

Biomecatrónica

Diseño por lugar de raíces

Problema de control

Solución

En lugar de cambiar el sistema existente, aumentamos o compensamos el sistema con polos y ceros adicionales, de modo que el sistema compensado tenga un lugar de raíces que pase por la ubicación deseada del polo para obtener algún valor de ganancia

Advertencia

Al comienzo del proceso de diseño se determina la ubicación adecuada de polos y ceros en lazo abierto adicionales para producir los polos en lazo cerrado de segundo orden deseados

Pero no se conoce la ubicación de los polos de lazo cerrado de orden superior hasta el final del diseño

Se debe evaluar la respuesta transitoria mediante simulación una vez completado el diseño para asegurarnos de que se hayan cumplido los requisitos

Configuraciones

Compensadores ideales

Los compensadores que utilizan integración pura para mejorar el error en estado estacionario o diferenciación pura para mejorar la respuesta transitoria se definen como compensadores ideales y para su implementación física requiere de elementos activos

Compensación Integral Ideal (PI)

El error en estado estacionario se puede mejorar colocando un polo en lazo abierto en el origen, porque esto aumenta el tipo de sistema en uno Por ejemplo, un sistema Tipo 0 que responde a una entrada escalonada con un error finito responde con cero error si el tipo de sistema aumenta en uno Se pueden utilizar circuitos activos para colocar polos en el origen

Compensación Pl

Dado el sistema de la Figura, que opera con $\zeta = 0.174$, demuestre que la adición del compensador integral ideal reduce el error en estado estacionario a cero ante un escalón, sin afectar apreciablemente la respuesta transitoria

Configuración Pl

Compensación de atraso

La compensación integral ideal, con su polo en el origen, requiere un integrador activo

Si se usan redes pasivas, el polo y el cero se mueven hacia la izquierda, cerca del origen

Se puede suponer que esta colocación del polo, aunque no aumenta el tipo de sistema, sí produce una mejora en la constante de error estático con respecto a un sistema no compensado

¿Por qué reduce el e_{ss} ?

$$G_{C}(s) = \frac{(s + z_{c})}{(s + p_{c})} \qquad \begin{array}{c} j\omega \\ \\ \hline \\ -z_{c} \\ -p_{c} \end{array} \qquad \begin{array}{c} s\text{-plane} \\ \\ \hline \end{array}$$

Compense el sistema del ejemplo anterior para mejorar el error en estado estacionario en un factor de 10 si el sistema opera con una relación de amortiguamiento de 0.174

Compensación Derivativa Ideal (PD)

La respuesta transiente se puede establecer mediante la ubicación adecuada de los polos de lazo cerrado Si estas ubicaciones no están en el LGR, entonces se debe reformar para que el (nuevo) LGR compensado pase por la ubicación deseada

Compensación PD

Una forma de acelerar el sistema original que generalmente funciona es agregar un solo cero al lazo abierto

Este cero puede representarse mediante un compensador cuya función de transferencia es

$$G_c(s) = s + z_c$$

Compensación PD

	Uncompensated	Compensation b	Compensation c	Compensation d
DI 1	K	K(s+2)	K(s+3)	K(s+4)
Plant and compensator	(s+1)(s+2)(s+5)	$\overline{(s+1)(s+2)(s+5)}$	$\overline{(s+1)(s+2)(s+5)}$	(s+1)(s+2)(s+5)
Dom, poles	$-0.939 \pm j2.151$	$-3 \pm j6.874$	$-2.437 \pm j5.583$	$-1.869 \pm j4.282$
K	23.72	51.25	35.34	20.76
ζ	0.4	0.4	0.4	0.4
ω_n	2.347	7.5	6.091	4.673
%OS	25.38	25.38	25.38	25.38
T_s	4.26	1.33	1.64	2.14
T_p	1.46	0.46	0.56	0.733
K_p	2.372	10.25	10.6	8.304
$e(\infty)$	0.297	0.089	0.086	0.107
Third pole	-6.123	None	-3.127	-4.262
Zero	None	None	-3	-4
Comments	Second-order approx. OK	Pure second-order	Second-order approx. OK	Second-order approx. OK

Diseñe un compensador derivativo ideal para producir un máximo sobreimpulso del 16%, con una reducción a la tercera parte del tiempo de estabilización

Configuración PD

Compensación de adelanto

El control PD ideal tiene múltiples desventajas de implementación física, por lo que una forma de solventarlas es implementar un compensador de

adelanto

Diseñe un compensador de adelanto para el sistema anterior, tal que el tiempo de estabilización se reduzca en un factor de 2 mientras mantienen un máximo sobreimpulso del 30%

Controlador PID

$$G_c(s) = K_1 + \frac{K_2}{s} + K_3 s = \frac{K_1 s + K_2 + K_3 s^2}{s} = \frac{K_3 \left(s^2 + \frac{K_1}{K_3} s + \frac{K_2}{K_3}\right)}{s}$$

Diseñe un controlador PID de modo que el sistema pueda operar con un tiempo pico que sea dos tercios del sistema no compensado, un máximo sobreimpulso del 20% y error cero en estado estacionario para una entrada escalón

Compensador atraso-adelanto

Diseñe un compensador de atraso-adelanto de manera que el sistema funcione con un máximo sobreimpulso del 20% y una reducción a la mitad del tiempo de estabilización

Además, el sistema compensado presentará una mejora diez veces mayor en el error de estado estable para una entrada de rampa

Implementación física de compensadores

Function	$Z_1(s)$	$Z_2(s)$	$G_c(s) = -\frac{Z_2(s)}{Z_1(s)}$
Gain	$ N_1$	$ \stackrel{R_2}{\searrow}$	$-\frac{R_2}{R_1}$
Integration		C $-$	$-\frac{1}{\frac{RC}{s}}$
Differentiation	<i>C</i> ⊢(←		-RCs

Implementación física de compensadores

Function	$Z_1(s)$	$Z_2(s)$	$G_c(s) = -\frac{Z_2(s)}{Z_1(s)}$
PI controller	$ \stackrel{R_1}{\swarrow}$	$ \begin{pmatrix} R_2 & C \\ - & - \end{pmatrix}$ $\begin{pmatrix} - & - & - \\ & & - & - \end{pmatrix}$	$-\frac{R_2}{R_1} \frac{\left(s + \frac{1}{R_2 C}\right)}{s}$
PD controller	$- \begin{bmatrix} C \\ R_1 \end{bmatrix}$	$ R_2$ $-$	$-R_2C\left(s+\frac{1}{R_1C}\right)$
PID controller	$\begin{array}{c} C_1 \\ \\ \\ R_1 \end{array}$	R_2 C_2 $-$	$-\left[\left(\frac{R_2}{R_1} + \frac{C_1}{C_2}\right) + R_2C_1s + \frac{\frac{1}{R_1C_2}}{s}\right]$
Lag compensation	$- \begin{bmatrix} C_1 \\ C_2 \\ R_1 \end{bmatrix}$	$- \begin{bmatrix} C_2 \\ \\ \\ R_2 \end{bmatrix} -$	$-\frac{C_{1}}{C_{2}} \frac{\left(s + \frac{1}{R_{1}C_{1}}\right)}{\left(s + \frac{1}{R_{2}C_{2}}\right)}$ where $R_{2}C_{2} > R_{1}C_{1}$
Lead compensation	$- \begin{bmatrix} C_1 \\ \vdots \\ R_1 \end{bmatrix}$	$- \begin{bmatrix} C_2 \\ \\ \\ R_2 \end{bmatrix} -$	where $R_2C_2 > R_1C_1$ $-\frac{C_1}{C_2} \frac{\left(s + \frac{1}{R_1C_1}\right)}{\left(s + \frac{1}{R_2C_2}\right)}$ where $R_1C_1 > R_2C_2$