

Arbeitsanleitung / Manual

Vitamin-D-Bindungsprotein **ELISA Kit**

Zur in-vitro-Bestimmung von Vitamin-D-Bindungsprotein in Serum, Plasma und Urin

Vitamin D binding protein **ELISA** kit

For the in vitro determination of vitamin D binding protein in serum, plasma and urine

Gültig ab / Valid from 2016-02-01

Immundiagnostik AG, Stubenwald-Allee 8a, 64625 Bensheim, Germany

Tel.: +49 6251 70190-0 Fax: +49 6251 849430

e.mail: info@immundiagnostik.com

www.immundiagnostik.com

Inhalt

VERWENDUNGSZWECK	2
INHALT DER TESTPACKUNG	2
ERFORDERLICHE LABORGERÄTE UND HILFSMITTEL	3
LAGERUNG UND VORBEREITUNG DER REAGENZIEN	3
PROBENVORBEREITUNG	4
Serum- und Plasmaproben	4
ERGEBNISSE	6
EINSCHRÄNKUNGEN	7
QUALITÄTSKONTROLLE	8
Referenzwerte	8
Zusätzliche Referenzwerte	8
TESTCHARAKTERISTIKA	9
Präzision und Reproduzierbarkeit	9
•	
	Präzision und Reproduzierbarkeit

1. VERWENDUNGSZWECK

Der hier beschriebene Assay ist für die Bestimmung des freien bzw. nicht im Actin-Komplex gebundenen Vitamin-D-bindenden Proteins aus Serum, Plasma und Urin geeignet. Nur zur *in-vitro-*Diagnostik.

2. EINLEITUNG

Vitamin-D-Bindeprotein (VDBP, auch *group-specific component /* Gc-Protein) ist ein multifunktionales Serumprotein, welches in der Leber gebildet wird. Erhöhte Östrogenspiegel, z.B. während der Schwangerschaft oder durch hormonelle Verhütung, regen die Synthese an. VDBP kann in Plasma, Aszites, Liquor, Urin und auf der Oberfläche von verschiedenen Zelltypen nachgewiesen werden.

Im Blut bindet VDBP den Großteil des zirkulierenden 25-OH-Vitamin D und transportiert es zu den Nieren, wo es zum Hormon 1,25-(OH)2-Vitamin D umgewandelt wird.

Zusätzlich bindet VDBP monomeres Aktin im Verhältnis 1:1. Aktin ist ein intrazelluläres Protein, das als Monomer oder als Filament vorliegen kann. Bei massiver Gewebezerstörung und Zelltod steigt der Aktinspiegel im Plasma signifikant an, woraufhin sich VDBP-Aktin-Komplexe bilden, die schnell abgebaut werden. Daher sinkt der VDBP-Spiegel bei Trauma- oder Sepsis-Patienten deutlich ab, besonders massiv bei Patienten mit hohem Risiko für Multiorganversagen.

Des Weiteren ist VDBP ein Vorläufer des immunmodulierenden Proteins Gc-MAF (*Gc protein-derived macrophage activating factor*), welches die gegen Tumore gerichtete Makrophagenaktivität erhöht.

Indikationen

- · Prognosefaktor bei Trauma
- · Nephrotisches Syndrom
- Tumorerkrankungen

3. INHALT DER TESTPACKUNG

ArtNr.	Bezeichnung	Kit-Komponenten	Menge
K 2314	PLATE	Mikrotiterplatte, vorbeschichtet	12 x 8 Vertiefungen
K 2314	WASHBUF	ELISA-Waschpufferkonzentrat 10x	2 x 100 ml
K 2314	CONJ	POD-Antikörper-Konzentrat, (Kaninchen anti-human-VDBP, peroxidasemarkiert)	1 x 200 μl

ArtNr.	Bezeichnung	Kit-Komponenten	Menge
K 2314	STD	Standards, lyophilisiert (60; 20; 6,6; 2,2; 0 ng/ml)	4x 5 vials
K 2314	STDBUF	Standardverdünnungspuffer	1 x 20 ml
K 2314	CTRL 1	Kontrolle, lyophilisiert	4 vials
K 2314	CTRL 2	Kontrolle, lyophilisiert	4 vials
K 2314	SAMPLEBUF	Verdünnungspuffer, gebrauchsfertig	2 x 100 ml
K 2314	SUB	TMB-Substrat (Tetramethylbenzidin), gebrauchsfertig	1 x 15 ml
K 2314	STOP	ELISA-Stopplösung, gebrauchsfertig	1 x 15 ml

Für Nachbestellungen von Einzelkomponenten verwenden Sie als Bestellnummer die Artikelnummer gefolgt von der Bezeichnung.

4. ERFORDERLICHE LABORGERÄTE UND HILFSMITTEL

- · Reinstwasser*
- Laborwaage
- Präzisionspipetten und Pipettenspitzen für den Einmalgebrauch mit variablen Volumina von 10–1000 μ l
- · Folie zum Abkleben der Mikrotiterplatte
- Mikrotiterplattenschüttler
- Multikanal- bzw. Multipipette
- · Vortex-Mixer
- Zentrifuge, 3000 g
- · Laborübliche Glas- oder Plastikröhrchen (Einmalartikel)
- Mikrotiterplattenphotometer (benötigte Filter siehe Kapitel 7)
 - * Immundiagnostik AG empfiehlt die Verwendung von Reinstwasser nach ISO 3696. Es handelt sich dabei um Wasser des Typs 1, welches frei von ungelösten und kolloidalen Ionen und organischen Molekülen ist (frei von Partikeln $> 0.2 \,\mu\text{m}$) mit einer elektrischen Leitfähigkeit von $0.055 \,\mu\text{S/cm}$ bei $25 \,^{\circ}\text{C}$ ($\geq 18.2 \,\text{M}\Omega \,\text{cm}$).

5. LAGERUNG UND VORBEREITUNG DER REAGENZIEN

 Bitte achten Sie bei mehrfachem Einsatz des Kits darauf, dass die Reagenzien wie in der Vorschrift beschrieben gelagert und nur die für den jeweiligen Ansatz benötigten Reagenzienmengen frisch angesetzt werden. Der Kit kann so bis zu 4x je nach Probenaufkommen bis zum angegebenen Haltbarkeitsdatum verwendet werden.

• Reagenzien mit einem **Volumen kleiner 100 µl** sollten vor Gebrauch kurz anzentrifugiert werden, um Volumenverluste zu vermeiden.

- Vorbereitung des Waschpuffers: Das Waschpufferkonzentrat (WASHBUF) muss vor Gebrauch 1:10 in Reinstwasser verdünnt werden (100 ml WASHBUF + 900 ml Reinstwasser), gut mischen. Aufgrund der hohen Salzkonzentration in der Stammlösung kann es zu Kristallbildungen kommen. Die Kristalle lösen sich bei Raumtemperatur bzw. im Wasserbad bei 37°C auf. Der WASHBUF kann bei 2–8°C bis zum angegebenen Haltbarkeitsdatum aufbewahrt werden. Der Waschpuffer (1:10 verdünnter WASHBUF) ist bei 2–8°C einen Monat in einem geschlossenen Gefäß haltbar.
- Die lyophilisierten STD (Standards) und CTRL (Kontrollen) sind bei 2–8°C bis zum angegebenen Haltbarkeitsdatum verwendbar. Die Standards und Kontrollen werden mit 500 µl STDBUF (Standardverdünnungspuffer) rekonstituiert, vorsichtig gemischt und zum Lösen 10 Minuten stehen gelassen. Rekonstituierte Standards und Kontrollen können nicht gelagert werden.
- Vorbereitung des Konjugats: Das Konjugatkonzentrat (CONJ) wird vor Gebrauch 1:101 in Waschpuffer verdünnt (100 µl CONJ + 10 ml Waschpuffer).
 Das CONJ ist bei 2–8 °C bis zum angegebenen Haltbarkeitsdatum stabil. Konjugat (1:101 verdünntes CONJ) ist nicht stabil und kann nicht aufbewahrt werden.
- Alle anderen Testreagenzien sind bei 2–8 °C zu lagern und bei entsprechender Lagerung bis zum angegebenen Verfallsdatum (siehe Etikett) verwendbar.

6. PROBENVORBEREITUNG

Serum- und Plasmaproben

Serum- und Plasmaproben (Normalpatienten) werden **1:40000** in SAMPLEBUF (Probenverdünnungspuffer) verdünnt. Zum Beispiel:

- 20 μl Probe + 980 μl SAMPLEBUF, gut mischen = 1:50 (Verdünnung l)
- 20 μl Verdünnung I + 980 μl SAMPLEBUF, gut mischen = 1:50 (Verdünnung II)
- 20 μl Verdünnung II + 300 μl SAMPLEBUF, gut mischen = 1:16 (Verdünnung III). Diese entspricht nun einer Gesamtverdünnung von 1:40 000.

100 μl der Verdünnung III wird im Test pro Vertiefung eingesetzt.

Andere Patientenkollektive werden entsprechend der erwarteten VDBP-Konzentration vorverdünnt.

Urinproben

Urinproben werden **1:10** in SAMPLEBUF (Probenverdünnungspuffer) verdünnt. Zum Beispiel:

• 100 μl Probe + 900 μl SAMPLEBUF, mischen = 1:10

Für eine Bestimmung in Doppelwerten werden **2 x je 100 µl** jeder vorbereiteten Probe im Test eingesetzt.

Andere Patientenkollektive werden entsprechend der erwarteten VDBP-Konzentration vorverdünnt.

7. TESTDURCHFÜHRUNG

Testprinzip

Dieser ELISA dient zur quantitativen Bestimmung des VDBP aus Serum, Plasma und Urin. In diesem ELISA wird das VDBP aus den Proben an polyklonale, auf Mikrotiterplatten fixierte Antikörper (Kaninchen-anti-human-VDBP) gebunden. Während eines Waschschrittes werden ungebundene Komponenten entfernt. Gebundenes VDBP wird mit Hilfe eines Antikörper-Peroxidase/TMB-Systems detektiert. Nach Zugabe einer Stopplösung wechselt die Farbe von blau nach gelb. Die Farbentwicklung ist dabei zur nachgewiesenen Analytmenge (Probe bzw. Standard) proportional. Anhand einer mitgeführten Standardkurve – optische Dichte (Absorption bei 450 nm) versus Standardkonzentration – lässt sich die Konzentration der Probe ermitteln.

Pipettierschema

Vor Gebrauch **alle Reagenzien und Proben** auf **Raumtemperatur** (15–30 °C) bringen, gut mischen.

Markieren Sie die Positionen für STD/SAMPLE/CTRL (Standards/Proben/Kontrollen) im Protokollblatt.

Die benötigten Mikrotiterstreifen aus dem Kit nehmen. Nicht verwendete Mikrotiterstreifen können abgeklebt bis zum angegebenen Haltbarkeitsdatum bei 2–8 °C gelagert werden.

Im Fall einer automatisierten Abarbeitung des Tests können automatenspezifische Anpassungen der Prozedur notwendig sein, um den jeweiligen technischen Gegebenheiten gerecht zu werden. Für Unterstützung und Rückfragen wenden Sie sich bitte an Ihren Anbieter oder Immundiagnostik AG.

Wir empfehlen, die Bestimmungen in Doppelwerten durchzuführen. **Die Bestimmungen sind in der Mikrotiterplatte in Doppelwerten durchzuführen.**

1.	Die Vertiefungen der Mikrotiterstreifen 5 x mit je 250 µl Waschpuffer waschen. Nach dem letzten Waschschritt Reste von Waschpuffer durch Ausklopfen auf saugfähigem Papier entfernen.		
2.	100 μl STD (Standard), CTRL (Kontrollen) und verdünnte Probe in die jeweiligen Vertiefungen pipettieren.		
3.	1 Stunde bei Raumtemperatur (15–30 °C) unter Schütteln inkubieren.		
4.	Den Inhalt der PLATE verwerfen und 5 x mit je 250 µl Waschpuffer waschen. PLATE nach dem letzten Waschgang auf Saugpapier ausschlagen.		
5.	100 μl Konjugat pro Vertiefung pipettieren.		
6.	1 Stunde bei Raumtemperatur unter Schütteln inkubieren.		
7.	Die Vertiefungen der Mikrotiterstreifen 5 x mit je 250 µl Waschpuffer waschen. Nach dem letzten Waschschritt Reste von Waschpuffer durch Ausklopfen auf saugfähigem Papier entfernen.		
8.	100 µl SUB (Substrat) in jede Vertiefung pipettieren.		
9.	10–20 Minuten* bei Raumtemperatur inkubieren bis ausreichend große Farbdifferenzen auftreten.		
10.	100 µl STOP (Stopplösung) in jede Vertiefung pipettieren.		
11.	Extinktion sofort im Mikrotiterplattenphotometer bei 450 nm gegen die Referenzwellenlänge 620 nm (oder 690 nm) messen. Ist keine Referenzwellenlänge vorhanden, wird nur bei 450 nm gemessen. Falls die Extinktion des höchsten Standards den Messbereich des Photometers übersteigt, sollte sofort bei 405 nm gegen 620 nm (690 nm) gemessen werden.		

^{*} Die Intensität der Farbentwicklung ist temperaturabhängig. Es wird empfohlen den Farbumschlag während der Inkubationszeit zu beobachten und entsprechend der Farbentwicklung die Reaktion zu stoppen.

8. ERGEBNISSE

Die unten beschriebenen mathematischen Modelle können alternativ zur Auswertung benutzt werden. Wir empfehlen die 4-Parameter-Funktion:

1. 4-Parameter-Funktion

Für die optische Dichte empfehlen wir eine lineare Ordinate und für die Konzen-

tration eine logarithmische Abszisse (bei einer logarithmischen Abszisse muss für den Standard mit der Konzentration 0 ein Wert kleiner 1 eingegeben werden z. B. 0,001).

2. Punkt-zu-Punkt-Auswertung

Für die optische Dichte und für die Konzentration empfehlen wir eine lineare Ordinate bzw. Abszisse.

3. Gewichtete Spline-Funktion

Für die optische Dichte und für die Konzentration empfehlen wir eine lineare Ordinate bzw. Abszisse.

Vor jeder automatischen Auswertung sollte stets eine Kontrolle der Doppelwerte auf Plausibilität ("Ausreißerkontrolle") durchgeführt werden; falls dies nicht durch das verwendete Programm erfolgt, sollte die Kontrolle manuell durchgeführt werden.

Serum-/Plasmaproben

Um die Konzentration in Serum-/Plasmaproben zu bestimmen, wird der ermittelte VDBP-Wert mit dem Verdünnungsfaktor **40 000** multipliziert.

Urinproben

Um die Konzentration in Urinproben zu bestimmen, wird der ermittelte VDBP-Wert mit dem Verdünnungsfaktor **10** multipliziert.

Sollte ein **anderer Verdünnungsfaktor** verwendet worden sein, so ist die ermittelte Konzentration mit dem verwendeten Verdünnungsfaktor zu multiplizieren.

9. EINSCHRÄNKUNGEN

Proben mit Konzentrationen oberhalb des Messbereichs müssen stärker verdünnt und erneut gemessen werden. Bitte beachten Sie diese stärkere Verdünnung bei der Ergebnisberechnung.

Proben mit Konzentrationen unterhalb des Messbereichs können nicht klar quantifiziert werden.

Die Obergrenze des Messbereichs ergibt sich aus:

höchste Konzentration der Standardkurve \times anzuwendender Probenverdünnungsfaktor

Die Untergrenze des Messbereichs ergibt sich aus:

 $Analytische \, Sensitivit \"{a}t \times anzuwenden der \, Proben verd \"{u}nnungs faktor$

10. QUALITÄTSKONTROLLE

Immundiagnostik empfiehlt den Einsatz von externen Kontrollen für die interne Qualitätskontrolle, wenn möglich.

Wir empfehlen, bei jedem Testansatz Kontrollen mitzumessen. Die Ergebnisse der Kontrollen müssen auf Richtigkeit überprüft werden. Liegen eine oder mehrere Kontrollen außerhalb des angegebenen Bereiches, kann Immundiagnostik die Richtigkeit der Messergebnisse nicht gewährleisten.

Referenzwerte

Plasma-/Serumproben

200-550 mg/l

L. Thomas, 1982

Weitere Referenzwerte finden Sie in folgenden Publikationen im Literaturverzeichnis: Bouillon (1977), Haughton (1992), Jorgensen (2004), Heijboer (2012).

Wir empfehlen jedem Labor, einen eigenen Referenzbereich zu etablieren.

Urinproben

Doorenbos et al. analysierten die Ausscheidung von VDBP im 24-h-Urin. Bei gesunden Kontrollen ergab sich ein Wert von $64 \mu g/24 h$ (23–111 $\mu g/24 h$).

Mirkovic et al. normalisierten die erhaltenen VDBP-Werte auf Albuminurie. Normalbuminurie maßen sie als 0,44 mg/mg Albumin (0,22–0,77 mg/mg Albumin).

Wir empfehlen jedem Labor, einen eigenen Referenzbereich zu etablieren.

Zusätzliche Referenzwerte

Bei einigen Patientengruppen ist der Referenzbereich von Serum-/Plasmaproben laut Literatur verändert.

Schwangere

Die Proben von Schwangeren weisen laut den bei Serum-/Plasmaproben genannten Referenzen einen um 30–80 % erhöhten Referenzbereich auf.

Lebererkrankungen

Gemäß Haughton et al. ist der Referenzbereich von Leberkranken um 35 % niedriger als der von gesunden Kontrollen.

11. TESTCHARAKTERISTIKA

Präzision und Reproduzierbarkeit

Intra-Assay (n = 16)

Probe	VDBP-Mittelwert [mg/dl]	Intra-Assay-Vk [%]
1	24,2	5,0
2	42,9	3,2

Inter-Assay (n = 14)

Probe	VDBP-Mittelwert [mg/dl]	Inter-Assay-Vk [%]
1	19,3	12,7

Wiederfindung in der Verdünnung

Zwei Patientenproben wurden verdünnt und im Test gemessen. Die Ergebnisse sind in der unten stehenden Tabelle aufgeführt (n = 2)

Probe	Verdünnung	VDBP erwartet [mg/dl]	VDBP gemessen [mg/dl]
	1:5000	46,2	46,2
	1:10000	23,1	23,3
Α	1:20000	11,5	10,4
	1:40000	5,7	5,8
	1:80000	2,8	2,7
В	1:5000	38	38
	1:10000	19	20,2
	1:20000	9,5	8,7
	1:40000	4,7	4,3
	1:80000	2,3	2,4

Spike-Wiederfindung

Zwei Proben wurden mit unterschiedlichen VDBP-Mengen versetzt und gemessen (n = 2).

Probe	Probe [ng/ml]	Spike [ng/ml]	VDBP [ng/ml] erwartet	VDBP [ng/ml] gemessen
	2,2	5	7,2	7,7
Α	2,2	10	12,2	12,7
	2,2	20	22,2	25,3
	6,7	2,5	9,2	8,7
В	6,7	7,5	14,2	13,1
	6,7	15	21,7	22,5

Analytische Sensitivität

Die Nachweisgrenze wurde festgelegt als $B_0 + 2$ SD. Gemessen wurde 20-mal der Standard null. Die Messungen ergaben eine Nachweisgrenze von 1,23 ng/ml.

12. VORSICHTSMASSNAHMEN

- Alle im Kit enthaltenen Reagenzien dürfen ausschließlich zur in-vitro-Diagnostik verwendet werden.
- Das für Kitkomponenten verwendete humane Material wurde auf HIV, Hepatitis B und Hepatitis C getestet und für negativ befunden. Dennoch wird empfohlen, die Kitkomponenten als Vorsichtsmaßnahme immer wie potentiell infektiöses Material zu behandeln.
- Die Kitkomponenten enthalten zum Schutz vor bakteriellen Kontaminationen Natriumazid oder ProClin. Natriumazid bzw. ProClin sind giftig. Auch Substrate für enzymatische Farbreaktionen sind als giftig und karzinogen beschrieben.
 Jeder Kontakt mit Haut oder Schleimhaut ist zu vermeiden.
- Die Stopplösung besteht aus verdünnter Schwefelsäure (H₂SO₄). H₂SO₄ ist eine starke Säure und muss auch in verdünnter Form mit Vorsicht benutzt werden. H₂SO₄ verursacht bei Kontakt mit der Haut Verätzungen. Es sollte daher mit Schutzhandschuhen, Schutzkleidung und Schutzbrille gearbeitet werden. Bei Kontakt mit der Säure muss die verätzte Stelle sofort mit viel Wasser gespült werden.

13. TECHNISCHE MERKMALE

 Reagenzien der Testpackung dürfen nicht mit anderen Chargen gemischt werden. Ferner dürfen Kavitäten unterschiedlicher Mikrotiterplatten, selbst der gleichen Charge, nicht zusammengefügt und zur Analyse verwendet werden.

- · Qualitätskontrollen sollten immer mitgemessen werden.
- Die Reagenzien dürfen nach Ablauf des Mindesthaltbarkeitsdatums nicht mehr verwendet werden.
- Substratlösung muss vor Gebrauch farblos sein.
- Mikrotiterstreifen müssen während den Inkubationen mit Folie abgedeckt sein.
- Vermeiden Sie Schaumbildung beim Mischen der Reagenzien.
- Stopfen und Verschlüsse verschiedener Reagenzien dürfen nicht vertauscht werden.
- Der Assay ist immer nach der im Kit beigefügten Arbeitsanleitung durchzuführen.

14. ALLGEMEINE HINWEISE ZUM TEST

- Dieser Kit wurde nach der IVD-Richtlinie 98/79/EG hergestellt und in den Verkehr gebracht.
- Für die Qualitätskontrolle sind die für medizinische Laboratorien erstellten Richtlinien zu beachten.
- Die Testcharakteristika wie Inkubationszeiten, Inkubationstemperaturen und Pipettiervolumina der verschiedenen Komponenten wurden vom Hersteller festgelegt. Nicht mit dem Hersteller abgesprochene Veränderungen in der Testdurchführung können die Resultate beeinflussen. Die Firma Immundiagnostik AG übernimmt für die hierdurch entstandenen Schäden und Folgeschäden keine Haftung.
- Bei Gewährleistungsansprüchen ist das beanstandete Material mit schriftlicher Erklärung innerhalb von 14 Tagen zum Hersteller, der Immundiagnostik AG, zurückzusenden.

15. LITERATUR

Allgemeine Literatur

1. Bouillon, R., van Baelen, H. & de Moor, P., 1977. The measurement of the vitamin D-binding protein in human serum. *The Journal of clinical endocrinology and metabolism*, **45**(2), pp.225–31.

- Fu, L. et al., 2009. Common genetic variants of the vitamin D binding protein (DBP) predict differences in response of serum 25-hydroxyvitamin D [25(OH)D] to vitamin D supplementation. Clinical biochemistry, 42(10-11), pp.1174-7.
- 3. Haughton, M.A. & Mason, R.S., 1992. Immunonephelometric assay of vitamin D-binding protein. *Clinical chemistry*, **38**(9), pp.1796–801.
- 4. Heijboer, A.C. et al., 2012. Accuracy of 6 Routine 25-Hydroxyvitamin D Assays: Influence of Vitamin D Binding Protein Concentration. *Clinical Chemistry*, **58**(3), pp.543–548.
- Jørgensen, C.S. et al., 2004. Gc globulin (vitamin D-binding protein) levels: an inhibition ELISA assay for determination of the total concentration of Gc globulin in plasma and serum. Scandinavian journal of clinical and laboratory investigation, 64(2), pp.157–66.
- 6. Malik, S. et al., 2013. Common variants of the vitamin D binding protein gene and adverse health outcomes. *Critical reviews in clinical laboratory sciences*.
- 7. Schmidt-Gayk, H. et al., 1977. 25-hydroxy-vitamin-D in nephrotic syndrome. *Lancet*, **2**(8029), pp.105–8.
- 8. Thomas, L., 1982. Proteindiagnostik: Diagnose, Therapiekontrolle. **1**st ed., Frankfurt am Main: *Behringwerke, Medizinische Information und Vertrieb*.

Literatur mit dem Immundiagnostik VDBP-ELISA

- 9. Cauley, J.A. et al., 2011. Serum 25-hydroxyvitamin D and clinical fracture risk in a multiethnic cohort of women: the Women's Health Initiative (WHI). *Journal of bone and mineral research: the official journal of the American Society for Bone and Mineral Research*, **26**(10), pp.2378–88.
- 10. Comabella, M. et al., 2010. Cerebrospinal fluid chitinase 3-like 1 levels are associated with conversion to multiple sclerosis. *Brain : a journal of neurology*, **133**(Pt 4), pp.1082–93.
- Correale, J., Ysrraelit, M.C. & Gaitán, M.I., 2010. Gender differences in 1,25 dihydroxyvitamin D3 immunomodulatory effects in multiple sclerosis patients and healthy subjects. *Journal of immunology (Baltimore, Md.: 1950)*, **185**(8), pp.4948–58.

12. Doorenbos, C.R.C. et al., 2012. Antiproteinuric treatment reduces urinary loss of vitamin D-binding protein but does not affect vitamin D status in patients with chronic kidney disease. *The Journal of steroid biochemistry and molecular biology*, **128**(1-2), pp.56–61.

- 13. Gressner, O. et al., 2007. Gc-globulin concentrations and C5 haplotype-tagging polymorphisms contribute to variations in serum activity of complement factor C5. *Clinical biochemistry*, **40**(11), pp.771–5.
- 14. Jeffery, L.E. et al., 2012. Availability of 25-hydroxyvitamin D(3) to APCs controls the balance between regulatory and inflammatory T cell responses. *Journal of immunology (Baltimore, Md.: 1950)*, **189**(11), pp.5155–64.
- 15. Jeng, L. et al., 2009. Alterations in vitamin D status and anti-microbial peptide levels in patients in the intensive care unit with sepsis. *Journal of translational medicine*, **7**, p.28.
- 16. Lee, S.-H. et al., 2011. Relationship between group-specific component protein and the development of asthma. *American journal of respiratory and critical care medicine*, **184**(5), pp.528–36.
- 17. Meguro, S. et al., 2011. Plasma 25-hydroxyvitamin d is independently associated with hemoglobin concentration in male subjects with type 2 diabetes mellitus. *International journal of endocrinology*, 2011, p.362981.
- 18. Mirković, K. et al., 2013. Urinary vitamin D binding protein: a potential novel marker of renal interstitial inflammation and fibrosis. *PloS one*, **8**(2), p.e55887.
- 19. Prytuła, A. et al., 2012. Urinary and dialysate losses of vitamin D-binding protein in children on chronic peritoneal dialysis. *Pediatric nephrology (Berlin, Germany)*, **27**(4), pp.643–9.
- 20. Turner, A.M. et al., 2013. Circulating DBP level and prognosis in operated lung cancer: an exploration of pathophysiology. *The European respiratory journal*, **41**(2), pp.410–6.
- 21. Wagner, D. et al., 2013. Randomized clinical trial of vitamin D3 doses on prostatic vitamin D metabolite levels and ki67 labeling in prostate cancer patients. *The Journal of clinical endocrinology and metabolism*, **98**(4), pp.1498–507.
- 22. Wang, X. et al., 2013. Vitamin D-binding protein levels in female patients with primary hyperparathyroidism. *Endocrine practice : official journal of the American College of Endocrinology and the American Association of Clinical Endocrinologists*, **19**(4), pp.609–13.
- 23. Wood, A.M. et al., 2011. Vitamin D-binding protein contributes to COPD by activation of alveolar macrophages. *Thorax*, **66**(3), pp.205–10.

Verwendete Symbole:

Temperaturbegrenzung

Bestellnummer

In-Vitro-Diagnostikum

Zu verwenden mit

Hersteller

Inhalt ausreichend für <n> Prüfungen

Chargenbezeichnung

Verwendbar bis

Achtung

Manual

Vitamin D binding protein ELISA kit

For the in vitro determination of vitamin D binding protein in serum, plasma and urine

Valid from 2016-02-01

Immundiagnostik AG, Stubenwald-Allee 8a, D-64625 Bensheim

Tel.: +49 6251 70190-0 Fax: +49 6251 849430

e.mail: info@immundiagnostik.com www.immundiagnostik.com

Table of Contents

1.	INTENDED USE	17
3.	MATERIAL SUPPLIED	17
4.	MATERIAL REQUIRED BUT NOT SUPPLIED	18
5.	STORAGE AND PREPARATION OF REAGENTS	18
6.	STORAGE AND PREPARATION OF SAMPLES	19
	Serum and plasma samples Urine	
7.	ASSAY PROCEDURE	20
	Principle of the test Test procedure	
8.	RESULTS	21
9.	LIMITATIONS	22
10.	QUALITY CONTROL	22
	Reference rangeAdditional reference ranges	
11.	PERFORMANCE CHARACTERISTICS	23
	Precision and reproducibility	24
	Analytical Sensitivity	
12.	PRECAUTIONS	25
13.	TECHNICAL HINTS	25
14.	GENERAL NOTES ON THE TEST AND TEST PROCEDURE	26
15.	REFERENCES	26
	General literature	
	Literature using the Immundiagnostik VDBP ELISA	27

1. INTENDED USE

This Immundiagnostik assay is an enzyme immunoassay intended for the quantitative determination of free and not actin complex bound vitamin D binding protein in serum, plasma and urine. For *in vitro* diagnostic use only.

2. INTRODUCTION

Vitamin D binding protein (VDBP, also known as group-specific component / Gc protein) is a multifunctional serum protein which is formed in the liver. High estrogen levels, caused e. g. by pregnancy or hormonal birth control, stimulate its synthesis. VDBP can be found in plasma, ascites, liquor, urine and at the surface of various cell types.

In the blood, VDBP binds the bigger part of the circulating 25-OH vitamin D and brings it to the kidneys, where it is transformed into the hormone 1,25-(OH)2 vitamin D.

In addition, VDBP binds monomeric actin at the ratio of 1:1. Actin is an intracellular protein which is available as monomer or filament. Massive tissue destruction or cell death cause the plasma level of actin to rise significantly, whereupon VDBP-actin complexes are formed which are removed quickly. Hence the VDBP level of trauma or sepsis patients decreases quickly, especially in patients with a high level of multiorgan failure.

Furthermore VDBP is a precursor of the immunomodulating protein Gc-MAF (Gc protein-derived macrophage activating factor) which increases the activity of macrophages against tumours.

Indications

- Prognostic factor for trauma patients
- · Nephritic syndrome
- Tumours

3. MATERIAL SUPPLIED

Cat. No.	Label	Kit components	Quantity
K 2314	PLATE	Microtiter plate, pre-coated	12 x 8 wells
K 2314	WASHBUF	ELISA wash buffer concentrate, 10x	2 x 100 ml
K 2314	CONJ	POD antibody, (rabbit-anti-VDBP, peroxidase-labeled), pre-diluted	1 x 200 μl
K 2314	STD	Calibrators, lyophilized (60; 20; 6,6; 2,2; 0 ng/ml)	4 x 5 vials

Cat. No.	Label	Kit components	Quantity
K 2314	STDBUF	Standard dilution buffer	1 x 20 ml
K 2314	CTRL 1	Control, lyophilized	4 vials
K 2314	CTRL 2	Control, lyophilized	4 vials
K 2314	SAMPLEBUF	Dilution buffer, ready-to-use	2 x 100 ml
K 2314	SUB	TMB substrate (tetramethylbenzidine), ready-to-use	1 x 15 ml
K 2314	STOP	ELISA stop solution, ready-to-use	1 x 15 ml

For reorders of single components, use the catalogue number followed by the label as product number.

4. MATERIAL REQUIRED BUT NOT SUPPLIED

- · Ultra pure water*
- · Laboratory balance
- Calibrated precision pipettors and 10–1000 µl tips
- Foil to cover the microtiter plate
- · Horizontal microtiter plate shaker
- Multi-channel pipets or repeater pipets
- Centrifuge, 3000 g
- Vortex
- · Standard laboratory glass or plastic vials, cups, etc.
- Microtiter plate reader (required filters see chapter 7)
 - * Immundiagnostik AG recommends the use of Ultra Pure Water (Water Type 1; ISO 3696), which is free of undissolved and colloidal ions and organic molecules (free of particles > 0.2 μ m) with an electrical conductivity of 0.055 μ S/cm at 25 °C (\geq 18.2 M Ω cm).

5. STORAGE AND PREPARATION OF REAGENTS

- To run the assay more than once, ensure that reagents are stored at the conditions stated on the label. Prepare only the appropriate amount necessary for each run. The kit can be used up to 4 times within the expiry date stated on the label.
- Reagents with a volume less than $100\,\mu l$ should be centrifuged before use to avoid loss of volume.
- Preparation of the wash buffer: The wash buffer concentrate (WASHBUF) should be diluted with ultra pure water 1:10 before use (100 ml WASHBUF +

900 ml ultra pure water), mix well. Crystals could occur due to high salt concentration in the stock solution. The crystals must be redissolved at room temperature or in a water bath at 37 °C before dilution of the buffer solutions. The **WASHBUF** is stable at **2–8 °C** until the expiry date stated on the label. **Wash buffer** (1:10 diluted WASHBUF) can be stored in a closed flask at **2–8 °C** for one month.

- The **lyophilized standards** (STD) and **controls** (CTRL) are stable at **2–8 °C** until the expiry date stated on the label. Before use, the standards and controls must be reconstituted with **500 µl** of **STDBUF** (standard dilution buffer). Allow the vial content to dissolve for 10 minutes and mix thoroughly by gentle inversion to ensure complete reconstitution. **Reconstituted standards and controls are not stable and cannot be stored.**
- Preparation of the conjugate: Before use, the conjugate concentrate (CONJ) must be diluted 1:101 in wash buffer (100 µl CONJ + 10 ml wash buffer). The CONJ is stable at 2–8 °C until expiry date stated on the label. Conjugate (1:101 diluted CONJ) is not stable and cannot be stored.
- All other test reagents are ready to use. Test reagents are stable until the expiry date (see label of test package) when stored at 2–8 °C.

6. STORAGE AND PREPARATION OF SAMPLES

Serum and plasma samples

Dilute all plasma and serum samples 1:40 000 with SAMPLEBUF (sample dilution buffer). For example:

- 20 μl sample + 980 μl SAMPLEBUF, mix well = 1:50 (dilution l)
- 20 μl dilution I + 980 μl SAMPLEBUF, mix well = 1:50 (dilution II)
- 20 μ l dilution II + 300 μ l SAMPLEBUF, mix well = 1:16 (dilution III). This results in a final dilution of 1:40 000.

For analysis, pipet 100 μl of dilution III per well.

Other sample collectives should be diluted according to the expected VDBP concentration

Urine

Urine samples have to be diluted 1:10 with SAMPLEBUF (sample dilution buffer). For example:

100 μ l sample + 900 μ l SAMPLEBUF, mix well = 1:10

For testing in duplicates, pipette 2 x 100 μl of each prepared sample per well.

Other sample collectives should be diluted according to the expected VDBP concentration.

7. ASSAY PROCEDURE

Principle of the test

This enzyme immunoassay is a sandwich assay for the quantitative determination of VDBP in serum, plasma and urine samples. The wells of the microtiterplate are coated with polyclonal anti-VDBP antibodies. In a first incubation step, the VDBP in the samples is bound to the coated polyclonal rabbit antibodies (in excess). To remove all unbound substances, a washing step is carried out. In a second incubation step, a polyclonal peroxidase-labeled rabbit anti-VDBP antibody is added. After another washing step, to remove all unbound substances, the solid phase is incubated with the substrate, tetramethylbenzidine. An acidic stopping solution is then added. The color converts to yellow. The intensity of the yellow color is directly proportional to the VDBP concentration in the sample. A dose response curve of the absorbance unit (optical density, OD at 450 nm) vs. concentration is generated, using the values obtained from the standard. VDBP, present in the patient samples, is determined directly from this curve.

Test procedure

Bring all reagents and samples to room temperature (15–30 °C) and mix well.

Mark the positions of STD /SAMPLE/CTRL (standards/sample/controls) on a protocol sheet.

Take as many microtiter strips as needed from kit. Store unused strips covered at 2-8 ° C. Strips are stable until expiry date stated on the label.

For automated ELISA processors, the given protocol may need to be adjusted according to the specific features of the respective automated platform. For further details please contact your supplier or Immundiagnostik AG.

We recommend to carry out the tests in duplicate.

1.	Wash each well 5 times by dispensing 250 µl wash buffer into each well. After the final washing step, the inverted microtiter plate should be firmly tapped on absorbent paper.
2.	Add 100 μ l STD (standard), CTRL (controls) and pre-diluted sample into the respective wells.

3.	Incubate for 1 hour shaking on a horizontal mixer at room temperature (15–30 °C).	
4.	Discard the contents of each well and wash 5 times with 250 µl wash buffer. After the final washing step, the inverted microtiter plate should be firmly tapped on absorbent paper.	
5.	Add 100 μl conjugate (peroxidase-labeled antibody).	
6.	Incubate for 1 hour shaking on a horizontal mixer at room temperature $(15-30^{\circ}\text{C})$.	
7.	Discard the contents of each well and wash 5 times with 250 µl wash buffer . After the final washing step, the inverted microtiter plate should be firmly tapped on absorbent paper.	
8.	Add 100 μl SUB (TMB substrate).	
9.	Incubate for 10–20 minutes at room temperature*.	
10.	Add 100 µl of STOP (stop solution) and mix shortly.	
11.	Determine absorption immediately with an ELISA reader at 450 nm against 620 nm (or 690 nm) as a reference. If no reference wavelength is available, read only at 450 nm. If the extinction of the highest standard exceeds the range of the photometer, absorption must be measured immediately at 405 nm against 620 nm as a reference.	

^{*} The intensity of the color change is temperature sensitive. We recommend observing the color change and stopping the reaction upon good differentiation.

8. RESULTS

The following algorithms can be used alternatively to calculate the results. We recommend using the "4 parameter algorithm".

1. 4 parameter algorithm

It is recommended to use a linear ordinate for the optical density and a logarithmic abscissa for the concentration. When using a logarithmic abscissa, the zero standard must be specified with a value less than 1 (e.g. 0.001).

2. Point-to-point calculation

We recommend a linear ordinate for the optical density and a linear abscissa for the concentration.

3. Spline algorithm

We recommend a linear ordinate for the optical density and a linear abscissa for the concentration.

The plausibility of the duplicate values should be examined before the automatic evaluation of the results. If this option is not available with the programme used, the duplicate values should be evaluated manually.

Serum/plasma samples

The obtained VDBP levels of plasma and serum samples have to be multplied with the dilution factor of 40 000.

Urine samples

The obtained VDBP levels of urine samples have to be multiplied with the dilution factor of 10.

In case **another dilution factor** has been used, multiply the obtained result with the dilution factor used.

9. LIMITATIONS

Samples with concentrations above the measurement range must be further diluted and re-assayed. Please consider this greater dilution when calculating the results.

Samples with concentrations lower than the measurement range cannot be clearly quantified.

The upper limit of the measurement range can be calculated as:

highest concentration of the standard curve × sample dilution factor to be used

The lower limit of the measurement range can be calculated as:

Analytical sensitivity \times sample dilution factor to be used

10. QUALITY CONTROL

Immundiagnostik recommends the use of external controls for internal quality control, if possible.

Control samples should be analysed with each run. Results, generated from the analysis of control samples, should be evaluated for acceptability using appropriate statistical methods. The results for the patient samples may not be valid if within the same assay one or more values of the quality control sample are outside the acceptable limits.

Reference range

Plasma / serum samples

200-550 mg/l

L. Thomas, 1982

You can find further reference ranges in the following publications in the references section: Bouillon (1977), Haughton (1992), Jorgensen (2004), Heijboer (2012).

We recommend each laboratory to establish its own reference range.

Urine samples

Doorenbos et al. analysed the urinary loss of VDBP in 24h urine samples. In the healthy control group, they reported a value of $64 \mu g/24 h$ (23–111 $\mu g/24 h$).

Mirkovic et al. normalised the measured VDBP levels for albuminuria. Normalbuminuria was reported as 0,44 mg/mg albumin (0,22–0,77 mg/mg albumin).

We recommend each laboratory to establish its own reference range.

Additional reference ranges

For some patient groups, other reference ranges of serum / plasma samples have been reported.

Pregnant women

Samples of pregnant women were measured to have a 30–80% higher reference range than the control groups (see publications cited for the serum reference range).

Liver diseases

According to Haughton et al., the reference range of patients with liver diseases is 35% lower than the one of healthy controls.

11. PERFORMANCE CHARACTERISTICS

Precision and reproducibility

Intra-Assay (n = 16)

Sample	VDBP mean value [mg/dl]	CV [%]
1	24.2	5.0
2	42.9	3.2

Inter-Assay (n = 14)

Sample	VDBP mean value [mg/dl]	CV [%]
1	19.3	12.7

Spiking Recovery

Two samples were spiked with VDBP calibrator and measured with this assay. (n = 2).

Sample	Unspiked Sample [ng/ml]	Spike [ng/ml]	VDBP expected [ng/ml]	VDBP measured [ng/ml]
	2.2	5	7.2	7.7
Α	2.2	10	12.2	12.7
	2.2	20	22.2	25.3
	6.7	2.5	9.2	8.7
В	6.7	7.5	14.2	13.1
	6.7	15	21.7	22.5

Dilution recovery

Two patient samples were diluted and analyzed. The results are shown below (n = 2):

Sample	Dilution	VDBP expected [ng/ml]	VDBP measured [ng/ml]
	1:5000	46.2	46.2
	1:10000	23.1	23.3
A	1:20000	11.5	10.4
	1:40000	5.7	5.8
	1:80000	2.8	2.7
	1:5000	38	38
	1:10000	19	20.2
В	1:20000	9.5	8.7
	1:40000	4.7	4.3
	1:80000	2.3	2.4

Analytical Sensitivity

The Zero-standard was measured 20 times. The detection limit was set as $B_0 + 2$ SD and estimated to be 1,23 ng/ml.

12. PRECAUTIONS

- All reagents in the kit package are for in vitro diagnostic use only.
- Human materials used in kit components were tested and found to be negative for HIV, Hepatitis B and Hepatitis C. However, for safety reasons, all kit components should be treated as potentially infectious.
- Kit reagents contain sodium azide or ProClin as bactericides. Sodium azide and ProClin are toxic. Substrates for the enzymatic color reactions are toxic and carcinogenic. Avoid contact with skin or mucous membranes.
- The stop solution consists of diluted sulphuric acid, a strong acid. Although diluted, it still must be handled with care. It can cause burns and should be handled with gloves, eye protection, and appropriate protective clothing. Any spill should be wiped up immediately with copious quantities of water. Do not breath vapour and avoid inhalation.

13. TECHNICAL HINTS

- Do not interchange different lot numbers of any kit component within the same assay. Furthermore we recommend not assembling wells of different microtiter plates for analysis, even if they are of the same batch.
- · Control samples should be analyzed with each run.
- Reagents should not be used beyond the expiration date stated on kit label.
- Substrate solution should remain colourless until use.
- To ensure accurate results, proper adhesion of plate sealers during incubation steps is necessary.
- Avoid foaming when mixing reagents.
- Do not mix plugs and caps from different reagents.
- The assay should always be performed according the enclosed manual.

14. GENERAL NOTES ON THE TEST AND TEST PROCEDURE

 This assay was produced and distributed according to the IVD guidelines of 98/79/EC.

- The guidelines for medical laboratories should be followed.
- Incubation time, incubation temperature and pipetting volumes of the components are defined by the producer. Any variation of the test procedure, which is not coordinated with the producer, may influence the results of the test. Immundiagnostik AG can therefore not be held responsible for any damage resulting from incorrect use.
- Warranty claims and complaints regarding deficiencies must be logged within 14 days after receipt of the product. The product should be send to Immundiagnostik AG along with a written complaint.

15. REFERENCES

General literature

- Bouillon, R., van Baelen, H. & de Moor, P., 1977. The measurement of the vitamin D-binding protein in human serum. *The Journal of clinical endocrinology and metabolism*, 45(2), pp.225–31.
- 2. Fu, L. et al., 2009. Common genetic variants of the vitamin D binding protein (DBP) predict differences in response of serum 25-hydroxyvitamin D [25(OH)D] to vitamin D supplementation. *Clinical biochemistry*, **42**(10-11), pp.1174–7.
- 3. Haughton, M.A. & Mason, R.S., 1992. Immunonephelometric assay of vitamin D-binding protein. *Clinical chemistry*, **38**(9), pp.1796–801.
- 4. Heijboer, A.C. et al., 2012. Accuracy of 6 Routine 25-Hydroxyvitamin D Assays: Influence of Vitamin D Binding Protein Concentration. *Clinical Chemistry*, **58**(3), pp.543–548.
- 5. Jørgensen, C.S. et al., 2004. Gc globulin (vitamin D-binding protein) levels: an inhibition ELISA assay for determination of the total concentration of Gc globulin in plasma and serum. *Scandinavian journal of clinical and laboratory investigation*, **64**(2), pp.157–66.
- 6. Malik, S. et al., 2013. Common variants of the vitamin D binding protein gene and adverse health outcomes. *Critical reviews in clinical laboratory sciences*.
- 7. Schmidt-Gayk, H. et al., 1977. 25-hydroxy-vitamin-D in nephrotic syndrome. *Lancet*, **2**(8029), pp.105–8.

8. Thomas, L., 1982. Proteindiagnostik: Diagnose, Therapiekontrolle. **1**st ed., Frankfurt am Main: *Behringwerke, Medizinische Information und Vertrieb*.

Literature using the Immundiagnostik VDBP ELISA

- 9. Cauley, J.A. et al., 2011. Serum 25-hydroxyvitamin D and clinical fracture risk in a multiethnic cohort of women: the Women's Health Initiative (WHI). *Journal of bone and mineral research: the official journal of the American Society for Bone and Mineral Research*, **26**(10), pp.2378–88.
- 10. Comabella, M. et al., 2010. Cerebrospinal fluid chitinase 3-like 1 levels are associated with conversion to multiple sclerosis. *Brain: a journal of neurology*, **133**(Pt 4), pp.1082–93.
- 11. Correale, J., Ysrraelit, M.C. & Gaitán, M.I., 2010. Gender differences in 1,25 dihydroxyvitamin D3 immunomodulatory effects in multiple sclerosis patients and healthy subjects. *Journal of immunology (Baltimore, Md. : 1950)*, **185**(8), pp.4948–58.
- 12. Doorenbos, C.R.C. et al., 2012. Antiproteinuric treatment reduces urinary loss of vitamin D-binding protein but does not affect vitamin D status in patients with chronic kidney disease. *The Journal of steroid biochemistry and molecular biology*, **128**(1-2), pp.56–61.
- Gressner, O. et al., 2007. Gc-globulin concentrations and C5 haplotype-tagging polymorphisms contribute to variations in serum activity of complement factor C5. Clinical biochemistry, 40(11), pp.771–5.
- 14. Jeffery, L.E. et al., 2012. Availability of 25-hydroxyvitamin D(3) to APCs controls the balance between regulatory and inflammatory T cell responses. *Journal of immunology (Baltimore, Md.: 1950)*, **189**(11), pp.5155–64.
- 15. Jeng, L. et al., 2009. Alterations in vitamin D status and anti-microbial peptide levels in patients in the intensive care unit with sepsis. *Journal of translational medicine*, **7**, p.28.
- 16. Lee, S.-H. et al., 2011. Relationship between group-specific component protein and the development of asthma. *American journal of respiratory and critical care medicine*, **184**(5), pp.528–36.
- 17. Meguro, S. et al., 2011. Plasma 25-hydroxyvitamin d is independently associated with hemoglobin concentration in male subjects with type 2 diabetes mellitus. *International journal of endocrinology*, 2011, p.362981.
- 18. Mirković, K. et al., 2013. Urinary vitamin D binding protein: a potential novel marker of renal interstitial inflammation and fibrosis. *PloS one*, **8**(2), p.e55887.
- 19. Prytuła, A. et al., 2012. Urinary and dialysate losses of vitamin D-binding protein

in children on chronic peritoneal dialysis. *Pediatric nephrology (Berlin, Germany)*, **27**(4), pp.643–9.

- 20. Turner, A.M. et al., 2013. Circulating DBP level and prognosis in operated lung cancer: an exploration of pathophysiology. *The European respiratory journal*, **41**(2), pp.410–6.
- 21. Wagner, D. et al., 2013. Randomized clinical trial of vitamin D3 doses on prostatic vitamin D metabolite levels and ki67 labeling in prostate cancer patients. *The Journal of clinical endocrinology and metabolism*, **98**(4), pp.1498–507.
- 22. Wang, X. et al., 2013. Vitamin D-binding protein levels in female patients with primary hyperparathyroidism. *Endocrine practice*: official journal of the American College of Endocrinology and the American Association of Clinical Endocrinologists, **19**(4), pp.609–13.
- 23. Wood, A.M. et al., 2011. Vitamin D-binding protein contributes to COPD by activation of alveolar macrophages. *Thorax*, **66**(3), pp.205–10.

Used symbols:

