Die Impfquote im Infektionsmodell Leon Obermann

Agenda

Derzeitige Situation

Großteil der Bevölkerung ist geimpft

Infektionszahlen dennoch hoch

Modell

SIR Modell

IBM

1 Tick = 6 Stunden

Parameter

Impfquote von 0 bis 1 Schrittweite von 0.1 → 11 Variationen

Runs

Pro Variation 1000 Stück

- → 11.000 Runs
- → 3.698.221 Zeilen

Untersuchte Werte pro Tick

Anzahl an Gesunden Anzahl an Infizierten Anzahl an Genesenen

Auswertung - Gipfel der Infektion

Höhere Impfquote

→ Weniger Turtles gleichzeitig krank

Auswertung - Länge der Infektion

Höhere Impfquote

→ Längere "Wellen"

Ab ~90% Impfquote auch sehr kurze Wellen, da Virus ausstirbt und nicht mehr alle infiziert

Auswertung - Verläufe der Impfquoten im Vergleich

Höhere Impfquote

→ Flachere, aber breitere Kurve

Auswertung - 95% Konfidenzintervall

Auswertung - Standardabweichung

Auswertung - "Genesene" am Ende der Infektion

Höhere Impfquote

→ Insgesamt weniger Turtles infiziert

Auswertung - Nicht infizierte am Ende der Infektion

Höhere Impfquote

→ Insgesamt mehr Turtles unbetroffen

Fazit

Welche Auswirkungen hat die Impfquote auf die Verbreitung einer Infektionskrankheit?

Flachere Kurven

Breitere kurven

Ab gewisser Impfquote nicht mehr alle angesteckt

Inkubations zeit

Bedürfnisse

Ansteckungs gefahr

