OSPFv2 (Single-Area) Konu Özeti

Hazırlayan: Furkan Yaşar in LinkedIn

Bu rehber, OSPFv2 (Open Shortest Path First) routing protokolünün single-area implementasyonu hakkında kapsamlı bilgi içermektedir.

1. OSPF Özellikleri ve Karakteristikleri

TEMEL BİLGİ: OSPF, link-state tabanlı bir routing protokolüdür ve RIP'in alternatifi olarak geliştirilmiştir. RIP'e göre daha hızlı yakınsama (convergence) ve büyük ağlarda ölçeklenebilirlik avantajları vardır.

OSPF Bileşenleri

OSPF, beş farklı paket türü kullanarak routing bilgisi alışverişi yapar:

Paket Tipi	Açıklama
Hello Paketi	Komşu router'ları keşfeder ve komşuluk ilişkisi kurar
Database Description (DBD)	Router'lar arasında veritabanı senkronizasyonunu kontrol eder
Link-State Request (LSR)	Router'dan router'a özel link-state kayıtları talep eder
Link-State Update (LSU)	Talep edilen link-state kayıtlarını gönderir
Link-State Acknowledgment (LSAck)	Diğer paket türlerini onaylar

OSPF Veritabanları

Veritabanı	Açıklama	Komut
Adjacency Database	Çift yönlü iletişim kurulan komşu router listesi	show ip ospf neighbor
Link-state Database (LSDB)	Ağdaki tüm router'lar hakkında bilgi içeren topoloji tablosu	show ip ospf database
Forwarding Database	Link-state veritabanı üzerinde SPF algoritması çalıştırılarak oluşturulan routing tablosu	show ip route

NOT: Bir alandaki (area) tüm router'lar aynı LSDB'ye sahiptir.

Link-State Operasyon Adımları

OSPF router'ları yakınsama (convergence) durumuna ulaşmak için şu adımları takip eder:

- 1. Komşuluk İlişkileri Kurma (Establish Neighbor Adjacencies)
- 2. Link-State Duyurularını Değiş Tokuş Etme (Exchange Link-State Advertisements)
- 3. Link-State Veritabanını Oluşturma (Build the Link State Database)
- 4. SPF Algoritmasını Çalıştırma (Execute the SPF Algorithm)
- 5. En İyi Rotayı Seçme (Choose the Best Route)

SPF (Shortest Path First) Algoritması

Router'lar, Dijkstra SPF algoritmasını kullanarak topoloji tablosunu oluşturur:

```
Router# show ip ospf # SPF algoritmas: calişma bilgilerini gösterir
Router# show ip ospf statistics # SPF hesaplama istatistikleri
```

ÖNEMLİ: SPF algoritması, hedefe ulaşmak için gereken kümülatif maliyete (cost) göre hesaplama yapar.

OSPF Cost Hesaplama:

Cost = Referans Bant Genişliği (100 Mbps) / Interface Bant Genişliği

Örnek: 10 Mbps Ethernet için cost = 100 / 10 = 10

Referans bant genişliği değiştirme: auto-cost reference-bandwidth 1000

Single-Area vs Multiarea OSPF

Tip	Açıklama	Avantajlar
Single-Area OSPF	Tüm router'lar tek bir alandadır (genellikle area 0)	Basit konfigürasyon, küçük ağlar için ideal
Multiarea OSPF	Hiyerarşik yapıda birden çok alan kullanılır	Küçük routing tabloları, daha az SPF hesaplaması, daha iyi ölçeklenebilirlik

MULTIAREA AVANTAJLARI:

- Küçük routing tabloları
- Daha az link-state update yükü
- Daha az SPF hesaplaması
- Hata İzolasyonu: Bir alandaki topoloji değişikliği diğer alanların SPF hesaplamasını tetiklemez
- Daha Küçük LSDB: Her router sadece kendi alanının topolojisini bilir

HIYERARŞİK YAPI: Multiarea OSPF'de tüm alanlar backbone area (area 0) bağlanmalıdır. Alanları birbirine bağlayan router'lara Area Border Router (ABR) denir.

OSPFv3 (IPv6 için OSPF)

OSPFv3, IPv6 prefix'leri için OSPFv2 eşdeğeridir:

- OSPFv3 ağ katmanı taşıması için IPv6 kullanır
- OSPFv3 Address Families özelliği ile hem IPv4 hem IPv6 desteği sağlar
- Hesaplama motoru olarak SPF algoritmasını kullanır
- IPv4'ten bağımsız süreçlere sahiptir

OSPFv2 vs OSPFv3 Farkları:

- OSPFv3 IPv6 adresleme kullanır
- OSPFv3 per-link tabanlıdır (per-değil)
- LSA tiplerinde değişiklikler vardır (ör. Link-LSA eklenmiştir)
- Kimlik doğrulama IPsec ile entegredir
- Instance ID kavramı eklenmiştir

```
Router(config)# ipv6 router ospf 1 # OSPFv3 süreci başlatma
Router(config-rtr)# router-id 1.1.1.1 # Router ID atama (IPv4 formatında)
```

2. OSPF Paketleri

OSPF, beş farklı paket türü kullanarak router'lar arasında iletişim kurar ve bilgi alışverişi yapar.

OSPF Paket Tipleri

Tip	Paket Adı	Açıklama
1	Hello	Komşuları keşfeder ve komşuluk ilişkisi kurar
2	Database Description (DBD)	Router'lar arasında veritabanı senkronizasyonu kontrol eder
3	Link-State Request (LSR)	Router'dan router'a özel link-state kayıtları talep eder
4	Link-State Update (LSU)	Talep edilen link-state kayıtlarını gönderir
5	Link-State Acknowledgment (LSAck)	Diğer paket türlerini onaylar

LSA (Link-State Advertisement) Tipleri

LSA Tipi	Açıklama
Tip 1 (Router LSA)	Her router tarafından oluşturulur, alan içinde flood edilir
Tip 2 (Network LSA)	DR tarafından oluşturulur, multiaccess ağları tanımlar
Tip 3 (Summary LSA)	ABR tarafından oluşturulur, alanlar arası route'ları tanımlar
Tip 5 (External LSA)	ASBR tarafından oluşturulur, dış OSPF alanındaki route'lar
Tip 7 (NSSA External LSA)	Not-So-Stubby Area'lar için kullanılır

Link-State Updates (LSU)

LSU paketleri, OSPF routing güncellemelerini iletmek için kullanılır:

- Bir LSU paketi 11 farklı OSPFv2 LSA türü içerebilir
- LSU ve LSA terimleri sıklıkla karıştırılır: LSU paketleri LSA mesajlarını içerir

ÖNEMLİ AYRIM: LSU bir paket türüdür, LSA ise bu paket içinde taşınan bilgidir.

Hello Paketi Yapısı

Byte 0	Byte 1	Byte 2-3	Byte 4-7
Version (2)	Type (1)	Packet Length	
Router ID			
Area ID			
Checksum		AuType	
Authentication (64-bit)			
Network Mask			
Hello Int	Options	Rtr Pri	Dead Int
Designated Router (DR)			
Backup Designated Router (BDR)			
Active Neighbor List (Router IDs)			
	OSPF Hello Paketi	Detaylı Yapısı	

Hello paketlerinin fonksiyonları:

- OSPF komşularını keşfetmek ve komşuluk ilişkisi kurmak
- İki router'ın komşu olabilmesi için anlaşması gereken parametreleri duyurmak
- Ethernet gibi multiaccess ağlarda Designated Router (DR) ve Backup Designated Router (BDR) seçimi yapmak

3. OSPF Operasyonu

OPERASYONEL SÜREÇ: OSPF router'ları, komşuluk kurmak ve routing bilgisi alışverişi yapmak için bir dizi durumdan (state) geçer.

OSPF Operasyonel Durumları

Durum	Açıklama
Down State	 Hello paketleri alınmadı Router Hello paketleri gönderir Init durumuna geçiş
Init State	 Komşudan Hello paketleri alınır Paketler gönderen router'ın Router ID'sini içerir Two-Way durumuna geçiş
Two-Way State	 İki router arasında çift yönlü iletişim kurulur Multiaccess link'lerde DR ve BDR seçimi yapılır ExStart durumuna geçiş
ExStart State	Point-to-point ağlarda, hangi router'ın DBD paket değişimini başlatacağı ve başlangıç DBD paket sıra numarası kararlaştırılır
Exchange State	 Router'lar DBD paketlerini değiş tokuş eder Ek router bilgisi gerekiyorsa Loading durumuna geçilir; aksi halde Full durumuna geçilir
Loading State	 Ek route bilgisi için LSR ve LSU kullanılır SPF algoritması kullanılarak route'lar işlenir Full durumuna geçiş
Full State	Router'ın link-state veritabanı tamamen senkronizedir

Komşuluk İlişkileri Kurma

Router'lar komşu olup olmadığını belirlemek için:

- OSPF etkin tüm arayüzlerden Router ID içeren bir Hello paketi gönderir
- Hello paketleri, rezerve edilmiş "All OSPF Routers" IPv4 multicast adresi olan 224.0.0.5'e gönderilir
- OSPF Router ID, OSPF alanındaki her router'ı benzersiz şekilde tanımlamak için kullanılır (IPv4 adres formatında 32-bit sayı)
- Komşu listesinde olmayan bir Router ID içeren Hello paketi alındığında, alıcı router başlatan router ile komşuluk ilişkisi kurmaya çalışır

OSPF Veritabanlarını Senkronize Etme

Two-Way durumundan sonra router'lar veritabanı senkronizasyon durumlarına geçer:

- 1. İlk router seçimi: En yüksek Router ID'ye sahip router DBD'yi ilk gönderir
- 2. **DBD değişimi:** Veritabanını iletmek için gerektiği kadar DBD gönderilir. Diğer router her DBD'yi LSAck paketi ile onaylamalıdır
- 3. **LSR gönderme:** Her router DBD bilgisini yerel LSDB ile karşılaştırır. DBD daha güncel link bilgisine sahipse router loading durumuna geçer
- 4. **LSU ile güncelleme:** Eksik veya güncel olmayan bilgiler LSU paketleri ile güncellenir
- 5. LSAck onayı: Alınan LSU'lar LSAck paketleri ile onaylanır

Tüm LSR'ler değiş tokuş edilip karşılandığında router'lar senkronize kabul edilir ve full durumuna geçer. Güncellemeler (LSU'lar) şu durumlarda gönderilir:

- Bir değişiklik algılandığında (incremental updates)
- Her 30 dakikada bir (periyodik güncellemeler)

Designated Router (DR) İhtiyacı

Multiaccess ağlar, OSPF için LSA flooding konusunda iki zorluk oluşturur:

- **Çoklu komşuluk ilişkileri:** Ethernet ağları, ortak bir link üzerinden birçok OSPF router'ını birbirine bağlayabilir. Her router ile komşuluk ilişkisi kurmak aynı ağdaki router'lar arasında aşırı sayıda LSA değişimine yol açar
- **Yoğun LSA flooding:** Link-state router'lar, OSPF başlatıldığında veya topolojide bir değişiklik olduğunda LSA'larını flood eder. Bu flooding aşırı hale gelebilir

Komşuluk sayısı formülü: **n(n-1)/2** (n = router sayısı)

Örnek: 5 router için 5(5-1)/2 = 10 komşuluk ilişkisi

DR ile LSA Flooding

- Multiaccess ağlarda OSPF, gönderilen ve alınan LSA'ların toplanma ve dağıtım noktası olarak bir DR seçer
- DR arızalanması durumu için bir BDR de seçilir
- Diğer tüm router'lar DROTHER olur (ne DR ne de BDR olan router)
- DR sadece LSA'ların yayılması için kullanılır: Router diğer tüm paketlerin iletilmesi için routing tablosunda belirtilen en iyi next-hop router'ı kullanmaya devam eder
- DR/BDR seçimi Router Priority ve Router ID'ye göre yapılır

UYARI: Point-to-point link'lerde DR veya BDR gerekmez.