SIDNEY COLEMAN'S LECTURES ON RELATIVITY

Max Miyazaki

各種 SNS

X (IH Twitter) : @miya_max_study

 $In stagram: @daily_life_of_miya$

You Tube: @miya-max-active

このノートは量子力学の講義をまとめたものです。

目次

第Ⅰ部	特殊相対性理論	5
	特殊相対性理論の幾何学 イントロダクション	7 7
第2章	中心ポテンシャルにおける粒子状態	9

第Ⅰ部

特殊相対性理論

第1章

特殊相対性理論の幾何学

1.1 イントロダクション

1.1.1 古典的物理系

古典的な物理系は3つの部分で構成されている.

1. 四次元時空間: 古典物理学の舞台. 時空間の点(事象)を座標で表す:

$$x^{\mu} = (x^0, x^i) = (ct, \mathbf{x}),$$
 (1.1)

ここで x^0 は時間を表し(c=1 となる単位系を使う), $\mathbf x$ は位置を表す. ギリシャ文字のインデックス (λ,μ,ν,\ldots) は 0 から 3 までの値を,ローマ字のインデックス (i,j,k,\ldots) は 1 から 3 までの値をとる.

- 2. 粒子と場: 古典物理学の実体.
 - (a) **粒子**: 粒子は構造を持たない点状物体である.時間の関数としての粒子の位置 $\mathbf{x}(t)$ は,粒子について言及できることすべてを教えてくれます(質量や電荷などの固定された特性を除いて). 4 元ベクトル表記では,粒子の軌跡(世界線)を $x^{\mu}(s)$ で表します.ここで s は曲線に沿った点を表すために使われるパラメータ(任意の単調関数 f に対して f(s) でも同様に機能する):
 - (b) 場:

第2章

中心ポテンシャルにおける粒子状態