Cet exercice propose d'étudier une suite de fractions rationnelles, c'est-à-dire des fonctions définies comme quotients de deux fonctions polynomiales. Plus précisément, on considère les suites de polynômes $(P_n)_{n\in\mathbb{N}}$ et $(Q_n)_{n\in\mathbb{N}}$ définies par

$$\left\{ \begin{array}{lll} P_0 & = & 0 \\ Q_0 & = & 1 \end{array} \right. \quad \text{et} \quad \forall n \in \mathbb{N}, \left\{ \begin{array}{lll} P_{n+1} & = & P_n + XQ_n \\ Q_{n+1} & = & Q_n - XP_n \end{array} \right.$$

et on note $(R_n)_{n\in\mathbb{N}}$ la suite de fonctions définie par $\forall n\in\mathbb{N}\ R_n: x\mapsto \frac{P_n(x)}{Q_n(x)}$.

- 1. Déterminer R_0, R_1, R_2 et R_3 ainsi que leurs domaines de défintion.
- 2. Calculer pour tout $n \in \mathbb{N}$, $Q_n(0)$.
- 3. Justifier que pour tout $n \in \mathbb{N}$, le domaine de définition de R_n est de la forme $\mathbb{R} \setminus E_n$ où E_n est un ensemble fini de nombres réels.
- 4. Démontrer que $\forall n \in \mathbb{N}, Q_n + iP_n = (1 + iX)^n$.
- 5. Pour cette question, on fixe $n \in \mathbb{N}$ et $\theta \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$.
 - (a) Ecrire le nombre complexe $(1 + i \tan(\theta))^n$ sous forme algébrique.
 - (b) En déduire que $P_n(\tan(\theta)) = \frac{\sin(n\theta)}{\cos^n(\theta)}$ et $Q_n(\tan(\theta)) = \frac{\cos(n\theta)}{\cos^n(\theta)}$.
 - (c) Justifier proprement que $E_n = \left\{ \tan \left(\frac{m\pi}{2n} \right) \mid m \text{ entier impair tel que } -n < m < n \right\}.$
 - (d) Montrer que $\forall \theta \in \left] -\frac{\pi}{2n}, \frac{\pi}{2n} \right[, R_n(\tan(\theta)) = \tan(n\theta)$
- 6. Pour cette question, on fixe $n \in \mathbb{N}$ et on suppose qu'il existe deux polynomes $(P,Q) \in (\mathbb{R}[X])^2$ et une fraction rationnelle $R: x \mapsto \frac{P(x)}{Q(x)}$ telle que $\forall \theta \in]-\frac{\pi}{2n}, \frac{\pi}{2n}[, R(\tan(\theta)) = \tan(n\theta)$
 - (a) Montrer que $\forall \theta \in \left] -\frac{\pi}{2n}, \frac{\pi}{2n} \right[, (PQ_n QP_n)(\tan(\theta)) = 0.$
 - (b) En déduire que $PQ_n QP_n = 0$ puis que $R = R_n$.