Mathematik II für Informatik - Zusammenfassung

Jonas Milkovits

Last Edited: 14. August 2020

Inhaltsverzeichnis

1	Ana	dysis Teil I - Konvergenz und Stetigkeit
	1.1	Die reellen Zahlen
	1.2	Wurzeln, Fakultäten und Binomialkoeffizienten
	1.3	Konvergenz von Folgen
		1.3.1 Der Konvergenzbegriff und wichtige Beispiele
		1.3.2 Konvergenzkriterien
		1.3.3 Teilfolgen und Häufungswerte
	1.4	Asymptotik
	1.5	Reihen
		1.5.1 Absolute Konvergenz
		1.5.2 Das Cauchy-Produkt
	1.6	Konvergenz in normierten Räumen
	1.7	Stetigkeit reeller Funktionen
		1.7.1 Der Grenzwertbegriff für Funktionen
		1.7.2 Stetigkeit
		1.7.3 Eigenschaften stetiger Funktionen
	1.8	Stetigkeit von Funktionen mehrerer Variablen
	1.9	Potenzreihen
	1.10	Wichtige Funktionen
		1.10.1 Exponentialfunktion und Logarithmus
		1.10.2 Trigonometrische Funktionen
		1.10.3 Die Polardarstellung komplexer Zahlen
		1.10.4 Hyperbolische Funktionen
0	A	1 - '- T-' II D'C
2		Alysis - Teil II: Differential- und Integralrechnung
	2.1	Differenzierbarkeit von Funktionen in einer Variablen
		8 0
	2.2	8
	2.2	
	$\frac{2.3}{2.4}$	Extremwerte
	$\frac{2.4}{2.5}$	Differenzieren von Funktionen mehrerer Variablen - Totale Differenzierbarkeit
	$\frac{2.5}{2.6}$	Extremwertprobleme in mehreren Variablen
	$\frac{2.0}{2.7}$	Integration in \mathbb{R}
	2.1	2.7.1 Definition des bestimmten Integrals
		2.7.2 Stammfunktionen und der Hauptsatz
	2.8	Integrationstechniken
	2.0	integrationsteeliniken
3	Gev	vöhnliche Differentialgleichungen 26
	3.1	Problemstellung und Motivation
	3.2	Elementare Lösungstechniken
		3.2.1 Getrennte Veränderliche
		3.2.2 Homogene Differentialgleichungen

3.3	Systeme von Differentialgleichungen				
	3.3.1 Lineare Systeme	28			
	3.3.2 Lineare Systeme mit konstanten Koeffizienten	29			
3.4	Differentialgleichungen höherer Ordnung	30			
3.5	Existenz- und Eindeutigkeitsresultate	31			

1 Analysis Teil I - Konvergenz und Stetigkeit

1.1 Die reellen Zahlen

D	5.1.1	Die Menge der reellen Zahlen ist der kleinste angeordnete Körper, der $\mathbb Z$ enthält und das
		Vollständigskeitsaxiom "Jede nichtleere Teilmenge, die eine obere Schranke besitzt, hat ein Su-
		prenum." erfüllt.

B Ein Körper mit Totalordnung ≤ heißt **angeordneter Körper**, falls gilt:

- $\forall a, b, c \in K : a \le b \Rightarrow a + c \le b + c$
- $\forall a, b, c \in K : (a \le b \text{ und } 0 \le c) \Rightarrow ac \le bc$

D 5.1.3 Eine Teilmenge $M \subseteq \mathbb{R}$ heißt:

- a) nach oben (unten) beschränkt, wenn sie eine obere (untere) Schranke besitzt.
- b) beschränkt, wenn sie nach oben und unten beschränkt ist.

S 5.1.4 Jede nach unten beschränkte, nichtleere Teilmenge von $\mathbb R$ besitzt ein Infimum. (Umkehrung Vollständigkeitsaxiom)

D 5.1.5 Die Funktion
$$|\cdot|: \mathbb{R} \to \mathbb{R}$$
 mit

$$|x| = \begin{cases} x & \text{falls } x \ge 0\\ -x & \text{falls } x < 0 \end{cases}$$

heißt Betragsfunktion und |x| heißt Betrag von x.

S 5.1.6 Rechenregeln Betragsfunktion:

Für alle $x, y \in \mathbb{R}$ gilt:

- a) $|x| \ge 0$
- b) |x| = |-x|
- c) $\pm x \leq |x|$
- $d) |xy| = |x| \cdot |y|$
- e) |x| = 0 genau dann, wenn x = 0
- f) $|x+y| \le |x| + |y|$ (Dreiecksungleichung)

D 5.1.8 Intervalle:

Es seien zwei Zahlen $a, b \in \mathbb{R}$ mit a < b gegeben. Dann heißen:

- $(a,b) := \{x \in \mathbb{R} : a < x < b\}$ offenes Intervall
- $[a,b] := \{x \in \mathbb{R} : a \le x \le b\}$ abgeschlossenes Intervall
- $(a,b] := \{x \in \mathbb{R} : a < x \le b\}$ halboffenes Intervall
- $[a, b) := \{x \in \mathbb{R} : a \le x < b\}$ halboffenes Intervall

Halbstrahlen:

- $\bullet \ [a, \infty) := \{x \in \mathbb{R} : a \le x\}$
- $\bullet \ (a, \infty) := \{ x \in \mathbb{R} : a < x \}$
- $\bullet \ (-\infty, a] := \{ x \in \mathbb{R} : x \le a \}$
- $\bullet \ (-\infty, a) := \{ x \in \mathbb{R} : x < a \}$
- \bullet $(-\infty,\infty):=\mathbb{R}$

1.2 Wurzeln, Fakultäten und Binomialkoeffizienten

D 5.2.1 Ganzzahlige Potenzen:

Für jedes $x \in \mathbb{R}$ und jedes $n \in \mathbb{N}^*$ ist

- a) $x^n := x \cdot x \cdot x \dots \cdot x \ (n\text{-mal } x)$
- b) $x^{-n} := \frac{1}{x^n}$, falls $x \neq 0$
- c) $x^0 := 1$

S 5.2.2 Existenz der Wurzel:

Für jedes $a \in R_+$ und alle $n \in N^*$ gibt es genau ein $w \in R_+$ mit $x^n = a$.

D 5.2.3 Es seien
$$a \in \mathbb{R}_+$$
 und $n \in \mathbb{N}^*$. Die **eindeutige Zahl** $x^n \in \mathbb{R}_+$ mit $x^n = a$ heißt n -te **Wurzel** von a und man schreibt $x = \sqrt[n]{a}$. Für den wichtigsten Fall $n = 2$ gibt es die Konvention $\sqrt{a} := \sqrt[2]{a}$.

- Es seien $q \in \mathbb{Q}$ und $m, \in \mathbb{Z}$, sowie $n, r \in \mathbb{N}^*$ so, dass $q = \frac{m}{n} = \frac{p}{r}$. S 5.2.4 Dann gilt für jedes $x \in \mathbb{R}_+$: $(\sqrt[n]{x})^m = (\sqrt[r]{m})^p$.
- D 5.2.5 Aus der Eindeutigkeit der n-ten Wurzel (5.2.4) folgt: Für jedes $x \in \mathbb{R}_+$ und jedes $q = \frac{n}{m} \in \mathbb{Q}$ mit $n \in \mathbb{Z}$ und $m \in \mathbb{N}^*$ ist die **rationale Potenz** definiert durch:

 $x^{q} = x^{\frac{n}{m}} := (\sqrt[x]{x})^{n}.$

Rechenregeln für Potenzen (auch rational) В 5.2.6

 $\forall x, y \in \mathbb{R}_+ \setminus \{0\} \text{ und } \forall p, q \in \mathbb{Q} \text{ gilt:}$

- $x^p x^q = x^{p+q}$
- $x^p y^p = (xy)^p$
- $(x^p)^q = x^{pq}$
- $\frac{x^p}{x^q} = x^{p-q}$ $\frac{x^p}{x^p} = (\frac{x}{y})^p$
- D 5.2.7 Es sei $n \in \mathbb{N}^*$. Dann wird die Zahl $n! := 1 \cdot 2 \cdot ... \cdot n$ als n Fakultät bezeichnet.

Weiterhin definieren wir 0! := 1.

Es seien $n, k \in \mathbb{N}$ mit $k \leq n$. Dann heißt $\binom{n}{k} := \frac{n!}{k!(n-k)!}$ Binomialkoeffizient "n über k".

В 5.2.8 Fakultät und Binomialkoeffizient

n! ist die Anzahl der möglichen Reihenfolgen von n unterschiedlichen Dingen.

 $\binom{n}{k}$ ist die Anzahl der Möglichkeiten aus n unterscheidbaren Dingen genau k auszuwählen.

- S 5.2.9 Es seien $n, k \in \mathbb{N}$ mit $k \leq n$ und $a, b \in \mathbb{R}$. Dann gilt:

 - a) $\binom{n}{0} = \binom{n}{n} = 1$ und $\binom{n}{k} + \binom{n}{k-1} = \binom{n+1}{k}$ b) $a^{n+1} b^{n+1} = (a-b) \sum_{k=0}^{n} a^{n-k} b^k$ c) $(a+b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k$ (Binomialformel)
- В Zugriff auf Binomialkoeffizienten für binomische Formeln durch Pascal'sches Dreieck

1.3 Konvergenz von Folgen

1.3.1 Der Konvergenzbegriff und wichtige Beispiele

D Es sei (a_n) eine Folge in \mathbb{K} und $a \in \mathbb{K}$. Die Folge (a_n) heißt konvergent gegen a, falls für jedes 5.3.1 $\epsilon > 0$ ein $n_0 \in \mathbb{N}$ exisitert mit

$$|a_n - a| < \epsilon$$
 für alle $n \ge n_0$.

In diesem Fall heißt a der **Grenzwert** oder Limes von (a_n) und wir schreiben:

$$\lim_{a\to\infty} = a \text{ oder } a_n \to a(n\to\infty).$$

Ist (a_n) eine Folge \mathbb{K} , die gegen kein $a \in \mathbb{K}$ konvergiert, so heißt diese **divergent**.

Folge $(a_n) = (\frac{1}{n})_{n \ge 1} = (1, \frac{1}{2}, \frac{1}{3}, ...)$ BSP 5.3.1

Sei $\epsilon > 0$. Dann $\frac{1}{\epsilon} < n_0$ für ein $n_0 \in \mathbb{N}$ (beliebiges n immer größer).

Für alle $n \ge n_0$ gilt dann:

$$|a_n - a| = |a_n - 0| = |a_n| = \frac{1}{n} \le \frac{1}{n_0} < \epsilon$$

- \Rightarrow Konvergenz gegen 0
- Sei X eine Menge. Eine **Folge** in X ist eine Abbildung $a: \mathbb{N} \to X$. В

(Für $X = \mathbb{R}$ reelle Folge, $X = \mathbb{C}$ komplexe Folge)

Schreibweise: a_n statt a(n). (n-tes Folgeglied)

Ganze Folge: $(a_n)_{n\in\mathbb{N}}$ oder (a_n) oder $(a_n)_{n>0}$

- В Folgen haben maximal einen (eindeutiger) Grenzwert
- Bezeichnung von Folgen, für die der Grenzwert 0 ist: "Nullfolge" В
- D 5.3.4 Eine Folge (a_n) in \mathbb{K} heißt **beschränkt**, wenn die Menge $\{a_n : n \in \mathbb{N}\} = \{a_0, a_1, a_2, ...\}$ beschränkt in K ist.

Ist $\mathbb{K} = \mathbb{R}$, so setzen wir weiter

$$sup_{n\in\mathbb{N}}a_n := sup_{n=0}^{\infty}a_n := sup\{a_n : n\in\mathbb{N}\}$$

$$inf_{n\in\mathbb{N}}a_n := inf_{n=0}^{\infty}a_n := inf\{a_n : n\in\mathbb{N}\}\$$

S 5.3.5 Jede konvergente Folge in \mathbb{K} ist beschränkt.

Die Umkehrung dieses Satzes ist falsch. Es gibt beschränkte Folgen, die nicht konvergieren.

S 5.3.7 Grenzwertsätze

Es seien $(a_n), (b_n)$ und (c_n) Folgen in \mathbb{K} . Dann gilt:

- a) Ist $\lim_{n\to\infty} a_n = a$, so gilt $\lim_{n\to\infty} |a_n| = |a|$
- b) Gilt $\lim_{n\to\infty} a_n = a$ und $\lim_{n\to\infty} b_n = b$ so gilt:
 - i) $\lim_{n\to\infty} (a_n + b_n) = a + b$
 - ii) $\lim_{n\to\infty} (a_n \cdot b_n) = a \cdot b$
 - iii) $\lim_{n\to\infty}(\alpha a_n)=\alpha a$ für alle $\alpha\in\mathbb{K}$
 - iv) Ist zusätzlich $b_n \neq 0$ für alle $n \in \mathbb{N}$ und $b \neq 0$, so ist $\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{a}{b}$

Ist $\mathbb{K} = \mathbb{R}$, so gilt außerdem:

- c) Ist $a_n \leq b_n$ für alle $n \in \mathbb{N}$ und $\lim_{n \to \infty} a_n = a$ sowie $\lim_{n \to \infty} b_n = b$, so folgt $a \leq b$
- d) Ist $a_n \leq c_n \leq b_n$ für alle $n \in \mathbb{N}$ und sind (a_n) und (b_n) konvergent mit $\lim_{n \to \infty} a_n = a_n$ $\lim_{n\to\infty}b_n=a$, so ist auf die Folge (c_n) konvergent und es gilt $\lim_{n\to\infty}c_n=a$ (Sandwich-Theorem)

В 5.3.7c) ist falsch mit <, nur richtig mit \le

Sei $p \in \mathbb{N}^*$ fest gewählt und $a_n = \frac{1}{n^p}$ für $n \in \mathbb{N}^*$. Dann gilt für alle $n \in \mathbb{N}^*$ die Ungleichung BSP 5.3.9 $n \leq n^p$ und damit

$$0 \le a_n = \frac{1}{n^p} \le \frac{1}{n}$$

 $0 \leq a_n = \tfrac{1}{n^p} \leq \tfrac{1}{n}.$ Da sowohl die Folge, die konstant Null ist, als auch die Folge $\tfrac{1}{n}$ gegen Null konvergiert, ist damit nach Satz 5.3.7(d) auch die Folge (a_n) konvergent und ebenfalls eine Nullfolge.

BSP 5.3.9 Wir untersuchen

$$a_n = \frac{n^2 + 2n + 3}{n^2 + 3}, n \in \mathbb{N}.$$

$$a_n = \frac{n^2 + 2n + 3}{n^2 + 3}, n \in \mathbb{N}.$$
 Dazu kürzen wir durch Bruch durch die **höchste auftretende Potenz**:
$$a_n = \frac{n^2 + 2n + 3}{n^2 + 3} = \frac{1 + \frac{2}{n} + \frac{3}{n^2}}{1 + \frac{3}{n^2}} \to \frac{1 + 0 + 0}{1 + 0} = 1 \ (n \to \infty).$$

Dieses Verfahren ist bei allen Polynom in n geteilt durch Polynom in n"gut anwendbar.

- В 5.3.10 Wichtige konvergente Folgen
 - a) Ist (a_n) eine konvergente Folge in \mathbb{R} mit Grenzwert a und gilt $a \geq 0$ für alle $n \in \mathbb{N}$ so ist für jedes $p \in \mathbb{N}^*$ auch $\lim_{n \to \infty} \sqrt[p]{a_n} = \sqrt[p]{a}$.
 - b) Die Folge $(q^n)_{n\in\mathbb{N}}$ mit $q\in\mathbb{R}$ konvergiert genau dann, wenn $q\in(-1,1]$ ist und es gilt:

$$\lim_{n \to \infty} q^n = \begin{cases} 1 & \text{falls } q = 1\\ 0 & \text{falls } -1 < q < 1 \end{cases}$$

Ist $q \in \mathbb{C}$ mit |q| < 1, so gilt ebenfalls $\lim_{n \to \infty} q^n = 0$.

- c) $\lim_{n\to\infty} \sqrt[n]{c} = 1$ für jedes $c \in \mathbb{R}_+$.
- d) $\lim_{n\to\infty} \sqrt[n]{n} = 1$.
- e) $\lim_{n\to\infty} (1+\frac{1}{n})^n := e \ (n \ge 1).$

Beachte hier: Beide n gleichzeitig wachsen lassen, keine trägen oder eiligere n.

 $a_n := \sqrt{n+1} - \sqrt{n}, n \in \mathbb{N}$ (Differenz von zwei divergenten Folgen) BSP 5.3.12

Trick: Erweiterung mit der Summe von Wurzeln bei Differenzen von Wurzeln

$$\sqrt{n+1} - \sqrt{n} = \frac{\sqrt{n+1} - \sqrt{n}\sqrt{n+1} + \sqrt{n}}{\sqrt{n+1} + \sqrt{n}} = \frac{(n+1) - n}{\sqrt{n+1} + \sqrt{n}} = \frac{1}{\sqrt{n+1} + \sqrt{n}} \le \frac{1}{2\sqrt{n}} = \frac{1}{2}\sqrt{\frac{1}{n}}$$

Sandwich: $\lim_{n\to\infty} (\sqrt{n+1} - \sqrt{n}) = 0.$

Geometrische Summenformel: BSP 5.3.12

Geometrische Summenformel:
$$a_n:=\sum_{k=0}^n q^k=1+q+q^2+\ldots+q^n,\ n\in\mathbb{N}$$
 $\lim_{n\to\infty}a_n=\frac{1}{1-q},\ |q|<1.$

D Bestimmte Divergenz: 5.3.13

> Eine Folge (a_n) in \mathbb{R} divergiert bestimmt nach $\infty(-\infty)$ und wir schreiben $\lim_{n\to\infty}a_n=$ $\infty(-\infty)$, wenn es für jedes $C \ge 0$ ein $n_0 \in \mathbb{N}$ gibt, so dass $a_n \ge C(a_n \le -C)$ für alle $n \le n_0$ gilt.

1.3.2Konvergenzkriterien

- D 5.3.14 Eine reelle Folge (a_n) heißt:
 - a) monoton wachsend, wenn $a_{n+1} \ge a_n$ für alle $n \in \mathbb{N}$ gilt.
 - b) monoton fallend, wenn $a_{n+1} \leq a_n$ für alle $n \in \mathbb{N}$ gilt.
 - c) monoton, wenn sie monoton wachsend oder monoton fallend ist.

S 5.3.15 Monotonie Kriterium

Ist die reelle Folge (a_n) nach oben (nach unten) beschränkt und monoton wachsend (fallend), so ist (a_n) konvergent und es gilt:

$$\lim_{n\to\infty} a_n = \sup_{n\in\mathbb{N}} a_n \text{ (bzw. } \lim_{n\to\infty} a_n = \inf_{n\in\mathbb{N}} a_n)$$

BSP 5.3.16 Betrachtung einer rekursiv defininierten Folge

$$a_0 := \sqrt[3]{6} \text{ und } a_{n+1} = \sqrt[3]{6 + a_n}, n \in \mathbb{N}$$

Damit folgt: $a_1 = \sqrt[3]{6 + \sqrt[3]{6}}, a_2 = \sqrt[3]{6 + \sqrt[3]{6 + \sqrt[3]{6}}}$

Solche Folgen entstehen oft bei iterativen Näherungsverfahren.

Behauptung: (a_n) nach oben beschränkt und monoton wachsend \Rightarrow Konvergenz

Beweis: Induktion

- B Monotonieverhalten, deswegen hier nur in \mathbb{R} und nicht in \mathbb{C} (keine Ordnung)
- D 5.3.18 Folge (a_n) in \mathbb{K} heißt Cauchy-Folge, wenn für jedes $\epsilon > 0$ ein Index $n_0 \in \mathbb{N}$ existiert, so dass $|a_n a_m| < \epsilon$, für alle $n, m \ge n_0$
- S 5.3.19 Jede konvergente Folge in \mathbb{K} ist eine Cauchy-Folge.
- S 5.3.20 Cauchy-Kriterium

Eine Folge in K konvergiert genau dann, wenn sie eine Cauchy-Folge ist.

B Beide hier gesehenen Konvergenzkriterien funktionieren ohne vorherige Behauptung über den Grenzwert

1.3.3 Teilfolgen und Häufungswerte

D	5.3.22	Es sei (a_n) eine Folge in \mathbb{K} . Ein $a \in \mathbb{K}$ heißt Häufungswert der Folge, falls für jedes $\epsilon > 0$ die
		Menge $\{n \in \mathbb{N} : a_n - a < \epsilon\}$ unendlich viele Elemente hat.

- B Jeder Grenzwert ist auch Häufungswert.
- B Häufungswert von $((-1)^n)_{n\in\mathbb{N}}$: 1, -1 (aber keine Grenzwerte)
- B Häufungswert von (i^n) : 1, i, -1, -i
- D 5.3.23 Es sei (a_n) eine Folge in \mathbb{K} . Ist $\{n_1, n_2, n_3, ...\} \subseteq \mathbb{N}$ eine unendliche Menge von Indizes mit $n_1 < n_2 < n_3 ...$, so heißt die Folge $(a_{n_k})_{k \in \mathbb{N}}$ eine Teilfolge von (a_n) .
- B Keine Teilfolgen:

 $(a_0, a_0, a_2, a_2, ..)$ (keine doppelten Elemente)

 $(a_2, a_3, a_0, ...)$ (nicht umsortieren)

- S 5.3.24 Es sei (a_n) eine Folge in \mathbb{K} . Dann gilt
 - a) Ein $\alpha \in \mathbb{K}$ ist genau dann ein Häufungswert von (a_n) , wenn eine Teilfolge (a_{n_k}) von (a_n) existiert, die gegen α konvergiert.
 - b) Ist (a_n) konvergent mit Grenzwert α , so konvergiert auch jede Teilfolge von (a_n) gegen a.
 - c) Ist (a_n) konvergent, so hat (a_n) genau einen Häufungswert, nämlich den Grenzwert $\lim_{n\to\infty}a_n$.

1.4 Asymptotik

D 5.4.1

- a) Wir bezeichnen mit $F_+ := \{(a_n) \text{ Folge in } \mathbb{R} : a_n > 0 \text{ für alle } n \in \mathbb{N} \}$
- b) Es sei $(b_n) \in \mathbb{F}_+$. Dann definieren wir die Landau-Symbole durch
 - $O(b_n):=\{(a_n)\in\mathbb{F}_+:\frac{a_n}{b_n}_{n\in\mathbb{N}}\}\ (b_n \text{ größer gleich }a_n)$
 - $o(b_n) := \{(a_n) \in \mathbb{F}_+ : \lim_{n \to \infty} \frac{a_n}{b_n} = 0\} \ (b_n \text{ echt größer als } a_n)$

- B 5.4.2
- a) =-Zeichen wird hier nicht bekannten mathematischen Sinne verwendet \Rightarrow Kompromiss Notation $a_n \in O(b_n)$
- b) Es gilt immer $o(b_n) \subseteq O(b_n)$.
- c) $(\frac{a_n}{b_n})_{n\in\mathbb{N}}$ konvergent $\Rightarrow a_n \in O(b_n)$
- d) $a_n \in O(b_n)$: Folge a_n wächst höchstens so schnell wie ein Vielfaches von b_n
- S 5.4.5 Es seien $(a_n), (b_n), (c_n), (d_n) \in \mathbb{F}_+$ und $\alpha, \beta \in \mathbb{R}_+$. Dann gilt:S
 - a) Sind $a_n, b_n \in O(c_n)$, so ist auch $\alpha a_n + \beta b_n \in O(c_n)$
 - b) Gilt $a_n \in O(b_n)$ und $c_n \in O(d_n)$, so ist $a_n c_n \in O(b_n d_n)$
 - c) Aus $a_n \in O(b_n)$ und $b_n \in O(c_n)$ folgt $a_n \in O(c_n)$
 - d) $a_n \in O(b_n)$ genau dann, wenn $\frac{1}{b_n} \in O(\frac{1}{a_n})$
 - e) Diese Aussagen gelten auch alle mit Klein-O anstatt Groß-O
- B Exponentielle Algorithmen sind viel schlechter als polynomiale.

Landau-Symbol	Bezeichnung	Bemerkung
O(1)	beschränkt	
$O(\log_a(n))$	logarithmisch	a > 1
O(n)	linear	
$O(n\log_a(n))$	"n log n"	a > 1
$O(n^2)$	quadratisch	
$O(n^3)$	kubisch	
$O(n^k)$	polynomial	$k \in \mathbb{N}^*$
$O(a^n)$	exponentiell	a > 1

В

1.5 Reihen

D 5.5.1 Es sei (a_n) eine Folge in \mathbb{K} . Dann heißt

$$\sum_{n=0}^{\infty} a_n = a_0 + a_1 + a_2 + \dots$$

die **Reihe** über (a_n) .

Für jedes $k \in \mathbb{N}$ heißt dann $s_k = \sum_{n=0}^k a_n$ die k-te Teilsumme oder **Partialsumme** der Reihe. Ist die Folge $(s_k)_{k \in \mathbb{N}}$ konvergent, so nennen wir die Reihe **konvergent** mit dem Reihenwert:

$$\sum_{n=0}^{\infty} a_n := \lim_{k \to \infty} s_k = \lim_{k \to \infty} \sum_{n=0}^{k} a_n$$

Ist (s_k) divergent, so nennen wir auch die Reihe divergent.

S 5.5.3 Seien $\sum_{n=0}^{\infty} a_n$ und $\sum_{n=0}^{\infty} b_n$ zwei konvergente Reihen in \mathbb{K} und $\alpha, \beta \in \mathbb{K}$. Dann ist auch $\sum_{n=0}^{\infty} (\alpha a_n + \beta b_n)$ konvergent und es gilt

$$\sum_{n=0}^{\infty} (\alpha a_n + \beta b_n) = \alpha \sum_{n=0}^{\infty} a_n + \beta \sum_{n=0}^{\infty} b_n$$

- S 5.5.4 Es gilt $\sum_{n=0}^{\infty} \frac{1}{n!} = e$.
- S 5.5.5 Ist $\sum_{n=0}^{\infty} a_n$ eine konvergente Reihe in \mathbb{K} , so ist (a_n) eine **Nullfolge** in \mathbb{K} .
- B 5.5.5 Gilt nicht umgekehrt. Nullfolge ist eine Voraussetzung für eine konvergente Reihe, aber keine Garantie.
- S 5.5.6 Es sei (a_n) eine Folge in \mathbb{K} und $s_k := \sum_{n=0}^k a_n, k \in \mathbb{N}$ Dann gilt:
 - a) Monotonie Kriterium

Ist $a_n \geq 0$ für alle $n \in \mathbb{N}$ und $(s_k)_{k \in \mathbb{N}}$ nach oben beschränkt, so ist $\sum_{n=0}^{\infty} a_n$ konvergent.

b) Cauchy-Kriterium

Die Reihe $\sum_{n=0}^{\infty} a_n$ ist genau dann konvergent, wenn für jedes $\epsilon > 0$ ein $n_o \in \mathbb{N}$ existiert mit $|\sum_{n=l+1}^k a_n| < \epsilon$ für alle $k, l \in \mathbb{N}$ mit $k > l \ge n_0$.

S 5.5.7 Leibniz-Kriterium

Es sei (a_n) eine monoton fallende Folge in \mathbb{R} mit $\lim_{n\to\infty}a_n=0$. Dann ist die Reihe $\sum_{n=0}^{\infty}(-1)^na_n$ konvergent.

BSP

- $\sum_{n=0}^{\infty} q^n = \frac{1}{1-q}, |q| < 1$ (Geometrische Reihe) $\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1$ $\sum_{n=1}^{\infty} \frac{1}{n} = \text{divergent (Harmonische Reihe)}$ $\sum_{n=0}^{\infty} \frac{1}{n!} = e$ $\sum_{n=0}^{\infty} (-1)^n \frac{1}{n+1} = \ln(2)$ (alternierende harmonische Reihe) (Leibniz-Kriterium) $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$: konvergent, wenn $\alpha > 1$, sonst divergent

1.5.1Absolute Konvergenz

Definitionen

Eine Reihe $\sum_{n=0}^{\infty} a_n$ in \mathbb{K} heißt **absolut konvergent**, wenn die Reihe $\sum_{n=0}^{\infty} |a_n|$ in \mathbb{K} konvergiert. 5.5.9 (Summanden werden schnell genug klein, vorzeichenunabhängig)

Sätze

Jede absolut konvergente Reihe $\sum_{n=0}^{\infty} a_n$ in K ist auch konvergent in K und es gilt die verallge-5.5.10 meinerte Dreiecksungleichung

$$|\sum_{n=0}^{\infty} a_n| \le \sum_{n=0}^{\infty} |a_n|$$

Es seien (a_n) und (b_n) reelle Folgen und $n_o \in \mathbb{N}$.

• Majorantenkriterium

Ist $|a_n| \leq b_n$ für alle $n \geq n_o$ und konvergiert die Reihe $\sum_{n=0}^{\infty} b_n$, so ist $\sum_{n=0}^{\infty} a_n$ absolut konvergent.

• Minorantenkriterium

Ist $a_n \ge b_n \ge 0$ für alle $n \ge n_0$ und divergiert die Reihe $\sum_{n=0}^{\infty} b_n$, so divergiert auch die Reihe $\sum_{n=0}^{\infty} a_n$.

Es sei $\sum_{n=0}^{\infty} a_n$ eine Reihe in \mathbb{K} . 5.5.16

 ${\bf a)} \ \ {\bf Wurzelkriterium}$

Existiert der Grenzwert $\lim_{n\to\infty} \sqrt[n]{|a_n|}$, so ist die Reihe

• absolut konvergent, wenn $\lim_{n\to\infty} \sqrt[n]{|a_n|} < 1$ ist • divergent, wenn $\lim_{n\to\infty} \sqrt[n]{|a_n|} > 1$ ist

b) Quotientenkriterium

Ist $a_n \neq 0$ für alle $n \in \mathbb{N}$ und existiert der Grenzwert $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$, so ist die Reihe

• absolut konvergent, wenn $\lim_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right| < 1$ ist • divergent, wenn $\lim_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right| > 1$ ist

Bemerkungen

Gilt nicht umgekehrt (alternierende harmonische Reihe) 5.5.10

Absolute Konvergenz: Reihenwert ist unabhängig von der Summationsreihenfolge 5.5.10

5.5.12 Die Vergleichsfolge heißt jeweils konverente Majorante bzw. divergente Minorante.

5.5.16Liefert Wurzel-/Quotientenkriterium genau Eins, kann man daraus keine Aussage ableiten

6

Das Cauchy-Produkt 1.5.2

Definitionen

5.5.21 Für alle
$$z \in \mathbb{C}$$
 ist $e^z := E(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!}$.

Sätze

5.5.19 Es seien $\sum_{n=0}^{\infty} a_n$ und $\sum_{n=0}^{\infty} b_n$ zwei **absolut konvergente Folgen** in \mathbb{K} . Dann konvergiert auch die Reihe $\sum_{n=0}^{\infty} \sum_{k=0}^{n} a_k b_{n-k}$ **absolut** und es gilt für die Reihenwerte:

$$\sum_{n=0}^{\infty} \sum_{k=0}^{n} a_k b_{n-k} = (\sum_{n=0}^{\infty} a_n) (\sum_{n=0}^{\infty} b_n)$$

Die Reihe $\sum_{n=0}^{\infty} \sum_{k=0}^{n} a_k b_{n-k}$ heißt **Cauchy-Produkt** der beiden Reihen.

5.5.20 Für alle $z, w \in \mathbb{C}$ gilt E(z+w) = E(z)E(w).

1.6 Konvergenz in normierten Räumen

T .		- 1
1)	-5.6	
ע	υ.υ	٠.

a) Eine Folge $(a_n)_{n\in\mathbb{N}}$ in V heißt **konvergent** gegen ein $a\in V$, wenn für jedes $\epsilon>0$ ein $n_0\in\mathbb{N}$ existiert, so dass

$$||a_n - a||_V < \epsilon$$
 für alle $n \ge n_0$

Die Folge heißt divergent, wenn sie nicht konvergent ist.

b) Eine Folge heißt Cauchy-Folge, wenn es für jedes $\epsilon > 0$ ein $n_0 \in \mathbb{N}$ gibt mit

$$||a_n - a_m||_V < \epsilon$$
 für alle $n, m \ge n_0$

- c) Eine Reihe $\sum_{n=0}^{\infty} a_n$ in V heißt **konvergent** mit Reihenwert $s \in V$, wenn die Folge der Partialsummen $s_k := \sum_{n=0}^k a_n, \ k \in \mathbb{N}$, in V gegen s konvergiert. Konvergiert die Reihe $\sum_{n=0}^{\infty} ||a_n||_V$ in \mathbb{R} so heißt die Reihe $\sum_{n=0}^{\infty} a_n$ absolut konvergent. Ist die Reihe nicht konvergent, so nennt man sie **divergent**.
- B 5.6.1 Genau dasselbe wie vorher, wir ersetzen nur den Betrag durch die jeweilige Norm
- B 5.6.1 **Cauchy-Folge**: Abstand von je zwei Folgegliedern

B **2-Norm**:
$$||x||_2 = \sqrt{x_1^2 + x_2^2}$$

- D 5.6.2 Eine Menge $M \subseteq V$ heißt beschränkt, falls es ein ≥ 0 gibt, so dass $||x||_V \leq C$ für alle $x \in \mathbb{M}$ gilt.
- BSP 5.6.3 $V = \mathbb{R}^3$, 1-Norm: $||x||_1 = \sum_{j=1}^3 |x_i|$, $a_n := (1, \frac{1}{n}, \frac{n-1}{n})^T$, $n \in \mathbb{N}^*$ Hier gilt $\lim_{n \to \infty} a_n = (1, 0, 1)^T$. Zeige: Abstand von a_n zu Grenzwert beliebig klein: $||a_n - (1, 0, 1)^T|| = |0| + |\frac{1}{n}| + |\frac{n-1}{n} - 1| = \frac{2}{n}$ (Abstand geht gegen 0) Sei $\epsilon > 0$. Dann existiert $n_0 \in \mathbb{N}$ mit $n_0 > \frac{2}{\epsilon}$. Für alle $n \ge n_0$ gilt: $||a_n - (1, 0, 1)^T||_1 = \frac{2}{n} \le \frac{2}{n_0} \le \frac{2\epsilon}{2} = \epsilon$
- S 5.6.5 Es sei $(a_n)_{n\in\mathbb{N}} = ((a_{n,1}, a_{n,2}, \dots, a_{n,d})^T)_{n\in\mathbb{N}}$ eine Folge in \mathbb{R}^d mit der 2-Norm. Dann ist (a_n) in \mathbb{R}^d genau dann **konvergent**, wenn für jedes $j \in \{1, 2, \dots, d\}$ die Koordinatenfolge $(a_{n,j})_{n\in\mathbb{N}}$ in \mathbb{R} **konvergent** ist. In diesem Fall ist

$$\lim_{n\to\infty} \begin{pmatrix} a_{n,1} \\ a_{n,2} \\ \vdots \\ a_{n,d} \end{pmatrix} = \begin{pmatrix} \lim_{n\to\infty} a_{n,1} \\ \lim_{n\to\infty} a_{n,2} \\ \vdots \\ \lim_{n\to\infty} a_{n,d} \end{pmatrix}$$

Falls eine Komponente im Vektor divergiert, divergiert die ganze Folge.

- B 5.6.5 Der Satz gilt im endlichen Raum für alle Normen.
 Wenn eine Folge bezüglich einer Norm konvergiert, dann auch bzgl jeder anderen.
 Grenzwerte bleiben gleich.
- D 5.6.8
- a) Es seien $x_0 \in \mathbb{V}$ und $r \in (0, \infty)$. Dann heißt die Menge $B_r(x_0) := \{x \in V : ||x x_o||_V < r\}$ (offene) Kugel um x_0 (Mittelpunkt) mit Radius r.
- b) Eine Menge $M \subseteq V$ heißt **offen**, falls es für jeden Punkt $x_0 \in M$ einen Radius r > 0 gibt, so dass $B_r(x_0) \subseteq M$ gilt.
- c) Eine Menge $M \subseteq V$ heißt **abgeschlossen**, wenn die Menge $M^c = V$ M offen ist.
- d) Es sei $M \subseteq V$. Ein Punkt $x_0 \in M$ heißt **innerer Punkt** von M, falls es ein r > 0 gibt, so dass $B_r(x_0) \subseteq M$ ist. Man nennt $M^o := \{x \in M : x \text{ innerer Punkt von } M\}$ das **Innere von** M.

В 5.6.8 Menge abgeschlossen: Rand gehört zur Menge Menge offen: Rand gehört nicht zur Menge Die meisten Menge sind weder offen noch abgeschlossen, keine Umkehrschlüsse! S Eine Teilmenge M von V ist genau dann **abgeschlossen**, wenn für jede Folge in M, die in V5.6.11 konvergiert, der Grenzwert ein Element aus M ist. D Ist V ein endlichdimensionaler normierter \mathbb{R} -Vektorraum, so heißt eine Teilmenge $M \subseteq V$ kom-5.6.13pakt, wenn sie abgeschlossen und beschränkt ist. D 5.6.15Es sei (a_n) eine Folge in $(V, ||\cdot||_V)$. a) Ein $a \in V$ heißt **Häufungswert** von (a_n) m falls für jedes $\epsilon > 0$ die Menge $\{n \in \mathbb{N} : ||a_n - a||_V < \epsilon\} = \{n \in \mathbb{N} : a_n \in B_{\epsilon}(a)\}$ unendlich viele Elemente hat. b) Ist $\{n_1, n_2, n_3, \dots\}$ eine unendliche Teilmenge von \mathbb{N} mit $n_1 < n_2 < n_3 < \dots$, so heißt $(a_{n_k})_{k\in\mathbb{N}}$ eine **Teilfolge** von (a_n) . S 5.6.17Satz von Bolzano-Weierstraß Sei $(V, ||\cdot||_V)$ ein endlichdimensionaler normierter Raum und $M \subseteq V$ kompakt. Dann besitzt jede Folge in M eine konvergente Teilfolge mit Grenzwert in M. В Ist $(V, ||\cdot||_V)$ ein endlichdimensionaler normierter Raum, so besitzt jede beschränkte Folge in V5.6.17mindestens einen Häufungswert. (Unendliche viele Punkte in einer beschränkten Menge müssen irgendwo klumpen) D 5.6.19Ein normierter \mathbb{R} -Vektorraum $(V, ||\cdot||_V)$ heißt vollständig, wenn jede Cauchy-Folge in V konvergiert. Ein vollständiger normierter R-Vektorraum wird auch Banachraum genannt. Wird die Norm $||\cdot||_V$ außerdem durch eine Skalarprodukt auf V induziert, so nennt man V Standardvektorraum \mathbb{R}^d ist für jedes $d \in \mathbb{N}^*$ mit jeder Norm ein **Banachraum**. В 5.6.19Wählt man außerdem die durch das Skalarprodukt induzierte 2-Norm, so ist $(\mathbb{R}^d, ||\cdot||_2)$ ein Normierter Raum: V = normierter Vektorraum mit Norm $||\cdot||_V$ (ermöglicht Abstandsmessung) В Hier als Vorstellung \mathbb{R}^3 mit Standard(2)-Norm (normaler Abstand im Raum) S Banach'scher Fixpunktsatz 5.6.22Es sei $(V, ||\cdot||_V)$ ein Banachraum $M \subseteq V$ abgeschlossen und $f: M \to M$ eine Funktion. Weiter existiere ein $q \in (0, 1)$, so dass $||f(x)-f(y)||_V \leq q||x-y||_V$, für alle $x,y\in M$ gilt. Dann gelten die folgenden Aussagen: a) Es gibt genau ein $v \in M$ mit f(v) = v. (d.h. f hat genau einen Fixpunkt in M) b) Für jedes $x_0 \in M$ konvergiert die Folge (x_n) mit $x_{n+1} = f(x_n), n \in \mathbb{N}$, gegen v und es gelten die folgenden Fehlerabschätzungen für hedes $n \in \mathbb{N}^*$: $||x_n - v||_V \le \frac{q^n}{1-q}||x_1 - x_0||_V$ (A-priori-Abschätzung) $||x_n - v||_V \le \frac{q}{1-q}||x_n - x_{n-1}||_V$ (A-posterior-Abschätzung)

1.7 Stetigkeit reeller Funktionen

1.7.1 Der Grenzwertbegriff für Funktionen

- D 5.7.1 Es sei $D \subseteq \mathbb{R}$ eine Menge, $f: D \to \mathbb{R}$ eine Funktion und $x_0 \in \mathbb{R}$
 - a) Wir nennen x_0 einen **Häufungspunkt** von D, falls es eine Folge (a_n) in D mit $a_n \neq x_0$ für alle $n \in \mathbb{N}$ gibt, die gegen x_0 konvergiert.
 - b) Ist x_0 ein Häufungspunkt von D, so sagen wir, dass f für x gegen x_0 den Grenzwert y hat, wenn für jede Folge (a_n) in D, die gegen x_0 konvergiert und für die $a_n \neq x_0$ für alle $n \in \mathbb{N}$ gilt, die Folge $(f(a_n))$ gegen y konvergiert.

Wir schreiben dafür: $\lim_{x\to x_0} f(x) = y$.

c) Ist x_0 ein Häufungspunkt von $D_+ := \{x \in D : x > x_0\}$, so hat f für x gegen x_0 den **rechtsseitigen Grenzwert** y, wenn für jede Folge (a_n) in D_+ , die gegen x_0 konvergiert, die Folge $(f(a_n))$ gegen y konvergiert.

Wir schreiben dafür: $\lim_{x\to x_{0+}} f(x) = y$.

d) Ist x_0 ein Häufungspunkt von $D_- := \{x \in D : x < x_0\}$, so hat f für x gegen x_0 den linksseitigen Grenzwert y, wenn für jede Folge (a_n) in D_- , die gegen x_0 konvergiert, die Folge $(f(a_n))$ gegen y konvergiert.

Wir schreiben dafür: $\lim_{x\to x_{0-}} f(x) = y$.

- B 5.7.1 x_0 HP von D bedeutet, dass x_0 aus $D \setminus \{x_o\}$ annäherbar Bsp.: HP von (0, 1]: [0, 1]
- S 5.7.4 Es sei $D \subseteq \mathbb{R}$, $f: D \to \mathbb{R}$ eine Funktion und $x_0 \in \mathbb{R}$. Existieren $\lim_{x \to x_0 -} f(x)$ und $\lim_{x \to x_0 +} f(x)$ und sind die beiden Werte gleich so existiert auch $\lim_{x \to x_0} f(x)$ und es gilt

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_{0-}} = \lim_{x \to x_{0+}} f(x) = \lim_{x \to x_{0+}} f(x) = \lim_{x \to x_{0+}} f(x) = \lim_{x \to x_{0-}} f(x) = \lim_{x \to$$

- B 5.7.4 Es gilt nicht $\lim_{x\to x_0} f(x) = f(x_0)$.
- S 5.7.6 Es sei $D \subseteq \mathbb{R}$ und x_0 ein Häufungspunkt von D. Desweiteren seien drei Funktion $f, g, h : D \to \mathbb{R}$ gegeben, so dass die Grenzwerte $\lim_{x \to x_0} f(x)$ und $\lim_{x \to x_0} g(x)$ existieren. Dann gilt:
 - a) Die Grenzwerte für x gegen x_0 von f+g, fg und |f| exisiteren und es gilt:
 - $\lim_{x \to x_0} (f(x) + g(x)) = \lim_{x \to x_0} f(x) + \lim_{x \to x_0} g(x)$
 - $\lim_{x \to x_0} (f(x) \cdot g(x)) = \lim_{x \to x_0} f(x) \cdot \lim_{x \to x_0} g(x)$
 - $\lim_{x\to x_0} |f(x)| = |\lim_{x\to x_0} f(x)|$
 - b) Gilt $f(x) \leq g(x)$ für alle $x \in D \setminus \{x_0\}$, so ist $\lim_{x \to x_0} f(x) \leq \lim_{x \to x_0} g(x)$
 - c) Ist $\lim_{x\to x_0} f(x) = \lim_{x\to x_0} g(x)$ und es gilt $f(x) \le h(x) \le g(x)$ für alle $x \in D\setminus\{x_0\}$, so gilt auch $\lim_{x\to x_0} h(x) = \lim_{x\to x_0} f(x) = \lim_{x\to x_0} g(x)$. (Sandwich-Theorem)
 - d) Ist $y := \lim_{x \to x_0} g(x) \neq 0$, so existiert $\delta > 0$, so dass $|g(x)| \geq \frac{|y|}{2}$ für alle $x \in (D \cap (x_0 \delta, x_0 + \delta)) \setminus \{x_0\}$ ist. Wir können also die Funktion $\frac{f}{g} : (D \cap (x_0 \delta, x_0 + \delta)) \setminus \{x_0\} \to \mathbb{R}$ mit $\frac{f}{g}(x) := \frac{f(x)}{g(x)}$ definieren. Für diese existiert dann der Limes für x gegen x_0 mit $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} g(x)}$.
- D 5.7.7 **Divergenz**
 - a) Es seien $D \subseteq \mathbb{R}$, $f: D \to \mathbb{R}$ eine Funktion und x_0 ein Häufungspunkt von D. Wir schreiben $\lim_{x \to x_0} f(x) = \infty(-\infty)$, wenn für jedes Folge (a_n) in D, die gegen x_0 konvergiert und für die $a_n \neq x_0$ für alle $n \in \mathbb{N}$ gilt, die Folge $(f(a_n))$ bestimmt gegen $\infty(-\infty)$ divergiert.
 - b) Es sei $D \subset \mathbb{R}$ nicht nach oben (unten) beschränkt, $f: D \to \mathbb{R}$ eine Funktion und $y \in \mathbb{R} \cup \{\infty, -\infty\}$. Wir sagen $\lim_{x \to \infty} f(x) = y$ (bzw. $\lim_{x \to -\infty} f(x) = y$), wenn für jede Folge (a_n) in D, die bestimmt gegen $\infty(-\infty)$ divergiert, $\lim_{n \to \infty} f(a_n) = y$ gilt.
- BSP 5.7.8 $\lim_{x \to \infty} \frac{1}{x} = 0$ $\lim_{x \to 0+} \frac{1}{x} = \infty$ $\lim_{x \to 0-} \frac{1}{x} = -\infty$ $\lim_{x \to \infty} x = \infty$
- BSP 5.7.8 Exponential function: $E(x) = e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$ Grenzwerte: $\lim_{x \to \infty} e^x = \infty$ $\lim_{x \to -\infty} e^x = 0$

1.7.2 Stetigkeit

Definitionen

- 5.7.9 Es sei $D \subseteq \mathbb{R}$ und $x_0 \in D$. Eine Funktion $f: D \to \mathbb{R}$ heißt **stetig** in x_0 , falls für jede Folge (a_n) in D, die gegen x_0 konvergiert, auch die Folge $(f(a_n))$ konvergiert und $\lim_{n\to\infty} f(a_n) = f(x_0)$ gilt.
 - Weiter heißt f stetig auf D, wenn f in jedem Punkt $x_0 \in D$ stetig ist.
 - Schließlich setzen wir noch $C(D) := \{f : D \to \mathbb{R} : f \text{ stetig auf } D\}$. (Menge aller stetigen Funktionen auf D)
- 5.7.18 Es sei $D \subseteq \mathbb{R}$. Eine Funktion $f: D \to \mathbb{R}$ heißt
 - a) monoton wachsend, falls für alle $x, y \in D$ gilt $x \leq y \Rightarrow f(x) \leq f(y)$
 - b) monoton fallend, falls für alle $x, y \in D$ gilt $x \le y \Rightarrow f(x) \ge f(y)$
 - c) streng monoton wachsend, falls für alle $x, y \in D$ gilt $x < y \Rightarrow f(x) < f(y)$
 - d) streng monoton fallend, falls für alle $x, y \in D$ gilt $x < y \Rightarrow f(x) > f(y)$
 - e) (streng) monoton, wenn sie (streng) monoton wachsend oder (streng) monoton fallend ist.
- 5.7.22 Es sei $D \subseteq \mathbb{R}$. Eine Funktion $f: D \to \mathbb{R}$ heißt **Lipschitz-stetig**, falls es ein L > 0 gibt mit $|f(x) f(y)| \le L|x y|$ für alle $x, y \in D$.

Sätze

- 5.7.12 Es sei $D \subseteq \mathbb{R}$ und $f: D \to \mathbb{R}$ eine Funktion. Ist $x_0 \in D$ ein Häufungspunkt von D,so ist f in x_0 genau dann **stetig**, wenn $\lim_{x\to x_0} f(x) = f(x_0)$ gilt.
- 5.7.15 Es sei $D \subseteq \mathbb{R}$ und $f, g : D \to \mathbb{R}$ seien stetig in $x_0 \in D$. Dann sind die Funktionen f + g, fg und |f| stetig in x_0 . Ist $x_0 \in D^* := \{x \in D : g(x) \neq 0\}$, so ist die Funktion $\frac{f}{g} : D^* \to \mathbb{R}$ stetig in x_0 .
- 5.7.16 Es seien $D, E \subseteq \mathbb{R}$ und $f: D \to E$, sowie $g: E \to \mathbb{R}$ Funktionen. Ist f stetig in $x_0 \in D$ und g stetig in $f(x_0)$, so ist $g \circ f: D \to \mathbb{R}$ stetig in x_0 .
- 5.7.20 Es sei $D \subseteq \mathbb{R}$ und $x_0 \in D$. Eine Funktion $f: D \to \mathbb{R}$ ist in x_0 genau dann **stetig**, wenn es für jedes $\epsilon > 0$ ein $\delta > 0$ gibt, so dass $|f(x) f(y)| < \epsilon$ für alle $x \in D$ mit $|x x_0| < \delta$ gilt.
- 5.7.23 Ist $D \subseteq \mathbb{R}$ und $f: D \to \mathbb{R}$ Lipschitz-stetig so ist f stetig auf D. Die Umkehrung dieser Aussage ist falsch. (Lipschitz-Stetigkeit ist damit ein strengerer Begriff als Stetigkeit)

Bemerkungen

- 5.7.9 Stetigkeit: Kleines Wackeln an Parametern \rightarrow auch nur kleines Wackeln am Funktionswert
- 5.7.12 Stetigkeit: Grenzübergang austauschbar mit Funktionsauswertung
- 5.7.15 Jede Polynomfunktion ist auf ganz \mathbb{R} stetig.
- 5.7.19 Exponential funktion ist streng monoton wachsend.
- 5.7.23 Lipschitz-Stetigkeit bedeutet anschaulich, dass die Steigung des Graphen beschränkt bleibt.

1.7.3 Eigenschaften stetiger Funktionen

Definitionen

5.7.27 Es sei $D \subseteq \mathbb{R}$. Eine Funktion $f: D \to \mathbb{R}$ heißt beschränkt, falls die Menge f(D) (Bild der Funktion) beschränkt ist, d.h. falls ein $C \ge 0$ existiert, so dass $|f(x)| \le C$ für alle $x \in D$ gilt.

Sätze

5.7.25 Zwischenwertsatz

Es seien $a, b \in \mathbb{R}$ mit a < b gegeben und $f \in C([a, b])$. Ist y_0 eine reelle Zahl zwischen f(a) und f(b), so gibt es ein $x_0 \in [a, b]$ mit $f(x_0) = y_0$.

5.7.26 Nullstellensatz von Bolzano

Es seien $a, b \in \mathbb{R}$ mit a < b gegeben und $f \in C([a, b])$ erfülle f(a)f(b) < 0 (Existenz einer Nullstelle / Einer der beiden Werte 0). Dann gibt es ein $x_0 \in (a, b)$ mit $f(x_0) = 0$.

5.7.28 Es sei $K \subseteq \mathbb{R}$ kompakt und nicht-leer, sowie $f \in C(K)$. Dann gibt es $x_*, x^* \in K$, so dass $f(x_*) \leq f(x) \leq f(x^*)$ für alle $x \in K$ gilt. Insbesondere ist f beschränkt. (Jede stetige Funktion auf kompakter Menge ist beschränkt)

1.8 Stetigkeit von Funktionen mehrerer Variablen

Definitionen

- 5.8.1 Es seien V und W normierte \mathbb{R} -Vektorräume, $D\subseteq V$ und $f:D\to W$ eine Funktion.
 - a) Wir nennen $x_0 \in D$ **Häufungspunkt** von D, falls es eine Folge (a_n) in D mit $a_n \neq x_0$ für alle $n \in \mathbb{N}$ gibt, die gegen x_0 konvergiert.
 - b) Sei x_0 ein Häufungspunkt von D. Dann ist $\lim_{x\to x_0} f(x) = y$, falls für jede Folge (a_n) in D, die gegen x_0 konvergiert und $a_n \neq x_0$ für alle $n \in \mathbb{N}$ erfüllt, die Folge $(f(a_n))$ gegen y konvergiert.
- 5.3.8 Es seien V, W zwei normierte \mathbb{R} -Vektorräumen, $D \subseteq V$ und $x_0 \in D$. Eine Funktion $f: D \to W$ heißt **stetig** in x_0 , wenn für jede Folge (a_n) in D, die gegen x_0 konvergiert, auch die Folge $(f(a_n))$ konvergiert und $\lim_{n\to\infty} f(a_n) = f(x_0)$ gilt.

Weiter heißt **f stetig auf D**, wenn f in jedem Punkt $x_0 \in D$ stetig ist. Außerdem setzen wir wieder $C(D; W) := \{f : D \to W : f \text{ stetig auf } D\}$.

Sätze

- 5.8.4 Es sei $D \subseteq \mathbb{R}^d$ und $x_0 \in D$. Dann ist $f: D \to \mathbb{R}^p$ genau dann in x_0 stetig, wenn alle Koordinatenfunktionen $f_1, f_2, \ldots, f_p: D \to \mathbb{R}$ in x_0 stetig sind.
- 5.8.5 Es seien $D \subseteq \mathbb{R}^d$, $x_0 \in D$ und $f, g : D \to \mathbb{R}$ stetig in x_0 , sowie $h : f(D) \to \mathbb{R}$ stetig in $f(x_0)$. Dann sind auch f + g, fg und $h \circ f$ als Funktionen von D nach \mathbb{R} stetig in x_0 . Ist außerdem $x_0 \in D^* := \{x \in D : g(x) \neq 0\}$, so ist auch $\frac{f}{g} : D^* \to \mathbb{R}$ stetig in x_0 .
- 5.8.8 Es sei $K \subseteq \mathbb{R}^d$ kompakt und nicht-leer, sowie $f \in C(K)$. Dann gibt es $x_*, x^* \in K$, so dass $f(x_*) \leq f(x) \leq f(x^*)$ für alle $x \in K$ gilt. Insbesondere ist f beschränkt.
- 5.8.10 Es sei $||\cdot||$ irgendeine Norm auf \mathbb{R}^d und $||\cdot||_2$ die 2-Norm auf \mathbb{R}^d . Dann gibt es zwei Konstanten c und C mit $0 < c \le C$, so dass $c||x||_2 \le ||x|| \le C||x||_x$ für alle $x \in \mathbb{R}^d$ gilt.

5.8.11

- a) Sind $||\cdot||$ und $|||\cdot|||$ zwei Normen auf \mathbb{R}^d , so gibt es Konstanten $0 < c \le C$, so dass $c||x|| \le |||x||| \le C||x||$ für alle $x \in \mathbb{R}^d$ gilt.
- b) Ist eine Folge (a_n) in \mathbb{R}^d bezüglich einer Norm konvergent, so konvergiert sie auch bezüglich jeder anderen Norm und der Grenzwert ist derselbe.

Bemerkungen

- 5.8.2 Hier keine links- und rechtsseitiger Grenzwerte, da es Unmengen an Richtungen gibt
- Gilt $c||x|| \le |||x||| \le C||x||$ so heißen die Normen $||\cdot||, |||\cdot|||$ äquivalent. 5.8.11 Je zwei Normen im \mathbb{R}^d sind äquivalent.

Potenzreihen 1.9

Definitionen

- Es sei (a_n) eine Folge $\overline{\mathbb{K}}$. Eine Reihe der Form $\sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + \dots$ heißt 5.9.1 Potenzreihe.
- Es sei $\sum_{n=0}^{\infty} a_n x^n$ eine Potenzreihe die die Voraussetzungen von 5.9.3 erfüllt und ρ wie in diesem 5.9.4Satz definiert. Dann heißt die Zahl:

$$r := \begin{cases} 0 & \text{falls in obigem Satz a) gilt} \\ \infty & \text{falls in obigem Satz b) gilt} \\ \frac{1}{\rho} & \text{falls in obigem Satz c) gilt} \end{cases}$$

der Konvergenzradius der Reihe

Es sei (a_n) eine Folge in \mathbb{K} , $n_0 \in \mathbb{N}$ und $x_o \in \mathbb{K}$. Dann nennt man eine Reihe der Form 5.9.6 $\sum_{n=n_0}^{\infty} a_n (x - x_0)^n$

Potenzreihe. Der Punkt x_0 wird **Entwicklungspunkt** der Potenzreihe genannt.

(Hier ist das Konvergenzgebiet nun um x_0 statt um 0 (allgemeiner))

(Alle Sätze und Definitionen gelten hier genauso)

Sätze

5.9.3 Satz von Hadamard

Es sei (a_n) eine Folge in \mathbb{K} , so dass der Grenzwert $\rho := \lim_{n \to \infty} \sqrt[n]{|a_n|}$ existiert oder die Folge $(\sqrt[n]{|a_n|})$ unbeschränkt ist. Dann gelten die folgenden Konvergenzaussagen für die Potenzreihe $\sum_{n=0}^{\infty} a_n x^n$:

- a) Ist die Folge $\sqrt[n]{|a_n|}$ unbeschränkt, so konvergiert die Potenzreihe nur für x=0.
- b) Ist $\rho = 0$, so konvergiert die Potenzreihe für alle $x \in \mathbb{K}$ absolut.
- c) Ist $\rho \in (0, \infty)$, so ist die Potenzreihe für alle $x \in \mathbb{K}$ mit $|x| < \frac{1}{\rho}$ absolut konvergenz und für alle $x \in \mathbb{K}$ mit $|x > \frac{1}{a}$ divergent.

5.9.10 Quotientenkriterium

Es sei (a_n) eine Folge in \mathbb{K} mit $a_n \neq 0$ für alle $n \in \mathbb{N}$, so dass $\sigma := \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$ existiert. Dann Es sei (a_n) eine roige in \mathbb{R} init $a_n \neq 0$ for $a_n x^n$: $r = \begin{cases} \frac{1}{\sigma}, & \text{falls } \sigma \in (0, \infty) \\ \infty, & \text{falls } \sigma = 0. \end{cases}$

$$r = \begin{cases} \frac{1}{\sigma}, & \text{falls } \sigma \in (0, \infty) \\ \infty, & \text{falls } \sigma = 0. \end{cases}$$

Cauchy-Produkt von Potenzreihen 5.9.13

Es seien $\sum_{n=0}^{\infty} a_n x^n$ und $\sum_{n=0}^{\infty} b_n x^n$ Potenzreihen in \mathbb{K} mit Konvergenzradien $r_1, r_2 > 0$. Dann hat die Potenzreihe

$$\sum_{n=0}^{\infty} \sum_{k=0}^{n} a_k b_{n-k} x^n$$

mindestens den Konvergenzradius
$$R := \min\{r_1, r_2\}$$
 und es gilt für alle $x \in \mathbb{K}$ mit $|x| < r$

$$\sum_{n=0}^{\infty} \sum_{k=0}^{n} a_k b_{n-k} x^n = (\sum_{n=0}^{\infty} a_n x^n) (\sum_{n=0}^{\infty} b_n x^n).$$

Es sei $\sum_{n=0}^{\infty} a_n x^n$ eine Potenzreihe in K mit Konvergenzradius r>0. Dann ist die dadurch 5.9.14 gegebene Funktion $f: \{x \in \mathbb{K} : |x| < r\} \to \mathbb{K}$ mit $f(x) = \sum_{n=0}^{\infty} a_n x^n$ stetig auf $\{x \in \mathbb{K} : |x| < r\}$.

Bemerkungen

Offensichtlich konvergieren alle Potenzreihen für x = 0.

Keine Aussage bei $|x| = \frac{1}{\rho}$ möglich. 5.9.3

- 5.9.3 Konvergenzbereich entweder $\{0\}$ oder \mathbb{K} oder Kreis in \mathbb{C} bzw. Intervall in \mathbb{R}
- Konvergenzradius nun entweder $0, \infty$ oder $r = (\lim_{n \to \infty} \sqrt[n]{|a_n|})^{-1}$. 5.9.6
- $E: \mathbb{C} \to \mathbb{C} \text{ mit } E(x) = e^x \text{ stetig auf } \mathbb{C}.$ 5.9.14 Daraus folgt: $E(\mathbb{R}) = \{e^x : x \in \mathbb{R}\} = (0, \infty)$

Beispiele

5.9.2 Geometrische Reihe

Konvergiert für |x| < 1 mit $\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$.

5.9.2 Exponentialfunktion

 $e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!}$ konvergiert für alle $z \in \mathbb{C}$

- 5.9.5
- a) $a_n = 1, \sum_{n=0}^{\infty} x^n$ Dann gilt: $\rho = \lim_{n \to \infty} \sqrt[n]{|a_n|} = \lim_{n \to \infty} 1 = 1$, also $r = \frac{1}{\rho} = 1$. Am Rand: Für x = 1: $\sum_{n=0}^{\infty} 1^n$ divergent. (-1 auch divergent)

Konvergenzbereich: (-1, 1)b) $a_n = \frac{1}{n}, \sum_{n=1}^{\infty} \frac{x^n}{n}$

Konvergenzradius 1, da: $\lim_{n\to\infty} \sqrt[n]{\frac{1}{n}} = \lim_{n\to\infty} \frac{1}{\sqrt[n]{n}} = \frac{1}{\lim_{n\to\infty} \sqrt[n]{n}} = 1$.

Am Rand: Für x = 1: $\sum_{n=1}^{\infty} \frac{1}{n}$: divergent (harmonische Reihe)

Für x = -1: $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$: konvergent (alternierende harmonische Reihe) Konvergenzbereich: [-1,1)

 $a_n := \frac{(-4)^n}{n}, x_0 = 1, \sum_{n=1}^{\infty} \frac{(-4)^n}{n} (x-1)^n$ 5.9.6

Es gilt: $\rho = \lim_{n \to \infty} \sqrt[n]{|a_n|} = \lim_{n \to \infty} \sqrt[n]{|\frac{(-4)^n}{n}|} = \lim_{n \to \infty} \frac{4}{\sqrt[n]{n}} = \frac{4}{1} = 4$

Konvergenzradius: $r = \frac{1}{\rho} = \frac{1}{4}$

Konvergenz in $(1 - \frac{1}{4}, 1 + \frac{1}{4}) = (\frac{3}{4}, \frac{5}{4})$

 $x = \frac{5}{4} : \sum_{n=1}^{\infty} \frac{(-4)^n}{n} (\frac{5}{4} - 1)^n = \sum_{n=1}^{\infty} \frac{(-4)^n}{n} \cdot \frac{1}{4^n} = \sum_{n=1}^{\infty} \frac{(-1)^n}{n} \text{ konvergent (alt. harmonische Reihe)}$ $x = \frac{3}{4} : \sum_{n=1}^{\infty} \frac{(-4)^n}{n} (\frac{3}{4} - 1)^n = \sum_{n=1}^{\infty} \frac{(-4)^n}{n} \cdot \frac{1}{(-4)^n} = \sum_{n=1}^{\infty} \frac{1}{n} \text{ divergent (harmonische Reihe)}$

Konvergenzgebiet: $(\frac{3}{4}, \frac{5}{4}]$

- 5.9.11
- a) $a_n = \frac{n^n}{n!}, \sum_{n=0}^{\infty} \frac{n^n}{n!} x^n$ Quotientenkriterium:

 $\sigma := \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(n+1)^{n+1}}{(n+1)!} \cdot \frac{n!}{n^n} \right| = \lim_{n \to \infty} \left| \frac{(n+1) \cdot (n+1)^n}{(n+1)n} \right| = \lim_{n \to \infty} \left(\frac{n+1}{n} \right)^n = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{a_{n+1}}{(n+1)!} \right| = \lim_{n \to \infty} \left| \frac{a_{n+1}}{(n+1)$

 $\lim_{n\to\infty} (1+\frac{1}{n})^n = e$ Konvergenzradius: $r = \frac{1}{\sigma} = \frac{1}{\sigma}$

b) $\sum_{n=0}^{\infty} \frac{1}{2^n} x^{3n}$ Achtung Falle! Wegen 3^n kein Hadamard und 5.9.10 anwendbar. Substitution $y=x^3$. $\to \sum_{n=0}^{\infty} \frac{1}{2^n} y^n$

Konvergenzradius: 2, da $\lim_{n\to\infty} \sqrt[n]{|\frac{1}{2^n}|} = \frac{1}{2}$.

Also Konvergenz für $y=x^3\in(-2,2)$, Divergenz außerhalb [-2,2]

 \rightarrow Konvergenz für $x \in (-\sqrt[3]{2}, \sqrt[3]{2})$, Divergenz außerhalb $[-\sqrt[3]{2}, \sqrt[3]{2}]$

Konvergenzradius der ursprünglichen Reihe ist $\sqrt[3]{2}$.

 $\lim_{x\to 0} \frac{e^x-1}{r}$ 5.9.16

Für alle $x \in \mathbb{R}$ gilt:

$$\frac{e^{x}-1}{x} = \frac{1}{x} \left(\sum_{n=0}^{\infty} \frac{x^{n}}{n!} - 1 \right) = \frac{1}{x} \sum_{n=1}^{\infty} \frac{x^{n}}{n!} = \sum_{n=1}^{\infty} \frac{x^{(n-1)}}{n!} = \sum_{n=0}^{\infty} \frac{x^{n}}{(n+1)!}$$

 $\frac{e^x-1}{x} = \frac{1}{x} \left(\sum_{n=0}^{\infty} \frac{x^n}{n!} - 1 \right) = \frac{1}{x} \sum_{n=1}^{\infty} \frac{x^n}{n!} = \sum_{n=1}^{\infty} \frac{x^{(n-1)}}{n!} = \sum_{n=0}^{\infty} \frac{x^n}{(n+1)!}$ Konvergenzradius: Unendlich (Quotientenkriterium) \rightarrow Auf \mathbb{R} und in Null stetig Damit gilt: $\lim_{n\to\infty} \frac{e^x-1}{x} = \lim_{n\to\infty} \sum_{n=0}^{\infty} \frac{x^n}{(n+1)!} = \sum_{n=0}^{\infty} \frac{0^n}{(n+1)!} = 1.$

1.10 Wichtige Funktionen

1.10.1 Exponentialfunktion und Logarithmus

Definitionen

- 5.10.2 Die Umkehrfunktion von $E: \mathbb{R} \to (0, \infty)$ wird mit $ln := E^{-1}: (0, \infty) \to \mathbb{R}$ bezeichnet und heißt natürlicher Logarithmus.
- 5.10.4 Für alle $a \in (0, \infty)$ und alle $x \in \mathbb{R}$ definieren wir die allgemeine Potenz durch $a^x := e^{x \cdot \ln(a)}$

Sätze

- 5.10.1 Die Exponentialfunktion $E: \mathbb{R} \to (0, \infty)$ ist **bijektiv**
- 5.10.3
- a) Die Funktion ln ist auf $(0, \infty)$ stetig und wöchst streng monoton.
- b) Es gilt ln(1) = 0 und ln(e) = 1.
- c) $\lim_{x\to\infty} \ln(x) = \infty$ und $\lim_{x\to 0+} \ln(x) = -\infty$.
- d) Für alle $x, y \in (0, \infty)$ und $q \in \mathbb{Q}$ gilt:
 - ln(xy) = ln(x) + ln(y)
 - $ln(\frac{x}{y}) = ln(x) ln(y)$
- 5.10.5 Es sei $a \in l\eta(x, x)$. Es sei $a \in l\eta(x, x)$. Es sei $a \in l\eta(x, x)$. Es sei $a \in l\eta(x, x)$ set die Funktion $x \to a^x$ stetig auf \mathbb{R} und es gelten die bekannten Rechenregeln für Potenzen wie beispielsweise $a^{x+y} = a^x a^y$, $a^{-1} = \frac{1}{a}$, $(a^x)^y = a^{xy}$

1.10.2 Trigonometrische Funktionen

Definitionen

- 5.10.6 $sin(z) := \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} z^{(2n+1)}, z \in \mathbb{C}$ (Sinus) $cos(z) := \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} z^{2n}, z \in \mathbb{C}$ (Cosinus)
- 5.10.9 Eine Funktion $f: \mathbb{R} \to \mathbb{R}$ oder $f: \mathbb{C} \to \mathbb{C}$ heißt:
 - a) ungerade, falls f(-x) = -f(x) für alle $x \in \mathbb{R}$ bzw. \mathbb{C} gilt.
 - b) gerade, falls f(-x) = f(x) für alle $x \in \mathbb{R}$ bzw. \mathbb{C} gilt.
 - c) periodisch mit Periode $L \in \mathbb{R}$, bzw. \mathbb{C} , wenn f(x+L) = f(x) für alle $x \in \mathbb{R}$ bzw. \mathbb{C} gilt.
- 5.10.14 Die Funktion $tan: \mathbb{C}\backslash \{\frac{pi}{2}+k\pi: k\in \mathbb{Z}\} \to \mathbb{C}$ mit

$$tan(z)\frac{sin(z)}{cos(z)}$$

heißt Tangens.

5.10.15

arcsin:
$$[-1,1] \rightarrow [\frac{-\pi}{2},\frac{\pi}{2}]$$
 (Arcussinus)
arcsin: $[-1,1] \rightarrow [0,\infty]$ (Arcuscosinus)
arcsin: $\mathbb{R} \rightarrow [\frac{-\pi}{2},\frac{\pi}{2}]$ (Arcustangens)

Sätze

- 5.10.8 Trigonometrischer Pythagoras $sin^2(x) + cos^2(x) = 1$, für alle $x \in \mathbb{R}$
- 5.10.10 Der Cosinus ist gerade und der Sinus ist ungerade.
- 5.10.11 Eulersche Formel

Für alle $z \in \mathbb{C}$ gilt $e^{iz} = cos(z) + sin(z)i$.

Insbesondere gilt für alle $x \in \mathbb{R}$ damit $Re(e^{ix}) = cos(x)$ und $Im(e^{ix}) = sin(x)$.

- 5.10.12 Für alle $x, y \in \mathbb{R}$ gilt
 - a) $|sin(x)| \le 1$ und $|cos(x)| \le 1$
 - b) Additions theoreme:

$$sin(x + y) = sin(x)cos(y) + sin(y)cos(x)$$
$$cos(x + y) = cos(x)cos(y) + sin(x)sin(y)$$

c) Rechenregeln für verschobene Funktionen:

$$sin(x + \frac{\pi}{2}) = cos(x)$$

$$sin(x + \pi) = -sin(x)$$

$$sin(x + 2\pi) = sin(x)$$

$$cos(x + \frac{\pi}{2}) = -sin(x)$$

$$cos(x + \pi) = -cos(x)$$

$$cos(x + 2\pi) = cos(x)$$

5.10.13 Es ist Sinus und Cosinus sind periodisch mit Periode 2π

$$sin(z) = 0 \Leftrightarrow z = k\pi$$
 für ein $k \in \mathbb{Z}$
 $cos(z) = 0 \Leftrightarrow z = \frac{\pi}{2} + k\pi$ für ein $k \in \mathbb{Z}$

Bemerkungen

5.10.6 Alle Winkel in der Mathematik werden im Bogenmaß angegeben.

	0°	30°	45°	60°	90°
	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
sin	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0

(Sin:
$$\frac{\sqrt{0}}{2}, \frac{\sqrt{1}}{2}, \frac{\sqrt{2}}{2}, \frac{\sqrt{3}}{2}, \frac{\sqrt{4}}{2}$$
)

1.10.3 Die Polardarstellung komplexer Zahlen

Definitionen

5.10.17 Es sei $Z = x + yi \in \mathbb{C} \setminus \{0\}$ mit $x, y \in \mathbb{R}$. Dann heißt $r := \sqrt{x^2 + y^2}$ der **Betrag** von z und der Winkel ϕ , der zwischen z und der positiven reellen Achse eingeschlossen wird das **Argument** von z. Beide Werte zusammen (r, ϕ) zusammen sind die **Polarkoordinaten** von z.

Sätze

5.10.19 Es seien $z=re^{i\phi},\,w=se^{i\psi}\in\mathbb{C}\backslash\{0\}$ mit Polarkoordinaten (r,ϕ) , bzw. (s,ϕ) gegeben. Dann hat $z\cdot w$ die Polarkoordinaten $(rs,\phi+\psi)$ und $\frac{z}{w}$ die Polarkoordinaten $(\frac{r}{s},\phi-\psi)$.

Bemerkungen

5.10.17 Argument im Intervall $(-\pi, \pi]$ oder $[0, 2\pi)$ um Eindeutigkeit zu garantieren.

5.10.18 Argument: $(-\pi,\pi) \to \text{Umrechnung von Komplex zu Polarkoordinaten}$

$$x = r \cos(\phi)$$

$$y = r \sin(\phi)$$

$$r = \sqrt{x^2 + y^2}$$

$$\phi = \begin{cases} arctan\frac{y}{x}, & x > 0\\ arctan\frac{y}{x} + \pi, & x < 0 \text{ und } y \ge 0\\ arctan\frac{y}{x} - \pi, & x < 0 \text{ und } y < 0\\ \frac{\pi}{2}, & x = 0 \text{ und } y > 0\\ -\frac{\pi}{2}, & x = 0 \text{ und } y < 0 \end{cases}$$

Beispiele

5.10.20 Wir berechnen
$$(1+i)^{2001}$$
.
$$(1+i)^{2001} = (\sqrt{2}e^{i\frac{\pi}{4}})^{2011} = \sqrt{2}^{2011}e^{i2011\cdot\frac{\pi}{4}} = \sqrt{2}\cdot 2^{1005}e^{i(2008+3)\frac{\pi}{4}} = \sqrt{2}\dot{2}^{1}005e^{i502\pi}e^{i\frac{3\pi}{4}} = 2^{1005}\cdot\sqrt{2}e^{i\frac{3\pi}{4}} = 2^{1005}(-1+i)\;(e^{i502\pi}=1)$$

1.10.4 Hyperbolische Funktionen

Definitionen

 $\begin{array}{l} 5.10.22\\ sinh(z):=\frac{e^z-e^{-z}}{2},\ z\in\mathbb{C}\ (\textbf{Sinus hyperbolicus})\\ cosh(z):=\frac{e^z+e^{-z}}{2},\ z\in\mathbb{C}\ (\textbf{Cosinus hyperbolicus})\\ tanh(z):=\frac{sinh(z)}{cosh(z)},\ z\in\mathbb{C}\backslash\{(k\pi+\frac{\pi}{2}i:k\in\mathbb{Z})\}\ (\textbf{Tangens hyperbolicus}) \end{array}$

2 Analysis - Teil II: Differential- und Integralrechnung

2.1 Differenzierbarkeit von Funktionen in einer Variablen

2.1.1 Der Ableitungsbegriff

Definitionen

6.1.1 Für ganzes Kapitel gilt: $I \subseteq \mathbb{R}$ als Intervall.

- a) Es sei $x_0 \in I$. Eine Funktion $f: I \to \mathbb{R}$ heißt differenzierbar in x_0 , wenn der Grenzwert $\lim_{x \to x_0} \frac{f(x) f(x_0)}{x x_0}$ in \mathbb{R} existiert. In diesem Fall heißt dieser Grenzwert die **Ableitung** von f in x_0 und wird
 - in \mathbb{R} existiert. In diesem Fall heißt dieser Grenzwert die **Ableitung** von f in x_0 und wird mit $f'(x_0)$ bezeichnet.
- b) Eine Funktion $f: I \to \mathbb{R}$ heißt **differenzierbar** auf I, falls sie in allen Punkten $x_0 \in I$ differenzierbar ist. In diesem Fall wird $x \to f'(x)$ für $x \in I$ eine Funktion $f': I \to \mathbb{R}$ definiert. Diese Funktion heißt die **Ableitung** oder auch **Ableitungsfunktion** von f auf I.

Sätze

- 6.1.4 Es sei $f: I \to \mathbb{R}$ in $x_0 \in I$ differenzierbar. Dann ist f stetig in x_0 . (Jede differenzierbare Funktion ist stetig)
- 6.1.7 Eine Funktion $f: I \to \mathbb{R}$ ist in $x_0 \in I$ genau dann **differenzierbar** mit $f'(x_0) = a$, wenn $f(x) = f(x_0) + a(x x_0) + r(x)$, $x \in I$ ist und für die Funktion $r: I \to \mathbb{R}$ gilt

$$\lim_{x \to x_0} \frac{|r(x)|}{|x - x_0|} = 0$$

Bemerkungen

- 6.1.1 Der Grenzwert in 6.1.1 existiert genau dann, wenn der Grenzwert $\lim_{h\to 0} \frac{f(x^0+h)-f(x_0)}{h}$ existiert. Die Werte stimmen dann überein. Je nach Situation den einen oder anderen verwenden.
- 6.1.6 Die Exponentialfunktion ist auf \mathbb{R} differenzierbar und es gilt $E'(x) = e^x = E(x)$.

Beispiele

6.1.3 $f(x) = c \rightarrow \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{0}{x - x_0} = 0$ (Ableitung konstanter Funktionen ist 0)

 $f(x) = x^2, x \in \mathbb{R}$ 6.1.6

Für jedes $x_0 \in \mathbb{R}$ gilt:

$$\frac{f(x) - f(x_0)}{x - x_0} = \frac{x^2 - x_0^2}{x - x_0} = \frac{(x - x_0)(x + x_0)}{x - x_0} = x + x_0$$

Daraus folgt:

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0} (x + x_0) = 2x_0$$

 $\lim_{x\to x_0}\frac{f(x)-f(x_0)}{x-x_0}=\lim_{x\to x_0}(x+x_0)=2x_0$ Damit ist f auf $\mathbb R$ differenzierbar und es gilt $f'(x)=2x,\,x\in\mathbb R$.

2.1.2 Ableitungsregeln

Sätze

Es seien $f, g: I \to \mathbb{R}$ in $x_0 \in I$ differenzierbar und $\alpha, \beta \in \mathbb{R}$. Dann gilt 6.1.9

a) $\alpha f + \beta g$ ist in x_0 differenzierbar und

$$(\alpha f + \beta g)'(x_0) = \alpha f'(x_0) + \beta g'(x_0)$$
. (Linearität)

b) fg ist differenzierbar in x_0 und

$$(fg)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0)$$
. (Produktregel)

c) Ist $g(x_0) \neq 0$, so existiert ein Intervall $J \subseteq I$ mit $x_0 \in J$ und $g(x) \neq 0$ für alle $x \in J$. Außerdem ist die Funktion $\frac{f}{g}:J\to\mathbb{R}$ differenziber und es gilt

$$(\frac{f}{g})'(x_0) = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{(g(x_0))^2}$$
. (Quotientenregel)

Kettenregel 6.1.10

> Es seien $I, J \subseteq \mathbb{R}$ Intervalle und $g: I \to J$ sei differenzierbar in $x_0 \in I$. Weiter sei $f: J \to \mathbb{R}$ differenzierbar in $y_0 = g(x_0)$. Dann ist auch die Funktion $f \circ g : I \to \mathbb{R}$ differenzierbar in x_0 und

$$(f \circ g)'x_0 = f'(g(x_0)) \cdot g'(x_0).$$

Es sei $f \in C(I)$ streng monoton und $x_0 \in I$ differenzierbar mit $f'(x_0) \neq 0$. Dann existiert die 6.1.12 **Umkehrfunktion** $f^{-1}: f(I) \to \mathbb{R}$, diese ist differenzierbar in $y_0 = f(x_0)$ und es gilt

$$(f^{-1})'(y_0) = \frac{1}{f'(x_0)}$$

Es sei $f(x) = \sum_{n=0}^{\infty} a_n x^n$ eine Potenzreihe in \mathbb{R} mit Konvergenzradius r > 0. Dann hat auch die Potenzreihe $\sum_{n=1}^{\infty} n a_n x^{n-1}$ den Konvergenzradius r, die Funktion f ist in allen $x \in (-r, r)$ 6.1.15differenzierbar und es gilt

17

$$f'(x) = \sum_{n=1}^{\infty} n a_n x^{n-1}, x \in (-r, r)$$

 $f'(x) = \sum_{n=1}^{\infty} n a_n x^{n-1}, \ x \in (-r, r)$ (Potenzreihe im Inneren des Konvergenzgebietes summandenweise ableitbar)

Bemerkungen

6.1.12 Wichtig: $f'(x_0) \neq 0$ als Voraussetzung!

Name	Symbol	Definitionsbereich	Bild	Ableitung
E-funktion	e'	R	(0,∞)	e'
(nat.) Logarithmus	ln	$(0, \infty)$	R	$\frac{1}{x}$
Sinus	sin	R	[-1, 1]	cos
Cosinus	cos	R	[-1, 1]	- sin
Tangens	tan	$\mathbb{R} \setminus \{(k+1/2)\pi\}$	R	$\frac{1}{\cos^2} = 1 + \tan^2$
Arcussinus	arcsin	[-1, 1]	$[-\pi/2, \pi/2]$	$\frac{1}{\sqrt{1-x^2}}$
Arcuscosinus	arccos	[-1, 1]	$[0, \pi]$	$-\frac{1}{\sqrt{1-x^2}}$
Arcustangens	arctan	R	$(-\pi/2, \pi/2)$	$\frac{1}{1+x^2}$
Sinus hyperbolicus	sinh	R	R	cosh
Cosinus hyp.	cosh	R	[1, ∞)	sinh
Tangens hyp.	tanh	R	(-1,1)	$\frac{1}{\cosh^2} = 1 - \tanh^2$

Beispiele

6.1.11
$$a > 0, \ \phi(x) := a^x, \ x \in \mathbb{R}$$
 (allgemein)

$$\phi(x) = e^{x \cdot ln(a)}$$
: $f(x) = e^y$ und $g(x) = x \cdot ln(a) \to \phi = f \circ g$
 $\phi' = f'(g(x))g'(x) = e^{g(x)}ln(a) = e^{x \cdot ln(a)}ln(a) = a^x ln(a)$

Ableitung des ln 6.1.14

$$f(x) = e^x, f^{-1}(x) = \ln(x)$$

$$(\ln)'(y) = (f^{-1})'(y) = \frac{1}{f'(x)} = \frac{1}{e^x} = \frac{1}{e^{\ln(y)}} = \frac{1}{y}, y \in (0, \infty)$$

Potenzreihen von Sinus und Cosinus konvergieren auf ganz
$$\mathbb{R}$$
.
$$sin'(x) = \left(\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}\right)' = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n} = cos(x)$$
$$cos'(x) = -sin(x)$$

Berechnung des Reihenwerts mithilfe von 6.1.15 6.1.17

Potenzreihe $\sum_{n=1}^{\infty} nx^n$, Konvergenzradius 1, Welche Funktion ist hier gegeben? Für alle $x \in (-1,1)$ gilt: $\sum_{n=1}^{\infty} nx^n = x \sum_{n=1}^{\infty} nx^{n-1} = x \sum_{n=1}^{\infty} (x^n)' = x(\sum_{n=1}^{\infty} x^n)'$ Nun bis auf fehlenden ersten Summanden gleich der schon bekannten geometrische Reihe. Für $x \in (-1,1)$ gilt:

$$\sum_{n=1}^{\infty} nx^n = x(\frac{1}{1-x} - 1)' = x\frac{-1}{(1-x)^2}(-1) = \frac{x}{(1-x)^2}$$

2.1.3Höhere Ableitungen

Definitionen

- Ist $f: I \to \mathbb{R}$ eine in I differenzierbare Funktion und ist f' auf I stetig, so nennt man f stetig 6.1.19**differenzierbar**. Man schreibt $C^1(I) := \{f : I \to \mathbb{R} : f \text{ stetig differenzierbar}\}$
- 6.1.20
- a Es sei $f:I\to\mathbb{R}$ differenzierbar auf $I,x_0\in I$ und $n\in\mathbb{N}$ mit $n\geq 2$. Dann heißt die Funktion f in x_0 (bzw. auf I) n-mal differenzierbar falls sie auf I schon (n-1) differenzierbar ist und die Funktion $f^{(n-1)}$ in x_0 (bzw. auf I) wieder differenzierbar ist. In diesem Fall heißt $f^{(n)}(x_0) = (f^{(n-1)})'(x_0)$ die n-te Ableitung von f in x_0 bzw. $x \to \infty$ $f^{(n)}(x)$ die n-te Ableitungsfunktion von f auf I.
- b) Ist die n-te Ableitung von f auf I selbst sogar wieder stetig auf I, so sagt man f sei sei n-mal stetig differenzierbar auf I. Man schreibt

 $C^n(I) := \{ f : I\mathbb{R} : f \text{ n-mal stetig differenzierbar} \}.$

c) Ist $f \in C^n(I)$ für alle $n \in \mathbb{N}$, so nennt man f beliebig oft differenzierbar. Man verwendet dafür die Bezeichnung

$$f \in C^{\infty}(I) := \prod_{n \in \mathbb{N}} C^n(I).$$

Bemerkungen

Die Funktion selbst wird als nullte Ableitung definiert $f^{(0)} := f$. 6.1.20

Eigenschaften differenzierbarer Funktionen

Definitionen

- Es sei $I \subseteq \mathbb{R}$ ein offenes Intervall, $x_0 \in I$ und $f \in C^{\infty}(I)$. 6.2.9
 - a) Die Potenzreihe

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

heißt **Taylorreihe** von f um x_0 .

b) Für jedes $k \in \mathbb{N}$ heißt das Polynom

$$T_{k,f}(x;x_0) := \sum_{n=0}^k \frac{f^{(n)}(x_0)}{n!} (x-x_0)^n$$
das Taylorpolynom k-ten Grades von f in x_0 .

Sätze

6.2.1 Mittelwertsatz der Differenzialrechnung

> Es seien $a,b \in \mathbb{R}$ mit a < b und $f \in C([a,b])$ sei differenzierbar in (a,b). Dann gibt es ein $\xi \in (a,b)$, so dass $\frac{f(b)-f(a)}{b-a} = f'(\xi)$, bzw. gleichbedeutend $f(b) - f(a) = f'(\xi)(b-a)$ gilt.

a) Satz von Rolle

Es seien $a, b \in \mathbb{R}$ mit a < b und $f \in C([a, b])$. Ist f auf (a, b) differenzierbar und gilt f(a) = f(b), so gibt es ein $\xi \in (a, b)$ mit $f'(\xi) = 0$.

b) Es sei $f:I\to\mathbb{R}$ auf dem Intervall I differenzierbar. Dann gilt

Ist f' = 0 auf I, so ist f auf I konstant.

Ist f' > 0 auf I, so ist f auf I streng monoton wachsend.

Ist f' < 0 auf I, so ist f auf I streng monoton fallend.

Ist $f' \geq 0$ auf I, so ist f auf I monoton wachsend.

Ist $f' \leq 0$ auf I, so ist f auf I monoton fallend.

c) Sind $f, g: I \to \mathbb{R}$ auf I differenzierbare Funktionen und gilt f' = g' auf I, so gibt es eine Konstante $c \in \mathbb{R}$, so dass f(x) = g(x) + c für alle $x \in I$ gilt.

6.2.6 Satz von de 'Hospital

Es sei (a,b) ein offenes Intervall \mathbb{R} $(a=-\infty \text{ und } b=\infty \text{ hier zugelassen})$ und $f,g:(a,b)\to\mathbb{R}$ seien differenzierbar auf (a,b) mit $g'(x) \neq 0$ für alle $x \in (a,b)$. Gilt dann

$$\lim_{x\to a} f(x) = \lim_{x\to a} g(x) = 0$$
 oder $\lim_{x\to a} f(x) = \lim_{x\to a} g(x) = \pm \infty$

und existiert der Grenzwert

$$L := \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

 $(L = \pm \infty \text{ zugelassen}), \text{ dann gilt}$

$$lim_{x\to a}\frac{f(x)}{g(x)} = L.$$

6.2.12Satz von Taylor

Es seien $I \subseteq \mathbb{R}$ ein offenes Intervall, $x, x_0 \in I$ und für ein $k \in \mathbb{N}_{\neq}$ sei $f: I \to \mathbb{R}$ eine k+1-mal differenzierbare Funktion. Dann gibt es ein ξ zwischen x und x_0 , so dass gilt $f(x) = T_{k,f}(x;x_0) + \frac{f^{k+1}(\xi)}{(k+1)!}(x-x_0)^{k+1}$

$$f(x) = T_{k,f}(x; x_0) + \frac{f^{k+1}(\xi)}{(k+1)!} (x - x_0)^{k+1}$$

(Vorne Annäherung, hinten Fehlerterm - Abschätzung wie gut die Taylorreihe zu Funktion passt)

Bemerkungen

6.2.1 Sekantensteigung der Funktion (erhalten durch a und b) entspricht irgendwann zwischen a und b tatsächlich der Tangentensteigung.

6.2.6 Achtung! Alle Voraussetzungen prüfen!

6.2.12

- a) Taylor für k = 0 ist Mittelwertsatz.
- b) Der Fehlerterm

$$R_{k,f}(x;x_0) := \frac{f^{k+1}(\xi)}{(k+1)!}(x-x_0)^{k+1},$$

der die Differenz zwischen f(x) und der Näherung durch das Taylorpolynom k-ten Grades beschreibt, wird auch als Restglied bezeichnet.

Beispiele

Taylorpolynom k-ten Grades ist anschaulich die bestmögliche Approximation an die Funktion f

2.3 Extremwerte

Definitionen

- 6.3.1 Es sei $D \subseteq \mathbb{R}$ und $f: D \to \mathbb{R}$ eine Funktion.
 - a) Man sagt, dass f in $x_0 \in D$ ein **globales Maximum** (bzw. Minimum) hat, falls $f(x) \le f(x_0)$ (bzw. $f(x) \ge f(x_{=})$) für alle $x \in D$ gilt.
 - b) f hat in $x_0 \in D$ ein **relatives Maximum** (bzw. Minimum), falls ein $\delta > 0$ existiert, so dass $f(x) \leq f(x_0)$ (bzw. $f(x) \geq f(x_0)$) für alle $x \in D$ mit $|x x_0| < \delta$ gilt.
 - c) Allgemein spricht man von einem globalen bzw. relativen **Extremum** in x_0 wenn f dort ein entsprechendes Maximum oder Minimum hat.

Sätze

- 6.3.3 Es sei $f: I \to \mathbb{R}$ differenzierbar in $x_0 \in I$. Ist x_0 ein innerer Punkt von I und hat f in x_0 ein relatives Extremum, so gilt $f'(x_0) = 0$.
- 6.3.5 Es sei $I \subseteq \mathbb{R}$ ein Intervall, $x_0 \in I^\circ$ und $f \in C^n(I)$ für ein $n \ge 2$. Weiter gelte $f'(x_0) = f''(x_0) = \cdots = f^{n-1}(x_0) = 0$, aber $f^{(n)}(x_0) \ne 0$. Ist nun n ungerade, so hat f in x_0 kein Extremum, ist n gerade, so liegt in x_0 ein Extremum vor, und zwar falls $f^{(n)}(x_0) > 0$ ein **Minimum** und falls $f^{(n)}(x_0) < 0$ ein **Maximum**.

Bemerkungen

6.3.3 Innerer Punkt von D: Kein Randpunkt, möglich Kugel um den Punkt zu legen Warnung: x_0 innerer Punkt ist wesentlich Warnung: Umkehrung des Satzes gilt nicht (Kann auch Sattelpunkt sein, nicht unbedingt Extremum)

2.4 Differenzieren von Funktionen mehrerer Variablen - Partielle Ableitung

Definitionen

- 6.4.1 Es sei $G \subseteq \mathbb{R}^d$ offen, $f: G \to \mathbb{R}^p$ eine Funktion, $x_0 \in G$ und $v \in \mathbb{R}^d \setminus \{0\}$. Existiert der Grenzwert $(\partial_v f)(x_0) := \lim_{h \to 0} \frac{f(x_0 + hv) f(x_0)}{h}$, so heißt f in x_0 in Richtung v differenzierbar und $(\partial_v f)(x_0)$ die **Richtungsableitung** von f in x_0 in Richtung v. (Betrachtung der Funktionswerte entlang einer Geraden im Raum)
- 6.4.3 Es seien $G \subseteq \mathbb{R}^d$ offen, $f: G \to \mathbb{R}^p$ eine Funktion und $\{e_1, e_2, \dots, e_d\}$ die **Standardbasis** des \mathbb{R}^d
 - a) Existieren in einem $x_0 \in G$ die Richtungsableitungen von f in alle Richtungen $e_1, e_2, \dots e_d$, so heißt f in x_0 partiell differenzierbar. Man schreibt dann für $j = 1, 2, \dots, d$ auch $\partial_j f(x_0) := \frac{\partial f}{\partial x_j}(x_0) := f_{x_j}(x_0) := (\partial_{e_j} f)(x_0)$

für die partielle Ableitung von f in x_0 nach der j-ten Koordinate.

- b) Ist f in allen $x_0 \in G$ partiell differenzierbar, so sagt man f ist in G partiell differenzierbar und schreibt $\partial_j f = \frac{\partial f}{\partial x_j} = f_{x_j} : G \to \mathbb{R}^p$ für die **partielle Ableitungs(-funktion)**
- c) Ist f in G partiell differenzierbar und sind sämtliche partielle Ableitungen $\partial_1 f, \partial_2 f, \dots, \partial_d f: G \to \mathbb{R}^p$ stetig, so nennt man f stetig partiell differenzierbar in G.

6.1.10 Es sei $G \subseteq \mathbb{R}^d$ offen und $f: G \to \mathbb{R}^p$ in $x_0 \in G$ partiell differenzierbar. Die p x d-Matrix aller partiellen Ableitungen

$$J_f(x_0) := \begin{pmatrix} \partial_1 f_1(x_0) & \partial_2 f_1(x_0) & \dots & \partial_d f_1(x_0) \\ \partial_1 f_2(x_0) & \partial_2 f_2(x_0) & \dots & \partial_d f_2(x_0) \\ \dots & \dots & \dots & \dots \\ \partial_1 f_p(x_0) & \partial_2 f_p(x_0) & \dots & \partial_d f_p(x_0) \end{pmatrix}$$

heißt **Jakobi-Matrix** von f.

Im Spezialfall p=1 nennt man die 1 x d-Matrix, d.h. den \mathbb{R}^d -Zeilenvektor

$$\nabla f(x_0 := J_f(x_0)) = (\partial_1 f(x_0), \partial_2 f(x_0), \dots, \partial_d f(x_0))$$

den **Gradient** von f.

6.4.13 Es seien $G \subseteq \mathbb{R}^d$, $n \in \mathbb{N}$ mit $n \geq 2$, $x_0 \in G$ und $f: G \to \mathbb{R}^p$ eine Funktion. Diese nennt man n-mal (stetig) partiell differenzierbar in x_0 , wenn sie schon (n-1)-mal (stetig) partiell differenzierbar auf G ist und alle (n-1)-ten partiellen Ableitungen in x_0 wieder (stetig) partiell differenzierbar sind.

Notation: $\partial_1 \partial_3 \partial_1$ (Reihenfolge meist egal, wenn nicht von innen nach außen)

Sätze

6.4.8 Ist $G \subseteq \mathbb{R}^d$ offen, $f: G \to \mathbb{R}^p$ eine Funktion und $x_0 \in G$, so ist f in x_0 genau dann partiell differenzierbar, wenn alle Koordinatenfunktionen $f_1, f_2, \ldots, f_p: G \to \mathbb{R}$ in x_0 partiell differenzierbar sind. In diesem Fall gilt

$$\partial_j f(x_0) = (\partial_1 f_1(x_0), \partial_j f_2(x_0), \dots, \partial_j f_p(x_0))^T$$

6.4.15 Satz von Schwarz

Ist $G \subseteq \mathbb{R}^d$ offen und $f: G \to \mathbb{R}^p$ eine *n*-mal stetig partiell differenzierbare Funktion, so ist die Reihenfolge der partiellen Ableitungen bis zur Ordnung *n* vertauschbar. (Sind die partiellen Ableitungen nicht stetig, gilt der Satz nicht.)

Bemerkungen

6.4.1

6.4.3 Berechnung Ableitung: Alle anderen Variablen werden als konstante Parameter behandelt

6.1.10 Es gilt
$$J_f(x) = \begin{pmatrix} \nabla(f_1(x)) \\ \nabla(f_2(x)) \\ \dots \\ \nabla(f_p(x)) \end{pmatrix}$$

6.1.10 Bedeutung Gradient: Falls f glatt genug ist gibt der Vektor $\nabla f(x_0)$ die Richtung, in der der Graph von f an der Stelle x_0 am stärksten ansteigt und seine Länge entspricht dieser maximalen Steigung. (Basis für Optimierungsverfahren)

Beispiele

6.4.7
$$f: \mathbb{R}^3 \to \mathbb{R} \text{ mit } f(x, y, z) = xe^{xz+y^2}$$
:
 $\partial_1 f(x, y, z) = e^{xz+y^2} + xe^{xz+y^2} \cdot z$
 $\partial_2 f(x, y, z) = xe^{xz+y^2} \cdot 2y$
 $\partial_3 f(x, y, z) = xe^{xz+y^2} \cdot x$

6.4.14 $f: \mathbb{R}^2 \to \mathbb{R} \text{ mit } f(x,y) = x^3y + xe^y$

Ableitungen erster Ordnung:

$$\partial_1 f(x,y) = 3x^2y + e^y$$
 und $\partial_2 f(x,y) = x^3 + xe^y$

Ableitungen zweiter Ordnung:

$$\partial_1^2 f(x,y) = 6xy \qquad \partial_1 \partial_2 f(x,y) = 3x^2 + e^y \partial_2 \partial_1 f(x,y) = 3x^2 + e^y \qquad \partial_2^2 f(x,y) = xe^y$$

Man beobachtet, dass das Ergebnis nicht von der Reihenfolge der Ableitungen abhängig sind.

2.5 Differenzieren von Funktionen mehrerer Variablen - Totale Differenzierbarkeit

6.5.1 Es sei $G \subseteq \mathbb{R}^d$ offen und $x_0 \in G$. Eine Funktion $f: G \to \mathbb{R}^p$ heißt (total) differenzierbar in x_0 , wenn es eine lineare Abbildung $\Phi: \mathbb{R}^d \to \mathbb{R}^p$ gibt, so dass gilt

$$f(x) = f(x_0) * \Phi(x - x_0) + r(x), x \in G$$

mit einer Funktion $r:G\to\mathbb{R}^p$ die

$$\lim_{x \to x_0} \frac{||r(x)||}{||x - x_0||} = 0$$

erfüllt.

Definitionen

Die lineare Abbildung $Df(x_0) := \Phi$ heißt dann (totale) Ableitung von f in x_0 . Ist f in allen $x_0 \in G$ total differenzierbar, so nennt man die Funktion $Df : G \to \mathcal{L}(\mathbb{R}^d, \mathbb{R}^p)$ die Ableitung(sfunktion) von f.

- 6.5.17 Eine Menge $M \subseteq \mathbb{R}^d$ heißt **konvex**, wenn für alle $a, b \in M$ auch $\bar{ab} \subseteq M$ gilt.
- 6.5.20 Es sei $G\subseteq\mathbb{R}^d$ offen und $f:G\to\mathbb{R}$ in $x_0\in G$ zweimal partiell differenzierbar. Dann heißt die Matrix der zweiten partiellen Ableitungen

$$H_f(x_0) := (\partial_j \partial_k f(x_0))_{j,k=1,\dots,d}$$

Hesse-Matrix von f in x_0 .

6.5.22 Satz von Taylor

Den Ausdruck

$$T_{1,f}(x;x_0) := f(x_0) + \nabla f(x_0)(x - x_0)$$

bezeichnen wir wieder als das **Taylorpolynom** ersten Grades von f in x_0 .

Sätze

- 6.5.6 Ist $G \subseteq \mathbb{R}^d$ offen und $f: G \to \mathbb{R}^p$ in $x_0 \in G$ total differenzierbar, so ist f auch stetig in x_0 .
- 6.5.7 Es sei $G \subseteq \mathbb{R}^d$ offen, $f: G \to \mathbb{R}^p$ eine in $x_0 \in G$ total differenzierbare Funktion und $v \in \mathbb{R}^d \setminus \{0\}$. Dann existiert in x_0 die Richtungsableitung von f in Richtung v und es gilt

$$(\partial_v f)(x_0) = Df(x_0)(v).$$

- 6.5.8 Es sei $G \subseteq \mathbb{R}^d$ offen, $x_0 \in G$ und $f: G \to \mathbb{R}^p$ eine Funktion. Ist f in x_0 total differenzierbar, so ist f in x_0 auch partiell differenzierbar und die Abbildungsmatrix von $Df(x_0)$ bezüglich der Standardbasen von \mathbb{R}^d bzw. \mathbb{R}^p ist die Jakobi-Matrix $J_f(x_0)$.
- 6.5.10 Ist $G \subseteq \mathbb{R}^d$ offen und $f: G \to \mathbb{R}^p$ in $x_0 \in G$ total differenzierbar, so gilt für jedes $v \in \mathbb{R}^d \setminus \{0\}$ $\partial_v f(x_0) = J_f(x_0)v$.
- 6.5.12 Ist $G \subseteq \mathbb{R}^d$ offen und $f: G \to \mathbb{R}^p$ in $x_0 \in G$ stetig partiell differenzierbar, so ist f in x_0 sogar total differenzierbar.
- 6.5.13 Kettenregel

Es seien $G \subseteq \mathbb{R}^d$ und $H \subseteq \mathbb{R}^p$ offen, sowie $g: G \to \mathbb{R}^p$ mit $g(G) \subseteq H$ und $f: H \to \mathbb{R}^q$ Funktionen, so dass g in $x_0 \in G$ und f in $g(x_0)$ total differenzierbar sind. Dann ist auch die Funktion $f \circ g: G \to \mathbb{R}^q$ in x_0 total differenzierbar und es gilt

$$D(f \circ g)(x_0) = Df(g(x_0)) \cdot Dg(x_0).$$

(Enthält Matrixmultiplikation)

6.5.16 Mittelwertsatz

Es sei $G \subseteq \mathbb{R}^d$ offen und $f: G \to \mathbb{R}$ eine total differenzierbare Funktion. Sind $a, b \in G$ so gewählt, dass $\bar{ab} \subseteq G$, so gibt es ein $\xi \in \bar{ab}$ mit

$$\bar{ab} := \{a + \lambda(b - a) : \lambda \in [0, 1]\}$$

6.5.18 Schrankensatz

Es sei $G \subseteq \mathbb{R}^d$ offen und konvex, sowie $f: G \to \mathbb{R}$ total differenzierbar. Gibt es ein $L \geq 0$ mit $||\nabla f(x)||_2 \leq L$ für alle $x \in G$, so gilt

$$|f(x) - f(y)| \le L||x - y||_2$$
, für alle $x, y \in G$

d.h. f ist **Lipschitz-stetig** auf G.

6.5.22 Satz von Taylor

Es sei $G \subseteq \mathbb{R}^d$ eine offene und konvexe Menge und $f: G \to \mathbb{R}$ sei zweimal stetig partiell differenzierbar (damit auch 2x total differenzierbar) in G. Zu jeder Wahl von $x_0, x \in G$ gibt es dann ein $\xi \in x_0^-x$ mit

$$f(x) = f(x_0) + \nabla f(x_0)(x - x_0) + \frac{1}{2}(x - x_0)^T H_f(\xi)(x - x_0).$$

Bemerkungen

- 6.5.4 Ableitung einer linearen Abbildung $\Phi : \mathbb{R}^d \to \mathbb{R}^p$ ist in jedem Punkt die Abbildung Φ selbst
- 6.5.8 Die Umkehrung dieses Satzes ist falsch.

- 6.5.16 $ab := \{a + \lambda(b a) : \lambda \in [0, 1]\}$: Verbindungsstrecke von a nach b
- 6.5.20 Hesse-Matrix ist immer eine quadratische Matrix. Sogar symmetrisch, falls f stetig partiell differenzierbar in x_0 ist

Es gilt $H_f(x_0) = J_{(\nabla f)^T}(x_0)$

2.6 Extremwertprobleme in mehreren Variablen

Definitionen

- 6.6.1 Es sei $G \subseteq \mathbb{R}^d$ und $f: G \to \mathbb{R}$.
 - a) Man sagt, dass f in $x_0 \in G$ ein globales Maximum (bzw. Minimum) hat, falls $f(x) \leq f(x_0)$ (bzw. $f(x) \geq f(x_0)$) für alle $x \in G$ gilt.
 - b) f hat in $x_0 \in G$ ein relatives Maximum (bzw. Minimum), falls ein $\delta > 0$ existiert, so dass $f(x) \leq f(x_0)$ (bzw. $f(x) \geq f(x_0)$) für alle $x \in G$ mit $||x x_0|| < \delta$ gilt.
 - c) Allgemein spricht man von einem globalen bzw. relativen Extremum in x_0 , wenn f dort ein entsprechendes Maximum oder Minimum hat.

Sätze

- 6.6.2 Es sei $G \subseteq \mathbb{R}^d$ und x_0 ein innerer Punkt von G, sowie $f: G \to \mathbb{R}$ total differenzierbar in x_0 . Hat f in x_0 ein relatives Extremum, so gilt $\nabla f(x_0) = 0$.
- 6.6.3 Es sei $G \subseteq \mathbb{R}^d$ offen, $f: G \to \mathbb{R}$ zweimal stetig partiell differenzierbar und für $x_0 \in G$ gelte $\nabla f(x_0) = 0$. Ist dann die Hesse-Matrix $H_f(x_0)$
 - a) positiv definit, so hat f in x_0 ein relatives Minimum
 - b) negativ definit, so hat f in x_0 ein relatives Maximum
 - c) indefinit, so hat f in x_0 kein relatives Extremum

2.7 Integration in \mathbb{R}

2.7.1 Definition des bestimmten Integrals

Definitionen

Es seien $a, b \in \mathbb{R}$ mit a < b. Eine endliche Menge $Z := \{x_0, x_1, \dots, x_n\} \subseteq [a, b]$ heißt **Zerlegung** 6.7.1des Intervalls [a, b], wenn gilt $a = x_0 < x_1 < \cdots < x_{n-1} < x_n = b$.

Für eine solche Zerlegung und eine gegebene beschränkte Funktion $f:[a,b]\to\mathbb{R}$ setzen wir nun für jedes $j = 1, \ldots, n$

$$I_j := [x_{j-1}, x_j], |I_j| := x_j - x_{j-1}, m_j := \inf f(I_j), M_j := \sup f(I_j)$$

Es seien $a,b \in \mathbb{R}$ mit $a < b, Z = \{x_0, dots, x_n\}$ eine Zerlegung von [a,b] und $f: [a,b] \to \mathbb{R}$ 6.7.2 beschränkt. Dann heißt der Wert

$$\underline{s}_f(Z):=\sum_{j=1}^n m_j|I_j|$$
 die Untersumme von f
 zu Z $\overline{s}_f(Z):=\sum_{j=1}^n M_j|I_j|$ die Obersumme von f
 zu Z

6.7.4Es seien $a, b \in \mathbb{R}$ mit a < b und $f : [a, b] \to \mathbb{R}$ sei beschränkt.

Wir nennen

$$\underbrace{\int_a^b f(x) dx} := \sup \{\underline{s}_f(Z) : Z \text{ Zerlegung von [a,b]} \}$$
 unteres Integral von $\underline{\underline{f}}$ auf $[a,b]$

$$\int_a^b f(x)dx := \inf\{\bar{s}_f(Z) : Z \text{ Zerlegung von } [a,b] \}$$
 oberes Integral von f auf $[a,b]$

f auf [a,b] heißt (Riemann-)integrierbar, wenn

$$\bar{\int_a^b} f(x)dx = \underline{\int_a^b} f(x)dx$$

Es seien $a,b\in\mathbb{R}$ mit a< b und $f:[a,b]\to\mathbb{R}$ sei integrierbar. Dann setzt man für jedes $c\in[a,b]$ 6.7.9 $\int_c^c f(x)dx := 0$ und $\int_b^a f(x)dx := -\int_a^b f(x)dx$.

Sätze

- Es seien $a, b \in \mathbb{R}$ mit a < b und integrierbare Funktionen $f, g : [a, b] \to \mathbb{R}$ gegeben. Dann gelten 6.7.7die folgenden Aussagen.
 - a) **Monotone**: Ist $f(x) \leq g(x)$ für alle $x \in [a, b]$, so ist auch

$$\int_a^b f(x)f(x)dx \le \int_a^b g(x)dx$$

 $\int_a^b f(x)f(x)dx \le \int_a^b g(x)dx$ b) **Homogenität**: Ist $\alpha \in \mathbb{R}$, so ist auch αf integrierbar und es gilt

$$\int_a^b \alpha f(x) dx = \alpha \int_a^b f(x) dx$$

$$\int_a^b (f(x) + g(x)) dx = \int_a^b f(x) dx + \int_a^b g(x) dx$$

 $\int_a^b \alpha f(x) dx = \alpha \int_a^b f(x) dx$ c) Additivität: Auch die Funktion f + g ist integrierbar und es gilt $\int_a^b (f(x) + g(x)) dx = \int_a^b f(x) dx + \int_a^b g(x) dx$ d) Dreiecksungleichung: Die Funktion |f| ist ebenfalls integrierbar und es gilt

$$\left| \int_a^b f(x) dx \right| \le \int_a^b |f(x)| dx$$

e) Ist $c \in (a,b)$ so ist f auch integrierbar auf [a,c] und [c,b] und es gilt $\int_a^b f(x)dx = \int_c^a f(x)dx = \int_b^c f(x)dx$

$$\int_{a}^{b} f(x)dx = \int_{c}^{a} f(x)dx = \int_{b}^{c} f(x)dx$$

Standardabschätzung 6.7.8

Es seien $a, b \in \mathbb{R}$ mit a < b und $f : [a, b] \to \mathbb{R}$ integrierbar. Dann ist

$$|\int_{a}^{b} f(x)dx| \le (b-a) \sup_{x \in [a,b]} |f(x)| = (b-a)||f||_{\infty}$$

Es seien $a, b \in \mathbb{R}$ mit a < b. Jede stetige und jede monotone Funktion $f: [a, b] \to \mathbb{R}$ ist 6.7.10integrierbar.

Bemerkungen

- 6.7.2Es gilt $\underline{s}_f(Z) \leq \bar{s}_f(Z)$
- Flächeninhalte unter der x Achse zählen negativ. 6.7.4

Stammfunktionen und der Hauptsatz 2.7.2

Definitionen

- Es seien $a, b \in \mathbb{R}$ mit a < b und $f, F : [a, b] \to \mathbb{R}$ Funktionen. Man sagt F ist eine **Stammfunk**-6.7.13tion von f, wenn F auf [a, b] differenzierbar ist und F' = f auf [a, b] gilt. (Wenn F Stammfunktion von f ist, dann auch F + c, $c \in \mathbb{R}$)
- Es sei $I \subseteq \mathbb{R}$ ein Intervall. Besitzt $f: I \to \mathbb{R}$ auf I eine Stammfunktion, so schreibt man für die 6.7.18Menge aller Stammfunktionen auch das sogenannte unbestimmte Integral $\int f(x)dx$.

Dieses bezeichnet eine Menge von Funktionen und keine bestimmte Zahl.

Sätze

6.7.15Hauptsatz der Differnzial- und Integralrechnung

Es seien $a, b \in \mathbb{R}$ mit a < b und $c \in [a, b]$, sowie eine stetige Funktion $f : [a, b] \to \mathbb{R}$ gegeben. Dann gelten die folgenden Aussagen

- a) Die Funktion $F:[a,b]\to\mathbb{R}$ mit $F(x):=\int_c^x f(s)ds, x\in I$, ist eine Stammfunktion von f.
- b) Ist $\Phi:[a,b]\to\mathbb{R}$ eine Stammfunktion von f, so gilt

$$\Phi(x) = \Phi(c) + \int_{c}^{x} f(x)ds$$
, für alle $x \in [a, b]$.

Es sei $\sum_{n=0}^{\infty} a_n x^n$ eine Potenzreihe in $\mathbb R$ mit Konvergenzradius größer null. Dann hat die Reihe 6.7.20 $\sum_{n=0}^{\infty} \frac{a_n}{n+1} x^{n+1}$ denselben Konvergenzradius und es gilt

$$\int \sum_{n=0}^{\infty} a_n x^n dx = \sum_{n=0}^{\infty} \int a_n x^n dx = \sum_{n=0}^{\infty} \frac{a_n}{n+1} x^{n+1} + c$$
 innerhalb des Konvergenzbereichs.

Bemerkungen

6.7.15 Ist
$$F$$
 eine Stammfunktion von f , so erhält man sofort
$$\int_a^b f(x)dx = F(b) - F(a) =: F(x)|_{x=a}^{x=b}$$

$$\int_{a}^{b} f(x)dx = F(b) - F(a) =: F(x)|_{x=a}^{x=b}$$

Beispiele

6.7.18
$$\int \sin(x)dx = -\cos(x) + c, c \in \mathbb{R}$$

2.8 Integrationstechniken

Sätze

6.8.1Partielle Integration

Es seien $f, b : [a, b] \to \mathbb{R}$ stetig differenzierbare Funktionen. Dann gilt

$$\int_{a}^{b} f'(x)g(x)dx = f(x)g(x)|_{x=a}^{x=b} - \int_{a}^{b} f(x)g'(x)dx$$

6.8.4Substitutionsregel

Es seien $[a,b] \subseteq \mathbb{R}$ und $[c,d] \subseteq \mathbb{R}$ kompakte Intervalle, sowie $f \in C([a,b])$ und $g \in C^1([c,d])$ mit $g([c,d]) \subseteq [a,b]$. Dann ist

$$\int_{c}^{d} f(g(t)) \cdot g'(t)dt = \int_{g(c)}^{g(d)} f(x)dx$$

Differenzieren von Parameter-Integralen 6.8.9

Es sei $G \subseteq \mathbb{R}^2$ offen mit $[\alpha, \beta | x[a, b] \subseteq G$ und $f: G \to \mathbb{R}$ sei (total) differenzierbar, sowie die partielle Ableitung $\partial_1 f$ stetig. Dann ist die Funktion $g(x):=\int_a^b f(x,y)dy,\,x\in[\alpha,\beta]$

$$g(x) := \int_a^b f(x, y) dy, \ x \in [\alpha, \beta]$$

differenzierbar und es gilt

$$g'(x) = \frac{dg}{dx}(x) = \int_a^b \partial_1 f(x, y) dy = \int_a^b \frac{\partial f}{\partial x}(x, y) dy, \ x \in [\alpha, \beta]$$

Bemerkungen

6.8.1Gilt auch für unbestimmte Integrale

$$\int f'(x)g(x)dx = f(x)g(x) - \int f(x)g'(x)dx$$

6.8.4 Schreibweise für unbestimmte Integrale

$$\int f(g(t)) \cdot g'(t)dt = \int f(x)dx|_{x=q(t)}$$

 $|_{x=q(t)}$: Zuerst gesamtes Intervall ausrechnen, dann am Ende überall für x den Wert g(t) einsetzen.

Beispiele

6.8.3

$$g(x) = x, f'(x) = e^x \to f(x) = e^x$$

Partielle Integration liefert:

$$\int_0^1 x e^x dx = x e^x \Big|_{x=0}^{x=1} - \int_0^1 e^x dx = e - (e^x \Big|_{x=0}^{x=1}) = e - (e-1) = 1$$

Die Wahl von f und g ist hierbei für den Erfolg sehr entscheidend.

6.8.3 Erschaffung einer zweiten künstlichen Funktion oft notwendig.

$$\int \ln(x)dx = \int 1 \cdot \ln(x)dx = x \ln(x) - \int x \frac{1}{x}dx = x \ln(x) - x + c, c \in \mathbb{R}$$

Wahl hier: g(x) = ln(x) und f'(x) = 1

3 Gewöhnliche Differentialgleichungen

Problemstellung und Motivation

Definitionen

Es sei $n \in \mathbb{N}$, $I \subseteq \mathbb{R}$ ein Intervall und $F: I \times \mathbb{R}^n \to \mathbb{R}$ stetig. Dann heißt die Gleichung 7.1.2

$$y^{(n)}(t) = F(t, y(t), y'(t), y^n(t), \dots, y^{(n-1)}(t)), t \in I$$

gewöhnliche Differentialgleichung (DGL) der Ordnung n

(Hängt F nicht von der ersten Variable t ab, so nennt man die DGL **autonom**)

Es seien $n \in \mathbb{N}$, $I \subseteq \mathbb{R}$ ein Intervall, $t_0 \in I$, $F : I \times \mathbb{R}^n \to \mathbb{R}$ stetig, sowie $y_0, y_1, \dots, y_{n-1} \in \mathbb{R}$. 7.1.9

a) Dann heißt

$$(AWP)\begin{cases} y^{(n)}(t) = F(t,y(t),y'(t),\ldots,y^{(n-1)})(t), & t\in I\\ y^{(j)}(t_0) = y_j, & j=0,1,\ldots,n-1 \end{cases}$$
ein **Anfangswertproblem** mit Anfangswerten y_0,y_1,\ldots,y_{n-1}

- b) Jede Funktion $y: J \to \mathbb{R}$, die
 - auf einem offenen Intervall $J \subseteq I$ mit $t_0 \in J$ definiert ist
 - auf J n-mal stetig differenzierbar ist und
 - die n+1 Gleichungen in (AWP) erfüllt

heißt **Lösung** des Anfangswertproblems.

c) Ist die Lösung sogar auf dem ganzen Intervall I eine Lösung der Gleichung so nennt man sie eine globale Lösung.

Bemerkungen

Differentialgleichung: Zusammenhang zwischen Funktion und Ableitung bekannt

Fall von DGL der Ordnung n immer auf Fall erster Ordnung (n = 1) zurückspielbar. 7.1.4

Also zuerst nur Gleichungen mit n = 1 der Form $y'(t) = f(t, y(t)), t \in I$

 $f: I \times \mathbb{R} \to \mathbb{R}$ gegebene stetige Funktion und $y: I \to \mathbb{R}$ die gesuchte Funktion.

- Autonome DGL erster Ordnung: $y'(t) = f(y(t)), t \in I$ 7.1.4
- Stetig differenzierbare Funktion $y: I \to \mathbb{R}$, die DGL erfüllt: Lösung der DGL 7.1.4
- 7.1.6DGLs im Allgemeinen mehrere Lösungen

Anzahl der frei wählbaren Konstanten entspricht meist der Ordnung der Gleichung

Beispiele

- 7.1.1 Wachstumsmodell: Zuwachs proportional dazu, wie groß die Population schon ist y(t) Populationsgröße zum Zeitpunkt $t \ge 0$: $y'(t) = \mu y(t), t \ge 0$ μ Proportionalitätskonstante (hier Wachstumsrate)
- Beispiele für DGL: 7.1.2

a)
$$y''(t) + 2y'(t) + y(t) = \sin(t)$$
 mit $n = 2$ und $F(t, y(t), y'(t)) = \sin(t) - 2y'(t) - y(t)$

b)
$$y'(t) = t^2 + 1$$
 mit $n = 1$ und $F(t, y(t)) = t^2 + 1$

Elementare Lösungstechniken 3.2

Getrennte Veränderliche 3.2.1

Sätze

7.2.2 Trennung der Variablen

Auf einem Intervall $I \subseteq \mathbb{R}$ sei mit stetigen Funktionen $g: I \to \mathbb{R}$ und $h: \mathbb{R} \to \mathbb{R}$, sowie $t_0 \in I$ und $y_0 \in \mathbb{R}$ das Anfangswertproblem

$$\begin{cases} y'(t) = g(t)h(y(t)), t \in I \\ y(t_0) = y_0 \end{cases}$$

 $\begin{cases} y'(t)=g(t)h(y(t)), t\in I\\ y(t_0)=y_0 \end{cases}$ gegeben. Ist $h(y_0)\neq 0$, so existiert ein offenes Intervall $J\subseteq I$ mit $t_0\in J$, auf dem das Anfangswertproblem genau eine Lösung besitzt. Diese ist gegeben durch

$$y = H^{-1} \circ G$$
 mit $G(t) := \int_{t_0}^t g(\tau) d\tau$ und $H(y) := \int_{y_0}^y \frac{h}{h(\eta)} d\eta$

Bemerkungen

Verwendung dieser Methode, falls eine DGL der Form y'(t) = f(t, y(t)) zu lösen ist, bei der die 7.2.2rechte Seite f von der Form f(t,y) = g(t)h(y) ist. (Abhängigkeit zwischen t und y multiplikativ getrennt)

Homogene Differentialgleichungen

Bemerkungen

Homogene DGL: Rechte Seite hängt nur vom Quotienten $\frac{y}{t}$ ab, es existiert also eine Funktion $g: \mathbb{R} \to \mathbb{R}$ als $y'(t) = f(t, y(t)) = g(\frac{y(t)}{t})$ geschrieben werden kann.

Diese können durch Substitution gelöst werden, wir setzen $u(t) := \frac{y(t)}{t}$.

Nun schauen wir welche Gleichung von u gelöst wird, wenn y Lösung der Ausgangsgleichung ist. $u'(t) = \frac{ty'(t) - y(t)}{t^2} = \frac{y'(t)}{t} - \frac{u(t)}{t} = \frac{1}{t}(g(\frac{y(t)}{t}) - u(t)) = \frac{1}{t}(g(u(t)) - u(t))$

$$u'(t) = \frac{ty'(t) - y(t)}{t^2} = \frac{y'(t)}{t} - \frac{u(t)}{t} = \frac{1}{t}(g(\frac{y(t)}{t}) - u(t)) = \frac{1}{t}(g(u(t)) - u(t))$$

Dieses u erfüllt Gleichung die nach Methode der getrennten Veränderlichen gelöst werden kann.

Beispiele

7.2.4 Anfangswertproblem:

$$\begin{cases} y'(t)=\frac{y(t)}{t}-\frac{t^2}{y(t)^2}, t\in\mathbb{R}\\ y(1)=1. \end{cases}$$
 Die obige Substitution $u(t)=y(t)/t$ liefert hier:

Durch Methode der getrennten Veränderlichen finden wir:
$$u'(t) = \frac{y'(t)}{t} - \frac{u(t)}{t} = \frac{1}{t}(u(t) - \frac{1}{u(t)^2} - u(t)) = -\frac{1}{t}\frac{1}{u(t)^2}$$
 Durch Methode der getrennten Veränderlichen finden wir:
$$u^2 du = -\frac{1}{t} dt, \text{ also } \int u^2 du = -\int \frac{1}{t} dt$$

$$u^2 du = -\frac{1}{t} dt$$
, also $\int u^2 du = -\int \frac{1}{t} dt$

Das liefert nach Integration
$$\frac{u^3}{3} = -ln(t) + c, \text{ d.h. } u(t) = \sqrt[3]{-3ln(t) + 3c}$$
 was schließlich zu

was schließlich zu

$$y(t) = tu(t) = t\sqrt[3]{-3ln(t) + 3c}$$

führt. Mit dem Anfangswert bekommen wir wegen

$$1 = y(1) = \sqrt[3]{3c} \Rightarrow 3c = 1 \Rightarrow c = \frac{1}{3}$$

die Lösung

$$y(t) = t\sqrt[3]{1 - 3ln(t)}$$

die man leicht in einer Probe verifiziert.

3.2.3Lineare Differentialgleichungen erster Ordnung

Definitionen

7.2.5 Eine lineare DGL erster Ordnung hat die allgemeine Form

$$y'(t) + a(t)y(t) = b(t), t \in I$$

wobei $a, b: I \to \mathbb{R}$ stetige Funktionen auf einem Intervall I sind.

Ist b = 0, so nennt man die Gleichung homogen, sonst inhomogen.

Sätze

7.2.6 Superpositionsprinzip

Es seien $y_1, y_2 : I \to \mathbb{R}$ zwei Lösungen der homogenen linearen Gleichung y'(t) + a(t)y(t) = 0. Dann ist auch jede Linearkombination $y = \alpha y_1 + \beta y_2$ mit $\alpha, \beta \in \mathbb{R}$ eine Lösung dieser Gleichung.

7.2.8 Variation der Konstanten-Formel

Es seien $I \subseteq \mathbb{R}$ ein Intervall, $a, b \in C(I)$ und $t_0 \in I$, sowie $y_0 \in \mathbb{R}$. Das lineare Anfangswertproblem

$$\begin{cases} y'(t) + a(t)y(t) = b(t), t \in I \\ y(t_0) = y_0 \end{cases}$$

besitzt genau eine globale Lösung, die durch
$$y(t) = e^{-A(t)}y_0 + e^{-A(t)} \int_{t_0}^t b(s)e^{A(s)}ds \text{ mit } A(t) = \int_{t_0}^t a(s)ds$$

gegeben ist.

Systeme von Differentialgleichungen 3.3

Lineare Systeme

Definitionen

- 7.3.1E seien $I \subseteq \mathbb{R}$ ein Intervall, $N \in \mathbb{N}^*$ und für jede Wahl von $j, k \in \{1, 2, \dots, N\}$ stetige Funktionen $a_{jk}: I \to \mathbb{R}$, sowie $b_j: I \to \mathbb{R}$ gegeben.
 - a) Dann heißt

$$\begin{cases} y_1'(t) = a_{11}(t)y_1(t) + a_{12}(t)y_2(t) + \dots + a_{1N}(t)y_N(t) + b_1(t) \\ \dots & t \in I, \text{ ein System} \\ y_N'(t) = a_{N1}(t)y_1(t) + a_{N2}(t)y_2(t) + \dots + a_{NN}(t)y_N(t) + b_N(t) \end{cases}$$

von linearen gewöhnlichen DGL erster Ordnung.

b) Das dazugehörige Anfangswertproblem ergibt sich, indem für ein $t_0 \in I$ und vorgegebene $y_{1,0}, y_{2,0}, \dots, y_{N,0} \in \mathbb{R}$ noch

$$y_1(t_0) = y_{1,0}, y_2(t_0) = y_{2,0}, \dots, y_N(t_0) = y_{N,0}$$

gefordert wird.

- c) Ist b=0, so heißt das System homogen, sonst inhomogen.
- Es sei $I \subseteq \mathbb{R}$ ein Intervall und $A: I \to \mathbb{R}^{NxN}$ stetig. Jede Basis des Lösungsraums aller Lösungen 7.3.4 von Gleichung (7.2) nennt man ein Fundamentalsystem dieser Gleichung.

Sätze

- 7.3.3 Die Menge L aller Lösungen der Gleichung (7.2) ist ein N-dimensionaler Untervektorraum von $C^1(I;\mathbb{R}^N)$.
- Es seien $y_1, y_2, \ldots, y_N \in C^1(I; \mathbb{R}^N)$ Lösungen der Gleichung (7.2). Dann sind die folgenden 7.3.5Aussagen äquivalent:
 - i) y_1, y_2, \ldots, y_N sind linear unabhängig in $C1(I; \mathbb{R}^N)$, d.h. $\{y_1, y_2, \ldots, y_N\}$ ist ein Fundamentalsystem der Gleichung.
 - ii) Für alle $t \in I$ ist die Menge $\{y_1(t), y_2(t), \dots, y_N(t)\}$ linear unabhängig in \mathbb{R}^N .
 - iii) Es gibt ein $t \in I$, für das die Menge $\{y_1, y_2, \dots, y_N\}$ linear unabhängig in \mathbb{R}^N ist.
- Es seien $I \subseteq \mathbb{R}$ ein Intervall, sowie $A: I \to \mathbb{R}^{NxN}$ und $b: I \to \mathbb{R}^N$ stetige Funktionen. Ist 7.3.6 $y_p: I \to \mathbb{R}^N$ eine Lösung der Gleichung (7.3), so ist jede Lösung dieser Gleichung gegeben durch $y = y_p + y_h$, wobei y_h eine Lösung des zugehörigen Systems (7.2) ist.

Bemerkungen

Das Ganze lässt sich in Matrixschreibweise um Einiges übersichtlicher schreiben. 7.3.1

Lineare Systeme mit konstanten Koeffizienten

Definitionen

Es sei $A \in \mathbb{R}^{NxN}$. Dann heißt 7.3.8

$$e^A := \sum_{n=0}^{\infty} \frac{A^n}{n!}$$

 $e^A:=\sum_{n=0}^\infty \frac{A^n}{n!}$ die Matrix-Exponentialfunktion von A. (Reihe ist für iede Matrix '

Sätze

- Es seien A, B \mathbb{R}^{NxN} . Dann gelten die folgenden Aussagen über die Matrix-7.3.10 Exponential funktion:
 - a) Für die Nullmatrix O gilt $e^O = I$.
 - b) Kommutieren A und B, d.h. gilt AB = BA, so ist $e^A e^B = e^{A+B}$
 - c) Die Matrix e^A ist invertierbar mit $(e^A)^{-1} = e^{-A}$.
 - d) Ist A eine Diagonalmatrix mit Diagonaleinträgen $\lambda_1, \lambda_2, \dots, \lambda_N$, so ist e^A ebenfalls eine Diagonalmatrix mit den Diagonaleinträgen $e^{\lambda_1}, e^{\lambda_2}, \dots, e^{\lambda_N}$.
- Es sei $I \subseteq \mathbb{R}$ ein Intervall und $A \in \mathbb{R}^{NxN}$. Dann bilden die Spalten der Matrix e^{tA} , $t \in I$, ein 7.3.11Fundamentalsystem der Gleichung $y'(t) = Ay(t), t \in I$.

7.3.14 Es sei $A \in \mathbb{R}^{NxN}$ diagonalisierbar mit Eigenwerten $\lambda_1, \lambda_2, \dots, \lambda_N$ und zugehörigen Eigenvektoren v_1, v_2, \dots, v_N . Dann ist

$$\{e^{t\lambda_1}v_1, e^{t\lambda_2}v_2, \dots, e^{t\lambda_N}v_N\}$$

ein Fundamentalsystem der Gleichung y'(t) = Ay(t).

7.3.15 Sei $A \in \mathbb{R}^{NxN}$, Dann kann man ein Fundamentalsystem für y'(t) = Ay(t) folgendermaßen konstruieren. Sei λ ein Eigenwert von A, d.h. $det(A - \lambda I) = 0$, und m die Vielfachheit der Nullstelle λ . Dann hat $(A - \lambda I)^m$ einen m-dimensionalen Kern. Sei v_1, \ldots, v_m eine Basis dieses Kerns. Sei

$$u_j(t) = \sum_{k=0}^{m-1} e^{t\lambda} \frac{t^k}{k!} (A - \lambda I)^k v_j$$

für j = 1, ..., m.

Wenn λ reell ist, dann sind u_1, \ldots, u_m die Beiträge von λ zum Fundamentalsystem.

Wenn λ komplex ist und $Im\lambda > 0$, dann sind $Reu_1, Imu_1, \dots, Reu_m, Imu_m$ die Beiträge von λ zum Fundamentalsystgem, wobei der konjugierte Eigenwert $\bar{\lambda}$ keinen Beitrag liefert.

7.3.16 Variation der Konstanten-Formel

Es seien $I \subseteq \mathbb{R}$ ein Intervall, $A \in \mathbb{R}^{NxN}$ eine Matrix und $b: I \to \mathbb{R}^N$ eine stetige Funktion, sowie $t_0 \in I$ und $y_0 \in \mathbb{R}^N$. Dann hat das lineare Anfangswertproblem erster Ordnung mit konstanten Koeffizienten

$$\begin{cases} y'(t) = Ay(t) + b(t), t \in I \\ y(t_0) = y_0 \end{cases}$$

die eindeutige globale Lösung

$$y(t) = e^{(t-t_0)A}y_0 + e^{tA} \int_{t_0}^t e^{-sA}b(s)ds = e^{(t-t_0)A}y_0 + \int_{t_0}^t e^{(t-s)A}b(s)ds$$

Bemerkungen

Konstante Koeffizienten: $y'(t) = Ay(t) + b(t), t \in I$

Funktion A ist in der DGL konstant durch eine feste Matrix gegeben.

7.3.12 Leitet man die gesamte Matrix e^{tA} komponentenweise nach t ab, so bedeutet obiger Satz die eingängige Matrixgleichheit

$$\frac{d}{dt}e^{tA} = Ae^{tA}$$

3.4 Differentialgleichungen höherer Ordnung

Definitionen

7.4.3

- a) Jede Basis des Raums aller Lösungen in Satz 7.4.2 a) nennt man ein Fundamentalsystem der homogenen Gleichung.
- b) Die Lösung y_p der inhomogenen Gleichung im Satz 7.4.2 b) heißt spezielle Lösung oder auch **Partikulärlösung der Gleichung (7.8)**.
- 7.4.5 Es sei

$$y^{(n)}(t) + a_{n-1}y^{(n-1)}(t) + \dots + a_1y'(t) + a_0y(t) = 0$$

eine homogene lineare DGL der Ordnung n mit konstanten Koeffizienten. Dann heißt

$$\lambda^n + a_{n-1}\lambda^{n-1} + \dots + a_y\lambda + a_0 = \lambda^n + \sum_{k=0}^{n-1} a_k\lambda^k$$

charakteristisches Polynom der DGL.

Sätze

Es seien $n \in \mathbb{N}$ mit $n \geq 2$, $I \subseteq \mathbb{R}$ ein Intervall und $F: Ix\mathbb{R}^n \to \mathbb{R}$ eine stetige Funktion. Dann ist 7.4.1 $y: I \to \mathbb{R}$ genau dann eine Lösung der DGL in (7.6), wenn $v = (y, y', y'', \dots, y^{(n-1)})^T: I \to \mathbb{R}^n$ eine Lösung des Systems v'(t) = G(t, v(t)) mit

$$G(t, v(t)) = \begin{pmatrix} v_2(t) \\ v_3(t) \\ \dots \\ v_n(t) \\ F(t, v_1(t), v_2(t), \dots, v_n(t)) \end{pmatrix}$$

ist.

- 7.4.2 Es seien $I \subseteq \mathbb{R}$ ein Intervall, $a_0, a_1, \dots, a_{n-1} \in \mathbb{R}$ und $g: I \to \mathbb{R}$ eine stetige Funktion. Dann gelten die folgenden Aussagen
 - a) Ist g=0, so ist die Menge aller Lösungen der Gleichung ein Untervektorraum der Dimension n von $C^n(I)$.
 - b) Ist y_p eine Lösung der Gleichung (7.8), so ist jede Lösung dieser Gleichung gegeben durch $y = y_p + y_h$, wobei y_h eine Lösung des zugehörigen homogenen Systems (d.h. mit g = 0)
- Es seien $I \subseteq \mathbb{R}$ ein Intervall und $n \ge 2$. Mit $a_0, a_1, \dots, a_{n-1} \in \mathbb{R}$ sei die DGL 7.4.6 $y^{(n)}(t) + a_{n-1}y^{(n-1)}(t) + \dots + a_1y'(t) + a_0y(t) = 0, t \in I$

gegeben und es seien $\lambda_1, \lambda_2, \dots, \lambda_k$ paarweise verschiedene Nullstellen des zugehörigen charakteristischen Polynoms mit $Im(\lambda_i) \geq 0$, sowie m_j die Vielfachheit der Nullstelle λ_j für $j \in \{1, 2, \dots, k\}.$

Dann ist ein Fundamentalsystem für obige Gleichung gegeben durch

$$F = F_1 \cup \cdots \cup F_k$$

$$\{e^{\lambda t}, te^{\lambda t}, \dots, t^{m_j-1}e^{\lambda t}\}$$

wobei
$$F_j$$
 im Falle $\lambda_j = \lambda \in \mathbb{R}$ als
$$\{e^{\lambda t}, te^{\lambda t}, \dots, t^{m_j - 1}e^{\lambda t}\}$$
 und im Falle $\lambda_j = \lambda + i\omega$ mit $\lambda, \omega \in \mathbb{R}$ und $\omega > 0$ als
$$\{e^{\lambda t}cos(\omega t), e^{\lambda t}sin(\omega t), te^{\lambda t}sin(\omega t), \dots, t^{m_j - 1}e^{\lambda t}cos(\omega t), t^{m_j - 1}e^{\lambda t}sin(\omega t)\}$$
 definiert ist.

Existenz- und Eindeutigkeitsresultate 3.5

Sätze

7.5.1 Satz von Peano

Es sei $I \subseteq \mathbb{R}$ ein Intervall und $f: Ix\mathbb{R}^n \to \mathbb{R}^n$ stetig. Dann hat für jedes $t_0 \in I$ und $y_0 \in \mathbb{R}^n$ das Anfangswertproblem

$$\begin{cases} y'(t) = f(t, y(t)), t \in I \\ y(t) = y_0 \end{cases}$$

eine Lösung, d.h. es gibt ein offenes Intervall $J \subseteq I$ mit $t_0 \in J$ und eine Funktion $y \in C^1(J; \mathbb{R}^n)$, die das Anfangswertproblem auf J löst.

7.5.3 Satz von Picard-Lindelöff

Es sei $I \subseteq \mathbb{R}$ ein Intervall, $f: Ix\mathbb{R}^n \to \mathbb{R}^n$ stetig, $t_0 \in I$ und $y_0 \in \mathbb{R}^n$. Genügt dann f einer Lipschitzbedingung, d.h. exisitiert ein L > 0 mit

$$||f(t,y_1) - f(t,y_2)|| \le L||y_1 - y_2||$$
 für alle $t \in I$ und $y_1, y_2 \in \mathbb{R}^n$

dann existiert ein kompaktes Intervall J mit $t_0 \in J \subseteq I$, sodass das Anfangswertproblem

$$\begin{cases} y'(t) = f(t, y(t)), t \in I \\ y(t) = y_0 \end{cases}$$

eindeutig lösbar ist.