Olimpiada Națională de Matematică

Etapa finală Iași, 17 Aprilie 2006 SOLUȚII ȘI BAREMURI

CLASA A VII-A

Subjectul 1.

puncte

Considerăm ABC un triunghi și punctele M și N aparțin laturilor AB, respectiv BC astfel încât $\frac{2\cdot CN}{BC}=\frac{AM}{AB}$. Fie P un punct pe dreapta AC. Să se arate că dreptele MN și NP sunt perpendiculare dacă și numai dacă PN este bisectoarea unghiului $\angle MPC$.

Soluţie. Fie T punctul de intersecţie al paralelei prin N la AC cu dreapta AB . Din $\frac{CN}{BC} = \frac{AT}{AB}$ rezultă $AM = 2 \cdot AT$, deci T este mijlocul segmentului AM
în triunghiul PMQ , PN este mediană, deci PN este perpendiculară pe MN dacă și numai dacă PN este bisectoarea unghiului $\angle MPC$.
Subiectul 2. Un pătrat de latură n este format din n^2 pătrate unitate, fiecare colorat cu roşu, galben sau verde. Să se determine n minim astfel încât, pentru orice colorare, să existe o linie și o coloană cu cel puţin trei pătrate unitate colorate identic (aceeași culoare pe linia și pe coloana găsite).
Solutie. Numărul minim este 7.

Pentru n=7 cel puţin 17 pătrate unitate au aceeași culoare, conform principiului cutiei $(49=3\cdot 16+1.)\ldots 2$

Deoarece $17 = 7 \cdot 2 + 3$, rezultă din același principiu că printre cele 7 linii există una care conține trei pătrate de aceeași culoare. Același raționament rămâne valabil pentru coloane. 3 puncte

Subiectul 3. Triunghiul ascuţitunghic ABC are unghiul C cu măsura de 45°. Punctele A_1 şi B_1 sunt picioarele înălţimilor din A şi B, iar H este ortocentrul triunghiului. Considerăm punctele D şi E situate pe segmentele AA_1 şi BC cu proprietatea că $A_1D = A_1E = A_1B_1$. Să se demonstreze că:

a)
$$A_1B_1 = \sqrt{\frac{A_1B^2 + A_1C^2}{2}};$$

b) CH = DE.

Soluție. a) Triunghiul ABC fiind ascuțitunghic, vom avea $\angle ABC > 45^{\circ}$, deci mijlocul M al segmentului BC este situat pe (A_1C) 1 punct

45°, deci mijlocul
$$M$$
 al segmentului BC este situat pe (A_1C) 1 punct Avem $B_1M = \frac{BC}{2} = \frac{A_1B + A_1C}{2}$ şi $A_1M = MB - A_1B = \frac{BC}{2} - A_1B = \frac{A_1C - A_1B}{2}$.

$$\left(\frac{A_1B + A_1C}{2}\right)^2 + \left(\frac{A_1C - A_1B}{2}\right)^2 = \frac{A_1B^2 + A_1C^2}{2},$$

deci

$$A_1 B_1 = \sqrt{\frac{A_1 B^2 + A_1 C^2}{2}}.$$

b) Triunghiul DA_1E este dreptunghic isoscel, deci vom avea succesiv

$$DE = A_1 E \cdot \sqrt{2} = A_1 B_1 \cdot \sqrt{2} = \sqrt{A_1 B^2 + A_1 C^2} = \sqrt{A_1 B^2 + A_1 A^2} = AB.....$$
 2 puncte

Din congruența triunghiurilor AA_1B și CA_1H rezultă că AB=CH, prin urmare CH=DE.....1 punct

Subiectul 4. Fie A o mulțime de numere naturale nenule cu cel puțin 2 elemente. Se știe că pentru orice numere $a,b\in A,\,a>b,$ avem $\frac{[a,b]}{a-b}\in A$. Să se arate că mulțimea A are exact 2 elemente.

([a,b] semnifică cel mai mic multiplu comun al numerelor a
i b).

Fie $a=\max A$ și $b=\min A$. Dacă d=(a,b), atunci b=dx, a=dy, cu $x,y\in\mathbb{N}^*$ și (x,y)=1. Atunci $\frac{[a,b]}{a-b}=\frac{xy}{y-x}\in\mathbb{N}^*$. Cum x,y și x-y sunt două câte două prime între ele, deducem y-x=1 deci y=x+1 astfel că a=d(x+1) și b=dx. Atunci $\frac{[a,b]}{a-b}=x(x+1)\in A$, deci $b\leq x(x+1)\leq a$ de unde rezultă $d\in\{x,x+1\}$ 2 puncte

Cazul 1. d = x.

Avem a = x(x+1) şi $b = x^2$. Vom arăta că A nu mai are şi alte elemente în afară de a şi b.

Presupunând contrariul, fie $c = \min (A \setminus \{b\})$. Analog ca mai sus se arată că există $d', z \in \mathbb{N}^*$ astfel încât a = d'(z+1) și c = d'z. Atunci $\frac{[a,c]}{a-c} = z(z+1) \in A$. Se observă că $z(z+1) \neq x^2 = b$, deci $c \leq z(z+1) \leq a$ de unde se obține $d' \in \{z,z+1\}$.

Dacă d' = z, atunci a = z(z + 1) și cum a = x(x + 1) ar rezulta că x = z, contradicție deoarece s-ar obține b = c;

Cazul 2. d = x + 1.