Lab 9

INTEGRATOR USING IC741 OP-AMP

Objective

To study the operation of the Integrator using op-amp and trace the output wave forms for sine and square wave inputs.

THEORY:

Figure 1

A circuit in which the output voltage is the integration of the input voltage is called an integrator.

$$V_o = -\frac{1}{R_1 C_F} \int V_{in} \, dt$$

In the practical integrator shown in Figure 1, to reduce the error voltage at the output, a resistor R_F is connected across the feedback capacitor C_F . Thus, R_F limits the low-frequency gain and hence minimizes the variations in the output voltage.

Integrator has wide applications in

- 1. Analog computers used for solving differential equations in simulation arrangements.
- 2. A/D Converters.
- 3. Signal wave shaping.
- 4. Function Generators.

Equipment:

- 1. Oscilloscope
- 2. AC Function Generator
- 3. Digital Multimeter

Components:

- 1. Resistors: $10k\Omega$, $22k\Omega$
- 2. Capacitor 0.1μF
- 3. Op-amp 741

Figure 2

PROCEDURE:

- 1. Connect the components/equipment as shown in the circuit diagram Figure 2.
- 2. Switch ON the power supply.
- 3. Apply sine wave at the input terminals of the circuit using function Generator.
- 4. Connect channel-1 of CRO at the input terminals and channel-2 at the output terminals.
- 5. Observe the output of the circuit on the CRO which is a cosine wave (90_{\circ} phase shifted from the sine wave input) and note down the position, the amplitude and the time period of V_{in} & V_{\circ} .
- 6. Now apply the square wave as input signal.
- 7. Observe the output of the circuit on the CRO which is a triangular wave and note down the position, the amplitude and the time period of Vin & Vo.
- 8. Plot the output voltages corresponding to sine and square wave inputs as shown in the Figure 3 below.

Figure 3

Data Table:

V _{in(p-p)}	Frequency	V _o (Theoretical)	V _o (Experimental)	%Error
1V	1kHz			
2V	1kHz			
1V	2kHz			
2V	1.5kHz			
2.5V	2.5kHz			