Конспекты по матанализу

Владимир Милосердов, Владимир Шабанов

1 октября 2015 г.

Оглавление

1	Введение в пределы			5
	1.1	Преде	л последовательности	5
		1.1.1	Определение по Гейне	5
	1.2 Предел функции		л функции	5
		1.2.1	Определение по Гейне	5
		1.2.2	Определение по Коши	5
		1.2.3	Доказательство эквивалентности определений по Коши и по Гейне	6

ОГЛАВЛЕНИЕ ОГЛАВЛЕНИЕ

Глава 1

Введение в пределы

1.1 Предел последовательности

1.1.1 Определение по Гейне

Пусть имеется последовательность a_n . Тогда если начиная с некоторго элемента под индексом N каждый следующий элемент a_n , где n > N будет входить в ε -окрестность некоторой точки A, то говорят, что последовательность имеет предел и он равен A.

$$\forall \varepsilon > 0, \exists N : \forall n > N : a_n \in \mathring{U}_{\varepsilon}(A)$$
 Примеры:
1. Пусть $a_n := n^2$, тогда $\lim_{n \to +\infty} a_n = +\infty$

1.2 Предел функции

1.2.1 Определение по Гейне

Пределом функции f(x) в точке a называется точка A, если для любой сходящейся в точке a последовательности x_n множество соответсвующих значений $y_n = f(x_n), n \neq 0$ стремится к A.

$$\forall n \in \mathbb{N}, \lim_{n \to x_0} x_n = a$$

$$\lim_{n \to a} f(x_n) = A$$

1.2.2 Определение по Коши

Пределом функции f(x) в точке a называется точка A, если для любого $\varepsilon>0$ найдется $\delta>0$ такое, что для любого аргуманта x такого, что $0<|x-a|<\delta$ выполняется неравенство $|f(x)-A|<\varepsilon$

$$\lim_{x \to a} f(x) = A \iff \forall \varepsilon > 0: \ \exists \delta > 0: \ \forall x: \ 0 < |x - a| < \delta \implies |f(x) - A| < \varepsilon$$

1.2.3 Доказательство эквивалентности определений по Коши и по Гейне

Докажем от противного. Пусть $A = \lim_{x \to x_0} f(x)$ (по Гейне) и он не равен пределу по Коши. Т.е. (из определения по Коши):

$$\exists \varepsilon > 0: \ \forall \delta > 0: \ \exists x_{\delta} \in X \ |x_{\delta} - x_{0}| < \delta, \ |f(x_{\delta}) - A| \ge \varepsilon$$