岁学测试卷(一)答案

一、填空与选择题(每小题3分,共24分)

1.
$$\frac{\sqrt{21}}{14}$$
 2. $\frac{x-1}{1} = \frac{y-1}{-1} = \frac{z-2}{0}$ 3. $x_1(y) = y-1$, $x_2(y) = 1-y$ 4. π

5,
$$-\frac{\pi}{2}$$
 6, $y = x - \frac{1}{2} + \frac{1}{2}e^{-2x}$ 7, C 8, D

二、(8分)解 因为平面 x-y+z=1 的法向量为 $\vec{n}=\{1,-1,1\}$,直线 $\frac{x+1}{1}=\frac{y-2}{5}=\frac{z+7}{-3}$

的方向向量为 $\vec{s}=\{1,5,-3\}$,所以取平面 π 的法向量为 $\vec{n}_1=\vec{n}\times\vec{s}=\{-2,4,6\}$ 。故所求平面

$$\pi$$
的方程为 $-2(x-2)+4(y-3)+6(z-5)=0$,即 $x-2y-3z+19=0$

三、(8分)解
$$\frac{\partial z}{\partial x} = 2xf_1 + y\cos(xy)f_2$$
,

$$\frac{\partial^2 z}{\partial x \partial y} = 2x \left[-2f_{11} + x\cos(xy)f_{12} \right] + \left[\cos(xy) - xy\sin(xy) \right]$$

+
$$y\cos(xy) \left[-2f_{21} + y\cos(xy)f_{22} \right]$$

X

$$= [\cos(xy) - xy\sin(xy)]f_2 - 4xf_{11} + (2x^2 - 2y)\cos(xy)f_{12} + xy\cos^2(xy)f_{22}.$$

四、(8分) 解
$$f_x = e^x(x+y^2-2y+1)$$
 $f = e^x(2y-2)$, 令

$$\begin{cases} f_x = e^x (x + y^2 - 2y + 1) = 0 \\ f_y = e^x (2y - 2) = 0 \end{cases}$$

得驻点 (0,1) 。 而 f_{xx} $y^2 - 2y + 2$, $f_{xy} = e^x(2y - 2)$, $f_{yy} = 2e^x$, 记

$$A = f_{xx}(0,1) = 1$$
, $B = f_{xy}(0,1) = 0$, $C = f_{yy}(0,1) = 2$, $B = AC - B^2 = 2 > 0$,

$$A=1>0$$
,所以 $f(x,y)$ 在点 $(0,1)$ 处取极小值 $f(0,1)=-1$ 。
 五、(8分)解 因为 $\frac{\partial u}{\partial x}=2x+y+3$, $\frac{\partial u}{\partial y}=4y+x-2$, $\frac{\partial u}{\partial z}=6z-6$,

所以
$$gradu|_{P(1,1,1)} = \{2x + y + 3, 4y + x - 2, 6z - 6\}_{P(1,1,1)} = \{6,3,0\}.$$

记
$$\overset{\Gamma}{l} = \frac{\overrightarrow{OP}}{|\overrightarrow{OP}|} = \left\{ \frac{\sqrt{3}}{3}, \frac{\sqrt{3}}{3}, \frac{\sqrt{3}}{3} \right\}$$
 (2分),则函数 u 在点 $P(1,1,1)$ 沿向径 \overrightarrow{OP} 方向的方向导数

$$\exists J \quad \frac{\partial u}{\partial l}\bigg|_{P(1,1,1)} = \operatorname{grad} u\bigg|_{P(1,1,1)} \cdot \overset{\Gamma}{l} = \left\{6,3,0\right\} \cdot \left\{\frac{\sqrt{3}}{3},\frac{\sqrt{3}}{3},\frac{\sqrt{3}}{3}\right\} = 3\sqrt{3} \ .$$

が、(8 分)解
$$\iint_{\Omega} x^2 y^2 z dv = \int_0^{2\pi} d\varphi \int_0^2 d\varphi \int_{\frac{\rho^2}{2}}^2 z \rho^5 \cos^2\varphi \sin^2\varphi dz$$

$$= \int_0^{2\pi} \cos^2\varphi \sin^2\varphi d\varphi \int_0^2 \rho^5 d\rho \int_{\frac{\rho^2}{2}}^2 z dz = \int_0^{2\pi} \cos^2\varphi \sin^2\varphi d\varphi \int_0^2 \rho^5 (2 - \frac{\rho^4}{8}) d\rho$$

$$= \frac{128}{15} \int_0^{2\pi} \cos^2\varphi \sin^2\varphi d\varphi = \frac{128}{15} \int_0^{2\pi} \frac{\sin^2(2\varphi)}{4} d\varphi = \frac{128}{15} \int_0^{2\pi} \frac{1 - \cos(4\varphi)}{8} d\varphi = \frac{32\pi}{15}$$

$$\pm (8 \%)$$
(1) ii. $a_n = \frac{n}{3^n}$, $||p|| \rho = \lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} = \lim_{n \to \infty} \frac{n + 1}{3^{n+1}} = \frac{1}{3}$, 所以幂级数 $\sum_{n=1}^\infty \frac{nx^n}{3^n}$ 的收敛半径 $R = 3$.

(2) 因为 $(\arctan x)' = \frac{1}{1 + x^2} = \sum_{n=0}^\infty (-1)^n x^{2n}$ $(-1 \le x \le 1)$.

 $\# f(x) = x \arctan x = \int_0^x \arctan t dt = \int_0^x \sum_{n=0}^\infty (-1)^n t^{2n} dt$ $(-1 \le x \le 1)$.

 $\# f(x) = x \arctan x = \sum_{n=0}^\infty \frac{(-1)^n}{2n+1} x^{2n} + (-1 \le x \le 1)$.

 $\# f(x) = x \arctan x = \sum_{n=0}^\infty \frac{(-1)^n}{2n+1} x^{2n} + (-1 \le x \le 1)$.

 $\# f(x) = x \arctan x = \int_0^x \arctan t dt = \int_0^x \sum_{n=0}^\infty (-1)^n t^{2n} dt$ $(-1 \le x \le 1)$.

 $\# f(x) = x \arctan x = \int_0^x \arctan t dt = \int_0^x \sum_{n=0}^\infty (-1)^n t^{2n} dt$ $(-1 \le x \le 1)$.

 $\# f(x) = x \arctan x = \int_0^x \arctan t dt = \int_0^x \sum_{n=0}^\infty (-1)^n t^{2n} dt$ $(-1 \le x \le 1)$.

 $\# f(x) = x \arctan x = \int_0^x \arctan t dt = \int_0^x \sum_{n=0}^\infty (-1)^n t^{2n} dt$ $(-1 \le x \le 1)$.

 $\# f(x) = x \arctan x = \int_0^x \arctan t dt = \int_0^x \sum_{n=0}^\infty (-1)^n t^{2n} dt$ $(-1 \le x \le 1)$.

 $\# f(x) = x \arctan x = \int_0^x \arctan t dt = \int_0^x \sum_{n=0}^\infty (-1)^n t^{2n} dt$ $(-1 \le x \le 1)$.

 $\# f(x) = x \arctan x = \int_0^x \arctan t dt = \int_0^x \sum_{n=0}^\infty (-1)^n t^{2n} dt$ $(-1 \le x \le 1)$.

 $\# f(x) = x \arctan x = \int_0^x \arctan t dt = \int_0^x \sum_{n=0}^\infty (-1)^n t^{2n} dt$ $(-1 \le x \le 1)$.

(注: 或
$$\iint_{\Omega} 3dv = \int_{1}^{3} 3dy \iint_{D_{v}:x^{2}+z^{2} \leq y-1} dxdz = \frac{8}{3}\pi$$
)

九、 $(7\ \beta)$ 解 设曲线方程为 y=y(x) ,则它在其上任一点 P(x,y) 的切线方程是 Y-y=y'(X-x) (其中(X,Y) 为切线上动点坐标)。令Y=0 ,得切线与 x 轴的交点坐标

为
$$Q(x-\frac{y}{y'},0)$$
。由题设有 $|PQ|=|OQ|$,即

$$\sqrt{\left[(x-\frac{y}{y'})-x\right]^2+(0-y)^2} = \sqrt{\left[(x-\frac{y}{y'})-0\right]^2+(0-0)^2}, \text{ & (*)}$$

令 $u = \frac{y}{x}$, 则方程(*) 变为 $u + xu' = \frac{2u}{1 - u^2}$, 分离变量得 $\frac{1 - u^2}{u + u^3}$, 两边积分得

$$\int \frac{1-u^2}{u+u^3} du = \int \frac{dx}{x} + \ln|C|, \text{ 计算得} \frac{u}{1+u^2} = Cx \text{ (**)}.$$
 将 $u = \frac{v}{x}$ 代入 (**) 式,化简后

得 $C(x^2 + y^2) = y$. 由初始条件 y(2) = 2 得 $C = \frac{1}{4}$,故所求曲线方程是 $x^2 + y^2 = 4y$.

线积分 $\int_{L} \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy$ 在全平面 为路径 L 无关,于是

$$\int_{(0,0)}^{(4,4)} \frac{\partial f}{\partial y} dy = f(4,4) - f(0,0) = f(4,4) .$$

又因为 $\left| \frac{\partial f}{\partial x} \right| \le 2|x-y|$,所以,当 y=x 时, $\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} = 0$ 。特别取路径 L

是从起点(0,0) 经过直线 y=x 到终点(4,4) 的有向线段,则有

$$\int_{(0,0)}^{(4,4)} \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy = 0,$$

于是 f(4,4) = 0. 由于 $f(5,4) = f(5,4) - f(4,4) = \int_4^5 \frac{\partial f(x,4)}{\partial x} dx$,

所以
$$|f(5,4)| = \left| \int_4^5 \frac{\partial f(x,4)}{\partial x} dx \right| \le \int_4^5 \left| \frac{\partial f(x,4)}{\partial x} \right| dx \le \int_4^5 2|x-4| dx = 1$$
。