

HW 4 GROUP 5

Christopher Webster, Ryan Timbrook, David Eboh

Resources

Use the dataset SCM 651 Homework 4 Universal Bank.csv.

Assignment What's due:

Submit a logit, probit, and neural network analysis of loan acquisition behavior **before the live class in week 10**. Suggested length is five pages, but should not exceed ten pages, single-spaced, 12-point font.

This is a group assignment; each student should upload a copy of the assignment to the Learning Management System. The paper must be a Microsoft Word document. You should also submit the Excel spreadsheet with the prediction models and sensitivity analyses. Name the file HW4_Team# where # is your team number. Be sure to include the names of everyone on the team on the first page of the paper. Late assignments will not be accepted. Failure to follow directions will be penalized.

Outline and grading criteria:

1. Perform a logit and probit analysis of the variables that affect whether a customer takes out a loan. Consider only main effects. Which variables are significant? How do the significant variables influence the likelihood of taking out a loan? Copy screen snapshots of your analysis in R to your report. (20%)

Preliminary Model to see which variables are significant:

After this, the team also looked at a correlation matrix to further investigate which 2-4 variables are the most correlated with taking a personal loan:

	Age CCAvg CDAccount CreditCard	
Age	1.0000000000 -0.052012179 0.008042552 0.007681037	
CCAVg	-0.0520121791 1.000000000 0.136533655 -0.006689494	
CDAccount	0.0080425521 0.136533655 1.000000000 0.278644365	
CreditCard	0.0076810368 -0.006689494 0.278644365 1.000000000	
Education	0.0413343834 -0.136123922 0.013933888 -0.011014134	
Experience	0.9942148570 -0.050076511 0.010353331 0.008967447	
Family	-0.0464176636 -0.109274506 0.014110365 0.011588066	
Income	-0.0552686182 0.645983670 0.169738080 -0.002385008	
Mortgage	-0.0125385869 0.109904723 0.089311058 -0.007230919	
Online	0.0137024021 -0.003611009 0.175880016 0.004209656	
PersonalLoan	-0.0077256172 0.366888736 0.316354829 0.002801509	
SecuritiesAccount	-0.0004362422	
	Education Experience Family Income	
Age	0.04133438 0.994214857 -0.04641766 -0.055268618	
CCAvg	-0.13612392 -0.050076511 -0.10927451 0.645983670	
CDAccount	0.01393389 0.010353331 0.01411036 0.169738080	
CreditCard	-0.01101413 0.008967447 0.01158807 -0.002385008	
Education	1.00000000 0.013151813 0.06492891 -0.187524257	
Experience	0.01315181 1.000000000 -0.05256315 -0.046574178	
Family	0.06492891 -0.052563147 1.00000000 -0.157500785	
Income	-0.18752426 -0.046574178 -0.15750079 1.000000000	
Mortgage	-0.03332712 -0.010581552 -0.02044493 0.206806228	
Online	-0.01500382 0.013897900 0.01035404 0.014205919	
PersonalLoan	0.13672155 -0.007413098 0.06136704 0.502462292	
SecuritiesAccount	-0.01081201 -0.001232134 0.01999408 -0.002616497	
	Mortgage Online PersonalLoan SecuritiesAccou	nt
Age	-0.012538587	22
CCAVg	0.109904723 -0.003611009 0.366888736 0.01508631	
CDAccount	0.089311058 0.175880016 0.316354829 0.31703441	
CreditCard	-0.007230919 0.004209656 0.002801509 -0.01502831	
Education	-0.033327125 -0.015003821 0.136721550 -0.01081201	
Experience	-0.010581552	
Family	-0.020444931 0.010354036 0.061367044 0.01999407	98
Income	0.206806228 0.014205919 0.502462292 -0.00261649	
Mortgage	1.000000000 -0.005994898 0.142095236 -0.00541097	
Online	-0.005994898 1.000000000 0.006277815 0.01262747	
PersonalLoan	0.142095236 0.006277815 1.000000000 0.02195388	
SecuritiesAccount	-0.005410970 0.012627470 0.021953882 1.00000000	00

Looking at the correlation matrix, it's clear that Income, CCAvg and CDAccount are very highly correlated with Personal Loan. Unfortunately, after running a Logit with these three variables, CCAvg is no longer significant. As such, the team removed the CCAvg variable and replaced it with the Family variable. This variable is statistically significant in the first Logit model.

```
Logit:
```

```
call:
glm(formula = PersonalLoan ~ Income + Family + CDAccount, family = binomial(logit),
   data = HW4Data)
Deviance Residuals:
          1Q Median
   Min
-3.0629 -0.2752 -0.1381 -0.0618 3.3554
Coefficients:
         Estimate Std. Error z value Pr(>|z|)
Income
       0.04479
                 0.00178 25.17 <2e-16 ***
          Family
CDAccount 2.33748
                   0.19156 12.20 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 3162.0 on 4999 degrees of freedom
Residual deviance: 1665.6 on 4996 degrees of freedom
AIC: 1673.6
```

Number of Fisher Scoring iterations: 7

Coefficients							
	Estimate	Std. Error	z value	Pr(> z)		Input	Input*Coeff
(Intercept)	-9.3853	0.36016	-26.06	<2e-16	***	1	-9.3853
Income	0.04479	0.00178	25.17	<2e-16	***	100	4.479
Family	0.84825	0.06878	12.33	<2e-16	***	4	3.393
CDAccount	2.33748	0.19156	12.2	<2e-16	***	1	2.33748
						Sum	0.82418
						Exp(Sum)	2.28001039
						Probability	69.5%

```
Probit:
```

```
call:
glm(formula = PersonalLoan ~ Income + Family + CDAccount, family = binomial(probit)
   data = HW4Data)
Deviance Residuals:
                 Median
   Min
             1Q
                               3Q
                                      Max
-3.1917 -0.2778 -0.1055 -0.0286
                                   3.5996
Coefficients:
             Estimate Std. Error z value Pr(>|z|)
                                         <2e-16 ***
(Intercept) -4.9173319 0.1752108 -28.07
Income
            0.0239108 0.0009048 26.43
                                          <2e-16 ***
Family 1
            0.4027290 0.0349849 11.51
                                          <2e-16 ***
                                          <2e-16 ***
CDAccount
          1.2600334 0.1020413 12.35
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 3162.0 on 4999 degrees of freedom
Residual deviance: 1657.7 on 4996 degrees of freedom
AIC: 1665.7
```

Number of Fisher Scoring iterations: 8

Coefficients	:						
	Estimate	Std. Error	z value	Pr(> z)		Input	Input*Coef
(Intercept)	-4.91733	0.175211	-28.07	<2e-16	***	1	-4.91733
Income	0.023911	0.000905	26.43	<2e-16	***	100	2.39108
Family	0.402729	0.034985	11.51	<2e-16	***	4	1.610916
CDAccount	1.260033	0.102041	12.35	<2e-16	***	1	1.260033
						Sum	0.344698
						Probability	63.5%

In both of these models, the significant variables are: Income, Family, CDAccount. As the customer's income increases, the probability of taking a personal loan out increases. As the customer's family increases, the probability of taking out a personal loan increases. As the customer's Average spending on Credit Cards per month increases, the probability of taking out a personal loan increases.

Add moderating effects (interactions of variables). Which interactions make sense conceptually?
Which interactions are statistically significant? How do you interpret the coefficients on these
variables? Copy screen snapshots of your analysis in R to your report. (20%)

Looking at the correlation matrix, it's clear that both Income and CCAvg are related with each other as well as statistically significant in the logit. Also, if one's Income is higher, you would expect them to spend more. However, it one's income is lower and the credit card average is higher, you would expect the probability of them taking out a loan to increase.

The final model with moderating effects is below:

```
call:
glm(formula = PersonalLoan ~ CCAvg * Income + Income + Family,
   family = binomial(logit), data = HW4Data)
Deviance Residuals:
                  Median
   Min
             1Q
                               3Q
                                       Max
-2.3362 -0.2391 -0.0780 -0.0221
                                    3.1918
Coefficients:
               Estimate Std. Error z value Pr(>|z|)
                                              <2e-16 ***
(Intercept) -13.7771831 0.6031461 -22.84
                                              <2e-16 ***
CCAVq
              1.6469211
                          0.1361439
                                      12.10
Income
              0.0750491
                          0.0037406
                                      20.06
                                              <2e-16 ***
                                              <2e-16 ***
Family
              0.9395873
                          0.0679152
                                      13.84
CCAvg:Income -0.0106102
                          0.0008969 -11.83
                                              <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 3162.0 on 4999 degrees of freedom
Residual deviance: 1647.2 on 4995 degrees of freedom
AIC: 1657.2
Number of Fisher Scoring iterations: 8
```

Coefficients	Estimate	Std. Error	z value	Pr(> z)		Input	Coeff*Value
(Intercept)	-13.7772	0.603146	-22.84	<2e-16	***	1	-13.7771831
CCAVg	1.646921	0.136144	12.1	<2e-16	***	2.5	4.11730275
Income	0.075049	0.003741	20.06	<2e-16	***	100	7.50491
Family	0.939587	0.067915	13.84	<2e-16	***	4	3.7583492
CCAvg:Income	-0.01061	0.000897	-11.83	<2e-16	***	250	-2.65255
						Sum	-1.04917115
						Exp(Sum)	0.350227915
						Probability	25.9%

As CC Avg spending increase, the probability of taking out a personal loan increases. As income increases, the probability of taking out a personal loan increases. As the family size increases, the probability of taking out a loan increases. As the combination of CCAvg and Income increases, the probability of taking out a personal loan decreases.

3. Create a final regression model with the variables that you feel are important (both main effects and interaction terms). Create a spreadsheet prediction of the model. Which variables have the greatest influence on the customers' loan behavior (combined main effects and interaction effects)? Perform a sensitivity analysis as seen earlier in the semester. Copy screen snapshots of your analysis in R to your report. (20%)

```
call:
glm(formula = PersonalLoan ~ CCAvg * Income + Income + Family,
    family = binomial(logit), data = HW4Data)
Deviance Residuals:
   Min
             1Q
                  Median
                              3Q
                                      Max
-2.3362 -0.2391 -0.0780 -0.0221
                                   3.1918
Coefficients:
               Estimate Std. Error z value Pr(>|z|)
                        0.6031461 -22.84 <2e-16 ***
(Intercept) -13.7771831
                         0.1361439 12.10
              1.6469211
                                             <2e-16 ***
CCAVg
                         0.0037406 20.06 <2e-16 ***
Income
              0.0750491
Family
              0.9395873
                         0.0679152 13.84
                                             <2e-16 ***
                         0.0008969 -11.83 <2e-16 ***
CCAvg:Income -0.0106102
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 3162.0 on 4999 degrees of freedom
Residual deviance: 1647.2 on 4995
                                  degrees of freedom
AIC: 1657.2
```

Number of Fisher Scoring iterations: 8

Coefficients	Estimate	Std. Error	z value	Pr(> z)		Input	Coeff*Value	Wald Test
(Intercept)	-13.7772	0.603146	-22.84	<2e-16	***	1	-13.7772	
CCAvg	1.646921	0.136144	12.1	<2e-16	***	2.5	4.117303	146.3353
Income	0.075049	0.003741	20.06	<2e-16	***	100	7.50491	402.5394
Family	0.939587	0.067915	13.84	<2e-16	***	4	3.758349	191.3993
CCAvg:Income	-0.01061	0.000897	-11.83	<2e-16	***	250	-2.65255	139.9455
						Sum	-1.04917	
						Exp(Sum)	0.350228	
						Probability	25.9%	

Looking at the Wald Test, it is clear that Income and Family have the highest impact on the model. As such, the 2-way sensitivity analysis between Income and Family is below:

		Income									
	25.9%	25	50	75	100	125	150	175	200	225	250
Family	1	0%	0%	1%	2%	7%	19%	44%	73%	90%	97%
	2	0%	0%	2%	5%	15%	38%	67%	87%	96%	99%
	3	0%	1%	4%	12%	32%	61%	84%	95%	98%	99%
	4	1%	3%	9%	26%	54%	80%	93%	98%	99%	100%
	5	2%	7%	21%	47%	75%	91%	97%	99%	100%	100%
	6	6%	17%	41%	70%	89%	96%	99%	100%	100%	100%
	7	13%	34%	64%	85%	95%	99%	100%	100%	100%	100%
	8	28%	57%	82%	94%	98%	99%	100%	100%	100%	100%
	9	50%	77%	92%	97%	99%	100%	100%	100%	100%	100%
	10	72%	90%	97%	99%	100%	100%	100%	100%	100%	100%

4. Perform a neural network analysis of the variables found to be significant in the logit and probit analysis above. Copy screen snapshots of your final neural network model in R to your report. (20%)

Error: 59.345627 Steps: 5918

5. Create a prediction model of the neural network. Using the prediction model, perform a sensitivity analysis for the neural network model similar to the logit and probit sensitivity analysis. (20%)

error	59.34562728	Hidden Node1			Output			
reached.threshold	0.07654892	Variable	Coefficient	Coeff*Value	Variables	Coefficient	Value	Coeff*Value
steps	5918	Intercept	-47.6536291	-47.6536291	Intercept	8.03170461	1	8.03170461
Intercept.to.1layhid1	-47.65362907	Family	-2.82009272	-11.2803709	Hidden1	-4.86907574	0%	-2.0989E-24
Family.to.1layhid1	-2.82009272	CCAvg	7.00686758	24.5240365	Hidden2	-13.0208892	52%	-6.82125385
CCAvg.to.1layhid1	7.00686758	Income	0.05086553	6.35819125				
Income.to.1layhid1	0.05086553						Sum	1.21045076
Intercept.to.1layhid2	4.95279997		Sum	-28.0517722			Exp(Sum)	3.35499663
Family.to.1layhid2	-0.44790067		exp(Sum)	6.5655E-13			Probability	77%
CCAvg.to.1layhid2	-0.19388949		Probability	0%				
Income.to.1layhid2	-0.01909625							
Intercept.to.PersonalLoan	8.03170461							
1layhid1.to.PersonalLoan	-4.86907574	Hidden Node2						
1layhid2.to.PersonalLoan	-13.02088921	Variable	Coefficient	Co-eff*Value				
		Intercept	4.95279997	4.95279997				
Variable	Input	Family	-0.44790067	-1.79160268				
Intercept	1	CCAvg	-0.19388949	-0.67861322				
Family	4	Income	-0.01909625	-2.38703125				
CCAvg	3.5							
Income	125		Sum	0.09555283				
			exp(Sum)	1.10026694				
			Probability	52%				

As the neural network prediction above shows, a customer with a family of 4, CC average spend of 3.5 thousand per month, and annual income of 125 thousand is predicted to take a personal loan 77% of the time.

		Income									
	77%	25	50	75	100	125	150	175	200	225	250
Family	1	0.01048404	0.01349964	0.01983453	0.03490962	0.0763087	0.19959915	0.49360693	0.81732916	0.95368201	0.9878061
	2	0.01324595	0.01927697	0.03350638	0.07225393	0.18768089	0.47106339	0.8025521	0.94948124	0.986832	0.99570936
	3	0.01874783	0.03218662	0.06846745	0.17646662	0.44880239	0.7869	0.944891	0.98576728	0.99543768	0.99807841
	4	0.03094466	0.0649307	0.16592926	0.42691556	0.7703787	0.93987894	0.98460303	0.99514362	0.99798852	0.99892674
	5	0.06162634	0.15604	0.40548691	0.75300371	0.93441109	0.98332942	0.99482509	0.99789237	0.9988914	0.99928426
	6	0.14676887	0.38459171	0.73480099	0.92845196	0.98193571	0.9944798	0.99778944	0.99885401	0.99926821	0.9994557
	7	0.36429571	0.71580735	0.92196484	0.98041011	0.99410523	0.99767917	0.9988144	0.99925137	0.99944757	0.99954604
	8	0.69607071	0.91491198	0.97873973	0.99369859	0.99756095	0.99877244	0.99923369	0.9994391	0.99954159	0.99959688
	9	0.90725506	0.97691047	0.99325682	0.99743409	0.99872794	0.99921512	0.99943025	0.99953697	0.99959431	0.99962678
	10	0.97490694	0.99277656	0.99729788	0.99868071	0.9991956	0.99942102	0.99953217	0.99959165	0.99962524	0.99964488

Justify your answers. Provide a snapshot of output from your analysis in your final paper.