Приклади виконання обов'язкових завдань за темою 6 (4.2)

Завдання 4. Виконати вказані дії. Наведено два приклади.

ПРИКЛАД 1

 $U=(x-2y)^{lnz}$, знайти dU $(1;-1;e^2)$, тобто знайти повний диференціал ФБЗ $U=(x-2y)^{lnz}$ у точці з координатами $(1;-1;e^2)$.

Розв'язання завдання 4, приклад 1

$$dU = U_x' dx + U_y' dy + U_z' dz$$

$$U'_{y} = \ln z \cdot (x - 2y)^{\ln z - 1} \cdot (-2) \Big|_{(1; -1; e^{2})}$$
$$= 2 \cdot (1 + 2)^{2 - 1} \cdot (-2) = -12;$$

$$dU|_{(1;-1;e^2)} = 6dx - 12dy + \frac{\ln 3^9}{e^2}dz$$

Відома формула для визначення повного диференціала, конкретно для функції трьох змінних.

 $U'_{x} = \ln z \cdot (x - 2y)^{\ln z - 1} \Big|_{(1;-1;e^{2})} =$ $\begin{vmatrix} 3$ находимо частинні похідні і обчислюємо їх у заданій точці. Враховуємо, що $\ln e^{2} = 2$.

$$U'_{y} = \ln z \cdot (x-2y)^{\ln z-1} \cdot (-2)\Big|_{(1;-1;e^{2})} = \begin{vmatrix} U'_{z} = (x-2y)^{\ln z} \cdot \ln(x-2y) \cdot \frac{1}{z}\Big|_{(1;-1;e^{2})} = \\ = 2 \cdot (1+2)^{2-1} \cdot (-2) = -12; \end{vmatrix} = (1+2)^{2} \ln (1+2) / e^{2} = \ln 3^{9} / e^{2}$$
 Повний диференціал у заданій точці з

ПРИКЛАД 2

 $z = arcsin \frac{x}{y}$. Показати, що $\frac{x}{y} \cdot z'_x + z'_y = 0$.

Розв'язання завдання 4, приклад 2

$$z_{x}' = \frac{1}{\sqrt{1 - \left(\frac{x}{y}\right)^{2}}} \cdot \frac{1}{y}; \ z_{y}' = \frac{1}{\sqrt{1 - \left(\frac{x}{y}\right)^{2}}} \cdot \frac{-x}{y^{2}}.$$
 Знаходимо частинні похідні для підстановки у заданий вираз.
$$\frac{x}{y} \cdot \frac{1}{\sqrt{1 - \left(\frac{x}{y}\right)^{2}}} \cdot \frac{1}{y} + \frac{1}{\sqrt{1 - \left(\frac{x}{y}\right)^{2}}} \cdot \frac{-x}{y^{2}} = 0$$
 Зробимо підстановку. Що і треба було показати.

Завдання 5. Дослідити функцію на безумовний (локальний) екстремум. Наведено три приклади.

ПРИКЛАД 1

$$z=2x^3+xy^2+5x^2+y^2$$

Дослідити на екстремум функцію двох змінних z=z(x,y).

Розв'язання завдання 5, приклад 1

I eman: визначення точок можливого екстремуму - критичних, у нашому випадку тільки стаціонарних точок.

$$\begin{cases} z'_{x} = 0, \\ z'_{y} = 0' \end{cases} \begin{cases} 6x^{2} + y^{2} + 10x = 0, \\ 2xy + 2y = 0 \end{cases},$$

$$\begin{cases} 2x(3x+5) = -y^{2}, \\ 2y(x+1) = 0 \end{cases},$$

$$\begin{cases} x = 0, \\ y = 0 \end{cases} \begin{cases} x = -5/3, \\ y = 0 \end{cases},$$

$$\begin{cases} x = -1, \\ y = 2 \end{cases} \begin{cases} x = -1, \\ y = -2 \end{cases}$$

$$M_{1}(0;0); M_{2}(-5/3;0);$$

$$M_{3}(-1;2); M_{4}(-1;-2).$$

За необхідною умовою існування екстремуму знаходимо частинні похідні першого порядку і дорівнюємо їх нулю.

Розв'язуємо одержану систему рівнянь. З другого рівняння або y=0, або x=-1. Підставляючи послідовно ці значення в перше рівняння, одержимо чотири варіанти рішення системи.

Тобто чотири стаціонарних точки.

 $II\ eman$: перевірка виконання достатніх умов існування екстремуму в знайдених на $I\ eman$ стаціонарних точках.

$$z''_{xx} = 12x + 10;$$

 $z''_{xy} = 2y;$
 $z''_{yy} = 2x + 2.$

Знайдемо частинні похідні другого порядку. Далі для перевірки знака $d^2 z$ у кожній стаціонарній точці обчислимо значення других похідних.

$$\underline{M_{1}(0;0)} \\
z''_{xx} = 10; \ z''_{xy} = 0; \ z''_{yy} = 2, \\
d^{2}z(M_{1}) = 10 \cdot dx^{2} + 2 \cdot dy^{2} > 0, \\
\underline{z_{min}} = z(0;0) = 0.$$

Другий диференціал в точці M_I має вид суми невід'ємних доданків, тобто є невід'ємним, виконується достатня умова існування локального мінімуму.

Зауваження. Можна використати і критерій Сильвестра, що в даному випадку буде виглядати так: $\Delta_1 = 10 > 0$; $\Delta_2 = \begin{vmatrix} 10 & 0 \\ 0 & 2 \end{vmatrix} = 20 > 0$; усі головні діагональні мінори невід'ємні, $d^2 z(M_1) > 0$, у точці $M_I(0,0)$ функція має мінігональні мінори невід'ємні, $d^2 z(M_1) > 0$, у точці $d^2 z$

мум, що дорівнює 0.

 $\frac{M_2(-5/3;0)}{z''_{xx}} = -10; \ z''_{xy} = 0; \ z''_{yy} = -4/3,$ $d^2 z(M_2) = -20 \cdot dx^2 - (4/3) \cdot dy^2 < 0,$ $\underline{z_{max}} = \underline{z(-5/3;0)} = 2 \cdot (-5/3)^3 + 5 \cdot (-5/3)^2$ $\underline{z_{max}} = 125/27.$

$$\frac{M_3(-1;2)}{z''_{xx} = -2; \ z''_{xy} = 4; \ z''_{yy} = 0.}$$

$$\Delta_1 = -2 < 0; \ \Delta_2 = \begin{vmatrix} -2 & 4 \\ 4 & 0 \end{vmatrix}_{M} = -16 < 0$$

Очевидно, другий диференціал у точці M_2 від'ємний, виконується достатня умова існування локального максимуму.

У точці M_3 для визначення знаку d^2z запишемо головні діагональні мінори. Другий диференціал в точці по правилу Сильвестра-Якобі не визначений по знаку, екстремум не існує.

$$\begin{split} & \underline{M_4}(-1;-2) \\ & z''_{xx} = -2; \ z''_{xy} = -4; \ z''_{yy} = 0. \\ & \Delta_1 = -2 < 0; \\ & \Delta_2 = \begin{vmatrix} -2 & -4 \\ -4 & 0 \end{vmatrix} \bigg|_{M_4} = -16 < 0 \end{split}$$

Також, як і у точці M_3 , екстремум не існує і в точці M_4 .

ПРИКЛАД 2

$$u=x^2+y^2+z^2+2x+4y-6z$$

Дослідити на екстремум функцію трьох змінних u=u(x,y,z).

Розв'язання завдання 5, приклад 2

I eman: визначення точок можливого екстремуму - критичних, у нашому випадку тільки стаціонарних точок.

$$u_x' = 2x + 2 = 0;$$

 $u_y' = 2y + 4 = 0; \implies M(-1; -2; 3)$
 $u_z' = 2z - 6 = 0$

Одержана система має єдине рішення, одна стаціонарна точка.

II eman: перевірка виконання достатньої умови існування екстремуму в точціM

$$u_{xx}'' = 2$$
, $u_{yy}'' = 2$, $u_{zz}'' = 2$,
 $u_{xy}'' = 0$, $u_{xz}'' = 0$.

$$d^{2} u(M) = 2(\cdot dx^{2} + dy^{2} + dz^{2}) > 0,$$

$$u_{min} = u(-1; -2; 3) = -14.$$

Знайдемо другі частинні похідні і обчислимо їх значення у точці M. (Зауважимо, що у цієї задачі їх значення не залежать від координат точки).

Отже, другий диференціал є знакододатна квадратична форма. Тому у точці M(-1,-2,3)функція має мінімум.

Зауваження. Можна використати і критерій Сильвестра, що у даному випадку буде мати такий вигляд:

$$\Delta_1 = 2 > 0$$
; $\Delta_2 = \begin{vmatrix} 2 & 0 \\ 0 & 2 \end{vmatrix} = 4 > 0$; $\Delta_3 = \begin{vmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{vmatrix} = 8 > 0$, всі головні діагональні

мінори додатні, $d^2 u(M) > 0$, в точці M(-1,-2,3) функція має мінімум.

ПРИКЛАД 3

$$z = e^{3y}(x^2 + 4x + 4 + y^2)$$

Дослідити на екстремум функцію двох змінних.

Розв'язання завдання 5, приклад 3

$$z'_{x} = e^{3y}(2x+4) = 0;$$

 $z'_{y} = 3e^{3y}(x^{2}+4x+4+y^{2})+e^{3y}\cdot 2y = 0.$

 $z'_{x} = e^{3y}(2x+4) = 0;$ $z'_{y} = 3e^{3y}(x^2+4x+4+y^2) + e^{3y} \cdot 2y = 0;$ I *емап*: Із системи, що висловлює необхідну умову існування екстремуму, знаходимо стаціонарні

точки.

$$\begin{cases} x = -2; \\ 3y^2 + 2y = 0 \end{cases}$$
 Так як $e^{3y} \neq 0$, скорочуємо на нього обидва рівняння. Одержаний з першого рівняння x підставимо у друге рівняння, одержимо два значення y .

$$M_1(-2; 0); M_2(-2; -2/3);$$
 Отже, маємо дві стаціонарні точки. $z''_{xx} = 2e^{3y}; z''_{xy} = 3e^{3y}(2x+4);$ $II \ eman:$ знаходимо похідні другого порядку.

$$z_{yy}'' = 3e^{3y}(3(x^2+4x+4+y^2)+2y)+e^{3y}(6y+2)$$
. Ні другого порядку. $\underline{M_I(-2;0)};$ $z_{xx}'' = 2;$ $z_{xy}'' = 0;$ $z_{yy}'' = 2;$ Другий диференціал є знакододатна квадератична форма. Тому у точці $M_I(-2;0)$ функція має мінімум. $\underline{M_2(-2;-2/3)};$ $\underline{M_2(-2;-2/3)};$

 $\frac{M_{I}(-2, 0)}{z''_{xx}} = 2; z''_{xy} = 0; z''_{yy} = 2;$ $d^2 z(M_I) = 2 \cdot dx^2 + 2 \cdot dy^2 > 0,$ $z_{xx} = z(-2; 0) = 0.$ Другий диференціал є знакододатна квадратична форма. Тому у точці $M_I(-2; 0)$ функція має мінімум.

$$\Delta_1 = 2e^{-2} > 0; \ \Delta_2 = \begin{vmatrix} 2e^{-2} & 0 \\ 0 & -2e^{-2} \end{vmatrix} = -4e^{-4} < 0;$$

по правилу Сильвестра-Якобі другий диференціал не визначений по знаку у точці M_2 , тому у точці M_2 екстремуму нема.

Завдання 6.

Знайти умовний екстремум функції $z=ax^2+by^2$ при cx+dy=1 двома способами:

- а) за допомогою функції Лагранжа;
- б) зведенням задачі до задачі про безумовний екстремум.

ПРИКЛАД

N₂	а	b	c	d	k
*	2	1	5	-3	7

$$z=2x^2+y^2$$
 при $5x-3y=1$.

Розв'язання завдання 6

$$L=2x^{2}+y^{2}+\lambda (5x-3y-1);$$

$$L'_{x}=4x+5\lambda =0;$$

$$L'_{y}=2y -3\lambda =0;$$

$$L'_{\lambda}=5x-3y-1 =0;$$

 $L'_{x}=4x+5\lambda=0;$ $L'_{y}=2y-3\lambda=0;$ $L'_{\lambda}=5x-3y-1=0;$ а) Складемо функцію Лагранжа і запишемо систему необхідних умов існування екстремуму.

 $x=-5\lambda/4$: $v=3\lambda/2$: $-25\lambda/4-9\lambda/2$ -1 =0; λ =-4/43 $x=-5\lambda/4=5/43;$ $y=3\lambda/2=-6/43;$ Стаціонарна точка і відповідний їй параметр λ визначені . $L''_{xx}=4; L''_{yy}=2; L''_{xy}=0;$

Рішення системи можна знайти, наприклад, одержавши з перших двох рівнянь невідомі х i y через λ , далі підставив їх в останнє рівняння.

Для перевірки достатньої умови знай-

$$d^{2}L(M)=4\cdot dx^{2}+2 dy^{2}>0,$$

 $\Rightarrow min$
 $z_{min}=z(5/43; -6/43)=2/43.$

демо похідні другого порядку. В точці M знаходиться мінімум.

$$z=2x^2+y^2$$
 при $5x-3y=1$;

$$y=(5x-1)/3;$$

 $z*=2x^2+(5x-1)^2/9$

$$z^*=2x^2+(5x-1)^2/9$$
 FO IIIA
 $(z^*)'_x=4x+2\cdot 5(5x-1)/9=0$
 $86x=10; x=5/43$
 $M^*(5/43)$

$$M*(5/43)$$
, димо $M(5/43; -6/43)$ дя. Од $(z^*)''_{xx}=4>0$ $d^2z^*(M)=4\cdot dx^2>0$, \Rightarrow min $z_{min}=z(5/43; -6/43)=86/43^2=2/43$.

б) Якщо умова зв'язку задана лінійною залежністю, або функцією, з якої неважко одержати одну змінну через інші, то можна звести задачу про умовний екстремум до задачі про безумовний екстремум. Для цього одержимо з умови зв'язку, наприклад, змінну у і підставимо у функцію цілі z.

Нова функція z^* залежить від однієї змінної, досліджується на безумовний екстремум. Знаходимо одну похідну (по x) і дорівнюємо її до нуля. Одержимо єдину стаціонарну точку.

> Перевіримо виконання достатньої умови. В знайденій точці знаходиться мінімум.

Завдання 7.

Сумарний прибуток підприємства залежить від витрат двох видів ресурсів x і y та висловлюється функцією z = z(x, y). Знайти витрати ресурсів x і у, що забезпечує максимальний прибуток підприємства, і знайти цей максимальний прибуток.

ПРИКЛАД

$$z(x,y) = -1600 - x^2 - 3y^2 - 60x + 150y + 3xy$$

Розв'язання завдання 7

З точки зору математики треба розв'язати задачу про визначення максимального значення функції двох змінних, тобто знайти значення змінних, при яких функція приймає максимальне значення.

$$z'_x = -2x-60+3y=0$$
; abo $-2x+3y=60$; $x=30$
 $z'_y = -6y+150+3x=0$; $x-2y=-50$; $\Rightarrow y=40$
 $M(30; 40)$;

Із системи, що висловлює необхідну умову існування екстремуму, знаходимо стаціонарну точку.

$$z''_{xx}=-2; z''_{xy}=3; z''_{yy}=-6;$$

$$\Delta_1 = -2 < 0;$$

$$\Delta_2 = \begin{vmatrix} -2 & 3 \\ 3 & -6 \end{vmatrix} \Big|_{M} = 12-9 > 0$$

$$z_{max} = z(30;40) = -1600-900-4800-1800+6000+3600=500$$

Перевіряємо достатню умову існування екстремуму в одержаній точці. Відповідно правилу Сильвестра-Якобі в точці M знаходиться максимум функції прибутку.

Витрати ресурсів x=30 гр.од., y=40 гр.од. забезпечать підприємству максимальний прибуток $z_{max}=500$ гр.од.