PROYECTO COMPILANDO CONOCIMIENTO

CALCULO

Calculo Integral

Métodos de Integración e Integrales en General

AUTOR:

Rosas Hernandez Oscar Andres

1. Integrales Impropias

1.1. ¿Qué son?

Al definir la integral definida $\int_a^b f(x)dx$ estamos hablando de una función en la que:

- Esta definida en ese intervalo.
- No tiene una discontinuidad infinita
- Obviamente el intervalo es finito

Pero, que pasaría si no fuera así...

Las integrales impropias explorar esta posibilidad así que veasmola:

1.1.1. TIPO 1) Intervalos Infinitos: Sumando de Verdad

Si la $\int_a^t f(x)dx$ existe para todo número $t \ge a$, entonces lo siguiente es verdad, siempre que exista el límite (como un número finito).

$$\int_{a}^{\infty} f(x)dx = \lim_{t \to \infty} \int_{a}^{t} f(x)dx \tag{1}$$

Si la $\int_t^b f(x)dx$ existe para todo número $b \leq t$, entonces lo siguiente es verdad, siempre que exista el límite (como un número finito).

$$\int_{-\infty}^{b} f(x)dx = \lim_{t \to -\infty} \int_{t}^{b} f(x)dx \tag{2}$$

Las integrales impropias $\int_a^\infty f(x)dx$ y esta $\int_{-\infty}^b f(x)dx$ se llaman **convegentes** si el límite existe y **divergente** sino.

Si $\int_a^\infty f(x)dx$ y $\int_{-\infty}^b f(x)dx$ son convergentes, entonces se define esta asombrosa integral como (donde a es cualquier número que tu quieras ;)):

$$\int_{-\infty}^{\infty} f(x)dx = \int_{-\infty}^{a} f(x)dx + \int_{a}^{\infty} f(x)dx \tag{3}$$

1.2. Ejemplo

Podemos ver que con lo que sabemos ya podemos calcular la siguiente integral:

$$\int_{1}^{\infty} \frac{1}{x^{2}} dx = \lim_{t \to \infty} \int_{1}^{t} \frac{1}{x^{2}} dx = \lim_{t \to \infty} \frac{-1}{t} \Big|_{1}^{t} = \lim_{t \to \infty} 1 - \frac{1}{t} = 1$$

1.2.1. TIPO 2) Funciones Discontinuas

Si f(x) es continua en [a,b) pero discontinua en b, entonces (si el límite existe y es finito):

$$\int_{a}^{b} f(x)dx = \lim_{t \to b^{-}} \int_{a}^{t} f(x)dx \tag{4}$$

Si f(x) es continua en (a, b] pero discontinua en a, entonces (si el límite existe y es finito):

$$\int_{a}^{b} f(x)dx = \lim_{t \to a^{+}} \int_{t}^{b} f(x)dx \tag{5}$$

Si $\int_a^b f(x) dx$ es convergente, entonces se define esta asombrosa integral como (donde c es a < c < b):

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx \tag{6}$$

REFERENCIAS REFERENCIAS

Referencias

[1] ProbRob Youtube.com