DEVOIR LIBRE 4

Exercice 1

1. Simplifier les expressions suivantes:

Simplifier les expressions suivantes:
$$A = \cos\left(x + \frac{17\pi}{2}\right) + \sin(x - 23\pi) + 2\cos\left(\frac{21\pi}{2} - x\right) \quad B = \frac{\cos^3(x) + \cos(x)\sin^2(x) + \sin(x)}{\sin(x) + \cos(x)}$$

$$C = \cos(x)\tan(x + \pi) + \sin(x)\tan(\frac{\pi}{2} + x) \qquad D = \cos^2\frac{\pi}{10} + \cos^2\frac{4\pi}{10} + \cos^2\frac{6\pi}{10} + \cos^2\frac{9\pi}{10}$$
So the part give $\cos(\frac{\pi}{4}) = \sqrt{2} + \sqrt{6}$, so level as $\sin(\frac{\pi}{4})$ at $\tan(\frac{\pi}{4})$.

2. Sachant que $\cos\left(\frac{\pi}{12}\right) = \frac{\sqrt{2} + \sqrt{6}}{4}$, calculer $\sin\left(\frac{\pi}{12}\right)$ et $\tan\left(\frac{\pi}{12}\right)$.

Exercice 2

On pose $A(x) = 4\sin^2(x) + 2\cos^2(x) - 5\sin(x)$.

- 1. Calculer A(0); $A\left(\frac{\pi}{2}\right)$; $A\left(\frac{\pi}{4}\right)$ et $A\left(\frac{\pi}{6}\right)$.
- 2. Vérifier que $A(\pi x) = A(x)$.
- 3. Calculer $A\left(\frac{3\pi}{4}\right)$ et $A\left(\frac{5\pi}{6}\right)$.
- 4. Montrer que $A(x) = (2\sin(x) 1)(\sin(x) 2)$.
- 5. Résoudre dans $]-\pi;\pi]$ l'équation: A(x)=0.
- 6. Résoudre dans $]-\pi;\pi]$ l'inéquation: A(x) < 0.

Exercice 3

(a) Résoudre dans ℝ les équations:

i.
$$(E_1): 2x^2 + x - 1 = 0$$

i.
$$(E_1): 2x^2 + x - 1 = 0$$
 ii. $(E_2): -4x^2 + 4\sqrt{3}x - 3 = 0$ iii. $(E_3): -3x^2 - x = 0$

iii.
$$(E_3): -3x^2 - x = 0$$

(b) Résoudre dans \mathbb{R} les équations:

i.
$$(E_4)$$
: $2x^4 + x^2 - 1 = 0$

i.
$$(E_4): 2x^4 + x^2 - 1 = 0$$
 ii. $(E_5): -4x + 4\sqrt{3x} - 3 = 0$ iii. $(E_6): -\frac{3}{x^2} - \frac{1}{x} = 0$

iii.
$$(E_6)$$
: $-\frac{3}{x^2} - \frac{1}{x} = 0$

(c) Résoudre dans ℝ les inéquations:

i.
$$(I_1): (2x^2 + x - 1)(-4x^2 + 4\sqrt{3}x - 3) > 0$$
 ii. $(I_2): \frac{2x^2 + x - 1}{-3x^2 - x} \le 0$

ii.
$$(I_2)$$
: $\frac{2x^2+x-1}{-3x^2-x} \le 0$

2. (a) Résoudre dans \mathbb{R} les équations:

i.
$$(E_7)$$
: $|4x^2 - 1| = 1 + |x|$

11.
$$(E_8)$$
: $(4x^2-1)^2=1+x^2$

ii.
$$(E_8)$$
: $(4x^2 - 1)^2 = 1 + x^2$ iii. (E_9) : $\sqrt{4x^2 - 1} = 1 + 2x$

(b) Résoudre dans ℝ les inéquations:

i.
$$(I_3): |4x^2 - 1| > 1$$

ii.
$$(I_4): (4x^2 - 1)^2 \le 1$$

iii.
$$(I_4): \sqrt{4x^2-1} \ge 1$$

i. $(I_3): |4x^2-1| > 1$ ii. $(I_4): (4x^2-1)^2 \le 1$ 3. Résoudre graphiquement le système: $\begin{cases} 5x-2y-4 < 0 \\ -3x+4y \le 6 \end{cases}$