Recommendation System

Part I: Basic Concepts

Duc-Trong Le (PhD), VNU-UET
November 2022

Outline

- Real-life Examples
- Introduction to Recommendation Systems (RSs)
 - Item, User, Behavior
 - Role of RSs? How do RSs work?
- Types of Recommendation Systems
- Learning Principles
 - Learning User-Item Associations
 - Learning Item-Item Associations
- Evaluation & Metrics
 - Introduction to Cornac, a Recommendation Framework

YouTube

Google Search

Gmail

Amazon

Frequently Bought Together

Add all three to Cart | Add all three to Wish List

Show availability and shipping details

- ▼ This item: Beginning Ruby: From Novice to Professional (Expert's Voice in Open Source) by Peter Cooper Paperback \$27.78
- ☑ Learn to Program, Second Edition (The Facets of Ruby Series) by Chris Pine Paperback \$16.94
- Was Rails Tutorial: Learn Web Development with Rails (2nd Edition) (Addison-Wesley Professional Ruby ... by Michael Hartl Paperback \$29.48

Customers Who Bought This Item Also Bought

Learn to Program, Second Edition (The Facets of... Chris Pine

**** 42

Paperback \$16.94 Prime

The Well-Grounded Rubyist

David A. Black **** 39

Paperback

\$32.49 Prime

Ruby on Rails Tutorial: Learn Web Development...

Michael Hartl **** 70

Paperback

\$29.48 Prime

The Ruby Programming Language

David Flanagan **** 74

Paperback

\$26.35 Prime

The Well-Grounded Rubyist

David A. Black

**** 19

#1 Best Seller (in Ruby **Programming Computer**

Paperback

\$29.67 Prime

Tiki

Facebook

LinkedIn

Jobs you may be interested in

Because you viewed

Assoc Research Scientist

Richmond, VA, US

(Be an early applicant

PPIT

3 weeks ago

IBM Research Scientist - Health Al Postdoc FTH 24Months Melbourne at IBM

Netflix

Medium

Medium

BASED ON YOUR READING HISTORY

Visualizing Data with Pairs Plots in Python

How to quickly create a powerful exploratory data analysis visualization

Will Koehrsen in Towards Data Science

Apr 7, 2018 - 8 min read

ARTIFICIAL INTELLIGENCE

Cheat Sheets for AI, Neural Networks, Machine Learning, Deep Learning & Big Data

The Most Complete List of Best Al Cheat Sheets

Stefan Kojouharov in Becoming Human: Artificial Intelligence Magazine

ARTIFICIAL INTELLIGENCE

A Conceptual Explanation of Bayesian Hyperparameter Optimization for Machine Learning

The concepts behind efficient hyperparameter tuning using Bayesian optimization

Will Koehrsen in Towards Data Science

Jun 24, 2018 · 14 min read

BaoMoi

Tăng ni, Phật tử cầu siêu

cho đồng bào tử nạn

trong dịch COVID-19

Núi sạt lở, mặt đường

người dân Trà Leng bị

đứt gãy, hàng ngàn

ĐT Việt Nam đối mặt

lịch thi đấu dày đặc ở

AFF Cup 2020

SAIGON 15 phút

Cao tốc dài gần 188 km nối 4 tỉnh

được trình Quốc hội vào tháng 5-

đồng bằng sông Cửu Long sẽ

Introduction to **Recommendation Systems**

Item, User & Behavior

Behavior

Item

Video

Customer A

Search, Click, Add-to-cart, Purchase, Review, Rate

Product

You Tube

Search, Click, Rate, Like

Movie

Báo Méi.com

Search, Read, Duration, Comment News

• • •

Why do we need Recommendation?

Millions of Items ...

Roles of Recommendation Systems

Recommender Systems

Users

Items

(e.g., video, product, news)

Advantages of RS:

Enterprise Perspective	Customer Perspective
 Reduce search costs Increase customer satisfaction Educate customers about product domains. Optimize sales and profit 	 Easy to find what he/she might want Having an assistant in websites/systems

Long-tail Recommendation

How does RS work?

Items

Ranked Item List

Types of Recommendation Systems

Personalized Recommendation

Content-based Recommendation (1)

Main idea: Recommended items are similar to what a user adopted

item score i1 0.9 i2 1 i3 0.3

Product features

Actors

Genre

Recommendation component

Recommendation list

Content-based Recommendation (2)

Recommendations for 1TB HDD on Amazon

Collaborative Filtering (1)

Collaborative Filtering (2)

Netflix Prize

	Movie 1	Movie 2	Movie 3
Ted	4	5	5
Carol		5	5
Bob		5	?

Leaderboard

Showing Test Score. Click here to show quiz score

Display top 20 ▼ leaders.

Rank	Team Name	Best Test Score	e <u>%</u> Improvem
Grand	<u>1 Prize</u> - RMSE = 0.8567 - Winning 1	eam: BellKor's Pr	agmatic Chaos
1	BellKor's Pragmatic Chaos	0.8567	10.06
2	The Ensemble	0.8567	10.06
3	Grand Prize Team	0.8582	9.90
4	Opera Solutions and Vandelay United	0.8588	9.84
5	Vandelay Industries!	0.8591	9.81
6	PragmaticTheory	0.8594	9.77
7	BellKor in BigChaos	0.8601	9.70
8	Dace	0.8612	9.59

Netflix 1M \$ challenge

Knowledge-based Recommendation (1)

Knowledge-based Recommendation (2)

Knowledge-based Recommendation (3)

Hybrid Recommendation

Explainable Recommendation

Main idea: Recommendation with explanation

Learning Principles

How does RS work?

Items

Ranked Item List

Top-K Recommendation

<u>Main idea</u>: Learning user preferences via modeling associations to generate top-K recommendations.

Observed Data:

User-Item & Item-Item
Associations

Recommender Systems

User Preference

Ranked Item List

Relevance

User-Item Association

Explicit Association-based Recommendation

Main idea: Recommended items are high rating ones.

Rating Prediction

$$\hat{y}_{i,u} = rac{\sum_{u_j \in \mathcal{N}(u,i)} ar{y}_{i,u_j} ext{sim}(u,u_j)}{\sum_{u_j \in \mathcal{N}(u,i)} | ext{sim}(u,u_j)|}$$

Main idea: Rating is computed via similar users.

Rating Prediction with Matrix Factorization

latent representation latent representation

Learning Objective: Minimize $(X_{ij} - U_i \times V_j^T)^2 + \lambda(||U||_2 + ||V||_2)$

Implicit Association-based Recommendation

Main idea: Recommended items are popular (Counting)

Bayesian Personalized Ranking (BPR)

$$\prod_{u \in U} p(>_u |\Theta) = \prod_{(u,i,j) \in D_S} p(i>_u j|\Theta)$$
$$p(i>_u j|\Theta) := \sigma(\hat{x}_{uij}(\Theta))$$
$$\hat{x}_{uij} := \hat{x}_{ui} - \hat{x}_{uj}$$

Main idea: Learn the relative ranking for each user

Item-Item Association

<u>Hypothesis:</u> The adoption of a user on an item might be influenced by his past adoptions on other items.

Correlative Association

Data: Basket – Items are adopted at the same time.

<u>Hypothesis:</u> Items within the same basket are correlated, refers to as *correlative dependencies*.

Association Rule-based Recommendation

https://www.instacart.com/

Source:

https://www.quora.com/How-is-association-rule-compared-with-collaborative-filtering-in-recommender-systems

An Example of Amazon RS

Frequently Bought Together

Add all three to Cart | Add all three to Wish List

Show availability and shipping details

- ☑ This item: Beginning Ruby: From Novice to Professional (Expert's Voice in Open Source) by Peter Cooper Paperback \$27.78
- Learn to Program, Second Edition (The Facets of Ruby Series) by Chris Pine Paperback \$16.94
- Was Rails Tutorial: Learn Web Development with Rails (2nd Edition) (Addison-Wesley Professional Ruby ... by Michael Hartl Paperback \$29.48

Customers Who Bought This Item Also Bought

Learn to Program, Second Edition (The Facets of... Chris Pine

**** 42

Paperback

\$16.94 Prime

The Well-Grounded Rubyist

David A. Black **** 39

Paperback

\$32.49 Prime

Ruby on Rails Tutorial: Learn Web Development...

Michael Hartl **** 70

Paperback

\$29.48 Prime

The Ruby Programming Language David Flanagan

**** 74

Paperback

\$26.35 Prime

The Well-Grounded Rubyist

David A. Black

**** 19

#1 Best Seller (in Ruby **Programming Computer**

Paperback

\$29.67 Prime

Sequential Association

<u>Data:</u> Sequence – Items are adopted sequentially by time.

<u>Hypothesis:</u> The next selection (item) of a user is affected by his preceding adoptions

One more thing ...

The notion of Basket Sequence

Correlative associations among items in a basket **Sequential associations** across baskets in a sequence

Evaluation and Metrics

"Recommender systems are systems that help users discover items they may like."

Evaluation Strategy

Online Evaluation

(User Study, A/B Testing)

Offline Evaluation

(Evaluation metrics on observed data)

Offline Evaluation

Note: If the available data consists of item/basket sequence, the train/val/test should be split from non-overlapping consecutive periods

Error-based Metrics

$$ext{MAE} = rac{\sum_{i=1}^{n}|y_i-x_i|}{n}$$

$$ext{MSE} = rac{1}{n} \sum_{i=1}^n (Y_i - \hat{Y_i})^2.$$

$$ext{RMSD} = \sqrt{rac{\sum_{t=1}^T (\hat{y}_t - y_t)^2}{T}}.$$

Recommendation via Rating Prediction

	Actual	
	1: Toy Story (1995)	
755	2	
5277	1	
1577		
4388	2	
1202		
3823	3	
5448		
5347	2	
4117	4	
2765	4	

	Pedicted	
1: 1	1: Toy Story (1995)	
	4	
	2	
	3	
	2	
	2	
	5	
	4	
	3	
	5	
	4	

Absolute Error	Squared Error	
Toy Story (1995)	1: Toy Story (1995)	
2		
1		
3		
0		
2		
2		
4		
1		
1		
0		
0		

MAE	
1.6	

MSE	Ĩ
4	

RMSE	3
2.0	

Classification-based Metrics (1)

Precision@K for Top-K Recommendation

Classification-based Metrics (2)

Recall@K for Top-K Recommendation

Ranking-based Metrics (1)

Normalized Discounted Cummulative Gain (nDCG@K) for Top-K Recommendation

$$ext{nDCG}_{ ext{p}} = rac{DCG_p}{IDCG_p}, \hspace{0.5cm} ext{DCG}_{ ext{p}} = \sum_{i=1}^p rac{rel_i}{\log_2(i+1)} \hspace{0.5cm} ext{CG}_{ ext{p}} = \sum_{i=1}^p rel_i$$

$$ext{DCG}_{ ext{p}} = \sum_{i=1}^p rac{rel_i}{\log_2(i+1)}$$

$$ext{CG}_{ ext{p}} = \sum_{i=1}^{P} rel_i$$

Items Ranking Relevancy Score	
Movie 1	1
Movie 3	2
Movie 2	2
Movie 5	0
Movie 4	1

Perfect Ranking	Relevancy Score
Movie 3	2
Movie 2	2
Movie 1	1
Movie 4	1
Movie 5	0

CG =	6	
DCG =	12.1	

CG (p) =	6	
DCG (p) =	13.9	

$$nDCG = DCG/DCG (P) = 0.87$$

Ranking-based Metrics (2)

Mean Reciprocal Rank (MRR) for Top-K Recommendation

$$MRR = rac{1}{N} \sum_{i=1}^{N} rac{1}{rank_i}$$

Items Ranking	Relavent Items	Reciprocol Ranking
Movie 1	No	0
Movie 3	Yes	1/2
Movie 2	Yes	1/3
Movie 5	No	0
Movie 4	Yes	1/5

100000000000000000000000000000000000000	and the second s	100000000	
MRR =	1/2+1/3+1/5 =	1.03	

Cornac

Cornac is a comparative framework for multimodal recommender systems, which focuses on making it **convenient** to work with models leveraging **auxiliary data** (e.g., item descriptive text and image, social network, etc.)

Flow of an Experiment in Cornac

Website: https://cornac.preferred.ai/

Tutorials: <u>Github Repo</u>

Summary

- Real-life Examples
- Introduction to Recommendation Systems (RSs)
 - Item, User, Behavior
 - Role of RSs? How do RSs work?
- Types of Recommendation Systems
- Learning Principles
 - Learning User-Item Associations
 - Learning Item-Item Associations
- Evaluation & Metrics
 - Introduction to Cornac, a Recommendation Framework

Thanks!

trongld@vnu.edu.vn

