Universidad de San Carlos de Guatemala

Facultad de Ingeniería

Escuela de Ingeniería en Ciencias y Sistemas

Modelación y simulación 2

Primer Semestre 2022

Estudiantes:

Alex Yovani Jerónimo Tomás 201602912 Jorge David Espina Molina 201403632

Daniel Rolando Sotz Alvarado 201430496

Cesar Andrés Rodríguez López 200819476

1. Tiempos de llegada

- Materiales

material	mediana	variance
:	:	:
Casing	12	2.395972e+01
DeckCargo	7	7.603596e+01
DryBulk	2500	1.696713e+05
Fuel	2600	7.942671e+06
LiquidBulk	2300	8.024863e+05
Pipe	12	2.104747e+02

- Tiempos de salida por puerto al mes

port	mediana
:	:
HamburgPort	222.0
RotterdamPort	204.0
NA	99.5

- Tiempos de salida por puerto al día

port	mediana
:	:
HamburgPort	6.708333
RotterdamPort	6.583333
NΔ	0.5000001

- LLegadas por tipo de embarcación

vessel	mediaPorDia
:	:
150A	20.5
150B	20.0
150C	20.5
150D	19.5
150E	13.0
150F	13.5
150G	13.0
1150H	12.0
1501	14.0
1500	12.0
l NA	6.0

2. Velocidad de las embarcaciones

ModelEntity.ZonaViento, random.exponential(6.8)

ModelEntity.ZonaOlas, Random.Exponential(2.5)

ModelEntity, DesiredSpeed, ModelEntity, VelocidadEmbarcacion - ((ModelEntity, ZonaOlas + ModelEntity, ZonaViento)) / (ModelEntity, AlturaOlas + ModelEntity, VelocidadViento))

La velocidades se toman dependiendo el tipo de entidad que entre en cada zona hacemos un cálculo para calcular la resistencia de viento y altura de olas, teniendo esos valores hacemos un cálculo en el cual consta en tipo de embarcación sabiendo que embarcación es podemos saber que velocidad de embarcación eso le restamos el cálculo que consta de la suma de los valores de la zona de olas más la zona de viento y eso lo dividimos calculamos anteriormente con esa fórmula sacamos la nueva velocidad de la embarcación dependiendo en que zona y embarcación sea puede variar la velocidad de la embarcación.

3. Variables que afectan la simulación

→ Embarcaciones

- 1. TipoRuta: Variable de la embarcación que indica la ruta a seguir hasta llegar a alguna de las estaciones.
- 2. TipoEmbarcacion: Variable utilizada para diferencias el tipo de embarcación que ha salido de los puertos.
- 3. ResistenciaOlas: Esta variable almacena la resistencia a olas, propia de cada tipo de embarcación.
- 4. Resistencia Viento: Esta variable almacena la resistencia al viento, propia de cada tipo de embarcación.
- 5. VelocidadAuxiliar: Establece la velocidad máxima de cada tipo de embarcación.

- 1. Casing
- 2. DeckCargo
- 3. DryBulk
- 4. Fuel
- 5. LiquidBulk
- 6. Pipe

Cada variable se utiliza para definir la cantidad de material que se cargará a la embarcación.

4. Secuencias utilizadas para los viajes entre puertos de origen y plataformas destino

Para controlar las secuencias de los viajes, se número de 1 a 30 las secuencias posibles que se brindaron. Cada secuencia representa una ruta que se valida en cada nodo.

Ejemplo. Ruta \rightarrow 1

HamburgoPuerto \rightarrow Eco-foxtrot-hotel-golf \rightarrow RoterdamPuerto

Para asignar esta ruta, cuando un barco sale del puerto Hamburgo se le asigna una ruta entre 1 y 5. Cuando la embarcación llega a **Eco**, se valida el identificador de ruta que lleva, si es 1 se envía a foxtrot de lo contrario, se valida que otra ruta pasa por Eco para validar hacía que nodo enviar la embarcación.

En **foxtrot** se valida nuevamente el numeral de la ruta del barco que ingresa, si la ruta es 1 entonces se envía a **Hotel** de lo contrario, se continúa validando las posibles rutas que pueden llegar a este nodo para decidir hacia dónde enviar la embarcación.

Si una embarcación llega a alguna plataforma, se cambia el numeral de ruta que trae para que este continúe con otra secuencia de las 30 posibles rutas.

Secuencia	Ubicación inicial	Ubicación Final	Secuencia	Distancia en km
1	HamburgoPuerto	RoterdamPuerto	Eco-foxtrot-hot el-golf	677.5696
2	HamburgoPuerto	AlphaRig	Eco-foxtrot	512.9688
3	HamburgoPuerto	BetaRig	Eco-foxtrot-indi a	795.2725
4	HamburgoPuerto	Charlierig	Eco-lima	754.5026
5	HamburgoPuerto	uerto Deltarig Eco-lima-julio -kilo		1242.9683
6	RoterdamPuerto	hamburgoPuerto	Golf-hotel-foxtr ot-eco	677.5696
7	RoterdamPuerto	Alpharig	Golf-hotel	361.5546
8	RoterdamPuerto	Betarig	Golf-hotel-india	703.8854
9	RoterdamPuerto	Charlierig	Golf-hotel	734.1573
10	RoterdamPuerto	Golf-hotel-juli Deltarig a-kilo		1241.9952
11	AlphaRig	Hamburgopuerto	Foxtrot-eco	512.9688

12	AlphaRig	Roterdampuerto	Hoteles-golf	361.5546	
13	AlphaRig	Betarig India 34		347.338	
14	AlphaRig	Charlierig	Ruta directa	a 388.7548	
15	AlphaRig	Deltarig	Julieta-kilo 894.251		
16	BetaRig	Hamburgopuerto India-foxtrot-ec 795		795.2725	
17	BetaRig	Roterdampuerto	India-hotel-golf	703.8854	
18	BetaRig	Alpharig	India	347.338	
19	BetaRig	Charlierig	Ruta directa	128.9445	
20	BetaRig	Deltarig	Julieta-kilo 578.3857		
21	CharlieRig	Hamburgopuerto	Lima-eco 754.5026		
22	CharlieRig	Roterdampuerto	Hoteles-golf	734.1573	
23	CharlieRig	Alpharig	Ruta directa	388.7548	
24	CharlieRig	Betarig	Ruta directa	128.9445	
25	CharlieRig	Deltarig	Julieta-kilo	508.0115	
26	DeltaRig	Hamburgopuerto	Kilo-julieta-lima -eco	1242.9683	
27	DeltaRig	Roterdampuerto	Kilo-julieta-hote I-golf	1241.9952	
28	DeltaRig	Alpharig	Kilo-julieta	894.251	
29	DeltaRig	Betarig	Kilo-julieta	578.3857	
30	DeltaRig	Charlierig	Kilo-julieta	508.0115	

5. Resultados comparando viajes en la simulación con los proporcionados en el historial del archivo .csv

Hamburgo a Charlie

Embarcacion rapida

5 dias y 9 horas

Hamburgo a Betta 4 dias y 3 horas

Embarcacion rapida

Roterdam a Betta - 5 días - 2 horas

Embarcacion Medina

ı				-				
ı	1/15/2021 8:00	BetaRig	DryBulk	2900	1/21/2021 20:14	2900	150B	RotterdamPort
	1/15/2021 8:00	BetaRio	Pine	12	1/22/2021 0:02	12	150C	RotterdamPort

Desafío #1

El tiempo en sistema es de 73 horas 35 min	El tiempo en sistema es de 237 horas 30 min

En base a la reducción de la distancias entre las plataformas de norte y central, se pudo observar una disminución de 2/3 del tiempo requerido para la entrega del material en la condición actual.

Desafío #2

Resultados finales de costos agrupados por el tipo de embarcación y su sumatoria final, los de la izquierda son los costos con la estructura inicial del modelo propuesto en los que se paga por el tiempo de alquiler del barco y los dias que este se usa y los de la derecha con otra propuesta en la que el costo es por alquiler del barco fijo mensual y un coste por las millas recorridas por barco.

Conclusión

Luego de implementar el puerto ubicado en Belfast y la ruta que conduce hacia las plataformas de la región norte y central, se concluye que es una opción factible, sin embargo no siempre es viable ya que el costo por cada embarcación por mes, es muy elevado. Por lo cual se propone utilizar este puerto como uno de emergencia, donde lleguen los pedidos que deben ser entregados a la brevedad posible hacia las plataformas norte y central, de ahí que los pedidos menos urgentes se hagan a través de Rotterdam o Hamburgo.

Con respecto a los costos de acuerdo a los resultados obtenidos se puede llegar a la conclusión clara que la mejor opción es la de continuar con la estructura de precios heredada que consiste en pago de alquiler del barco y un pago por los días que se usa el barco, ya que con la forma de pago con el paradigma de millaje recorrido sale bastante más elevado, eso se puede deber a que existe un costo extra por cada milla náutica excedente bastante alto que sube mucho los precios finales.