Probabilistic Graphical Models

Lecture 16: Learning: Partial Observability

Matthew Walter

TTI-Chicago

June 4, 2020

Maximum Likelihood Estimation

 We've seen (e.g., Lecture 13) that choosing parameters that maximize the empirical log-likelihood of data is an effective approach to learning

$$\boldsymbol{\theta}^* = \arg\max_{\boldsymbol{\theta}} \frac{1}{|\mathcal{D}|} \sum_{m=1}^{|\mathcal{D}|} \log \hat{P}(\boldsymbol{\xi}; \boldsymbol{\theta})$$

Suppose instead that the joint distribution was

$$P(\boldsymbol{X}, \boldsymbol{Z}; \boldsymbol{\theta})$$

where ${\mathcal D}$ provides samples of ${\boldsymbol X}$ but ${\boldsymbol Z}$ is never observed, i.e.,

$$\mathcal{D} = \{(0, 1, 0, ?, ?, ?), (1, 1, 1, ?, ?, ?), (0, 1, 1, ?, ?, ?), \ldots\}$$

• Assume also that the hidden variables are *missing completely at random* (otherwise, we should model *why* these values are missing)

Identifiability

- In the fully observed, IID case, as $|\mathcal{D}| \to \infty$, the empirical log-likelihood approaches the true expected log-likelihood
- In the partially observed setting, what happens if we have infinite data?
- Is it possible to uniquely identify the true parameters?

Maximum Likelihood

- We can still use the same maximum likelihood approach
- The objective that we are maximizing becomes

$$\ell(\boldsymbol{\theta}) = \frac{1}{|\mathcal{D}|} \sum_{m=1}^{|\mathcal{D}|} \log \sum_{\boldsymbol{Z}} P(\boldsymbol{X}^{(m)}, \boldsymbol{Z}; \boldsymbol{\theta})$$

- ullet For Bayesian networks, as a result of the marginalization over $oldsymbol{Z}$:
 - the objective is no longer locally or globally decomposable
 - ullet there is no longer a closed-form solution for $oldsymbol{ heta}^*$
- ullet Furthermore, the objective is no longer convex, and may have a different mode for every possible assignment Z
- ullet One approach is to employ gradient ascent as a general purpose optimization method to reach a local maxima of $\ell(m{ heta})$

Expectation Maximization

- ullet The expectation maximization (EM) algorithm provides an alternative approach to finding the local maximum of $\ell(m{ heta})$
- ullet EM is particularly useful when a closed-form solution for $m{ heta}^{ ext{ML}}$ exists in the fully observed setting
- For example, in Bayesian networks, we have the following

$$\hat{\theta}_{x\,|\,\boldsymbol{u}}^{\mathsf{ML}} = \frac{\#[x,\boldsymbol{u}]}{\#[\boldsymbol{u}]}$$

where $oldsymbol{U}$ are the parents of X

Expectation Maximization

The EM algorithm follows as

- Write down the *complete log-likelihood* $\log P(\boldsymbol{X}, \boldsymbol{Z}; \boldsymbol{\theta})$ in a way that is linear in \boldsymbol{Z}
- 2 Initialize θ_0 at random or using a heuristic
- Repeat until convergence

$$\theta_{t+1} = \arg\max_{\boldsymbol{\theta}} \ \sum_{m=1}^{|\mathcal{D}|} \mathbb{E}_{P(\boldsymbol{Z}^{(m)} \,|\, \boldsymbol{X}^{(m)}; \boldsymbol{\theta}_t)} \left[\log P(\boldsymbol{X}^{(m)}), \boldsymbol{Z}; \boldsymbol{\theta} \right]$$

- Notice that $\log P(\boldsymbol{X}^{(m)}), \boldsymbol{Z}; \boldsymbol{\theta}$ is a random function because \boldsymbol{Z} is unknown
- By linearity of expectation, the objective decomposes into expectation terms and data terms
- "E" stem corresponds to computing the objective (i.e., the expectations)
- "M" step corresponds to maximizing the objective