Topic: Vector from two points

Question: Find the vector that connects the points.

$$\overrightarrow{ST}$$

$$T(-1, -4)$$

Answer choices:

$$\mathsf{A} \qquad \langle -2, -9 \rangle$$

B
$$\langle -2,9 \rangle$$

C
$$\langle 2,9 \rangle$$

D
$$\langle 2, -9 \rangle$$

Solution: A

To find the vector that connects two points $A(x_A, y_A)$ and $B(x_B, y_B)$, use the formula

$$\overrightarrow{AB} = \langle x_B - x_A, y_B - y_A \rangle$$

or for points in three-dimensional space $A(x_A, y_A, z_A)$ and $B(x_B, y_B, z_B)$, use

$$\overrightarrow{AB} = \langle x_R - x_A, y_R - y_A, z_R - z_A \rangle$$

The important thing to remember here is that vectors indicate direction, so the vector \overrightarrow{AB} is the vector that starts at A and ends at B. Therefore A is called the "initial point" and B is called the "terminal point". You want to make sure you're subtracting values in the initial point from values in the terminal point. You can think about it as

$$\overrightarrow{AB} = B - A$$

$$\overrightarrow{AB}$$
 = terminal – initial

So the vector \overrightarrow{ST} , where *S* is S(1,5) and *T* is T(-1, -4) is

$$\overrightarrow{ST} = \langle -1 - 1, -4 - 5 \rangle$$

$$\overrightarrow{ST} = \langle -2, -9 \rangle$$

Topic: Vector from two points

Question: Find the vector that connects the points.

$$\overrightarrow{RQ}$$

$$Q(0, -1, 4)$$

$$R(4,0,-9)$$

Answer choices:

A
$$(4,1,-13)$$

B
$$\langle -4, -1, -5 \rangle$$

C
$$\langle -4, -1, 13 \rangle$$

D
$$\langle 4,1,5 \rangle$$

Solution: C

To find the vector that connects two points $A(x_A, y_A)$ and $B(x_B, y_B)$, use the formula

$$\overrightarrow{AB} = \langle x_B - x_A, y_B - y_A \rangle$$

or for points in three-dimensional space $A(x_A, y_A, z_A)$ and $B(x_B, y_B, z_B)$, use

$$\overrightarrow{AB} = \langle x_B - x_A, y_B - y_A, z_B - z_A \rangle$$

The important thing to remember here is that vectors indicate direction, so the vector \overrightarrow{AB} is the vector that starts at A and ends at B. Therefore A is called the "initial point" and B is called the "terminal point". You want to make sure you're subtracting values in the initial point from values in the terminal point. You can think about it as

$$\overrightarrow{AB} = B - A$$

$$\overrightarrow{AB}$$
 = terminal – initial

So the vector \overrightarrow{RQ} , where R is R(4,0,-9) and Q is Q(0,-1,4) is

$$\overrightarrow{RQ} = \langle 0 - 4, -1 - 0, 4 - (-9) \rangle$$

$$\overrightarrow{RQ} = \langle -4, -1, 13 \rangle$$

Topic: Vector from two points

Question: Find the vector that connects the points.

 \overrightarrow{SR}

$$R(11,6,-9)$$

$$S(-8, -9, -14)$$

Answer choices:

A
$$(3, -3, -25)$$

C
$$\langle -3, 3, 25 \rangle$$

D
$$\langle -19, -15, -5 \rangle$$

Solution: B

To find the vector that connects two points $A(x_A, y_A)$ and $B(x_B, y_B)$, use the formula

$$\overrightarrow{AB} = \langle x_B - x_A, y_B - y_A \rangle$$

or for points in three-dimensional space $A(x_A, y_A, z_A)$ and $B(x_B, y_B, z_B)$, use

$$\overrightarrow{AB} = \langle x_B - x_A, y_B - y_A, z_B - z_A \rangle$$

The important thing to remember here is that vectors indicate direction, so the vector \overrightarrow{AB} is the vector that starts at A and ends at B. Therefore A is called the "initial point" and B is called the "terminal point". You want to make sure you're subtracting values in the initial point from values in the terminal point. You can think about it as

$$\overrightarrow{AB} = B - A$$

$$\overrightarrow{AB}$$
 = terminal – initial

So the vector \overrightarrow{SR} , where S is S(-8, -9, -14) and R is R(11,6, -9) is

$$\overrightarrow{SR} = \langle 11 - (-8), 6 - (-9), -9 - (-14) \rangle$$

$$\overrightarrow{SR} = \langle 19, 15, 5 \rangle$$

