Tópicos de Matemática

Univ. do Minho - Lic. em Ciências da Computação

Este enunciado tem **duas** páginas.

- 1. Considere a fórmula $\varphi = (p \land q) \rightarrow (q \lor \sim r)$.
 - a) Diga, justificando, se φ é uma tautologia. (1,5 valores)
 - b) Dê exemplo de uma fórmula ψ (distinta de φ) tal que a seguinte frase seja verdadeira: « φ ser verdadeira é condição suficiente para que ψ seja verdadeira». Justifique. (1 valor)
- 2. Mostre, por contraposição, que o produto dum número racional não-nulo por um número irracional é irracional.
- 3. Escreva em linguagem simbólica com quantificadores a proposição: «Todas as soluções reais da desigualdade $x^3 - 3x < 3$ são menores do que 10».
- 4. Diga, justificando, se é verdadeira a seguinte proposição:

$$\forall_{x \in \mathbb{R}} \ \forall_{y \in \mathbb{R}} \ \exists_{z \in \mathbb{R}} \ x + z = y - z. \tag{1,5 valores}$$

29 de janeiro de 2019

- 5. Mostre que, para todo o $n \in \mathbb{N}$, $\sum_{i=1}^{n} i(i+1)(i+2) = \frac{n(n+1)(n+2)(n+3)}{4}$. (2 valores)
- 6. Considere os conjuntos $A = \{n \in \mathbb{N} \mid n^2 \in [0,1]\}, B = \{0,1,2\}$ e, para cada $i \in \mathbb{N}$, $C_i = \{-i, 0, i\}$. Determine cada um dos conjuntos seguintes:
 - a) $(A \cup B) \setminus (A \cap B)$.
 - b) $\mathcal{P}(B \cap C_2)$. (2 valores)
- 7. Sejam $\{A_i \mid i \in I\}$ e $\{B_i \mid i \in I\}$ duas famílias de conjuntos, indexadas pelo mesmo conjunto de índices I. Mostre que

$$\bigcup_{i \in I} (A_i \cap B_i) \subseteq \left(\bigcup_{i \in I} A_i\right) \cap \left(\bigcup_{i \in I} B_i\right).$$
(2 valores)

- 8. Sejam A e B conjuntos e R uma relação de A para B. Diga, justificando, se é necessariamente verdade que $R^{-1} \subseteq \mathrm{CDom}(R) \times \mathrm{Dom}(R)$. (1 valor)
- 9. Em \mathbb{N}^2 , considere a relação binária Z definida por

$$(a, b) Z (c, d)$$
 se e só se $a + d = b + c$.

a) Mostre que Z é uma relação de equivalência. (2 valores)

b) Determine dois elementos distintos da classe $[(3,1)]_Z$. (1 valor)

exame

10. Considere o c.p.o. (X, \leq) definido pelo seguinte diagrama de Hasse.

- a) Indique, caso existam
 - i) inf {1, 16, 64};
 - ii) máx {2, 4, 8, 16};

Justifique.

(1 valor)

- b) Indique dois subconjuntos A, B de X, tais que A tenha exatamente dois elementos maximais e um minimal e B tenha três elementos maximais, apresentando esses elementos. (1 valor)
- 11. Considere funções $f: \mathbb{R} \longrightarrow \mathbb{R}$ e $g: X \longrightarrow Y$ $(X \subseteq \mathbb{R}, Y \subseteq \mathbb{R}).$ $x \mapsto \sqrt{x^2 + 1}$
 - a) Diga, justificando, se f é injetiva.
 - b) Diga, justificando, se f é sobrejetiva.
 - c) Apresente conjuntos *X*, *Y* tal que *g* seja invertível.

(1,5 valores)

12. Considere o conjunto $T = \{3n : n \in \mathbb{Z}\}$. Indique, justificando, um conjunto A tal que $A \neq T$ mas $A \sim T$. (0,5 valores)