Regressions- och tidsserieanalys Föreläsning 11 - Logistisk regression.

Mattias Villani 😇

Statistiska institutionen Stockholms universitet

Institutionen för datavetenskap Linköpings universitet

Översikt

- Odds och logodds
- Enkel logistisk regression
- Multipel logistisk regression
- Estimation av logistisk regression

Odds och logodds

Låt P(A) vara sannolikheten för en händelse A.

$$P(A) = \frac{\text{antal fall där } A \text{ inträffar}}{\text{antal möjliga fall}}$$

Odds

$$\mathrm{Odds}(A) = rac{\mathsf{antal\ fall\ d\"{a}r\ A\ intr affar}}{\mathsf{antal\ fall\ d\"{a}r\ A\ inte\ intr affar}}$$

$$\mathrm{Odds}(A) = rac{\mathrm{P}(A)}{1 - \mathrm{P}(A)}$$

- Exempel: Sannolikheten att slå en 6:a med en vanlig tärning:
 - ightharpoonup Sannolikhet P(A) = 1/6
 - ▶ Odds

Odds(A) =
$$\frac{1/6}{5/6} = \frac{1}{5}$$

Oddset är 1:5 ("1mot 5").

Exponentialfunktionen

Exponentialfunktionen

$$\exp(x) = e^x$$

där $e \approx 2.71828$ är Eulers tal.

Naturliga logaritmen ln(x) är inversa funktionen till exp(x).

$$\ln(\exp(x)) = \ln(e^x) = x$$

Mattias Villani

ST1230

Logistisk regression - sannolikhet för y = 1

- Binär responsvariabel: y = 0 och y = 1.
- Logistisk regression

$$P(y = 1|x) = \frac{\exp(\beta_0 + \beta_1 x)}{1 + \exp(\beta_0 + \beta_1 x)}$$

$$P(y = 0|x) = 1 - P(y = 1|x) = \frac{1}{1 + \exp(\beta_0 + \beta_1 x)}$$

Mattias Villani

ST123G

Logistisk regression - oddskvot

Logistisk regression

$$P(y = 1|x) = \frac{\exp(\beta_0 + \beta_1 x)}{1 + \exp(\beta_0 + \beta_1 x)}$$

$$P(y = 0|x) = \frac{1}{1 + \exp(\beta_0 + \beta_1 x)}$$

Odds

Odds
$$(y = 1|x) = \frac{P(y = 1|x)}{P(y = 0|x)} = \exp(\beta_0 + \beta_1 x)$$

Oddskvot för att tolka β_1

$$OR(x) = \frac{Odds(y = 1|x + 1)}{Odds(y = 1|x)} = exp(\beta_1)$$

Bevis:

$$\mathrm{OR}(x) = \frac{\mathrm{Odds}(y=1|x+1)}{\mathrm{Odds}(y=1|x)} = \frac{\exp(\beta_{\mathbf{0}} + \beta_{\mathbf{1}}x + \beta_{\mathbf{1}})}{\exp(\beta_{\mathbf{0}} + \beta_{\mathbf{1}}x)} = \frac{\exp(\beta_{\mathbf{0}} + \beta_{\mathbf{1}}x)\exp(\beta_{\mathbf{1}})}{\exp(\beta_{\mathbf{0}} + \beta_{\mathbf{1}}x)} = \exp(\beta_{\mathbf{1}})$$

Mattias Villani ST123G

Logistisk regression - oddskvot

Mattias Villani

ST123G

Logistisk regression - log-odds

Repetition: Logaritm med bas 10:

$$\log(10^a) = a$$

Naturlig logaritm (bas $e \approx 2.7183$)

$$\ln(\exp(a)) = \ln e^a = a$$

Logistisk regression

$$P(y = 1|x) = \frac{\exp(\beta_0 + \beta_1 x)}{1 + \exp(\beta_0 + \beta_1 x)}$$

Odds

$$Odds(y = 1|x) = \exp(\beta_0 + \beta_1 x)$$

Log-odds

$$LogOdds(y = 1|x) = \beta_0 + \beta_1 x$$

Logistisk regression är en linjär modell för log-oddset.

Logistisk regression - logodds

Mattias Villani

ST123G

Enkel logistisk regression - Wisconsin Cancer

- = n = 699 samples klassificerade som
 - ▶ 'benign' (458 fall)
 - 'malignant' (241 fall).
- Ett antal mått (ordinalskala 1-10) som förklarande variabler:

Variabelnamn	Mått
Clithickness	Clump Thickness
Cell.size	Uniformity of Cell Size
Cell.shape	Uniformity of Cell Shape
Marg.adhesion	Marginal Adhesion
Epith.c.size	Single Epithelial Cell Size
Bl.cromatin	Bland Chromatin
Normal.nu cleoli	Normal Nucleoli
Mitoses	Mitoses

	Id	Cl.thickness	Cell.size	Cell.shape	Marg.adhesion	Epith.c.size	Bare.nuclei	Bl.cromatin	Normal.nucleoli	Mitoses	Class
1	1000025	5	1	1	1	2	1	3	1	1	benign
2	1002945	5	4	4	5	7	10	3	2	1	benign
3	1015425	3	1	1	1	2	2	3	1	1	benign
4	1016277	6	8	8	1	3	4	3	7	1	benign
5	1017023	4	1	1	3	2	1	3	1	1	benign
6	1017122	8	10	10	8	7	10	9	7	1	malignant

Mattias Villani

Enkel logistisk regression - Wisconsin Cancer

Analysis of Maximum Likelihood Estimates								
Parameter	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq			
Intercept	1	-4.9602	0.3600	189.8772	<.0001			
Cellsize	1	1.4887	0.1210	151.2705	<.0001			

Odds Ratio Estimates						
95% Wald Effect Point Estimate Confidence Limit						
Cellsize	4.431	3.495	5.618			

```
title "Simple logistic regression";
proc logistic data = work.breastcancer DESCENDING;
model class = Cellsize;
run;
```

Okning av Cellsize med en enhet ökar risken (oddset) för malign $\exp(1.4887) = 4.431$ ggr, eller med 443.1%.

Enkel logistisk regression - Wisconsin Cancer

Multipel logistisk regression

■ Multipel logistisk regression med *k* förklarande variabler:

$$P(y = 1 | x_1, ..., x_k) = \frac{\exp(\beta_0 + \beta_1 x_1 + ... + \beta_k x_k)}{1 + \exp(\beta_0 + \beta_1 x_1 + ... + \beta_k x_k)}$$

Logodds

$$LogOdds(y = 1|x_1,...,x_k) = \beta_0 + \beta_1 x_1 + ... + \beta_k x_k$$

Oddskvot - multipel regression

$$OR_j = \frac{Odds(y = 1|x_j + 1, allt annat lika)}{Odds(y = 1|x_j, allt annat lika)} = exp(\beta_j)$$

Multipel logistisk regression - Wisconsin Cancer

Ana	dysis	of Maximu	ım Likeliho	od Estimates	
Parameter	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq
Intercept	1	-10.1099	1.1737	74.1902	<.0001
Clthickness	1	0.5352	0.1419	14.2204	0.0002
Cellsize	1	-0.00594	0.2092	0.0008	0.9773
Cellshape	1	0.3221	0.2306	1.9507	0.1625
Margadhesion	1	0.3307	0.1235	7.1742	0.0074
Epithcsize	1	0.0968	0.1566	0.3822	0.5364
Barenuclei	1	0.3830	0.0939	16.6503	<.0001
Blcromatin	1	0.4474	0.1714	6.8140	0.0090
Normalnucleoli	1	0.2131	0.1129	3.5622	0.0591
Mitoses	1	0.5385	0.3256	2.7352	0.0982

Odds Ratio Estimates					
Effect	Point Estimate	95% Wald Confidence Limits			
Clthickness	1.708	1.293	2.256		
Cellsize	0.994	0.660	1.498		
Cellshape	1.380	0.878	2.169		
Margadhesion	1.392	1.093	1.773		
Epithcsize	1.102	0.811	1.497		
Barenuclei	1.467	1.220	1.763		
Blcromatin	1.564	1.118	2.189		
Normalnucleoli	1.237	0.992	1.544		
Mitoses	1.713	0.905	3.244		

- Cellsize inte signifikant (oddskvotens KI innehåller värdet 1).
- Om Clthinkness ökar med en enhet så ökar oddskvoten för malign med 1.708, dvs risken för malign ökar med 70.8%.

Modellutvärdering - Wisconsin Cancer

- Hur ofta predikterar den skattade modellen rätt?
- Enkel logistisk regression cellsize:

Multipel logistisk regression

Bättre att göra detta på en träning-test split av data.

- = n = 891 personer på Titanic, varav 342 överlevande.
- Responsvariabel: y = 1 om överlevde, annars y = 0.
- Förklarande variabler:
 - Age
 - \triangleright Sex (1=Kvinna, 0 = Man)
 - ► FirstClass (1=Första klass, 0 = Ej första klass)

Analysis of Maximum Likelihood Estimates							
Parameter	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq		
Intercept	1	-1.1499	0.2291	25.2034	<.0001		
Age	1	-0.0283	0.00723	15.3758	<.0001		
Sex	1	2.6052	0.1815	206.0644	<.0001		
FirstClass	1	1.8960	0.2197	74.4654	<.0001		

Odds Ratio Estimates					
Effect	Point Estimate	95% Wald confidence Limits			
Age	0.972	0.958	0.986		
Sex	13.534	9.483	19.316		
FirstClass	6.660	4.329	10.244		

Odds Ratio Estimates					
Effect Point Estimate 95% Wald Confidence Limit					
Age	0.972	0.958	0.986		
Sex	13.534	9.483	19.316		
FirstClass	6.660	4.329	10.244		

Logistisk regression - Odds version

$$\mathrm{Odds}(y=1|x) = \exp(\beta_0 + \beta_1 \cdot \mathrm{Age} + \beta_2 \cdot \mathrm{Sex} + \beta_3 \cdot \mathrm{FirstClass})$$

Interceptet β_0 - Oddset överleva, nyfödd pojke, ej första klass:

$$\begin{aligned} \text{Odds}(y=1|\texttt{Age}=0,\texttt{Sex}=0,\texttt{First}=0) &= \exp(\beta_0) = \exp(-1.1499) = 0.3166684 \\ P(y=1|\texttt{Age}=0,\texttt{Sex}=0,\texttt{First}=0) &= \frac{\text{Odds}}{1+\text{Odds}} = \frac{0.3166684}{1+0.3166684} = 0.2405073 \end{aligned}$$

Nyfödd flicka, ej i första klass:

$$\begin{aligned} \text{Odds}(y=1|\texttt{Age}=0,\texttt{Sex}=1,\texttt{First}=0) &= \exp(\beta_0+\beta_2) = \exp(\beta_0) \exp(\beta_2) \\ &= 0.3166684 \cdot 13.543 = 4.28864 \\ \text{P}(y=1|\texttt{Age}=0,\texttt{Sex}=1,\texttt{First}=0) &= \frac{4.28864}{1+4.28864} = 0.8109155 \end{aligned}$$

Odds Ratio Estimates						
Effect	Effect Point Estimate 95% Wald Confidence Limit					
Age	0.972	0.958	0.986			
Sex	13.534	9.483	19.316			
FirstClass	6.660	4.329	10.244			

Nyfödd flicka, första klass:

$$\begin{split} \mathrm{Odds}(y = 1 | \texttt{Age} = 0, \texttt{Sex} = 1, \texttt{FirstClass} = 1) &= \exp(\beta_0 + \beta_2 + \beta_3) \\ &= \exp(\beta_0) \exp(\beta_2) \exp(\beta_3) = 4.28864 \cdot 6.66 = 28.56234 \\ \mathrm{P}(y = 1 | \texttt{Age} = 0, \texttt{Sex} = 1, \texttt{FirstClass} = 1) &= \frac{28.56234}{1 + 28.56234} = 0.9661732 \end{split}$$

1-årig flicka, första klass:

$$\begin{split} \mathrm{Odds}(y = 1 | \mathtt{Age} = 1, \mathtt{Sex} = 1, \mathtt{FirstClass} = 1) &= \exp(\beta_0 + \beta_1 \cdot 1 + \beta_2 + \beta_3) \\ &= \exp(\beta_0) \exp(\beta_1) \exp(\beta_2) \exp(\beta_3) = 28.56234 \cdot 0.972 = 27.7626 \\ \mathrm{P}(y = 1 | \mathtt{Age} = 1, \mathtt{Sex} = 1, \mathtt{FirstClass} = 1) &= \frac{27.76264}{1 + 27.7626} = 0.9652326 \end{split}$$

ST123G

Mattias Villani

Odds Ratio Estimates					
Effect	95% Wald Confidence Limit				
Age	0.972	0.958	0.986		
Sex	13.534	9.483	19.316		
FirstClass	6.660	4.329	10.244		

2-årig flicka, första klass:

$$\begin{split} \mathrm{Odds}(y = 1 | \mathtt{Age} = 2, \mathtt{Sex} = 1, \mathtt{FirstClass} = 1) &= \exp(\beta_0 + \beta_1 \cdot 2 + \beta_2 + \beta_3) \\ &= \exp(\beta_0 + \beta_1 + \beta_1 + \beta_2 + \beta_3) \\ &= \exp(\beta_0) \exp(\beta_1) \exp(\beta_1) \exp(\beta_2) \exp(\beta_3) = 27.7626 \cdot 0.972 = 26.98525 \\ \mathrm{P}(y = 1 | \mathtt{Age} = 2, \mathtt{Sex} = 1, \mathtt{FirstClass} = 1) &= \frac{26.98525}{1 + 26.98525} = 0.9642669 \end{split}$$

Kontroll:

$$\begin{split} P(\textit{y} = 1 | \texttt{Age} = \texttt{2}, \texttt{Sex} = \texttt{1}, \texttt{FirstClass} = \texttt{1}) \\ &= \frac{\exp(-1.1499 - 0.0283 \cdot 2 + 2.6052 + 1.896)}{1 + \exp(1 - 1.1499 - 0.0283 \cdot 2 + 2.6052 + 1.896)} = 0.9642465 \end{split}$$

Mattias Villani ST123G

Vilka överlevde Titanic? Sannolikhet

Skatta en logistisk regression

Datamaterial med tre oberoende datapunkter (n = 3):

$$y_1 = 0$$
, $y_2 = 1$, $y_3 = 0$.

 \blacksquare Varje y_i observeras tillsammans med en förklarande variabel

$$x_1, x_2, x_3$$

Sannolikheten för just detta datamaterial

$$\underbrace{\frac{1}{1 + \exp(\beta_0 + \beta_1 x_1)}}_{y_1 = 0} \cdot \underbrace{\frac{\exp(\beta_0 + \beta_1 x_2)}{1 + \exp(\beta_0 + \beta_1 x_2)}}_{y_2 = 1} \cdot \underbrace{\frac{1}{1 + \exp(\beta_0 + \beta_1 x_3)}}_{y_3 = 0}$$

- Likelihoodfunktion: sannolikheten för ett datamaterial betraktat som en funktion av parametrarna β_0 och β_1 .
- Maximum likelihood: välj de parametervärden β_0 och β_1 som maximerar sannolikheten för det observerade datamaterialet.

Logistisk regression - maximum likelihood

- Data $(x_1, y_1), \ldots, (x_n, y_n)$ simulerat från logistisk regression.
 - $\rightarrow \alpha = 1 \text{ och } \beta = 2$
 - n = 200

Skatta en logistisk regression - jitter

Mattias Villani

ST123G

Skatta en logistisk regression - jitter

Mattias Villani

ST1230

Skatta en logistisk regression

Multinomial logistisk regression

Spotify-data från boken

Machine Learning - A First Course for Engineers and Scientists

Respons med fler \(\text{an tva}\) kategorier (bin\(\text{art}\)). Multinomial logistisk regression.

Mattias Villani

Klassificeringsyta - spotify data

Mattias Villani

ST123G