Lab4 实验报告

- PB17111568
- 郭雨轩

补全表格

втв	ВНТ	REAL	NPC-PRED	flush	NPC-REAL	BTB-UPADTE
Υ	Υ	Υ	BUF	N	BUF	N
Υ	Υ	N	BUF	Υ	PC-EX+4	N
Υ	N	Υ	PC-IF+4	Υ	BUF	N
Υ	N	N	PC-IF+4	N	PC-EX+4	N
N	Υ	Υ	PC-IF+4	Υ	BrNPC	Υ
N	Υ	N	PC-IF+4	N	PC-EX+4	N
N	N	Υ	PC-IF+4	Υ	BrNPC	Υ
N	N	N	PC-IF+4	N	PC-EX+4	N

实验结果分析

假定在所执行的代码中,共执行x次分支指令,一旦分支预测命中可带来2个时钟周期的收益,预测失败则无收益,假定预测成功的概率为 α ,那么总的收益为: $T=x\cdot\alpha\cdot2$ 。下面对四个测试样例进行分析

btb.S

	无分支预测执行周期数	有分支预测执行周期数	分支指令数	分支预测错误数
1-bit	508	311	101	2
2-bit	508	313	101	3

bht.S

	无分支预测执行周期数	有分支预测执行周期数	分支指令数	分支预测错误数
1-bit	533	379	110	22
2-bit	533	365	110	15

qsort256.S

	无分支预测执行周期数	有分支预测执行周期数	分支指令数	分支预测错误数
1-bit	42788	40358	10398	2021
2-bit	42788	37980	10398	1449

matmul16.S

	无分支预测执行周期数	有分支预测执行周期数	分支指令数	分支预测错误数
1-bit	333180	331446	4912	786
2-bit	333180	330273	4912	533

(分支预测正确数为分支指令数减去分支预测错误数)

分支预测结果分析

在所有的测试中,使用2bits-BHT的分支预测错误数均比BTB要低,完成代码所需的时钟周期数均比1bit要短但是对周期数的提升均较小,当出现cache miss时,所消耗的时间更多。