2025 春计算方法-实验报告 #4

姓。	名: 学号:
	2025年5月25日

运行环境: _____

实验内容与要求

线性方程组的迭代法

实验内容: 考虑线性方程组 (H+2.25I)x=b, 其中 I 为单位阵,H 为 n 阶Hilbert 矩阵,

$$H = (h_{ij})_{n \times n}, \qquad h_{ij} = \frac{1}{i+j-1}, \quad i, j = 1, 2, \dots, n$$

通过先给定解, 比如 $\mathbf{n} \times \mathbf{n} \times \mathbf{n} \times \mathbf{n} \times \mathbf{n}$ 的各个分量为 1, 再计算出右端向量 b的办法给出一个精确解已知的问题. 实验要求:

- (1) 分别编写 Jacobi 迭代法, Gauss-Seidel 迭代法的一般程序 (不得使用符号运算);
- (2) 所有迭代的初始向量均取为 0 向量, 停止条件为 $\|x^{(k+1)} x^{(k)}\|_1 < \epsilon := 1 \times 10^{-5}$ 或迭代步数超过 50 万 (可视为迭代失败);
 - (3) 用以上二种迭代去求解前述的方程组, 分别取阶数 n=10,30,100,500,1500,5000(optional);
- (4) 列表给出**各自**数值解的计算误差 (**1-范数下**) 以及迭代步数; 报告数值实验过程中可能出现的计算问题;
 - (5) 分析并比较以上二种迭代方法, 你能得出什么结论或经验教训.

1 数值结果

数值解误差及迭代步数

n	迭代法	迭代步数	绝对误差 $ x^{(k)} - x _1$
n = 10	Jacobi	21	2.78×10^{-6}
	Gauss-Seidel	8	1.32×10^{-7}
n = 30	Jacobi	37	2.79×10^{-6}
	Gauss-Seidel	9	5.78×10^{-7}
n = 100	Jacobi	69	3.86×10^{-6}
	Gauss-Seidel	10	1.56×10^{-6}
n = 500	Jacobi	214	4.50×10^{-6}
	Gauss-Seidel	12	9.51×10^{-7}
n = 1500	Jacobi	1734	4.96×10^{-6}
	Gauss-Seidel	13	1.11×10^{-6}
n = 5000	Jacobi	500000	∞ (发散)
	Gauss-Seidel	14	1.32×10^{-6}

表 1: Jacobi 与 Gauss-Seidel 迭代法的比较

2 算法分析

- Blah blah blah
- Blah blah blah
- Blah blah blah

3 实验小结

计算过程中可能出现的问题 (包括这次实验中的体会, 收获或经验教训):

- Blah blah blah,
- Blah blah blah,

比较三种算法的各自优缺点:

- Blah blah blah,
- Blah blah blah,
- Blah blah blah,