Victorian Summer School on Ultracold Atoms

Course: Laser Cooling and Trapping of Atoms

Andrei Sidorov

Centre for Atom Optics and Ultrafast Spectroscopy, Swinburne University of Technology

Lecture 1

Lecture Outline:

- 1. Background
- 2. Radiation pressure force
- 3. Two-level atoms and $J=0 \rightarrow J=1$ atoms
- 4. Cooling limits

Literature:

- V.G. Minogin and V.S. Letokhov, "Effects of radiation pressure on atoms" (Nauka, Moscow, 1986)
- J. Dalibard and C. Cohen-Tannoudji, "Dressed-atom approach to atomic motion in laser light: the dipole force revisited", JOSA **B2**, 1707 (1985)
- J. Dalibard and C. Cohen-Tannoudji, "Laser cooling below the Doppler limit by polarization gradients: simple theoretical models", JOSA **B6**, 2023 (1989)
- H.J. Metcalf and P. van der Straten, "Laser cooling and trapping" (Springer, New York, 2002)

Towards Zero Temperature

Atom Chips: technology to produce cold atoms

Universität Heidelberg (2002)

University of Queensland (2004)

Swinburne University (2005)

Universiteit van Amsterdam (2005)

Temperature: measure of motion

S. Whitlock, 2006

Parameters of evaporation

Temperature: measure of motion

Radiation Pressure Force

6) external (translational) atomic motion

$$v_0 = 600 \text{ m/s}$$

$$v_{rec} = \hbar k/m = 6 \text{ mm/s}$$

$$F' = \frac{\Delta P}{\Delta \tau} = \frac{\hbar k}{2\tau N} = \frac{\hbar k \Gamma}{2}$$

RB:
$$F = \frac{4 \cdot 10^{-20}}{2} = \frac{10^{-34} \cdot 8 \cdot 10^{6} \cdot 6 \cdot 3 \cdot 6 \cdot 10^{-20}}{2} = 15 \cdot 10^{-20} \text{ N}$$

$$\frac{F}{m_{ee}} = \frac{1.5 \cdot 10^{-20}}{1.4 \cdot 10^{-25}} = 10^{5} \frac{m}{5^{2}} = 10^{4} \text{ g}$$

Cooling with Radiation Pressure

Frequency parameters:
$$\Gamma$$
, $\delta = \omega_l - \omega_0$, $\Omega = \frac{dE_0}{\hbar}$

Characteristic times (87Rb atom):

$$T_0 = \frac{2\pi}{\omega_0} = 2.7 \, fs$$
 $\tau_N = \Gamma^{-1} = 27 \, ns$ $\tau_{op} = \Gamma_{op}^{-1} \rangle \rangle \tau_N$

$$E_{rec} = \frac{\hbar^2 k^2}{2M} = k_B \times 180nK$$
 $\hbar \Gamma \rangle E_{rec}$ $T_{tran} \rangle T_{int}$

Density matrix equations and mean force

$$i\hbar \frac{d\rho}{dt} = \left[\hat{H}, \rho\right] + Losses$$

$$\frac{\partial \rho_{gg}}{\partial t} = \frac{i}{2} \left(\Omega^* \tilde{\rho}_{eg} - \Omega \tilde{\rho}_{ge}\right) + \Gamma \rho_{ee}$$

$$\frac{\partial \tilde{\rho}_{ge}}{\partial t} = \frac{i}{2} \Omega^* \left(\tilde{\rho}_{ee} - \tilde{\rho}_{gg}\right) - \left(\frac{\Gamma}{2} + i\delta\right) \tilde{\rho}_{ge}$$

$$\frac{\partial \tilde{\rho}_{ge}}{\partial t} = \frac{i}{2} \Omega \left(\tilde{\rho}_{gg} - \tilde{\rho}_{ee}\right) - \left(\frac{\Gamma}{2} - i\delta\right) \tilde{\rho}_{eg}$$

$$\rho_{gg} + \rho_{ee} = 1$$

$$\mathbf{F} = -\left\langle \nabla \hat{V} \right\rangle \qquad \hat{V} = -\hat{d}\hat{E} \qquad -\nabla \hat{V} = -\frac{\hbar}{2} |e\rangle \langle g|e^{-i\omega_l t} \nabla \left[\Omega_1(r)e^{-i\Phi(r)}\right] + h.c.$$

$$\nabla \left[\Omega_1(r) e^{-i\Phi(r)} \right] = \Omega_1(r) e^{-i\Phi(r)} \left[\alpha(r) - i\beta(r) \right] \qquad \alpha(r) = \frac{\nabla \Omega_1(r)}{\Omega_1(r)} \qquad \beta(r) = \nabla \Phi(r)$$

$$\mathbf{F}(r,t) = -\hbar\Omega_{1}(r)\left[u(t)\mathbf{\alpha}(r) + v(t)\mathbf{\beta}(r)\right] \qquad u(t) = \operatorname{Re}\left[\rho_{ge}e^{-i(\omega_{l}t + \Phi)}\right]$$

$$v(t) = \operatorname{Im}\left[\rho_{ge}e^{-i(\omega_{l}t + \Phi)}\right]$$

Two-level atom at rest

$$u_{st} = \frac{\delta}{\Omega_1} \frac{s}{1+s}$$

$$v_{st} = \frac{\Gamma}{2\Omega_1} \frac{s}{1+s}$$

$$\omega_{st} = -\frac{s}{2(1+s)}$$

$$u_{st} = \frac{\delta}{\Omega_1} \frac{s}{1+s}$$
 $v_{st} = \frac{\Gamma}{2\Omega_1} \frac{s}{1+s}$ $\omega_{st} = -\frac{s}{2(1+s)}$ $s = \frac{\Omega_1^2/2}{\delta^2 + (\Gamma/2)^2}$

Travelling wave

$$E(z,t) = \frac{1}{2}E_0\left[e^{i(kz-\omega_l t)} + c.c.\right]$$

$$\Omega_1 = \frac{d_{ge}E_0}{\hbar}$$

$$\mathbf{F}_{sc} = \frac{\hbar \mathbf{k} \Gamma}{2} \frac{\Omega_1^2 / 2}{\Omega_1^2 / 2 + \delta^2 + (\Gamma / 2)^2}$$

Standing wave

$$E(z,t) = \frac{1}{2}E_0\left[e^{i(kz-\omega_l t)} + e^{-i(kz+\omega_l t)} + c.c.\right]$$

$$\mathbf{F}_{dip} = -\frac{\hbar \delta}{4} \frac{\nabla \Omega_1^2}{\Omega_1^2 / 2 + \delta^2 + (\Gamma/2)^2} = -\nabla \left[\frac{\hbar \delta}{2} \ln \left(1 + \frac{\Omega_1^2}{2\delta^2} \right) \right]$$

Moving two-level atom

$$E(z,t) = \frac{1}{2}E_0\left[e^{i(kz-\omega_l t)} + c.c.\right] \qquad z = v_0 t$$

$$z = v_0 t$$

$$\Omega_1 = \frac{d_{ge}E_0}{\hbar}$$
 - constant

$$\Phi(z) = -kz$$

$$\frac{d\Phi}{dt} = \frac{dz}{dt}\nabla\Phi = -kv_0$$

$$\Phi(z) = -kz \qquad \frac{d\Phi}{dt} = \frac{dz}{dt} \nabla \Phi = -kv_0 \qquad \mathbf{F}_{sc} = \frac{\hbar \mathbf{k} \Gamma}{2} \frac{\Omega_1^2/2}{\Omega_1^2/2 + (\delta - kv_0)^2 + (\Gamma/2)^2}$$

Standing wave

$$E(z,t) = \frac{1}{2}E_0\left[e^{i(kz-\omega_l t)} + e^{-i(kz+\omega_l t)} + c.c.\right]$$

$$\Omega_1(z) = 2\Omega_1 \cos kz$$

$$\alpha = -\mathbf{k} \tan kz$$

In the limit of small velocities: $kv_0 << \Gamma$ and weak intensity: $s_0 << 1$

$$F_{fr} = -\alpha v_0 \qquad \qquad \alpha = -\hbar k^2 \Omega_1^2 \frac{\delta \Gamma}{\left[\delta^2 + (\Gamma/2)^2\right]^2}$$

Scattering force!

 $v_0 \simeq 2.4 \cdot 10^4 \text{ cm/s}$ Need about $v_0 \simeq \frac{t_0 k}{M} = 0.6 \frac{c_m}{s}$ Here about to stop a Rb atom.

Resonant acceleration:

Stopping distance: $L = \frac{20^{\circ}}{20} = 26 \text{ cm}$ (in resonance)

Stopping time:
$$T = \frac{v_0}{a} = 2.2 \text{ ms}$$
 (in resonance)

1D laser cooling of atoms (Balykin et al, Moscon, 1981)

Minogin and Letokhov, 1984

if light is

in resonance

with atom

$$\frac{\nabla p}{2a_{\text{max}}} = \frac{\nabla p}{k}$$

this

 $\frac{2 \nabla p}{2a_{\text{max}}} = \frac{2 \nabla p}{k}$

Atom	Toven (K)	v _p (m/s)	L _{min} (m)	T _{min} (ms)
Н	1000	5000	0.012	0.005
He*	4	158	0.03	0.34
Li	1017	2051	1.15	112
Na	712	876	0.42	0.96
Rb	568	402	0.75	3.72
Cs	544	319	0.93	5.82

However: $F_{scal} = \frac{\pm k \pi}{2} \frac{s(v)}{1 + s(v)} = \frac{\pm k \pi}{2} \frac{S^2/2}{S^2/2 + \Gamma^2/4 + (8 - kv)^2}$

Efficiency of slowing falls with increasing Doppler stiff!

Maintaining resonance condition:

8=We-W.

- (a) "Chirp" frequency of laser (We)
- (6) Tune frequency Wo using inhomogeneous magnetic field (Zeeman effect)

1 Laser frequency sweep
$$\omega_e = \omega_{eo} + \omega_{o} \cdot t = \omega_{eo} + k \cdot a \cdot t$$

FIG. 3. Sodium-atomic-beam cooling using a frequency-chirped laser. Trace a, cooling laser off. The D_2 transition

@ Zeeman slower: varying the atomic frequency

1 Doppler cooling of atoms in a standing wave (Optical molasses) Wo L W. 82= We-Wo+ KV For \$2/2 << (Se-ko)2+ 2 add scattering forces $F' = F'_1 - F'_2 = \frac{4k\Gamma'}{2} \left[\frac{\Omega^2/2}{(8a+kv)^2 + \Gamma^2/4} - \frac{S^2/2}{(8a+kv)^2 + \Gamma^2/4} \right] =$ = - M & (friction force)

The case of <u>arbitrary velocities and high intensity</u>

Bloch vector components
$$u(z) = \sum_{n} u_n e^{inkz}$$
 $v(z) = \sum_{n} v_n e^{inkz}$ $w(z) = \sum_{n} w_n e^{inkz}$

$$F = -2\hbar k \Gamma \frac{\operatorname{Im} A}{1 + 2\operatorname{Re} Q} \qquad Q = \frac{p_0}{1 + \frac{p_1}{1 + \frac{p_2}{1 + \dots}}} \qquad A = \frac{\delta}{\Gamma/2 + ikv} Q$$

$$\delta$$
 = -1.5Γ

$$\Omega = \frac{1}{\sqrt{2}}\Gamma \quad \text{solid line}$$

$$\Omega \ = \ \sqrt{4.5}\Gamma \quad \text{ dashed line}$$

$$\Omega \quad = \quad \sqrt{12.5}\Gamma \qquad \text{doted line}$$

$$F_z/2\hbar ky$$
 $0,4$
 $0,2$
 $-0,2$
 $-0,2$
 $-0,4$
 $0,2$
 $0,2$
 $0,2$
 $0,2$
 $0,3$
 $0,4$
 $0,2$
 $0,4$
 $0,2$
 $0,4$
 $0,2$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$
 $0,4$

$$\delta = -5\Gamma$$

22

Doppleron (velocity-selective) resonances

First order $kv = \pm \delta$

Second order
$$(\omega_l \pm kv) - (\omega_l \mp kv) = 0$$
 $v = 0$

Third order
$$(\omega_l \pm kv) - (\omega_l \mp kv) + (\omega_l \pm kv) = \omega_0$$
 $kv = \pm \delta/3$

Observation of Doppleron resonances, Hulet et al, PRL 1990

Similar results from atom reflection (Baldwin et al, 1994)

Fokker-Planck equation and cooling limits

atoms are moving towards the laser beam

after absorption atom is slowed down

Two counterpropagating laser beams

$$F(p,t) = F_{con}(p) + F_{fluc}(p,t)$$

Moments of the force:

$$M_{1} = \langle F_{con}(p) \rangle$$

$$M_{2} = \langle F_{fluc}(p,t')F_{fluc}(p,t'') \rangle = 2D(p,t)\delta(t'-t'')$$

D(p,t) is the momentum diffusion coefficient

Fokker-Planck equation:
$$\frac{\partial W(p,t)}{\partial t} = -\frac{\left[F(p,t)W(p,t)\right]}{\partial p} + \frac{\partial^2 \left[D(p,t)W(p,t)\right]}{\partial p^2}$$

In the case of the friction force $F(v) = -\alpha v$ and $D(p,t) = D_0$

$$W_{st}(p) \propto e^{-\alpha p^2/2MD_0}$$

 $k_B T = D_0/\alpha = \hbar\Gamma/2$ Doppler limit (140 μ K for Rb) 25

140
$$\mu$$
K for Rb) 25

σ^+ - σ^- configuration (J. Dalibard et al, 1984)

Exact expression for the force in Dalibard et al, J. Physics B, 1984

$$F = \hbar k \Gamma \left(\rho_{e_{+1}} - \rho_{e_{-1}} \right) = \frac{\hbar k \Gamma}{2} \frac{\partial \Omega^2 k \nu \left(\Gamma^2 + 4k^2 \nu^2 \right)}{Den}$$

Den = ... long function

For small velocities kv $<<\Gamma$

$$F_{fr} = -\alpha v_0 \qquad \alpha = -\hbar k^2 \Omega_1^2 \frac{\delta \Gamma}{\left[\delta^2 + (\Gamma/2)^2\right]^2} \qquad D = \frac{\hbar^2 k^2 \Gamma^2 \Omega^2}{2\left(\delta^2 + \Gamma^2/4\right)}$$

$$D = \frac{\hbar^2 k^2 \Gamma^2 \Omega^2}{2(\delta^2 + \Gamma^2 / 4)}$$

$$k_B T_{Dop} = \frac{\hbar \Gamma}{2}$$