Introducción a la programación con MatLAB

Módulo 11 - Matemática simbólica

Autor1 - Autor2 - Autor3¹

¹ Universidad Tecnológica Nacional Facultad Regional Buenos Aires

día mes 2018

Introducción

Con frecuencia es preferible manipular las ecuaciones simbólicamente antes de sustituir valores para las variables.

Los objetivos de esta unidad son aprender a :

- Crear y manipular variables simbólicas
- Resolver expresiones y ecuaciones simbólicas
- Graficar ecuaciones simbólicas
- Introducir al alumno en diferenciación y integración de ecuaciones simbólicas

Creación de variables simbólicas

Existen dos formas posibles de declarar una variable simbólica, las mismas son :

- x = sym(x')
- 2 syms x

Ambas formas hacen al carácter 'x' igual a la variable simbólica x.

Creación de una variable simbólica utilizando otra existente :

$$y = \frac{2 * (x+3)^2}{x^2 + 6 * x + 9}$$

Tener en cuenta

El comando **syms** permite crear múltiples variables simbólicas al mismo tiempo.

IEEE Sección Argentina

Matemática simbólica Bibliografia

Creación de variables simbólicas

symsx

$$y = \frac{2 * (x+3)^2}{x^2 + 6 * x + 9}$$


```
Command Window
  >> syms x
  y = (2*(x+3)^2)/(x^2+6*x+9)
  y =
  (2*(x + 3)^2)/(x^2 + 6*x + 9)
f_{\underline{x}} >>
```

IEEE Sección Argentina

día mes 2018

UTN.BA

Manipulación de expresiones y ecuaciones simbólicas

A continuación, las funciones de manipulación de variables simbólicas se ejemplificarán utilizando la siguiente función :

$$y = \frac{2 * (x + 2)^2}{x^2 + 6 * x + 9}$$

Manipulación de expresiones y ecuaciones simbólicas

Extracción de numeradores y denominadores

Comando

Ver comando : [num,den] = numden(var)

Ej. Ejecutar las siguientes líneas. Obtener conclusiones.

$$y = \frac{2 * (x + 2)^2}{x^2 + 6 * x + 9}$$

$$[num, den] = numden(y)$$

6/36

Manipulación de expresiones y ecuaciones simbólicas

Expansión de expresiones (Multiplica todas las porciones de la ecuación)

Comando

Ver comando : expand(var)

Ej. Ejecutar las siguientes líneas. Obtener conclusiones.

$$symsx$$

$$y = \frac{2 * (x + 2)^2}{x^2 + 6 * x + 9}$$

$$[num, den] = numden(y)$$

$$expand(num)$$

7/36

Manipulación de expresiones y ecuaciones simbólicas

Factorización de expresiones (Factoriza la ecuación)

Comando

Ver comando : factor(var)

Ej. Ejecutar las siguientes líneas. Obtener conclusiones.

$$symsx$$

$$y = \frac{2 * (x + 2)^2}{x^2 + 6 * x + 9}$$

$$[num, den] = numden(y)$$

$$factor(num)$$

8/36

Manipulación de expresiones y ecuaciones simbólicas

Recolección de términos (Recopila términos similares)

Comando

Ver comando : collect(var)

Ej. Ejecutar las siguientes líneas. Obtener conclusiones.

$$symsx$$

$$y = \frac{2 * (x + 2)^2}{x^2 + 6 * x + 9}$$

$$[num, den] = numden(y)$$

$$collect(num)$$

9/36

Simplificación de ecuaciones simbólicas

Comando

Ver comando: simplify(var)

Ej. Ejecutar las siguientes líneas. Obtener conclusiones.

$$z = sym('x^3 - 1 = (x - 3) * (x + 3)')$$

simplify(z)

10/36

Ejercicio práctico xxx

- Cree las variables simbólicas x,a,b,c y d
- Verifique que las variables creadas en el item (1) se mencionan en la ventana del área de trabajo. Úselas para crear las siguientes expresiones simbólicas :

■
$$ex1 = x^2 - 1$$

■ $ex2 = (x + 1)^2$
■ $ex3 = a * x^2 - 1$
■ $ex4 = a * x^2 + b * x + c$
■ $ex5 = a * x^3 + b * x^2 + c * x + d$

- Multiplique ex1 por ex2 y llame al resultado y1
- Divida ex1 entre ex2 y llame al resultado y2
- Use la función numden para extraer el numerador y denominador de y1 y y2
- Use las funciones factor, expand, collect y simplify en y1 e y2. Obtenga conclusiones.

Sugerencia

Para crear un polinomio simbólico a partir de un vector de números se utiliza la función ${\bf poly2sym}$

Comando

Ver comando : poly2sym()

Ej. Ejecutar las siguientes líneas. Obtener conclusiones.

$$a = [132]$$

$$b = poly2sym(a)$$

De modo similar, **sym2poly** convierte un polinomio en un vector de valores.

Comando

Ver comando: sym2poly()

Resolución de expresiones y ecuaciones simbólicas

Para la resolución de expresiones y ecuaciones (dos expresiones igualadas) se utilizará la función solve.

Comando

Ver comando: solve()

Se utilizarán dos enfoques, los mismos son :

- Cuando se trata de una expresión
 - Cuando se trata de una ecuación
 - Expresión igualada a 0
 - 2 Expresión igualada a una expresión distinta de 0 (aplicando transformación)
 - 3 Expresión igualada a una expresión distinta de 0 (sin transformación)

Resolución de expresiones y ecuaciones simbólicas : Caso 1

Utilización de la función solve en una expresión

Ej. Ejecutar las siguientes líneas. Obtener conclusiones.

$$E1 = x - 3$$

solve(E1)

Importante

Cuando se usa en una expresión, la función **solve** iguala la expresión a cero y resuelve.

Resolución de expresiones y ecuaciones simbólicas : Caso 1

Ej. Ejecutar las siguientes líneas. Obtener conclusiones.

$$solve('a*x^2+b*x+c')$$

Importante

Matlab por defecto resuelve para la variable simbólica x.

Resolución de expresiones y ecuaciones simbólicas : Caso 1

Para el caso en que se desee especificar la variable por resolver, ésta debe ser indicada en el segundo campo de la función.

Ej. Ejecutar las siguientes líneas. Obtener conclusiones.

$$solve('a * x^2 + b * x + c', 'a')$$

Tener en cuenta

Si a se define específicamente como variable simbólica, no es necesaria encerrarla entre apóstrofes.

IEEE Sección Argentina

Resolución de expresiones y ecuaciones simbólicas : Caso 2.1 ó 2.2

Si la ecuación es simple, puede transformarse en una expresión al restar el lado derecho del lado izquierdo.

Para el caso:

$$5 * x^2 + 6 * x + 3 = 10$$

Se podría reformular como:

$$5 * x^2 + 6 * x - 7 = 0$$

y resolver la ecuación ejecutando las siguientes líneas :

$$solve('5 * x^2 + 6 * x - 7')$$

UTN.BA F

Resolución de expresiones y ecuaciones simbólicas : Caso 2.3

Si la ecuación es compleja, se define una nueva ecuación y luego se procede a resolver la misma. Para el caso :

$$5 * x^2 + 6 * x + 3 = 10$$

Se resuelve la ecuación ejecutando las siguientes líneas :

$$E2 = sym('5 * x^2 + 6 * x + 3 = 10')$$

 $solve(E2)$

18/36

Ejercicio práctico xxx

- Cree las variables simbólicas x,a,b,c y d
- Verifique que las variables creadas en el item (1) se mencionan en la ventana del área de trabajo. Úselas para crear las siguientes expresiones simbólicas :

■
$$ex1 = x^2 - 1$$

■ $ex2 = (x + 1)^2$
■ $ex3 = a * x^2 - 1$
■ $ex4 = a * x^2 + b * x + c$
■ $ex5 = a * x^3 + b * x^2 + c * x + d$

■
$$eq2 = (x + 1)^2 = 0$$

■ $eq3 = a * x^2 = 1$
■ $eq4 = a * x^2 + b * x + c = 0$
■ $eq5 = a * x^3 + b * x^2 + c * x + d = 0$

 $ea1 = x^2 = 1$

- Use la función solve para resolver ex1 y eq1
- Use la función solve para resolver ex2 y eq2
- 5 Use la función solve para resolver ex3 y eq3 tanto para x como para a
- Use la función solve para resolver ex4 y eq4 tanto para x como para a Sección Argentina

Resolución de sistemas de ecuaciones

Se desea resolver el siguiente sistemas de ecuaciones utilizando la función solve :

$$\begin{cases} 3x + 2y - z = 10 \\ -x + 3y + 2z = 5 \\ x - y - z = -1 \end{cases}$$

Resolución de sistemas de ecuaciones

Definir las tres ecuaciones simbólicas

Ec1 =
$$sym('3*x + 2*y - z = 10')$$

Ec2 = $sym('-x + 3*y + 2*z = 5')$
Ec3 = $sym('x - y - z = -1')$

Luego utilizando la función solve se obtienen la solución (valores de x, y, z) :

$$[x,y,z] = solve(Ec1,Ec2,Ec3)$$

día mes 2018

21/36

UTN.BA Programación en MatLAB

Graficación de ecuaciones simbólicas

Se realizará la gráfica de una función de la forma :

$$y = f(x)$$

Ver comando : ezplot()

Ej. Ejecutar las siguientes líneas. Obtener conclusiones.

$$y = sym('x^2 - 2')$$
$$ezplot(y)$$

Importante

Por defecto, se grafica la función con una variación de x en el intervalo $[-2*\pi, 2*\pi]$

Sección Argentina

UTN.BA

Graficación de ecuaciones simbólicas

Ej. Ejecutar las siguientes líneas. Obtener conclusiones.

$$y = sym('x^2 - 2')$$

ezplot(y, [-10, 10])

Graficación de ecuaciones simbólicas

Para graficar una ecuación paramétrica se define ecuaciones separadas para x e y en términos de una tercera variable. Luego se utiliza la función **ezplot** vista.

$$x = sen(t)$$

$$y = cos(t)$$

Ej. Ejecutar las siguientes líneas. Obtener conclusiones.

ezplot('sin(x)','cos(x)')

IEEE Sección Argentina

Graficación de ecuaciones simbólicas

$$y_1 = sym('sen(X)')$$

$$y_2 = sym('sen(2*X)')$$

$$y_3 = sym('sen(3*X)')$$

Ej. Ejecutar las siguientes líneas. Obtener conclusiones.

$ezplot(y_1)holdon$

IEEE Sección Argentina

25 / 36

día mes 2018

Graficación de ecuaciones simbólicas

Sección Argentina

Cálculo: Introducción a la diferenciación

Se considera un auto de carreras cuya ecuación de posición es :

$$d = 20 + 20 * sen(\frac{\pi * (t - 10))}{20})$$

 $dist = sym('20+20*sin(\pi*(t-10)/20)) \underbrace{dist}_{g_{30}} = \underbrace{sym('20+20*sin(\pi*(t-10)/20))}_{g_{30}} \underbrace{dist}_{g_{30}} = \underbrace{sym('20+20*sin(\pi*(t-10)/20))}_{g_{30}} \underbrace{dist}_{g_{30}} = \underbrace{dist}$

Cálculo: Introducción a la diferenciación

Sabiendo que la velocidad es la derivada de la posiócin y utilizando la función diff

Comando

Ver comando : diff()

Se obtiene la siguiente curva de velocidad

```
vel = diff(dist)
ezplot(vel, [0, 20])
title('Velocidaddelauto')
xlabel('Tiempo[s]')
ylabel('Velocidaddelauto')
```


Cálculo: Introducción a la diferenciación

Sabiendo que la aceleración es la derivada de la velocidad y utilizando la función diff

Comando

Ver comando : diff()

Se obtiene la siguiente curva de aceleración

```
ace = diff(vel)
ezplot(ace, [0, 20])
title('Aceleracindelauto')
xlabel('Tiempo[s]')
ylabel('Aceleracindelauto')
```


Cálculo: Introducción a la diferenciación

Otras funciones de diferenciación simbólica

Ī	diff(f,'t',n)	Derivada n-ésima de la expresión f respecto a la variable t
ľ	diff(f,n)	Derivada n-ésima de la expresión f respecto a la variable independeinte
Ī	diff(f,'t')	Derivada de la expresión f con respecto a la variable t
	diff(f)	Derivada de la expresión f con respecto a la variable independiente

Ejercicio práctico xxx

- Encuentre la primera derivada con respecto a x de las siguientes expresiones :
 - 1 $x^2 + x + 1$
 - 2 sen(x)
 - 3 tan(X)
 - 4 ln(x)
- Encuentre la primera derivada parcial con respecto a x de las siguientes expresiones :
 - $1 \quad a * X + b * x + c$
 - $x^0.5 3 * y$
 - 3 tan(x + y)
 - 3*x+4*y-3*x*y
- Encuentre la segunda derivada con respecto a x para cada una de las expresiones del problema 1 y 2.
- Encuentre la primera derivada con respecto a y para las siguientes expresiones :
 - 1 y 1
 - $2 * y + 3 * x^2$
 - a * v + b * x + c * z

Cálculo: Introducción a la integración

Dada la curva de aceleración vista, se procede a calcular la velocidad integrando la misma.

Comando

Ver comando: int()

Se obtiene la siguiente curva de velocidad

```
vel = int(ace)
ezplot(vel, [0, 20])
title(' Velocidaddelauto')
xlabel(' Tiempo[s]')
ylabel(' Velocidaddelauto')
```


Cálculo: Introducción a la integración

Si se desea calcular la integral definida se debe especificar el rango de interés. Algunas funciones para el cálculo de integral numérica son :

int(f)	Integral de la expresión f con respecto a la variable independiente
int(f,'t')	Integral de la expresión f con respecto a la variable t
int(f,a,b)	Integral con respecto a la variable independiente de la expresión f
	entre las fronteras a y b

Ejercicio práctico xxx

- Integre las siguientes expresiones con respecto a x :
 - 1 $x^2 + x + 1$
 - 2 sen(x)
 - 3 tan(X)
 - 4 ln(x)
- Integre las siguientes expresiones con respecto a x :

1
$$a * X + b * x + c$$

$$x^0.5 - 3 * y$$

$$3 tan(x + y)$$

4
$$3*x+4*y-3*x*y$$

- Realice una integración doble con respecto a x para cada una de las expresiones de los problemas 1 y 2.
- Integre las siguientes expresiones con respecto a y :

$$v - 1$$

$$2 * y + 3 * x^2$$

3
$$a * v + b * x + c * z$$

Consultas

Bibliografía

