Операции с аккумуляторами и адресными

регистрами

10

Обзор главы

10.1	Обзор	10–2
10.2	ENT и LEAVE	10–3
10.3	Инкрементирование и декрементирование	10–6
10.4	+AR1 и +AR2: Прибавление константы к адресному регистру 1 или адресному регистру 2	10–7

10.1. Обзор

В Вашем распоряжении имеются следующие операции для того, чтобы обрабатывать содержимое одного или нескольких аккумуляторов или адресных регистров:

Мнемоника	Операция	Значение		
TAK	Обменять содержимое АККИ 1 с содержимым АККИ 2	Эта операция обменивает содержимое AKKU 1 с содержимым AKKU 2.		
PUSH	Копировать АККИ 1 в АККИ 2	Эта операция копирует содержимое АККИ 1 в АККИ 2.		
с двумя Akku				
POP	Копировать АККИ 2 в АККИ 1	Эта операция копирует содержимое АККИ 2 в АККИ 1.		
с двумя Akku				
PUSH	Копировать АККИ 3 в АККИ 4, АККИ 2	Эта операция копирует содержимое АККИ 3 в АККИ 4,		
с четырьмя аккумуляторами	в AKKU 3, AKKU 1 в AKKU 2	содержимое АККU 2 в АККU 3 и содержимое АККU в АККU 2.		
POP	Копировать АККИ 2 в АККИ 1, АККИ 3	Эта операция копирует содержимое АККИ 2 в АККИ 1,		
с четырьмя аккумуляторами	в AKKU 2, AKKU 4 в AKKU 3	содержимое АККU 3 в АККU 2 и содержимое АККU 4 в АККU 3.		
ENT	Войти в Akku-стек	Эта операция копирует содержимое AKKU 3 в AKKU 4 и содержимое AKKU 2 в AKKU 3.		
LEAVE	Покинуть Akku-стек	Эта операция копирует содержимое AKKU 3 в AKKU 2 и содержимое AKKU 4 в AKKU 3.		
INC	Инкрементировать AKKU 1	Эта операция увеличивает содержимое младшего байта в младшем слове АККU 1 на 8-битную константу, которая задана в команде. Эта константа может находиться в диапазоне от 0 до 255.		
DEC	Декрементировать AKKU 1	Эта операция уменьшает содержимое младшего байта в младшем слове АККU 1 на 8-битную константу, которая задана в команде. Эта константа может находиться в диапазоне от 0 до 255.		
+AR1, +AR2	Прибавить АККU 1 к адресному регистру	Эта операция прибавляет содержимое младшего слова AKKU 1 к адресному регистру 1 или 2.		
+AR1 Р#байт.бит, +AR2 Р#байт.бит	Прибавить константу к адресному регистру	Эта операция прибавляет константу к содержимому адресного регистра 1 или 2.		
BLD	Bild-команда	Эта операция не выполняет никакой функции и не влияет на биты состояния. Эта операция важна только для программатора (РG), когда отображается программа. Операнд <число> является опознавательным номером операции BLD и создается программатором.		
NOP 0	Пустая команда 0	Эти операции не выполняют никаких действий и не		
NOP 1	Пустая команда 1	оказывают влияния на содержимое слова состояния.		
		Операции NOP 1 и NOP 0 нужны для обратного перевода. Код этих операций содержит комбинацию битов из 16 нулей или 16 единиц.		

Подробную информацию о смене последовательности байтов в AKKU 1 возьмите из главы 18.3.

10.2. ENT u LEAVE

Описание

С помощью операций ENT (Enter Akku–Stack) и LEAVE (Leave Akku–Stack) Вы можете выполнять следующие функции:

- Операция ENT копирует содержимое AKKU 3 в AKKU 4 и содержимое AKKU 2 в AKKU 3. Если Вы программируете операцию ENT непосредственно перед операцией загрузки, то эта операция ENT сдвигает содержимое AKKU 2 и AKKU 3 глубже в стек.
- Операция LEAVE копирует содержимое AKKU 3 в AKKU 2 и содержимое AKKU 4 в AKKU 3. Если Вы программируете операцию LEAVE непосредственно перед операцией сдвига или циклического сдвига, связывающей аккумуляторы, то операция LEAVE функционирует как арифметическая операция.

ENT

Рисунок 10-1 показывает, как работает операция ENT.

Рис. 10-2. Копирование содержимого AKKU 3 в AKKU 2 и содержимого AKKU 4 в AKKU 3 операцией LEAVE

Пример

Следующий фрагмент программы показывает использование операции ENT.

Нужно сложить числа с плавающей точкой, расположенные в словах данных DBD0 и DBD4. Сумму нужно разделить на разность чисел с плавающей точкой, расположенных в двойных словах данных DBD8 и DBD12.

$$DBD16 = \frac{DBD0 + DBD4}{DBD8 - DBD12}$$

Результат должен записываться в двойное слово данных DBD16.

Операция ENT служит в данном примере для того, чтобы сохранить в AKKU 3 промежуточный результат (DBD0+DBD4), который находится в AKKU 2. Команда вычитания (-R) копирует сохраненный в AKKU 3 промежуточный результат снова в AKKU 2 вслед за вычитанием.

AWL		Объяснение
L	DBD0	Загрузить значение из двойного слова данных DBD0 в АККИ 1.
		(Это значение должно иметь формат числа с плавающей точкой.)
L	DBD4	Копировать значение из АККИ 1 в АККИ 2.
		Загрузить значение из двойного слова данных DBD4 в АККU 1.
		(Это значение должно иметь формат числа с плавающей точкой.)
+R		Сложить содержимые АККИ 1 и АККИ 2 как
		числа с плавающей точкой (32 бита, IEEE-FP) и запомнить результат в АККU 1
		Копировать значение из АККИ 1 в АККИ 2.
L	DBD8	Загрузить значение из двойного слова данных DBD8 в АККИ 1.
		Копировать содержимое АККИ 3 в АККИ 4.
ENT		Копировать содержимое АККU 2 (промежуточный результат) в АККU 3.
		Копировать содержимое АККИ 1 в АККИ 2
L	DBD12	Загрузить значение из двойного слова данных DBD12 в АККU 1.
		Вычесть содержимое АККИ 1 из АККИ 2. Запомнить результат в АККИ 1.
-R		Копировать содержимое АККИ 3 в АККИ 2.
		Разделить содержимое АККU 2 на содержимое АККU 1. Запомнить результат в
/R		AKKU 1
		Передать результат (АККU 1) в двойное слово данных DBD16.
Т	DBD16	· k · · · · · · · · · · · · · · · · · ·

10.3. Инкрементирование и декрементирование

Описание

С помощью операций INC (инкрементировать AKKU 1) и DEC (декрементировать AKKU 1) Вы можете выполнять следующие функции:

- Операция INC увеличивает содержимое младшего байта в младшем слове AKKU 1 на 8-битную константу, заданную в команде. Эта константа может лежать в диапазоне от 0 до 255.
- Операция DEC уменьшает содержимое младшего байта в младшем слове AKKU 1 на 8-битную константу, заданную в команде. Эта константа может лежать в диапазоне от 0 до 255.

Операции INC и DEC выполняются независимо от VKE. Эти операции не влияют на VKE, не изменяют ни одного бита в слове состояния.

Указание

Эти операции не годятся для арифметических операций (16 или 32 бита), так как не происходит перенос из младшего байта младшего слова АККU 1 в старший байт младшего слова АККU 1. Для арифметических операций (16 или 32 бита) используйте операцию +I или +D.

Пример

Следующий пример программирования показывает, как работает операция INC внугри программного цикла (Loop), который был запущен посредством условного перехода.

AWL			Объяснение
			Тело цикла.
	L	1	Установить счетчик цикла на значение "1".
	T	MB10	
M1:	L	MB10	Загрузить содержимое меркерного байта МВ10 в АККИ 1.
	INC	1	Увеличить счетчик цикла на "1".
	T	MB10	Передать содержимое AKKU 1 в меркерный байт MB10.
			Командная часть, которая обрабатывается 5 раз.
	L	B#16#5	
	<=	I	
	SPB	M1	Если программа не выполнила программный цикл пятикратно, то возвратиться на
			операцию цикла.
1			

10.4 +AR1 и +AR2: Прибавление константы к адресному регистру 1 или адресному регистру 2

Описание

С помощью операций +AR1 и +AR2 Вы можете прибавить значение к содержимому адресного регистра 1 или адресного регистра 2:

Таблица 10–1. Прибавление значения к содержимому адресных регистров

Операция	Операнд	Функция
+AR1	-	Прибавляет содержимое младшего слова АККU 1 к содержимому адресного регистра 1.
+AR2	-	Прибавляет содержимое младшего слова АККU 1 к содержимому адресного регистра 2.
+AR1	Р#байт.бит: (Диапазон от 0.0 до 4095.7) ¹	Прибавляет константу указателя к содержимому адресного регистра 1.
+AR2	Р#байт.бит: (Диапазон от 0.0 до 4095.7) ¹	Прибавляет константу указателя к содержимому адресного регистра 2.

 $^{^{\}rm 1}$ Биты 24, 25 и 26 адресного регистра не изменяются. Эти биты указывают область памяти.

Указание

Адресный регистр AR2 используется при обработке мультиэкземпляров. Поэтому, если Вы программируете команду "+AR2", то Вы должны предварительно "сохранить" содержимое AR2 и впоследствии снова загрузить его обратно.

Примеры

Ниже приведены некоторые примеры с операциями +AR1 и +AR2. Если Вы загружаете значение в формате указателя в AKKU 1, а затем используете одну из операций +AR1 и +AR2, как в первых двух командах в примере, то в Вашем распоряжении имеется диапазон значений от 0.0 до 8191.7.

AWL	Объяснение
L P#250.7	Загрузить константу указателя (250.7) в АККИ 1.
+AR1	Прибавить содержимое аккумулятора (250.7) к содержимому адресного регистра 1.
	Из-за мультиэкземпляров, которые используют AR2 как базу
T AR2 #SAVE_AR2	
_	Прибавить константу указателя (126.7) к содержимому адресного регистра
+AR2 P#126.7	
	Восстановить AR2.
•	
L AR2 #SAVE_AR2	