

SEQUENCE LISTING

<110> KYOWA HAKKO KOGYO CO., LTD.

<120> Protein-free medium adapted FUT8 knowck out cells

<130> 11620W01

<140> 10/575,253

<141> 2006-04-10

<150> PCT/JP2004/015315

<151> 2004-10-08

<150> JP2003-350166

<151> 2003-10-09

<160> 32

<170> PatentIn Ver. 2.1

<210> 1

<211> 2008

<212> DNA

<213> Cricetulus griseus

<400> 1

aacagaaaact tattttcctg tgtggctaac tagaaccaga gtacaatgtt tccaattctt 60

ttagctccga gaagacagaa gggagttgaa actctgaaaa tgcgggcatg gactggttcc 120

tggcggttga ttatgctcat tcttttgcc tgggggacct tattgtttta tataggttgt 180

cattggtttc gagataatga ccaccctgac cattctagca gagaactctc caagattctt 240

gcaaagctgg agcgcttaaa acaacaaaat gaagacttga ggagaatggc tgagtctctc 300

cgaataccag aaggccctat tgatcagggg acagctacag gaagagtccg tgttttagaa 360

gaacagcttg ttaaggccaa agaacagatt gaaaattaca agaaacaagc taggaatgat 420

ctggaaagg atcatgaaat cttaaggagg aggattaaaa atggagctaa agagctctgg 480

tttttctac aaagtgaatt gaagaaatta aagaaattag aaggaaacga actccaaaga 540

catgcagatg aaattcttt ggatttagga catcatgaaa ggtcttatcat gacagatcta 600

tactaccta gtcaaacaga tggagcaggt gagtggcggg aaaaagaagc caaagatctg 660

acagagctgg tccagcggag aataacatat ctgcagaatc ccaaggactg cagcaaagcc 720

agaaagctgg tatgtaatat caacaaaggc tgtggctatg gatgtcaact ccatcatgtg 780

gtttactgct tcatgattgc ttatggcacc cagcgaacac tcattttgga atctcagaat 840

tggcgctatg ctactggagg atggagact gtgttagac ctgttaagtga gacatgcaca 900

gacaggtctg gcctctccac tggacactgg tcaggtgaag tgaaggacaa aaatgttcaa 960
gtggtcgagc tccccattgt agacagcctc catcctcgac ctccttactt acccttggt 1020
gtaccagaag accttgcaga tcgactcctg agagtccatg gtgatcctgc agtgtggtgg 1080
gtatcccagt ttgtcaaata cttgatccgt ccacaacctt ggctggaaag ggaaatagaa 1140
gaaaccacca agaagcttgg cttaaacat ccagttattt gagtccatgt cagacgcact 1200
gacaaagtgg gaacagaagc agcctccat cccattgagg aatacatggt acacgttcaa 1260
gaacattttc agcttctcga acgcagaatg aaagtggata aaaaaagagt gtatctggcc 1320
actgatgacc cttctttgtt aaaggaggca aagacaaagt actccaatta tgaatttattt 1380
agtataact ctatttcttg gtcagctgga ctacacaacc gatacacaga aaattcactt 1440
cggggcgtga tcctggatat acactttctc tcccaggctg acttccttgc gtgtactttt 1500
tcatcccagg tctgttagggt tgcttatgaa atcatgcaaa cactgcattcc tgatgcctct 1560
gcaaacttcc attctttaga tgacatctac tattttggag gccaaaatgc ccacaaccag 1620
attgcagttt atcctcacca acctcgaact aaagaggaaa tccccatggc acctggagat 1680
atcattggtg tggctggaaa ccattggaaat gttactcta aaggtgtcaa cagaaaacta 1740
ggaaaaacag gcctgtaccc ttccctacaaa gtccgagaga agatagaaac agtcaaatac 1800
cctacatatac ctgaagctga aaaatagaga tggagtgtaa gagattaaca acagaattta 1860
gttcagacca tctcagccaa gcagaagacc cagactaaca tatggttcat tgacagacat 1920
gctccgcacc aagagcaagt gggaaaccctc agatgctgca ctgggtggaaac gcctcttgc 1980
gaagggctgc tgtgccctca agcccatg 2008

<210> 2
<211> 1728
<212> DNA
<213> Mus musculus

<400> 2
atgcgggcat ggactgggtt ctggcggtgg attatgctca ttcttttgc ctgggggacc 60
ttgttatttt atatagggtt tcattttgggtt cgagataatg accaccctga tcactccagc 120
agagaactct ccaagattct tgcaaagctt gaacgcttaa aacagcaaaa tgaagacttg 180
aggcgaatgg ctgagtctct ccgaatacca gaaggccccca ttgaccaggg gacagctaca 240
ggaagagtcc gtgttttaga agaacagctt gttaaggcca aagaacagat tgaaaattac 300
aagaaaacaag ctagaaatgg tctggggaaag gatcatgaaa tcttaagaag gaggattgaa 360

aatggagcta aagagctctg gtttttcta caaagcgaac tgaagaaatt aaagcattta 420
gaaggaaaatg aactccaaag acatgcagat gaaattctt tggattnagg acaccatgaa 480
aggcttatca tgacagatct atactacctc agtcaaacag atggagcagg ggattggcgt 540
aaaaaaagagg ccaaagatct gacagagctg gtccagcgga gaataacata tctccagaat 600
cctaaggact gcagcaaagc caggaagctg gtgtgtaca tcaataaagg ctgtggctat 660
ggttgtcaac tccatcacgt ggtctactgt ttcatgattt ctatggcac ccagcgaaca 720
ctcatcttgg aatctcagaa ttggcgctat gctactggtg gatgggagac tgtgtttaga 780
cctgtaaatg agacatgtac agacagatct ggcctctcca ctggacactg gtcaggtgaa 840
gtaaatgaca aaaacattca agtggtcgag ctccccattt tagacagcct ccattcctcg 900
cctccttact taccactggc tggccagaa gaccttgcag accgactcct aagagtccat 960
ggtgaccctg cagtgtggtg ggtgtcccag tttgtcaaatt acttgattcg tccacaacct 1020
tggctggaaa aggaaataga agaagccacc aagaagctt gcttcaaaca tccagttatt 1080
ggagtccatg tcagacgcac agacaaagtg ggaacagaag cagccttcca cccatcgag 1140
gagtacatgg tacacgttga agaacatttt cagcttctcg cacgcagaat gcaagtggat 1200
aaaaaaaaagag tatatatctggc tactgtatgtat cctactttgt taaaggaggc aaagacaaag 1260
tactccaatt atgaatttat tagtgataac tctatttctt ggtcagctgg actacacaat 1320
cggtacacag aaaattcact tcgggggtgtg atcctggata tacactttct ctcacaggct 1380
gactttctag tgtgtacttt ttcatcccag gtctgtcggg ttgcttatga aatcatgcaa 1440
accctgcattt ctgatgcctc tgcaacttc cattcttgg atgacatcta ctattttgg 1500
ggccaaaatg cccacaatca gattgctgtt tatcctcaca aacctcgaac tgaagaggaa 1560
attccaatgg aacctggaga tatcattggt gtggctggaa accattgggta tggttattct 1620
aaaggtatca acagaaaaact tggaaaaaca ggcttatatc cctcctacaa agtccgagag 1680
aagatagaaa cagtcaagta tcccacat cctgaagctg aaaaatag 1728

<210> 3
<211> 3677
<212> DNA
<213> Homo sapiens iGenBank Accesion # FNM_178156 j

<400> 3
cgtttagtac agaaatctca tgggagagag catccatgca tttacaaatt gttattgaat 60
tattttattt gatgtatgaca cccaaactga gctagaacat aattctggct ctgctagttac 120

atcttctgtg tcatcttgaa caagtcactc tactttccctt tcaattttctt tttctcacag 180
ggagataatc ataaaaacga ctgtaaaagta cagcacttca tagagtgcctt tttgtttaaa 240
gagctgacaa taaatacgag tctcaaggc taggaaagcc tccctcacaa cctgagctgc 300
ttgaggacaa gggattttctt tttgaatcag cagtaccta tttgtgtatc tgtgatagag 360
ttcctggtaa atagaaggt ctcaataaat atgtgaattt atgaatatta ggcagattgc 420
aacctgaca ggccactgcc tcttaaatct cctttctgtg atcttttaat atttaacatc 480
taaaaggccg ccgctacttg ctttggata agtatccccg gtatgtactt taaaatgccc 540
aagcctagag aaatgattct tgcatttaagg gcaccatttc gctctccac cgtaaagcgc 600
cccaggcttgc gatatctgggt cccaaggcta caggaaagag tttggAACGG gaagctcatc 660
ttccggccct ctgattggcc ggctcgact ccactcacgc ggcgcgcagc tctgattggc 720
ctcggcggca cccctcgatcc cgcgactact ttgtgtgctg gggcggcgcg ctccggcct 780
cccgctcagc tggcggtctg ggctgctctg gggcagccct tcggtccact gctctgcattc 840
gcgggcgcgcg ggaatttcc gagtccgagc ggcattgtaga gcgcattgaag tacaggacaa 900
taaagcttcc tacacatatac accaggagga tctcttgaa agattcactg caggactacc 960
agagagaata atttgtctga agcatcatgt gttgaaacaa cagaagtcta ttcacctgtg 1020
cactaacttag aaacagagtt acaatgtttt caattcttg agctccagga ctccagggaa 1080
gtgagttgaa aatctgaaaa tgccggccatg gactggttcc tggcggttggaa ttatgctcat 1140
tcttttgcc tgggggaccc tgctgtttta tataggtggt cacttggtaa gagataatga 1200
ccatcctgat cactctagcc gagaactgtc caagattctg gcaaagcttgc aacgcctaaa 1260
acaacagaat gaagacttga ggcgaatggc cgaatctctc cggataccag aaggccctat 1320
tgatcagggg ccagctatag gaagagtacg cgtttttagaa gagcagcttgc ttaaggccaa 1380
agaacagatt gaaaattaca agaaacagac cagaaatggt ctggggagg atcatgaaat 1440
cctgaggagg aggattgaaa atggagctaa agagctctgg ttttcctac agagtgaatt 1500
gaagaaatataa aagaacttag aaggaaatga actccaaaga catgcagatg aatttctttt 1560
ggattnnaga catcatgaaa ggtctataat gacggatcta tactaccta gtcagacaga 1620
tggagcagggt gattggcggg aaaaagaggc caaagatctg acagaactgg ttcagcggag 1680
aataacatataat cttcagaatc ccaaggactg cagcaaagcc aaaaagctgg tgtgtaatataat 1740
caacaaaggc tgtggctatg gctgtcagct ccatcatgtg gtctactgct tcatttgc 1800

atatggcacc cagcgaacac tcatcttgg a tctcagaat tggcgctatg ctactggtgg 1860
atgggagact gtat ttaggc ctgtta gta gacatgcaca gacagatctg gcatctccac 1920
tggacactgg tcaggtaa gtaaggacaa aaatgttcaa gtggtcgagc ttcccattgt 1980
agacagtctt catccccgtc ctccatattt acccttggt gta ccagaag acctcgaga 2040
tcgactt gta cgagtgc atg gtgaccctgc agtgtgggt gttctca gttt 2100
cttgcattccgc ccacagcctt ggctagaaaa agaaatagaa gaagccacca agaagcttgg 2160
cttcaaacat ccagttattt ggttccatgt cagacgcaca gacaaagtgg gaacagaagc 2220
tgccttccat cccattgaag agtacatggt gcatgtt gaa gacattttc agcttcttgc 2280
acgcagaatg caagtggaca aaaaaagagt gtat tggcc acagatgacc cttcttatt 2340
aaaggaggca aaaacaaaagt accccaatta tgaatttatt agtgataact ctatttcctg 2400
gtcagctgga ctgcacaatc gatacaca gaa atttca cttt cttt cttt 2460
acattttctc tctcaggcag acttccttagt gtgtactttt tcatcccagg tctgtcgagt 2520
tgcttatgaa attatgcaaa cactacatcc tcatgcctt gcaacttcc attctttaga 2580
tgacatctac tattttgggg gccagaatgc ccacaatcaa attgccattt atgctcacca 2640
accccgaaact gcagatgaaa ttccatgga acctggagat atcattggtg tggctggaaa 2700
tcattggat ggctattcta aagggttca cagggaaattt ggaaggacgg gcctatatcc 2760
ctcctacaaa gttcgagaga agatagaaac ggtcaagtac cccacatatc ctgaggctga 2820
gaaataaagc tcagatggaa gagataa acg accaaactca gttcgacca actcagttca 2880
aaccatttca gccaactgt agatgaagag ggctctgatc taacaaaata aggttatatg 2940
agtagatact ctcagcacca agagcagctg ggaactgaca taggcttcaa ttggctggaaat 3000
tcctttttaa caaggctgc aatgccc tca tacccatgca cagtacaata atgtactcac 3060
atataacatg caa acagg ttttctact ttggccctt cagttatgtcc ccataagaca 3120
aacactgcca tattgtgtaa tttaagtgac acagacattt ttttggat taaaacatg 3180
gtgcctatat ctgagagacc ttttggat attgagaaga tcggacac gtccttactct 3240
gagggatggat gagaatggac gtttggat ttttggat ttttggat ttttggat 3300
gattcagaat gagaatggac gtttggat ttttggat ttttggat ttttggat 3360
taagggttgc tttttttt tttttaata attgcattcag ttcattgacc tcatcattaa 3420
taagtgaaga atacatcaga aaataaaaata ttcacttcc attagaaaat tttgtaaaac 3480
aatgccc tca acaatttctt tagtactcaa ttttcttgc cattctt gataacaaaa 3540

aataaaattt aaaaaggaat tttgtaaagt ttctagaatt ttatatcatt ggatgatatg 3600
ttgatcagcc ttatgtggaa gaactgtgat aaaaagagga gcttttagt tttcagctt 3660
aaaaaaaaa aaaaaaaaaa 3677

<210> 4
<211> 1836
<212> DNA
<213> Sus scrofa iGenBank Accesion # FD86723.1 j

<400> 4
atgtttcaa ttcttgagc tctaggaagc cacgaaaagt agttgaaagt ctgaaaatgc 60
ggccatggac tgggtcggtgg cggtggatta tgctcattct tttgcctgg gggaccttgc 120
tattttacat aggtggtcac ttggtacgag ataatgacca ctctgatcac tctagccgag 180
aactgtccaa gattttggca aagctggAAC gcttaaaaca acaaaatgaa gacttgagga 240
gaatggctga atctctccga ataccagaag gccccattga tcaggggcca gcttcaggaa 300
gagttcgtgc tttagaagag caatTTATGA aggccaaAGA acagattgaa aattataaga 360
aacaaactaa aaatggtcca gggaggatc atgaaatcct aaggaggagg attgaaaatg 420
gagctaaaga gctctggTTT tttctacaaa gtgagttgaa gaaattaaag aattagaag 480
gaaatgaact ccaaagacat gcagatgaat ttctatcaga tttgggacat catgaaaggt 540
ctataatgac ggatctatac tacctcagtc aaacagatgg ggcaggtgat tggcgtgaaa 600
aggaggccaa agatctgaca gagctggTCC agcggagaat aacatatctt cagaatccc 660
aggactgcag caaagccaaAG aagctagtgt gtaatatcaa caaaggctgt ggctatggct 720
gtcagctcca tcatgttagt tactgctta tgattgcata tggcacccag cgaacactcg 780
ccttggaaatc tcacaattgg cgctacgcta ctggggatg ggaaactgtg tttagacctg 840
taagtgagac gtgcacagac agatctggca gctccactgg acattggtca ggtgaagtaa 900
aggacaaaaa tgttcaggtg gttgagctcc ccattgtaga cagtgttcat cctcgccctc 960
catatTTACC CCTGGCTGTC CCAGAAAGACC TTGCAGATCG ACTTGTACGA GTCCATGGT 1020
ATCCTGCAGT GTGGTGGGTa TCCCAGTTG TCAAGTACTT GATTGCCCC CAACCTGGC 1080
TGGAAAAGGA AATAGAAGAG GCCACCAAGA AGCTAGGCTT CAAACATCCA GTTATTGGAG 1140
TCCATGTTAG ACGCACAGAC AAAGTGGGAG CGGAAGCAGC CTTCATCCC ATTGAGGAAT 1200
ACACGGTGCA CGTTGAAGAA GACTTTCAGC TTCTGCTCG CAGAATGCAA GTGGATAAAA 1260
AAAGGGTGTa TTTGGCCACA GATGACCCCTG CTTGTAAA AGAGGCAAAA ACAAAAGTACC 1320

ccagttatga atttattagt gataactcta tctctggc agctggacta cataatcgat 1380
atacagaaaa ttcacttcgg ggtgtgatcc tggatataca ctttctctcc caggcagact 1440
tccttagtgtg tacttttca tcgcaggctc gtagagttgc ttatgaaatc atgcaagcgc 1500
tgcatcctga tgccctcg aacttccgtt ctttggatga catctactat tttggaggcc 1560
caaatgccca caaccaaatt gccatttac ctcaccaacc tcgaactgaa ggagaaatcc 1620
ccatggaacc tggagatatt attgggtgtgg ctggaaatca ctgggatggc tatcctaaag 1680
gtgttaacag aaaactggga aggacgggcc tatatccctc ctacaaaagtt cgagagaaga 1740
tagaaaacagt caagtacccc acatatcccg aggctgacaa gtaaagcttg gacggacaga 1800
tgagaaaagac aaccaaactc agttcaaacc atttga 1836

<210> 5
<211> 575
<212> PRT
<213> Cricetulus griseus

<400> 5
Met Arg Ala Trp Thr Gly Ser Trp Arg Trp Ile Met Leu Ile Leu Phe
1 5 10 15

Ala Trp Gly Thr Leu Leu Phe Tyr Ile Gly Gly His Leu Val Arg Asp
20 25 30

Asn Asp His Pro Asp His Ser Ser Arg Glu Leu Ser Lys Ile Leu Ala
35 40 45

Lys Leu Glu Arg Leu Lys Gln Gln Asn Glu Asp Leu Arg Arg Met Ala
50 55 60

Glu Ser Leu Arg Ile Pro Glu Gly Pro Ile Asp Gln Gly Thr Ala Thr
65 70 75 80

Gly Arg Val Arg Val Leu Glu Glu Gln Leu Val Lys Ala Lys Glu Gln
85 90 95

Ile Glu Asn Tyr Lys Lys Gln Ala Arg Asn Asp Leu Gly Lys Asp His
100 105 110

Glu Ile Leu Arg Arg Arg Ile Glu Asn Gly Ala Lys Glu Leu Trp Phe
115 120 125

Phe Leu Gln Ser Glu Leu Lys Lys Leu Lys Lys Leu Glu Gly Asn Glu
130 135 140

Leu Gln Arg His Ala Asp Glu Ile Leu Leu Asp Leu Gly His His Glu
145 150 155 160

Arg Ser Ile Met Thr Asp Leu Tyr Leu Ser Gln Thr Asp Gly Ala

	165	170	175
Gly Glu Trp Arg Glu Lys Glu Ala Lys Asp Leu Thr Glu Leu Val Gln			
180	185	190	
Arg Arg Ile Thr Tyr Leu Gln Asn Pro Lys Asp Cys Ser Lys Ala Arg			
195	200	205	
Lys Leu Val Cys Asn Ile Asn Lys Gly Cys Gly Tyr Gly Cys Gln Leu			
210	215	220	
His His Val Val Tyr Cys Phe Met Ile Ala Tyr Gly Thr Gln Arg Thr			
225	230	235	240
Leu Ile Leu Glu Ser Gln Asn Trp Arg Tyr Ala Thr Gly Gly Trp Glu			
245	250	255	
Thr Val Phe Arg Pro Val Ser Glu Thr Cys Thr Asp Arg Ser Gly Leu			
260	265	270	
Ser Thr Gly His Trp Ser Gly Glu Val Lys Asp Lys Asn Val Gln Val			
275	280	285	
Val Glu Leu Pro Ile Val Asp Ser Leu His Pro Arg Pro Pro Tyr Leu			
290	295	300	
Pro Leu Ala Val Pro Glu Asp Leu Ala Asp Arg Leu Leu Arg Val His			
305	310	315	320
Gly Asp Pro Ala Val Trp Trp Val Ser Gln Phe Val Lys Tyr Leu Ile			
325	330	335	
Arg Pro Gln Pro Trp Leu Glu Arg Glu Ile Glu Glu Thr Thr Lys Lys			
340	345	350	
Leu Gly Phe Lys His Pro Val Ile Gly Val His Val Arg Arg Thr Asp			
355	360	365	
Lys Val Gly Thr Glu Ala Ala Phe His Pro Ile Glu Glu Tyr Met Val			
370	375	380	
His Val Glu Glu His Phe Gln Leu Leu Glu Arg Arg Met Lys Val Asp			
385	390	395	400
Lys Lys Arg Val Tyr Leu Ala Thr Asp Asp Pro Ser Leu Leu Lys Glu			
405	410	415	
Ala Lys Thr Lys Tyr Ser Asn Tyr Glu Phe Ile Ser Asp Asn Ser Ile			
420	425	430	
Ser Trp Ser Ala Gly Leu His Asn Arg Tyr Thr Glu Asn Ser Leu Arg			
435	440	445	
Gly Val Ile Leu Asp Ile His Phe Leu Ser Gln Ala Asp Phe Leu Val			
450	455	460	
Cys Thr Phe Ser Ser Gln Val Cys Arg Val Ala Tyr Glu Ile Met Gln			

465	470	475	480
Thr Leu His Pro Asp Ala Ser Ala Asn Phe His Ser Leu Asp Asp Ile			
485	490	495	
Tyr Tyr Phe Gly Gly Gln Asn Ala His Asn Gln Ile Ala Val Tyr Pro			
500	505	510	
His Gln Pro Arg Thr Lys Glu Glu Ile Pro Met Glu Pro Gly Asp Ile			
515	520	525	
Ile Gly Val Ala Gly Asn His Trp Asn Gly Tyr Ser Lys Gly Val Asn			
530	535	540	
Arg Lys Leu Gly Lys Thr Gly Leu Tyr Pro Ser Tyr Lys Val Arg Glu			
545	550	555	560
Lys Ile Glu Thr Val Lys Tyr Pro Thr Tyr Pro Glu Ala Glu Lys			
565	570	575	

<210> 6
 <211> 575
 <212> PRT
 <213> Mus musculus

<400> 6			
Met Arg Ala Trp Thr Gly Ser Trp Arg Trp Ile Met Leu Ile Leu Phe			
1	5	10	15
Ala Trp Gly Thr Leu Leu Phe Tyr Ile Gly Gly His Leu Val Arg Asp			
20	25	30	
Asn Asp His Pro Asp His Ser Ser Arg Glu Leu Ser Lys Ile Leu Ala			
35	40	45	
Lys Leu Glu Arg Leu Lys Gln Gln Asn Glu Asp Leu Arg Arg Met Ala			
50	55	60	
Glu Ser Leu Arg Ile Pro Glu Gly Pro Ile Asp Gln Gly Thr Ala Thr			
65	70	75	80
Gly Arg Val Arg Val Leu Glu Glu Gln Leu Val Lys Ala Lys Glu Gln			
85	90	95	
Ile Glu Asn Tyr Lys Lys Gln Ala Arg Asn Gly Leu Gly Lys Asp His			
100	105	110	
Glu Ile Leu Arg Arg Arg Ile Glu Asn Gly Ala Lys Glu Leu Trp Phe			
115	120	125	
Phe Leu Gln Ser Glu Leu Lys Lys Leu Lys His Leu Glu Gly Asn Glu			
130	135	140	
Leu Gln Arg His Ala Asp Glu Ile Leu Leu Asp Leu Gly His His Glu			
145	150	155	160

Arg Ser Ile Met Thr Asp Leu Tyr Tyr Leu Ser Gln Thr Asp Gly Ala
165 170 175

Gly Asp Trp Arg Glu Lys Glu Ala Lys Asp Leu Thr Glu Leu Val Gln
180 185 190

Arg Arg Ile Thr Tyr Leu Gln Asn Pro Lys Asp Cys Ser Lys Ala Arg
195 200 205

Lys Leu Val Cys Asn Ile Asn Lys Gly Cys Gly Tyr Gly Cys Gln Leu
210 215 220

His His Val Val Tyr Cys Phe Met Ile Ala Tyr Gly Thr Gln Arg Thr
225 230 235 240

Leu Ile Leu Glu Ser Gln Asn Trp Arg Tyr Ala Thr Gly Gly Trp Glu
245 250 255

Thr Val Phe Arg Pro Val Ser Glu Thr Cys Thr Asp Arg Ser Gly Leu
260 265 270

Ser Thr Gly His Trp Ser Gly Glu Val Asn Asp Lys Asn Ile Gln Val
275 280 285

Val Glu Leu Pro Ile Val Asp Ser Leu His Pro Arg Pro Pro Tyr Leu
290 295 300

Pro Leu Ala Val Pro Glu Asp Leu Ala Asp Arg Leu Leu Arg Val His
305 310 315 320

Gly Asp Pro Ala Val Trp Trp Val Ser Gln Phe Val Lys Tyr Leu Ile
325 330 335

Arg Pro Gln Pro Trp Leu Glu Lys Glu Ile Glu Glu Ala Thr Lys Lys
340 345 350

Leu Gly Phe Lys His Pro Val Ile Gly Val His Val Arg Arg Thr Asp
355 360 365

Lys Val Gly Thr Glu Ala Ala Phe His Pro Ile Glu Glu Tyr Met Val
370 375 380

His Val Glu Glu His Phe Gln Leu Leu Ala Arg Arg Met Gln Val Asp
385 390 395 400

Lys Lys Arg Val Tyr Leu Ala Thr Asp Asp Pro Thr Leu Leu Lys Glu
405 410 415

Ala Lys Thr Lys Tyr Ser Asn Tyr Glu Phe Ile Ser Asp Asn Ser Ile
420 425 430

Ser Trp Ser Ala Gly Leu His Asn Arg Tyr Thr Glu Asn Ser Leu Arg
435 440 445

Gly Val Ile Leu Asp Ile His Phe Leu Ser Gln Ala Asp Phe Leu Val
450 455 460

Cys Thr Phe Ser Ser Gln Val Cys Arg Val Ala Tyr Glu Ile Met Gln
465 470 475 480

Thr Leu His Pro Asp Ala Ser Ala Asn Phe His Ser Leu Asp Asp Ile
485 490 495

Tyr Tyr Phe Gly Gly Gln Asn Ala His Asn Gln Ile Ala Val Tyr Pro
500 505 510

His Lys Pro Arg Thr Glu Glu Ile Pro Met Glu Pro Gly Asp Ile
515 520 525

Ile Gly Val Ala Gly Asn His Trp Asp Gly Tyr Ser Lys Gly Ile Asn
530 535 540

Arg Lys Leu Gly Lys Thr Gly Leu Tyr Pro Ser Tyr Lys Val Arg Glu
545 550 555 560

Lys Ile Glu Thr Val Lys Tyr Pro Thr Tyr Pro Glu Ala Glu Lys
565 570 575

<210> 7
<211> 446
<212> PRT
<213> Homo sapiens

<400> 7
Met Ala Ile Thr Val Ser Leu Val Asn Asn Lys Arg Lys Ile Val Val
1 5 10 15

Leu Ala Gln Pro Thr Thr Val Lys Arg Lys Arg Ile Thr Pro Tyr Lys
20 25 30

Ser Ile Met Thr Asp Leu Tyr Tyr Leu Ser Gln Thr Asp Gly Ala Gly
35 40 45

Asp Trp Arg Glu Lys Glu Ala Lys Asp Leu Thr Glu Leu Val Gln Arg
50 55 60

Arg Ile Thr Tyr Leu Gln Asn Pro Lys Asp Cys Ser Lys Ala Lys Lys
65 70 75 80

Leu Val Cys Asn Ile Asn Lys Gly Cys Gly Tyr Gly Cys Gln Leu His
85 90 95

His Val Val Tyr Cys Phe Met Ile Ala Tyr Gly Thr Gln Arg Thr Leu
100 105 110

Ile Leu Glu Ser Gln Asn Trp Arg Tyr Ala Thr Gly Gly Trp Glu Thr
115 120 125

Val Phe Arg Pro Val Ser Glu Thr Cys Thr Asp Arg Ser Gly Ile Ser
130 135 140

Thr Gly His Trp Ser Gly Glu Val Lys Asp Lys Asn Val Gln Val Val

145 150 155 160
Glu Leu Pro Ile Val Asp Ser Leu His Pro Arg Pro Pro Tyr Leu Pro
165 170 175

Leu Ala Val Pro Glu Asp Leu Ala Asp Arg Leu Val Arg Val His Gly
180 185 190

Asp Pro Ala Val Trp Trp Val Ser Gln Phe Val Lys Tyr Leu Ile Arg
195 200 205

Pro Gln Pro Trp Leu Glu Lys Glu Ile Glu Glu Ala Thr Lys Lys Leu
210 215 220

Gly Phe Lys His Pro Val Ile Gly Val His Val Arg Arg Thr Asp Lys
225 230 235 240

Val Gly Thr Glu Ala Ala Phe His Pro Ile Glu Glu Tyr Met Val His
245 250 255

Val Glu Glu His Phe Gln Leu Leu Ala Arg Arg Met Gln Val Asp Lys
260 265 270

Lys Arg Val Tyr Leu Ala Thr Asp Asp Pro Ser Leu Leu Lys Glu Ala
275 280 285

Lys Thr Lys Tyr Pro Asn Tyr Glu Phe Ile Ser Asp Asn Ser Ile Ser
290 295 300

Trp Ser Ala Gly Leu His Asn Arg Tyr Thr Glu Asn Ser Leu Arg Gly
305 310 315 320

Val Ile Leu Asp Ile His Phe Leu Ser Gln Ala Asp Phe Leu Val Cys
325 330 335

Thr Phe Ser Ser Gln Val Cys Arg Val Ala Tyr Glu Ile Met Gln Thr
340 345 350

Leu His Pro Asp Ala Ser Ala Asn Phe His Ser Leu Asp Asp Ile Tyr
355 360 365

Tyr Phe Gly Gly Gln Asn Ala His Asn Gln Ile Ala Ile Tyr Ala His
370 375 380

Gln Pro Arg Thr Ala Asp Glu Ile Pro Met Glu Pro Gly Asp Ile Ile
385 390 395 400

Gly Val Ala Gly Asn His Trp Asp Gly Tyr Ser Lys Gly Val Asn Arg
405 410 415

Lys Leu Gly Arg Thr Gly Leu Tyr Pro Ser Tyr Lys Val Arg Glu Lys
420 425 430

Ile Glu Thr Val Lys Tyr Pro Thr Tyr Pro Glu Ala Glu Lys
435 440 445

<210> 8
<211> 575
<212> PRT
<213> Sus scrofa

<400> 8
Met Arg Pro Trp Thr Gly Ser Trp Arg Trp Ile Met Leu Ile Leu Phe
1 5 10 15

Ala Trp Gly Thr Leu Leu Phe Tyr Ile Gly Gly His Leu Val Arg Asp
20 25 30

Asn Asp His Ser Asp His Ser Ser Arg Glu Leu Ser Lys Ile Leu Ala
35 40 45

Lys Leu Glu Arg Leu Lys Gln Gln Asn Glu Asp Leu Arg Arg Met Ala
50 55 60

Glu Ser Leu Arg Ile Pro Glu Gly Pro Ile Asp Gln Gly Pro Ala Ser
65 70 75 80

Gly Arg Val Arg Ala Leu Glu Glu Gln Phe Met Lys Ala Lys Glu Gln
85 90 95

Ile Glu Asn Tyr Lys Lys Gln Thr Lys Asn Gly Pro Gly Lys Asp His
100 105 110

Glu Ile Leu Arg Arg Arg Ile Glu Asn Gly Ala Lys Glu Leu Trp Phe
115 120 125

Phe Leu Gln Ser Glu Leu Lys Lys Leu Lys Asn Leu Glu Gly Asn Glu
130 135 140

Leu Gln Arg His Ala Asp Glu Phe Leu Ser Asp Leu Gly His His Glu
145 150 155 160

Arg Ser Ile Met Thr Asp Leu Tyr Tyr Leu Ser Gln Thr Asp Gly Ala
165 170 175

Gly Asp Trp Arg Glu Lys Glu Ala Lys Asp Leu Thr Glu Leu Val Gln
180 185 190

Arg Arg Ile Thr Tyr Leu Gln Asn Pro Lys Asp Cys Ser Lys Ala Lys
195 200 205

Lys Leu Val Cys Asn Ile Asn Lys Gly Cys Gly Tyr Gly Cys Gln Leu
210 215 220

His His Val Val Tyr Cys Phe Met Ile Ala Tyr Gly Thr Gln Arg Thr
225 230 235 240

Leu Ala Leu Glu Ser His Asn Trp Arg Tyr Ala Thr Gly Gly Trp Glu
245 250 255

Thr Val Phe Arg Pro Val Ser Glu Thr Cys Thr Asp Arg Ser Gly Ser
260 265 270

Ser Thr Gly His Trp Ser Gly Glu Val Lys Asp Lys Asn Val Gln Val
275 280 285

Val Glu Leu Pro Ile Val Asp Ser Val His Pro Arg Pro Pro Tyr Leu
290 295 300

Pro Leu Ala Val Pro Glu Asp Leu Ala Asp Arg Leu Val Arg Val His
305 310 315 320

Gly Asp Pro Ala Val Trp Trp Val Ser Gln Phe Val Lys Tyr Leu Ile
325 330 335

Arg Pro Gln Pro Trp Leu Glu Lys Glu Ile Glu Glu Ala Thr Lys Lys
340 345 350

Leu Gly Phe Lys His Pro Val Ile Gly Val His Val Arg Arg Thr Asp
355 360 365

Lys Val Gly Ala Glu Ala Ala Phe His Pro Ile Glu Glu Tyr Thr Val
370 375 380

His Val Glu Glu Asp Phe Gln Leu Leu Ala Arg Arg Met Gln Val Asp
385 390 395 400

Lys Lys Arg Val Tyr Leu Ala Thr Asp Asp Pro Ala Leu Leu Lys Glu
405 410 415

Ala Lys Thr Lys Tyr Pro Ser Tyr Glu Phe Ile Ser Asp Asn Ser Ile
420 425 430

Ser Trp Ser Ala Gly Leu His Asn Arg Tyr Thr Glu Asn Ser Leu Arg
435 440 445

Gly Val Ile Leu Asp Ile His Phe Leu Ser Gln Ala Asp Phe Leu Val
450 455 460

Cys Thr Phe Ser Ser Gln Val Cys Arg Val Ala Tyr Glu Ile Met Gln
465 470 475 480

Ala Leu His Pro Asp Ala Ser Ala Asn Phe Arg Ser Leu Asp Asp Ile
485 490 495

Tyr Tyr Phe Gly Gly Pro Asn Ala His Asn Gln Ile Ala Ile Tyr Pro
500 505 510

His Gln Pro Arg Thr Glu Gly Glu Ile Pro Met Glu Pro Gly Asp Ile
515 520 525

Ile Gly Val Ala Gly Asn His Trp Asp Gly Tyr Pro Lys Gly Val Asn
530 535 540

Arg Lys Leu Gly Arg Thr Gly Leu Tyr Pro Ser Tyr Lys Val Arg Glu
545 550 555 560

Lys Ile Glu Thr Val Lys Tyr Pro Thr Tyr Pro Glu Ala Asp Lys
565 570 575

<210> 9
<211> 9196
<212> DNA
<213> Cricetulus griseus

<400> 9
tctagaccag gctggctcg aactcacaga gaaccacctg cctctgccac ctgagtgctg 60
ggattaaagg tgtgcaccac caccgcccgg cgtaaaatca tattttgaa tattgtgata 120
atttacatta taattgtaaag taaaaatttt cagcctattt tgttatacat ttttgcgtaa 180
attattctt tttgaaaagtt ttgttgtcca taatagtcta gggaaacata aagttataat 240
ttttgtctat gtatttgcat atatatctat ttaatctcct aatgtccagg aaataaata 300
ggtatgtaat agcttcaaca tgtggtatga tagaattttt cagtgctata taagttgtta 360
cagcaaagtg ttattaattc atatgtccat atttcaattt tttatgaatt attaaattga 420
atcccttaagc tgccagaact agaattttat tttaatcagg aagccccaaa tctgttcatt 480
ctttctatat atgtggaaag gtaggcctca ctaactgatt cttcacctgt tttagaacat 540
ggtccaagaa tggagttatg taagggaat tacaagtgtg agaaaaactcc tagaaaacaa 600
gatgagtctt gtgaccttag tttctttaaa aacacaaaat tcttggaatg tgtttcatg 660
ttccctccag gtggatagga gtgagttat ttcagattat ttattacaac tggctgtgt 720
tacttggttc tatgtcttta tagaaaaaca tattttttt gccacatgca gcttgcctt 780
atgattttat acttgtgtga ctcttaactc tcagagtata aattgtctga tgctatgaat 840
aaagttggct attgtatgag acttcagccc acttcaatta ttggcttcat tctctcagat 900
cccaccacct ccagagtgg aaacaacttg aaccattaaa cagactttag tctttatgg 960
aatgatagat ggggatataca gatttatagg cacagggtt tgagaaaggg agaaggtaaa 1020
cagtagagtt taacaacaac aaaaagtata ctttgtaaac gtaaaaactat ttattaaagt 1080
agtagacaag acattaaataa ttccctggga ttagtgctt ttgaattttg ctttcaaata 1140
atagtcagtg agtataaccc tcccccatc tatattttag cagaaatcag aataaatgg 1200
gtttctggta cattctttg tagagaattt atttctttg ggaaaaatgg catttaaagt 1260
caataaaaat taaggttcag taatagaaaa aaaactctga tttttggaaat ccccttcctt 1320
cagctttctt attaatctc ttaatgataa tttaattttg ggccatgtgg tcaaagtata 1380
tagccttgc tatgtaaatg ttttaaccaa cctgccttta cagtaactat ataattttat 1440
tctataat atgactttc ttccatagct ttagagttgc ccagtcactt taagttacat 1500

tttcatatat gttcttgtg ggaggagata attttatttc taagagaatc ctaagcatac 1560
tgattgagaa atggcaaaca aaacacataa ttaaagctga taaaagaacga acatttggag 1620
tttaaaatac atagccaccc taagggtta actgttgta gccttcttt ggaattttta 1680
ttagttcata tagaaaaatg gatTTtatcg tgacatttcc atatatgtat ataatatatt 1740
tacatcatat ccacctgtaa ttattagtgt ttttaaatat atttgaaaaa ataatggtct 1800
ggtttgcatttcc atttgaacct tttgtatgtt ggtgtgggtt ccaattgggt gatgggtatg 1860
ataacccccc cttctctaag gttcaagtca gtttggaaat atgtcctcta aaaatgacag 1920
gttgcagtt aagtagtgag atgacagcga gatggagtga tgagaatttg tagaaatgaa 1980
ttcacttata ctgagaactt gtttgcattt tagataatga acatattgc ctgaagtaca 2040
tagccgaatt gattaattat tcaaagatataatccctataaa agaggattta 2100
cacaacaatt caagaaagat agaatttagac ttccagtttggatggacc atttggttatc 2160
aggttagaacc ctaacgtgtg tgggtgactt aaagtgtttt ctttttaccc gatactgggt 2220
agctaattgt ctccagcct cctggccaaa gataccatga aagtcaactt acgttgttatt 2280
ctatatctca aacaactcag ggtgtttctt actcttcca cagcatgtag agccaggaa 2340
gcacaggaca agaaagctgc ctccctgtat caccaggaag atcttttgcattt aagagtcatc 2400
acagtataacc agagagacta atttgtctg aagcatcatg tggtaaaaca acagaaactt 2460
atttccctgt gtggctaact agaaccagag tacaatgtt ccaattctt gagctccgag 2520
aagacagaag ggagttgaaa ctctgaaaat gcgggcatgg actgggtcctt ggcgttggat 2580
tatgctcatt ctccctgtat ccccttgcattt attgtttat ataggtggtc atttggttcg 2640
agataatgac caccctgacc attcttagcag agaactctcc aagattcttgcata 2700
gcgcctaaaaa caacaaaatg aagacttgag gagaatggct gagtctctcc ggttagtttgc 2760
aaatactcaa ggatttgatg aaatactgtt cttgacccctt aggtataggg tctcagtctg 2820
ctgtgaaaaa atataatttc tacaacccgt ctgttgcattt ttttaagtat tggtagcagac 2880
tttttaaaatg tcagtgatac atctatatacg tcaatataagg tttacatagt tgcaatctt 2940
ttttgcataat gaaatcgtat atagaaggcag tggcatttat atgctttagt tgcatattaca 3000
attatgttta gacgaacaca aactttatgt gatttggatt agtgctcatt aaattttttt 3060
attctatgga ctacaacaga gacataaaatt ttgaaaggct tagttactct taaattctt 3120
tgatgaaaaatg caaaaattca ttgtttaata gaacagtgc tccggaaatgt gggtaattat 3180

tgccatattt ctagtctact aaaaattgtg gcataactgt tcaaagtcat cagtttttg 3240
gaaagccaaa gtctgattta aatggaaaac ataaacaatg atatctattt ctagataacct 3300
ttaacttgc a gttactgagt ttacaagttg tctgacaact ttggattctc ttacttcata 3360
tctaagaatg atcatgtgta cagtgc ttac tac ttta aaaaactgca gggctagaca 3420
tgcagatatg aagactttga cattagatgt ggtaattggc actaccagca agtggtatta 3480
agatacagct gaatata tttt gagg aacataattc atgaatggaa agtggagcat 3540
tagagaggat gccttctggc tctcccacac cactgttgc atccattgca tttcacactg 3600
cttttagaac tcagatgtt catatggat attgtgtaac tcaccatcag ttttatctt 3660
aaatgtctat ggatgataat gttgtatgtt aacactttt caaaaacaaa tgaaggccata 3720
tcctcggtgt gagttgtgat ggtggtaatt gtcacaatag gattattcag caaggaacta 3780
agtcagggac aagaagtggg cgatactttg ttggattaaa tcattttact ggaagttcat 3840
cagggagggt tatgaaagtt gtggctttt aactgaaatt atatgtgatt cattattctt 3900
gatttaggcc ttgcta atag taactatcat ttattggaa tttgtcatat gtgccaattt 3960
gtcatgggcc agacagcgtg tttactgaa tttctagata tcattttagat attctagtag 4020
tgtttcagc cattttacag atgaagaatc ttaaaaaatg ttaaataatt tagttgcc 4080
aagattatac gttaacaaat ggttagaacct tctttgaatt ctggcagtat ggctacacag 4140
tccgaactct tatcttccta agctgaaaac agaaaaagca atgacccaga aaattttatt 4200
taaaaagtctc aggagagact tcccatcctg agaagatctc tttcccttt tataatttag 4260
gctcctgaat aatcactgaa tttctccat gttccatcta tagtactgtt atttctgttt 4320
tccttttc ttaccacaaa gtatcttgc tttgctgtat gaaagaaaat gtgttattgt 4380
aatgtgaaat tctctgtccc tgca ggggtcc cacatccgccc tcaatcccaa ataaacacac 4440
agaggctgta ttaattatga aactgttggc cagttggcta gggcttcttta ttggcttagct 4500
ctgtcttaat tattaaacca taactactat tgtaagtatt tccatgtggt cttatcttac 4560
caaggaaagg gtccaggac ctcttactcc tctggcgtgt tggcagtgaa gaggagagag 4620
cgatttccta tttgtctctg cttat tttct gattctgctc agctatgtca cttccctgc 4680
ggccaatcag ccaatcagtg ttttattcat tagccaataa aagaaacatt tacacagaag 4740
gacttccccc atcatgttat ttgtatgagt tcttcagaaa atcatagttat ctttaatac 4800
taattttat aaaaaattaa ttgtattgaa aattatgtgt atatgtgtct gtgtgtcgat 4860
ttgtgctcat aagtagcatg gagtgcagaa gagggatca gatcttttt taaggacaa 4920

agagtttatt cagattacat tttaaggta taatgtatga ttgcaagggtt atcaacatgg 4980
cagaaatgtg aagaagctgg tcacattaca tccagagtca agagtagaga gcaatgaatt 5040
gatgcattca ttcctgtgct cagctcaett ttcctggagc tgagctgatt gtaagccatc 5100
tgatgtcttt gctggaaact aactcaaagg caagttcaaa acctgttctt aagtataagc 5160
catctctcca gtccctcata tggctctta agacacttcc tttatattct tgtacataga 5220
aattgaattc ctaacaactg cattcaaatt acaaaatagt tttaaaagc tgatataata 5280
aatgtaaata caatctagaa cattttata aataagcata ttaactcagt aaaaataaaat 5340
gcatggttat tttccttcat taggaaagta tgtctccccg ggctgttctc tagattctac 5400
tagtaatgct gtttgtacac catccacagg ggttttattt taaagctaag acatgaatga 5460
tggacatgct tgtagcatt tagactttt tccttactat aattgagctt gtattttgt 5520
gctcagttt atatctgtta attcagataa atgtaatagt aggttaattt tttgtgataa 5580
aggcatataa attgaagttg gaaaacaaaaa gcctgaaatg acagttttt agattcagaa 5640
caataattt caaaagcagt tacccaaactt tccaaataca atctgcagtt ttcttgatat 5700
gtgataaatt tagacaaaga aatagcacat tttaaaatag ctatctactc ttgattttt 5760
tttcaaattt aggctagttc actagttgtg tgtaaggta tggctgcaaa catcttgac 5820
tcttggtag ggaatccagg atgatttacg tggttggca aaatcttgtt ccattctggg 5880
tttcttctct atcttaggtt ctagcacaag tttaagggtgt ggtgttattt gaaggctctc 5940
aggtatataat ttcttatattc tgtattttt tcctctgtca tatatttgc ttctgtttt 6000
ttgatttcta ctgttagttt gatacttact ttcttacact ttctttggaa ttattttgc 6060
tgttctaaga ttcttagca agttcatatc actgatttta acagttgctt cttttgtaat 6120
atagactgaa tgccccttat ttgaaatgct tggatcaga aactcagatt tgaacttttc 6180
tttttaata ttccatcaa gtttaccagc tgaatgtcct gatccaagaa tatgaaatct 6240
gaaatgctt gaaatctgaa acttttagag tgataaaagct tccctttaaa ttaatttgc 6300
ttctatattt ttgacaatg tcaaccttcc attgttatcc aatgagtgaa catatttca 6360
atttttgtt ttgatctgtt atatttgtat ctgaccatat ttataaaatt ttatattaatt 6420
tgaatgtgt gctgttactt atctttatta ttattttgc ttatttcta gccaaatgaa 6480
attatattct gtattatattt agttgaatt ttactttgtg gcttagtaac tgcctttgt 6540
tggtaatgc ttaagaaaaa cgtgtggct actgatattt gttctaatct tatatacgat 6600

gttggggtt agtagtgta ttatgctggc cagattgtct tgagttatgc caaatgtaaa 6660
atatttagat gcttggtttg ttgtctaaga acaaagtatg ctgtgtgtct cctatcggtt 6720
ctgggttttc cattcatotc ttcaagctgt tttgtgtgtt gaataactaac tccgtactat 6780
cttggtttct gtgaattaac ccctttcaa aggttcttt tcctttttt tttaaggac 6840
aacaagttta ttcagattac atttaagct gataatgtat gattgcaagg ttatcaacat 6900
ggcagaaatg tgaagaagct aggcacatta catccacatg gagtcaagag cagagagcag 6960
tgaattaatg catgcattcc tgtggtcagc tcactttcc tattctttaga tagtcttagga 7020
tcataaacct ggggaatagt gctaccacaa tgggcatatc cacttacttc agttcatgca 7080
atcaaccaag gcacatccac aggaaaaact gattnagaca acctctcatt gagactcttc 7140
ccagatgatt agactgtgtc aagttgacaa ttaaaactat cacacctgaa gccatcacta 7200
gtaaatataa tgaaaatgtt gattatcacc ataattcatc tgtatccctt tgttattgtt 7260
gattttgtga agttccttatt caagtccctg ttccttcctt aaaaacctgt ttttagtta 7320
aataggtttt ttagtgttcc tgtctgtaaa tacttttta aagttagata ttattttcaa 7380
gtatgttctc ccagtcttgc gctgttattt tcattcccttc aatacatata tttttagttaat 7440
ttattnnnn tatttaaattt agaaacaaag ctgttttac atgtcagtct cagttccctc 7500
tccctccctt cctccctgc tccccaccta agccccaaattt ccaactccctt ttttctcccc 7560
aggaagggtg aggcctcca tggggaaat cttcaatgtc tgtcatatca tttggagcag 7620
ggcttagacc ctccccagtg tgtcttaggtt gagagagtat ccctctatgt ggagagggct 7680
cccaaagtcc atttgtgtac taggggtaaa tactgatcca ctatcagtgg ccccatagat 7740
tgtccggacc tccaaactga cttcccttcctt cagggagtctt ggaacagtcc tatgctgggtt 7800
tcccagatat cagtctgggg tccatgagca acccctgtt caggtcagtt gtttctgttag 7860
gtttccccag cccgggttttgc accccttgc tcattacttc tccctctctg caactggatt 7920
ccagagttca gctcagtgtt tagctgtggg tgtctgcattc tgcttcattc agctactgga 7980
tgagggctctt agatggcat ataaaggtagt catcagtctc attatcagag aagggtttt 8040
aaggtagcct cttgatttatt gcttagattt ttagttgggg tcaaccctgtt aggtctctgg 8100
acagtgacag aattcttctt aaacctataa tggctccctc tgggtggta tccctttctt 8160
tgctctcatc cgttccccc ctgactagat cttccctgtc cctcatgtcc tcctctcccc 8220
tccccttcctc cccttctctt tcttcttaact ccctctcccc tccacccacg atccccattt 8280
gcttatgaga tcttgcctt atttttagcaa aaccttttg gctataaaaat taattaattt 8340

aatatgctta ttcagggtt attttggcta gtatttgat gtgtttggtt agtgtttta 8400
acctaattt acatgtatcc ttatatttag acacagattt aaatatttga agttttttt 8460
ttttttttt ttaaagattt atttattttt tatgtttct gcctgcattc cagaagaggg 8520
caccagatct cattcaaggt ggttgtgagc caccatgtgg ttgctggaa ttgaactcag 8580
gacctctgga agaacagtca gtgctcttaa ccgctgagcc atctctccag cccctgaagt 8640
gtttcttta aagaggatag cagtgcattca ttttccctt tgaccaatga ctccctacctt 8700
actgaattgt ttttagccatt tataatgtat gctgttacca ggtttacatt ttcttttac 8760
ttgcttaatt ttttccctgt ttgtctcatc ttttattttt gtctgttggaa ttatataggc 8820
ttttattttt ctgttttac agtaagttt atcaaattaa aatttttta tggaatgggt 8880
gtgtgacta catgtatgtc tttgcaccat gtgctgacct ggtcttggcc agaagaaggt 8940
gtcatattct ctgaaactgg tattgtggat gttacgaact gccatagggt gcttaggaatc 9000
aaaccccagc tcctctggaa aagcagccac tgctctgagc cactgagtcc tctcttcaag 9060
caggtgatgc caactttaa tggttaccag tggataagag tgcttgtatc tctagcaccc 9120
atgaaaattt atgcattgct atatgggctt gtcacttcag cattgtgtga cagagacagg 9180
aggatcccaa gagctc 9196

<210> 10
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic DNA

<400> 10
gagacttcag cccacttcaa ttattggc

28

<210> 11
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic DNA

<400> 11
cttgcgtgac tcttaactct cagag

25

<210> 12

<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic DNA

<400> 12
gaggccactt gtgttagcgcc aagtg 25

<210> 13
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic DNA

<400> 13
ccctcgagat aacttcgtat agc 23

<210> 14
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence : Synthetic DNA

<400> 14
ggtaggcctc actaactg 18

<210> 15
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence : Synthetic DNA

<400> 15
catagaaaaca agtaacaaca gccag 25

<210> 16
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic DNA

<400> 16
gtgagtccat ggctgtcaact g 21

<210> 17
 <211> 20
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic DNA

<400> 17	20
cctgacttgg ctattctcag	

<210> 18
 <211> 384
 <212> DNA
 <213> Mus musculus

<400> 18

atg gat ttt cag gtg cag att atc agc ttc ctg cta atc agt gct tca	48
Met Asp Phe Gln Val Gln Ile Ile Ser Phe Leu Leu Ile Ser Ala Ser	
1 5 10 15	
gtc ata atg tcc aga gga caa att gtt ctc tcc cag tct cca gca atc	96
Val Ile Met Ser Arg Gly Gln Ile Val Leu Ser Gln Ser Pro Ala Ile	
20 25 30	
ctg tct gca tct cca ggg gag aag gtc aca atg act tgc agg gcc agc	144
Leu Ser Ala Ser Pro Gly Glu Lys Val Thr Met Thr Cys Arg Ala Ser	
35 40 45	
tca agt gta agt tac atc cac tgg ttc cag cag aag cca gga tcc tcc	192
Ser Ser Val Ser Tyr Ile His Trp Phe Gln Gln Lys Pro Gly Ser Ser	
50 55 60	
ccc aaa ccc tgg att tat gcc aca tcc aac ctg gct tct gga gtc cct	240
Pro Lys Pro Trp Ile Tyr Ala Thr Ser Asn Leu Ala Ser Gly Val Pro	
65 70 75 80	
gtt cgc ttc agt ggc agt ggg tct ggg act tct tac tct ctc acc atc	288
Val Arg Phe Ser Gly Ser Gly Thr Ser Tyr Ser Leu Thr Ile	
85 90 95	
agc aga gtg gag gaa gat gct gcc act tat tac tgc cag cag tgg	336
Ser Arg Val Glu Ala Glu Asp Ala Ala Thr Tyr Tyr Cys Gln Gln Trp	
100 105 110	
act agt aac cca ccc acg ttc gga ggg ggg acc aag ctg gaa atc aaa	384
Thr Ser Asn Pro Pro Thr Phe Gly Gly Thr Lys Leu Glu Ile Lys	
115 120 125	

<210> 19
 <211> 420
 <212> DNA
 <213> Mus musculus

<400> 19

atg ggt tgg agc ctc atc ttg ctc ttc ctt gtc gct gtt gct acg cgt	48
Met Gly Trp Ser Leu Ile Leu Leu Phe Leu Val Ala Val Ala Thr Arg	
1 5 10 15	
gtc ctg tcc cag gta caa ctg cag cag cct ggg gct gag ctg gtg aag	96
Val Leu Ser Gln Val Gln Gln Pro Gly Ala Glu Leu Val Lys	

20	25	30	
cct ggg gcc tca gtg aag atg tcc tgc aag gct tct ggc tac aca ttt			144
Pro Gly Ala Ser Val Lys Met Ser Cys Lys Ala Ser Gly Tyr Thr Phe			
35	40	45	
acc agt tac aat atg cac tgg gta aaa cag aca cct ggt cggt ggc ctg			192
Thr Ser Tyr Asn Met His Trp Val Lys Gln Thr Pro Gly Arg Gly Leu			
50	55	60	
gaa tgg att gga gct att tat ccc gga aat ggt gat act tcc tac aat			240
Glu Trp Ile Gly Ala Ile Tyr Pro Gly Asn Gly Asp Thr Ser Tyr Asn			
65	70	75	80
cag aag ttc aaa ggc aag gcc aca ttg act gca gac aaa tcc tcc agc			288
Gln Lys Phe Lys Gly Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser			
85	90	95	
aca gcc tac atg cag ctc agc agc ctg aca tct gag gac tct gcg gtc			336
Thr Ala Tyr Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val			
100	105	110	
tat tac tgt gca aga tcg act tac tac ggc ggt gac tgg tac ttc aat			384
Tyr Tyr Cys Ala Arg Ser Thr Tyr Tyr Gly Gly Asp Trp Tyr Phe Asn			
115	120	125	
gtc tgg ggc gca ggg acc acg gtc acc gtc tct gca			420
Val Trp Gly Ala Gly Thr Thr Val Thr Val Ser Ala			
130	135	140	

<210> 20
 <211> 91
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic DNA

<400> 20
 caggaaacag ctatgacgaa ttgcgcctcct caaaaatggat tttcaggtgc agattatcg 60
 cttcctgcta atcagtgctt cagtcataat g 91

<210> 21
 <211> 91
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic DNA

<400> 21
 gtgaccttct ccccctggaga tgcagacagg attgctggag actgggagag aacaatttgt 60
 cctctggaca ttatgactga agcactgatt a 91

<210> 22
 <211> 90
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic DNA

<400> 22
ctccagggga gaaggtcaca atgacttgca gggccagctc aagtgttaat tacatccact 60
gttccagca gaagccagga tcctccccca 90

<210> 23
<211> 89
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic DNA

<400> 23
ccagaccac tgccactgaa gcgaacagg actccagaag ccaggttggta tggcataa 60
atccagggtt tggggagga tcctggctt 89

<210> 24
<211> 91
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic DNA

<400> 24
tcagtggcag tgggtctggg acttcttact ctctcaccat cagcagatg gaggctgaag 60
atgtgccac ttattactgc cagcagtggaa c 91

<210> 25
<211> 90
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic DNA

<400> 25
gtttcccgag tcacgaccgt acgttgatt tccagctgg tccccctcc gaacgtgggt 60
gggttactag tccactgctg gcagtaataa 90

<210> 26
<211> 99
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic DNA

<400> 26
caggaaacag ctatgacgcg gccgcgaccc ctcaccatgg gtggagcct catcttgctc 60
ttccttgcgtc ctgttgctac gcgtgtcctg tcccaggtaa 99

<210> 27
<211> 98
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic DNA

<400> 27
atgttagcc agaaggcttg caggacatct tcactgaggc cccaggccttc accagctcag 60
ccccaggctg ctgcagttgt acctgggaca ggacacgc 98

<210> 28
<211> 97
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic DNA

<400> 28
caaggcttct ggctacacat ttaccagtta caatatgcac tggtaaaac agacacctgg 60
tcggggcctg gaatggattt gagctattta tcccgga 97

<210> 29
<211> 99
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic DNA

<400> 29
gtaggctgtg ctggaggatt tgtctgcagt caatgtggcc ttgcctttga acttctgatt 60
gttaggaagta tcaccatttc cggataaat agctccaat 99

<210> 30
<211> 99
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic DNA

<400> 30
aatccctccag cacaggctac atgcagctca gcaggctgac atctgaggac tctgcggct 60
attactgtgc aagatcgact tactacggcg gtgactgg 99

<210> 31
<211> 98

<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic DNA

<400> 31
gttttcccg tcacgacggg cccttggtgg aggctgcaga gacggtgacc gtggtccctg 60
cgccccagac attgaagtac cagtcaccgc cgtagtaa 98

<210> 32
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic DNA

<400> 32
gagctggta agcctggggc ctcag 25