DS n°4 de Physique-Chimie - Correction

!!! Chiffres significatifs: 0,5 points!!!

Exercice 1 - Phosphorescence (5 points):

Question	Réponse	Points
1a	Avec l'électron célibataire, il formera une liaison covalente. Il n'a pas besoin de liaison non liante pour avoir une structure électronique saturée en 1s².	0.5
1b	Perte de son seul électron de valence (0.25) Il est chargé positivement, c'est un cation (0.25) Cet ion qui n'a plus d'électron est un proton (0.25)	0.75
1c	Structure électronique ou configuration électronique	0.25
1d	Deux liaisons covalentes simples ou une liaison covalente double car il a besoin de deux électrons célibataires d'un autre atome pour se stabiliser.	0.5
1e	Liaison C-O et liaison C-OH à entourer	0.25
2a	$\bigcirc = \bigcirc$	0.5
2b	Les deux oxygènes n'ont pas 2 liaisons covalentes et 2 liaisons non liantes.	0.5
3a	Liaison non liante sur les deux atomes d'azote (0.25) Deux liaisons non liantes sur chaque atome d'oxygène (0.5) Un hydrogène sur le carbone du haut (0.25)	1
3b	C-O car énergie de liaison la plus faible	0.5
3c	Le carbone de la liaison C=O s'est « accroché avec l'azote de NH, permettant d'obtenir une boucle (un cycle)	0.25
Fotal exercice 1 :		5

Exercice 2 - Stephen Hawking (7,5 points):

Question	Réponse	Points
1a	$N = 2.0 \times 10^{23} = 2.0 \times 10^5 \times 10^{18} = 200\ 000\ trillions$	0.5
1b	$m_{\text{tot H}} = N \times m_{\text{moy}} = 2.0 \times 10^{23} \times 1.0 \times 10^{30} = 2.0 \times 10^{53} \text{ kg}$	0.5
1c	$m_H = m_{tot H} / N_H = 2.0 \times 10^{53} / 1.0 \times 10^{80} = 2.0 \times 10^{-27} \text{ kg}$	1
1d	$nH = N_H / N_A = 1.0 \times 10^{80} / 6.02 \times 10^{23} = 1.7 \times 10^{56} \text{ mol}$	1
2a	$N_{He} = n_{He} \times N_A = 5,40 \times 10^{54} \times 6,02 \times 10^{23} = 3,25 \times 10^{78}$	1
2b	$m_{\text{tot He}} = N_{\text{He}} \times m_{\text{He}} = 3,25 \times 10^{78} \times 6,65 \times 10^{-27} = 2,16 \times 10^{52} \text{ kg}$	1
3a	$m_{\text{tot}} = m_{\text{tot H}} + m_{\text{tot He}} = 2.0 \times 10^{53} + 2.16 \times 10^{52} = 2.2 \times 10^{53} \text{ kg}$	0.5
3b	$P_H = m_{tot H} / m_{tot} = 2.0 \times 10^{53} / 2.2 \times 10^{53} = 91 \%$	1
3c	$\rho = m_{tot} / (4x\pi x R^3/3) = 1.4 \times 10^{156} \text{ kg.m}^{-3}$	1
Total exercice 2 :		7,5

Exercice 3 - La voiture de Penny (7 points):

Question	Réponse	Points
1a	Système : voiture Référentiel terrestre	0,5
1b	 ★ à ● : rectiligne décéléré ● à ▲ : circulaire uniforme ▲ à + : rectiligne accéléré + à ■ : rectiligne uniforme 	1
1c	CI ou EF: curviligne	0.5
2a	Voiture: 0,6 cm correspondant à 5,50 m Distance: 3,2 cm, soit 29 m (accepté entre 25 et 35 m)	0.5
2b	Direction : horizontale (0.25) Sens : vers la droite (0.25) Valeur : $v_{moy} = d / (3 \times \Delta t) = 29 / 3.0 = 9.7 \text{ m.s}^{-1} (0.5)$	1
3a	Origine: M14 (0.25) Direction: horizontale (0.25) Sens: vers la droite (0.25) $M_{14}M_{15} = 1,7$ cm sur le schéma, soit 16 m (0.25) Valeur: $v_{14} = M_{14}M_{15} / \Delta t = 16 / 1.0 = 16 \text{ m.s}^{-1}$ (0.5)	1.5
3b	Le vecteur doit avoir une longueur de 4,7 cm en partant de M14	1
3c	$v_{14} = 16 \times 3.6 = 58 \text{ km.h}^{-1}$ $v_{max} = 25 \text{ miles/h} = 40 \text{ km.h}^{-1}$ Oui, énervée, Penny dépasse bien la vitesse autorisée	1
Total exercice 3:		7