CLIPPEDIMAGE= JP02000200729A

PAT-NO: JP02000200729A

DOCUMENT-IDENTIFIER: JP 2000200729 A

TITLE: MANUFACTURE OF ELECTRONIC COMPONENT

PUBN-DATE: July 18, 2000

INVENTOR-INFORMATION:

NAME COUNTRY
HAYAMA, MASAAKI N/A
MORI, NOBORU N/A
NAKAO, KEIICHI N/A

ASSIGNEE-INFORMATION:

NAME COUNTRY MATSUSHITA ELECTRIC IND CO LTD N/A

APPL-NO: JP11373894

APPL-DATE: September 21, 1994

INT-CL (IPC): H01F041/04; H01F017/00; H01G013/00

ABSTRACT:

PROBLEM TO BE SOLVED: To form a fine high-precision pattern for plate printing wherein a conductor pattern is formed on an insulating substrate by transfer and to easily manufacture the high-performance laminate structure of the conductor pattern by forming a via hole electrode at the same time.

SOLUTION: For this manufacture, a pattern which has a groove deeper at an arbitrary position than at any other place is formed by laser machining on the top surface of flexible resin, and a peeling layer 23 is formed on its surface to form an intaglio 20, which is charged with Ag paste 24 and dried. After the intaglio 20 is laminated on the insulating substrate 2

having a thermoplastic resin layer 28 provided on the top surface by using heat rollers 26 and 27, the intaglio 20 and insulating substrate 2 are peeled off each other to transfer the pattern of the Ag paste, and baking is carried out to form the conductor pattern.

COPYRIGHT: (C)2000, JPO

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-200729 (P2000-200729A)

(43)公開日 平成12年7月18日(2000.7.18)

(51) Int.Cl.7		識別記号	FΙ			テーマコード(参考)
H01F	41/04		H01F	41/04	С	
	17/00			17/00	Α	
H01G	13/00	391	H 0 1 G	13/00	391B	

審査請求 有 請求項の数6 〇1. (会15 頁)

		審査開水 有 開氷県の数 6 OL (全 lb 貝)
(21)出願番号	特願平11-373894	(71)出願人 000005821
(62)分割の表示	特願平6-226584の分割	松下電器産業株式会社
(22)出顧日	平成6年9月21日(1994.9.21)	大阪府門真市大字門真1006番地
		(72)発明者 葉山 雅昭
(31)優先権主張番号	特願平5-234522	大阪府門真市大字門真1006番地 松下電器
(32)優先日	平成5年9月21日(1993.9.21)	産業株式会社内
(33)優先権主張国	日本 (JP)	(72)発明者 毛利 昇
		大阪府門真市大字門真1006番地 松下電器
		産業株式会社内
		(72)発明者 中尾 恵一
		大阪府門真市大字門真1006番地 松下電器
		産業株式会社内
		(74)代理人 100097445
		弁理士 岩橋 文雄 (外2名)

(54) 【発明の名称】 電子部品の製造方法

(57)【要約】

【課題】 転写によって導体パターンを絶縁基板上に形成する凹版印刷において、高精度で微細なパターンを形成でき、かつ、ビアホール電極も同時に形成して導体パターンの高性能な積層構造を容易に製造できる電子部品の製造方法を提供することを目的とする。

【解決手段】 可とう性樹脂の表面にレーザ加工によって任意の位置の溝が他の箇所より深いパターンを形成し、その表面に剥離層23を形成して凹版20を形成する。凹版20にAgペースト24を充填して、乾燥させる。熱可塑性の樹脂層28を表面に設けた絶縁基板2上に熱ローラ26,27を利用して凹版20をラミネートした後に、凹版20と絶縁基板2とを剥離してAgペーストのパターンを転写して、焼成によって導体パターンを形成する。

【特許請求の範囲】

【請求項1】 基板上に第1導体パターンを凹版印刷に よって転写形成する電子部品の製造方法であって、

- (a) 凹版の表面に溝を形成する工程と、
- (b) 前記溝に導電性ペーストを充填する工程と、
- (c) 前記導電性ペーストが充填された凹版と前記基板 とを貼り合わせる工程と、
- (d) 前記凹版を前記基板から剥離して前記導体ペース トを前記基板上に転写することにより第1導体パターン 樹脂シートからなるとともに、異なる深さの溝を有する 凹版を用いて高さの異なる第1導体パターンを同時に転 写形成したことを特徴とする電子部品の製造方法。

【請求項2】 第1導体パターンの形成後、

- (e) 前記第1導体パターンの少なくとも一部を覆うよ うに絶縁層を形成する工程と、
- (f) 前記絶縁層の表面に第2導体パターンを形成する 工程とを有し、前記第1導体パターンのうち高さが高く 形成されている箇所を電極として使用して、前記第1導 体パターンと前記第2導体パターンとを電気的に接続す 20 る請求項1記載の電子部品の製造方法。

【請求項3】 絶縁層の表面に平坦部を設けるべき箇所 に対応する前記第1導体パターンの部分が低く形成され ている請求項1記載の電子部品。

【請求項4】 絶縁層の表面の前記平坦部にフェースダ ウン実装された I Cチップをさらに備える請求項3記載 の電子部品。

【請求項5】 溝の側面にテーパが形成されていること を特徴とする請求項1記載の電子部品の製造方法。

【請求項6】 テーパの角度が2°~60°であること 30 を特徴とする請求項4記載の電子部品の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、各種電子機器に用 いる電子部品の製造方法に関し、特に、凹版印刷によっ て製造される電子部品の製造方法に関する。

【従来の技術】近年、電子機器の小型化が進んでおり、 それに伴って電子機器内で使用される電子部品の小型化 が進んでいる。このような状況の下で、電子部品の導体 40 パターンに対しても、パターンを構成する導体ライン (以下、単にラインと称する)の微細化、ライン抵抗を 下げることを目的とした導体パターンを構成する導電膜 の厚さの増加、さらに小型化のための積層構造化が要求 されている。

【0003】従来の電子部品の導体パターンは、スクリ ーン印刷や凹版印刷などの印刷法で銀ペーストや銅ペー ストなどの導電性ペーストのパターンを被形成物 (基 板)上に印刷して、これを焼成して形成されてきた。例

92号公報に開示されているように、形成すべき導体パ ターンに対応した凹版内に導電ペースト(有機金属イン ク)を充填し、その導電ペーストを乾燥・硬化させてか ら、被形成物である基板上に硬化性樹脂を介してそのパ ターンを転写することによって、所望の導体パターンを 形成する印刷方法が知られている。

【0004】さらに、ハイブリッドIC回路、サーマル ヘッド、あるいは透明電極などでは、導体パターンにお ける各ラインの幅、及びラインの間隔が微細になること を形成する工程とを有し、前記凹版が可とう性を有する 10 から、薄膜形成とエッチングとを利用した方法が用いら れていることがある。この方法では、被形成物である基 板上に、蒸着またはスパッタリングで金、アルミニウ ム、ITOなどの導電材料の薄膜を形成して、感光性樹 脂を用いたフォトリソグラフィー技術によって所望の導 体パターンに対応したマスクパターンを形成し、次にエ ッチング液及びマスクパターンを用いたエッチングを行 って導電材料の薄膜をエッチングし、最後に感光性樹脂 を除去して導体パターンを形成する。

[0005]

【発明が解決しようとする課題】しかしながら、上述の 従来の方法は、以下のような問題点を有している。

【0006】従来のスクリーン印刷は比較的安価な設備 で実行することができ、また必要な工程数は少ない。し かし、形成すべき導体パターンのラインの幅が70μm 以下であるような微細導体パターンを、スクリーン印刷 で形成することは困難である。また、ラインピッチを1 50μm以下に低減することは困難である。また、スク リーン印刷では導体パターンは一様に印刷されるので、 設計上の要求に合わせてパターン中に高低差(ラインの 高さの差)を設けることはできない。

【0007】従来の凹版印刷では、ラインの幅が50μ m程度でラインピッチ100μm程度の微細導体パター ンを形成することが可能であるが、5μm以上の厚さを 有する導体膜を形成することが困難であって、導体抵抗 の低減に限界がある。

【0008】一方、電子部品の所望の高密度化を達成す るためには、各層の導体パターンの微細化だけでは十分 ではないことがあり、したがって積層構造の形成が必要 になる。そのような積層構造では、下層導体パターン、 絶縁層、上層導体パターンというサンドイッチ構造が幾 重も重なって形成される。この場合、上下層の導体パタ ーンを接続するビアホールを形成する必要があるが、導 体パターンの微細化に伴ってそれらビアホールの微細化 も必要になってきている。しかし、上述の特開平4-2 40792号公報に開示されている方法も含めて、従来 の印刷方法では、直径100μm以下であるような微細 なビアホールの形成は困難である。

【0009】さらに、上下層の導体パターン間の確実な 電気的接続を得るためには、ビアホールの内部に上下層 えば、凹版印刷法の応用としては、特開平4-2407 50 を接続する電極(以下、ビアホール電極と称する)を形 成する必要がある。しかし、従来の方法では、もし直径 100μm以下の微細なビアホールが形成できたとしても、そのような寸法のビアホール内部に電極を形成することは困難である。

【0010】また、従来の凹版印刷では、一般にガラスやシリコンウエハなどの剛体材料で形成された凹版を使用する。その場合、硬化性樹脂を介してセラミックやガラス基板などの被形成物上に導体パターンを転写する工程において、接着している凹版と被形成物とを剥離しようとしても、凹版の変形がほとんど生じない。その結果、面同士で接着している凹版と被形成物とを剥離しなければならず、強い剥離力が必要になる。

【0011】また、凹版として金属材料を用いると、凹版のパターン形状の加工(溝の形成)はウエットエッチングで行われる。このエッチングは等方性エッチングになるために、ラインの幅に対して導体膜が厚い(すなわちラインが高い)ような導体パターンを形成するために必要になるアスペクト比の高い凹版形状の加工ができない。

【0012】一方、フォトリソグラフィー技術を利用した導体パターンの形成は、半導体技術でよくあるように、ラインの幅が数μm以下で小面積のパターンを形成する場合には有効である。しかし、電子部品で用いられる導体パターンの形成では、一般に比較的大きな面積のパターンを形成することが必要とされる。そのような場合には、導電膜の蒸着、レジストの塗布、露光、現像、エッチング及びレジスト除去などの一連の工程を、大型装置を用いて行わなければならない。その結果、使用する設備が高価であることから、製造コストが増加しがちである。

【0013】本発明は上記課題を解決するためになされたものであり、導体パターンのライン幅をより細く、また導電膜の厚さをより厚く、またライン幅と同程度の寸法のビアホール電極を含むような微細な導体パターンを、低コストかつ高信頼性で形成することができる電子部品の製造方法を提供することを目的とする。

[0014]

【課題を解決するための手段】上記目的を達成するために、本発明の電子部品の製造方法は、基板上に第1導体パターンを凹版印刷によって転写形成する電子部品の製造方法であって、(a)凹版の表面に溝を形成する工程と、(b)前記溝に導電性ペーストを充填する工程と、(c)前記導電性ペーストが充填された凹版と前記基板とを貼り合わせる工程と、(d)前記凹版を前記基板から剥離して前記導体ペーストを前記基板上に転写することにより第1導体パターンを形成する工程とを有し、前記凹版が可とう性を有する樹脂シートからなるとともに、異なる深さの溝を有する凹版を用いて高さの異なる第1導体パターンを同時に転写形成したことを特徴とするものである。

[0015]

【発明の実施の形態】以下に、本発明の電子部品の製造 方法の実施の形態を、図面を参照して説明する。

【0016】(実施の形態1)本発明の電子部品の製造 方法の第1の実施の形態を、高周波用チップインダクタ 1の製造方法を例にとって、図1~図10を参照して以 下に説明する。なお、以下の図面で、同じ構成要素には 同じ参照番号をつけている。

【0017】図1(a)には本実施の形態のチップイン 10 ダクタ1の平面図、図1(b)には図1(a)の1B-1B′線におけるチップインダクタ1の断面図を、それ ぞれ示す。

【0018】チップインダクタ1は2×1.25mmの絶縁基板2の中央部付近の表面に形成されたスパイラル状のコイル導体(ライン)3、及び絶縁基板2の両縁部に形成された端子電極4a及び4bを有している。コイル導体3の外端3aは、一方の端子電極4aに接続されている。コイル導体3の内端3bは、リード電極6及びビアホール電極7を介してもう一方の端子電極4bに接続されている。このリード電極6は、コイル導体3の形成後にそれを覆うように絶縁基板2の表面に形成される絶縁層5の最表面に、さらに設けられている。また、ビアホール電極7は、絶縁層5の最表面に存在するリード電極6と、絶縁層5の最下面に存在するコイル導体3とを接続している。

【0019】チップインダクタ1は、凹版印刷によって製造される。以下、その製造方法を順に説明する。以下の説明に現れる各工程210~310は、図2のブロック図に示されている。

【0020】まず、図3を参照して、使用される凹版2 ○の製造工程210を説明する。凹版20は、XYステ ージ16上に固定された厚さ125µmのポリイミドフ ィルム15上に形成される。エキシマレーザ装置11か ら出射された紫外領域の波長248nmのレーザビーム は、形成されるべきコイルのスパイラルパターン及び端 子電極のパターンに対応するマスクパターンを有するマ スク12を照射する。マスク12通過後のレーザビーム は、ミラー13で反射され、イメージングレンズ14で 縮小されて、ポリイミドフィルム15上を照射する。ポ リイミドフィルム15のうち、レーザビームで照射され た部分は光化学反応で分解されて、導体パターンのライ ンに相当する溝21(図4参照)が形成される。これに よって、所望のパターンに対応した凹版20が形成され る。XYステージ16を移動させながら上記の照射動作 を繰り返すことによって、典型的には、100m×10 Ommのポリイミドフィルム15上に、サイズ2×1.2 5㎜の凹版20が計4000個形成される。

【0021】エキシマレーザによる加工は、炭酸ガスレーザやYAGレーザによる加工が赤外波長領域のレーザ 50 ビームによる熱分解加工であるのに対して、ピークパワ

ーが数10MWに達する紫外波長領域のレーザビームに よる光分解加工である。また、レーザビームのパルス幅 が短いために、加工領域以外の周囲への熱的影響が少な い。その結果、エキシマレーザによる加工では、パター ンのライン幅が10μm以下の微細な加工を行うことが

【0022】また、レーザビームが照射された部分のポ リイミドフィルム15の表面は、フィルムを構成する分 子の結合が切断されていて、化学的に非常に活性化され た状態にある。したがって、その部分では化学結合が起 10 こりやすい。この特徴は、後述する剥離層の形成に有利 である。

【0023】図4は、上記の方法で形成された凹版20 の溝21の典型的な断面形状を示す。レンズの焦点深度 などレーザ加工工程で使用される光学系の特性を適切に 調整することによって、溝21は、その側面が2~60 。のテーパ角を有する台形状の断面形状を有するように 形成される。これによって、後の工程で、溝21の内部 に充填される導電ペーストの被形成物上への転写が、容 易に実施できるようになる。なお、使用されるレーザビ ームの形状は、典型的には、エキシマレーザ装置11か らの出射時で8×24mmの長方形で、ポリイミドフィル ム15への照射時で3.2×9.6mmの長方形である。 【0024】また、凹版20の材料になるポリイミドフ ィルム15の加工表面に適切な保護層を設けることによ って、溝21の形成時に発生するプラズマとの相互作用 から凹版20の加工面を保護することができる。これに よって、凹版20の表面の溝21の開口部の変形を防ぐ ことができる。なお、上記目的の保護層の材料として は、例えばポリエチレンテレフタレート (PET)、ポ 30 リカーボネート(PC)、ポリサルフォン(PSF)が 使用できる。

【0025】次に、マスク12をビアホール電極7の形 成用のマスクに交換してレーザビームをさらに照射し て、先の工程で形成された導体パターンの溝21の所定 の位置に、ビアホール電極7に相当する円筒形のピット 22(図5参照)を形成する。ピット22の形成にあた っても、溝21の形成時と同様に微細加工が可能であ り、また充填された導電ペーストの転写が容易なよう に、ピット22がテーパ形状を有するように形成するこ とができる。なお、円筒形以外の形状を有するピット2 2を形成することも可能である。

【0026】以上の方法によって、幅10μm~50μ mのラインに相当する深さ20μmの溝21、及び直径 45μmのビアホール電極に相当する直径60μmのピ ット22を含む、形成されるべき導体パターンに対応す る凹版20が形成される。溝21やピット22の深さ は、レーザビームの照射時間だけを変化させることによ って、ラインの幅(溝21の幅)を変えることなく任意 ${\it c}$ O. $2\mu {\it m}$ 単位で変更でき、最適な値にすることがで 50 主としてそのような部分に形成されることが望ましい。

きる。また、溝21の幅やピット22の直径はマスクの 寸法を変更することで、容易に調整することができる。 これによって、本実施の形態の方法によれば、導体パタ ーンのライン幅を10μm以下にしたり、ビアホールの 寸法をそのような微細なラインに対応して小さくしたり することも可能である。

【0027】なお、上述のように凹版20の材料として ポリイミドフィルム15を用いることによって、可とう 性(フレキシブル性)を凹版20に持たせることができ る。そのことによって得られる効果は、後述する。

【0028】上記の方法で形成した凹版20を用いて、 導体パターンを被形成物の表面に転写する。しかしなが ら、凹版20の材料として使用しているポリイミドフィ ルム15では、溝21及びピット22の中に充填されて **転写される導電ペーストとフィルム15との剥離性が十** 分ではない。そのため、転写工程において、溝21及び ピット22の内部に導電ペーストが残存しやすい。特 に、ビアホール電極7に相当するピット22では、その 深さが深いために導電ペーストの残存が特に顕著に発生 する。その結果、凹版20の形状が十分に転写されない 結果になる。したがって、実質的に完全な凹版形状の転 写を実現するためには、凹版20の表面、特に溝21及 びピット22の表面における剥離層の形成工程220が 必要である。

【0029】発明者らは、上記問題点を解決するため に、ポリイミドフィルム15に対する剥離処理を、特に 導電ペーストに対する剥離力、及び処理層の寿命の点か ら鋭意検討した。その結果、以下の方法でフッ化炭素系 単分子膜の剥離層を形成することが効果的であることを 確認した。

【0030】まず、O2アッシャーで酸素プラズマを凹 版20の表面に照射して、凹版20の表面に存在する酸 素の密度を多くする。一方、n-ヘキサデカン(あるい は、トルエン、キシレン、ジシクロヘキシルでもよい) 80%、四塩化炭素10%及びクロロホルム8%の混合 溶液中に、フッ化炭素基及びクロロシラン基を含む物質 を混ぜた非水性の溶媒、例えばCF3(CF2)7(C H2) 2 Si C13を、約1%の濃度で溶かした溶液を調 製する。この溶液中に、上記のように酸素処理された凹 版20を浸漬して、凹版20の表面に酸化膜を形成す る。この酸化膜の表面には水酸基が多数含まれており、 フッ化炭素基及びクロロシラン基を含む物質のSiC1 基と反応して、脱塩素反応が生じる。この結果、凹版2 0の表面に共有結合によって化学吸着したフッ化炭素系 単分子膜が、凹版20の表面全体にわたって形成され る。この単分子膜が、剥離層23 (図5参照) として効 果的に機能する。

【0031】剥離時に大きな剥離力を必要とする箇所は 主に溝21及びピット22の部分であり、剥離層23は 一方、先に述べたように、凹版20を構成するボリイミドフィルム15のうち、エキシマレーザによる加工で溝21及びピット22が形成された部分は、化学的に活性な状態にある。結果として、上記のフッ化炭素系単分子膜の剥離層23は、剥離時に大きな剥離力が必要とされる溝21及びピット22の内部に、より多く結合して形成される。また、剥離層23と凹版20、すなわち上記の単分子膜とポリイミドフィルム15との結合は共有結合であるので、両者は非常に強力に結合しており、剥離効果の耐久性がある。さらに、剥離層23の厚さは100~1000オングストロームと薄いために、凹版20の形状精度に影響を与えず、凹版20内部に多くの導電ペーストを充填することができる。

【0032】このように、工程220で凹版20の表面に形成される剥離層23は、非常に優れた特性を有するものである。

【0033】次に、工程230として、以上のように表面に剥離層23が形成された凹版20の表面に、導電ペーストとしてAgペースト24を塗布する。そして、塗布後の凹版20表面をスキージ25で掻くことによって、凹版20表面の余分なAgペースト24を除去するとともに、溝21及びピット22の中にAgペースト24を十分に充填する(図5参照)。

【0034】ここで、発明者らによって行われた使用するスキージ25の材質に関する検討によれば、本実施の形態では、以下の理由によりセラミック製のスキージ25の使用が望ましいことが明らかになった。すなわち、樹脂製またはスチール製のスキージは、Agペースト24中に含まれる異物や凹版20の表面に存在するほこりなどによって傷つきやすい。そのため、そのようなスキージ表面のきずによって、凹版20表面が傷つきやすくなって、凹版20の寿命が低減する。それに対して、セラミック製のスキージ25は硬いために、異物やほこりによる先端部の損傷が少ない。さらに、2000番以上の細かい研磨材でセラミック製スキージ25の先端部を滑らかにすれば、長時間の摩耗による消耗も防ぐことができる。この結果、セラミック製のスキージ25は、凹版20の表面を傷つけることが少ない。

【0035】次に、Agペースト24を充填した凹版20を循環式熱風乾燥機を用いて乾燥させて、Agペースト24中の有機溶剤を蒸発させる(工程240)。これによって、凹版20の溝21及びピット22に充填されたAgペースト24を、溝21及びピット22の形状によりフィットさせて、よりシャープな形状を得ることができる。なお、乾燥手段は、上記に限られるものではない。

【0036】本実施の形態で扱っている凹版20の表面には比較的深い溝21及びピット22が形成されており、特に、ピット22は最大深度が60μmと深い。そのため、この乾燥工程240において100℃以上の温

度で凹版 20 を急速に乾燥させると、溝 21 及びピット 22 の内部に充填されている A 8ペースト 24 に直径 5 ~ 40 μ m のピンホールが発生しやすい。ライン幅が 50 μ m 以下であるような微細な導体パターンでは、このようなピンホールはパターン焼成後のオープン不良の原因になり、良質な導体パターンの形成を妨げる。

【0037】そこで、本実施の形態の乾燥工程240では、以下のように2段階に凹版20の乾燥を行う。すなわち、まず100℃以下の温度で5分間の予備乾燥を行い、続いて温度150℃で5分間の乾燥を行う。それによって、上記のようなピンホールの発生を防ぐことができ、焼成後のオープン不良の発生がない導体パターンの形成が可能になる。

【0038】上記の予備乾燥の実施に換えて、室温から 150℃までの昇温を15℃/分以下の緩やかな温度勾 配で行うことによっても、上記と同様のピンホール発生 の抑制という効果を得ることができる。

【0039】なお、溝21やピット22の内部のAgペースト24を上記の工程240で乾燥させると、その柔軟性が失われやすい。その結果、微細なライン幅(例えば100μm以下)を有する導体パターンを転写する場合には、転写時に発生するストレスによってAgペースト24にクラックが発生して、焼成後のオープン不良の原因になることがある。このような不都合を防ぐため、本実施の形態ではAgペースト24中に0.1~10世%の可塑剤を添加する。これによって、Agペースト24が乾燥後にも適度な柔軟性を有するようにして、転写工程でのクラックの発生を防ぐことができる。可塑剤としては、フタル酸エステル系の可塑剤、例えば、フタル酸ジメチル、フタル酸ジエチル、あるいはフタル酸ジオクチルを使用することができる。

【0040】以上のような乾燥工程240を行うと、有機溶剤の蒸発分に相当するだけ、溝21やピット22の内部に充填されているAgペースト24の体積が減少する。そこで、この減少分を補うために、Agペースト24の充填工程及び乾燥工程をもう一度繰り返す。先の乾燥工程240で有機溶剤が蒸発することによって一度乾燥状態となったAgペースト24は、この再充填で再び軟化する。この再充填工程250及び再乾燥工程260によって、充填されているAgペースト24の形状をさらに良好なものに整えるとともに、Agペースト24の厚さを凹版20の溝21及びピット22の深さと同等にすることができる。

【0041】凹版20の非パターン部、特にそれぞれの 溝21の間の部分にAgペースト24が残存している と、導体パターンのライン間の短絡不良の原因になり得 る。このようなAgペースト24の残存は、Agペース ト24が粘性を有していて糸をひきやすいために、スキージ25による不要ペーストのかき取り中に糸ひき現象 50 が発生して、除去されるべき部分にAgペースト24が 残存してしまうことによる。しかし、上記のように、再 充填工程250において、溝21及びピット22の内部 に乾燥状態のAgペースト24が存在する状態で再充填 を行うと、非パターン部に新規に塗布されたAgペース ト24の溶剤が溝21やピット22の内部の乾燥状態の ペーストに吸収されて、非パターン部に残存していたA gペースト24の粘度が増加する。この結果、非パター ン部のAgペースト24をスキージで除去する場合に糸 ひき現象が発生せず、この部分の残存ペーストが容易に 除去される。そのため、ライン間の短絡不良が生じない 10 導体パターンの形成を行うことができる。

【0042】なお、本実施の形態の説明では、再充填工程250及び再乾燥工程260はそれぞれ1回ずつ繰り返されるが、必要に応じてそれらを2回以上繰り返すことも可能である。

【0043】次に、絶縁基板2上に熱可塑性樹脂層28を形成して、導体パターンが転写される被形成物を得る。この樹脂層28は、転写時の接着層として機能する。そして、図6に模式的に示されているように、Agペースト24が充填された溝21及びピット22を有する側の凹版20表面と熱可塑性樹脂28とを対向させて、凹版20と絶縁基板2とをラミネートする(工程270)。

【0044】後述するように、熱可塑性樹脂層28の厚さが極端に厚くなると、焼成時に樹脂層28自身の燃焼ガスが多量に発生して、導体パターンがうまく形成されないという問題点が発生する。発明者による検討の結果、樹脂層28の厚さは20μm以下が適当であることが確認されている。

【0045】ラミネート工程270の温度は、使用する 樹脂層28のガラス転移温度より30℃低い温度から、 100℃高い温度の範囲内に設定することが望ましい。 ラミネート温度が上記上限値より高いと、樹脂層28の 流動性が大きくなりすぎて、ラミネート時の圧力によって樹脂層28が薄くなり、凹版20の溝21及びピット 22からのAgペースト24の転写が良好に行われなく なる。一方、ラミネート温度が上記下限値より低い場合 には樹脂層28の流動性が十分でなく、Agペースト2 4と樹脂層28との密着性が悪くなって、やはり転写が 良好に行われない。

【0046】さらに、ラミネート時の圧力は、1kg/cm²から絶縁基板2の割れが発生する限界圧力値までの範囲に設定することが望ましい。圧力値が上記下限値より小さいと、絶縁基板2の表面にうねりがある場合に、ラミネート時の凹版20と絶縁基板2との間が完全に密着せず両者の間に気泡が混入することがある。そのような現象は、やはり転写不良につながることがある。

【0047】上記の検討結果を考慮して、本実施の形態では、ラミネート工程270を以下の条件で行う。

【0048】まず、熱可塑性樹脂であるポリビニールブ 50

チラール樹脂(以下、PVBと略記する)を溶解したブチルカルビトールアセテートの溶液を、100mm角のアルミナ製の絶縁基板2の表面に塗布して乾燥する。これによって、絶縁基板2の表面全体に厚さ10μmのPVB層28を形成した絶縁基板2と、Agペースト24を充填してある凹版20とを、図6に示すように熱ローラ26及び27を用いて、温度100℃、圧力20kg/cm²及び速度5cm/秒の条件下でラミネートする。なお、PVB層28は、ディップ法、スピンナー法、あるいはロールコースタを用いるコーティング法を用いて塗布すればよい。本実施の形態では絶縁基板2の片面にのみPVB層28を形成したが、両面に形成しても良い。

【0049】通常、絶縁基板2の表面には、図7(a)または図7(b)に模式的に示すように、最大幅30μm程度のうねりが存在する。従来のようにガラス製の凹版29を使用する場合には、図7(b)に示すように、ガラス凹版29の剛性が強すぎるために、凹版29が絶縁基板2のうねり形状に十分に追従できない。そのため、PVB層28′の厚さを10~50μm程度に不均一にしてうねりを吸収して、ラミネートを行わねばなら

一にしてうねりを吸収して、ラミネートを行わねばならない。このため、先に述べた好ましい厚さの範囲内(20μm以下)におさまるように、PVB層28′を形成することができない。

【0050】しかし、本実施の形態のようにフレキシブル性に富んだ樹脂製の凹版20を使用する構成によれば、図7(a)に示すように、凹版20が絶縁基板2のうねり形状に十分に追従できる。したがって、絶縁基板2のうねり形状には無関係に、厚さ10μm以下のPVB層28を絶縁基板2上に形成することができる。

【0051】次に、転写工程280として、ラミネートされた凹版20と絶縁基板2との温度を室温にまで下げてから凹版20を絶縁基板2から剥離させて、導体パターンに応じてパターン化されたAgペースト24の転写を行う。

【0052】このとき、本実施の形態の構成では、凹版20がフレキシブル性に富んでいるために、図8に示されるように凹版20を90°以上の角度に曲げることが可能である。その結果、絶縁基板2からの凹版20の剥離は面と線との剥離になる。このため、必要な剥離力が低減されて、凹版20を容易に剥離することができる。一方、従来の剛性が強いガラス製凹版29(図7(b)参照)を用いる場合には、図8に示すような角度まで凹版29を曲げることができず面と面との剥離になるので、大きな剥離力が必要である。また、凹版29の曲げ角度を大きくし過ぎると、凹版29または絶縁基板2にクラックが容易に発生する。したがって、両者の剥離には多大の注意が必要であって、作業性が良くなく、作業コストや作業時間の増加を生じていた。

〇 【〇〇53】本実施の形態によれば、例えば溝の幅15

 μ m、深さ 20μ mのパターンを有する凹版 20を用いても、溝 21の内部でのA gペースト 24の残存がなく、上記の溝 21の幅と実質的に同じ幅及び溝 21の深さと実質的に同じ高さを有する導体パターンを転写・形成することができる。また、ビアホール電極部分に関しては、凹版 20のピット 22 の直径が 45μ mで深さが 60μ mの場合に、溝 21 の場合と同様に実質的に完全に対応する寸法の導体パターンを転写・形成することができる。また、導体ラインとビアホール電極とは、同一工程で一体的に同時に形成されるので、両者の間の電気 10 的接続が確実に確保される。

【0054】さらに、本実施の形態の高周波用チップインダクタ1のように高周波数領域で使用される電子部品では、表皮抵抗を小さくして電気的動作特性を向上させるために、導体パターンの表面形状をできるだけシャープにする必要がある。しかし、従来の銅板やガラス製の凹版の形成に用いられていた湿式エッチングは等方性のエッチングになってしまうので、アスペクト比の高い加工ができない。そのため、パターンが微細になって形成すべきライン幅が細くなるにつれて、深い溝を形成することができなくなる。また、溝のエッジ部が鋭利にならずに円みを帯びてしまう。それに対して、本実施の形態のようにエキシマレーザによって凹版20を加工すれば、鋭角的なエッジを有するパターンを形成することが*

*できる。さらに、すでに説明してきたように、転写時に 溝21やピット22の内部にAgペースト24が残存し ないので、鋭角的な凹版20の形状と同様の鋭利な形状 を有するパターンが転写される。したがって、本実施の 形態にしたがって形成された導体パターンは、高周波用 導体として優れた特性を有するものになる。

12

【0055】次に、上記のように導体パターンが転写された絶縁基板2を、図9に示すようなピーク温度850℃の温度パターンの下で焼成する工程290を行う。本実施の形態で焼成の対象になる絶縁基板2は、PVB層(樹脂層)28を介して導体パターンが形成されている構造になるので、焼成条件の設定によってはPVB層28から燃焼ガスが発生して、導体パターンの不良につながる剥離や変形が生じることがある。そのような不都合の発生を防ぐためには、PVB層28の燃焼が開始されてから終了するまでの温度に相当する200℃~500℃の間の昇温時の温度勾配を200℃/時間以下にすることが望ましい。

【0056】ラミネート工程270の説明に関連してす 0 でに若干説明したが、このような条件で焼成工程290 を実施する場合におけるPVB層28の厚さと形成され た導体パターンの性能との関係を、(表1)に示す。

[0057]

【表1】

PVB膜厚	焼成後パターン形状	焼成後パターンはがれ
10 µm	0	0
20 µm	0	. 0
30µm	×	Δ
50µm	×	×
100 µm	×	×

評価基準

アルミナ基板100mm 角内 (2×1.25mm サイズ400個中)

〇 9 5%以上良品

△……70%以上良品

× ······良品70%以下

【0058】(表1)より、PVB層28の厚さが20 μm以下であれば、形状の劣化や剥離が生じることなく所望の導体パターンを焼成することができる。しかし、PVB層28の厚さが30μm以上になると、焼成時にパターンの形状不良や剥離が発生することがわかる。したがって、PVB層28の厚さは薄い方が特性的に有利である。これより、先に図7(a)及び図7(b)を参照して比較した本実施の形態のポリイミド凹版20と従来のガラス凹版29とでは、PVB層28の厚さを上記※50

※の望ましい範囲内におさめることができる本実施の形態 のポリイミド凹版20の方が、品質的に優れた導体パタ ーンを形成できることになる。

【0059】また、上記のような本実施の形態の方法によれば、導体パターン中のライン3とビアホール電極7とが、一体的に同時に形成される。これによって、ライン3とビアホール電極7との間の確実な電気的接続が得られる。

【0060】次に、以上の工程で表面にAgペースト2

4による導体パターンを形成した絶縁基板2の表面に、絶縁層5を形成するために、ガラスペーストのパターンを印刷して形成する(工程300)。このとき、図10に示すようにビアホール電極7の部分は、マスク径150μmのスクリーン版を使用して、粘度20万cpsの結晶化ガラスによって印刷する。これより、ビアホール電極7の部分には印刷の「にじみ」が発生して、ビアホール電極7の周囲を覆うガラスペーストの厚さが他の部分よりも薄くなる。この結果、ビアホール電極7の周囲に、ビアホール形状が形成される。

【0061】形成されるビアホールの径はビアホール電極の形状によって規定されるので、これまでは形成が困難であった直径 40μ 配程度の微少なビアホールであっても、本実施の形態によれば、簡単に印刷形成することができる。また、このように微少なビアホールを形成できるので、その分だけスパイラル状のコイルパターンのターン数を増加させることができる。これによって、得られるインダクタンス値を大きくすることができる。

【0062】上記のように印刷されたガラスペーストのパターンを、ピーク温度820℃に10分間保持して焼 20成し、絶縁層5を形成する。このとき、結晶化ガラスを使用しているので、焼成中の流動が少なく、印刷されたパターン形状が良好に保たれる。

【0063】従来の方法では、多層構造基板の上下層導体パターンを相互に接続するために、絶縁層にスクリーン印刷によるパターニングまたはエッチングなどによって開口部を設けてビアホールとし、さらにそこに電極材料を埋め込んでビアホール電極を形成していた。しかし、この方法では、電極の埋め込み工程における不良によって、上層または/及び下層の導体パターンとビアホ 30ール電極との電気的接続が十分でないことによる下層の導体パターンと上層の導体パターンとの間の接続不良が発生することがあった。しかし、本実施の形態による方法では、すでに述べたように、ビアホール電極7の形成は下層の導体パターンの形成と一体的に同時に行われるので、上記のような接続不良は発生しない。

【0064】さらに、ビアホール電極7の形状・厚さを任意に設定できるので、絶縁層5の表面からビアホール電極7を数μm突き出させるような形状にすることによって、上層導体パターンとビアホール電極7との接続を確実に行うことができる。また、ビアホール電極7の基板2表面に垂直な方向の断面形状を台形状にすることによって、寸法的に微細なビアホール電極7であっても、後工程で必要とされるだけの接続強度が十分に得られる構造になっている。

【0065】最後に、絶縁層5上にリード電極6を形成する工程310を行う。これは、Agペーストでリード電極6のパターンを絶縁層5表面にスクリーン印刷して、ピーク温度810℃に10分間保持して焼成を行うことによって、形成される。これによって、本実施の形50

態のチップインダクタ1が製造される。

【0066】上記の説明では、チップインダクタ1を例にとって本実施の形態の電子部品の製造方法を説明してきたが、製造できるのはチップインダクタ1に限られるわけではないのはもちろんである。例えば、本実施の形態に従って、チップビーズ、EMIフィルタ、コンデンサなどの他の電子部品、あるいは積層構造を有する他の電子部品の電極部分を製造することができる。

14

【0067】また、上記の説明では、工程210~29 0によって導体パターンを転写して形成した後に工程3 00及び310で絶縁層5及びリード電極6の形成を行っている。あるいは、このような構造が不要な導体パターンを形成する場合には、工程210~290までを行えば所望の導体パターンが得られるのであって、工程3 00及び310を行う必要がない。

【0068】また、導体パターンを形成するために使用 する導電ペーストの材料としてAgペーストを使用した が、これに限定されるものではない。例えば、Cu, N i, Al, Auなどの他の金属ペースト、またはレジネ ートペーストを使用することができる。また、有機溶剤 を含む導電ペースト以外にも、紫外線硬化性樹脂または 熱硬化性樹脂で硬化後に適当なフレキシブル件を有する 樹脂を含有する導電ペーストを使用することもできる。 【0069】凹版20の材料としては、適度の可とう性 (フレキシブル性)を有するものであれば、上述のポリ イミドフィルム15の他に、PET、PSF、PC、P EI(ポリエーテルイミド)、PAR(ポリアクリレー ト)、PEEK (ポリエーテルケトン) などの樹脂シー トを使用することができる。また、絶縁基板2上に形成 する樹脂層28の材料には、エチルセルロース系の熱可 塑性樹脂、あるいはエポキシやアクリル系の熱硬化性樹 脂を使用することができる。

【0070】さらに、以上の説明では、凹版20と絶縁 基板2とのラミネート工程において、熱ローラ26及び27を用いて圧力をかけながら熱的に貼り合わせる装置を使用したが、少なくとも片面に熱板を備えたプレス装置を使用してもよい。

【0071】導体パターンを転写して形成するための被形成物を構成する絶縁基板2の材料は、特定のものに制限されるものではなく、セラミックなど一般的に使用されている材料を用いることができる。あるいは、チタン酸バリウムを主体とする誘電体であってもよい。

【0072】特に、インダクタンス部品を形成する場合には、絶縁基板2及び絶縁層5の少なくとも一方を、フェライトなどの磁性体材料で形成することが望ましい。これは、これらの磁性体材料の透磁率によって、形成される電子部品のインダクタンス値を向上できるからである。

【0073】あるいは、被形成物をグリーンシートによって形成することができる。グリーンシートは加熱によ

って軟化する性質を有しているので、グリーンシートを 用いて被形成物を形成する場合には、工程270におい て、転写時の接着層として機能する樹脂層28の形成を 省略することができる。

【0074】凹版20の形成にはエキシマレーザ装置1 1を使用したが、波長が紫外線領域のレーザビームを発することができるものであれば、色素レーザや自由電子レーザなど他のレーザ源を使用することができる。さらに、上記波長領域でこれらのレーザと同等の必要なレベルのエネルギー密度を有するビームを発することができ 10る光源であれば、レーザ源以外の他のものを使用することも可能である。

【0075】(実施の形態2)本発明の電子部品の製造方法の第2の実施の形態を、導体パターンの積層構造を有するハイブリッドIC(以下、HICと略記する)基板の製造方法を例にとって、図11~図14を参照して説明する。なお、図11~図14において、同じ構成要素には同じ参照符号をつけている。

【0076】図11(a)はHIC基板30の平面図、 図11(b)は図11(a)の11B-11B′線にお 20 けるHIC基板30の切断面である。なお、図11

(a)の右半分は上層の導体パターンが形成されている部分、左半分は下層の導体パターンが形成されている部分を示している。また、図11(a)及び図11(b)はHIC基板30の構成を簡略化して模式的に示すものであるので、図面中の導体パターンは以下に記す寸法の値を正確に反映していない。

【0077】HIC基板30は、絶縁基板31上に形成された下層導体パターン32、下層導体パターン32を覆うように形成された絶縁層33、及び絶縁層33の上 30に形成された上層導体パターン34からなる2層配線構造を有している。下層導体パターン32は、図11

(b)からわかるように、スパイラル状のコイル導体部32a、及びそれ以外の導体部32bを含んでいる。下層導体パターン32と上層導体パターン34とは、ビアホール電極35によって接続される。また、上層導体パターン34の一部には、ICチップをフェースダウン実装するための実装部36が設けられている。

【0078】下層導体パターン32のうちでコイル導体部32aに相当する部分には、電気的特性の観点から、例えばピッチ60 μ m(すなわち、各ラインの幅30 μ m、ラインの間隔30 μ m)で高さ(すなわち、導体膜の厚さ)35 μ mの導体パターンが形成される。また、ビアホール電極35は、絶縁層33の表面から先端が飛び出して上下層の導体パターン32及び34の間が確実に接続されるように、高さ(すなわち、導体膜の厚さ)50 μ mに形成されている。一方、上層導体パターン34のフェースダウン実装部36は、例えば、ピッチ150 μ m(すなわち、各ラインの幅75 μ m、ラインの間隔75 μ m)で形成される。

【0079】さらに、このフェースダウン実装部36は、ICチップをフェースダウン実装する際の実装条件の制約から、表面の長さ5mmあたりのうねりが3μm以下であるような平坦度が必要である。この場合、下層導体パターン32のうちでフェースダウン実装部36の下に位置する導体部32bの高さ(導体膜の厚さ)が5μm以上あると、絶縁層33の表面のうねりが大きくなってフェースダウン実装が困難になる。そのために、導体部32bの高さは、5μm以下に抑えられている。

16

「【0080】以上のように、本発明の第2の実施の形態では、形成される導体パターンのうちで任意の場所の導体膜の厚さ(ラインの高さ)を所望のレベルに変えて、パターン内に高低差を有する導体パターンが形成される。これによって、最表面の上層導体パターン34の所定の位置へのICチップのフェースダウン実装を可能にしたHIC基板30が形成される。

【0081】以下に、本実施の形態のHIC基板30の製造方法を説明する。なお、以下の説明における凹版の製造などの個々の工程は、形成対象である導体パターンの形状が異なるだけで第1の実施の形態に対応する各工程と実質的に等価である。したがって、その特徴などに関する詳細な説明は省略する。

【0082】まず、下層導体パターン32を形成するた めの凹版を、第1の実施の形態の工程210と同様に、 下層導体パターン32のコイル導体部32a作成用及び その他の導体部32b作成用、ならびにビアホール電極 35作成用の計3種類のマスクを使用して、エキシマレ ーザを用いてポリイミドフィルム上に以下の順序で形成 する。まず、コイル導体部32aのパターンに対応する マスクを用いて、深さ45µmの溝からなるコイル導体 部32aに相当するパターンを形成する。次に、ビアホ ール電極35のパターンに対応するマスクを用いて、深 さ65µmの溝からなるビアホール電極に相当するパタ ーンを形成する。最後に、導体部32bのパターンに対 応するマスクを用いて、深さ10μmの溝からなる導体 部32bに相当するパターンを形成する。上記の各工程 で形成されるそれぞれのパターンの相対的位置を5μm 以内の精度で位置合わせすることによって、下層導体パ ターン32を形成するための凹版が形成される。

40 【0083】このように形成された凹版上に、第1の実施の形態の工程220と同様にフッ化炭素系単分子膜からなる剥離層を形成する。次に、第1の実施の形態の工程230と同様に、セラミック製スキージを用いて、Agペーストを凹版のそれぞれの溝に充填する。その後に、工程240と同様に、循環熱風式乾燥機によってAgペーストを乾燥して内部に含まれる有機溶剤を蒸発させて、凹版の溝の内部のペーストを蒸発量に相当する体積分だけ減少させる。さらに、工程250及び260と同様に、Agペーストを再充填した後に2段階の乾燥を50行う。このように、第1の実施の形態と同様にペースト

の充填及び乾燥工程を繰り返すことによって、Agペー ストの膜の厚さをそれぞれの溝の深さと実質的に等しく することができる。

【0084】次に、工程270と同様に、厚さ10μm の熱可塑性樹脂層を絶縁基板31表面に形成して、凹版 と絶縁基板31とを圧力25kg/cm²、基板温度130 ℃で貼り合わせる。その後、工程280と同様に、基板 温度を室温まで下げて凹版を剥離して、導体パターンを 絶縁基板31上に転写する。さらに、工程290と同様 850℃まで200℃/時間の温度勾配で昇温して、焼 成処理を行う。

【0085】以上の一連の工程によって、第1の実施の 形態の場合と同様に、下層導体パターン32及びビアホ ール電極35が一体的に同時に形成される。

【0086】次に、工程300と同様に、ガラスペース トのスクリーン印刷によって、絶縁基板31の上に絶縁 層33のパターンを形成する。そして、温度840℃で 焼成して、絶縁層33を形成する。このとき、第1の実 施の形態と同様に結晶化ガラスを使用することによっ て、焼成中のガラスペーストの流動が少なく、スクリー ン印刷で形成した形状が比較的良好に保たれている。

【0087】次に、絶縁層33の形成後に、上層導体パ ターン34に相当するパターンをAgペーストのスクリ ーン印刷によって形成する。そして、ピーク温度810 ℃に10分間保持する焼成処理によって、上層導体パタ ーン34を形成する。

【0088】上記のようにして、導体パターンのうち で、スパイラル状のコイル導体32aに相当する部分の ラインの高さ(導体膜の厚さ)を大きくすることで、第 30 1の実施の形態と同様の電気的特性に優れたコイルが形 成される。また、ビアホール電極35の基板表面に垂直 な方向での断面を台形状にすることによって、上層導体 パターン34と下層導体パターン32との電気的接続を 確実に行うことができる。また、下層導体パターン32 の厚さを任意の所定の箇所で選択的に薄くすることによ って、絶縁層33の表面の平坦化が必要な箇所における 所望の平坦化を実現できる。これによって、ICチップ のフェースダウン実装が可能なHIC基板30が製造さ れる。

【0089】ビアホール電極35の形状は、図11

(b) に示す形状に限られるものではない。例えば、図 12に示すHIC基板40のように、ビアホールの一部 分のみを埋めるような形状の電極35′を形成すること もできる。あるいは、絶縁層33の形成時にビアホール を設けて下層導体パターン32が絶縁層によって完全に 覆われないようにして、下層導体パターン32及び上層 導体パターン34を接続する電極を、下層導体パターン 32の形成工程とは別の工程でビアホール内に設けても よい。

【0090】さらに、上記の説明では、2層配線基板を 例にとって説明を行ったが、さらに多層化を図ることも 可能である。例えば図13に示すHIC基板50では、 それぞれが図11(b)あるいは図12に示したHIC 基板30及び40の一層のパターンに相当する導体パタ ーン51,52及び53が、絶縁基板31の上に3層積 層されている。

18

【0091】さらに、本実施の形態によれば、導体パタ ーンのラインに高低差を設けられるので、図14に示す に、導体パターンを転写した絶縁基板31をピーク温度 10 ような絶縁層33の表面形状を有するHIC基板60を 形成することもできる。HIC基板60では、下層導体 パターンのうち、絶縁層33の表面のうねり形状の制御 が不要な部分に相当する導体部32aを、比較的高いラ イン(厚い導体膜)によって形成している。一方、IC チップ61をフェースダウン実装する部分のように絶縁 層33の表面を平坦にする必要がある部分に相当する導 体部32bを、比較的低いライン (薄い導体膜) によっ て形成している。導体部32bの高さが低くなると導体 抵抗が増加するが、必要に応じて導体部32bのライン 20 の幅を大きくすることによって、電気的特性に対する悪 影響をおさえることができる。

> 【0092】このように、本実施の形態によれば、絶縁 層33の表面形状に対する要求と導体パターンの電気的 特性に対する要求とのトレードオフを考慮して、導体パ ターンの最適な形状を得ることができる。

【0093】以上のように、本実施の形態の電子部品の 製造方法によれば、フレキシブル性に富んだ樹脂シート の表面に、形成されるべき導体パターンに対応した溝パ ターンをエキシマレーザの照射によって形成して、凹版 を製造する。凹版の溝部パターンに充填される導電ペー ストは、被形成物である基板上に実質的に完全に転写さ れる。また、凹版に形成する溝の形状を鋭利にすること ができるので、転写後の焼成によって形成される導体パ ターンの形状も、所望の鋭利な矩形状になる。これによ って、形成される導体パターンの電気的特性が改善され る。

【0094】サイズの面では、導体パターンのラインの 幅が10μm以下で、導体膜の厚さが5μm以上である ような、微細かつ厚膜の導体パターンの形成が可能であ る。また、任意の所定の箇所についてのみ導体膜の厚さ を厚くする、すなわち導体パターンのラインを高くする ことができる。これらの点を応用することによって、本 実施の形態の電子部品の製造方法によれば、微細な導体 パターンのサイズと実質的に同等な程度に幅が微少など アホールの形成が可能である。したがって、従来の印刷 方法では実現が困難であった小型の積層構造を有する電 子部品を、低コストで製造することができる。

【0095】なお、以上の第1及び第2の実施の形態の 説明では、導体パターンの中に導体膜の厚い部分を作成 50 することが必要とされるタイプの電子部品を例にとっ

て、本発明を説明してきた。しかし、それ以外の電子部品、すなわち、特に導体膜の厚さを部分的に異ならせる、あるいは厚くすることが必要でないような電子部品に対しても、本発明の電子部品の製造方法を適用できることは明らかである。そのような場合であっても、フレキシブルな樹脂シートから形成された凹版の使用によって転写工程での剥離が容易かつ確実に行えること、また、エキシマレーザによる凹版上のパターン形成により鋭利な矩形状のパターンが形成できることは、製造される電子部品の特性にとっては十分に有効な改善手段になる。

【0096】以上に説明してきたことをまとめると、本 実施の形態1および実施の形態2によれば、可とう性に 富んだ樹脂からなる凹版を用いることによって、基板の 損傷や導体パターンにおけるクラックやピンホールの発 生を招くことなく、凹版の剥離・導体パターンの転写が 行われる。また、基板表面にうねりがあっても、凹版が そのうねり形状に追従して変形できるので、基板と凹版 とが密着して、導電ペーストの転写が良好に行われる。 また、導電ペーストの転写が完全に行えるので、導体パ ターン中のライン幅が細く、かつ導体膜の厚さが厚いパ ターンであっても、良好な形状で形成する。さらに、凹 版への導電ペーストの充填及び乾燥を複数回行うことに よって、乾燥によって導電ペーストの体積が減少して も、充填される導電ペーストの形状を溝の形状によりフ ィットさせることが可能になる。また、凹版と基板との ラミネートを熱的に行うことによって、不透明な基板上 にも導体パターンの転写を行える。

【0097】さらに、導体パターンの多層構造化も、容易に実現される。また、導体パターンの任意の箇所の導 30 電膜の厚さを容易に制御することが可能であるので、電気特性や絶縁層表面の形状などの最適化を図ることができる。例えば、導体パターン中で高く形成された部分を、多層構造の各導体パターンを接続する電極として使用することができる。これによって、導体パターンと電極とが一体的に同時に形成されるので、両者の間の接続不良などの欠陥の発生が防がれる。あるいは、導体パターンを低く形成することによって、その部分に対応する絶縁層表面の平坦度が向上する。これによって、ICチップのフェースダウン実装に必要な平坦部を得ることが 40 できる。

【 O O 9 8 】 凹版表面の溝の形成を紫外波長領域の発振 周波数を有するレーザ、好ましくはエキシマレーザで行 うことによって、凹版上に微細パターンが容易にかつ高 精度に形成される。また、溝の深さの変更は、レーザの 照射時間の変更によって容易に行われる。さらに、凹版 に形成する溝の形状を鋭利にすることができるので、転 写後の焼成によって形成される導体パターンの形状も、 所望の鋭利な矩形状になる。これによって、形成される 導体パターンの電気的特性が改善される。 【0099】フッ化炭素系単分子膜の剥離層は、凹版の表面に容易に形成される。この剥離層は、凹版表面に共有結合によって結合しているために耐久性があり、その結果が持続する。また、単分子層であるために剥離層は薄く、凹版の形状に影響を与えない。

2.0

【0100】導体ペーストに可塑剤を添加して可とう性をもたせることによって、凹版がフレキシブルに屈曲しても追従することが可能になる。さらに、乾燥工程後であっても適度な可とう性を有することができるので、転10 写時のストレスに十分に対抗でき、導電ペーストにおける欠陥の発生が防がれる。

【 0 1 0 1 】 凹版にテーパをもたせることによって、充填された導電ペーストの剥離・転写をさらに容易にすることが可能になり、良好な形状の導体パターンが形成される。

【0102】基板として表面に樹脂層を設けた絶縁基板を用いる場合、その樹脂層を導電ペーストパターン転写時の接着層として使用することができるが、特に樹脂層の厚さを20μm以下にすることによって、熱的なラミネート時に樹脂層自身から発生する燃焼ガスの影響による導体パターンの欠陥の発生が抑制される。絶縁材料として誘電材料や磁性材料を使用すれば、形成される電子部品に所望の特性を付与することが可能になる。また、基板をグリーンシートによって形成すれば、ラミネート時に加えられる熱によってグリーンシートが軟化する性質を利用することができ、接着層として機能する樹脂層の形成を省略することが可能になる。

【0103】さらに、本実施の形態によって形成される電子部品では、高精度で微細な導体パターンが容易に形成されるとともに、多層構造化も容易に行われる。また、各層の導体パターン間を接続する電極を導体パターンと一括して形成することができ、確実な電気的接続を得ることができる。

[0104]

【発明の効果】以上のように、本発明の電子部品の製造方法は、凹版が可とう性を有する樹脂シートからなるとともに、異なる深さの溝を有する凹版を用いて高さの異なる第1導体パターンを同時に転写形成したことを特徴とするものであり、これにより、導体パターンのライン幅をより細く、また導電膜の厚さをより厚く、またライン幅と同程度の寸法のビアホール電極を含むような微細な導体パターンを、低コストかつ高信頼性で形成することができる。

【図面の簡単な説明】

【図1】(a)本発明の第1の実施の形態におけるチップインダクタの模式的な平面図

- (b) (a) の1B-1B′線における断面図
- 【図2】同電子部品の製造方法の工程の流れを示すブロック図
- 50 【図3】同要部である凹版の製造工程を模式的に示す概

略図

【図4】同要部である凹版表面の溝の形状を模式的に示す断面図

【図5】同要部である凹版への導体ペーストの充填工程 を模式的に示す概略図

【図6】同要部であるラミネート工程を模式的に示す概略図

【図7】(a)同要部であるポリイミド凹版と絶縁基板とのラミネート状態を模式的に示す断面図

(b) 従来のガラス凹版と絶縁基板とのラミネート状態 10 を模式的に示す断面図

【図8】同要部である剥離工程を模式的に示す概略図

【図9】同要部である焼成工程の焼成温度条件を示す図

【図10】同要部であるビアホールの形状を模式的に示す断面図

【図11】(a)本発明の第2の実施の形態におけるハイブリッドIC基板の模式的な平面図

(b) (a) の11B-11B' 線における断面図

【図12】本発明によって製造される他のハイブリッド IC基板の模式的な断面図

【図13】本発明によって製造されるさらに他のハイブ リッド I C 基板の模式的な断面図

【図14】本発明によって製造されるさらに他のハイブ リッド I C 基板の模式的な断面図

【符号の説明】

- 1 チップインダクタ
- 2 絶縁基板
- 3 コイル導体

4 a, 4 b 端子電極

- 5 絶縁層
- 6 リード電極
- 7 ビアホール電極
- 11 エキシマレーザ装置
- 12 マスク
- 13 ミラー
- 14 イメージングレンズ
- 15 ポリイミドフィルム
- 0 16 XYステージ
 - 20 ポリイミド凹版
 - 21 溝
 - 22 ピット
 - 23 剥離層
 - 24 Agペースト
 - 25 スキージ
 - 26,27 熱ローラ
 - 28, 28′ 樹脂層 (PVB層)
 - 29 ガラス凹版
- 20 30,40,50 ハイブリッドIC基板
 - 31 絶縁基板
 - 32 下層導体パターン
 - 33 絶縁層
 - 34 上層導体パターン
 - 35,35′ ビアホール電極
 - 36 フェースダウン実装部
 - 51,52,53 導体パターン
 - 61 ICチップ

【図1】

【図2】

【図4】

【図5】

【図6】

【図12】

【図13】

【図14】

