REPUBLIQUE TUNISIENNE MINISTERE DE L'EDUCATION •••• EXAMEN DU BACCALAUREAT

Epreuve	:
Mathémati	ques

Section:

Mathématiques

SESSION 2018

Durée : 4h

•

Session principale

Coefficient de l'épreuve : 4

Le sujet comporte six pages numérotées de 1/6 à 6/6. Les pages 5/6 et 6/6 sont à rendre avec la copie.

Exercice 1 (5 points)

Le plan est orienté. Dans la figure ci-contre,

- DBC est un triangle rectangle en D tel que $\left(\overrightarrow{DB}, \overrightarrow{DC}\right) \equiv \frac{\pi}{2} [2\pi]$ et DB=2DC;
- le point H est le milieu du segment [DB] ;
- le point I est le projeté orthogonal du point H sur la droite (BC);
- le point E est le milieu du segment [ID];
- · les droites (IH) et (CD) se coupent au point A.
- 1) Soit R la rotation de centre H et d'angle $\frac{\pi}{2}$.
 - a) Calculer $\widehat{\text{tanCBD}}$. En déduire que $\frac{IH}{IB} = \frac{1}{2}$.
 - b) Montrer alors que R(I)=E.
- 2) Soit h l'homothétie de centre D et de rapport 2. On pose f = h o R.
 - a) Déterminer f(H).
 - b) Montrer que f(I)=I.
 - c) Déterminer la nature et les éléments caractéristiques de f.
 - d) Montrer que f(C)=A.
- 3) a) La droite (CH) coupe la droite (AB) en un point F.

Justifier que les points B, I, H et F sont sur le cercle de diamètre [BH].

En déduire que $(\overrightarrow{IH}, \overrightarrow{IF}) \equiv \frac{\pi}{4} [2\pi]$.

- c) La droite (ID) coupe les droites (CF) et (AB) respectivement en J et Ω . Montrer que f(J)=F.
- d) Montrer que $f(F) = \Omega$.
- 4) Montrer que le triangle CAΩ est rectangle.

Exercice 2 (3 points)

Soit 6 un réel non nul.

Dans la figure 1 de l'annexe jointe,

- (O, u, v) est un repère orthonormé direct;
- E est le point de \mathscr{C} tel que $\left(\overrightarrow{u}, \overrightarrow{OE}\right) \equiv \theta \left[2\pi\right]$;
- F et G sont les points d'affixes, respectives, −1 et 1+√2;
- Γ est le demi-cercle de diamètre [FG];
- D est le point d'intersection de Γ et l'axe (O, \vec{v}) .
- 1) a) Vérifier que $OD^2 = 1 + \sqrt{2}$.
 - b) Soit A le point d'affixe $z_A = i\sqrt{1+\sqrt{2}} e^{i\theta}$. Vérifier que $z_A = OD e^{i\left(\theta + \frac{\pi}{2}\right)}$. Construire alors le point A.
- 2) On considère, dans $\mathbb C$, l'équation (E): $z^2+\frac{\sqrt{2}}{i\sqrt{1+\sqrt{2}}}\;e^{i\theta}\;z\;+e^{2i\theta}\!=\!0.$
 - a) Vérifier que z_A est une solution de l'équation (E).
 - b) On désigne par B le point d'affixe z_B , où z_B est la deuxième solution de (E). Déterminer z_B .
- 3) a) Montrer que les points O, A et B sont alignés.
 - b) Placer le point C d'affixe $z_C = OD e^{i\theta}$.
 - c) Montrer que $\frac{\text{Aff}\left(\overrightarrow{AC}\right)}{\text{Aff}\left(\overrightarrow{AB}\right)} = \frac{\sqrt{2}}{2} (1+i).$

En déduire que le triangle ABC est isocèle et que $\left(\overrightarrow{AB}, \overrightarrow{AC}\right) \equiv \frac{\pi}{4} \left[2\pi\right]$.

d) Construire alors le point B.

Exercice 3 (7 points)

A) On considère la fonction f définie sur $[0,+\infty[$ par $\begin{cases} f(x)=x \ln x & \text{si } x>0, \\ f(0)=0. \end{cases}$

On note (C_f) sa courbe représentative dans un repère orthonormé (O, \vec{i}, \vec{j})

- 1) a) Vérifier que f est continue à droite en 0.
 - b) Etudier la dérivabilité de f à droite en 0. Interpréter graphiquement.
 - c) Dresser le tableau de variation de f.
- 2) Dans la **Figure 2** de **l'annexe** jointe, on a tracé dans un repère orthonormé (O, i, j), la courbe Γ

de la fonction $x \mapsto e^x$ et les droites Δ et Δ' d'équations respectives y = x et y = -x.

- a) Construire les points A et B de (C_f) d'abscisses respectives e et $\frac{1}{e}$.
- b) Déterminer la position relative de (C_f) et Δ puis la position relative de (C_f) et Δ .
- c) Tracer la courbe (Cf).

- 3) Soit S la partie du plan limitée par la courbe (C_f) et les droites Δ et Δ' .

 Montrer que l'aire de la partie S est égale à $\frac{1}{4} \left(e^2 \frac{1}{e^2} \right)$.
- B) Soit n un entier naturel.

On pose
$$u_n = \int_{\frac{1}{e}}^1 t^n \, e^t \; dt \quad \ \, et \quad \ \, v_n = \int_{\frac{1}{e}}^1 t^n \, e^t \; f(t) \, dt \; .$$

- 1) a) Montrer que $u_n > 0$.
 - b) Montrer que $0 < u_n \le \frac{e}{n+1}$. En déduire $\underset{n \to +\infty}{lim} u_n$.
 - c) Montrer que $u_{n+1}=e-\frac{e^{e}}{e^{n+1}}-\left(\,n+1\right)u_{n}\,.$
 - d) Montrer alors que $\lim_{n\to+\infty} (n+1) u_n = e$.
- 2) a) Montrer que $-\frac{u_n}{e} \leq \ v_n \leq 0$. Déterminer alors $\lim_{n \to +\infty} v_n$.
 - b) Vérifier que pour tout $t\!\in\left]0,+\infty\right[$, $\,f(t)=\,t\,f'(t)\!-\!t.$

$$\text{Montrer alors que } \, v_n = \int_{\frac{1}{e}}^1 t^{n+1} \, e^t \, \, f'(t) \, \, dt \, - u_{n+1}.$$

- c) A l'aide d'une intégration par parties, montrer que $(n+2) v_n = \frac{e^{\frac{1}{e}}}{e^{n+2}} v_{n+1} u_{n+1}$.
- d) Montrer alors que $\lim_{n\to\infty} (n+2) v_n = 0$.
- 3) a) Montrer qu'il existe un seul réel α_n appartenant à l'intervalle $\left[\frac{1}{e},1\right]$ tel que $f(\alpha_n) = \frac{v_n}{u_n}$.
 - b) Montrer que $\lim_{n\to+\infty} \frac{v_n}{u_n} = 0$.
 - c) Déterminer $\lim_{n\to+\infty} \alpha_n$

Exercice 4 (5 points)

- A) Soit q un entier naturel.
- 1) Montrer que q2 est impair si et seulement si q est impair.
- Montrer que si q est impair alors q² = 1 (mod 8).
- B) On se propose de déterminer l'ensemble A des triplets d'entiers naturels non nuls (m, n, q) tels que $2^{2m} + 3^{2n} = q^2$.
- 1) Vérifier que le triplet (2,1,5) est un élément de A.

Dans la suite de l'exercice on suppose que (m, n,q) est un élément de A.

- a) Montrer que q est impair.
 - b) Montrer que $q^2 3^{2n} \equiv 0 \pmod{8}$.
 - c) Montrer alors que m est différent de 1.

- 3) On suppose que $m \ge 2$.
 - a) Justifier que les entiers $(q-3^n)$ et $(q+3^n)$ sont pairs.
 - b) Soit $d = (q-3^n) \wedge (q+3^n)$.

Montrer que d divise 2q et que d divise 2^{2m} . En déduire que d=2.

c) Montrer que $q-3^n=2$ et que $q+3^n=2^{2m-1}$.

En déduire que $q=2^{2m-2}+1$ et que $3^n=2^{2m-2}-1$.

- 4) Déterminer n et q lorsque m = 2.
- 5) On suppose que $m \ge 3$.
 - a) Montrer que $3^n \equiv -1 \pmod{16}$.
 - b) Déterminer, suivant les valeurs de l'entier naturel k, les restes possibles de 3^k dans la division euclidienne par 16.
 - c) En déduire qu'il n'existe pas de triplets (m,n,q) éléments de l'ensemble A tels que $m\geq 3$.
- 6) Déterminer l'ensemble A.

None at Defenses	
Nom et Prénom :	After SAFTA SAFTA TO DE L'ARRANGE CONTROL DE L'ARRANGE DE
Date et lieu de naissance :	TOTAL TOTAL CONTRACTOR OF THE STATE OF THE S
×	***************************************

Épreuve : Mathématiques - Section : Mathématiques - Session principale - 2018

Annexe à rendre avec la copie

Figure 1

Ne rien écrire ici

Figure 2