#### Momentos Exactos de los Estadísticos de Orden

Integrantes: Fernandez Villarreal, Quilca la Rosa, Madueño Carrión Docente: Rita Guzmán López

> Universidad Nacional de Ingeniería Escuela Profesional de Ingeniería Estadística

> > 2 de Abril del 2018



#### Momentos Exactos de los Estadistícos de Orden

- Conceptos Previos
  - Estadísticos de Orden
  - Propiedades a usar
- Desarrollo
  - Usando la distribución uniforme
  - Generalización de los Momentos Exactos
- Siercicios Aplicativos
  - Ejercicio 1
  - Ejercicio 2
  - Ejercicio 3
- Solución de Ejercicios Aplicativos
  - Ejercicio 1
  - Ejercicio 2
  - Ejercicio 3

#### Definición:

## Estadísticos de Orden

En una muestra aleatoria el valor máximo, mínimo o valor mediano pueden proporcionar información de resumen adicional. Por ejemplo:

- 1. Las aguas de inundación más altas o la temperatura de invierno más baja registrada durante 50 años podrían ser datos útiles al planificar emergencias futuras.
- 2. El valor mediano del precio de las casas vendidas durante el mes anterior podría ser útil para estimar el costo de vida. Estos son algunos ejemplos de estadísticos de orden

#### Definición de Estadísticos de Orden

# Estadístico de Orden

Los estadísticos de orden de una muestra aleatoria  $X_1, X_2, ..., X_n$ obtenidas de una población con distribución  $F_X$ , son los valores de muestra colocados en orden ascendente. Ellos son denotados por $X_{(1)}, X_{(2)}, ..., X_{(n)}$ 

Los estadísticos de orden son variables aleatorias que satisfacen  $\mathbf{X}_{(1)} {\leqslant} \ldots {\leqslant} \mathbf{X}_{(n)}$ 

En particular:

$$\mathbf{X_{(1)}} = \min_{1 \leq i \leq n} X_i,$$
 $\mathbf{X_{(2)}} = 2^{\circ} \min X_i$ 
 $\vdots$ 
 $\mathbf{X_{(n)}} = \max_{1 \leq i \leq n} X_i$ 

Inferencia Estadística No Paramétrica (UNI)

#### Recordar:

1. Si 
$$X \sim U[0;1] \Rightarrow f_X(x) = 1$$
 ; Si  $0 \le x \le 1$ 

2. Si  $X \sim Beta(\alpha, \beta)$ 

$$\mathbf{f_X}(x) = \frac{x^{(\alpha-1)}(1-x)^{(\beta-1)}}{B(\alpha,\beta)} \qquad \text{Si} \qquad 0 < x < 1; \qquad \alpha, \beta > 0$$

$$\mathsf{B}(lpha,eta)=\int_0^1 t^{lpha-1}(1-t)^{eta-1}dt=rac{\Gamma(lpha)\Gamma(eta)}{\Gamma(lpha+eta)}$$

Inferencia Estadística No Paramétrica (UNI)

#### Recordar:

3. El momento K-ésimo respecto al origen; de la variable aleatoria Xestá dado por (caso continuo):

$$E(\mathbf{X}^K) = \int_{-\infty}^{\infty} x^K f(x) dx$$

4.  $\mathbf{X}(r)$ : r-ésimo estadístico de orden

$$\mathbf{f}_{\mathbf{X}_{(r)}}(x) = \frac{n! [\mathbf{F}(x)]^{r-1} [1 - \mathbf{F}(x)]^{n-r} f(x)}{(r-1)! (n-r)!}$$

5. Si **X∼U**[0; 1]

$$\Rightarrow \mathbf{X}_{(r)} \sim Beta(r, n-r+1)$$

#### Desarrollo

Para facilitar los cálculos trabajaremos que X~U[0,1] Entonces:

$$\mathbf{f_X}(x) = 1 \qquad ; \ 0 \leqslant x \leqslant 1$$

$$\mathbf{F(x)} = \begin{cases} 0 & si & 0 < x \\ x & si & 0 \le x < 1 \\ 1 & si & x \ge 1 \end{cases}$$

• Sea  $X_1, \ldots, X_n$  una muestra aleatoria simple que proviene de una población distribuida uniformemente donde  $0 \le x \le 1$  Tenemos:

$$\mathbf{X_{(1)}} = \min\{X_1, ..., X_n\}$$
 $\mathbf{X_{(2)}} = 2^{\circ} \min\{X_1, ..., X_n\}$ 
 $\vdots$ 
 $\mathbf{X_{(n)}} = \max\{X_1, ..., X_n\}$ 

#### Desarrollo

• Esto es:  $0 < X_{(1)} < X_{(2)} < \ldots < X_{(n)} < 1$ 

El momento K-ésimo del r-ésimo estadístico de orden

$$E[\mathbf{X}_{(r)}^{K}] = \int_{-\infty}^{\infty} x^{K} f_{X(r)}(x) dx$$
$$= \int_{-\infty}^{\infty} x^{K} \frac{n! [\mathbf{F}(x)]^{r-1} [1 - \mathbf{F}(x)]^{n-r} f(x)}{(r-1)! (n-r)!}$$

Inferencia Estadística No Paramétrica (UNI)

#### Continuación

Como X~U[0; 1]

$$E[\mathbf{X}_{(r)}^{K}] = \int_{0}^{1} x^{K} \frac{n! x^{r-1} (1-x)^{n-r} * 1 dx}{(r-1)! (n-r)!}$$

$$= \frac{n!}{(r-1)! (n-r)!} \int_{0}^{1} x^{r+K-1} (1-x)^{n-r} dx$$

$$E[\mathbf{X}_{(r)}^{K}] = \frac{n!}{(r-1)! (n-r)!} B(r+k, n-r+1)$$

$$= \frac{n!}{(r-1)! (n-r)!} * \frac{\Gamma(r+k)\Gamma(n-r+1)}{\Gamma(n+k+1)}$$

#### Continuación

En consecuencia

$$E[\mathbf{X_{(r)}}^K] = \frac{n!}{(r-1)!(n-r)!} * \frac{(r+k-1)!(n-r)!}{(n+k)!}$$

$$E[\mathbf{X_{(r)}}^K] = \frac{n!(r+k-1)!}{(r-1)!(n+k)!} ; 1 \le r \le n , K \in \mathbb{Z}^+$$

$$Parak = 1$$

$$\Rightarrow E[\mathbf{X_{(r)}}] = \frac{n!r!}{(r-1)!(n+1)!}$$

Inferencia Estadística No Paramétrica (UNI)

 $E[\mathbf{X}_{(\mathbf{r})}] = \frac{r}{(n+1)}$ 

#### Continuación

• En consecuencia k=2

$$\Rightarrow E[\mathbf{X}_{(r)}^{2}] = \frac{n!(r+1)!}{(r-1)!(n+2)!} = \frac{r(r+1)}{(n+1)(n+2)}$$

$$\therefore Var(X_{(r)}) = E[\mathbf{X}_{(r)}^{2}] - (E[\mathbf{X}_{(r)}])^{2}$$

$$Var(X_{(r)}) = \frac{r(r+1)}{(n+1)(n+2)} - (\frac{r}{n+1})^{2} = \frac{r(n-r+1)}{(n+1)^{2}(n+2)}$$

$$\boxed{Var(\mathbf{X}_{(r)}) = \frac{r(n-r+1)}{(n+1)^{2}(n+2)}}$$

### De manera general

 De forma general para cualquier distribución se puede obtener la media y varianza

$$E[\mathbf{X}_{(\mathbf{r})}] = \mathbf{F}_{\mathbf{X}}^{-1}(\frac{r}{n+1})$$

$$Var(\mathbf{X}_{(\mathbf{r})}) = \frac{r(n-r+1)}{(n+1)^2(n+2)} [f_x(E[\mathbf{X}_{(\mathbf{r})}])]^{-2}$$

### Ejercicio 1

- 1.1 Sea una variable aleatoria X que se distribuye uniformemente en el intervalo [0;1]. Calcular la esperanza y varianza del  $X_{(5)}$  de una muestra aleatoria de tamaño 10.
- 1.2 Suponga que el tiempo máximo que se puede reservar una sala de conferencias grande de cierta empresa son 6 horas. Con mucha frecuencia tienen conferencias extensas y breves. De hecho, se puede suponer que la duración  $\mathbf X$  de una conferencia tiene una distribución uniforme en el intervalo [0,6]. Encontrar la esperanza y varianza del  $X_{(5)}$  en una muestra aleatoria de tamaño 10.

### Ejercicio 2

Se ha comprobado el tiempo de vida de cierto tipo de marcapasos sigue una distribución exponencial con media de 16 años .Encontrar la esperanza y la varianza del  $\mathbf{X}_{(6)}$  de una muestra aleatoria de tamaño 14 .

### Ejercicio 3

Las barras de pan de centeno que cierta panadería distribuye a las tiendas locales tienen una longitud promedio de 30cm y una desviación estándar de 2 cm. Si se supone que las longitudes están distribuidas normalmente. Encontrar la esperanza y varianza del  $X_{(4)}$  en una muestra de 20 barras de pan.

### Sol Ejercicio 1.1

- X~U[0; 1]
- Datos:  $n = 10, r = 5 \ \xi E(X_{(5)}), Var(X_{(5)})$ ?
- Como vemos que es una uniforme estándar solamente reemplazaremos los valores en las formulas obtenida<u>s anteriormente:</u>

$$E[\mathbf{X}_{(\mathbf{r})}] = \frac{r}{(n+1)}$$

$$Var(\mathbf{X_{(r)}}) = \frac{r(n-r+1)}{(n+1)^2(n+2)}$$

Reemplazando nos queda:

$$\Rightarrow E[\mathbf{X_{(5)}}] = \frac{5}{(11)} = 0,45$$

$$\Rightarrow Var(\mathbf{X_{(5)}}) = \frac{5(6)}{(11)^2(12)} = 0.02066$$

### Sol Ejercicio 1.2

• **X**:Tiempo máximo de reservas **X**~**U**[0; 6]

$$\mathbf{f}(\mathbf{x}) = \begin{cases} \frac{1}{6} & \text{si} \quad 0 \le x \le 6 \\ 0 & \text{si} \quad c.c \end{cases} \quad \mathbf{F}(\mathbf{x}) = \begin{cases} 0 & \text{si} \quad x < 0 \\ \frac{x}{6} & \text{si} \quad 0 \le x < 6 \\ 1 & \text{si} \quad x \ge 6 \end{cases}$$

• Hallamos  $\mathbf{F}_{(\mathbf{x})}^{-1}$ 

$$F(x) = y$$

$$F(x) = \frac{x}{6} \Rightarrow 6y = x \Rightarrow \overline{\mathbf{F_{(x)}}^{-1} = 6x}$$

## Sol Ejercicio 1.2

- Datos:  $n = 10, r = 5 \ E(X_{(5)}), Var(X_{(5)})$ ?
- Dado que no es una uniforme estandar usaremos la formula generalizada :  $E[X_{(r)}] = F_X^{-1}(\frac{r}{n+1})$

$$Var(\mathbf{X}_{(\mathbf{r})}) = \frac{r(n-r+1)}{(n+1)^2(n+2)} \{ f_X[\mathbf{F}_{\mathbf{X}}^{-1}(\frac{r}{n+1})] \}^{-2}$$

• Reemplazando nos queda:

$$\Rightarrow E[\mathbf{X}_{(5)}] = \mathbf{F}_{\mathbf{X}}^{-1}(\frac{5}{11}) = \frac{30}{11} = 2.7\widehat{2}$$

$$\Rightarrow Var(\mathbf{X}_{(5)}) = \frac{5(6)}{(11)^{2}(12)} \{ f_{\mathbf{X}}[\mathbf{F}_{\mathbf{X}}^{-1}(\frac{5}{11})] \}^{-2}$$

$$= 0.007 * (f_{\mathbf{X}}(2.7\widehat{2}))^{-2} = 0.02 * (\frac{1}{6})^{-2} = 0.72$$

### Sol Ejercicio 2

- $f(x) = \lambda e^{-\lambda x}$  ;  $F(X) = 1 e^{-\lambda x}$  ;  $F_{(X)}^{-1} = \frac{-\ln(1-x)}{\lambda}$
- Sabemos que  $E(X) = \frac{1}{1}$  Entonces se deduce que  $\lambda = \frac{1}{16} \Rightarrow$  $X \sim Exp(\lambda = \frac{1}{16})$
- Usaremos la formula generalizada en nuestro caso:

$$E[\mathbf{X}_{(r)}] = \mathbf{F_X}^{-1} \left(\frac{r}{n+1}\right)$$

$$Var(\mathbf{X}_{(r)}) = \frac{r(n-r+1)}{(n+1)^2(n+2)} \{f_X[\mathbf{F_X}^{-1}(\frac{r}{n+1})]\}^{-2}$$

Reemplazando nos gueda:

$$\Rightarrow E[\mathbf{X}_{(6)}] = \mathbf{F_X}^{-1}(\frac{6}{15}) = \mathbf{F_X}^{-1}(0.4) = 8.1732$$

$$\Rightarrow Var(\mathbf{X}_{(6)}) = \frac{6(9)}{(15)^2(16)} \{ f_X[\mathbf{F_X}^{-1}(\frac{6}{15})] \}^{-2}$$

$$= 0.015 * (f_X(8.1732))^{-2} = 0.15 * (0.0375)^{-2} = 10.66$$

## Sol Ejercicio 3

- **X**:Barras de pan  $\mathbf{X} \sim \mathbf{N}(\mu = 30 \, \text{cm}, \sigma = 2 \, \text{cm})$
- Datos:  $n = 20, r = 4 \ E(X_{(4)}), Var(X_{(4)})$ ?
- Como vemos que no es una normal estandar , usaremos la formula generalizada en nuestro caso:  $E[X_{(r)}] = F_X^{-1}(\frac{r}{r+1})$

$$Var(\mathbf{X}_{(\mathbf{r})}) = \frac{r(n-r+1)}{(n+1)^2(n+2)} \{ f_X[\mathbf{F_X}^{-1}(\frac{r}{n+1})] \}^{-2}$$

• Reemplazando nos queda:

$$\Rightarrow E[\mathbf{X}_{(4)}] = \mathbf{F}_{\mathbf{X}}^{-1}(\frac{4}{21}) = 28.248$$

$$\Rightarrow Var(\mathbf{X}_{(4)}) = \frac{4(17)}{(21)^2(22)} \{ f_{\mathbf{X}}[\mathbf{F}_{\mathbf{X}}^{-1}(\frac{4}{21})] \}^{-2}$$

$$= 0.007 * (0.13589)^{-2} = 0.3795$$