西南交通大学 2013 年全日制(学术)硕士研究生入学考试

试题名称:电路分析一试题代码:922

考试时间: 2013年1月

一、(15 分)电路如图,已知 $u_{ab}=0$,求电阻 R 以及 4A 电流源发出的功率。

二、(15分) 电路如图,求电压U。

三、 $(15\, \mathcal{G})$ 电路如图,已知图 (a) 电路中电压 U=0 ,图 (b) 电路中电压 U=16V 。 求电阻 R_1 和 R_2 的值。

四、(15 分)电路如图。当R、L、C三个元件以图(\mathbf{a})方式联接时, $\overset{\bullet}{U}$ 与 $\overset{\bullet}{I}$ 同 103

相;以图 (b)方式联接时, $I=I_1$ 。若 $R=20\Omega$ 、L=0.1H,求电路的角频率 ω 及电容 C 的值。

五、(15分)电路如图。电阻 R与电容 C 的值可调,问 R 和 C 分别取什么值时,由变压器原边传输到副边的有功功率为最大?此时电阻 R 消耗的功率是多少?

六、(15 分)电路如图,电源对称,阻抗 $Z=15\angle 15^\circ\Omega$,开关 K 打开时 $\dot{U}_{AN}=150\angle 0^\circ V$ 。分别求开关 K 打开、闭合时的电流 \dot{I}_A 、 \dot{I}_B 、 \dot{I}_C 以及瓦特表的 读数。

七、(15分)电路如图。求u(t)及其有效值、电流源发出的有功功率。

八、(15 分)电路如图所示。已知 $i_s=2\varepsilon(-t)+4\varepsilon(t)A$,求 $t\geq 0$ 的 $i_L(t)$ 和 $u_1(t)$ 。

九、(15分)求图示电路的传输参数(T参数)。

十、(15分)本题有2小题。

1、图示电路为换路后的电路,且知 $u_c(0_-) = -5V$, $i_L(0_-) = 1A$ 。求 $u_c(0_+)$ 、 $\frac{du_c}{dt}\Big|_{0_+}$ 。

2、图示电路中,网络 N 是无源的。当 $i_s(t)=2e^{-1}\varepsilon(t)+2\delta(t)A$ 时,零状态响应 $u_c(t)=\left[4+3\sqrt{2}e^{-2t}\cos(2t+45^\circ)\right]\varepsilon(t)V$,求对应的网络函数 H(s)。

西南交通大学 2014 年全日制(学术)硕士研究生入学考试

试题名称:电路分析一试题代码:922

考试时间: 2014年1月

一、(15 分) 电路如图,求电流 I 和电流源发出的功率 P。

二、(15分) 电路如图所示,用叠加定理求电流I和电压U

三、(15分)电路如图,用回路分析法求电流I。

四、(15 分)电路如图,已知 $u_s=6\sin 1000t(V), i_c=100\cos 1000t(mA), c=50uF,$ $R_0=10\Omega, 求 R_I, L 和 i_c 6I-6+2(I_1+3+I)+4(I_1+I-1)=0$

五、(15 分) 电路如图,问负载取什么指时可以获得最大功率 P_{max} ?求 P_{max} =?

六、(15 分) 电路如图,电源对称, $U_{AB}^{i}=200\angle 0^{0}$,负载 $Z=100+j100(\Omega)$, 线路阻抗 $Z=3-j2(\Omega)$ 。求: (1) I_{A}^{i} , I_{B}^{i} , I_{C}^{i} (2)三相负载吸收的总的有功功率为 P_{I} ,无功功率 Q_{I} 。(3)三相电源发出的总的有功功率 P_{2} ,无功功率 Q_{2} 。

七、(15分) 电路如图,求u, i及其有效值,以及各电源发出的有功功率。

八、(15 分) 电路如图所示,t<0 时电路已经达到稳态,t=0 时开关 K 闭合,用

时域法求 $t \ge 0$ 的 i_L 。

九、 $(15\, \%)$ 图示电路中,已知双口网络 N 的 Y 参数为 $\begin{bmatrix} \frac{1}{6} & 0 \\ 0 & \frac{1}{4} \end{bmatrix}$,电路原处于稳

态,t=0时开关断开,t>0时复频域法求 $u_c(t)$ 。

十、(15分)写出图示电路的状态方程,写成矩阵形式。

西南交通大学 2015 年全日制(学术)硕士研究生入学考试

试题名称: 电路分析一 试题代码: 922

考试时间: 2014年12月

一、(15 分)电路如图,求电流 i_o 。

二、(15分)用结点电压法求图示电路的电压U。

三、(15分)电路如图所示,已知U=18V,求电压源电压 U_s 。

四、(15 分)电路如图,已知 u_s 为频率可调的正弦交流信号源, $L_1=200mH$ 。 当 $\omega=400rad/s$ 时,图示三个表的读数分别为 0(A) 、 100(V) 、 0(W) ; 当 $\omega=600rad/s$ 时,图示三个表的读数分别为 2(A) 、 100(V) 、 200(W) 。求: R 、 C 及 L_2 的值。

五、(15 分)电路如图。求电流 \vec{I}_1 和 \vec{I}_2 。

六、(15 分)电路如图,电源对称。已知三相电源发出的总的有功功率为1200W, 无功功率为 $-600\sqrt{3}$ var,线路阻抗 $Z_l=(4+j4\sqrt{3})\Omega$, $I_A=5\angle 0^\circ A$ 。

求:(1)三相负载吸收的总的有功功率和无功功率;

(2) 负载阻抗 Z 的值;

七、(15分)求图示电路的Y参数和T参数。

八、(15 分)电路如图所示。用时域法求电流 $i_L(t)$ 。

九、(15 分)图示电路原处于稳态,t=0时开关 K 断开。用复频域法求 $t\geq 0$ 的 $u_c(t)$ 和 $u_{L2}(t)$ 。

十、(15 分)图示电路中,已知非线性电阻的伏安特性为 $u=i^2$ (i>0)。求u和i的值。

西南交通大学 2016 年全日制(学术)硕士研究生入学考试

试题名称:电路分析一试题代码:922

考试时间: 2015年12月

一、(15分)电路如图,求电压U、电流I。

二、(15 分)电路如图,N 为线性有源二端网络。已知: $u_s=0$ 时, $u_o=-8V$; $u_s=6V$ 时, $u_o=-3V$ 。求网络N 的戴维南等效电路。

三、(15分)用结点电压法求图示电路的各结点电压以及2A电流源发出的功率。

四、(15 分)电路如图。已知电流表的读数为零, \dot{U}_s 与 \dot{I} 同相, $\dot{I}_1=4\angle 0^\circ A$ 。 求 \dot{I}_2 、 \dot{U}_s 及 R_1 、 Z_2 的值。

五、(15 分)电路如图。已知互感的耦合系数 $K = \sqrt{\frac{3}{7}}$,负载 Z_L 可调。当 Z_L 取何值可获得最大功率?最大功率 $P_{\max} =$?此时 Z_L 吸收的无功功率和视在功率是多少?

六、(15 分)对称三相交流电路如图。已知 $\dot{U}_{AB}=200\sqrt{3}\angle-10^{\circ}V$,

 $I_A=4\angle -40^\circ A$,第一组三相负载吸收的总功率 $P_1=1200W$,其功率因数 $\cos \varphi_1=\frac{\sqrt{2}}{2} \ ($ 感性)。求第二组三相负载吸收的总的有功功率 P_2 、无功功率 Q_2 以及阻抗 Z_2 的值。

七、(15 分)电路如图。已知 $u=32\sqrt{2}\cos(10t-45^\circ)+16\sin(30t+20^\circ)V$, $i=4\cos(10t)+2\sin(30t+20^\circ)A$ 。求R、L、C、 u_C 及其有效值。

八、 $(15\ \beta)$ 电路如图所示。已知网络 N 的 T 参数为 $\begin{bmatrix} 2 & 4 \\ 0.5 & 1.5 \end{bmatrix}$,电源角频率为 25rad/s,负载 $Y_L=(0.25+j0.5)S$ 。求:

- (1) 网络N的 Π 形等效电路;
- (2) U_2 以及负载 Y_L 吸收的有功功率、无功功率。

九、 $(15\, \%)$ 图示电路原处于稳态,t=0时开关K 由位置 1 换到位置 2。用拉普拉斯变换法求 $u_{c2}(t)$ 、 $i_{c2}(t)$ 。

十、(15分)本题有2小题。

1、(8分)电路如图。问电路换路后电感 L 取何值电路为临界阻尼状态。

2、(7分)图示电路中, D为理想二极管。画出电路端口处的伏安特性曲线。

西南交通大学 2010 年全日制(专业)硕士研究生入学考试

试题名称:电路分析二 试题代码:956

考试时间: 2010年1月

一、(15分)电路如图,求18V电压源发出的功率。

二、(15分)电路如图所示,用结点电压法求3A电流源发出的功率。

三、 (15分)图示电路中, N_R 为线性电阻网络,已知: $U_S=20V$, $R=0\Omega$ 时 I=1A; $U_S=20V$, $R=6\Omega$ 时 U=8V。 求 $U_S=40V$, $R=9\Omega$ 时 U=?

四、(15 分)图示电路中,电源为工频交流,开关K闭合与打开时 3 个表的读数分别为160W,100V, 2A,求R、L和C的值?

五、(15 分)如图,负载 Z_L 可调,问 Z_L 取值为多少时可获得最大功率? 最大功率 $P_{\max}=$?

六、(15 分)对称三相交流电路如图所示,已知电源侧线电压为 $\dot{U}_{AB}=380\angle 0^{\circ}V$,负载阻抗 $Z=240\angle 30^{\circ}\Omega$,线路阻抗 $Z_{l}=(10+j10)\Omega$,求电流 \dot{I}_{A} 、 \dot{I}_{B} 、 \dot{I}_{C} 、 $\dot{I}_{B'C'}$ 和瓦特表的读数。

七、(15 分)已知网络 N 的端口电压、电流分别为 $U_1=(20+20\sqrt{2}\cos 10t)V$, $i_1=(2+\sqrt{2}\cos(10t-30^\circ))A$,求:(1)电源 U_S 的值;(2)网络 N 吸收的有功 P_1 、电源 U_S 提供的有功 P_2 ?

八、(15分)求图示电路的传输参数矩阵(T参数)。

九、(15 分)如图,开关闭合前电路已处于稳态,用时域法求 $t \ge 0$ 时的 $u_c(t)$ 和 i(t)。

十、(15 分)用复频域法求图示电路的 $u_{c}(t)$ 和 $u_{L}(t)$ 。

西南交通大学 2011 年全日制(专业)硕士研究生入学考试

试题名称:电路分析二 试题代码:956

考试时间: 2011年1月

一、(15 分) 电路如图所示,求 I_1 、 I_2 、 I_3 和I。

二、(15分)电路如图所示,用节点电压法求电流 I 及 2A 电流源发出的功率。

三、 $(15\, 分)$ 图示电路中,网络 N_R 由线性电阻构成,已知条件如图 (a),当开关闭合时,I=3A,当开关打开时,U=9V。求如图 (b) 中的电流 I_1 和 I_2

(a)

(b)

四、 $(15\,
ho)$ 正旋稳态电路如图,已知 $u_s=220\sqrt{2}\sin(100\pi+\varphi)$,开关 K 闭合时,两个表的读数分别为 1936W、11A; 当开关 K 断开时,两个表的读数分别为 2420W、11A; 求 R1、R2、L 和 C 值。

五、 $(15\, \%)$ 电路如图,负载 Z_L 可调,问 Z_L 取值多少可获得最大功率? 最大功率 $P_{max}=?$

六、(15 分)图示对称三相交流电路中,负载侧线电压 $U_{A'B'}=380\angle30^{0}V$,三相电阻性负载吸收的总的有功功率为 3000W,线路阻抗 $z_{1}=2+j10\Omega$ 。求电源侧向电压 U_{AB} 。

七、(15 分) 图示电路,已知 $u_{s1}=30V, u_{s2}=50\sin 1000tV, L_1=0.02H$ 、 $L_2=0.05H$, $C=20\mu F, R_1=8\Omega, R_2=12\Omega, R_3=10\Omega, 求 i_1(t), i_2(t)$ 以及电源 u_{s2} 发出的有功功率。

八、 $(15\

ota)$ 图示电路中,双口网路 N 的传输参数 $(T\

otag$ 为 $\begin{bmatrix} 2 & 4 \\ 0.5 & 1.5 \end{bmatrix}$,求电源发出的功率。

九、(15 分) 图示电路中,NR 为线性电阻网络,C=0.1F,当 $u_s(t) = 10\varepsilon(t)V$ 时,零状态响应 $i(t) = (8-3e^{-5t})\varepsilon(t)A$,如果把电容 C 换成 L=0.2H 的电感,激励 $u_s(t) = 20\varepsilon(t)V$,求此时的零状态响应i(t)。

十、(15 分) 图示电路 t<0 时处于稳态,开关 K 在 t=0 时由位置"1"换到位置"2",用拉普拉斯变换法求 $t \ge 0$ 的 $u_c(t)$

西南交通大学 2012 年全日制(专业)硕士研究生入学考试

试题名称: 电路分析二

试题代码: 956

考试时间: 2012年1月

一、(15分)化简图示电路。

二、(15分)电路如图。用网孔电流法求电流I及电压U。

三、(15分)已知条件如图(a)所示。求图(b)电路中的电压U和电阻R。

四、(15 分)电路如图。已知 \dot{U} 与 \dot{I} 同相, $U_1=100V$, $I=\sqrt{2}I_1=\sqrt{2}I_2=10A$ 。 求 R_1 、 R_2 、 X_L 、 X_C 的值,并画出图示各相关相量的相量图。

五、(15 分)电路如图,已知 $\dot{U}_s=30\angle0^\circ V$ 。问可调电容的容抗 X_c 取何值时,电压 \dot{U}_s 与电流 \dot{I} 同相?并求此时 4Ω 电阻吸收的有功功率P。

六、(15 分)已知图示三相交流电源对称,电流表的读数为5A,三相电源提供的总的有功功率为3000W、无功功率为 $-2250\,\mathrm{var}$ 。求图示瓦特表的读数。

七、(15 分)电路如图。已知 $u_{s1}=10V$, $u_{s2}=6\sqrt{2}\cos(100t+20^\circ)V$ 。求:

(1) 电流i(t)及其有效值; (2) 负载消耗的有功功率。

八、(15 分)电路如图。 t<0时电路处于稳态, t=0时开关 K 打开。用时域法 求 $t\geq0$ 的 $i_L(t)$ 和 $u_L(t)$ 。

九、(15分)求双口网络的传输参数矩阵(T参数)。

十、(15分)电路如图。用复频域法求 $t \ge 0$ 的i(t)。

西南交通大学 2013 年全日制(专业)硕士研究生入学考试

试题名称:电路分析二 试题代码:956

考试时间: 2013年1月

一、 $(15 \, \mathcal{G})$ 电路如图, 当电阻 R 取何值时, U=0; 当电阻 R 取何值时, U=2V。

二、(15分)电路如图, 求电压 U。

三、 $(15\ \beta)$ 电路如图所示。 N_R 为线性电阻网络,已知条件如图(a)所示。求图(b)电路中 R_L 取何值可获得最大功率?最大功率 $P_{max}=?$

四、(15 分)电路如图, $\dot{U}_1=20\angle 0^\circ V$ 。已知 \dot{U}_1 与 \dot{U}_2 相位差90°。求感抗 X_L 及电压 \dot{U}_2 的值。

五、(15分) 电路如图所示,求电流 \dot{I}_1 和 \dot{I}_2

六、(15分) 电路如图, 电源对称, 阻抗 $Z=30∠60^{\circ}\Omega$, 开关 K 打开时。

 $U_{av} = 300 \angle 0^{\circ} V$ 。分別求开关 K 打开、闭合时的电流 I_a 、 I_a 、 I_c 以及三相电源 提供的总的有功功率。

七、(15 分)电路如图。已知 $R = 6\Omega$, $\omega L = 2\Omega$, $\frac{1}{\omega C} = 18\Omega$ 。求u(t) 及其有效值、电阻 R。

八、(15分) 电路如图所示。已知 $i_s = 3\varepsilon(-t) + 7\varepsilon(t)$ A、求 $t \ge 0$ 的 $i_s(t)$ 和 $i_s(t)$ 。

九、(15 分)图示电路中,已知网路 N 中 Z 参数为 $\begin{bmatrix} 25 & 20 \\ 25 & 26-j8 \end{bmatrix}$ Ω ,电源

 $U_B = 30 \angle 60^0 V$,负载 $Z_L = j8\Omega$ 。求电源发出的有功功率和负载吸收的无功功率。

十、(15分)本题有2个小题。

1、图示电路为零状态电路,求 $u_{C}(0_{+})$ 、 $\frac{du_{c}}{dt}|_{0_{+}}$ 。

2、图示电路中,网络 N 是无源的。当 $i_s(t)=2e^{-5t}\varepsilon(t)+2\delta(t)A$ 时,零状态响应

 $u(t) = (t + 3e^{-4t} \sin 6t)\varepsilon(t)V$, 求对应的网络函数 H(s)。

西南交通大学 2014 年全日制(专业)硕士研究生入学考试

试题名称:电路分析二 试题代码:956

考试时间: 2014年1月

一、(15分)电路如图,求电压 U 和受控电源发出的功率 P。

二、(15 分)电路如图,电流源 I_S 数值不变,当 U_S =4V 时,U=5V。求:(1)当 U_S =0,U=? (2) I_S =?

三、(15 分) 电路如图,用节点电压法求电压 U 和电流 I。

四、(15分) 电路如图,已知 $u_s=100\sin 1000t(V), i_{R1}=5\sqrt{2}\sin (1000t-45^0)(A),$ $L=10mH, R_1=20\Omega, 求 R_2, C 和 i_\circ$

五、(15 分) 电路如图,求电流 \vec{I}_1, \vec{I}_2 和 \vec{I}_3

六、(15 分)电路如图,电源对称, $\dot{U_c} = 40 \angle 0^0$,负载 $Z = 10 - j10\Omega$,线路阻抗 $Z_l = 3 + j2\Omega$,求:(1) $U_{A'B'}$, $U_{A'B'}$ 和 $U_{C'A'}$ 。 (2)三相负载吸收的总的有功功率 \mathbf{P}_1 和无功功率 \mathbf{Q}_1 。(3)三相电源发出的总的有功功率 \mathbf{P}_2 和无功功率 \mathbf{Q}_2 。

七、(15分)电路如图, 求 u、i 及其有效值, 以及各电源发出的有功功率。

八、电路如图所示,t < 0时电路已经达到稳态,t = 0时开关 K 闭合,用时域法

求 $t \ge 0$ 时的 $u_c(t)$ 。

九、 $(15\, \beta)$ 图示电路中已知双口网路 N 的 Z 参数为 $\begin{bmatrix} 6 & 0 \\ 0 & 4 \end{bmatrix}$,电路原处于稳态,t=0 时开关断开,用复频域法求 $t\geq 0$ 时的 $u_c(t)$ 。

十、(15 分)求下列情况下图示电路的零状态响应 $i_L(t)$ 和 $u_L(t)$ 。(1) $i_s=\xi(t)A,\quad (2)\ i_s=3\delta(t)A$

西南交通大学 2015 年全日制(专业)硕士研究生入学考试

试题名称:电路分析二 试题代码:956

考试时间: 2014年12月

西南交通大学 2015 年电路分析一 (922) 全日制硕士研究生入学试题和电路分析二 (956) 入学试题相同,均为电路分析,此处便不再赘述。

西南交通大学 2016 年全日制(专业)硕士研究生入学考试

试题名称: 电路分析二 试题代码: 956

考试时间: 2015年12月

一、(15分)电路如图,求电压U和电流I。

二、 (15 分) 电路中 N 为线性有源二端网络。当 R=0、 $R_L=1K\Omega$ 时,i=-12mA;

当 $R = 2K\Omega$ 、 $R_L = 2K\Omega$ 时,i = -4mA。求 $R = 6K\Omega$ 、 $R_L = 3K\Omega$ 时,i = ?

三、(15分)用结点电压法求图示电路的各结点电压以及6V电压源发出的功率。

四、(15 分)电路如图。当电阻 R 调节到 4Ω 时电流表的读数为零, $\dot{U}_S=32\angle 45^\circ V$, $\dot{I}=4\sqrt{2}\angle 0^\circ A$ 。求 \dot{I}_1 、 \dot{I}_2 及 Z_1 、 Z_2 的值。

五、(15 分)电路如图,负载 Z_L 可调。当 Z_L 取何值可获得最大功率? 最大功率 $P_{\max} = ?$

六、(15 分)对称三相交流电路如图。已知 $\dot{U}_{AB}=200\sqrt{3}\angle10^{\circ}V$, $\dot{I}_{A}=4\angle-20^{\circ}A$,第一组三相负载吸收的总功率 $P_{1}=1200W$,其功率因数 $\cos\varphi_{1}=\frac{\sqrt{2}}{2}$ (容性)。求

第二组三相负载吸收的总的有功功率 P_2 、无功功率 Q_2 以及阻抗 Z_2 的值。

七、(15 分) 电路如图。已知 $u = \cos(10t - 45^\circ) + 0.5\sin(30t + 20^\circ)V$, $i = 8\sqrt{2}\cos(10t - 90^\circ) + 4\sin(30t + 20^\circ)A$ 。求R、C、L、 i_L 及其有效值。

八、(15 分)电路如图所示。已知网络N的T参数为 $\begin{bmatrix} 2 & 4 \\ 0.5 & 1.5 \end{bmatrix}$,电源角频率为

25rad/s,负载 $Y_L = (1+j0.5)S$ 。求:

- (3) 网络N的T形等效电路;
- (4) U_2 以及负载 Y_L 吸收的有功功率、无功功率。

九、(15 分)图示电路原处于稳态,t=0时开关K由位置 1 换到位置 2。用拉

普拉斯变换法求 $u_{C1}(t)$ 、 $i_{C1}(t)$ 。

十、(15分)本题有2小题。

1、(8分)电路如图。问电路换路后电容C取何值电路为临界阻尼状态。

2、(7分)图示电路中, D为理想二极管。画出电路端口处的伏安特性曲线。

