Progress Report on Leo-II, an Automatic Theorem Prover for Higher-Order Logic

Christoph E. Benzmüller

joint project with: L. Paulson, A. Fietzke, F. Theiss

University of Cambridge

(& Universität des Saarlandes)

ARG-Talk

Cambridge, England, July 3, 2007

Talk Outline _

- Background
- LEO-II as Interactive Proof Assistant
- Automatic Proof Search
- Cooperation with other Reasoning Systems
- Term Sharing and Term Indexing
- First Experiments

LEO-II Background

Project Objectives

- Automatic theorem prover
 - resolution based HO reasoning
 - standalone system; implemented in Objective CAML
 - cooperation with specialist provers, e.g. FO ATPs
 - term sharing and term indexing
 - novel system architecture(s)
- Interactive proof assistant
- Cooperation with interactive proof assistants (not yet)
 - e.g. Isabelle/HOL
 - to support automatic proving of subproblems
 - for verification of own proof objects
- Problem representation language: TPTP THF Syntax

LEO-II Basics

Logic

- classical higher-order logic (Church's simple type theory)
- ightharpoonup base types other than ι and \circ can be specified
- (strongly) limited support for polymorphism

Syntax and Notation

- typed variables: $X_{\alpha}, Y_{\beta}, Z_{\gamma}, X_{\beta}^{1}, X_{\gamma}^{2} \dots$
- typed constants: $c_{\alpha}, f_{\alpha \to \beta}, \dots$ including: $T_{o}, F_{o}, \neg_{o \to o}, \lor_{o \to o \to o}, \Pi_{(\alpha \to o) \to o}, =_{\alpha \to \alpha \to o}$
- other logical connectives are defined as usual
- abstraction and application terms defined as usual

Target Semantics

- Henkin models
- $==(\lambda X.\lambda Y.Y=X)$

Literals, Uni-Constraints, Clauses

Clauses and Literals

$$\mathcal{C}_1 : [\mathbf{A}_{\mathsf{o}}]^{=\mathsf{T}}, [\mathbf{B}_{\mathsf{o}}]^{=\mathsf{F}}, [\mathbf{C}_{\alpha} =^{\alpha} \mathbf{D}_{\alpha}]^{=\mathsf{T}}, [\mathbf{F}_{\alpha} =^{\alpha} \mathbf{G}_{\alpha}]^{=\mathsf{F}}$$

- Literal atoms are always kept in $\beta\eta$ -normal form
- Negative equation literals: unification constraints.

$$\mathcal{C}_2: [\mathbf{A}_{\mathsf{o}}]^{=\mathsf{T}}, [\mathbf{F}_{\alpha} =^{\alpha} \mathbf{G}_{\alpha}]^{=\mathsf{F}}$$
 corresponds to $(\mathbf{F}_{\alpha} =^{\alpha} \mathbf{G}_{\alpha}) \Rightarrow \mathbf{A}_{\mathsf{o}}$

- explains the name 'unification constraint'
- \mathbf{F}_{α} and \mathbf{G}_{α} have a free variable at head position: *flex-flex*.
- only one has a free variable at head position: *flex-rigid*.

Literals, Uni-Constraints, Clauses

- HO unification / pre-unification undecidable and infinitary
- HO pre-unification semi-decidable
- Example of inifinite number of pre-unifiers (H variable, f and a constants)

$$[H_{\iota \to \iota}(f_{\iota \to \iota}a_{\iota}) = f_{\iota \to \iota}(H_{\iota \to \iota}a_{\iota})]^{=F}$$

$$H \longleftarrow \lambda x. \underbrace{f(f \dots (f x) \dots)}_{n>0}$$

- LEO-II operates with depth bounded pre-unification
- Definition of empty clause (modulo flex-flex pairs)

$$\mathcal{C}: [\mathsf{F}]^{=\mathsf{T}}, \ \ \underline{[\mathbf{A}^1_{\alpha} =^{\alpha} \mathbf{B}^1_{\alpha}]^{=\mathsf{F}}, \ldots, [\mathbf{A}^\mathsf{n}_{\alpha} =^{\alpha} \mathbf{B}^\mathsf{n}_{\alpha}]^{=\mathsf{F}}}$$
 only flex-flex unification constraints allowed

LEO-II's Input Language: TPTP THF

- developed together with Geoff Sutcliffe, Florian Rabe, Allen van Gelder, Chad Brown, and others
- supports exchange of HO problems between systems
- THF core (THF0) covers at least simple type theory
- THF0 will be released soon

http://www.cs.miami.edu/~tptp/TPTP/Proposals/THF.html

Example 1

Definitions

$$\begin{array}{lll} \text{reflexive} & \stackrel{\text{def}}{=} & \lambda R_{\iota \to \iota \to o^{\blacksquare}} \forall X_{\iota^{\blacksquare}} (R \ X \ X) \\ \\ \text{symmetric} & \stackrel{\text{def}}{=} & \lambda R_{\iota \to \iota \to o^{\blacksquare}} \forall X_{\iota^{\blacksquare}} \forall Y_{\iota^{\blacksquare}} (R \ X \ Y) \Rightarrow (R \ Y \ X) \\ \\ \text{transitive} & \stackrel{\text{def}}{=} & \lambda R_{\iota \to \iota \to o^{\blacksquare}} \forall X_{\iota^{\blacksquare}} \forall Y_{\iota^{\blacksquare}} \forall Z_{\iota^{\blacksquare}} ((R \ X \ Y) \land (R \ Y \ Z)) \Rightarrow (R \ X \ Z) \\ \\ \text{equiv_rel} & \stackrel{\text{def}}{=} & \lambda R_{\iota \to \iota \to o^{\blacksquare}} (\text{reflexive} \ R) \land (\text{symmetric} \ R) \land (\text{transitive} \ R) \\ \end{array}$$

Theorem

$$\exists R_{\iota \to \iota \to o} \neg (equiv_rel\ R)$$

Example solutions:

$$\begin{split} \{(\mathsf{x},\mathsf{y})|\mathsf{x} \neq \mathsf{y}\} & \text{ represented by } & \lambda \mathsf{X}_{\iota^{\blacksquare}} \lambda \mathsf{Y}_{\iota^{\blacksquare}} \neg (\mathsf{X} = \mathsf{Y}) \\ \{(\mathsf{x},\mathsf{y})|\mathsf{false}\} & \text{ represented by } & \lambda \mathsf{X}_{\iota^{\blacksquare}} \lambda \mathsf{Y}_{\iota^{\blacksquare}} \mathsf{F} \end{split}$$

THF Example 1

```
thf(reflexiv,definition,
        (reflexive :=
         (\hat{R}:(\hat{s}i>\hat{s}o)): (![X:\hat{s}i]:((R@X)@X))).
    thf(symmetric,definition,
5
        (symmetric :=
         (^[R:($i>($i>$0))]: (![X:$i,Y:$i]:
7
          ((R @ X) @ Y) => ((R @ Y) @ X)))).
    thf(transitive,definition,
10
        (transitive :=
11
         (^[R:($i>($i>$0))]: (![X:$i,Y:$i,Z:$i]:
12
          ((((R @ X) @ Y) & ((R @ Y) @ Z)) => ((R @ X) @ Z)))))
13
14
    thf(equiv rel,definition,
15
        (equiv rel :=
16
         (^[R:($i>($i>$0))]:
17
          (reflexive @ R) & (symmetric @ R) & (transitive @ R)))).
18
    thf(test,theorem,(?[R:($i>($i>$o))]: ~(equiv rel @ R))).
19
```


LEO-II as Interactive Proof Assistant

LEO-II as Interactive Proof Assistant

- Interactive proof assistant for simple type theory
- Proof kernel: extensional-higher order resolution
- What is this good for?
 - teaching of higher-order reasoning, higher-order unification, and higher-order term data structures
 - debugging of calculus, strategies, heuristics, system architecture(s)
- However, main project goal is proof automation

```
LEO-II> help
    * The list of interactive LEO-II commands is:
       **** interactive LEO-II calculus rules ****
      bool <cl>
                                  - applies boolean extensionality to a clause
    [...]
    * cnf-exhaustive <cl>
                                 - exhaustive clause normalisation of a clause
    [...]
      res <cl1> <cl2>
                                 - resolution between two clauses
    [...]
    * **** general commands ****
10
                                  - displays help screen;
       help
11
                                   type help <command> for help about <command>
12
        analyze-index
                                  - displays information on the global index
13
    [\ldots]
14
        clause-to-fotptp <cl>
                                 - translates a clause to FOTPTP FOF syntax
15
16
        flag-fo-translation
                                 - determines the fo-translation to be used
17
        flaq-max-clause-count <max> - sets an upper limit for generating clauses
18
    [ \dots ]
19
                                  - starts automated proof search
        prove
20
      prove-directory <dir>
                                  - applies LEO-II to all files in a directory
      22
                                   to all files in a directory
23
    * prove-with-fo-atp
                                  - starts automated proof search (with FO ATP)
24
        read-problem-string <str> - reads a problem string in THF syntax</br>
25
        read-problem-file <file>
                                 - reads a problem in THF syntax from a file
26
27
                                  - type this if you have enough of LEO-II
        quit
28
    LEO-II>
29
```


Automatic Proof Search

Problem Initialization

- Given: definitions D_1, \ldots, D_n , axioms A_1, \ldots, A_n , conjecture C
- Initialization leads to

$$\mathcal{C}_1: [\mathbf{A}_1]^{=\mathsf{T}} \quad \dots \quad \mathcal{C}_n: [\mathbf{A}_n]^{=\mathsf{T}} \qquad \mathcal{C}_{n+1}: [\mathbf{C}]^{=\mathsf{F}}$$

For our example problem we obtain

$$C_1 : [\exists \mathsf{R}_{\iota \to \iota \to \mathsf{o}} \neg (\mathsf{equiv_rel} \ \mathsf{R})]^{=\mathsf{F}}$$

- What happens with the definitions D_1, \ldots, D_n ?
 - they are not explicitly represented as clauses
 - they are implicitly maintained as rewrite rules

Example 1 (Contd.)

```
LEO-II> read-problem-file ../problems/SIMPLE-MATHS-5.thf
     [...]
2
    LEO-II> show-state
     SIGNATURE:
      <base types> $i $o
      <type variables> 'A
      <fixed logical symbols>
7
       false (false): $0
       [ \cdot \cdot \cdot ]
      <defined symbols>
10
       and (\&): ^{(X:\$o,Y:\$o)}: (^{(X)} (^{(X)})
11
       [ \cdots ]
12
       equiv rel (equiv rel):
13
         ^ [R:$i>($i>$0)] :
14
                ((reflexive @ R) & ((symmetric @ R) & (transitive @ R)))
15
       [ \cdots ]
16
      <uninterpreted symbols (upper case: free variables; lower case: constants)>
17
     INDEX: [...]
18
    ACTIVE: [
19
     2: [0:<?]R:$i>($i>$0)]:(~(equiv rel @ R)) = $false>-w(1)-i()]
20
       -mln(1)-w(1)-i(neg input 1)-fv([ ])
22
     PASSIVE: []
23
     l[ • • • 1
24
     FLAGS: [...]
25
     LEO-II>
26
```

Definition Unfolding

- currently LEO-II simultaneously unfolds all definitions before starting proof search
- thereby it benefits from the shared term data structures and the index
- delayed and stepwise definition unfolding, which is needed to successfully prove certain theorems, is future work

Example 1 (Contd.)

```
LEO-II> unfold-defs-exhaustive
    2:[ 0:<? [R:$i>($i>$0)] : (~ (equiv_rel @ R)) = $false>-w(1)-i() ]
      -mln(1)-w(1)-i(neg input 1)-fv([])
    1--- unfold-defs --->
    3:[ 0:<~ (! [x0:$i>($i>$0)] : (~ (~ (~ ((~ (! [x1:$i] :
7
           ((x0 @ x1) @ x1))) | (~(~(! [x1:$i,x2:$i] :
           (((x0 @ x1) @ x2)) | ((x0 @ x2) @ x1)))) |
           ( (! [x1:\$i, x2:\$i, x3:\$i] : (( (x0 @ x1) @ x2)) |
10
           ((x0 @ x2) @ x3))))) | ((x0 @ x1) @ x3))))))))))
11
          = false>-w(1)-i()
12
      -mln(1)-w(1)-i(unfold def 2)-fv([])
13
14
    LEO-II>
15
```

Clause Normalization

- CNF rules provided for logical primitives: $T, F, \neg, \lor, \Pi^{\alpha}$ and $=^{\alpha}$
 - speciality (extensionality in CNF normalization)

$$\frac{\mathcal{C}, \left[\mathbf{F}_{\beta \to \gamma} = \mathbf{G}_{\beta \to \gamma}\right]^{=\alpha}}{\mathcal{C}, \left[\forall \mathbf{X}_{\beta} \mathbf{F} \ \mathbf{X} = \mathbf{G} \ \mathbf{X}\right]^{=\alpha}} = \mathbf{T}, \mathbf{F} \\ \frac{\mathcal{C}, \left[\mathbf{F}_{\mathsf{o}} = \mathbf{G}_{\mathsf{o}}\right]^{=\alpha}}{\mathcal{C}, \left[\mathit{unfold}(\mathbf{F}_{\mathsf{o}} \Leftrightarrow \mathbf{G}_{\mathsf{o}})\right]^{=\alpha}} = \mathbf{T}, \mathbf{F} \\ \mathcal{C}, \left[\mathit{unfold}(\mathbf{F}_{\mathsf{o}} \Leftrightarrow \mathbf{G}_{\mathsf{o}})\right]^{=\alpha} = \mathbf{T}, \mathbf{F} \\ \mathcal{C}, \left[\mathit$$

- otherwise CNF normalization still quite naive
- Normalization of clause 3 leads to (the Vⁱ are free variables)

$$\begin{aligned} \mathcal{C}_{15} : & \left[\mathsf{V}^0 \ \mathsf{V}^1 \ \mathsf{V}^1 \right]^{=\mathsf{T}} & \mathcal{C}_{25} : & \left[\mathsf{V}^0 \ \mathsf{V}^1 \ \mathsf{V}^2 \right]^{=\mathsf{T}}, & \left[\mathsf{V}^0 \ \mathsf{V}^2 \ \mathsf{V}^1 \right]^{=\mathsf{F}} \\ & \mathcal{C}_{31} : & \left[\mathsf{V}^0 \ \mathsf{V}^1 \ \mathsf{V}^2 \right]^{=\mathsf{F}}, & \left[\mathsf{V}^0 \ \mathsf{V}^2 \ \mathsf{V}^3 \right]^{=\mathsf{F}}, & \left[\mathsf{V}^0 \ \mathsf{V}^1 \ \mathsf{V}^3 \right]^{=\mathsf{T}} \end{aligned}$$

Example 1 (Contd.)

```
LEO-II> cnf-exhaustive 3
     3:[0:<^{\sim}(![x0:$i>($i>$o)]:(^{\sim}(^{\sim}((^{\sim}(![x1:$i]:
2
              ((x0 @ x1) @ x1))) | (~(~(! [x1:$i,x2:$i] :
3
              (\tilde{\ }(! [x1:\$i,x2:\$i,x3:\$i] : ((\tilde{\ }((x0 @ x1) @ x2)) |
             ((x0 @ x2) @ x3))))) | ((x0 @ x1) @ x3))))))))))
             = false>-w(1)-i() ]-mln(1)-w(1)-i(unfold def 2)-fv([])
7
     --- cnf-exhaustive --->
8
9
    13: [0:<(V \times 0 \ 1 \ @ \ V \times 1 \ 2) \ @ \ V \times 1 \ 2 = \text{true} > -w(1) - i() ]
10
        -mln(1)-w(1)-i(cnf 11)-fv([V x1 2 V x0 1])
11
12
     25: [0:<(V \times 0 \ 1 \ @ \ V \times 1 \ 3) \ @ \ V \times 2 \ 5 = false>-w(1)-i()
13
           1:<(V \times 0 \ 1 \ 0 \ V \times 2 \ 5) \ 0 \ V \times 1 \ 3 = \text{true} - w(1) - i() \ 1
14
        -mln(2)-w(2)-i(cnf 23)-fv([V x2 5 V x1 3 V x0 1])
15
16
     31: [0:<(V \times 0 \ 1 \ @ \ V \times 1 \ 4) \ @ \ V \times 2 \ 6 = false>-w(1)-i()
17
           1:<(V \times 0 \ 1 \ @ \ V \times 1 \ 4) \ @ \ V \times 3 \ 7 = \text{$true}-w(1)-i()
18
           2:<(V \times 0 \ 1 \ 0 \ V \times 2 \ 6) \ 0 \ V \times 3 \ 7 = false>-w(1)-i() 
19
          -mln(3)-w(3)-i(cnf 30)-fv([V x3 7 V x2 6 V x1 4 V x0 1])
20
21
     LEO-II>
22
```

Resolution & Co.

Resolution

$$\frac{\mathcal{C}, [\mathbf{A}]^{=\alpha} \quad \mathcal{D}, [\mathbf{B}]^{=\beta} \quad \alpha \neq \beta \in \{\mathsf{T}, \mathsf{F}\}}{\mathcal{C}, \mathcal{D}, [\mathbf{A} = \mathbf{B}]^{=\mathsf{F}}} \text{ res}$$

Factorization

$$\frac{\mathcal{C}, [\mathbf{A}]^{=\alpha}, [\mathbf{B}]^{=\alpha}}{\mathcal{C}, [\mathbf{A}]^{=\alpha}, [\mathbf{A} = \mathbf{B}]^{=\mathsf{F}}} \mathsf{fac}$$

- currently restricted to identical A, B and handled via simplification rule
- Simplification
 - trivial factorization, deletion of tautologies, deletion of trivially unsatisfiable literals, etc.

Extensional Pre-Unification

Pre-unification

$$\frac{\mathcal{C}, \left[\mathbf{M}_{\alpha \to \beta} = \mathbf{N}_{\alpha \to \beta}\right]^{=\mathsf{F}} \quad \mathsf{s}_{\alpha} \; \mathsf{Sk. \; term}}{\mathcal{C}, \left[\mathbf{M} \; \mathsf{s} = \mathbf{N} \; \mathsf{s}\right]^{=\mathsf{F}}} \; \mathsf{func}$$

$$\begin{split} &\frac{\mathcal{C}, \left[\left(h_{\alpha} \ \overline{\mathbf{U}^{n}} \!=\! h_{\alpha} \ \overline{\mathbf{V}^{n}}\right)\right]^{=\mathsf{F}}}{\mathcal{C}, \left[\mathbf{U}^{1} \!=\! \mathbf{V}^{1}\right]^{=\mathsf{F}}, \ldots, \left[\mathbf{U}^{n} = \mathbf{V}^{n}\right]^{=\mathsf{F}}} \ dec & \frac{\mathcal{C}, \left[\mathbf{A} \!=\! \mathbf{A}\right]^{=\mathsf{F}}}{\mathcal{C}} \ triv \\ &\frac{\mathcal{C}, \left[\left(\mathsf{F}_{\gamma} \ \overline{\mathbf{U}^{n}} \!=\! h \ \overline{\mathbf{V}^{m}}\right)\right]^{=\mathsf{F}} \quad \mathbf{G} \in \mathcal{AB}_{\gamma}^{h}}{\mathbf{C}, \left[\mathsf{F} \!=\! \mathbf{G}\right]^{=\mathsf{F}}, \left[\mathsf{F} \ \overline{\mathbf{U}^{n}} \!=\! h \ \overline{\mathbf{V}^{m}}\right]^{=\mathsf{F}}} \ flex-rigid(\mathsf{F} \leftarrow \mathbf{G}) \\ &\frac{\mathcal{C}, \left[\mathsf{X} \!=\! \mathbf{A}\right]^{=\mathsf{F}}}{\mathcal{C}, \left[\mathsf{X} \!=\! \mathbf{A}\right]^{=\mathsf{F}}} \ \mathsf{X} \notin \mathbf{Free}(\mathbf{A}) \ subst \end{split}$$

$$\frac{\mathcal{C}, \left[\mathbf{M}_{o} = \mathbf{N}_{o}\right]^{=F}}{\mathcal{C}, \left[\textit{unfold}(\mathbf{M}_{o} \Leftrightarrow \mathbf{N}_{o})\right]^{=F}} \text{ bool}$$

clause normalization required after application of Bool

Primitive Substitution

Primitive substitution (blind guessing of sets and relations)

$$\frac{\mathcal{C}, \left[\mathsf{P}\ \overline{\mathbf{U^n}}\right]^{=\alpha}\ \mathbf{G} \in \mathcal{AB}^{\mathsf{T},\mathsf{F},\neg,\vee,\Pi^{\alpha}}}{\{\mathbf{G}/\mathsf{P}\}(\mathcal{C}, \left[\mathsf{P}\ \overline{\mathbf{U^n}}\right]^{=\alpha})}\ \mathsf{prim\text{-subst}}(\mathsf{P} \leftarrow \mathbf{G})$$

Example 1 (Contd.)

$$\begin{aligned} \mathcal{C}_{15} : & \left[\mathsf{V}^0 \ \mathsf{V}^1 \ \mathsf{V}^1 \right]^{=\mathsf{T}} & \mathcal{C}_{25} : & \left[\mathsf{V}^0 \ \mathsf{V}^1 \ \mathsf{V}^2 \right]^{=\mathsf{T}}, & \left[\mathsf{V}^0 \ \mathsf{V}^2 \ \mathsf{V}^1 \right]^{=\mathsf{F}} \\ & \mathcal{C}_{31} : & \left[\mathsf{V}^0 \ \mathsf{V}^1 \ \mathsf{V}^2 \right]^{=\mathsf{F}}, & \left[\mathsf{V}^0 \ \mathsf{V}^2 \ \mathsf{V}^3 \right]^{=\mathsf{F}}, & \left[\mathsf{V}^0 \ \mathsf{V}^1 \ \mathsf{V}^3 \right]^{=\mathsf{T}} \end{aligned}$$

$$\frac{\left[\textbf{V}^0 \ \textbf{V}^1 \ \textbf{V}^1\right]^{=\text{T}} \quad \textbf{G} \in \{\dots, (\lambda \textbf{Y}, \textbf{Z}_{\bullet}\textbf{F}), \dots\}}{\left[\textbf{F}\right]^{=\text{T}}} \ \text{prim-subst}(\textbf{V}^0 \leftarrow \lambda \textbf{Y}, \textbf{Z}_{\bullet}\textbf{F})$$

Paramodulation and Rewriting (ToDo) _ LE

Literals as rewrite rules

$$\frac{[\mathbf{A}]^{=\alpha}, \mathcal{C} \quad \mathcal{D}[\mathbf{B}]_{\mathsf{pl}} \quad \sigma(\mathbf{A}) = \mathbf{B}}{\sigma(\mathcal{D}[\alpha]_{\mathsf{pl}}, \mathcal{C})} \text{ rewr-w-lit}$$

- 1. $[\mathbf{A}]^{=\alpha}$ is maximal in $[\mathbf{A}]^{=\alpha}$, \mathcal{C} wrt. term ordering >
- 2. $\sigma(\mathcal{D}[\alpha]_{\mathsf{pl}}, \mathcal{C}) \not> \mathcal{D}[\mathbf{B}]_{\mathsf{pl}}$
- Paramodulation

$$\frac{\left[\mathbf{A} = \mathbf{C}\right]^{=\mathsf{T}}, \mathcal{C} \quad \mathcal{D}[\mathbf{B}]_{\mathsf{pl}} \quad \sigma(\mathbf{A}) = \mathbf{B}}{\sigma(\mathcal{D}[\mathbf{C}]_{\mathsf{pl}}, \mathcal{C})} \text{ para}$$

- 1. $[\mathbf{A} = \mathbf{C}]^{=\mathsf{T}}$ is max. in $[\mathbf{A} = \mathbf{C}]^{=\mathsf{T}}$, \mathcal{C} wrt. term ordering >
- 2. A > C
- 3. $\sigma(\mathcal{D}[\alpha]_{\mathsf{pl}}, \mathcal{C}) \not> \mathcal{D}[\mathbf{B}]_{\mathsf{pl}}$

Example 1 (Contd.)

```
LEO-II> read-problem-file ../problems/SIMPLE-MATHS-5.thf

[...]

LEO-II> prove

3 4 5 6 [...] 317 318

Eureka --- Thanks to Corina!

Here are the empty clauses

[

319:[ 0:<$false = $true>-w(1)-i() ]-mln(1)-w(1)-i(sim 33)-fv([ ])

]

0.54003: Total Reasoning Time (../problems/SIMPLE-MATHS-5.thf)
```

```
LEO-II (Proof Found!)> show-derivation 319
  1
                    **** Beginning of derivation protocol ****
  2
                  1: (? [R:$i>($i>$0)] : (~ (equiv rel @ R)))=$true
  3
                            --- theorem(file(../problems/SIMPLE-MATHS-5.thf,[test]))
                  2: (? [R:$i>($i>$0)] : (~ (equiv rel @ R)))
  5
                                =$false
                             --- neg input 1
  7
                  3: (\tilde{} (! [x0:$i>($i>$0)] : (\tilde{} (\tilde{} ((\tilde{} (! [x1:$i] : ((x0 @ x1) @ x1))) |
                                 (\tilde{\ }(\tilde{\ })))))))))))))))))))))))))))))
                                 (\tilde{\ }(! [x1:\$i,x2:\$i,x3:\$i] : ((\tilde{\ }((x0 @ x1) @ x2)) |
10
                         ((x0 @ x2) @ x3))))) | ((x0 @ x1) @ x3)))))))))))))))))))))
11
                               =$false
12
                            --- unfold def 2
13
                  4: [...]
14
                           --- cnf 4
15
                    6: [...]
16
                        --- cnf 5
17
                    7: [...]
18
                            --- cnf 6
19
                   8: [...]
20
                            --- cnf 7
21
                  10: (\tilde{\ }(! [x1:\$i] : ((V x0 1 @ x1) @ x1)))=\$false
22
                                --- cnf 8
23
                  11: (! [x1:$i] : ((V x0 1 @ x1) @ x1))=$true
24
                                 --- cnf 10
25
                   13: ((V_x0_1 @ V_x1_2) @ V_x1_2)=$true --- cnf 11
26
                   33: ($false)=$true
27
                                --- prim-subst (V x0 1 --> lambda [V21]: lambda [V22]: false) 13
28
                    319: ($false)=$true --- sim 33
29
                    **** End of derivation protocol ****
30
                    **** no. of clauses: 13 ****
31
                  LEO-II (Proof Found!)>
32
```

```
LEO-II (Proof Found!)> show-derivation-tstp 319
2
     % File
                  : ../problems/SIMPLE-MATHS-5.thf
     [...]
     % Comments : *todo*
     %**** Beginning of derivation protocol in tstp ****
7
8
     thf(1,theorem,((? [R:$i>($i>$0)] : (~ (equiv rel @ R)))=$true),
9
          file(../problems/SIMPLE-MATHS-5.thf,[test])).
10
11
     thf(2,plain,((? [R:$i>($i>$o)] : (~ (equiv rel @ R)))=$false),
12
          inference(neg input,[status(thm)],[1])).
13
14
     [...]
15
16
     thf(33,plain,(($false)=$true),
17
          inference(prim-subst (V x0 1-->lambda [V21]: lambda [V22]: false),
18
                    [status(thm)],[13])).
19
20
     thf(319,plain,(($false)=$true),
21
          inference(sim,[status(thm)],[33])).
22
23
     %**** End of derivation protocol in tstp ****
24
     %**** no. of clauses in derivation: 13 ****
25
    LEO-II (Proof Found!)>
26
```

Proof Automation: ToDo List

- term orderings
- efficient paramodulation and rewriting
- adapt overall calculus after adding them
- adapt heuristics and strategies
- efficient realization of remaining rules
- efficient subsumtion
- clever and efficient CNF normalization

_ . . .

Cooperation with FO-ATPs

Cooperation with Other Provers

Cooperation with Other Provers

- Provers supported (so far)
 - E, SPASS
- Translations supported so far
 - $@_{\alpha}$ -FO-translation [Kerber94]:

$$\begin{array}{c} (\mathsf{V}^0_{\iota \to \iota \to o} \; \mathsf{V}^1_\iota \; \mathsf{V}^1_\iota) \to \\ @_{(\iota \to o) \to \iota \to o} (@_{(\iota \to \iota \to o) \to \iota \to (\iota \to o)} (\mathsf{V}^0, \mathsf{V}^1), \mathsf{V}^1) \end{array}$$

fully typed FO-translation [Hurd02]:

$$\begin{array}{c} (\mathsf{V}^0_{\iota \to \iota \to o} \; \mathsf{V}^1_\iota \; \mathsf{V}^1_\iota) \to \\ \hspace{0.5cm} \mathsf{ti}(@(\mathsf{ti}(@(\mathsf{ti}(\mathsf{V}^0, \iota \to \iota \to o), \mathsf{ti}(\mathsf{V}^1, \iota)), \iota \to o), \mathsf{ti}(\mathsf{V}^1, \iota)), o) \end{array}$$

Communication with FO-ATPs: TPTP FOF

Cooperation with FO-ATPs: ToDo List

- add other provers, other systems
- use incremental provers
- provide more FO-translations
- parallel instead of sequential system architecture
- backtranslate proof objects

_ . . .

Perfect Term Sharing and Term Indexing

Term Sharing and Term Indexing

- Term sharing and term indexing widely employed in FO ATPs
- Not much used in HO systems so far
- LEO-II
 - Perfectly shared term data structure
 - DeBruijn-notation for bound variables
 - Indexing of various structural properties
 - Index realized via hashtables
 - Many operations (not all yet!) supported by term indexing
 - We provide tools to analyze the datastructure and the index

Perfect Term Sharing

$$\mathsf{p}_{\iota \to \mathsf{o}}(\lambda \mathsf{X}_{\iota}.\mathsf{a}_{\mathsf{o}}) \wedge \mathsf{p}_{\iota \to \mathsf{o}}(\lambda \mathsf{X}_{\iota}.\mathsf{b}_{\mathsf{o}}) \Rightarrow \mathsf{p}_{\iota \to \mathsf{o}}(\lambda \mathsf{X}_{\iota}.\mathsf{a}_{\mathsf{o}} \wedge \mathsf{b}_{\mathsf{o}})$$

$$\Rightarrow [(\land (p_{\iota \to o}(\lambda X_{\iota}.a_{o}))) (p_{\iota \to o}(\lambda X_{\iota}.b_{o}))] [p_{\iota \to o}(\lambda X_{\iota}.a_{o} \land b_{o})]$$


```
[...]
1
       --- cnf-exhaustive --->
2
3
      13: [0:<(V \times 0 \ 1 \ @ \ V \times 1 \ 2) \ @ \ V \times 1 \ 2 = \text{$true}-w(1)-i() \ ]
           -mln(1)-w(1)-i(cnf 11)-fv([ V x1_2 V_x0_1 ])
5
      25: [0:<(V \times 0 \ 1 \ @ \ V \times 1 \ 3) \ @ \ V \times 2 \ 5 = \$false>-w(1)-i()
              1:<(V \times 0 \ 1 \ 0 \ V \times 2 \ 5) \ 0 \ V \times 1 \ 3 = \text{true} - w(1) - i() \ 1
7
           -mln(2)-w(2)-i(cnf 23)-fv([V x2 5 V x1_3 V_x0_1])
8
      31: [0:<(V \times 0 \ 1 \ @ \ V \times 1 \ 4) \ @ \ V \times 2 \ 6 = false>-w(1)-i()
9
              1:<(V \times 0 \ 1 \ @ \ V \times 1 \ 4) \ @ \ V \times 3 \ 7 = \text{$true}-w(1)-i()
10
              2:<(V \times 0 \ 1 \ @ \ V \times 2 \ 6) \ @ \ V \times 3 \ 7 = false>-w(1)-i() \ 1
11
           -mln(3)-w(3)-i(cnf 30)-fv([V x3 7 V x2 6 V x1 4 V x0 1])
12
13
       [contd.]
14
```

3

10

11

12

13

14

15

16

```
[contd.]
1
     LEO-II> inspect-symbol V x0 1
     Inspecting:
       node 315: V x0 1
     Type:
       $i>($i>$o)
     Structure:
7
       symbol V x0 1
     Parents:
      - as function term:
10
       node 323: V x0 1 @ V x2 5
11
       node 326: V x0 1 @ V x1 4
12
       node 317: V x0 1 @ V x1 2
13
       node 331: V x0 1 @ V x2 6
14
       node 320: V x0 1 @ V x1 3
15
      total: 5 parents
16
     [contd.]
17
```

```
[contd.]
Occurs in terms indexed with role:
  node 318: (V x0 1 @ V x1 2) @ V x1 2
   (in Clause: 13/0 max pos)
  node 322: (V x0 1 @ V x1 3) @ V x2 5
   (in Clause: 25/0 max neg)
  node 324: (V x0 1 @ V x2 5) @ V x1 3
   (in Clause: 25/1 max pos)
  node 328: (V x0 1 @ V x1 4) @ V x2 6
   (in Clause: 31/0 max neg)
  node 330: (V x0 1 @ V x1 4) @ V x3 7
   (in Clause: 31/1 max pos)
  node 332: (V x0 1 @ V x2 6) @ V x3 7
   (in Clause:31/2 max neq)
 total: 6 terms
LEO-II>
```

```
LEO-II> read-problem-file ../problems/SIMPLE-MATHS-5.thf
1
    [...]
2
    LEO-II> analyze-index
3
     5
     10
11
     7: appl(0,6) : $0
                                                    [$i>($i>$0)/'A]
12
     ----- End Termset -----
13
    ----- The Termset Analysis -----
14
    Heavily shared nodes:
15
    Statistics:
16
    From 0 to 0 bindings: 1 node(s)
17
    From 0 to 1 bindings: 7 node(s)
18
    Details of dense areas:
19
    From 0 to 0 bindings: 1 node(s)
20
    From 1 to 1 bindings: 7 node(s)
21
    Sharing rate: 8 nodes with 7 bindings
22
    Average sharing rate:
                                                0.875 bindings per node
23
   Average term size:
                                                2.75
24
   Average number of supernodes:
                                                2.25
25
    Average number of supernodes (symbols):
                                                2.66666666667
26
    Average number of supernodes (nonprimitive terms): 1.5
27
    Rate of term occurrences PST size / term size: 0.440298507463
28
    Rate of symbol occurrences PST size / term size: 0.510204081633
29
    Rate of bound occurrences PST size / term size:
                                                0.636363636364
30
    ----- End Termset Analysis -----
31
   LEO-II> prove
32
```

```
LEO-II> prove
1
    3 4 [...] 317 318
2
    Eureka --- Thanks to Corina!
3
    Here are the empty clauses
     [319: 0:< false = true>-w(1)-i() ]-mln(1)-w(1)-i(sim 33)-fv([])]
5
    LEO-II (Proof Found!)> analyze-index
     ----- The Termset -----
7
      [...]
10
    687: appl(684,686) : $o
11
    ----- End Termset -----
12
    ----- The Termset Analysis -----
13
    Heavily shared nodes:
14
     6 bindings: exists (node 0)
15
     48 bindings: neg (node 1)
16
     [...]
17
    Statistics:
18
     [\ldots]
19
     From 22 to 32 bindings: 6 node(s)
20
     From 39 to 48 bindings: 3 node(s)
21
    Sharing rate: 688 nodes with 1042 bindings
22
    Average sharing rate:
                                                    1.51453488372 bindings per nod :
23
    Average term size:
                                                    8.49273255814
24
    Average number of supernodes:
                                                    6.44040697674
25
    Average number of supernodes (symbols):
                                                    16.5897435897
26
    Average number of supernodes (nonprimitive terms): 3.68412162162
27
    Rate of term occurrences PST size / term size:
                                                    0.26666121598
28
    Rate of symbol occurrences PST size / term size: 0.405684754522
29
    Rate of bound occurrences PST size / term size:
                                                    0.506734951593
30
    ----- End Termset Analysis -----
31
    LEO-II (Proof Found!)>
32
```

Our Term Indexing Tools _

- may be useful for other tasks
- need to be better exploited in LEO-II
- work out theoretical properties

First Experiments

LEO+FO-ATPs vs. LEO-II+FO-ATPs

- Previous experiments published in:
 - C. Benzmüller, V. Sorge, M. Jamnik, and M. Kerber:
 Combined Reasoning by Automated Cooperation.
 Journal of Applied Logic, 2007. To appear.
 - C. Benzmüller, V. Sorge, M. Jamnik, and M. Kerber:
 Can a Higher-Order and a First-Order Theorem Prover Cooperate?
 Proc. of LPAR, LNAI 3452, pp. 415-431, 2005. Springer.
- TPTP SET Category:
 - Problems on Sets, Relations and Functions
 - Formulated in first-order set theory
 - Reformulated for experiments in simple type theory
- Computer used in old experiments: 2.4 GHz Xenon, 1GB memory
- In new experiments: 1.6 GHz Intel Pentium, 1 GB memory

LEO+FO-ATPs vs. LEO-II+FO-ATPs


```
\begin{array}{lll} \text{SET171+3} & \forall X_{o\alpha}, Y_{o\alpha}, Z_{o\alpha}.X \cup (Y \cap Z) = (X \cup Y) \cap (X \cup Z) \\ \\ \text{SET611+3} & \forall X_{o\alpha}, Y_{o\alpha}.(X \cap Y = \emptyset) \Leftrightarrow (X \setminus Y = X) \\ \\ \text{SET624+3} & \forall X_{o\alpha}, Y_{o\alpha}, Z_{o\alpha}.\text{Meets}(X, Y \cap Z) \Leftrightarrow \text{Meets}(X, Y) \vee \text{Meets}(X, Z) \\ \\ \text{SET646+3} & \forall X_{\alpha}, y_{\beta}.\text{Subrel}(\text{Pair}(x, y), (\lambda u_{\alpha}.T) \times (\lambda v_{\beta}.T)) \\ \\ \text{SET670+3} & \forall Z_{o\alpha}, R_{o\beta\alpha}, X_{o\alpha}, Y_{o\beta}.\text{IsRelOn}(R, X, Y) \Rightarrow \text{IsRelOn}(\text{RestrictRDom}(R, Z), Z, Y) \\ \end{array}
```

```
\lambda x_{\alpha}, A_{\alpha \alpha}.[Ax]
                                                                := [\lambda x_{\alpha}.F]
                                                                := \lambda A_{o\alpha}, B_{o\alpha}. [\lambda x_{\alpha}. x \in A \land x \in B]
                                                                := \lambda A_{o\alpha}, B_{o\alpha}, [\lambda x_{\alpha}.x \in A \lor x \in B]
                                                                := \lambda A_{o\alpha}, B_{o\alpha}.[\lambda x_{\alpha}.x \in A \lor x \notin B]
Meets(\_,\_)
                                                                := \lambda A_{\alpha\alpha}, B_{\alpha\alpha}, [\exists x_{\alpha}. x \in A \land x \in B]
Pair(_{-},_{-})
                                                                           \lambda x_{\alpha}, y_{\beta}.[\lambda u_{\alpha}, v_{\beta}.u = x \wedge v = y]
                                                                :=
                                                                           \lambda A_{o\alpha}, B_{o\beta}.[\lambda u_{\alpha}, v_{\beta}.u \in A \land v \in B]
 _ X _
                                                                            \lambda \mathsf{R}_{\mathsf{o}\beta\alpha}, \mathsf{Q}_{\mathsf{o}\beta\alpha}. [\forall \mathsf{x}_{\alpha}, \mathsf{y}_{\beta}. \mathsf{Rxy} \Rightarrow \mathsf{Qxy}]
Subrel(-,-)
                                                                :=
\mathtt{IsRelOn}(-,-,-) \qquad \qquad := \quad \lambda \mathsf{R}_{\mathsf{o}\beta\alpha}, \mathsf{A}_{\mathsf{o}\alpha}, \mathsf{B}_{\mathsf{o}\beta}. [\forall \mathsf{x}_\alpha, \mathsf{y}_\beta. \mathsf{Rxy} \Rightarrow \mathsf{x} \in \mathsf{A} \land \mathsf{y} \in \mathsf{B}]
RestrictRDom(_{-},_{-})
                                                                := \lambda R_{0\beta\alpha}, A_{0\alpha}, [\lambda x_{\alpha}, y_{\beta}.x \in A \land Rxy]
```

LEO+FO-ATPs vs. LEO-II+FO-ATPs

TPTP-	Diffi-	Satu-	Mus	E-Se-	Vamp-	1	LEO	1	ı	ı	_EO- BLI	KSEM	I	1		LEO-Vai	mpire	
Problem	culty	rate	cadet	theo	ire 7	Strat.	CI.	Time	CI.	Time	FOcl	FOtm	GnCl	CI.	Time	FOcl	FOtm	GnCl
SET014+4	.67	+	+	+	.01	ST	41	.16	34	6.76	19	.01	7	11	2.6	.01	.01	16
SET017+1	.56	_	-	+	.03	EXT	3906	57.52	25	8.54	16	.01	74	28	5.05	. 8	.01	22
SET066+1	1.00	?	-	_		_ C/F	_	-	26	6.80	20	.01	56	38	3.73	17	.01	53
SET067+1	.56	+	+	+	.04	ST	6	.02	13	.32	16	.01	12	9	.1	10	.01	17
SET076+1	.67	+	_	+	.00	ST	_	-	10	.47	18	.01	35	12	.97	12	.01	27
SET086+1 SET096+1	.22 .56	+	_	+	.04 .03	51	2	.01 _	2 27	.01 7.99	N/A	N/A	N/A 25	2 81	.01 7.29	N/A 71	N/A 0.02	N/A
SET143+3	.67	+	+	+ +	.03 68.71	EIR	37	.38	33	7.93	14 18	.01 .01	19	8	.31	9	.01	23 9
SET171+3	.67		+	_	108.31	EIR	36	.56	25	4.75	19	.01	20	6	.38	10	.01	9
SET580+3	.44	+	+	+	14.71	EIR	25	.19	6	2.73	8	.01	13	8	.23	12	.01	4
SET601+3	.22	+	+	+	168.40	EIR	145	2.20	55	4.96	8	.01	13	20	1.18	31	.01	17
SET606+3	.78	+	_	+	62.02	EIR	21	.33	17	10.8	15	.01	5	5	.27	5	.01	3
SET607+3	.67	+	+	+	65.57	EIR	22	.31	17	7.79	15	.01	6	5	.26	8	.01	3
SET609+3	.89	+	+		161.78	EIR	37	.60	26	6.50	19	.01	17	6	.49	10	.01	9
SET611+3	.44	+	_	+	60.20	EIR	996	12.69	72	32.14	38	.01	101	39	4.00	40	0.03	23
SET612+3	.89	+	_	_	113.33	EIR	41	.54	18	3.95	6	.01	7	8	.46	11	.01	9
SET614+3	.67	+	+	_	157.88	EIR	38	.46	19	4.34	16	.01	17	8	.41	9	.01	9
SET615+3	.67	+	+	_	109.01	$_{ m EIR}$	38	.57	17	3.59	6	.01	9	6	.47	8	.01	9
SET623+3	1.00	?	_	_	_	EXT	43	8.84	23	9.54	10	.01	14	9	2.27	10	.01	8
SET624+3	.67	+	_	+	.04	ST	4942	34.71	54	9.61	46	.01	212	47	3.29	44	.01	71
SET630+3	.44	+	-	+	60.39	EIR	11	.07	6	.08	8	.01	4	4	.05	6	.01	10
SET640+3	.22	+	-	+	70.41	EIR	2	.01	2	.01	N/A	N/A	N/A	2	.01	N/A	N/A	N/A
SET646+3	.56	+	-	+	59.63	EIR	2	.01	2	.01	N/A	N/A	N/A	2	.01	N/A	N/A	N/A
SET647+3	.56	+	-	+	64.21	$_{ m EIR}$	26	.15	13	.30	13	.01	15	7	.12	7	.01	11
SET648+3	.56	+	-	+	64.22	EIR	26	.15	14	.30	13	.01	16	7	.12	9	.01	3
SET649+3	.33	-	-	+	63.77	EIR	45	.30	29	5.49	12	.01	16	10	.25	13	.01	8
SET651+3	.44	-	-	+	63.88	EIR	20	.10	11	.16	10	.01	11	7	.09	8	.01	2
SET657+3	.67	+	-	+	1.44	EIR	2	.01	2	.01	N/A	N/A	N/A	2	.01	N/A	N/A	N/A
SET669+3	.22	_	-	+	.34	EI	6	.19	7	.21	N/A	N/A	N/A	6	.2	N/A	N/A	N/A
SET670+3	1.00	?	_			EXT	15	.17	17	.36	16	.01	6	9	.14	11	.01	14
SET671+3	.78	_	_	+	218.02	EIR	78 07	.64	7	2.71	10	.01	14	13	.47	11	.01	9
SET672+3 SET673+3	1.00	?	_		47.86	EXT EIR	27 78	.4 .65	30 14	.70 5.66	21 14	.01	11	10 13	.23 .47	12 17	.01	14 6
SET680+3	.78 .33	-		+ +	.07	ST	185	.88	29	4.61	18	.01 .01	16 24	30	2.38	16	.01 .01	27
SET683+3	.22	+			.07	ST	46	.20	35	8.90	18	.01	24	12	.27	15	.01	4
SET684+3	.78	+		+ +	.33	ST	275	2.45	46	5.95	26	.01	47	41	3.39	35	.01	38
SET686+3	.56	_		+	.11	ST	273	2.36	46	5.37	26	.01	46	42	3.55	37	.01	39
SET716+4	.89	+	+	_		ST	39	.45	18	3.81	18	.01	118	19	.4	24	0.02	73
SET710+4	.89	+	+	_	_	EXT	154	2.75	18	7.21	15	.01	23	10	1.91	14	.01	20
SET741+4	0.91	?	+	_	_		-	2.75	21	92.76	22	.01	104850	21	3.70	26	.01	570
SET747+4	.89	-	+	_	_	ST	34	.46	25	1.11	18	.01	10	11	1.18	8	.01	14
SET752+4	.89	?	+	_	_	_	_	_	50	6.60	48	.01	4363	50	516.0	48	.01	4145104
SET753+4	.89	?	+	-	-	_	_	_	15	3.07	12	.01	19	12	1.64	12	.01	47
SET764+4	.56	+	+	+	.02	EI	2	.01	2	.01	N/A	N/A	N/A	2	.01	N/A	N/A	N/A
SET770+4	.89	+	+	-	-	_	_	-	-	-	-	_	-	_	-	-	-	_

Average Total LEO-Vampire ($\sqrt{\ }$) = 12.963

New Experiments with LEO-II

	Fully	Typed FO-Trar	nslation	$@_{lpha}$ -FO-Translation				
Filename	Proof	LEO+E (s)	Total (s)	Proof	LEO+E (s)	Total (s)		
SET014+4.thf		0.008 0.024	0.032		0.008 0.013	0.021		
SET017+1.thf	$\sqrt{}$	0.040 0.035	0.075		0.040 0.029	0.069		
SET066+1.thf	$\sqrt{}$	0.004 0.016	0.020		0.008 0.018	0.026		
SET067+1.thf	$\sqrt{}$	0.008 0.036	0.044		0.008 0.032	0.040		
SET076+1.thf	$\sqrt{}$	0.008 0.019	0.027		0.004 0.013	0.017		
SET086+1.thf		0.004	0.004		0.004	0.004		
SET096+1.thf		0.012 0.021	0.033		0.004 0.016	0.020		
SET143+3.thf		0.028 0.037	0.065		0.008 0.015	0.023		
SET171+3.thf		0.032 0.034	0.066		0.008 0.019	0.027		
SET580+3.thf	$\sqrt{}$	0.240 0.083	0.323	V.	0.052 0.038	0.090		
SET601+3.thf	$\sqrt{}$	0.304 0.184	0.488	V.	0.044 0.028	0.072		
SET606+3.thf	$\sqrt{}$	0.024 0.034	0.058	$\sqrt{}$	0.012 0.015	0.027		
SET607+3.thf	\ \tag{\dagger}	0.008 0.024	0.032	$\sqrt{}$	0.008 0.015	0.023		
SET609+3.thf	$\sqrt{}$	0.044 0.047	0.091	$\sqrt{}$	0.024 0.036	0.060		
SET611+3.thf	\ \ \ \	0.808 0.293	1.101	$\sqrt{}$	0.084 0.026	0.110		
SET612+3.thf	\ \ \ \	0.040 0.041	0.081	$\sqrt{}$	0.012 0.016	0.028		
SET614+3.thf	\ \ \ \	0.048 0.076	0.124	$\sqrt{}$	0.016 0.034	0.050		
SET615+3.thf	\ \ \\ \	0.044 0.056	0.100	v /	0.012 0.019	0.031		
SET623+3.thf	\ \\ \\ \\	8.548 0.858	9.407	v /	1.008 0.064	1.072		
SET624+3.thf	\ \\ \\ \\	0.048 0.092	0.140	\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	0.020 0.021	0.041		
SET630+3.thf	\ \\ \\ \\	0.008 0.023	0.031	\ \\ \\ \\ \\	0.008 0.018	0.026		
SET640+3.thf	\ \\ \\ \\ \\	0.012	0.012	\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	0.008	0.008		
SET646+3.thf	\ \\ \\ \\	0.012	0.012	\	0.020	0.020		
SET647+3.thf	\bigvee	0.016 0.020	0.036	\bigvee	0.012 0.018	0.030		
						•••		

New Experiments with LEO-II

	Fully	Typed FO-Trar	nslation	$@_{lpha}$ -FO-Translation			
Filename	Proof	LEO+E (s)	Total (s)	Proof	LEO+E (s)	Total (s)	
SET648+3.thf SET649+3.thf SET651+3.thf SET657+3.thf SET669+3.thf SET670+3.thf SET671+3.thf SET672+3.thf SET673+3.thf SET680+3.thf SET683+3.thf SET684+3.thf SET716+4.thf SET724+4.thf SET724+4.thf SET741+4.thf SET752+4.thf SET753+4.thf	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	0.012 0.020 0.016 0.024 0.016 0.024 0.012 0.020 0.023 0.028 0.039 0.020 0.031 0.016 0.020 0.020 0.032 0.012 0.023 0.012 0.023 0.012 0.020 0.012 0.020 0.012 0.022 0.016 0.037 0.012 0.024 0.028 0.267 0.016 0.021 0.008	0.032 0.040 0.040 0.012 0.043 0.067 0.051 0.036 0.051 0.052 0.035 0.069 0.032 0.034 0.053 0.036 0.295 0.037 0.008	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	0.016 0.015 0.012 0.018 0.012 0.018 0.008 0.020 0.019 0.020 0.034 0.016 0.019 0.016 0.018 0.020 0.019 0.020 0.016 0.032 0.034 0.016 0.020 0.008 0.019 0.012 0.018 0.012 0.017 0.008 0.019 0.020 0.056 0.016 0.018 0.008	0.031 0.030 0.030 0.008 0.039 0.054 0.035 0.034 0.036 0.036 0.066 0.027 0.027 0.029 0.027 0.029 0.027 0.034 0.034	
SET770+4.thf	Average Total ($$) =			V Ave	rage Total ($$) :		

SET770+4

$$\forall \mathsf{R}_{\alpha \to \alpha \to \mathsf{o}}, \mathsf{Q}_{\alpha \to \alpha \to \mathsf{o}}. ((\mathsf{equiv_rel}\ \mathsf{R}) \land (\mathsf{equiv_rel}\ \mathsf{Q})) \Rightarrow \\ ((\mathsf{equiv_classes}\ \mathsf{R}) = (\mathsf{equiv_classes}\ \mathsf{Q}) \lor (\mathsf{disjoint}\ (\mathsf{equiv_classes}\ \mathsf{R})\ (\mathsf{equiv_classes}\ \mathsf{Q})))$$

Further Work

	Fully	y Typed FO-Tran	slation	$@_{lpha}$ -FO-Translation			
Filename	Proof	LEO+E (s)	Total (s)	Proof	LEO+E (s)	Total (s)	
n-bit-adder-base.thf		0.399 12.240	12.640	_			
n-bit-adder-step.thf	_			_			

Summary

- LEO-II: so far 12570 lines of OCAML code, easy to install
 - shared term datastructure, term indexing, inspection tools
 - TPTP THF/FOF parser
 - command line interface
 - calculus
 - proof objects, proof output
 - automated proof search
 - support tools for experiments
 - **.** . . .
- Long list of future work
- Now we are entering the fascinating phase
- Biggest problem: stay focused

Why no (full) Polymorphism?

adds another dimension of complexity and non-determinism:

negation and clause normalization (A, B, Op are free variables):

$$\begin{split} \mathcal{E}_1: & [\mathsf{A}_\alpha = \mathsf{B}_\alpha]^{=\mathsf{T}}, [(\mathsf{Op}_{\alpha \to \alpha \to \alpha} \mathsf{A}_\alpha \mathsf{A}_\alpha) = \mathsf{A}_\alpha]^{=\mathsf{F}}, [(\mathsf{Op}_{\alpha \to \alpha \to \alpha} \mathsf{A}_\alpha \mathsf{B}_\alpha) = \mathsf{B}_\alpha]^{=\mathsf{F}}, \\ & [(\mathsf{Op}_{\alpha \to \alpha \to \alpha} \mathsf{B}_\alpha \mathsf{A}_\alpha) = \mathsf{B}_\alpha]^{=\mathsf{F}}, [(\mathsf{Op}_{\alpha \to \alpha \to \alpha} \mathsf{B}_\alpha \mathsf{A}_\alpha) = \mathsf{B}_\alpha]^{=\mathsf{F}} \end{split}$$

blind guessing of instances for type variable α in combination with blind guessing of instances for term variable Op required