§2.14. Assignment 1, Fall 2020

Exercise 2.59. THE BERNOULLI DISTRIBUTION. Let X be a random variable such that for all strictly positive integers k, $E\{X^k\} = p$, where $0 \le p \le 1$. Using only material from this chapter, show that X must be Bernoulli (p).

Exercise 2.60. THE UNIT CUBE. Let $Q = [0, 1]^d$ be the unit cube of \mathbb{R}^d , and let $X = (X_1, \dots, X_d)$ be uniformly distributed inside Q.

- (i) Show that $P\{X_1 + \cdots + X_d \le 1\} = 1/d!$.
- (ii) Derive the distribution function of $d \min_i X_i$. What distribution do you get when $d \to \infty$?
- (iii) For symmetry, assume that X is uniform in $[-1,1]^d$. Even though this is cubic in shape, show that X lives with high probability near the surface of a ball: if ||X|| is the Euclidean norm of X, and $\epsilon > 0$, then $P\{(1-\epsilon)\sqrt{d/3} \le ||X|| \le (1+\epsilon)\sqrt{d/3}\} \to 1$ as $d \to \infty$.

Exercise 2.61. THE HYPERCUBE. Let $X = (X_1, \dots, X_d)$ be uniform on the hypercube $\{0, 1\}^d$.

- (i) What is the distribution of $\sum_{i=1}^{d} X_i$?
- (ii) Let X, Y be independent and distributed as X, and let H(X, Y) be the Hamming distance, i.e., the number of coordinates in which X and Y differ. Show that $\mathbb{E}\{|H(X,Y)-d/2|\}=O(\sqrt{d})$ (so, almost all pairs of points are at Hamming distance close to d/2 from each other...).

Exercise 2.62. BRAIN TEASER: OPTIONAL. Let X be binomial (n, p). There is a relatively simple formula for the probability that X is a multiple of three (zero included):

$$\frac{1}{3} + \frac{2}{3}\theta^n \phi.$$

Here $\theta \in [0,1]$ is a simple function of p and ϕ is a function of n and p taking values in [-1,1]. You are asked to determine θ and ϕ .