PAW Notes

ffr

Ultrasoft pseudopotential is fully determined by the quantities:

- $V_{loc}^{I}(r)$
- $D_{nm,I}^{(0)}$
- $ightharpoonup Q_{nm,I}(\mathbf{r})$
- $\beta_n^I(\mathbf{r})$

Nonlocal operator:

$$V_{\rm NL} = \sum_{nm} D_{nm}^{(0)} |\beta_n^I\rangle \langle \beta_m^I|$$

n, m: beta func indices

$$\beta_n^I(\mathbf{r}) = \beta_n(\mathbf{r} - \mathbf{R}_I)$$

Electron density:

$$n(\mathbf{r}) = \sum_{i} \left[|\psi_{i}(\mathbf{r})|^{2} + \sum_{nm,I} Q_{nm}^{I}(\mathbf{r}) \langle \psi_{i} | \beta_{n} \rangle \langle \beta_{m} | \psi_{i} \rangle \right]$$

Orthonormality conditions:

$$\langle \psi_i | S | \psi_j \rangle = \delta_{ij}$$

overlap operator:

$$S = 1 + \sum_{nm,I} q_{nm} |\beta_n^I\rangle \langle \beta_m^I|$$

$$q_{nm} = \int Q_{nm}(\mathbf{r}) \, \mathrm{d}\mathbf{r}$$

KS equation:

$$H|\psi_i\rangle = \epsilon_i S|\psi_i\rangle$$

Hamiltonian operator:

$$H = -\frac{\hbar^2}{2m} \nabla^2 + V_{\rm eff} + \sum_{nm,I} D^I_{nm} \, |\beta^I_n\rangle \langle \beta^I_m|$$

Screened coefficients:

$$D_{nm}^{I} = D_{nm}^{(0)} + \int V_{\text{eff}}(\mathbf{r}) Q_{nm}^{I}(\mathbf{r}) d\mathbf{r}$$

$$E = \sum_{n} f_n \left\langle \psi_n \left| -\frac{1}{2} \nabla^2 \left| \psi_n \right\rangle + E_{\rm H} \left[n + n_Z \right] + E_{\rm xc} \left[n \right] \right.$$

$$|\psi_n\rangle = |\tilde{\psi}_n\rangle + \sum_i \left(|\phi_i\rangle - |\tilde{\phi}_i\rangle\right) \langle \tilde{p}_i|\tilde{\psi}_n\rangle$$

Index i: atomic site \mathbf{R} , angular momentum L=(l,m), and additional index k for reference energy ϵ_{kl} .

AE partial waves ϕ_i are obtained for a reference atom

PS partial waves $\tilde{\phi}_i$ are equivalent to the AE partial waves outside a core radius r_c^l and match continuously onto $\tilde{\phi}_i$ inside the core radius.

Projector functions \tilde{p}_i are dual to the partial waves:

$$\langle \tilde{p}_i | \tilde{\phi}_j \rangle = \delta_{ij}$$

$$n(\mathbf{r}) = \tilde{n}(\mathbf{r}) + n^1(\mathbf{r}) - \tilde{n}^1(\mathbf{r})$$

$$\tilde{n}(\mathbf{r}) = \sum_{n} f_n \langle \tilde{\psi}_n | \mathbf{r} \rangle \langle \mathbf{r} | \tilde{\psi}_n \rangle$$

Onsite electron densities n^1 and \tilde{n}^1 are treated on a radial support grid, that extends up to $r_{\rm rad}$ around each ion.

$$n^{1}(\mathbf{r}) = \sum_{i,j} \rho_{ij} \langle \phi_{i} | \mathbf{r} \rangle \langle \mathbf{r} | \phi_{j} \rangle$$

$$\tilde{n}^{1}(\mathbf{r}) = \sum_{i,j} \rho_{ij} \langle \tilde{\phi}_{i} | \mathbf{r} \rangle \langle \mathbf{r} | \tilde{\phi}_{j} \rangle$$

 $\rho_{\it ij}$ are the occupancies of each augmentation channel $(\it i, \it j)$:

$$\rho_{ij} = \sum_{n} f_n \langle \tilde{\psi}_n | \tilde{p}_i \rangle \langle \tilde{p}_i | \tilde{\psi}_n \rangle$$

Assuming frozen core approximation.

Introduce four quantities that will be used for the description of the core charge density:

 n_c : charge density of frozen core all-electron wave functions in the reference atom.

 \tilde{n}_c : partial electronic core density \tilde{n}_c is equivalent to the frozen core AE charge density outside a certain radius r_{pc} , which lies inside the argumentation radius. Used in order to calculate nonlinear core corrections

 n_{Zc} : point charge density of the nuclei n_Z plus the frozen core AE charge density n_c :

$$n_{Zc} = n_Z + n_c$$

 \tilde{n}_{Zc} : pseudized core density, equivalent to n_{Zc} outside the core radius and shall have the same moment as n_{Zc} inside the core region:

$$\int_{\Omega_{\mathbf{r}}} n_{Zc}(\mathbf{r}) \, \mathrm{d}\mathbf{r} = \int_{\Omega_{\mathbf{r}}} \tilde{n}_{Zc}(\mathbf{r}) \, \mathrm{d}\mathbf{r}$$