

AUTOMOTIVE MOSFET

IRLR3915 IRLU3915

Features

- Advanced Process Technology
- Ultra Low On-Resistance
- 175°C Operating Temperature
- Fast Switching
- Repetitive Avalanche Allowed up to Tjmax

Description

Specifically designed for Automotive applications, this HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this product are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These features combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications.

HEXFET® Power MOSFET

Absolute Maximum Ratings

	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V (Silicon limited)	61	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V (See Fig.9)	43	Α
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V (Package limited)	30	
I _{DM}	Pulsed Drain Current ①	240	
P _D @T _C = 25°C	Power Dissipation	120	W
	Linear Derating Factor	0.77	W/°C
V_{GS}	Gate-to-Source Voltage	± 16	V
E _{AS}	Single Pulse Avalanche Energy®	200	mJ
E _{AS} (6 sigma)	Single Pulse Avalanche Energy Tested Value®	600	
I _{AR}	Avalanche Current①	See Fig.12a, 12b, 15, 16	Α
E _{AR}	Repetitive Avalanche Energy®		mJ
T _J	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case		1.3	
$R_{\theta JA}$	Junction-to-Ambient (PCB mount)®		50	°C/W
$R_{\theta JA}$	Junction-to-Ambient	110		

HEXFET(R) is a registered trademark of International Rectifier. www.irf.com

Electrical Characteristics @ $T_J = 25^{\circ}C$ (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	55			V	$V_{GS} = 0V, I_D = 250\mu A$
ΔV _{(BR)DSS} /ΔT _J	Breakdown Voltage Temp. Coefficient		0.057		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		12	14	mΩ	V _{GS} = 10V, I _D = 30A ⊕
			14	17		V _{GS} = 5.0V, I _D = 26A ④
V _{GS(th)}	Gate Threshold Voltage	1.0		3.0	V	$V_{DS} = 10V, I_D = 250\mu A$
9 _{fs}	Forward Transconductance	42			S	$V_{DS} = 25V, I_{D} = 30A$
I _{DSS}	Drain-to-Source Leakage Current			20	μА	$V_{DS} = 55V$, $V_{GS} = 0V$
				250	μΛ	$V_{DS} = 55V$, $V_{GS} = 0V$, $T_{J} = 125$ °C
I _{GSS}	Gate-to-Source Forward Leakage			200	nA	V _{GS} = 16V
'GSS	Gate-to-Source Reverse Leakage			-200	IIA	$V_{GS} = -16V$
Qg	Total Gate Charge		61	92		I _D = 30A
Q _{gs}	Gate-to-Source Charge		9.0	14	nC	$V_{DS} = 44V$
Q_{gd}	Gate-to-Drain ("Miller") Charge		17	25		V _{GS} = 10V⊕
t _{d(on)}	Turn-On Delay Time		7.4		ns	$V_{DD} = 28V$
t _r	Rise Time		51		115	$I_D = 30A$
t _{d(off)}	Turn-Off Delay Time		83			$R_G = 8.5\Omega$
t _f	Fall Time		100			V _{GS} = 10V ④
L _D	Internal Drain Inductance		4.5			Between lead,
_			7.0		nH	6mm (0.25in.)
L _S	Internal Source Inductance		7.5			from package
						and center of die contact
C _{iss}	Input Capacitance		1870			$V_{GS} = 0V$
Coss	Output Capacitance		390			$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		74		pF	f = 1.0MHz, See Fig. 5
Coss	Output Capacitance		2380			$V_{GS} = 0V, V_{DS} = 1.0V, f = 1.0MHz$
Coss	Output Capacitance		290			$V_{GS} = 0V, V_{DS} = 44V, f = 1.0MHz$
Coss eff.	Effective Output Capacitance ®		540			$V_{GS} = 0V$, $V_{DS} = 0V$ to 44V

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			C4		MOSFET symbol
	(Body Diode)	9)	61	A	showing the	
I _{SM}	Pulsed Source Current			0.40		integral reverse
	(Body Diode) ①			240		p-n junction diode.
V _{SD}	Diode Forward Voltage			1.3	V	$T_J = 25^{\circ}C$, $I_S = 30A$, $V_{GS} = 0V$ ④
t _{rr}	Reverse Recovery Time		62	93	ns	$T_J = 25^{\circ}C$, $I_F = 30A$, $V_{DD} = 25xjkl V$
Q _{rr}	Reverse Recovery Charge	—	110	170	nC	$di/dt = 100A/\mu s$ ④
t _{on}	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by L _S +L _D)				

1000

(V)

100

100

100

2.7V

2.5V

2.5V

2.25V

2.25V

2.25V

2.25V

2.10

100

100

100

VDS, Drain-to-Source Voltage (V)

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Typical Forward Transconductance vs. Drain Current

International TOR Rectifier

Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

2.5 | ID = 61A | 2.0 | OzumosOntriple |

Fig 9. Maximum Drain Current vs. Case Temperature

Fig 10. Normalized On-Resistance vs. Temperature

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig 12a. Unclamped Inductive Test Circuit

Fig 12b. | Unclamped Inductive Waveforms

Fig 13a. Basic Gate Charge Waveform

Fig 13b. Gate Charge Test Circuit 6

Fig 12c. Maximum Avalanche Energy vs. Drain Current

Fig 14. Threshold Voltage vs. Temperature www.irf.com

Fig 15. Typical Avalanche Current vs. Pulsewidth

Fig 16. Maximum Avalanche Energy vs. Temperature

Notes on Repetitive Avalanche Curves, Figures 15, 16: (For further info, see AN-1005 at www.irf.com)

- Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T_{jmax}. This is validated for every part type.
- Safe operation in Avalanche is allowed as long asT_{jmax} is not exceeded.
- 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b.
- 4. P_{D (ave)} = Average power dissipation per single avalanche pulse.
- 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche).
- 6. I_{av} = Allowable avalanche current.
- 7. ΔT = Allowable rise in junction temperature, not to exceed T_{jmax} (assumed as 25°C in Figure 15, 16). t_{av} = Average time in avalanche.
 - D = Duty cycle in avalanche = $t_{av} \cdot f$

 $Z_{thJC}(D, t_{av})$ = Transient thermal resistance, see figure 11)

$$\begin{split} P_{D \text{ (ave)}} &= 1/2 \text{ (} 1.3 \cdot \text{BV-I}_{av} \text{)} = \triangle \text{T/ Z}_{thJC} \\ I_{av} &= 2\triangle \text{T/ [} 1.3 \cdot \text{BV-Z}_{th} \text{]} \\ E_{AS \text{ (AR)}} &= P_{D \text{ (ave)}} \cdot t_{av} \end{split}$$

Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

Fig 18a. Switching Time Test Circuit

Fig 18b. Switching Time Waveforms

D-Pak (TO-252AA) Package Outline

Dimensions are shown in millimeters (inches)

D-Pak (TO-252AA) Part Marking Information

EXAMPLE: THIS IS AN IRFR120

WITH ASSEMBLY

LOT CODE 1234

ASSEMBLED ON WW 16, 1999 IN THE ASSEMBLY LINE "A"

I-Pak (TO-251AA) Package Outline

Dimensions are shown in millimeters (inches)

I-Pak (TO-251AA) Part Marking Information

EXAMPLE: THIS IS AN IRFU120

LOT CODE 1789

ASSEMBLED ON WW 19, 1997
IN THE ASSEMBLY LINE "C"

D-Pak (TO-252AA) Tape & Reel Information

Dimensions are shown in millimeters (inches)

- 1. CONTROLLING DIMENSION : MILLIMETER.
- 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).
 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.

NOTES:
1. OUTLINE CONFORMS TO EIA-481.

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11).
- ② Limited by T_{Jmax} , starting $T_{J} = 25$ °C, $L = 0.45 \text{mH}, R_G = 25\Omega, I_{AS} = 30A, V_{GS} = 10V.$ Part not recommended for use above this value.
- $\ensuremath{ \begin{tabular}{l} \ensuremath{ \begin{tabular$ $T_J \le 175^{\circ}C$.
- 4 Pulse width \leq 1.0ms; duty cycle \leq 2%.
- as $C_{oss}\, while \, V_{DS}\, is \, rising \, from \, 0$ to $80\% \, V_{DSS}$.
- © Limited by T_{Jmax} , see Fig.12a, 12b, 15, 16 for typical repetitive avalanche performance.
- ① This value determined from sample failure population. 100% tested to this value in production.
- ® When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994.

Data and specifications subject to change without notice. This product has been designed and qualified for the Automotive [Q101] market. Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information. 09/02

Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/