Beräkningar inlämningsuppgift 1

Erik Ödmann, David Carlsson

Exponentialfördelningen

Täthetsfunktionen för exponentialfunktionen är

$$p_X(x) = \lambda e^{-\lambda x}, \quad x \ge 0$$

Likelihood funktionen för en observation blir då

$$L(\lambda) = \lambda e^{-\lambda x}$$

Vi applicerar den naturliga logaritmen på likelihood funktionen vilket ger oss log-likelihood funktionen för en observation

$$l(\lambda) = \ln(\lambda e^{-\lambda x})$$

$$= \ln(\lambda) + \ln(e^{-\lambda x})$$

$$= \ln(\lambda) - \lambda x \ln(e)$$

$$= \ln(\lambda) - \lambda x$$

Log-likelihood funktionen för hela urvalet får vi genom att ta summan över log-likehood funktionen för en observation

$$l_n(\lambda) = \sum_{i=1}^{n} (\ln(\lambda) - \lambda x_i)$$
$$= n \ln(\lambda) - \lambda \sum_{i=1}^{n} x_i$$

Nästa steg är att derivera likelihood funktionen för urvalet

$$l'_n(\lambda) = \frac{d}{d\lambda} (n \ln(\lambda) - \lambda \sum_{i=1}^n x_i)$$
$$= n\lambda^{-1} - \sum_{i=1}^n x_i$$

ML skattningen ges utav att lösa ekvationen

$$l'_n(\lambda) = n\lambda^{-1} - \sum_{i=1}^n x_i = 0$$

$$\Leftrightarrow \sum_{i=1}^n x_i = \frac{n}{\lambda}$$

$$\Leftrightarrow \hat{\lambda} = \frac{n}{\sum_{i=1}^n x_i}$$

För att beräkna fisherinformationen behöver vi andraderivatan utav log-likelihood funktionen som ges utav

$$l''_n(\lambda) = \frac{d}{d\lambda}(n\lambda^{-1} - \sum_{i=1}^n x_i)$$
$$= -n\lambda^{-2}$$

Fisherinformationen för urvalet blir då

$$I_n(\lambda) = -E[l''_n(\lambda)]$$

$$= -E[-n\lambda^{-2}]$$

$$= n\lambda^{-2}$$

Vi kan nu beräkna medelfelet för ML-skattningen som

$$Sd(\hat{\lambda}) = I_n(\hat{\lambda})^{-1/2}$$
$$= (n\hat{\lambda}^{-2})^{-1/2}$$
$$= \hat{\lambda}n^{-1/2}$$

Binomialfördelningen

Täthetsfunktionen för binomialfördelninge är

$$p_X(k) = \binom{n}{k} p^k (1-p)^{n-k}, \quad k = \text{Antal utfall}$$

Likelihood funktionen för hela urvalet ges utav

$$L_n(p) = \binom{n}{k} p^k (1-p)^{n-k}$$

Log-likelihood för hela urvalet kan vi då beräkna till

$$l_n(p) = \ln(\binom{n}{k} p^k (1-p)^{n-k})$$

$$= \ln(\binom{n}{k}) + \ln(p^k) + \ln((1-p)^{n-k})$$

$$= \ln(\binom{n}{k}) + k \ln(p) + (n-k) \ln(1-p)$$

Första derivatan utav log-likelihood funktionen för hela urvalet. Vi vet att $k = \sum_{i=1}^{n} x_i = n\bar{x}$ vilket ger oss

$$l'_n(p) = \frac{d}{dp} (\ln(\binom{n}{k}) + k \ln(p) + (n-k) \ln(1-p))$$

$$= kp^{-1} - (n-k)(1-p)^{-1}$$

$$= \frac{k(1-p) - p(n-k)}{p(1-p)}$$

$$= \frac{k-pn}{p(1-p)}$$

$$= \frac{n}{p(1-p)} (\bar{x} - p)$$

ML-skattninges ges utav att lösa ekvationen för p

$$\begin{aligned} l_n'(p) &= kp^{-1} - (n-k)(1-p)^{-1} = 0 \\ \Leftrightarrow kp^{-1} &= (n-k)(1-p)^{-1} \\ \Leftrightarrow (1-p)k &= p(n-k) \\ \Leftrightarrow k - pk &= pn - pk \\ \Leftrightarrow k &= pn \\ \Leftrightarrow \hat{p} &= \frac{k}{n} = \bar{x} \end{aligned}$$

För att beräkna fisherinformationen behöver vi andraderivatan utav log-likelihood funktionen

$$l_n''(p) = \frac{d}{dp}(kp^{-1} - (n-k)(1-p)^{-1})$$
$$= -kp^{-2} - (n-k)(1-p)^{-2}$$

Fisherinformationen för hela urvalet blir då

$$I_n(p) = -E[l''_n(p)]$$

$$= -E[-kp^{-2} - (n-k)(1-p)^{-2}]$$

$$= -E[\frac{-k + 2kp - np^2}{p^2(1-p)^2}]$$

Eftersom ${\cal E}[k]=np$ får vi

$$I_n(p) = \frac{np + np^2}{p^2(1-p)^2} = \frac{n}{p(1-p)}$$

Medelfelet för ML-skattningen ges då utav

$$Sd(\hat{p}) = I_n(\hat{p})^{-1/2}$$
$$= \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

Wald testet

Exponentialfördelningen

Vi utgår från teststatistikan

$$T_{\text{score}} = \frac{|l'_n(\lambda_0)|}{\sqrt{I_n(\lambda_o)}} \approx N(0, 1)$$

Binomialfördelningen

Vi utgår från teststatistikan

$$T_{\text{score}} = \frac{|l'_n(p_0)|}{\sqrt{I_n(p_o)}} \approx N(0, 1)$$

Första derivatan av likelihood funktionen samt fisherinformationen beräknade vi tidigare vilket ger oss

$$\begin{split} T_{\text{score}} &= \frac{|l'_n(p_0)|}{\sqrt{I_n(p_0)}} \\ &= \frac{|\frac{n}{p_0(1-p_0)}(\bar{x}-p_0)|}{\sqrt{\frac{n}{p_0(1-p_0)}}} \\ &= \sqrt{\frac{p_0(1-p_0)}{n}} \times \frac{n}{p_0(1-p_0)} |\bar{x}-p_0| \\ &= \sqrt{\frac{n}{p_0(1-p_0)}} |\bar{x}-p_0| \\ &= \frac{|\bar{x}-p_0|}{\sqrt{p_0(1-p_0)/n}} \approx N(0,1) \end{split}$$