

3. Solving ODEs with Fourier Series

<u>Course</u> > <u>Unit 1: Fourier Series</u> > <u>and Signal Processing</u>

> 6. Pure resonance

6. Pure resonance

What happens if instead of considering the differential equation

$$\ddot{x}+50x=rac{\pi}{4}\mathrm{Sq}\left(t
ight) ,$$

we change 50 to 49

$$\ddot{x}+49x=rac{\pi}{4}\mathrm{Sq}\left(t
ight) ?$$

Pure resonance concept check

1/1 point (graded)

Which of the following is true of the ODE

$$\ddot{x}+49x=rac{\pi}{4}\mathrm{Sq}\left(t
ight) ?$$

There is exactly one solution. It is not periodic.		
There is exactly one solution. It is periodic.		
There are infinitely many solutions. None are periodic.		
There are infinitely many solutions. Only one is periodic.		
There are infinitely many solutions. All are periodic.		
✓		
Solution:		
There are infinitely many solutions, but none of them are periodic. Here is why: For $n \neq 7$, we can solve $\ddot{x} + 49x = \sin nt$ using complex replacement and ERF since in is not a root of $r^2 + 49$. For $n = 7$, we can still solve $\ddot{x} + 49x = \sin 7t$ (the existence and uniqueness theorem guarantees this), but the solution requires generalized ERF, and involves t , and hence is not periodic: it turns out that one solution is $-\frac{t}{14}\cos 7t$.		

For the input signal $\operatorname{Sq}(t)$, we can find a solution x_p by superposition: most of the terms will be periodic, but one of them will be $\frac{1}{7}\left(-\frac{t}{14}\cos 7t\right)$, and this makes the whole solution x_p non-periodic.

There are infinitely many other solutions, which differ by adding the homogeneous solution, namely $x_p+c_1\cos 7t+c_2\sin 7t$ for any c_1 and c_2 . These solutions still include the $\frac{1}{7}\left(-\frac{t}{14}\cos 7t\right)$ term and hence are not periodic.

Submit

You have used 1 of 3 attempts

• Answers are displayed within the problem

$$\ddot{x}+36x=rac{\pi}{4}\mathrm{Sq}\left(t
ight)$$

then all solutions would have been periodic, because $\frac{\pi}{4}\mathrm{Sq}\left(t\right)$ has no $\sin6t$ term in its Fourier series.

In general, for a periodic function f, the ODE P(D)x = f(t) has a periodic solution if and only if for each term $\cos \omega t$ or $\sin \omega t$ appearing with a nonzero coefficient in the Fourier series of f, the number $i\omega$ is not a root of P(r).

6. Pure resonance

Topic: Unit 1: Fourier Series / 6. Pure resonance

Add a Post

Hide Discussion

Sho	by recent activ	⁄ity ∨
2	I don't understand why that answer is correct. I don't want to spoil the right answer, but I don't understand the explanation in the answer. I was lucky to complete this task half intuitively/half rendomly. I doubt about corre	2
2	"Meaning of most of the terms will be periodic"	5
2	Recommendation a poorly treated topic but highly valued questions in the questionnaires as a recommendation to improve in future courses	3
2	general case expanation Would you like to explain general case more detailed? I need it for my homework, :) Thanks.	4
∀	[staff] Use of the word 'solution' It seems to me that there is only one steady state solution composed of many terms in a series. Are we to interpret the word 'solutions' above to mean the terms of the series?	3
∀	Resonance understanding	4