Algoritmi Avanzati A.A. 2017–2018, primo semestre Traccia delle lezioni

Mauro Brunato

Versione 2017-10-18

Caveat lector

Lo scopo principale di questi appunti è quello di ricostruire quanto detto a lezione. Queste note non sono complete, e la loro lettura non permette, da sola, di superare l'esame. Le fonti utili a ricostruire un discorso coerente e completo sono riportate alla pagina web del corso, dov'è disponibile anche la versione più recente di queste note:

https://disi.unitn.it/~brunato/AA/

Alcune fonti per approfondimenti sono indicate nelle note a pie' di pagina di questo documento. Si suggerisce di confrontare la data riportata sul sito web con quella che appare nel frontespizio per verificare la presenza di aggiornamenti.

Changelog

2017-10-18

- Regressione logistica
- Normalizzazione e standardizzazione
- Esercitazione di laboratorio sulla regressione logistica

2017-10-12

- Algoritmi di regressione per problemi di classificazione: impostazione di soglie
- Introduzione alla regressione logistica
- Cross validation
- Esercizi

2017-10-05

- Generalizzazione dei minimi quadrati a funzioni non lineari e al caso polinomiale
- Iniziato il capitolo sulla validazione
- Terza esercitazione

2017-10-01

- Correzione di alcuni errori nelle formule dei minimi quadrati
- Seconda esercitazione

2017-09-25

- Regressione: RMSE e metodo dei minimi quadrati
- Domande di comprensione

2017-09-24

- Formalizzazione del problema del machine learning
- Prima esercitazione

2017-09-16

Versione iniziale:

• Introduzione, scopo del corso

Indice

Ι	Ar	opunti di teoria	1
1	Intr	roduzione alla Data Science	2
	1.1	La Data Science	2
	1.2	Scopo del corso	3
		1.2.1 Significatività di un esperimento: il p-value	3
		1.2.2 Correlazioni spurie	3
		1.2.3 Il paradosso di Simpson	4
	1.3	Formalizzazione del problema dell'apprendimento automatico	4
			4
	1.4	Considerazioni sulla dipendenza funzionale	5
2	Alg	oritmi di regressione	6
	2.1	Valutazione della bontà di un modello di regressione	6
	2.2		6
		2.2.1 Il caso scalare $(n=1)$	7
			7
			8
		•	9
	2.3		9
			0
			1
3	Alg	oritmi di classificazione 1	2
	3.1	K-Nearest-Neighbors (KNN)	2
4	Val	utare la bontà di un modello	3
	4.1	Criteri di valutazione	3
		4.1.1 Valutare un modello di regressione	3
		4.1.2 Valutare un modello di classificazione	3
	4.2	Addestramento e validazione	5
		4.2.1 <i>K</i> -fold cross-validation	5
		4.2.2 Una soluzione estrema: l'approccio leave-one-out	6
5	Pre	etrattare i dati	7
	5.1	K-nearest-neighbors	7
		5.1.1 Input categorici	7
	5.2	Normalizzazione e standardizzazione dei dati	7
		5.2.1 Normalizzazione	
		5.2.2 Standardizzazione	
		5.2.3 Insiemi di validazione	

II	Esercitazioni di laboratorio	19
1	Lettura e utilizzo di un semplice dataset 1.1 Scopo dell'esercitazione	20
2		22
3	Regressione polinomiale e suddivisione del dataset 3.1 Scopo dell'esercitazione	24
4	Regressione logistica 4.1 Scopo 4.2 Procedimento 4.2.1 Discesa lungo il gradiente 4.3 Script	26 26
II	I Domande ed esercizi	28
A	Domande teoriche e spunti di riflessione A.1 Domande a risposta aperta	29 29 30
В	Esercizi	32

Parte I Appunti di teoria

Capitolo 1

Introduzione alla Data Science

1.1 La Data Science

Immagazzinare dati è fin troppo facile, e visti i costi ormai irrisori lo fanno tutti. Il problema è farne uso: i dati grezzi non sono immediatamente comprensibili, bisogna estrarre informazioni (fruibili da persone o da algoritmi) a fini migliorativi.

Questo è lo scopo della Data Science¹; con sfumature diverse, si parla anche di "Business analytics", "Business Intelligence". Anche le discipline della Statistica e della Ricerca Operativa occupano lo stesso ambito, ma i loro nomi sono spesso associati a tecniche classiche e non sempre la loro definizione include il machine learning, che costituisce invece il nucleo del nostro corso.

In Figura 1.1 troviamo alcune "parole chiave" che definiscono le varie discipline e operazioni che portano dalla raccolta dati iniziale al risultato finale.

Il modus operandi più consueto consiste nell'utilizzare i dati per creare un modello (statistico, matematico, informatico) degli stessi da utilizzare poi per acquisire conoscenza sul sistema in esame, prendere decisioni, modificare processi, eccetera. Spesso, il risultato finale di tale processo sono nuovi dati che possono essere utilizzati per affinare il modello, e così via. Vedremo vari esempi nel resto del corso, che si concentrerà principalmente sulla fase dell'analisi dei dati e del machine learning.

¹https://en.wikipedia.org/wiki/Data_science.

Figura 1.1: Alcune parole chiave

1.2 Scopo del corso

Esistono decine, se non centinaia, di pacchetti software e di librerie in grado di importare dati, costruire modelli, effettuare previsioni. Uno sviluppatore può creare una rete neurale, addestrarla e utilizzarla in un suo programma senza nemmeno sapere come funziona, semplicemente utilizzando le API di una libreria e trattando i diversi algoritmi come "scatole nere". Insomma, non è necessario conoscere un algoritmo di machine learning per poterlo utilizzare, come non è necessario conoscere i protocolli di rete in dettaglio per realizzare un'applicazione web, e si possono ordinare gli elementi di un vettore senza conoscere gli algoritmi di ordinamento.

Nonostante ciò, le tecniche che studieremo in questo corso vanno applicate con estrema attenzione, perché sono soggette a errori estremamente perniciosi, ma non sempre facili da evitare. Il corso sarà in parte dedicato a studiare le metodologie utili a evitare o a minimizzare l'impatto dei trabocchetti più comuni.

Ecco alcuni esempi di trabocchetto tratti dalla statistica classica. Più tardi ne vedremo anche alcuni specifici del machine learning.

1.2.1 Significatività di un esperimento: il p-value

Sappiamo che la Statistica offre strumenti per capire se un certo risultato è significativo o meno. Il principio generale è: più campioni misuriamo, minori sono gli errori che commettiamo nello stimare le grandezze statistiche della popolazione. Un metodo molto usato in ambito sperimentale è il cosiddetto "p-value". Formulata un'ipotesi H, ed effettuato un esperimento consistente nella misurazione di alcuni campioni di una popolazione, diciamo che l'esperimento conferma l'ipotesi se il suo "p-value" è al di sotto di una soglia, detta significatività, da noi stabilita a priori. Il p-value esprime la probabilità di ottenere risultati simili a quelli effettivamente ottenuti nel caso in cui H sia falsa².

Supponiamo, ad esempio, di sospettare che una certa moneta sia truccata in modo da offrire sempre il lato "testa" in un lancio. La nostra ipotesi H è "Questa moneta è truccata". Il nostro esperimento consiste di N=10 lanci, e otteniamo sempre testa. Il p-value dell'esperimento risponde alla domanda "quale sarebbe la probabilità di ottenere dieci teste se H fosse falsa, cioè se la moneta non fosse truccata?" La risposta è ovviamente $p=2^{-10}<1/1000$. Con un p-value così basso possiamo concludere che il nostro risultato non è dovuto al caso, e che quindi la nostra ipotesi è confermata.

Cosa succede, però, se ogni italiano esegue questo test su una moneta di propria scelta? Anche se nessuna delle monete fosse truccata, ben 60000 italiani (circa uno su mille) concluderebbero che la loro moneta lo è. Dovremmo togliere dalla circolazione quelle sessantamila monete?

Si consideri che nella maggior parte degli esperimenti scientifici, soprattutto quando il costo degli esperimenti è elevato (si pensi a medicina, genetica, psicologia), la soglia di significatività è molto maggiore di 1/1000 (spesso ci si accontenta di 1/20, cioè del 5%). Se un esperimento consiste nella verifica di 20 diverse ipotesi, e ci si accontenta di una significatività del 5%, è possibile che una delle ipotesi venga confermata erroneamente, spesso per ingenuità, talvolta intenzionalmente (in tal caso, si parla di p-hacking 3).

1.2.2 Correlazioni spurie

Un effetto collaterale dell'abbondanza di dati è la facilità con la quale, in assenza di un'ipotesi precisa da verificare, sia sempre possibile trovare serie di dati in apparente dipendenza l'uno dall'altro nonostante la completa estraneità⁴.

²https://en.wikipedia.org/wiki/P-value.

³Un esempio: la cioccolata accelera il dimagrimento

⁽https://io9.gizmodo.com/i-fooled-millions-into-thinking-chocolate-helps-weight-1707251800).

Più in breve: https://xkcd.com/882/ — vedere https://explainxkcd.com/882/ per chiarimenti.

⁴http://www.tylervigen.com/spurious-correlations

1.2.3 Il paradosso di Simpson

In alcuni casi, nonostante l'ipotesi da verificare sia precisa e ogni test statistico dica che i risultati sono significativi, può accadere che la conclusione sia errata semplicemente perché le nostre informazioni sono incomplete. Un esempio è il cosiddetto "paradosso di Simpson", nel quale l'assenza di una variabile esplicativa causa la formulazione di un'ipotesi opposta rispetto alla realtà dei fatti⁵.

1.3 Formalizzazione del problema dell'apprendimento automatico

Nella prima parte del corso ci occuperemo dell'apprendimento supervisionato (*supervised learning*), in cui si chiede al sistema di prevedere un esito sulla base di alcuni dati in ingresso. Ad esempio:

- date alcune misure fisiche, determinare la specie di un organismo vivente;
- date alcune informazioni su un conto bancario, determinare se un cliente sarà disposto ad accettare un certo investimento.

Assumeremo sempre che le informazioni in ingresso siano esprimibili come una tupla numerica (vettori in \mathbb{R}^n), e che l'informazione da prevedere sia invece scalare (un singolo valore).

Formalmente, possiamo descrivere il problema come segue: abbiamo un dataset costituito da m "individui" o "campioni":

$$D = \{(\boldsymbol{x}_i, y_i) : i = 1 \dots, m\}.$$

- le grandezze x_i sono gli "ingressi" del nostro algoritmo, solitamente rappresentati da tuple numeriche. Rappresentano le variabili indipendenti del sistema, quelle che possiamo misurare (o impostare) direttamente. Ad esempio delle dimensioni fisiche, informazioni di censo...
- le y_i sono le "uscite", ovvero i valori che desideriamo imparare a predire sulla base delle x_i appena citate. Possono essere numeriche (ad esempio, una probabilità, un'età) oppure categoriche (la varietà di un fiore, una risposta sì/no).

Sulla base degli esempi forniti in D, il sistema deve fornire una mappa

$$f: \mathbb{R}^n \to C$$
$$\boldsymbol{x} \mapsto y$$

che fornisca una stima (previsione, predizione) del valore di uscita y sulla base del vettore in ingresso x.

L'insieme \mathbb{R}^n , che rappresenta lo spazio in cui si trovano i dati di ingresso, è anche detto "spazio degli attributi" (o delle "feature"), dove per "attributo" si intende ciascuna delle n dimensioni che lo compongono.

L'insieme di appartenenza dell'uscita y (indicato con C qui sopra) può essere:

- variabile con continuità in un intervallo dei reali; in tal caso si parla di un problema di regressione (in inglese "regression" o, più comunemente, "fit");
- un insieme finito di valori, numerici o alfanumerici, detti *classi* o *categorie*; si parla in tal caso di un problema di *classificazione*.

1.3.1 L'addestramento e il modello

La funzione f, detta anche "modello", deve quindi rappresentare per quanto possibile una dipendenza funzionale dei valori y_1, \ldots, y_m dai corrispondenti vettori di attributi x_1, \ldots, x_m ; per essere utile, questa dipendenza deve poter essere generalizzata, ovvero applicabile anche a nuove istanze $x \in \mathbb{R}^n$ non presenti fra gli m campioni del dataset D.

⁵Si veda https://en.wikipedia.org/wiki/Simpson%27s_paradox, in particolare i primi due esempi.

Non è detto che tale dipendenza funzionale sia sempre molto precisa. Ci si potrebbe aspettare che il modello, ad esempio, fornisca sempre la risposta corretta per i campioni del dataset (cioè che $f(x_i) = y_i$ per ogni i = 1, ..., m). Questo non è sempre possibile, né desiderabile, per varie ragioni:

- non sempre il vettore delgli attributi x è perfettamente rappresentativo del campione; potrebbero essere stati tralasciati alcuni attributi importanti, quindi il sistema potrebbe essere incerto nell'attribuzione di un valore y;
- spesso i dati sono "rumorosi" (errori di misura o, peggio, di trascrizione), quindi alcuni esempi del dataset D potrebbero essere imprecisi o errati;
- vedremo che un sistema che "impara a memoria" le risposte da dare sui campioni di *D* non sarà sempre in grado di fornire risposte adeguate su un nuovo esempio; si pensi a uno studente che, invece di imparare i principi generali della materia, si limiti a studiare a memoria lo svolgimento degli esercizi.

1.4 Considerazioni sulla dipendenza funzionale

Nonostante la maggior parte delle tecniche di cui ci occuperemo consista nella determinazione di una dipendenza funzionale, cioè univoca e deterministica, non è detto che questa possa esistere.

Consideriamo ad esempio il problema di classificazione degli iris (vedere la prima esercitazione di laboratorio), in cui è chiesto di determinare la varietà di un fiore sulla base di alcune misure. È possibile che due fiori i e j di varietà diverse $(y_i \neq y_j)$ abbiano le stesse misure fisiche $(\boldsymbol{x}_i = \boldsymbol{x}_j)$, e che quindi una dipendenza funzionale non sia nemmeno possibile. Ci troviamo in presenza di un errore intrinseco, ineliminabile da qualunque tecnica di machine learning⁶. L'unico modo di eliminare questo genere d'errore è la ricerca di nuovi attributi la cui misura permetta una migliore discriminazione.

Se un dataset lega l'altezza x al peso y di una popolazione umana, è ovvio che due individui i e j possono avere la stessa altezza $(x_i = x_j)$ e pesi diversi. In questo caso, la dipendenza sarà meglio rappresentata come

$$y = f(x) + \varepsilon, \tag{1.1}$$

dove ε , che rappresenta l'errore intrinseco, è una variabile casuale con valor medio nullo $E[\varepsilon]=0$.

⁶Esistono però modelli di dipendenza probabilistica che, a fronte di un input x, forniscono una distribuzione di probabilità per il corrispondente valore di uscita.

Capitolo 2

Algoritmi di regressione

Consideriamo il dataset D per un problema di regressione con m campioni e n attributi:

$$D = \{(\boldsymbol{x}_i, y_i) : i = 1, \dots, m, \quad \boldsymbol{x}_i \in \mathbb{R}^n, \quad y_i \in \mathbb{R}\}.$$

In seguito utilizzeremo la notazione matriciale, quindi potremmo riassumere il dataset in una matrice $X = (x_{ij}) \in \mathbb{R}^{m \times n}$ le cui righe sono i singoli vettori $\boldsymbol{x}_i \in \mathbb{R}^n$, e in un vettore $\boldsymbol{y} = (y_1, \dots, y_m) \in \mathbb{R}^m$ contenente i valori della variabile dipendente.

2.1 Valutazione della bontà di un modello di regressione

SUpponiamo di aver determinato, sulla base del dataset D, un modello \hat{f} . Per ogni individuo i = 1, ..., m del nostro dataset possiamo calcolare l'errore ε_i commesso dal nostro modello rispetto al valore "vero" y_i :

$$\varepsilon_i = y_i - \hat{f}(\boldsymbol{x}_i).$$

Dato che siamo interessati a ridurre per quanto possibile la magnitudine media dell'errore, una misura molto utilizzata per valutare la bontà della funzione \hat{f} è il cosiddetto "Root Mean Square Error" (RMSE):

$$RMSE(\hat{f}) = \sqrt{\frac{1}{m} \sum_{i=1}^{m} \varepsilon_i^2} = \sqrt{\frac{1}{m} \sum_{i=1}^{m} (y_i - \hat{f}(\boldsymbol{x}_i))^2}.$$

Il problema di cercare la funzione migliore per modellare il dataset non è in generale ben definito, a meno di non limitare la ricerca a una specifica famiglia di funzioni \mathcal{F} , solitamente parametrizzata da uno o più valori reali. Il problema di trovare un buon modello può essere descritto come

$$\hat{f} = \underset{f \in \mathcal{F}}{\arg \min} \text{RMSE}(f). \tag{2.1}$$

Considerato che la radice quadrata è monotona e un fattore costante non influisce sulla minimizzazione, possiamo riscrivere (2.1) come

$$\hat{f} = \underset{f \in \mathcal{F}}{\operatorname{arg min}} \sum_{i=1}^{m} (y_i - f(\boldsymbol{x}_i))^2.$$
(2.2)

2.2 Modelli lineari: il metodo dei minimi quadrati

Un caso molto utile, e molto più generalizzabile di quanto appaia a prima vista, è quello delle funzioni lineari. Nella consueta notazione, cerchiamo una funzione della forma

$$f_{\boldsymbol{\beta}}(\boldsymbol{x}) = \boldsymbol{\beta} \cdot \boldsymbol{x} = \sum_{j=1}^{n} \beta_j x_j,$$

dove $\beta = (\beta_1, \dots, \beta_n) \in \mathbb{R}^n$ è un vettore di coefficienti reali da determinare. In questo caso, l'equazione (2.2) diventa

$$\hat{\boldsymbol{\beta}} = \underset{\boldsymbol{\beta} \in \mathbb{R}^n}{\operatorname{arg min}} \sum_{i=1}^m (y_i - \boldsymbol{\beta} \cdot \boldsymbol{x}_i)^2.$$
 (2.3)

2.2.1 Il caso scalare (n=1)

Se il dataset contiene un solo attributo x, allora il problema si riduce a determinare un singolo valore scalare β :

$$\hat{\beta} = \underset{\beta \in \mathbb{R}}{\operatorname{arg min}} \sum_{i=1}^{m} (y_i - \beta x_i)^2. \tag{2.4}$$

Per trovare il valore di β che minimizza l'RMSE, dunque, ci basta derivare la funzione in (2.4) rispetto a β e uguagliare la derivata a zero:

$$\frac{\mathrm{d}}{\mathrm{d}\beta} \sum_{i=1}^{m} (\beta x_i - y_i)^2 = 0;$$

$$2\sum_{i=1}^{m} x_i(\beta x_i - y_i) = 0;$$

$$\beta \sum_{i=1}^{m} x_i^2 - \sum_{i=1}^{m} x_i y_i = 0;$$

Quindi il valore ottimale $\hat{\beta}$ è

$$\hat{\beta} = \frac{\sum_{i=1}^{m} x_i y_i}{\sum_{i=1}^{m} x_i^2}.$$
(2.5)

Si osservi che, nella notazione matriciale introdotta a inizio capitolo, la matrice X ha una colonna e (2.5) può essere scritta in forma più compatta come

$$\hat{\beta} = \frac{X^T \mathbf{y}}{X^T X}.\tag{2.6}$$

2.2.2 Il caso vettoriale (n > 1)

Per risolvere il problema con più attributi in input, dobbiamo ritornare alla formulazione (2.3) e annullare simultaneamente tutte le derivate parziali rispetto ai coefficienti β_k , k = 1, ..., n:

$$\frac{\partial}{\partial \beta_k} \sum_{i=1}^m \left(y_i - \sum_{j=1}^n \beta_j x_{ij} \right)^2 = 0 \qquad \forall k = 1, \dots, n;$$

$$\sum_{i=1}^m \frac{\partial}{\partial \beta_k} \left(y_i - \sum_{j=1}^n \beta_j x_{ij} \right)^2 = 0;$$

$$\sum_{i=1}^m 2 \left(y_i - \sum_{j=1}^n \beta_j x_{ij} \right) x_{ik} = 0;$$

$$\sum_{i=1}^m x_{ki}^T (\mathbf{y} - X \cdot \boldsymbol{\beta})_i = 0 \qquad \forall k = 1, \dots, n.$$

In forma matriciale, le equazioni per k = 1, ..., n assumono la seguente forma:

$$X^{T}(\mathbf{y} - X\boldsymbol{\beta}) = 0,$$

$$X^{T}X\boldsymbol{\beta} = X^{T}\mathbf{y},$$

$$\boldsymbol{\beta} = (X^{T}X)^{-1}X^{T}\mathbf{y}.$$
(2.7)

Notare che se n=1 la formula appena ricavata si riduce alla (2.6).

2.2.3 Generalizzazione per funzioni non lineari

La regressione ai minimi quadrati si può utilizzare per trovare i coefficianti di qualunque combinazione lineare di funzioni. Nel caso generale, possiamo cercare i coefficienti di un modello esprimibile nella seguente forma:

$$y \sim \beta_1 \varphi_1(\mathbf{x}) + \beta_2 \varphi_2(\mathbf{x}) + \dots + \beta_\ell \varphi_\ell(\mathbf{x}),$$
 (2.8)

dove $\varphi_1(\cdot), \dots, \varphi_\ell(\cdot)$ sono ℓ "funzioni di base" (sul vettore di attributi \boldsymbol{x}) che vogliamo combinare linearmente.

Per fare questo, dalla matrice X del dataset originario otteniamo la matrice trasformata X', con m righe e ℓ colonne, la cui i-esima riga contiene i valori delle ℓ funzioni di base calcolati sulla riga x_i del dataset originario:

$$\boldsymbol{x}_i' = (\varphi_1(\boldsymbol{x}_i), \dots, \varphi_\ell(\boldsymbol{x}_i))$$

o, in forma matriciale,

$$X' = egin{pmatrix} arphi_1(oldsymbol{x}_1) & arphi_2(oldsymbol{x}_1) & \cdots & arphi_\ell(oldsymbol{x}_1) \ arphi_1(oldsymbol{x}_2) & arphi_2(oldsymbol{x}_2) & \cdots & arphi_\ell(oldsymbol{x}_2) \ dots & dots & dots & dots & dots \ arphi_1(oldsymbol{x}_m) & arphi_2(oldsymbol{x}_m) & \cdots & arphi_\ell(oldsymbol{x}_m) \end{pmatrix}$$

In questo modo, il modello (2.8) può essere riscritto come

$$y \sim \beta_1 x_1' + \beta_2 x_2' + \dots + \beta_\ell x_p'$$

e il vettore β può essere calcolato applicando la formula (2.7) alla matrice Z:

$$\boldsymbol{\beta} = (X'^T X')^{-1} X'^T \boldsymbol{y}.$$

Caso particolare: regressione affine

Ad esempio, supponiamo di voler calcolare i coefficienti β_0 e β_1 del seguente modello, con x e y scalari:

$$y \sim \beta_0 + \beta_1 x$$

dove abbiamo introdotto un termine costante, trasformando la dipendenza da lineare ad affine. Possiamo riscrivere il modello come

$$y \sim \beta_0 \varphi_0(x) + \beta_1 \varphi_1(x),$$

dove $\varphi_0(x) = x^0 = 1$ (funzione costante), mentre $\varphi_1(x) = x$ (identità). Possiamo dunque applicare l'equazione dei minimi quadrati alla matrice X' con due colonne, la prima delle quali contiene la costante 1, mentre la seconda contiene i valori originari di x:

$$X' = \begin{pmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_m \end{pmatrix}.$$

Regressione polinomiale

Più in generale, consideriamo di voler determinare i coefficienti del seguente modello polinomiale (con x scalare) di grado d:

$$y \sim \beta_0 + \beta_1 x + \beta_2 x^2 + \dots + \beta_d x^d = \sum_{i=0}^d \beta_d x^d;$$

in questo caso, le funzioni di base saranno le potenze di x:

$$\varphi_i(x) = x^i, \qquad i = 0, \dots, d.$$

La matrice X' è la seguente:

$$X' = \begin{pmatrix} 1 & x_1 & x_1^2 & \dots & x_1^d \\ 1 & x_2 & x_2^2 & \dots & x_2^d \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_m & x_m^2 & \dots & x_m^d \end{pmatrix} . \tag{2.9}$$

2.2.4 Problemi di classificazione

È possibile utilizzare la regressione polinomiale per problemi di classificazione. L'adattamento è abbastanza semplice se la categoria in uscita ha due valori. In tal caso, si possono associare due valori reali (ad esempio, ± 1) alle due classi e trattare ciò che risulta come problema di regressione. Ad esempio, se la categoria in output può assumere i valori "verde" e "rosso":

Determinato il modello $y \sim f(x)$, il suo risultato su un input x non sarà necessariamente in ± 1 , ma una semplice regola di decisione ci permetterà di stabilire il valore della classe:

$$\tilde{y} = \begin{cases} \text{rosso} & \text{se } f(\boldsymbol{x}) \ge 0 \\ \text{verde} & \text{altrimenti.} \end{cases}$$

2.3 Regressione logistica

Introduciamo la funzione sigmoide:

$$\sigma(t) = \frac{1}{1 + e^{-t}}. (2.10)$$

Come si può vedere dal suo grafico in Fig. 2.1, la funzione assume valori in (0,1); alcune proprietà utili:

$$\lim_{t \to -\infty} \sigma(t) = 0; \qquad \lim_{t \to +\infty} \sigma(t) = 1; \qquad \sigma(t) = 1 - \sigma(-t); \qquad \sigma'(t) = \sigma(t) (1 - \sigma(t)).$$

Dato che la funzione restringe la variabilità del proprio argomento all'intervallo aperto (0,1), può essere utilizzata per modellare un problema di classificazione a due classi. In particolare, se assegniamo i valori 0 e 1 alle due classi, possiamo utilizzare un modello lineare, filtrandone il risultato attraverso una sigmoide:

$$y \sim \sigma (\boldsymbol{\beta} \cdot \boldsymbol{x})$$
.

Il modello è detto $regressione \ logistica$, o $logit^1$. Dato che il risultato può variare con continuità fra 0 e 1, il modello può esprimere una probabilità.

 $^{^{1} \}verb|https://en.wikipedia.org/wiki/Logistic_regression|$

Figura 2.1: La funzione sigmoide

2.3.1 Stima dei coefficienti del modello

Proviamo a stimare il vettore dei coefficienti β che minimizza gli scarti al quadrato². Sia

$$\tilde{y}_i = \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}_i),$$

dove x_i è il vettore di attributi dell'i-esimo campione. Allora vogliamo trovare il vettore β che minimizza le somme degli scarti:

$$f(\boldsymbol{\beta}) = \sum_{i=1}^{m} (\tilde{y}_i - y_i)^2.$$

Come nel caso della regressione lineare, possiamo trovare le derivate parziali rispetto ai coefficienti:

$$\frac{\partial}{\partial \beta_k}(\boldsymbol{\beta}) = 2 \sum_{i=1}^m (\tilde{y}_i - y_i) \tilde{y}_i (1 - \tilde{y}_i) x_{ik} \qquad \forall k = 1, \dots, n.$$

L'azzeramento di tutte queste equazioni non lineari in β non porta a un sistema di equazioni risolvibili analiticamente. Per minimizzare la RMSE, dunque, utilizziamo il metodo della discesa lungo il gradiente (gradient descent)³. Ricordiamo che il gradiente di una funzione scalare in n variabili β_1, \ldots, β_n è il vettore delle derivate parziali rispetto agli argomenti:

$$\nabla f = \left(\frac{\partial f}{\partial \beta_1}, \frac{\partial f}{\partial \beta_2}, \dots, \frac{\partial f}{\partial \beta_n}\right).$$

Il gradiente di f rappresenta la direzione di massima crescita della funzione. Per minimizzare la funzione, dunque, applichiamo il seguente metodo:

- \bullet Inizializza $\boldsymbol{\beta}$ con valori casuali.
- Ripeti:
 - Calcola $\nabla f(\boldsymbol{\beta})$;
 - Sposta $\boldsymbol{\beta}$ di un piccolo passo in direzione opposta al gradiente:

$$\boldsymbol{\beta} \leftarrow \boldsymbol{\beta} + \eta \boldsymbol{\nabla} f(\boldsymbol{\beta}).$$

 $^{^2}$ Trattandosi di una stima di probabilità, il modo corretto sarebbe una stima di massima verosimiglianza (maximum likelihood), ma non introdurremo qui il concetto.

³https://en.wikipedia.org/wiki/Gradient_descent

Il parametro η , detto learning rate, serve a evitare di spostare troppo rapidamente β : l'approssimazione che lega il gradiente alla direzione di discesa vale solo localmente, e salti troppo ampi possono causare peggioramenti. Versioni più sofisticate dell'algoritmo di base prevedono che η possa variare in base ai risultati ottenuti, oppure che diminuisca col tempo. Il numero di iterazioni del metodo può essere impostato a priori; in alternativa, una condizione di terminazione potrebbe essere il raggiungimento di un livello di errore prefissato, o la mancanza di miglioramenti significativi da un certo numero di iterazioni.

2.3.2 Utilizzo del modello

Previsioni di classi

Il modello logistico può essere usato per restituire una probabilità. Nel caso considerato, \tilde{y} stima la probabilità $\Pr(y=1)$. Se vogliamo invece che il modello restituisca un valore di classe (0 oppure 1), dobbiamo fissare un valore di soglia $\theta \in [0,1]$ ed applicare una funzione di decisione. Dato il vettore di attributi \boldsymbol{x} e il corrispondente valore ottenuto dal modello logit $\tilde{y} = \sigma(\boldsymbol{x} \cdot \boldsymbol{\beta})$, la previsione sarà data dalla funzione a soglia:

$$\operatorname{Previsione}_{\theta}(\boldsymbol{x}) = \begin{cases} 0 & \text{se } \sigma(\boldsymbol{x} \cdot \boldsymbol{\beta}) < \theta \\ 1 & \text{altrimenti.} \end{cases}$$
 (2.11)

Capitolo 3

Algoritmi di classificazione

3.1 K-Nearest-Neighbors (KNN)

Supponiamo di avere un problema di classificazione (y_i da un insieme finito). Se abbiamo un dataset $D = \{(x_i, y_i)\}$ di esempi e ci viene fornito un nuovo elemento x per il quale prevedere il valore di y, possiamo decidere che la classe dell'elemento incognito sia uguale alla classe dell'elemento più simile che troviamo in D:

- cerchiamo l'elemento del dataset $(x_i, y_i) \in D$ in cui x_i è più simile al nuovo x;
- assumiamo che la classe dell'elemento incognito sia uguale alla classe di quest'elemento: $y = y_i$.

La motivazione di quest'algoritmo è che la classe non è distribuita casualmente fra gli elementi (il che renderebbe completamente inutile qualunque tentativo di prevederla); al contrario, è probabile che elementi simili in \boldsymbol{x} siano simili anche in y. In altre parole, assumiamo una certa "continuità" nella mappa $\boldsymbol{x} \mapsto y$.

Per ovviare a possibili errori nel dataset e per "ammorbidire" i risultati nelle sone di confine fra una classe e l'altra, possiamo prendere più di un elemento "simile" a x e scegliere la classe più rappresentata al loro interno¹:

- sia $N = \{i_1, \dots, i_K\}$ l'insieme degli indici dei K elementi del dataset più simili a \boldsymbol{x} ;
- scegliere per y la classe che appare più spesso nella sequenza y_{i_1}, \ldots, y_{i_K} .

La "somiglianza" di un elemento del dataset x_i con l'elemento incognito x può essere determinata in base alla loro distanza euclidea:

$$d(\boldsymbol{x}_i, \boldsymbol{x}) = \|\boldsymbol{x}_i - \boldsymbol{x}\|_2.$$

Ovviamente, due elementi sono tanto più simili quanto la loro distanza è piccola. Si veda un esempio di implementazione in Python nella seconda esercitazione di laboratorio (capitolo 2).

¹https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm

Capitolo 4

Valutare la bontà di un modello

In questo capitolo raccoglieremo varie osservazioni su come valutare se un modello, determinato sulla base di un insieme di esempi, è utile allo scopo di effettuare previsioni su dati nuovi oppure no.

Assumiamo, per ora, che il dataset complessivo D sia stato ripartito in due sottoinsiemi:

- un sottoinsieme T, detto di addestramento (training), utilizzato per costruire il modello;
- \bullet un sottoinsieme V, detto di validazione, usato per valutare se il modello è adeguato.

I due sottoinsiemi costituiscono una partizione di D (la loro unione è D e la loro intersezione è nulla). Per valutare la bontà di un algoritmo, utilizzeremo i dati contenuti in D per costruire il modello f. Valuteremo poi il modello f sui dati di V. Si osservi che i dati di V non sono utilizzati nella definizione del modello, ma sono "tenuti da parte" per valutarlo.

4.1 Criteri di valutazione

4.1.1 Valutare un modello di regressione

Supponiamo che la variabile dipendente y sia un valore reale che varia con continuità in un intervallo. Dato il modello f, costruito in base agli esempi contenuti in T, e un esempio di validazione $(x,y) \in V$, l'errore che il modello commette su questo campione può essere definito come la differenza fra il valore previsto f(x) e il valore effettivo y:

$$\epsilon = f(\boldsymbol{x}) - y.$$

L'errore quadratico medio (root mean square error, RMSE) è calcolato su tutti i campioni dell'insieme di validazione:

RMSE =
$$\sqrt{\frac{1}{|V|} \sum_{(\boldsymbol{x},y) \in V} (f(\boldsymbol{x}) - y)^2}$$
.

Trattandosi di un errore, il modello è tanto migliore quanto questo valore è piccolo. Si veda ad esempio la terzaesercitazione di laboratorio (capitolo 3).

4.1.2 Valutare un modello di classificazione

Nel caso della classificazione, l'errore commesso su un singolo esempio di validazione non varia con continuità, ma è binario (o c'è, o non c'è).

Accuratezza

Una prima valutazione possibile è il conteggio del numero di errori commessi dal modello (rapportato alla sua numerosità). Si tratta del cosiddetto "tasso di errore" (error ratio):

Tasso d'errore =
$$\frac{|\{(\boldsymbol{x},y) \in V : f(\boldsymbol{x}) \neq y\}|}{|V|}.$$

La misura complementare al tasso di errore è detta accuratezza (accuracy) e conta il numero di previsioni corrette, sempre rapportato al numero totale di esempi in V:

$$\text{Accuratezza} = \frac{|\{(\boldsymbol{x},y) \in V : f(\boldsymbol{x}) = y\}|}{|V|} = 1 - \text{Tasso d'errore}.$$

Matrice di confusione

Non sempre gli errori hanno la stessa importanza. Si pensi al problema di classificare i funghi tra "velenosi" e "mangerecci". Un errore in un senso comporta lo spreco di un fungo; un errore nell'altro senso comporta una possibile intossicazione. Un modello con un'accuratezza del 99% può essere ottimo, ma quell'1% di errore può avere conseguenze molto diverse.

Immaginiamo che il modello debba prevedere la velenosità di un fungo. Alla domanda "questo fungo è velenoso?", il sistema può dare una risposta positiva o negativa. La risposta fornita può essere corretta oppure no. Possiamo dunque distribuire le previsioni del nostro modello nella seguente "matrice (o tabella) di confusione" 1:

		Prev	isione
		Sì	No
Risposta	Sì	TP	FN
corretta	No	FP	TN

Le quattro caselle della tabella contano il numero di previsioni positive corrette (veri positivi, true positives, TP), risposte positive errate (falsi positivi, false positives, FP), risposte negative errate (falsi negativi, false negatives, FN) e risposte negative corrette (veri negativi, true negatives, TN).

Si noti che, nella nomenclatura, i termini "positivo" e "negativo" si riferiscono alla previsione fornita dal modello, mentre i termini "vero" e "falso" fanno riferimento alla correttezza di queste risposte risposte risposte esatte contenute in V, note al sistema di valutazione, ma non al modello. Si tratta di contatori, e

$$TP + FP + TN + FN = |V|$$
.

La matrice di confusione contiene tutte le informazioni necessarie a ricavare numerose stime di bontà di un classificatore. Ad esempio, l'accuratezza sopra definita può essere definita come

$$\label{eq:accuratezza} Accuratezza = \frac{TP + TN}{TP + TN + FP + FN}.$$

Sensibilità

Possiamo ottenere anche misure più "specializzate"; ad esempio, nel caso del modello per la classificazione dei funghi vogliamo essere sicuri che il sistema non fornisca falsi negativi (che non risponda di "no" in presenza di un fungo velenoso), cioè che colga tutti gli esempi positivi. In questo caso ci interessa un modello con la sensibilità (sensitivity) il più elevata possibile:

$$Sensibilit\grave{a} = \frac{TP}{TP + FN}.$$

Questa misura trascura completamente i funghi "negativi" (mangerecci) e si limita a contare quante volte, fra i funghi "positivi" (velenosi) il modello ha fornito la risposta corretta. Altrimenti detto, questa misura considera solo la prima riga della tabella di confusione.

Si osservi che è facile realizzare un modello con sensibilità massima: è sufficiente che risponda "Sì" a ogni istanza che gli viene presentata. È facile, insomma, realizzare un sistema che elimina tutti i funghi velenosi: basta buttarli via tutti. Le istanze positive saranno tutte individuate, e la sensibilità sarà del 100%. La sensibilità, quindi, è una misura poco utile in sé, e va sempre associata a qualche altra misura nella valutazione della bontà del modello.

In alcuni contesti, la sensibilità è detta "Recall", in quanto misura della capacità del modello di "richiamare" tutti i casi positivi.

¹https://en.wikipedia.org/wiki/Confusion_matrix

Precisione

Un'altra misura, utile in altre situazioni (ad esempio nella valutazione dei risultati forniti da un motore di ricerca), è la *precisione* (precision):

$$Precisione = \frac{TP}{TP + FP}.$$

Questa misura conta quante volte le risposte positive del modello sono corrette.

Anche in questo caso è possibile realizzare un sistema con precisione massima: basta che il modello risponda "Sì" soltanto nei casi in cui è assolutamente certo della risposta (ad esempio, quando vede un'*Amanita Muscaria* rossa a pallini bianchi), rispondendo sempre "No" in caso di incertezza. Tutte le sue risposte positive saranno corrette (con alta probabilità) e la precisione sarà pari al 100%.

Misure combinate

Per poter tenere conto sia della precisione che della sensibilità di un modello in un'unica misura, si utilizza la F_1 -score, calcolata come media armonica delle due:

$$F_{1}\text{-score} = \frac{1}{\frac{1}{\frac{\text{Sensibilit} \grave{a} + \frac{1}{\text{Precisione}}}}} = \frac{2 \cdot \text{Sensibilit} \grave{a} \cdot \text{Precisione}}{\text{Sensibilit} \grave{a} + \text{Precisione}}.$$

La F_1 -score è un caso particolare (con pesi unitari) della F_{β} -score, in cui β^2 è il peso della sensibilità. Un'altra misura frequentemente utilizzata è il coefficiente di correlazione di Matthews (Matthews correlation coefficient, MCC):

$$MCC = \frac{TP \cdot TN - FP \cdot FN}{\sqrt{(TP + FP)(TP + FN)(TN + FP)(TN + FN)}}$$

A differenza delle altre misure, il MCC varia in [-1, 1].

Classificazione a più di due classi

La definizione di matrice di confusione può facilmente essere generalizzata a più di due classi, con una riga e una colonna per ogni valore di classe; la tabella ha una casella per ogni combinazione di valore predetto e valore reale; la diagonale contiene le previsioni corrette.

Solitamente, si considera a turno ogni classe come "positiva" e tutte le altre negative, ottenendo quindi una diversa matrice di confusione binaria, con relative misure di precisione e sensibilità per ogni classe.

4.2 Addestramento e validazione

La definizione degli insiemi di addestramento (training) e di validazione non è semplice. Si vorrebbe che l'insieme di training fosse il più vasto possibile, in modo da ottenere un modello attendibile, ma è necessario che l'insieme di validazione non sia troppo piccolo, altrimenti le misure risentono di una varianza eccessiva. Esistono varie tecniche di suddivisione del dataset, dette di *cross-validation*².

4.2.1 K-fold cross-validation

Si ripartisce il dataset in K insiemi di uguale numerosità (± 1), detti fold, $D = F_1 \cup \cdots \cup F_K$.

- Per i = 1, ..., K
 - Sia $T_i \leftarrow D \setminus F_i$ (tutti i fold tranne l'i-esimo sono usati come apprendimento);

 $^{^2 \}verb|https://en.wikipedia.org/wiki/Cross-validation_(statistics)|$

- Addestrare il modello f_i usando T_i ;
- Utilizzare il modello f_i per prevedere i valori "tenuti da parte": $\tilde{y} = f_i(x)$, $x \in F_i$ (usando dunque l'*i*-esimo fold F_i , tenuto fuori dalla fase di apprendimento, come insieme di validazione).
- Calcolare l'errore di predizione.

Si tratta di un metodo statisticamente robusto e molto utilizzato. Valori comuni per il parametro K sono K=5 e K=10.

Stratificazione

Se il problema è di classificazione e una delle classi è molto meno frequente delle altre, può accadere che la "concentrazione" della classe meno numerosa vari molto da un fold all'altro, comportando stime dell'errore molto rumorose. Lo stesso effetto si può avere anche con classi bilanciate, ma dataset piccoli.

In questi casi è opportuno che la procedura di suddivisione del dataset nei diversi fold mantenga costanti i rapporti di numerosità delle varie classi, ad esempio operando la suddivisione separatamente per ciascuna classe. Si parla in questo caso di suddivisione stratificata³.

4.2.2 Una soluzione estrema: l'approccio leave-one-out

Invece di utilizzare una singola partizione come insieme di addestramento, ripetiamo l'addestramento m volte, ogni volta tenendo da parte un diverso campione da usare per la validazione. Stimiamo l'errore su tutte le previsioni effettuate dai diversi modelli.

- Per i = 1, ..., m
 - Sia $T_i \leftarrow D \setminus \{(\boldsymbol{x}_i, y_i)\}$ (tutto il dataset tranne l'*i*-esima riga è usato come addestramento);
 - Addestrare il modello f_i usando T_i ;
 - Usare il modello f_i per prevedere il valore "tenuto da parte": $\tilde{y}_i = f_i(\boldsymbol{x}_i)$.
- Calcolare l'errore di predizione.

La metodologia leave-one-out è un caso estremo di K-fold cross-validation con K=m.

Vantaggi: ogni addestramento utilizza quasi l'intero dataset, quindi è rappresentativo di tutti i dati raccolti; la validazione copre l'intero dataset, quindi è una stima molto robusta dell'errore che ci si può aspettare su nuovi dati. Svantaggi: richiede l'addestramento di m modelli diversi, con m potenzialmente molto elevato.

³https://en.wikipedia.org/wiki/Stratified_sampling, parte introduttiva

Capitolo 5

Pretrattare i dati

5.1 K-nearest-neighbors

Abbiamo già visto questo algoritmo alla Sezione 3.1. In questa sezione descriveremo alcuni "trucchi" per applicare l'algoritmo a problemi con caratterisctiche diverse.

5.1.1 Input categorici

Finora abbiamo sempre assunto che il vettore degli attributi (ingresso) sia sempre composto di quantità reali: $x \in \mathbb{R}^n$. Può accadere però che alcune osservazioni non riguardino grandezze continue, ma qualità discrete e non ordinate (colore, sesso, specie).

L'algoritmo KNN si basa però sul calcolo di una distanza in uno spazio \mathbb{R}^n , quindi è necessario convertire le grandezze categoriche in una o più grandezze reali. Il metodo più intuitivo consiste nel sostituire a ogni colonna categorica del dataset tante colonne reali quanti sono i valori che la categoria può assumere, e utilizzare una rappresentazione unaria per decidere i valori delle colonne sostitutive.

Ad esempio, supponiamo che il seguente dataset descriva dei fiori, con le seguenti osservazioni: lunghezza del petalo (continua), colore (classi "rosso", "giallo" o "azzurro"), altezza (continua), presenza di spine ("sì", "no"). Ecco come un dataset può essere trasformato in questo caso:

5.4

5.6 6.0

1	2.1	rosso	5.0	no			/2.1	1
2	3.2	azzurro	5.4	no			3.2	(
3	2.6	rosso	7.2	sì	_	X =	2.6	1
4	1.9	giallo	4.4	no	\Rightarrow	$\Lambda =$	1.9	(
5	3.0	azzurro	5.6	sì			3.0	(
6	2.5	giallo	6.0	no			$\sqrt{2.5}$	(
		•					-	

La colonna del colore è stata spezzata in tre colonne numeriche; la prima codifica il valore "rosso" (vale 1 se l'attributo categorico è "rosso", 0 altrimenti), e così via. Come eccezione, se l'attributo è binario può essere trasformato in una sola colonna numerica, nella quale 0 e 1 codificano i due possibili valori categorici.

5.2 Normalizzazione e standardizzazione dei dati

Osserviamo che spesso, in un dataset, le diverse colonne di ingresso hanno diversi ordini di grandezza, con valori che pososno spaziare nel campo delle unità o nelle migliaia a seconda del loro significato e delle unità di misura in cui sono espresse. Per evitare problemi di instabilità numerica, è spesso importante "normalizzare" le colonne del dataset in modo che i valori abbiamo lo stesso intervallo di variabilità.

5.2.1 Normalizzazione

Il caso più semplice è quello in cui si porta una colonna di dati a variare nell'intervallo [0,1]. Data la colonna $j=1,\ldots,n$ del nostro dataset, siano

$$m_j = \min_{i=1,...,m} x_{ij}; \qquad M_j = \max_{i=1,...,m} x_{ij}$$

il minimo e il massimo della colonna j. La normalizzazione della matrice avviene dunque con la seguente mappa affine:

$$x'_{ij} = \frac{x_{ij} - m_j}{M_j - m_j}.$$

In alcuni casi, il valore 0, anche se non compare mai nella matrice, ha un significato particolare e si desidera mantenerlo. Allora, è sufficiente porre $m_i = 0$.

5.2.2 Standardizzazione

Un difetto della normalizzazione è la sua sensibilità agli "outlier": se nella colonna è presente un valore molto più grande degli altri, questo viene mappato sul valore normalizzato 1, mentre tutti gli altri valori sono mappati vicino allo zero. Se si desidera una tecnica più "morbida", è possibile ricorrere alla "standardizzazione", cioè si riporta la colonna a una distribuzione di media nulla e varianza unitaria. Siano, per ogni colonna j = 1, ..., n

$$\mu_j = \frac{1}{m} \sum_{i=1}^m x_{ij}; \qquad \sigma_j = \sqrt{\frac{1}{m} \sum_{i=1}^m (x_{ij} - \mu_j)^2}$$

la media e la deviazione standard dei dati della colonna j. La standardizzazione avviene con la seguente mappa affine:

$$x'_{ij} = \frac{x_{ij} - \mu_j}{\sigma_i}.$$

5.2.3 Insiemi di validazione

Un'avvertenza: se il dataset è suddiviso fra insiemi di addestramento e validazione, bisogna assicurarsi che i minimi m_j e i massimi M_j siano calcolati soltanto sulle righe di addestramento. Infatti, i valori dell'insieme di validazione non devono influire in alcun modo nel training. Gli stessi minimi e massimi andranno poi utilizzati anche nella normalizzazione dei valori di validazione, che potrebbero quindi uscire dall'intervallo [0,1].

In generale, una volta ottenuti i parametri per la normalizzazione $(m_j \in M_j)$ o per la standardizzazione $(\mu_j \in \sigma_j)$, è fondamentale ricordarli in modo da applicare le stesse trasformazioni anche a nuovi insiemi di dati.

Parte II Esercitazioni di laboratorio

Lettura e utilizzo di un semplice dataset

1.1 Scopo dell'esercitazione

- Scaricare un dataset da un archivio internet e importarlo in uno script Python;
- creare un modello utilizzando funzioni di libreria;
- generare semplici rappresentazioni grafiche del dataset;
- scrivere un primo, semplice, algoritmi di machine learning.

La creazione del modello avviene semplicemente tramite la chiamata a opportune funzioni, utilizzate a "scatola chiusa", senza conoscerne il funzionamento interno.

1.2 Script

Il dataset utilizzato in quest'esercitazione è iris.data:

https://archive.ics.uci.edu/ml/datasets/Iris.

Lo script completo e commentato è accessibile dalla pagina web del corso:

https://disi.unitn.it/~brunato/AA/iris.py.

1.3 Osservazioni

Lo script utilizza la libreria pandas per leggere e trattare il dataset, la libreria scikit-learn per creare e utilizzare il modello, e la libreria matplotlib per visualizzare i grafici.

Il modello di previsione (una support vector machine) viene addestrato sull'intero dataset e valutato su alcuni vettori di esempio. Notare che l'addestramento e l'utilizzo del modello avvengono completamente alla cieca: nelle prossime lezioni impareremo alcune metodologie per valutare la bontà di un modello.

Dopo aver creato e provato il modello, lo script disegna un grafico che rappresenta la distribuzione di due coordinate del dataset in base alla varietà. Due possibili grafici sono raffigurati in Figura 1.1. Osservare come il problema di classificazione sia, tutto sommato, molto semplice: i dati sono ben distinti, in particolare la varietà *Iris setosa* è ben separata dalle altre due. L'uso simultaneo delle quattro coordinate dovrebbe essere sufficiente a distinguere anche le altre due varietà.

Infine, lo script contiene una funzione che, dato un dataset (X, y) e un vettore di misure incognite x, cerca l'elemento di X più vicino a x e ne restituisce la classe. Questo tipo di classificatore, detto nearest neighbor, sarà ulteriormente esaminato nelle prossime lezioni.

Figura 1.1: Diagramma a dispersione: distribuzione delle dimensioni dei sepali (sinistra) e dei petali (destra) in base alla varietà di iris.

K-Nearest Neighbors e minimi quadrati a una dimensione

2.1 Scopo dell'esercitazione

• Realizzare due semplici algoritmi di machine learning, uno adatto a un problema di classificazione e uno per la regressione.

2.2 Script

Il dataset utilizzato in quest'esercitazione è iris.data:

https://archive.ics.uci.edu/ml/datasets/Iris.

Un pacchetto completo e commentato contenente l'implementazione dei due algoritmi è accessibile dalla pagina web del corso:

https://disi.unitn.it/~brunato/AA/ml.py.

Uno script che utilizzale funzioni definite nel pacchetto

https://disi.unitn.it/~brunato/AA/iris2.py.

2.3 Osservazioni

I diagrammi realizzati la scorsa volta (Fig. 1.1) mostrano come le dimensioni (larghezza e lunghezza) dei petali siano correlate. Per provare i minimi quadrati a una dimensione, dunque, abbiamo scelto quelle due colonne del dataset.

In Figura 2.1, vediamo il modello lineare sovrapposto ai dati. Osserviamo che il modello è penalizzato dall'assenza di un termine costante: la retta è obbligata a passare per l'origine, quindi non riesce a "passare in mezzo ai dati" nel modo migliore. Una generalizzazione del modello permetterà di ovviare al problema.

Figura 2.1: Diagramma a dispersione: distribuzione delle dimensioni dei petali (punti) e retta di regressione.

Regressione polinomiale e suddivisione del dataset

3.1 Scopo dell'esercitazione

- Realizzare un modello lineare a più dimensioni in base al metodo dei minimi quadrati come descritto in 2.2.2.
- Utilizzare il modello per effettuare una regressione polinomiale come descritto in 2.2.3.
- Valutare la bontà del modello polinomiale su un dataset semplice.

3.2 Script

Il dataset utilizzato in quest'esercitazione è iris.data:

```
https://archive.ics.uci.edu/ml/datasets/Iris.
```

Un pacchetto completo e commentato contenente l'implementazione dei due algoritmi è accessibile dalla pagina web del corso:

```
https://disi.unitn.it/~brunato/AA/ml.py.
```

Uno script che utilizza le funzioni definite nel pacchetto

```
https://disi.unitn.it/~brunato/AA/iris3.py.
```

Lo script suddivide il dataset in due parti, una per l'addestramento del modello e una per la sua validazione.

3.3 Osservazioni

Si osservi che, anche se il modello polinomiale può avere un grado arbitrario al di sopra di un certo grado si verificano fenomeni di instabilità numerica, con l'RMSE di addestramento che cresce al crescere dell'esponente (il che non dovrebbe accadere se si lavorasse con precisione infinita). La matrice delle potenze, infatti, è molto mal condizionata (contiene valori che spaziano su molti ordini di grandezza).

In Figura 3.1 vediamo quattro casi. Il grado 0 dà luogo a una funzione costante che si attesta sulla media delle y di addestramento. Il grado 1, a differenza di quello visto nella precedente esercitazione, comprende anche un termine noto, quindi non è più vincolato a passare per l'origine. Il polinomio di grado 3 iniia già a manifestare alcune stranezze: la corrispondenza non è sempre crescente. Infine, il polinomio di grado 7 si trova evidentemente a inseguire alcune fluttuazioni statistiche del dataset che non hanno nulla a che vedere con la struttura della popolazione nel suo complesso.

Figura 3.1: Diagramma a dispersione: distribuzione delle dimensioni dei petali (punti) e polinomi di regressione di grado 0, 1, 3 e 7. I polinomi sono determinati esclusivamente sul sottoinsieme di addestramento.

Eseguendo lo script per gradi crescenti, si può notare come, in generale, l'errore sull'insieme di addestramento tenda a scendere. L'errore sul sottoinsieme di validazione, invece, non solo smette presto di scendere, ma ha la tendenza a risalire al crescere del grado del polinomio. Questo perché il sistema, nel cercare di apprendere caratteristiche sempre più "minute" del dataset, perde la capacità di generalizzare.

Regressione logistica

4.1 Scopo

Dato un dataset di classificazione, con due classi rappresentate dai valori 0 e 1, calcolare un modello logistico.

4.2 Procedimento

Utilizziamo il dataset *Blood Transfusion Service Center*¹, che riporta alcuni parametri relativi ai donatori di sangue (mesi dall'ultima donazione, mesi dalla prima donazione, numero di donazioni, quantità di sangue donato) e vi associa una variabile binaria che dice se il donatore si è presentato a donare nuovamente.

Normalizzazione

Osserviamo che le diverse colonne di ingresso hanno diversi ordini di grandezza: alcune hanno valori nel campo delle unità, altre nelle migliaia. Per evitare problemi di instabilità numerica, possiamo normalizzare le colonne del dataset in modo che i valori abbiano lo stesso intervallo di variabilità, [0,1]. Ci limitiamo a riscalare i valori. Data la colonna $j=1,\ldots,n$, sia

$$M_j = \max_{i=1,\dots,m} x_{ij}.$$

La normalizzazione della matrice avviene con la seguente mappa lineare:

$$x_{ij} \mapsto \frac{x_{ij}}{M_j}.$$

4.2.1 Discesa lungo il gradiente

Come abbiamo visto, non è possibile trovare i valori ottimali dei coefficienti in forma chiusa. Utilizziamo dunque il metodo della discesa lungo il gradiente. Impostiamo un valore iniziale della learning rate η . Ad ogni passo, valutiamo sia l'RMSE sul training set, sia quello sul validation set.

Gradiente adattivo

Per migliorare le prestazioni, rendiamo la learning rate variabile a seconda dell'andamento della discesa. Ogni volta che uno spostamento con tasso η ha successo, ne aumentiamo il valore del 10%. Ogni volta che un passo troppo grande fa peggiorare la situazione, dimezziamo η .

¹https://archive.ics.uci.edu/ml/datasets/Blood+Transfusion+Service+Center

4.3 Script

Il codice dello script si trova alla pagina web del corso:

https://disi.unitn.it/~brunato/AA/logit.py.

Parte III Domande ed esercizi

Appendice A

Domande teoriche e spunti di riflessione

Questo capitolo raccoglie alcune domande di autovalutazione per verificare autonomamente la comprensione degli argomenti del corso.

A.1 Domande a risposta aperta

In questa sezione sono raccolte domande a risposta aperta, da utilizzare come stimolo alla riflessione su alcuni argomenti del corso

A.1.1 Introduzione alla Data Science

Prerequisiti e modello di dati

- So descrivere il formato CSV? E XML?
- So interrogare un database relazionale?
- So calcolare la media e la varianza di una serie di dati numerici?

Formalizzazione

- Qual è la distinzione fra un problema di classificazione e uno di predizione?
- Perché in generale dobbiamo assumere che le x siano un vettore, mentre non si perde in generalità se si considerano solo y scalari?
- Perché non si punta sempre a un modello in grado di riprodurre perfettamente gli output dell'insieme con cui è addestrato?
- Perché il valor medio di ε in (1.1) è nullo?
- Perché abbiamo usato KNN come esempio per problemi di classificazione e non di regressione?
 Perché, viceversa, non abbiamo usato la regressione polinomiale per un problema di classificazione?

A.1.2 Algoritmi di machine learning

Modelli lineari, minimi quadrati

• Ho dimestichezza con la notazione vettoriale e matriciale?

- Riesco a riprodurre i passaggi matematici della soluzione del problema ai minimi quadrati nel caso scalare?
- E nel caso multidimensionale?
- Perché le $\phi_i(\cdot)$ si chiamano "funzioni di base"?

A.1.3 Metodologia

- Perché è importante che i sottoinsiemi di addestramento T e di validazione V costituiscano una partizione del dataset D?
- So motivare i termini "Sensibilità" e "Precisione"?
- \bullet Perché la K-fold cross validation è così utilizzata?
- Quali accorgimenti sono importanti per una buona cross-validation, soprattutto in condizioni estreme?

A.2 Domande a risposta multipla

In questa sezione raccogliamo alcune domande a risposta multipla. Ogni domanda ha una sola risposta "corretta", anche se in alcuni casi è possibile che qualche ambiguità causi incertezze.

- 1. Quando si dice che un sistema di machine learning è "overfitting"?
 - (a) Quando genera previsioni sistematicamente troppo alte.
 - (b) Quando è troppo specializzato sui dati di addestramento e non è in grado di generare previsioni adeguate su dati nuovi.
 - (c) Quando è stato addestrato su un insieme di addestramento troppo ampio e restano pochi dati per validarlo.
- 2. Quanti coefficienti vanno determinati un una regressione polinomiale di secondo grado in una variabile?
 - (a) Quattro.
 - (b) Tre.
 - (c) Cinque.
- 3. Quale misura indica il numero di previsioni corrette per un modello di classificazione?
 - (a) Accuratezza.
 - (b) Precisione.
 - (c) Sensibilità.
- 4. Perché è preferibile che gli insiemi di addestramento e di validazione siano disgiunti?
 - (a) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
 - (b) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
 - (c) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
- 5. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Mappa il valore reale in uscita sull'intervallo [0, 1].

- (b) Determina un valore di soglia per la decisione della classe di uscita.
- (c) Decide la classe di uscita.
- 6. Come può essere definita una funzione sigmoide?
 - (a) $\frac{1}{1+e^{-t}}$.
 - (b) $\frac{e^t}{e^t+1}$.
 - (c) In entrambi i modi.
- 7. Quale misura occorre massimizzare per ridurre il numero di falsi negativi per un modello di classificazione?
 - (a) Precisione.
 - (b) Sensibilità.
 - (c) Accuratezza.
- 8. Quando una partizione di un dataset si dice stratificata?
 - (a) Quando i campioni di ciascun sottoinsieme della partizione si trovano nello stesso ordine in cui compaiono nel dataset originale.
 - (b) Quando le numerosità dei diversi valori della classe di uscita nei sottoinsiemi della partizione sono approssimativamente uguali a quelle dell'intero dataset.
 - (c) Quando campioni simili vengono messi di preferenza nella stessa partizione.
- 9. È possibile utilizzare KNN per la classificazione se la classe in uscita ha più di due valori?
 - (a) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
 - (b) Sì, in quanto la funzione di decisione si basa sul valore di maggioranza, indipendentemente dal loro numero.
 - (c) No, è adatto solo a problemi di regressione.
- 10. In cosa consiste la K-fold cross-validation?
 - (a) Si separano i campioni in K gruppi distinti che si usano a rotazione per la validazione.
 - (b) Si usano K campioni alla volta per l'addestramento e i restanti per la validazione.
 - (c) Si separano gli attributi di ingresso in K gruppi distinti che si usano a rotazione per la validazione.
- 11. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare il valore ottimale di un classificatore KNN.
 - (b) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
 - (c) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
- 12. A cosa serve normalizzare le colonne di un dataset?
 - (a) A eguagliare gli intervalli di variabilità delle colonne.
 - (b) A eliminare eventuali elementi uguali a zero.
 - (c) A rimuovere eventuali valori negativi.

Appendice B

Esercizi

Esercizio 1

Un modello di previsione è addestrato a valutare la presenza di una specifica patologia in un paziente sulla base di alcuni attributi.

Il modello viene valutato su una popolazione di pazienti per i quali l'effettiva presenza della patologia è stata controllata da un medico, ottenendo i seguenti responsi:

Paziente	1	2	3	4	5	6	7	8	9	10
Patologia	Sì	No	No	Sì	Sì	No	No	Sì	No	Sì
Previsione	Sì	No	Sì	Sì	Sì	No	No	No	No	Sì
	ı									
Paziente	11	12	13	14	15	16	17	18	19	20
Patologia	No	No	No	Sì	Sì	No	Sì	No	No	Sì
Previsione	Sì	No	No	No	Sì	No	Sì	No	Sì	Sì

La riga "Patologia" riporta il responso del medico, da considerarsi sempre corretto; la riga "Previsione" riporta la valutazione del modello.

- 1.1) Calcolare la matrice di confusione dell'esperimento.
- 1.2) Calcolare le varie misure considerate: accuratezza, sensibilità, precisione, F_1 -score del modello.

Soluzione 1

1.1) Contiamo quante volte compare ciascuna delle quattro combinazioni "Sì/Sì" (TP), "Sì/No" (FN), "No/Sì" (FP), "No/No" (TN):

		Pre	visione
		Sì	No
Patologia	Sì	7	2
i atologia	No	3	8

1.2)
$$\text{Accuratezza} = \frac{7+8}{20} = \frac{3}{4} = 0,75; \qquad \text{Sensibilità} = \frac{7}{7+2} = \frac{7}{9} \approx 0,78;$$

$$\text{Precisione} = \frac{7}{7+3} = \frac{7}{10} = 0,7; \qquad F_1\text{-score} = \frac{2 \cdot \frac{7}{9} \cdot \frac{7}{10}}{\frac{7}{9} + \frac{7}{10}} = \frac{14}{19} \approx 0,74.$$

Possiamo osservare che in un sistema diagnostico medico i falsi negativi sono particolarmente gravi. Infatti, mentre una diagnosi falsamente positiva è solitamente corretta da esami ulteriori, una diagnosi negativa rischia di non avere seguito e di lasciar progredire la patologia. È dunque necessario prestare particolare attenzione alla casella FN=2.

È dato il seguente dataset (m = 4 campioni, x e y scalari):

$$\begin{array}{c|cccc} x & y \\ 1 & 6 \\ 2 & 9 \\ 3 & 5 \\ 4 & 12 & 6 \end{array}$$

Determinare il coefficiente β del modello lineare

$$y \sim \beta x$$

che minimizza l'errore quadratico medio rispetto ai dati forniti.

Soluzione 2

Vogliamo determinare il valore di β che minimizza la seguente somma di scarti al quadrato:

$$f(\beta) = (6\beta - 2)^2 + (9\beta - 5)^2 + (5\beta - 3)^2 + (12\beta - 6)^2.$$

Deriviamo f rispetto a β ed eguagliamo a zero:

$$\frac{\mathrm{d}}{\mathrm{d}\beta}f(\beta) = 2 \cdot 6 \cdot (6\beta - 2) + 2 \cdot 9 \cdot (9\beta - 5) + 2 \cdot 5 \cdot (5\beta - 3) + 2 \cdot 12 \cdot (12\beta - 6) = 0.$$

Semplificando i fattori pari a 2 in tutti i termini:

$$36\beta - 12 + 81\beta - 45 + 25\beta - 15 + 144\beta - 72 = 286\beta - 144 = 0$$

infine

$$\beta = \frac{144}{286} = \frac{72}{143} \approx 0,503.$$

Osserviamo infatti che i valori di y sono sempre vicini alla metà di x, quindi è prevedibile un valore di β vicino a 1/2.

Nello stesso contesto dell'esercizio 1, supponiamo che il modello di previsione sia sostituito da un modello logistico che restituisce la probabilità che la patologia sia positiva:

i	1	2	3	4	5	6	7	8	9	10
y_i	Sì	No	No	Sì	Sì	No	No	Sì	No	Sì
$ ilde{y}_i$.7	.4	.6	.8	.7	.1	.4	.6	.5	.8
	'									
i	11	12	13	14	15	16	17	18	19	20
$\overline{y_i}$	No	No	No	Sì	Sì	No	Sì	No	No	Sì
			.4							

Per rispondere "Sì" oppure "No", il sistema si basa su un valore di soglia θ preimpostato. La previsione sarà:

 $\text{Previsione}_i = \begin{cases} \text{Si} & \text{se } \tilde{y}_i \ge \theta \\ \text{No} & \text{altrimenti.} \end{cases}$

- **3.1)** Supponiamo che il sistema decida di efettuare una previsione positiva se il risultato del modello logistico è maggiore o uguale a $\theta = 0.5$. Ricavare la corrispondente matrice di confusione e i principali criteri di valutazione delle prestazioni: accuratezza, precisione, sensibilità, F_1 -score.
- **3.2)** Valutare gli stessi criteri per una probabilità di soglia pari a 0.7. Trattandosi di una decisione su una patologia, è meglio utilizzare un valore di θ grande o piccolo?

Soluzione 3

3.1) Con la soglia pari a $\theta = 0, 5$, la tabella delle previsioni diventa:

i	1	2	3	4	5	6	7	8	9	10
$\overline{y_i}$	Sì	No	No Sì	Sì	Sì	No	No	Sì	No	Sì
$ ilde{y}_i$	Sì	No	Sì	Sì	Sì	No	No	Sì	Sì	Sì
	'									
i	11	12	13	14	15	16	17	18	19	20
$\overline{y_i}$	No	No	No	Sì	Sì	No	Sì	No	No	Sì
\tilde{y}_i	Sì	No	No	No	Sì	No	Sì	Sì	Sì	Sì

Contiamo quante volte compare ciascuna delle quattro combinazioni "Sì/Sì" (TP), "Sì/No" (FN), "No/Sì" (FP), "No/No" (TN):

$$\begin{tabular}{c|ccc} & & Previsione \\ \hline Sì & No \\ \hline Patologia & Sì & 8 & 1 \\ \hline No & 5 & 6 \\ \hline \end{tabular}$$

Accuratezza =
$$\frac{8+6}{20} = \frac{7}{10} = 0,7;$$
 Sensibilità = $\frac{8}{8+1} = \frac{8}{9} \approx 0,89;$

$$\text{Precisione} = \frac{8}{8+5} = \frac{8}{13} \approx 0,62; \qquad F_{1}\text{-score} = \frac{2 \cdot \frac{8}{9} \cdot \frac{8}{13}}{\frac{8}{9} + \frac{8}{13}} = \frac{16}{22} \approx 0,73.$$

3.2) Con la soglia pari a $\theta = 0, 7$, la tabella delle previsioni diventa:

i	1	2	3	4	5	6	7	8	9	10
$\overline{y_i}$	Sì	No	No	Sì	Sì	No	No	Sì	No	Sì
$ ilde{y}_i$	Sì	No	No	Sì	Sì	No	No	No	No	Sì
	'									
i	11	12	13	14	15	16	17	18	19	20
y_i	No	No	No	Sì	Sì	No	Sì	No	No	Sì
$ ilde{y}_i$	Sì	No	Sì							

La matrice di confuzione ora sarà

$$\begin{array}{c|cccc} & & \text{Previsione} \\ & & \text{Sì} & \text{No} \\ \hline \text{Patologia} & \frac{\text{Sì}}{\text{No}} & \frac{5}{\text{1}} & \frac{4}{\text{10}} \\ \hline \end{array}$$

Accuratezza =
$$\frac{5+10}{20} = \frac{3}{4} = 0,75$$
; Sensibilità = $\frac{5}{5+4} = \frac{5}{9} \approx 0,56$;
Precisione = $\frac{5}{5+1} = \frac{5}{6} \approx 0,83$; F_1 -score = $\frac{2 \cdot \frac{5}{9} \cdot \frac{5}{6}}{\frac{5}{9} + \frac{5}{6}} = \frac{2}{3} \approx 0,67$.

Come osservato in precedenza, in un sistema diagnostico medico è meglio privilegiare la sensibilità, quindi abbassare la soglia. In questo caso si può osservare che non tutti i criteri sono concordi.

È dato il seguente dataset, di 12 campioni $i=1,\ldots,12$, composti da un solo attributo scalare $x_i \in [0,10]$ come variabile indipendente e una classe a due valori $y_i \in \{\text{Freddo,Caldo}\}$ come valore da prevedere:

i	x_i	y_i
1	0.7	Caldo
2	8.7	Freddo
3	3.5	Freddo
4	1.5	Caldo

i	x_i	y_i
5	4.4	Freddo
6	6.1	Caldo
7	6.8	Caldo
8	7.2	Caldo

i	x_i	y_i
9	2.9	Freddo
10	1.9	Freddo
11	3.0	Caldo
12	6.0	Freddo

- **4.1)** Tramite la metodologia leave-one-out, valutare la prestazione dell'algoritmo K-nearest-neighbors con K=1 e K=3 sulla base degli indici di accuratezza, precisione, sensibilità e dell' F_1 -score.
- **4.2)** Quale scelta si rivela essere la migliore per il parametro K? Lo è in maniera univoca, oppure dipende dal criterio considerato?

Suggerimento — Riportare i valori x_i su un asse in modo da semplificare la ricerca dei vicini. In caso di parità di distanze, scegliere l'elemento di indice minore.

Soluzione 4

Consideriamo "Caldo" come positivo, "Freddo" come negativo. In base al suggerimento, ecco i valori riportati sulle ascisse:

$$i = 1$$
 4 10 9 11 3 5 12 6 7 8 2
 $x = 0.7$ 1.5 1.9 2.9 3.0 3.5 4.4 6.0 6.1 6.8 7.2 8.7
 $y_i = 1$ 7 7 7 7 8 9 10

i	Vicini		y_i	K = 1	K = 3	
1				+	+	<u> </u>
$\begin{bmatrix} 1\\2\\3 \end{bmatrix}$			+		+	
2						
	+	_	_	-	+	_
4	—	+	_	+	_	_
4 5	-	+	_	—	_	_
6	_	+	+	+	_	+
7 8	+	+	_	+	+	+
8	+	+	_	+	+	+
9	+	_	_	-	+	_
10	+	_	+	_	+	+
11	_	_	_	+	_	_
12	+	+	+	_	+	+

4.1) La matrice di confusione per K = 1 è dunque

		Previsione		
		+	_	
Risposta	+	3	3	
corretta	_	5	1	

da cui risulta:

$$Accuratezza = \frac{3+1}{12} = \frac{1}{3}, \quad Precisione = \frac{3}{3+5} = \frac{3}{8}, \quad Sensibilit\grave{a} = \frac{3}{3+3} = \frac{1}{2}, \quad F_1 = \frac{2\frac{3}{8}\frac{1}{2}}{\frac{3}{8}+\frac{1}{2}} = \frac{3}{7}.$$

Si osservi che, invertendo l'interpretazione della classe positiva e negativa, si ottiene invece la seguente matrice:

		Previsione		
		+	_	
Risposta	+	1	5	
corretta	_	3	3	

da cui risulta:

$$Accuratezza = \frac{1+3}{12} = \frac{1}{3}, \quad Precisione = \frac{1}{1+3} = \frac{1}{4}, \quad Sensibilità = \frac{1}{1+5} = \frac{1}{6}, \quad F_1 = \frac{2\frac{1}{4}\frac{1}{6}}{\frac{1}{4} + \frac{1}{6}} = \frac{1}{5}.$$

Allo stesso modo, la matrice di confusione per K=3 risulta

		Previsione		
		+	_	
Risposta	+	3	3	
corretta	_	3	3	

da cui risulta:

Visto che la precisione e la sensibilità sono uguali, allora anche la loro media F_1 è lo stesso valore. 4.2) Rispetto a tutti gli indici considerati, K = 3 risulta preferibile o indifferente rispetto a K = 1.

 $\dot{\rm E}$ dato il seguente dataset, con 15 campioni, un attributo in ingresso, e una classe a due valori in uscita.

		y_i		x_i			x_i	
	4.0			7.3			3.2	
	2.8			1.2			8.4	
	6.1			0.7			0.2	
4	9.2	No	9	5.5	Sì	14	6.8	Sì
5	4.5	Sì	10	6.0	No	15	4.3	Sì

- **5.1)** Valutare la prestazione dell'algoritmo K-nearest-neighbors con K=1 e K=3, utilizzando una 3-fold cross validation in cui i tre fold sono gli elementi di indici 1–5, 6–10 e 11–15. Utilizzare gli indici di accuratezza, precisione, sensibilità e l' F_1 -score.
- **5.2)** Quale scelta si rivela essere la migliore per il parametro K? Lo è in maniera univoca, oppure dipende dal parametro considerato?

È dato il seguente dataset con variabili indipendenti scalari $x_i \in [0, 100]$ e variabile dipendente continua $y_i \in \mathbb{R}$:

i	1	2	3	4	5	6
x_i	27	12	69	70	55	31
y_i	57	36	95	90	77	51

Si desidera modellare il dataset tramite una regressione affine nella forma

$$y \sim \beta_0 + \beta_1 x$$
.

Determinare graficamente (tracciando i punti e le rette su un piano cartesiano) quale tra le seguenti coppie di coefficienti genera l'errore quadratico minore:

6.1)
$$\beta_0 = 0, \, \beta_1 = 2$$

6.2)
$$\beta_0 = 25, \beta_1 = 1$$

6.3)
$$\beta_0 = 50, \beta_1 = 1$$

Soluzione 6

Ecco i punti e le rette richieste riportate nel piano cartesiano:

Risulta immediatamente chiaro che la retta che meglio approssima i punti fra le tre fornite è la (2.1), corrispondente all'equazione affine $y \sim 2.5 + x$.

È dato il seguente dataset di m = 10 campioni, con n = 2 attributi numerici X_1, X_2 e un output Y categorico (binario):

i	1	2	3	4	5	6	7	8	9	10
x_{i1}	1	2	3	4	7	2	8	3	7	8
x_{i2}	1	2	4	3	1	7	1	6	4	6
		Giù								

In forma grafica:

Valutare sul dataset fornito il classificatore KNN con K=1 e K=3 rispetto ai principali indici di prestazione (accuratezza, precisione, sensibilità, F_1 -score) utilizzando la metodologia leave-one-out.

Suggerimento — La maggior parte delle distanze può essere valutata a occhio, ricorrere a calcoli solo per i pochi casi dubbi.

Non è necessario calcolare le radici quadrate.

Soluzione 7

Riprendiamo la tabella del dataset e inseriamo per ogni elemento i primi tre vicini (metodologia leaveone-out: per l'addestramento si usa tutto il dataset tranne il campione su cui valutiamo, e si ripete per tutti i campioni):

i	1	2	3	4	5	6	7	8	9	10
x_{i1}	1	2	3	4	7	2	8	3	7	8
x_{i2}	1	2	4	3	1	7	1	6	4	6
y_i	Su	Giù	Giù	Su	Giù	Giù	Giù	Giù	Su	Su
1. vicino	Giù	Su	Su	Giù	Giù	Giù	Giù	Giù	Su	Su
2. vicino	Su	Giù	Giù	Giù	Su	Giù	Su	Giù	Giù	Giù
3. vicino	Giù	Su	Giù	Su^*	Su	Su	Su	Su	Su^*	Su
*	* — Alla pari con un "Giù", ho scelto arbitrariamente.									

La matrice di confusione per K=1, quindi utilizzando il primo vicino come predittore, risulta:

		Previsione		
		Su	Giù	
Classe	Su	2	2	
corretta	Giù	2	4	

Un'altra scelta arbitraria: quale classe considerare "positiva". Nel mio caso scelgo "Su". Di conseguenza,

accuratezza =
$$\frac{2+4}{10} = \frac{3}{5}$$
; precisione = $\frac{2}{2+2} = \frac{1}{2}$; sensibilità = $\frac{2}{2+2} = \frac{1}{2}$.

La precisione e la sensibilità sono uguali, quindi lo è anche la loro media armonica:

$$F_1 = \frac{1}{2}.$$

La matrice di confusione per K=3, quindi utilizzando i 3 primi vicini a maggioranza, risulta:

		Previsione		
		Su	Giù	
Classe	Su	2	2	
corretta	Giù	3	3	

Di conseguenza la situazione peggiora:

$$\operatorname{accuratezza} = \frac{2+3}{10} = \frac{1}{2}; \quad \operatorname{precisione} = \frac{2}{2+3} = \frac{2}{5}; \quad \operatorname{sensibilit\`a} = \frac{2}{2+2} = \frac{1}{2}.$$

Infine,

$$F_1 = \frac{2 \cdot \frac{2}{5} \cdot \frac{1}{2}}{\frac{2}{5} + \frac{1}{2}} = \frac{4}{9}.$$

Sia dato il seguente dataset di m=6 campioni, con 1 attributo numerico x e 1 output numerico y:

Si richiede di apprendere il modello $y \sim \beta \phi(x)$ attraverso il metodo della regressione lineare ai minimi quadrati, applicato al dataset risultante dalla trasformazione non lineare $\phi(x) = x^2$.

Soluzione 8

Vedere la sezione 3.2.1 delle dispense.

8.1) Costruiamo il vettore z in modo che $z_i = x_i^2$:

$$z = \begin{pmatrix} 1\\4\\4\\0\\1\\0 \end{pmatrix}.$$

Considerando z e y come vettori colonna, il parametro β si calcola come segue:

$$\beta = \frac{\sum_{i=1}^{6} y_i z_i}{\sum_{i=1}^{6} z_i^2} = \frac{34}{34} = 1.$$

Alternativa: applicazione diretta del metodo dei minimi quadrati — Consideriamo la somma dei quadrati degli scarti in funzione di β :

$$f(\beta) = (\beta - 3)^2 + (4\beta - 8)^2 + (4\beta)^2 + (-15)^2 + (\beta + 1)^2,$$

e cerchiamone il valore stazionario azzerandone la derivata prima rispetto a β :

$$0 = \frac{\mathrm{d}f(\beta)}{\mathrm{d}\beta} = 2(\beta - 3) + 2 \cdot 4(4\beta - 8) + 2 \cdot 4(4\beta) + 2(\beta + 1) = 68\beta - 68,$$

la cui soluzione è nuovamente $\beta = 1$.