

经典CNN

经典CNN——AlexNet

- 2012年ImageNet LSVRC (大规模视觉识别挑战赛) 冠军
 - TOP-5错误率15.3%, 远低于第二名的错误率(26.2%); TOP-1错误率37.5%

● 主要贡献:

- 一 防止过拟合:数据增强 (data augmentation), Dropout
- 一 GPU实现:将网络分布在两个GPU上,且GPU之间在某些层能够互相通信。
- 一 非线性激活: ReLU
- 大数据训练: 120万ImageNet图像数据集

数据增强

(a) 原图

(b) 水平翻转

(c) 改变对比度

(d) 随机裁剪

经典CNN——AlexNet

- 用于全连接层
- 每次迭代以某概率将神经元 输出置零,不参与前向和后 向传播
- 产生不同的网络结构,进行组合,大大减少了过拟合
- 缺点:训练时间增加

(3)

(4)

(5)

经典CNN——VGGNet

ConvNet Configuration

		Convinet C	onfiguration					
A	A-LRN	В	С	D)		E	
11 weight	11 weight	13 weight	16 weight	16 we	16 weight		19 weight	
layers	layers	layers	layers	laye	layers			
	i	nput (224×2	24 RGB image	e)				
conv3-64	conv3-64	conv3-64	conv3-64	conv3	-64	co	nv3-	54
	LRN	conv3-64	conv3-64	conv3	-64	co	nv3-	54
	•	max	pool		П	•		
conv3-128	conv3-128	conv3-128	conv3-128	conv3	-128	1	v3-1	
		conv3-128	conv3-128	conv3	-128	COI	v3-1	28
			pool					
conv3-256	conv3-256	conv3-256	conv3-256	conv3		1	v3-2	
conv3-256	conv3-256	conv3-256	conv3-256	conv3		1	v3-2	
			conv1-256	conv3	-256	1	v3-2	
					ш	COI	v3-2	56
maxpool					Ш			
conv3-512	conv3-512	conv3-512	conv3-512	conv3			v3-5	
conv3-512	conv3-512	conv3-512	conv3-512	conv3		1	v3-5	
			conv1-512	conv3	-512		v3-5	
					ш	COI	v3-5	12
maxpool					\sqcup			
conv3-512	conv3-512	conv3-512	conv3-512	conv3		1	v3-5	
conv3-512	conv3-512	conv3-512	conv3-512	conv3			v3-5	
			conv1-512	conv3	-512	1	v3-5	
						COI	v3-5	12
			pool 4096					
			4096 4096					
			1000					
			-max					
		3011-	пах					

- 可以看成加深版本的AlexNet
- 5个卷积组
- Conv X-Y: 卷积核尺寸X,深度Y
- 11层~19层
- 卷积核大小: 3x3
- 卷积核深度:大部分都采用了逐 层递增的方式
- VGG-16和VGG-19

经典CNN——GoogleNet

- 深度
- 宽度

Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions.

经典CNN——GoogleNet

- 56层网络比20层网络有更高的训练和测试误差
- 非过拟合问题
- 梯度消失导致无法对前面网络层的权重进行有效调整

捷径连接 (shortcut connections)

- 学习一个残差映射: *x*→*F*(*x*)=*H*(x)-*x*
- 而不是复杂映射: $x \rightarrow F(x) = H(x)$
- 学习F(x)=0 相较于学习H(x)=x更容易