5 Hahn-Banach の定理 2

• この節では Hahn-Banach の定理の幾何学的な側面である Hahn-Banach の分離 定理について述べる.

5.1 超平面・凸集合・Minkowski 汎函数

• X は \mathbb{R} あるいは \mathbb{C} 上のベクトル空間とする. X 上の恒等的に 0 でない線形 汎関数 f とスカラー α を用いて

$$H = \{x \in X : f(x) = \alpha\}$$

と表される集合を超平面という.

命題 5.1 -

 $(X, \|\cdot\|_X)$ をノルム空間とする. 超平面

$$H = \{x \in X : f(x) = \alpha\}$$

が閉であるための必要十分条件は f が連続であることである.

証明 (宮島静雄著「関数解析」を参考にした).

- f が連続であれば H が閉集合であることは $H = f^{-1}(\{\alpha\})$ と表されることから明らかである.
- *H* が閉集合であるとする.
- $x_0 \in H$ を任意にとると $H = x_0 + \text{Ker} f = \{x_0 + y : f(y) = 0\}$ と表される.
- 平行移動に関して閉集合であるという事実は変わらないので x + Ker f は任意 の $x \in X$ に対して閉集合である.
- f は恒等的に 0 ではないので $f(x) \neq 0$ となる x をとり $\lambda = f(x)$ とおくと $z = (\overline{\lambda}/|\lambda|^2)x$ は f(z) = 1 を満たす.これより $f^{-1}(\{1\}) = z + \mathrm{Ker} f$ と表される.
- $o_X \notin f^{-1}(\{1\})$ であり $f^{-1}(\{1\})$ は閉集合であるから、ある $\varepsilon > 0$ が存在して

$$B_{\varepsilon}(o_X) \cap f^{-1}(\{1\}) = \emptyset \tag{5.1}$$

が成り立つ.

次に

$$x \in B_{\varepsilon}(o_X) \Rightarrow |f(x)| < 1$$
 (5.2)

を示す.

- もしある $x \in B_{\varepsilon}(o_X)$ に対して $|f(x)| \ge 1$ が成り立つとする. $f(x) = re^{i\theta}$ とおき $y = e^{-i\theta}x \in B_{\varepsilon}(o_X)$ とおくと $f(y) \in \mathbb{R}$ で $f(y) \ge 1$ となる.
- このとき $\tilde{y} = \frac{y}{f(y)} \in B_{\varepsilon}(o_X)$ であるが $f(\tilde{y}) = 1$ となりこれは (5.1) に反する.
- 最後に(5.2)より

$$|f(x)| \le \frac{2}{\varepsilon} ||x|| \tag{5.3}$$

を示す. $x = o_X$ ならば明らか. $x \neq o_X$ のとき $y = \frac{\varepsilon x}{2\|x\|}$ とおくと $\|y\| < \varepsilon$ であるから (5.2) より |f(y)| < 1 である. これを変形すると (5.3) を得る. \square

定義

X をベクトル空間, $A \subset X$ を空でないとする. A が**吸収的**であるとは

$$X = \bigcup_{\lambda > 0} \lambda A = \{\lambda x : \lambda > 0, x \in A\}$$

が成り立つことをいう.

- つまり、任意の $x \in X$ に対して、 $x \in \lambda A$ つまり $\lambda^{-1}x \in A$ となる $\lambda > 0$ が存在することをいう。 A が吸収的であれば $o_X \in A$ である。実際、吸収的の定義から $\lambda^{-1}o_X \in A$ なる $\lambda > 0$ が存在するからである。
- 例えば $(X, \|\cdot\|)$ がノルム空間で A が o_X を内点にもてば吸収的である.実際, $B_{\varepsilon}(o_X) \subset A$ なる $\varepsilon > 0$ が存在する.任意の $x \in X$ に対し, $x = o_X$ ならば 任意の $\lambda > 0$ に対し $\lambda^{-1}x = o_X \in A$ である. $x \neq o_X$ ならば $\left(\frac{2\|x\|}{\varepsilon}\right)^{-1}x \in B_{\varepsilon}(o_X) \subset A$ である.
- A が吸収的であるとき $x \in X$ に対し $\{\lambda > 0 : \lambda^{-1}x \in A\}$ は空集合でなく、さらに下に有界である。従って下限が存在するのでそれを $p_A(x)$ とおく:

$$p_A(x) = \inf\{\lambda > 0 : \lambda^{-1}x \in A\}$$

 $p_A(x)$ を A の Minkowski 汎関数という.

• 定義から $0 \le p_A(x) < \infty$ である. また $x \in A \Rightarrow p_A(x) \le 1$ が成り立つ.

定義 (凸集合)

X をベクトル空間, $K \subset X$ を空でない集合とする. K が**凸集合**あるいは単に**凸**であるとは,任意の $x,y \in K$ と任意の $t \in [0,1]$ に対して $tx + (1-t)y \in K$ が成り立つことである.

命題 5.2

X をベクトル空間, $A \subset X$ を空でない凸かつ吸収的な集合とする。このとき $p_A(x)$ は次を満たす:

- (1) $p_A(x+y) \le p_A(x) + p_A(y)$
- (2) $\alpha > 0$ のとき $p_A(\alpha x) = \alpha p_A(x)$

証明

- (1) 任意に $\varepsilon > 0$ をとると $\lambda^{-1}x \in A$, $\mu^{-1}y \in A$, $\lambda < p_A(x) + \varepsilon/2$, $\mu < p_A(y) + \varepsilon/2$ なる λ , $\mu > 0$ が存在する. このとき $\lambda + \mu < p_A(x) + p_A(y) + \varepsilon$ が成り立つ.
 - $(\lambda + \mu)^{-1}(x+y) \in A$ を示す. 実際

$$\begin{split} x+y &= \lambda(\lambda^{-1}x) + \mu(\mu^{-1}y) \\ &= (\lambda+\mu) \left\{ \frac{\lambda}{\lambda+\mu}(\lambda^{-1}x) + \frac{\mu}{\lambda+\mu}(\mu^{-1}y) \right\} \end{split}$$

であるが $\lambda^{-1}x$, $\mu^{-1}y \in A$ であり A は凸集合であるから

$$\frac{\lambda}{\lambda + \mu}(\lambda^{-1}x) + \frac{\mu}{\lambda + \mu}(\mu^{-1}y) \in A$$

である. したがって $(\lambda + \mu)^{-1}(x+y) \in A$ である.

- 以上より $p_A(x+y) \leq p_A(x) + p_A(y) + \varepsilon$ が成り立つが $\varepsilon > 0$ は任意より $p_A(x+y) \leq p_A(x) + p_A(y)$ を得る.
- (2) $\alpha > 0$ とする. $\varepsilon > 0$ を任意にとると $\lambda < p_A(x) + \varepsilon/\alpha$, $\lambda^{-1}x \in A$ なる $\lambda > 0$ が存在する. したがって $\alpha\lambda < \alpha p_A(x) + \varepsilon$ であり $(\alpha\lambda)^{-1}(\alpha x) \in A$ であるから

$$p_A(\alpha x) \le \alpha \lambda < \alpha p_A(x) + \varepsilon$$

が成り立つ. $\varepsilon > 0$ は任意より $p_A(\alpha x) \leq \alpha p_A(x)$ が成り立つ.

• これは任意の $\alpha > 0$ に対して成り立つことに注意すると

$$p_A(x) = p_A(\alpha^{-1}(\alpha x)) \le \alpha^{-1} p_A(\alpha x)$$

であるから $\alpha p_A(x) \leq p_A(\alpha x)$ となり等号が成り立つ.

命題 5.3

 $(X,\|\cdot\|)$ をノルム空間, $A\subset X$ を o_X を内点にもつ凸集合とする.このとき $p_A(x)$ は次を満たす:

- (1) ある M > 0 が存在して $p_A(x) \le M||x||$ が成り立つ.
- (2) p_A は連続関数である.
- (3) $p_A(x) < 1 \Leftrightarrow x$ は A の内点
- (4) $p_A(x) = 1 \Leftrightarrow x$ は A の境界点

証明

(1) • o_X は A の内点なので $B_{\varepsilon}(o_X) \subset A$ となる $\varepsilon > 0$ が存在する. これは

$$||x|| < \varepsilon \implies x \in A \supset \mathfrak{t} \quad p_A(x) \leq 1$$

を意味する.

• このことから $M=2/\varepsilon$ として $p_A(x) \leq M\|x\|$ が成り立つことを見よう. $x=o_X$ のときは明らかに成り立つ($p_A(o_X)=0$ より). $x\neq o_X$ のときは $y=(2\|x\|)^{-1}\varepsilon x$ とおくと $\|y\|<\varepsilon$ であるので $p_A(y)\leq 1$ が成り立つ.命題 5.2 の (2) より

$$p_A(y) = (2||x||)^{-1} \varepsilon p_A(x) \le 1,$$

$$p_A(x) \le \frac{2}{\varepsilon} ||x||$$

が成り立つ。

- (2) $p_A(x) = p_A(x y + y) \le p_A(x y) + p_A(y)$ であるから $p_A(x) p_A(y) \le p_A(x y)$ を得る.
 - x と y の立場を入れ替えた式と合わせて

$$|p_A(x) - p_A(y)| \le p_A(x - y) + p_A(y - x) \le 2M||x - y||$$

が成り立つ. これより p_A は連続関数である.

- (3) $x \in A^{\circ}$ とすると、ある $\varepsilon > 0$ が存在して $B_{\varepsilon}(x) \subset A$ が成り立つ。特に $x + (\varepsilon/2)x = (1 + \varepsilon/2)x \in A$ である。 $\lambda^{-1} = 1 + \varepsilon/2$ とすれば $\lambda < 1$ より $p_A(x) < 1$ である。
 - 逆に $p_A(x) < 1$ とすると $p_A(x) + \varepsilon < 1$ なる $\varepsilon > 0$ をとると $0 < \lambda < p_A(x) + \varepsilon$ かつ $\lambda^{-1}x \in A$ となる λ が存在する.
 - 一方 o_X は A の内点より $B_\delta(o_X) \subset A$ なる $\delta > 0$ が存在する. A は凸集合 より

$$(1 - \lambda)z + x = (1 - \lambda)z + \lambda(\lambda^{-1}x) \in A \ (\|z\| < \delta)$$

が成り立つ.

- $y=(1-\lambda)z$ とおくと $\|y\|<(1-\lambda)\delta$ ならば $\|z\|<\delta$ であるので $x+y\in A$ である。 つまり $B_{(1-\lambda)\delta}(x)\subset A$ であり x が A の内点であることが示された。
- (4) $p_A(x)=1$ とする、 $1\leq \lambda_n\leq 1+\frac{1}{n},\ \lambda_n^{-1}x\in A$ なる λ_n が存在する、 $\lim_{n\to\infty}\lambda_n=1$ であるから $\lim_{n\to\infty}\lambda_n^{-1}x=x$ である、よって $x\in\overline{A}$ である。今 $p_A(x)\not<1$ より (3) から $x\not\in A^\circ$ である、したがって $x\in\partial A$ である。
 - 逆に $x \in \partial A$ とすると $x_n \in A$ で $\lim_{n \to \infty} x_n = x$ が成り立つ. (2) より p_A は連続で $p_A(x_n) \le 1$ より $p_A(x) \le 1$ である. 今 $x \notin A^\circ$ より (3) から $p_A(x) \not< 1$ である. よって $p_A(x) = 1$ である.

5.2 Hahn-Banach の分離定理(実係数)

命題 5.4 (1点と開凸集合の分離)

 $(X,\|\cdot\|)$ を実ノルム空間, $C\subset X$ を空でない開凸集合, $x_0\notin C$ とする.このとき,ある $f\in X^*$ が存在して

$$f(x) < f(x_0) \quad x \in C$$

が成り立つ.

証明

- 平行移動により $o_X \in C$ と仮定してよい.
- A の Minkowski 汎関数 $p_C(x)$ と X の部分空間

$$G = \mathbb{R}x_0 = \{\alpha x_0 : \alpha \in \mathbb{R}\}\$$

と G 上の線形汎関数 $g(\alpha x_0) = \alpha \ (\alpha \in \mathbb{R})$ を考える.

• このとき $g(x) \leq p_C(x)$ $(x \in G)$ が成り立つ。実際, x_0 は C の内点ではないので(C は開集合に注意) $p_C(x_0) \geq 1$ (命題 5.3-(3),(4))であるから $\alpha > 0$ のときは

$$p_C(\alpha x_0) = \alpha p_C(x_0) \ge \alpha = g(\alpha x_0)$$

が成り立つ。 逆に $\alpha \leq 0$ のときは

$$g(\alpha x_0) = \alpha \le 0 \le p_C(\alpha x_0)$$

より成り立つ.

● したがって Hahn-Banach の定理(定理 4.1) より

$$f(x) = g(x) \quad (x \in G),$$

$$f(x) \le p_C(x) \quad (x \in X)$$

となる X 上の線形汎関数 f が存在する.

• 特に命題 5.3(1) よりある M > 0 が存在して

$$|f(x)| \le p_C(x) + p_C(-x) \le 2M||x||$$

が成り立つので $f \in X^*$ である.

• また, 任意の $x \in C$ に対して 命題 5.3(3) より

$$f(x_0) = g(x_0) = 1 > p_C(x) \ge f(x)$$

が成り立つ. □

|**注**| $f(x_0) = \alpha$ とする.この命題の主張を「超平面 $H = \{x \in X : f(x) = \alpha\}$ は 1点 $\{x_0\}$ と開凸集合 C を**分離する**」ともいう.

- 定理 5.5(開凸集合と凸集合の分離) —

 $(X, \|\cdot\|)$ を実ノルム空間, $A, B \subset X$ を空でない凸集合で $A \cap B = \emptyset$ とする. また,A は開集合であるとする.このとき,ある $f \in X^*$ が存在して

$$f(x) < f(y) \quad x \in A, \ y \in B$$

が成り立つ.

証明

- $C = A B = \{x y : x \in A, y \in B\}$ とおくと C は開集合でありかつ凸であることを示そう.
- $z_1, z_2 \in C$ とすると $z_1 = x_1 y_1, z_2 = x_2 y_2$ となる $x_1, x_2 \in A, y_1, y_2 \in B$ が存在する.このとき任意の $t \in [0,1]$ に対して

$$tx_1 + (1-t)x_2 \in A$$
, $ty_1 + (1-t)y_2 \in B$

であるので $tz_1 + (1-t)z_2 = \{tx_1 + (1-t)x_2\} - \{ty_1 + (1-t)y_2\} \in C$ である.

• 次に開集合であることを示そう. $z_0 = x_0 - y_0 \in C(x_0 \in A, y_0 \in B)$ とする. A は開集合なので,ある $\varepsilon > 0$ が存在して $B_{\varepsilon}(x_0) \subset A$ が成り立つ.このとき

$$B_{\varepsilon}(x_0 - y_0) = \{ z \in X : ||z - (x_0 - y_0)|| < \varepsilon \}$$

= \{ z \in X : ||(z + y_0) - x_0|| < \varepsilon \}

であることに注意すると、 $z \in B_{\varepsilon}(x_0-y_0)$ ならば $z+y_0 \in B_{\varepsilon}(x_0) \subset A$ が成り立つ、 $z=(z+y_0)-y_0$ より $z \in C$ である、

- $A \cap B = \emptyset$ より $o_X \notin C$ である. したがって命題 5.4 よりある $f \in X^*$ が存在して $f(z) < f(o_X) = 0$ ($z \in C$) が成り立つ.
- $z \in C$ を z = x y $(x \in A, y \in B)$ とかけば

$$f(x) < f(y) \ (x \in A, y \in B)$$

が成り立つ. □

 $\mathbf{\dot{z}}$ $\sup_{x \in A} f(x) \le \alpha \le \inf_{y \in B} f(y)$ なる α をとるとき

$$f(x) \le \alpha \le f(y) \ (x \in A, y \in B)$$

が成り立つ. このことを「超平面 $H = \{x \in X : f(x) = \alpha\}$ は A と B を分離する」という.

定理 5.6 (閉凸集合とコンパクト凸集合の分離)

 $(X, \|\cdot\|)$ を実ノルム空間, $A, B \subset X$ を空でない凸集合で $A \cap B = \emptyset$ とする.また,A は閉集合,B はコンパクト集合であるとする.このとき,ある $f \in X^*$ が存在して

$$\sup_{x \in A} f(x) < \inf_{y \in B} f(y) \quad x \in A, \ y \in B$$

が成り立つ.

|注| このことを「超平面 $H = \{x \in X : f(x) = \alpha\}$ は A と B を強く分離する」という.

証明

- C = A B とおくと C は凸集合でありかつ閉集合である.凸であることは定理 5.5 のときと同様である.閉であることを示そう.
- $z_n \in C$, $z_n \to z$ $(n \to \infty)$ とする. $z_n = x_n y_n$ となる $x_n \in A$, $y_n \in B$ が存在する. B はコンパクトなので $\{y_n\}$ のある部分列 $\{y_{n_k}\}$ と $y \in B$ が存在して $y_{n_k} \to y$ $(k \to \infty)$ が成り立つ. $x_{n_k} = z_{n_k} + y_{n_k} \to z + y$ $(k \to \infty)$ で A は 閉集合であるから $z + y \in A$ である. z = (z + y) y より $z \in C$ である. したがって C は閉集合である.
- $o_X \notin C$ で C^c は開集合であるから、ある $\varepsilon > 0$ が存在して $B_{\varepsilon}(o_X) \cap C = \emptyset$ が成り立つ.
- $B_{\varepsilon}(o_X)$ は開凸集合より 定理 5.5 から、ある恒等的に 0 でない $f \in X^*$ が存在して

$$f(x-y) < f(\varepsilon z) \ (z \in B_1(o_X), \ x \in A, y \in B)$$

が成り立つ. f の連続性と $\pm z$ を考えることにより

$$|f(x-y) + \varepsilon|f(z)| \le 0 \ (z \in \overline{B_1(o_X)}, \ x \in A, y \in B)$$

が成り立つ。

z に関する上限をとれば

$$f(x) - f(y) + \varepsilon ||f||_{X^*} \le 0 \ (x \in A, y \in B)$$

が成り立つ. したがって

$$\sup_{x \in A} f(x) < \sup_{x \in A} f(x) + \varepsilon ||f||_{X^*} \le \inf_{y \in B} f(y)$$

を得る. □

5.3 Hahn-Banach の分離定理(複素係数)

- Hahn-Banach の分離定理を複素ノルム空間へ拡張しよう.
- $X_{\mathbb{R}}$ を X を \mathbb{R} 上のベクトル空間として考えたものとする.
- このとき $g \in (X_{\mathbb{R}})^*$ に対して f(x) = g(x) ig(ix) とおくと g は X 上の線形 汎関数であることが定理 4.4 の証明と同様にしてわかる. さらに

$$|f(x)| \le |g(x)| + |g(ix)| \le ||g|| ||x|| + ||g|| ||ix|| = 2||g|| ||x||$$

より $f \in X^*$ であることがわかる.

• このことを用いると以下のことがわかる.

命題 5.7(1点と開凸集合の分離) ―

 $(X, \|\cdot\|)$ 複素ノルム空間, $C \subset X$ を空でない開凸集合, $x_0 \notin C$ とする.このとき,ある $f \in X^*$ が存在して

$$\operatorname{Re} f(x) < \operatorname{Re} f(x_0) \quad x \in C$$

が成り立つ.

定理 5.8 (開凸集合と凸集合の分離)

 $(X, \|\cdot\|)$ を複素ノルム空間, $A, B \subset X$ を空でない凸集合で $A \cap B = \emptyset$ とする。また,A は開集合であるとする。このとき,ある $f \in X^*$ が存在して

$$\operatorname{Re} f(x) < \operatorname{Re} f(y) \quad x \in A, \ y \in B$$

が成り立つ.

- 定理 5.9 (閉凸集合とコンパクト凸集合の分離) -

 $(X,\|\cdot\|)$ を複素ノルム空間, $A,B\subset X$ を空でない凸集合で $A\cap B=\emptyset$ とする。また,A は閉集合,B はコンパクト集合であるとする。このとき,ある $f\in X^*$ が存在して

$$\sup_{x \in A} \operatorname{Re} f(x) < \inf_{y \in B} \operatorname{Re} f(y) \quad x \in A, \ y \in B$$

が成り立つ.