Semantic Textual Similarity

16.09.2020

Team 17 (PreNLPians)

R. Guru Ravi Shanker (2018114011) Jashn Arora (2018114006)

Mentor: Prashant Kodali

Professor: Manish Shrivastava

Problem Statement and Aim

To create a model that given a pair of sentences predicts the semantic relationship between them in terms of paraphrases, entailment, contradiction.

Datasets

- 1. Quora Question Pairs Dataset
 - a. Given two questions: Label is 0 if the questions are not paraphrases and label is 1 if the questions are paraphrases.
- 2. SICK Natural Language Inference dataset
 - a. Given two sentences:Label is 1 if sentences entail one another, Label is -1 if sentence contradicts one another and label is 0 if the sentences are neutral to one another.
- 3. WikiQA For Question Answering Pair

a. Given qn and answer 1 if answer follows the question else zero.

NOTE: 1 is our primary datasets and the model will be trained on 2 and 3 if time permits.

BaseLine Model

Bilateral Multi-Perspective Matching for Natural Language Sentences

- 1. Given two sentences the model has to predict y according to the training dataset. This is done by matching the encoded sentences at all time frames with multiple perspectives.
- 2. The Network has 5 Layers:
 - a. Word Embedding Layer:
 Trained Glove word embeddings to represent the sentences.
 - b. Contextual Embedding Layer:
 Used Bi-LSTM model to incorporate context in the word embeddings.
 - Matching Layer:
 The goal of this layer is to compare each contextual embedding (time-step) of one sentence against all contextual embeddings (time-steps) of the other sentence.
 - d. Aggregation Layer: It aggregates the two sequences of matching vectors to a fixed layer using another Bi-LSTM model.
 - e. Prediction Layer:
 This layer feeds forward the fixed length matching vector and applies a softmax function in the output layer to predict the value y.

Baseline +

- 1. Use modern state of art models like BERT/XLNET to contextually represent the sentences.
- 2. Adding an attention matching layer to the model.

TimeLine:

1. 24th September

a. Deciding which frameworks to be used for the task and understanding the networks deeply

2. 1st October

a. Baseline Implementation will be completed

3. 7th October

a. Rectify any errors occurred during the first implementation of the code. Achieving the accuracy stated in the paper.

4. 14th October

a. Literature Review of the current state of art developments for Semantic Textual Similarity Task and improving our model.

5. 21 October

a. Improving the baseline model by using BERT/XLNET representation of sentences and adding attention layers if required.

6. 28th October

a. Improving the accuracy of the baseline model with state of the art implementation.

7. 7th November

a. Do qualitative analysis on results

8. 16th November

- a. Final model delivered.
- b. Read more papers on the STS for completing term papers.