$$\sum_{n=1}^{\infty} a_n = \lim_{n \to \infty} \sum_{i=1}^{n} a_i$$

EXAMPLE 1 Suppose we know that the sum of the first *n* terms of the series $\sum_{n=1}^{\infty} a_n$ is

$$s_n = a_1 + a_2 + \cdots + a_n = \frac{2n}{3n+5}$$

Then the sum of the series is the limit of the sequence $\{s_n\}$:

$$\sum_{n=1}^{\infty} a_n = \lim_{n \to \infty} s_n = \lim_{n \to \infty} \frac{2n}{3n+5} = \lim_{n \to \infty} \frac{2}{3+\frac{5}{n}} = \frac{2}{3}$$

4 The geometric series

$$\sum_{n=1}^{\infty} ar^{n-1} = a + ar + ar^2 + \cdots$$

is convergent if |r| < 1 and its sum is

$$\sum_{n=1}^{\infty} a r^{n-1} = \frac{a}{1-r} \qquad |r| < 1$$

If $|r| \ge 1$, the geometric series is divergent.

$$5 - \frac{10}{3} + \frac{20}{9} - \frac{40}{27} + \cdots$$

SOLUTION The first term is a = 5 and the common ratio is $r = -\frac{2}{3}$. Since $|r| = \frac{2}{3} < 1$, the series is convergent by $\boxed{4}$ and its sum is

$$5 - \frac{10}{3} + \frac{20}{9} - \frac{40}{27} + \dots = \frac{5}{1 - \left(-\frac{2}{3}\right)} = \frac{5}{\frac{5}{3}} = 3$$

n	S_{II}
1	5.000000
2	1.666667
3	3.888889
4	2.407407
5	3.395062
6	2.736626
7	3.175583
8	2.882945
9	3.078037
10	2.947975

FIGURE 2

EXAMPLE 4 Is the series $\sum_{n=1}^{\infty} 2^{2n} 3^{1-n}$ convergent or divergent?

SOLUTION Let's rewrite the *n*th term of the series in the form ar^{n-1} :

$$\sum_{n=1}^{\infty} 2^{2n} 3^{1-n} = \sum_{n=1}^{\infty} (2^2)^n 3^{-(n-1)} = \sum_{n=1}^{\infty} \frac{4^n}{3^{n-1}} = \sum_{n=1}^{\infty} 4 {4 \choose \frac{4}{3}}^{n-1}$$

We recognize this series as a geometric series with a=4 and $r=\frac{4}{3}$. Since r>1, the series diverges by $\boxed{4}$.

V EXAMPLE 8 Show that the harmonic series

$$\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots$$

is divergent.

SOLUTION For this particular series it's convenient to consider the partial sums s_2 , s_4 , s_8 , s_{16} , s_{32} , . . . and show that they become large.

$$\begin{split} s_2 &= 1 + \frac{1}{2} \\ s_4 &= 1 + \frac{1}{2} + \left(\frac{1}{3} + \frac{1}{4}\right) > 1 + \frac{1}{2} + \left(\frac{1}{4} + \frac{1}{4}\right) = 1 + \frac{2}{2} \\ s_8 &= 1 + \frac{1}{2} + \left(\frac{1}{3} + \frac{1}{4}\right) + \left(\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}\right) \\ &> 1 + \frac{1}{2} + \left(\frac{1}{4} + \frac{1}{4}\right) + \left(\frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8}\right) \\ &= 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = 1 + \frac{3}{2} \\ s_{16} &= 1 + \frac{1}{2} + \left(\frac{1}{3} + \frac{1}{4}\right) + \left(\frac{1}{5} + \dots + \frac{1}{8}\right) + \left(\frac{1}{9} + \dots + \frac{1}{16}\right) \\ &> 1 + \frac{1}{2} + \left(\frac{1}{4} + \frac{1}{4}\right) + \left(\frac{1}{8} + \dots + \frac{1}{8}\right) + \left(\frac{1}{16} + \dots + \frac{1}{16}\right) \\ &= 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = 1 + \frac{4}{2} \end{split}$$

Similarly, $s_{32} > 1 + \frac{5}{2}$, $s_{64} > 1 + \frac{6}{2}$, and in general

$$s_{2^n} > 1 + \frac{n}{2}$$

This shows that $s_{2^{n}} \to \infty$ as $n \to \infty$ and so $\{s_{n}\}$ is divergent. Therefore the harmonic series diverges.

6 Theorem If the series $\sum_{n=1}^{\infty} a_n$ is convergent, then $\lim_{n\to\infty} a_n = 0$.

7 Test for Divergence If $\lim_{n\to\infty} a_n$ does not exist or if $\lim_{n\to\infty} a_n \neq 0$, then the series $\sum_{n=1}^{\infty} a_n$ is divergent.

EXAMPLE 9 Show that the series $\sum_{n=1}^{\infty} \frac{n^2}{5n^2 + 4}$ diverges.

SOLUTION

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{n^2}{5n^2 + 4} = \lim_{n \to \infty} \frac{1}{5 + 4/n^2} = \frac{1}{5} \neq 0$$

So the series diverges by the Test for Divergence.

- **8** Theorem If Σ a_n and Σ b_n are convergent series, then so are the series Σ ca_n (where c is a constant), Σ $(a_n + b_n)$, and Σ $(a_n b_n)$, and
- (i) $\sum_{n=1}^{\infty} ca_n = c \sum_{n=1}^{\infty} a_n$ (ii) $\sum_{n=1}^{\infty} (a_n + b_n) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n$
- (iii) $\sum_{n=1}^{\infty} (a_n b_n) = \sum_{n=1}^{\infty} a_n \sum_{n=1}^{\infty} b_n$