plan N:01

CH1: Les Identités remarquables et puissances.

Prof: MOUSAID ABDELHAMID

Lycée:

Année Scolaire : 2025-2026 La classe : 3APIC.

Période : 10 heures. Unité : Le calcule numérique.

Les **pré-requis**: Les 4 opérations sur les nombres rationnels, Calcul littéral, Développer et factoriser et simplifier des expressions algébriques, Identités remarquables sur les rationnels, Théorème de Pythagore.

Les outils utilisés : Livre scolaire, Les ressources, les instructions pédagogiques.

Développe et factorise une expression littérale Activité-2: $(a+b)(c+d) = ac+ad+bc+bd$ Développement des expressions: $(a+b)(c+d) = ac+ad+bc+bd$ Exemples-1: Développement des expressions: $(a+b)(c+d) = ac+ad+bc+bd$ Exemples-2: Développement des expressions: $(2x-1)(x-2) = 2x \times x - 2x \times 2 - 1 \times x - 1 \times (-2) = 2x^2 - 4x - x + 2 = 2x^2 - 5x + 2$

Factoriser des expressions avec un facteur commun		Définition Factoriser une somme signifie la transformer en produit. Règle $a, b \text{ et } k \text{ sont des nombres rationnels. On a :}$ $ka + kb = k(a + b)$ $ka - kb = k(a - b)$	Exercice-2: Factoriser les expressions: $25x-15$ $5x-3$ $(3x+1)^2 - (3x+1)(2x+5)$ $7x(2x-9) - 11(9-2x)$ $6x^2 + 12x + 6$ $xy-x-y+1$
Connaitre les identités remarquables	Activité-3 : 1) Calculer l'aire du carre MNPQ de deux façons	Factorisation des expressions : $4a^2 + 3a = 4 \times a \times a + 3 \times a = a(4a + 3)$ $(x+7)(5-4x)-2(5-4x)=(5-4x)\times(x+7-2)=(5-4x)(x+5)$ $(x+3)^2 + (x+4)(x+3) = (x+3)(x+3+x+4) = (x+3)(2x+7)$. III. Identités remarquables : 1- Carré d'une somme :	Exercice-3: 1) Développer puis simplifier les expressions suivantes:
	différentes et déduire que : $(a+b)^2 = a^2 + 2ab + b^2$ 2) Déduire que : $(a-b)^2 = a^2 - 2ab + b^2$ (On remarque que : $a-b = a + (-b)$)	Propriété $a \text{ et } b \text{ sont des nombres rationnels. On a :}$ $(a+b)^2 = a^2 + 2ab + b^2$ Exemples-1: $(2x+3)^2 = (2x)^2 + 2 \times 2x \times 3 + 3^2 = 4x^2 + 12x + 9$ $16x^2 + 8x + 1 = (4x+1)^2$	$A = (9x + 8)^2$ $B = (6 + 5x)^2$ 2) Factoriser: $\mathbf{C} = x^2 + 8x + 16$ $D = 49x^2 + 42x + 9 + x(7x + 3)$ 3) On considère $F = (2x + 3)^2 + (2x + 3)(x - 1)$. a. Développer et réduire F . b. Factoriser F . c. Calculer F Pour $x = -\frac{2}{3}$.

Connaitre	les
identité	S
remarquab	oles

Activité-4:

a et b deux nombres réels Développer et réduire : (a-b)(a+b)

2- Carré d'une différence :

Propriété

a et b sont des nombres rationnels. On a :

Exemples-1:

$$(2x-3)^2 = (2x)^2 - 2 \times 2x \times 3 + 3^2 = 4x^2 - 12x + 9$$

$$99^2 = (100-1)^2 = 100^2 - 2 \times 100 \times 1 + 1^2 = 1000 - 200 + 1 = 9801$$

$$16x^2 - 8x + 1 = (4x-1)^2$$

3- Carré d'une différence :

Propriété

a et b sont des nombres rationnels. On a :

$$(a+b)(a-b) = a^2-b^2$$

Exemples-1:

$$(2x+3)(2x-3) = (2x)^2 - 3^2 = 4x^2 - 9$$

$$99 \times 101 = (100+1)(100-1) = 100^2 - 1^2 = 10000 - 1 = 9999$$

$$16x^2 - 9 = (4x+3)(4x-3)$$

$$(\sqrt{11} + \sqrt{7})(\sqrt{11} - \sqrt{7}) = \sqrt{11}^2 - \sqrt{7}^2 = 11 - 7 = 4$$

Exercice-4:

1) Développer puis simplifier les expressions suivantes :

$$X = \left(\frac{x}{2} - 2\right)^2$$
 $Y = \left(\frac{2}{3}x - \frac{3}{5}\right)^2$

2) Factoriser:

$$Z = 9x^2 - 24x + 16$$
$$W = 25x^2 + 9 - 30x$$

Exercice-5:

1) Développer

$$A(x) = (2x+1)(2x-1).$$

- 2) Calculer A(x) pour $x = \sqrt{5}$
- 3) Factoriser $B(x) = 9x^2 16$

Exercice-6:

Calculer mentalement:

$$78 \times 82$$
 ; $592 - 61^2$

Activité-5:

1) Calculer les puissances suivantes:

$$\left(\frac{2}{3}\right)^3$$
; $(-5)^4$; $\left(\frac{2}{3}\right)^1$
 $(-54.7)^0$; 1^{12} ; 0^{12}
 $(-1)^4$; $(-1)^7$; 1^4 ; -1^7

2) Calculer les puissances suivantes:

$$5^{-2}$$
; 1^{-12} ; 10^{-3}
 $\left(\frac{2}{3}\right)^{-3}$; $(-5)^4$; $\left(\frac{2}{3}\right)^{-1}$

IV. Puissance dun nombre réel

Définition:

Soit a un nombre quelconque et m un entier naturel non nul. On note a^m le nombre défini par :

$$a^m = \underbrace{a \times a \times \cdots \times a}_{m \ fois}$$

- ightharpoonup Le nombre a^m est le produit du nombre a par lui-même m fois.
- ightharpoonup Le nombre a^m se lit "a puissance m" ou "a exposant m".
- ▶ Par convention on admet que $a^0 = 1$

Remarques:

- ► Le nombre a² se lit aussi "a au carré"; et le nombre a³ se lit aussi "a au cube".
- ightharpoonup On a toujours $a^1 = a$ (donc si un nombre est écrit sans puissance, on considère quil est à la puissance 1).
- $ightharpoonup a^{-n}$ est **linverse** de a^n

Exemples:

- $2^3 = 2 \times 2 \times 2.$
- multiplient est 10).

MISE EN GARDE:

- ▶ Il ne faudra pas confondre le nombre $\mathbf{a}^{\mathbf{m}}$ avec $\mathbf{a} \times \mathbf{m}$
- ▶ Par exemple $2^3 = 2 \times 2 \times 2 = 8$; alors que $2 \times 3 = 6$ (On voit bien que les résultats sont différents)

Exercice-7:

Calculer les puissances suivantes:

survantes:

$$a = (-4)^4$$
 $b = (3\sqrt{2})^2$
 $c = (-\sqrt{2})^3 d = (\sqrt{2})^4$
 $e = (\frac{-4}{5})^4$ $f = (\frac{-4}{5})^{-1}$
 $j = (2^2 + 3^{-2})^{-1}$
 $h = \left[((\frac{4}{\sqrt{5}})^{-1} \times (\frac{-1}{2})^2)^{-2} \right]$

$$h = \left[((\frac{4}{\sqrt{5}})^{-1} \times (\frac{-1}{2})^2)^{-2} \right]$$

Activité-6:

Simplifier les expressions

suivantes:

$$A = (\sqrt{2})^{3} \times (\sqrt{2})^{5} \times (\sqrt{2})$$

$$B = (\sqrt{3})^{-3} \times (\sqrt{3})^{5}$$

$$C = (\sqrt{3})^{2} \times 5^{2}$$

$$D = ((\sqrt{3})^{2})^{3}$$

$$E = \frac{(\sqrt{3})^{5}}{(\sqrt{3})^{3}}$$

V. Propriétés des puissances

Les puissances ont des propriétés spécifiques permettant des calculs rapides.

RÈGLE N°1 :(Produit De Deux Puissances)

$$\underbrace{a^m \times a^p}_{\text{C'est le même nombre}} = \underbrace{a^{m+p}}_{\text{On additionne les puissances}}$$

Exemples:

Calculons les nombres $x = \frac{5^8}{56}$ et $y = \frac{3^{14}}{38}$ en donnant les résultats sous forme de puissances.

On applique directement la règle qui nous donne : $x = 3^4 \times 3^2 =$ 3^{4+2} = 3^6 et de même $y = 7^3 \times 7^2 = 7^{3+2} = 7^5$ On additionne les puissances

RÈGLE N°2 : (Quotient De Deux Puissances)

$$\underbrace{\frac{a^m}{a^p}}_{\text{C'est le même nombre } a} = \underbrace{a^{m-p}}_{\text{On soustrait les puissances}}$$

Exemples:

Calculons les nombres $x = 3^4 \times 3^2$ et $y = 7^3 \times 7^2$ en donnant les résultats sous forme de puissances.

La règle nous donne directement : $x = \frac{5^8}{5^6} = 5^{8-6} = 5^2$ On soustrait les puissances

Et de même $y = \frac{3^{14}}{3^8} = 3^{14-8} = 3^6$

RÈGLE N°3: (Puissance Dune Puissance)

$$\underbrace{\left(a^{m}\right)^{p}}_{\text{On éléve une puissance à une autre puissance}} = \underbrace{a^{m \times p}}_{\text{On multiplie les puissances}}$$

Exercice-8:

Simplifier les expressions

suivantes:
$$\left(\sqrt{7}\right)^{-13} \times \left(\sqrt{7}\right)^{65}$$

$$\left(\sqrt{3}\right)^6 \times \left(\sqrt{3}\right)^{-5} \times \left(\sqrt{3}\right)$$

Exercice-9:

Simplifier les expressions

suivantes:

$$a = (-4)^3 \times (-4)^{12}$$

$$b = 5^6 \times (\sqrt{2})^6$$

$$c = \frac{(-\sqrt{2})^3}{(-\sqrt{2})^{-8}}$$

$$d = \left(\sqrt{2}^5\right)^{-2}$$

$$e = 5^{-3} \times 3 \times (5^2)^7 \times 9^5$$

$$f = \frac{(-21)^3 \times 5}{35^3 \times 3}$$

$$j = \frac{a^2b(a^{-1} \times b^2)^{-3}}{a(a^2 \times b)^5(b^2)^{-3}}$$

Exemples:

On multiplie les puissances

Calculons les nombres $x = (2^3)^4$ et $y = (5^2)^3$ en donnant les résultats sous forme de puissances.

On applique directement la règle qui nous donne : $x = (2^3)^4 = 2^{3\times4}$ = 2^{12} et de même $y = (5^2)^3 = 5^{2\times3} = 5^6$

RÈGLE N°4 : (Puissance D'un Produit)

$$\underbrace{(a \times b)^m}_{\text{On éléve un produit à une puissance}} = \underbrace{a^m \times b^m}_{\text{On distribue les puissances}}$$

Exemples:

On peut écrire.

$$6^4 = \underbrace{(2 \times 3)^4}_{\text{car } 6 = 2 \times 3} = \underbrace{2^4 \times 3^4}_{\text{En appliquant la règle}}$$

RÈGLE N°5 : (Puissance D'un Quotient)

$$\left(\frac{a}{b}\right)^{m} = \underbrace{\frac{a^{m}}{b^{m}}}_{\text{On élève un quotient à une puissance}} = \underbrace{\frac{a^{m}}{b^{m}}}_{\text{On distribue les puissances}}$$

Exemples:

On peut écrire.

$$\left(\frac{2}{3}\right)^5 = \underbrace{\frac{2^5}{3^5}}_{\text{En appliquant la règle}}$$

Exercice-10:

1- Déterminer lentier n tel que :

$$3^{2n+8} \times 9^n = 81$$

 $\hbox{$2$-calculer mentalement:}$

$$a=4^{245}\times(3\sqrt{341,5})^0\times(0,25)^{245}$$

Activité-7:

1- Calculer les puissances suivantes :

 10^5 ; 10^4 10^{-2} ; 10^{-3} 10^n ; 10^{-n}

2-Écrire les nombres suivants sous forme de $a \times 10^n$ tel que n est un entier naturel et a est un nombre décimal tel que

 $1 \le a < 10$: A = 200000

B = 25000000

C = 0.00003

D = 0.00043

VI. Les puissances de 10 et écriture scientifique dun nombre décimal

1- Propriétés des puissances de 10 :

Les puissances de 10 possèdent des propriétés particulières que nous récapitulons dans le tableau ci-dessous. Soit m un entier naturel non nul

RÈGLE N°1 : (Écriture Décimale De 10^m)

$$10^m = 1 \underbrace{000 \cdots 0}_{m \text{ zéros}}$$

NOTE : Cette règle permet de calculer instantanément le nombre 10^m .

Exemples:

$$10^4 = 1 \underbrace{0000}_{4 \text{ zéros}}$$
; $10^5 = 1 \underbrace{00000}_{5 \text{ zéros}}$; $10^6 = 1 \underbrace{000000}_{6 \text{ zéros}}$

RÈGLE N°2 :(Écriture Décimale De 10^{-m})

$$10^{-m} = \frac{1}{10^m} = 0, \underbrace{000 \cdots 01}_{m \text{ chiffres}}$$

m chiffres (Il y a <u>au total</u> m zéros avant le 1)

NOTE : Cette règle permet de calculer instantanément le nombre 10^{-m} . Exemples :

$$10^{-1} = 0$$
, $\underbrace{1}_{1 \text{ chiffre}}$; $10^{-2} = 0$, $\underbrace{01}_{2 \text{ chiffres}}$; $10^{-4} = 0$, $\underbrace{0001}_{4 \text{ chiffres}}$; $10^{-6} = 0$, $\underbrace{000001}_{6 \text{ chiffres}}$

RÈGLE N°3 :(Multiplication D'un Nombre Par 10^m)

Pour multiplier un **nombre décimal** par 10^m , il suffit de **décaler** sa virgule de m chiffres vers **la droite** et à la fin de **la partie décimale**, chaque décalage se traduit par l'ajout d'un zéro.

Exemples:

$$1,562 \times 10^2 = \underbrace{156,2}_{On \ a \ d\'{e}cal\'{e}\ la \ virgule \ de \ 2 \ chiffres \ \grave{a} \ droite}$$

 $0,00025 \times 10^6 = 250$; $12 \times 10^3 = 12000$

Exercice-11:

Donner lécriture décimale de chacun des nombres suivants : $x = 10^{s}$;

$$y = 10^{-4}$$
;

$$z = 0.038 \times 10^5$$
;

$$t = 5400 \times 10^{-3}.$$

Observations sur la séance :

RÈGLE N°4 :(Multiplication D'un Nombre Par 10^{-m})

Pour multiplier un **nombre décimal** par 10^{-m} , il suffit de **décaler** sa virgule de m chiffres vers **la gauche** et en début de **la partie entière**, chaque décalage se traduit par l'ajout d'un zéro.

Exemples:

$$154, 3 \times 10^{-2} = \underbrace{1,543}_{\text{2 chiffres à gauche}}$$
; $0,25 \times 10^2 = 25$; $15 \times 10^{-2} = 0,00015$

1- Écriture scientifique dun nombre décimal

Un des objectifs de ce chapitre est de savoir mettre un nombre décimal positif en écriture scientifique.

THÉORÈME:

Tout nombre décimal positif x peut sécrire de façon unique sous la forme : $x = a \times 10^m$. Où m est un entier et a un nombre décimal tel que $1 \le a < 10$:

DÉFINITION:

L'écriture $\mathbf{x} = \mathbf{a} \times \mathbf{10^m}$ s'appelle **écriture scientifique** du nombre x.

Remarque Fondamentale :

L'écriture scientifique ne doit comporter <u>qu'un seul chiffre non nul</u> (c'est-à-dire pas zéro) avant la virgule. Donc il y a une seule position possible pour la virgule (<u>après le premier chiffre différent de zéro en partant de la gauche</u>).

Positionnement de la virgule

- Pour mettre 0.0345 en écriture scientifique, on doit positionner la virgule juste après le 3;
- Pour mettre 254 en écriture scientifique, on doit positionner la virgule juste après le 2.

Exercice-12:

Donner lécriture scientifique des expressions suivantes : a = 2360000; b = 0,00023 $c = -659 \times 10^5$ $d = 56 \times 10^{-5} \times 0,3 \times 10^7$ $e = 2,4 \times 10^5 + 1,5 \times 10^4$