```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

df=pd.read_csv("/content/Asia top 100 Universities.csv")
```

df

	name	world_ranking	asia_ranking	contry_ranking	country	city	type	acce
0	Ankara University	#581 / 14,131	#95 / 5,830	#3 / 175	Turkey	Ankara	Non- profit	
1	Bar-Ilan University	#480 / 14,131	#71 / 5,830	#6 / 36	Israel	Ramat Gan	Non- profit	
2	Beihang University	#412 / 14,131	#56 / 5,830	#29 / 960	China	Beijing	Non- profit	
3	Beijing Institute of Technology	#472 / 14,131	#68 / 5,830	#34 / 960	China	Beijing	Non- profit	
4	Beijing Normal University	#336 / 14,131	#43 / 5,830	#21 / 960	China	Beijing	Non- profit	
95	Xiamen University	#358 / 14,131	#46 / 5,830	#24 / 960	China	Xiamen	Non- profit	
96	Xi'an Jiaotong University	#290 / 14,131	#33 / 5,830	#15 / 960	China	Xi'an	Non- profit	
97	Yonsei University	#293 / 14,131	#34 / 5,830	#2 / 193	South Korea	Seoul	For- profit	
98	Zhejiang University	#109 / 14,131	#7 / 5,830	#3 / 960	China	Hangzhou	Non- profit	
99	Zhengzhou University	#506 / 14,131	#78 / 5,830	#36 / 960	China	Zhengzhou	Non- profit	

100 rows × 14 columns

df.isnull().sum()

name 0 world_ranking 0

```
asia_ranking
    contry_ranking
                      0
    country
    city
                      0
    type
                      5
    acceptance_rat
    publication
                      0
    high_degree
    web
    language
    Unnamed: 12
                      1
    Unnamed: 13
    dtype: int64
df.dropna(subset=["type"],inplace=True)
df.dropna(subset=["high_degree"],inplace=True)
df.dropna(subset=["web"],inplace=True)
df.dropna(subset=["language"],inplace=True)
df.dropna(subset=["Unnamed: 12"],inplace=True)
df.isnull().sum()
    name
    world_ranking
                      0
    asia_ranking
                      0
    contry_ranking
                      0
    country
    city
    type
    acceptance_rat
                      0
    publication
    high_degree
                      0
    web
                      0
    language
    Unnamed: 12
                      0
    Unnamed: 13
                      0
    dtype: int64
df.head()
```

	name	world_ranking	asia_ranking	contry_ranking	country	city	type	acce
0	Ankara University	#581 / 14,131	#95 / 5,830	#3 / 175	Turkey	Ankara	Non- profit	
1	Bar-Ilan University	#480 / 14,131	#71 / 5,830	#6 / 36	Israel	Ramat Gan	Non- profit	
2	Beihang University	#412 / 14,131	#56 / 5,830	#29 / 960	China	Beijing	Non- profit	
3	Beijing Institute of Technology	#472 / 14,131	#68 / 5,830	#34 / 960	China	Beijing	Non- profit	
5	Ben- Gurion University of the Negev	#395 / 14,131	#54 / 5,830	#5 / 36	Israel	Beersheba	Non- profit	
95	Xiamen University	#358 / 14,131	#46 / 5,830	#24 / 960	China	Xiamen	Non- profit	
96	Xi'an Jiaotong University	#290 / 14,131	#33 / 5,830	#15 / 960	China	Xi'an	Non- profit	
97	Yonsei University	#293 / 14,131	#34 / 5,830	#2 / 193	South Korea	Seoul	For- profit	
98	Zhejiang University	#109 / 14,131	#7 / 5,830	#3 / 960	China	Hangzhou	Non- profit	
99	Zhengzhou University	#506 / 14,131	#78 / 5,830	#36 / 960	China	Zhengzhou	Non- profit	
83 rows × 14 columns								

df.info()

<class 'pandas.core.frame.DataFrame'> Int64Index: 83 entries, 0 to 99 Data columns (total 14 columns):

Data	COTUMNIS (COCAT	14 COTUMNIS).	
#	Column	Non-Null Count	Dtype
0	name	83 non-null	object
1	world_ranking	83 non-null	object
2	asia_ranking	83 non-null	object
3	contry_ranking	83 non-null	object
4	country	83 non-null	object
5	city	83 non-null	object

```
83 non-null
                                    object
                                    object
     acceptance_rat 83 non-null
                                    object
object
                     83 non-null
    publication
9
    high_degree
                     83 non-null
10
    web
                     83 non-null
                                    object
11 language
                     83 non-null
                                    object
                     83 non-null
                                    object
12 Unnamed: 12
13 Unnamed: 13
                     83 non-null
                                    object
dtypes: object(14)
memory usage: 9.7+ KB
```

df.describe()

	name	world_ranking	asia_ranking	contry_ranking	country	city	type	ac
cour	nt 83	83	83	83	83	83	83	
uniqu	ie 83	83	83	83	13	55	2	
top	Ankara University	#581 / 14,131	#95 / 5,830	#3 / 175	China	Beijing	Non- profit	
freq	1	1	1	1	39	7	81	
%								
4								•

df["city"].value_counts().plot(kind="bar",figsize=(9,9))

<matplotlib.axes._subplots.AxesSubplot at 0x7f18699759a0>

 ${\tt df["acceptance_rat"].value_counts().plot(kind="bar",figsize=(9,9))}$

<matplotlib.axes._subplots.AxesSubplot at 0x7f1869240940>

df["high_degree"].value_counts().plot(kind="bar",figsize=(9,9))

<matplotlib.axes._subplots.AxesSubplot at 0x7f18696e4d00>


```
df["city"].loc[df["type"]=="Non-profit"].unique()
```

```
#95 / 5,830
            #29 / 5,830
            #53 / 5,830
                                                 1
            #10 / 5,830
            #87 / 5,830
            #65 / 5,830
            #93 / 5,830
            #82 / 5,830
                                                  1
            #75 / 5,830
                                                 1
            #78 / 5,830
            Name: asia_ranking, Length: 83, dtype: int64
df["city"].sum()
             'AnkaraRamat GanBeijingBeijingBeershebaChangshaChibaBeijingHong KongChongqingBangkokHong
            {\tt KongDalianShanghaiAnkaraSeoulHarbinSapporoHong~KongHong~KongWuhanChangshaKarnatak} \\
             aMaharashtraUttar PradeshIstanbulKanazawaRiyadhKobeKyotoFukuokaLanzhouNakhon PathomAnkara
            NagoyaNanjingTianjinSingapore CityTainanHsinchuTaipeiHsinchuSingapore CityNiigataXi'anOka
            yamaSuitaBeijingSeoilJinanShanghaiShanghaiSuzhouNanjingGuangzhouHaifaTehranTel \ Avingstein Aving
df["city"].value_counts()
            Beijing
            Hong Kong
             Shanghai
            Ankara
             Tokyo
            Seoul
            Wuhan
            Tehran
            Xi'an
            Hsinchu
            Singapore City
            Tianjin
            Nanjing
            Changsha
            Sapporo
            Beersheba
             Suita
            Jinan
                                                          1
            Suzhou
            Guangzhou
            Haifa
            Tel Aviv
            Sendai
                                                          1
            Haryana
            Harbin
                                                          1
            Chengdu
                                                          1
            Depok
            Kuala Lumpur
                                                          1
            Hefei
                                                          1
            Tsukuba
            Rehovot
                                                          1
            Xiamen
                                                          1
            Hangzhou
            Okayama
            Chiba
                                                          1
            Niigata
                                                          1
            Taipei
            Karnataka
            Maharashtra
                                                          1
            Uttar Pradesh
            Istanbul
            Kanazawa
                                                          1
            Riyadh
                                                          1
            Kobe
             Kyoto
                                                          1
            Fukuoka
                                                          1
            Lanzhou
            Nakhon Pathom
            Nagoya
                                                          1
             Ramat Gan
                                                          1
            Dalian
                                                          1
            Bangkok
                                                          1
            Tainan
                                                          1
            Chongqing
                                                          1
            Zhengzhou
            Name: city, dtype: int64
df["asia_ranking"].value_counts().plot(kind="bar",figsize=(6,6))
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f1868f609a0>

 $\label{localization} $$ df["name"]="Bar-Ilan University"].value_counts().plot(kind="bar",figsize=(6,6)) $$ plt.show() $$$

df.describe().transpose()

1

count unique

top freq

```
plt.figure(figsize=(6,6))
sns.countplot(data=df, x="acceptance_rat")
plt.xticks(rotation=90)
plt.show()
```



```
plt.figure(figsize=(6,6))
sns.countplot(data=df, x="country")
plt.xticks(rotation=90)
plt.show()
```



```
plt.figure(figsize=(6,6))
sns.countplot(data=df, y="high_degree")
plt.show()
```



```
plt.figure(figsize=(6,6))
sns.countplot(data=df, y="type")
plt.xticks(rotation=90)
plt.show()
```



```
plt.figure(figsize=(6,6))
sns.countplot(data=df, x="city",hue="high_degree")
plt.xticks(rotation=90)
plt.show()
```


✓ 0s completed at 15:08

×