		D1
Appello di Ingegneria Informatica del 3.2.	DO	
N	D2	
Nome: Cognome: *	Matricola:	E1
		E2
Domanda 1	[2+3 punti]	E3
(i) Enunciare il criterio di Leibniz per le serie.		
(ii) Determinare il carattere di $\sum_{n=1}^{\infty} (-1)^n \left(\underbrace{\sin \left(\frac{1}{n} \right)^n} \right)$	$\underbrace{1 \circ \sin \circ \cdots \circ \sin}_{n} \left(\frac{1}{n} \right)$	E4 E5
Risposta		E6
(i)		Σ
(ii)		
(11)		
(11)		
Domanda 2		[2+3 punti]
Domanda 2		[2+3 punti]
Domanda 2 (i) Enunciare il Teorema dei Valori Intermedi.		
Domanda 2 (i) Enunciare il Teorema dei Valori Intermedi. (ii) Determinare l'immagine della funzione f de	efinita sull'intervallo $[-2\pi,1]$ da	
Domanda 2 (i) Enunciare il Teorema dei Valori Intermedi. (ii) Determinare l'immagine della funzione f de	efinita sull'intervallo $[-2\pi,1]$ da	
Domanda 2 (i) Enunciare il Teorema dei Valori Intermedi. (ii) Determinare l'immagine della funzione f de $f(x) = \begin{cases} e^{x} \\ c \\ c \end{cases}$		
Domanda 2 (i) Enunciare il Teorema dei Valori Intermedi. (ii) Determinare l'immagine della funzione f de	efinita sull'intervallo $[-2\pi,1]$ da	
Domanda 2 (i) Enunciare il Teorema dei Valori Intermedi. (ii) Determinare l'immagine della funzione f de $f(x) = \begin{cases} e^{x} \\ c \\ c \end{cases}$	efinita sull'intervallo $[-2\pi,1]$ de	
Domanda 2 (i) Enunciare il Teorema dei Valori Intermedi. (ii) Determinare l'immagine della funzione f de $f(x) = \begin{cases} e^{x} \\ c \\ c \end{cases}$ Risoluzione	efinita sull'intervallo $[-2\pi,1]$ de	
Domanda 2 (i) Enunciare il Teorema dei Valori Intermedi. (ii) Determinare l'immagine della funzione f de $f(x) = \begin{cases} e^{x} \\ c \\ c \end{cases}$ Risoluzione	efinita sull'intervallo $[-2\pi,1]$ de	
Domanda 2 (i) Enunciare il Teorema dei Valori Intermedi. (ii) Determinare l'immagine della funzione f de $f(x) = \begin{cases} e^{x} \\ c \\ c \end{cases}$ Risoluzione	efinita sull'intervallo $[-2\pi,1]$ de	
Domanda 2 (i) Enunciare il Teorema dei Valori Intermedi. (ii) Determinare l'immagine della funzione f de $f(x) = \begin{cases} e^x \\ cx \end{cases}$ Risoluzione (i)	efinita sull'intervallo $[-2\pi,1]$ de	
Domanda 2 (i) Enunciare il Teorema dei Valori Intermedi. (ii) Determinare l'immagine della funzione f de $f(x) = \begin{cases} e^{x} \\ c \\ c \end{cases}$ Risoluzione	efinita sull'intervallo $[-2\pi,1]$ de	
Domanda 2 (i) Enunciare il Teorema dei Valori Intermedi. (ii) Determinare l'immagine della funzione f de $f(x) = \begin{cases} e^x \\ cx \end{cases}$ Risoluzione (i)	efinita sull'intervallo $[-2\pi,1]$ de	
Domanda 2 (i) Enunciare il Teorema dei Valori Intermedi. (ii) Determinare l'immagine della funzione f de $f(x) = \begin{cases} e^x \\ cx \end{cases}$ Risoluzione (i)	efinita sull'intervallo $[-2\pi,1]$ de	

	•	•	-
Eser	CIT	710	
LISCI			

[3 punti]

Sia f una funzione continua da $\mathbb R$ in $\mathbb R$ e si ponga $F(x,y):=\int_{x-y}^{x+y}f(t)\mathrm{d}t,\ x,y\in\mathbb R.$ Allora

- a F(x,y) = F(y,x);
- b F(x,y) + F(x,-y) = 0;
- d nessuna delle precedenti.

Risoluzione (giustificare la risposta)

Esercizio 2 [3 punti]

Sia $f: \mathbb{R} \to \mathbb{R}$ continua, $x_0 \in \mathbb{R}$ e si definisca una successione $(a_n)_{n=0}^{\infty}$ ponendo $a_0 := x_0$, $a_n = f(a_{n-1})$ per $n \geq 1$. Si supponga che esista finito il limite $\lim_{n \to \infty} a_n =: \ell \in \mathbb{R}$. Segue che

a = 0;

- $\boxed{\mathbf{b}} \quad f(\ell) = \ell;$
- $\boxed{\mathsf{c}} \ f(x) = x \ \mathsf{e} \ \ell = x_0;$
- d nessuna delle precedenti

Risoluzione (giustificare la risposta)

Esercizio 3	[0
Esercizio 5	[3 punti

Si consideri l'equazione $z^2 + \overline{z} - 1 = 0$ nel campo complesso. Allora

- $oxed{a}$ esistono infinite soluzioni complesse;
- b non esistono soluzioni reali;
- c esistono soluzioni sull'asse immaginario;
- d nessuna delle precedenti.

Risoluzione (giustificare la risposta)

T .		•	4
Eser	C17	110	4

[4 punti]

Calcolare l'integrale

$$\int_{1}^{\pi^3} \frac{1}{x^{1/3} + x^{2/3}} \, \mathrm{d}x$$

Risoluzione	
	·
Esercizio 5	[5 punti]

Stabilire se la funzione

Risoluzione

[5 punti]

$$f(x,y) = \begin{cases} \left(\cos(xy+x) + \frac{x}{y^2+1}\right) \frac{x^3 - y^2}{\sin\sqrt{x^2 + y^2}} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

sia continua in \mathbb{R}^2 e determinare in quali punti di \mathbb{R}^2 sia derivabile.

	- lag aber			
	72-27. 32-5-6			
		_11		

Esercizio 6

Determinare massimi e minimi della funzione

$$f(x,y) = \sqrt{4 - x^2 - y^2}$$

[4 punti]

e dire se essi sono locali o globali.

Risoluzione	
	_
	_
	-