R documentation

of all in 'man/'

December 26, 2024

Contents

alla	uc	lcu ipt		rec	a U	Ind	ler	Cı	ırv	ve	(A	UC	C) (an	d I)i <u>f</u>	fei	en	се	es o	of .	ΑU	JC	: fo	r'	Tra	an-	-
Index																												20
	universegroup	 • •	•	 •		•	•		•	•	•	• •	•	•		•	•	•		•	•	•	•		•	•	•	Δ,
	universegroup																											
	retrieveanno																											
	preprocessing																											
	plotmstoknee plotmetagenes																											
	plothistoknee																											
	plotecdf																											
	plotauc																											
	meandifference																											
	makewindows																											
	kneeid																											
	genesECDF joinfiles																											
	createtablescores .																											
	countna																											
	checkexptab																											
	blacklisthighmap .																											
	averageandfilterexpr																											
	attenuation																											
	allauc																											

Description

This function computes the Area Under Curve (AUC) and the differences of AUC between two conditions for a list of transcript data. It supports parallel computation for efficiency.

Usage

```
allauc(bytranslistmean, expdf, nbwindows, nbcpu = 1, dontcompare = NULL,
controlcondname = "ctrl", stresscondname = "HS", showtime = FALSE,
verbose = TRUE)
```

2 attenuation

Arguments

bytranslistmean

A list of data frames, each containing transcript level data with mean values for

one or more conditions.

expdf A data frame containing experiment data that should have columns named 'con-

dition', 'replicate', 'strand', and 'path'.

nbwindows An integer specifying the number of windows to consider for AUC calculations.

nbcpu An integer specifying the number of CPU cores to use for parallel processing on

bytranslistmean. Defaults to 1.

dontcompare An optional parameter to specify any conditions to exclude from the compari-

son. Defaults to NULL.

controlcondname

A string specifying the name of the control condition Defaults to "ctrl".

stresscondname $\ A$ string specifying the name of the stress condition. Defaults to "HS".

showtime A logical value indicating if the duration of the function processing should be

indicated before ending. Defaults to FALSE.

verbose A logical value indicating whether to print progress messages Defaults to TRUE.

Details

The function first checks if exactly two conditions are present in 'expdf'. If so, it computes the differences in AUC between the two conditions using a Kolmogorov-Smirnov test and calculates the AUC for all conditions against a reference line (y=x). Results are merged by transcript and include adjusted p-values.

Value

A data frame containing the AUC and dAUC results for each transcript, along with associated statistical information.

See Also

[genesECDF]

Examples

```
# Example usage of allauc function
# results <- allauc(bytranslistmean, expdf, nbwindows = 100, nbcpu = 4)</pre>
```

attenuation Calci

Calculate Attenuation from AUC and Other Transcript Features

Description

This function computes the attenuation values for each window of each transcript based on the data frames obtained with the functions 'allauc', 'kneeid', and 'countna'.

attenuation 3

Usage

```
attenuation(allaucdf, kneedf, matnatrans, bytranslistmean, expdf, dfmeandiff, nbcpu = 1, significant = FALSE, replaceval = NA, pval = 0.1, showtime = FALSE, verbose = TRUE)
```

Arguments

allaucdf A data frame containing AUC results for transcripts (see allauc).

kneedf A data frame containing the inflection points (see kneeid).

matnatrans A data frame containing the number of missing values per transcript (see countna).

bytranslistmean

A list of data frames with mean values by transcripts.

expdf A data frame containing experiment data that should have columns named 'con-

dition', 'replicate', 'strand', and 'path'.

dfmeandiff A data frame containing means and differences in mean values, if more than one

condition. (see meandifference).

nbcpu An integer specifying the number of CPU cores to use for parallel processing.

The parallelization is done on bytranslistmean whose number of elements is equal to the number of lines provided as input of 'averageandfilterexprs'. De-

faults to 1.

significant A logical indicating whether to filter out non-significant attenuation values. De-

faults to FALSE.

replaceval A value to replace non-significant attenuation values Defaults to NA.

pval A numeric value specifying the p-value threshold for significance Defaults to

0.1.

showtime A logical value indicating if the duration of the function processing should be

indicated before ending. Defaults to FALSE.

verbose A logical value indicating whether to print progress messages Defaults to TRUE.

Details

The function merges several data frames to create a comprehensive dataset for each transcript. It computes mean values for the "up" and "down" segments of the transcript. The direction is determined by comparing the coordinates to the knee values. up = coord < knee and down = coord > knee. The up and down indexes are then retrieved and the attenuation scores are computed as: att <- 100 - downmean / upmean * 100

Value

A data frame containing the computed attenuation values along with associated transcript information.

See Also

```
[allauc()], [kneeid()], [countna()], [meandifference()]
```

4 averageandfilterexprs

Examples

```
# Example usage of attenuation function
#result <- attenuation(allaucdf, kneedf, matnatrans, bytranslistmean,
# expdf, dfmeandiff, nbcpu = 4)</pre>
```

averageandfilterexprs Calculate Average Expression and Filter Transcript Data

Description

This function calculates the average expression levels for transcripts from a provided expression data frame and filters out transcripts based on a specified expression threshold. The function also renames the columns in the output data frame to include mean expression values.

Usage

```
averageandfilterexprs(expdf, alldf, expthres, showtime = FALSE,
verbose = TRUE)
```

Arguments

expdf	A data frame containing experiment data that should have columns named 'condition', 'replicate', 'strand', and 'path'.
alldf	A data frame containing all transcript-related information, including biotype, chromosome, coordinates, transcript, gene, strand, window, ID and scores retrieved from the bedgraph files.
expthres	A numeric value specifying the expression threshold. Transcripts with average expression values below this threshold will be filtered out from the returned transcript vector.
showtime	A logical value indicating if the duration of the function processing should be indicated before ending. Defaults to FALSE.
verbose	A logical value indicating whether to print progress messages Defaults to TRUE.

Value

A list containing:

maintable The original data frame containing all transcript data.

exptranstab A character vector of transcripts that meet the filtering criteria.

```
# Example usage of averageandfilterexprs
# result <- averageandfilterexprs(expdf, alldf, expthres = 10)</pre>
```

blacklisthighmap 5

blacklisthighmap Black	klist High Mappability Regions in Genomic Data
------------------------	--

Description

This function processes genomic data to remove scores that fall within blacklisted regions or have low mappability, and computes weighted means for overlapping windows. The process ensures the integrity of genomic scores by focusing on high mappability regions and excluding blacklisted intervals.

This function processes bedgraph files by filtering out scores overlapping blacklisted regions and retaining those in high-mappability regions. It computes weighted means for scores within overlapping windows and supports parallel processing for efficiency.

Usage

```
blacklisthighmap(maptrackpath, blacklistshpath, exptabpath,
   nbcputrans, allwindowsbed, windsize, genomename, saveobjectpath = NA,
   tmpfold = "./tmp", reload = FALSE, showtime = FALSE, showmemory = FALSE,
   verbose = TRUE)

blacklisthighmap(maptrackpath, blacklistshpath, exptabpath, nbcputrans,
   allwindowsbed, windsize, saveobjectpath = NA, reload = FALSE,
   showtime = FALSE, verbose = TRUE)
```

Arguments

showmemory

E	guments	
	maptrackpath	Character string. Path to the mappability track file.
	blacklistshpath	
		Character string. Path to the blacklist regions file.
	exptabpath	Path to the experiment table file containing a table with columns named 'condition', 'replicate', 'strand', and 'path'.
	nbcputrans	Number of CPU cores to use for transcript-level operations.
	allwindowsbed	Data frame. BED-formatted data frame obtained with the function makewindows.
	windsize	Window size for splitting transcripts into intervals.
	save object path	Path to save intermediate R objects. Default is 'NA' and R objects are not saved.
	reload	Logical. If 'TRUE', reloads existing saved objects to avoid recomputation. Default is 'FALSE'. If the function failed during object saving, make sure to delete the corresponding object.
	showtime	Logical. Whether to display timing information.
	verbose	Logical. Whether to display detailed progress messages.
	blacklistpath	Character string. Path to the blacklist regions file.
	genomename	Character string. A valid UCSC genome name. It is used to retrieve chromosome metadata, such as names and lengths.
	tmpfold	A character string specifying the temporary folder for saving output files. The temporary files contain the scores for each bedgraph on each chromosome.

A logical value indicating whether to display memory usage during processing.

6 blacklisthighmap

Details

The 'blacklisthighmap' function iterates through chromosomes, processes genomic scores by removing those overlapping with blacklisted regions, and ensures that scores within windows are computed using a weighted mean when overlaps occur. The function uses parallel processing for efficiency and supports saving (saveobjectpath) and reloading (reload) intermediate results to optimize workflow.

The main steps include: - Reading and processing bedGraph values. - Removing scores overlapping with blacklisted or low mappability regions. - Computing weighted means for overlapping scores in genomic windows. - Saving the processed results to specified path (tmpfold).

The function involves the following steps: 1. Reading and converting the blacklist, mappability track, and annotation windows into tibbles. 2. Reading experiment metadata to identify bedgraph files. 3. For each bedgraph file: - Extracting scores based on strand information. - Filtering scores overlapping blacklisted regions or outside high-mappability intervals. - Computing weighted means for overlapping windows. 4. Combining processed scores into a single data frame for each experiment.

The function can save intermediate objects to disk and reload them for efficiency in repeated runs.

Value

This function does not return a value directly. It saves intermediate results to 'tmpfold'. These intermediates files are then combined by the function 'createtablescores'.

A list of data frames where each entry corresponds to the processed scores for an experiment. Scores outside high-mappability regions or in blacklisted regions are set to 'NA'.

See Also

```
[createtablescores][makewindows]
[makewindows]
```

```
# Define paths to required files
maptrackpath <- "path/to/maptrack.bed"</pre>
blacklistshpath <- "path/to/blacklist.bed"</pre>
exptabpath <- "path/to/experiments.csv"</pre>
allwindowsbed <- data.frame(...)</pre>
# Run the function
results <- blacklisthighmap(</pre>
    maptrackpath = maptrackpath,
    blacklistshpath = blacklistshpath,
    exptabpath = exptabpath,
    nbcputrans = 4,
    allwindowsbed = allwindowsbed,
    windsize = 200,
    genomename = "hg38",
    saveobjectpath = "output/",
    tmpfold = "./tmp",
    reload = FALSE,
    showtime = TRUE,
    showmemory = FALSE,
    verbose = TRUE)
```

checkexptab 7

```
# Define paths to required files
maptrackpath <- "path/to/maptrack.bed"</pre>
blacklistshpath <- "path/to/blacklist.bed"</pre>
exptabpath <- "path/to/experiments.csv"</pre>
allwindowsbed <- data.frame(...)</pre>
# Run the function
results <- blacklisthighmap(</pre>
    maptrackpath = maptrackpath,
    blacklistshpath = blacklistshpath,
    exptabpath = exptabpath,
    nbcputrans = 4,
    allwindowsbed = allwindowsbed,
    windsize = 100,
    saveobjectpath = "output/",
    reload = FALSE,
    showtime = TRUE,
    verbose = TRUE
)
```

checkexptab

Check Validity of Experiment Table

Description

The 'checkexptab' function verifies the structure and content of an experiment table to ensure it meets specific formatting requirements. It checks for the presence of required columns, and validates that the 'direction' and 'strand' columns contain only allowable values.

Usage

checkexptab(exptab)

Arguments

exptab

A data frame representing the experiment table. The table must contain the following columns: "condition", "replicate", "direction", and "strand".

Details

The function performs the following checks: - The column names of 'exptab' must match exactly: "condition", "replicate", "direction", and "strand". - The 'direction' column must contain only "forward" and "reverse". - The 'strand' column must contain only "plus" and "minus".

Value

If the experiment table is valid, the function returns 'NULL'. If the table is invalid, the function throws an error specifying the issue.

8 countna

Examples

```
## Not run:
  # Create a valid experiment table
  exptab <- data.frame(</pre>
    condition = c("cond1", "cond2"),
    replicate = c(1, 1),
    direction = c("forward", "reverse"),
    strand = c("plus", "minus")
  checkexptab(exptab) # Should pass without errors
  # Invalid experiment table (wrong column names)
  invalid_exptab <- data.frame(</pre>
    cond = c("cond1", "cond2"),
    rep = c(1, 1),
    dir = c("forward", "reverse"),
    str = c("+", "-")
  checkexptab(invalid_exptab) # Will throw an error
## End(Not run)
```

countna

Count NA values per transcript and condition

Description

This function takes a list of expression data frames, a condition information data frame, and counts the number of NA values for each transcript based on strand and condition. NA represent missing scores that were filtered out from the black list and mappability track. The function operates in parallel on transcripts to speed up the process using multiple CPU cores.

Usage

```
countna(allexprsdfs, expdf, nbcpu = 1, showtime = FALSE, verbose = TRUE)
```

Arguments

allexprsdfs	A list of data frames containing expression data. The first element is assumed to be the main table. The second element is a vector of transcript names that passed the filtering of 'averageandfilterexprs'.
expdf	A data frame containing experiment data that should have columns named 'condition', 'replicate', 'strand', and 'path'.
nbcpu	An integer specifying the number of CPU cores to use for parallel computation on transcripts. The number of transcripts is equal to the number of lines provided as input of 'averageandfilterexprs'. Defaults to 1.
showtime	A logical value indicating if the duration of the function processing should be indicated before ending. Defaults to FALSE.
verbose	A logical flag indicating whether to print progress messages. Defaults to TRUE.

createtablescores 9

Value

A data frame where each row corresponds to a transcript, along with its associated gene, strand, and the count of NA values.

See Also

[averageandfilterexprs]

Examples

```
# Assuming allexprsdfs is a list of data frames and expdf contains the
# conditions:
# result <- countna(allexprsdfs, expdf, nbcpu = 4)</pre>
```

createtablescores

Create a Unified Table of Scores

Description

This function processes and combines table scores of each bedgraph and each chromosome stored in the temporary folder into a unified table.

This function processes the scores of bedgraph files retrieved on transcripts to create a merged table of scores. It performs tasks such as adding unique row IDs, joining bedgraph data, reordering and renaming columns, and preparing a final table for further analysis.

Usage

```
createtablescores(tmpfold, exptabpath, showmemory = FALSE, showtime = TRUE,
    savefinaltable = TRUE, finaltabpath = "./", finaltabname = "anno.tsv",
    verbose)

createtablescores(bedgraphlistwmean, nbcpubg, exptabpath,
    saveobjectpath = NA, reload = FALSE, showtime = TRUE, verbose = TRUE)
```

Arguments

bedgraphlistwmean

A list for each bedgraph with values on transcript windows. It was obtained with

the function blacklisthighmap.

nbcpubg Number of CPU cores to use for bedgraph-level operations.

exptabpath Path to the experiment table file containing a table with columns named 'condi-

tion', 'replicate', 'strand', and 'path'.

saveobjectpath Path to save intermediate R objects. Default is 'NA' and R objects are not saved.

reload Logical. If 'TRUE', reloads existing saved objects to avoid recomputation. De-

fault is 'FALSE'. If the function failed during object saving, make sure to delete

the corresponding object.

showtime Logical. If 'TRUE', displays timing information. Default is 'FALSE'.

verbose Logical. If 'TRUE', provides detailed messages during execution. Default is

'TRUE'.

10 createtablescores

tmpfold A string specifying the temporary folder containing the score files created with the function 'blacklisthighmap'.

showmemory Logical; if 'TRUE', memory usage is printed during processing. Default is

'FALSE'.

savefinaltable Logical; if 'TRUE', the resulting table is saved to disk. Default is 'TRUE'.

finaltabpath A string specifying the directory where the final table should be saved. Default

is "./"'.

finaltabname A string specifying the name of the final table file. Default is "anno.tsv".

Details

This function first merges files belonging to the same experiment and direction. These files are combined into a single table providing two columns per experiment. The first gives the name of the experiment and the second the scores. The resulting table also includes annotations for each transcript.

The function performs the following steps: 1. Reads experiment details from the provided exptabpath. 2. Adds a unique row ID to each bedgraph data frame based on transcript, gene, strand, and window. 3. Merges all bedgraph data frames into a single data frame using the unique row ID. 4. Reorders and renames columns for consistency and clarity. 5. Adds experiment-related columns based on the provided experiment table. 6. Optionally saves the resulting table to the specified path.

Value

A data frame containing the unified table of scores.

A tibble containing the final merged and processed table with scores and experiment details.

See Also

```
[blacklisthighmap] [blacklisthighmap]
```

```
# Example usage:
tmpfold <- "path/to/temp/folder"
exptabpath <- "path/to/experiment_table.csv"
finaltab <- createtablescores(tmpfold = tmpfold, exptabpath = exptabpath,
    showmemory = TRUE, showtime = TRUE, savefinaltable = TRUE,
    finaltabpath = "./results", finaltabname = "final_scores.tsv",
    verbose = TRUE)

# Example usage of createtablescores function:
bedgraphlist <- list(bedgraph1, bedgraph2, bedgraph3)
exptabpath <- "path/to/experiment_table.csv"
output_path <- "path/to/save_directory"
final_table <- createtablescores(bedgraphlist, nbcpubg = 4, exptabpath,
    saveobjectpath = output_path, reload = FALSE, showtime = TRUE,
    verbose = TRUE)</pre>
```

genesECDF 11

genesECDF	Compute ECDF for Genes Based on Expression Data	

Description

This function calculates the empirical cumulative distribution function (ECDF) for expressed genes across multiple transcripts. It processes the expression data to filter out non-expressed transcripts, compute ECDF values for each transcript, and combine the results into a unified data frame. The function operates in parallel for speed optimization.

Usage

```
genesECDF(allexprsdfs, expdf, nbcpu = 1, rounding = 10,
showtime = FALSE, verbose = TRUE)
```

Arguments

8	
allexprsdfs	A list of data frames where the first element is the main expression data frame and the second element contains the names of the expressed transcripts (see 'averageandfilterexprs').
expdf	A data frame containing experiment data that should have columns named 'condition', 'replicate', 'strand', and 'path'.
nbcpu	An integer specifying the number of CPU cores to use for parallel computation. Default is 1.
rounding	An integer specifying the rounding factor for computing ECDF. Default is 10.
showtime	A logical value indicating if the duration of the function processing should be indicated before ending. Defaults to FALSE.
verbose	A logical flag indicating whether to print progress messages. Default is TRUE.

Details

The function performs several steps:

- 1. Filters the main expression table to retain only the expressed transcripts.
- 2. Splits the data by each transcript.
- 3. For each transcript, computes ECDF values for the score columns while respecting the strand orientation ("plus" or "minus").
- 4. Combines the ECDF results into a final data frame.

The function uses parallel processing to compute ECDF for each transcript simultaneously, making it faster on systems with multiple CPU cores.

Value

A list containing two elements:

concatdf A data frame with ECDF results for each transcript.

nbrows An integer indicating the number of rows in each transcript table.

joinfiles

See Also

[averageandfilterexprs]

Examples

```
# Assuming allexprsdfs is a list of data frames and expdf contains the
# conditions:
# result <- genesECDF(allexprsdfs, expdf, rounding = 10, nbcpu = 4,
# verbose = TRUE)</pre>
```

joinfiles

Join Bedgraph Files for Protein-Coding and lncRNA Data

Description

The 'joinfiles' function processes bedgraph files located in the specified working directory, joins data related to protein-coding and lncRNA annotations, and outputs a combined result as a TSV file. The function retrieves bedgraph files matching a specific pattern, processes the files to create windows-based summaries, and merges annotations for protein-coding and lncRNA biotypes. The resulting data is written to an output file.

Usage

```
joinfiles(workingdir = ".", window = 200, bgpattern = "*.bg",
  protscoredir = "protein_coding_score", lncscoredir = "lncRNA_score",
  outtsv = "dTAG_Cugusi_stranded_20230810.tsv", verbose = TRUE)
```

Arguments

workingdir	The directory containing bedgraph files. Defaults to the current working directory (""."').
window	The window size used for joining the score files. Defaults to 200.
bgpattern	A file pattern to identify bedgraph files. Defaults to "*.bg".
protscoredir	$Directory\ containing\ the\ protein-coding\ score\ files.\ Defaults\ to\ `"protein_coding_score"`.$
lncscoredir	Directory containing the lncRNA score files. Defaults to "lncRNA_score".
outtsv	The output TSV filename where the merged data will be saved. Defaults to "dTAG_Cugusi_stranded_20230810.tsv".
nbcpu	An integer specifying the number of CPU cores to use for parallel computation. Default is 1.
verbose	Logical flag to enable verbose output during the function execution. Defaults to 'TRUE'.

Value

The data.frame with the complete set of annotations and scores.

kneeid 13

Examples

```
## Not run:
   joinfiles(workingdir = "data", window = 100, bgpattern = "*.bedgraph",
        protscoredir = "prot_scores", lncscoredir = "lnc_scores",
        outtsv = "results.tsv")
## End(Not run)
```

kneeid

Identify the Knee and Max ECDF Differences for Each Transcript

Description

This function identifies the knee point (i.e., point of maximum change) and the maximum difference in the empirical cumulative distribution function (ECDF) for each transcript, across different experimental conditions.

Usage

```
kneeid(transdflist, expdf, nbcpu = 1, showtime = FALSE, verbose = TRUE)
```

Arguments

transdflist	A list of data frames where each data frame contains transcript data with ECDF values for each condition.
expdf	A data frame containing experiment data that should have columns named 'condition', 'replicate', 'strand', and 'path'.
nbcpu	An integer specifying the number of CPU cores to use for parallel computation. The parallelization is performed on the elements of transdflist. Defaults to 1.
showtime	A logical value indicating if the duration of the function processing should be indicated before ending. Defaults to FALSE.
verbose	A logical flag indicating whether to print progress messages. Defaults to TRUE.

Value

A data frame where each row corresponds to a transcript and contains the coordinates of the knee point and the maximum ECDF difference for each condition.

```
# Assuming transdflist is a list of transcript data frames and expdf contains
# conditions for each experiment:
# result <- kneeid(transdflist, expdf, nbcpu = 4, verbose = TRUE)</pre>
```

14 makewindows

makewindows	Split Gene Annotations into Fixed-Size Windows

Description

This functions uses the annotations filtered from gencode (see retrieveanno). It removes any ensembl names containing "PAR_Y". It filters out intervals smaller than windsize and splits each transcript into "windsize" windows.

Usage

```
makewindows(allannobed, windsize, nbcputrans = 1, verbose = TRUE,
    saveobjectpath = NA, showtime = FALSE)
```

Arguments

•	
allannobed	A data frame which is the result of 'retrieveanno'.
windsize	An integer specifying the number of windows into which each gene annotation should be divided.
nbcputrans	Number of CPU cores to use for transcript-level operations. Defaults to 1.
verbose	A logical value indicating whether to display progress messages. Defaults to 'TRUE'.
saveobjectpath	A character string specifying the directory path where the output object should be saved as an '.rds' file. If 'NA', the object is not saved. Defaults to 'NA'.
showtime	A logical value indicating whether to display the runtime of the function. Defaults to 'FALSE'.

Details

The function filters out annotations with intervals smaller than the specified number of windows ('windsize'). It uses parallel processing to enhance performance when splitting transcripts into fixed-size windows. The result includes metadata for each window, such as its chromosome, start and end coordinates, associated gene, and the window number.

Intermediate functions, such as '.computewindflist' and '.divideannoinwindows', handle computation and validation of windows. Gene intervals with the "PAR_Y" tag are excluded from the analysis.

Value

A data frame containing the split windows for each gene annotation. The output includes fields such as 'biotype', 'chr', 'coor1', 'coor2', 'transcript', 'gene', 'strand', and 'window'.

See Also

[retrieveanno]

meandifference 15

Examples

```
# Example data
annotations <- data.frame(
    start = c(1, 1001, 2001),
    end = c(1000, 2000, 3000),
    strand = c("+", "-", "+"),
    chrom = c("chr1", "chr1", "chr2"),
    ensembl = c("ENSG000001", "ENSG000002", "ENSG000003"),
    symbol = c("Gene1", "Gene2", "Gene3"),
    biotype = c("protein_coding", "lncRNA", "protein_coding")
)
result <- makewindows(allannobed = annotations, windsize = 5, nbcputrans = 2)</pre>
```

meandifference

Compute Mean and Differences of Scores for Each Condition

Description

This function calculates the mean values, mean Fx (ECDF) and ECDF differences (Fx) for expression data, across different experimental conditions.

Usage

```
meandifference(resultsecdf, expdf, nbwindows, showtime = FALSE,
verbose = TRUE)
```

Arguments

resultsecdf A data frame co genesECDF).	ntaining ECDF results for each transcript and condition (see
•	taining experiment data that should have columns named 'con- ', 'strand', and 'path'.
nbwindows An integer repres	enting the number of windows (or segments) in each transcript.
e	ndicating if the duration of the function processing should be ending. Defaults to FALSE.
verbose A logical flag inc	licating whether to print progress messages. Defaults to TRUE.

Value

A data frame that contains, for each condition:

- Mean values for the "value" and "Fx" columns (e.g., mean_value_ctrl, mean_Fx_ctrl).
- Differences between the Fx column and coordinate ratios (e.g., diff_Fx_ctrl).

```
# Assuming resultsecdf is a data frame with ECDF results and expdf contains
# conditions:
# result <- meandifference(resultsecdf, expdf, nbwindows = 200,
# verbose = TRUE)</pre>
```

16 plotauc

plotauc Plot AUC Comparison Between Conditions	
--	--

Description

This function generates scatterplots comparing the area under the curve (AUC) for control and stress conditions, with an option to highlight specific genes or groups. The plot can be saved as a file or displayed interactively.

Usage

```
plotauc(tab, genevec = NA, auc_ctrlname = "AUC_ctrl",
auc_stressname = "AUC_HS",
pvalkstestcolname = "adjFDR_p_dAUC_Diff_meanFx_HS_ctrl",
labelx = "AUC in Control", labely = "AUC in Stress", axismin_x = -10,
axismax_x = 100, axismin_y = -10, axismax_y = 100, maintitle = "",
subtitle = "", legendpos = "bottom", formatname = "pdf", outfold = ".",
outfile = "AUCcompare_pval", plottype = "pval", plot = FALSE,
universename = "Universe", groupname = "Group", verbose = TRUE)
```

Arguments

 $\quad \text{outfile} \quad$

tab	A data frame containing the AUC values for control and stress conditions, and other columns required for plotting (e.g., p-values or group memberships, see allauc).
genevec	A vector of gene names to highlight on the plot, applicable when plottype is set to "pval". Default is NA.
auc_ctrlname	The column name in tab for the AUC under control conditions. Default is "AUC_ctrl".
<pre>auc_stressname pvalkstestcolna</pre>	The column name in tab for the AUC under stress conditions. Default is "AUC_HS".
	The column name in tab for the adjusted FDR p-values from the KS test. Default is "adjFDR_p_dAUC_Diff_meanFx_HS_ctrl".
labelx	Label for the x-axis. Default is "AUC in Control".
labely	Label for the y-axis. Default is "AUC in Stress".
axismin_x	Minimum value for the x-axis. Default is −10.
axismax_x	Maximum value for the x-axis. Default is 100.
axismin_y	Minimum value for the y-axis. Default is −10.
axismax_y	Maximum value for the y-axis. Default is 100.
maintitle	Main title of the plot. Default is an empty string.
subtitle	Subtitle of the plot. Default is an empty string.
legendpos	Position of the legend. Default is "bottom".
formatname	Format of the saved plot (e.g., "pdf", "png"). Default is "pdf".
outfold	Output folder where the plot will be saved. Default is ".".

Name of the output file. Default is "AUCcompare_pval".

plotecdf 17

plottype	Type of plot to generate. Can be "pval" for p-value based plots or "groups" for group-based plots. Default is "pval".
plot	A logical flag indicating whether to display the plot interactively (TRUE) or save it to a file (FALSE). Default is FALSE.
universename	Column name in tab representing the universe group in group-based plots. Default is "Universe".
groupname	Column name in tab representing specific groups in group-based plots. Default is "Group".
verbose	A logical flag indicating whether to display detailed messages about the function's progress. Default is TRUE.

Details

The function supports two plot types:

- "pval": The plot highlights genes based on adjusted FDR p-values and can highlight specific genes provided in genevec.
- "groups": The plot highlights predefined groups, such as "Attenuated" and "Outgroup", within the data.

If plot = TRUE, the plot is displayed interactively. If plot = FALSE, the plot is saved to a file in the specified format and output folder.

Value

A plot comparing AUC values between control and stress conditions, either displayed or saved to a file.

See Also

[allauc]

Examples

```
# Assuming `tab` contains AUC values and p-values:
# plotauc(tab, genevec = c("Gene1", "Gene2"), plottype = "pval")
```

plotecdf

Plot Empirical Cumulative Distribution Function (ECDF)

Description

This function generates an ECDF plot to analyze transcription density relative to the distance from the transcription start site (TSS) across different conditions. The plot displays AUC values, Kolmogorov-Smirnov (KS) statistics, and knee points, with options to display or save the plot.

Usage

```
plotecdf(dfmeandiff, unigroupdf, expdf, genename, colvec, outfold = NA,
digits = 2, middlewind = 100, pval = 0.01, plot = FALSE, verbose = TRUE)
```

18 plotecdf

Arguments

A data frame containing the mean differences of transcription levels and cumulative distribution values (Fx) for different windows around the TSS (see meandifference).
A data frame containing gene-specific statistics, including their belonging to Universe or Group (see universegroup).
A data frame containing experiment data that should have columns named 'condition', 'replicate', 'strand', and 'path'.
A string specifying the name of the gene of interest to plot.
A vector of colors used to distinguish different conditions in the plot.
A string specifying the output folder where the plot will be saved if plot = FALSE. Default is NA.
The number of decimal places to round the AUC and KS values. Default is 2.
The index of the middle window representing the region centered around the TSS. Default is 100.
A numeric value for the p-value threshold to determine the significance of the KS test. Default is 0.01.
A logical flag indicating whether to display the plot interactively (TRUE) or save it to a file (FALSE). Default is FALSE.
String of the format of the saved plot. Possible values are "eps", "ps", "tex" (pictex), "pdf", "jpeg", "tiff", "png", "bmp", and "svg". Default is "pdf".
A logical flag indicating whether to display detailed messages about the function's progress. Default is TRUE.

Details

The function processes data related to transcription levels and cumulative transcription density for a given gene across multiple experimental conditions. The ECDF plot is constructed with optional annotation of key statistics such as AUC values and significant KS test results. Knee points, representing significant changes in transcription density, are also displayed if the KS test passes the specified p-value threshold.

Value

An ECDF plot showing the transcription density across windows around the TSS, with highlights for significant KS test results and knee points. The plot can either be displayed or saved as a file.

See Also

[meandifference], [universegroup]

```
# Assuming `dfmeandiff`, `unigroupdf`, and `expdf` contain the necessary
# data:
# plotecdf(dfmeandiff, unigroupdf, expdf, genename = "GeneX",
# colvec = c("blue", "red"))
```

plothistoknee 19

plothistoknee	Plot Histogram of Distance from TSS to Knee Point

Description

This function generates a histogram showing the distribution of the distance from the transcription start site (TSS) to the knee point for attenuated genes. The distance can be plotted either as a percentage of the gene length or in kilobases (kb).

Usage

```
plothistoknee(unigroupdf, plottype = "percent", xlimvec = NA,
binwidthval = NA, kneename = "knee_AUC_HS", plot = FALSE, outfold = ".",
formatname = "pdf", universename = "Universe", groupname = "Group",
verbose = TRUE)
```

Arguments

unigroupdf	A data frame containing gene-level statistics, including knee point data and group classification (see universegroup).
plottype	A string specifying the type of distance to plot. Options are "percent" for the percentage of the gene or "kb" for distance in kilobases. Default is "percent".
xlimvec	A numeric vector of length 2 specifying the limits of the x-axis. Default is NA, which automatically sets the limits based on plottype.
binwidthval	A numeric value for the width of the bins in the histogram. Default is NA, which automatically selects a bin width based on plottype.
kneename	A string specifying the name of the column in unigroupdf that contains the knee point data. Default is "knee_AUC_HS".
plot	A logical flag indicating whether to display the plot interactively (TRUE) or save it to a file (FALSE). Default is FALSE.
outfold	A string specifying the output folder where the plot will be saved if plot = FALSE. Default is the current directory.
formatname	A string specifying the format of the saved plot file. Default is "pdf".
universename	A string specifying the name of the column in unigroupdf that defines the universe of genes. Default is "Universe".
groupname	A string specifying the name of the column in unigroupdf that defines the group classification of genes. Default is "Group".
verbose	A logical flag indicating whether to display detailed messages about the function's progress. Default is TRUE.

Value

A histogram showing the distribution of the distance from the TSS to the knee point for attenuated genes. The plot can either be displayed interactively or saved to a file.

See Also

[universegroup]

20 plotmetagenes

Examples

```
# Assuming `unigroupdf` contains the necessary data:
# plothistoknee(unigroupdf, plottype = "kb", xlimvec = c(0, 300),
# binwidthval = 10)
```

plotmetagenes

Plot Metagenes for Gene Groups

Description

This function plots metagene profiles based on transcript data, comparing transcription density across conditions (e.g., control vs. stress). The function allows the user to plot metagenes for different gene groups such as attenuated genes, outgroup genes, the entire universe of genes, or all genes.

Usage

```
plotmetagenes(unigroupdf, dfmeandiff, plottype = "attenuation",
daucname = "dAUC_Diff_meanFx_HS_ctrl", auc_ctrlname = "AUC_ctrl",
auc_stressname = "AUC_HS", plot = FALSE, formatname = "pdf", outfold = ".",
verbose = TRUE)
```

Arguments

unigroupdf	A data frame containing gene-level information, including group classifications and dAUC data for different conditions (see universegroup).
dfmeandiff	A data frame containing mean transcription values and coordinates for each transcript (see meandifference).
plottype	A string specifying the group of genes to plot. Options are "attenuation", "outgroup", "universe", or "all". Default is "attenuation".
daucname	A string specifying the column name for the delta AUC value (difference between conditions). Default is "dAUC_Diff_meanFx_HS_ctr1".
auc_ctrlname	A string specifying the column name for the control condition AUC values. Default is "AUC_ctrl".
auc_stressname	A string specifying the column name for the stress condition AUC values. Default is "AUC_HS".
plot	A logical flag indicating whether to display the plot interactively (TRUE) or save it to a file (FALSE). Default is FALSE.
formatname	A string specifying the format of the saved plot file. Default is "pdf".
outfold	A string specifying the output folder where the plot will be saved if plot = FALSE. Default is the current directory.
verbose	A logical flag indicating whether to display detailed messages about the func-

tion's progress. Default is TRUE.

preprocessing 21

Details

This function summarizes mean transcription levels across genomic coordinates for different gene groups and plots the transcription density from the transcription start site (TSS) to the transcription termination site (TTS). The function can generate metagene plots for different gene groups such as attenuated, outgroup, or all genes, and compares transcription profiles between conditions (e.g., control vs. stress). The resulting plot helps visualize differences in transcriptional response between groups of genes under different conditions.

Value

A metagene plot comparing transcription density across conditions (e.g., control vs. stress) for the selected group of genes. The plot can either be displayed interactively or saved to a file.

See Also

```
[universegroup], [meandifference]
```

Examples

```
# Assuming `unigroupdf` and `dfmeandiff` contain the necessary data:
# plotmetagenes(unigroupdf, dfmeandiff, plottype = "universe", plot = TRUE)
```

preprocessing

Preprocess Experimental Data for Genomic Analysis

Description

This function orchestrates a pipeline for preprocessing genomic data, including filtering annotations, splitting transcripts into windows, retrieving bedgraph values, and generating a final annotated table.

Usage

```
preprocessing(exptabpath, gencodepath, windsize, maptrackpath,
blacklistshpath, genomename, nbcputrans = 1, finaltabpath = "./",
finaltabname = "anno.tsv", tmpfold = "./tmp", saveobjectpath = NA,
savefinaltable = TRUE, reload = FALSE, showtime = FALSE, showmemory = FALSE,
deletetmp = TRUE, verbose = TRUE)
```

Arguments

exptabpath Character. Path to the experiment table file.
gencodepath Character. Path to the Gencode annotation file.
windsize Integer. Window size for splitting transcripts.
maptrackpath Character. Path to the mappability track file.

blacklistshpath

Character. Path to the blacklist file.

genomename Character. Name of the genome assembly (e.g., "hg38").

nbcputrans Integer. Number of CPUs to use for transcript processing. Default is 1.

22 preprocessing

finaltabpath	Character. Path where the final annotated table will be saved. Default is "./".
finaltabname	Character. Name of the final annotated table file. Default is "anno.tsv".
tmpfold	Character. Path to a temporary folder for intermediate files. Default is "./tmp".
${\tt save object path}$	Character. Path to save intermediate objects. Default is NA.
${\tt savefinaltable}$	Logical. Whether to save the final table to disk. Default is TRUE.
reload	Logical. Whether to reload intermediate objects if available. Default is FALSE.
showtime	Logical. Whether to display timing information. Default is FALSE.
showmemory	Logical. Whether to display memory usage information. Default is FALSE.
deletetmp	Logical. Whether to delete temporary files after processing. Default is TRUE.
verbose	Logical. Whether to display detailed progress messages. Default is TRUE.

Details

The 'preprocessing' function performs several key tasks: 1. Filters Gencode annotations to retrieve "transcript" annotations. 2. Differentiates between protein-coding (MANE_Select) and long non-coding (lncRNA, Ensembl_canonical) transcripts. 3. Splits transcripts into windows of size 'windsize'. 4. Processes bedgraph files to retrieve values, exclude blacklisted regions, and retain high-mappability intervals. 5. Generates a final annotated table with scores derived from the above steps.

Temporary files created during processing are optionally deleted at the end.

Value

A data frame representing the final table containing transcript information and scores on 'windsize' windows for all experiments defined in the experiment table (exptabpath).

See Also

[retrieveanno][makewindows][blacklisthighmap][createtablescores]

```
# Example usage of preprocessing:
preprocessing(
  exptabpath = "./example_exptab.tsv",
  gencodepath = "./gencode.v38.annotation.gtf",
  windsize = 200,
  maptrackpath = "./mappability_track.bed",
  blacklistshpath = "./blacklist.bed",
  genomename = "hg38",
  nbcputrans = 2,
  finaltabpath = "./results/",
  finaltabname = "final_annotated_table.tsv",
  tmpfold = "./tmp",
  saveobjectpath = "./saved_objects",
  savefinaltable = TRUE,
  reload = FALSE,
  showtime = TRUE,
  showmemory = TRUE,
  deletetmp = TRUE,
  verbose = TRUE
)
```

retrieveanno 23

retrieveanno	Retrieve and Combine Annotation Information	

Description

This function filters gencode annotations to retrieve "transcript". It then distinguishes transcripts coming from protein coding genes (MANE_Select) and those coming from long non-coding genes (lncRNA, Ensembl_canonical).

Usage

```
retrieveanno(exptabpath, gencodepath, saveobjectpath = NA, showtime = FALSE,
verbose = TRUE)
```

Arguments

exptabpath Path to the experiment table file containing a table with columns named 'condi-

tion', 'replicate', 'strand', and 'path'.

gencodepath Path to the GENCODE annotation file.

saveobjectpath Path to save intermediate R objects. Default is 'NA' and R objects are not saved.

showtime Logical. If 'TRUE', displays timing information. Default is 'FALSE'.

verbose Logical. If 'TRUE', provides detailed messages during execution. Default is

'TRUE'.

Details

The function performs the following steps: 1. Reads experimental data from the provided CSV file and validates it. 2. Reads genomic annotations from the gencode file and filters for transcripts. 3. Separately processes protein-coding and long non-coding RNA transcripts: - For protein-coding genes, selects the most representative (MANE_Select or Ensembl_canonical) transcripts. - For long non-coding RNAs, filters out transcripts with undesirable evidence levels. 4. Combines these annotations into a single data frame, labeling each transcript with its biotype. 5. Optionally saves the resulting data frame as an RDS file in the specified directory. 6. Optionally reports the total time taken for analysis.

Value

A data frame containing the combined annotation information for protein-coding and long non-coding RNA transcripts. If 'saveobjectpath' is not 'NA', the object is also saved as an RDS file in the specified directory.

24 universegroup

```
gencodepath = gencode_file,
  saveobjectpath = output_dir,
  showtime = TRUE,
  verbose = TRUE
)
```

universegroup

Define Universe and Group of Genes Based on Expression Data

Description

This function categorizes genes into a "Universe" and assigns them into groups such as "Attenuated" or "Outgroup" based on transcription data and thresholds. The universe is defined by thresholds for window size, missing data count, mean transcription levels, and p-values. Genes are further classified into groups based on conditions related to AUC and p-value thresholds.

Usage

```
universegroup(completedf, controlname = "ctrl", stressname = "HS", windsizethres = 50, countnathres = 20, meanctrlthres = 0.5, meanstressthres = 0.5, pvaltheorythres = 0.1, aucctrlthreshigher = -10, aucctrlthreslower = 15, aucstressthres = 15, attenuatedpvalksthres = 2, outgrouppvalksthres = 0.2, showtime = FALSE, verbose = TRUE)
```

Arguments

completedf A data frame obtained with the function attenuation.

controlname A string representing the control condition name. Default is "ctrl".

A string representing the stress condition name. Default is "HS".

windsizethres A numeric threshold for the minimum window size. Default is 50.

countnathres A numeric threshold for the maximum number of missing data points (NA val-

ues). Default is 20.

meanctrlthres A numeric threshold for the minimum mean transcription value in the control

condition. Default is 0.5.

meanstressthres

A numeric threshold for the minimum mean transcription value in the stress condition. Default is 0.5.

pvaltheorythres

A numeric threshold for the minimum p-value used to define the universe of genes. Default is 0.1.

aucctrlthreshigher

A numeric threshold for the lower bound of the control AUC value in the outgroup classification. Default is -10.

aucctrlthreslower

A numeric threshold for the upper bound of the control AUC value in the outgroup classification. Default is 15.

aucstressthres A numeric threshold for the minimum stress AUC value used to classify attenuated genes. Default is 15.

universegroup 25

attenuatedpvalksthres

A numeric threshold for the negative log10 of the p-value (from KS test) for defining attenuated genes. Default is 2.

outgrouppvalksthres

A numeric threshold for the maximum KS p-value used to define the outgroup.

Default is 0.2.

showtime A logical value indicating if the duration of the function processing should be

indicated before ending. Defaults to FALSE.

verbose A logical flag indicating whether to print progress messages. Defaults to TRUE.

Details

A transcript belongs to "Universe" if: window_size > windsizethres & Count_NA < countnathres & meanctrl > meanctrlthres & meanstress > meanstress thres & pvaltheory > pvaltheory thres

A transcript belongs to the groups: - **Attenuated**: if Universe == TRUE & aucstress > aucstressthres & -log10(pvalks) > attenuatedpvalksthres - **Outgroup**: if Universe == TRUE & pvalks > outgroup-pvalksthres & aucctrl > aucctrlthreshigher & aucctrl < aucctrlthreslower

This function is useful for classifying genes in transcriptomics data based on their transcriptional response to different experimental conditions.

Value

A modified data frame with two additional columns: Universe, indicating whether each gene is part of the universe, and Group, classifying the genes into groups such as "Attenuated", "Outgroup", or NA.

See Also

[attenuation]

```
# Example usage:
# classified_df <- universegroup(completedf, controlname = "ctrl",
# stressname = "HS")</pre>
```

Index

```
allauc, 1
attenuation, 2
average and filter exprs, 4
{\tt blacklisthighmap}, {\tt 5}
checkexptab, 7
countna, 8
createtablescores, 9
genesECDF, 11
joinfiles, 12
kneeid, 13
makewindows, 14
\  \, \text{meandifference}, \, 15
plotauc, 16
plotecdf, 17
plothistoknee, 19
plotmetagenes, 20
preprocessing, 21
retrieveanno, 23
universegroup, 24
```