

Transforming CodeNet to dataset for code translation

Proposals

Vladimir Zolotov

January 5, 2020

Problem formulation

- ML code translation requires large labeled dataset:
 - Pairs of similar code samples in source and target languages
- CodeNet has code samples labeled with problems solved:
 - Problems are solved in different languages: C, C++, Java, Python, etc.
 - Only ~ 2000 problems in C++ (most popular language in CodeNet)
 - However more than 4,000,000 solutions
 - Many solution samples of each problem
 - From several to almost 20,000

Problem:

- Build code translation dataset from CodeNet
 - Compute relation between problem solutions in different languages
 - Ideally the relation is 1-to-1
 - Solution code in language 1 corresponds to similar code in language 2
 - Similarity is very important to for correct training of ML code translation engine

Problem formulation illustrated

Code translation dataset

Plan of solution

- Develop and train Cross-Language similarity DNN-analyzer:
 - Predict if 2 source codes written in 2 langiages (C++ and Java) solve the same or different problems
 - DNN output is "probability" of similarity of 2 codes
 - Metric of similarity of 2 codes written in different languages
- 2. Construct relation between codes written in different languages:
 - Two source codes are related if:
 - 1. They solve the same problem
 - 2. Similarity between them is higher than a threshold
 - The relation is Many-to-Many, as the similarity metric is not ideal
- Retrain Cross-Language similarity DNN-analyzer using newly constructed similarity relation
 - Make similarity prediction more correct
- 4. Improve relation between codes written in different languages
 - Use newly computed metric of similarity
 - Improved relation is more selective: closer to 1-to-1 relation
- 5. Repeat improving relation till it is as close to 1-to-1 as possible
- The resulting relation can be used for training code translation ML engine

Evolution of relation between code solutions

Difficulties and Risks

Data related difficulties:

- Possibly not many problems have solution code in both languages
- Same problems have different number of solutions in different languages
 - 1-to-1 relation between solution source codes is impossible
- Even similar solutions can be too different for ML translation engine
 - Though is not clear what are good samples for training ML translation engine

Development items:

- Accurate cross-Language similarity DNN-analyzer
 - So far only inter-language similarity DNN-analyzer with ~95% accuracy
- Current similarity DNN-analyzer considers only sequence operators and key words
 - To extend it to consider variables, functions, and program structure through syntax tree
- Fast and efficient clustering engine for particularizing code relation
 - Non-trivial problem as similarity metric is not Euclidian and has many peculiarities
 - Very large size of the problem:
 - Millions of code solutions, quadratic number of potential candidates for relations

Conclusions

- Problem of constructing dataset for training ML code translation is interesting, novel and hard
- Its solution is useful not only for CodeNet but as a general technique for constructing datasets for training ML code translation
- No guarantee for success due to both algorithmic and dataset issues
- Cross-language similarity DNN-analyzer is planned irrespective to decision to work on ML code translation
- Improvement of code similarity DNN-analyzer by using syntax trees is planned irrespective to decision to work ML code translation
- Experiments with cross-language similarity analysis will clarify feasibility of transforming CodeNet into dataset for training ML engine