Zadania domowe z Analizy Matematycznej II - część 2 (szeregi liczbowe, ciągi i szeregi funkcyjne, sumowanie szeregów i rozwijanie funkcji w szereg, przestrzenie metryczne, zasada Banacha)

Zadanie 1. Zbadać zbieżność szeregów:

(a)
$$\sum_{n=1}^{\infty} \frac{(3n)!}{(\sqrt{2}n)^{3n}}$$
,

(b)
$$\sum_{n=1}^{\infty} \frac{n}{4^{n+1}-2^{n-1}}$$

(a)
$$\sum_{n=1}^{\infty} \frac{(3n)!}{(\sqrt{2}n)^{3n}}$$
, (b) $\sum_{n=1}^{\infty} \frac{n}{4^{n+1} - 2^{n-1}}$, (c) $\sum_{n=1}^{\infty} \left(\frac{2n^2 + 1}{2n^2 + 3}\right)^{3n^3}$,

(d)
$$\sum_{n=2}^{\infty} \frac{\sqrt[n]{2}}{n},$$

(e)
$$\sum_{n=0}^{\infty} \left(\sqrt{n+1} - \sqrt{n}\right)^n,$$

(e)
$$\sum_{n=0}^{\infty} \left(\sqrt{n+1} - \sqrt{n} \right)^n$$
, (f) $\sum_{n=1}^{\infty} \left(\sqrt[3]{n^3 + n} - \sqrt[3]{n^3 - n} \right)$,

(g)
$$\sum_{n=1}^{\infty} \frac{n^2 + 1}{2n^2 + 5},$$

(g)
$$\sum_{n=1}^{\infty} \frac{n^2 + 1}{2n^2 + 5}$$
, (h) $\sum_{n=1}^{\infty} \frac{3 + (-1)^n}{2^n}$, (i) $\sum_{n=1}^{\infty} \sin \frac{1}{n}$,

(i)
$$\sum_{n=1}^{\infty} \sin \frac{1}{n}$$

(j)
$$\sum_{n=1}^{\infty} \frac{1}{n} \sin \frac{1}{n},$$

(k)
$$\sum_{n=1}^{\infty} \frac{\arctan 5^n}{2^n + 3}$$
,

(j)
$$\sum_{n=1}^{\infty} \frac{1}{n} \sin \frac{1}{n}$$
, (k) $\sum_{n=1}^{\infty} \frac{\arctan 5^n}{2^n + 3}$, (l) $\sum_{n=1}^{\infty} \frac{n + \sqrt{n^2 + 2}}{n^3 + 1}$,

(m)
$$\sum_{n=1}^{\infty} \frac{6^n}{n^{10} \left[4 + (-1)^n\right]^n}$$

(n)
$$\sum_{n=1}^{\infty} \frac{1}{n \sqrt[n]{n}},$$

(m)
$$\sum_{n=1}^{\infty} \frac{6^n}{n^{10} \left[4 + (-1)^n\right]^n}$$
, (n) $\sum_{n=1}^{\infty} \frac{1}{n \sqrt[n]{n}}$, (o) $\sum_{n=1}^{\infty} \frac{1}{(n+1) \ln^2(n+1)}$.

Zadanie 2. (a) Załóżmy, że $\forall_{n\in\mathbb{N}} a_n \geq 0$ i $b_n > 0$ oraz że $\lim_{n\to\infty} \frac{a_n}{b_n} = \infty$. Czy wówczas

- ze zbieżności szeregu $\sum_{n=1}^{\infty} a_n$ wynika zbieżność szeregu $\sum_{n=1}^{\infty} b_n$
- ze zbieżności szeregu $\sum_{n=1}^{\infty} b_n$ wynika zbieżność szeregu $\sum_{n=1}^{\infty} a_n$?

Odpowiedź uzasadnić.

(b) Wykazać, że jeśli szeregi $\sum_{n=1}^{\infty} a_n^2$ i $\sum_{n=1}^{\infty} b_n^2$ są zbieżne, to zbieżny jest również szereg $\sum_{n=1}^{\infty} |a_n b_n|$. Wykorzystując ten fakt pokazać, że ze zbieżności szeregu $\sum_{n=1}^{\infty} a_n^2$ wynika zbieżność szeregu $\sum_{n=1}^{\infty} \frac{|a_n|}{n}$.

Zadanie 3. Dla jakich rzeczywistych α podane szeregi są zbieżne?

(a)
$$\sum_{n=2}^{\infty} \frac{1}{n^{\alpha} \ln n},$$

(b)
$$\sum_{n=1}^{\infty} n^{2\alpha} \sin \frac{1}{n^5}$$

Zadanie 4. Zbadać czy następujące szeregi są zbieżne warunkowo:

(a)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{(2n+1)^{2n}}{(n^3+1)^n}$$

(b)
$$\sum_{n=1}^{\infty} \frac{\sqrt{n+1}}{n} \cos(n\pi).$$

(a)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{(2n+1)^{2n}}{(n^3+1)^n}$$
, (b) $\sum_{n=1}^{\infty} \frac{\sqrt{n+1}}{n} \cos(n\pi)$, (c) $\sum_{n=1}^{\infty} \frac{[2+(-2)^n]^n}{4^n} \sin\left(\frac{n\pi}{2}\right)$,

(d)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{\ln n}{\sqrt[4]{n^5}}$$
,

(e)
$$\sum_{n=1}^{\infty} (-1)^{(n+1)n/2} \cdot \frac{3-(-1)^n}{2n}$$

(d)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{\ln n}{\sqrt[4]{n^5}}$$
, (e) $\sum_{n=1}^{\infty} (-1)^{(n+1)n/2} \cdot \frac{3 - (-1)^n}{2n}$, (f) $\sum_{n=1}^{\infty} \frac{[3 - (-1)^n] \cos(n-1)\pi}{2n}$.

Zadanie 5. Zbadać punktową i jednostajną zbieżność następujących ciągów funkcyjnych

(a)
$$f_n(x) = nxe^{-n^2x}, x \in [0, \infty),$$

(b)
$$f_n(x) = \sqrt{x+n+1} - \sqrt{x+n}, \ x \ge 0,$$

(c)
$$f_n(x) = x + \frac{\sin(nx)}{n}, x \in \mathbb{R},$$

(d)
$$f_n(x) = nx(1-x)^n, x \in [0,1],$$

(e)
$$f(x) = nx(1-x)^n$$
, $x \in [a,1]$, $gdzie\ a \in (0,1)$, (f) $f_n(x) = \sqrt[n]{2^n + 3^n x}$, $x \in [0,\infty)$,

(f)
$$f_n(x) = \sqrt[n]{2^n + 3^n x}, x \in [0, \infty),$$

(g)
$$f_n(x) = \operatorname{arctg} \frac{2x}{x^2 + n^3}, \ x \in \mathbb{R}.$$

Zadanie 6. Udowodnić zbieżność jednostajną na \mathbb{R} następujących szeregów funkcyjnych

(a)
$$\sum_{n=1}^{\infty} \frac{\sin nx}{\sqrt[3]{n^4 + x^2}}$$
,

(b)
$$\sum_{n=1}^{\infty} \frac{e^{-n^2x^2}}{n^2}$$
.

Zadanie 7. Pokazać, że szereg funkcyjny $\sum_{n=1}^{\infty} (2^{n-1}\sqrt{1+nx})^{-1}$ jest zbieżny jednostajnie na przedziałe $[0,\infty)$.

Zadanie 8. Wyznaczyć zbiory punktów zbieżności następujących szeregów

(a)
$$\sum_{n=0}^{\infty} \frac{3^n}{\sqrt{2n+5}} x^n$$
, (b) $\sum_{n=1}^{\infty} n! x^n$,

(c)
$$\sum_{n=1}^{\infty} (n-1)3^{n-1}x^{n-1}$$
, (d) $\sum_{n=0}^{\infty} \frac{\sqrt{n}}{(2n+1)8^n}x^{3n+2}$,

(e)
$$\sum_{n=1}^{\infty} \frac{\sqrt{n^2+2}-n}{3^n} (x-1)^n$$
, (f) $\sum_{n=2}^{\infty} \frac{\ln n}{n} x^{n+1}$,

(g)
$$\sum_{n=0}^{\infty} [2 + (-1)^n]^n x^n$$
, (h) $\sum_{n=1}^{\infty} \frac{(x-1)^{2n}}{2^n n^3}$,

(i)
$$\sum_{n=1}^{\infty} \frac{n}{n+1} \left(\frac{2x+1}{x} \right)^n.$$

Zadanie 9. Wyznaczyć promienie zbieżności szeregów potęgowych

(a)
$$\sum_{n=1}^{\infty} \frac{(n!)^3}{(3n)!} x^n$$
, (b) $\sum_{n=1}^{\infty} \frac{n! x^{2n}}{n^n}$.

⋆ Czy szeregi te są zbieżne na końcach swoich przedziałów zbieżności?

Zadanie 10. Wyznaczyć sumy i zbiory punktów zbieżności następujących szeregów.

(a)
$$\sum_{n=1}^{\infty} (-1)^n (3n+1)(x-3)^n$$
, (b) $\sum_{n=0}^{\infty} \frac{x^{2n}}{5^n (n+1)}$, (c) $\sum_{n=0}^{\infty} \frac{3^n x^n}{n^2 + 3n + 2}$.

Zadanie 11. Obliczyć sumy szeregów.

(a)
$$\sum_{n=1}^{\infty} \frac{(-1)^n n(n+2)}{7^n}$$
, (b) $\sum_{n=1}^{\infty} \frac{n+3}{n2^n}$.

Zadanie 12. Rozwinąć w szereg Maclaurina następujące funkcje, podać zbiory punktów zbieżności otrzymanych szeregów i wyznaczyć podane pochodne.

(a)
$$f(x) = \ln(x^2 + 4x + 3)$$
, $f^{(15)}(0)$, (b) $\sin^4 x + \cos^4 x$, $f^{(77)}(0)$, $f^{(88)}(0)$,
(c) $f(x) = x \sinh x$, $f^{(n)}(0)$, $n = 0, 1, \dots$

Zadanie 13. Rozwinąć w szereg Taylora wokół punktu $x_0 = 1$ funkcję $f(x) = \frac{3x+1}{x^2-x-6}$, podać zbiór punktów zbieżności otrzymanego szeregu i obliczyć $f^{(100)}(1)$.

Zadanie 14. Pokazać, że

$$\rho(x,y) = \left\{ \begin{array}{ll} 0 & gdy \; x = y \\ |x| + |y| & gdy \; x \neq y \end{array} \right.$$

jest metryką w \mathbb{R} (jest to metryka policyjna - aby przemieścić się z punktu x do y trzeba najpierw uzyskać przepustkę w punkcie 0, w którym jest posterunek policji). Wyznaczyć kulę K(0,2), K(3,2) i K(3,4) w tej przestrzeni. Czy ciągi $a_n = \frac{1}{n}$, $b_n = 1 - \frac{1}{n}$ są zbieżne w tej przestrzeni? Podać przykład ciągu zbieżnego do 1 w tej przestrzeni. Czy zbiory $A = \mathbb{N}$ i $B = \mathbb{N} \cup \{0\}$ są zbiorami otwartymi w tej przestrzeni?

Zadanie 15. Niech (X,d) będzie przestrzenią metryczną. Sprawdzić, że (X,d_1) , gdzie

$$d_1(x,y) = \frac{d(x,y)}{1 + d(x,y)}$$

też jest przestrzenią metryczną. Jakie zbiory są ograniczone w (X, d_1) ?

Zadanie 16. Oznaczmy przez d_1 metrykę euklidesową w \mathbb{R} , a przez d_2 metrykę dyskretną w \mathbb{R} . W przestrzeni \mathbb{R}^2 określamy metrykę:

$$d((x_1, y_1), (x_2, y_2)) = d_1(x_1, x_2) + d_2(y_1, y_2).$$

Narysować kulę otwartą $K((1,2),\frac{1}{2})$ i kulę domkniętą $\overline{K}((-1,0),1)$ w przestrzeni (\mathbb{R}^2,d) . Czy ciąg $(1-\frac{1}{n},1+\frac{1}{n})$ jest zbieżny w tej przestrzeni? Jeśli tak, to jaka jest jego granica?

Zadanie 17. Niech (X, ρ) będzie przestrzenią metryczną. Czy prawdziwe są następujące implikacje

- a) $(\forall_{\alpha} A_{\alpha} \text{ jest zbiorem domkniętym}) \implies \bigcup_{\alpha} A_{\alpha} \text{ jest domknięty,}$
- b) $(\forall_{\alpha} A_{\alpha} \text{ jest zbiorem domkniętym}) \implies \bigcap A_{\alpha} \text{ jest domknięty ?}$

Zadanie 18. * Niech $n \in \mathbb{N}$, (X, ρ) będzie przestrzenią metryczną zupełną i niech $f: X \mapsto X$. Wykazać, że jeśli $F(x) = f(f(\dots f(x)))$ (tj n-krotne zloženie f) jest odwzorowaniem zwężającym to f ma dokładnie jeden punkt

Zadanie 19. Sprawdzić, czy funkcja $f(x) = \sqrt[3]{1+x}$ spełnia w przedziałe $[0,+\infty)$ założenia twierdzenia Banacha.

ODPOWIEDZI:

- 1. szeregi zbieżne: (a), (b), (c), (e), (h), (j), (k), (l), (o); pozostałe szeregi są rozbieżne WSKAZÓWKI: (i) $\sin x > \frac{2}{\pi}x$ dla $x \in (0, \frac{\pi}{2})$; (j) $\sin x < x$ dla x > 0; (o) można zastosować kryterium całkowe
- 2. (a) tak udowodnić, nie podać kontrprzykład
- **3.** (a) $\alpha > 1$ (b) $\alpha < 2$
- 4. (a) nie (zbieżny bezwzględnie) (b) tak (c) nie (rozbieżny) (d) nie (zbieżny bezwzględnie) (e) tak (f) nie (rozbieżny)
- 5. Oznaczmy $f(x) = \lim_{n \to \infty} f_n(x)$, wtedy

 (a) f(x) = 0, $\sup_{x \ge 0} |f_n(x) f(x)| = \frac{1}{ne} \xrightarrow{n \to \infty} 0$, więc zbieżność jest jednostajna,

 (b) f(x) = 0, $\sup_{x \ge 0} |f_n(x) f(x)| = \frac{1}{\sqrt{n+1}+\sqrt{n}} \xrightarrow{n \to \infty} 0$, więc zbiega jednostajnie,

 (c) f(x) = x, $\sup_{x \in \mathbb{R}} |f_n(x) f(x)| = \frac{1}{n} \xrightarrow{n \to \infty} 0$, więc zbieżność jest jednostajna,

 (d) f(x) = 0, $\sup_{x \in [0,1]} |f_n(x) f(x)| = \left(\frac{n}{1+n}\right)^{n+1} \xrightarrow{n \to \infty} \frac{1}{e} \neq 0$, więc zbieżność nie jest jednostajna,

 (e) f(x) = 0, $\sup_{x \in [a,1]} |f_n(x) f(x)| = na(1-a)^n \xrightarrow{n \to \infty} 0$, więc zbiega jednostajnie,

 (f) $f(x) = \begin{cases} 2, & x = 0 \\ 3, & x > 0 \end{cases}$, $\sup_{x \ge 0} |f_n(x) f(x)| = \infty$, więc nie zbiega jednostajnie,
 - (g) f(x) = 0, $\sup_{x \in \mathbb{R}} |f_n(x) f(x)| = \arctan \frac{1}{n\sqrt{n}} \xrightarrow{n \to \infty} 0$, wiec zbiega jednostajnie.
- **6.** (a) $\forall_{x \in \mathbb{R}} \forall_{n \in \mathbb{N}} \mid \frac{\sin nx}{\sqrt[3]{n^4 + x^2}} \mid \leq \frac{1}{\sqrt[3]{n^4}}$ i skorzystać z kryterium Weierstrassa (b) analogicznie jak (a)
- 7. Skorzystać z kryterium Weierstrassa.
- **8.** (a) $\left[-\frac{1}{3},\frac{1}{3}\right]$ (b) $\{0\}$ (c) $\left(-\frac{1}{3},\frac{1}{3}\right)$ (d) [-2,2) (e) [-2,4) (f) [-1,1) (g) $\left(-\frac{1}{3},\frac{1}{3}\right)$ (h) podstawić $y=(x-1)^2,\ y\in[-2,2]\ \Rightarrow\ x\in[1-\sqrt{2},1+\sqrt{2}]$ (i) podstawić $y=\frac{2x+1}{x},\ y\in(-1,1)\ \Rightarrow\ x\in\left(-1,-\frac{1}{3}\right)$
- 9. (a) R=27, szereg jest rozbieżny w obu końcach przedziału zbieżności (bo nie spełnia tam warunku koniecznego zbieżności)
- (b) $R = \sqrt{e}$, szereg jest rozbieżny w obu końcach przedziału zbieżności (bo nie spełnia tam warunku koniecznego zbieżności)
- $\frac{(y)(1+x)}{(x-x)^2}$, $x \in (2,4)$ (dla uproszczenia rachunków można podstawić y=-x+3)

 - (b) $\begin{cases} -\frac{5}{x^2} \ln(1 \frac{x^2}{5}), & x \in (-\sqrt{5}, \sqrt{5}) \{0\} \\ 1, & x = 0 \end{cases}$ (można podstawić $y = \frac{x^2}{5}$)

 (c) $\begin{cases} \frac{(1-3x)\ln(1-3x)+3x}{9x^2}, & x \in [-\frac{1}{3}, \frac{1}{3}) \{0\} \\ \frac{1}{2}, & x = 0 \\ 1, & x = \frac{1}{2} \end{cases}$ (można podstawić y = 3x)

WSKAZÓWKA:
$$\frac{y^n}{n^2+3n+2} = \frac{y^n}{(n+2)(n+1)}$$

- 11. (a) $\frac{-77}{256}$ WSKAZÓWKA: Najpierw pokazać, że $\sum_{n=1}^{\infty} n(n+2)x^n = \frac{3x-x^2}{(1-x)^3}, x \in (-1,1),$ a następnie podstawić $x = -\frac{1}{7}$.
 - (b) $1 + 3 \ln 2$ WSKAZÓWKA: Najpierw pokazać, że $\sum_{n=1}^{\infty} \frac{n+3}{n} x^n = \frac{x}{1-x} 3 \ln(1-x)$, $x \in (-1,1)$, a następnie podstawić $x=\frac{1}{2}$.
- 12. (a) $f(x) = \ln 3 + \sum_{n=1}^{\infty} [(-1)^{n+1} (\frac{-1}{3})^n] \frac{x^n}{n}, x \in (-1, 1), f^{(15)}(0) = 14!(1 + 3^{-15})$ WSKAZÓWKA: $f'(x) = [\ln(x+1) + \ln(x+3)]' = \frac{1}{1-(-x)} + \frac{1}{3} \frac{1}{1-(-\frac{x}{3})} = \dots$ (b) $f(x) = 1 + \sum_{n=1}^{\infty} \frac{(-1)^n}{(2n)!} 4^{2n-1} x^{2n}, x \in \mathbb{R}, f^{(77)}(0) = 0, f^{(88)}(0) = 4^{87}$ WSKAZÓWKA: $\sin^4 x + \cos^4 x = (\sin^2 x + \cos^2 x)^2 2\sin^2 x \cos^2 x = 1 \frac{1}{2}\sin^2 2x = \frac{3}{4} + \frac{1}{4}\cos 4x$. (c) $f(x) = \sum_{n=0}^{\infty} \frac{1}{(2n+1)!} x^{2n+2}, x \in \mathbb{R}, f^{(n)}(0) = \begin{cases} 0, & n\text{-nieparzyste lub } n = 0 \\ n, & n\text{-parzyste} \end{cases}$

(b)
$$f(x) = 1 + \sum_{n=0}^{\infty} \frac{(-1)^n}{(-1)^n} 4^{2n-1} x^{2n}, x \in \mathbb{R}, f^{(77)}(0) = 0, f^{(88)}(0) = 4^{87}$$

(c)
$$f(x) = \sum_{n=0}^{\infty} \frac{1}{(2n+1)!} x^{2n+2}, x \in \mathbb{R}, f^{(n)}(0) = \begin{cases} 0, & n\text{-nieparzyste lub } n = 0 \\ n, & n\text{-parzyste} \end{cases}$$

- **14.** $K(0,2)=(-2,2),\ K(3,2)=\{3\},\ K(3,4)=\{3\}\cup(-1,1),\ a_n\to 0,\ b_n$ nie jest zbieżny, ciągi zbieżne do 1 to ciągi, które prawie wszystkie wyrazy mają równe 1, A jest otwarty, B nie jest.
- **15.** Wskazówka: Dla $0 \le a \le b$ mamy $\frac{a}{1+a} \le \frac{b}{1+b}$, bo $f(t) = \frac{t}{1+t}$ jest funkcją rosnącą dla t > 0. W przestrzeni (X, d_1) każdy zbiór jest ograniczony.
- **16.** $K((1,2), \frac{1}{2}) = \{(x,y) \in \mathbb{R}^2 : y = 2 \land |x-1| < \frac{1}{2}\},\$ $\overline{K}((-1,0),1) = \{(x,y) \in \mathbb{R}^2 : y = 0 \ \land |x+1| \leq 1\} \ \cup \ \{(x,y) \in \mathbb{R}^2 : y \neq 0 \ \land x = -1\}.$ Ciąg nie jest zbieżny w tej przestrzeni.
- 17. a) Nie musi być prawdziwa (trzeba podać kontrprzykład).
 - b) Tak aby to pokazać można skorzystać z praw de Morgana i zadania 7 z serii 6 z ćwiczeń.
- 18. Z zasady Banacha wynika, że F ma dokładnie jednen punkt stały. Jeśli x_0 jest punktem stałym dla F, to $\rho(f(x_0),x_0)=\rho(f(F(x_0)),F(x_0))=\rho(F(f(x_0)),F(x_0)).$ Z tego, że F jest zwężające otrzymujemy $\rho(f(x_0),x_0)=\rho(f(x_0),x_0)$ 0, a zatem x_0 jest punktem stałym dla f.
- **19.** Tak, spełnia, np z $L = \frac{1}{3}$.