QUESTION ONE (INTRODUCTION TO GENERAL CHEMISTRY) [25 marks]

a)	Define each of the following terms applied in the scientific method:
	(i) Hypothesis (ii) theory (iii) law
p)	Use exponential notation to express the number 104.325 to:
	(1) Une significant figure
	(ii) Five significant figures.
c)	State the difference between precision and accuracy. [2]
d)	Perform the following mathematical operations, and express each result to the correct
	number of significant figures. (i) (9.04 + 8.23 + 21.954 +81.0) + 3.1416
	(ii) $\frac{0.470}{0.000} + \frac{80.705}{0.000} - \frac{2.526}{0.000}$
e)	Show your understanding of metric prefixes by giving the name to the unit that equals the following:
	(i) 10^{-9} gram (ii) 10^{+9} gram (iii) 10^{-15} metre [3]
f)	Convert each of the following temperatures from degrees Celsius to Kelvin: (i) -38.9 °C (ii) 119.3 °C [4]
	State the chemical formula of each of the following compounds: (i) Perchloric acid (ii) Phosphorus pentachloride [4]
h)	Europium has two isotopes whose relative abundances are 48 % and 52 %. Given that the average atomic mass of Europium is 151.96 amu and the mass of an isotope with relative abundance of 52% is 152.92 amu. Determine the mass of the isotope whose relative abundance is 48%. [3]

- a) An automobile runs for 10 minutes and burns 47 g of gasoline. The gasoline combined with oxygen from air and formed 132 g of carbon dioxide and 34 g of water. How much oxygen was consumed in the process? Name the law applied to solve above problem? [3]
- b) Gallium has two naturally occurring isotopes: Ga-69 with mass 68.9256 amu and a natural abundance of 60.11%, and Ga-71 with mass 70.9247 amu and a natural abundance of 39.89%. Calculate the atomic mass of gallium.
- c) How many protons, neutrons, and electrons are in:
 - i) 41/20R
 - ii) 131S
 - iii) What element symbol do R and S represent?

[4]

- d) Calculate the wavelength (in nm) and the wave number of red light emitted by a barcode scanner that has a frequency of 4.62 x 10¹⁴ s⁻¹.
- e) Write a set of four quantum numbers for the eighth electron of the Cl atom. [2]
- f) Given the following systematic names, write the formula for each compound: [5]
 - i) Sodium hydrogen carbonate

Na HCO3

- ii) Cesium perchlorate
- iii) Sodium hypochlorite
- iv) Sodium selenate
- v) Barium hydroxide octahydrate

moles c. V

QUESTION 1: INTRODUCTION

Ol	Fill each blank space with an appropriate word in the sentences	that follow;
	it appropriate word in the sentences	
-4	Fill each blank space with an appropriate word at	

)	Fill each blank space with an appropriate series is a by-product of many chemical processes.	[i] is a proven large scale energy source but has
	When considering nuclear energy,	[i] is a proven large scale chergo help to devise better ways of disposing nuclear
	waste. Energy production and energy utilization can negative	by affect our environment. For example, burning
	fossil fuels gives off [iii] which is a g and [v] which result in acid rain. I	reenhouse gas along with [iv] However, new technologies are being introduced

b) Fill in the Table below for units of measurements.

to reduce harmful emissions and improve air quality.

Table 1: Table of Units of Measurement

	Base Quantity	Name of Unit	Symbol
1	Mass	Kilogram	kg
2			
3			
4			
5			
6			
7			

[5]

[6]

c) What is the collective term used for the units in question (b)? [1] d) In Table 1, correctly list the three parameters that uniquely identify an isotope in the nuclide symbol ${}_{z}^{A}X$. [3]

Table 2: Parameters that uniquely describe

Parameter	Meaning of parameter
A	
X	
Z	

e) For a nuclide, two of its components give the same value. Which are these two?

f) A certain isotope X^+ contains 54 electrons and 78 neutrons. Write the nuclide of this isotope. g) Complete the table below on the three fundamental chemical laws that you learnt in the introductory topic of General Chemistry. [6]

Table 3: List of three Funda

No.	Name of Fundamental Chemical Law	Discoverer of Law
1		
2		
3		

Page 2 of 6

QUESTION 1: INTRODUCTION TO CHEMISTRY & CHEMICAL EQUILIBRIA

[20 Marks]

b) W va c) A re	that role alue of the closed s	for the equilibrium constant for for the individual leactions that y does a catalyst play in a reversible equilibrium constant for a reactive equilibrium containing 1.0 x lilibrium. Analysis of the equilibrium.	rield the overall reaction? He chemical reaction? Hon?	ow does a catalyst affect	121
\ \	i) i)	Write a balanced chemical equal Calculate Ke at 448 °C for the re	tion with state symbols	for the above reaction	[1]
_	_				[6]
d) F	ill each t	blank space with an appropriate w	ord in the sentences that	t follow.	
	i)	is a set of tested	hypotheses that gives ar	n overall explanation of	natura
	ii)	phenomenon			[1]
	iii)	is a summary of	repeatable measurable b	ehavior.	[1]
	m	is a possible exp	lanation for an observat	ion.	[1]
e)	Asag	roup, what do the above statemen	its in (d) compose of?		
f)	Compl	into the	(a) compose OI		[2]
760	below	ete the names of the anions and	acids whose chemical	formulae are given in th	e tabl
					[4]
	No.	Acid's chemical formula	es of anions and acids		1.74
	1	H ₂ S	Acid's anion	Acid's name	
	2	HClO ₂			
	3	HBrO ₃			
		111111111			

QUESTION 1: INTRODUCTION

[25 MARKS]

`	E-11	ch blank space with an appropriate word in the sentences that follow.	[3]
a)	РШ еа	is a set of tested hypotheses that gives an overall ex	planation of natural
	(1)	is a set of tested hypotheses that gives an	[1]
		phenomenon	[1]
	(ii)	is a summary of repeatable measurable behavior.	
	(iii)	is a possible explanation for an observation.	[1]
b)		group, what do the above statements compose of?	[2]
-,	0	plete the names of the anions and acids of the acids whose chemical formulae	are given in the table
c)			[4]
	below		1.7
		Table 1: Names of anions and their acids	T 20 51 7 100
	NI-	A sid's chamical formula Acid's anion Acid's name	The state of the s

No.	Acid's chemical formula	Acid's anion	Acid's name
1	H ₂ S		
2	HClO ₂		
3	HBrO ₃		
4	HIO ₄	。	

the blank spaces using a word for each space	[6]
is the estimate in a measurement that depends on the precision of	f the measuring
	[1]
The term is agreement of a particular value with a true value.	[1]
is the degree of agreement among several measurements of the	same quantity.
	[1]
These terms are encountered when doing the opposite of qualitative observations which have two parts, namely,	vations, that is, and [3]
ares have variable compositions. Using two very short sentences of less than 10 wo	ords, distinguish
nogeneous mixture from a heterogeneous mixture.	[2]
NOTE OF THE PROPERTY OF THE PR	[2]
Copper wire	
• •	
7	device. The term is agreement of a particular value with a true value. is the degree of agreement among several measurements of the These terms are encountered when doing the opposite of qualitative observations which have two parts, namely, observations which have two parts, namely, ares have variable compositions. Using two very short sentences of less than 10 working the listed substances is a homogeneous mixture. the of the listed substances is a homogeneous mixture? Pure water Clean air Petrol Soil

g) Complete the table below on the three fundamental chemical laws that you learnt in the introductory topic of General Chemistry. [6]

Table 2: List of three Fundamental Chemical Laws

.,	Fundamenta	l Chemical Law's
No.	Name	Definition
1		
2		
3		

QUESTION 1: INTRODUCTION & ATOMIC STRUCTURE [20 MARKS] a) Does each of the following describe a physical change or a chemical change? [3] i. The helium gas inside a balloon tends to leak out after a few hours. I ii. A flashlight beam slowly gets dimmer and finally goes out. iii. Frozen orange juice is reconstituted by adding water to it. b) Express the following numbers as decimals: [2] (ii) 7.78 X 10-8 (i) 1.52 X 10-2 c) How many significant figures are there in each of the following? [3] (iii) 60.5 mg (ii) 0.0605 dm³ (i) 0.006 L d) Venus, the second closest planet to the sun, has a surface temperature of 7.3 X 102 K. Convert this temperature to °C and °F. [2] e) Give the maximum number of electrons in an atom that can have the following [3] quantum numbers (iii) n = 5, ms = (ii) n = 5, $m_i = +1$ (i) n = 4f) Give a possible set of values of the four quantum numbers for all the electrons in a boron atom and a nitrogen atom if each is in the ground state. [5]

g) For each of the following pairs of elements

[2]

(C and N)

(Ar and Br)

pick the atom with

more favorable (exothermic) electron affinity.

ii. higher ionization energy.

and the

QUESTION 1: INTRODUCTION & ATOMIC STRUCTURE AND PERIODICITY [20 Marks]

- [2] a) What is matter? State the difference between homo and heterogeneous mixture. [2] b) What are the 4 points of Dalton's Atomic Theory? c) Carry out the following mathematical operations, and give each result with the correct number of significant figures. [2] $1.05 \times 10^{-3} \div 6.135$ i. [2] 21 - 13.8ii. As part of a lab assignment to determine the value of the gas constant (R), a student iii. measured the pressure (P), volume (V), and temperature (T) for a sample of gas, where · rus
 - The following values were obtained: P = 2.560, T = 275.15 and V = 8.8. Calculate R to

the correct number of significant figures.

(2) \
(3) Ose the details of modern atomic theory to explain each of the following experimental observations.

- i. Within a family such as the alkali metals, the ionic radius increases as the atomic number increases.
 - ii. The radius of the chlorine atom is smaller than the radius of the chloride ion, Cl. (Radii: Cl atom = 0.99Å; Ck ion = 1.81Å)
- The first ionization energy of aluminium is lower than the first ionization energy of magnesium. (First ionization energies: 12Mg = 7.6 ev; 13Al = 6.0 ev) [2]
- iv. For magnesium, the difference between the second and third ionization energies is much larger than the difference between the first and second ionization energies. (Ionization energies for Mg: 1st = 7.6 ev; 2nd = 14 ev; 3rd = 80 ev)
- e) What is the difference between an emission spectrum and an absorption spectrum? Explain why the absorption spectrum of atomic hydrogen at room temperature has only the lines of the Lyman series. [2]

QUESTION 1:

INTRODUCTION

[25 MARKS]

(a) Copy Tables 1 and 2 into your answer book and complete the missing information.

Fill in the names of the compounds

Table 1: Compounds and their names

Number	Compound	Name of Compound
1	CaHPO ₄	
2	S ₂ Cl ₂	
3	N2O5	THE RESIDENCE OF THE PARTY OF T

Fill in the chemical formulae and the common names of the compounds. [3] (ii)

Table 2: Chemical formulae of named compounds and their common names

#	IUPAC Compound Name	Formula	Common Name
1_	Dihydrogen dioxide		
2	Dinitrogen monoxide		
3	Nitrogen trihydride		

(b) Most elements occur in nature as mixtures of isotopes. Calculate the average relative atomic mass of chlorine given that naturally occurring chlorine is 75.78% 35 Cl (atomic mass 34.969 amu) and 24.22% ³⁷Cl (atomic mass 36.966 amu).

(c) Copy Table 3 into your answer book and complete the missing isotopic information for which you will get 1 mark for each correctly completed cell.

[6]

Table 3: Information on chlorine and iron isotopes

Isotope	Nucleon number	Neutron number	Electron number
35Cl			
⁵⁵ Fe			

- (d) What are the commonly used alternative terms for nucleon number and electron number for an element?
- (e) The Table 4 below relates to separation of substances. Copy the table into your answer book and complete the missing items for ½ a mark for each correctly filled cell. [3]

Table 4: Separation of matter

S/No	Separation method	Description of method
1		Select components by particle size
2		Select components by density
3	Crystallisation	
4	Extraction	
5		Select components by boiling point
6		Select components by affinity for a 'stationary phase'

- (f) Carry out the following mathematical operations, and give each result with the correct number of significant figures.
 - (i) $1.05 \times 10^{-3} \div 6.135$

(ii) 21-13.8

20

NO

[1]

Mach

[1]

(iii) As part of a lab assignment to determine the value of the gas constant (R), a student measured the pressure (P), volume (V), and temperature (T) for a sample of gas, where

 $R = \frac{PV}{T}$

The following values were obtained: P = 2.560, T = 275.15, and V = 8.8. (Since gases will be discussed in detail later on in the course, do not be concerned at this time about the units for these quantities.) Calculate R to the correct number of significant figures.

OUESTION 1	INTRODUCTION	N AND STOICH	IOMETRY		MARKS
(a) Four studer (i) 20.03 (ii) 20.0	nts weigh an item 3 g 9	using different s	scales. These	are the values the	y report:
(iv) 20 g	03 kg ny significant figure	es should be ass	sumed in each	measurement?	[2]
(b) The follow of measur	ing archery targets	s show marks th	at represent th	ne results of four se	10
		0	0		
	A	В	c	D	
	get shows: of measurements	that is both pred	cise and accura	ate? urate?	
(ii) a set (iii) a set (iii) a pre	of measurements of measurements cise but inaccurate	that is neither place set of measure ise set of measure	ments? rements?		[2] to form
(i) a set (ii) a set (iii) a pre (iv) an ad (o) A piece of Fe ₃ O ₄ .	of measurements of measurements of measurements occurate but inaccurate curate but imprection (5.59 g) is ig	that is neither place set of measure ise set of measure nited in a vessel	ements? containing 1.6	60 g of oxygen gas	to form [1] [2]
(i) a set (ii) a set (iii) a pre (iv) an ac (o) A piece of Fe ₃ O ₄ . (i) Write (ii) Dedu (iii) For t exce (iv) Using	of measurements of measurements cise but inaccurate curate but imprect firon (5.59 g) is ignored a balanced equator which reactant in excess.	that is neither positive set of measure is est of measure is est of measure is est of measure it is in excess ess calculate the ent, determine he	ements? containing 1.6 containing 1.6 community in mo	oles by which it is it	[1] [2] [2] [d [2]
(ii) a set (iii) a set (iii) a pre (iv) an ac (v) A piece of Fe ₃ O ₄ . (i) Write (ii) Dedu (iii) For the expe (iv) Using expe (v) If the yield.	of measurements of measurements of measurements of measurements occurate but impreced from (5.59 g) is ignored a balanced equal occurate which reactant in excess. In a training reage oct. In actual mass of the limiting carbon carbo	that is neither pose e set of measure ise set of measure ise set of measure nited in a vessel tion for the react is in excess ess calculate the ent, determine he e product obtain	ements? containing 1.6 containing 1.6 commuch of the	oles by which it is	[1] [2] d [2] stage [2]

[2]

[2]

[2]

[2]

[2.5] [1]

(a) If the earth's oceans contain approximately 1.36 x 10²¹ L of water.

(A) Calculate this volume in cubic kilometres. [3]

Use the appropriate prefix to write the value of 1.36 x 10° L without exponents. [1]

(b) Copperbelt University (CBU) is situated in the town of Kitwe in Zambia whose temperature on 25 October 2017 at 14:23 hours was 30°C. What is this temperature reading in

[1] √i) Fahrenheit [1] √ii) Kelvin

(e) By referring to the periodic table provided, reproduce the table below and correctly fill in the third and fourth column. (Hint: The first row is an example of how to complete the table; 0.5 marks for each correctly filled cell)

Number	Element Symbol	Element class (metal, non-metal or metalloid)	Element group
1	He	Non-metal	Noble gas
2	Se		
3	Cu		i.e.
4	Cs		
5	Br		
6	As		

(d) What is the nuclide symbol for a nucleus that contains 38 protons and 50 neutrons?

(e) Chromium, Cr, has the following isotopic masses and fractional abundances

Mass Number	Isotopie Mass (amu)	Fractional Abundance
50	49.9461	0.0435
52	51.9405	0.8379
53 54	52.9407	0.0950
54	53.9389	0.0236

What is the atomic mass of chromium?

(f) Give the answers to the following questions

i) State the laws of definite proportions and conservation of matter.

Fii) Name the two types of properties commonly used to characterize or identify substances

(g) Perform the following calculations and round the answers to the correct number of significant figures (units of measurement have been omitted) [4]

(i)
$$\frac{2.568 \times 5.8}{4.186}$$
 (ii) $5.41 - 0.398$ (iii) $3.38 - 0.31$ (iv) $4.18 - 58.16 \times (3.38 - 3.01)$