UNIVERSIDAD DE CONCEPCION

FACULTAD DE CIENCIAS

FISICAS Y MATEMATICAS

DEPARTAMENTO DE INGENIERIA MATEMATICA

ALGEBRA Y ALGEBRA LINEAL 520142

PRACTICA 17. Vectores y Planos

PROBLEMA 1. Determine el área del triángulo formado por la intersección del plano 3x - 2y - 11z = -7, y las rectas

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + t \begin{pmatrix} 1 \\ -1 \\ -2 \end{pmatrix} \text{ para } t \in \mathbb{R}, \text{ y}$$

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -1 \\ 2 \\ 0 \end{pmatrix} + t \begin{pmatrix} -2 \\ 0 \\ -3 \end{pmatrix} \text{ para } t \in \mathbb{R},$$

[En práctica]

PROBLEMA 2. Calcule el volumen del paralelepípedo de base $[-1, \alpha, 3]$ y [-1, -1, 2] y cuyo lado es [2, -1, 4]. ¿Qué valor debe tener α para que el volumen sea el triple del área de la base considerada?.

PROBLEMA 3 Muestre que todo vector \boldsymbol{u} en el plano OXY se puede escribir:

$$\boldsymbol{u} = P_{\boldsymbol{i}}\boldsymbol{u} + P_{\boldsymbol{j}}\boldsymbol{u}$$

PROBLEMA 4. Sean \boldsymbol{u} y \boldsymbol{v} dos vectores en \mathbb{R}^3 . Muestre que:

- (4.1) $\|\boldsymbol{u} \boldsymbol{v}\|^2 = \|\boldsymbol{u}\|^2 + \|\boldsymbol{v}\|^2 2\|\boldsymbol{u}\| \|\boldsymbol{v}\| \cos(\theta)$, donde θ es el menor ángulo entre \boldsymbol{u} y \boldsymbol{v} . [En práctica]
- (4.2) $\|\mathbf{u} + \mathbf{v}\|^2 \|\mathbf{u} \mathbf{v}\|^2 = 4 \mathbf{u} \cdot \mathbf{v}$.

PROBLEMA 5. Pruebe que la distancia D entre el plano ax + by + cz = d y el punto $P_0 = (x_0, y_0, z_0)$ está dada por

$$D = \frac{|ax_0 + by_0 + cz_0 - d|}{\sqrt{a^2 + b^2 + c^2}}.$$

[En práctica]

PROBLEMA 6. Encuentre la distancia del punto (3,2,-1) al plano 2x-2y-z=5.

PROBLEMA 7. Decida si existe un valor de α de modo que la distancia del punto (2, -3 - 4) al plano $x + 2y + 2\alpha z = 6$, sea igual a $\sqrt{37}$.

PROBLEMA 8. Sean \boldsymbol{u} y \boldsymbol{v} dos vectores no paralelos diferentes de cero en un plano \mathcal{P} que pasa por el origen. Demuestre que si \boldsymbol{w} es cualquier otro vector en \mathcal{P} , entonces existen escalares α y β tales que $\boldsymbol{w} = \alpha \boldsymbol{u} + \beta \boldsymbol{v}$. Esto se llama representación paramétrica del plano \mathcal{P} .

PROBLEMA 9. Tres vectores \boldsymbol{u} , \boldsymbol{v} y \boldsymbol{w} se llaman coplanares si están todos en el mismo plano \mathcal{P} . Demuestre que si \boldsymbol{u} , \boldsymbol{v} y \boldsymbol{w} son vectores en el origen, entonces son coplanares si y sólo si $\boldsymbol{u} \cdot (\boldsymbol{v} \times \boldsymbol{w}) = 0$.

PROBLEMA 10. Encuentre la ecuación del plano:

- (10.1) que pasa por el punto (2,3,1) y está generado por los vectores [3,2,1] y [-1,-2,-3]. Determine si los puntos (-1,2,-3) y (2,2,-4) pertenecen a dicho plano.
- (10.2) que pasa por el punto (2,3,1) y es paralelo al plano que pasa por el origen y es generado por los vectores [2,0,-2] y [1,1,1].

[En práctica]

PROBLEMA 11. Dados los punto $P_1(2,3,2)$ y $P_2(-1,1,4)$, encuentre todos los puntos P(x,y,z) tales que $\overrightarrow{P_1P_2} \perp \overrightarrow{P_1P}$. Describa tal conjunto.

PROBLEMA 12. Encuentre la ecuación del plano \mathcal{P}_1 que es perpendicular a [1, -1, 3] y que pasa por el punto (2, 1, 0); considere además el plano \mathcal{P}_2 de ecuación: 3x-y+2z=-1. Encuentre $\mathcal{P}_1 \cap \mathcal{P}_2$.

PROBLEMA 13. Encuentre dos planos \mathcal{P}_1 y \mathcal{P}_2 cuya intersección sea la recta dada por:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix} + t \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix} \text{ para } t \in \mathbb{R},$$

PROBLEMA 14. Encuentre el valor de α de modo que los planos : $2x - \alpha y + z = 3$ y $3x + 2\alpha y - \alpha z = 5$, sean ortogonales.

PROBLEMA 15. Considere los planos 2x - y + z = 3 y 3x + 2y - z = 5. Encuentre, si es posible, un plano perpendicular a los dos planos dados.

PROBLEMA 16. Encuentre los valores de α , β y γ de modo que la intersección de los planos $3\beta x + 2\alpha y - \alpha z = 6$ y $2x - \alpha y + \gamma z = 3$, sea la recta que pasa por el punto (0, 9/2, 6), y tenga por vector director a $[\alpha^2 - 2\gamma\alpha, 1, 4\alpha + 3\alpha\beta]$.

PROBLEMA 17. Encuentre condiciones sobre los vectores \boldsymbol{u} y \boldsymbol{v} en \mathbb{R}^3 , de modo que las diagonales del paralelogramo formado por \boldsymbol{u} y \boldsymbol{v} , sean ortogonales.

PROBLEMA 18. Suponga que los planos $a_1x + b_1y + c_1z = d_1$ y $a_2x + b_2y + c_2z = d_2$ no son paralelos. Deduzca una fórmula para el ángulo formado por la intersección de los planos.

25/08/2003 RAD/JMS/rad