Lab 6

Systemy CAD/CAE

Adrian Madej 25.11.2024

1. Zmodyfikowany fragment kodu

```
1. %ustawiamy seed
2. \operatorname{rng}(0)
3. .
4. .
5. .
6. for j=1:ndataset
7.
       %i=floor(r(j));
8.
       %if(i==0)
9.
           %i=1;
10.
       %end
       % chcemy trenować bez losowości odkomentujemy 4 powyższe linie
11.
12.
       i=j;
      for epoch=1:1000
       14.
15.
16.
          a1_=a1; b1_=b1; c1_=c1; d1_=d1;
17..
18..
19..
20.
          d3=d3-eta3* derrordd;
22. end
23..
24..
25..
26.fprintf('a1= %f;\n', a1)
27.fprintf("b1= %f;\n", b1)
28.fprintf("c1= %f;\n", c1)
29.fprintf("d1= %f;\n", d1)
31.fprintf("a2= %f;\n", a2)
32.fprintf("b2= %f;\n", b2)
33.fprintf("c2= %f;\n", c2)
34.fprintf("d2= %f;\n", d2)
36.fprintf("a3= %f;\n", a3)
37.fprintf("b3= %f;\n", b3)
38.fprintf("c3= %f;\n", c3)
39.fprintf("d3= %f;\n", d3)
```

2. Otrzymane rezultaty

Dla trenowanego modelu bez losowości (linia 12) otrzymujemy

Parametr	Wartość
a ₁	0.998317
b ₁	0.856309
C ₁	0.170493
d ₁	-0.159871
a ₂	1.010407
b_2	0.896798
C ₂	0.612143
d_2	0.423566
a₃	1.008945
b ₃	0.906363
C ₃	0.655185
d ₃	0.492672

Wówczas proces uczenia zbiega się

Dla trenowanego modelu z losowością (linie 7-10) otrzymujemy

Parametr	Wartość
a ₁	0.955345
b ₁	0.891653
C ₁	0.120090
d ₁	-0.104508
a_2	1.052252
b ₂	0.841757
C ₂	0.599959
d ₂	0.174938
a ₃	1.097997
b ₃	0.830174
C ₃	0.772666
d ₃	0.329075

Wówczas proces uczenia także zbiega się

3. Opis znalezienia punktu

Do znalezienia odpowiednich parametrów wykorzystano kod **NNtrain.m** z modyfikacjami opisanymi w rozdziale 1.

Program był uruchamiany dla różnych wartości liczby epok. Po przekroczeniu pewnej liczby epok, rezultaty pozostawały niezmienne, co wskazuje na osiągnięcie stabilnej zbieżności modelu.