7/3, AB/1

DIALOG(R) File 351: Derwent WPI

(c) 2002 Thomson Derwent. All rts. reserv.

011295433

WPI Acc No: 1997-273338/199725

XRAM Acc No: C97-088106

Preparation of dioxidised or higher oxidised carboxylic acids from carbohydrates, primary alcohols or derivatives - by catalytic oxidation followed by electrodialysis, giving high selectivity

Patent Assignee: SUEDZUCKER AG (SUED-N); SUEDZUCKER AG MANNHEIM/OCHSENFURT

Inventor: KOWALCZYK J; KUNZ M; SCHWARZ A

Number of Countries: 014 Number of Patents: 005

Patent Family:

Patent No	Kind	Date	Ap	plicat No	Kind	Date	Week	
DE 19542287	A1	19970515	DE	1042287	, A	19951114	199725	В
EP 775709	A1	19970528	ΕP	96118002	A	19961109	199726	
CA 2190308	Α	19970515	CA	2190308	Α	19961114	199737	
JP 9183738	Α	19970715	JP	96298399	A	19961111	199738	
US 5772013	A	19980630	US	96749092	Α	19961114	199833	

Priority Applications (No Type Date): DE 1042287 A 19951114

Patent Details:

Patent No Kind Lan Pg Main IPC Filing Notes

DE 19542287 A1 8 C07H-007/00

EP 775709 A1 G 10 C07H-003/04

Designated States (Regional): AT BE CH DE FI FR GB IT LI LU NL

JP 9183738 A 7 C07B-041/06 CA 2190308 A C07H-007/033 US 5772013 A B01D-061/44

Abstract (Basic): DE 19542287 A

In preparation of di- and higher-oxidised carboxylic acids or carbohydrates, carbohydrate derivatives or prim. alcohols, a 0.1-60% aqueous solution of the carbohydrate (or derivative), prim. alcohol or mono-oxidised derivative of these is oxidised with oxygen or a gas containing oxygen, on a noble metal or mixed metal catalyst, the stream of products is fed to one or more electrodialysis stages in series, and the di- or higher-oxidised carboxylic acids and removed and recovered there.

ADVANTAGE - The di- or higher-functionalised saccharides or saccharide derivatives are hydrophilic, compatible with the skin and form complexes, allowing of easy derivatisation to products in the polymer and tenside sectors. They have better ecological properties than petrochemical products. The catalyst was not deactivated in a 3-day test. Selectivity is better.

Dwg.1/2

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) EP 0 775 709 A1

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag: 28.05.1997 Patentblatt 1997/22

(51) Int. Cl.⁶: **C07H 3/04**, C07H 7/035, C07C 51/235, B01J 23/42,

(21) Anmeldenummer: 96118002.3

C07B 41/08, B01D 61/44

(22) Anmeldetag: 09.11.1996

(22) Annedetag. 03.11.1990

(84) Benannte Vertragsstaaten:
AT BE CH DE FI FR GB IT LI LU NL

(30) Priorität: 14.11.1995 DE 19542287

(71) Anmelder: SÜDZUCKER
AKTIENGESELLSCHAFT
MANNHEIM/OCHSENFURT
D-68165 Mannheim (DE)

(72) Erfinder:

- Kunz, Markwart, Dipl.-Chemiker 67550 Worms (DE)
- Schwarz, Andreas, Dipl.-Chemiker 94447 Plattling (DE)
- Kowalczyk, Jörg, Dr. 67248 Bockenheim (DE)
- (74) Vertreter: Einsel, Martin, Dipl.-Phys.
 Patentanwalt,
 Jasperallee 1A
 38102 Braunschweig (DE)

(54) Verfahren zur Herstellung von di- und höheroxidierten Carbonsäuren von Kohlenhydraten, Kohlenhydratderivaten oder primären Alkoholen

(57) Ein Verfahren zur Herstellung von di- und höheroxidierten Carbonsäuren von Kohlenhydraten, Kohlenhydratderivaten oder primären Alkoholen zeichnet sich dadurch aus, daß man kontinuierlich Kohlenhydrate, Kohlenhydratderivate oder primäre Alkohole oder monooxidierte Kohlenhydrate, Kohlenhydratderivate oder primäre Alkohole in wässriger Lösung und Kon-

zentrationen zwischen 0,1 und 60 % Sauerstoff oder sauerstoffhaltigen Gasen an Edelmetall- oder Mischmetallkataysatoren oxidiert, den Volumenstrom der so gebildeten Produkte einer oder mehreren in Reihe geschalteten Elektrodialysestufen zuführt und dort die di- und höheroxidierten Carbonsäuren entfernt und gewinnt.

Beschreibung

15

30

Die Erfindung betrifft ein Verfahren zur Herstellung von di- und höheroxidierten Carbonsäuren von Kohlenhydrat n, Kohlenhydratderivaten oder primären Alkoholen. Sie betrifft fern r eine Vorrichtung zur Durchführung des Verfahrens.

Es existieren verschiedene Methoden, Kohlenhydrate selektiv an zwei Positionen zu oxidieren. Beispielsweise erhält man Glucarsäure als Aldarsäure durch Oxidation von Glucose mit konzentrierter Salpetersäure. Durch die rauhen Bedingungen kann man mit dieser absatzweise zu betreibenden Beaktion jedech mar geringe Ausbeuten an Kallumhydrogenglucarat erhälten [C. L. Mehltretter, D-Glucavic Acid, in: Methods Carbohydr. Chem. 2 (1963), 46].

Ebenfalls ist ein Aspergillus niger - Stamm beschrieben, der D-Glucose zu D-Glucarat oxidiert [F. Chällenger et al., Formation of Organic Acids from Sugars by Aspergillus niger, in: Nature 119 (1927), 674]. Biotechnologische Verfahren weisen jedoch einige gravierende Nachteile auf. Die Anzucht der Mikroorganismen bzw. Herstellung der Biokatalysatoren ist problematisch, da man für Bioreaktoren meist Reinkulturen benötigt. Folglich ergibt sich oft die Notwendigkeit einer sterilen Fahrweise des Prozesses, was erhebliche Anlagekosten bedeutet. Aufgrund der genetischen Instabilität von Mikroorganismen ist es häufig technisch unmöglich, ein kontinuierliches Produktionsverfahren zu realisieren.

Eine weitere Möglichkeit, zu dioxidierten Kohlenhydraten zu gelangen, stellt die heterogen katalysierte Oxidation mit Edelmetallen der 8. Nebengruppe auf entsprechenden Trägermaterialien dar. Die Oxidation von D-Glucose oder von D-Gluconsäure zur D-Glucarsäure mit Luftsauerstoff erfolgt dabei chemisch z.B. an Pt/C-Katalysatoren. Nachteilig bei dieser absatzweisen Reaktionsführung ist dabei die geringe Selektivität bezüglich Glucarsäure. Das entstehende Produktgemisch ist vielmehr sehr komplex. Unter optimierten Bedingungen beträgt die Ausbeute an Kalium-glucarat lediglich ca. 40 % nach Kristallisation [H. Röper, Selective Oxidation of D-Glucose: Chiral Intermediates for Industrial Utilization, in: Starch/ Stärke 42 (1990), Nr. 9, 342-349].

Bei der Oxidation von Saccharose treten ähnliche Probleme auf. Bereits HEYNS und PAULSEN untersuchten diese Reaktion an Platinkatalysatoren [K. Heyns and H. Paulsen, Selective Catalytic Oxidation of Carbohydrates, Employing Platinum Catalysts, in: Adv. Carbohydr. Chem. 17 (1962), 169]. Die Produktzusammensetzungen waren hinsichtlich chemischer Strukturen und Zusammensetzungen so komplex, daß keine näheren Angaben gemacht wurden.

Neuere Untersuchungen [L. A. Edye et al., Platinum Catalysed Oxidation of Sucrose, in: J. Carbohydr. Chem. 10 (1) (1991), 11; C. Recker, Dissertation, TU Braunschweig (1995)] haben ergeben, daß das Produktgemisch neben den drei denkbaren Monooxidationsprodukten auch C_{66} -Saccharosedicarbonsäure und andere, nicht identifizierbare Substanzen enthält.

Ein in der DE 35 35 720 A1 beschriebenes Verfahren zur katalytischen Oxidation von Saccharose weist darauf hin, daß im Produktgemisch neben anderen höheroxidierten Produkten auch Saccharosetricarbonsäure zu finden ist.

Zur selektiven Herstellung von Monocarbonsäuren von Kohlenhydraten, Kohlenhydratderivaten oder primären Alkoholen ist es aus der DE 43 07 388 A1 bekannt, die Ausgangsstoffe einem Oxidationsreaktor zuzuführen und eine Elektrodialyseeinheit nachzuschalten, in der die Monooxidationsprodukte gewonnen werden. Die nichtoxidierten Stoffe werden kontinuierlich in den Oxidationsreaktor zurückgeführt. Die Selektivität der Reaktion bezüglich Monocarbonsäurebildung ist ausgezeichnet, di- bzw. höheroxidierte Carbonsäuren sind mit diesem Verfahren jedoch nicht herzustellen.

Aufgabe der Erfindung ist es dem gegenüber, eine Oxidation von Kohlenhydraten, Kohlenhydratderivaten und primären Alkoholen mit einer besseren Selektivität bezüglich der di- und höheroxidierten Produkte vorzuschlagen.

Diese Aufgabe wird dadurch gelöst, daß man kontinuierlich Kohlenhydrate, Kohlenhydratderivate oder primäre Alkohole oder monooxidierte Kohlenhydrate, Kohlenhydratderivate oder primäre Alkohole in wäßriger Lösung und Konzentrationen zwischen 0,1 und 60 % und mit Sauerstoff oder sauerstoffhaltigen Gasen an Edelmetall- oder Mischmetallikatalysatoren oxidiert, den Volumenstrom der so gebildeten Produkte einer oder mehreren in Reihe geschalteten Elektrodialysestufen zuführt und dort die di- und höheroxidierten Carbonsäuren entfernt und gewinnt.

Dieses Verfahren ist hervorragend geeignet, die Aufgabe zu lösen. Dabei wird von einem überraschenden Effekt Gebrauch gemacht: Das aus der DE 43 07 388 A1 bekannte Verfahren ist wie schon erwähnt dazu vorgesehen, Monocarbonsäuren zu gewinnen. Es schafft dies auch mit einer sehr hohen Selektivität. Die Fachkreise gingen bisher auch in jüngsten Publikationen noch davon aus, daß Dicarbonsäuren dabei nicht entstehen oder gar gewonnen werden könnten [M. Kunz et al., Katalytische Oxidation von Isomaltulose, in: Chem. Ing. Tech. 67 (1995), Nr. 7, 836].

Werden die bei diesem Verfahren entstehenden Monocarbonsäuren jedoch nicht selektiv abgetrennt, sondern statt dessen weitgehend in den Oxidationsprozeß zurückgeführt, so entstehen bei diesem Prozeß entgegen dieser bisherigen Auffassung doch Dicarbonsäureanteile, dieser Anteil entsteht vermehrt bei ständig wiederholter Zurückführung.

Genau diese Dicarbonsäureanteile können mit einer Elektrodialysestufe jedoch ebenfalls selektiv abgetrennt werden. Der Einsatz von Elektrodialyse bei der Gewinnung von Säuren aus Salzen ist zwar aus beispielsweise der DE 3 926 642 A1 bekannt, nicht jedoch der nunmehrige Anwendungsbereich. Zur Abtrennung der eben erwähnten Dicarbonsäureeanteile macht man sich die überraschende Tatsache zu Nutzen, daß die Elektrodialyse als Membrantrennverfahren in der Lage ist, zwischen Mono- und Dianionen bzw. zwischen lonen mit unterschiedlichen Ladungseigenschaften zu diskriminieren.

Dadurch wird dieses Verfahren zur Darstellung und Gewinnung von Dicarbonsäuren hervorragend geeignet. Die gebildeten Disäuren können kontinuierlich aus dem Oxidationskreislauf entfernt werden und gehen keine unerwünsch-

ten Folgereaktionen mehr in, die die Selektivität der Reaktion bezüglich der Disäurebildung herabsetzen würden. Durch Rückführung des Gemisches von Monooxidationsprodukten und dem als Edukt eingesetzten Kohlenhydrat zur Oxidationsstuf ergibt sich di kontinuierliche Prozeßführung. Entsprechend dem Abzug an Dicarbonsäuren aus dem Reaktionskreislauf regelt man die Eduktzugabe so ein, daß die Eduktkonzentration konstant bleibt. Bei dieser Reaktionsführung tr ten die Monocarbonsäuren als Zwischenprodukte auf, für die sich eine stationäre Konzentration im Reaktionskreislauf einstellt.

Insofern hat man mit der Erfindung ein kontinuierliches Verfahren-zur-selektiven Produktion von Dicarbonsäuren -verliegen, das bezüglich Selektivität und Reaktionsführung den bisher bekannten Verfahren zur Herstellung von Dicarbonsäuren deutlich überlegen ist.

Solche spezifisch di- oder höherfunktionalisierten Saccharide bzw. Saccharidderivate sind von hohem industriellen Interesse, da sie einerseits wegen ihrer Hydrophilie, ihrer Hautverträglichkeit und ihren komplexbildenden Eigenschaften direkte Applikationsmöglichkeiten besitzen, andererseits durch einfache, technisch durchführbare Derivatisierungen zu interessanten Produkten auf dem Polymer- und Tensidsektor weiterverarbeitet werden können. Durch ihre ökologisch positiven Eigenschaften weisen diese Produkte gegenüber bekannten Wettbewerbsprodukten, die auf der Petrochemie basieren, erhebliche Vorteile auf.

Das Ergebnis des Verfahrens war recht überraschend, da das technische Verfahren aus der DE 43 07 388 A1 ja gerade im Gegenteil dazu gedacht ist, die Dicarbonsäureanteile in einem Oxidationsgemisch aus Kohlenhydraten, Kohlenhydratderivaten oder primären Alkoholen möglichst zugunsten einer selektiven Monocarbonsäureproduktion einzuschränken und dieses Ziel ja auch im höchsten Maße erreicht wird. Der Erfolg wird dadurch möglich, daß durch die Rückführung der Monosäureprodukte sich ein sehr hoher Zwischenproduktkonzentrationspegel von monooxidierten Produkten einstellt, die dadurch dann doch letztlich zu einer Dicarbonsäureproduktion führen.

Zur Gewinnung der Dicarbonsäure ist in der Elektrodialysestufe ein Spannungswert bevorzugt, der deutlich niedriger als die sonst in Elektrodialysestufen eingesetzten Spannungen liegt und auch gerade deutlich niedriger als derjenige Wert ist, der zur Abtrennung der Monocarbonsäuren im Stand der Technik nach der DE 43 07 388 A1 verwendet wird. Experimente haben ergeben und bestätigt, daß durch diese sehr niedrige Spannung eine Selektion gerade zwischen den Monocarbonsäuren und den Dicarbonsäuren stattfinden kann, also die Dicarbonsäuren herausgefiltert werden. In den Experimenten ist dabei ein Spannungswert von 0,1 bis 4,9 Volt als besonders geeignet aufgetreten. Es kann aber bei der Verwendung anderer Membrantypen auch ein höherer Wert bevorzugt werden, da es gerade auf die relativen Verhältnisse zu den bei der Abtrennung von Monocarbonsäuren verwendeten Spannungen ankommt, die bei anderen Membrantypen auch höher liegen.

Besonders bevorzugt ist es, wenn mehrere Elektrodialysestufen hintereinander geschaltet werden. Durch dieses Hintereinanderschalten wird eine erhebliche Verbesserung der Selektivität erzielt.

Eine weitere Verbesserung und vor allem eine Steigerung der Geschwindigkeit der Dicarbonsäurebildung erfolgt bevorzugt dadurch, daß für die Katalysatoren poröse Trägermaterialien bzw. solche mit großer spezifischer Oberfläche eingesetzt werden.

Die Steigerung der Geschwindigkeit der Dicarbonsäurebildung durch derartige Katalysatoren wurde ebenfalls experimentell bestätigt. Auch durch die bei der Darstellung von Monocarbonsäuren bevorzugten Katalysatoren läßt sich die gewünschte Dicarbonsäure herstellen, die höhere Bildungsgeschwindigkeit ist jedoch auch für die schnellere bzw. selektivere Gewinnung der Dicarbonsäure nach der Elektrodialysestufe von Vorteil.

Im folgenden soll an Hand der Figuren ein Ausführungsbeispiel im einzelnen beschrieben werden. Es zeigen:

- Fig. 1 eine bevorzugte Ausführungsform der Erfindung und
- Fig. 2 einen Verfahrensablauf zum Ausführungsbeispiel.

45

Bei dem Ausführungsbeispiel wird konkret die katalytische Oxidation der Saccharose zu den Saccharosedicarbonsäuren diskutiert.

Das Saccharosemolekül besitzt drei primäre Hydroxygruppen, die allesamt zur Carboxylfunktion oxidiert werden können. Die daraus abzuleitenden Carbonsäuren werden im folgenden mit ihren Kurzbezeichnungen geführt, welche bedeuten:

 C_6 -Saccharosemonocarbonsäure C_6 -Saccharosemonocarbonsäure C_6 -Saccharosemonocarbonsäure C_6 -Saccharosemonocarbonsäure C_{66} -Saccharosedicarbonsäure C_{66} -Saccharosedicarbonsäure C_{61} -Saccharosedicarbonsäure C_{61} -Saccharosedicarbonsäure C_{61} -Saccharosedicarbonsäure C_{61} -Saccharosedicarbonsäure C_{61} -Saccharosedicarbonsäure C_{61} -Saccharosetricarbonsäure C_{61} -Saccharoset

In ein Rührgefäß 10 mit einem Rührer 11 und einem Motor 12 für den Rührer 11 wird eine wäßrige Saccharoselösung gegeben, die durch den Frittenboden mit Luft zugeführt bei 21 begast wird. Mittels einer pH-Regelung 17 wird der pH-Wert im Rührgefäß 10 auf dem Sollwert gehalten. Nach Durchmischung im Rührgefäß wird die mit Sauerstoff angereicherte, thermostatisierte, pH-geregelte wäßrig Saccharoselösung über eine mit P bezeichnete Pumpe einer Oxidationsstufe 30 zugeführt, die in diesem Beispiel einen Pt/C-Trägerkatalysator enthält. In dieser Oxidationsstufe 30 findet die katalytische Oxidation der Saccharose zu den Monocarbonsäuren bzw. die Oxidation der Monocarbonsäuren zu den Dicarbonsäuren statt. Das Reaktionsgemisch wird anschließend über die nächste Pumpe-zu einer Eiektrodialysestufe 40 geführt. Die Elektrodialysespannung ist jedoch so niedrig gewählt, daß die Monocarbonsäuren nicht bzw. deutlich langsamer als die Saccharosedicarbonsäuren abgeführt und im Konzentratkreislauf über einen mit 41 bezeichneten Weg angereichert werden. Durch die Erniedrigung der Elektrodialysespannung findet also eine deutliche Diskriminierung zwischen Mono- und Dicarbonsäuren statt. Wird die so mit Dicarbonsäuren angereicherte Lösung erneut elektrodialysiert, findet eine weitere Anreicherung der Dicarbonsäuren statt. Je nach Anreicherung kann man so viele Elektrodialysestufen in Reihe schalten, daß die Dicarbonsäuren vollständig von den Monocarbonsäuren getrennt werden.

Die Monocarbonsäuren werden anschließend zusammen mit nichtoxidierter Saccharose über den Weg 43 wieder in den Behälter bzw. das Rührgefäß 10 zurückgepumpt, von wo aus sie nach erneuter Durchmischungsbuitfanreiches aus rung und pH-Regelung wieder in die Oxidationsstufe 30 gepumpt werden.

Die kontinuierliche Arbeitsweise der Apparatur wird dadurch erreicht, daß entsprechend dem Säcchiaroseverbrauch das Edukt nachdosiert wird, so daß dessen Konzentration nahezu konstant ist.

20

25

Bei dem hier verwendeten Katalysator wurde die Saccharose schneller zu den Monocarbonsäuren öxidiert als die Monocarbonsäuren zu den Disäuren, folglich reicherten sich die Monocarbonsäuren bis zu einer bestimmten stationären Konzentration im Reaktionskreislauf an. Diese Konzentration ist abhängig von der zur Oxidation benutzten Katalysatorenmenge, von der in der Elektrodialyseeinheit zur Verfügung stehenden Membranfläche und von der angelegten Spannung.

In einem Behälter 50 reicherte sich ein Produktgemisch an, das zu 56% aus Saccharosemonocarbonsäuren und zu 44% aus höheroxidierten Derivaten bestand. Hauptbestandteil dieser höheroxidierten Derivate war C_{66} -Saccharosedicarbonsäure. Die beiden anderen Saccharosedicarbonsäuren (C_{61} - bzw. C_{61} -Saccharosedicarbonsäure) lagen jeweils zu 7,5%-Anteil am Produktgemisch vor. Nebenprodukte konnten nicht beobachtet werden. Das nach der zweiten Elektrodialysestufe erhaltene Gemisch bestand bereits zu 75% aus Saccharosedicarbonsäuren. Die Diskriminierung zwischen Dicarbonsäuren und Monocarbonsäuren in einer Elektrodialysestufe ist in hohem Maße von der angelegten Spannung abhängig. In einem typischen Versuch reicherten sich die Saccharosedicarbonsäuren ca. dreibis viermal so schnell wie die Saccharosemonocarbonsäuren an.

Neben der auf diese Weise erzielbaren hohen Selektivität der Oxidation bezüglich der Bildung von Dicarbonsäuren - ohne daß diese Selektivität in den einzelnen Elektrodialysestufen in merklicher Weise durch Neben-, Folge- oder Abbauproduktbildung verringert wird - fällt als weiterer Verfahrensvorteil auf, daß der Katalysator auch in einem dreißigtägigen Langzeitversuch nicht desaktiviert.

Alternativ zur Saccharose als Edukt zur Dicarbonsäureproduktion kann ein Gemisch der Saccharosemonocarbonsäuren dienen, welches man mit dem zur Monocarbonsäureproduktion beschriebenen Verfahren problemlos herstellen und ohne weitere Aufreinigung zur Dicarbonsäureproduktion einsetzen kann. Die kontinuierliche Verfahrensweise ergibt sich in diesem Fall durch Nachdosierung des Monocarbonsäuregemisches dem Verbrauch entsprechend. Im Falle der Saccharosedicarbonsäureproduktion erweist es sich hinsichtlich der Reaktionsgeschwindigkeit als unerheblich, ob als Edukt Saccharose oder ein Gemisch von Saccharosemonocarbonsäuren eingesetzt wird. Die Untersuchung der absatzweise ohne Elektrodialyse betriebenen katalytischen Oxidation von Palatinose ergab jedoch, daß die Sekundäroxidation der Monocarbonsäuren zu der Palatinosedicarbonsäure durch das Edukt der Primärreaktion gehemmt wird (H. Puke, Dissertation, TU Braunschweig, 1992). In diesem Fall bietet es sich an, die Palatinosemonocarbonsäuren als Edukte für die kontinuierliche Palatinosedicarbonsäureproduktion einzusetzen, was zu einer Steigerung der Oxidationsgeschwindigkeit führt.

Die Möglichkeit einer solchen Verfahrensweise - katalytische Oxidation ohne Elektrodialyseeinheit - ist dabei in Figur 1 mit angedeutet; durch Umlegen eines Dreiwegehahns 22 wird die Reaktionslösung direkt nach Verlassen des Oxidationsreaktors 30 in das Rührgefäß 10 zurückgepumpt.

Bei der Saccharoseoxidation hat es sich gezeigt, daß beispielsweise durch Wahl einer Aktivkohle mit einer hohen spezifischen Oberfläche gegenüber einer Aktivkohle mit geringerer spezifischer Oberfläche, sich die Geschwindigkeit der kontinuierlichen Disäureproduktion beträchtlich steigern läßt. In Figur 2 wird die zeitliche Zunahme der C₆₆--Saccharosedicarbonsäure in Abhängigkeit von zwei verwendeten Katalysatoren A und B dargestellt. Nach rechts ist die Reaktionszeit in Minuten, nach oben die C₆₆--Saccharosedicarbonsäure in mmol aufgetragen. Die beiden Katalysator n werden durch unterschiedliche Symbole angegeben, nämlich der Katalysator A durch schwarze Punkte •, der Katalysator B durch leere Dreiecke ▽. Bei den beiden Katalysatoren handelt es sich um Pt/C-Trägerkatalysatoren, di eine ähnliche Korngrößenverteilung aufweisen. Die als Trägermaterialien verwendeten Aktivkohlen unterscheiden sich iedoch hinsichtlich ihrer spezifischen Oberfläche, wobei Katalysator B die größere spezifische Oberfläche aufweist.

Das am Beispiel der Saccharoseoxidation beschriebene Verfahren der kontinuierlichen Dicarbonsäureproduktion läßt sich ohne Schwierigkeiten auf andere Kohlenhydrate und -derivate übertragen.

B i der Oxidation von D-Glucose oder D-Gluconsäur läßt sich di Glucarsäure ebenfalls durch Erniedrigung der Elektrodialysespannung bev rzugt vor den beiden Monooxidationsprodukten Gluconsäure und Glucuronsäure im Konzentratkreislauf anreichern. Di S lektivität der Reaktion bezüglich Glucarsäure liegt dabei deutlich höher als bei der absatzweisen Reaktionsführung, da die Glucarsäure aus dem Oxidationskreislauf entfernt wird, bevor Folgereaktionen auftreten können.

Die aufgeführten Beispiele beiegen, daß das Verfahren der kontinuierlichen katalytischen Oxidation von Kohlenhydraten, - derivaten und primären Alkoholen unter Abtrennung der Reaktionsprodukte mit Hilfe einer Elektrodialyse nicht nur für die Monocarbonsäureproduktion geeignet ist, sondern nach Variation einiger Betriebsparameter ebenso auf die selektive Dicarbonsäureproduktion angewendet werden kann.

Weiterhin ist es möglich, durch weitere Absenkung der Elektrodialysespannung zwischen Di- und Tricarbonsäuren zu diskriminieren. In einem Experiment wurden die durch mehrstufige Elektrodialyse aufgereinigten Saccharosedicarbonsäuren bei einer Elektrodialysespannung von 1,0 V oxidiert, wodurch es zu einer Anreicherung von Saccharosetricarbonsäure im Konzentratkreislauf kam. Durch mehrstufige Elektrodialyse kann das Edukt abgetrennt werden. Die Oxidationsgeschwindigkeit war bei dem verwendeten Katalysator jedoch sehr langsam, ferner wurde die Bildung von Spalt- und Abbauprodukten der Saccharosedicarbonsäuren beobachtet.

Beispiel 1:

20

40

45

50

Kontinuierliche Oxidation von Saccharose bei 35°C.

In der beschriebenen Apparatur werden im Oxidationskreislauf 40 g Platin/ Aktivkohlekatalysator (1% Pt/C; Korngröße 40 - 100 μm, Fa. Degussa) eingesetzt, durch die 1500 ml einer 0,1 molaren wäßrigen Saccharoselösung gepumpt werden. Der Oxidationskreislauf entspricht dem Diluatkreislauf der Elektrodialyse. Für den Konzentratkreislauf wird destilliertes Wasser und als Elektrodenspüllösung 1 M Na₂SO₄ eingesetzt. Die Reaktionstemperatur wird mit Hilfe eines Umlaufthermostaten auf 35°C gehalten. Die Begasung des Rührkessels wird mit Hilfe von Rotametem auf 100 cm³ O₂/min und 400 cm³ N₂/min eingestellt. Der pH-Sollwert im Dialysatkreislauf wird durch Titration der entstehenden Säuren mittels 1 M K₂CO₃ auf pH 6,5 gehalten. Die Elektrodialyse (Bel 11, Fa. Berghof GmbH Labortechnik) ist mit 6 AMV/CMV Membranpaaren (effektive Membranfläche = 360 cm²) ausgestattet und wird bei einer Spannung von 2,0 Volt betrieben. Der Reaktionsverlauf wird durch HPLC-Messungen verfolgt. Das Produktspektrum, das sich im Konzentrat anreichert, hat folgende Zusammensetzung:

Saccharosemonocarbonsäuren: 56% Saccharosedicarbonsäuren: 44%

Das Produktgemisch wird gefriergetrocknet; 60 g davon werden in 500 ml destilliertem Wasser gelöst und erneut bei 2,0 Volt elektrodialysiert. Das Produktspektrum, das sich im Konzentrat anreichert, hat folgende Zusammensetzung:

Saccharosemonocarbonsäuren: 25 % Saccharosedicarbonsäuren: 75%

Die Elektrodialyse wurde abgebrochen bei einer Diluatzusammensetzung von:

Saccharosemonocarbonsäuren: 92% Saccharosedicarbonsäuren: 8%

Beispiel 2:

Oxidation der Saccharose in Analogie zu Beispiel 1 bei einer Elektrodialysespannung von 2,5 Volt. Das erhaltene Produktgemisch hat folgende Zusammensetzung:

Saccharosemonocarbonsäuren: 34% Saccharosedicarbonsäuren: 66%

B ispiel 3:

Oxidation eines Gemisches der drei Saccharosemonocarbonsäuren

(Zusammensetzung:

C₆-Saccharosemonocarbonsäure: 44%

C₆-Saccharosemonocarbonsäure: 36% C₁-Saccharosemonocarbonsäuren: 20%)

in Analogie zu Beispiel 1 bei einer Elektrodialysespannung von 2,0 Volt. Das erhaltene Produktgemisch hat dieselb Zusammensetzung wie bei Beispiel 1:

Saccharosemonocarbonsauren:

56%

Saccharosemicarbonsäuren:

44%

,

30

35

40

45

50

55

Beispiel 4:

Kontinuierliche Oxidation von Na-D-gluconat.

Vicileus) a

Die Oxidation des Na-D-gluconats erfolgt in der in Beispiel 1 beschriebenen Apparatur, wobei die AMV-Membranen des Elektrodialysestacks durch AM3-Membranen ersetzt sind und die Elektrodialysespannung bei 1,3 V-liegt:/Die/Na-D-gluconatkonzentration beträgt 0,1 mol/l, pH-Wert und Temperatur sind auf 8,5 bzw. 35°C eingestellt, Die kontinuierlich erhaltene Produktlösung hat folgende Zusammensetzung:

20 Gluconsäure:

60%

andere Monocarbonsäuren:

13%

Glucarsäure:

27%

Demnach beträgt die Selektivität der Reaktion bezüglich Glucarsäure 68%. In der Eduktlösung konnte NMR-spektroskopisch keine Glucarsäure nachgewiesen werden.

Land to the state of

Patentansprüche

 Verfahren zur Herstellung von di- und h\u00f6heroxidierten Carbons\u00e4uren von Kohlenhydraten, Kohlenhydratderivaten oder prim\u00e4ren Alkoholen,

dadurch gekennzeichnet,

daß man kontinuierlich Kohlenhydrate, Kohlenhydratderivate oder primäre Alkohole oder monooxidierte Kohlenhydrate, Kohlenhydratderivate oder primäre Alkohole in wässriger Lösung und Konzentrationen zwischen 0,1 % und 60 % und mit Sauerstoff oder sauerstoffhaltigen Gasen an Edelmetall- oder Mischmetallkatalysatoren oxidiert, den Volumenstrom der so gebildeten Produkte einer oder mehreren in Reihe geschalteten Elektrodialysestufen zuführt und dort die di- und höheroxidierten Carbonsäuren entfernt und gewinnt.

2. Verfahren nach Anspruch 1,

dadurch gekennzeichnet,

- daß man nicht- oder monooxidierte Edukte nach dem Entfernen der di- und h\u00f6heroxidierten Carbons\u00e4uren der Oxidationsstufe wieder zuf\u00fchrt.
- 3. Verfahren nach Anspruch 1 oder 2,

dadurch gekennzeichnet,

- daß die Elektrodialyse mit einer Spannung in einem Bereich durchgeführt wird, der niedriger als der zur Abtrennung von Monocarbonsäuren bei Elektrodialysestufen gleichen Typs liegt.
- 4. Verfahren nach einem der vorstehenden Ansprüche,

dadurch gekennzeichnet,

daß die Elektrodialyse mit einer Spannung im Bereich zwischen 0,1 Volt und 7 Volt, insbesondere zwischen 0,1 Volt und 4,9 Volt, durchgeführt wird.

5. Verfahren nach einem der vorstehenden Ansprüche,

dadurch gekennzeichnet,

- daß als Membranen in der Elektrodialyse Ionenaustauscher- oder bipolare Membranen zum Einsatz kommen.
- 6. Verfahren nach einem der vorstehenden Ansprüche,

dadurch gekennzeichnet,

daß die Elektrodialyse in mehreren in Reihe geschalteten Elektrodialysestufen durchgeführt wird, bei denen

jeweils die di- und höheroxidierten Carbonsäuren angereichert und der nächsten Elektrodialysestufe zugeführt werden

7. Verfahren nach einem der vorstehenden Ansprüche,

5 dadurch gekennzeichnet,

daß für die Katalysatoren poröse Trägermaterialien bzw. solche mit großer spezifischer Oberfläche eingesetzt werden.

Verfahren nach einem der vorstehenden Anspüche,

dadurch gekennzeichnet,

15 .

20

30

35

50

55

daß als Ausgangssubstanzen nichtreduzierende Saccharide, wie z.B. Saccharose, Trehalose und/oder reduzierende Saccharide, wie z.B. Glucose, Palatinose, Fructose, und/oder Zuckeralkohole, wie z.B. Palatinit, Sorbit, und/oder die monooxidierten Derivate bzw. Gemische oder monooxidierten Derivate der genannten Verbindungen, eingesetzt und dioxidiert werden.

 Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet,

daß als Lösungsmittel für die Ausgangssubstanzen Wasser oder Mischungen aus Wasser und sekundären Alkoholen, vorzugsweise Isopropanol, eingesetzt werden.

र्वे अनुकृतिकृति सम्बद्धाः वृत्तिवादाः वर्षः । १ १ १ ५ ५ ।

Cornella, the little

733 11 × 8, 8

 Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die Oxidation und die Elektrodialyse im pH-Bereich von 1 bis 13 erfolgen.

25 11. Verfahren nach einem der vorstehenden Ansprüche,
dadurch gekennzeichnet,
daß die Temperatur für die Oxidation zwischen 0°C und 80°C, vorzugsweise zwischen 20°C und 60°C liegt.

 Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet,

daß man die Edukte in Konzentrationen zwischen 3% und 20% einsetzt.

13. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet,

daß zur pH-Einstellung Na₂CO₃, K₂CO₃ oder NaHCO₃ oder NaOH oder andere Alkalisierungsmittel eingesetzt werden.

 Vorrichtung zur Durchführung eines der Verfahren nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet,

daß sie in Reihe geschaltet eine Begasungsstufe (10), eine Oxidationsstufe (30) und mehrere Elektrodialysestufen (40) aufweist, sowie ferner eine Rückleitung (43) von den Elektrodialysestufen zur Begasungsstufe (10).

Fig. 2

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldun EP 96 11 8002

(stegorie	Kennzeichnung des Dokume der maßgebbe	nts mit Angabe, soweit erforderlich, hen Teile	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int.Cl.6)	
D,X	DE 43 07 388 A (VER ZUCKERINDUSTRIE) * das ganze Dokumen		1-14	CO7H3/04 CO7H7/033 CO7C51/235 BO1J23/42	
A D	EP 0 218 150 A (HOE AKTIENGESELLSCHAFT) * das ganze Dokumen & DE 35 35 720 A	1	C07B41/98 B01D61/44		
A	EP 0 326 673 A (HÜL * Ansprüche 1-5 *	1	-		
A	EP 0 206 054 A (HOE AKTIENGESELLSCHAFT) * Anspruch 1 *	CHST	1		
A	EP 0 040 709 A (MER) * Zusammenfassung *	CK PATENT GESELLSCHAFT	1		
D,A	ZUR FÖRDERUNG DER A * das ganze Dokumen		1	RECHERCHIERTE SACHGEBIETE (Int.Cl.6) C07H C07C B01J C07B B01D	
V	Recherchemort	de für alle Patentansprüche erstellt Abschiebten der Recherche		Prefer	
	DEN HAAG	6.März 1997	Sco	ott, J	
X: vor Y: vor and A: tec	KATEGORIE DER GENANNTEN i besonderer Bedeutung allein betrach besonderer Bedeutung in Verbindung leren Veröffentlichung derselben Kate hnologischer Hintergrund bischriftliche Offenbarung ischenliteratur	E: ilteres Patenide tet nach den Anme ; nit einer D: in der Anmeldu gorie L: aus andern Grü	okument, das jedo Eldedatum veröffe ng angeführtes D nden angeführtes	atlicht worden ist okument	