Interpretable Machine Learning

Linear Regression Model

Learning goals

- LM basics and assumptions
- Interpretation of main effects in LM
- What are significant features?

Interpretable Machine Learning Linear Regression Model

Learning goals

- LM basics and assumptions
- Interpretation of main effects in LM
- What are significant features?

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_p x_p + \epsilon = \mathbf{x}^\top \boldsymbol{\theta} + \epsilon$$

- y: target / output
- ullet ϵ : remaining error / residual
- θ_j : weight of input feature x_j (intercept θ_0) \rightsquigarrow model consists of p + 1 weights

LINEAR REGRESSION

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_p x_p + \epsilon = \mathbf{x}^{\top} \boldsymbol{\theta} + \epsilon$$

- y: target / output
- \bullet ϵ : remaining error / residual
- θ_j : weight of input feature x_j (intercept θ_0) \rightsquigarrow model consists of p + 1 weights

Interpretable Machine Learning - 1/4 © - 1/4

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_p x_p + \epsilon = \mathbf{x}^{\top} \boldsymbol{\theta} + \epsilon$$

- y: target / output
- ϵ : remaining error / residual
- θ_i : weight of input feature x_i (intercept θ_0) \rightsquigarrow model consists of p + 1 weights

Properties and assumptions Faraway (2002), Ch. 7

► Checking assumptions in R & Python

• Linear relationship between features and target

LINEAR REGRESSION

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_p x_p + \epsilon = \mathbf{x}^\top \boldsymbol{\theta} + \epsilon$$

- y: target / output • ϵ : remaining error / residual
- θ_i : weight of input feature x_i (intercept θ_0) \rightsquigarrow model consists of p + 1 weights

- 1/4

Properties and assumptions Faraway, Ch. 7" 2002

• Linear relationship between features and target

Interpretable Machine Learning - 1/4

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_p x_p + \epsilon = \mathbf{x}^{\top} \boldsymbol{\theta} + \epsilon$$

- y: target / output
- ϵ : remaining error / residual
- θ_i : weight of input feature x_i (intercept θ_0) \rightsquigarrow model consists of p + 1 weights

Properties and assumptions Faraway (2002), Ch. 7

► Checking assumptions in R & Python

- Linear relationship between features and target
- ϵ and $y | \mathbf{x}$ are **normally** distributed with **constant variance** (homoscedastic)

$$\sim \epsilon \sim N(0, \sigma^2) \Rightarrow (y|\mathbf{x}) \sim N(\mathbf{x}^{\top}\theta, \sigma^2)$$

→ if violated, inference-based metrics (e.g., p-values) are invalid

LINEAR REGRESSION

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_p x_p + \epsilon = \mathbf{x}^\top \boldsymbol{\theta} + \epsilon$$

- \bullet ϵ : remaining error / residual
- θ_i : weight of input feature x_i (intercept θ_0) \rightsquigarrow model consists of p + 1 weights

Properties and assumptions Faraway, Ch. 7" 2002

- Linear relationship between features and target
- \bullet and $y | \mathbf{x}$ are **normally** distributed with **constant variance** (homoscedastic)

→ if violated, inference-based metrics (e.g., p-values) are invalid

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_p x_p + \epsilon = \mathbf{x}^{\top} \boldsymbol{\theta} + \epsilon$$

- y: target / output
- ϵ : remaining error / residual
- θ_i : weight of input feature x_i (intercept θ_0) \rightsquigarrow model consists of p+1 weights

► Checking assumptions in R & Python

- Linear relationship between features and target
- ϵ and $y | \mathbf{x}$ are **normally** distributed with **constant variance** (homoscedastic) $\sim \epsilon \sim N(0, \sigma^2) \Rightarrow (y|\mathbf{x}) \sim N(\mathbf{x}^{\top}\theta, \sigma^2)$ → if violated, inference-based metrics (e.g., p-values) are invalid
- Independence of observations (e.g., no repeated measurements)

LINEAR REGRESSION

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_p x_p + \epsilon = \mathbf{x}^{\top} \boldsymbol{\theta} + \epsilon$$

- \bullet ϵ : remaining error / residual
- θ_i : weight of input feature x_i (intercept θ_0) \rightsquigarrow model consists of p + 1 weights

Properties and assumptions • "Faraway, Ch. 7" 2002

- Linear relationship between features and target
- \bullet and $y | \mathbf{x}$ are **normally** distributed with **constant variance** (homoscedastic)

$$\sim \epsilon \sim N(0, \sigma^2) \Rightarrow (y|\mathbf{x}) \sim N(\mathbf{x}^\top \theta, \sigma^2)$$

- → if violated, inference-based metrics (e.g., p-values) are invalid
- Independence of observations (e.g., no repeated measurements)

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_p x_p + \epsilon = \mathbf{x}^{\top} \boldsymbol{\theta} + \epsilon$$

- y: target / output
- ϵ : remaining error / residual
- θ_i : weight of input feature x_i (intercept θ_0) \rightsquigarrow model consists of p+1 weights

Properties and assumptions Faraway (2002), Ch. 7

➤ Checking assumptions in R & Python

- Linear relationship between features and target
- ϵ and $y | \mathbf{x}$ are **normally** distributed with **constant variance** (homoscedastic)
 - $\leadsto \epsilon \sim N(0, \sigma^2) \implies (y|\mathbf{x}) \sim N(\mathbf{x}^\top \theta, \sigma^2)$
- → if violated, inference-based metrics (e.g., p-values) are invalid
- Independence of observations (e.g., no repeated measurements)
- Features x_i independent from error term ϵ

LINEAR REGRESSION

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_p x_p + \epsilon = \mathbf{x}^{\top} \boldsymbol{\theta} + \epsilon$$

- y: target / output
- ϵ : remaining error / residual
- θ_i : weight of input feature x_i (intercept θ_0) \rightsquigarrow model consists of p + 1 weights

Properties and assumptions • "Faraway, Ch. 7" 2002

- Linear relationship between features and target
- \bullet and $y | \mathbf{x}$ are **normally** distributed with **constant variance** (homoscedastic)

$$\sim \epsilon \sim N(0, \sigma^2) \Rightarrow (y|\mathbf{x}) \sim N(\mathbf{x}^\top \theta, \sigma^2)$$

- → if violated, inference-based metrics (e.g., p-values) are invalid
- Independence of observations (e.g., no repeated measurements)
- Features x_i independent from error term ϵ

Interpretable Machine Learning - 1 / 4 - 1/4

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_p x_p + \epsilon = \mathbf{x}^{\top} \boldsymbol{\theta} + \epsilon$$

- y: target / output
- ϵ : remaining error / residual
- θ_i : weight of input feature x_i (intercept θ_0) \rightsquigarrow model consists of p + 1 weights

Properties and assumptions Faraway (2002), Ch. 7

► Checking assumptions in R & Python

- Linear relationship between features and target
- \bullet and y x are **normally** distributed with **constant variance** (homoscedastic)
- $\sim \epsilon \sim N(0, \sigma^2) \Rightarrow (y|\mathbf{x}) \sim N(\mathbf{x}^{\top}\theta, \sigma^2)$
- → if violated, inference-based metrics (e.g., p-values) are invalid
- Independence of observations (e.g., no repeated measurements)
- Features x_i independent from error term ϵ
- No or little multicollinearity (i.e., no strong feature correlations)

LINEAR REGRESSION

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_p x_p + \epsilon = \mathbf{x}^{\top} \boldsymbol{\theta} + \epsilon$$

- v: target / output
- ϵ : remaining error / residual
- θ_i : weight of input feature x_i (intercept θ_0) \rightsquigarrow model consists of p + 1 weights

Properties and assumptions Faraway, Ch. 7" 2002

- Linear relationship between features and target
- \bullet and $y | \mathbf{x}$ are **normally** distributed with **constant variance** (homoscedastic)

$$\sim \epsilon \sim N(0, \sigma^2) \Rightarrow (y|\mathbf{x}) \sim N(\mathbf{x}^\top \theta, \sigma^2)$$

- → if violated, inference-based metrics (e.g., p-values) are invalid
- Independence of observations (e.g., no repeated measurements)
- Features x_i independent from error term ϵ
- No or little multicollinearity (i.e., no strong feature correlations)

Interpretable Machine Learning - 1 / 4 - 1/4

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_p x_p + \epsilon = \mathbf{x}^{\top} \boldsymbol{\theta} + \epsilon$$

Interpretation of weights (**feature effects**) depend on type of feature:

• **Numerical** x_i : Increasing x_i by one unit changes outcome by θ_i , ceteris paribus (ceteris paribus (c.p.) means "everything else held constant".)

LINEAR REGRESSION - INTERPRETATION

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_p x_p + \epsilon = \mathbf{x}^{\top} \boldsymbol{\theta} + \epsilon$$

Interpretation of weights (**feature effects**) depend on type of feature:

• **Numerical** x_i : Increasing x_i by one unit changes outcome by θ_i , ceteris paribus (ceteris paribus (c.p.) means "everything else held constant".)

Interpretable Machine Learning - 2/4

- 2/4

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_p x_p + \epsilon = \mathbf{x}^{\top} \boldsymbol{\theta} + \epsilon$$

Interpretation of weights (**feature effects**) depend on type of feature:

- **Numerical** x_j : Increasing x_j by one unit changes outcome by θ_j , ceteris paribus (*ceteris paribus* (c.p.) means "everything else held constant".)
- **Binary** x_j : Weight θ_j is active or not (multiplication with 1 or 0) \rightsquigarrow reference category $x_i = 0$

LINEAR REGRESSION - INTERPRETATION

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_p x_p + \epsilon = \mathbf{x}^{\top} \boldsymbol{\theta} + \epsilon$$

Interpretation of weights (**feature effects**) depend on type of feature:

- **Numerical** x_j : Increasing x_j by one unit changes outcome by θ_j , ceteris paribus (*ceteris paribus* (c.p.) means "everything else held constant".)
- **Binary** x_j : Weight θ_j is active or not (multiplication with 1 or 0) \rightsquigarrow reference category $x_j = 0$

Interpretable Machine Learning - 2/4 © - 2/4

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_p x_p + \epsilon = \mathbf{x}^{\top} \boldsymbol{\theta} + \epsilon$$

Interpretation of weights (**feature effects**) depend on type of feature:

- **Numerical** x_j : Increasing x_j by one unit changes outcome by θ_j , ceteris paribus (*ceteris paribus* (c.p.) means "everything else held constant".)
- **Binary** x_j : Weight θ_j is active or not (multiplication with 1 or 0) \rightsquigarrow reference category $x_j = 0$
- Categorical feature x_i with L categories:
 - Create L-1 one-hot-encoded features $x_{i,1}, \ldots, x_{i,L-1}$ (each having its own weight)
 - Left out cat. is reference (\(\hat{=}\) dummy encoding)
- \rightsquigarrow Interpretation: Outcome changes by $\theta_{j,i}$ for category i compared to reference cat., c.p.

LINEAR REGRESSION - INTERPRETATION

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_p x_p + \epsilon = \mathbf{x}^{\top} \boldsymbol{\theta} + \epsilon$$

Interpretation of weights (**feature effects**) depend on type of feature:

- **Numerical** x_j : Increasing x_j by one unit changes outcome by θ_j , ceteris paribus (*ceteris paribus* (c.p.) means "everything else held constant".)
- Binary x_j: Weight θ_j is active or not (multiplication with 1 or 0)
 → reference category x_i = 0
- Categorical feature x_i with L categories:
- Create L-1 one-hot-encoded features $x_{i,1}, \ldots, x_{i,L-1}$ (each having its own weight)
- Left out cat. is reference ($\hat{=}$ dummy encoding)
- \sim Interpretation: Outcome changes by $\theta_{j,i}$ for category i compared to reference cat., c.p.

Interpretable Machine Learning - 2/4 © -2/4

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_p x_p + \epsilon = \mathbf{x}^{\top} \boldsymbol{\theta} + \epsilon$$

Interpretation of weights (**feature effects**) depend on type of feature:

- Categorical feature x_i with L categories:
 - Create L-1 one-hot-encoded features $x_{i,1}, \ldots, x_{i,L-1}$ (each having its own weight)
 - Left out cat. is reference (\hat{=} dummy encoding)
- \rightsquigarrow Interpretation: Outcome changes by $\theta_{j,i}$ for category i compared to reference cat., c.p.
- Intercept θ_0 : Expected outcome if all feature values are set to 0

LINEAR REGRESSION - INTERPRETATION

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_p x_p + \epsilon = \mathbf{x}^{\top} \boldsymbol{\theta} + \epsilon$$

Interpretation of weights (**feature effects**) depend on type of feature:

- **Numerical** x_j : Increasing x_j by one unit changes outcome by θ_j , ceteris paribus (*ceteris paribus* (c.p.) means "everything else held constant".)
- **Binary** x_j : Weight θ_j is active or not (multiplication with 1 or 0) \rightsquigarrow reference category $x_i = 0$
- Categorical feature x_i with L categories:
- Create L-1 one-hot-encoded features $x_{i,1}, \ldots, x_{i,L-1}$ (each having its own weight)
- Left out cat. is reference (\triangleq dummy encoding)
- \rightarrow Interpretation: Outcome changes by $\theta_{j,i}$ for category i compared to reference cat., c.p.
- Intercept θ_0 : Expected outcome if all feature values are set to 0

Interpretable Machine Learning - 2/4 © - 2/4

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_p x_p + \epsilon = \mathbf{x}^{\mathsf{T}} \boldsymbol{\theta} + \epsilon$$

Feature importance:

• Absolute **t-statistic** value: $\hat{\theta}_j$ scaled with standard error $(SE(\hat{\theta}_j) = \text{reliability of estimate})$

$$|t_{\hat{ heta}_j}| = \left|rac{\hat{ heta}_j}{\mathcal{SE}(\hat{ heta}_j)}
ight|$$

High t-values ⇒ important (significant) feat.

LINEAR REGRESSION - INTERPRETATION

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_p x_p + \epsilon = \mathbf{x}^{\top} \boldsymbol{\theta} + \epsilon$$

Feature importance:

• Absolute **t-statistic** value: $\hat{\theta}_j$ scaled with standard error $(SE(\hat{\theta}_j) \triangleq \text{reliability of estimate})$

$$|t_{\hat{ heta}_j}| = \left| rac{\hat{ heta}_j}{\mathcal{SE}(\hat{ heta}_j)}
ight|$$

• High *t*-values \Rightarrow important (significant) feat.

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_p x_p + \epsilon = \mathbf{x}^{\top} \boldsymbol{\theta} + \epsilon$$

Feature importance:

• Absolute **t-statistic** value: $\hat{\theta}_j$ scaled with standard error $(SE(\hat{\theta}_i) = \text{reliability of estimate})$

$$|\hat{\hat{ heta}_j}| = \left| \frac{\hat{ heta}_j}{ extstyle SE(\hat{ heta}_j)}
ight|$$

days_since_201

- High t-values \Rightarrow important (significant) feat.
- **p-value**: probability of obtaining a more extreme test statistic assuming H_0 is correct (here: $\theta_j = 0$, i.e., feat. j not significant) \rightsquigarrow High $|t| \Rightarrow$ small p-val. (speak against H_0)

LINEAR REGRESSION - INTERPRETATION

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_p x_p + \epsilon = \mathbf{x}^{\top} \boldsymbol{\theta} + \epsilon$$

Feature importance:

• Absolute **t-statistic** value: $\hat{\theta}_j$ scaled with standard error $(SE(\hat{\theta}_j) \triangleq \text{reliability of estimate})$

$$|t_{\hat{ heta}_j}| = \left|rac{\hat{ heta}_j}{ extsf{SE}(\hat{ heta}_j)}
ight|$$

- High t-values ⇒ important (significant) feat.
- **p-value**: probability of obtaining a more extreme test statistic assuming H_0 is correct (here: $\theta_j = 0$, i.e., feat. j not significant) \rightsquigarrow High $|t| \Rightarrow$ small p-val. (speak against H_0)

Interpretable Machine Learning - 3/4 © - 3/4

Bike data: predict no. of rented bikes using 4 numeric, 1 categorical feat. (season)

$$\begin{split} \hat{y} = & \hat{\theta}_0 + \hat{\theta}_1 \mathbb{1}_{x_{season} = SPRING} + \\ & \hat{\theta}_2 \mathbb{1}_{x_{season} = SUMMER} + \\ & \hat{\theta}_3 \mathbb{1}_{x_{season} = FALL} + \hat{\theta}_4 x_{temp} + \\ & \hat{\theta}_5 x_{hum} + \hat{\theta}_6 x_{windspeed} + \\ & \hat{\theta}_7 x_{days_since_2011} \end{split}$$

	Weights	SE	t-stat.	p-val.
(Intercept)	3229.3	220.6	14.6	0.00
seasonSPRING	862.0	129.0	6.7	0.00
seasonSUMMER	41.6	170.2	0.2	0.81
seasonFALL	390.1	116.6	3.3	0.00
temp	120.5	7.3	16.5	0.00
hum	-31.1	2.6	-12.1	0.00
windspeed	-56.9	7.1	-8.0	0.00
days_since_2011	4.9	0.2	26.9	0.00

EXAMPLE: LIN. REGRESSION - MAIN EFFECTS

Bike data: predict no. of rented bikes using 4 numeric, 1 cat. feat. (season)

$$\begin{split} \hat{y} = & \hat{\theta}_0 + \hat{\theta}_1 \mathbb{1}_{x_{season} = SPRING} + \\ & \hat{\theta}_2 \mathbb{1}_{x_{season} = SUMMER} + \\ & \hat{\theta}_3 \mathbb{1}_{x_{season} = FALL} + \hat{\theta}_4 x_{temp} + \\ & \hat{\theta}_5 x_{hum} + \hat{\theta}_6 x_{windspeed} + \\ & \hat{\theta}_7 x_{days_since_2011} \end{split}$$

	Weights	SE	t-stat.	p-val.
(Intercept)	3229.3	220.6	14.6	0.00
seasonSPRING	862.0	129.0	6.7	0.00
seasonSUMMER	41.6	170.2	0.2	0.81
seasonFALL	390.1	116.6	3.3	0.00
temp	120.5	7.3	16.5	0.00
hum	-31.1	2.6	-12.1	0.00
windspeed	-56.9	7.1	-8.0	0.00
days_since_2011	4.9	0.2	26.9	0.00

Interpretable Machine Learning - 4 / 4 © - 4 / 4

Bike data: predict no. of rented bikes using 4 numeric, 1 categorical feat. (season)

$$\begin{split} \hat{y} = & \hat{\theta}_0 + \hat{\theta}_1 \mathbb{1}_{x_{season} = SPRING} + \\ & \hat{\theta}_2 \mathbb{1}_{x_{season} = SUMMER} + \\ & \hat{\theta}_3 \mathbb{1}_{x_{season} = FALL} + \hat{\theta}_4 x_{temp} + \\ & \hat{\theta}_5 x_{hum} + \hat{\theta}_6 x_{windspeed} + \\ & \hat{\theta}_7 x_{days_since_2011} \end{split}$$

		Weights	SE	t-stat.	p-val.
	(Intercept)	3229.3	220.6	14.6	0.00
	seasonSPRING	862.0	129.0	6.7	0.00
	seasonSUMMER	41.6	170.2	0.2	0.81
	seasonFALL	390.1	116.6	3.3	0.00
	temp	120.5	7.3	16.5	0.00
	hum	-31.1	2.6	-12.1	0.00
	windspeed	-56.9	7.1	-8.0	0.00
	days_since_2011	4.9	0.2	26.9	0.00
_					

Interpretation:

• Intercept: If all feature values are 0 (and season is WINTER $\hat{=}$ reference cat.), the expected number of bike rentals is $\hat{\theta}_0 = 3229.3$

EXAMPLE: LIN. REGRESSION - MAIN EFFECTS

Bike data: predict no. of rented bikes using 4 numeric, 1 cat. feat. (season)

$$\begin{split} \hat{y} = & \hat{\theta}_0 + \hat{\theta}_1 \mathbb{1}_{x_{season} = SPRING} + \\ & \hat{\theta}_2 \mathbb{1}_{x_{season} = SUMMER} + \\ & \hat{\theta}_3 \mathbb{1}_{x_{season} = FALL} + \hat{\theta}_4 x_{temp} + \\ & \hat{\theta}_5 x_{hum} + \hat{\theta}_6 x_{windspeed} + \\ & \hat{\theta}_7 x_{days_since_2011} \end{split}$$

	Weights	SE	t-stat.	p-val.
(Intercept)	3229.3	220.6	14.6	0.00
seasonSPRING	862.0	129.0	6.7	0.00
seasonSUMMER	41.6	170.2	0.2	0.81
seasonFALL	390.1	116.6	3.3	0.00
temp	120.5	7.3	16.5	0.00
hum	-31.1	2.6	-12.1	0.00
windspeed	-56.9	7.1	-8.0	0.00
days_since_2011	4.9	0.2	26.9	0.00

Interpretation:

• Intercept: If all feature values are 0 (and season is WINTER $\hat{=}$ reference cat.), the expected number of bike rentals is $\hat{\theta}_0 = 3229.3$

Interpretable Machine Learning - 4 / 4

Bike data: predict no. of rented bikes using 4 numeric, 1 categorical feat. (season)

$$\begin{split} \hat{y} = & \hat{\theta}_0 + \hat{\theta}_1 \mathbb{1}_{x_{season} = SPRING} + \\ & \hat{\theta}_2 \mathbb{1}_{x_{season} = SUMMER} + \\ & \hat{\theta}_3 \mathbb{1}_{x_{season} = FALL} + \hat{\theta}_4 x_{temp} + \\ & \hat{\theta}_5 x_{hum} + \hat{\theta}_6 x_{windspeed} + \\ & \hat{\theta}_7 x_{days_since_2011} \end{split}$$

	Weights	SE	t-stat.	p-val.
(Intercept)	3229.3	220.6	14.6	0.00
seasonSPRING	862.0	129.0	6.7	0.00
seasonSUMMER	41.6	170.2	0.2	0.81
seasonFALL	390.1	116.6	3.3	0.00
temp	120.5	7.3	16.5	0.00
hum	-31.1	2.6	-12.1	0.00
windspeed	-56.9	7.1	-8.0	0.00
days_since_2011	4.9	0.2	26.9	0.00

Interpretation:

- Intercept: If all feature values are 0 (and season is WINTER $\hat{=}$ reference cat.), the expected number of bike rentals is $\hat{\theta}_0 = 3229.3$
- Categorical: Rentals in SPRING are by $\hat{\theta}_1 = 862$ higher than in WINTER, c.p.

EXAMPLE: LIN. REGRESSION - MAIN EFFECTS

Bike data: predict no. of rented bikes using 4 numeric, 1 cat. feat. (season)

$$\begin{split} \hat{y} = & \hat{\theta}_0 + \hat{\theta}_1 \mathbb{1}_{x_{season} = SPRING} + \\ & \hat{\theta}_2 \mathbb{1}_{x_{season} = SUMMER} + \\ & \hat{\theta}_3 \mathbb{1}_{x_{season} = FALL} + \hat{\theta}_4 x_{temp} + \\ & \hat{\theta}_5 x_{hum} + \hat{\theta}_6 x_{windspeed} + \\ & \hat{\theta}_7 x_{days_since_2011} \end{split}$$

	Weights	SE	t-stat.	p-val.
(Intercept)	3229.3	220.6	14.6	0.00
seasonSPRING	862.0	129.0	6.7	0.00
seasonSUMMER	41.6	170.2	0.2	0.81
seasonFALL	390.1	116.6	3.3	0.00
temp	120.5	7.3	16.5	0.00
hum	-31.1	2.6	-12.1	0.00
windspeed	-56.9	7.1	-8.0	0.00
days_since_2011	4.9	0.2	26.9	0.00

Interpretation:

- Intercept: If all feature values are 0 (and season is WINTER $\hat{=}$ reference cat.), the expected number of bike rentals is $\hat{\theta}_0 = 3229.3$
- Categ.: Rentals in SPRING are by $\hat{\theta}_1 = 862$ higher than in WINTER, c.p.

Interpretable Machine Learning - 4/4 © -4/4

Bike data: predict no. of rented bikes using 4 numeric, 1 categorical feat. (season)

$$\begin{split} \hat{y} = & \hat{\theta}_0 + \hat{\theta}_1 \mathbb{1}_{x_{season} = SPRING} + \\ & \hat{\theta}_2 \mathbb{1}_{x_{season} = SUMMER} + \\ & \hat{\theta}_3 \mathbb{1}_{x_{season} = FALL} + \hat{\theta}_4 x_{temp} + \\ & \hat{\theta}_5 x_{hum} + \hat{\theta}_6 x_{windspeed} + \\ & \hat{\theta}_7 x_{days_since_2011} \end{split}$$

	Weights	SE	t-stat.	p-val.
(Intercept)	3229.3	220.6	14.6	0.00
seasonSPRING	862.0	129.0	6.7	0.00
seasonSUMMER	41.6	170.2	0.2	0.81
seasonFALL	390.1	116.6	3.3	0.00
temp	120.5	7.3	16.5	0.00
hum	-31.1	2.6	-12.1	0.00
windspeed	-56.9	7.1	-8.0	0.00
days_since_2011	4.9	0.2	26.9	0.00

Interpretation:

- Intercept: If all feature values are 0 (and season is WINTER $\hat{=}$ reference cat.), the expected number of bike rentals is $\hat{\theta}_0 = 3229.3$
- Categorical: Rentals in SPRING are by $\hat{\theta}_1 = 862$ higher than in WINTER, c.p.
- Numerical: Rentals increase by $\hat{\theta}_4 = 120.5$ if temp increases by 1 °C, c.p.

EXAMPLE: LIN. REGRESSION - MAIN EFFECTS

Bike data: predict no. of rented bikes using 4 numeric, 1 cat. feat. (season)

$$\begin{split} \hat{y} = & \hat{\theta}_0 + \hat{\theta}_1 \mathbb{1}_{x_{season} = SPRING} + \\ & \hat{\theta}_2 \mathbb{1}_{x_{season} = SUMMER} + \\ & \hat{\theta}_3 \mathbb{1}_{x_{season} = FALL} + \hat{\theta}_4 x_{temp} + \\ & \hat{\theta}_5 x_{hum} + \hat{\theta}_6 x_{windspeed} + \\ & \hat{\theta}_7 x_{days_since_2011} \end{split}$$

	Weights	SE	t-stat.	p-val.
(Intercept)	3229.3	220.6	14.6	0.00
seasonSPRING	862.0	129.0	6.7	0.00
seasonSUMMER	41.6	170.2	0.2	0.81
seasonFALL	390.1	116.6	3.3	0.00
temp	120.5	7.3	16.5	0.00
hum	-31.1	2.6	-12.1	0.00
windspeed	-56.9	7.1	-8.0	0.00
days since 2011	4.9	0.2	26.9	0.00

Interpretation:

- Intercept: If all feature values are 0 (and season is WINTER $\hat{=}$ reference cat.), the expected number of bike rentals is $\hat{\theta}_0 = 3229.3$
- Categ.: Rentals in SPRING are by $\hat{\theta}_1 = 862$ higher than in WINTER, c.p.
- Numerical: Rentals increase by $\hat{\theta}_4 = 120.5$ if temp increases by 1 °C, c.p.

Interpretable Machine Learning - 4/4