



# Distributed Systems 600.437 Distributed Operating Systems

Department of Computer Science
The Johns Hopkins University

Yair Amir & Raluca Musaloiu-E

Spring 2008/ Lecture 11

# Distributed Operating Systems

Lecture 11

Yair Amir & Raluca Musaloiu-E

Spring 2008/ Lecture 11

## A Distributed Operating System

An operating system which manages a collection of independent computers and makes them appear to the users of the system as a single computer.



Yair Amir & Raluca Musaloiu-E

Spring 2008/ Lecture 11

3

#### Hardware Architectures Parallel architecture Multiprocessors CPU CPU Memory - Tightly coupled. Cache Cache - Shared memory. Distributed architecture Multicomputers. Memory Memory Memory - Loosely coupled. CPU CPU CPU - Private memory. Autonomous. Yair Amir & Raluca Musaloiu-E Spring 2008/ Lecture 11

### Software Architectures

- Multiprocessor OS
  - Looks like a virtual uniprocessor, contains only one copy of the operating system, communication via shared memory, single run-queue
- Network OS
  - Does not look like a virtual uniprocessor, contains n copies of the operating system, communication via shared files, n run-queues
- Distributed OS
  - Looks like a virtual uniprocessor (more or less), contains n copies of the operating system, communication via messages, n run-queues

Yair Amir & Raluca Musaloiu-E Spring 2008/ Lecture 11

5

## Design Issues

- Transparency
  - Location (processes, cpu(s), files)
  - Replication of files
  - Parallelism
- Performance
  - Throughput / response time
  - Load balancing (static/dynamic)
  - Communication is slow compared to processing speed: Fine grain / coarse grain
- Scalability
- Reliability
- · Architecture flexibility.



Yair Amir & Raluca Musaloiu-E

Spring 2008/ Lecture 11

## Distributed File Systems

- · File and directory naming
- · Semantics of file sharing
- · Implementation considerations
  - Caching
  - Update protocols
  - Replication



Yair Amir & Raluca Musaloiu-E

Spring 2008/ Lecture 11

## File and Directory Naming

- Machine + path naming /machine/path.
  - one name space, but not transparent.
- Mounting remote file systems onto the local file hierarchy.
  - The view of the file system may be different at each computer.
- A single name space that looks the same on all machines.
  - Full naming transparency.

Yair Amir & Raluca Musaloiu-E

Spring 2008/ Lecture 11

## File Sharing Semantics

- One-copy semantics (unix semantics).
  - Updates are written to the single copy and are available immediately.
- Serializability.
  - Transaction semantics (locking files share for read and exclusive for write).
- Session semantics.
  - Copy the file on open, work on local copy, and copy back on close.

Yair Amir & Raluca Musaloiu-E

Spring 2008/ Lecture 11

9

#### Sun-NFS

- Supports heterogeneous systems.
- Architecture
  - Server exports one or more directory trees for access by remote clients.
  - Clients access exported directory trees by mounting them to the client local tree.
  - Diskless clients can mount exported directory to their root directory.
  - Auto-mount (on the first access).

Yair Amir & Raluca Musaloiu-E

Spring 2008/ Lecture 11

## Sun-NFS (cont.)

#### Protocols

- Mounting protocol
- Directory and file accessing protocol
  - Stateless
  - No open / close messages.
  - Each read / write message contain the full path and file description position.

#### Semantics

- Not entirely Unix since there is no way to lock files
- Timing issues

Yair Amir & Raluca Musaloiu-E

Spring 2008/ Lecture 11



## Andrew File System

- Supports information sharing on a large scale (thousands of workstations).
- Uses session semantics.
- The entire file is copied to the local machine (Venus) from the server (Vice) when open. If the file is changed - it is copied to the server when closed.
- The method works because in practice most files are changed by one person only (non-database).
- Measurements show that only 0.4% of changed files were updated by more than one user during one week.

Yair Amir & Raluca Musaloiu-E

Spring 2008/ Lecture 11





### **AFS File Validation**

- Older AFS versions:
  - On open: the Venus access the vice to see if its copy of the file is still valid. This causes a substantial delay even if the copy is valid.
  - The Vice is stateless
- Newer AFS versions:
  - The Vice maintains lists of valid copies. If a file is modified, the Vice invalidates other copies.
  - On open: if the Venus has a valid copy it can open it immediately.
  - If Venus crashes it has to invalidate its version or check their validity.

Yair Amir & Raluca Musaloiu-E Spring 2008/ Lecture 11

## The Coda File System

- Descendant of AFS that is substantially more resilient to server and network failures.
- Support for "mobile" users.
- Directories are replicated in several servers (Vice)
- When the Venus is disconnected, it uses local versions of files. When Venus reconnects, it reintegrates using optimistic update scheme.

Yair Amir & Raluca Musaloiu-E

Spring 2008/ Lecture 11

17

## **Process Migration**

- Load Balancing
  - Static load balancing CPU is determined at process creation.
  - Dynamic load balancing processes dynamically migrate to other computers to balance the CPU (or memory) load.
- Migration architecture
  - One image system
  - Point of entrance dependent system (the deputy concept)

Yair Amir & Raluca Musaloiu-E

Spring 2008/ Lecture 11

### A Mosix Cluster

- Mosix: Kernel level enhancement to Linux that provides dynamic load balancing in a network of workstations.
- Dozens of PC computers connected by local area network (Fast-Ethernet and up).
- · Any process can migrate anywhere anytime.
- www.mosix.org



Yair Amir & Raluca Musaloiu-E

Spring 2008/ Lecture 11

19

## An Architecture for Migration

| user level             |                       | user level   |  |  |
|------------------------|-----------------------|--------------|--|--|
| system calls interface | system calls interfac |              |  |  |
| communication          |                       |              |  |  |
| lower kernel           |                       | lower kernel |  |  |

Architecture that fits one system image. Needs location transparent file system.

(Mosix previous versions)

Yair Amir & Raluca Musaloiu-E

Spring 2008/ Lecture 11

## Architecture for Migration (cont.)

The process migrated from the original computer to the current computer and now is initiating a system call.



- Architecture that fits entrance dependent system.
- Easier to implement based on current
   Unix. (Mosix current versions)

Yair Amir & Raluca Musaloiu-E

Spring 2008/ Lecture 11

21

#### Mosix: File Access

Regularly, each file access must go back to deputy...

→ Very Slow for I/O apps.

Solution-- Allow processes to access a distributed file system through the current kernel.



Yair Amir & Raluca Musaloiu-E

Spring 2008/ Lecture 11





## Other Considerations for Migration

- Not only CPU load!!!
- Memory.
- I/O where is the physical device?
- Communication which processes communicate with which other processes ?

Yair Amir & Raluca Musaloiu-E

Spring 2008/ Lecture 11

25

## Resource Management of DOS

- A new online job assignment policy based on economic principles, competitive analysis.
- Guarantees near-optimal global lower-bound performance.
- Converts usage of heterogeneous resources (CPU, memory, IO) into a single, homogeneous cost using a specific cost function.
- Assigns/migrates a job to the machine on which it incurs the lowest cost.

Yair Amir & Raluca Musaloiu-E

Spring 2008/ Lecture 11



## Case Study - PVM and MOSIX

- PVM Parallel Virtual Machine
  - Static Assignment of jobs to machines.
  - Default round robin assignment policy.
  - Widely used.

#### Mosix

- Dynamic job migration.
- Main objective is load balancing, with some adhoc heuristics for memory depletion.

Yair Amir & Raluca Musaloiu-E Spring 20

Spring 2008/ Lecture 11

## Enhanced PVM and Enhanced Mosix

- Enhanced PVM is similar to PVM. The decision where to statically place a new job is made according to the cost benefit framework.
- Enhanced Mosix is similar to Mosix. Job migration decisions are made according to the cost-benefit framework.

#### This framework takes into account:

- CPU load
- Memory utilization

Easy to add I/O. Harder to add IPC.

Yair Amir & Raluca Musaloiu-E

Spring 2008/ Lecture 11

29

## **Evaluation Methodology**

#### • Cluster:

| Machine Type       | # of these Machines | Processing Speed | Installed Memory |
|--------------------|---------------------|------------------|------------------|
| Pentium Pro        | 3                   | 200 MHz.         | 64 MB of RAM     |
| Pentium            | 2                   | 133 MHz.         | 32 MB of RAM     |
| Laptop w/ Ethernet | 1                   | 90 MHz.          | 24 MB of RAM.    |

#### Simulation:

- 3,000 identical executions (scenarios) per policy, each represents 10,000 - 20,000 sec.
- Validation (real life executions):
  - 50 identical executions per policy (similar to the simulations).

Yair Amir & Raluca Musaloiu-E

Spring 2008/ Lecture 11









## Why Virtualize?

- Security
- Reliability and availability
- Cost
- · Load balancing
- Legacy applications

Yair Amir & Raluca Musaloiu-E

Spring 2008/ Lecture 11



## Virtualization through Emulation

- VM emulates complete hardware.
- Allows unmodified guest OS for a different PC to be run.

**Bochs** 

Microsoft Virtual PC for Mac







Yair Amir & Raluca Musaloiu-E

Spring 2008/ Lecture 11

37

## Full / Native Virtualization

- VM simulates enough hardware to allow an unmodified guest OS to be run in isolation.
- · Host and guest architectures are the same.



Mac-on-Linux







Yair Amir & Raluca Musaloiu-E

Spring 2008/ Lecture 11

## Paravirtualization

- Virtual hardware architecture differs from the underlying physical architecture.
- VMM presents a software interface to the guest OS. Guest OS must be modified to use VMM interface.
- · Does not require changes to the application.



VMware
Infrastructure
• ESX Server 3
• ESX Server 3i

Yair Amir & Raluca Musaloiu-E

Spring 2008/ Lecture 11

39

## OS Level Virtualization

- No guest OS. Host and VMs share the same kernel.
- No need to manage the OS.



(used by PlanetLab)

Yair Amir & Raluca Musaloiu-E

Spring 2008/ Lecture 11

## **Application Level Virtualization**

- Create isolated virtual environments to deploy and execute applications.
- Applications need to be packed for virtualization environment.



Yair Amir & Raluca Musaloiu-E

Spring 2008/ Lecture 11

41

## Virtualization in the Past

- Long time ago (more than 30 years): IBM VM/370.
- 80's: the cost of the hardware decreased, making the virtualization less interesting (moved away from mainframes).

Yair Amir & Raluca Musaloiu-E

Spring 2008/ Lecture 11

## Virtualization today: Server Consolidation

- Need for application isolation. Run one application per server.
- Lots of underutilized hardware (estimated resource utilization is 10-15%).

Yair Amir & Raluca Musaloiu-E

Spring 2008/ Lecture 11

43

## Server Consolidation

 Use virtualization to utilize physical resources as efficiently as possible.





Less hardware, space, power consumption.

Yair Amir & Raluca Musaloiu-E

Spring 2008/ Lecture 11

## Beyond Server Consolidation: Application Deployment

- Traditional approach: predict resource usage, acquire and release resources (servers acquisition can take months!).
- Use virtualization to provide a uniform application deployment environment for developers.
- Applications and OS are no longer tied to the physical hardware. Basic deployment unit is now the VM.
- VMs can be dynamically moved based on their resource requirements.

Yair Amir & Raluca Musaloiu-E

Spring 2008/ Lecture 11

45

## **Even more: Utility Computing**

- No need to own the hardware. Instead, pay only what you use!
- Computing and Storage is used as a service.
- Example: Amazon EC2, Amazon S3
  - 10¢ for for 1 EC2 Compute Unit (1 hour equivalent CPU capacity of a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon processor).

Yair Amir & Raluca Musaloiu-E

Spring 2008/ Lecture 11

## Challenges

- How to accurately characterize applications' resource requirements.
  - What and how much: CPU, memory, disk, network utilization...
  - Resource usage may vary over time.
- How to distribute the VMs over the physical resources.
  - Various strategies: keep VMs together, separate VMs.

Yair Amir & Raluca Musaloiu-E

Spring 2008/ Lecture 11

47

## Challenges (2)

 How to balance the server workloads at runtime (migrate VM to another physical server).

#### **VMWare DRS**



- · Resource pools.
- Automate hardware maintenance.
- · Manual or automatic mode.
- Power management.

Image from http://www.vmware.com/products/vi/vc/drs.html

Yair Amir & Raluca Musaloiu-E Spring 2008/ Lecture 11