Frist for innlevering: tirsdag 10. februar

ØVING 3

Oppgåve 1 Ikkje-stasjonær bokstilstand

Ein partikkel med masse m bevegar seg i eit bokspotensial V(x) (lik null for 0 < x < L og uendeleg elles). I forelesningane har vi sett at

$$\psi_1(x) = \sqrt{2/L} \sin(\pi x/L)$$
 og $\psi_2(x) = \sqrt{2/L} \sin(2\pi x/L)$

er dei to normerte energieigenfunksjonane med dei lågaste energiane - grunntilstanden og fyrste eksiterte tilstand.

a) Kontrollér eksplisitt at $\psi_1(x)$ og $\psi_2(x)$ er eigenfunksjonar til Hamiltonoperatoren $\hat{H} = -\frac{\hbar^2}{2m}\frac{d^2}{dx^2}$, dvs at dei er løysingar av den tids<u>u</u>avhengige Schrödingerlikninga for boksen og finn energieigenverdiane E_1 og E_2 . Kontrollér også at funksjonane

$$\Psi_i(x,t) = \psi_i(x)e^{-iE_it/\hbar} \qquad (i=1,2)$$

oppfyller den tidsavhengige Schrödingerlikninga for boksen, $i\hbar \frac{\partial \Psi}{\partial t} = \hat{H}\Psi$. Vis dessutan at dei to energieigenfunksjonane er **ortogonale**, altså at skalarproduktet eller indreproduktet av ψ_1 og ψ_2 er lik null,

$$\langle \psi_1, \psi_2 \rangle \equiv \int \psi_1^*(x)\psi_2(x)dx = 0.$$

b) Løysingar av den tidsavhengige Schrödingerlikninga på forma $\Psi(x,t) = \psi(x)e^{-iEt/\hbar}$, kallast **stasjonære** løysingar. Dei to løysingane $\Psi_1(x,t)$ og $\Psi_2(x,t)$ er altså stasjonære. Vis at lineærkombinasjonen

$$\Psi(x,t) = \frac{1}{\sqrt{2}} \left[\Psi_1(x,t) + \Psi_2(x,t) \right]$$

av desse to stasjonære løysingane oppfyller Schrödingerlikninga for boksen. Er $\Psi(x,t)$ ei stasjonær løysing?

c) På grunn av at dei to tidsavhengige eksponensialfaktorane ovanfor ikkje varierer i takt, vil sannsynlegheitstettheiten $|\Psi(x,t)|^2$ for denne tilstanden oscillere som funksjon av tida. Vis at den kan skrivast på forma

$$|\Psi(x,t)|^2 = \frac{1}{2}[\psi_1(x)]^2 + \frac{1}{2}[\psi_2(x)]^2 + \psi_1(x)\psi_2(x)\cos\omega t,$$

og finn ω og periodetida T for oscillasjonen.

Hint: For eit kompleks tal $z = \Re(z) + i\Im(z)$ har vi $z + z^* = 2\Re(z)$. Bruk dette til å vise at $|z_1 + z_2|^2 = (z_1^* + z_2^*)(z_1 + z_2) = |z_1|^2 + |z_2|^2 + 2\Re(z_1^* z_2)$.]

Kva blir den tilsvarande periodetida T dersom vi superponerer grunntilstanden og 2. eksiterte tilstand?

d) Vis at $\Psi(x,t)$ er normert for alle t ved å integrere sannsynleghetstettheiten. Hint: Bruk ortogonaliteten til $\psi_1(x)$ og $\psi_2(x)$, samt at både $\psi_1(x)$ og $\psi_2(x)$ er normerte.

- e) Du bør nå prøve å kjøyre Matlab-programmet "box_non_stationary.m", som er lagt ut på heimesida, Dette viser ein animasjon av sannsynlegheitstettheiten $|\Psi(x,t)|^2$ og forventningsverdien $\langle x \rangle_t$ av posisjonen, som funksjonar av t. Les ut frå animasjonen kor store $\langle x \rangle_{\min}$ og $\langle x \rangle_{\max}$ er, omtrent. Kva er $\langle x \rangle$ midlet over ein heil periode? Programmet oppdaterer $\langle x \rangle_{\min}$ og $\langle x \rangle_{\max}$ i ei løkke over t som ruslar og går jamnt på maskina. Korleis vil du ut frå dette beskrive oppførselen av $\langle x \rangle$ som funksjon av t? Korleis skal $\langle x \rangle$ avhenge av tida ut frå formelen ovanfor?
- f) I programmet "box_non_stationary_3.m" (som også er lagt ut) har vi konstruert ei meir avgrensa bølgjegruppe ved å superponere eit stort antal stasjonære løysingar. Korleis bevegar $\langle x \rangle$ seg her (når bølgjegruppa ikkje er i kontakt med veggen)?

Oppgåve 2 Litt meir om krumning av eigenfunksjonar

Eit elektron med masse m_e bevegar seg i det eindimensjonale potensialet V(x) vist i figuren. Her er høgda på barrieren i midten $V_0 = \hbar^2/(2m_e a_0^2) (= 13.6 \text{ eV})$.

a) Dersom $\psi(x)$ er ein energieigenfunksjon med endeleg energi E for dette systemet, følgjer det frå den tidsuavhengige Schrödingerlikninga at

$$\psi'' = \frac{2m_e}{\hbar^2} [V(x) - E]\psi$$

er endeleg for alle -b < x < b sidan alle ledda på høgresida er endelege.

Kva kan du da seie om $\psi'(x)$ i dette intervallet? Hint: Kan $\psi'(x)$ vere diskontinuerleg hvis $\psi''(x)$ er endeleg? Er $\psi'(x)$ endelig? Kva kan du da seie om $\psi(x)$?

- b) Gå ut frå at vi kjenner ein av eigenfunksjonane i ein liten del av intervallet -b < x < b. Kvifor er dette tilstrekkeleg til å rekne ut energien E for denne eigenfunksjonen? Hint: Bruk eigenverdilikninga $\hat{H}\psi = E\psi$ til å finne eit uttrykk for energien. Eit døme finn du i c)
- c) Vi vel nå lengda b slik at 1. eksiterte tilstand ψ_2 får forma $\psi_2 = Ax$ for $-a_0 < x < a_0$. Bruk dette til å finne energien E_2 til denne tilstanden. Forklar kva form ψ_2 har i områda mellom barrieren og dei harde veggane, og teikn ei skisse av den, der du bruker kontinuitetseigenskapane og krumningseigenskapane. Oppgitt: Første eksiterte tilstand har eitt nullpunkt i tillegg til at den er null i x = -b og x = b.
- d) Grunntilstanden ψ_1 er symmetrisk med omsyn på origo har ingen nullpunkt bortsett frå at den er null ved dei harde veggane. Bruk dette og krunningseigenskapane til å lage ei skisse av ψ_1 . NB! Grunntilstands-energien E_1 er lågare enn E_2 , så for denne tilstanden er barriereområdet $|x| < a_0$ klassisk forbode.

Oppgåve 3 Δx og Δp_x for grunntilstanden i harmonisk oscillator

I øvingssett 2 fann vi at når bølgjefunksjonen er

$$\Psi(x,0) = (2\pi\sigma^2)^{-1/4} e^{-x^2/4\sigma^2} e^{ip_0x/\hbar}.$$

er usikkerhetene i posisjon og impuls gjevne ved $\Delta x = \sigma$ og $\Delta p_x = \hbar/2\sigma$, uavhengig av parameteren p_0 . (Dessutan er $\langle p_x \rangle = p_0$.) Desse resultata ble utleia direkte frå bølgjefunksjonen ovanfor, og gjeld difor uansett kva potensial partikkelen bevegar seg i (ved prepareringstidspunktet t=0).

a) Kva blir usikkerheitene Δx og Δp_x for grunntilstanden for den harmoniske oscillatoren, $\psi_0(x) \propto \exp(-m\omega x^2/2\hbar)$? Kva blir $\langle p_x \rangle$ for denne tilstanden? [Hint: $\psi_0(x)$ er et spesialtilfelle av funksjonen ovanfor.]

[Figuren viser bølgjefunksjonen ψ_0 og sannsynleghetstettheiten, $\psi_0^2 \propto \exp(-m\omega x^2/\hbar)$, som funksjonar av $x/\sqrt{\hbar/m\omega}$, for grunntilstanden.]

b) Ein partikkel i boks er i den normerte tilstanden

$$\Psi(x,t) = c_1 \psi_1(x) e^{-iE_1 t/\hbar} + c_2 \psi_2(x) e^{-iE_2 t/\hbar}; \qquad |c_1| = \frac{1}{2} \sqrt{3}, \quad |c_2| = \frac{1}{2}.$$

Her er E_1 grunntilstandsenergien og $E_2 = 4E_1$. Ein kan vise at sannsynlegheitene for å måle energiane E_1 og E_2 er $P_1 = |c_1|^2$ og $P_2 = |c_2|^2$. Finn den teoretiske forventningsverdien $\langle E \rangle = \sum_n P_n E_n$ av energien og usikkerheiten ΔE . Uttrykk svara dine ved E_1 . Følgjande formel kan vere nyttig:

$$(\Delta E)^2 = \langle (E - \langle E \rangle)^2 \rangle = \sum_n P_n (E_n - \langle E \rangle)^2.$$

c) Ein partikkel med masse m som bevegar seg i eit eindimensjonalt potensial V(x) har ein energieigenfunksjon på forma

$$\psi = C \exp[-m\omega(x-a)^2/2\hbar].$$

Bruk desse opplysningane og den tidsuavhengige Schrödingerlikninga til å finne energieigenverdien E og potensialet V(x) opp til ein konstant.

Oppgåve 4

I denne oppgåva ser vi på ein fri partikkel med initialtilstand,

$$\Psi(x,0) = (2\pi\sigma^2)^{-1/4} e^{-x^2/4\sigma^2} e^{ip_0x/\hbar},$$

som i andre oppgåvesett. Også denne oppgåva inneheld lite regning, men vil forhåpentlegvis sette tankane i sving likevel. I øvingssett 2 fekk vi m.a illustrert at partikkelens impuls p_x strengt tatt ikkje kan vere heilt skarpt definert (fordi dette ville kreve preparering av ei bølgjepakke med uendeleg utstrekning, $\Delta x = \sigma \to \infty$). Den reine harmoniske planbølgjetilstanden, $\psi_p(x) = (2\pi\hbar)^{-1/2} \exp(ipx/\hbar)$, er altså strengt tatt ikkje realiserbar fysisk. Den spelar likevel ei sentral rolle i mange praktiske kvantemekaniske utrekningar.

a) Forklar kvifor det heller ikkje er mogleg å prepare systemet i ein tilstand der partikkelen har heilt skarpt definert posisjon x, det vil seie $\Delta x = 0$. Hint: Frå definisjonen av Δp_x og Heisenbergs uskarpheitsrelasjon har vi at

$$\langle p_x^2 \rangle = \langle p_x \rangle^2 + (\Delta p_x)^2 \ge \langle p_x \rangle^2 + \frac{\hbar^2}{4(\Delta x)^2}$$
 (jf "kvante-villskap"),

Kva skjer med $\langle p_x^2 \rangle$ når $\Delta x \to 0$?

b) Kva er forventningsverdien $\langle E \rangle$ til partikkelens energi i tilstanden $\Psi(x,0)$? Uttrykk resultatet ved p_0 og σ .) Kva skjer med $\langle E \rangle$ i grensene $\sigma \to \infty$ og $\sigma \to 0$?

Dersom ein vel $\Delta x = \sigma$ liten, kan ein sjå på prepareringa av initialtilstanden $\Psi(x,0)$ som ei måling av posisjonen, der partikkelen etter målinga er karakterisert ved $\langle x \rangle = 0$ og $\Delta x = \sigma$. Spørsmålet er kva som skjer med $\langle x \rangle$ og Δx for t > 0, og meir generelt korleis bølgjepakka $\Psi(x,t)$ utviklar seg med tida. Dette vil sjølsagt avhenge av potensialet V(x) som partikkelen bevegar seg i. For å finne $\Psi(x,t)$ må ein løyse den tidsavhengige Schrödingerlikninga for dette potensialet, med $\Psi(x,0)$ som initialkrav.

For ein fri partikkel (V=0), som vi ser på her, er det relativt enkelt å løyse den tidsavhengige Schrödingerlikninga med initialkravet $\Psi(x,0)$. Det viser seg at bølgjefunksjonen $\Psi(x,t)$ for t>0 er slik at sannsynlighetstettheiten er gjeve ved normalfordelinga

$$|\Psi(x,t)|^2 = \left[2\pi(\sigma^2 + \hbar^2 t^2 / 4m^2 \sigma^2)\right]^{-1/2} \exp\left[-\frac{(x - p_0 t / m)^2}{2(\sigma^2 + \hbar^2 t^2 / 4m^2 \sigma^2)}\right].$$

Tidlegare lærte vi at ein sannsynlighetstettheit på forma $\exp(-x^2/2\sigma^2)$ svarer til $\langle x \rangle = 0$ og $\Delta x = \sigma$.

c) Kva blir den tidsavhengige forventningsverdien av posisjonen, $\langle x \rangle_t$ for den aktuelle tilstanden? Korleis samsvarer resultatet med gruppehastigheiten som vi fann tidlegare, $v_g = p_0/m$? Finn på same måte usikkerheiten $(\Delta x)_t$ som funksjon av t.

Det at bølgjepakka ikkje berre endrar posisjon, men også form, kallast **dispersjon**, og heng saman med at fasehastigheiten $v_f = p_x/2m = \hbar k/2m$ for ei de Broglie-bølgje er avhengig av bølgjetalet k. Sidan denne dispersjonen av bølgjepakka er den same for alle p_0 , antar vi i resten av oppgåva at prepareringa (målinga) ved t=0 er slik at $p_0=0$.

- d) Kva vil du seie skjer med dispersjonen dersom vi insisterer på å ha ein veldig skarpt definert posisjon (veldig liten σ) ved t=0? Kva skjer om vi vel ein enda mindre σ ?
- e) For $t>>2m\sigma^2/\hbar$ ser vi at dispersjonen får bølgjegruppa $\Psi(x,t)$ til å spreie seg ut over eit område som svarer til $(\Delta x)_t \approx \hbar t/2m\sigma$ [altså eit område som blir større jo mindre ein vel $(\Delta x)_0 = \sigma$]. Prøv å forstå dette. Hint: Jo mindre σ vi vel, desto større er spreiinga $\Delta p_x = \hbar/2\sigma$ i impulsen (omkring middelverdien $p_0 = 0$). Prøv med ein halvklassisk tankegang: Dersom posisjonen til partikkelen ved t=0 er $x\approx 0$, og den har impuls som er konsentrert i intervallet $-\Delta p_x < p_x < \Delta p_x$, kvar vil vi da finne partikkelen ved tida t, om vi reknar klassisk?