Simple Linear Models

Lecture 04.2: Interactions

Lauren Sullivan

Module: Linear, Non-linear, and Mixed Effects Models

Readings

Required for class:

► NA

Optional:

- ► Crawley, M. Statistics: An Introduction Using R
- ► Bolker, B. Ecological Models and Data in R Ebook version
- ▶ Harpole et al. (2011) Nutrient co-limitation of primary producer communities. *Ecology Letters*. 14(9):852-862.

Factorial Experiments

	+ <u>Trt</u> 2	- <u>Trt</u> 2
+ <u>Trt</u> 1	+ <u>Trt</u> 2 + <u>Trt</u> 1	- <u>Trt</u> 2 + <u>Trt</u> 1
- <u>Trt</u> 1	+ <u>Trt</u> 2 - <u>Trt</u> 1	- <u>Trt</u> 2 - <u>Trt</u> 1

Factorial Experiments

	+ <u>Trt</u> 2	- <u>Trt</u> 2
+ <u>Trt</u> 1	+ Trt 2 + Trt 1 both trt factors	- <u>Trt</u> 2 + <u>Trt</u> 1
- <u>Trt</u> 1	+ <u>Trt</u> 2 - <u>Trt</u> 1	- Trt 2 - Trt 1 control

Factorial ANOVA - Experimental Design

Dependent variable (Y) is continuous, independent variables (X) are categorial and interacting

Interactions measure the joint effect of main effects A and B

▶ Identifies if response of A is dependent on level of B

$$Y_{ijk} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} + \epsilon_{ijk}$$

Significant interactions: main effects not interpertable without clarification.

Very common in biology

You can add more factors, but it requires a larger sample size (N)

What do Interactions Look Like?

How do Factors Add?

Figure 1: Harpole et al. 2011. Ecology Letters

Data

Biomass differences for plants with either nitrogen (N), phosphorus (P), both (NP), or neither (C) treatments.

Experimental Design

Biomass differences for plants with either nitrogen (N), phosphorus (P), both (NP), or neither (C) treatments.

Data

You can see that the columns n and p mirror the experimental design in the previous slide. O's indicate that the treatment is not in that plot, and 1's indicate that the treatment is applied. So control plots are 0-0, nitrogen plots are 1-0, phosphorus plots are 0-1, and nitrogen and phophorous plots are 1-1.

```
## # A tibble: 80 x 5
##
                p trt
                        block biomass
          n
      <dbl> <dbl> <dbl> <dbl> <dbl>
##
                                 <dbl>
##
          1
                1 NP
                                 23.1
##
                O N
                                 15.5
##
                1 P
                                 15.0
##
          0
                0 C
                                 20.2
##
          1
                1 NP
                                 34.4
                ON
                                 14.8
##
##
                1 P
                                 18.4
          0
                0 C
                               2.83
##
##
          1
                1 NP
                                 25.6
## 10
                                 14.9
     ... with 70 more rows
```

ANOVA

How does the addition of Nitrogen and/or Phosphorous influence the biomass of plants?

ANOVA

Does the addition of Nitrogen, Phosphorous, or Nitrogen and Phosphorous influence the biomass of plants?

```
test_aov <- lm(biomass ~ trt , data = biomass)
summary(test_aov)
##
## Call:
## lm(formula = biomass ~ trt, data = biomass)
##
## Residuals:
      Min 10 Median
                                   Max
## -10.726 -2.241 -0.107 2.482 13.377
##
## Coefficients:
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) 13.5526 0.9317 14.546 < 2e-16 ***
## trtN
          3 9901 1 3177 3 028 0 00336 **
## trtP
       1.9610 1.3177 1.488 0.14083
## trtNP 12.2790 1.3177
                                 9.319 3.28e-14 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.167 on 76 degrees of freedom
## Multiple R-squared: 0.57, Adjusted R-squared: 0.553
## F-statistic: 33.58 on 3 and 76 DF, p-value: 6.316e-14
```

Factorial ANOVA

Does the interaction of Nitrogen and Phosphorous influence the biomass of plants?

```
test_aovf <- lm(biomass ~ n * p , data = biomass)
summary(test_aovf)
##
## Call:
## lm(formula = biomass ~ n * p, data = biomass)
##
## Residuals:
      Min
              10 Median
                                    Max
## -10.726 -2.241 -0.107 2.482 13.377
##
## Coefficients:
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) 13.5526 0.9317 14.546 < 2e-16 ***
## n
             3 9901 1 3177 3 028 0 00336 **
            1.9610 1.3177 1.488 0.14083
## p
              6.3280 1.8634 3.396 0.00109 **
## n:p
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.167 on 76 degrees of freedom
## Multiple R-squared: 0.57, Adjusted R-squared: 0.553
## F-statistic: 33.58 on 3 and 76 DF, p-value: 6.316e-14
```

Interaction Plot

Higher Order Interactions

```
lm(biomass ~ n * p , data = biomass) is the same thing as lm(biomass ~ n + p + n:p , data = biomass)
```

This matters when you start to get higher order interactions (e.g. more than 2 factors. Because you can start to eliminate the highest interactions if they are not significant via reverse elimination.)

```
Start with: lm(biomass ~ n * p * k , data = biomass)
then: lm(biomass ~ n * p * k - n:p:k , data =
biomass)
then: lm(biomass ~ n * p * k - n:p:k - n:p , data =
biomass)
etc.
```