Droites

Vecteur directeur d'une droite

<u>Définition</u>: On considère une droite d et deux points distincts A et B de d. On appelle **vecteur directeur** de la droite d tout vecteur non nul, colinéaire au vecteur \overrightarrow{AB} .

Remarques:

- On dit que le vecteur **dirige** la droite d.
- La direction (pas le sens) du vecteur directeur définit la direction de la droite d.
- Deux vecteurs directeurs de d ont la même direction : ils sont colinéaires.
- Deux droites parallèles ont la même direction : ainsi tout vecteur directeur de l'une est un vecteur directeur de l'autre.

<u>Propriété</u>: Une droite d peut être définie par la donnée d'un point A et d'un vecteur directeur \vec{u} . On a alors $M \in d$ si et seulement si \overline{AM} et \vec{u} sont colinéaires.

Équation cartésienne d'une droite

<u>Définition</u>: Une **équation cartésienne** de la droite passant par le point $A(x_A; y_A)$ et de vecteur directeur $\vec{u} \begin{pmatrix} -b \\ a \end{pmatrix}$ est de la forme ax+by+c=0.

Preuve : Un point M est sur la droite \underline{ssi} \overline{AM} et \vec{u} colinéaires \underline{ssi} $\det(\overline{AM},\vec{u}) = 0$ \underline{ssi} $a \times (x - x_A) - (-b) \times (y - y_A) = 0$ \underline{ssi} $ax + by + (-ax_A - by_A) = 0$.

<u>Propriété</u>: Si les coordonnées d'un point M(x;y) satisfont l'équation ax+by+c=0, alors M appartient à une droite dont $\vec{u} \begin{pmatrix} -b \\ a \end{pmatrix}$ est vecteur directeur.

Équation réduite d'une droite

<u>Définition</u>: Soit d une droite d'équation cartésienne ax+by+c=0 avec a et b non tous nuls.

1. Si b=0, alors la droite d est **verticale**, parallèle à l'axe des ordonnées. Elle admet une **équation réduite** de la forme x=k pour une constante $k \in \mathbb{R}$.

Preuve: $b=0 \Leftrightarrow ax+c=0 \Leftrightarrow x=-\frac{c}{a}$ car $a\neq 0$. Tous les points ont la même abscisse, c'est une droite verticale.

2. Si $b \neq 0$, alors la droite d admet une unique **équation réduite** de la forme y = mx + p. m est le **coefficient directeur** (ou la pente) de d et p est l'**ordonnée à l'origine** de d.

Preuve: $b \neq 0 \Leftrightarrow ax + by + c = 0 \Leftrightarrow y = -\frac{a}{b}x - \frac{c}{b}$.

Remarques:

- Si a=0, la droite est **horizontale**, parallèle à l'axe des abscisses. Son équation est de la forme y=k pour $k \in \mathbb{R}$.
- Dans le second cas, la droite d est la représentation graphique de la fonction affine f(x) = mx + p.
- Une droite verticale ne peut être la représentation d'une fonction puisqu'un réel ne peut avoir qu'**UNE** image.

<u>Propriété</u>: Le vecteur de coordonnées $\begin{pmatrix} 1 \\ m \end{pmatrix}$ est un vecteur directeur de la droite d d'équation y = mx + p.

La phrase 'Lorsque j'avance de 1, je monte de m.' est la transcription parfaite de cette propriété. Souvenez-vous en. Le point d'intersection de la droite d avec l'axe des ordonnées est le point de coordonnées (0; p).

<u>Propriété</u>: Si l'on ne connait pas d'équation réduite de la droite, si celle-ci est donnée par deux points A et B par exemple, on peut facilement calculer le coefficient directeur de la droite (AB) grâce à la formule $m = \frac{y_B - y_A}{y_B - y_A}$. Pour trouver l'ordonnée à l'origine, il suffit d'utiliser qu'un point appartient à la droite : $y_A = mx_A + p \Leftrightarrow p = y_A - mx_A$.

Positions relatives de deux droites

Dans le plan, deux droites n'ont que trois situations possibles de coexister :

- elles sont sécantes : il existe un unique point d'intersection,
- elles sont strictement parallèles : l'intersection des deux droites est vide,
- elles sont **confondues** : l'intersection contient la droite elle-même.

Remarque: Deux droites confondues sont considérées comme parallèles.

<u>Propriété</u> Deux droites d'équations cartésiennes ax + by + c = 0 et a'x + b'y + c' = 0 sont parallèles <u>si et seulement</u> \underline{si} leurs vecteurs directeurs $\begin{pmatrix} -b \\ a \end{pmatrix}$ et $\begin{pmatrix} -b' \\ a' \end{pmatrix}$ sont colinéaires, donc \underline{si} et seulement \underline{si} ab'-ba'=0.

<u>Propriété</u> Deux droites d'équations réduites y=mx+p et y=m'x+p' sont parallèles <u>si et seulement si</u> m=m'. Si de plus p=p', alors elles sont confondues.

Systèmes linéaires d'équations

Dans le cas de deux droites sécantes, le point d'intersection M(x; y) a ses coordonnées qui vérifient les deux équations. On parle d'un système linéaire de deux équations à deux inconnues $\begin{cases} ax + by + c = 0 \\ a'x + b'y + c' = 0 \end{cases}$.

D'après les résultats précédents, ce système admet une unique solution si et seulement si $ab'-ba'\neq 0$. Dans ce cas, les droites ne sont pas parallèles et la solution de ce système donne les coordonnées du point d'intersection.

1. Résolution par substitution

Il s'agit d'exprimer une inconnue en fonction de l'autre à l'aide d'une des deux équations et de la remplacer par

l'expression obtenue dans l'autre équation. Soit à résoudre le système
$$(S)$$
 $\begin{cases} 4x+y=7\\ 3x-2y=8 \end{cases}$. $(S) \Leftrightarrow \begin{cases} y=-4x+7\\ 3x-2\times(-4x+7)=8 \end{cases} \Leftrightarrow \begin{cases} y=-4x+7\\ 3x+8x=8+14 \end{cases} \Leftrightarrow \begin{cases} y=-4x+7\\ 11x=22 \end{cases} \Leftrightarrow \begin{cases} y=-4x+7\\ x=2 \end{cases}$ $(S) \Leftrightarrow \begin{cases} y=-4\times2+7\\ x=2 \end{cases} \Leftrightarrow \begin{cases} y=-1\\ x=2 \end{cases} \Leftrightarrow (2;-1) \text{ est solution du système } (S).$

$$(S) \Leftrightarrow \begin{cases} y = -4 \times 2 + 7 \\ x = 2 \end{cases} \Leftrightarrow \begin{cases} y = -1 \\ x = 2 \end{cases} \Leftrightarrow (2; -1) \text{ est solution du système } (S).$$

2. Résolution par combinaison linéaire

Il s'agit cette fois de multiplier chaque équation par un nombre de manière à pouvoir éliminer une variable en additionnant les deux équations membres à membres. Soit à résoudre le système (S) $\begin{vmatrix} 2x-3y=8 \\ 5x+4y=-3 \end{vmatrix}$.

On va multiplier la première équation par 5 et la deuxième par -2.

$$(S) \Leftrightarrow \begin{cases} 10x - 15y = 40 & (5L_1) \\ -10x - 8y = 6 & (-2L_2) \end{cases} \Rightarrow \text{ On ajoute les deux équations obtenues}: -23y = 46 & (L_1 + L_2).$$

On en déduit que y=-2 et il suffit de remplacer y par sa valeur dans l'une des deux équations pour conclure.

$$(S) \Leftrightarrow \begin{cases} y = -2 \\ 2x - 3 \times (-2) = 8 \end{cases} \Leftrightarrow \begin{cases} y = -2 \\ 2x = 8 - 6 = 2 \end{cases} \Leftrightarrow \begin{cases} y = -2 \\ x = 1 \end{cases} \Leftrightarrow (1; -2) \text{ est solution du système } (S).$$

Remarques: La deuxième équation dans la seconde méthode permet de vérifier notre solution. Dans la majorité des cas, la résolution par combinaison linéaire est à privilégier.