Práctica 3

Entrada/Salida con ESP32 (ESP-IDF) Uso del ADC

3.	Entr	rada/Salida con ESP32 (ESP-IDF) Uso del ADC
	3.1.	Objetivos
		Material de consulta
	3.3.	Desarrollo de la práctica
		3.3.1. Medición de distancias
		3.3.2. Cambio de entrada en cronómetro
		3.3.3. Cambio de entrada en cronómetro
	3.4.	Instrucciones de entrega

3.1. Objetivos

El objetivo de esta práctica es continuar conociendo los mecanismos de entrada/salida ofrecidos por ESP-IDF para interaccionar con dispositivos usando ESP32.

Trabajaremos los siguientes aspectos del API de ESP-IDF:

- Uso de un conversor analógico-digital (ADC).
- Uso de un sensor de infrarrojos para medir distancias.

3.2. Material de consulta

Para ver los detalles de cada aspecto de esta práctica se recomienda la lectura de los siguientes enlaces:

- https://docs.espressif.com/projects/esp-idf/en/stable/api-reference/ peripherals/adc.html. Documentación del API de ESP-IDF para los 2 ADCs disponibles.
- La hoja de especificaciones del sensor de infrarrojos SHARP GP2Y0A41SK, disponible en el Campus Virtual

https://wiki.analog.com/university/courses/electronics/text/chapter 20. Más información sobre la operación de una ADC en

3.3. Desarrollo de la práctica

La práctica contiene varios apartados. La realización de más apartados supondrá una mayor calificación de la práctica.

3.3.1. Medición de distancias

Este apartado es **obligatorio para aprobar la práctica**.

Se realizará un código que muestree el ADC al que se contectará el sensor de infrarrojos. Cada segundo, se mostrará por pantalla la información de la medida del ADC y su conversión a centímetros. Para las pruebas, se recomienda usar un folio blanco como objeto que detectar y tratar de evitar interferencia lumínica (luz directa del sol, por ejemplo).

3.3.2. Cambio de entrada en cronómetro

Se podrá elegir hacer este apartado o el siguiente (**NO es necesario hacer los dos**). Se modificará ligeramente el cronómetro de la práctica anterior, para utilizar el sensor de infrarrojos. Concretamente se añadirá la siguiente funcionalidad:

- Mediante la herramienta *menuconfig* se habilitará una opción que permitirá elegir entre el sensor efecto Hall y el sensor de infrarrojos para la operación de *Reset*.
- Si se elige el sensor de efecto Hall, la práctica funcionará exactamente igual que la anterior.
- Si se elige el sensor de infrarrojos, se considerará que se acciona el *Reset* si se detecta un objeto a menos de 10cm de distancia.

3.3.3. Cambio de entrada en cronómetro

Se podrá elegir hacer este apartado o el anterior (NO es necesario hacer los dos).

En este caso, se mantiene la funcionalidad de la práctica original (entrada por sensor efecto Hall y Touch Pad). Se añadirá la siguiente funcionalidad:

- Si, estando el cronómetro en marcha, se deteca un objeto a una distancia de entre 10cm y 20cm durante más de 2 segundos, se cambiará al modo *cuenta atrás*.
- En el modo *cuenta atrás*, se irán decrementando segundos hasta llegar a 0. En ese momento, el cronómetro parará la cuenta. Asimismo, si en ese modo se vuelve a detectar un objeto a una distancia de entre 10cm y 20cm durante más de 2 segundos, se cambiará al modo *normal*
- Si tras llegar a 0, se reactiva la cuenta (mediante el sensor táctil), se comenzará en modo cronómetro normal.

3

3.4. Instrucciones de entrega

La entrega de esta extensión de la práctica 3 será independiente de la práctica 3 original y se realizará por el Campus Virtual. Deberá constar del código fuente (sólo ficheros .c, .h y Kconfig.projbuild) en un fichero comprimido. Asimismo, se entregará un PDF en el que se incluirá:

- El diseño de la aplicación: tareas, elementos de comunicación/sincronización, uso de timers o eventos.... Se recomienda usar un esquema gráfico que muestre cada elemento y su interacción con el resto.
- Se indicará si el ESP32 disponible tiene sus ADCs calibrados. SI es así, indica cómo lo has averiguado y cuál es la tensión de referencia exacta del ADC.