# On Representing Linear Programs by Graph Neural Networks

ZIANG CHEN, JIALIN LIU, XINSHANG WANG, JIANFENG LU, AND WOTAO YIN

# **Linear Programming (LP)**

$$\min_{x \in \mathbb{R}^n} \ c^{\top} x, \quad \text{s.t. } Ax \circ b, \ l \le x \le u,$$

$$A \in \mathbb{R}^{m \times n}, c \in \mathbb{R}^n, b \in \mathbb{R}^m, l \in (\mathbb{R} \cup \{-\infty\})^n, u \in (\mathbb{R} \cup \{+\infty\})^n, \circ \in \{\leq, =, \geq\}^m$$

Three cases for LP:

- Infeasible: the feasible set  $\mathcal{X}_F := \{x \in \mathbb{R}^n : Ax \circ b, \ l \leq x \leq u\}$  is empty.
- Unbounded: The feasible set is non-empty, but the objective value can be arbitrarily good.
- Feasible and bounded: There exists  $x^* \in \mathcal{X}_F$  such that  $c^\top x^* \le c^\top x$  for all  $x \in \mathcal{X}_F$ ,  $x^*$  is an optimal solution,  $c^\top x^*$  is the optimal objective value.

### **Problem Setup**



# LP represented as weighted bipartite graph



Figure 1. An example of LP-graph

• An LP is represented as a graph  $(G, H) \in \mathcal{G}_{m,n} \times \mathcal{H}_m^V \times \mathcal{H}_n^W$ .

# **Problem Setup**



### **GNNs-LP**

(2.1) 
$$h_i^{0,V} = f_{\text{in}}^V(h_i^V), \ h_j^{0,W} = f_{\text{in}}^W(h_j^W), \ i = 1, 2, \dots, m, \ j = 1, 2, \dots, n,$$

$$h_{1}^{V} = (1, \geq) \quad v_{1}$$

$$h_{1}^{W} = (1, -2, +\infty)$$

$$h_{1}^{V} = (1, \geq) \quad v_{1}$$

$$w_{1} \quad h_{1}^{W} = (1, -2, +\infty)$$

$$h_{2}^{V} = (1, \geq) \quad v_{2}$$

$$w_{3} \quad h_{3}^{W} = (2, -3, 3)$$

$$(2.2) \quad h_{1}^{l,V} = g_{l}^{V} \left( h_{i}^{l-1,V}, \sum_{j=1}^{n} E_{i,j} f_{l}^{V} (h_{j}^{l-1,V}) \right), \quad i = 1, 2, \dots, m,$$

$$h_{1}^{l,W} = g_{l}^{W} \left( h_{j}^{l-1,W}, \sum_{i=1}^{m} E_{i,j} f_{l}^{V} (h_{i}^{l-1,V}) \right), \quad j = 1, 2, \dots, n,$$

$$y_{\text{out}} = f_{\text{out}} \left( \sum_{i=1}^{m} h_{i}^{L,V}, \sum_{j=1}^{n} h_{j}^{L,W} \right).$$

$$(2.2) \quad h_{1}^{W} = g_{l}^{W} \left( h_{i}^{l-1,V}, \sum_{j=1}^{m} E_{i,j} f_{l}^{V} (h_{i}^{l-1,V}) \right), \quad i = 1, 2, \dots, m,$$

(2.5) 
$$y_{\text{out}}(w_j) = f_{\text{out}}^W \left( \sum_{i=1}^m h_i^{L,V}, \sum_{j=1}^n h_j^{L,W}, h_j^{L,W} \right), \quad j = 1, 2, \dots, n.$$

(2.6) 
$$\mathcal{F}_{GNN} = \{ F : \mathcal{G}_{m,n} \times \mathcal{H}_m^V \times \mathcal{H}_n^W \to \mathbb{R} \mid F \text{ yields } (2.1), (2.2), (2.3), (2.4) \},$$
$$\mathcal{F}_{GNN}^W = \{ F : \mathcal{G}_{m,n} \times \mathcal{H}_m^V \times \mathcal{H}_n^W \to \mathbb{R}^n \mid F \text{ yields } (2.1), (2.2), (2.3), (2.5) \}.$$

 $f_{\text{in}}^V, f_{\text{in}}^W, f_{\text{out}}, f_{\text{out}}^W, \{f_l^V, f_l^W, g_l^V, g_l^W\}_{l=0}^L$  are usually parameterized with multi-linear perceptrons (MLP)

### **GNNs-LP**

 $f_{\text{in}}^V, f_{\text{in}}^W, f_{\text{out}}, f_{\text{out}}^W, \{f_l^V, f_l^W, g_l^V, g_l^W\}_{l=0}^L$  are usually parameterized with multi-linear perceptrons (MLP)

#### **Advantages:**

• Invariance and Equivariance

$$F(G, H) = F((\sigma_V, \sigma_W) * (G, H)), \ \forall \sigma_V \in S_m, \sigma_W \in S_n,$$
  
$$\sigma_W(F_W(G, H)) = F_W((\sigma_V, \sigma_W) * (G, H)), \ \forall \sigma_V \in S_m, \sigma_W \in S_n,$$



### **GNNs-LP** Beyond WL-Test



#### unbounded



$$x_3 + x_4 = 1, \qquad x_3 + x_4 \le 1, \qquad x_3 + x_4 = 1,$$

$$x_4 + x_1 = 1, \qquad x_4 + x_1 \le 1, \qquad x_4 + x_1 = 1,$$

$$x_j \ge 1, \ 1 \le j \le 4. \qquad x_j \le 1, \ 1 \le j \le 4. \qquad x_j \le 1, \ 1 \le j \le 4.$$

$$\min x_1 + x_2 + x_3 + x_4, \qquad \min x_1 + x_2 + x_3 + x_4, \qquad \min x_1 + x_2 + x_3 + x_4,$$

$$\text{s.t. } x_1 + x_2 = 1, \qquad \text{s.t. } x_1 + x_2 \le 1, \qquad \text{s.t. } x_1 + x_2 = 1,$$

$$x_2 + x_1 = 1, \qquad x_2 + x_1 \le 1, \qquad x_2 + x_1 = 1,$$

$$x_3 + x_4 = 1, \qquad x_3 + x_4 \le 1, \qquad x_3 + x_4 = 1,$$

$$x_4 + x_3 = 1, \qquad x_4 + x_3 \le 1, \qquad x_4 + x_3 = 1,$$

$$x_j \ge 1, \ 1 \le j \le 4. \qquad x_j \le 1, \ 1 \le j \le 4. \qquad x_j \le 1, \ 1 \le j \le 4.$$

### Feasible bounded with the same optimal solution

(1/2, 1/2, 1/2, 1/2) with the smallest  $\ell_2$ -norm



### Three mapping:

Feasibility mapping

$$\Phi_{\text{feas}}: \mathcal{G}_{m,n} \times \mathcal{H}_m^V \times \mathcal{H}_n^W \to \{0,1\}$$

Optimal objective value mapping

$$\Phi_{\text{obj}}: \mathcal{G}_{m,n} \times \mathcal{H}_m^V \times \mathcal{H}_n^W \to \mathbb{R} \cup \{\infty, -\infty\}$$

Optimal solution mapping

$$\Phi_{\text{solu}}: \Phi_{\text{obj}}^{-1}(\mathbb{R}) \to \mathbb{R}^n$$
 with the smallest  $\ell_2$ -norm

Are there GNNs that can accurately approximate  $\Phi_{\rm feas}$ ,  $\Phi_{\rm obj}$  and  $\Phi_{\rm solu}$ ?

### Three mapping:

• Feasibility mapping

$$\Phi_{\text{feas}}: \mathcal{G}_{m,n} \times \mathcal{H}_m^V \times \mathcal{H}_n^W \to \{0,1\}$$

Optimal objective value mapping

$$\Phi_{\mathrm{obj}}: \mathcal{G}_{m,n} \times \mathcal{H}_m^V \times \mathcal{H}_n^W \to \mathbb{R} \cup \{\infty, -\infty\}$$





$$\Phi_{\text{solu}}: \Phi_{\text{obj}}^{-1}(\mathbb{R}) \to \mathbb{R}^n$$
 with the smallest  $\ell_2$ -norm  $\longleftarrow$   $\mathcal{F}_{\text{GNN}}^W$ 

 $\mathcal{F}_{\rm GNN}$ 

#### Feasibility mapping

**Theorem 3.2.** Let  $X \subset \mathcal{G}_{m,n} \times \mathcal{H}_m^V \times \mathcal{H}_n^W$  be measurable with finite measure. For any  $\epsilon > 0$ , there exists some  $F \in \mathcal{F}_{GNN}$ , such that

$$Meas\left(\left\{(G,H)\in X: \mathbb{I}_{F(G,H)>1/2}\neq \Phi_{feas}(G,H)\right\}\right)<\epsilon,$$

where  $\mathbb{I}$  is the indicator function, i.e.,  $\mathbb{I}_{F(G,H)>1/2}=1$  if F(G,H)>1/2 and  $\mathbb{I}_{F(G,H)>1/2}=0$  otherwise.



(A) Feasibility

#### Optimal objective value mapping

**Theorem 3.4.** Let  $X \subset \mathcal{G}_{m,n} \times \mathcal{H}_m^V \times \mathcal{H}_n^W$  be measurable with finite measure. For any  $\epsilon > 0$ , there exists  $F_1 \in \mathcal{F}_{GNN}$  such that

$$(3.1) Meas\left(\left\{(G,H)\in X: \mathbb{I}_{F_1(G,H)>1/2}\neq \mathbb{I}_{\Phi_{obj}(G,H)\in\mathbb{R}}\right\}\right)<\epsilon.$$

For any  $\epsilon, \delta > 0$ , there exists  $F_2 \in \mathcal{F}_{GNN}$  such that

$$(3.2) Meas\left(\left\{(G,H)\in X\cap\Phi_{obj}^{-1}(\mathbb{R}):|F_2(G,H)-\Phi_{obj}(G,H)|>\delta\right\}\right)<\epsilon.$$



(B) Optimal objective value

#### Optimal solution mapping

**Theorem 3.6.** Let  $X \subset \Phi_{obj}^{-1}(\mathbb{R}) \subset \mathcal{G}_{m,n} \times \mathcal{H}_m^V \times \mathcal{H}_n^W$  be measurable with finite measure and be closed under actions in  $S_m \times S_n$ . For any  $\epsilon, \delta > 0$ , there exists some  $F_W \in \mathcal{F}_{GNN}^W$ , such that

$$Meas(\{(G, H) \in X : ||F(G, H) - \Phi_{solu}(G, H)|| > \delta\}) < \epsilon.$$



(C) Optimal solution

### Conclusion

- GNN can approximate  $\Phi_{\text{feas}}$ ,  $\Phi_{\text{obj}}$ , and  $\Phi_{\text{solu}}$
- The idea of using neural network to approximate discrete values is provided