ColBERTv2: Effective and Efficient Retrieval via Lightweight Late Interaction

Thiago Coelho Vieira - thiagotcvieira@gmail.com

1.1 main concepts

ColBERTv1

- late interaction as a neural ranking paradigm
- dense vector representation for each token
- exact match vs soft match
- promote exact match where it is more relevant to IR
- **single-vector** a pretrained language model is used to encode each query and each document into a single high-dimensional vector, and relevance is modeled as a simple dot product between both vectors
- multi-vector
 - \circ for a query/doc q encoder outputs a matrix nxD, not a vector
- **trade-off** the cost of neural inference for reranking (GPUs) against the cost of large amounts of memory to support efficient nearest neighbor search

1.2 ColBERTv1

1.3 Interactions

1.4 MaxSim - similarity score

$$s_{q,d} = \sum_{i \in \eta(q)} \max_{j \in \eta(d)} \eta(q)_i \cdot \eta(d)_j$$

- largest cosine similarity between each query token matrix and all passages token matrix.
- " constructs a similarity matrix, performs max pooling along the query dimension, followed by a summation to arrive at the relevance score

99

1.5 how it works

- ColBERTv1
 - "two-stage" retrieval method
 - preprocess representation of each token from the corpus is computed and indexed (FAISS) for nearest neighbor search
 - on query time
 - use each query term vector to retrieve top-k texts from corpus using the index (maximizin in a single query term)
 - these top-k texts for each term query are scored against all query tokens vectors using MaxSim for reranking

1.6 ColBERTv2

Figure 1: The late interaction architecture, given a query and a passage. Diagram from Khattab et al. (2021b) with permission.

1.7 how it works

- ColBERTv2
 - "two-stage" retrieval method
 - preprocess representation of each token from the corpus is computed and indexed
 (FAISS ColBERTv1 and) for nearest neighbor search
 - on query time
 - use each query term vector to retrieve top-k texts from corpus from the index
 - these top-k texts are scored against all query tokens vectors usin MaxSim

2.1 contributions

- improvements on ColBERTv2
 - residual compression approach significantly reduces index sizes using cluster centroids over the token level vectors space
 - better negative selection (hard-negative mining)
 - adds distillation from a cross-encoder system over the ...
 - o ColBERTv1
 - 128dim vectors with 2 bytes = 256 bytes/vector
 - o ColBERTv2
 - lacktriangle dimensionality reduction by arranging vectors in clusters indexed by 4 bytes (2^{32}) clusters)
 - improvement that enable 20-36bytes/vector
 - memory improvement ~6-10x (residual compression)
- multi-vectors are stored in cluster based on MaxSim
- new dataset LoTTE (Long-Tail Topic-stratified Evaluation)

2.2 contributions

- in-domain
 - \circ beats DPR and SPLADEv2
- gigantic index
 - \circ Colbertv1 154GiB
 - \circ ColBERTv2 16GiB(1bit) and 25GiB(2bit)
- *MMR*@10
 - 1bit 36.2
 - o 2bit 35.5
- success@5 metric
- LoTTE dataset

3.1 interesting/unexpected results

- exact and soft match ColBERT can distinguish terms of which exact match is important
 - o for each term check average score in exact and soft cases (how?), if the difference is higher

4. basic doubts

- *long-tail topics* out of domain topics?
- on ColBERTv1
 - the vector representation of each token is normalized to a unitary L2 norm; this makes computing inner products equivalent to computing cosine similarity.
 - \circ relevance score is the sum of the max similarity between each vector of the query q and all doc d vectors

5. advanced topics

- ColBERTv3?
- PLAID?