- · Principle 1: Show comparisons
 - Evidence for a hypothesis is always *relative* to another competing hypothesis.
 - Always ask "Compared to What?"

Show Comparisons

Show Comparisons

- Principle 1: Show comparisons
 - Evidence for a hypothesis is always *relative* to another competing hypothesis.
 - Always ask "Compared to What?"
- · Principle 2: Show causality, mechanism, explanation, systematic structure
 - What is your causal framework for thinking about a question?

Show causality, mechanism

Symptom-free Days

Show causality, mechanism

- Principle 1: Show comparisons
 - Evidence for a hypothesis is always *relative* to another competing hypothesis.
 - Always ask "Compared to What?"
- · Principle 2: Show causality, mechanism, explanation, systematic structure
 - What is your causal framework for thinking about a question?
- Principle 3: Show multivariate data
 - Multivariate = more than 2 variables
 - The real world is multivariate
 - Need to "escape flatland"

Show Multivariate Data

Show Multivariate Data

- · Principle 4: Integration of evidence
 - Completely integrate words, numbers, images, diagrams
 - Data graphics should make use of many modes of data presentation
 - Don't let the tool drive the analysis

Integrate Different Modes of Evidence

Figure 2. Percentage Change in Emergency Hospital Admissions Rate for Cardiovascular Diseases per a $10-\mu g/m^3$ Increase in Particulate Matter

Estimates are on average across 108 counties. $PM_{2.5}$ indicates particulate matter is 2.5 μ m or less in aerodynamic diameter; PM_{10} , particulate matter is 10 μ m or less in aerodynamic diameter; $PM_{10-2.5}$, particulate matter is greater than 2.5 μ m and 10 μ m or less in aerodynamic diameter; RR, relative risk. Error bars indicate 95% posterior intervals.

- Principle 4: Integration of evidence
 - Completely integrate words, numbers, images, diagrams
 - Data graphics should make use of many modes of data presentation
 - Don't let the tool drive the analysis
- · Principle 5: Describe and document the evidence with appropriate labels, scales, sources, etc.
 - A data graphic should tell a complete story that is credible

- Principle 4: Integration of evidence
 - Completely integrate words, numbers, images, diagrams
 - Data graphics should make use of many modes of data presentation
 - Don't let the tool drive the analysis
- · Principle 5: Describe and document the evidence with appropriate labels, scales, sources, etc.
 - A data graphic should tell a complete story that is credible
- Principle 6: Content is king
 - Analytical presentations ultimately stand or fall depending on the quality, relevance, and integrity of their content

Summary

- · Principle 1: Show comparisons
- · Principle 2: Show causality, mechanism, explanation
- Principle 3: Show multivariate data
- · Principle 4: Integrate multiple modes of evidence
- · Principle 5: Describe and document the evidence
- · Principle 6: Content is king

References

Edward Tufte (2006). Beautiful Evidence, Graphics Press LLC. www.edwardtufte.com