

Seminar Approximation Algorithms

Approximating Nash Social Welfare under Submodular Valuations through (Un)Matchings

Based on a paper of the same name by Garg, Kulkarni and Kulkarni

Zeno Adrian Weil Supervised by Dr Giovanna Varricchio

8th July 2023 · Algorithms and Complexity (Prof. Dr Martin Hoefer)

Introduction

What is the issue?

We need to distribute goods amongst recipients fast, efficient and fairly.

Where is this encountered?

- industrial procurement
- mobile edge computing
- satellites
- water withdrawal

Table of Contents

- 1 Preliminaries
 - Allocations
 - Valuation Functions
 - Maximum Nash Social Welfare Problem

- 2 RepReMatch
 - Naïve Approach
 - The Algorithm
 - Analysing Phase II

Preliminaries

Preliminaries

Allocations

Setting:

- **g**oods: set \mathcal{G} of m items
 - unsharable
 - indivisible
- **recipients**: set \mathcal{A} of n agents

Definition

An *allocation* is a tuple $\mathbf{x} = (\mathbf{x}_i)_{i \in \mathcal{A}}$ of bundles $\mathbf{x}_i \subset \mathcal{G}$ such that each item is element of precisely one bundle.

Item *j* is *assigned* to agent *i* if $j \in x_i$.

But how to measure its efficiency and fairness?

Preliminaries

Valuation Functions

Requirements:

- monotonically non-decreasing: $v_i(\mathcal{S}_1) \leq v_i(\mathcal{S}_2)$ $\forall \mathcal{S}_1 \subset \mathcal{S}_2 \subset \mathcal{G}$
- normalised: $v_i(\emptyset) = 0$
- non-negative: $v_i(\mathcal{S}) \ge 0 \quad \forall \mathcal{S} \subset \mathcal{G}$

Types:

- additive: $v_i(\mathcal{S}) := \sum_{j \in \mathcal{S}} v_i(\{j\}) \quad \forall \mathcal{S} \subset \mathcal{G}$
- submodular: $v_i(S_1 \mid S_2) := v_i(S_1 \cup S_2) v_i(S_2)$ $\forall S_1, S_2 \subset \mathcal{G}$ with S_1, S_2 disjoint
 - more general (encompasses additivity)
 - diminishing returns

Asymmetric Maximum Nash Social Welfare Problem

Definition

$$x^* \stackrel{!}{=} \underset{x \in X_{\mathscr{A}}(\mathscr{C})}{\operatorname{arg max}} \{ \operatorname{NSW}(x) \} \quad \text{with NSW}(x) := \Big(\prod_{i \in \mathscr{A}} v_i(x_i)^{\eta_i} \Big)^{1/\sum_{i \in \mathscr{A}} \eta_i}$$

- $X_{\mathcal{A}}(\mathcal{G})$: all possible allocations
- \bullet η_i : agent weight
- middle ground between efficiency and fairness

Challenge

Algorithm with approximation factor $independent\ from\ m!$

Naïve Approach

What are the low-value items?

Looking into the Future

- sort items by valuation in descending order
 - low-value items on the left

use their valuations for edge weights in early matchings

A 2*n*-approximation is possible ... using SMatch.

This only works for additive valuation functions.

Changing the Past

Under submodular valuation, the set of lowest valuation is approximable only by $\Omega(\sqrt{m/\ln m})$.

We can change the past in three phases:

Phase I Assign enough high-value items temporarily.

Phase II Assign the remaining items definitely.

Phase III Re-assign the items of phase I definitely.

The Algorithm

Phase I

- **1** repeat $\lceil \log_2 n \rceil + 1$ times or until $\mathcal{G} = \emptyset$
 - **1** create bipartite graph $G = (\mathcal{A}, \mathcal{G}, E)$ with edge weights $w(i, j) = \eta_i \log v_i(\{j\})$
 - **2** compute maximum weight matching \mathcal{M}
 - 3 update bundles x_i^{I} according to matching \mathcal{M} & remove assigned items

Phase II

- **2** repeat until $\mathcal{G} = \emptyset$
 - **1** create bipartite graph $G = (\mathcal{A}, \mathcal{G}, E)$ with edge weights $w(i, j) = \eta_i \log(v_i(x_i^{\mathbb{I}} \cup \{j\}))$
 - 2 compute maximum weight matching M
 - **3** update bundles $x_i^{\mathbb{I}}$ according to matching \mathcal{M} & remove assigned items

Phase III

- **3** create bipartite graph $G = (\mathcal{A}, \bigcup_{i \in \mathcal{A}} \mathbf{x}_i^{\mathrm{I}}, E)$ with edge weights $w(i, j) = \eta_i \log (v_i(\mathbf{x}_i^{\mathrm{II}} \cup \{j\}))$
- 4 compute maximum weight matching \mathcal{M}
- **5** create bundles x_i^{III} according to matching \mathcal{M} and previous bundles x_i^{II}

Analysing Phase II (1/3)

Definition

The set $\mathcal{L}_{i,r}$ of *lost items* is the set of all items $j \in \mathbf{x}_i^*$ assigned to other agents $i' \neq i$ in round r.

Definition

The set of optimal and attainable items is defined as

$$\overline{\boldsymbol{x}}_{i,r}^{\star} := \begin{cases} \boldsymbol{x}_{i}^{\star} \setminus \bigcup_{i' \in \mathcal{A}} \boldsymbol{x}_{i'}^{\mathrm{I}} & \text{in round } r = 0, \\ \overline{\boldsymbol{x}}_{i,0}^{\star} \setminus \mathcal{L}_{i,1} & \text{in round } r = 1, \\ \overline{\boldsymbol{x}}_{i,r-1}^{\star} \setminus (\mathcal{L}_{i,r} \cup \{\boldsymbol{a}_{i}^{r-1}\} & \text{in round } r = 2, \dots, \tau_{i}^{\mathrm{II}}. \end{cases}$$

Analysing Phase II (2/3)

Lemma

For each agent $i \in \mathcal{A}$ and her bundle $\mathbf{x}_i^{\mathbb{I}} = \{a_i^1, \dots, a_i^{\tau_i^{\mathbb{I}}}\}$ at the end of phase \mathbb{I} , it holds in all rounds $r = 2, \dots, \tau_i^{\mathbb{I}}$ that

$$v_i(\overline{x}_{i,r}^* \mid a_i^1, \dots, a_i^{r-1}) \ge v_i(\overline{x}_{i,1}^*) - \sum_{r'=1}^{r-1} \ell_{i,r'+1} \cdot v_i(a_i^{r'} \mid a_i^1, \dots, a_i^{r'-1}) - v_i(a_i^1, \dots, a_i^{r-1}).$$