In [1]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings("ignore")
```

In [2]:

```
df=pd.read_csv("laptop_data.csv")
```

In [3]:

```
#reading top 5 values from a data.
df.head()
```

Out[3]:

	Unnamed: 0	Company	TypeName	Inches	ScreenResolution	Сри	Ram	Memory	Gp
0	0	Apple	Ultrabook	13.3	IPS Panel Retina Display 2560x1600	Intel Core i5 2.3GHz	8GB	128GB SSD	Intel Iri Plu Graphic 64
1	1	Apple	Ultrabook	13.3	1440x900	Intel Core i5 1.8GHz	8GB	128GB Flash Storage	Intel HI Graphic 600
2	2	НР	Notebook	15.6	Full HD 1920x1080	Intel Core i5 7200U 2.5GHz	8GB	256GB SSD	Intel HI Graphic 62
3	3	Apple	Ultrabook	15.4	IPS Panel Retina Display 2880x1800	Intel Core i7 2.7GHz	16GB	512GB SSD	AMI Radeo Pro 45
4	4	Apple	Ultrabook	13.3	IPS Panel Retina Display 2560x1600	Intel Core i5 3.1GHz	8GB	256GB SSD	Intel Iri Plu Graphic 65
4									>

this is the dataset about laptop details.

In [4]:

```
df.shape
```

Out[4]:

(1303, 12)

dataset is contains 1303 rows with 12 columns.

In [5]:

```
df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1303 entries, 0 to 1302
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	Unnamed: 0	1303 non-null	int64
1	Company	1303 non-null	object
2	TypeName	1303 non-null	object
3	Inches	1303 non-null	float64
4	ScreenResolution	1303 non-null	object
5	Cpu	1303 non-null	object
6	Ram	1303 non-null	object
7	Memory	1303 non-null	object
8	Gpu	1303 non-null	object
9	0pSys	1303 non-null	object
10	Weight	1303 non-null	object
11	Price	1303 non-null	float64

dtypes: float64(2), int64(1), object(9)

memory usage: 122.3+ KB

In [6]:

```
df.duplicated().sum()
```

Out[6]:

0

in dataset there is no rows which are identically same.

In [7]:

```
df.isnull().sum()
```

Out[7]:

Unnamed: 0 0 Company 0 TypeName 0 Inches 0 ScreenResolution 0 0 Cpu 0 Ram Memory 0 0 Gpu 0pSys 0 Weight 0 0 Price dtype: int64

dataset contains 0 null value.

In [8]:

```
#deleting unwanted columns.
df.drop(columns=["Unnamed: 0"],inplace=True)
```

In [9]:

```
df.head()
```

Out[9]:

	Company	TypeName	Inches	ScreenResolution	Cpu	Ram	Memory	Gpu	OpSys
0	Apple	Ultrabook	13.3	IPS Panel Retina Display 2560x1600	Intel Core i5 2.3GHz	8GB	128GB SSD	Intel Iris Plus Graphics 640	macOS
1	Apple	Ultrabook	13.3	1440x900	Intel Core i5 1.8GHz	8GB	128GB Flash Storage	Intel HD Graphics 6000	macOS
2	НР	Notebook	15.6	Full HD 1920x1080	Intel Core i5 7200U 2.5GHz	8GB	256GB SSD	Intel HD Graphics 620	No OS
3	Apple	Ultrabook	15.4	IPS Panel Retina Display 2880x1800	Intel Core i7 2.7GHz	16GB	512GB SSD	AMD Radeon Pro 455	macOS
4	Apple	Ultrabook	13.3	IPS Panel Retina Display 2560x1600	Intel Core i5 3.1GHz	8GB	256GB SSD	Intel Iris Plus Graphics 650	macOS
4									•

[&]quot;Unnamed: 0" dosent make any sense in dataset hence unwanted column is deleted.

In [10]:

```
df["Ram"]=df["Ram"].str.replace("GB","")
df["Weight"]=df["Weight"].str.replace("kg","")
```

```
In [11]:
```

```
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1303 entries, 0 to 1302
Data columns (total 11 columns):
                       Non-Null Count Dtype
     Column
 0
     Company
                       1303 non-null
                                        object
 1
     TypeName
                       1303 non-null
                                        object
 2
     Inches
                       1303 non-null
                                        float64
 3
     ScreenResolution 1303 non-null
                                      object
 4
     Cpu
                       1303 non-null
                                      object
 5
     Ram
                       1303 non-null
                                        object
     Memory
 6
                       1303 non-null
                                        object
 7
     Gpu
                       1303 non-null
                                        object
 8
     0pSys
                       1303 non-null
                                        object
 9
     Weight
                       1303 non-null
                                        object
 10 Price
                       1303 non-null
                                        float64
dtypes: float64(2), object(9)
memory usage: 112.1+ KB
still dtype of "Weight" and "Ram" is in object.
```

converting dtype

```
In [12]:
```

```
df["Ram"]=df["Ram"].astype("int32")
df["Weight"]=df["Weight"].astype("float32")
```

```
In [13]:
```

```
df.info()
```

```
RangeIndex: 1303 entries, 0 to 1302
Data columns (total 11 columns):
 #
     Column
                       Non-Null Count Dtype
     -----
                       -----
 0
     Company
                       1303 non-null
                                       object
 1
     TypeName
                       1303 non-null
                                       object
 2
     Inches
                       1303 non-null
                                       float64
 3
     ScreenResolution 1303 non-null
                                       object
 4
     Cpu
                       1303 non-null
                                       object
 5
     Ram
                       1303 non-null
                                       int32
 6
     Memory
                       1303 non-null
                                       object
 7
                       1303 non-null
     Gpu
                                       object
 8
     0pSys
                       1303 non-null
                                       object
 9
     Weight
                       1303 non-null
                                       float32
 10 Price
                       1303 non-null
                                       float64
dtypes: float32(1), float64(2), int32(1), object(7)
memory usage: 101.9+ KB
```

<class 'pandas.core.frame.DataFrame'>

EDA

In [14]:

```
sns.distplot(df["Price"])
```

Out[14]:

<AxesSubplot:xlabel='Price', ylabel='Density'>

distribution is slightly skewed on right.

In [15]:

df["Company"].value_counts().plot(kind="bar")

Out[15]:

<AxesSubplot:>

LG and Huawei contains the less number of laptops.

In [16]:

```
sns.barplot(x=df["Company"],y=df["Price"])
plt.xticks(rotation="vertical")
plt.show()
```


Razer company having higher price range above 150000rs hence in indian market it has lower distribution.

there is high number of companies which are lies between 40,000rs to 100000rs which are one of leading distributers.

chuwi, vero are cheep distributer companies.

we could say that price range varies according company to company.

In [17]:

df["TypeName"].value_counts().plot(kind="bar")

Out[17]:

<AxesSubplot:>

netbook type laptop is less sellable cause its specifiacation.

notebook type laptop is highest sellable.

In [18]:

```
sns.barplot(x=df["TypeName"],y=df["Price"])
plt.xticks(rotation="vertical")
plt.show()
```


workstation and ultrabooktype type laptops are more expensive and thats why in indian market they have less acceptance.

gaming and ultrabook is have a range of higher middle class but cause of its specifications is have quite of good acceptance.

notebook type laptops provides customer satisfied range with good functionlaties and specifications thats why they are one of best sellers.

hence here we can say that type of laptop varies type of a price.

In [19]:

sns.distplot(df["Inches"])

Out[19]:

<AxesSubplot:xlabel='Inches', ylabel='Density'>

In [20]:

```
sns.scatterplot(x=df["Inches"],y=df["Price"])
```

Out[20]:

<AxesSubplot:xlabel='Inches', ylabel='Price'>

impact of size on price is not to much dependable but its slightly

varies when have big diffrence.

we can see this price diffrence between 10 inches laptop and 16 or 18 inches laptop.

In [21]:

```
df["ScreenResolution"].value_counts()
Out[21]:
Full HD 1920x1080
                                                   507
1366x768
                                                   281
IPS Panel Full HD 1920x1080
                                                   230
IPS Panel Full HD / Touchscreen 1920x1080
                                                    53
Full HD / Touchscreen 1920x1080
                                                    47
1600x900
                                                    23
Touchscreen 1366x768
                                                    16
Quad HD+ / Touchscreen 3200x1800
                                                    15
IPS Panel 4K Ultra HD 3840x2160
                                                    12
IPS Panel 4K Ultra HD / Touchscreen 3840x2160
                                                    11
4K Ultra HD / Touchscreen 3840x2160
                                                    10
4K Ultra HD 3840x2160
                                                     7
Touchscreen 2560x1440
                                                     7
                                                     7
IPS Panel 1366x768
IPS Panel Quad HD+ / Touchscreen 3200x1800
                                                     6
IPS Panel Retina Display 2560x1600
                                                     6
IPS Panel Retina Display 2304x1440
                                                     6
Touchscreen 2256x1504
                                                     6
IPS Panel Touchscreen 2560x1440
                                                     5
IPS Panel Retina Display 2880x1800
                                                     4
IPS Panel Touchscreen 1920x1200
                                                     4
1440x900
                                                     4
IPS Panel 2560x1440
                                                     Δ
IPS Panel Quad HD+ 2560x1440
                                                     3
                                                     3
Quad HD+ 3200x1800
1920x1080
                                                     3
                                                     3
Touchscreen 2400x1600
2560x1440
                                                     3
IPS Panel Touchscreen 1366x768
IPS Panel Touchscreen / 4K Ultra HD 3840x2160
                                                     2
IPS Panel Full HD 2160x1440
                                                     2
IPS Panel Quad HD+ 3200x1800
                                                     2
IPS Panel Retina Display 2736x1824
                                                     1
IPS Panel Full HD 1920x1200
                                                     1
IPS Panel Full HD 2560x1440
                                                     1
IPS Panel Full HD 1366x768
                                                     1
Touchscreen / Full HD 1920x1080
                                                     1
Touchscreen / Quad HD+ 3200x1800
                                                     1
Touchscreen / 4K Ultra HD 3840x2160
                                                     1
IPS Panel Touchscreen 2400x1600
                                                     1
Name: ScreenResolution, dtype: int64
```

this kind of very mixed information of a column so we have to do some feature engineering over here.

In [22]:

df["Touchscreen"]=df["ScreenResolution"].apply(lambda x:1 if "Touchscreen" in x else 0)

In [23]:

df.sample(5)

Out[23]:

	Company	TypeName	Inches	ScreenResolution	Cpu	Ram	Memory	Gpu	Орξ
167	Dell	Gaming	15.6	Full HD 1920x1080	Intel Core i7 7700HQ 2.8GHz	8	128GB SSD + 1TB HDD	Nvidia GeForce GTX 1050	Windc
372	Asus	Gaming	17.3	IPS Panel Full HD 1920x1080	AMD Ryzen 1700 3GHz	16	256GB SSD + 1TB HDD	AMD Radeon RX 580	Windc
1049	Asus	Netbook	11.6	1366x768	Intel Celeron Dual Core N3060 1.6GHz	4	16GB Flash Storage	Intel HD Graphics 400	Chro
1220	Lenovo	Notebook	15.6	IPS Panel Full HD 1920x1080	Intel Core i7 6600U 2.6GHz	8	256GB SSD	Intel HD Graphics 520	Windc
887	Asus	Gaming	17.3	Full HD 1920x1080	Intel Core i5 7300HQ 2.5GHz	12	128GB SSD + 1TB HDD	Nvidia GeForce GTX 1050	Windc
4									•

here new columm "Touchscreen" is added to the dataset and 1 denotes "yes" and 0 "No".

```
In [24]:
```

```
df["Touchscreen"].value_counts().plot(kind="pie",autopct="%0.1F%%")
plt.show()
```


touchscreen laptops have capture about 15% of market.

In [25]:

sns.barplot(x=df["Touchscreen"],y=df["Price"])

Out[25]:

<AxesSubplot:xlabel='Touchscreen', ylabel='Price'>

touchscreen laptops varies with price range.

In [26]:

```
df["Ips"]=df["ScreenResolution"].apply(lambda x:1 if "IPS" in x else 0)
df["Ips"]
```

Out[26]:

```
1
1
        0
2
3
        1
1298
        1
1299
        1
1300
        0
1301
        0
1302
        0
Name: Ips, Length: 1303, dtype: int64
```

In [27]:

```
df["Ips"].value_counts().plot(kind="pie",autopct="%0.1F%%")
plt.show()
```



```
In [28]:
```

```
sns.barplot(x=df["Ips"],y=df["Price"])
```

Out[28]:

<AxesSubplot:xlabel='Ips', ylabel='Price'>

IPS Displays laptops having higher range.

```
In [29]:
```

```
new=df["ScreenResolution"].str.split("x",n=1,expand=True)
```

```
In [30]:
```

```
df["X_res"]=new[0]
df["Y_res"]=new[1]
```

In [31]:

df.head()

Out[31]:

	Company	TypeName	Inches	ScreenResolution	Cpu	Ram	Memory	Gpu	OpSys \
0	Apple	Ultrabook	13.3	IPS Panel Retina Display 2560x1600	Intel Core i5 2.3GHz	8	128GB SSD	Intel Iris Plus Graphics 640	macOS
1	Apple	Ultrabook	13.3	1440x900	Intel Core i5 1.8GHz	8	128GB Flash Storage	Intel HD Graphics 6000	macOS
2	HP	Notebook	15.6	Full HD 1920x1080	Intel Core i5 7200U 2.5GHz	8	256GB SSD	Intel HD Graphics 620	No OS
3	Apple	Ultrabook	15.4	IPS Panel Retina Display 2880x1800	Intel Core i7 2.7GHz	16	512GB SSD	AMD Radeon Pro 455	macOS
4	Apple	Ultrabook	13.3	IPS Panel Retina Display 2560x1600	Intel Core i5 3.1GHz	8	256GB SSD	Intel Iris Plus Graphics 650	macOS
4									•

as we see we found correct y resolution but x resolution we have to do apply some regular expressions.

```
In [32]:
```

```
df["X\_res"] = df["X\_res"].str.replace(",","").str.findall(r'(\d+\.?\d+)').apply(lambda x:x[0])
```

In [33]:

df.head()

Out[33]:

	Company	TypeName	Inches	ScreenResolution	Cpu	Ram	Memory	Gpu	OpSys	١
0	Apple	Ultrabook	13.3	IPS Panel Retina Display 2560x1600	Intel Core i5 2.3GHz	8	128GB SSD	Intel Iris Plus Graphics 640	macOS	_
1	Apple	Ultrabook	13.3	1440x900	Intel Core i5 1.8GHz	8	128GB Flash Storage	Intel HD Graphics 6000	macOS	
2	НР	Notebook	15.6	Full HD 1920x1080	Intel Core i5 7200U 2.5GHz	8	256GB SSD	Intel HD Graphics 620	No OS	
3	Apple	Ultrabook	15.4	IPS Panel Retina Display 2880x1800	Intel Core i7 2.7GHz	16	512GB SSD	AMD Radeon Pro 455	macOS	
4	Apple	Ultrabook	13.3	IPS Panel Retina Display 2560x1600	Intel Core i5 3.1GHz	8	256GB SSD	Intel Iris Plus Graphics 650	macOS	
4									•	•

In [34]:

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1303 entries, 0 to 1302
Data columns (total 15 columns):
Column Non-Null Count Dtype

π	COTUIIII	Non-Nail Count	DCype
0	Company	1303 non-null	object
1	TypeName	1303 non-null	object
2	Inches	1303 non-null	float64
3	ScreenResolution	1303 non-null	object
4	Cpu	1303 non-null	object
5	Ram	1303 non-null	int32
6	Memory	1303 non-null	object
7	Gpu	1303 non-null	object
8	0pSys	1303 non-null	object
9	Weight	1303 non-null	float32
10	Price	1303 non-null	float64
11	Touchscreen	1303 non-null	int64
12	Ips	1303 non-null	int64
13	X_res	1303 non-null	object
14	Y_res	1303 non-null	object
	67 (00/4) 67		-> • • (->

dtypes: float32(1), float64(2), int32(1), int64(2), object(9)

memory usage: 142.6+ KB

```
In [35]:
```

```
df["X_res"]=df["X_res"].astype("int")
df["Y_res"]=df["Y_res"].astype("int")
```

```
In [36]:
```

```
df.corr()["Price"]
```

Out[36]:

Inches 0.068197 0.743007 Ram Weight 0.210370 1.000000 Price Touchscreen 0.191226 0.252208 Ips 0.556529 X_res 0.552809 Y_res Name: Price, dtype: float64

In [37]:

```
df["ppi"]=(((df["X_res"]**2+df["Y_res"]**2))**0.5/df["Inches"]).astype("float")
```

In [38]:

```
df.corr()["Price"]
```

Out[38]:

Inches 0.068197 0.743007 Ram Weight 0.210370 1.000000 Price Touchscreen 0.191226 0.252208 0.556529 X_res Y_res 0.552809 0.473487 ppi Name: Price, dtype: float64

In [39]:

```
df.drop(columns=["ScreenResolution"],inplace=True)
```

In [40]:

```
df.drop(columns=["Inches","X_res","Y_res"],inplace=True)
```

In [41]:

```
df.head()
```

Out[41]:

	Company	TypeName	Cpu	Ram	Memory	Gpu	OpSys	Weight	Price	Touch
0	Apple	Ultrabook	Intel Core i5 2.3GHz	8	128GB SSD	Intel Iris Plus Graphics 640	macOS	1.37	71378.6832	
1	Apple	Ultrabook	Intel Core i5 1.8GHz	8	128GB Flash Storage	Intel HD Graphics 6000	macOS	1.34	47895.5232	
2	НР	Notebook	Intel Core i5 7200U 2.5GHz	8	256GB SSD	Intel HD Graphics 620	No OS	1.86	30636.0000	
3	Apple	Ultrabook	Intel Core i7 2.7GHz	16	512GB SSD	AMD Radeon Pro 455	macOS	1.83	135195.3360	
4	Apple	Ultrabook	Intel Core i5 3.1GHz	8	256GB SSD	Intel Iris Plus Graphics 650	macOS	1.37	96095.8080	
4										•

PPI stands for pixels per inches

PPI is highly corelated with price.

```
In [42]:
```

```
df["Cpu"].value_counts()
Out[42]:
```

```
Intel Core i5 7200U 2.5GHz
                                 190
Intel Core i7 7700HQ 2.8GHz
                                 146
Intel Core i7 7500U 2.7GHz
                                 134
Intel Core i7 8550U 1.8GHz
                                  73
Intel Core i5 8250U 1.6GHz
                                  72
Intel Core M M3-6Y30 0.9GHz
                                   1
AMD A9-Series 9420 2.9GHz
                                    1
Intel Core i3 6006U 2.2GHz
                                   1
AMD A6-Series 7310 2GHz
Intel Xeon E3-1535M v6 3.1GHz
Name: Cpu, Length: 118, dtype: int64
```

cpu have 118 diffrent categories and i5,i7 Intel Core are Some of the famous.

In [43]:

```
df["Cpu Name"]=df["Cpu"].apply(lambda x:" ".join(x.split()[0:3]))
```

In [44]:

```
df.head()
```

Out[44]:

	Company	TypeName	Cpu	Ram	Memory	Gpu	OpSys	Weight	Price	Touch
0	Apple	Ultrabook	Intel Core i5 2.3GHz	8	128GB SSD	Intel Iris Plus Graphics 640	macOS	1.37	71378.6832	
1	Apple	Ultrabook	Intel Core i5 1.8GHz	8	128GB Flash Storage	Intel HD Graphics 6000	macOS	1.34	47895.5232	
2	НР	Notebook	Intel Core i5 7200U 2.5GHz	8	256GB SSD	Intel HD Graphics 620	No OS	1.86	30636.0000	
3	Apple	Ultrabook	Intel Core i7 2.7GHz	16	512GB SSD	AMD Radeon Pro 455	macOS	1.83	135195.3360	
4	Apple	Ultrabook	Intel Core i5 3.1GHz	8	256GB SSD	Intel Iris Plus Graphics 650	macOS	1.37	96095.8080	
4										•

In [45]:

```
def fetch_processor(text):
    if text == 'Intel Core i7' or text == 'Intel Core i5' or text == 'Intel Core i3':
        return text
    else:
        if text.split()[0] == 'Intel':
            return 'Other Intel Processor'
        else:
            return 'AMD Processor'
```

In [46]:

```
df['Cpu brand'] = df['Cpu Name'].apply(fetch_processor)
```

In [47]:

df.head()

Out[47]:

	Company	TypeName	Cpu	Ram	Memory	Gpu	OpSys	Weight	Price	Touch
0	Apple	Ultrabook	Intel Core i5 2.3GHz	8	128GB SSD	Intel Iris Plus Graphics 640	macOS	1.37	71378.6832	
1	Apple	Ultrabook	Intel Core i5 1.8GHz	8	128GB Flash Storage	Intel HD Graphics 6000	macOS	1.34	47895.5232	
2	HP	Notebook	Intel Core i5 7200U 2.5GHz	8	256GB SSD	Intel HD Graphics 620	No OS	1.86	30636.0000	
3	Apple	Ultrabook	Intel Core i7 2.7GHz	16	512GB SSD	AMD Radeon Pro 455	macOS	1.83	135195.3360	
4	Apple	Ultrabook	Intel Core i5 3.1GHz	8	256GB SSD	Intel Iris Plus Graphics 650	macOS	1.37	96095.8080	
4										•

In [48]:

df['Cpu brand'].value_counts().plot(kind='bar')

Out[48]:

<AxesSubplot:>

intel core i7 generation is most widely used.

In [49]:

```
sns.barplot(x=df['Cpu brand'],y=df['Price'])
plt.xticks(rotation='vertical')
plt.show()
```


As with huge demand i7 processor is ranging higher price.

AMD processor,i3 processor and execpt i5 other intel having same price range.

we can say that price is varies along with processores.

In [50]:

```
df.drop(columns=["Cpu","Cpu Name"],inplace=True)
```

deleting unwanted columns as we have cpu brand for specifications.

In [51]:

df.head()

Out[51]:

	Company	TypeName	Ram	Memory	Gpu	OpSys	Weight	Price	Touchscreen
0	Apple	Ultrabook	8	128GB SSD	Intel Iris Plus Graphics 640	macOS	1.37	71378.6832	0
1	Apple	Ultrabook	8	128GB Flash Storage	Intel HD Graphics 6000	macOS	1.34	47895.5232	0
2	НР	Notebook	8	256GB SSD	Intel HD Graphics 620	No OS	1.86	30636.0000	0
3	Apple	Ultrabook	16	512GB SSD	AMD Radeon Pro 455	macOS	1.83	135195.3360	0
4	Apple	Ultrabook	8	256GB SSD	Intel Iris Plus Graphics 650	macOS	1.37	96095.8080	0
4									>

In [52]:

df["Ram"].value_counts().plot(kind="bar")

Out[52]:

<AxesSubplot:>

8gb Ram laptops are standerd size and those are most selling laptops as well.

surprisingly 4gb Ram laptops still ahead from 16gb Ram laptops.

64,24,32Gb laptops is vary rare in market.

2gb laptops are outdated Now.

In [53]:

```
sns.barplot(x=df["Ram"],y=df["Price"])
```

Out[53]:

<AxesSubplot:xlabel='Ram', ylabel='Price'>

highly correlation between Ram and Price.

even though 12gb ram laptops are in godd price range but still its under rated in market.

In [54]:

df["Memory"].value_counts()

Out[54]:

1TB HDD 2 500GB HDD 1 512GB SSD 1 128GB SSD + 1TB HDD 1 28GB SSD + 1TB HDD 32GB Flash Storage 2TB HDD 64GB Flash Storage 512GB SSD + 1TB HDD 1TB SSD	76 1TB HDD 73 orage 38 16 orage 15 1TB HDD 14 2TB HDD 10 2TB HDD 9 torage 8 orage 7 6 5torage 4 2TB HDD 3 torage 2 B HDD 3 torage 2 B HDD 2 2TB HDD 2 2TB HDD 2
500GB HDD 512GB SSD 128GB SSD + 1TB HDD 128GB SSD 256GB SSD + 1TB HDD 32GB Flash Storage 2TB HDD 64GB Flash Storage 512GB SSD + 1TB HDD 1TB SSD 256GB SSD + 2TB HDD 1.0TB Hybrid 256GB Flash Storage 16GB Flash Storage 32GB SSD 128GB Flash Storage 512GB SSD 512GB Flash Storage 1TB SSD + 2TB HDD 16GB SSD 512GB Flash Storage 1TB SSD + 1TB HDD 256GB SSD + 256GB SSD 512GB SSD + 256GB SSD 512GB SSD + 256GB SSD 512GB SSD + 512GB SSD 64GB Flash Storage + 1TB HDD 1TB HDD + 1TB HDD 32GB HDD 64GB SSD 128GB HDD 240GB SSD 8GB SSD	132 118 1TB HDD 94 76 1TB HDD 73 orage 38 orage 15 1TB HDD 14 2TB HDD 19 torage 8 orage 7 torage 4 2TB HDD 3 torage 2 B HDD 3 torage 2 B HDD 2 2TB HDD 2 2TB HDD 2 2TB HDD 2
512GB SSD + 1TB HDD 128GB SSD + 1TB HDD 128GB SSD 256GB SSD + 1TB HDD 32GB Flash Storage 2TB HDD 64GB Flash Storage 512GB SSD + 1TB HDD 1TB SSD 256GB SSD + 2TB HDD 1.0TB Hybrid 256GB Flash Storage 16GB Flash Storage 128GB Flash Storage 32GB SSD 128GB Flash Storage 512GB SSD + 2TB HDD 16GB SSD 512GB Flash Storage 1TB SSD + 1TB HDD 256GB SSD + 2TB HDD 256GB SSD + 500GB HDD 128GB SSD + 256GB SSD 512GB SSD + 256GB SSD 512GB SSD + 512GB SSD 64GB Flash Storage + 1TB HDD 1TB HDD + 1TB HDD 32GB HDD 64GB SSD 128GB HDD 240GB SSD 8GB SSD 8GB SSD	118 1TB HDD 94 76 1TB HDD 73 orage 38 orage 15 1TB HDD 14 2TB HDD 10 torage 8 orage 7 torage 4 2TB HDD 3 torage 4 2TB HDD 3 torage 4 2TB HDD 3 2TB HDD 2 2TB HDD 2 2TB HDD 2
128GB SSD + 1TB HDD 128GB SSD 256GB SSD + 1TB HDD 32GB Flash Storage 2TB HDD 64GB Flash Storage 512GB SSD + 1TB HDD 1TB SSD 256GB SSD + 2TB HDD 1.0TB Hybrid 256GB Flash Storage 16GB Flash Storage 32GB SSD 180GB SSD 128GB Flash Storage 512GB SSD + 2TB HDD 16GB SSD 512GB Flash Storage 1TB SSD + 2TB HDD 16GB SSD 512GB Flash Storage 1TB SSD + 1TB HDD 256GB SSD + 500GB HDD 128GB SSD + 256GB SSD 512GB SSD + 256GB SSD 512GB SSD + 512GB SSD 64GB Flash Storage + 1TB HDD 1TB HDD + 1TB HDD 32GB HDD 64GB SSD 128GB HDD 64GB SSD 8GB SSD 8GB SSD 8GB SSD 8GB SSD	1TB HDD 94 76 73 1TB HDD 73 orage 38 16 16 orage 15 1TB HDD 14 2TB HDD 10 9 4 torage 7 6 5 torage 4 2TB HDD 3 torage 2 B HDD 2 200GB HDD 2 2TB HDD 2 2TB HDD 2
128GB SSD + 1TB HDD 32GB Flash Storage 2TB HDD 64GB Flash Storage 512GB SSD + 1TB HDD 1TB SSD 256GB SSD + 2TB HDD 1.0TB Hybrid 256GB Flash Storage 16GB Flash Storage 32GB SSD 180GB SSD 180GB SSD 128GB Flash Storage 512GB SSD + 2TB HDD 16GB SSD 512GB Flash Storage 1TB SSD + 1TB HDD 256GB SSD + 500GB HDD 128GB SSD + 256GB SSD 512GB SSD + 256GB SSD 512GB SSD + 512GB SSD 64GB Flash Storage + 1TB HDD 1TB HDD + 1TB HDD 32GB HDD 64GB SSD 128GB HDD 64GB SSD	76 1TB HDD 73 orage 38 16 orage 15 1TB HDD 14 2TB HDD 10 etorage 8 orage 7 6 torage 4 2TB HDD 3 torage 4 2TB HDD 3 torage 2 B HDD 3 torage 2 B HDD 2 2TB HDD 2 2TB HDD 2
256GB SSD + 1TB HDD 32GB Flash Storage 2TB HDD 64GB Flash Storage 512GB SSD + 1TB HDD 1TB SSD 256GB SSD + 2TB HDD 1.0TB Hybrid 256GB Flash Storage 16GB Flash Storage 32GB SSD 180GB SSD 128GB Flash Storage 512GB SSD + 2TB HDD 16GB SSD 512GB Flash Storage 1TB SSD + 1TB HDD 256GB SSD + 2TB HDD 256GB SSD + 256GB SSD 512GB SSD + 512GB SSD 64GB Flash Storage + 1TB HDD 1TB HDD + 1TB HDD 32GB HDD 64GB SSD 128GB HDD 64GB SSD	1TB HDD 73 orage 38 16 orage 15 1TB HDD 14 2TB HDD 10 etorage 8 orage 7 6 torage 4 2TB HDD 3 torage 2 B HDD 3 torage 2 B HDD 2 2TB HDD 2 2TB HDD 2
32GB Flash Storage 2TB HDD 64GB Flash Storage 512GB SSD + 1TB HDD 1TB SSD 256GB SSD + 2TB HDD 1.0TB Hybrid 256GB Flash Storage 16GB Flash Storage 32GB SSD 180GB SSD 128GB Flash Storage 512GB SSD + 2TB HDD 16GB SSD 512GB Flash Storage 1TB SSD + 1TB HDD 256GB SSD + 2TB HDD 256GB SSD + 256GB SSD 512GB SSD + 256GB SSD 512GB SSD + 256GB SSD 512GB SSD + 11B HDD 256GB SSD + 11B HDD 32GB HDD 32GB HDD 32GB HDD 32GB HDD 32GB SSD	orage 38 16 orage 15 1TB HDD 14 2TB HDD 10 torage 8 orage 7 torage 6 torage 4 2TB HDD 3 torage 2 B HDD 3 torage 2 B HDD 2 2TB HDD 2 2TB HDD 2
2TB HDD 64GB Flash Storage 512GB SSD + 1TB HDD 1TB SSD 256GB SSD + 2TB HDD 1.0TB Hybrid 256GB Flash Storage 16GB Flash Storage 32GB SSD 180GB SSD 128GB Flash Storage 512GB SSD + 2TB HDD 16GB SSD 512GB Flash Storage 1TB SSD + 1TB HDD 256GB SSD + 200GB HDD 128GB SSD + 256GB SSD 512GB SSD + 256GB SSD 512GB SSD + 256GB SSD 512GB SSD + 512GB SSD 64GB Flash Storage + 1TB HDD 1TB HDD + 1TB HDD 32GB HDD 64GB SSD 128GB HDD 240GB SSD 8GB SSD	16 orage 15 1TB HDD 14 2TB HDD 10 9 torage 8 orage 7 6 torage 4 2TB HDD 3 torage 2 B HDD 3 torage 2 B HDD 2 2TB HDD 2 2TB HDD 2
64GB Flash Storage 512GB SSD + 1TB HDD 1TB SSD 256GB SSD + 2TB HDD 1.0TB Hybrid 256GB Flash Storage 16GB Flash Storage 32GB SSD 180GB SSD 128GB Flash Storage 512GB SSD + 2TB HDD 16GB SSD 512GB Flash Storage 1TB SSD + 1TB HDD 256GB SSD + 500GB HDD 128GB SSD + 2TB HDD 256GB SSD + 256GB SSD 512GB SSD + 512GB SSD 512GB SSD + 1TB HDD 256GB SSD + 1TB HDD 32GB HDD 32GB HDD 32GB HDD 32GB SSD 32GB SSD 32GB SSD	orage 15 1TB HDD 14 2TB HDD 10 9 torage 8 orage 7 6 torage 4 2TB HDD 3 torage 2 B HDD 3 torage 2 B HDD 2 2TB HDD 2 2TB HDD 2
512GB SSD + 1TB HDD 1TB SSD 256GB SSD + 2TB HDD 1.0TB Hybrid 256GB Flash Storage 16GB Flash Storage 32GB SSD 180GB SSD 128GB Flash Storage 512GB SSD + 2TB HDD 16GB SSD 512GB Flash Storage 1TB SSD + 1TB HDD 256GB SSD + 500GB HDD 128GB SSD + 2TB HDD 256GB SSD + 256GB SSD 512GB SSD + 256GB SSD 512GB SSD + 11B HDD 256GB SSD + 11B HDD 256GB SSD + 11B HDD 256GB SSD + 11B HDD 32GB SSD + 11B HDD 32GB HDD 64GB SSD 128GB HDD 240GB SSD 8GB SSD	1TB HDD 14 14 2TB HDD 10 9 torage 8 orage 7 6 torage 4 2TB HDD 3 torage 2 B HDD 2 500GB HDD 2 2TB HDD 2
1TB SSD 256GB SSD + 2TB HDD 1.0TB Hybrid 256GB Flash Storage 16GB Flash Storage 32GB SSD 180GB SSD 128GB Flash Storage 512GB SSD + 2TB HDD 16GB SSD 512GB Flash Storage 1TB SSD + 1TB HDD 256GB SSD + 200GB HDD 128GB SSD + 256GB SSD 512GB SSD + 256GB SSD 512GB SSD + 256GB SSD 512GB SSD + 100D 256GB SSD + 10D 256GB SSD + 10D 256GB SSD	14 2TB HDD 10 9 torage 8 orage 7 6 torage 4 2TB HDD 3 torage 2 B HDD 2 500GB HDD 2 2TB HDD 2
256GB SSD + 2TB HDD 1.0TB Hybrid 256GB Flash Storage 16GB Flash Storage 32GB SSD 180GB SSD 128GB Flash Storage 512GB SSD + 2TB HDD 16GB SSD 512GB Flash Storage 1TB SSD + 1TB HDD 256GB SSD + 500GB HDD 128GB SSD + 2TB HDD 256GB SSD + 256GB SSD 512GB SSD + 256GB SSD 512GB SSD + 1TB HDD 256GB SSD + 1TB HDD 256GB SSD + 1TB HDD 256GB SSD + 256GB SSD 512GB SSD + 1TB HDD 32GB SSD + 1TB HDD 32GB HDD 64GB SSD 128GB HDD 240GB SSD	2TB HDD 10 9 torage 8 orage 7 6 5 torage 4 2TB HDD 3 torage 2 B HDD 2 500GB HDD 2 2TB HDD 2
1.0TB Hybrid 256GB Flash Storage 16GB Flash Storage 32GB SSD 180GB SSD 128GB Flash Storage 512GB SSD + 2TB HDD 16GB SSD 512GB Flash Storage 1TB SSD + 1TB HDD 256GB SSD + 500GB HDD 128GB SSD + 2TB HDD 256GB SSD + 256GB SSD 512GB SSD + 256GB SSD 512GB SSD + 512GB SSD 64GB Flash Storage + 1TB HDD 1TB HDD + 1TB HDD 32GB HDD 64GB SSD 128GB HDD 240GB SSD 8GB SSD	9 torage 8 orage 7 6 torage 4 2TB HDD 3 torage 2 B HDD 2 500GB HDD 2 2TB HDD 2
256GB Flash Storage 16GB Flash Storage 32GB SSD 180GB SSD 128GB Flash Storage 512GB SSD + 2TB HDD 16GB SSD 512GB Flash Storage 1TB SSD + 1TB HDD 256GB SSD + 500GB HDD 128GB SSD + 2TB HDD 256GB SSD + 256GB SSD 512GB SSD + 256GB SSD 512GB SSD + 256GB SSD 512GB SSD + 512GB SSD 64GB Flash Storage + 1TB HDD 1TB HDD + 1TB HDD 32GB HDD 64GB SSD 128GB HDD 240GB SSD 8GB SSD	torage 8 orage 7 6 torage 4 2TB HDD 3 torage 2 B HDD 2 500GB HDD 2 2TB HDD 2
16GB Flash Storage 32GB SSD 180GB SSD 128GB Flash Storage 512GB SSD + 2TB HDD 16GB SSD 512GB Flash Storage 1TB SSD + 1TB HDD 256GB SSD + 500GB HDD 128GB SSD + 2TB HDD 256GB SSD + 256GB SSD 512GB SSD + 256GB SSD 512GB SSD + 512GB SSD 64GB Flash Storage + 1TB HDD 1TB HDD + 1TB HDD 32GB HDD 64GB SSD 128GB HDD 240GB SSD 8GB SSD	orage 7 6 5 torage 4 2TB HDD 3 torage 2 B HDD 2 500GB HDD 2 2TB HDD 2
32GB SSD 180GB SSD 128GB Flash Storage 512GB SSD + 2TB HDD 16GB SSD 512GB Flash Storage 1TB SSD + 1TB HDD 256GB SSD + 500GB HDD 128GB SSD + 2TB HDD 256GB SSD + 256GB SSD 512GB SSD + 256GB SSD 512GB SSD + 512GB SSD 64GB Flash Storage + 1TB HDD 1TB HDD + 1TB HDD 32GB HDD 64GB SSD 128GB HDD 240GB SSD 8GB SSD	6 5 torage 4 2TB HDD 3 torage 2 B HDD 2 500GB HDD 2 2 TB HDD 2
180GB SSD 128GB Flash Storage 512GB SSD + 2TB HDD 16GB SSD 512GB Flash Storage 1TB SSD + 1TB HDD 256GB SSD + 500GB HDD 128GB SSD + 256GB SSD 512GB SSD + 256GB SSD 512GB SSD + 256GB SSD 512GB SSD + 512GB SSD 64GB Flash Storage + 1TB HDD 1TB HDD + 1TB HDD 32GB HDD 64GB SSD 128GB HDD 240GB SSD 8GB SSD	5 torage 4 2TB HDD 3 torage 2 B HDD 2 2 2TB HDD 2 2 2TB HDD 2
128GB Flash Storage 512GB SSD + 2TB HDD 16GB SSD 512GB Flash Storage 1TB SSD + 1TB HDD 256GB SSD + 500GB HDD 128GB SSD + 2TB HDD 256GB SSD + 256GB SSD 512GB SSD + 256GB SSD 512GB SSD + 512GB SSD 64GB Flash Storage + 1TB HDD 1TB HDD + 1TB HDD 32GB HDD 64GB SSD 128GB HDD 240GB SSD 8GB SSD	torage 4 2TB HDD 3 torage 2 B HDD 2 500GB HDD 2 2TB HDD 2
512GB SSD + 2TB HDD 16GB SSD 512GB Flash Storage 1TB SSD + 1TB HDD 256GB SSD + 500GB HDD 128GB SSD + 2TB HDD 256GB SSD + 256GB SSD 512GB SSD + 256GB SSD 512GB SSD + 512GB SSD 64GB Flash Storage + 1TB HDD 1TB HDD + 1TB HDD 32GB HDD 64GB SSD 128GB HDD 240GB SSD 8GB SSD	2TB HDD 3 3 torage 2 B HDD 2 500GB HDD 2 2TB HDD 2
16GB SSD 512GB Flash Storage 1TB SSD + 1TB HDD 256GB SSD + 500GB HDD 128GB SSD + 2TB HDD 256GB SSD + 256GB SSD 512GB SSD + 256GB SSD 512GB SSD + 512GB SSD 64GB Flash Storage + 1TB HDD 1TB HDD + 1TB HDD 32GB HDD 64GB SSD 128GB HDD 240GB SSD 8GB SSD	3 torage 2 B HDD 2 500GB HDD 2 2 TB HDD 2
512GB Flash Storage 1TB SSD + 1TB HDD 256GB SSD + 500GB HDD 128GB SSD + 256GB SSD 512GB SSD + 256GB SSD 512GB SSD + 512GB SSD 64GB Flash Storage + 1TB HDD 1TB HDD + 1TB HDD 32GB HDD 64GB SSD 128GB HDD 240GB SSD 8GB SSD	torage 2 B HDD 2 500GB HDD 2 2TB HDD 2
1TB SSD + 1TB HDD 256GB SSD + 500GB HDD 128GB SSD + 2TB HDD 256GB SSD + 256GB SSD 512GB SSD + 256GB SSD 512GB SSD + 512GB SSD 64GB Flash Storage + 1TB HDD 1TB HDD + 1TB HDD 32GB HDD 64GB SSD 128GB HDD 240GB SSD 8GB SSD	B HDD 2 500GB HDD 2 2TB HDD 2
256GB SSD + 500GB HDD 128GB SSD + 2TB HDD 256GB SSD + 256GB SSD 512GB SSD + 256GB SSD 512GB SSD + 512GB SSD 64GB Flash Storage + 1TB HDD 1TB HDD + 1TB HDD 32GB HDD 64GB SSD 128GB HDD 240GB SSD 8GB SSD	500GB HDD 2 2TB HDD 2
256GB SSD + 256GB SSD 512GB SSD + 256GB SSD 512GB SSD + 512GB SSD 64GB Flash Storage + 1TB HDD 1TB HDD + 1TB HDD 32GB HDD 64GB SSD 128GB HDD 240GB SSD 8GB SSD	2TB HDD 2
256GB SSD + 256GB SSD 512GB SSD + 256GB SSD 512GB SSD + 512GB SSD 64GB Flash Storage + 1TB HDD 1TB HDD + 1TB HDD 32GB HDD 64GB SSD 128GB HDD 240GB SSD 8GB SSD	
512GB SSD + 256GB SSD 512GB SSD + 512GB SSD 64GB Flash Storage + 1TB HDD 1TB HDD + 1TB HDD 32GB HDD 64GB SSD 128GB HDD 240GB SSD 8GB SSD	256GB SSD 2
512GB SSD + 512GB SSD 64GB Flash Storage + 1TB HDD 1TB HDD + 1TB HDD 32GB HDD 64GB SSD 128GB HDD 240GB SSD 8GB SSD	
64GB Flash Storage + 1TB HDD 1TB HDD + 1TB HDD 32GB HDD 64GB SSD 128GB HDD 240GB SSD 8GB SSD	
1TB HDD + 1TB HDD 32GB HDD 64GB SSD 128GB HDD 240GB SSD 8GB SSD	
32GB HDD 64GB SSD 128GB HDD 240GB SSD 8GB SSD	
64GB SSD 128GB HDD 240GB SSD 8GB SSD	
128GB HDD 240GB SSD 8GB SSD	1
240GB SSD 8GB SSD	1
8GB SSD	1
	1
508GR Hyhrid	1
	1
1.0TB HDD	1
512GB SSD + 1.0TB Hybrid	
256GB SSD + 1.0TB Hybrid	=
Name: Memory, dtype: int64	dtype: int64

```
In [55]:
df["Memory"]
Out[55]:
0
                  128GB SSD
1
        128GB Flash Storage
2
                   256GB SSD
3
                   512GB SSD
4
                   256GB SSD
1298
                   128GB SSD
1299
                  512GB SSD
         64GB Flash Storage
1300
1301
                     1TB HDD
                   500GB HDD
1302
Name: Memory, Length: 1303, dtype: object
In [56]:
df['Memory'] = df['Memory'].astype(str)
In [57]:
df['Memory']
Out[57]:
0
                  128GB SSD
        128GB Flash Storage
1
2
                   256GB SSD
3
                   512GB SSD
                   256GB SSD
1298
                   128GB SSD
1299
                  512GB SSD
1300
         64GB Flash Storage
1301
                     1TB HDD
1302
                   500GB HDD
Name: Memory, Length: 1303, dtype: object
In [58]:
df["Memory"] = df["Memory"].str.replace('GB', '')
In [59]:
df["Memory"] = df["Memory"].str.replace('TB', '000')
In [60]:
new = df["Memory"].str.split(n=1,expand = True)
```

In [61]:

new

Out[61]:

	0	1
0	128	SSD
1	128	Flash Storage
2	256	SSD
3	512	SSD
4	256	SSD
1298	128	SSD
1299	512	SSD
1300	64	Flash Storage
1301	1000	HDD
1302	500	HDD

1303 rows × 2 columns

In [62]:

```
df["first"]= new[0]
```

In [63]:

```
df["first"]=df["first"].str.strip()
#removing unwanted space
```

In [64]:

```
df["first"]
```

Out[64]:

```
0
         128
1
         128
2
         256
3
         512
         256
        . . .
1298
         128
1299
         512
1300
          64
        1000
1301
1302
         500
Name: first, Length: 1303, dtype: object
```

```
In [65]:
df['first'].value_counts()
Out[65]:
256
          508
1000
           240
          177
128
512
          140
          132
500
           45
32
64
           17
2000
           16
           10
1.0000
           10
16
            5
180
240
            1
8
             1
508
             1
Name: first, dtype: int64
In [66]:
df["second"]= new[1]
In [67]:
df["second"]=df["second"].str.strip()
df["second"]
Out[67]:
0
                   SSD
        Flash Storage
1
2
                   SSD
3
                   SSD
4
                   SSD
             . . .
1298
                   SSD
1299
                   SSD
        Flash Storage
1300
1301
                   HDD
1302
                   HDD
Name: second, Length: 1303, dtype: object
In [68]:
df["Layer1HDD"] = df["first"].apply(lambda x: 1 if "HDD" in x else 0)
df["Layer1SSD"] = df["first"].apply(lambda x: 1 if "SSD" in x else 0)
df["Layer1Hybrid"] = df["first"].apply(lambda x: 1 if "Hybrid" in x else 0)
df["Layer1Flash_Storage"] = df["first"].apply(lambda x: 1 if "Flash Storage" in x else 0)
In [69]:
df["Layer1Hybrid"].value_counts()
Out[69]:
0
     1303
```

Name: Layer1Hybrid, dtype: int64

```
In [70]:
df["Layer1HDD"].value_counts()
Out[70]:
     1303
Name: Layer1HDD, dtype: int64
In [71]:
df["Layer1SSD"].value_counts()
Out[71]:
     1303
Name: Layer1SSD, dtype: int64
In [72]:
df["Layer1Flash_Storage"].value_counts()
Out[72]:
     1303
Name: Layer1Flash_Storage, dtype: int64
In [73]:
df["second"].isnull().sum()
Out[73]:
0
In [74]:
df["Layer2HDD"] = df["second"].apply(lambda x: 1 if "HDD" in x else 0)
df["Layer2SSD"] = df["second"].apply(lambda x: 1 if "SSD" in x else 0)
df["Layer2Hybrid"] = df["second"].apply(lambda x: 1 if "Hybrid" in x else 0)
df["Layer2Flash_Storage"] = df["second"].apply(lambda x: 1 if "Flash Storage" in x else 0)
In [75]:
df["Layer2HDD"].value counts()
Out[75]:
     727
     576
Name: Layer2HDD, dtype: int64
```

```
In [76]:
df["Layer2SSD"].value_counts()
#as we see SSD is booming the market.
Out[76]:
1
     843
     460
Name: Layer2SSD, dtype: int64
In [77]:
df["Layer2Hybrid"].value_counts()
Out[77]:
0
     1291
1
       12
Name: Layer2Hybrid, dtype: int64
In [78]:
df["Layer2Flash_Storage"].value_counts()
Out[78]:
0
     1228
1
       75
Name: Layer2Flash_Storage, dtype: int64
In [79]:
df["second"]
Out[79]:
0
                   SSD
        Flash Storage
1
2
                   SSD
3
                   SSD
4
                   SSD
1298
                   SSD
                   SSD
1299
1300
        Flash Storage
1301
                  HDD
1302
                   HDD
Name: second, Length: 1303, dtype: object
In [80]:
df['first'] = df['first'].str.replace(r'\D', '')
df['second'] = df['first'].str.replace(r'\D', '')
In [81]:
df["first"] = df["first"].astype(int)
df["second"] = df["second"].astype(int)
```

```
In [82]:
```

```
df["HDD"]=(df["first"]*df["Layer1HDD"]+df["second"]*df["Layer2HDD"])
df["SSD"]=(df["first"]*df["Layer1SSD"]+df["second"]*df["Layer2SSD"])
df["Hybrid"]=(df["first"]*df["Layer1Hybrid"]+df["second"]*df["Layer2Hybrid"])
df["Flash_Storage"]=(df["first"]*df["Layer1Flash_Storage"]+df["second"]*df["Layer2Flash_Sto
```

In [83]:

1 128 2 256 3 512 256 . . . 1298 128 1299 512 1300 64 1000 1301 500 1302 Name: second, Length: 1303, dtype: int32

In [84]:

df.sample(5)

Out[84]:

	Company	TypeName	Ram	Memory	Gpu	OpSys	Weight	Price	Touchscreer
179	HP	2 in 1 Convertible	8	256 SSD	Intel UHD Graphics 620	Windows 10	1.29	79866.7200	1
136	Lenovo	Notebook	4	1000 HDD	Intel HD Graphics 500	No OS	1.90	13445.7408	(
481	Dell	Notebook	4	1000 HDD	Intel HD Graphics 620	Windows 10	2.18	31254.0480	(
134	HP	Notebook	8	1000 HDD	Intel HD Graphics 620	Windows 10	2.05	31861.4400	(
560	Acer	2 in 1 Convertible	4	32 Flash Storage	Intel HD Graphics 500	Windows 10	1.25	18594.7200	1

5 rows × 26 columns

In [85]:

In [86]:

```
df.head()
```

Out[86]:

	Company	TypeName	Ram	Memory	Gpu	OpSys	Weight	Price	Touchscreen
0	Apple	Ultrabook	8	128 SSD	Intel Iris Plus Graphics 640	macOS	1.37	71378.6832	0
1	Apple	Ultrabook	8	128 Flash Storage	Intel HD Graphics 6000	macOS	1.34	47895.5232	0
2	НР	Notebook	8	256 SSD	Intel HD Graphics 620	No OS	1.86	30636.0000	0
3	Apple	Ultrabook	16	512 SSD	AMD Radeon Pro 455	macOS	1.83	135195.3360	0
4	Apple	Ultrabook	8	256 SSD	Intel Iris Plus Graphics 650	macOS	1.37	96095.8080	0
4									>

as we have functions of meomery so there no use of memory column.

In [87]:

```
df.drop(columns=["Memory"],inplace=True)
```

In [88]:

```
df.corr()['Price']
```

Out[88]:

Ram	0.743007
Weight	0.210370
Price	1.000000
Touchscreen	0.191226
Ips	0.252208
ppi	0.473487
HDD	-0.265334
SSD	0.676202
Hybrid	-0.037971
Flash_Storage	-0.040511
Name: Price,	dtype: float64

SSD and HDD are still have huge market capture but HDD is negatively co-related to price.

hybrid and flash_storage is still low market capture as with negative co-relation so we deleting this column.

```
In [89]:
```

```
df.drop(columns=['Hybrid','Flash_Storage'],inplace=True)
```

GPU (graphical processing unit)

it shows which graphic card is having in laptop.

```
In [90]:
df["Gpu"].value_counts()
Out[90]:
Intel HD Graphics 620
                            281
Intel HD Graphics 520
                            185
Intel UHD Graphics 620
                             68
Nvidia GeForce GTX 1050
                             66
Nvidia GeForce GTX 1060
                             48
AMD Radeon R5 520
                              1
AMD Radeon R7
                              1
Intel HD Graphics 540
                              1
AMD Radeon 540
                              1
ARM Mali T860 MP4
Name: Gpu, Length: 110, dtype: int64
In [91]:
df["Gpu brand"]=df["Gpu"].apply(lambda x:x.split()[0])
In [92]:
df["Gpu brand"]
Out[92]:
        Intel
0
1
        Intel
2
        Intel
3
          AMD
        Intel
1298
        Intel
1299
        Intel
1300
        Intel
          AMD
1301
1302
        Intel
Name: Gpu brand, Length: 1303, dtype: object
```

here gpu column contains lots of mixed info hence we are going for only GPU brands.

In [93]:

```
df["Gpu brand"].value_counts()
```

Out[93]:

Intel 722 Nvidia 400 AMD 180 ARM 1

Name: Gpu brand, dtype: int64

In [94]:

```
sns.barplot(x=df["Gpu brand"],y=df["Price"])
```

Out[94]:

<AxesSubplot:xlabel='Gpu brand', ylabel='Price'>

Nvidia is expensive grahic cards and its mostly used for gaming laptops.

in reacent days intel introduce new graphic cards which are quite expensive thats its surpasses AMD.

In [95]:

```
df.drop(columns=["Gpu"],inplace=True)
```

Opsys(opreating system)

In [96]:

```
df["OpSys"].value_counts()
```

Out[96]:

Windows 10 1072 No OS 66 Linux 62 Windows 7 45 Chrome OS 27 macOS 13 Mac OS X 8 Windows 10 S 8 Android 2

Name: OpSys, dtype: int64

In [97]:

```
sns.barplot(x=df['OpSys'],y=df['Price'])
plt.xticks(rotation='vertical')
plt.show()
```


since we have too much categories now in os hence we club into a groups.

```
In [98]:
```

```
def cat_os(inp):
    if inp == 'Windows 10' or inp == 'Windows 7' or inp == 'Windows 10 S':
        return 'Windows'
    elif inp == 'macOS' or inp == 'Mac OS X':
        return 'Mac'
    else:
        return 'Others/No OS/Linux'
```

In [99]:

```
df['os'] = df['OpSys'].apply(cat_os)
```

In [100]:

df.head()

Out[100]:

	Company	TypeName	Ram	OpSys	Weight	Price	Touchscreen	lps	ppi	(bri
0	Apple	Ultrabook	8	macOS	1.37	71378.6832	0	1	226.983005	I C
1	Apple	Ultrabook	8	macOS	1.34	47895.5232	0	0	127.677940	I C
2	HP	Notebook	8	No OS	1.86	30636.0000	0	0	141.211998	I C
3	Apple	Ultrabook	16	macOS	1.83	135195.3360	0	1	220.534624	I C
4	Apple	Ultrabook	8	macOS	1.37	96095.8080	0	1	226.983005	I C
4										•

In [101]:

```
df.drop(columns=['OpSys'],inplace=True)
```

In [102]:

```
sns.barplot(x=df['os'],y=df['Price'])
plt.xticks(rotation='vertical')
plt.show()
```


Mac opereating systems are one of expensive ones.

In [103]:

```
sns.distplot(df['Weight'])
```

Out[103]:

<AxesSubplot:xlabel='Weight', ylabel='Density'>

In [104]:

```
sns.scatterplot(x=df['Weight'],y=df['Price'])
```

Out[104]:

<AxesSubplot:xlabel='Weight', ylabel='Price'>

distriburion is slightly linear.

In [105]:

df.corr()['Price']

Out[105]:

0.743007 Ram Weight 0.210370 Price 1.000000 Touchscreen 0.191226 0.252208 Ips ppi 0.473487 HDD -0.265334 0.676202 SSD Name: Price, dtype: float64

In [106]:

sns.heatmap(df.corr())

Out[106]:

<AxesSubplot:>

In [107]:

```
sns.distplot(df['Price'])
```

Out[107]:

<AxesSubplot:xlabel='Price', ylabel='Density'>

In [108]:

```
sns.distplot(np.log(df['Price']))
```

Out[108]:

<AxesSubplot:xlabel='Price', ylabel='Density'>

In [109]:

```
X = df.drop(columns=['Price'])
y = np.log(df['Price'])
```

In [110]:

Χ

#this are independent variables which 12 columns.

Out[110]:

	Company	TypeName	Ram	Weight	Touchscreen	lps	ppi	Cpu brand	HDD	SSD
0	Apple	Ultrabook	8	1.37	0	1	226.983005	Intel Core i5	0	128
1	Apple	Ultrabook	8	1.34	0	0	127.677940	Intel Core i5	0	0
2	HP	Notebook	8	1.86	0	0	141.211998	Intel Core i5	0	256
3	Apple	Ultrabook	16	1.83	0	1	220.534624	Intel Core i7	0	512
4	Apple	Ultrabook	8	1.37	0	1	226.983005	Intel Core i5	0	256
1298	Lenovo	2 in 1 Convertible	4	1.80	1	1	157.350512	Intel Core i7	0	128
1299	Lenovo	2 in 1 Convertible	16	1.30	1	1	276.053530	Intel Core i7	0	512
1300	Lenovo	Notebook	2	1.50	0	0	111.935204	Other Intel Processor	0	0
1301	HP	Notebook	6	2.19	0	0	100.454670	Intel Core i7	1000	0
1302	Asus	Notebook	4	2.20	0	0	100.454670	Other Intel Processor	500	0
1303 r	ows × 12 c	columns								
4								_		

In [111]:

у

Out[111]:

0	11.175755	
1	10.776777	
2	10.329931	
3	11.814476	
4	11.473101	
	• • •	
1298	10.433899	
1299	11.288115	
1300	9.409283	
1301	10.614129	
1302	9.886358	

Name: Price, Length: 1303, dtype: float64

Train-test-split

In [112]:

```
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.15,random_state=123)
```

In [113]:

X_train

Out[113]:

	Company	TypeName	Ram	Weight	Touchscreen	lps	ppi	Cpu brand	HDD	SSD
69	Asus	Gaming	12	3.00	0	0	127.335675	Intel Core i7	1000	0
1278	Dell	Notebook	2	2.20	0	0	100.454670	Other Intel Processor	500	0
478	Dell	Notebook	8	2.20	0	0	141.211998	Intel Core i5	1000	0
184	Xiaomi	Notebook	8	1.95	0	1	141.211998	Intel Core i5	0	256
922	HP	Ultrabook	8	1.39	1	0	276.053530	Intel Core i7	0	256
								•••		
1238	MSI	Gaming	8	2.30	0	0	141.211998	Intel Core i7	128	128
1147	Dell	Notebook	8	2.18	0	0	141.211998	Intel Core i7	0	256
106	Lenovo	Notebook	4	1.85	0	0	141.211998	Intel Core i3	1000	0
1041	Vero	Notebook	2	1.45	0	0	111.935204	Other Intel Processor	0	0
1122	HP	Notebook	8	1.43	0	0	157.350512	Intel Core i5	0	256
1107 r	rows × 12 c	olumns								•

In [114]:

from sklearn.compose import ColumnTransformer

from sklearn.pipeline import Pipeline

from sklearn.preprocessing import OneHotEncoder

from sklearn.metrics import r2_score,mean_absolute_error,mean_squared_error

In [115]:

```
from sklearn.linear_model import LinearRegression,Ridge,Lasso
from sklearn.neighbors import KNeighborsRegressor
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor,GradientBoostingRegressor,AdaBoostRegres
from sklearn.svm import SVR
```

In [116]:

```
import sys
!{sys.executable} -m pip install xgboost
```

```
Defaulting to user installation because normal site-packages is not writeable

Requirement already satisfied: xgboost in c:\users\hp\appdata\roaming\python \python39\site-packages (1.7.3)

Requirement already satisfied: scipy in c:\programdata\anaconda3\lib\site-packages (from xgboost) (1.9.1)

Requirement already satisfied: numpy in c:\programdata\anaconda3\lib\site-packages (from xgboost) (1.21.5)
```

In [140]:

from xgboost import XGBRegressor

Linear Regression

In [131]:

```
step1 = ColumnTransformer(transformers=[
          ('col_tnf',OneHotEncoder(sparse=False,drop='first'),[0,1,7,10,11])
],remainder='passthrough')

step2 = LinearRegression()

pipe = Pipeline([
          ('step1',step1),
          ('step2',step2)
])

pipe.fit(X_train,y_train)

y_pred = pipe.predict(X_test)

print('R2 score',r2_score(y_test,y_pred))
print('MAE',mean_absolute_error(y_test,y_pred))
print('RMSE',np.sqrt(mean_absolute_error(y_test,y_pred)))
print('MSE',mean_squared_error(y_test,y_pred))
```

R2 score 0.8526942961347356 MAE 0.20451400133765388 RMSE 0.4522322427002014 MSE 0.06614340286466652

hyper parameter Tunning

Ridge Regression

```
In [130]:
```

```
step1 = ColumnTransformer(transformers=[
    ('col_tnf',OneHotEncoder(sparse=False,drop='first'),[0,1,7,10,11])
],remainder='passthrough')

step2 = Ridge(alpha=10)

pipe = Pipeline([
    ('step1',step1),
    ('step2',step2)
])

pipe.fit(X_train,y_train)

y_pred = pipe.predict(X_test)

print('R2 score',r2_score(y_test,y_pred))
print('MAE',mean_absolute_error(y_test,y_pred)))
print('RMSE',np.sqrt(mean_absolute_error(y_test,y_pred)))
print('MSE',mean_squared_error(y_test,y_pred))
```

R2 score 0.8477234251713205 MAE 0.20879528428859737 RMSE 0.4569412262956773 MSE 0.06837542994911786

Lasso Regression

In [129]:

```
step1 = ColumnTransformer(transformers=[
          ('col_tnf',OneHotEncoder(sparse=False,drop='first'),[0,1,7,10,11])
],remainder='passthrough')
step2 = Lasso(alpha=0.001)
pipe = Pipeline([
          ('step1',step1),
          ('step2',step2)
])
pipe.fit(X_train,y_train)
y_pred = pipe.predict(X_test)
print('R2 score',r2_score(y_test,y_pred))
print('MAE',mean_absolute_error(y_test,y_pred))
print('RMSE',np.sqrt(mean_absolute_error(y_test,y_pred)))
print('MSE',mean_squared_error(y_test,y_pred))
```

R2 score 0.8490794469515934 MAE 0.20801757576114935 RMSE 0.4560894383354534 MSE 0.06776654724768563

KNN

```
In [121]:
```

```
step1 = ColumnTransformer(transformers=[
    ('col_tnf',OneHotEncoder(sparse=False,drop='first'),[0,1,7,10,11])
],remainder='passthrough')
step2 = KNeighborsRegressor(n_neighbors=5)
pipe = Pipeline([
    ('step1', step1),
    ('step2', step2)
])
pipe.fit(X_train,y_train)
y_pred = pipe.predict(X_test)
print('R2 score',r2_score(y_test,y_pred))
print('MAE', mean_absolute_error(y_test, y_pred))
print('RMSE',np.sqrt(mean_absolute_error(y_test,y_pred)))
print('MSE',mean_squared_error(y_test,y_pred))
R2 score 0.8552974239889848
MAE 0.19218436481485893
RMSE 0.4383883721255149
```

MSE 0.06497454293695236

In [122]:

from sklearn.model_selection import RandomizedSearchCV

Desicion Tree

```
In [123]:
```

```
step1 = ColumnTransformer(transformers=[
          ('col_tnf',OneHotEncoder(sparse=False,drop='first'),[0,1,7,10,11])
],remainder='passthrough')
step2 = DecisionTreeRegressor(max_depth=9)
pipe = Pipeline([
          ('step1',step1),
          ('step2',step2)
])
pipe.fit(X_train,y_train)
y_pred = pipe.predict(X_test)
print('R2 score',r2_score(y_test,y_pred))
print('MAE',mean_absolute_error(y_test,y_pred))
print('RMSE',np.sqrt(mean_absolute_error(y_test,y_pred)))
print('MSE',mean_squared_error(y_test,y_pred))
```

R2 score 0.8138158940301548 MAE 0.2149598043711364 RMSE 0.46363757868742306 MSE 0.08360063463275813

SVM

In [124]:

```
step1 = ColumnTransformer(transformers=[
    ('col_tnf',OneHotEncoder(sparse=False,drop='first'),[0,1,7,10,11])
],remainder='passthrough')
step2 = SVR(kernel='rbf',C=10000,epsilon=0.1)
pipe = Pipeline([
    ('step1',step1),
    ('step2',step2)
])
pipe.fit(X_train,y_train)
y_pred = pipe.predict(X_test)
print('R2 score',r2_score(y_test,y_pred))
print('MAE',mean_absolute_error(y_test,y_pred))
print('RMSE',np.sqrt(mean_absolute_error(y_test,y_pred)))
print('MSE',mean_squared_error(y_test,y_pred))
```

R2 score 0.870913312883457 MAE 0.18706792440450393 RMSE 0.4325134962108164 MSE 0.057962675757785305

Random Forest

In [125]:

```
step1 = ColumnTransformer(transformers=[
    ('col_tnf',OneHotEncoder(sparse=False,drop='first'),[0,1,7,10,11])
],remainder='passthrough')
step2 = RandomForestRegressor(n_estimators=100,
                               random_state=3,
                               max_samples=0.5,
                               max_features=0.75,
                               max_depth=15)
pipe = Pipeline([
    ('step1', step1),
    ('step2', step2)
1)
pipe.fit(X_train,y_train)
y_pred = pipe.predict(X_test)
print('R2 score',r2_score(y_test,y_pred))
print('MAE',mean_absolute_error(y_test,y_pred))
print('RMSE',np.sqrt(mean_absolute_error(y_test,y_pred)))
print('MSE',mean_squared_error(y_test,y_pred))
```

R2 score 0.8975403329325123 MAE 0.16747577694368812 RMSE 0.40923804435033667 MSE 0.04600657583784514

ExtraTrees

```
In [126]:
```

```
step1 = ColumnTransformer(transformers=[
    ('col_tnf',OneHotEncoder(sparse=False,drop='first'),[0,1,7,10,11])
],remainder='passthrough')
step2 = ExtraTreesRegressor(n_estimators=100,
                               random_state=3,
                               max_samples=None,
                               max_features=0.75,
                               max_depth=15)
pipe = Pipeline([
    ('step1', step1),
    ('step2', step2)
])
pipe.fit(X_train,y_train)
y_pred = pipe.predict(X_test)
print('R2 score',r2_score(y_test,y_pred))
print('MAE',mean_absolute_error(y_test,y_pred))
print('RMSE',np.sqrt(mean_absolute_error(y_test,y_pred)))
print('MSE',mean_squared_error(y_test,y_pred))
```

R2 score 0.8779980095677018 MAE 0.17769136725515164 RMSE 0.42153453862661316 MSE 0.05478149583967034

Ada Boost

```
In [127]:
```

```
step1 = ColumnTransformer(transformers=[
    ('col_tnf',OneHotEncoder(sparse=False,drop='first'),[0,1,7,10,11])
],remainder='passthrough')

step2 = AdaBoostRegressor(n_estimators=15,learning_rate=1.0)

pipe = Pipeline([
    ('step1',step1),
    ('step2',step2)
])

pipe.fit(X_train,y_train)

y_pred = pipe.predict(X_test)

print('R2 score',r2_score(y_test,y_pred))
print('MAE',mean_absolute_error(y_test,y_pred))
print('RMSE',np.sqrt(mean_absolute_error(y_test,y_pred)))
print('MSE',mean_squared_error(y_test,y_pred))
```

R2 score 0.805499437899004 MAE 0.24263972831228917 RMSE 0.49258474226501286 MSE 0.08733490081427797

Gradient Boost

In [128]:

```
step1 = ColumnTransformer(transformers=[
    ('col_tnf',OneHotEncoder(sparse=False,drop='first'),[0,1,7,10,11])
],remainder='passthrough')
step2 = GradientBoostingRegressor(n_estimators=500)

pipe = Pipeline([
    ('step1',step1),
    ('step2',step2)
])

pipe.fit(X_train,y_train)
y_pred = pipe.predict(X_test)

print('R2 score',r2_score(y_test,y_pred))
print('MAE',mean_absolute_error(y_test,y_pred)))
print('RMSE',np.sqrt(mean_absolute_error(y_test,y_pred)))
print('MSE',mean_squared_error(y_test,y_pred))
```

R2 score 0.9094125907471093 MAE 0.1471677735721633 RMSE 0.3836245215991325 MSE 0.04067567886007201

In [136]:

In [137]:

report=pd.DataFrame(report)

In [138]:

report

Out[138]:

	Regression Algorithms	R2 Score	MAE	RMSE	MSE
0	LinearRegression	0.852	0.204	0.452	0.066
1	Ridge Regression	0.847	0.208	0.456	0.068
2	lasso Regression	0.849	0.208	0.456	0.067
3	KNN Regressor	0.855	0.192	0.438	0.064
4	Decision Tree Regressor	0.813	0.214	0.463	0.083
5	SVM	0.870	0.187	0.432	0.057
6	RandomForestRegressor	0.897	0.167	0.409	0.046
7	ExtraTreesRegressor	0.877	0.177	0.421	0.054
8	AdaBoostRegressor	0.805	0.242	0.491	0.087
9	GradientBoostingRegressor	0.909	0.147	0.383	0.040

Gradient Boost and Random Forest are best regression model for this dataset.

In [139]:

pip install xgboost

Defaulting to user installation because normal site-packages is not writeabl eNote: you may need to restart the kernel to use updated packages.

Requirement already satisfied: xgboost in c:\users\hp\appdata\roaming\python \python39\site-packages (1.7.3)

Requirement already satisfied: scipy in c:\programdata\anaconda3\lib\site-pa ckages (from xgboost) (1.9.1)

Requirement already satisfied: numpy in c:\programdata\anaconda3\lib\site-pa ckages (from xgboost) (1.21.5)

In []: