Chapter 1

File Systems and Databases

Database Systems: Design, Implementation, and Management, Fifth Edition, Rob and Coronel

By:

Pen Socheat

Master of Information Technology

Tel: 016 577 665

In this chapter, you will learn:

- What a database is, what it does, and why database design is important
- How modern databases evolved from files and file systems
- About flaws in file system data management
- What a DBMS is, what it does, and how it fits into the database system
- About types of database systems and database models

Introducing the Database

- Data versus Information
 - Data constitute building blocks of information
 - Information produced by processing data
 - Information reveals meaning of data
 - Good, timely, relevant information key to decision making
 - Good decision making key to organizational survival

Database Management

- Database is shared, integrated computer structure housing:
 - End user data
 - Metadata
- Database Management System (DBMS)
 - Manages Database structure
 - Controls access to data
 - Contains query language

Importance of DBMS

- Makes data management more efficient and effective
- Query language allows quick answers to ad hoc queries
- Provides better access to more and bettermanaged data
- Promotes integrated view of organization's operations
- Reduces the probability of inconsistent data

DBMS Manages Interaction

Database Design

- Importance of Good Design
 - Poor design results in unwanted data redundancy
 - Poor design generates errors leading to bad decisions
- Practical Approach
 - Focus on principles and concepts of database design
 - Importance of logical design

Historical Roots of Database

- First applications focused on clerical tasks
- Requests for information quickly followed
- File systems developed to address needs
 - Data organized according to expected use
 - Data Processing (DP) specialists computerized manual file systems

File Terminology

- Data
 - Raw Facts
- Field
 - Group of characters with specific meaning
- Record
 - Logically connected fields that describe a person, place, or thing
- File
 - Collection of related records

Simple File System

File System Critique

- File System Data Management
 - Requires extensive programming in thirdgeneration language (3GL)
 - Time consuming
 - Makes ad hoc queries impossible
 - Leads to islands of information

File System Critique (con't.)

- Data Dependence
 - Change in file's data characteristics requires modification of data access programs
 - Must tell program what to do and how
 - Makes file systems cumbersome from programming and data management views
- Structural Dependence
 - Change in file structure requires modification of related programs

File System Critique (con't.)

- Field Definitions and Naming Conventions
 - Flexible record definition anticipates reporting requirements
 - Selection of proper field names important
 - Attention to length of field names
 - Use of unique record identifiers

File System Critique (con't.)

- Data Redundancy
 - Different and conflicting versions of same data
 - Results of uncontrolled data redundancy
 - Data anomalies
 - Modification
 - Insertion
 - Deletion
 - Data inconsistency
 - Lack of data integrity

Database Systems

- Database consists of logically related data stored in a single repository
- Provides advantages over file system management approach
 - Eliminates inconsistency, data anomalies, data dependency, and structural dependency problems
 - Stores data structures, relationships, and access paths

Database vs. File Systems

Database System Environment

Database System Types

- Single-user vs. Multiuser Database
 - Desktop
 - Workgroup
 - Enterprise
- Centralized vs. Distributed
- Use
 - Production or transactional
 - Decision support or data warehouse

DBMS Functions

- Data dictionary management
- Data storage management
- Data transformation and presentation
- Security management
- Multiuser access control
- Backup and recovery management
- Data integrity management
- Database language and application programming interfaces
- Database communication interfaces

Database Models

- Collection of logical constructs used to represent data structure and relationships within the database
 - Conceptual models: logical nature of data representation
 - Implementation models: emphasis on how the data are represented in the database

Database Models (con't.)

- Relationships in Conceptual Models
 - One-to-one (1:1)
 - One-to-many (1:M)
 - Many-to-many (M:N)
- Implementation Database Models
 - Hierarchical
 - Network
 - Relational

Hierarchical Database Model

- Logically represented by an upside down tree
 - Each parent can have many children
 - Each child has only one parent

Hierarchical Database Model

- Advantages
 - Conceptual simplicity
 - Database security and integrity
 - Data independence
 - Efficiency
- Disadvantages
 - Complex implementation
 - Difficult to manage and lack of standards
 - Lacks structural independence
 - Applications programming and use complexity
 - Implementation limitations

Network Database Model

- Each record can have multiple parents
 - Composed of sets
 - Each set has owner record and member record
 - Member may have several owners

Network Database Model

- Advantages
 - Conceptual simplicity
 - Handles more relationship types
 - Data access flexibility
 - Promotes database integrity
 - Data independence
 - Conformance to standards
- Disadvantages
 - System complexity
 - Lack of structural independence

Relational Database Model

- Perceived by user as a collection of tables for data storage
- Tables are a series of row/column intersections
- Tables related by sharing common entity characteristic(s)

Relational Database Model (con't.)

T 1 1					-		1797	
Tab	e	nan	ne:	A		ĿΝ	ш	

AGENT_CODE	AGENT_LNAME	AGENT_FNAME	AGENT_INITIAL	AGENT_AREACODE	AGENT_PHONE
501	Alby	Alex	В	713	228-1249
502	Hahn	Leah	F	615	882-1244
503	Okon	John	T	615	123-5589

Link through AGENT code

Figure 1.11

Table name: CUSTOMER

	CUS_CODE	CUS_LNAME	CUS_FNAME	CUS_INITIAL	CUS_AREACODE	CUS_PHONE	CUS_RENEW_DATE	AGENT_CODE
•	10010	Ramas	Alfred	A	615	844-2573	05-Apr-2002	502
	10011	Dunne	Leona	K	713	894-1238	16-Jun-2002	501
	10012	Smith	Kathy	W	615	894-2285	29-Jan-2001	502
	10013	Olowski	Paul	F	615	894-2180	14-Oct-2002	502
	10014	Orlando	Myron		615	222-1672	28-Dec-2002	501
	10015	O'Brian	Amy	В	713	442-3381	22-Sep-2002	503
	10016	Brown	James	G	615	297-1228	25-Mar-2002	502
	10017	√Villiams	George		615	290-2556	17-Jul-2002	503
	10018	Farriss	Anne	G	713	382-7185	03-Dec-2002	501
	10019	Smith	Olette	K	615	297-3809	14-Mar-2002	503

Relational Database Model

- Advantages
 - Structural independence
 - Improved conceptual simplicity
 - Easier database design, implementation, management, and use
 - Ad hoc query capability with SQL
 - Powerful database management system

Relational Database Model

- Disadvantages
 - Substantial hardware and system software overhead
 - Poor design and implementation is made easy
 - May promote "islands of information" problems

Entity Relationship Database Model

- Complements the relational data model concepts
- Represented in an entity relationship diagram (ERD)
- Based on entities, attributes, and relationships

Entity Relationship Database Model

- Advantages
 - Exceptional conceptual simplicity
 - Visual representation
 - Effective communication tool
 - Integrated with the relational database model
- Disadvantages
 - Limited constraint representation
 - Limited relationship representation
 - No data manipulation language
 - Loss of information content

Object-Oriented Database Model

- Objects or abstractions of real-world entities are stored
 - Attributes describe properties
 - Collection of similar objects is a class
 - Methods represent real world actions of classes
 - Classes are organized in a class hierarchy
 - Inheritance is ability of object to inherit attributes and methods of classes above it

Comparison of OO and E-R Data Models

OO Data Model

- Advantages
 - Adds semantic content
 - Visual presentation includes semantic content
 - Database integrity
 - Both structural and data independence
- Disadvantages
 - Lack of OODM
 - Complex navigational data access
 - Steep learning curve
 - High system overhead slows transactions

Development of Data Models

Database Models and the Internet

- Characteristics of "Internet age" databases
 - Flexible, efficient, and secure Internet access
 - Easily used, developed, and supported
 - Supports complex data types and relationships
 - Seamless interfaces with multiple data sources and structures
 - Simplicity of conceptual database model
 - Many database design, implementation, and application development tools
 - Powerful DBMS GUI make DBA job easier

Thank for your pay attention