

Mark Scheme (Results)

January 2020

Pearson Edexcel International GCSE In Further Pure Mathematics (4PM1) Paper 02R

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2020
Publications Code 4PM1_02R_2001_MS
All the material in this publication is copyright
© Pearson Education Ltd 2020

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.
 - Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Types of mark

- o M marks: method marks
- A marks: accuracy marks can only be awarded when relevant M marks have been gained
- o B marks: unconditional accuracy marks (independent of M marks)

Abbreviations

- o cao correct answer only
- o cso correct solution only
- o ft follow through
- o isw ignore subsequent working
- o SC special case
- o oe or equivalent (and appropriate)
- o dep dependent
- o indep independent
- o awrt answer which rounds to
- o eeoo each error or omission

No working

If no working is shown then correct answers may score full marks
If no working is shown then incorrect (even though nearly correct) answers score
no marks.

With working

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.

If a candidate misreads a number from the question: eg. uses 252 instead of 255; follow through their working and deduct 2A marks from any gained provided the work has not been simplified. (Do not deduct any M marks gained.)

If there is a choice of methods shown, then award the lowest mark, unless the subsequent working makes clear the method that has been used

Examiners should send any instance of a suspected misread to review (but see above for simple misreads).

• Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. incorrect cancelling of a fraction that would otherwise be correct.

It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.

Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded to another.

General Principles for Further Pure Mathematics Marking

(but note that specific mark schemes may sometimes override these general principles)

Method mark for solving a 3 term quadratic equation:

1. Factorisation:

$$(x^2+bx+c)=(x+p)(x+q)$$
, where $|pq|=|c|$ leading to $x=...$
 $(ax^2+bx+c)=(mx+p)(nx+q)$ where $|pq|=|c|$ and $|mn|=|a|$ leading to $x=...$

2. Formula:

Attempt to use the **correct** formula (shown explicitly or implied by working) with values for a, b and c, leading to x =

3. Completing the square:

$$x^{2} + bx + c = 0$$
: $(x \pm \frac{b}{2})^{2} \pm q \pm c = 0$, $q \ne 0$ leading to $x = ...$

Method marks for differentiation and integration:

1. <u>Differentiation</u>

Power of at least one term decreased by 1. $(x^n \rightarrow x^{n-1})$

2. Integration:

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

Use of a formula:

Generally, the method mark is gained by **either**

quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values

or, where the formula is <u>not</u> quoted, the method mark can be gained by implication from the substitution of <u>correct</u> values and then proceeding to a solution.

Answers without working:

The rubric states "Without sufficient working, correct answers <u>may</u> be awarded no marks".

General policy is that if it could be done "in your head" detailed working would not be required. (Mark schemes may override this eg in a case of "prove or show...."

Exact answers:

When a question demands an exact answer, all the working must also be exact. Once a candidate loses exactness by resorting to decimals the exactness cannot be regained.

Rounding answers (where accuracy is specified in the question)

Penalise only once per question for failing to round as instructed - ie giving more digits in the answers. Answers with fewer digits are automatically incorrect, but the is rule may allow the mark to be awarded before the final answer is given. before the final answer is given.

MARK SCHEME

Question	Scheme	Marks
number		
1 (a)	$l = r\theta \Rightarrow l = 13 \times 2 = 26 \text{ (cm)}$	B1
		[1]
(b)	$A = \frac{\theta}{2}r^2 = \frac{2}{2} \times 13^2 = 169 \text{ (cm}^2\text{)}$	M1A1
		[2]
	Tot	tal 3 marks
(a)		
B1	l=26	
(b)		
M1	Use of $A = \frac{\theta}{2}r^2$ or $A = \frac{1}{2}rl$ or $A = \frac{l^2}{2\theta}$	
A1	A = 169	

Question number	Scheme	Marks
2 (a)	Line l_1 $m = \frac{-8}{4} = -2$ $y - 8 = -2(x) \Rightarrow y + 2x = 8$	M1A1
	Line l_2 $m = \frac{-4}{6} = -\frac{2}{3}$ $y - 4 = -\frac{2}{3}(x) \Rightarrow 3y + 2x = 12$	A1
		[3]
(b)	$x \ge 0$ $y + 2x \le 8$ $3y + 2x \ge 12$ Accept < and >	B1B1ftB1ft
	T	[3] otal 6 marks
(a)		
M1	Calculating the gradient of either l_1 or l_2	
A1	y + 2x = 8	
A1	3y + 2x = 12	
	NB If both are correct but not in the form $ax + by = c$ then award A	1A0
(b)	For all 3 marks accept $<$ and $>$ instead of \le and \ge	
B 1	$x \ge 0$	
B1ft	$y + 2x \le 8 \text{ oe (ft } l_1)$	
B1ft	$3y + 2x \ge 12$ oe (ft l_2)	

Question	Scheme	Marks
number		
3	$33 = \frac{1}{2} \times 11 \times 12 \times \sin \angle ABC \Rightarrow \sin \angle ABC = \frac{1}{2} \left[30^{\circ} \text{ or } 150^{\circ} \right]$	M1A1
	$AC = \sqrt{11^2 + 12^2 - 2 \times 11 \times 12\cos 30^\circ} = 6.0306 \approx 6.03 \text{ (cm)}$ $AC = \sqrt{11^2 + 12^2 - 2 \times 11 \times 12\cos 150^\circ} = 22.2178 \approx 22.2 \text{ (cm)}$	M1A1 A1 [5]
	Tot	tal 5 marks
M1	Use of $\frac{1}{2}ab\sin C = 33$ (must be set = 33)	
A1	30° and 150° (Accept $\frac{\pi}{6}$ and $\frac{5\pi}{6}$)	
M1	Use of $c^2 = a^2 + b - 2ab \cos C$ (square root not required for M1)	
A1	6.03	
A1	22.2	
	NB If both answers are not given to 3sf but are correct then award A1	A0

Question	Scheme	Marks
number		
4 (a)	$A = \frac{1}{2} \times 8 \times 8 \times \sin 60^{\circ} = \left(16\sqrt{3}\right)$	M1
	$48\sqrt{3} = \frac{1}{3} \times 16\sqrt{3} \times h \Rightarrow h = 9 *$	M1
		A1cso [3]
(b)	$BX = \sqrt{9^2 + 8^2} = \sqrt{145}$	M1
	$\angle BXC = \frac{'145' + '145' - 8^2}{2 \times '\sqrt{145}' \times '\sqrt{145}'} = 38.8025^{\circ} \approx 38.8^{\circ}$	M1A1 [3]
(c)	Let midpoint of <i>BC</i> be <i>M</i> $AM = \sqrt{8^2 - 4^2} = (4\sqrt{3}) \text{ or } MX = \sqrt{145 - 4^2} = (\sqrt{129})$	M1
	$\angle XMA = \tan^{-1}\left(\frac{9}{4\sqrt{3}}\right) \text{ or } \angle XMA = \sin^{-1}\left(\frac{9}{\sqrt{129}}\right) \text{ or } \angle XMA = \cos^{-1}\left(\frac{4\sqrt{3}}{\sqrt{129}}\right)$	M1 A1
	= 52.4109° ≈ 52.4°	[3]
	ALT 1	
	Let midpoint of BC be M $(XA)^{2} = (AM)^{2} + (XM)^{2} - 2(AM)(XM)\cos\theta$	{M1}
	$9^{2} = (8^{2} - 4^{2}) + (8^{2} + 9^{2} - 4^{2}) - 2\sqrt{8^{2} - 4^{2}}\sqrt{8^{2} + 9^{2} - 4^{2}}\cos\theta$	{M1}
	$\theta = 52.4109^{\circ} \approx 52.4^{\circ}$	[3]
	Total	9 marks
(a)		
M1	Use of $\frac{1}{2}ab\sin C$ (may be implied by $(16\sqrt{3})$	
M1	Use of $\frac{1}{3}$ × 'Area of base' × h	
A1 cso (b)	Obtains the given answer with no errors in the working	
M1	Use of $\sqrt{(\text{part }a)^2 + 8^2}$ (may be implied by $\sqrt{145}$)	
M1	Use the cosine rule, either form. If not for angle BXC there must be a complete meth shown for obtaining BXC (follow through their BX)	nod
A1	awrt 38.8°	
(c)		_
M1	Use of Pythagoras' to find the length of AM or MX (may be implied by $4\sqrt{3}$ or $\sqrt{129}$)	9)
M1	$\tan^{-1}\left(\frac{9}{4\sqrt{3}}\right) \text{ or } \sin^{-1}\left(\frac{9}{\sqrt{129}}\right) \text{ or } \cos^{-1}\left(\frac{4\sqrt{3}}{\sqrt{129}}\right)$	
A1	awrt 52.4°	

ALT	
M1	Use of cosine rule using AX, AM and XM e.g.
	$(XA)^{2} = (AM)^{2} + (XM)^{2} - 2(AM)(XM)\cos\theta$
M1	Correct values substituted into the cosine rule in any form e.g.
	$9^{2} = (8^{2} - 4^{2}) + (8^{2} + 9^{2} - 4^{2}) - 2\sqrt{8^{2} - 4^{2}}\sqrt{8^{2} + 9^{2} - 4^{2}}\cos\theta$
A1	awrt 52.4°

Question	Scheme	Marks
number 5 (a)	$(\alpha + \beta)^3 = \alpha^3 + 3\alpha^2\beta + 3\alpha\beta^2 + \beta^3 \Rightarrow \alpha^3 + \beta^3$	M1A1
	$=(\alpha+\beta)^3-3\alpha\beta(\alpha+\beta)^*$	cso [2]
(b)	$\alpha + \beta = -\frac{3}{2} \qquad \alpha\beta = \frac{6}{2} = 3$	B1
	$\left[\alpha^{3} + \beta^{3} = (\alpha + \beta)^{3} - 3\alpha\beta(\alpha + \beta)\right]$	
	$\alpha^3 + \beta^3 = \left(-\frac{3}{2}\right)^3 - 3 \times 3 \times \left(-\frac{3}{2}\right) = \frac{81}{8}$	B1 [2]
(c)	$\left(\alpha^2 + \beta^2\right)^2 = \alpha^4 + 2\alpha^2\beta^2 + \beta^4 \Rightarrow \alpha^4 + \beta^4 = \left(\alpha^2 + \beta^2\right)^2 - 2\left(\alpha\beta\right)^2 *$	M1A1 cso [2]
(d)	$\alpha^2 + \beta^2 = \left(-\frac{3}{2}\right)^2 - 2 \times 3 = -\frac{15}{4}$	B1
	Sum $(\alpha^3 - \beta) + (\beta^3 - \alpha) = \alpha^3 + \beta^3 - (\alpha + \beta) = \frac{81}{8} - (-\frac{3}{2}) = \frac{93}{8}$	B1
	Product $(\alpha^3 - \beta) \times (\beta^3 - \alpha) = (\alpha\beta)^3 - (\alpha^4 + \beta^4) + \alpha\beta$	M1
	$= 27 - \left[\left(-\frac{15}{4} \right)^2 - 2 \times 3^2 \right] + 3 = \frac{543}{16}$	A1
	Equation $x^2 - \frac{93}{8}x + \frac{543}{16} = 0 \Rightarrow 16x^2 - 186x + 543 = 0$	M1A1 [6]
	Total	12 marks
(a)		
M1	$(\alpha + \beta)^3 = \alpha^3 + 3\alpha^2\beta + 3\alpha\beta^2 + \beta^3$	
A1 cso (b)	Obtains the given answer with no errors in the working	
B1	$\alpha + \beta = -\frac{3}{2}$ and $\alpha\beta = \frac{6}{2} = 3$	
B1	$\alpha^3 + \beta^3 = \frac{81}{8}$	
(c)		
M1	$\left(\alpha^2 + \beta^2\right)^2 = \alpha^4 + 2\alpha^2\beta^2 + \beta^4$	
A1 cso	Obtains the given answer with no errors in the working	

(d)	
B1	$\alpha^2 + \beta^2 = -\frac{15}{4} $ (May be implied by $\alpha^4 + \beta^4 = -\frac{63}{16}$)
B1	$\left(\alpha^3 - \beta\right) + \left(\beta^3 - \alpha\right) = \frac{93}{8}$
M1	$\left(\alpha^{3} - \beta\right) \times \left(\beta^{3} - \alpha\right) = \left(\alpha\beta\right)^{3} - \left(\alpha^{4} + \beta^{4}\right) + \alpha\beta$
A1	$(\alpha^{3} - \beta) + (\beta^{3} - \alpha) = \frac{93}{8}$ $(\alpha^{3} - \beta) \times (\beta^{3} - \alpha) = (\alpha\beta)^{3} - (\alpha^{4} + \beta^{4}) + \alpha\beta$ $(\alpha^{3} - \beta) \times (\beta^{3} - \alpha) = \frac{543}{16}$
M1	$x^2 - '\operatorname{sum}' x + '\operatorname{product}' (= 0)$
A1	$16x^2 - 186x + 543 = 0$

Question	Scheme	Marks
number		
6 (a)	$\left[V = \frac{1}{3}\pi r^2 h\right]$	
	$\tan 30^{\circ} = \frac{r}{h} \Rightarrow r = \frac{h}{\sqrt{3}}$	M1
	$V = \frac{1}{3}\pi \left(\frac{h}{\sqrt{3}}\right)^2 h \Rightarrow V = \frac{1}{9}\pi h^3 *$	A1 cso [2]
(b)	$\frac{\mathrm{d}V}{\mathrm{d}h} = \frac{\pi h^2}{3}$	M1
	$\frac{dh}{dt} = \frac{dh}{dV} \times \frac{dV}{dt} \Rightarrow \frac{dh}{dt} = \frac{3}{\pi h^2} \times -0.9 = \frac{3}{\pi \times 1.2^2} \times -0.9 = -0.59683$ $\approx -0.597 \text{ cm/s}$ [Accept an answer of $\pm 0.597 \text{ cm/s}$]	M1M1 A1 [4]
		tal 6 marks
	10	tai o marks
(a)		
M1	Finding $r = \frac{h}{\sqrt{3}}$ and substituting into $V = \frac{1}{3}\pi r^2 h$ (Allow $r = h \tan 3$)	0°)
A1 cso	Obtains the given answer with no errors in the working	
(b)		
M1	$\frac{\mathrm{d}V}{\mathrm{d}h} = \frac{\pi h^2}{3}$	
M1	$\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{\mathrm{d}h}{\mathrm{d}V} \times \frac{\mathrm{d}V}{\mathrm{d}t}$	
M1	$\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{3}{\pi h^2} \times \pm 0.9$	
A1	$\pm 0.597 \text{ (cm/s)}$	

Question	Scheme	Marks
number		
7 (a)	$\frac{ar^{6}}{ar^{3}} = r^{3} = \frac{e^{\frac{2x+1}{2}}}{e^{x+2}} = \frac{e^{x} \times e^{\frac{1}{2}}}{e^{x} \times e^{2}} = e^{-\frac{3}{2}} \implies r = e^{-\frac{1}{2}} *$	M1M1A1 cso [3]
	$\begin{vmatrix} \mathbf{ALT} \\ \frac{e^{x+2}}{r^3} r^6 = e^{\frac{2x+1}{2}} \Rightarrow r^3 = e^{\frac{x+\frac{1}{2}-x+2}{2}} \Rightarrow r^3 = e^{\frac{-3}{2}} \Rightarrow r = e^{\frac{-1}{2}} *$	{M1} {M1}{A1} cso
		[3]
(b)	$ar^{3} = ae^{-\frac{3}{2}} = e^{x+2} \implies a = \frac{e^{x+2}}{e^{-\frac{3}{2}}} = \frac{e^{x} \times e^{2}}{e^{-\frac{3}{2}}} = e^{x+\frac{7}{2}}$ oe	M1M1A1 [3]
	ALT $a = \frac{e^{x+2}}{e^{-\frac{3}{2}}} = e^{x+2+\frac{3}{2}} = e^{x+\frac{7}{2}} \text{ oe}$	{M1} {M1} {A1} [3]
(a)		
M1	Use of $\frac{ar^6}{ar^3} = r^3$	
M1 A1 cso ALT	Using $e^{a+b} = e^a \times e^b$ to simplify leading to $r^3 = e^c$ where c is a nun Obtains the given answer with no errors in the working	nber
M1	For rearranging to make <i>a</i> subject and substituting into the other ed	nuation
M1	Using $e^{a-b} = e^a \div e^b$ to simplify leading to $r^3 = e^c$ where c is a num	-
A1 cso	Obtains the given answer with no errors in the working	1001
(b) M1	For $a = \frac{e^{x+2}}{e^{-\frac{3}{2}}}$	
M1	Using $e^{a+b} = e^a \times e^b$ to simplify to $a = \frac{e^x \times e^2}{e^{-\frac{3}{2}}}$	
A1	$e^{x+\frac{7}{2}}$ oe	
ALT		
M1	For $a = \frac{e^{x+2}}{e^{-\frac{3}{2}}}$	
M1	Using $e^{a+b} = e^a \times e^b$ to simplify to $e^{x+2+\frac{3}{2}}$	
A1	$e^{x+\frac{7}{2}}$ oe	

(c)	$S = \frac{e^{x+\frac{7}{2}}}{e^{x+\frac{7}{2}}} = \frac{e^{x+\frac{7}{2}}}{e^{x+\frac{7}{2}}} = \frac{e^{x+4}}{e^{x+4}} \Rightarrow p = x+4$	
	$S_{\infty} = \frac{e^{x+\frac{7}{2}}}{1 - e^{-\frac{1}{2}}} = \frac{e^{x+\frac{7}{2}}}{\frac{1}{2}} = \frac{e^{x+4}}{\frac{1}{2}} \Rightarrow p = x+4$ $\frac{1}{1 - e^{-\frac{1}{2}}} = \frac{e^{x+\frac{7}{2}}}{\frac{1}{2}} = \frac{e^{x+4}}{\frac{1}{2}} = \frac{e^{x+4}}{\frac{1}} = \frac{e^{x+4}}{\frac{1}{2}}$	M1M1A1 [3]
	ALT 1 $S_{\infty} = \frac{e^{\frac{x+\frac{7}{2}}{2}}}{1-e^{-\frac{1}{2}}} = \frac{e^{\frac{x+\frac{7}{2}}{2}}}{1-e^{-\frac{1}{2}}} \times \frac{e^{\frac{1}{2}}}{e^{\frac{1}{2}}} = \frac{e^{x+4}}{e^{\frac{1}{2}}} \Rightarrow p = x+4$	{M1} {M1} {A1}
	ALT 2	[3]
	$S_{\infty} = \frac{e^{\frac{x+\frac{7}{2}}}}{1 - e^{\frac{1}{2}}} = \frac{e^{p}}{e^{\frac{1}{2}} - 1} \Rightarrow e^{\frac{x+\frac{7}{2}}{2}} \left(e^{\frac{1}{2}} - 1\right) = e^{p} \left(1 - e^{-\frac{1}{2}}\right)$	{M1} {M1} {A1} [3]
	$\Rightarrow e^{x+4} - e^{x+\frac{7}{2}} = e^p - e^{p-\frac{1}{2}} \Rightarrow p = x+4$	[3]
(c)		
M1	Use of $S_{\infty} = \frac{a}{1-r}$	
M1	Use of $S_{\infty} = \frac{a}{1-r}$ $1 - e^{-\frac{1}{2}} = \frac{e^{\frac{1}{2}} - 1}{e^{\frac{1}{2}}}$	
A1 ALT 1	p = x + 4	
M1	Use of $S_{\infty} = \frac{a}{1-r}$	
M1	Multiplying S_{∞} by $\frac{e^{\frac{1}{2}}}{e^{\frac{1}{2}}}$	
A1 ALT 2	p = x + 4	
M1	Use of $S_{\infty} = \frac{a}{1-r}$	
M1 A1	For simplifying to $e^{x+4} - e^{x+\frac{7}{2}} = e^p - e^{p-\frac{1}{2}}$ oe $p = x + 4$	
	_ A	

(d)	$e^{x+\frac{7}{2}} \times \left(e^{-\frac{1}{2}}\right)^{17} > 1.6 \Rightarrow e^x \times e^{\left(\frac{7}{2}-\frac{17}{2}\right)} > 1.6 \Rightarrow e^x > \frac{1.6}{e^{-5}}$	M1
	$\Rightarrow e^x > 237.46105$	M1
	$\Rightarrow x > \ln(237.46105) \Rightarrow x > 5.4700$	M1
		A1
	$\Rightarrow x = 6$	[4]
	ALT	
	$e^{x+\frac{7}{2}} \times \left(e^{-\frac{1}{2}}\right)^{17} > 1.6 \Rightarrow e^{x-5} > 1.6$	{M1}
	$\Rightarrow x-5 > \ln(1.6)$	(2.41)
	$\Rightarrow x > \ln(1.6) + 5 \Rightarrow x > 5.4700$	{M1} {M1}
		{A1}
	$\Rightarrow x = 6$	[4]
		[.,]
		Total 13 marks
(d)	NB Allow use of = for M marks	
M1	Use of $ar^{17} > 1.6$	
M1	Simplifying to $e^x > \dots$	
M1	Using logs to reach $x > \ln \dots$	
A1	x = 6	
ALT	17	
M1	Use of $ar^{17} > 1.6$	
M1	Simplifying to $e^{x-5} > \dots$ ft their a	
M1	Using logs to reach $x > \ln + 5$ ft their a	
A1	x = 6	

Question number	Scheme	Marks
8 (a)	k = 2	B1
4.		[1]
(b)	$2 + 3\cos A - \sin A - 3\sin 2A - 2\cos^2 A = 3\cos A - \sin A - 6\sin A\cos A + 2\sin^2 A$	B1
	$3\cos A - \sin A - 6\sin A\cos A + 2\sin^2 A = 3\cos A(1 - 2\sin A) - \sin A(1 - 2\sin A)$	M1
	$3\cos A(1-2\sin A) - \sin A(1-2\sin A) = (1-2\sin A)(3\cos A - \sin A)$	
	$\Rightarrow p=3, q=1, r=2$	A1
		[3]
	ALT	
	$2 + 3\cos A - \sin A - 3\sin 2A - 2\cos^2 A = 3\cos A - \sin A - 6\sin A\cos A + 2\sin^2 A$	{B1}
	$(p\cos A - \sin A)(q - r\sin A) = pq\cos A - q\sin A - pr\cos A\sin A + r\sin^2 A$	{M1}
	$pq\cos A - q\sin A - pr\cos A\sin A + r\sin^2 A$	\ \lambda_{\mathbf{IMI}}
	$\Rightarrow p=3, q=1, r=2$	{A1}
(c)	(1 2 - in 20) (2 20 - rin 20) 0	[3]
(c)	$(1-2\sin 2\theta)(3\cos 2\theta - \sin 2\theta) = 0$	
	$\Rightarrow 3\cos 2\theta - \sin 2\theta = 0 \Rightarrow \tan 2\theta = 3$	B1
	$\Rightarrow 1 - 2\sin 2\theta = 0 \Rightarrow \sin 2\theta = \frac{1}{2}$	B1
	$\tan 2\theta = 3 \Rightarrow 2\theta = 1.2490, 4.3906 \Rightarrow \theta = 0.625, 2.20$	M1A1
	$\sin 2\theta = \frac{1}{2} \Rightarrow 2\theta = 0.5235, \ 2.6179 \Rightarrow \theta = 0.262, \ 1.31 \ \left[\frac{\pi}{12}, \frac{5\pi}{12} \right]$	M1A1 [6]
	Total	10 marks
(a) B1	k = 2	
(b)	K - Z	
B1	Substituting $k = 2$ and use of $\sin^2 A + \cos^2 A = 1$ to obtain	
DI	$3\cos A - \sin A - 6\sin A\cos A + 2\sin^2 A$	
M1	Factorising to obtain $(1-2\sin A)(3\cos A - \sin A)$	
A1	p = 3, $q = 1$, $r = 2$ If p , q and r are stated then they must be correct (may be implied)	ied by a
	correct factorisation if p , q and r are not stated)	
ALT	Substituting $k = 2$ and use of $\sin^2 A + \cos^2 A = 1$ to obtain	
B1	$3\cos A - \sin A - 6\sin A\cos A + 2\sin^2 A$	
	Expanding $(p\cos A - \sin A)(q - r\sin A)$ to obtain	
M1	$pq\cos A - q\sin A - pr\cos A\sin A + r\sin^2 A$	
A1	p = 3, q = 1, r = 2	

(c)	
B1	$\tan 2\theta = 3$
B1	$\sin 2\theta = \frac{1}{2}$
M1	$2\theta = 1.24(90,) 4.39(06)$
A1	$\theta = 0.625, \ 2.2(0)$
M1	$2\theta = 0.5235, 2.61(79) \text{ allow } \left[\frac{\pi}{6}, \frac{5\pi}{6}\right]$
A1	$\theta = 0.262, \ 1.31 \ \text{allow} \left[\frac{\pi}{12}, \frac{5\pi}{12} \right]$

Question	Scheme	Marks
number	2	
9 (a)	$\frac{1}{(2-x)^3} = (2-x)^{-3} = \frac{1}{8} \left(1 - \frac{x}{2}\right)^{-3} \Rightarrow p = \frac{1}{8}, \ q = \frac{1}{2}$	B1B1 [2]
(b)	$\frac{1}{8} \left(1 - \frac{x}{2} \right)^{-3} = \frac{1}{8} \left[1 + \left(-3 \right) \left(-\frac{x}{2} \right) + \frac{\left(-3 \right) \left(-4 \right) \left(-\frac{x}{2} \right)^{2}}{2!} + \frac{\left(-3 \right) \left(-4 \right) \left(-5 \right) \left(-\frac{x}{2} \right)^{3}}{3!} \right]$	M1
	$= \frac{1}{8} + \frac{3}{16}x + \frac{3}{16}x^2 + \frac{5}{32}x^3 + \dots$	A1A1 [3]
(c)	$ (a+bx)\left(\frac{1}{8} + \frac{3}{16}x + \frac{3}{16}x^2\right) = \frac{a}{8} + x\left(\frac{2b}{16} + \frac{3a}{16}\right) + \left\{x^2\left(\frac{3a}{16} + \frac{3b}{16}\right)\right\} $	M1
	$\Rightarrow \frac{3}{8} = \frac{a}{8} \Rightarrow a = 3$	A1
	$\Rightarrow -\frac{43}{16} = \frac{2b+3a}{16} \Rightarrow 2b = -43-9 = -52 \Rightarrow b = -26$	A1
(1)		[3]
(d)	$\frac{3a+3b}{16} = \frac{9-78}{16} = -\frac{69}{16} \text{ oe}$	M1A1 [2]
		l 10 marks
	NB If p and q are stated then they must be correct but if p and q are not stated	ed then
(a)	$\frac{1}{8} \left(1 - \frac{x}{2} \right)^{-3} \text{ scores B1B1}$	
B1	$p = \frac{1}{8} \text{ (Allow } p = 2^{-3}\text{)}$	
B1	$q = \frac{1}{2}$	

(b)	
M1	Attempts to use the binomial expansion for their $(1-qx)^{-3}$. Must have first term 1, three more terms with ascending powers of x , 2 or 2! and 6 or 3! seen , and their $\left(-\frac{x}{2}\right)$ used at least once. No simplification needed. Ignore terms beyond x^3
A1	Two algebraic terms correct in the expansion for their $(1-qx)^{-3}$ Must be single fractions, not necessarily in lowest terms. Ignore terms beyond x^3
A1	All four terms correct and in lowest terms. Ignore terms beyond x^3
(c)	This four terms correct and in fowest terms agree terms only one w
M1	For either their $\frac{1}{8}a = \frac{3}{8}$ or their $\frac{3}{16}a + \text{their } \frac{1}{8}b = -\frac{43}{16}$ May be implied by a correct
	value of a or b.
A1	a=3
A1	b = -26 NB answers $a = 3$ and $b = -26$ scores 3/3
(d)	The answers $u = 3$ and $v = -20$ scores $3/3$
(u)	3a+3b
M1	Substituting their a and their b into their $\frac{3a+3b}{16}$
A1	$-\frac{69}{16}$ oe
	NB If $p = 2$, $q = \frac{1}{2}$ is used then $a = \frac{3}{16}$ and $b = -\frac{13}{8}$ which substituted into $3a + 3b$
	gives an answer of $-\frac{69}{16}$ but scores A0

Question number	Scheme	Marks
10 (a)	$\int (3x^2 - 4x - p) dx = \frac{3x^3}{3} - \frac{4x^2}{2} - px + c \left[= x^3 - 2x^2 - px + c \right]$	M1A1
	$y = x^3 - 2x^2 - px + c$	
	At $(2,0)$ $0 = 8 - 8 - 2p + c \Rightarrow c = 2p$	M1
	At $(-1,9)$ $9 = -1 - 2 + p + c \Rightarrow c = 12 - p$	M1
	$\Rightarrow p = 4, c = 8 \Rightarrow y = x^3 - 2x^2 - 4x + 8*$	AlAlcso [6]
(b)	$x^{3} - 2x^{2} - 4x + 8 = 8 - 4x \Rightarrow x^{3} - 2x^{2} = 0 \Rightarrow x^{2}(x - 2) = 0$	M1
	x = 0, x = 2	A1
	Area = $\int_0^2 (8-4x) dx - \int_0^2 (x^3 - 2x^2 - 4x + 8) dx$	M1
	Area = $\int_0^2 (8-4x) dx - \int_0^2 (x^3 - 2x^2 - 4x + 8) dx = \int_0^2 (-x^3 + 2x^2) dx$	
	Area = $\left[-\frac{x^4}{4} + \frac{2x^3}{3} \right]_0^2 = \left(-4 + \frac{16}{3} \right) - (0) = \frac{4}{3}$	M1M1A1
	Tot	al 12 marks
(a) M1 A1 M1 M1 A1 A1 cso (b)	Attempts to integrate Correct integration including $+c$ Substitution of $(2, 0)$ (Does not have to be simplified) Substitution of $(-1, 9)$ (Does not have to be simplified) $p = 4, c = 8$ Obtains the given answer with no errors in the working	
M1 A1	Equating C and l x = 0 and $x = 2NB If correct limits are seen then M1A1 is awarded$	
M1	Use of $\int_a^b (f(x) - g(x)) dx$ or $\int_a^b f(x) dx - \int_a^b g(x) dx$ or $\int_a^b f(x) dx - \frac{1}{2} \times 2 \times 2 = 0$	8
M1	Ignore limits (These can be either way round) Attempt the integration. Limits not needed.	
M1	Substitute the correct limits. (May be implied by $\pm \frac{4}{3}$)	
A1	$\frac{4}{3}$ NB If no integration is seen then M0M0A0 is awarded for the last 3 marks for a answer of $\frac{4}{-}$	

Question	Scheme	Marks
number		
11 (a)	(i) $y = 3$ (ii) $x = -1$	B1B1
(b)		[2]
(b)	$0 = \frac{3x - 2}{x + 1} \Rightarrow 3x = 2 \Rightarrow x = \frac{2}{3}$	B1
(i)		B1
(ii)	$y = \frac{3 \times 0 - 2}{0 + 1} = -2$	[2]
(c)		
	y = 3 $(0,-2)$ $(0,-2)$ $(0,-2)$ $(0,-2)$ $(0,-2)$ $(0,-2)$ $(0,-2)$ $(0,-2)$ $(0,-2)$ $(0,-2)$ $(0,-2)$ $(0,-2)$ $(0,-2)$	B1 (shape and position) B1 (asymptotes) B1 (intersections) [3]
(d)	$mx + 4 = \frac{3x - 2}{x + 1} \Rightarrow mx^2 + x(m + 1) + 6 = 0$	M1 M1
	$b^{2} - 4ac < 0 \Rightarrow (m+1)^{2} - 4 \times m \times 6 < 0 \Rightarrow m^{2} - 22m + 1 < 0$ $(m-11)^{2} - 120 = 0 \Rightarrow m = 11 \pm \sqrt{120}$	M1A1
	$(m-11)^2 - 120 = 0 \Rightarrow m = 11 \pm \sqrt{120}$	
	Defines region	M1
	$11 - 2\sqrt{30} < m < 11 + 2\sqrt{30}$	depM1A1
	,	Total 14 marks

(a) (i)	
B1	y = 3
(a) (ii)	
B1	x = -1
(b) (i)	
B1	$x = \frac{2}{3}$
(b) (ii)	
B1	y = -2
(c)	
B1	Two curves in the correct quadrant (Condone poor shape as long as intention is clear)
B1	Two asymptotes drawn and correctly labelled (Allow –1 and 3 correctly labelled on axes to count as labelled). There must be at least one part of the curve drawn
B1	Intersections labelled
(d)	
M1	Equates C and l (Condone use of \neq and \leq)
M1	Forms a 3TQ (Condone the use of \neq and \leq) (allow 1 error in the expansion of correct brackets or 1 error in simplifying)
M1	Use of $b^2 - 4ac < 0$ to form a 3TQ
A1	Simplify to $m^2 - 22m + 1 < 0$
M1	Solving the 3TQ If the quadratic is incorrect then the method for solving must be shown
depM1	Simplifying to the form $a \pm b\sqrt{2}$ Dependant on previous M1
A1	$11 - 2\sqrt{30} < m < 11 + 2\sqrt{30}$ (Allow $a = 11, b = 30$)