Lorentz Factor Calculations

Given

Set the speed of light:

$$c = 300$$

Velocities to consider:

$$v = 0, 1, 10, 100, 300$$

Calculations

- 1. Calculate v/c
- 2. Calculate $\left(\frac{v}{c}\right)^2$
- 3. Calculate $1 \left(\frac{v}{c}\right)^2$
- 4. Calculate $\sqrt{1-\left(\frac{v}{c}\right)^2}$
- 5. Calculate $\gamma = \frac{1}{\sqrt{1 \left(\frac{v}{c}\right)^2}}$

Tabulated Results

v	v/c	$\left(\frac{v}{c}\right)^2$	$1-\left(\frac{v}{c}\right)^2$	$\sqrt{1-\left(\frac{v}{c}\right)^2}$	γ
0	0	0	1	1	1
1	$\frac{1}{300} \approx 0.003333$	≈ 0.00001111	≈ 0.99998889	≈ 0.99999444	≈ 1.00000556
10	$\frac{10}{300} \approx 0.033333$	≈ 0.001111111	≈ 0.99888889	≈ 0.9994445	≈ 1.0005558
100	$\frac{100}{300} \approx 0.333333$	≈ 0.11111111	≈ 0.88888889	≈ 0.942809	≈ 1.06066
300	1	1	0	0	Undefined

Notes

- **3. Plot of** v **vs.** $1 (v/c)^2$
- At v=c, the Lorentz factor γ becomes infinite. For v>c, the expressions become undefined in real numbers.

Graphs of Each Step

1. Plot of v vs. v/c

4. Plot of v **vs.** $\sqrt{1 - (v/c)^2}$

5. Plot of v vs. γ

Notes on the Graphs

- In the plot of v vs. γ , as v approaches c, γ approaches infinity. - The graph is plotted up to v=299.99 to avoid division by zero at v=300.

Interpretation

- The Lorentz factor γ increases slowly at low velocities and increases rapidly as v approaches c. - Time dilation and relativistic effects become significant only when v is a substantial fraction of c.