Lista - Eletrodinâmica

Autor: Leonardo Vieira dos Santos Ramos

Questão 01 - (UFPE)

O gráfico mostra a variação da corrente elétrica I, em ampère, num fio em função do tempo t, em segundos. Qual a carga elétrica, em coulomb, que passa por uma seção transversal do condutor nos primeiros 4,0 segundos?

Figura 1: Figura alterada pelo autor para melhor visualização.

Questão 02 - (IME RJ)

A intensidade da corrente elétrica em um condutor metálico varia, com o tempo, de acordo com o gráfico abaixo. Sendo a carga elementar e (= $1,6 \times 10^{-19}$ C), determine:

Figura 2: Figura alterada pelo autor para melhor visualização.

- A) A carga elétrica que atravessa uma seção do condutor em 8 segundos;
- B) O número de elétrons que atravessa uma seção do condutor em 8 segundos;
- C) A intensidade média de corrente entre os instantes zero e 8 segundos.

Questão 03 - (UEPG PR)

A respeito da resistência elétrica apresentada pelos condutores e de resistores elétricos, assinale o que for correto.

- ${f 01.}$ Resistor é um dispositivo elétrico especialmente construído para impedir a passagem da corrente elétrica.
- **02.** Dobrando o comprimento de um condutor e mantendo a sua área de secção transversal, sua resistência dobra, porém sua resistividade se reduz à metade.
- 04. Lâmpadas ligadas em série tem suas intensidades luminosas reduzidas à medida que no circuito se acrescentam novas lâmpadas.

 CORRETA
- **08.** A resistência elétrica de um condutor depende de suas dimensões, da sua condutividade e da sua temperatura.

Resposta

Questão 04 - (FEI SP)

A curva característica de um resistor é mostrada abaixo. Qual é a resistência R do resistor?

A) 80 Ω

B) 40 Ω

C) 20Ω

D) 10 Ω

E) 5 Ω

Resposta

Questão 05 - (UEMS)

Um fio cilíndrico de resistividade ρ e comprimento I tem área de secção transversal igual a A e resistência R. Se o raio da secção transversal desse fio for dobrado, juntamente com seu comprimento, a nova resistência do fio será:

A)
$$\frac{R}{2}$$
 B) R **C)** $\frac{3R}{2}$ **D)** $2R$ **E)** $\frac{5R}{2}$

Questão 06 - (UEL PR)

Para evitar a potência dissipada por aparelhos tais como chuveiros, aquecedores elétricos, lâmpadas incandescentes, são projetos resistores com diferentes resistências elétricas. Em um projeto, um fio condutor de comprimento l e de diâmetro de secção transversal D teve reduzidos à metade tanto o seu diâmetro quanto seu comprimento (conforme está representado na figura). O que acontecerá com a reistência R' do novo fio, quando comparada à resistência R do fio original?

Figura 3: Fio original - Comprimento L e diâmetro da secção transversal D

Figura 4: Novo Fio - Comprimento $\frac{L}{2}$ e diâmetro da secção transversal $\frac{D}{2}$

A)
$$\frac{R}{R'} = \frac{1}{4}$$
 B) $\frac{R}{R'} = \frac{1}{8}$ C) $\frac{R}{R'} = \frac{1}{2}$ D) $\frac{R}{R'} = 4$ E) $\frac{R}{R'} = 2$

Questão 07 - (UFRR)

A figura mostra três condutores cilíndricos de cobre, juntamente com as áreas das bases e comprimentos. Considerando que a mesma diferença de potencial "V" é aplicada entre as bases circulares, em relação à corrente elétrica $(I_1, I_2 \in I_3)$ que os atravessa, a afirmativa correta é:

A)
$$I_1 = I_2 = I_3$$
 B) $I_1 = I_3 > I_2$ **C)** $I_2 > I_1 > I_3$

B)
$$I_1 = I_3 > I_2$$

C)
$$I_2 > I_1 > I_3$$

D)
$$I_1 > I_2 > I_3$$
 E) $I_3 > I_2 > I_1$

$$> I_2 > I_1$$

Resposta

Questão 08 - (FCM MG)

Um chuveiro elétrico possui uma resistência interna R_{Ch} a qual fica incandescente quando ele é ligado, transferindo o calor para a água. Porém, os fios de ligação da rede elétrica que abastecem o chuveiro se aquecem muito pouco em comparação com a resistência do chuveiro. Os fios de ligação possuem uma resistência (R_{Fio}).

Isso se justifica devido ao fato de a potência dissipada ser

- A) inversamente proporcional à resistência quando a tensão elétrica é comum e $R_{Ch} < R_{Fio}$.
- B) inversamente proporcional à resistência quando a corrente elétrica é comum e R_{Ch} < R_{Fio}.
- C) proporcional à resistência quando a tensão elétrica é comum e $R_{\rm Fio} < R_{\rm Ch}$.
- **D)** proporcional à resistência quando a corrente elétrica é comum e $R_{Fio} < R_{Ch}$.

Resposta

Questão 10 - (ITA SP)

Para se proteger do apagão, o dono de um bar conectou uma lâmpada a uma bateria de automóvel (12,0 V). Sabendo que a lâmpada dissipa 40,0 W, os valores que melhor representam a corrente I que atravessa a lâmpada e sua resistência R são, respectivamente, dados por:

- **A)** I=6,6 A e R=0,36 Ω
- **B)** I=6,6 A e R=0,18 Ω
- **C)** I=6,6 A e R=3,6 Ω
- **D)** I=3,3 A e R=7,2 Ω
- **E)** I=3,3 A e R=3,6 Ω

Resposta

Questão 11 - (UFSC)

Um técnico eletricista, para obter as características de um determinado resistor, submete o mesmo a vários valores de diferença de potencial, obtendo as intensidades de corrente elétrica correspondentes. Com os valores obtidos, o técnico constrói o gráfico $\mathbf{V} \times \mathbf{i}$ mostrado abaixo, concluindo que o gráfico caracteriza a maioria dos resistores reais.

Figura 5: Figura alterada pelo autor para melhor visualização.

Analise o gráfico e assinale a(s) proposição(ões) CORRETA(S).

- 01. A resistência desse resistor tende a aumentar com seu aquecimento, devido ao aumento da corrente.
- 02. No trecho de 0 a 600 mA, o resistor é considerado ôhmico, pois o valor da resistência é constante.
- **04.** No trecho de 600 mA até 800 mA, a relação $R=\frac{V}{i}$ não pode ser aplicada, pois o resistor não é mais ôhmico.
- 08. Quando passa pelo resistor uma corrente de 800 mA, a resistência elétrica do mesmo é 5 $\Omega.$
- 16. Se o técnico deseja construir um resistor igual a 5Ω , utilizando um fio de níquel cromo ($\rho=1,5\times10^{-6}\Omega\cdot\mathrm{m}$) com área da secção reta de $1,5\mathrm{mm}^2$, o comprimento deste fio deverá ter $5\mathrm{m}$.
- **32.** Quando a intensidade da corrente aumenta de 200 mA para 400 mA, a potência dissipada por efeito Joule no referido resistor duplica.

Resposta	

Questão 12 - (UFSC)

Um estudante de Física realizou um experimento no laboratório para medir a variação da instensidade da corrente elétrica em um fio condutor retilíneo extenso em função do tempo, além de outras propriedades físicas. No gráfico abaixo, é mostrado um dos resultados do experimento.

Figura 6: Figura alterada pelo autor para melhor visualização.

- 01. A carga elétrica que atravessa uma secção transversal do fio condutor entre os instantes 2 s e 4 s é de 4 C.
- 02. A figura 1 representa corretamente as linhas de campo magnéticas produzidas pela corrente elétrica i, no instante 4 s.

 CORRETA
- 04. Os elétrons se deslocam no fio condutor com velocidade próxima à da luz. INCORRETA
- 08. O número de elétrons que atravessam uma secção transversal do fio condutor entre os instantes 2 s e 6 s é de $2,5\times10^{19}$ elétrons.
- 16. A figura 2 representa corretamente os vetores campo elétrico e magnético produzido pela corrente elétrica i, em um ponto próximo ao fio condutos, no instante 4 s. INCORRETA
- 32. A instensidade do vetor campo magnético a 1,0 m do fio condutor, no instante 5 s, é de $2 \times 10^{-7}T$. CORRETA
- 64. A instensidade média da corrente elétrica no fio condutor entre os instantes 0,0 s e 6,0 s é de 0,5 A.

Resposta	

Questão 13 - (UFSC)

Dados os gráficos abaixo, assinale aquele(s) que pode(m) representar resistência ôhmica, a uma mesma temperatura.

01.

02.

04.

08.

16.

32.

Resposta