Prova tipo D

P4 de Álgebra Linear I – 2003.2

Data: 1 de dezembro de 2003. Horário: 17:05 – 18:55.

Nome:	Matrícula:
Assinatura:	Turma:

Questão	Valor	Nota	Revis.
1a	0.5		
1b	0.5		
1c	0.5		
1d	0.5		
2a	1.0		
2b	1.0		
2c	0.5		
2d	0.5		
3a	1.0		
3b	1.0		
4	1.0		
5	1.0		
6	1.0		
Total	10.0		

Instruções:

- Não é permitido usar calculadora. Mantenha o celular desligado. Escreva de forma clara e legível.
- É proibido desgrampear a prova e as folhas de rascunho. Prova com folhas faltando ou rasuradas terá nota zero.
- V. somente deverá entregar este caderno com as respostas. Faça os cálculos nas folhas de rascunho.

Revisão: Terça-feira, (2-12-03), sala e horário de aula

1) Considere o ponto P=(2,1,0), a reta r de equação paramétrica

$$r: (3-2t, 5+t, 2+2t), t \in \mathbb{R}.$$

- a) Escreva r como intereseção de dois planos (equação cartesiana) ρ e α , ρ paralelo ao eixo \mathbb{X} e α paralelo ao eixo \mathbb{Y} .
- b) Determine a equação cartesiana do plano τ que contém a reta r e o ponto P.
- c) Encontre, caso exista, o ponto R de interseção da reta r acima e da reta

$$r': (1+2t, 2+t, 2-t), t \in \mathbb{R}.$$

Caso o ponto não exista escreva as retas são reversas.

d) Calcule a distância d entre o ponto P e a reta r.

Respostas:

a)
$$\rho$$
: α :

b)
$$\tau$$
:

c)
$$R =$$

d)
$$d =$$

2) Considere a base

$$\beta = \{u_1 = (1, 0, 1); u_2 = (1, 1, 0); u_3 = (1, 1, 1)\}$$

de \mathbb{R}^3 e a transformação linear T,

$$T: \mathbb{R}^3 \to \mathbb{R}^3$$
,

definida como segue: dado um vetor w da forma

$$w = a u_1 + b u_2 + c u_3$$

temos

$$T(w) = (3a + b + 2c) u_2.$$

- a) Determine (explicitamente) a matriz $[T]_{\beta}$ de T na base β .
- b) Determine (explicitamente) a matriz $[T]_{\epsilon}$ de T na base canônica.
- c) Determine (explicitamente) as matriz [M] de mudança de base da base β à base canônica..
- d) Considere agora o plano π : x+y+z=0 e a base ξ do plano π

$$\xi = \{(1, -2, 1); (2, -1, -1)\}.$$

Determine as coordenadas $(w)_{\xi}$ do vetor w = (7, -8, 1) na base ξ .

Respostas:

2.a)
$$[T]_{\beta} = \left(\begin{array}{c} \\ \\ \end{array}\right)$$

$$[M] = \begin{pmatrix} & & \\ & & \\ & & \end{pmatrix}$$

2.d)
$$(w)_{\xi} =$$

3) Considere a projeção P no plano π

$$\pi$$
: $x - 2y + 2z = 0$

na direção do vetor v

$$v = (1, 0, 1).$$

- a) Determine a matriz [P] da projeção P na base canônica.
- b) Encontre uma base β de \mathbb{R}^3 tal que a matriz $[P]_\beta$ na base β seja

$$[P]_{\beta} = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{array}\right)$$

Respostas:

3.a) $[P] = \begin{pmatrix} & & & \\ & & & \\ & & & \end{pmatrix}$

3.b) $\beta = \{$

4) Considere a matriz

$$M = \left(\begin{array}{ccc} 1 & 0 & 0 \\ a & 3 & 0 \\ 0 & 0 & b \end{array}\right).$$

Escolha qual das afirmações a seguir é verdadeira para que a matriz M não seja diagonalizável.

Marque com caneta no quadro abaixo sua resposta

 $\underline{\textbf{Atenção:}}$ Use "não sei" caso você não saiba a resposta. Resposta errada vale-0.2 pontos.

b = 3 e a = 1	
b=1 e $a=1$	
b = 3 e a = 2	
b = 0 e a qualquer número real	
nenhuma, M é sempre diagonalizável	
todas as afirmações anteriores são falsas	
não sei	

- T(1,0,1) = (2,0,2),
- $\bullet\,$ todo vetor não nulo do plano x+z=0é um autovetor,
- \bullet o determinante de $[T]_\epsilon$ é 32, e
- \bullet o traço de $[T]_{\epsilon}$ é negativo.

Determine os autovalores de T com suas multiplicidades.

\mathbf{R}	es	กด	st	a:
	\sim	\sim	\sim \cdot	~

autovalores:

6) Considere a transformação linear T cuja matriz [T] na base canônica é o produto das matrizes

$$[T] = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{6}} & \frac{-1}{\sqrt{3}} \\ 0 & \frac{-2}{\sqrt{6}} & \frac{1}{\sqrt{3}} \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{6}} & \frac{-1}{\sqrt{6}} & \frac{-2}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \end{pmatrix}.$$

Escolha qual das afirmações a seguir é a verdadeira.

A transformação linear T é:

- (a) A projeção ortogonal no plano x + y = 0.
- (b) A projeção ortogonal no plano x y + z = 0 seguida do espelhamento no plano x y 2z = 0.
- (c) A projeção ortogonal no plano x-y+z=0 seguido de de espelhamento no plano x+z=0.
- (d) A projeção ortogonal no plano x-y+z=0 seguido de de espelhamento no mesmo plano x-y+z=0.
- (e) A projeção ortogonal no plano x + y = 0 seguida do espelhamento no plano x y 2z = 0.
- (f) A projeção ortogonal no plano x+y=0 seguida do espelhamento no plano x-y+z=0.
- (g) A projeção ortogonal no plano x+y=0 seguida do espelhamento no mesmo plano x+y=0.
- (h) A projeção ortogonal no plano x-y-2z=0 seguida do espelhamento no mesmo plano x-y-2z=0.
- (i) A projeção ortogonal no plano x-y-2z=0 seguido de de espelhamento no plano x+y=0.
- (j) A projeção ortogonal no plano x-y-2z=0 seguido de de espelhamento no plano x-y+z=0.

- (k) O espelhamento no plano x y 2z = 0.
- (1) A projeção ortogonal no plano x y 2z = 0.
- (m) O espelhamento no plano x + y = 0.
- (n) Nenhuma das opções acima é verdadeira.

Resposta:

Marque com caneta no quadro abaixo sua resposta

Atenção: use "N = não sei" caso você não saiba a resposta.

a	b	c	d	e	f	g	h	i	j	k	1	m	n	N