Birla Institute of Technology & Science, Pilani Hyderabad Campus

Computer Science and Information Systems Department Second Semester 2020-2021 Course Handout (Part II)

Date: 16th Jan 2021

In addition to part-I (General handout for all courses appended to the timetable) this portion gives further specific details regarding the course:

COURSE NO.: CS F407

ARTIFICIAL INTELLIGENCE (AI)

Instructor In-Charge: Prof. Chittaranjan Hota (hota@hyderabad.bits-pilani.ac.in) Scope and Objectives

This course introduces students to basic concepts and methods of artificial intelligence from a computer science perspective. AI concerns itself with a certain set of problems and develops a particular body of techniques for approaching these problems. The focus of the course will be on the study of methods of knowledge representation, reasoning, and algorithms required for the developing intelligent programs. AI not only strives to build intelligent entities, but also allows understanding them. This course will empower students to know how to program computers, using classical symbolic methods, to behave in ways normally attributed to "intelligence" when observed in humans. AI currently encompasses a huge variety of sub fields, like perception, logical reasoning, proving mathematical theorems, and diagnosing diseases etc. AI empowers the computer engineers to systematize and automate the intellectual tasks, with the help of a set of tools, and methodologies. The methods studied in this course can be applied in any area of human intellectual endeavor. The assignment components will emphasize the use of C/ C++, Python, R etc. The students will be asked to implement the use of Search strategies in real world problem solving, Game playing programs like chess or tic-tac-toe, Planners, Small Expert system shell with only inference engine, Programs for reasoning under uncertainties using models like TMS or Bayes' Networks, Natural Language understanding programs, and Programs in the area of Machine learning using connectionist models like neural networks etc.

TEXT BOOK

T1 Stuart Russell, and Peter Norvig, "Artificial Intelligence: A Modern Approach", Pearson education, 3rd Ed, 2009. **REFERENCE BOOKS**

R1 George F. Luger Artificial Intelligence: Structures and Strategies for Complex Problem Solving, Fourth Edition, Pearson, 2002.

R2 D. W. Patterson, Introduction to Artificial Intelligence & Expert Systems, PHI, 2002.

R3 Winston P.H., Artificial Intelligence, 3rd edition, Addison Wesley, 1995.

R4 Elaine Rich and Kevin Knight, Artificial Intelligence, Tata McGraw Hill, 2nd Ed., 2002.

PLAN OF STUDY:

S.	Learning Objectives		Chapter	Lec
No.		Topics to be covered	in the	t.s
		Topics to be covered	Text	
			Book	
1.	You will learn the need of AI and	Fundamental Issues in Intelligent Systems:	T1(1),	2
	what technique can be called as an	Why study AI? Definitions, Attitude towards	R1(1)	
	AI technique.	intelligence, knowledge, and human artifice,		
		Example of an AI Technique.		
2.	This part will cover state space	Problem Solving using Search Strategies:		
	search for problem solving.	State Space search: Problem Spaces, Graph	T1(3),	2
	Different approaches to search a	Theory, and Strategies for State Space Search.	R1(3)	
	space like heuristics, blind	Heuristic Search: Generate & Test, Hill		
	adversarial search etc will be	Climbing, Best First, Problem Reduction,	T1(4,5),	3
	covered. Planning also will be	Constraint Satisfaction, Properties of Heuristics	R1(4)	
	covered as a search problem. You	like Admissibility, Monotonicity, and		
	will attempt solving real world	Informedness.		
	problems using state space search	Adversarial Search (Game Playing): Minimax,	T1(6),	2

	in this part.	Alpha-Beta Cutoffs.	R1(5)	
		Planning: An Example, Goal Stack,		3
		Hierarchical Planning.	T1(11,12)	
3.	To understand the state of art on	Current Research on Search strategies from	IEEE/	1
	heuristic search research.	Journal of AI Research etc.	ACM	
4.	You will learn in this part how to			
	develop systems or models that can	Issues in Knowledge representation:	T1(8,9),	3
	infer new	Approaches, and Issues, Predicate Logic:	R1(2)	
	information/idea/knowledge from	Syntax, and Semantics of Propositional and		
	existing ones. Also, what would be	First Order Predicate Logic, Properties of wffs,		
	few right approaches to represent	Conversion to Clause Form, Deduction,		
	(store) the knowledge to be	Unification, Resolution based Theorem	T1(10),	3
	processed or used in the reasoning.	Proving.	R1(6)	
	Current day data have become	Weak & Strong Slot-and-filler Structures:	111(0)	
	vague/uncertain and you will learn	Semantic Networks, Frames, Conceptual	T1(14,15),	3
	techniques to handle these types.	Dependency, Scripts.	R1(7,8)	
	techniques to numere these types.	Reasoning under Uncertainties: Symbolic:	K1(/,0)	
		TMS, Statistical: Bayes' Theorem, Bayesian		
		Networks, DS-Theory.		
5.	To understand the state of art	Current Research on Knowledge representation	IEEE/	1
5.	research in reasoning systems.	and Reasoning from International Journal of	ACM/	1
	research in reasoning systems.		Elsevier.	
		Approximate reasoning or Expert Systems with	Eiseviei.	
	You will learn how to build	Applications etc. Machine Learning: Symbolic Models:		
6.		, J	T1(10)	_
	models/ programs that can learn	General Concepts in Knowledge Acquisition,	T1(18),	3
	from the past behavior/history.	Inductive Learning: Winston's Program,	R1(9)	
	Different machine learning	Mitchell's Version Space, Decision Tree,		
	algorithms will be covered with	Ensemble learning.	T1 (10)	
	applications in mind. Neural	Explanation based learning. Inductive logic	T1(19)	3
	networks design and working will	programming.	T1(20),	_
	be explained with applications	Connectionist Models: Introduction to Neural	R1(10)	3
	using these models will also be	Networks, Hopfield Networks, Perceptron		
	discussed.	Learning, Backpropagation & Competitive		_
		Learning, Applications of Neural Net: Speech,	T1(20)	3
		Vision, Traveling Salesman, Handwritten digit		
		recognition.		
		Reinforcement Learning: Passive and Active	T1(21)	2
7.	To learn how to write programs	Understanding Natural Languages:	T1(22)	3
	that can make a computer	Introduction, Syntactic Processing, Semantic		
	understand natural languages.	Processing, Discourse & Pragmatic Processing.		
8.	To learn architecture / framework	Expert Systems: Rule based Expert System	R1(13)	2
	for an expert system.	Architecture.		

EVALUATION SCHEME:

Sl	Component & Nature	Duration	Weightage	Date and
No.				Time
1.	Coding Assignments (Take Home, Two	*	30%	
	Numbers)		(min 10% pre mid	
			semester)	
3.	Mid semester Test	1.5 hr.	30%	05/03 9.00
				-10.3AM
				-10.5/11/1
4.	Comprehensive Exam	2 hrs	40%	12/05 FN

Note: All notices related to the course will be displayed on the **google class page**. Make ups shall be granted to genuine cases with a request for makeup reaching I/C on or before the test.

Chamber Consultation Hour: Will be announced in the class.

Academic Honesty and Integrity Policy: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

Instructor-in-charge, CS F407