SVM, Logistic Regression a practical review

SVM: support vector machine

Main ideas

- Find a separating hyperplane (if data is linearly separable). $Y \in \{-1,1\}, X \in \mathbb{R}^d$ covariates.
- Maximise the margin between the two classes
- Optimization centric problem:

$$\max_{w} \frac{2}{||w||} \text{ s.t. } w^{T} x_{i} y_{i} \ge 1, \forall i = 1,...,n$$

$$\underbrace{\max_{w} \frac{2}{||w||}}_{\text{margin}}$$

-> convex program (quadratic) can be solved! (See additional notes for worked mathematical details)

SVM: support vector machine

Main ideas

- « Support vectors » saturate the constraints
 —> determine the hyperplane
- When not linearly separable, introduce "slack" (soft constraint) $(\xi_i)_{i=1}^n$ where we allow points on the wrong side within a distance $y_i x_i^T w \geq 1 \xi_i$
- The value ξ_i is the proportional amount by which the prediction \hat{y}_i is on the wrong side of its margin
- Points well within their boundaries do not matter: points on the margin and within the margin impact the optimization

FIGURE 12.1. Support vector classifiers. The left panel shows the separable case. The decision boundary is the solid line, while broken lines bound the shaded maximal margin of width $2M = 2/\|\beta\|$. The right panel shows the nonseparable (overlap) case. The points labeled ξ_j^* are on the wrong side of their margin by an amount $\xi_j^* = M\xi_j$; points on the correct side have $\xi_j^* = 0$. The margin is maximized subject to a total budget $\sum \xi_i \leq \text{constant}$. Hence $\sum \xi_j^*$ is the total distance of points on the wrong side of their margin.

SVM: support vector machines

Kernelisation

- What if there is non-linearity? In the optimization problem, the constraint uses $\boldsymbol{x}_i^T \boldsymbol{x}_j$
- Can kernelise the problem: find a map $\phi(x)$ such that $K(x_i, x_j) = \phi(x_i)^T \phi(x_j)$ —> « linearisation » in the feature space
- See tutorial in practice here: <u>tutorial SVM</u>
- In practice: can use sklearn package

SVM - Radial Kernel in Feature Space

Logistic Regression Main ideas

Want to model
$$\log \frac{p}{1-p} = \beta_0 + \beta^T x$$
 where $p = P(Y=1 | X=x)$ —> naturally induces a sigmoid transformation

$$\ell(\beta) = \sum_{i=1}^{N} \left\{ y_i \log p(x_i; \beta) + (1 - y_i) \log(1 - p(x_i; \beta)) \right\}$$
$$= \sum_{i=1}^{N} \left\{ y_i \beta^T x_i - \log(1 + e^{\beta^T x_i}) \right\}.$$

Can be fit using MLE and Newton Raphson algorithm to solve the first order and second order constraints

$$\frac{\partial \ell(\beta)}{\partial \beta} = \sum_{i=1}^{N} x_i (y_i - p(x_i; \beta)) = 0,$$

$$\frac{\partial^2 \ell(\beta)}{\partial \beta \partial \beta^T} = -\sum_{i=1}^N x_i x_i^T p(x_i; \beta) (1 - p(x_i; \beta)).$$

Update til convergence:

$$\beta^{\text{new}} = \beta^{\text{old}} - \left(\frac{\partial^2 \ell(\beta)}{\partial \beta \partial \beta^T}\right)^{-1} \frac{\partial \ell(\beta)}{\partial \beta}$$

Logistic Regression

Main ideas

- In practice: can be optimized via gradient descent
 - LR using gradient descent
 - Another LR using gradient descent
 - LR using IRLS (equivalent NR)
- Implementation can be found in sklearn packages.