Piecewise-Local Expression Builder

Dakotah Lambert

08 Feb 2022

Obtainment

These slides describe PLEB, a component of the Language Toolkit

- Written in Haskell
- Is not Haskell
- https://github.com/vvulpes0/Language-Toolkit-2/tree/develop
- Expressions very slightly simplified here

Substring Containment

Syntax	Semantics
$ \begin{array}{c c} \langle F \rangle \\ \times \langle F \rangle \\ \times \langle F \rangle \\ \times \times \langle F \rangle \end{array} $	contains $\llbracket F \rrbracket$ as a substring contains $\llbracket F \rrbracket$ as a prefix contains $\llbracket F \rrbracket$ as a suffix the set containing only $\llbracket F \rrbracket$

The factor F is a space-separated sequence of symbols:

$$\bowtie \bowtie \langle a \ b \ c \rangle = \{abc\}$$

The fish (\times) and $\times)$ are anchors, pinning the factor to the indicated side of the string

Substring Containment — Exercises

- How would we represent {abba}?
- Name three strings in the language $\langle a b \rangle$ if the alphabet is $\Sigma = \{a, b, c\}$
- \square What formal language is represented by $\langle \rangle$?

Some Operations

Syntax	Semantics
$\neg \chi$	$\Sigma^* - \llbracket x rbracket$
•S	concatenate all elements of $[S]$, in order
$\wedge s$	intersect all elements of $[S]$
$\bigvee S$	union all elements of $\llbracket S rbracket^{-1}$

x is a PL-expression.

S is a comma-separated sequence of PL-expressions enclosed in braces or parentheses:

$$\bigwedge\{\langle a\ b\rangle, \langle b\ a\rangle\}$$

means "contains ab and contains ba".

Some Operations — Exercises

- What language does the following represent: $\neg \bigvee \{\langle a \ a \rangle, \langle b \ b \rangle\}$
- Explain how Star Free Expressions can be rewritten as PL-expressions

Piecewise Factors

 $\begin{array}{cc} \text{Local:} & \langle a \ b \ c \rangle \\ \text{Piecewise:} & \langle a, b, c \rangle \end{array}$

Local factor: these symbols appear in order, adjacently Piecewise factor: these symbols appear in order

For example: "automaton" satisfies $\langle a, n \rangle$.

Fish work too: $\rtimes \langle a,b \rangle$ means "starts with an a and contains a b later"

Piecewise Factors — Exercise

Show that piecewise factors are redundant.

A Few Final Operations

Syntax	Semantics
$\downarrow x$	$[\![x]\!]^*$ words in $[\![x]\!]$ with zero or more characters deleted $[\![x]\!]$ applies on the T tier

x is a PL-expressionT is a comma-separated list of symbols

 $[a,b] \neg \langle a \ a \rangle$ means "when looking only at a and b, no two a appear together": "saccade" is forbidden, but "cabbage" is acceptable.

ASCII Syntax

Unicode	ASCII
$\langle \rangle$	<>
\rtimes	% I
\bowtie	۱%
\neg	!
\neg	~
\land	/\
V	\/
•	@
<u></u>	\$
	· · · · · · · · · · · · · · · · · · ·

Final Exercise

Show the equivalence of Regular Expressions and PL-expressions.