

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DA PARAÍBA – CAMPUS CAMPINA GRANDE		
CURSO:	CURSO DE ENGENHARIA DA COMPUTAÇÃO	
PERÍODO:		TURMA:
DISCIPLINA:	PROGRAMAÇÃO E ESTRUTURAS DE DADOS	
PROFESSOR:	CÉSAR ROCHA VASCONCELOS	SEMESTRE LETIVO

Prática Laboratório - Pilhas Encadeadas

- 1) Utilizando técnicas de modularização de sistemas vistas em sala, implemente o tipo abstrato de dados **TPilhaEnc** (de implementação encadeada e tipo base inteiros). Implemente este tipo numa biblioteca chamada **pilhaenc.h** Esta biblioteca deve seguir o mesmo padrão da biblioteca *pilhaseq.h* desenvolvida no exercício de Pilhas Sequenciais. Ou seja, contendo uma interface bem definida (apenas definição de tipos e protótipos de funções) em um arquivo com extensão.h . A biblioteca deve possuir as todas as funções básicas vistas em sala.
 - a. <u>Lembre-se:</u> em cada uma das operações, identifique possíveis situações de erros do usuário e exiba mensagens para ele nestas situações. (Ex. o programa deve exibir mensagens no caso do usuário tentar desempilhar um item numa pilha que está vazia etc.). Isto é um sinal de maturidade na programação e torna seu TAD mais robusto (menos suscetível a travamentos).
- 2) Modifique o menu de operações do editor da pilha sequencial da prática anterior. Ou seja, reutilize o seu código para geração de um novo menu de operações contendo todas as novas operações deste TAD na questão acima.
- 3) Uma vez que as operações básicas foram implementadas na questão 1, insira agora na biblioteca **pilhaenc** as seguintes **novas operações** (crie novos protótipos! Não use funções existentes):
 - a. Uma rotina para apenas mostrar o sub-topo da pilha: int subtopo(TPilhaEnc p, int *valor)
 - b. Uma rotina para desempilhar N elementos a partir do topo: void desempilhaN (TPilhaEnc *p, int n)
 - c. Uma rotina para esvaziar a pilha (desempilhando todos elementos): void esvaziar(TPilhaEnc *p)
 - d. Uma rotina especial para consultar (sem remover) a base da pilha: int base(TPilhaEnc p)
- 4) Depois, insira novas opções ao menu principal da questão anterior. Ele deve ficar como o da figura abaixo:

Editor de Pilha v2.0

- ===========
- 1- Inicializar
- 2- Empilhar
- 3- Desempilhar
- 4- Elemento do topo
- 5- Imprimir pilha
- 6- Esvaziar a pilha
- 7- Base da pilĥa
- 8- Tamanho da pilha
- 9- Desempilha N elementos
- 10- Mostrar sub-topo

Digite sua opção: []

5) Implemente duas funções na sua biblioteca: uma primeira função que receba duas pilhas encadeadas como parâmetro e empilhe todos os elementos da pilha 2 para a pilha 1. Ao final desta função, a pilha2 deve ficar vazia e pilha1 com todos os elementos das duas pilhas. A lógica de funcionamento é mostrada na figura à esquerda abaixo. O protótipo da função: void concatena_pilhas(TPilhaEnc *pl, TPilhaEnc *p2). A segunda função deve receber uma pilha como parâmetros e retirar todos os números ímpares. A lógica de funcionamento desta segunda função é mostrada na figura à direita abaixo. O protótipo: void retira_impares(TPilhaEnc *pilha)

