

LABORATÓRIO DE FÍSICA 1

CARLOS AUGUSTO SANTOS DE CARVALHO
GUILHERME MENEZES DE AZEVEDO
NÍCKOLAS FELIPE PAULINO SANTOS
ERLANDSON DA SILVA PESSOA JÚNIOR
BERNARDO SILVA LUZ

RELATÓRIO

Segunda Lei de Newton

Aracaju, Sergipe 04/04/2023

1. Introdução

A Segunda Lei de Newton (Princípio Fundamental da Dinâmica) estabelece que a aceleração adquirida por um corpo é diretamente proporcional à força resultante exercida sobre ele e massa sendo inversamente proporcional àquela.

"A mudança de movimento é proporcional à força motora imprimida, e é produzida na direção de linha reta na qual aquela força é aplicada."

Essa fórmula estabelece a resultante das forças e é chamada de **equação fundamental da dinâmica.** Assim, a massa do corpo é a constante de proporcionalidade da equação e a medida da inércia do corpo. Cabe ressaltar que a força é um referencial inercial, sendo importante levar em consideração a direção e o sentido no qual a força é aplicada, isso explica o porquê de quando uma força de mesma intensidade é aplicada em corpos de massas diferentes, a aceleração produzida por eles é diferente.[1]

2. Objetivo

Estudar o movimento de um corpo sob a ação de uma força conhecida exercida sobre ele, sem o atrito, e verificar a dependência da intensidade da aceleração com a massa do corpo. E também, elaborar gráficos no Sci-Davies para determinar as acelerações estudadas.

3. Materiais

Trilho de ar; Turbina para o fluxo do ar; Carrinho; Sensor ótico; Portapesos; Roldana e linha; Cronômetro digital; Pesos aferidos; Fios, hastes e suportes; Dispositivo de lançamento do carrinho com eletroímã.

4. Procedimento

Métodos:

Medimos com uma régua com incerteza instrumental de (0,05 cm) a posição inicial do carrinho $(Xo = 22,2 \text{ cm} \pm 0,05 \text{ cm})$ e logo em seguida empurramos o carrinho até o sensor do cronômetro disparar e registramos a distância percorrida e com isso, captamos 3 tempos para cada 5 distâncias do sensor até a posição inicial do carrinho aferidas e para cada 5 massas distintas no veículo com incerteza instrumental da balança de (0,1 g). Tudo foi registrado em uma tabela que será fornecido nesse relatório. E construímos com esses dados coletados gráficos no Sci-Davies sendo Δx por tempo e (m+M) por 1/a.

- Representação das medidas: (média da grandeza ± incerteza) unidade da medida
- Valor médio da grandeza:

$$\bar{x} = \frac{1}{\eta} \cdot \sum_{i=1}^{n} x_i$$

Desvio Padrão da grandeza:

$$D_p = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}}$$

• Incerteza do Valor Médio:

$$\sigma_a = \frac{D_p}{\sqrt{n}}$$

Incerteza Instrumental:

 $\sigma_b=$ Menor medição do instrumento

• Incerteza Absoluta:

$$\sigma_c = \sqrt{\sigma_a^2 + \sigma_b^2}$$

• Incerteza Relativa:

$$IR\% = \frac{\sigma_C}{\bar{x}} \times 100$$

Erro:

Erro = valor médio - valor real

• Propagação de Incertezas:

$$\sigma_f = \sqrt{\left(\frac{df}{da} \cdot \sigma_a\right)^2 + \left(\frac{df}{db} \cdot \sigma_b\right)^2 + \dots + \left(\frac{df}{dz} \cdot \sigma_z\right)^2}$$

Onde, o símbolo df/da representa a derivada parcial de f em relação a, ou seja, a derivada da função f quando apenas a é tomada como variável, e b, c, ..., z são consideradas constantes. E σa , σb , ..., σz são os desvios padrões da variável correspondente. [2]

• Fórmulas para a Experiência da "Segunda Lei de Newton":

 $a=rac{m\cdot g}{m+M}$; m = Massa pendurada no porta pesos e M = massa do carrinho;

$$x - x_0 = \frac{a}{2} \cdot t^2$$

$$(m+M)=rac{1}{a}\cdot m\cdot g$$
 , y = m + M e x = 1/a

5. Dados Coletados

Massa do porta peso (m) kg Mantida fixa: (0,0351 ± 0,0001) kg

Xo = 0,222 m		ΔX (m)	σ _b em ΔΧ (m)	Tempo (s)			t (s)	σ _a (s)	σ _b (s)	σ _c (s)	Resultado de t (s)
				Medida 1	Medida 2	Medida 3					(=)
Massa no Carrinho	ΔΧ1	0,7030	0,0005	1,0477	1,0311	1,0373	1,0387	0,004843	0,0001	0,004844	(1,0387 ± 0,0049)
M_1 (kg) = (0,2045 ± 0,0001)	ΔΧ2	0,5659	0,0005	0,9197	0,9166	0,9208	0,919033	0,001257	0,0001	0,001261	(0,9190 ± 0,0013)
	ΔΧ3	0,8534	0,0005	1,1664	1,1501	1,1581	1,1582	0,004706	0,0001	0,004707	(1,1582 ± 0,0047)
	ΔΧ4	0,4203	0,0005	0,7918	0,7981	0,7990	0,7963	0,002265	0,0001	0,002267	(0,7963 ± 0,0023)
	ΔΧ5	0,6608	0,0005	1,0111	1,0201	1,0216	1,0176	0,003279	0,0001	0,003280	(1,0176 ± 0,0033)

Xo = 0,222 m		ΔX	σ _b em ΔX (m)	Tempo (s)			t (s)	$\sigma_a(s)$	σ _b (s)	$\sigma_{c}(s)$	Resultado de t (s)
		(m)		Medida 1	Medida 2	Medida 3					()
Massa no Carrinho M_2 (kg) = (0,2429 ± 0,0001) kg	ΔΧ1	0,6932	0,0005	1,1117	1,1264	1,1099	1,1160	0,005226	0,0001	0,005227	(1,1160 ± 0,0052)
	ΔΧ2	0,2564	0,0005	0,6618	0,6624	0,6627	0,6623	0,000265	0,0001	0,000283	(0,6623 ± 0,0003)
	ΔΧ3	0,6248	0,0005	1,0536	1,0397	1,0526	1,048633	0,004476	0,0001	0,004477	(1,0486 ± 0,0045)
	ΔΧ4	0,7992	0,0005	1,2078	1,1962	1,1998	1,201267	0,003428	0,0001	0,003429	(1,2013 ± 0,0034)
	ΔΧ5	0,7431	0,0005	1,1465	1,1509	1,1533	1,150233	0,001991	0,0001	0,001994	(1,1502 ± 0,0020)
Xo = 0,222 m		ΔX (m)	σ _b em	Tempo (s)		s)	t (s)	σ _a (s)	σ _b (s)	σ _c (s)	Resultado de t (s)
		(111)	ΔX (m)	Medida 1	Medida 2	Medida 3			(-)		(-)
Massa no Carrinho M_3 (kg) = (0,2629 ± 0,0001) kg	ΔΧ1	0,7208	0,0005	1,1731	1,1826	1,1786	1,1781	0,002754	0,0001	0,002756	(1,1781 ± 0,0028)
	ΔΧ2	0,6509	0,0005	1,1103	1,1068	1,1112	1,109433	0,001342	0,0001	0,001346	(1,1094 ± 0,0013)
	ΔΧ3	0,6259	0,0005	1,0864	1,0873	1,0935	1,089067	0,002232	0,0001	0,002234	(1,0891 ± 0,0022)
				4 000=	4.0500	1,0612	1,0601	0,004050	0,0001	0,004051	(1,0601 ± 0,0041)
•	ΔX4	0,5948	0,0005	1,0665	1,0526	1,0612	1,0601	0,004030	0,0001	0,004051	(1,0601 ± 0,0041)

Xo = 0,222 m		$\Delta X \qquad \sigma_b \qquad \qquad (m) \qquad em$	σ _b em	Tempo (s)			t (s)	σ _a (s)	$\sigma_b(s)$	σ _c (s)	Resultado de t (s)
		()	ΔX (m)	Medida 1	Medida 2	Medida 3					` '
Massa no Carrinho M_4 (kg) = (0,3036 ± 0,0001) kg	ΔΧ1	0,7609	0,0005	1,2760	1,2946	1,2759	1,282167	0,006217	0,0001	0,006218	(1,2822 ± 0,0062)
	ΔΧ2	0,6072	0,0005	1,1274	1,1412	1,1344	1,134333	0,003984	0,0001	0,003985	(1,1343 ± 0,0040)
	ΔΧ3	0,7372	0,0005	1,2610	1,2455	1,2611	1,255867	0,005183	0,0001	0,005184	(1,2559 ± 0,0052)
	ΔΧ4	0,2429	0,0005	0,7157	0,7164	0,7164	0,716167	0,000233	0,0001	0,000254	(0,7162 ± 0,0003)
	ΔΧ5	0,4379	0,0005	0,9606	0,9720	0,9638	0,965467	0,003395	0,0001	0,003396	(0,9655 ± 0,0034)

Xo = 0,222 m		ΔX (m)	σ _b em	Tempo (s)			t (s)	σ _a (s)	σ _b (s)	σ _c (s)	Resultado de t (s)
		(m)	ΔX (m)	Medida 1	Medida 2	Medida 3					()
Massa no Carrinho	ΔΧ1	0,4679	0,0005	1,0734	1,0813	1,0850	1,0799	0,003421	0,0001	0,003422	(1,0799 ± 0,0034)
$M_5(kg) =$ (0,362 ± 0,0001) kg	ΔΧ2	0,6415	0,0005	1,2653	1,2614	1,2653	1,2640	0,0013	0,0001	0,001304	(1,2640 ± 0,0013)
	ΔΧ3	0,6951	0,0005	1,3160	1,3390	1,3368	1,3448	0,01853	0,0001	0,018531	(1,3450 ± 0,0190)
	ΔΧ4	0,7621	0,0005	1,4057	1,3803	1,3794	1,388467	0,008621	0,0001	0,008621	(1,3884 ± 0,0090)
	ΔΧ5	0,6271	0,0005	1,2648	1,2741	1,2704	1,269767	0,002703	0,0001	0,002705	(1,2700 ± 0,0027)

6. Cálculo dos Valores Médios e Incertezas

Calculamos os valores médios dos 3 tempos nas 5 massas diferentes dos carrinhos e em 5 distâncias diferentes, logo depois calculamos o desvio padrão para cada valor médio e encontramos enfim a Incerteza Estatística (σ_a) e com a Incerteza Instrumental (σ_b) encontramos a Incerteza do valor Médio (σ_c) e suas respectivas Incertezas Relativas. Os cálculos não serão mostrados, pois provamos em outros relatórios que sabemos realizar os mesmos.

7. Cálculo da Aceleração: Gráficos no Sci-Davies

Nesse tópico iremos demonstrar o cálculo da aceleração de cada carrinho e em diferentes distâncias e diferentes massas utilizando o Sci-Davies.

Aceleração do Carrinho 1 com massa M1 = (0,2045 ± 0,0001) kg;

[sexta-feira, 31 de março de 2023 13:29:13 Hora oficial do Brasil Plot: "Graph1"]

Non-linear fit of dataset: Table1_Delta X , using function: a*x*x
Y standard errors: Unknown

Scaled Levenberg-Marquardt algorithm with tolerance = 0,0001

From x = 0,7963 to x = 1,1582
a = 0,646844315382156 +/-0,00622647053991896

Chi^2 = 0,000798808436751875

R^2 = 0,999629504112284

Iterations = 1

Status = success

Logo, a aceleração do Carrinho 1 pelo Ajuste Não Linear realizado será 2 * a e sua incerteza por propagação de Incertezas será 2 * σ_C , sendo os respectivos valores gerados pelo gráfico no Sci-Davies. Aceleração = (2 * 0,647 ± 2 * 0,006) => **Aceleração 1 = (1,294 ± 0,012) m/s²**.

Aceleração do Carrinho 2 com massa M2 = (0,2429 ± 0,0001) kg

Logo, a aceleração do Carrinho 2 pelo Ajuste Não Linear realizado será 2 * a e sua incerteza por propagação de Incertezas será 2 * σ_C , sendo os respectivos valores gerados pelo gráfico no Sci-Davies. Aceleração = (2 * 0,560 ± 2 * 0,003) => **Aceleração 2 = (1,120 ± 0,003) m/s²**.

Aceleração do Carrinho 3 com massa M3 = (0,2629 ± 0,0001) kg

[sexta-feira, 31 de março de 2023 15:09:48 Hora oficial do Brasil Plot: "Graph1"] Non-linear fit of dataset: Table1_ Δ X(m) , using function: a*x*x Y standard errors: Unknown Scaled Levenberg-Marquardt algorithm with tolerance = 0,0001 From x = 1,0601 to x = 1,2037 a = 0,526580972040452 +/- 0,00202344440112431 Chi^2 = 0,000134462342369801 R^2 = 0,999940940936031 Iterations = 1 Status = success

Logo, a aceleração do Carrinho 3 pelo Ajuste Não Linear realizado será 2 * a e sua incerteza por propagação de Incertezas será 2 * σ_C , sendo os respectivos valores gerados pelo gráfico no Sci-Davies. Aceleração = (2 * 0,527 ± 2 * 0,002) => **Aceleração 3 = (1,054 ± 0,004) m/s²**.

Aceleração do Carrinho 4 com massa M4 = (0,3036 ± 0,0001) kg

Logo, a aceleração do Carrinho 4 pelo Ajuste Não Linear realizado será 2 * a e sua incerteza por propagação de Incertezas será 2 * σ_C , sendo os respectivos valores gerados pelo gráfico no Sci-Davies. Aceleração = (2 * 0,467 ± 2 * 0,002) => **Aceleração 4 = (0,934 ± 0,004) m/s²**.

Aceleração do Carrinho 5 com massa M5 = (0,362 ± 0,0001) kg

[sexta-feira, 31 de março de 2023 15:00:55 Hora oficial do Brasil Plot: "Graph1"] Non-linear fit of dataset: Table $1_\Delta X(m)$, using function: a*x*x Y standard errors: Unknown Scaled Levenberg-Marquardt algorithm with tolerance = 0,0001 From x=1,0799 to x=1,3884 a = 0,39315332407306 +/- 0,00331699197535

Chi^2 = 0,000594241019243842 R^2 = 0,999715356481772

Iterations = 1 Status = success

Logo, a aceleração do Carrinho 5 pelo Ajuste Não Linear realizado será 2 * a e sua incerteza por propagação de Incertezas será 2 * σ_C , sendo os respectivos valores gerados pelo gráfico no Sci-Davies. Aceleração = (2 * 0,393 ± 2 * 0,003) => **Aceleração 5 = (0,786 ± 0,006) m/s²**.

8. Construção de Gráfico (m + M) versus 1/a

Vamos trazer a aceleração dos 5 sistemas e relembrar a fórmula: $a=\frac{m\cdot g}{m+M}$;

m = Massa pendurada no porta pesos e M = massa do carrinho;

- Aceleração 1 = (1,294 ± 0,012) m/s²
- Aceleração 2 = (1,120 ± 0,003) m/s²
- Aceleração 3 = (1,054 ± 0,004) m/s²
- Aceleração 4 = (0,934 ± 0,004) m/s²
- Aceleração 5 = (0,786 ± 0,006) m/s²

Precisamos saber o valor de $(1/a \pm \sigma_c)$ para cada valor de aceleração.

- **1. Aceleração 1:** $\frac{1}{a} = \frac{1}{1,294} \approx 0,773$ e a incerteza de 1/a deve ser feita por propagação de incertezas da seguinte forma: $\sigma_c = \sqrt{\left(\frac{\partial^1/a}{\partial a} \cdot \sigma_a\right)^2} = \frac{1}{a^2} \cdot \sigma_a$. Logo, teremos o valor de σ_c como $\frac{0,012}{(1,294)^2} \cong 0,007$. Logo, o valor para $(1/a \pm \sigma_c)$ será $(0,773 \pm 0,007)$ $m^{-1} \cdot s^2$ e com Incerteza Relativa de $\left(\frac{0,007}{0,773}\right) \approx 0,0091 \approx 0,91\%$.
- 2. Aceleração 2: $\frac{1}{a} = \frac{1}{1,12} \approx 0,893$ e a incerteza de 1/a deve ser feita por propagação de incertezas da seguinte forma: $\sigma_c = \sqrt{\left(\frac{\partial^1/a}{\partial a} \cdot \sigma_a\right)^2} = \frac{1}{a^2}$.

 σ_a . Logo, teremos o valor de σ_c como $\frac{0,003}{(1,12)^2}\cong 0,002$. Logo, o valor para (1/a $\pm \sigma_c$) será $(\mathbf{0},\mathbf{893}\pm\mathbf{0},\mathbf{002})$ $m^{-1}\cdot s^2$ e com Incerteza Relativa de $\left(\frac{0,002}{0.893}\right)\approx 0,00224\approx 0,22\%$.

- **3. Aceleração 3:** $\frac{1}{a} = \frac{1}{1,054} \approx 0,949$ e a incerteza de 1/a deve ser feita por propagação de incertezas da seguinte forma: $\sigma_c = \sqrt{\left(\frac{\partial^1/a}{\partial a} \cdot \sigma_a\right)^2} = \frac{1}{a^2} \cdot \sigma_a$. Logo, teremos o valor de σ_c como $\frac{0,004}{(1,054)^2} \cong 0,004$. Logo, o valor para $(1/a \pm \sigma_c)$ será $(0,949 \pm 0,004)$ $m^{-1} \cdot s^2$ e com Incerteza Relativa de $\left(\frac{0,004}{0,949}\right) \approx 0,004215 \approx 0,42\%$.
- **4. Aceleração 4:** $\frac{1}{a} = \frac{1}{0.934} \approx 1,071$ e a incerteza de 1/a deve ser feita por propagação de incertezas da seguinte forma: $\sigma_c = \sqrt{\left(\frac{\partial^1/a}{\partial a} \cdot \sigma_a\right)^2} = \frac{1}{a^2} \cdot \sigma_a$. Logo, teremos o valor de σ_c como $\frac{0,004}{(0.934)^2} \cong 0,005$. Logo, o valor para $(1/a \pm \sigma_c)$ será $(1,071 \pm 0,005)$ $m^{-1} \cdot s^2$ e com Incerteza Relativa de $\left(\frac{0,005}{1,071}\right) \approx 0,0047 \approx 0,47\%$.
- **5. Aceleração 5:** $\frac{1}{a} = \frac{1}{0,786} \approx 1,272$ e a incerteza de 1/a deve ser feita por propagação de incertezas da seguinte forma: $\sigma_c = \sqrt{\left(\frac{\partial^1/a}{\partial a} \cdot \sigma_a\right)^2} = \frac{1}{a^2} \cdot \sigma_a$. Logo, teremos o valor de σ_c como $\frac{0,006}{(0,786)^2} \cong 0,010$. Logo, o valor para $(1/a \pm \sigma_c)$ será $(1,272 \pm 0,010)$ $m^{-1} \cdot s^2$ e com Incerteza Relativa de $\left(\frac{0,01}{1,272}\right) \approx 0,0079 \approx 0,79\%$.

Precisamos saber o valor de ((m + M) $\pm \sigma_C$) para cada valor de massas dos carrinhos.

1. Carrinho 1: Tem massa M1 = (0,2045 ± 0,0001) kg e massa m do porta pesos fixa para todos os experimentos no valor de m = (0,0351 ± 0,0001) kg. Logo, a massa conjugada de (m + M) será de (0,0351 + 0,2045) = (0,2396) kg. E sua incerteza deve ser encontrada pela propagação de incertezas da seguinte maneira: σ_c =

$$\sqrt{\left(\frac{\partial (M+m)}{\partial m} \cdot \sigma_m\right)^2 + \left(\frac{\partial (M+m)}{\partial M} \cdot \sigma_M\right)^2} = \sqrt{((0+1) \cdot \sigma_m)^2 + ((1+0) \cdot \sigma_M)^2} = \sqrt{(0,0001)^2 + (0,0001)^2} \approx 0,0001$$
. Logo teremos ((m + M) ± σ_C) como sendo: **(0,2396 ± 0,0001) kg** e com Incerteza Relativa de $\left(\frac{0,0001}{0,2396}\right) \approx 0,00042 \approx 0,042\%$.

2. Carrinho 2: Tem massa $M2 = (0,2429 \pm 0,0001)$ kg e massa m do porta pesos fixa para todos os experimentos no valor de m = (0,0351)

± 0,0001) kg. Logo, a massa conjugada de (m + M) será de (0,0351 + 0,2429) = (0,2780) kg. E sua incerteza deve ser encontrada pela propagação de incertezas da seguinte maneira: σ_c =

$$\sqrt{\left(\frac{\partial (M+m)}{\partial m} \cdot \sigma_m\right)^2 + \left(\frac{\partial (M+m)}{\partial M} \cdot \sigma_M\right)^2} = \sqrt{((0+1) \cdot \sigma_m)^2 + ((1+0) \cdot \sigma_M)^2} = \sqrt{(0,0001)^2 + (0,0001)^2} \approx 0,0001.$$
 Logo teremos ((m + M) ± σ_C) como sendo: **(0,2780 ± 0,0001) kg** e com Incerteza Relativa de $\left(\frac{0,0001}{0,2780}\right) \approx 0,0004 \approx 0,04\%.$

3. Carrinho 3: Tem massa M3 = (0,2629 \pm 0,0001) kg e massa m do porta pesos fixa para todos os experimentos no valor de m = (0,0351 \pm 0,0001) kg. Logo, a massa conjugada de (m + M) será de (0,0351 + 0,2629) = (0,2980) kg. E sua incerteza deve ser encontrada pela propagação de incertezas da seguinte maneira: σ_c =

$$\sqrt{\left(\frac{\partial (M+m)}{\partial m} \cdot \sigma_m\right)^2 + \left(\frac{\partial (M+m)}{\partial M} \cdot \sigma_M\right)^2} = \sqrt{((0+1) \cdot \sigma_m)^2 + ((1+0) \cdot \sigma_M)^2} = \sqrt{(0,0001)^2 + (0,0001)^2} \approx 0,0001$$
. Logo teremos ((m + M) ± σ_C) como sendo: **(0,2980 ± 0,0001) kg** e com Incerteza Relativa de $\left(\frac{0,0001}{0,2980}\right) \approx 0,000336 \approx 0,0336$ %.

4. Carrinho 4: Tem massa M4 = (0,3036 \pm 0,0001) kg e massa m do porta pesos fixa para todos os experimentos no valor de m = (0,0351 \pm 0,0001) kg. Logo, a massa conjugada de (m + M) será de (0,0351 + 0,3036) = (0,3387) kg. E sua incerteza deve ser encontrada pela propagação de incertezas da seguinte maneira: σ_c =

$$\sqrt{\left(\frac{\partial (M+m)}{\partial m} \cdot \sigma_m\right)^2 + \left(\frac{\partial (M+m)}{\partial M} \cdot \sigma_M\right)^2} = \sqrt{((0+1) \cdot \sigma_m)^2 + ((1+0) \cdot \sigma_M)^2} = \sqrt{(0,0001)^2 + (0,0001)^2} \approx 0,0001.$$
 Logo teremos ((m + M) ± σ_C) como sendo: (0,3387 ± 0,0001) kg e com Incerteza Relativa de $\left(\frac{0,0001}{0,3387}\right) \approx 0,0003 \approx 0,03\%.$

5. Carrinho 5: Tem massa M5 = (0,3620 \pm 0,0001) kg e massa m do porta pesos fixa para todos os experimentos no valor de m = (0,0351 \pm 0,0001) kg. Logo, a massa conjugada de (m + M) será de (0,0351 + 0,3620) = (0,3971) kg. E sua incerteza deve ser encontrada pela propagação de incertezas da seguinte maneira: σ_c =

$$\sqrt{\left(\frac{\partial (M+m)}{\partial m} \cdot \sigma_m\right)^2 + \left(\frac{\partial (M+m)}{\partial M} \cdot \sigma_M\right)^2} = \sqrt{((0+1) \cdot \sigma_m)^2 + ((1+0) \cdot \sigma_M)^2} = \sqrt{(0,0001)^2 + (0,0001)^2} \approx 0,0001.$$
 Logo teremos ((m + M) ± σ_C) como sendo: (0,3971 ± 0,0001) kg e com Incerteza Relativa de $\left(\frac{0,0001}{0,3971}\right) \approx 0,000252 \approx 0,025\%$

Podemos agora demonstrar o Gráfico (M+m) versus 1/a:

Podemos agora encontrar a Gravidade dividindo coeficiente A encontrado pelo Sci-Davies pela massa do porta peso Fixo em todo experimento, sendo assim temos: $\frac{0,3172}{0,0351} \approx 9,04~m~/s^2$. E sua incerteza encontramos propagando por incertezas a fórmula usada A/m dessa maneira: $\sigma_{\mathcal{C}}=$

$$\sqrt{\left(\frac{\partial\left(\frac{A}{m}\right)}{\partial m}\cdot\sigma_{M}\right)^{2} + \left(\frac{\partial\left(\frac{A}{M}\right)}{\partial A}\cdot\sigma_{A}\right)^{2}} \qquad \sigma_{C} = \sqrt{\left(-\frac{A}{m^{2}}\cdot\sigma_{m}\right)^{2} + \left(\frac{1}{m}\cdot\sigma_{A}\right)^{2}}$$

$$\sigma_{C} = \sqrt{\left(-\frac{0.3172}{0.0351^{2}}\cdot0.0001\right)^{2} + \left(\frac{0.0003}{0.0351}\right)^{2}} \approx 0.03 \ m/s^{2}$$

Logo, teremos uma gravidade de **(9,04 ± 0,03) m/s²** e Incerteza Relativa de $\left(\frac{0,03}{9,04}\right)\approx 0,00332\approx 0,332\%$.

9. Conclusão

O grupo utilizou instrumentos de laboratório para medir o tempo que o carrinho levava para percorrer 5 posições diferentes com 5 massas diferentes. Com os dados coletados, o grupo calculou a aceleração de cada carrinho, plotando as informações no software Sci-Davis. A partir disso, encontraram uma estimativa para o valor da gravidade, g = (9,04 ± 0,03) m/s². Comparando com o valor de referência de 9,78 m/s², o erro absoluto foi de -0,74 e o erro relativo de -7,6%. Essa divergência se deu pelo sistema não ser ideal e ter interferência de forças externas e pela incerteza dos instrumentos. O experimento permitiu ao grupo aprender a manusear novos instrumentos e compreender o processo de cálculo da aceleração e suas incertezas.

10. Referências

[1] Fabiana Dias, Segunda Lei de Newton (Princípio Fundamental da Dinâmica), disponível em:

https://www.educamaisbrasil.com.br/enem/fisica/segunda-lei-de-newton-principio-fundamental-da-dinamica, acesso em: 24/03/2023

[2] Propagação de Incerteza, disponível em:

https://www.fep.if.usp.br/~fisfoto/guias/roteiro_incertezas_2015.pdf, acesso em 17/02/2023