Skolemization Beyond Intuitionistic Logic: The Role of Quantifier Shifts

Raheleh Jalali (joint work with Matthias Baaz, Mariami Gamsakhurdia, and Rosalie lemhoff)

TABLEAUX 2025

28 September, 2025

Outline

Motivation

2 Logic of Quantifier Shifts, QFS

3 QFS admits Skolemization

A general practice: Suppose in the process of proving a theorem, you get

"for each x there is a y such that A(x, y)".

Then, it is convenient to introduce a fresh function f that picks a y for each x, such that A(x, f(x)) holds for each x.

A general practice: Suppose in the process of proving a theorem, you get

"for each x there is a y such that A(x, y)".

Then, it is convenient to introduce a fresh function f that picks a y for each x, such that A(x, f(x)) holds for each x. Skolemization is defined either in the context of derivability or satisfiability:

 (model-theoretic view): replacing existential quantifiers by new function symbols (then, a satisfiability-equivalent formula is obtained).

A general practice: Suppose in the process of proving a theorem, you get

"for each x there is a y such that A(x, y)".

Then, it is convenient to introduce a fresh function f that picks a y for each x, such that A(x, f(x)) holds for each x. Skolemization is defined either in the context of derivability or satisfiability:

- (model-theoretic view): replacing existential quantifiers by new function symbols (then, a satisfiability-equivalent formula is obtained).
- (proof-theoretic view): replacing universal quantifiers by new function symbols (then, a validity-equivalent formula is obtained).

A general practice: Suppose in the process of proving a theorem, you get

"for each x there is a y such that A(x, y)".

Then, it is convenient to introduce a fresh function f that picks a y for each x, such that A(x, f(x)) holds for each x. Skolemization is defined either in the context of derivability or satisfiability:

- (model-theoretic view): replacing existential quantifiers by new function symbols (then, a satisfiability-equivalent formula is obtained).
- (proof-theoretic view): replacing universal quantifiers by new function symbols (then, a validity-equivalent formula is obtained).

As we are considering Skolemization for any logic in general, we will choose the proof theoretic view.

Skolemization in Classical logic

Skolemization

Skolemization (proof-theoretic view): a method to remove strong quantifiers (i.e., positive occurrences of the universal quantifier and negative occurrences of the existential quantifier) from a first-order formula φ , and replace them with *fresh* function symbols.

Skolemization in Classical logic

Skolemization

Skolemization (proof-theoretic view): a method to remove strong quantifiers (i.e., positive occurrences of the universal quantifier and negative occurrences of the existential quantifier) from a first-order formula φ , and replace them with *fresh* function symbols.

The result is called Skolemization of φ and is denoted by φ^{S} .

Example

$$(\forall x \exists y \forall z \varphi(x, y, z))^{S} = \exists y \varphi(c, y, f(y)).$$

• This idea goes back to Skolem and it works well in the classical predicate logic, CQC. Informally, Skolemization is blind with respect to the place of the strong quantifier; removes it and replaces it with a fresh function.

- This idea goes back to Skolem and it works well in the classical predicate logic, CQC. Informally, Skolemization is blind with respect to the place of the strong quantifier; removes it and replaces it with a fresh function.
- First impression: Skolemization may not be done for intuitionistic predicate logic, IQC, because we know that quantifiers and connectives do not commute freely.

- This idea goes back to Skolem and it works well in the classical predicate logic, CQC. Informally, Skolemization is blind with respect to the place of the strong quantifier; removes it and replaces it with a fresh function.
- First impression: Skolemization may not be done for intuitionistic predicate logic, IQC, because we know that quantifiers and connectives do not commute freely.
- Indeed! In the context of intuitionistic logic, as well as many intermediate logics, Skolemization is a non-trivial affair.

Related work

Definition

Skolemization is sound and complete for a logic L, (\Rightarrow and \Leftarrow , resp.) when for any formula φ we have

$$L \vdash \varphi \Leftrightarrow L \vdash \varphi^{S}$$
.

Sometimes we also say *L admits* Skolemization.

Related work

Definition

Skolemization is sound and complete for a logic L, (\Rightarrow and \Leftarrow , resp.) when for any formula φ we have

$$L \vdash \varphi \Leftrightarrow L \vdash \varphi^{S}$$
.

Sometimes we also say *L admits* Skolemization.

- (Mints '66) For prenex formulas Skolemization is sound and complete in the setting of IQC.
- (Baaz, lemhoff '10, '16, '21) Alternative methods of Skolemization in intermediate logics (in certain conservative extensions of IQC).
- (Baaz, Metcalfe, Cintula '08, '15) Skolemization for substructural and fuzzy logics.

A natural question

What if we strengthen IQC in such a way that quantifiers and connectives commute freely? (and as a consequence for each formula there is a provably equivalent formula in *prenex normal form*)

Does the new logic have Skolemization? If not, for which class of formulas does the Skolemization hold?

The motivation of this research!

Outline

Motivation

2 Logic of Quantifier Shifts, QFS

3 QFS admits Skolemization

Consider the commuting of each quantifier \forall , \exists with each connective \land , \lor , \rightarrow . The following principles, that we call the *quantifier shifts*, are the only ones not valid in IQC:

Consider the commuting of each quantifier \forall,\exists with each connective \land,\lor,\rightarrow . The following principles, that we call the *quantifier shifts*, are the only ones not valid in IQC:

Definition

Let A(x) and B be formulas in the first-order language and the variable x is not free in B.

• (Constant Domain) $\forall x (A(x) \lor B) \to \forall x A(x) \lor B$ (CD)

Consider the commuting of each quantifier \forall , \exists with each connective \land , \lor , \rightarrow . The following principles, that we call the *quantifier shifts*, are the only ones not valid in IQC:

Definition

Let A(x) and B be formulas in the first-order language and the variable x is not free in B.

- (Constant Domain) $\forall x (A(x) \lor B) \to \forall x A(x) \lor B$ (CD)
- (Quantifier Switch) $(\forall x A(x) \to B) \to \exists x (A(x) \to B)$ (SW)

Consider the commuting of each quantifier \forall , \exists with each connective \land , \lor , \rightarrow . The following principles, that we call the *quantifier shifts*, are the only ones not valid in IQC:

Definition

Let A(x) and B be formulas in the first-order language and the variable x is not free in B.

- (Constant Domain) $\forall x (A(x) \lor B) \to \forall x A(x) \lor B$ (CD)
- (Quantifier Switch) $(\forall x A(x) \to B) \to \exists x (A(x) \to B)$ (SW)
- (Existential Distribution) $(B \to \exists x A(x)) \to \exists x (B \to A(x))$ (ED)

Consider the commuting of each quantifier \forall , \exists with each connective \land , \lor , \rightarrow . The following principles, that we call the *quantifier shifts*, are the only ones not valid in IQC:

Definition

Let A(x) and B be formulas in the first-order language and the variable x is not free in B.

- (Constant Domain) $\forall x (A(x) \lor B) \to \forall x A(x) \lor B$ (CD)
- (Quantifier Switch) $(\forall x A(x) \to B) \to \exists x (A(x) \to B)$ (SW)
- (Existential Distribution) $(B \to \exists x A(x)) \to \exists x (B \to A(x))$ (ED)

None of these formulas are provable in IQC. However, in CQC, both these formulas and their converses are provable.

Consider the commuting of each quantifier \forall,\exists with each connective \land,\lor,\rightarrow . The following principles, that we call the *quantifier shifts*, are the only ones not valid in IQC:

Definition

Let A(x) and B be formulas in the first-order language and the variable x is not free in B.

- (Constant Domain) $\forall x (A(x) \lor B) \to \forall x A(x) \lor B$ (CD)
- (Quantifier Switch) $(\forall x A(x) \to B) \to \exists x (A(x) \to B)$ (SW)
- (Existential Distribution) $(B \to \exists x A(x)) \to \exists x (B \to A(x))$ (ED)

None of these formulas are provable in IQC. However, in CQC, both these formulas and their converses are provable.

Denote the logic IQC $+ \{CD, SW, ED\}$ by QFS, which we call the *logic of* quantifier shifts.

Main Result

We provide a characterization of all intermediate logics that satisfy the soundness and completeness of Skolemization.

Theorem

An intermediate logic admits Skolemization if and only if it contains all quantifier shift principles.

Kripke frames and models

Definition

- A Kripke frame for IQC is a triple (W, \leq, D) , where $W \neq \emptyset$ is a set of worlds, \leq is a binary reflexive and transitive relation over W, and D is a function assigning to each $w \in W$ a non-empty set D(w), called the *domain* of w, such that if $w \leq w'$ then $D(w) \subseteq D(w')$.
- A Kripke model for IQC is a quadruple (W, \leq, D, V) where (W, \leq, D) is a Kripke frame and V is a valuation function in its usual sense.

A formula A is defined to be *valid* in a frame F, denoted by $F \models A$, and valid in a model M, denoted by $M \models A$, as usual:

- ▶ $M, v \Vdash \top$, $M, v \not\vdash \bot$
- ▶ $M, v \Vdash p$ iff $v \in V(p)$, for a propositional variable p,
- ▶ $M, v \Vdash A \land B$ iff $M, v \Vdash A$ and $M, v \Vdash B$
- ▶ $M, v \Vdash A \lor B$ iff $M, v \Vdash A$ or $M, v \Vdash B$
- ▶ $M, v \Vdash A \rightarrow B$ iff $\forall w \ge v$ if $M, w \Vdash A$ then $M, w \Vdash B$
- ▶ $M, v \Vdash \exists x A(x)$ iff $\exists d \in D(v)$ such that $M, v \Vdash A(d)$
- ▶ $M, v \Vdash \forall x A(x)$ iff $\forall w \ge v$ and $\forall d \in D(w)$ we have $M, w \Vdash A(d)$

A formula A is defined to be valid in a frame F, denoted by $F \models A$, and valid in a model M, denoted by $M \models A$, as usual:

- ▶ $M, v \Vdash \top$. $M, v \nvDash \bot$
- ▶ $M, v \Vdash p$ iff $v \in V(p)$, for a propositional variable p,
- ▶ $M, v \Vdash A \land B$ iff $M, v \Vdash A$ and $M, v \Vdash B$
- \blacktriangleright M, $v \Vdash A \lor B$ iff M, $v \Vdash A$ or M, $v \Vdash B$
- ▶ $M, v \Vdash A \rightarrow B$ iff $\forall w \ge v$ if $M, w \Vdash A$ then $M, w \Vdash B$
- ▶ $M, v \Vdash \exists x A(x)$ iff $\exists d \in D(v)$ such that $M, v \Vdash A(d)$
- ▶ $M, v \Vdash \forall x A(x)$ iff $\forall w \ge v$ and $\forall d \in D(w)$ we have $M, w \Vdash A(d)$

A Kripke frame is *linear* when for any $w, w' \in W$ either $w \leq w'$ or $w' \leq w$.

A formula A is defined to be *valid* in a frame F, denoted by $F \models A$, and valid in a model M, denoted by $M \models A$, as usual:

- ▶ $M, v \Vdash \top, M, v \not\vdash \bot$
- ▶ $M, v \Vdash p$ iff $v \in V(p)$, for a propositional variable p,
- ▶ $M, v \Vdash A \land B$ iff $M, v \Vdash A$ and $M, v \Vdash B$
- ▶ $M, v \Vdash A \lor B$ iff $M, v \Vdash A$ or $M, v \Vdash B$
- ▶ $M, v \Vdash A \rightarrow B$ iff $\forall w \ge v$ if $M, w \Vdash A$ then $M, w \Vdash B$
- ▶ $M, v \Vdash \exists x A(x)$ iff $\exists d \in D(v)$ such that $M, v \Vdash A(d)$
- ▶ $M, v \Vdash \forall x A(x)$ iff $\forall w \ge v$ and $\forall d \in D(w)$ we have $M, w \Vdash A(d)$

A Kripke frame is *linear* when for any $w, w' \in W$ either $w \leq w'$ or $w' \leq w$. A Kripke frame is *constant domain* if for any $w, w' \in W$, D(w) = D(w').

A formula A is defined to be *valid* in a frame F, denoted by $F \models A$, and valid in a model M, denoted by $M \models A$, as usual:

- M, v ⊩ ⊤, M, v ⊮ ⊥
- ▶ $M, v \Vdash p$ iff $v \in V(p)$, for a propositional variable p,
- ▶ $M, v \Vdash A \land B$ iff $M, v \Vdash A$ and $M, v \Vdash B$
- ▶ $M, v \Vdash A \lor B$ iff $M, v \Vdash A$ or $M, v \Vdash B$
- ▶ $M, v \Vdash A \rightarrow B$ iff $\forall w \ge v$ if $M, w \Vdash A$ then $M, w \Vdash B$
- ▶ $M, v \Vdash \exists x A(x)$ iff $\exists d \in D(v)$ such that $M, v \Vdash A(d)$
- ▶ $M, v \Vdash \forall x A(x)$ iff $\forall w \geqslant v$ and $\forall d \in D(w)$ we have $M, w \Vdash A(d)$

A Kripke frame is *linear* when for any $w, w' \in W$ either $w \leq w'$ or $w' \leq w$. A Kripke frame is *constant domain* if for any $w, w' \in W$, D(w) = D(w'). For any $w \in W$ define $\leq \lceil w \rceil := \{ v \in W \mid v \geq w \}$.

Example of failure of Skolemization in IQC

Example

The axiom $\forall x (A(x) \lor B) \to \forall x A(x) \lor B$ is not provable in IQC (as illustrated below) but its Skolemization $\forall x (A(x) \lor B) \to A(c) \lor B$ is.

$$D_{v} = \{c, d\} \ v \Vdash A(c), B \ v \not\models A(d)$$

$$\uparrow$$

$$D_{w} = \{c\} \ w \Vdash A(c) \ w \not\models B$$

Because

$$w \Vdash \forall x (A(x) \lor B)$$
 but $w \not\models \forall x A(x) \lor B$

As the first step of studying the logic of quantifier shifts, let us investigate the semantics.

Definition

Let $F = (W, \leq, D)$ be a frame. Define:

(WF) $\forall w \in W$ the set $\leq [w]$ is well-founded.

(cWF) $\forall w \in W$ the set $\leq [w]$ is conversely well-founded.

As the first step of studying the logic of quantifier shifts, let us investigate the semantics.

Definition

Let $F = (W, \leq, D)$ be a frame. Define:

(WF) $\forall w \in W$ the set $\leq [w]$ is well-founded.

(cWF) $\forall w \in W$ the set $\leq [w]$ is conversely well-founded.

Remark

A frame F satisfying WF does not imply that \leq is well-founded on W:

We present rich classes of frames for QFS and its fragments.

Definition

Define \mathcal{F} as the class of the following Kripke frames F closed under the disjoint union: F is constant domain with domain \mathcal{D} , satisfying one of the following conditions:

- **1** $|\mathcal{D}| = 1$,
- 2 $|\mathcal{D}| > 1$, \mathcal{D} is finite, and F is linear,
- **3** \mathcal{D} is <u>infinite</u>, F is <u>linear</u>, and satisfies both WF and cWF.

We present rich classes of frames for QFS and its fragments.

Definition

Define \mathcal{F} as the class of the following Kripke frames F closed under the disjoint union: F is constant domain with domain \mathcal{D} , satisfying one of the following conditions:

- **1** $|\mathcal{D}| = 1$,
- $|\mathcal{D}| > 1$, \mathcal{D} is finite, and F is linear,
- **3** \mathcal{D} is <u>infinite</u>, F is linear, and satisfies both WF and cWF.

Define $\mathcal{F}_{\rm ED}$ (resp. $\mathcal{F}_{\rm SW}$) as the class of Kripke frames containing \mathcal{F} and also frames of the form

• constant domain, linear, infinite domains, satisfying WF (resp. cWF).

Frame characterization

```
CD: \forall x (A(x) \lor B) \to \forall x A(x) \lor B
SW: (\forall x A(x) \to B) \to \exists x (A(x) \to B)
ED: (B \to \exists x A(x)) \to \exists x (B \to A(x))
```

Theorem (Frame characterization)

Let F be a frame.

- $F \models CD$ if and only if F is constant domain.
- $F \models ED$ if and only if $F \in \mathcal{F}_{ED}$.
- $F \models SW$ if and only if $F \in \mathcal{F}_{SW}$.
- $F \models \mathsf{QFS}$ if and only if $F \in \mathcal{F}$.

Example

• The the left frame is a frame for ED:

$$w_1 \Vdash B \to \exists x A(x)$$
 and $w_1 \Vdash \exists x (B \to A(x))$

• The right one is a frame for QFS.

Frame incompleteness

Definition

The logic L is sound and complete w.r.t. the class $\mathcal C$ of Kripke frames when for any formula φ

$$L \vdash \varphi$$
 if and only if $\mathcal{C} \vDash \varphi$.

Frame incompleteness

Definition

The logic L is sound and complete w.r.t. the class $\mathcal C$ of Kripke frames when for any formula φ

$$L \vdash \varphi$$
 if and only if $\mathcal{C} \vDash \varphi$.

Definition

The logic L is called *frame-incomplete* if there is no class C of Kripke frames such that L is sound and complete with respect to C.

Frame incompleteness

Definition

The logic L is sound and complete w.r.t. the class $\mathcal C$ of Kripke frames when for any formula φ

$$L \vdash \varphi$$
 if and only if $\mathcal{C} \vDash \varphi$.

Definition

The logic L is called *frame-incomplete* if there is no class C of Kripke frames such that L is sound and complete with respect to C.

Theorem

The following logics are frame-incomplete:

QFS
$$IQC + \{CD, SW\}$$
 $IQC + \{CD, ED\}$

Proof.

To show that QFS is frame-incomplete, we have to prove that for any class $\mathcal C$ of Kripke frames for QFS, there exists a formula φ such that $\mathcal C \models \varphi$ but QFS $\not\vdash \varphi$.

Proof.

To show that QFS is frame-incomplete, we have to prove that for any class $\mathcal C$ of Kripke frames for QFS, there exists a formula φ such that $\mathcal C \models \varphi$ but QFS $\not\vdash \varphi$. We claim taking an instance of $\varphi = \operatorname{Lin} \vee \operatorname{OEP}$ works, where

$$\mathsf{Lin} := (C \to D) \lor (D \to C) \quad \mathsf{and} \quad \mathsf{OEP} := \exists x A(x) \to \forall x A(x)$$

are the Linearity and One Element Principle schemata.

Proof.

To show that QFS is frame-incomplete, we have to prove that for any class $\mathcal C$ of Kripke frames for QFS, there exists a formula φ such that $\mathcal C \models \varphi$ but QFS $\not\vdash \varphi$. We claim taking an instance of $\varphi = \operatorname{Lin} \vee \operatorname{OEP}$ works, where

$$\mathsf{Lin} := (C \to D) \lor (D \to C) \quad \mathsf{and} \quad \mathsf{OEP} := \exists x A(x) \to \forall x A(x)$$

are the Linearity and One Element Principle schemata. The reason is:

• If a frame F validates QFS, then it is constant domain. Moreover, F is either linear or its domain is just a singleton. This means that F validates all instances of the axiom schema Lin \vee OEP.

Proof.

To show that QFS is frame-incomplete, we have to prove that for any class $\mathcal C$ of Kripke frames for QFS, there exists a formula φ such that $\mathcal C \models \varphi$ but QFS $\not\vdash \varphi$. We claim taking an instance of $\varphi = \operatorname{Lin} \vee \operatorname{OEP}$ works, where

$$\mathsf{Lin} := (C \to D) \lor (D \to C) \quad \mathsf{and} \quad \mathsf{OEP} := \exists x A(x) \to \forall x A(x)$$

are the Linearity and One Element Principle schemata. The reason is:

- If a frame F validates QFS, then it is constant domain. Moreover, F is either linear or its domain is just a singleton. This means that F validates all instances of the axiom schema Lin ∨ OEP.
- 2 There is an instance of Lin \vee OEP such that QFS $\not\vdash$ Lin \vee OEP.

Proof.

To show that QFS is frame-incomplete, we have to prove that for any class $\mathcal C$ of Kripke frames for QFS, there exists a formula φ such that $\mathcal C \models \varphi$ but QFS $\not\vdash \varphi$. We claim taking an instance of $\varphi = \operatorname{Lin} \vee \operatorname{OEP}$ works, where

$$\mathsf{Lin} := (C \to D) \lor (D \to C) \quad \mathsf{and} \quad \mathsf{OEP} := \exists x A(x) \to \forall x A(x)$$

are the Linearity and One Element Principle schemata. The reason is:

- If a frame F validates QFS, then it is constant domain. Moreover, F is either linear or its domain is just a singleton. This means that F validates all instances of the axiom schema Lin ∨ OEP.
- **②** There is an instance of Lin \vee OEP such that QFS $\not\vdash$ Lin \vee OEP.

These two points together prove that QFS is frame-incomplete.

QFS ⊬ Lin ∨ OEP

The following model is a model of QFS but $w \not\vdash \text{Lin} \lor \text{OEP}$. Let $\mathcal{D}_w = \mathcal{D}_{v_1} = \mathcal{D}_{v_2} = \mathcal{D} = \{a, b\}$.

$$v_1 \vDash R(a), R(b), P v_1 \not\vDash Q$$
 $v_2 \vDash R(a), R(b), Q v_2 \not\vDash P$

$$w \Vdash R(a)$$

Separation of fragments

What do we know about fragments of QFS? Are they distinct?

Theorem

The following hold:

Therefore, QFS, $IQC + \{CD, SW\}$, and $IQC + \{CD, ED\}$ are all distinct.

Separation of fragments

What do we know about fragments of QFS? Are they distinct?

Theorem

The following hold:

Therefore, QFS, IQC + {CD, SW}, and IQC + {CD, ED} are all distinct.

Theorem

 $SW \vdash CD$

and

ED ⊬ CD

Outline

Motivation

2 Logic of Quantifier Shifts, QFS

QFS admits Skolemization

Revisiting Skolemization

A thought:

Problem

Let A be a formula in prenex normal form. Does QFS \vdash A imply IQC \vdash A?

Revisiting Skolemization

A thought:

Problem

Let A be a formula in prenex normal form. Does QFS \vdash A imply IQC \vdash A?

If yes, then the Skolemization of QFS follows from Mints' theorem that the prenex fragment of IQC admits Skolemization.

Corollary

QFS admits Skolemization.

Revisiting Skolemization

A thought:

Problem

Let A be a formula in prenex normal form. Does QFS \vdash A imply IQC \vdash A?

If yes, then the Skolemization of QFS follows from Mints' theorem that the prenex fragment of IQC admits Skolemization.

Corollary

QFS admits Skolemization.

Unfortunately, this is not the case.

Prenex fragments of QFS and IQC

Example

$$QFS \vdash CD$$

$$\mathsf{QFS} \vdash \forall x (A(x) \lor B) \to \forall y A(y) \lor B$$

$$\mathsf{QFS} \vdash \forall x (A(x) \lor B) \to \forall y (A(y) \lor B)$$

$$\mathsf{QFS} \vdash \exists x ((A(x) \lor B) \to \forall y (A(y) \lor B))$$

$$\mathsf{QFS} \vdash \exists x \forall y ((A(x) \lor B) \to (A(y) \lor B))$$

Prenex fragments of QFS and IQC

Example

QFS
$$\vdash$$
 CD
QFS $\vdash \forall x (A(x) \lor B) \to \forall y A(y) \lor B$
QFS $\vdash \forall x (A(x) \lor B) \to \forall y (A(y) \lor B)$
QFS $\vdash \exists x ((A(x) \lor B) \to \forall y (A(y) \lor B))$
QFS $\vdash \exists x \forall y ((A(x) \lor B) \to (A(y) \lor B))$
However, IQC $\not\vdash \exists x \forall y ((A(x) \lor B) \to (A(y) \lor B))$. Take:
 $\{1,2\} \ w_2 \Vdash A(1)$
 \uparrow
 $\{1\} \ w_1$
where $\mathcal{D}_1 = \{1\}$ and $\mathcal{D}_2 = \{1,2\}$. Then $w_2 \Vdash A(1) \lor B$ but $w_2 \not\Vdash A(2) \lor B$. Hence, $w_1 \not\Vdash \exists x \forall y ((A(x) \lor B) \to (A(y) \lor B))$.

 Currently, we lack a well-structured proof system, such as a cut-free or analytic sequent calculus for QFS, and we established its frame incompleteness (with respect to Kripke frames).

- Currently, we lack a well-structured proof system, such as a cut-free or analytic sequent calculus for QFS, and we established its frame incompleteness (with respect to Kripke frames).
- So, can we prove QFS admits Skolemization in other ways?

- Currently, we lack a well-structured proof system, such as a cut-free or analytic sequent calculus for QFS, and we established its frame incompleteness (with respect to Kripke frames).
- So, can we prove QFS admits Skolemization in other ways?
- Aguilera and Baaz '19 proposed a sequent calculus for first-order (classical or intuitionistic) logic by relaxing the usual quantifier-inference restrictions.

- Currently, we lack a well-structured proof system, such as a cut-free or analytic sequent calculus for QFS, and we established its frame incompleteness (with respect to Kripke frames).
- So, can we prove QFS admits Skolemization in other ways?
- Aguilera and Baaz '19 proposed a sequent calculus for first-order (classical or intuitionistic) logic by relaxing the usual quantifier-inference restrictions.
- This calculus: allows unsound inferences, lacks local correctness, but has global correctness. Every lie that has been introduced during a proof, in the end will be cleared.

- Currently, we lack a well-structured proof system, such as a cut-free or analytic sequent calculus for QFS, and we established its frame incompleteness (with respect to Kripke frames).
- So, can we prove QFS admits Skolemization in other ways?
- Aguilera and Baaz '19 proposed a sequent calculus for first-order (classical or intuitionistic) logic by relaxing the usual quantifier-inference restrictions.
- This calculus: allows unsound inferences, lacks local correctness, but has global correctness. Every lie that has been introduced during a proof, in the end will be cleared.
- We will use this sequent calculus.

Definitions

▶ An inference is a **quantifier inference** if the principal formula has a quantifier as its outermost logical symbol. For instance

$$\frac{\Gamma \Rightarrow A(a)}{\Gamma \Rightarrow \forall x A(x)}$$

Definitions

An inference is a quantifier inference if the principal formula has a quantifier as its outermost logical symbol. For instance

$$\frac{\Gamma \Rightarrow A(a)}{\Gamma \Rightarrow \forall x A(x)}$$

▶ The **characteristic variable** of an inference is a, if the inference yields a strongly quantified formula QxA(x) from A(a), where a is a free variable.

Definitions

 An inference is a quantifier inference if the principal formula has a quantifier as its outermost logical symbol. For instance

$$\frac{\Gamma \Rightarrow A(a)}{\Gamma \Rightarrow \forall x A(x)}$$

- ▶ The **characteristic variable** of an inference is a, if the inference yields a strongly quantified formula QxA(x) from A(a), where a is a free variable.
- ▶ Let π be a derivation. We say b is a **side variable** of a in π ($a <_{\pi} b$) if π contains a strong-quantifier inference of one of the forms:

$$\frac{\Gamma \Rightarrow A(a,b,\vec{c})}{\Gamma \Rightarrow \forall x A(x,b,\vec{c})} \quad \frac{A(a,b,\vec{c}), \Gamma \Rightarrow \Delta}{\exists x A(x,b,\vec{c}), \Gamma \Rightarrow \Delta}$$

Sequent calculi **LK** and **LJ**

First-order **LK** is the extension of the usual propositional **LK** for classical logic obtained by adding quantifier inferences:

$$\frac{\Gamma, \varphi(t) \Rightarrow \Delta}{\Gamma, \forall x \varphi(x) \Rightarrow \Delta} \ \forall L \qquad \frac{\Gamma \Rightarrow \varphi(y), \Delta}{\Gamma \Rightarrow \forall x \varphi(x), \Delta} \ \forall R$$

$$\frac{\Gamma, \varphi(y) \Rightarrow \Delta}{\Gamma, \exists x \varphi(x) \Rightarrow \Delta} \ \exists L \qquad \frac{\Gamma \Rightarrow \varphi(t), \Delta}{\Gamma \Rightarrow \exists x \varphi(x), \Delta} \ \exists R$$

<u>Constraint</u>: in $\exists L$ and $\forall R$ the variable y is not free in the conclusion.

Sequent calculi LK and LJ

First-order **LK** is the extension of the usual propositional **LK** for classical logic obtained by adding quantifier inferences:

$$\begin{array}{ll} \Gamma, \varphi(t) \Rightarrow \Delta & \\ \hline \Gamma, \forall x \varphi(x) \Rightarrow \Delta & \forall L & \hline \Gamma \Rightarrow \varphi(y), \Delta \\ \hline \Gamma, \forall x \varphi(x) \Rightarrow \Delta & \\ \hline \Gamma, \exists x \varphi(x) \Rightarrow \Delta & \exists L & \hline \Gamma \Rightarrow \exists x \varphi(x), \Delta & \exists R \end{array}$$

<u>Constraint</u>: in $\exists L$ and $\forall R$ the variable y is not free in the conclusion.

First-order \mathbf{LJ} for intuitionistic logic is defined as the single-conclusion version of first-order \mathbf{LK} , i.e., everywhere in the succedents there is at most one formula.

Sequent calculi **LK** and **LJ**

First-order **LK** is the extension of the usual propositional **LK** for classical logic obtained by adding quantifier inferences:

$$\frac{\Gamma, \varphi(t) \Rightarrow \Delta}{\Gamma, \forall x \varphi(x) \Rightarrow \Delta} \ \forall L \qquad \frac{\Gamma \Rightarrow \varphi(y), \Delta}{\Gamma \Rightarrow \forall x \varphi(x), \Delta} \ \forall R$$

$$\frac{\Gamma, \varphi(y) \Rightarrow \Delta}{\Gamma, \exists x \varphi(x) \Rightarrow \Delta} \ \exists L \qquad \frac{\Gamma \Rightarrow \varphi(t), \Delta}{\Gamma \Rightarrow \exists x \varphi(x), \Delta} \ \exists R$$

<u>Constraint</u>: in $\exists L$ and $\forall R$ the variable y is not free in the conclusion.

First-order \mathbf{LJ} for intuitionistic logic is defined as the single-conclusion version of first-order \mathbf{LK} , i.e., everywhere in the succedents there is at most one formula.

The sequent calculus **QFS** is defined as $LJ + \{CD, ED, SW\}$.

A quantifier inference is *suitable* for a proof π if either it is a weak-quantifier inference, or the following are satisfied:

A quantifier inference is *suitable* for a proof π if either it is a weak-quantifier inference, or the following are satisfied:

• (substitutability) the characteristic variable does not appear in the conclusion of π .

A quantifier inference is *suitable* for a proof π if either it is a weak-quantifier inference, or the following are satisfied:

- (substitutability) the characteristic variable does not appear in the conclusion of π .
- **②** (side-variable condition) the relation $<_{\pi}$ is acyclic.

A quantifier inference is *suitable* for a proof π if either it is a weak-quantifier inference, or the following are satisfied:

- (substitutability) the characteristic variable does not appear in the conclusion of π .
- **②** (side-variable condition) the relation $<_{\pi}$ is acyclic.
- (very weak regularity) whenever the characteristic variable is also the characteristic variable of another strong-quantifier inference in π , then it has the same principal formula.

A quantifier inference is *suitable* for a proof π if either it is a weak-quantifier inference, or the following are satisfied:

- (substitutability) the characteristic variable does not appear in the conclusion of π .
- **②** (side-variable condition) the relation $<_{\pi}$ is acyclic.
- (very weak regularity) whenever the characteristic variable is also the characteristic variable of another strong-quantifier inference in π , then it has the same principal formula.

For instance, each quantifier inference of **LJ** as in the previous slide is suitable for every regular **LJ**-proof.

Justification of a suitable quantifier

Violation of each condition leads to an undesirable proof:

• violation of substitutability:
$$\frac{1}{4}$$

$$\frac{A(a) \Rightarrow A(a)}{A(a) \Rightarrow \forall x A(x)}$$

Justification of a suitable quantifier

Violation of each condition leads to an undesirable proof:

- violation of substitutability: $\frac{A(a) \Rightarrow A(a)}{A(a) \Rightarrow \forall x A(x)}$
- 2 violation of side-variable condition:

$$\frac{A(a,b) \Rightarrow A(a,b)}{\exists y A(a,y) \Rightarrow A(a,b)} *_{1} \frac{\exists y A(a,y) \Rightarrow \forall x A(x,b)}{\exists y A(x,y) \Rightarrow \forall x A(x,b)} *_{2} \frac{\exists y A(x,y) \Rightarrow \forall x A(x,b)}{\forall x \exists y A(x,y) \Rightarrow \exists y \forall x A(x,y)}$$

Note that in $*_1$ and $*_2$ we have $b <_{\pi} a$ and $a <_{\pi} b$, respectively.

Justification of a suitable quantifier

Violation of each condition leads to an undesirable proof:

- violation of substitutability: $A(a) \Rightarrow A(a)$ $A(a) \Rightarrow \forall x A(x)$
- violation of side-variable condition:

$$\frac{A(a,b) \Rightarrow A(a,b)}{\exists y A(a,y) \Rightarrow A(a,b)} *_{1} \frac{\exists y A(a,y) \Rightarrow \forall x A(x,b)}{\exists y A(x,y) \Rightarrow \forall x A(x,b)}$$

$$\forall x \exists y A(x,y) \Rightarrow \exists y \forall x A(x,y)$$

$$\forall x \exists y A(x,y) \Rightarrow \exists y \forall x A(x,y)$$

Note that in $*_1$ and $*_2$ we have $b <_{\pi} a$ and $a <_{\pi} b$, respectively.

violation of very weak regularity:

$$\frac{A(a) \Rightarrow A(a)}{A(a) \Rightarrow \forall x A(x)} \qquad \frac{A(a) \Rightarrow A(a)}{\exists x A(x) \Rightarrow A(a)}$$
$$\exists x A(x) \Rightarrow \forall x A(x)$$

LK⁺⁺ and LJ⁺⁺

Definition (Aguilera, Baaz '19)

The calculus \mathbf{LK}^{++} (resp. \mathbf{LJ}^{++}) is defined like \mathbf{LK} (resp. \mathbf{LJ}), except that the constraint on $\exists L$ and $\forall R$ is removed and one adds the restriction that a proof may only contain quantifier inferences that are *suitable* for it.

LK⁺⁺ and LJ⁺⁺

Definition (Aguilera, Baaz '19)

The calculus \mathbf{LK}^{++} (resp. \mathbf{LJ}^{++}) is defined like \mathbf{LK} (resp. \mathbf{LJ}), except that the constraint on $\exists L$ and $\forall R$ is removed and one adds the restriction that a proof may only contain quantifier inferences that are *suitable* for it.

An interesting fact: all the quantifier shift axioms are provable in LJ^{++} .

Theorem (Aguilera, Baaz '19)

Let S be a sequent. We have $LJ^{++} \vdash S$ iff $QFS \vdash S$

Theorem (Aguilera and Baaz '19)

If the Skolemization of $\Gamma \Rightarrow \Delta$ is cut-free \mathbf{LJ}^{++} -derivable, then $\Gamma \Rightarrow \Delta$ is cut-free \mathbf{LJ}^{++} -derivable.

Theorem (Aguilera and Baaz '19)

If the Skolemization of $\Gamma \Rightarrow \Delta$ is cut-free \mathbf{LJ}^{++} -derivable, then $\Gamma \Rightarrow \Delta$ is cut-free \mathbf{LJ}^{++} -derivable.

Corollary

QFS admits Skolemization.

Proof.

• Suppose QFS $\vdash A^S$.

- Suppose QFS $\vdash A^S$.
- Then **QFS** $\vdash \Rightarrow A^S$.

- Suppose QFS $\vdash A^S$.
- Then **QFS** $\vdash \Rightarrow A^S$.
- Therefore, $LJ \vdash B_1, \dots, B_n \Rightarrow A^S$, where each B_i is an instance of CD, ED, or SW.

- Suppose QFS $\vdash A^S$.
- Then **QFS** $\vdash \Rightarrow A^S$.
- Therefore, $LJ \vdash B_1, \dots, B_n \Rightarrow A^S$, where each B_i is an instance of CD, ED, or SW.
- As $\mathbf{LJ} \vdash \Rightarrow \varphi \rightarrow \varphi^S$ for any φ and $\mathbf{LJ} \vdash \Rightarrow (B_1 \land \cdots \land B_n) \rightarrow A^S$, we have $\mathbf{LJ} \vdash \Rightarrow ((B_1 \land \cdots \land B_n) \rightarrow A^S)^S$.

- Suppose QFS $\vdash A^S$.
- Then **QFS** $\vdash \Rightarrow A^S$.
- Therefore, $LJ \vdash B_1, \dots, B_n \Rightarrow A^S$, where each B_i is an instance of CD, ED, or SW.
- As $LJ \vdash \Rightarrow \varphi \rightarrow \varphi^S$ for any φ and $LJ \vdash \Rightarrow (B_1 \land \cdots \land B_n) \rightarrow A^S$, we have $LJ \vdash \Rightarrow ((B_1 \land \cdots \land B_n) \rightarrow A^S)^S$.
- Hence, there is a cut-free proof π of $\Rightarrow ((B_1 \land \cdots \land B_n) \rightarrow A^S)^S$ in **LJ**.

- Suppose QFS $\vdash A^S$.
- Then **QFS** $\vdash \Rightarrow A^S$.
- Therefore, $LJ \vdash B_1, \ldots, B_n \Rightarrow A^S$, where each B_i is an instance of CD, ED, or SW.
- As $LJ \vdash \Rightarrow \varphi \rightarrow \varphi^S$ for any φ and $LJ \vdash \Rightarrow (B_1 \land \cdots \land B_n) \rightarrow A^S$. we have $LJ \vdash \Rightarrow ((B_1 \land \cdots \land B_n) \rightarrow A^S)^S$.
- Hence, there is a cut-free proof π of $\Rightarrow ((B_1 \land \cdots \land B_n) \rightarrow A^S)^S$ in LJ.
- Since π is also an **LJ**⁺⁺-proof, by Theorem we obtain $\mathbf{LJ}^{++} \vdash \Rightarrow (B_1 \land \cdots \land B_n) \rightarrow A$

- Suppose QFS $\vdash A^S$.
- Then **QFS** $\vdash \Rightarrow A^S$.
- Therefore, $LJ \vdash B_1, \dots, B_n \Rightarrow A^S$, where each B_i is an instance of CD, ED, or SW.
- As $LJ \vdash \Rightarrow \varphi \rightarrow \varphi^S$ for any φ and $LJ \vdash \Rightarrow (B_1 \land \cdots \land B_n) \rightarrow A^S$, we have $LJ \vdash \Rightarrow ((B_1 \land \cdots \land B_n) \rightarrow A^S)^S$.
- Hence, there is a cut-free proof π of $\Rightarrow ((B_1 \land \cdots \land B_n) \rightarrow A^S)^S$ in **LJ**.
- Since π is also an \mathbf{LJ}^{++} -proof, by Theorem we obtain $\mathbf{LJ}^{++} \vdash \Rightarrow (B_1 \land \cdots \land B_n) \rightarrow A$, which yields $\mathbf{QFS} \vdash \Rightarrow A$ hence $\mathbf{QFS} \vdash A$.

Concluding remarks

- We introduced a logic QFS by adding the quantifier shifts to IQC.
- QFS is Kripke frame-incomplete.
- Main result: An intermediate logic admits Skolemization if and only if it contains all quantifier shift principles.

Concluding remarks

- We introduced a logic QFS by adding the quantifier shifts to IQC.
- QFS is Kripke frame-incomplete.
- Main result: An intermediate logic admits Skolemization if and only if it contains all quantifier shift principles.

Future work:

- Does the logic QFS have the disjunction property (DP)? (We know that it doesn not have the existence property (EP).)
- Investigate the full power of QFS by considering other axioms not provable in IQC and asking whether they are provable in QFS or not.

Concluding remarks

- We introduced a logic QFS by adding the quantifier shifts to IQC.
- QFS is Kripke frame-incomplete.
- Main result: An intermediate logic admits Skolemization if and only if it contains all quantifier shift principles.

Future work:

- Does the logic QFS have the disjunction property (DP)? (We know that it doesn not have the existence property (EP).)
- Investigate the full power of QFS by considering other axioms not provable in IQC and asking whether they are provable in QFS or not.

Thank you for your attention.