Dado un experimento aleatorio, una variable aleatoria X es una función que asigna a cada suceso del espacio muestral un número real.

VARIABLES DISCRETAS

Una variable X es discreta si los números asignados a los sucesos elementales del espacio muestral son puntos aislados. Sus posibles valores constituyen un conjunto finito o infinito numerable.

VARIABLES CONTINUAS

Una variable aleatoria X es continua si los valores asignados pueden ser cualesquiera dentro de cierto intervalo.

Función masa de probabilidad:

Xi	$P[X=x_i]$
X ₁	p ₁
X 2	p_2
X _k	p_k
suma	1

Función de densidad:

$$f(x)$$
 con • $f(x) \ge 0$
• $\int_a^b f(x) = 1$

[a,b] intervalo donde toma valores X

 $x_1, x_2, ..., x_k$ son los posibles valores de X

Función de distribución:

Xi	$F(x_i) = P[X \le x_i]$
X ₁	p_1
X 2	<i>p</i> ₁ + <i>p</i> ₂
	•••
X _k	$p_1+p_2++p_k=1$

$$F(x) = P[X \le x] \text{ con}$$

$$\bullet \lim_{x \to \infty} F(x) = 1$$

•
$$\lim_{x \to \infty} F(x) = 1$$

• $F(x) = \int_{-\infty}^{x} f(k)dk$

Esperanza:

$$E[X] = \sum_{i=1}^{k} x_i P[X = x_i]$$

Esperanza:

F(x)

$$E[X] = \int_{-\infty}^{\infty} x f(x) dx$$

Varianza:

$$Var[X] = \sum_{i=1}^{k} (x_i - E[X])^2 P[X = x_i]$$

Varianza:

$$Var[X] = \int_{-\infty}^{\infty} (x - E[X])^2 f(x) dx$$

 $Var[X] = \sum_{i=1}^{k} (x_i - E[X])^2 P[X = x_i] = \sum_{i=1}^{k} (x_i - E[X])^2 p_i = \left(\sum_{i=1}^{k} x_i^2 p_i\right) - E[X]^2$

$$Var[X] = \int_{-\infty}^{+\infty} (x - E[X])^2 f(x) dx = \left(\int_{-\infty}^{+\infty} x^2 f(x) dx\right) - E[X]^2$$