Homework 3

Christophe Hunt February 18, 2017

Contents

1	Problem : Page 113: 2	2
2	Problem : Page 121: 2.a	2
3	Problem : Page 127: 10	3
4	Problem : Page 136: 7	3
5	Problem : Page 146: 5	3
6	Problem : Page 157: 4	3
7	Problem : Page 169: 11	3
8	Problem : Page 181: 5	3

1 Problem : Page 113: 2

The following table gives the elongation e in inches (in./in.) for a given stress S on a steel wire measured in pounds per square inch (lb/in.²). Test the models $e = c_1 S$ by plotting the data. Estimate c_1 graphically.

```
library(ggplot2)
S <- c(5,10,20,30,40,50,60,70,80,90,100)
e <- c(0,19,57,94,134,173,216,256,297,343,390)
ggplot(data = as.data.frame(cbind(S,e)), aes(x = S, y = e)) +
    geom_point() +
    geom_abline(intercept = -20, slope = 4)</pre>
```


Above is the graph of the elongation e% versus stress S x 10⁻¹. By eyeballing the results of several plots we can give the estimate of ~4 for e if provided with an intercept of -20. This is simply a best guess.

2 Problem : Page 121: 2.a

For each of the following data sets, formulate the mathematical model that minimizes the largest deviation between the data and the line y= ax+b. If a computer is available solve for the estimates of a and b.

3 Problem: Page 127: 10

Data For planets

Body	Period (sec)	Distance from sun (m)
Mercury	7.60 x 10^6	5.79 x 10^10
Venus	1.94 x 10^7	1.08 x 10^11
Earth	3.16 x 10^7	1.5 x 10^11
Mars	5.94 x 10^7	2.28 x 10^11
Jupiter	3.74 x 10^8	7.79 x 10^11
Saturn	9.35 x 10^8	1.43 x 10^12
Uranus	2.64 x 10^9	2.87 x 10^12
Neptune	5.22 x 10^9	4.5 x 10^12

4 Problem: Page 136: 7

a. In the following data, W represents the weight of a fish (bass) and l represents its length. Fit the model $W=kl^3$ to the data using the least-squares criterion.

5 Problem: Page 146: 5

Solve Problems 1 - 4 with the model $V = m(\log P) + b$. Compare the errors with those computed in Problem 4. Compare the two models. Which is better?

6 Problem: Page 157: 4

7 Problem : Page 169: 11

8 Problem : Page 181: 5