Instituto Tecnológico de Celaya

Mecánica de Materiales

Problemario Unidad IV. Análisis de esfuerzo y deformación

1. Un elemento en esfuerzo plano está sometido a esfuerzos $\sigma_x = 4750$ psi, $\sigma_y = 1200$ psi y $\tau_{xy} = 950$ psi, como se muestra en la figura. Determine los esfuerzos que actúan sobre un elemento orientado a un ángulo $\theta = 60^{\circ}$ desde el eje x, Muestre estos esfuerzos en un diagrama de un elemento orientado según el ángulo θ .

2. Para el estado de esfuerzo dado, determine a) los planos principales b) los esfuerzos principales. Utilice las ecuaciones proporcionadas para tal fin.

- 3. Resuelva el problema anterior utilizando el círculo de Mohr para esfuerzo plano.
- 4. Un tubo de acero con 12 in. de diámetro exterior se fabrica a partir de una placa con 0.25 in. de espesor, la cual se suelda a lo largo de una helice que forma un ángulo de 22.5^{o} con un plano perpendicular al eje del tubo. Si se aplica una fuerza axial P de 40 kips y un par de torsión T de 80 kips·in, cada uno de ellos con la dirección mostrada, determine σ y τ en las direcciones normal y tangencial a la soldadura, respectivamente.

5. Un elemento en esfuerzo plano está sometido a esfuerzos $\sigma_x = -50$ MPa y $\tau_{xy} = 42$ MPa. Se sabe que uno de los esfuerzos principales es igual a 33 MPa en tensión. (a) Determine el esfuerzo σ_y . (b) Determine el otro esfuerzo principal y la orientación de los planos principales, luego muestre los esfuerzos principales en un diagrama de un elemento orientado de manera apropiada.

