OT-DTC, TF, & IT-DTC Hardware Update and Status

Apollo (Service and Command)
Crystal
Serenity

Charlie Strohman

crs5@cornell.edu

DPS Meeting March 7, 2019

Introduction

- Hardware Update
 - Apollo
 - Service Module (Boston University)
 - Command Module FPGA board (Cornell University)
 - Serenity (Imperial College London)
 - Crystal (Imperial College London)
- Schedule
 - Board Availability
 - Integration Testing

Assembled Model

From Dan Gastler @ BU

Mechanical Prototypes

- Verify that BU and CU agree on mechanics
- Side 1 of the two boards are co-planar
- Service module can support one large or one/two small command modules

Advantages of independent cards

- Different PCB material
 - Lower speeds on blade (10G max vs. 25G)
- Different PCB processes
 - Could have conventional vs. HDI sequential laminations
 - Different number of layers
 - Different thicknesses
 - Backdrilling
- Minimize cost and risk when changing technology
- Support multiple applications
 - IT-DTC
 - TF
 - ATLAS Level 0 MDT trigger processor

From Dan Gastler @ BU

6

Status (from Eric Hazen)

- PCBs not yet ordered, final checking underway
- Expect bare PCBs and parts kits by ~ 1 April
- Expect assembled PCBs by ~15 April

March 7, 2019

Apollo VU7P/KU15P Module

- VU7P (GTY up to 25G with -1 speed grade)
 - 64 GTY Firefly to front panel
 - 10 4-Chan XCVR
 - 2 12-chan XMIT/RECV (25G parts not available yet)
 - 2 GTY to service blade (PCIe or AXI C2C)
 - 3 GTY to KU15P
 - 1 GTY to service blade (TTC/TTS)
 - Other
 - Controller for power sequence and I2C concentration
 - Reference Clock and timing distribution
 - JTAG to both FPGAs and controller March 7, 2019

- KU15P (GTH up to 16G, GTY up to 28G with -2 speed grade)
 - 36 GTH Firefly to front panel
 - 3 12-Chan XMIT/RECV
 - 24 GTY Firefly to front panel
 - 3 4-Chan XCVR
 - 1 12-chan XMIT/RECV
 - 2 GTH to service blade (PCIe or AXI C2C)
 - 3 GTY to VU7P
 - 1 GTH to service blade (TTC/TTS)

Block Diagram

From Charlie Strohman @ CU

Apollo VU7P/KU15P Module

Status (from Charlie Strohman)

- Boards currently out for fabrication
 - Scheduled to be shipped to Cornell 3/18
 - FYI: 12 boards, 16 layers, Megtron-6, 180 mm X 278 mm x 1.8 mm, 9590 vias (1076 are backdrilled) -> \$1246 each plus \$1700 NRE (also \$766 each for quantity 300)
- Finishing up BOM for assembly quotes for 10 boards
 - Hoping to start assembly before 3/22
- Ordered:
 - 7 KU15P
 - Also borrowing 2
 - 5 VU7P
 - already have 2 on hand
 - 75 FireFly 4-chan XCVR @ 25G
 - 12 FireFly 12-chan XMIT/RECV @ 14G
 - Already have 9 on hand, but too short to reach front panel from back of board
 - Listening for availability of 12-chan XMIT/RECV @ 25G
- Charlie on vacation 3/22 through 4/5
 - Hiking in Big Bend National Park in Texas

A Minimal Ethernet and Timing Hub Part of the Serenity Family

A Minimal Ethernet & Timing Hub

- Ethernet distribution
- TTC distribution
- A few experimental features
- Stackup Keep it simple, 12-layer FR4

Charlie's added comment:
The DTH is not available soon
enough for testing the OT_DTC
and TF systems. The Crystal board
provides basic utilities. In the spirt
of testing new ideas, it also
provides an opportunity to try a
few.

Refer to Andy's slides for details.

- Should be operable within standby power limit
 - No need for IPMC, unless you want it @

Ethernet

- Capacitively coupled as per Broadcom spec.
- 0402's for easy manipulation
- Options set by selecting which capacitors to fit
- SPI interface for programming

TTC CDR

- Two CDR circuits
 - One cloned from TCDS FMC
 - One spec'ed to 8.5Gbps to emulate Gigabit TCDS
- High-performance CML fanout buffers
 - DC to >6GHz
 - 20ps output-to-output skew
 - 60fs RMS jitter
- Fanout inputs selected by either fitting a resistor OR by SFP ModPrsnt# line
- All power supplies filtered
- All traces length-matched to <100μm

From Andy Rose 18 Feb 2019 https://indico.cern.ch/event/799840/

TTC Clock distribution

- High-performance CML fanout buffers
 - DC to >6GHz
 - 20ps output-to-output skew
 - 60fs RMS jitter
 - SMA input selected by fitting resistor
- "Hi-Speed" LHC clock provided with SI5345's
 - Includes provision for phase-locked operation
 - SMAs for clock-distribution testing
 - I2C control
- All power supplies filtered
- All traces length-matched to < 100μm

TTC Data distribution

- High-performance CML fanout buffers for "Gigabit TTC"
 - DC to >6GHz
 - 20ps output-to-output skew
 - 60fs RMS jitter
- High-performance LVDS fanout buffers for "Legacy TTC"
 - DC to >1.5GHz
 - 40ps output-to-output skew
 - 150fs RMS jitter
- All power supplies filtered
- All traces length-matched to < 100μm

From Andy Rose 18 Feb 2019 https://indico.cern.ch/event/799840/

Status (from Greg Iles)

• Expecting ~10 around the end of April

March 7, 2019 15

Imperial College London

SERENITY 1.1 STATUS

- 5 blades ready for distribution
 - Currently sorting paperwork
- 2 blades in assembly at KIT
- 13 PCBs and components ready for assembly
 - Currently sorting paperwork
 - Want to send out order soon
 - Speak to Greg if you are interested in one
- To do: move standalone software into integrated framework
 - Meeting at RAL next week to discuss

March 7, 2019 17

Status (from slides and Greg Iles)

- Looks like 7 already exist?
- Expecting 10 more around the end of March

March 7, 2019 18

Integration Testing Goals

- Good to have goals, leads to discussion of home-site procedures and needs
- Goal 1: First test at TIF in mid-May
- Marginal probability of Apollo being ready, would like to test with Crystal at home.

From Fabrizio Palla and Thomas Owen James 11 Feb 2019 https://indico.cern.ch/event/797875/

March 7, 2019