- 1. Assume documents d_1 and d_2 are two documents where d_1 is the string S and d_2 is the string S+" "+S. Given a query Q, which document will be ranked higher by a cosine-distance-based TF-IDF retrieval model?
 - a. d₁
 - b. d₂
 - c. They will have the same rank (CORRECT)
 - d. It depends on the query Q

Explanation: the two document will have exactly the same direction, therefore given any vector representation for Q, they will always have the same rank (as it's a cosine-distance-based retrieval)

2. Run the PageRank algorithm on the following graph. What would be the node with the highest PageRank after the 2nd iteration?

Note: In Iteration 0 we assign uniform weights to all nodes. You need to run for the next two iterations: Iteration 1 and Iteration 2.

- a. A
- b. B
- c. C (CORRECT)
- d. D

Explanation:

	Iteration 0	Iteration 1	Iteration 2	Ranking
А	1/4	1/12	1.5/12	4
В	1/4	2.5/12	2/12	3
С	1/4	4.5/12	4.5/12	1
D	1/4	4/12	4/12	2

- 3. You have a chain of pages where each page links to the next. Additionally, every page in the chain links back to the first page. How will the PageRank <u>probability</u> of the first page behave, using basic PageRank without random jumps, as the chain growths?
 - a. It will converge to 0
 - b. It will converge to ½ (CORRECT)
 - c. It will converge to 1
 - d. It will converge to infinity
- 4. What is TRUE regarding Item-based Collaborative Filtering?
 - a. It does leverage item description
 - b. It can recommend niche or new items (CORRECT)
 - c. It recommends items by finding similar users
 - d. None of the above
- 5. Using Matrix Factorization we have ended up with two matrices representing the user preferences (for 4 users: A, B, C, D) and item preferences (For 5 items: 1, 2, 3, 4, 5) as shown below.

$$U = \begin{bmatrix} 3 & 0 \\ 2 & 2 \\ 4 & 4 \\ 0 & 4 \end{bmatrix} \quad I = \begin{bmatrix} 1 & 3 \\ 0 & 4 \\ 4 & 3 \\ 1 & 2 \\ 4 & 0 \end{bmatrix}$$

Which top 2 users, the item 3 should be recommended to?

- a. A, B
- b. B, C (CORRECT)
- c. C, D
- d. A, D

Explanation:

The UxI matrix will be the following:

	I 1	12	13	14	15
UA	3	0	12	3	12
UB	8	8	14	6	8
uc	16	16	28	12	16
UD	12	16	12	8	0

And the normalized version of it:

	11	12	13	14	15
UA	0	0	1.5	0	1.5
UB	1	1	2	1	1
UC	2	2	3.5	3	2
UD	1.5	2	1.5	1	0

6. You have the following sentence: "The **dollar** index dropped today around 0.5% in New York Stock Exchange" and you want to do Entity Linking for the word "**dollar**". You retrieve in the KG different nodes that can be related to the mention of "dollar" and end up in an entity graph with the following properties:

KG Node	Out-degree	In-degree
United States dollar	2	4
Canadian dollar	7	0
Australian dollar	0	6

Using Personalized Pagerank ranking, starting in the entity graph with a node related to the mention "New York Stock Exchange", which one of the following is always TRUE:

- a. P("Canadian dollar") <= P("Australian dollar") (CORRECT)
- b. P("United States dollar") < P("Australian dollar")
- c. P("United States dollar") <= P("Canadian dollar")
- d. None of the above

Explanation: Since the in-degree of the Canadian dollar is zero, in PPR, we never reach this node, for the prob will be zero.