Содержание

1	Осн	ювные понятия, простейшие типы дифференциальных уравнений	2
	1.1	Основные понятия	2
	1.2	Простейшие типы уравнений первого порядка	3
	1.3	Уравнения в полных дифференциалах, интегрирующий множитель	5
	1.4	Методы понижения порядка для некоторых простейших типов дифференциальных уравнений. Уравнения первого порядка, не разрешённые относи-	
		тельно производной	7
2	Задача Коши		8
	2.1	Прицип сжимающих отображений	8
	2.2	Теоремы существования и единственности решения задачи Коши	9
	2.3	Теорема о продолжении решения нормальной системы дифференциальных уравнений	12
	2.4	Непрерывная зависимость от параметров решения задачи Коши для нор-	4.0
	2.5	мальной системы дифференциальных уравнений	13
		риациях	13
3	Линейные дифференциальные уравнения и линейные системы диффе-		
	рен	циальных уравнений с постоянными коэффициентами	14
	3.1	Фундаментальная система решений и общее решение линейного однородного	
		уравнения n-го порядка	14
	3.2	Линейное неоднородное уравнение n-го порядка с постоянными коэффици-	
		ентами и правой частью квазимногочленом	18
	3.3	Уравнение Эйлера-Коши	19
	3.4	Фундаментальная система решений и общее решение нормальной линейной	
		однородной системы уравнений	20
	3.5	Матричная экспонентна, её свойства и применение к решению нормальных	~ ~
		THIOHILLY CHOTOM	20

1 Основные понятия, простейшие типы дифференциальных уравнений

1.1 Основные понятия

Определение 1.1. Уравнение вида

$$F(x, y, \dots, y^{(n)}) = 0$$
 (1)

называется обыкновенным дифференциальным уравнением *п*-го порядка.

Определение 1.2. Функция $\varphi(x)$, определённая на I вместе со своими n производными, называется решением уравнения (1), если:

- 1. φ и все её n производных непрерывны на I.
- 2. $\forall x \in I : (x, \varphi(x), \varphi'(x), \dots, \varphi^{(n)}(x)) \in \Omega$, где Ω область определения F.
- 3. $\forall x \in I : F(x, \varphi(x), \varphi'(x), \dots, \varphi^{(n)}) = 0$

Определение 1.3. Решение $y = \varphi(x), x \in \langle a, b \rangle$ уравнения (1) называется продолжаемым вправо, если существует такое решение $y = \psi(x), x \in \langle a, b_1 \rangle, \langle a, b \rangle \subset \langle a, b_1 \rangle$, что $\varphi(x) \equiv \psi(x)$ при $x \in \langle a, b \rangle$

Аналогично определяется продолжение решения влево.

Определение 1.4. Решение называется непродолжаемым, если его нельзя продолжить ни вправо, ни влево.

Определение 1.5. Система дифференциальных уравнений называется автономной, если она имеет вид:

$$\frac{dx_k}{dt} = f_k(x_1, \dots, x_n); \ k = 1, \dots, n$$

также очень часто автономные системы записываются в компактном векторном виде:

$$\dot{x} = F(x), x \in \Omega \subseteq E^n \tag{2}$$

Определение 1.6. Непрерывно дифференцируемая в Ω функция u(x) называется первым интегралом системы (2), если $\forall t \in T : u(x(t)) \equiv const$ для каждого решения x(t) этой системы.

Определение 1.7. Если поставить в соответствие каждой точке (x,y) некоторого множества $\Omega \subseteq E^2$ вектор с координатными представлением (1,f(x,y)), то полученное векторное множество принято называть полем направлений ОДУ первого порядка.

Определение 1.8. Векторное поле - это отображение, которое сопоставляет каждой точке некоторого пространства вектор

Определение 1.9. Пусть x(t) есть частное решение системы (2), тогда вектор-функция $x(t), t \in T$, параметрически задаёт некоторую линию в E^n , называемую фазовой траекторией этой системы.

Определение 1.10. Совокупность фазовых траекторий для всех частных решений будем именовать фазовым портретом системы (2)

Определение 1.11. График функции $y = \varphi(x)$ можно рассматривать как геометрическое представление частного решения уравнения (1). Этот график обычно называют интегральной кривой уравнения (1).

1.2 Простейшие типы уравнений первого порядка

Уравнения с разделяющимися переменными

Определение 1.12. Уравнения с разделяющимися переменными - это уравнения, которые могут быть записаны в виде

$$y' = f(x)g(y) \ f(x) \in C(I_1), g(y) \in C(I_2)$$

или же в виде

$$M(x)N(y)dx + P(x)Q(y)dy = 0$$

Замечание. Если же $y_k \in I_2$ решение уравнения g(y) = 0, то $y \equiv y_k$ – решение дифф. уравнения

Если же y(x) нигде не принимает значение y_k , то $g(y) \neq 0$, а потому мы можем делить на него. Значит, чтобы решить исходное уравнение, необходимо разделить переменные, то есть, привести уравнение к такой форме, чтобы при дифференциале dx стояла функция, зависящая лишь от x, а при дифференциале dy — функция, зависящая от y.

Однородные уравнения

Определение 1.13. Функция двух переменных f(x,y) называется однородной степени m, если для всех t справедливо соотношение:

$$f(tx, ty) = t^m f(x, y)$$

Определение 1.14. Однородным дифференциальным уравнением называется уравнение вида

$$M(x,y)dx + N(x,y)dy = 0$$

если M(x,y) и N(x,y) – однородные функции одной и той же степени m.

Однородное уравнение приводится к уравнению с разделяющимися переменными с помощью замены искомой функции y(x) по формуле:

$$t(x) = \frac{y(x)}{x}$$

Тогда производная y' и дифференциал dy заменяются по формулам:

$$y' = t'x + t$$
, $dy = tdx + xdt$

Линейные уравнения

Определение 1.15. Линейным уравнением первого порядка называется уравнение, линейное относительно искомой функции y(x) и её производной, то есть, уравнения вида

$$y' + a(x)y = b(x)$$
 $a(x), b(x) \in C(I)$

Функция b(x) называется свободным членом уравнения.

Уравнение

$$y' + a(x)y = 0$$

называется линейным однородным уравнением, соответствующим изначальному линейному уравнению.

Покажем, что однородное уравнение является уравнением с разделяющимися перменными

$$y' + a(x)y = 0 \Rightarrow \int \frac{dy}{y} = -\int a(x)dx \Rightarrow |y| = e^C \cdot e^{-\int_{x_0}^x a(t)dt}$$

Объединяя все решения, получаем общее решение:

$$y_0 = C \exp\left[-\int_{x_0}^x a(t)dt\right]$$

Будем искать частное решение исходного линейного уравнения методом вариации постоянной:

 $y_{\mathbf{q}} = C(x) \cdot \exp\left[-\int_{x_0}^x a(t)dt\right]$

Уравнение Бернулли

Определение 1.16. Нелинейное уравнение первого порядка вида

$$y' + a(x)y = b(x)y^m, m \neq 0, m \neq 1, a, b \in C(I)$$

называется уравнением Бернулли.

Заметим, что y = 0 – решение уравнения Бернулли при m > 0.

Если $y \neq 0$, то, разделив уравнение на y^m и вводя новую неизвестную функцию $z=y^{1-m}$, относительно функции z получаем линейное уравнение.

Уравнение Рикатти

Определение 1.17. Нелинейное уравнение первого порядка вида

$$y' = a(x)y^2 + b(x)y + c(x)$$
 $a, b \ c \in C(I)$

называется уравнением Рикатти

В отличие от всех уравнений, рассматривавшихся ранее, уравнение Рикатти не всегда интегрируется в квадратурах. Чтобы решить его, необходимо знать хотя бы одно частное решение $y = y_1(x)$ этого уравнения. Тогда замена $y = y_1 + z$ приводит это уравнение к уравнению Бернулли.

Логистическое уравнение Ферхюльста

Замечание. Исходные предположения для вывода уравнения при рассмотрении популяционной динамики выглядит следующим образом:

- Скорость размножения популяции пропорциональна её текущей численности при прочих равных условиях
- Скорость размножения популяции пропорциональна количеству доступных ресурсов при прочих равных условиях.

Определение 1.18. Обозначая через P численность популяции, а время - t, модель можно свести к дифференциальному уравнению

$$\frac{dP}{dt} = rP(1 - \frac{P}{K})$$

где параметр r характеризует скорость роста, а K – максимальную возможную численность популяции.

Замечание. Точным решения является логистическая функция, S-образная кривая:

$$P(t) = \frac{KP_0e^{rt}}{K + P_0(e^{rt} - 1)}$$

где P_0 – начальная популяция, и $\lim_{t \to \infty} P(t) = K$.

1.3 Уравнения в полных дифференциалах, интегрирующий множитель

Уравнения в полных дифференциалах

Определение 1.19. Это уравнение

$$M(x,y)dx + N(x,y)dy = 0$$

называется уравнением в полных дифференциалах, если его левая часть является дифференциалом некоторой гладкой функции F(x,y). Тогда это уравнение можно переписать в виде dF(x,y) = 0, так что его решение будет иметь вид

$$F(x,y) = C$$

Утверждение 1.1. Если функции M(x,y) и N(x,y) определены и непрерывны в некоторой односвязной области Ω и имеют в ней непрерывные частные производные по x и по y, то изначальное уравнение будет уравнением в полных дифференциалах тогда и только тогда, когда выполняется тождество

$$\frac{\partial M(x,y)}{\partial y} \equiv \frac{\partial N(x,y)}{\partial x}$$

Интегрирующий множитель

Пусть дано уравнение в дифференциалах, которое не является уравнением в полных дифференциалах.

Определение 1.20. Функция $\mu(x,y) \neq 0$ называется интегрирующим множителем для исходного уравнения, если уравнение

$$\mu(x,y)(M(x,y)dx + N(x,y)dy) = 0$$

является уравнением в полных дифференциалах. Отсюда следует, что функция μ удовлетворяет условию

$$\frac{\partial (\mu M)}{\partial y} \equiv \frac{\partial (\mu N)}{\partial x}$$

Это равенство даёт уравнение в частных производных первого порядка для $\mu(x,y)$:

$$N\frac{\partial\mu}{\partial x}-M\frac{\partial\mu}{\partial y}=\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right)\mu$$

Поделив обе части последнего уравнения на μ , перепишем его в виде:

$$N\frac{\partial \ln \mu}{\partial x} - M\frac{\partial \ln \mu}{\partial y} = \frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}$$

Точные и замкнутые 1-формы, лемма Пуанкаре

Определение 1.21. Форма ω называется точной, если существует гладкая функция F, такая что $\omega = dF$

Определение 1.22. Форма $\omega = F_1 dx_1 + \cdots + F_m dx_m$ называется замкнутой, если

$$\forall k, i: \frac{\partial F_i}{\partial x_k} = \frac{\partial F_k}{\partial x_i}$$

Определение 1.23. Область $\Omega \subseteq \mathbb{R}^m$ называется звёздной, если для некоторой точки $p \in \Omega$ и для любой другой точки $q \in \Omega$ отрезок [p,q] полностью содержится в Ω .

Лемма 1.1. B звёздной области любая замкнутая C^1 -гладкая дифференциальная 1-форма точна.

Доказательство. Будем считать, что точка p из определения звёздной области находится в начале координат. Пусть ω – замкнутая форма, $\omega = A_1 dx_1 + \dots A_n dx_n$.

Заметим, что для любой точки $x=(x_1,\ldots,x_n)$ и любой функции $G:\mathbb{R}^n\to\mathbb{R}$

$$G(x) - G(0) = \int_{[0,x]} dG = \int_0^1 \left(x_1 \frac{\partial G}{\partial x_1}(tx) + \dots + x_n \frac{\partial G}{\partial x_n}(tx) \right) dt$$

мы параметризовали отрезок $[0,x]\subset\mathbb{R}^n$ параметром t. Пользуясь этим равенством, можно восстановить любую функцию по набору её производных.

Поэтому естественно определить F таким образом:

$$F := \int_0^1 \sum_{i=1}^n x_i A_i(xt) dt$$

Нам осталось проверить, что $\frac{\partial F}{\partial x_s} = A_s$. Действительно,

$$\frac{\partial F}{\partial x_s} = \int_0^1 \frac{\partial}{\partial x_s} \sum_{i=1}^n x_i A_i(xt) dt = \int_0^1 A_s(tx) + \sum_{i=1}^n x_i \frac{\partial}{\partial x_s} A_i(tx) dt =$$

$$= \int_0^1 A_s(tx) + \sum_{i=1}^n x_i \frac{\partial}{\partial x_i} A_s(tx) dt = \int_0^1 \frac{d}{dt} (tA_s(tx)) dt = A_s(x)$$

Итак, $dF = A_1 dx_1 + \cdots + A_n dx_n = \omega$.

Гамильтоновые векторные поля на плоскости

Определение 1.24. Пусть $H: \mathbb{R}^2 \to \mathbb{R} \in C^1(\mathbb{R}^2)$. Тогда векторное поле $\vec{v}: \begin{cases} \dot{x} = -\frac{\partial H}{\partial y}(x,y) \\ \dot{y} = \frac{\partial H}{\partial x}(x,y) \end{cases}$ называется гамильтоновым тогда и только тогда, когда div $\vec{v} = 0$

1.4 Методы понижения порядка для некоторых простейших типов дифференциальных уравнений. Уравнения первого порядка, не разрешённые относительно производной.

Методы понижения порядка дифференциальных уравнений.

- 1. Пусть $F(x,y^{(k)},\ldots,y^{(n+k)})=0$ Замена: $z=y^{(k)}$, сводим к уравнению $F(x,z,z',\ldots,z^{(n)})=0$
- 2. Пусть F явно не зависит от x: $F(y,y',\ldots,y^{(n)})=0$ Замена: y новая независимая переменная, y'=p=p(y), то есть $y''_{xx}=p'_x=p'y'=p'p$
- 3. Обобщённо-однородное уравнение Пусть $\exists m, k : \forall \lambda > 0 : F(\lambda x, \lambda^m y, \lambda^{m-1} y', \dots, \lambda^{m-n} y^{(n)}) = \lambda^k F(x, y', x')$

Пусть
$$\exists m, k: \forall \lambda > 0: F(\lambda x, \lambda^m y, \lambda^{m-1} y', \dots, \lambda^{m-n} y^{(n)}) = \lambda^k F(x, y, y', \dots, y^{(n)})$$

Замена: $x = e^y, y = z(t)e^{mt}$

4. Однородные уравнения

Пусть
$$\exists k: \forall \lambda > 0: F(x, \lambda y, \lambda y', \dots, \lambda y^{(n)}) = \lambda^k F(x, y, y', \dots, y^{(n)})$$

Замена: $y' = z(x)y, y'' = (z(x)y)' = z'y + zy' = z'y + z^2y = y(z + z^2)$

Уравнения первого порядка, не разрешённые относительно производной

Определение 1.25. Уравнение первого порядка, не разрешённое относительно производной – это уравнение вида

$$F(x, y, y') = 0$$

где F(x,y,y') — заданная непрерывная функция в некоторой непустой окрестности $G\subseteq \mathbb{R}^3_{(x,y,p)}$ с декартовыми прямоугольными координатами x,y,p.

Замечание. В общем случае для решения уравнения применяется метод введения параметра, который позволяет свести решение исходного уравнения к решению некоторого уравнения первого порядка в симметричной форме.

Сам метод: положим y' = p и рассмотрим систему

$$\begin{cases} F(x, y, p) = 0 \\ dy = pdx \end{cases}$$
 (3)

Утверждение 1.2. Проектирование π поверхности F(x,y,p)=0 на плоскость (x,y) вдоль оси p переводит траектории поля в интегральные кривые системы (3).

 $B\ mex\ moч kax\ noверхности,\ еде\ производная\ \frac{\partial F}{\partial p}\neq 0,\ omoбражение\ \pi\ является\ ло-кальным\ диффеоморфизмом.$

Определение 1.26. Точки поверхности F(x,y,p)=0, в которых производная $\frac{\partial F}{\partial p}=0$, называются особыми точками уравнения (3).

Определение 1.27. Множество всех особых точек называется криминантой, а её проекция на плоскость (x, y) – дискриминантной кривой уравнения (3).

Определение 1.28. Решение уравнения (3) называется особым, если его интегральная кривая является дискриминантной кривой.

Замечание. Решение уравнения (3) можно трактовать, как траектории движения по этой поверхности, задаваемого векторным полем

$$\begin{cases}
\dot{x} = \frac{\partial F}{\partial p} \\
\dot{y} = p \frac{\partial F}{\partial p} \\
\dot{p} = -\left(\frac{\partial F}{\partial x} + p \frac{\partial F}{\partial y}\right)
\end{cases} \tag{4}$$

Определение 1.29. Другой важной кривой является кривая перегибов, состоящая из всех точек поверхности F(x, y, p) = 0, в которых третья компонента поля (4) обращается в нуль.

Утверждение 1.3. Криминанта и кривая перегибов связаны некоторым двойственным соотношением: преобразование Лежандра $(x, y, p) \to (p, xp - y, x)$ переводит всякую интегральную кривую γ уравнения (3) в интегральную кривую γ^* сопряжённого уравнения F(p, xp - y, x) = 0

2 Задача Коши

2.1 Прицип сжимающих отображений

Определение 2.1. Точка $x^* \in X$ называется неподвижной точкой отображения Φ , если $\Phi(x^*) = x^*$.

Определение 2.2. Оператор Φ называется сжимающим на множестве X, если $\exists q \in (0,1)$, такое что $\forall x_1, x_2 \in X \mapsto \|\Phi(x_1) - \Phi(x_2)\| \leqslant q \|x_2 - x_1\|$.

Число q – коэффициент сжатия.

Определение 2.3. Открытый шар $U_{\varepsilon}(a)=\{x\in L: \|x-a\|<\varepsilon\}$. Замкнутый: $\overline{U}_{\varepsilon}(a)=\{x\in L: \|x-a\|\leqslant\varepsilon\}$

Теорема 2.1. Теорема Банаха о неподвижной точке (принцип сижмающих отображений).

Пусть $\Phi: \overline{U}_{\varepsilon}(x_0) \to L$, причём Φ является сжимающим на $\overline{U}_r(x_0)$ с некоторым коэффициентом q. Тогда если выполнено условие $\|\Phi(x_0) - x_0\| \leqslant (1-q)r$, то в $\overline{U}_r(x_0)$ существует единственная неподвижная точка отображения.

Доказательство. Покажем, что $\Phi(\overline{U}_r(x_0)) \subseteq \overline{U}_r(x_0)$. Пусть $x \in \overline{U}_r(x_0)$. Тогда

$$\|\Phi(x) - x_0\| = \|\Phi(x) - \Phi(x_0) + \Phi(x_0) - x_0\| \le \|\Phi(x) - \Phi(x_0)\| + \|\Phi(x_0) - x_0\| \le q\|x - x_0\| + (1 - q)r \le qr + (1 - qr) = r$$

Рассмотрим последовательность $\{x_n\}\subseteq \overline{U}_r(x_0)$, такую что $x_n=\Phi(x_{n-1})$ при $n\geqslant 1$. Также для удобства обозначим $\rho = \|\Phi(x_0) - x_0\| = \|x_1 - x_0\|$. Покажем, что эта последовательность фундаментальная:

$$||x_2 - x_1|| = ||\Phi(x_1) - \Phi(x_0)|| \le q||x_1 - x_0|| \Rightarrow \ldots \Rightarrow ||x_{n+1} - x_n|| \le q^n \rho$$

Используем полученную оценку для того, чтобы оценить модули в сумме:

$$\forall p: \|x_{n+p} - x_n\| \leqslant \sum_{i=1}^p \|x_{n+i} - x_{n+i-1}\| \leqslant \rho \sum_{i=1}^p q^{n+i-1} = \frac{\rho q^n (1 - q^p)}{1 - q} < \frac{\rho q^n}{1 - q} \to 0$$

А так как мы в банаховом пространстве, то из фундаментальности получили сходящуюся последовательность, т.е. $\exists x^* = \lim_{n \to \infty} x_n$. А так как $\overline{U}_r(x_0)$ – замкнутый шар, значит $x^* \in \overline{U}_r(x_0)$.

Докажем, что x^* является неподвижной точкой оператора Φ . Воспользуемся тем, что сжимающее отображение является непрерывным.

В
$$x_n = \Phi(x_{n-1})$$
 перейдём к пределу: $x^* = \lim_{n \to \infty} \Phi(\lim_{n \to \infty} x_{n-1}) = \Phi(x^*)$

В $x_n = \Phi(x_{n-1})$ перейдём к пределу: $x^* = \lim_{n \to \infty} = \Phi(\lim_{n \to \infty} x_{n-1}) = \Phi(x^*)$. Докажем единственность неподвижной точки. Допустим, что существует $x^{**} \in \overline{U}_r(x_0)$: $x^{**} = \Phi(x^{**})$, такое, что $x^{**} \neq x^{*}$.

Тогда
$$\|x^*-x^{**}\|=\|\Phi(x^*)-\Phi(x^{**})\|\leqslant q\|x^*-x^{**}\|$$
, где $q<1$. Получили противоречие. \square

2.2 Теоремы существования и единственности решения задачи Коши

Определение 2.4. Пусть $n\geqslant 2,f_1,\ldots,f_n$ — непрерывные функции, определённые на $G\subseteq\mathbb{R}^{n+1}_{(x,\vec{y})}$. Назовём нормальной системой дифференциальных уравнений первого порядка следующую систему:

$$\begin{cases} y_1'(x) = f_1(x, y_1(x), \dots, y_n(x)) = f_1(x, \vec{y}) \\ \vdots \\ y_n'(x) = f_n(x, y_1(x), \dots, y_n(x)) = f_n(x, \vec{y}) \end{cases}$$
(5)

Определение 2.5. Вектор-функция $\vec{\varphi}(x)$ называется решением нормальной системы (5) на некотором промежутке $I \subseteq \mathbb{R}$, если:

- 1. $\vec{\varphi}(x) \in C^1(I)$
- 2. $\forall x \in I : (x, \vec{\varphi}(x)) \in G$
- 3. $\forall x \in I : \vec{\varphi'}(x) = \vec{f}(x, \vec{\varphi}(x))$

График решения $\vec{\varphi}(x)$ в пространстве \mathbb{R}^{n+1} – это интегральная кривая

Определение 2.6. Задача Коши – это

$$\begin{cases} \vec{y'} = \vec{f}(x, \vec{y}) \\ \vec{y}(x_0) = \vec{y}_0 \end{cases}$$

Определение 2.7. Вектор-функция $\vec{f}(x, \vec{y})$, определённая в области $G \subseteq \mathbb{R}^{n+1}$ называется удовлетворяющей условию Липшица относительно \vec{y} равномерно по x, если $\exists L > 0$: $\forall (x, \vec{y_1}), (x, \vec{y_2}) : |\vec{f}(x, \vec{y_1}) - \vec{f}(x, \vec{y_2})| \leqslant L|\vec{y_1} - \vec{y_2}|$.

Лемма 2.1. Вектор-функция $\vec{f}(x, \vec{y})$ удовлетворяет условию Липшица по \vec{y} равномерно по x при выполнении следующих условий:

- 1. G выпуклая область в \mathbb{R}^{n+1}
- 2. $\vec{f}(x,\vec{y}) \in C_n(G)$, то есть непрерывна от п аргументов $u \, \forall i,j = \overline{1,n} : \frac{\partial f_i}{\partial u_i} \in C(G)$
- 3. $\exists K > 0 : \forall i, j = \overline{1, n} : \forall (x, \vec{y}) \in G : \|\frac{\partial \vec{f_i}}{\partial y_i}(x, \vec{y})\| \leqslant K$

Доказательство. Фиксируем $i=1,\ldots,n$. Рассмотрим $(x,\vec{y_1})$, где $\vec{y_1}=(y_1^1,\ldots,y_n^1)$, а также $\vec{y_2}=(y_1^2,\ldots,y_n^2)$.

$$|f_{i}(x, \vec{y_{1}}) - f_{i}(x, \vec{y_{2}})| = |||f_{i}(x, \vec{y_{2}} + \theta(\vec{y_{1}} - \vec{y_{2}})|_{\theta=1}^{\theta=2}|| = ||\int_{0}^{1} \left[\frac{d}{d\theta}f_{i}(x, \vec{y_{2}} + \theta(\vec{y_{1}} - \vec{y_{2}}))\right] d\theta|| = ||\int_{0}^{1} \sum_{j=1}^{n} \frac{\partial f_{i}(x, \vec{y_{2}} + \theta(\vec{y_{1}} - \vec{y_{2}}))}{\partial y_{j}} (y_{j}^{1} - y_{j}^{2}) d\theta|| \leq n \cdot K \cdot |\vec{y_{1}} - \vec{y_{2}}|$$

Теорема о существовании и единственности решения задачи Коши для системы уравнений n-го порядка в нормальной форме

Теорема 2.2. Пусть вектор-функция $\vec{f}(x, \vec{y})$ непрерывна в области G вместе со своими производными по $y_j(j=\overline{1,n})$, точка $(x_0, \vec{y_0})$ тоже лежит в G. Тогда задача Коши локально разрешима единственным образом:

- 1. $\exists \delta > 0$, такое что на $[x_0 \delta, x_0 + \delta]$ решение задачи Коши существует.
- 2. Решение единственно в следующем смысле:

Если $\vec{y_1} \equiv \vec{\varphi}(x)$ – решение задачи Коши в δ_1 -окрестности точки x_0 , а $\vec{y_2} \equiv \vec{\psi}(x)$ – решение задачи Коши в δ_2 -окрестности точки x_0 , то в окрестности точки x_0 с радиусом $\delta = \min(\delta_1, \delta_2) : \vec{\varphi}(x) \equiv \vec{\psi}(x)$

Доказательство. Рассмотрим множество $\overline{H_{\delta,r}}(x_0,\vec{y_0}) = \{(x,\vec{y}) \in G: x \in [x_0-\delta,x_0+\delta] \land \|\vec{y}-\vec{y_0}\| \leqslant r\}$. Заметим, что в силу компактности этого множества применима теорема Вейерштрасса:

$$\exists M > 0 : \forall (x, \vec{y}) \in \overline{H_{\delta, r}} : |\vec{f}(x, \vec{y})| \leqslant M, \forall i, j = \overline{1, n} |\frac{\partial f_i}{\partial y_j}| \leqslant M$$

Рассмотрим интегральное уравнение

$$\vec{y}(x) = \vec{y_0} + \int_{x_0}^x \vec{f}(t, \vec{y}(t)) dt \Leftrightarrow \vec{y} = \Phi(\vec{y})$$

Рассмотрим в $C_n[x_0-\delta,x_0+\delta]$ замкнутый шар $\overline{D_{\delta,\,r}}(\vec{y_0})=\{\vec{y}\in C_n[x_0-\delta,x_0+\delta]: \|\vec{y}-\vec{y_0}\|_{C_n}\leqslant r\}$, где $\|\vec{y}\|_{C_n}=\max_{1\leqslant i\leqslant n}\sup_{|x-x_0|<\delta}|y_i(x)|$.

Докажем, что существуют δ и r такие, что

- Ф является сжимающим
- Отображает шар $\overline{D_{\delta,\,r}}$ в себя

Тогда мы сможем применить теорему Банаха о сжимающем отображении. Получим единственную неподвижную точку отображения ⇔ интегральное уравнение имеет единственное решение ⇔ задача Коши имеет единственное решение.

Докажем, что Φ является сжимающим. Рассмотрим $\vec{y}, \vec{z} \in \overline{D_{\delta, r}}$:

$$\|\Phi(\vec{y}) - \Phi(\vec{z})\| = \max_{1 \leq i \leq n} \sup_{|x - x_0| < \delta} |\int_{x_0}^x (f(\tau, \vec{y}(\tau)) - f(\tau, \vec{z}(\tau)))| \tau \leq \sup_{|x - x_0| < \delta} \int_{x_0}^x L|\vec{y}(\tau) - \vec{z}(\tau)| d\tau \leq \sup_{|x - x_0| < \delta} \int_{x_0}^x L|\vec{y} - \vec{z}\|_{C_n} d\tau \leq \delta L \|\vec{y} - \vec{z}\|_{C_n}$$

Положив $\delta = \frac{q}{L}$, получим требуемое.

Теперь докажем вторую часть:

$$\|\Phi(\vec{y_0}) - \vec{y_0}\| = \max_{1 \leqslant i \leqslant n} \sup_{|x - x_0| < \delta} |\int_{x_0}^x f_i(\tau, \vec{y_0}) d\tau| \leqslant \int_{x_0}^x \|\vec{f}(\tau, \vec{y_0})\|_{C_n} d\tau \leqslant \delta M := (1 - q)r$$

Получили, что

$$\begin{cases} q = \delta L \\ (1 - q)r = \delta M \end{cases} \Rightarrow \begin{cases} r - rq = \delta \\ r = \delta Lr + \delta M \end{cases} \Rightarrow \delta_r := \frac{r}{M + Lr}$$

Определение 2.8. Нормальный вид уравнения с ЗК, разрешённого относительно старшей производной выглядит так:

$$\begin{cases} y^{(n)} = f(x, y, y', \dots, y^{(n-1)}) \\ y(x_0) = y_0 \\ y'(x_0) = y'_0 \\ \vdots \\ y^{(n-1)}(x_0) = y_0^{(n-1)} \end{cases}$$

Теорема о существовании и единственности решения задачи Коши для уравнения n-го порядка в нормальном виде

Теорема 2.3. Пусть функция $f(x, y, p_1, \ldots, p_{n-1})$ определена и непрерывна по совокупности переменных вместе с частными производными по переменным y, p_1, \ldots, p_{n-1} в некоторой области $G \subseteq \mathbb{R}^{n-1}$, и точка $(x_0, y_0, y'_0, \ldots, y_0^{(n-1)}) \in G$. Тогда существует замкнутая δ -окрестность точки x_0 , в которой существует единственное решение задачи Коши.

2.3 Теорема о продолжении решения нормальной системы дифференциальных уравнений

Теорема 2.4. Пусть $\vec{f}(x, \vec{y})$ определена и удовлетворяет условиям теоремы о существовании и единственности решения задачи Коши на замыкании ограниченной области $G \subseteq \mathbb{R}^{n+1}$, тогда любое решение задачи Коши

$$\begin{cases} \vec{y'} = \vec{f}(x, \vec{y}) \\ \vec{y}(x_0) = \vec{y_0} \end{cases}$$

можно продолжить в обе стороны до выхода $\Gamma = \partial G$, то есть можно доопределить $\vec{y}(x)$ на некоторый $[x_0 - \delta, x_0 + \delta] \subseteq [a, b]$, причём $(a, \vec{y}(a)), (b, \vec{y}(b)) \in \Gamma$

Доказательство.

$$\overline{H_r}(x_0, \vec{y_0}) := \{ (x, \vec{y}) \in G : x \in [x_0 - \delta_r, x_0 + \delta_r] \land ||\vec{y} - \vec{y_0}|| \leqslant r \} \subseteq G$$

$$\rho((x_1, \vec{y_1}), (x_2, \vec{y_2})) := \max(|x_1 - x_2|, ||\vec{y_1} - \vec{y_2}||)$$

Введём также расстояние от точки ρ до множества M : $\rho(p,M) = \inf_{q \in M} \rho(p,q)$

Наконец, определим δ_0, r_0 как значения δ_r и r для точки $p_0 = (x_0, \vec{y_0})$, для которых выполнено $\max(\delta_0, r_0) = \rho(p_0, \Gamma)$.

Рассмотрим $x_1 = x_0 + \delta_0$ и $\vec{y_1} = \vec{y}(x_1)$. Обозначим $p_1 = (x_1, \vec{y_1})$

- Если $p_1 \in \Gamma$, то продолжение вправо не требуется
- Если $p_1 \not\in \Gamma$, то p_1 внутренняя точка, а значит, в ней $\exists !$ решение $\exists K$, причём оно совпадает с решением для p_0 на $[x_0, x_0 + \delta_0] \cap [x_1 \delta_1, x_1]$. Аналогично определяем p_2 и т.д.

Полученная последовательность $\{p_k\}$ монотонно возрастает по x и ограничена точками из Γ . Следовательно, по теореме Вейшерштрасса существует $b=\lim_{k\to\infty}x_k=x_0+\sum_{k=0}^\infty\delta_k$. Объединение решений задач Коши является функцией, определённой на $\bigcup_{k=1}^\infty[x_0,x_k]=[x_0,b)$. Зафиксируем $\varepsilon>0$ и рассмотрим $\alpha,\beta\in[b-\varepsilon,b)$. Заметим, что

$$\|\vec{y}(\beta) - \vec{y}(\alpha)\| = \|\int_{\alpha}^{\beta} \vec{f}(\tau, \vec{y}(\tau)) d\tau\| \leqslant \int_{\alpha}^{\beta} |\vec{f}(\tau, \vec{y}(\tau)) d\tau| \leqslant M\varepsilon$$

Значит, по критерию Коши существует $y^* = \lim_{x \to b-0} \vec{y}(x)$. Пусть $p^* = (b, \vec{y^*})$.

$$0 \leqslant \rho(p_k, \Gamma) = \max(\delta_k, r_k) \to 0$$

Значит $\rho(p^*,\Gamma) = \lim_{k \to \infty} \rho(p_k,\Gamma) = 0 \Rightarrow p^* \in \Gamma$

$$\frac{\vec{y}(b) - \vec{y}(b - \varepsilon)}{\varepsilon} = \int_{b - \varepsilon}^{b} \frac{\vec{f}(\tau, \vec{y}(\tau))}{\varepsilon} d\tau = \frac{\vec{f}(\xi, \vec{y}(\xi)) \cdot \varepsilon}{\varepsilon} \to \vec{f}(b, \vec{y}(b))$$

 \vec{f} непрерывна вплоть до $\Gamma \Rightarrow f \in C(p^*)$. Тогда можем сделать второй переход по интегральной теореме о среднем, где $\xi \in [b-\varepsilon,b]$.

Таким образом, мы успешно продлили вправо, аналогично можно продлить и влево.

2.4 Непрерывная зависимость от параметров решения задачи Коши для нормальной системы дифференциальных уравнений

Замечание. Дифференциальные уравнения, описывающие физические процессы, всегда содержат некоторые параметры. Эти параметры в реальных задачах никогда не могут быть измерены абсолютно точно, то есть всегда измеряются с некоторой погрешностью, так что сами дифференциальные уравнения известны лишь с некоторой степенью точности. Поэтому, для того чтобы уравнения могли описывать реальные процессы, необходимо, чтобы их решения непрерывно зависели от параметров, то есть чтобы они мало менялись при малых изменениях параметров.

Рассмотрим задачу Коши для нормальной системы дифференциальных уравнений в векторном виде, то есть $f = (f_1, \ldots, f_n)$:

$$\frac{d\vec{y}}{dx} = \vec{f}(x, \vec{y}, \vec{\mu}) \quad \vec{y}(x_0, \vec{\mu}) = \vec{y_0}(\vec{\mu}) \tag{6}$$

Теорема 2.5. Пусть $\vec{f}(x, \vec{y}, \vec{\mu})$ – непрерывна и удовлетворяет условию Липшица равномерно по x u $\vec{\mu}$, $\forall (x, \vec{y}) \in G \subseteq \mathbb{R}^{n+1}$ u всех $\vec{\mu}$, таких, что $|\vec{\mu} - \vec{\mu_0}| \leqslant \delta$. Пусть, кроме того, $(x_0, \vec{y_0}) \in G$.

Тогда $\exists h > 0 \mapsto peшeнue \vec{y}(x, \vec{\mu})$ задачи Коши непрерывно по совокупности переменных $(x, \vec{\mu})$ в некоторой области $|x - x_0| \leqslant h, |\vec{\mu} - \vec{\mu_0}| \leqslant \delta.$

2.5 Дифференцируемость и гладкость решения по параметрам, уравнение в вариациях

Лемма 2.2. Лемма Адамара.

Пусть $F(x,u): \mathbb{R}^n_x \times \mathbb{R}^m_u \to \mathbb{R}^1$. $F \in C^p(D), p \geqslant 1, D$ — область в \mathbb{R}^{n+m} . Тогда $\exists H_i(x,u,z) \in C^{p-1}(D), i=\overline{1,m}$:

$$F(x, \hat{u}) - F(x, u) = \sum_{i=1}^{m} H_i(x, u, \hat{u}) \cdot (\hat{u}_i - u_i)$$

Теорема 2.6. Если при $(x,y) \in G$ и $|\vec{\mu} - \vec{\mu_0}| \leq \delta$ функции

$$f(x, y, \vec{\mu}) \quad \frac{\partial f}{\partial y} \quad \frac{\partial f}{\partial \mu_i}$$

непрерывны, а также $(x_0,y_0)\in G$, то $\exists h>0$, что при $|x-x_0|\leqslant h, |\vec{\mu}-\vec{\mu_0}|\leqslant \delta$ для решения $y = \varphi(x, \vec{\mu})$ задачи Коши с параметров верно следующее:

- 1. $z_i(x,\vec{\mu}) = \frac{\partial \varphi}{\partial u_i}$ непрерывны для указанных $x \ u \ \vec{\mu}$.
- 2. Смешанные производные $\frac{\partial^2 \varphi}{\partial x \partial \mu_i}$ непрерывны и не зависят от порядка дифференцирования.
- 3. Частные производные z_i удовлетворяют уравнениям в вариациях по параметру $\vec{\mu}$:

$$\frac{\partial z_i}{\partial x} = \frac{\partial f(x, \varphi(x, \vec{\mu}), \vec{\mu})}{\partial x} \cdot z_i + \frac{\partial f(x, \varphi(x, \vec{\mu}), \vec{\mu})}{\partial u_i}$$

u начальным условиям $z_i(x_0, \vec{\mu}) = 0$

Доказательство. Для $\mu \in \mathbb{R}^1$. $\exists \frac{\partial \varphi}{\partial \mu} : \varphi(x,\mu) - \text{решение (6), } \varphi(x,\mu+\Delta\mu) - \text{решение (6), } \text{где } \mu \mapsto \mu+\Delta\mu. \text{ Введём}$ $\psi(x,\mu,\Delta\mu) := \frac{\varphi(x,\mu+\Delta\mu)-\varphi(x,\mu)}{\Delta\mu}, \forall \Delta\mu \neq 0.$

$$\psi' = \frac{1}{\Delta\mu} \left[f(x, \varphi(x, \mu), \mu + \Delta\mu) - f(x, \varphi(x, \mu), \mu) \right]^{\pi} \stackrel{\text{Aда.}}{=} \frac{1}{\Delta\mu} \left[\sum_{i=1}^{n} h_i(x, u, \hat{u}) (\varphi(x, \mu + \Delta\mu) - \varphi(x, \mu)) + h_{n+1}(x, u, \hat{u}) \Delta\mu \right] = \sum_{i=1}^{n} h_i(x, u, \hat{u}) \psi(x, \mu, \Delta\mu) + h_{n+1}(x, u, \hat{u})$$

Таким образом,

$$\begin{cases} \psi' = H_1(x, \mu, \Delta \mu) \cdot \psi + \hat{H}_2(x, \mu, \Delta \mu) \\ \psi(x_0) = 0 \end{cases}$$
 (7)

Значит $\exists ! \psi(x,\mu,\Delta\mu) = \frac{\partial \varphi}{\partial \mu} \in C$

Определение 2.9. Уравнение (7) называют уравнением в вариациях для решения φ .

Линейные дифференциальные уравнения и линейные 3 системы дифференциальных уравнений с постоянными коэффициентами

Фундаментальная система решений и общее решение линей-3.1ного однородного уравнения п-го порядка

Факты ниже перекликаются со следующим разделом

Определение 3.1. Вектор-функция $\vec{y_1}(x), \ldots, \vec{y_k}(x)$, определённые на промежутке I, называются линейно зависимыми, если

$$\exists \alpha_1, \dots, \alpha_k \in \mathbb{R} : \exists i : \alpha_i \neq 0 : \sum_{i=1}^k \alpha_j \vec{y_j}(x) \equiv 0$$

Определение 3.2. Пусть $\vec{y_1}(x), \ldots, \vec{y_n}(x)$ – вектор-функции с n компонентнами. Функция

$$W(x) = \begin{vmatrix} y_1^1(x) & y_2^1(x) & \dots & y_n^1 \\ \vdots & \vdots & \ddots & \vdots \\ y_1^n(x) & y_2^n(x) & \dots & y_n^n \end{vmatrix}$$

называется определителем Вронского для заданных вектор-функций.

Лемма 3.1. Если вронскиан системы $\vec{y_1}(x), \ldots, \vec{y_n}(x)$ отличен от нуля хотя бы в одной точке, то все эти функции линейно независимы.

Доказательство. Пусть эти функции линейно зависимы, тогда векторы $\vec{y_1}(x), \ldots, \vec{y_n}(x)$ линейно зависимы в каждой точке x_0 , а значит, определитель матрицы, составленной из векторов, равен нулю.

Лемма 3.2. Если вектор-функции $\vec{y_1}(x), \ldots, \vec{y_n}(x)$ – решения некоторой системы линейных однородных уравнений на промежутке I и $\exists x_0 \in I : W(x_0) = 0$, то $\vec{y_1}(x), \ldots, \vec{y_n}(x)$ линейно зависимы на I.

Доказательство. В точке x_0 векторы $\vec{y_1}(x), \dots, \vec{y_n}(x)$ линейно зависимы, значит, существует их линейная комбинация, которая обращается в ноль в точке $x_0: \sum_{i=1}^n c_i \vec{y_i}(x_0) = 0$.

Рассмотрим n задач Коши для $\vec{y}(x_0) = \vec{y_i}(x_0)$. Рассмотрим функцию $\vec{y}(x) = \sum_{i=1}^n c_i \vec{y_i}(x)$ на I.

$$\vec{y}(x_0) = 0 \Rightarrow$$
 по теореме о существовании и единственности $\vec{y}(x) \equiv 0$.

Определение 3.3. Фундаментальная система решений для CЛДУ – набор n линейно независимых решений системы.

Лемма 3.3. Для любой CЛДУ существует ΦCP .

Доказательство. Пусть $x_0 \in [a,b]$ и $\{\vec{y_0^i}\}_{i=1}^n$ — набор числовых линейно независимых векторов. Для каждого из числовых векторов составим соответствующую задачу Коши и получим $\vec{z_1}, \ldots, \vec{z_n}$ — решения этих задач, тогда их вронскиан равен определителю матрицы, составленной из $\{\vec{y_0^i}\}_{i=1}^n$, следовательно, он не равен нулю, и Φ CP существует.

Лемма 3.4. Любое решение CЛДУ единственным образом представимо в виде линейной комбинации векторов ΦCP .

Доказательство. Пусть $x_0 \in [a,b], \vec{y}$ — решение системы, и $\vec{y_1}, \ldots, \vec{y_n}$ — ФСР, тогда $\vec{y_1}(x_0), \ldots, \vec{y_n}(x_0)$ линейно независимы, и $\vec{y}(x_0)$ единственным образом выражается через них. В силу единственности решения задачи Коши коэффициенты линейной комбинации окажутся одними и теми же для всех точек отрезка.

Линейные однородные ДУ *п*-го порядка с постоянными коэффициентами

Определение 3.4. Линейным однородным ДУ n-го порядка с постоянными коэффициентами называется уравнение вида

$$L(y) = a_0 y^{(n)} + a_1 y^{(n-1)} + \dots + a_{n-1} y' + a_n y = 0$$

Замечание. Введём $\vec{y}=(y,y',\ldots,y^{(n-1)})$. Используя результаты уравнения L(y) и тем, что $\vec{y_i'}=\vec{y_{i+1}}$ получим систему:

$$\begin{cases} \vec{y_1'} = \vec{y_2} \\ \vec{y_2'} = \vec{y_3} \\ \dots \\ \vec{y_n'} = \frac{-1}{a_0} (a_n \vec{y_1} + a_{n-1} \vec{y_2} + \dots + a_1 \vec{y_n}) \end{cases}$$
гой системы существование и единстве

После введения данной системы существование и единственность решения исходного уравнения очевидна.

Для исходного уравнения можно определить вронскиан, равный вронскиану написанной выше системы.

Замечание. Найдём решение системы 1 в виде $y = e^{\lambda x}$

$$M(\lambda) = a_0 \lambda^n + \dots + a_{n-1} \lambda + a_n$$
$$L(e^{\lambda x}) = M(\Lambda)e^{\lambda x} = 0$$

Поскольку экспонента никогда не обнуляется, то единственный возможный вариант — это $M(\lambda)=0$. Уравнение $M(\lambda)=0$ называется характеристическим, как и многочлен в его в левой части.

Утверждение 3.1. Пусть $\lambda_1, \ldots, \lambda_n$ – однократные корни $M(\lambda)$, тогда решения $y_i = e^{\lambda_i x}$ линейно независимы.

Доказательство.

$$W(e^{\lambda_1 x}, \dots, e^{\lambda_n x}) = \begin{vmatrix} e^{\lambda_1 x} & \dots & e^{\lambda_n x} \\ \lambda_1 e^{\lambda_1 x} & \dots & \lambda_n e^{\lambda_n x} \\ \vdots & \ddots & \vdots \\ \lambda_1^{n-1} e^{\lambda_1 x} & \dots & \lambda_n^{n-1} e^{\lambda_n x} \end{vmatrix} = e^{(\lambda_1 + \dots + \lambda_n) x} \begin{vmatrix} 1 & \dots & 1 \\ \lambda_1 & \dots & \lambda_n \\ \vdots & \ddots & \vdots \\ \lambda_1^{n-1} & \dots & \lambda_n^{n-1} \end{vmatrix}$$

Получившийся определитель Вандермонда не будет равен нулю в силу того, что все λ_i различны.

Если все $a_i \in \mathbb{R}$, то все комплексные корни $M(\lambda)$ разбиваются на пары сопряжённых между собой комплексных чисел. Мнимая и действительная части решений, соответствующих таким корням, сами являются решениями:

$$\lambda = \alpha + i\beta \quad \overline{\lambda} = \alpha - i\beta$$

$$y_1 = e^{\lambda x} \quad \overline{y_1} = e^{\overline{\lambda}x}$$

$$z_1 = \frac{y_1 + \overline{y_1}}{2} = e^{\alpha x} \cos \beta x \quad z_2 = \frac{y_1 - \overline{y_1}}{2} = e^{\alpha x} \sin \beta x$$

Замена $y_1, \overline{y_1}$ на z_1, z_2 является корректным переходом в другой базис, а потому линейная оболочка не изменится.

Утверждение 3.2. Пусть λ – корень $M(\lambda)$ кратности l, тогда функции

$$e^{\lambda x}, xe^{\lambda x}, \dots, x^{l-1}e^{\lambda x}$$

являются решениями.

Лемма 3.5. Пусть $y = x^s e^{\lambda x}$, где λ – корень характеристического уравнения кратности l. тогда

$$L(x^{s}e^{\lambda x}) = \begin{cases} 0, s < l \\ (b_{0}x^{s-l} + b_{1}x^{s-l-1} + \dots + b_{s-l})e^{\lambda x}, x \geqslant l \end{cases}$$

Доказательство. Пусть z, λ – комплексные числа. Сначала докажем, что $(z^s e^{\lambda z})_z^{(p)} = (\lambda^p e^{\lambda z})_{\lambda}^{(s)}$. Здесь мы используем операцию формального дифференцирования.

Докажем наше утверждение:

$$(z^{s}e^{\lambda z})_{z}^{(p)} = \sum_{k=0}^{p} C_{p}^{k}(z^{s})_{z}^{(k)}(e^{\lambda z})_{z}^{(p-k)} = \sum_{k=0}^{p} C_{p}^{k}s(s-1)\dots(s-(k-1))z^{s-k}\lambda^{p-k}e^{\lambda z} = \sum_{k=0}^{\min(p,s)} C_{p}^{k}C_{s}^{k}k!z^{s-k}\lambda^{p-k}e^{\lambda z}$$

Заметич, что $(\lambda^p e^{\lambda z})_{\lambda}^{(s)}$ раскроется в такое же выражение ввиду структурной симметрии. Найдём:

$$L(x^{s}e^{\lambda x}) = a_{0}(x^{s}e^{\lambda x})_{x}^{(n)} + a_{1}(x^{s}e^{\lambda x})_{x}^{(n-1)} + \dots + a_{n}(x^{s}e^{\lambda x}) =$$

$$a_{0}((e^{\lambda x})_{\lambda}^{(s)})_{x}^{(n)} + \dots + a_{n}(e^{\lambda x})_{\lambda}^{(s)} = a_{0}((e^{\lambda x})_{x}^{(n)})_{\lambda}^{(s)} + \dots + a_{n}(e^{\lambda x})_{\lambda}^{(s)} =$$

$$(a_{0}(e^{\lambda x})_{x}^{(n)} + \dots + a_{n}e^{\lambda x})_{\lambda}^{(s)} = (e^{\lambda x}M(\lambda))_{\lambda}^{(s)} = \sum_{k=0}^{s} C_{s}^{k}(M(\lambda))_{\lambda}^{(k)}(e^{\lambda x})_{\lambda}^{(s-k)} =$$

$$\sum_{k=0}^{s} C_{s}^{k}(M(\lambda))_{\lambda}^{(k)}(e^{\lambda x})_{\lambda}^{(s-k)}$$

Следовательно, $b_i = C_s^k(M(\lambda))_{\lambda}^{(k)}(e^{\lambda x})_{\lambda}^{(s-k)}$

Исходное утверждение выводится из леммы применением того факта, что корень кратности s многочлена P(x) является корнем $P, P', \cdots, P^{(s-1)}$

Определение 3.5. Квазимногочлен – произведение многочлена на экспоненту с линейной функцией в показателе.

Утверждение 3.3. $(P_m(x)e^{\lambda x})'_r = Q_m(x)e^{\lambda x}$

Теорема 3.1. О структуры ΦCP .

Пусть $\lambda_1, \dots, \lambda_k$ корни характеристического многочлена $M(\lambda)$ кратности l_1, \dots, l_k . Тогда набор функций $x^s e^{\lambda_i x}$, где $s=0, \dots, l_i-1, i=1, \dots, k$ является ΦCP для исходного уравнения.

Доказательство. Докажем от противного. Пусть ЛЗ, то есть

$$\exists \{c_i\}_{i=1}^n \neq 0 : \sum_{i=1}^n c_i y_i(x) \equiv 0$$

Сгруппируем слагаемые при одинаковых $e^{\lambda_i x}$: $\sum_{i=1}^k e^{\lambda_i x} p_i(x) \equiv 0$. Значит, хотя бы один из многочленов $p_i(x) \neq 0$. Б.О.О. примем $p_1(x) \neq 0$, домножим равенство на $e^{-\lambda_k x}$:

$$e^{x(\lambda_1 - \lambda_k)} p_1(x) + e^{x(\lambda_2 - \lambda_k)} p_2(x) + \dots + p_k(x) = 0$$

Продифференцируем l_k раз:

$$e^{x(\lambda_1 - \lambda_k)}Q_1(x) + e^{x(\lambda_2 - \lambda_k)}Q_2(x) + \dots + e^{x(\lambda_{k-1} - \lambda_k)}Q_{k-1}(x) = 0$$

Разделим на $e^{x(\lambda_{k-1}-\lambda_k}$ и будем повторять процедуру, пока не дойдём до

$$e^{x(\lambda_1 - \lambda_2)} R(x) = 0$$

Откуда R(x) = 0, но тогда $p_1(x) = 0$. Противоречие.

3.2 Линейное неоднородное уравнение n-го порядка с постоянными коэффициентами и правой частью квазимногочленом

Определение 3.6. Эти уравнения имеют вид

$$y^{(n)} + a_1 y^{(n-1)} + \dots + a_n y = f(x)$$

где f(x) квазимногочлен: $f(x) = e^{\mu x} P_m(x), \mu \in \mathbb{C}, P_m(x)$ – заданный многочлен степени m с комплексными коэффициентами.

Определение 3.7. Характеристическим многочленом L(x) назовём многочлен

$$L(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0$$

Замечание. Аналогично однородному случаю, существование и единственность следуют из таковых для системы

$$\begin{cases} \vec{y_1'} = \vec{y_2} \\ \vec{y_2'} = \vec{y_3} \\ \cdots \\ \vec{y_{n-1}'} = \vec{y_n} \\ \vec{y_n'} = f - a_1 y_1 - a_2 y_2 - \cdots - a_n y_n \end{cases}$$

Определение 3.8. Если число μ является корнем характеристического уравнения

$$L(\lambda) = 0$$

то говорят, что в уравнении резонансный случай. Если же μ не является корнем, то имеем нерезонансный случай.

Определение 3.9. Дифференциальным многочленом назовём многочлен вида

$$L(D) = (D - \lambda_1)^{k_1} (D - \lambda_2)^{k_2} \cdots (D - \lambda_s)^{k_s}$$

где k_i соответствует кратности корней характеристического уравнения, а D – оператор формального дифференцирования.

Замечание. Рассмотрим ЛОУ. Покажем, что если известно некоторое решение $y_0(x)$ ЛНУ, то замена $y=z+y_0$ приводит уравнение к ЛОУ. Воспользуемся представлением левой части через дифференциальный многочлен:

$$L(D)y = L(D)(z + y_0) = L(D)z + L(D)y_0 = L(D)z + f(x) = f(x)$$

Отсюда следует, что L(D)z = 0, то есть решение.

Рассмотрим $L(D)y(x) = e^{\mu x}P_m(x)$

Утверждение 3.4. $(P_m(x)e^{\lambda x})'_x = Q_m(x)e^{\lambda x}$

Теорема 3.2. О структуре решения ЛНУ с правой частью в виде квазимногочлена. Для рассматриваемого уравнения существует и единственно решение вида

$$y(x) = x^k e^{\mu x} Q_m(x)$$

где $Q_m(x)$ – многочлен одинаковой с $P_m(x)$ степени m, а число k равно кратности корня μ в уравнении $L(\lambda)=0$ в резонансном случае и k=0 в нерезонансном.

Доказательство. Если $\mu \neq 0$, то заменой $y = ze^{\mu x}$ всегда можно избавиться от $e^{\mu x}$ в правой части. В самом деле, по формуле сдвига после замены имеем, что

$$L(D)y = L(D)(e^{\mu x}z) = e^{\mu x}L(D+\mu)z = e^{\mu x}P_m(x)$$

откуда $L(D + \mu)z = P_m(x)$.

Таким образом, доказательство теоремы осталось провести для уравнения вида

$$L(D)y = P_m(x)$$

1. Нерезонансный случай: $L(\mu) \neq 0$. Пусть

$$P_m(x) = p_m x^m + \dots + p_0 \quad Q_m(x) = q_m x^m + \dots + q_0$$

Если подставить и приравнять коэффициенты при одинаковых степенях x, получим линейную алгебраическую систему уравнений для определения неизвестных коэффициентов q_0, \dots, q_m . Матрица системы треугольная с числами $a_n = L(0) \neq 0$, таким образом, все коэффициенты определяются из неё однозначно.

2. В резонансном случае имеем

$$L(\lambda) = \lambda^k (\lambda^{n-k} + a_1 \lambda^{n-k-1} + \dots + a_{n-k})$$

Следовательно,

$$L(D) = \begin{cases} D^{n} + a_{1}D^{n-1} + \dots + a_{n-k}D^{k}, k < n \\ D^{n}, k = n \end{cases}$$

В первом случае замена $D^k y = z$ приводит уравнение к уравнению с нерезонансным случаем. Рассмотрим уравнение

$$D^{k}y = \begin{cases} R_{m}(x), k < n \\ P_{m}(x), k = n \end{cases}$$

Взяв нулевые начальные условия для этого уравнения

$$y(0) = y'(0) = \dots = y^{(k-1)}(0) = 0$$

получим единственное решение вида

$$y(x) = x^k Q_m(x)$$

3.3 Уравнение Эйлера-Коши

Определение 3.10. Уравнением Эйлера называется уравнение вида

$$x^{n}y^{(n)} + a_{1}x^{n-1}y^{(n-1)} + \dots + a_{n-1}xy' + a_{n}y = 0$$

19

Утверждение 3.5. Данное уравнение сводится к уравнению с постоянными коэффициентами при замене $x = e^t$ при x > 0 и $x = -e^t$ при x < 0.

Доказательство. Докажем индукцией по порядку:

$$\frac{dy}{dx} = \frac{y'_t}{x'_t} = e^{-t}y'_t \quad \frac{d^2y}{dx^2} = e^{-2t}(y''_t - y'_t) \quad \frac{d^ny}{dx^n} = e^{-nt}\varphi(y_t^{(n)}, y_t^{(n-1)}, \dots, y'_t)$$

Подставим найденные выражения в определение и получим уравнение вида, где $y^{(n)}$ зависит от нового параметра t:

$$b_0 y^{(n)} + b_1 y^{(n-1)} + b_2 y^{(n-2)} + \dots + b_{n-1} y' + b_n = 0$$

3.4 Фундаментальная система решений и общее решение нормальной линейной однородной системы уравнений

Определение 3.11. Нормальной системой дифференциальных уравнений называется система дифференциальных уравнений первого порядка, разрешённых относительно производной.

Нормальная линейная однородная система уравнений выглядит так

$$\vec{x}(t) = (x_1(t), \dots, x_n(t))^T \quad A_{n \times n} = (a_{ij}) \quad \dot{\vec{x}} = A\vec{x}$$

Теорема 3.3. Если $\vec{h_1}, \cdots, \vec{h_n}$ – базис из собственных векторов матрицы A, то $\vec{x_i} = e^{\lambda_i t} \vec{h_i}$ – ΦCP для исходной однородной системыю

Доказательство. Заметим, что $A(e^{\lambda t}\vec{h})=e^{\lambda t}(A\vec{h})=e^{\lambda t}\lambda\vec{h}=(e^{\lambda t}\vec{h})'$, значит собственный вектор является решением. Их линейная независимость следует из того, что, что их вронскиан в точке t=0 равен определителю из координатных столбцов этого базиса, а значит не равен нулю.

3.5 Матричная экспонентна, её свойства и применение к решению нормальных линейных систем

Определение 3.12. Пусть t – действительная переменная, $A_{n \times n}$ – комплекснозначная квадратная матрица. Матричной экспонентой называется ряд:

$$e^{tA} = E_{n \times n} + \sum_{k=1}^{\infty} \frac{t^k}{k!} A^k$$

Введём обозначение частичных сумм:

$$S_m = E_{n \times n} + \sum_{k=1}^m \frac{t^k}{k!} A^k$$

Определение 3.13. Матричный ряд

$$e^{tA} = E_{n \times n} + \sum_{k=1}^{\infty} \frac{t^k}{k!} A^k$$

называется сходящимся при $t_0 \in \mathbb{R}$, если степенной ряд

$$(S_m)_{ij} = \delta_{ij} + \sum_{k=1}^{\infty} \frac{t^k}{k!} a_{ij}^{(k)}$$

сходится для всех i, j.

Лемма 3.6. $\forall A \in M_{n \times n}(\mathbb{R})$ верно, что ряд $e^{tA} = E + \sum \frac{t^k}{k!} A^k$ сходится абсолютно.

Доказательство. Пусть $M = \max_{i} |a_{ij}|$

Докажем по индукции: $|a_{ij}^{(k)}| \leqslant n^{k-1} M^k$

1. База $|a_{ij}^{(1)}| \leqslant n^0 M$

2.
$$|a_{ij}^{(k)}| = |\sum_{l=1}^{n} a_{il}^{(1)} a_{lj}^{(k-1)}| \le \sum_{l=1}^{n} |a_{il}^{(1)} a_{lj}^{(k-1)}| \le n \cdot Mn^0 \cdot M^{k-1} n^{k-2} = n^{k-1} M^k$$

Рассмотрим ряд

$$1 + \sum_{i=1}^{\infty} \frac{|t|^i}{i!} n^{i-1} M^i$$

 $\lim_{k \to \infty} \frac{a_{k+1}}{a_k} = \lim_{k \to \infty} \frac{nM}{k+1} = 0 \Rightarrow$ рассматриваемый ряд сходится по признаку Даламбера и мажорирует каждый компонентный ряд.

Лемма 3.7. Формула матричного бинома.

Если A и B перестановочны, то $\forall n \in \mathbb{N} : (A+B)^n = \sum_{i=0}^n C_n^i A^i B^{n-i}$

Лемма 3.8. Если A и B перестановочны, то $\forall t \in \mathbb{R}$:

$$e^{tA}e^{tB} = e^{tB}e^{tA} = e^{t(A+B)}$$

Доказательство.

$$e^{t(A+B)} = \sum_{n=0}^{\infty} \frac{t^n}{n!} (A+B)^n = \sum_{n=0}^{\infty} \sum_{k+m=n} \frac{t^k A^k}{k!} \frac{t^m B^m}{m!} \stackrel{\text{afc.cxoд.}}{=} \sum_{k=0}^{\infty} \sum_{m=0}^{\infty} \frac{t^k A^k}{k!} \frac{t^m B^m}{m!} = \sum_{k=0}^{\infty} \frac{t^k A^k}{k!} \sum_{m=0}^{\infty} \frac{t^m B^m}{m!} = e^{tB} e^{tA} = e^{tA} e^{tB}$$

Лемма 3.9. Свойства матричной экспонетны.

- 1. Если S невырожденная u $A=SBS^{-1}$, то $e^{tA}=Se^{tB}S^{-1}, \forall t\in\mathbb{R}$
- 2. $(e^{tA})'_t = Ae^{tA} = e^{tA}A$

Доказательство. 1. Заметим, что $A^k = SB^kS^{-1}$:

$$e^{tA} = \sum_{k=0}^{\infty} \frac{t^k}{k!} A^k = S\left(\sum_{k=0}^{\infty} \frac{t^k}{k!} B^k\right) S^{-1} = Se^{tB} S^{-1}$$

2.

$$\frac{d}{dt}e^{tA} = \frac{d}{dt}\left(\sum_{k=0}^{\infty} \frac{t^k}{k!} A^k\right) = \sum_{k=1}^{\infty} \frac{t^{k-1}}{(k-1)!} A^k = A \sum_{k=0}^{\infty} \frac{t^k}{k!} A^k = A e^{tA}$$

Теорема 3.4. *Матричная экспонентна для ФСР.*

Mатрица e^{tA} является фундаментальной матрицей для системы линейных уравнений $\vec{x} = A\vec{x}$

Доказательство. $(e^{tA})' = Ae^{tA}$, следовательно, каждый столбец матрицы e^{tA} является решением исходной системы. Поскольку $\det e^{tA} \neq 0, \forall t,$ то e^{tA} фундаментальна.

Замечание. Общее решение системы $\dot{\vec{x}} = A\vec{x}$ – это $e^{tA}\vec{c}$, где \vec{c} – вектор констант.

Теорема 3.5. Общее решение системы $\dot{\vec{x}} = A\vec{x} + \vec{f}(t)$ задаётся следующей формулой:

$$\vec{x} = e^{tA} \left(\int_{t_0}^t e^{-\tau A} \vec{f}(\tau) d\tau + \vec{c_0} \right)$$

Доказательство. Метод вариации постоянных:

$$\vec{x} = e^{tA} \vec{c}(t) \Rightarrow$$

$$(e^{tA} \vec{c}(t))' = A e^{tA} \vec{c}(t) + e^{tA} \dot{\vec{c}}(t) = A e^{tA} \vec{c}(t) + \vec{f}(t) \Rightarrow$$

$$e^{tA} \dot{\vec{c}}(t) = \vec{f}(t) \Rightarrow$$

$$\dot{\vec{c}}(t) = e^{-tA} \vec{f}(t) \Rightarrow$$

$$\vec{c}(t) = \int_{t_0}^t e^{-\tau A} \vec{f}(\tau) d\tau + \vec{c_0}$$