PATENT ABSTRACTS OF JAPAN

(11)Publication number:

05-281304

(43)Date of publication of application: 29.10.1993

(51)Int.CI.

G01R 31/28 H01L 21/66 H01L 21/82

H01L 27/04 H01L 27/06

(21)Application number: 04-074673

(71)Applicant: NEC CORP

(22)Date of filing:

30.03.1992

(72)Inventor: FUSE MAMORU

(54) MIXED ANALOG-DIGITAL MASTER WITH BUILT-IN TEST CIRCUIT

(57)Abstract:

PURPOSE: To easily test a mixed analog-digital master with a built-in test circuit in a Bi-CMOS mixed analog-digital LSI and, at the same time, to extremely reduce the program developing period for the test.

CONSTITUTION: An analog circuit 1 and digital circuit 2 are connected to each other through selectors 3 and 7. In addition, test terminals T3-T5 are also connected to the analog circuit 1 or digital circuit 2 through the selectors 3-7. Various kinds of connections in the selectors 3-7 are controlled by means of signals impressed upon test mode terminals A.T and D.T and switched to each other in corresponding to various kinds of test modes.

LEGAL STATUS

[Date of request for examination]

28.03.1996

[Date of sending the examiner's decision of

25.07.2000

rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3180421

[Date of registration]

20.04.2001

THIS PAGE BLANK (USPTO)

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平5-281304

(43)公開日 平成5年(1993)10月29日

(51)Int.Cl. ⁵ G 0 1 R	31/28	識別記号	庁内整理番号	F I			技術表示箇所
HOIL		F	8406—4M				·
	,		6912-2G	G 0 1 R	31/ 28	v	
			9169-4M	H 0 1 L	21/ 82	S	
				審査請求 未請求	校 請求項の数3(全10]		 最終頁に続く
(21)出願番号		特願平4-74673		(71)出願人	000004237		
					日本電気株式会	社	
(22)出願日		平成4年(1992)3	月30日		東京都港区芝五	丁目7番1号	寻
				(72)発明者	布施 守	•	
		•			東京都港区芝 5	丁目7番15	ヲ 日本電気株
					式会社内		
				(74)代理人	弁理士 藤巻	正憲	
				<u> </u>			

(54) 【発明の名称】 テスト回路を内蔵したアナログ・ディジタル混在マスタ

(57)【要約】

【目的】 Bi-CMOSアナログ・ディジタル混在LSIにおけるテスト回路を内蔵したアナログ・ディジタル混在マスタにおいて、テストが容易に行なえるようにし、かつそのテストのためのプログラム開発期間を著しく短縮する。

【構成】 アナログ回路1とディジタル回路2とは、セレクタ3~7を介して相互に接続される。またテスト端子T3~T5もセレクタ3~7を介してアナログ回路1 又はディジタル回路2に接続される。セレクタ3~7における各種接続は、テストモード端子A・T及び端子D・Tに印加される信号によって制御され、各種テストモードに対応して切り換えられる。

【特許請求の範囲】

【請求項1】 バイボーラデバイスをアレイ状に配置したアナログ回路部と、CMOSゲートアレイからなるディジタル回路部とを有する半導体集積回路において、前記アナログ回路部と前記ディジタル回路部との接続状態を切り換える複数のセレクタ回路と、この複数のセレクタ回路を制御する信号が印加されるテストモード切り換え端子とを有することを特徴とするテスト回路を内蔵したアナログ・ディジタル混在マスタ。

【請求項2】 テスト専用に用いられるレベルシフト回路と、前記アナログ回路部の入出力端子になりかつ前記レベルシフト回路の入力端子になる入出力ピンとを有することを特徴とする請求項1に記載のテスト回路を内蔵したアナログ・ディジタル混在マスタ。

【請求項3】 前記セレクタ回路は、3段リングカウンタと、この3段リングカウンタの出力によって切り換えられるスイッチ素子とを有することを特徴とする請求項1又は2に記載のテスト回路を内蔵したアナログ・ディジタル混在マスタ。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、テスト回路を内蔵した。アナログ・ディジタル混在マスタに関し、特にBi-CMOSアナログ・ディジタル混在LSIにおけるテスト回路を内蔵した下地固定型のアナログ・ディジタル混在マスタに関する。

[0002]

【従来の技術】近年、アナログ・ディジタル混在LSIは、Bi-CMOSプロセスの展開に伴って大規模かつ高精度のアナログ回路と大規模な論理回路とを同一チップ上に集積化することが可能となってきた。これにピロケーでアナログ・ディジタル混在LSIにおけるアナログ・ディジタル混在LSIにおけるアナログの路部に対しては、高速化、低雑音化及び低消費電力化が要求され、A/D、D/Aコンバータやフィルジラーがを取り込んで大規模化してきている。一方、ディジタルで大規模化してが急速に進んでいる。アナログ・ディジタル混在LSIを開発する方式として、従来はアナログ回路を手設計しディラルプーチップをして、従来はアナログ回路を手設計しディーチップとにより、ディジタル混在LSIを開発する方式ととで、大型で設計している。しかし、この方法では、設計にはバリエーションがあるものの開発期が長くなり開発費用が高くなることは避けられない。

【0003】上記、従来のアナログ・ディジタル混在LSIの欠点を補う開発方法としては、下地固定型のアナログ・ディジタル混在マスタ方式がある。この方式は、トランジスタ、抵抗及び容量等の素子をアレイ状に配置したアナログマスタとG/Aとを同一チップ上に構成したものであり、開発期間及び開発費用とも大幅に削減することができる。また、開発期間の短縮に伴って、回路動作に不具合が発生したときの原因解析が重要となって

2

きており、回路の複雑化に伴って素子に不具合があった ときにこのチップを除去するためのテスト方法が一層重 要なものとなってきている。

【0004】従来、小規模アナログ・ディジタル混在L SIにおいては、アナログ部とディジタル部を明確に分 離せずにテストをしている。即ち、設計者は、アナログ 信号とディジタル信号とを夫々アナログ回路とディジタ ル回路とに入力し手計算又はシミュレーションによって アナログ回路からの出力値及びディジタル回路からの出 力パターンを求めている。

[0005]

【発明が解決しようとする課題】しかしながら、上述した従来のアナログ・ディジタル混在LSIのテスト方法では、そのテスト方法のためのテストプログラムを作成するには、アナログ回路部及びディジタル回路部全体に渡った詳細な理解が必要であり、またテストプログラムも複雑化するとういう問題点がある。通常、大規模アナログ・ディジタル混在LSIの開発においては、アナログ部の設計とディジタル部の設計とを夫々別の設計者が分担して行なうのが通例であり、全体の動作を詳細に理解してテストプログラムを組むのは開発体制の上からも困難である。

【0006】また、テストプログラムが複雑化するに伴いそのテストプログラムのデバックを完全に行なうことが困難となり、テストプログラムを安定化するのに長期間を要するようになってきている。従って、上述した従来のアナログ・ディジタル混在LSIのテスト方法は、開発期間を最優先とするような下地固定理アナログ・デジタル混在マスタに対しては不向きといえる。

【0007】更に、上述した従来のアナログ・ディジタル混在LSIのテスト方法では、回路動作に不具合が発生した際、アナログ回路部に問題があるのか、又はディジタル回路部に問題があるのかを判断することが容易でないとういう問題点もある。

【0008】本発明はかかる問題点に鑑みてなされたものであって、Bi-CMOSアナログ・ディジタル混在LSIにおけるテスト回路を内蔵した下地固定型のアナログ・ディジタル混在マスタにおいて、テストを容易に行なうことができ、かつそのテストのためのプログラム開発期間を著しく短縮することができるアナログ・ディジタル混在マスタを提供することを目的とする。

[0009]

【課題を解決するための手段】本発明に係るテスト回路を内蔵したアナログ・ディジタル混在マスタは、バイポーラデバイスをアレイ状に配置したアナログ回路部と、CMOSゲートアレイからなるディジタル回路部とを有する半導体集積回路において、前記アナログ回路部と前記ディジタル回路部との接続状態を切り換える複数のセレクタ回路と、この複数のセレクタ回路を制御する信号が印加されるテストモード切り換え端子とを有すること

3

を特徴とする。

[0010]

【作用】本発明に係るテスト回路を内蔵したアナログ・ ディジタル混在マスタにおいては、Bi-CMOSアナ ログ・ディジタル混在LSIにおいて、セレクタ回路 は、アナログ回路部とディジタル回路部とのインタフェ ースとして機能して、アナログ回路部からディジタル回 路部に信号を送る、ディジタル回路部からアナログ回路 部に信号を送る、及びテスト端子からアナログ回路部又 はディジタル回路部に信号を送るというような動作を し、この動作はテストモード切り換え端子に印加される 信号によって制御される。これらにより、本発明に係る テスト回路を内蔵したアナログ・ディジタル混在マスタ は、テストモード切り換え端子に印加する信号に応じ て、アナログ回路部及びディジタル回路部を夫々独立に テストすることができ、またアナログ回路部及びディジ タル回路部の相互の接続状態をもテストすることができ る。従って、本発明に係るテスト回路を内蔵したアナロ グ・ディジタル混在マスタは、不具合が発生したときそ の不具合がアナログ回路部で発生したのかディジタル回 路部で発生したのかを簡単に判断することができ、更 に、アナログ回路部及びディジタル回路部に対して夫々 独立してテストプログラムを作成することができる。

[0011]

【実施例】次に、本発明の実施例について添付の図面を 参照して説明する。

【0012】図1は、本発明の第1の実施例に係るテスト回路を内蔵したアナログ・ディジタル混在マスタを示すブロック図である。図1に示すように本第1の実施例に係るテスト回路を内蔵したアナログ・ディジタル混在マスタは、バイポーラデバイスをアレイ状に配置したアナログ回路1と、CMOSゲートアレイからなるディジタル回路2と、セレクタ3、4、5、6、7、8と、各*

4

*種の信号線とで構成されている。アナログ回路1とディジタル回路2とは、各種の信号線により直接接続されているのではなく、セレクタ3,4,5,6,7,8(及びセレクタの類似動作をする回路)を介して相互に接続でされている。本実施例では上記各種の信号線は、IC外部からアナログ回路1への入力ピンであるピン(A)群、アナログ回路1からIC外部への出力ピンであるピン(B)群、IC外部からディジタル回路2への入力ピンであるピン(C)群、ディジタル回路2からIC外部への出力ピンであるピン(D)群、アナログ回路1からディジタル回路2に伝達する内部信号配線(本実施例では2本と仮定している)、及びディジタル回路2からアナログ回路1に伝達する内部信号配線(本実施例では3本と仮定している)の6種類である。

【0013】また、セレクタ3~7の切り換え用としてテストモード端子A・T及びD・Tを設けてある。セレクタ3~8を構成する回路素子は、アナログ回路1及びディジタル回路2から独立して設けているので、回路設計者にとって設計上の制約にはならない。更に、テスト信号が入出力されるテスト端子T1, T2, T3, T4, T5が設けられている。

【0014】次に、上述の如く構成された本第1の実施例に係るテスト回路を内蔵したアナログ・ディジタル混在マスタの動作について説明する。図2は、本第1の実施例のテスト手順を示すフローチャートである。先ず、初期テストとして、オープン、ショート及びトランジスタ、抵抗等のデバイスチェックをする(S1)。次に、アナログ回路1のテストをする(S2)。最後にディジタル回路2のテストをする(S3)。

【0015】テストモード端子A・T及びD・Tに対する各モードの関係は、下記表1で表わされる。

[0016]

【表1】

	ノーマル モード	アナログ テストモード	ディジタル テストモード
A · T	0	1	0
р•т	0	0	1

【0017】上記表1を参照して本第1の実施例の動作を詳細に説明する。最初にノーマルモードに設定されるが、このモードは、通常のIC動作モードであり、アナログ回路1からディジタル回路2へ、また逆にディジタル回路2からアナログ回路1へ信号が伝達される。このとき各テスト端子T1~T5には信号が伝達されず、このためテストピンからアナログ回路1への信号飛込みによる雑音特性等の特性が劣化することは生じない。次にアナログテストモードでは、アナログ回路1からの信号 50

をセレクタ3,4を介してテスト端子T1,T2に出力し、テスト端子T3~T5からセレクタ5~7を介してディジタル信号をアナログ回路1に入力する。従って、アナログ回路1をディジタル回路2から完全に切り離してテストすることができる。同様に、ディジタルテストモードでは、テスト端子T1,T2から入力されたディジタル信号は、セレクタ3,4を介してディジタル回路2に入力される。一方、ディジタル回路2の出力は、セレクタ5~7を介してテスト端子T3~T5に出力され

る。

【0018】図3は、図1に示す本第1の実施例に係るテスト回路を内蔵したアナログ・ディジタル混在マスタを更に詳細に示すブロック図である。図3において、3ステートバッファ33~37,1a~5a及び1b~5bは、図1におけるセレクタ3~7に対応するものである。本第1の実施例では、アナログ回路1とディジタル回路2とのインタフェース信号は全てディジタル信号であると想定している。

【0019】先ず最初にノーマルモードでは、テストモ 10 ード端子A·T, D·Tが共に"0"に設定され、3ス テートバッファ33,34は共にONし、アナログ回路 1からの信号がバッファ1段を介してディジタル回路2 に伝達される。このとき、3ステートバッファ1a及び 1 b は共にハイインピーダンス (以下H2と記す)とな り、テスト端子T1, T2にディジタル信号は出力され ない。一方、3ステートバッファ35~37は0Nし、 ディジタル回路2からアナログ回路1へはバッファ1段 を介して信号が伝達される。テスト端子T3~T5に出 力端が接続されている3ステートバッファ3a,3b, 3 cは、テスト端子T1~T2に出力端が接続されてい る3ステートバッファと同様に、いずれもH2となり、 テスト端子T3~T5に信号は出力されない。従って、 ノーマルモードでは、全てのテストピンにおいてインタ ーフェース部の信号は出力されない。なお、3ステート バッファ1a~5a, 1b~5bは、プルダウンされて おり電源が立ち上がると自動的にノーマルモードにセッ トされる。

【0020】次に、アナログ・テストモードでは、テストモード端子A・Tが"1", テストモード端子D・Tが"0"に設定される。従って、3ステートバッファ33, 34, 1a, 2aがONするため、アナログ回路1からの信号はテスト端子T1, T2に出力される。一方、3ステートバッファ35~37はH2、3ステートバッファ35, 45, 57 bはONとなるため、テスト端子T3~T5に印加された信号はバッファ1段を介してアナログ回路1に入力される。

【0021】最後にディジタル・テストモードでは、テストモード端子A・Tが"0"、テストモード端子D・Tが"1"に設定される。従って、3ステートバッファ33, 34はH2、3ステートバッファ1 b, 2 bはONとなるため、テスト端子T1, 1 T2 に印加された信号はバッファ1 段を介してディジタル回路2 に入力される。一方、13ステートバッファ15~13 T13 T14 15 T15 C15 C17 C17 C17 C17 C18 C19 C1

【0022】図4は、図3に示すテスト回路を内蔵した アナログ・ディジタル混在マスタにおける、夫々のテストモードでの信号伝達経路を示す説明図である。アナログ・テストモードにおいてパスすれば(ア)の回路接続 50 6

が検証される。さらにディジタル・テストモードにおいてパスすれば(イ)の回路接続が検証される。従って、(ア)及び(イ)の結果より、アナログ回路1及びディジタル回路2の夫々のテストを単独に行えば夫々の部分のテストをすることができ、更に(ウ)の回路接続をテストすることにより、アナログ回路1とディジタル回路2との相互接続のテストとをすることができ、LSIチップ全体の動作を保障することができる。

【0023】図5は、本発明の第2の実施例に係るテスト回路を内蔵したアナログ・ディジタル混在マスタにおけるセレクタ部分を示すブロック図である。動作については図3に示す第1の実施例におけるセレクタ部分の動作と同様であるが、アナログ回路1からの出力をアナログ値でテストするため、双方向のアナログスイッチ50を用いている。ノーマルモード時には、ゲート2段を介してアナログ回路1からディジタル回路2へ信号が伝達される。また、ディジタル回路2への入力は、ディジタル信号に限定されるので、ゲートを介してテスト端子Tからディジタル信号を入力する。

【0024】図6は、本発明の第2の実施例に係るテスト回路を内蔵したアナログ・ディジタル混在マスタを示すブロック図である。図6に示すように、テスト端子T1~T6よりもアナログ回路1とディジタル回路2との接続本数の方が多く、ディジタル回路2のテストをする場合は、アナログ回路1の入出力ピンをディジタル回路2のテストピンとして兼用する。

【0025】このとき、ディジタル回路2をテストするには通常0V~5Vの信号を印加するが、この信号を図8に示す差動回路におけるトランジスタQ1及びQ2のベースに図8に示すように印加すると、トランジスタQ2のエッミタ・ベース間は4.2V近くの逆バイアスとなりトランジスタQ2が破壊される恐れがある。従って、本第2の実施例では、アナログ回路1の入出力及びディジタル回路2をテストするためのテストピンを兼用しているピンA1,A2から入力された信号は、レベルシフター69,70によって1VP-Pから5VP-Pまでの信号に変換された後、セレクタ67,68に入力される。

【0026】セレクタ61~68は、テストモード端子A・T, D・Tによって制御されノーマルモードのときはアナログ回路1からの信号をディジタル回路2に伝達する。また、ディジタル・テストモードのときは、ピンA1, A2から入力した小振幅信号をレベルシフター69,70によって5VP-Pまで変換した後にセレクタ67,68を介してディジタル回路2に出力する。ピンA1,A2に印加される信号は、1VP-P程度の小振幅であるのでデバイスが破壊される恐れはなく、アナログ系ピンを広範囲にディジタル回路2のテスト端子として兼用することが可能となる。

□ 【0027】従って、本発明の第2の実施例に係るテス

7

ト回路を内蔵したアナログ・ディジタル混在マスタは、アナログ回路1とディジタル回路2との接続本数が多い場合において、アナログ回路1の端子をテスト端子として兼用することによって端子数の削減が可能である。なお、アナログ回路1をテストする場合においてディジタル回路2の入出力端子は、レベルシフター69,70を通さずにセレクタに直接接続し本発明の第1の実施例と同様に実施できることはいうまでもない。

【0028】図7は、本発明の第3の実施例に係るテスト回路を内蔵したアナログ・ディジタル混在マスタを示 10 す説明図である。図7に示す3段リングカウンタ71の 真理値表は、下記表2で表わされる。

[0029]

【表2】

Reset'	L	н	н	н
C端子の立上がり回数	0	1	2	3
Q1	0	1	0	0
Q2	0	0	1	0
Q3	0	0	0	1

【0030】表2に示すように、端子Reset'を "0" にして、3段リングカウンタ71を構成するフリップフ ロップをリセットすると、3段リングカウンタ71の出 力は全て"0"になる。次に、コントロール端子Cから " $0 \rightarrow 1 \rightarrow 0 \rightarrow 1$ " のように順次信号を入力すると、波 30 形の立上がりで3段リングカウンタ71を構成するフリ ップフロップの出力端Q1、Q2、Q3が順次"1"と なる。出力端Q1, Q2, Q3からの出力は夫々スイッ チSW1~SW3のゲートが入力するので、3段リング カウンタ71の出力端Q1、Q2、Q3が順次"1"に なるにつれてスイッチSW1~SW3が順次ONする。 従って、コントロール端子Cが" $0 \rightarrow 1 \rightarrow 0 \rightarrow 1$ "の信 号を入力すると、波形の立上がり時に順次、ノーマルモ ード→アナログ(又はディジタル)テストモード→ディ ジタル (又はアナログ) テストモード→ノーマルモード 40 と、いうようにモードを切換えることができる。Rese t' 端子は、ディジタル回路2と共通のReset' 端子を用 いるか、又はパワーオンリセット回路を用いる。

【0031】これらにより、本第3の実施例に係るテスト回路を内蔵したアナログ・ディジタル混在マスタは、テストモード切り換え端子を1ピンで構成することが可能であり、ピン数削減に有効である。

[0032]

【発明の効果】以上説明したように本発明に係るテスト タル混在マスタにお回路を内蔵したアナログ・ディジタル混在マスタによれ 50 示す回路図である。

8

ば、テスト回路をアナログ回路部とディジタル回路部と のインタフェース部分に下地として設けてあるので、テ スト設計が容易であり、また回路に不具合が発生したと きその不具合がアナログ回路部で発生したのかディジタ "ル回路部で発生したのかを簡単に判断することができ る。更に、アナログ回路部及びディジタル回路部に対し て夫々独立してテストプログラムを作成することができ るので、そのテストプログラムにおけるバクの発生を少 なくすることができ、そのテストプログラムのデバッグ が容易になるので、テストのためのプログラム開発期間 を著しく短縮することができる。そして、本発明では、 アナログ回路部及びディジタル回路部のテストプログラ ムを夫々分担して作成することができるので、アナログ 技術及びディジタル技術のエキスパートが夫々独立にプ ログラムを作成することができ、極めて効率的である。 また、G/Aのシミュレーション出力をテストパターン に変換してディジタル回路部のテストが可能なので、ミ スの少ないパターンを効率的に作成することができる。 また、本発明の第2の実施例で説明したように、アナロ 20 グ回路部とディジタル回路部との接続本数が多い場合に おいて、アナログ回路部の端子をテスト端子として兼用 することによって端子数の削減が可能である。なお、ア ナログ回路部をテストする場合においてディジタル回路 部の入出力端子は、レベルシフト回路を通さずにセレク タに直接接続し本発明の第1の実施例と同様に実施でき ることはいうまでもない。

【図面の簡単な説明】

【図1】本発明の第1の実施例に係るテスト回路を内蔵 したアナログ・ディジタル混在マスタを示すブロック図 である。

【図2】本第1の実施例のテスト手順を示すフローチャートである。

【図3】図1に示す本第1の実施例に係るテスト回路を 内蔵したアナログ・ディジタル混在マスタを更に詳細に 示すブロック図である。

【図4】図3に示すテスト回路を内蔵したアナログ・ディジタル混在マスタにおける夫々のテストモードでの信号伝達経路を示す説明図である。

【図5】本発明の第2の実施例に係るテスト回路を内蔵 したアナログ・ディジタル混在マスタにおけるセレクタ 部分を示すブロック図である。

【図6】本発明の第2の実施例に係るテスト回路を内蔵 したアナログ・ディジタル混在マスタを示すブロック図 である。

【図7】本発明の第3の実施例に係るテスト回路を内蔵 したアナログ・ディジタル混在マスタを示す説明図である。

【図8】従来のテスト回路を内蔵したアナログ・ディジ タル混在マスタにおける問題点を示すための差動回路を 示す回路図である。 【符号の説明】

9

1 ;アナログ回路

2 ;ディジタル回路

10

*3, 4, 5, 6, 7 ;セレクタ A·T, D·T ;テストモード端子

* T1, T2, T3, T4, T5 ; テスト端子

【図.1】

【図2】 【図5】

【図3】

3~7.1a~5a,1b~5b; 3ステートバッファ A·T, D·T; テストモード 嫡子 T1 ~ T5; テスト端子

【図4】 T; テスト端子

【図6】

(9)

61~68; セレクタ

69,70 : レベルシフター

A1, A2 ; E' >

A-T, D-T ; テストモード 嫡子 T1~T6 ; テスト 嫡子

【図7】

71:3段リングカウンタ

SW1, SW2, SW3:: スイッチ

C: コントロール端チ T: テスト端子

١

フロントページの続き

(51) Int. Cl. 5

識別記号

庁内整理番号

FΙ

技術表示箇所

H O 1 L 27/04

T = 8427 - 4M

U 8427-4M

27/06

9170 - 4M

H 0 1 L 27/06

3 2 1 G