Introdução à Análise de Algoritmos: Contagem de Operações

Instituto de Ciências Exatas e Informática Departamento de Ciência da Computação

Exercício (1)

• Resolva as equações abaixo:

a)
$$2^0 =$$

d)
$$2^3 =$$

g)
$$2^6 =$$

b)
$$2^1 =$$

e)
$$2^4 =$$

h)
$$2^7 =$$

c)
$$2^2 =$$

f)
$$2^5 =$$

i)
$$2^8 =$$

Exercício (1)

Resolva as equações abaixo:

a)
$$2^0 = 1$$

d)
$$2^3 = 2 \times 2 \times 2 = 8$$

g)
$$2^6 = 64$$

b)
$$2^1 = 2$$

e)
$$2^4 =$$

h)
$$2^7 = 128$$

c)
$$2^2 = 2 \times 2 = 4$$
 f) $2^5 =$

f)
$$2^5 =$$

i)
$$2^8 = 256$$

Exercício (2)

Resolva as equações abaixo:

a)
$$lg(2048) =$$

d)
$$lg(256) =$$

g)
$$lg(32) =$$

b)
$$lg(1024) =$$

e)
$$lg(128) =$$

h)
$$lg(16) =$$

c)
$$lg(512) =$$

$$f) lg(64) =$$

i)
$$lg(8) =$$

Nota: lg(n) é a mesma coisa que o logaritmo de n na base dois, ou seja, $log_2(n)$

Exercício (2)

Resolva as equações abaixo:

a)
$$\lg(2048) = 11$$
 d) $\lg(256) = 8$

d)
$$lg(256) = 8$$

g)
$$lg(32) = 5$$

b)
$$lg(1024) = 10$$
 e) $lg(128) = 7$

e)
$$lg(128) = 7$$

h)
$$lg(16) = 4$$

c)
$$lg(512) = 9$$

f)
$$lg(64) = 6$$

i)
$$lg(8) = 3$$

Nota: lg(n) é a mesma coisa que o logaritmo de n na base dois, ou seja, $log_2(n)$

Exercício (3)

Resolva as equações abaixo:

a)
$$[4,01] =$$

d)
$$[4,99]$$
=

Exercício (3)

Resolva as equações abaixo:

a)
$$[4,01] = 5$$

b)
$$[4,99] = 4$$

c)
$$[4,01] = 4$$

d)
$$[4,99] = 5$$

- Resolva as equações abaixo:
 - a) $2^{10} =$
 - b) lg(1024) =
 - c) lg(17) =
 - d)|g(17)| =
 - e)||g(17)||=

Resolva as equações abaixo:

a)
$$2^{10} = 1024$$

b)
$$lg(1024) = 10$$

c)
$$lg(17) = 4,08746284125034$$

d)
$$[g(17)] = 5$$

$$||g(17)|| = 4$$

Piso e Teto


```
a--;
a -= 3;
a = a - 2;
```



```
a--;
a -= 3;
a = a - 2; //três subtrações
```


Calcule o número de adições que o código abaixo realiza:

Resposta: O número máximo de adições acontece quando a primeira condição do if é falsa e a segunda, verdadeira. Se a primeira condição for verdadeira, o Java nem executa a segunda condição (OR curto-circuito)

Α	В	OR
F	X	X
Т	X	Т

Α	В	AND
F	X	F
Т	X	X

Calcule o número de subtrações que o código abaixo realiza:

Sua resposta deve ser em função de n

· Calcule o número de subtrações que o código abaixo realiza:

Sua resposta deve ser em função de n

· Calcule o número de subtrações que o código abaixo realiza:

Se n = 6, temos subtrações quando i vale 3, 4, 5 (6 - 3 = 3, vezes)

$$n = 7$$

$$3, 4, 5, 6 (7 - 3 = 4 \text{ vezes})$$

. . . .

$$n = 10$$

$$3, 4, 5, 6, 7, 8, 9 (10-3=7 \text{ vezes})$$


```
for (int i = 0; i < 5; i++){
    if (i % 2 == 0){
        a--;
        b--;
    } else {
        C--;
    }
}
```


· Calcule o número de subtrações que o código abaixo realiza:

Solução fácil: $3 \times 2 \times 1$

· Calcule o número de subtrações que o código abaixo realiza:

Solução fácil: $3 \times 2 \times 1$

Calcule o número de subtrações que o código abaixo realiza:

Solução fácil: $3 \times 2 \times 1$

Calcule o número de subtrações que o código abaixo realiza:


```
int a = 10;
for (int i = 0; i < 3; i++){
    for (int j = 0; j < 2; j++){
        a--;
    }
}</pre>
```

Solução fácil: 3 x 2 x 1

· Calcule o número de subtrações que o código abaixo realiza:


```
int a = 10;
for (int i = 0; i < 3; i++){
    for (int j = 0; j < 2; j++){
        a--;
    }
}</pre>
```

i	j	sub
0	0	0

Solução difícil

i	j	sub
0		


```
int a = 10;
for (int i = 0; i < 3; i++){
    for (int j = 0; j < 2; j++){
        a--;
    }
}</pre>
```

i	j	sub
0	0	

i	j	sub
0	0	


```
int a = 10;
for (int i = 0; i < 3; i++){
    for (int j = 0; j < 2; j++){
        a--;
    }
}</pre>
```

i	j	sub
0	0	1

i	j	sub
0	1	1

i	j	sub
0	1	1


```
int a = 10;

for (int i = 0; i < 3; i++){
    for (int j = 0; j < 2; j++){
        a--;
    }
}</pre>
```

i	j	sub
0	1	2

i	j	sub
0	2	2

i	j	sub
0	2	2


```
int a = 10;
for (int i = 0; i < 3; i++){
    for (int j = 0; j < 2; j++){
        a--;
    }
}</pre>
```

i	j	sub
1		2

i	j	sub
1		2


```
int a = 10;

for (int i = 0; i < 3; i++){
    for (int j = 0; j < 2; j++){
        a--;
    }
}</pre>
```

i	j	sub
1	0	2

i	j	sub
1	0	2


```
int a = 10;
for (int i = 0; i < 3; i++){
    for (int j = 0; j < 2; j++){
        a--;
    }
}</pre>
```

i	j	sub
1	0	3

i	j	sub
1	1	3

i	j	sub
1	1	3


```
int a = 10;
for (int i = 0; i < 3; i++){
    for (int j = 0; j < 2; j++){
        a--;
    }
}</pre>
```

i	j	sub
1	1	4

i	j	sub
1	2	4

i	j	sub
1	2	4


```
int a = 10;

for (int i = 0; i < 3 i++){
    for (int j = 0; j < 2; j++){
        a--;
    }
}</pre>
```

i	j	sub
2		4

i	j	sub
2		4


```
int a = 10;
for (int i = 0; i < 3; i++){
    for (int j = 0; j < 2; j++){
        a--;
    }
}</pre>
```

i	j	sub
2	0	4

i	j	sub
2	0	4


```
int a = 10;

for (int i = 0; i < 3; i++){
    for (int j = 0; j < 2; j++){
        a--;
    }
}</pre>
```

i	j	sub
2	0	5

i	j	sub
2	1	5

i	j	sub
2	1	5


```
int a = 10;

for (int i = 0; i < 3; i++){
    for (int j = 0; j < 2; j++){
        a--;
    }
}</pre>
```

i	j	sub
2	1	6

i	j	sub
2	2	6

i	j	sub
2	2	6


```
int a = 10;

for (int i = 0; i < 3; i++){
    for (int j = 0; j < 2; j++){
        a--;
    }
}</pre>
```

i	j	sub
3		6

i	j	sub
3		6


```
for (int i = 0; i < n; i++)
for (int j = 0; j < n - 3; j++)
a *= 2;
```



```
for (int i = n - 7; i >= 1; i--)
for (int j = 0; j < n; j++)
a *= 2;
```



```
for (int i = n - 7; i >= 1; i--)
    for (int j = 0; j < n; j++)
        a *= 2;
//(n-7) * n multiplicações</pre>
```

```
for (int i = n - 7; i >= 1; i--)
for (int j = n - 7; j >= 1; j--)
a *= 2;
```



```
for (int i = n - 7; i >= 1; i--)
for (int j = n - 7; j >= 1; j--)
a *= 2;
//(n-7) * (n-7) multiplicações
```

```
for (int i = n; i > 0; i /= 2)
a *= 2;
```

Calcule o número de multiplicações que o código abaixo realiza:

Quando n é uma potência de 2, realizamos lg(n) + 1 multiplicações

Se n = 8, efetuamos a multiplicação quando i vale 8, 4, 2, 1

Calcule o número de multiplicações que o código abaixo realiza:

Para um valor qualquer de n, temos [lg(n)]+ 1 multiplicações

n = 7,		7,	3, 1
Se $n = 8$,	efetuamos a multiplicação quando i vale	8,	4, 2, 1
n = 9,		9,	4, 2, 1
n = 15	,	15,	7, 3, 1
n = 16	,	16,	8, 4, 2, 1
n = 17	,	17,	8, 4, 2, 1
n = 31	,	31,	15, 7, 3, 1
n = 32	,	32,	16, 8, 4, 2, 1
n = 33	,	33,	16, 8, 4, 2, 1

Outra forma de compreender o código anterior é executando-o:

```
class Log {
  public static void main (String[] args) {
    int[] n = \{4,5,6,7,8,9,10,11,12,13,14,15,16,17,31,32,33,63,64,65\};
    int cont;
    for (int k = 0; k < n.length; k++) {
      System.out.print("n[n = " + n[k] + "] => ");
      cont = 0;
      for (int i = n[k]; i > 0; i /= 2) {
        System.out.print(" " + i);
        cont++;
      System.out.print(" (" + cont + " vezes)");
    System.out.print("\n");
```