Exercise 1 (Nonnegative Coding with L_1 regularizer). Suppose we have matrices $\mathbf{X} \in \mathbb{R}^{d \times n}$ and $\mathbf{W} \in \mathbb{R}^{d \times r}$. We seek to find a matrix $\hat{\mathbf{H}} \in \mathbb{R}^{r \times n}_{>0}$ where

$$\hat{\mathbf{H}} = \underset{\mathbf{H} \in \mathbb{R}_{\geq 0}^{r \times n}}{\operatorname{argmin}} \left(\ell(\mathbf{H}) := \|\mathbf{X} - \mathbf{W}\mathbf{H}\|_F^2 + \lambda_1 \|\mathbf{H}\|_1 + \lambda_2 \|\mathbf{H}\|_F^2 \right). \tag{1}$$

Here $\lambda \ge 0$ is called the L_1 -regularization parameter. (This is an instance of *constrained* quadratic optimization problem.) (c.f. The use of L_1 regularizer instead of L_2 as in Exercise 1.2.1 is more effective to increase the 'sparsity' of the solution, meaning that it will have less nonzero components.)

(i) Show that (use Exercise 1.2.2), denoting $sgn(\mathbf{H}) = \mathbf{1}(\mathbf{H} \ge 0) - \mathbf{1}(\mathbf{H} < 0)$,

$$\frac{\partial}{\partial \mathbf{H}} \ell = 2(\mathbf{W}^T \mathbf{W} \mathbf{H} - \mathbf{W}^T \mathbf{X}) + \lambda_1 \operatorname{sgn}(\mathbf{H}) + 2\lambda_2 \mathbf{H}, \qquad \frac{\partial^2}{\partial \mathbf{H}^2} \ell = 2(\mathbf{W}^T \mathbf{W} + \lambda_2 \mathbf{I}). \tag{2}$$

(ii) From (i), conclude that the quadratic function $\mathbf{H} \mapsto \ell(\mathbf{H})$ is convex, and and hence its every critical point is a local minimum. It follows that its every critical over the convex constraint set $\mathbb{R}^{r \times n}_{\geq 0}$ is a global minimum (but not necessarily unique). (See Ref)

Exercise 2. Give a psuedocode of a Block Coordinate Descent algorithm for the following matrix factorization problem

$$\inf_{\mathbf{W} \in \mathbb{R}_{\geq 0}^{d \times r}, \ \mathbf{H} \in \mathbb{R}_{\geq 0}^{r \times n}} \|\mathbf{X} - \mathbf{W} \mathbf{H}\|_F^2 + a_0 \|\mathbf{H}\|_1 + a_1 \|\mathbf{W}\|_1 + a_2 \|\mathbf{W}\|_F$$
(3)

The algorithm should be similar to the Alternating Least Squares (ALS) in Algorithm 2 in LN, but the subproblems of finding \mathbf{H}_n and \mathbf{W}_n should be more detailed by using gradient descent algorithms. (Remark: You may use the gradient given in Exercise 1. (Hint: The full algorithm is implemented in Jupyter Notebook))

Exercise 3. Give an explanation on the effect of L_1 - and L_2 -regularization on the dictionary matrix **W** as we see in Figure 51. Drawing contour plots of L_1 - and L_2 -norm of 2-dimensional vectors would be helpful. (Ref. [Bis06, Sec. 3.1.4]).

Exercise 4. Use the code in Jupyter Notebook that generates Figures 50 and 51 to determine the *largest* $r \in \mathbb{N}$ *such that every dictionary image properly converges to some non-random image*, where the nonnegativity constraints and regularizers are chosen as in the six cases in Figures 50 and 51 (estimate such r in each of the six cases.) (Remark: Use the revised display_dictionary function with the option 'grid_shape'. For example, if you want to plot **W** with 13 columns, you can use 'grid_shape=[1,13]').

REFERENCES

[Bis06] Christopher M Bishop, Pattern recognition and machine learning, springer, 2006.