Mathematical Relations

$a \triangleq b$	a is equal to b by definition
$a \stackrel{D}{=} b$	a is equal to b in distribution
$a \propto b$	<i>a</i> is proportional to <i>b</i> , i. e., $a = \text{const} \cdot b$
$a \approx b$	<i>a</i> is approximately equal to <i>b</i> , i.e., $ a - b < \epsilon$
	for small real number $\epsilon > 0$

Numbers, Arrays & Sets

a	A scalar (integer or real)
a	A vector
A	A matrix
$0_n, 0$	A vector of zeros of length n or implied by context
\mathbf{I}_n , \mathbf{I}	Identity matrix with n rows and columns or dimensionality implied by context
diag a	A square, diagonal matrix with diagonal entries given by a
\mathbb{N},\mathbb{Z}	The set of natural numbers and integers, respectively
\mathbb{R},\mathbb{C}	The set of real and complex numbers, respectively
\mathbb{R}^d	The d -dimensional vector space of real numbers

Linear Algebra

$\mathbf{A}^{ op}$, $\mathbf{a}^{ op}$	Transpose of a matrix or vector
\mathbf{A}^{-1}	Inverse of square matrix
det A	Determinant of square matrix
tr A	Trace of square matrix
$\mathbf{A} \succeq 0$	Matrix A is positive semidefinite
$\mathbf{A}^{rac{1}{2}}$	Square root of a matrix, specifically the Cholesky
	decomposition: a lower-triangular matrix L that
	satisfies $\mathbf{L}\mathbf{L}^{\top} = \mathbf{A}$

Functions & Functional Analysis

$f:\mathcal{X} o\mathcal{Y}$	A function with domain ${\mathcal X}$ and range ${\mathcal Y}$
$f: \mathbf{x} \mapsto g(\mathbf{x})$	A function that maps x to $g(x)$; i.e., $f(\mathbf{x}) \triangleq g(\mathbf{x})$
$f \circ g$	Composition of functions f and g ; $f \circ g : \mathbf{x} \mapsto$
	$f(g(\mathbf{x}))$

$\mathcal{O}(\cdot)$	Asymptotic upper bound ("big O"); $f(n) = \mathcal{O}(g(n))$
	for $f,g: \mathbb{N} \to \mathbb{N}$ if $f(n)/g(n)$ is bounded as
	$n \to \infty$
$\mathbb{R}^{\mathcal{X}}$	The space of functions $f: \mathcal{X} \to \mathbb{R}$
$\mathcal{H}_k, \mathcal{H}$	Reproducing kernel Hilbert space associated with
	kernel k or implied by context
$\langle\cdot,\cdot angle_{\mathcal{H}},\langle\cdot,\cdot angle$	Inner product associated with Hilbert space ${\cal H}$
	or implied by context
$\ \cdot\ _{r}\ \cdot\ _{p}$	L^2 norm of a vector; L^p norm if subscript p is
,	specified

Calculus

$\frac{\mathrm{d}y}{\mathrm{d}x}$	Total derivative of y with respect to x
$\frac{dy}{dx}$ $\frac{\partial y}{\partial x}$ $\frac{\partial f}{\partial \mathbf{x}}$	Partial derivative of y with respect to x
$\frac{\partial f}{\partial \mathbf{x}}$	Jacobian matrix $\mathbf{J} \in \mathbb{R}^{m \times n}$ of $f : \mathbb{R}^n \to \mathbb{R}^m$
$\int_{0}^{\infty} f(\mathbf{x}) d\mathbf{x}$	Definite integral over the entire domain of x
$\int_{\mathcal{X}} f(\mathbf{x}) d\mathbf{x}$	Definite integral with respect to x over the set \mathcal{X}

Probability and Information Theory

$p(\mathbf{x}), q(\mathbf{x})$	A probability density, latter used to emphasise approximation
$\mathbf{x} \sim p(\mathbf{x})$	Random variable \mathbf{x} is distributed according to $p(\mathbf{x})$
$\mathbb{E}_{p(\mathbf{x})}[f(\mathbf{x})], \mathbb{E}[f(\mathbf{x})]$	Expectation of $f(\mathbf{x})$ under $p(\mathbf{x})$ or implied by context
$Cov(\cdot, \cdot)$	Covariance between random variables
$\mathbb{H}[\cdot]$	Shannon entropy of a random variable
$\mathcal{D}_f[p \parallel q]$	<i>f</i> -divergence between distributions with densi-
,	ties p and q
$\mathcal{D}_{\mathtt{KL}}\left[p\parallel q\right]$, kl $\left[p\parallel q\right]$	Kullback-Leibler divergence between distribu-
	tions with densities <i>p</i> and <i>q</i>
$\mathcal{U}[a,b]$	Uniform distribution with lower and upper bounds
	a and b
$Bern(\rho)$	Bernoulli distribution with parameter ρ
$\mathcal{N}(\mathbf{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma}), \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$	Multivariate Gaussian distribution (on x) with
	mean μ and covariance Σ
$\mathcal{GP}(f; m, k)$	Gaussian process; $f(\mathbf{x}) \sim \mathcal{GP}(m(\mathbf{x}), k(\mathbf{x}, \mathbf{x}'))$ de-
	notes $f(\mathbf{x})$ is a distributed as a Gaussian process
	with mean function m and covariance function
	(kernel) k
δ_{ij}	Kronecker delta; $\delta_{ij} = 1$ iff $i = j$ and 0 otherwise
$\delta(x-x_0)$	Dirac delta on x with point mass at x_0

Optimisation

$$f^* = \min_{\mathbf{x}} f(\mathbf{x})$$
 A minimum of function $f(\mathbf{x})$

xxiv Symbols and Notation

 $\mathbf{x}^* = \arg\min_{\mathbf{x}} f(\mathbf{x})$ A minimiser of function $f(\mathbf{x})$

Special Functions

 $\sigma(x)$ Sigmoid function, typically the logistic sigmoid

 $x \mapsto (1 + \exp(-x))^{-1}$

Rectified linear unit activation; positive part of

x, i. e., $x \mapsto \max(0, x)$

Softplus (x) Softplus activation; $x \mapsto \log(1 + \exp(x))$