Computer Graphics - Line & Polygon Clipping

Junjie Cao @ DLUT Spring 2018

http://jjcao.github.io/ComputerGraphics/

The Graphics Pipeline, Revisited

- Must eliminate objects that are outside of viewing frustum
- Clipping: object space (eye coordinates)
- Scissoring: image space (pixels in frame buffer)
 - most often less efficient than clipping
- We will first discuss 2D clipping (for simplicity)
 - OpenGL uses 3D clipping

Clipping Against a Frustum

General case of frustum (truncated pyramid)

Perspective Normalization

- Solution: Clip against resulting cube
 - Implement perspective projection by perspective normalization and orthographic projection
 - Perspective normalization is a homogeneous transformation

OpenGL uses $-1 \le x,y,z \le 1$ (others possible)

2D Clipping Problem

Clipping Against Rectangle in 2D

• Line-segment clipping: modify endpoints of lines to lie within clipping

rectangle

• The result (in red)

Clipping Against Rectangle in 2D

- Could calculate intersections of line segments with clipping rectangle
 - expensive, due to floating point multiplications and divisions
- Want to minimize the number of multiplications
 and divisions

Several practical algorithms for clipping

- Main motivation:
 - Avoid expensive line-rectangle intersections (which require floating point divisions)
- Cohen-Sutherland Clipping (1967)
- Liang-Barsky Clipping
- There are many more (but many only work in 2D)

Cohen-Sutherland Clipping – 1967 flight simulation

Clipping rectangle is an intersection of 4 half-planes

- Encode results of four half-plane tests
- Generalizes to 3 dimensions (6 half-planes)

Outcodes (Cohen-Sutherland)

- Divide space into 9 regions
- 4-bit outcode determined by comparisons (TBRL)

Cases for Outcodes

Outcomes: accept, reject, subdivide

Cohen-Sutherland Subdivision

- Pick outside endpoint (o ≠ 0000)
- Pick a crossed edge (o = b0b1b2b3 and bk ≠ 0)
- Compute intersection of this line and this edge
- Replace endpoint with intersection point
- Restart with new line segment
 - Outcodes of second point are unchanged
- This algorithms converges

Cohen-Sutherland Line-Clipping (example)

Cohen-Sutherland Line-Clipping (example)

Cohen-Sutherland Line-Clipping

Clip order: Left, Right, Bottom, Top

Cohen-Sutherland in 3D

Use 6 bits in outcode

- b4: Z > Zmax

- b5: Z < Zmin

 Other calculations as before

Cohen-Sutherland Line-Clipping

- Advantages:
 - Simple to program
 - Extends to 3-D cubic volumes
 - Efficient when most of the lines to be clipped are either rejected or accepted (not so many subdivisions).

- Disadvantages:
 - Fixed-order decision can do needless work
 - Can improve using more regions (Nicholl-Lee-Nicholl Alg)
- Parametric clipping are more efficient.

- You-Dong Liang (梁友栋) is a <u>mathematician</u> and <u>educator</u>, best known for his contributions in <u>geometric modeling</u> and the <u>Liang-Barsky algorithm</u>.
- Born on July 19, 1935
- Design Liang-Barsky clipping when he is 49

- Liang, Y.D., and Barsky, B., "A New Concept and Method for Line Clipping", **ACM Transactions on Graphics**, 3(1):1-22, January **1984**.
- Liang, Y.D., B.A., Barsky, and M. Slater, Some Improvements to a Parametric Line Clipping Algorithm, CSD-92-688, Computer Science Division, University of California, Berkeley, 1992.
- Fu-Chung Huang, Gordon Wetzstein, Brian A. Barsky, and Ramesh Raskar. "Eyeglasses-free Display: Towards Correcting Visual Aberrations with Computational Light Field Displays", *Proceedings of ACM SIGGRAPH 2014*, Vancouver, 10-14 August 2014, *ACM Transactions on Graphics (TOG)*, Volume 33, Issue 4, July 2014, Article No. 59.

Parametric form - Liang-Barsky Clipping

A line segment with endpoints

$$(x_0, y_0)$$
 and (x_{end}, y_{end})

we can describe in the parametric form

$$x = x_0 + u\Delta x$$

$$y = x_0 + u\Delta y$$
 $0 \le u \le 1$

where

$$\Delta x = x_{end} - x_0$$
$$\Delta y = y_{end} - y_0$$

 Liang-Barsky asks: for what values of u does a line segmen enter or exit the bounds?

 There can be, at most, two of each; we care about the maximum entry value and the minimum exit value

$$x = x_0 + u\Delta x$$
$$y = x_0 + u\Delta y$$

Line 1: max entry < 0, min exit > 1 - accept

Line 2: max entry > 1, min exit > 1 — reject

Line 3: max entry < 0, min exit < 0 - reject

Line 4: $\max \text{ entry} > \min \text{ exit } - \text{ reject }$

Line 5: max entry > 0, min exit < 1, max entry $< \min$ exit - clip

A line is inside clipping region for values of u such that:

$$xw_{\min} \le x_0 + u\Delta x \le xw_{\max}$$
 $\Delta x = x_{\text{end}} - x_0$
 $yw_{\min} \le y_0 + u\Delta y \le yw_{\max}$ $\Delta y = y_{\text{end}} - y_0$

Can be described as

$$u p_k \le q_k$$
, $k = 1, 2, 3, 4$

The infinitely line intersect the clip region edges when

$$u_k = \frac{q_k}{p_k} \text{ where } \begin{cases} p_1 = -\Delta x & q_1 = x_0 - xw_{\min} \\ p_2 = \Delta x & q_2 = xw_{\max} - x_0 \\ p_3 = -\Delta y & q_3 = y_0 - yw_{\min} \\ p_4 = \Delta y & q_4 = yw_{\max} - y_0 \end{cases} \quad \text{Eff boundary} \quad \text{Bottom boundary} \quad$$

- Liang-Barsky asks: for what values of u does a line segment enter or exit the bounds?
- How to measure enter or exit via pk, qk instead of u?

$$\Delta \mathbf{x} = x_{end} - x_0$$

$$p_1 = -\Delta x$$
 $q_1 = x_0 - x w_{\text{min}}$

$$p_1 = -\Delta x$$
 $q_1 = x_0 - xw_{\min}$ Left boundary

$$p_2 = \Delta x$$
 $q_2 = xw_{\text{max}} - x_0$ Right boundary

$$p_3 = -\Delta y \quad q_3 = y_0 - y w_{\min}$$

Bottom boundary

$$p_4 = \Delta y \qquad q_4 = y w_{\text{max}} - y_0$$

Top boundary

- When $p_k < 0$, as u increases
 - line goes from outside to inside entering
- When $p_k > 0$,
 - line goes from inside to outside exiting
- When $p_k = 0$,
 - line is parallel to an edge

If there is a segment of the line inside the clip region, a sequence of infinite line intersections must go:

Entering, entering, exiting, exiting.

Conditions

- If (pk =0) parallel line to one of the clipping edge
 - (qk <0) outside, reject
 - (qk ≥0) inside

- If (pk <0) from outside to inside
 - Intersection at: t_1 = qk/pk (OIP)
- If (pk >0) from inside to outside
 - Intersection at: t_2 = qk/pk (IOP)

Key Insight: we need to find two intersection points, one OIP, one IOP.

Intersection Point Computation

- For $(p_k < \theta)$ (Outside to inside point)
 - $r_k = q_k/p_k$
 - \blacksquare OIP $t_1 = \max(r_k, \theta)$
- For $(p_k > 0)$ (Inside to outside point)
 - $r_k = q_k/p_k$
 - $\blacksquare \mathsf{IOP}\ t_2 = \mathsf{min}(r_k,\ 1)$
- If $(t_1 > t_2)$, complete outside, REJECT
- Else clipped line is between (t_1,t_2)

Example Liang-Barsky

10,0

$$u_{left} = \frac{q_1}{p_1} = \frac{x_0 - xw_{min}}{-\Delta x} = \frac{-5 - 0}{-(15 - (-5))} = \frac{1}{4} \quad \text{Entering } \implies u_{min} = 1/4$$

 $P_0(-5,3)$

Entering
$$\square = 1/4$$

$$u_{right} = \frac{q_2}{p_2} = \frac{xw_{max} - x_0}{\Delta x} = \frac{10 - (-5)}{15 - (-5)} = \frac{3}{4}$$
 Exiting $u_{max} = 3/4$

Exiting
$$\square \Rightarrow u_{max} = 3/4$$

$$u_{bottom} = \frac{q_3}{p_3} = \frac{y_0 - yw_{min}}{-\Delta y} = \frac{3 - 0}{-(9 - 3)} = -\frac{1}{2}$$
 u < 0 then ignore

$$u_{top} = \frac{q_4}{p_4} = \frac{yw_{max} - y_0}{\Delta y} = \frac{10 - 3}{9 - 3} = \frac{7}{6}$$

u > 1 then ignore

• We have $u_{min} = 1/4$ and $u_{max} = 3/4$

$$P_{\text{end}} - P_0 = (15+5,9-3) = (20,6)$$

 $\Delta x \Delta y$

- If u_{min} < u_{max}, there is a line segment
 - compute endpoints by substituting u values
- Draw a line from

$$(-5+(20)\cdot(1/4), 3+(6)\cdot(1/4))$$

to

$$(-5+(20)\cdot(3/4), 3+(6)\cdot(3/4))$$

Example **Liang-Barsky**

$$u_{left} = \frac{q_1}{p_1} = \frac{x_0 - xw_{min}}{-\Delta x} = \frac{-8 - 0}{-(2 - (-8))} = \frac{4}{5}$$
 Entering $u_{min} = 4/5$

Entering
$$\square$$
 $u_{min} = 4/5$

$$u_{right} = \frac{q_2}{p_2} = \frac{xw_{max} - x_0}{\Delta x} = \frac{10 - (-8)}{2 - (-8)} = \frac{9}{5}$$
 $u > 1$ then ignore

$$u > 1$$
 then ignore

$$u_{bottom} = \frac{q_3}{p_3} = \frac{y_0 - yw_{min}}{-\Delta y} = \frac{2 - 0}{-(14 - 2)} = -\frac{1}{6}$$
 $u < 0$ then ignore

$$u < 0$$
 then ignore

$$u_{top} = \frac{q_4}{p_4} = \frac{yw_{max} - y_0}{\Delta y} = \frac{10 - 2}{14 - 2} = \frac{2}{3}$$
 Exiting $\Longrightarrow u_{max} = 2/3$

Exiting
$$\square \Rightarrow u_{max} = 2/3$$

• We have $u_{min} = 4/5$ and $u_{max} = 2/3$

$$P_{end} - P_0 = (2+8, 14-2) = (10, 12)$$

u_{min} > u_{max} ,
 there is no line segment do draw

Summary: Liang-Barsky

• (x,y) coordinates are only computed for the two final intersection points

At most 4 parameter values (division) are computed

This is a non-iterative algorithm

Can be extended to 3-D

Line-Segment Clipping Assessment

- Cohen-Sutherland
 - Works well if many lines can be rejected early
 - Recursive structure (multiple subdivisions) is a drawback
- Liang-Barsky
 - Avoids recursive calls
 - Many cases to consider (tedious, but not expensive)
 - In general much faster than Cohen-Sutherland

Outline

- Line-Segment Clipping
 - Cohen-Sutherland
 - Liang-Barsky
- Polygon Clipping
 - Sutherland-Hodgeman
 - Weiler-Atherton

Polygon Clipping

- Clipping polygons complicates the problem because we have to take account the enclosed area
- Also, where line segment clipping always maps two points to two (possibly other) points, polygon clipping may actually change the number of points after clipping

Concave Polygons

- Approach 1: clip, and then join pieces to a single polygon
 - often difficult to manage

- Approach 2: tesselate and clip triangles
 - this is the common solution

Sutherland-Hodgeman (part 1)

- Subproblem:
 - Input: polygon (vertex list) and single clip plane
 - Output: new (clipped) polygon (vertex list)
- Apply once for each clip plane
 - 4 in two dimensions
 - 6 in three dimensions
 - Can arrange in pipeline

Sutherland-Hodgeman (part 2)

- To clip vertex list (polygon) against a half-plane:
 - Test first vertex. Output if inside, otherwise skip.
 - Then loop through list, testing transitions
 - In-to-in: output vertex
 - In-to-out: output intersection
 - out-to-in: output intersection & vertex
 - out-to-out: no output
 - Will output clipped polygon as vertex list

Can combine with Liang-Barsky idea

Example & problem

- Works fine with convex polygons
- Concave polygons problematic
 - Coincident edges along a clip boundary may be generated as part of the output polygon
 - Such as MN, OL

Could cause problems with polygon filling,

shadows, etc

Weiler-Atherton Polygon Clipping

- Clips concave polygons correctly
 - produces separate polygons for each visible fragment
- Instead of always going around the polygon edges, we also, want to follow window boundaries.
 - For an outside-to-inside pair of vertices, follow the polygon boundary.
 - For an inside-to-outside pair of vertices, follow the window boundary in a clockwise direction.

Example

- outside-to-inside, follow the polygon boundary.
- inside-to-outside, follow the window boundary in a clockwise direction.

1st Iteration:

2nd Iteration:

Subject: a (1) (2) b (3) (4)
$$c \rightarrow 5' \rightarrow d \rightarrow e \rightarrow 6$$
 f

Clip: A B $2 \rightarrow 3'$ C D $6 \rightarrow 5'$ 4 1'

5 revisited so stop out poly

0utput: 5 d e 6

All intersection points visited => Done!

Other Cases and Optimizations

- Curves and surfaces
 - Do it analytically if possible
 - Otherwise, approximate curves / surfaces by lines and polygons
- Bounding boxes
 - Easy to calculate and maintain
 - Sometimes big savings

Summary: Clipping

- Clipping line segments to rectangle or cube
 - Lessen expensive multiplications and divisions
 - Cohen-Sutherland or Liang-Barsky
- Polygon clipping
 - Sutherland-Hodgeman pipeline
 - Weiler-Atherton Polygon Clipping
- Clipping in 3D
 - essentially extensions of 2D algorithms