Lecture 10

FUNCTIONS OF ONE RANDOM VARIABLE

Suppose X is a $\tau \cdot v$, and g(x) is a function of the real variable x.

Y = g(x) is also a random variable.

To formally define Y, recall X was a mapping from S (sample space) to real line, i.e. X(s) for $S \in S$. Hence, for an outcome $S \in S$, the value Y(s) = g(X(s)) is assigned to the random variable Y.

The distribution $F_{\gamma}(y)$ of the $\gamma. v. \gamma$ is then the probability of the event $\{\gamma \leq y \}$

$$\left\{Y=Y\right\} = \left\{S: g(X(s)) \leq Y\right\}$$

$$F_{\gamma}(y) = P(\gamma \leq y)$$

$$= P(g(x) \leq y)$$

y

11111111) sc

These are the values of ∞ for which $g(\infty) \leq \gamma$.

For a fixed y, define this set as: Ry = {x: g(x) < y}

For
$$y > 0$$
: $F_Y(y) = P(x \in Ry)$
= $P(-\sqrt{y} \times \leq \sqrt{y}) = F_X(\sqrt{y}) - F_X(-\sqrt{y})$

For
$$y < 0$$
: $F_Y(y) = P(X \in R_y)$
= $P(X \in \{\overline{\Phi}_f^2\}) = 0$

$$\Rightarrow F_{\gamma}(y) = \begin{cases} F_{\chi}(Jy) & \text{if } y > 0 \\ -F_{\chi}(-Jy) & \text{if } y < 0 \end{cases}$$

Eg 4
$$g(x) = 1$$

$$g(x) = ns$$
, if $(n-1)s < x \le ns$

The random variable Y takes the value y = ns when $(n-1)s < x \le ns$

PMF
of
$$P_Y(y_n) = P_Y(ns) = P(n-y \times x \le ns)$$

 $= F_X(ns) - F_X(n-y)$

$$\frac{\xi_g 5}{g(x)} = \begin{cases} x+c & x>0 \\ x-c & x<0 \end{cases}$$

 $F_{Y}(y) = F_{X}(y-c)$

>> Case 2: -C ≤ y ≤ C

$$F_{Y}(y) = F_{X}(0)$$

> Case3: y <-C

$$F_{Y}(y) = F_{X}(y+c)$$

Eg6. Suppose X is a discrete r.v.

taking values xk, with probability Pk.

Then, the $\gamma.\nu.$ Y = g(x) is also a discrete $\gamma.\nu.$ taking values $y_k = g(x_k)$

* If $y_k = g(x)$ for only one $x = x_k$, then $P(Y=y_k) = P(X=x_k) = P_k$

If, however $y_k = g(x)$ for $x = x_k$ and $x = x_k$,

 $P(Y=Y_k) = P(X=x_k) + P(X=x_e) = P_k + P_k$

Fundamental Theorem: To find fy(y), for a

Specific value of y, we solve the Equation y = g(x).

Denote the real roots by oci, oc2,, i.e.

$$y = g(x_1) = g(x_2) = \dots = g(x_n) = \dots$$

Then

$$f_{\gamma}(y) = \frac{f_{\chi}(x_1) + f_{\chi}(x_2) + \dots + f_{\chi}(x_n)}{|g'(x_1)|} + \frac{f_{\chi}(x_2) + \dots + f_{\chi}(x_n)}{|g'(x_n)|}$$

where g'(sc) is the derivative of g(x).

Proof: Pecall,
$$f_{\gamma}(y) dy = P(y < \gamma \leq y + dy)$$

$$= P(x \in \{x: y \in g(x)\})$$

$$\leq y + dy^{3}$$

ie we need to find the set of values of or such that $y < g(\infty) \le y + dy$ and the probability that x > 0 is in this set.

$$Ex \quad Y = ax + b \quad g'(x) = a$$

$$y = ax + b \quad has \quad a \quad single solution \quad x_0 = (y - b)$$

$$\Rightarrow \quad f_Y(y) = \frac{f_X(y - b)}{g'(x_0)} = \frac{1}{|a|} \cdot f_X(\frac{y - b}{a})$$

$$= \frac{g'(x)}{g'(x_0)} = \frac{1}{|a|} \cdot f_X(\frac{y - b}{a})$$

$$= \frac{g'(x)}{g'(x_0)} = \frac{1}{|a|} \cdot f_X(\frac{y - b}{a})$$

$$= \frac{g'(x)}{g'(x_0)} = \frac{1}{|a|} \cdot f_X(\frac{y - b}{a})$$

$$= \frac{1}{|a|} \cdot$$

Eg
$$Y = e^{X}$$
 $g'(x) = e^{X}$

If $y < 0 \Rightarrow y = e^{X}$ has no Real root $\Rightarrow f_{y}(y) = 0$

If $y > 0 \Rightarrow x = ln(y)$
 $\Rightarrow f_{y}(y) = \int_{X} (ln(y)) y > 0$
 $y = \int_{Y} (ln(y)) y > 0$

If $|y| > a$, then $y = a \sin(x + 0)$ has No solutions

 $|x| \Rightarrow f_{y}(y) = 0$

If $|y| < a \Rightarrow x_{n} = \sin^{-1}(\frac{y}{a}) - \theta$

infinite $\int_{Y} (ln(y)) = \int_{Y} (ln($