```
In []: import arcpy
import requests
import os
import zipfile
import io
import sys
```

In []: #Dory Starting Point

arcpy.management.XYTableToPoint(r"C:\Users\siyal\Desktop\UMN MGIS\1st Semester\2. ArcGIS I \2. Labs\Lab 2\Part 2\Starting & End Points\Dory Starting Point.csv", r"C:\Users\siyal\Docum ents\ArcGIS\Dora_ArcGIS_Lab02\MyProject3\MyProject3.gdb\DoryStartingPoint_XYTableToPoint", "Long", "Lat", None, 'GEOGCS["GCS_WGS_1984", DATUM["D_WGS_1984", SPHEROID["WGS_1984", 6378137. 0,298.257223563]], PRIMEM["Greenwich", 0.0], UNIT["Degree", 0.0174532925199433]]; -400 -400 10000 00000; -100000 10000; -100000 10000; 8.98315284119521E-09; 0.001; 0.001; IsHighPrecision')

In []: #Dory Ending Point
 arcpy.management.XYTableToPoint(r"C:\Users\siyal\Desktop\UMN MGIS\1st Semester\2. ArcGIS I
 \2. Labs\Lab 2\Part 2\Starting & End Points\Dory Ending Point.csv", r"C:\Users\siyal\Documen
 ts\ArcGIS\Dora_ArcGIS_Lab02\MyProject3\MyProject3.gdb\DoryEndingPoint_XYTableToPoint1", "Lon
 g", "Lat", None, 'GEOGCS["GCS_WGS_1984", DATUM["D_WGS_1984", SPHEROID["WGS_1984", 6378137.0, 29
 8.257223563]], PRIMEM["Greenwich", 0.0], UNIT["Degree", 0.0174532925199433]]; -400 -400 1000000000
 0; -100000 10000; -100000 10000; 8.98315284119521E-09; 0.001; 0.001; IsHighPrecision")

Select Layer by Attribute

Study Extent (3 Counties)

Streams in the study extent

Using Clip Tool (Vector Data)

Feature to Raster (Streams)

DEM in the study extent

Using Extract by Mask Tool (Raster Data)

DEM percentage rise using slope tool

In []: arcpy.ddd.Slope("DEM_Study_Extent", r"C:\Users\siyal\Documents\ArcGIS\Dora_ArcGIS_Lab02\MyPr
oject3\MyProject3.gdb\Slope_Extrac1", "PERCENT_RISE", 1, "PLANAR", "METER")

Roads in the study extent

Using Extract by Mask Tool (Raster Data)

Land Cover & Land Use in the study extent

Using Extract by Mask Tool (Raster Data)

In []: out_raster = arcpy.sa.ExtractByMask("NLCD_2019_Land_Cover.tif", "mn_county_boundarie_Dissolv e2", "INSIDE", '524966.6376 4853462.8394 637916.1448 4922619.9426 PROJCS["NAD_1983_UTM_Zone_ 15N", GEOGCS["GCS_North_American_1983", DATUM["D_North_American_1983", SPHEROID["GRS_1980", 6378 137.0, 298.257222101]], PRIMEM["Greenwich", 0.0], UNIT["Degree", 0.0174532925199433]], PROJECTION ["Transverse_Mercator"], PARAMETER["False_Easting", 500000.0], PARAMETER["False_Northing", 0.0], PARAMETER["Central_Meridian", -93.0], PARAMETER["Scale_Factor", 0.9996], PARAMETER["Latitude_Of_Origin", 0.0], UNIT["Meter", 1.0]]'); out_raster.save(r"C:\Users\siyal\Documents\ArcGIS\Dora_ArcGIS_Lab02\MyProject3\MyProject3.gdb\Extract_NLCD2")

Reclassification of Input Layers to Standardized scale

Streams Layer

Reclassify the layer by assigning preferences (1-Highest; 9-Lowest)

DEM Data

Reclassify the data by assigning preferences (1-Highest; 9-Lowest)

In []: arcpy.ddd.Reclassify("Slope_Extrac1", "VALUE", "0 3 1;3 6 2;6 10 3;10 15 4;15 20 5;20 25 5;2
5 30 6;30 40 6;40 60 7;60 100 8;100 1000 9", r"C:\Users\siyal\Documents\ArcGIS\Dora_ArcGIS_L
ab02\MyProject3\MyProject3.gdb\Reclass_Slop4", "DATA")

Road Data

Reclassify the data by assigning preferences (9-Highest; 1-Lowest)

In []: arcpy.ddd.Reclassify("Roads_Study_Extent", "Value", "0 9 9;9 28 7;28 49 5;49 72 3;72 100 1",
 r"C:\Users\siyal\Documents\ArcGIS\Dora_ArcGIS_Lab02\MyProject3\MyProject3.gdb\Reclass_Extr3"
 , "DATA")

Land Cover

Reclassify the data by assigning preferences

In []: arcpy.ddd.Reclassify("Land_Cover", "NLCD_Land", "'Open Water' 9;'Developed, Open Space' 1;'D
 eveloped, Low Intensity' 3;'Developed, Medium Intensity' 3;'Developed, High Intensity' 4;'Ba
 rren Land' 1;'Deciduous Forest' 7;'Evergreen Forest' 8;'Mixed Forest' 7;Shrub/Scrub 5;Herbac
 eous 7;Hay/Pasture 9;'Cultivated Crops' 9;'Woody Wetlands' 9;'Emergent Herbaceous Wetlands'
 8", r"C:\Users\siyal\Documents\ArcGIS\Dora_ArcGIS_Lab02\MyProject3\MyProject3.gdb\Reclass_E
 xtr5", "DATA")

Weighted Overlay

Assigning equal weights to all inputs

In []: out_raster = arcpy.sa.WeightedOverlay(r"('C:\Users\siyal\Documents\ArcGIS\Dora_ArcGIS_Lab02
\MyProject3\MyProject3.gdb\Reclass_Slop4' 25 'Value' (1 1; 2 2; 3 3; 4 4; 5 5; 6 6; 7 7; 8
8; 9 9; NODATA NODATA); 'C:\Users\siyal\Documents\ArcGIS\Dora_ArcGIS_Lab02\MyProject3\MyPro
ject3.gdb\Reclass_Extr3' 25 'Value' (1 1; 3 3; 5 5; 7 7; 9 9; NODATA NODATA); 'C:\Users\siya
l\Documents\ArcGIS\Dora_ArcGIS_Lab02\MyProject3\MyProject3.gdb\Reclass_Extr5' 25 'Value' (1
1; 3 3; 4 4; 5 5; 7 7; 8 8; 9 9; NODATA NODATA); 'C:\Users\siyal\Documents\ArcGIS\Dora_ArcG
IS_Lab02\MyProject3\MyProject3.gdb\Extract_Recl2' 25 'Value' (1 1; 8 8; 9 9; NODATA NODAT
A));1 9 1"); out_raster.save(r"C:\Users\siyal\Documents\ArcGIS\Dora_ArcGIS_Lab02\MyProject3
\MyProject3.gdb\Weighte_Recl2")

Cost Distance Tool

In []: out_distance_raster = arcpy.sa.CostDistance("DoryStartingPoint_XYTableToPoint", "Weighted_Ov erlay", None, r"C:\Users\siyal\Documents\ArcGIS\Dora_ArcGIS_Lab02\MyProject3\MyProject3.gdb \cost_direction", None, None, None, None, ''); out_distance_raster.save(r"C:\Users\siyal\Doc uments\ArcGIS\Dora_ArcGIS_Lab02\MyProject3\MyProject3.gdb\CostDis_Dory1")

Cost Path As Polyline Tool

In []: arcpy.sa.CostPathAsPolyline("DoryEndingPoint_XYTableToPoint1", "CostDis_Dory1", "cost_direct
 ion", r"C:\Users\siyal\Documents\ArcGIS\Dora_ArcGIS_Lab02\MyProject3\MyProject3.gdb\CostPat_
 DoryEnd1", "BEST_SINGLE", "OBJECTID", "INPUT_RANGE")