Bankruptcy Prediction

Machine Learning Models

Team 1: Sirine and Salim

Contents

- **01** RidgeClassifier→
- $\textbf{02} \quad \textbf{CategoricalNB} \rightarrow \\$
- **03** ExtraTreesClassifier →
- 04 SVC \rightarrow
- $\textbf{05} \quad \textbf{Logistic Regression} \rightarrow$
- 06 Comparaison

RidgeClassifier

- A Ridge Classifier is a linear classifier model used for classification tasks.
- Prevents overfitting: Especially beneficial for datasets with high dimensionality.
- The bias added to the model is also known as the Ridge Regression penalty.
- The parameter alpha (lambda) controls the strength of the penalty.

CategoricalNB

- Designed specifically to handle features that represent distinct categories, not numerical values. Examples: (red, green, blue) or text classifications (spam, not spam).
- CategoricalNB is specifically designed for features with unordered categories (ex: 1, 2, 3...)
- In practice, the normalization term P(B) is often ignored because it doesn't affect the class comparison.

$$P(B|A) = P(b_1|A) \cdot P(b_2|A) \cdot \ldots \cdot P(b_n|A)$$

CategoricalNB

Not Spam

Dear Friend

 $0.67 \times 0.47 \times 0.29 = 0.09$

 $0.33 \times 0.29 \times 0.14 = 0.01$

Spam

CategoricalNB

NOT SPAM

Not Spam

$$0.67 \times 0.47 \times 0.29 = 0.09$$

 $0.33 \times 0.29 \times 0.14 = 0.01$

Spam

ExtraTreeClassifier

RandomForest

- Selects a random subset of features at each split
- Split thresholds are determined based on the best split among the randomly selected features.

ExtraTreeClassifier

- Creates many decision trees
- Sampling for each tree is random
- Creates a dataset for each tree with unique samples
- Select k features for each split
- Choosing the split thresholds randomly

Support Vector Classifier

- Supervised machine learning problem where we try to find a hyperplane that best separates the two classes.
- SVM works best when the dataset is small and complex
- Linear SVM vs Non-Linear SVM (kernel tricks)
- Support Vectors: points that are closest to the hyperplane. Separating line will be defined with the help of these data points.
- Margin: distance between the hyperplane and the support vectors. In SVM large margin is considered a good margin.
- Two types of margins: hard margin and soft margin

Support Vector Classifier: pre work

Select Feature: Kbest

features	score	
Cash/Current Liability	2.901545e+11	15
Fixed Assets to Assets	2.495621e+11	34
Net Value Growth Rate	2.421293e+11	50
Fixed Assets Turnover Frequency	2.200229e+11	33
Revenue per person	8.633138e+10	83
Total assets to GNP price	6.391313e+10	88
Quick Ratio	3.059892e+10	73
Quick Asset Turnover Rate	2.391564e+10	70
Total Asset Growth Rate	2.051825e+10	85
Research and development expense rate	1.385736e+10	80
Cash Turnover Rate	7.747258e+09	13
Total debt/Total net worth	6.638710e+09	89
Current Asset Turnover Rate	6.456970e+09	20
Interest-bearing debt interest rate	2.584786e+09	38
Average Collection Days	1.959675e+09	4

Balancing DataSet: Resample

Support Vector Classifier

• Results:

Precission Score: 0.7931372549019607

Recall Score: 0.8057768924302788

F1 Score: 0.799407114624506

Accuracy Score: 0.7950530035335689

Logistic Regression

	Bankrupt?	ROA(C) before interest and depreciation before interest	ROA(A) before interest and % after tax	ROA(B) before interest and depreciation after tax	Operating Gross Margin	Realized Sales Gross Margin	Operating Profit Rate	Pre-tax net Interest Rate	After-tax net Interest Rate	Non-industry income and expenditure/revenue		Net Income to Total Assets	Total assets to GNP price	cre Interv
0	1	0.370594	0.424389	0.405750	0.601457	0.601457	0.998969	0.796887	0.808809	0.302646	1200	0.716845	0.009219	0.6228
1	1	0.464291	0.538214	0.516730	0.610235	0.610235	0.998946	0.797380	0.809301	0.303556		0.795297	0.008323	0.6236
2	1	0.426071	0.499019	0.472295	0.601450	0.601364	0.998857	0.796403	0.808388	0.302035		0.774670	0.040003	0.6238
3	1	0.399844	0.451265	0.457733	0.583541	0.583541	0.998700	0.796967	0.808966	0.303350	8.00	0.739555	0.003252	0.6229
4	1	0.465022	0.538432	0.522298	0.598783	0.598783	0.998973	0.797366	0.809304	0.303475		0.795016	0.003878	0.6235

5 rows × 96 columns

- 96 columns
- No null values

Feature Selection

```
selected features = [' interest-bearing debt interest rate',
         persistent eps in the last four seasons',
          per share net profit before tax (yuan ¥)',
          net_value_growth_rate',
          quick ratio'.
          interest expense ratio',
         net worth/assets',
         borrowing dependency',
         net profit before tax/paid-in capital',
          accounts receivable turnover',
          fixed assets turnover frequency',
          cash/total assets',
          cash/current liability',
          working capital/equity',
          net income to total assets',
         net income to stockholder's equity",
         degree of financial leverage (dfl)',
        ' equity to liability', 'bankrupt?']
```

- RFECV
- The importance scores of each feature are determined based on the fitted model
- Drop the least important features
- On first try, i got 68 features

Data Imbalance

SMOTE

```
X_train_SMOTE.shape, y_train_SMOTE.shape
((9890, 18), (9890,))
```


Metrics and Confusion Matrix

```
Confusion Matrix:
[[1373 281]
[ 31 20]]
```

precision: 0.0664451827242525 **recall:** 0.39215686274509803 **accuracy:** 0.817008797653959

fl: 0.11363636363636363

TN FP FN TP Precision = TP / (TP + FP)
low proportion of correctly predicted
positive instances among all predicted
positives

model captures around 39.22% of the actual positive instances.

Recall = TP / (TP + FN)

overall proportion of correct predictions. Accuracy = (TP + TN) / (TP + TN + FP + FN)

F1 = 2 * (Precision * Recall) / (Precision + Recall)

Models Comparison

Using Kbest and Resample

SVC

Logistic Regression

'Confusion matrix:' array([[766, 211], [195, 809]])

Precission Score: 0.7931372549019607 Recall Score: 0.8057768924302788

F1 Score: 0.799407114624506

Accuracy Score: 0.7950530035335689

'Confusion matrix:' array([[721, 256], [521, 483]])

Precission Score: 0.6535859269282814 Recall Score: 0.4810756972111554 F1 Score: 0.5542168674698794

Accuracy Score: 0.607773851590106

Using RFECV and SMOTE

Logistic Regression

Confusion Matrix: [[1373 281] 31 20]]

precision: 0.0664451827242525 recall: 0.39215686274509803 f1: 0.11363636363636363

accuracy: 0.817008797653959

TN FP **FN TP**

Thank You!