数据科学融通应用数学

张平文

北京大学数学科学学院 2020年3月

数学的春天来了!

我们的机遇在哪里?

目 录

- 一. 应用数学的历史与现状
- 二. 数据科学
- 三. 数据科学融通应用数学
- 四. 机遇在哪里

早期的数学(约18世纪以前)

- 数学与其他学科难以区分
 - 阿基米德 (哲学家、数学家、物理学家)
 - 牛顿 (物理学家, 数学家)

中期的数学 (18世纪到20世纪前叶)

- 数学逐渐与其他学科分离
 - 黎曼 (数学家)
 - 爱因斯坦 (物理学家)

Riemannian Geometry

数学研究方向开始逐步细化

数学科学的特点

- 高度的抽象性
- 体系的严谨性
- 应用的广泛性
- 发展的连续性

近代的应用数学

- 二战:密码、核武器
- 计算机的发明是应用数学的新起点
 - 中国:两弹一星工程
 - 模型、算法是应用数学研究的核心

第一台计算机 (1946年)

基础数学的价值观

- 数学的内在逻辑
- 简洁与美

素数表(100以内的数)								
2	3	5	7	11	13	17	19	23
29	31	37	41	43	47	53	59	61
67	71	73	79	83	89	97		

$$e^{i\pi}+1=0$$

驱动力来自于人类对于 未知的探索和美的追求

应用数学的价值观

- 简洁与美 (理论)
- 科学意义(交叉)
- 经济与社会价值 (落地)

多个价值观的平衡与协调

国家需求驱动应用数学的发展

- 国防建设
- 企业创新

我国数学学科的分类

- 数学与应用数学
- 信息与计算科学
- 统计学

- 基础数学
- 计算数学
- 应用数学
- 概率与统计
- 运筹与控制

2010年统计学成为一级学科

我国应用数学现状-1: 位居世界前列

- 亚洲领先
- 追赶美国欧盟

我国应用数学现状-2:学科分散

我国应用数学现状-3:学生比例

- 应用数学学生占比高
 - 以北大为例:应用数学(含统计)学生约80%
 - 其他学校可能更高
- 学校定位不同

我国应用数学现状-4: 培养体系不完善

- 缺乏系统的培养模式
- 远不如基础数学
 - 培养目的
 - 教材

我国应用数学现状-5:发展不平衡

- 落地成果少
- 地区差别大
- 原创成果少

目 录

- 一. 应用数学的历史与现状
- 二. 数据科学
- 三. 数据科学融通应用数学
- 四. 机遇在哪里

新时代不断涌现出新技术

- 新一代信息技术
 - 5G、物联网、大数据、云计算、人工智能、区块链等 多种信息技术的综合

新一代信息技术的基础: 数学

- 新一代信息技术中,**数学的作用凸显**
 - 摩尔定律接近极限
 - 硬件设施比重逐渐降低,**以数学为基础**的软件与算法开始占重要地位

量子力学原理制约了芯片的尺寸

$$\frac{\partial}{\partial a} \ln f_{a,\sigma^{2}}(\xi_{1}) = \frac{(\xi_{1} - a)}{\sigma^{2}} f_{a,\sigma^{2}}(\xi_{1}) = \frac{1}{\sqrt{2\pi\sigma}} \int_{a,\sigma^{2}} f(\xi_{1}) d\xi_{1} d\xi_{2} d\xi_{3} d\xi_{4} d\xi_{4} d\xi_{5} d\xi$$

数学能够提供更有效的方法

新一代信息技术催生了数据科学

大量传感器、 摄像头、手机 等可获取数据

计算能力得到了极大的提高

逐步认识到数 据中的经济和 社会价值

通过对数据的 分析来获取价 值,逐渐演变 成了**数据科学**

数据科学是谁的领地?

- 统计学
 - 历史悠久
- 机器学习、人工智能(计算机)
 - 工程化思维
- 优化、计算 (应用数学)
 - 理性思维

数据科学的内涵

- 数据科学的核心
 - 算法、模型、数学理论
- 用科学的方法研究数据
 - 数据的获取、存储、质量、传输、分析
- 用数据的方法研究科学
 - 弱机理
 - 机理与数据融合方法

数据科学是典型的交叉学科

● 涉及众多学科和领域

数据科学的困惑

- 新兴学科,独特性还不清晰
 - 例如,深度学习的可解释性?

目录

- 一. 应用数学的历史与现状
- 二. 数据科学
- 三. 数据科学融通应用数学
- 四. 机遇在哪里

数据科学之于应用数学-1

● 融通应用数学

数据科学之于应用数学-2

- 极大地拓展了应用数学的舞台
 - 基于物理的自然科学
 - 基于数据的社会科学

数据科学之于应用数学-3

- 应用数学落地的重要途径
 - 各行各业都需要
 - 起点不高
 - 适合创新创业

数据科学之于应用数学-4

- 应用数学教育
 - 人才培养体系
 - 对学生吸引力强
 - 就业面宽广

目录

- 一. 应用数学的历史与现状
- 二. 数据科学
- 三. 数据科学融通应用数学
- 四. 机遇在哪里

研究人员

- 基础理论: 离散几何、离散拓扑、图论与组合
- 算法、模型
 - 机器学习特别是深度学习的数学理论
 - 知识图谱
 - 新型算法
 - 机理与数据融合模型与算法
- 交叉学科研究
- 落地研究

学生

- 数据科学是性能价格比很高的学科
 - 门槛不高
 - 就业面很广
 - 收入高
 - 工作没有危险性
- 情怀与价值的冲突
- 鼓励投身国防领域

中国工业与应用数学学会

- 吸引更多工业界的会员
- 数学如何促进企业创新?
- 指导制定评价标准

数学与企业合作交流研讨会

学会专家实地考察企业

数学与企业创新生态构建

- 数学与企业交流合作平台
- 数学促进企业创新发展论坛

平台网址: math2industry.com

合作交流平台网站

小结

- 数学的春天来了!
- 数据科学是发力点
- 国家需求驱动应用数学发展
- 落地才能使得数学有根
- 体面的应用数学人

谢谢各位!

Thanks