CS 170 DIS 06

Released on 2019-2-25

1 Horn Formula Practice

Find the variable assignment that solves the following horn formulas:

- 1. $(w \land y \land z) \Rightarrow x, (x \land z) \Rightarrow w, x \Rightarrow y, \Rightarrow x, (x \land y) \Rightarrow w, (\bar{w} \lor \bar{x} \lor \bar{y}), (\bar{z})$
- 2. $(x \land z) \Rightarrow y, z \Rightarrow w, (y \land z) \Rightarrow x, \Rightarrow z, (\bar{z} \lor \bar{x}), (\bar{w} \lor \bar{y} \lor \bar{z})$

Solution:

- 1. Set everything to false initially
 - x must be true since we have the statement $\Rightarrow x$
 - y must be true since $x \Rightarrow y$
 - w must be true since $(x \land y) \Rightarrow w$
 - Not all negative clauses are satisfied at this point, so there is no satisfying assignment.
- 2. z must be true since we have the statement $\Rightarrow z$.
 - w must be true since $z \Rightarrow w$
 - x and y need not be changed, as all our implications are satisfied.
 - All negative clauses are now satisfied, so we've found our satisfying assignment.

2 Longest Huffman Tree

Under a Huffman encoding of n symbols with frequencies f_1, f_2, \ldots, f_n , what is the longest a codeword could possibly be? Give an example set of frequencies that would produce this case, and argue that it is the longest possible.

Solution: The longest codeword can be of length n-1. An encoding of n symbols with n-2 of them having probabilities $1/2, 1/4, \ldots, 1/2^{n-2}$ and two of them having probability $1/2^{n-1}$ achieves this value. No codeword can ever by longer than length n-1. To see why, we consider a prefix tree of the code. If a codeword has length n or greater, then the prefix tree would have height n or greater, so it would have at least n+1 leaves. Our alphabet is of size n, so the prefix tree has exactly n leaves.

3 Proof of Huffman Coding

In this question, we will prove that Huffman coding indeed produces the best prefix-free code for a given set of characters and associated frequencies. Recall that we are given as input a set of characters c_1, \ldots, c_n and frequencies f_1, \ldots, f_n and the goal is produce a binary tree T where the leaves of the tree correspond to the characters c_i which is as efficient as possible. That is, the tree produced should minimize $\sum_{i=1}^n f_i d_T(c_i)$ where $d_T(c_i)$ denotes the depth of c_i in the tree, T. For this question, we will view Huffman coding as a recursive algorithm which proceeds along the following lines:

- 1. Merge the two characters with the lowest frequencies, say c_1 and c_2 , to produce a "meta-character", (c_1, c_2) .
- 2. Run the Huffman tree procedure on the set of characters $(c_1, c_2), c_3, \ldots, c_n$ with frequencies $(f_1 + f_2), f_3, \ldots, f_n$.
- 3. Let the tree obtained in the previous step be T^{\dagger} . Replace the node corresponding to (c_1, c_2) with an internal node with two children c_1 and c_2 to produce the final tree T.
- (a) For the first part of the question, we will prove that every internal node of the optimal tree, T^* , has two children. (*Hint: Does a violation of this property create a contradiction?*)
- (b) Now, let c_1 and c_2 be the two characters with the lowest frequencies. Prove that the cost of the optimal tree, T^* , can only reduce if c_1 and c_2 are made siblings in the lowest leaves of the tree.
- (c) Conclude via induction that Huffman coding indeed produces the optimal tree. (Hint: Can you relate the cost of the tree, T, produced by Huffman coding to the cost of T^{\dagger} ?)

Solution:

- (a) Suppose for the sake of contradiction that the internal node v does not have two children. Let c and p be the child and parent of v respectively. We can now improve the cost of T^* by simply deleting the internal node v and connecting c directly to p as all the descendants of v decrease their depths by 1.
- (b) Let c_i, c_j be siblings in the two lowest leaves of T^* satisfying without loss of generality $f_i \leq f_j$. Therefore, we have $f_1 \leq f_i$ and $f_2 \leq f_j$. Let T' be formed by exchanging the positions of c_i with c_1 and c_j with c_2 . Let $C_T = \sum_{i=1}^n f_i d_T(c_i)$ denote the cost of tree T. We now have $C_{T'} C_{T^*} = (f_1 f_i)(d_{T^*}(c_i) d_{T^*}(c_1)) + (f_2 f_j)(d_{T^*}(c_j) d_{T^*}(c_2))$. Since $f_1 \leq f_i$ and $f_2 \leq f_j$ and the fact that c_i and c_j occupy the two lowest leaves in T^* , $C_{T'} C_{T^*} \leq 0$. Therefore, T' is also an optimal tree as its cost is at most that of T^* .
- (c) To conclude the proof of correctness of Huffman coding, let P(k) be the statement that Huffman coding produces an optimal tree given any set of k characters and frequencies.

Base Case: The base case when k = 1 is trivially true.

Inductive Step: We will prove P(n) holds true assuming P(n-1) is true. First, let T^{\dagger} be the tree produced by the Huffman coding algorithm with input $(c_1, c_2), \ldots, c_n$ with frequencies $(f_1 + f_2), \ldots, f_n$ and let $C_{T^{\dagger}} = (f_1 + f_2)d_{T^{\dagger}}((c_1, c_2)) + \sum_{i=3}^n d_{T^{\dagger}}(c_i)f_i$ (That is $C_{T^{\dagger}}$ is the cost of T^{\dagger} with the n-1 character set given as input.). Therefore, the cost, C_T of the tree returned by Huffman coding is $C_T = C_{T^{\dagger}} + (f_1 + f_2)$.

Now, consider the optimal tree, T^* for the n character input. From the previous part, we can assume that c_1 and c_2 are siblings occupying the two lowest leaves, l_1 and l_2 in T^* with parent p. We can obtain from T^* a tree T^{\ddagger} over the n-1 characters $(c_1+c_2),\ldots,c_n$ with frequencies $(f_1+f_2),\ldots,f_n$ by deleting v and its children and replacing it with a single node for (c_1,c_2) . We have by the same argument as before, $C_{T^*}=C_{T^{\ddagger}}+(f_1+f_2)$.

Putting the results together, we get:

$$C_T - C_{T^*} = C_{T^{\dagger}} - C_{T^{\ddagger}} \le 0$$

where we know $C_{T^{\dagger}} \leq C_{T^{\ddagger}}$ as T^{\dagger} is the optimal tree for the n-1 character set from the inductive hypothesis.