The reaction mechanism of Cytochrome c Oxidase

Xavier Prat-Resina
Group Meeting
January 27th 2006

Summary

- 1.Introduction to Cytochrome c Oxidase (CcO) reactivity
- 2.Description of the setup for simulation
- 3.Glu242: waters and channels. A qualitative analysis with MD
- 4.Glu242: pK calculations. A quantitative analysis
- 5.His291: coupling between physical and chemical site?
- 6. Conclusions and perspectives

1.Introduction: Cytochrome c Oxidase (CcO)

CcO:

The last complex in the Electron transfer chain

$$O_2 + 8H_{in}^+ + 4e^- \rightarrow 2H_2O + 4H_{out}^+$$

2 coupled process: Exergonic Oxigen reduction Endergonic proton pumping

1.Introduction: Chemical process

At every stage one proton is believed to be pumped In total 4 protons are pumped

Other authors might consider different intermediate species

1.Introduction: Pumping and reduction. A coupled process

1.Introduction: Pumping and reduction. A coupled process

D98N: oxygen reduction slightly faster, but no pump. $pK(E242)=9.4 \longrightarrow 11.0$

1.Introduction: Open Questions

1.The sequence of the two protons and electron:
How OOC-Heme and Glu242 balance their pK (Nilanjan)

2.The source of protons and the modulation of the pK of Glu242 from the D-channel

Compute the pK of Glu242 For Wild Type CcO and ND98 mutant

1.Introduction: Theoretical studies

*Strategy 1: Matar mosques a canonades (killing flies with cannons) Accurate method but inadequate model

J. Phys. Chem. A 2000, 104, 2367—2374

2367

Ab Initio Study of Coupled Electron Transfer/Proton Transfer in Cytochrome c Oxidase

Dana B. Moore and Todd J. Martínez*

Department of Chemistry and The Beckman Institute, University of Illinois, Urbana, Illinois 61801 J. Phys. Chem. B 2005, 109, 22013-22026 22013

> Titration Behavior of Residues at the Entrance of the D-Pathway of Cytochrome c Oxidase from Paracoccus denitrificans Investigated

Electrostatic Study of the Proton Pumping Mechanism in Bovine Heart Cytochrome c Oxidase

Dragan M. Popović and Alexei A. Stuchebrukhov*

Contribution from the Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616

Structural Character and Energetics of Tyrosyl Radical Formation by Electron/Proton Transfers of a Covalently Linked Histidine-Tyrosine: A Model for Cytochrome c Oxidase

Yuxiang Bu[†] and R. I. Cukier*

Department of Chemistry, Michigan State University, East Lansing, Michigan 48824-1322

*Strategy 2: Matar el burro a pessics (killing a donkey pinching it)

Adequate model but inaccurate method

Electrostatic Study of the Proton Pumping Mechanism in Bovine Heart Cytochrome c Oxidase

Dragan M. Popović and Alexei A. Stuchebrukhov*

tion, and Genetics 30:100-107 (1998)

Contribution from the Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616

*Max Planck Institute of Biophysics, Department of Molecular Membrane Biology, D-60438 Frankfurt, Germany; and †Saarland University, Center for Bioinformatics, 66041, Saarbrücken, Germany

by Continuum Electrostatic Calculations

Elena Olkhova,* Volkhard Helms,† and Hartmut Michel*

FEBS Letters 579 (2005) 2026-2034

FEBS 29400

Oxygen and Proton Pathways in Cytochrome c Oxidase

Ivo Hofacker and Klaus Schulten*

Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois

Hypothesis

Simulating redox coupled proton transfer in cytochrome c oxidase: Looking for the proton bottleneck

Biophysical Journal Volume 89 October 2005 2324-2331

Mats H.M. Olsson*, Pankaz K. Sharma, Arieh Warshel*

*Our strategy:

All the system needs to be included but with accurate reactive potentials

2. Setup: metalloenzymes. Why people did not study CcO with QM/MM

1.SCC for copper systems. Comparison with DFT (ADF in progress)
Proton affinities

PA(B3lyp/SCC)	Cu-OH	Cu-OH ₂
His291	-282.60/-281.50	-204.80/-203.60

With NHmod2 parameters

PA(B3lyp/SCC)	His291(N)	His 291(NH)
Cu-OH	-268.40/-287.97	-190.59/-210.07

With NH parameters

PA(B3lyp/SCC)	Cu-OH	Cu-OH ₂
His291	-282.60/-278.97	-204.80/-201.70

PA(B3lyp/SCC)	His291(N)	His 291(NH)
Cu-OH	-268.40/-282.43	-190.59/-205.17

- 2. Optimize from *ab initio* data the Van der Waals Parameters for Fe=O and Cu-OH
- 3. Compute ESP charges for Heme and Cu systems when they are treated with Molecular Mechanics

2.Setup: QM/MM in F state of CcO

SCC-DFTB/MM/GSBP Sphere of waters 30Å ~15,500 atoms Stochastic Boundary MD

QM partitions: Glu242 (Glu242 pK) Glu242+13waters (D channel) HO-Cu-(His)₃ (His291 pK)

...The rest of protein is not shown

3.Glu242: waters and channels. A qualitative analysis

CcO wild type CcO ND98 mutant (Glu242 is not connected to His151) (new channel in His151?)

3.Glu242: waters and channels. A qualitative analysis
D-channel in CcO wild type: H+ protonates Glu242
while in ND98 H+ stays close to D98

Short MD At 50 K

Thermodynamic Integration: Dual Topology Single Coordinate (DTSC)

$$AH \cdot E(aq) \xrightarrow{\Delta G_{AH/A^{-}}^{(E)}} A^{-} \cdot E(aq) + H^{+}(aq)$$

$$\Delta G^{(1)} \downarrow \qquad \qquad \Delta G = \int \langle \frac{\delta H}{\delta \lambda} \rangle d\lambda$$

$$[A^{-} \cdot D] \cdot E(aq) \qquad \qquad \Delta G^{(2)} \downarrow \qquad \qquad H(\lambda_{i}) = (1 - \lambda_{i}) H_{AH} + \lambda_{i} H_{A-D}$$

$$A^{-} \cdot E(aq) + D(g) \xrightarrow{\Delta G^{-} \cdot E(aq)} H^{+}(g) \qquad \qquad \frac{\delta H(\lambda_{i})}{\delta \lambda} = H_{A-D} - H_{AH}$$

$$\Delta \mathbf{G}_{\mathbf{AH/A}^{-}}^{(\mathbf{E})} = \Delta G^{(1)} + \Delta G^{(2)} + \Delta G_{H^{+}}^{solv} + \Delta ZPE_{AH/A^{-}}$$
$$pK_{a}^{(E)} = \Delta \mathbf{G}_{\mathbf{AH/A}^{-}}^{(\mathbf{E})} / (2.303RT)$$

When do we stop the simulation?

Convergence of simulation: Reverse Cumulative Average (RCA)

Different windows: $\lambda = 0.0, 0.2, 0.5, 0.8, 1.0$

1.6 ns

0.8 ns

RCA: τ =40 ps

The simulation on every window is converged when ϕ converges at a given value of τ

pK E242 ND98 mutant

Deprotonated Glu242 makes the difference

$$\Delta G(WT)=189.7$$
kcal/mol $\Delta G(ND98)=199.2$ kcal/mol

$$\Delta\Delta G$$
=9.5 kcal/mol Δ pK=6.8 (exp. 1.6)

Pomes vs Stuchebrukhov

Stuchebrukhov: His291 has a modulated pK depending on the metal ligation. It's responsible for the pumping.

Pomes: His291 is always protonated and its pK doesn't change remarkably at different ligation states of Cu

We will compute the pK of His291 And compare it with imidazole and a copper site model in water

pK methyl imidazole in water

Imidazole is not the adequate system to compare with. A model of the system in water has problems in SCF convergence SCC-DFTB for Cu needs to be corrected (ADF)...work in progress

6. Conclusions and perspectives

- *The number of waters and their mobility are essential for the modulation of pK between the clue residues. Continuum electrostatics calculations might not give an adequate picture of the system
- *From plain MD simulations we can explain qualitatively how ND98 mutant has a more basic E242.

 Changing the Cu ligation we could see the behaviour of wires
- *The quantitative pK shift in E242 requires much more sampling
- *Although we can say that His291 has a higher pK than imidazole we still cannot quantify how much. We need a better model and to correct the SCC level. Then compute pK for different Cu states.

A place to relax...

Electrostatic analysis: LRA

