# On the Combination of two Decompositive Multi-Label Classification Methods

Grigorios Tsoumakas<sup>1</sup>, Eneldo Loza Mencía<sup>2</sup>, Ioannis Katakis<sup>1</sup>, Sang-Hyeun Park<sup>2</sup>, and Johannes Fürnkranz<sup>2</sup>

<sup>1</sup>Aristotle University of Thessaloniki, Greece

<sup>2</sup>Technische Universität Darmstadt, Germany

11 September 2009



### Outline

- Introduction
- Background
  - QCLR
  - HOMER
- Evaluation
- Conclusions

### Multi-Label Classification

Objects are assigned to a set of labels (domains: text, biology, music etc)



### Methods

- A. Problem Adaptation
  - Extend algorithms in order to handle multi-label data (e.g. MLkNN, BPMLL)
- B. Problem Transformation
  - Transform the learning task into one or more single-label classification tasks
    - e.g. Label Powerset (LP), Binary Relevance (BR)
  - Decompositive Approaches: Focus on large number of labels
    - e.g. HOMER, QCLR

### Methods

- A. Problem Adaptation
  - Extend algorithms in order to handle multi-label data (e.g. MLkNN, BPMLL)
- B. Problem Transformation
  - Transform the learning task into one or more single-label classification tasks
    - e.g. Label Powerset (LP), Binary Relevance (BR)
  - Decompositive Approaches: Focus on large number of labels
    - e.g. HOMER, QCLR

#### Main idea of this work

Combine two state of the art decompositive methods (HOMER + QCLR) in order to confront problems with large number of labels more effectively and efficiently



# QWeighted Calibrated Label Ranking (1/4)

Based on Ranking by Pairwise Comparison [Hüllermeier et al., AIJ08]



# QCLR (2/4)



# QCLR(2/4)



### How to obtain a bipartition?

Introduce a virtual label  $\lambda V$ , that separates positive from negative labels (Calibrated Label Ranking) [Fürnkranz et al., MLJ08]



# QCLR (3/4)

### CLR - Transformation

Additional pairwise models are necessary

| Ex# | 1vsV  | Ex# | 2vsV  |
|-----|-------|-----|-------|
| 1   | true  | 1   | false |
| 2   | false | 2   | false |
| 3   | true  | 3   | false |
| 4   | false | 4   | true  |

| Ex# | Label set                             |
|-----|---------------------------------------|
| 1   | { <mark>λ1</mark> , λ4}               |
| 2   | { <mark>λ3, λ4</mark> }               |
| 3   | { <mark>λ1</mark> }                   |
| 4   | $\{\lambda 2, \lambda 3, \lambda 4\}$ |

| Ex# | 3vsV  | Ex# | 4vsV  |
|-----|-------|-----|-------|
| 1   | false | 1   | true  |
| 2   | true  | 2   | true  |
| 3   | false | 3   | false |
| 4   | true  | 4   | true  |

| Ex# | 1vs2  | Ex# | 1vs3  | Ex# |
|-----|-------|-----|-------|-----|
| 1   | true  | 1   | true  | 2   |
| 3   | true  | 2   | false | 3   |
| 4   | false | 3   | true  | 4   |
|     |       | 4   | false |     |
|     |       |     |       |     |

| 1vs4  | ] |
|-------|---|
| false |   |
| true  |   |
| false |   |
|       |   |

| Ex# | 2vs3  | Ex# | 2vs4  |
|-----|-------|-----|-------|
| 2   | false | 1   | false |
|     |       | 2   | false |





# QCLR (4/4)



Limitation: Need to query quadratic number of models
Solution: Quick Weighted Voting [Loza Mencía et al., ESANNO9]

• Complexity is n + dnlog(n), where n is the number of labels and d is the average number of relevant labels (cardinality)



# HOMER - Hierarchy Of MultiLabel ClassifiERs (1/2)

#### Main Idea [Tsoumakas et al., ECMLPKDD08w]

The transformation of a multi-label problem with large number of labels into many hierarchically structured simpler sub-problems



# HOMER - Hierarchy Of MultiLabel ClassifiERs (1/2)

#### Main Idea [Tsoumakas et al., ECMLPKDD08w]

The transformation of a multi-label problem with large number of labels into many hierarchically structured simpler sub-problems

### Step 1. Hierarchical Organization of Labels



- k: branching factor
- meta label  $\mu_n$ : represents the union of the labels of the node



# HOMER - <u>H</u>ierarchy Of MultiLabel Classifi<u>ER</u>s (2/2)

### Step 2. Assign a Multilabel Classifier at each internal node



# HOMER - Hierarchy Of MultiLabel ClassifiERs (2/2)

### Step 2. Assign a Multilabel Classifier at each internal node



### Advantages

- Classification Time Only invoke few classifiers of the hierarchy
- 2 Prediction Performance Balanced examples for each classifier
- 3 Training Time Smaller datasets at each node



# Label Distribution (1/2)

### Open Issue

How should we distribute labels into k children nodes (groups)?



# Label Distribution (1/2)

### Open Issue

How should we distribute labels into k children nodes (groups)?

#### Criteria

- Labels of a group should co-occur as much as possible
  - Prediction of less meta-labels ⇒ activation of less classifiers ⇒ small classification times
- @ Groups should be of equal size
  - Balanced distribution of examples for each meta-label ⇒ improved predictive performance
  - A balanced tree could lead to improved classification times



# Label Distribution (2/2)

#### Balanced k-Means

- Extension of k-Means
- Equal sized clusters
- Maintain an ordered list of labels according to similarity with the cluster centroid
- In case a cluster overflows ⇒ move the most distant label into the next most similar group
- Hamming distance



### Motivation of Combination

### Why combine HOMER with QCLR?

- QCLR+HOMER will require less
  - memory
  - time for training
  - time for classification
- Open HOMER+QCLR will have higher predictive performance (e.g. compared to using binary relevance at each node)

### **Evaluation Goals**

### **Primary Questions**

- Can HOMER improve QCLR in terms of predictive performance, training and classification time?
- ② Can HOMER+QCLR outperform HOMER+BR in terms of predictive performance?
  - And what will be the extra cost in training and classification times?



### **Evaluation Goals**

### Primary Questions

- Can HOMER improve QCLR in terms of predictive performance, training and classification time?
- ② Can HOMER+QCLR outperform HOMER+BR in terms of predictive performance?
  - And what will be the extra cost in training and classification times?

### Secondary Questions

- What is the effect of the distribution method in HOMER?
  - Clustering? Balanced Clustering? Random Distribution?
- ② What is the effect of branching factor k?



# Experimental Setup

#### Methods

• Base single-label classifier: C4.5

• Base multi-label classifiers: BR, QCLR

HOMER: H+BR, H+QCLR

• Partitioning: Balanced k-Means (B), EM (C), Random (R)

Number of partitions ranging from 3 to 10

Datasets

| name      | train | test  | features | labels | cardinality | density | labelsets |
|-----------|-------|-------|----------|--------|-------------|---------|-----------|
| HiFind    | 16452 | 16519 | 98       | 632    | 37.304      | 0.059   | 32734     |
| eccv2002  | 42379 | 4686  | 36       | 374    | 3.525       | 0.009   | 3175      |
| jmlr2003  | 48859 | 16503 | 46       | 153    | 3.071       | 0.020   | 3115      |
| mediamill | 30993 | 12914 | 120      | 101    | 4.376       | 0.043   | 6555      |
|           |       |       |          |        |             |         |           |

#### Software

• Mulan - http://sourceforge.net/projects/mulan/



# The Clustering Factor - Training Time



### The Clustering Factor - Classification Time



# The Clustering Factor - Recall



# The Clustering Factor - Precision



# The Clustering Factor - micro F



# The Clustering Factor - Observations

Increasing k leads to ...

- Better classification times (shorter tree of classifiers)
- Better precision
- Worse recall

Compared to random partitioning, balanced clustering takes advantage of similarity and can lead to lower (overall) training/classification time, especially for dense datasets



### micro F1

| Метнор | MEDIAMILL | JMLR2003 | ECCV2002 | HiFind  |
|--------|-----------|----------|----------|---------|
| BR     | 50.55 %   | 15.09 %  | 12.34 %  | 51.65 % |
| QCLR   | 55.04 %   | 8.45 %   | 7.21 %   | _       |
| H + BR | 50.23 %   | 15.36 %  | 18.14 %  | 51.76%  |
| H+QCLR | 53.13 %   | 15.55%   | 19.70 %  | 54.65 % |

- HOMER improves predictive performance of BR and QCLR
  - Especially in datasets with large number of labels
- HOMER+QCLR presents better predictive performance than HOMER+BR



# Training Time

| Метнор | MEDIAMILL | JMLR2003 | ECCV2002 | HiFind  |
|--------|-----------|----------|----------|---------|
| BR     | 2413.40   | 2801.17  | 2701.32  | 4179.66 |
| QCLR   | 7423.19   | 6542.51  | 7460.14  | -       |
| H+BR   | 1065.21   | 1101.61  | 1144.47  | 2345.39 |
| H+QCLR | 1667.29   | 1871.00  | 1836.34  | 3801.53 |

• HOMER reduces training time for both BR and CLR



# Testing Time

| Метнор | MEDIAMILL | JMLR2003 | ECCV2002 | HiFind |
|--------|-----------|----------|----------|--------|
| BR     | 3.84      | 6.67     | 5.47     | 50.47  |
| QCLR   | 103.59    | 119.28   | 154.65   | _      |
| H + BR | 4.35      | 7.70     | 4.48     | 48.77  |
| H+QCLR | 4.90      | 9.26     | 5.62     | 60.02  |

• HOMER significantly reduces testing time for QCLR



### Conclusions & Future Work

#### Conclusions

A combination of decompositive methods (HOMER and QCLR)

- Builds less number of models compared to QCLR
  - Faster training
  - Faster testing
  - Less memory requirements
- Better predictive performance than QCLR
- Better predictive performance than HOMER+BR with a small expense in training and classification time

#### Future Work

- In depth analysis of when and why HOMER+QCLR works
- More datasets
- More base classifiers



# End of presentation

Thank you for your attention!

