PCT/DE 99 / 00975

BUNDESREPUBLIK DEUTSCHLAND

09/720190

PRIORITY

SUBMITTED OR TRANSMITTED IN

COMPLIANCE WITH RULE 17.1(a) OR (b)

DE 39/00975

1 4 JUN 1999

1250

Bescheinigung

JAN 0 2 2003 C 1700

Herr Professor Dr. Klaus-Dieter Vorlop in Braunschweig/Deutschland hat eine Patentanmeldung unter der Bezeichnung

"Verfahren zur Herstellung eines Gels aus Polyvinylalkohol und nach dem Verfahren hergestelltes mechanisch hochstabiles Gel"

am 20. Juni 1998 beim Deutschen Patent- und Markenamt eingereicht.

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

Die Anmeldung hat im Deutschen Patent- und Markenamt vorläufig die Symbole C 08 L, C 08 J und C 08 K der Internationalen Patentklassifikation erhalten.

München, den 18. Mai 1999

Deutsches Patent- und Markenamt

Der Präsident

Im Auftrag

.... Λαια**α**g

Aktenzeichen: 198 27 552.8

Seiler

GRAMM, UNS & PARTNER GbR, Theodor-Heuss-Str. 1, D-38122 Braunschweig

Prof. Dr. Klaus-Dieter Vorlop Hochstraße 7

38102 Braunschweig

Braunschweig:

Patentanwalt Prof. Dipl.-Ing. Werner Gramm** Patentanwalt Dipl.-Phys. Dr. jur. Edgar Lins** Rechtsanwalt Hanns-Peter Schrammek Patentanwalt Dipl.-Ing. Thorsten Rehmann** Patentanwalt Dipl.-Ing. Justus E. Funke**(†1997) Rechtsanwalt Christian S. Drzymalia

Hannover:

Patentanwältin Dipl.-Chem. Dr. Martina Läufer™

- * European Patent Attorney
- * European Trademark Attorney

Unser Zeichen/Our ref.: 1752-004 DE-1

Datum/Date
19. Juni 1998

Verfahren zur Herstellung eines Gels aus Polyvinylalkohol und nach dem Verfahren hergestelltes mechanisch hochstabiles Gel

Die Erfindung betrifft ein Verfahren zur Herstellung eines Gels aus Polyvinylalkohol. Die Erfindung betrifft ferner ein nach dem Verfahren hergestelltes mechanisch hochstabiles Gel.

Es ist bekannt, daß Polyvinylalkohol (PVA) enthaltende Lösungen beim Stehenlassen eine Viskositätserhöhung zeigen. Es ist auch bekannt, daß sich PVA-Lösungen zu einem Gel umwandeln lassen, wenn die Lösung eingefroren und anschließend wieder aufgetaut wird (FR 2 107 711 A). Die so hergestellten Gele weisen allerdings eine relativ geringe Festigkeit auf.

Durch EP 0 107 055 B1 ist es ferner bekannt, die Festigkeit der durch Gefrieren hergestellten PVA-Gele dadurch zu erhöhen, daß der Einfrier- und Auftauvorgang wenigstens einmal, vorzugsweise zwei- bis fünfmal wiederholt wird. Dabei wird eine PVA-Lösung mit einem Verseifungsgrad von \geq 95 mol%, vorzugsweise von \geq 98 mol% verwendet. Die obere Grenztemperatur für das Gefrieren der Lösung beträgt -3°C, die Abkühlrate kann zwischen 0,1°C/min und 50°C/min liegen, die Auftaurate

25

10

Hannover:

Koblenzer Straße 21 D-30173 Hannover Bundesrepublik Deutschland Telefon 0511 / 988 75 07 Telefax 0511 / 988 75 09 Antwort bitte nach / please reply to:

Braunschweig:

Theodor-Heuss-Straße 1 D-38122 Braunschweig Bundesrepublik Deutschland Telefon 0531 / 28 14 0-0 Telefax 0531 / 28 140 28

zwischen 1°C/min bis 50°C/min. Das eingesetzte PVA hat einen Polymerisierungsgrad vom mindestens 700. Die Konzentration des PVA in der Lösung sollte über 6 Gew% liegen und liegt vorzugsweise zwischen 6 und 25 Gew%. Das durch das mehrfach wiederholte Einfrieren und Auftauen hergestellt PVA-Gel hat eine 5 gute mechanische Festigkeit und einen hohen Wassergehalt, der auch unter mechanischer Belastung beibehalten wird. Das hergestellte Gel ist hochelastisch, nicht toxisch und läßt sich für viele, insbesondere medizinische Anwendungen einsetzen. 10 Dem Gel können verschiedene Substanzen und Materialien beigemischt werden, die einerseits die Festigkeit erhöhen können, Glycol, Glycerin, Saccharose, Glucose, Agar, Gelatine, Methylcellulose usw. Durch Zugabe von Wirkstoffen, wie beispielsweise Heparin, können medizinische Anwendungen verwirk-15 licht werden, bei denen der Wirkstoff kontinuierlich und gleichmäßig über lange Zeit aus dem Gel abgegeben wird. Das Gel kann ferner mit Mikroorganismen und Enzymen versetzt werden, um ein biologisch aktives System zu schaffen.

Durch die US-PS 4 663 358 ist es bekannt, der wäßrigen Polyvinylalkohollösung organische Lösungsmittel hinzuzufügen, um so den Gefrierpunkt der Lösung abzusenken. Dadurch wird erreicht, daß bei Gelierungstemperaturen, die unter -10 °C, vorzugsweise bei etwa -20 °C, liegen, ein Gefrieren des Wassers vermieden wird, wodurch ein homogeneres und damit transparenteres Gel erreicht wird. Die niedrige Gelierungstemperatur wird für die Bildung feinkristalliner Gele durchgeführt, die eine ausreichende mechanische Festigkeit haben.

Die Herstellung der PVA-Gele mit der Gefriertechnik ist aufwendig und zeitraubend.

35

Durch DE 43 27 923 C2 ist ein Verfahren bekannt, mit dem PVA-Gele ohne einen Gefriervorgang hergestellt werden können.

Durch die Verwendung einer PVA-Lösung mit einem Hydrolysegrad von ≥ 99 mol-% und Zugabe eines gelösten Zusatzstoffes, der nichtwässrige OH- bzw. NH₂-Gruppen aufweist, läßt sich die Ge-

lierung des PVA bei Temperaturen über 0°C erreichen. Der Gelierungsvorgang benötigt dabei allerdings Zeiten von einigen Stunden, die ggf. durch eine weitere Lagerzeit von vielen Stunden zum Zwecke der Aushärtung zur vollen Stabilität der Gelkörper ergänzt wird. Dies ist für eine Herstellung größerer Gelkörpermengen im gewerblichen Maßstab naturgemäß nachteilig.

Die der vorliegenden Erfindung zugrundeliegende Problemstellung besteht daher darin, die PVA-Gelkörper einfach und schnell herstellen zu können und dabei möglichst die Qualität der hergestellten Gelkörper noch zu verbessern.

Ausgehend von dieser Problemstellung wird erfindungsgemäß das Verfahren zur Herstellung eines Gels aus Polyvinylalkohol mit folgenden Verfahrensschritten ausgeführt:

Vor Logica

33

5

10

15

- a) Verwendung einer wässrigen Polyvinylalkohol-Lösung mit einem Hydrolysegrad von > 98 mol-%
- 20 b) Zugabe eines Zusatzstoffes, der nach der Zugabe in der wässrigen Polyvinylalkohol-Lösung gelöst ist und bei Aufkonzentrierung eine getrennte, feinverteilte und wasserhaltige Phase bildet
- c) Trocknung der wässrigen Lösung bis zu einem Restwassergehalt von maximal 50 Gew% zur Bildung der Phasentrennung und zur damit verbundenen Gelierung des Polyvinylalkohols
- d) Rückquellung des Polyvinylalkohols in einem wässrigen Medium.

Das erfindungsgemäße Verfahren erlaubt in überraschender Weise eine Gelierung des Polyvinylalkohols innerhalb einiger Minuten bei Raumtemperatur oder gar höheren Temperaturen. Durch die Zugabe des wasserlöslichen Zusatzstoffes und der Aufkonzentrierung durch Verdunstung des Wassers wird eine feinverteilte Phasentrennung herbeigeführt, durch die die Gelierung inner-

halb der PVA-Phase in kürzester Zeit gelingt. Hierfür ist Voraussetzung, daß auch der wasserlösliche Zusatzstoff eine wasserhaltige Phase ausbildet, so daß durch die Phasentrennung der PVA-Phase innerhalb kürzester Zeit ein entsprechender Wasseranteil entzogen wird, wodurch die Gelierung des Polyvinylalkohols bewirkt wird. Zweckmäßig ist es, wenn der wasserlösliche Zusatzstoff eine dem PVA wenigstens vergleichbare Affinität zu Wasser aufweist.

5

20

30

Die bei der Gelierung mit Wasser unterversorgte PVA-Phase nimmt beim anschließenden Rückquellen Wasser auf, wodurch die Elastizität und die mechanische Stabilität des PVA-Gels verbessert wird, ohne daß die Gelierung rückgängig gemacht wird. Es hat sich gezeigt, daß für die Rückquellung ein gewisser Elektrolytanteil im wässrigen Medium zur höheren Stabilität des PVA-Gels führt, so daß die Rückquellung vorzugsweise in Leitungswasser oder besser in einer Salzlösung erfolgt.

Das erfindungsgemäße Verfahren bietet den Vorteil, daß es die Herstellung des PVA-Gels ohne großen Aufwand, insbesondere ohne einen Gefriervorgang und ohne wiederholte Trocknungsvorgänge innerhalb kurzer Zeit ermöglicht, so daß eine extrem wirtschaftliche Fertigung der PVA-Gelkörper möglich ist. Die erfindungsgemäßen Gelkörper zeichnen sich darüber hinaus durch eine hohe Elastizität und Stabilität, insbesondere Reißfestigkeit, aus und sind in dieser Hinsicht den nach den bisherigen Verfahren herstellbaren PVA-Gelkörpern deutlich überlegen.

Zur weiteren Erhöhung der Stabilität und Elastizität der PVA-Gelkörper trägt bei, wenn zur Herstellung eine nachverseifte wässrige PVA-Lösung verwendet wird.

Ein bevorzugter wasserlöslicher Zusatzstoff ist Polyethylenglycol, der in einer Konzentration von 4 bis 30 Gew%, vorzugsweise 4 bis 20 Gew%, insbesondere 6 bis 16 Gew%, zugegeben
wird. Andere Beispiele für mögliche Zusatzstoffe sind Celluloseester, Celluloseether, Stärkeester, Stärkeether, Polyalky-

lenglycolether, Polyalkylenglycole, langkettige Alkanole $(C_nH_{2n+1}OH \text{ mit } n \geq 8)$, Zuckerester, Zuckerether.

Ein besonders bevorzugtes Anwendungsgebiet der PVA-Gelkörper liegt in ihrer Ausbildung als biologisch, physikalisch oder chemisch aktiver Körper, also in dem Einschluß von biologisch, physikalisch oder chemisch aktiven Material in dem PVA-Gel. Das PVA-Gel eignet sich somit in hervorragender Weise beispielsweise zur Herstellung eines chemischen oder biologischen Katalysators.

Die Trocknung der wässrigen Lösung zum Zwecke der Phasentrennung und der damit verbundenen Gelierung erfolgt bis zu einem Restwassergehalt von maximal 50 Gew%. Eine untere Grenze des Restwassergehalts von etwa 10 Gew% ergibt sich dadurch, daß das hergestellte PVA-Gel noch vollständig rückquellbar sein sollte, daß sich unterhalb des Restwassergehalts von etwa 10 Gew% eine verringerte Elastizität der Gelkörper ergibt und daß unterhalb des genannten Restwassergehalts etwaige eingeschlossene biologische Materialien geschädigt werden können. Ein bevorzugter Bereich für den Restwassergehalt liegt zwischen 10 und 30 Gew%.

Die Trocknung kann bequem innerhalb kurzer Zeit durch Verdunstung des Wassers an Luft bei Umgebungstemperatur durchgeführt werden, wenn die wässrige Lösung in kleine Portionen aufgeteilt wird, insbesondere solche Portionen, in denen die Lösung nur eine geringe Stärke aufweist. So ist es insbesondere mit Vorteil möglich, die Lösung auf eine harte Unterlage so aufzutropfen, daß der Durchmesser der Tropfen mindestens doppelt so groß ist wie die Höhe der Tropfen. Ähnliches läßt sich durch Eingießen der Lösung in eine Gießform und/oder als Beschichtung eines Trägermaterials erreichen. Durch eine dünne oder gar filmartige Ausbildung wird die Verdunstung auf den erforderlichen Restwassergehalt innerhalb einiger Minuten, beispielsweise innerhalb von 15 Minuten, erreicht. Eine Beschleunigung des Trocknungsvorganges – und damit des Gelier-

vorganges - läßt sich erreichen durch die Durchführung der Trocknung in einem Trockenofen bei erhöhter Temperatur.

Die für das Rückquellen mit Vorteil verwendete Salzlösung enthält vorzugsweise mehrwertige Anionen.

5

10

20

2 =

Insbesondere für die Immobilisierung von biologisch aktivem Material ist an dem erfindungsgemäßen Verfahren vorteilhaft, daß es sich für das biologische Material außerordentlich schonend ausführen läßt, so daß das biologische Material gegenüber anderen Immobilisierungsverfahren eine deutlich höhere Anfangsaktivität aufweist.

Dies kann noch dadurch unterstützt werden, daß das wässrige

Medium, in dem das Rückquellen des PVA-Gels erfolgt, zugleich
eine Nährlösung für das biologisch aktive Material ist.

Die Dichte des erfindungsgemäß hergestellten PVA-Gels kann durch geeignete Zusätze modifiziert werden. So kann das spezifische Gewicht beispielsweise durch Zugabe von Titanoxid erhöht und durch Zugabe von kleinsten Glashohlkügelchen erniedrigt werden.

- Die erfindungsgemäße Gelierung ist wie erwähnt bei Raumtemperatur möglich, kann jedoch bei tieferen oder höheren Temperaturen durchgeführt werden. Das in dem PVA-Gel eingeschlossene biologisch aktive Material können Enzyme, Mikroorganismen, Sporen und Zellen sein.
- Das erfindungsgemäße Verfahren läßt sich in vielen Ausführungsformen realisieren. So ist es beispielsweise möglich, in
 einem Fallturm das Trocknen eines Tropfens zur Phasenbildung
 während des Fallvorganges ablaufen zu lassen, so daß beim Auftreffen des Tropfens auf einer Unterlage die Gelierung nach
 der Phasentrennung bereits stattgefunden hat. Dieses Herstellungsverfahren eignet sich insbesondere für die Herstellung
 von PVA-Gelkörpern als Chromatographiematerial, das einen

Durchmesser für Laborzwecke von 10 bis 100 μ m und im übrigen von 100 bis 800 μ m haben kann. Ferner ist es möglich, eine höherviskos eingestellte Ausgangsflüssigkeit beim Extrudieren eines Stranges zu trocknen und dabei die Gelierung des PVA durchzuführen.

5

10

15

20

30

35

Der nach dem erfindungsgemäßen Verfahren hergestellte Gelkörper weist eine gegenüber vorbekannten Gelkörpern überlegene mechanische Stabilität, insbesondere hinsichtlich der Abriebfestigkeit und der Reißfestigkeit auf.

Diese überlegenen mechanischen Eigenschaften erlauben es insbesondere, den erfindungsgemäßen Gelkörper in einer reaktionskinetisch günstigen Linsenform herzustellen, in der vorbekannte Gelkörper keine ausreichende mechanische Stabilität, insbesondere Rührstabilität, aufgewiesen haben. Der erfindungsgemäße Gelkörper ist hingegen über viele Monate auch bei hochtourigen Rührvorgängen stabil und abriebfest. Die Linsenform
mit einem großen Durchmesser und einer geringen Höhe bewirkt,
daß das chemisch, physikalisch oder biologisch aktive Material
immer nahe der Oberfläche angeordnet ist, woraus die reaktionskinetisch günstige Konstellation resultiert.

Die vorliegende Erfindung ermöglicht in einfacher Weise, einen magnetischen Zusatzstoff dem Polyvinylalkoholkörper hinzuzufügen, um die Gelkörper ggf. durch Magnete aus einer Flüssigkeit ohne Schwierigkeiten absammeln zu können.

Es hat sich gezeigt, daß die Porenstruktur der erfindungsgemäßen Polyvinylalkohol-Gelkörper durch das Molekulargewicht des zugegebenen, die Phasentrennung bewirkenden Zusatzstoffes steuerbar ist. Durch Steuerung des Molekulargewichts des zugegebenen Polyethylenglycols, dessen Molekulargewicht bevorzugt zwischen 800 und 1350 liegt, können Porengrößen des Polyvinylalkohol-Gelkörpers zwischen 1 und 15 μ m eingestellt werden.

Für die Herstellung der erfindungsgemäßen wässrigen Lösung aus Polyvinylalkohol und dem Zusatzstoff hat es sich gezeigt, daß bei Verwendung von destilliertem Wasser ein erhöhter Trocknungsgrad erforderlich ist, um gleiche mechanische Ergebnisse zu erzielen. Die Ergebnisse werden sofort besser, wenn übliches Leitungswasser mit einer gewissen Härte verwendet wird. Demzufolge ist davon auszugehen, daß ein gewisser Salzgehalt des Wassers für das erfindungsgemäße Verfahren vorteilhaft ist.

10

5

Die Erfindung soll im folgenden anhand von Ausführungsbeispielen näher erläutert werden.

Beispiel 1:

15 Zu 2 g PVA und 1,2 g Polyethylenglycol (PEG 1000) werden 16,8 g Wasser gegeben. Die Lösung wird so lange auf 90 °C erhitzt, bis alle Komponenten vollständig gelöst sind, so daß eine viskose, farblose Lösung erhalten wird. Nach Abkühlen auf 30 °C wird die Polymerlösung mit einer Spritze unter Anlägen eines 20 Druckes auf einer Polypropylenplatte vertropft. Das Vertropfen erfolgt dabei durch Auftippen der Kanüle auf die PP-Platte mit einer Geschwindigkeit von ca. 1-2/s; die Tropfengröße beträgt im Durchmesser ca. 3 mm und in der Höhe ca. 1 mm. Nach dem Auftropfen bildet sich ein weißer wachsartiger Film auf der Tropfenoberfläche aus. Nachdem bei Raumtemperatur 89 Gew% des Wassers verdunstet sind, werden Gelkörper in Wasser oder einem salinen Medium zurückgequollen. Die erhaltenen Gelkörper haben einen Durchmesser von 3-4 mm und eine Höhe von ca. 200-400 μm.

30 Beispiel 2:

35

Nach dem Abkühlen der Polymersuspension (Zusammensetzung: 2 g PVA, 1,2 g PEG 1000 und 15,8 g Wasser) wird 1 ml einer nitrifizierenden Mischkultur (Nitrosomonas europaea und Nitrobacter winogradsky) zu 20 g Polymerlösung gegeben und dispergiert, so daß eine Biotrockenmassebeladung (BTM) von 0,06 Gew% resultiert. Die Herstellung der Gelkörper erfolgt nach Beispiel 1. Die erhaltenen Gelkörper werden in einem Standardmineralsalz-

12

medium (STMN) für Nitrifizierer zurückgequollen. Die so hergestellten Immobilisate weisen direkt nach der Immobilisierung eine Anfangsaktivität von ca. 70 % für Nitrosomonas spp. und 100 % für Nitrobacter spp. verglichen mit der gleichen Menge freier Nitrifizierer auf.

Beim Einschluß der Nitrifizierer in PVA-Kryogele bei -20 °C beträgt die Anfangsaktivität für Nitrosomonas spp. ca. 1 %, bei -10 °C ca. 25 % bei abnehmender mechanischer Stabilität der PVA-Hydrogele.

Die Inkubation der Immobilisate erfolgt im gleichen Medium bei 30 °C. Werden 10 mg Gelkörper in 30 ml STMN inkubiert, so wird nach 19 Tagen eine maximale Ammoniumabbaurate zwischen 7 - 8 μ mol NH₄⁺/(g_{Kat} *min) erzielt.

Beispiel 3:

5

10

15

20

30

In 12,8 g H₂O werden 1,6 g Polyethylenglycol (PEG 1000) gelöst und anschließend 1,6 g PVA zugegeben und weiter wie in Beispiel 1 verfahren. Nach dem Abkühlen der Polymerlösung auf 30 °C werden 4 ml einer über Nacht in sauerstofffreier Atmosphäre gewachsenen Kultur des strikt anaeroben Bakteriums Clostridium butyricum NRRL B-1024, das Glycerin in 1,3-Propandiol (PD) konvertiert, in der Lösung dispergiert (Zellbeladung der Polymerlösung: 6x10⁷ je ml). Die Herstellung der Gelkörper erfolgt gemäß Beispiel 1. Nachdem bei Raumtemperatur 70 Gew% des Wassers verdunstet sind, werden die Immobilisate in Mineralsalzmedium (20facher Überschuß) zurückgequollen. Die Inkubation der zellbeladenen Gelkörper erfolgt in dem gleichen Medium (40facher Überschuß) bei 30 °C. Für eine ausreichende Nährstoffversorgung der immobilisierten Biomasse wird das Medium in der Anwachsphase mehrfach gewechselt.

Werden 0,25 g des so erhaltenen immobilisierten Biokatalysators in 40 ml Mineralsalzmedium mit 24,4 g·L-1 Glycerin eingesetzt, nimmt die 1,3-PD-Konzentration innerhalb von 3,25 h um 2,8 g·L-1 zu. Dies entspricht einer Katalysatoraktivität von 0,14 g 1,3-PD je g Kat und Stunde. Nach Abzug der Aktivität der ausgewachsenen Zellen ergibt sich eine Katalysatoraktivität von 0,08 g 1,3-PD (g_{Kat} *h).

5 Beispiel 4:

Zu 2 g PVAL und 1,2 g Polyethylenglycol (PEG 1000) werden 15,8 g Wasser gegeben und weiter wie in Beispiel 1 verfahren.

Nach dem Abkühlen der Polymersuspension auf ca. 30 - 37 °C

wird 1 ml einer definierten Sporensuspension des Pilzes Aspergillus terreus zu 20 g Polymerlösung gegeben und dispergiert.

Die Sporensuspension wird so gewählt, daß sich nach 5 d Bewuchs im Wachstumsmedium eine Biotrockenmasse-Beladung von
0,005 Gew% ergibt.

15

Nachdem bei Raumtemperatur 70 Gew% des Wassers verdunstet sind, werden die Immobilisate in Mineralsalzmedium für Aspergillus terreus (20facher Überschuß) zurückgequollen.

Die Inkubation der Immobilisate erfolgt im Wachstumsmedium.

Zur Produktion der Itaconsäure wird das Wachstumsmedium durch

Produktionsmedium ersetzt.

Die hergestellten Immobilisate weisen direkt nach der Immobilisierung eine Anfangsaktivität von ca. 60 % verglichen mit der gleichen Menge freier Pilzzellen auf. Werden 0,2 g Gelkörper in 100 ml Produktionsmedium mit 60 g/l Glucose inkubiert, so werden nach 7 d Produktitäten von 35 mg Itaconsäure/(g_{Kat} *h) erreicht.

30

35

Beispiel 5:

Größere Mengen an Gelkörpern werden durch Vertropfen der Polymerlösung (Zusammensetzung gemäß Beispiel 1) durch ein Multidüsensystem auf ein Förderband erhalten. Nach dem Prinzip eines Bandtrockners werden die PVA-Tropfen in einem Trockentunnel bis zu einem definierten Restfeuchtegehalt getrocknet und

anschließend durch einen Abstreifer in einem Auffangbehälter gesammelt und dort rückgequollen und gewaschen.

Beispiel 6:

- Bei der Herstellung gemäß Beispiel 1 wird die Polymerlösung nicht vertropft sondern in vorgefertigte halboffene Formen mit einem Innendurchmesser von 1-10 mm und beliebiger Länge gegossen.
- Nach dem Rückquellen in Wasser lassen sich die Stränge bis auf die 3-4fache Länge dehnen, ohne zu zerreißen. Die Längenaus-dehnung ist irreversibel. Ein derart gefertigter Strang kann mit einem 500 g Gewicht belastet werden, ohne zu zerreißen.
- 15 Beispiel 7: Die gemäß Beispiel 6 hergestellten Stränge werden nach einem
 - Lagerzeitraum von 14 Tagen in Leitungswasser mechanisch charakterisiert. Zu diesem Zeitpunkt weise die Stränge eine Breite von ca. 8 mm und eine Höhe von ca. 1 mm auf. Der Rückquellgrad berücksichtigt die Gewichtsabnahme des Stranges nach dem Rückquellen und 14 d Lagerung in Wasser bezogen auf die Gesamtmasse der verwendeten Polymerlösung vor dem Trocknungsprozeß. Die Stränge zeigen bis zu einer Reißdehnung von 40 % elastisches Verhalten.
 - Mechanische Charakterisierung der hergestellten Stränge bei verschiedenen Trocknungsgraden für die Zusammensetzung 10 Gew% PVA und 6 Gew% PEG 1000:

バ	
NJ	

Restwasser- gehalt nach der Trocknung [%]	Rückquellgrad [%]	Reißdehnung [%]	E-Modul [N/mm²]
27	76	455	0,11
20	74	420	0,11
15	68	410	0,18
13	65	390	0,24
10	63	380	0,27
1	57	360	0,34

- Mechanische Charakterisierung der Stränge bei einem Trocknungsgrad von 80 Gew% für die Zusammensetzung 10 Gew% PVA und 8 Gew% PEG für verschiedene PEG-Sorten:

PEG-Sorte	Rückquellgrad [%]	Reißdehnung	E-Modul [N/mm²]
400	57	410	0,27
600	66	290	0,22
800	82	360	0,19
1000	84	420	0,11
1350	92	370	0,12

25 - Mechanische Eigenschaften der PVA-Hydrogel-Stränge für verschiedene PVA-Konzentrationen unter Zusatz von 6 Gew% PEG 1000 bei einem Trocknungsgrad (Menge des während des Trocknungsprozesses verdunsteten Wasser) von 80 Gew%:

. 15

PVAL [%]	Reißdehnung [%]	E-Modul [N/mm²]
8	350	0,09
10	420	0,11
12	420	0,17
14	460	0,19
16	440	0,25

- Mechanische Eigenschaften der Stränge bei einem Trocknungsgrad von 80 Gew% für die Zusammensetzung 10 Gew% PVA und 6 Gew% PEG 1000 für verschiedene Rückquellmedien

Rückquellmedium	Reißdehnung [%]	E-Modul [N/mm²]
Leitungswasser	420	0,11
K ₂ HPO4 (100 mmol/l)	410	0,17
K ₂ SO ₄ (120 mmol/l)	530	0,15
CaCl ₂ (120 mmol/l)	360	0,10
KCl (175 mmol/l)	370	0,15

Beispiel 8:

5

. 15

25

30

Gelkörper werden gemäß Beispiel 1 hergestellt und in deionisiertem Wasser (5 μ S H_2 O) zurückgequollen. Der Rückquellgrad der Gelkörper wird direkt nach dem Rückquellvorgang für verschiedene Trocknungsgrade bestimmt. Bei einem Rückquellgrad von 100 Gew% ist das Gewicht der Gelkörper vor dem Trocknungsprozeß und nach dem Rückquellen gleich, wie sich der beigefügten Zeichnungsfigur entnehmen läßt. Li/ne

GRAMM, LINS & PARTNER Patent- und Rechtsanwaltssozietät Gesellschaft bürgerlichen Rechts

GRAMM, LINS & PARTNER GbR, Theodor-Heuss-Str. 1, D-38122 Braunschweig

Prof. Dr. Klaus-Dieter Vorlop Hochstraße 7

38102 Braunschweig

Braunschweig:

Patentanwalt Prof. Dipl.-Ing. Werner Gramm** Patentanwalt Dipl.-Phys. Dr. jur. Edgar Lins** Rechtsanwalt Hanns-Peter Schrammek Patentanwalt Dipl.-Ing. Thorsten Rehmann** Patentanwalt Dipl.-Ing. Justus E. Funke* (†1997) Rechtsanwalt Christian S. Drzymalla

Hannover:

Patentanwältin Dipl.-Chem. Dr. Martina Läufer*

- * European Patent Attorney
- * European Trademark Attorney

Unser Zeichen/Our ref.: 1752-004 DE-1

Datum/Date 19. Juni 1998

Patentansprüche

bei Romateuge site Kölere. Tanine half simiger frim to Verfahren zur Herstellung eines Gels aus Polyvinylalkohol 1. mit den Verfahrensschritten

Vorteach

a) Verwendung einer wässrigen Polyvinylalkohol-Lösung mit einem Hydrolysegrad von > 98 mol-%

Zugabe eines Zusatzstoffes, der nach der Zugabe in der wässrigen Polyvinylalkohol-Lösung gelöst ist und bei Aufkonzentrierung eine getrennte, feinverteilte und wasserhaltige Phase bildet

Auflious antreamer

- Trocknung der wässrigen Lösung bis zu einem Restwassergehalt von maximal 50 Gew% zur Bildung der Phasentrennung und zur damit verbundenen Gelierung des , Abortument day PVR Polyvinylalkohols
- Rückquellung des Polyvinylalkohols in einem wässrigen d) Medium.

Antwort bitte nach / please reply to:

Braunschweig:

Theodor-Heuss-Straße 1 D-38122 Braunschweig Bundesrepublik Deutschland Telefon 0531 / 28 14 0-0 Telefax 0531 / 28 140 28

25

5

10

15

20

Hannover:

Koblenzer Straße 21 D-30173 Hannover Bundesrepublik Deutschland Telefon 0511 / 988 75 07 Telefax 0511 / 988 75 09

2. Verfahren nach Anspruch 1, bei dem die Polyvinylalkohol-Lösung eine Konzentration von 4 - 30 Gew%, vorzugsweise 6 - 16 Gew% aufweist.

- 5 3. Verfahren nach Anspruch 1 oder 2, bei dem ein wasserlöslicher Zusatzstoff verwendet wird, dessen Affinität zu Wasser wenigstens vergleichbar mit der des Polyvinylalkohols ist.
- 10 Verfahren nach einem der Ansprüche 1 bis 3, bei dem der 4. wasserlösliche Zusatzstoff aus der Gruppe Celluloseester, Celluloseether, Stärkeester, Stärkeether, Polyalkylenglycolether, Polyalkylenglycole, langkettige Alkanole $(n \ge 8)$, Zuckerester, Zuckerether ausgewählt wird.
 - 5. Verfahren nach Anspruch 4, bei dem als wasserlöslicher Zusatzstoff Polyethylenglycol verwendet wird.
- 6. Verfahren nach einem der Ansprüche 1 bis 5, bei dem der 20 wasserlösliche Zusatzstoff in einer Konzentration von 4 - 20 Gew%, vorzugsweise 6 - 10 Gew%, verwendet wird.
 - Verfahren nach einem der Ansprüche 1 bis 6, bei dem die 7. Trocknung der wässrigen Lösung bis zu einem Restwassergehalt von mindestens 10 Gew% durchgeführt wird.
 - Verfahren nach Anspruch 7, bei dem die Trocknung der wäss-8. rigen Lösung bis zu einem Restwassergehalt von 10 - 30 Gew% durchgeführt wird.
 - 9. Verfahren nach einem der Ansprüche 1 bis 8, bei dem die Trocknung nach einem Auftropfen der Lösung auf eine harte Unterlagen durchgeführt wird.
- 35 Verfahren nach einem der Ansprüche 1 bis 9, bei dem die 10. Trocknung nach einem Eingießen der Lösung in eine Gießform durchgeführt wird.

15

2=

- 11. Verfahren nach Anspruch 9 oder 10, bei dem der Gelkörper mit einem Durchmesser ausgebildet wird, der wenigstens doppelt so groß wie seine Höhe ist.
- 5 12. Verfahren nach Anspruch 11, bei dem der Gelkörper mit einem Durchmesser > 1 mm, vorzugsweise zwischen 2 und 4 mm, und einer Höhe zwischen 0,1 und 1 mm, vorzugsweise zwischen 0,2 und 0,4 mm, ausgebildet wird.
- 10 13. Verfahren nach einem der Ansprüche 1 bis 8, bei dem die Trocknung nach einem Ausgießen der Lösung zu einem länglichen Strang durchgeführt wird.
- 14. Verfahren nach einem der Ansprüche 1 bis 13, bei dem die Trocknung der wässrigen Lösung nach Aufgießen auf einem Trägermaterial durchgeführt wird.

- 15. Verfahren nach einem der Ansprüche 1 bis 14, bei dem das Rückquellen in Leitungswasser durchgeführt wird.
- 16. Verfahren nach einem der Ansprüche 1 bis 15, bei dem das Rückquellen in einer Salzlösung durchgeführt wird.
- 17. Verfahren nach einem der Ansprüche 1 bis 16 mit der Zugabe eines biologisch, chemisch oder physikalisch aktiven Materials.
- 18. Verfahren nach Anspruch 16 und 17, bei dem als Salzlösung eine Nährlösung für das biologisch aktive Material verwendet wird.
 - 19. Verfahren nach Anspruch 16 oder 18 unter Verwendung einer mehrwertige Anionen enthaltenden Salzlösung.
- 35 20. Verfahren nach einem der Ansprüche 1 bis 19, dadurch gekennzeichnet, daß der Lösung vor dem Trocknen das spezi-

fische Gewicht erhöhende oder erniedrigende Zusätze hinzugegeben werden.

- 21. Verfahren nach einem der Ansprüche 1 bis 20, bei dem die Trocknung vollständig beim Fallen eines erzeugten Tropfens in einem Fallturm durchgeführt wird.
 - 22. Mechanisch hochstabiler Gelkörper aus Polyvinylalkohol, hergestellt nach dem Verfahren nach einem der Ansprüche 1 bis 19.
 - 23. Gelkörper nach Anspruch 22, hergestellt in einer Linsenform, in der der Durchmesser wesentlich größer als die Höhe ist.
 - 24. Gelkörper nach Anspruch 22 oder 23 mit einem magnetischen Zusatzstoff.
- 20 Li/ne

10

Zusammenfassung

Die Herstellung eines Gels aus Polyvinylalkohol gelingt in einfacher Weise und innerhalb einer kurzen Herstellungsweise mit den Verfahrensschritten:

- 5 a) Verwendung einer wässrigen Polyvinylalkohol-Lösung mit einem Hydrolysegrad von ≥ 98 mol-%
 - b) Zugabe eines Zusatzstoffes, der nach der Zugabe in der wässrigen Polyvinylalkohol-Lösung gelöst ist und bei Aufkonzentrierung eine getrennte, feinverteilte und wasserhaltige Phase bildet
 - Trocknung der wässrigen Lösung bis zu einem Restwassergehalt von maximal 50 Gew% zur Bildung der Phasentrennung und zur damit verbundenen Gelierung des Polyvinylalkohols
 - d) Rückquellung des Polyvinylalkohols in einem wässrigen Medium.

20

15

Li/ne

