1. Znajdź ogólną postać rozwiązań następujących równań rekurencyjnych za pomocą anihilatorów i rozwiąż jedno z równań do końca:

18:04

(b)
$$a_{n+2} = 4a_{n+1} - 4a_n + n2^{n+1}$$
, gdy $a_0 = a_1 = 1$

(c)
$$a_{n+2} = \frac{1}{2^{n+1}} - 2a_{n+1} - a_n$$
, gdy $a_0 = a_1 = 1$.

- 2. Niech c_n oznacza liczbę ciągów długości n złożonych z n cyfr ze zbioru {0,1,2}, nie zawierających dwóch następujących po sobie zer i dwóch następujących po sobie jedynek. Wyprowadź zależność rekurencyjną, jaką spełniają liczby c_n przyjmując $c_0 = 1$. Rozwiąż otrzymaną zależność rekurencyjną.
- (-) Stosując met odę anihilatorów rozwiąż następujące zależności rekurencyjne

(a)
$$t_n = t_{n-1} + 3^n$$
 dla $n > 1$ i $t_1 = 3$.

(b)
$$h_n = h_{n-1} + (-1)^{n+1}n$$
 dla $n > 1$ i $h_1 = 1$.

4. Rozwiąż następujące zależności rekurencyjne:

(a)
$$a_{n+1} = \left| \sqrt{a_n^2 + a_{n-1}^2} \right|, \ a_0 = a_1 = 1,$$

(b) $b_{n+1} = \left| \sqrt{b_n^2 + 3} \right|, \ b_0 = 8,$

(b)
$$b_{n+1} = \left| \sqrt{b_n^2 + 3} \right|, b_0 = 8,$$

(c)
$$c_{n+1} = (n+1)c_n + (n^2+n)c_{n-1}, c_0 = 0, c_1 = 1.$$

5. Rozwiąż zależności rekurencyjne:

(a)
$$c_0 = 1, c_n = c_0 + c_1 + \dots, c_{n-1}$$

(a)
$$c_0 = 1, c_n = c_0 + c_1 + \dots, c_{n-1}$$

(b) $d_0 = 1, d_1 = 2, d_n = d_{n-1}^2/d_{n-2}$

- Na ile sposobów można ułożyć domina na prostokącie o rozmiarze 2×n? Domino ma wymiar 1×2 .
- Rozwiąż zależność rekurencyjną.

$$a_n^2=2a_{n-1}^2+1$$
z warunkiem początkowym $a_0=2$ i założeniem, że $a_n>0$ dla każdego naturalnego $n.$

- 8. Ile jest wyrazów złożonych z n liter należących do 25-literowego alfabetu łacińskiego, zawierających parzystą liczbę liter a?
- (2p) Wieża Hanoi składa się z n krążków n różnych rozmiarów, po 1 krążku każdego rozmiaru. W jednym kroku przenosimy dokadnie jeden krążek i nie możemy kłaść większego krążka na mniejszym. Ile kroków jest potrzebnych, aby przenieść wieżę z pręta A na pręt C, posługując się przy tym prętem B, jeśli bezpośrednie ruchy z pręta A na C są zakazane, ale ruchy w drugą stronę z pręta C na A są dozwolone?
- 10. Podaj i u dowodnij regułę sprawdzania podzielności przez 11 liczby naturalnej zapisanej w systemie dziesiętnym.
- 11. Podaj dwie ostatnie cyfry liczby $9^{8^{7}6^{54^{3^{2^{1}}}}}$ w rozwinięciu dziesiętnym.
 - 1. Znajdź ogólną postać rozwiązań następujących równań rekurencyjnych za pomocą anihilatorów i rozwiąż jedno z równań do końca:

(a)
$$a_{n+2} = 2a_{n+1} - a_n + 3^n - 1$$
, gdy $a_0 = a_1 = 0$.

(b)
$$a_{n+2} = 4a_{n+1} - 4a_n + n2^{n+1}$$
, gdy $a_0 = a_1 = 1$.

(c)
$$a_{n+2} = \frac{1}{2^{n+1}} - 2a_{n+1} - a_n$$
, gdy $a_0 = a_1 = 1$.

(a)
$$a_{n+2} = 2a_{n+1} - a_n + 3^n - 1$$
, gdv $a_0 = a_1 = 0$.

$$Q_2 = 8 \quad Q_3 = 16 + 2\sqrt{1 - 1} = \frac{4}{3}$$

Operator	Functions annihilated	
E-1	α	
E-a	αa^n	
(E-a)(E-b)	$\alpha a^n + \beta b^n$	[if $a \neq b$]
re - Me - A re - A	V a	fif a Mostansi

(b)
$$a_{n+2} = 4a_{n+1} - 4a_n + n2^{n+1}$$
, gdy $a_0 = a_1 = 1$

On-2 -40 1-4 +400 = n2"	
$(E^{2}-4E+4)_{n} = n2^{n+1}$ $(E-2)^{2}o_{n} = n2^{n+1}$	(E - a
$(E-2)^2 q_0 = n^2 n^{4}$	
(E-2)40n=0	If X
αn3+βn2+γn+σgjn+l	If X an
$\alpha n^3 + \beta n^2 + \gamma n + \delta \left(\frac{d}{c}\right)^{n+1}$	

Operator	Functions ar	nnihilated
E-1	α	
E - a	αa^n	
(E-a)(E-b)	$\alpha a^n + \beta b^n$	[if $a \neq b$]
$(E-a_0)(E-a_1)\cdots(E-a_k)$	$\sum_{i=0}^{k} \alpha_i a_i^n$	[if a, distinct]
$(E-1)^2$	$\alpha n + \beta$	
$(E-a)^2$	$(an + \beta)a^n$	
$(E-a)^{2}(E-b)$	$(an + \beta)a^h + \gamma b^n$	[if $a \neq b$]
$(E-a)^d$	$\left(\sum_{i=0}^{d-1} \alpha_i n^i\right) a^n$	
If X annihilates f , the	hen X also annihilate	es Ef.
If X annihilates both f and	g, then X also annil	hilates $f \pm g$.

If X annihilates f, then X also annihilates Ef.

If X annihilates both f and g, then X also annihilates $f \pm g$.

If X annihilates f, then X also annihilates af, for any constant a.

If X annihilates f and Y annihilates g, then XY annihilates $f \pm g$.

7	a anti
	(F-2)n2 =
	$(F-2)^{n+2} = (n+1)^{2^{n+2}} - n^{2^{n+2}} = 0$
0	n2n+2+2n+2 - n2n+2=2n+2
į. Į.	$\bigcap_{n \in \mathbb{N}} P \subseteq \bigcap_{n \in \mathbb{N}} P \subseteq \bigcap_{n$
	$(E-2)=2^{n+3}-2^{n+3}=0$

(c) $a_{n+2} = \frac{1}{2^{n+1}} - 2a_{n+1} - a_n$, gdy $a_0 = a_1 = 1$.

$$Q_{n+2} + 2Q_{n+1} + Q_n = \begin{bmatrix} \frac{1}{2} \end{bmatrix}^{n+1}$$

$$(E+1)^2 Q_n = \left(\frac{1}{2}\right)^{n+1}$$

$$(E+1)^2 (E-2) = C$$

$$(\alpha n+\beta)(-1)^n + \gamma \cdot 2^n$$

$$(E-2)2^{-n-1}=2^{-2^{-n}}=0$$

2. Niech c_n oznacza liczbę ciągów długości n złożonych z n cyfr ze zbioru $\{0,1,2\}$, nie zawierających dwóch następujących po sobie jedynek. Wyprowadź zależność rekurencyjną, jaką spełniają liczby c_n przyjmując c_0-1 . Rozwiąż otrzymaną zależność rekurencyjną.

leżność rekurencyjną.

$$C = 1$$
 $C = 1$
 $C = 3$
 $C = 7$
 $C = 3$
 $C = 7$

- 3. (-) Stosując metodę anihilatorów rozwiąż następujące zależności rekurency
ine
 - (a) $t_n = t_{n-1} + 3^n$ dla n > 1 i $t_1 = 3$.
 - (b) $h_n = h_{n-1} + (-1)^{n+1}n$ dla n > 1 i $h_1 = 1$.

n=1:3 n=2:12 n=3:39

Operator	Functions ar	nnihilated
E-1	α	
E-a	αa^n	
(E-a)(E-b)	$\alpha a^n + \beta b^n$	[if $a \neq b$]
$(E-a_0)(E-a_1)\cdots(E-a_k)$	$\sum_{i=0}^{k} \alpha_i a_i^n$	[if a, distinct]
$(E-1)^2$	$\alpha n + \beta$	
$(E-a)^2$	$(an + \beta)a^n$	
$(E-a)^{2}(E-b)$	$(\alpha n + \beta)a^b + \gamma b^n$	[if $a \neq b$]
$(E-a)^d$	$\left(\sum_{i=0}^{d-1} a_i n^i\right) a^n$	
	hen X also annihilate	
If X annihilates both f and		
	annihilates αf , for	any constant of

(a) $t_n = t_{n-1} + 3^n$ dla n > 1 i $t_1 = 3$. $(\xi - \xi) = 2^{n+\ell}$ $3^{n+1}(\xi - 3) = 3^{n+2} - 3 \cdot 3^{n+2} = 0$

(a)
$$t_{n} = t_{n-1} + 3^{n}$$
 dla $n > 1$ 1 $t_{1} = 3$.

$$(E - 1) + \frac{1}{n} = 3^{n+1}$$

$$(E - 1)(E - 3) + \frac{1}{n} = 0$$

$$(E - 1)(E - 3) + \frac{1}{n} = 0$$

$$(E - 1)(E - 3) + \frac{1}{n} = 0$$

$$(E - 1)(E - 3) + \frac{1}{n} = 0$$

$$(E - 1)(E - 3) + \frac{1}{n} = 0$$

$$(E - 1)(E - 3) + \frac{1}{n} = 0$$

$$(E - 1)(E - 3) + \frac{1}{n} = 0$$

$$(E - 1)(E - 3) + \frac{1}{n} = 0$$

$$(E - 1)(E - 3) + \frac{1}{n} = 0$$

$$(E - 1)(E - 3) + \frac{1}{n} = 0$$

$$(E - 1)(E - 3) + \frac{1}{n} = 0$$

$$(E - 1)(E - 3) + \frac{1}{n} = 0$$

$$(E - 1)(E - 3) + \frac{1}{n} = 0$$

$$(E - 1)(E - 3) + \frac{1}{n} = 0$$

$$(E - 1)(E - 3) + \frac{1}{n} = 0$$

$$(E - 1)(E - 3) + \frac{1}{n} = 0$$

$$(E - 1)(E - 3) + \frac{1}{n} = 0$$

$$(E - 1)(E - 3) + \frac{1}{n} = 0$$

$$(E - 1)(E - 3) + \frac{1}{n} = 0$$

$$(E - 1)(E - 3) + \frac{1}{n} = 0$$

$$(E - 1)(E - 3) + \frac{1}{n} = 0$$

$$(E - 1)(E - 3) + \frac{1}{n} = 0$$

$$(E - 1)(E - 3) + \frac{1}{n} = 0$$

$$(E - 1)(E - 3) + \frac{1}{n} = 0$$

$$(E - 1)(E - 3) + \frac{1}{n} = 0$$

$$(E - 1)(E - 3) + \frac{1}{n} = 0$$

$$(E - 1)(E - 3) + \frac{1}{n} = 0$$

$$(E - 1)(E - 3) + \frac{1}{n} = 0$$

$$(E - 1)(E - 3) + \frac{1}{n} = 0$$

$$(E - 1)(E - 3) + \frac{1}{n} = 0$$

$$(E - 1)(E - 3) + \frac{1}{n} = 0$$

$$(E - 1)(E - 3) + \frac{1}{n} = 0$$

$$(E - 1)(E - 3) + \frac{1}{n} = 0$$

$$(E - 1)(E - 3) + \frac{1}{n} = 0$$

$$(E - 1)(E - 3) + \frac{1}{n} = 0$$

$$(E - 1)(E - 3) + \frac{1}{n} = 0$$

$$(E - 1)(E - 3) + \frac{1}{n} = 0$$

$$(E - 1)(E - 3) + \frac{1}{n} = 0$$

$$(E - 1)(E - 3) + \frac{1}{n} = 0$$

$$(E - 1)(E - 3) + \frac{1}{n} = 0$$

$$(E - 1)(E - 3) + \frac{1}{n} = 0$$

$$(E - 1)(E - 3) + \frac{1}{n} = 0$$

$$(E - 1)(E - 3) + \frac{1}{n} = 0$$

$$(E - 1)(E - 3) + \frac{1}{n} = 0$$

$$(E - 1)(E - 3) + \frac{1}{n} = 0$$

$$(E - 1)(E - 3) + \frac{1}{n} = 0$$

$$(E - 1)(E - 3) + \frac{1}{n} = 0$$

$$(E - 1)(E - 3) + \frac{1}{n} = 0$$

$$(E - 1)(E - 3) + \frac{1}{n} = 0$$

$$(E - 1)(E - 3) + \frac{1}{n} = 0$$

$$(E - 1)(E - 3) + \frac{1}{n} = 0$$

$$(E - 1)(E - 3) + \frac{1}{n} = 0$$

$$(E - 1)(E - 3) + \frac{1}{n} = 0$$

$$(E - 1)(E - 3) + \frac{1}{n} = 0$$

$$(E - 1)(E - 3) + \frac{1}{n} = 0$$

$$(E - 1)(E - 3) + \frac{1}{n} = 0$$

$$(E - 1)(E - 3) + \frac{1}{n} = 0$$

$$(E - 1)(E - 3) + \frac{1}{n} = 0$$

$$(E - 1)(E - 3) + \frac{1}{n} = 0$$

$$(E - 1)(E - 3) + \frac{1}{n} = 0$$

$$(E - 1)(E - 3) + \frac{1}{n} = 0$$

$$(E - 1)(E - 3) + \frac{1}{n} = 0$$

$$(E - 1)(E - 3) + \frac{1}{n} = 0$$

$$(E$$

Operator	Functions annihilated	
E-1	α	
E-a	αa^n	
(E-a)(E-b)	$\alpha a^n + \beta b^n$	[if $a \neq b$]
$(E-a_0)(E-a_1)\cdots(E-a_k)$	$\sum_{i=0}^{k} \alpha_i a_i^n$	[if a, distinct]
$(E-1)^2$	$\alpha n + \beta$	
$(E-a)^2$	$(an + \beta)a^n$	
$(E-a)^2(E-b)$	$(an + \beta)a^b + \gamma b^n$	[if $a \neq b$]
$(E-a)^d$	$\left(\sum_{i=0}^{d-1} \alpha_i n^i\right) a^n$	
If X annihilates f , the	nen X also annihilat	es Ef.
If X annihilates both f and	g, then X also anni	hilates $f \pm g$.
If X annihilates f , then X also		

(b)
$$h_n = h_{n-1} + (-1)^{n+1} n$$
 dla $n > 1$ i $h_1 = 1$.

$$h_{n} - h_{n-1} = (-1)^{n+1} \cdot n \qquad (-1)^{n} (n+1) (E+1) (E-1)^{2}$$

$$(E-1)h_{n} = (-1)^{n+2} \cdot (n+1) \qquad (E+1)(-1)^{n} = (-1)^{n+1} + 1 \cdot (-1)^{2}$$

$$(E-1)^{3} (E+1)h_{n} = 0 \qquad (E+1)(-1)^{n} = (-1)^{n+1} + 1 \cdot (-1)^{2}$$

$$\times n^{2} + \beta n + \gamma + (-1)^{n} = 0 \qquad \text{for sign 2}$$

(a)
$$a_{n+1} = \left| \sqrt{a_n^2 + a_{n-1}^2} \right|$$
, $a_0 = a_1 = 1$,

(b)
$$b_{n+1} = \left| \sqrt{b_n^2 + 3} \right|, b_0 = 8,$$

(c)
$$c_{n+1} = (n+1)c_n + (n^2+n)c_{n-1}$$
, $c_0 = 0$, $c_1 = 1$.

(a)
$$a_{n+1} = \left| \sqrt{a_n^2 + a_{n-1}^2} \right|, \ a_0 = a_1 = 1,$$

$$Q_0 = 1$$
 $Q_1 = 1$ $Q_2 = |\sqrt{1+1}| = \sqrt{2}$
 $Q_3 = |\sqrt{2+1}| = \sqrt{3}$ $Q_4 = |\sqrt{3+2}| = \sqrt{5}$

$$Q_5 = |\sqrt{5+31}| = \sqrt{81} = 2\sqrt{2}$$
 $Q_6 = \sqrt{8+51} = \sqrt{13}$

(b)
$$b_{n+1} = \sqrt{b_n^2 + 3}$$
, $b_0 = 8$

$$\int_{4}^{30} = \sqrt{67}
 \int_{2}^{4} = \sqrt{701}
 \int_{3}^{4} = \sqrt{737}$$

$$\int_{0}^{2} = 64 + 3n$$
I $b_{0}^{2} = 64 \sqrt{100}$
I zet. $b_{0}^{2} = 64 + 3n$, $n \in \mathbb{N}$, elle red

Lat.
$$b_n = 64+3n$$
, $nell$, elle red
 $b_{n+1} = 64+3(n+1) = 64+3n+3 = 6n^2+3$

(c)
$$c_{n+1} = (n+1)c_n + (n^2+n)c_{n-1}, c_0 = 0, c_1 = 1.$$

$$6=0$$

$$C_1=1$$

$$C_2=2\cdot 1+2\cdot 0=2$$

$$0+6\cdot 1=12$$

Rozwiąż zależności rekurencyjne:

(a)
$$c_0 = 1, c_n = c_0 + c_1 + \dots, c_{n-1}$$

(b)
$$d_0 = 1, d_1 = 2, d_n = d_{n-1}^2/d_{n-2}$$
.

(a)
$$c_0 = 1, c_n = c_0 + c_1 + \dots, c_{n-1}$$

$$C_0 = 1 \quad C_4 = 1 \quad C_2 = 2 \quad C_3 = 4 \quad C_4 = 8 \quad C_5 = 16 \quad C_6 = 32$$

$$C_0 = 2^{n-1} \circ 97/1$$

(b)
$$d_0 = 1, d_1 = 2, d_n = d_{n-1}^2/d_{n-2}$$
 $olo = \{ ol_1 = 2 \ ol_2 = \frac{4}{7} = 4 \ ol_3 = \frac{16}{2} = 8 \}$
 $d_4 = \frac{64}{7} = 16 \ \text{Hipotezo}: ol_n = 2^n \text{Uboundaijny to}$

Forcy stop $q \in \mathbb{Z}$ zo sody induly $q \in \mathbb{Z}$

I Zalo $olo = 2^n = 1$

I Zalo $olo = 2^n = 1$

Uolowedaijny, $e \in ol_{n+p} = 2^{n+1}$
 $olo = 2^n = 2^n$

6. Na ile sposobów można ułożyć domina na prostokącie o rozmiarze $2 \times n$? Domino ma wymiar 1×2 .

7. Rozwiąż zależność rekurencyjną

 $a_n^2=2a_{n-1}^2+1$ z warunkiem początkowym $a_0=2$ i założeniem, że $a_n>0$ dla każdego naturalnego n.

$$Q_{n}^{2} - 2Q_{n-1}^{2} = 1$$
 $b_{n} = Q_{n}^{2}$
 $b_{n} - 2b_{n-1} + 1$
 $(E-2)b_{n} = 1$
 $(E-2)(E-1)b_{n} = 0$
 $x + 2B = 4$
 $x + 2B = 9$

8. Ile jest wyrazów złożonych z n liter należących do 25-literowego alfabetu łacińskiego, zawierających parzystą liczbę liter a?

 Podaj i udowodnij regułę sprawdzania podzielności przez 11 liczby naturalnej zapisanej w systemie dziesiętnym.

Chotoph

Reguła podzielności przez 11:

 $\label{liczba} \mbox{ liczba jest podzielna przez 11, jeśli różnica między sumą cyfr na miejscach nieparzystych a sumą cyfr na miejscach parzystych (licząc od prawej strony) jest podzielna przez 11 (lub jest zerem).$

Inaczej mówiąc:

- 1. Weź cyfry liczby i oznacz je a_1,a_2,a_3,\ldots,a_n , gdzie a_1 to cyfra jedności, a_2 to cyfra dziesiątek, i tak dalej.
- 2. Oblicz różnicę:

$$S = (a_1 + a_3 + a_5 + \dots) - (a_2 + a_4 + a_6 + \dots)$$

3. Liczba jest podzielna przez 11, jeśli S jest podzielne przez 11 (czyli $S\equiv 0\pmod{11}$).

Dowód reguły:

Dla liczby ${\it N}$ zapisanej w systemie dziesiętnym:

$$N = a_n \cdot 10^{n-1} + a_{n-1} \cdot 10^{n-2} + \dots + a_2 \cdot 10 + a_1$$

gdzie a_1, a_2, \ldots, a_n to cyfry liczby N.

Zauważmy, że $10\equiv -1\pmod{11}$. W efekcie, w systemie modularnym modulo 11, liczba N może być przedstawiona jako:

$$N \equiv a_n \cdot (-1)^{n-1} + a_{n-1} \cdot (-1)^{n-2} + \dots + a_2 \cdot (-1)^1 + a_1 \cdot (-1)^0 \pmod{11}$$

Dla nieparzystych miejsc (czyli a_1,a_3,a_5,\ldots) występuje dodatni znak, a dla parzystych (czyli a_2,a_4,a_6,\ldots) znak jest ujemny. Ostatecznie otrzymujemy więc różnicę pomiędzy sumą cyfr na miejscach nieparzystych a sumą cyfr na miejscach parzystych.

Zatem, jeśli różnica ta jest podzielna przez 11, to liczba \emph{N} również jest podzielna przez 11.

11. Podaj dwie ostatnie cyfry liczby $9^{8^{7^{6^{5^{43^{2^{\circ}}}}}}$ w rozwinięciu dziesiętnym.

98765 6321

Number Cyclicity

Power Cycle

Number	Cyclicity	Power Cycle
1	1	1
2	4	2,4,8,6
3	4	3,9,7,1
4	2	4,6
5	1	5
6	1	6
7	4	7,9,3,1
8	4	8,4,2,6
9	2	9,1
0	1	0