NASA Briefing for Unidata

Christopher Lynnes EOSDIS System Architect

Cloud Computing

High-level direction to "consider cloud computing" to satisfy EOSDIS Big Data requirements

EOSDIS Works with (pretty) Big Data

...Volume

Archive and Distribution Prototype(s)

- Alaska Satellite Facility Web Object Storage prototype
 - Distribute Sentinel radar data from Amazon storage
- Global Imagery Browse Service in the Cloud
- Ingest and Archive management prototype

Cloud Analytics Prototypes

OPeNDAP + HDF in Cloud Web Object Storage

Web Object Storage ≠ File System

OPeNDAP needs high-performance internal random access

Approaches

- Use file system emulator (e.g., FUSe)
- Pull files from WOS and cache on EBS
- Store variables (or chunks) as objects
- Use HTTP range gets based on maps of data

EOSDIS Standards Office Interoperability Recommendations

Dataset Interoperability Recommendations for Earth Science

- 1. Maximize HDF5/netCDF4 interoperability via API accessibility
- Include Basic CF Attributes
- 3. Use CF "bounds" attributes
- 4. Verify CF compliance
- 5. Distinguish clearly between HDF and netCDF packing conventions
- 6. When to employ packing attributes
- 7. Mapping between ACDD and ISO
- 8. Group Structures in HDF5 and netCDF4 Files
- 9. Make HDF5 files netCDF4-Compatible and CF-compliant within Groups
- 10. Include time dimension in grid structured data
- 11. Order dimensions to facilitate readability of grid structure datasets
- 12. Consider "balanced" chunking for 3-D datasets in grid structures
- 13. Include datum attributes for data in grid structures

HDF Product Designer

