Lecture 22: Chi-Square Tests for Goodness-of-Fit

Chapter 6.3

1/18

Question for Today

Say we had n=100 people picked as jurors, we expect the breakdown to be:

Race	White	Black	Hispanic	Other	Total
Registered Voters		7%	12%	9%	100%
Representation	72	7	12	9	n = 100

Question for Today

Say we observe the following. Is there a bias? i.e. a non-random mechanism?

Race	White	Black	Hispanic	Other	Total
Registered Voters	72%	7%	12%	9%	100%
Representation	75	6	11	8	n = 100

3/18

Chi-Square Tests

Chi-square χ^2 tests allow us to compare

- Observed counts
- ► Expected counts

i.e. What is the "goodness" of the fit of the observed counts to the expected counts?

The Data

Let's use n=275 people. Assuming the same proportions as above, we compute the expected counts. Ex: $198=275\times0.72$.

Race	White	Black	Hispanic	Other	Total
Expected Counts	198	19.25	33	24.75	275

5/18

The Data

Let's use n=275 people. Assuming the same proportions as above, we compute the expected counts. Ex: $198=275\times0.72$. Now say we observe the following counts:

Race	White	Black	Hispanic	Other	Total
Expected Counts	198	19.25	33	24.75	275
Observed Counts	205	26	25	19	275

Hypothesis Test in General

 H_0 : The data are consistent with the specified distribution. H_{Δ} : The data are not consistent with the specified distribution. VS

 H_0 can also be stated: the data are a random sample from the distribution and any differences of observed vs expected reflect natural sampling variation.

7/18

Hypothesis Test in Our Case

 H_0 : the jurors are randomly sampled i.e. there is no racial bias VS H_A : the jurors are not randomly sampled i.e. there is racial bias

Null Distributions

To compute p-values we compare the computed test statistic to a null distribution: the distribution of the test statistic under H_0 .

- 1. means/proportions:
 - ▶ test statistic: z-score of x̄/p̄
 - ▶ null distribution: normal distribution
- 2. t-test:
 - test statistic: t-statistic
 - ▶ null distribution: t-distribution with df = n 1
- 3. AVOVA:
 - test statistic: F-statistic
 - ▶ null distribution: F-distribution with $df_1 = k 1$ and $df_2 = n k$
- 4 Goodness-of-fit:
 - test statistic: χ²-statistic
 - ▶ null distribution: χ^2 distribution with df = k 1

9/1

Deviations

Previously, many test statistics had the following form:

$$z = \frac{\text{point estimate} - \text{null value}}{\text{SE of point estimate}}$$

For goodness-of-fit, it's similar. For each of the k groups compute

$$Z = \frac{\text{observed} - \text{expected}}{\sqrt{\text{expected}}}$$

Note when:

- ▶ observed = expected ⇒ Z = 0
- ▶ observed > expected ⇒ Z > 0
- ▶ observed < expected \Rightarrow Z < 0

The Z's measure deviations.

Deviations

Now treat +'ve and -'ve differences as the same by squaring Z:

$$Z^{2} = \left(\frac{\text{observed} - \text{expected}}{\sqrt{\text{expected}}}\right)^{2}$$
$$= \frac{(\text{observed} - \text{expected})^{2}}{\text{expected}}$$

Why square it and not absolute value it? It's easier to do calculus on x^2 than |x|.

11 / 18

Chi-Square Test Statistic

Finally sum all values of \mathbb{Z}^2 . This is the chi-square test statistic for one-way tables.

$$\chi^2 \ = \ \sum_{i=1}^k Z_i^2 = \sum_{i=1}^k \frac{(\mathsf{observed}_i - \mathsf{expected}_i)^2}{\mathsf{expected}_i}$$

Chi-Square Test Statistic

In the case of the jury data, we have 4 groups: white, black, hispanic, and other:

$$\begin{array}{rcl} \chi^2 & = & Z_w^2 + Z_b^2 + Z_h^2 + Z_o^2 \\ & = & \frac{(205 - 198)^2}{198} + \dots + \dots + \frac{(19 - 24.75)^2}{24.75} \\ & = & 5.89 \end{array}$$

13 / 18

p-values

We compare the test statistic to a χ^2 distribution with df=k-1 degrees of freedom.

Note: not df = n - 1 like with t-test.

14/18

p-values

The p-value is the area to the right of the test statistic. Use p.412:

Figure B.2: Areas in the chi-square table always refer to the right tail.

Upper t									
df	2	2.41	3.22	4.61	5.99	7.82	9.21	10.60 12.84	13.82
	3	3.66	4.64	6.25	7.81	9.84	11.34	12.84	16.27
	4	4.88	5.99	7.78	9.49	11.67	13.28	14.86	18.47
	5	6.06	7.29	9.24	11.07	13.39	15.09	16.75	20.52

In our case, df = k - 1 = 3, and $\chi^2 = 5.89$, which is in between (4.64, 6.25), so p-value is in between (0.1, 0.2). Not overwhelming evidence against H_0 .

Hypothetical Scenarios

Say we have two hypothetical scenarios of observed counts:

Race	White	Black	Hispanic	Other	Total
Expected Counts	198	19.25	33	24.75	275
Observed Counts					275

► For all 4 groups, say observed = expected, then

$$\chi^2 = 0 + 0 + 0 + 0 = 0$$

hence p-value = 1.

 $\,\blacktriangleright\,$ Say we observed 275 others and 0 for the rest, then

$$\chi^2 = 2786.11 + 84.46 + 189.57 + 12588.11 = 15648.25$$

hence p-value = 0.

Assumptions for Chi-Square Test

- 1. Independence: Each case is independent of the other
- Sample size: Similarly like with proportions, we need at least 5 cases in each scenario (each cell in the table)
- 3. Degrees of freedom: We need at least df = 2, i.e. $k \ge 3$

17 / 18

Next Time

We look at chi-square tests for two-way tables to test for independence. i.e. are two variables independent from each other?