Apparently 15mm spent by Sin in whiting If fis a function & pis a probability distribution for a n.v. X $E(f) = \sum_{k=1}^{\infty} p(x) = \sum_{k=1}^{\infty} p(x) dx$

HCM= E(-log(pcx))

H(y/x)= E(-log(p(41x))

3//b(k,y) (0, b(y/x)) dydx

Cjurt rote this finow)

	now if we have 0, 202, we co	n entirely discrepand
		104 I WIXNI I
	independent of 0, Co	Since b(xn) is
	Marphetin of & ICI	boints diamb
	> min = [[[9(2/2)]	
	$\Rightarrow \min_{N \in \mathbb{N}} \frac{1}{N} = \left(-\log\left(\frac{2(2n/0)}{2}\right)\right)$	celihood (ol!
	$min = \frac{1}{N} \left(\log \mathcal{N}(x_1/\theta) + \log \left(\mathcal{N}(x_2) \right) \right)$	2/0) 1+
		lay (9(Kn/O))
	7	
	min (negative los likelihood)	=> KL dinegence 1's small
	La di alla	1's small
we see	We now I am the START =	Average codellyth 15 dosest to minimum
anumer of	is was rather intuiting. Emiss	is closest to minimum
Likeli 1000		codelingth
(ilealing	B(2,y) given	
	(y/x) X, And the anera	pe coole length
	to specify y	
	will be -p(y/x) log bly/x	1) dy ,
	Weighted away	L
	$n\omega$	22 1. [(2) 00
		$\frac{\lambda}{2}$
	voem of average	
	9 b(4/x) dy	dx
	1)	7.

 $H(y/x) = -\int \int p(x,y) \left(g(b(y/x))\right) dy dx$ 11 (x/y) = - SS p(x,y) (g(p(x/y)) dx dy p(x,y)= p(x)p(y)=) x,y one independent Hx (x,y) = - [p(x,y) log (p(x,y)) dx H(x,y) = - 55 p(x,y) log (p(x,y)) dydx = - | | b(xy) log(pcy/x) dxdy - Ssp(x,y)log(pu))drdy = H(Y/x)- S(p(x,y) log (p(x)) dxdy $= \frac{1}{2} (y/x) - \int \log(p(x)) (\int p(x)y) dy) dx$ = $H(y/x) - \int p(x) \log(p(x)) dx$ H(x,y) = H(y/x)+N(x) -) Conditional Entropy Indépendence (we can thou away a feature p(x,y) p(x)p(y) [maginalized] on a feature that
is the KL devegence less doesn't continue to

if x & y are really independent
A(Y/x)=H(y) I(x,y)=0
IC>,4) is the reduction of entropy of y, when X is involved
X is involved
if y is dependent on x, then I(x,y) con have
many values, and this can give in eights.
After this he look at a simple algorithm for classification
& feature engineering, data proposasty etc.
J