1 Converging-Diverging Verification (CDV) Nozzle

The Converging-Diverging Verification (CDV) Nozzle is a verification case involving the flow of inviscid, non-heat-conducting air through a converging-diverging nozzle. Details can be found on the NASA validation site [National Aeronautics and Space Administration, 2021]. This is a classic one-dimensional, steady, compressible flow problem discussed in most compressible flow textbooks, such as Ref. [Anderson, 1984].

This case allows the verification of a CFD code in the following manner:

- Verify through comparison with analytic solutions
- Verify mass conservation through a duct
- Verify of constancy of total pressure through a duct (isentropic flow)
- Verify consistency of axisymetric and three-dimensional flow domains

This case involves steady, inviscid, non-heat-conducting flow through a converging-diverging nozzle. The plenum total pressure and total temperature are assumed constant. The values used in this case are presented in Tab. 1.

Variable	Symbol	Units	Value
Plenum Total Pressure	p_t	psi	1.0
Plenum Total Temperature	T_t	\mathbf{R}	100.0
Exit Static Pressure	p_{exit}	psi	0.89, 0.75, 0.16

Table 1: Table of conditions (adapted from NASA [National Aeronautics and Space Administration, 2021]).

The nature of the flow is determined by the exit static pressure. Three values of exit static pressure are examined which result in three types of flows:

- Subsonic, isentropic flow $(p_{\text{exit}}/p_t = 0.89)$
- Supersonic flow with a normal shock in the diffusing section $(p_{\text{exit}}/p_t = 0.0.75)$
- Supersonic, isentropic flow $(p_{\text{exit}}/p_t = 0.16)$

1.1 Geometry

The geometry is an axisymmetric converging-diverging duct. Figure 1 shows the general shape of the nozzle. It has an area of 2.5 in^2 at the inflow (x = 0 in), an area of 1.0 in^2 at the throat (x = 5 in), and an area of 1.5 in^2 at the exit (x = 10 in). The nozzle area has the form

$$A(x) = \begin{cases} 1.75 - 0.75\cos(\pi(0.2x - 1.0)), & 0 \le x < 5\\ 1.25 - 0.25\cos(\pi(0.2x - 1.0)), & 5 \le x \le 10 \end{cases}$$
 (1)

This nozzle geometry is from Ref. [Liou, 1987], which also discusses some CFD computations of this nozzle.

The ratios of select areas are listed in Tab. 2

Ratio	Value	
$A_{\rm throat}/A_{\rm inlet}$	1.0/2.5 = 0.4	
$A_{\rm exit}/A_{\rm throat}$	1.5/1.0 = 1.5	
$A_{ m exit}/A_{ m inlet}$	1.5/2.5 = 0.6	

Table 2: Ratio of areas.

1.2 Nondimensionalizations

In order to simplify the task of simulating the nozzles with rhoCentralFoam, we set $p_t = 1$ Pa, $T_t = 1$ K, and $p_{\text{exit}} = \{0.89, 0.75, 0.16\}$ Pa. The fluid is such that W = 8314.5 kg/kmol, and $c_p = 3.5$ J/kg-K, so that the gas constant is $R = \mathcal{R}/W = 1$ J/kg-K and $\gamma = 1.4$ the ratio of specific heats. We also let the diameter of the nozzle inlet be equal to D = 1 m, but keep the geometry unchanged.

1.3 Analytical solutions

1.3.1 Case 1 - Isentropic flow and subsonic exit

Let us begin with the case of subsonic, isentropic flow (case 1). In this case, we use the isentropic flow tables with $\gamma = 1.4$ (air) and consider the ratio $p_{\rm exit}/p_t = 0.89$, which gives $M_{\rm exit} = 0.41144$ and $T_{\rm exit}/T_t = 0.96725$, giving $T_{\rm exit} = 0.96725$ K and a sound speed $a_{\rm exit} = \sqrt{\gamma T_{\rm exit}} = 1.1637$ m/s, which implies an exit speed $u_{\rm exit} = 0.47878$ m/s.

1.3.2 Case 2 - Normal shock in diffuser and subsonic exit

Next, we consider the case of $p_{\rm exit}/p_t=0.75$, resulting in a normal shock in the diffuser past the throat (case 2) and a subsonic exit. In this case, the isentropic flow tables are used together with the normal shock tables to determine the analytical solution. We obtain that the exit Mach number is $M_{\rm exit}=0.5019$ and the shock Mach number is $M_{\rm shock}=1.6117$. At the exit, $T_{\rm exit}/T_t=0.9520$ and the static temperature is $T_{\rm exit}=0.9520$ K, giving $a_{\rm exit}=\sqrt{\gamma T_{\rm exit}}=1.1545$ m/s and $u_{\rm exit}=0.57946$ m/s.

1.3.3 Case 3 - Isentropic flow and supersonic exit

Finally, we consider the case of $p_{\text{exit}}/p_t = 0.16$ (case 3), resulting in the nozzle functioning as intended: air expands from the stagnation conditions, reaching $M_{\text{exit}} = 1.854124$ at the exit. In this case, the isentropic flow tables can be used throughout the nozzle together withe the area ratio and the condition of $M_{\text{throat}} = 1$ (sonic flow at the throat).

1.4 Comparisons against rhoCentralFoam

Simulations with rhoCentralFoam are executed (see class repository) with the appropriate boundary conditions and the pressure ratio p/p_t and the Mach number M are compared along the centerline of the nozzle for the 3 cases.

Figure 1: Case 1. Pressure ratio p/p_t (left) and Mach number M (right) along the centerline as a function of x/L where L is the nozzle length. The throat is located at x/L = 0.5

Figure 2: Case 2. Pressure ratio p/p_t (left) and Mach number M (right) along the centerline as a function of x/L where L is the nozzle length. The throat is located at x/L = 0.5

Figure 3: Case 3. Pressure ratio p/p_t (left) and Mach number M (right) along the centerline as a function of x/L where L is the nozzle length. The throat is located at x/L = 0.5

References

National Aeronautics and Space Administration. Converging-Diverging Verification (CDV) Nozzle, 2021. https://www.grc.nasa.gov/www/wind/valid/cdv/cdv.html.

J D Anderson. Modern Compressible Flow. McGraw Hill, New York, 1984.

M S Liou. A generalized procedure for constructing an upwind-based TVD scheme. 1987. NASA TM 88926.