23.2 Properties of the Pseudo-Inverse

We begin this section with a proposition which provides a way to calculate the pseudo-inverse of an $m \times n$ matrix A without first determining an SVD factorization.

Proposition 23.3. When A has full rank, the pseudo-inverse A^+ can be expressed as $A^+ = (A^{\top}A)^{-1}A^{\top}$ when $m \geq n$, and as $A^+ = A^{\top}(AA^{\top})^{-1}$ when $n \geq m$. In the first case $(m \geq n)$, observe that $A^+A = I$, so A^+ is a left inverse of A; in the second case $(n \geq m)$, we have $AA^+ = I$, so A^+ is a right inverse of A.

Proof. If $m \geq n$ and A has full rank n, we have

$$A = V \begin{pmatrix} \Lambda \\ 0_{m-n,n} \end{pmatrix} U^{\top}$$

with Λ an $n \times n$ diagonal invertible matrix (with positive entries), so

$$A^{+} = U \begin{pmatrix} \Lambda^{-1} & 0_{n,m-n} \end{pmatrix} V^{\top}.$$

We find that

$$A^{\top}A = U \begin{pmatrix} \Lambda & 0_{n,m-n} \end{pmatrix} V^{\top}V \begin{pmatrix} \Lambda \\ 0_{m-n,n} \end{pmatrix} U^{\top} = U\Lambda^2U^{\top},$$

which yields

$$(A^{\top}A)^{-1}A^{\top} = U\Lambda^{-2}U^{\top}U \begin{pmatrix} \Lambda & 0_{n,m-n} \end{pmatrix} V^{\top} = U \begin{pmatrix} \Lambda^{-1} & 0_{n,m-n} \end{pmatrix} V^{\top} = A^{+}.$$

Therefore, if $m \geq n$ and A has full rank n, then

$$A^{+} = (A^{\top}A)^{-1}A^{\top}.$$

If $n \ge m$ and A has full rank m, then

$$A = V \begin{pmatrix} \Lambda & 0_{m,n-m} \end{pmatrix} U^{\top}$$

with Λ an $m \times m$ diagonal invertible matrix (with positive entries), so

$$A^{+} = U \begin{pmatrix} \Lambda^{-1} \\ 0_{n-m,m} \end{pmatrix} V^{\top}.$$

We find that

$$AA^{\top} = V \begin{pmatrix} \Lambda & 0_{m,n-m} \end{pmatrix} U^{\top} U \begin{pmatrix} \Lambda \\ 0_{n-m,m} \end{pmatrix} V^{\top} = V \Lambda^{2} V^{\top},$$

which yields

$$A^\top (AA^\top)^{-1} = U \begin{pmatrix} \Lambda \\ 0_{n-m,m} \end{pmatrix} V^\top V \Lambda^{-2} V^\top = U \begin{pmatrix} \Lambda^{-1} \\ 0_{n-m,m} \end{pmatrix} V^\top = A^+.$$

Therefore, if $n \geq m$ and A has full rank m, then $A^+ = A^{\top} (AA^{\top})^{-1}$.