SEAT No. :	:

P-5056

[Total No. of Pages: 2

[6187]-459

T.E. (IT) (Insem.)

MACHINE LEARNING

(2019 Pattern) (Semester - I) (314443)

Time: 1 Hour] [Max. Marks: 30

Instructions to the candidates:

- 1) Answer Q.1 or Q.2, Q.3 or Q.4.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right side indicate full marks.
- 4) Assume suitable data if necessary.
- Q1) a) Compare supervised, unsupervised, and semi-supervised learning with examples (CO1). [6]
 - b) Explain k-fold Cross Validation technique with example (CO1). [5]
 - c) Why dataset splitting is required? State importance of each split in a machine learning model (CO1). [4]

OR

- Q2) a) Why size of training dataset is more compare to testing dataset? What should be ratio of Training & testing dataset? Explain any one dataset validation techniques. (CO1).
 - b) What is the need for dimensionality reduction? Explain the concept of the Curse of Dimensionality (CO1). [5]
 - c) State and justify Real life applications of supervised and unsupervised learning. (CO1). [4]
- Q3) a) Consider the following feature tree. (Positive Class: Decline offer)

		Find	1:			30			[6]			
		i)	Conting	gency table	,	ii)	Recall					
		iii)	Precisio	on		iv)	Accuracy					
		v)	False p	ositive rate	. (CO2)							
	b)		What is multiclass classification? Explain One-Vs-one construction method of multi-class classifier with suitable example (CO2). [5]									
	c)	What are advantages and limitations of the Logistic Regression (CO2)? [4] OR										
Q4)	a)	Con	Consider the following three class confusion matrix:									
			6.		Pre	edicat	ed 📜					
		2			A	В	C					
	1	Ø.,		A	14	3	3	20				
		V*		В	5	1/5	10	30				
		Ac	tual	С	2	5	43	50				
			_	class preci erage recal	/ -		•	100 d average preci	ision,			
	b)	What is Support Vector Machine (SVM)? How does the SVM worl (CO2)?										
	c)			use Logist	ic Regress	sion?	Explain with	h suitable exa				
		(CO	92).	8.				9) iż.	[4]			
							3					
							65)`				
		Why do we use Logistic Regression? Explain with suitable example (CO2). [4]										
		6.7										
						2						
						J.,						

[6187]-459