航空公司客户价值分析

日录

- 背景与数据源
- 特征选取
- 程序代码
- 拓展思考

背景与数据源

- 背景
 - 二八定律: 20%的客户, 为企业带来约80%的利益。
 - 在企业的客户关系管理中,对客户分类,区分不同价值的客户。针对不同价值的客户提供个性化服务方案,采取不同营销策略,将有限营销资源集中于高价值客户,实现企业利润最大化目标。
 - 在竞争激烈的航空市场里,很多航空公司都推出了优惠的营销方式来吸引更多的客户。在此种环境下,如何将公司有限的资源充分利用,提示企业竞争力,为企业带来更多的利益。
- 数据源
 - 和鲸社区 (航空客户价值数据集)

航空公司客户价值分析模型 (LRFMC):

- L: 会员入会时间距观测窗口结束的时间
- R: 客户最近一次乘坐公司分级距观测窗口结束的时间(月数)
- F: 客户在观测窗口内乘坐公司飞机的次数
- M: 客户在观测窗口内累计的飞行里程
- C: 客户在观测窗口内乘坐舱位所对应的折扣系数的平均值

采用K-Means聚类算法,对客户进行分群,比较不同类别客户的客户价值,从而指定相应的营销策略

In [1]:

```
import numpy as np import pandas as pd from sklearn.cluster import KMeans import matplotlib.pyplot as plt

airline_data = pd.read_csv("air_data.csv") #导入航空数据 airline_data.info() #print('原始数据的形状为: ', airline_data.shape)
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 62988 entries, 0 to 62987
Data columns (total 44 columns):

	columns (total 44 columns):					
#	Column	Non-Nu	ull Count	Dtype		
0	MEMBER NO	62988	non-nu11	 int64		
1	FFP_DATE		non-null	object		
2	FIRST FLIGHT DATE		non-null	object		
3	GENDER		non-null	object		
4	FFP_TIER		non-null	int64		
5	WORK CITY		non-null	object		
6	WORK_PROVINCE	59740	non-null	object		
7	WORK_COUNTRY	62962	non-null	object		
8	AGE	62568	non-null	float64		
9	LOAD_TIME	62988	non-null	object		
10	FLIGHT_COUNT	62988	non-nu11	int64		
11	BP_SUM	62988	non-null	int64		
12	EP_SUM_YR_1	62988	non-null	int64		
13	EP_SUM_YR_2	62988	non-null	int64		
14	SUM_YR_1	62437	non-null	float64		
15	SUM_YR_2	62850	non-null	float64		
16	SEG_KM_SUM	62988	non-null	int64		
17	WEIGHTED_SEG_KM	62988	non-null	float64		
18	LAST_FLIGHT_DATE	62988	non-null	object		
19	AVG_FLIGHT_COUNT	62988	non-null	float64		
20	AVG_BP_SUM	62988	non-null	float64		
21	BEGIN_TO_FIRST	62988	non-null	int64		
22	LAST_TO_END	62988	non-null	int64		
23	AVG_INTERVAL	62988	non-null	float64		
24	MAX_INTERVAL	62988	non-null	int64		
25	ADD_POINTS_SUM_YR_1	62988	non-null	int64		
26	ADD_POINTS_SUM_YR_2	62988	non-nu11	int64		
27	EXCHANGE_COUNT		non-null	int64		
28	avg_discount		non-nu11	float64		
29	P1Y_F1ight_Count		non-null	int64		
30	L1Y_F1ight_Count		non-null	int64		
31	P1Y_BP_SUM		non-null	int64		
	L1Y_BP_SUM		non-null			
33	EP_SUM	62988	non-nu11	int64		
34	ADD_Point_SUM	62988	non-nu11	int64		
35	Eli_Add_Point_Sum	62988	non-nu11	int64		
36	L1Y_ELi_Add_Points	62988	non-null	int64		
37	Points_Sum	62988	non-null	int64		
38	L1Y_Points_Sum	62988	non-null	int64		
39	Ration_L1Y_Flight_Count	62988	non-null	float64		
40	Ration_P1Y_Flight_Count	62988	non-null	float64		
41	Ration_P1Y_BPS	62988	non-null	float64		
42	Ration_L1Y_BPS	62988	non-null	float64		
43	Point_NotFlight	62988	non-null	int64		

dtypes: float64(12), int64(24), object(8)

memory usage: 21.1+ MB

数据集共有62988条数据,44个特征。

In [2]:

airline_data.count()

Out[2]:

MEMBER_NO	62988
FFP_DATE	62988
FIRST_FLIGHT_DATE	62988
GENDER	62985
FFP_TIER	62988
WORK_CITY	60719
WORK_PROVINCE	59740
WORK_COUNTRY	62962
AGE	62568
LOAD_TIME	62988
FLIGHT_COUNT	62988
BP_SUM	62988
EP_SUM_YR_1	62988
EP_SUM_YR_2	62988
SUM_YR_1	62437
SUM_YR_2	62850
SEG_KM_SUM	62988
WEIGHTED_SEG_KM	62988
LAST_FLIGHT_DATE	62988
AVG_FLIGHT_COUNT	62988
AVG_BP_SUM	62988
BEGIN_TO_FIRST	62988
LAST_TO_END	62988
AVG_INTERVAL	62988
MAX_INTERVAL	62988
ADD_POINTS_SUM_YR_1	62988
ADD_POINTS_SUM_YR_2	62988
EXCHANGE_COUNT	62988
avg_discount	62988
P1Y_Flight_Count	62988
L1Y_Flight_Count	62988
P1Y_BP_SUM	62988
L1Y_BP_SUM	62988
EP_SUM	62988
ADD_Point_SUM	62988
Eli_Add_Point_Sum	62988
L1Y_ELi_Add_Points	62988
Points_Sum	62988
L1Y_Points_Sum	62988
$Ration_L1Y_Flight_Count$	62988
Ration_P1Y_Flight_Count	62988
Ration_P1Y_BPS	62988
Ration_L1Y_BPS	62988
Point_NotFlight	62988
dtype: int64	

数据集中存在票价为空但是飞行公里大于零的不合理值,但是所占比例较小,这里直接删去

In [3]:

```
## 去除票价为空的记录
exp1 = airline_data["SUM_YR_1"].notnull()
exp2 = airline_data["SUM_YR_2"].notnull()
exp = exp1 & exp2
airline_notnull = airline_data.loc[exp,:]
print('删除缺失记录后数据的形状为: ',airline_notnull.shape)
```

删除缺失记录后数据的形状为: (62299, 44)

In [4]:

```
#只保留票价非零的,或者平均折扣率不为0且总飞行公里数大于0的记录。
index1 = airline_notnull['SUM_YR_1'] != 0
index2 = airline_notnull['SUM_YR_2'] != 0
index3 = (airline_notnull['SEG_KM_SUM']> 0) & \
        (airline_notnull['avg_discount'] != 0)
airline = airline_notnull[(index1 | index2) & index3]
print('删除异常记录后数据的形状为: ', airline. shape)
```

删除异常记录后数据的形状为: (62044, 44)

数据集中存在票价为空的删除了,票价为0和平均折扣率不为0且总飞行公里数大于0的记录是不合理的,也要删除。

删除后剩余的样本值是62044个,可见异常样本的比例不足1.5%,因此不会对分析结果产生较大的影响。

特征选取

- L = LOAD_TIME FFP_DATE 会员入会时间距观测窗口结束的月数 = 观测窗口的结束时间 入会时间[单位: 月]
- R = LAST_TO_END 客户最近一次乘坐公司飞机距观测窗口结束的月数 = 最后一次乘机时间至观察窗口末端时长[单位: 月]
- F = FLIGHT_COUNT 客户在观测窗口内乘坐公司飞机的次数 = 观测窗口的飞行次数[单位:次]
- M = SEG KM SUM 客户在观测时间内在公司累计的飞行里程 = 观测窗口总飞行公里数[单位:公里]
- C = AVG DISCOUNT 客户在观测时间内乘坐舱位所对应的折扣系数的平均值 = 平均折扣率[单位: 无]

原因

• 因消费金额指标在航空公司中不适用,故选择客户在一定时间内累积的飞行里程M和客户乘坐舱位折扣系数的平均值C两个指标代替消费金额。此外,考虑航空公司会员加入时间在一定程度上能够影响客户价值,所以在模型中增加客户关系长度L,作为区分客户的另一指标,因此构建出LRFMC模型。

In [5]:

Out[5]:

	LOAD_TIME	FFP_DATE	LAST_TO_END	FLIGHT_COUNT	SEG_KM_SUM	avg_discount
0	2014/03/31	2006/11/02	1	210	580717	0.961639
1	2014/03/31	2007/02/19	7	140	293678	1.252314
2	2014/03/31	2007/02/01	11	135	283712	1.254676
3	2014/03/31	2008/08/22	97	23	281336	1.090870
4	2014/03/31	2009/04/10	5	152	309928	0.970658

入会时长(L) = LOAD_TIME(截止时间) - FFP_DATE(入会时间)

In [6]:

Out[6]:

	入会时长	上一飞行距今	飞行总计	飞行总里程	平均折扣率
0	90.200000	1	210	580717	0.961639
1	86.566667	7	140	293678	1.252314
2	87.166667	11	135	283712	1.254676
3	68.233333	97	23	281336	1.090870
4	60.533333	5	152	309928	0.970658

In [7]:

```
a14=(a13-a13. mean(axis=0))/a13. std(axis=0) #形成1a4建模数据集,标准化处理
a14
```

Out[7]:

	入会时长	上一飞行距今	飞行总计	飞行总里程	平均折扣率
0	1.435707	-0.944948	14.034016	26.761154	1.295540
1	1.307152	-0.911894	9.073213	13.126864	2.868176
2	1.328381	-0.889859	8.718869	12.653481	2.880950
3	0.658476	-0.416098	0.781585	12.540622	1.994714
4	0.386032	-0.922912	9.923636	13.898736	1.344335
62974	2.076128	-0.460169	-0.706656	-0.805297	-0.065898
62975	0.557046	-0.283886	-0.706656	-0.805297	-0.282309
62976	-0.149421	-0.735611	-0.706656	-0.772332	-2.689885
62977	-1.206173	1.605649	-0.706656	-0.779837	-2.554628
62978	-0.479656	0.603039	-0.706656	-0.786677	-2.392319

62044 rows × 5 columns

根据客户的五个指标,对客户进行聚类分群,k=5

In [8]:

```
from sklearn.cluster import KMeans #导入kmeans算法 k = 5 kmodel = KMeans(n_clusters=k) #模型初始化,n_clusters为分类数,一般为cpu数 kmodel.fit(al4) kmodel.cluster_centers_,kmodel.labels_ #聚类中心,聚类类别
```

Out[8]:

In [9]:

```
r1=pd. Series (kmodel. labels_). value_counts () #统计各个类别的数目 r2=pd. DataFrame (kmodel. cluster_centers_) #找出聚类中心 a15=pd. concat([r1, r2], axis=1) #横向连接(0是纵向),得到聚类中心对应的类别下的数目 a15. columns=['聚类个数'] + list(a13. columns) a15. head()
```

Out[9]:

	聚类个数	入会时长	上一飞行距今	飞行总计	飞行总里程	平均折扣率
0	15647	1.164685	-0.378157	-0.085279	-0.093070	-0.159903
1	11981	-0.311316	1.693281	-0.574747	-0.536496	-0.192631
2	5338	0.485141	-0.799940	2.483600	2.424669	0.314843
3	24329	-0.700137	-0.417748	-0.157377	-0.156131	-0.274640
4	4749	-0.012134	0.014734	-0.254462	-0.265271	2.047224

In [21]:

```
plt. style. use ('ggplot')
plt.rcParams['font.sans-serif']='simkai'
plt.rcParams['axes.unicode minus']=False
#标签
labels = np. array (al3. columns)
#数据个数
dateLength=5
N=1en(r2)
# 设置雷达图的角度,用于平分切开一个圆面
angles=np. linspace (0, 2*np. pi, N, endpoint=False)
#封闭雷达图
data=pd. concat([r2, r2. iloc[:, 0]], axis=1)
angles=np. concatenate((angles, [angles[0]]))
fig=plt.figure(figsize = (6,6)) #雷达图显示大小
ax=fig. add_subplot(111, polar=True)
for i in range (0,5):
    i=i+1
    ax. plot (angles, data. iloc[i,:], 'o-', linewidth=2, label='Customers {0}'. format(j))
ax. set_thetagrids (angles*180/np. pi, labels, fontproperties='SimHei') #每个特征对应的标签
ax. set title('客户特征分析图', va='bottom', fontproperties='SimHei') #标题
ax. set_rlim(-1, 2.6) # 设置雷达图的范围
ax.grid(True) #添加网格线
plt.legend()
plt.show()
```

客户特征分析图

价值分析 特征分析

- Customer 1: 在'入会时长'属性最大,定义为重要挽留客户
- Customer 2: 在'飞行总计' '飞行总里程'属性最小, 定义为低价值客户
- Customer 3: 在'飞行总计' '飞行总里程'属性最大, 定义为重要保持客户
- Customer 4: 在'飞行总计' '飞行总里程'属性上较小, 定义为一般客户

• Customer 5: 在'平均折扣率'属性上最大,可定义为重要发展客户

每种客户类别的特征如下:

- 1.重要挽留客户: '平均折扣率'、'飞行总计'、'飞行总里程'较高,客户价值变化的不确定性高。应掌握客户最新信息、维持与客户的互动。
- 2.一般和低价值客户: 其他属性都低、'上一次飞行距今'较高。这类客户可能在打折促销时才会选择消费。
- 3.重要保持客户: '平均折扣率'(平均折扣率较高、仓位等级较高)、'飞行总计'、'飞行总里程'较高,'上一次 飞行距今'(最近乘坐航班)低。应将资源优先投放到这类客户身上,进行差异化管理,提高客户的忠诚度和 满意度。
- 4.重要发展客户: '平均折扣率'较高,这类客户入会时长短、当前价值低、发展潜力大,应促使客户增加在本公司和合作伙伴处的消费。