Poro"cilo okrivanja 1-D ode v Lorenzovemu sistemu

14. december 2020

Odkrivanje 1-D enačb sem poganjal na Lorenzovemu sistemu enacb:

$$\frac{dx}{dt} = \sigma(y - x),$$

$$\frac{dy}{dt} = x(\rho - z) - y,$$

$$\frac{dz}{dt} = xy - \beta z.$$

Pri začetnih pogojih $x_0 := 0.1, y_0 := 0.3, z_0 := 0.4$. Najprej sem pognaj pri naključno parametrih: $\sigma := 1.3, \rho := -15, \beta := 3.4$

Začetni pogoji so isti v vseh primerih skozi celotno poročilo. Izbrani parametri se splošno smatrajo kot nenormalni, saj je eden izmed parametrov (ρ) negativen. Podatkovno množico sem generiral tako, da sem simuliral Lorenzov sistemu :

prva enacba $dx/dt = \sigma * (y - x)$: najde rešitev -1.3 * x + 1.3 * y ali v 50 samplih, resitev ima napako reda 10 * * (-9).

druga enacba $dx/dt = \sigma * (y - x)$: najde rešitev v 4500 ali 6500 samplih, resitev 10 * x * z - 10 * x + 2 * y + 0.5 oz. 10 * x * z - 10 * x + 2 * y ima napako reda 10 * * (-6) oz. 10 * * (-4).

Tako velik odmik od pravilne resitve -15*x-x*z-y pripisujem trenutno nastavljeni omejitvi v implementaciji optimizacijskega algoritma, ki omejuje parametre na interval [-10, 10]. Parameter v členu -10*x je tako lahko po absolutni vrednosti največ 10, torej ne more biti -15, kot je v izvorni enačbi. Predvidevam, da se zato zgodi kompenzacija nad ostalimi parametri v ostalih členih enačbe. Predvidevam še, da se bo pri rahljanju omejitve iz [-10, 10] na [-20, 20] napaka popravila na napako reda 10**(-9) kot pri ostalih dveh enačbah.

tretja enačba $dx/dt = \sigma * (y - x)$: najde rešitev -1.3 * x + 1.3 * y ali v 50 samplih, resitev ima napako reda 10 * * (-9).

Sledi poročilo o poganjanju pri ka
otičnih parametrih: $\sigma := 10, \rho := 28, \beta := 8/3$

Ker je ρ po absolutni vrednosti spet večji od 10, tj. od nastavljenih mej za parametre optimizacijskega algoritma in so ostali dve vrednosti znotraj mej, napovedujem, da bodo v najboljšem primeru podobni rezultati kot v nekaotičnem primeru. Oziroma, pri drugi ena"bi pričakujem $\sigma * = 10, \rho * = 10, \beta * = 7.$

1 Poročilo v tabeli