

CON LE DERIVATE E GLI INTEGRALI Una spira quadrata di lato 12 cm e resistenza di 5,0 Ω è immersa in un campo magnetico uniforme di 0,23 T. Al tempo t = 0 s, il piano individuato dalla spira è perpendicolare al campo magnetico.

 $[1,3 \,\mathrm{mC}]$

dq =
$$\frac{\omega BS}{R}$$
 sin ωt dt \leftarrow fu torone la conica totale che fluise mell'intervalls $[0, \overline{\omega}]$ doll'ans sommare tuth questi dq, cisè calcabre un integrale $\frac{\pi}{2}$ RICORDARE CHE $\int_{0}^{B} f'(x) dx = f(l) - f(a) = f(x) \Big|_{0}^{B}$ can $\omega t dt = \int_{0}^{B} \left(-\frac{BS}{R} \cos \omega t \right)' dt = -\frac{BS}{R} \cos \omega t \Big|_{0}^{B} = \frac{BS}{R} \cos \omega t \Big|_$