Finite Transducers and Nondeterministic State Complexity

Grigoriy Povarov

Ural State University

Russian-Indian Workshop "Algebra, Combinatorics, Complexity" Ekaterinburg, Russia, 2008

Outline

Introduction

NFA and Nondeterministic State Complexity

Finite Transducers

Main Result

Common problem

Language L

Operation au

Complexity (measure)

Problem

Find the complexity of $\tau(L)$ in terms of the complexity of L and the complexity of τ

Common problem: our case

Language L – regular language

Operation au – finite transducer

Complexity (measure) - nondeterministic state complexity

Problem

Find the complexity of $\tau(L)$ in terms of the complexity of L and the complexity of τ

Nondeterministic finite automata

NFA
$$(Q, \Sigma, \delta, q_0, F)$$

- ▶ *Q* finite set of states
- \triangleright Σ finite set of letters
- ▶ $\delta \subset Q \times \Sigma \times Q$ set of transitions
- ▶ $q_0 \in Q$ initial state
- ▶ $F \subset Q$ set of final states

Nondeterministic state complexity

Regular language L

NFA A: L(A) = L

Minimal number of states – nondeterministic state complexity of L

nsc(L)

Nondeterministic state complexity: example

$$L_n = \{a^k \mid k \equiv n - 1 (\mod n)\}$$

$$nsc(L_n) = n$$

Nondeterministic state complexity: known results

M. Kutrib, M. Holzer, State Complexity of Basic Operations on Nondeterministic Finite Automata (2003)

operation	nsc	SC
U	m+n+1	mn
\cap	mn	mn
С	$O(2^{n-1})$	n
R	n+1	2 ⁿ
•	m + n	$(2m-1)2^{n-1}$
*	n+1	$3 \cdot 2^{n-2}$

Finite transducer: definition

Finite transducer $(Q, \Sigma, \Delta, \delta, q_0, F)$

- ▶ *Q* finite set of states
- \triangleright Σ finite set of input letters
- \triangleright Σ finite set of output letters
- ▶ $\delta \subset Q \times \Sigma^* \times \Delta^* \times Q$ finite set of transitions
- ▶ $q_0 \in Q$ initial state
- ▶ $F \subset Q$ set of final states

Finite transducer: language transformation

$$\mathcal{R}(\tau) = \{(u, v) \in \Sigma^* \times \Delta^* \mid \exists q \in F : q_0 \stackrel{u,v}{\twoheadrightarrow} q\}$$
$$\tau(L) = \{v \in \Delta^* \mid \exists u \in L : (u, v) \in \mathcal{R}(\tau)\}$$

Lemma (see J.Sakarovitch, Éléments de théorie des automates)

For finite transducer τ and regular language L the language $\tau(L)$ is regular.

Hamming distance: recall

Hamming distance between two words of equal length – number of positions where the words are different

"toned" and "roses": the distance is 3

Hamming neighborhood of radius r of a language $L \subset \Sigma^*$ $(r ext{-neighborhood})$

$$\mathcal{O}(L,r) = \{ w \in \Sigma^* \mid \exists u \in L \mid h(w,u) \leq r \}.$$

Finite transducer: example

Finite transducer au_r for Hamming r-neighborhood $(\Sigma = \{a,b\})$

Normalized finite transducer

If $\delta \subset Q \times (\Sigma \cup {\lambda}) \times (\Delta \cup {\lambda}) \times Q$ then the transducer τ is normalized.

The transducer τ_r for Hamming neighborhood is normalized.

Lemma (see J.Karhumäki, Automata and Formal Languages)

For any finite transducer there is an equivalent normalized finite transducer.

Main result

Theorem

If \emph{L} is a regular language, τ is a normalized finite transducer then

$$\operatorname{nsc}(\tau(L)) \leq |\tau| \operatorname{nsc}(L).$$

This bound is tight: for any r>1 and n>r+1 there exist regular language L and normalized finite transducer τ and

$$\operatorname{nsc}(L) = n, |\tau| = r, |\operatorname{nsc}(\tau(L)) = nr.$$

Proof of the upper bound: idea

The NFA of $\tau(L)$ is the "cartesian product" transducer τ by NFA of L.

The reading image-word in NFA $\tau(L)$ corresponds synchronized reading the original-word in the NFA of L and reading the pair (original-word, image-word) in the transducer τ .

Proof of the upper bound: format definition

L – regular language

$$\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$$
 – NFA of L with minimal number of states

 $au = (P, \Sigma, \Delta, \gamma, p_0, E)$ – normalized finite transducer

$$\mathcal{B} = (Q \times P, \Delta, \epsilon, (q_0, p_0), F \times E)$$

where

$$\epsilon = \left\{ \left((q, p), b, (q', p') \right) \mid \exists a \in \Sigma \cup \{\lambda\} : p \xrightarrow{a \mid b} p' \text{ and } q \xrightarrow{a} q' \right\}$$
 for $q, q' \in Q$, $p, p' \in P$, $b \in \Delta \cup \{\lambda\}$

Proof of the upper bound: illustration for τ_2

Upper bound is tight

$$L_n=\{a^k\mid k\equiv n-1(\mod n)\},\ \mathrm{nsc}(L_n)=n$$

$$au_r-\mathrm{normalized\ finite\ transducer\ for\ Hamming\ r}-\mathrm{neighborhood}, \ | au_r|=r+1$$

$$\mathrm{nsc}(au_r(L_n))=| au_r|\,\mathrm{nsc}(L)\ (\mathrm{for}\ n>r)$$

What about deterministic state complexity?

L – regular language

 τ – normalized finite transducer

$$sc(\tau(L)) \le 2^{sc(L)|\tau|}$$
 – straightforward subset-construction

Theorem (G.Povarov, Descriptive Complexity of the Hamming Neighborhood of a Regular Language (2007))

$$K_n$$
 – regular language, $sc(K_n) = n$, $n > 4$

$$sc(\mathcal{O}(K_n,1)) = \frac{3}{8}n \cdot 2^n - 2^{n-4} + n$$

Thank you!