11: Multirate Systems

- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density +
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

11: Multirate Systems

DSP and Digital Filters (2019)

Multirate Systems

11: Multirate Systems

- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

Multirate systems include more than one sample rate

Why bother?:

- May need to change the sample rate e.g. Audio sample rates include 32, 44.1, 48, 96 kHz
- Can relax analog or digital filter requirements
 e.g. Audio DAC increases sample rate so that the reconstruction filter can have a more gradual cutoff
- Reduce computational complexity FIR filter length $\propto \frac{f_s}{\Delta f}$ where Δf is width of transition band Lower $f_s \Rightarrow$ shorter filter + fewer samples \Rightarrow computation $\propto f_s^2$

Building blocks

11: Multirate Systems

- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

$$x[n]$$
 $K:1$ $y[m]$

$$y[m] = x[Km] \text{ then take}.$$

$$u[m]$$
 1: K $v[n]$

$$v[n] = \begin{cases} u\left[\frac{n}{K}\right] & K \mid n \\ 0 & \text{else} \\ \text{podding (k-1)} & \text{zeros} \end{cases}$$

Example:

Downsample by 3 then upsample by 4

- We use different index variables (n, m, r) for different sample rates
- Use different colours for signals at different rates (sometimes)
- Synchronization: all signals have a sample at n = 0.

Resampling Cascades

11: Multirate Systems

- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

Successive downsamplers or upsamplers can be combined

Upsampling can be exactly inverted

$$P:1$$
 $Q:1$ = $PQ:1$ $P:1$ P

Downsampling destroys information permanently \Rightarrow uninvertible

$$-P:1$$
 $-1:P$ $+$

Resampling can be interchanged iff P and Q are coprime (surprising!)

$$\frac{x}{P:1} \underbrace{w}_{1:Q} \underbrace{v}_{2} = \underbrace{x}_{1:Q} \underbrace{u}_{1:Q} \underbrace{P:1}_{2} \underbrace{v}_{2}$$

Proof: Left side: $y[n] = w\left[\frac{1}{Q}n\right] = x\left[\frac{P}{Q}n\right]$ if $Q \mid n$ else y[n] = 0. Right side: $v[n] = u\left[Pn\right] = x\left[\frac{P}{Q}n\right]$ if $Q \mid Pn$. But $Q \mid Pn \Rightarrow Q \mid n$ iff P and Q are coprime.

[Note: $a \mid b$ means "a divides into b exactly"]

Noble Identities

11: Multirate Systems

- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

Resamplers commute with addition and multiplication

Delays must be multiplied by the resampling ratio

Noble identities:

Exchange resamplers and filters

Corrollary

$$P:Q = P:Q$$

$$P:Q = P:Q$$

$$Qowr Q delay r delay Q down Q$$

$$Q:1 - z^{-1} = -1:Q$$

$$Q:1 - H(z) - = -1:Q - H(z^{Q})$$

$$R:r$$

$$R:r$$

$$P:Q = P:Q$$

$$Q:1 - Q:1 - Q:1$$

$$R:r$$

Example:
$$H(z) = h[0] + h[1]z^{-1} + h[2]z^{-2} + \cdots$$

 $H(z^3) = h[0] + h[1]z^{-3} + h[2]z^{-6} + \cdots$

Noble Identities Proof

11: Multirate Systems

- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

Define $h_Q[n]$ to be the impulse x[n] Q:1 u[r] H(z) y[r] = x[n] Y[n] Q:1 y[n] Y[n] Y[n] response of $H(z^Q)$.

Assume that h[r] is of length M+1 so that $h_Q[n]$ is of length QM+1. We know that $h_Q[n]=0$ except when $Q\mid n$ and that $\underline{h[r]=h_Q[Qr]}$.

$$\begin{split} w[r] &= v[Qr] = \sum_{s=0}^{QM} h_Q[s] x[Qr - s] \text{ (hain): 0 except ain)} \\ &= \sum_{m=0}^{M} h_Q[Qm] x[Qr - Qm] = \sum_{m=0}^{M} h[m] x[Q(r - m)] \\ &= \sum_{m=0}^{M} h[m] u[r - m] = y[r] \end{split}$$

Upsampled Noble Identity:

$$\frac{x[r]}{H(z)} \frac{u[r]}{1:Q} \underbrace{y[n]}_{y[n]} = \frac{x[r]}{1:Q} \underbrace{v[n]}_{H(z^Q)} \underbrace{W[n]}_{w[n]}$$

We know that v[n] = 0 except when $Q \mid n$ and that v[Qr] = x[r].

$$w[n] = \sum_{s=0}^{QM} h_Q[s]v[n-s] = \sum_{m=0}^{M} h_Q[Qm]v[n-Qm]$$

= $\sum_{m=0}^{M} h[m]v[n-Qm]$

If $Q \nmid n$, then $v[n-Qm] = 0 \ \forall m \ \text{so} \ w[n] = 0 = y[n]$

If
$$Q \mid n = Qr$$
, then $w[Qr] = \sum_{m=0}^{M} h[m]v[Qr - Qm]$
$$= \sum_{m=0}^{M} h[m]x[r - m] = u[r] = y[Qr]$$

Upsampled z-transform

11: Multirate Systems

- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

$$V(z) = \sum_{n} v[n] z^{-n} = \sum_{n \text{ s.t. } K|n} u[\frac{n}{K}] z^{-n}$$
$$= \sum_{m} u[m] z^{-Km} = U(z^{K})$$

U(z) 1:K $U(z^K)$

Spectrum:
$$V(e^{j\omega}) = U(e^{j\omega})$$

Spectrum is horizontally shrunk and replicated K times.

Total energy which anged; power (= energy/sample) multiplied by Upsampling normally followed by a LP filter to remove images.

Example:

K=3: three images of the original spectrum in all.

Energy unchanged: $\frac{1}{2\pi} \int \left| U(e^{j\omega}) \right|^2 d\omega = \frac{1}{2\pi} \int \left| V(e^{j\omega}) \right|^2 d\omega$

Downsampled z-transform

11: Multirate Systems

- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

Define
$$c_K[n] = \delta_{K|n}[n] = \frac{1}{K} \sum_{k=0}^{K-1} e^{\frac{j2\pi kn}{K}}$$

$$\sum_{k=0}^{K-1} e^{\frac{j2\pi kn}{K}}$$
 Now define $x_K[n] = \begin{cases} x[n] & K \mid n \\ 0 & K \nmid n \end{cases} = c_K[n]x[n]$

$$X_{K}(z) = \sum_{n} x_{K}[n]z^{-n} = \frac{1}{K} \sum_{n} \sum_{k=0}^{K-1} e^{\frac{j2\pi kn}{K}} x[n]z^{-n}
= \frac{1}{K} \sum_{k=0}^{K-1} \sum_{n} x[n] \left(e^{\frac{-j2\pi k}{K}} z \right)^{-n} = \frac{1}{K} \sum_{k=0}^{K-1} X(e^{\frac{-j2\pi k}{K}} z)$$

From previous slide:

$$X(z)$$
 $K:1$ $K:1$ $X(e^{\frac{-j2\pi k}{K}}z^{\frac{1}{K}})$

$$X_K(z) = Y(z^K)$$

$$\Rightarrow Y(z) = X_K(z^{\frac{1}{K}}) = \frac{1}{K} \sum_{k=0}^{K-1} X(e^{\frac{-j2\pi k}{K}} z^{\frac{1}{K}})$$

Frequency Spectrum:

Quency Spectrum:
$$Y(e^{j\omega}) = \frac{1}{K} \sum_{k=0}^{K-1} X(e^{\frac{j(\omega-2\pi k)}{K}})$$
 to be filtered
$$= \frac{1}{K} \left(X(e^{\frac{j\omega}{K}}) + X(e^{\frac{j\omega}{K} - \frac{2\pi}{K}}) + X(e^{\frac{j\omega}{K} - \frac{4\pi}{K}}) + \cdots \right)$$
 Average of K aliased versions, each expanded in ω by a factor of K .

Downsampling is normally preceded by a LP filter to prevent aliasing.

Downsampled Spectrum

downsampling: energy * = k (filter) energy * = k (filter) x[n]

11: Multirate Systems

- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

Example 1:

$$K = 3$$

Not quite limited to $\pm \frac{\pi}{K}$

Shaded region shows aliasing

 $Y(e^{j\omega}) = \frac{1}{K} \sum_{k=0}^{K-1} X(e^{\frac{j(\omega - 2\pi k)}{K}})$

Example 2:

$$K = 3$$

Energy all in $\frac{\pi}{K} \leq |\omega| < 2\frac{\pi}{K}$

No aliasing: ©

No aliasing: If all energy is in $r\frac{\pi}{K} \leq |\omega| < (r+1)\frac{\pi}{K}$ for some integer rNormal case (r=0): If all energy in $0 \leq |\omega| \leq \frac{\pi}{\kappa}$

Downsampling: Total energy multiplied by $\approx \frac{1}{K}$ (= $\frac{1}{K}$ if no aliasing) Average power \approx unchanged (= energy/sample)

11: Multirate Systems

- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

Example: Signal in $\omega \in \pm 0.4\pi$ + Tone @ $\omega = \pm 0.1\pi$ + White noise

Power = Energy/sample = Average PSD = $\frac{1}{2\pi} \int_{-\pi}^{\pi} PSD(\omega) d\omega = 0.6$

Component powers:

Signal =
$$0.3$$
, Tone = 0.2 , Noise = 0.1

Upsampling:

Same energy per second \Rightarrow Power is $\div K$

Downsampling:

Average power is unchanged. \exists aliasing in the $\div 3$ case.

Perfect Reconstruction

11: Multirate Systems

- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

Input sequence x[n] is split into three streams at $\frac{1}{3}$ the sample rate:

$$u[m] = x[3m], v[m] = x[3m-1], w[m] = x[3m-2]$$

Following upsampling, the streams are aligned by the delays and then added to give:

$$y[n] = x[n-2]$$

Perfect Reconstruction: output is a delayed scaled replica of the input

Commutators

11: Multirate Systems

- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

The combination of delays and downsamplers can be regarded as a commutator that distributes values in sequence to u, w and v.

Fractional delays, $z^{-\frac{1}{3}}$ and $z^{-\frac{2}{3}}$ are needed to synchronize the streams. The output commutator takes values from the streams in sequence. For clarity, we omit the fractional delays and regard each terminal, \circ , as holding its value until needed. Initial commutator position has zero delay.

The commutator direction is against the direction of the z^{-1} delays.

Summary

11: Multirate Systems

- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

Multirate Building Blocks

- \circ Upsample: $X(z) \stackrel{1:K}{\to} X(z^K)$ Invertible, Inserts K-1 zeros between samples Shrinks and replicates spectrum Follow by LP filter to remove images
- $\begin{array}{c} \bullet \quad \text{Downsample: } X(z) \stackrel{K:1}{\to} \frac{1}{K} \sum_{k=0}^{K-1} X(e^{\frac{-j2\pi k}{K}} z^{\frac{1}{K}}) \\ \text{Destroys information and energy, keeps every } K^{\text{th}} \text{ sample} \\ \text{Expands and aliasses the spectrum} \\ \text{Spectrum is the average of } K \text{ aliased expanded versions} \\ \text{Precede by LP filter to prevent aliases} \end{array}$

Equivalences

- \circ Noble Identities: $H(z) \longleftrightarrow H(z^K)$
- $\circ \quad \text{Interchange } P:1 \text{ and } 1:Q \text{ iff } P \text{and } Q \text{ coprime}$

Commutators

Combine delays and down/up sampling

For further details see Mitra: 13.

MATLAB routines

11: Multirate Systems

- Multirate Systems
- Building blocks
- Resampling Cascades
- Noble Identities
- Noble Identities Proof
- Upsampled z-transform
- Downsampled z-transform
- Downsampled Spectrum
- Power Spectral Density
- Perfect Reconstruction
- Commutators
- Summary
- MATLAB routines

resample	change sampling rate

DSP and Digital Filters (2019)

Multirate: 11 – 14 / 14