

Automorphic Signatures in Bilinear Groups

Georg Fuchsbauer

École normale supérieure

UCL, 23.03.2010

1 Motivation: Anonymous Proxy Signatures

2 Groth-Sahai Witness-Indistinguishable Proofs

3 Automorphic Signatures

1 Motivation: Anonymous Proxy Signatures

2 Groth-Sahai Witness-Indistinguishable Proofs

3 Automorphic Signatures

Anonymous Consecutive Delegation of Signing Rights

F, Pointcheval: Anonymous Proxy Signatures [SCN'08]

Delegation A **delegator** delegates his signing rights to a **proxy signer** (or **delegatee**) who can then sign on the delegator's behalf

Consecutiveness A delegatee may **re-delegate** the received signing rights
⇒ intermediate delegators

Anonymity All intermediate delegators and the proxy signer remain **anonymous**

Anonymous Consecutive Delegation of Signing Rights

F, Pointcheval: Anonymous Proxy Signatures [SCN'08]

Delegation A **delegator** delegates his signing rights to a **proxy signer** (or **delegatee**) who can then sign on the delegator's behalf

Consecutiveness A delegatee may **re-delegate** the received signing rights
⇒ intermediate delegators

Anonymity All intermediate delegators and the proxy signer remain **anonymous**

Anonymous Consecutive Delegation of Signing Rights

F, Pointcheval: Anonymous Proxy Signatures [SCN'08]

Delegation A delegator delegates his signing rights to a proxy signer (or delegatee) who can then sign on the delegator's behalf

Consecutiveness A delegatee may re-delegate the received signing rights
⇒ intermediate delegators

Anonymity All intermediate delegators and the proxy signer remain anonymous

Anonymous Consecutive Delegation of Signing Rights

F, Pointcheval: Anonymous Proxy Signatures [SCN'08]

Delegation A delegator delegates his signing rights to a proxy signer (or delegatee) who can then sign on the delegator's behalf

Consecutiveness A delegatee may re-delegate the received signing rights
⇒ intermediate delegators

Anonymity All intermediate delegators and the proxy signer remain anonymous

After verifying a proxy signature one knows that someone entitled signed but nothing more.

Application: GRID computing

User authenticates herself and starts process which needs to authenticate to resources / start subprocesses

⇒ Delegation and re-delegation of signing rights

No need to know that it was not the user herself to be authenticated

Relation to Other Primitives

Anonymous proxy signatures are a generalization of

- Proxy signatures (consecutive delegation)
formalized by [BPW03]
- (Dynamic) group signatures (anonymity)
formalized by [BSZ05]

and satisfy the respective security notions.

Application: GRID computing

User authenticates herself and starts process which needs to authenticate to resources / start subprocesses

⇒ Delegation and re-delegation of signing rights

No need to know that it was not the user herself to be authenticated

Relation to Other Primitives

Anonymous proxy signatures are a generalization of

- **Proxy signatures** (consecutive delegation)
formalized by [BPW03]
- **(Dynamic) group signatures** (anonymity)
formalized by [BSZ05]

and satisfy the respective security notions.

Application: GRID computing

User authenticates herself and starts process which needs to authenticate to resources / start subprocesses

⇒ Delegation and re-delegation of signing rights

No need to know that it was not the user herself to be authenticated

Relation to Other Primitives

Anonymous proxy signatures are a generalization of

- Proxy signatures (consecutive delegation)
formalized by [BPW03]
- (Dynamic) group signatures (anonymity)
formalized by [BSZ05]

and satisfy the respective security notions.

- more recently: Delegatable Anonymous Credentials [BCKL09]

(Dynamic) Group Signatures

Group public key: pk

Verification: $\text{Verify}(pk, msg, \sigma) = 1$

Proxy Signatures

Proxy Signatures, Consecutive Delegations

Proxy Signatures, Consecutive Delegations

Proxy Signatures, Consecutive Delegations

Algorithms of Anonymous Proxy Signature Scheme

$$1^\lambda \rightarrow \text{Setup} \rightarrow pp, ik, ok$$

Algorithms of Anonymous Proxy Signature Scheme

$1^\lambda \rightarrow \text{Setup} \rightarrow pp, ik, ok$

Algorithms of Anonymous Proxy Signature Scheme

$1^\lambda \rightarrow \text{Setup} \rightarrow pp, ik, ok$
 $sk_x, pk_y \rightarrow \text{Del} \rightarrow warr_{x \rightarrow y}$

Algorithms of Anonymous Proxy Signature Scheme

$1^\lambda \rightarrow \text{Setup} \rightarrow pp, ik, ok$
 $sk_x, [warr_{\rightarrow x},] \ pk_y \rightarrow \text{Del} \rightarrow warr_{[\rightarrow]x \rightarrow y}$

Algorithms of Anonymous Proxy Signature Scheme

$1^\lambda \rightarrow \text{Setup} \rightarrow pp, ik, ok$
 $sk_x, [warr_{\rightarrow x},] pk_y \rightarrow \text{Del} \rightarrow warr_{[\rightarrow]x \rightarrow y}$
 $sk_y, warr_{x \rightarrow \dots \rightarrow y}, M \rightarrow \text{PSig} \rightarrow \sigma$

Algorithms of Anonymous Proxy Signature Scheme

$1^\lambda \rightarrow \text{Setup} \rightarrow pp, ik, ok$
 $sk_x, [warr_{\rightarrow x},] pk_y \rightarrow \text{Del} \rightarrow warr_{[\rightarrow]x \rightarrow y}$
 $sk_y, warr_{x \rightarrow \dots \rightarrow y}, M \rightarrow \text{PSig} \rightarrow \sigma$
 $pk_x, M, \sigma \rightarrow \text{PVer} \rightarrow b \in \{0, 1\}$

Algorithms of Anonymous Proxy Signature Scheme

1^λ	\rightarrow	Setup	\rightarrow	pp, ik, ok
$sk_x, [warr_{\rightarrow x},] \ pk_y$	\rightarrow	Del	\rightarrow	$warr_{[\rightarrow]x \rightarrow y}$
$sk_y, warr_{x \rightarrow \dots \rightarrow y}, M$	\rightarrow	PSig	\rightarrow	σ
pk_x, M, σ	\rightarrow	PVer	\rightarrow	$b \in \{0, 1\}$
ok, M, σ	\rightarrow	Open	\rightarrow	a list of users or \perp (failure)

Security for Anonymous Proxy Signatures

Security

Anonymity intermediate delegators and proxy signer remain anonymous

Traceability every valid signature can be traced to its intermediate delegators and proxy signer

Non-Frameability no one can produce a signature that, when opened, wrongfully reveals a delegator or signer

Security for Anonymous Proxy Signatures

Security

Anonymity intermediate delegators and proxy signer remain anonymous

Traceability every valid signature can be traced to its intermediate delegators and proxy signer

Non-Frameability no one can produce a signature that, when opened, wrongfully reveals a delegator or signer

Security for Anonymous Proxy Signatures

Security

Anonymity intermediate delegators and proxy signer remain anonymous

Traceability every valid signature can be traced to its intermediate delegators and proxy signer

Non-Frameability no one can produce a signature that, when opened, wrongfully reveals a delegator or signer

Generic Construction

using

- Digital signatures (EUF-CMA)
- Public-key encryption (IND-CPA)
- Non-interactive zero-knowledge proofs

Generic Construction: Ingredients

Generic Construction

using

- Digital signatures (EUF-CMA)
- Public-key encryption (IND-CPA)
- Non-interactive zero-knowledge proofs

(Existence follows from trapdoor permutations)

Generic Construction: Overview

Setup	Generates decryption key for opening authority; signing key for issuer Parameters: resp. public keys, crs for NIZK
Register	Issuer signs user's public key → <i>certificate</i>
Delegate	Sign delegatee's public key → <i>warrant</i> Re-delegate: additionally forward received warrants
Proxy-Sign	Sign message, encrypt <ul style="list-style-type: none">• interm. delegators' verification keys and certificates• warrants • signature on message
Output	<ul style="list-style-type: none">• ciphertext• NIZK proof that plaintext contains valid signatures
Verify	Verify NIZK proof
Open	Decrypt ciphertext

Generic Construction: Overview

Setup Generates decryption key for opening authority;
signing key for issuer

Parameters: resp. public keys, crs for NIZK

Register Issuer signs user's public key → *certificate*

Delegate Sign delegatee's public key → *warrant*

Re-delegate: additionally forward received warrants

Proxy-Sign Sign message, encrypt

- interm. delegators' verification keys and certificates
- warrants • signature on message

Output

- ciphertext
- NIZK proof that plaintext contains valid signatures

Verify Verify NIZK proof

Open Decrypt ciphertext

Generic Construction: Overview

Setup Generates decryption key for opening authority;
signing key for issuer

Parameters: resp. public keys, crs for NIZK

Register Issuer signs user's public key → *certificate*

Delegate Sign delegatee's public key → *warrant*

Re-delegate: additionally forward received warrants

Proxy-Sign Sign message, encrypt

- interm. delegators' verification keys and certificates
- warrants • signature on message

Output

- ciphertext
- NIZK proof that plaintext contains valid signatures

Verify Verify NIZK proof

Open Decrypt ciphertext

Generic Construction: Overview

- Setup** Generates decryption key for opening authority;
signing key for issuer
Parameters: resp. public keys, crs for NIZK
- Register** Issuer signs user's public key → *certificate*
- Delegate** Sign delegatee's public key → *warrant*
Re-delegate: additionally forward received warrants
- Proxy-Sign** Sign message, encrypt
 - interm. delegators' verification keys and certificates
 - warrants • signature on message
- Output**
 - ciphertext
 - NIZK proof that plaintext contains valid signatures
- Verify** Verify NIZK proof
- Open** Decrypt ciphertext

Generic Construction: Overview

- Setup** Generates decryption key for opening authority;
signing key for issuer
Parameters: resp. public keys, crs for NIZK
- Register** Issuer signs user's public key → *certificate*
- Delegate** Sign delegatee's public key → *warrant*
Re-delegate: additionally forward received warrants
- Proxy-Sign** Sign message, encrypt
 - interm. delegators' verification keys and certificates
 - warrants • signature on message
- Output**
 - ciphertext
 - NIZK proof that plaintext contains valid signatures
- Verify** Verify NIZK proof
- Open** Decrypt ciphertext

Generic Construction: Overview

- Setup** Generates decryption key for opening authority;
signing key for issuer
Parameters: resp. public keys, crs for NIZK
- Register** Issuer signs user's public key → *certificate*
- Delegate** Sign delegatee's public key → *warrant*
Re-delegate: additionally forward received warrants
- Proxy-Sign** Sign message, encrypt
 - interm. delegators' verification keys and certificates
 - warrants • signature on message
- Output**
 - ciphertext
 - NIZK proof that plaintext contains valid signatures
- Verify** Verify NIZK proof
- Open** Decrypt ciphertext

F, Pointcheval: Proofs on Encrypted Values in Bilinear Groups and an Application to Anonymity of Signatures. [PAIRING '09]

- Encryption and proofs based on a generalization of techniques of Boyen-Waters Group Signatures [PKC'07] based on *Subgroup Decision Assumption*
- Signature scheme inefficient due to bit-by-bit techniques

1 Motivation: Anonymous Proxy Signatures

2 Groth-Sahai Witness-Indistinguishable Proofs

3 Automorphic Signatures

Non-Interactive Witness-Indistinguishable Proofs

An NP language \mathcal{L} is defined by relation R as $\mathcal{L} := \{x \mid \exists w : (x, w) \in R\}$.

A NIWI for \mathcal{L} consists of **Setup**, **Prove** and **Verify**.

- **Setup** outputs a common reference string crs
- **Prove**(crs, x, w) outputs a proof π
- **Verify**(crs, x, π) and outputs 1 or 0

Non-Interactive Witness-Indistinguishable Proofs

An NP language \mathcal{L} is defined by relation R as $\mathcal{L} := \{x \mid \exists w : (x, w) \in R\}$.

A NIWI for \mathcal{L} consists of **Setup**, **Prove** and **Verify**.

- **Setup** outputs a common reference string crs
- **Prove**(crs, x, w) outputs a proof π
- **Verify**(crs, x, π) and outputs 1 or 0

It satisfies

- completeness
- soundness
- witness indistinguishability

Bilinear Groups and the Decision Linear Assumption [BBS04]

- Bilinear group $(p, \mathbb{G}, \mathbb{G}_T, e, G)$
 - $(\mathbb{G}, +)$ and (\mathbb{G}_T, \cdot) cyclic groups of prime order p
 - $e: \mathbb{G} \times \mathbb{G} \rightarrow \mathbb{G}_T$ bilinear, i.e. $\forall X, Y \in \mathbb{G}, \forall a, b \in \mathbb{Z}$:
$$e(aX, bY) = e(X, Y)^{ab}$$
 - $\mathbb{G} = \langle G \rangle, \mathbb{G}_T = \langle e(G, G) \rangle$

Bilinear Groups and the Decision Linear Assumption [BBS04]

- Bilinear group $(p, \mathbb{G}, \mathbb{G}_T, e, G)$
 - $(\mathbb{G}, +)$ and (\mathbb{G}_T, \cdot) cyclic groups of prime order p
 - $e: \mathbb{G} \times \mathbb{G} \rightarrow \mathbb{G}_T$ bilinear, i.e. $\forall X, Y \in \mathbb{G}, \forall a, b \in \mathbb{Z}$:
 $e(aX, bY) = e(X, Y)^{ab}$
 - $\mathbb{G} = \langle G \rangle, \mathbb{G}_T = \langle e(G, G) \rangle$
- Given $(U, V, G, \alpha U, \beta V, \gamma G)$ it is hard to decide whether $\gamma = \alpha + \beta$.

Bilinear Groups and the Decision Linear Assumption [BBS04]

- Bilinear group $(p, \mathbb{G}, \mathbb{G}_T, e, G)$
 - $(\mathbb{G}, +)$ and (\mathbb{G}_T, \cdot) cyclic groups of prime order p
 - $e: \mathbb{G} \times \mathbb{G} \rightarrow \mathbb{G}_T$ bilinear, i.e. $\forall X, Y \in \mathbb{G}, \forall a, b \in \mathbb{Z}$:
 $e(aX, bY) = e(X, Y)^{ab}$
 - $\mathbb{G} = \langle G \rangle, \mathbb{G}_T = \langle e(G, G) \rangle$
- Given $(U, V, G, \alpha U, \beta V, \gamma G)$ it is hard to decide whether $\gamma = \alpha + \beta$.

PPE

A *pairing-product equation* is an equation over variables $X_1, \dots, X_n \in \mathbb{G}$ of the form

$$\prod_{i=1}^n e(A_i, X_i) \prod_{i=1}^n \prod_{j=1}^n e(X_i, X_j)^{\gamma_{i,j}} = t_T , \quad (\text{E})$$

determined by $A_i \in \mathbb{G}$, $\gamma_{i,j} \in \mathbb{Z}_p$ and $t_T \in \mathbb{G}_T$, for $1 \leq i, j \leq n$.

Bilinear Groups and the Decision Linear Assumption [BBS04]

- Bilinear group $(p, \mathbb{G}, \mathbb{G}_T, e, G)$
 - $(\mathbb{G}, +)$ and (\mathbb{G}_T, \cdot) cyclic groups of prime order p
 - $e: \mathbb{G} \times \mathbb{G} \rightarrow \mathbb{G}_T$ bilinear, i.e. $\forall X, Y \in \mathbb{G}, \forall a, b \in \mathbb{Z}$:
 $e(aX, bY) = e(X, Y)^{ab}$
 - $\mathbb{G} = \langle G \rangle, \mathbb{G}_T = \langle e(G, G) \rangle$
- Given $(U, V, G, \alpha U, \beta V, \gamma G)$ it is hard to decide whether $\gamma = \alpha + \beta$.

PPE

A *pairing-product equation* is an equation over variables $X_1, \dots, X_n \in \mathbb{G}$ of the form

$$\prod_{i=1}^n e(A_i, X_i) \prod_{i=1}^n \prod_{j=1}^n e(X_i, X_j)^{\gamma_{i,j}} = t_T , \quad (\text{E})$$

determined by $A_i \in \mathbb{G}$, $\gamma_{i,j} \in \mathbb{Z}_p$ and $t_T \in \mathbb{G}_T$, for $1 \leq i, j \leq n$.

Groth, Sahai: NIWI proof of *satisfiability* of PPE

Setup on input the bilinear group output a **commitment key** ck

Com on input ck , $X \in \mathbb{G}$, randomness ρ output **commitment** c_X to X

Prove on input ck , $(X_i, \rho_i)_{i=1}^n$, equation E output a **proof** ϕ

Verify on input ck , \vec{c} , E , ϕ , output 0 or 1

Groth-Sahai II

Setup on input the bilinear group output a **commitment key** ck

Com on input $ck, X \in \mathbb{G}$, randomness ρ output **commitment** c_X to X

Prove on input $ck, (X_i, \rho_i)_{i=1}^n$, equation E output a **proof** ϕ

Verify on input ck, \vec{c}, E, ϕ , output 0 or 1

Correctness Honestly generated proofs are accepted by Verify

Soundness ExtSetup outputs (ck, ek) s.t.

given \vec{c} and ϕ s.t. $\text{Verify}(ck, \vec{c}, E, \phi) = 1$ then Extract(ek, \vec{c}) returns \vec{X} that satisfies E

Witness-Indistinguishability WISetup outputs ck^* indist. from ck s.t.

- Com(ck^*, \cdot, \cdot) produces statistically hiding commitments i.e.
 $\forall c \forall X \exists \rho : \text{Com}(ck^*, X, \rho) = c$
- Given $(X_i, \rho_i)_i, (X'_i, \rho'_i)_i$ s.t. $c_i = \text{Com}(ck^*, X_i, \rho_i) = \text{Com}(ck^*, X'_i, \rho'_i)$ and $(X_i)_i$ and $(X'_i)_i$ satisfy E then
 $\text{Prove}(ck^*, (X_i, \rho_i)_i, E) \sim \text{Prove}(ck^*, (X'_i, \rho'_i)_i, E)$

Groth-Sahai II

- Setup on input the bilinear group output a **commitment key** ck
- Com on input $ck, X \in \mathbb{G}$, randomness ρ output **commitment** c_X to X
- Prove on input $ck, (X_i, \rho_i)_{i=1}^n$, equation E output a **proof** ϕ
- Verify on input ck, \vec{c}, E, ϕ , output 0 or 1

Correctness Honestly generated proofs are accepted by Verify

Soundness ExtSetup outputs (ck, ek) s.t.

given \vec{c} and ϕ s.t. Verify(ck, \vec{c}, E, ϕ) = 1 then Extract(ek, \vec{c}) returns \vec{X} that satisfies E

Witness-Indistinguishability WISetup outputs ck^* indist. from ck s.t.

- Com(ck^*, \cdot, \cdot) produces statistically hiding commitments i.e.
 $\forall c \forall X \exists \rho : \text{Com}(ck^*, X, \rho) = c$
- Given $(X_i, \rho_i)_i, (X'_i, \rho'_i)_i$ s.t. $c_i = \text{Com}(ck^*, X_i, \rho_i) = \text{Com}(ck^*, X'_i, \rho'_i)$ and $(X_i)_i$ and $(X'_i)_i$ satisfy E then
 $\text{Prove}(ck^*, (X_i, \rho_i)_i, E) \sim \text{Prove}(ck^*, (X'_i, \rho'_i)_i, E)$

Groth-Sahai II

- Setup on input the bilinear group output a **commitment key** ck
- Com on input $ck, X \in \mathbb{G}$, randomness ρ output **commitment** \mathbf{c}_X to X
- Prove on input $ck, (X_i, \rho_i)_{i=1}^n$, equation E output a **proof** ϕ
- Verify on input $ck, \vec{\mathbf{c}}, E, \phi$, output 0 or 1

Correctness Honestly generated proofs are accepted by **Verify**

Soundness **ExtSetup** outputs (ck, ek) s.t.

given $\vec{\mathbf{c}}$ and ϕ s.t. $\text{Verify}(ck, \vec{\mathbf{c}}, E, \phi) = 1$ then **Extract** $(ek, \vec{\mathbf{c}})$ returns \vec{X} that satisfies E

Witness-Indistinguishability **WISetup** outputs ck^* indist. from ck s.t.

- **Com** (ck^*, \cdot, \cdot) produces statistically hiding commitments i.e.
 $\forall \mathbf{c} \ \forall X \ \exists \rho : \text{Com}(ck^*, X, \rho) = \mathbf{c}$
- Given $(X_i, \rho_i)_i, (X'_i, \rho'_i)_i$ s.t. $\mathbf{c}_i = \text{Com}(ck^*, X_i, \rho_i) = \text{Com}(ck^*, X'_i, \rho'_i)$ and $(X_i)_i$ and $(X'_i)_i$ satisfy E then
 $\text{Prove}(ck^*, (X_i, \rho_i)_i, E) \sim \text{Prove}(ck^*, (X'_i, \rho'_i)_i, E)$

1 Motivation: Anonymous Proxy Signatures

2 Groth-Sahai Witness-Indistinguishable Proofs

3 Automorphic Signatures

Motivation

- Groth-Sahai proofs allow us to
 - commit to (encrypt) group elements and to
 - prove that they satisfy PPEs

Opener's public and decryption key: $(ck, ek) \leftarrow \text{ExtSetup}$

- To instantiate generic construction, we need signature scheme s.t.
 - signatures are group elements
 - verification by PPE
 - able to sign public keys
 - EUF-CMA

Motivation

- Groth-Sahai proofs allow us to
 - commit to (encrypt) group elements and to
 - prove that they satisfy PPEs

Opener's public and decryption key: $(ck, ek) \leftarrow \text{ExtSetup}$

- To instantiate generic construction, we need signature scheme s.t.
 - signatures are group elements
 - verification by PPE
 - able to sign public keys
 - EUF-CMA

Motivation

- Groth-Sahai proofs allow us to
 - commit to (encrypt) group elements and to
 - prove that they satisfy PPEs

Opener's public and decryption key: $(ck, ek) \leftarrow \text{ExtSetup}$

- To instantiate generic construction, we need signature scheme s.t.
 - signatures are group elements
 - verification by PPE
 - able to sign public keys
 - EUF-CMA

Motivation

- Groth-Sahai proofs allow us to
 - commit to (encrypt) group elements and to
 - prove that they satisfy PPEs

Opener's public and decryption key: $(ck, ek) \leftarrow \text{ExtSetup}$

- To instantiate generic construction, we need signature scheme s.t.
 - signatures are group elements
 - verification by PPE
 - able to sign public keys
 - EUF-CMA

Motivation

- Groth-Sahai proofs allow us to
 - commit to (encrypt) group elements and to
 - prove that they satisfy PPEs

Opener's public and decryption key: $(ck, ek) \leftarrow \text{ExtSetup}$

- To instantiate generic construction, we need signature scheme s.t.
 - signatures are group elements
 - verification by PPE
 - able to sign public keys
 - EUF-CMA

Motivation

- Groth-Sahai proofs allow us to
 - commit to (encrypt) group elements and to
 - prove that they satisfy PPEs

Opener's public and decryption key: $(ck, ek) \leftarrow \text{ExtSetup}$

- To instantiate generic construction, we need signature scheme s.t.
 - signatures are group elements
 - verification by PPE
 - able to sign public keys
 - EUF-CMA

- Groth-Sahai proofs allow us to
 - commit to (encrypt) group elements and to
 - prove that they satisfy PPEs

Opener's public and decryption key: $(ck, ek) \leftarrow \text{ExtSetup}$

- To instantiate generic construction, we need signature scheme s.t.
 - signatures are group elements
 - verification by PPE
 - able to sign public keys
 - EUF-CMA

Automorphic Signatures

Boneh-Boyen Signatures

The q -Strong Diffie-Hellman Problem (SDH) [BB04]

Given $(G, xG, x^2G, \dots, x^qG) \in \mathbb{G}^{q+1}$ for $x \leftarrow \mathbb{Z}_p^*$, output $(\frac{1}{x+c}G, c) \in \mathbb{G} \times \mathbb{Z}_p$.

Boneh-Boyen Weak Signatures

Given $G, xG \in \mathbb{G}$ and $q - 1$ distinct pairs $(\frac{1}{x+c_i}G, c_i) \in \mathbb{G} \times \mathbb{Z}_p$, output a new pair $(\frac{1}{x+c}G, c) \in \mathbb{G} \times \mathbb{Z}_p$.

Boneh-Boyen Short Signatures

- Secret key $(x, y) \in \mathbb{Z}_p^2$, public key $X = xG, Y = yG$
- Sign $m \in \mathbb{Z}_p$: choose $r \leftarrow \mathbb{Z}_p$; signature: $(A = \frac{1}{x+m+ry}G, r)$
- Verify (A, r) on m under (X, Y) by checking
 $e(A, X + mG + rY) = e(G, G)$

Boneh-Boyen Signatures

The q -Strong Diffie-Hellman Problem (SDH) [BB04]

Given $(G, xG, x^2G, \dots, x^qG) \in \mathbb{G}^{q+1}$ for $x \leftarrow \mathbb{Z}_p^*$, output $(\frac{1}{x+c}G, c) \in \mathbb{G} \times \mathbb{Z}_p$.

Boneh-Boyen Weak Signatures

Given $G, xG \in \mathbb{G}$ and $q - 1$ distinct pairs $(\frac{1}{x+c_i}G, c_i) \in \mathbb{G} \times \mathbb{Z}_p$, output a new pair $(\frac{1}{x+c}G, c) \in \mathbb{G} \times \mathbb{Z}_p$.

Boneh-Boyen Short Signatures

- Secret key $(x, y) \in \mathbb{Z}_p^2$, public key $X = xG, Y = yG$
- Sign $m \in \mathbb{Z}_p$: choose $r \leftarrow \mathbb{Z}_p$; signature: $(A = \frac{1}{x+m+ry}G, r)$
- Verify (A, r) on m under (X, Y) by checking
 $e(A, X + mG + rY) = e(G, G)$

Boneh-Boyen Signatures

The q -Strong Diffie-Hellman Problem (SDH) [BB04]

Given $(G, xG, x^2G, \dots, x^qG) \in \mathbb{G}^{q+1}$ for $x \leftarrow \mathbb{Z}_p^*$, output $(\frac{1}{x+c}G, c) \in \mathbb{G} \times \mathbb{Z}_p$.

Boneh-Boyen Weak Signatures

Given $G, xG \in \mathbb{G}$ and $q - 1$ distinct pairs $(\frac{1}{x+c_i}G, c_i) \in \mathbb{G} \times \mathbb{Z}_p$, output a new pair $(\frac{1}{x+c}G, c) \in \mathbb{G} \times \mathbb{Z}_p$.

Boneh-Boyen Short Signatures

- Secret key $(x, y) \in \mathbb{Z}_p^2$, public key $X = xG$, $Y = yG$
- Sign $m \in \mathbb{Z}_p$: choose $r \leftarrow \mathbb{Z}_p$; signature: $(A = \frac{1}{x+m+ry}G, r)$
- Verify (A, r) on m under (X, Y) by checking
 $e(A, X + mG + rY) = e(G, G)$

Boneh-Boyen Signatures

The q -Strong Diffie-Hellman Problem (SDH) [BB04]

Given $(G, xG, x^2G, \dots, x^qG) \in \mathbb{G}^{q+1}$ for $x \leftarrow \mathbb{Z}_p^*$, output $(\frac{1}{x+c}G, c) \in \mathbb{G} \times \mathbb{Z}_p$.

Boneh-Boyen Weak Signatures

Given $G, xG \in \mathbb{G}$ and $q - 1$ distinct pairs $(\frac{1}{x+c_i}G, c_i) \in \mathbb{G} \times \mathbb{Z}_p$, output a new pair $(\frac{1}{x+c}G, c) \in \mathbb{G} \times \mathbb{Z}_p$.

Boneh-Boyen Short Signatures

- Secret key $(x, y) \in \mathbb{Z}_p^2$, public key $X = xG$, $Y = yG$
- Sign $m \in \mathbb{Z}_p$: choose $r \leftarrow \mathbb{Z}_p$; signature: $(A = \frac{1}{x+m+ry}G, r)$
- Verify (A, r) on m under (X, Y) by checking
 $e(A, X + mG + rY) = e(\frac{1}{x+m+ry}G, (x + m + ry)G) = e(G, G)$

Boneh-Boyen Weak Signatures

Given $G, X := xG \in \mathbb{G}$ and $q - 1$ distinct pairs

$(\frac{1}{x+c_i} G, c_i) \in \mathbb{G} \times \mathbb{Z}_p$, output a new pair $(\frac{1}{x+c} G, c) \in \mathbb{G} \times \mathbb{Z}_p$.

The Hidden SDH [BW07]

Given $G, \textcolor{blue}{H}, X := xG \in \mathbb{G}$ and $q - 1$ distinct triples
 $(\frac{1}{x+c_i} G, \textcolor{blue}{c}_i G, \textcolor{blue}{c}_i H) \in \mathbb{G}^3$, output a new triple $(\frac{1}{x+c} G, \textcolor{blue}{c} G, \textcolor{blue}{c} H) \in \mathbb{G}^3$.

The Hidden SDH [BW07]

Given $G, H, X := xG \in \mathbb{G}$ and $q - 1$ distinct triples
 $(\frac{1}{x+c_i} G, c_i G, c_i H) \in \mathbb{G}^3$, output a new triple $(\frac{1}{x+c} G, c G, c H) \in \mathbb{G}^3$.

- All components are group elements
- Validity of a triple (A, C, D) is verifiable by PPEs:

$$e(A, X + C) = e(G, G)$$

$$e(C, H) = e(G, D)$$

Assumptions I

F, Pointcheval, Vergnaud: Transferable Constant-Size Fair E-Cash
[CANS'09]

SDH implies hardness of the following:

Given $G, K, X := xG \in \mathbb{G}$ and $q - 1$ triples

$(\frac{1}{x+c_i}(K+v_iG), c_i, v_i) \in \mathbb{G} \times \mathbb{Z}_p^2$, output a new triple
 $(\frac{1}{x+c}(K+vG), c, v) \in \mathbb{G} \times \mathbb{Z}_p^2$.

Assumptions I

F, Pointcheval, Vergnaud: Transferable Constant-Size Fair E-Cash
[CANS'09]

SDH implies hardness of the following:

Given $G, K, X := xG \in \mathbb{G}$ and $q - 1$ triples

$(\frac{1}{x+c_i}(K + v_i G), c_i, v_i) \in \mathbb{G} \times \mathbb{Z}_p^2$, output a new triple
 $(\frac{1}{x+c}(K + v G), c, v) \in \mathbb{G} \times \mathbb{Z}_p^2$.

Asymm. Double Hidden SDH (ADHSDH)

Given $G, K, F, H, X := xG, Y := xH \in \mathbb{G}$ and $q - 1$ tuples

$(\frac{1}{x+c_i}(K + v_i G), c_i F, c_i H, v_i G, v_i H)$, output a new tuple
 $(\frac{1}{x+c}(K + v G), c F, c H, v G, v H)$.

Assumptions II

Verification

(A, C, D, V, W) satisfies

- $e(A, Y + D) = e(\frac{1}{x+c}(K + vG), xH + cH) = e(K + V, H),$
- $e(C, H) = e(cF, H) = e(F, D)$
- $e(V, H) = e(vG, H) = e(G, W)$

Assumptions II

Verification

(A, C, D, V, W) satisfies

- $e(A, Y + D) = e(\frac{1}{x+c}(K + vG), xH + cH) = e(K + V, H),$
- $e(C, H) = e(cF, H) = e(F, D)$
- $e(V, H) = e(vG, H) = e(G, W)$

(Weak) Flexible CDH (WFCDH)

Given $(G, aG, bG) \in \mathbb{G}^3$, output $(R, aR, bR, abR) \in \mathbb{G}^4$ with $R \neq 0$.

Automorphic Signature

- Parameters: $(G, K, F, H, \textcolor{blue}{T}) \leftarrow \mathbb{G}^5$, which define the message space as $\mathcal{DH} := \{(mG, mH) \mid m \in \mathbb{Z}_p\}$,
- KeyGen: secret key $x \leftarrow \mathbb{Z}_p$, public key $(X := xG, Y := yH)$
- Sign $(M, N) \in \mathcal{DH}$: choose $c, \textcolor{blue}{r} \leftarrow \mathbb{Z}_p$, set

$$(A := \frac{1}{x+c}(K + \textcolor{blue}{r}\textcolor{blue}{T} + M), C := cF, D := cH, \textcolor{blue}{R} := rG, S := rH)$$

- A signature on a message $(M, N) \in \mathcal{DH}$ is valid iff

$$\begin{aligned} e(A, Y + D) &= e(K + M, H) e(T, S) & e(C, H) &= e(F, D) \\ & & e(R, H) &= e(G, S) \end{aligned}$$

Automorphic Signature

- Parameters: $(G, K, F, H, \textcolor{blue}{T}) \leftarrow \mathbb{G}^5$, which define the message space as $\mathcal{DH} := \{(mG, mH) \mid m \in \mathbb{Z}_p\}$,
- KeyGen: secret key $x \leftarrow \mathbb{Z}_p$, public key $(X := xG, Y := yH)$
- Sign $(M, N) \in \mathcal{DH}$: choose $c, \textcolor{blue}{r} \leftarrow \mathbb{Z}_p$, set

$$(A := \frac{1}{x+c}(K + \textcolor{blue}{r}\textcolor{blue}{T} + M), C := cF, D := cH, \textcolor{blue}{R} := rG, S := rH)$$

- A signature on a message $(M, N) \in \mathcal{DH}$ is valid iff

$$\begin{aligned} e(A, Y + D) &= e(K + M, H) e(T, S) & e(C, H) &= e(F, D) \\ && e(R, H) &= e(G, S) \end{aligned}$$

The above scheme is EUF-CMA under ADHSDH and WFCDH.

Applications

Efficiency

- Messages and public keys in \mathbb{G}^2 , signatures in \mathbb{G}^5
- Verification: 7 pairing evaluations
- Also instantiable in *asymmetric* bilinear groups

In combination with Groth-Sahai proofs, automorphic signatures enable efficient instantiations of generic concepts.

Applications

Efficiency

- Messages and public keys in \mathbb{G}^2 , signatures in \mathbb{G}^5
- Verification: 7 pairing evaluations
- Also instantiable in *asymmetric* bilinear groups

In combination with Groth-Sahai proofs, automorphic signatures enable efficient instantiations of generic concepts.

- Round-Optimal Blind Signatures
- Group Signatures
- Anonymous Proxy Signatures with new features:
 - Delegator anonymity (by randomizing Groth-Sahai proofs)
 - Blind delegation (using blind signatures)

Thank you! ☺