

Fifth Semester B.E. Degree Examination, Dec.2018/Jan.2019 Database Management System

Time: 3 hrs. Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. What are the responsibilities of the DBA and Database Designer? (06 Marks)
 - b. With neat diagram, explain "three schema Architecture". (05 Marks)
 - c. Discuss the different types of user friendly interfaces and the types of user who typically use each. (05 Marks)

OR

- 2 a. Explain with block diagram the different phases of database design. (08 Marks)
 - b. Draw an ER-Diagram of movie database. Assume your own entities (minimum 4) attributes and relationships. (08 Marks)

Module-2

3 a. Discuss the characteristics of relations.

(06 Marks)

b. Outline the steps to convert the basic ER Model to relational Database schema. (06

(06 Marks)

- c. Define the following:
 - i) Relation state
 - ii) Relation schema
 - iii) Arity
 - iv) Domain.

(04 Marks)

OR

4 a. Discuss the various types of set theory operations with example.

(08 Marks)

b. Consider the two tables, show the results of the following:

T_1		
A	В	\mathbf{C}
10	a	5
15	a b	8
25	a	6

T_2		
P	Q	R
10	b	6
25	c	3
10	b	5

i)
$$T_l \swarrow T_{l^\circ B} = T_{l^\circ Q}$$

ii)
$$T_1 \longrightarrow T_2$$

iv)
$$T_1 - T_2$$

(08 Marks)

Module-3

- 5 a. How does SQL implement the entity integrity constraints of the relational data model? Explain with an example. (04 Marks)
 - b. Discuss: i) Shared variables ii) Communication variables.

(06 Marks)

- c. Explain with examples in SQL:
 - i) Drop command
 - ii) Delete command
 - iii) Update command.

(06 Marks)

OR

- 6 a. With program segment, explain retrieving of tuples with embedded SQL in C. (06 Marks)
 - b. Consider the following tables:

works (Pname, Cname, Salary)

lives (Pname, Street, City)

located-In (Cname, City)

write the following queries in SQL:

- i) List the names of the people who work for the company 'Wipro' along with the cities they live in.
- ii) Find the names of the persons who do not work for 'Infosys'.
- iii) Find the people whose salaries are more than that of all of the 'oracle' employees.
- iv) Find the persons who works and lives in the same city.

(10 Marks)

Module-4

7 a. What do you mean by closure of attribute? Write an algorithm to find closure of attribute.

(06 Marks)

b. Explain any two informal quality measures employed for a relation schema design.

(04 Marks)

- c. Given below are two sets of FDs for a relation R (A, B, C, D, E). Are they equivalent?
 - i) $A \rightarrow B$, $AB \rightarrow C$, $D \rightarrow AC$, $D \rightarrow E$
 - ii) $A \rightarrow BC$, $D \rightarrow AE$

(06 Marks)

OR

- 8 a. What do you mean by multivalued dependency? Explain the 4NF with example. (06 Marks)
 - b. Suggest and explain three different techniques to achieve INF using suitable example.

(04 Marks)

c. Consider the following relation for CARSALE (CAR-NO, Date-Sold, Salesman No, Commission, Discount)

Assume a car can be sold by multiple salesman and hence primary key is {CAR No, Salesman No}.

Additional dependencies are

Date Sold → Discount

Salesman No → Commission

- i) Is this relation in 1NF, 2NF or 3NF? Why or why not?
- ii) How would you normalize this completely?

(06 Marks)

Module-5

9 a. Discuss the ACID properties of a transaction.

(04 Marks)

b. What are the anomalies occur due to interleave execution? Explain them with example.

(06 Marks)

c. Consider the three transactions T_1 , T_2 and T_3 and schedules S_1 and S_2 given below. Determine whether each schedule is serializable or not? If a schedule is serializable write down the equivalent serial schedule (S).

 $T_1: R_1(x); R_1(z); W_1(x);$

 $T_2:R_2(x);\ R_2(y);\ W_2(z);\ W_2(y);$

 $T_3: R_3(x); R_3(y); W_3(y);$

S1: $R_1(x)$; $R_2(z)$; $R_1(z)$; $R_3(x)$; $R_3(y)$; $W_1(x)$; $W_3(y)$; $R_2(y)$; $W_2(z)$; $W_2(y)$;

S2: $R_1(x)$; $R_2(z)$; $R_3(x)$; $R_1(z)$; $R_2(y)$; $R_3(y)$; $W_1(x)$; $W_2(z)$; $W_3(y)$; $W_2(y)$;

(06 Marks)

OR

- 10 a. Describe the problems that occur when concurrent execution uncontrolled. Give examples.

 (06 Marks)
 - b. What is two phase locking? Describe with the help of an example. (04 Marks)
 - c. What is Deadlock? Consider the following sequences of actions listed in the order they are submitted to the DBMS.

Sequence S1: R₁(A); W₂(B); R₁(B); R₃(C); W₂(C); W₄(B); W₃(A)

Draw waits-for graph in case of Deadlock situation.

(06 Marks)