CSC 631: High-Performance Computer Architecture

Fall 2022 Lecture 6: Tomasulo's Algorithm

Implementing Dynamic Scheduling

■ Tomasulo's Algorithm

- Used in IBM 360/91 (in the 60s)
- Tracks when operands are available to satisfy data dependences
- Removes name dependences through register renaming
- Almost all modern high-performance processors use a derivative of Tomasulo's... much of the terminology survives to today.

Tomasulo's Algorithm: The Picture

Issue (1)

- Get next instruction from instruction queue.
- Find a free reservation station for it (if none are free, stall until one is)
- Read operands that are in the registers
- If the operand is not in the register, find which reservation station will produce it
- In effect, this step renames registers (reservation station IDs are "temporary" names)

Issue (2)

Execute (1)

- Monitor results as they are produced
- Put a result into all reservation stations waiting for it (missing source operand)
- When all operands available for an instruction, it is ready (we can actually execute it)
- Several ready instrs for one functional unit?
 - Pick one.
 - Except for load/store Load/Store must be done in the proper order to avoid hazards through memory (more loads/stores this in a later lecture)

Execute (2)

Execute (3) More than one ready inst for the same unit

Write Result (1)

- When result is computed, make it available on the "common data bus" (CDB), wherecwaiting reservation stations can pick it up
- Stores write to memory
- Result stored in the register file
- This step frees the reservation station
- For our register renaming, this recycles the temporary name (future instructions can again find the value in the actual register, until it is renamed again)

Write Result (2)

Tomasulo's Algorithm: Load/Store

- The reservation stations take care of dependences through registers.
- Dependences also possible through memory
 - Loads and stores not reordered in original IBM 360
 - We'll talk about how to do load-store reordering later

Detailed Example

Assume

R2 is 100

R3 is 200

F4 is 2.5

Load: 2 cycles

Add: 2 cycles

Mult: 10 cycles

Divide: 40 cycles

Assume

R2 is 100

R3 is 200

F4 is 2.5

Load: 2 cycles

Add: 2 cycles

Mult: 10 cycles

Divide: 40 cycles

Reservation Stations

Detailed Example

Assume

R2 is 100

R3 is 200

F4 is 2.5

Load: 2 cycles

Add: 2 cycles

Mult: 10 cycles

Divide: 40 cycles

Assume

R2 is 100

R3 is 200

F4 is 2.5

Load: 2 cycles

Add: 2 cycles

Mult: 10 cycles

Divide: 40 cycles

Reservation Stations

Detailed Example

Assume

R2 is 100

R3 is 200

F4 is 2.5

Load: 2 cycles

Add: 2 cycles

Mult: 10 cycles

Divide: 40 cycles

Assume

R2 is 100

R3 is 200

F4 is 2.5

Load: 2 cycles

Add: 2 cycles

Mult: 10 cycles

Divide: 40 cycles

Reservation Stations

					В	usy	Op	Vj	Vk	Qj	Qk	Α	
		ls	Ex	W	LD1	0							
1. L.D	F6, 34(R2)	1	2	4	LD2	0							
0 1 0	F0 45(D0)	2	3	5	AD1	1	SUB.D	1.5	0.5				
2. L.D	F2, 45(R3)	3	6		AD2	ı	A00.0		Val	901			
3. MUL.D	F0, F2, F4	4	6		AD3					, ,			
4 SUB D	F8, F2, F6	5			ML1	1	MUL.D	1.5	2.5				
		کر			ML2	1	DIV.D		0.5	ML1			
5. DIV.D	F10,F0,F6					F) F2	F4	F6 F8	F10	F12		
6. ADD.D	F6, F8, F2								10 10				
Cycle:	6	F	Regi	stei	r Status:	MI	_1		902 AD1	ML2			

Detailed Example

Assume

R2 is 100

R3 is 200

F4 is 2.5

Load: 2 cycles

Add: 2 cycles

Mult: 10 cycles

Divide: 40 cycles

Assume

R2 is 100

R3 is 200

F4 is 2.5

Load: 2 cycles

Add: 2 cycles

Mult: 10 cycles

Divide: 40 cycles

Reservation Stations

					В	usy	Op	Vj		Vk	Qj	Qk	Α	
		ls	Ex	W	LD1	0								
1. L.D	F6, 34(R2)	1	2	4	LD2	0								
0 1 0	FO 45(D2)	2	3	5	AD1	0								
2. L.D	F2, 45(R3)	3	6		AD2	1	ADD.D	1.0		2.5				
3. MUL.D	F0, F2, F4	4	6	8	AD3									
4. SUB.D	F8 F2 F6	5			ML1	1	MUL.D	1.5		2.5				
		6	9		ML2	1	DIV.D			0.5	ML1			
5. DIV.D	F10,F0,F6					F) F2	F4	F6	F8	F10	F12		
6. ADD.D	F6. F8. F2						, 12	17	10	10	1 10	1 12		,
Cycle:	9	F	Regi	stei	r Status:	MI	_1		AD2		ML2			

Detailed Example

Assume

R2 is 100

R3 is 200

F4 is 2.5

Load: 2 cycles

Add: 2 cycles

Mult: 10 cycles

Divide: 40 cycles

Assume

R2 is 100

R3 is 200

F4 is 2.5

Load: 2 cycles

Add: 2 cycles

Mult: 10 cycles

Divide: 40 cycles

Reservation Stations

Detailed Example

Assume

R2 is 100

R3 is 200

F4 is 2.5

Load: 2 cycles

Add: 2 cycles

Mult: 10 cycles

Divide: 40 cycles

Assume

R2 is 100

R3 is 200

F4 is 2.5

Load: 2 cycles

Add: 2 cycles

Mult: 10 cycles

Divide: 40 cycles

Reservation Stations

					Вι	ısy	Op		Vj		Vk	Qj	Qk	Α	
		ls	Ex	W	LD1	0									
1. L.D	F6, 34(R2)	1	2	4	LD2	0									
2 1 5	, ,	2	3	5	AD1	0									
2. L.D	F2, 45(R3)	3	6	16	AD2	0									
3. MUL.D	F0, F2, F4	4	6	8	AD3										
4 SUB D	F8, F2, F6	5	17		ML1	0									
		6	9	11	ML2	1	DIV	.D	3.75		0.5				
5. DIV.D	F10,F0,F6					FC) F	2	F4	F6	F8	F10	F12		
6. ADD.D	F6, F8, F2						<u>'</u>	_					1 12		1
Cycle:	18	F	Regi	ster	Status:							ML2			

Detailed Example

Assume

R2 is 100

R3 is 200

F4 is 2.5

Load: 2 cycles

Add: 2 cycles

Mult: 10 cycles

Divide: 40 cycles

Timing Example

Kind of hard to keep track with previous table-based approach
Load: 2 cycles

Simplified version to track timing only

A -1 -1 - O - - - -1 - -

Add: 2 cycles

Mult: 10 cycles

Divide: 40 cycles

Inst	Operands	Is	Exec	Wr	Comments
L.D	F6,34(R2)	1	2	4	
L.D	F2, 45(R3)	2	3	5	
MUL.D	F0,F2,F4	3	6 /	_/ 16	
SUB.D	F8,F2,F6	4	6 /	8	
DIV.D	F10,F0,F6	5	17 /	57	
ADD.D	F6,F8,F2	6	9	11	