



## **Project Initialization and Planning Phase**

| Date          | 13 June 2025                                                |  |
|---------------|-------------------------------------------------------------|--|
| Team ID       | SWTID1749709340                                             |  |
| Project Title | Predicting Co2 Emission by countries Using Machine Learning |  |
| Maximum Marks | 3 Marks                                                     |  |

## **Project Proposal (Proposed Solution) template**

This project proposal outlines a solution to address a specific problem. With a clear objective, defined scope, and a concise problem statement, the proposed solution details the approach, key features, and resource requirements, including hardware, software, and personnel.

| <b>Project Overview</b>  |                                                                                                                                                                                                                                                    |  |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Objective                | To develop a machine learning-based web application that predicts CO <sub>2</sub> emissions of countries based on user-provided year and country input for aiding policy planning and environmental research.                                      |  |
| Scope                    | The project covers data collection, preprocessing, training regression models, developing a web interface for user input, visualizing prediction results, and deploying the application for public and academic use.                               |  |
| <b>Problem Statement</b> |                                                                                                                                                                                                                                                    |  |
| Description              | It is difficult for policymakers, researchers, and citizens to predict future CO <sub>2</sub> emissions for countries easily, as available data is static, scattered, and not user-friendly. This hinders effective planning and climate research. |  |
| Impact                   | Solving this enables data-driven climate action, easy trend analysis, and informed policy decisions by providing accessible, interactive, and accurate CO <sub>2</sub> emission forecasts for each country.                                        |  |
| <b>Proposed Solution</b> |                                                                                                                                                                                                                                                    |  |
| Approach                 | We will collect historical CO <sub>2</sub> emission data, preprocess and train machine learning regression models, and integrate them with a Flask-based web application where users can input a country and year to                               |  |





|              | receive predictions with visual plots                                                                                                                                                                                                                                                |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Key Features | <ul> <li>User-friendly web interface for input and prediction</li> <li>Country-wise CO<sub>2</sub> emission prediction with graphical visualization</li> <li>Uses machine learning for accurate forecasts</li> <li>Accessible for policymakers, researchers, and students</li> </ul> |

## **Resource Requirements**

| Resource Type           | Description                                      | Specification/Allocation                                 |  |  |
|-------------------------|--------------------------------------------------|----------------------------------------------------------|--|--|
| Hardware                |                                                  |                                                          |  |  |
| Computing Resources     | CPU for development, model training, and testing | Intel i5/i7, 4 cores                                     |  |  |
| Memory                  | RAM for data processing and model execution      | 8 GB                                                     |  |  |
| Storage                 | Storage for datasets, models, logs               | 256 GB SSD                                               |  |  |
| Software                |                                                  |                                                          |  |  |
| Frameworks              | Python frameworks                                | Flask                                                    |  |  |
| Libraries               | Additional Python libraries                      | scikit-learn, pandas, numpy matplotlib                   |  |  |
| Development Environment | IDE, version control                             | Jupyter Notebook, GitHub                                 |  |  |
| Data                    |                                                  |                                                          |  |  |
| Data                    | Source, size, format                             | Kaggle/World Bank CO <sub>2</sub><br>dataset, CSV format |  |  |