바이오통계 과제

-제 4장 Logit and loglinear models-

2019314199

통계학과

김동환

목차

1. binary response
I. 데이터 소개
Ⅱ. 분석
Ⅲ. 코드
2. multinomial response (ordinal)

- I. 데이터 소개
- Ⅱ. 분석
- Ⅲ. 코드
- 3. multinomial response (norminal)
 - I. 데이터 소개
 - Ⅱ. 분석
 - Ⅲ. 코드
- 4. Log-linear model
 - I. 데이터 소개
 - Ⅱ. 분석
 - Ⅲ. 코드

1. Logit model – binary response

I. 데이터 소개

이 연구의 목표는 현재 피임 사용 여부가 현재 자녀를 원하고 있는 정도와 교육수준에 따라 달라지는지 알아보는데 있다. 해당 연구에서는 교육수준이 Lower, Upper인 여성을 대상으로 현재 아이를 원하는지 여부를 바탕으로 그들의 피임사용 여부를 조사한 자료이다.

교육수준과 아이를 현재 원하는가를 기준으로 피임여부 조사 표

Education	Desires More	Contrace	Contraceptive Use	
	Children?	Yes	No	
Lower	Yes	53	7	60
	No	38	9	47
Upper	Yes	212	52	264
_	No	50	38	88
Total		353	106	459

출처: Current Use of Contraception Among Married Women by Age, Education and Desire for More Children Fiji Fertility Survey, 1975

Ⅱ. 분석

1)Goodness of fit

H₀: 자료가 모형에 적합하다.

 H_1 : not H_0

Deviance value = 0.7974, P-value = 0.3719

Pearson value = 0.8167, P-value = 0.3661

Cannot reject H_0

Testing Global Null Hypothesis : BETA = 0

 $H_0: \beta_1 = \beta_2 = 0$

 $H_1: not H_0$

P-value < 0.001 from LRT, Score, Wald test

Cannot reject H_0

LRT 검정 통계량 LR=-2[$\ln L(\hat{eta}_0,eta_1=0)$ - $\ln L(\hat{eta}_0,\hat{eta}_1)$] $\sim \chi_1^2$

Walds 검정 통계량 W = $\frac{(\hat{\beta}_1 - (\beta_1 = 0))^2}{\operatorname{var}(\hat{\beta}_1)} \sim \chi_1^2$

score 검정 통계량 $s(\theta) = \frac{d \log L(\theta)}{d \theta} \sim \chi^2$

Type 3 Analysis of Effects 결과

education

Chi-sqaure: 8.6292, P-value: 0.0033

desires more children

Chi-square: 18.3822, P-value < 0.0001

educatoin과 desires는 모두 피임율에 유의한 영향을 미친다.

2) Fitted logistic regression model

$$ln\frac{\pi(x)}{1-\pi(x)} = 1.3120 - 0.4556 \ education + 0.5147 desires$$

Standard Error:

0.1515

0.1551

0.1201

L:1

N:1

U : -1

Y:-1

2-1) 교육 수준 Lower vs Upper

desires more children 이 고정되어있을 때:

Education = L, Desires =N, $\hat{\beta}_1(L) = -0.4556$

Education = U, Desires =N, $\hat{\beta}_1(U) = 0.4556$

Odds ratio:

Education L vs U

log odds ratio $\hat{\beta}_1 - (-\hat{\beta}_1) = 2\hat{\beta}_1 = 2 \times (-0.4556) = -0.9112$

odds ratio = $e^{2\hat{\beta}_1}$ =0.402

교육수준이 Lower 일 때, 피임을 할 odds는 Upper일 때의 0.402배이다.

2-2) Desires more children? No vs Yes

Education 이 고정되어있을 때:

Education = L, Desires = N, $\hat{\beta}_2(N) = 0.5147$

Education = L, Desires = Y, $\hat{\beta}_2(Y) = -0.5147$

Odds ratio:

Desires N vs Y

log odds ratio $\hat{\beta}_2 - (-\hat{\beta}_2) = 2\hat{\beta}_2 = 2 \times 0.5147 = 1.0294$

odds ration = $e^{2\hat{\beta}_2}$ =2.800

아이를 원하지 않는 여성이 피임을 할 odds는 아이를 원하는 여성에 2.8배이다.

3) 결과

교육수준이 높은 경우 피임을 하는 비율이 더 높고,

아이를 원하지 않는 경우 피임을 하는 비율이 더 높다.

Ⅲ. 코드

SAS

```
□ data con;
input edu $ des $ outcome $ count @@;
cards;
I y yes 53 I y no 7
I n yes 38 I n no 9
u y yes 212 u y no 52
u n yes 50 u n no 38
;
run;
```

□ proc logistic data = con; freq count; class edu des; model outcome = edu des / scale = none aggregate; run;

Type 3 Analysis of Effects						
Effect	DF	Wald Chi-Square Pr > ChiSq				
edu	1	8,6292	0.0033			
des	1	18.3822	<.0001			

Testing Global Null Hypothesis: BETA=0							
Test Chi-Square DF Pr > ChiSq							
Likelihood Ratio	23,8286	2	<.0001				
Score	23.8167	2	<.0001				
Wald	22.5753	2	<.0001				

Deviance and Pearson Goodness-of-Fit Statistics						
Criterion Value DF Value/DF Pr > ChiSo						
Deviance	0.7974	1	0.7974	0.3719		
Pearson	0.8167	1	0.8167	0.3661		

Analysis of Maximum Likelihood Estimates								
Parameter	DF Estimate Standard Chi-Square Pr > ChiS					Pr > ChiSq		
Intercept		1	-1.3120	0.1514	75.0612	<.0001		
edu	T.	1	-0.4556	0.1551	8.6292	0.0033		
des	n	1	0.5147	0.1201	18.3822	<.0001		

R

```
1 sink('con.txt')
2 cat('edu des outcome count
                                                                          > summary(fit1)
 3 1 y yes 53
4 1 y no 7
                                                                          glm(formula = outcomey ~ edul + desy, family = "binomial", data = con1)
 5 1 n yes 38
                                                                          Deviance Residuals:
 6 1 n no 9
7 u y yes 212
                                                                          Min 1Q Median 3Q Max
-2.1815 0.4409 0.6726 0.6726 1.0362
 8 u y no 52
 9 un yes 50
                                                                           Coefficients:
10 u n no 38
                                                                          Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.3120 0.1514 8.664 < 2e-16
edul 0.4556 0.1551 2.938 0.00331
                                                                                                       0.1514 8.664 < 2e-16 ***
0.1551 2.938 0.00331 **
0.1201 -4.287 1.81e-05 ***
11 ')
12 sink()
13 con<-read.table('con.txt',sep=' ',header=T)</pre>
                                                                           desy
14 unlink('con.txt')
                                                                          Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
15
16 con1 <- con[rep(row.names(con),con$count),-4]</pre>
                                                                           (Dispersion parameter for binomial family taken to be 1)
17 xtabs(~edu + des + outcome, data=con1)
18
                                                                          Null deviance: 496.09 on 458 degrees of freedom
Residual deviance: 472.26 on 456 degrees of freedom
19 con1$outcomey<-ifelse(con1$outcome=='yes',1,0)</pre>
20 con1$edu1<-ifelse(con1$edu=='l',1,-1)
21 con1$desy<-ifelse(con1$des=='n',1,-1)
                                                                          AIC: 478.26
22 fit1<-glm(outcomey~edul+desy,data=con1,family='binomial') Number of Fisher Scoring iterations: 4
23 summary(fit1)
```

2. Multinomial response (ordinal)

I. 데이터 소개

<u>이 연구의 목적은 어린이들의 성별과 나이가 티비를 자주 보는 정도에 영향을 미치는지 알아보는 것이다.</u> 다음 자료는 성별과 나이그룹 x(7세-9세), y(10세-12세)에 따라 티비를 얼마나 자주보는지 s (seldom or never), e (every week), a (almost daily)로 구분하여 조사하였다.

성별, 나이 그룹에 따른 티비를 자주 보는 정도

성 별	나이그룹	티비를	티비를 얼마나 보는가		Total
	x(7-9), y(10-12)	S	е	а	
 남	Х	88	28	5	121
남	У	78	20	4	102
여	Χ	87	14	5	106
여	У	93	17	3	113
Total					442

출처: Andersen, D. (1995): School children's leisure hours. (In Danish). Report no. 95:2.

Copenhagen: Danish National Institute of Social Research.

Ⅱ. 분석

1) Score Test for the Proportional Odds Assumption

 H_0 : Can assume Proportional Odds model.

$$H_1$$
: Not H_0 .

검정 통계량 :
$$s(\theta) = \frac{d \log L(\theta)}{d\theta} \sim \chi^2$$

$$\chi^2 = 0.1153, P-value = 0.9440$$

Cannot reject H_0

2)Goodness of fit

Deviance and Pearson Goodness-of-Fit Statistics

 H_0 : 자료가 모형에 적합하다.

 H_1 : not H_0

Deviance value = 3.2933, P-value = 0.5100

Pearson value = 3.3130, P-value = 0.5069

Cannot reject H_0

3) Fitted model

$$\hat{L}_{j|i}(x) = \ln \frac{F_j(x)}{1 - F_j(x)} = \hat{\alpha}_j - \hat{\beta}_1 gender + \hat{\beta}_2 age$$

$$= \hat{\alpha}_j - (0.5212) gender + (-1.1273) age$$

standard error:

0.2522 0.2521

m: -1

estimated cutpoint parameters: $\hat{\alpha}_{1=0.000162}$, $\hat{\alpha}_{2=0.7236}$

LRT 검정 통계량 LR=-2[$\ln L(\hat{\beta}_0,\beta_1=0)$ - $\ln L(\hat{\beta}_0,\hat{\beta}_1)$] $\sim \chi_1^2$

Walds 검정 통계량 W = $\frac{(\hat{\beta}_1 - (\beta_1 = 0))^2}{\text{var}(\hat{\beta}_1)} \sim \chi_1^2$

score 검정 통계량 $s(\theta) = \frac{d \log L(\theta)}{d \theta} \sim \chi^2$

Testing Global Null Hypothesis: BETA = 0

 $H_0: \beta_1 = \beta_2 = 0$

 H_1 : not H_0

P-value < 0.001 from LRT, Score, Wald test

reject H_0

Type 3 Analysis of Effects 결과

gender

Chi-sqaure: 4.2711, P-value: 0.0388

desires more children

Chi-square: 19.9903, P-value: 0.0001

성별과 나이그룹은 모두 티비시청률에 유의한 영향을 미친다.

3-1) 성별 female vs male

age_group이 일정할 때:

Gender = f, age_group = A,
$$\hat{\beta}_1(f) = 0.5212$$

Gender = m, age_group = A,
$$\hat{\beta}_1(m)$$
 = -0.5212

$$\hat{\beta}_1 - (-\hat{\beta}_1) = 2\hat{\beta}_1 = 2 \times 0.5212 = 1.0424$$

age_group 이 고정되어있을 때, 여성이 티비를 적게보는 범주에 속할 오즈가 남성의 $e^{2\hat{\beta}_1}$ =2.836배이다.

3-2) 나이그룹 x(7-9),y(10-12)

성별이 일정할 때:

age_group = x, Gender = m,
$$\hat{\beta}_2(x) = -1.1273$$

age_group = y, Gender = m,
$$\hat{\beta}_2(y)$$
 = 1.1273

$$\hat{\beta}_2 - (-\hat{\beta}_2) = 2\hat{\beta}_2 = 2 \times (-1.1273) = -2.2546$$

gender 가 고정되어있을 때, 그룹 x가 티비를 적게보는 범주에 속할 오즈가 그룹 y의 $e^{2\hat{\beta}_1}$ =0.105배이다.

즉, 나이가 고정되어있으면 남성이 티비를 더 많이 보는 경향이 있고

성별이 고정되어있으면 나이그룹x가 티비를 더 많이 보는 경향이 있다.

4) Estimated cumulative probability

gender	age	pro	count	LEVLEL	р	$F_{j}\left(x\right)$
m	Х	S	2	S	0.16134	P(Y=s) = 0.16134
m	V	6	2	0	0.28396	P(Y=e) = 0.12262
m	Х	S	Z	е	0.20390	p(Y=a) = 0.71604
m	У	S	19	S	0.64708	P(Y=s) = 0.64708
		_	10		0.70070	P(Y=e) = 0.14370
m	У	S	19	е	0.79078	P(Y=a) = 0.20922
f	Χ	S	8	S	0.35299	P(Y=s) = 0.35299
			•		0.50007	P(Y=e) = 0.17635
Ť	X	S	8	е	0.52934	P(Y=a) = 0.47066
f	V	S	11	S	0.83871	P(Y=s) = 0.83871
	,			_		P(Y=e) = 0.07596
f	У	S	11	е	0.91467	P(Y=a) = 0.08533

거의 안봄(s), 주마다 봄 (e), 매일 봄 (a)

gender가 고정되어있으면, x가 y보다 P(Y=a) 가 높고

age가 고정되어있으면, 남성이 여성 보다 P(Y=a) 가 높다.

Ⅲ. 코드

SAS

data television:

input gender \$ age \$ pro \$ count @@; cards:

m x s 2 m x e 4 m x a 16 m y s 19 m y e 3 m y a 6 f x s 8 f x e 2 f x a 9 fys 11 fye 2 fya 1

proc logistic order = data data=television;

freq count

class gender age;

model pro = gender age /scale=none aggregate; output out = prob pred=p;

proc print data=prob(obs=20);

run)

Testing Global Null Hypothesis: BETA=0							
Test Chi-Square DF Pr > ChiSq							
Likelihood Ratio	25.8587	2	<.0001				
Score	24,3235	2	<.0001				
Wald	20,3663	2	<.0001				

Analysis of Maximum Likelihood Estimates								
Parameter		DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq		
Intercept	s	1	0.000162	0.2556	0.0000	0.9995		
Intercept	е	1	0.7236	0.2680	7.2876	0.0069		
gender	f	1	0.5212	0.2522	4,2711	0.0388		
age	×	1	-1.1273	0.2521	19,9903	<.0001		

Odds Ratio Estimates						
Effect Point Estimate Confidence Limits						
gender f vs m	2.836	1.055	7.622			
age x vs y	0.105	0.039	0.282			

Score Test for the Proportional Odds Assumption						
Chi-Square DF Pr > ChiSo						
0.1153 2 0.9440						

Deviance and Pearson Goodness-of-Fit Statistics					
Criterion Value DF Value/DF Pr > ChiSq					
Deviance	3.2933	4	0.8233	0.5100	
Pearson	3.3130	4	0.8283	0.5069	

Type 3 Analysis of Effects							
Effect	Wald DF Chi-Square Pr > ChiSo						
gender	1	4,2711	0.0388				
age	1	19.9903	<.0001				

OBS	gender	age	pro	count	_LEVEL_	р
1	m	×	s	2	s	0.16134
2	m	×	s	2	е	0.28396
3	m	×	е	4	s	0.16134
4	m	×	е	4	е	0.28396
5	m	×	а	16	s	0.16134
6	m	×	а	16	е	0.28396
7	m	У	s	19	s	0.64708
8	m	У	s	19	е	0.79078
9	m	У	е	3	s	0.64708
10	m	У	е	3	е	0.79078
11	m	У	а	6	s	0.64708
12	m	У	а	6	е	0.79078
13	f	×	s	8	s	0.35299
14	f	×	s	8	е	0.52934
15	f	×	е	2	s	0.35299
16	f	×	е	2	е	0.52934
17	f	×	а	9	s	0.35299
18	f	×	а	9	е	0.52934
19	f	У	s	11	s	0.83871
20	f	У	s	11	е	0.91467

```
1 sink('pro.txt')
 2 cat('gender age pro count
3 1 -1 s 2
 4 1 -1 e 4
 5 1 -1 a 16
 6 1 1 s 19
 7 1 1 e 3
 8 11 a 6
 9 -1 -1 5 8
10 -1 -1 e 2
11 -1 -1 a 9
12 -1 1 s 11
13 -1 1 e 2
14 -1 1 a 1
15 ')
16 sink()
17 pro <-read.table('pro.txt',sep=' ',header=T)
18 unlink('pro.txt')|</pre>
19 pro$ord_pro<-ordered(pro$pro,levels=c('s','e','a'))</pre>
20 fit1<-polr(ord_pro~gender+age,data=pro,weight=count)
21 summary(fit1)
> summary(fit1)
Re-fitting to get Hessian
call:
polr(formula = ord_pro ~ gender + age, data = pro, weights = count)
Coefficients:
         Value Std. Error t value
gender 0.5212 0.2510 2.077
age -1.1273
                  0.2499 -4.510
Intercepts:
   Value Std. Error t value
s|e 0.0002 0.2573
                       0.0006
e|a 0.7236 0.2708
                        2.6719
Residual Deviance: 137.9976
AIC: 145.9976
```

3. Multinomial response (norminal)

I. 데이터 소개

다음은 군인의 계급과 보직에 따라 사망자 수를 조사한 자료이며, <u>군인의 계급과 보직이 사망원인과 어떤 관련이 있는지 알아보고자 한다.</u> 사망원인은 질병으로 인한 사망(d), 부상으로 인한 사망(j), 그 외 (s)로 분류하였고, 군인의 계급은 이등병인지의 여부 (이등병 : p , 이등병보다 높음 : h), 보직은 보병(i), 보병아님(ni)로 구분하였다.

군인 사망원인 자료

이등병인가?	보병인가?	cor	consolidation 후		
Private?	Infantry?	Disease	Injury	Other	Total
р	i	285	60	8	353
р	ni	15	50	2	67
h	i	13	18	1	32
h	ni	2	4	0	6
Total					458

출처: C. Lee (1999), "Selective Assignment of Military Positions in the Union Army: Implications for the Impact of the Civil War", Social Science History, Vol. 23, #1, pp 67-97.

Ⅱ. 분석

1) Goodness of fit

Maximum Likelihood Analysis of Variance

 H_0 : 자료가 모형에 적합하다.

 H_1 : not H_0

Likelihood Ratio value = 4.60, P-value=0.1005

Cannot reject H_0

Test for Beta = 0 by Maximum Likelihood Analysis of Variance

 H_0 : 베타의 계수가 0이다.

 H_1 : not H_0

 $\beta_{private}, Chi-square=17.38, P-value=0.0002$

 $\beta_{infantry}$, Chi - square = 69.63, P - value < 0.0001

reject H_0

private과 infantry의 계수가 모두 0이 아니고 유의하다.

2) Fitted model

(disease)

$$ln\frac{\pi_d}{\pi_s} = 2.4746 + 0.3863 \ private + 0.6946 infantry$$

Standard Error :

0.6199

0.5424

0.4113

p:1

i:1

h : -1

ni: -1

(injury)

$$ln\frac{\pi_j}{\pi_s} = 3.0391 - 0.4064 \ private - 0.6047 \ infantry$$

Standard Error:

0.6081

0.5412

0.4024

p:1

i : 1

h : -1

ni:-1

범주 d와 j의 비교는 위 두 식의 차로 구할 수 있다.

$$ln\frac{\pi_d}{\pi_i} = -0.82931 + 0.7927 \ private + 1.2993 \ infantry$$

2-1) 첫 번째 식에서 그 외 원인으로 사망 vs 질병으로 사망의 추정오즈

계급 Private vs Higher, 보직이 동일할 때:

$$\hat{\beta}_1 - (-\hat{\beta}_1) = 2\hat{\beta}_1 = 2 \times 0.3863 = 0.7726$$

이등병은 다른 계급보다 $e^{2\hat{\beta}_1}=2.165$ 배가 됨으로, 이등병은 다른 계급보다 질병으로 사망비율이 높다.

보직 Infantry vs Non-Infantry, 계급이 동일할 때:

$$\hat{\beta}_2 - (-\hat{\beta}_2) = 2\hat{\beta}_2 = 2 \times 0.6946 = 1.3892$$

보병은 다른 보직보다 $e^{2\hat{\beta}_2}$ =4.01배가 됨으로, 보병은 다른 보직보다 질병으로 사망비율이 높다.

2-2) 두 번째 식에서 그 외 원인으로 사망 vs 부상으로 사망의 추정오즈

계급 Private vs Higher, 보직이 동일할 때:

$$\hat{\beta}_1 - (-\hat{\beta}_1) = 2\hat{\beta}_1 = 2 \times (-0.4064) = -0.8128$$

이등병은 다른 계급보다 $e^{2\hat{\beta}_1}=0.443$ 배가 됨으로, 이등병은 다른 계급보다 부상으로 사망비율이 낮다.

보직 Infantry vs Non-Infantry, 계급이 동일할 때:

$$\hat{\beta}_2 - (-\hat{\beta}_2) = 2\hat{\beta}_2 = 2 \times (-0.6047) = -1.2094$$

보병은 다른 보직보다 $e^{2\hat{\beta}_2}=0.298$ 배가 됨으로, 보병은 다른 보직보다 부상으로 사망비율이 낮다.

3) 각 수준별 반응 확률에 대한 추정 값

$$ln\frac{\pi_d}{\pi_s} = 2.4746 + 0.3863 x_{1l} + 0.6946 x_{2l}$$
$$ln\frac{\pi_j}{\pi_s} = 3.30391 - 0.4064 x_{1l} - 0.6047 x_{2l}$$

$$\pi_s = 3.30371 \quad 0.4004 \, \chi_{1l} \quad 0.00$$

3-1) Private = p , Infantry = i 일 때, $x_{1l} = 1, x_{2l} = 1$

$$disease: \pi_{11} = \frac{\exp(2.4746 + 0.3863 + 0.6946)}{1 + \exp(2.4746 + 0.3863 + 0.6946) + \exp(3.0391 - 0.4064 - 0.6047)} = 0.8074$$

$$injury: \pi_{12} = \frac{\exp{(3.0391 - 0.4064 - 0.6047)}}{1 + \exp{(2.4746 + 0.3863 + 0.6946)} + \exp{(3.0391 - 0.4064 - 0.6047)}} = 0.1742$$

$$other: \ \pi_{13} = \frac{1}{1 + \exp(2.4746 + 0.3863 + 0.6946) + \exp(3.0391 - 0.4064 - 0.6047)} = 0.02293$$

3-2) Private = p , Infantry = ni 일 때, $x_{1l}=1, x_{2l}=-1$

$$disease: \pi_{21} = \frac{\exp(2.4746 + 0.3863 - 0.6946)}{1 + \exp(2.4746 + 0.3863 - 0.6946) + \exp(3.0391 - 0.4064 + 0.6047)} = 0.2239$$

$$injury: \pi_{22} = \frac{\exp{(3.0391 - 0.4064 + 0.6047)}}{1 + \exp{(2.4746 + 0.3863 - 0.6946)} + \exp{(3.0391 - 0.4064 + 0.6047)}} = 0.7463$$

other:
$$\pi_{23} = \frac{1}{1 + \exp(2.4746 + 0.3863 - 0.6946) + \exp(3.0391 - 0.4064 + 0.6047)} = 0.0299$$

other: $\pi_{23} = \frac{1}{1 + \exp(2.4746 - 0.3863 - 0.6946) + \exp(3.0391 + 0.4064 + 0.6047)} = 0.0299$

Ⅲ. 코드

SAS

□ data soldier;
input private \$ type \$ cause \$ count @@;
cards;
pid 285 pij 60 pis 8
p nid 15 p nij 50 p nis 2
hid 13 hij 17 his 1
h nid 2 h nij 4 h nis 0
;
run;

proc catmod order = data; weight count' model cause = private type / pred=prob; run;

	Analysis of Maximum Likelihood Estimates							
Parameter		Function Number	Estimate	Standard Error	Chi- Square	Pr > ChiSq		
Intercept		1	2.4746	0.6199	15.94	<.0001		
		2	3.0391	0.6081	24.98	<.0001		
private	р	1	0.3863	0.5424	0.51	0.4764		
	р	2	-0.4064	0.5412	0.56	0.4527		
type	i	1	0.6946	0.4113	2.85	0.0912		
	i	2	-0.6047	0.4024	2.26	0.1329		

Maximum Likelihood Analysis of Variance					
Source DF Chi-Square Pr > ChiSo					
Intercept	2	28.60	<.0001		
private	2	17.38	0.0002		
type	2	69.63	<.0001		
Likelihood Ratio	2	4.60	0.1005		

	Maximum Likelihood Predicted Values for Probabilities							
			Obse	rved	Predi	cted		
private	type	cause	Probability	Standard Error	Probability	Standard Error	Residual	
р	i	d	0.8074	0.021	0.8028	0.0211	0.0046	
		j	0.17	0.02	0.1743	0.0201	-0.004	
		s	0.0227	0.0079	0.0229	0.0079	-27E-5	
р	ni	d	0.2239	0.0509	0.248	0.052	-0.024	
		j	0.7463	0.0532	0.7236	0.0538	0.0226	
		s	0.0299	0.0208	0.0284	0.0199	0.0014	
h	i	d	0.4194	0.0886	0.4714	0.0877	-0.052	
		j	0.5484	0.0894	0.4995	0.0875	0.0489	
		s	0.0323	0.0317	0.0292	0.0288	0.0031	
h	ni	d	0.3333	0.1925	0.0645	0.0278	0.2688	
		j	0.6667	0.1925	0.9194	0.0352	-0.253	
		s	0	0	0.016	0.0197	-0.01E	

```
R
```

```
1 sink('soldier.txt')
 2 cat('private type cause count
 3 1 1 d 285
 4 1 1 j 60
 5 1 1 s 8
 6 1 -1 d 15
 7
   1 -1 j 50
 8 1 -1 s 2
9 -1 1 d 13
10 -1 1 j 17
11 -1 1 s 1
12 -1 -1 d 2
13 -1 -1 j 4
   -1 -1 s 0
14
   ')
15
16 sink()
17 sol <- read.table('soldier.txt',sep=' ',header=T)</pre>
18 unlink('soldier.txt')
19
20 sol$cause1<-factor(sol$cause,levels=c('d','j','s'))</pre>
21 fit1<-multinom(cause1~private+type,data=sol,weights=count)</pre>
22 summary(fit1)
> summary(fit1)
call:
multinom(formula = cause1 ~ private + type, data = sol, weights = count)
Coefficients:
  (Intercept)
               private
   0.5935008 -0.8221805 -1.2984035
s -2.4718707 -0.3882289 -0.6959062
Std. Errors:
 (Intercept)
              private
                             type
   0.2210817 0.1880727 0.1559379
    0.6205780 0.5425276 0.4112875
```

R과 SAS의 계수는 다르지만 해석은 같다.

4. Logilinear model

I. 데이터 소개

이 자료는 빈곤 여부, 성별, 인종에 따른 청소년 수를 조사한 것이다. 연구자는 이 세 범주형 변수 사이에 어떤 관계가 있는지 알아보고자 한다.

인종, 성별, 빈곤 여부에 따른 청소년 수

race	gender	pove	poverty?	
		yes	no	
black	male	27	79	106
	female	18	78	96
white	male	301	233	534
	female	120	200	320
Total			·	1056

출처: Wenk and Hardesty (1993). "The Effects of Rural-to-Urban Migration on the Poverty Status of Youth in the 1980s", Rural Sociology, 58(1) pp. 76-92.

Ⅱ. 분석

1) 로그-선형 모형 선택 가설

H₀: 모형이 적합하다.

 H_1 : not H_0

2) 우도비 검정통계량

$$G^{2} = -2 \log \lambda = \Sigma_{i}^{2} \Sigma_{j}^{2} \Sigma_{k}^{2} n_{ijk} \log(\frac{n_{ijk}}{\widehat{m}_{ijk}})$$

포화 log-linear모델 적합 결과 Maximum Likelihood Analysis of Variance에서

세 변수에 대한 교호작용 (XYZ)는 Chi-sqaure = 1.01, P-value는 0.3156로 유의수준 0.05에서 유의하지않다. 따라서 3요인 교호작용 (XYZ)를 제거하고 변수들 간의 2요인 교호작용을 고려한 더 간단한 모형을 적합한다.

2요인 교호작용 모델 (XY,XZ,YZ)를 적합한 결과 Likelihood Ratio가

Chi-sqaure = 0.99, P-value는 0.3186으로 유의수준 0.05에서 귀무가설 : 모형이 적합하다. 를 기각할 수 없으나, 교호작용 gender*type(YZ)가 Chi-square = 2.03, P-value는 0.1542로 유의수준 0.05에서 유의하지 않음으로, 이를 고려하여 교호작용 중 (YZ)를 제거하고 (XY,XZ)을 고려한 모델을 적합한다.

(XZ,XY) 적합 결과 Likelihood Ratio가 Chi-square = 3.02, P-value는 0.2214로 유의수준 0.05에서 귀무가설: 모형이 적합하다.를 기각할 수 없고, Maximum Likelihood Analysis of Variance에서 모든 주효과와 교호작용이 유의수준 0.05에서 P-value <.0001로 유의함으로 최종 로그-선형 모형은 (XY,XZ)로 결정한다.

3) 모형적합 결과 표

로그-선형 모형	독립 유형	$G^2(M)(df)$	$G^2(M_2 M_1)(df)$	$\chi^2_{0.05}(df)$
(XY,YZ,XZ)	3요소 교호작용 없음	1.01(1)		
(XZ,XY)	조건비 도리	3.02(2)	2.01(1)	
(XY,YZ)	조건부 독립	47.52(2)	46.51(1)	3.841(1)
(XZ,YZ)	(conditional indep)	30.05(2)	29.04(1)	
(XY,Z)	결합 독립	54.34(3)	53.33(2)	
(YZ,X)		81.38(3)	80.37(2)	5.991(2)
(XZ,Y)	(jointly indep)	36.87(3)	35.86(2)	
(X,Y,Z)	상호독립(mutual indep)	88.20(4)	87.19(3)	7.815(3)

최적 모형 선택 :

위에서의 설명과 더불어

 $H_0: \lambda_{ij}^{YZ} = 0$ 에서 $G^2(XY, XZ \mid XY, XZ, YZ) = G^2(XY, XZ) - G^2(XY, XZ, YZ) = 3.02-1.01 = 2.01이고$ $df(XY, XZ \mid XY, XZ, YZ) = df(XY, XZ) - df(XY, XZ, YZ) = 2-1 = 1$ 이므로, P-value = $P(\chi^2_{0.05} \ge 2.01)$ 이므로 $H_0: \lambda_{ij}^{YZ} = 0$ 가 기각되지않는다. 따라서 최종 모형으로 (XY, XZ)를 선택한다.

4)결과

모든 주효과와 교호작용효과가 유의하다. 교호작용을 보면 poverty*gender로부터 청소년 중 남성이 더 빈곤을 겪고 있고, poverty*race로부터 흑인보다는 백인이 더 빈곤을 겪고있다.

Ⅲ. 코드

SAS

□ data pov
input poverty \$ gender \$ type \$ count' cards;
poverty male black 27
poverty male black 27 poverty male white 301
poverty finale write 301 poverty female black 18
poverty female white 120
not-poverty male black 79
not-poverty male white 233
not-poverty finale white 200 not-poverty female black 78
not-poverty female black 70 not-poverty female white 200
Hot-poverty lemale write 200
run:
Turb
proc catmod order = data; weight count model poverty-gender-type = _response_/NOITER PRED=FREO; loglin poverty gender type; run;
□ proc catmod order = data data=pov: weight count
model poverty*gender*type = _response_/NOITER PRED=FREQ; loglin poverty gender poverty type gender type; run;
□ proc catmod order = data data=pov; weight count model poverty+gender+type = _response_/NOITER PRED=FREO; loglin poverty gender poverty type; run;

Maximum Likelihood Analysis of Variance					
Source DF Chi-Square Pr > ChiS					
poverty	1	57.45	<.0001		
gender	1	25.26	<.0001		
poverty*gender	1	28.41	<.0001		
type	1	301.54	<.0001		
poverty*type	1	41.10	<.0001		
gender*type	1	2.03	0.1542		
Likelihood Ratio	1	0.99	0.3186		

Maximum Likelihood Analysis of Variance

1

1

1

0

DF | Chi-Square | Pr > ChiSq

56.19

15.98

9.67

288.42

37.57

3.08

1.01

<.0001

<.0001

0.0019

<.0001

<.0001

0.0793

0.3156

Source

poverty

gender

type poverty*type

poverty*gender

gender*type

poverty*gender*type

Likelihood Ratio

Maximum Likelihood Analysis of Variance					
Source	DF	Chi-Square	Pr > ChiSq		
poverty	1	60.58	<.0001		
gender	1	56.30	<.0001		
poverty*gender	1	32.93	<.0001		
type	1	317.56	<.0001		
poverty*type	1	44.84	<.0001		
Likelihood Ratio	2	3.02	0.2214		

Analysis of Maximum Likelihood Estimates					
Parameter		Estimate	Standard Error	Chi- Square	Pr > ChiSq
poverty	poverty	-0.3640	0.0468	60.58	<.0001
gender	male	0.2453	0.0327	56.30	<.0001
poverty*gender	poverty male	0.1876	0.0327	32.93	<.0001
type	black	-0.8126	0.0456	317.56	<.0001
poverty*type	poverty black	-0.3054	0.0456	44.84	<.0001

```
sink('poverty.txt')
cat('race gender poverty count
   1 1 p 27
   1 1 np 79
   1 -1 p 18
   1 -1 np 78
   -1 1 p 301
   -1 1 np 233
   -1 -1 p 120
   -1 -1 np 200
   sink()
  sol <- read.table('poverty.txt',sep=' ',header=T)
unlink('pverty.txt')</pre>
  sol$poverty<-factor(sol$poverty,levels=c('np','p'))
sol$race<-factor(sol$race,levels=c('-1','1'))
sol$gender<-factor(sol$gender,levels=c('-1','1'))</pre>
   fit2 <- glm(count ~ poverty * gender * race,
                data = sol, family = poisson)
                                                                     > AIC(fit0,fit1,fit2,fit3,fit4,fit5,fit6,fit7,fit8,fit9)
                                                                          df
                                                                                       AIC
   fit3 <- glm(count ~ race * poverty + race * gender,
                                                                     fit0 4 147.07844
                data = sol, family = poisson)
                                                                     fit1 7 65.87710
   fit2 8 66.88251
                                                                     fit3
                                                                             6
                                                                                 92.93365
   fit5 <- glm(count \sim race * gender + poverty * gender, data = sol, family = poisson)
                                                                     fit4 6 65.89849
                                                                     fit5
                                                                             6 110,40668
                                                                     fit6
                                                                            5 115.22498
   fit6 <- glm(count ~ race + gender * poverty,
                                                                     fit7
                                                                             5 97.75195
                data = sol, family = poisson)
                                                                     fit8
                                                                             5 115.22498
                                                                    fit9 5 142.26014
  AIC가 작은 fit1과 fit4를 고려해보자
   fit8 <- glm(count \sim gender *
                                  poverty + race,
                data = sol, family = poisson)
   fit9 <- glm(count \sim race * gender + poverty, data = sol, family = poisson)
                                                                             > summary(fit4)
> summary(fit1)
                                                                             glm(formula = count ~ race * poverty + poverty * gender, family = poisson,
glm(formula = count ~ (poverty + gender + race)^2, family = poisson,
                                                                                 data = sol)
    data = sol)
                                                                             Deviance Residuals:
Deviance Residuals:
1 2 3 4 5 6 7 8
-0.4922 0.3003 0.6554 -0.2955 0.1526 -0.1722 -0.2392 0.1874
                                                                             -0.8523 -0.4452 1.2147 0.4637 0.2708 0.2651 -0.4212 -0.2826
Coefficients:
                                                                             Coefficients:
                 Estimate Std. Error z value Pr(>|z|)  
5.31824    0.06490   81.948    < 2e-16 ***  
-1.01449    0.09316    -10.890    < 2e-16 ***
(Intercept)
                                                                             (Intercept)
povertyp
                                                                             race1
                                       1.899 0.0576 .
-7.221 5.18e-13 ***
5.330 9.80e-08 ***
                                                                                                             0.10811 -4.556 5.22e-06 ***
0.08248 1.399 0.162
                                                                             povertyp
                  -0.89505
race1
                              0.12396
                                                                             gender1
                                                                                                 0.11538
povertyp:gender1 0.71179
povertyp:race1 -1.18238
gender1:race1 -0.23178
                              0.13353 5.330 9.80e-08 ***
0.18444 -6.410 1.45e-10 ***
0.16267 -1.425 0.1542
                                                                                                                      -6.696 2.14e-11 ***
                                                                             race1:povertyp
                                                                             povertyp:gender1 0.75038
                                                                                                                       5.739 9.54e-09 ***
                                                                                                             0.13076
                                                                             Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
                                                                             (Dispersion parameter for poisson family taken to be 1)
(Dispersion parameter for poisson family taken to be 1)
                                                                                 Null deviance: 583.760 on 7 degrees of freedom
idual deviance: 3.016 on 2 degrees of freedom
Null deviance: 583.75951 on 7 degrees of freedom
Residual deviance: 0.99459 on 1 degrees of freedom
                                                                             Residual deviance:
                                                                             AIC: 65.898
AIC: 65.877
```

fit1 은 (XY,XZ,YZ) 를 적합시킨 결과인데, SAS와 마찬가지로 gender*race 의 interaction term이 유의하지 않음을 알 수 있다. 따라서 SAS와 마찬가지로 gender*race를 제거한 (XY,XZ) 모형을 채택한다.