

P-ţa Victoriei nr. 2 RO 300006 · Timişoara Tel: +4 0256 403000 Fax: +4 0256 403021 rector@rectorat.upt.ro www.upt.ro

Logică digitală

-Curs 2-ALGEBRA BOOLEANĂ ȘI LOGICA DIGITALĂ -2021-

Algebra booleană și logica digitală

- Axiomele şi teoremele algebrei booleene;
- □ Funcții booleene;
- Aspecte legate de implementarea porţilor logice;

Noțiuni fundamentale de algebră

- □ <u>Set</u> colecție de obiecte care au o anumită proprietate.
 - Dacă S este un set şi x un element al setului S, at. scriem x ∈ S
 - Notația $A = \{2, 3, 4, 5\}$ denotă setul A, cu elementele 2, 3, 4, 5
- □ Un <u>operator binar</u> al setului *S* este o regulă prin care pentru oricare pereche de elemente din *S* prin aplicarea regulii se obține un element tot din *S*
- Axiomă: propoziție care este considerată adevărată fără a fi însă demonstrată.

Noțiuni fundamentale de algebră Exemple de axiome

Comutativitatea

Un operator binar • este comutativ dacă și numai dacă pentru oricare x, y ∈ S

$$X \bullet y = y \bullet X$$

Elementul invers

Un set S are invers (e) dacă și numai dacă pt. oricare $x \in S$, există un element $y \in S$ astfel încât

$$x \bullet y = e$$

Distributivitate

Dacă • și + sunt doi operatori binari asupra setului S, se spune că • e distributiv în raport cu + dacă, oricare ar fi x, y, $z \in S$

$$x \bullet (y + z) = (x \bullet y) + (x \bullet z)$$

Algebra booleană definita asupra unui set de elemente B cu 2 operatori binari, + și ·, care satisfac următoarele 6 axiome:

Axioma 1 (Proprietatea închiderii):

- (a) B este închisă cu privire la operatorul +;
- (b) B este închisă cu privire la operatorul ;

Algebra booleană este un set de elemente B cu 2 operatori binari, + și ·, care satisfac următoarele 6 axiome:

Axioma 2 (Element neutru):

- (a) ∃element neutru faţă de operatorul + notat cu0 a.î.: ∀ a∈B, a+0 = a;
- (b) ∃element neutru faţă de operatorul notat cu 1 a.î.: ∀ a∈B, a·1 = a;

Algebra booleană este un set de elemente B cu 2 operatori binari, + și ·, care satisfac următoarele 6 axiome:

Axioma 3 (Comutativitate):

- (a) \forall a,b \in B, a+b = b+a;
- (b) \forall a,b \in B, a \cdot b = b \cdot a;

Axioma 4 (Distributivitate):

- (a) $\forall a,b,c \in B, a+(b\cdot c) = (a+b) \cdot (a+c);$
- (b) \forall a,b,c \in B, a·(b+c) = a·b + a·c;

Algebra booleană este un set de elemente B cu 2 operatori binari, + și ·, care satisfac următoarele 6 axiome:

Axioma 5 (Complementul): Pentru fiecare $x \in B$, există $x' \in B$ a.î.

```
(a) x + x' = 1;

(b) x \cdot x' = 0;

x' se numește complementul lui x

(se mai noteaza \bar{x})
```

Axioma 6: Mulțimea B conține cel puțin 2 elemente diferite. $x, y \in B, si x \neq y$

Algebra booleană cu 2 valori

- Mulţimea B are 2 elemente: 0 şi 1
- □ Algebra are 2 operatori: SAU (OR), ŞI (AND)

X	У	x·y
0	0	0
0	1	0
1	0	0
1	1	1

op.și

X	У	x+y
0	0	0
0	1	1
1	0	1
1	1	1

op.sau

Algebra booleană: precedența operatorilor

- Op. booleeni se aplică în urm. ordine:
 - Paranteze ()
 - NOT′sau
 - AND -
 - OR +

Exemplu: Evaluați expresia:
$$(x + xy)'$$
 pt. $x = 0$ și $y = 1$: $(0+0.1)' = (0+0)' = (0)' = 1$

Principiul dualității

- Axiomele algebrei booleene sunt prezentate în perechi fiecare axiomă din pereche fiind duală celeilalte;
- O axiomă se poate obţine din duala sa modificând operaţia "+"cu operaţia "."şi elementul 0 cu elementul 1 (şi invers).

Exemplu: existența elementului opus

Teoremele algebrei booleene

□ T1 (Idempotența):

$$(a)x + x = x;$$

$$(b)x \cdot x = x;$$

☐ T2 (Prop. 0 și 1):

$$(a)x + 1 = 1;$$

$$(b)x \cdot 0 = 0;$$

Teoremele algebrei booleene

- ☐ T3 (Absorbţie):
- (a) $y \cdot x + x = x$;
- (b) $(y + x) \cdot x = x$;

Teoremele algebrei booleene

- ☐ T5 (Asociativitate):
- (a) (x + y) + z = x + (y + z);
- $(b)x \cdot (y \cdot z) = (x \cdot y) \cdot z;$
- □ T6 (De Morgan):
- (a) $(x + y)' = x' \cdot y'$;
- (b) $(x \cdot y)' = x' + y';$

Demonstrarea teoremelor

Prin considerarea tuturor combinațiilor de valori ale variabilelor

Exemplu: De Morgan

X	У	x ′	y'	x+y	(x+y) '	x' · y'
0	0	1	1	0	1	1
0	1	1	0	1	0	0
1	0	0	1	1	0	0
1	1	0	0	1	0	0

Funcții booleene

- \square O funcție de comutație de n variabile $f(X_0, X_1, ..., X_{n-1})$ unde variabilele X_i iau valorile 0 și 1, pentru i=0÷n-1, se definește ca o aplicație a mulțimii $\{0,1\}^n$ în mulțimea $\{0,1\}$.
- \square Prin $\{0,1\}^n$ s-a notat produsul cartezian al mulţimii $\{0,1\}$ cu ea însăşi de n ori.
- □ Domeniul de definiție al funcției f este:

$$X = \{0,1\}^n = \{(X_0, X_1, ..., X_{n-1}) | X_0 \in \{0,1\}, X_1 \in \{0,1\}, ..., X_{n-1} \in \{0,1\}\}$$
 ale cărei elemente sunt n-upluri de 1 și 0 $\{X_0, ..., X_{n-1}\}$

Funcție booleană

 Expresie algebrică care este formată variabile binare şi din operatorii: şi, or, negare

Exemplu:

$$F = xy + xy'z + x'yz$$
 $F = 1 \operatorname{dacă} x = 1 \operatorname{și} y = 1, \operatorname{sau}$
 $\operatorname{dacă} x = 1 \operatorname{și} y = 0 \operatorname{și} z = 1, \operatorname{sau}$
 $\operatorname{dacă} x = 0 \operatorname{și} y = 1 \operatorname{și} z = 1;$
 $\operatorname{altfel}, F = 0.$

Funcții booleene

□ Tabel de adevăr prin care este specificată

Х	У	Z	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1_	0	1
1	1	1	1

Complementul unei funcții

☐ Funcția F', unde F' poate fi obținută prin interschimbarea lui 0 cu 1 în tabelul de adevăr

X	У	Z	F′
0	0	0	0→1
0	0	1	0→1
0	1	0	0→1
0	1	1	1 →0
1	0	0	0→1
1	0	1	1 →0
1	1	0	1 →0
1	1	1	1 →0

Complementul unei funcții

Funcția F', unde F' poate fi obținută prin aplicarea repetată a teoremelor lui DeMorgan

Exemplu

$$F' = (xy + xy'z + x'yz)'$$

$$= (xy)' (xy'z)' (x'yz)'$$

$$= (x' + y')(x' + y + z')(x + y' + z')$$

Echivalența expresiilor

Să se găsească o formă echivalentă mai simplă pentru expresia:

$$f = xyz + xyz$$

 $f = x(y+y)z$ distributivitatea
 $f = xz(y+y)$ comutativitatea
 $f = xz$ Axioma 5 (complementul)