

Session- Variant Calling and Consensus Generation

• BU-ISCIII

• <u>Unidades Comunes Científico Técnicas - SGSAFI-</u> <u>ISCIII</u>

14-18 Noviembre 2023, 3ª Edición Programa Formación Continua, ISCIII

Index

<u>Mapping against reference genome and Variant Calling:</u>

- Variant Calling
- Source of error and mitigation strategies
- VCF and bed format
- IVAR, LOFREQ, VARSCAN2
- Consensus generation: aproximations

Variant Calling

Variant calling concept is simple:

Find positions in our reads different from the reference.

 We start with our secuences mapped against our reference genome, and we walk trough every column of the alignment counting the number of alleles found and comparing them against the reference.

Polymerase error

Polymerase error Sequencing Sequencing chemistry Reaction detection. Base calling

Genome duplication Structural Structura variants Read

Base Quality scores Mapping quality scores Filtering thresholds

Adapted from Olson et al. Frontiers in Genetics. 2015

Sample processing

Sample processing errors.

- Random errors.
- Associated with polymerase errors . (1 in 10^{2-3} bases)
- Homopolymers and tandem repeats experience higher indel error rates.

• Solutions:

- Paired-end libraries.
- Minimization of PCR cycles.

Sequencing:

- Dependent on the platform.
- Can be random and systematic.
- 6% Illumina, 50% Roche (Ross et al.2013)
- P.e Illumina commits error in the G/T channels.

Solutions:

Strand bias.

Mapping errors:

- Genomic duplication and structural variation.
- High diverse areas.

Solutions

- Paired-end libraries.
- Long reads / fragments.
- MAPQ
- Realignment around indels.

SNP calling step

- Errors may result in base calling errors.
- FP and FN calls.

Solutions

- Strand bias
- Base quality rank sum
- MAPQ
- Hard filters:
 - Depth of coverage
 - Minimun base call frequency.

Reference selection

- Critial step <- Bias which SNPs are called.
- SNPs in genes not present in the reference <u>WON'T</u> be called.
- Less effect in clonal bacteria.
- Number of SNPs called vary A LOT!

Solutions:

- Kmerfinder

Repetitive/Phage regions filtering

PHASTER

- We can remove/mask phague/repetitive regions where reads won't map.
- This way those areas will be out of analysis.
- Problem: those areas could be important!

VCF format

Bed format

Mpileup format

Sequence	Position	Reference Base	Read Count	Read Results	Quality
seq1	272	Т	24	,.\$^+.	<<<+;<<<<<<<<<<<<;7<&
seq1	273	Т	23	,A	<<<;<<<<<+
seq1	274	Т	23	,.\$,	7<7;<;<<<<<<=<;<;<<6
seq1	275	Α	23	,\$^1.	<+;9*<<<<<<=<<:;<<<<
seq1	276	G	22	T,,.,.,.,,,,.,	33;+<<7=7<<7<&<<1;<<6<
seq1	277	Т	22	,,.,.C.,,,G.	+7<;<<<<<&<=<<:;<<&<
seq1	278	G	23	,k.	%38*<<;<7<<7<=<<<;
seq1	279	С	23	AT,,.,.,.,,,,.,	75&<<<<<<<

Mpileup format

Column 5: The bases string [edit]

- •. (dot) means a base that matched the reference on the forward strand
- •, (comma) means a base that matched the reference on the reverse strand
- </> (less-/greater-than sign) denotes a reference skip. This occurs, for example, if a base in the reference genome is intronic and a read maps to two flanking exons. If quality scores are given in a sixth column, they refer to the quality of the read and not the specific base.
- AGTCN (upper case) denotes a base that did not match the reference on the forward strand
- agtcn (lower case) denotes a base that did not match the reference on the reverse strand
- A sequence matching the regular expression \+[0-9]+[ACGTNacgtn]+ denotes an insertion of one or more bases starting from the next position. For example, +2AG means insertion of AG in the forward strand
- A sequence matching the regular expression \-[0-9]+[ACGTNacgtn]+ denotes a deletion of one or more bases starting from the next position. For example, -2ct means deletion of CT in the reverse strand
- ^ (caret) marks the start of a read segment and the ASCII of the character following `^' minus 33 gives the mapping quality
- •\$ (dollar) marks the end of a read segment
- •* (asterisk) is a placeholder for a deleted base in a multiple basepair deletion that was mentioned in a previous line by the -[0-9]+[ACGTNacgtn]+ notation

Viral subpopulation - Quasispecies

- Just as in clonal subpopulations in tumor samples, we can have viral subpopulations called quasispecies in viral samples.
- We detect them using the alternative allele frequency.

Population Allele frequency vs Sample Allele frequency

 Population allele frequency: probability of finding an allele in the population. Number of individuals carrying an allele vs total of individuals in the population.

Population Allele frequency vs Sample Allele frequency

 Alternate/Base allele frequency: number of reads supporting the alternate allele vs total of reads.

VARSCAN2

- Uses a heuristic/statistic method instead of bayesian.
- Allows more flexibility and hard filters.

samtools pileup -f reference.fasta myData.bam | java -jar VarScan.v2.2.jar pileup2snp

http://varscan.sourceforge.net/

VARSCAN2

Quick et al. Nature Protoc. 2017

Grubaugh et al. Genome Biology. 2019

Grubaugh et al. Genome Biology. 2019

Command	Description		
trim	Trim reads in aligned BAM		
variants	Call variants from aligned BAM file		
filtervariants	Filter variants across replicates or multiple samples aligned using the same reference		
consensus	Call consensus from aligned BAM file		
getmasked	Detect primer mismatches and get primer indices for the amplicon to be masked		
removereads	Remove reads from trimmed BAM file		
version	Show version information		
trimadapter	(EXPERIMENTAL) Trim adapter sequences from reads		

Grubaugh et al. Genome Biology. 2019

• <u>Input Options Description</u>

- -q Minimum quality score threshold to count base (Default: 20)
- -t Minimum frequency threshold(0 1) to call variants
 (Default: 0.03)
- -m Minimum read depth to call variants (Default: 0)
- -r Reference file used for alignment. This is used to translate the nucleotide sequences and identify intra host single nucleotide variants
- -g A GFF file in the GFF3 format can be supplied to specify coordinates of open reading frames (ORFs). In absence of GFF file, amino acid translation will not be done.

• Output Options Description

- -p (Required) Prefix for the output tsv variant file

Grubaugh et al. Genome Biology. 2019

LOFREQ

Wilm et al. Nucleic Acids Res. 2012

LOFREQ

- lofreq viterbi: realignment algorithm
- lofreq call: Warning! Only SNPs are called by default.
- lofreq filter: vcf filtering.

http://csb5.github.io/lofreq/

IRMA: Iterative Refinement Meta-Assembler

Shepard et al BMC Genomics 2016, 17:708

Available for LU, *FLU_AD, EBOLA, & ‡CoV & Sars-cov-2

Consensus genome

Aproximation 1

- Select variants: > 80% allele frequency
- Include variants in reference genome.
- Mask low frequency positions: <10x.

Consensus genome

Approximation 2 (ivar)

 Minimum frequency threshold is the minimum frequency that a base must match to be called as the consensus base at a position. If one base is not enough to match a given frequency, then an ambigious nucleotide is called at that position

As an example, consider a position with 6As, 3Ts and 1C. The table below shows the consensus nucleotide called at different frequencies.

Minimum frequency threshold	Consensus
0	А
0.5	А
0.6	А
0.7	W(A or T)
0.9	W (A or T)
1	H (A or T or C)

Variant Calling in Nanopore

- Medaka is a tool to create consensus sequences and variant calls from nanopore sequencing data. This task is performed using neural networks applied a pileup of individual sequencing reads against a draft assembly.
- medaka consensus: Creates a consensus from a draft assembly in fasta format and the nanopore corrected fastq reads.

Variant Calling in Nanopore

Nanopolish can calculate an improved consensus sequence for a draft genome assembly, detect base modifications, call SNPs and indels with respect to a reference genome and more

Variant Calling in Nanopore

Artic protocol

Full protocol from wet to drylab.
Includes basecalling, preprocessing,
mapping and consensus generation for
Artic primers.

Consensus genome comparison: Mauve

Mauve is a complete genoma aligner

Consensus genome comparison: Mauve

Variants annotation

SnpEff is a variant annotation and effect prediction tool. It annotates and predicts the effects of genetic variants (such as amino acid changes).

It needs an annotation database, there are few for virus as default, commonly you need to build it using a gff file if available.

Output: annotated vcf

SnpSift converts snpeff output to a table.

Thanks for your attention!