Lecture 5: Hypothesis testing with the classical linear model -

$$u \sim N(0, \sigma^2)$$

 $E(u \mid x_1, x_2, ..., x_k) = E(u) = 0$
 $Var(u \mid x_1, x_2, ..., x_k) = Var(u) = \sigma^2$

- MLR6 is not one of the Gauss-Markov assumptions. It's not necessary to assume the error is normally distributed in order to obtain the best linear unbiased estimator from OLS.
- MLR6 makes OLS the best unbiased estimator (linear or not), and allows us to conduct hypothesis tests.

The homoskedastic normal distribution with a single explanatory variable.

- But if Y takes on only n distinct values, for any set of values of X, the residual can take on only n distinct values.
 - Non-normal errors: we can no longer trust hypothesis tests
 - Heteroscedasticity
- With a dichotomous Y, run a logit or probit model
- With an ordered categorial Y, ordered probit/logit
- With an unordered categorial Y, multinomial probit/logit
- With non-negative integer counts, poisson or negative binomial models
- But in chapter 5 we'll see large sample size can overcome this problem.

If we assume that the error is normally distributed conditional on the x's, it follows:

$$\hat{\beta}_{j} \sim N(\beta_{j}, Var(\hat{\beta}_{j}))$$
$$(\hat{\beta}_{j} - \beta_{j}) / sd(\hat{\beta}_{j}) \sim N(0, 1)$$

 In addition, any linear combination of beta estimates is normally distributed, and multiple estimates are jointly normally distributed.

In practice, beta estimates follow the tdistribution:

$$(\hat{\beta}_j - \beta_j) / se(\hat{\beta}_j) \sim t_{n-k-1}$$

Where k is the number of slope parameters, k+1 is the number of unknown parameters (including intercept), n is the sample size, and n-k-1 is the total degrees of freedom.

Hypothesis testing:

- State null and research hypotheses
- Select significance level
- Determine critical value for test statistic (decision rule for rejecting null hypothesis)
- 4) Calculate test statistic
- Either reject or fail to reject (not "accept" null hypothesis)

Hypothesis testing:

I CAN'T BELIEVE SCHOOLS ARE STILL TEACHING KIDS ABOUT THE NULL HYPOTHESIS. I REMEMBER READING A BIG STUDY THAT CONCLUSIVELY DISPROVED IT YEARS AGO.

Hypothesis Testing, example

- Go back to state poverty and homicide rates.
- Two-tailed vs. one-tailed test, which should we do? How do we read the output differently for the two tests?

$$H_0: \beta = 0 \qquad H_0: \beta \le 0$$

$$H_1: \beta \neq 0 \qquad H_1: \beta > 0$$

two-tailed one-tailed

- We typically use two-tailed tests when we have no a priori expectation about the direction of a specific relationship.
 Otherwise, we use a one-tailed test.
- With poverty and homicide, a one-tailed test is justifiable.
- Hypothesis tests and confidence intervals in Stata regression output report t-test statistics, but it is important to understand what they mean because we don't always want to use exactly what Stata reports.

- The alpha level is the chance that you will falsely reject the null hypothesis, Type 1 error.
- Step 2: select alpha level
 - Don't always use .05 alpha level.
 - Consider smaller alphas for very large samples, or when it's particularly important that you don't falsely reject the null hypothesis.
 - Use larger alphas for very small samples, or if it's not a big deal to falsely reject the null.

- Step 3: determine critical value. This depends on the test statistic distribution, the alpha level and whether it's a one or two-tailed test.
- In a one-tailed t-test, with an alpha of .05, and a large sample size (>120), the critical value would be 1.64.
- But with 48 degrees of freedom (N-k-1), the critical value is ~1.68 (see Table 6.2, page 825).

To find critical t-statistics in Stata:

```
o . di invttail(48,.05)
```

You should look up these commands (ttail, invtail) and make sure you understand what they are doing. These are part of a larger class of density functions.

The test statistic is calculated as follows:

$$t_{\hat{eta}} = rac{\hat{eta} - eta_{H_0}}{\hat{oldsymbol{\sigma}}_{\hat{eta}}}$$

- The null hypothesis value of beta is subtracted from our estimate and divided by its estimated standard error.
- This is compared to our pre-determined test statistic. If it's larger than 1.677, we reject the null.

Returning to the poverty and homicide rate example, we have an estimated beta of .475 and a standard error of .103. If our null hypothesis is: $H_0: \beta \le 0$

Then the test statistic is:
$$t.s. = \frac{.475 - 0}{.103} = 4.62$$

 4.62>1.677, so we reject the null hypothesis.

- Stata also reports p-values in regression output. We would reject the null for any two-sided test where the alpha level is larger than the p-value. It's the area under the curve in a two-sided test.
- To find exact one-sided p values for the tdistribution in Stata:
 - o . di ttail (48, 4.62)
 - .00001451, so we would reject the null with any conventional alpha level

Hypothesis Testing, warning

- Regression output always reports twosided tests. You have to divide stata's outputted p values by 2 in order to get onetailed tests, but make sure the coefficient is in the right direction!
- On the other hand, ttail, and invttail always report one-tailed values. Adjust accordingly.
- Ttail & invttail worksheet

arning

WE FOUND NO LINK BETWEEN SALMON JELLY BEANS AND ACNE (P > 0.05).

WE FOUND NO LINK BETWEEN RED JELLY BEANS AND AONE (P > 0.05).

WE FOUND NO LINK BETWEEN TURQUOISE JELLY BEANS AND ACNE (P > 0.05).

BEANS AND ACNE (P > 0.05).

WE FOUND NO

LINK BETWEEN

MAGENTA JELLY

WE FOUND NO LINK BETWEEN YELLOW JELLY BEANS AND ACNE (P>0.05).

BEANS AND ACNE (P > 0.05).

IONRODOISE JEELY

LIMOEN IN JELLY

WE FOUND NO LINK BETWEEN GREY JELLY BEANS AND AONE (P>0.05).

WE FOUND NO LINK BETWEEN TAN JELLY BEANS AND ACNE (P>0.05).

WE FOUND NO LINK BETWEEN CYAN JELLY BEANS AND ACNE (P>0.05).

WE FOUND A LINK BETWEEN GREEN JELLY BEANS AND ACNE (P<0.05).

WE FOUND NO LINK BETWEEN MAUVE JELLY BEANS AND ACNE (P > 0.05).

WE FOUND NO LINK BETWEEN BEIGE JELLY BEANS AND ACNE (P>0.05).

WE FOUND NO LINK BETWEEN LILAC JELLY BEANS AND AONE (P>0.05).

WE FOUND NO LINK BETWEEN BLACK JELLY BEANS AND ACNE (P>0.05)

WE FOUND NO LINK BETWEEN PEACH JELLY BEANS AND ACNE (P > 0.05).

WE FOUND NO LINK BETWEEN ORANGE JELLY BEANS AND ACNE (P > 0.05).

- What went wrong?
- What are the chances of finding at least one statistically significant variable at p<.05 when you are testing 20 variables?
- di binomialtail(20,1,.05) = .64
- There's a 64% chance of having at least one "statistically significant" result.
- This is the problem of multiple comparisons. How can you correct for this?
- The most common and simplest is the Bonferroni correction where you replace your original alpha level with alpha/k where k is the number of comparisons you make.

di binomialtail(20,1,.05/20)

.04883012

Confidence intervals

 Confidence intervals are related to hypothesis tests, but are interpreted much differently.

$$CI: \hat{\beta}_{j} \pm c \cdot se(\hat{\beta}_{j})$$

- c is the t-value needed to obtain the correct % confidence interval. The 97.5% one-sided t-value is needed for a 95% confidence interval.
- Confidence intervals are always two-sided.
- Given the sample data, the confidence interval tells us, with X% confidence, that the *true* parameter falls within a certain range.

Confidence intervals

- Going back to the homicide rate and poverty example, the estimated parameter for poverty was .475 with a standard error of .103.
- The 95% confidence interval, reported by Stata is .475+/-.103*2.01 = [.268,.682]
- So, with 95% confidence, the population value for the effect of poverty on homicide is between those two numbers.
- The 99% confidence interval will be wider in order to have greater confidence that the true value falls within that range:
 - .475+/-.103*2.68=[.199,.751]

Example 4.2 (p. 126-8): student performance and school size

• Hypotheses: $H_0: \beta_{enroll} \ge 0$

$$H_1: \beta_{enroll} < 0$$

- Alpha: .05, one tailed, tcrit=-1.65
- Reject null hypothesis if t.s.<-1.65</p>
- The estimated coefficient on enrollment, controlling for teacher compensation and staff:student ratio is -.00020 with a .00022 standard error.
- So the test statistic equals -.00020/.00022=-.91, fail to reject null.
- Functional form can change our conclusions!
 When school size is logged, we do reject the null.

Other hypotheses about β

We may want to test the hypothesis that β equals 1, or some other number besides zero. In this case, we proceed exactly as before, but t-statistic won't match the regression output. We subtract the hypothesized parameter size (now non-zero) from the parameter estimate before dividing by the standard error.

$$t_{\hat{\beta}} = \frac{\hat{\beta} - \beta_{H_0}}{\hat{\sigma}_{\hat{\beta}}}$$

- Stata, helpfully, will do this for us. After any regression type: "test varname=X", inserting the appropriate variable name and null parameter value.
- Example 4.4, p. 130-131

Linear combinations of βs

- In section 4.4, Wooldredge goes through a detailed explanation of how to transform the estimated regression model in order to obtain $se(\beta_1 + \beta_2)$, which is necessary in order to directly test the hypothesis that $\beta_1 + \beta_2 = 0$.
- This method is correct, and it is useful to follow, I just prefer a different method after a regression model:
- "test x1+x2=0", replacing x1 and x2 with your variable names.

Testing multiple linear restrictions

- Restricted model: Multiple restrictions are imposed on the data. (e.g. linearity, additivity, X_j=0, X_j=X_k, X_j=3, etc.)
- Unrestricted model: At least one of the above assumptions is relaxed, often by adding an additional predictor to the model.
- To test the null hypothesis, we conduct an F-test:

$$F(k_{UR} - k_{R}, n - k_{UR}) = \frac{(SSR_{R} - SSR_{UR})/(k_{UR} - k_{R})}{SSR_{UR}/(n - k_{UR})}$$

Where SSR refers to the residual sum of squares, and k refers to the number of regressors (including the intercept).

Restricted model:

. reg homrate poverty

Source	SS	df	MS		Number of obs	
Model	100.175656 225.109343	1 100. 48 4.68	.175656 3977798		Prob > F R-squared	= 0.3080
•		49 6.63			Adj R-squared Root MSE	
homrate	Coef.			P> t	-	Interval]
poverty cons	.475025	.1027807 1.279803	4.62 -0.76	0.000 0.451	.2683706 -3.54627	.6816795 1.600164

Why is this "restricted"? What restrictions are we imposing, and how might we test these?

Unrestricted model:

. reg homrate poverty gradrate het

Source	SS	df	MS		Number of obs F(3, 46)	
Model Residual	183.012608 142.272391	3 61.0 46 3.09	0042025		Prob > F R-squared Adj R-squared	= 0.0000 = 0.5626
Total	325.284999	49 6.63	8846936		Root MSE	= 1.7587
homrate	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
poverty gradrate het _cons	.3134171 0518914 7.098508 2.357754	.0922506 .0404837 2.174708 3.913269	3.40 -1.28 3.26 0.60	0.001 0.206 0.002 0.550	.1277263 1333809 2.721047 -5.519249	.4991079 .0295981 11.47597 10.23476

Here, we have lifted the restriction that $β_{gradrate} = β_{het} = 0$. The F-test of this restriction is calculated as follows:

$$F(k_{UR} - k_R, n - k_{UR}) = \frac{(SSR_R - SSR_{UR})/(k_{UR} - k_R)}{SSR_{UR}/(n - k_{UR})}$$

$$F(4-2,50-4) = \frac{(225.1-142.3)/(4-2)}{142.3/(50-4)}$$

$$F(2,46) = \frac{41.4}{3.1} = 13.4, (p < .000)$$

We can find the p-value in Stata using "di Ftail (2, 46, 13.4)" - or we can let Stata do all the calculations with "test gradrate het" after the unrestricted model. This is testing two restrictions jointly: gradrate=0 & het=0.

- This kind of test is appropriate when the difference between two models can be expressed as a set of restrictions or assumptions.
- It may take a little bit of imagination to recognize the "restrictions" in your restricted model.

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_j x_j + u$$

Examples:

- $\beta_{j+1} = 0$
- the coefficient on the product of x_1 and x_2 is zero.

 One special type of restriction which is sometimes of interest in criminology, is that our models are the same across different groups. This follows the same logic, but is called a Chow test.

- The Chow test can be used in a couple different situations.
 - Completely different sets of data with the same variables
 - Sub-populations within one datset.
- Either way, we compare the SSR from a regression model with the two sets of data (or groups) pooled (restricted model), to the summed SSR from two separate regression models (unrestricted).
- What is the restriction in the restricted model?

Unrestricted model (two groups):

$$Y = \alpha_{1} + \beta_{1}X_{1} + \delta_{1}X_{2} + \dots + \gamma_{1}X_{k} + \varepsilon$$

$$Y = \alpha_{2} + \beta_{2}X_{1} + \delta_{2}X_{2} + \dots + \gamma_{2}X_{k} + \varepsilon$$

Restricted model (pooled):

$$Y = \alpha + \beta X_1 + \delta X_2 + \ldots + \gamma X_k + \varepsilon$$

$$\alpha_1 = \alpha_2, \beta_1 = \beta_2, \ldots \qquad \leftarrow \text{restrictions}$$

- Suppose we have a model for teen delinquency, but we think it differs for males and females. Restricted model (note: we don't control for gender here):
- . reg dfreq1 age1 hisp black other msgrd sus1 r_wk biop1 smoke1

Source	SS	df	MS		Number of obs F(9, 8659)		8669 56.05
Model Residual	86926.9336 1492077.55		9658.54818 172.315227		Prob > F R-squared Adj R-squared	=	0.0000 0.0551 0.0541
Total	1579004.48	8668	182.1648		Root MSE	=	13.127
dfreq1	Coef.	Std. E	Err. t	P> t	[95% Conf.	In	terval]
age1 hisp black other msgrd sus1 r_wk biop1 smoke1	.0392229 .3504168 8410179 3523527 347948 4.032407 .4253605 7830546 3.773678	.10068 .43253 .37731 .47958 .09392 .34743 .17382 .3009	393 0.8 185 -2.2 327 -0.7 261 -3.7 379 11.6 242 2.4 954 -2.6 116 12.0	1 0.418 3 0.026 3 0.463 0 0.000 1 0.000 5 0.014 0 0.009 6 0.000	1581361 497463 -1.580652 -1.292449 5320656 3.351346 .0846237 -1.372996 3.160493	1 4 4	2365818 .198297 1013839 5877435 1638304 .713468 7660973 1931132 .386864
_cons	2.279977	1.5638	363 1.4	6 0.145	785567	5	.345521

Unrestricted model, part 1:

. reg dfreq1 age1 hisp black other msgrd sus1 r_wk biop1 smoke1 if male==1

Source +- Model Residual +- Total	ss 76722.9184 1252212.9 1328935.82	4426	MS 3524.76872 282.92203 		Number of obs F(9, 4426) Prob > F R-squared Adj R-squared Root MSE	= 30.13 = 0.0000 = 0.0577
dfreq1	Coef.	 Std. E	r. t	P> t	[95% Conf.	Interval]
age1 hisp black other msgrd sus1 r_wk biop1 smoke1 _cons	.1722392 .9256955 9784988 9274644 322382 4.10308 .4572663 -1.566485 5.485458 .7287458	.18079 .7784 .68098 .862 .1658 .58834 .30208 .53930 .56110 2.8030	1.19 35 -1.44 38 -1.07 56 -1.94 41 6.97 77 1.51 -2.90 54 9.78	0.341 0.234 0.151 0.283 0.052 0.000 0.130 0.004 0.000 0.795	18220796003892 -2.313577 -2.6191416475428 2.9496311349767 -2.623785 4.385409 -4.766596	.5266863 2.45178 .3565793 .7642119 .0027788 5.256529 1.049509 5091838 6.585507 6.224088

Unrestricted model, part 2:

. reg dfreq1 age1 hisp black other msgrd sus1 r_wk biop1 smoke1 if male==0

Source + Model Residual + Total	221189.499		1415.3 52.3	77338		Number of obs F(9, 4223) Prob > F R-squared Adj R-squared Root MSE	= = =	4233 27.02 0.0000 0.0545 0.0524 7.2372
dfreq1	Coef.	Std. I	 Err.	t	P> t	 [95% Conf.	In	 terval]
age1 hisp black other msgrd sus1 r_wk biop1 smoke1 _cons		.07937 .34013 .29634 .37714 .07768 .30343 .14285 .23880 .24752	383 413 467 844 377 534 061 283	-0.94 -0.84 -1.95 0.45 -2.06 8.85 1.13 -1.14 8.71 2.06	0.347 0.403 0.051 0.652 0.040 0.000 0.260 0.254 0.000 0.039	2303376 9512225 -1.159646 5691639 3122276 2.090147 1190833 7404268 1.669905 .1254827	 3	0808908 3824774 0023231 .909648 0076232 .279942 4410524 1959441 .640476

Chow test proceeds as follows:

$$F(k_{UR} - k_R, n - k_{UR}) = \frac{(SSR_R - SSR_{UR})/(k_{UR} - k_R)}{SSR_{UR}/(n - k_{UR})}$$

$$F(20 - 10,8669 - 20) = \frac{(1492078 - (1252212 + 221189))/(20 - 10)}{(1252212 + 221189)/(8669 - 20)}$$

$$F(10,8649) = \frac{18675/10}{1473402/8649} = 10.96, (p < .001)$$

 Alternately, we could interact male with all other variables, run a fully interactive model, and . . .

. reg dfreq1 age1 hisp black other msgrd sus1 r_wk biop1 smoke1 male mage1 mhisp mblack mother mmsgrd msus1 mr_wk mbiop1 msmoke1

Source	SS	df	MS		Number of obs F(19, 8649)		8669 32.63
Model Residual	105602.083 1473402.4	19 8649	5558.00435		Prob > F R-squared Adj R-squared	= =	0.0000 0.0669 0.0648
Total	1579004.48	8668	182.1648		Root MSE	=	13.052
dfreq1	Coef.	Std. E	Err. t	P> t	[95% Conf.	Int	terval]
age1 hisp black other	2843726 5786616	.14314 .61342 .53443 .68016	251 -0.46 391 -1.08	0.602 0.643 0.279 0.802	355326 -1.486832 -1.62629 -1.16305	• •	2058792 9180869 4689663 .503534
mbiop1 msmoke1 _cons		.60050 .6235 2.2364	581 5.34	0.031 0.000 0.253	-2.471381 2.1079 -1.827285	4	1171058 .552634 6.94076

. test male mage1 mhisp mblack mother mmsgrd msus1 mr_wk mbiop1 msmoke1

```
F( 10, 8649) = 10.96 \leftarrow---- get the same answer!
Prob > F = 0.0000
```

- We know that there are significant differences in average levels of delinquency between males and females.
- Part of the Chow test is that there is no difference in average levels between the two groups (same intercept).
- How would we test a modified Chow test where we allow males and females to have different levels of delinquency and just test if the effects of the covariates differ between the genders?

F-test for restricted/unrestricted models, other uses

- This general test is used to calculate the overall F-statistic for every regression model. The restricted model is intercept only where all parameters are assumed to be zero.
- Interaction terms

Stata's saved regression results

- After any regression:
 - "ereturn list" returns a list of all stored results
 - e(N): number of observations
 - e(mss): model sum of squares
 - e(df_m): model degrees of freedom
 - e(rss): residual sum of squares
 - e(df_r): residual degrees of freedom
 - e(F): F statistic
 - e(r2): r-squared
 - e(r2_a): adjusted r-squared
 - e(rmse): root mean squared error

Next time:

Homework 6 Problems 4.2, 4.4, C4.6, C4.8

Answers posted – do not turn in.

Midterm: available today after class, due by 4:40pm 10/4, open to any non-interactive resource (books/notes/lectures/internet pages), but not other people.

Read: Wooldridge Chapter 5 (skim), Chapter 6