WRFDA-3DVar Setup, Run, and Diagnostics

Craig Schwartz

Hui-Chuan Lin, Yong-Run Guo, Syed Rizvi, Xin Zhang, and Hans Huang

WRFDA Tutorial, July 2014

Outline

- Installing WRFDA-3DVar
- Setting-up a WRFDA-3DVar run (namelist configurations)
- Making a WRFDA-3DVar run
- Running UPDATE_BC
- WRFDA-3DVar diagnostics

This presentation is based on WRFDA V3.6

Installing WRFDA-3DVar

Source Code

Download WRFDA source code (WRFDA_V3.6.tar.gz) from

http://www.mmm.ucar.edu/wrf/users/wrfda/download/get_source.html

FORTRAN 90 Compilers

Supported and tested platforms:

- •IBM with XLF compiler V13.0
- Linux with INTEL compiler V12.1.5+
- Linux with GFORTRAN compiler V4.4+
- Mac with INTEL compiler V11.1
- Mac with PGI compiler V10.3-0 64-bit
- Mac with GFORTRAN compiler V4.4.0
- •Mac with G95 compiler V0.9
 - ✓ To check version numbers, use xlf -qversion, g95 -v, pgf90 -V, gfortran –v

Unsupported platforms

Due to lack of access to these platforms and compilers, we are unable to provide support:

- Sun (solaris)
- DEC alpha
- Other SGI
- Absoft
- Lahey
- Salford
- Pathscale

WRFDA does not work on

- PGI 5.x, GFORTRAN 4.3 and lower
- Windows

Please share with us (and other fellow users) your experiences on the various platforms and compilers.

Libraries Required by WRFDA

NetCDF: Network Common Data Form:

http://www.unidata.ucar.edu/software/netcdf/

Set environmental variable for the NetCDF library:

> setenv NETCDF \$your_installation_dir/netcdf

✓ Make sure the NetCDF library is compiled using the same compiler that will be used to build WRFDA, since libraries produced by one compiler may not be compatible with code compiled by another.

Optional Libraries

- If using PREPBUFR or radiance data:
 - BUFR: Binary Universal Form for the Representation of meteorological data http://www.nco.ncep.noaa.gov/sib/decoders/BUFRLIB/
 - Included in WRFDA (as of V3.1.1)
- If assimilating radiance data, either CRTM or RTTOV is required:
 - CRTM: Community Radiative Transfer Model (version REL_2.1.3)
 ftp://ftp.emc.ncep.noaa.gov/jcsda/CRTM/
 Included in WRFDA (as of V3.2.1)

Set environmental variables:

- > setenv BUFR 1
- > setenv CRTM 1
- RTTOV: Radiative Transfer for TOVS (version 11)
 http://research.metoffice.gov.uk/research/interproj/nwpsaf/rtm
- > setenv RTTOV path_where lib/librttov11.1.0_*.a libraries are located

Configure WRFDA

- > cd \$your_sourcecode_dir/WRFDA
- > ./configure wrfda
 - configure.wrf will be created

checking for perl5... no

checking for perl... found /usr/bin/perl (perl)

Will use NETCDF in dir: /usr/local/netcdf-3.6.0-p1-g95ppc

PHDF5 not set in environment. Will configure WRF for use without.

\$JASPERLIB or \$JASPERINC not found in environment, configuring to build without grib2 I/O...

Please select from among the following supported platforms.

- 1. Darwin (MACOS) PGI compiler with pgcc (serial)
- 2. Darwin (MACOS) PGI compiler with pgcc (smpar)
- 3. Darwin (MACOS) PGI compiler with pgcc (dmpar)
- 4. Darwin (MACOS) PGI compiler with pgcc (dm+sm)
- 5. Darwin (MACOS) intel compiler with icc (serial)
- 6. Darwin (MACOS) intel compiler with icc (smpar)
- 7. Darwin (MACOS) intel compiler with icc (dmpar)
- 8. Darwin (MACOS) intel compiler with icc (dm+sm)
- 9. Darwin (MACOS) intel compiler with cc (serial)
- 10. Darwin (MACOS) intel compiler with cc (smpar)
- 11. Darwin (MACOS) intel compiler with cc (dmpar)
- 12. Darwin (MACOS) intel compiler with cc (dm+sm)
- 13. Darwin (MACOS) g95 with gcc (serial)
- 14. Darwin (MACOS) g95 with gcc (dmpar)
- 15. Darwin (MACOS) xlf (serial)
- 16. Darwin (MACOS) xlf (dmpar)

serial: single-processor

dmpar: distributed-memory parallel

smpar: shared-memory parallel

dm+sm: distributed-memory with shared-

memory parallel

Enter selection [1-16]:

On linux, smpar, dm+sm may not work properly because the MPI library may not be thread-safe.

Compile WRFDA

- > ./compile all_wrfvar >&! log_compile
 - ☐ 43 executables in the var/build directory (linked to var/da):
 - da wrfvar.exe: WRFDA
 - da_update_bc.exe: update_bc
 - gen_be_stage0_wrf.exe, ...: gen_be
 - da_advance_time.exe: time manipulation
 - □ OBSPROC executable in the var/obsproc/src
 - obsproc.exe: OBSPROC
- Clean the WRFDA directory before making your next compilation:
 - > clean -a
 - ✓ Note: WRF compiles with the -r4 option while WRFDA compiles with -r8. For this reason, WRF and WRFDA cannot reside and be compiled under the same directory.

Setting-up a WRFDA-3DVar run

WRFDA-3DVar Equation

$$J(\mathbf{x}) = \frac{1}{2} (\mathbf{x} - \mathbf{x}_{\mathbf{b}})^{\mathrm{T}} \mathbf{B}^{-1} (\mathbf{x} - \mathbf{x}_{\mathbf{b}}) + \frac{1}{2} (\mathbf{y} - H(\mathbf{x}))^{\mathrm{T}} \mathbf{R}^{-1} (\mathbf{y} - H(\mathbf{x}))$$

 $J(\mathbf{x})$: Scalar cost function

x: The analysis: what we're trying to find!

x_b: Background field

B: Background error covariance matrix

y: Observations

H: Observation operator: computes model-simulated obs

R: Observation error covariance matrix

User-provided Data

Sources of User-provided Data

$$J(\mathbf{x}) = \frac{1}{2} (\mathbf{x} - \mathbf{x}_{\mathbf{b}})^{\mathrm{T}} \mathbf{B}^{-1} (\mathbf{x} - \mathbf{x}_{\mathbf{b}}) + \frac{1}{2} (\mathbf{y} - H(\mathbf{x}))^{\mathrm{T}} \mathbf{R}^{-1} (\mathbf{y} - H(\mathbf{x}))$$

•Where do the input files come from?

Symbol	Description	Source				
X _b	Background ("first-guess")	real.exe or previous WRF forecast				
В	Background error covariances	"gen_be" or default file provided with WRFDA				
у	Observations	"obsproc" output or NCEP BUFR files				
R	Observation error covariances	"obsproc" output or NCEP BUFR files				

User-determined run-time options...the Namelist

- ✓ The namelist variables discussed in the following slides refer to WRFDA-3DVar runs and conventional data assimilation only.
- ✓ Please refer to specific lectures (background error covariance, radiance assimilation, ...) for other namelist options.

What is a Namelist?

- The Fortran namelist (namelist.input) file allows the user to configure a WRFDA run <u>without</u> recompiling the code.
 - Specific Fortran 90 namelist format:

```
&namelistname - start
...
/ - end
```

 Descriptions of WRFDA namelist variables are given in the WRF User's Guide and README.namelist in the WRFDA release (WRFDA/var/README.namelist).

WRFDA Namelist

- Default values of the namelist variables are defined by the WRFDA Registry (WRFDA/Registry/Registry.wrfvar).
- Fill namelist.input with non-default and desired variable values before running WRFDA.
- A WRFDA namelist file includes two parts:

```
&wrfvar1
&wrfvar2
&wrfvar22
&time control
&fdda
&namelist_quilt
```

1) WRFDA namelist options:

Running options for WRFDA code.

2) <u>WRF</u> namelist options:

WRFDA needs certain information from the WRF configuration including domain and time settings.

✓ Append your <u>WRF</u> namelist.input to the end of &wrfvar22 to create a complete/consistent namelist.input for WRFDA

Run-time Configurations

- The next several slides pose configuration questions that should be considered before making a WRFDA-3DVar run.
 - Important to carefully think about your configurations!
- The appropriate namelist parameters associated with these questions are discussed.

Background Options

$$J(\mathbf{x}) = \frac{1}{2} (\mathbf{x} - \mathbf{x}_{\mathbf{b}})^{\mathrm{T}} \mathbf{B}^{-1} (\mathbf{x} - \mathbf{x}_{\mathbf{b}}) + \frac{1}{2} (\mathbf{y} - H(\mathbf{x}))^{\mathrm{T}} \mathbf{R}^{-1} (\mathbf{y} - H(\mathbf{x}))$$

What's the format of my background file?

&WRFVAR3

fg_format: Format of the first guess field

fg_format = 1 : ARW regional, default

fg_format = 2 : WRF-NMM regional (not tested)

fg_format = 3 : ARW global (not tested)

fg_format = 4 : KMA global (not tested)

Background Error Covariance Options

$$J(\mathbf{x}) = \frac{1}{2} (\mathbf{x} - \mathbf{x}_{\mathbf{b}})^{\mathrm{T}} \mathbf{B}^{-1} (\mathbf{x} - \mathbf{x}_{\mathbf{b}}) + \frac{1}{2} (\mathbf{y} - H(\mathbf{x}))^{\mathrm{T}} \mathbf{R}^{-1} (\mathbf{y} - H(\mathbf{x}))$$

What type of background error covariance do I want to use?

&WRFVAR7

cv_options: Background error covariance option

cv_options = 3 : global, <u>default</u>...see .../var/run/be.dat.cv3

cv_options = 5 : regional, generated by "gen_be"

cv_options = 6 : regional, generated by "gen_be" with multivariate moisture correlation, new in WRFDA V3.3

$$J(\mathbf{x}) = \frac{1}{2} (\mathbf{x} - \mathbf{x}_{\mathbf{b}})^{\mathrm{T}} \mathbf{B}^{-1} (\mathbf{x} - \mathbf{x}_{\mathbf{b}}) + \frac{1}{2} (\mathbf{y} - H(\mathbf{x}))^{\mathrm{T}} \mathbf{R}^{-1} (\mathbf{y} - H(\mathbf{x}))$$

•What's the format of my conventional observations?

&WRFVAR3

 ob_format: The format of the conventional and satellite retrieval observation data going into WRFDA

ob_format = 1 : NCEP PREPBUFR (ob.bufr)

ob_format = 2 : ASCII (ob.ascii), default

ob_format_gpsro = 1 : Read GPSRO data from NCEP BUFR

What observation types do I want to assimilate?

&WRFVAR4

```
USE SYNOPOBS = T.
USE SHIPSOBS = T,
USE METAROBS = T,
USE SOUNDOBS = T.
USE PILOTOBS = T,
USE AIREPOBS = T.
USE GEOAMVOBS = T.
USE POLARAMVOBS = T.
USE BUOYOBS = T.
USE PROFILEROBS = T,
USE SATEMOBS = T,
USE GPSZTDOBS = F,
USE GPSPWOBS = T.
USE GPSREFOBS = T,
USE QSCATOBS = T,
USE RADAROBS = F,
USE RADAR RV = F.
USE RADAR RF = F,
USE AIRSRETOBS = T,
```

Assimilate this observation type?

Set to either True or False

•How much do I want to thin my PREPBUFR obs?

&WRFVAR4—only for NCEP PREPBUFR OBS (ob_format = 1)

- thin_conv: For thinning NCEP PREFPBUFR obs
 thin_conv = .true. : <u>default</u>, should always set to true
 thin_conv = .false. : Used only for debugging purposes.
- thin_mesh_conv (max_instruments): Thinning mesh (km) for each type of conventional observation. The observation index/order follows the definitions in WRFDA/var/da/da_control/da_control.f90 (e.g., sound =1, synop =2, ...)

By default, thin_mesh_conv = 20.0 (km)

What time window for my observations do I want to use?

&WRFVAR21

•time_window_min = "2008-02-05_10:30:00"

&WRFVAR22

•time_window_max = "2008-02-05 13:30:00"

- •Obs between time_window_min and time_window_max are processed.
- Note the "WRF format" of the times

How strictly do I want to reject conventional observations?

&WRFVAR5

• check_max_iv: Turns on/off an "outlier check" to reject observations whose innovations (O-B) are larger than a value defined as a multiple (a) of the observation error (σ_o) for each observation: i.e., when O-B > ($a^*\sigma_o$), the ob is rejected.

```
check_max_iv = .true. : default, typically set to true
check_max_iv = .false. : Use this option only if the observation data
are known to have good quality.
```

- max_error_t, max_error_uv, max_error_pw, max_error_q, max_error_ref, max_error_rv, max_error_p: The factors (a) that multiply σ_o in the check_max_iv test. Can be set individually for different meteorological variables.
 - By default, max_error* = 5.0 for all meteorological variables

How do I want to handle surface observations?

&WRFVAR11

sfc_assi_options:

sfc_assi_options = 1 (default): The surface observations will be assimilated based on the lowest model level first guess.

Observations are not used when the height difference of the elevation of observing site and the lowest model level height is larger than 100 meters.

sfc_assi_options = 2: The surface observations will be
 assimilated based on surface similarity theory in PBL.
Innovations are computed based on 10-m wind and 2-m

ressure (hPa)

150

temperature & moisture.

✓ Please use this option with caution, since the results could be very sensitive.

$$J(\mathbf{x}) = \frac{1}{2} (\mathbf{x} - \mathbf{x}_{\mathbf{b}})^{\mathrm{T}} \mathbf{B}^{-1} (\mathbf{x} - \mathbf{x}_{\mathbf{b}}) + \frac{1}{2} (\mathbf{y} - H(\mathbf{x}))^{\mathrm{T}} \mathbf{R}^{-1} (\mathbf{y} - H(\mathbf{x}))$$

•At what time is my analysis valid?

&WRFVAR18

• analysis_date = "2008-02-05_12:00:00" (should be the same time as in your first-guess file)

How do I want to configure minimization options?

&WRFVAR6

- max_ext_its: Number of outer loops.
 - 1: <u>default</u>. Only one outer loop.
 - Maximum number of outer loops is 10; common application is 2.
- eps: Value for minimization convergence criterion. It is an array of dimension=max_ext_its.
 - 0.01(max_ext_its): <u>default</u>. The minimization is considered to converge when the norm of the cost function gradient is reduced at least 2 orders.
- ntmax: Maximum number of iterations in an inner loop for the minimization in WRFDA.
 - 200(max_ext_its): <u>default</u>. The minimization in the inner loop stops when either the <u>ntmax</u>th iteration is reached or the <u>eps</u> criterion is met.

28

What type of analysis do I want to perform?

&WRFVAR17

analysis_type: Indicates job type of WRFDA.

```
analysis_type = "3D-VAR" (default): Run 3DVar data assimilation.
analysis_type = "RANDOMCV": Creates ensemble perturbations.
```

- analysis_type = "VERIFY" : Run WRFDA in verification mode
 (forces check_max_iv=.false. and ntmax=0).
- ✓ Please refer to "WRFDA Tools and Verification package" talk. analysis_type = "QC-OBS": Run 3DVar data assimilation and produce filtered_obs file.
 - ✓ By combining with check_max_iv=.true. and ntmax=0, you can produce a WRFDA filtered (QCd) observation data set (filtered_obs) without running data assimilation.

•How much output information do I want?

&WRFVAR1

```
    print_detail_grad
        print_detail_grad = .false. (default)
        print_detail_grad = .true.
        Output cost function and gradient values of every observation type
```

each iteration into standard output files (rsl.out)

How much output information do I want?

&WRFVAR11

calculate_cg_cost_fn:

calculate_cg_cost_fn = .false.

(<u>default</u>): Only the initial and final cost functions are computed and output in files called "cost_fn" and "grad_fn".

calculate_cg_cost_fn = .true. :

The cost functions are derived and output at every iteration for diagnostic purposes in "cost_fn" and "grad_fn".

calculate_cg_cost_fn = .false.

Outer	EPS	Innei	r J	Jb	Jo	Jc	Je	Jp	
Iter	Iter								
1 0.1	100E-01	0	11251.182	0.00	0 11251.	.182	0.000	0.000	0.000
1 0.1	100E-01	19	8634.570	885.4	27 7749	9.143	0.000	0.000	0.000

calculate_cg_cost_fn = .true.

Out	er	EPS	Inne	r J		Jb	Jo		JC	Je)	Jp			
Iter		Iter													
1	0.1	00E-01	0	11251	.182	0.0	000 1	11251	.182	0.0	000	0.	000	0.0	000
1	0.1	00E-01	1	10384	.156	41.	768	10342	2.388	0.	000	0	.000	0.	.000
1	0.1	00E-01	2	9633.	557	184.	109	9449	.448	0.0	000	0.	000	0.0	000
1	0.1	00E-01	3	9245.	700	327.	121	8918	.579	0.0	000	0.	000	0.0	000
1	0.1	00E-01	4	9014.	861	453.	787	8561	.075	0.0	000	0.	000	0.0	000
1	0.1	00E-01	5	8872.	989	559.	714	8313	.275	0.0	000	0.	000	0.0	000
1	0.1	00E-01	6	8777.	974	652.	105	8125	.869	0.0	000	0.	000	0.0	000
1	0.1	00E-01	7	8720.	998	721.	735	7999	.263	0.0	000	0.	000	0.0	000
1	0.1	00E-01	8	8689.	342	768.	464	7920	.878	0.0	000	0.	000	0.0	000
1	0.1	00E-01	9	8665.	605	810.	136	7855	.469	0.0	000	0.	000	0.0	000
1	0.1	00E-01	10	8654	.051	833	.590	7820).461	0.	000	0	.000	0.	.000
1	0.1	00E-01	11	8646	.376	851	.091	7795	5.285	0.	000	0	.000	0.	.000
1	0.1	00E-01	12	8641	.869	862	.515	7779	9.355	0.	000	0	.000	0.	.000
1	0.1	00E-01	13	8638	.219	872	.853	7765	5.365	0.	000	0	.000	0.	.000
1	0.1	00E-01	14	8636	.669	877	.707	7758	3.962	0.	000	0	.000	0.	.000
1	0.1	00E-01	15	8635	.794	880	.667	7755	5.127	0.	000	0	.000	0.	.000
1	0.1	00E-01	16	8635	.176	882	.929	7752	2.247	0.	000	0	.000	0.	.000
1	0.1	00E-01	17	8634	.861	884	.169	7750	0.693	0.	000	0	.000	0.	.000
1	0.1	00E-01	18	8634	.686	884	.909	7749	777.	0.	000	0	.000	0.	.000
1	0.1	00E-01	19	8634	.570	885	.427	7749	9.143	0.	000	0	.000	0.	.000

List of some namelist variables that are most likely to be user-modified (for conventional observations...red, discussed herein)

```
&WRFVAR11
&WRFVAR1
                                &WRFVAR5
PRINT_DETAIL_GRAD = F,
                                 CHECK\_MAX\_IV = T,
                                                               CHECK RH = 0.
                                 MAX ERROR T = 5.0,
&WRFVAR3
                                 MAX ERROR UV = 5.0.
FG FORMAT = 1,
                                 MAX ERROR PW = 5.0,
OB FORMAT = 2.
                                                               &WRFVAR15
                                 MAX\_ERROR\_REF = 5.0,
NUM_FGAT_TIME = 1
                                 MAX ERROR Q = 5.0,
                                                               PSEUDO X = 1.0,
&WRFVAR4
                                 MAX ERROR_P = 5.0,
                                                               PSEUDO Y = 1.0.
THIN CONV = T,
                                 MAX ERROR_RV = 5.0,
                                                               PSEUDO_Z = 1.0,
THIN_MESH_CONV = 30*20.0
                                 MAX ERROR_RF = 5.0,
USE SYNOPOBS = T,
                                &WRFVAR6
USE SHIPSOBS = T,
                                 MAX_EXT_ITS = 1,
USE METAROBS = T.
                                                               &WRFVAR17
                                 NTMAX = 200,
USE SOUNDOBS = T.
                                 EPS = 0.01, 0.01, 0.01
USE PILOTOBS = T.
                                                               &WRFVAR18
USE AIREPOBS = T,
                                &WRFVAR7
USE GEOAMVOBS = T,
                                 CV OPTIONS = 5,
                                 AS1 = 0.25, 1.0, 1.5,
                                                               &WRFVAR19
USE POLARAMVOBS = T.
USE BUOYOBS = T,
                                 AS2 = 0.25, 1.0, 1.5,
USE PROFILEROBS = T.
                                 AS3 = 0.25, 1.0, 1.5,
                                                               &WRFVAR21
USE SATEMOBS = T,
                                 AS4 = 0.25, 1.0, 1.5,
USE GPSZTDOBS = F,
                                 AS5 = 0.25, 1.0, 1.5,
                                                               &WRFVAR22
USE GPSPWOBS = T.
                                 RF PASSES = 6,
USE GPSREFOBS = T,
                                 VAR SCALING1 = 1.0,
USE QSCATOBS = T,
                                 VAR SCALING2 = 1.0,
USE RADAROBS = F,
                                 VAR SCALING3 = 1.0,
USE RADAR RV = F,
                                 VAR SCALING4 = 1.0,
USE_RADAR_RF = F,
                                 VAR\_SCALING5 = 1.0,
USE AIRSRETOBS = T,
                                 LEN SCALING1 = 1.0,
                                 LEN SCALING2 = 1.0,
                                 LEN SCALING3 = 1.0,
```

LEN SCALING4 = 1.0,

 $LEN_SCALING5 = 1.0$,

```
SFC ASSI OPTIONS = 1.
CALCULATE CG COST FN = F.
NUM_PSEUDO = 0,
PSEUDO VAL = 1.0,
PSEUDO ERR = 1.0
ANALYSIS TYPE = "3D-VAR"
ANALYSIS DATE = "2008-02-05 12:00:00"
PSEUDO VAR = "t"
TIME WINDOW MIN = "2008-02-05 10:30:00"
TIME WINDOW MAX = "2008-02-05 13:30:00"
```

✓ Append your <u>WRF</u> namelist.input to the end of &wrfvar22 to create a complete/consistent namelist.input for WRFDA

Running WRFDA-3DVar

Before You Run...

- Ensure the WRFDA executable has been created successfully
 - WRFDA/var/build/da_wrfvar.exe
- Get input files:
 - The test data (WRFV3-Var-testdata.tar) can be downloaded from http://www.mmm.ucar.edu/wrf/users/wrfda/download/test_data.html
 - Extract the test data into your local data directory, e.g.,"your_choice_of_dat_dir".
 - Set up your environmental variable \$DAT_DIR:
 - > setenv DAT_DIR your_choice_of_dat_dir

Before You Run...

$$J(\mathbf{x}) = \frac{1}{2} (\mathbf{x} - \mathbf{x}_{\mathbf{b}})^{\mathrm{T}} \mathbf{B}^{-1} (\mathbf{x} - \mathbf{x}_{\mathbf{b}}) + \frac{1}{2} (\mathbf{y} - H(\mathbf{x}))^{\mathrm{T}} \mathbf{R}^{-1} (\mathbf{y} - H(\mathbf{x}))$$

- Check input files:
 - Background (x_b): \$DAT_DIR/rc/2007010200/wrfinput_d01
 - NETCDF format.
 - For cold-start mode, x_b is generated by WRF "real.exe"
 - For cycling mode, x_b is generated by WRF from a previous cycle's forecast.
 - Background Error Statistics (B): \$DAT_DIR/be/be.dat
 - Binary format.
 - Generated by "gen_be" for this specific test case domain.
 - Please refer to "WRFDA Background Error Estimations" talk.
 - Observations (y,R): \$DAT_DIR/ob/2007010200/ob.little_r (conventional obs only)
 - ASCII or PREPBUFR format.
 - Generated by OBSPROC from obs.2007010200, included in the tar file of the test data.
 - Please refer to "Radiance Data Assimilation" talk for assimilating radiance data.
- Prepare a WRFDA namelist containing runtime options:
 - WRFDA/var/test/tutorial/namelist.input (example)

WRFDA-3DVar Input

$$J(\mathbf{x}) = \frac{1}{2} (\mathbf{x} - \mathbf{x}_{\mathbf{b}})^{\mathrm{T}} \mathbf{B}^{-1} (\mathbf{x} - \mathbf{x}_{\mathbf{b}}) + \frac{1}{2} (\mathbf{y} - H(\mathbf{x}))^{\mathrm{T}} \mathbf{R}^{-1} (\mathbf{y} - H(\mathbf{x}))$$

Symbol	Description	WRFDA names				
X _b	Background ("first-guess")	./fg				
у	Observations	./ob.ascii <u>OR</u> ./ob.bufr				
R	Observation error covariances	./ob.ascii <u>OR</u> ./ob.bufr				
В	Background error covariances	./be.dat				
N/A	User-defined run-time options (namelist)	./namelist.input				
N/A	Land-use table	./LANDUSE.TBL				
N/A	WRFDA executable	./da_wrfvar.exe				

Working Directory - Input

- Create a working directory, for example, "your_choice_of_ working_dir".
 mkdir -p your_choice_of_working_dir
- Go into the working directory:
 - > cd your_choice_of_working_dir
- Prepare the input files (link or copy) for running WRFDA:
 - > In -sf WRFDA/var/build/da_wrfvar.exe ./da_wrfvar.exe
 - > In -sf WRFDA/run/LANDUSE.TBL ./LANDUSE.TBL
 - > In -sf \$DAT_DIR/rc/2007010200/wrfinput_d01 ./fg
 - > In -sf \$DAT_DIR/be/be.dat ./be.dat
 - > In -sf \$DAT_DIR/ob/2007010200/ob.little_r ./ob.ascii
 - > cp WRFDA/var/test/namelist.input ./namelist.input

(or use your own namelist)

Running WRFDA

- > ./da_wrfvar.exe >&! wrfda.log
- > mpirun –np 8 ./da_wrfvar.exe

If running in distributed-memory mode, you need to set up the computer resources (e.g., processor numbers, memory, wallclock...) based on the platform you are using. The log file names will be rsl.out.0000, rsl.out.0001,...

Working Directory - Output

In your_choice_of_working_dir, you should have at least the following files after WRFDA is successfully completed:

- cost_fn (Cost function)
- grad_fn (Gradient of cost function)
- gts_omb_oma_01 (point-by-point O, O-B, O-A information, etc.)
- namelist.output (Complete namelist)
- statistics (domain-wide O-B and O-A statistics)
- wrfvar_output (Analysis x, the input to the WRF model)

O: Observation

A: Analysis

B: Background (first-guess)

A word about nested domains

WRFDA can only process one file/domain at a time
 If you wish to run WRFDA for multiple nests, need to run WRFDA separately for each nest

Running update_bc

update_bc

•Why do we need update_bc?

- Need to update lateral boundary points to reflect our analysis
 - •Need to update lateral boundary tendencies for the first time
 - Can also update <u>lower</u> boundary conditions

wrfbdy contains the *tendency* (Field^{t+dt}– Field^t)/dt

wrfbdy needs to be updated to be (Field^{t+dt}– Analysis^t)/dt after WRFDA

Applications of update_bc

- Cold-start initial conditions (i.e., first-guess from "real.exe"):
 - Update lateral boundaries after running WRFDA
 - No need to update low boundary before running WRFDA
- Cyclic initial conditions (i.e., first-guess from previous forecast):
 - Update low BC before running WRFDA
 - Update lateral BCs after running WRFDA
- Dealing with nested domains:
 - For coarse domain (domain_id = 1), update low boundary before running WRFDA (if cycling) and lateral boundaries after running WRFDA
 - For fine mesh domains (domain_id > 1) update low boundary for each nest before running WRFDA (if cycling)...DO NOT update lateral boundaries

update_bc (lateral boundary condition)

$$J(\mathbf{x}) = \frac{1}{2} (\mathbf{x} - \mathbf{x}_{\mathbf{b}})^{\mathrm{T}} \mathbf{B}^{-1} (\mathbf{x} - \mathbf{x}_{\mathbf{b}}) + \frac{1}{2} (\mathbf{y} - H(\mathbf{x}))^{\mathrm{T}} \mathbf{R}^{-1} (\mathbf{y} - H(\mathbf{x}))$$

 Always update lateral BC after running WRFDA for <u>outermost</u> domain

Steps to Run update_bc (for lateral BC)

- Make sure UPDATE_BC executable has been created successfully:
 - WRFDA/var/build/da_update_bc.exe
- Go into the working directory and prepare the input files for update_bc:
 - > cd your_choice_of_working_dir
 - > cp \${DAT_DIR}/rc/2007010200/wrfbdy_d01 ./wrfbdy_d01
 - > In -sf WRFDA/var/build/da_update_bc.exe ./da_update_bc.exe
- Prepare the namelist for update_bc: <u>parame.in</u>

```
&control_param
da_file = './wrfvar_output' - Analysis from WRFDA
wrf_bdy_file = './wrfbdy_d01' - BC from WPS and WRF real
debug = .true.
update_lateral_bdy = .true.
update_low_bdy = .false.
iswater = 16 - Should be 17 if using MODIS land-use
/
```

./da_update_bc.exe > &! da_update_bc_latbdy.log

(updating low boundary for cycling runs)

```
da update bc: update low bdy
 TSK: surface skin temperature (over water)
 TMN: soil temperature at lower boundary
 SST: sea surface temperature
 VEGFRA: vegetation fraction
 ALBBCK: background snow-free albedo
 SEAICE: sea ice flag
IVGTYP: dominant vegetation category (integer)
                                                  fields need to
ISLTYP: dominant soil category (integer)
                                                  be consistent
LANDMASK: 1=land, 0=water
                                                  with SEAICE
XLAND: 1=land, 2=water
SNOW: snow water equivalent
                                   snow over water
SNOWC: snow cover
                                   needs to be
SNOWH: snow depth
                                   removed
da_update_bc: update_low_bdy & update_lsm
 SNOW: snow water equivalent
 CANWAT: canopy water
 RHOSN: snow density
 SNOWH: snow depth
 SNOWC: snow cover
 TSLB: soil temperature
 SMOIS: soil moisture
 SH2O: soil liquid water
```

WRFDA adds increments to

- []
- V
- T
- PSFC
- QVAPOR

and modifies

- PH
- P
- MU
- U10
- V10
- T2
- Q2

update_bc (low boundary condition)

Only need to update low BC if using cyclic initial conditions

Steps to Run update_bc (for low BC)

- Make sure UPDATE_BC executable has been created successfully:
 - WRFDA/var/build/da_update_bc.exe
- Go into the working directory and prepare the input files for update_bc:
 - > cd your_choice_of_working_dir
 - > cp \${your_wrf_run_dir}/wrfvar_input_d01 ./fg
 - > In -sf WRFDA/var/build/da_update_bc.exe ./da_update_bc.exe
- Prepare the namelist for update_bc: <u>parame.in</u>

```
&control_param
da_file = './fg' - First guess (wrfout in wrfinput format) for WRFDA
wrf_input = '${DAT_DIR}/rc/2007010200/wrfinput_d01' - IC from WPS and WRF real
debug = .true.
update_lateral_bdy = .false.
update_low_bdy = .true.
iswater = 16 - Should be 17 if using MODIS land-use
//
```

./da_update_bc.exe > &! da_update_bc_lowbdy.log

WRFDA-3DVar Diagnostics

ASCII output files in the WRFDA working directory:

- wrfda.log or rsl.out.0000
- namelist.output
- filtered_obs_01 (analysis_type="QC-OBS")
- rej_obs_conv_01.000
- qcstat_conv_01
- cost_fn
- grad_fn
- gts_omb_oma_01
- statistics
- jo

After each WRFDA run, it is important to:

- ✓ Check the log file (or rsl.out.0000) to see if WRFDA has completed successfully, how many iterations it took to converge, etc.
- ✓ Check the statistics file to see if the values are reasonable

http://www.mmm.ucar.edu/wrf/users/wrfda/download/tools.html

The WRF data assimilation development team has developed many useful .ncl shell scripts for internal use only. We realized that these scripts might be useful for community users, and so with recent versions of WRFDA we have released them as a TOOLS bundle. If you want to establish your own forecast-analysis system which includes WRF and WRF-Var, you can refer the scripts under WRFDA/var/scripts; There are lots of NCL scripts to diagnostic the WRF-Var output for your reference.

Due to very limited resources being funded for support, we can not provide support to these tools; please use them at your own risk.

- Download WRFDA_V3.5_TOOLS.tar.gz
- gunzip WRFDA_V3.5_TOOLS.tar.gz
- tar xvf WRFDA_V3.5_TOOLS.tar

✓ var/graphics/ncl contains various NCL plotting scripts, see var/graphics/ncl/README

wrfda.log (rsl.out.0000)

- Very important information about your WRFDA run, including observation summary, values of cost function and its gradient, etc.
- Additional diagnostics may be printed in these files by including various "print_detail_xxx" WRFDA namelist options (&wrfvar1)(using these options, the log file size could become quite large).

```
*** VARIATIONAL ANALYSIS ***

DYNAMICS OPTION: Eulerian Mass Coordinate

WRF NUMBER OF TILES = 1

Set up observations (ob)
```

Final: 15 iter, J= 1.76436785D+04, q= 2.06098421D+00

```
Diagnostics
 Final cost function J
                             17643.68
                            26726
 Total number of obs.
 Final value of J
                           17643.67853
 Final value of Jo
                        = 15284.64894
 Final value of Jb
                            2359.02958
 Final value of Jc
                              0.00000
 Final value of Je
                              0.00000
 Final value of Jp
                              0.00000
 Final J / total num obs
                                 0.66017
 Jb factor used(1)
                               1.00000
 Jb factor used(2)
                               1.00000
 Jb factor used(3)
                               1.00000
 Jb factor used(4)
                               1.00000
 Jb factor used(5)
                               1.00000
 Jb factor used
                              1.00000
 Je factor used
                              1.00000
 VarBC factor used
                                1.00000
*** WRF-Var completed successfully ***
```

namelist.output

 When WRFDA is run, a namelist.output file is produced with all values of namelist variables (default and/or from namelist.input).

namelist.input

```
&wrfvar1
print_detail_grad=.true.
&wrfvar2
&wrfvar3
ob format=2.
num_fgat_time=1,
&wrfvar4
use_synopobs=.false.
```

namelist.output

```
&WRFVAR1
WRITE_INCREMENTS = F, WRFVAR_MEM_MODEL = 0, VAR4D = F,
MULTI INC = 0, VAR4D COUPLING = 2, PRINT DETAIL RADAR = F,
PRINT DETAIL RAD = F, PRINT DETAIL XA = F, PRINT DETAIL XB = F,
PRINT DETAIL OBS = F, PRINT DETAIL F OBS = F, PRINT DETAIL MAP = F,
PRINT DETAIL GRAD = T. PRINT DETAIL REGRESSION = F.
PRINT_DETAIL_SPECTRAL = F,
PRINT DETAIL TESTING = F, PRINT DETAIL PARALLEL = F, PRINT DETAIL BE
= F.
CHECK MAX IV PRINT = T, CHECK BUDDY PRINT = F,
&WRFVAR2
ANALYSIS ACCU = 900, CALC W INCREMENT = F, DT CLOUD MODEL = F,
WRITE MOD FILTERED OBS = F,
&WRFVAR3
FG_FORMAT=1, OB_FORMAT=2, NUM_FGAT_TIME=1
&WRFVAR4
USE SYNOPOBS=F, USE SHIPSOBS=T, USE_METAROBS=T, USE_SOUNDOBS=T,
USE MTGIRSOBS=T, USE PILOTOBS=T,
```

filtered_obs_01

- Similar to ob.ascii (observation input file to WRFDA) but contains the observations filtered by WRFDA
- To output this file, set WRFDA namelist option: analysis_type = "QC-OBS" (&wrfvar17)
- What is filtered_obs for?
 - Can be used for checking what observations are actually assimilated in WRFDA
 - Can be used for running WRFDA in VERIFY mode with analysis_type = "VERIFY"
- filtered_obs should NOT be used for running regular WRFDA

rej_obs_conv_01.000

- Contains observations that fail check_max_iv check (if check_max_iv = .true.)
 - √ 01: outer loop index.
 - ✓ 000: processor id.
- See slide 25 and &wrfvar5

Obs_type	Variable	Lat	Lor	n Pressu	re
sound T	50.68	-127.36	215.00		
sound Q	50.68	-127.36	215.00		
sound U	47.46	-111.38	850.00		
sound V	31.86	-106.70	400.00		
synop U	50.11	-127.93	991.10		
synop V	48.76	-123.11	994.50		
synop Ps	53.43	-114.71	1013.01		
synop Q	53.43	-114.71	1013.01		
gpsref G	SpsR 36	5.26 -71	.36 53.34	1	
qscat V	23.20	-74.22	1013.25		

qcstat_conv_01

- Contains the number of observations that pass or fail WRFDA's internal QC (e.g., check_max_iv check) for observations with pressure as a vertical coordinate
 - √ 01: outer loop index.

WRF-Var data utilization statistics for outer iteration 1														
obs typ	oe var		1000.0 1200.0											0.0 2000.0
		' 												
sound	U	used	20	29	37	48	91	41	41	44	45	79	99	574
		rej	1	2	0	0	0	0	0	0	0	0	0	3
sound	V	used	21	30	37	48	91	41	41	44	45	79	99	576
		rej	0	1	0	0	0	0	0	0	0	0	0	1
sound	Т	used	32	135	130	452	447	200	118	68	113	191	293	2179
		rej	0	2	0	0	0	0	0	0	1	6	5	14
sound	Q	used	32	135	130	451	439	193	105	53	81	159	218	1996
		rej	0	0	0	0	4	3	0	1	1	4	2	15
synop	U	used	83	0	0	0	0	0	0	0	0	0	0	83
		rej	1	0	0	0	0	0	0	0	0	0	0	1
synop	V	used	83	0	0	0	0	0	0	0	0	0	0	83
		rej	1	0	0	0	0	0	0	0	0	0	0	1
synop	Т	used	137	0	0	0	0	0	0	0	0	0	0	137
		rej	0	0	0	0	0	0	0	0	0	0	0	0
synop	Q	used	130	0	0	0	0	0	0	0	0	0	0	130
, ,		rej	4	0	0	0	0	0	0	0	0	0	0	4

jo

Contains cost function of each observation type:

```
obs, Jo(actual)
                             1007
                                    1709
                                            475.29555
                                                       1.00000
                                                                  448.89633
                                                                             1.00000
                                                                                        214.58090
                                                                                                   1.00000
                                                                                                              169.59091
                                                                                                                         1.00000
                                                                                                                                   39.54654
                                                                                                                                              1.00000
synop
                                                                1139.04835 1.00000
                                                                                        450.85222
                                                                                                   1.00000
                                           1142.22791 1.00000
                                                                                                              141.48881 1.00000
                                                                                                                                   127.23786 1.00000
        obs, Jo(actual)
                             2551
                                    4996
metar
        obs, Jo(actual)
                              270
                                     739
                                            295.61942 1.00000
                                                                  328.81980
                                                                             1.00000
                                                                                         38.63147
                                                                                                   1.00000
                                                                                                               76.05158 1.00000
                                                                                                                                   10.88285 1.00000
ships
                                           4375.80943
                                                                                          0.00000
             Jo(actual)
                            18216 35619
                                                       1.00000
                                                                 4291.11244
                                                                             1.00000
                                                                                                   1.00000
                                                                                                                0.00000
                                                                                                                         1.00000
                                                                                                                                    0.00000
                                                                                                                                              1.00000
geoamy
        obs, Jo(actual)
                                             42.19891
                                                       1.00000
                                                                    0.00000
                                                                             1.00000
                                                                                          0.00000
                                                                                                   1.00000
                                                                                                                0.00000 1.00000
                                                                                                                                    0.00000
                              113
                                                                                                                                             1.00000
gpspw
                                                                                       2934.71994
                              122 12507
                                           1501.01081
                                                       1.00000
                                                                 1417.89485
                                                                             1.00000
                                                                                                   1.00000
                                                                                                             1412.34202 1.00000
                                                                                                                                    0.00000
sound
        obs, Jo(actual)
                                                                                                                                             1.00000
                              122 12507
                                             77.96908
                                                       1.00000
                                                                   70.37029
                                                                             1.00000
                                                                                         43.28542
                                                                                                   1.00000
                                                                                                               45.34806
                                                                                                                         1.00000
sonde
             Jo(actual) =
                                                                                                                                    4.58217
                                                                                                                                              1.00000
airep
        obs, Jo(actual) =
                            1527 4506
                                            699.19993
                                                       1.00000
                                                                  655.45784
                                                                             1.00000
                                                                                        776.57509
                                                                                                   1.00000
                                                                                                                0.00000 1.00000
                                                                                                                                    0.00000
                                                                                                                                             1.00000
                                    5895
                                           2582.21854
                                                       1.00000
                                                                 2434.46137
                                                                             1.00000
                                                                                          0.00000
                                                                                                   1.00000
                                                                                                                0.00000 1.00000
                                                                                                                                    0.00000
pilot
        obs, Jo(actual)
                              112
                                                                                                                                             1.00000
             Jo(actual)
                              204
                                    2079
                                            108.15758
                                                       1.00000
                                                                    0.00000
                                                                             1.00000
                                                                                          0.00000
                                                                                                   1.00000
                                                                                                                0.00000
                                                                                                                         1.00000
                                                                                                                                    0.00000
                                                                                                                                             1.00000
satem
                                            133.21166
                                                                  104.72975
                                                                                         31.86149
                                                                                                   1.00000
                                                                                                               38.47701 1.00000
buov
        obs, Jo(actual)
                              241
                                     400
                                                       1.00000
                                                                            1.00000
                                                                                                                                    1.04651 | 1.00000
```

 Sum of individual Jo (numbers in red boxes) should equal the printout value in WRFDA log file, e.g., rsl.out.0000:

Final value of Jo = 28880.81069

 Numbers in blue boxes are observation error tuning factors used in WRFDA:

Tuned obs_error = obs_error * tuning_factor Where obs_error values are assigned by OBSPROC and tuning_factor=1 by default.

cost_fn and grad_fn

- Contains values of the cost function and its gradient.
 - If calculate_cg_cost_fn =.false., only the initial and final values of the cost and gradient functions are output as follows:

cost_fn

Outer Iter	EPS	Inner	J	Jb	Jo	Jc	Je	Jp	Js	JI	
1 0.		0			24322.148	0.000	0.000	0.000	0.000	0.000	
1 0.	.100E-01	21	16141.945	1847.293	14294.652	0.000	0.000	0.000	0.000	0.000	

grad_fn

Outer	EPS	Inner	G	Gb	Go	Ge	Gp	Gs	GI
lter		Iter							
1 0.1	100E-01	0	543.846	0.000	543.846	0.000	0.000	0.000	0.000
1 0.1	100E-01	21	4.767	60.783	60.970	0.000	0.000	0.000	0.000

• If calculate_cg_cost_fn =.true., the cost function and its gradient at each iteration will be computed and written into cost_fn and grad_fn.

✓ WRFDA tools: plot_cost_grad_fn.ncl

b: background term

o: observation term

c: JcDFI term

e: alpha term

p: radiance variational bias correction term

s: skin temperature or cloud cover term

1: lateral boundary conditions control variable (4dvar only)

gts_omb_oma_01

Contains complete point-by-point, detailed observation information.

Measured quantities for each observation type vary:

polaramy: u, v synop: u, v, t, p, q metar: u, v, t, p, q gpspw: tpw ship: u, v, t, p, q sound: u, v, t, q sonde_sfc: u, v, t, p, q geoamv: u, v profiler: u, v airep: u, v, t pilot: u, v buoy: u, v, t, p, q satem: thickness airsr: t, q gpsref: ref qscat: u, v

✓ WRFDA tools: plot_gts_omb_oma.ncl

✓ WRFDA tools: plot_ob_ascii_loc.ncl

statistics

Contains domain-wide O-B and O-A information:

```
      Diagnostics of OI for synop

      var
      u (m/s)
      n
      k
      v (m/s)
      n
      k
      t (K)
      n
      k
      p (Pa)
      n
      k
      q (kg/kg)
      n
      k

      Number:
      331
      332
      355
      330
      361
      n
      k
      n
      k
      n
      k
      n
      k
      n
      k
      n
      k
      n
      k
      n
      k
      n
      k
      n
      k
      n
      k
      n
      k
      n
      k
      n
      k
      n
      k
      n
      k
      n
      k
      n
      k
      n
      k
      n
      k
      n
      k
      n
      k
      n
      k
      n
      k
      n
      k
      n
      k
      n
      k
      n
      k
      n
      k
      n
      k
      n
      k
      n
      k
      n
      k
      n
      k
      n
      k
      n
      k
      n
      k
      n
      k
      n
      k
      n
      k
      n
      k
      n
      k
      n
      k
      n
      k
      n</td
```

```
      Diagnostics of AO for synop

      var
      u (m/s)
      n
      k
      v (m/s)
      n
      k
      p (Pa)
      n
      k
      q (kg/kg)
      n
      k

      Number:
      331
      332
      355
      330
      361

      Minimum(n,k):
      -4.2496
      172
      0
      -5.0463
      683
      0
      -8.9005
      583
      0
      -472.9290
      931
      0
      0.4152E-02
      719
      0

      Maximum(n,k):
      5.5540
      886
      0
      5.7990
      630
      0
      8.8192
      421
      0
      392.4096
      944
      0
      0.5058E-02
      1
      0

      Average:
      -0.0847
      -0.0376
      -0.4283
      1.1709
      0.1625E-04
      0
      0.5958E-03
      0
      0.5958E-03
      0
      0.5958E-03
      0
      0.5958E-03
      0
      0.5958E-03
      0
      0
      0.5958E-03
      0
      0.5958E-03
      0
      0
      0.5958E-03
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0</td
```

```
Minimum of gridded analysis increments

Lvl u i j v i j t i j p i j q i j
1 -1.8915 17 32 -1.9965 36 24 -5.2526 20 35 -314.7470 44 1 -0.1451E-02 18 32
2 -1.9476 16 32 -2.0070 36 24 -3.0142 21 36 -311.2885 44 1 -0.1438E-02 18 33
```

```
Maximum of gridded analysis increments

Lvl u i j v i j t i j p i j q i j 8 2 0.1401E-02 39 8 1 1.5739 28 12 3.2994 24 20 197.8351 28 2 0.1591E-02 39 8 2 1.4844 40 8 1.6180 28 13 1.7471 7 20 195.5165 28 2 0.1591E-02 39 8
```

Information contained in **statistics** files can be used to plot time series of O-B and O-A for each observation variable and type.

Wrap-up

A Few Things I Didn't Cover

- First-Guess at Appropriate Time (FGAT; &wrfvar3)
- Background error covariance tuning (&wrfvar7)
- Radiance assimilation (&wrfvar4, &wrfvar14)
- Pseudo-single observation tests (&wrfvar15, &wrfvar19)

WRFDA USERS PAGE

http://www.mmm.ucar.edu/wrf/users/wrfda/index.html

WRFDA USERS GUIDE

http://www.mmm.ucar.edu/wrf/users/wrfda/Docs/user_guide_V3.6/users_guide_chap6.htm

README files contained in the tar file

WRFDA/README.VAR

WRFDA/var/README.namelist

WRFDA/var/README.basics

WRFDA/var/README.radiance

wrfhelp@ucar.edu

Extra Slides for your Reference

WRFDA Code Flow

Namelist - WRFVAR3

 num_fgat_time: Number of data time windows (slots) used in WRFDA.

✓ First-Guess at Appropriate Time (FGAT):

An option in WRF-3DVar that allows the observations to be applied at the correct time, rather than at the middle of the time window.

Running WRFDA with FGAT

- 1. prepare hourly obs files using OBSPROC
- 2. prepare hourly first guess files from previous WRF forecasts
- 3. when running WRFDA-3DVar,
 - a) set num_fgat_time = 7 in namelist.input &wrfvar3
 - b) link hourly obs to be ob01.ascii, ob02.ascii, ..., ob07.ascii
 - c) link hourly first guess (previous WRF hourly forecasts) to be fg01, fg02, ..., fg07
 - d) link first guess valid at analysis time to be fg

OBSPROC

&record9 of namelist.3dvar_obs

```
&record9
  use_for='FGAT'
  num_slots_past=3
  num_slots_ahead=3
```

WRF model

add the following settings (write_input, inputout_interval, input_outname, inputout_begin_h, inputout_end_h) in &time_control of namelist.input

```
&time_control
  write_input = .true.
  inputout_interval = 60
  input_outname = 'wrfinput_d<domain>_<date>'
  inputout_begin_h = 3
  inputout_end_h = 9
```

WRFDA-3DVar

&wrfvar3 record of namelist.input

```
&wrfvar3
num_fgat_time = 7
```

In -sf obs_gts_2007-01-01_21:00:00.FGAT ob01.ascii In -sf obs_gts_2007-01-01_22:00:00.FGAT ob02.ascii In -sf obs_gts_2007-01-01_23:00:00.FGAT ob03.ascii In -sf obs_gts_2007-01-02_00:00:00.FGAT ob04.ascii In -sf obs_gts_2007-01-02_01:00:00.FGAT ob05.ascii In -sf obs_gts_2007-01-02_02:00:00.FGAT ob06.ascii In -sf obs_gts_2007-01-02_03:00:00.FGAT ob07.ascii

```
In -sf wrfinput_d01_2007-01-01_21:00:00 fg01 In -sf wrfinput_d01_2007-01-01_22:00:00 fg02 In -sf wrfinput_d01_2007-01-01_23:00:00 fg03 In -sf wrfinput_d01_2007-01-02_00:00:00 fg04 In -sf wrfinput_d01_2007-01-02_01:00:00 fg05 In -sf wrfinput_d01_2007-01-02_02:00:00 fg06 In -sf wrfinput_d01_2007-01-02_03:00:00 fg07
```

In -sf wrfinput_d01_2007-01-02_00:00:00 fg