Università di Trento - Dip. di Ingegneria e Scienza dell' informazione CdL in Informatica, Ingegnerio dell'informazione e delle comunicazioni e L in Informatica, ingegnena sur in Ingequeria d'Inipresa Ingequeria dell'informazione e organizzazione d'Inipresa. 2017-2018 - Foglio di esercizi 15 "stamo per convergere in-integrali impropri ed a.a. 2017-2018 - Foglio di eserci 15 eg. differentiali.

15.1) i) line
$$\int_{X} \sqrt{1-t^2} dt + 2x - x^2$$
 | I limite si presenta nella forma nidet. $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$.

holtre, g'(x)= 3x2 + iù nu informo destro di O. Oss. che

 $\frac{f'(x)}{g'(x)} = \frac{\left(\sqrt{1-x^4} \cdot 2x - \sqrt{1-4x^2} \cdot 2 + 2-2x\right)}{3x^2} = \frac{\left(1-\frac{x^4}{2} + o(x^4)\right) \cdot 2x - \left(1-\frac{4x^2}{2} + o(x^2)\right) \cdot 2x}{3x^2}$ $= \frac{2x - x^5 + o(x^5)}{3x^2} + \frac{2x - 2x}{3x^2} = \frac{2x - x^5 + o(x^5)}{3x^2} + \frac{2x - 2x}{3x^2} + \frac{2x - 2x}{3x^2} = \frac{2x - x^5 + o(x^5)}{3x^2} + \frac{2x - 2x}{3x^2} + \frac{2x - 2x}{3x^2} = \frac{2x - x^5 + o(x^5)}{3x^2} + \frac{2x - 2x}{3x^2} + \frac{2x - 2x}{3x^2} = \frac{2x - x^5 + o(x^5)}{3x^2} + \frac{2x - 2x}{3x^2} + \frac{2x$

X70+ 3.

Dal teorema di de l'Hôpital segne dunque che il limite dato vale 3.

ii)
$$f(x) = 5\pi i x - \int_{0}^{x} e^{-t^{2}} dt$$
 $f(0) = 0$ $f'(x) = \cos x - e^{-x^{2}} = 0$ $f'(0) = 1 - 1 = 0$
 $f''(x) = -8\pi i x + 2xe^{-x^{2}} = 0$ $f''(0) = 0$
 $f'''(x) = -\cos x + 2e^{-x^{2}} - 4x^{2}e^{-x^{2}}$ $f'''(0) = 1$

Quindi $f(x) = \frac{1}{3!} x^3 + o(x^3)$. Risulta che l'ordine di infinitessino è $\underline{n} = 3$

e pp. $\frac{x^3}{6}$.

(15.2) i) $\int_{0}^{\infty} \frac{1}{\sqrt{x}(1+\sqrt{x})^2} dx$ $f: Jo_1+\infty[\rightarrow \mathbb{R} \text{ continuo}, > 0.$

Osseinamo che

per x => 0 + f(x) ~ 1/x.

 $\left(\int_{0}^{1} \frac{1}{\sqrt{x}} < +\infty\right)$ $\left(\int_{0}^{1} \frac{1}{x^{3/2}} dx < +\infty\right)$ per x > +0 f(x) N 1/x = 1/3/2.

Per il certeuro del confronto arintotico si conclude substo che l'integrale generalitats dats è convergente.

Notizmo che

 $\int \frac{1}{\sqrt{1 \times (1+\sqrt{1 \times})^2}} dx = \int \frac{1}{\sqrt{1+(1+1)^2}} 2 x dt = -\frac{2}{1+1} + c = -\frac{2}{1+\sqrt{1+1}} + c$

(4) Si può anche procedere osà: det. 4>0 t.c. dx=2tdt lim f(x) I finito. Appl. TFC + del'Hôphal line cosx-ex2 = line x2+o(x2) I finito +0 +0 pp. x3.

Fer definizione di luitegrale luiproprio abbiano

$$\int_{0}^{1} \frac{1}{\sqrt{x}(1+\sqrt{x})^{2}} dx = \lim_{\epsilon \to 0^{+}} \int_{\epsilon}^{1} \frac{1}{\sqrt{x}(1+\sqrt{x})^{2}} dx + \lim_{\epsilon \to 0^{+}} \int_{\epsilon}^{1} \frac{1}{\sqrt{x}(1+\sqrt{x})^{2}} dx = \lim_{\epsilon \to 0^{+}} \left[-\frac{2}{1+\sqrt{x}} \right]_{\epsilon}^{1} + \lim_{\epsilon \to 0^{+}} \left[-\frac{2}{1+\sqrt{x}} \right]_{\epsilon}^{1}$$

$$= \lim_{\epsilon \to 0^{+}} \left[-\frac{1}{1+\sqrt{\epsilon}} \right]_{\epsilon}^{1} + \lim_{\epsilon \to 0^{+}} \left[-\frac{2}{1+\sqrt{\epsilon}} \right]_{\epsilon}^{1} + \lim_{\epsilon \to 0^{+}} \left[-\frac{2}{1+\sqrt{\epsilon}} \right]_{\epsilon}^{1} = 2$$

ii)
$$\int \frac{3}{X^2+2x+3} dx$$

$$f: J-\infty, 1J \rightarrow \mathbb{R} \text{ continuel } > 0$$

$$f = \int \frac{3}{X^2+2x+3} dx$$

$$f: J-\infty, 1J \rightarrow \mathbb{R} \text{ continuel } > 0$$

$$f = \int \frac{1}{X^2} dx + \infty$$

$$\int \frac{1}{X^2} dx = 0$$

$$\int \frac{1}{X^2} dx = 0$$

Per il cuterio del confronto assittotico, segue mosto de l'integrale genera= lizzalo dato è courergense.

$$\int \frac{3}{X^2 + 2x + 3} dx = \int \frac{3}{(x+1)^2 + 2} = \frac{1}{2} \int \frac{3}{(x+1)^2 + 1} = \frac{1}{\sqrt{2}} \cdot 3 \int \frac{1}{\sqrt{2}} dx$$

$$= \frac{3}{\sqrt{2}} \arctan \left(\frac{x+1}{\sqrt{2}} \right) + c.$$

Per definizione di integrale in proprio aberzino

$$\int_{-\infty}^{1} \frac{3}{X^{2}+2\times+3} dx = \lim_{K \to -\infty} \int_{-\infty}^{1} \frac{3}{X^{2}+2\times+3} dx = \lim_{K \to -\infty} \left[\frac{3}{\sqrt{2}} \operatorname{arth}_{2} \left(\frac{X+1}{\sqrt{2}} \right) \right]_{K}^{1}$$

$$= \frac{3}{\sqrt{2}} \operatorname{arth}_{2} \left(\sqrt{2} \right) - \frac{3}{\sqrt{2}} \left(-\frac{1}{2} \right) = \frac{3}{\sqrt{2}} \operatorname{arth}_{2} \sqrt{2} + \frac{31}{2\sqrt{2}}.$$

$$f: J_0, +_{\infty} [\rightarrow \mathbb{R} \text{ outroup}, > 0.$$
Oss. the
$$f(x) = \frac{\sqrt{1 + x^2} - x}{\sqrt[3]{x}} \cdot \frac{\sqrt{1 + x^2} + x}{\sqrt{1 + x^2} + x} = \frac{1}{\sqrt[3]{x}} (\sqrt{1 + x^2} + x)$$

Abboamo che

$$per \times \rightarrow 0^{+}, \quad f(x) \sim \frac{1}{3\sqrt{x}}, \qquad \left(\int_{3\sqrt{x}}^{1} dx < +\infty\right)$$

$$per \times \rightarrow +\infty, \quad f(x) \sim \frac{1}{2\sqrt[3]{x}} = \frac{1}{2x\sqrt[4]{3}}. \quad \left(\int_{3\sqrt{x}}^{1} dx < +\infty\right)$$

Per il certerio del confronto arintotico segue miloto che Unitegrale generalizzato dalo è convergente.

4i)
$$\int_{0}^{\infty} \frac{\sqrt{1-x}}{\sqrt{1-x}} \frac{\sqrt{1-x}}{\sqrt{1-x}} dx$$

$$= \frac{1}{\sqrt{1-x}} \frac{\sqrt{1-x}}{\sqrt{1-x}} \frac{\sqrt{1-x}}{\sqrt{1-x}} dx + \frac{1}{\sqrt{1-x}} dx + \frac{1}$$

$$p\omega \times \rightarrow 0^{+} \quad f(x) \quad N \quad \frac{(\text{oni} 1) 2}{(\text{fg 1}) (x^{2d})^{2}} = \frac{2 \text{ oin } 1}{(\text{fg 1}) x^{4d}}$$

D'altra parte, d'oboramo line $f(x) = \frac{1}{1-\cos 1}$; puridi ni x=1, l'integrale dato non è ini proprio. Alboramo allors che l'integrale dato è convergente A A A A A A A .

ii)
$$\int_{1}^{3} \frac{e^{3\sqrt{3}-x}-1}{\sqrt{(x-1)^{4}d}(3-x)^{2d}} dx$$
 Abborano che

f:]1,3[> R Continua, >0

per
$$X \to 1^+$$
 $f(x) \sim \frac{e^{3\sqrt{2}} - 1}{(x-1)^{2\alpha} 2^{2\alpha}}$

per
$$X \to 3^ f(X) \sim \frac{3\sqrt{3-x}}{2^{2\alpha}(3-x)^{2\alpha}} = \frac{1}{4^{\alpha}(3-x)^{2\alpha-1/3}}$$

L'integrale dato rimiltar dunque contergente 4D 2d < 1 e 2d - 13 < 1 4D d < 1/2 e $d < \frac{2}{3}$. In definitiva, l'integrale ruporoprio dato rimiltar contergente 4D $d < \frac{1}{2}$.

$$(15.6)i) \begin{cases} y'(x) = \text{arty } x \\ y(0) = 1. \end{cases}$$

 $y(x) = \int \operatorname{ard}_{y} x dx = X \operatorname{ard}_{y} x - \int \frac{X}{1+x^{2}} dx$ $= X \operatorname{ard}_{y} x - \frac{1}{2} \log(1+x^{2}) + C.$

Ora $1 = y(0) \iff 1 = c$. Rimelter quinoli de la redutione del plom. di Cauchy dato in i) $\in y(x) = x \arctan x - \frac{1}{2} \log (1+x^2) + 1 \times EI = R$.

$$ii) \left\{ y'(x) = e^{x} \cos x \right.$$

$$\left. y(0) = 0 \right.$$

$$(4) \quad y(x) = \int e^{x} \cos x \, dx = \frac{e^{x} (\cos x + m \dot{n} x)}{2} + C$$

$$(u) \quad (w) \quad (a) \quad (b) \quad (a) \quad (b) \quad (b)$$

Ora $0 = y(0) \implies C = \frac{1}{2}$. Rimelta quindi che la polezione del phom. di Cauchy dato in ii) $= y(x) = \frac{e^{x}(\cos x + \sin x)}{2} - \frac{1}{2} \times e^{x} = \frac{e^{x}(\cos x + \sin x)}{2} - \frac{1}{2} \times e^{x} = \frac{e^{x}(\cos x + \sin x)}{2} - \frac{1}{2} =$

$$(45.7) i) \begin{cases} y'(x) = x(\omega s x + e^{x}) \\ y(0) = 1. \end{cases}$$

$$y(x) = \int x \cos x \, dx + \int x e^{x} \, dx =$$

$$= x \sin x - \int \sin^{2} x \, dx + x e^{x} - \int e^{x} \, dx$$

$$= x \sin^{2} x + \cos x + x e^{x} - e^{x} + c$$

Ora y(0) = 1 $\Rightarrow 1 = y - 1 + c$. Risulta quiudi de la soluzione del plom. di Caurdy dato in i) e $y(x) = x(snix + e^x) + (\omega s x - e^x) + 1$, $x \in I = R$.

$$\begin{cases} y'(x) = \frac{x}{x^2 - 3x + 2} \\ y(3) = 1. \end{cases}$$

$$\psi(x) = \int \frac{x}{(x-2)(x-1)} dx = \int \frac{2}{x-2} dx - \int \frac{1}{x-1} dx$$

$$= 2 \log |x-2| - \log |x-1| + C$$

$$\psi(x) = \log \frac{(x-2)^2}{|x-1|} + C$$

Ora y(3)=1 \iff $1=y(3)=\log 1-\log 2+c$ \iff $c=1+\log 2$. Risulter quindi che la polunoire del plom. di Cauchy dab in ii) \in $y(x)=\log \frac{(x-2)^2}{|x-1|}+1+\log 2$, $x\in I=J_2,+\infty[$.

$$15.8) i) \left[y'(x) = \frac{y(x)}{x} \right].$$

Notiono che y(x) = 0 on $J - \infty$, of $(o \text{ on } J_0, +\infty)$ \in oduzione dell'eq. diff. data. Poiche nerrun'altra oduzione dell'eq. diff. data in annullera ni qualche pt. (**), l'eq. diff. data vinulta equiv. a $\frac{A'(x)}{Y(x)} = \frac{1}{X}$; reseque $\int \frac{A'(x)}{Y(x)} dx = \int \frac{1}{X} dx$, orna $\log |y(x)| = \log |x| + c$, cett. Ricanamo $|y(x)| = e^{\log |x| + c}$, cett, orna |y| = k|x| k > 0, k > 0 (oppure k > 0). Trutte le solumoin dell'eq. diff. data in survoiro k(x) = k|x|, k = 0.

ii)
$$y'(x) + y^2(x) m i x = 0$$

Procediamo come iù i). La financie $y(x) = 0$ e poliet, dell'eq. diff. data.

^(*) Questo folto segue dal teoremes di existensa ed unicità locale puil phone di cauchy associato à y'(x) = y(x)

Poiche neroun'altra polumone dell'eq. inff. data si annullera in qualche pt., l'eq. diff. data poirs evere souther come $-\frac{y'(x)}{y^2(x)} = \sin x$; me segue che $\frac{1}{y(x)} = -\cos x + c$, ceR; vinlta $y(x) = \frac{1}{c - \cos x}$, $x \in I$.

iii) $y'(x)y(x) = x(2+y^2(x)) \iff \frac{y'(x)y(x)}{2+y^2(x)} = x \text{ equal}i$ $\frac{1}{2}\log(2+y^2(x)) = \frac{x^2}{2} + c$, cer.

Quindi $2+y^2(x)=ke^{x^2}$, keR, k70. OHeniamo $y^2(x)=ke^{x^2}-2$ con $y(x)=\pm\sqrt{ke^{x^2}-2}$, xeI.