Lecture 3

Chapters R.5-R.8

R.5 Sampling

Exercise 4: How could you get a sample that represents the population of college students without surveying every

Exercise 5: Suppose we take a survey of individuals to find out what the average number of pets owned in Eugene is. Given the sample data below, what is the estimate?

Individual	Number of
	Pets
1	2
2	1
3	0
4	5
5	2

Exercise 6: suppose X has a distribution with variance σ_X^2 . What is the variance of the sample mean?

The probability density of an estimate of a parameter of X always has lower variance than distribution of X.

R.6 Unbiasedness and Efficiency

We need two things for a reliable estimator.

- 1. Unbiasedness the expected value of the estimator of a parameter equals the true value of the parameter.
- 2. Efficiency an unbiased estimator that has low variance.

Exercise 7: Label the following distributions as biased or unbiased.

Exercise 8: Show that sample mean is an unbiased estimator of population mean.

Exercise 9: Which estimator would you rather use A or B? Why?

Exercise 10: Which estimator would you rather use, A or B? Why?

R.7 Estimators of variance, covariance, and correlation

Formula – sample variance	Formula	– sample	variance
---------------------------	---------	----------	----------

Formula – sample covariance

Formula – sample correlation

Exercise 11: Find the sample means, variances, covariance, and correlation of the following sample data.

X	Υ
1	4
2	5
3	6

R.8 The normal distribution

There are 4 continuous distributions that we will use in econometrics.

- 1. Normal distribution
- 2. *t* distribution
- 3. *F* distribution
- 4. χ^2 distribution (chi-squared)

The normal distribution – a distribution that is "bell shaped" around the population mean. Most of it's probability lies close to the middle, with relatively little far away.

Standard normal distribution – a normal distribution with mean = 0 and standard deviation = 1.

To find probabilities for a standard normal distribution, we use a z-table.

Exercise 12: What is the probability that X < 1 for a standard normal distribution?

Exercise 13: What is the probability that X > 2 for a standard normal distribution?

Exercise 15: What is Z if Pr(X < Z) = 0.5120?

Exercise 16: What is Z if Pr(X < Z) = 0.877?