Chapter 4: Numerical Differentiation and Integration

Numerical Differentiation

Motivation

Example: Money flow into a branch of a bank in different days is given in Table

Question: Estimate money flow rate in 2nd and in 3rd days

Time	Money	
(working days)	(million \$)	
1	3.2	
2	4.8	
4	9.5	
7	18.8	

Aim: Approximate derivatives of tabulated or "complicated" functions

Forward Difference Approximation

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

For small $\Delta x > 0$:

$$f'(x) \approx \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

Backward Difference Approximation

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

For small $\Delta x > 0$:

Derive the forward difference approximation from Taylor series

Taylor series expansion of a function for x near x_0 :

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n$$

$$\Rightarrow f(x_{i+1}) = f(x_i) + f'(x_i)(x_{i+1} - x_i) + \frac{f''(x_i)}{2!}(x_{i+1} - x_i)^2 + \dots$$

Substituting for convenience $\Delta x = x_{i+1} - x_i$

$$f(x_{i+1}) = f(x_i) + f'(x_i) \Delta x + \frac{f''(x_i)}{2!} (\Delta x)^2 + \dots$$

$$f'(x_i) = \frac{f(x_{i+1}) - f(x_i)}{\Delta x} - \frac{f''(x_i)}{2!} (\Delta x) + \dots = \frac{f(x_{i+1}) - f(x_i)}{\Delta x} + O(\Delta x)$$

$$f'(x_i) = \frac{f(x_{i+1}) - f(x_i)}{\Delta x}$$

$$f(x) = g(x) + O(x) \Leftrightarrow$$

$$|f(x) - g(x)| \le K |x|^{\text{MAFE208IU-L9}} 0$$

Derive the central difference approximation from Taylor series

From Taylor series

$$x_{i-1} = x_i - \Delta x$$
, $x_{i+1} = x_i + \Delta x$, $x_{i+k} = x_i + k\Delta x$

$$f(x_{i+1}) = f(x_i) + f'(x_i) \Delta x + \frac{f''(x_i)}{2!} (\Delta x)^2 + \frac{f'''(x_i)}{3!} (\Delta x)^3 + \dots$$
 (1)

$$f(x_{i-1}) = f(x_i) - f'(x_i) \Delta x + \frac{f''(x_i)}{2!} (\Delta x)^2 - \frac{f'''(x_i)}{3!} (\Delta x)^3 + \dots$$
 (2)

Subtracting equation (2) from equation (1)

$$f(x_{i+1}) - f(x_{i-1}) = f'(x_i)(2\Delta x) + \frac{2f'''(x_i)}{3!}(\Delta x)^3 + \dots$$

$$f'(x_i) = \frac{f(x_{i+1}) - f(x_{i-1})}{2\Delta x} - \frac{f'''(x_i)}{3!}(\Delta x)^2 + \dots = \frac{f(x_{i+1}) - f(x_{i-1})}{2\Delta x} + O(\Delta x)^2$$

Central Difference Approximation:

$$f'(x_i) \approx \frac{f(x_{i+1}) - f(x_{i-1})}{2\Delta x}$$

Central Difference Approximation

$$f'(x) = \frac{f(x + \Delta x) - f(x - \Delta x)}{2\Delta x}$$

Example

Use FDA, BDA, and CDA to estimate the derivative and calculate the corresponding error

$$f(x) = x^3 + 2x^2 - 3x + 4$$

at $x_0 = 1$, use $\Delta x = 0.1$

Solution: Exact value

$$f(x) = x^{3} + 2x^{2} - 3x + 4$$
$$f'(x) = 3x^{2} + 4x - 3$$
$$f'(1) = 3 + 4 - 3 = 4$$

$f(x) = x^3 + 2x^2 - 3x + 4$

BDA: $f'(1) \approx \frac{f(1) - f(1 - \Delta x)}{\Delta x} = \frac{f(1) - f(0.9)}{0.1} = \frac{4 - 3.6490}{0.1} = 3.51$

CDA: $f'(1) \approx \frac{f(1+\Delta x)-f(1-\Delta x)}{2\Delta x} = \frac{f(1.1)-f(0.9)}{0.2} = \frac{4.451-3.649}{0.2} = 4.01$

Approximations of the derivative
$$f(1 + \Delta x) = f(1) = f(1)$$

FDA:
$$f'(1) \approx \frac{f(1+\Delta x)-f(1)}{\Delta x} = \frac{f(1.1)-f(1)}{0.1} = \frac{4.4510-4}{0.1} = 4.51$$

 $E_2 = 4 - 3.51 = 0.49 \mid \varepsilon_2 \mid = \frac{0.49}{4} = 0.1225 = 12.25\%$

 $E_3 = 4 - 4.01 = -0.01 \mid \varepsilon_3 \mid = \frac{0.01}{4} = 0.0025 = 0.25\%$

or the derivative
$$f(1 \perp \Lambda_{Y}) = f(1) = f$$

 $E_1 = 4 - 4.51 = -0.51$, $|\varepsilon_1| = \frac{0.51}{4} = 0.1275 = 12.75\%$

at
$$x_0$$

use
$$\Delta x = 0$$
.

MAFE208IU-L9

$$\frac{1}{x}x_0 = 1$$
, use Δx

$$x_0 = 1$$
, use Δx

at
$$x_0$$

= 1, use
$$\Delta x = 0$$

at
$$x_0 =$$

at
$$x_0 = 1$$
, use $\Delta x = 0.1$

at
$$x_0$$

$$t x_0 = 1$$
, use Δt

$$x x_0 = 1$$
, use $\Delta x =$

Approximations of Higher Derivatives

One can use Taylor series to approximate higher order derivatives

For example

$$f(x_{i+1}) = f(x_i) + f'(x_i)(\Delta x) + \frac{f''(x_i)}{2!}(\Delta x)^2 + \frac{f'''(x_i)}{3!}(\Delta x)^3 \dots$$

 $x_{i+k} = x_i + k\Delta x, \ k = 1, 2$

$$f(x_{i+2}) = f(x_i) + f'(x_i)(2\Delta x) + \frac{f''(x_i)}{2!}(2\Delta x)^2 + \frac{f'''(x_i)}{3!}(2\Delta x)^3 + \dots$$

$$f(x_{i+2}) - 2f(x_{i+1}) = -f(x_i) + f''(x_i)(\Delta x)^2 + f'''(x_i)(\Delta x)^3 \dots$$

$$f''(x_i) = \frac{f(x_{i+2}) - 2f(x_{i+1}) + f(x_i)}{(\Delta x)^2} - f'''(x_i)(\Delta x) + \dots = \frac{f(x_{i+2}) - 2f(x_{i+1}) + f(x_i)}{(\Delta x)^2} + O(\Delta x)$$

Formula of forward and backward difference approximation of 2nd derivative

So we get the **forward difference approximation** of 2nd derivative:

$$f''(x_i) \approx \frac{f(x_{i+2}) - 2f(x_{i+1}) + f(x_i)}{(\Delta x)^2}$$

Similarly, we get the formula of **backward difference approximation** of 2nd derivative:

$$f''(x_i) \approx \frac{f(x_{i-2}) - 2f(x_{i-1}) + f(x_i)}{(\Delta x)^2}$$

Central difference approximation of 2nd derivative

$$f(x_{i+1}) = f(x_i) + f'(x_i) \Delta x + \frac{f''(x_i)}{2!} (\Delta x)^2 + \frac{f'''(x_i)}{3!} (\Delta x)^3 + \frac{f''''(x_i)}{4!} (\Delta x)^4 \dots$$

$$f(x_{i-1}) = f(x_i) - f'(x_i) \Delta x + \frac{f''(x_i)}{2!} (\Delta x)^2 - \frac{f'''(x_i)}{3!} (\Delta x)^3 + \frac{f''''(x_i)}{4!} (\Delta x)^4 \dots$$

$$x_{i+1} = x_i + \Delta x, \quad x_{i-1} = x_i - \Delta x$$

Adding these equations gives

$$f(x_{i+1}) + f(x_{i-1}) = 2f(x_i) + f''(x_i)(\Delta x)^2 + f'''(x_i)\frac{(\Delta x)^4}{12} + \dots$$

$$f''(x_i) = \frac{f(x_{i+1}) - 2f(x_i) + f(x_{i-1})}{(\Delta x)^2} - \frac{f''''(x_i)(\Delta x)^2}{12} + \dots = \frac{f(x_{i+1}) - 2f(x_i) + f(x_{i-1})}{(\Delta x)^2} + O((\Delta x)^2)$$

$$f''(x_i) \approx \frac{f(x_{i+1}) - 2f(x_i) + f(x_{i-1})}{(\Delta x)^2}$$

HIGH-ACCURACY DIFFERENTIATION FORMULAS

Substitute

$$f''(x_i) = \frac{f(x_{i+2}) - 2f(x_{i+1}) + f(x_i)}{h^2} + O(h)$$

into

$$f'(x_i) = \frac{f(x_{i+1}) - f(x_i)}{h} - \frac{f''(x_i)}{2}h + O(h^2)$$

we get FDA:

$$f'(x_i) = \frac{-f(x_{i+2}) + 4f(x_{i+1}) - 3f(x_i)}{2h} + O(h^2)$$

CDA:

$$f'(x_i) = \frac{-f(x_{i+2}) + 8f(x_{i+1}) - 8f(x_{i-1}) + f(x_{i-2})}{12h} + O(h^4)$$

HIGH-ACCURACY DIFFERENTIATION FORMULAS...

Similar improved versions can be developed for the backward and centered formulas as well as for the approximations of the higher derivatives (see Textbook)

FDA:

$$f''(x_i) = \frac{-f(x_{i+3}) + 4f(x_{i+2}) - 5f(x_{i+1}) + 2f(x_i)}{h^2} + O(h^2)$$

CDA:

$$f''(x_i) = \frac{-f(x_{i+2}) + 16f(x_{i+1}) - 30f(x_i) + 16f(x_{i-1}) - f(x_{i-2})}{12h^2} + O(h^4)$$

Unequally spaced data

We can use 2nd-order Lagrange interpolating polynomial passing though 3 data points

$$(x_{i-1}, f(x_{i-1})), (x_i, f(x_i)), (x_{i+1}, f(x_{i+1}))$$

Then the derivative is given by:

$$f'(x) = f(x_{i-1}) \frac{2x - x_i - x_{i+1}}{(x_{i-1} - x_i)(x_{i-1} - x_{i+1})} + f(x_i) \frac{2x - x_{i-1} - x_{i+1}}{(x_i - x_{i-1})(x_i - x_{i+1})}$$

$$+ f(x_{i+1}) \frac{2x - x_{i-1} - x_i}{(x_{i+1} - x_{i-1})(x_{i+1} - x_i)} \quad \text{for } x_{i-1} \le x \le x_{i+1}$$

It is as good as CDA

Partial Derivatives

Partial derivatives along a single dimension are computed in the same fashion as ordinary derivatives

For example, we can use CDA for a function z = f(x, y)

$$\frac{\partial f}{\partial x}(x,y) \approx \frac{f(x+\Delta x,y) - f(x-\Delta x,y)}{2\Delta x}$$
$$\frac{\partial f}{\partial y}(x,y) \approx \frac{f(x,y+\Delta y) - f(x,y-\Delta y)}{2\Delta y}$$

Forward difference approximation of partial derivatives:

$$\frac{\partial f}{\partial x}(x,y) \approx \frac{f(x+\Delta x,y) - f(x,y)}{\Delta x}$$
$$\frac{\partial f}{\partial y}(x,y) \approx \frac{f(x,y+\Delta y) - f(x,y)}{\Delta y}$$

Central difference approximation of second partial derivatives:

$$\frac{\partial^2 f}{\partial x^2}(x,y) \approx \frac{f(x+\Delta x,y)-2f(x,y)+f(x-\Delta x,y)}{(\Delta x)^2}$$

$$\frac{\partial^2 f}{\partial y^2}(x,y) \approx \frac{f(x,y+\Delta y)-2f(x,y)+f(x,y-\Delta y)}{(\Delta y)^2}$$

$$\frac{\partial^2 f}{\partial x \partial y} \approx \frac{f(x+\Delta x,y+\Delta y)-f(x+\Delta x,y-\Delta y)-f(x-\Delta x,y+\Delta y)+f(x-\Delta x,y-\Delta y)}{4\Delta x \Delta y}$$

17

Example

Use FDA, BDA, and CDA to estimate the second derivative and calculate the corresponding error

$$f(x) = x^3 + 2x^2 - 3x + 4$$

at $x_0 = 1$, use $\Delta x = 0.1$

Solution: Exact value

$$f(x) = x^{3} + 2x^{2} - 3x + 4$$

$$f'(x) = 3x^{2} + 4x - 3$$

$$f''(x) = 6x + 4$$

$$f''(1) = 6 + 4 = 10$$

Approximations of the second derivative

FDA:
$$f''(1) \approx \frac{f(1+2\Delta x)-2f(1+\Delta x)+f(1)}{(\Delta x)^2} = \frac{f(1.2)-2f(1.1)+f(1)}{0.01} = 10.6$$

$$E_1 = 10 - 10.6 = -0.6$$
, $|\varepsilon_1| = \frac{0.6}{10} = 0.06 = 6\%$

BDA:
$$f''(1) \approx \frac{f(1-2\Delta x)-2f(1-\Delta x)+f(1)}{(\Delta x)^2} = \frac{f(0.8)-2f(0.9)+f(1)}{0.01} = 9.4$$

$$E_2 = 10 - 9.4 = 0.6, \quad |\varepsilon_2| = \frac{0.6}{10} = 0.06 = 6\%$$

CDA:
$$f''(1) \approx \frac{f(1+\Delta x)-2f(1)+f(1-\Delta x)}{(\Delta x)^2} = \frac{f(1.1)-2f(1)+f(0.9)}{0.01} = 10$$

$$E_3 = 10 - 10 = 0.0$$

Exercise 1

Use FDA, BDA, and CDA to approximate

- a) the derivative and
- b) second derivative and *calculate* the error and relative error

$$f(x) = e^{x}(x+1)$$

at $x_0 = 1$, use $\Delta x = 0.1$

Exercise 2

Use FDA, BDA, and CDA to approximate the indicated partial derivatives and calculate the error

$$\frac{\partial f}{\partial x}(x,y)$$
, and $\frac{\partial f}{\partial y}(x,y)$

where
$$f(x, y) = \ln(\sqrt{x+1} + y^2 + 2)$$

at
$$(x, y) = (0, 0)$$
, use $\Delta x = \Delta y = 0.1$

Homework Chapter 4: Deadline 3 weeks

 $\overline{(m-2)(n-2)}$ is the two last digits of your student ID number

Problem 1: Use FDA, BDA, and CDA to estimate a) the derivative and b) second derivative and *calculate* the corresponding error

$$f(x) = mx^2 e^{nx}$$
 at $x_0 = 1$, use $\Delta x = 0.1$

Problem 2: Use FDA, BDA, CDA, or an interpolating polynomial if needed, to estimate 1st and 2nd derivatives

x	1	1.2	1.5
У	6+1/n	2/m	8

Homework Chapter 4

Problems 3-5: Problems 23.24, 23.25 in Textbook (page 672)
Problem 23.26

Problem 6: Use FDA, BDA, and CDA to estimate the indicated partial derivatives and and *calculate* the corresponding error

$$f(x, y) = xe^{nx+my}$$

Estimate f_x , f_y , f_{xx} , f_{yy} at $x_0 = m$, $y_0 = -n$, use $\Delta x = \Delta y = 0.1$

Homework Chapter 4

Problem 7: Given the integral

$$I = \int_{-2}^{2} e^{-mx^2/n} dx$$

- Evaluate I using trapezoidal rule with n=6. Estimate the error. How large do we need to choose n such in trapezoidal rule such that $| \text{error} | \le 10^{-8}$?
- b) Evaluate I using Simpson's rule with n=6. Estimate the error. How large do we need to choose n such in trapezoidal rule such that $| \text{error} | \le 10^{-8}$?