

LINEAR FUNCTIONS

Why

Lots of things are (approximately) linear.¹

Definition

A function between two vector spaces which share the same field is *linear* if the function applied to a linear combination of two vectors in the first space is the linear combination of the results of the function (in the second space), using the same coefficients for the combination.

A linear function is always linear with respect to some field. The field is implicit, somewhat, in the definition but always present. Linear functions are sometimes called *operators*.

Notation

Let (V_1, F) and (V_2, F) be two vector spaces over the same field F. Let $f: V_1 \to V_2$. f is linear if

$$f(au + bv) = af(u) + bf(v)$$

for all $a, b \in F$ and $u, v \in V_1$.

¹Future editions will expand on this why. In particular, the intuition of proportionality.

