NoSQL- Wide Column Store

Dr. Gerardo Rossel

1er Cuatrimestre 2024

Diseño

Cassandra - Notación/Método Chebotko

- Modelo Conceptual (DER) y Workflow (consultas)
- Modelo Lógico
 - Buscar el subconjunto del modelo conceptual que satisface cada consulta
 - Elegir claves
 - Usar diagramas Chebotko para describir el modelo lógico

SE CREA UNA TABLA POR CONSULTA

Reglas de Mapeo

Basados en los DMP (Data Modeling Principles), las reglas de mapeo ayudan a realizar la transición desde el modelo conceptual al modelo lógico.

MR1 (Entities and Relationships): Los tipos de entidades y relaciones mapean a tablas mientras que los datos se asignan a filas. Los atributos de las entidades y las relaciones se mapean a columnas

Reglas de Mapeo

Basados en los DMP (Data Modeling Principles), las reglas de mapeo ayudan a realizar la transición desde el modelo conceptual al modelo lógico.

- MR1 (Entities and Relationships): Los tipos de entidades y relaciones mapean a tablas mientras que los datos se asignan a filas. Los atributos de las entidades y las relaciones se mapean a columnas
- MR2 (Equality Search Attributes): Si se utilizan en una consulta por igualdad de atributos, entonces, éstos se mapean a columnas del prefijo de la clave primaria. Dichas columnas deben incluir todas las columnas de clave de partición y, opcionalmente, una o más columnas clustering key.

Reglas de Mapeo

Basados en los DMP (Data Modeling Principles), las reglas de mapeo ayudan a realizar la transición desde el modelo conceptual al modelo lógico.

- MR1 (Entities and Relationships): Los tipos de entidades y relaciones mapean a tablas mientras que los datos se asignan a filas. Los atributos de las entidades y las relaciones se mapean a columnas
- MR2 (Equality Search Attributes): Si se utilizan en una consulta por igualdad de atributos, entonces, éstos se mapean a columnas del prefijo de la clave primaria. Dichas columnas deben incluir todas las columnas de clave de partición y, opcionalmente, una o más columnas clustering key.
- MR3 (Inequality Search Attributes): Si se utilizan en consultas por desigualdad, estos atributos mapean como columnas clustering key. En la definición de clave principal, una columna que participa en la búsqueda de desigualdad debe ubicarse después de las columnas que participan en la búsqueda de igualdad.

Reglas de mapeo. Continuación

- MR4 (Ordering Attributes): Mapea a una columna clustering key con orden ascendente o descendente según se especifique en la consulta
- MR5(Key Attributes): Mapea a columnas en la clave primaria. Una tabla que almacena datos de entidades o relaciones como filas debe incluir atributos claves que identifique estos datos unívocamente

Cassandra - Notación/Método Chebotko

Ejemplo

Aplicación de videos, los usuarios suben videos, califican los videos y comentan videos

Ejemplo

Aplicación de videos, los usuarios suben videos, califican los videos y comentan videos

Example Workflow

Identificar queries

Show a

video and its

details

Find a video by

an id

Queries

- user_by_email
- user by id
- videos_by_user
- ratings_by_user
- comments_by_user
- videos_by_tag
- latest_videos
- videos_by_id
- comments_by_video
- ratings_by_video

1-User by email / 2-User by Id

user_by_email email userid firstname lastname created_date

1-User by email / 2-User by Id

user_by_email
email K
userid
firstname
lastname
created_date

user_by_em	nail
email	K
userid	C↑
firstname	
lastname	
created_date	

user_by_email	
email	K
userid	C↑
firstname	
lastname	
created_date	

user_by_id	
userid	K

user_by_email	
email	Κ
userid	C↑
firstname	
lastname	
created_date	

user_by_id	
userid	Κ
firstname	
lastname	
created_date	
email	

user_by_em	nail
email	K
userid	C↑
firstname	
lastname	
created_date	

user_by_id	
userid	Κ
firstname	S
lastname	S
created_date	S
email	S

10-Rating info con rated_date(Desc) by Video + Video info | MR:1y2

10-Rating info con rated_date(Desc) by Video + Video info | MR:1y2

10-Rating info con rated_date(Desc) by Video + Video info | MR:3y4

10-Rating info con rated_date(Desc) by Video + Video info | MR:5

10-Rating info con rated_date(Desc) by Video + Video info | Statics?

10-Rating info con rated_date(Desc) by Video + Video info | Statics?

Modelo Físico

ratings_by_vio	leo
videoid	K
rated_date	C↓
userid	C↑
rating	
added_date	S
name	S
descripcion	S
location	S
preview_date	S
{tags}	S

Modelo Físico

ratings_by_vio	leo
videoid	K
rated_date	$C\!\!\downarrow$
userid	C↑
rating	
added_date	S
name	S
descripcion	S
location	S
preview_date	S
{tags}	S

ratings	_by_video	
videoid	uuid	Κ
rated_date	timestamp	C↓
userid	uuid	C↑
rating	int	
added_date	date	S
name	text	S
descripcion	text	S
location	text	S
preview_date	text	S
{tags}	set <text></text>	S

CQL

```
CREATE TABLE raitnig_by_video(
  videoid uuid,
  rated_date,
  userid uuid,
  rating int ,
  added date,
  name text,
  descripcion text,
  location text,
  preview_date text,
  tags set<text> ,
  PRIMARY KEY((videoid), rated_date, userid)
) WHIT CLUSTERING ORDER BY (rated_date DESC, userid ASC)
```


Bibliografía

- Artem Chebotko, Andrey Kashlev, and Shiyong Lu. 2015.
 A Big Data Modeling Methodology for Apache Cassandra.
 In Proceedings of the 2015 IEEE International Congress on Big Data.
- Jeff Carpenter and Eben Hewitt. 2020. *Cassandra: The Definitive Guide* (3rd. ed.). O'Reilly Media, Inc.