Luis Norberto Zúñiga Morales

1 de marzo de 2022

- Gradiente Descendiente es un algoritmo de optimización iterativo de primer orden.
- Permite encontrar mínimos locales en una función diferenciable.
- La idea básica es dar pasos pequeños en dirección contraria al gradiente.

Requisitos:

La función debe ser diferenciable.

Requisitos:

- La función debe ser diferenciable.
 - ¿Qué significa que una función sea diferenciable?

Requisitos:

- La función debe ser diferenciable.
 - ¿Qué significa que una función sea diferenciable?
- La función debe ser convexa.

Requisitos:

- La función debe ser diferenciable.
 - ¿Qué significa que una función sea diferenciable?
- La función debe ser convexa.
 - ¿Qué significa que una función sea convexa?

$$f(\lambda x_1 + (1-\lambda)x_2) < \lambda f(x_1) + (1-\lambda)f(x_2)$$

Ejercicio #1

Dibujen una función diferenciable.

Ejercicio #1

Dibujen una función diferenciable.

Ejercicio #2

Dibujen un función convexa y una que no sea convexa.

Definición: Gradiente

Para $f: \mathbb{R}^n \to \mathbb{R}$ su gradiente $\nabla f: \mathbb{R}^n \to \mathbb{R}^n$ en un punto $p = (x_1, \dots, x_n)$ se define como:

$$\nabla f(p) = \begin{bmatrix} \frac{\partial f}{\partial x_1}(p) \\ \vdots \\ \frac{\partial f}{\partial x_n}(p) \end{bmatrix}.$$

Ejercicio #3

Determinar al gradiente de la función

$$f(x,y) = 0.5x^2 + y^2$$

en el punto p = (5, 5).

Algoritmo

- Gradiente Descendiente calcula iterativamente el siguiente punto usando el gradiente en el punto en turno.
- Lo escala (razón de aprendizaje).
- Resta este resultado a la posición actual.

Algoritmo

- Gradiente Descendiente calcula iterativamente el siguiente punto usando el gradiente en el punto en turno.
- Lo escala (razón de aprendizaje).
- Resta este resultado a la posición actual.

$$p_{m+1} = p_m - \eta \nabla f(p_m)$$

Algoritmo

Gradiente Descendiente

$$p_{m+1} = p_m - \eta \nabla f(p_m)$$

• El parámetro η permite escalar el valor del gradiente, lo que hace cada paso más grande o más pequeño.

Algoritmo

$$p_{m+1} = p_m - \eta \nabla f(p_m)$$

- El parámetro η permite escalar el valor del gradiente, lo que hace cada paso más grande o más pequeño.
- En Machine Learning, η es la razón de aprendizaje (*learning rate*).

Algoritmo

$$p_{m+1} = p_m - \eta \nabla f(p_m)$$

- El parámetro η permite escalar el valor del gradiente, lo que hace cada paso más grande o más pequeño.
- En Machine Learning, η es la razón de aprendizaje (*learning rate*).
 - Si es muy pequeño, tarda más en converger.

Algoritmo

$$p_{m+1} = p_m - \eta \nabla f(p_m)$$

- El parámetro η permite escalar el valor del gradiente, lo que hace cada paso más grande o más pequeño.
- En Machine Learning, η es la razón de aprendizaje (*learning rate*).
 - Si es muy pequeño, tarda más en converger.
 - Si es muy grande, da saltos grandes, inclusive no llegando a converger.

Algoritmo

- 1 Elegir un punto de salida (random).
- Calcular el gradiente en ese punto.
- O Determinar el nuevo punto según

$$p_{m+1} = p_m - \eta \nabla f(p_m)$$

- 4 Condición de paro:
 - Número máximo de iteraciones.
 - El tamaño del paso es menor que un valor de tolerancia.

Tarea

¿Qué es el Gradiente Descendiente Estocástico?

En equipo, realizar un pequeño documento donde expliquen qué es el Gradiente Descendiente Estocástico. Debe contener:

- Idea general (¿Qué lo separa del Gradiente Descendiente?)
- Explicación gráfica
- Algoritmo

Además:

- LATEX, sin mínimo o máximo de cuartillas.
- Recuerden la bibliografía.