PANDUAN LANGKAH-LANGKAH INSTALASI DAN IMPLEMENTASI PROGRAM DETEKSI WARNA OBJEK MENGGUNAKAN COMPUTER VISION DENGAN OPENCV DI JUPYTER NOTEBOOK

Disusun Oleh:

1.	Muh. Alfin Ikram Mullah R.L.	(5323600001)
2.	M. Nafis Ar Rosyid As Salam	(5323600019)
3.	Pipit Handayani Tiyas P.	(5323600023)
4.	Kevin Fiqer	(5323600024)
5.	M. Bayu Iskandar	(5323600025)

PROGRAM STUDI SARJANA TERAPAN

TEKNOLOGI REKAYASA MULTIMEDIA

JURUSAN TEKNOLOGI MULTIMEDIA KREATIF

POLITEKNIK ELEKTRONIKA NEGERI SURABAYA

Urutan Cara Kerja Menggunakan Kode Deteksi Warna

Berikut adalah langkah-langkah terperinci dari instalasi hingga menjalankan kode deteksi warna menggunakan **Anaconda**, **Jupyter Notebook**, dan pustaka Python.

1. Instalasi Anaconda

1. Download Anaconda:

o Kunjungi situs resmi <u>Anaconda</u> dan unduh versi yang sesuai dengan sistem operasi Anda (Windows, macOS, atau Linux).

2. Install Anaconda:

- o Jalankan file instalasi dan ikuti instruksi di layar.
- o Pilih opsi untuk menambahkan Anaconda ke PATH (opsional, tetapi direkomendasikan).

3. Verifikasi Instalasi:

- o Buka terminal atau Command Prompt dan ketik:
- o conda --version
- o Jika berhasil, akan menampilkan versi Anaconda yang terinstal.

2. Membuat dan Mengaktifkan Environment di Anaconda

1. Membuat Environment Baru:

- Buka terminal atau Anaconda Prompt, lalu buat environment baru dengan nama, misalnya, deteksi_warna:
- o conda create -n deteksi_warna python=3.9

2. Aktifkan Environment:

- o Jalankan perintah:
- o conda activate deteksi_warna
- o Anda akan melihat nama environment aktif di awal prompt terminal.

3. Instalasi Jupyter Notebook

1. Install Jupyter Notebook di Environment:

- Pastikan environment aktif, lalu jalankan perintah berikut untuk menginstal Jupyter Notebook:
- o conda install jupyter

2. Jalankan Jupyter Notebook:

- Masih dalam environment aktif, jalankan perintah berikut untuk membuka Jupyter Notebook:
- o jupyter notebook
- Browser akan terbuka secara otomatis, menampilkan antarmuka Jupyter Notebook.

4. Instalasi Library yang Dibutuhkan

1. Install OpenCV, NumPy, dan Matplotlib:

- Pastikan Anda berada di environment deteksi_warna, lalu jalankan perintah berikut:
- o pip install opency-python opency-python-headless numpy matplotlib

2. Verifikasi Instalasi Library:

- Buka Jupyter Notebook, buat file baru dengan ekstensi .ipynb, lalu jalankan kode berikut untuk memastikan library terinstal dengan benar:
- o import cv2
- o import numpy as np
- o import matplotlib.pyplot as plt
- o print("Library berhasil diinstal!")

5. Menjalankan Kode Deteksi Warna

1. Salin Kode Deteksi Warna:

```
o Gunakan kode berikut untuk mendeteksi warna:
   import cv2
   import numpy as np
   import time
0
0
   # Rentang warna dalam HSV
   color_ranges = {
      "Merah": [(0, 50, 50), (10, 255, 255)],
0
      "Hijau": [(36, 50, 50), (85, 255, 255)],
0
      "Biru": [(96, 50, 50), (130, 255, 255)],
0
      "Kuning": [(26, 50, 50), (35, 255, 255)]
0
0
0
   # Fungsi untuk mendeteksi warna
   def detect color(hsv frame):
      for color_name, (lower, upper) in color_ranges.items():
        mask = cv2.inRange(hsv_frame, np.array(lower, np.uint8), np.array(upper,
0
   np.uint8))
        if cv2.countNonZero(mask) > 0:
0
          return color_name
0
      return "Tidak ada warna terdeteksi"
0
0
0
   # Akses kamera
   cap = cv2.VideoCapture(0)
0
  while True:
      ret, frame = cap.read()
0
      if not ret:
0
        break
```

```
hsv_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
detected_color = detect_color(hsv_frame)

cv2.putText(frame, f"Warna: {detected_color}", (10, 50),
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
cv2.imshow("Deteksi Warna", frame)

if cv2.waitKey(1) & 0xFF == ord('q'):
break

cap.release()
cv2.destroyAllWindows()
```

2. Jalankan Kode:

- o Klik **Run** pada Jupyter Notebook untuk menjalankan kode.
- o Kamera akan terbuka, dan warna yang terdeteksi akan ditampilkan di layar.

6. Penjelasan Cara Kerja Masking

1. Input Gambar:

o Kamera menangkap gambar real-time sebagai input.

2. Konversi ke HSV:

o Gambar diubah ke format HSV menggunakan cv2.cvtColor().

3. Pembuatan Mask:

- o Mask dibuat untuk setiap warna berdasarkan rentang HSV.
- o Piksel putih pada mask menunjukkan area yang sesuai dengan warna target.

4. Analisis Piksel:

 Warna dianggap terdeteksi jika jumlah piksel putih pada mask melebihi ambang batas.

5. Visualisasi Hasil:

o Bounding box dan nama warna ditampilkan pada layar.