

# SiC MOSFETs



The three key elements to pushing power density boundaries in power electronic inverter systems are increasing switching frequency, improving efficiency, and optimizing thermal management. Wolfspeed SiC MOSFETs are high-

speed, majority-carrier devices, which feature less turn-on and turn-off switching loss than silicon IGBTs and super-junction MOSFETs. In hard-switched converters/inverters, this advantage enables the designer to achieve higher efficiency for the same switching frequency or higher switching frequency for the same net loss. Power converters made with silicon carbide (SiC) MOSFETs result in higher power density due to their higher blocking voltage, lower on-state resistance and higher thermal conductivity when compared to their silicon counterparts.

Higher performance devices enabling lower cost systems mean nothing without best in class reliability. Our MOSFET products start with a robust design built upon a proven and reliable SiC technology platform. All MOSFETs are avalanche-rated and resistant to latch-up. The results speak for themselves: we are the industry leader with the widest portfolio of commercially qualified SiC-based MOSFETs.

"We selected Wolfspeed SiC Planar MOSFETs for our new HF9 battery charger family because they enabled us to improve our battery chargers while achieving operational savings, increased productivity and increased safety. This was not possible with the best IGBTs in the market."

Giancarlo Ceo, R&D Engineer at Gruppo PBM.

### **FEATURES**

Rugged and reliable with more than five years of commercial SiC MOSFET production

High-speed switching with low capacitance

High-blocking voltage with low R<sub>DS(on)</sub>

Fast intrinsic diode with low reverse recovery

### **BENEFITS**

Increase system reliability while reducing size, weight and cost
Achieve higher system efficiency

Reduce cooling requirements

Implement new topologies not previously possible

## 1200V IGBT vs. SIC MOSFETs



### Wolfspeed SiC MOSFET + Diodes



IGBT + Si Fast Recovery Diode —— Wolfspeed MOSFET + Z-Rec Diode +10% to +25%

-8% to -25%

Wolfspeed SiC switching losses DECREASE at higher temperatures.

## SiC vs. IGBT Switching Loss



### SiC vs. IGBT Conduction Loss



Wolfspeed 1200V  $25\Omega$  MOSFET

## **Lower switching losses**

The lower switching losses are the result of Wolfspeed's revolutionary silicon carbide technology.

Competitive Device: 1200V IGBT 80A @  $T_c$ =25°C Wolfspeed Device: C2M0025120D 90A @  $T_c$ =25° C

## **Lower conduction losses**

At the normal operating point of most applications, the curve of an IGBT behaves more like the PIN diode while the MOSFET acts more like a true resistor. This results in lower conduction losses in real applications.

## Discrete

| Part Number     | Blocking<br>Voltage (V) | R <sub>ds(on)</sub><br>(mΩ) | Current Rating<br>at 25°C (A) | Package  |
|-----------------|-------------------------|-----------------------------|-------------------------------|----------|
| C3M0065090J     | 900                     | 65                          | 35                            | TO-263-7 |
| C3M0065090D     | 900                     | 65                          | 36                            | TO-247-3 |
| C3M0120090J     | 900                     | 120                         | 22                            | TO-263-7 |
| C3M0120090D     | 900                     | 120                         | 23                            | TO-247-3 |
| C3M0280090J     | 900                     | 280                         | 11                            | TO-263-7 |
| C3M0280090D     | 900                     | 280                         | 11.5                          | TO-247-3 |
| C3M0065100K     | 1000                    | 65                          | 35                            | TO-247-4 |
| C3M0065100J     | 1000                    | 65                          | 35                            | TO-263-7 |
| C3M0120100K     | 1000                    | 120                         | 22                            | TO-247-4 |
| C3M0120100J     | 1000                    | 120                         | 22                            | TO-247-4 |
| C2M0025120D     | 1200                    | 25                          | 90                            | TO-263-7 |
| C2M0040120D     | 1200                    | 40                          | 60                            | TO-247-3 |
| C3M0075120K     | 1200                    | 75                          | 30                            | TO-247-4 |
| C2M0080120D     | 1200                    | 80                          | 36                            | TO-247-3 |
| C2M0160120D     | 1200                    | 160                         | 19                            | TO-247-3 |
| C2M0280120D     | 1200                    | 280                         | 10                            | TO-247-3 |
| C2M0045170D     | 1700                    | 45                          | 72                            | TO-247-3 |
| C2M1000170D     | 1700                    | 1000                        | 5                             | TO-247-3 |
| C2M1000170J     | 1700                    | 1000                        | 5.3                           | TO-263-7 |
| CPM3-0900-0010A | 900                     | 10                          | 196                           | Bare Die |
| CPM3-0900-0065B | 900                     | 65                          | 36                            | Bare Die |
| CPM3-1000-0065B | 1000                    | 65                          | 36                            | Bare Die |
| CPM2-1200-0025B | 1200                    | 25                          | 98                            | Bare Die |
| CPM2-1200-0040B | 1200                    | 40                          | 63                            | Bare Die |
| CPM2-1200-0080B | 1200                    | 80                          | 36                            | Bare Die |
| CPM2-1200-0160B | 1200                    | 160                         | 19                            | Bare Die |
| CPM2-1700-0045B | 1700                    | 45                          | 72                            | Bare Die |
| CPM2-1700-0080B | 1700                    | 80                          | 40                            | Bare Die |

Bare Die

# Tools and Support



### SILICON CARBIDE DISCRETE EVALUATION BOARD KIT8020-CRD-8FF1217P-1

- Universal evaluation board for SiC MOSFETs and diodes
- Includes easy access to critical test points, such as  $\rm V_{GS}, \rm V_{DS}$  and  $\rm I_{DS}$
- Provides a good layout example for properly driving MOSFETs and diodes with minimal ringing



# UNIVERSAL GATE DRIVER CRD-001

- Wolfspeed designed universal gate driver for all C2M<sup>™</sup> SiC MOSFETs
- Supports 1200V or 1700V MOSFETs
- Compatible with 1W and 2W DC-DC converters
- Full reference design files available



#### **50KW BOOST CONVERTER**

- SiC MOSFET-based converter for PV applications
- 4-phase interleaved
- $V_{in} = 400-600V$ ,  $V_{out} = 800V$
- Reference design includes schematic and detailed PowerPoint presentation

## Learn More:

## Visit wolfspeed.com/power

to learn more about our MOSFETs as well as other products and services.

There you can access our reference designs, models, evaluation tools and more.

Have additional questions? Contact us at

power@wolfspeed.com

