Step 1: Start with the behavior and properties of time-independent Hamiltonians

H_n	0/1	$oldsymbol{\Gamma}$	0/1
$-\Pi n$	U_{n}	Γ / m	$C(D_{\alpha}$

Eigenstates are stable for time

$$\Psi_n(t) = \psi_n e^{-iE_n t/\hbar}$$

Step 2: Make foundational observations and generalizations assuming time-dependent Hamiltonian

eigenfunctions and eigenvalues are time-dependent

$$\langle \psi_n(t)|\psi_m(t)\rangle = \delta_{nm}$$

$$i\hbar \frac{\partial \Psi}{\partial t} = H\Psi$$

$$\Psi(t) = \sum c_n(t)\psi_n(t)e^{i\theta_n(t)}$$

 $\Psi(t)=\sum_n c_n(t)\psi_n(t)e^{i heta_n(t)}$ Can still be represented as the sum. $c_n(t)$ is 'the amount of' $\psi_n(t)$ in $\Psi(t)$.

$$\theta_n(t) \equiv -\frac{1}{\hbar} \int_0^t E_n(t') dt'$$

 $heta_n(t) \equiv -rac{1}{\hbar} \int_0^t E_n(t') \, dt'$ Generalization of the phase factor for time depedent E

Step 3: Use these properties to rewrite the coefficient derivatives

$$\sum_{n} \dot{c}_n \psi_n e^{i\theta_n} = -\sum_{n} c_n \dot{\psi}_n e^{i\theta_n}$$

$$\sum_{n} \dot{c}_{n} \delta_{mn} e^{i\theta_{n}} = -\sum_{n} c_{n} \left\langle \psi_{m} \middle| \dot{\psi}_{n} \right\rangle e^{i\theta_{n}}$$

Use inner product strategy and orhonormality property

$$\dot{c}_m = -\sum_n c_n \left<\psi_m\middle|\dot{\psi}_n\right> e^{i(\theta_n-\theta_m)}$$
 Reaarange by multplying through with m state phase factor

Step 4: Revisit the time-independent Schrödinger equation and rewrite the on and off diagonal coefficient derivatives

$$\langle \psi_m | \dot{H} | \psi_n \rangle + \langle \psi_m | H | \dot{\psi_n} \rangle = \dot{E}_n \delta_{nm} + E_n \langle \psi_m | \dot{\psi}_n \rangle$$

$$\langle \psi_m | H | \dot{\psi}_n \rangle = E_m \langle \psi_m | \dot{\psi}_n \rangle$$

Hermitcity and eigenvalue equation

$$\langle \psi_m | \dot{\psi}_n \rangle = \frac{\langle \psi_m | \dot{H} | \psi_n \rangle}{(E_n - E_m)}$$

Plug the latter into former and rearrange.

$$\dot{c}_m = -\sum_n c_n \frac{\langle \psi_m | \, \dot{H} \, | \psi_n \rangle}{(E_n - E_m)} e^{i(\theta_n - \theta_m)} \qquad \text{Plugging the result from above into the result of Step 3}$$

$$\dot{c}_m = -c_m \left\langle \psi_m | \dot{\psi}_m \right\rangle - \sum_{n \neq m} c_n \frac{\left\langle \psi_m | \dot{H} | \psi_n \right\rangle}{(E_n - E_m)} e^{-i/\hbar \int_0^t [E_n(t') - E_m(t')] dt'}$$

This is the exact solution

Step 5: Impose the approximation by assuming dH/dt is small and the off diagonal

$$\dot{c}_m(t) = -c_m \left\langle \psi_m | \dot{\psi}_m \right\rangle$$

approximation in an adiabatic series.

$$c_m(t) = c_m(0)e^{i\gamma_m(t)}$$

$$\gamma_m(t) \equiv i \int_0^t \langle \psi_m(t') | rac{\partial}{\partial t'} \psi_m(t')
angle \, dt'$$
 Berry or 'geometric phase'

$$\Psi_n(t)\approx e^{i\theta_n(t)}e^{i\gamma_n(t)}\psi_n(t) \qquad \text{If the particle starts in the nth eigenstate and the process is adiabatic}$$

 $\Psi_n(t) \approx \text{(dynamic phase) (Berry phase) } \psi_n(t)$

1. If E was a constant, would be the familiar phase factor

$$heta_n = -rac{1}{\hbar} \int_0^t E_n \, dt' = -rac{1}{\hbar} E_n \int_0^t \, dt' = -E_n t/\hbar$$

$$-\hbar \dot{\theta}_n = E_n$$

$$\begin{split} i\hbar \sum_{n} [\dot{c}_{n}\psi_{n} + c_{n}\dot{\psi}_{n} + ic_{n}\psi_{n}\dot{\theta}_{n}] e^{i\theta_{n}} &= \sum_{n} c_{n}(H\psi_{n})e^{i\theta_{n}} \\ i\hbar \sum_{n} \dot{c}_{n}\psi_{n}e^{i\theta_{n}} + i\hbar \sum_{n} c_{n}\dot{\psi}_{n}e^{i\theta_{n}} + i^{2}\hbar \sum_{n} c_{n}\psi_{n}\dot{\theta}_{n}e^{i\theta_{n}} &= \sum_{n} c_{n}(H\psi_{n})e^{i\theta_{n}} \\ i\hbar \sum_{n} \dot{c}_{n}\psi_{n}e^{i\theta_{n}} + i\hbar \sum_{n} c_{n}\dot{\psi}_{n}e^{i\theta_{n}} - \hbar \sum_{n} c_{n}\psi_{n}\dot{\theta}_{n}e^{i\theta_{n}} &= \sum_{n} c_{n}(E_{n}\psi_{n})e^{i\theta_{n}} \\ i\hbar \sum_{n} \dot{c}_{n}\psi_{n}e^{i\theta_{n}} + i\hbar \sum_{n} c_{n}\dot{\psi}_{n}e^{i\theta_{n}} &= \sum_{n} c_{n}(E_{n}\psi_{n})e^{i\theta_{n}} + \hbar \sum_{n} c_{n}\psi_{n}\dot{\theta}_{n}e^{i\theta_{n}} \\ i\hbar \sum_{n} \dot{c}_{n}\psi_{n}e^{i\theta_{n}} + i\hbar \sum_{n} c_{n}\dot{\psi}_{n}e^{i\theta_{n}} &= -\hbar \sum_{n} c_{n}\psi_{n}\dot{\theta}_{n}e^{i\theta_{n}} + \hbar \sum_{n} c_{n}\psi_{n}\dot{\theta}_{n}e^{i\theta_{n}} \\ i\hbar \sum_{n} \dot{c}_{n}\psi_{n}e^{i\theta_{n}} + i\hbar \sum_{n} c_{n}\dot{\psi}_{n}e^{i\theta_{n}} &= 0 \\ \sum_{n} \dot{c}_{n}\psi_{n}e^{i\theta_{n}} &= -\sum_{n} c_{n}\dot{\psi}_{n}e^{i\theta_{n}} \end{split}$$

strategy again!

Step-by-step:

$$\langle \psi_{m} | \dot{H} | \psi_{n} \rangle + \langle \psi_{m} | H | \dot{\psi}_{n} \rangle = \dot{E}_{n} \delta_{nm} + E_{n} \langle \psi_{m} | \dot{\psi}_{n} \rangle$$

$$\langle \psi_{m} | \dot{H} | \psi_{n} \rangle + E_{m} \langle \psi_{m} | \dot{\psi}_{n} \rangle = 0 + E_{n} \langle \psi_{m} | \dot{\psi}_{n} \rangle$$

$$\langle \psi_{m} | \dot{H} | \psi_{n} \rangle = E_{n} \langle \psi_{m} | \dot{\psi}_{n} \rangle - E_{m} \langle \psi_{m} | \dot{\psi}_{n} \rangle$$

$$\langle \psi_{m} | \dot{H} | \psi_{n} \rangle = (E_{n} - E_{m}) \langle \psi_{m} | \dot{\psi}_{n} \rangle$$

- 'mimimum gap' between the ground eigenenergy and the 1st excited state. Is this the correct interpretation?

See "Comment on the Adiabatic Condition" Pinto et al 2000 Am. J. Phys.

Resources Used

MITOPENCOURSEWARE MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Quantum Physics III Specifically Lectures 15-18