

Department of Pathology and Laboratory Medicine No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan 11217, R.O.C. Tel: 02-2875-7449

Date: 01 Jun 2022 1 of 28

Sample Information

Patient Name: 范劉月娥 Gender: Female ID No.: M200001733 History No.: 47122065

Age: 87

Ordering Doctor: DOC6382C 林開亮

Ordering REQ.: 0BVWXAT Signing in Date: 2022/06/01

Path No.: S111-99481 **MP No.:** F22055

Assay: Oncomine Focus Assay

Sample Type: FFPE Block No.: S111-76433A Percentage of tumor cells: 25%

Reporting Doctor: DOC5466K 葉奕成 (Phone: 8#5466)

Note:

Sample Cancer Type: Non-Small Cell Lung Cancer

Table of Contents	Page
Variants (Exclude variant in Taiwan BioBank with >1% allele frequency)	2
Biomarker Descriptions	3
Relevant Therapy Summary	4
Relevant Therapy Details	7
Clinical Trials Summary	18
Alert Details	20

Report Highlights 3 Relevant Biomarkers 12 Therapies Available

13 Clinical Trials

Relevant Non-Small Cell Lung Cancer Variants

Gene	Finding	Gene	Finding
ALK	None detected	NTRK1	None detected
BRAF	None detected	NTRK2	None detected
EGFR	EGFR p.(L858R) c.2573T>G, EGFR p.(T790M) c.2369C>T, EGFR c.2185-1G>A	NTRK3	None detected
ERBB2	None detected	RET	None detected
KRAS	None detected	ROS1	None detected
MET	None detected		

Relevant Biomarkers

Tier	Genomic Alteration	Relevant Therapies (In this cancer type)	Relevant Therapies (In other cancer type)	Clinical Trials
IA	EGFR p.(L858R) c.2573T>G epidermal growth factor receptor Allele Frequency: 40.19%	bevacizumab* + erlotinib² erlotinib + ramucirumab¹ gefitinib*² osimertinib¹,² atezolizumab + bevacizumab + chemotherapy bevacizumab + gefitinib gefitinib + chemotherapy osimertinib + chemotherapy	None	13
IA	EGFR p.(T790M) c.2369C>T epidermal growth factor receptor Allele Frequency: 8.43%	osimertinib ^{1, 2}	None	8
IA	EGFR c.2185-1G>A epidermal growth factor receptor Allele Frequency: 6.01%	None	None	4

Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO

Tier Reference: Li et al. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn. 2017 Jan;19(1):4-23. * Includes biosimilars

🛕 Alerts informed by public data sources: 🧿 Contraindicated, 🏼 TResistance

EGFR p.(T790M) c.2369C>T

afatinib, dacomitinib, erlotinib, gefitinib

Public data sources included in alerts: FDA1, NCCN, EMA2, ESMO

Prevalent cancer biomarkers without relevant evidence based on included data sources MTOR p.(A2210T) c.6628G>A

Variants (Exclude variant in Taiwan BioBank with >1% allele frequency)

DNA	Sequence Vari	ants						
Gene	Amino Acid Change	Coding	Variant ID	Locus	Allele Frequency	Transcript	Variant Effect	Coverage
MTOR	p.(A2210T)	c.6628G>A		chr1:11184589	3.68%	NM_004958.4	missense	1575
EGFR	p.(?)	c.2185-1G>A		chr7:55242414	6.01%	NM_005228.5	unknown	1314
EGFR	p.(T790M)	c.2369C>T	COSM6240	chr7:55249071	8.43%	NM_005228.5	missense	83
EGFR	p.(L858R)	c.2573T>G	COSM6224	chr7:55259515	40.19%	NM_005228.5	missense	1988
MTOR	p.(D2195N)	c.6583G>A		chr1:11184634	5.19%	NM_004958.4	missense	1581
MTOR	p.(A1979V)	c.5936C>T		chr1:11188158	4.75%	NM_004958.4	missense	1180
DDR2	p.(Y122C)	c.365A>G		chr1:162724593	5.00%	NM_006182.4	missense	80
ALK	p.(T1506=)	c.4518G>A		chr2:29416435	4.75%	NM_004304.5	synonymous	2000
ALK	p.(I1171=)	c.3513C>T		chr2:29445212	6.45%	NM_004304.5	synonymous	2000
ERBB4	p.(S701N)	c.2102G>A		chr2:212488747	5.95%	NM_005235.3	missense	2000
ROS1	p.(R1942Q)	c.5825G>A		chr6:117641146	10.17%	NM_002944.2	missense	295

Date: 01 Jun 2022 3 of 28

Variants (Exclude variant in Taiwan BioBank with >1% allele frequency) (continued)

DNA Sequence Variants (continued)

Gene	Amino Acid Change	Codina	Variant ID	Locus	Allele Frequency	Transcript	Variant Effect	Coverage
ESR1	p.(G572S)	c.1714G>A		chr6:152420027	8.75%	NM_001122740.1	missense	686
EGFR	p.(E711=)	c.2133A>G		chr7:55241685	5.22%	NM_005228.5	synonymous	1302
SMO	p.(P306A)	c.916C>G		chr7:128845619	11.31%	NM_005631.5	missense	168
BRAF	p.(P343L)	c.1028C>T		chr7:140494220	5.22%	NM_004333.6	missense	767
BRAF	p.(S273=)	c.819T>C		chr7:140501253	7.34%	NM_004333.6	synonymous	259
FGFR1	p.(T726=)	c.2178T>G		chr8:38271771	11.54%	NM_001174067.1	synonymous	130
FGFR1	p.(V304M)	c.910G>A		chr8:38282146	4.34%	NM_001174067.1	missense	1404
FGFR2	p.(D374N)	c.1120G>A		chr10:123274798	8.67%	NM_000141.5	missense	646
CDK4	p.(G15S)	c.43G>A		chr12:58145458	4.47%	NM_000075.4	missense	1991
MAP2K1	p.(E51Dfs*16)	c.152_153insC		chr15:66727436	9.56%	NM_002755.4	frameshift Insertion	136
IDH2	p.(P162L)	c.485C>T		chr15:90631868	14.80%	NM_002168.4	missense	392
IDH2	p.(P158L)	c.473C>T		chr15:90631880	10.49%	NM_002168.4	missense	391
ERBB2	p.(R678=)	c.2034G>A		chr17:37879659	8.65%	NM_004448.3	synonymous	624

Biomarker Descriptions

EGFR (epidermal growth factor receptor)

Background: The EGFR gene encodes the epidermal growth factor receptor (EGFR) tyrosine kinase, a member of the ERBB/human epidermal growth factor receptor (HER) family. In addition to EGFR/ERBB1/HER1, other members of the ERBB/HER family include ERBB2/HER2, ERBB3/HER3, and ERBB4/HER4¹. EGFR ligand induced dimerization results in kinase activation and leads to stimulation of oncogenic signaling pathways including the PI3K/AKT/MTOR and RAS/RAF/MEK/ERK pathways. Activation of these pathways promote cell proliferation, differentiation, and survival².³.

Alterations and prevalence: Recurrent somatic mutations in the tyrosine kinase domain (TKD) of EGFR are observed in approximately 10-20% of lung adenocarcinoma, and at higher frequencies in never-smoker, female, and Asian populations^{4,5,6,7}. The most common mutations occur near the ATP-binding pocket of the TKD and include short in-frame deletions in exon 19 (EGFR exon 19 deletion) and the L858R amino acid substitution in exon 21⁸. These mutations constitutively activate EGFR resulting in downstream signaling, and represent 80% of the EGFR mutations observed in lung cancer. A second group of less prevalent activating mutations include E709K, G719X, S768I, L861Q, and short in-frame insertion mutations in exon 20^{9,10,11,12}. EGFR activating mutations in lung cancer tend to be mutually exclusive to KRAS activating mutations¹³. In contrast, a different set of recurrent activating EGFR mutations in the extracellular domain include R108K, A289V and G598V and are primarily observed in glioblastoma^{8,14}. Amplification of EGFR is observed in several cancer types including 30% of glioblastoma, 12% of esophageal cancer, 10% of head and neck cancer, 5% of bladder cancer, and 5% of lung squamous cell carcinoma^{5,6,7,14,15}. Deletion of exons 2-7, encoding the extracellular domain of EGFR (EGFRVIII), results in overexpression of a ligand-independent constitutively active protein and is observed in approximately 30% of glioblastoma^{16,17,18}.

Potential relevance: Approved first-generation EGFR tyrosine kinase inhibitors (TKIs) include erlotinib¹⁹ (2004) and gefitinib²⁰ (2015), which block the activation of downstream signaling by reversible interaction with the ATP-binding site. Although initially approved for advanced lung cancer, the discovery that drug sensitivity was associated with exon 19 and exon 21 activating mutations allowed first-generation TKIs to become subsequently approved for front-line therapy in lung cancer tumors containing exon 19 or exon 21 activating mutations. Second-generation TKIs afatinib²¹ (2013) and dacomitinib²² (2018) bind EGFR and other ERBB/HER gene family members irreversibly and were subsequently approved. First- and second-generation TKIs afatinib, dacomitinib, erlotinib, and gefitinib are recommended for the treatment NSCLC harboring EGFR exon 19 insertions, exon 19 deletions, point mutations L861Q, L858R, S768I, and codon 719 mutations, whereas most EGFR exon 20 insertions, except p.A763_Y764insFQEA, confer resistance to the same

Biomarker Descriptions (continued)

therapies^{23,24,25,26}. However, in 2021, the irreversible tyrosine kinase inhibitor, mobocertinib²⁷was FDA approved for the treatment of NSCLC with EGFR exon 20 insertion mutations. Additionally, in 2022, the FDA granted breakthrough therapy designation to the irreversible EGFR inhibitors, CLN-081 (TPC-064)28 and DZD-900829, for locally advanced or metastatic non-small cell lung cancer harboring EGFR exon 20 insertion mutations. In lung cancer containing EGFR exon 19 or 21 activating mutations, treatment with TKIs is eventually associated with the emergence of drug resistance³⁰. The primary resistance mutation that emerges following treatment with first-generation TKI is T790M, accounting for 50-60% of resistant cases8. Third generation TKIs were developed to maintain sensitivity in the presence of T790M. Osimertinib³¹ (2015) is an irreversible inhibitor indicated for metastatic EGFR T790M positive lung cancer and for the first-line treatment of metastatic NSCLC containing EGFR exon 19 deletions or exon 21 L858R mutations. Like first-generation TKIs, treatment with osimertinib is associated with acquired resistance. In this case, resistance is associated with the C797S mutation and occurs in 22-44% of cases30. The T790M and C797S mutations may be each selected following sequential treatment with a first-generation TKI followed by a third-generation TKI or vice versa³². T790M and C797S can occur in either cis or trans allelic orientation³². If C797S is observed following progression after treatment with a third-generation TKI in the first-line setting, sensitivity may be retained to first-generation TKIs³². If C797S co-occurs in trans with T790M following sequential treatment with first- and third-generation TKIs, patients may exhibit sensitivity to combination first- and third-generation TKIs, but resistance to third-generation TKIs alone^{32,33}. However, C797S occurring in cis conformation with T790M, confers resistance to first- and third-generation TKIs³². Fourth-generation TKIs are in development to overcome acquired C797S and T790M resistance mutations after osimertinib treatment. EGFR targeting antibodies including cetuximab (2004), panitumumab (2006), and necitumumab (2016) are under investigation in combination with EGFR-targeting TKIs for efficacy against EGFR mutations. The bispecific antibody, amivantamab34, targeting EGFR and MET was approved (2021) NSCLC tumors harboring EGFR exon 20 insertion mutations. The Oncoprex immunogene therapy quaratusugene ozeplasmid³⁵ in combination with osimertinib received a fast track designation from the FDA (2020) for NSCLC tumors harboring EGFR mutations that progressed on osimertinib alone. BDTX-18936 was granted a fast track designation (2020) for the treatment of solid tumors harboring an EGFR exon 20 insertion mutation.

MTOR (mechanistic target of rapamycin kinase)

Background: The MTOR gene encodes the mechanistic target of rapamycin kinase (also known as, mammalian target of rapamycin). which is a member of the phosphatidylinositol 3-kinase (PI3K)-related kinases family of serine/threonine protein kinases. MTOR encodes the catalytic subunit of mTOR Complex 1 (mTORC1) and 2 (mTORC2)³⁷. These complexes regulate cell growth by modulating protein synthesis, autophagy, and other metabolic pathways. The mTORC1 and mTORC2 complexes are downstream effectors of the PI3K/AKT/MTOR signaling pathway and facilitate integration of the PI3K/AKT/MTOR and RAS/RAF/MEK/ERK signaling pathways^{38,39,40}.

Alterations and prevalence: Recurrent activating mutations differentially activate mTORC1 or mTORC2 leading to either S6K1/4EBP1 or AKT1 phosphorylation, respectively⁴¹. Mutations in MTOR are observed at frequencies of 5-15% in lung adenocarcinoma, clear cell renal cell carcinoma, melanoma, colorectal, gastric, and uterine cancers6.

Potential relevance: Two first generation MTOR inhibitors termed rapalogs (analogues of rapamycin) have been approved by the FDA: temsirolimus⁴² (2007) for the treatment of renal cell carcinoma (RCC) and everolimus⁴³ (2009) for the treatment of breast, pancreatic, gastrointestinal, and lung cancers, RCC, and subependymal giant cell astrocytomas. Mutations in the FRB domain of mTOR are a potential mechanism of acquired resistance to first generation rapalogs^{39,44}. While first-generation rapalogs form inhibitory complexes with FKBP-12, second generation mTOR inhibitors such as PF-04691502 and gedatolisib target the mTOR kinase domain directly⁴⁵.

Relevant Therapy Summary

In this cancer type	O In other cancer type	In this cancer	type and other car	ncer types	✗ No eviden	ce
EGFR p.(L858R)	c.2573T>G					
Relevant Therapy		FDA	NCCN	EMA	ESMO	Clinical Trials*
osimertinib						(III)
erlotinib + ramucirum	ab			×		×
bevacizumab + erlotii	nib	×			•	×

^{*} Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Relevant Therapy Summary (continued)

In this cancer type

O In other cancer type

In this cancer type and other cancer types

× No evidence

EGFR p.(L858R) c.2573T>G (continued)

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
osimertinib + chemotherapy	×		×	×	×
bevacizumab (Allergan) + erlotinib	×	×	•	×	×
bevacizumab (Fujifilm Kyowa Kirin Biologics) + erlotinib	×	×	•	×	×
bevacizumab (Mabxience) + erlotinib	×	×	•	×	×
bevacizumab (Pfizer) + erlotinib	×	×	•	×	×
bevacizumab (Samsung Bioepis) + erlotinib	×	×	•	×	×
bevacizumab (Stada) + erlotinib	×	×	•	×	×
gefitinib (Mylan)	×	×	•	×	×
atezolizumab + bevacizumab + carboplatin + paclitaxel	×	×	×	•	×
bevacizumab + gefitinib	×	×	×	•	×
gefitinib + carboplatin + pemetrexed	×	×	×	•	×
amivantamab, lazertinib, chemotherapy	×	×	×	×	(III)
amivantamab, lazertinib, osimertinib	×	×	×	×	(III)
durvalumab, chemotherapy	×	×	×	×	(III)
osimertinib, chemotherapy	×	×	×	×	(III)
durvalumab, tremelimumab, chemotherapy	×	×	×	×	(II)
osimertinib, savolitinib	×	×	×	×	(II)
BLU-945	×	×	×	×	(I/II)
sunvozertinib	×	×	×	×	(I/II)
amivantamab, lazertinib	×	×	×	×	(I)
lazertinib, amivantamab	×	×	×	×	(I)
telisotuzumab vedotin, osimertinib	×	×	×	×	(l)
TNO-155, nazartinib	×	×	×	×	(I)

EGFR p.(T790M) c.2369C>T

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
osimertinib	•				×
durvalumab, chemotherapy	×	×	×	×	(III)

^{*} Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Relevant Therapy Summary (continued)

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
osimertinib, chemotherapy	×	×	×	×	(III)
durvalumab, tremelimumab, chemotherapy	×	×	×	×	(II)
BLU-945	×	×	×	×	(I/II)
sunvozertinib	×	×	×	×	(/)
amivantamab	×	×	×	×	(I)
azertinib, amivantamab, chemotherapy	×	×	×	×	(I)
telisotuzumab vedotin, osimertinib	×	×	×	×	(I)

EGFR c.2185-1G>A					
Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
durvalumab, chemotherapy	×	×	×	×	(III)
sunvozertinib	×	×	×	×	(1/11)
amivantamab, chemotherapy	×	×	×	×	(l)
lazertinib, amivantamab, chemotherapy	×	×	×	×	(I)

 $^{^{\}star}$ Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Date: 01 Jun 2022 7 of 28

Relevant Therapy Details

Current FDA Information

In this cancer type and other cancer types

FDA information is current as of 2022-04-13. For the most up-to-date information, search www.fda.gov.

EGFR p.(L858R) c.2573T>G

erlotinib + ramucirumab

Cancer type: Non-Small Cell Lung Cancer Label as of: 2022-03-22 Variant class: EGFR L858R mutation

Indications and usage:

CYRAMZA® is a human vascular endothelial growth factor receptor 2 (VEGFR2) antagonist indicated:

- as a single agent or in combination with paclitaxel, for treatment of advanced or metastatic gastric or gastro-esophageal
 junction adenocarcinoma with disease progression on or after prior fluoropyrimidine- or platinum-containing chemotherapy.
- in combination with erlotinib, for first-line treatment of metastatic non-small cell lung cancer with epidermal growth factor receptor (EGFR) exon 19 deletions or exon 21 (L858R) mutations.
- in combination with docetaxel, for treatment of metastatic non-small cell lung cancer with disease progression on or after platinum-based chemotherapy. Patients with EGFR or ALK genomic tumor aberrations should have disease progression on FDA-approved therapy for these aberrations prior to receiving CYRAMZA®.
- in combination with FOLFIRI, for the treatment of metastatic colorectal cancer with disease progression on or after prior therapy with bevacizumab, oxaliplatin, and a fluoropyrimidine.
- as a single agent, for the treatment of hepatocellular carcinoma in patients who have an alpha fetoprotein of ≥400 ng/mL and have been treated with sorafenib.

Reference:

https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/125477s042lbl.pdf

osimertinib

Cancer type: Non-Small Cell Lung Cancer Label as of: 2022-01-19 Variant class: EGFR L858R mutation

Indications and usage:

TAGRISSO® is a kinase inhibitor indicated for:

- as adjuvant therapy after tumor resection in adult patients with non-small cell lung cancer (NSCLC) whose tumors have epidermal growth factor receptor (EGFR) exon 19 deletions or exon 21 L858R mutations, as detected by an FDA-approved test
- the first-line treatment of adult patients with metastatic NSCLC whose tumors have EGFR exon 19 deletions or exon 21 L858R mutations, as detected by an FDA-approved test.
- the treatment of adult patients with metastatic EGFR T790M mutation positive NSCLC, as detected by an FDA-approved test, whose disease has progressed on or after EGFR TKI therapy.

Reference:

https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/208065s025lbl.pdf

Date: 01 Jun 2022 8 of 28

EGFR p.(T790M) c.2369C>T

osimertinib

Cancer type: Non-Small Cell Lung Cancer Label as of: 2022-01-19 Variant class: EGFR T790M mutation

Indications and usage:

TAGRISSO® is a kinase inhibitor indicated for:

- as adjuvant therapy after tumor resection in adult patients with non-small cell lung cancer (NSCLC) whose tumors have epidermal growth factor receptor (EGFR) exon 19 deletions or exon 21 L858R mutations, as detected by an FDA-approved test.
- the first-line treatment of adult patients with metastatic NSCLC whose tumors have EGFR exon 19 deletions or exon 21 L858R mutations, as detected by an FDA-approved test.
- the treatment of adult patients with metastatic EGFR T790M mutation positive NSCLC, as detected by an FDA-approved test, whose disease has progressed on or after EGFR TKI therapy.

Reference:

https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/208065s025lbl.pdf

Date: 01 Jun 2022 9 of 28

Current NCCN Information

In this cancer type

O In other cancer type

In this cancer type and other cancer types

NCCN information is current as of 2022-03-31. For the most up-to-date information, search www.nccn.org. For NCCN International Adaptations & Translations, search www.nccn.org/global/international_adaptations.aspx.

EGFR p.(L858R) c.2573T>G

osimertinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR L858R mutation

NCCN Recommendation category: 1

Population segment (Line of therapy):

Adenocarcinoma, Large Cell, Squamous Cell, Not otherwise specified (NOS); Advanced, Metastatic (First-line therapy);
 Preferred intervention

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 3.2022]

bevacizumab + erlotinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR L858R mutation

NCCN Recommendation category: 2A

Population segment (Line of therapy):

- Non-squamous Cell; Advanced, Metastatic (First-line therapy); Other recommended intervention
- Non-squamous Cell; Advanced, Metastatic (Subsequent therapy)

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 3.2022]

erlotinib + ramucirumab

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR L858R mutation

NCCN Recommendation category: 2A

Population segment (Line of therapy):

- Squamous Cell, Not otherwise specified (NOS), Adenocarcinoma, Large Cell; Advanced, Metastatic (First-line therapy); Other recommended intervention
- Adenocarcinoma, Large Cell, Squamous Cell, Not otherwise specified (NOS); Advanced, Metastatic (Subsequent therapy)

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 3.2022]

osimertinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR L858R mutation

NCCN Recommendation category: 2A

Population segment (Line of therapy):

Brain Metastases, Leptomeningeal Metastases, Spine Metastases (Line of therapy not specified)

Reference: NCCN Guidelines® - NCCN-Central Nervous System Cancers [Version 2.2021]

Date: 01 Jun 2022 10 of 28

EGFR p.(L858R) c.2573T>G (continued)

osimertinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR L858R mutation

NCCN Recommendation category: 2A

Population segment (Line of therapy):

- Stage IB, Stage IIA, Stage IIB, Stage IIIA, Stage IIIB; Resected (Adjuvant therapy)
- Adenocarcinoma, Large Cell, Squamous Cell, Not otherwise specified (NOS); Advanced, Metastatic (Subsequent therapy);
 Preferred intervention
- Adenocarcinoma, Large Cell, Squamous Cell, Not otherwise specified (NOS); Leptomeningeal Metastases, Progression (Subsequent therapy); Consider

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 3.2022]

osimertinib + chemotherapy

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR L858R mutation

NCCN Recommendation category: 2A

Population segment (Line of therapy):

Stage IB, Stage IIA, Stage IIB, Stage IIIA; Resected (Adjuvant therapy)

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 3.2022]

EGFR p.(T790M) c.2369C>T

osimertinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR T790M mutation

NCCN Recommendation category: 1

Population segment (Line of therapy):

 Adenocarcinoma, Large Cell, Squamous Cell, Not otherwise specified (NOS); Advanced, Metastatic, Progression, Asymptomatic, Symptomatic (Subsequent therapy)

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 3.2022]

osimertinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR T790M mutation

NCCN Recommendation category: 2A

Population segment (Line of therapy):

■ Brain Metastases, Leptomeningeal Metastases, Spine Metastases (Line of therapy not specified)

Reference: NCCN Guidelines® - NCCN-Central Nervous System Cancers [Version 2.2021]

Date: 01 Jun 2022 11 of 28

Current EMA Information

In this cancer type

O In other cancer type

In this cancer type and other cancer types

EMA information is current as of 2022-04-13. For the most up-to-date information, search www.ema.europa.eu/ema.

EGFR p.(L858R) c.2573T>G

bevacizumab (Allergan) + erlotinib

Cancer type: Non-Small Cell Lung Cancer

Label as of: 2021-09-06

Variant class: EGFR L858R mutation

Reference:

https://www.ema.europa.eu/en/documents/product-information/mvasi-epar-product-information_en.pdf

bevacizumab (Fujifilm Kyowa Kirin Biologics) + erlotinib

Cancer type: Non-Small Cell Lung Cancer

Label as of: 2021-06-23

Variant class: EGFR L858R mutation

Reference:

https://www.ema.europa.eu/en/documents/product-information/equidacent-epar-product-information_en.pdf

bevacizumab (Mabxience) + erlotinib

Cancer type: Non-Small Cell Lung Cancer

Label as of: 2021-12-21

Variant class: EGFR L858R mutation

Reference:

https://www.ema.europa.eu/en/documents/product-information/alymsys-epar-product-information_en.pdf

bevacizumab (Pfizer) + erlotinib

Cancer type: Non-Small Cell Lung Cancer

Label as of: 2022-03-29

Variant class: EGFR L858R mutation

Reference:

https://www.ema.europa.eu/en/documents/product-information/zirabev-epar-product-information_en.pdf

bevacizumab (Samsung Bioepis) + erlotinib

Cancer type: Non-Small Cell Lung Cancer

Label as of: 2021-05-18

Variant class: EGFR L858R mutation

Reference:

https://www.ema.europa.eu/en/documents/product-information/onbevzi-epar-product-information_en.pdf

bevacizumab (Samsung Bioepis) + erlotinib

Cancer type: Non-Small Cell Lung Cancer

Label as of: 2021-06-21

Variant class: EGFR L858R mutation

Reference:

 $https://www.ema.europa.eu/en/documents/product-information/aybintio-epar-product-information_en.pdf\\$

Date: 01 Jun 2022 12 of 28

EGFR p.(L858R) c.2573T>G (continued)

bevacizumab (Stada) + erlotinib

Cancer type: Non-Small Cell Lung Cancer Label as of: 2022-03-17 Variant class: EGFR L858R mutation

Reference:

https://www.ema.europa.eu/en/documents/product-information/oyavas-epar-product-information_en.pdf

bevacizumab + erlotinib

Cancer type: Non-Small Cell Lung Cancer Label as of: 2022-04-11 Variant class: EGFR L858R mutation

Reference:

https://www.ema.europa.eu/en/documents/product-information/abevmy-epar-product-information_en.pdf

bevacizumab + erlotinib

Cancer type: Non-Small Cell Lung Cancer Label as of: 2022-03-16 Variant class: EGFR L858R mutation

Reference:

https://www.ema.europa.eu/en/documents/product-information/avastin-epar-product-information_en.pdf

gefitinib (Mylan)

Cancer type: Non-Small Cell Lung Cancer Label as of: 2021-12-15 Variant class: EGFR L858R mutation

Reference:

https://www.ema.europa.eu/en/documents/product-information/gefitinib-mylan-epar-product-information_en.pdf

osimertinib

Cancer type: Non-Small Cell Lung Cancer Label as of: 2022-04-07 Variant class: EGFR L858R mutation

Reference:

https://www.ema.europa.eu/en/documents/product-information/tagrisso-epar-product-information_en.pdf

EGFR p.(T790M) c.2369C>T

osimertinib

Cancer type: Non-Small Cell Lung Cancer Label as of: 2022-04-07 Variant class: EGFR T790M mutation

Reference:

https://www.ema.europa.eu/en/documents/product-information/tagrisso-epar-product-information_en.pdf

Date: 01 Jun 2022 13 of 28

Current ESMO Information

In this cancer type
In other cancer type
In this cancer type and other cancer types

ESMO information is current as of 2022-03-31. For the most up-to-date information, search www.esmo.org.

EGFR p.(L858R) c.2573T>G

osimertinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR L858R mutation

ESMO Level of Evidence/Grade of Recommendation: I / A

Population segment (Line of therapy):

Stage IB, Stage IIA, Stage IIB, Stage IIIA; Resected (Adjuvant therapy); ESMO-MCBS v1.1 score: A

Reference: ESMO Clinical Practice Guidelines - ESMO-Early-Stage and Locally Advanced (non-metastatic) Non-Small-Cell Lung Cancer [Ann Oncol (2017) 28 (suppl 4): iv1-iv21. (eUpdate: 01 September 2021, 04 May 2020)]

atezolizumab + bevacizumab + carboplatin + paclitaxel

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR L858R mutation

ESMO Level of Evidence/Grade of Recommendation: III / A

Population segment (Line of therapy):

- Non-squamous Cell; Metastatic (First-line therapy); ESMO-MCBS v1.1 score: 3
- Metastatic (Second-line therapy)

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Non-Small-Cell Lung Cancer [Online Guideline (15SEP2020 - https://www.esmo.org/guidelines/lung-and-chest-tumours/clinical-practice-living-guidelines-metastatic-non-small-cell-lung-cancer); Ann Oncol (2018) 29 (suppl 4): iv192-iv237.]

osimertinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFRi sensitizing mutation

ESMO Level of Evidence/Grade of Recommendation: I / A

Population segment (Line of therapy):

Advanced (First-line therapy); ESMO-MCBS v1.1 score: 4

EGFR p.(L858R) c.2573T>G (continued)

bevacizumab + erlotinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR activating mutation

ESMO Level of Evidence/Grade of Recommendation: I / A

Population segment (Line of therapy):

■ Stage IV (First-line therapy)

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Non-Small-Cell Lung Cancer [Online Guideline (15SEP2020 - https://www.esmo.org/guidelines/lung-and-chest-tumours/clinical-practice-living-guidelines-metastatic-non-small-cell-lung-cancer); Ann Oncol (2018) 29 (suppl 4): iv192-iv237.]

bevacizumab + gefitinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR activating mutation

ESMO Level of Evidence/Grade of Recommendation: I / A

Population segment (Line of therapy):

■ Stage IV (First-line therapy)

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Non-Small-Cell Lung Cancer [Online Guideline (15SEP2020 - https://www.esmo.org/guidelines/lung-and-chest-tumours/clinical-practice-living-guidelines-metastatic-non-small-cell-lung-cancer); Ann Oncol (2018) 29 (suppl 4): iv192-iv237.]

erlotinib + ramucirumab

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR activating mutation

ESMO Level of Evidence/Grade of Recommendation: I / A

Population segment (Line of therapy):

Stage IV (First-line therapy)

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Non-Small-Cell Lung Cancer [Online Guideline (15SEP2020 - https://www.esmo.org/guidelines/lung-and-chest-tumours/clinical-practice-living-guidelines-metastatic-non-small-cell-lung-cancer); Ann Oncol (2018) 29 (suppl 4): iv192-iv237.]

gefitinib + carboplatin + pemetrexed

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR activating mutation

ESMO Level of Evidence/Grade of Recommendation: I / A

Population segment (Line of therapy):

■ Stage IV (First-line therapy)

EGFR p.(L858R) c.2573T>G (continued)

bevacizumab + erlotinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR activating mutation

ESMO Level of Evidence/Grade of Recommendation: I / B

Population segment (Line of therapy):

Stage IV (First-line therapy); ESMO-MCBS v1.1 score: 3

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Non-Small-Cell Lung Cancer [Online Guideline (15SEP2020 - https://www.esmo.org/guidelines/lung-and-chest-tumours/clinical-practice-living-guidelines-metastatic-non-small-cell-lung-cancer); Ann Oncol (2018) 29 (suppl 4): iv192-iv237.]

bevacizumab + gefitinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR activating mutation

ESMO Level of Evidence/Grade of Recommendation: I / B

Population segment (Line of therapy):

Stage IV (First-line therapy); ESMO-MCBS v1.1 score: 3

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Non-Small-Cell Lung Cancer [Online Guideline (15SEP2020 - https://www.esmo.org/guidelines/lung-and-chest-tumours/clinical-practice-living-guidelines-metastatic-non-small-cell-lung-cancer); Ann Oncol (2018) 29 (suppl 4): iv192-iv237.]

erlotinib + ramucirumab

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR activating mutation

ESMO Level of Evidence/Grade of Recommendation: I / B

Population segment (Line of therapy):

Stage IV (First-line therapy); ESMO-MCBS v1.1 score: 3

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Non-Small-Cell Lung Cancer [Online Guideline (15SEP2020 - https://www.esmo.org/guidelines/lung-and-chest-tumours/clinical-practice-living-guidelines-metastatic-non-small-cell-lung-cancer); Ann Oncol (2018) 29 (suppl 4): iv192-iv237.]

gefitinib + carboplatin + pemetrexed

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR activating mutation

ESMO Level of Evidence/Grade of Recommendation: I / B

Population segment (Line of therapy):

Advanced (First-line therapy)

EGFR p.(L858R) c.2573T>G (continued)

bevacizumab + erlotinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR activating mutation

ESMO Level of Evidence/Grade of Recommendation: III / A

Population segment (Line of therapy):

■ Stage IV (First-line therapy)

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Non-Small-Cell Lung Cancer [Online Guideline (15SEP2020 - https://www.esmo.org/guidelines/lung-and-chest-tumours/clinical-practice-living-guidelines-metastatic-non-small-cell-lung-cancer); Ann Oncol (2018) 29 (suppl 4): iv192-iv237.]

bevacizumab + gefitinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR activating mutation

ESMO Level of Evidence/Grade of Recommendation: III / A

Population segment (Line of therapy):

■ Stage IV (First-line therapy)

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Non-Small-Cell Lung Cancer [Online Guideline (15SEP2020 - https://www.esmo.org/guidelines/lung-and-chest-tumours/clinical-practice-living-guidelines-metastatic-non-small-cell-lung-cancer); Ann Oncol (2018) 29 (suppl 4): iv192-iv237.]

erlotinib + ramucirumab

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR activating mutation

ESMO Level of Evidence/Grade of Recommendation: III / A

Population segment (Line of therapy):

Stage IV (First-line therapy)

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Non-Small-Cell Lung Cancer [Online Guideline (15SEP2020 - https://www.esmo.org/guidelines/lung-and-chest-tumours/clinical-practice-living-guidelines-metastatic-non-small-cell-lung-cancer); Ann Oncol (2018) 29 (suppl 4): iv192-iv237.]

gefitinib + carboplatin + pemetrexed

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR activating mutation

ESMO Level of Evidence/Grade of Recommendation: III / A

Population segment (Line of therapy):

■ Stage IV (First-line therapy)

Date: 01 Jun 2022 17 of 28

EGFR p.(T790M) c.2369C>T

osimertinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR T790M mutation

ESMO Level of Evidence/Grade of Recommendation: I / A

Population segment (Line of therapy):

Stage IV (Second-line therapy); ESMO-MCBS v1.1 score: 4

Clinical Trials in Taiwan region:

Clinical Trials Summary

EGFR p.(L858R) c.2573T>G + EGFR p.(T790M) c.2369C>T

NCT ID	Title	Phase
NCT04351555	A Phase III, Randomised, Controlled, Multi-center, 3-Arm Study of Neoadjuvant Osimertinib as Monotherapy or in Combination With Chemotherapy Versus Standard of Care Chemotherapy Alone for the Treatment of Patients With Epidermal Growth Factor Receptor Mutation Positive, Resectable Nonsmall Cell Lung Cancer	III
NCT03994393	A Phase II Trial of Durvalumab (MEDI4736) and Tremelimumab With Chemotherapy in Metastatic EGFR Mutant Non-squamous Non-small Cell Lung Cancer (NSCLC) Following Progression on EGFR Tyrosine Kinase Inhibitors (TKIs)	II
NCT02099058	A Multicenter, Phase I/Ib, Open-Label, Dose-Escalation Study of ABBV-399, an Antibody Drug Conjugate, in Subjects With Advanced Solid Tumors	I

EGFR p.(L858R) c.2573T>G

NCT ID	Title	Phase
NCT04988295	A Phase III, Open-Label, Randomized Study of Amivantamab and Lazertinib in Combination With Platinum-Based Chemotherapy Compared With Platinum-Based Chemotherapy in Patients With EGFR-Mutated Locally Advanced or Metastatic Non-Small Cell Lung Cancer After Osimertinib Failure	III
NCT04487080	A Phase III, Randomized Study of Amivantamab and Lazertinib Combination Therapy Versus Osimertinib Versus Lazertinib as First-Line Treatment in Patients With EGFR-Mutated Locally Advanced or Metastatic Non-Small Cell Lung Cancer.	III
NCT03521154	A Phase III, Randomized, Double-blind, Placebo-controlled, Multicenter, International Study of Osimertinib as Maintenance Therapy in Patients With Locally Advanced, Unresectable EGFR Mutation-positive Non-Small Cell Lung Cancer (Stage III) Whose Disease Has Not Progressed Following Definitive Platinum-based Chemoradiation Therapy (LAURA)	III
NCT03778229	A Phase II, Single Arm Study Assessing Efficacy of Osimertinib With Savolitinib in Patients With EGFRm + MET+, Locally Advanced or Metastatic Non Small Cell Lung Cancer Who Have Progressed Following Osimertinib Treatment (SAVANNAH Study)	II
NCT02609776	A Phase I, First-in-Human, Open-Label, Dose Escalation Study of JNJ-61186372, a Human Bispecific EGFR and cMet Antibody, in Subjects With Advanced Non-Small Cell Lung Cancer	1
NCT04077463	An Open-label Phase I/Ib Study to Evaluate the Safety and Pharmacokinetics of JNJ-73841937 (Lazertinib), a Third Generation EGFR-TKI, as Monotherapy or in Combinations With JNJ-61186372, a Human Bispecific EGFR and cMet Antibody in Participants With Advanced Non-Small Cell Lung Cancer	I
NCT04862780	A Phase I/II Study Targeting Acquired Resistance Mechanisms in Patients With EGFR Mutant Non- Small Cell Lung Cancer	1/11
NCT03114319	An Open-label, Multi-center, Phase I, Dose Finding Study of Oral TNO155 in Adult Patients With Advanced Solid Tumors.	1
NCT03974022	A Phase I/II, Open-Label, Multicenter Study to Assess the Safety, Tolerability, Pharmacokinetics and Anti-tumor Efficacy of DZD9008 in Patients With Advanced Non-Small Cell Lung Cancer (NSCLC) with EGFR or HER2 Mutation	I/II
NCT03800134	A Phase III, Double-blind, Placebo-controlled, Multi-center International Study of Neoadjuvant/Adjuvant Durvalumab for the Treatment of Patients With Resectable Stages II and III Non-small Cell Lung Cancer (AEGEAN).	III

19 of 28

Clinical Trials Summary (continued)

EGFR p.(T790M) c.2369C>T

NCT ID	Title	Phase
NCT04862780	A Phase I/II Study Targeting Acquired Resistance Mechanisms in Patients With EGFR Mutant Non- Small Cell Lung Cancer	1/11
NCT02609776	A Phase I, First-in-Human, Open-Label, Dose Escalation Study of JNJ-61186372, a Human Bispecific EGFR and cMet Antibody, in Subjects With Advanced Non-Small Cell Lung Cancer	I
NCT03974022	A Phase I/II, Open-Label, Multicenter Study to Assess the Safety, Tolerability, Pharmacokinetics and Anti-tumor Efficacy of DZD9008 in Patients With Advanced Non-Small Cell Lung Cancer (NSCLC) with EGFR or HER2 Mutation	1/11
NCT04077463	An Open-label Phase I/Ib Study to Evaluate the Safety and Pharmacokinetics of JNJ-73841937 (Lazertinib), a Third Generation EGFR-TKI, as Monotherapy or in Combinations With JNJ-61186372, a Human Bispecific EGFR and cMet Antibody in Participants With Advanced Non-Small Cell Lung Cancer	I
NCT03800134	A Phase III, Double-blind, Placebo-controlled, Multi-center International Study of Neoadjuvant/Adjuvant Durvalumab for the Treatment of Patients With Resectable Stages II and III Non-small Cell Lung Cancer (AEGEAN).	III

EGFR c.2185-1G>A

NCT ID	Title	Phase
NCT03974022	A Phase I/II, Open-Label, Multicenter Study to Assess the Safety, Tolerability, Pharmacokinetics and Anti-tumor Efficacy of DZD9008 in Patients With Advanced Non-Small Cell Lung Cancer (NSCLC) with EGFR or HER2 Mutation	1/11
NCT02609776	A Phase I, First-in-Human, Open-Label, Dose Escalation Study of JNJ-61186372, a Human Bispecific EGFR and cMet Antibody, in Subjects With Advanced Non-Small Cell Lung Cancer	I
NCT04077463	An Open-label Phase I/Ib Study to Evaluate the Safety and Pharmacokinetics of JNJ-73841937 (Lazertinib), a Third Generation EGFR-TKI, as Monotherapy or in Combinations With JNJ-61186372, a Human Bispecific EGFR and cMet Antibody in Participants With Advanced Non-Small Cell Lung Cancer	1
NCT03800134	A Phase III, Double-blind, Placebo-controlled, Multi-center International Study of Neoadjuvant/Adjuvant Durvalumab for the Treatment of Patients With Resectable Stages II and III Non-small Cell Lung Cancer (AEGEAN).	III

Date: 01 Jun 2022 20 of 28

Alerts Informed By Public Data Sources

Current FDA Information

Contraindicated

Not recommended

Resistance

Breakthrough

FDA information is current as of 2022-04-13. For the most up-to-date information, search www.fda.gov.

EGFR p.(L858R) c.2573T>G

patritumab deruxtecan

Cancer type: Non-Small Cell Lung Cancer

Variant class: EGFR L858R mutation

Supporting Statement:

The FDA has granted Breakthrough Therapy Designation to a potential first-in-class HER3 directed antibody-drug conjugate, patritumab deruxtecan, for metastatic or locally advanced, EGFR-mutant non-small cell lung cancer.

Reference:

https://www.cancernetwork.com/view/fda-grants-breakthrough-therapy-status-to-patritumab-deruxtecan-for-egfr-metastaticnsclc

A osimertinib + quaratusugene ozeplasmid

Cancer type: Non-Small Cell Lung Cancer

Variant class: EGFR mutation

Supporting Statement:

The FDA has granted Fast Track Designation to the immunogene therapy, quaratusugene ozeplasmid, in combination with EGFR inhibitor osimertinib for the treatment of non-small cell lung cancer (NSCLC) with EFGR mutations that progressed after treatment with osimertinib alone.

Reference:

https://www.genprex.com/news/genprex-receives-u-s-fda-fast-track-designation-for-gene-therapy-that-targets-lung-cancer/

EGFR p.(T790M) c.2369C>T

A osimertinib + quaratusugene ozeplasmid

Cancer type: Non-Small Cell Lung Cancer

Variant class: EGFR mutation

Supporting Statement:

The FDA has granted Fast Track Designation to the immunogene therapy, guaratusugene ozeplasmid, in combination with EGFR inhibitor osimertinib for the treatment of non-small cell lung cancer (NSCLC) with EFGR mutations that progressed after treatment with osimertinib alone.

Reference:

https://www.genprex.com/news/genprex-receives-u-s-fda-fast-track-designation-for-gene-therapy-that-targets-lung-cancer/

Date: 01 Jun 2022 21 of 28

EGFR c.2185-1G>A

A osimertinib + quaratusugene ozeplasmid

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR mutation

Supporting Statement:

The FDA has granted Fast Track Designation to the immunogene therapy, quaratusugene ozeplasmid, in combination with EGFR inhibitor osimertinib for the treatment of non-small cell lung cancer (NSCLC) with EFGR mutations that progressed after treatment with osimertinib alone.

Reference:

https://www.genprex.com/news/genprex-receives-u-s-fda-fast-track-designation-for-gene-therapy-that-targets-lung-cancer/

Current NCCN Information

Contraindicated

Not recommended

Breakthrough

NCCN information is current as of 2022-03-31. For the most up-to-date information, search www.nccn.org. For NCCN International Adaptations & Translations, search www.nccn.org/global/international_adaptations.aspx.

EGFR p.(L858R) c.2573T>G

atezolizumab

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

"subsequent therapy with pembrolizumab, nivolumab, or atezolizumab is not recommended in patients with EGFR mutations or ALK rearrangements."

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 3.2022]

nivolumab

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

"subsequent therapy with pembrolizumab, nivolumab, or atezolizumab is not recommended in patients with EGFR mutations or ALK rearrangements."

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 3.2022]

Date: 01 Jun 2022 22 of 28

EGFR p.(L858R) c.2573T>G (continued)

pembrolizumab

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

"subsequent therapy with pembrolizumab, nivolumab, or atezolizumab is not recommended in patients with EGFR mutations or ALK rearrangements."

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 3.2022]

EGFR p.(T790M) c.2369C>T

atezolizumab

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

"subsequent therapy with pembrolizumab, nivolumab, or atezolizumab is not recommended in patients with EGFR mutations or ALK rearrangements."

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 3.2022]

nivolumab

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

"subsequent therapy with pembrolizumab, nivolumab, or atezolizumab is not recommended in patients with EGFR mutations or ALK rearrangements."

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 3.2022]

pembrolizumab

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

"subsequent therapy with pembrolizumab, nivolumab, or atezolizumab is not recommended in patients with EGFR mutations or ALK rearrangements."

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 3.2022]

Date: 01 Jun 2022 23 of 28

EGFR p.(T790M) c.2369C>T (continued)

afatinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR T790M mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

■ "The most common known mechanism is the acquisition of T790M (which is a secondary mutation in EGFR), which renders the kinase resistant to erlotinib, gefitinib, dacomitinib, or afatinib."

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 3.2022]

dacomitinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR T790M mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

■ "The most common known mechanism is the acquisition of T790M (which is a secondary mutation in EGFR), which renders the kinase resistant to erlotinib, gefitinib, dacomitinib, or afatinib."

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 3.2022]

erlotinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR T790M mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

■ "The most common known mechanism is the acquisition of T790M (which is a secondary mutation in EGFR), which renders the kinase resistant to erlotinib, gefitinib, dacomitinib, or afatinib."

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 3.2022]

gefitinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR T790M mutation

Summary

NCCN Guidelines® include the following supporting statement(s):

"The most common known mechanism is the acquisition of T790M (which is a secondary mutation in EGFR), which renders the kinase resistant to erlotinib, gefitinib, dacomitinib, or afatinib."

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 3.2022]

Date: 01 Jun 2022 24 of 28

EGFR c.2185-1G>A

atezolizumab

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

"subsequent therapy with pembrolizumab, nivolumab, or atezolizumab is not recommended in patients with EGFR mutations or ALK rearrangements."

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 3.2022]

nivolumab

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

"subsequent therapy with pembrolizumab, nivolumab, or atezolizumab is not recommended in patients with EGFR mutations or ALK rearrangements."

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 3.2022]

pembrolizumab

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

"subsequent therapy with pembrolizumab, nivolumab, or atezolizumab is not recommended in patients with EGFR mutations or ALK rearrangements."

Fast Track

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 3.2022]

Current EMA Information

EMA information is current as of 2022-04-13. For the most up-to-date information, search www.ema.europa.eu/ema.

EGFR p.(T790M) c.2369C>T

gefitinib

Cancer type: Non-Small Cell Lung Cancer Label as of: 2021-03-05 Variant class: EGFR T790M mutation

Reference:

 $https://www.ema.europa.eu/en/documents/product-information/iressa-epar-product-information_en.pdf\\$

Date: 01 Jun 2022 25 of 28

EGFR p.(T790M) c.2369C>T (continued)

ogefitinib (Mylan)

Cancer type: Non-Small Cell Lung Cancer Label as of: 2021-12-15 Variant class: EGFR T790M mutation

Reference:

 $https://www.ema.europa.eu/en/documents/product-information/gefitinib-mylan-epar-product-information_en.pdf$

26 of 28

Date: 01 Jun 2022

Si	a	n	a	tı	ır	۵'	c
VI	u		a	u	41	$\overline{}$	J

Testing Personnel:

Laboratory Supervisor:

Pathologist:

References

- King et al. Amplification of a novel v-erbB-related gene in a human mammary carcinoma. Science. 1985 Sep 6;229(4717):974-6.
 PMID: 2992089
- Zhixiang. ErbB Receptors and Cancer. Methods Mol. Biol. 2017;1652:3-35. PMID: 28791631
- Gutierrez et al. HER2: biology, detection, and clinical implications. Arch. Pathol. Lab. Med. 2011 Jan;135(1):55-62. PMID: 21204711
- 4. Pines et al. Oncogenic mutant forms of EGFR: lessons in signal transduction and targets for cancer therapy. FEBS Lett. 2010 Jun 18;584(12):2699-706. PMID: 20388509
- 5. Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature. 2014 Jul 31;511(7511):543-50. doi: 10.1038/nature13385. Epub 2014 Jul 9. PMID: 25079552
- 6. Weinstein et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 2013 Oct;45(10):1113-20. PMID: 24071849
- 7. Cerami et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012 May;2(5):401-4. PMID: 22588877
- 8. da et al. EGFR mutations and lung cancer. Annu Rev Pathol. 2011;6:49-69. doi: 10.1146/annurev-pathol-011110-130206. PMID: 20887192
- 9. Arcila et al. EGFR exon 20 insertion mutations in lung adenocarcinomas: prevalence, molecular heterogeneity, and clinicopathologic characteristics. Mol. Cancer Ther. 2013 Feb;12(2):220-9. PMID: 23371856
- 10. Kobayashi et al. EGFR Exon 18 Mutations in Lung Cancer: Molecular Predictors of Augmented Sensitivity to Afatinib or Neratinib as Compared with First- or Third-Generation TKIs. Clin Cancer Res. 2015 Dec 1;21(23):5305-13. doi: 10.1158/1078-0432.CCR-15-1046. Epub 2015 Jul 23. PMID: 26206867
- 11. Yasuda et al. Structural, biochemical, and clinical characterization of epidermal growth factor receptor (EGFR) exon 20 insertion mutations in lung cancer. Sci Transl Med. 2013 Dec 18;5(216):216ra177. PMID: 24353160
- 12. Chiu et al. Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor Treatment Response in Advanced Lung Adenocarcinomas with G719X/L861Q/S768I Mutations. J Thorac Oncol. 2015 May;10(5):793-9. PMID: 25668120
- 13. Karachaliou et al. KRAS mutations in lung cancer. Clin Lung Cancer. 2013 May;14(3):205-14. PMID: 23122493
- 14. Brennan et al. The somatic genomic landscape of glioblastoma. Cell. 2013 Oct 10;155(2):462-77. PMID: 24120142
- 15. Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature. 2015 Jan 29;517(7536):576-82. PMID: 25631445
- 16. Mitsudomi et al. Epidermal growth factor receptor in relation to tumor development: EGFR gene and cancer. FEBS J. 2010 Jan;277(2):301-8. PMID: 19922469
- 17. Gazdar. Activating and resistance mutations of EGFR in non-small-cell lung cancer: role in clinical response to EGFR tyrosine kinase inhibitors. Oncogene. 2009 Aug;28 Suppl 1:S24-31. PMID: 19680293
- 18. Gan et al. The EGFRvIII variant in glioblastoma multiforme. J Clin Neurosci. 2009 Jun;16(6):748-54. PMID: 19324552
- 19. https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/021743s025lbl.pdf
- 20. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/206995s004lbl.pdf
- 21. https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/201292s017lbl.pdf
- 22. https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/211288s003lbl.pdf
- 23. NCCN Guidelines® NCCN-Non-Small Cell Lung Cancer [Version 3.2022]
- 24. Naidoo et al. Epidermal growth factor receptor exon 20 insertions in advanced lung adenocarcinomas: Clinical outcomes and response to erlotinib. Cancer. 2015 Sep 15;121(18):3212-3220. PMID: 26096453
- 25. Vyse et al. Targeting EGFR exon 20 insertion mutations in non-small cell lung cancer. Signal Transduct Target Ther. 2019;4:5. PMID: 30854234
- 26. Yi et al. A comparison of epidermal growth factor receptor mutation testing methods in different tissue types in non-small cell lung cancer. Int J Mol Med. 2014 Aug;34(2):464-74. PMID: 24891042
- 27. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/215310s000lbl.pdf
- 28. https://investors.cullinanoncology.com/news-releases/news-release-details/fda-grants-breakthrough-therapy-designation-cullinan-oncologys
- 29. https://www.biospace.com/article/releases/fda-grants-breakthrough-therapy-designation-for-dizal-pharmaceutical-s-dzd9008-in-patients-with-locally-advanced-or-metastatic-non-small-cell-lung-cancer-harboring-egfr-exon20-insertion/
- 30. Madic et al. EGFR C797S, EGFR T790M and EGFR sensitizing mutations in non-small cell lung cancer revealed by six-color crystal digital PCR. Oncotarget. 2018 Dec 21;9(100):37393-37406. PMID: 30647840

References (continued)

- 31. https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/208065s025lbl.pdf
- 32. Niederst et al. The Allelic Context of the C797S Mutation Acquired upon Treatment with Third-Generation EGFR Inhibitors Impacts Sensitivity to Subsequent Treatment Strategies. Clin. Cancer Res. 2015 Sep 1;21(17):3924-33. PMID: 25964297
- 33. Wang et al. Lung Adenocarcinoma Harboring EGFR T790M and In Trans C797S Responds to Combination Therapy of First- and Third-Generation EGFR TKIs and Shifts Allelic Configuration at Resistance. J Thorac Oncol. 2017 Nov;12(11):1723-1727. PMID: 28662863
- 34. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/761210s001lbl.pdf
- 35. https://www.genprex.com/news/genprex-receives-u-s-fda-fast-track-designation-for-gene-therapy-that-targets-lung-cancer/
- 36. https://investors.blackdiamondtherapeutics.com/news-releases/news-release-details/black-diamond-therapeutics-granted-fast-track-designation-fda
- 37. Saxton et al. mTOR Signaling in Growth, Metabolism, and Disease. Cell. 2017 Mar 9;168(6):960-976. PMID: 28283069
- 38. Pópulo et al. The mTOR signalling pathway in human cancer. Int J Mol Sci. 2012;13(2):1886-918. PMID: 22408430
- 39. Faes et al. Resistance to mTORC1 Inhibitors in Cancer Therapy: From Kinase Mutations to Intratumoral Heterogeneity of Kinase Activity. Oxid Med Cell Longev. 2017;2017:1726078. Epub 2017 Feb 9. PMID: 28280521
- 40. Mendoza et al. The Ras-ERK and PI3K-mTOR pathways: cross-talk and compensation. Trends Biochem. Sci. 2011 Jun;36(6):320-8. PMID: 21531565
- 41. Grabiner et al. A diverse array of cancer-associated MTOR mutations are hyperactivating and can predict rapamycin sensitivity. Cancer Discov. 2014 May;4(5):554-63. PMID: 24631838
- 42. https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/022088s021s023lbl.pdf
- 43. https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/203985s023,022334s051lbl.pdf
- 44. Rodrik-Outmezguine et al. Overcoming mTOR resistance mutations with a new-generation mTOR inhibitor. Nature. 2016 Jun 9;534(7606):272-6. PMID: 27279227
- 45. Del et al. A randomized phase II non-comparative study of PF-04691502 and gedatolisib (PF-05212384) in patients with recurrent endometrial cancer. Gynecol. Oncol. 2016 Jul;142(1):62-69. PMID: 27103175