More on Classification

- More Classification Models
 - Bayes classifier, Association-based classifier, k-nearest neighbor (kNN), Neural network (shallow and deep models), etc.
- Classification Measures
- Ensemble Methods
 - Ideas and Examples
 - Bagging: Random Forest
 - Boosting: Adaboost
- Take-home messages

More Classification Models

Bayesian Classification: Why?

- Probabilistic learning: Calculate explicit probabilities for hypothesis, among the most practical approaches to certain types of learning problems
- Incremental: Each training example can incrementally increase/decrease the probability that a hypothesis is correct.
 Prior knowledge can be combined with observed data.
- Probabilistic prediction: Predict multiple hypotheses, weighted by their probabilities
- Standard: Even when Bayesian methods are computationally intractable, they can provide a standard of optimal decision making against which other methods can be measured

Bayesian Theorem

 Given training data D, posteriori probability of a hypothesis h, P(h|D) follows the Bayes theorem

$$P(h|D) = \frac{P(D|h)P(h)}{P(D)}$$
 posterior = $\frac{\text{prior} \times \text{likelihood}}{\text{evidence}}$

MAP (maximum a-posteriori) hypothesis

$$h_{MAP} \equiv \underset{h \in H}{\operatorname{argmax}} P(h|D) = \underset{h \in H}{\operatorname{argmax}} P(D|h)P(h).$$

 Practical difficulty: require initial knowledge of many probabilities, significant computational cost

Bayesian classification

- The classification problem may be formalized using a-posteriori probabilities:
- P(C|X) = probability that the sample tuple $X=\langle x_1,...,x_k \rangle$ is of class C.

```
e.g. P(buys_computer=Yes |Age≤30, Income=high, Student=no, Credit_rating=fair)e.g. P(class=N |outlook=sunny,windy=true,...)
```

 Idea: assign to sample X the class label C such that P(C|X) is maximal

Estimating a-posteriori probabilities

O Bayes theorem:

$$P(C|X) = P(X|C) \cdot P(C) / P(X)$$

- P(X) is constant for all classes
- P(C) = relative freq. of class C samples
- choose C such that P(C|X) is maximum =
 choose C such that P(X|C)·P(C) is maximum
- Problem: computing P(X|C) is unfeasible!

X is multidimensional (multiple attributes)!

Naïve Bayes Classifier

 A simplified assumption: attributes are conditionally independent:

$$P(C_j|X) \propto P(C_j) \prod_{i=1}^n P(x_i|C_j)$$

 Greatly reduces the computation cost, only count the class distribution.

Naïve Bayesian Classification

Naïve assumption: attribute independence

$$P(x_1,...,x_k | C) = P(x_1 | C) \cdot ... \cdot P(x_k | C)$$

- If i-th attribute is categorical:
 P(x_i|C) is estimated as the relative freq of samples having value x_i as i-th attribute in class C
- If i-th attribute is continuous:
 $P(x_i|C)$ is estimated thru a Gaussian density function
- Computationally easy in both cases

Play-tennis example: estimating $P(x_i|C)$

Outlook	Temperature	Humidity	Windy	Class
sunny	hot	high	false	n
sunny	hot	high	true	n
overcast	hot	high	false	р
rain	mild	high	false	р
rain	cool	normal	false	р
rain	cool	normal	true	n
overcast	cool	normal	true	р
sunny	mild	high	false	n
sunny	cool	normal	false	р
rain	mild	normal	false	р
sunny	mild	normal	true	р
overcast	mild	high	true	р
overcast	hot	normal	false	р
rain	mild	high	true	n

P(p) = 9/14
P(n) = 5/14

outlook	
P(sunny p) = 2/9	P(sunny n) = 3/5
P(overcast p) = 4/9	P(overcast n) = 0
P(rain p) = 3/9	P(rain n) = 2/5
temperature	
P(hot p) = 2/9	P(hot n) = 2/5
P(mild p) = 4/9	P(mild n) = 2/5
P(cool p) = 3/9	$P(\mathbf{cool} \mathbf{n}) = 1/5$
humidity	
P(high p) = 3/9	P(high n) = 4/5
P(normal p) = 6/9	P(normal n) = 1/5
windy	
P(true p) = 3/9	P(true n) = 3/5
$P_{\text{light}}(\text{false} p) = 6/9$	P(false n) = 2/5

Classificat

Play-tennis example: Classifying X

- An unseen sample X = <rain, hot, high, false>
- $P(X|p)\cdot P(p) =$ $P(rain|p)\cdot P(hot|p)\cdot P(high|p)\cdot P(false|p)\cdot P(p) =$ $3/9\cdot 2/9\cdot 3/9\cdot 6/9\cdot 9/14 = 0.010582$
- $P(X|n)\cdot P(n) = P(rain|n)\cdot P(hot|n)\cdot P(high|n)\cdot P(false|n)\cdot P(n) = 2/5\cdot2/5\cdot4/5\cdot2/5\cdot5/14 = 0.018286$
- Sample X is classified as class n (don't play tennis)

Association-Based Classification

- Several methods for association-based classification
 - Associative classification: (Liu et al'98)
 - It mines high support and high confidence rules in the form of "cond_set => y", where y is a class label
 - ARCS: Quantitative association mining and clustering of association rules (Lent et al'97)
 - It beats C4.5 in (mainly) scalability and also accuracy
 - CAEP (Classification by aggregating emerging patterns) (Dong et al'99)
 - Emerging patterns (EPs): the itemsets whose support increases significantly from one class to another
 - Mine EPs based on minimum support and growth rate

Eager learning vs lazy learning

- Decision tree is a representative eager learning approach which takes proactive steps to build up a hypothesis of the learning task.
- It has an explicit description of target function on the whole training set
- Let's take a look at a more "relaxed" supervised learning approach, i.e. lazy learning, which can be mostly manifested by the so-called instance-based models.

Instance-Based Classifiers

Set of Stored Cases

Atr1	 AtrN	Class
		A
		В
		В
		C
		A
		С
		В

Basic idea:

- Store the training records/cases
- Use training records to predict the class label of unseen cases, typically with majority rule applied.

imVar records

Unseen Case

Atr1	 AtrN

Got 2 votes of class B and 1 vote of class C, so classify the unseen case as class B.

k-Nearest Neighbor (kNN) Classification

ID	Food	Chat	Fast	Price	Bar	BigTip
1	great	yes	yes	normal	no	yes
2	great	no	yes	normal	no	yes
3	mediocre	yes	no	high	no	no
4	great	yes	yes	normal	yes	yes

Similarity metric: Number of matching attributes

Number of nearest neighbors: k=2

Classifying new data:

- New data (x, great, no, no, normal, no)
 - → most similar: ID=2 (1 mismatch, 4 match) → yes
 - → Second most similar example: ID=1 (2 mismatch, 3 match) → yes

So, classify it as "Yes".

- New data (y, mediocre, yes, no, normal, no)
 - \rightarrow Most similar: ID=3 (1 mismatch, 4 match) \rightarrow no
 - → Second most similar example: ID=1 (2 mismatch, 3 match) → yes

So, classify it as "Yes/No"?!

Classification by Neural Networks

Advantages

- prediction accuracy is generally high
- robust, works when training examples contain errors
- output may be discrete, real-valued, or a vector of several discrete or real-valued attributes
- fast evaluation of the learned target function

Criticisms

- long training time (model construction time)
- difficult to understand the learned function (weights)
- not easy to incorporate domain knowledge

Classification by Neural Networks

- Shallow models:
 - Perceptron
 - Multilayer Perceptron (MLP)
 - Support Vector Machine (SVM)...
- Deep models:
 - Convolutional Neural Network (CNN)
 - Recurrent Neural Network (RNN), e.g. Long Short-Term Memory (LSTM)
 - Graph Neural Network (GNN)
 - Transformer...

Classification Measures

Measuring Error

	Predicted class			
True Class	Yes	No		
Yes	TP: True Positive	FN: False Negative		
No	FP: False Positive	TN: True Negative		

```
Error rate = # of errors / # of instances = (FN+FP) / N
```

- Recall = # of found positives / # of positives
 - = TP / (TP+FN) = sensitivity = hit rate
- Precision = # of found positives / # of found
 - = TP / (TP+FP)
- Specificity = TN / (TN+FP)
- False alarm rate = FP / (FP+TN) = 1 Specificity

Classification Accuracy: Estimating Error Rates

- Partition: Training-and-testing
 - use two independent data sets, e.g., training set (2/3), test set(1/3)
 - used for data set with large number of samples
- Cross-validation
 - divide the data set into *k* subsamples
 - use *k-1* subsamples as training data and one sub-sample as test data --- *k*-fold cross-validation
 - for data set with moderate size

Classification Accuracy: Estimating Error Rates

k-fold cross-validation

Leave-one-out (n-fold cross validation)

Ensemble Methods

Collective wisdom

An illustrative example: Weather forecasting

Reality		••	••			•••	•••
Classifer1		X	•••	X			X
Classifer2	X			X			X
Classifer3		••	X		X	X	
Classifer4			X		X		
Classifer5		X	••			X	•••
Combine							•••

Why does it work?

- Suppose there are 25 base classifiers
- Each classifier has error rate $\varepsilon = 0.35$
- Assume independence among classifiers
- Probability that the ensemble classifier makes a wrong prediction:

$$\sum_{i=13}^{25} {25 \choose i} \varepsilon^{i} (1-\varepsilon)^{25-i} = 0.06$$

Building Ensemble Classifiers

• Basic idea:

Build different "experts", and let them vote

Advantages:

Improve predictive performance

Easy to implement

No too much parameter tuning

Disadvantages:

The combined classifier is not so transparent (black box; low interpretability)

Not a compact representation

• Two approaches: **Bagging** (Bootstrap Aggregating) and **Boosting**

Bagging Ensemble Methods: Random Forest (RF)

- A single decision tree does not perform well
- But, it is super fast
- What if we learn multiple trees?

We need to make sure they do not all just learn the same

What is a Random Forest?

Definition 1.1. A random forest is a classifier consisting of a collection of tree-structured classifiers $\{h(\mathbf{x}, \Theta_k), k = 1, ...\}$ where the $\{\Theta_k\}$ are independent identically distributed random vectors and each tree casts a unit vote for the most popular class at input \mathbf{x} .

- Suppose we have a single data set, so how do we obtain slightly different trees?
 - 1. Basic Bagging:
 - Take random subsets of data points from the training set to create N smaller data sets
 - Fit a decision tree on each subset
 - 2. Feature Bagging:
 - Fit N different decision trees by constraining each one to operate on a random subset of features

Basic bagging at training time (model construction)

Basic bagging at inference time (model usage)

Feature bagging at training time (model construction)

(4 features: Mass, Color, Texture, pH)

Feature bagging at inference time (model usage)

Figure 5.40. Random forests.

Random Forests

Random forests are popular. Leo Breiman's and Adele Cutler maintains a random forest website where the software is freely available, and of course it is included in every ML/STAT package

http://www.stat.berkeley.edu/~breiman/RandomForests/

Classification II

33

Boosting Ensemble Methods: Adaboost

Most boosting algorithms follow these steps:

- 1. Train a weak model on some training data
- 2. Compute the error of the model on each training example
- 3. Give higher importance to examples on which the model made mistakes
- 4. Re-train the model using "importance weighted" training examples
- 5. Go back to step 2

Classification II

34

Boosting (AdaBoost)

$$h(x) = a_1h_1(x) + a_2h_2(x) + ... + a_nh_n(x)$$

Stop when validation performance plateaus

a – weight of linear combination

u – weighting on data points

AdaBoost (Adaptive Boosting): Algorithm

- Given: Training data $(x_1, y_1), \ldots, (x_N, y_N)$ with $y_n \in \{-1, +1\}$, $\forall n \in \{-1, +1\}$
- Initialize weight of each example (x_n, y_n) : $D_1(n) = 1/N$, $\forall n$
- For round t = 1 : T
 - ullet Learn a weak $h_t(x) o \{-1,+1\}$ using training data weighted as per D_t
 - Compute the weighted fraction of errors of h_t on this training data

$$\epsilon_t = \sum_{n=1}^N D_t(n) \mathbb{1}[h_t(\mathbf{x}_n) \neq y_n]$$

- Set "importance" of h_t : $\alpha_t = \frac{1}{2} \log(\frac{1-\epsilon_t}{\epsilon_t})$ (gets larger as ϵ_t gets smaller)
- Update the weight of each example

$$D_{t+1}(n)$$
 \propto
$$\begin{cases} D_t(n) \times \exp(-\alpha_t) & \text{if } h_t(\mathbf{x}_n) = y_n \\ D_t(n) \times \exp(\alpha_t) & \text{if } h_t(\mathbf{x}_n) \neq y_n \end{cases}$$
 (correct prediction: decrease weight)
$$= D_t(n) \exp(-\alpha_t y_n h_t(\mathbf{x}_n))$$

- Normalize D_{t+1} so that it sums to 1: $D_{t+1}(n) = \frac{D_{t+1}(n)}{\sum_{m=1}^{N} D_{t+1}(m)}$
- Output the "boosted" final hypothesis $H(x) = \text{sign}(\sum_{t=1}^{T} \alpha_t h_t(x))$

AdaBoost: An Example

Consider binary classification with 10 training examples

Initial weight distribution D_1 is uniform (each point has equal weight = 1/10)

Each of our weak classifers will be an axis-parallel linear classifier

After Round 1

Look at their size

- Error rate of h_1 : $\epsilon_1 = 0.3$; weight of h_1 : $\alpha_1 = \frac{1}{2} \ln((1 \epsilon_1)/\epsilon_1) = 0.42$
- Each misclassified point upweighted (weight multiplied by $exp(\alpha_2)$)
- Each correctly classified point downweighted (weight multiplied by $\exp(-\alpha_2)$)

After Round 2

- Error rate of h_2 : $\epsilon_2 = 0.21$; weight of h_2 : $\alpha_2 = \frac{1}{2} \ln((1 \epsilon_2)/\epsilon_2) = 0.65$
- Each misclassified point upweighted (weight multiplied by $exp(\alpha_2)$)
- Each correctly classified point downweighted (weight multiplied by $\exp(-\alpha_2)$)

After Round 3

- Error rate of h_3 : $\epsilon_3 = 0.14$; weight of h_3 : $\alpha_3 = \frac{1}{2} \ln((1 \epsilon_3)/\epsilon_3) = 0.92$
- Suppose we decide to stop after round 3
- Our ensemble now consists of 3 classifiers: h_1, h_2, h_3

Finally, we have

- Final classifier is a weighted linear combination of all the classifiers
- Classifier h_i gets a weight α_i

Multiple weak, linear classifiers combined to give a strong, nonlinear classifier

A bit more ... XGBoost

Why use XGBoost?

- All of the advantages of gradient boosting (a kind of learning tree ensembles), plus more.
- Frequent Kaggle data competition champion.
- Utilizes CPU Parallel Processing by default.
- Two main reasons for use:
 - 1. Low Runtime
 - 2. High Model Performance

Remarks

- Competitor-LightGBM (Microsoft)
 - Very similar, not as mature and feature rich
 - Slightly faster than XGBoost much faster when it was published
- Hardly find an example where Random Forest outperforms XGBoost
- XGBoost Github: https://github.com/dmlc/xgboost
- XGBoost documentation: http://xgboost.readthedocs.io

Take-home Messages

- Classification is an extensively studied problem (mainly in statistics, machine learning & neural networks)
- Scalability is still an important issue for database applications: thus combining classification with database techniques should be a promising topic
- Research directions: classification of non-relational data, e.g., text, spatial, multimedia, etc..
- Ensemble methods are effective approaches to boost the performance of ML/DM system.
- One particular advantage is that they typically do not involve too many parameters and too involved tuning.

Acknowledgement

- Slides/Materials of
 - Yisong Yue's Presentation at University of Luebeck
 - P. Rai, IIT
 - Zhuowen Tu, UCLA
- Photos from Internet