

(19) Europäisches Patentamt
European Patent Office
Office européen des brevets

(11) Publication number:

0 615 976 A1

(12)

EUROPEAN PATENT APPLICATION

(21) Application number: 93118061.6

(61) Int. Cl.5: **C07H 21/00, C12Q 1/68**

(22) Date of filing: **08.11.93**

The applicant has subsequently filed a sequence listing and declared, that it includes no new matter.

(33) Priority: **30.12.92 US 998289**

(23) Date of publication of application:
21.09.94 Bulletin 94/38

(24) Designated Contracting States:
**AT BE CH DE DK ES FR GB GR IE IT LI LU NL
PT SE**

(71) Applicant: **AMERICAN CYANAMID COMPANY
One Cyanamid Plaza
Wayne New Jersey 07470 (US)**

(72) Inventor: **Kreitman, Martin
5760 S. Blackstone Avenue
Chicago, Illinois 60637 (US)
Inventor: Taylor, Martin
2246 East 6th Street
Tuscon, Arizona 85719 (US)
Inventor: Black, Bruce C.
286 Forest Road
Yardley, Pennsylvania (US)**

(74) Representative: **Wächtershäuser, Günter, Prof.
Dr.
Patentanwalt
Tal 29
D-80331 München (DE)**

(54) Method for monitoring pesticide resistance.

(57) The present invention relates to an isolated nucleic acid fragment comprising a nucleic acid sequence encoding a lepidopteran sodium channel, or portion thereof.

EP 0 615 976 A1

Each year, approximately one third of the world's crops are destroyed by plant pests, amounting to billions of dollars in crop losses in the United States alone. Plants are susceptible to diseases and damage caused by an enormous number of different types of organisms, including virus, bacteria, fungi, algae, parasitic plants, weeds, insects, arachnids, and nematodes. The potential losses are kept in check by 5 natural controlling mechanisms, and when these systems fail, by applications of various types of insecticides which typically act by attaching one specific, genetically controlled aspect of the target organism's metabolism. However, the efficacy of any given pesticide may be limited by the appearance and spread of resistance to the pesticide among the target population. The appearance and spread of insecticide resistance in wild populations argues for a genetic origin. First, a resistant genotype or trait appears in a 10 local population and then with continued insecticide use (and thus, disproportionate survival of individuals with this genotype or trait), the resistance rapidly increases in the population and via migration resistance may spread to regional and perhaps even worldwide populations. Resistance may arise as a genetic allele already present within a population, or it may arise *de novo*. Nonetheless, whatever the cause, in a 15 population with a short generation time (which is characteristic of many insects), the resistance trait can spread rapidly and quickly render ineffective the planned pattern of pesticide application.

The continued development of natural strategies for insect control could be enhanced by an understanding of the genetic basis of the resistance in economically important pests. Such studies have been ongoing, particularly with regard to insect pests, and a great deal has been learned about the major types of 20 resistance observed in insects. At least three types of insect resistance have been identified: decreased rate of uptake, increased rate or degradation and changes in the target site. To some extent, certain aspects of the genetic mechanisms of these types of resistance have been determined; however, knowledge of the specific genetic basis for resistance has not yet been effectively applied in the field to monitor the occurrence of resistance, or to assist in planning effective insecticide applications to avoid or alleviate the 25 development of resistance. Modification of insecticide application patterns can be critical in cases in which resistant insects are otherwise less fit than non-resistant insects; application of insecticide to which some individuals are resistant in these cases may actually select for increase in resistance in the population, when it might otherwise have been maintained only at low levels or entirely eliminated from the population. Thus, a method for exploiting the available knowledge of the genetic basis for resistance is greatly needed.

Some of the most destructive of insect pests are found among the order Lepidoptera. The damage 30 caused by lepidopterans is most frequently related to feeding activity of their larvae (caterpillars) on plants. Of the lepidopteran plant pests, among the most damaging are those insects related to the genus *Heliothis*. Two species of the genus *Heliothis*, *H. virescens* (the tobacco budworm) and *H. armigera* (American bollworm), and *Helicoverpa zea* (the corn ear worm) are responsible for a tremendous amount of damage to 35 tobacco, cotton, corn, beans, alfalfa, and solanaceous plants in the United States. Over the years these pests have been controlled by application of a variety of insecticides; however, *H. virescens* has regularly developed resistance to compounds from virtually every major insecticide class. As one exception, until fairly recently the pyrethroid class of insecticides continued to effectively control *Heliothis* in the field. Unfortunately, it has recently been noted that pockets of tolerance or resistance are beginning to appear in 40 *Heliothis virescens* populations in various areas in the United States and in *H. armigera* and *H. punctigera* abroad. Because pyrethroids represent the most effective control of these insects, it is essential that widespread occurrence and/or spread of resistance to pyrethroids be avoided.

Resistance to pyrethroids has been extensively studied in a variety of dipterans, and a number of 45 different patterns of inheritance and explanations for resistance have been suggested. However, the basis for pyrethroid resistance or tolerance in lepidopterans generally, and in *Heliothis* specifically, has not yet been clarified. An understanding of the genetic mechanism of resistance, or even a definable genetic marker for resistance, would provide a much-needed basis for tracking the resistance trait accurately in a population. The present invention now provides the necessary tools for monitoring the occurrence and spread of resistance in a population, in particular for pyrethroid resistance in lepidopteran populations.

50 SUMMARY OF THE INVENTION

The present invention provides an isolated nucleic acid fragment encoding all or a portion of a non-dipteran sodium channel. This channel is believed to be target site for sensitivity to a variety of different insecticides, including pyrethroids, and is useful as a marker for such target-insensitive insecticide 55 resistance. Preferably the fragment encodes a lepidopteran, coleopteran or homopteran sodium channel. Sodium channels from both resistant and sensitive strains are encompassed herein. The nucleic acid fragment provides the basis for probes useful in detecting the presence of the resistance trait in a population of insects to be evaluated. Also provided are vectors containing the resistance gene which may

be used to introduce a gene encoding insecticide resistance into beneficial insects, such as honey bees. The invention also provides the isolated protein or fragment encoded thereby, as well as biologically or immunologically active fragments thereof, which protein or fragments are useful in generation of polyclonal and monoclonal antibodies. Such antibodies can be used to detect the presence of sensitive or insensitive 5 sodium channels. In a preferred embodiment, the insecticide target is a Heliothis sodium channel.

The invention also provides a means for monitoring, both quantitatively and qualitatively, the level of resistance in any given pesticide target population. The presence or absence of a resistance trait is determined by hybridizing whole genomic DNA, cDNA or one or more restriction fragments from one or more individuals from the population with a nucleic acid probe based on the sequence of a nucleic acid 10 encoding a pesticide target site. Quantification of the trait is further obtained by calculating the number of the individuals having resistance relative to the number of sensitive individuals, and calculating the percentage occurrence of resistance. This in turn permits the observer to determine whether or not the contemplated pesticide application will be effective, whether alternate treatment may be required, or to predict when, at some time in the future, alternate treatment may be needed. In an alternate embodiment, 15 the DNA can be used to express a recombinant protein or peptide, which in turn can be used to raise monoclonal antisera. Preferably antisera that can specify or identify both resistant and sensitive targets are raised. Such monoclonal antibodies may then be utilized in routine immunological procedures to determine the presence or absence of the resistant protein in a population.

The present invention also provides the basis for an *in vitro* screen which will detect potential 20 insecticidal activity. A nucleic acid sequence encoding a lepidopteran sodium channel can be inserted into a convenient host cell and a battery of potential insecticides tested for their ability to interfere with expression of either the gene or the encoded protein.

BRIEF DESCRIPTION OF THE FIGURES

25 Figure 1 illustrates the nucleotide and amino acid sequences of the Heliothis clone hscp1, in comparison with the nucleotide and amino acid sequence of the para locus (sodium channel) of Drosophila melanogaster. "Dm" = Drosophila sequence; "scd" = portions of the Heliothis sequence; the numbers after "scd" refer to various subclones used to determine the sequence. The underlined amino acid 30 sequences are membrane-spanning domains of the sodium channel. Superimposed above the sequences are the specific sequences of various primers (e.g. HSC 3455+) used in cloning and/or sequencing procedures. Numbering is based on the Drosophila homologue sequence to the Heliothis sodium channel.

Figure 2 shows Restriction Fragment Length Polymorphisms (RFLPs) developed utilizing a labelled 35 hscp1 DNA sequence as a probe. "RR" identifies DNA derived from resistant individuals and "SS" refers to DNA derived from sensitive individuals. The presence or absence of resistant and sensitive individuals is made by the vial test described by Campanhola and Plapp, J. Econ. Entomol., 82:1577-1533, 1989. Protocols for the procedure are described in Example 3.

DETAILED DESCRIPTION OF THE INVENTION

40 As described in detail in the following Examples, the Heliothis sodium channel is isolated by amplification of Heliothis genomic DNA from an inbred susceptible strain using degenerate primers homologous to a portion of a sodium channel gene from Drosophila melanogaster (Loughney et al. Cell 58:1143-1154, 1989), as described in Example 2. A 184 bp amplification product is obtained which, upon 45 sequencing, is found to encode an identical amino acid sequence when compared to the same region in the Drosophila gene. This PCR product is then labelled and hybridized to restriction enzyme-digested Heliothis genomic DNA. The highest molecular weight DNA fragment identified is from an EcoRI digest.

Genomic DNA is then isolated from a resistant Heliothis strain and digested to completion with EcoRI. A 50 genomic library is constructed in a g Zap II vector, and a labelled 184 bp fragment is then used to screen this library. One positive plaque yields a genomic clone of approximately 8000 bp which is referred to as "hscp1." This clone shows significant homology to the published Drosophila sequence (Figure 1).

Based on the hscp 1 sequence, a pair of primers designated 4116+, and 4399- (as depicted in Figure 1) are used to amplify fragments of the sodium channel gene from both resistant and susceptible Heliothis individuals. Fragments are digested with either Rsal, Sau3AI or Msel. The restriction fragments are then 55 separated and analyzed by gel electrophoresis. The resulting Restriction Fragment Length Polymorphisms (RFLPs) show distinct patterns unique to resistant and susceptible individuals. This demonstrates the utility of a nucleic acid sequence for defining genetic RFLP patterns useful for identifying resistant individuals within a population (Figure 2).

By homology with the known nucleic acid sequence for a Drosophila sodium channel, it is presumed that the isolated Heliothis sequence represents a portion of the corresponding Heliothis channel. Also, by comparison with the available information regarding the Drosophila channel as being the target site of pyrethroid action, it is reasonable to extrapolate this function in Heliothis as well. However, whether or not the isolated sequence represents the target site, or a genetic locus that is tightly linked with resistance, the RFLP results described above show that difference in the DNA is a reliable marker for identifying differences in susceptibility to insecticides that primarily target the sodium channel, particularly pyrethroids (but also chlorinated hydrocarbons and venom components such as the toxin derived from Androctonus australis [Aalt], saxitoxin, tetrodotoxin and the like) in an insect population.

The isolation of the DNA sequence encoding the Heliothis sodium channel provides a number of advantages. First, in view of the unexpected high level of homology between Drosophila and Heliothis sodium channels, it must be assumed that channels of other lepidopteran species have similar or even higher homology to the Heliothis sodium channel. Thus, the Heliothis sodium channel DNA provides the basis for isolation of other lepidopteran channels. Such lepidopteran channels can be readily isolated by hybridization under medium (e.g., 1xSSC, 0.1% SDS, 55°C) or high (0.1 x SSC, 0.1% SDS, 65°C) stringency conditions using the Heliothis DNA or portion thereof, to function as an identifiable probe when screened against cDNA or whole genomic libraries from the species of interest. Isolation of DNA hybridizing under said conditions can be achieved by standard techniques. Lepidopteran species of interest include, but are not limited to: other Heliothis species, such as the American bollworm, H. armigera and the bollworm, H. punctigera; lepidopteran species of the genus Spodoptera, e.g., the Egyptian cotton leafworm, S. littoralis, the beet armyworm, S. exigua; the fall armyworm, S. frugiperda; the cutworm, S. litura, the rice swarming caterpillar, S. mauritania and the Southern armyworm, S. eridania; and other miscellaneous lepidopterans, e.g., the pink bollworm, Pectinophora gossypiella; the spiny bollworm, Earias insulana, the cotton leafworm, Alabama argillacea; the leaf perforator, Bucculatrix thurberiella; the tomato fruitworm, Helicoverpa zea; the diamondback moth, Plutella xylostella; the cabbage looper, Trichoplasis ni; the imported cabbageworm, Artogeia rapae; the imported cabbageworms Hellula undalis and Hellula rogatalis; the black cutworm, Agrotis ipsilon; the corn earworm, Ostrinia nubalis; the tomato pinworm, Keiferia lycopersicella; the tomato hornworm, Manduca sexta and Manduca quinquemaculata; the velvet bean caterpillar, Anticarsia gemmatalis; the green oliveworm, Plathypena scabra; the soybean looper, Pseudeplusia includens; the saltmarsh caterpillar, Estigmene acrea; the leaf miner, Epinotia meritanus; the codling moth, Cydia pomonella; the oblique banded leafroller, Choristoneura rosaceana; grape berry moth, Lobesia botrana; currant tortrix, Pandemis cerasana; spotted tentiform leafminer, Phyllonoryctes blancardella; grape leafroller, Sparganothis pilleriana; tufted bud apple moth, Platynota idacusalis; red banded leafroller, Argyrotaenia velutinana; oriental fruit moth, Grapholita molesta; Southwestern corn borer, Diatraea grandiosella; rice leafrollers, Cnaphalocrocis medinalis, Marasmia exigua and Marasmia patnalis; striped borer, Chilo suppressalis; dark headed stem-borer, Chilo polychrysis; yellow stem borer, Scirphaga incutulas; white stem borer, Scirphaga innotata; and pink stem borer, Sesamia inferens.

The isolated Heliothis nucleic acid fragment is also useful in other regards. The newly observed homology between Drosophila and Heliothis sodium channels predicts not only substantial homologies between Heliothis channels and other lepidopteran species, but also between Heliothis and other non-lepidopteran insect channels. Thus, the fragment, or portions thereof, can be utilized in developing RFLP's for other lepidopteran species, including, but not limited to, e.g., the lepidopteran species noted above, as well as non-lepidopteran species such as as the Colorado potato beetle Leptinotarsa decimlineator, the boll weevil, Anthonomus grandis; the Southern corn rootworm, Diabrotica undecimpunctata; the Japanese beetle, Popillia japonica; plum curculio, Conotrachelus nenuphar; brown planthopper, Nilaparvata lugens; green leafhopper, Nephrotettix virescens; potato leafhopper, Empoasca abrupta; cotton aphid, Aphis gossypii; green peach aphid, Myzus persicae; sweetpotato whitefly, Bemisia tabaci; imported fireant, Solenopsis invicta; thrips, e.g., Thrips palini; pear psylla, Psylla pyri; two-spotted spider mite, Tetranychus urticae; carmine mite, Tetranychus cinnabarinus; citrus rust mite, Phyllocoptes oleivora; German cockroach, Blattella germanica; cat flea, Ctenocephalides felis; yellow fever mosquito, Aedes aegypti; and salt marsh mosquito, Aedes sollicitans. The generation of useful RFLPs for these species is achieved in substantially the same manner as described herein for Heliothis.

The Heliothis nucleic acid fragment or portions thereof can also be used as a probe, or can be used as the basis for designing degenerate probes, to screen genomic or cDNA libraries derived from such other non-lepidopteran insect species for specific sodium channels from these species. However, given the herein demonstrated high level of homology between the distantly related Drosophila and Heliothis, it is quite likely that the present Heliothis virescens fragment can be used directly as a probe for identifying resistant sodium channels by RFLPs for other lepidopteran and nonlepidopteran species, without the need for

isolation of those species' specific sodium channel DNA fragments.

Continued monitoring and early detection of the presence of a resistance trait in any population is essential to effective insect control. By the time resistance is apparent at the gross level, it is very likely already at a point where further treatment with the pesticide is doomed to failure. For example, application 5 of pyrethroids to a population in which resistance is already established will substantially increase the selection pressure favoring the appearance of the resistance trait. Whereas, in the absence of such selection, the resistant individuals are reproductively less fit than sensitive (wild-type) individuals. Hence, resistance would not otherwise have become established in the population without the application of insecticides. Thus, selective and timely application of pesticides or recognition of need for alternative 10 application of pesticides at an early stage can be critical in maintaining suitably sensitive insect populations.

The identification of a genetic trait associated with resistance provides several avenues for tests to monitor the occurrence and frequency of resistance in a population at a very early stage, when frequency may be low and/or undetectable by standard bioassays. Early observance permits for informed judgments 15 in the application of the relevant pesticide. For example, the gene encoding the resistant sodium channel provides the basis for informative southern or RFLP analysis of an insect population to identify the presence of the resistance trait in a given population. Detection of the unique DNA associated with a resistance allele (or the presence of two distinct alleles) therefore is diagnostic for the presence of the resistance trait in an analyzed sample. This may be determined, for example, by digesting genomic DNA collected from 20 individuals of the target population in question and probing a Southern blot with detectably labelled DNA sequence that identifies a particular resistance trait, or a diagnostic portion thereof, to identify the presence or absence of the resistance allele. By "diagnostic portion" thereof is meant any fragment of the hscp1 DNA which differs sufficiently in sequence from the corresponding portion of the susceptible DNA sequence, or a unique DNA sequence genetically linked to the trait, so as to assure its hybridization, under high stringency conditions, only with DNA encoding the resistance trait. It should be noted that sequences 25 flanking the resistance gene, as well as intervening sequences (introns) are particularly suited for identifying unique diagnostic RFLPs.

RFLP analysis also provides an attractive method of analyzing the existence and frequency of the resistance trait in the population. As the Examples below show, there is a detectable polymorphism 30 associated with the sodium channel DNA between resistant and susceptible individuals. Thus, target population DNA can be analyzed for the presence of polymorphisms using the detectably labelled cloned hscp1 DNA as a probe. In this technique, DNA from several individuals in the target population is digested with an appropriate restriction enzyme, and size separated by gel electrophoresis. The gel, or a blot derived therefrom, is then probed with labelled DNA, either the whole gene or fragment. If there are both resistant and sensitive alleles within an individual in the population, there will appear on the gel two different sized 35 restriction fragments, each of which will hybridize with the hscp1 probe. In this manner, large numbers of individuals in the population can be sampled, and the relative abundance of the allele can be determined. Identification of the specific DNA fragment associated with resistance, whether by Southern or RFLP analysis, will always be diagnostic.

In this regard, the present invention also provides a kit for evaluating the extent to which a resistance 40 gene is present in a given population. The kit will contain as its principle components (1) a restriction enzyme for digesting DNA, and (2) a detectably labelled probe comprising a nucleic acid fragment capable of hybridizing specifically with DNA encoding the resistance trait, or a nucleic acid fragment capable of hybridizing with the diagnostic RFLP marker. In a preferred embodiment, the kit also comprises (3) a means for extracting DNA from cells of the target population, and/or (4) PCR primers useful in amplifying the target 45 DNA sequences. Also included may be a set of reference standards comprising sensitive and resistant DNA.

As a specific example, a kit for the detection of altered sodium channels in a population would include (1) a restriction enzyme such as TagI or EcoRI, which will generate fragments which show the relevant polymorphism, if present (2) a radioisotope- or biotin- labelled DNA comprising the sequence of the sodium 50 channel or fragments thereof; and optionally (3) a DNA extraction means.

It will be recognized by those skilled in the art that variations or components (1) and (2) in particular are contemplated. Any restriction enzyme which produces a detectable polymorphism can be used. Preferably, the enzyme used will be a 4-cutter, such as Sau96I, ScrFI, Sau3A1, Rsal, Msel, Mspl, MboI, HpaII, HinPI, HaeIII, DpnII, BstVI, and BfaI; or a 6-cutter, such as EcoRI, BamHI, HindIII, PstI, and SalI; less useful are 8-cutters, such as NotI, Stol, PacI, Sse36I, Ascl, Fsel, Pmel, RsrII, or Swal. The utility of any given restriction 55 enzyme can readily be determined by digesting DNA known to contain alleles for both resistance and sensitivity with the candidate enzyme, and observing the presence or absence of a polymorphism by probing with hscp1, or any DNA linked to this region. Also, it will be understood that the "detectably

"labelled" DNA may alternately be labelled so as to be detectable in any manner known in the art, e.g., by chemiluminescence, bioluminescence, ELISA, biotinavidin, or any other appropriate means. The foregoing scheme is useful for detecting the presence of resistance to not only pyrethroids, but also DDT and arthropod toxins, such as the sodium channel toxin derived from Androctonus australis (AaLT).

Those skilled in the art will also recognize that the approach to resistant pest management described herein is not limited solely to control of resistance based on an altered sodium channel. Utilizing target site DNA as a means of tracking the presence of resistance in a population provides a far more precise and sensitive measure of the prevalence of resistance than do previously utilized methods. The target sites for many types of pesticides are now known, and therefore, the proposed genetic analysis for a resistance trait can be applied to other insecticides as well. For example, acetylcholinesterase is known to be the target site for carbamate and organophosphate insecticides (Oakeshott et al., PNAS USA 84:3359-3363, 1987). Organophosphate insecticides include malathion, methylparathion, diazinon, turbophos and dicrotophos; carbamates include sevin, Aldicarb, methionyl and thiodicarb. Target site resistance to some of these insecticides has been reported (Karunaratne et al., Resist. Pest. Manag. Newsletter, 3:11-13, 1991; Chen, Resist. Pest Manag. Newsletter, 2:15, 1990). The acetylcholinesterase gene has been cloned (Fournier et al., J. Mol. Biol. 210:15-22, 1989), providing the basis for development of an analogous detection system for this type of resistance. Monooxygenase and mixed function oxidases (MFOs) have also been shown to be involved in resistance by increase in the rate of metabolism of organophosphates and carbamates (Brattstein et al., Science, 196:1349-1352, 1977; Brattstein et al., Pesticide Biochem. Physiol., 3:393, 1973, Krieger et al., science, 172:579, 1971; Matsumura, Toxicology Insecticides, Plenum Press, New York, 1975). Cyclodienes have been shown to act at the GABA receptor (Kadous et al., Pestic. Biochem. Physiol. 19:157-166, 1983; Tanaka et al., Pestic. Biochem. Physiol., 22:117-127, 1984); and target site resistance is known to exist (ffrench-Constant et al., J. Econ. Entomol. 83:1733-1737, 1990) and the receptor gene has been cloned (ffrench-Constant et al., PNAS USA, 88:7209-7213, 1991). Similarly, methoprene and certain botanical extracts (Precocenes) target the juvenile hormone (JH) receptor and resistance to these insecticides has been reported (Wilson et al., Devel. Biol., 118:190-201, 1986; Georghiou et al., J. Econ. Entomol., 71:544-547, 1978; DYTE, Nature, 238:48-49, 1972). Bacillus thuringiensis (Bt) toxins affect a gut associated glycoprotein but resistance has not become widespread. Diacyl hydrazine and certain botanical extracts (Penosterone A) target the ecdysone receptor (Wing, Science, 241:467-469, 1988; Spindler-Barth et al., Arch. Ins. Biochem. and Phys., 16:11-18, 1991; Cherbas et al., PNAS USA, 85:2096-2100, 1988) and the genes for the ecdysone receptor have also been cloned (Yao et al., Cell, 71:63-72, 1992; Koelle et al., Cell, 67:59-77, 1991).

The use of this method is also not limited to detection of insecticide resistance, but may be applied to any other pesticides, including herbicides, acaricides, fungicides, nematicides, and molluscicides. A number of genes conferring resistance to herbicides have been characterized. For example, altered acetohydroxy acid synthase genes are the basis of resistance to sulfonylureas and imidazolinone herbicides (EP Application No. 91 119 254.0; Yadav et al., PNAS USA 83:4418-4422, 1986). Glyphosate targets the enzyme 5-enolpyruvate shikimate-3-phosphoric acid synthase, and mutant genes encoding resistant forms of this enzymes have been identified (Comai et al., J. Biol. Chem., 260:4724-4728, 1985). Similarly, genes conferring resistance to the herbicides phosphothrinicin and bialaphos have also been characterized (Thompson et al., EMBO J. 6:2519-2523, 1987; DasSarma et al., Science, 232:1242-1244, 1986).

The target site of various fungicides is also known. For example, phenylamide fungicides, such as acylalanines (metalaxyl, furaxyl and bevalaxyl), butrolactones (ofurase, cyprofuran), and oxazolidinones (oxadixyl) are known to act on fungal RNA polymerase (Arp et al., Fungizider. Mitt. Biol. Bundesanst 236-237, 1981; Davidse, Neth. J. Plant Pathol. 87:11-24, 1981; EPPO Bull 15:403-409, 1985). Resistance to these fungicides has also been reported (Davidse et al., J. Plant Pathol., 87:65-68, 1981; Davidse et al., Experiment. Mycology, 7:344-361, 1983). The fungicide carboxin is known to have as a target site succinate dehydrogenase (Schewe et al., in Modern Selective Fungicides, H. Lyr, ed. V.E.B. Gustav Fischer Verlag, Jena, 1987). Resistance and cloning of the resistance gene have also been reported (Keon et al., Current Genetics, 19:475-481, 1991). The blasticidin fungicides, such as BlaS and Blasticidin S act on the enzyme nucleoside aminohydrolase; resistance has been observed and the gene conferring the resistance has been cloned (Kamakura et al., Mol. Gen. Genet. 223:169-179, 1990; Kamakura et al., Agric. Biol. Chem., 51:3165-3168, 1987). The benzimidazole fungicides, such as benomyl, carbendazim, mocodazole and thiabenazole, act by affecting with microtubule function (Clemons et al., Pesticide Biochem. Physiol., 1:32-43, 1971; Hammersdag et al., Pesticide Biochem. Physiol., 3:42-54, 1973). Resistance is also known to occur to these fungicides (Van Tuyl, Med. Fac. Lonbouww Ryksuniv. Gent., 40:691-698, 1975); Meded. Landb. Hogesch. Wageningen, 77:1-137, 1977); Fanetran et al., Mycol. Res., 95:943-951, 1991). The relevant resistance gene has been isolated and cloned (Jang et al., Cell Motility and the Cytoskeleton, 17:87-94, 1990; Orbach et

al., Mol. Cell Biol., 6:2452-2461, 1986).

Other applications of this method will be apparent to those skilled in the art, in view of the following non-limiting examples.

5 **EXAMPLES**

1. **DNA Preparation**

Genomic DNA is prepared from adults of an inbred American Cyanamid Company susceptible strain of Heliothis virescens as follows. A moth is placed in 400 ml of grinding buffer (0.1 M Tris-HCl, pH 9.0, 0.1 M EDTA, 1% SDS) and homogenized with a pestle. 80 ml of 5M KOAc and 400 ml equilibrated phenol is added; the sample is inverted several times and left to stand on ice for five minutes. Two hundred ml of ice cold chloroform is added, spun at 15,000 x g for five minutes, and supernatant removed. The procedure is repeated at least once.

Four hundred ul chloroform is added to the pellet, the sample inverted for 30 seconds and then spun for 5 minutes at 15,000 x g. The chloroform is removed, the sample spun again for one minute and the remaining chloroform removed. Two volumes of cold ethanol are added to the aqueous phase, and the sample left to stand five minutes at room temperature. The sample is once again spun for five minutes, the supernatant aspirated, and the pellet dried. The dried pellet is resuspended in 50 ul Tris-EDTA (10mM TRIS, 1mM EDTA, pH 8.0).

2. **Isolation of Channel Fragment from Genomic DNA**

The isolated genomic DNA is used as a template in PCR with primers based on portions of the Drosophila melanogaster para-locus sodium channel. Specifically, degenerate primers homologous to portions of an exon in the fourth transmembrane domain of the a-subunit of the Drosophila para locus are constructed as follows:

30 para 4991+ 5' (T3) AAATCACTCCCAATT ATH GAR AAR TAY TTY GT 3'
 para 5143- 5' (M13-40) TTTCCCAGTCACGAC ATN GCR AAD ATR AAC AT 3'

35 where H = A, C or T, R = A, G or T, Y=C or T, and N = any base. Numbers refer to 3' terminal base positions in the para sequence. Underlined sequences are universal primer tails T3 and M13 -40 respectively used for sequencing of product.

PCR reactions of 100 ul are constructed of approximately 1 mg of genomic DNA, 1 mg of each primer, 0.2 mM of each dNTP, 10 mM Tris pH 8.3, 50 mM KCl, 2mM MgCl₂, 0.001% gelatin, and 2 U of Taq polymerase. Reactions are incubated for 5 cycles, each of 50 seconds at 94°C, 2 minutes at an annealing temperature of 53°C, and 25 seconds at 72°C, then for 35 cycles with an annealing temperature of 45°C. An amplification product of 184 base pairs is obtained, and then directly sequenced using the Sequenase kit (United States Biochemical Co.) according to the manufacturers directions. The deduced amino acid sequence is found to be the same as for an equivalent region in para.

45 Genomic DNA is also digested with several restriction enzymes, specifically EcoRI, BamHI, Sall, HindIII, PstI, and XbaI. The fragments are separated on agarose gel and transferred to a nylon support. The PCR product described above is radiolabelled and hybridized to the nylon blot at 60°C overnight. The blot is washed with a wash buffer (IMNaPi, 250 mM EDTA, pH8, 20% SDS; Napi = Na₂HP0 · 7H₂O, 134g and H₃PO₄ to pH7.2/liter) at 60°C three times for thirty minutes each. The filter is exposed to film. The film is developed after 12-24 hours of exposure at -80°C. The results show single bands in each lane indicative of a single copy gene. The largest band is for the EcoRI digest.

50 Based on the foregoing information genomic DNA is prepared from an ICI America's pyrethroid resistant PEG-87 H. virescens strain using cesium chloride purification as described by Ausubel et al. (Current Protocols in Molecular Biology, Green Publ. Assn. and Wiley Interscience, 1989), and digested to completion with EcoRI. This DNA is used to construct a genomic library in the Lambda-ZapII vector (Stratagene Co., LaJolla, CA) following manufacturers' instructions. The 184 bp PCR fragment is used to screen this library by hybridization as described in standard Lambda-Zap II protocols. Several positive plaques are purified and the inserts excised in vitro following manufacturer's instructions, and subsequently

characterized. A genomic clone designated "hscp1" has approximately 8000 bp, and is extensively sequenced. For this first 990 base pairs of coding sequence, there is significant homology between hscp1 and the published para sequence of *Drosophila* (Loughney et al., *Cell*, 58:1143-1154, 1989).

5 3. RFLP Analysis

Fragments of the gene from individuals of both ICI- pyrethroid-resistant lines and American Cyanamid Company susceptible strains (collected Stoneville, Mississippi, 1963) are amplified by PCR using several pairs of primers based on the available hscp1 sequence. In this specific example, hscp4116+ and 10 hscp4399- are used. The PCR reactions, of 100 ml, consist of 100 ng-1mg of genomic DNA, 100 ng each of primer (hscp 4116+, 4399-, as shown in Figure 1) and other components as described above. Negative and positive control reactions are also made respectively, without template DNA or with hscp1 DNA.

Reactions are incubated for 30 cycles, each of 50 seconds at 94°C, 2 minutes at an annealing temperature of 56°C, and 1.5 minutes at 72°C. PCR products are purified with phenol, chloroform and 15 precipitated using ammonium acetate-ETOH. PCR products are then apportioned among three different restriction enzyme reactions mixes following manufacturers' instructions (Rsal, Sau3AI, and Msel, New England Biolabs, Beverly MA), and incubated at 37°C overnight. Digestion products are resolved on a 3% "NuSieve" (FMC) agarose gel and stained with ethidium bromide at about 50ng/ml. The resulting restriction fragments length polymorphisms show a distinct pattern for each of the resistant and susceptible strains 20 (Fig. 2), indicating the utility of this method in detecting the presence of resistant individuals among a generally susceptible population.

DEPOSIT OF BIOLOGICAL MATERIALS

25 The following materials have been deposited with the American Type Culture Collection, 12301 Parklawn Drive, Rockville, MD, on October 19, 1992 and have been given the following accession numbers.

	Deposit	Accession No.
30	Sodium channel para homolog (3' half of gene) from <i>Heliothis virescens</i> ICI strain PEG-87 (hscp1)	ATCC 75334

35

40

45

50

55

EP 0 615 976 A1

FIGURE 1

5 *Heliothis* and *Drosophila* sodium channels. *** start/end of my sequences, _ gap, ^ same as above. 3/12/92 pl.

D.mel. para	ATGACAGAAAGATCCGACTCGATACTGGAGGAAGAACCGAGTTGGTCCGTCCTTACCCCGAATCATGGTC 1 M T E D S D S I S E E E R S L F R P F T R E S L V	75
Dm	CAAATCGAACACCGATTCCGCTGAACATGAAAAGCAGAAGGAGCTGAAAGAAAAGAGAGGCCAGGGAGAGGTG 76 Q I E Q R I A A E H E K Q K E L E R K R A E G E V	150
Dm	CCCGATATGGTCGAAGAAAAACAAAAAGAAAATCGATATGATGACGAGGACGAGGATGAAGGTCCACAAACCG 151 P R Y G R K K K Q K E I R Y D D E D E D E G F Q P /\intron A /B	225
Dm	GATCCTACATTGAAACAGGGTGTGCCAATACTCTGTCGATTCAGGGCAGCTTCCCUCGGATTGGCTCCACT 226 D P T L E Q G V P I P V R L Q G S F P P E L A S T	300
Dm	CCTCTCGAGGATATCGATCCCTACTACAGCAATGTACTGACATTCTAGTTGTAAGCAAAGGAAAAGATAATT 301 P L E D I D P Y Y S N V L T F V V V S K G K D I F /\C	375
Dm	CGCTTTCTGCATAAAACCAATGCGATGCTCGATCCATTCGAATCGATACTGCGTGCGCATTTACATTCTA 376 R F S A S K A M W M L D P F N P I R R V A I Y I I	450
Dm	GTGCATCCATTATTTCCCTATTCACTCATCACCAATTCTCGTCACTGCACTCTGATGATAATGCCGACAACG 451 V H P L F S L F I I T T I L V N C I L M I M P T T I-S1	525
Dm	CCCACGGTGTGAGTCCACTGAGGTGATATTCAACCGGAATCTACACATPTGAATCAGCTGTAAAGTGATGGCACGA 526 P T V E S T E V I F T G I Y T F E S A V K V M A R I-S2	600
Dm	GGTTTCATTTTATGCCGTTTACGTATCTTAGAGATOCATGGAATTGGCTGGACTTCGTAGTAATAGCTTAGCT 601 G F I L C P F T Y L R D A W N W I D E V V I A L P I-S3	675
Dm	TATGTGACCATGGTATAGATTTAGGTAATCTAGCAGCCCTGGAACGTTTAGGGTGTGGAGGGCTTAAAACC 676 Y V T M G I D L G N L A A L P T F R V L R A L K T I-S4	750
SCp	AArACnATHGTnGGnCC->	
Dm	GTAGCCATTGTGCCAGGCTTGAAAGACCATCGTCGGCGCGTCATCGAACGGTGAAGAAATCTGGCGCATGTGATT 751 V A I V P G L K T I V G A V I E S V K N L R D V I I-E	825
Dm	ATCCGTGACCATGTTCTCCCTGTGGTGTTCGGTTGATGGGCTACAGATCTATATGGGCGTGCCTACCCGAGAAG 826 I L T M F S I L S V F A L M G L O T Y M G V L T E K	900
Dm	TGCATCAAGAAGTTCCCGCTGGACGGTTCTGGGGCAATCTGACCGACGAGAACTGGGACTATCACAATCGCAAT 901 C I K K F P L D G S W G N L T D E N W D Y H N R N	975
Dm	AGCTCCAATTGGTATTCGGAGGACGAGGGCATCTCATTCGGTTATGGCCCAATATATCCGGTGCAGGGCAATGCC 976 S S N W Y S E D E G I S F P L C G N I S G A G Q C /\F	1050

FIGURE 1

EP 0 615 976 A1

Figure 1

FIGURE 1

Heliothis and Drosophila sodium channels. *** start/end of my sequences, - gap, ^ same as above. 3/12/92 p4.

Dm 3226 CCATCAGAGCATGGTGCACAACTGGAGCTGGGCCACGAGATCTCCCGACGGCTCATCAAGAAGGGC 3300
P S E H G D N E L E L G H D E I L A D G L I K K G
/\ alt. exon E 39 bp

10 Dm 3301 ATCAAGGAGCAGACGCAACTGGAGGTGGCATGGGATGGCATGGAAATTCAAGATAACACGGGACATGAAGAAC 3375
I K E Q T Q L E V A I G D G M E F T I H G D M K N

Dm 3376 AACAAAGCGAAGAAAATCCAATATCTAAATAACGCAACG 3376 intron L
N K P K K S K Y L N N A T

15 START HSCP1 CLONE

scd61 pBS_EcoRI***AATTCACTATACCAAGGTAACCTTTTGATACCTA
scd61 GTTTAAAAATAAGATACTGTTGTTATCTAAATAGGATTAAAGAGTGTICATAACGTAATGTTAATTTTCAGGG
scd61 ACAATAAAATACAAGAAAGggCAAAATTGTTAAATAATACTAACCCAA>AACAGATAATCATAGAGACACGCT
scd61 TTAGACTGTGAATTAAATCATCACGGGTATCTTACAGCTAAATATTGCTGTACAGCTTKCTAATAAAATCAC

20 HSC 3455- ("abelard") AAATGCTAACGGCACT...
scd61 AATCAAGTTTCTCTACTAAgAACACAAATTCTCTGTTAGGTGAGGATGAGATAATTAGTc>AAAATGCTAACGGCACT...
Dm GAGGAGGACACTGCGAGGATTAACTGCTATGCTAACAGCTAAATATTGCTGTACAGCTTKCTAATAAAATCAC 3450
intron L
S P D T A S I N S Y G S

25 ...CATAA-> no intron
scd61 H K I R S F K D E S H K G S A D T I D G ? ? ? .K D...
Dm CATAAAATCAGGTGCTCAAAGATGtAAGTCAaAGGTTCCGAgACACGATAGATGgCGamgnGmGAGGAC
3451 CATAAGAACGACCATTCAGGAGCGAGGCCACAAGGGCAGCGCCGAGACGATGGAGGGCAGGAGAACGGCCAC 3525
H K N R P F K D E S H K G S A E T M E G E E K R D
/\intron M

30 scd61 A S K E E L G L E E E..
Dm GCTaGTAAGAGGAATTGGTTAGAAGAAGGTCAGTGTAAAATGCAATTAAAATTAACAGAAATTGAACAAAG
3526 GCGACCAAGGAGGATTAGGTCTCGACAGG 3526 no intron.
A S K E D L G L D E E..

35 scd61 CCATATTTCGA
scd61 CAATTTGCATATAATTAAATGTTACAGAAATGCTTACAGAAATGCTTACAGAAAGAGAGaAGATgGGAaGTTAGaCgGAGGTCTAGGAAA
Dm AACTGGACGAGGAGGGCGAAATGGAGGGGGCCCCCTCGACGCT 3600
.L D E E G E C E E G P L D G

40 scd61 T D I I V A A D E E V V D D S P A D C C C P E P C Y
Dm ACAGaCATTATAGTGGCcCGACatGAGGAAGTTGCTGAGCAAGCCCTGCTGACTGCTGTCAGACCCATGTTAC
3601 GATATCATTATTCTACGACACGACGAGGATATACTCGATGAAATTCAGCTGATGCTGCCCCGATTCGTA 3675
D I I I H A H D E D I L D E Y P A D C C P D S Y Y

45 scd61 A K F P F L V G D D E S P F W Q G W G M L R L K T
Dm GCGAAGTTCCATTCTCTGTCGGGTGATGATGAATCTCCCTTTGGCAAGGCTGGGCATGCTCgGTTGAAAACC
3676 AAGAAAATTCCGATCTAGCCGTGACGAGTACTCGCCCTCTGCAAGGATGGGAATTACGACTGAAAACT 3750
K K F P I L A G D D D S P F W Q G W G N L R L K T

50 scd61 F K L I E N T Y F E T A V I T M I L L S S L A L
Dm TTCAAACTCATTGAGAACACATATTGAGAAACGGCTGTGATTAACATGACTTGCCTCAGTAGTTGGCTTGGTA
3751 TTGCTGATTAATTGAGGATAAATATTGAGAACACGGCTGTACTATGATTAAATGAGTAGCTTAGCTTGGCTTGGTA
F R L I E D K Y F E T A V I T M I L M S S L A L
III-S1

FIGURE 1

FIGURE 1

5

Heliothis and *Drosophila* sodium channels. *** start/end of my sequences, _ gap, ^ same as above. 3/12/92 p6.

scd72 ACCACCCCTGCTGCCGACAACACCC~~Tatcg~~CTCATCCACCCACACTTCGGCTCCACACTTCACATTACAT
 scd72 TTCTATTTCAACTCTAGCACTA~~TTAA~~CATTTAAATTCTCACCGT~~T~~CCAGCGCTACT~~M~~GGCTCCCTTTT
 scd72 CCGATATTTCTCCTCAT~~AA~~TACCCGGATC~~AAA~~TTGTTAA~~T~~ATGTTAATTTGGACAGCTTCCGAT~~TT~~CTGGC
 scd72 AGTAGTCATTGAAGTA~~TT~~ATTACTGAATCA~~T~~TTTGACTGGCTGGCCAC~~CC~~GTAA~~T~~GGCT~~T~~AGTATCATCA
 scd72 CTGTTTCGCTATAAACCTCTTTAGAAAGGTCATGGATT~~TT~~TTG~~T~~GAGAGATATT~~T~~CCAGCTG~~T~~GGCTC
 scd72 TTTC~~T~~CTATGCTCTTAA~~T~~TTAGCTAGAT~~T~~AGAC~~T~~GTAA~~T~~ACT~~T~~AGT~~T~~TT~~T~~GGAA~~T~~GCTAA~~T~~AT~~T~~CT
 scd72 GCAACCTTGAAT~~T~~TTCTCTCCTTATTCATCG~~T~~***

GAP IN HSCP SEQUENCE

15 scd131
PC054/13 ***GCTAACTGCTACATAGTTACTCCACAGTATTAAATGACA
 A?.....

scd131 TTAACGTCCTTATATCCCAACTAATAATGGCCGACTAACAAATGCAGGCCATTGTATATAAGAAAGGAGACGCTAT
P205m/11
P205f/11

20 scd131 CACTACTT CCAATATACTTGACCAAGTGTAAATACGTTACGGTATGTGACGCGTGGTC V V
P220M4/11 ***TGTGGGTACCTACACCA
P220M4/11G.....
DT GTCGTC
intron 0 ----- 4125 V V

HSC 4211+ CTGATCTTC...
 V N A L V Q A I P S I F N V L L V C L I F W L I F
 scd131 GTAAACCGCTCTGTGCAAGGATCCCGTCCATCTTACACGTGTTGGTGTCTATCTCTGGCTGATCTTC
 P20m4/11A.....
 P20f4/11A.....
 Dm GTTAATGCCCTGGTACAAGCTATACCGTCCATCTTCAATGGCTATTGGTGTCTAAATATTGGCTAAMTTT
 4126 4200
 V N A L V Q A I P S I F N V L L V C L I F W L I F
 III-55

30 4211...GCCATCATGGG->
 HSC 4235- *4215-* ACAACTGTTGGCTGGAAATA->
 RRO 8- CAAATATTTCAGGTA_____TTAAT->
 SSO 8- AAAATATTTCAGGTAAGCGAG->
 A I M G V C L F A G K Y F K
 scd131 GCCATCATGGGGAGTACAACGTGTTGGCTGGCAAAATTTTCAGGTA_____TTAATTTATTAACATAACAAAAAA
 P20m4/11 -----C-----A-----AGCAGTA "GT" "C" "T" "C" "G"
 P20f4/11 -----C-----A-----AGCAGTA "GT" "C" "T" "C" "G"
 P1m24/9 -----A-----AGCAGTA "GT" "C" "T" "C" "G"
 Dm GCCATAATGGGTGTACAGCTTTTGCTGGAAAAATTTTAAG
 4201 A I M G V C L F A G K Y F K INFOR P

40 HSCO 52- <-TAGAATAATCA...
scd131 AATATTCAATTCTGAAATCTTAACT
Pim24/9

. . . GACAAGTTTA scd131 GTGTGTCAAAATTTCTAACATGTTTTCTTGTGTTGTTTATGGCTCGACCTCAACCAACGACGGTGACCCAG Plm24/9 C-----T-----C----- Dm	C V D L N H T T L S H TGGGAGGACATGAATGCGACGAAGCTCACCCAC 181bp P -----+-----+-----+ P P P P M M S S K K I I T T
--	---

HSCP4343+		TCGGAGAACTCACCGATGAACCTT->
HSC 4325+ (4335+)	ATCTTAGAGAACTACACCTGGGA->	
scd131	E I P D R N A C I L E N Y T W E N S P M N F D H	GAAATCATTCCCAGACCGGAATGCCGTGCATCTTAGAGAACTACACCTGGGAGAACTCACCGATGAACCTTGACCAT
P1m24/9	-----*G-----A-----	-----
Dm	4276	GAGATCATAACCAAAATGCCAATGCCGTGGAGAGCAGAGAACTACACGTGGGTGAATTCTAGCAATGAATTTCGATCAT

FIGURE 1

Heliothis and *Drosophila* sodium channels. *** start/end of my sequences. - gap, * same as above. 3/12/92 p7.

5 HSC 4394- "Heloise"
 HSC 4415- "4665."
 HSC 4399- "Liz"
 V G K A Y L C L F Q V A T F K G W I Q I M N D A I
 scd131 GTCGGCAAGGCCATCTCTGCCTGTCCAAAGTGGCCACCTTCAGGGATGGATAACAGATCATGAACGACGGTATT
 P1m24/9
 Dm GTAGGTAACGGCTATCTGTGCTTTTCCAAAGTGGCCACCTTCAGGGATGGATAACAGATCATGAACGATGCTTAC
 10 4351
 V G N A Y L C L F Q V A T F K G W I Q I M N D A I 4425

15 D S R E
 scd131 GATTGAGAGAAGTATGGCTACTATTTCTCTTCTTCTTCATAAGTCATAAAATTAAATATCAATAAAAATATC
 Dm GATTCACGAGAG
 4436 intron 2
 D S R E

20 scd131 ACGCAATACAATAATGATAT

25 scd131 V G R Q P I R E T N I Y M Y L Y F V F F I
 Dm TTTAAATGCCAGGTGGCCCCGGAAACCTATAACCGGAGACCAACATCTACATGTACCTGTACTCTGCTGCTGCTTCATC
 30 intron Q CTGGACAACCAAACTCTGTGAAACGAAACATCTACATGTACTCTGCTGCTGCTTCATC
 V D K Q P I R E T N I Y M Y L Y F V F F I 4500
 III-S6

35 scd131 I F G S F F T L N L F I G V I I D N F N E Q K K K
 Dm ATATTTGGCTCATTTCTCACTTCAACCTATTCTACATGGTGTGATCATGGACAACCTTAAACGAAACAGAAGAACAA
 40 4501
 I F G S F F T L N L F I G V I I D N F N E Q K K K 4575

45 scd131 A G S L E M F M T E D Q K K Y Y N A M K K M G S
 Dm GCCAGCCTTGAGATGTTCATGACTGAGGACCAGAAGAAACTACAACTGCGATGAAGAAAATGGCTCT
 50 4576
 A G G S L E M F M T E D Q K K Y Y S A M K K M G S
 PKC activ'n site West et al Science 254, 866

55 scd131 K K P L K A I P R P K ?
 Dm AAAAACCTTTAAACCTATCCCGAGACCGAACGGTAACACAGATTGCACTGCTTCTGACCTCAATGGAAACA
 60 4651
 K K P L K A I P R P R intron R

65 scd131 TATCCAAGGAGGAGCGAAGCTTATATTGAAACTTGATAGTAATATTGATATTTTATAATTCTATAAACAG
 scd131 CAGTACTGGTAAACCATGTTTCAACGCCAGAAACTCAGGACGTTAAATTGAGGGATGATTTGCCTA
 70 scd131 GAATCTATTCTAAAGATTGATTGGAGCCGCTTCACTTCCAAACGACAGTTGAGCATCTATCCCACCGACACGT
 scd131 CGTTGTACCCAGATAAGAACGGTTCTACC

75 Dm W R P Q A I V F E I V T D K
 TAAATAAACACTAACTGAAACTGTTTCTCCAGTGGGGCCACAAACGATCGTGTGGAGATACTGACGGACAAG
 80 intron R TGCGGACCCACAGCAATAGTCCTTGAATAGTAACCGATAAG
 W R P Q A I V F E I V T D K 4725
 IV-S1

85 scd131 K F D M I I M L F I G L N M L T M T L D H Y Q Q S
 Dm AAGTTCGACATGATCATGATGTTGTTCACTGGCCCAACATGTTGACGATGACGGATCGATCACTACACAGCAGTCG
 90 4726
 AAATTCGATATAATCATTATGTTATTGATGGCTCAACATGTTGACCGTACCATGACCCCTCGATGGTACGATGGCTCG
 K F D I I M L F I G L N M F T M T L D R Y D A S 4800

EP 0 615 976 A1

FIGURE 1

FIGURE 1

5

Heliothis and *Drosophila* sodium channels. *** start/end of my sequences. - gap, * same as above. 3/12/92 p9.

15 scd13i P D N E R G Y P G N C G S A T I G T Y L L S Y L
 Dm CCCGACAACGAGCGCGCTACCCCCGGCAACTGGCGCTCTGCNACCATCGGCATCACCTACCTGGCTGTCCCTACCTC
 5326 CCCGACAACGACAAAGGCTATCCGGGCAATTGTGGTTCAAGCAGCCGTTTGAATAACGTTTCTCTCTCATACCTA
 P D N D K G Y P G N C G S A T V G I T F L L S Y I
 IV-S6

scd131	V I S F L I V I N M Y I A V I L E N Y S
	GTCACTCTCCCTCTCATCGTCATCAACATGTACATCCCGTCATTCCTCGAGAAATTACT
Dm	GTATAAGCTTTTGATAGTTATTAATATGTACATTCGTCATTCCTCGAGAACGGAAT
20 5401	V I S F L I V I N M Y I A V I L E N G I

Digitized by srujanika@gmail.com

- 25

30

35

40

45

50

55

FIGURE 2

5

10

15

20

- 25

30

25

12

16

50

56

SEQUENCE LISTING

(1) GENERAL INFORMATION:

(i) APPLICANT: American Cyanamid Company

(ii) TITLE OF INVENTION: Method for Monitoring Pesticide Resistance

(iii) NUMBER OF SEQUENCES: 10

(iv) CORRESPONDENCE ADDRESS:

(A) ADDRESSEE: American Cyanamid Company
(B) STREET: One Cyanamid Plaza
(C) CITY: Wayne
(D) STATE: New Jersey
(E) COUNTRY: USA
(F) ZIP: 07470-8426

(v) COMPUTER READABLE FORM:

- (A) MEDIUM TYPE: Floppy disk
- (B) COMPUTER: IBM PC compatible
- (C) OPERATING SYSTEM: PC-DOS/MS-DOS
- (D) SOFTWARE: PatentIn Release #1.0

(vi) CURRENT APPLICATION DATA:

(A) APPLICATION NUMBER: EP 93 118 061.6
(B) FILING DATE: 08-NOV-1993
(C) CLASSIFICATION:

(viii) ATTORNEY/AGENT INFORMATION:

(A) NAME: Wachtershauser Dr., Gunter
(C) REFERENCE/DOCKET NUMBER: EA-9088/31,732

(ix) TELECOMMUNICATION INFORMATION:

(A) TELEPHONE: (089) 293906
(B) TELEFAX: (089) 223759
(C) TELEX: 5214173 Patw-D

(2) INFORMATION FOR SEQ ID NO:1:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2416 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

45	AATTCACTAT ACCAGGTAAC TTTTGATAC CTAGTTAAA ATAAGATACT GTTGTATCT	60
	AATAGGATT TAAGAGTTGT CATAAACGTA ATGTTAATT TTCAGGCGAC AATAAATACA	120
	AGAAAGGGCA AAATTTGTT AAATAATATT AACGCCWTAAC CAGATAATCA TAGAGACAAAC	180
50	CGTTTAGACT GTGAATTAAA TCATCACGGG TATCCTATAC AGGTAAATAT TTGTCGTCAC	240
	AGCTTKCTAA TAAATCACAA TCAAGTTCT GTACTAAGAA CACAATTCT CGTTAGGAT	300

	GACGATACAA TTAGTCAAAA ATCGTACGGC AGTCATAAAA TCAGGTCGTT CAAAGATGAA	360
	AGTCATAAAG GTTCCGCAGA CACGATAGAT GGCGAMGMGM MGAAGGACGC TAGTAAAGAG	420
5	GAATTGGGTT TAGAAGAAGG TCAGTGTAAA ACTGCAATTN AAAATTAACA GAATTGAACT	480
	AAGCCATATT TGGACAATT GCATATAATT AATGTGTTAC AGAAATGGTT GAAGAAGAGG	540
	AAGATGGGAA GTTAGACGGA GGTCTAGGCA AACAGACAT TATAGTGGCC GCAGATGAAG	600
10	AAGTTGTTGA CGATAGCCCT GCTGACTGCT GTCCAGAGCC ATGTTACGCG AAGTTCCAT	660
	TCCTTGTGGG TGATGATGAA TCTCCCTTT GGCAAGGCTG GGGCATGCTT CGGTTGAAAA	720
	CCTTCAAAC TATTGAGAAC ACATATTTCG AAACGGCTGT GATTACAATG ATTTTGCTCA	780
15	GTAGTTGGC TTTGGTAAGT TCTCAAATAA TTTTCTGAAC ACTTTGTTTC ACATAGTAAG	840
	GGAGCAAATT ATGTTCATGA CGAAACTTYK CTGTCTTAC AGGCTTTAGA AGATGTAAAT	900
	TTACCACATC GACCGATTCT TCAAGATATC TTGTATTATA TGGATCGGAT CTTCACCGTC	960
20	ATTTTCTTCA TCGAGATGTT GATCAAATGG CTTGCCCTG GCTTCCAGAA ATACTTCACA	1020
	AATGCGTGGT GCTGGCTCGA CTTCATCATT GTCATGGTAA TATTACTATA AATATATTTG	1080
	CTTTCGTATC ATTTGAACTA ACAGTTCCCT TGCAAGATTAG ATTGGTAAAA CGTAGATTAT	1140
25	GATTATGGAA TTTGAACCTG TAAGTTCTGT ATAATGTGAA AGACAAAATT AAGGTTCAAGG	1200
	TCGGTCTTG AAGTTTATCC TGCCGCCTCT CAGCGAGGTA AAGCTGGAA GAATAATTAA	1260
	TACAGTGTAA AGTATAACCTA GATGTAAGGA ATATATTGTA TACTAAAGTA AATGACGATT	1320
	GGTGTGGCGT TAGTTGTCGC TCGTAAACCA CGGNGCAGTG ATGSTGGCGS GACGACATCC	1380
30	CNGTTCCGCT CGATGCACGT TGNGNGCGCT GCGGCTCCGC GCGGTCTCTC GCTGGGAGGG	1440
	CATGCGCGTG AGTAGGACGG CACACCACTC GTGCGCAGGC TGTGTTGGTA TCGTTGCCT	1500
	GCACATCCAC ACGATTGTTT CACTCTACTT TCTGCTGAGA AATCAGTGCA ACATGGTGT	1560
35	GCTAATCGAA ATAAGCAACC AAACCTCCG ACAGAGATT TTATCTGAA CCACCTTGTG	1620
	AAATGTGAAC TCTGATTCAT ATTCAACTAA TCTCTTAATA AAGTTGTTG TAAATATTTT	1680
	CTAATTCTAC TGTGTTGAC GTGCAGCGCA ACTCAAAGCG TGCAGCTTG ATTGTTCGAT	1740
40	GTCTATGGCA GTGGAAACTC CGAACGGCCT CACCTCGCTG CCTCGAGCTC TCGATGTCGT	1800
	ATTGTTGTT TATGGAAACC GCTTCATGTG ACTCTATAAC CCACGACCCC CGCTATATGA	1860
	ATACCTGTGR CCGTATATAT AAAAACCTCC ACAGAGTGAC TTGAAATCCT TATACTTTCA	1920
45	AGTGCATGAA ACAACACGTC TTCTATCTTT GTGCTGTTGT GCGAGATAGT GCGTTTCAC	1980
	GTACTACTCA CATTACCCAC ATCTGTCGGG GATAAAATCC GASATTGAA AGAAAAGCTT	2040
	TAAAACGTAA AATGGCACGT GATGTTGGTT GCTGTCGATG TCATTACAAA GCAAACATA	2100
50	AATAACCTATA CTATATACAT ATCTTTGATA TTTGTTCTTA ATATGATGTG ATGTAGCTTT	2160
	ATTTTAGGGA CATCAGAGAA ACGGTAGCCT AAGCTCAAAA TTAGAGCTTT TTGAAAATC	2220

AATCCTGTTA ATTGCTATAT AATTATTCC ATTCTTTTA TTCTCTGATG KYCYYMAARK	2280
WAMYTCGATG TAACCTTATG TGAACTTGA GTGAATATCA CGTCCCTATC CCTCTGATTA	2340
5 TGCTGCAATA GGAACCTCTG TTTCCAATG AATCTTGAGA TTTTCTTCTT TATAGTATCA	2400
TATCCTTAGG TTTGTA	2416

(2) INFORMATION FOR SEQ ID NO:2:

10 (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 567 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

15 (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

ATTAGCGTTC AAAAGCGATG CGAACGCTGGG ACTGCGCTCT CAGGCCATGA GCCGCATGCA	60
20 GGGCATGAGG GTACGTACCA CCCTGTGCTG CCGACAACAC CCTATCGCTC ATCCATCCAC	120
CACACACTTC GCTCCACACT TCACATTCAAC ATTCTCTATT CAACTTCTAC GATCATTTC	180
TAACATTTTA AAATTTCCTAA CGTRCCAGCC GTACTMGGGC TCCTTTTTTC GATATTCTG	240
25 CATSAATCAC CGGATCAAAA TTTGTTTTTA ATAGTTAATT TGGACAGTTA TCCGATTCA-	300
TGGCAGTAGT CGATTGAAGT AATTATTAGT GAATCATTG GAAGTGGTCG GTGGCACCCC	360
TGAATGGCTT AGTATCATCA CTGTCGTCA TAAACCTCTT TTAGAAAGGG TCAATGGGAT	420
30 TTATTGTGGA GAGATATTYR TCCATGTTTT GGTCTCTTT CTATTGGTCT TATTATTAGC	480
TAGATTAGAC TTTTGTAAATT ACTTAGTTAT TTGGAATGCT AATTTATATT CTGCACCTTA	540
GATTTTTCT TCTTGTATCT TCATCGA	567

(2) INFORMATION FOR SEQ ID NO:3:

35 (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 2279 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

40 (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

45 GCTAACTGCT ACATAGTTAC TGCACAGTAT TAATGACATT AACGTCCCTTA TATCCCAACT	60
AATAATGCGC CCACTAACAA ATGCACGCCA TTGATATAAG AAAGGAGACG TATCAGTACT	120
TCCAATATAT CCTTCGTGAC CAGTGTAGTA ATACGTACGT ATGTGACAGG TGGTGGTAAA	180
50 CGCTCTCGTG CAAGCGATCC CGTCCATCTT CAACGTGTTG TTGGTGTGTC TTATCTTCTG	240

	GCTGATCTTC	GCCATCATGG	GAGTACAAC	GTTCGCTGGC	AAATATTC	AGGTATTAAT	300
	TTATTAACAT	AACAAAAAAA	TATTCATT	CGTAAATCT	TATTAGTG	TTCAAAATTT	360
5	CTAACATGTT	TTTCTTTGTT	CTGTTCTAGT	CGCGTCGACCT	CAACCACACG	ACGTTGAGCC	420
	ACGAAATCAT	CCCAGACCGG	AATGCGTGCA	TCTTAGAGAA	CTACACCTGG	GAGAACTCAC	480
	CGATGAACCT	TGACCATGTC	GGCAAGGCCT	ATCTCTGCCT	GTTCCAAGTG	GCCACCTTCA	540
10	AGGGATGGAT	ACAGATCATG	AACGACGCTA	TTGATTGAG	AGAAGTATGG	CTACTATTTC	600
	TTTCCCTTTT	GTTCATAAGT	TCATAAATTA	ATATCAATAA	AAATATCACG	CAATACAATA	660
	AATGATATTG	TTAATGCCAG	GTGGGCCGGC	AACCTATACG	CGAGACGAAC	ATCTACATGT	720
15	ACCTGTACTT	CGTGTCTTC	ATCATATTG	GTCATTCTT	CACTCTAAC	CTATTCACTG	780
	GTGTGATCAT	CGACAACCTT	AACGAACAGA	AGAAGAAAGC	CGGCGGCAGC	CTTGAGATGT	840
	TCATGACTGA	GGACCAGAAG	AAATACTACA	ATGCCATGAA	GAAAATGGGT	TCTAAAAAAC	900
	CTTTAAAAGC	TATCCGAGA	CCGAAGGTAA	CAGACGATTG	CATTGTTTTT	TGACCTCAAT	960
20	GGAAACATAT	CCAAGGAGGA	GCGAGTCTTA	TATTGAAAC	TTGATAGTAA	TATTGTTGTA	1020
	TATTTTATAA	TTTCATAAAC	AGCAGTACTG	CGGTAAACCA	TTGTTTCAA	CGCCAGAAC	1080
	TGCAGGACGT	TTAATTATTG	AGGGATGATT	TTGCCTAGAA	TCTATTCTAA	GATTGATTG	1140
25	GAGCCGTCCA	CTTCCCAACG	ACAGTTGCAG	CATCTATGCC	ACCGGACAC	GTCGTTGTAC	1200
	CCAGATAAGA	AAGCTTCTA	CCTAAATAAA	CACTAACTGA	AACTGTTGT	TCCAGTGGCG	1260
	GCCACAAGCG	ATCGTGTG	AGATAGTGA	GGACAAGAAG	TTCGACATGA	TCATCATGTT	1320
30	GTTCATCGC	CTCAACATGT	TGACGATGAC	GCTCGATCAC	TACCAAGCAGT	CGGAGACCTT	1380
	CAGCACTGTC	CTCGACTACC	TCAACATGAT	ATTCATCGT	ATATTCAGTT	CAGAGTGCCT	1440
	ATTTAAAATG	TTCGCCTTAC	GCTACCATTA	CTTTGTTGAG	CCATGGAAC	TGTTCGATT	1500
35	CGTAGTAGTC	AATTCTCAA	TTCTTAGTGA	GTATTTGGG	TCTCCTGTTA	TTCCAATAGT	1560
	AAAGTGTGTTT	CCATTTATAA	TTTACTAATG	ATACACTCTC	TTTGTCTCA	GGTTGGTAT	1620
	TGAGTGTAT	TATAGAAAAA	TATTTGTTG	CACCCACGTT	ACTGAGGGTG	GTGAGAGTAG	1680
40	CGAAGGTCGG	TCGTGTGTTG	CGTCTCGTGA	AGGGTGCAGA	GGGTATCCGG	ACGTTATTGT	1740
	TCGGGCTGGC	CATGTCACTG	CCAGCCTTAT	TCAACATCTG	TCTGCTGCTG	TTCCCTGTTGA	1800
	TGTTCATCTT	CGCCATCTTC	GGCATGTCGT	TCTTATGCA	CGTCAAAGAC	AAAGGTGGTC	1860
45	TCGACGACGT	GTACAACCTTC	AAGACCTTCG	TGCAGAGTAT	GATCCTGCTA	TTTCAGGTCA	1920
	GTGTTACTAA	TCATACTTTA	GCGCCTCCTG	GTTGCTTGAG	GATGAATGAC	CACAAGCAAC	1980
	CAGCAGGGTT	TATTCGTTCA	AATTGAAAGT	TAATTTTAG	CCGTTCAAGC	ATCTAGTGT	2040
50	TGCTAATCTG	TCTTATCGTT	TGTCAGATGT	CGACGTCNGC	CGGCTGGGAC	GGCGTGCTGG	2100
	ACGGCATCAT	CAACGAGGAG	GAGTGCAGANC	TGCCGGACAA	CGAGCGCGGC	TACCCGGCA	2160

ACTGCGGCTC TGCNACCACAT GGCATCACCT ACCTGCTGTC CTACCTCGTC ATCTCCTTCC 2220
 TCATCGTCAT CAACATGTAC ATCGCCGTCA TTCTCGAGAA TTACTCGCAG GCAAGTTGA 2279

5 (2) INFORMATION FOR SEQ ID NO:4:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 196 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

10 (ii) MOLECULE TYPE: protein

15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Asp	Asp	Asp	Thr	Ile	Ser	Gln	Lys	Ser	Tyr	Gly	Ser	His	Lys	Ile	Arg
1					5				10					15	

Ser	Phe	Lys	Asp	Glu	Ser	His	Lys	Gly	Ser	Ala	Asp	Thr	Ile	Asp	Gly
					20			25					30		

Xaa	Xaa	Xaa	Lys	Asp	Ala	Ser	Lys	Glu	Glu	Leu	Gly	Leu	Glu	Glu
					35			40				45		

Met	Val	Glu	Glu	Glu	Asp	Gly	Lys	Leu	Asp	Gly	Gly	Leu	Gly	Lys
					50			55			60			

Thr	Asp	Ile	Ile	Val	Ala	Ala	Asp	Glu	Glu	Val	Val	Asp	Asp	Ser	Pro
65					70				75			80			

Ala	Asp	Cys	Cys	Pro	Glu	Pro	Cys	Tyr	Ala	Lys	Phe	Pro	Phe	Leu	Val
					85			90				95			

Gly	Asp	Asp	Glu	Ser	Pro	Phe	Trp	Gln	Gly	Trp	Gly	Met	Leu	Arg	Leu
					100			105				110			

Lys	Thr	Phe	Lys	Leu	Ile	Glu	Asn	Thr	Tyr	Phe	Glu	Thr	Ala	Val	Ile
					115			120				125			

Thr	Met	Ile	Leu	Leu	Ser	Ser	Leu	Ala	Leu	Ala	Leu	Glu	Asp	Val	Asn
					130			135			140				

Leu	Pro	His	Arg	Pro	Ile	Leu	Gln	Asp	Ile	Leu	Tyr	Tyr	Met	Asp	Arg
145					150				155				160		

Ile	Phe	Thr	Val	Ile	Phe	Phe	Ile	Glu	Met	Leu	Ile	Lys	Trp	Leu	Ala
					165			170			175				

Leu	Gly	Phe	Gln	Lys	Tyr	Phe	Thr	Asn	Ala	Trp	Cys	Trp	Leu	Asp	Phe
					180			185			190				

Ile	Ile	Val	Met										
			195										

(2) INFORMATION FOR SEQ ID NO:5:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 9 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

```

Ala Met Ser Arg Met Gln Gly Met Arg
1           5

```

10 (2) INFORMATION FOR SEQ ID NO:6:

10 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 452 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

15 (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

```

20 Val Val Val Asn Ala Leu Val Gln Ala Ile Pro Ser Ile Phe Asn Val
1           5           10          15

```

```

Leu Leu Val Cys Leu Ile Phe Trp Leu Ile Phe Ala Ile Met Gly Val
20           25          30

```

```

25 Gln Leu Phe Ala Gly Lys Tyr Phe Lys Cys Val Asp Leu Asn His Thr
35           40          45

```

```

Thr Leu Ser His Glu Ile Ile Pro Asp Arg Asn Ala Cys Ile Leu Glu
50           55          60

```

```

30 Asn Tyr Thr Trp Glu Asn Ser Pro Met Asn Phe Asp His Val Gly Lys
65           70          75          80

```

```

Ala Tyr Leu Cys Leu Phe Gln Val Ala Thr Phe Lys Gly Trp Ile Gln
85           90          95

```

```

35 Ile Met Asn Asp Ala Ile Asp Ser Arg Glu Val Gly Arg Gln Pro Ile
100          105         110

```

```

Arg Glu Thr Asn Ile Tyr Met Tyr Leu Tyr Phe Val Phe Phe Ile Ile
115          120         125

```

```

40 Phe Gly Ser Phe Phe Thr Leu Asn Leu Phe Ile Gly Val Ile Ile Asp
130          135         140

```

```

Asn Phe Asn Glu Gln Lys Lys Lys Ala Ala Gly Ser Leu Glu Met Phe
145          150         155         160

```

```

Met Thr Glu Asp Gln Lys Lys Tyr Tyr Asn Ala Met Lys Lys Met Gly
165          170         175

```

```

45 Ser Lys Lys Pro Leu Lys Ala Ile Pro Arg Pro Lys Trp Arg Pro Gln
180          185         190

```

```

Ala Ile Val Phe Glu Ile Val Thr Asp Lys Lys Phe Asp Met Ile Ile
195          200         205

```

```

50 Met Leu Phe Ile Gly Leu Asn Met Leu Thr Met Thr Leu Asp His Tyr
210          215         220

```

Gln Gln Ser Glu Thr Phe Ser Thr Val Leu Asp Tyr Leu Asn Met Ile
 225 230 235 240
 Phe Ile Val Ile Phe Ser Ser Glu Cys Leu Leu Lys Met Phe Ala Leu
 5 245 250 255
 Arg Tyr His Tyr Phe Val Glu Pro Trp Asn Leu Phe Asp Phe Val Val
 260 265 270
 Val Asn Phe Ser Ile Leu Ser Leu Val Leu Ser Asp Ile Ile Glu Lys
 10 275 280 285
 Tyr Phe Val Ser Pro Thr Leu Leu Arg Val Val Arg Val Ala Lys Val
 290 295 300
 Gly Arg Val Leu Arg Leu Val Lys Gly Ala Lys Gly Ile Arg Thr Leu
 15 305 310 315 320
 Leu Phe Gly Leu Ala Met Ser Leu Pro Ala Leu Phe Asn Ile Cys Leu
 325 330 335
 Leu Leu Phe Leu Val Met Phe Ile Phe Ala Ile Phe Gly Met Ser Phe
 20 340 345 350
 Phe Met His Val Lys Asp Lys Gly Gly Leu Asp Asp Val Tyr Asn Phe
 355 360 365
 Lys Thr Phe Val Gln Ser Met Ile Leu Leu Phe Gln Met Ser Thr Ser
 370 375 380
 Ala Gly Trp Asp Gly Val Leu Asp Gly Ile Ile Asn Glu Glu Glu Cys
 25 385 390 395 400
 Asp Leu Pro Asp Asn Glu Arg Gly Tyr Pro Gly Asn Cys Gly Ser Ala
 405 410 415
 Thr Ile Gly Ile Thr Tyr Leu Leu Ser Tyr Leu Ala Ala Val Ile Ser
 30 420 425 430
 Phe Leu Ile Val Ile Asn Met Tyr Ile Ala Val Ile Leu Glu Asn Tyr
 435 440 445
 35 Ser Gln Ala Ser
 450

(2) INFORMATION FOR SEQ ID NO:7:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 5461 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

ATGACAGAAG ATTCCGACTC GATATCTGAG GAAGAACGCA GTTTGTTCG TCCCTTTACC	60
CGCGAATCAT TGGTGCAAAT CGAACACGCG ATTGCCGCTG AACATGAAAA GCAGAAGGAG	120
CTGGAAAGAA AGAGAGCCGA GGGAGAGGTG CCGCGATATG GTCGCAAGAA AAAACAAAAA	180

	GAAATCCGAT ATGATGACGA GGACGAGGAT GAAGGTCCAC AACCGGATCC TACACTTGAA	240
	CAGGGTGTGC CAATACCTGT TCGATTGCAG GGCAGCTTCC CGCCGGAATT GGCCTCCACT	300
5	CCTCTCGAGG ATATCGATCC CTACTACAGC AATGTACTGA CATTCTAGT TGTAAGCAAA	360
	GGAAAAGATA TTTTCGCTT TTCTGCATCA AAAGCAATGT GGATGCTCGA TCCATTCAAT	420
	CCGATACGTC GTGTGGCCAT TTACATTCTA GTGCATCCAT TATTTTCCCT ATTCTATCATC	480
10	ACCACAATTC TCGTCAACTG CATCCTGATG ATAATGCCGA CAACGCCAC GGTTGAGTCC	540
	ACTGAGGTGA TATTCAACCGG AATCTACACA TTTGAATCAG CTGTTAAAGT GATGGCACGA	600
	GGTTTCATTT TATGCCCGTT TACGTATCTT AGAGATGCAT GGAATTGGCT GGACTTCGTA	660
15	GTAATAGCTT TAGCTTATGT GACCATGGGT ATAGATTTAG GTAATCTAGC AGCCCTGCGA	720
	ACGTTTAGGG TGCTGCGAGC GCTTAAAACC GTAGCCATTG TGCCAGGCTT GAAGACCATC	780
	GTCGGCGCCG TCATCGAACATC GGTGAAGAACAT CTGCGCGATG TGATTATCCT GACCATGTTC	840
20	TCCCTGTCGG TGTCGCGTT GATGGGCCTA CAGATCTATA TGGGCGTGCT CACCGAGAAC	900
	TGCATCAAGA AGTTCCCGCT GGACGGTTCC TGGGGCAATC TGACCGACGA GAACTGGGAC	960
	TATCACAATC GCAATAGCTC CAATTGGTAT TCCGAGGACG AGGGCATTCTC ATTCCGTTA	1020
25	TGCGGCAATA TATCCGGTGC GGGGCAATGC GACGACGATT ACGTGTGCCT GCAGGGGTTT	1080
	GGTCCGAATC CGAATTATGG CTACACCAGC TTGATTTCGT TCGGATGGGC TTTCCTGTCC	1140
	GCCTTCCGGC TGATGACACA GGACTTCTGG GAGGATCTGT ACCAGCTGGT GTTGCAGGCC	1200
	GCCGGACCAT GGCACATGCT GTTCTTATA GTCATCATCT TCCTAGGTTC ATTCTATCTT	1260
30	GTGAATTGTA TTTTGGCCAT TGTTGCCATG TCGTATGACG AATTGCAAAG GAAGGCCGAA	1320
	GAAGAAGAGG CTGCCGAAGA GGAGGCATA CGTGAAGCGG AAGAAGCTGC CGCCGCCAAA	1380
	GCGGCCAAGC TGGAGGAGCG GGCAATGCG CAGGCTCAGG CAGCAGCGGA TGCGGCTGCC	1440
35	GCCGAAGAGG CTGCACTGCA TCCGGAAATG GCCAAGAGTC CGACGTATTG TTGCATCAGC	1500
	TATGAGCTAT TTGTTGGCGG CGAGAAGGGC AACGATGACA ACAACAAAGA GAAAGATGTCC	1560
	ATTGGAGCG TCGAGGTGGA GTCGGAGTCG GTGAGCGTTA TACAAAGACA ACCAGCACCT	1620
40	ACCACAGCAC ACCAAGCTAC CAAAGTTCGT AAAGTGAGCA CGTACACGAT ACCGAACGGA	1680
	CGTGGCCGCT TTGGTATACC CGGTAGCGAT CGTAAGCCAT TGGTATTGTC AACATATCAG	1740
	GATGCCCAAGC AGCACTTGCC CTATGCCGAC GACTCGAATG CCGTCACCCCC GATGTCCGAA	1800
45	GAGAATGGGG CCATCATAGT GCCCCGTAC TATGGCAATC TAGGCTCCCG ACACTCATCG	1860
	TATACCTCGC ATCAGTCCCG AATATCGTAT ACCTCACATG GCGATCTACT CGGCGGCATG	1920
	GCCGTATGG GCGTCAGCAC AATGACCAAG GAGAGCAAAT TGCGCAACCG CAACACACGC	1980
50	AATCAATCAG TGGCGCCAC CAATGGCGGC ACCACCTGTC TGGACACCAA TCACAAGCTC	2040
	GATCATCGCG ACTACGAAAT TGGCCTGGAG TGCACGGACG AAGCTGGCAA GATTAACAT	2100

	CATGACAATC CTTTTATCGA GCCC GTCCAG ACACAAACGG TGTTGATAT GAAAGATGTG	2160
	ATGGTCCTGA ATGACATCAT CGAACAGGCC GCTGGTCGGC ACAGTCGGGC AAGCGATCGC	2220
5	GGTGTCTCCG TTTACTATTT CCCAACAGAG GACGATGACG AGGATGGGCC GACGTTCAA	2280
	GACAAGGCAC TCGAAGTGAT CCTCAAAGGC ATCGATGTGT TTTGTGTGTG GGACTGTTGC	2340
	TGGGTTGGT TGAAATTCA GGAGTGGTA TCGCTCATCG TCTTCGATCC CTTCGTCGAG	2400
10	CTCTTCATCA CGCTGTGCAT TGTGGTCAAC ACGATGTTCA TGGCAATGGA TCACCACGAT	2460
	ATGAACAAGG AGATGGAACG CGTGCTCAAG AGTGGCAACT ATTTCTTCAC CGCCACCTT	2520
	GCCATCGAGG CCACCATGAA GCTAATGGCC ATGAGCCCCA AGTACTATTT CCAGGAGGGC	2580
15	TGGAACATCT TCGACTTCAT TATCGTGGCC CTATCGCTAT TGGAACTGGG ACTCGAGGGT	2640
	GTCCAGGGTC TGTCGTATT GCGTCCTT CGATTGCTGC GTGTATTCAA ACTGGCCAAG	2700
	TCTTGGCCA CACTTAATT ACTCATTTCG ATTATGGAC GCACCATGGG CGCTTTGGGT	2760
20	AATCTGACAT TTGTACTTTG CATTATCATC TTCATCTTG CGGTGATGGG AATGCAACTG	2820
	TTCGGAAAGA ATTATCATGA TCACAGGAC CGCTTCCGG ATGGCACCT GCCGCGCTGG	2880
	AACTTCACCG ACTTTATGCA CAGCTCATG ATCGTGTCC GGGTGCTCTG CGGAGAATGG	2940
25	ATCGAGTCCA TGTGGACTG CATGTACGTG GGCGATGTCT CGTGCATTCC CTTCTTCTTG	3000
	GCCACCGTTG TCATCGGCAA TCTTGTGGTA CTTAACCTTT TCTTAGCCTT GCTTTGTCC	3060
	AATTTGGCT CATCTAGCTT ATCAGCGCCG ACTGCCGATA ACGATACGAA TAAAATAGCC	3120
	GAGGCCTTCA ATCGAATTGG CCGATTAAA AGTTGGTTA AGCGTAATAT TGCTGATTGT	3180
30	TTCAAGTTAA TACGTAACAA ATTGACAAAT CAAATAAGTG ATCAACCATC AGAGCATGGT	3240
	GACAACGAAC TGGAGCTGGG CCACGACGAG ATCCTCGCCG ACGGCCTCAT CAAGAAGGG	3300
	ATCAAGGAGC AGACGCAACT GGAGGTGGCC ATCGGGGATG GCATGGAATT CACGATACAC	3360
35	GGCGACATGA AGAACAAACAA GCCGAAGAAA TCCAAATATC TAAATAACGC AACGGACGAC	3420
	GACACTGCCA GCATTAACTC ATATGGTAGC CATAAGAATC GACCATTCAA GGACGAGAGC	3480
	CACAAGGGCA GCGCCGAGAC GATGGAGGGC GAGGAGAAGC GCGACGCCAG CAAGGAGGAT	3540
40	TTAGGTCTCG ACGAGGAACG GGACGAGGAG GGCGAATGCG AGGAGGGCCC GCTCGACGGT	3600
	GATATCATTA TTCATGCACA CGACGAGGAT ATACTCGATG AATATCCAGC TGATTGCTGC	3660
	CCCGATTCTGT ACTATAAGAA ATTTCCGATC TTAGCCGGTG ACGATGACTC GCCGTTCTGG	3720
45	CAAGGATGGG GCAATTACCG ACTGAAAATC TTTCGATTAA TTGAGGATAA ATATTTGAA	3780
	ACAGCTGTTA TCACTATGAT TTTAATGAGT AGCTTAGCTT TGGCATTAGA AGATGTACAT	3840
	CTGCCACAAA GACCCATACT GCAGGATATT TTATACTATA TGGACAGAAT ATTTACGGTT	3900
50	ATATTCTCT TGGAAATGTT AATCAAGTGG TTGGCGCTCG GCTTCAAAGT GTACTTGACC	3960
	AACGCGTGGT GTGGCTCGA TTTCGTGATT GTCATGGTAT CGCTTATCAA CTTCGTTGCT	4020

	TCACTTGTTG GAGCTGGTGG TATTCAAGCC TTCAAGACTA TCGAACGTT AAGAGCACTG	4080
	AGACCACTAC GTGCCATGTC CCGTATGCAG GGCATGAGGG TCGTCGTTAA TCGCCTGGTA	4140
5	CAAGCTATAAC CGTCATCTT CAATGTGCTA TTGGTGTGTC TAATATTTG GCTAATTTT	4200
	GCCATAATGG GTGTACAGCT TTTGCTGGA AAATATTTA AGTGCAGAGA CATGAATGGC	4260
10	ACGAAGCTCA GCCACGAGAT CATAACAAAT CGCAATGCCT GCGAGAGCGA GAACTACACG	4320
	TGGGTGAATT CAGCAATGAA TTTCGATCAT GTAGGTAACG CGTATCTGTG CCTTTCCAA	4380
	GTGGCCACCT TCAGAAGGCTG GATACAAATC ATGAACGATG CTATCGATTC ACGAGAGGTG	4440
15	GACAAGCAAC CAATTGCTGA AACGAACATC TACATGTATT TATATTCGT ATTCTTCATC	4500
	ATATTTGGAT CATTTCAC ACTCAATCTG TTCATTGGTG TTATCATTGA TAATTTAAT	4560
	GAGCAAAAGA AAAAAGCAGG TGGATCATTA GAAATGTTCA TGACAGAAGA TCAGAAAAAG	4620
	TACTATAGTG CTATGAAAAA GATGGGCTCT AAAAACCAT TAAAAGCCAT TCCAAGACCA	4680
20	AGGTGGCGAC CACAAGCAAT AGTCTTGAA ATAGTAACCG ATAAGAAATT CGATATAATC	4740
	ATTATGTTAT TCATTGGTCT GAACATGTTG ACCATGACCC TCGATCGTTA CGATGCGTCG	4800
	GACACGTATA ACGCGGTCT AGACTATCTC AATGCGATAT TCGTAGTTAT TTTCAGTTCC	4860
25	GAATGTCTAT TAAAAATATT CGCTTTACGA TATCACTATT TTATTGAGCC ATGGAATTAA	4920
	TTTGATGTAG TAGTTGTCAT TTTATCCATC TTAGGTCTTG TACTTAGCGA TATTATCGAG	4980
	AAGTACTTCG TGTCGCCGAC CCTGCTCCGA GTGGTGCCTG TGGCGAAAGT GGGCCGTGTC	5040
30	CTTCGACTGG TGAAAGGGAGC CAAGGGCATT CGGACACTGC TCTTCGCGTT GGCCATGTCG	5100
	CTGCCGGCCC TGTTCAACAT CTGCCTGCTG CTGTTCTGG TCATGTTCAT CTTGCCATT	5160
	TTCGGCATGT CGTTCTTCAT GCACGTGAAG GAGAAGAGCG GCATTAACGA CGTCTACAAC	5220
35	TTCAAGACCT TTGCCAGAG CATGATCCTG CTCTTCAGA TGTCGACGTC AGCCGGTTGG	5280
	GATGGGTAC TGGACGCCAT TATCAATGAG GAAGCATGCG ATCCACCGA CAACGACAAA	5340
	GGCTATCCGG GCAATTGTGG TTCAGCGACC GTTGGAAATAA CGTTTCTCCT CTCATACCTA	5400
	GTTATAAGCT TTTTGATAGT TATTAATATG TACATTGCTG TCATTCTCGA GAACGGAATT	5460
40	C	5461

(2) INFORMATION FOR SEQ ID NO:8:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1820 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

Met Thr Glu Asp Ser Asp Ser Ile Ser Glu Glu Glu Arg Ser Leu Phe
 1 5 10 15
 Arg Pro Phe Thr Arg Glu Ser Leu Val Gln Ile Glu Gln Arg Ile Ala
 5 20 25 30
 Ala Glu His Glu Lys Gln Lys Glu Leu Glu Arg Lys Arg Ala Glu Gly
 35 40 45
 Glu Val Pro Arg Tyr Gly Arg Lys Lys Gln Lys Glu Ile Arg Tyr
 10 50 55 60
 Asp Asp Glu Asp Glu Asp Gly Pro Gln Pro Asp Pro Thr Leu Glu
 65 70 75 80
 Gln Gly Val Pro Ile Pro Val Arg Leu Gln Gly Ser Phe Pro Pro Glu
 15 85 90 95
 Leu Ala Ser Thr Pro Leu Glu Asp Ile Asp Pro Tyr Tyr Ser Asn Val
 100 105 110
 Leu Thr Phe Val Val Val Ser Lys Gly Lys Asp Ile Phe Arg Phe Ser
 20 115 120 125
 Ala Ser Lys Ala Met Trp Met Leu Asp Pro Phe Asn Pro Ile Arg Arg
 130 135 140
 Val Ala Ile Tyr Ile Leu Val His Pro Leu Phe Ser Leu Phe Ile Ile
 145 150 155 160
 Thr Thr Ile Leu Val Asn Cys Ile Leu Met Ile Met Pro Thr Thr Pro
 25 165 170 175
 Thr Val Glu Ser Thr Glu Val Ile Phe Thr Gly Ile Tyr Thr Phe Glu
 180 185 190
 Ser Ala Val Lys Val Met Ala Arg Gly Phe Ile Leu Cys Pro Phe Thr
 30 195 200 205
 Tyr Leu Arg Asp Ala Trp Asn Trp Leu Asp Phe Val Val Ile Ala Leu
 210 215 220
 Ala Tyr Val Thr Met Gly Ile Asp Leu Gly Asn Leu Ala Ala Leu Arg
 35 225 230 235 240
 Thr Phe Arg Val Leu Arg Ala Leu Lys Thr Val Ala Ile Val Pro Gly
 245 250 255
 Leu Lys Thr Ile Val Gly Ala Val Ile Glu Ser Val Lys Asn Leu Arg
 40 260 265 270
 Asp Val Ile Ile Leu Thr Met Phe Ser Leu Ser Val Phe Ala Leu Met
 275 280 285
 Gly Leu Gln Ile Tyr Met Gly Val Leu Thr Glu Lys Cys Ile Lys Lys
 45 290 295 300
 Phe Pro Leu Asp Gly Ser Trp Gly Asn Leu Thr Asp Glu Asn Trp Asp
 305 310 315 320
 Tyr His Asn Arg Asn Ser Ser Asn Trp Tyr Ser Glu Asp Glu Gly Ile
 50 325 330 335
 Ser Phe Pro Leu Cys Gly Asn Ile Ser Gly Ala Gly Gln Cys Asp Asp

	340	345	350
	Asp Tyr Val Cys Leu Gln Gly Phe Gly Pro Asn Pro Asn Tyr Gly Tyr		
5	355	360	365
	Thr Ser Phe Asp Ser Phe Gly Trp Ala Phe Leu Ser Ala Phe Arg Leu		
	370	375	380
	Met Thr Gln Asp Phe Trp Glu Asp Leu Tyr Gln Leu Val Leu Arg Ala		
10	385	390	400
	Ala Gly Pro Trp His Met Leu Phe Phe Ile Val Ile Ile Phe Leu Gly		
	405	410	415
	Ser Phe Tyr Leu Val Asn Leu Ile Leu Ala Ile Val Ala Met Ser Tyr		
	420	425	430
15	Asp Glu Leu Gln Arg Lys Ala Glu Glu Glu Ala Ala Glu Glu Glu		
	435	440	445
	Ala Ile Arg Glu Ala Glu Glu Ala Ala Ala Ala Lys Ala Ala Lys Leu		
	450	455	460
20	Glu Glu Arg Ala Asn Ala Gln Ala Ala Ala Ala Asp Ala Ala Ala		
	465	470	475
	Ala Glu Glu Ala Ala Leu His Pro Glu Met Ala Lys Ser Pro Thr Tyr		
	485	490	495
25	<u>Ser Cys</u> Ile Ser Tyr Glu Leu Phe Val Gly Gly Glu Lys Asn Asp		
	500	505	510
	Asp Asn Asn Lys Glu Lys Met Ser Ile Arg Ser Val Glu Val Glu Ser		
	515	520	525
30	Glu Ser Val Ser Val Ile Gln Arg Gln Pro Ala Pro Thr Thr Ala His		
	530	535	540
	Gln Ala Thr Lys Val Arg Lys Val Ser Thr Tyr Thr Ile Arg Asn Gly		
	545	550	560
35	Arg Gly Arg Phe Gly Ile Pro Gly Ser Asp Arg Lys Pro Leu Val Leu		
	565	570	575
	Ser Thr Tyr Gln Asp Ala Gln Gln His Leu Pro Tyr Ala Asp Asp Ser		
	580	585	590
40	Asn Ala Val Thr Pro Met Ser Glu Glu Asn Gly Ala Ile Ile Val Pro		
	595	600	605
	Val Tyr Tyr Gly Asn Leu Gly Ser Arg His Ser Ser Tyr Thr Ser His		
	610	615	620
45	Gln Ser Arg Ile Ser Tyr Thr Ser His Gly Asp Leu Leu Gly Gly Met		
	625	630	640
	Ala Val Met Gly Val Ser Thr Met Thr Lys Glu Ser Lys Leu Arg Asn		
	645	650	655
50	Arg Asn Thr Arg Asn Gln Ser Val Gly Ala Thr Asn Gly Gly Thr Thr		
	660	665	670
	Cys Leu Asp Thr Asn His Lys Leu Asp His Arg Asp Tyr Glu Ile Gly		
	675	680	685

EP 0 615 976 A1

Leu Glu Cys Thr Asp Glu Ala Gly Lys Ile Lys His His Asp Asn Pro
 690 695 700
 Phe Ile Glu Pro Val Gln Thr Gln Thr Val Val Asp Met Lys Asp Val
 5 705 710 715 720
 Met Val Leu Asn Asp Ile Ile Glu Gln Ala Ala Gly Arg His Ser Arg
 725 730 735
 Ala Ser Asp Arg Gly Val Ser Val Tyr Tyr Phe Pro Thr Glu Asp Asp
 10 740 745 750
 Asp Glu Asp Gly Pro Thr Phe Lys Asp Lys Ala Leu Glu Val Ile Leu
 755 760 765
 Lys Gly Ile Asp Val Phe Cys Val Trp Asp Cys Cys Trp Val Trp Leu
 15 770 775 780
 Lys Phe Gln Glu Trp Val Ser Leu Ile Val Phe Asp Pro Phe Val Glu
 785 790 795 800
 Leu Phe Ile Thr Leu Cys Ile Val Val Asn Thr Met Phe Met Ala Met
 805 810 815
 20 Asp His His Asp Met Asn Lys Glu Met Glu Arg Val Leu Lys Ser Gly
 820 825 830
 Asn Tyr Phe Phe Thr Ala Thr Phe Ala Ile Glu Ala Thr Met Lys Leu
 835 840 845
 25 Met Ala Met Ser Pro Lys Tyr Tyr Phe Gln Glu Gly Trp Asn Ile Phe
 850 855 860
 Asp Phe Ile Ile Val Ala Leu Ser Leu Leu Glu Leu Gly Leu Glu Gly
 865 870 875 880
 Val Gln Gly Leu Ser Val Leu Arg Ser Phe Arg Leu Leu Arg Val Phe
 30 885 890 895
 Lys Leu Ala Lys Ser Trp Pro Thr Leu Asn Leu Leu Ile Ser Ile Met
 900 905 910
 Gly Arg Thr Met Gly Ala Leu Gly Asn Leu Thr Phe Val Leu Cys Ile
 35 915 920 925
 Ile Ile Phe Ile Phe Ala Val Met Gly Met Gln Leu Phe Gly Lys Asn
 930 935 940
 Tyr His Asp His Lys Asp Arg Phe Pro Asp Gly Asp Leu Pro Arg Trp
 40 945 950 955 960
 Asn Phe Thr Asp Phe Met His Ser Phe Met Ile Val Phe Arg Val Leu
 965 970 975
 Cys Gly Glu Trp Ile Glu Ser Met Trp Asp Cys Met Tyr Val Gly Asp
 45 980 985 990
 Val Ser Cys Ile Pro Phe Phe Leu Ala Thr Val Val Ile Gly Asn Leu
 995 1000 1005
 Val Val Leu Asn Leu Phe Leu Ala Leu Leu Ser Asn Phe Gly Ser
 50 1010 1015 1020
 Ser Ser Leu Ser Ala Pro Thr Ala Asp Asn Asp Thr Asn Lys Ile Ala

	1025	1030	1035	1040
	Glu Ala Phe Asn Arg Ile Gly Arg Phe Lys Ser Trp Val Lys Arg Asn			
	1045		1050	1055
5	Ile Ala Asp Cys Phe Lys Leu Ile Arg Asn Lys Leu Thr Asn Gln Ile			
	1060	1065		1070
	Ser Asp Gln Pro Ser Glu His Gly Asp Asn Glu Leu Glu Leu Gly His			
	1075	1080		1085
10	Asp Glu Ile Leu Ala Asp Gly Leu Ile Lys Lys Gly Ile Lys Glu Gln			
	1090	1095		1100
	Thr Gln Leu Glu Val Ala Ile Gly Asp Gly Met Glu Phe Thr Ile His			
	1105	1110	1115	1120
15	Gly Asp Met Lys Asn Asn Lys Pro Lys Lys Ser Lys Tyr Leu Asn Asn			
	1125	1130		1135
	Ala Thr Asp Asp Asp Thr Ala Ser Ile Asn Ser Tyr Gly Ser His Lys			
	1140	1145		1150
20	Asn Arg Pro Phe Lys Asp Glu Ser His Lys Gly Ser Ala Glu Thr Met			
	1155	1160		1165
	Glu Gly Glu Glu Lys Arg Asp Ala Ser Lys Glu Asp Leu Gly Leu Asp			
	1170	1175		1180
25	Glu Glu Leu Asp Glu Glu Gly Glu Cys Glu Glu Gly Pro Leu Asp Gly			
	1185	1190	1195	1200
	Asp Ile Ile Ile His Ala His Asp Glu Asp Ile Leu Asp Glu Tyr Pro			
	1205	1210		1215
30	Ala Asp Cys Cys Pro Asp Ser Tyr Tyr Lys Lys Phe Pro Ile Leu Ala			
	1220	1225		1230
	Gly Asp Asp Asp Ser Pro Phe Trp Gln Gly Trp Gly Asn Leu Arg Leu			
	1235	1240		1245
35	Lys Thr Phe Arg Leu Ile Glu Asp Lys Tyr Phe Glu Thr Ala Val Ile			
	1250	1255		1260
	Thr Met Ile Leu Met Ser Ser Leu Ala Leu Glu Asp Val His			
	1265	1270	1275	1280
40	Leu Pro Gln Arg Pro Ile Leu Gln Asp Ile Leu Tyr Tyr Met Asp Arg			
	1285	1290		1295
	Ile Phe Thr Val Ile Phe Phe Leu Glu Met Leu Ile Lys Trp Leu Ala			
	1300	1305		1310
	Leu Gly Phe Lys Val Tyr Leu Thr Asn Ala Trp Cys Trp Leu Asp Phe			
	1315	1320	1325	
45	Val Ile Val Met Val Ser Leu Ile Asn Phe Val Ala Ser Leu Val Gly			
	1330	1335	1340	
	Ala Gly Gly Ile Gln Ala Phe Lys Thr Met Arg Thr Leu Arg Ala Leu			
	1345	1350	1355	1360
50	Arg Pro Leu Arg Ala Met Ser Arg Met Gln Gly Met Arg Val Val Val			
	1365	1370		1375

Asn Ala Leu Val Gln Ala Ile Pro Ser Ile Phe Asn Val Leu Leu Val
 1380 1385 1390
 Cys Leu Ile Phe Trp Leu Ile Phe Ala Ile Met Gly Val Gln Leu Phe
 5 1395 1400 1405
 Ala Gly Lys Tyr Phe Lys Cys Glu Asp Met Asn Gly Thr Lys Leu Ser
 1410 1415 1420
 His Glu Ile Ile Pro Asn Arg Asn Ala Cys Glu Ser Glu Asn Tyr Thr
 10 1425 1430 1435 1440
 Trp Val Asn Ser Ala Met Asn Phe Asp His Val Gly Asn Ala Tyr Leu
 1445 1450 1455
 Cys Leu Phe Gln Val Ala Thr Phe Lys Gly Trp Ile Gln Ile Met Asn
 15 1460 1465 1470
 Asp Ala Ile Asp Ser Arg Glu Val Asp Lys Gln Pro Ile Arg Glu Thr
 1475 1480 1485
 Asn Ile Tyr Met Tyr Leu Tyr Phe Val Phe Phe Ile Ile Phe Gly Ser
 1490 1495 1500
 20 Phe Phe Thr Leu Asn Leu Phe Ile Gly Val Ile Ile Asp Asn Phe Asn
 1505 1510 1515 1520
 Glu Gln Lys Lys Lys Ala Gly Gly Ser Leu Glu Met Phe Met Thr Glu
 1525 1530 1535
 25 Asp Gln Lys Lys Tyr Tyr Ser Ala Met Lys Lys Met Gly Ser Lys Lys
 1540 1545 1550
 Pro Leu Lys Ala Ile Pro Arg Pro Arg Trp Arg Pro Gln Ala Ile Val
 1555 1560 1565
 30 Phe Glu Ile Val Thr Asp Lys Lys Phe Asp Ile Ile Ile Met Leu Phe
 1570 1575 1580
 Ile Gly Leu Asn Met Phe Thr Met Thr Leu Asp Arg Tyr Asp Ala Ser
 1585 1590 1595 1600
 35 Asp Thr Tyr Asn Ala Val Leu Asp Tyr Leu Asn Ala Ile Phe Val Val
 1605 1610 1615
 Ile Phe Ser Ser Glu Cys Leu Leu Lys Ile Phe Ala Leu Arg Tyr His
 1620 1625 1630
 40 Tyr Phe Ile Glu Pro Trp Asn Leu Phe Asp Val Val Val Val Ile Leu
 1635 1640 1645
 Ser Ile Leu Gly Leu Val Leu Ser Asp Ile Ile Glu Lys Tyr Phe Val
 1650 1655 1660
 45 Ser Pro Thr Leu Leu Arg Val Val Arg Val Ala Lys Val Gly Arg Val
 1665 1670 1675 1680
 Leu Arg Leu Val Lys Gly Ala Lys Gly Ile Arg Thr Leu Leu Phe Ala
 1685 1690 1695
 50 Leu Ala Met Ser Leu Pro Ala Leu Phe Asn Ile Cys Leu Leu Phe
 1700 1705 1710
 Leu Val Met Phe Ile Phe Ala Ile Phe Gly Met Ser Phe Phe Met His

1715

1720

1725

5 Val Lys Glu Lys Ser Gly Ile Asn Asp Val Tyr Asn Phe Lys Thr Phe
 1730 1735 1740

Gly Gln Ser Met Ile Leu Leu Phe Gln Met Ser Thr Ser Ala Gly Trp
 1745 1750 1755 1760

10 Asp Gly Val Leu Asp Ala Ile Ile Asn Glu Glu Ala Cys Asp Pro Pro
 1765 1770 1775

Asp Asn Asp Lys Gly Tyr Pro Gly Asn Cys Gly Ser Ala Thr Val Gly
 1780 1785 1790

Ile Thr Phe Leu Leu Ser Tyr Leu Val Ile Ser Phe Leu Ile Val Ile
 1795 1800 1805

15 Asn Met Tyr Ile Ala Val Ile Leu Glu Asn Gly Ile
 1810 1815 1820

(2) INFORMATION FOR SEQ ID NO:9:

20 (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 521 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

25 (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

30 ATGAGCCGCA TGCAGGGCAT GAGGGTACGT ACCACCCCTGT GCTGCCGACA ACACCCCTATC 60
 GCTCATCCAT CCACCACACA CTTCGCTCCA CACTTCACAT TCACATTCT ATTTCAACTT
 CTACGATCAT TTTTAACAT TTTAAAATT CCAACGTRCC AGCCGTACTM GGGCTCCTTT 120
 35 TTTCGATATT TCTGCATSAA TCACCGGATC AAAATTGTT TTTAATAGTT AATTGGACA 240
 GTTATCCGAT TCATTGGCAG TAGTCGATTG AAGTAATTAT TAGTGAATCA TTTTGAAGTG 300
 GTCGGTGGCA CCCCTGAATG GCTTAGTATC ATCACTGTTC GTCATAAACCC TCTTTAGAA 360
 40 AGGGTCAATG GGATTATTG TGGAGAGATA TTYRTCCATG TTTTGGTCTC TTTTCTATTG 420
 GTCTTATTAT TAGCTAGATT AGACTTTGT AATTACTTAG TTATTTGGAA TGCTAATTAA 480
 TATTCTGCAC CTTAGATTTC TTCTTCTTGT ATCTTCATCG A 521

45 (2) INFORMATION FOR SEQ ID NO:10:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 568 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

50 (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

GCTAACTGCT ACATAGTTAC TGCACAGTAT TAATGACATT AACGTCCCTTA TATCCCAACT	60
5 AATAATGCGC CCACTAACAA ATGCACGCCA TTGATATAAG AAAGGAGACG TATCAGTACT	120
TCCAATATAT CCTTCGTGAC CAGTGTAGTA ATACGTACGT ATGTGACAGG TGGTGGTAAA	180
CGCTCTCGTG CAAGCGATCC CGTCCATCTT CAACGTGTTG TTGGTGTGTC TTATCTTCTG	240
10 GCTGATCTTC GCCATCATGG GAGTACAACG GTTCGCTGGC AAATATTCA AGGTATTAAT	300
TTATTAACAT AACAAAAAAA TATTTCAATT CGTAAAATCT TATTAGTGTG TTCAAATTT	360
CTAACATGTT TTTCTTGTT CTGTTCTAGT GCGTCGACCT CAACCACACG ACGTTGAGCC	420
15 ACGAAATCAT CCCAGACCGG AATGCGTGCA TCTTAGAGAA CTACACCTGG GAGAACTCAC	480
CGATGAACCT TGACCATGTC GGCAAGGCCT ATCTCTGCCT GTTCCAAGTG GCCACCTTCA	540
AGGGATGGAT ACAGATCATG AACGACGC	568

20

Claims

1. An isolated nucleic acid fragment comprising a nucleic acid sequence encoding a non-dipteran sodium channel; or portion thereof.

25

2. The fragment of Claim 1 in which the channel is either lepidopteran, coleopteran or homopteran.

30

3. The fragment of Claim 2 which is lepidopteran.

35

4. The fragment of Claim 3 which is derived from Heliothis, Helicoverpa or Spodoptera.

40

5. The fragment of Claim 4 which is derived from Heliothis virescens, Heliothis armigera, or Helicoverpa zea.

45

6. The fragment of Claim 1 which hybridizes with a nucleic acid sequence depicted in Figure 1 under medium or high stringency conditions.

50

7. The fragment of Claim 1 which comprises all or a portion of the sequence depicted in Figure 1.

55

8. The fragment of Claim 1 which is capable of being used as a probe to detect RFLPs in an insect population comprising both pyrethroid sensitive and pyrethroid resistant individuals.

60

9. The fragment of Claim 1 which is detectably labelled.

65

10. An isolated nucleic acid fragment deposited with the American Type Culture Collection under Accession No. 75334.

70

11. A vector comprising the fragment of Claim 1.

75

12. A host cell comprising the vector of Claim 11.

85

European Patent
Office

EUROPEAN SEARCH REPORT

Application Number

DOCUMENTS CONSIDERED TO BE RELEVANT			EP 93118061.6
Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int. Cl.5)
A	CHEMICAL ABSTRACTS, vol. 116, no. 3, January 20, 1992, Columbus, Ohio, USA DOYLE D.E. et al. "PCR-based phylogenetic walking: isolation of para-homologous sodium channel gene sequences from seven insect species and an arachnid" page 129 abstract-no. 16 363v & Insect. Biochem. 1991, 21(6), 689-96 ----	1,8	C 07 H 21/00 C 12 Q 1/68
			TECHNICAL FIELDS SEARCHED (Int. Cl.5)
			C 07 H C 12 Q
<p>The present search report has been drawn up for all claims</p>			
Place of search	Date of completion of the search	Examiner	
VIENNA	31-03-1994	SCHNASS	
CATEGORY OF CITED DOCUMENTS		T : theory or principle underlying the invention E : earlier patent document, but published on, or after the filing date D : document cited in the application L : document cited for other reasons & : member of the same patent family, corresponding document	
X : particularly relevant if taken alone Y : particularly relevant if combined with another document of the same category A : technological background O : non-written disclosure P : intermediate document			