9 Projektmanagement

- 9.1 Grundlagen
- 9.2 Projektplanung
- 9.3 Ablauf- und Terminplanung
- 9.4 Fortschrittskontrolle
- 9.5 Zusammenfassung

9.1 Grundlagen

9.1 Grundlagen

- Was ist ein Projekt
- Ziele des Projektmanagements
- Aufgaben des Projektmanagements
- 9.2 Projektplanung
- 9.3 Ablauf- und Terminplanung
- 9.4 Fortschrittskontrolle
- 9.5 Zusammenfassung

Was ist ein Projekt

■ Wortsinn "Projekt"

Vorhaben, Plan (Brockhaus)

Projekt

- Ist die Menge aller
 - Tätigkeiten,
 - Interaktionen und
 - Resultate,
- die mit dem Versuch zusammenhängen,
 - ein bestimmtes Ziel mit
 - begrenzten Mitteln und innerhalb
 - begrenzter Zeit
- zu erreichen.

Ziel

Bereitstellung eines Software-Systems

Ziele des Projektmanagements

Übergeordnetes Ziel

- Projekt erfolgreich abschließen!
- Innerhalb der Termine mir den vorgesehenen Mitteln Resultate der geforderten Qualität erzielen.

■ Weitere Ziele

- Positiver Eindruck auf Kunden und auf den Markt
 - Folgeauftrag
- Aneignung von Kenntnissen
 - Neues Wissen muss zukünftig genutzt werden
- Entwicklung wiederverwendbarer Software
 - Hohes Ziel, wird selten erreicht
- Wahrung eines attraktiven Arbeitsklimas
 - Sehr wichtig, wird häufig nicht als Ziel gesehen!

Aufgaben des Projektmanagements

Projektplanung

- Projektdefinition (Ziele, Aufgaben)
- Aufgabengliederung
- Qualitätsplanung
- Terminplanung
- Ressourcen-Planung

Projekt-Controlling

- Maßnahmen zur Steuerung von Qualität, Terminen und Ressourcen
- Verfolgung von kritischen Erfolgsfaktoren

Projektorganisation

- Rollendefinition
- Kompetenz- und Verantwortlichkeitsverteilung
- Gestaltung der Kommunikation im Projektteam

Teamführung

- Mitarbeiterauswahl
- Motivation, Konfliktbehandlung im Team

9.2 Projektplanung

9.1 Grundlagen

9.2 Projektplanung

- Planungsgrößen
- Der Projektplan
- Work Breakdown Structure
- Arbeitspakete und Meilensteine
- 9.3 Ablauf- und Terminplanung
- 9.4 Fortschrittskontrolle
- 9.5 Zusammenfassung

Projektplanung

Ein Plan

ist die geistige Vorwegnahme zukünftigen Handelns.

Konsequenz

- Pläne stimmen nie!
- Aber: Pläne sind keine Rechtfertigung, warum Ziele nicht erreicht werden konnten.
- Pläne sind kein Selbstzweck!
- Pläne sind dazu da, dass man alles daran setzt, sie einzuhalten!

Was passiert, wenn nicht geplant wird

- Wir wissen nicht, wo wir im Projekt stehen!
- Wir wissen nicht, was getan werden soll!
- Wir wissen nicht, was die Entwicklung kosten wird!
- Wir wissen nicht, ob wir die definierten Ziele erreichen werden!

Planungsgrößen

■ Planung der Leistungen

- Quantität
- Qualität
- Teilergebnisse

Planung der Termine

- Wann sollen welche Leistungen verfügbar sein?
- Endtermin!

Planung der Ressourcen

- Mitarbeiter
- Geld

Planung der Aufgaben

Was ist zu tun?

Der Projektplan

Der Projektplan macht Aussagen zu 6 w-Punkten

- warum,
- was getan wird,
- für wie viel Geld,
- von wem,
- wann und
- womit

Der Projektplan ist ein zentrales Dokument

- Er ist der Ausführungsplan
- Er ist Basis für die Fortschrittskontrolle
- Er muss möglichst exakte und unzweideutige Aussagen machen
 - quantitative und überprüfbare Aussagen
- Er sollte eine Standard-Gliederung für Projektpläne verwendet werden.

Inhalt eines Projektplans

1.Einleitung

- 1.1 Zweck
- 1.2 Projekt-Überblick und Motivation

2. Grundlagen

- 2.1 Vertragliche Grundlagen an an die Durchführung
- 2. 2 Vertragliche Grundlagen an die Lösung
- 2.3 Standards, Randbedingungen

3. Projektbeschreibung

- 3.1 Arbeitsumfang
- 3.2 Annahmen
- 3.3 Lieferumfang
- 3.4 Abnahmeprozedur

4. Entwicklungsplan

- 4.1 Aufteilung in Arbeitspakte
- 4.2 Netzplan mit Aktivitäten und Terminen
- 4.3 Budget
- 4.4 Risiken

5. Anforderungen an die Umgebung

- 5.1 Rechner, Software
- 5.2 Leistungen des Auftraggebers
- 5.3 Leistungen externer Lieferanten

6. Entwicklungsprozess

- 6.1 Phasen der Entwicklung
- 6.2 Dokumentation
- 6.3 Qualitätskontrolle

7. Projektorganisation

- 7.1 Schnittstelle zum Auftraggeber
- 7.2 Schnittstelle zur Firmenorganisation
- 7.3 Organisation während der Projektphasen

8. Standards für die Entwicklung

- **8.1 Configuration Management**
- 8.2 Richtlinien
- 8.3 Einsatz von Werkzeugen
- 8.4 Projektspezifischen Abweichungen von Firmen-Standards

Grundlagen der Planung

■ Folgende wesentliche Planungsansätze sind wichtig

- Hierarchische Aufgabengliederung
 - Projektstrukturplan (PSP), Work Breakdown Structure (WBS)
- Prozessorientierte Vernetzung
 - Ablaufpläne (Balkenpläne, Netzpläne, etc.)

Zentrale Fragestellung

Welche Aktivitäten müssen durchgeführt werden, um das Projektziel zu erreichen?

■ S.M.A.R.T. Eigenschaften von Aktivitäten

S (specific): Die Aktivität muss zielgerichtet sein

M (measurable): Es muss möglich sein, den Fortschritt zu messen

A (assignable): Es muss eine Verantwortlichkeit definiert sein.

R (realistic): Sie muss im Rahmen von Zeit und Budget durchführbar sein.

T (time-related): Die Dauer muss angegeben sein.

Work Breakdown Structure

Aufgabe

- Eine WBS ist eine Gliederung der Gesamtaufgabe in planbare und kontrollierbare Teilaufgaben
- Dies wird in der Regel hierarchisch getan.
- Gliederungskriterium
 - Entwicklungsphasen
 - Produktbestandteile (wenn man sie kennt)
 - Projektorganisation (verteilte Entwicklung)

Ziele

- Systematische Erfassung aller Aktivitäten des Projekts.
- Übersichtliche Darstellung des Projektinhalts
- Definition einer Aufgabenstruktur, die für das gesamte Projekt gilt.
- Basis schaffen für:
 - Terminplanung, Aufgabenverteilung, Kostenplanung

Beispiel: WBS

Hinweis

 Vorgehensmodelle definieren viele Aktivitäten und bilden damit eine generische WBS

Arbeitspakete

Ziel

- Beschreibung von Aufgaben, die zusammen ausgeführt werden sollen.
- Detailaufgaben werden erfasst.
- Basis für die Zuordnung von Mitarbeitern zu Aufgaben.
- Basis für die Termin- und Kostenplanung
- Beschreibung der zu erzielenden Ergebnisse und Teilergebnisse

Notation

 Arbeitspakte müssen standardisiert beschrieben werden!

Arbeitspaket ID: a100.5	Projekt: Phase:	Alpha Codierung
Re Te	reibung esultate ilschritte itische Ressourc	cen
	Sol	oli İst
Aufwand: Termin: stub axy modul axy 	20 89-12 89-12	1-15
ausgestellt von: freigegeben von:	Vi	am: 89-10-14 am:

Meilensteine

Definition

- Meilensteine sind ausgezeichnete Zeitpunkte im Projektablauf, zu denen vordefinierte Arbeitsergebnisse vorliegen.
- Aufgrund dieser Ergebnisse entscheidet der Auftraggeber, ob die Arbeiten der nächsten Phase aufgenommen werden dürfen.

■ Erreichen von Meilensteinen

- Wichtig ist, dass es für das Erreichen des Meilensteins Kriterien gibt, die der Subjektivität (oder Willkür) wenig Raum lassen.
- Es muss klar sein, ob alle Voraussetzungen zum Erreichen eines Meilensteins erfüllt sind.
- Die Freigabe (oder der Projektabbruch) wird vom Auftraggeber erteilt:
 - Entscheidungen an **externen Meilensteinen** sollten jeweils finanzielle Konsequenzen haben.
 - Bei größeren Vorhaben kann es sinnvoll sein, zusätzlich interne Meilensteine einzuplanen.

9.3 Ablauf- und Terminplanung

- 9.1 Grundlagen
- 9.2 Projektplanung
- 9.3 Ablauf- und Terminplanung
 - Balkenplan
 - Vernetzter Balkenplan
 - Netzplan
 - Beispiel Netzplan
 - Ermittlung von Terminen
 - Kritisches AP und kritischer Weg
- 9.4 Fortschrittskontrolle
- 9.5 Zusammenfassung

- 16 -

Ablauf- und Terminplanung

Voraussetzung

 Auf der Basis der zu erledigenden Arbeitspakte wird in der Ablauf- und Terminplanung die logische und zeitliche Anordnung der Aufgaben ermittelt!

Ablaufplanung

 Es wird die logische Anordnung der Arbeitspakete vom Projektstart bis zum Projektende festgelegt.

Terminplanung

Zuordnung des Parameters Zeit zu der festgelegten Reihenfolge

Elemente eines Ablaufplans

- Arbeitspakete
- Meilensteine (Ereignisse)
- Abhängigkeiten zwischen Arbeitspaketen
 - technologisch, organisatorisch

Techniken der Ablauf- und Terminplanung

Balkenplan

- Liste der Arbeitspakete
- Starttermin je Paket
- Endtermin bzw. Dauer je Paket, zusätzlich Fixtermine

Vernetzter Balkenplan

- Information wie Balkenplan
- Abhängigkeiten zwischen den Paketen (ablauflogisch)

Netzplan

- Information wie vernetzter Balkenplan
- logische Abhängigkeiten zwischen den Paketen
- Netzplan = vernetzter Balkenplan !

Balkenplan (Gantt chart)

Zweck

- Darstellung der Aufgaben und Termine in übersichtlicher (graphischer) Form.
- Kommunikationsmedium zum Auftraggeber und innerhalb des Projektes.

Vorgehensweise

- Ein Balkenplan ist eine graphische Umsetzung einer Terminliste unter Einbezug der Dauer der Arbeitspakete
- Gruppierung der Arbeitspakete geschieht häufig nach Phasen oder Teilprojekten. Innerhalb einer Gruppe wird zeitlich geordnet (bzgl. des Starttermins).
- Gedanklich müssen die Abhängigkeiten berücksichtigt werden. Sie werden jedoch nicht visualisiert.
- Balkenpläne repräsentieren die Durchlaufzeiten der Arbeitspakete
- Zeitliche Überlappungen sind unmittelbar erkenntlich

Beispiel: Balkenplan

		Januar	Februar					
AP-Bezeichnung	AP-Dauer	29. 01. 04. 07. 10. 13. 16. 19. 22. 25. 28. 31. 03. 06. 09. 12. 15. 18.						
Projektteam festlegen	6T							
Kick-Off	1T							
PSP	5T							
Aufwandsschätzung	7 T							
Ablaufplanung	4 T							
Risikoanalyse	10T							
Planoptimierung	5T							
Freigabe	1T							

Vernetzter Balkenplan

Zweck

- Darstellung der Aufgaben und ihrer Abhängigkeiten in graphischer Form
- Sichtbarmachen von kritischen Wegen
- Kommunikationsmedium

Vorgehensweise

- Bei kleineren Projekten können die Abhängigkeiten in einem Zug ermittelt werden.
- Bei großen Projekten muss dies auf unterschiedlichen Ebenen geschehen

Hinweis

 Wird die dargestellte Vernetzung der Arbeitspakte untereinander zu dicht, nimmt die Lesbarkeit des Planes ab.

Beispiel: Vernetzter Balkenplan

Netzplan

Zweck

- Darstellung des Projektablauf durch die Reihenfolge der Aufgaben und ihrer Abhängigkeiten
- Automatische Berechnung der Fristen und Termine
- Erkennen von kritischen Wegen und Pufferzeiten

Vorgehensweise

- Identifizierung der Arbeitspakete
- Definition der technologischen Abhängigkeiten
- Festlegen der Dauer pro Arbeitspaket
- Berechnung der Termine
 - Frühest möglicher Anfang, spätest mögliches Ende

Hinweis

 Aus einem Netzplan wird durch Übertragung in einem Kalender ein Terminplan.

Beispiel Netzplan (PERT chart)

PERT

- Program Evaluation Review Technique
- Navy Polaris 1958

Ermittlung von Terminen

Ansatz

- Für jeden Zeitpunkt werden zwei Extremwerte bestimmt
 - Frühest möglicher Anfangs- und Endzeitpunkt (FAZ, FEZ)
 - Spätest möglicher Anfangs- und Endzeitpunkt (SAZ, SEZ)

Vorwärtsrechnung

- FAZ, FEZ werden bestimmt
 - FAZ(Start) = 0
 - FEZ(I) = FAZ(I) + Dauer(I)
 - FAZ(J) = MAX(FEZ(I)) und I ist Vorgänger von J

■ Rückwärtsrechnung

- SAZ, SEZ werden bestimmt
 - SEZ(Ende) = FEZ(Ende)
 - SAZ(J) = SEZ(J) D(J)
 - SEZ(I) = MIN(SAZ(J)), J ist Nachfolger von I

Kritisches AP und kritischer Weg

Gesamtpuffer

- Der Gesamtpuffer eines Arbeitspakets ist die Zeitspanne, um die es später begonnen werden oder gestreckt werden kann, ohne das Projektende zu gefährden.
- SAZ(I) -FAZ(I) bzw. SEZ(I) FEZ(I)

■ Freier Puffer

 Der Zeitraum, um den ein Arbeitspaket im Netzplan verschoben werden kann, ohne dass ein anderes Arbeitspaket ebenfalls verschoben wird.

■ Kritisches Arbeitspaket

- Gesamtpuffer = 0, d.h. frühester und spätester Startpunkt sind gleich.
- Ist der Gesamtpuffer klein, spricht man von subkritischen Arbeitspaketen.
- Gesamtpuffer < 0, dann nennt man diese Arbeitspakete überkritisch, d.h., hier muss Zeit eingespart werden.

Kritischer Weg

Weg durch das Netz, der nur kritische Arbeitspakete enthält.

#	Bezeichnung	Start(W)	Dauer	Abh.
1	Analyse	1	1 W	-
2	Auswahl Hardware	1	1 T	1
3	Installation Hardware	3	2 W	2
4	Analyse Datenbank	1	2 W	1
5	Analyse GUI	1	2 W	4
6	Implementierung Datenbank	4	3 W	4
7	Implementierung GUI	4	3 W	5
8	Test Datenbank	5	1 W	6
9	Test GUI	5	1 W	7
10	Schulung Datenbank	7	1 T	8
11	Entwicklung Fehlerstatistik	6	1 W	5
12	Entwicklung Release-Statistik	6	1 W	5
13	Entwicklung Management Summary	6	1 W	5
14	Schulung Werkzeug	7	1 W	1-13
15	Dokumentieren	4	2 W	-

#	Bezeichnung	Start(W)	Dauer	Abh.	FAZ	FEZ	SAZ	SEZ	
1	Analyse	1	1 W	-					
2	Auswahl Hardware	1	1 T	1					
3	Installation Hardware	3	2 W	2					
4	Analyse Datenbank	1	2 W	1					
5	Analyse GUI	1	2 W	4					
6	Implementierung Datenbank	4	3 W	4					
7	Implementierung GUI	4	3 W	5					
8	Test Datenbank	5	1 W	6					
9	Test GUI	5	1 W	7					
10	Schulung Datenbank	7	1 T	8					
11	Entwicklung Fehlerstatistik	6	1 W	5					
12	Entwicklung Release-Statistik	6	1 W	5					
13	Entwicklung Management S.	6	1 W	5					
14	Schulung Werkzeug	7	1 W	1-13					
15	Dokumentieren	4	2 W	-					

	1	2	3	4	5	6	7 8	9	10	
1 Analyse										
2 Ausw. HW										
3 Inst. HW										
4 Ana. DB										
5 Ana. GUI										
6 Imp. DB										
7 Imp. GUI										
8 Test DB										
9 Test GUI										
10 Schu. DB										
11 F-Stat.										
12 R-Stat.										
13 M-Stat.										
14 Schu. WZ										
15 Doku										

9.4 Fortschrittskontrolle

- 9.1 Grundlagen
- 9.2 Projektplanung
- 9.3 Ablauf- und Terminplanung
- 9.4 Fortschrittskontrolle
 - Management-Regelkreis
 - Erfassung des Ist-Zustandes
 - Bewertung des Projektstandes
 - Konsequenzanalyse
 - Steuerungsmaßnahmen
- 9.5 Zusammenfassung

- 31 -

Projekt-Controlling

Aufgaben des Projekt-Controllings

- Entwicklung von Kennzahlen und Meßsystemen, um Planabweichungen und den Projektzustand (Projekterfolg) erfassen zu können.
- Implementierung von Controlling-Standards.
- Vergleich der Projektpläne (Soll-/Ist-Vergleich).
- Interpretation der Ergebnisse und Entwicklung von Steuerungsmaßnahmen.
- Erstellung von Projektberichten.
- Verfolgung des Projektumfeldes.
- Sicherstellen, dass die im Projekt gemachten Erfahrungen optimal genutzt werden.

Konsequenz

 Projekt-Controlling ist eine kontinuierliche T\u00e4tigkeit und Teil der Projekt-Managementfunktion

Management-Regelkreis

Erfassung des Ist-Zustandes

Ziel

- Soll-/Ist-Vergleich vorbereiten.
- Ist-Daten müssen aktuell sein, damit rechtzeitig auf Abweichungen reagiert werden kann.

Arbeitspaket ist die kleinste Einheit

- Termine, Aufwand (PT, PW, PJ) sind definiert
- Meilensteine definieren Zwischen- und Endergebnisse

Minimalanforderung

- Wöchentlich muss der Aufwand erfasst werden, den die Mitarbeiter in die einzelnen Arbeitspakete geleistet haben.
- Arbeiten Mitarbeiter parallel an mehreren APen, dann sollten ihre Aufwände täglich erfasst werden.
- Dies erfordert eine Werkzeugunterstützung!

Beispiel: Ist-Zustand

Aufwand in PT	1	2	3	4	5	6	7	8
geleistet in der Woche	2	3	2	3	4	3	4	5
geleistet kumuliert	2	5	7	10	14	17	21	26
geplant	15	15	15	15	15	15	15	15

Ist-Zustand

 Nach 4 Wochen sind 10 der geplanten 15 Personentage für das Arbeitspaket geleistet worden.

Fertigstellungsgrad _{gA}= Ist-Aufwand geplanter Aufwand

STOP

üblich, aber

falsch

Das Arbeitspaket ist zu 2/3 fertiggestellt!

Falsche Annahme

Der geplante Aufwand ist richtig. Wenn er geleistet ist, dann sind wir fertig!

Alternative: Restaufwand

Restaufwand

- Anstatt vom geleisteten Aufwand geht man von dem Aufwand aus, der noch zu erbringen ist, um das Arbeitspaket abzuschließen.
- Eine Aussage über das Erwartende bewertet implizit auch das bisher Erreichte.

Aufwand in PT	1	2	3	4	5	6	7	8
geleistet in der Woche	2	3	2	3	4	3	4	5
geleistet kumuliert	2	5	7	10	14	17	21	26
geschätzter Restaufwand	13	10	8	5	5	5	5	0
geschätzt für Arbeitspaket	15	15	15	15	19	22	26	26
geplant	15	15	15	15	15	15	15	15

Hinweis

- Sind die Prognosen falsch, dann nützt dieses Verfahren auch wenig!
- Erst wenn die Prognosen zeigen, dass das AP noch lange nicht abgeschlossen ist, wird der Wert der bereits geleisteten Arbeit besser sichtbar.

Prognostizierter Aufwand

Fertigstellungsgrad
$$_{pGA} = \frac{Ist-Aufwand}{prognostizierter Gesamtaufwand}$$

Hinweis

- Der Mitarbeiter muss seine Prognose sorgfältig überlegen
 - Ist sie zu hoch, so schmälert das seine bisher geleistete Arbeit.
 - Ist sie zu gering, so sind Probleme bei der n\u00e4chsten Kontrolle zu erwarten.
- Der initial geplante Aufwand wird nicht verändert; die Planung ändert sich allerdings auf der Basis der Prognosen!

Erarbeiteter Wert - 1

Problem

 Insbesondere in großen Organisationen kann es sehr lange dauern, bis die Ist-Daten zur Verfügung stehen. Sie können nicht verwendet werden, um den prognostizierten Gesamtaufwand zu bestimmen!

Alternative

 Der Fertigstellungsgrad(AP) wird auf der Basis des erarbeiteten Wertes bestimmt!

■ Erarbeiteter Wert

erarbeiteter Wert = geplanter Aufwand - prognostizierter Restaufwand

erarbeiteter Wert prognostizierter Restaufwand

Erarbeiteter Wert - 2

Fertigstellungsgrad _{eW} =

erarbeiteter Wert geplanter Aufwand

Hinweis

 Dieser Wert ist negativ, wenn der prognostizierte Restaufwand größer als der geplante Aufwand ist.

Beispiel

	1	2	3	4	5	6	7	8
FSG(gA)	0.13	0.33	0.47	0.66	0.93	1.13	1.4	1.73
FSG(pGW)	0.13	0.33	0.47	0.66	0.73	0.77	8.0	1
FSG(eW)	0.13	0.33	0.47	0.66	0.66	0.66	0.66	1
Ist kumuliert	2	5	7	10	14	17	21	26
gepl. Aufwand	15	15	15	15	 15	15	15	15

 "Wir haben ca. 90% des geplanten Aufwandes geleistet, aber erst 66% der Aufgabe erledigt"

Bewertung des Projektstandes

Ziel

Momentaufnahme über den Zustand des Projekts.

Messgrößen

- Fertigstellungsgrad des Arbeitspakete (Leistungen)
- Kosten
- Termine

■ Fertigstellungsgrad der Arbeitspakete

Fertigstellungsgrad =

Anzahl abgeschlossener APe
Anzahl der APe

- Angefangene APe können mit 0.5 oder 0 bewertet werden
- Aufwand für Fehlerbeseitigung aus abgeschlossenen APen darf nicht vernachlässigt werden.

Konsequenzanalyse

Aufgabe

- Der Soll-/Ist-Vergleich zeigt Abweichungen von der Planung.
- Konsequenzanalyse ist Voraussetzung um Steuerungsmaßnahmen zu definieren.

Steuerungsmaßnahmen

- korrektive Maßnahmen
 - Heranführen des Ist an den Plan
- Planänderungen
 - Anpassung des Plans an das Ist

Auswahl der Steuerungsmaßnahmen

- ist bedingt durch die Auswirkungen, die die erkannten Abweichungen auf das Projektziel haben.
- Leistung, Kosten und Termine sind dabei zu unterscheiden.

Steuerungsmaßnahmen

Leistung zu gering

- Höherer Ressourceneinsatz
 - Überstunden
 - Weitere Mitarbeiter
- Leistungsanreizsystem, Prämien, Motivation
- Verbesserung der Kontrolle

Zeit überschritten

- Kürzung der Dauer der Arbeitspakete am kritischen Weg
 - Überlappungen vorsehen
 - Abhängigkeiten eliminieren, Rationalisierungspotential nutzen
- Höherer Ressourceneinsatz
- Reduktion der Funktionalität

■ Kosten überschritten

- Vergabe von Teilleistungen an Subauftragnehmer
- Qualität auf das unbedingt Nötige beschränken (!!)
- Nutzung von günstigeren Varianten (Technologie)
 - Dies führt jedoch dazu, dass mehr Zeit benötigt wird.

9.5 Zusammenfassung

- Projektmanagement ist eine notwendige Tätigkeit
- Pläne bilden die Grundlage für die Projektdurchführung
 - Investition in Planung rentiert sich!
 - Techniken zur Planung sind vorhanden und erprobt!
 - Werkzeuge unterstützen die Planungstätigkeiten.

Feststellungen

- Es wird i.a. zu wenig geplant
- Es wird zu viel im Detail geplant
- Es werden vor allem Terminpläne gemacht
- Fortschrittskontrolle ist eine kontinuierliche Management-Tätigkeit.
 - Ist-Daten müssen gesammelt werden und aktuell sein.
 - Arbeitspakete, Kosten und Termine sind zu erfassen.
 - Soll-/Ist-Vergleich ist Grundlage für die Konsequenzanalyse
 - Steuerungsmaßnahmen müssen rechtzeitig eingeleitet werden

© H. Lichter, RWTH Aachen - 43 -