Feedback — Quiz_week3

Help Center

You submitted this quiz on Tue 3 Feb 2015 9:36 AM PST. You got a score of 13.00 out of 15.00.

Question 1

Which of the followings about physical attacks are correct? Check all that apply.

Your Answer		Score	Explanation
Some physical attacks do not need physical access to the system	~	0.25	
All physical attacks will need the help from some tools and/or equipment	~	0.25	
All physical attacks will leave tamper trace after attack	~	0.25	
All physical attacks will make damage to the system	~	0.25	
Total		1.00 / 1.00	

Question Explanation

grading: 0.25 each

Question 2 Which of the following physical attacks are invasive? Check all that apply. **Your Answer Explanation** Score Software attacks 0.25 Reverse engineering 0.25 Side channel attacks 0.25 Microprobing 0.25 Total 1.00 / 1.00 **Question Explanation** grading: 0.25 each

Question 3

Which of the following non-invasive attacks are passive? Check all that apply.

Your Answer		Score	Explanation
Side channel attack	~	0.25	side channel attack itself is passive, but it can be combined with other method (such as fault injection) to become active.
Data remanence	~	0.25	
Brute force	~	0.25	
Fault injection	~	0.25	
Total		1.00 /	
		1.00	
Question Explanati	on		
grading: 0.25 each			

Which of the following about invasive attacks are true? Check all that apply.

Your Answer		Score	Explanation
With sensor mesh at the top metal layer, any attempt of invasive attack can be	~	0.25	

It is possible to probe into a single bus line and inject data to control bus activity.	~	0.25
Because invasive attacks need to depackage the chip, all invasive attacks will be ery expensive.	~	0.25
When the bus lines are scrambled, the attackers cannot find the bus lines to probe.	~	0.25
- otal		1.00 / 1.00

Which of the following statements are true for data remanence on SRAM? Check all that apply.

Your Answer		Score	Explanation
SRAM may retain data shortly after power off, so data may leak.	~	0.25	
It is possible to freeze data and read it at	~	0.25	

When power up, SRAM's initial value will be andom, so no data will leak.	~	0.25	If data has been in the same SRAM for long, its value might be burned-in.
Data can be extracted from SRAM after multiple write/erase cycles.	~	0.25	This is for EEPROM and Flash.
Total		1.00 / 1.00	

When we use the "iterative exponentiation and modular" method to compute $2^4 \pmod 5$, starting from 2^1 , we will have $2^1=2 \pmod 5$; $2\times 2=4 \pmod 5$; $4\times 2=3 \pmod 5$; $3\times 2=1 \pmod 5$. The results we will see are 2, 4, 3, 1. If we use the same method to compute $3^7 \pmod 5$, starting from 3^1 , the results we will see are

Your Answer	Score	Explanation
Your Answer	Score	Explanation

3, 9, 27, 81, 243, 729. 2187

3, 4, 1, 2, 0, 2, 1	
1, 2, 3, 4, 0, 1, 2	
3, 4, 2, 1, 3, 4, 2	✓ 1.00
Total	1.00 / 1.00

Which of the following decimal to binary conversion are correct? Check all that apply.

Your Answer		Score	Explanation
19 = 10011	~	0.50	
124 = 1111100	~	0.50	
79 = 1001111	~	0.50	
37 = 101011	~	0.50	
Total		2.00 / 2.00	
Question Explanation			

grading: 0.5 each

Question 8

For e=10,0101,0110, when we compute $a^e \pmod{n}$ with the left to right "square and multiple algorithm (I)", the total number of multiplication (both b*b and b*a) we will do is

You entered:

15

Your Answer		Score	Explanation
15	✓	2.00	
Total		2.00 / 2.00	

Question Explanation

2 multiplications for the leading bit 1: one b*b and one b*a, both are trivial operations, 1*1 and 1*a. If we replace line 2 by b=a; and start the for loop in line 3 with i=s-1; these 2 multiplications can be saved.

Question 9

In the slide of "Montgomers	y Reduction", which of the following conditions are necessary? Check all the apply.
-----------------------------	---

Your Answer		Score	Explanation
T > N	~	0.50	we need R>N, not T>N.
N is a prime	~	0.50	
R is a power of 2	~	0.50	
gcd (R,N) = 1	~	0.50	otherwise N inverse mod R may not exist.
gcd (T,N) = 1	~	0.50	we need $gcd(R,N)=1$, not $gcd(T,N)=1$.
✓ T	~	0.50	otherwise we cannot guarantee t < N.
Total		3.00 / 3.00	
Question Explanation			
grading: 0.5 each			

The Montgomery reduction of 25 modulo 109 w.r.t. 128 is

You entered:

21

Your Answer		Score	Explanation
21	×	0.00	
Total		0.00 / 2.00	

Question Explanation

Hint: review the slides on Montgomery reduction. Some of the important data you need can be found there, you don't have (and you may not know how to) compute it.