

Computational Statistics

A short introduction to Template Model Builder (TMB)

Joaquin Cavieres

Georg-August-Universität Göttingen

Content

1 Introduction

- 2 TMB for modelling
- 3 Some theory behind of TMB

1. Introduction

Normally, we are interested in proposing a statistical model to explain certain phenomena. To achieve this, we need to be clear about the following:

- Propose a methodology to solve the problem.
- Implementation of the statistical model.
- Evaluation of the results.

To propose the methodology we need:

- Consider all the characteristics of the problem
- Evaluate the best methodology to approximate the solution

For the implementation of the statistical model we have to:

- Building models based on the characteristics already analyzed
- Propose a Likelihood function for the response variable

To evaluate the results of the model:

- Consider the Likelihood function used for fit the model
- Diagnostics
- Compute the uncertainty of the estimations

How we can do that?

Template Model Builder (TMB)

How we can do that?

Template Model Builder (TMB)

What is TMB?

- Template Model Builder (TMB) is an open source R package that enables quick implementation of complex nonlinear random effects (Kristensen et al. (2015))
- TMB is a frequentist statistical platform that works with Automatic differentiation (AD) to obtain the first and second derivatives of a function.
- It enables easy parallel computations, with users defining joint likelihoods in C++ while other operations are managed in R.

What is TMB?

- Template Model Builder (TMB) is an open source R package that enables quick implementation of complex nonlinear random effects (Kristensen et al. (2015))
- TMB is a frequentist statistical platform that works with Automatic differentiation (AD) to obtain the first and second derivatives of a function.
- It enables easy parallel computations, with users defining joint likelihoods in C++ while other operations are managed in R.

Main features of TMB:

- TMB is designed for complex hierarchical models
- It uses maximum marginal likelihood
- Compatible with Stan to make Bayesian inference

Main features of TMB:

- TMB is designed for complex hierarchical models
- It uses maximum marginal likelihood
- Compatible with Stan to make Bayesian inference

Why use TMB:

- The objective function (and its derivatives) can be called from R, so parameter optimization can be done via e.g. nlminb().
- The user can specify the use of Laplace approximation to obtain the marginal likelihood of the latent variables (random effects)
- Compute the standard deviations of any parameter, or derived parameters by the Delta method.

Why use TMB:

- The objective function (and its derivatives) can be called from R, so parameter optimization can be done via e.g. nlminb().
- The user can specify the use of Laplace approximation to obtain the marginal likelihood of the latent variables (random effects)
- Compute the standard deviations of any parameter, or derived parameters by the Delta method.

Installing TMB:

- From Github: https://github.com/kaskr/adcomp.
 - git clone https://github.com/kaskr/adcomp

2. From R:

```
install.packages('TMB')
library(TMB)
#test to know if TMB is correctly installed:
runExample(all=TRUE)
```


Note: Maybe you need to install Rtools as well

https://cran.r-project.org/bin/windows/Rtools/

Restart R after installing Rtools and run: library(devtools)

Figure 1: Summary of models which can be implemented in TMB (by Cole. C Monnahan) (by Cole. C Monnahan)

TMB workflow

- Propose a statistical model
- Write a C++ template within R to calculate the negative log-likelihood given parameters
- Compile the model and load it into R
- Declare which parameters are "random"
- Fit the model using R and minimize the objective function returned by TMB
- Perform inference using the fitted model

2. TMB for modelling

Steps

- Compile the C++ file (template)
- Load the model in R (dyn.load)
- Build a TMB object (MakeADFun) function based on a list of data and parameters
- The returned object is a list containing various elements, including objective function (fn) and its gradient (gr)

TMB sections

The model is written in C++, and the structure of the TMB model follows this format

- Read the data from R
- Set the parameters
- Compute:
 - 1 Model expectation (given the parameters).
 - 2 Negative log-likelihood (NLL)
- Report the results back to R
- Return the NLL

DATA section

Importing the data from $\ensuremath{\mathsf{R}}$

TMB syntax	C++ syntax	R syntax
DATA_VECTOR(x)	vector <type></type>	vector()
DATA_MATRIX(x)	matrix <type></type>	<pre>matrix()</pre>
$DATA_SCALAR(x)$	Туре	<pre>numeric()</pre>
DATA_INTEGER(x)	int	<pre>integer()</pre>
DATA_FACTOR(x)	vector <int></int>	factor()
DATA_ARRAY(x)	array <type></type>	array()
DATA_SPARSE_MATRIX(x)	<pre>Eigen::SparseMatrix<type></type></pre>	<pre>dgTMatrix()</pre>

PARAMETER section

TMB syntax	C++ syntax	R syntax
PARAMETER_MATRIX(x)	matrix <type></type>	matrix()
PARAMETER_VECTOR(x)	vector <type></type>	<pre>vector()</pre>
PARAMETER_ARRAY(x)	array <type></type>	array()
PARAMETER(x)	Type	<pre>numeric()</pre>

REPORT section

Reporting objects back to R

- Return objects via REPORT(), for example: REPORT(predict);
- In R you must do obj\$report()
- Report parameters from the fitted model obj\$report(par)

Calculating the -log-likelihood

- Calculate likelihood function using e.g,. dnorm()
 nll= -dnorm(y(i), mu(i), sigma, true);
- For class type vectors, you need to do
 nll= -dnorm(y, mu, sigma, true).sum();
- In the last line of the C++ template, you must write return nll;
- The nll must be a scalar Type variable

Calculating the variances

TMB returns the asymptotic variances for the parameters using the function sdreport(obj) in R. Also we can calculate the standard errors from the derived quantities such as

```
Type nu = exp(eta);
ADREPORT(nu);
```


3. Some theory behind of TMB

Consider the following hierarchical model (mixed effects)

$$\mathbf{y} \mid \boldsymbol{\beta}, \mathbf{u} \sim f(\mathbf{y} \mid \boldsymbol{\beta}, \mathbf{u})$$

 $\mathbf{u} \sim h(\mathbf{u} \mid \boldsymbol{\vartheta})$

We will denote the conditional density of \mathbf{y} given \mathbf{u} as $f(\mathbf{y} \mid \mathbf{u})$, and the marginal density of \mathbf{u} as $h(\mathbf{u})$. Since f and h depends on unknown parameters $\theta = (\beta, \vartheta)$, their dependency is expressed as f_{β} and h_{ϑ} respectively.

Hence the joint likelihood is

$$\mathcal{L}(\beta,\vartheta) = f_{\beta}(\mathbf{y} \mid \mathbf{u}) h_{\vartheta}(\mathbf{u}) \tag{1}$$

$$\mathcal{L}(\boldsymbol{\theta}) = f_{\beta}(\mathbf{y} \mid \mathbf{u}) h_{\vartheta}(\mathbf{u}) \tag{2}$$

$$\mathcal{L}(\boldsymbol{\theta}) = \int f_{\beta}(\mathbf{y} \mid \mathbf{u}) h_{\vartheta}(\mathbf{u}) d\mathbf{u}$$
 (3)

Integrating out the random effects \mathbf{u} from the joint density $f_{\beta}(\mathbf{y} \mid \mathbf{u})h_{\vartheta}(\mathbf{u})$, the marginal likelihood can be written as

$$\mathcal{L}(\boldsymbol{\theta}) = \int \exp\{g(\boldsymbol{u}, \boldsymbol{\theta})\}\tag{4}$$

where $g(\mathbf{u}, \boldsymbol{\theta}) = \log\{f_{\beta}(\mathbf{y} \mid \mathbf{u})\} + \log\{h_{\vartheta}(\mathbf{u})\}.$

Hence the joint likelihood is

$$\mathcal{L}(\beta,\vartheta) = f_{\beta}(\mathbf{y} \mid \mathbf{u}) h_{\vartheta}(\mathbf{u}) \tag{5}$$

$$\mathcal{L}(\boldsymbol{\theta}) = f_{\beta}(\mathbf{y} \mid \mathbf{u}) h_{\vartheta}(\mathbf{u}) \tag{6}$$

$$\mathcal{L}(\boldsymbol{\theta}) = \int f_{\beta}(\mathbf{y} \mid \mathbf{u}) h_{\vartheta}(\mathbf{u}) d\mathbf{u}$$
 (7)

Integrating out the random effects \mathbf{u} from the joint density $f_{\beta}(\mathbf{y} \mid \mathbf{u})h_{\vartheta}(\mathbf{u})$, the marginal likelihood can be written as

$$\mathcal{L}(\boldsymbol{\theta}) = \int \exp\{g(\boldsymbol{u}, \boldsymbol{\theta})\}\tag{8}$$

where $g(\mathbf{u}, \boldsymbol{\theta}) = \log\{f_{\beta}(\mathbf{y} \mid \mathbf{u})\} + \log\{h_{\vartheta}(\mathbf{u})\}.$

Solving this integral presents a challenge and requires intensive computational work aimed at maximizing \mathcal{L} . Hence, numerical methods can be employed to approximate the solution, one of which is the Laplace approximation (we will see this within few weeks more..).

See next example in R using TMB...

See you next week!

References I

Kristensen, K., Nielsen, A., Berg, C. W., Skaug, H., and Bell, B. (2015). Tmb: automatic differentiation and laplace approximation. *arXiv* preprint arXiv:1509.00660.