Examen final Reconocimiento de Patrones

Alumno: Alfonso Murrieta V.

Problema 1. Bosqueje el diagrama de un sistema de Reconocimiento de Patrones.

Problema 2. Suponga que se tiene una observación:

 $R1 = 5 \cos \theta + W1$

Donde θ es un parámetro determinístico que se desea estimar. W1 es una variable aleatoria con distribución gaussiana con media cero y varianza 3.

a) Encuentre la estimación de θ con un criterio de máxima verosimilitud.

b). Suponga que se tiene una segunda observación:

$$R2 = 5 \operatorname{sen} \theta + W2$$

W₂ es otra variable aleatoria, independiente de W1, gaussiana, con media cero y varianza 3.

Vuelva a encontrar la estimación de θ con el criterio de máxima verosimilitud tomando en cuenta las dos observaciones.

Reactiness B

Relation (Relation) =
$$\left(\frac{|R-S_{cos}S|^{2}}{(235)}\right)$$

Relation (Relation) = $\left(\frac{|R-S_{cos}S|^{2}}{(235)}\right)$

Sin (Relation) = $\left(\frac{|R-S_{cos}S|^{2}}{(235)}\right)$

Relation (Relation) = $\left(\frac{|R-S_{cos}S|^{2}}{(235)}\right)$

Sin (Relation) = $\left(\frac{|R-S_{cos}S|^{2}}{(235)}\right)$

Relation (Relation) = $\left(\frac{|R-S_{cos}S|^{2}}{(235)}\right)$

Sin (Relation) = $\left(\frac{|R-S_{$

Problema 3. Suponga que bajo la hipótesis H1 la variable aleatoria X tiene una función de Probabilidad. Bajo la hipótesis H0 la variable aleatoria X es uniformemente distribuida en [-1,1].

a) Encuentre el radio de verosimilitud

- b) Encuentre regla de decisión siguiendo el criterio de Bayes, suponiendo probabilidade a priori iguales, costos de decisión que maximiza la probabilidad de detección con la
- restricción de que la probabilidad de falsa alama sea menor o igual a 0.1.
- d) Grafique la curva ROC

Problema 4. Considere los datos de la siguiente

Muestra	E	Т	D	F	clasificación
	Escurrimiento	Tos	Dolor de	Fiebre	
	nasal		cabeza		
1	Si	Si	Si	No	COVID-19
2	Si	Si	No	No	COVID-19
3	No	No	Si	Si	COVID-19
4	Si	No	No	No	Negativo
5	No	No	No	No	Negativo
6	No	Si	Si	No	Negativo

a) Encuentre las probabilidades necesarias para aplicar un criterio de Naive Bayes para predecir si una persona está enferma de COVID-19.

1. Frecuencias

TIPO	Positivo a COVID	Negativo a COVID
E	2	1
Т	2	1
D	2	1
F	1	0
E-	1	2
T-	1	2
D-	1	2
F-	2	3

2. Probabilidades

TIPO	Positivo a COVID	Negativo a COVID
E	0.17	0.08
T	0.17	0.08
D	0.17	0.08
F	0.08	0.00
E-	0.08	0.17
T-	0.08	0.17
D-	0.08	0.17
F-	0.17	0.25

3. Si aplicamos smoothing

TIPO	Positivo a COVID	Negativo a COVID
E	3	2
Т	3	2
D	3	2
F	2	1
E-	2	3
T-	2	3
D-	2	3
F-	3	4

4. Generales

b) Clasifique tres pacientes en dos clases COVID-19 o negativo. Los síntomas de cada persona son:

NOTA: A continuación, un ejemplo aplicando el smoothing

Eyemplo para

"Pacienti 1"

P (Positive)
$$\bar{E}, T, \bar{D}, \bar{F}$$
) = $P(\bar{E}, T, \bar{D}, \bar{T} | Positive)$ $P(Positive)$ $P(Positive)$ $P(\bar{E} | Positive)$ $P(T | Positive)$ $P($

Paciente 1) tos y fiebre (E,T,D,F)

P(Positivo | E,T,D,F) = 0.00004822531

P(Negativo | E,T,D,F) = 0

Pronóstico clínico: Positivo a COVID

Si aplicamos smoothing

P(Positivo | E,T,D,F) = 0.000075

P(Negativo | E,T,D,F) = 0.00005625

Pronóstico clínico: Positivo a COVID

Paciente 2) escurrimiento nasal y fiebre $(E,\overline{T},\overline{D},F)$

P(Positivo | E,T,D,F) = 0.00004822531

P(Negativo | E,T,D,F) = 0

Pronóstico clínico: Positivo a COVID

Si aplicamos smoothing

P(Positivo | E,T,D,F) = 0.000075

P(Negativo | E,T,D,F) = 0.00005625

Pronóstico clínico: Positivo a COVID

Paciente 3) escurrimiento nasal y dolor de cabeza (E,T,D,F)

P(Positivo | E,T,D,F) = 0.000193

P(Negativo | E,T,D,F) = 0.000144

Pronóstico clínico: Positivo a COVID

Si aplicamos smoothing

P(Positivo | E,T,D,F) = 0.000168

P(Negativo | E,T,D,F) = 0.00015

Pronóstico clínico: Positivo a COVID

NOTA 1: Para el ejercicio 1 y 2 se empleó directamente el realizar los apuntes a mano, en el caso del ejercicio 4 también se realizo a mano un caso, sin embargo, los demás casos se realizaron mediante tablas de Excel.

NOTA 2: El video para la sustitución trigonométrica es el siguiente: https://youtu.be/qvZFQ36Mj3k