SUITES - BAC S POLYNÉSIE 2013

$$(u_n)$$
 définie par $u_0 = \frac{1}{2}$ et $u_{n+1} = \frac{3u_n}{1+2u_n}$ pour tout $n \in \mathbb{N}$.

1)

1.a)
$$u_1 = \frac{3u_0}{1+2u_0} = \frac{3}{4}$$
 et $u_2 = \frac{3u_1}{1+2u_1} = \frac{9}{10}$

1.b) La proposition est vraie pour u_0 , u_1 et u_2 .

Si elle vraie pour u_n , c'est à dire $u_n > 0$, alors $3u_n > 0$, $2u_n > 0$ et $1 + 2u_n > 0$, donc

 $u_{n+1} = \frac{3u_n}{1+2u_n} > 0$. La proposition est vraie pour u_{n+1} et, par récurrence, elle est vraie pour tout $n \in \mathbb{N}$.

2) On admet $u_n < 1$ pour tout $n \in \mathbb{N}$.

2.a)
$$u_{n+1} - u_n = \frac{3u_n}{1 + 2u_n} - u_n = \frac{3u_n - u_n - 2u_n^2}{1 + 2u_n} = \frac{2u_n(1 - u_n)}{1 + 2u_n}.$$

On a $0 < u_n < 1$. Donc $1 - u_n > 0$ et $u_{n+1} - u_n > 0$, d'où $u_{n+1} > u_n \Longrightarrow (u_n)$ est croissante.

- 2.b) Comme $0 < u_n < 1$ et (u_n) croissante pour tout $n \in \mathbb{N}$, (u_n) tend vers une limite $0 < \ell \le 1$. On peut préciser ℓ en remarquant que $u_2 = \frac{9}{10}$. Alors, $\frac{9}{10} < \ell \le 1$.
- 3) (v_n) définie par $v_n = \frac{u_n}{1 u_n}$ pour tout $n \in \mathbb{N}$.
- 3.a) Exprimons $v_{n+1} = \frac{u_{n+1}}{1 u_{n+1}}$ en fonction de u_n .

$$v_{n+1} = \frac{\frac{3u_n}{1+2u_n}}{1-\frac{3u_n}{1+2u_n}} = \frac{\frac{3u_n}{1+2u_n}}{\frac{1-u_n}{1+2u_n}} = \frac{3u_n}{1-u_n}.$$
 D'où l'on tire $v_{n+1} = 3v_n$. CQFD.

3.b) On calcule facilement que $v_0 = 1$. Alors $v_n = 3^n$.

3.c)
$$v_n = \frac{u_n}{1 - u_n} = 3^n$$
, d'où l'on tire aisément $u_n = \frac{3^n}{3^n + 1}$.

3.d) On voit immédiatement que $\lim_{n\to+\infty} (u_n) = \lim_{n\to+\infty} 1 - \frac{1}{3^n+1} = 1$