

Bar Code

Electronic Circuits for Mechatronics (ELCT 609) Spring Semester 2016 Mid-term Exam

Instructions: Read Carefully Before Proceeding.

- No programmable/storing calculators, book or other aids are permitted for this test.
- 2- Write your solutions in the space provided. If you need more space, write on the back of the sheet containing the problem.

3- Answer all questions.

- 4- Read all the problems carefully before starting, and start with the easiest question you find.
- 5- This exam booklet contains <u>13</u> pages, including this one., This exam consists of <u>FOUR</u> questions
- 6- When you are told that time is up, stop working on the test.
- 7- Total time allowed for this exam is <u>120 min.</u>

Good Luck!

Question Number	1	2	3	4	Total
Maximum Score	20	20	30	35	105
Obtained Score					

Formula Sheet

BJT: Modes of Operation

Mode	I-V Characteristics		
Cutoff	$I_C = I_E = I_B = 0$		
Active (Forward)	$V_{BE} = 0.7V, I_E = I_C + I_B, I_C = \beta_F I_B$		
Saturation	$V_{CE} = 0.2V, I_E = I_C + I_B$		
Reverse Active	$V_{BC} = 0.5V, I_C = I_E + I_B, I_E = \beta_R I_B$		

■ BJT: Small Signal Model

$$g_{\rm m} = \frac{I_{\rm C}}{V_{\rm T}}, r_{\rm m} = \frac{\beta}{g_{\rm m}}, r_{\rm o} = \frac{V_{\rm A}}{I_{\rm C}}, V_{\rm T} = 25 \,\text{mV}$$

Problem 1: (20 marks)

The two circuits shown are current sources, find their Output current I_o and their output resistance R_{out} .

 V_{CC} =10V, V_{BE} or V_{EB} =0.7V, β_F =100, R_1 = R_2 = R_E =1 $k\Omega$, R=2.15 $k\Omega$ (**<u>Hint:</u>** Assume that ALL Transistors are active, Draw the small signal model to calculate the output resistance)

Problem 2: (20 marks)

D1 and D2 are ideal diodes, ' V_{in} ' is a sinusoidal signal with 1 kHz frequency and amplitude voltage of 10V, Analyze the circuit to:

- A. Plot 'Vout' versus 'Vin'
- B. Plot 'Vout' versus Time

Problem 3: (30 Marks)

In the circuit shown, the Zener diode has $V_Z = 6.8 V$ and $r_Z = 20 \Omega$ while the normal diode D has $V_{th} = 0.7 V$. The input voltage ' V_{in} ' is a 20-V peak-to-peak sinusoidal signal with an average value of 0V.

- $\begin{tabular}{ll} \hline \textbf{Perive an expression for the output signal 'V_{out}' over the range of 'V_{in}' } \\ \hline \end{tabular}$
- Sketch 'Vout' versus 'Vin'

Problem 4 (35 marks)

For the Common Collector amplifier shown, V_{BE} =0.7V, β_F =100 calculate:

- 1. The voltage gain 'Vout/Vin'
- 2. The Input Resistance 'Rin'
- 3. The Output Resistance 'Rout'

