-MOVEP 2012-

Implementation of Timed Systems: Theory and Practice

Aleksandra Jovanović, Didier Lime, Olivier H. Roux IRCCyN, Ecole Centrale de Nantes

December 4, 2012

Introduction

Undecidability Results

Integer Parameter Synthesis for Timed Automata

Parametric Timed Games

Conclusions

Outline

Introduction

Undecidability Results

Integer Parameter Synthesis for Timed Automata

Parametric Timed Games

Conclusions

Timed Automaton (TA)

Finite automaton extended with a finite set of clocks

Timed Automaton (TA)

• Finite automaton extended with a finite set of clocks

Timed Automaton (TA)

Finite automaton extended with a finite set of clocks

Parametric Timed Automaton (PTA)

Timed Automaton (TA)

Finite automaton extended with a finite set of clocks

$$x < c, x := 0$$

$$y \le a$$

$$h_1 \Rightarrow x \ge b, x := 0$$

Parametric Timed Automaton (PTA)

• Timed automata with parameters as bounds on clocks

Parametric verification

Parametric verification

Reachability emptiness for PTA

Is the set of parameter valuations v, such that l_i is reachable in v(A), empty?

Parametric verification

Reachability emptiness for PTA

Is the set of parameter valuations v, such that l_i is reachable in v(A), empty?

Unavoidability emptiness for PTA

Is the set of parameter valuations v, such that all maximal runs of v(A) go through I_i , empty?

Parametric verification

Reachability emptiness for PTA

Is the set of parameter valuations v, such that l_i is reachable in v(A), empty?

Unavoidability emptiness for PTA

Is the set of parameter valuations v, such that all maximal runs of v(A) go through l_i , empty?

Synthesis problem

Can we compute all of these valuations?

Outline

Introduction

Undecidability Results

Integer Parameter Synthesis for Timed Automata

Parametric Timed Games

Conclusions

Theorem Alur & Dill '93

Reachability emptiness problem is undecidable for PTA.

Theorem Alur & Dill '93

Reachability emptiness problem is undecidable for PTA.

We restrict the problem to bounded parameters:

Theorem Alur & Dill '93

Reachability emptiness problem is undecidable for PTA.

We restrict the problem to bounded parameters:

 New encoding of the 2-counter machine with parameters bounded by K and k:

Theorem Alur & Dill '93

Reachability emptiness problem is undecidable for PTA.

We restrict the problem to bounded parameters:

 New encoding of the 2-counter machine with parameters bounded by K and k:

Theorem

Reachability emptiness problem with bounded parameters is undecidable for PTA.

Subclass of PTA: L/U automaton [Hune & al. '02]:

- Two sets of parameters: lower bounds on clocks $(x \ge a)$ upper bounds on clocks $(x \le b)$
- Reachability emptiness is decidable for L/U automata

Subclass of PTA: L/U automaton [Hune & al. '02]:

- Two sets of parameters: lower bounds on clocks $(x \ge a)$ upper bounds on clocks $(x \le b)$
- Reachability emptiness is decidable for L/U automata

But:

Subclass of PTA: L/U automaton [Hune & al. '02]:

- Two sets of parameters: lower bounds on clocks $(x \ge a)$ upper bounds on clocks $(x \le b)$
- Reachability emptiness is decidable for L/U automata

But:

- transform a PTA into a L/U automaton
- we obtain: $v_p \Leftrightarrow v_{L/U} \cap \{p_i^l = p_i^u\}^{\frac{n}{2}} \{\emptyset\} \implies \text{undecidable}$

Subclass of PTA: L/U automaton [Hune & al. '02]:

- Two sets of parameters: lower bounds on clocks $(x \ge a)$ upper bounds on clocks $(x \le b)$
- Reachability emptiness is decidable for L/U automata

But:

- transform a PTA into a L/U automaton
- we obtain: $v_p \Leftrightarrow v_{L/U} \cap \{p_i^l = p_i^u\}^{\frac{2}{l}} \{\emptyset\} \implies \text{undecidable}$

Theorem

The solution to the reachability emptiness problem for L/U automata cannot be represented using any formalism for which the emptiness of the intersection with equality constraints is decidable.

Forward state-space exploration of PTA

•
$$Z_n = \{0 \le x \le b, 0 \le na \le y \le (n+1)b\}$$

Outline

Introduction

Undecidability Results

Integer Parameter Synthesis for Timed Automata

Parametric Timed Games

Conclusions

Outline Introduction Undecidability Results Integer Parameter Synthesis for Timed Automata Parametric Timed Gam

Integer Parameter Synthesis for PTA

Current problem:

undecidability

Current problem:

undecidability

Proposed solution:

- computation of integer parameter valuations
- symbolic approach: integer hulls

Current problem:

undecidability

Proposed solution:

- computation of integer parameter valuations
- symbolic approach: integer hulls

Current problem:

undecidability

Proposed solution:

- computation of integer parameter valuations
- symbolic approach: integer hulls

Current problem:

undecidability

Proposed solution:

- computation of integer parameter valuations
- symbolic approach: integer hulls

IntHull(Z): smallest subset of elements of Z with integer coordinates

Termination

Problem: termination of the algorithm

Termination

Problem: termination of the algorithm

Proposed solution: bound the parameter valuations

Termination

Problem: termination of the algorithm

Proposed solution: bound the parameter valuations

Clocks are upper bounded by N

$$x \ge a, x := 0$$

$$x = y = 0 \xrightarrow{\ell_0} y \ge 2$$

$$x \le b$$

- Suppose N = 3 and (ℓ_0, Z_0) with $Z_0 = \{x = y, x < b < 3\}$;
- After one loop: $Z'_1 = Z_1 \cap \{y \le b + 1\};$
- After two loops: $Z_2' = Z_2 \cap \{a \le 1 \text{ and } a \le b\}$
- After n > 3 loops:

$$Z'_n = Z'_{n+1} = \{a = 0, 0 \le x \le b, x \le 3, 0 \le y \le 3b, y \le 3\}$$

Outline

Introduction

Undecidability Results

Integer Parameter Synthesis for Timed Automata

Parametric Timed Games

Conclusions

Parametric Timed Game Automata

Control problems on TA:

Control problems on TA:

• uncontrollable events

Control problems on TA:

- uncontrollable events
- timed game: controller vs. environment

Control problems on TA:

- uncontrollable events
- timed game: controller vs. environment
- find a winning strategy

Control problems on TA:

- uncontrollable events
- timed game: controller vs. environment
- find a winning strategy

Extension with parameters:

Control problems on TA:

- uncontrollable events
- timed game: controller vs. environment
- find a winning strategy

Extension with parameters:

• Parametric game automata (PGA)

Control problems on TA:

- uncontrollable events
- timed game: controller vs. environment
- find a winning strategy

Extension with parameters:

• Parametric game automata (PGA)

Reachability emptiness problem for PGA

Is there a parameter valuation v such that there is a winning strategy?

Outline Introduction Undecidability Results Integer Parameter Synthesis for Timed Automata Parametric Timed Gam

Decidability Issues for PGA

Theorem

Reachability emptiness problem for PGA is undecidable.

Decidability Issues for PGA

Theorem

Reachability emptiness problem for PGA is undecidable.

New subclass of PGA: L/U game automata

Syntactical restrictions:

- the set of parameters *P* is partitioned as:
- P^I lower bounds in controllable trans. and upper bounds in uncontrollable trans.
- P^u upper bounds in controllable trans. and lower bounds in uncontrollable trans.

Decidability Issues for PGA

Theorem

Reachability emptiness problem for PGA is undecidable.

New subclass of PGA: L/U game automata

Syntactical restrictions:

- the set of parameters P is partitioned as:
- P^I lower bounds in controllable trans. and upper bounds in uncontrollable trans.
- P^u upper bounds in controllable trans. and lower bounds in uncontrollable trans.

Theorem

Reachability emptiness problem for L/U games is decidable.

Algorithm for Solving Parametric Timed Games

Symbolic on-the-fly algorithm for solving TGA [Cassez & al. '05]

winning set of states

Extend the algorithm for the parametric approach

set of parameter valuations with the set of winning states

We use extended notion of the symbolic state:

- parametric zone set of pairs (w, v) satisfying clock constraint
- w clock valuation
- v parameter valuation

Theorem

In the case of termination, if the initial state belongs to the winning set of states, set of parameter valuations is obtained and the winning strategy can be extracted from the winning set of states.

Outline

Introduction

Undecidability Results

Integer Parameter Synthesis for Timed Automata

Parametric Timed Games

Conclusions

Conclusions

Parameter synthesis for PTA:

- Integer parameter synthesis for PTA decidability
- Bounded integers termination
- Integer hulls efficiency

Conclusions

Parameter synthesis for PTA:

- Integer parameter synthesis for PTA decidability
- Bounded integers termination
- Integer hulls efficiency

Parametric model for timed games:

- Timed games with parameters
 - parametric timed games
- Reachability emptiness decidable subclass
 - L/U game automata
- Extension of the algorithm for solving timed games
 - parameter synthesis