Universität des Saarlandes Fakultät für Mathematik und Informatik Fachrichtung Mathematik

Prof. Dr. Roland Speicher Dr. Tobias Mai

Übungen zur Vorlesung Höhere Mathematik für Ingenieure I Wintersemester 2020/21

Blatt 9

Lösungshinweise

Aufgabe 1 (5 + 5 Punkte):

(a) Zeigen Sie, dass für alle $k \in \mathbb{N}_0$ und alle $x \in \mathbb{R}$ mit $|x| < \frac{1}{2}k + 1$ die Abschätzung

$$\left| e^x - \sum_{n=0}^k \frac{x^n}{n!} \right| \le \frac{2|x|^{k+1}}{(k+1)!}$$

gilt. Imitieren Sie dazu die Rechnung aus der Vorlesung.

(b) Bestimmen Sie mithilfe des Resultats aus Aufgabenteil (a) eine Dezimalzahl, die e^2 bis auf einen Fehler von weniger als 0,02 annähert.

Lösung:

(a) Für alle $x \in \mathbb{R}$ liefert uns die Reihendarstellung der Exponentialfunktion

$$e^{x} - \sum_{n=0}^{k} \frac{x^{n}}{n!} = \sum_{n=k+1}^{\infty} \frac{x^{n}}{n!} = \frac{x^{k+1}}{(k+1)!} \sum_{n=k+1}^{\infty} \frac{(k+1)!}{n!} x^{n-k-1} = \frac{x^{k+1}}{(k+1)!} \sum_{n=0}^{\infty} \frac{(k+1)!}{(n+k+1)!} x^{n}$$

und damit

$$\left| e^x - \sum_{n=0}^k \frac{x^n}{n!} \right| = \frac{|x|^{k+1}}{(k+1)!} \left| \sum_{n=0}^\infty \frac{(k+1)!}{(n+k+1)!} x^n \right| \le \frac{|x|^{k+1}}{(k+1)!} \sum_{n=0}^\infty \frac{(k+1)!}{(n+k+1)!} |x|^n. \tag{1}$$

Die Voraussetzung $|x| < \frac{1}{2}k + 1$ garantiert uns, dass $\frac{|x|}{k+2} < \frac{1}{2}$ gilt. Weil wir

$$\frac{(k+1)!}{(n+k+1)!} = \frac{1}{(k+2)(k+3)\cdots(n+k+1)} \le \frac{1}{(k+2)^n}$$

abschätzen können, erhalten wir deshalb mittels der Formel für die geometrische Reihe aus der obigen Ungleichung (1), dass

$$\left| e^x - \sum_{n=0}^k \frac{x^n}{n!} \right| \le \frac{|x|^{k+1}}{(k+1)!} \sum_{n=0}^\infty \left(\frac{|x|}{k+2} \right)^n < \frac{|x|^{k+1}}{(k+1)!} \sum_{n=0}^\infty \left(\frac{1}{2} \right)^n = \frac{2|x|^{k+1}}{(k+1)!}.$$

(b) Wir wollen die Fehlerabschätzung aus Aufgabenteil (a) für x=2 anwenden. Dazu müssen wir $k \in \mathbb{N}_0$ so wählen, dass die Bedingung $|x| < \frac{1}{2}k+1$ erfüllt ist. Wir sehen, dass dies genau dann der Fall ist, wenn $k \geq 2$ gilt. Für $k=2,3,4,\ldots$ berechnen wir nun mit der folgenden Tabelle die Werte von $\frac{2|x|^{k+1}}{(k+1)!} = \frac{2^{k+2}}{(k+1)!}$, bis diese erstmals die geforderte Schranke von 0,02 unterschreiten:

k	2	3	4	5	6	7
$\frac{2^{k+2}}{(k+1)!}$	2,66667	1,33333	0,533333	0,177778	0,0507937	0,0126984

Wir sehen, dass dies erstmals für k=7 der Fall ist. Wir berechnen schließlich die zugehörige Partialsumme

$$\sum_{n=0}^{7} \frac{x^n}{n!} = \frac{155}{21} \approx 7,380952.$$

Gemäß der Abschätzung in (a) stellt diese Dezimalzahl eine Approximation von e^2 mit einem Fehler von weniger als 0,02 dar.

Aufgabe 2 (3 + 3 + 4 Punkte): Wir betrachten die Folge $(a_n)_{n\in\mathbb{N}}$, die gegeben ist durch $a_n := \left(1 + \frac{1}{n}\right)^n$ für alle $n \in \mathbb{N}$. In dieser Aufgabe wollen wir zeigen, dass die Folge $(a_n)_{n\in\mathbb{N}}$ konvergent ist mit dem Grenzwert e, der Eulerschen Zahl, die gegeben ist durch $e = \exp(1) = \sum_{k=0}^{\infty} \frac{1}{k!}$. Hierzu gehen wir wie folgt vor:

(a) Beweisen Sie für alle $n \in \mathbb{N}$ und alle $k \in \mathbb{N}_0$ mit $0 \le k \le n$ die Abschätzung

$$\frac{1}{n^k} \binom{n}{k} \le \frac{1}{k!}$$

und zeigen Sie damit unter Verwendung des binomischen Lehrsatzes, dass

$$a_n \le \sum_{k=0}^n \frac{1}{k!}$$
 für alle $n \in \mathbb{N}$.

(b) Es sei $N \in \mathbb{N}$ fest gewählt. Zeigen Sie, dass

$$a_n \ge \sum_{k=0}^N \frac{1}{n^k} \binom{n}{k}$$
 für alle $n \in \mathbb{N}, n \ge N$ und $\lim_{n \to \infty} \sum_{k=0}^N \frac{1}{n^k} \binom{n}{k} = \sum_{k=0}^N \frac{1}{k!}$.

(c) Folgern Sie aus (a) und (b), dass die Folge $(a_n)_{n\in\mathbb{N}}$ gegen e konvergiert, d. h.

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e = \sum_{k=0}^{\infty} \frac{1}{k!}.$$

Lösung:

(a) Wie zeigen zunächst die Abschätzung $\frac{1}{n^k}\binom{n}{k} \leq \frac{1}{k!}$. Für $n \in \mathbb{N}$ und k = 0 ist diese wegen $\binom{n}{0} = 1$ trivialerweise richtig. Für $n \in \mathbb{N}$ und $1 \leq k \leq n$ bestätigen wir diese durch die Rechnung

$$\frac{1}{n^k} \binom{n}{k} = \frac{1}{k!} \frac{n!}{(n-k)!n^k} = \frac{1}{k!} \prod_{j=1}^k \underbrace{\frac{n-k+j}{n}}_{\leq 1} \leq \frac{1}{k!}.$$
 (2)

Mit dem binomischen Lehrsatz können wir daraus nun folgern, dass wie behauptet

$$a_n = \left(1 + \frac{1}{n}\right)^n = \sum_{k=0}^n \binom{n}{k} \frac{1}{n^k} \le \sum_{k=0}^n \frac{1}{k!}$$
 für alle $n \in \mathbb{N}$.

(b) Sind $N \in \mathbb{N}$ und $n \in \mathbb{N}$ mit $n \geq N$ gegeben, so liefert uns die in (a) mittels des binomischen Lehrsatzes bewiesene Formel für a_n , dass

$$a_n = \sum_{k=0}^n \frac{1}{n^k} \binom{n}{k} = \sum_{k=0}^N \frac{1}{n^k} \binom{n}{k} + \underbrace{\sum_{k=N+1}^n \frac{1}{n^k} \binom{n}{k}}_{>0} \ge \sum_{k=0}^N \frac{1}{n^k} \binom{n}{k}.$$

Dies zeigt den ersten Teil der Behauptung. Wie überzeugen uns nun, dass

$$\lim_{n \to \infty} \sum_{k=0}^{N} \frac{1}{n^k} \binom{n}{k} = 1 + \sum_{k=1}^{N} \lim_{n \to \infty} \frac{1}{n^k} \binom{n}{k} \stackrel{\text{(2)}}{=} 1 + \sum_{k=1}^{N} \frac{1}{k!} \prod_{j=1}^{k} \underbrace{\lim_{n \to \infty} \frac{n-k+j}{n}}_{=1} = \sum_{k=0}^{N} \frac{1}{k!}.$$

(c) Wir geben uns ein $\varepsilon > 0$ beliebig vor. Weil die Reihe $\sum_{k=0}^{\infty} \frac{1}{k!}$ gegen e konvergiert, können wir ein $N \in \mathbb{N}$ finden, sodass

$$\left| e - \sum_{k=0}^{N} \frac{1}{k!} \right| < \frac{\varepsilon}{2}.$$

Nach Aufgabenteil (b) gilt insbesondere für dieses N, dass $\lim_{n\to\infty} \sum_{k=0}^{N} \frac{1}{n^k} \binom{n}{k} = \sum_{k=0}^{N} \frac{1}{k!}$, weshalb wir ein $n_0 \in \mathbb{N}$ finden können, sodass

$$\left| \sum_{k=0}^{N} \frac{1}{k!} - \sum_{k=0}^{N} \frac{1}{n^k} \binom{n}{k} \right| < \frac{\varepsilon}{2} \quad \text{für alle } n \in \mathbb{N} \text{ mit } n \ge n_0$$

gilt. Indem wir n_0 falls nötig vergrößern, können wir ohne Beschränkung der Allgemeinheit $n_0 \geq N$ annehmen. Fassen wir nun beide Abschätzungen mittels der Dreiecksungleichung zusammen, so erhalten wir

$$e - \sum_{k=0}^{N} \frac{1}{n^k} \binom{n}{k} \le \left| e - \sum_{k=0}^{N} \frac{1}{n^k} \binom{n}{k} \right|$$

$$\le \left| e - \sum_{k=0}^{N} \frac{1}{k!} \right| + \left| \sum_{k=0}^{N} \frac{1}{k!} - \sum_{k=0}^{N} \frac{1}{n^k} \binom{n}{k} \right| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Weil $n \geq N$ für alle $n \geq n_0$ gilt, haben wir die Abschätzung aus Aufgabenteil (b) zur Verfügung. In Kombination mit der vorangegangenen Abschätzung ergibt dies

$$a_n \ge \sum_{k=0}^{N} \frac{1}{n^k} \binom{n}{k} > e - \varepsilon$$

für alle $n \in \mathbb{N}$ mit $n \geq n_0$. Zusammen mit der Abschätzung aus Aufgabenteil (a), und weil die Folge der Partialsummen von $\sum_{k=0}^{\infty} \frac{1}{k!}$ monoton wachsend ist und von unten gegen e konvergiert, erhalten wir damit

$$e > \sum_{k=0}^{N} \frac{1}{k!} \ge a_n > e - \varepsilon$$

und schließlich $|e - a_n| < \varepsilon$ für alle $n \in \mathbb{N}$ mit $n \ge n_0$.

Aufgabe 3 (3 + 5 + 2 Punkte): Gegeben seien die folgenden drei Vektoren in \mathbb{R}^3 :

$$\mathbf{v}^{(1)} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \quad \mathbf{v}^{(2)} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \quad \text{und} \quad \mathbf{v}^{(3)} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}.$$

- (a) Sind $\mathbf{v}^{(1)}$ und $\mathbf{v}^{(2)}$ linear unabhängig? Kann der Vektor $\mathbf{e}^{(3)}$ der kanonischen Basis des \mathbb{R}^3 als Linearkombination von $\mathbf{v}^{(1)}$ und $\mathbf{v}^{(2)}$ geschrieben werden?
- (b) Sind $\mathbf{v}^{(1)}$, $\mathbf{v}^{(2)}$ und $\mathbf{v}^{(3)}$ linear unabhängig? Kann der Vektor $\mathbf{e}^{(3)}$ der kanonischen Basis des \mathbb{R}^3 als Linearkombination von $\mathbf{v}^{(1)}$, $\mathbf{v}^{(2)}$ und $\mathbf{v}^{(3)}$ geschrieben werden? Falls ja, berechnen Sie die eindeutig bestimmten Koeffizienten $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$ mit

$$\mathbf{e}^{(3)} = \lambda_1 \mathbf{v}^{(1)} + \lambda_2 \mathbf{v}^{(2)} + \lambda_3 \mathbf{v}^{(3)}$$
.

(c) Bildet $(\mathbf{v}^{(1)}, \mathbf{v}^{(2)}, \mathbf{e}^{(3)})$ eine Basis des Vektorraums \mathbb{R}^3 ?

Lösung:

(a) Wir nehmen an, dass $\lambda_1, \lambda_2 \in \mathbb{R}$ die Bedingung $\lambda_1 \mathbf{v}^{(1)} + \lambda_2 \mathbf{v}^{(2)} = \mathbf{0}$ erfüllen. Konkret bedeutet dies

$$\lambda_1 \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + \lambda_2 \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix},$$

was wir zu dem folgenden Gleichungssystem umschreiben können:

$$\lambda_1 = 0$$

$$\lambda_2 = 0$$

$$\lambda_1 + \lambda_2 = 0$$

Dieses besitzt nur die Lösung $(\lambda_1, \lambda_2) = (0, 0)$, d. h. die Vektoren $\mathbf{v}^{(1)}$ und $\mathbf{v}^{(2)}$ sind linear unabhängig.

Wir behaupten, dass sich $\mathbf{e}^{(3)}$ nicht als Linearkombination der beiden Vektoren $\mathbf{v}^{(1)}$ und $\mathbf{v}^{(2)}$ darstellen lässt. Gäbe es nämlich $\lambda_1, \lambda_2 \in \mathbb{R}$, sodass $\lambda_1 \mathbf{v}^{(1)} + \lambda_2 \mathbf{v}^{(2)} = \mathbf{e}^{(3)}$, dann würde dies explizit

$$\lambda_1 \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + \lambda_2 \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

bedeuten, sodass (λ_1, λ_2) eine Lösung des folgenden linearen Gleichungssystems wäre:

$$\lambda_1 = 0$$

$$\lambda_2 = 0$$

$$\lambda_1 + \lambda_2 = 1$$

Dieses hat jedoch offensichtlich keine Lösung, da die dritte Gleichung nicht von der Lösung $(\lambda_1, \lambda_2) = (0, 0)$ der beiden ersten Gleichungen erfüllt wird. Dieser Widerspruch bestätigt unsere Behauptung, dass sich $\mathbf{e}^{(3)}$ nicht als Linearkombination der beiden Vektoren $\mathbf{v}^{(1)}$ und $\mathbf{v}^{(2)}$ darstellen lässt.

(b) Wir nehmen an, dass $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$ die Bedingung $\lambda_1 \mathbf{v}^{(1)} + \lambda_2 \mathbf{v}^{(2)} + \lambda_3 \mathbf{v}^{(3)} = \mathbf{0}$ erfüllen. Konkret bedeutet dies

$$\lambda_1 \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + \lambda_2 \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} + \lambda_3 \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix},$$

was wir zu dem folgenden Gleichungssystem umschreiben können:

$$\lambda_1 + \lambda_3 = 0$$
$$\lambda_2 + \lambda_3 = 0$$
$$\lambda_1 + \lambda_2 = 0$$

Aus der ersten Gleichung ergibt sich $\lambda_1 = -\lambda_3$ und aus der zweiten Gleichung $\lambda_2 = -\lambda_3$. Eingesetzt in die dritte Gleichung liefert dies $-2\lambda_3 = 0$, also $\lambda_3 = 0$, und folglich $\lambda_1 = -\lambda_3 = 0$ sowie $\lambda_2 = -\lambda_3 = 0$. Das Gleichungssystem besitzt somit nur die Lösung $(\lambda_1, \lambda_2, \lambda_3) = (0, 0, 0)$, d. h. die Vektoren $\mathbf{v}^{(1)}$, $\mathbf{v}^{(2)}$ und $\mathbf{v}^{(3)}$ sind linear unabhängig.

Um $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$ zu finden, die die Bedingung $\lambda_1 \mathbf{v}^{(1)} + \lambda_2 \mathbf{v}^{(2)} + \lambda_3 \mathbf{v}^{(3)} = \mathbf{e}^{(3)}$ erfüllen, schreiben wir dies explizit als

$$\lambda_1 \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + \lambda_2 \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} + \lambda_3 \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix},$$

was zu dem folgenden Gleichungssystem äquivalent ist:

$$\lambda_1 + \lambda_3 = 0$$
$$\lambda_2 + \lambda_3 = 0$$
$$\lambda_1 + \lambda_2 = 1$$

Wie eben bestimmen wir aus der ersten Gleichung $\lambda_1 = -\lambda_3$ und aus der zweiten Gleichung $\lambda_2 = -\lambda_3$. Eingesetzt in die dritte Gleichung liefert dies nun $-2\lambda_3 = 1$, also $\lambda_3 = -\frac{1}{2}$, und folglich $\lambda_1 = -\lambda_3 = \frac{1}{2}$ sowie $\lambda_2 = -\lambda_3 = \frac{1}{2}$. Wir haben also die (eindeutige) Darstellung

$$\frac{1}{2}\mathbf{v}^{(1)} + \frac{1}{2}\mathbf{v}^{(2)} - \frac{1}{2}\mathbf{v}^{(3)} = \mathbf{e}^{(3)}$$
(3)

gefunden.

(c) Aus der Vorlesung wissen wir, dass dim $\mathbb{R}^n = 3$. Es reicht also zu zeigen, dass die Vektoren $\mathbf{v}^{(1)}, \mathbf{v}^{(2)}, \mathbf{e}^{(3)}$ linear unabhängig sind. Hierzu machen wir den Ansatz

$$\lambda_1 \mathbf{v}^{(1)} + \lambda_2 \mathbf{v}^{(2)} + \lambda_3 \mathbf{e}^{(3)} = \mathbf{0}.$$
 (4)

Wir könnten nun analog wie in (b) vorgehen, hier wollen wir aber stattdessen das Problem auf die dort bereits bewiesene lineare Unabhängigkeit der Vektoren $\mathbf{v}^{(1)}$, $\mathbf{v}^{(2)}$ und $\mathbf{v}^{(3)}$ zurückführen. Hierzu nutzen wir die in (b) bestimmte Linearkombination (3) aus und setzen diese in (4) ein. Dies ergibt

$$\left(\lambda_1 + \frac{1}{2}\lambda_3\right)\mathbf{v}^{(1)} + \left(\lambda_2 + \frac{1}{2}\lambda_3\right)\mathbf{v}^{(2)} - \frac{1}{2}\lambda_3\mathbf{v}^{(3)} = \mathbf{0}.$$

Weil $\mathbf{v}^{(1)}$, $\mathbf{v}^{(2)}$ und $\mathbf{v}^{(3)}$ nach (b) linear unabhängig sind, müssen die Koeffizienten hier alle 0 sein, d. h. $\lambda_3 = 0$ und damit auch $\lambda_1 = -\frac{1}{2}\lambda_3 = 0$ sowie $\lambda_2 = -\frac{1}{2}\lambda_3 = 0$. Also sind auch $\mathbf{v}^{(1)}$, $\mathbf{v}^{(2)}$ und $\mathbf{e}^{(3)}$ linear unabhängig.

Aufgabe 4 (3 + 4 + 3 Punkte):

(a) Zeigen Sie, dass durch

$$\|\mathbf{x}\|_1 := \sum_{j=1}^n |x_j|$$
 und $\|\mathbf{x}\|_{\infty} := \max\{|x_1|, \dots, |x_n|\}$ für $\mathbf{x} \in \mathbb{R}^n$

Normen $\|\cdot\|_1$ und $\|\cdot\|_{\infty}$ auf dem Vektorraum \mathbb{R}^n definiert werden.

(b) In der Vorlesung haben wir bereits die Norm $\|\cdot\|_2$ kennengelernt, die durch

$$\|\mathbf{x}\|_2 := \left(\sum_{j=1}^n |x_j|^2\right)^{1/2}$$
 für $\mathbf{x} \in \mathbb{R}^n$

definiert ist. Finden Sie Konstanten $c_1, c_2 \in \mathbb{R}$, sodass

$$c_1 \|\mathbf{x}\|_2 \le \|\mathbf{x}\|_1 \le c_2 \|\mathbf{x}\|_2$$
 für alle $\mathbf{x} \in \mathbb{R}^n$.

Hinweis: Sie dürfen *ohne Beweis* verwenden, dass $|\sum_{j=1}^n x_j y_j| \le (\sum_{j=1}^n |x_j|^2)^{1/2} (\sum_{j=1}^n |y_j|^2)^{1/2}$ für alle $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ gilt. Dies ist die sogenannte *Cauchy-Schwarz-Ungleichung* auf \mathbb{R}^n .

(c) Skizzieren Sie für die Normen $\|\cdot\|_1$, $\|\cdot\|_2$ und $\|\cdot\|_{\infty}$ auf \mathbb{R}^2 jeweils die Menge aller Punkte mit der Norm 1.

Lösung:

(a) Wir verifizieren die Bedingungen aus Definition 10.5 (im Skript von Herrn Prof. Dr. Bildhauer).

 $Zu \parallel \cdot \parallel_1$:

• Da $|x| \ge 0$ und $|x| = 0 \Leftrightarrow x = 0$ für alle $x \in \mathbb{R}$, folgt

$$\|\mathbf{x}\|_1 = \sum_{j=1}^n |x_j| \ge 0$$

und

$$\|\mathbf{x}\|_1 = 0 \Leftrightarrow |x_j| = 0$$
 für alle $j = 1, \dots, n$
 $\Leftrightarrow x_j = 0$ für alle $j = 1, \dots, n$
 $\Leftrightarrow \mathbf{x} = \mathbf{0}$

für alle $\mathbf{x} \in \mathbb{R}^n$.

• Ist $\mathbf{x} \in \mathbb{R}^n$ und $\lambda \in \mathbb{R}$, so gilt

$$\|\lambda \mathbf{x}\|_1 = \sum_{j=1}^n |\lambda x_j| = \sum_{j=1}^n |\lambda| |x_j| = |\lambda| \sum_{j=1}^n |x_j| = |\lambda| \|\mathbf{x}\|_1.$$

• Sind $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, so folgt aus der Dreiecksungleichung, dass

$$\|\mathbf{x} + \mathbf{y}\|_1 = \sum_{j=1}^n |x_j + y_j| \le \sum_{j=1}^n (|x_j| + |y_j|) = \sum_{j=1}^n |x_j| + \sum_{j=1}^n |y_j| = \|\mathbf{x}\|_1 + \|\mathbf{y}\|_1.$$

Also ist $\|\cdot\|_1: \mathbb{R}^n \to \mathbb{R}$ eine Norm.

 $Zu \parallel \cdot \parallel_{\infty}$:

• Für $\mathbf{x} \in \mathbb{R}^n$ gilt

$$\|\mathbf{x}\|_{\infty} = \max\{|x_1|, \dots, |x_n|\} \ge |x_j| \ge 0$$
 für alle $j = 1, \dots, n$

und deshalb

$$\|\mathbf{x}\|_{\infty} = 0 \Leftrightarrow \max\{|x_1|, \dots, |x_n|\} = 0$$

 $\Leftrightarrow |x_j| = 0 \quad \text{für alle } j = 1, \dots, n$
 $\Leftrightarrow x_j = 0 \quad \text{für alle } j = 1, \dots, n$
 $\Leftrightarrow \mathbf{x} = \mathbf{0}.$

• Sind $\mathbf{x} \in \mathbb{R}^n$ und $\lambda \in \mathbb{R}$, so gilt

$$\|\mathbf{x}\|_{\infty} = \max\{|\lambda x_1|, \dots, |\lambda x_n|\} = \max\{|\lambda||x_1|, \dots, |\lambda||x_n|\}$$
$$= |\lambda|\max\{|x_1|, \dots, |x_n|\} = |\lambda|\|\mathbf{x}\|_{\infty}.$$

• Sind $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, so folgt aus

$$|x_j + y_j| \le |x_j| + |y_j| \le \max\{|x_1|, \dots, |x_n|\} + \max\{|y_1|, \dots, |y_n|\}$$

durch Übergang zum Maximum über alle $j=1,\ldots,n$ auf der linken Seite

$$\|\mathbf{x} + \mathbf{y}\|_{\infty} = \max \{|x_1 + y_1|, \dots, |x_n + y_n|\}$$

$$\leq \max \{|x_1|, \dots, |x_n|\} + \max \{|y_1|, \dots, |y_n|\}$$

$$= \|\mathbf{x}\|_{\infty} + \|\mathbf{y}\|_{\infty}$$

Also ist $\|\cdot\|_{\infty}: \mathbb{R}^n \to \mathbb{R}$ eine Norm.

(b) Wir behaupten, dass für $c_2 = \sqrt{n}$ die gewünschte Abschätzung gilt. Dies sehen wir wie folgt. Es sei $\mathbf{x} \in \mathbb{R}^n$ beliebig vorgegeben. Mit der im Hinweis angegebenen Cauchy-Schwarz-Ungleichung erhalten wir

$$\|\mathbf{x}\|_1 = \sum_{j=1}^n |x_j| = \sum_{j=1}^n |x_j| \cdot 1 \le \left(\sum_{j=1}^n |x_j|^2\right)^{1/2} \left(\sum_{j=1}^n 1\right)^{1/2} = \sqrt{n} \|\mathbf{x}\|_2.$$

Weiter behaupten wir, dass die untere Abschätzung für $c_1 = 1$ erfüllt ist. Hier gehen wir wie folgt vor. Für $\mathbf{x} = \mathbf{0}$ ist die Abschätzung trivialerweise (sogar für jede Wahl von c_1) erfüllt; wir schränken uns deshalb im Folgenden auf den Fall $\mathbf{x} \in \mathbb{R}^n \setminus \{\mathbf{0}\}$ ein. Weil $\|\cdot\|_2$ eine Norm ist, haben wir dann auch $\|\mathbf{x}\|_2 \neq 0$ und können somit (durch Quadrieren und anschließender Division mit $\|\mathbf{x}\|_2^2$) aus der Definition von $\|\mathbf{x}\|_2$ folgern, dass

$$1 = \sum_{j=1}^{n} \left(\frac{|x_j|}{\|\mathbf{x}\|_2} \right)^2. \tag{5}$$

Ferner haben wir $\|\mathbf{x}\|_2 \ge |x_j|$ und damit $0 \le \frac{|x_j|}{\|\mathbf{x}\|_2} \le 1$ für $j = 1, \ldots, n$. Nutzen wir nun aus, dass $t^2 \le t$ für alle $t \in [0,1]$ gilt, so können wir die rechte Seite von (5) weiter abschätzen. Wir erhalten

$$1 = \sum_{j=1}^{n} \left(\frac{|x_j|}{\|\mathbf{x}\|_2} \right)^2 \le \sum_{j=1}^{n} \frac{|x_j|}{\|\mathbf{x}\|_2} = \frac{1}{\|\mathbf{x}\|_2} \sum_{j=1}^{n} |x_j| = \frac{\|\mathbf{x}\|_1}{\|\mathbf{x}\|_2}$$

und damit $\|\mathbf{x}\|_2 \leq \|\mathbf{x}\|_1$, wie behauptet.

Zusatzaufgabe (5 + 5 Punkte):

(a) Bestimmen Sie die Menge aller $x \in \mathbb{R}$ mit der Eigenschaft

$$|x+2| + |x-2| > x^2 + 1.$$

(b) Gegeben sei die Wertetabelle

$$\begin{array}{c|ccccc}
j & 0 & 1 & 2 \\
\hline
x_j & -2 & 1 & 2 \\
y_i & -2 & 1 & -6
\end{array}$$

und es sei $p_2(x)$ das Interpolationspolynom zu den Stützstellen x_j mit den Werten y_j , $0 \le j \le 2$. Berechnen Sie $p_2(x)$ mittels der Lagrangeschen Darstellung.

Lösung:

- (a) Es bezeichne \mathbb{L} die Lösungmenge der Ungleichung. Wir betrachten die Zerlegung $\mathbb{R} = (-\infty, -2) \cup [-2, 2) \cup [2, \infty)$ und unterscheiden entsprechend die folgenden drei Fälle:
 - Fall 1: Es sei x < -2. Dann ist

$$|x+2| + |x-2| > x^2 + 1$$
 \Leftrightarrow $-x - 2 - x + 2 > x^2 + 1$
 \Leftrightarrow $-2x > x^2 + 1$
 \Leftrightarrow $(x+1)^2 < 0$.

wobei die letzte Ungleichung nicht erfüllbar ist, d. h. $\mathbb{L} \cap (-\infty, -2) = \emptyset$.

• Fall 2: Es sei $-2 \le x < 2$. Dann ist

$$\begin{aligned} |x+2|+|x-2| > x^2+1 & \Leftrightarrow & x+2-x+2 > x^2+1 \\ & \Leftrightarrow & x^2 < 3 \\ & \Leftrightarrow & -\sqrt{3} < x < \sqrt{3}, \end{aligned}$$

d. h. wir haben $\mathbb{L} \cap [-2, 2) = (-\sqrt{3}, \sqrt{3})$.

• Fall 3: Es sei $x \ge 2$. Dann ist

$$|x+2|+|x-2| > x^2+1 \quad \Leftrightarrow \quad x+2+x-2 > x^2+1$$

$$\Leftrightarrow \quad 2x > x^2+1$$

$$\Leftrightarrow \quad (x-1)^2 < 0,$$

wobei die letzte Ungleichung nicht erfüllbar ist, d. h. $\mathbb{L} \cap [2, \infty) = \emptyset$.

Zusammenfassend erhalten wir, dass

$$\mathbb{L} = \left(\mathbb{L} \cap (-\infty, -2)\right) \cup \left(\mathbb{L} \cap [-2, 2)\right) \cup \left(\mathbb{L} \cap [2, \infty)\right) = \emptyset \cup (-\sqrt{3}, \sqrt{3}) \cup \emptyset = (-\sqrt{3}, \sqrt{3}).$$

(b) Es ist

$$p_2(x) = \sum_{j=0}^{2} y_j L_j(x), \quad L_j(x) = \prod_{k=0, k \neq j}^{2} \frac{x - x_k}{x_j - x_k}.$$

Wir berechnen

$$L_0(x) = \frac{x - x_1}{x_0 - x_1} \cdot \frac{x - x_2}{x_0 - x_2} = \frac{x - 1}{-2 - 1} \cdot \frac{x - 2}{-2 - 2} = \frac{1}{12}(x^2 - 3x + 2),$$

$$L_1(x) = \frac{x - x_0}{x_1 - x_0} \cdot \frac{x - x_2}{x_1 - x_2} = \frac{x + 2}{1 + 2} \cdot \frac{x - 2}{1 - 2} = -\frac{1}{3}(x^2 - 4),$$

$$L_2(x) = \frac{x - x_0}{x_2 - x_0} \cdot \frac{x - x_1}{x_2 - x_1} = \frac{x + 2}{2 + 2} \cdot \frac{x - 1}{2 - 1} = \frac{1}{4}(x^2 + x - 2).$$

Damit erhalten wir

$$p_2(x) = (-2) \cdot \frac{1}{12} (x^2 - 3x + 2) + 1 \cdot \left(-\frac{1}{3} (x^2 - 4) \right) + (-6) \cdot \frac{1}{4} (x^2 + x - 2)$$

$$= -\frac{1}{6} x^2 + \frac{1}{2} x - \frac{1}{3} - \frac{1}{3} x^2 + \frac{4}{3} - \frac{3}{2} x^2 - \frac{3}{2} x + 3$$

$$= -2x^2 - x + 4.$$