Kompresija slika korišćenjem diskretne kosinusne transformacije

Seminarski rad u okviru kursa Naučno izračunavanje

Aleksandra Đurić

Matematički fakultet, jul 2017.

Uvod

- Kompresija se koristi kao rešenje za efikasno čuvanje podataka
- Glavna podela kompresije:
 - kompresija bez gubitaka podataka dekompresovanjem se dobijaju podaci identični originalnim
 - kompresija sa gubitkom dela podataka dekompresija ne uspeva tačno da reprodukuje originalne podatke, ali je stepen kompresije veći
- ► JPEG kompresija slika je kompresija sa gubitkom podataka (u koraku kvantizacije se odbacuju manje važne frekvencije)

Uvod

- Kao referentni rad za ovu temu korišćen je rad Image compression and Discrete Cosine Transform [1]. U njemu se kao osnovni koraci JPEG kompresije navode:
 - 1. Podela slike na blokove koji se sastoje od 8x8 piksela
 - 2. Na blokove se primenjuje diskretna kosinusna transformacija s leva na desno, odozgo na dole
 - 3. Svaki blok se kvantizuje
 - 4. Niz vrednosti dobijen blokovima sadrži veliki procenat nula i zbog toga se može efikasno kompresovati
 - 5. Za rekonstrukciju i prikaz slike koristi se inverzna kosinusna transformacija
- Postupak JPEG kompresije slike se radi posebno za svaku komponentu boje
- U radu je su obrađene osnovne manipulacije matricama i nije posvećena pažnja koraku kodiranja

Diskretna kosinusna transformacija

Matrica

 Za dobijanje matrice diskretne kosinusne transformacije koristimo poseban oblik njene jednačine:

$$T_{ij} = \left\{ \begin{array}{ll} \frac{1}{\sqrt{N}} & \text{if } i = 0\\ \sqrt{\frac{2}{N}} \cos\left[\frac{(2j+1)i\pi}{2N}\right] & \text{if } i > 0 \end{array} \right\}$$

Rezultat je sledeća matrica:

$$T = \begin{bmatrix} .3536 & .3536 & .3536 & .3536 & .3536 & .3536 & .3536 \\ .4904 & .4157 & .2778 & .0975 & -.0975 & -.2778 & -.4157 & -.4904 \\ .4619 & .1913 & -.1913 & -.4619 & -.4619 & -.1913 & .1913 & .4619 \\ .4157 & -.0975 & -.4904 & -.2778 & .2778 & .4904 & .0975 & -.4157 \\ .3536 & -.3536 & -.3536 & .3536 & .3536 & -.3536 & .3536 \\ .2778 & -.4904 & .0975 & .4157 & -.4157 & -.0975 & .4904 & -.2778 \\ .1913 & -.4619 & .4619 & -.1913 & -.1913 & .4619 & -.4619 & .1913 \\ .0975 & -.2778 & .4157 & -.4904 & .4904 & -.4157 & .2778 & -.0975 \end{bmatrix}$$

Diskretna kosinusna transformacija

Primena

▶ Prvo je neophodno od originalnih blokova oduzeti 128 jer je ovakva diskretna kosinusna transformacija napravljena da radi sa takvim vrednostima:

$$M = Original - 128$$

Primenjuje se diskretna kosinusna transformacija na sledeći način:

$$D = TMT^T$$

$$Original = \begin{bmatrix} 154 & 123 & 123 & 123 & 123 & 123 & 123 \\ 192 & 180 & 136 & 154 & 154 & 154 & 136 & 110 \\ 254 & 198 & 154 & 154 & 180 & 154 & 123 & 123 \\ 239 & 180 & 136 & 180 & 180 & 166 & 123 & 123 \\ 180 & 154 & 136 & 167 & 166 & 149 & 136 & 136 \\ 128 & 136 & 123 & 136 & 154 & 180 & 198 & 154 \\ 123 & 105 & 110 & 149 & 136 & 136 & 180 & 166 \\ 110 & 136 & 123 & 123 & 123 & 136 & 154 & 136 \\ \end{bmatrix}$$

```
D = \begin{bmatrix} 162.3 & 40.6 & 20.0 & 72.3 & 30.3 & 12.5 & -19.7 & -11.5 \\ 30.5 & 108.4 & 10.5 & 32.3 & 27.7 & -15.5 & 18.4 & -2.0 \\ -94.1 & -60.1 & 12.3 & -43.4 & -31.3 & 6.1 & -3.3 & 7.1 \\ -38.6 & -83.4 & -5.4 & -22.2 & -13.5 & 15.5 & -1.3 & 3.5 \\ -31.3 & 17.9 & -5.5 & -12.4 & 14.3 & -6.0 & 11.5 & -6.0 \\ -0.9 & -11.8 & 12.8 & 0.2 & 28.1 & 12.6 & 8.4 & 2.9 \\ 4.6 & -2.4 & 12.2 & 6.6 & -18.7 & -12.8 & 7.7 & 12.0 \\ -10.0 & 11.2 & 7.8 & -16.3 & 21.5 & 0.0 & 5.9 & 10.7 \end{bmatrix}
```

Kvantizacija

Izbor nivoa kvaliteta

Standardna Q50 kvantizaciona matrica:

Kvantizaciona matica se menja u odnosu na željeni kvalitet manji kvalitet odgovara većem stepenu kompresije i obrnuto:

$$Q_{quality \ level} = \begin{cases} quality \ level > 50, & \frac{100 - quality \ level}{50} * Q_{50} \\ quality \ level = 50, & Q_{50} \\ quality \ level < 50, & \frac{50}{quality \ level} * Q_{50} \end{cases}$$

Kvantizacija

Primena

 Kvantizovani blokovi se dobijaju primenom sledeće pokoordinatne operacije:

$$C_{i,j} = round(D_{i,j}/Q_{i,j})$$

Dobija se matrica kod koje su zanemarene visoke frekvencije deo matrice koji im odgovara je popunjen nulama koje je moguće kompresovati

originalna slika

primenjen DCT

Kodiranje

 Vrednosti iz matrice se iščitavaju u cik cak - veliki broj uzastopnih nula

- Niz brojeva se prebacuje u niz bitova
- Na niz bitova je moguće primeniti neku vrstu kodiranja bez gubitaka, najčešće Run-Length a zatim Hofmanovo kodiranje
- Nakon kodiranja neophodno je dodati zaglavlje koje bi nosilo informacije neophodne za njenu rekonstrukciju

Dekompresija

- ▶ Da bi se prikazala slika potrebno je izvršiti njenu dekompresiju primenom sledećih koraka:
 - ▶ Množenje kvantizacionom matricom: $R_{i,j} = Q_{i,j} \times C_{i,j}$
 - ▶ Inverzna kosinusna transformacija $N = round(T^TRT) + 128$
- Početna i dekompresovana matrica se razlikuju:

```
Original = \begin{bmatrix} 154 & 123 & 123 & 123 & 123 & 123 & 123 & 123 & 123 & 123 & 123 \\ 192 & 180 & 136 & 154 & 154 & 154 & 136 & 110 \\ 254 & 198 & 154 & 154 & 180 & 154 & 123 & 123 \\ 239 & 180 & 136 & 180 & 180 & 166 & 123 & 123 \\ 180 & 154 & 136 & 167 & 166 & 149 & 136 & 136 \\ 128 & 136 & 123 & 136 & 154 & 180 & 198 & 154 \\ 123 & 105 & 110 & 149 & 136 & 136 & 180 & 166 \\ 110 & 136 & 123 & 123 & 123 & 136 & 154 & 136 \end{bmatrix} Decompressed = \begin{bmatrix} 149 & 134 & 119 & 116 & 121 & 126 & 127 & 128 \\ 204 & 168 & 140 & 144 & 155 & 150 & 135 & 125 \\ 253 & 195 & 155 & 166 & 183 & 165 & 131 & 111 \\ 245 & 185 & 148 & 166 & 184 & 160 & 124 & 107 \\ 188 & 149 & 132 & 155 & 172 & 159 & 141 & 136 \\ 132 & 123 & 125 & 143 & 160 & 166 & 168 & 171 \\ 109 & 119 & 126 & 128 & 139 & 158 & 168 & 166 \\ 111 & 127 & 127 & 114 & 118 & 141 & 147 & 135 \end{bmatrix}
```

Zaključak

primenjena Q50 procenat nula: 86.44%

primenjena Q90 procenat nula: 68.10%

primenjena Q10 procenat nula: 95.21%

Literatura

Image compression and Discrete Cosine Transform