Algoritmos e Programação II Exercícios sobre Complexidade

Marcelo Hashimoto

22 de agosto de 2013

1.	. A notação $f(n) = O(g(n))$ significa que existem constantes c, n_0 tais que $f(n) \le cg(n)$ para tod	do n	$\geq n_0$
	Verifique se cada uma das afirmações abaixo é verdadeira ou falsa:		

- (a) n = O(2n);
- (b) 2n = O(n);
- (c) $n = O(n^2)$;
- (d) $n^2 = O(n)$;
- (e) $2^n = O(2^{2n});$
- (f) $2^{2n} = O(2^n)$.

2. Ordene as funções abaixo de acordo com a notação O.

$$n^3 \quad n \quad 2^n \quad n^2 \quad \sqrt{n} \quad n^n \quad 2n \quad \log_2 n \quad n! \quad 3n^2 \quad \log_{10} n$$

- 3. Analise os exercícios das listas e provas da disciplina Algoritmos e Programação I. Em cada um deles, o que representa o tamanho n da entrada? No pior caso, qual é a função f(n) que representa o número de operações básicas? Quais das funções do exercício anterior limitam f(n) de acordo com a notação O?
- 4. Implemente uma versão iterativa da busca binária.
- 5. Implemente uma versão recursiva da $busca\ binária$.