Week 05 Studio Orders of Growth, Data Abstraction

CS1101S AY21/22 Semester 1 Studio 05E

Yan Xiaozhi (David)
@david_eom
yan xiaozhi@u.nus.edu

Admin

- Contact tracing (QR code + class photo)
- "RA1 is so bloody hard!"
 - NO BELL CURVE!!! If you meet criteria for A, you will get the A
 - Prof Martin is "mean" and wanted to challenge everyone
 - 6% only, please focus on mid-terms
- Mission Beyond the First Dimension due 6th September 2359
- Mastery check 1
 - Can PM me and try to book before all of us get busy with mid-terms :(()

Recap

What Is It?

- Limited resources for computational processes
 - Time and space
- Asymptotic analysis and notation
 - Provides abstraction / rough measures of resources used with respect to problem size
 - Big Omega (Ω) / Big Theta (Θ) / Big O (Ο)

Textbook Definition

- Let *n* be a parameter that measures the size of the problem, and *R(n)* be the amount of resources the process requires
- For sufficiently large value of *n*:
 - $\Omega(g(n))$ if $\forall n > n_0$, $\exists k \in \mathbb{R}^+$ such that $R(n) \ge k \cdot g(n)$
 - $\Theta(g(n))$ if $\forall n > n_0$, $\exists k_1, k_2 \in \mathbb{R}^+$ such that $k_1 \cdot g(n) \leq R(n) \leq k_2 \cdot g(n)$
 - O(g(n)) if $\forall n > n_0$, $\exists k \in \mathbb{R}^+$ such that $R(n) \le k \cdot g(n)$
- Huh?

Orders of Growth Summary

- Ω : lower bound (best case?)
- Θ: tight bound
- O: upper bound (worst case?)
- Every algorithm technically has Ω(1) and O(∞)
 - But that does not help with analysis!
 - Often interested in Big O notation
- Will be brought up again in CS2040S, CS3230, CS3233

Things to Take Note

- Constants / Coefficients: disregard
 - O(n) = O(0.5n), O(100000) = O(1)
- Addition: drop minor terms
 - $O(n^2 + 3n + 5) \equiv O(n^2)$
- Multiplication: take product
 - $O(n \cdot log(n) \cdot n) = O(n^2 \cdot log(n))$

When you watch the video at 2x speed to save time but it is still O(n)

Common Functions

Notation	O(1)	O(log n)	O(n)	O(n log n)	O(n²)	O(n ^c)	O(cn)	O(n!)
Name	Constant	Logarithmic	Linear	Log-linear	Quadratic	Polynomial	Exponential	Factorial
e.g.	Look-up table	fast_expt, binary search	expt	Comparison-based sorting		Permutation, combination		Travelling salesman problem with brute force

Big-O Complexity Chart

Elements

Data Abstraction - Pairs

What Is It?

- A kind of data structure
- Does this seem familiar?
 - function pair(x, y) { return $f \Rightarrow f(x, y)$; }
 - function head(p) { return p((x, y) => x); }
 - function tail(p) { $p((x, y) \Rightarrow y);$ }
- Rational number

Data Abstraction - Lists What Is It?

- Another kind of data structure
- "List" of things (number, string, boolean, pair, or even list itself)
 - list(123, "hello", true, list(1, 2, 3), pair("head", "tail"));
- Linked list in C
- Python list, Java Array/ArrayList are not exactly a list

Data Abstraction - Lists

Definition

- Recursive in nature
 - A list is either null or a pair whose tail is a list
 - A list is either null or a pair whose tail is a list)
 - A list is either null or a pair whose tail is (either null or a pair whose tail is (either null or a pair whose tail is a list))
 - ... you get it!

Data Abstraction - Lists

Notations

- list(1, 2, list(3), pair(4, null));
 - Box notation: [1, [2, [[3, null], [[4, null], null]]]
 - list to string
 - List notation: list(1, 2, list(3), list(4))
 - display list (display lists nicely if detected)
 - Box-and-pointer diagram: slash for null
 - draw_data
- [null, null] a pair or list?

Data Abstraction - Lists Length

- Count the number of items in the list
- Nested list?
- Recursive / iterative?
- Head over to Source Academy!

Any Questions?