Intégrales stochastiques

Présenté par : M. HAMMAD

1.1 Intégrales stochastiques

Le but de l'intégrale stochastique est de donner un sens à des équations de la forme :

(1.1)
$$\frac{dX_t}{dt} = f(X) + g(X)\frac{dB_t}{dt}$$

Par exemple, si $f \equiv 0$ et $g \equiv 1$, on devrait retrouver, $X_t = X_0 + B_t$, décrivant le mouvement d'une particule Brownienne.

Le problème est que, les trajectoires du mouvement Brownien sont presque sûrement nulles par différentiabilité, c.à.d, si B_t est un mouvement Brownien, $\nexists t \in \mathbb{R}^+$ telque $\frac{dB_t}{dt}$ ait un sens.

Comme dans le cas des équations différentielles ordinaires, on interprête une solution de l'équation différentielle (1.1) comme une solution de l'équation intégrale

(1.2)
$$X_t = X_0 + \int_0^t f(X_s)ds + \int_0^t g(X_s)dB_s.$$

C'est à la seconde intégrale qu'il s'agit de donner un sens mathématique. Si $s \mapsto g(X_s)$ était différentiable, on pourrait le faire à l'aide d'une intégration par parties, mais ce n'est en général pas le cas. Itô a donné une autre définition de l'intégrale stochastique, qui s'applique à une classe beaucoup plus vaste d'intégrants (et donne le même résultat que l'intégration par parties dans le cas différentiable).

1.2 Construction de l'intégrale stochastique

Soit $(B_t)_{t\geq 0}$ un \mathcal{F}_t —mouvement Brownien standard sur un espace de probabilité filtré $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\geq 0}, \mathbb{P})$. Nous allons donner un sens à l'intégrale $\int_0^t g(s, \omega) dB_s$ pour une classe de processus $g(s, \omega)$ adaptés à la filtration $(\mathcal{F}_t)_{t\geq 0}$.

1.2.1 Première étape : Construction de l'intégrale stochastique sur un ensemble de processus dits élémentaires

Définition 1.2.1.

Soit $T \in \mathbb{R}^+$. On appelle processus élémentaire $(H_t)_{0 \le t \le T}$ un processus de la forme :

(1.3)
$$H_t(\omega) = \sum_{i=1}^p \phi_i(\omega) \cdot \mathbf{1}_{]t_{i-1},t_i]}(t)$$

où $0 = t_0 < t_1 < \dots < t_p = T$ est une partition de [0,T] et ϕ_i est $\mathcal{F}_{t_{i-1}}$ -mesurable et bornée

Définition 1.2.2.

L'intégrale stochastique d'un processus élémentaire H est le processus continu noté $(I(H)_t)_{0 < t < T}$ défini par :

(1.4)
$$Si \ t \in]t_k, t_{k+1}] : I(H)_t = \sum_{i=1}^k \phi_i(B_{t_i} - B_{t_{i-1}}) + \phi_{k+1}(B_t - B_{t_k}).$$

On notera
$$I(H)_t \stackrel{\Delta}{=} \int_0^t H_s dB_s$$
.

Il est aisé de vérifier les propriétés de linéarité suivantes :

Proposition 1.2.1.

1. Pour deux processus élémentaires H^1 et H^2 .

(1.5)
$$\int_0^t (H_s^1 + H_s^2) dB_s = \int_0^t H_s^1 dB_s + \int_0^t H_s^2 dB_s.$$

2. Pour toute constante c,

(1.6)
$$\int_0^t (cH_s) dB_s = c \int_0^t H_s dB_s.$$

3. L'intégrale (1.4) est une fonction continue de t.

On a le résultat essentiel suivant :

Proposition 1.2.2.

 $Si(H_t)_{0 \le t \le T}$ est un processus élémentaire :

1.
$$\left(\int_0^t H_s dB_s\right)_{0 \le t \le T} \text{ est } \mathcal{F}_t - \text{martingale.}$$

2.
$$\mathbf{IE}\left(\left(\int_0^t H_s dB_s\right)^2\right) = \mathbf{IE}\left(\int_0^t H_s^2 ds\right).$$

3. IE
$$\left(\sup_{t \le T} |\int_0^t H_s dB_s|^2\right) \le 4$$
IE $\left(\int_0^T H_s^2 ds\right)$.

Démonstration 1.2.1.

Exercice.

1.2.2 Deuxième étape : Construction de l'intégrale stochastique sur une classe de processus adaptés

Soit
$$\mathcal{H} = \{(H_t)_{0 \le t \le T}, \text{ un processus adapt\'e à } (\mathcal{F}_t)_{t \ge 0}, \mathbf{IE}(\int_0^T H_s^2 ds) < +\infty\}.$$

Proposition 1.2.3.

Soit $(B_t)_{t\geq 0}$ un \mathcal{F}_t -mouvement Brownien. Alors il existe une unique application linéaire J de \mathcal{H} dans l'espace des \mathcal{F}_t -martingales continues définies sur [0,T] telle que :

1. Si $(H_t)_{t\leq T}$ est un processus élémentaire, $\mathbb{P}.p.s$ pour tout $0\leq t\leq T$ $J(H)_t=I(H)_t$.

2. Si
$$t \le T$$
 IE $(J(H)_t^2) =$ **IE** $(\int_0^t H_s^2 ds)$.

Cette application linéaire est unique au sens suivant, si J et J' sont deux prolongements linéaires vérifiants les propriétés précédentes alors :

(1.7)
$$\mathbb{P}.p.s \ \forall \ 0 \le t \le T, \ J(H)_t = J'(H)_t.$$

On note, si
$$H \in \mathcal{H} \int_0^t H_s dB_s = J(H)_t$$
,

cette intégrale stochastique vérifie la propriété suivante :

Proposition 1.2.4.

 $Si(H_t)_{0 \le t \le T}$ un processus de \mathcal{H} alors :

(1.8)
$$\mathbf{IE} \left(\sup_{t \le T} |\int_0^t H_s dB_s|^2 \right) \le 4 \mathbf{IE} \left(\int_0^T H_s^2 ds \right).$$

Nous aurons besoin d'un résultat permettant de relaxer l'hypothèse d'intégrabilité portant sur (H_s) .

Posons:

$$\widetilde{\mathcal{H}} = \{(H_s)_{0 \leq s \leq T}, \text{ un processus adapté à } (\mathcal{F}_t)_{t \geq 0}, \int_0^T H_s^2 ds < +\infty \ \mathbb{P}.p.s\}.$$

La proposition suivante permet de prolonger l'intégrale stochastique de \mathcal{H} à \mathcal{H} .

Proposition 1.2.5.

 \widetilde{Il} existe une unique application linéaire \widetilde{J} de l'espace \widetilde{H} dans l'espace vectoriel des processus continus définis sur [0,T] telle que :

1. Propriété de prolongement :

 $Si(H_t)_{0 \le t \le T}$ est un processus élémentaire alors :

(1.9)
$$\mathbb{P}.p.s \ \forall \ 0 \le t \le T, \ \widetilde{J}(H)_t = I(H)_t.$$

2. Propriété de continuité :

 $Si(H^n)_{n\geq 0}$ est une suite de processus de \widetilde{H} telle que $\int_0^T H_s^{n2} ds \to 0$ en probabilité, alors :

(1.10)
$$\sup_{t < T} |\widetilde{J}(H^n)_t| \to 0 \ en \ probabilit\acute{e}.$$

On note toujours
$$\int_0^t H_s dB_s = \widetilde{J}(H)_t$$
.

Remarque 1.2.1.

Dans ce cas $\left(\int_0^t H_s dB_s\right)_{0 \le t \le T}$ n'est pas nécessairement une martingale.

Résumé

Soit $(B_t)_{t\geq 0}$ un \mathcal{F}_t -mouvement Brownien et $(H_t)_{0\leq t\leq T}$ un processus \mathcal{F}_t -adapté. On peut définir l'intégrale stochastique $\left(\int_0^t H_s dB_s\right)_{0\leq t\leq T}$ dès que $\int_0^T H_s^2 ds < +\infty$ $\mathbb{P}.p.s.$

Le processus $\left(\int_0^t H_s dB_s\right)_{0 \le t \le T}$ est une martingale si $\mathbb{E}\left(\int_0^T H_s^2 ds\right) < +\infty$. cette condition n'est cependant pas nécessaire car la condition

$$\operatorname{I\!E}\left(\int_0^T H_s^2 ds\right) < +\infty \Longleftrightarrow \operatorname{I\!E}\left(\sup_{t \in [0,T]} \left(\int_0^t H_s dB_s\right)^2\right) < +\infty.$$

et que dans ce cas on a l'égalité :

$$\mathbf{E}\left[\left(\int_0^T H_s dB_s\right)^2\right] = \mathbf{E}\left(\int_0^T H_s^2 ds\right).$$

4