Ch. 2 – Probability

Example – Three-Component System

Suppose a system has three components, and to work either component A must work, *or* both components B and C must work.

Example – Three-Component System

Suppose a system has three components, and to work either component A must work, *or* both components B and C must work.

 The probabilities that components A, B, and C work are .7, .4, and .9, respectively.

Example – Three-Component System

Suppose a system has three components, and to work either component A must work, *or* both components B and C must work.

- The probabilities that components A, B, and C work are .7,
 .4, and .9, respectively.
- What is the probability that the system will work?

Example – Direct but Tedious Solution

P(component A works) = .7 P(component B works) = .4P(component C works) = .9

Example – Direct but Tedious Solution

P(component A works) = .7 P(component B works) = .4P(component C works) = .9

8 possible outcomes: SSS, SSF, SFS, SFF, FSS, FSF, FFS, FFF (e.g., FSS means component A fails but B, C successfully work.)

Example - Direct but Tedious Solution

P(component A works) = .7 P(component B works) = .4P(component C works) = .9

8 possible outcomes: SSS, SSF, SFS, SFF, FSS, FSF, FFS, FFF (e.g., FSS means component A fails but B, C successfully work.)

$$P(SSS) = .7 \times .4 \times .9 = .252$$
 $P(FSS) = .3 \times .4 \times .9 = .108$ $P(SSF) = .7 \times .4 \times .1 = .028$ $P(FSF) = .3 \times .4 \times .1 = .012$ $P(SFS) = .7 \times .6 \times .9 = .378$ $P(FFS) = .3 \times .6 \times .9 = .162$ $P(SFF) = .7 \times .6 \times .1 = .042$ $P(FFF) = .3 \times .6 \times .1 = .018$

Example - Direct but Tedious Solution

$$P(\text{component A works}) = .7$$

 $P(\text{component B works}) = .4$
 $P(\text{component C works}) = .9$

8 possible outcomes: SSS, SSF, SFS, SFF, FSS, FSF, FFS, FFF (e.g., FSS means component A fails but B, C successfully work.)

$$P(SSS) = .7 \times .4 \times .9 = .252$$
 $P(FSS) = .3 \times .4 \times .9 = .108$
 $P(SSF) = .7 \times .4 \times .1 = .028$ $P(FSF) = .3 \times .4 \times .1 = .012$
 $P(SFS) = .7 \times .6 \times .9 = .378$ $P(FFS) = .3 \times .6 \times .9 = .162$
 $P(SFF) = .7 \times .6 \times .1 = .042$ $P(FFF) = .3 \times .6 \times .1 = .018$
 $P(\{SSS, SSF, SFS, SFF, FSS\}) = .252 + .028 + .378 + .042 + .108$
 $= .808$

There is an 80.8% chance the system will still work after four years.

Basic Set Theory

Suppose a random process has a set Ω of possible outcomes.

An **event** is a subset of Ω . Given two events A and B,

- The **intersection** $A \cap B$ consists of outcomes in A and B,
- The **union** $A \cup B$ consists of outcomes in A or B (or both).
- The **complement** A' consists of outcomes *not* in A.

Basic Set Theory

Suppose a random process has a set Ω of possible outcomes.

An **event** is a subset of Ω . Given two events A and B,

- The **intersection** $A \cap B$ consists of outcomes in A and B,
- The **union** $A \cup B$ consists of outcomes in A or B (or both).
- The **complement** A' consists of outcomes *not* in A.

For instance, suppose we roll a six-sided die.

- Let A be the event that we roll an even number.
- Let B be the event that we roll a 4 or higher.

Basic Set Theory

Suppose a random process has a set Ω of possible outcomes.

An **event** is a subset of Ω . Given two events A and B,

- The **intersection** $A \cap B$ consists of outcomes in A and B,
- The **union** $A \cup B$ consists of outcomes in A or B (or both).
- The **complement** A' consists of outcomes *not* in A.

For instance, suppose we roll a six-sided die.

- Let A be the event that we roll an even number.
- Let B be the event that we roll a 4 or higher.

Then

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

$$A = \{2, 4, 6\}$$

$$B = \{4, 5, 6\}$$

$$A \cap B = \{4, 6\}$$

$$A \cup B = \{2, 4, 5, 6\}$$

$$A' = \{1, 3, 5\}$$

Venn Diagrams

Venn diagram for $A \cap B$

Venn diagram for $A \cup B$

Venn diagram for A'

Venn Diagrams with Three Events

To draw a Venn diagram involving three or more events, it may help to work step-by-step. For example, to draw a Venn diagram for $A \cup (B \cap C)$, first draw Venn diagrams for A and $B \cap C$, then combine them to get the Venn diagram for $A \cup (B \cap C)$:

Example – In Terms of Set Theory

In the example, $\Omega = \{LLL, LLF, LFL, LFF, FLL, FLF, FFL, FFF\}$, and we have events

$$A = \{LFF, LFL, LLF, LLL\}$$

$$B = \{FLF, FLL, LLF, LLL\}$$

$$C = \{FFL, FLL, LFL, LLL\}$$

$$B \cap C = \{FLL, LLL\}$$

$$A \cup (B \cap C) = \{LFF, LFL, LLF, LLL, FLL\}$$

Component A works
Component B works
Component C works
Components B,C work
System works

Disjoint events

- The **null event**, containing no outcomes, is denoted \emptyset .
- Two events A and B are **disjoint** (or **mutually exclusive**)if $A \cap B = \emptyset$, i.e., if they have no outcomes in common.

Venn diagram for $A \cup B$ when A and B are disjoint

Several disjoint events

Events A_1, A_2, \dots, A_n are **disjoint** if A_i and A_j are disjoint for every pair $i \neq j$.

Venn diagram for $A_1 \cup A_2 \cup \cdots \cup A_n$ when A_1, A_2, \ldots, A_n are disjoint

Set-Theoretic Identities

The following identities always hold for any events A, B, and C:

$$A \cap A = A$$

$$A \cap B = B \cap A$$

$$A \cap (B \cap C) = (A \cap B) \cap C$$

$$A \cap (A \cup B) = A$$

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

$$(A \cap B)' = A' \cup B'$$

$$A \cap A' = \emptyset$$

$$A \cap \emptyset = \emptyset$$

$$A \cap \Omega = A$$

$$\emptyset' = \Omega$$

$$A'' = A$$

$$A \cap A = A$$

$$A \cap B = B \cap A$$

$$A \cap (B \cap C) = (A \cap B) \cap C$$

$$A \cap (A \cup B) = A$$

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

$$(A \cap B)' = A' \cup B'$$

$$A \cap A' = \emptyset$$

$$A \cap \emptyset = \emptyset$$

$$A \cap \Omega = A$$

$$\emptyset' = \Omega$$

$$A'' - A$$

$$A \cup A = A$$

$$A \cup (B \cup C) = (A \cup B) \cup C$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$(A \cup B)' = A' \cap B'$$

$$A \cup A' = \Omega$$

$$A \cup B = B \cup A$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$(A \cup B)' = A' \cap B'$$

$$A \cup A' = \Omega$$

$$A \cup B = B \cup A$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$(A \cup B)' = A' \cap B'$$

$$A \cup A = A$$

$$A \cup (B \cup C) = (A \cup B) \cup C$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$(A \cup B)' = A' \cap B'$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$(A \cup B) = A$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$(A \cup B) = A$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$(A \cup B) = A$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$(A \cup B) = A$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$(A \cup B) = A$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$(A \cup B) = A$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$(A \cup B) = A$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$(A \cup B) = A$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$(A \cup B) = A$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$(A \cup B) = A$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$(A \cup B) = A$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$(A \cup B) = A$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$(A \cup B) = A$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$(A \cup B) = A$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$(A \cup B) = A$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$(A \cup B) = A$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$(A \cup B) = A$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$(A \cup B) = A$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$(A \cup B) = A$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$(A \cup B) = A$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$(A \cup B) = A$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$(A \cup B) = A$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$(A \cup B) = A$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$(A \cup B) = A$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$(A \cup B) = A$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$(A \cup B) = A$$

$$($$

Set-Theoretic Identities

The following identities always hold for any events A, B, and C:

$$A \cap A = A$$

$$A \cap B = B \cap A$$

$$A \cap (B \cap C) = (A \cap B) \cap C$$

$$A \cap (A \cup B) = A$$

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

$$(A \cap B)' = A' \cup B'$$

$$A \cap A' = \emptyset$$

$$A \cap \emptyset = \emptyset$$

$$A \cap \Omega = A$$

$$\emptyset' = \Omega$$

$$A'' = A$$

$$A \cup A = A$$

$$A \cup (B \cup C) = (A \cup B) \cup C$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$(A \cup B)' = A' \cap B'$$

$$A \cup A' = \Omega$$

$$A \cup \Omega = \Omega$$

$$A \cup \Omega = \Omega$$

$$A \cup \emptyset = A$$

$$\Omega' = \emptyset$$

Although this list may appear unfriendly at first, these identities are all just common sense. If some of them are not obvious, we can use a Venn diagram to see why they are true:

"Proof" that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

"Proof" that $(A \cap B)' = A' \cup B'$

"Proof" that $A \cap A' = \emptyset$ and $A \cup A' = \Omega$

"Proof" that $(A \cap B) \cap C = A \cap (B \cap C)$

Multiple Intersections and Unions

Since $(A \cap B) \cap C = A \cap (B \cap C)$, we don't need to use parentheses when writing the intersection of three or more events; we can simply write $A \cap B \cap C$. A similar statement applies to unions.

Multiple Intersections and Unions

Since $(A \cap B) \cap C = A \cap (B \cap C)$, we don't need to use parentheses when writing the intersection of three or more events; we can simply write $A \cap B \cap C$. A similar statement applies to unions.

Caution: $A \cap (B \cup C)$ is *not* the same as $(A \cap B) \cup C$. Parentheses must still be used to distinguish these.

Containment

Given events A and B, if every outcome in A is also in B, then we say that A is **contained** in B, and we write $A \subseteq B$.

Containment

Given events A and B, if every outcome in A is also in B, then we say that A is **contained** in B, and we write $A \subseteq B$.

For example, if we roll a six-sided die, and let A be the event of getting a 5 or higher and B be the event of getting a 3 or higher, then $A \subseteq B$:

$$A = \{5,6\} \subseteq \{3,4,5,6\} = B$$

Properties of Containment

With a little thought, all of the following properties should be clear:

- \bullet $A \subseteq A$ for all events A.
- $\emptyset \subseteq A$ and $A \subseteq \Omega$ for all events A.
- **3** If $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.
- **1** If $A \subseteq B$ and $B \subseteq A$, then A = B.
- **5** $A \subseteq B$ if and only if $A \cap B = A$.
- \bullet $A \subseteq B$ if and only if $A \cup B = B$.
- \bullet $A \cup B \subseteq C$ if and only if $A \subseteq C$ and $B \subseteq C$.
- **3** $A \subseteq B \cap C$ if and only if $A \subseteq B$ and $A \subseteq C$.
- \bigcirc $A \cap B \subseteq A$ for all events A.
- **①** If $A \subseteq B$, then $A \cap C \subseteq B \cap C$ and $A \cup C \subseteq B \cup C$.
- \bigcirc If $A \subseteq B$, then $B' \subseteq A'$.

Set Difference

Given events A, B with $A \subseteq B$, we define their **difference**,

$$B - A = B \cap A'$$

That is, B - A consists of all outcomes of B which are not in A.

$$B - A$$

Set-Theoretic Algebra

We may use identities to simplify expressions involving events. For example,

$$(A' \cap B)' \cap B = (A'' \cup B') \cap B$$

$$= (A \cup B') \cap B$$

$$= (A \cap B) \cup (B' \cap B)$$

$$= (A \cap B) \cup \emptyset$$

$$= A \cap B$$

$$B' \cap (A \cup (A \cup B)') = B' \cap (A \cup (A' \cap B'))$$

$$= B' \cap ((A \cup A') \cap (A \cup B'))$$

$$= B' \cap (\Omega \cap (A \cup B'))$$

$$= B' \cap (A \cup B') = B'$$

Quiz

Next class we'll have a quiz with three parts:

- Set-theoretic identities: I'll give you the left-hand sides; you give me the right-hand sides.
- Venn diagrams: I'll ask you to use Venn diagrams to prove a certain identity (one in our list but not necessarily one proven in the slides).
- Set-theoretic algebra: I'll give you an expression, and you'll simplify it.

See the Practice Quiz posted on Canvas.

