CLASE 11 - PRUEBAS NO PARAMÉTRICAS

Curso Análisis de expresión diferencial de genes e investigación reproducible.

Dr. José Gallardo Matus | https://genomics.pucv.cl/

Pontificia Universidad Católica de Valparaíso

04 November 2022

PLAN DE LA CLASE

1.- Introducción

- ¿Qué son las pruebas no paramétricas?.
- ► Test de Correlación no paramétrico.
- Pruebas de contraste no paramétrico.
- Prueba de asociación Chi cuadrado.

2.- Práctica con R y Rstudio cloud

- Realizar pruebas no paramétricas.
- Realizar gráficas avanzadas con ggplot2.

MÉTODOS NO PARAMÉTRICOS

- Conjunto diverso de pruebas estadísticas.
- ► El concepto de "no paramétrico" a veces es confuso, pues los métodos no paramétricos si estiman y someten a prueban hipótesis usando parámetros, pero no los de distribución normal.
- Se aplican usualmente cuando hay pocas réplica biológicas, cuando la variables aleatoria (ej. FC o delta ct) no cumple con el supuesto de normalidad.
- El concepto matemático de permutación está subyacente a muchos métodos no paramétricos y se utiliza para someter a prueba las hipótesis.

SUPUESTOS DE LOS MÉTODOS NO PARAMÉTRICOS

- Las variables son independientes.
- Muestras independientes con idéntica distribución.
- No tienen supuestos acerca de la distribución de la variable (algunas asumen chi-cuadrado).
- La distribución del estadístico se estima muy a menudo por permutación.

PRUEBA DE CORRELACIÓN NO PARAMÉTRICA: SPEARMAN

¿Para que sirve?

Para estudiar asociación de dos variables, cuando no se cumple uno o varios supuestos de la correlación paramétrica:

- Las variables X e Y no son continuas.
- No existe relación lineal.
- La distribución conjunta de (X, Y) no es una distribución Bivariable normal.

ESTUDIO DE CASO: CORRELACIÓN COPIAS Y EXPRESIÓN GEN DEFENSINA

Schmitt et al. 2013: Relación lineal entre número de copias del gen y su expresión.

¿Cuál es el supuesto que no se cumple?

PRUEBA DE HIPÓTESIS CORRELACIÓN DE SPEARMAN

Table 1: Spearman's rank correlation rho: gene_number and expression

		Alternative	
Test statistic	P value	hypothesis	rho
4	0.03333 *	two.sided	0.8857

PRUEBA DE MANN-WHITNEY (W): COMPARACIÓN 2 MUESTRAS INDEPENDIENTES

¿Para qué sirve?

Para comparar dos muestras con idéntica distribución, con diferentes medianas y sin normalidad.

ESTUDIO DE CASO: EXPRESIÓN CDK18 EN SANGRE

Simonovic eyt al. 2020: Comparación de expresión relativa de CDK18 en sangre de pacientes sanos (N) y con tumor (T) renal.

PRUEBA DE HIPÓTESIS DE MANN-WHITNEY

Table 2: Wilcoxon rank sum test with continuity correction: normal and tumoral

		Alternative
Test statistic	P value	hypothesis
136.5	0.001201 * *	two.sided

PRUEBA DE WILCOXON MUESTRAS PAREADAS

¿Para que sirve?

Para comparar dos muestras *pareadas* con idéntica distribución, con diferentes medianas y sin normalidad.

ESTUDIO DE CASO: BIOMARCADOR PARA TERAPIA DE CANCER COLORRECTAL

Li et al. 2018. Expresion del gen SPINT1-AS1 (A) y SPINT1 (B) en 45 pares de muestras pre y post-operados de cancer colorrectal.

PRUEBA DE HIPÓTESIS DE WILCOXON

Table 3: Wilcoxon signed rank exact test: FC by Tratamiento

		Alternative
Test statistic	P value	hypothesis
1	0.003906 * *	two.sided

PRUEBA DE KRUSKAL - WALLIS: COMPARACIÓN MÚLTIPLES MUESTRAS INDEPENDIENTES

¿Para que sirve?

Para comparar múltiples muestras con idéntica distribución, con diferentes medianas y sin normalidad.

ESTUDIO DE CASO: EXPRESIÓN SLC6A14 EN RESPUESTA A ISQUEMIA.

Lange et al. 2015. Respuesta a isquemia en tejido normal (N) y tumoral (T) sometido a isquemia por 0, 10, 20 y 45 min.

PRUEBA DE KRUSKAL - WALLIS CON R

kruskal.test(list(NO, N10, N20, N45)) %>% pander()

Table 4: Kruskal-Wallis rank sum test: list(NO, N1O, N2O, N45)

Test statistic	df	P value
39.54	3	1.331e-08 * * *

PRUEBA DE DUNN PARA COMPARACIONES MULTIPLES

```
##
     Comparison
                                P.unadj
                                              P.adj
       NO - N10 5.4970805 3.861305e-08 2.316783e-07
## 1
##
     NO - N20
                4.6903882 2.726872e-06 1.636123e-05
##
      N10 - N20 -0.8066923 4.198438e-01 1.000000e+00
##
     NO - N45 5.0886287 3.606620e-07 2.163972e-06
## 5
      N10 - N45 - 0.4084518 6.829420e - 01 1.000000e + 00
##
      N20 - N45 0.3982405 6.904529e-01 1.000000e+00
   6
```

PRUEBA DE CHI CUADRADO: ASOCIACIÓN CON VARIABLES CATEGÓRICAS

¿Para que sirve?

Se utilizan para investigar la asociación de dos o más variables categóricas una de las cuales es una variable respuesta y la otra es una variable predictora.

Tratamiento	Respuesta +	Respuesta -
Si	a	С
No	b	d

ESTUDIO DE CASO: PREDICCIÓN MOLECULAR DE EMBRIONES ANEUPLOIDES

Lal et al. 2022. Expresión del gen BCL2L13 en embiones euploides y anauploides.

PRUEBA CHI CUADRADO

datos

```
## Expresado No expresado
## Euploides 9 2
## Aneuploides 1 7
# Test de Chi-squared en R (chisq.test)
test<-chisq.test(datos, correct = FALSE)

test %>% pander()
```

Table 6: Pearson's Chi-squared test: datos

Test statistic	df	P value
8.927	1	0.00281 * *

PRÁCTICA ANÁLISIS DE DATOS

Guía de trabajo práctico disponible en Rstudio.cloud.

Nonparametric Tests	Parametric Tests
Mann-Whitney U Test	Independent Samples T-test
Wilcoxon Signed Rank Test	Paired Samples T-test
Kruskal-Wallis Test	One-way ANOVA
Chi-squared Test	

FUENTE: Corporate finance institute

RESUMEN DE LA CLASE

Revisión de conceptos y práctica de estadística no paramétrica.

- Correlación de Spearman.
- Prueba de Man-Whitney.
- Prueba de Wilcoxon.
- Prueba de Kruskal Wallis + DUNN test.
- Prueba de Chi-cuadrado.