THE UNIVERSITY OF SYDNEY SCHOOL OF MATHEMATICS AND STATISTICS

Computer Quiz Week 12

STAT3023/3923/4023: Statistical Inference

Semester 2, 2021

Lecturers: Neville Weber and Michael Stewart

Prepare a PDF (or HTML or Word) report as usual and submit to the Canvas Assignment by 3pm.

Estimating a Poisson mean using squared-error loss

Suppose $\mathbf{X} = (X_1, \dots, X_n)$ consists of iid $\operatorname{Poisson}(\theta)$ random variables with unknown mean $\theta \in \mathbb{R}$. Consider the decision problem of estimating θ with squared-error loss,

$$L(d|\theta) = (d - \theta)^2$$

so that risk of an estimator d(X) is the mean-squared error:

$$R(\theta|d) = E_{\theta} \left\{ [d(\mathbf{X}) - \theta]^2 \right\}.$$

Consider two estimators:

- The maximum likelihood estimator $d_{\text{mle}}(X) = \bar{X}$ (the sample mean).
- The Bayes procedure $d_{\text{conj}}(X)$ using a unit-mean exponential prior (note that this is an example of a *conjugate* prior). The product of the prior and the likelihood is

$$w(\theta) f_{\theta}(\mathbf{X}) = e^{-\theta} \prod_{i=1}^{n} \frac{e^{-\theta} \theta^{X_i}}{X_i!} = \text{const. } e^{-\theta(n+1)} \theta^{(T+1)-1},$$

where $T = \sum_{i=1}^{n} X_i = n\bar{X}$ is the sample total. Since (as a function of θ) this is proportional to a gamma density with shape T+1 and rate n+1, the posterior mean is

$$d_{\text{conj}}(\boldsymbol{X}) = \frac{\text{shape}}{\text{rate}} = \frac{T+1}{n+1}$$

We are going to approximate rescaled risk via simulation and plot it, that is we are going to

- **step 1.** define a vector of θ values;
 - for each θ value, we will
 - generate B samples of size n from that $Poisson(\theta)$ distribution, and obtain the value of the estimators $d_{mle}(X) = \bar{X}$ and $d_{conj}(X)$ for each;
 - obtain the average squared error for each estimator;
 - we will then plot n times the average squared error against θ for both estimators.

We are going to do this for two different sample sizes: n=5 and n=50.

- 1. Define a vector of θ values using th=1:100/10. Define also L.th=length(th), n=5 and define empty vectors nMSE.mle=0 and nMSE.conj=0. Finally define B=10000 as the number of simulation iterations for each θ value (if you computer is very slow you can try making B smaller, say B=1000).
- 2. Write a "double loop". At the j-th iteration of the outer loop,
 - initialise mle=0, conj=0;
 - simulate B samples of size n from the Poisson distribution with mean th[j], obtaining values of each estimator, saving them in the vectors mle and conj respectively;

- compute n times the average mean-squared error between the estimates in mle and th[j] and save it in nMSE.mle[j]; do the same for conj and nMSE.conj[j].
- 3. Plot nMSE.conj (on the vertical axis) against th (on the horizontal axis) using a blue line. Add to this same graph a plot of nMSE.conj against th using a red line. Add an informative heading and legend.
- **4. Comment:** By interpreting the Bayes procedure as a weighted average, explain why $d_{\text{conj}}(X)$ seems to do better than $d_{\text{mle}}(X)$ for some values of θ and worse for others.
- 5. Repeat the loop in question 2 and the plot in question 3 but with a different sample size: n=50.
- **6. Comment:** The mle $d_{\text{mle}}(\mathbf{X})$ is *unbiased* while the Bayes procedure $d_{\text{conj}}(\mathbf{X})$ is *biased*. What asymptotic property is illustrated by the difference between this plot and the one in question 3?