2020 D&A

BASIC SESSION

4. 시각화

Contents

01 시각화의 목적

02 Matplotlib

03 Seaborn

04 추가 내용

01 시각화의 목적

시각화(Visualization)?

(사전적 정의) 데이터의 분석결과를 이해하기 쉽도록 시각화 도구를 통해 전달하는 것

EDA(Exportary Data Analytics)를 하기 위함

결측치와 이상치 처리를 할 때 특히 유 용함

데이터 분석 결과를 공유할 때 유용함

02 Matplotlib

Matplotlib이란?

파이썬에서 시각화를 할 때 가장 흔하게 쓰이는 시각화 라이브러리 실선, 막대, 히스토그램, 박스 도표, 산접도, 파이, 히트맵 등 다양한 그래프를 지원함

> 둘 중 어떻게 써도 상관없지만 %matplotlib inline 은 써줘야 함!

In [2]: import matplotlib.pylab as plt %matplotlib inline

In [3]: import matplotlib.pyplot as plt %matplotlib inline

O2 Matplotlib - plot(실선 그래프) 변화율을 LIEI낼 때 유용하게 사용

plt.plot(y) -> y값만 지정되면 x값은 0부터 자동으로 지정됨

X값과 y값 따로 지정 가능 plt.plot(x,y)

02 Matplotlib - plot(실선 그래프)

한 그래프에 여러 개의 선 그리기

한 그래프에 선과 막대 동시에 그리기

```
In [9]: x1 = df['방영월']; x2 = df['방영월']
       y1 = df['첫회시청률']; y2 = df['마지막시청률']
       plt.plot(x1,y1)
       plt.bar(x2,y2,color='lightcoral')
       plt.show()
        10
```


02 Matplotlib - plot(실선 그래프)

선 스타일을 다양하게 지정할 수 있음 그 외의 여러가지 파라미터를 이용해 꾸밀 수 있음

In [10]:	x = df['방영월'] y = df['첫회시청률']
	<pre>plt.plot(x,y,color='r',marker='o',linestyle='') plt.show()</pre>
	8.5
	8.0 -
	7.5
	7.0
	6.5
	6.0
	5.5
	5.0 2 4 6 8 10 12

파라미터 종류	의미	αiνi
Alpha	투명도 조절	alpha = 0.2
Color	색 지정	color = `r'
Label	라인의 라벨 지정	label='첫번째 라인 '
Marker	마커스타일 지정	marker = 'o'
Linestyle	선스타일 지정	linestyle = '.'
Linewidth	선의 두께	linewidth = 2

02 Matplotlib - plot(실선 그래프) 한글폰트가 깨지는 현상 발생!!

```
In [13]: x = df['방영월']
y = df['첫회시청률']

plt.plot(x,y,color='purple',label='첫회시청률')
plt.title('PLOT 그래프')
plt.ylim(5,9)
plt.xticks([1,2,3,4,5,6,7,8,9,10,11,12])
plt.xlabel('방영월')
plt.ylabel('시청률')
plt.grid(True)
plt.legend(loc=0)
plt.show()

nt font.
font.set_text(s, 0, flags=flags)
```


※ 거의 모든 그래프에서 사용가능!

메소드	의미
plt.title()	그래프의 제목 지정
plt.grid()	그래프의 그리드 지정
plt.legend()	그래프의 범례 지정
plt.xlim()	그래프에 표시할 x범위 지정
plt.ylim()	그래프에 표시할 y범위 지정
plt.xticks()	그래프의 x축 틱을 직접 지정
plt.yticks()	그래프의 y축 틱을 직접 지정
plt.xlabel()	그래프의 x축 값의 이름 지정
plt.ylabel()	그래프의 y축 값의 이름 지정

-> matplotlib에서는 한글을 지원하지 않아서 아래 코드로 해결함!

```
In [14]: plt.rc('font',family='malgun gothic')
```

-> 마이너스 부호 또한 깨지기 때문에 아래 코드로 해결함!

```
In [2]: plt.rc('axes', unicode_minus=False)
```

O2 Matplotlib - bar(막대 그래프)

추세보다는 분포를 LIEI낼 때 유용하게 사용

막대형태 그래프는 x값과 y값이 필수로 들어가야함

bar를 여러 개 그릴 땐 겹쳐져서 그려짐

```
In [17]: x1 = df['방영년'] ; x2 = df['방영년']
         y1 = df['드라마수']; y2 = df['방송사수']
         plt.bar(x1,y1)
         plt.bar(x2,y2)
         plt.show()
          100
          80
           40
           20
               2012
                         2014
                                                     2020
```


02 Matplotlib - bar(막대 그래프)

plot그래프와 마찬가지로 다양한 형태로 bar그래프를 조작할 수 있음

파라미터 종류	의미	ΟIIΛI
alpha	투명도 조절	alpha = 0.2
color	색 지정	color = `r'
label	막대의 라벨 지정	label = '첫번째 막대 '
width	막대의 두께	width = 2
align	축을 기준으로 막대가 그려지는 위치	align='edge'

02 Matplotlib - barh(눕힌 막대 그래프)

bar그래프를 눕히고 싶을 때에는 barh그래프를 사용 들어가는 파라미터는 bar와 거의 동일

파라미터 종류	의미	ΟIΛI
alpha	투명도 조절	alpha = 0.2
color	색 지정	color = `r'
label	라인의 라벨 지정	label = '첫번째 막대 '
height	막대의 두께	height = 2
align	축을 기준으로 막대가 그려지는 위치	align='edge'

02 Matplotlib - bar(막대 그래프)

sort_values()를 사용해 값에 따라 오름차순, 내립차순으로 정렬 가능!

02 Matplotlib - histogram(히스토그램) 연속값의 분포를 LIEI낼 때 사용

히스토그램은 특정 값들의 빈도수를 LIEIL내줌 파라미터 값은 비슷함

파라미터 종류	의미	GIVI
alpha	투명도 조절	alpha = 0.2
facecolor	색 지정	facecolor = `r'
bins	막대의 개수	bins=5
density	y의 값을 밀도로 변경	density = True
edgecolor	테두리 색 지정	edgecolor='w'

02 Matplotlib - scatter(산접도)

x와 y값에 따라 어느 곳에 데이터가 분포하는지를 나타낼 때 유용함

x와 y값에 따라 접을 찍어줌 scatter도 여러가지 색이나 크기 등 형태를 지정할 수 있음

파라미터 종류	의미	OIΛI
alpha	투명도 조절	alpha = 0.2
color	색 지정	color = 'r'

02 Matplotlib - bubble chart(버블차트)

※ 버블차트란? bar를 산접도로 표현한 형태 원의 크기로 양을 표현할 수 있어 3차원적인 표현이라고 할 수 있음

파라미터 종류	의미	OIΙΛΙ
alpha	투명도 조절	alpha = 0.2
color	색 지정	color = 'r'
size(s)	접의 크기 지정	s = [1,3,6,2]

O2 Matplotlib - pie(원형 그래프)

값들을 100을 기준으로 값을 정해 한 원 안에 파이 모양으로 영역을 나눠주는 그래프한 값이 전체 데이터에서 어느 정도의 비율을 차지하고 있는지에 대해 알기 쉬움

파라미터 종류	의미	ШΛI
sizes	도표의 값	sizes=[17.20.18]
labels	값의 이름	labels=['보현', '영경','지섭']
explode	파이조각 돌출 정도	explode=[0,0,0.1]
colors	각 값의 색	colors=[`r'.'b'.'w']
autopct	값의 소수표현의 형식 지정	autopct= '%1.1f%%'
shadow	파이도표에 그립자 지정	shadow=True
startangle	가장 첫 값을 어느 각도에 서부터 시작할지 지정	startangle=0

O2 Matplotlib - boxplot(박스 도표)

데이터의 분포에 대해 알기 쉬운 그래프특히, 이상치의 분포를 알아보기 쉬움

파라미터 종류	의미	ШΛI
notch	중앙값 부분을 v모양으로 꺾음	notch = 1
sym	이상치 표현 모양 지정	sym = 'bs'

O2 Matplotlib - boxplot(박스 도표)

이상치(Outlier) 처리의 방법?

실제 raw 데이터를 받아보면 굉장히 더러움

이상치를 처리할 때 주의사항은 결측치와 동일한 방법으로 섣불리 처리하면 안된다는 것!

처리 방법

- 1) 하한값과 상한값 결정 후 이상치를 그 값으로 대체함
- 2) 제거

02 Matplotlib - heatmap(히트맵)

히트맵은 전체적인 데이터에서 어떤 데이터 끼리 상관관계가 있는지 알아볼 때 사용함

※ 히트맵은 seaborn 사용을 추천

03 Seaborn

Seaborn이란?

시각화 라이브러리이며. matplotlib에서 x와 y라고 표현하는 것을 x와 hue라고 표현하는 것이 차이접 범례를 따로 지정하지 않아도 보여준다는 특징이 있음 sns.set() 을 실행시키면. 배경스타일이 seaborn에서 제공하는 회색 배경의 그리드를 그려줌 Import seaborn as sns

In [28]: import seaborn as sns

03 Seaborn - pairplot

pairplot은 여러 열을 각각의 상관관계를 보여줌

파라미터 종류	의미	GIΛI
vars	비교할 열 지정	vars = ['방영월','방영년']
kind	비교하는 방법	kind = 'reg'
hue	구분할 값 지정	hue='시청엽령'
size	각 그래프의 크기 지정	size = 4

03 Seaborn - count plot

countplot은 특정 열을 값을 세어주는 막대그래프

가로로 눕힌 그래프를 그리려면, x를 y로 변경해면 됨

03 Seaborn - barplot, boxplot

barplot에서 막대는 각각 값의 평균을 의미하고. 선들은 편차를 의미함

sns.barplot(data=data, x='x값', y='y값', hue='계산할 값')

sns.boxplot(data=data, x='x값', y='y값', hue='계산할 값')

03 Seaborn - violin plot, heatmap

Violin plot은 각 x값에 대한 y의 분포를 나타내는 그래프 한 플랏의 양쪽 값을 다르게 설정할 수 있음

Seaborn에서의 heatmap은 데이터의 상관계수를 주로 입력값으로 사용 annot=True를 추가하면, 정확한 색의 값이 적힘

03 Seaborn - catplot

3개 이상의 카테고리를 대상으로 분포 변화를 파악할 수 있는 그래프 kind의 종류에는 violin, count등이 있고 기본은 산점도

04 추가내용 - Subplot

그래프를 동시에 여러 개를 띄울 때 사용

그래프는 기본적으로 작은 사이즈이기 때문에 크게 키워서 자세히 볼 수 있음

04 추가내용 - Python에서 쓰이는 color의 종류

- 1. 월별로 예약건수의 추이를 Lielli는 그래프를 그리시오.
- 2. stays in week nights, adults, babies, adr, required_car_parking_spaces, total_of_special_requests의 이상치를 그래프를 통해 찾아보고 이상처처리를 집행한후, 처리방안에 대한 이유를 작성하시오.
- 3. distribution_chance의 각 범주별
 booking_changes의 합계의 비율을 가장 잘
 LIEILH는 그래프를 그리고 이유를 작성하시오.

- 4. 위의 그래프를 똑같이 따라서 그리고 이 그래프를 통해 알 수 있는 데이터의 특징을 생각해보시오.
- 5. 특정 고객이 주차공간을 원하는 지 알아보고 싶다. 이 때, 예측에 용이한 데이터 분석을 진행하시오.

