SevenBridges

Applied Bioinformatics

Agenda

- Introductions
- Course overview
- Bioinformatics intro
- Platform registration

Applied Bioinformatics

Introductions: Lecturers

Different backgrounds - bioinformatics engineers

- Sanja Mijalković, MATF
- Marko Matić, Faculty of Physics
- Boris Majić, ETF
- Dajana Panovic, MATF (Statistics)
- Milan Kovačević, PMF

Applied Bioinformatics

Course overview

Course logistics (1/2)

- 2 classes each week
- A mixture of lectures and hands-on exercises
- Exercises will be done in IPython notebooks on the CGC platform
 - We will provide help with the Python syntax if needed
- The course is not covered by a single textbook
- Lessons are mostly linked

Course logistics (2/2)

- Attending classes is not mandatory, but highly recommended
- Practice test in the end of semester.
- For all course related questions contact
 - milan.kovacevic@sbgenomics.com
 - dajana.panovic@sbgenomics.com

Course topics

- Introduction to biological background and sequencing (2 weeks)
- DNA analysis (4 weeks)
- RNA analysis (2 weeks)
- Structural variation detection (1 week)
- Cancer genomics (1 week)
- Methylation analysis (1 week)
- Test practise (1 week)

Applied Bioinformatics

Bioinformatics intro

What is bioinformatics?

informatics

During this course you will learn/hear:

- More about
 - Human cells
 - DNA
 - RNA
- Why is the DNA so important?
- What can we find out from the DNA?
- More about certain diseases, like cancer...
- Genome digitalisation
- How to analyse genomic data
- Interesting algorithms
- Optimisations for huge data

- A, T, C, G
- 3.000.000.000 letters in a DNA molecule
- 46 chromosomes
- Almost everything in the body is predefined by the order of those letters

Some interesting characteristics:

And some not that interesting things:

- Cancer
- Rare diseases

Autoimmune diseases

Neurological diseases

DNA digital representation

- DNA is stored as a string
- Human genome project and reference genome
- 3 billion As, Ts, Cs and Gs translates into ~ 3 GB of data

font 4

BiX starts with raw data

Typical sample (WGS):

- 200-500 millions of reads
- Each read is 50-150 chars (A, C, G, T)
- + Assessed qualities of sequencing
- 30x coverage ~ 150-300GB

Various data:

- Digitized DNA, RNA, proteins
- Different techniques (lab prep)
- Comes from institutes, pharma companies, ...

Common 1st step: Reconstruct personal genome

$$\Theta(n^2)$$
 vs $\Theta(nm)$

Necessity of Cloud in Bioinformatics

2016 Seven Bridges sevenbridges.com

My Full DNA: Whole Genome Sequencing with mtDNA

My Full DNA by Dante Labs gives you unparalleled access to your health, your family traits, and predispositions. Having your full genome sequenced means:

Bioinformatics engineer

Applied Bioinformatics

Platform registration

CGC registration

- Exercises are going to be done on CGC platform
- cgc.sbgenomics.com
- CGC = Cancer Genomics Cloud
 - Funded by NCI National Cancer Institute (NIH)
 - Powered by Seven Bridges
 - For academic use
 - Many researchers/ institutes / labs are using it for their analysis
- More information about the project available <u>here</u>.
- Registration

Thank you!