Deep Learning

Numerical Optimization

2016.08.08

이우진

This document is confidential and is intended solely for the use

Unconstrained Optimization

In unconstrained optimization, we minimize an objective function that depends on real variables, with no restrictions at all on the values of these variables. The mathematical formulation is

$$\min_{x} f(x),$$

we choose to model it by the function

$$\phi(t; x) = x_1 + x_2 e^{-(x_3 - t)^2 / x_4} + x_5 \cos(x_6 t)$$

- Parameters : Xi , i=1,2,3,4,5,6
- Objective function $r_j(x) = y_j \phi(t_j; x)$

$$\min_{x \in \mathbb{R}^6} f(x) = r_1^2(x) + r_2^2(x) + \dots + r_m^2(x)$$

■ 여기에서는 n=6인 문제지만 실제로는 10^5같은 문제를 풀어야 한다.

What is Solution?

■ 우리가 찾아야 하는 것은 Global minimizer

A point x^* is a global minimizer if $f(x^*) \leq f(x)$ for all x,

■ F에 대한 전체의 그림을 알 수 없고, 알고리즘이 많은 포인트들을 찾지 않기 때문에 Global minimizer는 찾기 어렵고, local하게 solution을 찾게 된다.

A point x^* is a *local minimizer* if there is a neighborhood \mathcal{N} of x^* such that $f(x^*) \leq f(x)$ for all $x \in \mathcal{N}$.

이러한 local minimizer에 빠져버리는 알고리즘이 많다.

Recognizing a local minimum

In particular, if f is twice continuously differentiable, we may be able to tell that x* is a local minimizer (and possibly a strict local minimizer) by examining just the gradient ∇ f (x*) and the Hessian ∇^2 f (x*).

Theorem 2.1 (Taylor's Theorem).

Suppose that $f: \mathbb{R}^n \to \mathbb{R}$ is continuously differentiable and that $p \in \mathbb{R}^n$. Then we have that

$$f(x+p) = f(x) + \nabla f(x+tp)^T p, \qquad (2.4)$$

for some $t \in (0, 1)$. Moreover, if f is twice continuously differentiable, we have that

$$\nabla f(x+p) = \nabla f(x) + \int_0^1 \nabla^2 f(x+tp) p \, dt, \tag{2.5}$$

and that

$$f(x+p) = f(x) + \nabla f(x)^{T} p + \frac{1}{2} p^{T} \nabla^{2} f(x+tp) p,$$
 (2.6)

for some $t \in (0, 1)$.

Recognizing a local minimum

Theorem 2.2 (First-Order Necessary Conditions).

If x^* is a local minimizer and f is continuously differentiable in an open neighborhood of x^* , then $\nabla f(x^*) = 0$.

Theorem 2.3 (Second-Order Necessary Conditions).

If x^* is a local minimizer of f and $\nabla^2 f$ exists and is continuous in an open neighborhood of x^* , then $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*)$ is positive semidefinite.

In particular, if f is twice continuously differentiable, we may be able to tell that x* is a local minimizer (and possibly a strict local minimizer) by examining just the gradient ∇ f (x*) and the Hessian ∇^2 f (x*).

Overview of Algorithms

Line search

line search strategy, the algorithm chooses a direction pk and searches along this direction from the current iterate xk for a new iterate with a lower function value. The distance to move along pk can be found by approximately solving the following one dimensional minimization problem to find a step length α :

$$\min_{\alpha>0} f(x_k + \alpha p_k)$$

- Trust region
 - information gathered about f is used to construct a model function mk whose behavior near the current point xk is similar to that of the actual objective function f.

Steepest descent direction

• steepest descent direction $-\nabla$ fk is the most obvious choice for search direction for a line search method. It is intuitive; among all the directions we could move from xk, it is the one along which f decreases most rapidly.

$$f(x_k + \alpha p) = f(x_k) + \alpha p^T \nabla f_k + \frac{1}{2} \alpha^2 p^T \nabla^2 f(x_k + tp) p_k$$

• The rate of change in f along the direction p at xk is simply the coefficient of α

$$\min_{p} p^{T} \nabla f_{k}, \quad \text{subject to } ||p|| = 1.$$

$$p^T \nabla f_k = ||p|| \, ||\nabla f_k|| \cos \theta = ||\nabla f_k|| \cos \theta$$

- Cosine 이 -1이 될 때 제일 minimize가 된다.
- Gradient만 계산해도 된다는 장점이 있지만, 복잡한 문제에서는 굉장히 느리다.

Steepest descent direction

• 단점을 때문에 steepest descent가 아니더라도 descent direction을 사용한다.

Descent direction

• In general, any descent direction—one that makes an angle of strictly less than $\pi/2$ radians with $-\nabla$ fk—is guaranteed to produce a decrease in f

$$f(x_k + \epsilon p_k) = f(x_k) + \epsilon p_k^T \nabla f_k + O(\epsilon^2).$$

• Downhill direction이면 $p_k^T \nabla f_k = \|p_k\| \|\nabla f_k\| \cos \theta_k < 0.$

Newton direction

$$f(x_k + p) \approx f_k + p^T \nabla f_k + \frac{1}{2} p^T \nabla^2 f_k p \stackrel{\text{def}}{=} m_k(p)$$
. $\nabla^2 f_k$ is positive definite,

• we obtain the Newton direction by finding the vector p that minimizes mk (p).

Newton direction

$$f(x_k + p) \approx f_k + p^T \nabla f_k + \frac{1}{2} p^T \nabla^2 f_k p \stackrel{\text{def}}{=} m_k(p)$$
. $\nabla^2 f_k$ is positive definite,

- we obtain the Newton m direction by finding the vector p that minimizes k (p).
- 이 식을 미분해서 =0 으로 계산을 하면 아래와 같은 식이 나온다. $p_{\nu}^{N} = -\left(\nabla^{2} f_{k}\right)^{-1} \nabla f_{k}. \tag{2.15}$
- 이럴 경우 오차는 3차 항이기 때문에 p의 크기가 작은 경우 이러한 approximation은 꽤 정확하다고 할 수 있다. $\nabla f_k^T p_k^{\mathrm{N}} = -p_k^{\mathrm{N}T} \nabla^2 f_k p_k^{\mathrm{N}} \leq -\sigma_k \|p_k^{\mathrm{N}}\|^2$
- Gradient 가 0이 아닌 이상 descent directio이 된다.
- 그러나 이 방법을 사용할 때에는 $\operatorname{Hessian} \nabla^2 f(x)$ 을 사용해야 하기 때문에 계산기 복잡할 수 있고, error가 일어날수 있다.
- 그래서 Hessian을 새롭게 추정해서 대체하는 방법을 사용한다.

Newton direction

$$f(x_k + p) \approx f_k + p^T \nabla f_k + \frac{1}{2} p^T \nabla^2 f_k p \stackrel{\text{def}}{=} m_k(p)$$
. $\nabla^2 f_k$ is positive definite,

- we obtain the Newton m direction by finding the vector p that minimizes k (p).
- 이 식을 미분해서 =0 으로 계산을 하면 아래와 같은 식이 나온다. $p_{\nu}^{N} = -\left(\nabla^{2} f_{k}\right)^{-1} \nabla f_{k}. \tag{2.15}$
- 이럴 경우 오차는 3차 항이기 때문에 p의 크기가 작은 경우 이러한 approximation은 꽤 정확하다고 할 수 있다. $\nabla f_k^T p_k^{\mathrm{N}} = -p_k^{\mathrm{N}T} \nabla^2 f_k p_k^{\mathrm{N}} \leq -\sigma_k \|p_k^{\mathrm{N}}\|^2$
- Gradient 가 0이 아닌 이상 descent direction이 된다.
- 그러나 이 방법을 사용할 때에는 $\operatorname{Hessian} \nabla^2 f(x)$ 을 사용해야 하기 때문에 계산기 복잡할 수 있고, error가 일어날수 있다.
- 그래서 Hessian을 새롭게 추정해서 대체하는 방법을 사용한다.

Quasi Newton

- Hessian대신에 approximation B_k 를 사용한다. which is updated after each step to take account of the additional knowledge gained during the step.
- The updates make use of the fact that changes in the gradient g provide information about the second derivative of f along the search direction.
- 기존의 Taylor's theorem에서 $\nabla^2 f(x) p$ 를 더했다가 뺀다

$$\nabla f(x+p) = \nabla f(x) + \nabla^2 f(x)p + \int_0^1 \left[\nabla^2 f(x+tp) - \nabla^2 f(x) \right] p \, dt.$$

$$\nabla f(x+p) = \nabla f(x) + \int_0^1 \nabla^2 f(x+tp) p \, dt,$$

• Because ∇ f (·) is continuous, the size of the final integral term is o(| p |).

$$x = x_k$$
 $p = x_{k+1} - x_k$

• 위처럼 설정을 하면 위의 식은 아래처럼 된다.

$$\nabla f_{k+1} = \nabla f_k + \nabla^2 f_k (x_{k+1} - x_k) + o(\|x_{k+1} - x_k\|).$$

Quasi Newton

- 이를 정리하면 $\nabla^2 f_k(x_{k+1}-x_k) \approx \nabla f_{k+1} \nabla f_k$.
- $s_k = x_{k+1} x_k$, $y_k = \nabla f_{k+1} \nabla f_k$.
- $B_{k+1}s_k = y_k$ 라는 식이 나온다.

$$B_{k+1} = B_k + \frac{(y_k - B_k s_k)(y_k - B_k s_k)^T}{(y_k - B_k s_k)^T s_k}, \quad B_{k+1} = B_k - \frac{B_k s_k s_k^T B_k}{s_k^T B_k s_k} + \frac{y_k y_k^T}{y_k^T s_k}.$$

• Hessian 을 대체해서 사용 $p_k = -B_k^{-1}
abla f_k$ $H_k \overset{\mathrm{def}}{=} B_k^{-1}$

$$H_{k+1} = (I - \rho_k s_k y_k^T) H_k (I - \rho_k y_k s_k^T) + \rho_k s_k s_k^T, \qquad \rho_k = \frac{1}{y_k^T s_k}$$

Line Search

Step length

- Each iteration of a line search method computes a search direction pk and then decides how far to move along that direction.
- In computing the step length αk , we face a tradeoff. We would like to choose αk to give a substantial reduction of f, but at the same time we do not want to spend too much time making the choice.

$$\phi(\alpha) = f(x_k + \alpha p_k), \quad \alpha > 0,$$

• a의 candidate를 정한 다음 certain condition을 만족하는 a를 정한다

Figure 3.1 The ideal step length is the global minimizer.

Line Search

Wolfe conditions

• A popular inexact line search condition stipulates that αk should first of all give **sufficient decrease** in the objective function f , as measured by the following inequality:

$$f(x_k + \alpha p_k) \le f(x_k) + c_1 \alpha \nabla f_k^T p_k, \qquad c_1 \in (0, 1).$$

Line Search

Wolfe conditions

- Curvature condition $\nabla f(x_k + \alpha_k p_k)^T p_k \ge c_2 \nabla f_k^T p_k$, $c_2 \in (c_1, 1)$,
- Note that the left-handside is simply the derivative φ (αk), so the curvature condition ensures that the slope of φ at αk is greater than c2 times the initial slope φ (0).

