第十四届国际天文与天体物理奥林匹克竞赛

观测(太阳物理)试题

哥伦比亚 波哥大(线上) 2021年11月16日

与太阳击掌

在你开始这次考试之前,请阅读一般说明.

太阳周期25正在升温! 它从2019年12月开始,将在2025年达到顶峰.新周期的开始意味着在大约2025年中期之前会有越来越多的太阳活动.这种活动的一个直接后果是更频繁地出现太阳耀斑,这是在太阳的光球和低层日冕附近观察到的强烈辐射爆发.太阳耀斑有时伴随着日冕物质抛射(CMEs),它将日冕等离子体抛射到行星际空间.

我们正生活在一个太阳天体物理学的黄金时代. 除了进入一个太阳活动频繁的时期, 我们还有新的太阳望远镜, 将使我们能够以前所未有的方式研究太阳. 这些望远镜之一是帕克太阳探测器 (ParkerSP), 这是历史上第一个飞入低层日冕的航天器. 帕克太阳探测器有一个有点偏心的轨道($\varepsilon \approx 0.88$), 在其最后的轨道近日点(2025年)将距离太阳700万千米(~ 10 太阳半径).

就在最近, 2021年5月28日, 太阳空间望远镜SOHO(位于距离地球 1.5×10^6 km处, 太阳-地球 L_1 拉格朗日点附近)通过机载LASCO冠状仪探测到一个C形CME. 产生CME的太阳爆发发生在22:19 UTC, 黄道角为55°(相对于日地线而言), 直接冲向ParkerSP所在的点. 图1显示了NASA制作的三张连续图像的序列, 突出了CME的演变, 从开始到到达ParkerSP的时刻.

假设所有航天器都正好在黄道面,这里的图像显示的是黄道面的俯视图.

图1: 在日光层密度图上显示的一连串图像,是2021年5月28日22:19 UTC时开始的CME的演变. 这些图像显示了太阳(中心)和地球(距离太阳1 AU $\approx 1.5 \times 10^8$ km)以及ParkerSP航天器的位置. 请注意,在该序列的最后一张图片中, CME前部撞击了ParkerSP. 地球-太阳-ParkerSP形成的角度是55°.

第一部分

1.1 使用JHelioviewer软件,通过选择太阳动力学天文台(全盘)和SOHO航天器冠状仪LASCO-C2(从2 到6个太阳半径成像)和LASCO-C3(从3.7到30个太阳半径成像)的图像,找到发生在2021年5月28日的CME,如图2中所示.在一个表格中指出你所使用的每张图像的日期和时间.

图2: 用JHelioviewer对2021年5月28日的太阳数据进行探索.

1.2 使用选定的图像来测量CME前端与太阳的距离,单位是km.

- 1.3 扩展(你在上一小问构建的)数据表,包括
 - 日期和时间(如1.1中所报告的).
 - CME前端与太阳的距离,以km为单位(如1.2中报告的)
 - 累积速度,以km/s为单位(例如,如果你在第4幅图像,从CME开始到第4幅图像的时间内的平均速度).
 - 每个时间间隔的速度,以km/s为单位(例如,如果你在第4幅图像上,CME在第3和第4幅图像之间的平均速度).

注意:两个速度都是相对于太阳计算的.

不要忘了在表格的每一栏中都写上相应的栏目.

第二部分

2.1 用你表中的测量和计算数据制作距离-时间和速度-时间图(累积速度和每个时间间隔的速度).

第三部分

3.1 考虑到CME在大于30个太阳半径的距离内以恒定的速度移动,请估计CME锋面撞击ParkerSP时的速度(以km/s为单位),以及从开始到撞击的时间(以小时为单位).

第四部分

从以下陈述中, 标出哪些是真实的, 哪些是错误的.

- **4.1** 如果我们不断减少连续图像之间的时间间隔, CME演变的测量和计算出的物理参数精度将始终保持增加.
- **4.2** 对CME演化的更精确的分析和测量应该考虑到太阳的差异性旋转,因此计算出来的速度会受到影响.
- 4.3 在创建拼接图时,图像之间的任何软件(数字)错位将直接影响到计算的精度.

- **4.4** 为了构建图1中日光层密度图所显示的模型而做出的不同假设,可能会影响对太阳-ParkerSP距离的估计.
- **4.5** CME前端与2019年鲍里索夫彗星留下的残余尘埃相互作用,使图像变宽和扩散.这降低了图像的对比度,大大增加了确定CME前端及其传播的不确定性.

第五部分

5.1 CME前端携带大量的质子和 α 粒子. 计算ParkerSP上的太阳风电子、 α 粒子和质子调查(SWEAP) 仪器测量的单个质子和单个 α 粒子的能量(以eV计). 只考虑CME前端传播所产生的粒子的机械能, 忽略所有其他形式的能量.

工具:

JHelioviewer软件(https://www.jhelioviewer.org/download.html)可以用来探索来自几个太阳望远镜的太阳数据,如图2所示. 使用图形界面,你可以选择一个观测数据(观测日期),并通过添加图层(AddLayer)上传多个太阳图像. 使用该选项,你可以检查一连串的图像来研究一个爆发事件的演变.通过移动光标,你可以得到你所在的坐标信息(以角秒为单位),相对于太阳的中心(x: 0" y: 0").