Problem Set - 11

AUTUMN 2017

MATHEMATICS-I (MA10001)

- 1. (a) Ans : $\frac{248}{15}$ (Hint:Write Γ and the integrand in terms of x and y and then integrate)
 - (b) (i) Ans: $\frac{10}{21} + i\frac{14}{15}$ (Hint:Put $z(t) = t + it^3$, $0 \le t \le 1$; in the integral). (ii) Ans: $\frac{1}{2}(a^2 + b^2)(a + ib)$ (Hint:Put z(t) = (a + ib)t, $0 \le t \le 1$; $a, b \in \mathbb{R}$).
 - (c) (i) Ans: $\frac{511}{3} i\frac{49}{5}$ (Hint: z = x + iy and put $y = 2x^2$)
 - (ii) Ans: $\frac{518}{3} 57i$ (Hint:First take x=constant and integrate w.r.t y then y=constant and integrate w.r.t x)
 - (iii) Ans: $\frac{518}{3} 8i$ (Hint: Write down the straight line equation joining (1, 1) and (2, 8). Then change the integral in terms of a single variable)
- 2. (a) Ans : $\frac{\pi a}{(a^4 1)^2}$ (Hint: Use ML inequality formulae)
 - (b) Ans :2 (Hint: Use ML inequality formulae)
 - (c) Ans: $-i\pi$ (Hint:Put $z = e^{i\theta}$, $0 \le \theta \le \pi$).
- 3. (a) Ans: 0 (Hint:Apply cauchy integral theorem.)
 - (b) Ans: 0 (Hint:Apply cauchy integral theorem.)
- 4. (a) Ans: $\frac{\pi}{5}$ (Hint:Apply Cauchy integral formulae)
 - (b) Ans: $2\pi i(e+1)$ (Hint:Apply Cauchy integral formulae).
 - (c) (i) πi (Hint:Use Cauchy integral formulae)
 - (ii) Ans: 0 (Hint:Apply cauchy integral theorem.)
 - (d) Ans: $\frac{\pi i}{4}$ (Hint: Apply Cauchy integral formulae.)
 - (e) Ans: $\pi \cos 6$ (Hint:Apply cauchy integral formulae.)
 - (f) Ans: $4\pi i$ (Hint:Apply cauchy integral formulae.)
 - (g) (Hint:Apply cauchy integral formulae.)
- 5. (a) Ans: $-\frac{2\pi i(a-3)}{a^3}$ (Hint:Applying Cauchy integral formulae for derivative)
 - (b) Ans: $-i\frac{8}{3}\pi e^{-2}$ (Hint:Use Cauchy's Integral formulae for n'th derivative)
- 6. (a) Ans: e^2 (Hint:Apply cauchy integral formulae)
 - (b) Ans: 0 (Hint:Apply cauchy integral theorem)

7. (a) Ans:
$$\frac{z}{9} - \frac{z^5}{9^2} + \frac{z^9}{9^3} - \frac{z^{13}}{9^4}$$
. (Hint:write $\frac{z}{z^4 + 9} = \frac{z}{9}(1 + \frac{z^4}{9})^{-1}$. Then expand)

(b) Ans:
$$z - \frac{z^2}{2} + \frac{z^3}{3} - z^4 + \dots$$
 (Hint:Use Taylor's theorem about the point $z = 0$)

(c) Ans:
$$\frac{z-1}{2} - \frac{(z-1)^2}{2^2} + \frac{(z-1)^3}{2^3} - \dots$$
 (Hint:Let $z-1=u$)

(d) Ans:
$$\frac{\sqrt{2}}{2}\left[1+(z-\frac{\pi}{4})-\frac{(z-\frac{\pi}{4})^2}{2!}-\dots\right]$$
 (Hint:Use Taylor's series formulae)

8. (i) Ans:
$$\frac{1}{3} [1 - \frac{z}{3} - \frac{z^2}{18} + \dots]$$
 (Hint: Use expansion of e^z)

(ii) Ans:1 +
$$z + \frac{z^2}{2} + \dots$$
 (Hint:Use expansion of e^x)