In [1]:

```
import pandas as pd
```

EDA (Exploratory Data Analysis)

```
In [2]:
```

```
df=pd.read_csv("smoke_detection_iot.csv")
df.head()
```

Out[2]:

named: 0	UTC	Temperature[C]	Humidity[%]	TVOC[ppb]	eCO2[ppm]	Raw H2	Raw Ethanol	Press
0	1654733331	20.000	57.36	0	400	12306	18520	_
1	1654733332	20.015	56.67	0	400	12345	18651	
2	1654733333	20.029	55.96	0	400	12374	18764	
3	1654733334	20.044	55.28	0	400	12390	18849	
4	1654733335	20.059	54.69	0	400	12403	18921	

In [4]:

```
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 62630 entries, 0 to 62629
Data columns (total 16 columns):
```

#	Column	Non-Null Count	Dtype
0	Unnamed: 0	62630 non-null	int64
1	UTC	62630 non-null	int64
2	<pre>Temperature[C]</pre>	62630 non-null	float64
3	Humidity[%]	62630 non-null	float64
4	TVOC[ppb]	62630 non-null	int64
5	eCO2[ppm]	62630 non-null	int64
6	Raw H2	62630 non-null	int64
7	Raw Ethanol	62630 non-null	int64
8	Pressure[hPa]	62630 non-null	float64
9	PM1.0	62630 non-null	float64
10	PM2.5	62630 non-null	float64
11	NC0.5	62630 non-null	float64
12	NC1.0	62630 non-null	float64
13	NC2.5	62630 non-null	float64
14	CNT	62630 non-null	int64
15	Fire Alarm	62630 non-null	int64

dtypes: float64(8), int64(8)
memory usage: 7.6 MB

In [5]:

```
df.isna().sum()
```

Out[5]:

Unnamed: 0 0 UTC 0 Temperature[C] 0 0 Humidity[%] TVOC[ppb] 0 eCO2[ppm] 0 Raw H2 0 Raw Ethanol 0 Pressure[hPa] PM1.0 0 0 PM2.5 NC0.5 0 NC1.0 0 0 NC2.5 CNT 0 Fire Alarm 0 dtype: int64

In [15]:

import seaborn as sns

In [16]:

```
sns.heatmap(df.corr())
```

Out[16]:

<AxesSubplot:>

Machine Learning (Random Forest Classifier)

```
In [8]:
```

```
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
```

```
In [13]:
```

```
df.columns.unique()
```

Out[13]:

In [19]:

```
df.drop(['Unnamed: 0'],axis=1,inplace=True)
```

In [18]:

```
df.drop(['UTC'],axis=1,inplace=True)
```

In [20]:

```
df.head()
```

Out[20]:

	Temperature[C]	Humidity[%]	TVOC[ppb]	eCO2[ppm]	Raw H2	Raw Ethanol	Pressure[hPa]	PM1.0
0	20.000	57.36	0	400	12306	18520	939.735	0.0
1	20.015	56.67	0	400	12345	18651	939.744	0.0
2	20.029	55.96	0	400	12374	18764	939.738	0.0
3	20.044	55.28	0	400	12390	18849	939.736	0.0
4	20.059	54.69	0	400	12403	18921	939.744	0.0

In [22]:

```
x=df.drop(['Fire Alarm'],axis=1)
y=df['Fire Alarm']
```

In [23]:

```
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.33, random_state
```

```
In [25]:
```

```
cla=RandomForestClassifier()
cla.fit(x_train,y_train)
```

Out[25]:

RandomForestClassifier()

In [27]:

```
y_pred=cla.predict(x_test)
```

In [28]:

from sklearn.metrics import confusion_matrix, classification_report, accuracy_score

In [29]:

```
accuracy_score(y_test,y_pred)
```

Out[29]:

0.9999516160247726