## LES NOMBRES COMPLEXES : POINT DE VUE GÉOMÉTRIQUE

Dans tout le chapitre, on munit le plan d'un repère  $(O, \vec{u}, \vec{v})$  orthonormé direct .

## I ) Représentation dans le plan complexe

#### 1) Définitions

**Définitions :** À tout nombre complexe z = a + ib, avec a et b réels, on peut associer :

• L'unique point M(a; b). M est appelé point image de z.

• L'unique vecteur  $\overrightarrow{w} \begin{pmatrix} a \\ b \end{pmatrix}$ .  $\overrightarrow{w}$  est appelé vecteur image de z.



• À tout point M(a;b) avec a et b deux réels, on peut associer l'unique nombre complexe z = a + ib.

Le nombre z est appelé affixe du point M



Le nombre z est appelé affixe du vecteur  $\overrightarrow{w}$ .



#### Remarques:

• Les nombres réels sont les affixes des points de l'axe des abscisses aussi appelé : axe des réels.

• Les nombres imaginaires purs sont les affixes des points de l'axe des ordonnées aussi appelé : axe des imaginaires purs.

• Lorsqu'un point ou un vecteur est repéré par son affixe, le plan est appelé le plan complexe.

• L'affixe de M est souvent noté  $z_M$  et la donnée d'un point M d'affixe  $z_M$  est souvent notée  $M(z_M)$ . L'affixe de  $\overrightarrow{w}$  est souvent noté  $z_{\overrightarrow{w}}$ , et la donnée d'un vecteur w d'affixe  $z_{\overrightarrow{w}}$  est souvent notée  $\overrightarrow{w}(z_{\overrightarrow{w}})$ .

**Exemples:** A(1;2) avec  $z_A = 1 + 2i$ .  $z_{\overrightarrow{w}} = 2 - 3i$  et  $\overrightarrow{w} \begin{pmatrix} 2 \\ -3 \end{pmatrix}$ .

# 2) Propriétés

Des propriétés connues de géométrie sur les vecteurs et points donnent les propriétés suivantes.

**Propriétés :** Soient  $A(z_A)$  et  $B(z_B)$  deux points du plan complexe. Soient  $\overrightarrow{w_1}(z_{\overrightarrow{w_1}})$  et  $\overrightarrow{w_2}(z_{\overrightarrow{w_2}})$  deux vecteurs du plan complexe. Soit  $\lambda \in \mathbb{R}$ .

(i)  $A = B \iff z_A = z_B$ .

(iv) Le milieu du segment [AB] a pour affixe  $\frac{z_A + z_B}{2}$ .

(ii)  $\overrightarrow{w_1} = \overrightarrow{w_2} \iff z_{\overrightarrow{w_1}} = z_{\overrightarrow{w_2}}$ .

(v) Le vecteur  $\overrightarrow{w_1} + \overrightarrow{w_2}$  a pour affixe  $z_1 + z_2$ .

(iii)  $\overrightarrow{AB}$  a pour affixe  $z_B - z_A$ .

(vi)  $\lambda \overrightarrow{w_1}$  a pour affixe  $\lambda z_1$ .

**Démonstration :** (iii) On sait que  $\overrightarrow{AB} \begin{pmatrix} x_B - x_A \\ y_B - y_A \end{pmatrix}$  d'où pour les affixes :  $z_{\overrightarrow{AB}} = (x_B - x_A) + i(y_B - y_A) = (x_B - iy_B) - (x_A - iy_A) = z_B - z_A$ .

**Exemple:** Soit A(3+2i) et B(5-i). Alors le vecteur  $\overrightarrow{AB}$  a pour affixe  $z_{\overrightarrow{AB}} = 5 - i - (3+2i) = 2 - 3i$ .

## 3) Conjugué et opposé

Les points M d'affixe z et M' d'affixe  $\bar{z}$  sont symétriques par rapport à l'axe des réels.

Les points M d'affixe z et M'' d'affixe -z sont symétriques par rapport à l'origine du repère.



## II ) Module et argument d'un nombre complexe

## 1) Module

**Définition :** Soit M un point d'affixe z. Le module de z, noté |z| est le réel positif défini par |z| = OM.

Si z = a + ib avec a et b deux réels. Alors  $|z| = \sqrt{a^2 + b^2}$ .

**Remarque :** Si z=z', alors |z|=|z'|. Mais la réciproque est fausse. Contre-exemple avec z=1+i et z'=1-i.  $|z|=|z'|=\sqrt{2}$  et  $z\neq z'$ .



**Propriétés :** Soit z un nombre complexe.

(i) 
$$|z|^2 = z\overline{z}$$

(iii) 
$$|-z| = |z|$$

(ii) 
$$|\overline{z}| = |z|$$

(iv) 
$$|z| = 0 \iff z = 0$$

#### **Démonstration:**

(i) 
$$z\overline{z} = (a+ib)(a-ib) = a^2 - (ib)^2 = a^2 - i^2b^2 = a^2 + b^2 = |z|^2$$

(ii) 
$$|\overline{z}| = \sqrt{a^2 + (-b)^2} = \sqrt{a^2 + b^2} = |z|$$

(iii) 
$$|-z| = \sqrt{(-a)^2 + (-b)^2} = \sqrt{a^2 + b^2} = |z|$$

(iv) 
$$|z| = 0 \Rightarrow a^2 + b^2 = 0 \iff a = b = 0$$
. Sens réciproque évident.

**Remarque :** Corollaire de (i) :  $|z| = \sqrt{z\overline{z}}$ . (utile en pratique).

**Propriété :** Soit  $A(z_A)$  et  $B(z_B)$ . On a  $AB = |z_B - z_A| = |z_A - z_B|$ .

**Démonstration :** On a  $AB = \|\overrightarrow{AB}\| = |z_{\overrightarrow{AB}}| = |z_B - z_A|$ .

**Propriétés :** Soient z et z' deux nombres complexes non nuls et entier naturel non nul.

(i) Produit : 
$$|zz'| = |z||z'|$$

(*iii*) Inverse : 
$$\left|\frac{1}{z}\right| = \frac{1}{|z|}$$

(iv) Quotient : 
$$\left| \frac{z}{z'} \right| = \frac{|z|}{|z'|}$$

# (ii) Puissance : $|z^n| = |z|^n$

#### Démonstration:

• Module d'un produit : $|zz'|^2 = zz' \times \overline{zz'} = zz' \overline{zz'} = z\overline{z} \times z' \overline{z'} = |z|^2 |z'|^2 = (|z||z'|)^2$ . Or  $|zz'| \in \mathbb{R}^+$  et  $|z||z'| \in \mathbb{R}^+$  d'où |zz'| = |z||z'|

• Module d'une puissance : On procède par récurrence.

Initialisation :  $|z^1| = |z| = |z|^1$ . P(1) est vraie.

Hérédité : Supposons qu'il existe un entier k tel que la propriété P(k) soit vraie :  $|z^k| = |z|^k$   $|z^{k+1}| = |z^k z| = |z^k||z| = |z|^k|z| = |z|^{k+1}$ 

Conclusion : La propriété est vraie pour n=1 et héréditaire à partir de ce rang.

Donc elle est vraie pour tout entier naturel n, soit :  $|z^n| = |z|^n$ .

• Module de l'inverse : 
$$z \times \frac{1}{z} = 1$$
 d'où  $\left| z \times \frac{1}{z} \right| = |1| = 1$  puis  $|z| \times \left| \frac{1}{z} \right| = 1 \iff \left| \frac{1}{z} \right| = \frac{1}{|z|}$ .

• Module du quotient :  $\frac{z}{z'} = z \times \frac{1}{z'}$ . Donc  $\left| \frac{z}{z'} \right| = \left| z \times \frac{1}{z'} \right| = \left| z \right| \times \left| \frac{1}{z'} \right| = \left| z \right| \times \frac{1}{\left| z' \right|}$ 

#### Propriété: Inégalité triangulaire

Soient z et z' deux nombres complexes, on a  $|z + z'| \le |z| + |z'|$ 

**Démonstration :** Voir fiche complément

## 2) Argument

**Définition :** Soit un point M d'affixe non nulle z.

On appelle argument de z, noté arg(z) une mesure, en radians, de l'angle  $(\overrightarrow{u}; OM)$ .



• Un nombre complexe non nul possède une infinité d'arguments de la forme  $\arg(z) + 2k\pi, k \in \mathbb{Z}$ .

On notera  $\arg(z)$  modulo  $2\pi$  ou  $\arg(z)[2\pi]$ 



**Exemple:** Soit z = 3 + 3i. On a  $|z| = 3\sqrt{2}$  et  $\arg(z) \equiv \frac{\pi}{4} [2\pi]$ . On peut noter  $\arg(z) = \frac{\pi}{4} [2\pi]$ .

$$|i| = 1; \arg(i) = \frac{\pi}{2} [2\pi].$$

**Propriétés :** Soit z un nombre complexe non nul.

(i) z est un nombre réel 
$$\iff$$
 arg(z) =  $0[\pi]$ 

(iii) 
$$\arg(\overline{z}) = -\arg(z)[2\pi]$$

(ii) z est un nombre imaginaire pur 
$$\iff$$
  $\arg(z) = \frac{\pi}{2} [\pi]$  (iv)  $\arg(-z) = \arg(z) + \pi [2\pi]$ 

(iv) 
$$arg(-z) = arg(z) + \pi[2\pi]$$

# III ) Forme trigonométrique d'un nombre complexe

**Propriété :** Soit z = a + ib un nombre complexe non nul.

On pose :  $\theta = \arg(z)$ .

On a alors :  $a = |z| \cos(\theta)$  et  $b = |z| \sin(\theta)$ .



arg(z)

 ${\bf D\acute{e}monstration}$  : Dans le triangle OAM rectangle en A on utilise la trigonométrie de collège.

On a 
$$cos(\theta) = \frac{a}{|z|}$$
 et  $sin(\theta) = \frac{b}{|z|}$ .

Définition: On appelle forme trigonométrique d'un nombre complexe non nul l'écriture:

$$z = |z|(\cos(\theta) + i\sin(\theta))$$
 avec  $\theta = \arg(z)$ .

Propriété: Deux nombres complexes non nuls sont égaux si, et seulement si, ils ont même module et même argument (modulo  $2\pi$ ).

#### **Démonstration:**

- Si z = z' implication trivi
- Réciproque : Si  $\begin{cases} |z| = |z'| \\ \arg(z) = \theta = \arg(z') = \theta'[2\pi] \end{cases}$  Alors  $z = |z|(\cos(\theta) + i\sin(\theta)) = |z'|(\cos(\theta') + i\sin(\theta')) = z'$ .

**Exemple :** Écrire le nombre complexe  $z = \frac{\sqrt{2}}{2} + i\frac{\sqrt{6}}{2}$  sous sa forme trigonométrique.  $M\'{e}thodologie:$ 

- ullet On commence par calculer le module de z
- On calcule  $\frac{z}{|z|}$  pour identifier la partie réelle de et sa partie imaginaire.
- $\bullet |z| = \cdots = \sqrt{2}.$

$$\bullet \ \frac{z}{|z|} = \dots = \frac{1}{2} + i \frac{\sqrt{3}}{2}.$$

On cherche donc un argument tel que  $\cos(\theta) = \frac{1}{2}$  et  $\sin(\theta) = \frac{\sqrt{3}}{2}$ . Parmi les valeurs remarquable on a  $\cos(\frac{\pi}{3}) = \frac{1}{2}$  et  $\sin(\frac{\pi}{3}) = \frac{\sqrt{3}}{2}$ . D'où  $\frac{z}{|z|} = \cos(\frac{\pi}{3}) + i\sin(\frac{\pi}{3})$  puis  $z = \sqrt{2}\left(\cos(\frac{\pi}{3}) + i\sin(\frac{\pi}{3})\right)$ 

D'où 
$$\frac{z}{|z|} = \cos(\frac{\pi}{3}) + i\sin(\frac{\pi}{3})$$
 puis  $z = \sqrt{2}\left(\cos(\frac{\pi}{3}) + i\sin(\frac{\pi}{3})\right)$