

¹Атворы: maxmartynov08, K-dizzled, SmnTin, muldrik

Оглавление

1	Вве	едение
	1	Множества
	2	Отношения
	3	Аксиомы вещественных чисел
	4	Принцип математической индукции
		4.1 Рациональные и иррациональные числа в интервале
	5	Супремум и инфимум
	6	Теорема о вложенных отрезках
2	Пос	следовательности вещественных чисел
	1	Метрические пространства и подпространства
	2	Открытые множества

Глава 1

Введение

1 Множества

Определение 1. Множество - набор уникальных элементов

Множества - большие буквы A, B, \dots

Элементы множеств - маленькие буквы a, b, \dots

 $x \in A - x$ пренадлежит A

 $x \notin A - x$ не пренадлежит A

 $\mathbb{N} = \{1, 2, 3, \dots\}$

 $\mathbb{Z}, \mathbb{Q} = \{ \frac{m}{n} : m \in \mathbb{Z}, n \in \mathbb{N} \}$

 \mathbb{R} - вещественные числа

 \mathbb{C} - комплексные числа

Теорема. Правила Де Моргана

$$A \setminus (\bigcup_{\alpha \in I} B_{\alpha}) = \bigcap_{\alpha \in I} (A \setminus B_{\alpha})$$

$$A \setminus (\bigcap_{\alpha \in I} B_{\alpha}) = \bigcup_{\alpha \in I} (A \setminus B_{\alpha})$$

Доказательство. Докажем для первой формулы. Вторая доказывается аналогично.

Доказательство. Докажем для первой формулы. Вторая доказывается аналогично.
$$x \in A \setminus (\bigcup_{\alpha \in I} B_{\alpha}) \Longleftrightarrow \begin{cases} x \in A \\ x \notin \bigcup_{\alpha \in I} B_{\alpha} \end{cases} \iff \begin{cases} x \in A \\ x \notin B_{\alpha} \end{cases} \text{ при всех } \alpha \end{cases}$$

$$\alpha \in I \Longleftrightarrow x \in \bigcap_{\alpha \in I} (A \setminus B_{\alpha})$$

Теорема. Операции над множествами

• $A \cup B = \{x : x \in A \text{ или } x \in B\}$

$$\bullet \ A \cap B = \{x : x \in A, x \in B\}$$

•
$$A \setminus B = \{x : x \in A, x \notin B\}$$

•
$$A \triangle B = (A \setminus B) \cup (B \setminus A)$$

3амечание - \triangle , \cup , \cap - комммутативны, ассоциативны

Определение 2. Декартово произведение множеств $A \times B = \{ \langle a, b \rangle : a \in A; b \in B \}$

Теорема.

$$A \cap \bigcup_{\alpha \in I} B_{\alpha} = \bigcup_{\alpha \in I} (A \cap B_{\alpha})$$

$$A \cup \bigcap_{\alpha \in I} B_{\alpha} = \bigcap_{\alpha \in I} (A \cup B_{\alpha})$$

Доказательство.
$$x \in A \cap \bigcup_{\alpha \in I} B_{\alpha} \Longleftrightarrow \begin{cases} x \in A \\ x \in \bigcup_{\alpha \in I} B_{\alpha} \end{cases} \iff \begin{cases} x \in A \\ x \in B_{\alpha} \text{ для некоторых } \alpha \in I \end{cases} \Longleftrightarrow$$

$$x \in A \cap B_{\alpha}$$
 для некоторых $\alpha \in I \Longleftrightarrow x \in \bigcup_{\alpha \in I} (A \cap B_{\alpha})$

Определение 3. Упорядоченная пара $\langle a,b \rangle$ - пара "пронумерованных" элементов

$$\langle a,b\rangle = \langle c,d\rangle$$

$$((a == c) && (b == d))$$

2 Отношения

Определение 4. Область определения: $\delta_R = \{x \in A : \exists y \in B, m.ч.\langle x,y \rangle \in \mathbb{Z}\}$

Определение 5. Область значений: $\rho_R = \{y \in B: \exists x \in A, \ m.ч. \langle x,y \rangle \in \mathbb{Z}\}$

$$\delta_{R^{-1}} = \rho_R$$
$$\rho_{R^{-1}} = \delta_R$$

Определение 6. Композиция отношений

$$R_1 \subset A \times B$$
, $R_2 \subset B \times C$, $R_1 \circ R_2 \subset A \times C$

Пример

- $\langle x,y\rangle\in R$, если х отец у
- $\langle x,y\rangle \in R \circ R$, если х дед у
- $\langle x,y \rangle \in R^{-1} \circ R$, если х брат у

• δR — все, у кого есть сыновья

Определение 7. Бинарным отношением R называется подмножество элементов декартова произведения двух множеств $R \subset A \times B$

Элементы $x \in A, y \in B$ находятся в отношении, если $\langle x, y \rangle \in R$ (то же, что xRy)

Обратное отношение $R^{-1} \subset B \times A$

Определение 8. Отношение называется:

- Рефлексивным, если $xRx \ \forall x$
- Симметричным, если $xRy \Longrightarrow yRx$
- Транзитивным, если $xRy, yRz \Longrightarrow xRz$
- Иррефлексивным, если $\neg xRx \forall x$
- Антисимметричным, если $xRy, yRx \Longrightarrow x = y$

Определение 9. *R* является отношением

- 1. Эквивалентности, если оно рефлексивно, симметрично и транзитивно
- 2. Нестрогого частичного порядка, если оно рефлексивно, антисимметрично и транзитивно
- 3. Нестрогого полного порядка, если выполняется п. $2 + \forall x, y$ либо xRy, либо yRx
- 4. Строгого частичного порядка, если оно иррефлексивно и транзитивно
- 5. Строгого полного порядка, если выполняется п. $4 + \forall x, y$ либо xRy, либо yRx

Пример

- $x \equiv y \pmod{m}$ отношение эквивалентности
- X множество, 2^X множество всех его подмножеств
- $\forall x,y \in 2^x: \langle x,y \rangle \in R$, если $x \subsetneq y$ отношение строгого частичного порядка
- Лексикографический порядок на множестве пар натуральных чисел отношение нестрогого полного порядка

Определение 10. Отображение $f: A \longrightarrow B$

- инъективно, если $f(x_1) = f(x_2) \Leftrightarrow x_1 = x_2$
- ullet сюръективно, если $ho_f=B$
- ullet биективно, если f инъективно и сюръективно

3 Аксиомы вещественных чисел

Определение 11. Вещественные числа - алгебраическая структура, над которой определены операции сложения "+" и умножения "·" ($\mathbb{R} * \mathbb{R} \to \mathbb{R}$)

Определение 12. Аксиомы вещественных чисел:

 A_1 Ассоциативность сложения

$$x + (y+z) = (x+y) + z$$

- A_2 Коммутативность сложения x+y=y+x
- A_3 Существование нуля $\exists 0 \in \mathbb{R} : \forall x \in \mathbb{R} \ x + 0 = x$
- A_4 Существование обратного элемента по сложению $\forall x \in \mathbb{R} \ \exists (-x) \in \mathbb{R} : x + (-x) = 0$
- M_1 Ассоциативность умножения $x(y \cdot z) = (x \cdot y)z$
- M_2 Коммутативность умножения xy = yx
- M_3 Существование единицы $\exists 1 \in \mathbb{R} : \forall x \in \mathbb{R} \ x \cdot 1 = x$
- M_4 Существование обратного элемента по умножению $\forall x \in \mathbb{R} \ \exists x^{-1} \in \mathbb{R} : x \cdot x^{-1} = 1$
- M_A Дистрибутивность $(x+y) \cdot z = x \cdot z + y \cdot z$

Вышеперечисленные аксиомы бразуют поле

Бинарное отношение " "

Аксиомы порядка, задающие отношение порядка на множестве вещественных чисел:

5

$$O_1 \ x \leqslant x \quad \forall x$$

$$O_2 \ x \leqslant y$$
 и $y \leqslant x \Longrightarrow x = y$

$$O_3 \ x \leqslant y$$
 и $y \leqslant z \Longrightarrow x \leqslant z$

$$O_4 \ \forall x,y \in \mathbb{R}: x \leqslant y$$
 или $y \leqslant x$

$$O_4 \ x \leqslant y \Longrightarrow x + z \leqslant y + z \quad \forall z$$

$$O_4 \ 0 \leqslant x$$
 и $0 \leqslant y \Longrightarrow 0 \leqslant xy$

Теорема. Аксиома полноты

$$A,B \subset \mathbb{R}: A \neq \varnothing, B \neq \varnothing, \forall a \in A \ \forall b \in B \ a \leqslant b$$

Тогда
$$\exists c \in \mathbb{R} : a \leqslant c \leqslant b \; \forall a \in A \; \forall b \in B$$

Теорема. Принцип Архимеда

Согласно принципу Архимеда: $\forall x \in \mathbb{R}$ и $\forall y_{>0} \in \mathbb{R} \ \exists n \in \mathbb{N} : x < ny$

Доказательство.

$$A = \{a \in \mathbb{R}: \exists n \in \mathbb{N}: a < ny\}, A \neq \varnothing$$
 т.к. $0 \in A$ $B = \mathbb{R} \ \setminus \ A$

Пусть $A \neq \mathbb{R}$, тогда $B \neq \emptyset$ Покажем, что $a \leqslant b$, если $a \in A, b \in B$

Пойдем от противного. Если $b < a < ny \Longrightarrow b < ny \Longrightarrow b \in A$ - противоречие

Таким образом, по аксиоме полноты $\exists c \in \mathbb{R} : a \leqslant c \leqslant b \quad \forall a \in A, \forall b \in B$

Предположим, что $c \in A$. Тогда c < ny для некоторого $n \in \mathbb{N} \Longrightarrow c + y < (n+1)y \Longrightarrow c + y \in A \Longrightarrow c + y \leqslant c \Longrightarrow y \leqslant 0$. Это противоречит условию.

Пусть $c \in B$. Так как y > 0, c - y < c. Так как B - дополненние A и $c - y \neq c, \ c - y \in A \Longrightarrow c - y < ny \Longrightarrow c < (n+1)y \Longrightarrow c \in A$. Снова пришли к противоречию.

Значит
$$c \notin A, c \notin B \Longrightarrow c$$
 не существует $\Longrightarrow B = \varnothing \Longrightarrow A = \mathbb{R}$

Следствие:

$$\forall \varepsilon_{>0} \; \exists n \in \mathbb{N} : \frac{1}{n} < \varepsilon$$

Доказательство.

$$x = 1, y = \varepsilon \Longrightarrow \exists n \in N : 1 < n\varepsilon$$

4 Принцип математической индукции

Определение 13. Принцип математической индукции

 P_n -последовательность утверждений

- 1. P_1 верно
- 2. $\forall n \in \mathbb{N}$ из P_n следует P_{n+1}

Тогда P_n верно при всех $n \in \mathbb{N}$

Теорема. B конечном множестве вещественных чисел есть наибольший и наименбший элемент

Доказательство.

Докажем для максимума. Для минимума рассуждения аналогичны

Будем доказывать утверждение по индукции

Для n=1 - очевидно

Переход $X_n \longrightarrow x_{n+1}$

Рассмотрим произвольное множество из n элементов $X_n = \{x_1, x_2, x_3, \dots x_n\}$, где максимальным элементом является x_i . Пусть в наше множество был добавлен элемент X_{n+1} . В таком случае, если $X_{n+1} > X_i$, то новый максимум равен X_{n+1} , иначе - максимумом по-прежнему является X_i . Таким образом, в любом конечном множестве вещественных чисел существует минимальный элемент.

Следствия:

1. Во всяком непустом множестве натуральных чисел есть наименьший элемент

Доказательство.

Пусть A - множество натуральных чисел, не содержащее наименьшего элемента. Докажем по индукции, что для любого $n \in \mathbb{N}$ мы имеем $\mathbb{N}_n \cap A = \emptyset$

$$\mathbb{N}_n = \{ k \in \mathbb{N} | k \leqslant \mathbb{N} \}$$

Для n=1 утверждение очевидно.

Переход $n \longrightarrow n+1$

Предположим для $\mathbb{N}_n \cap A = \emptyset$

Тогда если для $\mathbb{N}_{n+1} \cap A \neq \emptyset$, то наименьший элемент множества A - это n+1

Значит
$$\mathbb{N}_{n+1} \cap A = \emptyset$$

2. Во всяком конечном непустом множестве натуральных чисел есть наибольший элемент

Доказательство.

Из натуральных чисел строим целые. Множество чисел $A\subseteq \mathbb{Z}$ называется огианиченным сверху и имеет наибольший элемент если $\exists c>a, \forall a\in A, c\in \mathbb{Z}$

4.1 Рациональные и иррациональные числа в интервале

1. Если $x, y \in \mathbb{R}, x < y$, то $\exists r \in \mathbb{Q} : x < r < y$

Доказательство.

Пусть x < 0, y > 0. Тогда $\exists r = 0 \in \mathbb{Q} : x < r < y$

Пусть
$$x \ge 0, y > 0, \varepsilon = x - y$$
. Тогда $\exists n \in \mathbb{N} : \frac{1}{n} < \varepsilon$

По принципу Архимеда найдется такое число m, что $\frac{m-1}{n} \leqslant x < \frac{m}{n}$

Предположим, что $\frac{m-1}{n} \leqslant x < y \leqslant \frac{m}{n}$. Тогда мы получим, что $\frac{1}{n} \geqslant y - x = \varepsilon$. Пришли к противоречию

Следовательно, $\exists m \in \mathbb{N} : x < \frac{m}{n} < y$

Случай $y\leqslant 0$ аналогичен предыдущему

2. Если $x,y \in \mathbb{R}, x < y$, то существует иррациональное число r: x < r < y

Доказательство.

$$x-\sqrt{2} < y-\sqrt{2} \Longrightarrow \exists R \in (x-\sqrt{2},y-\sqrt{2}) \Longrightarrow x < R+\sqrt{2} < y \; (\Pi$$
редыдущий пункт) $\Longrightarrow r$ - иррациональное

3. Если $x \geqslant 1$, то $\exists n \in \mathbb{N} : x - 1 < n \leqslant x$

5 Супремум и инфимум

Определение 14.

x - верхняя граница множества A, если $\forall a \in A : a \leqslant x$

y - верхняя граница множества A, если $\forall a \in A: y \leqslant a$

Множество ограничено снизу, если существует какая-нибудъ нижняя граница

Множество ограничено сверху, если существует какая-нибудь верхняя граница

Определение 15.

 Π усть A - ограниченное сверху множество, тогда supA - наименьшая из его верхних границ

Определение 16.

 Π усть A - ограниченное снизу множество, тогда $\inf A$ - наибольшая из его нижних границ **Теорема.**

- 1. Если $A \subset \mathbb{R}, A \neq \emptyset$ и A ограничено снизу, то существует единсвтенный $\inf A$
- 2. Если $A \subset \mathbb{R}, A \neq \varnothing$ и A ограничено сверху, то существует единсвтенный sup A

Доказательство.

Докажем (2)

Пусть B - множество всех верхних границ множества A, т.е. $\forall a \in A, b \in B : a \leqslant b$

Тогда по аксиоме полноты всегда найдется такой $c:a\leqslant c\leqslant b$

c-supA по определению

Докажем, что c - единсвтенный

Пусть $\exists c_1, c_2 - sup A$

Тогда если $c_1 < c_2$, то $c_2 \neq sup A$

Если $c_1 > c_2$, то $c_1 \neq sup A$

Следовательно, $c_1=c_2=supA\Longrightarrow supA$ - единсвтенный

Следствие:

- 1. $B \subset A, B \neq \emptyset$ и A ограничено снизу. Тогда $infB \geqslant infA$
- 2. $B\subset A, B\neq\varnothing$ и Aограничено сверху. Тогда $supB\leqslant supA$

Доказательство.

Докажем (1)

Пусть a=infA. Тогда a - нижняя граница $A\Longrightarrow \forall x\in A: a\leqslant x\Longrightarrow \forall x\in B: a\leqslant x\Longrightarrow a$ - нижняя граница $B\Longrightarrow a\leqslant infB$

<u>Замечание</u> - Теорема неверна без аксиомы полноты

 $A = \{x \in \mathbb{Q} : x^2 < 2\}$ \Longrightarrow в множестве рациональных чисел у A нет супремума

Теорема.

1.
$$a = infA \iff \begin{cases} a \leqslant x & \forall x \in A \\ \forall \varepsilon > 0 & \exists x \in A : x < a + \varepsilon \end{cases}$$

2.
$$b = supA \iff \begin{cases} b \geqslant x & \forall x \in A \\ \forall \varepsilon > 0 & \exists x \in A : x > b - \varepsilon \end{cases}$$

Замечание

- Если A неограничено сверху, то $sup A = +\infty$
- Если A неограничено снизу, то $inf A = -\infty$

Теорема о вложенных отрезках 6

Теорема.

Если $[a_1, b_1] \supset [a_2, b_2] \supset [a_3, b_3] \supset \dots$ To $\exists c \in \mathbb{R} : c \in [a_n, b_n] \forall n \in \mathbb{N}$

Доказательство.

 $A = \{a_1, a_2, a_3, \dots\}$

$$b = \{b_1, b_2, b_3, \dots\}$$

 $a_i \leqslant b_j, \forall i, j \in \mathbb{N}$

 $\forall i \leqslant j : a_i \leqslant a_j \leqslant b_j \leqslant b_i, \forall i \geqslant j : a_i \geqslant a_j \geqslant b_j \geqslant b_i$

По аксиоме полноты $\forall i,j \in \mathbb{N} \ \exists c \in \mathbb{R} : a_i \leqslant c \leqslant b_j \Longrightarrow \forall i \in \mathbb{N} : a_i \leqslant c \leqslant b_i$

Замечание

1. Теорема неверна для полуинтервалов

Пример:
$$\bigcap_{n=1}^{\infty} (0; \frac{1}{n}] = \emptyset$$

2. Теорема неверна для лучей

Пример:
$$\bigcap_{n=1}^{\infty} (n; +\infty) = \emptyset$$

3. Теорема неверна без аксиомы полноты

Пример: число π

$$[3; 4] \supset [3, 1; 3, 2] \supset [3, 14; 3, 15] \supset \dots$$

Пересечение не содержит рациональных чисел

Глава 2

Последовательности вещественных чисел

1 Метрические пространства и подпространства

Определение 17. X - множество $\rho: X \times X \longrightarrow [0; +\infty)$ - метрика(расстояние) если:

- 1. $\rho(x,x) = 0 \quad \forall x \in X$
- 2. $ecnu \ \rho(x,y) = 0, \ mo \ x = y$
- 3. $\rho(x,y) = \rho(y,x) \quad \forall x,y \in X$
- 4. $\rho(x,y) + \rho(y,z) \geqslant \rho(x,z) \quad \forall x,y,z \in X$

Примеры

1. Дискретная метрика

$$\rho(x, x) = 0$$

$$\rho(x,y)=1,$$
 если $x\neq y$

- $2. \ \mathbb{R} \quad \rho(x,y) = (x-y)$
- $3. \mathbb{R}^2$ обычное расстрояние
- 4. Манхэттенская метрика

$$(x', y') = A'$$

$$(x,y) = A$$

$$\rho(A, A') = |x - x'| + |y - y'|$$

5. Французская железнодорожная метрика

6. Расстояние на сфере

Определение 18. Метрическое пространство $(X, \rho), X$ - множество, ρ - метрика на нем

Определение 19. Подпространство метрического пространства.

 (X, ρ) - метрическое пространство, $Y \subset X$

 $(Y, \rho|_{Y \times Y})$ - подпространство метрического пространства (X, ρ) , где Y - подмножество X, а $\rho|_{Y \times Y}$ - сужение ρ на $Y \times Y$

Определение 20. Открытый шар

иентр шара
$$B(r)(a) := x \in X : \rho(x,a) < r; \quad r > 0$$
 радиус

Определение 21. Замкнутый шар

$$\overline{B_r}(a) := \underline{x} \in X : \rho(x, a) \leqslant r; \quad r \geqslant 0$$

 $B_r(a) \subset \overline{B_r}(a)$

 \bullet Окрестность точки a - открытый шар Br(a)

Примеры

1. Дискретная метрика на X

$$B_{1/2}(a) = a$$

$$B = (a) = X$$

- 2. $\rho(x,y) = |x-y|$ $B_r(a) = (a-r, a+r)$
- 3. Манхэттенская метрика

 $B_r(a)$

Свойства

- 1. $B_r(a) \cap B_R(a) = B_{\min\{r,R\}}(a)$
- 2. Если $x \neq y$, то найдется r > 0, такой, что $\overline{Br}(x) \cap \overline{Br}(y) \neq \varnothing$

Доказательство.

 $r:=rac{
ho(x,y)}{3}$. Пойдем от противного

Пусть
$$c \in \overline{Br}(x) \cap \overline{Br}(y) \Longrightarrow \begin{cases} \rho(x,c) \leqslant r \\ \rho(y,c) \leqslant r \end{cases} \Longrightarrow \rho(x,y) \leqslant \rho(x,c) + \rho(y,c) \leqslant 2r = \frac{2}{3}\rho(x,y)$$
 противоречие

2 Открытые множества

Определение 22. Множество A называется открытым, если $A \subset$ метрическому пространству X и $\forall a \in A \exists r_{>0} : B_r(a) \subset A$

Теорема 23. Свойства открытых множеств:

- 1. \varnothing, X открытые множества
- 2. Объединение любого количества открытых множеств открытое множество
- 3. Пересечение конечного числа открытых множеств открытое множество
- 4. Открытый шар открытое множество

Доказательство.

- 1. $B_r(a) \subset X$; Для пустого множества нечего проверять, так как там даже точек то нет
- 2. A_{α} $\alpha \in I$ открытые множества. $A = \bigcup_{\alpha \in I} A_{\alpha}$ Возьмем $a \in A$. Тогда $a \in A_{\beta}$ для какого-то $\beta \in I \Longrightarrow A_{\beta}$ открытое множество $\Longrightarrow B_r(a) \subset A_{\beta}$ для некоторого $r_{>0} \Longrightarrow B_r(a) \subset A_{\beta} \subset \bigcup_{\alpha \in I} A_{\alpha} = A$
- 3. A_1, A_2, \ldots, A_n открытые множества. $A = \bigcap_{k=1}^n A_k$ Возьмем $a \in A$. Тогда $a \in A_k$ при $k = \{1, 2, \ldots, n\} \Longrightarrow B_{r_k}(a) \subset A_k$ для некоторого $r_k > 0$ $r := \min\{r_1, r_2, \ldots, r_k\} \Longrightarrow B_r(a) \subset B_{r_k}(a) \subset A_k \Longrightarrow B_r(a) \subset \bigcap_{k=1}^n A_k = A$
- 4. Рассмотрим $B_R(a)$. Возьмем $b \in B_R(a)$ $r := R \rho(a,b) > 0$. Докажем, что $x \in B_r(b)$: $\rho(x,b) < r \Longrightarrow \rho(x,a) \leqslant \rho(x,b) + \rho(b,a) < r + \rho(b,a) = R$

Замечание

В пункте №3 конечность существенна
$$\bigcap_{n=1}^{\infty} B_{1/n}(0) = \bigcap_{n=1}^{\infty} (-\frac{1}{n}; \frac{1}{n}) = \{0\}$$
 Интервал $(-r; r)$

Пример

$$\begin{array}{l} \mathbb{R} \quad \rho(x,y) = |x-y| \\ Y = [0;\ 2) \\ \text{Шары в } (Y,\rho) \text{:} \\ \hline \quad 0 \qquad \qquad 2 \\ B_1^Y(0) = \{x \in [0;\ 2) : |x-0| < 1\} = [0;\ 1) \end{array}$$