Отчёт по лабораторной работе 2

Первоначальная настройка git

Сидорова Наталья Андреевна

Содержание

1	Цель работы	5
2	Задание	6
3	Теоретическое введение	7
4	Выполнение лабораторной работы	8
5	Выводы	19
Список литературы		20

Список иллюстраций

	Установка ПО	
4.2	Базовая настройка	9
4.3	Ключи SSH	10
4.4	Ключ рдр	11
4.5	Учетная запись	11
4.6	Отпечаток ключа	12
4.7	Добавление ключа	12
4.8	Настройка gh	13
4.9	Автоматические подписи	14
4.10	Репозиторий курса	15
4.11	Настройка каталога	15
4.12	Отправка файлов	16

Список таблиц

1 Цель работы

Изучить идеологию и применение средств контроля версий. Освоить умения по работе c git.

2 Задание

- 1. Зарегистрироваться на Github
- 2. Создать базовую конфигурацию для работы c git
- 3. Создать ключ SSH
- 4. Создать ключ PGP
- 5. Настроить подписи git
- 6. Создать локальный каталог для выполнения заданий по предмету

3 Теоретическое введение

Системы контроля версий применяются при работе нескольких человек над одним проектом. Основное дерево хранится на репозитории. При внесении изменений в содержание проекта система контроля версий позволяет их фиксировать, мовмещать изменения от разных участников проекта.

4 Выполнение лабораторной работы

Установила git и gh (рис. 4.1).

Рис. 4.1: Установка ПО

Произвела базовую настройку git - задала имя и email владельца репозитория, настроила utf-8 в выводе сообщений git, задала имя начальной ветки(master), задала параметр autocrlf и параметр safecrlf (рис. 4.2).

Рис. 4.2: Базовая настройка

Создала ключи SSH - по алгоритму rsa и по алгоритму ed25519 (рис. 4.3).

Рис. 4.3: Ключи SSH

Создала ключ рдр (рис. 4.4).

```
rtualBox
                                    Справка
                                    ки Справка
[root@fedora ~]# gpg --full-generate-key
gpg (GnuPG) 2.3.8; Copyright (C) 2021 Free Software Foundation, Inc.
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.
gpg: создан каталог '/root/.gnupg'
gpg: создан щит с ключами '/root/.gnupg/pubring.kbx'
 Выберите тип ключа:
   (1) RSA and RSA
    (2) DSA and Elgamal
    (3) DSA (sign only)
    (4) RSA (sign only)
   (9) ECC (sign and encrypt) *default*

№0) ECC (только для подписи)
 (14) Existing key from card
 Ваш выбор? 1
 длина ключей RSA может быть от 1024 до 4096.
 (акой размер ключа Вам необходим? (3072) 4096
 Вапрошенный размер ключа - 4096 бит
Выберите срок действия ключа.

0 = не ограничен

<n> = срок действия ключа - n дней
       <n>w = срок действия ключа - п недель
       <n>m = срок действия ключа - n месяцев
       <n>y = срок действия ключа - n лет
 Срок действия ключа? (0) 0
 Срок действия ключа не ограничен
Все верно? (y/N) y
 SnuPG должен составить идентификатор пользователя для идентификации ключа.
 Ваше полное имя: Natalia
Адрес электронной почты: nsmails@mail.ru
```

Рис. 4.4: Ключ рдр

Учетная запись на Github уже была создана (рис. 4.5).

Рис. 4.5: Учетная запись

Скопировала отпечаток приватного ключа (рис. 4.6).

Рис. 4.6: Отпечаток ключа

Добавила скопированный ключ в Github (рис. 4.7).

Рис. 4.7: Добавление ключа

Настроила gh (рис. 4.8).

Рис. 4.8: Настройка gh

Настроила автоматические подписи коммитов git (рис. 4.9).

```
rtualBox
                                          Справка
                                         ядки Справка
                                        a regular user's session is not supported. ($XAUTHORITY is
81: iceweasel: команда не найдена
81: seamonkey: команда не найдена
                                      81: mozilla: команда не найдена
ъ81: ерірhапу: команда не найдена
 usr/bin/xdg-open: строка 881: konqueror: команда не найдена
usr/bin/xdg-open: строка 881: chromium: команда не найдена
usr/bin/xdg-open: строка 881: chromium-browser: команда не найдена
usr/bin/xdg-open: строка 881: google-chrome: команда не найдена
/usr/bin/xdg-open: строка 881: www-browser: команда не найдена
/usr/bin/xdg-open: строка 881: links2: команда не найдена
usz/bin/xdg-open: строка 881: elinks: команда не найдена
/usz/bin/xdg-open: строка 881: elinks: команда не найдена
usr/bin/xdg-open: строка 881: lynx: команда не найдена
usr/bin/xdg-open: строка 881: w3m: команда не найдена
 dg-open: no method available for opening 'https://github.com/login/device'
Failed opening a web browser at https://github.com/login/device
  please try entering the URL in your browser manually
root@fedora ~]# gh auth login
? What account do you want to log into? GitHub.com
? What is your preferred protocol for Git operations? SSH
? Upload your SSH public key to your GitHub account? /root/.ssh/id_rsa.pub
? Title for your SSH key: GitHub CLI
? How would you like to authenticate GitHub CLI? Paste an authentication token
Tip: you can generate a Personal Access Token here https://ocens.com/settings/tokens
 gh config set -h github.com git_protocol ssh
  Configured git protocol
 Uploaded the SSH key to your GitHub account: /root/.ssh/id_rsa.pub
Logged in as Natalia-Sidorova
 root@fedora ~]# git config --global user.signingkey BBA4CAD4795639DC
root@fedora ~]# git config --global commit.gpgsign true
                                          --global gpg.program $(which
```

Рис. 4.9: Автоматические подписи

Создала репозиторий курса на основе шаблона (рис. 4.10).

```
maillox
Crystal
Authority Crystal
Si: Links; konseque ne Margene
Si: Links; konseque ne
Si
```

Рис. 4.10: Репозиторий курса

Настроила каталог курса (рис. 4.11).

```
Command Comman
```

Рис. 4.11: Настройка каталога

Отправила файлы на сервер (рис. 4.12).

```
Trustance in the control of the cont
```

Рис. 4.12: Отправка файлов

Ответы на контрольные вопросы:

Что такое системы контроля версий (VCS) и для решения каких задач они предназначаются? Система контроля версий - ПО для облегчения работы с изменяющейся информацией. Система управления версиями позволяет хранить несколько версий одного и того же документа, при необходимости возвращаться к более ранним версиям. Системы контроля версий применяются для хранения полной истории изменений, причин всех производимых изменений, откат изменений, поиск причины ошибок в программе, совместная работа группы над проектом.

Объясните следующие понятия VCS и их отношения: хранилище, commit, история, рабочая копия. Репозиторий - хранилище версий. В нем хранятся все документы с историей их изменения, а также другая служебная информация. Commit - отслеживание изменений, сохраняет разницу в изменениях. Рабочая копия - копия проекта, связанная с репозиторием (текущее состояние файлов

проекта) История - хранит все изменения в проекте и позволяет обратиться к необходимым данным.

Что представляют собой и чем отличаются централизованные и децентрализованные VCS? Приведите примеры VCS каждого вида. Централизованные VCS - Subversion, CVS, TFS, VAULT, AccuRev: одно основное хранилище всего проекта, каждый пользователь копирует себе необходимые файлы, изменяет их и добалвяет эти изменения обратно. Децентрализованные VCS - Git, Mercurial, Bazaar: у каждого пользователя свой вариант репозитория, есть возможность добавлять и забирать изменения из любого репозиторияБ в классических системах контроля версий используется централизованная модель, предполагающая наличие единого репозитория для хранения файловБ центральный репозиторий не является обязательным, выполнение большинства функций по управлению версиями осуществляется специальным сервером.

Опишите действия с VCS при единоличной работе с хранилищем. Создаем и подключаем удаленный репозиторий. Затем по мере изменения проекта отправляем изменения на сервер.

Опишите порядок работы с общим хранилищем VCS. Пользователь преред началом работы получает нужную ему версию файлов. После внесения изменений пользователь размещает новую версию в хранилище. Предыдущие версии не удаляются.

Каковы основные задачи, решаемые инструментальным средством git? Хранить информацию о всех изменениях в коде и обеспечение удобства командной работы над кодом.

Назовите и дайте краткую характеристику командам git. git init создание основого дерева репозитория git pull получение изменений текущего дерева из центрального репозитория git push - отправка всех произведенных изменений локального дерева в центральный репозиторий git status - просмотр списка измененных файлов в текущей директории git diff - просмотр текущих изменений git add. - добавить измененные файлы/каталоги git rm - удаление файла/ката-

лога из индекса репозитория git commit -am'Oписание коммита' - сохранить все добавленные изменения и все измененные файлы git checkout -b имя ветки - создание новой ветки, базирующейся на текущей git push origin имя ветки - отправка изменений конкретной ветки в центральный репозиторий git merge -no-ff имя ветки - слияние ветки с текущим деревом git branch -d имя ветки - удаление локальной уже слитой с основным деревом ветки git branch -D имя ветки - принудительное удаления локальной ветки git push origin:имя ветки - удаление ветки с центрального репозитория

Приведите примеры использования при работе с локальным и удалённым репозиториями. git push -all(push origin master/branch)

Что такое и зачем могут быть нужны ветви (branches)? Ветвление - один из параллельных участков истории в одном хранилище, исходящих из одной версии. Обычно есть главная ветка (ствол), между ветками возможно слияние. Используются для разработки новых функций.

Как и зачем можно игнорировать некоторые файлы при commit? Во время работы над проектом могут создаваться файлы, которые не требуется добавлять в репозиторий. Можно прописать шаблоны игнорируемых при добавлении в репозиторий типов файлов в файл .gitignore.

5 Выводы

В ходе проделанной работы я изучила средства контроля версий и научилась применять их, освоила работу с git, научилась подключать репозитории, добавлять и удалять файлы.

Список литературы

- 1. О системе контроля версий [Электронный ресурс]. 2016. URL: https://git-scm.com/book/ru/v2/Введение-О-системе-контроля-версий.
- 2. Системы контроля версий [Электронный ресурс]. 2016. URL: http://uii.mpei.ru/study/courses. ::: {#refs} :::