Secure loD: A Secure Data Collection and Storage Mechanism for Internet of Drones

Cong Pu and Andrew Wall

Dept. of Computer Sciences and Electrical Engineering Marshall University Huntington, WV, United States

Imtiaz Ahmed

Dept. of Electrical Engineering and Computer Science Howard University Washington, DC, United States

Kim-Kwang Raymond Choo

Dept. of Information Systems and Cyber Security

University of Texas at San Antonio San Antonio, TX, United States

Outline

- Introduction & Research Motivation
- Preliminary Background
 - Physical Unclonable Function and Henon Map
- Secure Data Collection and Storage Mechanism (SecureloD)
 - System and Adversary Models
 - Mutual Authentication and Key Establishment
 - Miner ZSP Selection and Block Generation
- Security Verification and Analysis & Performance Evaluation
- Concluding Remarks

Introduction

- Drones have attracted considerable attention for various applications
 - disaster/emergency response
 - infrastructure inspection
 - smart cities
- "Economic Impact of Drones" (Statista)
 - the commercial drone market is to be valued at USD 5 billion by 2025
- Future opportunities in the emerging technology field of drones are limitless

Introduction

To fully exploit drones, Internet of Drones (IoD) is proposed

- mobile drones

- stationary Zone Service Provider (ZSP)

acts as access point

- airspace is partitioned into zones

- adjacent zones are reachable via gates

- zone is administrated by ZSP(s)

In a variety of IoD applications

- massive volume of highly critical data are collected and transmitted over open network

data security and privacy challenges

Zone 2

 drones are resource-constrained and considered to be defenseless to security attacks

secure data collection and storage framework

A drone reaches

a target point of interest with the help of airway

navigation.

Airway

 Intersection Point of interest

- ` - ` Broadcast

Navigation path

Zone 1

Suffering from security attacks

IEEE MDM 2022 - Research Track: SecureloD: A Secure Data Collection and Storage Mechanism for Internet of Drones

Research Motivation

- Drones and ZSPs communicate over insecure wireless channel
 - mutually authenticate each other before sharing critical info.
 - traditional cryptographic mechanisms? comput. and comm. overhead
 - lightweight security and cryptographic protocol
- An adversary might capture a drone and extract credentials
 - drones should have tamper-resistant module to safeguard info.
 - defend against both software based and physical memory disclosure attacks
- The centralized server / approach has significant weaknesses
 - decentralized data storage mechanism
 - guarantee quality-of-service (QoS) requirements
 - reduce administrative costs
 - eliminate single point of failure

Our Contribution

This paper

UNIVERSITY.

- proposes a secure data collection and storage mechanism (SecureIoD) for the IoD environment.
 - Drones and ZSPs first authenticate each other and establish a secure session key based on physical unclonable function and Henon map.
 - ZSPs pack the collected data into blocks and compete to add their blocks into the blockchain.
 - a joint Proof-of-Work (PoW) and Proof-of-Stake (PoS) consensus mechanism is proposed to select the miner ZSP.
 - the more transactions are in the block, the easier a ZSP can solve the cryptographic puzzle.
- conducts security verification using AVISPA and Scyther
- develops a real-world testbed for performance evaluation

Conclusion:

SecureIoD: better performance; viable and competitive approach for ensuring secure data collection and storage in the IoD environment.

Preliminary Background

challenge

challenge

- Physical Unclonable Function (PUF)
 - similar to biometrics (i.e., fingerprint)
 - designed based on unique physical characteristics
 - taking an input ('challenge'), and producing an unique output ('response')
 - challenge-response pair (CRP)
- Chaotic System
 - deterministic system exhibiting nonlinear behavior
 - Henon map $\begin{cases} x_{n+1} = 1 ax_n^2 + y_n \\ y_{n+1} = bx_n \end{cases}$
 - two-dimensional dynamical system
 - displaying chaos with certain parameters and initial conditions
 - without the same initial conditions, the same

chaos cannot be reproduced

IEEE MDM 2022 - Research Track: SecureloD: A Secure Data Collection and Storage Mer

(b) $x_0 = 0.53$, $y_0 = 0.47$

System and Adversary Models

- System model
 - two comm. entities: drones and ZSPs
 - drones are equipped with sensors, communication devices, and PUF enabled integrated circuit

P2P Network

Drone ID⊾

Drone ID,

sharing

Joint PoW and PoS Consensus Mechanism

Drone ID

- ZSPs form a peer-to-peer (P2P) network

- Adversary model
 - any two entities who are communicating over an insecure wireless channel are untrustworthy
- Two tasks (P2P netw.):
 - i. generate a block: collect, validate, and pack data into a block.
 - ii. add the block in the blockchain: compete to add block in blockchain using the consensus mechanism.

sharing

Secure loD: Secure Data Collection and Storage Mechanism

- The basic idea of SecureloD:
 - I. Drones and ZSPs first mutually authenticate each other and establish a secure session key based on physical unclonable function and Henon map before sharing any sensitive data via an insecure wireless channel.
 - 2. ZSPs pack the collected data into blocks and compete to add their blocks into the blockchain based on the proposed joint Proof-of-Work (PoW) and Proof-of-Stake (PoS) consensus mechanism.
- SecureloD is composed of two parts:
 - i. Mutual Authentication and Key Establishment

secure data communication

ii. Miner ZSP Selection and Block Generation

secure data storage

secure
data collection
and storage
framework

Secure 10D: Secure Data Collection and Storage Mechanism

Retrieve $N_i^{ts'}$ from M_1 ; $MAC_1' = C(M_1 || N_i^{ts'})$

Check if $MAC_1' = MAC_1$; Generate N_s^{ts+1} $M_2 = S(PID_i^{ts} \parallel Z_s \parallel N_i^{ts'} \parallel N_s^{ts+1})_{\{CH,ts,RE,ts\}}$

 $MAC_2 = C(M_2 || N_i^{ts'} || N_s^{ts+1})$

drone ID; initiate comm. with ground station through sending encrypted identity (pseudonym) info.

Retrieve N_s^{ts+1} from M_2

 $CH_i^{ts+1} = S(N_s^{ts+1'} || N_i^{ts+1})_{\{CH_i^{ts}, RE_i^{ts}\}}$

Generate N;ts+1

 $MAC_{2}' = C(M_{2} || N_{i}^{ts} || N_{s}^{ts+1'})$; Check if $MAC_{2}' = MAC_{2}$

Time

 $PID_i^{ts} = H(ID_i \parallel RE_i^{ts})$; Generate N_i^{ts} $M_1 = S(PID_i^{ts} \parallel Z_s \parallel N_i^{ts})_{\{CH,ts, RE,ts\}}$ $MAC_1 = C(M_1 || N_i^{ts})$ $[M_1, MAC_1]$

• verify identity info. of drone ID; Verify PID_its and retrieve (CH_its, RE_its) of ID_i

check message integrity

 send a random number to drone ID;

used for session key

- check message integrity
- generate a random number
- calculate a new CRP and pseudonym
- send a random number and new CRP to ground station
- calculate session key
 - using random numbers from itself and ground station

 $[M_2, MAC_2]$

- check message integrity
- calculate and update pseudonym and CRP of drone ID:
- calculate session key
 - using random numbers from itself and drone ID;

Time

session key SK

SecureIoD: Miner ZSP Selection and Block Generation

- After collecting data from drones, ZSPs put data into blocks and try to add them into the blockchain.
 - find a hash value satisfying the following target criterion

$$H(ZSP_{ID}, ts, prevHash, nonce) \ge Hash_{ID}^{th},$$

- ZSP_{ID}: ZSP ID
- ts: current timestamp
- prevHash: previous block's hash value
- nonce: calculating the block's hash value
- $Hash_{ID}^{th}$: hash threshold of ZSP ZSP_{ID}
 - control the difficulty level of cryptographic puzzle / block generation speed

$$Hash_{ID}^{th} = concat(zeros(N_{stake}), Tgt^{th}),$$

the number of leading zeros in $\ensuremath{\mathit{Hash}}^{th}_{ID}$

$$\frac{N_{stake} = [\gamma + \alpha \cdot e^{N_{trans} \cdot \beta}],}{Tgt^{th} = rand(2^{N_{hash} - N_{stake}} - 1),}$$

Change of the number of leading zeros (N_{stake}) against the number of transactions (N_{trans}) in the block.

the random numbers following N_{stake}

Security Verifications / Analysis

Security Verification Using AVISPA

SUMMARY SAFE DETAILS BOUNDED_NUMBER_OF_SESSIONS TYPED MODEL PROTOCOL /home/span/testsuite/results/SecureIoD.if GOAL As Specified BACKEND **CL-AtSe** STATISTICS Analysed: 144 states Reachable: 108 states Translation: 0.02 seconds Computation: 0.01 seconds (a)

SUMMARY					
SAFE					
DETAILS					
BOUNDED_NUMBER_OF_SESSIONS					
PROTOCOL					
/home/span/testsuite/results/SecureIoD.if					
GOAL					
as_specified					
BACKEND					
OFMC					
COMMENTS					
STATISTICS					
parseTime: 0.00s					
searchTime: 5.48s					
visitedNodes: 1451					
nodes depth: 9 plies					
(b)					

SecureloD is secure against

- drone capture attack
- drone impersonation attack
- message modification attack
- ZSP spoofing attack

Security Verification Using Scyther

Scyther i	esult	s:verify			×
Claim				Status	Comments
SecureloD	D	SecureloD,D2	Secret ni	Ok	No attacks within bounds
		SecureloD,D3	Secret ns	Ok	No attacks within bounds
		SecureloD,D4	Secret nit	Ok	No attacks within bounds
		SecureloD,D5	Secret refl	Ok	No attacks within bounds
		SecureloD,D6	Alive	Ok	No attacks within bounds
		SecureloD,D7	Weakagree Z	Ok	No attacks within bounds
		SecureloD,D8	Commit Z,ni,ns	Ok	No attacks within bounds.
		SecureloD,D9	Niagree	Ok	No attacks within bounds.
		SecureloD,D10	Nisynch	Ok	No attacks within bounds
	z	SecureloD,Z2	Secret ni	Ok	No attacks within bounds
		SecureloD,Z3	Secret ns	Ok	No attacks within bounds.
		SecureloD,Z4	Secret nill	Ok	No attacks within bounds.
		SecureloD;Z5	Secret re1	Ok	No attacks within bounds.
		SecureloD,Z6	Alive	Ok Verified	No attacks.
		SecureloD,Z7	Weakagree D	Ok Verified	No attacks.
		SecureloD,Z8	Commit D,ni,ns,ni1,re1	Ok	No attacks within bounds.
		SecureloD,Z9	Niagree	Ok	No attacks within bounds.
		SecureloD,Z10	Nisynch	Ok	No attacks within bounds.

Experimental Evaluation

Real-world Testbed:

Concluding Remarks

- Developed a secure data collection and storage mechanism (SecureIoD) in the IoD.
 - Drones and ZSPs first mutually authenticate each other and establish a secure session key before sharing any sensitive data via an insecure wireless channel.
 - ZSPs pack the collected data into blocks and compete to add their blocks into the blockchain based on the proposed joint Proof-of-Work (PoW) and Proof-of-Stake (PoS) consensus mechanism.
- We verified the security of SecureloD through specific security protocol verification tools (i.e., AVISPA and Scyther) and security analysis.
 - SecureloD is a secure protocol and immune to many cyber attacks
- We developed a real-world testbed and conducted experimental study.
 - SecureloD provides better performance in terms of running time, CPU time, clock cycle, and energy consumption

Any Questions?

Email: cong.pu@ieee.org

SecureloD source codes and its security verification programs **GitHub** are publicly available at the https://github.com/congpu/SecureloD.

