Contando em Chinês

Por XIII Maratona de Programação IME-USP, 2009 Se Brazil

Timelimit: 1

A China é um dos maiores países do mundo e o mais populoso. Realizar um censo no país é quase uma operação de guerra. O governo envia para cada um dos pequenos distritos imensas matrizes, que devem ser preenchidas com as características de todos os cidadãos. Cada uma dessas matrizes tem o mesmo tamanho: nas linhas estão as várias etnias (são milhares) e nas colunas as características que se deseja medir (pode chegar a milhões). Sabemos que poucos elementos de cada uma dessas matrizes são de fato preenchidos com valores diferentes de zero.

O trabalho da empresa governamental que faz o censo é, então, receber as \mathbf{P} matrizes $\mathbf{M} \times \mathbf{N}$ (1 $\leq \mathbf{N} \leq$ 100), cada uma dada através de seus elementos não nulos e calcular a matriz soma das várias matrizes.

Entrada

A primeira linha da entrada contém um inteiro T indicando o número de instâncias.

A primeira linha de cada instância contém dois inteiros, \mathbf{N} e \mathbf{L} representando respectivamente a dimensão das matrizes e o número total de entradas não nulas. As \mathbf{L} linhas seguintes contêm quatro inteiros \mathbf{P}_k , \mathbf{I}_k , \mathbf{c}_k e \mathbf{v}_k indicando que a matriz \mathbf{P}_k tem valor \mathbf{v}_k na posição de linha \mathbf{I}_k e coluna \mathbf{c}_k .

Saída

Para cada instância imprima as entradas não nulas da matriz soma. Para cada entrada não nula da matriz, imprima a linha, coluna e valor correspondente, separados por espaço. A saída não precisa estar ordenada.

Entre duas instâncias imprima uma linha em branco.

Exemplo de Entrada	Exemplo de Saída
3	1 1 3
1000 4	1 2 101
1 1 1 1	
2 1 1 2	2 2 2
3 1 2 100	
1 1 2 1	48 1 2
2 2	49 2 1
1000 2 2 1	50 1 101
500 2 2 1	
50 4	
1 50 1 1	
2 48 1 2	
3 50 1 100	
1 49 2 1	

XIII Maratona de Programação IME-USP, 2009