Feuille 9 - Applications linéaires et matrices

Exercice 1:

Soit E un \mathbb{R} -espace vectoriel et $u, v \in \mathcal{L}(E)$. On rappelle qu'un sous-espace vectoriel F de E est dit stable par v si $v(F) \subseteq F$.

1. Montrer que si $u \circ v = v \circ u$, alors $\ker u$ et $\operatorname{Im} u$ sont stables par v.

Dans la suite de cet exercice, on suppose que u est un projecteur, ie $u^2 = u$.

- 2. Montrer que $\ker u$ et $\operatorname{Im} u$ sont supplémentaires dans E.
- 3. Montrer que si ker u et $\operatorname{Im} u$ sont stables par v, alors $u \circ v = v \circ u$.

Exercice 2:

Soit f un endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est :

$$M = \begin{pmatrix} 1 & 1 & -1 \\ -3 & -3 & 3 \\ -2 & -2 & 2 \end{pmatrix}$$

- 1. Donner une base de $\ker f$. En déduire une base de $\operatorname{Im} u$.
- 2. Montrer que Im $u \subset \ker u$.
- 3. En déduire une expression de f^n pour tout $n \in \mathbb{N}$.

Exercice 3:

Soient $A,B\in M_n(\mathbb{R})$, et on note $A=\left(a_{ij}\right)_{1\leq i,j\leq n}$

- 1. On pose $D={}^tAA=\left(d_{ij}\right)_{1\leq i,j\leq n}$. Calculer d_{ii} en fonction des a_{ij} pour tout $i\in \llbracket 1,n \rrbracket$.
- 2. On suppose maintenant que $Tr({}^tAA) = 0$. Que dire de A?
- 3. On admet que pour tout $X \in M_n(\mathbb{R})$, $\mathrm{Tr}(AX) = \mathrm{Tr}(BX)$. Déduire de la question précédente que A = B.

Exercice 4:

Soit $A = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & 1 \\ 1 & 1 & 1 \end{pmatrix}$, et f l'endomorphisme canoniquement associé à A.

- 1. Montrer que pour tout $(x, y, z) \in \mathbb{R}^3$, on a f(x, y, z) = (2x + z, 2y + z, x + y + z)
- 2. Donner une base de l'image et du noyau de f.
- 3. On pose $v_1=(1,1,1), v_2=(1,-1,0), v_3=(1,1,2)$. Montrer que $\mathcal{B}=(v_1,v_2,v_3)$ est une base de \mathbb{R}^3 , puis donner la matrice de f dans cette base.