Tree-based methods

Hastie, Tibshirani, Friedman Ch 9.2, Ch 10

Kevin Murphy Ch. 16.1-16.4

James, Witten, Hastie, Tibshirani Ch 8

CS 6140 Machine Learning Professor Olga Vitek

March 23, 2017

Decision trees

See handout (no author)

Overview: recursive partitioning

Fig. 9.2. Hastie, Tibshirani, Friedman *The Elements of Statistical Learning* 2008

Example: categorical response credit score classification

Record	age	married?	own house	income	gender	class
1	22	no	no	28,000	male	bad
2	46	no	yes	$32,\!000$	female	bad
3	24	yes	yes	24,000	male	bad
4	25	no	no	$27,\!000$	male	bad
5	29	yes	yes	$32,\!000$	female	bad
6	45	yes	yes	30,000	female	good
7	63	yes	yes	58,000	male	good
8	36	yes	no	$52,\!000$	male	good
9	23	no	yes	40,000	female	good
10	50	yes	yes	28,000	female	good

Credit score classification

Quality of split

- Choose split to minimize node "impurity"
 - Define as function of relative class frequencies $i(t) = \phi(p_1, p_2, \dots, p_J)$ with J classes
 - i(t) maximized at $\left(\frac{1}{J},\frac{1}{J},\ldots,\frac{1}{J}\right)$
 - -i(t) minimized at $(0,0,\ldots,1)$ (for some class)
 - -i(t) is symmetric function of (p_1, p_2, \ldots, p_J)
- Quality of split s at node t
 - $\Delta i(s,t) = i(t) \pi(l) \, i(l) \pi(r) \, i(r)$, where $\pi(l)$ is the proportion of points sent to the left $\pi(r)$ is the proportion of points sent to the right

Measures of node impurity

- Resubstitution error: $i(t) = 1 \max_{j} p(j|t)$
 - -p(j|t): relative frequency of class j in node t
 - -i(t): % of misclassified cases
 - Node impurity simplifies to $\Delta i(s,t) = \max_{j} \ p(j|l) \, \pi(l) + \max_{j} \ p(j|r) \, \pi(r) \max_{j} \ p(j|t)$
 - Problem: ignores where misclassification occurs
 - Below: same impurity; prefer split to the right
 - Ideally, ϕ would be concave (impurity would decrease faster than linearly)

Concave measures of impurity

- Gini index
 - Two classes:

$$i(t) = p(0|t) p(1|t) = p(0|t) (1 - p(0|t))$$

Multiple classes

$$i(t) = \sum_{j=1}^{J} p(j|t) (1 - p(j|t))$$

- Variance of Bernoulli drawing from this class
- Entropy
 - Two classes:

$$i(t) = -p(0|t) \log p(0|t) - p(1|t) \log p(1|t)$$

Multiple classes

$$i(t) = -\sum_{j=1}^{J} p(j|t) \log p(j|t)$$

— Average amount of info gathered by drawing a point from the node. Pure node \rightarrow no info.

Measures of node impurity

Two-class example; Entropy scaled to max=0.5

General properties:

- $\phi(0) = \phi(1) = 0$
- $\phi(p) = \phi(p(1-p))$
- $\phi''(p) < 0$, 0

Fig. 9.3. Hastie, Tibshirani, Friedman

The Elements of Statistical Learning 2008

Search for splits

Income	Class	Quality (split after)
		0.25-
24	В	0.1(1)(0) + 0.9(4/9)(5/9) = 0.03
27	В	0.2(1)(0) + 0.8(3/8)(5/8) = 0.06
28	B,G	0.4(3/4)(1/4) + 0.6(2/6)(4/6) = 0.04
30	G	0.5(3/5)(2/5) + 0.5(2/5)(3/5) = 0.01
32	В,В	0.7(5/7)(2/7) + 0.3(0)(1) = 0.11
40	G	0.8(5/8)(3/8) + 0.2(0)(1) = 0.06
52	G	0.9(5/9)(4/9) + 0.1(0)(1) = 0.03
58	G	

- Split on one predictor at a time
 - X numeric:

 $X \leq constant$ for constant in range of XIn practice, split wrt distinct values of X

- X categorical with values in V: $X \in S$, S any subset of V
- Number of possible splits is finite

Tree construction

```
Algorithm: Construct tree nodelist \leftarrow {training sample} Repeat current node \leftarrow select node from nodelist nodelist \leftarrow nodelist - current node if impurity(current node) > 0 then S \leftarrow \text{candidate splits in current node} s^* \leftarrow \text{arg max}_{s \in S} \text{ impurity reduction(s, current node)} \text{child nodes} \leftarrow \text{apply(s*, current node)} \text{nodelist} \leftarrow \text{nodelist} \cup \text{child nodes} \text{fi} \text{Until nodelist} = \varnothing
```

- Local greedy search; globally suboptimal.
- (Partial) remedy: grow maximal tree, then prune

P	Q	P xor Q
1	1	0
1	0	1
0	1	1
0	0	0

Cost-complexity pruning

Notation

- Tree T, and maximal tree T_{max}
- -R(T) % of misclassified training set cases
- |T| tree size (i.e. # of terminal nodes)
- Total cost of the tree $C_{\alpha}(T) = R(T) + \alpha |T|$
- $-\alpha$: parameter penalizing tree complexity
- For every α , there exists a smallest subtree $T(\alpha)$ of T_{max} , such that:
 - No subtree of T_{max} has lower cost than $T(\alpha)$: $C_{\alpha}(T(\alpha)) = min_{T < T_{max}} C_{\alpha}(T)$
 - If there is a tie, we pick the smallest tree: If $C_{\alpha}(T) = C_{\alpha}(T(\alpha))$, then $T(\alpha) \leq T$

Consequence

- It is impossible to have two non-nested subtrees with same min cost
- Although α is continuous, only need a final set that changes tree structure

$$\{\alpha_1, \alpha_2, \ldots\} \to T_1 > T_2 > \ldots \{t_1\}$$

Cost-complexity pruning

- Cost of T_t :
 - as an intermediate node: $C_{\alpha}(T_t) = R(T_t) + \alpha |T_t|$
 - as a terminal node: $C_{\alpha}(t) = R(t) + \alpha \cdot 1$
- The pruned tree has the same cost-complexity as the original tree when $C_{\alpha}(t) = C_{\alpha}(T_t)$

$$R(T_t) + \alpha |T_t| = R(t) + \alpha \cdot 1$$
$$\alpha = \frac{R(t) - R(T_t)}{T - 1}$$

– For any t, when we increase α beyond this level, pruned tree is better

Cost-complexity pruning

Algorithm: Compute tree sequence

```
T_{1} \leftarrow T(0)
\alpha_{1} \leftarrow 0
k \leftarrow 1
While T_{k} > \{t_{1}\} do
For all non-terminal nodes t \in T_{k}
g_{k}(t) \leftarrow \frac{R(t) - R(T_{k,t})}{(|\tilde{T}_{k,t}| - 1)}
\alpha_{k+1} \leftarrow \min_{t} g_{k}(t)
Visit the nodes in top-down order and prune whenever g_{k}(t) = \alpha_{k+1} to obtain T_{k+1}
k \leftarrow k + 1
```

Example

