2.3. Penalty Functions

Occasionally Binding Constraints in DSGE Models

Jonathan Swarbrick¹ Bank of Canada

Bank of Canada – CMFE-Carleton Virtual Series Advanced Topics in Macroeconomic Modelling

January 2021

 $^{^{1}}$ The views expressed are those of the authors and should not be interpreted as reflecting the views of the Bank of Canada.

The idea

Idea: replace the complimentary slackness condition with an approximation.

E.g. by using a penalty function

The idea

Idea: replace the complimentary slackness condition with an approximation.

E.g. by using a penalty function

▶ We could update the optimization problem to

$$\max_{c_t,b_t} \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t u(c_t,h_t) - P(b_t)$$
 (1)

where

$$P_t = \begin{cases} 0 & \text{if } b_t \ge \underline{b} \\ \infty & \text{if } b_t < \underline{b} \end{cases}$$
 (2)

The idea

Idea: replace the complimentary slackness condition with an approximation.

E.g. by using a penalty function

▶ We could update the optimization problem to

$$\max_{c_t,b_t} \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t u(c_t,h_t) - P(b_t)$$
(1)

where

$$P_t = \begin{cases} 0 & \text{if } b_t \ge \underline{b} \\ \infty & \text{if } b_t < \underline{b} \end{cases}$$
 (2)

► an approximation could be

$$\tilde{P}(b_t) = \eta_0 + \eta_1 b_t + \eta_2 b_t^2 + \eta_3 b_t^3 + \eta_4 b_t^4$$
(3)

Penalty function

Sample points for b from projection simulation, fit a 4th order polynomial

$$P = 0.07 - 5.38b + 83.2b^2 - 333b^3 + 77.5b^4$$

What are the drawbacks of this approach?

Borrowing constraints model

See code: /penalty-function/soe_obc.mod The household problem is written

$$\max_{c_t, h_t, b_t} \mathbb{E}_0 \sum_{t}^{\infty} eta^t \left(\log \left(c_t
ight) + \chi \log \left(1 - h_t
ight) - \delta b_t^2
ight) - P(b_t)$$

s.t.
$$c_t + b_t = \exp(z_t) h_t + rb_{t-1}$$

$$P(b_t) = \eta_0 + \eta_1 b_t + \eta_2 b_t^2 + \eta_3 b_t^3 + \eta_4 b_t^4$$

Leads to:

$$\frac{1}{c}$$

$$\frac{1}{G_t} = r\beta \mathbb{E}_t \left[\frac{1}{G_{t+1}} \right] - 2\delta b_t - \eta_1 - 2\eta_2 b_t - 3\eta_3 b_t^2 - 4\eta_4 b_t^3$$

So $-P'(b_t)$ approximates μ_t .

$$\frac{1}{-}=r\beta$$

$$rac{1}{c_t} = reta \mathbb{I}$$

$$rac{1}{-}=reta\mathbb{E}_{t}$$

$$\frac{1}{c_t} = r\beta \mathbb{E}_t \left[\frac{1}{c_{t+1}} \right] - 2\delta b_t - \mu_t$$

$$\frac{\overline{c}_t}{c_t} = r \beta \mathbb{E}_t \left[\frac{1}{c_{t+1}} \right] - 2 \delta b_t - \mu_t$$

$$\mu_t = -\left(\eta_1 + 2 \eta_2 b_t + 3 \eta_3 b_t^2 + 4 \eta_4 b_t^3 \right)$$

$$+4n_{4}b^{3}$$

$$\eta_4 b_t^3$$

(9)

(4)

(5)

(6)

Simulated Moments

Projection results:

	Mean	Standard deviation	Skewness	
	Relative to no constraint	Relative to no constraint	Baseline	No constraint
Consumption	+0.03%	+15%	-0.22	0.09
Hours	-0.01%	-43%	-0.09	-0.04
Bonds $/\overline{c}$	0.3% → 5%	-59%	1.18	0.007

All methods:

		Mean	Standard deviation	Skewness (projection)
		Relative to projection	Relative to projection	
VFI	Consumption	≈ 0	+0.02%	-0.23 (-0.22)
	Hours	≈ 0	+0.6%	-0.09 (-0.09)
	Bonds $/\overline{c}$	$5.0\% \longrightarrow 4.9\%$	<1%	1.18 (1.18)
Extended-path	Consumption	-0.03%	+0.5%	-0.29 (-0.22)
	Hours	+0.003%	+1%	-0.1 (-0.09)
	Bonds $/\overline{c}$	5.0% → 4.0%	-1.4%	1.3 (1.18)
Penalty function	Consumption	-0.02%	+25%	0.01 (-0.22)
	Hours	-0.002%	-99%	-0.1 (-0.09)
	Bonds $/\overline{c}$	5.0% 4.4%	≈-100%	-0.19 (1.18)