1.26 Theorem. (The Division Algorithm) Let $n, m \in \mathbb{N}$. Then (existence part) there exist integers q (for quotient) and r (for remainder) such that

$$m = nq + r$$

and $0 \le r < n...$

Proof. Let $m, n \in \mathbb{N}$ be given. Consider $S = \{m - nq \mid m - nq \in \mathbb{N} \text{ and } 0 \leq m - nq\}.$

Note: Taking q = 0, establishes S as a non-empty set since $m \ge 0$.

By WOANN, S contains a smallest element, $m-nq \in S$. Since m-nq is minimal, m-n(q+1) < 0. Therefore, m-nq < n. Letting r=m-nq, $0 \le r < n$.