EECSIGN DIS 8B	Playlist:
email: moses won a bertaley edy	Superorganisms Everyboly wants to be
OH: WIOAM-12PM PT (HWP)	Everybedy wants to be famous (Lucy Yang)
-> Discard -> on queul	Waves (Tane impala) remix
Logistical bits	Shwarthe Steepl
(i) Circuit Review Sessions (3) Scape: Norton/Thousenin	suggestions abit. by/16a jukelook
(2) Piazza posts (4) Karinna! Ask her questions too!	
Topics/Learning Objectives	,
1) Applying superposition (how to turn off sources, last	slivy nuances)
(2) Deciche eculvalence, yann 2	
(3) if time: example of a source dissiporting everyy	home.

Designing Information Devices and Systems I EECS 16A Fall 2020 Discussion 8B

1. Superposition

For the following circuits:

- i. Use the superposition theorem to solve for the voltages across the resistors.
- ii. For parts (b) and (c) only, find the power dissipated/generated by all components. Is power conserved?

UCB EECS 16A, Fall 2020, Discussion 8B, All Rights Reserved. This may not be publicly shared without explicit permission.

(b) + Donet U51= U52 = VR1 calculate. (pavallel) naw subcircint Isz on Is, off Is, on, Is, off (mcr@tob) Vp1=21-151 PR = VR, IR, = R(Is, -Is,) >0

Pr = 71(-By superposition: $P_{S_1} = P_1(I_{S_1} - I_{S_2}) \leftarrow I_{S_1} \leftarrow Can he positive$ or regative P32 = P, (Is1-Is2) I32 € Chly for resistors!
Resistors always
diss pate! (also manlinear)

 $I_{R_1} = V_{S_1} - V_{S_2}$ $I_{R_1} = \frac{V_{R_1}}{R_2} = \frac{V_{S_1} - V_{S_2}}{R_2}$

 $P_{R_1} = \frac{\left(V_{S_1} - V_{S_2}\right)^2}{|R_1|} > 0$ $P_{S_1} = -V_{S_1} \left(\frac{V_{S_1} - V_{S_2}}{|R_1|}\right) = \frac{\text{can he positive}}{\text{ov veyal}}$

Last Updated: 2020-10-20 20:09

Other equivalences V-000 R>0

2. (Practice) Series and Parallel Combinations

For the resistor network shown below, find an equivalent resistance between the terminals x and y using the resistor combination rules for series and parallel resistors.

3. (Practice) Passive Sign Convention and Power v 2.0

Suppose we have the following circuit and label the currents as shown below. Calculate the power dissipated or supplied by every element in the circuit. Let $V_s = 5 \text{ V}$, $I_s = 0.5 \text{ A}$ and $R_1 = 5 \Omega$.

Voltages in pavallel equal Currents in series equal

K (Nogg

TR, = Is

 $\frac{V_s - u_1}{0} = I_s$ Vy -4, = R, Is VS-RITS=41

Compute currents + voltages 45ing NVs $\begin{cases} V_1 = V_S \\ \overline{1}V_S = -I_{R_1} (KCLQ) V_S \text{ node} \end{cases}$ $\begin{cases} \overline{1}V_S = -V_S - U_1 (KCLQ) V_S \text{ node} \end{cases}$ $= V_S - U_1 (KCLQ) V_S - V$

= x xiIs = Is

 $\begin{array}{c} P \\ SS. \end{array} = \begin{array}{c} V_{R_1} = V_S - V_1 \\ = V_S - \left(V_S - P_1 I_S\right) \\ = P_1 I_S \left(\begin{array}{c} u_1 a_1 \\ v_2 v_3 \end{array}\right) \\ = P_1 I_S \left(\begin{array}{c} u_1 a_2 \\ v_3 v_4 \end{array}\right) \\ = P_1 I_S \left(\begin{array}{c} u_1 a_2 \\ v_2 v_3 \end{array}\right) \\ = P_1 I_S \left(\begin{array}{c} u_1 a_2 \\ v_3 v_4 \end{array}\right) \\ = P_1 I_S \left(\begin{array}{c} u_1 a_2 \\ v_2 v_3 \end{array}\right) \\ = P_1 I_S \left(\begin{array}{c} u_1 a_2 \\ v_3 v_4 \end{array}\right) \\ = P_1 I_S \left(\begin{array}{c} u_1 a_2 \\ v_2 v_3 \end{array}\right) \\ = P_1 I_S \left(\begin{array}{c} u_1 a_2 \\ v_3 v_4 \end{array}\right) \\ = P_1 I_S \left(\begin{array}{c} u_1 a_2 \\ v_3 v_4 \end{array}\right) \\ = P_1 I_S \left(\begin{array}{c} u_1 a_2 \\ v_3 v_4 \end{array}\right) \\ = P_1 I_S \left(\begin{array}{c} u_1 a_2 \\ v_3 v_4 \end{array}\right) \\ = P_1 I_S \left(\begin{array}{c} u_1 a_2 \\ v_3 v_4 \end{array}\right) \\ = P_1 I_S \left(\begin{array}{c} u_1 a_2 \\ v_3 v_4 \end{array}\right) \\ = P_1 I_S \left(\begin{array}{c} u_1 a_2 \\ v_3 v_4 \end{array}\right) \\ = P_1 I_S \left(\begin{array}{c} u_1 a_2 \\ v_3 v_4 \end{array}\right) \\ = P_1 I_S \left(\begin{array}{c} u_1 a_2 \\ v_3 v_4 \end{array}\right) \\ = P_1 I_S \left(\begin{array}{c} u_1 a_2 \\ v_3 v_4 \end{array}\right) \\ = P_1 I_S \left(\begin{array}{c} u_1 a_2 \\ v_3 v_4 \end{array}\right) \\ = P_1 I_S \left(\begin{array}{c} u_1 a_2 \\ v_3 v_4 \end{array}\right) \\ = P_1 I_S \left(\begin{array}{c} u_1 a_2 \\ v_3 v_4 \end{array}\right) \\ = P_1 I_S \left(\begin{array}{c} u_1 a_2 \\ v_3 v_4 \end{array}\right) \\ = P_1 I_S \left(\begin{array}{c} u_1 a_2 \\ v_3 v_4 \end{array}\right) \\ = P_1 I_S \left(\begin{array}{c} u_1 a_2 \\ v_3 v_4 \end{array}\right) \\ = P_1 I_S \left(\begin{array}{c} u_1 a_2 \\ v_3 v_4 \end{array}\right) \\ = P_1 I_S \left(\begin{array}{c} u_1 a_2 \\ v_3 v_4 \end{array}\right) \\ = P_1 I_S \left(\begin{array}{c} u_1 a_2 \\ v_4 v_4 \end{array}\right) \\ = P_1 I_S \left(\begin{array}{c} u_1 a_2 \\ v_4 v_4 \end{array}\right) \\ = P_1 I_S \left(\begin{array}{c} u_1 a_2 \\ v_4 v_4 \end{array}\right) \\ = P_1 I_S \left(\begin{array}{c} u_1 a_2 \\ v_4 v_4 \end{array}\right) \\ = P_1 I_S \left(\begin{array}{c} u_1 a_2 \\ v_4 v_4 \end{array}\right) \\ = P_1 I_S \left(\begin{array}{c} u_1 a_2 \\ v_4 v_4 \end{array}\right) \\ = P_1 I_S \left(\begin{array}{c} u_1 a_2 \\ v_4 v_4 \end{array}\right) \\ = P_1 I_S \left(\begin{array}{c} u_1 a_2 \\ v_4 v_4 \end{array}\right) \\ = P_1 I_S \left(\begin{array}{c} u_1 a_2 \\ v_4 v_4 \end{array}\right) \\ = P_1 I_S \left(\begin{array}{c} u_1 a_2 \\ v_4 v_4 \end{array}\right) \\ = P_1 I_S \left(\begin{array}{c} u_1 a_2 \\ v_4 v_4 \end{array}\right) \\ = P_1 I_S \left(\begin{array}{c} u_1 a_2 \\ v_4 v_4 \end{array}\right) \\ = P_1 I_S \left(\begin{array}{c} u_1 a_2 \\ v_4 v_4 \end{array}\right) \\ = P_1 I_S \left(\begin{array}{c} u_1 a_2 \\ v_4 v_4 \end{array}\right) \\ = P_1 I_S \left(\begin{array}{c} u_1 a_2 \\ v_4 v_4 \end{array}\right) \\ = P_1 I_S \left(\begin{array}{c} u_1 a_2 \\ v_4 v_4 \end{array}\right) \\ = P_1 I_S \left(\begin{array}{c} u_1 a_2 \\ v_4 v_4 \end{array}\right) \\ = P_1 I_S \left(\begin{array}{c} u_1 a_2 \\ v_4 v_4 \end{array}\right) \\ = P_1 I_S \left(\begin{array}{c} u_1 a_2 \\ v_4 v_4 \end{array}\right) \\ = P_1 I_S \left(\begin{array}{c} u_1 a_2 \\ v_4 v_4 \end{array}\right) \\ = P_1 I_S \left(\begin{array}{c} u_1 a_2 \\ v_4 v_4 \end{array}\right) \\ = P_1 I_S \left(\begin{array}{c} u_1 a_2 \\ v_4 v_4 \end{array}\right) \\ = P_1 I_S \left(\begin{array}{c} u_1 a_2 \\ v_4 v_4 \end{array}\right) \\ = P_$

Pvs= V, Ivs= Vs Is>0 (always supplying) $P_{I_S} = V_{I_S} \cdot I_S = (V_S - P_1 I_S) \cdot I_S$ (can be supplying) $P_{I_S} = V_{I_S} \cdot I_S = (V_S - P_1 I_S) \cdot I_S$ (or dissipating) $P_{R} = V_{R_1} \cdot I_{R_1} = P_1 \cdot I_S \cdot I_S$ $P_{R} = V_{R_1} \cdot I_{R_1} = P_1 \cdot I_S \cdot I_S$ $P_{R} = V_{R_1} \cdot I_{R_2} = P_1 \cdot I_S \cdot I_S$ (always dissipating)

Examples of neither (evies nor pavalle)

R11 12 Ray R3 Not in sevies R2, R3 are not in parallel
R1, R2 not in parallel