Machine Learning

- Linear Regression -

Sang Hyun Park
Robot Engineering, DGIST
shpark13135@dgist.ac.kr

Model representation

Supervised Learning

Given the "right answer" for each example in the data.

Regression Problem

Predict real-valued output

Model representation

Training	set	of
housing	pric	es

Size in feet ² (x)	Price (\$) in 1000's (y)
2104	460
1416	232
1534	315
852	178
•••	•••

Notations:

m = Number of training examples

x = "input" variable / features

y = "output" variable / "target" variable

Hypothesis: $h_{\theta}(x) = \theta_0 + \theta_1 x$

Idea: Choose θ_0, θ_1 so that $h_{\theta}(x)$ is close to y for our training examples (x,y)

Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Parameters:

$$\theta_0, \theta_1$$

Cost Function:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Goal: $\underset{\theta_0,\theta_1}{\text{minimize}} J(\theta_0,\theta_1)$

Simplified

$$h_{\theta}(x) = \theta_1 x$$

$$J(\theta_0,\theta_1) = \frac{1}{2m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right)^2$$

$$J(\theta_1) = \frac{1}{2m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right)^2$$

$$\text{al: minimize } J(\theta_0,\theta_1)$$

$$\theta_0,\theta_1$$

$$\min_{\theta_0} J(\theta_1)$$

$$\theta_1$$

Cost function intuition

 $J(heta_0, heta_1)$ (function of the parameters $heta_0, heta_1$)

Have some function
$$J(\theta_0,\theta_1)=\frac{1}{2m}\sum_{i=1}^m \left(h_{\theta}(x^{(i)})-y^{(i)}\right)^2$$
 Want $\min_{\theta_0,\theta_1}J(\theta_0,\theta_1)$

Outline:

- Start with some θ_0, θ_1
- Keep changing $heta_0, heta_1$ to reduce $J(heta_0, heta_1)$ until we hopefully end up at a minimum

Gradient descent algorithm

```
repeat until convergence { \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \qquad \text{(simultaneously update } j = 0 \text{ and } j = 1) }
```


Gradient descent intuition

$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

If α is too small, gradient descent can be slow.

If α is too large, gradient descent can overshoot the minimum. It may fail to converge, or even diverge.

Gradient descent for linear regression

Gradient Descent Algorithm

repeat until convergence { $\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$ (for j = 1 and j = 0) }

Linear Regression Model

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Gradient descent for linear regression

Gradient descent algorithm

 $\begin{array}{l} \text{repeat until convergence } \{ \\ \theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right) \\ \theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right) \cdot x^{(i)} \end{array} \right] \quad \begin{array}{l} \text{update} \\ \theta_0 \text{ and } \theta_1 \\ \text{simultaneously} \end{array}$

Correct: Simultaneous update

$$temp0 := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$temp1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

$$\theta_0 := temp0$$

$$\theta_1 := temp1$$

Incorrect:

$$\begin{array}{l} \operatorname{temp0} := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) \\ \theta_0 := \operatorname{temp0} \\ \operatorname{temp1} := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) \\ \theta_1 := \operatorname{temp1} \end{array}$$

 $h_{\theta}(x)$

(for fixed θ_0 , θ_1 , this is a function of x)

 $h_{\theta}(x)$

(for fixed θ_0 , θ_1 , this is a function of x)

 $h_{\theta}(x)$

(for fixed θ_0 , θ_1 , this is a function of x)

 $h_{\theta}(x)$

(for fixed θ_0 , θ_1 , this is a function of x)

 $h_{\theta}(x)$

(for fixed θ_0 , θ_1 , this is a function of x)

 $h_{\theta}(x)$

(for fixed θ_0 , θ_1 , this is a function of x)

 $h_{\theta}(x)$

(for fixed θ_0 , θ_1 , this is a function of x)

 $h_{\theta}(x)$

(for fixed θ_0 , θ_1 , this is a function of x)

 $h_{\theta}(x)$

(for fixed θ_0 , θ_1 , this is a function of x)

"Batch" Gradient Descent

Each step of gradient descent uses all the training examples.

"Stochastic" Gradient Descent

Each step of gradient descent uses a single example or mini batch.

General case - multiple features

Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178
•••	•••	•••	•••	•••

Notation:

n = number of features

 $x^{(i)}$ = input (features) of i^{th} training example.

 $x_j^{(i)}$ = value of feature j in i^{th} training example.

Gradient descent of multiple features

Hypothesis:
$$h_{\theta}(x) = \theta^T x = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$
 Parameters: $\theta_0, \theta_1, \dots, \theta_n$ Cost function:
$$J(\theta_0, \theta_1, \dots, \theta_n) = \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Gradient descent:

```
Repeat \{ \theta_j:=\theta_j-\alpha\frac{\partial}{\partial\theta_j}J(\theta_0,\dots,\theta_n) \} (simultaneously update for every j=0,\dots,n)
```

Gradient descent of multiple features

Gradient Descent

```
Previously (n=1):
```

Repeat {

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})$$

$$\frac{\partial}{\partial \theta_0} J(\theta)$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x^{(i)}$$

(simultaneously update θ_0, θ_1)

```
New algorithm (n \ge 1):

Repeat \left\{ \theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)} \right\}

(simultaneously update \theta_j for j = 0, \dots, n)

\left\{ \theta_0 := \theta_0 - \alpha \frac{1}{n} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_0^{(i)} \right\}
```

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_0^{(i)}$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_1^{(i)}$$

$$\theta_2 := \theta_2 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_2^{(i)}$$

Feature Scaling

Idea: Make sure features are on a similar scale.

E.g.
$$x_1$$
 = size (0–2000 feet²) x_2 = number of bedrooms (1–5)

$$x_1 = \frac{size(feet^2)}{2000}$$
 $x_2 = \frac{\text{number of bedrooms}}{5}$

Feature Scaling – Mean Normalization

Replace x_i with $x_i - \mu_i$ to make features have approximately zero mean (Do not apply to $x_0 = 1$).

E.g.
$$x_1=\frac{size-1000}{2000}$$

$$x_2=\frac{\#bedrooms-2}{5}$$

$$-0.5 \leq x_1 \leq 0.5, -0.5 \leq x_2 \leq 0.5$$

Polynomial Regression

$$h_{\theta}(x) = \theta_{0} + \theta_{1}x_{1} + \theta_{2}x_{2} + \theta_{3}x_{3}$$

$$= \theta_{0} + \theta_{1}(size) + \theta_{2}(size)^{2} + \theta_{3}(size)^{3}$$

$$x_{1} = (size)$$

$$x_{2} = (size)^{2}$$

$$x_{3} = (size)^{3}$$

Polynomial Regression

Choice of features

$$h_{\theta}(x) = \theta_0 + \theta_1(size) + \theta_2(size)^2$$

$$h_{\theta}(x) = \theta_0 + \theta_1(size) + \theta_2\sqrt{(size)}$$

Normal equation

Gradient Descent

Normal equation: Method to solve for θ analytically.

Normal equation

Examples: m = 4.

	Size (feet ²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
$\underline{}$	x_1	x_2	x_3	x_4	y
1	2104	5	1	45	460
1	1416	3	2	40	232
1	1534	3	2	30	315
1	852	2	1	36	178
-	$X = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$	$ \begin{array}{ccccccccccccccccccccccccccccccccc$	2 30	$u = \begin{vmatrix} 1 \\ 2 \end{vmatrix}$	460 232 315 178

$$\theta = (X^T X)^{-1} X^T y$$

Normal equation

m training examples, n features.

Gradient Descent

- Need to choose α .
- Needs many iterations.
- Works well even when n is large.

Normal Equation

- No need to choose α .
- Don't need to iterate.
- Need to compute $(X^TX)^{-1}$
- Slow if n is very large.

Summary

- Linear regression
- Gradient descent
- Regression with multiple features
- Regression with polynomial curve fitting
- Normal equation
- Batch / Stochastic gradient descent
- Feature scaling