

Professor Dickens

Introduction

Attendance

- Review of syllabus
 - Posted in MyCourses
 - Syllabus quiz Wednesday

- Review homework policy
 - Weekly group HWs
 - More to come Wednesday

Lab Review

- Lab I Week I
 - Quartus II Introduction
 - Swipe Access to GOL-1360
 - Obtain a DE0_CV board from Lab Manager
 - Tiger Bucks

I. What is this?

Α	В	Y
0	0	
0	I	
I	0	
I	I	

I. What is this?

Α	В	Y
0	0	
0	I	
I	0	
I	I	

I. Fill in the Blanks:

For an n input AND gate, the output will be high (I) if and only if ______

For an n input OR gate, the output will be low (0) if and only if

I. What is this?

Α	Y
0	
I	

I. What is this?

Α	В	Y
0	0	
0	I	
I	0	
I	I	

I. Name these gates

2. What do the bubbles on the output mean?

Boolean Laws

Laws

$$\circ$$
 A + B = B + A

$$\circ$$
 AB = BA

$$\circ$$
 A + (B + C) = (A + B) + C

$$\circ$$
 (AB)C = A(BC)

$$\circ$$
 A(B + C) = AB + AC

$$\circ$$
 (A + B)(C + D) = AC + AD + BC + BD

Boolean Rules

$$\bullet \ A \bullet 0 = 0$$

$$\bullet A \bullet 1 = A$$

•
$$A + 0 = A$$

•
$$A + 1 = 1$$

$$\bullet A \bullet A = A$$

•
$$A \bullet \bar{A} = 0$$

$$\bullet$$
 $A + \bar{A} = I$

•
$$\bar{\bar{A}} = A$$

$$\bullet A + \overline{A}B = A + B$$

•
$$\bar{A}$$
 + AB = \bar{A} + B

I. Generate the un-simplified equation for

Y

Α	В	С	Y
0	0	0	0
0	0	I	0
0	1	0	0
0	1	I	
1	0	0	0
I	0	I	I
I	I	0	
I	I	I	I

2. Use boolean algebra to simplify the equation

I. Apply DeMorgan's Theorem to the following:

$$\overline{XY} = X + Y =$$

2. True or False XY = XY X + XY = X + Y