Universität Leipzig Institut für Informatik Bioinformatik/IZBI	Algorithmen und Datenstrukturen II SoSe 2024 – Freiwillige Serie 11		
P.F. Stadler, T. Gatter	Ausgabe am 11.06.2024	Lösung am 18.06.2024	Seite 1/2

Algorithmen und Datenstrukturen II SoSe 2024 – Serie 11

1 Randomisierte Algorithmen

Gegeben sei die folgende Fitnesslandschaft mit einer Lösungsmenge X mit den Parametern x_n und y_m :

	y_1	y_2	y_3	y_4	y_5	y_6
x_1	5	8	9	7	6	3
x_2	2	6	7	5	5	4
x_3	1	9	8.5	4	2	6
x_4	3	5	6	7	1	7
x_5	4	6	8	9	10	3
x_6	6	7	5	8	9	2

Im Folgenden soll so optimiert werden, dass die Fitness **minimiert** wird, wobei als Move die Änderung eines Parameters um 1 Schritt erlaubt ist (4er-Nachbarschaft ohne Diagonalen).

Geben Sie als Positionsbeschreibung jeweils den passenden Fitnesswert an, also bspw. 3 für die Position $\{x_1, y_6\}$.

- a) Geben Sie alle Lösungswege für Gradient Descent Walks ausgehend von Position $\{x_3,y_3\}$ an (starten Sie also bei der Zelle mit dem Wert 8.5).
- b) Geben Sie alle Lösungswege für Adaptive Walks ausgehend von Position $\{x_3,y_3\}$ an.

2 Metropolis-Walks

Ein Objekt x_0 einer Fitness-Lanschaft habe die Nachbarn x_1 und x_2 . Die Fitnessfunktion f auf diesen Objekten sei gegeben durch

$$\begin{array}{c|cccc}
\text{Objekt x} & x_0 & x_1 & x_2 \\
\hline
\text{Fitness f(x)} & 4 & 5 & 1
\end{array}$$

Betrachten Sie einen Metropolis-Walk ausgehend von x_0 .

- a) Sei zunächst T=1. Geben Sie für $y=x_1$ und $y=x_2$ jeweils die in Schritt (2) bestimmte Wahrscheinlichkeit an, mit der der Move $x_0 \to y$ akzeptiert wird. Berechnen Sie diese auf zwei Nachkommastellen gerundet.
- b) Sei nun T=3. Geben Sie wieder die Akzeptanz-Wahrscheinlichkeiten für $x_0\to x_1$ und $x_0\to x_2$ an.

Universität Leipzig Institut für Informatik Bioinformatik/IZBI	Algorithmen und Datenstrukturen II SoSe 2024 – Freiwillige Serie 11		
P.F. Stadler, T. Gatter	Ausgabe am 11.06.2024	Lösung am 18.06.2024	Seite 2/2

- c) Wie degneriert ein Metropolis-Walk in den beiden folgenden Grenz-Fällen
 - i) die Temperatur wird sehr klein gewählt (nahe 0).
 - ii) die Temperatur wird schrittweise von einem großen Wert heruntergekühlt (geht mit der Zeit gegen 0.)

Wählen Sie die jeweils passendste Beschreibung unter den folgenden Begriffen "Uniform Random Walk", "Non-Uniform Random Walk", "Gradient-Descent", "Simulated Annealing", "Adaptive Walk". (Erschliessen Sie sich ggf. die Bedeutung der Begriffe.)

3 Genetische Algorithmen

Gegeben seien die beiden Individuen Maria und Mario.

$$x_1 = Maria = 1, 2, 3, 4, 5, 6, 7, 8, 9$$

 $x_2 = Mario = 9, 8, 7, 6, 5, 4, 3, 2, 1$

Geben Sie die Lösung an für die Rekombination der Individuen durch

- a) 1-Punkt Crossover mit k=3
- b) Uniform Crossover mit dem Tauschvektor (*, -, -, *, -, *,-, *) * = tauschen
- c) Elementweise Mittelwertbildung
- d) Elementweise Konvexe Kombination mit p=0.8
- e) Elementweise Konvexe Kombination mit p=1