REPRESENTING DATA

Machine language

Computers understand only one language: *machine language*.

Machine language consists of sets of instructions made of ones and zeros.

Binary Code

Example of a single instruction: 00000 10011110

Everything in the computer is stored as a binary number that codifies specific information.

For example, the values of the data processed by programs are stored as binary numbers.

Unsigned Integer Numbers

An unsigned integer number is a is a whole number $\in \mathbb{N}$ (not a fractional number) that does not have a sign (i.e., it can be positive or zero).

The minimum and maximum values you can represent depend on the number of bits you have at your disposal.

With 8 bits:

> the minimum representable unsigned integer number is 0

 \triangleright the maximum representable unsigned integer number is $2^8-1 = 255$

Signed Integer Numbers

A signed integer number is a is a whole number $\in \mathbb{N}$ (not a fractional number) that has a sign (i.e., it can be positive, negative, or zero).

Representing **positive** signed integer numbers is the same as representing unsigned integer numbers.

Example: representing the signed integer number +45 in 1 byte (8 bits):

There are two ways to represent a **negative** signed integer number:

- 1. Signed magnitude
- 2. 2's complement

Signed Integer Numbers – Signed Magnitude

Reserve the first bit as sign:

- 0 stands for +
- 1 stands for -

Example: representing the signed integer number +45 in 1 byte (8 bits):

The 2's complement of a number is calculated as follows:

- invert all bits (i.e., bitwise not), then
- add a place value of **1** to the entire inverted number.

The 2's complement of a number is calculated as follows:

- invert all bits (i.e., bitwise not), then
- add a place value of **1** to the entire inverted number.

The 2's complement of a number is calculated as follows:

- invert all bits (i.e., bitwise not), then
- add a place value of **1** to the entire inverted number.

Example: representing the signed integer number -45 in 1 byte (8 bits):

INVERT: 0 0 1 0 1 1 0 1

The 2's complement of a number is calculated as follows:

- invert all bits (i.e., bitwise not), then
- add a place value of **1** to the entire inverted number.

The 2's complement of a number is calculated as follows:

- invert all bits (i.e., bitwise not), then
- add a place value of **1** to the entire inverted number.

The 2's complement of a number is calculated as follows:

- invert all bits (i.e., bitwise not), then
- add a place value of **1** to the entire inverted number.

The 2's complement of a number is calculated as follows:

- invert all bits (i.e., bitwise not), then
- add a place value of **1** to the entire inverted number.

The 2's complement of a number is calculated as follows:

- invert all bits (i.e., bitwise not), then
- add a place value of **1** to the entire inverted number.

The 2's complement of a number is calculated as follows:

- invert all bits (i.e., bitwise not), then
- add a place value of **1** to the entire inverted number.

The 2's complement of a number is calculated as follows:

- invert all bits (i.e., bitwise not), then
- add a place value of **1** to the entire inverted number.

The 2's complement of a number is calculated as follows:

- invert all bits (i.e., bitwise not), then
- add a place value of **1** to the entire inverted number.

The 2's complement of a number is calculated as follows:

- invert all bits (i.e., bitwise not), then
- add a place value of **1** to the entire inverted number.

The 2's complement of a number is calculated as follows:

- invert all bits (i.e., bitwise not), then
- add a place value of **1** to the entire inverted number.

The 2's complement of a number is calculated as follows:

- invert all bits (i.e., bitwise not), then
- add a place value of **1** to the entire inverted number.

The 2's complement of a number is calculated as follows:

- invert all bits (i.e., bitwise not), then
- add a place value of **1** to the entire inverted number.

The 2's complement of a number is calculated as follows:

- invert all bits (i.e., bitwise not), then
- add a place value of **1** to the entire inverted number.

The 2's complement of a number is calculated as follows:

- invert all bits (i.e., bitwise not), then
- add a place value of **1** to the entire inverted number.

The 2's complement of a number is calculated as follows:

- invert all bits (i.e., bitwise not), then
- add a place value of **1** to the entire inverted number.

The 2's complement of a number is calculated as follows:

- invert all bits (i.e., bitwise not), then
- add a place value of **1** to the entire inverted number.

The 2's complement of a number is calculated as follows:

- invert all bits (i.e., bitwise not), then
- add a place value of **1** to the entire inverted number.

The 2's complement of a number is calculated as follows:

- invert all bits (i.e., bitwise not), then
- add a place value of **1** to the entire inverted number.

The 2's complement of a number is calculated as follows:

- invert all bits (i.e., bitwise not), then
- add a place value of **1** to the entire inverted number.

The 2's complement of a number is calculated as follows:

- invert all bits (i.e., bitwise not), then
- add a place value of **1** to the entire inverted number.

The 2's complement of a number is calculated as follows:

- invert all bits (i.e., bitwise not), then
- add a place value of **1** to the entire inverted number.

The 2's complement of a number is calculated as follows:

- invert all bits (i.e., bitwise not), then
- add a place value of **1** to the entire inverted number.

The 2's complement of a number is calculated as follows:

- invert all bits (i.e., bitwise not), then
- add a place value of 1 to the entire inverted number.

2'S COMPLEMENT
IS USED IN C AND
C++ TO REPRESENT
SIGNED INTEGER
NUMBERS

2's complement:

1 1 1 1 1 1 1 1

The minimum and maximum values you can represent depend on the number of bits you have at your disposal.

With 8 bits and 2's complement representation:

> the minimum representable unsigned integer number is:

> the maximum representable unsigned integer number is:

Which numbers are these? Let's make the math

<u>Calculations:</u>

With 8 bits:

- \rightarrow MIN = ???
- \rightarrow MAX = ???

Calculations:

With 8 bits:

- \rightarrow MIN = ???
- ➤ MAX = ???

domain of a signed integer number with 8 bits

<u>Calculations:</u>

With 8 bits:

- \rightarrow MIN = ???
- \rightarrow MAX = ???

domain of a signed integer number with 8 bits

<u>Calculations:</u>

- \rightarrow MIN = ???
- \rightarrow MAX = ???

<u>Calculations:</u>

- \rightarrow MIN = $-2^8/2$
- \rightarrow MAX = $+2^8/2$

Calculations:

- \rightarrow MIN = -2^7
- \rightarrow MAX = +2⁷

<u>Calculations:</u>

- \rightarrow MIN = -2^7
- \rightarrow MAX = $+2^{7}-1$

<u>Calculations:</u>

- \rightarrow MIN = $-2^7 = -128$
- \rightarrow MAX = $+2^{7}-1 = 128-1 = 127$

The minimum and maximum values you can represent depend on the number of bits you have at your disposal.

With 8 bits and 2's complement representation:

> the minimum representable unsigned integer number is:

> the maximum representable unsigned integer number is:

$$0 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ \longrightarrow (+127)_{10}$$

A floating-point number is a is a fractional/real number $\in \mathbb{R}$. It has a sign (i.e., it can be positive, negative, or zero).

They have their own protocol for representation (i.e., a set of specific rules that allow for codification and de-codification of the information).

A floating-point number is a is a fractional/real number $\in \mathbb{R}$. It has a sign (i.e., it can be positive, negative, or zero).

For example, the *IEEE 754 double-precision binary floating-point format*, which represents a real number with 64 bits:

- •
- •
- •

Example:

A floating-point number is a is a fractional/real number $\in \mathbb{R}$. It has a sign (i.e., it can be positive, negative, or zero).

For example, the IEEE 754 double-precision binary floating-point format, which represents a real number with 64 bits:

- 1 bit for sign \rightarrow 2¹ = 2 possibilities for the sign

Example:

A floating-point number is a is a fractional/real number $\in \mathbb{R}$. It has a sign (i.e., it can be positive, negative, or zero).

For example, the *IEEE 754 double-precision binary floating-point format*, which represents a real number with 64 bits:

- 1 bit for sign \rightarrow 2¹ = 2 possibilities for the sign
- •
- 52 bits for mantissa → 2⁵² = 4.5036E+15 possibilities for mantissa

A floating-point number is a is a fractional/real number $\in \mathbb{R}$. It has a sign (i.e., it can be positive, negative, or zero).

For example, the *IEEE 754 double-precision binary floating-point format*, which represents a real number with 64 bits:

- 1 bit for sign \rightarrow 2¹ = 2 possibilities for the sign
- 11 bits for exponent \rightarrow 2¹¹ = 2048 possibilities for exponent
- 52 bits for mantissa → 2⁵² = 4.5036E+15 possibilities for mantissa

Example:

A floating-point number is a is a fractional/real number $\in \mathbb{R}$. It has a sign (i.e., it can be positive, negative, or zero).

For example, the *IEEE 754 double-precision binary floating-point format*, which represents a real number with 64 bits:

- 1 bit for sign \rightarrow 2¹ = 2 possibilities for the sign
- 11 bits for exponent → 2¹¹ = 2048 possibilities for exponent
- 52 bits for mantissa \rightarrow 2⁵² = 4.5036E+15 possibilities for mantissa If you make the math, this is $2^1 \cdot 2^{52} \cdot (2^{11} 2) = 1.84287E+19$ discrete values!

Sign

Example:→ 0.3213242 •

Mantissa

Floating-Point Numbers - MIN and MAX

The minimum and maximum values you can represent depend on the number of bits you have at your disposal.

EXERCISE FOR HOME:

Calculate the minimum and maximum representable numbers with the *IEEE 754* double-precision binary floating-point format.