0.1 Potenser

$$\operatorname{grunntal} \longrightarrow 2^3 \stackrel{\longleftarrow}{\longleftarrow} \operatorname{eksponent}$$

En potens består av et grunntall og en eksponent. For eksempel er 2^3 en potens med grunntall 2 og eksponent 3. En positiv, heltalls eksponent sier hvor mange eksemplar av grunntallet som skal ganges sammen, altså er

$$2^3 = 2 \cdot 2 \cdot 2$$

0.1 Potenstall

 a^n er et potenstall med grunntall a og eksponent n.

Hvis n er et naturlig tall, vil a^n svare til n eksemplar av a multiplisert med hverandre.

Merk: $a^1 = a$

Eksempel 1

$$5^3 = 5 \cdot 5 \cdot 5$$
$$= 125$$

Eksempel 2

$$c^4 = c \cdot c \cdot c \cdot c$$

$$(-7)^2 = (-7) \cdot (-7)$$

= 49

Språkboksen

Vanlige måter å si 2^3 på er

- "2 i tredje"
- "2 opphøyd i 3"

I programmeringsspråk brukes gjerne symbolet ^ eller symbolene ** mellom grunntall og eksponent.

Merk

De kommende sidene vil inneholde regler for potenser med tilhørende forklaringer. Selv om det er ønskelig at de har en så generell form som mulig, har vi i forklaringene valgt å bruke eksempel der eksponentene ikke er variabler. Å bruke variabler som eksponenter ville gitt mye mindre leservennlige uttrykk, og vi vil påstå at de generelle tilfellene kommer godt til synes også ved å studere konkrete tilfeller.

0.2 Ganging med potenser

$$a^m \cdot a^n = a^{m+n}$$

Eksempel 1

$$3^5 \cdot 3^2 = 3^{5+2} = 3^7$$

Eksempel 2

$$b^4 \cdot b^{11} = b^{3+11} = b^{14}$$

Eksempel 3

$$a^{5} \cdot a^{-7} = a^{5+(-7)}$$

= a^{5-7}
= a^{-2}

(Se Regel~0.5 for hvordan potens med negativ eksponent kan tolkes.)

0.2 Ganging med potenser (forklaring)

La oss se på tilfellet

$$a^2 \cdot a^3$$

Vi har at

$$a^2 = 2 \cdot 2$$

$$a^3 = 2 \cdot 2 \cdot 2$$

Med andre ord kan vi skrive

$$a^{2} \cdot a^{3} = \overbrace{a \cdot a}^{a^{2}} \cdot \overbrace{a \cdot a \cdot a}^{a^{3}}$$
$$= a^{5}$$

0.3 Divisjon med potenser

$$\frac{a^m}{a^n} = a^{m-n}$$

Eksempel 1

$$\frac{3^5}{3^2} = 3^{5-2} = 3^3$$

Eksempel 2

$$\frac{2^4 \cdot a^7}{a^6 \cdot 2^2} = 2^{4-2} \cdot a^{7-6}$$
$$= 2^2 a$$
$$= 4a$$

0.3 Divisjon med potenser (forklaring)

La oss undersøke brøken

$$\frac{a^5}{a^2}$$

Vi skriver ut potensene i teller og nevner:

$$\frac{a^5}{a^2} = \frac{a \cdot a \cdot a \cdot a \cdot a}{a \cdot a}$$
$$= \frac{\alpha \cdot \alpha \cdot a \cdot a \cdot a}{\alpha \cdot \alpha}$$
$$= a \cdot a \cdot a$$
$$= a^3$$

Dette kunne vi ha skrevet som

$$\frac{a^5}{a^2} = a^{5-2}$$
$$= a^3$$

0.4 Spesialtilfellet a^0

$$a^0 = 1$$

Eksempel 1

$$1000^0 = 1$$

Eksempel 2

$$(-b)^0 = 1$$

0.4 Spesialtilfellet a^0 (forklaring)

Et tall delt på seg selv er alltid lik 1, derfor er

$$\frac{a^n}{a^n} = 1$$

Av dette, og Regel~0.3, har vi at

$$1 = \frac{a^n}{a^n}$$
$$= a^{n-n}$$
$$= a^0$$

0.5 Potens med negativ eksponent

$$a^{-n} = \frac{1}{a^n}$$

Eksempel 1

$$a^{-8} = \frac{1}{a^8}$$

Eksempel 2

$$(-4)^{-3} = \frac{1}{(-4)^3} = -\frac{1}{64}$$

0.5 Potens med negativ eksponent (forklaring)

Av Regel 0.4 har vi at $a^0 = 1$. Altså er

$$\frac{1}{a^n} = \frac{a^0}{a^n}$$

Av Regel 0.3 er

$$\frac{a^0}{a^n} = a^{0-n}$$
$$= a^{-n}$$

0.6 Brøk som grunntall

$$\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}$$

Eksempel 1

$$\left(\frac{3}{4}\right)^2 = \frac{3^2}{4^2} = \frac{9}{16}$$

Eksempel 2

$$\left(\frac{a}{7}\right)^3 = \frac{a^3}{7^3} = \frac{a^3}{343}$$

5

0.6 Brøk som grunntall (forklaring)

La oss studere

$$\left(\frac{a}{b}\right)^3$$

Vi har at

$$\left(\frac{a}{b}\right)^3 = \frac{a}{b} \cdot \frac{a}{b} \cdot \frac{a}{b}$$
$$= \frac{a \cdot a \cdot a}{b \cdot b \cdot b}$$
$$= \frac{a^3}{b^3}$$

0.7 Faktorer som grunntall

$$(ab)^m = a^m b^m$$

Eksempel 1

$$(3a)^5 = 3^5 a^5$$
$$= 243a^5$$

Eksempel 2

$$(ab)^4 = a^4b^4$$

0.7 Faktorer som grunntall (forklaring)

La oss bruke $(a \cdot b)^3$ som eksempel. Vi har at

$$(a \cdot b)^3 = (a \cdot b) \cdot (a \cdot b) \cdot (a \cdot b)$$
$$= a \cdot a \cdot a \cdot b \cdot b \cdot b$$
$$= a^3 b^3$$

0.8 Potens som grunntall

$$(a^m)^n = a^{m \cdot n}$$

Eksempel 1

$$\left(c^4\right)^5 = c^{4\cdot 5}$$
$$= c^{20}$$

Eksempel 2

$$\left(3^{\frac{5}{4}}\right)^8 = 3^{\frac{5}{4} \cdot 8}$$
$$= 3^{10}$$

0.8 Potens som grunntall (forklaring)

La oss bruke $\left(a^3\right)^4$ som eksempel. Vi har at

$$\left(a^3\right)^4 = a^3 \cdot a^3 \cdot a^3 \cdot a^3$$

Av $Regel \ 0.2$ er

$$a^{3} \cdot a^{3} \cdot a^{3} \cdot a^{3} = a^{3+3+3+3}$$

$$= a^{3\cdot 4}$$

$$= a^{12}$$

0.9 *n*-rot

$$a^{\frac{1}{n}} = \sqrt[n]{a}$$

Symbolet $\sqrt{}$ kalles et rottegn. For eksponenten $\frac{1}{2}$ er det vanlig å utelate 2 i rottegnet:

$$a^{\frac{1}{2}} = \sqrt{a}$$

Eksempel

Av Regel 0.8 har vi at

$$\left(a^{b}\right)^{\frac{1}{b}} = a^{b \cdot \frac{1}{b}}$$
$$= a$$

For eksempel er

$$9^{\frac{1}{2}} = \sqrt{9} = 3$$
, siden $3^2 = 9$

$$125^{\frac{1}{3}} = \sqrt[3]{125} = 5$$
, siden $5^3 = 125$

$$16^{\frac{1}{4}} = \sqrt[4]{16} = 2$$
, siden $2^4 = 16$

Språkboksen

 $\sqrt{9}$ kalles "kvadratrota til 9"

 $\sqrt[5]{9}$ kalles "femterota til 9".

0.2 Irrasjonale tall

0.10 Irrasjonale tall

Et tall som ikke er et rasjonalt tall, er et irrasjonalt tal¹.

Verdien til et irrasjonalt tall har uendelig mange desimaler med et ikke-repeterende mønster.

Eksempel 1

 $\sqrt{2}$ er et irrasjonalt tall.

 $\sqrt{2} = 1.414213562373...$

¹Strengt tatt er irrasjonale tall alle *reelle* tall som ikke er rasjonale tall. Men for å forklare hva *reelle* tall er, må vi forklare hva *imaginære* tall er, og det har vi valgt å ikke gjøre i denne boka.