Section 4.9. Antiderivatives.

$$F'(x) = f(x)$$
 for all $x \in from I$

Example
$$f(x) = x$$

$$F(x) = \frac{x^2}{2} \angle Antiderivative$$

$$F(\infty) = \frac{x^2}{2} + 5$$

$$F'(x) = \left(\frac{x^2}{2} + 5\right)' = x + 0 = x$$

Theorem If F is an antiderivate of f(xe) on the interval I, then

the most general antiderivative of
$$f(x)$$
 an I is

$$F(x) + C$$

If C is chosen to be a particular number $(C = 2, C = 10, C = 10,$

SECTION 4.9: ANTIDERIVATIVES

1. Find a particular antiderivative of $f(x) = 9 + x - x^2$.

$$F(x) = 9x + \frac{x^2}{2} - \frac{x^3}{3} + 5$$

$$F'(x) = 9 + 3c - x^2$$

2. Find all antiderivatives of $f(x) = 9 + x - x^2$.

$$F(x) = 9x + \frac{x^2}{2} - \frac{x^3}{3} + C$$

particular

3. Find an antiderivative of $f(x) = \frac{1}{x^2}$.

$$F'(x) = (-x^{-2})' = +x^{-2} = -\frac{1}{x^2}$$

$$F'(x) = (-x^{-2})' = +x^{-2} = -\frac{1}{x^2}$$

4. To find *all* antiderivatives of a function f(x), do you always just add a +C? Explain how to construct a "generic" piecewise function where you're not using just +C to describe *all* antiderivatives.

5. For each of the following functions, find a particular antiderivative.

Antiderivative
3.7 Ex
2 "
34
XK41
lu (x)
lu(-x)
Perlyl

Function	Antiderivative
$\sin(x)$	- cos (x)
$\cos(x)$	Sin(x)
e^x	ex
$1/(1+x^2)$	arctan(x)
$(\sec(x))^2$	tan(x)
$\sec(x)\tan(x)$	Sec(x)
1	\propto

6. Compute an antiderivative of $f(x) = 15x^{20} + 44x^{10} + 8$

$$F(x) = 15 \cdot \frac{x^{21}}{21} + 44 \frac{x^{11}}{11} + 8x$$

$$F'(x) = 15 \times^{20} + 44 \times^{10} + 8$$

7. Compute an antiderivative of $f(t) = \frac{5 \sec t \tan t}{3} - 4 \sin t - \frac{1}{t} + e^2$

8. Compute an antiderivative of $f(x) = \cos(3x)$.

9. Compute the antiderivative of $f(t) = t^2$ that equals 5 when t = 2.