

Winning Space Race with Data Science

Eric Spencer 3-27-24

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

- Utilizing Python and SQL we collected a vast amount of data regarding SpaceX launches
- Used that data to make predictions
- Used data to create a dashboard app for ease of finding information

Introduction

- This project was undertaken as a final capstone to the IBM Data Science Certificate
- Interested in finding correlations of launch sites to success rates

Methodology

Executive Summary

- Data collection methodology:
 - Called SpaceX API for data and used python to build dataframe column by column
- Perform data wrangling
 - Used SQL to organize data
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - Built four different classification models and tested their accuracy

Data Collection

- Utilized python to access SpaceX API
- Through the API, requested data set of past launches
- Conducted data cleanup
- Data set ready for additional analysis

Data Collection – SpaceX API

Data Collection - Scraping

 Webscraped data from Wikipedia and constructed data table column by column

Request page from URL Extract column and variable names from HTML header

Create data table

<u>CapstoneProject/webscraping.ipynb at</u>
 <u>main · spencerej/CapstoneProject</u>
 (github.com)

Data Wrangling

• Calculated numbers of launches and different orbit types. Bucketed bad outcomes and good outcomes separately and added that data to table.

Calculate counts of flights/orbits

Determine launches with bad/good outcomes

Create column for flight outcomes

• <u>CapstoneProject/Week1 labs-jupyter-spacex-Data wrangling.ipynb at main spencerej/CapstoneProject (github.com)</u>

EDA with Data Visualization

- Created multiple plots comparing different characteristics of flights.
- Used scatter plots comparing Flight Number, Payload, Orbit, Launch Site, etc. and visualized success of flights with different color plot points.
- Visualized flight success rate using bar chart comparing different Launch Sites. This easily shows the most successful sites vs. the least successful
- Changed data parameter to only show year and created a line chart to track the success rate trend over the years. Chart clearly shows that over time successful flights are more common.
- https://github.com/spencerej/CapstoneProject/blob/main/Week2%20-%20edadataviz.ipynb

EDA with SQL

- Utilizing SQL, performed queries to understand the generalizations of the data set.
- Explored total payload mass of launches performed by Nasa
- Explored average mass of launches by booster type
- Explored which boosters saw successful flights limited by payload mass
- https://github.com/spencerej/CapstoneProject/blob/main/eda-sql-coursera sqllite.ipynb

Build an Interactive Map with Folium

- Using Folium map created circles to designate launch sites, markers to track success/failure, and lines to track distances.
- Markers made tracking success/failure easily because color could be used. Red for failure, Green for success. Lines created made it easy to show distances between sites and other landmarks.
- https://github.com/spencerej/CapstoneProject/blob/main/week3-launch site location.jupyterlite.ipynb

Build a Dashboard with Plotly Dash

- In dashboard creation used pie charts and line charts to visualize launch data.
- Pie charts can at a glance show common generalizations of the data.
- Line charts shows trends over time.
- https://github.com/spencerej/CapstoneProject/blob/main/spac ex dash app.py

Predictive Analysis (Classification)

- Created 4 separate models for classification and prediction (Log Regression, KNN, Decision Tree, Support Vector)
- For each model type executed process as below:

• https://github.com/spencerej/CapstoneProject/blob/main/SpaceX_Machine_Learning_Prediction_Part_5.jupyter_lite.ipynb

Results

- Success rate of flight seems to be related to Launch Site
- As more launches are performed, success rate increases
- Models generally perform well and are able to predict future flight success rates

Flight Number vs. Launch Site

- With more flights comes better success
- CCAPS SLC 40 is the primary launch site

Payload vs. Launch Site

 VAFB SLC launch site does not launch heavy rockets (over 10k kg

Success Rate vs. Orbit Type

- SO Orbit has not had a successful flight
- ES-L1, GEO, HEO, SSO Orbits have perfect success rates for flights

Flight Number vs. Orbit Type

- As time goes on Orbit types move from LEO, ISS, PO, GFO to more VLEO
- Only 1 GEO orbit attempt

Payload vs. Orbit Type

- Heavy payloads have higher success rates in Polar, LEO, and ISS orbits
- GTO orbit inconclusive as success rate is mediocre

Launch Success Yearly Trend

• Since 2010, Launch Success steadily increases over time.

All Launch Site Names

• Utilizing SQL able to obtain each unique launch site

```
In [113...
##sql select * from spacextbl where Launch_Site like 'CCA%' limit 5;
#sql select distinct(Launch_Site) from spacextbl

    * sqlite://my_data1.db
Done.

Out[113...
Launch_Site

    CCAFS LC-40

    VAFB SLC-4E

    KSC LC-39A
    CCAFS SLC-40
```

Launch Site Names Begin with 'CCA'

[* sqli Done.	te:///my_	_data1.db							
:	Date	Time (UTC)	Booster_Version	Launch_Site	Payload	PAYLOAD_MASSKG_	Orbit	Customer	Mission_Outcome	Landing_Outcom
	2010- 06-04	18:45:00	F9 v1.0 B0003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachut
	2010- 12-08	15:43:00	F9 v1.0 B0004	CCAFS LC- 40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachut
	2012- 05-22	7:44:00	F9 v1.0 B0005	CCAFS LC- 40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Success	No attem
	2012- 10-08	0:35:00	F9 v1.0 B0006	CCAFS LC- 40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No attem
	2013- 03-01	15:10:00	F9 v1.0 B0007	CCAFS LC- 40	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)	Success	No attem

• Manipulating data to get a feel for the data set

Total Payload Mass

Total Payload in KG for NASA is 525

Average Payload Mass by F9 v1.1

Average mass carried by F9 v1.1 rocket is ~2535 KG

First Successful Ground Landing Date

• First successful ground landing date is 12-22-2015

Successful Drone Ship Landing with Payload between 4000 and 6000

 The above rockets had successful drone ship landings. These payloads were between 4000 and 6000.

Total Number of Successful and Failure Mission Outcomes

Mission success rate is 99%

Boosters Carried Maximum Payload

• The above boosters are able to carry max payloads.

2015 Launch Records

 Above shows the failures for drone ship. They were carried by B1015 and B1012 boosters at the CCAFS LC-40 launch site

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

	Landing_Outcome, count(_Outcome, count(count(
10 5 5 3 3 2 2	* sqlite:///my_data1.db Done.					
drone ship) 5 drone ship) 5 round pad) 3 ed (ocean) 3 ed (ocean) 2	_0	utcome	Countof			
re (drone ship) 5 s (ground pad) 3 trolled (ocean) 3 trolled (ocean) 2	No	attempt	10			
cess (ground pad) 3 Controlled (ocean) 3 controlled (ocean) 2	Success (dro	ne ship)	5			
ontrolled (ocean) 3 ontrolled (ocean) 2	ilure (dro	ne ship)	5			
controlled (ocean) 2	ıccess (grou	nd pad)	3			
	Controlled	(ocean)	3			
Failure (parachute) 2	Uncontrolled	(ocean)	2			
	Failure (pa	rachute)	2			
luded (drone ship) 1	Precluded (dro	ne ship)	1			

- There were 31 launches between 6-4-2010 and 3-20-2017
- Above are the outcomes of those launches

Launch Sites on the Map

Tracking Launch Outcomes

- Utilizing Folium we are able to easily show successful or failed launches by site
- CCAFS LC-40 had 26 other launches

Proximity to Landmarks

Dashboard Pie Chart

• Successful launches by site

Most Successful Site

• CCAFS LC-40 is the most successful site with a success rate of 73%

More info about success rates

Success rates by site and payload

Classification Accuracy

• All models were equally accurate in prediction

Confusion Matrix

- Confusion matrix shows accuracy of predictions
- All models had nearly identical accuracies in predicting landing or not landing

Conclusions

- There is a great amount of correlating data that shows that SpaceX is improving launch successes with time.
- We can use dashboard app to quickly gain information about flight data
- Data Analysis shows that some orbits are more successful than others

Appendix

```
# Select relevant sub-columns: `Launch Site`, `Lat(Latitude)`, `Long(Longitude)`, `class`
spacex_df = spacex_df[['Launch Site', 'Lat', 'Long', 'class']]
launch_sites_df = spacex_df.groupby(['Launch Site'], as_index=False).first()
launch_sites_df = launch_sites_df[['Launch Site', 'Lat', 'Long']]
launch_sites_df
```

```
# Initial the map
site_map = folium.Map(location=nasa_coordinate, zoom_start=5)
# For each launch site, add a Circle object based on its coordinate (Lat, Long) values. In addition, add Launch site name
```

More code snippets

