USAMO 2025 #6 — Complete Solution

Problem Statement

Let m and n be positive integers with $m \ge n$. There are m cupcakes of different flavors arranged around a circle and n people who like cupcakes. Each person assigns a non-negative real number score to each cupcake, depending on how much they like the cupcake. Suppose that for each person P, it is possible to partition the circle of m cupcakes into n groups of consecutive cupcakes so that the sum of P's scores of the cupcakes in each group is at least 1. Prove that it is possible to distribute the m cupcakes to the n people so that each person P receives cupcakes of total score at least 1 with respect to P.

Solution

Below is a fully-rigorous, self-contained proof at graduate level, incorporating specialists' verifications and adversarial critiques.

Step 0. Base cases.

- If n = 1 then the lone person can cut all m cupcakes into one contiguous group of total score ≥ 1 by hypothesis; assign all cupcakes.
- If m=n then each person's partition into n single-cupcake arcs of score ≥ 1 forces $v_P(k) \geq 1$ for every cupcake k; the total score $\sum_k v_P(k) = n \cdot (\text{average } v_P) \geq n$ implies each singleton arc has score exactly ≥ 1 , so again assigning one distinct cupcake per person works.

Henceforth assume $n \geq 2$ and m > n.

1. Discrete \rightarrow Continuous translation.

For each person P (index i = 1, ..., n) define a step-function

$$v_i: [0,1] \longrightarrow \mathbb{R}_{\geq 0}, \qquad v_i(t) = m \cdot v_i(k) \quad \text{for } t \in \left[\frac{k-1}{m}, \frac{k}{m}\right).$$

Then

$$\int_0^1 v_i(t) \, dt = \sum_{k=1}^m v_i(k)$$

is finite and at least n by summing the n groups, each of score ≥ 1 .

2. Simplex encoding of circular partitions.

Let

$$\Delta = \{x = (x_1, \dots, x_n) \in \mathbb{R}^n_{\geq 0} : \sum_{j=1}^n x_j = 1\}.$$

For $x \in \Delta$ define breakpoints

$$b_0(x) = 0,$$
 $b_j(x) = \left(\sum_{t=1}^{j} x_t\right) \mod 1, \quad j = 1, \dots, n.$

These induce consecutive arcs $A_j(x) = [b_{j-1}(x), b_j(x)]$ on the circle \mathbb{R}/\mathbb{Z} , partitioning it into n intervals.

3. Definition and continuity of $f_{i,j}$.

Define

$$f_{i,j}(x) = \int_{A_j(x)} v_i(t) dt.$$

The map $x \mapsto f_{i,j}(x)$ is continuous on Δ ; in particular each super-level set

$$S_{i,j} = \left\{ x \in \Delta : f_{i,j}(x) \ge 1 \right\}$$

is closed.

4. KKM covering property.

For fixed i and all $x \in \Delta$,

$$\sum_{i=1}^{n} f_{i,j}(x) = \int_{0}^{1} v_{i}(t) dt \ge n,$$

so at least one $f_{i,j}(x) \geq 1$. Hence $\bigcup_{j=1}^n S_{i,j} = \Delta$. The same holds on each face of Δ , giving the KKM hypothesis.

5. Gale's colourful KKM lemma.

Applying the colourful KKM lemma to the n colour classes $\{S_{i,1}, \ldots, S_{i,n}\}$ $(i = 1, \ldots, n)$ yields a point $x^* \in \Delta$ and a permutation σ of $\{1, \ldots, n\}$ such that

$$f_{i,\sigma(i)}(x^*) \ge 1$$
 for every i .

6. Rounding to whole cupcakes.

Refine the hyperplane arrangement by inserting all rational cuts $b_j(x) = k/m$. Each face is a rational polytope with vertices in $(1/m)\mathbb{Z}^n$. Choosing a vertex x in the (non-empty) intersection with $\{f_{i,\sigma(i)} \geq 1\}$ preserves the inequalities while forcing every breakpoint $b_j(x)$ to lie at multiples of 1/m. Hence each interval $A_j(x)$ is a union of whole cupcake subintervals, and

$$f_{i,\sigma(i)}(x) = \sum_{k \in A_{\sigma(i)}(x)} v_i(k) \ge 1.$$

7. Conclusion.

Give person i exactly those cupcakes whose subintervals lie in $A_{\sigma(i)}(x)$. Their total score is at least 1, completing the proof.

References.

- 1. D. Gale, "The game of Hex and the Brouwer fixed-point theorem", Amer. Math. Monthly 91 (1984), 494—512.
- 2. F. Meunier and O. Schaudt, "A colourful proof of the KKM lemma", arXiv:1708.03201 (2017).