

PJM Markets 201

Generation Contingency Analysis

PJM State & Member Training Dept.

www.pjm.com | Public PJM©2024

Objectives

Student will be able to:

- Describe the processes and tools associated with performing contingency analysis
 - Identify the procedure for re-dispatching generation to alleviate an overloaded monitored transmission line caused by a contingency

Operational Limits

• Thermal Limits - Thermal limits are due to the heat dissipation capability of power system equipment

 Voltage Limits - Utility and customer equipment is designed to operate at a certain supply voltage (or a small range around an ideal voltage)

• **Stability Limits** - Refers to the power system maintaining a state of equilibrium

Control Actions

- There are three basic types of actions that can be performed to control the flow of power on the electric system:
- System Reconfiguration
- **2** Transaction Curtailments
- Redispatch Generation

Security Constrained Re-Dispatch

When Constraints Occur...

- Delivery limitations prevent use of "next least-cost generator"
- Higher-cost generator closer to load must be used to meet demand
- Cost expressed as "security constrained redispatch cost"

Constraints & Marginal Units

- There will always be at least one marginal unit
 - System Energy Unit
- There will be an additional marginal unit for each binding constraint
- It is possible, and in fact likely, that there will be multiple marginal units for a given time interval

Contingency Analysis

- "What if" scenario simulator that evaluates, provides and prioritizes the impacts on an electric power system when problems occur.
 - A contingency is a provision for an unforeseen event or circumstance
 - Loss or failure of a small part of the power system (e.g. a transmission line)
 - Loss or failure of individual equipment such as a generator or transformer
- A computer application that uses a simulated model of the power system
 - Evaluates the effects of an outage event
 - Calculates any overloads that may result
- This is referred to as maintaining system security

Contingency Analysis

- Contingency Analysis is essentially a "preview" analysis tool
 - It simulates and quantifies the results of problems that could occur in the power system in the immediate future
- Contingency Analysis is used as a study tool for the off-line analysis of contingency events, and as an on-line tool to show operators what would be the effects of future outages
 - This allows operators to be better prepared to react to outages by using preplanned recovery scenarios.

How Contingency Analysis Works

- Executes a power flow analysis for each potential problem that is defined on a contingency list
 - A contingency list contains each of the elements that will be removed from the network model, one by one, to test the effects for possible overloads of the remaining elements
 - The failure or outage of each element in the contingency list is simulated in the network model by removing that element
 - The resulting network model is solved to calculate the resulting power flows, voltages, and currents for the remaining elements of the model

Generation Re-dispatch

For Contingency Analysis

PJM Real Time Contingency Operations

- Review available controlling actions and the distribution factor (DFax) effect on the overloaded facility.
 - Consider whether there are sufficient resources available to control transmission facilities within acceptable limits.
- Initiate off-cost if reasonable controlling actions are available
- SCED works best when the impacts are 5% or greater but can still be utilized when only lower DFax values exist

PJM Real Time Contingency Operations

- Once off-cost is initiated, RT-SCED will redispatch generation based on its dollar per MW effect, considering all on-line flexible units with an impact of ~1% or greater
 - This percentage may be adjusted on a case by case basis
- Initiate a Post Contingency Local Load Relief Warning/Action if postcontingency flows exceed designated ratings and insufficient resources are available to control the overloaded facilities

Real Time Contingency Operations

- During Constrained Operations, resources will redispatched cost-effectively based on their bid parameters
- Cost-effective redispatch (\$/MW Effect) = (Current Dispatch Rate Unit Bid)/Unit Shift Factor
 - SMP and Marginal Cost of Unit values are the result of optimization
- Units with lowest \$/MW effect are used to re-dispatched when the system is constrained

DFAX sign	\$/MW Effect for Raising Output	\$/MW Effect for Lowering Output
Negative DFAX = Raise Help	Choose Lowest	Choose Highest
Positive DFAX = Lower Help	Choose Highest	Choose Lowest

 Unit parameters are taken into account and honored (i.e. eco min, eco max, min run time, etc.)

Generation Shift Factors

Generation Shift Factors

- The change (or sensitivity) of active power flow in a reference direction on a transmission line with respect to a change in injection at the generator bus and a corresponding change in withdrawal at the reference bus
 - Calculated with a DC Power Flow
- Shift Factors change when:
 - Transmission topology changes
 - Line impedance changes
- Also known as Generation DFax

Contingency Analysis Demo

Base Case – LMP Contour Map

Base Case – Marginal Unit – No Constraints

	N	/largii	าal เ	Jnit R	eport	•	
НН:ММ	BidName	Zone	ВТур	LMP	Offer	DisptMW	OrgName
16:00	PILGRIM CC1 F	EAST	Gens	170	170	451.8	Harris Power

Calculate DFAX Using DC Power Flow

1990
3.0010
3.0010
.69.99

Calculate DFAX Using DC Power Flow

pnodeid	unitid	unitname	DFAX Flow	DFAX	Base Case MW Dispatch	pnodeid	unitid	unitname	DFAX Flow	DFAX	Base Case MW Dispatch
33645435	20210120	OUCH CC	2467.9915	-0.0095	0.000	50782	53610120	PA 2	2468.1523	0.1513	850.000
50402	10102230	BEANS CT	2467.9916	-0.0094	0.000	50769	53620110	CENTRAL 1	2468.1093	0.1083	850.000
48217747	10600101	ROSE CC	2467.9965	-0.0045	525.000	50770	53620120	CENTRAL 2	2468.1093	0.1083	850.000
50463	10202491	ROSE CT1	2467.9965	-0.0045	40.100	50559	20141101	PITS 1	2467.9631	-0.0379	93.000
34887829	96360102	ROSE ST	2467.9965	-0.0045	93.500	50557	20141102	PITS 2	2467.9631	-0.0379	1138.000
17461203	51300101	PILGRIM CC1	2467.9913	-0.0097	451.800	50558	20141103	PITS 3	2467.9631	-0.0379	1138.000
34887997	96160101	RAINY 1	2468.4354	0.4344	526.000	50542	20021101	IRISH 1	2467.988	-0.0130	1175.000
34887999	96160102	RAINY 2	2468.4354	0.4344	530.000	50543	20021102	IRISH 2	2467.9897	-0.0113	1165.000
34888001	96160103	RAINY 3	2468.4354	0.4344	504.000	50489	10261210	MALES 1	2467.9733	-0.0277	1200.000
5021723	90050101	CASTLE 1	2468.2881	0.2871	500.000	50490	10261220	MALES 2	2467.9733	-0.0277	1070.000
5021724	90050102	CASTLE 2	2468.2881	0.2871	500.000	50662	40081201	CLIFF 1	2467.7751	-0.2259	885.000
51019	90060101	BEN 1	2468.3016	0.3006	640.000	50661	40081202	CLIFF 2	2467.7751	-0.2259	875.000
51020	90060102	BEN 2	2468.3016	0.3006	640.000	50817	60050103	WHITE 3	2467.7751	-0.2259	600.000
51021	90060103	BEN 3	2468.3016	0.3006	620.000	50654	31161101	NORTH 1	2468.0206	0.0196	1103.000
5021731	90070101	MCCOY 1	2468.2642	0.2632	520.000	32412777	90070106	SUNNY 1	2468.0304	0.0294	450.000
5021732	90070102	MCCOY 2	2468.2642	0.2632	450.000	50483	10271110	RIVER 1	2467.9732	-0.0278	1080.000
5021733	90070103	MCCOY 3	2468.2642	0.2632	460.000	50748	52440110	PORT 1	2467.9975	-0.0035	150.000
29782805	90070104	COYOTE 1	2468.2274	0.2264	520.000	50752	52440120	PORT 2	2467.9975	-0.0035	243.000
34509201	90070105	CAM 1	2468.2903	0.2893	520.000	50619	31010101	MOUNT 1	2467.9977	-0.0033	93.000
5021743	90100101	WEST 1	2468.3016	0.3006	650.000	50621	31010103	MOUNT 3	2467.9977	-0.0033	250.000
5021744	90100102	LAKE 1	2468.3016	0.3006	525.000	50622	31010104	MOUNT 4	2467.9977	-0.0033	0.000
50781	53610110	PA 1	2468.1523	0.1513	850.000	50894	80010105	CAT CC	2467.9974	-0.0036	240.000

Constraint Re-dispatch

 Units with lowest \$/MW effect are re-dispatched when system is constrained

Iterative approach: \$/MW recalculated as MW change

Constraint Re-dispatch

- Units with positive Dfax/added flow were decreased
- Units with negative Dfax/removed flow were increased
- This was a peak load case and units with a negative DFax and low \$/MW could not be increased since they were at economic max
 - Example Cliff 1 and 2 at economic max
- Other units with higher \$/MW were needed to increase
 - Ouch CC was needed to increase

\$/MW Effect Calculation Used in Real-Time Operations

			Base Case		Con	strained C	ase			
		MW		\$/MW	MW		\$/MW	Economic Min	Economic Max	
unitname	DFAX	Dispatch	Bid\$@Disp	Effect	Dispatch	Bid\$@Disp	Effect	(MW)	(MW)	Delta MW
OUCH CC	-0.0095	0	165	0	355	165	-525.263	355	600	355
PILGRIM CC1	-0.0097	451.8	170	1.030928	496.5	170	1.030928	258	818	44.7
RAINY 2	0.4344	530	34.73	311.372	0	25.51	0	265	530	-530
RAINY 3	0.4344	504	39.84	299.6087	308.5	34.53	311.8324	300	504	-195.5
MCCOY 3	0.2632	460	36.37	507.6748	0	25.9	0	460	520	-460
LAKE 1	0.3006	525	28.82	469.6274	400	27.91	472.6547	250	600	-125
CLIFF 1	-0.2259	885	7.13	-720.938	885	7.13	-720.938	885	885	0
CLIFF 2	-0.2259	875	7.34	-720.009	875	7.34	-720.009	875	875	0
MOUNT 3	-0.0033	250	30.07	-42400	451.4	33.06	-41493.9	250	630	201.4
MOUNT 4	-0.0033	0	52.54	0	430	58.18	-33881.8	250	590	430
CAT CC	-0.0036	240	43.23	-35211.1	420	43.23	-35211.1	200	420	180
Units with pos	sitive DFAX	X are need	ed to decre	ase outpu	t					
Units with neg	gative DFA	X are nee	ded to incre	ase outpu	t					
\$/MW Eff	ect = (C	urrent [Dispatch I	Rate – l	Jnit Bid)/Unit Sh	ift Fact	or		
Current Di	spatch	Rate = \$	5169.99/1	MWh						

Congestion Price Demo

Constrained Case – LMP Contour Map

Post Contingency Dispatch Summary

- 9 units were re-dispatched to control the constraint
 - Marginal unit setting System Marginal Price was increased
 - 8 other units were adjusted
- The highest cost unit that was decreased is the marginal unit controlling the constraint
 - Rainy 3

Units Re-dispatched to Control Constraint

UnitName	unitType	Zone	Redispatched MW Disptch	Base Case MW Disptch	Delta	Bid\$@Disp
MOUNT 3 F	Steam	CENTRAL	451.4	250	201.4	33.06
MOUNT 4 F	Steam	CENTRAL	430	0	430	58.18
PILGRIM CC1 F	Steam	EAST	496.5	451.8	44.7	170
CAT CC	Steam	EAST	420	240	180	43.23
OUCH CC	Steam	EAST	355	0	355	165
RAINY 2	Steam	WEST	0	530	-530	25.51
RAINY 3	Steam	WEST	308.5	504	-195.5	34.53
MCCOY 3 F	Steam	WEST	0	460	-460	25.9
LAKE 1 F	Steam	WEST	400	525	-125	27.91

Shadow Price

- Rainy Dooms 500 KV line rating is 1990 MVA
- Calculate shadow price for Rainy Dooms 500 KV line
 - Re-dispatch the system using a DC power flow with Rainy Dooms rating at 1991 MW
 - Calculate the new total system production cost and subtract that from the post contingency case production cost
 - The difference in production cost is the shadow price

Shadow Price

- Post contingency case production cost = \$11,081,725.40
- Production cost with 1 more MW across the Rainy Dooms 500 KV line = \$11,081,422.58
- With 1 more MW across the Rainy Dooms 500 KV line the saving in Production cost is **-\$302.82**, which is the shadow price
 - Pilgrim CC1 decreased by 2.25MW
 - Rainy 3 increased by 2.25 MW

Class Problem – Calculate Change in Rainy – Dooms Line Flow

- Pilgrim CC1 decreased by 2.25MW
 - DFAX (Rainy Dooms) = -0.0097
- Rainy 3 increased by 2.25 MW
 - DFAX (Rainy Dooms) = 0.4344

Congestion Component of LMP

Congestion Component = Shadow Price * DFAX

			Congestion Component
unitname	DFAX	Shadow Price	(\$/MWh)
OUCH CC	-0.0095	-302.82	2.88
BEANS CT	-0.0094	-302.82	2.85
ROSE CC	-0.0045	-302.82	1.36
ROSE CT1	-0.0045	-302.82	1.36
ROSE ST	-0.0045	-302.82	1.36
PILGRIM CC1	-0.0097	-302.82	2.94
RAINY 1	0.4344	-302.82	-131.55
RAINY 2	0.4344	-302.82	-131.55
RAINY 3	0.4344	-302.82	-131.55
CASTLE 1	0.2871	-302.82	-86.94
CASTLE 2	0.2871	-302.82	-86.94
BEN 1	0.3006	-302.82	-91.03
BEN 2	0.3006	-302.82	-91.03
BEN 3	0.3006	-302.82	-91.03
MCCOY 1	0.2632	-302.82	-79.70
MCCOY 2	0.2632	-302.82	-79.70
MCCOY 3	0.2632	-302.82	-79.70
COYOTE 1	0.2264	-302.82	-68.56
CAM 1	0.2893	-302.82	-87.61
WEST 1	0.3006	-302.82	-91.03
LAKE 1	0.3006	-302.82	-91.03
PA 1	0.1513	-302.82	-45.82

Constrained Case – LMP Contour Map

Questions?

PJM Client Management & Services

Telephone: (610) 666-8980

Toll Free Telephone: (866) 400-8980

Website: www.pjm.com

The Member Community is PJM's self-service portal for members to search for answers to their questions or to track and/or open cases with Client Management & Services