Learning With Errors (LWE)

... or "What if Gauss had been a little lazier?"

Fredrik Meisingseth

Winter 2020

Contents

- 1 LWE
- 2 LWE Hardness
- 3 RLWE
- 4 Applications

Consider the equation system:

$$oldsymbol{s}*oldsymbol{a}_1=b_1\ (mod\ p)$$

 $oldsymbol{s}*oldsymbol{a}_2=b_2\ (mod\ p)$
...
 $oldsymbol{s}*oldsymbol{a}_m=b_m\ (mod\ p)$

,where p prime, $\mathbf{s} \in \mathbb{Z}_p^n$, $\mathbf{a}_i \in \mathbb{Z}_p^n$ and $b_i \in \mathbb{Z}_p$. Find \mathbf{s} .

Consider the equation system:

$$\mathbf{s} * \mathbf{a}_1 = b_1 \pmod{p}$$

 $\mathbf{s} * \mathbf{a}_2 = b_2 \pmod{p}$
...
 $\mathbf{s} * \mathbf{a}_m = b_m \pmod{p}$

,where p prime, $s \in \mathbb{Z}_p^n$, $a_i \in \mathbb{Z}_p^n$ and $b_i \in \mathbb{Z}_p$. Find s. Easy to solve, use Gauss elimination!

Consider the equation system:

$$\mathbf{s} * \mathbf{a}_1 = b_1 \; (mod \; p)$$

$$\mathbf{s} * \mathbf{a}_2 = b_2 \; (mod \; p)$$

$$\mathbf{s} * \mathbf{a}_m = b_m \; (mod \; p)$$

,where p prime, $\mathbf{s} \in \mathbb{Z}_p^n$, $\mathbf{a}_i \in \mathbb{Z}_p^n$ and $b_i \in \mathbb{Z}_p$. Find \mathbf{s} . Easy to solve, use Gauss elimination! What if it was approximate instead?

Consider the equation system:

$$\mathbf{s} * \mathbf{a}_1 = b_1 \pmod{p}$$

 $\mathbf{s} * \mathbf{a}_2 = b_2 \pmod{p}$
...
 $\mathbf{s} * \mathbf{a}_m = b_m \pmod{p}$

,where p prime, $\mathbf{s} \in \mathbb{Z}_p^n$, $\mathbf{a}_i \in \mathbb{Z}_p^n$ and $b_i \in \mathbb{Z}_p$. Find \mathbf{s} . Easy to solve, use Gauss elimination! What if it was approximate instead? Does it make the problem harder?

Consider the equation system:

$$oldsymbol{s}*oldsymbol{a}_1pprox b_1\ (mod\ p)$$
 $oldsymbol{s}*oldsymbol{a}_2pprox b_2\ (mod\ p)$
...
 $oldsymbol{s}*oldsymbol{a}_mpprox b_m\ (mod\ p)$

,where p prime, $s \in \mathbb{Z}_p^n$, $a_i \in \mathbb{Z}_p^n$ and $b_i \in \mathbb{Z}_p$. Find s. What does "approximate" mean?

 $\underline{\mathsf{Ex}}$: pprox means correct up to additive constant (± 1)

$$2 * s_1 + s_2 + s_3 = 2 \pm 1 \pmod{7}$$

 $s_1 + s_2 + 5 * s_3 = 5 \pm 1 \pmod{7}$
 $s_1 + s_2 + s_3 = 0 \pm 1 \pmod{7}$

 $\underline{\mathsf{Ex:}} \approx \mathsf{means} \; \mathsf{correct} \; \mathsf{up} \; \mathsf{to} \; \mathsf{additive} \; \mathsf{constant} \; (\pm 1)$

$$2 * s_1 + s_2 + s_3 = 2 \pm 1 \pmod{7}$$

 $s_1 + s_2 + 5 * s_3 = 5 \pm 1 \pmod{7}$
 $s_1 + s_2 + s_3 = 0 \pm 1 \pmod{7}$

We see that each of the equations have three possible RHS. Some combinations of those RHS might not yield useable solutions. How to find a good combination?

 $\underline{\mathsf{Ex}}$: pprox means correct up to additive constant (± 1)

$$2 * s_1 + s_2 + s_3 = 2 \pm 1 \pmod{7}$$

 $s_1 + s_2 + 5 * s_3 = 5 \pm 1 \pmod{7}$
 $s_1 + s_2 + s_3 = 0 \pm 1 \pmod{7}$

We see that each of the equations have three possible RHS.

Some combinations of those RHS might not yield useable solutions. How to find a good combination?

Moral: The addition of approximation makes the problem harder to solve.

Let us assign to each equation of our problem a random maximum accepted error e_i , only accept additive deviation and let us draw those e_i from some defined distribution χ .

Definition - LWE distribution

For a vector $\mathbf{s} \in \mathbb{Z}_p^n$, called the secret, and some probability distribution χ on \mathbb{Z}_p , the <u>LWE distribution</u> $A_{\mathbf{s},\chi}$ over $\mathbb{Z}_p^n \times \mathbb{Z}_p$ is sampled by:

- Uniformly randomly drawing sample **a** from \mathbb{Z}_p^n .
- ullet Drawing random sample e from χ
- Outputting the pair $(a, s * a + e \mod p)$.

Definition - LWE distribution

Take prime $p \in \mathbb{Z}$ and some $n \in \mathbb{Z}$. For a vector $\mathbf{s} \in \mathbb{Z}_p^n$, called the secret, and some probability distribution χ on \mathbb{Z}_p , the <u>LWE distribution</u> $A_{\mathbf{s},\chi}$ over $\mathbb{Z}_p^n \times \mathbb{Z}_p$ is sampled by:

- Uniformly randomly drawing sample **a** from \mathbb{Z}_p^n .
- ullet Drawing random sample e from χ
- Outputting the pair $(a, s * a + e \mod p)$.

Definition - $LWE_{s,\chi,n,m}$ problem

Given m independent samples (\mathbf{a}_i, b_i) drawn from $A_{\mathbf{s}\chi}$ using a uniformly random $\mathbf{s} \in \mathbb{Z}_p^n$, find \mathbf{s} .

Definition - LWE distribution

Take prime $p \in \mathbb{Z}$ and some $n \in \mathbb{Z}$. For a vector $\mathbf{s} \in \mathbb{Z}_p^n$, called the secret, and some probability distribution χ on \mathbb{Z}_p , the <u>LWE distribution</u> $A_{\mathbf{s},\chi}$ over $\mathbb{Z}_p^n \times \mathbb{Z}_p$ is sampled by:

- Uniformly randomly drawing sample **a** from \mathbb{Z}_p^n .
- ullet Drawing random sample e from χ
- Outputting the pair $(a, s * a + e \mod p)$.

Definition - $LWE_{s,\chi,n,m}$ problem

Given m independent samples (\mathbf{a}_i, b_i) drawn from $A_{\mathbf{s}\chi}$ using a uniformly random $\mathbf{s} \in \mathbb{Z}_p^n$, find \mathbf{s} .

Note: This is the "search" version of LWE.

Definition - $LWE_{s,\chi,n,m}$ problem

Given m independent samples (\mathbf{a}_i, b_i) drawn from $A_{\mathbf{s}\chi}$ using a uniformly random $\mathbf{s} \in \mathbb{Z}_p^n$, find \mathbf{s} .

$$s * a_1 = b_1 + e_1 \pmod{p}$$

$$s * a_2 = b_2 + e_2 \pmod{p}$$

$$s*a_3 = b_3 + e_3 \pmod{p}$$

...

$$s*a_m = b_m + e_m \pmod{p}$$

Contents

- 1 LWE
- 2 LWE Hardness
- 3 RLWE
- Applications

We need to confirm that LWE is hard.

We need to confirm that LWE is hard.

As proving that a problem is hard is generally very difficult, a less labourful approach might be to prove that the problem at hand is reducable to a known hard problem in a reasonable amount of time.

We need to confirm that LWE is hard.

As proving that a problem is hard is generally very difficult, a less labourful approach might be to prove that the problem at hand is reducable to a known hard problem in a reasonable amount of time.

Theorem (hardness of LWE) (Informal)

^a Let n, p be integers and χ an error distribution so that certain criterias are met. If there exists an efficient algorithm that solves $LWE_{p,\chi}$ then there exists an efficient quantum algorithm that approximates the decision version of the shortest vector problem (GapSVP) in the worst case.

^a[Regev 2009]

Theorem (hardness of LWE) (Informal)

^a Let n, p be integers and χ an error distribution so that certain criterias are met. If there exists an efficient algorithm that solves $LWE_{p,\chi}$ then there exists an efficient quantum algorithm that approximates the decision version of the shortest vector problem (GapSVP) in the worst case.

Sketch of hardness proof:

$$\begin{array}{ccc} LWE & \Longrightarrow & BDD_{\gamma} \\ BDD_{\gamma} & \Longrightarrow & GapSVP_{\gamma} \end{array}$$

BDD

Definition - $(BDD_{\gamma} \text{ (Bounded Distance Decoding problem)})$

Given a basis B of an n-dimensional lattice L, some function γ and a target point $t \in \mathbb{R}^n$ with the guarantee that $dist(t,L) < d = \frac{\lambda_1(L)}{2\gamma(n)}$, find the unique lattice vector $v \in L$ such that ||t-v|| < d.

GapSVP

Definition - $(GapSVP_{\gamma} (Gap Shortest Vector Problem))$

Given a basis B of an n-dimensional lattice L, a function γ , a number d>0 and the guarantee that either $\lambda_1(L)\leq d$ or $\lambda_1(L)>\gamma(n)*d$, determine which is the case.

GapSVP

Definition - $(GapSVP_{\gamma} (Gap Shortest Vector Problem))$

Given a basis B of an n-dimensional lattice L, a function γ , a number d>0 and the guarantee that either $\lambda_1(L)\leq d$ or $\lambda_1(L)>\gamma(n)*d$, determine which is the case.

Note: is it known that *GapSVP* is hard.

Contents

- 1 LWE
- 2 LWE Hardness
- 3 RLWE
- 4 Applications

Why do we need to switch to a ring?

Cryptosystems based on LWE tend to require about n samples from LWE-dist for the public key, \implies key lengths $\approx \mathcal{O}(n^2)$.

$$s * a_1 = b_1 + e_1 \pmod{p}$$

$$s*a_2 = b_2 + e_2 \ (mod \ p)$$

$$\mathbf{s} * \mathbf{a}_3 = b_3 + e_3 \pmod{p}$$

...

$$\mathbf{s} * \mathbf{a}_m = b_m + e_m \pmod{p}$$

Why do we need to switch to a ring?

Cryptosystems based on LWE tend to require about n samples from the LWE-distribution for the public key, \implies key lengths $\approx \mathcal{O}(n^2)$.

$$\mathbf{s} * \mathbf{a}_1 = b_1 + e_1 \pmod{p}$$

 $\mathbf{s} * \mathbf{a}_2 = b_2 + e_2 \pmod{p}$
 $\mathbf{s} * \mathbf{a}_3 = b_3 + e_3 \pmod{p}$
...
 $\mathbf{s} * \mathbf{a}_m = b_m + e_m \pmod{p}$

(Compare to needing n equations to solve a linear system with Gauss elimination)

Translation to Ring LWE

What if the public key was shorter but had some structure so that the same amount of samples could be constructed from it?

Translation to Ring LWE

What if the public key was shorter but had some structure so that the same amount of samples could be constructed from it?

 \implies Use a ring!

RLWE

definition - (RLWE distribution)

For $\mathbf{s} \in R_q$, called the secret, the <u>RLWE distribution</u> $A_{\mathbf{s},\chi}$ is sampled by choosing $\mathbf{a} \in R_q$ uniformly random, choosing $\mathbf{e} \in R_q$ according to χ and outputting

 $(a, s * a + e \mod q)$

RLWE

definition - (RLWE distribution)

For $\mathbf{s} \in R_q$, called the secret, the <u>RLWE distribution</u> $A_{\mathbf{s},\chi}$ is sampled by choosing $\mathbf{a} \in R_q$ uniformly random, choosing $\mathbf{e} \in R_q$ according to χ and outputting

$$(a, s * a + e \mod q)$$

definition - (Search $RLWE_{n,q,\chi,m}$)

Given m independent samples from $A_{s,\chi}$, find s.

Contents

- LWE
- 2 LWE Hardness
- 3 RLWE
- 4 Applications

Applications

Using *LWE* as a basis for cryptographic schemes is thought to have two main benefits:

Believed to be suitable for post-quantum cryptography.

Applications

Using *LWE* as a basis for cryptographic schemes is thought to have two main benefits:

- Believed to be suitable for post-quantum cryptography.
- Enables homomorphic encryption (HE).
 - A (potential) gamechanger when it comes to privacy.

Homomorphic encryption

- Idea: Encryption such that certain calculations can be made on the encrypted data <u>without</u> decrypting it.
- Example:

Seminar_talk_matcryp/homomorph.png

HE example - Approximative Eigenvector Method

<u>Consider:</u> If μ_1, μ_2 are the eigenvalues w.r.t \boldsymbol{s} of C_1, C_2 respectively with the same eigenvector \boldsymbol{s} . Then we have that the eigenvalue of $C_1 + C_2$ is $\mu_1 + \mu_2$ w.r.t \boldsymbol{s} and that the eigenvalue of $C_1 * C_2$ is $\mu_1 \mu_2$ w.r.t \boldsymbol{s} .

Note: If μ_1, μ_2 are the eigenvalues w.r.t ${\bf s}$ of C_1, C_2 respectively with the same eigenvector ${\bf s}$. Then we have that the eigenvalue of $C_1 + C_2$ is $\mu_1 + \mu_2$ w.r.t ${\bf s}$ and that the eigenvalue of $C_1 * C_2$ is $\mu_1 \mu_2$ w.r.t ${\bf s}$.

<u>Idea:</u>Let μ be the message, **s** the secret key and C the ciphertext. Such construction seems to be homomorphic under addition and multiplication.

Key generation:

• Draw m samples of length from $A_{s,\chi}$.

$$\mathbf{b} = B * \mathbf{t} + \mathbf{e}$$

,
$$B \in \mathbb{Z}_q^{m \times n}$$
, $oldsymbol{e} \in \chi^m$

Key generation:

• Draw m samples of length from $A_{s,\chi}$.

$$\mathbf{b} = B * \mathbf{t} + \mathbf{e}$$

,
$$B \in \mathbb{Z}_q^{m imes n}$$
, ${m e} \in \chi^m$

• Output $\mathbf{s} = (1, -t_1, ..., -t_m)$ as the secret key.

Key generation:

• Draw m samples of length from $A_{s,\chi}$.

$$\mathbf{b} = B * \mathbf{t} + \mathbf{e}$$

,
$$B \in \mathbb{Z}_q^{m imes n}$$
, ${m e} \in \chi^m$

- Output $\mathbf{s} = (1, -t_1, ..., -t_m)$ as the secret key.
- Output $A = [\mathbf{b} \ B]$ as the public key

Key generation:

• Draw m samples of length from $A_{s,\chi}$.

$$\boldsymbol{b} = B * \boldsymbol{t} + \boldsymbol{e}$$

,
$$B \in \mathbb{Z}_q^{m imes n}$$
, ${m e} \in \chi^m$

- Output $\mathbf{s} = (1, -t_1, ..., -t_m)$ as the secret key.
- Output $A = [\mathbf{b} \ B]$ as the public key
- Note that $A * \mathbf{s} = \mathbf{e}$

For these help operators, let \mathbf{a} be an k-dimensional vector over \mathbb{Z}_p , take $I = \lfloor log_2(p) \rfloor + 1$ and N = k * I.

powersOf2:

• $powersOf2(\mathbf{a}) := (a_1, 2a_1, ..., 2^{l-1}, ..., a_k, ..., 2^{l-1})$

For these help operators, let **a** be an k-dimensional vector over \mathbb{Z}_p , take $I = \lfloor log_2(p) \rfloor + 1$ and N = k * I.

powersOf2:

• $powersOf2(a) := (a_1, 2a_1, ..., 2^{l-1}, ..., a_k, ..., 2^{l-1})$

bitDecomp:

• $bitDecomp(\mathbf{a}) := (a_{1,0},...,a_{1,l-1},...,a_{k,0},...,a_{k,l-1})$,with $a_{i,j}$ being the j-th bit of a_i 's bit representation (LSB \rightarrow MSB).

For these help operators, let **a** be an *k*-dimensional vector over \mathbb{Z}_p , take $I = \lfloor log_2(p) \rfloor + 1$ and N = k * I.

powersOf2:

• powersOf2(**a**) := $(a_1, 2a_1, ..., 2^{l-1}, ..., a_k, ..., 2^{l-1})$

bitDecomp:

- $bitDecomp(\mathbf{a}) := (a_{1,0},...,a_{1,l-1},...,a_{k,0},...,a_{k,l-1})$, with $a_{i,j}$ being the j-th bit of a_i 's bit representation (LSB \rightarrow MSB).
- $bitDecomp^{-1}(\mathbf{a}) := (\sum_{j=0}^{l-1} s^j * a_{1,j}, ..., \sum_{j=0}^{l-1} s^j * a_{k,j})$

For these help operators, let **a** be an *k*-dimensional vector over \mathbb{Z}_p , take $I = \lfloor log_2(p) \rfloor + 1$ and N = k * I.

powersOf2:

• $powersOf2(\mathbf{a}) := (a_1, 2a_1, ..., 2^{l-1}, ..., a_k, ..., 2^{l-1})$

bitDecomp:

- $bitDecomp(\mathbf{a}) := (a_{1,0},...,a_{1,l-1},...,a_{k,0},...,a_{k,l-1})$, with $a_{i,j}$ being the j-th bit of a_i 's bit representation (LSB \rightarrow MSB).
- $bitDecomp^{-1}(\mathbf{a}) := (\sum_{j=0}^{l-1} s^j * a_{1,j}, ..., \sum_{j=0}^{l-1} s^j * a_{k,j})$

Note: $bitDecomp^{-1}$ is defined even for non-binary **a**

For these operators, let **a** be an k-dimensional vector over \mathbb{Z}_p , take $I = \lfloor log_2(p) \rfloor$ and N = k * I.

powersOf2:

• $powersOf2(\mathbf{a}) := (a_1, 2a_1, ..., 2^{l-1}, ..., a_k, ..., 2^{l-1})$

bitDecomp:

- $bitDecomp(\mathbf{a}) := (a_{1,0},...,a_{1,l-1},...,a_{k,0},...,a_{k,l-1})$, with $a_{i,j}$ being the j-th bit of a_i 's bit representation (LSB \rightarrow MSB).
- $bitDecomp^{-1}(\mathbf{a}) := (\sum_{j=0}^{l-1} s^j * a_{1,j}, ..., \sum_{j=0}^{l-1} s^j * a_{k,j})$

Flatten :

• Flatten(a) := bitDecomp(bitDecomp⁻¹(a))

Enc:

• Take message $\mu \in \mathbb{Z}_p$, define $\mathbf{v} = powersOf2(\mathbf{s})$ and generate random $R \in \mathbb{Z}_2^{N\times m}$.

Enc:

- Take message $\mu \in \mathbb{Z}_p$, define $\mathbf{v} = powersOf2(\mathbf{s})$ and generate random $R \in \mathbb{Z}_2^{N\times m}$.
- $C := Flatten(\mu * I_n + bitDecomp(R * A)) \in \mathbb{Z}_p^{N \times N}$, where I_n is the identity matrix of size $n \times n$.

$$\implies C * \mathbf{v} = \mu * \mathbf{v} + bitDecomp(R * A) * \mathbf{v}$$
$$= \mu * \mathbf{v} + R * A * s = \mu * \mathbf{v} + R * \mathbf{e}$$
$$= \mu * \mathbf{v} + small$$

Dec:

• Observe that the first l coefficients of \mathbf{v} are $1, 2, ..., 2^{l-1}$.

Dec:

- Observe that the first l coefficients of \mathbf{v} are $1, 2, ..., 2^{l-1}$.
- Among these coefficients, let $v_i = 2^i$ be in (p/4, p/2]. Let C_i be the *i*-th row of C.

Dec:

- Observe that the first I coefficients of \mathbf{v} are $1, 2, ..., 2^{l-1}$.
- Among these coefficients, let $v_i = 2^i$ be in (p/4, p/2]. Let C_i be the *i*-th row of C.
- Compute $x_i \leftarrow C_i * \mathbf{v} = \mu * v_i + R_i * e_i$.

Dec:

- Observe that the first I coefficients of \mathbf{v} are $1, 2, ..., 2^{l-1}$.
- Among these coefficients, let $v_i = 2^i$ be in (p/4, p/2]. Let C_i be the *i*-th row of C.
- Compute $x_i \leftarrow C_i * \mathbf{v} = \mu * v_i + R_i * e_i$.
- Output $\mu' = \lfloor \frac{x_i}{v_i} \rceil$.

Dec:

- Observe that the first l coefficients of \mathbf{v} are $1, 2, ..., 2^{l-1}$.
- Among these coefficients, let $v_i = 2^i$ be in (p/4, p/2]. Let C_i be the *i*-th row of C.
- Compute $x_i \leftarrow C_i * \mathbf{v} = \mu * v_i + R_i * e_i$.
- Output $\mu' = \lfloor \frac{x_i}{v_i} \rfloor$.

Note: Under certain assumptions that ${\bf e}$ is small, we can be sure that $\mu'=\mu$.

Add:

• $Add(C_1, C_2) := Flatten(C_1 + C_2) = bitDecomp(bitDecomp^{-1}(C_1 + C_2))$

Add:

• $Add(C_1, C_2) := Flatten(C_1 + C_2) = bitDecomp(bitDecomp^{-1}(C_1 + C_2))$

Mult:

 $\bullet \; \mathit{Mult}(\mathit{C}_{1},\mathit{C}_{2}) := \mathit{Flatten}(\mathit{C}_{1} * \mathit{C}_{2}) = \mathit{bitDecomp}(\mathit{bitDecomp}^{-1}(\mathit{C}_{1} * \mathit{C}_{2}))$

Add:

• $Add(C_1, C_2) := Flatten(C_1 + C_2) = bitDecomp(bitDecomp^{-1}(C_1 + C_2))$

Mult:

- $Mult(C_1, C_2) := Flatten(C_1 * C_2) = bitDecomp(bitDecomp^{-1}(C_1 * C_2))$
- Note that:

$$Mult(C_1, C_2) * \mathbf{v} = C_1 * C_2 * \mathbf{v} =$$

$$= C_1 * (\mu_2 * \mathbf{v} + \mathbf{e_2}) + \mu_2 * (\mu_1 * \mathbf{v} + \mathbf{e_1}) + C_1 * \mathbf{e_2}$$

$$= \mu_1 * \mu_2 * \mathbf{v} + \mu_2 * \mathbf{e_1} + C_1 * \mathbf{e_2}$$

$$= \mu_1 * \mu_2 * \mathbf{v} + small$$

Remarks:

 Now we have an encryption scheme and operators that (presumably) act homomorphically (Hurray!)

- Now we have an encryption scheme and operators that (presumably) act homomorphically (Hurray!)
- Note that the decryption is dependent on that the error is somewhat small.

- Now we have an encryption scheme and operators that (presumably) act homomorphically (Hurray!)
- Note that the decryption is dependent on that the error is somewhat small.
- Since the "final" error is increased after each use of an operator, the error distribution in the beginning needs to be dependent on the number of operations in the computation.

- Now we have an encryption scheme and operators that (presumably) act homomorphically (Hurray!)
- Note that the decryption is dependent on that the error is somewhat small.
- Since the "final" error is increased after each use of an operator, the error distribution in the beginning needs to be dependent on the number of operations in the computation.
- Idea: all algorithms can be built with NAND gates.

Remarks:

• This scheme is based on LWE and not RLWE. (Can be translated)

- This scheme is based on LWE and not RLWE. (Can be translated)
- There exist more effective schemes based on *RLWE*, both with respect to speed and dependence on the number of operations.

References

- Regev (2010), The Learning with Errors Problem
 Invited survey for 2010 IEEE 25th Annual Conference on Computational Complexity
 https://cims.nyu.edu/regev/papers/lwesurvey.pdf
- Gentry, Sahai, Waters (2013): Homomorphic Encryption from Learning with Errors: Conceptually-Simpler, Asymptotically-Faster, Attribute-Based.

Annual Cryptology Conference CRYPTO 2013: Advances in Cryptology – CRYPTO 2013 pp 75-92 https://eprint.iacr.org/2013/340.pdf