Spørsmål 1

Regn ut kryssproduktet $\vec{p} \times \vec{q}$

$$(a) (c)$$

$$\vec{p} = [1, 1, 1]$$
 $\vec{p} = [1, 0, 2]$ $\vec{q} = [1, 2, 3]$ $\vec{q} = [-2, 1, 3]$

$$\vec{p} = [1, 2, 1]$$
 $\vec{p} = [2, 1, 0]$ $\vec{q} = [1, 5, 3]$ $\vec{q} = [3, 1, 1]$

${\rm Sp}{\it \emptyset}{\rm rsm}{\it \&}{\rm l}$ 2

Du har to vektorer \vec{p} og \vec{q} med en vinkel immellom dem på $\frac{\pi}{6}$. Vi vet at $|\vec{p}| = 2$ og at $|\vec{q}| = 3$. Hva er da $|\vec{p} \times \vec{q}|$?

Spørsmål 3

Du har to vektorer \vec{p} og \vec{q} med en vinkel immellom dem på $\frac{\pi}{4}$. Vi vet at $|\vec{p}| = 3$ og at $|\vec{q}| = 7$. Hva er da $|\vec{p} \times \vec{q}|$?

Spørsmål 4

Bruk kryssproduktet til å finne arealet av trekanten.

Spørsmål 5

- (a) Finn t slik at $[2,1,t]\times[4,3,2]\perp[3,2,1]$
- (b) Finn t slik at $[2, 1, t] \times [3, 4, 5] \mid\mid [1, -1, 1]$
- (c) Finn t slik at $|\vec{n}| = \sqrt{3}$ når

$$\vec{n} = [2, 1, t] \times [2, 3, 1]$$

Spørsmål 6

Forklar hvorfor for to vektorer \vec{p} , \vec{q} så har vi alltid at:

$$(\vec{p} \times \vec{q}) \cdot \vec{p} = 0.$$