

DISTA

Corso: Analisi Numerica

Docente: Roberto Piersanti

Risoluzione di sistema lineari: metodi iterativi Lezione 3.2a

Il numero di condizionamento: stabilità della risoluzione di un sistema lineare

Risoluzione di sistemi lineari: metodi iterativi

Stabilità nella risoluzione di un sistema lineare

$$A\mathbf{x} = \mathbf{b}$$

- Il concetto di condizionamento di un problema numerico
 - \checkmark Analisi dell'errore alla variazione dei dati A, b
 - ✓ Numero di condizionamento di una matrice
 - ✓ Analisi di **stabilità** di un sistema lineare
 - ✓ Relazione tra stabilità e condizionamento

Risoluzione di sistemi lineari (sistema perturbato)

Obiettivo: studiare la sensibilità della soluzione x del sistema lineare

$$A\mathbf{x} = \mathbf{b}$$

rispetto a perturbazioni nei dati A, \mathbf{b}

ightharpoonup Consideriamo la matrice A^* e vettore termine noto \mathbf{b}^* perturbati

$$A^* = A + \delta A$$
 $\mathbf{b}^* = \mathbf{b} + \delta \mathbf{b}$

- $ightharpoonup \delta A$ e $\delta {f b}$ rappresentano le perturbazioni sui dati:
 - Rappresentazione su un calcolatore (da $\mathbb R$ a $\mathbb F$)
 - Misure sperimentali sono soggette a errori

Risoluzione di sistemi lineari (sistema perturbato)

> In corrispondenza del sistema perturbato la soluzione x cambia

$$A\mathbf{x} = \mathbf{b} \implies A^* = A + \delta A \quad \mathbf{b}^* = \mathbf{b} + \delta \mathbf{b}$$

$$\rightarrow$$
 $\mathbf{x}^* = \mathbf{x} + \delta \mathbf{x}$

➤ Il nuovo sistema perturbato da risolvere è quindi

$$(A + \delta A)(\mathbf{x} + \delta \mathbf{x}) = \mathbf{b} + \delta \mathbf{b}$$

ightharpoonup Stimare $\delta \mathbf{x}$ in funzione di $\delta A, \delta \mathbf{b}$

Risoluzione di sistemi lineari (condizionamento di A)

ightharpoonup Problema: stimare $\delta \mathbf{x}$ in funzione di $\delta A, \delta \mathbf{b}$

$$(A + \delta A)(\mathbf{x} + \delta \mathbf{x}) = \mathbf{b} + \delta \mathbf{b}$$

- > Stimare l'errore sulla soluzione in relazione all'errore sui dati
- ightharpoonup Misurare gli errori \longrightarrow norma di vettori $\|\mathbf{a}\|$ e matrici $\|A\|$
- \succ Introduciamo il **numero di condizionamento** della matrice A

$$K(A) = ||A|| ||A^{-1}||$$

➤ <u>Dipende dalla norma</u> e $K(A) \in \mathbb{R}$ \longrightarrow $K(A) \ge 1$ $1 = \|I\| = \|AA^{-1}\| \le \|A\| \|A^{-1}\| = K(A)$