Часть 1. Тест.

Вопрос 1 ♣ Статистика $T \approx 2(1-\hat{ ho})$, где $\hat{ ho}$ зуется в	оценка коэффициента автокорреляции, исполь
	ройша-Годфри E РЕ-тесте МакКиннона ьюнга-Бокса F <i>Hem верного ответа.</i>
Вопрос 2 . При нарушении предпосылки ные и состоятельные оценки коэффициентов	теоремы Гаусса-Маркова $\mathrm{Var}(u) = \sigma^2 I$ эффектив в можно получить при помощи
А робастных в форме Ньюи-Уэста ошибов В обобщенного МНК С взятия первых разностей данных	D робастных в форме Уайта ошибокE МНКF Нет верного ответа.
Вопрос 3 • Рассмотрим теста Хаусмана дл да инструментальных переменных. Нулевая	я выбора между МНК-оценками и оценками мето гипотеза заключается в том, что
	грументальных переменных нструментальных переменных - состоятельна рументальных переменных - не состоятельна
Вопрос 4 👫 🛮 Высокая по модулю корреляци	ия между e_t и e_{t-1} может говорить о
А автокорреляцииВ коинтеграцииС нестационарности	D мультиколлинеарностиE гетероскедастичностиF Нет верного ответа.
Вопрос 5 👫 Высокая по модулю корреляци	ия между Y_t и X_t может говорить о
А коинтеграцииВ мультиколлинеарностиС нестационарности	D автокорреляцииE гетероскедастичностиF Нет верного ответа.

Вопрос 6 👫 Иетодом максимального правдоподобия Гоша оценил модель

$$Y_i = \beta_1 + \beta_2 X_{i2} + \beta_3 X_{i3} + \varepsilon_i,$$

где $\varepsilon \sim \mathcal{N}(0,\sigma_\varepsilon^2 I)$, по 9 наблюдениям. Оказалось, что RSS=72. Оценка дисперсии случайной составляющей равна

A 3

D 8

G Нет верного ответа.

B 9

 $\boxed{E} \sqrt{9}$

 $C \sqrt{8}$

F 10

Вопрос 7 🗘 Тест Хаусмана можно использовать для

- А проверки автокорреляции
- В проверки стационарности временного ряда
- [С] выбора между моделью со случайными эффектами и моделью с постоянными эффектами
- Проверки наличия панельной структуры в данных
- Е выбора между моделью в уровнях и моделью в разностях
- **F** Нет верного ответа.

Вопрос 8 🖡 — Если оценить FE и RE-модель на одном наборе данных, то окажется, что

- А оценки ковариационной матрицы совпадают, оценки коэффициентов различаются
- В оценки коэффициентов RE-модели больше оценок FE-модели
- С оценки коэффициентов совпадают, различаются оценки ковариационной матрицы
- D оценки коэффициентов FE-модели больше оценок RE-модели
- [E] t-статистики FE и RE моделей совпадают
- [F] Нет верного ответа.

Вопрос 9 \clubsuit При высоких (больше 10) значениях VIF

- А МНК-оценки коэффициентов регрессии становятся несостоятельными
- В МНК-оценки коэффициентов регрессии становятся неэффективными
- [C] МНК-оценки коэффициентов регрессии невозможно найти
- D отвергается гипотеза о наличии мультиколлинеарности
- Е необходимо выкинуть из модели часть регрессоров
- F МНК-оценки коэффициентов регрессии остаются BLUE
- **G** Нет верного ответа.

Вопрос 10 \clubsuit Если квадраты остатков оценённой с помощью МНК регрессионной модели линейно и значимо зависят от регрессора Z, то гетероскедастичность можно попытаться устранить,

- $\boxed{{\sf A}}$ умножив исходное уравнение на \sqrt{Z}
- $oxed{B}$ поделив исходное уравнение на Z
- $\lceil \mathsf{C} \rceil$ умножив исходное уравнение на Z
- $\boxed{\mathrm{D}}$ поделив исходное уравнение на Z^2
- $[\mathbf{E}]$ умножив исходное уравнение на Z^2
- $\boxed{{
 m F}}$ поделив исходное уравнение на \sqrt{Z}
- G Нет верного ответа.

Имя, фамилия и номер группы:

Вопрос 1 : A B C D E F

Вопрос 2 : A B C D E F

Вопрос 3 : A B C D E F

Вопрос 4 : A B C D E F

Вопрос 5 : A B C D E F

Вопрос 6 : A B C D E F G

Вопрос 7 : A B C D E F

Вопрос 8 : A B C D E F

Вопрос 9 : A B C D E F G

Вопрос 10 : A B C D E F G

Часть 2. Задачи.

1. Регрессионная модель задана в матричном виде при помощи уравнения $y=X\beta+\varepsilon$, где $\beta=(\beta_1,\beta_2,\beta_3)'$. Известно, что $\mathrm{E}(\varepsilon)=0$ и $\mathrm{Var}(\varepsilon)=\sigma^2\cdot I$. Известно также, что

$$y = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{pmatrix}, X = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}.$$

Для удобства расчетов приведены матрицы

$$X'X = \begin{pmatrix} 5 & 3 & 1 \\ 3 & 3 & 1 \\ 1 & 1 & 1 \end{pmatrix} \mathbf{m} (X'X)^{-1} = \frac{1}{2} \begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 3 \end{pmatrix}.$$

- а) Найдите вектор МНК-оценок коэффициентов $\hat{\beta}$.
- б) Найдите несмещенную оценку для неизвестного параметра σ^2 .
- в) Проверьте гипотезу $\beta_2=0$ против альтернативной о неравенстве на уровне значимости 5%
- 2. По данным о пассажирах Титаника оценивается логит-модель. Зависимая переменная survived равна 1, если пассажир выжил. Объясняющая переменная sexmale равна 1 для мужчин.

(Intercept)	1.92^{***}
	(0.28)
age	-0.01
_	(0.01)
sexmale	-2.84***
	(0.21)
AIC	633.45
BIC	646.80
Log Likelihood	-313.72
Deviance	627.45
Num. obs.	633
*** $p < 0.001, **p < 0.01, *p < 0.05$	

- а) Оцените вероятность выжить для женщины 20 лет
- б) Оцените предельный эффект увеличения возраста для женщины 20 лет

- в) С помощью какого метода оценивается логит-модель? Каким образом при этом получаются оценки стандартных ошибок коэффициентов?
- 3. Рассмотрим MA(2) процесс $Y_t = 8 + u_{t-1} 0.3u_{t-2} + u_t$, где u_t белый шум с единичной дисперсией.
 - а) Найдите $Cov(Y_t, Y_{t-1})$, $Cov(Y_t, Y_{t-2})$, $\lim_{k \to \infty} Cov(Y_t, Y_{t-k})$.
 - б) Является ли данный процесс стационарным?
- 4. Начинающий исследователь Елисей исследует зависимость успехов в учёбе своих однокурсников, G_i , от времени, которое они тратят на учёбу, T_i . По выборке из 100 человек он смог оценить следующую регрессию $\hat{G}_i = 20 + 8T_i$;
 - Хорошенько подумав, Елисей пришёл к выводу, что успехи в учёбе действительно зависят только от временных затрат, однако понял, что величина T_i измерена им по устным опросам и потому содержит ошибку измерения. То есть на самом деле, у Елисия есть данные не по истинному T_i^* , а по $T_i = T_i^* + e_i$. Ошибки измерения времени e_i одинаково распределены, независимы между собой и с другими переменными.
 - a) Проверьте, является ли найденная Елисеем оценка коэффициента при времени состоятельной;
 - б) Если оценка не состоятельна, то предложите состоятельную оценку;
 - в) Найдите асимптотическую величину смещения оценки, если дополнительно известно, что $Var(G_i) = 16$, $Var(e_i) = 10$, $Var(T_i^*) = 49$, $Cov(G_i, T_i^*) = 25$.
- 5. Регрессионная модель имеет вид $y_i = \beta_1 + \beta_x x_i + \beta_z z_i + \beta_w w_i + u_i$. Исследователь Феофан оценил эту модель по 20 наблюдениям и оказалось, что $R^2 = 0.8$. Феофан хочет проверить гипотезу H_0 о том, что $\beta_x = \beta_z$ и одновременно $\beta_z + 2\beta_w = 0$. Предпосылки теоремы Гаусса-Маркова на ошибки u_i выполнены, кроме того, u_i нормально распределены.
 - а) Какую вспомогательную регрессию достаточно оценить Φ еофану для проверки H_0 ?
 - б) Во вспомогательной регрессии оказалось, что $R^2=0.6$. Отвергается ли H_0 на 5%-ом уровне значимости?
 - в) На сколько процентов изменилась несмещённая оценка дисперсии случайной ошибки при переходе ко вспомогательной регрессии?
- 6. Дайтие определение теста Вальда. Приведите пример теста Вальда для линейных регрессионных моделей: укажите H_0 и алгоритм расчёта статистики.