I - Taux d'accroissement

Définition 1:

Le <u>taux d'accroissement</u> de la fonction f entre a et x est le quotient :

$$\frac{f(x) - f(a)}{x - a}$$

Avec x = a + h, ce quotient s'écrit aussi :

$$\frac{f(a+h)-f(a)}{h}$$

Exemple 1:

Pour f définie sur \mathbb{R} par $f(x) = x^2$, le taux d'accroissement de f entre a et a + h est :

$$\frac{f(a+h) - f(a)}{h} = \frac{(a+h)^2 - a^2}{h}$$

$$= \frac{a^2 + 2ah + h^2 - a^2}{h}$$

$$\frac{f(a+h) - f(a)}{h} = 2a + h$$

II - Nombre dérivé

Définition 2:

On dit que f est <u>dérivable</u> en a et on note cette dérivée f'(a) si la limite suivante existe :

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

Remarque 1:

On note aussi la dérivée f'(a) comme la limite suivante :

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

${\bf Propri\acute{e}t\acute{e}}\ 1: (Interpr\acute{e}tation\ g\acute{e}om\acute{e}trique)$

Si une fonction f est dérivable en a, alors f'(a) est la pente de la tangente à la courbe de f en (a, f(a)).

Exemple 2:

Pour \bar{f} définie sur \mathbb{R} par $f(x) = x^2$, calculer le nombre dérivé de f en 3 puis en -1:

1.
$$\frac{f(a+h)-f(a)}{h} = 2a+h \text{ d'après l'exemple } 1$$

- 2. $f'(a) = \lim_{h\to 0} 2a + h = 2a$
- 3. $f'(2) = 2 \times 3 = 6$
- 4. $f'(-1) = 2 \times (-1) = -2$

Exemple 3:

On considère la fonction f définie sur \mathbb{R} par $f(x) = x^2 + 1$. Son taux d'accroissement en a = 1 est donné par le calcul suivant :

$$\frac{f(x) - f(a)}{x - a} = \frac{(x^2 + 1) - (1^2 + 1)}{x - 1}$$
$$= \frac{(x + 1)(x - 1)}{x - 1}$$
$$\frac{f(x) - f(a)}{x - a} = x + 1$$

Or, $\lim_{x\to 1} x + 1 = 2$

Donc f est dérivable en 1 et f'(1) = 2

III - Equation de la tangente

Propriété 2:

Soit f une fonction numérique définie sur un intervalle I et dérivable en $a \in I$ La tangente T_a en à la courbe C_f en a a pour équation :

$$T_a: y = f'(a)(x-a) + f(a)$$

Démonstration:

$$f'(x) = \frac{f(x) - f(a)}{x - a}$$

$$f'(x) + \frac{f(a)}{x - a} = \frac{f(x)}{x - a}$$

$$f(x) = f'(x)(x - a) + \frac{f(a)(x - a)}{x - a}$$

$$f(x) = f'(x)(x - a) + f(a)$$

Exemple 4:

Soit $f(x) = x^2 + 2$. Déterminer l'équation de la tangente en 0 et en -1

- 1. f'(0) = 0 donc $T_0: y = 0 \times (x 0) + f(0) = 2$
- 2. f'(-1) = -2 donc $T_{-1}: y = -2 \times (x+1) + f(-1) = -2x + 1$

IV - Dérivés usuelles

Fonction f	Dérivée	f est définie sur	f est dérivable sur
f(x) = k (constante)	f'(x) = 0	\mathbb{R}	
f(x) = x	f'(x) = 1	\mathbb{R}	
$f(x) = x^2$	f'(x) = 2x	\mathbb{R}	
$f(x) = x^n \ (n \in \mathbb{N})$	$f'(x) = nx^{n-1}$	\mathbb{R}	
$f(x) = \frac{1}{x}$	$f'(x) = -\frac{1}{x^2}$	$\mathbb{R}^* =]-\infty; 0[\cup]0; +\infty[$	
$f(x) = \sqrt{x}$	$f'(x) = \frac{1}{2\sqrt{x}}$	$\mathbb{R}_{+} = [0; +\infty[$	$\mathbb{R}_+^* =]0; +\infty[$

V - Opérations sur les dérivées

u et v désignent deux fonctions quelconques, définies et dérivables sur un intervalle I.

Fonction	Dérivée	
$ku, k \in \mathbb{R}$	ku'	
u + v	u' + v'	
uv	u'v + uv'	
$\frac{u}{v}$	$\frac{u'v - uv'}{v^2}$	
$\frac{1}{u}$	$-\frac{u'}{u^2}$	
u^2	2u'u	
$u^n (n \in \mathbb{N})$	$nu'u^{n-1}$	
\sqrt{u}	$\frac{u'}{2\sqrt{u}}$	