<110> diaDexus, Inc.

PCT/US03/18934

480

1

SEQUENCE LISTING

10/517696

	Salceda, Susana Macina, Roberto A. Turner, Leah R. Sun, Yongming Liu, Chenghua		
<120> Protein		t Specific	Genes and
<130>	DEX-0432		
	US 60/389,327 2002-06-14		
<160>	171		
<170>	PatentIn version 3.1		
<212>	1574	ž	
<222>	misc_feature (89)(180) n=a, c, g, or t		_
<222>	misc_feature (1466)(1466) n=a, c, g, or t		
<222>	misc_feature (1474)(1474) n=a, c, g, or t		
<400> ctgaag	. 1 ggttt atacaatatt tacacagtgg ctacaatatt cacaa	aaattc ttat	gttata 60
	gaaaaa tatacacttt tcattttgnn nnnnnnnnnn nnnn		
	mnnnn nannnannn nannnanna nannannann nann		
gtacat	tgtat atatttgtcc tgcattatgt tttttacttg atat	aaatgt attt	ttactg 240
	gtcca agtgccctgg ggggcaggtg tgctctatgt ggtt		
	cgtag agatetgeag tgtteacaag gatgttggtt tgga		
acctgg	ggggtg tgtgactcag tccatatgag agggacatct gggt	ggagga gtaa	aattoot 420

gtgctctgaa atgccacttg gtagctctgg acaatgaagg acaattgact caagggtgcc

WO 03/106648 2

tgctgctggg	aaaaaattca	gtttatagca	ttcctgcacc	tcccaaagta	540
					600
					660
					720
					780
			•		840
actgcagttg	gaagtcagct	ttttgaaatg	tccagccttt	gcccaattgt	900
ctcatgcctc	aggctttggc	aggtatcctg	ccctccatct	tattccagtg	960
atcaaggcag	cagagtggat	gaaggagtaa	gtctgccctt	tgccatactg	1020
gaccccgatt	ggtgagggct	ctgcatatgc	ctgtatgaag	gagatacagg	1080
catgccggta	tgaagaagac	acaggcatgt	gcttctcagt	tttgctaaca	1140
aacggggcag	agggaggaag	gtccatgatg	ctcagccaca	tactgtagag	1200
taatgttaaa	tgacgcacca	tcctccctcc	cacccttctc	ccagtcaact	1260
ttctagaact	actaattatc	tctcaaggct	gaaaaattaa	ttgccttagg	1320
aattcctagt	atccaccaaa	cttaactccg	tatctccata	tggtgtctcc	1380
tgtgagctac	ttaactgacg	ccctcttcct	ccaactgaag	gatcgcccaa	1440
ttatagaatt	attatngcct	gctntctttc	tttgggactt	ttgaatttct	1500
ttttaagaag	taacccaaca	tttcctacaa	cactaaataa	aatggtactt	1560
aaga					1574
	aggtcattca gaagctttag ctacaaatgg caggccctgg ctggctgcct actgcagttg ctcatgcctc atcaaggcag gaccccgatt catgccggta aacggggcag taatgttaaa ttctagaact aattcctagt tgtgagctac ttatagaatt	aggtcattca gttaacaact gaagctttag cctgttctga ctacaaatgg cctatgtctc caggccctgg gaggctgctg ctggctgcct cagaaagagc actgcagttg gaagtcagct ctcatgcctc aggctttggc atcaaggcag cagagtggat gaccccgatt ggtgagggct catgccggta tgaagaagac aacggggcag agggaggaag taatgttaaa tgacgcacca ttctagaact actaattatc aattcctagt atcaccaaaa tgtgagctac ttaactgacg ttatagaatt attatngcct ttttaagaag taacccaaca	aggtcattca gttaacaact gtccctgagg gaagctttag cctgttctga gccattagga ctacaaatgg cctatgtctc agaagagctg caggccctgg gaggctgctg tgctctggag ctggctgcct cagaaagagc agtcaggact actgcagttg gaagtcagct ttttgaaatg ctcatgcctc aggctttggc aggtatcctg atcaaggcag cagagtggat gaaggagtaa gaccccgatt ggtgagggct ctgcatatgc catgccggta tgaagaagac acaggcatgt aacggggcag agggaggaag gtccatgatg taatgttaaa tgacgcacca tcctccctcc ttctagaact actaattatc tctcaaggct aattcctagt atccaccaaa cttaactccg tgtgagctac ttaactgacg ccctcttcct ttatagaatt attatngcct gctntctttc ttttaagaag taacccaaca ttcctccaaa	aggtcattca gttaacaact gtccctgagg actcagtttt gaagctttag cctgttctga gccattagga gacattagtg ctacaaatgg cctatgtctc agaagagctg ggacctcctt caggccctgg gaggctgctg tgctctggag aagctggagc ctggctgct cagaaagagc agtcaggact tgagggaagc actgcagttg gaagtcagct ttttgaaatg tccagccttt ctcatgcctc aggctttggc aggtatcctg ccctccatct atcaaggcag cagagtggat gaaggagtaa gtctgccctt gaccccgatt ggtgagggct ctgcatatgc ctgtatgaag catgccggta tgaagaagac acaggcatgt gcttctcagt aacggggcag agggaggaag gtccatgatg ctcagccaca taatgttaaa tgacgcacca tcctccctcc cacccttctcttct	aggtcattca gttaacaact gtccctgagg actcagtttt gggggagggg gaagctttag cctgttctga gccattagga gacattagtg aattggagca ctacaaatgg cctatgtctc agaagagctg ggacctcctt ccagctgctg caggccctgg gaggctgctg tgctctggag aagctggagc agctcatttc ctggctgcc cagaaagagc agtcaggact tgagggaagc actcaattct actgaggtg gaagtcagct ttttgaaatg tccagccttt gcccaattgt ctcatgcctc aggctttggc aggtatcctg ccctcatct tattccagtg atcaaggcag cagagtggat gaaggagtaa gtctgcctt tgccaattgt actaaaggcag cagagtggat gaaggagtaa gtctgccctt tgccaattgt gaccccgatt ggtgagggct ctgcatatgc ctgtatgaag gagatacagg catgaggag acaggaggaa acagggagaa gtccatgat gcttccagt tttgcaaca acagggggaa agggaggaag gtccatgat gcttctcagt tttgctaaca acagggggaa agggaggaag gtccatgatg ctcagccaca tactgtagag taatgttaaa tgacgacca tcctccctcc cacccttctc ccagtcaact ttctaagaact actaattact tctcaaggct gaaaaattaa ttgccttagg aattcctagt atcaccaaa cttaactccg tatctccata tggtgtctcc tgtgaggctac ttaactgacg ccctcttcct ccaacctgaag gatcgccaa ttatagaatt attatngcct gctntcttc tttgggactt ttgaatttct ttttaagaat tatatngcct gctntcttc ttttgggactt ttgaatttct ttttaagaat taacccaaca tttcctacaa cactaaataa aatggtactt ttgaatttct ttttaagaag taacccaaca tttcctacaa cactaaataa aatggtactt

PCT/US03/18934

<211> 539

<212> DNA <213> Homo sapien

<400> 2 60 cgaccgttga ctattctcta caaaccacaa agacattgga acactatacc tattattcgg cgcatgagct ggagtcctag gcacagctct aagcctcctt attcgagccg agctgggcca 120 gccaggcaac cttctaggta acgaccacat ctacaacgtt atcgtcacag cccatgcatt 180 240 tgtaataatc ttcttcatag taatacccat cataatcgga ggctttggca aaaaaaaaac aaaaaaaaaa aaaaaacctg ggggaaacac ggggcaaacg cggtcccggg ggcagaaatg 300 360 gtacccggcc acattcccac acacattccg acacaagagg cgaagacacg acaacagccg accgacacaa cagaggcacg gggaaggggg acgaagagga ggaggagaac agacgggacg 420 gcaacaaggg acagcgaggg acgcagacgc ggaggagaag ggggaaggca gacgggaacg 480 **WO** 03/106648

PCT/US03/18934

			3			
agaaaaagag	r ccgagacggg	acgeggaeee	cacagggggg	tcgcgagaaa	agacgccca	539
<210> 3 <211> 197 <212> DNA <213> Hom						
<400> 3	osstatssta	303300	242444	*	h	
					tgtgctttgt	60
				•	aaggcagatg	120
acgtgactct	taagacgtgc	tatatttatt	cagttcctct	ttacctctat	agaggtttta	180
aatttagaat	aagctgt					197
<210> 4 <211> 163 <212> DNA <213> Hom						
<400> 4	at casatttt	+++++++	*****			
	gtggggtttt					60
	gaagtggaac					120
	acacgttcac					180
atactaggtc	cattaatatt	gctcaaccct	ggtcaaataa	ttcaaattat	ctttaaaaat	240
aaagccgcaa	gaccgtattc	tattcatgct	catggagtga	aaacaaataa	ttccactgtt	300
gttccaactc	agccaggaga	gattcaaata	tatacttggc	agatacctga	tagaactggt	360
cctacctcac	tggactttga	atgcatacct	tggttttact	attcaactgt	atctgtggct	420
aaggaccttc	acagtggact	ggtaggccct	ctctctgtat	gccgcaaaga	catcaacccc	480
aacatạgttc	accgtgttct	ccacttcatg	atatttgatg	agaatgaatc	ctggtacttc	540
gaagacagta	tcaacacçta	tgcttcaaaa	ccaaacaaag	tggacaagga	aaatgataat	600
tttcaactca	gcaaccaaat	gcacgcaatt	aacggaagac	tgtttggaaa	taaccaaggt	660
ataacattcc	atgttgggga	tgtagtgaat	tggtatctga	ttggcatagg	gaatgaagct	720
gacctgcaca	cagttcactt	: tcatggccat	agctttgaat	acaagaatta	gggagtgtat	780
	tttatgacct					840
	cctggttatt					900
	ctgtacttga					960
	gcatgaacag					1020
	aaaactgatt					
					atcagtgttc	1080
				Andread to the Collection of the Collection	a caucare	1 (4()

PCT/US03/18934 WO 03/106648

ā	atgtacattc	ttagtaaaag	agactttggt	gcgctgtcca	tgaaataaat	ccccattgc	1200
1	taacattctt	tctttggaaa	agtagatttt	gcatttcaaa	gaatataaag	tcaaattgga	1260
1	ttggatttac	aggtcatctg	ttcccacaga	agggtgatat	tgatgttgct	attgataagt	1320
i	aaactttttg	tggcaaaagt	gatggtagtt	attttaagga	tgttcccaag	actaatataa	1380
i	attttgtatt	tattccttaa	atgtatgtaa	tcattttagc	ttagtatttt	aacttagaac	1440
1	tgcatgctat	tatataatat	tacctatttt	tgaaacttcc	ttttctacag	cataaatatt	1500
1	tgatatgata	tgaatattga	caagcttaca	agccaaggta	aagctgccaa	agaaggaaaa	1560
,	ctccagggac	caaggagtct	gggaggaacc	agctaaagac	tttcatgaca	atgtaccagg	1620
,	gagactagtt	tgag					1634
		o sapien					
		aggatggggg	gacaggggcg	ctcccgcggg	ggtggatgag	ggaccatagc	60
	ggggctggcg	gggcaggggc	cggcgcacga	ggctggagga	ggggagcgcg	cgcttctacc	120
	cgggctgggt	cgccgagtcc	acageetega	agccatgggt	teteceegge	cctctgaagc	180
	cgccacacct	gtgccagccg	gccgcgtcct	cagacctttc	cccgcggagt	cttcccagca	240
	cttggagacg	cagcgcaggg	cccggaggac	ggcctggccc	ggagaaaaga	taccgaagct	300
	ccaactttcc	ccaaccccgc	tecectecte	cttccaccct	cccttcccgc	ccccaaagct	360
	cgggggtcct	atccctcctc	cggtccgcgg	agtctcccga	accctgcggg	gacccggcgc	420
	tcggcggtgc	cctcctgggg	cgcacggggc	tggggcggga	gcgaggagac	caggtgggga	480
	ggggacccca	gatctcagac	gccaggggag	acggcgtttc	ccgctgttca	ttcaggtttg	540
	tgccaaaagg	agcctcacag	atgcagtatt	gggtttggta	gactcaaatc	gtcttgtttt	600
	aatgtaaatg	aaagtaagtt	taggataaat	tccagtgcgg	cgggggcagg	caaggctacc	660
	cacattttt	aaaaagaagc	cagcccgtat	ttttctccct	ttccaaatcc	teegeeeeee	720
	agtccttcga	cccaggcacg	agcgcccatc	gcggaggcca	cgatgcccgt	tttattccct	780
	ctccacggca	aggaaaagca	gcgaaatctg	aggtcttcag	aggttaacco	tatctaggag	840
	cagaatgtga	cgcattgtaa	acaaataaat	attgaaaact	cgatgttaaa	a	891

<210> 6 <211> 1253 <212> DNA <213> Homo sapien

```
<400> 6
ggggaagtgc aggatggggg gacaggggcg ctcccgcggg ggtggatgag ggaccatagc
                                                                      60
ggggctggcg gggcaggggc cggcgcacga ggctggagga ggggagcgcg CgCttctacc
                                                                     120
cgggctgggt cgccgagtcc acagcctcga agccatgggt tctccccggc cctctgaagc
                                                                     180
cgccacacct gtgccagccg gccgcgtcct cagacctttc cccgcggagt cttcccagca
                                                                     240
cttggagacg cagegeaggg ceeggaggae ggeetggeee ggagaaaaga taeegaaget
                                                                     300
ccaactttcc ccaaccccgc tcccctcctc cttccaccct cccttcccgc ccccaaagct
                                                                     360
egggggteet ateceteete eggteegegg agteteeega accetgeggg gaceeggege
                                                                     420
teggeggtge ceteetgggg egeaegggge tgggggggg gegaggagae eaggtgggga
                                                                     480
ggggacccca gateteagae gecaggggag aeggegttte eegetgttea tteaggtttg
                                                                     540
tgccaaaagg agcctcacag atgcagtatt gggtttggta gactcaaatc gtcttgtttt
                                                                     600
aatgtaaatg aaagtaagtt taggataaat tccagtgcgg cgggggcagg caaggctacc
                                                                     660
cacatttttt aaaaagaagc cagcccgtat ttttctccct ttccaaatcc tccgccccc
                                                                     720
agtecttega cecaggeacg agegeeeate geggaggeea egatgeeegt tttatteeet
                                                                     780
ctccacggca aggaaaagca gcgaaatctg aggtcttcag aggttaaccc tatctaggag
                                                                     840
cagaatgtga cgcattgtaa acaaataaat attgaaaact cgatgttaaa ccctttactt
                                                                     900
tttctgactc cgacttgctt gacctctgag cagacctggg tttcgaacac agacgccctt
                                                                     960
ccccatttct ctattctctg tattcctgtt tcaccttcac agcagtctgc cagcacttct
                                                                    1020
tagcactcag tttaaccaga gcacaagctc ctgaatagca aaaaccaggt ctttttatac
                                                                    1080
gtggcacagt ggctgttaca aaatatgctt cttgggtgaa ttggtaaaaa atattgtatt
                                                                   1140
actttttatt tgtagcaaaa cctagaataa gaaaaagtac aagagattat tgtttgcctt
                                                                   1200
taaattgcat ttttaaaaga gcgtgcatat aatctctgag aaattaaatg tct
                                                                    1253
```

<223> n=a, c, g, or t

PCT/US03/18934

```
<220>
<221> misc_feature
<222> (304)..(304)
<223> n=a, c, g, or t
<220>
<221> misc_feature
<222> (383)..(384)
<223> n=a, c, g, or t
<400> 7
acgttcaaag caggcgaact tcatcatggt gtatggtatc tgtctcatcc agagaggagc
                                                                      60
aaccccctat gtagaatgct tttagagcct tcttcctata tacatttctg ggagctgcat
                                                                     120
ccactcaaag tgcttggcat aacnctggct ggcgtttgca attacagaac cttnacgcag
                                                                     180
cttccactag gcacgccagg agcaagtgtc acgcacaaga cattttcagc actggcagac
                                                                      240
ggcatgccaa catatacgtg catgctcgcg ccagagcata cagtattccc tcctaaagat
                                                                      300
ccanacaca caaggcaagg gcatgctgca attgcctgtt ggtgttaggt ctttcacatt
                                                                      360
                                                                      401
cgacatgtga acagttctta gannacaaca acttaagctt g
<210> 8
<211> 405
<212> DNA
<213> Homo sapien
<220>
<221> misc_feature
<222> (56)..(57)
<223> n=a, c, g, or t
<220>
<221> misc_feature
<222> (69)..(70)
<223> n=a, c, g, or t
<220>
<221> misc_feature
<222> (77)..(77)
<223> n=a, c, g, or t
<220>
<221> misc_feature
<222> (79)..(80)
<223> n=a, c, g, or t
<220>
<221> misc feature
<222> (102)..(102)
```

```
<223> n=a, c, g, or t
<220>
<221> misc_feature
<222> (200)..(200)
<223> n=a, c, g, or t
<220>
<221> misc_feature
<222> (247)..(247)
<223> n=a, c, g, or t
<220>
<221> misc_feature
<222> (250)..(251)
<223> n=a, c, g, or t
<220>
<221> misc_feature
<222> (274)..(275)
<223> n=a, c, g, or t
<220>
<221> misc_feature
<222> (286)..(287)
<223> n=a, c, g, or t
<220>
<221> misc_feature
<222> (295)..(295)
<223> n=a, c, g, or t
<220>
 <221> misc_feature
 <222> (297)..(298)
<223> n=a, c, g, or t
 <220>
 <221> misc_feature <222> (306)..(306)
 <223> n=a, c, g, or t
 <220>
 <221> misc_feature
 <222> (309)..(309)
<223> n=a, c, g, or t
 <220>
 <221> misc_feature
 <222> (317)..(318)
 <223> n=a, c, g, or t
```

```
<220>
<221> misc_feature
<222> (337)..(337)
<223> n=a, c, g, or t
<220>
<221> misc_feature
<222> (339)..(340)
<223> n=a, c, g, or t
<220>
<221> misc_feature
<222> (347)..(347)
<223> n=a, c, g, or t
<220>
<221> misc_feature
<222> (349)..(350)
<223> n=a, c, g, or t
<220>
<221> misc feature
<222> (356)..(357)
<223> n=a, c, g, or t
<220>
<221> misc_feature
<222> (374)..(375)
<223> n=a, c, g, or t
<400> 8
actatttaaa atgctcaatt tcagcaccga tggccatgta aataagatga tttaanntgt
                                                                           60
tgattttann atcctgntnn atataaaata acaaagtcac anatgagttt gggcatattt
                                                                          120
aatgatgatt atggagcctt agaggtcttt aatcattggt toggotgctt ttatgtagtt
                                                                          180
taggetggaa atggtttean ettgetettt gaegtgteae geaagaetga aegatagett
                                                                          240
ttcctgngan ncagctagaa aacacaagaa tctnntgtag gtacannttg caccntnnat
                                                                          300
ctcagncgnc ataggtnngc agtcttcgct tctacantnn gatgctnann aaggcnntgc
                                                                          360
                                                                          405
gaactgcgga ctcnnctgat gcgacactaa ggactccaat gtcga
<210> 9
<211> 305
<212> DNA
<213> Homo sapien
<220>
<221> misc_feature
```

```
<222> (1)..(19)
<223> n=a, c, g, or t
<220>
<221> misc feature
<222> (286)..(305)
<223> n=a, c, g, or t
<400> 9
nnnnnnnnn nnnnnnnnt aaaaagaaaa aaggaaactg gttacacatc tgtccacaaa
                                                                   60
ggcaaatgca ggggggctgg tgactcctgg gtataaaggc tcacatctgt ttatgttaat
                                                                  120
taagagagca gtatgtaacc agtatcattc cacttcagtt ttcttttagg atctaacata
                                                                  180
gtgctatcca agagatatat aatataatgc cacatgttat atttcctgat agcctcattt
                                                                  240
tataaagtag tccaatgctt cactcagcca ttttacctca cccccnnnnn nnnnnnnnn
                                                                  300
                                                                  305
nnnnn
<210> 10
<211> 299
<212> DNA
<213> Homo sapien
<220>
<221> misc_feature
<222> (280)..(299)
<223> n=a, c, g, or t
<400> 10
                                                                   60
gacacacctt tttctcagga agaggtgatg gcaatgtaaa acatctaagc aaagtttaa
                                                                  120
atgaaaaaaa ggaaacacat ttaaacatcc tgataatgga gggaaggggg gcacatttac
                                                                  180
acatagecea gaaettgtag aattetgeat agtgaatgta tattgaatta gteteetgee
                                                                  240
                                                                  299
ttatacattc aggaggaata aatttccata atgtaaggcn nnnnnnnnn nnnnnnnn
<210> 11
<211> 1249
<212> DNA
<213> Homo sapien
tageteette caacteetea gaateteeae tetatggate tggacetetg gatteggett
                                                                   60
tctccctggg cactgccttc aggaagacgt tgagaattga ccttacacaa tcccagcgcc
                                                                  120
ctcctcacag gagcctttca ctttacagtg gcaaggggcc tggttctgga gaactggctg
                                                                  180
atgctctgaa tttcttcata taccccacat ttgactttgg cttacactgt acaattggag
                                                                  240
```

atgttgctac aggtccctga gatgcaatca gattaagcgt agcaagcatt gccaatggga 300 aagtcaaaat aatttattt ttttcccttt ccccctaccc catccccagc caagaatttc 360 ttttcaagat atcgtcatca ttcttaaaca acattcttaa cccccagctg gggtccccat 420 tttaatagat gtcattgctt caagtctaac ggcgccggga ggcctgtttg agggaaaaca 480 ttagtttgaa aaatccccgt tcccttcatc cactgccctt gttctccacg tgggagtgtg 540 cttgtggccc ctcagaaaga tagtctgctg gctcctaggg gttggggtgg gggacacacc 600 tttttctcag gaagaggtga tggcaatgta aaacatctaa gcaaagtttt aaatgaaaaa 660 aaggaaacac atttaaacat cctgataatg gagggaaggg gggcacattt acacatagcc 720 cagaacttgt agaattctgc atagtgaatg tatattgaat tagtctcctg ccttatacat 780 tcaggaggaa taaatttcca taatgtaagg caaatgcatg gggttctgag gttcactttg 840 caagtgccct tgctgccttt cctctgtgtc tattatggct ctttaagttg acggttcctg 900 gagcagettg tatttagttt egtttggcag tetggeeetg ttgaetttga tttgcagace 960 aatteteet tgacetgaet cacageegee tgetettaee eeceteetea ggaagtette 1020 ctcattaaag gatgtgatga cggagctcag ggatgagaat gcacatgtga gactgtgtga 1080 caccaaggag ggttgtgcga actggtgaca acatggcagc accatggcct gtgggggttg 1140 tgtgactagt gtgactgtgc tggcgaccat atggacctgt tttgtcagtc ggtgtctaag 1200 1249 caggagatgg cacactcaaa ctgggaagtg ttttaaacat aggctattc

<220>

<400> 12

tggccagaat cccccagaga atcagggacc agctttactg gagttggggg cggcttgtct 60 togotggoto otacoccato tocaagataa gootgagoot tagotoccag ctaggggggg 120 ttatttatgg accactttta tttattgtca gacacttatt tattgggatg tgagccccag 180 gggggcctcc tcctaggata ataaacaatt ttgcggnnnn nnnnnnnnn nnnnnn 236

<210> 12 <211> 236

<212> DNA

<213> Homo sapien

<221> misc_feature <222> (217)..(236)

<223> n=a, c, g, or t

<210> 13

<211> 3218

<212> DNA

<213> Homo sapien

<400> 13 cccgggcaaa	agcgagcgcc	gcccctgcct	ctccgctgct	ggctggaacg	ctgatctatc	60
tagttgctgg	ggagacgccc	ccagatgccc	gggccccact	cggacttcag	cacacatccc	120
gaaggatggg	gaaagaaaga	ggcccccacg	agcgggactc	gcagtggcca	aggaggggtg	180
agaggcggac	agggatcagc	tggcccctgc	ggcctggttg	cacctgcatg	gtgactagct	240
geegggetge	geeeegggge	gcggcgagga	ggcggggtct	ggcagtgcgt	tgggtgggg	300
aggagcttct	gggtgatgta	aggccgggaa	tgggagtggg	cctctcctcg	actcgctgct	360
aggaaggggg	cgggactctc	ggtgaccaga	cgccggggag	ggggcaggcg	ttcattgata	420
aaacgctggg	ctcccctggg	cgccagcgca	gcgtagcaaa	tccaggcagc	gccacgcgcg	480
gccggggccg	ggcggaaccg	agaagccggg	accgcgctgc	gacgcgccgg	ccgcatggag	540
cctgccgccg	gtttcctgtc	tccgcgcccc	ttccagcgtg	eggeegeege	gecegetece	600
ccggccgggc	ccgggccgcc	tccgagtgcc	ttgcgcggac	ctgagctgga	gatgctggcc	660
gggctaccga	cgtcagaccc	cgggcgcctc	atcacggacc	cgcgcagcgg	ccgcacctac	720
ctcaaaggcc	gcttgttggg	caaggggggc	ttcgcccgct	gctacgaggc	cactgacaca	780
gagactggca	gcgcctacgc	tgtcaaagtc	atcccgcaga	gccgcgtcgc	caagccgcat	840
cagcgcgaga	agatcctaaa	tgagattgag	ctgcaccgag	acctgcagca	ccgccacatc	900.
gtgcgtttt	cgcaccactt	tgaggacgct	gacaacatct	acattttctt	ggagctctgc	960
agccgaaagt	ccctggccca	catctggaag	gcccggcaca	ccctgttgga	gccagaagtg	1020
cgctactacc	tgcggcagat	cctttctggc	ctcaagtact	tgcaccagcg	cggcatcttg	1080
caccgggacc	tcaagttggg	aaatttttc	atcactgaga	acatggaact	gaaggtgggg	1140
gattttgggd	tggcagcccg	gttggagcct	ccggagcaga	ggaagaagac	catctgtggc	1200
accccaact	atgtggctcc	agaagtgctg	ctgagacagg	gccacggccc	tgaggcggat	1260
gtatggtcac	tgggctgtgt	catgtacacg	ctgctctgcg	ggagccctcc	ctttgagacg	1320
gctgacctga	aggagacgta	ccgctgcatc	aagcaggttc	actacacgct	gcctgccagc	1380
ctctcactgo	: ctgcccggca	geteetggee	gccatccttc	gggcctcacc	ccgagaccgc	1440
ccctctattg	accagatect	gcgccatgac	ttctttacca	. agggctacac	ccccgatcga	1500
ctccctatca	gcagctgcgt	gacagtccca	gacctgacac	ccccaaccc	agctaggagt	1560
ctgtttgcca	aagttaccaa	gagcctcttt	ggcagaaaga	agaagagtaa	gaatcatgcc	1620
caggagaggg	g atgaggtete	: cggtttggtg	agcggcctca	tgcgcacatc	cgttggccat	1680
caggatgcca	ggccagaggc	: tccagcagct	tctggcccag	cccctgtcag	cctggtagag	1740
acagcacct	g aagacagcto	accccgtggg	acactggcaa	ı gcagtggaga	tggatttgaa	1800

gaaggtctga ctgtggcca	c agtagtggag	tcagcccttt	gtgctctgag	aaattgtata	1860
gcettcatgc ccccagcgg	a acagaacccg	gccccctgg	cccagccaga	gcctctggtg	1920
tgggtcagca agtgggttg	a ctactccaat	aagttcggct	ttgggtatca	actgtccagc	1980
cgccgtgtgg ctgtgctct	t caacgatggc	acacatatgg	ccctgtcggc	caacagaaag	2040
actgtgcact acaatccca	c cagcacaaag	cacttctcct	tctccgtggg	tgctgtgccc	2100
cgggccctgc agcctcago	t gggtatcctg	cggtacttcg	cctcctacat	ggagcagcac	2160
ctcatgaagg gtggagato	t gcccagtgtg	gaagaggtag	aggtacctgc	teegeeettg	2220
ctgctgcagt gggtcaaga	c ggatcaggct	ctcctcatgc	tgtttagtga	tggcactgtc	2280
caggtgaact tctacgggg	a ccacaccaag	ctgattctca	gtggctggga	gcccctcctt	2340
gtgacttttg tggcccgaa	a tcgtagtgct	tgtacttacc	tcgcttccca	ccttcggcag	2400
ctgggctgct ctccagaco	t geggeagega	ctccgctatg	ctctgcgcct	gctccgggac	2460
cgcagcccag cctaggacc	c aagccctgag	gcctgaggcc	tgtgcctgtc	aggctctggc	2520
ccttgccttt gtggccttc	c cccttccttt	ggtgcctcac	tgggggcttt	gggccgaatc	2580
ccccagggaa tcagggac	a gctttactgg	agttgggggc	ggcttgtctt	cgctggctcc	2640
taccccatct ccaagataa	g cctgagcctt	agctcccagc	tagggggcgt	tatttatgga	2700
ccacttttat ttattgtca	g acacttattt	attgggatgt	gagccccagg	ggggcctcct	2760
cctaggataa taaacaatt	t tgcagaaaaa	aaaaacaaca	aaacaaaaa	acaaaacaga	2820
agcacacaac caccacaca	a cacgagggg	cccaaccaag	agaccaaccc	acaaccgagc	2880
ccacaaacag agggacgc	ga cacaccgcac	acgacacagg	caagagcggg	gcacccaca	2940
acggaccgcc cgccacgg	gc agaggcagcg	agggacgcac	agatacacag	g aggaggaggc	3000
gagagaaaag ggaggaga	gg agagaacaac	agaggaggg	gaacacgacg	g cccgcggaga	3060
caagcgaggg cggccaca	cc caccaagagg	g agaccggaca	acccgggaga	a aaacaaccgc	3120
gacagcgaca ggagggcg	cc agagaggcag	g acacagagcg	cagcgcggca	a cagagegeeg	3180
cgggagccgc cggacgac	ca gtacaacagg	g aacagcaa			3218

<210> 14

<211> 501

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature
<222> (84)..(84)
<223> n=a, c, g, or t

.

13

WO 03/106648

PCT/US03/18934

<221> misc_feature <222> (137)..(137) <223> n=a, c, g, or t <220> <221> misc_feature <222> (146)..(147) <223> n=a, c, g, or t <220> <221> misc_feature
<222> (160)..(161)
<223> n=a, c, g, or t <220> <221> misc_feature <222> (169)..(170) <223> n=a, c, g, or t <220> <221> misc_feature <222> (181)..(181) <223> n=a, c, g, or t <220> <221> misc_feature <222> (183)..(184) <223> n=a, c, g, or t <220> <221> misc_feature <222> (195)..(196) <223> n=a, c, g, or t <220> <221> misc_feature
<222> (205)..(206)
<223> n=a, c, g, or t <220> <221> misc feature <222> (211)..(212) <223> n=a, c, g, or t <220> <221> misc_feature <222> (219)..(221) <223> n=a, c, g, or t <220>

<221> misc_feature

```
<222> (227)..(228)
<223> n=a, c, g, or t
<220>
<221> misc_feature
<222> (234)..(234)
<223> n=a, c, g, or t
<220>
<221> misc_feature
<222> (236)..(236)
<223> n=a, c, g, or t
<220>
<221> misc_feature
<222> (238)..(238)
<223> n=a, c, g, or t
<220>
<221> misc_feature
<222> (241)..(243)
<223> n=a, c, g, or t
<220>
<221> misc_feature
<222> (249)..(249)
<223> n=a, c, g, or t
 <220>
<221> misc_feature
<222> (252)..(253)
<223> n=a, c, g, or t
 <220>
 <221> misc_feature
 <222> (256)..(256)
<223> n=a, c, g, or t
 <220>
 <221> misc feature
 <222> (259)..(259)
 <223> n=a, c, g, or t
<220>
<221> misc_feature
<222> (261)..(262)
<223> n=a, c, g, or t
 <220>
 <221> misc_feature
 <222> (267)..(267)
```

```
<223> n=a, c, g, or t
<220>
<221> misc_feature <222> (271)..(271)
<223> n=a, c, g, or t
<220>
<221> misc_feature
<222> (273)..(273)
<223> n=a, c, g, or t
<220>
<221> misc_feature
<222> (275)..(275)
<223> n=a, c, g, or t
<220>
<221> misc_feature
<222> (278)..(278)
<223> n=a, c, g, or t
<220>
<221> misc feature
<222> (280)..(281)
<223> n=a, c, g, or t
<220>
<221> misc_feature
<222> (284)..(284).
<223> n=a, c, g, or t
<220>
 <221> misc_feature
<222> (287)..(287)
<223> n=a, c, g, or t
<220>
<221> misc_feature
<222> (289)..(289)
 <223> n=a, c, g, or t
 <220>
<221> misc_feature
<222> (291)..(292)
<223> n=a, C, g, or t
 <220>
 <221> misc_feature
 <222> (296)..(297)
 <223> n=a, c, g, or t
```

```
<220>
<221> misc_feature
<222> (303)..(303)
<223> n=a, c, g, or t
<220>
<221> misc_feature
<222> (305)..(305)
<223> n=a, c, g, or t
<220>
<221> misc_feature
<222> (308)..(308)
<223> n=a, c, g, or t
<220>
<221> misc_feature
<222> (310)..(310)
<223> n=a, c, g, or t
<220>
<221> misc feature
<222> (312)..(312)
<223> n=a, c, g, or t
<220>
<221> misc_feature
<222> (315)..(315)
<223> n=a, c, g, or t
<220>
<221> misc_feature
<222> (317)..(318)
<223> n=a, c, g, or t
 <220>
 <221> misc_feature
<222> (322)..(322)
 <223> n=a, c, g, or t
 <220>
<221> misc_feature
<222> (324)..(324)
<223> n=a, c, g, or t
 <220>
 <221> misc_feature
 <222> (327)..(329)
 <223> n=a, c, g, or t
```

```
<220>
<221> misc_feature
<222> (336)..(336)
<223> n=a, c, g, or t
<220>
<221> misc feature
<222> (338)..(339)
<223> n=a, c, g, or t
<220>
<221> misc_feature
<222> (344)..(345)
<223> n=a, c, g, or t
<220>
<221> misc_feature
<222> (349)..(349)
<223> n=a, c, g, or t
<220>
<221> misc_feature
<222> (351)..(351)
<223> n=a, c, g, or t
<220>
<221> misc_feature
<222> (353)..(353)
<223> n=a, c, g, or t
<220>
<221> misc_feature
<222> (356)..(356)
 <223> n=a, c, g, or t
 <220>
 <221> misc_feature
<222> (358)..(358)
<223> n=a, c, g, or t
 <220>
 <221> misc_feature
 <222> (360)..(360)
 <223> n=a, c, g, or t
 <220>
 <221> misc_feature
<222> (362)..(362)
<223> n=a, c, g, or t
```

```
<220>
<221> misc_feature
<222> (367)..(367)
<223> n=a, c, g, or t
<220>
<221> misc_feature
<222> (369)..(369)
<223> n=a, c, g, or t
<220>
<221> misc_feature
<222> (371)..(371)
<223> n=a, c, g, or t
<220>
<221> misc_feature
<222> (373)..(373)
<223> n=a, c, g, or t
 <220>
 <221> misc_feature
 <222> (375)..(375)
 <223> n=a, c, g, or t
 <220>
<221> misc_feature
<222> (377)..(377)
<223> n=a, c, g, or t
 <220>
 <221> misc_feature
<222> (380)..(380)
<223> n=a, c, g, or t
 <220>
 <221> misc_feature
<222> (382)..(383)
<223> n=a, c, g, or t
 <220>
 <221> misc_feature
 <222> (389)..(389)
<223> n=a, c, g, or t
  <220>
  <221> misc_feature
  <222> (391)..(391)
  <223> n=a, c, g, or t
```

<220>

WO 03/106648

19

PCT/US03/18934

```
<221> misc_feature
<222> (393)..(393)
<223> n=a, c, g, or t
<220>
<221> misc_feature
<222> (396)..(396)
<223> n=a, c, g, or t
<220>
<221> misc_feature
<222> (398)..(398)
<223> n=a, c, g, or t
<220>
<221> misc_feature
<222> (402)..(402)
<223> n=a, c, g, or t
<220>
<221> misc_feature
<222> (404)..(404)
<223> n=a, c, g, or t
<220>
<221> misc feature
<222> (406)..(406)
<223> n=a, c, g, or t
<220>
<221> misc_feature
<222> (408)..(408)
<223> n=a, c, g, or t
<220>
<221> misc_feature
<222> (410)..(410)
<223> n=a, c, g, or t
<220>
<221> misc feature
 <222> (412)..(412)
 <223> n=a, c, g, or t
 <220>
<221> misc_feature
<222> (414)..(414)
<223> n=a, c, g, or t
 <220>
 <221> misc_feature
```

```
<222> (416)..(416)
<223> n=a, c, g, or t
<220>
<221> misc_feature
<222> (421)..(421)
<223> n=a, c, g, or t
<220>
<221> misc_feature
<222> (437)..(437)
<223> n=a, c, g, or t
<220>
<221> misc_feature
<222> (447)..(447)
<223> n=a, c, g, or t
<220>
<221> misc_feature
<222> (453)..(453)
<223> n=a, c, g, or t
<220>
<221> misc_feature
<222> (455)..(455)
<223> n=a, c, g, or t
<220>
<221> misc_feature
<222> (459)..(459)
<223> n=a, c, g, or t
 <220>
 <221> misc_feature
<222> (461)..(461)
<223> n=a, c, g, or t
 <220>
 <221> misc feature
 <222> (463)..(463)
 <223> n=a, c, g, or t
 <220>
 <221> misc_feature
<222> (467)..(468)
<223> n=a, c, g, or t
 <220>
 <221> misc_feature
 <222> (471)..(471)
```

```
<223> n=a, c, g, or t
<220>
<221> misc feature
<222> (473)..(473)
<223> n=a, c, g, or t
<220>
<221> misc_feature
<222> (475)..(475)
<223> n=a, c, g, or t
<220>
<221> misc_feature
<222> (477)..(477)
<223> n=a, c, g, or t
<220>
<221> misc_feature
<222> (479)..(479)
<223> n=a, c, g, or t
<220>
<221> misc_feature
<222> (481)..(481)
<223> n=a, c, g, or t
<220>
<221> misc_feature
<222> (483)..(483)
<223> n=a, c, g, or t
<220>
<221> misc_feature
<222> (485)..(485)
<223> n=a, c, g, or t
 <220>
 <221> misc_feature
 <222> (487)..(487)
 <223> n=a, c, g, or t
<220>
<221> misc_feature
<222> (489)..(489)
<223> n=a, c, g, or t
 <220>
 <221> misc_feature
 <222> (491)..(491)
 <223> n=a, c, g, or t
```

WO 03/106648

PCT/US03/18934

```
<220>
<221> misc_feature
<222> (493)..(493)
<223> n=a, c, g, or t
<220>
<221> misc_feature
<222> (497)..(497)
<223> n=a, c, g, or t
<220>
<221> misc_feature
<222> (499)..(499)
<223> n=a, c, g, or t
<400> 14
acaggccgac agagaagatt cccgagagta aatcatcttt ccaatccaga ggaacaagca
                                                                      60
tgtctctctg cgcaagatcc atcntaaact ggagtgagtg ttagcagaac ccgagcttag
                                                                     120
aagtteteta etttegnttt ettaanngee etttgeetgn ntggaggann agtteteeag
                                                                     180
nenntteacg eteannacte acagnnette nntecaagnn neateannee etgngngnag
                                                                     240
nnntttccnt gnnagnggnt nntttcntac nantnaanan ntgnagngng nnctgnncac
                                                                     300
tantntgncn cntgntnntc tngnctnnnt cgcaangnnt attnncaant nanccngncn
                                                                     360
tncacgntna ntntntntan annactagna nangcntngc antntncntn anangncact
                                                                     420
nttcggcgct ctctcgngcg cactacnaca ctnangagna nanacgnnca ntnantngnc
                                                                     480
                                                                     501
nangnenena nancaenana g
<210> 15
<211> 569
<212> DNA
<213> Homo sapien
<400> 15
                                                                      60
acagaacatg atcaagggtg ttacactggg cttccgttac aagatgaggt ctgtgtatgc
tcacttcccc atcaacgtat gttatccagg agaatgggtc tcttgtagaa atccgaaata
                                                                      120
tcttgggtga aaaatatatc cgcagggttc ggatgagacc aggtgttgct tgttcagtat
                                                                      180
                                                                      240
 ctcaagccca gaaagatgaa ttaatccttg aaggaaatga cattgagcta gtttcaaatt
 cagcgtgctt tggatgtcag cagatgccac aatcagttaa gaacaaggat atcaggaaat
                                                                      300
                                                                      360
 ttttggatgg tatctatgtc tctgaaaaag gaactgttca gcaggctgat gaataagatc
 taagagttac ctggctacag aaagaagatg ccagatgaca cttaagacct acttgtgata
                                                                      420
 tttaaatgat gcaataaaag acccattgat ttggaccttc ttcttaaaaa aaaaaaaaca
                                                                      480
```

aaaaaaaaa	aagccggggg	aaaacagggg	ccaagggggt	cccgggtgga	cattgtttcc	540
ggcccaattt	cccacatttt	ggacaaaat				569
<210> 16 <211> 971 <212> DNA <213> Homo	o sapien					
<400> 16						
atgaagacta	ttctcagcaa	tcagactgtc	gacattccag	aaaatggtat	gagacttgat	60
gtcttttact	tacatcttta	ctgcacgttc	caagcgttgt	gtggcctgac	gagtgtgttc	120
tctcttctag	tcgacattac	tctgaaggga	cgcacagtta	tcgtgaaggg	ccccagagga	180
accctgcgga	gggacttcaa	tcacatcaat	gtagaactca	gccttcttgg	aaagaaaaaa	240
aagaggctcc	gggttgacaa	atggtggggt	aacagaaagg	aactggctac	cgttcggact	300
atttgtagtc	atgtacagaa	catgatcaag	ggtgttacac	tgggcttccg	ttacaagatg	360
aggtctgtgt	atgctcactt	ccccatcaac	gttgttatcc	aggagaatgg	gtctcttgtt	420
gaaatccgaa	atttcttggg	tgaaaaatat	atccgcaggg	ttcggatgag	accaggtgtt	480
gcttgttcag	tatctcaagc	ccagaaagat	gaattaatcc	ttgaaggaaa	tgacattgag	540
cttgtttcaa	attcagcggc	tttgattcag	caagccacaa	cagttaaaaa	caaggatatc	600
aggaaatttt	tggatggtat	ctatgtctct	gaaaaaggaa	ctgttcagca	ggctgatgaa	660
taagatctaa	gagttacctg	gctacagaaa	gaagatgcca	gatgacactt	aagacctact	720
tgtgatattt	aaatgatgca	ataaaagacc	tattgatttg	gaccttcttc	ttaaaaaaag	780
aaaaaaaga	caaagaacaa	catagagcaa	aaacgagcaa	gcaaaaaaca	gaagaacaca	840
gccccgggcg	attttattgt	tgggcgggcg	gcgcgaaacc	agggcctcag	tcaacggcca	900
ggttgccata	ggggtgtccc	gcccctttt	ttttccccga	gtgcgaacac	ccggcgcccc	960
aatgagggac	a					971
<210> 17 <211> 422 <212> DNA <213> Home	o sapien					
<400> 17	0.0000	t	aannatae-	tatataaaa	attocacato	60
	aaggagacat					
	catatttatg					120
aatgtcacca	ctatctggag	atttcgacgt	gttttcctct	ctgaatctgt	tatgaacacg	180
ttaattaaat	ggattgagta	ataaatatat	aaggggtttg	+++++aaaaa	aaaacaacaa	240

aaaaaaaaa	aaaaaaccc	ctggggcgta	ccccggggca	aaagggtggt	ccacggggtg	300
agacttggtt	ccccggcgca	aaatccccc	acactactaa	gaacaagagg	gccacggagg	360
agcagcacgc	acagatcaca	gcagaccgac	acagatagca	acacagagac	acacacgcat	420
ag						422
<210> 18 <211> 584 <212> DNA <213> Home	o sapien					
<400> 18						
aagaattcac	tagtaatcgc	catcgtggtg	tgttcttgac	teegetgete	gccatgtctt	60
ctcacaagac	tttcaggatt	aagcgattcc	tggccaagaa	acaaaagcaa	aatcgtccca	120
ttccccagtg	gattcggatg	aaaactggaa	ataaaatcag	gtacaactcc	aaaaggagac	180
attggagaag	aaccaagctg	ggtctataag	gaattgcaca	tgagatggca	cacatattta	240
tgctgtctga	aggtcacgat	catgttacca	tatcaagctg	aaaatgtcac	cactatctgg	300
agatttcgac	gtgttttcct	ctctgaatct	gttatgaaca	cgttggttgg	ctggattcag	360
taataaatat	gtaaggcctt	tctttttaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaac	420
ccctggggcg	taccccgggg	caaaagggtg	gtccacgggg	tgagacttgg	ttccccggcg	480
caaaatcccc	ccacactact	aagaacaaga	gggccacgga	ggagcagcac	gcacagatca	540
cagcagaccg	acacagatag	caacacagag	acacacacgc	atag		584
<400> 19 acaatattga	acatttttct	atatcctttg	atatctgcaa	gcctgatttt	cagtagctgg	60
aaatggaaag	g gccaaattta	ttatctaatt	ttatacatta	ggacatgtgt	ataatgtcca	120
attttatact	gttataagtc	acactatgat	gaacattttt	gtacataact	aaccatattt	180
cagttcatt	ctttaggtta	ttatatatco	acagatatga	cattcaattc	: tataaaaatt	240
atgtacatti	taatttattt	tatttttgta	catgggaago	tcctatctta	actcattaaa	300
ttcaataaa	tttgtatttc	: tacaacagaa	agccaacaaa	a gggagttgtt	agtacatatt	360
tccaggaat	g aagttgtctg	gatgcagcta	atgcctccat	agaactgaca	gtgctgaatt	420
tacgaaatg	g aaagagttct	ggaaaagcaa	ı gaaaaaagt	cttgtttgaa	a accccacgtc	480
tactgtagg	c acagaaggga	atggaggcat	ctgagcatt	tattttccat	: ctctacagca	540
cctcagaac	a cctacattt	attttttt	ttctcagaaa	a tgtcttaata	a agaggactgc	600

agtgtactca	agtttcccaa	tgacagggta	gggatgccaa	ccttctcttt	cattggcagc	660
tcatagtatc	caagtttctc	aaaaccctaa	gccatcttat	ttgttctttg	gaactttgtg	720
gcctaccaca	gtgcaatctc	atcggtg				747
<210> 20 <211> 766						
<212> DNA <213> Homo	sapien					
<400> 20)			cagtaggtgg	60
	acatttttct					
	gccaaattta					120
attttatact	gttataagtc	acactatgat	gaacattttt	gtacataact	aaccatattt	180
cagttcattt	ctttaggtta	ttatatatcc	acagatatga	cattcaattc	tataaaaatt	240
atgtacattt	taatttattt	tatttttgta	catgggaagc	tcctatctta	actcattaaa	300
ttcaataaat	tttgtatttc	tacaacagaa	agccaacaaa	gggagttgtt	agtacatatt	360
tccaggaatg	aagttgtctg	gatgcagcta	atgcctccat	agaactgaca	gtgctgaatt	420
tacgaaatgg	aaagagttct	ggaaaagcaa	gaaaaaaagt	cttgtttgaa	acccacgtc	480
tactgtaggc	acagaaggga	atggaggcat	ctgagcattt	tattttccat	ctctacagca	540
cctcagaaca	cctacatttt	atttttttc	ttctcagaaa	tgtcttaata	agaggactgc	600
agtgtactca	agtttcccaa	tgacagggta	gggatgccaa	ccttctctt	cattggcagc	660
tcatagtatc	caagtttctc	aaaaccctaa	gccatcttat	ttgttctttg	gaactttgtg	720
gcctaccaca	gtgcaattct	cattcggtgt	ttaataactc	gagccg		766
<210> 21 <211> 647						
<212> DNA <213> Hom	o sapien					
<400> 21						
	catgaataca					60
acgtttgcag	agcagtgggc	acaatgttta	caatgtatgt	gtatgtcact	ttcggtacct	120
gtgaatgcat	ggggacgtgc	tgaacccgaa	aaaaagtgcc	tttccataag	gactgcaata	180
gagagggcaa	tttaccctgg	tggtacacgg	aacctagatt	cactcctgcc	atgccttgcc	240
aatagtaago	tgcagggtgg	g aacaagaaat	cacttgctct	ggggggaagg	gaggggggaa	300
tgggtgtgtc	agctgggtag	atacaaacco	tgaaaagaga	atccatgtgo	: tgctggcagg	360
anagatttt	· taaaggtgtt	+ + + + + + + + + + + + + + + + + + + +	tcatatttco	gatttettt	caggaaacat	420

		20			
tcctgtggag ggaaaacgaa	tatgaagata	attttcagct	aattatctgg	gtgacccaga	480
atcgtgtata tggctatagg	atagacttct	taataatggc	aagtgacgtg	gccctgggga	540
aaggtgcttt atgtaccgtg	tgtgcgtgta	tgtgtgtgta	tctatacaag	tttgtcagct	600
ttggcatgac tgtttgtttg	tctcgaaaac	caataaactc	aaagttt		647
<210> 22 <211> 698 <212> DNA <213> Homo sapien					
<400> 22 actagcaccg ggcaagcaga	ı caacataatt	tatttccaga	aaacaacaga	atgaacatca	60
tcatgaatac atgaatcgg					120
gagcagtggg cacaatgtt					180
tggggacgtg ctgaacccg					240
					300
atttaccctg gtggtacac					
ctgcagggtg gaacaagaa					360
cagctgggta gatacaaac					420
ttaaagetet tteagaaae	ctcatatttg	gggtttcttt	tcaggaaaca	ttcctgtgga	480
gggaaaacga atatgaaga	aattttcagc	taattatctg	ggtgacccag	aatcgtgtat	540
atggctatag gatagactt	c ttaataatgg	caagtgacgt	ggccctgggg	aaaggtgctt	600
tatgtaccgt gtgtgcgtg	atgtgtgtgt	atctatacaa	gtttgtcagc	tttggcatga	660
ctgtttgttt gtctcgaaa	a ccaataaact	caaagttt			698
<210> 23 <211> 739 <212> DNA <213> Homo sapien					
<400> 23 taaacttaag gctaatgtt	agaagctttt	gctaatgaga	ggaccatttg	ctaaatcggt	60
ataagtgcta cacatttgg					120
gcagacaccg tctcctccc					180
acactcacct ttctccttt					240
aagctcctga tccagcagg					300
cacccagcat ccaggcctc					360
					420
aaccetgcac cacatagac					
aatttgtgtc cttctgctt	g gaactgtttc	ctttttagtt	tggtcaccct	cccagagctg	480

27

gtttcaatgg gggcataccc attatgggat gcagggcatc ctgcatcctg aggaattttt 540
tttcctccaa aaatgaaacc ttgaaatgag gacattgtcc tgtccacgga ctgcacaaca 600
acactgagcc tcaaggactc atactggcat ttttcttctt ttgcagagtg tgggcaccct 660
ggcttcaagc tcacgagaaa ccaggtcggg atttaaacaa tgttgggtta aagcaaagtt 720
tcataaagac agaatcaag 739

<210> 24
<211> 900
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (75)..(75)

<223> n=a, c, g, or t

<400> 24 agegacatte ggcacgagta egtaatatae tecagtttge aaatgaagga atetteetge 60 ggaacgtatg tgaangcata ttggtgctct gggcttttgc ataatttcaa atgtcctttt 120 tttttaaact taaggctaat gtgtagaagc ttttgctaat gagaggacca tttgctaaat 180 cggtataagt gctacacatt tgggtatctc catcccaaca tacctcttat tgccattccc 240 300 caaagcagac accttctcct ccctccctca aggacctctg agcttgcact ccaattcctc teceacacte acettetee tttetgttee tettgggate caggtttatt tgaggagata 360 420 ggaaaagctc ctgatccagc aggttttatt cttaaatttg taacaaagta aatcacagaa cctccaccca gcatccaggc ctctggttct ctccctcctt cccaggtata ggccggcttt 480 cagaaaccct gcaccacata gaccctgggc ctgaattgct gtgagtaata atgactctgc 540 600 togtaatttg tgtccttctg cttggaactg tttccttttt agtttggtca ccctcccaga gctggtttca atgggggcat acccattatg ggatgcaggg catcctgcat cctgaggaat 660 tttttttcct ccaaaaatga aaccttgaaa tgaggacatt gtcctgtcca cggactgcac 720 aacaacactg agcctcaagg actcatactg gcatttttct tcttttgcag agtgtgggca 780 840 ccctggcttc aagctcacga gaaaccaggt cgggatttaa acaatgttgg gttaaagcaa 900

<210> 25

<211> 299

<212> DNA

<213> Homo sapien

<400> 25

28 60 ggcagcgcgg aggccgcacg atgcctggag ttactgtaaa agacgtgaac cagcaggagt 120 tegteagage tetggeagee tteeteaaaa agteegggga agetgaaagt eeeegaatgg 180 gtgggatacc gttcaagctg gccaaagcac aaaggagctt gctccctacg atgagaactg gttctacacg cggagctgct ttccaacagc ggcgggccac ctgttacctt ccgggggtgg 240 gcgctggggg ttgggcttcc attgaaccca aggattctat tgggggggaa cgttcagaa 299 <210> 26 <211> 1346 <212> DNA <213> Homo sapien <400> 26 60 ttttttttt ttgtgagcca gtgggaaaac caaggaggct aaaccataga gcctggagat gtgaaggaag tacaggtggg taagaaaggg agagccagat cacaagcacc ttgaaaccag 120 acactggttt ggggtcttca gcagtcctct gtcgaaatac atatattcag gggctgggtg 180 tggtggctca cacctgtaat cccagccctt tgggaggcag aggcaggcag attacttgag 240 gtcaagagtt caagacaagc ctggccaaca tggtaaaacc ccgtctctac caaaaatata 300 aaaaactagc cgggcgtggt ggcaggcacc tgattgtaat cccagctact cgggaggctg 360 aggcaggaga atcatttgaa cccagaaggc ggagattgca gtgagctgag atggcgccac 420 tgccactccc agcctgggcg acagagcaag agactcaaaa aagagaccca gaccaggatt 480 acgaatgagg caatttatta acccagcatg gtttgttcta atgcttcttg ttggcagctg 540 600 ccacctgtcc ggcgattctg tccagatctc tttgtccctg aggtgtcagt ttgcggccgc catcttggtc cttttccacc attttcagcc cctccagggc ttggaggacc cggcgggcca 660 cactettgga geeteggetg aagtggetgg geatgaegee gtttetetga egteeeceat 720 780 agatettggt catggageca accecagege cacceeggag gtacaggtge egegetgtgg aagcagctcg cgtgtagaac cagttctcat cgtagggagc aagctctttg tgcttggcca 840 gcttgacggt atccacccat tcggggactt tcagcttccc ggactttttg aggaaggctg 900 960 ccagagetet gaegaactee tgetggttea egtettttae agtaacteea ggeategtge ggcctccgcg ctgccagcca ggggaaaggg aacgacgggg tttcccgggc gcacaagtcg 1020 ggcgtagggt ctcgcgagag ttccgaaagc tcgcgagagc gagggtagac gctgaggctc 1080 1140 cgcctctctc agggcgaaag ttcgtccccg cctagagggg agggtgtcta gtgaggggtg gagaggtaaa ggggagggcc aaggggtcgc gcgtggaggc ctgggtttcc tcccgcgttt 1200 ccttctcccg gagtgtaata gagagagat agagagctcc tgttcggagc tgggggaact 1260 1320 tggcttcgtt tgcgtcgttc gtggctggaa ggaacagtgg tggagaatac tatgatggcg

WO 03/106648

29

aaagtac	ggg gcaggatggg	tgggcc				1346
	27 136 DNA Homo sapien					
<222>	misc_feature (75)(75) n=a, c, g, or t	=		·		
<400>	27 Jetg egaagggage	caacaaata	tatacacata	tacaatacat	aat aat aaaa	60
	cca gtttnctgat	caagaggaat	ageceeerge	ceccagagea	ataaagtcag	120
ctggctt	tct cacctg					136
<212>	28 426 DNA Homo sapien					
	28 gcc atttcctctc	tccagaggac	ctttcctgcc	taggactcat	cattgtcccc	60
tccctgg	cat tttttacacc	tggagcagcc	agaggacgca	tgcatggctc	ttcggaagcc	120
ttctcct	gcc acggcatgca	cccacacatg	cgagcctccc	gggtactgtc	atcctgaatt	180
ctgagac	cat ccagcacttc	ctttagtttt	gccctggtgc	tgttgacttt	tgtttactga	240
agagtgt	gct ggaggcagga	caagggacat	ggaaggetge	aatttaagag	tctaaaaggt	300
tttagaa	tcc tgaaggaggt	ttaacaagct	gaattgaaga	ataatacctt	tctcaactgg	360
agagaat	tta catgattgca	ttattgttaa	aattaacatc	tcatctatta	aaagcatttg	420
tagatt						426
<211> <212>	29 264 DNA Homo sapien					
	29 cct gagacctctc	cagcgaagct	gaagtgctgt	gttacqqqaq	agagtgactg	60
	aca aagctgaatc					120
	gtg acactacacc					180
	tct cagttcacgg					240
	taa agaagatgtg				-	264
-						

PCT/US03/18934

```
<210> 30
<211> 265
<212> DNA
<213> Homo sapien
<220>
<221> misc_feature
<222> (164)..(164)
<223> n=a, c, g, or t
<220>
<221> misc_feature
<222> (168)..(168)
<223> n=a, c, g, or t
<400> 30
cggccttcct gtaagaaaga tccacggccg ggcccgggcg gccccgcttc ccagagactc
                                                                      60
atccagccgg aggagatgtg gctctaccgg aacccctacg tggaggcgga gtatttcccc
                                                                     120
accaageega tgtttgtgeg tggagaaaga tegtetttee teenteenea tgaeeegget
                                                                     180
tcccgcgggc acctgtgcgt tttccacccc gagacggcct ttgttattgc atttctctct
                                                                     240
                                                                     265
ccactgtctc tgatcttcct ggcca
<210> 31
      741
<211>
<212> DNA
<213> Homo sapien
<220>
<221> misc feature
<222> (718)..(718)
<223> n=a, c, g, or t
<400> 31
ggcaaccaca ggttccaaga tggtttgcgg gggcttcgcg tgttccagtc tccgagtggt
                                                                      60
cggcgtggtc attgcagtgg gcatcttctt gttcctgatt gctttagtgg gtctgattgg
                                                                     120
agetgtaaaa catcatcagg tgttgctatt cttttatatg attattctgt tacttgtatt
                                                                     180
tattgttcag ttttctgtat cttgcgcttg tttagccctg aaccaggagc aacagggtca
                                                                     240
gcttctggag gttggttgga acaatacggc aagtgctcga aatgacatcc agagaaatct
                                                                     300
aaactgctgt gggttccgca gtgttaaccc aaatgacacc tgtctggcta gctgtgttaa
                                                                     360
aagtgaccac tcgtgctcgc catgtgctcc aatcatagga gaatatgctg gagaggtttt
                                                                     420
gagatttgtt ggtggcattg gcctgttctt cagttttaca gagatcctgg gtgtttggct
                                                                     480
gacctacaga tacaggaacc agaaagaccc ccgcgcgaat cctagtgcat tcctttgatg
                                                                     540
agaaaacaag gaagatttcc tttcgtatta tgatcttgtt cactttctgt aattttctgt
                                                                     600
```

taagctccat	ttgccagttt	aaggaaggaa	acactatctg	gaaaagtacc	ttattgatag	660
tggaattata	tatttaccta	gtttctctac	agttttcttc	cgtgcgaaaa	atattganac	720
tgggcctgaa	ccggggcacg	g				741
<210> 32 <211> 1844 <212> DNA <213> Homo	l o sapien					
<400> 32 aaggatcctt	aattaaatta	atccccccc	cccgctcctt	gccagcgtgg	atctcctccg	60
agccccgccc	tccctcctca	cetgeteetg	gggaaactac	accaaggccg	cegetetgge	120
ctggggctcc	ctcccacacg	gccttggccc	tctcccctc	gccccgggac	cgctccgccc	180
ctcccggatc	ccggtcggcg	gagcgcattt	atttgcatat	ttctaccttt	gttccccgcc	240
tgggccaggc	cccaaaggca	aggacaaagc	agctgtcagg	gaacctccgc	cggagtcgaa	300
tttacgtgca	gctgccggca	accacaggtt	ccaagatggt	ttgcgggggc	ttcgcgtgtt	360
ccaagaactg	cctgtgcgcc	ctcaacctgc	tttacacctt	ggttagtctg	ctgctaattg	420
gaattgctgc	gtggggcatt	ggcttcgggc	tgatttccag	tctccgagtg	gtcggcgtgg	480
tcattgcagt	gggcatcttc	ttgttcctga	ttgctttagt	gggtctgatt	ggagctgtaa	540
aacatcatca	ggtgttgcta	ttcttttata	tgattattct	gttacttgta	tttattgttc	600
agttttctgt	atcttgcgct	tgtttagccc	tgaaccagga	gcaacagggt	cagcttctgg	660
aggttggttg	gaacaatacg	gcaagtgctc	gaaatgacat	ccagagaaat	ctaaactgct	720
gtgggttccg	aagtgttaac	ccaaatgaca	cctgtctggc	tagctgtgtt	aaaagtgacc	780
actcgtgctc	gccatgtgct	ccaatcatag	gagaatatgc	tggagaggtt	ttgagatttg	840
ttggtggcat	tggcctgttc	ttcagtttta	cagagatcct	gggtgtttgg	ctgacctaca	900
gatacaggaa	ccagaaagac	ccccgcgcaa	atcctagtgc	attcctttga	tgagaaaaca	960
aggaagattt	cctttcgtat	tatgatcttg	ttcactttct	gtaattttct	gttaagctcc	1020
atttgccagt	ttaaggaagg	aaacactatc	tggaaaagta	ccttattgat	agtggaatta	1080
tatattttta	ctctatgttt	ctctacatgt	ttttttcttt	ccgttgctga	aaaatatttg	1140
aaacttgtgg	tctctgaagc	tcggtggcac	ctggaattta	ctgtattcat	tgtcgggcac	1200
tgtccactgt	ggcctttctt	agcattttta	cctgcagaaa	aactttgtat	ggtaccactg	1260
tgttggttat	atggtgaatc	tgaacgtaca	tctcactggt	ataattatat	gtagcactgt	1320
gctgtgtaga	tagttcctac	tggaaaaaga	gtggaaattt	attaaaatca	gaaagtatga	1380
gatcctgtta	tgttaaggga	aatccaaatt	cccaatttt	tttggtcttt	ttaggaaaga	1440

tgtgttgtgg	taaaaagtgt	tagtataaaa	atgataattt	acttgtagtc	ttttatgatt	1500
acaccaatgt	attctagaaa	tagttatgtc	ttaggaaatt	gtggtttaat	ttttgacttt	1560
ttacaggtaa	gtgccaagga	gaagtggttc	ctgaaatgtt	ctaatgttta	ttaacatttt	1620
aaccttcagc	tccatcagaa	tggaccgagt	tgagtaatca	ggaggataac	tatatgatct	1680
gaatggtata	ctaattggag	ctaaagacgc	ttttcaccag	ttgtttattg	gttggccgtg	1740
caaaagattt	gttttcaaat	gggaaacggg	cgaattcgtt	ggacgctgtg	cagtttgttg	1800
tccctgagaa	gatggggggt	ttaaaagagg	caaaaaaaaa	aggg		1844
	o sapien					
<400> 33 gctctcactg	cctgtgagag	ccccatcgtg	gtggtgctga	gtggcaggag	gtctcctctg	60
ttcctcacaa	atttccggga	agccccaatc	agagctggtg	aaatagttgt	tttaaagtt	120
gaaggacgag	acattccaat	agttcacaga	gtaatcaaag	ttcatgaaaa	agataatgga	180
gacatcaaat	ttctgactaa	aggagataat	aatgaagttg	atgatagagg	cttgtacaaa	240
ga						242
<210> 34 <211> 966 <212> DNA <213> Hom						
<400> 34 aaggatcctt	aattaaatta	atccccccc	ccccggcagc	cgtctgtgcc	acccagagcc	60
ggcgggccgc	taggtccccg	gagaccctgc	tatggtgcgt	gegggegeeg	tgggggctca	120
teteccegeg	teeggettgg	atatcttcgg	ggacctgaag	aagatgaaca	agcgccagct	180
ctattaccag	gttttaaact	tcgccatgat	cgtgtcttct	gcactcatga	tatggaaagg	240
cttgatcgtg	ctcacaggca	gtgagagccc	catcgtggtg	gtgctgagtg	gcagtatgga	300
gccggccttt	cacagaggag	acctcctgtt	cctcacaaat	ttccgggaag	acccaatcag	360
agctggtgaa	atagttgttt	ttaaagttga	aggacgagac	attccaatag	ttcacagagt	420
aatcaaagtt	. catgaaaaag	ataatggaga	catcaaattt	ctgactaaag	gagataataa	480
tgaagttgat	gatagagget	tgtacaaaga	aggccagaac	: tggctggaaa	agaaggacgt	540
ggtgggaaga	ı gcaagagggt	ttttaccata	tgttggtatg	gtcaccataa	taatgaatga	600
			L _ L L L ~ ~ ~ ~ ~ ~ ~		tactaaaacq	660

33

tgaatcctaa aatgagaagc agttcctggg accagattga aatgaattct gttgaaaaag 720
agaaaaacta atatattga gatgttccat tttctgtata aaagggaaca gtgtggaaat 780
tgtccgcggt cttgggccaa gtaatagatt tgccgcgggg aaggaaatgg gagtttgtta 840
taaagatggt gcggcagctt ggaggctgtg ctgttccctt cgagttgggg ccgaataatc 900
gaccatgtgt gcccttcctc gcgtccttct agctatgcgg gcgctatgaa ccgggcggtt 960
gggttt

<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (685)..(686)
<223> n=a, c, g, or t

<220>
<221> misc_feature
<222> (688)..(688)
<223> n=a, c, g, or t

<220>
<221> misc_feature
<222> (688)..(688)
<223> n=a, c, g, or t

<223> n=a, c, g, or t

<210> 35 <211> 717

<400> 35 catgacaccg ggcacccagt ctcctttctt cctgctgctg ctcctcacag tgcttacagt 60 tgttacaggt tctggtcatg caagctctac cccaggtgga gaaaaggaga cttcggctac 120 ccagagaagt tcagtgccca gctctactga gaagaatgct tttaattcct ctctggaaga 180 tcccagcacc gactactacc aagagctgca gagagacatt tctgaaatgg ctgtctgtca 240 300 gtgccgccga aagaactacg ggcagctgga catctttcca gccccgggat acctaccatc ctatgagcga gtaccccacc taccacacc atgggcgcta tgtgccccct agcagtaccg 360 ategtagece ctatgagaag gtttetgeag gtaatggtgg cageageete tettacacaa 420 acccagcagt ggcagccact tctgccaact tgtaggggca cgtcgcccgc tgagctgagt 480 ggccagccag tgccattcca ctccactcag gttcttcagg gccagagccc ctgcacctgt 540 ttgggctggt gagctgggag ttcaggtggg ctgctcacag cctccttcag aggccccacc 600 aatttctcgg acacttctca gtgtgtggaa gctcatgtgg gcccctgagg gctcatgcct 660 717 gggaagtgtt gtggtgggtg ctacnnanga ggactgnccc agagagccct gagatag

34

WO 03/106648 PCT/US03/18934

<210> 36 <211> 774 <212> DNA <213> Homo sapien <400> 36 catgacaccg ggcacccagt ctcctttctt cctgctgctg ctcctcacag tgcttacagt 60 tgttacaggt tctggtcatg caagctctac cccaggtgga gaaaaggaga cttcggctac 120 ccagagaagt tcagtgccca gctctactga gaagaatgct tttaattcct ctctggaaga 180 toccagoaco gactactaco aagagotgoa gagagacatt totgaaatgg otgtotgtoa 240 gtgccgccga aagaactacg ggcagctgga catctttcca gccccgggat acctaccatc 300 ctatgagega gtaccecace taccacacee atgggegeta tgtgccccct ageagtaceg 360 atcgtagccc ctatgagaag gtttctgcag gtaatggtgg cagcagcctc tcttacacaa 420 acccagcagt ggcagccact tctgccaact tgtaggggca cgtcgcccgc tgagctgagt 480 540 ggccagccag tgccattcca ctccactcag gttcttcagg gccagagccc ctgcaccctg tttgggctgg tgagctggga gttcaggtgg gctgctcaca gcctccttca gaggccccac 600 caatttctcq qacacttctc agtgtgtgga agctcatgtg ggcccctgag ggctcatgcc 660 720 tgggaagtgt tgtggtgggt gctcccagga ggactggccc agagagccct gagatagcgg 774 ggatcctgaa ctggactgaa taaaacgtgg tctccccctg cgccaaaaaa aaaa <210> 37 <211> 4144 <212> DNA <213> Homo sapien <400> 37 cegetecace teteaagaat teeetggetg ettgaatetg ttetgeecce teeccaceca 60 tttcaccacc accatgacac cgggcaccca gtctcctttc ttcctgctgc tgctcctcac 120 agtgcttaca gttgttacag gttctggtca tgcaagctct accccaggtg gagaaaagga 180 gacttcggct acccagagaa gttcagtgcc cagctctact gagaagaatg ctgtgagtat 240 300 gaccagcage gtacteteca gecacageee eggtteagge teetecacea eteagggaca ggatgtcact ctggccccgg ccacggaacc agcttcaggt tcagctgcca cctggggaca 360 qqatqtcacc tcqqtcccaq tcaccaqgcc agccctgggc tccaccaccc cgccagccca 420 480 cgatgtcacc tcagcccgg acaacaagcc agcccgggc tccaccgccc ccccagccca eggtgtcacc teggecegg acaccaggec ggeceggge tecacegece ecccagecca 540 eggtgteacc teggeeeegg acaecaggee ggeeeeggge teeaeegeea geeeaeggtg 600 660 tcacctcggc cccggacacc aggccgsccc cgggctccac cgcscccsca gcccacggtg

tcacctcggc	cccggacacc	aggccggccc	cgggctccac	cgcccccca	gcccayggtg	720
tcacctcggc	cccggacacc	aggccggccc	cgggctccac	cgcccccca	gcccacggtg	780
teacetegge	cccggacacc	aggccggccc	cgggctccac	cgccccccca	gcccacggtg	840
tcacctcggc	cccggacacc	aggccggccc	cgggctccac	cgcccccca	gcccacggtg	900
tcacctcggc	cccggacacc	aggccggccc	cgggctccac	cgcccccca	gcccacggtg	960
tcacctcggc	cccggacacc	aggccggccc	cgggctccac	cgcccccca	gcccacggtg	1020
tcacctcggc	cccggacacc	aggccggccc	cgggctccac	cgcccccca	gcccacggtg	1080
tcacctcggc	cccggacacc	aggccggccc	cgggctccac	cgcccccca	gcccacggtg	1140
tcacctcggc	cccggacacc	aggċcggccc	cgggctccac	cgcccccca	gcccacggtg	1200
tcacctcggc	cccggacacc	aggccggccc	cgggctccac	cgcccccca	gcccacggtg	1260
tcacctcggc	cccggacacc	aggccggccc	cgggctccac	cgcccccca	gcccacggtg	1320
tcacctcggc	cccggacacc	aggccggccc	cgggctccac	cgcccccca	gcccacggtg	1380
tcacctcggc	cccggacacc	aggccggccc	cgggctccac	cgcccccca	gcccacggtg	1440
tcacctcggc	cccggacacc	aggccggccc	cgggctccac	cgcccccca	gcccacggtg	1500
tcacctcggc	cccggacacc	aggccggccc	cgggctccac	cgcccccca	gcccacggtg	1560
tcacctcggc	cccggacacc	aggccggccc	cgggctccac	cgccccccca	gcccacggtg	1620
tcacctcggc	cccggacacc	aggccggccc	cgggctccac	cgcccccca	gcccacggtg	1680
tcacctcggc	cccggacacc	aggccggccc	cgggctccac	cgccccccca	gcccacggtg	1740
tcacctcggc	cccggacacc	aggccggccc	cgggctccac	cgcccccca	gcccacggtg	1800
tcacctcggc	cccggacacc	aggccggccc	cgggctccac	cgcccccca	gcccacggtg	1860
tcacctcggc	cccggacacc	aggccggccc	cgggctccac	cgcccccca	gcccacggtg	1920
tcacctcggc	cccggacacc	aggccggccc	cgggctccac	cgcccccca	gcccacggtg	1980
tcacctcggc	cccggacacc	aggccggccc	cgggctccac	cgcccccca	gcccacggtg	2040
tcacctcggc	cccggacacc	aggccggccc	cgggctccac	cgcccccca	gcccacggtg	2100
tcacctcggc	cccggacacc	aggccggccc	cgggctccac	cgcccccca	gcccacggtg	2160
tcacctcggc	cccggacacc	aggccggccc	cgggctccac	cgcccccca	gcccacggtg	2220
tcacctcggc	cccggacacc	aggccggccc	cgggctccac	cgcccccca	gcccacggtg	2280
tcacctcggc	cccggacacc	aggccggccc	cgggctccac	cgcccccca	gcccacggtg	2340
tcacctcggc	cccggacacc	aggccggccc	cgggctccac	cgcccccca	gcccacggtg	2400
tcacctcggc	cccggacacc	aggccggccc	cgggctccac	cgcccccca	gcccacggtg	2460

36

tcacctcggc	cccggacacc	aggccggccc	cgggctccac	cgcccccca	gcccacggtg	2520
tcacctcggc	cccggacacc	aggccggccc	cgggctccac	cgcccccca	gcccacggtg	2580
tcacctcggc	cccggacacc	aggccggccc	cgggctccac	cgcccccca	gcccacggtg	2640
tcacctcggc	cccggacacc	aggccggccc	cgggctccac	cgcccccca	gcccacggtg	2700
tcacctcggc	cccggacacc	aggccggccc	cgggctccac	cgcccccca	gtccacggtg	2760
tcacctcggc	cccggactcc	aggtcgggct	cgggcttcct	accgccgccc	gcagcccacg	2820
gtgtcacctc	ggccccggac	accaggccgg	ccccgggctc	caccgccccc	ccagcccatg	2880
gtgtcacctc	ggccccggac	aacaggcccg	ccttggcgct	ccaccgcccc	tccagtccac	2940
aatgtcacct	cggcctcagg	ctctgcatca	ggctcagctt	ctactctggt	gcacaacggc	3000
acctctgcca	gggctaccac	aaccccagcc	agcaagagca	ctccattctc	aattcccagc	3060
caccactctg	atactcctac	caccettgee	agccatagca	ccaagactga	tgccagtagc	3120
actcaccata	gcacggtacc	tcctctcacc	tcctccaatc	acagcacttc	tccccagttg	3180
tctactgggg	tctctttctt	tttcctgtct	tttcacattt	caaacctcca	gtttaattcc	3240
tctctggaag	atcccagcac	cgactactac	caagagctgc	agagagacat	ttctgaaatg	3300
tttttgcaga	tttataaaca	agggggtttt	ctgggcctct	ccaatattaa	gttcaggcca	3360
ggatctgtgg	tggtacaatt	gactctggcc	ttccgagaag	gtaccatcaa	tgtccacgac	3420
gtggagacac	agttcaatca	gtataaaacg	gaagcagcct	ctcgatataa	cctgacgatc	3480
tcagacgtca	gcgtgagtga	tgtgccattt	cetttetetg	cccagtctgg	ggctggggtg	3540
ccaggctggg	gcatcgcgct	gctggtgctg	gtctgtgttc	tggttgcgct	ggccattgtc	3600
tatctcattg	ccttggctgt	ctgtcagtgc	cgccgaaaga	actacgggca	gctggacatc	3660
tttccagccc	gggataccta	ccatcctatg	agcgagtacc	ccacctacca	cacccatggg	3720
cgctatgtgc	cccctagcag	taccgatcgt	agcccctatg	agaaggtttc	tgcaggtaat	3780
ggtggcagca	gcctctctta	cacaaaccca	gcagtggcag	ccacttctgc	caacttgtag	3840
gggcacgtcg	cccgctgagc	tgagtggcca	gccagtgcca	ttccactcca	ctcaggttct	3900
tcagggccag	agcccctgca	ccctgtttgg	gctggtgagc	tgggagttca	ggtgggctgc	3960
tcacagcctc	cttcagaggc	cccaccaatt	tctcggacac	ttctcagtgt	gtggaagctc	4020
atgtgggccc	ctgaggctca	tgcctgggaa	gtgttgtggg	ggctcccagg	aggactggcc	4080
cagagageee	tgagatagcg	gggatcctga	actggactga	ataaaacgtg	gtctcccact	4140
gcga						4144

<210> 38 <211> 2255

PCT/US03/18934 WO 03/106648 37

<212> DNA <213> Homo sapien

<400> 38 ccgctccacc tctcaagaat tccctggctg cttgaatctg ttctgccccc tccccaccca 60 tttcaccacc accatgacac cgggcaccca gtctcctttc ttcctgctgc tgctcctcac 120 agtgcttaca gttgttacag gttctggtca tgcaagctct accccaggtg gagaaaagga 180 gacttcggct acccagagaa gttcagtgcc cagctctact gagaagaatg ctgtgagtat 240 gaccagcagc gtactctcca gccacagccc cggttcaggc tcctccacca ctcagggaca 300 ggatgtcact ctggccccgg ccacggaacc agcttcaggt tcagctgcca cctggggaca 360 ggatgtcacc tcggtcccag tcaccaggcc agccctgggc tccaccaccc cgccagecca 420 cgatgtcacc tcagccccgg acaacaagcc agccccgggc tccaccgccc ccccagccca 480 540 eggtgteace teggeceegg acaecaggee ggeeeeggge teeacegeee eeccageeea cggtgtcacc tcggccccgg acaccaggcc gsccccgggc tccaccgcsc ccscagccca 600 cggtgtcacc tcggccccgg acaccaggcc ggccccgggc tccaccgccc ccccagccca 660 yggtgtcacc tcggccccgg acaacaggcc cgccttggcg ctccaccgcc cctccagtcc 720 acaatgtcac ctcggcctca ggctctgcat caggctcagc ttctactctg gtgcacaacg 780 gcacctctgc cagggctacc acaaccccag ccagcaagag cactccattc tcaattccca 840 gccaccactc tgatactcct accacccttg ccagccatag caccaagact gatgccagta 900 gcactcacca tagcacggta cctcctctca cctcctccaa tcacagcact tctccccagt 960 1020 tgtctactgg ggtctctttc tttttcctgt cttttcacat ttcaaacctc cagtttaatt cctctctgga agatcccagc accgactact accaagagct gcagagagac atttctgaaa 1080 tggtgagtat cggcctttcc ttccccatgc tcccctgaag cagccatcag aactgtccac 1140 accetttgca tcaagcetga gteettteee teteacecea gtttttgcag atttataaae 1200 aagggggttt tetgggeete tecaatatta agtteaggta eagttetggg tgtggaeeea 1260 gtgtggtggt tggagggttg ggtggtggtc atgaccgtag gagggactgg tcgcacttaa 1320 ggttggggga agagtcgtga gccagagctg ggacccgtgg ctgaagtgcc catttccctg 1380 tgaccaggcc aggatetgtg gtggtacaat tgactetggc ettecgagaa ggtaccatea 1440 atgtccacga cgtggagaca cagttcaatc agtataaaac ggaagcagcc tctcgatata 1500 acctgacgat ctcagacgtc agcggtgagg ctacttccct ggctgcagcc cagcaccatg 1560 ccggggccct ctccttccag tgcctgggtc cccgctcttt ccttagtgct ggcagcggga 1620 ggggcgcctc ctctgggaga ctgccctgac cactgctttt ccttttagtg agtgatgtgc 1680 cattteettt etetgeecag tetggggetg gggtgecagg etggggeate gegetgetgg 1740

tgctggtctg t	gttctggtt	gcgctggcca	ttgtctatct	cattgccttg	gtgagtgcag	1800
teectggeec t	gatcagagc	ccccggtag	aaggcactcc	atggcctgcc	ataacctcct	1860
atctccccag g	getgtetgte	agtgccgccg	aaagaactac	gggcagctgg	acatctttcc	1920
agcccgggat a	acctaccatc	ctatgagcga	gtaccccacc	taccacaccc	atgggcgcta	1980
tgtgcccct a	agcagtaccg	atcgtagccc	ctatgagaag	gtgagattgg	ccccacaggc	2040
caggggaagc	agagggtttg	gctgggcaag	gattctgaag	ggggtacttg	gaaaacccaa	2100
agagcttgga	agaggtgaga	agtggcgtga	agtgagcagg	ggagggcctg	gaaaggatga	2160
ggggcagagg	tcagaggagt	tttgggggac	aggcctggga	ggagactatg	gaagaaaggg	2220
gccctcaaaa	gggagtggcc	ccactgccag	aattc			2255
<210> 39 <211> 1953 <212> DNA <213> Homo	sapien					
ccgctccacc	tctcaagaat	tecetggetg	cttgaatctg	ttetgeecce	tccccaccca	60
tttcaccacc	accatgacac	cgggcaccca	gtctcctttc	tteetgetge	tgctcctcac	120
agtgcttaca	gctaccacag	cccctacacc	cgcaacagtt	gttacaggtt	ctggtcatgc	180
aagctctacc	ccaggtggag	aaaaggagac	ttcggctacc	cagagaagtt	cagtgcccag	240
ctctactgag	aagaatgctg	tgagtatgac	cagcagcgta	ctctccagcc	acagccccgg	300
ttcaggctcc	tccaccactc	agggacagga	tgtcactctg	gccccggcca	cggaaccagc	360
ttcaggttca	gctgccacct	ggggacagga	tgtcacctcg	gtcccagtca	ccaggccagc	420
cctgggctcc	accaccccgc	cagcccacga	tgtcacctca	gccccggaca	acaagccagc	480
cccgggctcc	accgccccc	cageceaegg	tgtcacctcg	gccccggaca	ccaggccggc	540
cccgggctcc	accgccccc	cageceaegg	tgtcacctcg	gccccggaca	ccaggccggc	600
cccgggctcc	accgcgcccg	cagcccacgg	tgtcacctcg	gccccggaca	ccaggccggc	660
cccgggctcc	accgccccc	cagcccatgg	tgtcacctcg	gccccggaca	acaggcccgc	720
cttggcgctc	caccgcccct	ccagtccaca	. atgtcacctc	ggcctcaggc	tctgcatcag	780
gctcagcttc	tactctggtg	cacaacggca	. cctctgccag	ggctaccaca	accccagcca	840
gcaagagcac	tccattctca	. attcccagco	accactetga	tactcctacc	accettgeca	900
gccatagcac	caagactgat	gccagtagca	ctcaccatag	cacggtacct	cctctcacct	960
cctccaatca	cagcacttct	ccccagttgt	. ctactggggt	ctctttcttt	ttcctgtctt	1020
ttcacatttc	aaacctccag	tttaattcct	ctctggaaga	tcccagcaco	gactactacc	1080

а	agagctgca	gagagacatt	tctgaaatgt	ttttgcagat	ttataaacaa	gggggttttc	1140
t	gggcctctc	caatattaag	ttcaggccag	gatctgtggt	ggtacaattg	actctggcct	1200
t	ccgagaagg	taccatcaat	gtccacgacg	tggagacaca	gttcaatcag	tataaaacgg	1260
a	agcagcctc	tcgatataac	ctgacgatct	cagacgtcag	cgtgagtgat	gtgccatttc	1320
c	tttctctgc	ccagtctggg	gctggggtgc	caggctgggg	catcgcgctg	ctggtgctgg	1380
t	ctgtgttct	ggttgcgctg	gccattgtct	atctcattgc	cttggctgtc	tgtcagtgcc	1440
9	gccgaaagaa	ctacgggcag	ctggacatct	ttccagcccg	ggatacctac	catcctatga	1500
ç	gcgagtaccc	cacctaccac	acccatgggc	gctatgtgcc	ccctagcagt	accgatcgta	1560
ç	gcccctatga	gaaggtttct	gcaggtaatg	gtggcagcag	cctctcttac	acaaacccag	1620
c	cagtggcagc	cacttctgcc	aacttgtagg	ggcacgtcgc	ccgctgagct	gagtggccag	1680
(ccagtgccat	tccactccac	tcaggttctt	cagggccaga	gcccctgcac	cctgtttggg	1740
(ctggtgagct	gggagttcag	gtgggctgct	cacagcctcc	ttcagaggcc	ccaccaattt	1800
(ctcggacact	tctcagtgtg	tggaagctca	tgtgggcccc	tgaggctcat	gcctgggaag	1860
1	tgttgtgggg	gctcccagga	ggactggccc	agagagccct	gagatagcgg	ggatcctgaa	1920
(ctggactgaa	taaaacgtgg	tctcccactg	cga			1953

<210> 40

<211> 1738

<212> DNA

<213> Homo sapien

<400> 40 60 ccgctccacc tctcaagaat tccctggctg cttgaatctg ttctgccccc tccccaccca tttcaccacc accatgacac cgggcaccca gtctcctttc ttcctgctgc tgctcctcac 120 agtgcttaca gttgttacag gttctggtca tgcaagctct accccaggtg gagaaaagga 180 gacttcggct acccagagaa gttcagtgcc cagctctact gagaagaatg ctgtgagtat 240 gaccagcagc gtacteteca gecacagece eggtteagge teetecacca eteagggaca 300 ggatgtcact ctggccccgg ccacggaacc agettcaggt tcagctgcca cctggggaca 360 420 ggatgtcacc tcggtcccag tcaccaggcc agccctgggc tccaccaccc cgccagccca 480 cgatgtcacc tcagccccgg acaacaagcc agccccgggc tccaccgccc ccccagccca 540 . cggtgtcacc tcggccccgg acaccaggcc ggccccgggc tccaccgccc ccccagccca 600 cggtgtcacc tcggccccgg acaccaggcc ggccccgggc tccaccgcgc ccgcagccca cggtgtcacc tcggccccgg acaccaggcc ggccccgggc tccaccgccc ccccagccca 660 720 tggtgtcacc tcggccccgg acaacaggcc cgccttggcg ctccaccgcc cctccagtcc

328

acaatgtcac	ctcggcctca	ggctctgcat	caggctcagc	ttctactctg	gtgcacaacg	780
gcacctctgc	cagggctacc	acaaccccag	ccagcaagag	cactccattc	tcaattccca	840
gccaccactc	tgatactcct	accacccttg	ccagccatag	caccaagact	gatgccagta	900
gcactcacca	tagcacggta	cctcctctca	cctcctccaa	tcacagcact	tctccccagt	960
tgtctactgg	ggtctctttc	tttttcctgt	cttttcacat	ttcaaacctc	cagtttaatt	1020
cctctctgga	agatcccagc	accgactact	accaagagct	gcagagagac	atttctgaaa	1080
tgtttttgca	gatttataaa	caagggggtt	ttctgggcct	ctccaatatt	aagttcaggc	1140
caggatctgt	ggtggtacaa	ttgactctgg	ccttccgaga	aggtaccatc	aatgtccacg	1200
acgtggagac	acagttcaat	cagtataaaa	cggaagcagc	ctctcgatat	aacctgacga	1260
tctcagacgt	cagcgtgagt	gatgtgccat	ttcctttctc	tgcccagtct	ggggctgggg	1320
tgccaggctg	gggcatcgcg	ctgctggtgc	tggtctgtgt	tctggttgcg	ctggccattg	1380
tctatctcat	tgccttggct	gtctgtcagt	gccgccgaaa	gaactacggg	cagctggaca	1440
tctttccagc	ccgggatacc	taccatccta	tgagcgagta	ccccacctac	cacacccatg	1500
ggcgctatgt	gccccctagc	agtaccgatc	gtagccccta	tgagaaggtt	tctgcaggta	1560
atggtggcag	cagcctctct	tacacaaacc	cagcagtggc	agccacttct	gccaacttgt	1620
aggggcacgt	cgcccgctga	gctgagtggc	cagccagtgc	cattccactc	cactcagggc	1680
tetetgggee	agtectectg	ggagccccca	ccacaacact	tcccaggcat	ggaattcc	1738
<210> 41 <211> 328 <212> DNA <213> Hom			·			
<400> 41 tcatctcgag	r cggcggcgca	gtgtgaggcg	gecegggete	accgcgcccg	cagcccacgg	60
	gcccggaca					120
					cagcccatgg	180
	gtgccycgga					240
					aagtatatcg	300

atggatcata cgctgtttcc gtgtgtga

<220>

<210> 42 <211> 1030 <212> DNA <213> Homo sapien

<221> misc_feature <222> (574)..(574) <223> n=a, c, g, or t

WO 03/106648

<400> 42			tt at acassa	+ aaaaa aaaa	60
ccgctccacc tctcaag					
tttcaccacc accatga	acac cgggcaccca	gtctcctttc	ttcctgctgc	tgctcctcac	120
agtgcttaca gctacca	acag cccctacacc	cgcaacagtt	gttacaggtt	ctggtcatgc	180
aagctctacc ccaggt	ggag aaaaggagac	ttcggctacc	cagagaagtt	cagtgcccag	240
ctctactgag aagaat	gctg tgagtatgac	cagcagcgta	ctctccagcc	acagccccgg	300
ttcaggctcc tccacc	actc agggacagga	tgtcactctg	gccccggcca	cggaaccagc	360
ttcaggttca gctgcc	acct ggggacagga	tgtcacctcg	gtcccagtca	ccaggccagc	420
cctgggctcc accacc	ccgc cagcccacga	tgtcacctca	gccccggaca	acaagccagc	480
cccgggctcc accgcc	ccgc ggccgatctt	gtggctcggg	cttgggtacc	gcgtgcgtgc	540
ccggtcttca gctgct	tcta gtaggtgctc	accntacgca	gttactaact	tacgactgag	600
cgctgtcgct ttgcac	taga cgatcgtgaa	ctgggaacac	ctcatgtgct	gtcatcacaa	660
tttattcgct ttgcgg	cgcg atccccctgt	tcgcaagagg	gtggaagagg	ccactgtgtg	720
taccccgcga acttag	atcg tcggcggtgc	tagactagat	cacccctttg	cgcagagact	780
gagagtattg gggacc	caga aaacagaagc	tgggggttca	ggagttttgc	acgacaaaga	840
actacgatag cagaag	actt gatggtactg	gtgacccaag	gagaaatctg	gggatttaga	900
ggccacctga aagata	cgaa gatacaaata	cagtctgaga	tgctggggac	ccaggagaca	960
gaggtggaca gcttct	aggg taccagagtc	agaggctgag	ggggacagaa	cgctaaaata	1020
ttagggaccc					1030

41

PCT/US03/18934

<210> 43 <211> 1918 <212> DNA

<213> Homo sapien

<400> 43
taggaggtag gggaggggc ggggttttgt cacctgtcac ctgctccggc tgtgctatgg 60
gcgggcgggc gggagtggg gggaccggta taaagcggta ggcgcctgtg cccgctccac 120
ctctcaagca gccagcgcct gcctgaatct gttctgccc ctcccaccc atttcaccac 180
caccatgaca ccgggcaccc agtctccttt cttcctgctg ctgctcctca cagtgcttac 240
agttgttaca ggttctggtc atgcaagctc taccccaggt ggagaaaagg agacttcggc 300
tacccagaga agttcagtgc ccagctctac tgagaagaat gctgtgagta tgaccagcag 360

cgtactctcc	agccacagcc	ccggttcagg	ctcctccacc	actcagggac	aggatgtcac	420
tetggeeeeg	gccacggaac	cagcttcagg	ttcagctgcc	acctggggac	aggatgtcac	480
ctcggtccca	gtcaccaggc	cagccctggg	ctccaccacc	ccgccagccc	acgatgtcac	540
ctcagccccg	gacaacaagc	cagccccggg	ctccaccgcc	ccccagccc	acggtgtcac	600
ctcggccccg	gacaccaggc	cggccccggg	ctccaccgcc	ccccagccc	atggtgtcac	660
ctcggccccg	gacaacaggc	ccgccttggg	ctccaccgcc	cctccagtcc	acaatgtcac	720
ctcggcctca	ggctctgcat	caggctcagc	ttctactctg	gtgcacaacg	gcacctctgc	780
cagggctacc	acaaccccag	ccagcaagag	cactccattc	tcaattccca	gccaccactc	840
tgatactcct	accacccttg	ccagccatag	caccaagact	gatgccagta	gcactcacca	900
tagcacggta	cctcctctca	cctcctccaa	tcacagcact	tctccccagt	tgtctactgg	960
ggtctctttc	tttttcctgt	cttttcacat	ttcaaacctc	cagtttaatt	cctctctgga	1020
agatcccagc	accgactact	accaagagct	gcagagagac	atttctgaaa	tgtttttgca	1080
gatttataaa	caagggggtt	ttctgggcct	ctccaatatt	aagttcaggc	caggatctgt	1140
ggtggtacaa	ttgactctgg	ccttccgaga	aggtaccatc	aatgtccacg	acgtggagac	1200
acagttcaat	cagtataaaa	cggaagcagc	ctctcgatat	aacctgacga	tctcagacgt	1260
cagcgtgagt	gatgtgccat	ttcctttctc	tgcccagtct	ggggctgggg	tgccaggctg	1320
gggcatcgcg	ctgctggtgc	tggtctgtgt	tetggttgeg	ctggccattg	tctatctcat	1380
tgccttggct	gtctgtcagt	gccgccgaaa	gaactacggg	cagctggaca	tctttccagc	1440
ccgggatacc	taccatccta	tgagcgagta	cccacctac	cacacccatg	ggcgctatgt	1500
gccccctagc	agtaccgatc	gtagccccta	tgagaaggtt	tetgeaggta	atggtggcag	1560
cagcctctct	tacacaaacc	cagcagtggc	agccacttct	gccaacttgt	aggggcacgt	1620
cgcccgctga	gctgagtggc	cagccagtgc	cattccactc	cactcaggtt	cttcagggcc	1680
agagcccctg	caccctgttt	gggctggtga	gctgggagtt	caggtgggct	gctcacagcc	1740
tccttcagag	gccccaccaa	tttctcggac	acttctcagt	gtgtggaagc	tcatgtgggc	1800
ccctgagggc	tcatgcctgg	gaagtgttgt	ggtgggggct	cccaggagga	ctggcccaga	1860
gagccctgag	atagcgggga	tcctgaactg	gactgaataa	aacgtggtct	cccactgc	1918

<210> 44 <211> 1755 <212> DNA <213> Homo sapien

<220>

<221> misc_feature <222> (1682)..(1682)

<223> n=a, c, g, or t

<220>

WO 03/106648

<221> misc_feature

<222> (1733)..(1733)

<223> n≈a, c, g, or t

<400> 44

taggaggtag gggaggggc ggggttttgt cacctgtcac ctgctccggc tgtgctatgg 60 9cgggcgggc ggggagtggg gggaccggta taaagcggta ggcgcctgtg cccgctccac 120 ctetcaagca gecagegeet geetgaatet gttetgeece etceccaece attteaceae 180 caccatgaca cogggcacco agtetecttt ettectgetg etgetectea cagtgettae 240 agttgttaca ggttctggtc atgcaagctc taccccaggt ggagaaaagg agacttcggc 300 tacccagaga agttcagtgc ccagctctac tgagaagaat gctgtgagta tgaccagcag 360 cgtactctcc agccacagcc ccggttcagg ctcctccacc actcagggac aggatgtcac 420 tetggeeceg gecaeggaac cagetteagg tteagetgee acetggggae aggatgteae 480 ctcggtccca gtcaccaggc cagccctggg ctccaccacc ccgccagccc acgatgtcac 540 ctcagccccg gacaacaagc cagccccggg ctccaccgcc cccccagccc acggtgtcac 600 cteggecceg gacaccagge eggecceggg etecacegee eccecagece atggtgteae 660 ctcggccccg gacaacaggc ccgccttggg ctccaccgcc cctccagtcc acaatgtcac 720 ctcggcctca ggctctgcat caggctcagc ttctactctg gtgcacaacg gcacctctgc 780 cagggctacc acaaccccag ccagcaagag cactccattc tcaattccca gccaccactc 840 tgatactcct accaccettg ccagccatag caccaagact gatgccagta gcactcacca 900 tagcacggta cctcctctca cctcctccaa tcacagcact tctccccagt tgtctactgg 960 . ggtctctttc tttttcctgt cttttcacat ttcaaacctc cagtttaatt cctctctgga 1020 agatcccagc accgactact accaagagct gcagagagac atttctgaaa tgtttttgca 1080 gatttataaa caagggggtt ttctgggcct ctccaatatt aagttcaggc caggatctgt 1140 ggtggtacaa ttgactctgg ccttccgaga aggtaccatc aatgtccacg acgtggagac 1200 acagttcaat cagtataaaa cggaagcagc ctctcgatat aacctgacga tctcagacgt 1260 cagcgtgagt gatgtgccat ttcctttctc tgcccagtct ggggctgggg tgccaggctg 1320 gggcatcgcg ctgctggtgc tggtctgtgt tctggttgcg ctggccattg tctatctcat 1380 tgccttggct gtctgtcagt gccgccgaaa gaactacggg cagctggaca tctttccagc 1440 ccgggatacc taccatccta tgagcgagta ccccacctac cacacccatg ggcgctatgt 1500 geeceetage agtacegate gtageeceta tgagaaggtt tetgeaggta atggtggeag 1560

43

PCT/US03/18934

cagcctctct tacacaaacc	cagcagtggc	agccacttct	gccaacttgt	aggggcacgt	1620
cgcccgctga gctgagtggc	cagccagtgc	cattccactc	cactcaggtt	cttcaggcag	1680
ancctgacct gttggctgta	gctggagtca	gtggtgtaag	ctcttcaagg	ggncagtcat	1740
cgatatgtaa cgttc					1755
.010- 45					
<210> 45 <211> 1530 <212> DNA					
<213> Homo sapien					
<400> 45	aaaatttat	anastatana	at ant ange	tataatataa	60
taggaggtag gggaggggc					
gcgggcgggc ggggagtggg					120
ctctcaagca gccagcgcct					180
caccatgaca ccgggcaccc		_	_		240
agttgttaca ggttctggtc	atgcaagctc	taccccaggt	ggagaaaagg	agacttcggc	300
tacccagaga agttcagtgc	ccagctctac	tgagaagaat	gcttttaatt	cctctctgga	360
agateccage accgaetact	accaagagct	gcagagagac	atttctgaaa	tgtttttgca	420
gatttataaa caagggggtt	ttctgggcct	ctccaatatt	aagttcaggc	caggatctgt	480
ggtggtacaa ttgactctgg	ccttccgaga	aggtaccatc	aatgtccacg	acgtggagac	540
acagttcaat cagtataaaa	cggaagcagc	ctctcgatat	aacctgacga	tctcagacgt	600
cagcgtgagt gatgtgccat	ttcctttctc	tgcccagtct	ggggctgggg	tgccaggetg	660
gggcatcgcg ctgctggtgc	tggtctgtgt	tctggttgcg	ctggccattg	tctatctcat	720
tgccttggct gtctgtcagt	gccgccgaaa	gaactacggg	cagctggaca	tctttccagc	780
ccgggatacc taccatccta	tgagcgagta	ccccacctac	cacacccatg	ggcgctatgt	840
gccccctagc agtaccgatc	gtagccccta	tgagaaggtt	tctgcaggta	atggtggcag	900
cagcctctct tacacaaacc	cagcagtggc	agccacttct	gccaacttgt	aggggcacgt	960
cgcccgctga gctgagtggc	cagccagtgc	cattccactc	cactcaggtt	cttcagggcc	1020
agagcccctg caccctgttt	gggctggtga	gctgggagtt	caggtgggct	gctcacagcc	1080
tecttcagag gececaegae	tatttcagga	agttcgaacc	ccacctgtac	tecetegaet	1140
ccaacagcga cgatgtggac	tctctgacag	acgaggagat	cctgtccaag	taccagctgg	1200
gcatgctgca cttcagcact	cagtacgacc	tgctgcacaa	ccacctcacc	gtgcgcgtga	1260
tcgaggccag ggacctgcca	cctcccatct	cccacgatgg	ctcgcgccag	gacatggcgc	1320
actccaaccc ctacgtcaag	atctgtctcc	tgccagacca	gaagaactca	aagcagaccg	1380

gggtcaaacg caagacccag	aagcccgtgt	ttgaggagcg	ctacaccttc	gagatcccct	1440
tcctggaggc ccagaggagg	accetgetee	tgaccgtggt	ggattttgat	aagttctccc	1500
gccactgtgt cattgggaaa	gtttctgtgg				1530
<210> 46 <211> 563 <212> DNA <213> Homo sapien					
<400> 46 ttttgctttt ttgcacccag	aggcaaaatg	ggtggagcac	tatgcccagg	ggagcccttc	60
ccgaggagtc ccaggggtga	gcctctgtgc	ccctaatcat	ctcctaggaa	tggagggtag	120
accgagaaag gctggcatag	ggggaggttt	cccaggtaga	agaagaagtg	tcagcagacc	180
aggtttctgc aggtaatggt	ggcagcagcc	tctcttacac	aaacccagca	gtggcagcca	240
cttctgccaa cttgtagggg	cacgtcgccc	gctgagctga	gtggccagcc	agtgccattc	300
cactccactc aggttcttca	gggccagagc	ccctgcaccc	tgtttgggct	ggtgagctgg	360
gagttcaggt gggctgctca	cagcctcctt	cagaggcccc	accaatttct	cggacacttc	420
tcagtgtgtg gaagctcatg	tgggcccctg	agggctcatg	cctgggaagt	gttgtggtgg	480
gggctcccag gaggactggc	ccagagagcc	ctgagatagc	ggggatcctg	aactggactg	540
aataaaacgt ggtctcccac	tgc	-			563
<210> 47 <211> 1945 <212> DNA <213> Homo sapien					
<400> 47 taggaggtag gggagggggc	ggggttttgt	cacctgtcac	ctgctccggc	tgtgctatgg	60
gcgggcgggc ggggagtggg	gggaccggta	taaagcggta	ggcgcctgtg	cccgctccac	120
ctctcaagca gccagcgcct	gcctgaatct	gttctgcccc	ctccccaccc	atttcaccac	180
caccatgaca ccgggcaccc	agtctccttt	cttcctgctg	ctgctcctca	cagtgcttac	240
agctaccaca gcccctaaac	ccgcaacagt	tgttacaggt	tctggtcatg	caagctctac	300
cccaggtgga gaaaaggaga	cttcggctac	ccagagaagt	tcagtgccca	gctctactga	360
gaagaatget gtgagtatga	ccagcagcgt	actctccagc	cacageceeg	gttcaggctc	420
ctccaccact cagggacagg	atgtcactct	ggccccggcc	acggaaccag	cttcaggttc	480
agctgccacc tggggacagg	atgtcacctc	ggtcccagtc	accaggccag	ccctgggctc	540
caccaccccg ccagcccacg	atgtcacctc	agccccggac	aacaagccag	ccccgggctc	600

PCT/US03/18934 WO 03/106648

		46			
caccgcccc ccagcccacg	gtgtcacctc	ggccccggac	accaggccgg	ccccgggctc	660
caccgccccc ccagcccatg	gtgtcacctc	ggccccggac	aacaggcccg	ccttgggctc	720
caccgcccct ccagtccaca	atgtcacctc	ggcctcaggc	tctgcatcag	gctcagcttc	780
tactctggtg cacaacggca	cctctgccag	ggctaccaca	accccagcca	gcaagagcac	840
tccattctca attcccagcc	accactctga	tactcctacc	accettgeca	gccatagcac	900
caagactgat gccagtagca	ctcaccatag	cacggtacct	cctctcacct	cctccaatca	960
cagcacttct ccccagttgt	ctactggggt	ctctttcttt	ttcctgtctt	ttcacatttc	1020
aaacctccag tttaattcct	ctctggaaga	tcccagcacc	gactactacc	aagagctgca	1080
gagagacatt tctgaaatgt	ttttgcagat	ttataaacaa	gggggtttc	tgggcctctc	1140
caatattaag ttcaggccag	gatctgtggt	ggtacaattg	actctggcct	tccgagaagg	1200
taccatcaat gtccacgacg	tggagacaca	gttcaatcag	tataaaacgg	aagcagcctc	1260
tcgatataac ctgacgatct	cagacgtcag	cgtgagtgat	gtgccatttc	ctttctctgc	1320
ccagtctggg gctggggtgc	caggctgggg	categegetg	ctggtgctgg	tctgtgttct	1380
ggttgcgctg gccattgtct	atctcattgc	cttggctgtc	tgtcagtgcc	gccgaaagaa	1440
ctacgggcag ctggacatct	ttccagcccg	ggatacctac	catcctatga	gcgagtaccc	1500
cacctaccac acccatgggc	gctatgtgcc	ccctagcagt	accgatcgta	gcccctatga	1560
gaaggtttct gcaggtaatg	gtggcagcag	cctctcttac	acaaacccag	cagtggcagc	1620
cacttctgcc aacttgtagg	ggcacgtcgc	ccgctgagct	gagtggccag	ccagtgccat	1680
tccactccac tcaggttctt	cagggccaga	gcccctgcac	cctgtttggg	ctggtgagct	1740
gggagttcag gtgggctgct	cacagcctcc	ttcagaggcc	ccaccaattt	ctcggacact	1800
tctcagtgtg tggaagctca	tgtgggcccc	tgagggctca	tgcctgggaa	gtgttgtggt	1860
gggggctccc aggaggactg	gcccagagag	ccctgagata	gcggggatcc	tgaactggac	1920
tgaataaaac gtggtctccc	actgc				1945
<210> 48 <211> 1882 <212> DNA <213> Homo sapien <400> 48			·		
taggaggtag gggagggggc	ggggttttgt	cacctgtcac	ctgctccggc	tgtgctatgg	60
gcgggcgggc ggggagtggg	gggaccggta	taaagcggta	ggcgcctgtg	cccgctccac	120
ctctcaagca gccagcgcct	gcctgaatct	gttctgcccc	ctccccaccc	atttcaccac	180

caccatgaca ccgggcaccc agtctccttt cttcctgctg ctgctcctca cagtgcttac

			4/			
aggtggagaa	aaggagactt	cggctaccca	gagaagttca	gtgcccagct	ctactgagaa	300
gaatgctgtg	agtatgacca	gcagcgtact	ctccagccac	agccccggtt	caggctcctc	360
caccactcag	ggacaggatg	tcactctggc	cccggccacg	gaaccagctt	caggttcagc	420
tgccacctgg	ggacaggatg	tcacctcggt	cccagtcacc	aggccagccc	tgggctccac	480
caccccgcca	gcccacgatg	tcacctcagc	cccggacaac	aagccagccc	cgggctccac	540
cgcccccca	gcccacggtg	tcacctcggc	cccggacacc	aggccggccc	cgggctccac	600
cgcccccca	gcccatggtg	tcacctcggc	cccggacaac	aggcccgcct	tgggctccac	660
cgcccctcca	gtccacaatg	tcacctcggc	ctcaggctct	gcatcaggct	cagcttctac	720
tctggtgcac	aacggcacct	ctgccagggc	taccacaacc	ccagccagca	agagcactcc	780
attctcaatt	cccagccacc	actctgatac	tcctaccacc	cttgccagcc	atagcaccaa	840
gactgatgcc	agtagcactc	accatagcac	ggtacctcct	ctcacctcct	ccaatcacag	900
cacttctccc	cagttgtcta	ctggggtctc	tttcttttc	ctgtctttc	acatttcaaa	960
cctccagttt	aattcctctc	tggaagatcc	cagcaccgac	tactaccaag	agctgcagag	1020
agacatttct	gaaatgtttt	tgcagattta	taaacaaggg	ggttttctgg	gcctctccaa	1080
tattaagttc	aggccaggat	ctgtggtggt	acaattgact	ctggccttcc	gagaaggtac	1140
catcaatgtc	cacgacgtgg	agacacagtt	caatcagtat	aaaacggaag	cagcctctcg	1200
atataacctg	acgatctcag	acgtcagcgt	gagtgatgtg	ccatttcctt	tctctgccca	1260
gtctggggct	ggggtgccag	gctggggcat	cgcgctgctg	gtgctggtct	gtgttctggt	1320
tgcgctggcc	attgtctatc	tcattgcctt	ggctgtctgt	cagtgccgcc	gaaagaacta	1380
cgggcagctg	gacatctttc	cagcccggga	tacctaccat	cctatgagcg	agtaccccac	1440
ctaccacacc	catgggcgct	atgtgccccc	tagcagtacc	gatcgtagcc	cctatgagaa	1500
ggtttctgca	ggtaatggtg	gcagcagcct	ctcttacaca	aacccagcag	tggcagccac	1560
ttctgccaac	ttgtaggggc	acgtcgcccg	ctgagctgag	tggccagcca	gtgccattcc	1620
actccactca	ggttcttcag	ggccagagcc	cctgcaccct	gtttgggctg	gtgagctggg	1680
agttcaggtg	ggctgctcac	agcctccttc	agaggcccca	ccaatttctc	ggacacttct	1740
cagtgtgtgg	aagctcatgt	gggcccctga	gggctcatgc	ctgggaagtg	ttgtggtggg	1800
ggctcccagg	aggactggcc	cagagagccc	tgagatagcg	gggatcctga	actggactga	1860
ataaaacgtg	gtctcccact	gc				1882

<210> 49 <211> 1930 <212> DNA <213> Homo sapien

<400> 49						
gtcgctctag	aggacccctc	ataggttcgc	agggccatga	gccaaggcct	atgggcagag	60
agaaggaggc	tgctgcaggg	aaggaggcgg	ccaacccagg	ggttactgag	gctgcccact	120
ccccagtcct	cctggtatta	tttctctggt	ggccagagct	tatattttct	tcttgctctt	180
atttttcctt	cataaagacc	caaccctatg	actttaactt	cttacagcta	ccacagcccc	240
taaacccgca	acagttgtta	caggttctgg	tcatgcaagc	tctaccccag	gtggagaaaa	300
ggagacttcg	gctacccaga	gaagttcagt	gcccagctct	actgagaaga	atgctgtgag	360
tatgaccagc	agcgtactct	ccagccacag	ccccggttca	ggctcctcca	ccactcaggg	420
acaggatgtc	actctggccc	cggccacgga	accagettea	ggttcagctg	ccacctgggg	480
acaggatgtc	acctcggtcc	cagtcaccag	gccagccctg	ggctccacca	ccccgccagc	540
ccacgatgtc	acctcagccc	cggacaacaa	gccagccccg	ggctccaccg	ccccccage	600
ccacggtgtc	acctcggccc	cggacaccag	gccggccccg	ggctccaccg	ccccccagc	660
ccatggtgtc	acctcggccc	cggacaacag	gcccgccttg	ggctccaccg	cccctccagt	720
ccacaatgtc	acctcggcct	caggctctgc	atcaggctca	gcttctactc	tggtgcacaa	780
cggcacctct	gccagggcta	ccacaacccc	agccagcaag	agcáctccat	tctcaattcc	840
cagccaccac	tctgatactc	ctaccaccct	tgccagccat	agcaccaaga	ctgatgccag	900
tagcactcac	catagcacgg	tacctcctct	cacctcctcc	aatcacagca	cttctcccca	960
gttgtctact	ggggtetett	tettttteet	gtcttttcac	atttcaaacc	tccagtttaa	1020
ttcctctctg	gaagatccca	gcaccgacta	ctaccaagag	ctgcagagag	acatttctga	1080
aatgttttg	cagatttata	aacaaggggg	ttttctgggc	ctctccaata	ttaagttcag	1140
gccaggatct	gtggtggtac	aattgactct	ggccttccga	gaaggtacca	tcaatgtcca	1200
cgacgtggag	acacagttca	atcagtataa	aacggaagca	gcctctcgat	ataacctgac	1260
gatctcagac	gtcagcgtga	gtgatgtgcc	atttcctttc	tctgcccagt	ctggggctgg	1320
ggtgccaggc	tggggcatcg	cgctgctggt	gctggtctgt	gttctggttg	cgctggccat	1380
tgtctatctc	attgccttgg	ctgtctgtca	gtgccgccga	aagaactacg	ggcagctgga	1440
catctttcca	gcccgggata	cctaccatcc	tatgagcgag	taccccacct	accacaccca	1500
tgggcgctat	gtgcccccta	gcagtaccga	tcgtagcccc	tatgagaagg	tttctgcagg	1560
taatggtggc	agcagcctct	cttacacaaa	cccagcagtg	gcagccactt	ctgccaactt	1620
gtaggggcac	gtcgcccgct	gagctgagtg	gccagccagt	gccattccac	tccactcagg	1680
ttcttcaggg	ccagagcccc	tgcaccctgt	ttgggctggt	gagctgggag	ttcaggtggg	1740
ctgctcacag	cctccttcag	aggccccacc	aatttctcgg	acacttctca	gtgtgtggaa	1800

actcatataa	gcccctgagg	gctcatgcct	gggaagtgtt	gtggtgggg	ctcccaggag	1860
			gatcctgaac			1920
	949450005	~ 5~~~	5			1930
ctcccactgc						
<210> 50 <211> 1798 <212> DNA <213> Home	3 o sapien					
<400> 50 taggaggtag	gggaggggc	ggggttttgt	cacctgtcac	ctgctccggc	tgtgctatgg	60
gegggeggge	ggggagtggg	gggaccggta	taaagcggta	ggcgcctgtg	cccgctccac	120
ctctcaagca	gccagcgcct	gcctgaatct	gttctgcccc	ctccccaccc	atttcaccac	180
caccatgaca	ccgggcaccc	agtctccttt	cttcctgctg	ctgctcctca	cagtgcttac	240
agttgttaca	ggttctggtc	atgcaagctc	taccccaggt	ggagaaaagg	agacttcggc	300
tacccagaga	agttcagtgc	ccagctctac	tgagaagaat	gctgtgagta	tgaccagcag	360
cgtactctcc	agccacagcc	ccggttcagg	ctcctccacc	actcagggac	aggatgtcac	420
tetggeeeeg	gccacggaac	cagcttcagg	ttcagctgcc	acctggggac	aggatgtcac	480
ctcggtccca	gtcaccaggc	cagccctggg	ctccaccacc	ccgccagccc	acgatgtcac	540
ctcggccccg	gacaacaggc	ccgccttggg	ctccaccgcc	cctccagtcc	acaatgtcac	600
ctcggcctca	ggctctgcat	caggeteage	ttctactctg	gtgcacaacg	gcacctctgc	660
cagggctacc	: acaaccccag	ccagcaagag	cactccattc	tcaattccca	gccaccactc	720
tgatactcct	accacccttg	ccagccatag	caccaagact	gatgccagta	gcactcacca	780
tagcacggta	cetectetea	cctcctccaa	tcacagcact	tctccccagt	tgtctactgg	840
ggtctctttc	tttttcctgt	cttttcacat	ttcaaacctc	cagtttaatt	cctctctgga	900
agatcccago	accgactact	accaagagct	gcagagagac	atttctgaaa	tgtttttgca	960
gatttataaa	a caagggggtt	ttctgggcct	ctccaatatt	aagttcaggo	caggatctgt	1020
ggtggtacaa	ttgactctgg	ccttccgaga	a aggtaccato	: aatgtccacg	g acgtggagac	1080
acagttcaat	cagtataaa	cggaagcag	c ctctcgatat	aacctgacga	tctcagacgt	1140
cagcgtgagt	gatgtgccat	ttcctttct	c tgcccagtct	ggggctgggg	tgccaggctg	1200
gggcatcgc	g ctgctggtgd	tggtctgtgt	t tetggttgeg	g ctggccattg	g tctatctcat	1260
tgccttggc	t gtctgtcagt	; gccgccgaa	a gaactacggg	g cagctggace	a tctttccagc	1320
ccgggatac	c taccatcct	a tgagcgagt	a ccccacctac	cacacccat	g ggcgctatgt	1380
geceetag	c agtaccgate	gtagcccct	a tgagaaggtt	tetgeaggta	a atggtggcag	1440

cageetetet	tacacaaacc	cagcagtggc	agccacttct	gccaacttgt	aggggcacgt	1500
cgcccgctga	gctgagtggc	cagccagtgc	cattccactc	cactcaggtt	cttcagggcc	1560
agagcccctg	caccctgttt	gggctggtga	gctgggagtt	caggtgggct	gctcacagcc	1620
tccttcagag	gccccaccaa	tttctcggac	acttctcagt	gtgtggaagc	tcatgtgggc	1680
ccctgagggc	tcatgcctgg	gaagtgttgt	ggtgggggct	cccaggagga	ctggcccaga	1740
gagccctgag	atagcgggga	tectgaactg	gactgaataa	aacgtggtct	cccactgc	1798
<210> 51 <211> 1312 <212> DNA <213> Homo	2 o sapien					
	gggaggggc	ggggttttgt	cacctgtcac	ctgctccggc	tgtgctatgg	60
gcgggcgggc	ggggagtggg	gggaccggta	taaagcggta	ggcgcctgtg	cccgctccac	120
ctctcaagca	gccagcgcct	gcctgaatct	gttctgcccc	ctccccaccc	atttcaccac	180
caccatgaca	ccgggcaccc	agtctccttt	cttcctgctg	ctgctcctca	cagtgcttac	240
agttgttaca	ggttctggtc	atgcaagctc	taccccaggt	ggagaaaagg	agacttcggc	300
tacccagaga	agttcagtgc	ccagctctac	tgagaagaat	gctttgtcta	ctggggtctc	360
tttcttttc	ctgtctttc	acatttcaaa	cctccagttt	aattcctctc	tggaagatcc	420
cagcacegac	tactaccaag	agctgcagag	agacatttct	gaaatgtttt	tgcagattta	480
taaacaaggg	ggttttctgg	gcctctccaa	tattaagttc	aggccaggat	ctgtggtggt	540
acaattgact	ctggccttcc	gagaaggtac	catcaatgtc	cacgacgtgg	agacacagtt	600
caatcagtat	aaaacggaag	cagcctctcg	atataacctg	acgatctcag	acgtcagcgt	660
gagtgatgtg	ccatttcctt	tctctgccca	gtctggggct	ggggtgccag	gctggggcat	720
cgcgctgctg	gtgctggtct	gtgttctggt	tgcgctggcc	attgtctatc	tcattgcctt	780
ggctgtctgt	cagtgccgcc	gaaagaacta	cgggcagctg	gacatctttc	cagcccggga	840
tacctaccat	cctatgagcg	agtaccccac	ctaccacacc	catgggcgct	atgtgccccc	900
tagcagtacc	gatcgtagcc	cctatgagaa	ggtttctgca	ggtaatggtg	gcagcagcct	960
ctcttacaca	aacccagcag	tggcagccac	ttctgccaac	ttgtaggggc	acgtcgcccg	1020
ctgagctgag	tggccagcca	gtgccattcc	actccactca	ggttcttcag	ggccagagcc	1080
cctgcaccct	gtttgggctg	gtgagctggg	agttcaggtg	ggctgctcac	agcctccttc	1140
agaggcccca	ccaatttctc	ggacacttct	cagtgtgtgg	aagctcatgt	gggcccctga	1200
gggctcatgc	ctgggaagtg	ttgtggtggg	ggctcccagg	aggactggcc	cagagagccc	1260

tgagatagcg	gggatcctga	actggactga	ataaaacgtg	gtctcccact	gc	1312
<210> 52 <211> 2094 <212> DNA <213> Homo	sapien					
<400> 52 taggaggtag	gggaggggc	ggggttttgt	cacctgtcac	ctgctccggc	tgtgctatgg	60
gcgggcgggc	ggggagtggg	gggaccggta	taaagcggta	ggcgcctgtg	cccgctccac	120
ctctcaagca	gccagcgcct	gcctgaatct	gttctgcccc	ctccccaccc	atttcaccac	180
caccatgaca	ccgggcaccc	agtctccttt	cttcctgctg	ctgctcctca	cagtgcttac	240
agctaccaca	gcccctaaac	ccgcaacagt	tgttacaggt	tctggtcatg	caagctctac	300
cccaggtgga	gaaaaggaga	cttcggctac	ccagagaagt	tcagtgccca	gctctactga	360
gaagaatgct	gtgagtatga	ccagcagcgt	actctccagc	cacagccccg	gttcaggctc	420
ctccaccact	cagggacagg	atgtcactct	ggccccggcc	acggaaccag	cttcaggttc	480
agctgccacc	tggggacagg	atgtcacctc	ggtcccagtc	accaggccag	ccctgggctc	540
caccaccccg	ccagcccacg	atgtcacctc	agccccggac	aacaagccag	ccccgggctc	600
caccgccccc	ccagcccacg	gtgtcacctc	ggccccggac	accaggccgg	ccccgggctc	660
caccgccccc	ccagcccatg	gtgtcacctc	ggccccggac	aacaggcccg	ccttgggctc	720
caccgcccct	ccagtccaca	atgtcacctc	ggcctcaggc	tctgcatcag	gctcagcttc	780
tactctggtg	cacaacggca	cctctgccag	ggctaccaca	accccagcca	gcaagagcac	840
tccattctca	attcccagcc	accactctga	tactcctacc	accettgeca	gccatagcac	900
caagactgat	gccagtagca	ctcaccatag	cacggtacct	cctctcacct	cctccaatca	960
cagcacttct	ccccagttgt	ctactggggt	ctctttcttt	tteetgtett	ttcacatttc	1020
aaacctccag	tttaattcct	ctctggaaga	tcccagcacc	gactactaco	aagagctgca	1080
gagagacatt	tctgaaatgt	ttttgcagat	ttataaacaa	gggggtttt	tgggcctctc	1140
caatattaag	ttcaggtaca	gttctgggtg	tggacccagt	gtggtggttg	gagggtgggt	1200
ggtggtcatg	accgtaggga	gggactggtg	cacttaaggt	tgggggaaga	gtgctgagcc	1260
agagctggga	cccgtggctg	aagtgcccat	ttccctgtga	ccaggccagg	g atctgtggtg	1320
gtacaattga	ctctggcctt	ccgagaaggt	accatcaat	g tecaegaegt	ggagacacag	1380
ttcaatcagt	. ataaaacgga	agcagcctct	cgatataaco	tgacgatcto	agacgtcagc	1440
gtgagtgatg	tgccatttcc	: tttctctgcc	cagtctggg	g ctggggtgc	aggctggggc	1500
atcgcgctgc	: tggtgctggt	ctgtgttctg	gttgcgctgg	g ccattgtcta	a tctcattgcc	1560

ttggctgtct g	tcagtgccg	ccgaaagaac	tacgggcagc	tggacatctt	tccagcccgg	1620
gatacctacc a	tcctatgag	cgagtacccc	acctaccaca	cccatgggcg	ctatgtgccc	1680
cctagcagta c	cgatcgtag	cccctatgag	aaggtttctg	caggtaatgg	tggcagcagc	1740
ctctcttaca c	aaacccagc	agtggcagcc	acttctgcca	acttgtaggg	gcacgtcgcc	1800
cgctgagctg a	gtggccagc	cagtgccatt	ccactccact	caggttcttc	agggccagag	1860
cccctgcacc c	tgtttgggc	tggtgagctg	ggagttcagg	tgggctgctc	acagcctcct	1920
tcagaggccc (caccaatttc	tcggacactt	ctcagtgtgt	ggaagctcat	gtgggcccct	1980
gagggctcat g	gcctgggaag	tgttgtggtg	ggggctccca	ggaggactgg	cccagagagc	2040
cctgagatag (eggggateet	gaactggact	gaataaaacg	tggtctccca	ctgc	2094
<400> 53	sapien					
taggaggtag						60
gcgggcgggc						120
ctctcaagca						180
caccatgaca	ccgggcaccc	agtctccttt	cttcctgctg	ctgctcctca	cagtgcttac	240
agctaccaca	gcccctaaac	ccgcaacagt	tgttacaggt	tctggtcatg	caagctctac	300
cccaggtgga	gaaaaggaga	cttcggctac	ccagagaagt	tcagtgccca	gctctactga	360
gaagaatgct	gtgagtatga	ccagcagcgt	actctccagc	cacageeeeg	gttcaggctc	420
ctccaccact	cagggacagg	atgtcactct	ggccccggcc	acggaaccag	cttcaggttc	480
agctgccacc	tggggacagg	atgtcacctc	ggtcccagtc	accaggccag	ccctgggctc	540
caccaccccg	ccagcccacg	atgtcacctc	agccccggac	aacaagccag	g ccccgggctc	600
caccgccccc	ccagcccacg	gtgtcacctc	ggccccggac	accaggccgg	g ccccgggctc	660
caccgccccc	ccagcccatg	gtgtcacctc	ggccccggac	aacaggccc	g cettgggete	720
caccgcccct	ccagtccaca	atgtcaccto	ggcctcaggc	tctgcatcag	g gctcagcttc	780
tactctggtg	cacaacggca	cctctgccag	ggctaccaca	acccagcca	a gcaagagcac	840
tccattctca	attcccagco	accactctga	tactcctacc	accettgee	a gccatagcac	900
caagactgat	gccagtagca	ctcaccatag	cacggtacct	cctctcacc	t cctccaatca	960
cagcacttct	cccagttgt	ctactggggt	ctctttctt	ttcctgtct	t ttcacatttc	1020
aaacctccag	tttaattcct	: ctctggaaga	tcccagcaco	gactactac	c aagagctgca	1080

•	gagagacatt	tctgaaatgt	ttttgcagat	ttataaacaa	gggggttttc	tgggcctctc	1140
1	caatattaag	ttcaggccag	gatctgtggt	ggtacaattg	actctggcct	tccgagaagg	1200
	taccatcaat	gtccacgacg	tggagacaca	gttcaatcag	tataaaacgg	aagcagcctc	1260
	tcgatataac	ctgacgatct	cagacgtcag	cgtgagtgat	gtgccatttc	ctttctctgc	1320
	ccagtctggg	gctggggtgc	caggctgggg	catcgcgctg	ctggtgctgg	tctgtgttct	1380
	ggttgcgctg	gccattgtct	atctcattgc	cttggctgtc	tgtcagtgcc	gccgaaagaa	1440
	ctacgggcag	ctggacatct	ttccagcccg	ggatacctac	catcctatga	gcgagtaccc	1500
	cacctaccac	acccatgggc	gctatgtgcc	ccctagcagt	accgatcgta	gcccctatga	1560
	gaaggtttct	gcaggtaatg	gtggcagcag	cctctcttac	acaaacccag	cagtggcagc	1620
	cacttctgcc	aacttgtagg	ggcacgtcgc	ccgctgagct	gagtggccag	ccagtgccat	1680
	tccactccac	tcaggttctt	cagggccaga	gcccctgcac	cctgtttggg	ctggtgagct	1740
	gggagttcag	gtgggctgct	cacagcctcc	ttcagaggcc	ccaccaattt	ctcggacact	1800
	tctcagtgtg	tggaagctca	tgtgggcccc	tgagggctca	tgcctgggaa	gtgttgtggt	1860
	gggggctccc	aggaggactg	gcccagagag	ccctgagata	geggggatee	tgaactggac	1920
	tgaataaaac	gtggtctccc	actgcaaaag	acataaaaaa	agaaaaagac	aaagacgagc	1980
	aaaaagacaa	aaagaggcaa	aaacaacaaa	acacaacaaa	caaaaaaaag	cacacacaaa	2040
	aaaaagaag						204

<210> 54

<211> 2194

<212> DNA

<213> Homo sapien

<400> 54 60 taggaggtag gggaggggc ggggttttgt cacctgtcac ctgctccggc tgtgctatgg gcgggcgggc ggggagtggg gggaccggta taaagcggta ggcgcctgtg cccgctccac 120 ctctcaagca gccagcgcct gcctgaatct gttctgcccc ctccccaccc atttcaccac 180 240 caccatgaca cogggcacco agtotocttt cttcctgctg ctgctcctca cagtgcttac agctaccaca gcccctaaac ccgcaacagt tgttacaggt tctggtcatg caagctctac 300 cccaggtgga gaaaaggaga cttcggctac ccagagaagt tcagtgccca gctctactga 360 gaagaatget gtgagtatga ecageagegt actetecage cacageeceg gttcaggete 420 480 ctccaccact cagggacagg atgtcactct ggccccggcc acggaaccag cttcaggttc agetgecace tggggacagg atgteacete ggteceagte accaggecag ceetgggete 540 caccacccg ccagcccacg atgtcacctc agecccggac aacaagccag ccccgggctc 600

PCT/US03/18934 WO 03/106648

caccgccccc ccagcccacg gtgtcacctc ggccccggac accaggccgg ccccgggctc	660
caccgccccc ccagcccatg gtgtcacctc ggccccggac aacaggcccg ccttgggctc	720
caccgcccct ccagtccaca atgtcacctc ggcctcaggc tctgcatcag gctcagcttc	780
tactctggtg cacaacggca cctctgccag ggctaccaca accccagcca gcaagagcac	840
tccattctca attcccagcc accactctga tactcctacc acccttgcca gccatagcac	900
caagactgat gccagtagca ctcaccatag cacggtacct cctctcacct cctccaatca	960
cagcacttct ccccagttgt ctactggggt ctctttcttt ttcctgtctt ttcacatttc	1020
aaacctccag tttaattcct ctctggaaga tcccagcacc gactactacc aagagctgca	1080
gagagacatt tetgaaatgg tgagtategg cettteette eecatgetee eetgaageag	1140
ccatcagaac tgtccacacc ctttgcatca agcctgagtc ctttccctct caccccagtt	1200
ttttgcagat ttataaacaa gggggttttc tgggcctctc caatattaag ttcaggtaca	1260
gttctgggtg tggacccagt gtggtggttg gagggtgggt ggtggtcatg accgtaggga	1320
gggactggtg cacttaaggt tgggggaaga gtgctgagcc agagctggga cccgtggctg	1380
aagtgcccat ttccctgtga ccaggccagg atctgtggtg gtacaattga ctctggcctt	1440
ccgagaaggt accatcaatg tccacgacgt ggagacacag ttcaatcagt ataaaacgga	1500
agcagcetet egatataace tgaegatete agaegteage gtgagtgatg tgecatttee	1560
tttetetgee cagtetgggg etggggtgee aggetgggge ategegetge tggtgetggt	1620
ctgtgttctg gttgcgctgg ccattgtcta tctcattgcc ttggctgtct gtcagtgccg	1680
ccgaaagaac tacgggcagc tggacatett tccagcccgg gatacctacc atcctatgag	1740
cgagtacccc acctaccaca cccatgggcg ctatgtgccc cctagcagta ccgatcgtag	1800
cccctatgag aaggtttctg caggtaatgg tggcagcagc ctctcttaca caaacccagc	1860
agtggcagcc acttctgcca acttgtaggg gcacgtcgcc cgctgagctg agtggccagc	1920
cagtgccatt ccactccact caggttcttc agggccagag cccctgcacc ctgtttgggc	1980
tggtgagetg ggagtteagg tgggetgete acageeteet teagaggeee caceaattte	2040
teggacaett eteagtgtgt ggaageteat gtgggeeeet gagggeteat geetgggaag	2100
tgttgtggtg ggggctccca ggaggactgg cccagagagc cctgagatag cggggatcct	2160
gaactggact gaataaaacg tggtctccca ctgc	2194

<210> 55 <211> 1183 <212> DNA <213> Homo sapien

<400> 55 taggaggtag	gggagggggc	ggggttttgt	cacctgtcac	ctgctccggc	tgtgctatgg	60
gcgggcgggc	ggggagtggg	gggaccggta	taaagcggta	ggcgcctgtg	cccgctccac	120
ctctcaagca	gccagcgcct	gcctgaatct	gttctgcccc	ctccccaccc	atttcaccac	180
caccatgaca	ccgggcaccc	agtctccttt	cttcctgctg	ctgctcctca	cagtgcttac	240
agttgttaca	ggttctggtc	atgcaagctc	taccccaggt	ggagaaaagg	agacttcggc	300
tacccagaga	agttcagtgc	ccagctctac	tgagaagaat	gctatcccag	caccgactac	360
taccaagagc	tgcagagaga	catttctgaa	atggccagga	tctgtggtgg	tacaattgac	420
tctggccttc	cgagaaggta	ccatcaatgt	ccacgacgtg	gagacacagt	tcaatcagta	480
taaaacggaa	gcagcctctc	gatataacct	gacgatctca	gacgtcagcg	tgagtgatgt	540
gccatttcct	ttctctgccc	agtctggggc	tggggtgcca	ggctggggca	tegegetget	600
ggtgctggtc	tgtgttctgg	ttgcgctggc	cattgtctat	ctcattgcct	tggctgtctg	660
tcagtgccgc	cgaaagaact	acgggcagct	ggacatcttt	ccagcccggg	atacctacca	720
tcctatgagc	gagtacccca	cctaccacac	ccatgggcgc	tatgtgcccc	ctagcagtac	780
cgatcgtagc	ccctatgaga	aggtttctgc	aggtaatggt	ggcagcagcc	tctcttacac	840
aaacccagca	gtggcagcca	cttctgccaa	cttgtagggg	cacgtcgccc	gctgagctga	900
gtggccagcc	agtgccattc	cactccactc	aggttcttca	gggccagagc	ccctgcaccc	960
tgtttgggct	ggtgagctgg	gagttcaggt	gggctgctca	cagcctcctt	cagaggcccc	1020
accaatttct	. cggacacttc	tcagtgtgtg	gaagctcatg	tgggcccctg	agggctcatg	1080
cctgggaagt	gttgtggtgg	gggctcccag	gaggactggc	ccagagagcc	ctgagatagc	1140
ggggatcctg	g aactggactg	aataaaacgt	ggtctcccac	tgc		1183
<400> 56 taggaggtag	g gggaggggg	ggggttttgt	cacctgtcac	etgeteegge	tgtgctatgg	60
gcgggcggg	ggggagtggg	gggaccggta	taaagcggta	ggcgcctgtg	cccgctccac	120
ctctcaagc	a gccagcgcct	gcctgaatct	gttctgccc	: ctccccaccc	atttcaccac	180
caccatgaca	a ccgggcacco	agtctccttt	cttcctgctg	, ctgctcctca	cagtgcttac	240
agctaccaca	a gcccctaaac	c ccgcaacagt	tgttacaggt	: tctggtcatg	g caagctctac	300
cccaggtgg	a gaaaaggaga	cttcggctac	ccagagaagt	: tcagtgccca	gctctactga	360

gaagaatgct gtgagtatga ccagcagcgt actctccagc cacagccccg gttcaggctc

ctccaccact	cagggacagg	atgtcactct	ggccccggcc	acggaaccag	cttcaggttc	480
agctgccacc	tggggacagg	atgtcacctc	ggtcccagtc	accaggccag	ccctgggctc	540
caccaccccg	ccagcccacg	atgtcacctc	agccccggac	aacaagccag	cccgggctc	600
caccgccccc	ccagcccacg	gtgtcacctc	ggccccggac	accaggccgg	cccgggctc	660
caccgccccc	ccagcccatg	gtgtcacctc	ggccccggac	aacaggcccg	ccttgggctc	720
cacegeceet	ccagtccaca	atgtcacctc	ggcctcaggc	tctgcatcag	gctcagcttc	780
tactctggtg	cacaacggca	cctctgccag	ggctaccaca	accccagcca	gcaagagcac	840
tccattctca	attcccagcc	accactctga	tactcctacc	accettgeca	gccatagcac	900
caagactgat	gccagtagca	ctcaccatag	cacggtacct	cctctcacct	cctccaatca	960
cagcacttct	ccccagttgt	ctactggggt	ctctttcttt	ttcctgtctt	ttcacatttc	1020
aaacctccag	tttaattcct	ctctggaaga	tcccagcacc	gactactacc	aagagctgca	1080
gagagacatt	tctgaaatgt	ttttgcagat	ttataaacaa	gggggttttc	tgggcctctc	1140
caatattaag	ttcaggccag	gatctgtggt	ggtacaattg	actctggcct	tccgagaagg	1200
taccatcaat	gtccacgacg	tggagacaca	gttcaatcag	tataaaacgg	aagcagcctc	1260
tcgatataac	ctgacgatct	cagacgtcag	cgtgctgtga	ttggaggagg	tgagaggagg	1320
taccgtgcta	tggtgagtgc	tactggcatc	agtcttggtg	ctatggctgg	caagggtggt	1380
		tgggaattga				1440
ggtagccctg	gcagaggtgc	cgttgtgcac	cagagtagaa	gctgagcctg	atgccagtag	1500
cactcaccat	agcacggtac	ctcctctcac	ctcctccaat	cacagcactt	ctccccagtt	1560
		tttcctgtc				1620
tctctggaag	atcccagcac	: cgactactac	caagagctgc	: agagagacat	ttctgaaatg	1680
tgagtgatgt	gccatttcct	: ttetetgeec	agtctggggc	: tggggtgcca	ggctggggca	1740
tegegetget	ggtgctggto	tgtgttctgg	ttgcgctggc	cattgtctat	ctcattgcct	1800
					ccagcccggg	1860
					tatgtgcccc	1920
					ggcagcagcc	1980
					cacgtcgccc	2040
					gggccagagc	2100
					cagcctcctt	2160
					g tgggcccctg	2220

57

agggctcatg cctgggaagt gttgtggtgg gggctcccag gaggactggc ccagagagcc 2280 ctgagatagc ggggatcctg aactggactg aataaaacgt ggtctcccac tgc 2333 <210> 57 <211> 1712 <212> DNA <213> Homo sapien <400> 57 taggaggtag gggagggggc ggggttttgt cacctgtcac ctgctccggc tgtgctatgg 60 gcgggcggc ggggagtggg gggaccggta taaagcggta ggcgcctgtg cccgctccac 120 ctctcaagca gccagcgcct gcctgaatct gttctgcccc ctccccaccc atttcaccac 180 caccatgaca cogggcaccc agtotecttt ottootgetg otgotectca cagtgottac 240 agetaceaca gecectaaac eegeaacagt tgttacaggt tetggteatg caagetetae 300 cccaggtgga gaaaaggaga cttcggctac ccagagaagt tcagtgccca gctctactga 360 gaagaatgct gtgagtatga ccagcagcgt actctccagc cacagccccg gttcaggctc 420 ctccaccact cagggacagg atgtcactct ggccccggcc acggaaccag cttcaggttc 480 agetgecace tggggacagg atgteacete ggteecagte accaggecag ecetgggete 540 caccacccg ccagcccacg atgtcacctc agccccggac aacaagccag ccccgggctc 600 caccgcccc ccagcccacg gtgtcacctc ggccccggac accaggccgg ccccggqctc 660 caccgcccc ccagcccatg gtgtcacctc ggccccggac aacaggcccg ccttgggctc 720 caccgccct ccagtccaca atgtcacctc ggcctcaggc tctgcatcag gctcagcttc 780 tactctggtg cacaacggca cctctgccag ggctaccaca accccagcca gcaagagcac 840 tecattetea atteceagee accaetetga tacteetace accettgeea gecatageae 900 caagactgat gccagtagca ctcaccatag cacggtacct cctctcacct cctccaatca 960 cagcacttct ccccagttgt ctactggggt ctctttcttt ttcctgtctt ttcacatttc 1020 aaacctccag tttaattcct ctctggaaga tcccagcacc gactactacc aagagctgca 1080 gagagacatt tetgaaatgt ggggtgeeag getggggeat egegetgetg gtgetggtet 1140 gtgttctggt tgcgctggcc attgtctatc tcattgcctt ggctgtctgt cagtgccgcc 1200 gaaagaacta egggeagetg gacatettte cageeeggga taeetaeeat eetatgageg 1260 agtaccccac ctaccacacc catgggcgct atgtgccccc tagcagtacc gatcgtagcc 1320 cctatgagaa ggtttctgca ggtaatggtg gcagcagcct ctcttacaca aacccagcag 1380 1440 gtgccattcc actccactca ggttcttcag ggccagagcc cctgcaccct gtttgggctg 1500

58

gtgagctggg agttcaggtg ggctgctcac	agceteette agaggeecea ecaatttete	1560
ggacacttct cagtgtgtgg aagctcatgt	gggcccctga gggctcatgc ctgggaagtg	1620
ttgtggtggg ggctcccagg aggactggcc	c cagagagece tgagatageg gggateetga	1680
actggactga ataaaacgtg gtctcccact	gc :	1712

<210> 58 <211> 1605 <212> DNA <213> Homo sapien

4005 ER

	<400> 58						
t		gggaggggc	ggggttttgt	cacctgtcac	ctgctccggc	tgtgctatgg	60
9	gegggeggge	ggggagtggg	gggaccggta	taaagcggta	ggcgcctgtg	cccgctccac	120
(ctctcaagca	gccagcgcct	gcctgaatct	gttctgcccc	ctccccaccc	atttcaccac	180
•	caccatgaca	ccgggcaccc	agtctccttt	cttcctgctg	ctgctcctca	cagtgcttac	240
ä	agttgttaca	ggttctggtc	atgcaagctc	taccccaggt	ggagaaaagg	agacttcggc	300
1	tacccagaga	agttcagtgc	ccagctctac	tgagaagaat	gctgtgagta	tgaccagcag	360
,	cgtactctcc	agccacagcc	ccggttcagg	ctcctccacc	actcagggac	aggatgtcac	420
1	tetggeeeeg	gccacggaac	cagcttcagg	ttcagctgcc	acctggggac	aggatgtcac	480
,	ctcggtccca	gtcaccaggc	cagccctggg	ctccaccacc	ccgccagccc	acgatgtcac	540
	ctcggccccg	gacaacaggc	ccgccttggg	ctccaccgcc	cctccagtcc	acaatgtcac	600
	ctcggcctca	ggctctgcat	caggctcagc	ttctactctg	gtgcacaacg	gcacctctgc	660
	cagggctacc	acaaccccag	ccagcaagag	cactccattc	tcaattccca	gccaccactc	720
	tgatactcct	accacccttg	ccagccatag	caccaagact	gatgccagta	gcactcacca	780
	tagcacggta	cctcctctca	cctcctccaa	tcacagcact	tctccccagt	tgtctactgg	840
	ggtctctttc	ttttcctgt	cttttcacat	ttcaaacctc	cagtttaatt	cctctctgga	900
	agatcccago	accgactact	accaagagct	gcagagagac	atttctgaaa	tgtgagtgat	960
	gtgccatttc	ctttctctgc	ccagtctggg	gctggggtgc	caggctgggg	categegetg	1020
	ctggtgctgg	tctgtgttct	ggttgcgctg	gccattgtct	atctcattgc	cttggctgtc	1080
	tgtcagtgcc	gccgaaagaa	ctacgggcag	ctggacatct	ttccagcccg	ggatacctac	1140
	catcctatga	gcgagtaccc	cacctaccac	acccatgggc	gctatgtgcc	ccctagcagt	1200
	accgatcgta	gcccctatga	gaaggtttct	gcaggtaatg	gtggcagcag	cctctcttac	1260
	acaaacccag	r cagtggcagc	cacttctgcc	aacttgtagg	ggcacgtcgc	ccgctgagct	1320
	gagtggccag	ccagtgccat	tccactccac	tcaggttctt	cagggccaga	gcccctgcac	1380

59	-
cctgtttggg ctggtgagct gggagttcag gtgggctgct cacagcctcc ttcagaggcc	1440
ccaccaattt ctcggacact tctcagtgtg tggaagetca tgtgggeece tgagggetca	1500
tgcctgggaa gtgttgtggt gggggctccc aggaggactg gcccagagag ccctgagata	1560
gcggggatcc tgaactggac tgaataaaac gtggtctccc actgc	1605
<210> 59 <211> 1874 <212> DNA <213> Homo sapien	
<400> 59 taggaggtag gggaggggc ggggttttgt cacctgtcac ctgctccggc tgtgctatgg	60
gcgggcgggc ggggagtggg gggaccggta taaagcggta ggcgcctgtg cccgctccac	120
ctctcaagca gccagcgcct gcctgaatct gttctgcccc ctccccaccc atttcaccac	180
caccatgaca cegggeacee agteteettt etteetgetg etgeteetea eagtgettae	240
agctaccaca gcccctaaac ccgcaacagt tgttacaggt tctggtcatg caagctctac	300
cccaggtgga gaaaaggaga cttcggctac ccagagaagt tcagtgccca gctctactga	360
gaagaatget gtgagtatga ceageagegt actetecage cacageeceg gttcaggete	420
ctccaccact cagggacagg atgtcactct ggccccggcc acggaaccag cttcaggttc	480
agetgecace tggggacagg atgteacete ggteecagte accaggecag ceetgggete	540
caccacccg ccagcccacg atgtcacctc agccccggac aacaagccag ccccgggctc	600
cacegecece ecageceacg gtgteacete ggeeceggae accaggeegg eccegggete	660
caccgcccc ccagcccatg gtgtcacctc ggccccggac aacaggcccg ccttgggctc	720
caccgcccct ccagtccaca atgtcacctc ggcctcaggc tctgcatcag gctcagcttc	780
tactetggtg cacaacggca cetetgecag ggetaccaca accecageca geaagageac	840
tocattotca attoccagoo accaetetga tacteetace accettgeca gecatageae	900
caagactgat gccagtagca ctcaccatag cacggtacct cctctcacct cctccaatca	960

cagcacttct ccccagttgt ctactggggt ctctttcttt ttcctgtctt ttcacatttc

aaacctccag tttaattcct ctctggaaga tcccagcacc gactactacc aagagctgca

gagagacatt tctgaaatgt ttttgcagat ttataaacaa gggggttttc tgggcctctc

caatattaag ttcaggccag gatctgtggt ggtacaattg actctggcct tccgagaagg

taccatcaat gtccacgacg tggagacaca gttcaatcag tataaaacgg aagcagcctc

tegatataac ctgacgatct cagacgtcag cgtgagtgat gtgccatttc ctttctctgc

ccagtctggg gctggggtgc caggctgggg catcgcgctg ctggtgctgg tctgtgttct

1020

1080

1140

1200

1260

1320

60

ggttgcgctg	gccattgtct	atctcattgc	cttggctgtc	tgtcagtgcc	gccgaaagaa	1440
ctacgggcag	ctggacatct	ttccagcccg	ggatacctac	catcctatga	gcgagtaccc	1500
cacctaccac	acccatgggc	gctatgtgcc	ccctagcagt	accgatcgta	gcccctatga	1560
gaaggtgaga	ttgggcccca	caggccaggg	gaagcagagg	gtttggctgg	gcaaggattc	1620
tgaagggggt	acttggaaaa	cccaaagagc	ttggaagagg	tgagaagtgg	cgtgaagtga	1680
gcaggggagg	gcctggcaag	gatgaggggc	agaggtcaga	ggagttttgg	gggacaggcc	1740
tgggaggaga	ctatggaaga	aaggggccct	caagagggag	tggccccact	gccagaattc	1800
ctaaaagatc	attggccgtc	cacattcatg	ctggctggcg	ctggctgaac	tggtgccacc	1860
gtggcagttt	tgtt					1874

<210> 60

<211> 1634

<212> DNA

<213> Homo sapien

<400> 60 taggaggtag gggaggggc ggggttttgt cacctgtcac ctgctccggc tgtgctatgg 60 gegggeggge ggggagtggg gggaeeggta taaageggta ggegeetgtg eeegeteeae 120 180 ctctcaagca gccagcgcct gcctgaatct gttctgcccc ctccccaccc atttcaccac caccatgaca ccgggcaccc agtctccttt cttcctgctg ctgctcctca cagtgcttac 240 agctaccaca gcccctaaac ccgcaacagt tgttacaggt tctggtcatg caagctctac 300 cccaggtgga gaaaaggaga cttcggctac ccagagaagt tcagtgccca gctctactga 360 gaagaatgct gtgagtatga ccagcagcgt actctccagc cacagccccg gttcaggctc 420 ctccaccact cagggacagg atgtcactct ggccccggcc acggaaccag cttcaggttc 480 540 agctgccacc tggggacagg atgtcacctc ggtcccagtc accaggccag ccctgggctc 600 caccaccccg ccagcccacg atgtcacctc agccccggac aacaagccag ccccgggctc caccgcccc ccagcccacg gtgtcacctc ggccccggac accaggccgg ccccgggctc 660 caccgcccc ccagcccatg gtgtcacctc ggccccggac aacaggcccg ccttgggctc 720 caccgcccct ccagtccaca atgtcacctc ggcctcaggc tctgcatcag gctcagcttc 780 840 tactctggtg cacaacggca cctctgccag ggctaccaca accccagcca gcaagagcac tecattetea atteccagee accaetetga tactectace accettgeea gecatageae 900 caagactgat gccagtagca ctcaccatag cacggtacct cctctcacct cctccaatca 960 cagcacttct ccccagttgt ctactggggt ctctttcttt ttcctgtctt ttcacatttc 1020 aaacctccag tttaattcct ctctggaaga tcccagcacc gactactacc aagagctgca 1080

61

gagagacatt tetgaaatgt ttttgcagat ttataaacaa gggggtttte tgggeetete 1140 caatattaag ttcaggccag gatctgtggt ggtacaattg actctggcct tccgagaagg 1200 taccatcaat gtccacgacg tggagacaca gttcaatcag tataaaacgg aagcagcctc 1260 tcgatataac ctgacgatct cagacgtcag cgtgagtgat gtgccatttc ctttctctgc 1320 ccagtctggg gctggggtgc caggctgggg catcgcgctg ctggtgctgg tctgtgttct 1380 ggttgcgctg gccattgtct atctcattgc cttggctgtc tgtcagtgcc gccgaaagaa 1440 ctacgggcag ctggacatct ttccagcccg ggatacctac catcctatga gcgagtggag 1500 ggtgtagaag agaagaagaa ggaggttcct gctgtgccag aaacccttaa gaaaaagcga 1560 aggaatttcg cagagctgaa gatcaagcgc ctgagaaaga agttksccaa aagatgcttc 1620 1634 gaaaggcaag gagg

<210> 61

<211> 943

<212> DNA

<213> Homo sapien

<400> 61 taggaggtag gggaggggge ggggttttgt cacctgtcac ctgctccggc tgtgctatgg 60 gcgggcgggc ggggagtggg gggaccggta taaagcggta ggcgcctgtg cccgctccac 120 180 ctctcaagca gccagcgcct gcctgaatct gttctgcccc ctccccaccc atttcaccac caccatgaca cogggcacco agtotocttt ottoctgotg otgotoctca cagtgottac 240 300 agttgttaca ggttctggtc atgcaagctc taccccaggt ggagaaaagg agacttcggc tacccagaga agttcagtgc ccagctctac tgagaagaat gcttttaatt cctctctgga 360 agateceage acegaetaet aceaagaget geagagagae atttetgaaa tggetgtetg 420 480 tcagtgccgc cgaaagaact acgggcagct ggacatcttt ccagcccggg atacctacca toctatgago gagtacocca cotacoacao coatgggogo tatgtgcoco otagoagtao 540 600 cgatcgtagc ccctatgaga aggtttctgc aggtaatggt ggcagcagcc tctcttacac 660 gtggccagcc agtgccattc cactccactc aggttcttca gggccagagc ccctgcaccc 720 780 tqtttgggct ggtgagctgg gagttcaggt gggctgctca cagcctcctt cagaggcccc accaatttot cggacactto tcagtgtgtg gaagotcatg tgggcccctg agggctcatg 840 cctgggaagt gttgtggtgg gggctcccag gaggactggc ccagagagcc ctgagatagc 900 943 ggggatcctg aactggactg aataaaacgt ggtctcccac tgc

62

<211> 997
<212> DNA
<213> Homo sapien
<400> 62
taggaggtag gggaggggc
gcgggcgggc gggagtggg
ctctcaagca gccagcgcct
caccatgaca ccgggcaccc

taggaggtag gggaggggc ggggttttgt cacctgtcac ctgctccggc tgtgctatgg 60 gcgggcggc ggggagtggg gggaccggta taaagcggta ggcgcctgtg cccgctccac 120

ctctcaagca gccagcgcct gcctgaatct gttctgcccc ctccccaccc atttcaccac 180

caccatgaca cegggcacec agteteettt etteetgetg etgeteetea cagtgettac 240

agttgttaca ggttctggtc atgcaagctc taccccaggt ggagaaaagg agacttcggc 300

tacccagaga agttcagtgc ccagctctac tgagaagaat getttgtcta etggggtetc 360

tttettttte etgtetttte acattteaaa eeteeagttt aatteetete tggaagatee 420

cagcaccgac tactaccaag agctgcagag agacatttct gaaatggctg tctgtcagtg 480

ccgccgaaag aactacgggc agctggacat ctttccagcc cgggatacct accatcctat 540

gagegagtac eccacetace acacecatgg gegetatgtg ecceetagea gtacegateg 600

tagcccctat gagaaggttt ctgcaggtaa tggtggcagc agcctctctt acacaaaccc 660

agcagtggca gccacttetg ccaacttgta ggggcacgtc gcccgctgag ctgagtggcc 720

agccagtgcc attccactcc actcaggttc ttcagggcca gagcccctgc accctgtttg 780

ggctggtgag ctgggagttc aggtgggctg ctcacagcct ccttcagagg ccccaccaat 840

ttctcggaca cttctcagtg tgtggaagct catgtgggcc cctgagggct catgcctggg 900

aagtgttgtg gtgggggctc ccaggaggac tggcccagag agccctgaga tagcggggat 960

cctqaactgg actgaataaa acgtggtctc ccactgc 997

<210> 63

<211> 548

<212> DNA

<213> Homo sapien

<400> 63

gaagcccgga atggettace ttgatcagca gccctggtaa gaactacggg cagctggaca 60 120 tetttecage cegggatace taccateeta tgagegagta ceccacetae cacacecatg ggcgctatgt gccccctagc agtaccgatc gtagccccta tgagaaggtt tctgcaggta 180 atggtggcag Cagcctctct tacacaaacc cagcagtggc agccacttct gccaacttgt 240 aggggcacgt cgcccgctga gctgagtggc cagccagtgc cattccactc cactcaggtt 300 cttcagggcc agagcccctg caccctgttt gggctggtga gctgggagtt caggtgggct 360 gctcacagcc tccttcagag gccccaccaa tttctcggac acttctcagt gtgtggaagc 420 tcatgtgggc ccctgagggc tcatgcctgg gaagtgttgt ggtgggggct cccaggagga 480 63

ctggcccaga gagccctgag atagcgggga tcctgaactg gactgaataa aacgtggtct 540 cccactgc 548

<210> 64 <211> 1378 <212> DNA

<213> Homo sapien

<400> 64

taggaggtag gggaggggc ggggttttgt cacctgtcac ctgctccggc tgtgctatgg 60 gegggeggge ggggagtggg gggaceggta taaageggta ggegeetgtg eeegeteeae 120 cteteaagea geeagegeet geetgaatet gttetgeece etceceacee attteaceae 180 caccatgaca ccgggcaccc agtctccttt cttcctgctg ctgctcctca cagtgcttac 240 agetaceaca geecetaaac eegeaacagt tgttacaggt tetggteatg caagetetac 300 cccaggtgga gaaaaggaga cttcggctac ccagagaagt tcagtgccca gctctactga 360 gaagaatgct gtgagtatga ccagcagcgt actetecage cacageeeeg gtteaggete 420 etecaccact cagggacagg atgtcactct ggccccggcc acggaaccag cttcaggttc 480 agetgecace tggggacagg atgteacete ggteecagte accaggecag ecetgggete 540 caccacccg ccagcccacg atgtcacctc agecccggac aacaagccag ccccgggetc 600 caccycccc ccaycccacy gtytcacctc gyccccggac accaygccgy ccccggyctc 660 cacegoecce ceageceatg gtgtcacete ggeeceggae aacaggeecg cettgggete 720 caccgccct ccagtccaca atgtcacctc ggcctcaggc tctgcatcag gctcagcttc 780 tactetggtg cacaacggca cetetgecag ggctaccaca accecageca gcaagagcac 840 tecattetea atteccagee accaetetga tacteetace accettgeea gecatageae 900 caagactgat gecagtagea etcaecatag caeggtaeet eeteteaeet eetecaatea 960 cagcacttct ccccagttgt ctactggggt ctctttcttt ttcctgtctt ttcacatttc 1020 aaacctccag tttaattcct ctctggaaga tcccagcacc gactactacc aagagctgca 1080 gagagacatt totgaaatgt ttttgcagat ttataaacaa gggggttttc tgggcctctc 1140 caatattaag ttcaggccag gatctgtggt ggtacaattg actctggcct tccgagaagg 1200 taccatcaat gtccacgacg tggagacaca gttcaatcag tataaaacgg aagcagcctc 1260 tegatataae etgaegatet eagaegteag egetgaagta eeattteaca teatgetgae 1320 caatatgggc ccatggagta ccacaacgtc ggggcaatcc gatttcggca caactact 1378

<210> 65

<211> 162

WO 03/106648 PCT/US03/18934 . 64

<212> DNA <213> Homo sapien				
<400> 65 gcggccgcct actactacta ctgctcgaat	tcaagcttct	aacgatgtac	gggctcatgc	60
ctgggaagtg ttgtggtggg ggctcccagg	aggactggcc	cagagagccc	tgagatagcg	120
gggatcctga actggactga ataaaacgtg	gtctcccact	gc		162
<210> 66 <211> 1285 <212> DNA <213> Homo sapien				
<400> 66 taggaggtag gggagggggc ggggttttgt	cacctgtcac	ctgctccggc	tgtgctatgg	60
gcgggcgggc ggggagtggg gggaccggta	taaagcggta	ggcgcctgtg	cccgctccac	120
ctctcaagca gccagcgcct gcctgaatct	gttctgcccc	ctccccaccc	atttcaccac	180
caccatgaca cogggcaccc agtctccttt	cttcctgctg	ctgctcctca	cagtgcttac	240
agctaccaca gcccctaaac ccgcaacagt	tgttacaggt	tctggtcatg	caagctctac	300
cccaggtgga gaaaaggaga cttcggctac	ccagagaagt	tcagtgccca	gctctactga	360
gaagaatget tttaatteet etetggaaga	tcccagcacc	gactactacc	aagagctgca	420
gagagacatt tctgaaatgt ttttgcagat	ttataaacaa	gggggtttc	tgggcctctc	480
caatattaag ttcaggccag gatctgtggt	ggtacaattg	actctggcct	tccgagaagg	540
taccatcaat gtccacgacg tggagacaca	gttcaatcag	tataaaacgg	aagcagcctc	600
togatataac ctgacgatct cagacgtcag	cgtgagtgat	gtgccatttc	ctttctctgc	660
ccagtctggg gctggggtgc caggctgggg	catcgcgctg	ctggtgctgg	tctgtgttct	720
ggttgcgctg gccattgtct atctcattgc	cttggctgtc	tgtcagtgcc	gccgaaagaa	780
ctacgggcag ctggacatct ttccagcccg	ggatacctac	catcctatga	gcgagtaccc	840
cacctaccac acccatgggc gctatgtgcc	ccctagcagt	accgatcgta	gcccctatga	900
gaaggtttct gcaggtaatg gtggcagcag	cctctcttac	acaaacccag	cagtggcagc	960
cacttctgcc aacttgtagg ggcacgtcgc	ccgctgagct	gagtggccag	ccagtgccat	1020
tccactccac tcaggttctt cagggccaga	gcccctgcac	cctgtttggg	ctggtgagct	1080
gggagttcag gtgggctgct cacagcctcc	ttcagaggcc	ccaccaattt	ctcggacact	1140
tctcagtgtg tggaagctca tgtgggcccc	tgagggctca	tgcctgggaa	gtgttgtggt	1200
gggggctccc aggaggactg gcccagagag	ccctgagata	gcggggatcc	tgaactggac	1260
tgaataaaac gtggtctccc actgc				1285

<210> 67 <211> 1517 <212> DNA <213> Homo sapien

<400> 67 taggaggtag gggaggggc ggggttttgt cacctgtcac ctgctccggc tgtgctatgg 60 gegggeggge ggggagtggg gggaceggta taaageggta ggegeetgtg eeegeteeae 120 ctctcaagca gccagcgcct gcctgaatct gttctgcccc ctccccaccc atttcaccac 180 caccatgaca ccgggcaccc agtctccttt cttcctgctg ctgctcctca cagtgcttac 240 agetaceaea geecetaaae eegeaaeagt tgttacaggt tetggteatg caagetetae 300 cccaggtgga gaaaaggaga cttcggctac ccagagaagt tcagtgccca gctctactga 360 gaagaatgct tttttgcaga tttataaaca agggggtttt ctgggcctct ccaatattaa 420 gttcaggcca ggatctgtgg tggtacaatt gactctggcc ttccgagaag gtaccatcaa 480 tgtccacgac gtggagacac agttcaatca gtataaaacg gaagcagcct ctcgatataa 540 cetgacgate teagacgtea gegtgagtga tgtgecattt cetttetetg eccagtetgg 600 ggctggggtg ccaggctggg gcatcgcgct gctggtgctg gtctgtgttc tggttgcgct 660 ggccattgtc tatctcattg cettggctgt ctgtcagtgc cgccgaaaga actacgggca 720 780 gctggacatc tttccagccc gggataccta ccatcctatg agcgagtacc ccacctacca cacccatggg cgctatgtgc cccctagcag taccgatcgt agcccctatg agaaggtttc 840 tgcaggtaat ggtggcagca gcctctctta cacaaaccca gcagtggcag ccacttctgc 900 caacttgtag gggcacgtcg cccgctgagc tgagtggcca gccagtgcca ttccactcca 960 etcaggttct tcagggccag agcccctgca ccctgtttgg gctggtgagc tgggagttca 1020 ggtgggctgc tcacagcctc cttcagaggc cccaccaatt tctcggacac ttctcagtgt 1080 gtggaagete atgtgggeee etgagggete atgeetggga agtgttgtgg tgggggetee 1140 caggaggact ggcccagaga gccctgagat agcggggatc ctgaactgga ctgaataaaa 1200 cgtggtctcc cactgcaaaa aaaaaagaag actgagaagc ggtcgtaaaa ggagcgcacg 1260 cagaggcggc tggagggcga tgacactagt gcgaactaga gacgggagag agagtgggca 1320 cgagccgata gataggtgtg gtggtgcgga gtcgctgtgc gggcgatggg cgggcacggg 1380 ggatgtgtcc tacgaccgga gcggtcggta gccgccatgg cagtgtggag tcgcggagta 1440 cagtegactg gggcgactca cacgaacgta catgtacacg tgtacacgca agctacgtgt 1500 gtgagcggca gagattg 1517 WO 03/106648 66 PCT/US03/18934

<211> 524 <212> DNA <213> Homo	o sapien					
<400> 68 gccctgatca	gageceeeeg	gtagaaggca	ctccatggcc	tgccataacc	tcctatctcc	60
ccaggctgtc	tgtcagtgcc	gccgaaagaa	ctacgggcag	ctggacatct	ttccagcccg	120
ggatacctac	catcctatga	gcgagtaccc	cacctaccac	acccatgggc	gctatgtgcc	180
ccctagcagt	accgatcgta	gcccctatga	gaaggtgaga	ttgggcccca	caggccaggg	240
gaagcagagg	gtttggctgg	gcaaggattc	tgaagggggt	acttggaaaa	cccaaagagc	300
ttggaagagg	tgagaagtgg	cgtgaagtga	gcaggggagg	gcctggcaag	gatgaggggc	360
agaggtcaga	ggagttttgg	gggacaggcc	tgggaggaga	ctatggaaga	aaggggccct	420
caagagggag	tggccccact	gccagaattc	ctaaaagatc	attggccgtc	cacattcatg	480
ctggctggcg	ctggctgaac	tggtgccacc	gtggcagttt	tgtt		524
	gagtagggag	agggaaggct	taagagggga	agaaatgcag	gggccatgag	60
ccaaggccta	tgggcagaga	gaaggaggct	gctgcaggga	aggaggcggc	caacccaggg	120
gttactgagg	ctgcccactc	cccagtcctc	ctggtattat	ttctctggtg	gccagagctt	180
atattttctt	cttgctctta	tttttccttc	ataaagaccc	aaccctatga	ctttaacttc	240
ttacagctac	cacageceet	aaacccgcaa	cagttgttac	aggttctggt	catgcaagct	300
ctaccccagg	g tggagaaaag	gagacttcgg	ctacccagag	aagttcagtg	cccagctcta	360
ctgagaagaa	tgctgtgagt	atgaccagca	gcgtactctc	cagccacagc	cccggttcag	420
gctcctccac	c cactcaggga	caggatgtca	ctctggcccc	ggccacggaa	ccagcttcag	480
gttcagctgo	c cacctgggga	caggatgtca	cctcggtccc	agtcaccagg	ccagccctgg	540
gctccacca	c cccgccagcc	: cacgatgtca	cctcagcccc	ggacaacaag	ccagccccgg	600
gctccaccg	cccccagcc	: cacggtgtca	cctcggcccc	ggacaccagg	ccggccccgg	660
gctccaccg	c ccccccagco	: catggtgtca	ceteggeeee	ggacaacagg	cccgccttgg	720
gctccaccg	c ccctccagtc	cacaatgtca	cctcggcctc	aggctctgca	tcaggctcag	780
cttctactc	t ggtgcacaac	ggcacctctg	ccagggctac	cacaacccca	gccagcaaga	840
gcactccat	t ctcaattccc	agccaccact	ctgatactcc	taccaccctt	gccagccata	900
gcaccaaga	c tgatgccagt	: agcactcacc	atagcacggt	acctcctctc	acctcctcca	960

atcacagcac ttctccccag	rtatataata	gggtgtgttt	ctttttccta	tcttttcaca	1020
					1080
tttcaaacct ccagtttaat					1000
tgcagagaga catttctgaa	atgtttttgc	agatttataa	acaagggggt	tttctgggcc	1140
tctccaatat taagttcagg	ccaggatctg	tggtggtaca	attgactctg	gccttccgag	1200
aaggtaccat caatgtccac	gacgtggaga	cacagttcaa	tcagtataaa	acggaagcag	1260
cctctcgata taacctgacg	atctcagacg	tcagcgtgag	tgatgtgcca	tttcctttct	1320
ctgcccagtc tggggctggg	gtgccaggct	ggggcatcgc	gctgctggtg	ctggtctgtg	1380
ttctggttgc gctggccatt	gtctatctca	ttgccttggc	tgtctgtcag	tgccgccgaa	1440
agaactacgg gcagctggac	atctttccag	cccgggatac	ctaccatcct	atgagcgagt	1500
accccaccta ccacacccat	gggcgctatg	tgccccctag	cagtaccgat	cgtagcccct	1560
atgagaaggt ttctgcaggt	aatggtggca	gcagcctctc	ttacacaaac	ccagcagtgg	1620
cagecaette tgecaacttg	taggggcacg	togcoogatg	agctgagtgg	ccagccagtg	1680
ccattccact ccactcaggt	tcttcagggc	cagagcccct	gcaccctgtt	tgggctggtg	1740
agctgggagt tcaggtgggc	tgctcacagc	ctccttcaga	ggccccacca	atttctcgga	1800
cacttctcag tgtgtggaag	ctcatgtggg	cccctgaggg	ctcatgcctg	ggaagtgttg	1860
tggtggggc tcccaggagg	actggcccag	agagccctga	gatagcgggg	atcctgaact	1920
ggactgaata aaacgtggtc	tcccactgc				1949
<210> 70 <211> 1803 <212> DNA <213> Homo sapien					
<400> 70 ggtagcgcaa gcagaacaca	gaccagcacc	agcagcgcga	tgccccagcc	gggcacccag	60
teteetttet teetgetget	gctcctcaca	gtgcttacag	ctaccacago	ccctaaaccc	120
gcaacagttg ttacaggttc	tggtcatgca	agetetacee	caggtggaga	aaaggagact	180
tcggctaccc agagaagttc	agtgcccagc	tctactgaga	. agaatgctgt	gagtatgacc	240
agcagcgtac tetecageca	cageceeggt	tcaggctcct	ccaccactca	gggacaggat	300
gteactetgg ceceggecae	ggaaccagct	tcaggttcag	ctgccacctg	gggacaggat	360
gtcacctcgg tcccagtcac	caggccagcc	: ctgggctcca	ccaccccgc	agcccacgat	420

gtcacctcag ccccggacaa caagccagcc ccgggctcca ccgcccccc agcccacggt

gtcacctcgg ccccggacac caggccggcc ccgggctcca ccgcccccc agcccatggt

gtcacctcgg ccccggacaa caggcccgcc ttgggctcca ccgcccctcc agtccacaat

480

540

gtcacctcgg cctcaggctc tgcatcaggc to	cagcttcta ctctggtgca caacggcacc 6	60
tctgccaggg ctaccacaac cccagccagc as	agagcactc cattetcaat teecagecac 7	20
cactetgata etectaceae cettgecage ea	atagcacca agactgatgc cagtagcact 7	80
caccatagca eggtacetee teteacetee te	ccaatcaca gcacttctcc ccagttgtct 8	40
actggggtct ctttcttttt cctgtctttt ca	acatttcaa acctccagtt taattcctct 9	00
ctggaagatc ccagcaccga ctactaccaa ga	agctgcaga gagacatttc tgaaatgttt 9	60
ttgcagattt ataaacaagg gggttttctg gg	geeteteea atattaagtt caggeeagga 10	20
tctgtggtgg tacaattgac tctggccttc cg	gagaaggta ccatcaatgt ccacgacgtg 10	80
gagacacagt tcaatcagta taaaacggaa go	cageetete gatataaeet gaegatetea 11	40
gacgtcagcg tgagtgatgt gccatttcct tt	tetetgeee agtetgggge tggggtgeea 12	00
ggctggggca tcgcgctgct ggtgctggtc tg	gtgttctgg ttgcgctggc cattgtctat 12	60
ctcattgcct tggctgtctg tcagtgccgc cg	gaaagaact acgggcagct ggacatcttt 13	20
ccagcccggg atacctacca tcctatgagc ga	agtacecca ectaceacae ecatgggege 13	80
tatgtgcccc ctagcagtac cgatcgtagc co	cctatgaga aggtttctgc aggtaatggt 14	40
ggcagcagcc tetettacac aaacccagca g	tggcagcca cttctgccaa cttgtagggg 15	00
cacgtcgccc gctgagctga gtggccagcc ag	gtgccattc cactccactc aggttcttca 15	60
gggccagagc ccctgcaccc tgtttgggct gg	gtgagctgg gagttcaggt gggctgctca 16	20
cagecteett cagaggeece accaatttet eg	ggacacttc tcagtgtgtg gaagctcatg 16	80
tgggcccctg agggctcatg cctgggaagt g	ttgtggtgg gggctcccag gaggactggc 17	740
ccagagagcc ctgagatagc ggggatcctg as	actggactg aataaaacgt ggtctcccac 18	300
tgc	18	303
<210> 71 <211> 1258 <212> DNA <213> Homo sapien		
<pre><400> 71 taggaggtag gggagggggc ggggttttgt ca</pre>	acctgtcac ctgctccggc tgtgctatgg	60
gcgggcgggc ggggagtggg gggaccggta ta	aaageggta ggegeetgtg ceegeteeae 1	L20
ctctcaagca gccagcgcct gcctgaatct g	ttctgcccc ctccccaccc atttcaccac 1	180
caccatgaca ccgggcaccc agtctccttt c	ttcctgctg ctgctcctca cagtgcttac 2	240

agttgttaca ggttctggtc atgcaagctc taccccaggt ggagaaaagg agacttcggc

tacccagaga agttcagtgc ccagctctac tgagaagaat gcttttaatt cctctctgga

300

PCT/US03/18934 WO 03/106648

agateccage	accgactact	accaagagct	gcagagagac	atttctgaaa	tgtttttgca	420
gatttataaa	caagggggtt	ttctgggcct	ctccaatatt	aagttcaggc	caggatctgt	480
ggtggtacaa	ttgactctgg	ccttccgaga	aggtaccatc	aatgtccacg	acgtggagac	540
acagttcaat	cagtataaaa	cggaagcagc	ctctcgatat	aacctgacga	tctcagacgt	600
cagcgtgagt	gatgtgccat	ttcctttctc	tgcccagtct	ggggctgggg	tgccaggctg	660
gggcatcgcg	ctgctggtgc	tggtctgtgt	tctggttgcg	ctggccattg	tctatctcat	720
tgccttggct	gtctgtcagt	gccgccgaaa	gaactacggg	cagctggaca	tctttccagc	780
ccgggatacc	taccatccta	tgagcgagta	cccacctac	cacacccatg	ggcgctatgt	840
gccccctagc	agtaccgatc	gtageceeta	tgagaaggtt	tctgcaggta	atggtggcag	900
cagcetetet	tacacaaacc	cagcagtggc	agccacttct	gccaacttgt	aggggcacgt	960
cgcccgctga	gctgagtggc	cagccagtgc	cattccactc	cactcaggtt	cttcagggcc	1020
agagcccctg	caccctgttt	gggctggtga	gctgggagtt	caggtgggct	gctcacagcc	1080
tccttcagag	gccccaccaa	tttctcggac	acttctcagt	gtgtggaagc	tcatgtgggc	1140
ccctgagggc	tcatgcctgg	gaagtgttgt	ggtgggggct	cccaggagga	ctggcccaga	1200
gagccctgag	atagcgggga	tcctgaactg	gactgaataa	aacgtggtct	cccactgc	1258

<210> 72

<211> 2045 <212> DNA <213> Homo sapien

<400> 72

taggaggtag gggaggggc ggggttttgt cacctgtcac ctgctccggc tgtgctatgg 60 gegggeggge gggagtggg gggaceggta taaageggta ggegeetgtg ceegeteeae 120 ctctcaagca gccagegcet gcctgaatet gttctgcccc ctccccaccc atttcaccac 180 caccatgaca cegggeacce agteteettt etteetgetg etgeteetea cagtgettae 240 agctaccaca gcccctaaac ccgcaacagt tgttacaggt tctggtcatg caagctctac 300 cccaggtgga gaaaaggaga cttcggctac ccagagaagt tcagtgccca gctctactga 360 gaagaatgct gtgagtatga ccagcagcgt actctccagc cacagccccg gttcaggctc 420 ctccaccact Cagggacagg atgtcactct ggccccggcc acggaaccag cttcaggttc 480 agetgecace tggggacagg atgteacete ggteccagte accaggecag ceetgggete 540 caccacceg ccageccacg atgteacete agecceggae aacaagecag eccegggete 600 caccgcccc ccagcccacg gtgtcacctc ggccccggac accaggccgg ccccgggctc 660 cacegeeece ccageceatg gtgteacete ggeeeeggae aacaggeeeg cettgggete 720

			_			780
	ccagtccaca					
tactctggtg	cacaacggca	cctctgccag	ggctaccaca	accccagcca	gcaagagcac	840
tccattctca	attcccagcc	accactctga	tactcctacc	acccttgcca	gccatagcac	900
caagactgat	gccagtagca	ctcaccatag	cacggtacct	cctctcacct	cctccaatca	960
cagcacttct	ccccagttgt	ctactggggt	ctctttcttt	ttcctgtctt	ttcacatttc	1020
aaacctccag	tttaattcct	ctctggaaga	tcccagcacc	gactactacc	aagagctgca	1080
gagagacatt	tctgaaatgg	tgagtatcgg	cctttccttc	cccatgctcc	cctgaagcag	1140
ccatcagaac	tgtccacacc	ctttgcatca	agcctgagtc	ctttccctct	caccccagtt	1200
ttttgcagat	ttataaacaa	gggggtttc	tgggcctctc	caatattaag	ttcaggccag	1260
gatctgtggt	ggtacaattg	actctggcct	tccgagaagg	taccatcaat	gtccacgacg	1320
tggagacaca	gttcaatcag	tataaaacgg	aagcagcctc	tcgatataac	ctgacgatct	1380
cagacgtcag	cgtgagtgat	gtgccatttc	ctttctctgc	ccagtctggg	gctggggtgc	1440
caggctgggg	categegetg	ctggtgctgg	tctgtgttct	ggttgcgctg	gccattgtct	1500
atctcattgc	cttggctgtc	tgtcagtgcc	gccgaaagaa	ctacgggcag	ctggacatct	1560
ttccagcccg	ggatacctac	catcctatga	gcgagtaccc	cacctaccac	acccatgggc	1620
gctatgtgcc	ccctagcagt	accgatcgta	gcccctatga	gaaggtttct	gcaggtaatg	1680
gtggcagcag	cctctcttac	acaaacccag	cagtggcagc	cacttctgcc	aacttgtagg	1740
ggcacgtcgc	ccgctgagct	gagtggccag	ccagtgccat	tccactccac	tcaggttctt	1800
cagggccaga	gcccctgcac	cctgtttggg	ctggtgagct	gggagttcag	gtgggctgct	1860
cacageetee	ttcagaggcc	ccaccaattt	ctcggacact	tctcagtgtg	tggaagctca	1920
tgtgggccc	tgagggctca	tgcctgggaa	gtgttgtggt	gggggctccc	aggaggactg	1980
gcccagagag	ccctgagata	geggggatee	tgaactggac	tgaataaaac	gtggteteec	2040
actgc						2045
<210> 73 <211> 126						
<212> DNA <213> Horr	o sapien					
<400> 73 taggaggtag	1 333ø33330	: ggggttttgt	: cacctgtcac	ctgctccggc	: tgtgctatgg	60

gcgggcggc gggagtggg gggaccggta taaagcggta ggcgcctgtg cccgctccac

ctctcaagca gccagcgcct gcctgaatct gttctgcccc ctccccaccc atttcaccac

caccatgaca cogggcacco agtotocttt cttcctgctg ctgctcctca cagtgcttac

120 180

agctaccaca	gcccctaaac	ccgcaacagt	tgttacaggt	tctggtcatg	caagctctac	300
cccaggtgga	gaaaaggaga	cttcggctac	ccagagaagt	tcagtgccca	gctctactga	360
gaagaatgct	atcccagcac	cgactactac	caagagctgc	agagagacat	ttctgaaatg	420
tttttgcaga	tttataaaca	agggggtttt	ctgggcctct	ccaatattaa	gttcaggcca	480
ggatctgtgg	tggtacaatt	gactctggcc	ttccgagaag	gtaccatcaa	tgtccacgac	540
gtggagacac	agttcaatca	gtataaaacg	gaagcagcct	ctcgatataa	cctgacgatc	600
tcagacgtca	gcgtgagtga	tgtgccattt	cctttctctg	cccagtctgg	ggctggggtg	660
ccaggctggg	gcatcgcgct	gctggtgctg	gtctgtgttc	tggttgcgct	ggccattgtc	720
tatctcattg	ccttggctgt	ctgtcagtgc	cgccgaaaga	actacgggca	gctggacatc	780
tttccagccc	gggataccta	ccatcctatg	agcgagtacc	ccacctacca	cacccatggg	840
cgctatgtgc	cccctagcag	taccgatcgt	agcccctatg	agaaggtttc	tgcaggtaat	900
ggtggcagca	gcctctctta	cacaaaccca	gcagtggcag	ccacttctgc	caacttgtag	960
gggcacgtcg	cccgctgagc	tgagtggcca	gccagtgcca	ttccactcca	ctcaggttct	1020
tcagggccag	agcccctgca	ccctgtttgg	gctggtgagc	tgggagttca	ggtgggctgc	1080
tcacagcctc	cttcagaggc	cccaccaatt	tctcggacac	ttctcagtgt	gtggaagctc	1140
atgtgggccc	ctgagggctc	atgcctggga	agtgttgtgg	tgggggctcc	caggaggact	1200
ggcccagaga	gccctgagat	agcggggatc	ctgaactgga	ctgaataaaa	cgtggtctcc	1260
cactgc						1266

<210> 74

<211> 1189

<212> DNA

<213> Homo sapien

<400> 74 taggaggtag gggaggggc ggggttttgt cacctgtcac ctgctccggc tgtgctatgg 60 gcgggcgggc ggggagtggg gggaccggta taaagcggta ggcgcctgtg cccgctccac 120 180 ctctcaagca gccagcgcct gcctgaatct gttctgcccc ctccccaccc atttcaccac caccatgaca ccgggcaccc agtctccttt cttcctgctg ctgctcctca cagtgcttac 240 300 agttgttaca ggttctggtc atgcaagctc taccccaggt ggagaaaagg agacttcggc tacccagaga agttcagtgc ccagctctac tgagaagaat gcttttttgc agatttataa 360 acaagggggt tttctgggcc tctccaatat taagttcagg ccaggatctg tggtggtaca 420 480 attgactctg gccttccgag aaggtaccat caatgtccac gacgtggaga cacagttcaa tcagtataaa acggaagcag cctctcgata taacctgacg atctcagacg tcagcgtgag 540

tgatgtgcca	tttcctttct	ctgcccagtc	tggggctggg	gtgccaggct	ggggcatcgc	600
gctgctggtg	ctggtctgtg	ttctggttgc	gctggccatt	gtctatctca	ttgccttggc	660
tgtctgtcag	tgccgccgaa	agaactacgg	gcagctggac	atctttccag	cccgggatac	720
ctaccatcct	atgagcgagt	accccaccta	ccacacccat	gggcgctatg	tgccccctag	780
cagtaccgat	cgtagcccct	atgagaaggt	ttctgcaggt	aatggtggca	gcagcctctc	840
ttacacaaac	ccagcagtgg	cagccacttc	tgccaacttg	taggggcacg	tcgcccgctg	900
agctgagtgg	ccagccagtg	ccattccact	ccactcaggt	tcttcagggc	cagageeeet	960
gcaccctgtt	tgggctggtg	agctgggagt	tcaggtgggc	tgctcacagc	ctccttcaga	1020
ggccccacca	atttctcgga	cacttctcag	tgtgtggaag	ctcatgtggg	cccctgaggg	1080
ctcatgcctg	ggaagtgttg	tggtggggc	tcccaggagg	actggcccag	agagccctga	1140
gatagcgggg	atcctgaact	ggactgaata	aaacgtggtc	tcccactgc		1189

<210> 75

<211> 1216

<212> DNA

<213> Homo sapien

<400> 75

taggaggtag gggagggggc ggggttttgt cacctgtcac ctgctccggc tgtgctatgg 60 gegggeggge gggagtggg gggaceggta taaageggta ggegeetgtg ceegeteeae 120 ctctcaagca gccagcgcct gcctgaatct gttctgcccc ctccccaccc atttcaccac 180 caccatgaca cogggcacco agtotocttt ottoctgotg otgotoctca cagtgottac 240 agctaccaca gcccctaaac ccgcaacagt tgttacaggt tctggtcatg caagctctac 300 cccaggtgga gaaaaggaga cttcggctac ccagagaagt tcagtgccca gctctactga 360 gaagaatgct tttttgcaga tttataaaca agggggtttt ctgggcctct ccaatattaa 420 gttcaggcca ggatctgtgg tggtacaatt gactctggcc ttccgagaag gtaccatcaa 480 tgtccacgac gtggagacac agttcaatca gtataaaacg gaagcagcct ctcgatataa 540 cctgacgatc tcagacgtca gcgtgagtga tgtgccattt cctttctctg cccagtctgg 600 ggctggggtg ccaggctggg gcatcgcgct gctggtgctg gtctgtgttc tggttgcgct 660 ggccattgtc tatctcattg ccttggctgt ctgtcagtgc cgccgaaaga actacgggca 720 gctggacatc tttccagccc gggataccta ccatcctatg agcgagtacc ccacctacca 780 cacccatggg cgctatgtgc cccctagcag taccgatcgt agcccctatg agaaggtttc 840 tgcaggtaat ggtggcagca gcctctctta cacaaaccca gcagtggcag ccacttctgc 900 caacttgtag gggcacgtcg cccgctgagc tgagtggcca gccagtgcca ttccactcca 960

ctcaggttct	tcagggccag	agcccctgca	ccctgtttgg	gctggtgagc	tgggagttca	1020
ggtgggctgc	tcacageete	cttcagaggc	cccaccaatt	tctcggacac	ttctcagtgt	1080
gtggaagctc	atgtgggccc	ctgagggctc	atgcctggga	agtgttgtgg	tgggggctcc	1140
caggaggact	ggcccagaga	gccctgagat	agcggggatc	ctgaactgga	ctgaataaaa	1200
cgtggtctcc	cactgc					1216
<210> 76 <211> 2090 <212> DNA <213> Homo	sapien					
<400> 76	aaaaaaaaac	ggggttttgt	cacctqtcac	ctactccggc	tgtgctatgg	60
		gggaccggta				120
						180
		gcctgaatct				240
		agtctccttt				
		ccgcaacagt				300
cccaggtgga	gaaaaggaga	cttcggctac	ccagagaagt	tcagtgccca	gctctactga	360
gaagaatgct	gtgagtatga	ccagcagcgt	actctccagc	cacagccccg	gttcaggctc	420
ctccaccact	cagggacagg	atgtcactct	ggccccggcc	acggaaccag	cttcaggttc	480
agctgccacc	tggggacagg	atgtcacctc	ggtcccagtc	accaggccag	ccctgggctc	540
caccaccccg	ccagcccacg	atgtcacctc	agccccggac	aacaagccag	ccccgggctc	600
caccgccccc	ccagcccacg	gtgtcacctc	ggccccggac	accaggccgg	ccccgggctc	660
caccgccccc	ccagcccatg	gtgtcacctc	ggccccggac	aacaggcccg	ccttgggctc	720
caccgcccct	ccagtccaca	atgtcacctc	ggcctcaggc	tctgcatcag	gctcagcttc	780
tactctggtg	cacaacggca	cctctgccag	ggctaccaca	accccagcca	gcaagagcac	840
tccattctca	attcccagcc	accactctga	tactcctacc	acccttgcca	gccatagcac	900
caagactgat	gccagtagca	. ctcaccatag	cacggtacct	cctctcacct	cctccaatca	960
cagcacttct	ccccagttgt	ctactggggt	ctctttcttt	ttcctgtctt	ttcacatttc	1020
aaacctccag	tttaattcct	ctctggaaga	teccageace	gactactacc	aagagctgca	1080
gagagacatt	tctgaaatgt	: ttttgcagat	ttataaacaa	gggggtttt	tgggcctctc	1140
caatattaag	ttcaggccag	gatctgtggt	ggtacaattg	actctggcct	tccgagaagg	1200
taccatcaat	gtccacgacg	, tggagacaca	gttcaatcag	tataaaacgg	g aagcagcctc	1260
					g ctgcagccca	1320

gcaccatgcc ggggcccctc	tccttccagt	gtctgggtcc	ccgctctttc	cttagtgctg	1380
gcagcgggag gggcgcctcc	tctgggagac	tgccctgacc	actgetttte	cttttagtga	1440
gtgatgtgcc atttcctttc	tetgeceagt	ctggggctgg	ggtgccaggc	tggggcatcg	1500
cgctgctggt gctggtctgt	gttctggttg	cgctggccat	tgtctatctc	attgccttgg	1560
ctgtctgtca gtgccgccga	aagaactacg	ggcagctgga	catctttcca	gcccgggata	1620
cctaccatcc tatgagcgag	taccccacct	accacaccca	tgggcgctat	gtgcccccta	1680
gcagtaccga tcgtagcccc	tatgagaagg	tttctgcagg	taatggtggc	agcagcctct	1740
cttacacaaa cccagcagtg	gcagccactt	ctgccaactt	gtaggggcac	gtcgcccgct	1800
gagctgagtg gccagccagt	gccattccac	tccactcagg	ttcttcaggg	ccagagcccc	1860
tgcaccctgt ttgggctggt	gagctgggag	ttcaggtggg	ctgctcacag	cctccttcag	1920
aggccccacc aatttctcgg	acacttctca	gtgtgtggaa	gctcatgtgg	gcccctgagg	1980
gctcatgcct gggaagtgtt	gtggtggggg	ctcccaggag	gactggccca	gagagccctg	2040
agatagcggg gatcctgaac	tggactgaat	aaaacgtggt	ctcccactgc		2090
<210> 77 <211> 1808					,
<212> DNA <213> Homo sapien					(
<212> DNA	ggggttttgt	cacctgtcac	ctgctccggc	tgtgctatgg	60
<212> DNA <213> Homo sapien <400> 77					
<212> DNA <213> Homo sapien <400> 77 taggaggtag gggagggggc	gggaccggta	taaagcggta	ggcgcctgtg	cccgctccac	60
<212> DNA <213> Homo sapien <400> 77 taggaggtag gggagggggc gcgggcgggc ggggagtggg	gggaccggta	taaageggta gttetgeece	ggcgcctgtg	cccgctccac	60 120
<212> DNA <213> Homo sapien <400> 77 taggaggtag gggaggggc gcgggcgggc ggggagtggg ctctcaagca gccagcgcct	gggaccggta gcctgaatct agtctccttt	taaageggta gttetgeeee etteetgetg	ggcgcctgtg ctcccaccc ctgctcctca	cccgctccac atttcaccac cagtgcttac	60 120 180
<212> DNA <213> Homo sapien <400> 77 taggaggtag gggaggggc gcgggcgggc ggggagtggg ctctcaagca gccagcgcct caccatgaca ccgggcaccc	gggaccggta gcctgaatct agtctccttt ccgcaacagt	taaageggta gttetgeeee etteetgetg tgttaeaggt	ggcgcctgtg ctccccaccc ctgctcctca tctggtcatg	cccgctccac atttcaccac cagtgcttac caagctctac	60 120 180 240
<212> DNA <213> Homo sapien <400> 77 taggaggtag gggagggggc gcgggcgggc ggggagtggg ctctcaagca gccagcgcct caccatgaca ccgggcaccc agctaccaca gcccctaaac	gggaccggta gcctgaatct agtctccttt ccgcaacagt cttcggctac	taaageggta gttetgeeee etteetgetg tgttaeaggt ecagagaagt	ggcgcctgtg ctcccaccc ctgctcctca tctggtcatg tcagtgccca	cccgctccac atttcaccac cagtgcttac caagctctac gctctactga	60 120 180 240 300
<pre><212> DNA <213> Homo sapien <400> 77 taggaggtag gggaggggc gcgggcgggc ggggagtggg ctctcaagca gccagcgcct caccatgaca ccgggcaccc agctaccaca gcccctaaac cccaggtgga gaaaaggaga</pre>	gggaccggta gcctgaatct agtctccttt ccgcaacagt cttcggctac ccagcagcgt	taaageggta gttetgeeee etteetgetg tgttaeaggt ecagagaagt acteteeage	ggcgcctgtg ctccccaccc ctgctcctca tctggtcatg tcagtgccca cacagccccg	cccgctccac atttcaccac cagtgcttac caagctctac gctctactga gttcaggctc	60 120 180 240 300 360
<pre><212> DNA <213> Homo sapien <400> 77 taggaggtag gggaggggc gcgggcgggc ggggagtggg ctctcaagca gccagcgcct caccatgaca ccgggcaccc agctaccaca gcccctaaac cccaggtgga gaaaaggaga gaagaatgct gtgagtatga</pre>	gggaccggta gcctgaatct agtctccttt ccgcaacagt cttcggctac ccagcagcgt atgtcactct	taaageggta gttetgeeee etteetgetg tgttaeaggt ecagagaagt acteteeage ggeeeeggee	ggcgcctgtg ctcccaccc ctgctcctca tctggtcatg tcagtgccca cacagccccg acggaaccag	cccgctccac atttcaccac cagtgcttac caagctctac gctctactga gttcaggctc cttcaggttc	60 120 180 240 300 360 420
<pre><212> DNA <213> Homo sapien <400> 77 taggaggtag gggaggggc gcgggcgggc ggggagtggg ctctcaagca gccagcgcct caccatgaca ccgggcaccc agctaccaca gcccctaaac cccaggtgga gaaaaggaga gaagaatgct gtgagtatga ctccaccact cagggacagg</pre>	gggaccggta gcctgaatct agtctccttt ccgcaacagt cttcggctac ccagcagcgt atgtcactct atgtcacctc	taaageggta gttetgeeee etteetgetg tgttaeaggt ecagagaagt acteteeage ggeeeggee ggteeeagte	ggcgcctgtg ctcccaccc ctgctcctca tctggtcatg tcagtgccca cacagcccg acggaaccag	cccgctccac atttcaccac cagtgcttac caagctctac gctctactga gttcaggctc cttcaggttc	60 120 180 240 300 360 420 480
<pre><212> DNA <213> Homo sapien <400> 77 taggaggtag gggagggggc gcgggcgggc ggggagtggg ctctcaagca gccagcgcct caccatgaca ccgggcaccc agctaccaca gcccctaaac cccaggtgga gaaaaggaga gaagaatgct gtgagtatga ctccaccact cagggacagg agctgccacc tggggacagg</pre>	gggaccggta gcctgaatct agtctccttt ccgcaacagt cttcggctac ccagcagcgt atgtcactct atgtcacctc	taaageggta gttetgeeee etteetgetg tgttaeaggt ecagagaagt acteteeage ggeeeggee ggteeeagte ageeeggae	ggcgcctgtg ctcccaccc ctgctcctca tctggtcatg tcagtgccca cacagcccg acggaaccag accaggccag accaggccag	cccgctccac atttcaccac cagtgcttac caagctctac gctctactga gttcaggctc cttcaggttc ccctgggctc	60 120 180 240 300 360 420 480 540
<pre><212> DNA <213> Homo sapien <400> 77 taggaggtag gggagggggc gcgggcgggc ggggagtggg ctctcaagca gccagcgcct caccatgaca ccgggcaccc agctaccaca gcccctaaac cccaggtgga gaaaaggaga gaagaatgct gtgagtatga ctccaccact cagggacagg agctgccacc tggggacagg caccaccccg ccagcccacg</pre>	gggaccggta gcctgaatct agtctccttt ccgcaacagt cttcggctac ccagcagcgt atgtcactct atgtcacctc atgtcacctc	taaageggta gttetgeeee etteetgetg tgttaeaggt ecagagaagt acteteeage ggeeeeggee ggteeeagte ageeeeggae ggeeeeggae	ggcgcctgtg ctcccaccc ctgctcctca tctggtcatg tcagtgccca cacagcccg acggaaccag accaggccag accaggccag accaggccag	cccgctccac atttcaccac cagtgcttac caagctctac gctctactga gttcaggctc cttcaggttc ccctgggctc ccccgggctc	60 120 180 240 300 360 420 480 540

tactctggtg cacaacggca cctctgccag ggctaccaca accccagcca gcaagagcac

tccattctca	attcccagcc	accactctga	tactcctacc	acccttgcca	gccatagcac	900
caagactgat	gccagtagca	ctcaccatag	cacggtacct	cctctcacct	cctccaatca	960
cagcacttct	ccccagttgt	ctactggggt	ctctttcttt	ttcctgtctt	ttcacatttc	1020
aaacctccag	tttaattcct	ctctggaaga	tcccagcacc	gactactacc	aagagctgca	1080
gagagacatt	tctgaaatgt	ttttgcagat	ttataaacaa	gggggttttc	tgggcctctc	1140
caatattaag	ttcagtgagt	gatgtgccat	ttcctttctc	tgcccagtct	ggggctgggg	. 1200
tgccaggctg	gggcatcgcg	ctgctggtgc	tggtctgtgt	tctggttgcg	ctggccattg	1260
tctatctcat	tgccttggct	gtctgtcagt	gccgccgaaa	gaactacggg	cagctggaca	1320
tetttecage	ccgggatacc	taccatccta	tgagcgagta	ccccacctac	cacacccatg	1380
ggcgctatgt	gccccctagc	agtaccgatc	gtagccccta	tgagaaggtt	tctgcaggta	1440
atggtggcag	cagcctctct	tacacaaacc	cagcagtggc	agccacttct	gccaacttgt	1500
aggggcacgt	cgcccgctga	gctgagtggc	cagccagtgc	cattccactc	cactcaggtt	1560
cttcagggcc	agagcccctg	caccctgttt	gggctggtga	gctgggagtt	caggtgggct	1620
gctcacagco	tccttcagag	gccccaccaa	tttctcggac	acttctcagt	gtgtggaagc	1680
tcatgtgggc	: ccctgagggc	tcatgcctgg	gaagtgttgt	ggtgggggct	cccaggagga	1740
ctggcccaga	gagecetgag	atagcgggga	tcctgaactg	gactgaataa	aacgtggtct	1800
cccactgc						1808

<210> 78

<211> 1823

<212> DNA

<213> Homo sapien

<400> 78 taggaggtag gggaggggc ggggttttgt cacctgtcac ctgctccggc tgtgctatgg 60 gegggegge ggggagtggg gggaceggta taaageggta ggegeetgtg eeegeteeae 120 ctctcaagca gccagcgcct gcctgaatct gttctgcccc ctccccaccc atttcaccac 180 caccatgaca eegggeacee agteteettt etteetgetg etgeteetea eagtgettae 240 agctaccaca gcccctaaac ccgcaacagt tgttacaggt tctggtcatg caagctctac 300 cccaggtgga gaaaaggaga cttcggctac ccagagaagt tcagtgccca gctctactga 360 gaagaatgct gtgagtatga ccagcagcgt actctccagc cacagccccg gttcaggctc 420 480 ctccaccact cagggacagg atgtcactct ggccccggcc acggaaccag cttcaggttc agetgecace tggggacagg atgteacete ggteecagte accaggecag ecetgggete 540 caccaccccg ccagcccacg atgtcacctc agecccggac aacaagccag ccccgggctc 600

caccgcccc ccagcccacg gtgtcacctc ggccccggac accaggccgg ccccgggc	tc 660
cacegeceee ceageceatg gtgteacete ggeeeeggae aacaggeeeg eettggge	tc 720
caccgcccct ccagtccaca atgtcacctc ggcctcaggc tctgcatcag gctcagct	tc 780
tactetggtg cacaaeggea ectetgecag ggetaecaca accecageca geaagage	cac 840
tccattctca attcccagec accaetctga tactectace accettgeca gecatage	cac 900
caagactgat gccagtagca ctcaccatag cacggtacct cctctcacct cctccaat	tca 960
cagcacttct ccccagttgt ctactggggt ctctttcttt ttcctgtctt ttcacatt	ttc 1020
aaacctccag tttaattcct ctctggaaga tcccagcacc gactactacc aagagct	gca 1080
gagagacatt tetgaaatgt ttttgeagat ttataaacaa gggggtttte tgggeete	ctc 1140
caatattaag ttcaggccag gatctgtggt ggtacaattg actctggcct tccgaga	agg 1200
taccatcaat gtccacgacg tggagacaca gttcaatcag tataaaacgg aagcagc	ctc 1260
tcgatataac ctgacgatct cagacgtcag cggctgtctg tcagtgccgc cgaaaga	act 1320
acgggcaget ggacatettt ccageceggg atacetacea tectatgage gagtace	cca 1380
cctaccacac ccatgggcgc tatgtgcccc ctagcagtac cgatcgtagc ccctatg	aga 1440
aggtttetge aggtaatggt ggcagcagec tetettacac aaacccagca gtggcag	cca 1500
cttctgccaa cttgtagggg cacgtcgccc gctgagctga	ttc 1560
cactccactc aggttcttca gggccagagc ccctgcaccc tgtttgggct ggtgagc	tgg 1620
gagttcaggt gggctgctca cagcctcctt cagaggcccc accaatttct cggacac	ttc 1680
tcagtgtgtg gaagctcatg tgggcccctg agggctcatg cctgggaagt gttgtgg	tgg 1740
gggctcccag gaggactggc ccagagagcc ctgagatagc ggggatcctg aactgga	ctg 1800
aataaaacgt ggtctcccac tgc	1823
<210> 79 <211> 1630 <212> DNA <213> Homo sapien	
<400> 79 taggaggtag gggaggggc ggggttttgt cacctgtcac ctgctccggc tgtgcta	atgg 60
gcgggcgggc gggagtggg gggaccggta taaagcggta ggcgcctgtg cccgctc	ccac 120
ctctcaagca gccagcgcct gcctgaatct gttctgcccc ctccccaccc atttcac	ccac 180
caccatgaca ccgggcaccc agtctccttt cttcctgctg ctgctcctca cagtgct	ttac 240

agctaccaca gcccctaaac ccgcaacagt tgttacaggt tctggtcatg caagctctac

cccaggtgga gaaaaggaga cttcggctac ccagagaagt tcagtgccca gctctactga

300

gaagaatgct	gtgagtatga	ccagcagcgt	actctccagc	cacageeeeg	gttcaggctc	420
ctccaccact	cagggacagg	atgtcactct	ggccccggcc	acggaaccag	cttcaggttc	480
agctgccacc	tggggacagg	atgtcacctc	ggtcccagtc	accaggccag	ccctgggctc	540
caccaccccg	ccagcccacg	atgtcacctc	agccccggac	aacaagccag	ccccgggctc	600
caccgccccc	ccagcccacg	gtgtcacctc	ggccccggac	accaggccgg	ccccgggctc	660
caccgccccc	ccagcccatg	gtgtcacctc	ggccccggac	aacaggcccg	ccttgggctc	720
caccgcccct	ccagtccaca	atgtcacctc	ggcctcaggc	tctgcatcag	gctcagcttc	780
tactctggtg	cacaacggca	cctctgccag	ggctaccaca	accccagcca	gcaagagcac	840
tccattctca	attcccagcc	accactctga	tactcctacc	acccttgcca	gccatagcac	900
caagactgat	gccagtagca	ctcaccatag	cacggtacct	cctctcacct	cctccaatca	960
cagcacttct	ccccagttgt	ctactggggt	ctctttcttt	ttcctgtctt	ttcacatttc	1020
aaacctccag	tttaattcct	ctctggaaga	tcccagcacc	gactactacc	aagagctgca	1080
gagagacatt	tctgaaatgg	ctgtctgtca	gtgccgccga	aagaactacg	ggcagctgga	1140
catctttcca	gcccgggata	cctaccatco	tatgagcgag	taccccacct	accacaccca	1200
tgggcgctat	gtgcccccta	gcagtaccga	tegtageece	tatgagaagg	tttctgcagg	1260
taatggtgg	c agcagcctct	: cttacacaaa	cccagcagtg	gcagccactt	ctgccaactt	1320
gtaggggca	c gtcgcccgct	gagetgagte	gccagccagt	gccattccad	tccactcagg	1380
ttcttcagg	g ccagagccc	c tgcaccctgt	ttgggctggt	gagctgggag	g ttcaggtggg	1440
ctgctcaca	g cctccttcag	g aggccccaco	aatttctcgg	acacttctca	a gtgtgtggaa	1500
gctcatgtg	g gcccctgag	g gctcatgcct	gggaagtgtt	gtggtgggg	g ctcccaggag	1560
gactggccc	a gagagccct	g agatagegg	g gatcctgaad	tggactgaa	t aaaacgtggt '	1620
ctcccactg	c					1630
<210> 80 <211> 64 <212> DN <213> Ho	0					
<400> 80 agtcgtgac	: g tggcacaac	c ctggcgctg	g ggtgccagg	c tggggcatc	g cgctgctggt	60
	•				g ctgtctgtca	120
					a cctaccatcc	180
					a gcagtaccga	240
					t cttacacaaa	300

cccagcagtg	gcagccactt	ctgccaactt	gtaggggcac	gtcgcccgct	gagctgagtg	360
gccagccagt	gccattccac	tccactcagg	ttcttcaggg	ccagagcccc	tgcaccctgt	420
ttgggctggt	gagctgggag	ttcaggtggg	ctgctcacag	cctccttcag	aggccccacc	480
aatttctcgg	acacttctca	gtgtgtggaa	gctcatgtgg	gcccctgagg	gctcatgcct	540
gggaagtgtt	gtggtggggg	ctcccaggag	gactggccca	gagagccctg	agatagcggg	600
gatcctgaac	tggactgaat	aaaacgtggt	ctcccactgc			640
	o sapien					
<400> 81 taggaggtag	gggagggggc	ggggttttgt	cacctgtcac	ctgctccggc	tgtgctatgg	60
gcgggcgggc	ggggagtggg	gggaccggta	taaagcggta	ggegeetgtg	cccgctccac	120
ctctcaagca	gccagcgcct	gcctgaatct	gttctgcccc	ctccccaccc	atttcaccac	180
caccatgaca	ccgggcaccc	agtctccttt	cttcctgctg	ctgctcctca	cagtgcttac	240
agttgttaca	ggttctggtc	atgcaagctc	taccccaggt	ggagaaaagg	agacttcggc	300
tacccagaga	agttcagtgc	ccagctctac	tgagaagaat	gctgctgtct	gtcagtgccg	360
ccgaaagaac	tacgggcagc	tggacatctt	tccagcccgg	gatacctacc	atcctatgag	420
cgagtacccc	acctaccaca	cccatgggcg	ctatgtgccc	cctagcagta	ccgatcgtag	480
cccctatgag	aaggtttctg	caggtaatgg	tggcagcagc	ctctcttaca	caaacccagc	540
agtggcagcc	acttctgcca	acttgtaggg	gcacgtcgcc	cgctgagctg	agtggccagc	600
cagtgccatt	ccactccact	caggttcttc	agggccagag	cccctgcacc	ctgtttgggc	660
tggtgagctg	ggagttcagg	tgggctgctc	acagcctcct	tcagaggccc	caccaatttc	720
tcggacactt	ctcagtgtgt	ggaagctcat	gtgggcccct	gagggctcat	gcctgggaag	780
tgttgtggtg	ggggctccca	ggaggactgg	cccagagagc	cctgagatag	cggggatcct	840
gaactggact	gaataaaacg	tggtctccca	ctgc			874
<400> 82 ttttgctttt	ttgcacccag	aggcaaaatg	ggtggagcac	tatgcccagg	ggagcccttc	60
ccgaggagtc	ccaggggtga	gcctctgtgc	ccctaatcat	ctcctaggaa	tggagggtag	120

79

accgagaaag gct	ggcatag gg	ggaggttt	cccaggtaga	agaagaagtg	tcagcagacc	180
aggtgagcgt ggg	tgccagt gg	ggttcttg	ggagcttcaa	ggaagcaagg	aacgctccct	240
cetteetete etg	gtctttc tc	tatgggac	ctagtaaata	attactgcag	ccacctgagg	300
ctggaaaacc act	ccaggtg gg	ggaggaga	gagtttagtt	ttcttgctcc	tattttcctc	360
ctcctggaga cct	ccctctc tc	ggctttac	aaagacacag	atacaccccg	cccccaaac	420
acacacacac aca	cacacac ac	acctcctt	aggctggaac	agcagagaat	ggagggacaa	480
gggggctgat tag	agccaag aa	gagggagt	gaaggagagc	agagggagga	gggcagccct	540
gtttacagtc acc	tggctgg tg	gggtggca	ggtgctctct	ctgaattaac	cctttgagag	600
ctggccagga ctc	tggactg at	taccccag	cctggggtgg	catccagggg	ctctaggagg	660
taccttttgc tcc	tcaccct gg	gatctcttt	tccttccacc	caggtttctg	caggtaatgg	720
tggcagcagc ctc	tcttaca ca	aacccagc	agtggcagcc	acttctgcca	acttgtaggg	780
gcacgtcgcc cgc	tgagctg ag	gtggccagc	cagtgccatt	ccactccact	caggttcttc	840
agggccagag ccc	ctgcacc ct	gtttgggc	tggtgagctg	ggagttcagg	tgggctgctc	900
acagectect tea	gaggccc ca	accaatttc	tcggacactt	ctcagtgtgt	ggaagctcat	960
gtgggcccct gag	ggctcat go	cctgggaag	tgttgtggtg	ggggctccca	ggaggactgg	1020
cccagagagc cct	gagatag cg	gggateet	gaactggact	gaataaaacg	tggtctccca	1080
ctgc						1084
<210> 83 <211> 1194 <212> DNA <213> Homo sa	pien					
<400> 83 taggaggtag ggg	gaggggc gg	gggttttgt	cacctgtcac	ctgctccggc	tgtgctatgg	60
gegggeggge ggg	gagtggg gg	ggaccggta	taaagcggta	ggcgcctgtg	cccgctccac	120
ctctcaagca gcc	cagegeet go	cctgaatct	gttctgcccc	ctccccaccc	atttcaccac	180
caccatgaca ccg	ggcaccc ag	gtctccttt	cttcctgctg	ctgctcctca	cagtgcttac	240
agctaccaca gco	cctaaac c	cgcaacagt	tgttacaggt	tctggtcatg	caagctctac	300
cccaggtgga gaa	aaaggaga c	ttcggctac	ccagagaagt	tcagtgccca	gctctactga	360
gaagaatgct gtg	gagtatga c	cagcagcgt	actctccagc	cacageeeeg	gttcaggctc	420
ctccaccact cag	ggacagg a	tgtcactct	ggccccggcc	acggaaccag	cttcaggttc	480
agctgccacc tgg	gggacagg a	tgtcacctc	ggtcccagtc	accaggccag	ccctgggctc	540

caccacceg ccageccacg atgtcacete agecceggae aacaagecag eccegggete

80

caccgcccc ccagcccatg gtgtcacctc ggccccggac aacaggcccg ccttgggctc 7	720
caccgccct ccagtccaca atgtcacctc ggcctcaggc tctgcatcag gctcagcttc 7	780
tactetggtg cacaacggca cetetgecag ggctaccaca accecageca gcaagagcac	840
tccattctca attcccagcc accactctga tactcctacc acccttgcca gccatagcac	900
caagactgat gccagtagca ctcaccatag cacggtacct cctctcacct cctccaatca	960
cagcacttct ccccagttgt ctactggggt ctctttcttt ttcctgtctt ttcacatttc 10	020
aaacetecag tttaatteet etetggaaga teecageace gaetaetaee aagagetgea 10	080
gagagacatt totgaaatgt ttttgcagat ttataaacaa gggggttttc tgggcototo 13	140
caatattaag ttcagccagg agctgtggtg gcagaataag cgatcctcta atca	194

<210> 84

<211> 2623

<212> DNA

<213> Homo sapien

<400> 84 ctggaatctg gacacacagg gctcccccc gcctctgact tctctgtccg aagtcgggac 60 accetectae cacetgtaga gaagegggag tggatetgaa ataaaateea ggaatetggg 120 ggttcctaga cggagccaga cttcggaacg ggtgtcctgc tactcctgct ggggctcctc 180 caggacaagg gcacacaact ggttccgtta agcccctctc tcgctcagac gccatggagc 240 300 tggatctgtc tccacctcat cttagcagct ctccggaaga cctttgccca gcccctggga ccctcctgg gactccccgg cccctgata cccctctgcc tgaggaggta aagaggtccc 360 agcetetect cateccaace aceggeagga aacttegaga ggaggagagg egtgeeacet 420 coetcoetc tatecceaac coetteectg agetetgeag tecteectca cagageceaa 480 ttctcggggg cccctccagt gcaaggggc tgctcccccg cgatgccagc cgcccccatg 540 tagtaaaggt gtacagtgag gatggggcct gcaggtctgt ggaggtggca gcaggtgcca 600 cagctcgcca cgtgtgtgaa atgctggtgc agcgagctca cgccttgagc gacgagacct 660 gggggctggt ggagtgccac ccccacctag cactggagcg gggtttggag gaccacgagt 720 cegtggtgga agtgcaggct gcctggcccg tgggcggaga tagccgcttc gtcttccgga 780 aaaacttcgc caagtacgaa ctgttcaaga gctccccaca ctccctgttc ccagaaaaaa 840 tggtctccag ctgtctcgat gcacacactg gtatatccca tgaagacctc atccagaact 900 tectgaatge tggeagettt cetgagatee agggetttet geagetgegg ggtteaggae 960 ggaagetttg gaaacgettt ttetgettet tgegeegate tggeetetat taetecacea 1020

agggcacctc tas	aggateeg a	aggcacctgc	agtacgtggc	agatgtgaac	gagtccaacg	1080
tgtacgtggt gad	cgcagggc (cgcaagctct	acgggatgcc	cactgacttc	ggtttctgtg	1140
tcaagcccaa caa	agcttcga a	aatggccaca	aggggcttcg	gatettetge	agtgaagatg	1200
agcagagccg ca	cctgctgg (etggctgcct	teegeetett	caagtacggg	gtgcagctgt	1260
acaagaatta cc	agcaggca (cagtctcgcc	atctgcatcc	atcttgtttg	ggctccccac	1320
ccttgagaag tg	cctcagat a	aataccctgg	tggccatgga	cttctctggc	catgctgggc	1380
gtgtcattga ga	accccgg (gaggctctga	gtgtggccct	ggaggaggcc	caggcctgga	1440
ggaagaagac aa	accaccgc	ctcagcctgc	ccatgccagc	ctccggcacg	agcctcagtg	1500
cagccatcca cc	gcacccaa	ctctggttcc	acgggcgcat	ttcccgtgag	gagagccagc	1560
ggcttattgg ac	agcagggc	ttggtagacg	gcctgttcct	ggtccgggag	agtcagcgga	1620
acccccaggg ct	ttgtcctc	tetttgtgcc	acctgcagaa	agtgaagcat	tatctcatcc	1680
tgccgagcga gg	aggagggc	cgcctgtact	tcagcatgga	tgatggccag	acccgcttca	1740
ctgacctgct gc	agctcgtg	gagttccacc	agctgaaccg	cggcatcctg	ccgtgcttgc	1800
tgcgccattg ct	gcacgcgg	gtggccctct	gaccaggccg	tggactggct	catgcctcag	1860
cccgccttca gg	getgeeege	cgcccctcca	cccatccagt	ggactctggg	gcgcggccac	1920
aggggacggg at	gaggagcg	ggagggttcc	gccactccag	ttttctcctc	tgcttctttg	1980
cctccctcag at	agaaaaca	gcccccactc	cagtccactc	ctgacccctc	tcctcaaggg	2040
aaggccttgg gt	ggccccct	ctccttctcc	tagctctgga	ggtgctgctc	tagggcaggg	2100
aattatggga ga	aagtggggg	cagcccaggc	ggtttcacgc	cccacacttt	gtacagaccg	2160
agaggccagt to	gatctgctc	tgttttatac	tagtgacaat	aaagattatt	ttttgataaa	2220
aaactcagaa ct	tatctcgtc	gcgagtttga	taaaaagtgt	aaaaaaactg	gggggaactt	2280
catagggggt ca	aaacatctc	gctgccggcg	gataggactt	ggctaaactt	cttccgagcg	2340
ggccccgtaa g	ggtggtatg	ctgataaaaa	tgggggggg	ccccctctc	agggggccct	2400
ccagaacctt t	tgggggtgg	ggtacccttg	ggtggttaac	tagtgaacto	: tttcctcaaa	2460
aggttgccgc c	ccctgtgta	ttgtcgacaa	ttttcttggg	gggegggee	: gttttcttt	2520
caccacgett t	tgttttccc	gggtggggaa	cccacccctg	gtgtgtgtg	ccccccgtt	2580
tattttgggc g	ccctttttg	tggggggaaa	ttcccccgct	ttt		2623

<210> 85 <211> 1036 <212> DNA <213> Homo sapien

<400> 85

			0.0			
ctgagaggca	gcgaactcat	ctttgccagt	acaggagctt	gtgccgtggg	cccacagece	60
acagcccaca	gccatggtaa	ggcagatgtc	acaggtgggg	ggaggtgggc	tctgtgccag	120
ccaattttcg	tctccctccc	ccagccaagg	tctcccaggg	gtgcagggag	agcggagctg	180
ctcagagctt	ggccaggttc	taagtgtgct	cctgaaagca	ggtcacccct	gagatcctca	240
gggtggggca	cagaggggca	ccctagcagg	taaagggagg	ccacgggatg	gcggtgggca	300
getggeette	tagtaacgag	ccctcagtgc	cttctgtgcc	tggggtccct	gccgacggga	360
tgtagaggac	agacaggagg	gagcactgtc	cctgggtaca	ggagctcgcc	ctgcagccag	420
tgccttgtgt	gtggtgggcc	tggggctggc	gccgcagtct	ctgaacctgt	gtgacgcctg	480
cagggctggg	acctgacggt	gaagatgctg	gcgggcaacg	aattccaggt	gtccctgagc	540
agctccatgt	cggtgtcaga	gctgaaggcg	cagatcaccc	agaagatcgg	cgtgcacgcc	600
ttccagcagc	gtctggctgt	ccacccgagc	ggtgtggcgc	tgcaggacag	ggtccccctt	660
gccagccagg	gcctgggccc	cggcagcacg	gtcctgctgg	tggtggacaa	atgcgacgaa	720
cctctgagca	tcctggtgag	gaataacaag	ggccgcagca	gcacctacga	ggtgcggctg	780
acgcagaccg	tggcccacct	gaagcagcaa	gtgagcgggc	tggagggtgt	gcaggacgac	840
ctgttctggc	tgaccttcga	ggggaagccc	ctggaggacc	agctcccgct	gggggagtac	900
ggcctcaagc	ccctgagcac	cgtgttcatg	aatctgcgcc	tgcggggagg	cggcacagag	960
cctggcgggc	ggagctaagg	gccccaccag	catccgagca	ggatcaaggg	ccggaaataa	1020
aggctgttgt	aaagag					1036
<220> <221> mise <222> (16	c_feature B)(208) , c, g, or t	=			•	
<400> 86 gctgcctcta	taggtgctgg	tatataagta	ttatcgacat	catttaagta	atgatttaga	60
	aaaaaaaatt					120
	aaacttggaa	·				180
	nnnnnnnnn					240
	cttcaggacc				_	300

ttatctgctt tctgcaatca cgtctcttcc atggggcact gagcagagaa tggtgtggcc

PCT/US03/18934

aagtgagtag tgagaagcag tgaggaggtg tgagctaggt gtctgttccc attttagaaa 420
atactgttcc tacatcagaa ataccacatt aagacgtata gagccaggtc actgggatgc 480
ttgaacccaa atagctggga ttctggacag agtcagcaga gtacagaagg ctctgaagtg 540
ggagacggag ctggggtgca tccctcccag tgaggagggg tcatgagggg cgtctgggaa 600
gagggacatt tgaactagga ttagctgagt tgccatgatg ctaagataat gggagagtgt 660
tctttgtggt caccagtgtc cacatggcat cccttccctg agatttcat cactccctgt 720
ggtcttcagt cagtaaagct cttagaacac ttg

<210> 87
<211> 878
<212> DNA
<213> Homo sapien
<220>
<221> misc_feature
<222> (282)..(322)
<223> n=a, c, g, or t

<400> 87 cggaggecga ggttgeggtg agctaagatc gtaccettgc actccagcet gggtgacgga 60 gtaagactcc atctccaaaa agaaaagaag aattgatatt gatattggaa gggagctgcc 120 tctataggtg ctggtatata agtattatcg acatcattta agtaatgatt tagaagttac 180 ataaaaaaaa aatttcccca agttattttc tggcgaagag cttccctggt atgacctgaa 240 actcaaactt ggaaaagaga taaatttaat tggataaaaa tnnnnnnnnn nnnnnnnnn 300 nnnnnnnnn nnnnnnnnn nntctcctga atcttttatc tatgccttaa gccttttctg 360 ttcccttcag gacctagget tttgaaaccc aaaagccagg aaaacatgcc tttgttatct 420 gctttctgca atcacgtctc ttccatgggg cactgagcag agaatggtgt ggccaagtga 480 gtagtgagaa gcagtgagga ggtgtgagct aggtgtctgt tcccatttta gaaaatactg 540 ttcctacatc agaaatacca cattaagacg tatagagcca ggtcactggg atgcttgaac 600 ccaaatagct gggattctgg acagagtcag cagagtacag aaggctctga agtgggagac 660 ggagetgggg tgcatecete ceagtgagga ggggteatga ggggegtetg ggaagaggga 720 catttgaact aggattagct gagttgccat gatgctaaga taatgggaga gtgttctttg 780 tggtcaccag tgtccacatg gcatcccttc cctgagattt tcatcactcc ctgtggtctt 840 cagtcagtaa agctcttaga acacttaaaa aaaaaaaa 878

<210> 88 <211> 1020 <212> DNA

<213> Homo sapien

<400> 88 caaatgeaca gtccccctcc cactccgtta cctaactgta cgtcttttca tgtttataaa 60 ctatacagaa aactgtattt gctgaactaa ggattgtatt ggtgatttct agcaaaaaca 120 aagtgataga atttttgtct agaatcccaa actggcaacg atagtctcca agggacctgg 180 ccttgccaag ggcctggggc aaggtgtcgg cgggacggtg aggaaggggg aggcagcaag 240 300 agtcactttg ggggaccaat attcttagat atttagagca tcaccttgtt tttatatgca acacaageet gtetgecace etggagegee etgteaceee tgetgtegta getgttgget 360 tcagggtgag aagtgagaag cagcttattg tatatgaggg agccaggccc cgagggtgag 420 cgagatggag aaggggaagg aaggggcttt gggatctgga aaccagcagg ccaggcagca 480 tccacagtgt tagtccaaag ggtcggaccg tgtcgtcagc ctagcgtttg gtcagtgacg 540 geetggaegg geeaaggaga eteegggett gageeeagge eteeegeaeg geteagetge 600 tgaatttttc cttgaggctg tttggtgtgt gacccagcaa gggccctgtg tgggacagca 660 ggagggaggc gtcgcggggc cttagcagaa ggggaacaat gagggcattt catgaaccat 720 ctcaggcact tctgcatcac ggaagacetg gccctcccag ccgtcctggg gatgctcagg 780 gtgcaggcag aggctcggga ggccggactc agggggtcaga agcagggact ggggcaggcg 840 agcceggaca gggaagaggg geteegatea aagceggeeg tgetgetgge egggggeeea 900 ggtgggtaca ageteetttg tgetttgeae aaacetgaat eecceaecag agaggatgtg 960 tgtgaggagc cagaaacgct gaatccaatt aagagagaaa aataataata acgaatgacg 1020

<210> 89 <211> 1854

<212> DNA

<213> Homo sapien

<400> 89

60 ctggggctgg cggtcactct ccgctgagga cccagggcgt cacacccagc actgccacat gtccaccaag gaacagaatt tattttcttc tttttttaac aagtggaaga tctgctgggt 120 ttcaggaaaa ggctggtaga ggcttcggct gctgtctgga cgtctggacc ctgccatgtg 180 gattataaac ccaaagtgta cagccctagg cgggaggggg tggcgcttct cagccggctg 240 tcccagccag ccccgcagag cgcccacgga cagtgtccac tctggcaagg tgggaaaagg 300 cactecaagt gcatecteca etggcaacag tgggacaatt gcccccgacg gcggcaccgg 360 ggctctgtgg aatcccgatc gttccgagag gtctggaggg ccccgtggtt cctggagaaa 420 gcaggacgca gagaagaaca aatgaggctc acccacgagg ctgggtggcc agcagtctgg 480 gcacacacga gcaggtggca tcttggctct tgcctgaggc cagtcaccct gccctgaatt 540

ctaccctact ccaccttca	g cccctcccgc	gggggtagcg	cctctcattc	ctgatgtctc	600
aggcaaccct ggcagaccc	a ggtccaactg	ctggggtcca	agaaccaatt	accaaaggaa	660
agatcatcag aggctgaaa	t ctagaacttc	atcccgggca	atgaggttct	cacagaaggt	720
gcagttttat aactaacta	c gtccacttat	atatattcac	actctacata	tatatatata	780
tatatatata tatatatat	a tatatataca	cacaaatgca	cagtccccct	cccactccgt	840
tacctaactg tacgtcttt	t catgtttata	aactatacag	aaaactgtat	ttgctgaact	900
aaggattgta ttggtgatt	t ctagcaaaaa	caaagtgata	gaatttttgt	ctagaatccc	960
aaactggcaa cgatagtct	c caagggacct	ggccttgcca	agggcctggg	gcaaggtgtc	1020
ggcgggacgg tgaggaagg	gg ggaggcagca	agagtcactt	tgggggacca	atattcttag	1080
atatttagag catcacctt	g tttttatatg	caacacaagc	ctgtctgcca	ccctggagcg	1140
ccctgtcacc cctgctgt	cg tagctgttgg	cttcagggtg	agaagtgaga	agcagcttat	1200
tgtatatgag ggagccag	ge eeegagggtg	agcgagatgg	agaaggggaa	ggaaggggct	1260
ttgggatctg gaaaccag	ca ggccaggcag	catccacagt	gttagtccaa	agggtcggac	1320
cgtgtcgtca gcctagcg	tt tggtcagtga	cggcctggac	gggccaagga	gactccgggc	1380
ttgagcccag gcctcccg	ca cggctcagct	gctgaatttt	tccttgaggc	tgtttggtgt	1440
gtgacccagc aagggccc	tg tgtgggacag	caggagggag	gegtegeggg	gccttagcag	1500
aaggggaaca atgagggc	at ttcatgaaco	: atctcaggca	. cttctgcatc	acggaagacc	1560
tggccctccc agccgtcc	tg gggatgctca	gggtgcaggc	agaggetegg	gaggccggac	1620
tcaggggtca gaagcagg	ga ctggggcagg	g cgagcccgga	cagggaagag	gggctccgat	1680
caaagccggc cgtgctgc	tg geeggggge	caggtgggta	caagctcctt	tgtgctttgc	1740
acaaacctga atccccca	cc agagaggatg	g tgtgtgagga	gccagaaacg	ctgaatccaa	1800
ttaagagaga aaaataat	aa taacaataa	a tgatcttgga	a caagaaaaaa	aaaa	1854
<210> 90 <211> 1759 <212> DNA <213> Homo sapien					
<400> 90 atgtgaaaag aaaatagt	ta tetgtgett	g gtgttgtgt	g ctctcctaaa	a gttaaccaga	60
cgtgaagcca aaaacato	aa ctgggactg	a caacacaaga	a aagattctt	aactgaggtg	12
gttaaatggc cctgaaaa					18
gaggagga gcgagcga	age gecaggtee	c ggcagggact	t cacttggag	c tggcgtactt	24

ggtgaccgcc ttggtgccct cggacacggc gtgcttggcc agctcgccgg gcagcagcag

gcgcacggcc	gtctggatct	ccgggacgtg	atggtggagc	gcttgttgta	gtgcgccagg	360
cgggacgcct	ctcccgcgat	gcgctcgaag	atgtcgttga	ggaaggagtt	catgatgccc	420
atggccttgc	accagatgcc	ggtgtcgggg	tggacccgct	tcagcacctt	gtacacgtag	480
atggagtagc	tctccttgcg	gctgcgcttg	cgcttcttgc	cgtctttctt	ctgggctttg	540
gtgacggctt	tcttggagcc	cttcttggga	gccggcgcga	actttgcagg	ctcaggcatg	600
gccagaccca	agaccgacac	cgacccccga	gaacgcaagc	agagcggtag	gctcggggtc	660
taccggaaac	gactgtgtac	ttacagaggc	tgtgcgcatg	acgctgcgtt	atggttcgcg	720
agttttccgc	ggcgcgcaat	gcgagggaga	cgagattatg	taaatgagtg	gattctggct	780
gagctatcct	attggctatc	gggacaaaat	ttgcttgagc	caatcaaagt	geteegtgga	840
caatcgccgt	tctgtctata	aaaaggtgaa	gcagcggcgt	tttcggcgac	tttcccgatc	900
gccaggcagg	agtttctctc	ggtgactact	atcgctgtca	tgtctggtcg	tggcaagcaa	960
ggaggcaagg	cccgcgccaa	ggccaagtcg	cgctcgtccc	gegetggeet	tcagttcccg	1020
gtagggcgag	tgcatcgctt	gctgcgcaaa	ggcaactacg	cggagcgagt	gggggccggc	1080
gcgcccgtct	acatggctgc	ggtcctcgag	tatctgaccg	ccgagatcct	ggagctggcg	1140
ggcaacgcgg	ctcgggacaa	caagaagacg	cgcatcatcc	ctcgtcacct	ccagctggcc	1200
atccgcaacg	acgaggaact	gaacaagctg	ctgggcaaag	tcaccatcgc	ccagggcggc	1260
gtcttgccta	acatccaggo	: cgtactgctc	cctaagaaga	cggagagtca	ccacaaggca	1320
aagggcaagt	gaggetgaeg	teeggeecaa	gtgggcccag	cccggcccgc	gtctcgaagg	1380
ggcacctgtg	aactcaaaag	gctcttttca	gagccaccca	cgttttcaaa	taaaagagtt	1440
gttaatgctg	gecaetetea	gtccagcgtt	cctcagtagt	gaatagcgaa	cctggagctg	1500
acgggacggg	acgggacggg	g acgggacggg	geggggeggg	gcggggcggg	gtgtgtgtgt	1560
gtgcgcgccg	tettecatet	ggagcacgta	actgccttgg	ctcttcgatg	agtgggtccc	1620
cagtcctagg	acttcccago	g gcaggtgcag	g gcaccaaacg	teetgggege	: cgccacggtc	1680
cgctccacac	: agtcacaaa	accagegee	g cgggcagtac	: ccaacgcgct	gaagtgttgc	1740
gcgcggagcg	gegettee					1759
.010	•					
<210> 91 <211> 123	14					
<212> DNA						
<213> Hor	no sapien					
<400> 91 ggtcactctc	c tactcaagt	t ctacttata	t aacagcaats	g cagetetett	cataaagctg	60

gctgttgtgt agtttatgtt ggggaatcag ttcatggttt aaaaagttct gtcaatgcag

PCT/US03/18934 WO 03/106648

agaacaagcc	ggtgtgtttt	atggagaggc	tgtttaatct	ccactgtgag	acagtaaata	180
tttggctgtt	gcatcatcgt	gaagcttatg	atcacagtct	ggcgccatct	ccatactaga	240
ctggagtctg	atctgtcccg	gcccagtgtc	ctccaggaac	ctggcccctc	atgcctccgt	300
gcttgcgcgt	gtgccatttc	ctctctccag	aggacctttc	ctgcctagga	ctcatcattg	360
tccccttcct	ggtaagccat	ccccgacctt	ccaggcagaa	cctgctggct	tctcctcagc	420
actttgcatg	gatttcatgt	cacagtcctg	ggtgcactgt	gtcgccctct	ctatgtgtca	480
gcctcccgtc	ccctaccgtg	ggctcctcca	gggaggtgtg	gacattcatc	ctcttccagg	540
cagccctcag	gaatccaggg	agaagataag	gaggcggggc	gggcggaggg	gggtgctcca	600
cacactcaga	acactttcct	ctgcacttac	ttcattctgg	tttttcttt	gggtccttgg	660
tgtttttaaa	taaacccttt	cctgtagttt	geteceette	catggagggc	tgtttcgagc	720
acagatetge	tgggtgtctg	tatttacaaa	gagaaggggc	cactcgtgtg	tgagcagcac	780
cgagggacag	aggtaccttg	cctgcttgtg	tcccctccaa	gtccttctga	tattttcctt	840
tccagctgtt	gcctagtttc	ctggtattaa	ggagaatcaa	ctctctggat	aaacgtggta	900
aatatggccc	atagtcccat	ctttttacag	gcattttta	cacctggagc	agccagagga	960
cgcatgcatg	gctcttcgga	aggtaattta	gggatcaccc	atgtaagttt	cctaaggatt	1020
tctttaacat	ggttcttctg	attcagtccg	gccaattaaa	tctaaatcca	cccctgaaag	1080
ccatctggtg	tggataacaa	gcccacaaat	gagcagtcag	ctttttgtgc	cctttagggc	1140
ctgggacaac	cacgggatct	aaaaggggct	ggaactagag	gtcttgagct	cctgttccta	1200
aaatcatctt	catcctatat	ctgcagtctt	ctcc			1234
	•					
<210> 92 <211> 730)					
<212> DNA <213> Hor	no sapien					
<400> 92						
	gagaaagaac	tgactgaaac	gtttgagata	tataggaaac	atcaaaaggt	60
gataaaattt	ccctagaato	tccactatct	caaagatgaa	gaaagttctc	ctcctgatca	120
cagccatctt	gggcagtggc	: tgttggtttc	ccagtctctc	aagaccagga	acgagaaaaa	180
agaagtgtaa	gttacctttt	ctcttttta	catatcagtg	acagcgatga	attagcttca	240
gggtttttt	g tgttccctta	. cccatatcca	tttcgcccac	: ttccaccaat	tccatttcca	300
agatttccat	ggtttagacg	, taattttcct	attccaatac	ctgaatctgc	ccctacaact	360
ccccttccta	a gcgaaaagta	aacaagaagg	aaaagtcacg	, ataaacctgg	tcacctgaaa	420
ttgaaattga	a gccacttcct	: tgaagaatca	aaattcctgt	: taataaaaga	aaaacaaatg	480

· · · · · · · · · · · · · · · · · · ·	E40
taattgaaat agcacacagc attototagt caatatottt agtgatotto tttaataaac	540
atgaaagcaa atcactaaag atattgacta gagaatgctg tgtgctattt caatatcttt	600
agtgatcttc tttaataaac atgaaagcat aaaaaaaaa agacgaaaaa aaaaggctgg	660
gggcaccctg ggacaaagcg gtcccggggg ggattggttc ccggccaatt ccacaataag	720
ccgcacaaga	730
<210> 93 <211> 1159	
<212> DNA <213> Homo sapien	
- <400> 93	
ggggacagat ttctccattc cattatacct ttgagtatat aaaacagcta caatattcca	60
gggccagtca cttgccattt ctcataacag cgtcagagag aaagaactga ctgaaacgtt	120
tgagatatat aggaaacatc aaaaggtgat aaaatttccc tagaatctcc actatctcaa	180
agatgaagaa agttctcctc ctgatcacag ccatcttggc agtggctgtt ggtttcccag	240
tctctcaaga ccaggaacga gaaaaaagaa gtgtaagtta ccttttctct tttttacata	300
tcagtgacag cgatgaatta gcttcagggt tttttgtgtt cccttaccca tatccatttc	360
gcccacttcc accaattcca tttccaagat ttccatggtt tagacgtaat tttcctattc	420
caatacctga atctgcccct acaactcccc ttcctagcga aaagtaaaca agaaggaaaa	480
gtcacgataa acctggtcac ctgaaattga aattgagcca cttccttgaa gaatcaaaat	540
tcctgttaat aaaagaaaaa caaatgtaat tgaaatagca cacagcattc tctagtcaat	600
atctttagtg atcttcttta ataaacatga aagaagatca ctaaagatat tgactagaga	660
atgctgtgtg ctatttcaat tacatttgtt tttctttaat aaacatgaat tttgattctt	720
caaggaagtg gctcaatttc aatttcaggt gacctgaaat aaataacaga catatggtta	780
ttaattgcaa tgggtcattt tcttggaaac atatacattt tctgcatttt aatgacaact	840
attggcttaa aaatatatct agttcaagga ctgggaaacc atctgctcaa gatgtagaaa	900
gaaagcaaag gtctttagtg gtaagtagta gctgaaatat ttttttccta gaacagtcct	960
ctgggttcta atttaatctt agataagatt aaattatata tattaaatta taaattatta	1020
tagtagatta gatctatagt ctatagtata gattatattt cctcaattta tctagtaatt	1080
gacacaccat ccactttgtt tttgatgtga tgaaatgaca ggggccactg ttataggtga	1140
agcatgaagc ctttaaaat	1159

<210> 94 <211> 1493

<212> DNA

<213> Homo sapien

<400> 94 ggagcccagc cgtgggattt tcaggtgttt tcatttggtg atcaggactg aacagagaga 60 actcaccatg gagtttgggc tgagctggct ttttcttgtg gctattttaa aaggtgtcca 120 gtgtgaggtg cagctgttgg agtctggggg aggcttggta cagcctgggg ggtccctgag 180 acteteetgt geageetetg gatteacett tageatetat gecatgaget gggteegeea 240 ggctccaggg aaggggctgg agtgggtcgc aagtatcagt ttcagtggtg gtagtacata 300 ctacgcagac tccgtgaagg gccgtttcac catctccaga gacaattcca agaccacgat 360 gcatctccac atgaacagcc tgagaaccga cgacacggcc gtctactact gtgcgaaacc 420 gtttccgtat tttgactact ggggccaggg aaccctggtc accgtctcga gtggcgatgg 480 gtccagtggc ggtagcgggg gcgcgtcgac tggcgaagtt gtgttgacgc agtttccagg 540 gcaccetgte tetgteteca ggggaaagag ccaccetete etgeagggee agteagagtg 600 cttagcagca gctacttagc ctggtatcag cagagacctg gccaggctcc caggctcctc 660 gtttatagtg catctgtgcg gcccaatgat attccagtca gggtccgtgg cagtgggtct 720 gggacagagt tcactctcac catcagcaga ctggtaacct gaagattttg cagtgtatta 780 ctgtcaacag ctatgggggc tcacctgacg tggactttcg ccccggggac caaggtggaa 840 gtccaaacga actgtggctg caccatctgt cttcatcttc ccgccatctg atgagcagtt 900 gaaatctgga actgeetetg ttgtgtgeet getgaataae ttetateeca gagaggeeaa 960 agtacagtgg aaggtggata acgccctacc aatcgggtaa ctcccaggag agtgtcacag 1020 agcaggacag cacaggacag acacctacag cctcagcagc accctgacgc tgagcaaagc 1080 agactacgag aaacacaaac tctacgcctg cgaagtcacc catcagggcc tgagctcgcc 1140 cgtcacaaag agcttcaaca ggggagagtg ttagagggag aagtgccccc acctgctcct 1200 cagttccage ctgaccccct cccatccttt ggcctctgac cctttttcca caggggacct 1260 acccctattg cggtcctcca gctcatcttt cacctcaccc ccctcctcct ccttggcttt 1320 aattatgcta atgttggagg gagcctgact aaataaagtg aatctttaaa acacaaaaaa 1380 aaggaaaaca aaaaaacaaa aaaaaaaaaa acacgcgggc ggacacccgg ggacaacggg 1440 gteccegggg teacactggt taccegteca attteccaca aaacaceegg acc 1493

<210> 95

<211> 177

<212> PRT

<213> Homo sapien

<400> 95

PCT/US03/18934 WO 03/106648

Met Asn Ser Gly Lys Arg Arg Leu Pro Trp Arg Leu Arg Ser Gly Val

Pro Ser Pro Pro Gly Leu Leu Ala Pro Ala Pro Ala Pro Cys Ala Pro

Gly Gly His Arg Arg Ala Pro Gly Pro Arg Arg Val Arg Glu Thr Pro 40

Arg Thr Gly Gly Gly Ile Gly Pro Pro Ser Phe Gly Gly Lys Gly

Gly Trp Lys Glu Glu Gly Ser Gly Val Gly Glu Ser Trp Ser Phe Gly

Ile Phe Ser Pro Gly Gln Ala Val Leu Arg Ala Leu Arg Cys Val Ser 85

Lys Cys Trp Glu Asp Ser Ala Gly Lys Gly Leu Arg Thr Arg Pro Ala 105

Gly Thr Gly Val Ala Ala Ser Glu Gly Arg Gly Glu Pro Met Ala Ser 120

Arg Leu Trp Thr Arg Arg Pro Ser Pro Gly Arg Ser Ala Arg Ser Pro 130

Pro Pro Ala Ser Cys Ala Gly Pro Cys Pro Ala Ser Pro Ala Met Val 155 145

Pro His Pro Pro Pro Arg Glu Arg Pro Cys Pro Pro Ile Leu His Phe 165

Pro

<210> 96

<211> 55 <212> PRT <213> Homo sapien

<400> 96

Met Gln Asn Ser Thr Ser Ser Gly Leu Cys Val Asn Val Pro Pro Phe 5

Pro Pro Leu Ser Gly Cys Leu Asn Val Phe Pro Phe His Leu Lys

9.1

30 25 20

Leu Cys Leu Asp Val Leu His Cys His His Leu Phe Leu Arg Lys Arg 40

Cys Val Pro His Pro Asn Pro

<210> 97 <211> 24 <212> PRT <213> Homo sapien

<400> 97

Met Asp His Phe Tyr Leu Leu Ser Asp Thr Tyr Leu Leu Gly Cys Glu 5 . 10

Pro Gln Gly Gly Leu Leu Leu Gly 20

<210> 98

<211> 646

<212> PRT

<213> Homo sapien

<400> 98

Met Glu Pro Ala Ala Gly Phe Leu Ser Pro Arg Pro Phe Gln Arg Ala 5

Ala Ala Ala Pro Ala Pro Pro Ala Gly Pro Gly Pro Pro Pro Ser Ala 25

Leu Arg Gly Pro Glu Leu Glu Met Leu Ala Gly Leu Pro Thr Ser Asp

Pro Gly Arg Leu Ile Thr Asp Pro Arg Ser Gly Arg Thr Tyr Leu Lys

Gly Arg Leu Leu Gly Lys Gly Gly Phe Ala Arg Cys Tyr Glu Ala Thr

Asp Thr Glu Thr Gly Ser Ala Tyr Ala Val Lys Val Ile Pro Gln Ser

Arg Val Ala Lys Pro His Gln Arg Glu Lys Ile Leu Asn Glu Ile Glu 105

Leu His Arg Asp Leu Gln His Arg His Ile Val Arg Phe Ser His His 115 120 125

Phe Glu Asp Ala Asp Asn Ile Tyr Ile Phe Leu Glu Leu Cys Ser Arg · 130 135 140

Lys Ser Leu Ala His Ile Trp Lys Ala Arg His Thr Leu Leu Glu Pro 145 150 155 160

Glu Val Arg Tyr Tyr Leu Arg Gln Ile Leu Ser Gly Leu Lys Tyr Leu 165 170 175

His Gln Arg Gly Ile Leu His Arg Asp Leu Lys Leu Gly Asn Phe Phe 180 185 190

Ile Thr Glu Asn Met Glu Leu Lys Val Gly Asp Phe Gly Leu Ala Ala 195 200 205

Arg Leu Glu Pro Pro Glu Gln Arg Lys Lys Thr Ile Cys Gly Thr Pro 210 215 220

Asn Tyr Val Ala Pro Glu Val Leu Leu Arg Gln Gly His Gly Pro Glu 225 230 235 240

Ala Asp Val Trp Ser Leu Gly Cys Val Met Tyr Thr Leu Leu Cys Gly 245 250 255

Ser Pro Pro Phe Glu Thr Ala Asp Leu Lys Glu Thr Tyr Arg Cys Ile 260 265 270

Lys Gln Val His Tyr Thr Leu Pro Ala Ser Leu Ser Leu Pro Ala Arg 275 280 285

Gln Leu Leu Ala Ala Ile Leu Arg Ala Ser Pro Arg Asp Arg Pro Ser 290 295 300

Ile Asp Gln Ile Leu Arg His Asp Phe Phe Thr Lys Gly Tyr Thr Pro 305 310 315 320

Asp Arg Leu Pro Ile Ser Ser Cys Val Thr Val Pro Asp Leu Thr Pro 325 330 335

Pro Asn Pro Ala Arg Ser Leu Phe Ala Lys Val Thr Lys Ser Leu Phe 340 345 350

Gly Arg Lys Lys Ser Lys Asn His Ala Gln Glu Arg Asp Glu Val

WO 03/106648

93

365

355 360

Ser Gly Leu Val Ser Gly Leu Met Arg Thr Ser Val Gly His Gln Asp 370 375 380

Ala Arg Pro Glu Ala Pro Ala Ala Ser Gly Pro Ala Pro Val Ser Leu 385 390 395 400

Val Glu Thr Ala Pro Glu Asp Ser Ser Pro Arg Gly Thr Leu Ala Ser 405 410 415

Ser Gly Asp Gly Phe Glu Glu Gly Leu Thr Val Ala Thr Val Val Glu 420 425 430

Ser Ala Leu Cys Ala Leu Arg Asn Cys Ile Ala Phe Met Pro Pro Ala 435 440 445

Glu Gln Asn Pro Ala Pro Leu Ala Gln Pro Glu Pro Leu Val Trp Val 450 455 460

Ser Lys Trp Val Asp Tyr Ser Asn Lys Phe Gly Phe Gly Tyr Gln Leu 465 470 475 480

Ser Ser Arg Arg Val Ala Val Leu Phe Asn Asp Gly Thr His Met Ala 485 490 495

Leu Ser Ala Asn Arg Lys Thr Val His Tyr Asn Pro Thr Ser Thr Lys 500 505 510

His Phe Ser Phe Ser Val Gly Ala Val Pro Arg Ala Leu Gln Pro Gln 515 520 525

Leu Gly Ile Leu Arg Tyr Phe Ala Ser Tyr Met Glu Gln His Leu Met 530 535 540

Lys Gly Gly Asp Leu Pro Ser Val Glu Glu Val Glu Val Pro Ala Pro 545 550 555 560

Pro Leu Leu Gln Trp Val Lys Thr Asp Gln Ala Leu Leu Met Leu 565 570 575

Phe Ser Asp Gly Thr Val Gln Val Asn Phe Tyr Gly Asp His Thr Lys 580 585 590

Leu Ile Leu Ser Gly Trp Glu Pro Leu Leu Val Thr Phe Val Ala Arg 595 600 605

Asn Arg Ser Ala Cys Thr Tyr Leu Ala Ser His Leu Arg Gln Leu Gly 615

Cys Ser Pro Asp Leu Arg Gln Arg Leu Arg Tyr Ala Leu Arg Leu Leu 635 630

Arg Asp Arg Ser Pro Ala

<210> 99

<211> 99

<212> PRT <213> Homo sapien

<400> 99

Met Leu Thr Ser Pro Ser Thr Tyr Val Ile Gln Glu Asn Gly Ser Leu

Val Glu Ile Arg Asn Ile Leu Gly Glu Lys Tyr Ile Arg Arg Val Arg 25

Met Arg Pro Gly Val Ala Cys Ser Val Ser Gln Ala Gln Lys Asp Glu 35

Leu Ile Leu Glu Gly Asn Asp Ile Glu Leu Val Ser Asn Ser Ala Cys 50

Phe Gly Cys Gln Gln Met Pro Gln Ser Val Lys Asn Lys Asp Ile Arg 70

Lys Phe Leu Asp Gly Ile Tyr Val Ser Glu Lys Gly Thr Val Gln Gln

Ala Asp Glu

<210> 100

<211> 220

<212> PRT

<213> Homo sapien

<400> 100

Met Lys Thr Ile Leu Ser Asn Gln Thr Val Asp Ile Pro Glu Asn Gly 5

Met Arg Leu Asp Val Phe Tyr Leu His Leu Tyr Cys Thr Phe Gln Ala

WO 03/106648

20

Leu Cys Gly Leu Thr Ser Val Phe Ser Leu Leu Val Asp Ile Thr Leu

25

PCT/US03/18934

30

Lys Gly Arg Thr Val Ile Val Lys Gly Pro Arg Gly Thr Leu Arg Arg

Asp Phe Asn His Ile Asn Val Glu Leu Ser Leu Leu Gly Lys Lys

Lys Arg Leu Arg Val Asp Lys Trp Trp Gly Asn Arg Lys Glu Leu Ala 90

Thr Val Arg Thr Ile Cys Ser His Val Gln Asn Met Ile Lys Gly Val

Thr Leu Gly Phe Arg Tyr Lys Met Arg Ser Val Tyr Ala His Phe Pro 120

Ile Asn Val Val Ile Gln Glu Asn Gly Ser Leu Val Glu Ile Arg Asn 135 130

Phe Leu Gly Glu Lys Tyr Ile Arg Arg Val Arg Met Arg Pro Gly Val 155 150

Ala Cys Ser Val Ser Gln Ala Gln Lys Asp Glu Leu Ile Leu Glu Gly 165 170

Asn Asp Ile Glu Leu Val Ser Asn Ser Ala Ala Leu Ile Gln Gln Ala

Thr Thr Val Lys Asn Lys Asp Ile Arg Lys Phe Leu Asp Gly Ile Tyr

Val Ser Glu Lys Gly Thr Val Gln Gln Ala Asp Glu 215 210

<210> 101

<211> 47

<212> PRT

<213> Homo sapien

<400> 101

Met Arg Trp His Thr Tyr Leu Cys Cys Leu Lys Val Thr Ile Met Leu

96

Pro Tyr Gln Ala Glu Asn Val Thr Thr Ile Trp Arg Phe Arg Arg Val

Phe Leu Ser Glu Ser Val Met Asn Thr Leu Val Gly Trp Ile Gln 40

<210> 102

<211> 51

. <212> PRT

<213> Homo sapien

<400> 102

Met Ser Ser His Lys Thr Phe Arg Ile Lys Arg Phe Leu Ala Lys Lys

Gln Lys Gln Asn Arg Pro Ile Pro Gln Trp Ile Arg Met Lys Thr Gly

Asn Lys Ile Arg Tyr Asn Ser Lys Arg Arg His Trp Arg Arg Thr Lys 40

Leu Gly Leu 50

<210> 103 <211> 53 <212> PRT <213> Homo sapien

<400> 103

Met Glu Arg Val Leu Glu Lys Gln Glu Lys Lys Ser Cys Leu Lys Pro

His Val Tyr Cys Arg His Arg Arg Glu Trp Arg His Leu Ser Ile Leu 20 25

Phe Ser Ile Ser Thr Ala Pro Gln Asn Thr Tyr Ile Leu Phe Phe

Phe Ser Glu Met Ser 50

<210> 104 <211> 131

<212> PRT

<213> Homo sapien

<400> 104

WO 03/106648 PCT/US03/18934

Met Arg Val Ser Glu Arg Ala Leu Lys Asn Val Ala Cys Gln Gln His 1 5 10 15

Met Asp Ser Leu Phe Arg Val Cys Ile Tyr Pro Ala Asp Thr Pro Ile 20 25 30

Pro Pro Ser Leu Pro Pro Arg Ala Ser Asp Phe Leu Phe His Pro Ala 35 40 45

Ala Tyr Tyr Trp Gln Gly Met Ala Gly Val Asn Leu Gly Ser Val Tyr 50 55 60

His Gln Gly Lys Leu Pro Ser Leu Leu Gln Ser Leu Trp Lys Gly Thr 65 70 75 80

Phe Phe Arg Val Gln His Val Pro Met His Ser Gln Val Pro Lys Val 85 90 95

Thr Tyr Thr Tyr Ile Val Asn Ile Val Pro Thr Ala Leu Gln Thr Phe
100 105 110

Ile Trp Pro Leu Ala Val His Thr Ser Gln Pro Ile His Val Phe Met
115 120 125

Met Met Phe 130

<210> 105

<211> 117

<212> PRT

<213> Homo sapien

<400> 105

Met Ser Ser Phe Gln Gly Phe Ile Phe Gly Gly Lys Lys Ile Pro Gln 1 5 10 15

Asp Ala Gly Cys Pro Ala Ser His Asn Gly Tyr Ala Pro Ile Glu Thr 20 25 30

Ser Ser Gly Arg Val Thr Lys Leu Lys Arg Lys Gln Phe Gln Ala Glu 35 40 45

Gly His Lys Leu Arg Ala Glu Ser Leu Leu Leu Thr Ala Ile Gln Ala 50 55 60

Gln Gly Leu Cys Gly Ala Gly Phe Leu Lys Ala Gly Leu Tyr Leu Gly

PCT/US03/18934 WO 03/106648

98

80 75 65 70

Arg Arg Glu Arg Thr Arg Gly Leu Asp Ala Gly Trp Arg Phe Cys Asp

Leu Leu Cys Tyr Lys Phe Lys Asn Lys Thr Cys Trp Ile Arg Ser Phe 100 105

Ser Tyr Leu Leu Lys 115

<210> 106

<211> 93 <212> PRT <213> Homo sapien

<400> 106

Met Pro Gly Val Thr Val Lys Asp Val Asn Gln Glu Phe Val Arg

Ala Leu Ala Ala Phe Leu Lys Lys Ser Gly Glu Ala Glu Ser Pro Arg 25

Met Gly Gly Ile Pro Phe Lys Leu Ala Lys Ala Gln Arg Ser Leu Leu

Pro Thr Met Arg Thr Gly Ser Thr Arg Gly Ala Ala Phe Gln Gln Arg

Arg Ala Thr Cys Tyr Leu Pro Gly Val Gly Ala Gly Gly Trp Ala Ser

Ile Glu Pro Lys Asp Ser Ile Gly Gly Glu Arg Ser Glu

<210> 107 <211> 148 <212> PRT

<213> Homo sapien

<400> 107

Met Leu Leu Val Gly Ser Cys His Leu Ser Gly Asp Ser Val Gln Ile

Ser Leu Ser Leu Arg Cys Gln Phe Ala Ala Ala Ile Leu Val Leu Phe . 25

WO 03/106648 PCT/US03/18934

His His Phe Gln Pro Leu Gln Gly Leu Glu Asp Pro Ala Gly His Thr 35 40 45

Leu Gly Ala Ser Ala Glu Val Ala Gly His Asp Ala Val Ser Leu Thr 50 55 60

Ser Pro Ile Asp Leu Gly His Gly Ala Asn Pro Ser Ala Thr Pro Glu 65 70 75 80

Val Gln Val Pro Arg Cys Gly Ser Ser Ser Arg Val Glu Pro Val Leu 85 90 95

Ile Val Gly Ser Lys Leu Phe Val Leu Gly Gln Leu Asp Gly Ile His
100 105 110

Pro Phe Gly Asp Phe Gln Leu Pro Gly Leu Phe Glu Glu Gly Cys Gln 115 120 125

Ser Ser Asp Glu Leu Leu Val His Val Phe Tyr Ser Asn Ser Arg 130 135 140

His Arg Ala Ala 145

<210> 108

<211> 172

<212> PRT

<213> Homo sapien

<400> 108

Met Val Cys Gly Gly Phe Ala Cys Ser Ser Leu Arg Val Val Gly Val 1 5 10 15

Val Ile Ala Val Gly Ile Phe Leu Phe Leu Ile Ala Leu Val Gly Leu 20 25 30

Ile Gly Ala Val Lys His His Gln Val Leu Leu Phe Phe Tyr Met Ile 35 40 45

Ile Leu Leu Leu Val Phe Ile Val Gln Phe Ser Val Ser Cys Ala Cys 50 55 60

Leu Ala Leu Asn Gln Glu Gln Gln Gly Gln Leu Leu Glu Val Gly Trp 65 70 75 80

Asn Asn Thr Ala Ser Ala Arg Asn Asp Ile Gln Arg Asn Leu Asn Cys 85 90 95

PCT/US03/18934 WO 03/106648

Cys Gly Phe Arg Ser Val Asn Pro Asn Asp Thr Cys Leu Ala Ser Cys 105

Val Lys Ser Asp His Ser Cys Ser Pro Cys Ala Pro Ile Ile Gly Glu 120 115

Tyr Ala Gly Glu Val Leu Arg Phe Val Gly Gly Ile Gly Leu Phe Phe 130

Ser Phe Thr Glu Ile Leu Gly Val Trp Leu Thr Tyr Arg Tyr Arg Asn 155 150 145

Gln Lys Asp Pro Arg Ala Asn Pro Ser Ala Phe Leu 165

<210> 109

<211> 55

<212> PRT <213> Homo sapien

<400> 109

Met Asn Phe Asp Tyr Ser Val Asn Tyr Trp Asn Val Ser Ser Phe Asn 5

Phe Lys Asn Asn Tyr Phe Thr Ser Ser Asp Trp Gly Phe Pro Glu Ile

Cys Glu Glu Gln Arg Arg Pro Pro Ala Thr Gln His His Asp Gly 35

Ala Leu Thr Gly Ser Glu Ser

<210> 110 <211> 125 <212> PRT

<213> Homo sapien

Met Gln Ala Leu Pro Gln Val Glu Lys Arg Arg Leu Arg Leu Pro Arg 1 5

Glu Val Gln Cys Pro Ala Leu Leu Arg Arg Met Leu Leu Ile Pro Leu 20

Trp Lys Ile Pro Ala Pro Thr Thr Lys Ser Cys Arg Glu Thr Phe

35 40 45

Leu Lys Trp Leu Ser Val Ser Ala Ala Glu Arg Thr Thr Gly Ser Trp 50 55 60

Thr Ser Phe Gln Pro Arg Asp Thr Tyr His Pro Met Ser Glu Tyr Pro 65 70 75 80

Thr Tyr His Thr His Gly Arg Tyr Val Pro Pro Ser Ser Thr Asp Arg 85 90 95

Ser Pro Tyr Glu Lys Val Ser Ala Gly Asn Gly Gly Ser Ser Leu Ser 100 105 110

Tyr Thr Asn Pro Ala Val Ala Ala Thr Ser Ala Asn Leu 115 120 125

<210> 111

<211> 1256

<212> PRT

<213> Homo sapien

<400> 111

Met Thr Pro Gly Thr Gln Ser Pro Phe Phe Leu Leu Leu Leu Thr
1 5 10 15

Val Leu Thr Val Val Thr Gly Ser Gly His Ala Ser Ser Thr Pro Gly 20 25 30

Gly Glu Lys Glu Thr Ser Ala Thr Gln Arg Ser Ser Val Pro Ser Ser 35 40 45

Thr Glu Lys Asn Ala Val Ser Met Thr Ser Ser Val Leu Ser Ser His 50 55 60

Ser Pro Gly Ser Gly Ser Ser Thr Thr Gln Gly Gln Asp Val Thr Leu 65 70 75 80

Ala Pro Ala Thr Glu Pro Ala Ser Gly Ser Ala Ala Thr Trp Gly Gln 85 90 95

Asp Val Thr Ser Val Pro Val Thr Arg Pro Ala Leu Gly Ser Thr Thr 100 105 110

Pro Pro Ala His Asp Val Thr Ser Ala Pro Asp Asn Lys Pro Ala Pro 115 120 125

Gly Ser Thr Ala Pro Pro Ala His Gly Val Thr Ser Ala Pro Asp Thr 130 135 140

Arg Pro Ala Pro Gly Ser Thr Ala Pro Pro Ala His Gly Val Thr Ser 145 150 155 160

Ala Pro Asp Thr Arg Pro Ala Pro Gly Ser Thr Ala Pro Pro Ala His 165 170 175

Gly Val Thr Ser Ala Pro Asp Thr Arg Pro Pro Pro Gly Ser Thr Ala 180 185 190

Pro Pro Ala His Gly Val Thr Ser Ala Pro Asp Thr Arg Pro Ala Pro 195 200 205

Gly Ser Thr Ala Pro Pro Ala His Gly Val Thr Ser Ala Pro Asp Thr 210 215 220

Arg Pro Ala Pro Gly Ser Thr Ala Pro Pro Ala His Gly Val Thr Ser 225 230 235 240

Ala Pro Asp Thr Arg Pro Ala Pro Gly Ser Thr Ala Pro Pro Ala His 245 250 255

Gly Val Thr Ser Ala Pro Asp Thr Arg Pro Ala Pro Gly Ser Thr Ala 260 265 270

Pro Pro Ala His Gly Val Thr Ser Ala Pro Asp Thr Arg Pro Ala Pro 275 280 285

Gly Ser Thr Ala Pro Pro Ala His Gly Val Thr Ser Ala Pro Asp Thr 290 295 300

Arg Pro Ala Pro Gly Ser Thr Ala Pro Pro Ala His Gly Val Thr Ser 305 310 315 320

Ala Pro Asp Thr Arg Pro Ala Pro Gly Ser Thr Ala Pro Pro Ala His 325 330 335

Gly Val Thr Ser Ala Pro Asp Thr Arg Pro Ala Pro Gly Ser Thr Ala 340 345 350

Pro Pro Ala His Gly Val Thr Ser Ala Pro Asp Thr Arg Pro Ala Pro 355 360 365

Gly Ser Thr Ala Pro Pro Ala His Gly Val Thr Ser Ala Pro Asp Thr 370

Arg Pro Ala Pro Gly Ser Thr Ala Pro Pro Ala His Gly Val Thr Ser 390

Ala Pro Asp Thr Arg Pro Ala Pro Gly Ser Thr Ala Pro Pro Ala His 410 405

Gly Val Thr Ser Ala Pro Asp Thr Arg Pro Ala Pro Gly Ser Thr Ala 425 420

Pro Pro Ala His Gly Val Thr Ser Ala Pro Asp Thr Arg Pro Ala Pro 445 440 435

Gly Ser Thr Ala Pro Pro Ala His Gly Val Thr Ser Ala Pro Asp Thr 450 455

Arg Pro Ala Pro Gly Ser Thr Ala Pro Pro Ala His Gly Val Thr Ser

Ala Pro Asp Thr Arg Pro Ala Pro Gly Ser Thr Ala Pro Pro Ala His 485 490

Gly Val Thr Ser Ala Pro Asp Thr Arg Pro Ala Pro Gly Ser Thr Ala 505

Pro Pro Ala His Gly Val Thr Ser Ala Pro Asp Thr Arg Pro Ala Pro

Gly Ser Thr Ala Pro Pro Ala His Gly Val Thr Ser Ala Pro Asp Thr

Arg Pro Ala Pro Gly Ser Thr Ala Pro Pro Ala His Gly Val Thr Ser 550

Ala Pro Asp Thr Arg Pro Ala Pro Gly Ser Thr Ala Pro Pro Ala His 570 575 565

Gly Val Thr Ser Ala Pro Asp Thr Arg Pro Ala Pro Gly Ser Thr Ala 580 585

Pro Pro Ala His Gly Val Thr Ser Ala Pro Asp Thr Arg Pro Ala Pro 600 605 595

Gly Ser Thr Ala Pro Pro Ala His Gly Val Thr Ser Ala Pro Asp Thr

104

610 615 620

Arg Pro Ala Pro Gly Ser Thr Ala Pro Pro Ala His Gly Val Thr Ser 625 630 635

- Ala Pro Asp Thr Arg Pro Ala Pro Gly Ser Thr Ala Pro Pro Ala His
 645 650 655
- Gly Val Thr Ser Ala Pro Asp Thr Arg Pro Ala Pro Gly Ser Thr Ala 660 665 670
- Pro Pro Ala His Gly Val Thr Ser Ala Pro Asp Thr Arg Pro Ala Pro 675 680 685
- Gly Ser Thr Ala Pro Pro Ala His Gly Val Thr Ser Ala Pro Asp Thr 690 695 700
- Arg Pro Ala Pro Gly Ser Thr Ala Pro Pro Ala His Gly Val Thr Ser 705 710 715 720
- Ala Pro Asp Thr Arg Pro Ala Pro Gly Ser Thr Ala Pro Pro Ala His
 725 730 735
- Gly Val Thr Ser Ala Pro Asp Thr Arg Pro Ala Pro Gly Ser Thr Ala 740 745 750
- Pro Pro Ala His Gly Val Thr Ser Ala Pro Asp Thr Arg Pro Ala Pro 755 760 765
- Gly Ser Thr Ala Pro Pro Ala His Gly Val Thr Ser Ala Pro Asp Thr 770 775 780
- Arg Pro Ala Pro Gly Ser Thr Ala Pro Pro Ala His Gly Val Thr Ser 785 790 795 800
- Ala Pro Asp Thr Arg Pro Ala Pro Gly Ser Thr Ala Pro Pro Ala His 805 810 815
- Gly Val Thr Ser Ala Pro Asp Thr Arg Pro Ala Pro Gly Ser Thr Ala 820 825 830
- Pro Pro Ala His Gly Val Thr Ser Ala Pro Asp Thr Arg Pro Ala Pro 835 840 845
- Gly Ser Thr Ala Pro Pro Ala His Gly Val Thr Ser Ala Pro Asp Thr 850 855 860

Arg Pro Ala Pro Gly Ser Thr Ala Pro Pro Ala His Gly Val Thr Ser 865 870 875 880

- Ala Pro Asp Thr Arg Pro Ala Pro Gly Ser Thr Ala Pro Pro Val His 885 890 895
- Gly Val Thr Ser Ala Pro Asp Ser Arg Ser Gly Ser Gly Phe Leu Pro 900 905 910
- Pro Pro Ala Ala His Gly Val Thr Ser Ala Pro Asp Thr Arg Pro Ala 915 920 925
- Pro Gly Ser Thr Ala Pro Pro Ala His Gly Val Thr Ser Ala Pro Asp 930 935 940
- Asn Arg Pro Ala Leu Gly Ser Thr Ala Pro Pro Val His Asn Val Thr 945 950 955 960
- Ser Ala Ser Gly Ser Ala Ser Gly Ser Ala Ser Thr Leu Val His Asn 965 970 975
- Gly Thr Ser Ala Arg Ala Thr Thr Thr Pro Ala Ser Lys Ser Thr Pro 980 985 990
- Phe Ser Ile Pro Ser His His Ser Asp Thr Pro Thr Thr Leu Ala Ser
- His Ser Thr Lys Thr Asp Ala Ser Ser Thr His His Ser Thr Val 1010 1015 1020
- Pro Pro Leu Thr Ser Ser Asn His Ser Thr Ser Pro Gln Leu Ser 1025 1030 1035
- Thr Gly Val Ser Phe Phe Phe Leu Ser Phe His Ile Ser Asn Leu 1040 1045 1050
- Gln Phe Asn Ser Ser Leu Glu Asp Pro Ser Thr Asp Tyr Tyr Gln 1055 1060 1065
- Glu Leu Gln Arg Asp Ile Ser Glu Met Phe Leu Gln Ile Tyr Lys 1070 1075 1080
- Gln Gly Gly Phe Leu Gly Leu Ser Asn Ile Lys Phe Arg Pro Gly 1085 1090 1095

WO 03/106648

106

Ser Val Val Val Gln Leu Thr Leu Ala Phe Arg Glu Gly Thr Ile 1105 1100

PCT/US03/18934

Asn Val His Asp Val Glu Thr Gln Phe Asn Gln Tyr Lys Thr Glu 1120

Ala Ala Ser Arg Tyr Asn Leu Thr Ile Ser Asp Val Ser Val Ser 1135

Asp Val Pro Phe Pro Phe Ser Ala Gln Ser Gly Ala Gly Val Pro 1150

Gly Trp Gly Ile Ala Leu Leu Val Leu Val Cys Val Leu Val Ala

Leu Ala Ile Val Tyr Leu Ile Ala Leu Ala Val Cys Gln Cys Arg 1180 1175

Arg Lys Asn Tyr Gly Gln Leu Asp Ile Phe Pro Ala Arg Asp Thr 1195 1200 1190

Tyr His Pro Met Ser Glu Tyr Pro Thr Tyr His Thr His Gly Arg 1210 1215 1205

Tyr Val Pro Pro Ser Ser Thr Asp Arg Ser Pro Tyr Glu Lys Val 1230 1220 1225

Ser Ala Gly Asn Gly Gly Ser Ser Leu Ser Tyr Thr Asn Pro Ala 1240 1245 1235

Val Ala Ala Thr Ser Ala Asn Leu 1255 1250

<210> 112

<211> 728

<212> PRT <213> Homo sapien

<400> 112

Met Thr Pro Gly Thr Gln Ser Pro Phe Phe Leu Leu Leu Leu Thr 5

Val Leu Thr Val Val Thr Gly Ser Gly His Ala Ser Ser Thr Pro Gly 20 25 30

Gly Glu Lys Glu Thr Ser Ala Thr Gln Arg Ser Ser Val Pro Ser Ser

107

...

45 40 35 Thr Glu Lys Asn Ala Val Ser Met Thr Ser Ser Val Leu Ser Ser His 55 Ser Pro Gly Ser Gly Ser Ser Thr Thr Gln Gly Gln Asp Val Thr Leu Ala Pro Ala Thr Glu Pro Ala Ser Gly Ser Ala Ala Thr Trp Gly Gln Asp Val Thr Ser Val Pro Val Thr Arg Pro Ala Leu Gly Ser Thr Thr Pro Pro Ala His Asp Val Thr Ser Ala Pro Asp Asn Lys Pro Ala Pro 120 Gly Ser Thr Ala Pro Pro Ala His Gly Val Thr Ser Ala Pro Asp Thr 135 Arg Pro Ala Pro Gly Ser Thr Ala Pro Pro Pro Ala His Gly Val Thr 150 155 Ser Ala Pro Asp Thr Arg Pro Pro Pro Gly Ser Thr Ala Pro Pro Ala 165 170 His Gly Val Thr Ser Ala Pro Asp Thr Arg Pro Ala Pro Gly Ser Thr 185 180 Ala Pro Pro Ala His Gly Val Thr Ser Ala Pro Asp Asn Arg Pro Ala 200 195 Leu Gly Ser Thr Ala Pro Pro Val His Asn Val Thr Ser Ala Ser Gly 210 215 Ser Ala Ser Gly Ser Ala Ser Thr Leu Val His Asn Gly Thr Ser Ala Arg Ala Thr Thr Thr Pro Ala Ser Lys Ser Thr Pro Phe Ser Ile Pro Ser His His Ser Asp Thr Pro Thr Thr Leu Ala Ser His Ser Thr Lys

Thr Asp Ala Ser Ser Thr His His Ser Thr Val Pro Pro Leu Thr Ser 275 280 285

WO 03/106648

- Ser Asn His Ser Thr Ser Pro Gln Leu Ser Thr Gly Val Ser Phe Phe 290 295 300
- Phe Leu Ser Phe His Ile Ser Asn Leu Gln Phe Asn Ser Ser Leu Glu 305 310 315 320
- Asp Pro Ser Thr Asp Tyr Tyr Gln Glu Leu Gln Arg Asp Ile Ser Glu 325 330 335
- Met Val Ser Ile Gly Leu Ser Phe Pro Ser Ser Pro Glu Ala Ala Ile 340 345 350
- Arg Thr Val His Thr Leu Cys Ile Lys Pro Glu Ser Phe Pro Ser His 355 360 365
- Pro Ser Phe Cys Arg Phe Ile Asn Lys Gly Val Phe Trp Ala Ser Pro 370 375 380
- Ile Leu Ser Ser Gly Thr Val Leu Gly Val Asp Pro Val Trp Trp Leu 385 390 395 400
- Glu Gly Trp Val Val Val Met Thr Val Gly Gly Thr Gly Arg Thr Tyr 405 410 415
- Gly Trp Gly Lys Ser Arg Glu Pro Glu Leu Gly Pro Val Ala Glu Val 420 425 430
- Pro Ile Phe Pro Val Thr Arg Pro Gly Ser Val Val Val Gln Leu Thr 435 440 445
- Leu Ala Phe Arg Glu Gly Thr Ile Asn Val His Asp Val Glu Thr Gln 450 460
- Phe Asn Gln Tyr Lys Thr Glu Ala Ala Ser Arg Tyr Asn Leu Thr Ile 465 470 475 480
- Ser Asp Val Ser Gly Glu Ala Thr Ser Leu Ala Ala Ala Gln His His 485 490 495
- Ala Gly Ala Leu Ser Phe Gln Cys Leu Gly Pro Arg Ser Phe Leu Ser 500 505 510
- Ala Gly Ser Gly Arg Gly Ala Ser Ser Gly Arg Leu Pro Cys Pro Leu 515 520 525

WO 03/106648

109

PCT/US03/18934

Leu Phe Leu Leu Val Ser Asp Val Pro Phe Pro Phe Ser Ala Gln Ser 530 535 540

Gly Ala Gly Val Pro Gly Trp Gly Ile Ala Leu Leu Val Leu Val Cys 545 550 555 560

Val Leu Val Ala Leu Ala Ile Val Tyr Leu Ile Ala Leu Val Ser Ala 565 570 575

Val Pro Gly Pro Asp Gln Ser Pro Pro Val Glu Gly Ser Ser Met Ala 580 585 590

Cys His Asn Leu Leu Ser Pro Gln Ala Val Cys Gln Cys Arg Arg Lys 595 600 605

Asn Tyr Gly Gln Leu Asp Ile Phe Pro Ala Arg Asp Thr Tyr His Pro 610 615 620

Met Ser Glu Tyr Pro Thr Tyr His Thr His Gly Arg Tyr Val Pro Pro 625 630 635 640

Ser Ser Thr Asp Arg Ser Pro Tyr Glu Lys Val Arg Leu Ala Pro Gln 645 650 655

Ala Arg Gly Ser Arg Gly Phe Gly Trp Ala Arg Ile Leu Lys Gly Val 660 665 670

Leu Gly Lys Pro Lys Glu Leu Gly Arg Gly Glu Lys Trp Arg Glu Val 675 680 685

Ser Arg Gly Gly Pro Gly Lys Asp Glu Gly Gln Arg Ser Glu Glu Phe 690 695 700

Trp Gly Thr Gly Leu Gly Gly Asp Tyr Gly Arg Lys Gly Pro Ser Lys 705 710 715 720

Gly Ser Gly Pro Thr Ala Arg Ile 725

<210> 113

<211> 524

<212> PRT

<213> Homo sapien

<400> 113

Met Thr Pro Gly Thr Gln Ser Pro Phe Phe Leu Leu Leu Leu Thr

110

1 5 10 15

Val Leu Thr Ala Thr Thr Ala Pro Thr Pro Ala Thr Val Val Thr Gly 20 25 30

Ser Gly His Ala Ser Ser Thr Pro Gly Gly Glu Lys Glu Thr Ser Ala 35 40 45

Thr Gln Arg Ser Ser Val Pro Ser Ser Thr Glu Lys Asn Ala Val Ser 50 55 60

Met Thr Ser Ser Val Leu Ser Ser His Ser Pro Gly Ser Gly Ser Ser 65 70 75 80

Thr Thr Gln Gly Gln Asp Val Thr Leu Ala Pro Ala Thr Glu Pro Ala 85 90 95

Ser Gly Ser Ala Ala Thr Trp Gly Gln Asp Val Thr Ser Val Pro Val 100 105 110

Thr Arg Pro Ala Leu Gly Ser Thr Thr Pro Pro Ala His Asp Val Thr 115 120 125

Ser Ala Pro Asp Asn Lys Pro Ala Pro Gly Ser Thr Ala Pro Pro Ala 130 135 140

His Gly Val Thr Ser Ala Pro Asp Thr Arg Pro Ala Pro Gly Ser Thr 145 150 150 160

Ala Pro Pro Ala His Gly Val Thr Ser Ala Pro Asp Thr Arg Pro Ala 165 170 175

Pro Gly Ser Thr Ala Pro Ala Ala His Gly Val Thr Ser Ala Pro Asp 180 185 190

Thr Arg Pro Ala Pro Gly Ser Thr Ala Pro Pro Ala His Gly Val Thr 195 200 205

Ser Ala Pro Asp Asn Arg Pro Ala Leu Gly Ser Thr Ala Pro Pro Val 210 215 220

His Asn Val Thr Ser Ala Ser Gly Ser Ala Ser Gly Ser Ala Ser Thr 225 230 235 240

Leu Val His Asn Gly Thr Ser Ala Arg Ala Thr Thr Thr Pro Ala Ser 245 250 255

- Lys Ser Thr Pro Phe Ser Ile Pro Ser His His Ser Asp Thr Pro Thr
- Thr Leu Ala Ser His Ser Thr Lys Thr Asp Ala Ser Ser Thr His His 280
- Ser Thr Val Pro Pro Leu Thr Ser Ser Asn His Ser Thr Ser Pro Gln 295 290
- Leu Ser Thr Gly Val Ser Phe Phe Phe Leu Ser Phe His Ile Ser Asn 305 310
- Leu Gln Phe Asn Ser Ser Leu Glu Asp Pro Ser Thr Asp Tyr Tyr Gln 330
- Glu Leu Gln Arg Asp Ile Ser Glu Met Phe Leu Gln Ile Tyr Lys Gln 340 345
- Gly Gly Phe Leu Gly Leu Ser Asn Ile Lys Phe Arg Pro Gly Ser Val
- Val Val Gln Leu Thr Leu Ala Phe Arg Glu Gly Thr Ile Asn Val His 375 370
- Asp Val Glu Thr Gln Phe Asn Gln Tyr Lys Thr Glu Ala Ala Ser Arg
- Tyr Asn Leu Thr Ile Ser Asp Val Ser Val Ser Asp Val Pro Phe Pro 410
- Phe Ser Ala Gln Ser Gly Ala Gly Val Pro Gly Trp Gly Ile Ala Leu 425
- Leu Val Leu Val Cys Val Leu Val Ala Leu Ala Ile Val Tyr Leu Ile 440
- Ala Leu Ala Val Cys Gln Cys Arg Arg Lys Asn Tyr Gly Gln Leu Asp 455 450
- Ile Phe Pro Ala Arg Asp Thr Tyr His Pro Met Ser Glu Tyr Pro Thr 470 475 480 465
- Tyr His Thr His Gly Arg Tyr Val Pro Pro Ser Ser Thr Asp Arg Ser 490 485

112

WO 03/106648 PCT/US03/18934

Pro Tyr Glu Lys Val Ser Ala Gly Asn Gly Gly Ser Ser Leu Ser Tyr 505

Thr Asn Pro Ala Val Ala Ala Thr Ser Ala Asn Leu

<210> 114

<211> 515 <212> PRT

<213> Homo sapien

<400> 114

Met Thr Pro Gly Thr Gln Ser Pro Phe Phe Leu Leu Leu Leu Thr 5

Val Leu Thr Val Val Thr Gly Ser Gly His Ala Ser Ser Thr Pro Gly 25 20

Gly Glu Lys Glu Thr Ser Ala Thr Gln Arg Ser Ser Val Pro Ser Ser

Thr Glu Lys Asn Ala Val Ser Met Thr Ser Ser Val Leu Ser Ser His 60

Ser Pro Gly Ser Gly Ser Ser Thr Thr Gln Gly Gln Asp Val Thr Leu

Ala Pro Ala Thr Glu Pro Ala Ser Gly Ser Ala Ala Thr Trp Gly Gln

Asp Val Thr Ser Val Pro Val Thr Arg Pro Ala Leu Gly Ser Thr Thr 105

Pro Pro Ala His Asp Val Thr Ser Ala Pro Asp Asn Lys Pro Ala Pro

Gly Ser Thr Ala Pro Pro Ala His Gly Val Thr Ser Ala Pro Asp Thr

Arg Pro Ala Pro Gly Ser Thr Ala Pro Pro Ala His Gly Val Thr Ser 150 145

Ala Pro Asp Thr Arg Pro Ala Pro Gly Ser Thr Ala Pro Ala Ala His 165 170

Gly Val Thr Ser Ala Pro Asp Thr Arg Pro Ala Pro Gly Ser Thr Ala

113

185 190 180 Pro Pro Ala His Gly Val Thr Ser Ala Pro Asp Asn Arg Pro Ala Leu 200 Gly Ser Thr Ala Pro Pro Val His Asn Val Thr Ser Ala Ser Gly Ser Ala Ser Gly Ser Ala Ser Thr Leu Val His Asn Gly Thr Ser Ala Arg 235 Ala Thr Thr Thr Pro Ala Ser Lys Ser Thr Pro Phe Ser Ile Pro Ser 245 His His Ser Asp Thr Pro Thr Thr Leu Ala Ser His Ser Thr Lys Thr 265 270 Asp Ala Ser Ser Thr His His Ser Thr Val Pro Pro Leu Thr Ser Ser 280 Asn His Ser Thr Ser Pro Gln Leu Ser Thr Gly Val Ser Phe Phe 295 290 Leu Ser Phe His Ile Ser Asn Leu Gln Phe Asn Ser Ser Leu Glu Asp 305 310 315 320 Pro Ser Thr Asp Tyr Tyr Gln Glu Leu Gln Arg Asp Ile Ser Glu Met 330 325 Phe Leu Gln Ile Tyr Lys Gln Gly Gly Phe Leu Gly Leu Ser Asn Ile Lys Phe Arg Pro Gly Ser Val Val Val Gln Leu Thr Leu Ala Phe Arg Glu Gly Thr Ile Asn Val His Asp Val Glu Thr Gln Phe Asn Gln Tyr 370 Lys Thr Glu Ala Ala Ser Arg Tyr Asn Leu Thr Ile Ser Asp Val Ser Val Ser Asp Val Pro Phe Pro Phe Ser Ala Gln Ser Gly Ala Gly Val 410 405 Pro Gly Trp Gly Ile Ala Leu Leu Val Leu Val Cys Val Leu Val Ala 425

Leu Ala Ile Val Tyr Leu Ile Ala Leu Ala Val Cys Gln Cys Arg Arg

Lys Asn Tyr Gly Gln Leu Asp Ile Phe Pro Ala Arg Asp Thr Tyr His

Pro Met Ser Glu Tyr Pro Thr Tyr His Thr His Gly Arg Tyr Val Pro 465 470

Pro Ser Ser Thr Asp Arg Ser Pro Tyr Glu Lys Val Ser Ala Gly Asn 490 485

Gly Gly Ser Ser Leu Ser Tyr Thr Asn Pro Ala Val Ala Ala Thr Ser 505 510

Ala Asn Leu 515

<210> 115

<211> 109 <212> PRT <213> Homo sapien

<400> 115

Met Leu Glu Arg Arg Pro Pro Ala Val Arg Arg Pro Gly Leu Thr Ala 5 10

Pro Ala Ala His Gly Val Thr Ser Ala Pro Asp Thr Arg Pro Ala Pro

Gly Ser Thr Ala Pro Ala Ala His Gly Val Thr Ser Ala Pro Asp Thr 35

Arg Pro Ala Pro Gly Ser Thr Ala Pro Pro Ala His Gly Val Thr Phe

Val Pro Arg Thr Ser Gly Arg Arg Leu Ala Leu Phe Leu Val Tyr Val 70

Phe Arg Val Glu Asp Val Val Gln Thr Arg Leu Asp Thr Leu Arg Ile 90

Ala Lys Tyr Ile Asp Gly Ser Tyr Ala Val Ser Val Cys 105

PCT/US03/18934 WO 03/106648

115

<210> 116

<211> 174

<212> PRT

<213> Homo sapien

<220>

<221> MISC_FEATURE

<222> (167)..(167) <223> X= any amino acid

<400> 116

Met Thr Pro Gly Thr Gln Ser Pro Phe Phe Leu Leu Leu Leu Thr 5

Val Leu Thr Ala Thr Thr Ala Pro Thr Pro Ala Thr Val Val Thr Gly 25

Ser Gly His Ala Ser Ser Thr Pro Gly Gly Glu Lys Glu Thr Ser Ala

Thr Gln Arg Ser Ser Val Pro Ser Ser Thr Glu Lys Asn Ala Val Ser 50 55 60

Met Thr Ser Ser Val Leu Ser Ser His Ser Pro Gly Ser Gly Ser Ser 70

Thr Thr Gln Gly Gln Asp Val Thr Leu Ala Pro Ala Thr Glu Pro Ala 85

Ser Gly Ser Ala Ala Thr Trp Gly Gln Asp Val Thr Ser Val Pro Val 105 100

Thr Arg Pro Ala Leu Gly Ser Thr Thr Pro Pro Ala His Asp Val Thr 115

Ser Ala Pro Asp Asn Lys Pro Ala Pro Gly Ser Thr Ala Pro Arg Pro 140 135

Ser Cys Gly Ser Gly Leu Gly Thr Ala Cys Val Pro Gly Leu Gln Leu 145

Leu Leu Val Gly Ala His Xaa Thr Gln Leu Leu Thr Tyr Asp 165

<210> 117 <211> 475 <212> PRT

<213> Homo sapien

<400> 117

Met Thr Pro Gly Thr Gln Ser Pro Phe Phe Leu Leu Leu Leu Leu Thr 1 5 10 15

Val Leu Thr Val Val Thr Gly Ser Gly His Ala Ser Ser Thr Pro Gly
20 25 30

Gly Glu Lys Glu Thr Ser Ala Thr Gln Arg Ser Ser Val Pro Ser Ser 35 40 45

Thr Glu Lys Asn Ala Val Ser Met Thr Ser Ser Val Leu Ser Ser His 50 55 60

Ser Pro Gly Ser Gly Ser Ser Thr Thr Gln Gly Gln Asp Val Thr Leu 65 70 75 80

Ala Pro Ala Thr Glu Pro Ala Ser Gly Ser Ala Ala Thr Trp Gly Gln 85 90 95

Asp Val Thr Ser Val Pro Val Thr Arg Pro Ala Leu Gly Ser Thr Thr 100 105 110

Pro Pro Ala His Asp Val Thr Ser Ala Pro Asp Asn Lys Pro Ala Pro 115 120 125

Gly Ser Thr Ala Pro Pro Ala His Gly Val Thr Ser Ala Pro Asp Thr 130 135 140

Arg Pro Ala Pro Gly Ser Thr Ala Pro Pro Ala His Gly Val Thr Ser 145 150 155 160

Ala Pro Asp Asn Arg Pro Ala Leu Gly Ser Thr Ala Pro Pro Val His 165 170 175

Asn Val Thr Ser Ala Ser Gly Ser Ala Ser Gly Ser Ala Ser Thr Leu 180 185 190

Val His Asn Gly Thr Ser Ala Arg Ala Thr Thr Thr Pro Ala Ser Lys 195 200 205

Ser Thr Pro Phe Ser Ile Pro Ser His His Ser Asp Thr Pro Thr Thr 210 215 220

Leu Ala Ser His Ser Thr Lys Thr Asp Ala Ser Ser Thr His His Ser 225 230 240

Thr Val Pro Pro Leu Thr Ser Ser Asn His Ser Thr Ser Pro Gln Leu 245 250 255

Ser Thr Gly Val Ser Phe Phe Phe Leu Ser Phe His Ile Ser Asn Leu 260 265 270

Gln Phe Asn Ser Ser Leu Glu Asp Pro Ser Thr Asp Tyr Tyr Gln Glu 275 280 285

Leu Gln Arg Asp Ile Ser Glu Met Phe Leu Gln Ile Tyr Lys Gln Gly 290 295 300

Gly Phe Leu Gly Leu Ser Asn Ile Lys Phe Arg Pro Gly Ser Val Val 305 310 315 320

Val Gln Leu Thr Leu Ala Phe Arg Glu Gly Thr Ile Asn Val His Asp 325 330 335

Val Glu Thr Gln Phe Asn Gln Tyr Lys Thr Glu Ala Ala Ser Arg Tyr 340 345 350

Asn Leu Thr Ile Ser Asp Val Ser Val Ser Asp Val Pro Phe Pro Phe 355 360 365

Ser Ala Gln Ser Gly Ala Gly Val Pro Gly Trp Gly Ile Ala Leu Leu 370 375 380

Val Leu Val Cys Val Leu Val Ala Leu Ala Ile Val Tyr Leu Ile Ala 385 390 395 400

Leu Ala Val Cys Gln Cys Arg Arg Lys Asn Tyr Gly Gln Leu Asp Ile 405 410 415

Phe Pro Ala Arg Asp Thr Tyr His Pro Met Ser Glu Tyr Pro Thr Tyr 420 425 430

His Thr His Gly Arg Tyr Val Pro Pro Ser Ser Thr Asp Arg Ser Pro 435 440 445

Tyr Glu Lys Val Ser Ala Gly Asn Gly Gly Ser Ser Leu Ser Tyr Thr 450 455 460

Asn Pro Ala Val Ala Ala Thr Ser Ala Asn Leu 465 470 475

<210> 118

<211> 231 <212> PRT <213> Homo sapien

<400> 118

Met Cys Pro Leu Ala Val Pro Ile Val Ala Pro Met Arg Arg Phe Leu

Gln Val Met Val Ala Ala Ala Ser Leu Thr Gln Thr Gln Gln Trp Gln

Pro Leu Leu Pro Thr Cys Arg Gly Thr Ser Pro Ala Glu Leu Ser Gly 40 35

Gln Pro Val Pro Phe His Ser Thr Gln Val Leu Gln Gly Gln Ser Pro 55

Cys Thr Leu Phe Gly Leu Val Ser Trp Glu Phe Arg Trp Ala Ala His

Ser Leu Leu Gln Arg Pro His Asp Tyr Phe Arg Lys Phe Glu Pro His

Leu Tyr Ser Leu Asp Ser Asn Ser Asp Asp Val Asp Ser Leu Thr Asp

Glu Glu Ile Leu Ser Lys Tyr Gln Leu Gly Met Leu His Phe Ser Thr 120

Gln Tyr Asp Leu Leu His Asn His Leu Thr Val Arg Val Ile Glu Ala 135

Arg Asp Leu Pro Pro Pro Ile Ser His Asp Gly Ser Arg Gln Asp Met 150 155

Ala His Ser Asn Pro Tyr Val Lys Ile Cys Leu Leu Pro Asp Gln Lys 165 170

Asn Ser Lys Gln Thr Gly Val Lys Arg Lys Thr Gln Lys Pro Val Phe 180

Glu Glu Arg Tyr Thr Phe Glu Ile Pro Phe Leu Glu Ala Gln Arg Arg 195 200 205

Thr Leu Leu Thr Val Val Asp Phe Asp Lys Phe Ser Arg His Cys

PCT/US03/18934 WO 03/106648

119

220 210 215

Val Ile Gly Lys Val Ser Val

<210> 119

<211> 107 <212> PRT <213> Homo sapien

<400> 119

Met Val Ala Ala Ser Leu Thr Gln Thr Gln Gln Trp Gln Pro Leu

Leu Pro Thr Cys Arg Gly Thr Ser Pro Ala Glu Leu Ser Gly Gln Pro

Val Pro Phe His Ser Thr Gln Val Leu Gln Gly Gln Ser Pro Cys Thr 40 35

Leu Phe Gly Leu Val Ser Trp Glu Phe Arg Trp Ala Ala His Ser Leu

Leu Gln Arg Pro His Gln Phe Leu Gly His Phe Ser Val Cys Gly Ser

Ser Cys Gly Pro Leu Arg Ala His Ala Trp Glu Val Leu Trp Trp Gly

Leu Pro Gly Gly Leu Ala Gln Arg Ala Leu Arg 1,95

<210> 120 <211> 484

<212> PRT

<213> Homo sapien

<400> 120

Met Thr Pro Gly Thr Gln Ser Pro Phe Phe Leu Leu Leu Leu Leu Thr

Val Leu Thr Ala Thr Thr Ala Pro Lys Pro Ala Thr Val Val Thr Gly 25

Ser Gly His Ala Ser Ser Thr Pro Gly Gly Glu Lys Glu Thr Ser Ala 40

120

Thr Gln Arg Ser Ser Val Pro Ser Ser Thr Glu Lys Asn Ala Val Ser 50 55 60

Met Thr Ser Ser Val Leu Ser Ser His Ser Pro Gly Ser Gly Ser Ser 65 70 75 80

Thr Thr Gln Gly Gln Asp Val Thr Leu Ala Pro Ala Thr Glu Pro Ala 85 90 95

Ser Gly Ser Ala Ala Thr Trp Gly Gln Asp Val Thr Ser Val Pro Val
100 105 110

Thr Arg Pro Ala Leu Gly Ser Thr Thr Pro Pro Ala His Asp Val Thr 115 120 125

Ser Ala Pro Asp Asn Lys Pro Ala Pro Gly Ser Thr Ala Pro Pro Ala 130 135 140

His Gly Val Thr Ser Ala Pro Asp Thr Arg Pro Ala Pro Gly Ser Thr 145 150 155 160

Ala Pro Pro Ala His Gly Val Thr Ser Ala Pro Asp Asn Arg Pro Ala 165 170 175

Leu Gly Ser Thr. Ala Pro Pro Val His Asn Val Thr Ser Ala Ser Gly
180 185 190

Ser Ala Ser Gly Ser Ala Ser Thr Leu Val His Asn Gly Thr Ser Ala 195 200 205

Arg Ala Thr Thr Pro Ala Ser Lys Ser Thr Pro Phe Ser Ile Pro 210 215 220

Ser His His Ser Asp Thr Pro Thr Thr Leu Ala Ser His Ser Thr Lys 225 230 235 240

Thr Asp Ala Ser Ser Thr His His Ser Thr Val Pro Pro Leu Thr Ser 245 250 255

Ser Asn His Ser Thr Ser Pro Gln Leu Ser Thr Gly Val Ser Phe Phe 260 265 270

Phe Leu Ser Phe His Ile Ser Asn Leu Gln Phe Asn Ser Ser Leu Glu 275 280 285

Asp Pro Ser Thr Asp Tyr Tyr Gln Glu Leu Gln Arg Asp Ile Ser Glu

PCT/US03/18934 WO 03/106648

121

300 295 290

Met Phe Leu Gln Ile Tyr Lys Gln Gly Gly Phe Leu Gly Leu Ser Asn

Ile Lys Phe Arg Pro Gly Ser Val Val Val Gln Leu Thr Leu Ala Phe 330

Arg Glu Gly Thr Ile Asn Val His Asp Val Glu Thr Gln Phe Asn Gln

Tyr Lys Thr Glu Ala Ala Ser Arg Tyr Asn Leu Thr Ile Ser Asp Val 360

Ser Val Ser Asp Val Pro Phe Pro Phe Ser Ala Gln Ser Gly Ala Gly

Val Pro Gly Trp Gly Ile Ala Leu Leu Val Leu Val Cys Val Leu Val 390

Ala Leu Ala Ile Val Tyr Leu Ile Ala Leu Ala Val Cys Gln Cys Arg 415

Arg Lys Asn Tyr Gly Gln Leu Asp Ile Phe Pro Ala Arg Asp Thr Tyr 425 420

His Pro Met Ser Glu Tyr Pro Thr Tyr His Thr His Gly Arg Tyr Val 440 435

Pro Pro Ser Ser Thr Asp Arg Ser Pro Tyr Glu Lys Val Ser Ala Gly 460 455 450

Asn Gly Gly Ser Ser Leu Ser Tyr Thr Asn Pro Ala Val Ala Ala Thr 470 465

Ser Ala Asn Leu

<210> 121

<211> 463 <212> PRT <213> Homo sapien

<400> 121

Met Thr Pro Gly Thr Gln Ser Pro Phe Phe Leu Leu Leu Leu Thr 5

Val Leu Thr Gly Gly Glu Lys Glu Thr Ser Ala Thr Gln Arg Ser Ser 20 25 30

Val Pro Ser Ser Thr Glu Lys Asn Ala Val Ser Met Thr Ser Ser Val 35 40 45

Leu Ser Ser His Ser Pro Gly Ser Gly Ser Ser Thr Thr Gln Gly Gln 50 55 60

Asp Val Thr Leu Ala Pro Ala Thr Glu Pro Ala Ser Gly Ser Ala Ala 65 70 75 80

Thr Trp Gly Gln Asp Val Thr Ser Val Pro Val Thr Arg Pro Ala Leu 85 90 95

Gly Ser Thr Thr Pro Pro Ala His Asp Val Thr Ser Ala Pro Asp Asn 100 105 110

Lys Pro Ala Pro Gly Ser Thr Ala Pro Pro Ala His Gly Val Thr Ser 115 120 125

Ala Pro Asp Thr Arg Pro Ala Pro Gly Ser Thr Ala Pro Pro Ala His 130 135 140

Gly Val Thr Ser Ala Pro Asp Asn Arg Pro Ala Leu Gly Ser Thr Ala 145 150 155 160

Pro Pro Val His Asn Val Thr Ser Ala Ser Gly Ser Ala Ser Gly Ser 165 170 175

Ala Ser Thr Leu Val His Asn Gly Thr Ser Ala Arg Ala Thr Thr 180 185 190

Pro Ala Ser Lys Ser Thr Pro Phe Ser Ile Pro Ser His His Ser Asp 195 200 205

Thr Pro Thr Thr Leu Ala Ser His Ser Thr Lys Thr Asp Ala Ser Ser 210 215 220

Thr His His Ser Thr Val Pro Pro Leu Thr Ser Ser Asn His Ser Thr 225 230 235 240

Ser Pro Gln Leu Ser Thr Gly Val Ser Phe Phe Phe Leu Ser Phe His 245 250 255

PCT/US03/18934 WO 03/106648

123

Ile Ser Asn Leu Gln Phe Asn Ser Ser Leu Glu Asp Pro Ser Thr Asp 265 260

Tyr Tyr Gln Glu Leu Gln Arg Asp Ile Ser Glu Met Phe Leu Gln Ile 280

Tyr Lys Gln Gly Gly Phe Leu Gly Leu Ser Asn Ile Lys Phe Arg Pro 300

Gly Ser Val Val Val Gln Leu Thr Leu Ala Phe Arg Glu Gly Thr Ile 310 305

Asn Val His Asp Val Glu Thr Gln Phe Asn Gln Tyr Lys Thr Glu Ala 325

Ala Ser Arg Tyr Asn Leu Thr Ile Ser Asp Val Ser Val Ser Asp Val 345

Pro Phe Pro Phe Ser Ala Gln Ser Gly Ala Gly Val Pro Gly Trp Gly 355

Ile Ala Leu Leu Val Leu Val Cys Val Leu Val Ala Leu Ala Ile Val 375

Tyr Leu Ile Ala Leu Ala Val Cys Gln Cys Arg Arg Lys Asn Tyr Gly 385 390

Gln Leu Asp Ile Phe Pro Ala Arg Asp Thr Tyr His Pro Met Ser Glu

Tyr Pro Thr Tyr His Thr His Gly Arg Tyr Val Pro Pro Ser Ser Thr 425

Asp Arg Ser Pro Tyr Glu Lys Val Ser Ala Gly Asn Gly Gly Ser Ser

Leu Ser Tyr Thr Asn Pro Ala Val Ala Ala Thr Ser Ala Asn Leu

<210> 122 <211> 524 <212> PRT

<213> Homo sapien

<400> 122

Met Gly Arg Glu Lys Glu Ala Ala Ala Gly Lys Glu Ala Ala Asn Pro

Gly Val Thr Glu Ala Ala His Ser Pro Val Leu Leu Val Leu Phe Leu 20 25 30

Trp Trp Pro Glu Leu Ile Phe Ser Ser Cys Ser Tyr Phe Ser Phe Ile 35 40 45

Lys Thr Gln Pro Tyr Asp Phe Asn Phe Phe Thr Ala Thr Thr Ala Pro 50 55 60

Lys Pro Ala Thr Val Val Thr Gly Ser Gly His Ala Ser Ser Thr Pro 65 70 75 80

Gly Gly Glu Lys Glu Thr Ser Ala Thr Gln Arg Ser Ser Val Pro Ser 85 90 95

Ser Thr Glu Lys Asn Ala Val Ser Met Thr Ser Ser Val Leu Ser Ser 100 105 110

His Ser Pro Gly Ser Gly Ser Ser Thr Thr Gln Gly Gln Asp Val Thr

Leu Ala Pro Ala Thr Glu Pro Ala Ser Gly Ser Ala Ala Thr Trp Gly
130 135 140

Gln Asp Val Thr Ser Val Pro Val Thr Arg Pro Ala Leu Gly Ser Thr 145 150 155 160

Thr Pro Pro Ala His Asp Val Thr Ser Ala Pro Asp Asn Lys Pro Ala 165 170 175

Pro Gly Ser Thr Ala Pro Pro Ala His Gly Val Thr Ser Ala Pro Asp 180 185 190

Thr Arg Pro Ala Pro Gly Ser Thr Ala Pro Pro Ala His Gly Val Thr 195 200 205

Ser Ala Pro Asp Asn Arg Pro Ala Leu Gly Ser Thr Ala Pro Pro Val 210 215 220

His Asn Val Thr Ser Ala Ser Gly Ser Ala Ser Gly Ser Ala Ser Thr 225 230 235 240

Leu Val His Asn Gly Thr Ser Ala Arg Ala Thr Thr Thr Pro Ala Ser 245 250 255

125

- Lys Ser Thr Pro Phe Ser Ile Pro Ser His His Ser Asp Thr Pro Thr 260 265 270
- Thr Leu Ala Ser His Ser Thr Lys Thr Asp Ala Ser Ser Thr His His 275 280 285
- Ser Thr Val Pro Pro Leu Thr Ser Ser Asn His Ser Thr Ser Pro Gln 290 295 300
- Leu Ser Thr Gly Val Ser Phe Phe Phe Leu Ser Phe His Ile Ser Asn 305 310 315 320
- Leu Gln Phe Asn Ser Ser Leu Glu Asp Pro Ser Thr Asp Tyr Tyr Gln 325. 330 335
- Glu Leu Gln Arg Asp Ile Ser Glu Met Phe Leu Gln Ile Tyr Lys Gln 340 . 345 350
- Gly Gly Phe Leu Gly Leu Ser Asn Ile Lys Phe Arg Pro Gly Ser Val 355 360 365
- Val Val Gln Leu Thr Leu Ala Phe Arg Glu Gly Thr Ile Asn Val His 370 375 380
- Asp Val Glu Thr Gln Phe Asn Gln Tyr Lys Thr Glu Ala Ala Ser Arg 385 390 395 400
- Tyr Asn Leu Thr Ile Ser Asp Val Ser Val Ser Asp Val Pro Phe Pro 405 410 415
- Phe Ser Ala Gln Ser Gly Ala Gly Val Pro Gly Trp Gly Ile Ala Leu 420 425 430
- Leu Val Leu Val Cys Val Leu Val Ala Leu Ala Ile Val Tyr Leu Ile 435 440 445
- Ala Leu Ala Val Cys Gln Cys Arg Arg Lys Asn Tyr Gly Gln Leu Asp 450 460
- Ile Phe Pro Ala Arg Asp Thr Tyr His Pro Met Ser Glu Tyr Pro Thr 465 470 475 480
- Tyr His Thr His Gly Arg Tyr Val Pro Pro Ser Ser Thr Asp Arg Ser 485 490 495

126

Pro Tyr Glu Lys Val Ser Ala Gly Asn Gly Gly Ser Ser Leu Ser Tyr 505 500

Thr Asn Pro Ala Val Ala Ala Thr Ser Ala Asn Leu

<210> 123

<211> 435 <212> PRT <213> Homo sapien

<400> 123

Met Thr Pro Gly Thr Gln Ser Pro Phe Phe Leu Leu Leu Leu Thr

Val Leu Thr Val Val Thr Gly Ser Gly His Ala Ser Ser Thr Pro Gly

Gly Glu Lys Glu Thr Ser Ala Thr Gln Arg Ser Ser Val Pro Ser Ser

Thr Glu Lys Asn Ala Val Ser Met Thr Ser Ser Val Leu Ser Ser His 55

Ser Pro Gly Ser Gly Ser Ser Thr Thr Gln Gly Gln Asp Val Thr Leu 75 70

Ala Pro Ala Thr Glu Pro Ala Ser Gly Ser Ala Ala Thr Trp Gly Gln 85

Asp Val Thr Ser Val Pro Val Thr Arg Pro Ala Leu Gly Ser Thr Thr 105 100

Pro Pro Ala His Asp Val Thr Ser Ala Pro Asp Asn Arg Pro Ala Leu 115 120

Gly Ser Thr Ala Pro Pro Val His Asn Val Thr Ser Ala Ser Gly Ser 135

Ala Ser Gly Ser Ala Ser Thr Leu Val His Asn Gly Thr Ser Ala Arg 145 150 155

Ala Thr Thr Thr Pro Ala Ser Lys Ser Thr Pro Phe Ser Ile Pro Ser 170

His His Ser Asp Thr Pro Thr Thr Leu Ala Ser His Ser Thr Lys Thr 185 190 180

Asp Ala Ser Ser Thr His His Ser Thr Val Pro Pro Leu Thr Ser Ser . 195 200 205

Asn His Ser Thr Ser Pro Gln Leu Ser Thr Gly Val Ser Phe Phe 210 215 220

Leu Ser Phe His Ile Ser Asn Leu Gln Phe Asn Ser Ser Leu Glu Asp 225 230 235 240

Pro Ser Thr Asp Tyr Tyr Gln Glu Leu Gln Arg Asp Ile Ser Glu Met 245 250 255

Phe Leu Gln Ile Tyr Lys Gln Gly Gly Phe Leu Gly Leu Ser Asn Ile 260 265 270

Lys Phe Arg Pro Gly Ser Val Val Val Gln Leu Thr Leu Ala Phe Arg 275 280 285

Glu Gly Thr Ile Asn Val His Asp Val Glu Thr Gln Phe Asn Gln Tyr 290 295 300

Lys Thr Glu Ala Ala Ser Arg Tyr Asn Leu Thr Ile Ser Asp Val Ser 305 310 315 320

Val Ser Asp Val Pro Phe Pro Phe Ser Ala Gln Ser Gly Ala Gly Val 325 330 335

Pro Gly Trp Gly Ile Ala Leu Leu Val Leu Val Cys Val Leu Val Ala 340 345 350

Leu Ala Ile Val Tyr Leu Ile Ala Leu Ala Val Cys Gln Cys Arg Arg 355 360 365

Lys Asn Tyr Gly Gln Leu Asp Ile Phe Pro Ala Arg Asp Thr Tyr His 370 375 380

Pro Met Ser Glu Tyr Pro Thr Tyr His Thr His Gly Arg Tyr Val Pro 385 390 395 400

Pro Ser Ser Thr Asp Arg Ser Pro Tyr Glu Lys Val Ser Ala Gly Asn 405 410 415

Gly Gly Ser Ser Leu Ser Tyr Thr Asn Pro Ala Val Ala Ala Thr Ser
420 430

Ala Asn Leu 435

<210> 124

<211> 273

<212> PRT

<213> Homo sapien

<400> 124

Met Thr Pro Gly Thr Gln Ser Pro Phe Phe Leu Leu Leu Leu Leu Thr 1 5 10 15

Val Leu Thr Val Val Thr Gly Ser Gly His Ala Ser Ser Thr Pro Gly 20 25 30

Gly Glu Lys Glu Thr Ser Ala Thr Gln Arg Ser Ser Val Pro Ser Ser 35 40 45

Thr Glu Lys Asn Ala Leu Ser Thr Gly Val Ser Phe Phe Leu Ser 50 55 60

Phe His Ile Ser Asn Leu Gln Phe Asn Ser Ser Leu Glu Asp Pro Ser 65 70 75 80

Thr Asp Tyr Tyr Gln Glu Leu Gln Arg Asp Ile Ser Glu Met Phe Leu 85 90 95

Gln Ile Tyr Lys Gln Gly Gly Phe Leu Gly Leu Ser Asn Ile Lys Phe 100 105 110

Arg Pro Gly Ser Val Val Val Gln Leu Thr Leu Ala Phe Arg Glu Gly 115 120 125

Thr Ile Asn Val His Asp Val Glu Thr Gln Phe Asn Gln Tyr Lys Thr 130 135 140

Glu Ala Ala Ser Arg Tyr Asn Leu Thr Ile Ser Asp Val Ser Val Ser 145 150 155 160

Asp Val Pro Phe Pro Phe Ser Ala Gln Ser Gly Ala Gly Val Pro Gly 165 170 175

Trp Gly Ile Ala Leu Leu Val Leu Val Cys Val Leu Val Ala Leu Ala 180 185 190

Ile Val Tyr Leu Ile Ala Leu Ala Val Cys Gln Cys Arg Arg Lys Asn

129

195 200 205

Tyr Gly Gln Leu Asp Ile Phe Pro Ala Arg Asp Thr Tyr His Pro Met 210 215 220

Ser Glu Tyr Pro Thr Tyr His Thr His Gly Arg Tyr Val Pro Pro Ser 225 230 235 240

Ser Thr Asp Arg Ser Pro Tyr Glu Lys Val Ser Ala Gly Asn Gly Gly
245 250 255

Ser Ser Leu Ser Tyr Thr Asn Pro Ala Val Ala Ala Thr Ser Ala Asn 260 265 270

Leu

<210> 125

<211> 350

<212> PRT

<213> Homo sapien

<400> 125

Met Thr Pro Gly Thr Gln Ser Pro Phe Phe Leu Leu Leu Leu Thr 1 5 10 15

Val Leu Thr Ala Thr Thr Ala Pro Lys Pro Ala Thr Val Val Thr Gly 20 25 30

Ser Gly His Ala Ser Ser Thr Pro Gly Gly Glu Lys Glu Thr Ser Ala 35 40 45

Thr Gln Arg Ser Ser Val Pro Ser Ser Thr Glu Lys Asn Ala Val Ser 50 55 60

Met Thr Ser Ser Val Leu Ser Ser His Ser Pro Gly Ser Gly Ser Ser 65 70 75 80

Thr Thr Gln Gly Gln Asp Val Thr Leu Ala Pro Ala Thr Glu Pro Ala 85 90 95

Ser Gly Ser Ala Ala Thr Trp Gly Gln Asp Val Thr Ser Val Pro Val
100 105 110

Thr Arg Pro Ala Leu Gly Ser Thr Thr Pro Pro Ala His Asp Val Thr 115 120 125

Ser Ala Pro Asp Asn Lys Pro Ala Pro Gly Ser Thr Ala Pro Pro Ala 130 135 140

His Gly Val Thr Ser Ala Pro Asp Thr Arg Pro Ala Pro Gly Ser Thr 145 150 155 160

Ala Pro Pro Ala His Gly Val Thr Ser Ala Pro Asp Asn Arg Pro Ala 165 170 175

Leu Gly Ser Thr Ala Pro Pro Val His Asn Val Thr Ser Ala Ser Gly
180 185 190

Ser Ala Ser Gly Ser Ala Ser Thr Leu Val His Asn Gly Thr Ser Ala 195 200 205

Arg Ala Thr Thr Thr Pro Ala Ser Lys Ser Thr Pro Phe Ser Ile Pro 210 215 220

Ser His His Ser Asp Thr Pro Thr Thr Leu Ala Ser His Ser Thr Lys 225 230 235 240

Thr Asp Ala Ser Ser Thr His His Ser Thr Val Pro Pro Leu Thr Ser 245 250 255

Ser Asn His Ser Thr Ser Pro Gln Leu Ser Thr Gly Val Ser Phe Phe 260 265 270

Phe Leu Ser Phe His Ile Ser Asn Leu Gln Phe Asn Ser Ser Leu Glu 275 280 285

Asp Pro Ser Thr Asp Tyr Tyr Gln Glu Leu Gln Arg Asp Ile Ser Glu 290 295 300

Met Phe Leu Gln Ile Tyr Lys Gln Gly Gly Phe Leu Gly Leu Ser Asn 305 310 315 320

Ile Lys Phe Arg Tyr Ser Ser Gly Cys Gly Pro Ser Val Val Gly 325 330 335

Gly Trp Val Val Val Met Thr Val Gly Arg Asp Trp Cys Thr 340 345 350

<210> 126

<211> 316

<212> PRT

<213> Homo sapien

<400> 126

Met Thr Pro Gly Thr Gln Ser Pro Phe Phe Leu Leu Leu Leu Thr 1 5 10 15

Val Leu Thr Ala Thr Thr Ala Pro Lys Pro Ala Thr Val Val Thr Gly
20 25 30

Ser Gly His Ala Ser Ser Thr Pro Gly Gly Glu Lys Glu Thr Ser Ala

Thr Gln Arg Ser Ser Val Pro Ser Ser Thr Glu Lys Asn Ala Val Ser 50 55 60

Met Thr Ser Ser Val Leu Ser Ser His Ser Pro Gly Ser Gly Ser Ser 65 70 75 80

Thr Thr Gln Gly Gln Asp Val Thr Leu Ala Pro Ala Thr Glu Pro Ala 85 90 95

Ser Gly Ser Ala Ala Thr Trp Gly Gln Asp Val Thr Ser Val Pro Val

Thr Arg Pro Ala Leu Gly Ser Thr Thr Pro Pro Ala His Asp Val Thr 115 120 125

Ser Ala Pro Asp Asn Lys Pro Ala Pro Gly Ser Thr Ala Pro Pro Ala 130 135 140

His Gly Val Thr Ser Ala Pro Asp Thr Arg Pro Ala Pro Gly Ser Thr 145 150 155 160

Ala Pro Pro Ala His Gly Val Thr Ser Ala Pro Asp Asn Arg Pro Ala 165 170 175

Leu Gly Ser Thr Ala Pro Pro Val His Asn Val Thr Ser Ala Ser Gly
180 185 190

Ser Ala Ser Gly Ser Ala Ser Thr Leu Val His Asn Gly Thr Ser Ala
195 200 205

Arg Ala Thr Thr Pro Ala Ser Lys Ser Thr Pro Phe Ser Ile Pro 210 215 220

Ser His His Ser Asp Thr Pro Thr Thr Leu Ala Ser His Ser Thr Lys 225 230 230 235 240

132

Thr Asp Ala Ser Ser Thr His His Ser Thr Val Pro Pro Leu Thr Ser 245

Ser Asn His Ser Thr Ser Pro Gln Leu Ser Thr Gly Val Ser Phe Phe

Phe Leu Ser Phe His Ile Ser Asn Leu Gln Phe Asn Ser Ser Leu Glu 280

Asp Pro Ser Thr Asp Tyr Tyr Gln Glu Leu Gln Arg Asp Ile Ser Glu 295 290

Met Val Ser Ile Gly Leu Ser Phe Pro Met Leu Pro 310

WO 03/106648

<210> 127 <211> 230 <212> PRT <213> Homo sapien

<400> 127

Met Thr Pro Gly Thr Gln Ser Pro Phe Phe Leu Leu Leu Leu Thr 5

Val Leu Thr Val Val Thr Gly Ser Gly His Ala Ser Ser Thr Pro Gly 20 25

Gly Glu Lys Glu Thr Ser Ala Thr Gln Arg Ser Ser Val Pro Ser Ser 35

Thr Glu Lys Asn Ala Ile Pro Ala Pro Thr Thr Lys Ser Cys Arg 50

Glu Thr Phe Leu Lys Trp Pro Gly Ser Val Val Val Gln Leu Thr Leu 70 65

Ala Phe Arg Glu Gly Thr Ile Asn Val His Asp Val Glu Thr Gln Phe

Asn Gln Tyr Lys Thr Glu Ala Ala Ser Arg Tyr Asn Leu Thr Ile Ser 105 100

Asp Val Ser Val Ser Asp Val Pro Phe Pro Phe Ser Ala Gln Ser Gly 125 120

133

PCT/US03/18934

Ala Gly Val Pro Gly Trp Gly Ile Ala Leu Leu Val Leu Val Cys Val 135 130

Leu Val Ala Leu Ala Ile Val Tyr Leu Ile Ala Leu Ala Val Cys Gln

Cys Arg Arg Lys Asn Tyr Gly Gln Leu Asp Ile Phe Pro Ala Arg Asp 170

Thr Tyr His Pro Met Ser Glu Tyr Pro Thr Tyr His Thr His Gly Arg 180

Tyr Val Pro Pro Ser Ser Thr Asp Arg Ser Pro Tyr Glu Lys Val Ser 195 200

Ala Gly Asn Gly Gly Ser Ser Leu Ser Tyr Thr Asn Pro Ala Val Ala 220 215

Ala Thr Ser Ala Asn Leu 225

<210> 128

WO 03/106648

<211> 614 <212> PRT <213> Homo sapien

<400> 128

Met Thr Pro Gly Thr Gln Ser Pro Phe Phe Leu Leu Leu Leu Thr 5

Val Leu Thr Ala Thr Thr Ala Pro Lys Pro Ala Thr Val Val Thr Gly 20 25

Ser Gly His Ala Ser Ser Thr Pro Gly Gly Glu Lys Glu Thr Ser Ala 35

Thr Gln Arg Ser Ser Val Pro Ser Ser Thr Glu Lys Asn Ala Val Ser 50

Met Thr Ser Ser Val Leu Ser Ser His Ser Pro Gly Ser Gly Ser Ser 70

Thr Thr Gln Gly Gln Asp Val Thr Leu Ala Pro Ala Thr Glu Pro Ala

Ser Gly Ser Ala Ala Thr Trp Gly Gln Asp Val Thr Ser Val Pro Val 105 110

- Thr Arg Pro Ala Leu Gly Ser Thr Thr Pro Pro Ala His Asp Val Thr 115
- Ser Ala Pro Asp Asn Lys Pro Ala Pro Gly Ser Thr Ala Pro Pro Ala 140
- His Gly Val Thr Ser Ala Pro Asp Thr Arg Pro Ala Pro Gly Ser Thr 150
- Ala Pro Pro Ala His Gly Val Thr Ser Ala Pro Asp Asn Arg Pro Ala
- Leu Gly Ser Thr Ala Pro Pro Val His Asn Val Thr Ser Ala Ser Gly 185
- Ser Ala Ser Gly Ser Ala Ser Thr Leu Val His Asn Gly Thr Ser Ala 200 195
- Arg Ala Thr Thr Thr Pro Ala Ser Lys Ser Thr Pro Phe Ser Ile Pro 215
- Ser His His Ser Asp Thr Pro Thr Thr Leu Ala Ser His Ser Thr Lys 230
- Thr Asp Ala Ser Ser Thr His His Ser Thr Val Pro Pro Leu Thr Ser 250
- Ser Asn His Ser Thr Ser Pro Gln Leu Ser Thr Gly Val Ser Phe Phe 265
- Phe Leu Ser Phe His Ile Ser Asn Leu Gln Phe Asn Ser Ser Leu Glu
- Asp Pro Ser Thr Asp Tyr Tyr Gln Glu Leu Gln Arg Asp Ile Ser Glu 295
- Met Phe Leu Gln Ile Tyr Lys Gln Gly Gly Phe Leu Gly Leu Ser Asn 315 320 310
- Ile Lys Phe Arg Pro Gly Ser Val Val Val Gln Leu Thr Leu Ala Phe 325
- Arg Glu Gly Thr Ile Asn Val His Asp Val Glu Thr Gln Phe Asn Gln 345 340

Tyr Lys Thr Glu Ala Ala Ser Arg Tyr Asn Leu Thr Ile Ser Asp Val

Ser Val Leu Leu Ile Gly Gly Glu Arg Arg Tyr Arg Ala Met Val 370 375 380

Ser Ala Thr Gly Ile Ser Leu Gly Ala Met Ala Gly Lys Gly Gly 385 390 395 400

Val Ser Glu Trp Trp Leu Gly Ile Glu Asn Gly Val Leu Leu Leu Ala 405 410 415

Gly Val Val Val Ala Leu Ala Glu Val Pro Leu Cys Thr Arg Val Glu
420 425 430

Ala Glu Pro Asp Ala Ser Ser Thr His His Ser Thr Val Pro Pro Leu
435
440
445

Thr Ser Ser Asn His Ser Thr Ser Pro Gln Leu Ser Thr Gly Val Ser 450 455 460

Phe Phe Leu Ser Phe His Ile Ser Asn Leu Gln Phe Asn Ser Ser 465 470 475 480

Leu Glu Asp Pro Ser Thr Asp Tyr Tyr Gln Glu Leu Gln Arg Asp Ile 485 490 495

Ser Glu Asp Val Ser Asp Val Pro Phe Pro Phe Ser Ala Gln Ser Gly 500 505 510

Ala Gly Val Pro Gly Trp Gly Ile Ala Leu Leu Val Leu Val Cys Val 515 520 525

Leu Val Ala Leu Ala Ile Val Tyr Leu Ile Ala Leu Ala Val Cys Gln 530 535 540

Cys Arg Arg Lys Asn Tyr Gly Gln Leu Asp Ile Phe Pro Ala Arg Asp 545 550 555 560

Thr Tyr His Pro Met Ser Glu Tyr Pro Thr Tyr His Thr His Gly Arg
565 570 575

Tyr Val Pro Pro Ser Ser Thr Asp Arg Ser Pro Tyr Glu Lys Val Ser 580 585 590

136

Ala Gly Asn Gly Gly Ser Ser Leu Ser Tyr Thr Asn Pro Ala Val Ala 595 600 605

Ala Thr Ser Ala Asn Leu 610

<210> 129

<211> 372

<212> PRT

<213> Homo sapien

<400> 129

Met Thr Pro Gly Thr Gln Ser Pro Phe Phe Leu Leu Leu Leu Thr 1 5 10 15

Val Leu Thr Ala Thr Thr Ala Pro Lys Pro Ala Thr Val Val Thr Gly 20 25 30

Ser Gly His Ala Ser Ser Thr Pro Gly Gly Glu Lys Glu Thr Ser Ala 35 . 40 45

Thr Gln Arg Ser Ser Val Pro Ser Ser Thr Glu Lys Asn Ala Val Ser 50 55 60

Met Thr Ser Ser Val Leu Ser Ser His Ser Pro Gly Ser Gly Ser Ser 65 70 75 80

Thr Thr Gln Gly Gln Asp Val Thr Leu Ala Pro Ala Thr Glu Pro Ala 85 90 95

Ser Gly Ser Ala Ala Thr Trp Gly Gln Asp Val Thr Ser Val Pro Val 100 105 110

Thr Arg Pro Ala Leu Gly Ser Thr Thr Pro Pro Ala His Asp Val Thr 115 120 125

Ser Ala Pro Asp Asn Lys Pro Ala Pro Gly Ser Thr Ala Pro Pro Ala 130 135 140

His Gly Val Thr Ser Ala Pro Asp Thr Arg Pro Ala Pro Gly Ser Thr 145 150 155 160

Ala Pro Pro Ala His Gly Val Thr Ser Ala Pro Asp Asn Arg Pro Ala 165 170 175

Leu Gly Ser Thr Ala Pro Pro Val His Asn Val Thr Ser Ala Ser Gly 180 185 190

137

Ser Ala Ser Gly Ser Ala Ser Thr Leu Val His Asn Gly Thr Ser Ala 195 200

Arg Ala Thr Thr Pro Ala Ser Lys Ser Thr Pro Phe Ser Ile Pro 215 220

Ser His His Ser Asp Thr Pro Thr Thr Leu Ala Ser His Ser Thr Lys 235 230

Thr Asp Ala Ser Ser Thr His His Ser Thr Val Pro Pro Leu Thr Ser 245 250

Ser Asn His Ser Thr Ser Pro Gln Leu Ser Thr Gly Val Ser Phe Phe 265 270 260

Phe Leu Ser Phe His Ile Ser Asn Leu Gln Phe Asn Ser Ser Leu Glu 280 275

Asp Pro Ser Thr Asp Tyr Tyr Gln Glu Leu Gln Arg Asp Ile Ser Glu 295

Met Trp Gly Ala Arg Leu Gly His Arg Ala Ala Gly Ala Gly Leu Cys 310

Ser Gly Cys Ala Gly His Cys Leu Ser His Cys Leu Gly Cys Leu Ser 325

Val Pro Pro Lys Glu Leu Arg Ala Ala Gly His Leu Ser Ser Pro Gly

Tyr Leu Pro Ser Tyr Glu Arg Val Pro His Leu Pro His Pro Trp Ala 360 355

Leu Cys Ala Pro 370

<210> 130

<211> 256 <212> PRT <213> Homo sapien

<400> 130

Met Thr Pro Gly Thr Gln Ser Pro Phe Phe Leu Leu Leu Leu Thr 10

138

Val Leu Thr Val Val Thr Gly Ser Gly His Ala Ser Ser Thr Pro Gly 20 25 30

Gly Glu Lys Glu Thr Ser Ala Thr Gln Arg Ser Ser Val Pro Ser Ser 35 40 45

Thr Glu Lys Asn Ala Val Ser Met Thr Ser Ser Val Leu Ser Ser His 50 55 60

Ser Pro Gly Ser Gly Ser Ser Thr Thr Gln Gly Gln Asp Val Thr Leu 65 70 75 80

Ala Pro Ala Thr Glu Pro Ala Ser Gly Ser Ala Ala Thr Trp Gly Gln 85 90 95

Asp Val Thr Ser Val Pro Val Thr Arg Pro Ala Leu Gly Ser Thr Thr

Pro Pro Ala His Asp Val Thr Ser Ala Pro Asp Asn Arg Pro Ala Leu 115 120 125

Gly Ser Thr Ala Pro Pro Val His Asn Val Thr Ser Ala Ser Gly Ser 130 135 140

Ala Ser Gly Ser Ala Ser Thr Leu Val His Asn Gly Thr Ser Ala Arg 145 150 155 160

Ala Thr Thr Thr Pro Ala Ser Lys Ser Thr Pro Phe Ser Ile Pro Ser 165 170 175

His His Ser Asp Thr Pro Thr Thr Leu Ala Ser His Ser Thr Lys Thr 180 185 190

Asp Ala Ser Ser Thr His His Ser Thr Val Pro Pro Leu Thr Ser Ser 195 200 205

Asn His Ser Thr Ser Pro Gln Leu Ser Thr Gly Val Ser Phe Phe 210 215 220

Leu Ser Phe His Ile Ser Asn Leu Gln Phe Asn Ser Ser Leu Glu Asp 225 230 235 240

Pro Ser Thr Asp Tyr Tyr Gln Glu Leu Gln Arg Asp Ile Ser Glu Met 245 250 255

<210> 131

<211> 492 <212> PRT <213> Homo sapien

<400> 131

Met Thr Pro Gly Thr Gln Ser Pro Phe Phe Leu Leu Leu Leu Thr 5

Val Leu Thr Ala Thr Thr Ala Pro Lys Pro Ala Thr Val Val Thr Gly 25

Ser Gly His Ala Ser Ser Thr Pro Gly Gly Glu Lys Glu Thr Ser Ala 35

Thr Gln Arg Ser Ser Val Pro Ser Ser Thr Glu Lys Asn Ala Val Ser 55 50

Met Thr Ser Ser Val Leu Ser Ser His Ser Pro Gly Ser Gly Ser Ser 70

Thr Thr Gln Gly Gln Asp Val Thr Leu Ala Pro Ala Thr Glu Pro Ala

Ser Gly Ser Ala Ala Thr Trp Gly Gln Asp Val Thr Ser Val Pro Val 105

Thr Arg Pro Ala Leu Gly Ser Thr Thr Pro Pro Ala His Asp Val Thr 115

Ser Ala Pro Asp Asn Lys Pro Ala Pro Gly Ser Thr Ala Pro Pro Ala

His Gly Val Thr Ser Ala Pro Asp Thr Arg Pro Ala Pro Gly Ser Thr.

Ala Pro Pro Ala His Gly Val Thr Ser Ala Pro Asp Asn Arg Pro Ala 170

Leu Gly Ser Thr Ala Pro Pro Val His Asn Val Thr Ser Ala Ser Gly 185

Ser Ala Ser Gly Ser Ala Ser Thr Leu Val His Asn Gly Thr Ser Ala 195

Arg Ala Thr Thr Pro Ala Ser Lys Ser Thr Pro Phe Ser Ile Pro 215 210

140

Ser His His Ser Asp Thr Pro Thr Thr Leu Ala Ser His Ser Thr Lys 225 230 235 240

Thr Asp Ala Ser Ser Thr His His Ser Thr Val Pro Pro Leu Thr Ser 245 250 255

Ser Asn His Ser Thr Ser Pro Gln Leu Ser Thr Gly Val Ser Phe Phe 260 265 270

Phe Leu Ser Phe His Ile Ser Asn Leu Gln Phe Asn Ser Ser Leu Glu 275 280 285

Asp Pro Ser Thr Asp Tyr Tyr Gln Glu Leu Gln Arg Asp Ile Ser Glu 290 295 300

Met Phe Leu Gln Ile Tyr Lys Gln Gly Gly Phe Leu Gly Leu Ser Asn 305 310 315 320

Ile Lys Phe Arg Pro Gly Ser Val Val Val Gln Leu Thr Leu Ala Phe 325 330 335

Arg Glu Gly Thr Ile Asn Val His Asp Val Glu Thr Gln Phe Asn Gln 340 345 350

Tyr Lys Thr Glu Ala Ala Ser Arg Tyr Asn Leu Thr Ile Ser Asp Val 355 360 365

Ser Val Ser Asp Val Pro Phe Pro Phe Ser Ala Gln Ser Gly Ala Gly 370 375 380

Val Pro Gly Trp Gly Ile Ala Leu Leu Val Leu Val Cys Val Leu Val 385 390 395 400

Ala Leu Ala Ile Val Tyr Leu Ile Ala Leu Ala Val Cys Gln Cys Arg 405 410 415

Arg Lys Asn Tyr Gly Gln Leu Asp Ile Phe Pro Ala Arg Asp Thr Tyr 420 425 430

His Pro Met Ser Glu Tyr Pro Thr Tyr His Thr His Gly Arg Tyr Val 435 440 445

Pro Pro Ser Ser Thr Asp Arg Ser Pro Tyr Glu Lys Val Arg Leu Gly 450 455 460

PCT/US03/18934 WO 03/106648

141

Pro Thr Gly Gln Gly Lys Gln Arg Val Trp Leu Gly Lys Asp Ser Glu 470

Gly Gly Thr Trp Lys Thr Gln Arg Ala Trp Lys Arg 485

<210> 132

<211> 483

<212> PRT <213> Homo sapien

<400> 132

Met Thr Pro Gly Thr Gln Ser Pro Phe Phe Leu Leu Leu Leu Thr

Val Leu Thr Ala Thr Thr Ala Pro Lys Pro Ala Thr Val Val Thr Gly 25

Ser Gly His Ala Ser Ser Thr Pro Gly Gly Glu Lys Glu Thr Ser Ala

Thr Gln Arg Ser Ser Val Pro Ser Ser Thr Glu Lys Asn Ala Val Ser 55

Met Thr Ser Ser Val Leu Ser Ser His Ser Pro Gly Ser Gly Ser Ser 75 70 65

Thr Thr Gln Gly Gln Asp Val Thr Leu Ala Pro Ala Thr Glu Pro Ala 90

Ser Gly Ser Ala Ala Thr Trp Gly Gln Asp Val Thr Ser Val Pro Val 105

Thr Arg Pro Ala Leu Gly Ser Thr Thr Pro Pro Ala His Asp Val Thr 115

Ser Ala Pro Asp Asn Lys Pro Ala Pro Gly Ser Thr Ala Pro Pro Ala 130

His Gly Val Thr Ser Ala Pro Asp Thr Arg Pro Ala Pro Gly Ser Thr 145 150

Ala Pro Pro Ala His Gly Val Thr Ser Ala Pro Asp Asn Arg Pro Ala

Leu Gly Ser Thr Ala Pro Pro Val His Asn Val Thr Ser Ala Ser Gly 185

Ser Ala Ser Gly Ser Ala Ser Thr Leu Val His Asn Gly Thr Ser Ala 195 200 205

Arg Ala Thr Thr Thr Pro Ala Ser Lys Ser Thr Pro Phe Ser Ile Pro 210 215 220

Ser His His Ser Asp Thr Pro Thr Thr Leu Ala Ser His Ser Thr Lys 225 230 235 240

Thr Asp Ala Ser Ser Thr His His Ser Thr Val Pro Pro Leu Thr Ser 245 250 255

Ser Asn His Ser Thr Ser Pro Gln Leu Ser Thr Gly Val Ser Phe Phe 260 265 270

Phe Leu Ser Phe His Ile Ser Asn Leu Gln Phe Asn Ser Ser Leu Glu 275 280 285

Asp Pro Ser Thr Asp Tyr Tyr Gln Glu Leu Gln Arg Asp Ile Ser Glu 290 295 300

Met Phe Leu Gln Ile Tyr Lys Gln Gly Gly Phe Leu Gly Leu Ser Asn 305 310 315 320

Ile Lys Phe Arg Pro Gly Ser Val Val Val Gln Leu Thr Leu Ala Phe 325 330 335

Arg Glu Gly Thr Ile Asn Val His Asp Val Glu Thr Gln Phe Asn Gln 340 345 350

Tyr Lys Thr Glu Ala Ala Ser Arg Tyr Asn Leu Thr Ile Ser Asp Val 355 360 365

Ser Val Ser Asp Val Pro Phe Pro Phe Ser Ala Gln Ser Gly Ala Gly 370 375 380

Val Pro Gly Trp Gly Ile Ala Leu Leu Val Leu Val Cys Val Leu Val 385 390 . 395 400

Ala Leu Ala Ile Val Tyr Leu Ile Ala Leu Ala Val Cys Gln Cys Arg 405 410 415

Arg Lys Asn Tyr Gly Gln Leu Asp Ile Phe Pro Ala Arg Asp Thr Tyr 420 425 430

WO 03/106648

143

PCT/US03/18934

His Pro Met Ser Glu Trp Arg Val Tyr Glu Glu Lys Lys Lys Glu Val 440 435

Pro Ala Val Pro Glu Thr Leu Lys Lys Lys Arg Arg Asn Phe Ala Glu

Leu Lys Ile Lys Arg Leu Arg Lys Lys Phe Ala Lys Arg Cys Phe Glu 475 470

Arg Gln Gly

<210> 133

<211> 150

<212> PRT <213> Homo sapien

<400> 133

Met Thr Pro Gly Thr Gln Ser Pro Phe Phe Leu Leu Leu Leu Thr

Val Leu Thr Val Val Thr Gly Ser Gly His Ala Ser Ser Thr Pro Gly 25

Gly Glu Lys Glu Thr Ser Ala Thr Gln Arg Ser Ser Val Pro Ser Ser

Thr Glu Lys Asn Ala Phe Asn Ser Ser Leu Glu Asp Pro Ser Thr Asp

Tyr Tyr Gln Glu Leu Gln Arg Asp Ile Ser Glu Met Ala Val Cys Gln

Cys Arg Arg Lys Asn Tyr Gly Gln Leu Asp Ile Phe Pro Ala Arg Asp

Thr Tyr His Pro Met Ser Glu Tyr Pro Thr Tyr His Thr His Gly Arg 105

Tyr Val Pro Pro Ser Ser Thr Asp Arg Ser Pro Tyr Glu Lys Val Ser 120 115

Ala Gly Asn Gly Gly Ser Ser Leu Ser Tyr Thr Asn Pro Ala Val Ala 135 140 130

Ala Thr Ser Ala Asn Leu

PCT/US03/18934 WO 03/106648

144

145 150

<210> 134

<211> 168

<212> PRT

<213> Homo sapien

<400> 134

Met Thr Pro Gly Thr Gln Ser Pro Phe Phe Leu Leu Leu Leu Thr 10 5

Val Leu Thr Val Val Thr Gly Ser Gly His Ala Ser Ser Thr Pro Gly 20 25

Gly Glu Lys Glu Thr Ser Ala Thr Gln Arg Ser Ser Val Pro Ser Ser 35

Thr Glu Lys Asn Ala Leu Ser Thr Gly Val Ser Phe Phe Leu Ser 55 50

Phe His Ile Ser Asn Leu Gln Phe Asn Ser Ser Leu Glu Asp Pro Ser

Thr Asp Tyr Tyr Gln Glu Leu Gln Arg Asp Ile Ser Glu Met Ala Val 90

Cys Gln Cys Arg Arg Lys Asn Tyr Gly Gln Leu Asp Ile Phe Pro Ala 100

Arg Asp Thr Tyr His Pro Met Ser Glu Tyr Pro Thr Tyr His Thr His

Gly Arg Tyr Val Pro Pro Ser Ser Thr Asp Arg Ser Pro Tyr Glu Lys 135

Val Ser Ala Gly Asn Gly Gly Ser Ser Leu Ser Tyr Thr Asn Pro Ala

Val Ala Ala Thr Ser Ala Asn Leu

<210> 135 <211> 79

<212> PRT

<213> Homo sapien

<400> 135

145

Ser Pro Glu Trp Leu Thr Leu Ile Ser Ser Pro Gly Lys Asn Tyr Gly 10

Gln Leu Asp Ile Phe Pro Ala Arg Asp Thr Tyr His Pro Met Ser Glu 25

Tyr Pro Thr Tyr His Thr His Gly Arg Tyr Val Pro Pro Ser Ser Thr 35 40

Asp Arg Ser Pro Tyr Glu Lys Val Ser Ala Gly Asn Gly Gly Ser Ser 55 50

Leu Ser Tyr Thr Asn Pro Ala Val Ala Ala Thr Ser Ala Asn Leu 70

<210> 136

<211> 398 <212> PRT <213> Homo sapien

<400> 136

Met Thr Pro Gly Thr Gln Ser Pro Phe Phe Leu Leu Leu Leu Thr

Val Leu Thr Ala Thr Thr Ala Pro Lys Pro Ala Thr Val Val Thr Gly 20 25

Ser Gly His Ala Ser Ser Thr Pro Gly Gly Glu Lys Glu Thr Ser Ala 35

Thr Gln Arg Ser Ser Val Pro Ser Ser Thr Glu Lys Asn Ala Val Ser 50

Met Thr Ser Ser Val Leu Ser Ser His Ser Pro Gly Ser Gly Ser Ser 70

Thr Thr Gln Gly Gln Asp Val Thr Leu Ala Pro Ala Thr Glu Pro Ala

Ser Gly Ser Ala Ala Thr Trp Gly Gln Asp Val Thr Ser Val Pro Val 105 100

Thr Arg Pro Ala Leu Gly Ser Thr Thr Pro Pro Ala His Asp Val Thr 115 120

Ser Ala Pro Asp Asn Lys Pro Ala Pro Gly Ser Thr Ala Pro Pro Ala 140 135 130

146

His Gly Val Thr Ser Ala Pro Asp Thr Arg Pro Ala Pro Gly Ser Thr 145 150 155 160

Ala Pro Pro Ala His Gly Val Thr Ser Ala Pro Asp Asn Arg Pro Ala 165 170 175

Leu Gly Ser Thr Ala Pro Pro Val His Asn Val Thr Ser Ala Ser Gly 180 185 190

Ser Ala Ser Gly Ser Ala Ser Thr Leu Val His Asn Gly Thr Ser Ala 195 200 205

Arg Ala Thr Thr Thr Pro Ala Ser Lys Ser Thr Pro Phe Ser Ile Pro 210 215 220

Ser His His Ser Asp Thr Pro Thr Thr Leu Ala Ser His Ser Thr Lys 225 230 235 240

Thr Asp Ala Ser Ser Thr His His Ser Thr Val Pro Pro Leu Thr Ser 245 250 255

Ser Asn His Ser Thr Ser Pro Gln Leu Ser Thr Gly Val Ser Phe Phe 260 265 270

Phe Leu Ser Phe His Ile Ser Asn Leu Gln Phe Asn Ser Ser Leu Glu 275 280 285

Asp Pro Ser Thr Asp Tyr Tyr Gln Glu Leu Gln Arg Asp Ile Ser Glu 290 295 300

Met Phe Leu Gln Ile Tyr Lys Gln Gly Gly Phe Leu Gly Leu Ser Asn 305 310 315 320

Ile Lys Phe Arg Pro Gly Ser Val Val Val Gln Leu Thr Leu Ala Phe 325 330 335

Arg Glu Gly Thr Ile Asn Val His Asp Val Glu Thr Gln Phe Asn Gln 340 345 350

Tyr Lys Thr Glu Ala Ala Ser Arg Tyr Asn Leu Thr Ile Ser Asp Val 355 360 365

Ser Ala Glu Val Pro Phe His Ile Met Leu Thr Asn Met Gly Thr Met 370 375 380

147

Glu Tyr His Asn Val Gly Ala Ile Arg Phe Arg His Asn Tyr 385 390 395

<210> 137

<211> 36

<212> PRT

<213> Homo sapien

<400> 137

Gly Arg Leu Leu Leu Leu Leu Glu Phe Lys Leu Leu Thr Met Tyr 1 5 10 15

Gly Leu Met Pro Gly Lys Cys Cys Gly Gly Gly Ser Gln Glu Asp Trp
20 25 30

Pro Arg Glu Pro 35

<210> 138

<211> 264

<212> PRT

<213> Homo sapien

<400> 138

Met Thr Pro Gly Thr Gln Ser Pro Phe Phe Leu Leu Leu Leu Thr 1 5 10 15

Val Leu Thr Ala Thr Thr Ala Pro Lys Pro Ala Thr Val Val Thr Gly 20 25 30

Ser Gly His Ala Ser Ser Thr Pro Gly Glu Lys Glu Thr Ser Ala 35 40 45

Thr Gln Arg Ser Ser Val Pro Ser Ser Thr Glu Lys Asn Ala Phe Asn 50 55 60

Ser Ser Leu Glu Asp Pro Ser Thr Asp Tyr Tyr Gln Glu Leu Gln Arg 65 70 75 80

Asp Ile Ser Glu Met Phe Leu Gln Ile Tyr Lys Gln Gly Gly Phe Leu 85 90 95

Gly Leu Ser Asn Ile Lys Phe Arg Pro Gly Ser Val Val Gln Leu 100 105 110

Thr Leu Ala Phe Arg Glu Gly Thr Ile Asn Val His Asp Val Glu Thr

148

Gln Phe Asn Gln Tyr Lys Thr Glu Ala Ala Ser Arg Tyr Asn Leu Thr

Ile Ser Asp Val Ser Val Ser Asp Val Pro Phe Pro Phe Ser Ala Gln 155

Ser Gly Ala Gly Val Pro Gly Trp Gly Ile Ala Leu Leu Val Leu Val 170 165

Cys Val Leu Val Ala Leu Ala Ile Val Tyr Leu Ile Ala Leu Ala Val 185 180

Cys Gln Cys Arg Arg Lys Asn Tyr Gly Gln Leu Asp Ile Phe Pro Ala 205 -200

Arg Asp Thr Tyr His Pro Met Ser Glu Tyr Pro Thr Tyr His Thr His

Gly Arg Tyr Val Pro Pro Ser Ser Thr Asp Arg Ser Pro Tyr Glu Lys 235

Val Ser Ala Gly Asn Gly Gly Ser Ser Leu Ser Tyr Thr Asn Pro Ala 250 245

Val Ala Ala Thr Ser Ala Asn Leu 260

<210> 139 <211> 241 <212> PRT <213> Homo sapien

<400> 139

Met Thr Pro Gly Thr Gln Ser Pro Phe Phe Leu Leu Leu Leu Thr

Val Leu Thr Ala Thr Thr Ala Pro Lys Pro Ala Thr Val Val Thr Gly 20 25

Ser Gly His Ala Ser Ser Thr Pro Gly Glu Glu Lys Glu Thr Ser Ala

Thr Gln Arg Ser Ser Val Pro Ser Ser Thr Glu Lys Asn Ala Phe Leu

149

Gln Ile Tyr Lys Gln Gly Gly Phe Leu Gly Leu Ser Asn Ile Lys Phe 70

Arg Pro Gly Ser Val Val Val Gln Leu Thr Leu Ala Phe Arg Glu Gly 85 90

Thr Ile Asn Val His Asp Val Glu Thr Gln Phe Asn Gln Tyr Lys Thr 100 105

Glu Ala Ala Ser Arg Tyr Asn Leu Thr Ile Ser Asp Val Ser Val Ser 115 120

Asp Val Pro Phe Pro Phe Ser Ala Gln Ser Gly Ala Gly Val Pro Gly 130 135 140

Trp Gly Ile Ala Leu Leu Val Leu Val Cys Val Leu Val Ala Leu Ala

Ile Val Tyr Leu Ile Ala Leu Ala Val Cys Gln Cys Arg Arg Lys Asn

Tyr Gly Gln Leu Asp Ile Phe Pro Ala Arg Asp Thr Tyr His Pro Met 180 185

Ser Glu Tyr Pro Thr Tyr His Thr His Gly Arg Tyr Val Pro Pro Ser 195 200

Ser Thr Asp Arg Ser Pro Tyr Glu Lys Val Ser Ala Gly Asn Gly Gly

Ser Ser Leu Ser Tyr Thr Asn Pro Ala Val Ala Ala Thr Ser Ala Asn 230

Leu

<210> 140

<211> 92 <212> PRT

<213> Homo sapien

<400> 140

Met Ala Cys His Asn Leu Leu Ser Pro Gln Ala Val Cys Gln Cys Arg

Arg Lys Asn Tyr Gly Gln Leu Asp Ile Phe Pro Ala Arg Asp Thr Tyr 20

150

His Pro Met Ser Glu Tyr Pro Thr Tyr His Thr His Gly Arg Tyr Val 35 40 45

Pro Pro Ser Ser Thr Asp Arg Ser Pro Tyr Glu Lys Val Arg Leu Gly 50 55 60

Pro Thr Gly Gln Gly Lys Gln Arg Val Trp Leu Gly Lys Asp Ser Glu 65 70 75 80

Gly Gly Thr Trp Lys Thr Gln Arg Ala Trp Lys Arg 85 90

<210> 141

<211> 420

<212> PRT

<213> Homo sapien

<400> 141

Met Thr Ser Ser Val Leu Ser Ser His Ser Pro Gly Ser Gly Ser Ser 1 10 15

Thr Thr Gln Gly Gln Asp Val Thr Leu Ala Pro Ala Thr Glu Pro Ala 20 25 30

Ser Gly Ser Ala Ala Thr Trp Gly Gln Asp Val Thr Ser Val Pro Val 35 40 45

Thr Arg Pro Ala Leu Gly Ser Thr Thr Pro Pro Ala His Asp Val Thr 50 55 60

Ser Ala Pro Asp Asn Lys Pro Ala Pro Gly Ser Thr Ala Pro Pro Ala 65 70 75 80

His Gly Val Thr Ser Ala Pro Asp Thr Arg Pro Ala Pro Gly Ser Thr 85 90 95

Ala Pro Pro Ala His Gly Val Thr Ser Ala Pro Asp Asn Arg Pro Ala 100 105 110

Leu Gly Ser Thr Ala Pro Pro Val His Asn Val Thr Ser Ala Ser Gly
115 120 125

Ser Ala Ser Gly Ser Ala Ser Thr Leu Val His Asn Gly Thr Ser Ala 130 135 140

151

Arg Ala Thr Thr Thr Pro Ala Ser Lys Ser Thr Pro Phe Ser Ile Pro 145 150 155 160

Ser His His Ser Asp Thr Pro Thr Thr Leu Ala Ser His Ser Thr Lys 165 170 175

Thr Asp Ala Ser Ser Thr His His Ser Thr Val Pro Pro Leu Thr Ser 180 185 190

Ser Asn His Ser Thr Ser Pro Gln Leu Ser Thr Gly Val Ser Phe Phe 195 200 205

Phe Leu Ser Phe His Ile Ser Asn Leu Gln Phe Asn Ser Ser Leu Glu 210 215 220

Asp Pro Ser Thr Asp Tyr Tyr Gln Glu Leu Gln Arg Asp Ile Ser Glu 225 230 235 240

Met Phe Leu Gln Ile Tyr Lys Gln Gly Gly Phe Leu Gly Leu Ser Asn 245 250 255

Ile Lys Phe Arg Pro Gly Ser Val Val Val Gln Leu Thr Leu Ala Phe 260 265 270

Arg Glu Gly Thr Ile Asn Val His Asp Val Glu Thr Gln Phe Asn Gln 275 280 285

Tyr Lys Thr Glu Ala Ala Ser Arg Tyr Asn Leu Thr Ile Ser Asp Val 290 295 300

Ser Val Ser Asp Val Pro Phe Pro Phe Ser Ala Gln Ser Gly Ala Gly 305 310 315 320

Val Pro Gly Trp Gly Ile Ala Leu Leu Val Leu Val Cys Val Leu Val 325 330 335

Arg Lys Asn Tyr Gly Gln Leu Asp Ile Phe Pro Ala Arg Asp Thr Tyr 355 360 365

His Pro Met Ser Glu Tyr Pro Thr Tyr His Thr His Gly Arg Tyr Val 370 375 380

Pro Pro Ser Ser Thr Asp Arg Ser Pro Tyr Glu Lys Val Ser Ala Gly

152

400 395 390 385

Asn Gly Gly Ser Ser Leu Ser Tyr Thr Asn Pro Ala Val Ala Ala Thr 410 405

Ser Ala Asn Leu 420

<210> 142

<211> 485 <212> PRT <213> Homo sapien

<400> 142

Met Pro Gln Pro Gly Thr Gln Ser Pro Phe Phe Leu Leu Leu Leu

Thr Val Leu Thr Ala Thr Thr Ala Pro Lys Pro Ala Thr Val Val Thr 20

Gly Ser Gly His Ala Ser Ser Thr Pro Gly Gly Glu Lys Glu Thr Ser

Ala Thr Gln Arg Ser Ser Val Pro Ser Ser Thr Glu Lys Asn Ala Val

Ser Met Thr Ser Ser Val Leu Ser Ser His Ser Pro Gly Ser Gly Ser

Ser Thr Thr Gln Gly Gln Asp Val Thr Leu Ala Pro Ala Thr Glu Pro

Ala Ser Gly Ser Ala Ala Thr Trp Gly Gln Asp Val Thr Ser Val Pro 105

Val Thr Arg Pro Ala Leu Gly Ser Thr Thr Pro Pro Ala His Asp Val

Thr Ser Ala Pro Asp Asn Lys Pro Ala Pro Gly Ser Thr Ala Pro Pro 135

Ala His Gly Val Thr Ser Ala Pro Asp Thr Arg Pro Ala Pro Gly Ser 150 155 145

Thr Ala Pro Pro Ala His Gly Val Thr Ser Ala Pro Asp Asn Arg Pro 170 165

- Ala Leu Gly Ser Thr Ala Pro Pro Val His Asn Val Thr Ser Ala Ser 180 185 190
- Gly Ser Ala Ser Gly Ser Ala Ser Thr Leu Val His Asn Gly Thr Ser 195 200 205
- Ala Arg Ala Thr Thr Thr Pro Ala Ser Lys Ser Thr Pro Phe Ser Ile 210 215 220
- Pro Ser His His Ser Asp Thr Pro Thr Thr Leu Ala Ser His Ser Thr 225 230 235 240
- Lys Thr Asp Ala Ser Ser Thr His His Ser Thr Val Pro Pro Leu Thr 245 250 255
- Ser Ser Asn His Ser Thr Ser Pro Gln Leu Ser Thr Gly Val Ser Phe 260 265 270
- Phe Phe Leu Ser Phe His Ile Ser Asn Leu Gln Phe Asn Ser Ser Leu 275 280 285
- Glu Asp Pro Ser Thr Asp Tyr Tyr Gln Glu Leu Gln Arg Asp Ile Ser 290 295 300
- Glu Met Phe Leu Gln Ile Tyr Lys Gln Gly Gly Phe Leu Gly Leu Ser 305 310 315
- Asn Ile Lys Phe Arg Pro Gly Ser Val Val Val Gln Leu Thr Leu Ala 325 330 335
- Phe Arg Glu Gly Thr Ile Asn Val His Asp Val Glu Thr Gln Phe Asn 340 345 350
- Gln Tyr Lys Thr Glu Ala Ala Ser Arg Tyr Asn Leu Thr Ile Ser Asp 355 360 365
- Val Ser Val Ser Asp Val Pro Phe Pro Phe Ser Ala Gln Ser Gly Ala 370 375 380
- Gly Val Pro Gly Trp Gly Ile Ala Leu Leu Val Leu Val Cys Val Leu 385 390 395 400
- Val Ala Leu Ala Ile Val Tyr Leu Ile Ala Leu Ala Val Cys Gln Cys 405 410 415

154

Arg Arg Lys Asn Tyr Gly Gln Leu Asp Ile Phe Pro Ala Arg Asp Thr 425 420

Tyr His Pro Met Ser Glu Tyr Pro Thr Tyr His Thr His Gly Arg Tyr

Val Pro Pro Ser Ser Thr Asp Arg Ser Pro Tyr Glu Lys Val Ser Ala 460 455

Gly Asn Gly Gly Ser Ser Leu Ser Tyr Thr Asn Pro Ala Val Ala Ala 470

Thr Ser Ala Asn Leu 485

<210> 143 <211> 255 <212> PRT <213> Homo sapien

<400> 143

Met Thr Pro Gly Thr Gln Ser Pro Phe Phe Leu Leu Leu Leu Thr 5

Val Leu Thr Val Val Thr Gly Ser Gly His Ala Ser Ser Thr Pro Gly 25 20

Gly Glu Lys Glu Thr Ser Ala Thr Gln Arg Ser Ser Val Pro Ser Ser 35

Thr Glu Lys Asn Ala Phe Asn Ser Ser Leu Glu Asp Pro Ser Thr Asp 50

Tyr Tyr Gln Glu Leu Gln Arg Asp Ile Ser Glu Met Phe Leu Gln Ile

Tyr Lys Gln Gly Gly Phe Leu Gly Leu Ser Asn Ile Lys Phe Arg Pro 85

Gly Ser Val Val Val Gln Leu Thr Leu Ala Phe Arg Glu Gly Thr Ile 105 100

Asn Val His Asp Val Glu Thr Gln Phe Asn Gln Tyr Lys Thr Glu Ala

Ala Ser Arg Tyr Asn Leu Thr Ile Ser Asp Val Ser Val Ser Asp Val 135 140

Pro Phe Pro Phe Ser Ala Gln Ser Gly Ala Gly Val Pro Gly Trp Gly 150

Ile Ala Leu Val Leu Val Cys Val Leu Val Ala Leu Ala Ile Val

Tyr Leu Ile Ala Leu Ala Val Cys Gln Cys Arg Arg Lys Asn Tyr Gly 185

Gln Leu Asp Ile Phe Pro Ala Arg Asp Thr Tyr His Pro Met Ser Glu 200 195

Tyr Pro Thr Tyr His Thr His Gly Arg Tyr Val Pro Pro Ser Ser Thr 215 210

Asp Arg Ser Pro Tyr Glu Lys Val Ser Ala Gly Asn Gly Gly Ser Ser 225 230

Leu Ser Tyr Thr Asn Pro Ala Val Ala Ala Thr Ser Ala Asn Leu 250

<210> 144

<211> 517 <212> PRT <213> Homo sapien

<400> 144

Met Thr Pro Gly Thr Gln Ser Pro Phe Phe Leu Leu Leu Leu Thr 5

Val Leu Thr Ala Thr Thr Ala Pro Lys Pro Ala Thr Val Val Thr Gly 20 25

Ser Gly His Ala Ser Ser Thr Pro Gly Gly Glu Lys Glu Thr Ser Ala 35

Thr Gln Arg Ser Ser Val Pro Ser Ser Thr Glu Lys Asn Ala Val Ser

Met Thr Ser Ser Val Leu Ser Ser His Ser Pro Gly Ser Gly Ser Ser 65

Thr Thr Gln Gly Gln Asp Val Thr Leu Ala Pro Ala Thr Glu Pro Ala 85 90

156

Ser Gly Ser Ala Ala Thr Trp Gly Gln Asp Val Thr Ser Val Pro Val

Thr Arg Pro Ala Leu Gly Ser Thr Thr Pro Pro Ala His Asp Val Thr 115 120 125

Ser Ala Pro Asp Asn Lys Pro Ala Pro Gly Ser Thr Ala Pro Pro Ala 130 135 140

His Gly Val Thr Ser Ala Pro Asp Thr Arg Pro Ala Pro Gly Ser Thr 145 150 155 160

Ala Pro Pro Ala His Gly Val Thr Ser Ala Pro Asp Asn Arg Pro Ala 165 170 175

Leu Gly Ser Thr Ala Pro Pro Val His Asn Val Thr Ser Ala Ser Gly 180 185 190

Ser Ala Ser Gly Ser Ala Ser Thr Leu Val His Asn Gly Thr Ser Ala 195 200 205

Arg Ala Thr Thr Thr Pro Ala Ser Lys Ser Thr Pro Phe Ser Ile Pro 210 215 220

Ser His His Ser Asp Thr Pro Thr Thr Leu Ala Ser His Ser Thr Lys 225 230 235 240

Thr Asp Ala Ser Ser Thr His His Ser Thr Val Pro Pro Leu Thr Ser 245 250 255

Ser Asn His Ser Thr Ser Pro Gln Leu Ser Thr Gly Val Ser Phe Phe 260 265 270

Phe Leu Ser Phe His Ile Ser Asn Leu Gln Phe Asn Ser Ser Leu Glu 275 280 285

Asp Pro Ser Thr Asp Tyr Tyr Gln Glu Leu Gln Arg Asp Ile Ser Glu 290 295 300

Met Val Ser Ile Gly Leu Ser Phe Pro Ser Ser Pro Glu Ala Ala Ile 305 310 315 320

Arg Thr Val His Thr Leu Cys Ile Lys Pro Glu Ser Phe Pro Ser His 325 330 335

Pro Ser Phe Leu Gln Ile Tyr Lys Gln Gly Gly Phe Leu Gly Leu Ser

157

340 345 350

Asn Ile Lys Phe Arg Pro Gly Ser Val Val Val Gln Leu Thr Leu Ala 355 360 365

Phe Arg Glu Gly Thr Ile Asn Val His Asp Val Glu Thr Gln Phe Asn 370 375 380

Gln Tyr Lys Thr Glu Ala Ala Ser Arg Tyr Asn Leu Thr Ile Ser Asp 385 390 395 400

Val Ser Val Ser Asp Val Pro Phe Pro Phe Ser Ala Gln Ser Gly Ala 405 410 415

Gly Val Pro Gly Trp Gly Ile Ala Leu Leu Val Leu Val Cys Val Leu 420 425 430

Val Ala Leu Ala Ile Val Tyr Leu Ile Ala Leu Ala Val Cys Gln Cys 435 440 445

Arg Arg Lys Asn Tyr Gly Gln Leu Asp Ile Phe Pro Ala Arg Asp Thr 450 455 460

Tyr His Pro Met Ser Glu Tyr Pro Thr Tyr His Thr His Gly Arg Tyr 465 470 475 480

Val Pro Pro Ser Ser Thr Asp Arg Ser Pro Tyr Glu Lys Val Ser Ala 485 490 495

Gly Asn Gly Gly Ser Ser Leu Ser Tyr Thr Asn Pro Ala Val Ala Ala 500 505 510

Thr Ser Ala Asn Leu 515

<210> 145

<211> 180

<212> PRT

<213> Homo sapien

<400> 145

Met Phe Leu Gln Ile Tyr Lys Gln Gly Gly Phe Leu Gly Leu Ser Asn 1 5 10 15

Ile Lys Phe Arg Pro Gly Ser Val Val Val Gln Leu Thr Leu Ala Phe 20 25 30

158

Arg Glu Gly Thr Ile Asn Val His Asp Val Glu Thr Gln Phe Asn Gln 40

Tyr Lys Thr Glu Ala Ala Ser Arg Tyr Asn Leu Thr Ile Ser Asp Val

Ser Val Ser Asp Val Pro Phe Pro Phe Ser Ala Gln Ser Gly Ala Gly 75

Val Pro Gly Trp Gly Ile Ala Leu Leu Val Leu Val Cys Val Leu Val 85

Ala Leu Ala Ile Val Tyr Leu Ile Ala Leu Ala Val Cys Gln Cys Arg

Arg Lys Asn Tyr Gly Gln Leu Asp Ile Phe Pro Ala Arg Asp Thr Tyr 120

His Pro Met Ser Glu Tyr Pro Thr Tyr His Thr His Gly Arg Tyr Val

Pro Pro Ser Ser Thr Asp Arg Ser Pro Tyr Glu Lys Val Ser Ala Gly 155 150

Asn Gly Gly Ser Ser Leu Ser Tyr Thr Asn Pro Ala Val Ala Ala Thr 165

Ser Ala Asn Leu

<210> 146 <211> 232 <212> PRT <213> Homo sapien

<400> 146

Met Thr Pro Gly Thr Gln Ser Pro Phe Phe Leu Leu Leu Leu Leu Thr 5

Val Leu Thr Val Val Thr Gly Ser Gly His Ala Ser Ser Thr Pro Gly 25 20

Gly Glu Lys Glu Thr Ser Ala Thr Gln Arg Ser Ser Val Pro Ser Ser 35

Thr Glu Lys Asn Ala Phe Leu Gln Ile Tyr Lys Gln Gly Gly Phe Leu

159

50 55 60

Gly Leu Ser Asn Ile Lys Phe Arg Pro Gly Ser Val Val Val Gln Leu 65 70 75 80

Thr Leu Ala Phe Arg Glu Gly Thr Ile Asn Val His Asp Val Glu Thr 85 90 95

Gln Phe Asn Gln Tyr Lys Thr Glu Ala Ala Ser Arg Tyr Asn Leu Thr 100 105 110

Ile Ser Asp Val Ser Val Ser Asp Val Pro Phe Pro Phe Ser Ala Gln 115 120 125

Ser Gly Ala Gly Val Pro Gly Trp Gly Ile Ala Leu Leu Val Leu Val 130 135 140

Cys Val Leu Val Ala Leu Ala Ile Val Tyr Leu Ile Ala Leu Ala Val 145 150 155 160

Cys Gln Cys Arg Arg Lys Asn Tyr Gly Gln Leu Asp Ile Phe Pro Ala 165 170 175

Arg Asp Thr Tyr His Pro Met Ser Glu Tyr Pro Thr Tyr His Thr His 180 185 190

Gly Arg Tyr Val Pro Pro Ser Ser Thr Asp Arg Ser Pro Tyr Glu Lys
195 200 205

Val Ser Ala Gly Asn Gly Gly Ser Ser Leu Ser Tyr Thr Asn Pro Ala 210 215 220

Val Ala Ala Thr Ser Ala Asn Leu 225 230

<210> 147

<211> 396

<212> PRT

<213> Homo sapien

<400> 147

Met Thr Pro Gly Thr Gln Ser Pro Phe Phe Leu Leu Leu Leu Leu Thr 1 5 10 15

Val Leu Thr Ala Thr Thr Ala Pro Lys Pro Ala Thr Val Val Thr Gly 20 25 : 30

160

Ser Gly His Ala Ser Ser Thr Pro Gly Gly Glu Lys Glu Thr Ser Ala 35 40 45

Thr Gln Arg Ser Ser Val Pro Ser Ser Thr Glu Lys Asn Ala Val Ser 50 55 60

Met Thr Ser Ser Val Leu Ser Ser His Ser Pro Gly Ser Gly Ser Ser 65 70 75 80

Thr Thr Gln Gly Gln Asp Val Thr Leu Ala Pro Ala Thr Glu Pro Ala 85 90 95

Ser Gly Ser Ala Ala Thr Trp Gly Gln Asp Val Thr Ser Val Pro Val

Thr Arg Pro Ala Leu Gly Ser Thr Thr Pro Pro Ala His Asp Val Thr 115 120 125

Ser Ala Pro Asp Asn Lys Pro Ala Pro Gly Ser Thr Ala Pro Pro Ala 130 135 140

His Gly Val Thr Ser Ala Pro Asp Thr Arg Pro Ala Pro Gly Ser Thr 145 150 155 160

Ala Pro Pro Ala His Gly Val Thr Ser Ala Pro Asp Asn Arg Pro Ala 165 170 175

Leu Gly Ser Thr Ala Pro Pro Val His Asn Val Thr Ser Ala Ser Gly 180 185 190

Ser Ala Ser Gly Ser Ala Ser Thr Leu Val His Asn Gly Thr Ser Ala 195 200 205

Arg Ala Thr Thr Thr Pro Ala Ser Lys Ser Thr Pro Phe Ser Ile Pro 210 215 220

Ser His His Ser Asp Thr Pro Thr Thr Leu Ala Ser His Ser Thr Lys 225 230 235 240

Thr Asp Ala Ser Ser Thr His His Ser Thr Val Pro Pro Leu Thr Ser 245 250 255

Ser Asn His Ser Thr Ser Pro Gln Leu Ser Thr Gly Val Ser Phe Phe 260 265 270

161

Phe Leu Ser Phe His Ile Ser Asn Leu Gln Phe Asn Ser Ser Leu Glu 280

Asp Pro Ser Thr Asp Tyr Tyr Gln Glu Leu Gln Arg Asp Ile Ser Glu 295

Met Phe Leu Gln Ile Tyr Lys Gln Gly Gly Phe Leu Gly Leu Ser Asn 315

Ile Lys Phe Arg Pro Gly Ser Val Val Val Gln Leu Thr Leu Ala Phe 330 325

Arg Glu Gly Thr Ile Asn Val His Asp Val Glu Thr Gln Phe Asn Gln

Tyr Lys Thr Glu Ala Ala Ser Arg Tyr Asn Leu Thr Ile Ser Asp Val 360

Ser Gly Glu Ala Thr Ser Leu Ala Ala Gln His His Ala Gly Ala 370

Pro Leu Leu Pro Val Ser Gly Ser Pro Leu Phe Pro 390

<210> 148 <211> 325 <212> PRT <213> Homo sapien

<400> 148

Met Thr Pro Gly Thr Gln Ser Pro Phe Phe Leu Leu Leu Leu Thr 10 5

Val Leu Thr Ala Thr Thr Ala Pro Lys Pro Ala Thr Val Val Thr Gly 20

Ser Gly His Ala Ser Ser Thr Pro Gly Glu Lys Glu Thr Ser Ala

Thr Gln Arg Ser Ser Val Pro Ser Ser Thr Glu Lys Asn Ala Val Ser 55

Met Thr Ser Ser Val Leu Ser Ser His Ser Pro Gly Ser Gly Ser Ser 65

Thr Thr Gln Gly Gln Asp Val Thr Leu Ala Pro Ala Thr Glu Pro Ala 90

Ser Gly Ser Ala Ala Thr Trp Gly Gln Asp Val Thr Ser Val Pro Val 100 105 110

Thr Arg Pro Ala Leu Gly Ser Thr Thr Pro Pro Ala His Asp Val Thr 115 120 125

Ser Ala Pro Asp Asn Lys Pro Ala Pro Gly Ser Thr Ala Pro Pro Ala 130 135 140

His Gly Val Thr Ser Ala Pro Asp Thr Arg Pro Ala Pro Gly Ser Thr 145 150 155 160

Ala Pro Pro Ala His Gly Val Thr Ser Ala Pro Asp Asn Arg Pro Ala 165 170 175

Leu Gly Ser Thr Ala Pro Pro Val His Asn Val Thr Ser Ala Ser Gly 180 185 190

Ser Ala Ser Gly Ser Ala Ser Thr Leu Val His Asn Gly Thr Ser Ala 195 200 205

Arg Ala Thr Thr Thr Pro Ala Ser Lys Ser Thr Pro Phe Ser Ile Pro 210 215 220

Ser His His Ser Asp Thr Pro Thr Thr Leu Ala Ser His Ser Thr Lys 225 230 235 240

Thr Asp Ala Ser Ser Thr His His Ser Thr Val Pro Pro Leu Thr Ser 245 250 255

Ser Asn His Ser Thr Ser Pro Gln Leu Ser Thr Gly Val Ser Phe Phe 260 265 270

Phe Leu Ser Phe His Ile Ser Asn Leu Gln Phe Asn Ser Ser Leu Glu 275 280 285

Asp Pro Ser Thr Asp Tyr Tyr Gln Glu Leu Gln Arg Asp Ile Ser Glu 290 295 300

Met Phe Leu Gln Ile Tyr Lys Gln Gly Gly Phe Leu Gly Leu Ser Asn 305 310 315 320

Ile Lys Phe Ser Glu

<210> 149 <211> 409 <212> PRT <213> Homo sapien

<400> 149

Met Thr Pro Gly Thr Gln Ser Pro Phe Phe Leu Leu Leu Leu Leu Thr 5 10

Val Leu Thr Ala Thr Thr Ala Pro Lys Pro Ala Thr Val Val Thr Gly 25 20

Ser Gly His Ala Ser Ser Thr Pro Gly Glu Lys Glu Thr Ser Ala 35

Thr Gln Arg Ser Ser Val Pro Ser Ser Thr Glu Lys Asn Ala Val Ser 50

Met Thr Ser Ser Val Leu Ser Ser His Ser Pro Gly Ser Gly Ser Ser

Thr Thr Gln Gly Gln Asp Val Thr Leu Ala Pro Ala Thr Glu Pro Ala

Ser Gly Ser Ala Ala Thr Trp Gly Gln Asp Val Thr Ser Val Pro Val 100

Thr Arg Pro Ala Leu Gly Ser Thr Thr Pro Pro Ala His Asp Val Thr

Ser Ala Pro Asp Asn Lys Pro Ala Pro Gly Ser Thr Ala Pro Pro Ala

His Gly Val Thr Ser Ala Pro Asp Thr Arg Pro Ala Pro Gly Ser Thr 155 150

Ala Pro Pro Ala His Gly Val Thr Ser Ala Pro Asp Asn Arg Pro Ala 170

Leu Gly Ser Thr Ala Pro Pro Val His Asn Val Thr Ser Ala Ser Gly 185 180

Ser Ala Ser Gly Ser Ala Ser Thr Leu Val His Asn Gly Thr Ser Ala 200 195

Arg Ala Thr Thr Thr Pro Ala Ser Lys Ser Thr Pro Phe Ser Ile Pro

Ser His His Ser Asp Thr Pro Thr Thr Leu Ala Ser His Ser Thr Lys

Thr Asp Ala Ser Ser Thr His His Ser Thr Val Pro Pro Leu Thr Ser

Ser Asn His Ser Thr Ser Pro Gln Leu Ser Thr Gly Val Ser Phe Phe

Phe Leu Ser Phe His Ile Ser Asn Leu Gln Phe Asn Ser Ser Leu Glu

Asp Pro Ser Thr Asp Tyr Tyr Gln Glu Leu Gln Arg Asp Ile Ser Glu

Met Phe Leu Gln Ile Tyr Lys Gln Gly Gly Phe Leu Gly Leu Ser Asn

Ile Lys Phe Arg Pro Gly Ser Val Val Gln Leu Thr Leu Ala Phe

Arg Glu Gly Thr Ile Asn Val His Asp Val Glu Thr Gln Phe Asn Gln

Tyr Lys Thr Glu Ala Ala Ser Arg Tyr Asn Leu Thr Ile Ser Asp Val

Ser Gly Cys Leu Ser Val Pro Pro Lys Glu Leu Arg Ala Ala Gly His

Leu Ser Ser Pro Gly Tyr Leu Pro Ser Tyr Glu Arg Val Pro His Leu

Pro His Pro Trp Ala Leu Cys Ala Pro

<210> 150

<211> 379 <212> PRT <213> Homo sapien

<400> 150

Met Thr Pro Gly Thr Gln Ser Pro Phe Phe Leu Leu Leu Leu Thr

Val Leu Thr Ala Thr Thr Ala Pro Lys Pro Ala Thr Val Val Thr Gly
20 25 30

Ser Gly His Ala Ser Ser Thr Pro Gly Gly Glu Lys Glu Thr Ser Ala 35 40 45

Thr Gln Arg Ser Ser Val Pro Ser Ser Thr Glu Lys Asn Ala Val Ser 50 55 60

Met Thr Ser Ser Val Leu Ser Ser His Ser Pro Gly Ser Gly Ser Ser 65 70 75 80

Thr Thr Gln Gly Gln Asp Val Thr Leu Ala Pro Ala Thr Glu Pro Ala 85 90 95

Ser Gly Ser Ala Ala Thr Trp Gly Gln Asp Val Thr Ser Val Pro Val
100 105 110

Thr Arg Pro Ala Leu Gly Ser Thr Thr Pro Pro Ala His Asp Val Thr 115 120 125

Ser Ala Pro Asp Asn Lys Pro Ala Pro Gly Ser Thr Ala Pro Pro Ala 130 135 140

His Gly Val Thr Ser Ala Pro Asp Thr Arg Pro Ala Pro Gly Ser Thr 145 150 155 160

Ala Pro Pro Ala His Gly Val Thr Ser Ala Pro Asp Asn Arg Pro Ala 165 170 175

Leu Gly Ser Thr Ala Pro Pro Val His Asn Val Thr Ser Ala Ser Gly
180 185 190

Ser Ala Ser Gly Ser Ala Ser Thr Leu Val His Asn Gly Thr Ser Ala 195 200 205

Arg Ala Thr Thr Pro Ala Ser Lys Ser Thr Pro Phe Ser Ile Pro 210 215 220

Ser His His Ser Asp Thr Pro Thr Thr Leu Ala Ser His Ser Thr Lys 225 230 235 240

Thr Asp Ala Ser Ser Thr His His Ser Thr Val Pro Pro Leu Thr Ser 245 250 255

166

Ser Asn His Ser Thr Ser Pro Gln Leu Ser Thr Gly Val Ser Phe Phe 260 265 270

Phe Leu Ser Phe His Ile Ser Asn Leu Gln Phe Asn Ser Ser Leu Glu 275 280 285

Asp Pro Ser Thr Asp Tyr Tyr Gln Glu Leu Gln Arg Asp Ile Ser Glu 290 295 300

Met Ala Val Cys Gln Cys Arg Arg Lys Asn Tyr Gly Gln Leu Asp Ile 305 310 315 320

Phe Pro Ala Arg Asp Thr Tyr His Pro Met Ser Glu Tyr Pro Thr Tyr 325 330 335

His Thr His Gly Arg Tyr Val Pro Pro Ser Ser Thr Asp Arg Ser Pro 340 345 350

Tyr Glu Lys Val Ser Ala Gly Asn Gly Gly Ser Ser Leu Ser Tyr Thr 355 360 365

Asn Pro Ala Val Ala Ala Thr Ser Ala Asn Leu 370 375

<210> 151

<211> 110

<212> PRT

<213> Homo sapien

<400> 151

Val Val Thr Trp His Asn Pro Gly Ala Gly Val Pro Gly Trp Gly Ile 1 5 10 15

Ala Leu Leu Val Leu Val Cys Val Leu Val Ala Leu Ala Ile Val Tyr
20 25 30

Leu Ile Ala Leu Ala Val Cys Gln Cys Arg Arg Lys Asn Tyr Gly Gln 35 40 45

Leu Asp Ile Phe Pro Ala Arg Asp Thr Tyr His Pro Met Ser Glu Tyr 50 55 60

Pro Thr Tyr His Thr His Gly Arg Tyr Val Pro Pro Ser Ser Thr Asp 65 70 75 80

Arg Ser Pro Tyr Glu Lys Val Ser Ala Gly Asn Gly Gly Ser Ser Leu 85 90 95

167

Ser Tyr Thr Asn Pro Ala Val Ala Ala Thr Ser Ala Asn Leu 105

<210> 152

<211> 127 <212> PRT <213> Homo sapien

<400> 152

Met Thr Pro Gly Thr Gln Ser Pro Phe Phe Leu Leu Leu Leu Thr

Val Leu Thr Val Val Thr Gly Ser Gly His Ala Ser Ser Thr Pro Gly 25

Gly Glu Lys Glu Thr Ser Ala Thr Gln Arg Ser Ser Val Pro Ser Ser

Thr Glu Lys Asn Ala Ala Val Cys Gln Cys Arg Arg Lys Asn Tyr Gly

Gln Leu Asp Ile Phe Pro Ala Arg Asp Thr Tyr His Pro Met Ser Glu 70 75

Tyr Pro Thr Tyr His Thr His Gly Arg Tyr Val Pro Pro Ser Ser Thr 85 90

Asp Arg Ser Pro Tyr Glu Lys Val Ser Ala Gly Asn Gly Gly Ser Ser 100 105

Leu Ser Tyr Thr Asn Pro Ala Val Ala Ala Thr Ser Ala Asn Leu

<210> 153

<211> 336

<212> PRT <213> Homo sapien

Met Thr Pro Gly Thr Gln Ser Pro Phe Phe Leu Leu Leu Leu Thr 5

Val Leu Thr Ala Thr Thr Ala Pro Lys Pro Ala Thr Val Val Thr Gly 20 25

Ser Gly His Ala Ser Ser Thr Pro Gly Gly Glu Lys Glu Thr Ser Ala

45

168

35

Thr Gln Arg Ser Ser Val Pro Ser Ser Thr Glu Lys Asn Ala Val Ser 50 55 60

Met Thr Ser Ser Val Leu Ser Ser His Ser Pro Gly Ser Gly Ser Ser 65 70 75 80

40

Thr Thr Gln Gly Gln Asp Val Thr Leu Ala Pro Ala Thr Glu Pro Ala 85 90 95

Ser Gly Ser Ala Ala Thr Trp Gly Gln Asp Val Thr Ser Val Pro Val \cdot 100 105 110

Thr Arg Pro Ala Leu Gly Ser Thr Thr Pro Pro Ala His Asp Val Thr 115 120 125

Ser Ala Pro Asp Asn Lys Pro Ala Pro Gly Ser Thr Ala Pro Pro Ala 130 135 140

His Gly Val Thr Ser Ala Pro Asp Thr Arg Pro Ala Pro Gly Ser Thr 145 150 155 160

Ala Pro Pro Ala His Gly Val Thr Ser Ala Pro Asp Asn Arg Pro Ala 165 170 175

Leu Gly Ser Thr Ala Pro Pro Val His Asn Val Thr Ser Ala Ser Gly 180 185 190

Ser Ala Ser Gly Ser Ala Ser Thr Leu Val His Asn Gly Thr Ser Ala 195 200 205

Arg Ala Thr Thr Pro Ala Ser Lys Ser Thr Pro Phe Ser Ile Pro 210 215 220

Ser His His Ser Asp Thr Pro Thr Thr Leu Ala Ser His Ser Thr Lys 225 230 235 240

Thr Asp Ala Ser Ser Thr His His Ser Thr Val Pro Pro Leu Thr Ser 245 250 255

Ser Asn His Ser Thr Ser Pro Gln Leu Ser Thr Gly Val Ser Phe Phe 260 265 270

Phe Leu Ser Phe His Ile Ser Asn Leu Gln Phe Asn Ser Ser Leu Glu 275 280 285

Asp Pro Ser Thr Asp Tyr Tyr Gln Glu Leu Gln Arg Asp Ile Ser Glu 295 300

Met Phe Leu Gln Ile Tyr Lys Gln Gly Gly Phe Leu Gly Leu Ser Asn 315 310

Ile Lys Phe Ser Gln Glu Leu Trp Trp Gln Asn Lys Arg Ser Ser Asn 330 325

<210> 154

<211> 55 <212> PRT

<213> Homo sapien

<400> 154

Met Ala Thr Gln Leu Ile Leu Val Gln Met Ser Leu Phe Pro Asp Ala 1 5 10

Pro His Asp Pro Ser Ser Leu Gly Gly Met His Pro Ser Ser Val Ser 20 25

His Phe Arg Ala Phe Cys Thr Leu Leu Thr Leu Ser Arg Ile Pro Ala 35

Ile Trp Val Gln Ala Ser Gln 50

<210> 155

<211> 97

<212> PRT

<213> Homo sapien

<400> 155

Met Asn His Leu Arg His Phe Cys Ile Thr Glu Asp Leu Ala Leu Pro

Ala Val Leu Gly Met Leu Arg Val Gln Ala Glu Ala Arg Glu Ala Gly 20 30

Leu Arg Gly Gln Lys Gln Gly Leu Gly Gln Ala Ser Pro Asp Arg Glu 35

Glu Gly Leu Arg Ser Lys Pro Ala Val Leu Leu Ala Gly Gly Pro Gly 50 55

Gly Tyr Lys Leu Leu Cys Ala Leu His Lys Pro Glu Ser Pro Thr Arg

170

70 65 75

Glu Asp Val Cys Glu Glu Pro Glu Thr Leu Asn Pro Ile Lys Arg Glu 90

Lys

<210> 156

<211> 52 <212> PRT <213> Homo sapien

<400> 156

Met Leu Cys Ala Ile Ser Ile Ser Leu Val Ile Phe Phe Asn Lys His 10

Glu Ser Ile Lys Lys Lys Arg Arg Lys Lys Ala Gly Gly Thr Leu

Gly Gln Ser Gly Pro Gly Gly Asp Trp Phe Pro Ala Asn Ser Thr Ile

23

23

Ser Arg Thr Arg

<210> 157 <211> 23 <212> DNA <213> Artificial sequence

<220>

<223> Synthetic

<400> 157

cacttccttt agttttgccc tgg

<210> 158 <211> 23 <212> DNA

<213> Artificial sequence

<220>

<223> Synthetic

<400> 158

atcctgaatt ctgagaccat cca

<210> 159

<211> 21

<212> DNA

171

<213> Artificial sequence

<213>	Artificial sequence			
<220>				
<223>	Synthetic			
<400>	159			
gcctcc	agca cactcttcag t	21		
<210>	160			
<210> <211>				
<211>				
	Artificial sequence			
1222				
<220>				
<223>	Synthetic			
•	•			
	160	٥.		
agccgg.	agga gatgtggete taccg	25		
<210>	161			
<211>				
<212>				
	Artificial sequence			
<220>				
<223>	Synthetic			
<400>	161			
	ccca gagactcatc	20		
<210>				
<211> <212>				
	Artificial sequence			
12207				
<220>				
<223>	Synthetic			
<400>	162	10		
gcacaa	acat cggcttggt	19		
<210>	163			
<211>	27			
<212>				
<213>	Artificial sequence			
<220>				
<223>	Synthetic			
<400>	163			
	acat ttctgaaatg gctgtct	27		
<210>	164			
<211>	21			
<212>	NA			

172

<220>		
<223>	Synthetic	
400		
<400>	accg actactacca a	21
cccagce	accaccacca a	
<210>	165	
<211>	20	
<212>		
<213>	Artificial sequence	
-220		
<220>	Synthetic	
~2237	bynchecic	
<400>	165	
agctgcd	ccgt agttctttcg	20
<210>		
<211> <212>		
	Artificial sequence	
~~~	INDULATION DOGRAMO	
<220>		
<223>	Synthetic	
	166	
ctgaaag	gcag gtcacccctg agatcct	27
<210>	167	
<211>		
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Synthetic	
<400>	167	
	ttgg ccaggttcta a	21
J J		
<210>	168	
<211>		
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Synthetic	
<400>	168	
tgctag	ggtg cccctctgt	19
-210-	160	
<210> <211>	169 24	
<211>	DNA	

<213> Artificial sequence

173

<220> <223>	Synthetic				
<400>		24			
<210>	170				
<211>					
<212>	DNA Artificial sequence				
\2137	Artificial Beddence				
<220>					
<223>	Synthetic				
<400>	170				
tggataacaa gcccacaaat ga 22					
<210>	171				
<211>					
<212>	DNA Artificial sequence				
(213)	VICILICIAL SEGUENCE				
<220>					
<223>	Synthetic				
<400>	171				
cetetagtte cageceettt tag 23					