CUHK Thesis Template

John Doe

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy

in

Mechanical and Automation Engineering

The Chinese University of Hong Kong August 2017

Thesis Assessment Committee

Professor Leonard Leakey Hofstadter (Chair)
Professor Sheldon Lee Cooper (Thesis Supervisor)
Professor Howard Joel Wolowitz (Committee Member)
Professor Rajesh Ramayan Koothrappali (External Examiner)

Acknowledgement

I would like to...

Contents

Acknowledgement	i
Contents	i
List of Figures	vii
List of Tables	ix
Symbols and Acronyms	xi
1 Introduction	1
2 Section 1	3
3 Section 2	5
4 Conclusion	7
Bibliography	9

Abstract

Highlight

摘要

中文摘要

List of Figures

List of Tables

Symbols and Acronyms

In general, we denote a vector and a matrix by a lower and a upper case bold letter, respectively, e.g., $\mathbf{v} \in \mathbb{R}^n$ and $\mathbf{M} \in \mathbb{R}^{p \times q}$. An exception to this notation is the use of the letter "p". We use bold uppercase \mathbf{P} and lowercase \mathbf{p} to represent points in the Cartesian space and their projections on the image plane, respectively. A quantity following Δ or having \sim above it represents its difference or error. And a quantity having above it represents its estimation. A time varying quantity is followed by (t). Quaternions are denoted by an italic letter with a circle above it, e.g., $\mathring{q} = q_0 + q_1 \mathbf{i} + q_2 \mathbf{j} + q_3 \mathbf{k} = (q_0, \mathbf{q})$. Leading superscripts identify which coordinate system a quantity is written in, e.g., $^A\mathbf{P}$ represents a position vector described in $\{A\}$. A quantity also possessing a leading subscript specifies a relationship between two coordinate systems, e.g., $^A_B\mathbf{R}$ and $^A_B\mathbf{T}$ are respectively rotation and homogeneous transformation matrices from $\{A\}$ to $\{B\}$ [craig2005introduction]. Major symbols and acronyms are defined as follows:

 $E \in \mathbb{R}$ energy $m \in \mathbb{R}$ mass $c \in \mathbb{R}$ the speed of light

Introduction

The introduction section.

Section 1

What others have done.

(2007)

Section 2

Main content

Conclusion

Closing argument.

Bibliography

Lorre, Chuck and Bill Prady (2007). "The Big Bang Theory". In: CBS.