Setting a bit of a variable to 1. - une bitaise OR with a 1 OR 1 0 1 0 200 doesn't change anything Example: set the rightmost bit of 2 to 1. x = x | 1; x = 0.000010.10101 changed to 1 Set the mth bit of x to 1: X = x / (1 << m); // mask has 9 1

mosk

m

Clear a bit to O.

- use bitwise AND with a O.

Respond to the series of the series of

Clearing the right most bit of x (to 0).
- mask would have to be 11 - 110
it to create that mask?
THE HOLD MYMASK OX FFF IT I
the MYMASK NI /complement of
17 000
X=X&MYMASK
Clear the mill bit of X.
$\chi = \chi \mathcal{S}^{\sim} (1 \ll m); \infty \sim 00.00$
mask: 11101-1
bit m
Binary Arithmetic
- already seen addition.
- subtraction:
$x - y \equiv \chi + (-y)$
yand odl 1.
·

- multiplication

- same way as humans, except in

binary not decimal.

Binary:

11010 = 26 lecimal

110 = 6 decimal

11010

11010

11010

10011100 = 156 decimal

DIVISION: - Done the some way as humans do.
- binary not decimal Decimal: 129 129 Nemeinder=29 533 504 29 Binary: 11110 101 [10011010 x 154 does mal 01001 5 decimal 01000 101 100 remainder 4 decimal

TEEE Floating Point Numbers
- approximation to real number
- 32 bits "float" -64 bits "double"
-64 bits "double"
32 bit IEEE floating point number:
- specified using scientific notation
mantissa in 6 Mary. Exponent
In decimal: 6.02 × 10 mormalized -3.15 × 10'5 - one digit
-3.15 × 1015 5 - one digit
2.01 × 10-7 before the
In binary: 1.0101 x 210 point.
5190 -1.11 x Z-101

The sign, exponent, and the mantissa are represented as fields in the 32-5:+

32 6,ts

1 1 8 23

Sign exponent mantisses

Sign: 1 = resotive, 0 = positive

Exponent: A bigs of 127 15 used.

- the number stored in the exponent field is the actual exponent plus 127.

- so actual exponent is
the stored exponent -127.

It stored exponent is 13, then actual exponent is -1/4.

Mantissa: - Must be normalized, non-zers. so one, digit before the point. 1010.1 x 25 1.0101 X Z 1.0 x Z - there will always be a 1 before the decimal point. - except for the number

- in the stored mantissa, the leading 1 is Implict. -only the digits after the point are stored. 1.010(10)0,-0 .01011010-0 Zero is represented specially as all 0's (all 325, ts) 32 bits