E códigofacilito

Agenda

- Estructura del examen
- Repaso de lecciones (Introducción a Azure y Exploración de recursos)
- Preguntas del formulario
- Dudas adicionales

Irving Uribe - ML Engineer / Data Tech Lead / Al profesor

Estructura del examen de certificación DP-100

https://learn.microsoft.com/es-es/credentials/certifications/resources/study-guides/dp-100

https://learn.microsoft.com/en-us/credentials/certifications/azure-data-scientist/practice-assessment-type=certification

Nota de conocimientos requeridos

La certificación requiere conocimientos en *Machine Learning*, y uso de las herramientas de *Azure Machine Learning* y *ML flow*

Aptitudes evaluadas a partir del 16 de octubre de 2024

Perfil del público

Como candidato a este examen, debe tener experiencia en la aplicación de ciencia de datos y aprendizaje automático para implementar y ejecutar cargas de trabajo de aprendizaje automático en Azure.

Las responsabilidades de este rol incluyen:

- Diseño y creación de un entorno de trabajo adecuado para cargas de trabajo de ciencia de datos.
- Exploración de datos.
- Entrenamiento de modelos de aprendizaje automático.
- Implementación de canalizaciones.
- Ejecución de trabajos para prepararse para la producción.
- Administración, implementación y supervisión de soluciones de aprendizaje automático.

Como candidato a este examen, debe tener conocimientos y experiencia en ciencia de datos mediante el uso de:

- Azure Machine Learning
- MLflow

Estructura del examen en porcentajes

El examen se divide en **4 secciones** que varían en porcentaje de cobertura en el examen (de manera aleatoria)

Repaso de tópicos:

- Introducción a Azure y sus soluciones para Data e IA
- Exploración de recursos del área de trabajo de Azure Machine Learning

https://learn.microsoft.com/en-us/credentials/certifications/azure-data-scientist/?practice-assessment-type=certification

Tipos de data

La Data se divide en 3 tipos según su *origen*, y el cómo *pueda ser*interpretada por ciertos aplicativos

Customer					
ID	FirstName	LastName	Email	Address	
1,	Joe	Jones	joe@litware.com	1 Main St.	
2	Samir	Nadoy	samir@northwind.com	123 Elm Pl.	

Product				
ID	Name	Price		
123	Hammer	2.99		
162	Screwdriver	3.49		
201	Wrench	4.25		

No estructurado

Estructurado

Azure Machine Learning Vs Cognitive Services

Podemos diferenciar 2 tipos de servicios que involucran IA dentro de Azure, por un lado, Azure Machine Learning (studio) y por otro Al cognitive services

Ciclo de desarrollo de modelos de IA

Los 6 pasos que componen del desarrollo, despliegue y supervisión de un modelo son los siguientes:

Distribución de Azure Machine Learning Services

- 1.- Azure Portal
- 2.- Suscripción de Azure.
- 3.- Grupo de recursos.
- 4.- Servicio Azure Machine Learning
- 5.- Azure Storage.
- 6.- Azure Key Vault.
- 7.- Application Insights
- 8.- Azure Container Registry.

1.- ¿Qué es un "pipeline"? nosotros lo generamos? se genera en automático?

Es una **serie de pasos** que ejecutan procesos encadenados. Un **"pipeline job"** lo puedes crear por medio del **SDK**, el **CLI**, o la consola de azure "**UI**".

Referencia:

https://learn.microsoft.com/en-us/azure/machine-learning/how-to-use-pipeline-component?view=azureml-api-2&tabs=ui

2.- ¿Se puede conectar un espacio de trabajo en Azure Machine Learning con un repositorio de control de versiones como GitHub?

Sí es posible, deberás de enlazar *Azure App Registrations* con tu repositorio de GitHub creando las *secret keys* correspondientes, y dando acceso en la consola de azure, además de configurar en GitHub dichas

3A.- ¿Podría explicar cómo Azure Synapse Analytics se integra con otros servicios de Azure Al para crear una solución end-to-end de análisis

predictivo?

Referencias:

Integración de Azure Synapse con Azure Machine Learning

Analytics E2E with azure Synapse

3B.- Específicamente, ¿Cuál sería el flujo de trabajo recomendado cuando queremos combinar datos históricos estructurados con datos no estructurados como texto o imágenes?

Ejemplo de un flujo específico:

- Un proyecto podría empezar con la ingesta de datos de ventas históricas (estructurados) y
 comentarios de clientes (texto no estructurado) en Azure Synapse Pipelines,
 almacenándolos en Azure Data Lake Storage.
- Los comentarios se analizarían usando Azure Cognitive Services para detectar sentimientos y temas clave.

- Los resultados se combinarían con los datos estructurados de ventas y se entrenaría un modelo en Azure Machine Learning para predecir comportamientos futuros de los clientes.

 - Los resultados finales se *visualizan en Power BI* para decisiones estratégicas.

4A.- El proceso de MLOps en azure simplemente sería observar las métricas de los modelos desarrollados o iria mas alla de crear una interfaz de consumo interactiva de los modelos?

Detalle del proceso de MLOps en Azure:

- 1. Desarrollo y experimentación:
 - Azure Machine Learning Studio: Se registran y versionan los experimentos y se comparan las métricas de los modelos.
- 2. Automatización del pipeline de entrenamiento y despliegue:
 - Pipelines de CI/CD (Integración Continua y Despliegue Continuo) usando Azure DevOps o GitHub Actions, que automatizan el proceso de entrenamiento, pruebas y despliegue de modelos.
- 3. Despliegue en entornos productivos:
 - Azure Kubernetes Service (AKS), Azure Container
 Instances (ACI) o Azure Functions: Permite un despliegue
 flexible y una gestión adecuada del rendimiento.

Referencia:

https://learn.microsoft.com/en-us/azure/machine-learning/concept-model-management-and-deployment?view=azureml-api-2

4B.- El proceso de MLOps en azure simplemente sería observar las métricas de los modelos desarrollados o iria mas alla de crear una interfaz de consumo interactiva de los modelos?

4.- Monitoreo y observación de métricas:

 La monitorización de métricas de los modelos en producción es fundamental. Azure Machine Learning permite la observación de métricas de rendimiento, como precisión, latencia y uso de recursos.

5.- Gestión de datos y reentrenamiento:

 Azure Data Factory y Azure Databricks pueden integrarse para automatizar el flujo de datos y mantener actualizados los modelos.

6.- Interfaces de consumo interactivas:

 Esto incluye el desarrollo de aplicaciones web o APIs que consumen modelos desplegados en servicios de Azure App Service o mediante APIs REST servidas por Azure Machine Learning.

Referencia:

https://learn.microsoft.com/en-us/azure/machine-learning/concept-model-management-and-deployment?view=azureml-api-2

5.- ¿Podrían explicar con más detalles azure block store y azure data lake?

La Data ingresada se mantienen dentro de *blobs* en la cuenta de almacenamiento. El servicio que gestiona los blobs es el servicio *Azure Blob Storage*. Data Lake Storage describe las capacidades o "*mejoras*" de este servicio que atienden las *demandas de cargas de trabajo de análisis de big data*.

Referencias:

Azure Blob Storage Azure Data Lake

5.- ¿Podrían explicar con más detalles azure block store y azure data lake?

Característica	Azure Blob Storage	Azure Data Lake Storage
Definición	Almacenamiento de objetos para datos no estructurados como imágenes, videos y documentos.	Servicio de almacenamiento especializado para análisis de datos a gran escala.
Casos de uso	Almacenamiento de backups, contenido multimedia, archivos de todos los formatos.	Ideal para proyectos de big data e integración con herramientas de análisis.
Niveles de acceso	Ofrece niveles de acceso: caliente y frío optimizando costos según la frecuencia de acceso.	Hereda niveles de acceso de Azure Blob Storage y está optimizado para acceso más rápido y escalable.
Integración con herramientas	Compatible con Azure Media Services y Azure Machine Learning.	Se integra con servicios de big data y análisis como Azure Synapse Analytics y Azure Databricks.
Formato de datos	Almacena cualquier tipo de archivo, sin optimizaciones específicas para big data.	Soporta formatos optimizados para big data, como Apache Parquet, con estructura jerárquica de archivos.
	Referencias: <u>Azure Blob Storage</u>	

Azure Data Lake

6.- ¿Se puede usar terraform?

- Infraestructura como Código (*laC*) desarrollada por HashiCorp. Permite definir y gestionar la infraestructura de TI a través de archivos de configuración en un lenguaje declarativo llamado *HashiCorp Configuration Language (HCL)*, aunque también admite *JSON*.
- AzureRM: Máquinas virtuales, cuentas de almacenamiento e interfaces de red.
- AzureDevops: Azure DevOps, como agentes, repositorios, proyectos, canalizaciones y consultas.
- AzureStack: Azure Stack Hub, como máquinas virtuales, DNS, redes virtuales y almacenamiento.

```
resource "random_pet" "rg_name" {
   prefix = var.resource_group_name_prefix
}

resource "azurerm_resource_group" "rg" {
   location = var.resource_group_location
   name = random_pet.rg_name.id
}
```


Referencia:

https://learn.microsoft.com/es-es/azure/developer/terraform/overview