

SIMMU 동양미래대학교 전문기술 석사과정

클라우드와 네트워크 보안

Dongyang Mirae University

클라우드와 네트워크 보안

1.1 TCP/IP 4계층 / OSI 7 계층

주요 프로토콜	TCP/IP 4 계층	OSI 7 계층	PDU(Protocol Data Unit)
		Application	
http, telnet, FTP	Application	Presentation	Data
SMTP, DHCP		Session	
TCP, UDP	Transport	Transport	Segment, Datagram
IP, ICMP. ARP	Internet	Network	Packet
WAN Wifi, Ethernet PPP, HDLC	Notonoule Access	Data Link	Frame
Token Ring ATM FDDI Frame Relay	Network Access	Physical	bit

- 1960년대 후반 미국 국방성의 ARPANET에서 유래
- 1982년 미 국방성이 TCP/IP를 국방 전산망 표준으로 선언
- 이후 IBM, AT&T, DEC 등 대규모 컴퓨터 회사에서 TCP/IP채택

De Facto(사실상의 표준) → 현재 사용하는 인터넷

- 1983년 국제 표준화 기구인 ISO에서
- 서로 다른 규약을 따르던 통신망 간에 서로 통신할 수 있도록 표준 규약을 정의

De Jure(명목상의 표준)→ 구현되지 않음. 기준을 제시

서로 다른 회사가 만든 컴퓨터, 네트워크 장비 간에 통신이 가능하도록 표준 규약 정의

Cloud Computing

클라우드와 네트워크 보안

192.168.10.122

00:1f:34:56:23:4a

192.168.10.125

00:1f:34:56:23:4c

IP 주소 체계

192.168.0.1

IPv4 주소: 8비트 * 4 = 32비트

- IP 주소는 두 부분으로 나뉨
- 네트워크 주소:
 - ❖ 호스트를 모은 네트워크를 지칭하는 주소
 - ❖ 네트워크 주소가 동일한 네트워크를 **로컬 네트워크**라도 함
- 호스트 주소:

동양미래대학교

❖ 하나의 네트워크에 존재하는 호스트를 구분하기 위한 주소

MAC 주소 체계

OUI:

IEEE가 제조사에 할당하는 부분

UAA:

각 제조사에서 네트워크 구성 요소에 할당하는 부분

- BIA(Burned-In-Address): 네트워크 카드나 장비 생산할 때 하드웨어적으로 정해져 나옴
- 유일하지 않은 MAC 주소 : 제조 업체에서 실수로 UAA를 중복할당 / 동일 네트워크에서만 중복되지 않으면 문제 없음
- MAC 주소 변경: NIC에 ROM에 고정되어 출하됨. 그러나 MAC 주소도 메모리에 적재하여 구동하므로 변경도 가능

- host(192.168.10.2/24)와 host(192.168.10.154/24)는 동일 네트워크에 있는 호스트
 - MAC 주소로 구간별 데이터 통신
 - 목적지 MAC 주소는 ARP 프로토콜로 획득
 - 획득한 목적지 MAC 주소로 데이터 전송은 Broadcasting
- host(192.168.10.2/24)와 host(192.168.2.5/24)는 다른 네트워크에 있는 호스트
 - 게이트웨이(라우터)를 통해 외부 네트워크로 데이터 통신
 - 게이트웨이(라우터) MAC 주소는 ARP 프로토콜로 획득
 - 획득한 게이트웨이(라우터) MAC 주소로 데이터 전송은 Broadcasting

ARP - IP 주소로 부터 MAC 주소를 알아내는 프로토콜

① PC1은 PC4로 데이터를 보내기 위해 다음 도착지를 알아낸다.

- 도착지 PC4의 IP(192.168.2.5/24)가 PC1(192.168.10.2/24)와 다른 네트워크이므로

PC4

- PC1이 보낼 다음 경유지(point)는 자신의 PC에 설정된 게이트웨이 GW(192.168.10.1)이다.
- ② PC1은 다음 경유지 GW로 자료 전송을 위해서는 GW의 MAC 주소를 알아야 한다.
 - 우선, PC1의 ARP table에서 192.168.10.1의 MAC 주소가 있는지 확인한다. (처음에는 없음)

[ARP 프로토콜로 192.168.10.1의 MAC 주소를 알아냄]

스위치

GW-2

IP: 192.168.2.1/24

MAC: 99.99.99.99.99

- ③ PC1은 동일 네트워크(<u>192.168.10</u>.0/24)의 모든 호스트로 <u>192,168.10.1</u>의 MAC 주소를 문의
- ④ 호스트 중 IP가 192,168.10.1인 GW는 MAC 주소를 응답하고, 나머지 호스트는 응답하지 않음
- ⑤ 응답을 받은 PC1은 192.168.10.1의 MAC 주소 88.88.88.88.88를 ARP table에 기록

PC2

PC3

PC1

데이터링크 계층(layer 2):

- 구간별 신뢰성 있는 데이터 전송
- MAC 주소를 보고 구간별 데이터 전송
- 대표적인 네트워크 장치 : 스위치 (L2)

