

Curso de Ciência da Co Universidade do Sul de mputação Santa Catarina - UNISUL

Semestre: 2016-1 APRENDIZADO DE MÁQUINA

Professor: Max e-mail: max.pereira@unisul.br

Data: 09/05/2016

NOME:

AVALIAÇÃO II

exemplo v2v4v9, (2,0) Considere o seguinte utilizando o algoritmo conjunto de naïve Bayes. dados e determine a classificação obtida para o

12	12	1	1	1	×	-
8	V5	v4	3	3	X2	
٧8	64	V9	٧8	V7	X3	
0	Z	P	Z	70	Classe	

Considere o de dados determine a probabilidade P(zi | P) e P(zi |

X8	X7	X6	X5	X4	X	X2	×	
0	0		0	-	0	-	0	21
0			0			0	0	Z 2
0	0	1	_			0		Z ₃
0			0	0	_	0	0	74
Z	Z	ס	Z	ס	ס	Z	Z	×

definição modelo de regressão linear adequado (definição da linha) para prever a capacidade da máquina. Analise os parâmetros e aponte velocidades (rpmX100). Alguns parâmetros foram definidos na tentativa de encontrar um máquina industrial. O valor da capacidade da máquina (HP) foi coletado a diversas (2,0) Os dados a seguir provêm de um experimento para testar o desempenho de uma de uma linha melhor: NO o melhor conjunto (wo, w1); que apresenta a

	Τ	Τ	T	·		7
14	16	18	20	22	(rpmX100)	
43.73	48.84	54.94	62.47	64.03	Capacidade (HP)	1

arâmetros:

5 ë Erro:

(3.456, (5.995, (6.144, 1.712) 2.711) 2.925) Erro:

Erro:

0

o exemplo 1010 utilizando o algoritmo k-Nearest Neighbor, com k=3 (1,5) Considere o conjunto de dados da questão 2 e determine a classificação obtida para

S impureza do nodo (2,0) Em modelos de árvo fundamental importância. Em modelos de árvore de decisão, a definição da melhor divisão dos nodos é W Sendo assim, utilize o <u>indice Gini</u> para verificar o grau de

0 (1,5)determine a taxas de erro do modelo, precisão da classe contagens tabuladas D avaliação de desempenho de um modelo de classificação pode ser feita utilizando em uma matriz de confusão. Analise a seguinte matriz de confusão e 1, e erro da clase 2.

	valor previsto		
Classe 2	Classe 1		
5	28	Classe 1	Valor verdadeiro
19	3	Classe 2	eiro

ANEXO

Teorema de Bayes:

$$P(A \mid B) = \frac{P(B \mid A).P(A)}{P(B)}$$

Distância Euclidiana:

$$d(p,q) = \sum_{i=1}^{n} (p_i - q_i)^2$$

Distância de Manhattan:

$$d(p,q) = \sum_{i=1}^{n} |p_i - q_i|$$

Indice Gini:

$$Gini(t) = 1 - \sum_{i=1}^{c} [p(i/t)]^2$$

Ganho △ (qualidade da divisão):

$$\Delta = I(pai) - \sum_{j=1}^{k} \frac{N(v_j)}{N} I(v_j)$$

