Belief Networks

CMPUT 366: Intelligent Systems

P&M §8.3

Lecture Outline

- 1. Recap & Logistics
- 2. Belief Networks
- 3. Queries
- 4. Constructing Belief Networks

Recap: Independence

Definition:

Random variables X and Y are marginally independent iff

$$P(X = x | Y = y) = P(X = x)$$

for all values of $x \in dom(X)$ and $y \in dom(Y)$.

Definition:

Random variables X and Y are conditionally independent given Z iff

$$P(X = x \mid Y = y, Z = z) = P(X = X \mid Z = z)$$

for all values of $x \in dom(X)$, $y \in dom(Y)$, and $z \in dom(Z)$.

Recap: Exploiting Independence

- Explicitly specifying an entire unstructured joint distribution is tedious and unnatural
- We can exploit conditional independence:
 - Conditional distributions are often more natural to write
 - Joint probabilities can be extracted from conditionally independent distributions by multiplication

Belief Networks, informally

- We can represent the pattern of dependence in a distribution as a directed acyclic graph
- Nodes are random variables
- Arc to each node from the variables on which it depends

Clock Scenario

- Alice's observation depends on the actual time
- So does Bob's
- Neither depends on each other's observation

Fire Alarm Scenario

- Agent wants to deduce whether there is a fire in the building next door
- The fire alarm detects heat from fires
 - But it can also be set off by tampering
- A fire causes visible smoke
- People usually leave the building as a group when the fire alarm goes off
- When lots of people leave the building, our friend will tell us (report to us)

Conditional Probabilities

- Graph representation represents a specific factorization of the full joint distribution
 - Distribution on each node conditional on its parents
 - Marginal distributions on nodes with no parents

Theorem:

Every node is **independent** of its **non-descendants**, **conditional** on its **parents**

- Node u is a parent of v if a directed edge $u \rightarrow v$ exists
- Node v is a **descendant** of u if there exists a **directed path** from u to v
- Node v is a **non-descendant** of u if there **does not exist** a directed path from u to v

Belief Networks

Definition:

A belief network (or Bayesian network) consists of:

- 1. A directed acyclic graph, with each node labelled by a random variable
- 2. A domain for each random variable
- 3. A conditional probability table for each variable given its parents

Queries

 The most common task for a belief network is to query posterior probabilities given some observations

Easy case:

- Observations are the parents of query target
- More common cases:
 - Observations are the children of query target
 - Observations have no straightforward relationship to the target

Extracting Joint Probabilities: Variable Ordering

To compute joint probability distribution, we need a variable ordering that is consistent with the graph

for i from 1 to n:

select an unlabelled variable with no unlabelled parents

label it as i

Question:

Is this guaranteed to exist at every step?

Why?

Extracting Joint Probabilities

- Multiply joint distributions in variable order
- Example: Given variable ordering Tampering, Fire, Alarm, Smoke, Leaving

Questions:

- 1. Why P(Fire) instead of $P(Fire \mid \frac{Tampering}{})$?
- 2. Why $P(Smoke \mid Fire)$ instead of $P(Smoke \mid Tampering, Fire, Alarm)$?

P(Tampering) = P(Tampering)

P(Tampering, Fire) = P(Fire)P(Tampering)

P(Tampering, Fire, Alarm) =

P(Alarm | Tampering, Fire)P(Fire)P(Tampering)

P(Tampering, Fire, Alarm, Smoke) =

P(Smoke | Fire)P(Alarm | Tampering, Fire)P(Fire)P(Tampering)

P(Tampering, Fire, Alarm, Smoke, Leaving) =

P(Leaving | Alarm)Pr(Smoke | Fire)P(Alarm | Tampering, Fire)P(Fire)P(Tampering)

Questions:

- Which of the graphs at the right is a correct encoding of the Clock scenario?
 Why?
- 2. Which of the graphs at the right is a good encoding? Why?

Constructing Belief Networks

- A belief network is correct if it encodes true conditional independence relationships: All nodes are independent of their non-descendants given their parents
- A joint distribution can, in general, have many correct encodings as belief networks
- Some encodings are better than others:
 - They represent natural relationships
 - They are more **compact** (they require fewer probabilities)

Mechanically Constructing Belief Networks

Given a joint distribution we can mechanically construct a correct encoding:

- 1. Order the variables $X_1, X_2, ..., X_n$ and associate each one with a node
- 2. For each variable X_i :
 - (i) Choose a minimal set of variables $parents(X_i)$ from $X_1, ..., X_{i-1}$ such that $P(X_i \mid parents(X_i)) = P(X_i \mid X_1, ..., X_{i-1})$
 - (ii) i.e., conditional on $parents(X_i)$, X_i is independent of all the other variables that are earlier in the ordering
 - (iii) Add an arc from each variable in $\operatorname{parents}(X_i)$ to X_i
 - (iv) Label the node for X_i with the conditional probability table $P(X_i \mid parents(X_i))$

Observing Children

- Observing a parent renders conditionally dependent nodes conditionally independent
- Observing children can render conditionally independent nodes conditionally dependent
 - Extreme example: The Coins scenario: $\mathbf{B} = \mathbf{C_1} \wedge \mathbf{C_2}$
 - Observing both B and C₁ uniquely determines C₂
- Similar effect called explaining away:
 - We start with prior probabilities of Tampering and Fire
 - Question: If we observe that Alarm is ringing, how are these posterior probabilities different?
 - Question: If we then observe Smoke, how do these posterior probabilities change?

Causal Network

- The arcs in belief networks do not, in general, represent causal relationships!
 - $T \rightarrow A$ is a **causal** relationship if T causes the value of A
 - E.g., ${\it B}$ doesn't cause ${\it T}$, but this is nevertheless a correct encoding of the joint distribution
- However, reasoning about causal relationships is often a good way to construct a natural encoding as a belief network
 - We can often reason about causal independence even when we don't know the full joint distribution

Summary

- Belief networks represent a factoring of a joint distribution
 - Graph structure encodes conditional independence relationships
 - Can query posterior probabilities of subsets of variables given observations
- Each joint distribution has multiple correct representations as a belief network
 - Some are more compact than others
 - Some are more natural than others
- Arcs in a belief network often represent causal relationships
 - But they don't have to!