

Relational Algebra

Chapter 4, Part A

Relational Query Languages

- Query languages: Allow manipulation and retrieval of data from a database.
- * Relational model supports simple, powerful QLs:
 - Strong formal foundation based on logic.
 - Allows for much optimization.
- Query Languages != programming languages!
 - QLs not expected to be "Turing complete".
 - QLs not intended to be used for complex calculations.
 - QLs support easy, efficient access to large data sets.

Formal Relational Query Languages

- Two mathematical Query Languages form the basis for "real" languages (e.g. SQL), and for implementation:
 - <u>Relational Algebra</u>: More operational, very useful for representing execution plans.
 - Relational Calculus: Lets users describe what they want, rather than how to compute it. (Non-operational, <u>declarative</u>.)

Preliminaries

- * A query is applied to *relation instances*, and the result of a query is also a relation instance.
 - *Schemas* of input relations for a query are fixed (but query will run regardless of instance!)
 - The schema for the *result* of a given query is also fixed! Determined by definition of query language constructs.
- * Positional vs. named-field notation:
 - Positional notation easier for formal definitions, named-field notation more readable.
 - Both used in SQL

Example Instances

R1

sid	bid	day
22	101	10/10/96
58	103	11/12/96

"Sailors" and "Reserves" relations for our examples.

S₁

* We'll use positional or named field notation, assume that names of fields in query results are `inherited' from names of fields in query input relations.

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5

*S*2

58

rusty

sid	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

35.0

Relational Algebra

* Basic operations:

- Selection (σ) Selects a subset of rows from relation.
- <u>Projection</u> (π) Deletes unwanted columns from relation.
- Cross-product (X) Allows us to combine two relations.
- *Set-difference* (—) Tuples in reln. 1, but not in reln. 2.
- <u>Union</u> (∪) Tuples in reln. 1 and in reln. 2.

Additional operations:

- Intersection, *join*, division, renaming: Not essential, but (very!) useful.
- Since each operation returns a relation, operations can be composed!

Projection

- Deletes attributes that are not in projection list.
- * Schema of result contains exactly the fields in the projection list, with the same names that they had in the (only) input relation.
- Projection operator has to eliminate duplicates! (Why??)
 - Note: real systems typically don't do duplicate elimination unless the user explicitly asks for it. (Why not?)

	77
sname	rating
yuppy	9
lubber	8
guppy	5
rusty	10

 $\pi_{sname,rating}(S2)$

age 35.0 55.5

 $\pi_{age}(S2)$

Selection

- Selects rows that satisfy selection condition.
- No duplicates in result! (Why?)
- Schema of result identical to schema of (only) input relation.
- * Result relation can be the *input* for another relational algebra operation! (Operator composition.)

sid	sname	rating	age
28	yuppy	9	35.0
58	rusty	10	35.0

$$\sigma_{rating>8}(S2)$$

sname	rating
yuppy	9
rusty	10

 $\pi_{sname,rating}(\sigma_{rating>8}(S2))$

Union, Intersection, Set-Difference

- * All of these operations take two input relations, which must be *union-compatible*:
 - Same number of fields.
 - 'Corresponding' fields have the same type.
- ❖ What is the *schema* of result?

sid	sname	rating	age
22	dustin	7	45.0

$$S1-S2$$

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0
44	guppy	5	35.0
28	yuppy	9	35.0

$$S1 \cup S2$$

sid	sname	rating	age
31	lubber	8	55.5
58	rusty	10	35.0

$$S1 \cap S2$$

Cross-Product

- Each row of S1 is paired with each row of R1.
- * Result schema has one field per field of S1 and R1, with field names `inherited' if possible.
 - Conflict: Both S1 and R1 have a field called sid.

(sid)	sname	rating	age	(sid)	bid	day
22	dustin	7	45.0	22	101	10/10/96
22	dustin	7	45.0	58	103	11/12/96
31	lubber	8	55.5	22	101	10/10/96
31	lubber	8	55.5	58	103	11/12/96
58	rusty	10	35.0	22	101	10/10/96
58	rusty	10	35.0	58	103	11/12/96

• Renaming operator: $\rho(C(1 \rightarrow sid1, 5 \rightarrow sid2), S1 \times R1)$

Joins

* Condition Join:
$$R \bowtie_{c} S = \sigma_{c} (R \times S)$$

(sid)	sname	rating	age	(sid)	bid	day
22	dustin	7	45.0	58	103	11/12/96
31	lubber	8	55.5	58	103	11/12/96

$$S1 \bowtie_{S1.sid < R1.sid} R1$$

- * Result schema same as that of cross-product.
- Fewer tuples than cross-product, might be able to compute more efficiently
- * Sometimes called a *theta-join*.

Joins

* <u>Equi-Join</u>: A special case of condition join where the condition *c* contains only *equalities*.

sid	sname	rating	age	bid	day
22	dustin	7	45.0	101	10/10/96
58	rusty	10	35.0	103	11/12/96

$$S1 \bowtie_{sid} R1$$

- * Result schema similar to cross-product, but only one copy of fields for which equality is specified.
- * Natural Join: Equijoin on all common fields.

Division

Not supported as a primitive operator, but useful for expressing queries like:

Find sailors who have reserved <u>all</u> boats.

- * Let *A* have 2 fields, *x* and *y*; *B* have only field *y*:
 - $A/B = \{\langle x \rangle | \exists \langle x, y \rangle \in A \ \forall \langle y \rangle \in B\}$
 - i.e., *A/B* contains all *x* tuples (sailors) such that for *every y* tuple (boat) in *B*, there is an *xy* tuple in *A*.
 - *Or*: If the set of *y* values (boats) associated with an *x* value (sailor) in *A* contains all *y* values in *B*, the *x* value is in *A/B*.
- * In general, x and y can be any lists of fields; y is the list of fields in B, and $x \cup y$ is the list of fields of A.

Examples of Division A/B

sno	pno
s1	p1
s1	p2
s1	р3
s1	p4
s2	p1
s2	p2
s3	p2
s4	p2
s4	p4

1	1
_	7

pno
p2
B1

pno p2 p4	
<i>B</i> 2	
sno	
s1	
s4	
1 /R 2	

sno	
s1	
s4	
A/B2	

pno	
p1 p2	
p4	
<i>B3</i>	
sno	
s1	
A/B3)

Expressing A/B Using Basic Operators

- * Division is not essential op; just a useful shorthand.
 - (Also true of joins, but joins are so common that systems implement joins specially.)
- ❖ *Idea*: For *A/B*, compute all *x* values that are not `disqualified' by some *y* value in *B*.
 - *x* value is *disqualified* if by attaching *y* value from *B*, we obtain an *xy* tuple that is not in *A*.

Disqualified x values:
$$\pi_{\chi}((\pi_{\chi}(A) \times B) - A)$$

A/B:
$$\pi_{\chi}(A)$$
 – all disqualified tuples

Find names of sailors who've reserved boat #103

* Solution 1:
$$\pi_{sname}((\sigma_{bid=103} \text{Reserves}) \bowtie Sailors)$$

* Solution 2:
$$\rho$$
 (Templ, $\sigma_{bid=103}$ Reserves)

$$\rho$$
 (Temp2, Temp1 \bowtie Sailors)

$$\pi_{sname}$$
 (Temp2)

* Solution 3:
$$\pi_{sname}(\sigma_{bid=103}(\text{Reserves} \bowtie Sailors))$$

Find names of sailors who've reserved a red boat

Information about boat color only available in Boats; so need an extra join:

$$\pi_{sname}((\sigma_{color='red'}, Boats) \bowtie Reserves \bowtie Sailors)$$

* A more efficient solution:

$$\pi_{sname}(\pi_{sid}((\pi_{bid}\sigma_{color='red'},Boats)\bowtie Res)\bowtie Sailors)$$

A query optimizer can find this, given the first solution!

Find sailors who've reserved a red or a green boat

Can identify all red or green boats, then find sailors who've reserved one of these boats:

$$\rho \; (\textit{Tempboats}, (\sigma_{color = 'red' \; \lor \; color = 'green'} \; \textit{Boats}))$$

 π_{sname} (Temphoats \bowtie Reserves \bowtie Sailors)

- Can also define Tempboats using union! (How?)
- ❖ What happens if ∨ is replaced by ∧ in this query?

Find sailors who've reserved a red and a green boat

* Previous approach won't work! Must identify sailors who've reserved red boats, sailors who've reserved green boats, then find the intersection (note that *sid* is a key for Sailors):

$$\rho \ (Tempred, \pi_{sid}((\sigma_{color=red}, Boats) \bowtie Reserves))$$

$$\rho$$
 (Tempgreen, $\pi_{sid}((\sigma_{color=green}, Boats)) \bowtie Reserves))$

$$\pi_{sname}((Tempred \cap Tempgreen) \bowtie Sailors)$$

Find the names of sailors who've reserved all boats

Uses division; schemas of the input relations to / must be carefully chosen:

$$\rho \text{ (Tempsids, } (\pi_{sid,bid} \text{Reserves}) / (\pi_{bid} \text{Boats}))$$

$$\pi \text{ (Tempsids \seta Sailovs)}$$

 π_{sname} (Tempsids \bowtie Sailors)

* To find sailors who've reserved all 'Interlake' boats:

....
$$/\pi_{bid}(\sigma_{bname=Interlake}, Boats)$$

Summary

- The relational model has rigorously defined query languages that are simple and powerful.
- * Relational algebra is more operational; useful as internal representation for query evaluation plans.
- * Several ways of expressing a given query; a query optimizer should choose the most efficient version.