SPDE の数値計算

@litharge3141

2020年6月24日

1 Introduction

空間一次元の熱方程式を例にして、SPDE の導入をする. あらすじとしては、Hilbert 空間の完全正規直交系との内積をとって係数についての SDE に帰着できるということであるが、無限次元で考えるので収束の問題が常について回ることに注意する. まずノイズの定義をする.

Definition 1.1 (柱状 Brown 運動). H を実 Hilbert 空間, T>0 として $(\Omega,\mathcal{F},P,(\mathcal{F}_t)_{t\in[0,T]})$ をフィルトレーション付き確率空間とする. $\|\cdot\|_H$ で H のノルムを表すことにする. $W:H\times[0,T]\times\Omega\to\mathbb{R}$ が H 上の柱状 Brown 運動であるとは,

- 任意の 0 でない $\psi \in H$ に対して $W(\psi,\cdot,\cdot)/\|\psi\|_H:[0,T]\times\Omega\to\mathbb{R}$ は実 \mathcal{F}_t -Brown 運動である.
- 任意の $\alpha, \beta \in \mathbb{R}$ と任意の $\varphi, \psi \in H$ に対して

$$P(\omega \mid \forall t \in [0,T], W(\alpha \psi + \beta \varphi, t, \omega) = \alpha W(\psi, t, \omega) + \beta W(\varphi, t, \omega)) = 1$$

が成り立つ.

の二条件が成り立つことをいう。 柱状 Brown 運動 W に対して, $W(\psi,t,\cdot)$ を単に $W_t(\psi)$ と書くこともある。

Theorem 1.1. $(H, \langle \cdot, \cdot \rangle_H)$ を可分無限次元実 Hilbert 空間, $(e_k)_{k=1}^\infty$ を H の可算な完全正規直交系とする。 $(\Omega, \mathcal{F}, P, (\mathcal{F}_t)_{t \in [0,T]})$ をフィルトレーション付き確率空間とし, $(B_t^n)_{k=1}^\infty$ を独立な \mathcal{F}_t -ブラウン運動の族とする。このとき, $W \colon H \times [0,T] \times \Omega \to \mathbb{R}$ を $W(\psi,t,\omega) \coloneqq \sum_{k=1}^\infty B_t^k(\omega) \langle \psi,e_k \rangle_H$ によって定めると W は well-defined で,柱状 Brown 運動になる。

Proof. $n\in\mathbb{N}$ に対して $W^n_t(\psi)\coloneqq W^n(\psi,t,\omega)\coloneqq \sum_{k=1}^n B^k_t(\omega)\,\langle\psi,e_k\rangle_H$ とおく. $(W^n(\psi,\cdot,\cdot))_{n=1}^\infty$ が M^2_T の コーシー列であることを示す.

$$E\left[\left(W_T^n(\psi) - W_T^m(\psi)\right)^2\right] = E\left[\left(\sum_{k=m+1}^n B_T^k \langle \psi, e_k \rangle_H\right)^2\right]$$
$$= \sum_{k=m+1}^n E\left[\left(B_T^k\right)^2\right] \langle \psi, e_k \rangle_H^2 = T\sum_{k=m+1}^n \langle \psi, e_k \rangle_H^2$$

より, $\sum_{k=1}^{\infty} \langle \psi, e_k \rangle_H^2 = \|\psi\|_H^2$ であることから従う.したがって W は well-defined で, $W_t(\psi) \in M_T^2$ である.次に, $W(\psi)/\|\psi\|_H$ が実 \mathcal{F}_t -Brown 運動であることを示す.Levy の定理から $\langle W(\psi)/\|\psi\|_H \rangle_t = t$ を示

せば十分で、特に $(W_t(\psi)/\|\psi\|_H)^2-t$ がマルチンゲールであることを証明すれば十分である。 $0 \le s < t \le T$ が任意に与えられたとする。 Φ を \mathcal{F}_s -可測かつ有界な関数とすると、

$$\begin{split} &E\left[\left(W_{t}(\psi)^{2}-W_{s}(\psi)^{2}\right)\Phi\right] \\ &=\lim_{n\to\infty}E\left[\left(W_{t}^{n}(\psi)^{2}-W_{s}^{n}(\psi)^{2}\right)\Phi\right] \\ &=\lim_{n\to\infty}E\left[\left(\left(\sum_{k=1}^{n}B_{t}^{k}\left\langle\psi,e_{k}\right\rangle_{H}\right)^{2}-\left(\sum_{k=1}^{n}B_{s}^{k}\left\langle\psi,e_{k}\right\rangle_{H}\right)^{2}\right)\Phi\right] \\ &=\lim_{n\to\infty}E\left[\left(\left(\sum_{k=1}^{n}(B_{t}^{k}-B_{s}^{k})\left\langle\psi,e_{k}\right\rangle_{H}\right)^{2}+\left(2\sum_{k=1}^{n}\sum_{l=1}^{n}(B_{t}^{k}-B_{s}^{k})B_{s}^{l}\left\langle\psi,e_{k}\right\rangle_{H}\left\langle\psi,e_{l}\right\rangle_{H}\right)\right]\Phi\right] \\ &=\lim_{n\to\infty}\sum_{k=1}^{n}E\left[\left(B_{t}^{k}-B_{s}^{k}\right)^{2}\right]E\left[\Phi\right]\left\langle\psi,e_{k}\right\rangle_{H}^{2}+2\sum_{k=1}^{n}\sum_{l=1}^{n}\left\langle\psi,e_{k}\right\rangle_{H}\left\langle\psi,e_{l}\right\rangle_{H}E\left[B_{t}^{k}-B_{s}^{k}\right]E\left[B_{s}^{l}\Phi\right] \\ &=\left(t-s\right)E\left[\Phi\right]\left\|\psi\right\|_{H}^{2} \end{split}$$

が成り立つ。特に Φ として \mathcal{F}_s -可測な集合の定義関数をとれば, $(W_t(\psi)/\|\psi\|_H)^2-t$ がマルチンゲールであることが従う。よって示された。最後に線形性を証明する。 $\alpha,\beta\in\mathbb{R}$ および $\psi,\varphi\in H$ が任意に与えられたとする。 $t\in[0,T]$ の稠密な可算集合 $(t_m)_{m=1}^\infty$ が与えられたとする。任意の $n\in\mathbb{N}$ と任意の $\omega\in\Omega$ に対して

$$W_{t_m}^n(\alpha\psi + \beta\varphi) = \alpha W_{t_m}^n(\psi) + \beta W_{t_m}^n(\varphi)$$

が成立する.ここで $W_{t_m}(\cdot)$ は $W_{t_m}(\cdot)$ に $L^2(\Omega)$ で収束するので,必要なら部分列を取ることである $P(E_m)=0$ となる $E_m\in\mathcal{F}$ が存在して, $\omega\notin E_m$ ならば

$$W_{t_m}(\alpha \psi + \beta \varphi) = \alpha W_{t_m}(\psi) + \beta W_{t_m}(\varphi)$$

が成立する. $E=\bigcup_{m=1}^{\infty}E_m$ とすると P(E)=0 であり、 $\omega\notin E$ ならば任意の $m\in\mathbb{N}$ に対して

$$W_{t_m}(\alpha \psi + \beta \varphi) = \alpha W_{t_m}(\psi) + \beta W_{t_m}(\varphi)$$

が成立する. W は t について連続で、 $(t_m)_{m=1}^\infty$ が [0,T] で稠密であることから、 $\omega \notin E$ ならば任意の $t \in [0,T]$ に対して

$$W_t(\alpha\psi + \beta\varphi) = \alpha W_t(\psi) + \beta W_t(\varphi)$$

が成立する. したがって、線形性も満たされ、証明が終わった.

 $\sum_{k=1}^\infty B_t^k \langle \cdot, e_k \rangle_H$ は柱状 Brown 運動であることが分かった。もし $\sum_{k=1}^\infty B_t^k (\omega) e_k$ が H のノルムでほとん どいたるところ収束すれば, $\sum_{k=1}^\infty B_t^k \langle \cdot, e_k \rangle_H = \left\langle \cdot, \sum_{k=1}^\infty B_t^k (\omega) e_k \right\rangle_H$ がほとんどいたるところ成立するから H に値を取る確率過程 $\sum_{k=1}^\infty B_t^k (\omega) e_k$ と同一視できる。残念ながら H の元としては収束しないので,このような見方は正当化されない。H の元と同一視できるような場合として,次のようなノイズを考える。