Grundbegriffe der Informatik Aufgabenblatt 6

Matr.nr.:						
Nachname:						
Vorname:						
Tutorium:	Nr.		N	ame	des Tutors:	
Ausgabe:	26. Nov	ember	2014			
Abgabe:	5. Deze	ezember 2014, 12:30 Uhr				
	im GBI-Briefkasten im Untergeschoss					
	von Gebäude 50.34					
Lösungen werden nur korrigiert, wenn sie						
• rechtzeitig,						
• in Ihrer eigenen Handschrift,						
 mit dieser Seite als Deckblatt und 						
 in der oberen linken Ecke zusammengeheftet 						
abgegeben werden.						
Vom Tutor auszufüllen:						
erreichte Pu	nkte					
Blatt 6:			/ 16+4	4		
Blätter 1 – 6:		/	99 + 12	7		

Vorbemerkung. Für alle Aufgaben auf diesem Blatt gelten die folgenden Annahmen, ohne dass sie jedes Mal erneut aufgeführt werden:

- Die Menge der möglichen Werte für eine Variable ist Z, sofern nicht ausdrücklich etwas anderes angegeben ist.
- Alle Variablen sind initialisiert. Der Anfangswert ist aber nicht immer explizit angegeben.
- Zu einer Anweisungsfolge S und einer Nachbedingung Q heißt P eine schwächste Vorbedingung, wenn $\{P\}$ S $\{Q\}$ ein gültiges Hoare-Tripel ist und für jedes gültige Hoare-Tripel $\{P'\}$ S $\{Q\}$ gilt: $P' \Longrightarrow P$.
- Zu einer Anweisungsfolge S und einer Vorbedingung P heißt Q eine stärkste Nachbedingung, wenn $\{P\}$ S $\{Q\}$ ein gültiges Hoare-Tripel ist und für jedes gültige Hoare-Tripel $\{P\}$ S $\{Q'\}$ gilt: $Q \Longrightarrow Q'$.

Aufgabe 6.1 (1 + 2 + 2 = 5 Punkte)

a) Es seien *x* und *y* zwei Variablen und es seien *a* und *b* zwei ganze Zahlen. Bestimmen Sie anhand des Hoare-Kalküls die schwächste Vorbedingung von

$$x \leftarrow x + y$$

$$y \leftarrow x - y$$

$$x \leftarrow x - y$$

$$\{x = b \land y = a\}$$

indem Sie vor jeder Zuweisung eine Zusicherung einfügen.

b) Es seien *x* und *y* zwei Variablen und es seien *a* und *b* zwei ganze Zahlen. Weiter bezeichne min die Abbildung

$$\mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \colon (u, v) \mapsto \begin{cases} u, & \text{falls } u < v, \\ v, & \text{falls } u \ge v, \end{cases}$$

und es bezeichne max die Abbildung

$$\mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \colon (u,v) \mapsto u + v - \min(u,v).$$

Geben Sie eine stärkste Nachbedingung Q von

$$\{x = a \land y = b\}$$
if $x < y$ then
$$z \leftarrow x$$
else
$$z \leftarrow y$$
fi

c) Es sei n eine nicht-negative ganze Zahl, es sei A ein Alphabet und es sei y eine Variable, deren Wertebereich die Menge der Listen von n Wörtern ist, also die Menge der Abbildungen $\mathbb{Z}_n \to A^*$. Weiter seien a und b zwei Wörter über dem Alphabet A. Ferner seien i und j zwei nicht-negative ganze Zahlen so, dass $i \le n-1$ und $j \le n-1$. Geben Sie eine schwächste Vorbedingung von

$$y[i] \leftarrow a$$
$$y[j] \leftarrow b$$
$$\{y[i] = a \land y[j] = b\}$$

an.

Hinweis: Hier müssen Sie nachdenken. Schematisches Vorgehen hilft nicht.

Aufgabe 6.2 (1+2=3 Punkte)

In dieser Aufgabe geht es um bedingte Anweisungen der Form if B then S fi.

- a) Drücken Sie eine solche Anweisung mithilfe einer bedingten Anweisung mit **else**-Teil aus. Sie dürfen die Variable *y* benutzen (die möglicherweise in *B* oder/und *S* vorkommt).
- b) Geben Sie eine schwächste Bedingung an, unter der das Hoare-Tripel $\{P\}$ if B then S fi $\{Q\}$ gültig ist.

Aufgabe 6.3 (2+2=4 Punkte)

Anhand eines Minimalmaschinenprogramms wurde in der letzten Übung die folgende Schleife spezifiziert:

repeat
$$S$$
 until B end

- a) Drücken Sie diese mithilfe einer **while**-Schleife aus. Zur Negierung eines booleschen Ausdrucks dürfen Sie das Schlüsselwort **not** verwenden.
- b) Zeigen Sie mithilfe der vorangegangenen Teilaufgabe, dass aus der Gültigkeit des Hoare-Tripels

$${I \wedge \neg B}S{I}$$

die Gültigkeit des Hoare-Tripels

$$\{I \wedge \neg B\}$$

repeat
 S
until B end
 $\{I \wedge B\}$

Aufgabe 6.4 (4 Punkte)

Es sei n eine positive ganze Zahl und es sei $a: \mathbb{Z}_n \to \mathbb{Z}$ eine Abbildung. Weiter seien z und x zwei ganzzahlige Variablen. Zeigen Sie anhand des Hoare-Kalküls und mithilfe einer Schleifeninvariante, dass das folgende Hoare-Tripel gültig ist:

```
 \begin{aligned} &\{ \mathbf{true} \} \\ &z \leftarrow a(0) \\ &x \leftarrow 1 \\ &\mathbf{while} \ x \leq n-1 \ \mathbf{do} \\ &\mathbf{if} \ a(x) < z \ \mathbf{then} \\ &z \leftarrow a(x) \\ &\mathbf{else} \\ &z \leftarrow z \\ &\mathbf{fi} \\ &x \leftarrow x+1 \\ &\mathbf{od} \\ &\{ z = \min_{i \in \mathbb{Z}_n} a(i) \} \end{aligned}
```

*Aufgabe 6.5 (4 Extrapunkte)

Für jede ganze Zahl a bezeichne p(a) die prädikatenlogische Formel

$$a \geq 2 \wedge \forall b \in \mathbb{Z} \colon (2 \leq b \wedge b \leq a \implies b \cdot b \neq a).$$

Es seien *x* und *y* zwei initialisierte ganzzahlwertige Variablen und es sei *z* eine boolesche Variable. Zeigen Sie anhand des Hoare-Kalküls und mithilfe einer Schleifeninvariante, dass das folgende Hoare-Tripel gültig ist:

$$\{x \ge 2\}$$

$$z \leftarrow \mathbf{true}$$

$$y \leftarrow 2$$

$$\mathbf{while} \ y \le x \ \mathbf{do}$$

$$\mathbf{if} \ y \cdot y = x \ \mathbf{then}$$

$$z \leftarrow \mathbf{false}$$

$$\mathbf{fi}$$

$$y \leftarrow y + 1$$

$$\mathbf{od}$$

$$\{z = p(x)\}$$