# CS4670/5670: Intro to Computer Vision Noah Snavely

Eigenfaces



# What makes face recognition hard?

Expression



# What makes face recognition hard?

### Lighting









slide courtesy from Derek Hoiem

# What makes face recognition hard?

#### Occlusion



# What makes face recognition hard?

#### Viewpoint



slide courtesy from Derek Hoiem

# Face detection





• Do these images contain faces? Where?

# Simple idea for face recognition

1. Treat face image as a vector of intensities



2. Recognize face by nearest neighbor in database



# The space of all face images

- When viewed as vectors of pixel values, face images are extremely high-dimensional
  - 100x100 image = 10,000 dimensions
  - Slow and lots of storage
- But very few 10,000-dimensional vectors are valid face images
- · We want to effectively model the subspace of face images



# The space of all face images

 Eigenface idea: construct a low-dimensional linear subspace that best explains the variation in the set of face images



### Linear subspaces



convert  $\mathbf{x}$  into  $\mathbf{v_1}$ ,  $\mathbf{v_2}$  coordinates

$$\mathbf{x} \to ((\mathbf{x} - \overline{x}) \cdot \mathbf{v}_1, (\mathbf{x} - \overline{x}) \cdot \mathbf{v}_2)$$

What does the v<sub>2</sub> coordinate measure?

- distance to line
- use it for classification-near 0 for orange pts

What does the  $v_1$  coordinate measure?

- position along line
- use it to specify which orange point it is

Classification can be expensive

- Must either search (e.g., nearest neighbors) or store large PDF's
   Suppose the data points are arranged as above
  - · Idea—fit a line, classifier measures distance to line

### Dimensionality reduction



How to find  $\mathbf{v}_1$  and  $\mathbf{v}_2$ ?

#### Dimensionality reduction

- We can represent the orange points with only their v<sub>1</sub> coordinates
   since v<sub>2</sub> coordinates are all essentially 0
- · This makes it much cheaper to store and compare points
- · A bigger deal for higher dimensional problems

### Linear subspaces



Consider the variation along direction **v** among all of the orange points:

$$var(\mathbf{v}) = \sum_{\text{orange point } \mathbf{x}} \|(\mathbf{x} - \overline{\mathbf{x}})^T \cdot \mathbf{v}\|^2$$

What unit vector v minimizes var?

$$\mathbf{v}_2 = min_{\mathbf{v}} \left\{ var(\mathbf{v}) \right\}$$

What unit vector **v** maximizes var?

$$\mathbf{v}_1 = max_{\mathbf{v}} \{var(\mathbf{v})\}$$

 $\vec{R}$ 

$$var(\mathbf{v}) = \sum_{\mathbf{x}} \|(\mathbf{x} - \overline{\mathbf{x}})^{\mathrm{T}} \cdot \mathbf{v}\|^{2}$$

$$= \sum_{\mathbf{x}} \mathbf{v}^{\mathrm{T}} (\mathbf{x} - \overline{\mathbf{x}}) (\mathbf{x} - \overline{\mathbf{x}})^{\mathrm{T}} \mathbf{v}$$

$$= \mathbf{v}^{\mathrm{T}} \left[ \sum_{\mathbf{x}} (\mathbf{x} - \overline{\mathbf{x}}) (\mathbf{x} - \overline{\mathbf{x}})^{\mathrm{T}} \right] \mathbf{v}$$

$$= \mathbf{v}^{\mathrm{T}} \mathbf{A} \mathbf{v} \text{ where } \mathbf{A} = \sum_{\mathbf{x}} (\mathbf{x} - \overline{\mathbf{x}}) (\mathbf{x} - \overline{\mathbf{x}})^{\mathrm{T}}$$

Solution:  $\mathbf{v_1}$  is eigenvector of  $\mathbf{A}$  with  $\mathit{largest}$  eigenvalue  $\mathbf{v_2}$  is eigenvector of  $\mathbf{A}$  with  $\mathit{smallest}$  eigenvalue

# Principal component analysis

Suppose each data point is N-dimensional

· Same procedure applies:

$$\begin{split} \mathit{var}(\mathbf{v}) &= \sum_{\mathbf{x}} \|(\mathbf{x} - \overline{\mathbf{x}})^T \cdot \mathbf{v}\| \\ &= \mathbf{v}^T \mathbf{A} \mathbf{v} \ \text{ where } \mathbf{A} = \sum_{\mathbf{x}} (\mathbf{x} - \overline{\mathbf{x}}) (\mathbf{x} - \overline{\mathbf{x}})^T \end{split}$$

- · The eigenvectors of A define a new coordinate system
  - eigenvector with largest eigenvalue captures the most variation among training vectors x
  - eigenvector with smallest eigenvalue has least variation
- · We can compress the data by only using the top few eigenvectors
  - corresponds to choosing a "linear subspace"
    - » represent points on a line, plane, or "hyper-plane"
  - these eigenvectors are known as the *principal components*

# The space of faces



An image is a point in a high dimensional space

- An N x M intensity image is a point in  $R^{\text{NM}}$
- · We can define vectors in this space as we did in the 2D case

# Dimensionality reduction



The set of faces is a "subspace" of the set of images

- Suppose it is K dimensional
- · We can find the best subspace using PCA
- This is like fitting a "hyper-plane" to the set of faces
  - spanned by vectors  $\mathbf{v_1}, \, \mathbf{v_2}, \, ..., \, \mathbf{v_K}$
  - any face  $\mathbf{x} \approx \overline{\mathbf{x}} + a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 + \ldots + a_k \mathbf{v}_k$

# Eigenfaces example

Top eigenvectors: u<sub>1</sub>,...u<sub>k</sub>

Mean: µ





### Representation and reconstruction

• Face x in "face space" coordinates:



$$\mathbf{x} \to [\mathbf{u}_1^{\mathrm{T}}(\mathbf{x} - \mu), \dots, \mathbf{u}_k^{\mathrm{T}}(\mathbf{x} - \mu)]$$
  
=  $w_1, \dots, w_k$ 

slide courtesy from Derek Hoiem

# Representation and reconstruction

• Face **x** in "face space" coordinates:



$$\mathbf{x} \to [\mathbf{u}_1^{\mathrm{T}}(\mathbf{x} - \mu), \dots, \mathbf{u}_k^{\mathrm{T}}(\mathbf{x} - \mu)]$$
  
=  $w_1, \dots, w_k$ 

· Reconstruction:

#### Reconstruction

P = 4









P = 200









P = 400









After computing eigenfaces using 400 face images from ORL face database

slide courtesy from Derek Hoiem

# Detection and recognition with eigenfaces

#### Algorithm

- 1. Process the image database (set of images with labels)
  - Run PCA—compute eigenfaces
  - · Calculate the K coefficients for each image
- 2. Given a new image (to be recognized) x, calculate K coefficients

$$\mathbf{x} \to (a_1, a_2, \dots, a_K)$$

3. Detect if x is a face

$$\|\mathbf{x} - (\overline{\mathbf{x}} + a_1\mathbf{v}_1 + a_2\mathbf{v}_2 + \ldots + a_K\mathbf{v}_K)\| < \text{threshold}$$

- 4. If it is a face, who is it?
  - · Find closest labeled face in database
    - · nearest-neighbor in K-dimensional space

# Choosing the dimension K



How many eigenfaces to use?

Look at the decay of the eigenvalues

- the eigenvalue tells you the amount of variance "in the direction" of that eigenface
- · ignore eigenfaces with low variance



### Issues: metrics

#### What's the best way to compare images?

- · need to define appropriate features
- · depends on goal of recognition task



exact matching complex features work well (SIFT, MOPS, etc.)











classification/detection simple features work well (Viola/Jones, etc.)

### Metrics

#### Lots more feature types that we haven't mentioned

- · moments, statistics
  - metrics: Earth mover's distance, ...
- · edges, curves
  - metrics: Hausdorff, shape context, ...
- 3D: surfaces, spin images
  - metrics: chamfer (ICP)
- •

### Issues: feature selection



If all you have is one image: non-maximum suppression, etc.



If you have a training set of images: AdaBoost, etc.

# Issues: data modeling

#### Generative methods

- · model the "shape" of each class
  - histograms, PCA, mixtures of Gaussians
  - graphical models (HMM's, belief networks, etc.)
  - \_ ...

#### Discriminative methods

- · model boundaries between classes
  - perceptrons, neural networks
  - support vector machines (SVM's)





# Moving forward

- · Faces are pretty well-behaved
  - Mostly the same basic shape
  - Lie close to a low-dimensional subspace
- Not all objects are as nice

