

LR2003A/L

HIGH-VOLTAGE, HIGH-CURRENT DARLINGTON ARRAYS

Note that the LR2003A series (dual in-line package) and LR2003L series (small-outline IC package) are electrically identical and share a common terminal number assignment.

ABSOLUTE MAXIMUM RATINGS

Output Voltage, V _{CE} 50 V
Input Voltage, V _{IN}
Continuous Output Current,
I _C 500 mA
Continuous Input Current, I _{IN} 25 mA
Power Dissipation, P _D
(one Darlington pair) 1.0 W
(total package) See Graph
Operating Temperature Range,
T _A 40°C to +85°C
Storage Temperature Range,
T_s 55°C to +150°C

FEATURES

- 5V TTL, CMOS-Compatible Inputs
- Output Current to 500 mA
- Output Voltage to 50 V
- Transient-Protected Outputs
- Dual In-Line Plastic Package or Small-Outline IC Package

Ideally suited for interfacing between low-level logic circuitry and multiple peripheral power loads, the Series LR2003A/L high-voltage, high-current Darlington arrays feature continuous load current ratings to 500 mA for each of the seven drivers. At an appropriate duty cycle depending on ambient temperature and number of drivers turned ON simultaneously, typical power loads totaling over 120 W (350 mA x 7, 50 V) can be controlled. Typical loads include relays, solenoids, stepping motors, magnetic print hammers, multiplexed LED and incandescent displays, and heaters. All devices feature open-collector outputs with integral clamp diodes.

The LR2003A/L have series input resistors selected for operation directly with 5 V TTL or CMOS. These devices will handle numerous interface needs - particularly those beyond the capabilities of standard logic buffers.

The LR2003A/L are the standard Darlington Array. The outputs are capable of sinking 500 mA and will withstand at least 50V in the OFF state. Outputs may be paralleled for higher load current capability.

These Darlington arrays are furnished in 16-pin dual in-line plastic packages (suffix "A") and 16-lead surface-mountable SOICs (suffix "L"). All devices are pinned with outputs opposite inputs to facilitate ease of circuit board layout. All devices are rated for operation over the temperature range of -40° C to $+85^{\circ}$ C.

Ver 1.5 Aug 2009

PARTIAL SCHEMATICS

Recommended Operating Conditions (Ta = -40 to 85°C)

Characteristic		Symbol	Test Condition		Min	Тур.	Max	Unit
Output voltage		V _{CE}			0	_	50	V
Output current	А	- I _C	$T_{pw} = 25 \text{ ms}$ 7 Circuits $Ta = 85^{\circ}\text{C}$ $T_{j} = 120^{\circ}\text{C}$	Duty = 10%	0	_	350	- mA/ch
				Duty = 50%	0	_	100	
	L			Duty = 10%	0	_	300	
				Duty = 50%	0	_	90	
Input voltage		V _{IN}			0	_	24	V
Input voltage (output on)		V _{IN} (ON)	I _{OUT} = 400 mA h _{FE} = 800		2.8		24	V
Input voltage		V			0	_	0.7	V
(output off)		V _{IN} (OFF)						\ \ \ \
Clamp diode reverse voltage		V _R			_	_	50	V
Clamp diode forward current		l _F			_	_	350	mA
Power dissipation	A	D-	Ta = 85°C		_		0.76	W
	L	P _D	Ta = 85°C		_	_	0.65	VV

Ver 1.5 Aug 2009 2/8

LR2003A/L ELECTRICAL CHARACTERISTICS at +25°C (unless otherwise noted).

		Test Fig.	Applicable Devices	Test Conditions		Limits				
Characteristic	Symbol				Min.	Тур.	Max.	Units		
Output Leakage Current	I _{CEX}	1		V _{CE} = 50 V, T _A = 25°C		< 1	50	μΑ		
				V _{CE} = 50 V, T _A = 70°C	_	< 1	100	μΑ		
Collector-Emitter	V _{CE(SAT)}	2		$I_C = 100 \text{ mA}, I_B = 250 \mu\text{A}$		0.9	1.1	V		
Saturation Voltage				$I_C = 200 \text{ mA}, I_B = 350 \mu\text{A}$	_	1.1	1.3	V		
				$I_C = 350 \text{ mA}, I_B = 500 \mu\text{A}$	_	1.3	1.6	V		
Input Current	I _{IN(ON)}	3		V _{IN} = 3.85 V	_	0.93	1.35	mA		
	I _{IN(OFF)}	4		I _C = 500 μA, T _A = 70°C	50	65	_	μΑ		
Input Voltage	V _{IN(ON)}	5		$V_{CE} = 2.0 \text{ V}, I_{C} = 200 \text{ mA}$	_	_	2.4	V		
				V _{CE} = 2.0 V, I _C = 250 mA	_	_	2.7	V		
				$V_{CE} = 2.0 \text{ V}, I_{C} = 300 \text{ mA}$		_	3.0	V		
Input Capacitance	C _{IN}	_	All		_	15	25	pF		
Turn-On Delay	t _{PLH}	8	All	0.5 E _{IN} to 0.5 E _{OUT}	_	0.25	1.0	μs		
Turn-Off Delay	t _{PHL}	8	All	0.5 E _{IN} to 0.5 E _{OUT}		0.25	1.0	μs		
Clamp Diode	I _R	6	All	V _R = 50 V, T _A = 25°C	_	_	50	μΑ		
Leakage Current				V _R = 50 V, T _A = 70°C	_	_	100	μΑ		
Clamp Diode Forward Voltage	V _F	7	All	I _F = 350 mA	_	1.7	2.0	V		

Complete part number includes suffix to identify package style: A = DIP, L = SOIC.

Ver 1.5 Aug 2009 3/8

TEST FIGURES

FIGURE 1

FIGURE 2

FIGURE 3

FIGURE 4

FIGURE 5

FIGURE 6

FIGURE 7

FIGURE 8

ALLOWABLE COLLECTOR CURRENT AS A FUNCTION OF DUTY CYCLE

(Dual In-line-Packaged Devices, Suffix 'A')

(Small-Outline-Packaged Devices, Suffix 'L')

SATURATION VOLTAGE
AS A FUNCTION OF COLLECTOR CURRENT

COLLECTOR CURRENT AS A FUNCTION OF INPUT CURRENT

INPUT CURRENT AS A FUNCTION OF INPUT VOLTAGE

Ver 1.5 Aug 2009 5/8

TYPICAL APPLICATIONS

Ver 1.5 Aug 2009 6/8

PACKAGE DESIGNATOR "A"

Ver 1.5 Aug 2009 7/8

0.356

PACKAGE DESIGNATOR "L"

Dimensions in Inches (for reference only)

Dimension in Millimeters (controlling dimensions)

Ver 1.5 Aug 2009 8/8