

Raúl Correa Ocañas - A01722401 - IDM

Ejemplo - Dataset Titanic

Features

```
survival - Survival (0 = No; 1 = Yes)
class - Passenger Class (1 = 1st; 2 = 2nd; 3 = 3rd)
name - Name
sex - Sex
age - Age
sibsp - Number of Siblings/Spouses Aboard
parch - Number of Parents/Children Aboard
ticket - Ticket Number
fare - Passenger Fare
cabin - Cabin
embarked - Port of Embarkation (C = Cherbourg; Q = Queenstown; S = Southampton)
```

Exploración de los Datos

```
In [ ]: import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
   import seaborn as sns
```

Descripción de Variables

Ejemplo: Crear un objeto DataFrame con base en un archivo .csv

```
In [ ]: #titanic = pd.read_csv('titanic.csv')
    from google.colab import drive
    drive.mount('/content/gdrive')

Mounted at /content/gdrive

In [ ]: titanic_df = pd.read_csv('/content/gdrive/MyDrive/Colab Notebooks/TC2004B.101/data/

In [ ]: titanic_df.head()
```

Out[]:		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000
	4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500
	4										•

In []: titanic_df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 891 entries, 0 to 890 Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	PassengerId	891 non-null	int64
1	Survived	891 non-null	int64
2	Pclass	891 non-null	int64
3	Name	891 non-null	object
4	Sex	891 non-null	object
5	Age	714 non-null	float64
6	SibSp	891 non-null	int64
7	Parch	891 non-null	int64
8	Ticket	891 non-null	object
9	Fare	891 non-null	float64
10	Cabin	204 non-null	object
11	Embarked	889 non-null	object
1.0	67 164/2	\	

dtypes: float64(2), int64(5), object(5)

memory usage: 83.7+ KB

In []: # Cantidad de valores únicos de cada variable titanic_df.nunique()

```
Out[]: PassengerId
                        891
        Survived
                          2
                          3
        Pclass
        Name
                        891
        Sex
                          2
                         88
        Age
        SibSp
                         7
                          7
        Parch
        Ticket
                        681
        Fare
                        248
        Cabin
                        147
        Embarked
                          3
        dtype: int64
```

Exploración de Datos

Тп Г 1∙	<pre>titanic_df.describe()</pre>
TII [].	citalite_ur.describe()

Out[]:		PassengerId	Survived	Pclass	Age	SibSp	Parch	Far€
	count 891.000000 89		891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
	mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
	std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
	min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
	25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
	50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
	75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
	max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

¿Tiene sentido obtener estas estadísticas para todas las variables? ¿En cuáles si?

```
In [ ]: #Valores nulos
    titanic_df.isnull().sum()
```

```
Out[]: PassengerId
        Survived
        Pclass
                         0
        Name
                         0
        Sex
                         0
                       177
        Age
        SibSp
                         0
        Parch
                         0
        Ticket
                         0
        Fare
                         0
        Cabin
                       687
        Embarked
        dtype: int64
```

Variables Cuantitativas

Variables cuantitativas:

Medidas estadísticas:

Incluye medidas de tendencia central y medidas de dispersión.

La varianza y desviación típica, nos indica si los valores se desplazan mucho o poco con respecto de la media. La varianza es como se aleja cada valor de la media. La varianza eleva los valores al cuadrado... nos introduce en una nueva dimensión... La desviación típica es la raíz cuadrada de la varianza. Con la desviación típica volvemos a la dimensión original.

Ejercicio: Define un dataframe que sólo incluya las variables cuantitativas y muestra las medidas estadísticas

Out[]:		PassengerId	Age	SibSp	Parch	Fare	FamilySize
	count	891.000000	714.000000	891.000000	891.000000	891.000000	891.000000
	mean	446.000000	29.699118	0.523008	0.381594	32.204208	1.904602
	std	257.353842	14.526497	1.102743	0.806057	49.693429	1.613459
	min	1.000000	0.420000	0.000000	0.000000	0.000000	1.000000
	25%	223.500000	20.125000	0.000000	0.000000	7.910400	1.000000
	50%	446.000000	28.000000	0.000000	0.000000	14.454200	1.000000
	75%	668.500000	38.000000	1.000000	0.000000	31.000000	2.000000
	max	891.000000	80.000000	8.000000	6.000000	512.329200	11.000000

```
In []: #Edad
    #Se puede obtener las medidas de tendencia central media, mediana y moda para una v
    mean_age = titanic_df['Age'].mean()
    median_age =titanic_df['Age'].median()
    mode_age = titanic_df['Age'].mode()
    print("Mean_age:",mean_age)
    print("Median_age:",median_age)
    print("Mode_age:",mode_age)
```

Mean_age: 29.69911764705882

Median_age: 28.0 Mode_age: 0 24.0 Name: Age, dtype: float64

Conclusiones: La edad promedio fue 29 La edad al centro es 28 La edad más repetida fue de

24

Variables Categóricas

Variables categóricas:

n []:	titanic	_df.describe(include='	objec	t')		
t[]:		Name	Sex	Ticket	Cabin	Embarked
	count	891	891	891	204	889
	unique	891	2	681	147	3
	top	Braund, Mr. Owen Harris	male	347082	B96 B98	S
	freq	1	577	7	4	644

Distribución de frecuencias

```
titanic_df.Survived.value_counts()
Out[]: 0
              549
              342
        Name: Survived, dtype: int64
        Análisis:
        titanic_df.Sex.value_counts()
Out[]: male
                   577
         female
                   314
        Name: Sex, dtype: int64
        Análisis:
        titanic_df.Pclass.value_counts()
Out[]: 3
              491
              216
              184
        Name: Pclass, dtype: int64
In [ ]: # Create a family size variable including the passenger themselves
        titanic_df["FamilySize"] = titanic_df["SibSp"] + titanic_df["Parch"]+1
        print(titanic_df["FamilySize"].value_counts())
             537
       1
       2
             161
       3
             102
       4
              29
              22
       6
       5
              15
       7
              12
       11
               7
               6
       Name: FamilySize, dtype: int64
```

Visualización de datos

Variables Categóricas

Gráficas de barras, gráficas de pie

In []: titanic_df.Pclass.value_counts().plot(kind="bar", alpha = 0.5)

In []: titanic_df.Pclass.value_counts(normalize=True).plot(kind="bar", alpha = 0.5)

```
Out[]: <Axes: >
```



```
In [ ]: plotData=titanic_df.Sex.value_counts()
    plotData.plot(kind='bar')
```

Out[]: <Axes: >


```
In [ ]: plotData.plot(kind='pie')
```

Out[]: <Axes: ylabel='Sex'>


```
In [ ]: g = sns.FacetGrid(titanic_df, margin_titles=True)
   g.map(plt.hist, "Age",color="purple");
```



```
In [ ]: g = sns.FacetGrid(titanic_df, row="Survived", margin_titles=True)
    g.map(plt.hist, "Age",color="purple");
```


In []: g = sns.FacetGrid(titanic_df, margin_titles=True)
 g.map(plt.hist, "Fare",color="purple");


```
In [ ]: g = sns.FacetGrid(titanic_df, col="Sex", row="Survived", margin_titles=True)
g.map(plt.hist, "Age",color="purple");
```


How many Men and Women Survived by Passenger Class

Variables Cuantitativas

```
In []: # set the size of the figure
sns.set(rc={'figure.figsize':(11.7,8.27)})

# plot a histogram showing the distribution of the target values
sns.displot(titanic_df['Age'], bins=10)
plt.show()
```


In []: titanic_df.hist(bins=10,figsize=(9,7),grid=False);

In []: titanic_df.boxplot(column='Age', by='Pclass') #Poner el by POS nos va a dar una caj

Out[]: <Axes: title={'center': 'Age'}, xlabel='Pclass'>

Boxplot grouped by Pclass

Survived

<ipython-input-32-2e1af0adcf56>:1: FutureWarning: Use "auto" to set automatic graysc
ale colors. From v0.14.0, "gray" will default to matplotlib's definition.
 ax = sns.stripplot(x="Survived", y="Age",

<ipython-input-33-6493bc2ac2d7>:3: FutureWarning: Use "auto" to set automatic graysc
ale colors. From v0.14.0, "gray" will default to matplotlib's definition.
ax = sns.stripplot(x="Survived", y="Age",

La mayoría de los tripulantes entre 60 y 70 no sobrevivieron

In []: titanic_df.corr(method='pearson')

<ipython-input-34-31f18b9cd624>:1: FutureWarning: The default value of numeric_only
in DataFrame.corr is deprecated. In a future version, it will default to False. Sele
ct only valid columns or specify the value of numeric_only to silence this warning.
 titanic_df.corr(method='pearson')

		corr (meerioa	pea. 55)					
Out[]:		Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
	PassengerId	1.000000	-0.005007	-0.035144	0.036847	-0.057527	-0.001652	0.012658
	Survived	-0.005007	1.000000	-0.338481	-0.077221	-0.035322	0.081629	0.257307
	Pclass	-0.035144	-0.338481	1.000000	-0.369226	0.083081	0.018443	-0.549500
	Age	0.036847	-0.077221	-0.369226	1.000000	-0.308247	-0.189119	0.096067
	SibSp	-0.057527	-0.035322	0.083081	-0.308247	1.000000	0.414838	0.159651
	Parch	-0.001652	0.081629	0.018443	-0.189119	0.414838	1.000000	0.216225
	Fare	0.012658	0.257307	-0.549500	0.096067	0.159651	0.216225	1.000000
	FamilySize	-0.040143	0.016639	0.065997	-0.301914	0.890712	0.783111	0.217138

In []: correlation_matrix = titanic_df.corr().round(2)

<ipython-input-35-4fb6b5cc4793>:1: FutureWarning: The default value of numeric_only
in DataFrame.corr is deprecated. In a future version, it will default to False. Sele
ct only valid columns or specify the value of numeric_only to silence this warning.
 correlation_matrix = titanic_df.corr().round(2)

In []: # use the heatmap function from seaborn to plot the correlation matrix
annot = True to print the values inside the square
sns.heatmap(data=correlation_matrix, annot=True)

Correlación negativa entre clase y tarifa, A mayor valor de clase (ej. 3a. clase), menor tarifa. Correlación negativa entre edad y clase, A mayor edad, menor valor de clase (1a. clase) Correlación positiva entre tarifa y sobrevivencia, A mayor tarifa, mayor sobrevivencia

<ipython-input-37-f1593d5b5bad>:1: FutureWarning: The default value of numeric_only
in DataFrame.corr is deprecated. In a future version, it will default to False. Sele
ct only valid columns or specify the value of numeric_only to silence this warning.
 corr=titanic_df.corr()#["Survived"]

Se aprecia que Pclass tiene la más alta correlación negativa con "Survived" Existe cierta correlación también con Fare, Parch y Age.

Consulta

Crea un subconjunto de **titanic** para el costo mayor a 250

```
In [ ]: # identifica los titanic con costo mayor a 250
titanic_df.Fare>250
```

```
Out[ ]: 0
               False
        1
              False
        2
               False
        3
              False
              False
               . . .
        886
              False
        887
               False
        888
              False
        889
              False
        890
               False
        Name: Fare, Length: 891, dtype: bool
In [ ]: # usa el criterio para extraer solo los boletos caros
        tripulantes_tarifas_caras = titanic_df[titanic_df.Fare >= 250]
        tripulantes_tarifas_caras
```

Out[]:		Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare
	27	28	0	1	Fortune, Mr. Charles Alexander	male	19.0	3	2	19950	263.0000
	88	89	1	1	Fortune, Miss. Mabel Helen	female	23.0	3	2	19950	263.0000
	258	259	1	1	Ward, Miss. Anna	female	35.0	0	0	PC 17755	512.3292
	311	312	1	1	Ryerson, Miss. Emily Borie	female	18.0	2	2	PC 17608	262.3750
	341	342	1	1	Fortune, Miss. Alice Elizabeth	female	24.0	3	2	19950	263.0000
	438	439	0	1	Fortune, Mr. Mark	male	64.0	1	4	19950	263.0000
	679	680	1	1	Cardeza, Mr. Thomas Drake Martinez	male	36.0	0	1	PC 17755	512.3292
	737	738	1	1	Lesurer, Mr. Gustave J	male	35.0	0	0	PC 17755	512.3292
	742	743	1	1	Ryerson, Miss. Susan Parker "Suzette"	female	21.0	2	2	PC 17608	262.3750
	4										•

Operaciones de ordenamiento

```
In [ ]: # ordenar por etiquetas de renglón
tripulantes_tarifas_caras.sort_values('Name')
```

Out[]:		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare
	679	680	1	1	Cardeza, Mr. Thomas Drake Martinez	male	36.0	0	1	PC 17755	512.3292
	341	342	1	1	Fortune, Miss. Alice Elizabeth	female	24.0	3	2	19950	263.0000
	88	89	1	1	Fortune, Miss. Mabel Helen	female	23.0	3	2	19950	263.0000
	27	28	0	1	Fortune, Mr. Charles Alexander	male	19.0	3	2	19950	263.0000
	438	439	0	1	Fortune, Mr. Mark	male	64.0	1	4	19950	263.0000
	737	738	1	1	Lesurer, Mr. Gustave J	male	35.0	0	0	PC 17755	512.3292
	311	312	1	1	Ryerson, Miss. Emily Borie	female	18.0	2	2	PC 17608	262.3750
	742	743	1	1	Ryerson, Miss. Susan Parker "Suzette"	female	21.0	2	2	PC 17608	262.3750
	258	259	1	1	Ward, Miss. Anna	female	35.0	0	0	PC 17755	512.3292
	4										>
		1		,							

t[]:_		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare
4	438	439	0	1	Fortune, Mr. Mark	male	64.0	1	4	19950	263.0000
(679	680	1	1	Cardeza, Mr. Thomas Drake Martinez	male	36.0	0	1	PC 17755	512.3292
2	258	259	1	1	Ward, Miss. Anna	female	35.0	0	0	PC 17755	512.3292
7	737	738	1	1	Lesurer, Mr. Gustave J	male	35.0	0	0	PC 17755	512.3292
3	341	342	1	1	Fortune, Miss. Alice Elizabeth	female	24.0	3	2	19950	263.0000
	88	89	1	1	Fortune, Miss. Mabel Helen	female	23.0	3	2	19950	263.0000
-	742	743	1	1	Ryerson, Miss. Susan Parker "Suzette"	female	21.0	2	2	PC 17608	262.3750
	27	28	0	1	Fortune, Mr. Charles Alexander	male	19.0	3	2	19950	263.0000
3	311	312	1	1	Ryerson, Miss. Emily Borie	female	18.0	2	2	PC 17608	262.3750
4	4										>

In []: # top 5 de Edad
top10 = tripulantes_tarifas_caras.sort_values('Fare',ascending=False).head()
top10

Out[]:		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare
	258	259	1	1	Ward, Miss. Anna	female	35.0	0	0	PC 17755	512.3292
	679	680	1	1	Cardeza, Mr. Thomas Drake Martinez	male	36.0	0	1	PC 17755	512.3292
	737	738	1	1	Lesurer, Mr. Gustave J	male	35.0	0	0	PC 17755	512.3292
	27	28	0	1	Fortune, Mr. Charles Alexander	male	19.0	3	2	19950	263.0000
	88	89	1	1	Fortune, Miss. Mabel Helen	female	23.0	3	2	19950	263.0000
	4										>

Resumen

Hicimos un análisis exploratorio de datos (EDA) sobre el dataset del Titanic, y vimos varias técnicas para explorar y entender mejor los datos:

- Descripción de variables: Describimos las variables presentes en el conjunto de datos, entendiendo qué representaba cada una y qué tipo de datos contenía.
- 2. **Limpieza de datos**: Identificamos valores nulos en el conjunto de datos y discutimos la importancia de manejarlos adecuadamente para evitar sesgos en nuestro análisis.
- 3. Análisis de variables cuantitativas: Calculamos medidas estadísticas como la media, mediana y moda para entender la distribución de las variables numéricas en nuestros datos. También exploramos la relación entre diferentes variables cuantitativas como gráficos de barras, gráficos de dispersión y diagramas de caja.
- 4. Análisis de variables categóricas: Exploramos la distribución de variables categóricas utilizando gráficos de barras y gráficos circulares para comprender la frecuencia de diferentes categorías.
- 5. Visualización de datos: Utilizamos bibliotecas como Matplotlib y Seaborn para crear visualizaciones que nos ayudaron a comprender mejor la distribución de nuestros datos y las relaciones entre diferentes variables.

- 6. **Análisis de correlación**: Calculamos la correlación entre variables numéricas para entender cómo están relacionadas entre sí. Utilizamos mapas de calor para visualizar la matriz de correlación y entender las relaciones más fuertes entre las variables.
- 7. **Operaciones de ordenamiento y consulta**: Realizamos operaciones de ordenamiento para ordenar el conjunto de datos según ciertas columnas y realizamos consultas para extraer subconjuntos de datos que cumplían ciertos criterios.