Lecture 8

§1 Let T ≤ Iso(R2) be a subgroup.

Detⁿ The Γ -orbit of $P \in \mathbb{R}^2$ is the set $\Gamma P := \{g(P) : g \in \Gamma \}$

 $\overline{Bx.I}$ $\Gamma = \langle \pm c_{1,0} \rangle = \{ \pm \frac{n}{c_{1,0}}, n \in \mathbb{Z}^2 \} \subseteq \mathbb{Z}_{0}(\mathbb{R}^2)$

BR.2 [= < tc1,0), tc0,1)>= ftcn,m), n,m & Z g

$$Z^{2} = \begin{bmatrix} (0,0) & (0,0) \\ (0,0) & (0,0) \end{bmatrix}$$

$$(0,0) & (0,0) & (0,0) \\ (0,0) &$$

Tx.3: P = < t (1,0) 0 Fx-axis > = \(\frac{1}{2}\tau_{\text{clion}}\tau_{\text{p}}\), n & = ?

Det": The Euclidean surface S_p associated to a subgroup $P \subseteq I_{SO}(\mathbb{R}^2)$ is the set of P-orbits

i.e.
$$Sp := \{ (p : P \in \mathbb{R}^2) \in \mathbb{R}^2 \}$$

Remark, A point q & Sp is a P-orbit

§2. The distance in S_p : the Euclidean distance (R^2 , d_{Euc}) descends to R^2/p via