ESERCIZI DI GEOMETRIA 1, C.d.L. in Matematica

Elena Rubei

Consiglio: prima di fare qualsiasi esercizio cercate di capire bene la teoria.

Notazioni. $M(m \times n, \mathbf{R})$ è lo spazio vettoriale delle matrici $m \times n$ a coefficienti in \mathbf{R} .

 $\mathbf{R}_d[x]$ denota lo spazio vettoriale dei polinomi nella variabile x a coefficienti in \mathbf{R} di grado minore o uguale a d.

Se V è uno spazio vettoriale su un campo $K, V^{\vee} := Hom(V, K)$. Siano V e W due spazi vettoriali su uno stesso campo $K \in \varphi : V \to W$ un'applicazione lineare; $\varphi^{\vee} : W^{\vee} \to V^{\vee}$ è l'applicazione lineare così definita:

$$\varphi^{\vee}(f) = f \circ \varphi \quad \forall f \in W^{\vee}$$

PRODOTTI DI MATRICI, BASI, SOTTOSPAZI VETTORIALI....

Esercizio. i) Verificate che i tre seguenti vettori costituiscono una base di \mathbb{R}^3 :

$$v_1 = \left(egin{array}{c} 1 \\ 0 \\ 2 \end{array}
ight), v_2 = \left(egin{array}{c} 0 \\ 5 \\ 0 \end{array}
ight), v_3 = \left(egin{array}{c} 2 \\ 0 \\ 2 \end{array}
ight)$$

ii) Esprimete il vettore $v = \begin{pmatrix} 0 \\ 45 \\ 7 \end{pmatrix}$ come combinazione lineare di v_1, v_2, v_3 .

Esercizio. Sia $v = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}$. Scrivere il vettore $\begin{pmatrix} x_1 - x_2 \\ x_2 - x_3 \\ 0 \\ 0 \end{pmatrix}$ come prodotto di una matrice 4×4 per v.

Esercizio. Nell'immenso paese di Matlandia, abitato esclusivamente dai matematici, sono stati sbagliati tutti gli orari dei treni, precisamente è stato previsto che tutti i treni viaggino sempre alla stessa velocità media c, ma in realtà sulla linea Geometry City - Algebra Town (su cui ci sono 7 città) le velocità medie (a causa delle montagne) sono le seguenti:

nel tratto Geometry City - Algebraic Geometry Town v_1

nel tratto Algebraic Geometry Town - Differential Geometry Town v_2

nel tratto Differential Geometry Town - Topology city v_3

nel tratto Topology City - Rings Town v_4

nel tratto Rings Town - Groups Village v_5

nel tratto Groups Village - Algebra Town v_6

Sia $v = (v_1, ..., v_6)$. Sia $w \in \mathbf{R}^7$ il vettore con gli orari previsti sbagliati.

Una giovane matematica, stufa di non sapere mai quando si arriva veramente in una certa città, ha trovato una formula per ricavare i veri orari da v e dal vettore w dei vecchi orari: ovviamente $w' = (w_2 - w_1, w_3 - w_2, ..., w_7 - w_6)$ è il vettore il cui coefficiente i-esimo è il tempo di percorrenza previsto sbagliato sul tratto i-esimo della linea Geometry City - Algebra Town; quindi il vettore w'' = cw' è il vettore il cui coefficiente i-esimo è la lunghezza del tratto i-esimo; quindi $(v_i)^{-1}w_i''$ è il tempo di percorrenza vero del tratto i-esimo della linea; quindi il vero orario sulla linea Geometry City - Algebra Town è

$$w_1 w_1 + (v_1)^{-1} w_1'' w_1 + (v_1)^{-1} w_1'' + (v_2)^{-1} w_2''$$

In realtà tale formula può essere espressa come il prodotto di una certa matrice per il vettore w. Trovate tale matrice (lasciatela pure espressa come somma e prodotto di matrici). (Sugg: esprimete prima w'' come prodotto di una matrice per w...)

Esercizio . i) Dimostrare che

$$\mathcal{B} = \left\{ \left(\begin{array}{cc} 1 & 1 \\ 0 & 0 \end{array} \right) \left(\begin{array}{cc} 0 & 1 \\ 0 & 1 \end{array} \right) \left(\begin{array}{cc} 0 & 0 \\ 1 & 1 \end{array} \right) \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right) \right\}$$

è una base di $M(2 \times 2, \mathbf{R})$.

ii) Esprimere $\begin{pmatrix} 2 & 3 \\ 0 & 2 \end{pmatrix}$ come combinazione lineare degli elementi di \mathcal{B} .

Esercizio. Siano $v_h=\begin{pmatrix}1\\h\\0\\1\end{pmatrix}, u_h=\begin{pmatrix}0\\0\\h^2-1\\2\end{pmatrix}$ due vettori di ${\bf R}^4$ dipendenti dal parametro reale

h. Per ogni valore del parametro h, estendere l'insieme $\{v_h, u_h\}$ ad una base di \mathbf{R}^4 .

Esercizio. Sia D una matrice diagonale con elementi sulla diagonale $d_1, ..., d_n$. Dimostrare che D è invertibile se e solo se $d_i \neq 0 \ \forall i \in \{1, ..., n\}$. Dire chi è in tal caso la matrice inversa.

Esercizio. La somma di due matrici ortogonali è ortogonale? Motivare la risposta.

Esercizio. Sia S il seguente sottoinsieme di \mathbb{R}^3 :

$$S = \{(ab, b, 0) : a, b \in \mathbf{R}\}.$$

S è un sottospazio di \mathbb{R}^3 ? Motivare la risposta.

Esercizio. Dimostrare che l'insieme delle matrici simmetriche $n \times n$ a coefficienti in **R** costituisce un sottospazio vettoriale di $M(n \times n, \mathbf{R})$ di dimensione $\frac{n^2+n}{2}$.

Esercizio. Sia $S = \{A \in M(2 \times 2, \mathbf{R}) | {}^tA + 2A = 0\}$. È un sottospazio vettoriale di $M(2 \times 2, \mathbf{R})$? Se sì, calcolarne la dimensione.

Esercizio. Dire se il seguente sottoinsieme di \mathbb{R}^3 è un sottospazio vettoriale di \mathbb{R}^3 :

$$S = \{ (t^2, s, 0) : t, s \in \mathbf{R} \}.$$

Esercizio. Dire se $\{f \in \mathbf{R}_2[x]|f(1) + f(2) = 0\}$ è un sottospazio vettoriale di $\mathbf{R}_2[x]$ ed eventualmente calcolarne la dimensione e trovarne una base.

Esercizio. Dire per quali valori del parametro $h \in \mathbf{R}$ il vettore (1, 1, h) appartiene al sottospazio di \mathbf{R}^3 generato dai vettori $(h^2, 0, 1)$, $(0, h + h^3, 0)$, (0, h, 1).

Esercizio. Siano U_h e W_h i due seguenti sottospazi di \mathbb{R}^4 (al variare del parametro reale h):

$$U_h = < \left(egin{array}{c} 1 \\ 0 \\ h^2 \\ 0 \end{array}
ight), \left(egin{array}{c} 1 \\ 0 \\ 1 \\ 0 \end{array}
ight) >, \ W_h = < \left(egin{array}{c} 0 \\ 1 \\ 1 \\ 2 \end{array}
ight), \left(egin{array}{c} 0 \\ h-1 \\ 0 \\ h-1 \end{array}
ight) >$$

- i) Dire per quali valori del parametro h si ha $U_h \cap W_h = \{0\}$
- ii) Dire per quali valori del parametro h si ha $U_h + W_h = \mathbf{R}^4$

Esercizio. Siano $v_1, ..., v_k \in \mathbb{C}^n$. Dite quali implicazioni valgono fra le seguenti affermazioni:

- a) $v_1, ..., v_k$ sono vettori linearmente indipendenti su \mathbf{C} (cioè sono vettori linearmente indipendenti di \mathbf{C}^n spazio vettoriale su \mathbf{C})
- b) $v_1, ..., v_k$ sono vettori linearmente indipendenti su \mathbf{R} (cioè sono vettori linearmente indipendenti di \mathbf{C}^n spazio vettoriale su \mathbf{R})

Esercizio. Sia V uno spazio vettoriale di dim n. Sia T un sottopsazio vettoriale di V. Dimostrare che

$$T = \bigcap_{H \supset T, H \ inermiano} H$$

Esercizio. Sia A la seguente matrice:

$$\left(\begin{array}{ccc}
1 & 0 & 1 \\
2 & -1 & 1 \\
0 & 1 & 1
\end{array}\right)$$

Sia

$$S = \{B \in M(3 \times 3, \mathbf{R})\} | AB = 0\}$$

Determinare la dimensione di S.

Esercizio. Sia $A \in M(m \times n, \mathbf{R})$. Sia r il rango di A. Sia

$$S = \{B \in M(n \times k, \mathbf{R})\} | AB = 0\}$$

Determinare la dimensione di S.

Esercizio. Sia V uno spazio vettoriale su \mathbf{R} di dimensione n e sia U un suo sottospazio di dimensione k. Dimostrate che V/U ha dimensione n-k.

Esercizio. Sia A la seguente matrice 3×3 :

$$\left(\begin{array}{ccc} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{array}\right)$$

Calcolate la dimensione di $\{B \in M(3 \times 3) | AB = BA\}$ Deducete da ciò che, se B è tale che BA = AB, allora B può essere scritto come combinazione lineare di I A A^2 .

Esercizio. Sia V uno spazio vettoriale e W sia un sottospazio di V; sia Z un sottospazio di W. Quanto è la dimensione di (V/Z)/(W/Z)? (ovviamente in funzione delle dimensioni di V, W, Z). (Potete utilizzare l'enunciato di un altro esercizio.)

DETERMINANTI, RANGO...

Esercizio. Siano $a_1, ..., a_n, b_1, ..., b_n \in \mathbf{R}$. Calcolate il determinante della seguente matrice $C \in M((n+1) \times (n+1), \mathbf{R})$:

cioè C è la matrice così definita:

$$C_{i,j} = \begin{cases} 1 & if & i = 1 \\ a_{i-1} & if & i > 1 & and & i \le j \\ b_j & if & i > 1 & and & i > j \end{cases}$$

Esercizio. Siano

$$A = \begin{pmatrix} 3 & 0 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 & 0 \\ 36 & 0 & 501 & 500 & 500 \\ 21 & 2 & 502 & 501 & 500 \\ 133 & 23 & 500 & 500 & 500 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 2600 & 0 & 0 & 0 \\ 23 & 89 & 1 & 2 & 3 \\ 0 & 5 & 1 & 2 & 4 \\ 2 & 3 & 288 & 2 & 3 \end{pmatrix}, C = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 2 \\ 0 & 0 & 4 & 34 & 7 \\ 0 & 0 & 0 & 0 & 3 \end{pmatrix}$$

- i) Calcolare il determinante di A
- ii) Calcolare il determinante di $B^{-1}AB$
- iii) Calcolare il determinante di CA

Esercizio. i) Trovare, se esiste, un polinomio p a coefficienti in \mathbf{R} di grado ≤ 3 tale che p(1) = 1, p(2) = -5, p(0) = 0, p(-1) = 1.

ii) Siano $x_1, ..., x_n$ numeri reali distinti. Siano $y_1, ..., y_n$ numeri reali. Esiste sempre un polinomio p a coefficienti in \mathbf{R} di grado $\leq n-1$ tale che $p(x_i)=y_i$, per i=1,...,n? Motivare la risposta.

Esercizio. Dimostrate la formula per calcolare il determinante delle matrici triangolari, utilizzando lo sviluppo di Laplace.

Esercizio. Sbarrare le affermazioni giuste.

Sia A una matrice.

- a) Lo spazio generato dalle colonne di A non cambia facendo operazioni elementari di righe.
- b) Lo spazio generato dalle colonne di A non cambia facendo operazioni elementari di colonne.
- c) Lo spazio generato dalle righe di A non cambia facendo operazioni elementari di righe.

- d) Lo spazio generato dalle righe di A non cambia facendo operazioni elementari di colonne
- e) Il rango di A non cambia facendo operazioni elementari di righe
- f) Il rango di A non cambia facendo operazioni elementari di colonne.

APPLICAZIONI LINEARI

Esercizio. Sia $f: M(n \times n, \mathbf{R}) \to M(n \times n, \mathbf{R})$ l'applicazione così definita:

$$f(A) = A + {}^t\!A$$

 $\forall A \in M(n \times n, \mathbf{R}).$

Dimostrare che è lineare e studiarne l'immagine e il nucleo.

Esercizio. Siano V_1 e V_2 due spazi vettoriali su uno stesso campo K. Costruire un isomorfismo fra $V_1 \times V_2$ e $V_2 \times V_1$.

Esercizio. Siano V e W due spazi vettoriali su un campo k di dimensione rispettivamente n e m con $n \ge m$. Sia $f: V \to W$ un'applicazione lineare. Dimostrare che la dimensione del nucleo di f è $\ge n-m$.

Esercizio. Sia $f_k: \mathbb{C}^3 \to \mathbb{C}^3$ l'applicazione così definita

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} k & i & 3i \\ 0 & k^2 & 0 \\ 5 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

(al variare del parametro complesso k).

Dire per quali valori di k, f_k è invertibile.

Esercizio. Sia V uno spazio vettoriale di dimensione finita su un campo K.

Sia $f: V \to V$ un'applicazione lineare tale che $f^2 = f$.

Dimostrare che

- i) $f|_{Im(f)} = Id$
- ii) $V = Ker(f) \oplus Im(f)$
- iii) esiste una base di V tale che la matrice associata a f in tale base (in partenza e in arrivo) è

$$\left(\begin{array}{cc}I_k&0\\0&0\end{array}\right)$$

dove I_k è l'identità $k \times k$ e k è la dimensione di Im(f).

Esercizio. Sia $T: M(n \times n, \mathbf{R}) \to M(n \times n, \mathbf{R})$ l'applicazione così definita:

$$T(A) = {}^t\!A$$

 $\forall A \in M(n \times n, \mathbf{R}).$

i) Dimostrare che è lineare, studiarne l'immagine e il nucleo e dimostrare che esiste una base di $M(n \times n, \mathbf{R})$ tale che la matrice associata a T in tale base è

$$\left(\begin{array}{cc}I_{\frac{n^2+n}{2}} & 0\\0 & -I_{\frac{n^2-n}{2}}\end{array}\right)$$

ii) Sia n=2. Scrivere la matrice associata a T nella base canonica.

Esercizio. Sia V uno spazio vettoriale di dimensione n su un campo K. Sia $\{v_1, ..., v_n\}$ una base di V.

i) Dire se i seguenti sottoinsiemi di Hom(V, V) sono dei sottospazi di Hom(V, V) ed eventualmente calcolarne la dimensione:

```
S = \{ f \in Hom(V, V) | f(v_1) = 0 \ f(v_2) = 0 \}
```

$$\mathcal{T} = \{ f \in Hom(V, V) | f(v_1 + v_2) = 0 \}$$

$$\mathcal{U} = \{ f \in Hom(V, V) | f(v_1) = v_1 \}$$

$$\mathcal{Z} = \{ f \in Hom(V, V) | f(v_1) \in \langle v_1 \rangle \}$$

$$Q = \{ f \in Hom(V, V) | f(v_1) \in < v_2 > \}$$

$$\mathcal{Y} = \{ f \in Hom(V, V) | f(v_1) \in \langle v_1 \rangle, finiettiva \}$$

$$\mathcal{P} = \{ f \in Hom(V, V) | f(v_1) \in \langle v_1 \rangle, \ f(v_i) = 0 \ per \ i = 2, ..., n \}$$

- ii) Come sono fatte le matrici nella base $\{v_1, ..., v_n\}$ degli elementi di \mathcal{T} ?
- iii) Dire se esiste ed è unica un'applicazione lineare $f: V \to V$ tale che $f(v_1) = v_1$ e $f(v_i) = 0$ per i = 2, ..., n e scriverne eventualmente la matrice associata nella base $\{v_1, ..., v_n\}$.
- iii) Dire se esiste un'applicazione lineare $f: V \to V$ tale che $f(v_1) = v_1, f(v_2) = 0, f(v_1 + v_2) = 0$
- iv) Dire se esiste ed è unica un'applicazione lineare $f: V \to V$ tale che $f(v_1) = v_1$ e dim $\ker(f) = n-1$.

Esercizio. Sia $f: \mathbf{R}_2[x] \to \mathbf{R}^3$ definita nel seguente modo

$$f(a_0 + a_1x + a_2x^2) = (a_0, a_1 + 4a_2, a_0)$$

- i) Determinare un sottospazio W di
 $\mathbf{R}_2[x]$ tale che $f|_W$ sia iniettiva.
- ii) Determinare un'applicazione lineare non identicamente nulla $h: \mathbf{R}^3 \to \mathbf{R}^3$ tale che $h \circ f = 0$

Esercizio. Siano V e W due spazi vettoriali su uno stesso campo K. Sia $f:V\to W$ un'applicazione lineare. Sia Z un sottospazio di W. Dimostrare che

$$\dim(f^{-1}(Z)) \le \dim(Z) + \dim(\ker f)$$

Esercizio. Siano V, W e U tre spazi vettoriali su uno stesso campo K. Siano $f: V \to W$ e $g: W \to U$ applicazioni lineari.

Dimostrare che

$$\dim(\ker(g \circ f)) \le \dim(\ker g) + \dim(\ker f)$$

Esercizio. Siano V e W due spazi vettoriali su un campo K. Sia $f:V\to W$ un'applicazione lineare. Sia W' un sottospazio di W.

Dimostrare che $f^{-1}(W')$ è un sottospazio di V.

Esercizio. Sia K un campo e sia $A \in GL(2,K)$. Sia $\varphi_A : M(2 \times 2,K) \to M(2 \times 2,K)$ l'applicazione così definita

$$B \mapsto A^{-1}BA$$

 $\forall B \in M(2 \times 2, K).$

- i) Dimostrare che φ_A è lineare
- ii) Dire se φ_A è iniettiva e se è surgettiva
- iii) Sia $K=\mathbf{C}$ e sia $A=\begin{pmatrix}i&3\\0&i\end{pmatrix}$. Scrivere la matrice associata a φ_A nella base canonica di $M(2\times 2,K)$.

Esercizio. Siano V e W due spazi vettoriali su un campo K e $f:V\to W$ un'applicazione lineare. Sia V' un sottospazio di V. Dimostrare che $f|_{V'}$ è iniettiva se e solo se $V'\cap Ker(f)=\{0\}$

Esercizio. Sia V uno spazio vettoriale di dimensione 2 su \mathbf{R} . Siano T_1 e T_2 due distinti sottospazi di dimensione 1 di V. Sia

$$\mathcal{S} = \{ f \in Hom(V, V) | f(T_1) \subseteq T_1 | f(T_2) \subseteq T_2 \}$$

- i) Dimostrare che S è un sottospazio di Hom(V, V)
- ii) Calcolare la dimensione di S.

Esercizio. Siano V e W due spazi vettoriali su un campo K. Supponiamo che abbiano dimensione finita. Sia $\varphi:V\to W$ un'applicazione lineare. Dimostrare che

- i) φ iniettiva $\Rightarrow \varphi^{\vee}$ surgettiva
- ii) φ surgettiva $\Rightarrow \varphi^{\vee}$ iniettiva.

Esercizio. Sia V uno spazio vettoriale di dimensione n su un campo K. Sia $\{v_1, ..., v_n\}$ una base di V. Calcolare la dimensione di

$$\{f \in V^{\vee} | f(v_1) = 0, f(v_2) = -f(v_3)\}$$

Esercizio. Sia V uno spazio vettoriale di dimensione finita su un campo K. Sia U un sottospazio di V

i) Dimostrare che l'applicazione $V \to V/U$

$$v \mapsto [v]$$

è lineare ed il suo nucleo è U. Utilizzando ciò, dimostrare che

$$dim(V/U) = dim(V) - dim(U)$$

Sia W un sottospazio di V tale che $V=W\oplus U$

ii) Dimostrare che l'applicazione $W \to V/U$

$$w \mapsto [w]$$

è un isomorfismo.

iii) Sia $\pi_W: V \to W$ l'applicazione così definita: sia $v \in V$; sia v = u + w con $u \in U$ e $w \in W$; definisco

$$\pi_W(v) = w$$

Dimostrare che π_W è lineare e dire chi è il suo nucleo.

Esercizio. Sia $D: \mathbf{R}_3[x] \to \mathbf{R}_3[x]$ la seguente applicazione lineare

$$D(a_0 + a_1x + a_2x^2 + a_3x^3) = a_1 + 2a_2x + 3a_3x^2$$

(la derivata). Scrivere la matrice associata a D nella base $\{1, x, x^2, x^3\}$, studiare l'immagine e il nucleo, dire se è diagonalizzabile e dire se è nilpotente.

Esercizio Sia V uno spazio vettoriale di dimensione 3 su \mathbf{R} . Siano H un sottospazio vettoriale di dimensione 2 in V e r un sottospazio vettoriale di dimensione 1 in V tali che $r \cap H = \{0\}$.

i) Sia S il seguente sottospazio vettoriale di Hom(V, V):

$$S = \{ f \in Hom(V, V) \mid f(H) \subset H, \ e \ f(r) \subset r \}$$

Calcolare la dimensione di \mathcal{S} .

iii) Sia

$$\mathcal{S}' = \{ f \in Hom(V, V) \mid f(H) = H \ e \ f(r) = r \}$$

Dire se \mathcal{S}' è un sottospazio vettoriale di Hom(V, V); motivare la riposta.

iv) Scegliere una (opportuna) base di V e trovare un'applicazione lineare $f:V\to V$ tale che f(r)=r e dim ker f=2 (scrivere ad esempio la sua matrice nella base scelta o dire chi sono le immagini degli elementi della base scelta); trovare infine un'applicazine lineare $h:V\to V$ tale che $(h\circ f)(r)=\{0\}$ e dim ker h=1.

GEOMETRIA NEL PIANO E NELLO SPAZIO AFFINE...

Esercizio. Per quali valori di a i due seguenti sottoinsiemi di \mathbb{R}^3 rappresentano rette sghembe? Cosa succede per gli altri valori di a?

$$r = \{(x, y, z) | 2x + y - 3z = 4 \ e \ x + y - z = 1\}$$

 $s = \{(x, y, z) | x + ay + az = 1 \ e \ x + 2ay - az = 1\}$

Esercizio. Si consideri al variare del parametro t la seguente quaterna di punti di \mathbb{R}^3 :

$$P_1 = \left(egin{array}{c} 1 \ 0 \ 0 \end{array}
ight), P_2 = \left(egin{array}{c} 0 \ 3 \ 2 \end{array}
ight), P_3 = \left(egin{array}{c} 0 \ -2 \ 1 \end{array}
ight), Q_t = \left(egin{array}{c} t \ 0 \ -t \end{array}
ight)$$

Siano s la retta passante per P_1 e P_2 e r_t la retta passante per P_3 e Q_t .

- i) Si dica per quali valori del parametro t le rette s e r_t sono rette sghembe.
- ii) Si trovino le equazioni parametriche e cartesiane delle rette s e r_t .

Esercizio. Si consideri la seguente quaterna di punti di \mathbb{R}^2 :

$$P_1=\left(egin{array}{c}1\2\end{array}
ight), P_2=\left(egin{array}{c}-3\5\end{array}
ight), P_3=\left(egin{array}{c}6\-3\end{array}
ight), P_4=\left(egin{array}{c}1\-2\end{array}
ight)$$

Sia $P = \begin{pmatrix} 0 \\ -3 \end{pmatrix}$. Il punto P appartiene all'inviluppo convesso di P_1, P_2, P_3, P_4 ?

Esercizio. i) Scrivere l'equazione del piano π passante per $A = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}$ $B = \begin{pmatrix} 0 \\ -1 \\ 0 \end{pmatrix}$, $C = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$.

ii) Scrivere l'equazione del piano π' parallelo a π e passsante per $P=\begin{pmatrix} 3 \\ 2 \\ -1 \end{pmatrix}$.

Esercizio. Trovare λ in modo tale che la retta OP, con O=(0,0,0) e $P=(\lambda,-1,0)$, sia parallela al piano di equazione $\lambda(x+y)-z=0$

Esercizio. Scrivere l'equazione del piano che passa per la retta $r=\{(x,y,z)\in\mathbf{R}^3|\ 3x-y+3=x+z+1=0\}$ ed e' parallelo alla retta $s=\{(x,y,z)\in\mathbf{R}^3|\ x=y-2\ e\ x=3z-5\}.$

Esercizio. Scrivere l'equazione del piano che passa per la retta $r = \{(4, 5, 6) + t(6, 7, 8) | t \in \mathbf{R}\}$ e per il punto P = (1, 2, 3).

Esercizio. i) Dimostrare che l'insieme $\{(x, y, z) \in \mathbf{R}^3 | x \leq 1\}$ è convesso.

ii) Si consideri la seguente quaterna di punti di \mathbb{R}^3 :

$$P_1=\left(egin{array}{c}1\0\3\end{array}
ight), P_2=\left(egin{array}{c}1\5\6\end{array}
ight), P_3=\left(egin{array}{c}1\2\0\end{array}
ight), P_4=\left(egin{array}{c}0\0\0\end{array}
ight)$$

Sia
$$P = \begin{pmatrix} 5 \\ 1 \\ 0 \end{pmatrix}$$
. Il punto P appartiene all'inviluppo convesso di P_1, P_2, P_3, P_4 ?

Esercizio. Per quali valori di a i due seguenti sottoinsiemi di \mathbb{R}^3 rappresentano rette sghembe? Cosa succede per gli altri valori di a?

$$r = \{(x, y, z) | 2x + y - 3z = 4 \ e \ x + y + z = 1\}$$

 $s = \{(x, y, z) | x + ay + az = 1 \ e \ x + 2ay - az = 1\}$

Esercizio. Trovare un'espressione cartesiana della retta passante per P = (1, 0, 9) e parallela ai due piani di equazioni rispettive 4x + 3y = 0 e z = 8.

Esercizio. Siano dati in \mathbb{R}^3 i tre seguenti piani:

$$\pi = \{(x, y, z) \in \mathbf{R}^3 | x + ky + z = -1\}$$

$$\pi' = \{(x, y, z) \in \mathbf{R}^3 | x + y - z = 1\}$$

$$\pi'' = \{(x, y, z) \in \mathbf{R}^3 | y + kz = 1\}$$

- i) Dire per quali valori del parametro k i tre piani hanno un sol punto in comune e determinare tale punto.
- ii) Dire per quali valori del parametro k i tre piani hanno in comune una retta e determinare tale retta.
- iii) Dire per quali valori del parametro k i tre piani non hanno nessun punto in comune.
- iv) Possono i tre piani coincidere?

VARI

Esercizio. Sia $A \in M(n \times n, K)$, sia $\mathcal{P}(x) \in K[x]$. Sia $B \in GL(n, K)$ tale che BAB^{-1} sia diagonale. Dimostrare che allora anche $B\mathcal{P}(A)B^{-1}$ è diagonale.

Esercizio. Sia $A \in M(n \times n, K)$. Supponiamo che A sia nilpotente (cio è esista $k \in \mathbb{N}$ tale che $A^k = 0$) e diagonalizzabile. Dimostrare che allora A = 0.

Esercizio. Nello spazio affine $A_{\mathbf{R}}^3$ siano date due rette r e s e un piano π tali che

$$r \cap s \cap \pi = \emptyset$$

 $r \cap s \neq \emptyset$

 $r \cap \pi \neq \emptyset$

 $s \cap \pi \neq \emptyset$.

Scegliere un sistema di coordinate opportuno e determinare il gruppo

$$G = \{f : A^3_{\mathbf{R}} \to A^3_{\mathbf{R}} | f \ affinita' \ t.c. \ f(r) = r \ f(s) = s \ f(\pi) = \pi \}$$

Esercizio. Dire per quali valori del parametro reale h la forma bilineare $\mathbf{R}^3 \times \mathbf{R}^3 \to \mathbf{R}$ definita come $b(x,y) = {}^t x A_h y$ dove

$$A_h = \left(egin{array}{ccc} 1 & 0 & 1-h \ 0 & 1 & 0 \ h & 0 & 0 \end{array}
ight)$$

è simmetrica e per quali valori è non degenere; se $h=\frac{1}{2}$ calcolare la segnatura.

Esercizio. Sia $A \in M(n \times n, \mathbf{R})$ tale che $A = {}^tA$. Dimostrare che se $A^2 = 0$ allora A = 0.

Esercizio. i) Dimostrare che due matrici simmetriche reali $n \times n$ sono congruenti se e solo se hanno la stessa segnatura.

ii) Quante sono le classi di equivalenza per la relazione di congruenza nell'insieme delle matrici simmetriche reali 3×3 ?

Esercizio. i) Determinare λ e $\mu \in \mathbf{R}$ tali che i due seguenti vettori possano essere le prime due colonne di una matrice ortogonale 3×3 .

$$\begin{pmatrix} 1/2 \\ \sqrt{3}/2 \\ (\lambda - 1)^2 \end{pmatrix} \qquad \begin{pmatrix} 0 \\ \mu \\ -1 \end{pmatrix}$$

Siano adesso λ e μ come al punto i).

- ii) Determinare un terzo vettore di \mathbb{R}^3 tale che affiancato ai primi due dia una matrice ortogonale con determinante 1.
- iii) Determinare un terzo vettore di \mathbb{R}^3 tale che affiancato ai primi due dia una matrice ortogonale con determinante -1.
- iv) Determinare un terzo vettore di \mathbb{R}^3 tale che affiancato ai primi due dia una matrice ortogonale con un autovalore uguale a 1.

v) Determinare un terzo vettore di \mathbf{R}^3 tale che affiancato ai primi due dia una matrice ortogonale con un autovalore uguale a -1.

Esercizio. Sia $b: \mathbf{R}_1[x] \times \mathbf{R}_1[x] \to \mathbf{R}$ definita nel seguente modo:

$$b(p,q) = p(3)q(3)$$

Dimostrare che b è bilineare simmmetrica, calcolare la segnatura e trovare, se esiste, un elemento non nullo di $\mathbf{R}_1[x]$ isotropo per b.

Sia $c \in \mathbf{R}$. Sia $b_c : \mathbf{R}_1[x] \times \mathbf{R}_1[x] \to \mathbf{R}$ definita nel seguente modo:

$$b(p,q) = p(c)q(c)$$

Dimostrare che b_c è bilineare simmmetrica, calcolare la segnatura e trovare, se esiste, un elemento non nullo di $\mathbf{R}_1[x]$ isotropo per b_c .