Corrigé modèle

(6 points)

On remplace x par 2 dans (2):

$$z=\frac{1}{2}$$

On remplace x par 2 et z par $\frac{1}{2}$ dans (1): y = -3

$$y = -3$$

$$S = \left\{ \left(2; -3; \frac{1}{2}\right) \right\}$$

Question 2

(14 points)

Soit x le nombre de chaussures modèle high speed et y le nombre de chaussures modèle dynamico.

On obtient le système d'inéquations suivant : $\begin{cases} 4x + 5y \le 175 \\ 6x + 20y \le 600 \\ 22x + 15y \le 825 \Leftrightarrow \begin{cases} 4x + 5y \le 175 \\ 3x + 10y \le 300 \\ 22x + 15y \le 825 \end{cases}$ $x \ge 0$

• Posons:

$$d_1 \equiv 4x + 5y = 175 \Leftrightarrow y = -\frac{4}{5}x + 35.$$

 $4 \cdot 0 + 5 \cdot 0 = 0$ (< 175), donc O appartient au demi-plan d'inéquation $4x + 5y \le 175$.

$$d_2 \equiv 3x + 10y = 300 \Leftrightarrow y = -\frac{3}{10}x + 30.$$

 $3 \cdot 0 + 10 \cdot 0 = 0$ (< 300), donc *O* appartient au demi-plan d'inéquation $3x + 10y \le 300$.

$$d_3 \equiv 22x + 15y \le 825 \Leftrightarrow y = -\frac{22}{15}x + 55.$$

 $22 \cdot 0 + 15 \cdot 0 = 0$ (< 825), donc *O* appartient au demi-plan d'inéquation $22x + 15y \le 825$.

$$d_4 \equiv x = 0$$
 et $d_5 \equiv y = 0$.

Il faut considérer l'ensemble de points qui ont des abscisses et des ordonnées positives.

• Le recette est donnée par R(x, y) = 100x + 140y. Posons $d_0 = 100x + 140y = 0 \Leftrightarrow y = -\frac{5}{7}x$.

■
$$d_{max}$$
 passe par $I \in d_1 \cap d_2$:
$$\begin{cases} y = -\frac{4}{5}x + 35 \\ y = -\frac{3}{10}x + 30 \end{cases}$$
$$-\frac{4}{5}x + 35 = -\frac{3}{10}x + 30 \iff -\frac{8}{10}x + \frac{3}{10}x = -5$$
$$\Leftrightarrow -\frac{5}{10}x = -5$$
$$\Leftrightarrow x = 10$$

On remplace x par 10 dans (1): y = 27.

 $\Leftrightarrow x = -7$

Donc I(10; 27).

• La recette est maximale pour la vente de 10 paires de chaussures modèle high speed et 27 paires de chaussures modèle dynamico. Dans ce cas la recette est $R(10; 27) = 100 \cdot 10 + 140 \cdot 27 = 4780$ euros.

$$S = \{-7\}$$

2)
$$5 \cdot 7^{3x} - 90 = 8 + 3 \cdot 7^{3x}$$

 $\forall x \in \mathbb{R}$: $5 \cdot 7^{3x} - 90 = 8 + 3 \cdot 7^{3x}$ $\Leftrightarrow 2 \cdot 7^{3x} = 98$
 $\Leftrightarrow 7^{3x} = 49$
 $\Leftrightarrow 7^{3x} = 7^2$
 $\Leftrightarrow 3x = 2$
 $\Leftrightarrow x = \frac{2}{3}$

 $S = \left\{\frac{2}{3}\right\}$

Question 4

(5+4+3+2+3+3=20 points)

$$f(x) = 20x^3 - 360x^2 + 1920x + 5000$$

1)
$$f'(x) = 60x^2 - 720x + 1920$$

 $f'(x) = 0 \Leftrightarrow 60x^2 - 720x + 1920 = 0$
 $\Leftrightarrow x^2 - 12x + 32 = 0$

$$\Delta = 144 - 128 = 16$$

$$x_1 = \frac{12-4}{2} = 4$$
; $x_1 = \frac{12+4}{2} = 8$

x	-∞		4		8		+∞
f'(x)		+	0	-	. 0	+	
c_f			№ 8200 —		7 560 -		→

$$f(4) = 20 \cdot 4^3 - 360 \cdot 4^2 + 1920 \cdot 4 + 5000 = 8200$$
 \rightarrow Maximum: (4; 8200)
 $f(8) = 20 \cdot 8^3 - 360 \cdot 8^2 + 1920 \cdot 8 + 5000 = 7560$ \rightarrow Minimum: (8; 7560)

2)
$$f''(x) = 120x - 720$$

$$f''(x) = 0 \iff 120x - 720 = 0$$

$$f(6) = 20 \cdot 6^3 - 360 \cdot 6^2 + 1920 \cdot 6 + 5000 = 7880$$
 \rightarrow Point d'inflexion : (6; 7880)

3)
$$f(3) = 20 \cdot 3^3 - 360 \cdot 3^2 + 1920 \cdot 3 + 5000 = 8060$$

 $f'(3) = 60 \cdot 3^2 - 720 \cdot 3 + 1920 = 300$

Pour l'instant
$$t \equiv y = 300x + p$$
.

$$A(3; 8060) \in t \iff 8060 = 300 \cdot 3 + p$$

$$\Leftrightarrow p = 7160$$

Donc $t \equiv y = 300x + 7160$.

4)
$$\frac{f(6)-f(0)}{6} = \frac{7880-5000}{6} = \frac{2880}{6} = 480$$

Le taux de variation moyen de naissances lors des six premières années est de 480 naissances par an.

5)
$$f'(11) = 60 \cdot 11^2 - 720 \cdot 11 + 1920 = 1260$$

Au début de l'année 2026 le taux instantané de naissances est de 1260 naissances par an.

6)
$$f'(x) = 720$$
 $\Leftrightarrow 60x^2 - 720x + 1920 = 720$
 $\Leftrightarrow 60x^2 - 720x + 1200 = 0$
 $\Leftrightarrow x^2 - 12x + 20 = 0$
 $\Delta = 144 - 80 = 64$
 $x_1 = \frac{12 - 8}{2} = 2$; $x_1 = \frac{12 + 8}{2} = 10$

Le taux de naissances sera égal à 720 en 2017 et en 2025.

Question 5

((2+2)+(2+2)=8 points)

1) a) Soit A l'évènement « tirer 4 boules de la même couleur » :

$$P(A) = P(\text{wtirer 4 boules bleues}) + P(\text{wtirer 4 boules vertes})$$

$$= \frac{c_7^4 + c_5^4}{c_{15}^4}$$

$$= \frac{35+5}{1365} = \frac{8}{273} \approx 0,029$$

b) Soit B l'évènement « tirer au moins 1 boule jaune » et \overline{B} l'évènement « ne tirer aucune boule jaune »:

$$P(B) = 1 - P(\overline{B}) = 1 - \frac{C_{12}^4}{C_{15}^4} = 1 - \frac{495}{1365} = 1 - \frac{33}{91} = \frac{58}{91} \approx 0,64$$

- 2) On tire successivement avec remise 3 boules de l'urne. Calculer la probabilité de :
 - a) Soit C l'évènement « tirer dans l'ordre 1 boule verte, 1 boule jaune, 1 boule verte » :

$$P(C) = \frac{5}{15} \cdot \frac{3}{15} \cdot \frac{5}{15} = \frac{1}{45} \approx 0.02$$

b) Soit D l'évènement « tirer 2 boules bleues sachant que la $1^{\grave{e}re}$ boule tirée est jaune » :

$$P(D) = \frac{7}{15} \cdot \frac{7}{15} = \frac{49}{225} \approx 0.22$$

Question 6

(2+3+2=7 points)

$$1) \ 4 \cdot A_{13}^5 = 4 \cdot 154 \ 440 = 617 \ 760$$

On a 617 760 cas possibles.

2)
$$C_{12}^4 \cdot C_{18}^3 + C_{12}^3 \cdot C_{18}^4 + C_{12}^2 \cdot C_{18}^5 + C_{12}^1 \cdot C_{18}^6 + C_{12}^0 \cdot C_{18}^7$$

= $495 \cdot 816 + 220 \cdot 3060 + 66 \cdot 8568 + 12 \cdot 18564 + 1 \cdot 31824$
= 1897200

On a 1 897 200 cas possibles.

3)
$$A_{26}^3 \cdot A_{10}^2 = 15600 \cdot 90 = 1404000$$

On a 1404 000 cas possibles.