Southern University of Science and Technology

Linear Algebra I Final Examination Fall 2017 A

Department:	Math	Class:	
Student ID:		Name:	
Answer all parts of Qu	estions (1)-	-(10). Total is 100 p	oints.

- (1) (10 points, 2 points each) True or false. No need to justify.
 - (a) Let A be an $n \times n$ matrix (n > 1), then det(kA) = k det(A).
 - (b) For any real matrix A and $\delta > 0$, then matrix $\delta I + A^T A$ is positive definite. ()
 - (c) Let A be a 2×2 matrix whose eigenvalues are 2 and 3, then the matrix $A^2 3A + 6I$ is singular.
 - (d) Let A be an $n \times n$ matrix satisfying $A^2 = A$ and $A \neq I$, then $\det(A) = 0$.
 - (e) Let A be a real square matrix, then A and A^{T} have the same eigenvectors. ()
- (2) (12 points, 3 points each) Fill in the blanks.
 - (a) Let $A = \begin{bmatrix} 3 & 4 & 5 \\ 1 & 2 & 3 \\ 4 & 1 & 2 \end{bmatrix}$. $C_{ij} = (-1)^{i+j} \det M_{ij}$, Delete row i, column j. According to the formula Cofactors along row i, $\det(A) = a_{i1}C_{i1} + a_{i2}C_{i2} + a_{i3}C_{i3}$, then $C_{11} + C_{12} + C_{13} =$ ______.
 - (b) Let A be a 3×2 real matrix whose column vectors a_1, a_2 are linearly independent. The eigenvalues of $P = A(A^TA)^{-1}A^T$ are _____.
 - (c) Let A be a 3×3 matrix and its eigenvalues are -1, 2, 3, then $\det(A^3 2A^2 + A + 2I) = \underline{\hspace{1cm}}$.
 - (d) Which of following four assertions are true? They are _____ .
 - 1. If Q_1 and Q_2 are orthogonal matrices, then Q_1Q_2 is orthogonal.
 - 2. If H_1 and H_2 are positive definite, then H_1H_2 is positive definite.
 - 3. If A and B are similar, then they have the same eigenvalues.
 - 4. If A and B have same eigenvalues, then A and B are similar.

(3) (10 points) Given

$$A = \left[\begin{array}{rrr} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{array} \right].$$

- (i) Find the determinant of A.
- (ii) Decide whether A is positive definite, negative definite, semidefinite, or indefinite.
- (iii) Find all the eigenvalues of A and their associated eigenvectors.
- (iv) Is A diagonalizable? If so, diagonalize it. Otherwise, explain why.

(4) (10 points) Consider

$$\frac{du}{dt} = \begin{bmatrix} 3 & 1\\ 1 & 3 \end{bmatrix} u = Au.$$

- (i) Find e^{At} .
- (ii) If $u(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, solve for u(t).

(5) (10 points) Let

$$A = \left[\begin{array}{rrr} -1 & 1 & 0 \\ 0 & -1 & 1 \end{array} \right].$$

- (i) Find AA^T and A^TA .
- (ii) Find all the singular values of A.
- (iii) Find all the eigenvectors of A^TA .
- (iv) Find the singular value decomposition of A, in other words, find orthogonal matrices U and V, such that $A = U\Sigma V^T$.
- (v) Find the pseudoinverse of A, namely, $A^+ = V \Sigma^+ U^T$.

(6) (10 points) Consider

$$A = \left[\begin{array}{cc} 1 & t \\ t & 4 \end{array} \right].$$

- (i) For which numbers t is matrix A positive definite?
- (ii) Factor $A = LDL^T$ when t is in the range for positive definiteness.
- (iii) Find the minimum value of $P(x) = \frac{1}{2}(x_1^2 + 2tx_1x_2 + 4x_2^2) x_1 x_2$ for t in the range found in (ii).
- (iv) What is the minimum if t = 2?
- (7) (10 points) Let

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} & a_{15} \\ a_{21} & a_{22} & a_{23} & a_{24} & a_{25} \\ 0 & 0 & 0 & a_{34} & a_{35} \\ 0 & 0 & 0 & a_{44} & a_{45} \\ 0 & 0 & 0 & a_{54} & a_{55} \end{bmatrix}.$$

Prove that det(A) = 0 in the following ways:

- (i) Show that the columns of A are dependent.
- (ii) Explain why all 120 terms are zero in the "big formula" for $\det(A)$.
- (8) (10 points) Consider a complex matrix C = A + iB with A and B real and

$$D = \begin{bmatrix} A & -B \\ B & A \end{bmatrix}.$$

- (i) If C is a Hermitian matrix, show that D is symmetric.
- (ii) If C is a unitary matrix, show that D is orthogonal.
- (9) (10 points) Prove the following statements:
 - (i) If eigenvectors x_1, x_2, \dots, x_k of matrix A correspond to different eigenvalues

$$\lambda_1, \lambda_2, \cdots, \lambda_k,$$

then those eigenvectors are linearly independent.

(ii) Two eigenvectors of a real symmetric matrix B, if they come from different eigenvalues, are orthogonal to one another.