IV and Regression Discontinuity Design

Prof. Tzu-Ting Yang 楊子霆

Institute of Economics, Academia Sinica 中央研究院經濟研究所

May 28, 2023

Fuzzy Regression Discontinuity Design: Main Idea

Fuzzy RDD

Overview

■ Fuzzy RDD:

- The probability of getting the treatment is no longer a deterministic function of the assignment variable X_i
- But there is still a discontinuity in the probability of getting treatment at the threshold

Fuzzy RDD

Overview

Assumption FRD

$$\lim_{\varepsilon \to 0} \Pr[D_i = 1 | X_i = c + \varepsilon] \neq \lim_{\varepsilon \to 0} \Pr[D_i = 1 | X_i = c - \varepsilon]$$

Sharp RDD:

- This is also true, but it further required the jump in probability to be from 0 to 1
- Nobody below the cutoff gets the "treatment", everybody above the cutoff gets it

Treatment Probability and assignment variable Sharp RDD

Fuzzy RDD

Overview

Assumption FRD

$$\lim_{\varepsilon \to 0} \Pr[D_i = 1 | X_i = c + \varepsilon] \neq \lim_{\varepsilon \to 0} \Pr[D_i = 1 | X_i = c - \varepsilon]$$

Fuzzy RDD:

- The probability of getting the treatment jumps discontinuously at the cutoff (NOT jump from 0 to 1)
- Some individuals above cutoff do NOT get treatment and some individuals below cutoff do receive treatment

Treatment Probability and assignment variable Fuzzy RDD

Fuzzy Regression Discontinuity Design: Potential Outcomes Framework

■ Treatment Eligibility

$$Z_i = \begin{cases} 1 & \text{if } X_i \geq c, \text{ eligible for a treatment} \\ 0 & \text{if } X_i < c, \text{ not eligible for a treatment} \end{cases}$$

Potential Treatments

- D_i^z : treatment status given the value of Z
- D_i¹: treatment status if eligible for a treatment (above cutoff c)

$$D_i^1 = \begin{cases} 1 & \text{if getting a treatment} \\ 0 & \text{if not getting a treatment} \end{cases}$$

■ D_i^0 : treatment status if not eligible for a treatment (below cutoff c)

$$D_i^0 = \begin{cases} 1 & \text{if getting a treatment} \\ 0 & \text{if not getting a treatment} \end{cases}$$

Observed Treatment

$$D_i = \begin{cases} D_i^1 & \text{if } Z_i = 1, X_i \ge c \\ D_i^0 & \text{if } Z_i = 0, X_i < c \end{cases}$$

• or, in a more compact notation: $D_i = Z_i D_i^1 + (1 - Z_i) D_i^0$

- In sharp RDD, the eligible for a treatment Z_i is the same as getting a treatment D_i
 - $Z_i = D_i$
- In fuzzy RDD, the **eligible for a treatment** Z_i does NOT represent the **getting a treatment** D_i
 - $Z_i \neq D_i$

- The variation in getting a treatment D_i (enroll in NTU) was not entirely from the treatment eligibility Z_i (passing test score cutoff) but also from individual choice
- Thus, $D_i^1 = 1$ or $D_i^1 = 0$
 - Students whose test score is above threshold can enroll in NTU or not enroll in NTU
- lacksquare Similarly, $\mathrm{D}_i^0=1$ or $\mathrm{D}_i^0=0$
 - Students whose test score is below threshold can enroll in NTU or not enroll in NTU

Potential Outcomes

- Y_i^1 : potential outcome if getting a treatment (either $D_i^1=1$ or $D_i^0=1$)
- Y_i^0 : potential outcome if not getting a treatment (either $D_i^0 = 0$ or $D_i^1 = 0$)
- Observed Outcomes

$$Y_i = \begin{cases} Y_i^1 & \text{if } D_i^1 = 1 \text{ or } D_i^0 = 1 \\ Y_i^0 & \text{if } D_i^0 = 0 \text{ or } D_i^1 = 0 \end{cases}$$

• or, in a more compact notation: $Y_i = D_i^z Y_i^1 + (1 - D_i^z) Y_i^0$

■ The discontinuity in outcome is actually the average causal effect of treatment eligibility $Z_i = 1(X_i \ge c)$ at cutoff c

$$\lim_{\varepsilon \to 0} \mathbb{E}[Y_i | X_i = c + \varepsilon] - \lim_{\varepsilon \to 0} \mathbb{E}[Y_i | X_i = c - \varepsilon]$$
 (1)

- \blacksquare To recover the causal effect of **receiving treatment** D_i
- Divide (3) by the jump in the treatment probability at cutoff

$$\lim_{\varepsilon \to 0} \mathrm{E}[D_i | X_i = c + \varepsilon] - \lim_{\varepsilon \to 0} \mathrm{E}[D_i | X_i = c - \varepsilon]$$

The the average causal effect of receiving treatment defined in fuzzy RDD :

$$\alpha_{FRD} = \frac{\lim_{\varepsilon \to 0} \mathrm{E}[Y_i | X_i = c + \varepsilon] - \lim_{\varepsilon \to 0} \mathrm{E}[Y_i | X_i = c - \varepsilon]}{\lim_{\varepsilon \to 0} \mathrm{E}[D_i | X_i = c + \varepsilon] - \lim_{\varepsilon \to 0} \mathrm{E}[D_i | X_i = c - \varepsilon]}$$

- This is a **Wald estimate** at cutoff c
- So we can consider fuzzy RDD as an IV estimate
- Use treatment eligibility $Z_i = 1(X_i \ge c)$ as an instrument for treatment received D_i
 - Use an indicator for the test score above threshold as an instrument for attending NTU

Assumptions

- First-Stage Relationship: $Z_i = 1(X_i \ge c)$ affects treatment probability
- Local Independent Assumption: In a neighborhood of cutoff c

$$(\mathbf{Y}_i^1,\mathbf{Y}_i^0,\mathbf{D}_i^1,\mathbf{D}_i^0) \perp \!\!\! \perp Z_i$$

 In a neighborhood of cutoff c, the assignment to treatment is random

Assumptions

- Exclusion Restriction: $Z_i = 1(X_i \ge c)$ affects outcome Y_i only through changing treatment status D_i
- Monotonicity Assumption: $D_i^1 \ge D_i^0$
 - No one is discouraged from taking the treatment by crossing the threshold

Fuzzy RDD and Compliers

- We can define four types of individuals based on whether they fellow the treatment assignment:
 - **Compliers**: $D_i^1 > D_i^0$ ($D_i^0 = 0$ and $D_i^1 = 1$)
 - David's test score is above NTU cutoff and enrolled in NTU
 - David's test score is below NTU cutoff and did not enroll in NTU
 - **Always-takers**: $D_i^1 = D_i^0 = 1$
 - John always can enroll in NTU (whether or not his test score is above NTU cutoff)
 - Never-takers: $D_i^1 = D_i^0 = 0$
 - Hank never enroll in NTU (whether or not his test score is above NTU cutoff)
 - **Defiers**: $D_i^1 < D_i^0 \ (D_i^0 = 1 \text{ and } D_i^1 = 0)$
 - Jimmy's test score is above NTU cutoff and did NOT enroll in NTU
 - Jimmy's test score is below NTU cutoff but enrolled in NTU

Fuzzy RDD and Compliers

Fuzzy RDD and Compliers

Identification Results for Fuzzy RDD

Fuzzy RDD Identify LATE at cutoff c

$$\begin{split} \alpha_{FRD} &= \frac{\lim_{\varepsilon \to 0} \mathrm{E}[Y_i | X_i = x + \varepsilon] - \lim_{\varepsilon \to 0} \mathrm{E}[Y_i | X_i = x - \varepsilon]}{\lim_{\varepsilon \to 0} \mathrm{E}[D_i | X_i = x + \varepsilon] - \lim_{\varepsilon \to 0} \mathrm{E}[D_i | X_i = x - \varepsilon]} \\ &= \mathrm{E}[Y_i^1 - Y_i^0 | \mathrm{D}_i^1 > \mathrm{D}_i^0, X_i = c] \end{split}$$

- The estimate in fuzzy RDD represents the causal effect for compliers (local average treatment effect, LATE) at cutoff c
- **Compliers** are those who receive the treatment when they follow treatment eligibility rule $(X_i \ge c)$, but would not otherwise receive it $(X_i < c)$

Fuzzy RDD

Estimation

- Fuzzy RDD implies the discontinuity in treatment assignment Z_i can act as an instrument for actual receipt of treatment D_i
- Therefore, we can estimate treatment effect in fuzzy RDD by using two-stage least squares (TSLS)

$$D_i = \alpha_1 + \rho_1 Z_i + f_1(X_i) + \upsilon_i$$

$$Y_i = \alpha_2 + \rho_2 D_i + f_2(X_i) + \eta_i$$

 As in the sharp RDD setting, we can use either parametric or nonparametric approaches to estimate treatment effect

Motivation

Olivier Marie (2009) "The Best Ones Come Out First! Early Release from Prison and Recidivism: A Regression Discontinuity Approach", Working Paper

■ Examine the causal effect of early release from prison on recidivism rate

Motivation

- Prison systems in many countries suffer from overcrowding and high recidivism rates after release
- Some countries use early discharge of prisoners on electronic monitoring
- Difficult to estimate impact of early release program on future criminal behavior:
 - Best behaved prisoners are usually the ones to be released early
- Marie (2008) considers the Home Detention Curfew (HDC) program in England and Wales

Identification Strategy

 Fuzzy RDD: Only offenders sentenced to more than three months (88 days) in prison are eligible for HDC, but not all of those are offered HDC

$$\alpha_{FRD} = \frac{\lim_{\varepsilon \to 0} \mathrm{E}[Rec_i | X_i = c + \varepsilon] - \lim_{\varepsilon \to 0} \mathrm{E}[Rec_i | X_i = c - \varepsilon]}{\lim_{\varepsilon \to 0} \mathrm{E}[HDC_i | X_i = c + \varepsilon] - \lim_{\varepsilon \to 0} \mathrm{E}[HDC_i | X_i = c - \varepsilon]}$$

- Reci (outcome): one year recidivism rate
- X_i (assignment variable): original sentence length
- HDC_i (treatment variable): a dummy indicating offered HDC

Graphical Analysis

Figure 2: Proportion Released on HDC by Original Sentence Length

Note: Dotted lines show the confidence intervals. Line smoothed with 14 days local averages.

Graphical Analysis

Figure 3: Number of Previous Offences by Original Sentence Length

Graphical Analysis

Figure 4: One Year Recidivism Rate by Original Sentence Length

Graphical Analysis

Table 5: RD Estimates of HDC Impact on Recidivism

Panel A: Recidivism Within 12 Months of Release	Estimation on Individuals Sentenced to Between 58 and 118 Days: +/- 4 Weeks		
	(1)	(2)	(3)
Discontinuity of HDC Participation Around Threshold (HDC ⁺ - HDC)	.242 (.003)	.243 (.003)	.237 (.003)
Difference in Recidivism Around Threshold (<i>Rec</i> ⁺ – <i>Rec</i> ⁻)	023 (.005)	022 (.005)	016 (.005)
Estimated Effect of HDC on Recidivism Participation $(Rec^+ - Rec^-)/(HDC^+ - HDC^-)$	094 (.020)	090 (.018)	066 (.018)
Controls	No	Yes	Yes
Prison Fixed Effects	No	No	Yes
Sample Size	41,761	41,761	41,76
Panel B: Recidivism Within 24 Months of Release	Estimation on Individuals Sentenced to Between 58 and 118 Days: +/- 4 Weeks		
	(1)	(2)	(3)
Discontinuity of HDC Participation Around Threshold (HDC^{\dagger} - HDC)	.242 (.003)	.243 (.003)	.237 (.003)
Difference in Recidivism Around Threshold (<i>Rec</i> ⁺ – <i>Rec</i> ⁻)	019 (.005)	019 (.004)	013 (.005)
Estimated Effect of HDC on Recidivism Participation (<i>Rec</i> ⁺ – <i>Rec</i> ⁻)/ (<i>HDC</i> ⁺ – <i>HDC</i> ⁻)	079 (.020)	077 (.018)	053 (.019)
Controls	No	Yes	Yes
Controls			
Prison Fixed Effects	No	No	Yes