Introduction to Machine Learning. Lec.14 Decision Tree (classification)

Aidos Sarsembayev, IITU, 2018

CART

• CART – is a classification and regression trees

CART

• CART – is a classification and regression trees

Classification

Regression

CART

• CART – is a classification and regression trees

 χ_2

How do we choose how or where

How do we choose how or where to split?
It is defined by the algorithm and it involves —
information entropy
The algorithm tries to
MINIMIZE the entropy

• is the average rate at which information is produced by a stochastic (random) source of data.

- is the average rate at which information is produced by a stochastic (random) source of data.
- Generally, entropy refers to disorder or uncertainty
- The measure of information entropy associated with each possible data value is the negative logarithm of the probability mass function for the value.

- is the average rate at which information is produced by a stochastic (random) source of data.
- The measure of information entropy associated with each possible data value is the negative logarithm of the probability mass function for the value. $\stackrel{n}{\smile}$

$$H = -\sum_{i=1}^{n} p(x_i) \log_n p(x_i)$$

• When the data source has a lower-probability value (i.e., when a low-probability event occurs), the event carries more "information" ("surprisal") than when the source data has a higher-probability value.

- When the data source has a lower-probability value (i.e., when a low-probability event occurs), the event carries more "information" ("surprisal") than when the source data has a higher-probability value.
- The amount of information conveyed by each event defined in this way becomes a random variable whose expected value is the **information entropy**.

ALL RIGHT, BUT HOW DOES IT REFER TO THIS FIGURE??

Basically, by performing a split we ask ourselves: does the split increase the amount of information about our points? Is it actually adding some value to the way in which we want to

Basically, by performing a split we ask ourselves: does the split increase the amount of information about our points? Is it actually adding some value to the way in which we want to group our points? The algorithm knows when to stop, when there's certain minimum for the information that needs to be χ_2 Split 2 added Split 1 60 Split 4 50 70 X_1

The good news:
this so much refers to the information
theory, while this is the ML class.
We will not dive into the process
of splitting the dataset into leaves.
The algorithm will take care of it for us

• Now let's actually build the tree by doing the first split

How do we actually do classification?? y-coordinate Let's say we got a new data point with: X1 = 30 and X2 = 70 χ_2 Split 2 Split 3 Split 1 - Split 4 50 70 X_1

How do we actually do predictions?? Let's say we got a new data point with: X1 = 30 and X2 = 70It will definitely fall into the highlighted leaf χ_2 Split 2

Can we predict the Y of new data point? y-coordinate χ_2 Split 2 _Split 1 - Split 4 50 70 X_1

Can we predict the Y of new data point? We can actually stop at the terminal leaf y-coordinate OR Apply probabilistic approach χ_2 Split 2 Split 3 Split 1 - Split 4 50 70 X_1

