Università degli Studi di Cagliari

Analisi convessa e Poliedri

Relatore

Andrea Loi

Candidato

Ester Stefania Aresu

31 Marzo 2014 Anno Accademico 2012/2013

Introduzione

- Programmazione lineare
 - Brevi cenni storici
 - Cos'è?
 - Definizione di funzione obiettivo e regione ammissibile
- Elementi di Analisi convessa
 - Poliedri
 - Punti estremi, direzioni estreme
- Applicazione pratica e conclusioni
 - D Un problema dei trasporti

Figura:
George Bernard Dantzig,
1914-2005

Definizione

La programmazione lineare si occupa di ottimizzare (massimizzare o minimizzare) una funzione lineare, detta funzione obiettivo f.o., soggetta a vincoli espressi da equazioni e disequazioni anch'esse lineari.

Definizione

La programmazione lineare si occupa di ottimizzare (massimizzare o minimizzare) una funzione lineare, detta funzione obiettivo f.o., soggetta a vincoli espressi da equazioni e disequazioni anch'esse lineari.

Vantaggi

- ✓ Modellizzazione di un vasto numero di problemi
- ✓ Fornire soluzioni in un tempo ragionevole
- ✓ Capacità di approssimare problemi non lineari

Definizione

Sia il dominio di f.o. z=cx, determinato dal seguente sistema di *vincoli tecnologici*; dove c_1, c_2, \ldots, c_n sono i *coefficienti di costo*, x_1, x_2, \ldots, x_n le *variabili decisionali* da determinare e a_{ii} i *coefficienti tecnologici*

minimize
$$\mathbf{cx} = c_1x_1 + c_2x_2\cdots + c_nx_n$$
 subject to $\sum_{j=1}^n a_{ij}x_j = b_i$ $i=1,\ldots,m$ (forma standard) $x_j \geq 0$ $j=1,\ldots,n$

Definizione

Sia il dominio di f.o. z=cx, determinato dal seguente sistema di *vincoli tecnologici*; dove c_1, c_2, \ldots, c_n sono i *coefficienti di costo*, x_1, x_2, \ldots, x_n le *variabili decisionali* da determinare e a_{ii} i *coefficienti tecnologici*

minimize
$$\mathbf{cx} = c_1x_1 + c_2x_2\cdots + c_nx_n$$
 subject to $\sum_{j=1}^n a_{ij}x_j = b_i$ $i=1,\ldots,m$ (forma standard) $x_i \geq 0$ $j=1,\ldots,n$

Definizione (Feasible region)

Un vettore non negativo ${\bf x}$ tale che sia soluzione del sistema ${\bf A}{\bf x}={\bf b}$, dove $A=(a_{ij})$, è detto *punto ammissibile*.

L'insieme di tutti i punti ammissibili costituisce la regione ammissibile.

Poliedri

Definizione (Poliedro)

Un **poliedro** è un insieme convesso generato dall'intersezione finita di semispazi. In particolare $P=\{x\in R^n: Ax\leq b\,, x\geq 0\}$ è un poliedro interamente contenuto nel primo ortante.

Si dice politopo un poliedro limitato.

Definizione

Un punto $\bar{x} \in P$ è un vertice per il poliedro P se e solo se esistono n righe della matrice $\begin{pmatrix} A \\ I_n \end{pmatrix}$ corrispondenti ai vincoli attivi in \bar{x} linearmente indipendenti.

Un poliedro ammette un numero finito di vettori $v \leq \binom{m+n}{n}$.

Osservazione

Se rg(A) < n allora P è privo di vertici.

punti estremi e direzioni estreme

Definizione (punto estremo)

Un punto x di un insieme convesso X è detto punto estremo di X se $x = \lambda x_1 + (1 - \lambda)x_2$ con $\lambda \in (0, 1)$ e $x_1, x_2 \in X$, allora $x = x_1 = x_2$.

Definizione. Direzione

Dato un insieme convesso X, un vettore non nullo d è detto direzione di X se $\{x + \lambda d, \lambda \geq 0\} \in X$ $\forall x_0 \in X$.

Osservazione

Sia X un poliedro. Allora d è una direzione di X se e solo se

$$A(x + \lambda d) \le b$$

 $x + \lambda d > 0$ $\forall \lambda > 0, \forall x \in X$

cioé se e solo se $d \ge 0, d \ne 0, Ad \le 0$.

Esempi di regioni ammissibili

Figure 1.5. Unique optimal solution: (a) Bounded region. (b) Unbounded region. Figure 1.6. Alternative optima: (a) Bounded region. (b) Unbounded region.

Figure 1.8. An example of an empty feasible region.

7 of 16

Ester Stefania Aresu - Analisi convessa e Poliedri

Teorema (Fondamentale della Programmazione Lineare)

Sia dato il problema di PL in forma canonica

$$\begin{array}{ll}
\text{min} & \mathsf{cx} \\
Ax \ge b \\
x > 0
\end{array}$$

Allora è vera una e una sola delle seguenti affermazioni

- Il problema non ammette soluzioni ammissibili (la regione ammissibile è vuota)
- Il problema è illimitato inferiormente
- Esiste almeno una soluzione ottimale di cui almeno una di esse è un vertice.

Teorema (Fondamentale della Programmazione Lineare)

Sia dato il problema di PL in forma canonica

$$\begin{array}{ll}
\mathbf{min} & \mathbf{cx} \\
Ax \ge b \\
x > 0
\end{array}$$

Allora è vera una e una sola delle seguenti affermazioni

- Il problema non ammette soluzioni ammissibili (la regione ammissibile è vuota)
- Il problema è illimitato inferiormente
- Esiste almeno una soluzione ottimale di cui almeno una di esse è un vertice.

Corollario

Dato un poliedro $P = \{x \in R^n : Ax \le b, x \ge 0\}$, se $P \ne \emptyset$ allora ammette sempre un vertice.

Un problema dei trasporti

Siano p un porto, I un insieme di importatori, E un insieme di esportatori, e K l'insieme di k distinti camion di capacità u_k ciascuno.

Sia inoltre $d_i \ge 0$ il numero di container richiesto per soddisfare ogni cliente, c_{ij}^k i costi di rotta non negativi relativi al k-esimo camion sull'arco (i,j) e h_{pj}^k i costi di carico di container sul camion.

Si denoti con $N = \{p \cup I \cup E\}$ e

$$A = \{(i,j) \mid i \in p, j \in N, i \neq j \cup (i,j) \mid i \in E, j \in p, i \neq j\}$$

l'insieme degli archi di tragitto in cui si muovono i camion. Si suppone inoltre un camion non possa percorrere l'arco (e,i), ma debba necessariamente passare per il porto, dove si arresta definitivamente.

Le variabili decisionali sono:

 x_{ij}^{k} l'arco di rotta, da i a j attraversata dal camion k

 $y_{ij}^{\hat{k}}$ il numero di camion carichi lungo l'arco (i,j)

 z_{ij}^{k} il numero di camion vuoti lungo l'arco (i,j).

Il problema può essere rappresentato come segue:

$$\begin{aligned} & \min \sum_{k \in K} \left[\sum_{(i,j) \in A} c_{ij}^k x_{ij}^k + \sum_{j \in N} h_{pj}^k (y_{pj}^k + z_{pj}^k) \right] \\ & \text{s.t.} \sum_{k \in K} \sum_{l \in N} y_{il}^k = \sum_{k \in K} \sum_{j \in p \cup l} y_{ji}^k - d_i \quad \forall i \in I \end{aligned} \\ & \sum_{l \in N} \sum_{i \in N} \sum_{l \in N} z_{il}^k = \sum_{k \in K} \sum_{j \in p \cup l} y_{ji}^k - d_i \quad \forall i \in I \end{aligned} \\ & \sum_{l \in N} \sum_{i \in N} \sum_{l \in N} z_{il}^k = \sum_{k \in K} \sum_{j \in p \cup l} z_{ji}^k + d_i \quad \forall i \in I \end{aligned} \\ & \sum_{l \in N} \sum_{i \in N} \sum_{l \in N} \sum_{i \in N} \sum_{j \in p \cup l} z_{ji}^k + d_i \quad \forall i \in I \end{aligned} \\ & \sum_{l \in N} \sum_{i \in N} \sum_{l \in N} \sum_{i \in N} y_{ji}^k \quad \forall i \in I, \forall k \in K \end{aligned} \\ & \sum_{l \in N} \sum_{i \in N} \sum_{l \in P \cup E} z_{ji}^k \quad \forall i \in I, \forall k \in K \end{aligned} \\ & \sum_{l \in N} \sum_{i \in P \cup E} \sum_{l \in N} \sum_{j \in P} \sum_{i \in N} y_{ji}^k + d_i \quad \forall i \in E \end{aligned} \\ & \sum_{k \in K} \sum_{l \in P \cup E} \sum_{i \in P \cup E} \sum_{l \in N} \sum_{j \in N} \sum_{i \in N} \sum_{j \in P} z_{ji}^k - d_i \quad \forall i \in E \end{aligned} \\ & \sum_{k \in K} \sum_{l \in P \cup E} \sum_{l \in P \cup E} \sum_{k \in K} \sum_{j \in N} \sum_{j \in P} z_{ji}^k - d_i \quad \forall i \in E \end{aligned} \\ & \sum_{k \in K} \sum_{l \in P \cup E} \sum_{k \in K} \sum_{j \in N} \sum_{l \in P \cup E} z_{ji}^k - d_i \quad \forall i \in E \end{aligned} \\ & \sum_{k \in K} \sum_{l \in P \cup E} \sum_{l \in P \cup E} \sum_{k \in K} \sum_{j \in N} z_{ji}^k - d_i \quad \forall i \in E \end{aligned} \\ & \sum_{k \in K} \sum_{l \in P \cup E} \sum_{l \in P \cup E} \sum_{k \in K} \sum_{j \in N} z_{ji}^k - d_i \quad \forall i \in E \end{aligned} \\ & \sum_{k \in K} \sum_{l \in P \cup E} z_{il}^k - \sum_{k \in K} \sum_{l \in P \cup E} z_{jl}^k - \sum_{k \in K} \sum_{l \in P \cup E} z_{jl}^k - \sum_{l \in E} z_{jl}^k - \sum_{k \in K} z_{jl}^k - \sum_{l \in E} z_{jl}^k - \sum_{l \in E}$$

 $z_{ii}^k > 0 \quad \forall (i,j) \in A, \forall k \in K$

10 of 16

Ester Stefania Aresu - Analisi convessa e Poliedri

caso 1. Consideriamo il caso $I = i, E = e, k = 1, u_k = 1, d_i = d_e = 1$

$$x_6 - x_7 + x_8 = -1$$
 (1) $-x_2 + x_7 + x_{12} \le 0$ (12) $x_{11} - x_{12} + x_{13} = 1$ (2) $-x_3 + x_8 + x_{13} \le 0$ (13)

$$x_6 - x_7 + x_8 < 0$$
 (3) $-x_4 + x_9 + x_{14} < 0$ (14)

$$-x_{11} + x_{12} - x_{13} < 0$$
 (4) $-x_5 + x_{10} + x_{15} < 0$ (15)

$$x_8 - x_9 + x_{10} = -1$$
 (5) $x_1 - x_2 + x_4 - x_5 = 0$ (16)

$$x_{13} - x_{14} + x_{15} = 1$$
 (6) $x_1 - x_2 + x_3 = 0$ (17)

$$x_1 - x_2 - x_3 = 0$$
 (17)
 $x_1 - x_2 - x_3 = 0$ (18)
 $x_2 - x_3 - x_4 + x_5 = 0$ (18)

$$-x_{13} + x_{14} - x_{15} < 0$$
 (8) $x_2 + x_5 < 1$ (19)

$$x_6 - x_7 + x_8 + x_{11} - x_{12} + x_{13} = 0$$
 (9) $x_{11} - x_{12} - x_{14} + x_{15} = 0$ (20)

$$x_8 - x_9 + x_{10} + x_{13} - x_{14} + x_{15} = 0$$
 (10) $x_i > 0$ $i = 1, ..., 15$

$$-x_1 + x_6 + x_{11} < 0 \tag{11}$$

$$-x_1 + x_6 + x_{11} \le 0 \tag{11}$$

dove
$$x_1 = x_{ip}, x_2 = x_{pi}, x_3 = x_{ie}, x_4 = x_{ep}, x_5 = x_{pe}$$

 $x_6 = y_{ip}, x_7 = y_{pi}, x_8 = y_{ie}, x_9 = y_{ep}, x_{10} = y_{pe}$
 $x_{11} = z_{ip}, x_{12} = z_{pi}, x_{13} = z_{ie}, x_{14} = z_{ep}, x_{15} = z_{pe}$

Sistema lineare equivalente in n = 15 incognite del PPL

$$x_{1} - x_{2} + x_{3} = 0$$

$$x_{3} - x_{4} + x_{5} = 0$$

$$x_{6} - x_{7} + x_{8} = -1$$

$$x_{8} - x_{9} + x_{10} = -1$$

$$x_{11} - x_{12} + x_{13} = 1$$

$$x_{13} - x_{14} + x_{15} = 1$$

$$x_{6} - x_{1} + x_{11} \le 0$$

$$x_{8} - x_{3} + x_{13} \le 0$$

$$x_{10} - x_{5} + x_{15} \le 0$$

$$x_{2} + x_{5} \le 1$$

$$x_{i} > 0 \quad i = 1, \dots, 15$$

$$(23)$$

Soluzione intera data dall'esperienza v = (0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0).

Figura: grafo soluzione del problema

Proposizione

Sia P il poliedro convesso generato dal sistema lineare (23), allora P è costituito da uno e un solo punto v, ed esso è vertice per P.

Equivalentemente, la $regione \ ammissibile$ del problema di LP riportato sopra è formata da un unico punto ammissibile v soluzione ottimale della $funzione \ obiettivo$.

Proposizione

Sia P il poliedro convesso generato dal sistema lineare (23), allora P è costituito da uno e un solo punto v, ed esso è vertice per P.

Equivalentemente, la *regione ammissibile* del problema di LP riportato sopra è formata da un unico punto ammissibile *v* soluzione ottimale della *funzione obiettivo*.

Dimostrazione.

```
Mettiamo in evidenza x_7 = x_6 + x_8 + 1 e x_2 \geq x_7 + x_{12}. Dalle condizioni di non-negatività si ha x_7 \geq 1 \Rightarrow x_2 \geq 1, e per x_2 + x_5 \leq 1 necessariamente x_2 = 1 e x_5 = 0; da cui per la (15) x_{10} = x_{15} = 0. Dalla (6) x_{14} = x_{13} + x_{15} - 1 \Rightarrow x_{13} + x_{15} \geq 1 \Rightarrow x_{13} \geq 1; considerando la (13) otteniamo x_3 \geq x_8 + x_{13} \Rightarrow x_3 \geq 1 ma per (17), x_2 = x_1 + x_3 = 1 \Rightarrow x_3 = 1 x_1 = 0 e quindi x_{13} = 1 e x_6 = x_8 = x_{11} = 0 e per la (2), x_{12} = 0. Sostituendo nella (18) x_1 = x_2 + x_3 = x_4 = x_5 = x_4.
```

Consideriamo poi le equazioni (1),(5) e (6), da cui ricaviamo le relazioni $x_7 = x_9 = 1$ e $x_{14} = 0$.

Osservazione

Se l'arco $x_{ij}=0$ allora $y_{ij}=z_{ij}=0$, cioè nessun camion percorre quel tragitto.

La soluzione ammissibile del sistema è quindi il vettore di componenti positive

intere v = (0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0), che è l'unica soluzione ottimale della funzione obiettivo.

caso 2.
$$I = i, E = e, k = 1, u_k = 1, d_i \ge 2, d_e = 1$$

Figura: grafo soluzione del problema

$$x_{1} - x_{2} + x_{3} = 0$$

$$x_{3} - x_{4} + x_{5} = 0$$

$$x_{8} - x_{9} + x_{10} = -1$$

$$x_{13} - x_{14} + x_{15} = 1$$

$$x_{6} - x_{7} + x_{8} + x_{11} - x_{12} + x_{13} = 0$$

$$x_{6} - x_{7} + x_{8} \le -2$$

$$x_{6} - x_{1} + x_{11} \le 0$$

$$x_{8} - x_{3} + x_{13} \le 0$$

$$x_{10} - x_{5} + x_{15} \le 0$$

$$x_{2} + x_{5} \le 1$$

$$x_{i} > 0 \quad i = 1, \dots, 15$$

Osservazione Un ragionamento analogo al caso 1 porta all'inconsistenza del sistema:

$$0 = 1$$

15 of 16

Ester Stefania Aresu - Analisi convessa e Poliedri

Grazie per la cortese attenzione.