2. Множества

"Множество множества"

Октомври 2024

1 Основни задачи

Дефиниция 1.1 (операции върху множества).

- $A \cup B := \{a \mid a \in A \lor a \in B\}$ /обединение/,
- $A \cap B := \{a \mid a \in A \land a \in B\}$ /сечение/,
- $A \backslash B := \{ a \mid a \in A \land a \notin B \} /$ разлика/,
- $A\triangle B \coloneqq \{a \mid a \in A \oplus a \in B\}$ /симетрична разлика/,
- $A \times B := \{(a, b) \mid a \in A \land b \in B\}$ /декартово произведение/,
- $\overline{A^U}=A^{\complement}\coloneqq \{a\mid a\notin A\land a\in U\}$ /допълнение/, където U ($A\subseteq U$) е някакъв универсум.

Забележка. Най-голям универсум няма! (помислете защо)

Свойство 1.1 (Свойства на операциите върху множества).

- асоциативност на обединението, сечението, сим. разлика: $A \cup B \cup C = A \cup (B \cup C), \ A \cap B \cap C = A \cap (B \cap C), \ A \triangle B \triangle C = A \triangle (B \triangle C)$
- \bullet комутативност на обединението, сечението, сим. разлика: $A\cup B=B\cup A,\ A\cap B=B\cap A,\ A\triangle B=B\triangle A$
- *De Morgan: $\overline{A \cup B} = \overline{A} \cap \overline{B}, \ \overline{A \cap B} = \overline{A} \cup \overline{B}$
- дистрибутивен закон: $A \cup (B \cap C) = (A \cup B) \cap (A \cup C), \ A \cap (B \cup C) = (A \cap B) \cup (A \cap C), \ A \times (B \cup C) = (A \times B) \cup (A \times C)$
- свойства на празното множество и универсума: $A \cup \emptyset = A, \ A \cap \emptyset = \emptyset, \ A \cup U = U, \ A \cap U = A$
- \bullet двойно допълнение: $\overline{\overline{A}} = A$
- поглъщане (absorption): $A \cup (A \cap B) = A, \ A \cap (A \cup B) = A$
- *други полезни: $A \backslash B = A \cap \overline{B}$

Полезно. Забележете, че операциите върху множества (без декартовото) доста напомнят логическите (което не е изненадващо, ако се загледаме в дефинициите им по-горе). Обединението е аналог на дизюнкцията, сечението на конюнкцията, допълнението на негацията, симетричната разлика на изключващото или.

Въпрос: Кое тогава "отговаря" на импликацията?

Всъщност релацията "подмножество" носи подбна информация. По-ясно това става от връзката: $B \subseteq A$ тстк $\forall a[(a \in B) \to (a \in A)].$

Свойство 1.2. Подобно на таблиците на истинност при логиката, тук отново можем да правим таблици на включване, вместо T и F обаче стойностите са 1 (елементът е част от множеството) и 0 (не е част от него).

Малко за парадока са Ръсел: Използваме "множество" като базово понятие, което не дефинираме. Идва обаче въпросът всичко ли може да бъде множество (или по-конкретно всяко нещо, което може да се дефинира като колекция, ли е множество). Известно време се е считало, че може. Оказва се обаче, че такова безраборно ползване на понятието довежда до неконситентност, парадокси. Ето пример с такъв:

Парадокс на Ръсел: Нека $R = \{x \mid x \notin x\}$, тогава за произволно множество y: $y \in R$ тстк $y \notin y$, замествайки y=R: $R\in R\Leftrightarrow R\notin R$, което е виден парадокс. Проблемът тук не е във възможността множество да бъде елемент на себе си, а конкретно в считането на R за множество. За да се избегнат такива противоречия, са установени различни аксиоматични системи, които регулират кое е валидно множество (съответно в тях R не е такова).

Задача 1. Кои от следните са верни?

a)
$$a \in \{\{a\}, b\}$$
 6) $a \subseteq \{a, b\}$

6)
$$a \subseteq \{a, b\}$$

$$B) \ a \subseteq \{a, \{a\}\}$$

в)
$$a\subseteq\{a,\{a\}\}$$
 г) $\{a\}\in\{b,c,a\}$

д)
$$\{a\} \in \{b, \{a, b\}, a\}$$

e)
$$\{a,b\} \subseteq \{a,c,\{a,b\}\}$$

$$\texttt{д}) \ \{a\} \in \{b, \{a, b\}, a\} \qquad \text{ e) } \{a, b\} \subseteq \{a, c, \{a, b\}\} \qquad \texttt{ж}) \ \{a, b\} \subseteq \{a, \{a, b\}, b\} \qquad \texttt{3}) \ \{a, b\} \in \{a, \{a, b\}, b\} \qquad \texttt{3}) \ \{a, b\} \in \{a, \{a, b\}, b\} \qquad \texttt{3}) \ \{a, b\} \in \{a, \{a, b\}, b\} \qquad \texttt{4}$$

$$3) \{a, b\} \in \{a, \{a, b\}, b\}$$

и)
$$\{\{a,b\}\}\in\{a,\{a,b\},b\}$$
 й) $\{\{a,b\}\}\subseteq\{a,b,\{a,b\}\}$ к) $\{a,b\}\in\{a,b\}$ л) $\varnothing\in\{a,b\}$

$$(a, b) \subseteq \{a, \{a, b\}, b\}$$

$$\mathbf{r}$$
) $\alpha \in [a, b]$

$$_{\mathrm{H}})\varnothing\in\varnothing$$

o)
$$\varnothing \subseteq \{a, b\}$$

$$\mathbf{M}) \ \varnothing \in \{a,\varnothing\} \qquad \qquad \mathbf{H}) \ \varnothing \in \varnothing \qquad \qquad \mathbf{O}) \ \varnothing \subseteq \{a,b\} \qquad \qquad \mathbf{\Pi}) \ \{\varnothing\} \subseteq \{a,\varnothing\}$$

$$p) \{\emptyset\} \subseteq \{a\}$$

c)
$$\varnothing \in \{a, b\}$$

T)
$$\{\emptyset\} \in \{a,\emptyset\}$$

p)
$$\{\varnothing\} \subseteq \{a\}$$
 c) $\varnothing \in \{a,b\}$ r) $\{\varnothing\} \in \{a,\varnothing\}$ y) $a \in \mathscr{P}(\{a,b\})$

Решение. Не, не, не, не, не, не, да, да, не, да, не, не, да, не, да, да, не, не, не, не; ■

Задача 2. Нека A е множество. Вярно ли е, че ако $|\mathscr{P}(A)| = 0$, то $A = \varnothing$

Решение. Ако сте се сетили, поздравления, Вие сте майстор на математическата логика. Отговорът е ДА; всъщност степенното множество никога не е празно (все пак ∅ е подмножество на всяко друго), но цялото твърдение е вярно, защото това е (леко скрита) импликация с антецедент $F: \setminus \blacksquare$

Задача 3. Съществува ли множество A, за което $A \cap \mathscr{P}(A^2) \neq \varnothing$? Ако не, обосновете защо, ако да, дайте поне два примера.

Решение. Съществува, ето две възможни:

- $A = \{\varnothing, ...\}$, понеже \varnothing е подмножество на всяко друго, то $\varnothing \in A \cap \mathscr{P}(A^2)$
- $A = \{a, b, \{(a, b)\}\} = \{a, b, \{\{\{a\}, \{a, b\}\}\}\}\$, тогава $(a, b) \in A^2$, окъдето $\{(a, b)\} \in \mathscr{P}(A)$

Задача 4. За множества A, B да се докаже, че $A \setminus B = A \cap \overline{B}$.

Peшение.
$$x \in A \setminus B \equiv (x \in A) \land (x \notin B) \equiv (x \in A) \land (x \in \overline{B}) \equiv x \in (A \cup \overline{B})$$

Задача 5. Ако A, B, C са множества, да се докаже, че $(A \setminus C) \cup (B \setminus C) = (A \cup B) \setminus C$

Peшение.
$$(A \setminus C) \cup (B \setminus C) = (A \cap \overline{C}) \cup (B \cap \overline{C}) = (A \cup B) \cap \overline{C} = (A \cup B) \setminus C$$

Задача 6. Да се докаже, че $A \cap B \subseteq A \cup B$.

Решение. Ето 3 възможни решения:

От нея се вижда, че винаги когато елемент принадлежи на $A \cap B$, то той принадлежи и на $A \cup B$, т.е. $\forall x : (x \in A \cap B) \to (x \in A \cup B)$, откъдето $A \cap B \in A \cup B$.

2 н.) Достатъчно е да докажем, че $\forall x: (x \in A \cap B) \to (x \in A \cup B)$, т.е. $(x \in A \cap B) \to (x \in A \cup B)$ е тавтология. За начало нека за конкретен x, p е съждението $x \in A$, а q е съждението $x \in B$:

$$\begin{array}{l} (x \in A \cap B) \rightarrow (x \in A \cup B) \equiv \\ (x \in A \wedge x \in B) \rightarrow (x \in A \vee x \in B) \equiv \\ (p \wedge q) \rightarrow (p \vee q) \equiv \end{array}$$

$$\neg(p \land q) \lor (p \lor q) \equiv$$

 $\neg p \vee \neg q \vee p \vee q \equiv T \quad \blacksquare$

3 и.) Може да докажем и че е валиден изводът: $\frac{x \in A \cap B}{\therefore x \in A \cup B}$, или $\frac{p \wedge q}{\therefore p \vee q}$:

правило за опростяване правило за добавяне
$$p \wedge q$$
 \vdash $p \vee q$ \blacksquare

Задача 7. Да се докаже, че
$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$
.

Решение. Ако пробваме да решим с таблица, възниква проблем с декартовото произведение - то борави с наредени двойки, което не се вписва в таблицата.

Решаваме с еквивалентни преобразувания: За произволна наредена двойка z:

$$z = (z_1, z_2) \in A \times (B \cup C) \equiv (z_1 \in A) \land (z_2 \in B \cup C) \equiv (z_1 \in A) \land ((z_2 \in B) \lor (z_2 \in C)) \stackrel{\text{дистрибутвиност}}{\equiv} [(z_1 \in A) \land (z_2 \in B)] \lor [(z_1 \in A) \land (z_2 \in C)] \equiv [z \in A \times B] \lor [z \in A \times C] \equiv z \in (A \times B) \cup (A \times C)$$

Тоест произволен елемент приндлежи на лявата страна от условието точно когато приндлежи и на дясната, т.е. двете съвпадат. ■

Задача 8. Да се докаже, че $B \subseteq C$, то $B \setminus C = \emptyset$.

Решение. Ще демонстрираме 3 възможни решения:

Полезно. Когато имаме допълнителни условия (например от вида $B\subseteq C$), задраскваме редове, неотговарящи на условието.

Ето защо в случая се абстрахираме от третия ред на таблицата, който не отговаря на условието (понеже в B има елемент, който не е в C), и разглеждаме само останалите.

В оставащите редове се вижда, че за всеки елемент $x, x \notin B \backslash C$ (навсякъде в последната колона има 0), тоест $B \backslash C = \varnothing$.

2 н.) Допсукаме противното - нека $B \setminus C \neq \emptyset$, т.е. $\exists x \in B : x \notin C$. Тогава обаче $B \nsubseteq C \Rightarrow$ противоречие с условието.

3 н.) Спокойно може да се гледа на условието като на импликация, за която трябва да се докаже, че винаги е вярна (т.е. тавтология).

$$\begin{array}{l} (B\subseteq C)\to (B\backslash C=\varnothing)\equiv \\ \forall x(x\in B\to x\in C)\to \neg\exists y(y\in B\land y\notin C)\equiv \end{array}$$

$$\neg \forall x (x \notin B \lor x \in C) \lor \neg \exists y (y \in B \land y \notin C) \equiv \exists x (x \in B \land x \notin C) \lor \neg \exists y (y \in B \land y \notin C) \equiv \exists x (x \in B \land x \notin C) \lor \neg \exists x (x \in B \land x \notin C) \equiv T \quad \blacksquare$$

Задача 9. Намерете редица от множества $\{A_i\}_{i\in\mathbb{N}}$ такава, че $\forall i\in\mathbb{N}: A_i\subseteq A_{i+1}$, но $\bigcap_{i\in\mathbb{N}}A_i=\varnothing$ *Решение.* това е сравнително тривиален пример от гледна точка на анализа: сечението на отворените интервали $(0,1),(0,\frac{1}{2}),...(0,\frac{1}{n}),...$ е именно празното множество (защо интервалите са множества?)

Задача 10. Вярно ли е, че:

- ако $C \subseteq A \cup B$, то $C \subseteq A \lor C \subseteq B$
- ако $C \subseteq A \cap B$, то $C \subseteq A \wedge C \subseteq B$
- ако $A \subseteq B$, то $\mathscr{P}(A) \subseteq \mathscr{P}(B)$
- $\mathscr{P}(A \cap B) = \mathscr{P}(A) \cap \mathscr{P}(B)$
- $\mathscr{P}(A \cup B) = \mathscr{P}(A) \cup \mathscr{P}(B)$

Решение.

- Невинаги е вярно, ето контрапример: $A = \{1,2\}, B = \{3,4\}, C = \{1,3\}$ (обратната посока обаче винаги е вярна). \blacksquare
- За разлика от предното, това е винаги вярно. За прозиволен елемент $x \in C: x \in C \subseteq (A \cap B) \subseteq A \Rightarrow x \in A$, значи $\forall x \in C: x \in A \Rightarrow C \subseteq A$ аналогично и $x \in C \subseteq (A \cap B) \subseteq B \Rightarrow x \in B \Rightarrow \forall x \in C: x \in B \Rightarrow C \subseteq B$. Получихме $(C \subseteq A) \land (C \subseteq B)$.
- Да. Нека $S \in \mathscr{P}(A)$ е произволно подмножество на A, тогава $S \subseteq A \subseteq B \Rightarrow S \in \mathscr{P}(B)$. Понеже S е произволно, то $\mathscr{P}(A) \subseteq \mathscr{P}(B)$.
- Ще докажем исканото на две части (като покажем, че ляата част се съдържа в дясната и обратно). Нека $S \in \mathscr{P}(A \cap B) \Rightarrow S \subseteq A \cap B \Rightarrow (S \subseteq A) \wedge (S \subseteq B) \Rightarrow (S \in \mathscr{P}(A)) \wedge (S \in \mathscr{P}(B)) \Rightarrow S \in (\mathscr{P}(A) \cap \mathscr{P}(B))$. Това показва, че всеки елемент от лявото множество е и в дясното, откъдето $\mathscr{P}(A \cap B) \subseteq \mathscr{P}(A) \cap \mathscr{P}(B)$. \square Сега наобратно: нека $S \in (\mathscr{P}(A) \cap \mathscr{P}(B)) \Rightarrow (S \in \mathscr{P}(A)) \wedge (S \in \mathscr{P}(B)) \Rightarrow (S \subseteq A) \wedge (S \subseteq B) \Rightarrow S \subseteq A \cap B \Rightarrow S \in \mathscr{P}(A \cap B)$. \blacksquare
- Не е винаги вярно, ето контрапример: $A = \{1\}, B = \{2\}$, тогава $\mathscr{P}(A \cup B) = \mathscr{P}(\{1,2\}) = \{\varnothing, \{1\}, \{2\}, \{1,2\}\}$, докато $\mathscr{P}(A) \cup \mathscr{P}(B) = \{\varnothing, \{1\}, \{2\}\}$.

Задача 11. Нека F е фамилия от n различни подмножества на множество $A, n \geq 2$. Докажете, че съществуват поне n различни множества от вида $A \triangle B, \ A, B \in F$ ($A \triangle B$ е симетричната разлика на множествата).

Решение. Достатъчно е да направим наблюдението, че $A\triangle B \neq A\triangle C$ тстк $B \neq C$ (достатъчна ни е само обратната посока).

Лема: Ако $B \neq C$, то $A \triangle B \neq A \triangle C$

Д-во на лемата: допускаме противното, че $B \neq C$, но $A \triangle B = A \triangle C = S$. От $B \neq C$, б.о.о $\exists x_0 : x_0 \in B \land x_0 \notin C$ (съответно може и наобратно). Сега имаме:

- От една страна $x_0 \in S = A \triangle B$ тстк $x_0 \notin A$ (защото вече занем, че $x_0 \in B$)
- От друга страна $x_0 \in S = A \triangle C$ тстк $x_0 \in A$ (защото вече занем, че $x_0 \notin C$)

Но тогава $x_0 \notin A \Leftrightarrow x_0 \in A$, абсурдно, противоречие с допускането. \square

Ако $A_1,...,A_n$ са множествата от фамилията, то $A_1\triangle A_1,A_1\triangle A_2,...,A_1\triangle A_n$ според лемата са именно n различни множества от искания вид.

Задача 12 (*). Нека $F = \{A_1, A_2 \dots A_k\}$ е фамилия от различни подмножества на A, като |A| = n. Ако всеки две множества от F се пресичат, докажете, че $k \le 2^{n-1}$.

Решение. Да групираме всички възможни подмножества на A (общо 2^{n-1}) по двойки, като всяко да бъде в двойка с допълнението си до A, т.е. произволно подмножество S е в двойка с $A \setminus S$. Това са 2^{n-1} двойки.

Ако $k > 2^{n-1}$, то от принципа на Дирихле (който официално ще вземем след 3 занятия) измежду множествата от фамилията ще има поне две, които са част от една двойка (напр. A_i и $A_j, i \neq j$). Но тогава те не се пресичат, противоречие с допускането, значи $k \leq 2^{n-1}$.

Дефиниция 1.2 (фамилия). Множество от множества наричаме фамилия.

Забележска. Формално в аксиоматичната система ZF протоелементи (прости единици, които изграждат множества) няма, там всички обекти са множества, така че случай, различен от горния, там е невъзможен. Ние обаче считаме, че такива най-прости съставни елементи съществуват.

Дефиниция 1.3 (покритие, разбиване). Фамилия от множества $F = X_1, ..., X_k$ наричаме *покриване* на непразното множество A, ако са изпълнени:

- 1. $\forall i: X_i \subseteq A$ /опционално, следва от 3/,
- 2. $\forall i: X_i \neq \emptyset$,
- 3. $\bigcup_{i=1}^{k} X_i = A;$

Ако освен това е изпълнено: $\forall i \forall j, i \neq j : X_i \cap X_j = \emptyset$, то поркиването се нарича разбиване.

Задача 13. Ако A е множество от множества, докажете, че $A\subseteq \mathscr{P}(\bigcup A)$ (с $\bigcup A$ онзачаваме $\bigcup_{a\in A}a$).

Peшение. Трябва да покажем, че ако $x \in LHS$, то $x \in RHS$. Нека $x \in A$, значи $\bigcup_{a \in A} a = a_1 \dots \cup x \cup \dots \cup a_n$, откъдето $x \subseteq \bigcup A$ (понеже за произволни множества $V \subseteq V \cup W$). От $x \subseteq \bigcup A$ директно следва, че $x \in \mathscr{P}(\bigcup A)$.

Задача 14 (ДР1 И 23). Нека A е множество, а P, R са произволни негови разбивания. Да се докаже, че множеството $F = \{X \cap Y | X \in P \land Y \in R\} \setminus \{\varnothing\}$ също е разбиване на A.

*Въпрос: защо "Ø" е във фигурни скоби?

Решение. Последователно проверяваме по дефиницията. Понеже X,Y са множества, то сечението им е множество, така че F наистина е фамилия от множества (за определеност нека $F = \{F_1, ..., F_k\}$). При това:

- X,Y са елементи от разбиванията P,R на A, така че сеченията им F_i са подмножества на A. \checkmark
- Понеже елемент
тот празно множество е премахнат от фамилията ("\{Ø}"), то всеки елемент
 $F_i \neq \varnothing$. \checkmark
- Сега да покажем, че $\bigcup_{i=1}^k F_i = A$. Разглеждаме конкретен елемент $a \in A$. Понеже P,R са разбивания на A, то съществуват множества $X_0 \in P$ и $Y_0 \in R: a \in X_0 \land a \in Y_0 \Rightarrow a \in X_0 \cap Y_0 = F_0 \Rightarrow a \in \bigcup_{i=1}^k F_i$. С това заключаваме, че всеки елемент от A е "покрит". \checkmark
- Остава да проверим дали $\forall i \forall j, i \neq j: F_i \cap F_j = \varnothing$. По дефиниция $F_t = X \cap Y, (X \in P) \wedge (Y \in R)$, съответно нека $F_i = X_1 \cap Y_1, \ F_j = X_2 \cap Y_2$, където $(X_1, X_2 \in P) \wedge (Y_1, Y_2 \in R)$. Понеже $F_i \neq F_j$, то $(X_1 \neq X_2) \vee (Y_1 \neq Y_2)$. Б.о.о. е изпълнено първото, $X_1 \neq X_2$, нещо повече, тъй като те са част от разбиване, то те не се пресичат, $X_1 \cap X_2 = \varnothing$, но тогава и сечението $F_i \cap F_j = (X_1 \cap Y_1) \cap (X_2 \cap Y_2) = X_1 \cap X_2 \cap Y_1 \cap Y_2 = \varnothing \cap Y_1 \cap Y_2 = \varnothing$. \checkmark

Всички изисквания от дефиницията са изпълнени, значи даденото множество наистина е разбиване.

Задача 15 (*). Нека $F = \{A_1, A_2, ..., A_n\}$ е фамилия от r-елементни множества. Ако сечението на всеки r+1 множества от F е непразно, да се докаже, че и сечението на всички n множества от F е непразно.

Peшение. Последователно (по индукция) ще докажем, че сечението на всеки k от множествата е непразно, където k>r.

База: за k=r+1 сечението на всеки r+1 множества е непразно по условие. \checkmark

И.П: Нека сечението на всеки k, r < k < n множества е непразно.

И.С: Нека $B_1, B_2, ... B_{k+1}$ са произволни множества от фамилията, искаме да докажем, че тяхното сечение също е непразно. Допускаме противното, нека $\bigcap_{i=1}^{k+1} B_i = \emptyset$. От И.П.:

$$B_2 \cap B_3 \cap \dots \cap B_k \cap B_{k+1} = C_1 \neq \emptyset$$

$$B_1 \cap B_3 \cap \dots \cap B_k \cap B_{k+1} = C_2 \neq \emptyset$$

$$\dots$$

 $B_1 \cap B_2 \cap \ldots \cap B_{k-1} \cap B_{k+1} = C_k \neq \emptyset$

Тоест във всяко C_t има елемент от B_{k+1} . Но последното множество е r-елементно и k>r. Тогава от принципа на Дирихле съществуват индекси $i,j;\ 0< i\neq j\leq k$ такива, че множествата C_i,C_j имат общ елемент с $B_{k+1}\Rightarrow C_i\cap C_j\neq\varnothing$ откъдето $B_1\cap\ldots\cap B_{k+1}=[B_1\ldots B_{i-1}\cap B_{i+1}\ldots B_{k+1}]\cap [B_1\ldots B_{j-1}\cap B_{j+1}\ldots B_{k+1}]=C_i\cap C_j\neq\varnothing$, с което индукционната стъпка е завършена. \checkmark

От индукцията директно следва, че сечението на всички n множества е непразно.

Задачи за вкъщи/в общежитието

Задача 1. Да се докаже, че $A = B \Leftrightarrow \mathscr{P}(A) = \mathscr{P}(B)$.

Задача 2. Да се докаже, че $(A \cap B) \times (C \cap D) = (A \times C) \cap (B \times D)$.

Задача 3. (*предложи М. Георгиев) Да се докаже, че за множество $A: \bigcup A \subseteq A$ тстк $A \subseteq \mathscr{P}(A)$. Множество, изпълняващо горните свойства, се нарича *транзитивно*.