2025/2/15 16:11 hw2.ipynb - Colab

Problem 6

```
{R}
install.packages("faraway")
library(faraway)
data(teengamb)
write.csv(teengamb, "C:/Users/dkkdk/Documents/grad/230/HW2/teengamb.csv", row.names=FALSE)
```

Part a

```
import pandas as pd
df = pd.read_csv('teengamb.csv')
print(df.head())
```

_					1 1	1.1
``		sex	status	ıncome	verbal	gamble
	0	1	51	2.0	8	0.0
	1	1	28	2.5	8	0.0
	2	1	37	2.0	6	0.0
	3	1	28	7.0	4	7.3
	4	1	65	2.0	8	19.6

```
import statsmodels.api as sm
import statsmodels.formula.api as smf
model = smf.ols(formula="gamble ~ sex + status + income + verbal", data=df).fit()
print(model.summary())
```

	-	_
-	۷	_
	7	•

OLS Regression Results

Dep. Variable:	gamble	R-squared:	0. 527		
Model:	0LS	Adj. R-squared:	0.482		
Method:	Least Squares	F-statistic:	11.69		
Date:	Sat, 15 Feb 2025	Prob (F-statistic):	1.81e-06		
Time:	16:10:34	Log-Likelihood:	-210.78		
No. Observations:	47	AIC:	431.6		
Df Residuals:	42	BIC:	440.8		
Df Model:	4				
Covariance Type:	nonrobust				

	coef	std err	t	P> t	[0. 025	0. 975]
Intercept sex status income verbal	22. 5557 -22. 1183 0. 0522 4. 9620 -2. 9595	17. 197 8. 211 0. 281 1. 025 2. 172	1. 312 -2. 694 0. 186 4. 839 -1. 362	0. 197 0. 010 0. 853 0. 000 0. 180	-12. 149 -38. 689 -0. 515 2. 893 -7. 343	57. 260 -5. 548 0. 620 7. 031 1. 424
Omnibus: Prob(Omnibus): Skew: Kurtosis:		1.	110 Duilbii		:	2. 214 101. 046 1. 14e-22 264.

Notes

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Part b

Adjusted R-squared: 0.4816

→ Part c

```
2025/2/15 16:11
                                                                               hw2 ipynb - Colab
    # compute residuals
    df["residuals"] = model.resid
    # find max residual
    max_residual_idx = df["residuals"].idxmax()
    max_residual_value = df.loc[max_residual_idx, "residuals"]
    print(f"max residual: {max_residual_value:.4f}")
     → max residual: 94.2522

→ Part d

    residual_mean = df["residuals"].mean()
    residual_median = df["residuals"].median()
    print(f"mean of residuals: {residual_mean:.4f}")
    print(f"median of residuals: {residual_median:.4f}")
     ⇒ mean of residuals: 0.0000
         median of residuals: -1.4514
    Part e
    import numpy as np
    cor\_residuals\_fitted = np.corrcoef(df["residuals"], model.fittedvalues)[0, \ 1]
    print(f"Correlation between residuals and fitted values: {cor_residuals_fitted:.4f}")
     Correlation between residuals and fitted values: 0.0000

→ Part f

    cor_residuals_income = np.corrcoef(df["residuals"], df["income"])[0, 1]
    print(f"Correlation between residuals and income: {cor_residuals_income:.4f}")
     → Correlation between residuals and income: 0.0000

→ Part q

    # Define new observation
    new_data = pd.DataFrame({
            "sex": [0],
            "status": [60],
            "income": [7],
            "verbal": [3]
    })
    # Get prediction results
    pred_results = model.get_prediction(new_data)
    # Extract confidence interval and prediction interval
    pred_summary = pred_results.summary_frame(alpha=0.05)
    # Print results
    print(f''Predicted \ gambling \ expenditure: \ \{pred\_summary['mean'][0]:.4f\}'')
    print(f"95% Confidence Interval: ({pred_summary['mean_ci_lower'][0]:.4f}, {pred_summary['mean_ci_upper'][0]:.4f})")
    print(f"95% Prediction Interval: ({pred_summary['obs_ci_lower'][0]:.4f}, {pred_summary['obs_ci_upper'][0]:.4f})")
         Predicted gambling expenditure: 51.5451
         95% Confidence Interval: (29.4109, 73.6792)
         95% Prediction Interval: (0.6851, 102.4050)
    Part h
```

```
sex_coefficient = model.params["sex"]
print(f"Difference in predicted gambling expenditure (Male - Female): {sex_coefficient:.4f}")
```

2025/2/15 16:11 hw2.ipynb - Colab

Difference in predicted gambling expenditure (Male - Female): -22.1183

• This means that, holding all other predictors constant, a male is predicted to spend 10.31 pounds less on gambling compared to a female.

• A negative coefficient suggests that males tend to gamble less than females