Assignment 2 Question 2 Report

Sai Gaurav Anugole 170070008 Titas Chakraborty 170070019 Jayesh Choudhary 170070038

September 2019

1 Grass

1.1 Approach

Here the given noisy image was used for bilateral filtering.

1.2 Results

Figure 1: Original Image, Noisy Image and Filtered Image respectively

Figure 2: Gaussian Spatial Mask

The Gaussian Spatial Mask displayed is for a range of $10\sigma_{space}^*$ only as otherwise the σ_{space}^* is too small for it to be noticeable.

The RMSD observed was 19.5393 at $\sigma^*_{space} = 0.8$ and $\sigma^*_{intensity} = 45.$

The RMSD observed at different values of σ^*_{space} and $\sigma^*_{intensity}$ were as follows:-

$0.9\sigma_{space}^*$	$\sigma_{intensity}^*$	19.5577
$1.1\sigma_{space}^*$	$\sigma^*_{intensity}$	19.5674
σ^*_{space}	$0.9\sigma_{intensity}^*$	19.5471
σ_{space}^*	$1.1\sigma_{intensity}^*$	19.5465

2 Honey Comb

2.1 Approach

Again the given noisy image was used for bilateral filtering.

2.2 Results

Figure 3: Original Image, Noisy Image and Filtered Image respectively

Figure 4: Gaussian Spatial Mask

The Gaussian Spatial Mask displayed is for a range of $10\sigma_{space}^*$ only as otherwise the σ_{space}^* is too small for it to be noticeable.

The RMSD observed was 17.5505 at $\sigma_{space}^* = 0.98$ and $\sigma_{intensity}^* = 36$.

The RMSD observed at different values of σ^*_{space} and $\sigma^*_{intensity}$ were as follows:-

$0.9\sigma_{space}^*$	$\sigma_{intensity}^*$	17.5589
$1.1\sigma_{space}^*$	$\sigma^*_{intensity}$	17.5589
σ^*_{space}	$0.9\sigma_{intensity}^*$	17.5576
σ_{space}^*	$1.1\sigma_{intensity}^*$	17.5706

3 Barbara

3.1 Approach

Here random Gaussian noise was added to the image using the method specified in the question. The image is then passed through a bilateral filter as before. Since this image is of the highest resolution, it

takes more than 5 minutes to run. Also the images are not displayed side by side as the differences are not easily visible at such low scale.

3.2 Results

Figure 5: Original Image, Noisy Image and Filtered Image respectively

Figure 6: Gaussian Spatial Mask

The Gaussian Spatial Mask displayed is for a range of $10\sigma_{space}^*$ only as otherwise the σ_{space}^* is too small for it to be noticeable.

The RMSD observed was 8.3965 at $\sigma^*_{space}=2$ and $\sigma^*_{intensity}=24.$

The RMSD observed at different values of σ^*_{space} and $\sigma^*_{intensity}$ were as follows:-

$0.9\sigma_{space}^*$	$\sigma_{intensity}^*$	8.4458
$1.1\sigma_{space}^*$	$\sigma_{intensity}^*$	8.5456
σ^*_{space}	$0.9\sigma_{intensity}^*$	8.7728
σ^*_{space}	$1.1\sigma_{intensity}^*$	8.4854

4 Inferences

- Bilateral filtering preserves edges very well which can be seen in the image of Grass. However, it has a tendency to blur our details.
- The image 'barbara' had the best balance in between smoothing and preservation of details. This may have been due to the fact that it was the highest resolution image though.
- The other two images also displayed satisfactory results.

5 Conclusions

Hence we have performed bilateral filtering on 3 images and observed the results.