Assignment #1

- 1. Definition: X and Y are independent if $f_{X|y}(x) = f_X(x)$ for all x and y. It can be shown that
 - (a) $f_{X|y}(x) = f_X(x)$ for all x and y iff $f_{Y|x}(y) = f_Y(y)$ for all x and y.
 - (b) X and Y are independent iff $f(x,y) = f_X(x)f_Y(y)$ for all x and y.
- 2. The bi-variate normal distribution has the joint PDF as

$$f(x,y) = \frac{1}{2\pi\sigma_X\sigma_Y\sqrt{1-\rho^2}} \exp\left\{-\frac{\left(\frac{x-\mu_X}{\sigma_X}\right)^2 + \left(\frac{y-\mu_Y}{\sigma_Y}\right)^2 - 2\rho\left(\frac{x-\mu_X}{\sigma_X}\right)\left(\frac{y-\mu_Y}{\sigma_Y}\right)}{2\left(1-\rho^2\right)}\right\}$$

- (a) Find the marginal distribution of $f_X(x)$ and $f_Y(y)$
- (b) Find the conditional distribution of $f_{X|y}(x)$
- 3. A fair coin is tossed four times, and the random variable X is the number of heads in the first three tosses and the random variable Y is the number of heads in the last three tosses.
 - (a) What is the joint probability mass function of X and Y?
 - (b) What are the marginal probability mass functions of X and Y?
 - (c) Are the random variables X and Y independent?
 - (d) What are the expectations and variances of the random variables X and Y?
 - (e) If there is one head in the last three tosses, what is the conditional probability mass function of X? What are the conditional expectation and variance of X?
- 4. Suppose that two continuous random variables X and Y have a joint probability density function

$$f(x,y) = A(e^{x+y} + e^{2x-y})$$

for $1 \le x \le 2$ and $0 \le y \le 3$, and f(x, y) = 0 elsewhere.

- (a) What is the value of A?
- (b) What is $P(1.5 \le X \le 2, 1 \le Y \le 2)$?
- (c) Construct the marginal probability density functions $f_X(x)$ and $f_Y(y)$.
- (d) Are the random variables X and Y independent?
- (e) If Y = 0, what is the conditional probability density function of X?
- 5. For a Calculus I class, the final exam score Y and the average of the four earlier tests X are bi-variate normal with mean $\mu_1 = 73$, standard deviation $\sigma_1 = 12$ and mean $\mu_2 = 70$, standard deviation $\sigma_2 = 15$. The correlation is $\rho = 0.71$. Find
 - (a) $E(Y|X) = \mu_{Y|X}$
 - (b) $V(Y|X) = \sigma_{Y|X}^2$
 - (c) P(Y > 90|X = 80) that is, the probability that the nal exam score exceeds 90 given that the average of the four earlier tests is 80

1