Requirements / Design and Test Documentation (RDD)

Version 1.2

ESEP - Praktikum - WS 2024 Team - 1_2

Dao, David (DD), 2654379
Patt, Phillip (PP), 2718093
Siekmann, Marc (SM), 2131405
Schön, Jannik (SJ), 2546201

Änderungshistorie:

Version	Erstellt	Autor	Kommentar			
0.1	11.11.2024	SJ	Erstellung des RDD-Protokolls			
0.2	12.11.2024	DD	Fehlerbehebung am RDD-Protokoll (Anmerkungen vom Kunden werden berücksichtigt)			
0.3	13.11.2024	DD, MS, SJ, PP	Ausarbeitung Requirements			
0.4	18.11.2024	MS	Ergänzung Qualitätssicherung und Risiken			
0.5	26.11.2024	MS, DD	Anpassung der Requirements, der Softwarearchitektur, Werkstücke und technische Besonderheiten			
0.6	07.01.2025	DD	Einfügen der Systemtest und leichte Formatierung			
			Abkürzung Tabelle Alphabetisch nach der zweiten Spalte sortiert			
			Glossar Tabelle hinzugefügt			
			Kommentare und Gedanken beim Systemtest hinzugefügt			
			Beim Abschnitt 3.3.2 der Softwarearchitektur ebenfalls Gedanken hinzugefügt			
			Hardware Anforderung Abschnitt 3.2.3 ein fünfter Punkt hinzugefügt			
			Abschnitt 3.3.3 angefangen			
			Abschnitt 7.1 angefangen			
			Abschnitt 2.4 ergänzt			
			Abschnitt 5.2 Abbildung 2 überarbeitet			
			Einleitung in Abschnitt 3, 3.2, 3.2.2, 5, 7 und 7,1 hinzugefügt			
0.7	09.01.2025	DD	Anforderung 10 und 11 sind jetzt Service Mode verhalten (
			Abschnitt 3.3.4 Error/Warnings hinzugefügt			
			Abschnitt 3.2.2 ergänzt			
			Abschnitt 3.3.3 Nachrichten und Signale erweitert mit Tabellen			
			Abschnitt 4 angefangen			
			Abschnitt 3.1.2 Ergänzt			
			Abschnitt 7.1 Teststrategie hinzugefügt			

			Abschnitt 3.2.1 Bilder machen für die Hardwarekomponente
0.8	11.01.25	DD	Technische Schulden hinzugefügt
			Abschnitt: 3.2.3 Besonderheiten hinzugefügt
			Abschnitt 3.2.2 Tabelle ergänzt
			Abschnitt 3.2.1 angefangen
			Gedanken hinzugefügt
0.9	12.01.25	DD	Abbildungen beschriftet und nummeriert
			Abschnitt 3.2.2 Bsp. hinzugefügt -> weiter ausbauen
1.0	13.01.25	SM, PP, DD,	Abschnitt 3.3.2 angefangen
		JS	Abschnitt 7.1 und 7.2 Test hinzugefügt
			Abschnitt 7.4 Tabellen hinzugefügt
			Notizen: BDD, IBD und UML-Diagramm muss überarbeitet werden
1.1	14.01.25	' ' '	Ergänzung der roten Text und roten Markierungen
		JS	Abschnitt 3.1.3 ergänzt
			ESTOP verhalten und Systemstart-Verhalten hinzugefügt
			Softwareanforderung überprüft
			Abschnitt 3.3.3
			Abschnitt 5.6 hinzugefügt
1.2	15.01.25	SM, PP, DD,	Finalisierung für Feedback
2.0	22.01.25	SM, JS, PP,	Ergänzung von Tabelle 18: Warning's und ihre Signalisierung
2.0	22.02.23	DD	Anforderung Req_07 erweitert, Dokumentation
			Servicemode ergänzt (5.5)
			Dokumentation des EStop Verhaltens korrigiert (5.3)
			Dokumentation der Signale updaten (3.3.3)
			Abnahmetest und Requirement Req_XX bzgl. Unterbrechung der Netzwerkverbindung hinzufügen (6.2)
			Systemtests durchführen und Ergebnisse erfassen
			Technische Schuld (7.)
			"Hartcodierte Timer" gelöst/entfernt

	 "Manipulation im Ruhezustand wird nicht erkannt" gelöst/entfernt "Reconnect nach Verbindungsverlust" hinzugefügt "Aussortierung hat optimierungspotenzial" hinzugefügt "Testo System Klasse wird nicht benutzt" hinzugefügt Mängel hinzugefügt (9)
--	--

Inhaltsverzeichnis

1 Teamorganisation	7
1.1 Verantwortlichkeiten	7
1.2 Absprachen	7
1.3 Repository-Konzept	7
2 Projektmanagement	7
2.1 Prozess	8
2.2 Projektorganisation	8
2.3 Risiken	10
2.4 Qualitätssicherung	10
3 Problemanalyse	11
3.1 Analyse des Kundenwunsches	11
3.1.1 Stakeholder	11
3.1.2 Systemkontext des Systems	11
3.1.3 Anforderungen	13
3.2 Anlage: Analyse der technischen Gegebenheiten	16
3.2.1 Technischer Aufbau und Hardwarekomponente	16
3.2.2 Werkstücke	20
3.2.3 Anforderungen aus dem Verhalten und technischen Besonderheiten	22
3.3 Softwareebene	23
3.3.1 Systemkontext der Software	23
3.3.2 Resultierende Anforderungen an die Software	24
3.3.3 Schnittstellen: Nachrichten und Signale	25
3.3.4 Errors/Warnings Signal	30
4 Grobkonzept des technischen Systementwurfes	33
5 Software-Design	34
5.1 Softwarearchitektur	34
5.2 Softwarestruktur	35
5.3 ESTOP- Verhalten	36
5.4 Vom Startzustand bis zum Betriebszustand	36
5.5 Service Mode verhalten	37
5.6 Verhaltensmodellierung	38

6 Qualitätssicherung	51
6.1 Teststrategie	51
6.2 Testszenarien/Abnahmetest	52
6.3 Systemtest	57
6.4 Testprotokolle und Auswertungen	71
7 Technische Schulden	73
8 Bekannte Mängel	74
9 Lessons Learned	74
10 Anhang	75
10.1 Glossar	75
10.2 Abkürzungen	76

1 Teamorganisation

Im folgenden Kapitel wird festgelegt, wie das Team strukturiert wird. Außerdem welche Absprachen getroffen worden sind, um das Projekt zu realisieren.

1.1 Verantwortlichkeiten

Verantwortlichkeit	Person/en		
Projektleitung	Phillip Patt (Co-Leiter: David Dao)		
Requirements-Engineer	Jannik Schön (Co-Leiter: Phillip Patt)		
Designer	David Dao (Co-Leiter: Marc Siekmann)		
Testengineer	Marc Siekmann (Co-Leiter: Jannik Schön)		

1.2 Absprachen

Jour-Fixe:

- Wöchentliches Gruppentreffen jeden Mittwoch zur Abstimmung und Besprechung des Projektfortschritts
- Zusätzliches Treffen freitags für drei Gruppenmitglieder (Marc Siekmann, Jannik Schön und David Dao) zur Vertiefung spezifischer Themen

Arbeitsumfeld/Arbeitsstruktur:

- GitLab: Zentrale Plattform zur Dokumentation von Fortschritten und Standpunkten
- Trello: Nutzung zur Strukturierung der Arbeitsschritte innerhalb der Gruppe:
 - Bietet einfache und flexible Anpassungsmöglichkeiten an die Arbeitsmethoden der Mitglieder
 - o Fördert Transparenz und erleichtert die Nachvollziehbarkeit der Arbeitsschritte
- Microsoft Teams:
 - o Ermöglicht Meetings bei verhinderten persönlichen Treffen
 - o Unterstützt den Austausch von Informationen und Daten

1.3 Repository-Konzept

Für eine übersichtliche Struktur und Nachvollziehbarkeit werden zwei Hauptordner genutzt. Alle Commits erfolgen auf Englisch, um Konsistenz und Verständlichkeit zu gewährleisten.

- Ordner "Workspace":
 - o Enthalten alle relevanten Dateien und Ressourcen für das QNX-Umfeld
- Ordner "Dokumentation":
 - Beinhaltet Fortschrittsdokumentationen wie das Requirements and Design Document (RDD) und andere relevante Projektdokumente.

2 Projektmanagement

Im folgenden Kapitel werden die Prozessschritte dargestellt und definiert, wie die Qualitätssicherung des Projektes umgesetzt wird.

2.1 Prozess

1. Planungsrunde

- Diskussion des Projektziels und der Gesamtvision
- Verteilung der Rollen (siehe Abschnitt 1.1)
- Auswahl der benötigten Tools und Technologien

2. Anforderung und Zielsetzung

- Analyse der Projektanforderungen und Zieldefinition
- Gemeinsames Verständnis in der Gruppe sicherstellen
- Identifikation und Vermeidung potenzieller Missverständnisse
- Konkrete Aufgaben und Ziele festlegen

3. Sprints

- Planung und Durchführung zielgerichteter Sprints für spezifische Meilensteine
- Rechtzeitiges Einholen von Feedback, insbesondere vor Abgabeterminen

4. Feedback-Runden

- Überprüfung von Zwischenständen durch Tutor oder Kunden
- Frühes Erkennen und Lösen von Problemen

5. Realisierung des Projekts

- Effektiver Einsatz der verfügbaren Ressourcen
- Umsetzung der geplanten Aufgaben
- Durchführung von Abnahmetests und Systemtest zur Sicherstellung der Zielerreichung

2.2 Projektorganisation

Tabelle 1: Zielsetzungen während der Projektdurchführung:

Datum	Ziele	Kommentar
16.10.24	 eine Anlage vom Beaglebone Black aus ansprechen können eine Analyse der Anlage soll durchgeführt werden und wesentliche Ergebnisse dokumentiert sein die Anforderungen sollen analysiert werden die Teamorganisation soll gestartet werden und eine Einigung in Hinblick auf die Teamkommunikation erfolgt sein 	
30.10.2024	 Rollenverteilung Erstellung der Projektstruktur Gitlab einrichten System- und Anforderungsanalyse Erste Abnahmetest Schnittelle HAL Beispiel-Code Qnet lauffähig 	

13.11.2024	Erste Skizze für die	
15.11.2024	Softwarearchitektur erstellt	
	Ansprechen der Aktorik über die HAL	
	Vollständige Anforderungsanalyse	
	liegt als Dokument vor	
27.11.	Entwurf der Softwarearchitektur soll	
27.11.	als Dokument vorliegen	
	es sollen Überlegungen zu den	
	Qualitätssicherungsmaßnahmen	
	gemacht werden	
	Konzept E-Stop Funktionalität soll	
	vorliegen	
	 Konzept für Fehlerbehandlung 	
	Konzept für Signalisierung	
	 erste Modellierung der 	
	Anlagensteuerung mittels	
	Zustandsautomaten inklusive	
	Ausnahmebehandlung	
	 HAL der Sensorik soll entworfen, 	
	dokumentiert und implementiert sein	
	ein Konzept für Weiterleitung der	
	Sensorsignale zu verarbeitenden	
44.42.2024	Komponenten soll vorliegen	
11.12.2024	Quality Gate:	
	 Softwarearchitektur liegt dokumentier vor 	
	Softwarearchitektur ist ausgereift	
	Design der Steuerung beinhalten	
	Design der stederung benmatten	
8.1.2025	die Modellierung ist vollständig	
	abgeschlossen	
	 geforderte Funktionalität ist 	
	weitgehend auf beiden Anlagen	
	implementiert	
	 geforderte Fehlerbehandlung soll 	
	implementiert sein	
15.1.2025	Pflicht:	Auf das
	finale Version des RDD soll	Namensschema
22.4.2025	eingereicht werden	achten
22.1.2025	Gesamtanlage soll bereit sein für Abgehrechtste des Kunden	
	Abnahmetests des Kunden nicht realisierte Funktionalitäten sind	
	nicht realisierte Funktionalitäten sind dokumentiert	
	bekannte Fehler sind dokumentiert	
	Lessons Learned dokumentiert	
	alle Artefakte sollen abgabebereit	
	sein (Code, Protokolle etc.)	
	Schi (Code, i Totokolle Etc.)	l

2.3 Risiken

Tabelle 2: Übersicht der identifizierten Risiken

Risiko-ID	Risiko	Risikostufe (1-5)
1	Personalausfall	5
2	Zeitlicher Rückstand	4
3	Geräteausfall	2
4	Sicherheitslücke im	2
	Softwarecode	

2.4 Qualitätssicherung

Entwicklungsmodell

- Arbeitsmethodik: Einsatz von Kanban zur flexiblen Aufgabenverteilung und -überwachung über Trello
- **Codequalität:** Sicherstellung der Qualität durch Codereviews im GitLab mit Pull-Request-Verfahren und einem 4-Augen-Prinzip

Teststrategie

- **Testmodell:** Verwendung des V-Modells, um Teststufen parallel zur Entwicklung zu planen und durchzuführen
- Selbstdefinierte Abnahmetests
- Einsatz von GoogleTest für Systemtests, um das Zusammenspiel aller Komponenten und die Erfüllung funktionaler Anforderungen zu prüfen

Dokumentation und Nachvollziehbarkeit

- **Projektdokumentation:** Fortschritte und Änderungen werden fortlaufend im RDD (Requirements and Design Document) dokumentiert
- **Versionskontrolle:** Der Code wird zentral und ausschließlich in GitLab verwaltet, wodurch Änderungen nachvollziehbar und wiederherstellbar sind
- Transparenz: Kunden haben jederzeit Einblick in Projektdokumentation und Codebasis über GitLab

Organisatorische Maßnahmen

- Datensicherung: Regelmäßige Sicherung wichtiger Dateien und Projektdaten über Microsoft
 Teams, um Ausfallsicherheit zu gewährleisten
- Regelmäßige Abstimmungen:
 - Wöchentliches Jour fixe zur Analyse der Projektfortschritte, Klärung von Unklarheiten und Prozessoptimierung
 - Feedback-Treffen mit Stakeholdern im zweiwöchigen Rhythmus, um die Projektziele kontinuierlich zu überprüfen
- Quality Gates: Implementierung von Meilensteinen und Prüfmechanismen, um Zeitrückstände frühzeitig zu identifizieren und gegenzusteuern.

3 Problemanalyse

Ziel dieses Kapitels ist es, bestehende Anforderungen aus der Aufgabenstellung zu überprüfen, potenzielle Lücken oder Unklarheiten zu identifizieren und eine strukturierte Analyse durchzuführen.

3.1 Analyse des Kundenwunsches

In diesem Unterabschnitt wird festgelegt, wie das System im Bezug des Kunden ausgelegt wird

3.1.1 Stakeholder

Stakeholder	Interessen
Kunde	Hoher Durchsatz, Zuverlässigkeit und Wartungsfreundlich
Bediener	Einfache Bedienung und Zuverlässigkeit
Projektleiter	Qualitätssicherung und rechtzeitige Fertigstellung des Produkts
Entwickler	geordneter Projektablauf, Technischer Machbarkeit und leichte
	Fehlerbehebung

3.1.2 Systemkontext des Systems

Das Gesamtsystem besteht aus zwei miteinander verbundenen Anlagen, **Festo 1** und **Festo 2**, die zylinderförmigen Werkstücke sortieren. Die Funktionalität und Interaktionen des Systems mit seiner Umgebung lassen sich wie folgt beschreiben:

Systemgrenzen

- Das System umfasst die physischen Komponenten (Förderbänder, Sensoren, Aktoren, Weichen und Auswerfer, Motor) sowie die zugehörige Software, die den Betrieb steuert
- Es interagiert mit externen Akteuren (z. B. Bediener) und anderen Systemen über Schnittstellen
- Externe Werkstücke gelangen über die Einlauflichtschranke in das System und werden am Ende entweder sortiert oder aussortiert

Externe Akteure und Interaktionen

• Bediener:

- Der Bediener legt Werkstücke manuell auf das Förderband von Festo 1
- Über Bedientasten kann der Bediener den Betrieb starten, stoppen, Fehlerzustände zurücksetzen oder ESTOP auslösen

• Pick-And-Place Roboter

 Der Pick-and-Place-Roboter entnimmt das Werkstück manuell von Festo 2 am Ende des Förderbands

Werkstücke:

 Werkstücke sind die zu verarbeitende Objekte und stellen die zentrale Aufgabe des Systems dar. Sie werden vom System anhand ihrer Eigenschaften sortiert

• Netzwerk (GNS):

 Das System ist über Ethernet mit einem Kommunikationsnetzwerk verbunden, das Daten und Steuerbefehle zwischen Festo 1 und Festo 2 austauscht

Schnittstellen

Physikalische Schnittstellen:

- Werkstücke werden mechanisch über Förderbänder zwischen Festo 1 und Festo 2 transportiert.
- Weichen und Auswerfer beeinflussen die physischen Bewegungen der Werkstücke innerhalb des Systems.
- o Werkstücke werden an der Vorderseite aufgelegt und am Ende des Systems entnommen

• Elektronische Schnittstellen:

- Sensoren wie der Höhensensor und der Metallsensor liefern Daten zur Identifikation der Werkstücke.
- o Aktoren wie Weichen und Auswerfer setzen Sortierungsentscheidungen um.

• Kommunikationsschnittstellen:

Über Ethernet und das GNS-Protokoll erfolgt die interne Kommunikation zwischen Festo 1
 und Festo 2

Abgrenzung des Systems

- Das System ist autark in der Lage, Werkstücke zu erkennen, zu sortieren und Fehlerzustände zu signalisieren.
- Externe Eingaben (z. B. Werkstücke einlegen/entnehmen, Tastenbetätigung) steuern das System. Die Verarbeitung der Werkstücke erfolgt jedoch vollständig innerhalb der Systemgrenzen.

3.1.3 Anforderungen

Nr. / ID	Req_01	Name	Name Behebaren Fehler behandeln Priorität hoch		hoch
Beschreibung	1.	Fehlererkennung und -quittierung: O Das System zeigt den Fehlerstatus als "anstehend unquittiert" an und wartet auf die Quittierung des Fehlers (BGR_X) durch den Benutzer.			
	2.	Fehlerbehebung durch den Benutzer: O Der Benutzer führt die erforderlichen Maßnahmen aus, um den Fehler zu beheben z. B. durch manuelle Eingriffe wie eir Fehler verursachenden Werkstück zu entfernen. Nach Durchführung der Maßnahmen wird der Fehlerstatus auf "anstehend quittiert" gesetzt.		ngriffe wie ein n. Nach	
	3.	o Das S	Benutzers, dass der Fehler erfolgreich behoben wurde. deraufnahme Betrieb:		
	4.	o LR hö			ick in den

Nr. / ID	Req_02	Name	Fehler Bestätigen	Priorität	hoch
Beschreibung	Req_02 Name Fehler Bestätigen Priorität hoch Bedingung: Der Fehler wurde erfolgreich behoben und das System ist bereit, in den normalen Betrieb überzugehen. Aktion: Der Benutzer muss den BGS_X-Schalter drücken, um die Rückkehr in den Betriebsmodus zu initiieren.				

Nr. / ID	Req_03	Name	Überlauf-ID	Priorität	hoch
Beschreibung	Wertebe Bereich wieder a Dies gilt	ereich reicht v erreicht ist (d auf 0 zurückge auch im Fall (eine Zahl im 32-Bit langen Zahler von 0 bis 4.294.967.295 (2 ³² - 1). er Wert 4.294.967.295), wird de esetzt, und der ID-Vergabeproze eines E-Stopps oder einer Unterk e neu gestartet wird.	Wenn die r Zähler a ss beginnt	höchste ID im utomatisch von vorne.

Nr. / ID	Req_04	Name	E-Stop Verhalten	Priorität	hoch
Beschreibung	Bedingu	ing:			
	•	Der Button SES_X wurde gedrückt.			
	Aktion:	Aktion:			
	•	• Motoren stoppen: Die Motoren M_1 und M_2 werden gestoppt.			
		Sorting-Modul zurücksetzen: Das Sorting-Modul wird in die Ruhelage zurückgesetzt.			
		LEDs setzen: Die LEDs LR, LY und LG an beiden Anlagen werden auf den Zustand "dauerhaft leuchtend" gesetzt.			

Nr. / ID	Req_05	Name	Abstand zwischen Werkstücken auf FESTO mit Weiche	Priorität	hoch
Beschreibung	wenn de		leiche, da erst wieder ein Werks or durchlaufen wurde. Dies tun v orleisten.	_	

Nr. / ID	Req_06	Name	Weiche zu lange offen	Priorität	hoch	
Beschreibung	Die Wei	che bleibt nu	ır dann offenstehen, wenn ein	Werkstüc	k im	
	Schrank	enbereich ist	i.			
	Um zu v	Um zu vermeiden, dass die Weiche zu lange offensteht, und so				
	Hardwa	Hardwareschaden entsteht, wird nach 180 Sekunden ein Fehler geworfen				
	(siehe R	(siehe Req_08) und die Weiche in der Ruhelage versetzt.				

Nr. / ID	Req_07	Name	Service-Mode verhalten	Priorität	hoch
Beschreibung	•	Wir müssen i	in den Service Mode -> um zu ka	librieren.	

Nr. / ID	Req_08	Name	Anzeigen des Fehlervorkommens	Priorität	hoch
Beschreibung	Q_1 und Q_2 zeigen das Auftreten des Fehlers (Req_01) an der betroffenen FST an.				
	•	Q_1 leuchtet, Q_2 leuchtet,	leuchten nicht , wenn ein Fehler , wenn der Fehler bei HS festges , wenn der Fehler bei LBM festgo leuchten gleichzeitig, wenn der ird.	tellt wird. estellt wird	d.

Nr. / ID	Req_09	Name	Ausfall einer Festo	Priorität	hoch	
Beschreibung	Wenn FST_1 oder FST_2 ausfällt (z.B. Stromausfall), ist auf der verbleibenden					
	FST das	FST das E-Stop Verhalten (Req_04) durchzuführen. Daher müssen beide FST				
	regelmäßig (alle 100 Millisekunden) überprüfen, ob die jeweils andere FST					
	erreichb	erreichbar ist.				

Nr. / ID	Req_10	Name	Ergänzung Ruhezustand (Anforderung 63 von Aufgabenstellung)	Priorität	hoch
Beschreibung		_	FST_2 im Ruhemodus dürfen ke aufgelegt werden. Ansonsten wi		

Nr. / ID	Req_11	Name	Ergänzung zum Service Mode (Anforderung 62 von Aufgabenstellung)	Priorität	hoch
Beschreibung		en Service Mo en lang gedrüd	ode zu gelangen, muss der BGS_2 ckt sein.	X für mind	estens 2

3.2 Anlage: Analyse der technischen Gegebenheiten

Dieses Kapitel beschäftigt sich mit der Untersuchung der technischen Rahmenbedingungen der Festo-Anlage, um eine solide Grundlage für die Projektarbeit zu schaffen. Es werden die wesentlichen Aspekte der Hardware und ihrer Funktionen betrachtet, die Eigenschaften der Werkstücke analysiert und die Besonderheiten im Betrieb der Anlage dokumentiert.

Im Fokus steht dabei, die relevanten Komponenten und ihre Aufgaben zu identifizieren sowie deren Zusammenspiel zu verstehen. Diese Erkenntnisse sind entscheidend für die spätere Entwicklung der Software und gewährleisten eine passgenaue Implementierung.

3.2.1 Technischer Aufbau und Hardwarekomponente

1. Systembeschreibung: Das System ist ein Sortiersystem, das Werkstücke nach bestimmten Kriterien sortiert. Es umfasst ein Förderband, das eine zentrale Rolle im Transport und in der Weiterleitung der Werkstücke übernimmt. Das System sorgt dafür, dass die Werkstücke in der richtigen Reihenfolge geprüft und verarbeitet werden.

2. Hauptkomponenten:

• Förderband:

Das Förderband transportiert die Werkstücke innerhalb des Systems und leitet sie an verschiedene Stationen weiter, wie z.B. Prüfstationen oder Sortiereinrichtungen.

Abbildung 1 Förderband einer Festo Anlage (Draufsicht)

Höhenmesssensor:

Der Höhenmesssensor misst die Höhe der Werkstücke, um sicherzustellen, dass sie den Anforderungen für die weitere Verarbeitung entsprechen.

Abbildung 2 Höhensensor Vorderansicht

Abbildung 3 Höhensensor Seitenansicht

Metallsensor:

Der Metallsensor prüft die metallischen Eigenschaften der Werkstücke, um sicherzustellen, dass das richtige Material für die nächste Station verwendet wird.

Abbildung 4 Metallsensor

• Lichtschranke:

Lichtschranken überwachen den Werkstückfluss und erkennen, wenn ein Werkstück den Förderbereich betritt oder verlässt, um den Prozess zu steuern.

Abbildung 5 Vordere Lichtschranke an einer Festo-Anlage

Abbildung 6 Hintere Lichtschranke an einer Festo-Anlage

• Weiche und Auswerfer:

Wenn ein Werkstück die Prüfungen nicht besteht, wird es durch eine Weiche oder einen Auswerfer aus dem Förderband entfernt und in eine andere Richtung weitergeleitet.

Abbildung 7 Auswerfer

Abbildung 8 Weiche

• Motoren und Antriebssysteme:

Die Motoren treiben das Förderband und die Aktoren an. Sie sind für den Transport der Werkstücke sowie für die Bewegung der Weichen und Auswerfer verantwortlich.

LED-Statusanzeigen:

LED-Anzeigen zeigen den aktuellen Status des Systems an und informieren über Betriebsbereitschaft oder mögliche Fehler.

Abbildung 9 Anzeigeleuchten (rot, gelb, grün)

• Taster und Signallichter

Taster und Signallichter ermöglichen die Steuerung des Systems und die Anzeige des Systemstatus.

Abbildung 10 Taster und Signalleuchten

3. Schnittstellen:

• Ethernet-Verbindung:

Zwei Anlagen können über Ethernet miteinander kommunizieren, um Daten auszutauschen und Befehle zu übermitteln, was eine koordinierte Zusammenarbeit der Systeme ermöglicht.

Abbildung 11 Ethernet-Verbindung zwischen zwei Festo-Anlagen

Abbildung 12 Ethernet-Anschluss an einer Festo-Anlage

4. Skizzen und Diagramme:

• Skizze der Festo-Anlage:

Eine einfache Skizze der Anlage, um die Position der Hauptkomponenten wie Förderband, Sensoren, Weichen und Statusanzeigen visuell darzustellen.

Abbildung 13 Skizze einer Festo-Anlage (Draufsicht) mit Weiche

Tabelle 3: Beschreibung der Kürzel der Abbildung 13

Kürzel	Bedeutung
LBF	Lichtschranke vorne
LBM	Lichtschranke am Metallsensor
LBR	Lichtschranke an der Rampe
LBE	Lichtschranke am Ende
HS	Höhensensor
MS	Metallsensor
Q1	Signalleuchte 1
Q2	Signalleuchte 2
LG	Grüne Ampel
LY	Rote Ampel
LR	Gelbe Ampel

Anmerkung:

- linker roter Punkt am Förderband stellt den Erfassungsbereich des Höhensensors dar
- rechter roter Punkt am Förderband stellt den Erfassungsbereich des Metallsensor dar
- Anstelle der Weiche kann auch ein Auswerfer vorzufinden sein

3.2.2 Werkstücke

Dieser Abschnitt beschreibt und definiert die Werkstücke, die im System verarbeitet oder bearbeitet werden. Es wird untersucht, welche spezifischen Eigenschaften diese Werkstücke aufweisen und welche Auswirkungen diese Eigenschaften auf das zu entwickelndes System haben. Besondere Merkmale oder Herausforderungen, die mit den Werkstücken verbunden sind, werden ebenfalls berücksichtigt. Ziel ist es, ein umfassendes Verständnis der Werkstücke und ihrer Relevanz für den gesamten Produktionsprozess zu schaffen und potenzielle Einflussfaktoren auf die Systementwicklung zu identifizieren.

Tabelle 4: Werkstück Typen

Typ des Werkstücks	Max Höhe in mm	Bohrungsbreite in mm	Bohrungstiefe in mm	Metalleinsatz
Flach	21	Keine Bohrung	Keine Bohrung	Kein Metalleinsatz
Hoch ohne Bohrung	25	Keine Bohrung	Keine Bohrung	Kein Metalleinsatz
Hoch mit kleiner Bohrung	25	14,5 – 14,8	15,8 – 16,4	Vorhanden
Hoch mit großer Bohrung	25	22	15,8 – 16,4	Kein Metaleinsatz
Binär-codiert	25	10	6	Kein Metalleinsatz

Jedes Werkstück hat einen Durchmesser von 40 mm. Die Varianten – flach, hoch ohne Bohrung, hoch mit kleiner Bohrung und hoch mit großer Bohrung – sind in drei Farben erhältlich: Weiß, Schwarz und Rot. Die binär codierten Steine hingegen sind in Grau, Schwarz verfügbar.

Tabelle 5: Arten von Werkstücken und ihre möglichen Probleme

Werkstückart	Mögliche Probleme/Ursachen	Auswirkungen auf Messung/ Identifikation
Werkstücke mit weißer Farbe	Stärkere Reflexion der	Kann zu Ausreißern und
	Oberfläche	ungenauen Messwerten führen
Werkstücke mit schwarzer Farbe	Abstandssensor kann es	Kann zu Ausreißern und
	manchmal nicht erkennen	ungenauen Messwerten führen
Werkstücke mit Bohrungen	Dünne Löcher am Rand der	Kann zu kleinen Abweichungen
(kleine Löcher am Rand)	Bohrung	bei der Messungen führen
Werkstücke mit Bohrungen und	Unsachgemäße Passform in der	Kann zu Ausreißern und
Metalleinsätze	Bohrung, Rillen auf der	ungenauen Messergebnissen
	Oberfläche	führen
Werkstücke mit großer	Seitliche Tiefen in der Bohrung	Kann zu Ausreißern und
Bohrungsbreite		ungenauen Messergebnissen
		führen
Binäre Werkstücke	Unterschiedliche Tiefen in den	Erschwert die Identifikation und
	Rillen	führt zu variierenden
		Messergebnissen
Flaches Werkstück mit geringer	Abweichung von der	Führt zu Abweichungen bei der
Höhe (21 mm)	Standardhöhe (25-25,4 mm)	Messung im Vergleich zu
		anderen Werkstücken
Maximale Höhe von binären	Abweichungen im Vergleich zu	Muss in den Messwerten und der
Werkstücken (ca. 25 mm)	flachen Werkstücken	Analyse berücksichtigt werden
Binäre Werkstücke mit	Können an der Lichtschranke der	Nicht identifizierbar eine
Harzfüllung	Rutsche hängenbleiben	technische Schuld der Hardware

3.2.3 Anforderungen aus dem Verhalten und technischen Besonderheiten

Besonderheit- ID	Beschreibung
1	Höhensensor: Der Höhensensor ist auf einer beliebigen Höhe über dem Laufband eingestellt, sodass das Laufband theoretisch nicht erkannt wird und somit der Nullwert falsch ist.
2	Höhensensor ist kein wirklicher Höhensensor, sondern ein Abstandsensor. Der eine andere Logik besitzt und somit komplett andere Werte liefert als die erwünschten Werte.
3	Bei der Aussortierung an der Weiche kann es vorkommen, dass Werkstücke, insbesondere solche mit Harzfüllung, an der LBR-Rampe hängen bleiben und nicht wie vorgesehen weiter nach unten rutschen. Alternativ können sie auch an der Weiche stecken bleiben. Dies führt zu einer dauerhaften Unterbrechung des LBR- oder LBM-Prozesses.
4	Platzierung der Werkstücke: Die Art und Weise, wie ein Werkstück am Anfang positioniert wird, kann dazu führen, dass ein Werkstück ein anderes überholt. Dieses Problem kann dazu führen, dass zwei Werkstücke als ein einziges gezählt werden vom Höhensensor, da sie genau hintereinander angeordnet sind.
5	Die Anlagen sind zwar gleich aufgebaut, aber nicht identisch. Beide Anlagen bearbeiten die gleichen Werkstücke, jedoch können unterschiedliche Ergebnisse erzielt werden. Daher ist es wichtig, mehrere Anlagen zu testen, um spezifische Werte zu ermitteln und einen gemeinsamen Nenner zu finden.
7	Bei Anlagen mit einer Weiche kann es zu Staus kommen, wenn kein ausreichender Abstand zwischen den Werkstücken eingehalten wird. Die Werkstücke benötigen eine bestimmte Zeit, um aussortiert zu werden. Wird der Abstand nicht eingehalten, können nachfolgende Werkstücke die vorausgehenden einholen, was wiederum Staus verursacht.
8	Bei der Übergabe von Werkstücken von Festo 1 zu Festo 2 kann es vorkommen, dass Werkstücke während des Transfers stecken bleibe, dadurch blockiert werden und Fehler verursachen

3.3 Softwareebene

In diesem Abschnitt werden die Anforderungen und Rahmenbedingungen für die Softwareentwicklung definiert, die zur Steuerung des technischen Systems notwendig sind.

3.3.1 Systemkontext der Software

Abbildung 14 BDD-Darstellung des Festo-Transfer-System

Abbildung 14 stellt das BDD (Block Definition Diagram) dar, das die Architektur der Steuereinheit zeigt. Die Steuereinheit verfügt über zwei Schnittstellen:

Sensor-Schnittstelle: Diese empfängt Daten von spezifischen Sensoren:

- Höhensensor: Misst die Höhe der Werkstücke.
- Metallsensor: Erkennt Metalleinsatz im Werkstück.
- Lichtschranken: Überwachen die Position und den Durchlauf der Werkstücke.

Aktoren-Schnittstelle: Diese überträgt Steuerbefehle an Aktoren wie Motoren, Weichen oder Signalanzeigen, um Aktionen im System auszuführen.

Das Diagramm verdeutlicht, wie die Steuereinheit als zentrale Instanz den Informationsfluss zwischen Sensoren und Aktoren steuert und die Systemlogik umsetzt.

3.3.2 Resultierende Anforderungen an die Software

Lfd. Nr. / ID	Beschreibung
1	Unterschiede in der Softwareanforderung für die beiden Festoanlagen.
	Die Logik von Festo1 und Festo2 unterscheidet sich an folgenden Punkten:
	Auf Festo 2 soll nur ein Werkstück zurzeit berücksichtigt werden
	Das Aussortieren von Fehlerhaften Werkstücken ist auf Festo 1 optional,
	während es auf Festo 2 verpflichtend ist
	 Das Auflegen auf Festo 1 erfolgt manuell, die Übergabe auf Festo 2 wird durch die Logik gesteuert
2	Um die Funktion "EStop bei Netzwerkausfall" auf der Client-Seite zu gewährleisten,
	reicht es nicht, die Aktorik lediglich serverseitig zu steuern. Es muss eine
	Softwarekomponente (Heartbeat) implementiert werden, die im Falle einer
	Fehlenden Verbindung den Client in den EStop Zustand versetzt.
3	Die Software soll sicherstellen, dass der ADC (Höhensensor) nur dann Daten liefert,
	wenn ein Werkstück erkannt wird. Eine kontinuierliche Abfrage der Sensordaten ist zu
	vermeiden, um unnötige Verarbeitungslast zu reduzieren und die Systemeffizienz zu
	steigern.
4	Die Software muss sicherstellen, dass der Datenaustausch in Echtzeit erfolgt und die
	Zusammenarbeit aller Systemkomponenten reibungslos auch über Netzwerkgrenzen
	funktioniert.
5	Um die Eigenschaften eines Werkstücks (Profil und Metalleigenschaften) Auf beiden
	Festos zu prüfen und abzugleichen, muss die Position des Werkstücks verfolgt werden
	und dessen Eigenschaften auf Abruf verfügbar sein.
6	Um das Erscheinen und Verschwinden von Werkstücken zu erkennen, müssen die
	Positionen der Werkstücke mit Erwartungswerten abgeglichen werden und bei
	Abweichung entsprechend reagiert werden.
7	Die Software muss beim Systemstart das angeschlossene Sorting-Modul (Auswerfer
	oder Weiche) erkennen und die Aussortierlogik entsprechend anpassen, um die
	korrekte Sortierung zu gewährleisten.
8	Die Software muss dazu in der Lage sein, zwischen verschiedenen Fehlern zu
	differenzieren, entsprechend zu signalisieren, und nach Behebung in einen
	Funktionalen Zustand zurückzukehren.
9	Fehlbedienung durch den Nutzer sollen klassifiziert werden. Sind sie unproblematisch,
	werden sie ignoriert oder behoben, andernfalls muss der Betrieb unterbrochen
	werden und die entsprechende Fehlerbehandlung eingeleitet werden.

3.3.3 Schnittstellen: Nachrichten und Signale

In diesem Abschnitt werden die wesentlichen Nachrichten und Signale definiert, die zwischen den Hardwarekomponenten und der Software sowie zwischen den beiden Festo-Anlagen ausgetauscht werden. Dabei kommt das GNS zum Einsatz, das über einen Dispatcher realisiert wird (mehr dazu in Abschnitt 5). Es werden Pulse Messages verwendet, um Informationen zu übermitteln.

Ein- und Ausgehende Signale und Nachrichten:

- **Eingangssignale**: Wichtige Eingabewerte für das System, wie z.B. Taster-Eingaben (z.B. Start-Button, E-Stop) und Sensordaten (z.B. HeightSensor, MetalSensor, LightBarrier).
- Ausgangssignale: Steuerbefehle an Aktoren (z.B. Motor, Sorting-Module, LED), die durch Eingabewerte oder Sensormessungen ausgelöst werden.

Die nachfolgende Tabelle gibt einen Überblick über die Signale, deren detaillierte Beschreibung und die spezifischen Funktionen, die sie innerhalb des Systems erfüllen. Die Pulse Messages sind durch nachvollziehbare Kurzbezeichner versehen, die in der Tabelle erläutert werden.

Tabelle 6: GPIO BANK 0 und Stop Thread Pulse

Signal	Pulse Message	Beschreibung
1	PULSE_INTR_ON_PORT0	Initialisiert den Port 0
2	PULSE_STOP_RECV_THREAD	Beendet einen Pulse Message
		received Thread
3	PULSE_SUBSCRIBE	Anmeldung an den Dispatcher

Tabelle 7: Hearbeat Pulse

Signal	Pulse Message	Beschreibung
4	PULSE_HEARTBEAT	Signal zur Überwachung der
		regelmäßigen
		Kommunikationsverbindung
		zwischen Systemkomponenten
5	PULSE_E_STOP_HEARTBEAT_FESTO1	Signal zur Überwachung des E-
		Stop-Status an Fest- Anlage 1
6	PULSE_E_STOP_HEARTBEAT_FESTO2	Signal zur Überwachung des E-
		Stop-Status an Festo-Anlage 2
7	PULSE_RECONNECT_HEARTBEAT_FESTO	Signal zur erfolgreichen
		Wiederverbindung zum jeweils
		anderen Heartbeat-Modul

Tabelle 8: ESTOP Pulse

Signal	Pulse Message	Beschreibung
8	PULSE_ESTOP_HIGH	ESTOP wurde gelöst
9	PULSE_ESTOP_LOW	ESTOP wurde bestätigt

Tabelle 9: Lichtschranken Pulse

Signal	Pulse Message	Beschreibung
10	PULSE_LBF_INTERRUPTED	Vordere Lichtschranke wurde
		unterbrochen
11	PULSE_LBF_OPEN	Vordere Lichtschranke wurde
		freigegebene
12	PULSE_LBE_INTERRUPTED	hintere Lichtschranke wurde
		unterbrochen
13	PULSE_LBE_OPEN	hintere Lichtschranke wurde
		freigegebene
14	PULSE_LBR_INTERRUPTED	Lichtschranke an der Rampe
		wurde unterbrochen
15	PULSE_LBR_OPEN	Lichtschranke an der Rampe
		wurde freigegebene
16	PULSE_LBM_INTERRUPTED	Lichtschranke am Metallsensor
		wurde unterbrochen
17	PULSE_LBM_OPEN	Lichtschranke am Metallsensor
		wurde freigegebene

Tabelle 10: Buttons Pulse

Signal	Pulse Message	Beschreibung
18	PULSE_BGS_SHORT	Start-Button wurde kurz
		gedrückt
19	PULSE_BGS_LONG	Der Start-Button wurde über
		längere Zeit gedrückt gehalten
20	PULSE_BRS_SHORT	Stop-Button wurde kurz gedrückt
21	PULSE_BRS_LONG	Der Stop -Button wurde über
		längere Zeit gedrückt gehalten
22	PULSE_BGR_SHORT	Reset-Button wurde kurz
		gedrückt
23	PULSE_BGR_LONG	Der Reset -Button wurde über
		längere Zeit gedrückt gehalten

Tabelle 11: Motor Pulse für Festo 1 und Festo 2

Signal	Pulse Message	Beschreibung
24	PULSE_MOTOR1_STOP	Motor an Festo 1 wird gestoppt
25	PULSE_MOTOR1_SLOW	Motor an Festo 1 wird
		verlangsamt
26	PULSE_MOTOR1_FAST	Motor an Festo 1 wird
		beschleunigt
27	PULSE_MOTOR2_STOP	Motor an Festo 2 wird gestoppt
28	PULSE_MOTOR2_SLOW	Motor an Festo 2 wird
		verlangsamt
29	PULSE_MOTOR2_FAST	Motor an Festo 2 wird
		beschleunigt

Tabelle 12: LED's Pulse für Festo 1 und Festo 2

Signal	Pulse Message	Beschreibung
30	PULSE_LR1_ON	rote Ampel von Festo 1 geht an
31	PULSE_LR1_BLINKING	rote Ampel von Festo 1 blinkt
32	PULSE_LR1_OFF	rote Ampel von Festo 1 geht aus
33	PULSE_LY1_ON	gelbe Ampel von Festo 1 geht an
34	PULSE_LY1_BLINKING	gelbe Ampel von Festo 1 blinkt
35	PULSE_LY1_OFF	gelbe Ampel von Festo 1 geht
		aus
36	PULSE_LG1_ON	grüne Ampel von Festo 1 geht an
37	PULSE_LG1_BLINKING	grüne Ampel von Festo 1 blinkt
38	PULSE_LG1_OFF	grüne Ampel von Festo 1 geht
		aus
39	PULSE_LR2_ON	rote Ampel von Festo 2 geht an
40	PULSE_LR2_BLINKING	rote Ampel von Festo 2 blinkt
41	PULSE_LR2_OFF	rote Ampel von Festo 2 geht aus
42	PULSE_LY2_ON	gelbe Ampel von Festo 2 geht an
43	PULSE_LY2_BLINKING	gelbe Ampel von Festo 2 blinkt
44	PULSE_LY2_OFF	gelbe Ampel von Festo 2 geht
		aus
45	PULSE_LG2_ON	grüne Ampel von Festo 2 geht an
46	PULSE_LG2_BLINKING	grüne Ampel von Festo 2 blinkt
47	PULSE_LG2_OFF	grüne Ampel von Festo 2 geht
		aus

Tabelle 13: Signalleuchten Pulse für Festo 1 und Festo 2

Signal	Pulse Message	Beschreibung
48	PULSE_Q11_ON	Signalleuchte 1 von Festo 1 geht
		an
49	PULSE_Q11_OFF	Signalleuchte 1 von Festo 1 geht
		aus
50	PULSE_Q12_ON	Signalleuchte 2 von Festo 1 geht
		an
51	PULSE_Q12_OFF	Signalleuchte 2 von Festo 1 geht
		aus
52	PULSE_Q21_ON	Signalleuchte 1 von Festo 2 geht
		an
53	PULSE_Q21_OFF	Signalleuchte 1 von Festo 2 geht
		aus
54	PULSE_Q22_ON	Signalleuchte 2 von Festo 2 geht
		an
55	PULSE_Q22_OFF	Signalleuchte 2 von Festo 2 geht
		aus

Tabelle 14: Sortiermoduls Pulse für Festo 1 und Festo 2

Signal	Pulse Message	Beschreibung
56	PULSE_SM_TYPEE_EJECTOR	Nachricht, dass die Festo- Anlage über einen Auswerfer verfügt
57	PULSE_SM_TYPEE_DIVERTER	Nachricht, dass die Festo- Anlage über einer Weiche verfügt
58	PULSE_SM1_ACTIVE	Die Weiche und der Auswerfer an Festo 1 sortieren Werkstücke aus
59	PULSE_SM1_RESTING	Die Weiche und der Auswerfer an Festo 1 lassen das Werkstück durch
60	PULSE_SM2_ACTIVE	Die Weiche und der Auswerfer an Festo 2 sortieren Werkstücke aus
61	PULSE_SM2_RESTING	Die Weiche und der Auswerfer an Festo2 lassen das Werkstück durch

Tabelle 15: Höhensensor Pulse für Festo 1 und Festo 2

Signal	Pulse Message	Beschreibung
62	PULSE_ADC_SAMPLE,	Sendet ein Interrupt an den
		ADC, um anzuzeigen, dass
		ein Wert ermittelt, wurde
63	PULSE_HS1_SAMPLE,	Ein Werkstück wurde an
		Festo 1 erkannt
64	PULSE_HS1_SAMPLING_DONE,	Die Messung eines
		Werkstücks an Festo 1
		wurde abgeschlossen
65	PULSE_HS2_SAMPLE,	Ein Werkstück wurde an
		Festo 2 erkannt
66	PULSE_HS2_SAMPLING_DONE,	Die Messung eines
		Werkstücks an Festo 2
		wurde abgeschlossen

Tabelle 16: Metallsensor Pulse

Signal	Pulse Message	Beschreibung
67	PULSE_MS_TRUE,	Am Metallsensor wurde Metall
		erkannt
68	PULSE_MS_FALSE,	Am Metallsensor wurde kein
		Metall erkannt

3.3.4 Errors/Warnings Signal

Tabelle 17: Erros und ihre Signalisierung

Error-ID	Fehlerbeschreibung	Fehleranzeige
E_1	LBF_1 unterbrochen, unerwartetes Werkstück	-LR_1 (1 Hz)
E_2	HS_1 unterbrochen,	-LR_1(1 Hz)
	unerwartetes Werkstück	-Q_11 leuchtet
E_3	HS_1 nicht unterbrochen,	-LR_1(1 Hz)
	obwohl Werkstück erwartet	-Q_11 leuchtet
E_4	LBM_1 unterbrochen,	-LR_1(1 Hz)
	unerwartetes Werkstück	-Q_12 leuchtet
E_5	LBM_1 nicht unterbrochen,	-LR_1(0,5 Hz)
	obwohl Werkstück erwartet	-Q_12 leuchtet
E_6	LBE_1 unterbrochen,	-LR_1 (1Hz)
	unerwartetes Werkstück	-Q_11 und Q_12 leuchten
E_7	LBE_1 nicht unterbrochen,	-LR_1 (0,5 Hz)
	obwohl Werkstück erwartet	-Q2_1 und Q2_1 leuchten
E_8	LBF_2 unterbrochen,	-LR_2 (1 Hz)
	unerwartetes Werkstück	
E_9	LBF_2 nicht unterbrochen,	-LR_2 (0,5 Hz)
	obwohl Werkstück erwartet	
E_10	HS_2 unterbrochen,	-LR_2(1 Hz)
	unerwartetes Werkstück	-Q1_2 leuchtet
E_11	HS_2 nicht unterbrochen,	-LR_(0,5Hz)
	obwohl Werkstück erwartet	-Q1_2 leuchtet
E_12	LBM_2 unterbrochen,	-LR_2(1 Hz)
	unerwartetes Werkstück	-Q2_2 leuchtet

E_13	LBM_2 nicht unterbrochen, obwohl Werkstück erwartet	-LR_2(0,5 Hz) -Q2_2 leuchtet
E_14	LBE_2 unterbrochen, unerwartetes Werkstück	-LR_2 (1Hz) -Q1_2 und Q2_2 leuchten
E_15	LBE_2 nicht unterbrochen, obwohl Werkstück erwartet	-LR_2 (0,5 Hz) -Q2_2 und Q2_2 leuchten
E_16	E-Stopp wird bestätigt	LY_1, LY_2, LR_1, LR_2, LG_1 und LG_2 leuchten dauerhaft
E_17	Zu aussortierendes Werkstück auf FST_2, LBR_2 unterbrochen	-LR_1(1Hz) und LR_2 (1 Hz) leuchten -Q2_2 leuchten
E_18	Zu aussortierendes Werkstück auf FST_1, LBR_1 und LBR_2 unterbrochen	-LR_1 und LR_2 leuchten (1Hz) -Q2_1 und Q2_2 leuchten
E_19	SD_1 länger offen als 3 Min	-LR_1 leuchtet (2Hz) -Q_11 und Q_12
E_20	SD_2 länger offen als 3 Min	-LR_2 leuchtet (2Hz) - Q_21 und Q_22

Tabelle 18: Warning's und ihre Signalisierung

Warning-ID	Warnungsbeschreibung	Signal
W_1	LBR_1 erwartet unterbrochen (Rampe voll)	-LY_1 geht an
W_2	LBR_2 erwartet unterbrochen (Rampe voll)	-LY_2 geht an

4 Grobkonzept des technischen Systementwurfes

Das System wird mit einem Parent-Child System realisiert. Die Festo 1 ist der Parent und übernimmt die Steuerung beider Festo in der Logik. Zudem ist das System Event-gesteuert. Dazu dient ein globaler Dispatcher auf dem Parent, der für die Weiterleitung der Event-Nachrichten verantwortlich ist.

Softwarekomponenten können beim Dispatcher die Events abonnieren, die für sie relevant sind. Die Aktorik ist über einen Controller steuerbar, die Sensorik veröffentlicht Veränderungen mittels eines Decoders, der Software-Interrupts des Betriebssystems in Events, die sich auf einzelne Sensoren beziehen aufschlüsselt. Die Logik wertet Zustände der Hardware aus und entscheidet über FSMs welche Steuerevents an die Controller der Hardware gesendet werden. Mit Timern werden die Werkstücke auf der Hardware überwacht. Des Weiteren gibt es einen Heartbeat, der die Verbindung zwischen der Festo 1 und der Festo 2 überwacht. Die Heartbeat Module kommunizieren direkt miteinander: Bei gestörter Verbindung benachrichtigt der Server-Heartbeat die Logik darüber. Clientseitig setzt der Heartbeat die entsprechende Aktorik in den gewünschten zustand und versucht wiederholt die Logik über den Eingriff zu informieren. Sobald diese Kommunikation erfolgreich war, gehen die Heartbeats wieder in den normalen Betrieb über. Daraus folgt folgende Aufteilung auf die einzelnen Festo Systeme und allgemeine Aufgaben:

1. Festo 1 (Parent):

Der Höhenmessung und der Metallsensor Festo 1 identifiziert die Werkstücke nach Höhe und Metallgehalt. Diese Werte werden der FSM mitgeteilt.

Die Lichtschranken überwachen den Werkstückdurchlauf auf dem Förderband. Bei Unterbrechung der ersten Lichtschranke wird ein Werkstück mit einer ID erstellt. Timer werden gestartet.

Der Motor treibt das Förderband an und transportiert die Werkstücke. Dieser wird nur vorwärts betrieben oder gestoppt. Sobald sich ein Werkstück in der Höhenmessung befindet, wird der langsame Betrieb geschaltet. Die Timer werden bei den Wechseln aktualisiert.

Die Weichen und Auswerfer entfernen Werkstücke, die nicht den Kriterien entsprechen. Es wird vor Betriebsstart ausgelesen welcher Art der Aussortierung genutzt wird. Bei der Weiche wird eine maximale Öffnungszeit gesetzt, die die Weiche maximal geöffnet sein darf.

Die verschiedenen LEDs zeigen den Systemstatus und Fehler an. Die LEDs der Ampel zeigen den Systemstatus an. Die LEDs Q1 und Q2 zeigen im Fehlerfall binär codiert an, in welchem Sektor der Fehler aufgetreten ist.

2. Festo 2 (Child):

Die Festo 2 empfängt und verarbeitet die sortierten Werkstücke von Festo 1. Sie empfängt und sendet Signale von und an den Dispatcher. Die Sensoren und Aktoren, ähnlich wie bei der Festo 1, steuert Festo 2 die Werkstücke und verwendet Lichtschranken zur Überwachung. Die Werte der Höhenmessung und des Metallsensors werden der FSM auf Festo 1 mitgeteilt und dort mit dem erwarteten Werkstück verglichen. Der Motor transportiert die gültigen Werkstücke zum Endpunkt.

3. Kommunikation:

Die beiden Anlagen kommunizieren über Ethernet, wobei die Kommunikation zwischen Festo 1 (Parent) und Festo 2 (Child) auf Signalen basiert, die durch das GNS-Protokoll übertragen werden. Alle Steuerbefehle und Sensordaten werden über dieses Netzwerk ausgetauscht. Der Dispatcher dient dabei als Verteiler, um die einzelnen Nachrichten an die jeweiligen Empfänger zu verteilen.

4. Fehlererkennung und Sicherheit:

Das System erkennt Fehler in Echtzeit und stoppt bei Problemen. Fehler werden durch LEDs und Signalleuchten angezeigt, und externe Interaktion ist notwendig, um den Fehler zu beheben. Dabei zeigen die Festo 1 und Festo 2 unabhängig voneinander die aufgetreten Fehler an. Davon ausgeschlossen sind ein gedrückter E-Stopp und der ausgefallende Heartbeat.

5 Software-Design

In diesem Kapitel werden Strukturen, Verhalten und Bezeichner beschrieben, die aus dem Modell abgeleitet und auf die Anforderungen abgestimmt sind.

5.1 Softwarearchitektur

Für die Softwarearchitektur wurde ein Embedded Design Pattern angewendet, wobei ein Internal Block Diagram (IBD) erstellt wurde, um die Struktur und Übersicht der Steuereinheit darzustellen. Zu Beginn wurden die wesentlichen Komponenten definiert: Die Logikeinheit ist über die Schnittstelle I_Control mit der Hardware Abstraction Layer (HAL) verbunden. Die HAL fungiert als Vermittler zwischen der Steuerungslogik und der physischen Hardware und besitzt zusätzliche Schnittstellen, die direkt mit der Hardware-Ebene kommunizieren.

Abbildung 15 IBD-Darstellung der Steuereinheit

V1.2

5.2 Softwarestruktur

Abbildung 16 UML-Klassendiagramm Entwurf

In dem UML-Klassendiagramm (Abbildung 16) sind die Klassen in die HAL und die Logik aufgeteilt.

In der Logik gibt es eine Kontextklasse "FestoSystem", die die verschiedenen Softwaremodule startet. Das "Dispatcher" Modul dient als Schnittstelle zwischen HAL und Logik. Dieses Modul, als auch die kommunizierenden Module, implementieren die abstrakte Klasse "PulseMsgHandler". Die Module "ActuatorController", "Decoder" und "HeightSensorController" sind Bestandteile der HAL und steuern die Hardware. Der FSMController dient als Schnittstelle zur FSM und dem Rest des Systems als FSM-Modul. Zu diesem Modul gehört ebenfalls eine "PositionsTracker" aus Werkstücken "Puk" mit Timing-Funktionalität.

5.3 ESTOP- Verhalten

Schritte	Vorgehen
1	Wenn SES gedrückt wird, stoppen die Motoren M_1 und M_2.
2	Die LEDs (LR, LY und LG) an beiden Festo-Anlage leuchten.
3	Wenn SD vorhanden ist, wird das zugehörigen Bit zurückgesetzt.
4	Die Höhenmessungen werden zurückgesetzt.
5	Die Bisherigen Reihenfolge der Werkstücke wird gelöscht.
6	Alle Interrupts weder aufgelöst.
7	Nachdem SES von der entsprechenden FST gezogen wurde, wartet das System auf die
	Betätigung der BGR beider Festo-Anlagen.
8	Beide Festo-Anlagen müssen aufgeräumt werden (Beide Rampen leeren/Beide Bänder
	leeren etc.)
9	BGS bestätigen, um ins Betriebszustand zu gelangen

5.4 Vom Startzustand bis zum Betriebszustand

Schritte	Vorgehen	
1	System wird mit Strom versorgt und geht in den Startzustand. Alle LEDs werden ausgeschaltet.	
2	Sowohl SES_1 als auch SES_2 werden herausgezogen, ggf. müssen sie dazu zuerst gedrückt werden.	
3	BGS_X wird für 3 Sekunden gedrückt → System wechselt in den Service-Mode LG_1 und LG_2 blinken mit 1 Hz (Service-Mode-Indikator).	
4	Kalibrierung muss durchgeführt (siehe 5.5 Kalibrierung verhalten)	
5	BRS_X wird gedrückt → System verlässt den Service Mode und wechselt in den Ruhezustand	
	BGSL_1 und BGSL_2 leuchten (Ruhezustand -Indikator).	
6	BGS_X wird gedrückt → System verlässt den Service Mode und wechselt in den Betriebszustand.	
	BGSL_1 und BGLS_2 gehen aus.	
	LG_1 und LG_2 leuchten (Betriebszustand -Indikator).	

5.5 Service Mode verhalten

Schritte	Vorgehen
1 Kalibrierung Musterwerkstück rot, flach am LBF_1, langsam	Von einer geschulten Person wird ein roter, flacher (21 mm) Musterstein direkt vor der Lichtquelle des LBF_1 auf das Laufband gelegt und darauf gewartet, dass das Werkstück am LBE_2 ankommt und dann entfernt.
2 Kalibrierung Musterwerkstück rot, flach am LBF_1, schnell	Von einer geschulten Person wird ein roter, flacher (21 mm) Musterstein direkt vor der Lichtquelle des LBF_1 auf das Laufband gelegt und darauf gewartet, dass das Werkstück am LBE_2 ankommt und dann entfernt.
3 Kalibrierung Musterwerkstück rot, flach am LBF_1, langsam	Von einer geschulten Person wird ein roter, flacher (21 mm) Musterstein möglichst direkt vor den Empfänger des LB_1 auf das Laufband gelegt und darauf gewartet, dass das Werkstück am LBE_2 ankommt und dann entfernt.
4 Kalibrierung Musterwerkstück rot, flach am LBF_1, langsam	Von einer geschulten Person wird ein roter, flacher (21 mm) Musterstein möglichst direkt vor den Empfänger des LB_1 auf das Laufband gelegt und darauf gewartet, dass das Werkstück am LBE_2 ankommt und dann entfernt.
5 Beenden der Kalibrierung	BRS_X wird betätigt

5.6 Verhaltensmodellierung

Abbildung 17 FSM-Egress für Festo 1

Abbildung 18 FSM-Error für Festo 1

Abbildung 19 FSM-Heightmeasurement für Festo 1

Abbildung 20 FSM-Ingress für Festo 1

Abbildung 21 FSM-Lamp für Festo 1

Abbildung 22 FSM-Motor für Festo 1

Abbildung 23 FSM-Sorting für Festo 1

Abbildung 24 FSM-Egress für Festo 2

Abbildung 25 FSM-Error für Festo 2

Abbildung 26 FSM-Heightmeasurement für Festo 2

Abbildung 27 FSM-Ingress für Festo 2

Abbildung 28 FSM-Lamp für Festo 2

Abbildung 29 FSM-Motor für Festo 2

Abbildung 30 FSM-Sorting für Festo 2

Abbildung 31 FSM-System

6 Qualitätssicherung

In diesem Abschnitt werden Teststrategien vorgestellt, die durch zwei Teststufen definiert werden: den **Abnahmetest** und den **Systemtest**. Der Abnahmetest wird aus Kundensicht durchgeführt, um sicherzustellen, dass die Anforderungen des Kunden erfüllt werden. Der Systemtest dient dazu, die einzelnen Funktionalitäten des Systems zu überprüfen. Für beide Tests werden mehrere Testszenarien entwickelt, um eine umfassende Fehlererkennung und kontinuierliche Qualitätssicherung zu gewährleisten.

6.1 Teststrategie

Unsere Teststrategie konzentriert sich auf **Systemtest** und **Abnahmetests**, um die Qualität des Systems zu gewährleisten und eine rechtzeitige Fertigstellung sicherzustellen. Die Tests werden in regelmäßigen Abständen durchgeführt und gezielt an den Projektmeilensteinen ausgerichtet.

Systemtests

- Zeitpunkt: Während der Entwicklung und nach der vollständigen Integration des Systems.
- Ziel:
 - Sicherstellen, dass das gesamte System als Einheit die spezifizierten Anforderungen erfüllt.
 - Überprüfung aller Hauptfunktionen, z. B. korrekte Sortierung der Werkstücke, präzises
 Zusammenspiel der Sensoren, Aktoren und Förderbänder sowie zuverlässige
 Kommunikation zwischen Festo 1 und Festo 2 über GNS.
 - o Prüfen von Edgecases

Methoden:

- End-to-End-Tests zur Simulation des gesamten Materialflusses.
- Szenariotests, um verschiedene Kombinationen von Werkstücken und Fehlerfällen zu überprüfen.
- o Belastungstests, um das Verhalten bei hoher Auslastung zu analysieren.

Abnahmetests

- Zeitpunkt: Kurz vor der Fertigstellung und Übergabe des Systems.
- Ziel:
 - Überprüfung des Systems auf vollständige Konformität mit den vorher festgelegten Spezifikationen und Anforderungen.
 - o Sicherstellung, dass die Funktionalität des Systems dokumentiert und nachvollziehbar ist.

Methoden:

- o Tests mit realitätsnahen Werkstückszenarien.
- o Simulation potenzieller Fehlerfälle, wie z. B. Werkstücke, die die Kriterien nicht erfüllen.
- Dokumentation und Vergleich der Testergebnisse mit den Sollwerten.

6.2 Testszenarien/Abnahmetest

Abnahmetest-ID: 1	Ein gültiges Werkstück wird auf FST_1 platziert
Requirements:	Anforderung in der Aufgabenstellung (13, 14, 20, 25, 26, 29, 30, 31, 32, 33, 34, 35, 74)
Kurzbeschreibung:	Ein gültiges Werkstück, das der Sortierreihenfolge entspricht, wird auf FST_1 platziert. Werkstück wird von FST_1 bis hin zum Ende von FST_2 transportiert.
Vorbedingungen:	Die Sortieranlage ist kalibriert, im Betriebszustand und die grünen Ampeln leuchten auf beiden Anlagen. Auf den Anlagen FST_1 und FST_2 befinden sich keine Werkstücke. Alle Bedientasten und Sicherheitsfunktionen sind funktionsfähig.

Schritt	Aktion	Erwartung	Erfüllt
1	Werkstück wird auf FST_1 platziert und unterbricht LBF_1	FST_1 geht in die Betriebsphase	
2	Werkstück unterbricht LBE_2	FST_2 stoppt und Pick-and-Place Roboter entnimmt Werkstück von der Anlage	

Abnahmetest-ID: 2	E-Stopp auslösen im laufenden Betrieb auf Festo mit Weiche	
Requirements:	Req_04, Req_06 und gegebene Anforderung in der Aufgabenstellung (66, 67, 68)	
Kurzbeschreibung:	Der ESTOP-Schalter wird, in der Betriebsphase auf einer Festo-Anlage mit Weiche, während diese offen steht, ausgelöst.	
Vorbedingungen:	Die Sortieranlage ist kalibriert, im Betriebszustand und die grünen Ampeli leuchten auf beiden Anlagen. Auf den Anlagen FST_1 und FST_2 befinden sich keine Werkstücke. Alle Bedientasten und Sicherheitsfunktionen sind funktionsfähig.	

Schritt	Aktion	Erwartung	Erfüllt
1	Werkstück wird auf FST_1 mit Weiche platziert und unterbricht LBF_1	FST_1 geht in die Betriebsphase	
2	Werkstück erreicht LBM_1	FST_1 transportiert Werkstück weiter und Weiche geht auf	
3	E-Stopp wird bestätigt	FST_1 und FST_2 stoppen, und LR, LY und LG leuchten dauerhaft. Die Weiche schließt sich. Grüne Ampel geht aus	

Abnahmetest-ID: 3	Reihenfolgetest für mehrere korrekte Werkstücke
Requirements:	Anforderung in der Aufgabenstellung (1, 4, 5, 12, 13,20, 21, 22, 23, 24, 25, 28(1/2), 40 und 43
Kurzbeschreibung:	Test zur Überprüfung, ob eine vordefinierte Anzahl (bspw. 3) korrekter Werkstücke hintereinander in der richtigen Reihenfolge und mit dem richtigen Abstand abgelegt wird.
Vorbedingungen:	Die Sortieranlage ist kalibriert, im Betriebszustand und die grünen Ampeln leuchten auf beiden FST_X. Auf den Anlagen FST_1 und FST_2 sind keine Werkstücke vorhanden. Alle Bedientasten und Sicherheitsfunktionen arbeiten ordnungsgemäß.

Schritt	Aktion	Erwartung	Erfüllt
1	Drei korrekte Werkstücke werden auf FST_1 einzeln aufgelegt	FST_1 geht in die Betriebsphase	
2	Letztes korrektes Werkstück wird von FST_2 entnommen	keinerlei Fehler, alle drei Werkstücke wurden entnommen	

Abnahmetest-ID: 4	Aussortierung Test eines Fehlerhaften Werkstückes	
Requirements:	Anforderung in der Aufgabenstellung 3, 6, 7, 18, 20, 21,25, 38, 39, 44	
Kurzbeschreibung:	Test zur Überprüfung, ob fehlerhafte Werkstücke erkannt und korrekt aussortiert werden. Ein Werkstück, das nicht den vorgegebenen Höhenprofil entspricht, wird identifiziert und aus dem Prozess entfernt.	
Vorbedingungen:		

Schritt	Aktion	Erwartung	Erfüllt
1	Fehlerhafte Werkstück wird auf FST_1 aufgelegt	FST_1 geht in die Betriebsphase	
2	Werkstück unterbricht LBM_1	Werkstück wird von den Sorting- Modulen aussortiert, zur Rutsche/Rampe weitergeleitet	

Abnahmetest-ID: 5	Fehlerhafte Abstandsprüfung und Betriebswiederaufnahme
Requirements:	Req_05, Req_08 und Anforderung in der Aufgabenstellung 77, 79, 80, 81, 82, 90, 91, 92
Kurzbeschreibung:	Test zur Überprüfung, ob ein zu früh aufgelegter Stein erkannt und der Fehler behoben wird, bevor der Betrieb wieder aufgenommen wird.
Vorbedingungen:	Die Sortieranlage ist kalibriert und befindet sich in der Betriebsphase. Beide FST_X-Anlagen zeigen grüne Ampelsignale. Auf FST_1 wurde ein Werkstück aufgelegt, und LG_1 blinkt mit 2 Hz. Alle Bedientasten und Sicherheitsfunktionen sind funktionsfähig und arbeiten ordnungsgemäß.

Schritt	Aktion	Erwartung	Erfüllt
1	Werkstück wird auf FST_1 aufgelegt, was LBF_1 unterbricht während LG_1 mit 2 Hz blinkt	Förderband von FST_1 stoppt, Q1 und Q2 von FST_1 ist aus, LR_1 blinkt mit 1 Hz	
2	Fehlerbehandlung wird durchgeführt (siehe Req_01)	Das Förderband von FST_1 startet, LG_1 blinkt mit 2 Hz, die Signalleuchte wird zurückgesetzt und das System kehrt wieder in die Betriebsphase zurück	

Abnahmetest-ID: 6	Beliebige Werkstückentnahme und Wiederaufnahme des Betriebs nach Fehlerbehebung	
Requirements:	Req_01, Req_02, Req_08 und Anforderung in der Aufgabenstellung 55, 77, 79, 80, 81, 82, 90, 91, 92	
Kurzbeschreibung:	Während der Betriebsphase wird ein Werkstück entnommen, ein Fehler wird gemeldet und behoben. Nach der Fehlerbehebung wird der Prozess fortgesetzt, und das System kehrt in die Betriebsphase zurück	
Vorbedingungen:	Die Sortieranlage ist kalibriert und befindet sich in der Betriebsphase. Beide FST_X-Anlagen zeigen grüne Ampelsignale. Auf den Anlagen FST_1 und FST_2 befinden sich Werkstücke, die ordnungsgemäß hinzugefügt und im System registriert wurden. Alle Bedientasten und Sicherheitsfunktionen sind funktionsfähig und arbeiten ordnungsgemäß.	

Schritt	Aktion	Erwartung	Erfüllt
1	Ein Werkstück wird während der Betriebsphase beliebig aus FST_X entnommen	Das entsprechende Förderband von FST_X stoppt, die entsprechenden Signalleuchten gehen an (siehe Req_08), und LR_X blinkt mit einer Frequenz von 1 Hz	
2	Fehlerbehandlung wird durchgeführt (siehe Req_01)	Das entsprechende Förderband von FST_X startet, LG_1 wird aktiviert, die Signalleuchten werden zurückgesetzt, und das System befindet sich wieder in der Betriebsphase	

Abnahmetest-ID: 7	Beliebige Werkstückzufuhr und Wiederaufnahme des Betriebs nach
	Fehlerbehebung
Requirements:	Req_01, Req_02, Req_08 und Anforderung in der Aufgabenstellung 56, 77, 79, 80, 81, 82, 90, 91, 92
Kurzbeschreibung:	Während der Betriebsphase wird ein Werkstück hinzugefügt (nicht zu Beginn), ein Fehler wird gemeldet und behoben. Nach der Fehlerbehebung wird der Prozess fortgesetzt, und das System kehrt in die Betriebsphase zurück
Vorbedingungen:	Die Sortieranlage ist kalibriert und befindet sich in der Betriebsphase. Beide FST_X-Anlagen zeigen grüne Ampelsignale. Auf den Anlagen FST_1 und FST_2 befinden sich Werkstücke, die ordnungsgemäß hinzugefügt und im System registriert wurden. Alle Bedientasten und Sicherheitsfunktionen sind funktionsfähig und arbeiten ordnungsgemäß.

Schritt	Aktion	Erwartung	Erfüllt
1	Ein Werkstück wird während der Betriebsphase beliebig auf FST_X hinzugefügt	Das entsprechende Förderband von FST_X stoppt, die entsprechenden Signalleuchten gehen an (siehe Req_08), und LR_X blinkt mit einer Frequenz von 1 Hz	
2	Fehlerbehandlung wird durchgeführt (siehe Req_01)	Das entsprechende Förderband von FST_X startet, LG_1 wird aktiviert, die Signalleuchten werden zurückgesetzt, und das System befindet sich wieder in der Betriebsphase	

Abnahmetest-ID: 8	Aussortierungstest bei vollen Rampen auf beiden FST_X-Anlagen
Requirements:	Req_01, Req_02 und Anforderung in der Aufgabenstellung 57, 77, 79, 80, 81, 82, 90, 91, 92
Kurzbeschreibung:	Test zur Überprüfung, ob ein Fehler auftritt, wenn bei vollen Rampen beider FST_X-Anlagen ein Werkstück aussortiert werden muss.
Vorbedingungen:	Die Sortieranlage ist kalibriert und befindet sich in der Betriebsphase. Beide FST_X-Anlagen zeigen grüne Ampelsignale, und beide Rampen von FST_X sind voll, was durch dauerhaft leuchtende LY angezeigt wird. Auf den Anlagen FST_1 und FST_2 befinden sich Werkstücke, die ordnungsgemäß hinzugefügt und im System registriert wurden. Alle Bedientasten und Sicherheitsfunktionen sind funktionsfähig und arbeiten ordnungsgemäß.

Schritt	Aktion	Erwartung	Erfüllt
1	Ein fehlerhaftes Werkstück wird auf FST_1 aufgelegt und unterbricht LBF_1	Förderband von FST_1 startet, LG_X blinkt mit 2 Hz und LY_X leuchten dauerhaft	
2	Fehlerhaftes Werkstück erreicht LBM_2	Förderband von FST_1 und FST_2 stoppen und LR_1 und LR_2 blinken mit 1 Hz, LY_1 und LY_2 leuchten dauerhaft	
3	Fehlerbehandlung wird durchgeführt (siehe Req_01)	Beide Festo-Anlagen gehen wieder in die Betriebsphase, LY_1, LY_2, LR_1 und LR_2 gehen aus und LG_1 und LG_2 leuchten/blinken (abhängig der Zufuhr der Werkstücke)	

6.3 Systemtest

Systemtest-ID: 1	Prüfung des Motorstarts bei LBF_1-Unterbrechung auf Festo 1
Kurzbeschreibung:	Prüft, ob das System bei einer Unterbrechung von LBF_1 den Motor auf der Festo_1 korrekt startet.
Vorbedingungen:	Die Sortieranlage ist kalibriert, im Betriebszustand und die grüne Ampel leuchtet. Auf den Anlagen FST_1 und FST_2 sind keine Werkstücke vorhanden. Alle Bedientasten und Sicherheitsfunktionen arbeiten ordnungsgemäß.
Erwartung	FST_1 geht in die Betriebsphase und LG_1 blinkt mit 2 Hz.

Systemtest-ID: 2	Systemstart-Test
Kurzbeschreibung:	Sicherstellung, dass der Systemstart ordnungsgemäß durchgeführt wird.
Vorbedingungen:	Stromzufuhr und Verbindung mit dem Rechner sind hergestellt, Festo-Anlage befindet sich im Startzustand.
Erwartung	Alle Lampen beider Festo-Anlage und Motoren sind aus.

Systemtest-ID: 3	Test der Eingabeverarbeitung im Systemstart
Kurzbeschreibung:	Nach dem Systemstart wird überprüft, ob das System auf Eingaben reagiert (außer den gültigen Eingaben).
Vorbedingungen:	Stromzufuhr und Verbindung mit dem Rechner sind hergestellt, Festo-Anlage befindet sich im Startzustand.
Erwartung	Keine Reaktionen des Systems.

Systemtest-ID: 4	Übergang zum Service-Mode
Kurzbeschreibung:	Überprüfung des Übergangs vom Systemstart zum Service-Modus: Die beiden E-Stop-Schalter der Festo-Anlagen müssen herausgezogen werden, um den Service-Modus mit gültigen Eingaben zu erreichen.
Vorbedingungen:	Systemstart wurde durchgeführt und Heartbeat ist verfügbar.
Erwartung	Grüne Ampel der Festo-Anlage blinkt mit 1 Hz.

Systemtest-ID: 5	Einfügen eines Werkstückes in LBF_1
Kurzbeschreibung:	Sobald LBF_1_INTERRUPTED wird, blinkt die grüne Ampel mit 2 Hz, bis der Timer abläuft. Danach kann wieder ein Werkstück in LBF_1 eingelegt werden.
Vorbedingungen:	Alle vorherigen Systemtest sind durchgeführt worden und Werkstück unterbricht LBF_1.
Erwartung	LG_1 wechselt vom konstanten Leuchten zu Blinken mit einer Frequenz von 2 Hz. Außerdem startet M_1.

Systemtest-ID: 6	Frühzeitiges platzieren eines Werkstückes in LBF_1
Kurzbeschreibung:	Das vorzeitige Platzieren eines Werkstücks auf LBF_1 führt zu einem Fehler.
Vorbedingungen:	Werkstück unterbricht LBF_1 während LG_1 mit 2 Hz blinkt.
Erwartung	LR_1 blinkt (1Hz), M_1 stoppt, Q_11 und Q_12 sind aus

Systemtest-ID: 7	Unterschreitung des Zeitintervalls beim Erreichen des HS_1
Kurzbeschreibung:	Ein Werkstück wird auf FST_1 aufgelegt und unterbricht dabei LBF_1. Dadurch wird der Verarbeitungsprozess gestartet. HS_1 wird zu früh erreicht.
Vorbedingungen:	Die Messung des Werkstücks beginnt.
Erwartung	M_1 stoppt, LR_1 blinkt mit 1 Hz (anstehend quittiert) und Signalleuchte Q_11 leuchtet.

Systemtest-ID: 8	Überschreitung des Zeitintervalls beim Erreichen des HS_1
Kurzbeschreibung:	Ein Werkstück wird auf FST_1 aufgelegt, unterbricht LBF_1 und startet den Verarbeitungsprozess. Das Werkstück überschreitet die maximale Zeit zwischen LBF_1 und HS_1.
Vorbedingungen:	Die Messung des Werkstücks beginnt.
Erwartung	M_ 1 stoppt, LR_1 blinkt mit 0,5 Hz (gegangen unquittiert) und Signalleuchte Q_11 leuchtet.

Systemtest-ID: 9	Einhaltung des Zeitintervalls beim Erreichen des HS_1
Kurzbeschreibung:	Ein Werkstück wird auf FST_1 aufgelegt, unterbricht LBF_1 und startet den Verarbeitungsprozess. Das Werkstück erreicht HS_1 rechtzeitig.
Vorbedingungen:	Die Messung des Werkstücks beginnt.
Erwartung	M_1 ist an und kein Fehler wird ausgelöst.

Systemtest-ID: 10	Motorsteuerung bei Werkstück Erkennung beim HS_1
Kurzbeschreibung:	Prüfung des Motorzustands, wenn das Werkstück HS_1 erreicht.
Vorbedingungen:	Systemstart wurde durchgeführt und das Werkstück erreicht HS_1.
Erwartung	M_1 wird langsam.

Systemtest-ID: 11	Auswerten von Messwerten
Kurzbeschreibung:	Während der Betriebsphase erreicht das Werkstück HS_1, dessen Position weiterhin ausgewertet wird, während es in Richtung LBM_1 transportiert wird.
Vorbedingungen:	Die Werkstückmessung im HS_1 ist aktiviert und wird kontinuierlich während des gesamten Aufenthalts des Werkstücks im Sensor durchgeführt
Erwartung	Keinerlei Fehler auf FST_1 erkannt und Betrieb wird fortgesetzt.

Systemtest-ID: 12	Unterschreitung des Zeitintervalls beim Erreichen von LBM_1
Kurzbeschreibung:	Ein Werkstück verlässt HS_1 und wird weitergeleitet zu LBM_1. Hier wird LBM_1 zu früh unterbrochen.
Vorbedingungen:	Die Messung des Werkstücks wurde abgeschlossen, und LBM_1 wurde unterbrochen
Erwartung	LR_1 blinken mit 1 Hz (anstehend unquittiert), Q_11,Q_12 leuchtet und M_1 stoppt.

Systemtest-ID: 13	Überschreitung des Zeitintervalls beim Erreichen von LBM_1
Kurzbeschreibung:	Ein Werkstück verlässt HS_1 und wird weitergeleitet zu LBM_1. Das Werkstück unterbricht LBM_1 zu spät
Vorbedingungen:	Die Messung des Werkstücks wurde abgeschlossen, und LBM_1 wurde unterbrochen
Erwartung	LR_1 blinken mit 0,5 Hz (gegangen unquittiert), Q_11, Q_12 leuchtet und M_1 stoppt.

Systemtest-ID: 14	Einhaltung des Zeitintervalls beim Erreichen von LBM_1
Kurzbeschreibung:	Ein Werkstück verlässt HS_1 und wird weitergeleitet zu LBM_1. LBM_1 wird zeitgerecht unterbrochen.
Vorbedingungen:	Die Messung des Werkstücks wurde abgeschlossen, und LBM_1 wurde unterbrochen
Erwartung	Keinerlei Fehler auf FST_1 erkannt und Betrieb wird fortgesetzt.

Systemtest-ID: 15	Ein weiteres Werkstück erreich HS_1
Kurzbeschreibung:	Ein neues Werkstück wird von HS_1 erkannt und ausgewertet, während weiterhin andere Werkstück auf FST_1 verarbeitet werden.
Vorbedingungen:	Es befinden sich mehrere Werkstücke auf FST_1, während HS_1 ein Werkstück erfasst.
Erwartung	M_1 wird verlangsamt

Systemtest-ID: 16	Weiche bei gültigem Werkstück (Rampe 1 und 2 nicht voll)
Kurzbeschreibung:	Ein gültiges Werkstück, das der Sortierreihenfolge entspricht, unterbricht LBM_1 und von der Weiche durchgelassen
Vorbedingungen:	Werkstück unterbricht LBM_1 und entspricht der gültigen Sortierreihenfolge und beide Rampen sind leer.
Erwartung	Die Weiche auf FST_1 öffnet sich und das Werkstück wird weitergereicht Richtung LBE_1

Systemtest-ID: 17	Auswerfer bei gültigem Werkstück (Rampe 1 und 2 nicht voll)
Kurzbeschreibung:	Ein gültiges Werkstück, das der Sortierreihenfolge entspricht, unterbricht LBM_1 und wird nicht von dem Auswerfer aussortiert.
Vorbedingungen:	Werkstück unterbricht LBM_1 und entspricht der gültigen Sortierreihenfolge und beide Rampen sind leer.
Erwartung	Der Auswerfer auf FST_1 sortiert das Werkstück nicht aus und wird weitergereicht Richtung LBE_1

Systemtest-ID: 18	Weiche bei gültigem Werkstück (Rampe 1 voll und 2 nicht voll)
Kurzbeschreibung:	Ein gültiges Werkstück, das der Sortierreihenfolge entspricht, unterbricht LBM_1 und wird von der Weiche durchgelassen.
Vorbedingungen:	Werkstück unterbricht LBM_1, entspricht der gültigen Sortierreihenfolge, Rampe von FST_1 ist voll und Rampe von FST_2 ist leer
Erwartung	Die Weiche auf FST_1 öffnet sich, das Werkstück wird weitergereicht Richtung LBE_1 und LY_1 leuchtet dauerhaft

Systemtest-ID: 19	Auswerfer bei gültigem Werkstück (Rampe 1 voll und 2 nicht voll)
Kurzbeschreibung:	Ein gültiges Werkstück, das der Sortierreihenfolge entspricht, unterbricht LBM_1 und wird nicht von dem Auswerfer aussortiert
Vorbedingungen:	Werkstück unterbricht LBM_1 und entspricht der gültigen Sortierreihenfolge und Rampe von FST_1 ist voll und Rampe von FST_2 ist leer
Erwartung	Der Auswerfer auf FST_1 sortiert das Werkstück nicht aus, wird weitergereicht Richtung LBE_1 und LY_1 blinkt (1Hz)

Systemtest-ID: 20	Weiche bei gültigem Werkstück (Rampe 1 nicht voll und 2 voll)
Kurzbeschreibung:	Ein gültiges Werkstück, das der Sortierreihenfolge entspricht, unterbricht LBM_1 und von der Weiche durchgelassen
Vorbedingungen:	Werkstück unterbricht LBM_1 und entspricht der gültigen Sortierreihenfolge und Rampe von FST_1 ist leer und Rampe von FST_2 ist voll.
Erwartung	Die Weiche auf FST_1 öffnet sich, das Werkstück wird weitergereicht Richtung LBE_1 und LY_2 blinkt (1Hz).

Systemtest-ID: 21	Auswerfer bei gültigem Werkstück (Rampe 1 nicht voll und 2 voll)
Kurzbeschreibung:	Ein gültiges Werkstück, das der Sortierreihenfolge entspricht, unterbricht LBM_1 und wird nicht von dem Auswerfer aussortiert
Vorbedingungen:	Werkstück unterbricht LBM_1 und entspricht der gültigen Sortierreihenfolge und Rampe von FST_1 ist leer und Rampe von FST_2 ist voll
Erwartung	Der Auswerfer auf FST_1 sortiert das Werkstück nicht aus, wird weitergereicht Richtung LBE_1 und LY_2 blinkt (1Hz).

Systemtest-ID: 22	Weiche bei gültigem Werkstück (Rampe 1 und 2 voll)
Kurzbeschreibung:	Ein gültiges Werkstück, das der Sortierreihenfolge entspricht, unterbricht LBM_1 und wird von der Weiche durchgelassen
Vorbedingungen:	Werkstück unterbricht LBM_1 und entspricht der gültigen Sortierreihenfolge und beide Rampen sind voll
Erwartung	Die Weiche auf FST_1 öffnet sich, das Werkstück wird weitergereicht Richtung LBE_1, LY_1 und LY_2 blinkt (1Hz).

Systemtest-ID: 23	Auswerfer bei gültigem Werkstück (Rampe 1 und 2 voll)
Kurzbeschreibung:	Ein gültiges Werkstück, das der Sortierreihenfolge entspricht, unterbricht LBM_1 und wird nicht von dem Auswerfer aussortiert
Vorbedingungen:	Werkstück unterbricht LBM_1 und entspricht der gültigen Sortierreihenfolge und beide Rampen sind voll
Erwartung	Der Auswerfer auf FST_1 sortiert das Werkstück nicht aus, wird weitergereicht Richtung LBE_1, LY_1 blinkt (1Hz) und LY_2 blinkt (1Hz)

Systemtest-ID: 24	Weiche bei ungültigem Werkstück (Rampe 1 und 2 nicht voll)
Kurzbeschreibung:	Ein ungültiges Werkstück, das der Sortierreihenfolge nicht entspricht, unterbricht LBM_1 und wird von der Weiche aussortiert
Vorbedingungen:	Das Werkstück unterbricht LBM_1, entspricht nicht der gültigen Sortierreihenfolge, und beide Rampen sind leer.
Erwartung	Die Weiche auf FST_1 bleibt geschlossen, und das ungültige Werkstück wird an die Rampe weitergeleitet, die LBR_1 unterbricht.

Systemtest-ID: 25	Auswerfer bei ungültigem Werkstück (Rampe 1 und 2 nicht voll)
Kurzbeschreibung:	Ein ungültiges Werkstück, das nicht der Sortierreihenfolge entspricht, unterbricht LBM_1 und wird vom Auswerfer aussortiert.
Vorbedingungen:	Das Werkstück unterbricht LBM_1, entspricht nicht der gültigen Sortierreihenfolge, und beide Rampen sind leer.
Erwartung	Der Auswerfer auf FST_1 wird aktiviert, sortiert das ungültige Werkstück aus, und leitet es zur Rampe weiter, wodurch LBR_1 unterbrochen wird.

Systemtest-ID: 26	Weiche bei ungültigem Werkstück (Rampe 1 voll und 2 nicht voll)
Kurzbeschreibung:	Ein ungültiges Werkstück unterbricht LBM_1 und wird von der Weiche nicht aussortiert.
Vorbedingungen:	Das Werkstück unterbricht LBM_1, entspricht nicht den gültigen Höhenprofil, Rampe 1 ist voll und Rampe 2 ist nicht voll.
Erwartung	Das Werkstück wird nicht auf FST_1 aussortiert, wird weitergeleitet zur LBE_1 und LY_1 blinkt (1Hz)

Systemtest-ID: 27	Auswerfer bei ungültigem Werkstück (Rampe 1 voll und 2 nicht voll)
Kurzbeschreibung:	Ein ungültiges Werkstück unterbricht LBM_1 und wird vom Auswerfer nicht aussortiert.
Vorbedingungen:	Das Werkstück unterbricht LBM_1, entspricht nicht den gültigen Höhenprofil, Rampe 1 ist voll und Rampe 2 ist nicht voll.
Erwartung	Das Werkstück wird nicht auf FST_1 aussortiert, wird weitergeleitet zur LBE_1 und LY_1 blinkt (1Hz)

Systemtest-ID: 28	Weiche bei ungültigem Werkstück (Rampe 1 nicht voll und 2 voll)
Kurzbeschreibung:	Ein ungültiges Werkstück unterbricht LBM_1 und wird von der Weiche aussortiert.
Vorbedingungen:	Das Werkstück unterbricht LBM_1, entspricht nicht den gültigen Höhenprofil, Rampe 1 ist nicht voll und Rampe 2 ist voll.
Erwartung	Die Weiche auf FST_1 bleibt geschlossen, und das ungültige Werkstück wird an die Rampe weitergeleitet, LY_2 blinkt (1Hz)und beim Unterbrechen von LBR_1 stoppt M_1

Systemtest-ID: 29	Auswerfer bei ungültigem Werkstück (Rampe 1 nicht voll und 2 voll)
Kurzbeschreibung:	Ein ungültiges Werkstück unterbricht LBM_1 und wird vom Auswerfer aussortiert.
Vorbedingungen:	Das Werkstück unterbricht LBM_1, entspricht nicht den gültigen Höhenprofil, Rampe 1 ist nicht voll und Rampe 2 ist voll.
Erwartung	Der Auswerfer auf FST_1 wird aktiviert, sortiert das ungültige Werkstück aus, und leitet es zur Rampe weiter, LY_2 blinkt (1Hz) und beim Unterbrechen von LBR_1 stoppt M_1

Systemtest-ID: 30	Weiche bei ungültigem Werkstück (Rampe 1 und 2 voll)
Kurzbeschreibung:	Ein ungültiges Werkstück unterbricht LBM_1 und wird von der Weiche nicht aussortiert.
Vorbedingungen:	Das Werkstück unterbricht LBM_1, entspricht nicht den gültigen Höhenprofil und beide Rampen sind voll
Erwartung	Das Werkstück wird nicht auf FST_1 aussortiert, wird weitergeleitet zur LBE_1, LY_1 blinkt (1Hz) und LY_2 blinkt (1Hz)

Systemtest-ID: 31	Auswerfer bei ungültigem Werkstück (Rampe 1 und 2 voll)
Kurzbeschreibung:	Ein ungültiges Werkstück unterbricht LBM_1 und wird vom Auswerfer aussortiert.
Vorbedingungen:	Das Werkstück unterbricht LBM_1, entspricht nicht den gültigen Höhenprofil und beide Rampen sind voll
Erwartung	Das Werkstück wird nicht auf FST_1 aussortiert, wird weitergeleitet zur LBE_1, LY_1 blinkt (1Hz) und LY_2 blinkt (1Hz).

Systemtest-ID: 32	Schutz der Weiche nach Stopp von Motor
Kurzbeschreibung:	Die Weiche schließt sich nach 180 Sekunden automatisch, um sie vor Beschädigung zu schützen. Danach wird ein Fehler geworfen
Vorbedingungen:	M_1 ist für 180 Sekunden gestoppt und SD_1 offen
Erwartung	SD_1 schließt, LR_1 blinkt (1Hz), Q1 und Q2 an

Systemtest-ID: 33	Unterschreitung des Zeitintervalls beim Erreichen von LBE_1
Kurzbeschreibung:	Ein gültiges Werkstück wird von den Sorting-Modulen durchgelassen und nach LBE_1 weitergeleitet. LBE_1 wird zu früh unterbrochen, was zu einer fehlerhaften Unterbrechung führt.
Vorbedingungen:	LBM_1 ist offen, und das Werkstück hat den Sensor LBM_1 unterbrochen.
Erwartung	Unbekanntes Werkstück auf FST_1 erkannt, LR_1 blinkt mit 1 Hz, Q_12 leuchtet und M_1 stoppt

Systemtest-ID: 34	Überschreitung des Zeitintervalls beim Erreichen von LBE_1
Kurzbeschreibung:	Ein gültiges Werkstück wird von den Sorting-Modulen durchgelassen und nach LBE_1 weitergeleitet. LBE_1 wird zu spät unterbrochen, was zu einer Verzögerung im Prozess führt.
Vorbedingungen:	LBM_1 ist offen, und das Werkstück hat den Sensor LBM_1 unterbrochen.
Erwartung	Verlorenes Werkstück erkannt auf FST_1, LR_1 blinkt mit 0,5 Hz, Q_12 leuchtet und M_1 stoppt

Systemtest-ID: 35	Einhaltung des Zeitintervalls beim Erreichen von LBE_1
Kurzbeschreibung:	Ein gültiges Werkstück wird von den Sorting-Modulen durchgelassen und nach LBE_1 weitergeleitet. LBE_1 wird korrekt im vorgegebenen Zeitrahmen unterbrochen.
Vorbedingungen:	LBM_1 ist offen, und das Werkstück hat den Sensor LBM_1 unterbrochen.
Erwartung	Keinerlei Fehler erkannt und FST_1 ist weiterhin im Betrieb

Systemtest-ID: 36	Systemverhalten bei LBE_1_INTERRUPT mit Werkstück auf FST_2
Kurzbeschreibung:	Das System reagiert auf eine Unterbrechung von LBE_1, während sich ein Werkstück auf FST_2 befindet.
Vorbedingungen:	LBE_1 wird unterbrochen, während sich ein Werkstück auf FST_2 befindet.
Erwartung	M_1 stoppt bis auf Festo 2 kein Werkstück mehr ist

Systemtest-ID: 37	Unterschreitung des Zeitintervalls beim Erreichen von LBF_2
Kurzbeschreibung:	Ein Werkstück wird von FST_1 zu FST_2 weitergeleitet. LBF_2 wird zu früh unterbrochen, was zu einer fehlerhaften Unterbrechung führt.
Vorbedingungen:	LBE_1 ist offen, und das Werkstück hat den Sensor LBF_2 unterbrochen.
Erwartung	Unbekanntes Werkstück auf FST_2 erkannt, LR_2 blinkt mit 1 Hz, Q_21, Q_22 sind aus und M_2 stoppt

Systemtest-ID: 38	Überschreitung des Zeitintervalls beim Erreichen von LBF_2
Kurzbeschreibung:	Ein Werkstück wird von FST_1 zu FST_2 weitergeleitet. LBF_2 wird zu spät unterbrochen, was zu einer Verzögerung im Prozess führt.
Vorbedingungen:	LBE_1 ist offen, und das Werkstück hat den Sensor LBF_2 unterbrochen.
Erwartung	Verlorenes Werkstück auf FST_2 erkannt, LR_2 blinkt mit 0,5 Hz, Q_21, Q_22 sind aus und M_2 stoppt

Systemtest-ID: 39	Einhaltung des Zeitintervalls beim Erreichen von LBF_2
Kurzbeschreibung:	Ein Werkstück wird von FST_1 zu FST_2 weitergeleitet. LBF_2 wird korrekt im vorgegebenen Zeitrahmen unterbrochen.
Vorbedingungen:	LBE_1 ist offen, und das Werkstück hat den Sensor LBF_2 unterbrochen.
Erwartung	Keinerlei Fehler erkannt und FST_2 ist weiterhin im Betrieb

Systemtest-ID: 40	Synchrone Motorgeschwindigkeit bei Übergabe von FST_1 und FST_2
Kurzbeschreibung:	Ein Werkstück von FST_1 zu FST_2 weitergeleitet. Dabei ist die Motorgeschwindigkeit von FST_1 und FST_2 zu jeder Zeit gleich.
Vorbedingungen:	Ein Werkstück hat LBE_1 unterbrochen und auf FST_2 liegt kein Werkstück.
Erwartung	M_1 und M_2 laufen, solange FST_2 nicht unterbrochen und wieder frei, entweder beide gleichzeitig langsam, schnell oder gestoppt.

Systemtest-ID: 41	Fehler bei LBF_2_INTERRUPT mit Werkstück auf FST_2
Kurzbeschreibung:	Ein Werkstück wird auf FST_2 platziert und unterbricht LBF_2, während sich bereits ein Werkstück auf FST_2 befindet.
Vorbedingungen:	LBF_2 wird unterbrochen, während sich FST_2 in der Betriebsphase befindet.
Erwartung	Unbekanntes Werkstück auf FST_2 erkannt, LR_2 blinkt mit 1 Hz, Q_21, Q_22 sind aus und M_2 stoppt

Systemtest-ID: 42	Unterschreitung des Zeitintervalls beim Erreichen des HS_2
Kurzbeschreibung:	Ein Werkstück wird auf FST_2 weitergeleitet und unterbricht dabei LBF_2. Dadurch wird der Verarbeitungsprozess gestartet. HS_2 wird zu früh erreicht.
Vorbedingungen:	HS_2 erkennt Werkstück und beginnt die Messung
Erwartung	M_2 stoppt, LR_2 blinkt mit 1 Hz (anstehend quittiert) und Signalleuchte Q_21 leuchtet.

Systemtest-ID: 43	Überschreitung des Zeitintervalls beim Erreichen des HS_2
Kurzbeschreibung:	Ein Werkstück wird auf FST_2 weitergeleitet und unterbricht dabei LBF_2. Dadurch wird der Verarbeitungsprozess gestartet. HS_2 wird zu spät erreicht.
Vorbedingungen:	HS_2 erkennt Werkstück und beginnt die Messung
Erwartung	M_ 2 stoppt, LR_2 blinkt mit 0,5 Hz (gegangen unquittiert) und Signalleuchte Q_21 leuchtet.

Systemtest-ID: 44	Einhaltung des Zeitintervalls beim Erreichen des Höhensensor
Kurzbeschreibung:	Ein Werkstück wird auf FST_2 weitergeleitet und unterbricht dabei LBF_2. Dadurch wird der Verarbeitungsprozess gestartet. Das Werkstück erreicht HS_2 rechtzeitig.
Vorbedingungen:	HS_2 erkennt Werkstück und beginnt die Messung
Erwartung	M_2 ist an und kein Fehler wird ausgelöst.

Systemtest-ID: 45	Unterschreitung des Zeitintervalls beim Erreich von LBM_2
Kurzbeschreibung:	Ein Werkstück verlässt HS_2 und wird weitergeleitet zu LBM_2. Hier wird LBM_2 zu früh unterbrochen.
Vorbedingungen:	Die Messung des Werkstücks wurde abgeschlossen, und LBM_2 wurde unterbrochen
Erwartung	LR_2 blinkt mit 1 Hz (anstehend unquittiert), Q_21, Q_22 leuchten und M_2 stoppt.

Systemtest-ID: 46	Überschreitung des Zeitintervalls beim Erreich von LBM_2
Kurzbeschreibung:	Ein Werkstück verlässt HS_2 und wird weitergeleitet zu LBM_2. Das Werkstück unterbricht LBM_2 zu spät
Vorbedingungen:	Die Messung des Werkstücks wurde abgeschlossen, und LBM_2 wurde unterbrochen
Erwartung	LR_2 blinkt mit 0,5 Hz (gegangen unquittiert), Q_21, Q_22 leuchten und M_2 stoppt.

Systemtest-ID: 47	Einhaltung des Zeitintervalls beim Erreich von LBM_2
Kurzbeschreibung:	Ein Werkstück verlässt HS_2 und wird weitergeleitet zu LBM_2. LBM_2 wird zeitgerecht unterbrochen.
Vorbedingungen:	Die Messung des Werkstücks wurde abgeschlossen, und LBM_2 wurde unterbrochen
Erwartung	Keinerlei Fehler, Betrieb wird fortgesetzt.

Systemtest-ID: 48	Unterschiedliche Profilmessung zwischen FST_1 und FST_2
Kurzbeschreibung:	Ein Werkstück auf FST_2 weist ein anderes Höhenprofil auf als das Werkstück auf FST_1 und wird daher aussortiert, obwohl es dem Höhenprofil entspricht.
Vorbedingungen:	Das Werkstück wird auf FST_1 als Werkstück mit kleiner Bohrung erkannt und anschließend auf FST_2 als Werkstück mit großer Bohrung identifiziert.
Erwartung	Werkstück wird auf FST_2 aussortiert und zur Rampe 2 weitergeleitet

Systemtest-ID: 49	Weiche bei gültigem Werkstück (Rampe 2 nicht voll)
Kurzbeschreibung:	Ein gültiges Werkstück, das der Sortierreihenfolge entspricht, unterbricht LBM_2 und wird von der Weiche durchgelassen.
Vorbedingungen:	Werkstück unterbricht LBM_2, entspricht der gültigen Sortierreihenfolge und Rampe 2 ist leer
Erwartung	Die Weiche auf FST_2 öffnet sich und das Werkstück wird weitergereicht Richtung LBE_2

Systemtest-ID: 50	Auswerfer bei gültigem Werkstück (Rampe 2 nicht voll)
Kurzbeschreibung:	Ein gültiges Werkstück, das der Sortierreihenfolge entspricht, unterbricht LBM_2 und wird nicht von dem Auswerfer aussortiert
Vorbedingungen:	Werkstück unterbricht LBM_2, entspricht der gültigen Sortierreihenfolge und Rampe 2 ist leer
Erwartung	Der Auswerfer auf FST_2 sortiert das Werkstück nicht aus und wird weitergereicht Richtung LBE_2

Systemtest-ID: 51	Weiche bei gültigem Werkstück (Rampe 2 voll)
Kurzbeschreibung:	Ein gültiges Werkstück, das der Sortierreihenfolge entspricht, unterbricht LBM_2 und wird von der Weiche durchgelassen.
Vorbedingungen:	Werkstück unterbricht LBM_2, entspricht der gültigen Sortierreihenfolge und Rampe 2 ist voll
Erwartung	Die Weiche auf FST_2 öffnet sich und das Werkstück wird weitergereicht Richtung LBE_2. LY_2 blinkt (1Hz)

Systemtest-ID: 52	Auswerfer bei gültigem Werkstück Rampe 2 voll)
Kurzbeschreibung:	Ein gültiges Werkstück, das der Sortierreihenfolge entspricht, unterbricht LBM_2 und wird nicht von dem Auswerfer aussortiert
Vorbedingungen:	Werkstück unterbricht LBM_2, entspricht der gültigen Sortierreihenfolge und Rampe 2 ist voll
Erwartung	Der Auswerfer auf FST_2 sortiert das Werkstück nicht aus und wird weitergereicht Richtung LBE_2. LY_2 blinkt (1Hz)

Systemtest-ID: 53	Weiche bei ungültigem Werkstück (Rampe 2 nicht voll)
Kurzbeschreibung:	Ein ungültiges Werkstück unterbricht LBM_2 und wird von der Weiche aussortiert.
Vorbedingungen:	Das Werkstück unterbricht LBM_2, entspricht nicht den gültigen Höhenprofil, Rampe ist nicht voll.
Erwartung	Die Weiche auf FST_2 bleibt geschlossen, das ungültige Werkstück wird zur Rampe aussortiert. Beim Unterbrechen von LBR_2 wird M_2 gestoppt.

Systemtest-ID: 54	Auswerfer bei ungültigem Werkstück (Rampe 2 nicht voll)
Kurzbeschreibung:	Ein ungültiges Werkstück unterbricht LBM_2 und wird vom Auswerfer aussortiert.
Vorbedingungen:	Das Werkstück unterbricht LBM_2, entspricht nicht den gültigen Höhenprofil, Rampe ist nicht voll.
Erwartung	Der Auswerfer auf FST_2 wird aktiviert, sortiert das ungültige Werkstück aus, und leitet es zur Rampe weiter und beim Unterbrechen von LBR_2 stoppt M_2

Systemtest-ID: 55	Weiche bei ungültigem Werkstück (Rampe 2 voll)
Kurzbeschreibung:	Ein ungültiges Werkstück unterbricht LBM_2 und wird von der Weiche nicht aussortiert.
Vorbedingungen:	Das Werkstück unterbricht LBM_2, entspricht nicht den gültigen Höhenprofil und Rampen 2 ist voll
Erwartung	Fehler "Rampen voll" wird erkannt, LR_2 blinkt mit 1 Hz, LY_2 leuchtet, M_1 und M_2 stoppen. Signalleuchte Q_21 und Q_22 leuchten.

Systemtest-ID: 56	Auswerfer bei ungültigem Werkstück (Rampe 2 voll)		
Kurzbeschreibung:	Ein ungültiges Werkstück unterbricht LBM_2 und wird vom Auswerfer nicht aussortiert.		
Vorbedingungen:	Das Werkstück unterbricht LBM_2, entspricht nicht den gültigen Höhenprofil und Rampen 2 ist voll		
Erwartung	Fehler "Rampen voll" wird erkannt, LR_2 blinkt mit 1 Hz, LY_2 leuchtet, M_1 und M_2 stoppen. Signalleuchte Q_21 und Q_22 leuchten.		

Systemtest-ID: 57	Unterschreitung des Zeitintervalls beim Erreichen von LBE_2			
Kurzbeschreibung:	Ein gültiges Werkstück wird von den Sorting-Modulen durchgelassen und nach BE_2 weitergeleitet. LBE_2 wird zu früh unterbrochen, was zu einer ehlerhaften Unterbrechung führt.			
Vorbedingungen:	LBM_2 ist offen, und das Werkstück hat den Sensor LBE_2 unterbrochen.			
Erwartung	Unbekanntes Werkstück auf FST_2 erkannt, LR_2 blinkt mit 1 Hz, Q_22 leuchtet und M_2 stoppt			

Systemtest-ID: 58	Überschreitung des Zeitintervalls beim Erreichen von LBE_2			
Kurzbeschreibung:	Ein gültiges Werkstück wird von den Sorting-Modulen durchgelassen und nach LBE_2 weitergeleitet. LBE_2 wird zu spät unterbrochen, was zu einer Verzögerung im Prozess führt.			
Vorbedingungen:	LBM_2 ist offen, und das Werkstück hat den Sensor LBE_2 unterbrochen.			
Erwartung	Verlorenes Werkstück erkannt auf FST_2, LR_2 blinkt mit 0,5 Hz, Q_22 leuchtet und M_2 stoppt			

Systemtest-ID: 59	Einhaltung des Zeitintervalls beim Erreichen von LBE_2			
Kurzbeschreibung:	Ein gültiges Werkstück wird von den Sorting-Modulen durchgelassen und nach LBE_2 weitergeleitet. LBE_2 wird korrekt im vorgegebenen Zeitrahmen unterbrochen.			
Vorbedingungen:	LBM_2 ist offen, und das Werkstück hat den Sensor LBE_2 unterbrochen.			
Erwartung	Keinerlei Fehler erkannt auf FST_2 und M_2 stoppt			

Systemtest-ID: 60	Das Werkstück wird an LBE_2 von FST_2 entnommen
Kurzbeschreibung:	Ein gültiges Werkstück hat ordnungsgemäß LBE_2 unterbrochen und muss nun vom Benutzer entnommen werden.
Vorbedingungen:	LBE_1 und LBE_2 sind unterbrochen, M_1 und M_2 sind gestoppt.
Erwartung	FST_1 und FST_2 kehren in die Betriebsphase zurück

Systemtest-ID: 61	Stop Verhalten erreichbar aus Betriebszustand
Kurzbeschreibung:	Die Stop-Funktion wird während der Betriebszustand ausgelöst. Unabhängig davon, ob BRS_1 oder BRS_2 betätigt wurde.
Vorbedingungen:	Beide Festo-Anlagen befinden sich im Betriebszustand und keine Warnings vorhanden.
Erwartung	M_1 und M_2 stoppen und LEDs auf beiden Anlagen gehen aus

Systemtest-ID: 62	Heartbeat ist bei Start vorhanden
Kurzbeschreibung:	Die Heartbeats von FST_1 und FST_2 erreichen sich zum Start gegenseitig. Anschließend wird der Service-Mode aktiviert.
Vorbedingungen:	FST_1 und FST_2 wurden eingeschaltet. SES_1 und SES_2 wurden 1x gezogen
Erwartung	LG_1 und LG_2 blinken mit 1Hz

Systemtest-ID: 63	Heartbeat zwischen FST_1 und FST_2 schlägt fehl		
Kurzbeschreibung:	FST_1 und FST_2 werden voneinander logisch und physisch getrennt,		
Vorbedingungen:	FST_1 oder FST_2 sind im Service Mode oder im Betriebsmodus. Das LAN-Kabel von FST_2 ist getrennt.		
Erwartung	M_1 und M_2 sind gestoppt. LG_1, LG_2 sind an; LR_1, LR_2 blinken (2 Hz); LY_1, LY_2 sind an;		

Systemtest-ID: 64	Wiederherstellung des Heartbeats
Kurzbeschreibung:	Wiederherstellung der Verbindung von FST_1 und FST_2. Danach befindet sich das System in Start Zustand.
Vorbedingungen:	Systemtest 66 ist durchgeführt. Der Heartbeat ist wiederhergestellt durch Verbinden von FST_1 und FST_2.
Erwartung	M_1 und M_2 sind gestoppt, Alle LED sind aus. Durch Ziehen von SES_1 und SES_2 ist Service-Modus erreichbar.

Systemtest-ID: 65	Erreichen des Service-Modus
Kurzbeschreibung:	Der Button BGS_X wird für mindestens 2 Sekunden gedrückt, dann gehen FST_1 und FST_2 in den Service Modus
Vorbedingungen:	FST_1 und FST_2 sind im Ready-Zustand oder im Ruhezustand
Erwartung	M_1 und M_2 sind gestoppt. LG_1 und LG_2 blinkt mit (1Hz)

6.4 Testprotokolle und Auswertungen

Tabelle 19: Abnahmetest-Auswertung

Abnahmetest-ID	Erfüllt	Nicht erfüllt	Datum	Kommentar
1				
2				
3				
4				
5				
6				
7				
8				

Tabelle 20: Systemtest-Auswertung

Systemtest-ID	Erfüllt	Nicht erfüllt	Datum	Kommentar
1	X		21.1.25	
	X		22.2.25	
2	X		21.1.25	
	X		22.1.25	
3	X		21.1.25	
	X		22.1.25	
4			21.1.25	
	X		22.1.25	
5	X		22.1.25	
	x		22.1.25	
6	Х		22.1.25	
	X			
7	Х		21.1.25	
	X		22.1.25	
8	Х		21.1.25	
	X		22.1.25	
9	X		21.1.25	
	X		22.1.25	
10	Х		21.1.25	
	X		22.1.25	
11	Х		21.1.25	
	X		22.1.25	
12	Х		21.1.25	

	X		22.1.25	
13	X		22.1.25	
	X			
14	Х		21.1.25	
	X		22.1.25	
15	Х		21.1.25	
	X			
16	Х		21.1.25	
	X			
17	Х		21.1.25	
18	X		21.1.25	
19	Х		21.1.25	
20	X		21.1.25	
21	Х		21.1.25	
22	X		21.1.25	
23	X		21.1.25	
24	X		21.1.25	
25	X		21.1.25	
26	X		21.1.25	
27	X		21.1.25	
28	X		21.1.25	
29	X		21.1.25	
30	X		21.1.25	
31	X		21.1.25	
32	X		21.1.25	
33	X		21.1.25	
34	Х		21.1.25	
35	Х		21.1.25	
36	X		21.1.25	
37		Х	21.1.25	
38		Х	21.1.25	
39	Х		21.1.25	
40		X	21.1.25	
41	Х		21.1.25	
42	Х		21.1.25	
43	Х		21.1.25	
44	X		21.1.25	
45	X		21.1.25	
46	Х		21.1.25	
47	Х		21.1.25	
48	Х		21.1.25	
49	Х		21.1.25	
50	Х		21.1.25	
51	X		21.1.25	
52	X		21.1.25	
53	X		21.1.25	
54	X		21.1.25	
55	X		21.1.25	

56	X		21.1.25	
57	X		21.1.25	
58		X	21.1.25	
59	X		21.1.25	
60	X		21.1.25	
61	X		21.1.25	
62	X		21.1.25	
63		X	21.1.25	
64		X	21.1.25	
65	X		21.1.25	

7 Technische Schulden

Hartcodierung von Werkstückprofilen

- **Problem:** Die Profile der Werkstücke wurden hartcodiert, was die Flexibilität und Anpassungsfähigkeit des Systems einschränken.
- **Grund**: Die Profile wurden im Code festgelegt, ohne eine dynamische Möglichkeit zur Anpassung zu berücksichtigen. Dies wurde aus zeitlichen Gründen während der Entwicklung implementiert.
- **Auswirkung:** Änderungen an den Profilen erfordern Anpassungen im Quellcode, was zusätzlichen Entwicklungsaufwand verursacht.

Hartcodierung der Reihenfolge

- **Problem**: Die Reihenfolge von Abläufen wurde hartcodiert, anstatt sie dynamisch konfigurierbar zu machen.
- **Grund**: Um die Abläufe schnell und ohne zu viel Komplexität zu implementieren, wurden feste Reihenfolgen im Code hinterlegt.
- **Auswirkung**: Änderungen in der Prozessreihenfolge erfordern Änderungen am Code, was die Anpassung an neue Anforderungen erschwert.

Unterschiedliche Abstände der Werkstücke für Weiche und Auswerfer

- Problem: Es gibt zwei Anlagenvarianten eine mit Weiche und eine mit Auswerfer. Auf den Anlagen mit Auswerfer können Werkstücke deutlich früher aufgelegt werden, da der Auswerfer Werkstücke effizienter und schneller aussortiert. Im Gegensatz dazu benötigt die Weiche einen größeren Abstand zwischen den Werkstücken, um Staus im System zu vermeiden. Diese Unterschiede in den Abständen sind derzeit nicht einheitlich definiert.
- **Grund:** Die unterschiedliche Funktionsweise der beiden Anlagen erfordert verschiedene Abstände. Der Auswerfer kann effizienter arbeiten, schneller sortieren und einen höheren Durchsatz erreichen, während die Weiche auf größere Abstände angewiesen ist, um einen reibungslosen Betrieb ohne Stau zu gewährleisten.
- Auswirkung: Die mangelnde Einheitlichkeit führt dazu, dass beim Einsatz von Anlagen mit Weiche ein geringerer Durchsatz erzielt wird, während die Auswerfer-Anlagen deutlich leistungsfähiger sind. Eine Standardisierung oder Anpassung an die spezifischen Anforderungen der jeweiligen Anlage könnte die Effizienz und den Durchsatz optimieren.

Fehlererkennung zwischen dem Transfer des Werkstücks von FST_1 zu FST_2

- **Problem:** Die Fehlererkennung beim Transfer des Werkstücks von FST_1 zu FST_2 ist verbesserungsbedürftig, da ein Fehler erst nach einer größeren Verzögerung erkannt wird.
- **Grund**: Die Verzögerung bei der Fehlererkennung entsteht durch die komplexe Berechnung der erwarteten Zeit, die aufgrund der zwei zu berücksichtigenden Motoren schwer exakt vorherzusagen ist. Diese komplexe Synchronisation erschwert die genaue Einschätzung des zeitlichen Rahmens für den Transfer, was zu einer verspäteten Identifizierung von Fehlern führt.
- Auswirkung: Diese verzögerte Fehlererkennung beeinträchtigt die Effizienz des Systems, da Probleme erst spät erkannt und damit später behoben werden. Das führt zu potenziellen Betriebsstörungen und verringert die Systemzuverlässigkeit.

8 Bekannte Mängel

- Das fehlende Erreichen der Rutsche von einem aussortierten Stein wird insbesondere bei FST_2 nicht erkannt. Motor läuft bis Fehler auftritt oder LBR_2 unterbrochen
- Servicemode ist nur nach dem verlassen des Ready-Zustands verfügbar
- Entfernen eines Werkstücks zwischen den Rutschen führt zu unnötigem Aussortieren von bis zu 2 Steinen
- Es kommt vor, dass das Verschwinden eines Puks hinter LBM_2 nicht bemerkt wird und kein Fehler geworfen wird. Der Motor M_2 läuft weiter. Erst ein E_Stop unterbricht dieses Verhalten

9 Lessons Learned

- Teamorganisation
- Aufgabenteilung und -verteilung
- Bessere Übersicht und Kommunikation
- Ehrlichkeit und Offenheit
- Dokumentation und Arbeitsstruktur Projektmanagement
- Verbesserte Planung

10 Anhang

10.1 Glossar

Begriff	Erklärung	
_X	_X am Ende eines Wortes oder einer Abkürzung beschreibt, dass beide Anlagen gemeint sind.	
	Bspw.	
	FST_X bedeutet FST_1 oder FST_2	
	BGS_X bedeutet BGS_1 oder BGS_2	
	• Etc.	
Start-/Ready - Zustand	Festo-Anlage wurde mit Stromversorgt und ist angeschaltet und wartet auf Bedienung.	
Ruhezustand/Modus	Festo-Anlage wurde mit BRS_X gestoppt oder der Service-Mode wurde beendet.	
Betriebszustand	Die Festo-Anlage ist bereit Werkstücke ordnungsgemäß entgegenzunehmen.	
Betriebs-Modus /Phase	Das System ist im aktiven Verarbeitungsprozess. Werkstücke wurden bereits ordnungsgemäß aufgelegt und werden ausgewertet.	
korrekter/gültiges Werkstück	Von der Aufgabenstellung relevante Werkstücke:	
	 Hoch mit kleiner Bohrung (mit und ohne Metalleinsatz) 	
	Hoch mit großer Bohrung	
Fehlerhafter/ungültiges Werkstück	Von der Aufgabenstellung irrelevante Werkstücke:	
	• Flach	
	Binär-codiert	
	Hoch ohne Bohrung	
Sortieranlage, FST bzw. Festo und Förderbandmodulen	Ist der Festo-Transfersystem gemeint, die in der Aufgabenstellung (Abschnitt 2) erklärt wurde.	
Heartbeat	Meldung an die jeweils andere FST-Anlage, dass diese erreichbar ist.	

10.2 Abkürzungen

Systemnummer/Festo Nr. (FST)	Vollständiger Name	Kürzel
FST	Button_Green_Start	BGS
FST	Button_Grey_Reset	BGR
FST	Button_Red_Stop	BRS
FST	Button_Green_Start_LED	BGSL
FST	Button_Grey_Reset_LED	BGRL
FST	Heightsensor	HS
FST	Lamp	L
FST	Lam_Green	LG
FST	Lamp_Red	LR
FST	Lamp_Yellow	LY
FST	Lightbarrier_End	LBE
FST	Lightbarrier_Front	LBF
FST	Lightbarrier_Metallsensor	LBM
FST	Lightbarrier_Ramp	LBR
FST	Metalsensor	MS
FST	Motor	M
FST	Sorting_Diverter	SD
FST	Sorting_Ejector	SE
FST	Sorting_Module	SM
FST	Switc_EStop	SES
FST	Signal_light_1	Q_1
FST	Signal_ligh_2	Q_2
FST_1	Button_Green_Start_FST_1	BGS_1
FST_1	Button_Grey_Reset_FST_1	BGR 1
FST_1	Button_Red_Stop_FST_1	BRS_1
FST_1	Button Green Start LED_1	BGSL_1
FST_1	Button_Grey_Reset_LED_1	BGRL_1
FST_1	Heightsensor_FST_1	HS_1
FST_1	Lamp_FST_1	L_1
FST_1	Lamp_Green_FST_1	LG_1
FST_1	Lapm_Red_FST_1	LR_1
FST_1	Lamp_Yellow_FST_1	LY_1
FST_1	Lightbarrier_End_FST_1	LBE_1
FST_1	Lightbarrier_Front_FST_1	LBF_1
FST_1	Lightbarrier_Metallsensor_FST_1	LBM_1
FST_1	Lightbarrier_Ramp_FST_1	LBR_1
FST_1	Metalsensor_FST_1	MS_1
FST_1	Motor_FST_1	M_1
FST_1	Sorting_Diverter_FST_1	SD_1
FST_1	Sorting_Ejector_FST_1	SE_1
FST_1	Sorting_Module_FST_1	SM_1
FST 1	Switch_Etop_FST_1	SES_1
FST_1	Signal_light_1_FST_1	Q_11

FST_1	Signal_light_2_FST_1	Q_12
FST_2	Button_Green_Start_FST_2	BGS
FST_2	Button_Grey_Reset_FST_2	BGR_2
FST_2	Button_Red_Stop_FST_2	BRS_2
FST_2	Button_Green_Start_LED_2	BGSL_2
FST_2	Button_Grey_Reset_LED_2	BGRL_2
FST_2	Heightsensor_FST_2	HS_2
FST_2	Lamp_FST_2	L_2
FST_2	Lamp_Green_FST_2	LG_2
FST_2	Lapm_Red_FST_2	LR_2
FST_2	Lamp_Yellow_FST_2	LY_2
FST_2	Lightbarrier_End_FST_2	LBE_2
FST_2	Lightbarrier_Front_FST_2	LBF_2
FST_2	Lightbarrier_Metallsensor_FST_2	LBM_2
FST_2	Lightbarrier_Ramp_FST_2	LBR_2
FST_2	Metalsensor_FST_2	MS_2
FST_2	Motor_FST_2	M_2
FST_2	Sorting_Diverter_FST_2	SD_2
FST_2	Sorting_Ejector_FST_2	SE_2
FST_2	Sorting_Module_FST_2	SM_2
FST_2	Switch_EStop_FST_2	SES_2
FST_2	Signal_light_1_FST_2	Q_21
FST_2	Signal_light_2_FST_2	Q_22