Deep Deterministic Policy Gradient Discussion

2019.03.15

王政飞

目录

- Deterministic Policy Gradient. ICML 2014. DeepMind.
- Deep Deterministic Policy Gradient. ICLR 2016. DeepMind.
- Applications (fake).

Deterministic Policy Gradient

- Stochastic policy gradient (SPG) 用一个参数化的概率分布 $\pi_{\theta}(a|s) = \mathbb{P}[a|s;\theta]$ 来表示策略
- Deterministic policy gradient^[1] (DPG) 希望用确定性策略 $a = \mu_{\theta}(s)$ 来表示
- 针对同样的状态s:
 - · 参数确定的SPG会采取不同的动作;
 - 参数确定的DPG会产生同样的动作。
 - 论文中提到SPG的训练会需要更多的sample, WHY?
- 为了保持对所有状态和动作的探索, 随机策略仍旧是十分必要的
- 采用了actor-critic算法
- 论文中提到DPG的应用场景比SPG更广泛, WHY? (Introduction最后一段)

Gradients of Deterministic Policies

- 使用 $Q^{\mu}(s,a)$ 表示动作价值函数, θ 为策略函数 μ 的参数
- 一种贪心的参数更新思路: 在每一个状态s, 都尽可能的优化 μ 使得当前状态的Q尽可能大

$$\theta^{k+1} = \theta^k + \alpha \mathbb{E}_{s \sim \rho^{\mu^k}} \left[\nabla_{\theta} Q^{\mu^k}(s, \mu_{\theta}(s)) \right]$$

• 应用链式法则:

$$\theta^{k+1} = \theta^k + \alpha \mathbb{E}_{s \sim \rho^{\mu^k}} \left[\nabla_{\theta} \mu_{\theta}(s) \nabla_a Q^{\mu^k}(s, a) \Big|_{a = \mu_{\theta}(s)} \right]$$

Deep Deterministic Policy Gradient

Algorithm 1 DDPG algorithm

Randomly initialize critic network $Q(s, a|\theta^Q)$ and actor $\mu(s|\theta^\mu)$ with weights θ^Q and θ^μ .

Initialize target network Q' and μ' with weights $\theta^{Q'} \leftarrow \theta^Q$, $\theta^{\mu'} \leftarrow \theta^\mu$

Initialize replay buffer R

for episode = 1, M do

Initialize a random process \mathcal{N} for action exploration

Receive initial observation state s_1

for t = 1, T do

Select action $a_t = \mu(s_t|\theta^{\mu}) + \mathcal{N}_t$ according to the current policy and exploration noise

Execute action a_t and observe reward r_t and observe new state s_{t+1}

Store transition (s_t, a_t, r_t, s_{t+1}) in R

Sample a random minibatch of N transitions (s_i, a_i, r_i, s_{i+1}) from R

Set $y_i = r_i + \gamma Q'(s_{i+1}, \mu'(s_{i+1}|\theta^{\mu'})|\theta^{Q'})$ Update critic by minimizing the loss: $L = \frac{1}{N} \sum_i (y_i - Q(s_i, a_i|\theta^Q))^2$

Update the actor policy using the sampled policy gradient:

$$\nabla_{\theta^{\mu}} J \approx \frac{1}{N} \sum_{i} \nabla_{a} Q(s, a | \theta^{Q}) |_{s=s_{i}, a=\mu(s_{i})} \nabla_{\theta^{\mu}} \mu(s | \theta^{\mu}) |_{s_{i}}$$

Update the target networks:

$$\theta^{Q'} \leftarrow \tau \theta^Q + (1 - \tau)\theta^{Q'}$$

$$\theta^{\mu'} \leftarrow \tau \theta^{\mu} + (1-\tau) \theta^{\mu'}$$

end for end for

Get your Hands Dirty

- 1. Replay Buffer (for all off-policy RL algorithms)
 - a) st, at, rt, st+1 algorithms needed
 - b) done for calculate Q
- 2. Actor-Critic: share architecture (initialization)
- 3. DDPG agent
 - a) select actions: random / greedy
 - b) remember trajectories
 - c) update policy
- 4. interaction with environment
- 5. if needed, normalize your environment

Watching Code Time

• Spinning Up:

https://github.com/openai/spinningup/blob/master/spinup/algo s/ddpg/ddpg.py

Applications

- NIPS/NeurIPS challenges, Learning to Run/AI for Prosthetics
- What else?