Converting the equation in Table 1 of the paper "Optimal Robust Filtering for Systems subject to Uncertainties" into systems of linear equations in the form of $A\mathbf{x}=B$; Givens rotation is used to obtain QR decomposition which is followed up by back substitution to obtain $\widehat{\mathbf{x}}_{k+1|k+1}$ and $P_{k+1|k+1}$.

	$P_{k k}$	0	0	0	0	I	0	0	0]	λ_1	μ_1
	0	Q_k	0	0	0	0	I	0	0	λ_2	μ_2
	0	0	R_{k+1}	0	0	0	0	I	0	λ_3	μ_3
	0	0	0	0	0	\mathcal{F}_k	\mathcal{G}_k	0	l	λ_4	μ_4
	0	0	0	0	0	0	0	\mathcal{K}_{k+1}	\mathcal{H}_{k+1}	λ_5	μ_5
	I	0	0	\mathcal{F}_{k}^{T}	0	0	0	0	0	λ_6	μ_6
	0	I	0	\mathcal{G}_k^T	0	0	0	0	0	λ_7	μ_7
	0	0	I	0	$\mathcal{K}_{\underline{k}+1}^T$	0	0	0	0	λ_8	μ_8
	0	0	0	l^T	\mathcal{H}_{k+1}^{T}	0	0	0	0	$\sum_{k=1}^{\infty} \widehat{\mathbf{x}}_{k+1 k+1}$	$P_{k+1 k+1}$
Ā											×

$$= \underbrace{\begin{bmatrix} \widehat{\mathbf{x}}_{k|k} & 0\\ 0 & 0\\ 0 & 0\\ 0 & 0\\ \mathcal{Z}_{k+1} & 0\\ 0 & 0\\ 0 & 0\\ 0 & -I \end{bmatrix}}_{B}$$