smoothness criteria for covector fields

ho boon suan

November 25, 2020

Proposition 11.11. Let M be a smooth manifold with or without boundary, and let $\omega \colon M \to T^*M$ be a rough covector field. The following are equivalent:

- (a) ω is smooth.
- (b) In every smooth coordinate chart, the component functions of ω are smooth.
- (c) Each point of M is contained in some coordinate chart in which ω has smooth component functions.
- (d) For every smooth vector field $X \in \mathfrak{X}(M)$, the function $\omega(X)$ is smooth on M.
- (e) For every open subset $U \subseteq M$ and every smooth vector field X on U, the function $\omega(X) \colon U \to \mathbf{R}$ is smooth on U.

Proof. We will prove (a) \Rightarrow (b) \Rightarrow (c) \Rightarrow (a), then (c) \Rightarrow (d) \Rightarrow (e) \Rightarrow (b).

(a) \Rightarrow (b). In coordinates we have

$$\hat{\omega}(p) = (x^1(p), \dots, x^n(p), \omega_1(p), \dots, \omega_n(p)).$$

- (b) \Rightarrow (c). Every point of *M* lies in a chart.
- (c) \Rightarrow (a). Smoothness is local, and (c) shows that ω is smooth in a neighborhood of every $p \in M$.
- (c) \Rightarrow (d). In coordinates, $\omega(X)=\omega_iX^i$. In particular, at a point p we choose a chart with smooth ω_i . Then by hypothesis the X^i are smooth in that chart as well and the result follows.
- (d) \Rightarrow (e). Suppose $U\subseteq M$ is open and X is a smooth vector field on U. For any $p\in U$, let ψ be a smooth bump function that is equal to 1 in a neighborhood of p and supported in U, and define $\tilde{X}:=\psi X$, extended to be zero on $M-\operatorname{supp}\psi$. Then $\omega(\tilde{X})$ is smooth by assumption, and is equal to $\omega(X)$ in a neighborhood of p since $\omega(X)(q)=\omega_q(X_q)=\omega_q(\tilde{X}_q)=\omega(\tilde{X})(q)$. This shows that $\omega(X)$ is smooth in a neighborhood of each point of U.
- (e) \Rightarrow (b). In a fixed chart consider a coordinate vector field ∂x^i ; we have $\omega(\partial x^i)$ smooth by hypothesis (e). And so in coordinates we compute

$$\omega(\partial x^i) = \omega_j dx^j (\partial x^i) = \omega_i,$$

which must then be smooth.