

⑫実用新案公報 (Y2)

平5-22666

⑬Int.Cl. 5

F 16 G 5/18

識別記号 庁内整理番号
C 7366-3 J

⑭公告 平成5年(1993)6月10日

(全10頁)

⑮考案の名称 伝動ベルト

⑯実 願 昭62-92838

⑯公 開 昭63-201248

⑰出 願 昭62(1987)6月18日

⑰昭63(1988)12月26日

⑱考案者 山田 一浩 神奈川県横浜市神奈川区宝町2番地 日産自動車株式会社
内

⑲出願人 日産自動車株式会社 神奈川県横浜市神奈川区宝町2番地

⑳代理人 弁理士 宮内 利行

㉑審査官 橋本 康重

㉒参考文献 特開 昭61-211554 (JP, A)

1

2

㉓実用新案登録請求の範囲

断面円弧状の対向面で互いに接触して揺動可能な1対の揺動部材からなるロツカージョイントピンによって複数のリンクプレートを順次連結することによって無端状としたチェーンと、チェーンに組み付けられるテーパ断面付きの複数の摩擦ブロックと、からなる伝動ベルトにおいて、

揺動部材の対向面の曲率半径が相違する2種類以上のロツカージョイントピンが用いられていることを特徴とする伝動ベルト。

㉔考案の詳細な説明

(1) 産業上の利用分野

本考案は、伝動ベルトに関するものである。

(2) 従来の技術

従来の伝動ベルトとしては、例えば特開昭59-200838号公報に示されるものがある。これに示される伝動ベルトは、複数のリンクプレートをピンによって順次連結した無端状のチェーンと、チェーンに取り付けられる摩擦ブロックと、から構成されている。チェーンは摩擦ブロックに設けられた窓部を貫通しており、チェーンのピンによって摩擦ブロックが所定位置に保持されるようにしてある。ピンとしては1対の揺動部材を円弧状の対向面で互いに揺動させるようにしたロツカージョイントピンが用いられている。

(3) 考案が解決しようとする問題点

しかしながら、上記のような従来の伝動ベルトには、伝動の際の騒音が大きいという問題点がある。すなわち、ロツカージョイントピンの揺動部材はすべて同一の曲率半径の対向面を有しており、この対向面で揺動するため伝動ベルトの周速が一定周期で変動する。このため、伝動ベルトがブーリに巻き付いて回転する際の騒音は、所定の周波数でレベルが高くなる。

なお、特開昭61-211554号公報には、リンクプレートの穴位置を不均一なものとすることによって伝動ベルトに不規則性を与えることによって騒音を低下させた伝動チェーンが示されている。この場合には、騒音を低減することはできるものの、組み立てる際にリンクプレートの上下方向及び表裏方向の姿勢を不規則にする必要があり、自動的に組み立てる際にはリンクプレートを4つの姿勢で順次供給する必要があり、組立作業が複雑化するという問題がある。なお、リンクプレートをかき混ぜてランダムに取出すことによって順次供給されるリンクプレートに不規則性を与えることも考えられるが、リンクプレートが十分にかき混ぜられてない場合には十分な不規則性が与えられない可能性がある。

本考案はこのような問題点を解決することを目的としている。

(4) 問題点を解決するための手段

本考案は、リンクプレートを連結するロツカージョイントピンの揺動部材の曲率半径を2種類以上とすることにより上記問題点を解決する。すなわち、本考案による伝動ベルトは、ロツカージョイントピンとして揺動部材の対向面の曲率半径が相違する2種類以上のものが用いられている。

(a) 作用

ロツカージョイントピンの揺動部材の曲率半径が2種類以上設定されているため、伝動ベルトがブーリに巻き付く際の伝動ベルトの周速の変化の周期性が減少する。これにより所定の周波数の騒音ピークレベルが低下する。なお、ロツカージョイントピンとしては、2種類以上のものを用意しておき、これによつて順次リンクプレートを連結していくばよいので組立作業も容易となる。

(b) 実施例

第1図に本考案の実施例の伝動ベルト50を示す。この伝動ベルト50は、両端に穴を有する複数のリンクプレート10と、リンクプレート10を順次連結するロツカージョイントピン12a, 12b, 12c, 12d……と、第1図中仮想線によつて示す複数の摩擦プロック14とから構成されている。リンクプレート10は摩擦プロック14の窓部を貫通しており、これにより摩擦プロック14はリンクプレート10の動きを阻害しないようにリンクプレート10に保持されている。ロツカージョイントピン12aは2つの揺動部材12a₁及び12a₂から構成されており、揺動部材12a₁及び12a₂は互いに断面円弧状の対向面で揺動可能としてある。対向面の曲率半径は共にr₁としてある。ロツカージョイントピン12bも基本的にはロツカージョイントピン12aと同様の構成であるが、揺動部材12b₁及び12b₂の対向面の曲率半径をr₂としてある。同様にロツカージョイントピン12cは揺動部材12c₁及び12c₂の曲率半径をr₃としてあり、またロツカージョイントピン12dは揺動部材12d₁及び12d₂の曲率半径をr₄としてある。

このような伝動ベルト50は、第2図に示すように、2つのブーリ52及び54に巻き掛けられて使用される。ブーリ52及び54はそれぞれ固定円すい部材52a及び54aと可動円すい部材52b及び54bとを有しており、これにより互いに対面する円すい面32及び34と円すい面3

2'及び34'とを形成している。摩擦プロック14は左右両端部にブーリの円すい面32及び34、及び円すい面32'及び34'とそれぞれ接触するテーパ断面を有している。

- 5 上述のように伝動ベルト50では、ロツカージョイントピン12a, 12b, 12c, 12d……の曲率半径r₁, r_{2,3}, r₄……が相違しているため、所定の周波数成分の騒音ピークレベルが低下する。以下、これについて更に詳細に説明する。
- 10 第3図にリンクプレート、ロツカージョイントピンなどを簡略化して示す。なお、図中のα_{0i}はロツカージョイントピン12aなどの曲率半径の中心位置とリンク中心線との偏心に対応した角度である。なお、r_i × sinα_{0i}は一定値となるように設定してある。これにより第4図に示すように、リンクプレート10が直線状態となつた場合に張力の作用方向がリンクプレート10の中心線と平行になる。本実施例では、上述のように、r_i × sinα_{0i}が一定値となるように設定してあるが、もしr_i × sinα_{0i}が一定値でない場合には、第5図に示すように、リンク中心線に対して張力の作用方向が折れ線状となる（なお、実際には張力の作用方向が1直線になるので、リンク中心線が折れ線状となる）。
- 15 25 第3図でリンクプレート10₁はブーリに完全に巻き付いているリンク、リンクプレート10₂は巻き付き始めているリンクプレート、リンクプレート10₃は巻き付いていないリンクプレートである。この場合にロツカージョイントピン12aのブーリ走行半径R₁を算出する。第6図にロツカージョイントピン12aを拡大して示す。
- 30 βはリンクプレート10₁とリンクプレート10₂との交差角（リンクプレート中心線の成す角）、
- 35 点A₁はリンクプレート10₁とリンクプレート10₂との中心線が1直線の場合の揺動部材12a₁と揺動部材12a₂との接点、
- 40 点B₁は交差角βのときの揺動部材12a₁と揺動部材12a₂との接点、
- 点O₁は揺動部材12a₁の曲率半径の中心点、
- 点C₁は点B₁から線分O₁A₁に下ろした垂線の足、
- 点Oはブーリの回転中心、
- R₀は点Oと点A₁との間の距離、

とする。

ここで、

$$B_1 C_1 = (O, -r_1 \cdot \sin(\beta/2))$$

$$C_1 A_1 = (r_1(1 - \cos(\beta/2)), O)$$

$$OA_1 = (R_o \cdot \sin\theta, R_o \cdot \cos\theta)$$

とすると、

ロツカージョイントピン 12 a のブーリ巻き付き半径 $R_1 (=OB_1)$ は、

$$\begin{aligned} R_1 &= OB_1 = OA_1 + A_1 C_1 + C_1 B_1 \\ &= (R_o \cdot \sin\theta, R_o \cdot \cos\theta) \\ &\quad + (r_1(\cos(\beta/2) - 1), O) \\ &\quad + (O, r_1 \cdot \sin(\beta/2)) \\ &= (R_o \cdot \sin\theta + r_1(\cos(\beta/2) - 1), \\ &\quad R_o \cdot \cos\theta + r_1 \cdot \sin(\beta/2)) \\ &= R_o^2 + 4R_o \cdot r_1 \cdot \sin(\beta/4) \\ &\quad \cdot \cos(\theta + \beta/4) + 4r_1^2 \cdot \sin^2(\beta/4) \end{aligned}$$

となる。

ここで、 β と θ との関係は第 7 図から分かるとおり、

$$\beta + (\pi/2 + \theta) + (\pi/2 - \alpha) = \pi$$

$$\therefore \beta = \alpha - \theta$$

である。ただし、

$$\alpha = \sin^{-1}(P_o/2R_o)$$

P_o はピッチ

ベルト周速は、

$$v = \omega \cdot R_1 \cdot \cos\theta$$

ただし ω はブーリ角速度で示される。 $R_1 \cdot \cos\theta$ の値は r の値に応じて変化するので、ベルト周速 v の変化の周期性が減少する。 $R_1 \cdot \cos\theta$ の値が r の値に応じて変化することを示す計算結果を第 8, 9 及び 10 図に示す。これらは、ピッチ $P_o = 8.00\text{mm}$ でリンクプレート個数 90 の伝動ベルトが軸間距離 175 mm のブーリに巻き付いている場合で計算したものである。

次に本考案による伝動ベルトによって実際に騒音のピークレベルが低下したことを確認した実験結果を第 11 図に示す。これに使用した伝動ベルトは、 $r = 5, 8$ 及び 10mm の曲率半径の揺動部材

のロツカージョイントピンを不規則に配列したものである。測定は、40 km/h で平坦地を走行中のエンジンルーム内で行った。伝動ベルトかみ合い 1 次周波数は 80 デシベル程度であり、第 12 図に示す従来の伝動ベルトの場合（すべてのロツカージョイントピンの曲率半径が一定のもの）と比較して 10 デシベル程度ピークレベルが低下していることがわかる。

(I) 考案の効果

- 10 以上説明してきたように、本考案によると、ロツカージョイントピンの揺動部材の曲率半径を 2 種類以上としたので、騒音のピークレベルを低下することができる。また、複数のロツカージョイントピンを順次組み付けていけば、伝動ベルトに 15 不規則性を与えることができるので、リンクプレートの上下裏表の姿勢を制御して組み立てる場合と比較して、組み立て作業が簡略化される。

図面の簡単な説明

- 第 1 図は本考案の実施例の伝動ベルトを示す 20 図、第 2 図は伝動ベルトをブーリに巻き掛けた状態を示す図、第 3 図はピン及びリンクプレートの位置関係を示す図、第 4 図はリンクプレートを直線とした場合の状態を示す図、第 5 図は曲率半径の設定が適切でない場合のロツカージョイントピンの状態を示す図、第 6 図はロツカージョイントピンの部分を拡大して示す図、第 7 図はブーリ中心に対するロツカージョイントピンの状態を示す図、第 8, 9 及び 10 図はそれぞれ r に対する $R_o \cdot \cos\theta$ の計算結果を示す図、第 11 図は本考案の伝動ベルトを用いた場合の騒音レベルを示す図、第 12 図は従来の伝動ベルトの騒音レベルを示す図である。

- 10 ……リンクプレート、12 a, 12 b, 1
2 c, 12 d ……ロツカージョイントピン、12
35 a₁, 12 a₂, 12 b₁, 12 b₂, 12 c₁, 12 c₂,
12 d₁, 12 d₂ ……揺動部材、14 ……摩擦プロ
ツク。

第2図

第4図

 $(r_1 \sin \alpha_{01} = \text{定時})$

第5図

 $(r_1 \sin \alpha_{01} = \text{定時})$

第6図

第7図

第8図

変速比 $i_p = 0.45$

第9図

変速比 $i_p = 1.00$

第10図

第11図

第1図

第3図

第12図

