1. (1,8 ponto) Faça o que é pedido a seguir:

	0	1	2	3	4
0	0	0	0	0	0
1	0	0	1	0	0
2	0	1	0	1	0
3	0	1	0	0	0
4	0	0	1	0	0

- (a) Apresente as componentes fortemente conexas do digrafo representado pela matriz de adjacências acima. (Lembre que uma componente fortemente conexa não contém apenas vértices, mas sim vértices e ares-
- (b) Altere a matriz de adjacências acima para que a mesma passe a ser uma matriz de adjacências que representa um grafo não dirigido. Faça isto realizando o menor número necessário de alterações. Indique as alterações realizadas.
- 2. (1,8 ponto) Faça o que é pedido a seguir:
 - (a) Apresente um digrafo G tal que G possui 6 vértices e tem as seguintes características:
 - Nenhum vértice de G tem grau de saída maior que 2;
 - Nenhum vértice de G tem grau de entrada maior que 2;
 - (b) Apresente um digrafo G tal que G possui 6 vértices e tem as seguintes características:
 - Um vértice de G tem grau de saída 2 e grau de entrada 0;
 - Outro vértice de G tem grau saída 0;
 - Nenhum vértice de G tem grau de saída ou entrada maior que 2;
 - ullet O grafo subjacente de G (obtido ao desconsiderar as direções das arestas de G) é conexo.
 - 3. (2,0 pontos) Uma empresa rodoviária está planejando uma reformulação da sua malha de trechos de viagens. Neste processo, os funcionários da empresa querem resolver o seguinte problema: A partir de uma cidade de origem, determinar quais cidades de destino são economicamente viáveis de serem mantidas em atividade. Neste contexto, economicamente viável significa que a extensão total mínima de uma sequência de trechos da cidade de origem para a de destino é maior ou igual a um valor mínimo definido pela empresa – caso contrário, não haverá muitos passageiros porque as pessoas vão preferir viajar de carro particular.

- (a) Explique como os funcionários da empresa podem construir um grafo para utilizar na resolução do Faça o que é pedido a seguir: problema acima. Diga se o grafo é dirigido ou não e descreva o que os elementos do grafo representam.
 - (b) Elabore um algoritmo para resolver o problema acima. Especifique o que o seu algoritmo recebe como entrada. Você pode descrever o seu algoritmo através de um pseudocódigo (como feito para alguns algoritmos vistos em aula), mas deve fazer isto de maneira clara. No seu algoritmo, você pode realizar chamadas a algoritmos vistos em aula considerando que estes algoritmos já estão implementados (por exemplo, para utilizar um algoritmo X, você pode escrever uma linha no seguinte formato: ... AlgoritmoX(...) ...).

- 4. (2,2 pontos) A prefeitura de uma pequena cidade está investigando como otimizar as suas operações. Uma destas operações é a coleta de lixo, que está apresentando custos elevados. Neste contexto, os funcionários da prefeitura querem responder à seguinte questão: Para um determinado bairro, é possível o caminhão coletor de lixo passar por cada rua exatamente uma vez e terminar o seu trajeto no mesmo local de início?
 Faça o que é pedido a seguir:
 - (a) Apresente um grafo conexo com pelo menos 4 vértices que corresponda a um caso em que a resposta para a questão acima é sim. Descreva o que representam os vértices e as arestas do grafo.
 - (b) Responda: Entre os problemas estudados nesta disciplina, qual problema pode ser utilizado para modelar a questão acima? Justifique a sua resposta descrevendo este problema e relacionando, de forma precisa e clara, este problema à questão acima.
- 5. (2,2 pontos) Faça o que é pedido a seguir:
 - (a) Considere a rede de fluxo G dada abaixo:

Responda: Para que a função $f: E(G) \to \mathbb{R}$ a seguir seja um fluxo em G, quais devem ser os valores de $f(v_1t)$, $f(sv_2)$ e $f(v_4t)$?

$$f(sv_1) = 2$$
, $f(v_2v_1) = 3$, $f(v_1t) = ?$, $f(sv_2) = ?$, $f(v_3v_2) = 1$, $f(v_2v_4) = 2$, $f(sv_3) = 2$, $f(v_3v_4) = 1$, $f(v_4t) = ?$

- (b) O Método 1 abaixo é um método de um objeto que representa uma rede de fluxo (um digrafo). O objeto contém um atributo num_vertices_, que armazena o número de vértices do digrafo; um atributo matriz_adj_, que armazena a representação do digrafo como uma matriz de adjacências; e um atributo f_- , que armazena os valores atribuídos por uma função $f: E(G) \to \mathbb{R}$ às arestas do digrafo.
 - O Método 1 recebe como entrada um vértice v que não é a fonte (vértice s) nem o sorvedouro (vértice t) da rede de fluxo. Considerando os valores atribuídos pela função f, o objetivo do método é retornar true se o fluxo que sai de v é igual ao fluxo que entra em v e retornar false caso contrário. Complete o código do método para que este objetivo seja atingido.

Método 1

```
1: bool Digrafo::verifica_fluxo_vertice(int v) {
2:    int fluxo_saida = 0;
3:    for (int u = 0; u < num_vertices_; u++) {
4:        if (matriz_adj_[v][u] != 0) {
5:            fluxo_saida = fluxo_saida + f_[v][u];
6:        }
7:    }</pre>
```