Example: Find

$$1. \sum_{n=1}^{\infty} \frac{1}{5^n}$$

$$2. \sum_{n=0}^{\infty} 2^{n+1} 3^{-n}$$

A **telescoping series** is a series, where the terms can be written as  $a_n = c_n - c_{n+1}$  for some  $c_n$ .

Example:  $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ 

**Result:** Assume  $\sum_{n=1}^{\infty} a_n$  converges, then  $\lim_{n\to\infty} a_n = 0$ , because

## $\Rightarrow$ Test for Divergence

Example: 
$$\sum_{n=1}^{\infty} \frac{n}{n+1}$$

Example: 
$$\sum_{n=1}^{\infty} (-1)^n$$

If  $\lim_{n\to\infty} a_n = 0$ , can we conclude that  $\sum_{n=1}^{\infty} a_n$  converges?

Example:  $\sum_{n=1}^{\infty} \frac{1}{n}$ 

Conclusion/Rule:

**Limit Rules for Series:** Let  $\sum_{n=1}^{\infty} a_n$  and  $\sum_{n=1}^{\infty} b_n$  be convergent. Then,

a) 
$$\sum_{n=1}^{\infty} (a_n + b_n) =$$

b) 
$$\sum_{n=1}^{\infty} (a_n - b_n) =$$

c) 
$$\sum_{n=1}^{\infty} ca_n =$$

Example:  $\sum_{n=1}^{\infty} \frac{2}{3^n} - \frac{1}{2^{n+1}}$ 

## 4.2 The Integral Test and Estimates of Sum (Chapter 11.3)

The Integral Test: Let f(x) be a continuous, positive, decreasing function defined for  $x \ge 1$ . Let  $a_n = f(n)$  for  $n = 1, 2, 3, \ldots$ 

Then, the **series** 
$$\sum_{n=1}^{\infty} a_n$$
 is \_\_\_\_\_\_ if and only if



Example: Revisit  $\sum_{n=1}^{\infty} \frac{1}{n}$ 

Example:  $\sum_{n=1}^{\infty} \frac{1}{n^2}$ 

Does the integral test inform us about the value of the convergent series?

Example:  $\sum_{n=3}^{\infty} \frac{1}{n \ln(n)}$