

Anova

Anova tests the hypothesis that 2 or more samples have the same mean.

- Samples are independent
- Samples are normally distributed
- Homogeneity of variance

Var1 (y=0)	Var1 (y=1)
Obs 1	Obs 5
Obs 2	Obs 6
Obs 3	Obs 7
Mean 0	Mean 1
Variance 0	Variance 1

	Var1 (y=0)	Var1 (y=1	.)
	Obs 1		Obs 5	
	Obs 2		Obs 6	
	Obs 3		Obs 7	
	1		1	
	Mean 0		Mean 1	
	Variance (0	Variance	1

Great mean

Var1 (y=0)	Var1 (y=1)	
Obs 1	Obs 5	
Obs 2	Obs 6	
Obs 3	Obs 7	
Mean 0	Mean 1	
Variance 0	Variance 1	

Great mean

Model Sum of Squares:

- $\sum Obs(Mean great mean)^2$
- *Or*

•
$$\# Obs(0) \times (mean0 - great mean)^2 +$$

 $\# Obs(1) \times (mean1 - great mean)^2$

Residual sum of squares:

• $\sum (Obs(0) - mean0)^2 + \sum (Obs(1) - mean1)^2$

Great

mean

Var1 (y=0)	Var1 (y=1)
Obs 1	Obs 5
Obs 2	Obs 6
Obs 3	Obs 7
Mean 0	Mean 1
Variance 0	Variance 1

• Mean Squares model: (Model Sum of Squares) (Columns -1)

• Mean Squares error: (Residual sum of squares)

• F-statistic: (Mean Squares model)
(Mean Squares error)

One way Anova: Regression

Var1	Target
Obs 1	Value 1
Obs 2	Value 2
Obs 3	Value 3

- Correlation coefficient between variable and target.
- Convert the correlation into a p-value

https://github.com/scikit-learn/scikit-learn/blob/0fb307bf3/sklearn/feature_selection/_univ ariate_selection.py#L232

Anova: Scikit-learn

 F_classif or f_regression: rank features → smallest the p-value biggest importance

- SelectKBest: select best k features
- SelectPercentile: select features in top percentile

THANK YOU

www.trainindata.com