Workloads

Dennis Müller

 $December\ 9,\ 2017$

Contents

1	Project Managment Report	3
2	Hardware prerequisites [Hpre]	4
	2.1 Video cameras [HpreCam]	4
	2.2 Storage [HpreS]	4
	2.3 Panels [HpreP]	
	2.4 Control Unit (PLC) [HprePLC]	5
	2.5 Server [HpreSer]	5
	2.6 Sensors [HpreSens]	5
3	Hardware installation [Hin]	6
	3.1 installation and configuration	6
4	Software prerequisites [Spre]	7
	4.1 Matlab [SpreMat]	7
	4.2 PLC IDEs - Automation Studio [SprePLC]	
5	Software	8
	5.1 create infrastructure	8
	5.2 System analysis	8
	5.3 System design	8
	5.4 System implementation	9
6	Delivery	10

1 Project Managment Report

Time in hours

optimistic	10
most likely	15
pessimistic	30

- create product requirement catalog (50 / 70 / 100)
- create GANTT diagram (5 /10 / 15)
- negoitate time and costs with customer (10 / 12 /15)

2 Hardware prerequisites [Hpre]

Time in hours optimistic 10 most likely 15 pessimistic 30

2.1 Video cameras [HpreCam]

- 1. research for good product
 - investigate environment / areas / building (8/10/12)
 - estimate amounts and total costs (8/10/12)
- 2. negotiate with customer (8/10/12)
- 3. buy those products (8/10/12)

2.2 Storage [HpreS]

- 1. research archive backup file system
 - NAS with redundance (RAID 2) (4/6/8)
 - Backup also with (RAID 2) (4/6/8)

2.3 Panels [HpreP]

- 1. research for good product
 - investigate environment / areas / building (8/10/12)
 - estimate amounts and total costs (4/8/12)
- 2. negotiate with customer (4/8/12)
- 3. buy those products (4/8/12)

2.4 Control Unit (PLC) [HprePLC]

- 1. research for good product
 - investigate environment / areas / building (4/8/12)
 - estimate amounts and total costs (4/8/12)
- 2. negotiate with customer (4/8/12)
- 3. buy those products (4/8/12)

2.5 Server [HpreSer]

- 1. research for good product
 - investigate environment / areas / building (4/8/12)
 - estimate amounts and total costs (4/8/12)
- 2. negotiate with customer (4/8/12)
- 3. buy those products (4/8/12)

2.6 Sensors [HpreSens]

- 1. research for good product
 - investigate environment / areas / building (4/8/12)
 - estimate amounts and total costs (4/8/12)
- 2. negotiate with customer (4/8/12)
- 3. buy those products (4/8/12)

3 Hardware installation [Hin]

Time in hours

optimistic	10
most likely	15
nessimistic	30

3.1 installation and configuration

- video cameras (8/10/12) [HinCam]
 - dependent on [HpreCam]
- storage (8/10/12)[HinS]
 - dependent on [HpreS, HpreCam]
 - connect video cameras to system
- panels (8/10/12)[HinP]
 - dependent on [HpreP]
 - configuration
- Control Unit (PLC) (8/10/12) [HinPLC]
 - dependent on [HpreP]
- Sensors (8/10/12) [HinSens]
 - dependent on [HpreSens]

4 Software prerequisites [Spre]

	Time in hours
optimistic	10
most likely	15
pessimistic	30

4.1 Matlab [SpreMat]

• Buy licence / install software (1/4/8)

4.2 PLC IDEs - Automation Studio [SprePLC]

• Buy licence / install software (1/4/8)

5 Software

$\begin{array}{c} \text{Time in hours} \\ \text{optimistic} & 10 \\ \\ \text{most likely} & 15 \\ \\ \text{pessimistic} & 30 \\ \end{array}$

5.1 create infrastructure

- setup wiki (1/4/8)
- setup slack (1/2/3)
- setup git respository (1/2/3)
- setup task managment (1/2/3)

5.2 System analysis

- design architecture (24 / 30 / 48)
- define components / communication with external systems (interfaces) (24 / 30 / 48)
- \bullet invastigate time in finding out what technologies we want to use (24 / 30 / 48)
- create diagrams(24/30/48)
- describe behaviour of components and depedencies (24 / 30 / 48)
- find out problematic and time consuming tasks and challanges (24 / 30 / 48)

5.3 System design

- design mutliple GUI and Usability concept (48 / 60 / 90)
- gather feedback from customer and redesign concepts (48 / 60 / 90)
- design prototyp with fake data (48/60/90)

5.4 System implementation

- implement components (200 / 300 / 480)
- unit tests (24 / 30 / 48)
- integration test (24 / 30 / 48)
- E2E testing (24 / 30 / 48)
- documentation (40 / 50 / 60)

6 Delivery

$\begin{array}{c} \text{Time in hours} \\ \text{optimistic} & 10 \\ \text{most likely} & 15 \\ \text{pessimistic} & 30 \\ \end{array}$

- present / demonstrate system and software (12 / 20 / 30)
- get customer approval (1 /10 / 20)