Learn RAG From Scratch – Python AI Tutorial from a LangChain Engineer

https://youtu.be/sVcwVQRHIc8?list=PLCkMWeGDjQDKWu1IFdhykSMcjnn0SJA0x

Query Translation

- Rewriting strategies
 - Multi Query
 - Enter a query and ask a LLM to rewrite it in 4-5 different ways then normal RAG with all retrieved documents
 - RAG Fusion
 - Same as multi query but rank the document and take the top 5
 - Ranking is given out by which documents are retrieved the most frequent from each of the queries in the Retrieval phase
- Decomposition or Least to most (by google)
 - Chain of through reasoning

- 1. Break question into smaller sub questions (ex.3)
 - Have to use specific prompt to get questions that build on each other, can help one another, and be answered in full.
- 2. Answer first question with rag

- 3. Answer second question with rag + (first question + answer) into LLM
- 4. Answer third question with rag with (first question + answer AND second question + answer) into LLM
- 5. Using rag on original question + (all context above) into LLM
- Alternate way

- Answer each question individually then add together at the end
 - We don't need a super specific prompt the break down the initial question
- Step-Back question (by google)
 - Take a specific question and find a more abstract question that is typically easier for a LLM to answer
 - In the initial prompt provide examples of different questions and a appropriate output can the LLM can figure out the pattern and then replicate it
 - Combines the documents from both the step back question and the documents form the original question to enter in a LLM with the original question as the final response

HyDE

Because Documents and questions are very different in nature the embeddings from each may not match accordingly, thus HyDE will turn a question into a HYPOTHETICAL document then compare the embeddings from this with the embedding to the documents

Intuition

BUT in the final RAG prompt does not include the hypothetical document

Routing

- Structured output
 - Use a LLM to decide if the prompt should go to which data source
 - Knowledge based approach
- Semantic Routing
 - Embedding prompts or description of the DB such as a physics or math DB to a physics or math prompt and then compare both prompts to the user's question
 - question has to be embedded first before comparison

Query construction

- From the prompt you have to turn the question into a acceptable format to query each of the DB's so it would have to be in
 - {"content_search":, "document_date:", (OTHER PARMATERS)}
 - You can Acchive this by using a LLM with example output prompts

Indexing

0

- Multi Representation indexing
 - Lol just making a summary of each document before indexing

But the prompt to LLM when summarizing is asked in a way to optimize the summary for indexing

RAPTOR

- Create a hierarchy of documents and summaries throught he use of recursively joining similar chunks/documents and summarizing them
 - This helps to answer a wide range of high and low level questions

ColBERT

■ Turn both documents and question into tokens and then compare these tokens to one another and then score them by ???

CRAG

- DO retrieval but if no documents are relevant you web search and use that context instead
 - Deciding if the documents are relevant are done by a "grader"

Adaptive RAG

- o Have unit testing at certain points in RAG
 - Each unit test will have a fall back like a re-run or switching paths

