

Databases for Analytics

Kroenke / Auer Chapter 5

Learning Objectives

- Skills: You should know how to ...
 - Draw and interpret entity relationship diagram
- Theory: You should be able to explain ...
 - The purpose and process of data modeling
 - Entities, attributes, relationships, identifiers, and cardinalities, ID dependencies, etc.
 - The graphical syntax and structure of an ERD
 - The relationship between ERDs and table designs

Data Models

For when you are starting with a clean sheet of paper

Data Modeling

- A data model is a plan or blueprint for a database design.
- A data model is more generalized and abstract than a database design.
- It is easier to change a data model then it is to change a database design, so it is the appropriate place to work through conceptual database problems.

Data Modeling in the SDLC

Data modeling **primarily** resides in the Requirements Analysis phase.

However, the data model will continue to change throughout the SDLC as the overall system design evolves.

Data Modeling as Conceptual Design

- Books on systems analysis and design often identify three design stages:
 - Conceptual design (conceptual schema)
 - Logical design (logical schema)
 - Physical design (physical schema)
- The data model we are discussing is conceptual design.
- Table designs (and SQL DDL) are logical design.
- The live database in the DBMS is physical design.

ER Models

Entities, Attributes, and Relationships

Entity-Relationship Model

- Based on the idea that in order to capture data about things, you need to model the things
- Lots of ERM standards:
 - Original E-R model by <u>Peter Chen</u> (1976)
 - Extended E-R model: extensions to the Chen model
 - Information Engineering (IE) by James Martin (1990); uses "crow's foot" notation, is easier to understand, and we will use it
 - IDEF1X: a national standard developed by the National Institute of Standards and Technology [see Appendix C]
 - Unified Modeling Language (UML) by the Object Management Group; it supports object-oriented methodology

Entities

- Something that can be identified and the users want to track:
 - Entity class: a collection of entities of a given type; the class defines a schema/blueprint/structure for all entities of the given type
 - Entity instance: the occurrence of a particular entity; an instance has actual data
- There are usually many instances of an entity in an entity class.

Entity Class vs Entity Instance

CUSTOMER Entity

CUSTOMER

CustomerNumber CustomerName

Street

City

State Zip

ContactName

Email

Two CUSTOMER Instances

1234

Ajax Manufacturing 123 Elm Street Memphis

TN

32455

Peter Schwartz

Peter@ajax.com

99890

Jones Brothers 434 10th Street

Boston

MA

01234

Fritz Billingsley Fritz@JB.com

Attributes

- Attributes describe an entity's characteristics.
- All entity instances of a given entity class have the same attributes, but vary in the values of those attributes.
- Originally shown in data models as elliptical shapes.
- Data modeling products today commonly show attributes in rectangular form.

Original Chen-style Attributes

Modern Style Attributes (in Textbook)

The class name is above the rectangle.

The identifier attribute (PK) is at the top of the box.

The other attributes are in the bottom of the box.

EMPLOYEE

EmployeeNumber

EmployeeName

Phone

Email

HireDate

ReviewDate

Varying Levels of Detail ...

EMPLOYEE

EmployeeNumber

EmployeeName

Phone

Email

HireDate

ReviewDate

Entity with All Attributes **EMPLOYEE**

EmployeeNumber

EMPLOYEE

Entity with Identifier Attribute Only Entity with No Attributes

Entities (in most software packages)

Entity

Identifer-Field

Field

Field

Entity			
Key	Field	Туре	
Key	Field	Туре	
Key	Field	Туре	

Relationships

- Entities can be associated with one another in relationships:
 - Relationship classes: associations among entity classes
 - Relationship instances: associations among entity instances
- In the original E-R model, relationships could have attributes, but today this is no longer done.
- A relationship class can involve two or more entity classes.

Degrees of Relationship

- The degree of the relationship is the number of entity classes in the relationship:
 - Two entities have a binary relationship of degree two.
 - Three entities have a ternary relationship of degree three.
- In practice, the relational model supports only binary relationships. Tertiary and higher-order relationships must be converted to multiple binary relationships (PK/FK pairs).

Binary Relationship

Tertiary Relationship

Entities and Tables

- The principle difference between an entity and a table (relation) is that you can express a relationship between entities without using foreign keys.
- This makes it easier to work with entities in the early design process where the very existence of entities and the relationships between them is uncertain.

Relationship Cardinalities

It's all in the counting

Cardinality

- Cardinality means "count," and is expressed as a number.
- Maximum cardinality is the maximum number of entity instances that can participate in a relationship.
- Minimum cardinality is the minimum number of entity instances that must participate in a relationship.

Maximum Cardinalities

There are three types of maximum cardinality:

- One-to-One [1:1]
- One-to-Many [1:N]
- Many-to-Many [N:M]

Examples

Parent and Child Entities

- In a one-to-many relationship:
 - The entity on the one side of the relationship is called the parent entity or just the parent.
 - The entity on the many side of the relationship is called the child entity or just the child.
- In the figure below, EMPLOYEE is the parent and COMPUTER is the child:

HAS-A Relationship

The relationships we have been discussing are known as **HAS-A relationships**:

- Each entity instance has a relationship with another entity instance.
- An EMPLOYEE has one or more COMPUTERs.
- A COMPUTER has one assigned EMPLOYEE.

Minimum Cardinalities

Minimums are generally stated as either **zero** or **one**:

- IF zero [0] THEN participation in the relationship by the entity is optional, and no entity instance must participate in the relationship.
- IF one [1] THEN participation in the relationship by the entity is mandatory, and at least one entity instance must participate in the relationship.

Indicating Minimum Cardinalities

- oval → entity is optional, with a minimum cardinality of 0
- vertical hash mark
 → entity is
 mandatory
 (required), with a
 minimum of 1

Crow's Foot Notation

Shows maximum and minimum cardinalities at each end of a relationship.

A crow's foot means maximum cardinality > 1.

Symbol	Meaning	Numeric Meaning
	Mandatory - One	Exactly one
-+	Mandatory – Many	One or more
	Optional—One	Zero or one
\longrightarrow	Optional – Many	Zero or more

Original Chen vs Crow's Foot

Entities and Identifiers

Which comes first, the identifier or the entity?

ID-Dependent Entities

- An ID-dependent entity is an entity (child) whose identifier includes the identifier of another entity (parent).
- The ID-dependent entity is a logical extension or subunit of the parent:
 - BUILDING ← APARTMENT
 - PAINTING ← PRINT
- The minimum cardinality from the ID-dependent entity to the parent is always one.

ID-Dependency Examples

Weak Entities

- A weak entity is an entity whose existence depends upon another entity.
- All ID-Dependent entities are considered weak.
- There are also non-ID-dependent weak entities.
 - The identifier of the parent does not appear in the identifier of the weak child entity.

 C

Weak Entity Examples

Subtype Entities (IS-A Relationships)

- A subtype entity is a special case of a supertype entity:
 - UNDERGRADATE and GRADUATE are subtypes of STUDENT
 - An UNDERGRADUATE is a STUDENT
- The supertype contains all common attributes, while the subtypes contain specific attributes.
- The supertype may have a discriminator attribute which indicates the subtype.

Subtypes with Discriminators

Inclusive vs Exclusive Subtypes

Can subtypes overlap?

- Exclusive: one supertype relates to at most one subtype
- Inclusive: one supertype can relate to multiple subtypes.

Do we need Subtypes?

- Relationships connecting supertypes and subtypes are called IS-A relationships, because a subtype is a supertype.
- The identifier of the supertype and all of its subtypes must be identical; i.e., the identifier of the supertype becomes the identifier of the related subtype(s).
- Subtypes are used to avoid value-inappropriate nulls.

Associative Entities

An entity that holds one or more additional attributes beyond the identifiers of the parent entities is called an associative entity (or association entity).

In this case Price is the additional attribute.

Recursive Relationships

A recursive relationship occurs when an entity class has a relationship to itself.

Design Process

Highline University example from the book

Highline University case

- Suppose the administration at a hypothetical university named Highline University wants to create a database to track colleges, departments, faculty, and students.
- To do this, a data modeling team has collected a series of reports as part of its requirements determination.

The College Report

College of Business Mary B. Jefferson, Dean

Phone: 232-1187

Campus Address: Business Building, Room 100

Department	Chairperson	Phone	Total Majors
Accounting	Jackson, Seymour P.	232-1841	318
Finance	HeuTeng, Susan	232-1414	211
Info Systems	Brammer, Nathaniel D.	236-0011	247
Management	Tuttle, Christine A.	236-9988	184
Production	Barnes, Jack T.	236-1184	212

First Data Model

The Department Report

Information Systems Department College of Business

Chairperson: Brammer, Nathaniel D

Phone: 236-0011

Campus Address: Social Science Building, Room 213

Professor	Office	Phone
Jones, Paul D.	Social Science, 219	232-7713
Parks, Mary B	Social Science, 308	232-5791
Wu, Elizabeth	Social Science, 207	232-9112

Second Data Model

(a) Data Model Using an N:M Relationship

Third Data Model

(d) Data Model Using an Association Pattern and 1:1 Relationship

The Department Student Report

Student Major List Information Systems Department

Chairperson: Brammer, Nathaniel D Phone: 236-0011

Major's Name	Student Number	Phone
Jackson, Robin R.	12345	237-8713
Lincoln, Fred J.	48127	237-8924
Madison, Janice A.	37512	237-9035

Fourth Data Model

Acceptance Letter

Mr. Fred Parks 123 Elm Street Los Angeles, CA 98002

Dear Mr. Parks:

You have been admitted as a major in the Accounting Department at Highline University, starting in the Fall Semester, 2015. The office of the Accounting Department is located in the Business Building, Room 210.

Your adviser is professor Elizabeth Johnson, whose telephone number is 232-8740 and whose office is located in the Business Building, Room 227. Please schedule an appointment with your adviser as soon as you arrive on campus.

Congratulations and welcome to Highline University!

Sincerely,

Jan P. Smathers President

JPS/rkp

Final Data Model

Databases for Analytics

Kroenke / Auer Chapter 5