Discrete Mathematics

-- Chapter 10: Recurrence Relations

Hung-Yu Kao (高宏宇)

Department of Computer Science and Information Engineering, National Cheng Kung University

$$F_{n+2} = F_{n+1} + F_n$$

$$\underbrace{a_{n+1}} = 3\underbrace{a_n}$$

$$a_n = A^*3^n$$

Outline

- The first-order linear recurrence relation
- The second-order linear homogeneous recurrence relation with constant coefficients
- The nonhomogeneous recurrence relation
- The method of generating Functions

- The equation $a_{n+1} = 3a_n$ is a <u>recurrence relation</u> with constant coefficients. Since a_{n+1} only depends on its immediate predecessor, the relation is said to be <u>first</u> order.
- The expression $a_0 = A$, where A is a constant, is referred to as an initial condition.
- The **unique** solution of the recurrence relation $a_{n+1} = da_n$, where $n \ge 0$, d is a constant, and $a_0 = A$, is given by $a_n = Ad^n$.

- Ex 10.1 : Solve the recurrence relation $a_n = 7a_{n-1}$, where $n \ge 1$ and $a_2 = 98$.
 - $a_n = a_0(7^n)$, $a_2 = 98 = a_0(7^2) \Rightarrow a_0 = 2$, $a_n = 2(7^n)$.
- Ex 10.2: A bank pay 6% annual interest on savings, compounding the interest monthly. If we deposit \$1000, how much will this deposit be worth a year later?
 - $p_{n+1} = (1.005)p_n$, $p_0 = 1000 \Rightarrow p_n = p_0(1.005)^n$
 - $p_{12} = 1000(1.005)^{12} = 1061.68

- Refer to examples 1.37, 3.11, 4.12, and 9.12.
- Ex 10.3: Let a_n count the number of compositions of n, we find that

$$a_{n+1} = 2a_n, n \ge 1, a_1 = 1 \implies a_n = 2^{n-1}$$

(1) (2) (3)	$ \begin{array}{c} 3 \\ 1 + 2 \\ 2 + 1 \end{array} $	(1') (2') (3') (4')	$ \begin{array}{r} 4 \\ 1 + 3 \\ 2 + 2 \\ 1 + 1 + 2 \end{array} $
(4)	1+1+1	(1") (2") (3") (4")	3+1 $1+2+1$ $2+1+1$ $1+1+1+1$

Figure 10.1

- The recurrence relation a_{n+1} $da_n = 0$ is called <u>linear</u> because each term appears to the first power.
- Sometimes a nonlinear recurrence (e.g., a_{n+1} $3a_n a_{n-1} = 0$) relation can be transformed to a linear one by a suitable algebraic substitution.
- Ex 10.4: Find a_{12} if $a_{n+1}^2 = 5a_n^2$ where $a_n > 0$ for $n \ge 0$ and $a_0 = 2$.
 - Let $b_n = a_n^2$. Then $b_{n+1} = 5b_n$ (linear) for $n \ge 0$ and $b_0 = 4 \Rightarrow b_n = 4.5^n$

Homogeneous and Nonhomogeneous

• The general first-order linear recurrence relation with constant coefficients has the form

$$a_{n+1} + ca_n = f(n).$$

- f(n) = 0, the relation is called <u>homogeneous</u>.
- Otherwise, it is called <u>nonhomogeneous</u>.
- Ex 10.5: Let a_n denote the number of comparisons needed to sort n numbers in <u>bubble sort</u>, we find the recurrence relation
 - $a_n = a_{n-1} + (n-1), n \ge 2, a_1 = 0$


```
procedure BubbleSort(n: positive integer; x_1, x_2, x_3, \ldots, x_n: real numbers)
begin
   for i := 1 to n-1 do
      for j := n downto i+1 do
      if x_j < x_{j-1} then
      begin { interchange}
          temp := x_{j-1}
          x_{j-1} := x_j
          x_j := temp
      end
```

Figure 10.2

i = 2
$$\begin{vmatrix} x_1 & 2 & 2 & 2 & 2 \\ x_2 & 7 & 7 & 7 & 7 \\ x_3 & 9 & 9 \\ x_4 & 5 \\ x_5 & 8 \end{vmatrix}$$
 j = 5 $\begin{vmatrix} 5 & 2 & 2 & 2 \\ 7 & 7 & 7 \\ 9 & 9 & 9 \\ 8 & 8 & 8 & 8 \end{vmatrix}$

Three comparisons and two interchanges.

Two comparisons and one interchange.

One comparison but no interchanges.

Figure 10.3

• Ex 10.6: In Example 9.6 we sought the generating function for the sequence 0, 2, 6, 12, 20, 30, 42,..., due to the observation $a_n = n^2 + n$. If we fail to see this, alternatively

$$a_1 - a_0 = 2$$

 $a_2 - a_1 = 4$
 $a_3 - a_2 = 6$
 $\vdots \quad \vdots \quad \vdots$
 $a_n - a_{n-1} = 2n$.

$$a_n - a_0 = 2 + 4 + 6 + \dots + 2n = 2(1 + 2 + 3 + \dots + n)$$

= $2[n(n+1)/2] = n^2 + n$.

• Ex 10.7: Solve the relation $a_n = n \cdot a_{n-1}$, $n \ge 1$, $a_0 = 1$.

1 2 2 1

x 2

	1	3	2 2	3	
3	1	3	2		
3	2	3	1 1		
	2		1	3	

x 3

10.2

The Second-Order Linear Homogeneous Recurrence Relation with Constant Coefficients

- Linear recurrence relation of order k:
 - $C_0 a_n + C_1 a_{n-1} + C_2 a_{n-2} + \dots + C_k a_{n-k} = f(n), n \ge 0.$
- Homogeneous relation of order 2:
 - $C_0 a_n + C_1 a_{n-1} + C_2 a_{n-2} = 0, n \ge 2.$
- Substituting $a_n = cr^n$ into the equation, we have
 - $C_0 cr^n + C_1 cr^{n-1} + C_2 cr^{n-2} = 0, n \ge 2.$
 - Characteristic equation: $C_0 r^2 + C_1 r + C_2 = 0$, $n \ge 2$.
- The roots r_1 , r_2 of this equation are called <u>characteristic roots</u>.
- Three cases for the roots:
 - (A) distinct real roots
 - (B) complex conjugate roots
 - (C) equivalent real roots

Case (A): Distinct Real Roots

- Ex 10.9 : Solve the recurrence relation $a_n + a_{n-1} 6a_{n-2} = 0$, $n \ge 2$, and $a_0 = -1$ and $a_1 = 8$.
 - Solution

Let
$$a_n = cr^n$$

 $r^2 + r - 6 = 0 \Rightarrow r = 2, -3$
 $a_n = c_1(2)^n + c_2(-3)^n$
 $-1 = a_0 = c_1 + c_2$
 $8 = a_1 = 2c_1 - 3c_2 \Rightarrow c_1 = 1, c_2 = -2$
 $\Rightarrow a_n = (2)^n - 2(-3)^n$

 $a_n=2^n$ and $a_n=(-3)^n$ are both solutions

Linearly independent solutions

- Ex 10.10 : Solve Fibonacci relation, $F_{n+2} = F_{n+1} + F_n$, $n \ge 0$, $F_0 = 0$, $F_1 = 1$.
 - Solution

Let
$$F_n = cr^n$$
,
 $r^2 - r - 1 = 0 \Rightarrow \qquad r = (1 \pm \sqrt{5})/2$

$$F_n = c_1 \left(\frac{1+\sqrt{5}}{2}\right)^n + c_2 \left(\frac{1-\sqrt{5}}{2}\right)^n.$$

$$F_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right], \qquad n \ge 0$$

- Ex 10.11: For $n \ge 0$, let $S = \{1, 2, ..., n\}$, and let a_n denote the number of subsets of S that contains no consecutive integers. Find and solve a recurrence relation for a_n .
 - Solution
 - $a_0 = 1$ and $a_1 = 2$ and $a_2 = 3$ and $a_3 = 5$ (Fibonacci?)
 - If $A \subseteq S$ and A is to be counted in a_n , there are two cases
 - (1) $n \in A$, then $A \{n\}$ would be counted in a_{n-2}
 - (2) $n \notin A$, then A would be counted in a_{n-1}
 - $a_n = a_{n-1} + a_{n-2}, n \ge 2$

$$a_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^{n+2} - \left(\frac{1-\sqrt{5}}{2} \right)^{n+2} \right], \quad n \ge 0.$$

Exhaustive and mutually disjoint

• Ex 10.12: Suppose we have a $2 \times n$ chessboard. We wish to cover such a chessboard using 2×1 vertical dominoes or 1×2 horizontal dominoes.

Figure 10.5

- Let b_n count the number of ways we can cover a $2 \times n$ chessboard by using 2×1 vertical dominoes or 1×2 horizontal dominoes.
- $b_1 = 1$ and $b_2 = 2$
- For $n \ge 3$, consider the last (nth) column of the chessboard
 - By one 2×1 vertical domino: Now the remaining $2\times(n-1)$ subboard can be covered in b_{n-1} ways.
 - By two 1×2 horizontal dominoes, place one above the other: Now the remaining $2 \times (n-2)$ subboard can be covered in b_{n-2} ways.
- $b_n = b_{n-1} + b_{n-2}, n \ge 3, b_1 = 1 \text{ and } b_2 = 2$ $\Rightarrow b_n = F_{n+1}$

- Ex 10.14: Suppose the symbols of legal arithmetic expressions include 0, 1, ..., 9, +, *, /.
- Let a_n be the number of legal arithmetic expressions that are made up of n symbols. Solve a_n a_1 =10 and a_2 =100

Solution:

- For $n \ge 3$, consider the two cases of length n 1:
 - If x is an expression of n -1 symbols, add a digit to the right of x. $\Rightarrow 10a_{n-1}$
 - If x is an expression of n 2 symbols, we adjoin to the right of x one of the 29 two-symbol expressions: +0, ..., +9, *0, ...,*9, /1, /2,..., /9. \Rightarrow 29 a_{n-2}
- $a_n = 10a_{n-1} + 29a_{n-2}, n \ge 3$

Idea: use a_{n-1} (or more) to represent a_n

- Ex 10.15 (9.13): Palindromes are the compositions of numbers that read the same left to right as right to left.
- Let p_n count the number of palindromes of n.
- $p_n = 2p_{n-2}, n \ge 3, p_1 = 1, p_2 = 2$

p_3	97. 	p_5		p_4		$ ho_6$
(1) 3 (2) 1+1+	(1') (2') (1") (2")	5 2+1+2 1+3+1 1+1+1+1+1	(1) (2) (3) (4)	$ \begin{array}{r} 4 \\ 1+2+1 \\ 2+2 \\ 1+1+1+1 \end{array} $	(1') (2') (3') (4')	$ \begin{array}{c} 6 \\ 2+2+2 \\ 3+3 \\ 2+1+1+2 \\ 1+4+1 \end{array} $
(') Add 1 to the fist and last summands (") Append "1+" to the start and "+1" to the end						1+4+1 $1+1+2+1+1$ $1+2+2+1$ $1+1+1+1+1+1$

Figure 10.6

$$p_n = 2p_{n-2}, \qquad n \ge 3, \qquad p_1 = 1, \qquad p_2 = 2.$$

Substituting $p_n = cr^n$, for $c, r \neq 0, n \geq 1$, into this recurrence relation, the resulting characteristic equation is $r^2 - 2 = 0$. The characteristic roots are $r = \pm \sqrt{2}$, so $p_n = c_1(\sqrt{2})^n +$ $c_2(-\sqrt{2})^n$. From

$$1 = p_1 = c_1(\sqrt{2}) + c_2(-\sqrt{2})$$

$$2 = p_2 = c_1(\sqrt{2})^2 + c_2(-\sqrt{2})^2$$

we find that $c_1 = \left(\frac{1}{2} + \frac{1}{2\sqrt{2}}\right)$, $c_2 = \left(\frac{1}{2} - \frac{1}{2\sqrt{2}}\right)$, so

$$p_n = \left(\frac{1}{2} + \frac{1}{2\sqrt{2}}\right)(\sqrt{2})^n + \left(\frac{1}{2} - \frac{1}{2\sqrt{2}}\right)(-\sqrt{2})^n, \qquad n \ge 1.$$

we consider n even, say n = 2k

$$\begin{split} p_n &= \left(\frac{1}{2} + \frac{1}{2\sqrt{2}}\right) (\sqrt{2})^{2k} + \left(\frac{1}{2} - \frac{1}{2\sqrt{2}}\right) (-\sqrt{2})^{2k} \\ &= \left(\frac{1}{2} + \frac{1}{2\sqrt{2}}\right) 2^k + \left(\frac{1}{2} - \frac{1}{2\sqrt{2}}\right) 2^k = 2^k = 2^{n/2} \end{split}$$

- Ex 10.16: Find the number of recurrence relation for the number of binary sequences of length n that have no consecutive 0's.
 - Let a_n be the number of such sequences of length n.
 - Let $a_n^{(0)}$ count those end in 0, and $a_n^{(1)}$ count those end in 1 $\Rightarrow a_n = a_n^{(1)} + a_n^{(0)}$
 - Consider x of length n-1
 - If x ends in 1, we can append a 0 or a 1 to it $(2a_{n-1}^{(1)})$.
 - If x ends in 0, we can append a 1 to it $(a_{n-1}^{(0)})$.

- If y is counted in $a_{n-2} \Leftrightarrow \text{sequence } y1 \text{ is counted in } a_{n-1}^{(1)}$
 - So, $a_{n-2} = a_{n-1}^{(1)}$.
- $a_n = a_{n-1} + a_{n-2}, n \ge 3, a_1 = 2, a_2 = 3$

Second- or Higher-Order Recurrence Relation

- $\underline{\mathbf{Ex}} \ \mathbf{10.18} : \mathbf{Solve} \ 2a_{n+3} = a_{n+2} + 2a_{n+1} a_n, \ n \ge 0, \ a_0 = 0, \ a_1 = 1, \ a_2 = 2$
 - Let $a_n = cr^n$
 - Characteristic equation: $2r^3-r^2-2r+1=0 \Rightarrow r=1, 1/2, -1$
 - $a_n = c_1(1)^n + c_2(-1)^n + c_3(1/2)^n$
 - From $a_0=0$, $a_1=1$, $a_2=2$, derive $c_1=5/2$, $c_2=1/6$, $c_3=-8/3$
 - $a_n = (5/2) + (1/6)(-1)^n + (-8/3)(1/2)^n$

Second- or Higher-Order Recurrence Relation

• Ex 10.19: We want to tile a $2 \times n$ chessboard using two types of tiles shown in Figure 10.8.

 a_2 : 2×2 chessboard

Figure 10.8

 a_3 : 2×3 chessboard

Second- or Higher-Order Recurrence Relation

- Let a_n count the number of such tilings.
- $a_1 = 1$ and $a_2 = 5$ and $a_3 = 11$
- For $n \ge 4$, consider the last column of the chessboard
 - the *n*th column is covered by two 1×1 tiles $\Rightarrow a_{n-1}$
 - the (n-1)st and the nth column are tiled with one 1×1 tile and a larger tile $\Rightarrow 4a_{n-2}$
 - the (n-2)nd, (n-1)st and the nth columns are tiled with two large tiles $\Rightarrow 2a_{n-3}$
- $a_n = a_{n-1} + 4a_{n-2} + 2a_{n-3}, n \ge 4$

Case (B): Complex Roots

- DeMoivre's Theorem: $(\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta$
- If $z = x + iy \in \mathbb{C} \Rightarrow z = r(\cos\theta + i\sin\theta), r = \sqrt{x^2 + y^2}, \frac{y}{x} = \tan\theta$, for $x \neq 0$ If x = 0, $\begin{cases} y > 0, z = yi = yi\sin(\pi/2) = y(\cos(\pi/2) + i\sin(\pi/2)) \\ y < 0, z = |y|\sin(3\pi/2) = |y|(\cos(3\pi/2) + i\sin(3\pi/2)) \end{cases}$

By DeMoivre's Theorem, $z^n = r^n(\cos n\theta + i\sin n\theta)$

Complex Roots

- **Ex 10.20** : Determine $(1+\sqrt{3}i)^{10}$
 - Solution

Complex number $1 + \sqrt{3}i$ is represented as the point $(1, \sqrt{3})$ in the xy-plane

$$r = \sqrt{1^2 + (\sqrt{3})^2} = 2, \theta = \pi/3$$

$$1 + \sqrt{3}i = 2(\cos(\pi/3) + i\sin(\pi/3))$$

 $(1+\sqrt{3}i)^{10} = 2^{10}(\cos(10\pi/3) + i\sin(10\pi/3)) = 2^{10}(\cos(4\pi/3) + i\sin(4\pi/3))$ $= 2^{10}((-1/2) - (\sqrt{3}/2)i) = (-2^9)(1+\sqrt{3}i)$

Complex Roots

- Ex 10.21 : Solve the recurrence relation $a_n = 2(a_{n-1} a_{n-2})$ where $n \ge 2$, $a_0 = 1$, $a_1 = 2$.
 - Let $a_n = cr^n$
 - $r^2 2r + 2 = 0 \Rightarrow r = 1 \pm i$
 - $1 + i = \sqrt{2}(\cos(\pi/4) + i\sin(\pi/4))$
 - $1 i = \sqrt{2}(\cos(\pi/4) i\sin(\pi/4))$

$$a_n = c_1(1+i)^n + c_2(1-i)^n$$

$$= c_1[\sqrt{2}(\cos(\pi/4) + i\sin(\pi/4))]^n + c_2[\sqrt{2}(\cos(-\pi/4) + i\sin(-\pi/4))]^n$$

$$= c_1(\sqrt{2})^n(\cos(n\pi/4) + i\sin(n\pi/4)) + c_2(\sqrt{2})^n(\cos(-n\pi/4) + i\sin(-n\pi/4))$$

$$= c_1(\sqrt{2})^n(\cos(n\pi/4) + i\sin(n\pi/4)) + c_2(\sqrt{2})^n(\cos(n\pi/4) - i\sin(n\pi/4))$$

$$= (\sqrt{2})^n[k_1\cos(n\pi/4) + k_2\sin(n\pi/4)],$$

where
$$k_1 = c_1 + c_2$$
 and $k_2 = (c_1 + c_2)i$.

$$1 = a_0 = [k_1 \cos 0 + k_2 \sin 0] = k_1$$

$$2 = a_1 = \sqrt{2}[1 \cdot \cos(\pi/4) + k_2 \sin(\pi/4)], \text{ or } 2 = 1 + k_2, \text{ and } k_2 = 1.$$

The solution for the given initial conditions is then given by

$$a_n = (\sqrt{2})^n [\cos(n\pi/4) + \sin(n\pi/4)], \qquad n \ge 0.$$

• Ex 10.22: Let a_n denote the value of the $n \times n$ determinant

$$D_n$$

•
$$a_1 = b$$
, $a_2 = 0$ and $a_3 = -b^3$

•
$$D_n = bD_{n-1} - b^2D_{n-2}$$

•
$$a_n = ba_{n-1} - b^2 a_{n-2}$$

$$a_1 = |b| = b$$
 and $a_2 = \begin{vmatrix} b & b \\ b & b \end{vmatrix} = 0$ (and $a_3 = \begin{vmatrix} b & b & 0 \\ b & b & b \\ 0 & b & b \end{vmatrix} = -b^3$).

(This is D_{n-1} .)

If we let $a_n = cr^n$ for $c, r \neq 0$ and $n \geq 1$, the characteristic equation produces the roots $b[(1/2) \pm i\sqrt{3}/2]$.

Hence

$$a_n = c_1[b((1/2) + i\sqrt{3}/2)]^n + c_2[b((1/2) - i\sqrt{3}/2)]^n$$

$$= b^n[c_1(\cos(\pi/3) + i\sin(\pi/3))^n + c_2(\cos(\pi/3) - i\sin(\pi/3))^n]$$

$$= b^n[k_1\cos(n\pi/3) + k_2\sin(n\pi/3)].$$

$$b = a_1 = b[k_1\cos(\pi/3) + k_2\sin(\pi/3)], \text{ so } 1 = k_1(1/2) + k_2(\sqrt{3}/2), \text{ or } k_1 + \sqrt{3}k_2 = 2.$$

$$0 = a_2 = b^2[k_1\cos(2\pi/3) + k_2\sin(2\pi/3)], \text{ so } 0 = (k_1)(-1/2) + k_2(\sqrt{3}/2), \text{ or } k_1 = \sqrt{3}k_2.$$

Hence
$$k_1 = 1$$
, $k_2 = 1/\sqrt{3}$ and the value of D_n is
$$b^n [\cos(n\pi/3) + (1/\sqrt{3})\sin(n\pi/3)].$$

- Ex 10.23: Solve the recurrence relation $a_{n+2} = 4a_{n+1} 4a_n$ where $n \ge 0$, $a_0 = 1$, $a_1 = 3$
 - Solution

Let
$$a_n = cr^n$$

 r^2 - $4r + 4 = 0 \Rightarrow r = 2 \Rightarrow 2^n$ and 2^n are not independent solutions, need another independent solution

So, try $g(n)2^n$, where g(n) is not a constant

$$\Rightarrow g(n+2)2^{n+2} = 4g(n+1)2^{n+1} - 4g(n)2^n$$

$$\Rightarrow g(n+2) = 2g(n+1) - g(n) \Rightarrow g(n) = n, \therefore n2^n \text{ is a solution}$$

$$a_n = c_1(2^n) + c_2(n2^n)$$
 with $a_0 = 1$, $a_1 = 3$

$$a_n = 1(2^n) + (1/2)(n2^n)$$

Repeated Real Roots

• In general, if

$$C_0 a_n + C_1 a_{n-1} + C_2 a_{n-2} + \dots + C_k a_{n-k} = 0$$

with r, a characteristic root of multiplicity m, then the part of the general solution that involves the root r has the form

$$A_0r^n + A_1nr^n + A_2n^2r^n + A_3n^3r^n + \dots + A_{m-1}n^{m-1}r^n$$

= $(A_0 + A_1n + A_2n^2 + A_3n^3 + \dots + A_{m-1}n^{m-1})r^n$

Repeated Real Roots

• Ex 10.24: Let p_n denote the probability that at least one case of measles is reported during the nth week after the first recorded case. School records provide evidence that $p_n = p_{n-1} - (0.25)p_{n-2}$, for $n \ge 2$. Since $p_n = 0$ and $p_1 = 1$, if the first case is recorded on Monday, March 3, 2003, when did the probability for the occurrence of a new case decrease to less than 0.01 for the first time?

Solution

Let
$$p_n = cr^n$$

 $r^2 - r + (1/4) = 0 \Rightarrow r = 1/2$
 $p_n = (c_1 + c_2 n)(1/2)^n \Rightarrow c_1 = 0$ and $c_2 = 2 \Rightarrow p_n = n2^{-n+1}$
 $p_n < 0.01 \Rightarrow$ the first n is 12, the week of May 19, 2003.

10.3 The Nonhomogeneous Recurrence Relation

- $a_n + C_1 a_{n-1} = f(n), n \ge 1,$
- $a_n + C_1 a_{n-1} + C_2 a_{n-2} = f(n), n \ge 2$
- Let $a_n^{(h)}$ denote the general solution of the associated homogeneous relation.
- Let $a_n^{(p)}$ denote a solution of the given nonhomogeneous relation. (particular solution)
- Then $a_n = a_n^{(h)} + a_n^{(p)}$ is the general solution of the recurrence relation.

The Nonhomogeneous Recurrence Relation

$$a_n - a_{n-1} = f(n)$$
, we have
$$a_1 = a_0 + f(1)$$

$$a_2 = a_1 + f(2) = a_0 + f(1) + f(2)$$

$$a_3 = a_2 + f(3) = a_0 + f(1) + f(2) + f(3)$$

$$\vdots$$

$$a_n = a_{n-1} + f(n) = a_0 + f(1) + \dots + f(n) = a_0 + \sum_{i=1}^n f(i).$$

• Ex 10.25

Solve the recurrence relation $a_n - a_{n-1} = 3n^2$, where $n \ge 1$ and $a_0 = 7$. Here $f(n) = 3n^2$, so the unique solution is

$$a_n = a_0 + \sum_{i=1}^n f(i) = 7 + 3\sum_{i=1}^n i^2 = 7 + \frac{1}{2}(n)(n+1)(2n+1).$$

- Ex 10.26 : Solve the recurrence relation $a_n 3a_{n-1} = 5(7^n)$ for $n \ge 1$ and $a_0 = 2$.
 - Solution

The solution for a_n - $3a_{n-1} = 0$ is $a_n^{(h)} = c(3^n)$. Since $f(n) = 5(7^n)$, let $a_n^{(p)} = A(7^n)$ $\Rightarrow A(7^n) - 3A(7^{n-1}) = 5(7^n) \Rightarrow A = 35/4$ $a_n^{(p)} = (35/4)7^n = (5/4)7^{n+1}$. The general solution is $a_n = a_n^{(h)} + a_n^{(p)} = c(3^n) + (5/4)7^{n+1}$ So, $a_n = (-1/4)(3^{n+3}) + (5/4)7^{n+1}$

- Ex 10.27 : Solve the recurrence relation a_n $3a_{n-1} = 5(3^n)$ for $n \ge 1$ and $a_0 = 2$.
 - Solution

Let
$$a_n^{(h)} = c(3^n)$$
.

Since $a_n^{(h)}$ and f(n) are not linearly independent, let $a_n^{(p)} = Bn(3^n) \Rightarrow Bn(3^n) - 3B(n-1)(3^{n-1}) = 5(3^n). \Rightarrow B=5.$

The general solution is $a_n = a_n^{(h)} + a_n^{(p)} = c(3^n) + (5)n3^{n+1}$

$$a_n = (2 + 5n)(3^n)$$

Solution for the Nonhomogeneous First-Order Relation

- $a_n + C_1 a_{n-1} = kr^n$.
 - If r^n is not a solution of the homogeneous relation $a_n + C_1 a_{n-1} = 0$, then $a_n^{(p)} = A r^n$.
 - If r^n is a solution of the homogeneous relation, then $a_n^{(p)} = Bnr^n$.

Solution for the Nonhomogeneous Second-Order Relation

- $a_n + C_1 a_{n-1} + C_2 a_{n-2} = kr^n$.
 - If r^n is not a solution of the homogeneous relation, then $a_n^{(p)} = Ar^n$.
 - If $a_n^{(h)} = c_1 r^n + c_2 r_1^n$, where $r \neq r_1$, then $a_n^{(p)} = Bnr^n$.
 - If $a_n^{(h)} = (c_1 + c_2 n)r^n$, then $a_n^{(p)} = Cn^2 r^n$.

- Ex 10.28: The Towers of Hanoi.
 - Let count the minimum number of moves it takes to transfer *n* disks from peg 1 to peg 3.
 - $a_{n+1} = 2a_n + 1$
 - Transfer the top n disks from peg 1 to peg 2, need a_n moves.
 - Transfer the largest disk from peg 1 to peg 3, need 1 moves.
 - Transfer the n disks on peg 2 onto the largest disk, need a_n moves.

Figure 10.11

For $a_{n+1} - 2a_n = 1$, we know that $a_n^{(h)} = c(2^n)$. Since $f(n) = 1 = (1)^n$ is not a solution of $a_{n+1} - 2a_n = 0$, we set $a_n^{(p)} = A(1)^n = A$ and find from the given relation that A = 2A + 1, so A = -1 and $a_n = c(2^n) - 1$. From $a_0 = 0 = c - 1$ it then follows that c = 1, so $a_n = 2^n - 1$, $n \ge 0$.

• $\mathbf{Ex} \ \mathbf{10.29}$: Let a_n denote the amount still owed on the loan at the end of the nth period.

(r is the interest rate, P is payment, S is loan)

$$a_{n+1} = a_n + ra_n - P$$
, $0 \le n \le T-1$, $a_0 = S$, $a_T = 0$
 $a_n^{(h)} = c(1+r)^n$.
Let $a_n^{(p)} = A$, $A - (1+r)A = -P \Rightarrow A = P/r$, $a_n^{(p)} = P/r$.
 $a_n = a_n^{(h)} + a_n^{(p)} = c(1+r)^n + P/r \Rightarrow c = S - (P/r)$
 $a_n = (S - (P/r))(1+r)^n + (P/r)$
Since $0 = a_T$, we have $P = (Sr)[1 - (1+r)^{-T}]^{-1}$

- Ex 10.30: Let S be a set containing 2^n real numbers. Find the maximum and minimum in S. We wish to determine the number of comparisons made between pairs of elements in S.
 - Let a_n denote the number of needed comparisons.

$$n = 2$$
, $|S| = 2^2 = 4$, $S = \{x_1, x_2, y_1, y_2\} = S_1 \cup S_2$,
 $S_1 = \{x_1, x_2\}$, $S_2 = \{y_1, y_2\}$
 $a_{n+1} = 2a_n + 2$, $n \ge 1$.
 $a_n^{(h)} = c(2^n)$, $a_n^{(p)} = A$
 $a_1 = 1 \implies a_n = (3/2)(2^n) - 2$

- Ex 10.31: For the alphabet = {0,1,2,3}, how many strings of length n contains an even number of 1's.
 - Let a_n count those strings among the 4^n strings. Consider the *n*th symbol of a string of length n
 - 1. The *n*th symbol is 0, 2, $3 \Rightarrow 3a_{n-1}$
 - 2. The *n*th symbol is $1 \Rightarrow$ there must be an odd number of 1's among the first n-1 symbols $\Rightarrow 4^{n-1} a_{n-1}$

$$a_n = 3a_{n-1} + (4^{n-1} - a_{n-1}) = 2a_{n-1} + 4^{n-1}$$

 $a_n^{(h)} = c(2^n), a_n^{(p)} = A(4^{n-1})$
 $a_1 = 3 \implies a_n = 2^{n-1} + 2(4^{n-1})$

$$f(x) = \left(1 + x + \frac{x^2}{2!} + \cdots\right) \left(1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \cdots\right) \left(1 + x + \frac{x^2}{2!} + \cdots\right) \left(1 + x + \frac{x^2}{2!} + \cdots\right)$$

$$= e^x \cdot \left(\frac{e^x + e^{-x}}{2}\right) \cdot e^x \cdot e^x$$

$$= \left(\frac{1}{2}\right) e^{4x} + \left(\frac{1}{2}\right) e^{2x}$$

$$= \left(\frac{1}{2}\right) \sum_{n=0}^{\infty} \frac{(4x)^n}{n!} + \left(\frac{1}{2}\right) \sum_{n=0}^{\infty} \frac{(2x)^n}{n!}.$$

Here a_n = the coefficient of $\frac{x^n}{n!}$ in $f(x) = (\frac{1}{2}) 4^n + (\frac{1}{2}) 2^n = 2^{n-1} + 2(4^{n-1})$, as above.

- Ex 10.32 : Snowflake curve shown in Figure 10.12.
- Let a_n denote the area of the polygon P_n obtained from the original equilateral triangle after we apply n transformations.

$$a_0 = \sqrt{3}/4$$

$$a_1 = (\sqrt{3}/4) + (3)(\sqrt{3}/4)(1/3)^2 = \sqrt{3}/3$$

$$a_2 = a_1 + (4)(3)(\sqrt{3}/4)[(1/3)^2]^2 = 10\sqrt{3}/27$$

$$a_{n+1} = a_n + (4^n(3))(\sqrt{3}/4)(1/3^{n+1})^2 = a_n + (1/(4\sqrt{3}))(4/9)^n$$
#segment in each side
$$a_n \approx 6/(5\sqrt{3})$$

Figure 10.12

A special kind of <u>fractal</u> curves 1904, Helge von Koch

http://en.wikipedia.org/wiki/Koch_snowflake

- Ex 10.34: Solve the recurrence relation a_{n+2} $4a_{n+1} + 3a_n = -200$ for $n \ge 0$ and $a_0 = 3000$ and $a_1 = 3300$.
 - Solution

$$a_n^{(h)} = c_1(3^n) + c_2(1^n).$$

Let $a_n^{(p)} = An \implies A(n+2) - 4A(n+1) + 3An = -200$
 $\Rightarrow a_n^{(p)} = 100n.$
 $a_n = a_n^{(h)} + a_n^{(p)} = c_1(3^n) + c_2(1^n) + 100n$
 $\Rightarrow a_n = 100(3^n) + 2900 + 100n$

- Two procedures of computing the *n*th Fibonacci number in Figure 10.15. Which one is more efficient?
- $a_n = a_{n-1} + a_{n-2} + 1$

$$a_n = \left(\frac{1+\sqrt{5}}{2\sqrt{5}}\right) \left(\frac{1+\sqrt{5}}{2}\right)^n - \left(\frac{1-\sqrt{5}}{2\sqrt{5}}\right) \left(\frac{1-\sqrt{5}}{2}\right)^n - 1$$
$$= \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^{n+1} - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2}\right)^{n+1} - 1.$$

```
procedure FibNum2(n: nonnegative integer)
begin
  if n = 0 then
    fib := 0
  else if n = 1 then
    fib := 1
  else
    fib := FibNum2(n - 1) + FibNum2(n - 2)
end
    (b)
```

```
Figure 10.15
```

```
procedure FibNum1 (n: nonnegative integer)
begin
  if n = 0 then
    fib := 0
  else if n = 1 then
    fib := 1
  else
    begin
       last := 1
      next to last := 0
       for i := 2 to n do
         begin
           temp := last
           last := last + next to last
           next to last := temp
         end
      fib := last
    end
                                           (a)
end
```

Particular Solutions to Nonhomogeneous Recurrence Relation

- $C_0 a_n + C_1 a_{n-1} + C_2 a_{n-2} + \ldots + C_k a_{n-k} = f(n)$
- (1) If f(n) is a constant multiple of one of the forms in the first column of Table $10.2 \Rightarrow a_n^{(p)}$ in the second column.
- (2) When f(n) comprises a sum of constant multiples of terms.
 - E.g., $f(n) = n^2 + 3\sin 2n \Rightarrow a_n^{(p)} = (A_2n^2 + A_1n + A_0) + (A\sin 2n + B\cos 2n)$
- (3) If a summand $f_1(n)$ of f(n) is a solution of the associated homogeneous relation.
 - If $f_1(n)$ causes this problem, we multiply the trial solution $(a_n^{(p)})_1$ corresponding to $f_1(n)$ by the smallest power of n, say n^s , for which no summand of $n^s f_1(n)$ is a solution of the associated homogeneous relation. Thus, $n^s(a_n^{(p)})_1$ is the corresponding part of $a_n^{(p)}$.

Table 10.2

	$a_n^{(p)}$
c, a constant	A, a constant
n	$A_1 n + A_0$
n^2	$A_2n^2 + A_1n + A_0$
n^t , $t \in \mathbf{Z}^+$	$A_t n^t + A_{t-1} n^{t-1} + \cdots + A_1 n + A_0$
$r^n, r \in \mathbf{R}$	Ar^n
$\sin \theta n$	$A\sin\theta n + B\cos\theta n$
$\cos \theta n$	$A\sin\theta n + B\cos\theta n$
$n^t r^n$	$r^{n}(A_{t}n^{t} + A_{t-1}n^{t-1} + \cdots + A_{1}n + A_{0})$
$r^n \sin \theta n$	$Ar^n \sin \theta n + Br^n \cos \theta n$
$r^n \cos \theta n$	$Ar^n \sin \theta n + Br^n \cos \theta n$

Particular Solutions to Nonhomogeneous Recurrence Relation

- Ex 10.36: For n people at a party, each of them shakes hands with others.
 - a_n counts the total number of handshakes:

$$a_{n+1} = a_n + n, n \ge 2, a_2 = 1$$

- $a_n^{(h)} = c(1^n) = c$.
- Let $a_n^{(p)} = A_1 n + A_0$
- By the third remark stated above, multiplying $a_n^{(p)}$ by n^1 , then $a_n^{(p)} = A_1 n^2 + A_0 n$
- $A_1 = \frac{1}{2}$, $A_0 = -\frac{1}{2}$ $\Rightarrow a_n^{(p)} = (\frac{1}{2})n^2 + (-\frac{1}{2})n$.
- $a_n = a_n^{(h)} + a_n^{(p)} = c + (\frac{1}{2})n^2 + (-\frac{1}{2})n \Rightarrow c = 0$
- $a_n = (\frac{1}{2})n(n-1)$

•
$$\mathbf{Ex} \ \mathbf{10.37} : a_{n+2} - 10a_{n+1} + 21a_n = f(n), \ n \ge 0$$

•
$$a_n^{(h)} = c_1(3^n) + c_2(7^n)$$
.

Table 10.3

f(n)	$a_n^{(p)}$
5	A_0
$3n^2 - 2$	$A_3n^2 + A_2n + A_1$
$7(11^n)$	$A_4(11^n)$
$31(r^n), r \neq 3, 7$	$A_5(r^n)$
$6(3^n)$	A_6n3^n
$2(3^n) - 8(9^n)$	$A_7 n 3^n + A_8 (9^n)$
$4(3^n) + 3(7^n)$	$A_9n3^n + A_{10}n7^n$

10.4 The Method of GeneratingFunctions

- Ex 10.38: Solve the relation a_n $3a_{n-1} = n$, $n \ge 1$, $a_0 = 1$.
 - Let $f(x) = \sum_{n=0}^{\infty} a_n x^n$ be the generating function for $a_0, a_1, ..., a_n$.

$$\sum_{n=1}^{\infty} a_n x^n - 3 \sum_{n=1}^{\infty} a_{n-1} x^n = \sum_{n=1}^{\infty} n x^n.$$

$$(f(x) - a_0) - 3x \sum_{n=1}^{\infty} a_{n-1} x^{n-1} = \sum_{n=1}^{\infty} n x^n \left(= \sum_{n=0}^{\infty} n x^n \right).$$

$$\frac{x}{(1-x)^2} = x + 2x^2 + 3x^3 + \cdots,$$

$$(f(x) - 1) - 3xf(x) = \frac{x}{(1 - x)^2}$$
, and $f(x) = \frac{1}{(1 - 3x)} + \frac{x}{(1 - x)^2(1 - 3x)}$.

$$f(x) = \frac{1}{1 - 3x} + \frac{(-1/4)}{(1 - x)} + \frac{(-1/2)}{(1 - x)^2} + \frac{(3/4)}{(1 - 3x)}$$
$$= \frac{(7/4)}{(1 - 3x)} + \frac{(-1/4)}{(1 - x)} + \frac{(-1/2)}{(1 - x)^2}.$$

We find a_n by determining the coefficient of x^n in each of the three summands.

- a) (7/4)/(1-3x) = (7/4)[1/(1-3x)]= $(7/4)[1+(3x)+(3x)^2+(3x)^3+\cdots]$, and the coefficient of x^n is $(7/4)3^n$.
- b) $(-1/4)/(1-x) = (-1/4)[1+x+x^2+\cdots]$, and the coefficient of x^n here is (-1/4).
- c) $(-1/2)/(1-x)^2 = (-1/2)(1-x)^{-2}$ $= (-1/2) \left[{\binom{-2}{0}} + {\binom{-2}{1}} (-x) + {\binom{-2}{2}} (-x)^2 + {\binom{-2}{3}} (-x)^3 + \cdots \right]$ and the coefficient of x^n is given by $(-1/2) {\binom{-2}{n}} (-1)^n = (-1/2)(-1)^n {\binom{2+n-1}{n}} \cdot (-1)^n = (-1/2)(n+1)$.

Therefore $a_n = (7/4)3^n - (1/2)n - (3/4), n \ge 0$.

The Method of Generating Functions

• Ex 10.39 : Solve the relation

$$a_{n+2}$$
 - $5a_{n+1}$ + $6a_n$ = 2, $n \ge 0$, a_0 = 3, a_1 = 7.

• Let $f(x) = \sum_{n=0}^{\infty} a_n x^n$ be the generating function for $a_0, a_1, ..., a_n$

$$\sum_{n=0}^{\infty} a_{n+2} x^{n+2} - 5 \sum_{n=0}^{\infty} a_{n+1} x^{n+2} + 6 \sum_{n=0}^{\infty} a_n x^{n+2} = 2 \sum_{n=0}^{\infty} x^{n+2}.$$

$$\sum_{n=0}^{\infty} a_{n+2} x^{n+2} - 5x \sum_{n=0}^{\infty} a_{n+1} x^{n+1} + 6x^2 \sum_{n=0}^{\infty} a_n x^n = 2x^2 \sum_{n=0}^{\infty} x^n.$$

$$(f(x) - a_0 - a_1 x) - 5x(f(x) - a_0) + 6x^2 f(x) = \frac{2x^2}{1 - x},$$

$$(1 - 5x + 6x^2)f(x) = 3 - 8x + \frac{2x^2}{1 - x} = \frac{3 - 11x + 10x^2}{1 - x},$$

from which it follows that

$$f(x) = \frac{3 - 11x + 10x^2}{(1 - 5x + 6x^2)(1 - x)} = \frac{(3 - 5x)(1 - 2x)}{(1 - 3x)(1 - 2x)(1 - x)} = \frac{3 - 5x}{(1 - 3x)(1 - x)}.$$

A partial-fraction decomposition (by hand, or via a computer algebra system) gives us

$$f(x) = \frac{2}{1 - 3x} + \frac{1}{1 - x} = 2\sum_{n=0}^{\infty} (3x)^n + \sum_{n=0}^{\infty} x^n.$$

Consequently, $a_n = 2(3^n) + 1$, $n \ge 0$.

The Method of Generating Functions

- Ex 10.40: Let a(n, r) = the number of ways we can select, with repetitions allowed, r objects from a set of n distinct objects.
- Let $\{b_1, b_2, ..., b_n\}$ be the set, consider b_1
 - b_1 is never selected: the *r* objects from $\{b_2, ..., b_n\} \Rightarrow a(n-1, r)$
 - b_1 is selected at least once: must select r -1 objects from $\{b_1, b_2, ..., b_n\} \Rightarrow a(n, r 1)$
- Then a(n, r) = a(n-1, r) + a(n, r-1).
- Let $f_n = \sum_{r=0}^{\infty} a(n,r)x^r$ be the generating function for a(n,0), a(n,1), a(n,2),...,

$$a(n,r)x^r \equiv a(n-1,r)x^r + a(n,r-1)x^r$$
 and

$$\sum_{r=1}^{\infty} a(n,r)x^r = \sum_{r=1}^{\infty} a(n-1,r)x^r + \sum_{r=1}^{\infty} a(n,r-1)x^r.$$

Realizing that a(n, 0) = 1 for $n \ge 0$ and a(0, r) = 0 for r > 0, we write

$$f_n - a(n, 0) = f_{n-1} - a(n-1, 0) + x \sum_{r=1}^{\infty} a(n, r-1)x^{r-1}.$$

so
$$f_n - 1 = f_{n-1} - 1 + x f_n$$
. Therefore, $f_n - x f_n = f_{n-1}$, or $f_n = f_{n-1}/(1-x)$.

If n = 5, for example, then

$$f_5 = \frac{f_4}{(1-x)} = \frac{1}{(1-x)} \cdot \frac{f_3}{(1-x)} = \frac{f_3}{(1-x)^2} = \frac{f_2}{(1-x)^3} = \frac{f_1}{(1-x)^4}$$
$$= \frac{f_0}{(1-x)^5} = \frac{1}{(1-x)^5},$$

since $f_0 = a(0, 0) + a(0, 1)x + a(0, 2)x^2 + \dots = 1 + 0 + 0 + \dots$

In general, $f_n = 1/(1-x)^n = (1-x)^{-n}$, so a(n, r) is the coefficient of x^r in $(1-x)^{-n}$ which is $\binom{-n}{r}(-1)^r = \binom{n+r-1}{r}$.

10.5 A Special Kind of Nonlinear Recurrence Relation

- Ex 10.42: Let b_n denote the number of rooted ordered binary trees on n vertices.
- $b_3 = 5$ is shown in Figure 10.18.
- $b_{n+1} = b_0 b_n + b_1 b_{n-1} + \dots + b_{n-1} b_1 + b_n b_0$
- Let $f(x) = \sum_{n=0}^{\infty} b_n x^r$ be the generating function for b_0 , b_1, \ldots, b_n .

Figure 10.18

A Special Kind of Nonlinear Recurrence Relation

- $b_{n+1} = b_0 b_n + b_1 b_{n-1} + \dots + b_{n-1} b_1 + b_n b_0$
 - 1. 0 vertices on the left, n vertices on the right $\Rightarrow b_0 b_n$
 - 2. 1 vertices on the left, n -1 vertices on the right $\Rightarrow b_1 b_{n-1}$
 - *i* vertices on the left, n i vertices on the right $\Rightarrow b_i b_{n-i}$
 - *n* vertices on the left, *none* on the right $\Rightarrow b_n b_0$

$$b_{n+1} = b_0b_n + b_1b_{n-1} + b_2b_{n-2} + \cdots + b_{n-1}b_1 + b_nb_0,$$

$$\sum_{n=0}^{\infty} b_{n+1} x^{n+1} = \sum_{n=0}^{\infty} (b_0 b_n + b_1 b_{n-1} + \dots + b_{n-1} b_1 + b_n b_0) x^{n+1}.$$

$$(f(x) - b_0) = x \sum_{n=0}^{\infty} (b_0 b_n + b_1 b_{n-1} + \dots + b_n b_0) x^n = x [f(x)]^2.$$

$$x[f(x)]^2 - f(x) + 1 = 0$$
, so $f(x) = [1 \pm \sqrt{1 - 4x}]/(2x)$.

But $\sqrt{1-4x} = (1-4x)^{1/2} = \binom{1/2}{0} + \binom{1/2}{1}(-4x) + \binom{1/2}{2}(-4x)^2 + \cdots$, where the coefficient of x^n , $n \ge 1$, is

$${\binom{1/2}{n}}(-4)^n = \frac{(1/2)((1/2) - 1)((1/2) - 2) \cdots ((1/2) - n + 1)}{n!}(-4)^n$$

$$= (-1)^{n-1} \frac{(1/2)(1/2)(3/2) \cdots ((2n-3)/2)}{n!}(-4)^n$$

$$= \frac{(-1)2^n(1)(3) \cdots (2n-3)}{n!}$$

$$= \frac{(-1)2^n(n!)(1)(3) \cdots (2n-3)(2n-1)}{(n!)(n!)(2n-1)}$$

$$= \frac{(-1)(2)(4) \cdots (2n)(1)(3) \cdots (2n-1)}{(2n-1)(n!)(n!)} = \frac{(-1)}{(2n-1)} {\binom{2n}{n}}.$$

$$f(x) = \frac{1}{2x} \left[1 - \left[1 - \sum_{n=1}^{\infty} \frac{1}{(2n-1)} {2n \choose n} x^n \right] \right],$$

 b_n , the coefficient of x^n in f(x), is half the coefficient of x^{n+1} in

$$\sum_{n=1}^{\infty} \frac{1}{(2n-1)} \binom{2n}{n} x^n.$$

$$b_n = \frac{1}{2} \left[\frac{1}{2(n+1)-1} \right] \binom{2(n+1)}{n+1} = \frac{(2n)!}{(n+1)!(n!)} = \frac{1}{(n+1)} \binom{2n}{n}$$

· b_n are called Catalan numbers

A Special Kind of Nonlinear Recurrence Relation

• Ex 10.43: permute 1, 2, 3,..., n, which must be pushed onto the top of the stack in the order given.

- 1) There are five permutations with 1 in the first position, because after 1 is pushed onto and popped from the stack, there are five ways to permute 2, 3, 4 using the stack.
- 2) When 1 is in the second position, 2 must be in the first position. This is because we pushed 1 onto the (empty) stack, then pushed 2 on top of it and then popped 2 and then 1. There are two permutations in column 2, because 3, 4 can be permuted in two ways on the stack.

A Special Kind of Nonlinear Recurrence Relation

- 3) For column 3 we have 1 in position three. We note that the only numbers that can precede it are 2 and 3, which can be permuted on the stack (with 1 on the bottom) in two ways. Then 1 is popped, and we push 4 onto the (empty) stack and then pop it.
- 4) In the last column we obtain five permutations: After we push 1 onto the top of the (empty) stack, there are five ways to permute 2, 3, 4 using the stack (with 1 on the bottom). Then 1 is popped from the stack to complete the permutation.
- $\bullet \qquad a_4 = a_0 a_3 + a_1 a_2 + a_2 a_1 + a_3 a_0$
- $a_{n+1} = a_0 a_n + a_1 a_{n-1} + \ldots + a_{n-1} a_1 + a_n a_0$
- $\bullet \qquad a_n = \frac{1}{n+1} \binom{2n}{n}$

10.6 Divide-and-Conquer Algorithms

- In general, solve a given problem of size n by
 - Solving the problem for a small value of *n* directly.
 - Breaking the problem into a smaller problems of the same type and the same size $\lceil n/b \rceil$ or $\lfloor n/b \rfloor$
- Divide-and-conquer algorithms
 - 1) The time to solve the initial problem of size n = 1 is a constant $c \ge 0$, and
 - 2) The time to break the given problem of size n into a smaller (similar) problems, together with the time to combine the solutions of these smaller problems to get a solution for the given problem, is h(n), a function of n.
- Time complexity function f(n)
 - f(1) = c
 - f(n) = af(n/b) + h(n) for $n = b^k$

Divide-and-Conquer Algorithms

• Theorem 10.1:

Let
$$a, b, c \in \mathbb{Z}^+$$
 with $b \ge 2$, and let $f: \mathbb{Z}^+ \to \mathbb{R}$. If

$$f(1) = c$$
, and
$$f(n) = af(n/b) + c$$
, for $n = b^k$, $k \ge 1$,

then for all $n = 1, b, b^2, b^3, ...,$

1)
$$f(n) = c(\log_b n + 1)$$
, when $a = 1$, and

2)
$$f(n) = \frac{c(an^{\log_b a} - 1)}{a - 1}$$
, when $a \ge 2$.

Proof: For $k \ge 1$ and $n = b^k$, we write the following system of k equations. [Starting with the second equation, we obtain each of these equations from its immediate predecessor by (i) replacing each occurrence of n in the prior equation by n/b and (ii) multiplying the resulting equation in (i) by a.]

$$\begin{split} f(n) &= af(n/b) + c \\ af(n/b) &= a^2 f(n/b^2) + ac \\ a^2 f(n/b^2) &= a^3 f(n/b^3) + a^2 c \\ &\vdots &\vdots &\vdots \\ a^{k-2} f(n/b^{k-2}) &= a^{k-1} f(n/b^{k-1}) + a^{k-2} c \\ a^{k-1} f(n/b^{k-1}) &= a^k f(n/b^k) + a^{k-1} c \end{split}$$

$$f(n) = a^k f(n/b^k) + [c + ac + a^2c + \cdots + a^{k-1}c].$$

Since $n = b^k$ and f(1) = c, we have

$$f(n) = a^{k} f(1) + c[1 + a + a^{2} + \dots + a^{k-1}]$$

= $c[1 + a + a^{2} + \dots + a^{k-1} + a^{k}].$

- 1) If a = 1, then f(n) = c(k+1). But $n = b^k \iff \log_b n = k$, so $f(n) = c(\log_b n + 1)$, for $n \in \{b^i | i \in \mathbb{N}\}$.
- 2) When $a \ge 2$, then $f(n) = \frac{c(1-a^{k+1})}{1-a} = \frac{c(a^{k+1}-1)}{a-1}$, from identity 4 of Table 9.2. Now $n = b^k \iff \log_b n = k$, so

$$a^k = a^{\log_b n} = (b^{\log_b a})^{\log_b n} = (b^{\log_b n})^{\log_b a} = n^{\log_b a},$$

and

$$f(n) = \frac{c(an^{\log_b a} - 1)}{(a - 1)}, \quad \text{for } n \in \{b^i | i \in \mathbb{N}\}.$$

Divide-and-Conquer Algorithms

• Ex 10.45 :

Ex 10.45:
$$f(n) = \frac{c(an^{\log_b a} - 1)}{(a - 1)}$$

$$c = 3, b = 2, a = 1$$

$$f(n) = 3(\log_2 n + 1)$$

(b)
$$g(1) = 7$$
 and $g(n) = 4g(n/3) + 7$ for $n = 3^k$

(a) f(1) = 3 and f(n) = f(n/2) + 3 for $n = 2^k$

$$c = 7, b = 3, a = 4$$

$$g(n) = (7/3)(4n^{\log_3 4}-1)$$

(c)
$$h(1) = 5$$
 and $h(n) = 7h(n/7) + 5$ for $n = 7^k$

$$c = 5, b = 7, a = 7$$

$$h(n) = (5/6)(7n-1)$$

- 10.1: 2
- 10.2: 10, 12, 30
- 10.3: 6, 8
- 10.4: **2**