Versuch 21 - Optisches Pumpen TU Dortmund, Fakultät Physik

Fortgeschrittenen-Praktikum

Jan Adam

Dimitrios Skodras

jan.adam@tu-dortmund.de

 ${\it dimitrios.s} \\ {\it kodras} \\ @{\it tu-dortmund.de}$

05. März 2014

Inhaltsverzeichnis

1 Theorie

2 Durchführung

3 Auswertung

3.1 Vertikalkomponente des Erdmagnetfelds

Spule	r in cm	N	I/U in A/1
Vertikal	11,735	20	1
Horizontal	15,790	154	0,1
Sweep	16,39	11	0,3

Tabelle 1: Kenndaten benutzter Helmholtzspulen

Um dem Einfluss des vertikalen Magnetfelds entgegenzuwirken, wird eine Helmholtz-Spule in die entsprechende Richtung orientiert, sodass das vom Stromfluss I induzierte Magnetfeld B genau dem des Erdmagnetfelds entspricht. μ_0 ist die Vakuumpermeabilität, r der Radius und N die Windungszahl Bei einer Umdrehungszahl von U=1,99 V und einem Widerstand von R=1 Ω wird kein Einfluss des vertikalen Erdmagnetfelds mehr festgestellt. Die Feldstärke $B_{\text{vert,Erde}}$ lässt nach Biot-Savart und mit Tabelle ?? berechnen mit

$$B_{\text{vert,Erde}} = \mu_0 \frac{8}{\sqrt{125}} \frac{IN}{r} = 30, 5 \,\mu\text{T}.$$
 (1)

3.2 Horizontalkomponente des Erdmagnetfelds

Wie in ?? beschrieben, wird die Resonanzfrequenz der RF-Spule stetig erhöht und ebenfalls das Magnetfeld der Horizontalspulen dahingehend, dass die Transmission der Dampfzelle stark abnimmt. In Tabelle ?? sind die Kenndaten der Horizontalspulen aufgeführt, die zur Umrechnung der in den Tabellen ?? und ?? gelisteten Messwerte in Magnetfelder nötig sind.

ν in kHz	U_{sweep}	$\mathrm{U}_{\mathrm{hor}}$	$B_{r,1}$ in mT	ν in kHz	$U_{\rm sweep}$	$U_{ m hor}$	$B_{r,2}$ in mT
20	1,75	0,00	0,011	20	2,00	0,00	0,012
100	3,70	0,00	0,022	100	4,90	0,00	0,030
200	1,05	$0,\!12$	0,038	200	$3,\!65$	$0,\!12$	0,054
300	1,55	$0,\!15$	0,049	300	$5,\!11$	$0,\!15$	0,070
400	3,82	$0,\!15$	0,063	400	$4,\!25$	$0,\!25$	0,091
500	2,48	$0,\!24$	0,078	500	2,74	$0,\!37$	0,114
600	2,13	$0,\!30$	0,092	600	$2,\!59$	$0,\!45$	0,134
700	2,27	$0,\!35$	0,106	700	1,78	$0,\!55$	0,155
800	2,38	$0,\!40$	0,120	800	1,05	$0,\!65$	0,177
900	2,60	$0,\!45$	0,134	900	$2,\!47$	0,70	0,199
1000	2,73	$0,\!50$	0,148	1000	1,55	0,80	0,220

Tabelle 2: ν und B_r des 1. Isotops Tabelle 3: ν und B_r des 2. Isotops Der Zusammenhang zwischen ν und B_r wird zweimal mit einem linearen Ansatz

$$\nu = a \cdot B + b$$
 und $\nu = c \cdot B + d$

getestet und die Koeffizienten a,b,c und d durch GNUplot bestimmt. In Abbildung \ref{Model} sind die Messwerte dargestellt, sowie die eben genannten linearen Ansätze als Fitgeraden. Hieraus ergeben sich die folgenden zwei Gleichungen

Abbildung 1: Zusammenhang zwischen Resonanzfrequenz und Magnetfeld

$$\nu_1 = 7159(1 \pm 0, 67\%) \frac{\text{kHz}}{\text{mT}} \cdot B - 58, 6(1 \pm 6, 1\%) \text{kHz}$$
 (2)

$$\nu_2 = 4741(1 \pm 0,70\%) \frac{\text{kHz}}{\text{mT}} \cdot B - 39,6(1 \pm 11,1\%) \text{kHz}.$$
 (3)

Mit diesen zwei Gleichungen ist es nun möglich die Horizontalkomponente des Erdmagnetfelds zu ermitteln. Sie ist genau das Magnetfeld B, welches die Gleichung (??) bzw. (??) 0 werden lässt. Aus den zwei Werten wird anschließend der Mittelwert genommen

$$B_1 = 8,19(1 \pm 6,1\%)\mu T \text{ und } B_2 = 8,35(1 \pm 11,1\%)\mu T,$$
 (4)

was schließlich zu einer Horizontalkomponente führt von

$$B_{\text{hor}} = 8,27(1 \pm 12,7\%)\mu T.$$
 (5)

3.3 Landé-Faktoren des Atoms

Neben der Horizontalkomponente des Erdmagnetfelds kann man aus den Gleichungen (??) und (??) ebenfalls die Landé-Faktoren des Atoms g_F nach Gleichung (??) errechnen, wo der Proportionalitätsfaktor mit a bzw. c identifiziert wird

$$q_{F,1} = 0.511(1 \pm 0.67\%)$$
 und $q_{F,2} = 0.339(1 \pm 0.7\%)$ (6)

Desweiteren lassen sich aus der Elektronenkonfiguration von Rubidium [?] die Drehimpulse bestimmen, sowie der Landé-Faktor der Elektronenhülle g_J . Die Drehimpulse sind hierbei

$$L = 0,$$
 $S = \frac{1}{2},$ $J = L + S = \frac{1}{2},$ $F = I + J = I + \frac{1}{2},$ (7)

was nach (??) zu einem Faktor führt zu

$$g_J = 2,0023. (8)$$

3.4 Kernspin *I* der Rubidiumisotope

Mit den Ergebnissen aus ?? lassen sich nun nach (??) die Kernspins der auftretenden Rubidiumisotope errechnen. Die etwas längliche Formel ergibt umgestellt nach dem Kernspin

$$I_{k} = \frac{1}{4\frac{g_{F,k}}{g_{J}}} \left[\left(1 - 4\frac{g_{F,k}}{g_{J}} \right) + \sqrt{\left(-1 + 4\frac{g_{F,k}}{g_{J}} \right)^{2} - 12\frac{g_{F,k}}{g_{J}} \left(\frac{g_{F,k}}{g_{J}} - 1 \right)} \right]$$
(9)

und führt zu

$$I_1 = 1,459 \approx \frac{3}{2}$$
 $I_2 = 2,459 \approx \frac{5}{2}$. (10)

3.5 Isotopenverhältnis von ⁸⁵Rb und ⁸⁷Rb

Durch das Auftauchen von zwei Resonanzfrequenzen bei denen die Transparenz der Probe einbricht, wird davon ausgegangen, dass es sich um zwei verschiedene Isotope innerhalb der Probe handelt. Das Verhältnis ihres Vorkommens N_i hängt mit dem Verhältnis der Transparenzaufhebung A_i direkt zusammen Die Bestimmung der Amplituden geschieht durch Ablesen am Oszilloskop in Abbildung ??

Abbildung 2: Typische Aufnahme am Oszilloskop, hier bei $\nu=100~\mathrm{kHz}$

$$\frac{N_1}{N_2} = \frac{A_1}{A_2} = \frac{5,5}{2,5} = 2,2. \tag{11}$$

4 Diskussion

4.1 Erdmagnetfeld

Die ermittelten Werte für die Vertikal- und Horizontalkomponente des Erdmagnetfelds sind anfolgend mit den Literaturwerten [?] verglichen. Die erheblichen Fehler sind wohl auf ein ungenau Ausrichtung der Apparatur in Nord-Süd-Richtung zurückzuführen

$$\frac{B_{\text{vert}}}{B_{\text{vert,Lit}}} = 70\% \qquad \frac{B_{\text{hor}}}{B_{\text{hor,Lit}}} = 41\%$$
 (12)

4.2 Eigenschaften von Rubidium

Die erittelten Werte für die Landé-Faktoren g_F haben zu den zwei Kernspins I_1 und I_2 geführt und werden anhand einer Nuklidkarte [?] Rubidiumisotope zugewiesen

$$I_1 \approx \frac{3}{2} \rightarrow {}^{87}\text{Rb}$$
 $I_2 \approx \frac{5}{2} \rightarrow {}^{85}\text{Rb}.$ (13)

Das Verhältnis der Rb-Isotope [?] wird mit dem Verhältnis der Amplituden verglichen, was zu folgender Übereinstimmung führt

$$\frac{A_1}{A_2} / \frac{N_{85}_{Rb}}{N_{87}_{Rb}} = 2, 2 / \frac{72,17\%}{27,83\%} = 85\%.$$
 (14)

Literatur

[PSE] Periodensystem der Elemente periodensystem.info/elemente/rubidium/

[Chemie.de] Form und Stärke des Erdmagnetfelds chemie.de/lexikon/Erdmagnetfeld

[KAERI] Nuklidkarte des Korea Atomic Energy Research Institute atom.kaeri.re.kr/

Literatur