数字图像处理 第三章作业

16337341 朱志儒

1、已知图像大小为64*64,有8个灰度级,灰度分布直方图为

r_k	0	1/7	2/7	3/7	4/7	5/7	6/7	1
n_k	790	1023	850	656	329	245	122	81

试计算: (1) 概率密度函数 (PDF)

由公式 $p(r_k) = n_k / MN$ 可得:

$$P(0) = 790 / 4096 = 0.19$$

$$P(1/7) = 1023 / 4096 = 0.25$$

$$P(2/7) = 850 / 4096 = 0.21$$

$$P(3/7) = 656 / 4096 = 0.16$$

$$P(4/7) = 329 / 4096 = 0.08$$

$$P(5/7) = 245 / 4096 = 0.06$$

$$P(6/7) = 122 / 4096 = 0.03$$

$$P(1) = 81 / 4096 = 0.02$$

(2) 累计分布函数 (CDF)

由公式 $s_k = T(r_k) = (L-1) \sum_{j=0}^k p_r(r_j), k=0, 1, 2, ..., L-1$ 可得:

$$s_0 = T(r_0) = 7\sum_{i=0}^{0} p_r(r_i) = 7p_r(r_0) = 1.33$$

同理,有

$$s_1 = 3.08$$
, $s_2 = 4.55$, $s_3 = 5.67$, $s_4 = 6.23$, $s_5 = 6.65$, $s_6 = 6.86$, $s_7 = 7.00$

(3) 直方图均衡化变换函数 (GST)

将(2)中的结果近似为最接近的整数:

$$s_0 = 1$$
, $s_1 = 3$, $s_2 = 5$, $s_3 = 6$, $s_4 = 6$, $s_5 = 7$, $s_6 = 7$, $s_7 = 7$

(4) 均衡化后的直方图

- 2、如图所示的图像是很不同的,但他们直方图却相同。假设每幅图像都用
 - 3x3 均值模板来进行模糊处理。

左侧的图像,图像模糊后,右侧的边界点将产生许多的不同的灰度值。所以两个 模糊后图像的直方图将不同。

(b) 如果您的答案是不相同, 画出两个直方图。

假设整个图像为 N x N 图像,使用 3x3 均值模板进行模糊化处理,模板中的 系数均为 1/9, 为处理在图像边框存在未覆盖部分模板的问题, 我们使用 0 作为 边框环绕整个图像。

模糊化处理后,左侧图像的灰度分布和平方图值如下:

r_k	n_r	$p_k(r_k)$
0	N(N/2-1)	1/2-1/N
1/9	0	0
2/9	2	$2/N^2$

3/9	N-2	$(N-2)/N^2$
4/9	4	$4/N^2$
5/9	0	0
6/9	3N-8	$(3N-8)/N^2$
7/9	0	0
8/9	0	0
1	(N-2)(N/2-2)	$(N-2)(N/2-2)/N^2$

左侧图像的直方图如下(假设 N=18):

绘制图像的.m 文件名为 draw_histogram_1.m。

右侧图像的灰度分布和平方图值如下:

r_k	n_r	$p_k(r_k)$
0	N ² -14N+98	1-14/N+98/N ²
1/9	0	0
2/9	28	$28/N^2$
3/9	14N-224	14/N-224/N ²
4/9	128	$128/N^2$
5/9	98	$98/N^{2}$
6/9	16N-256	16/N-256/N ²
7/9	0	0
8/9	0	0
1	$N^2/2-16N+128$	1/2-16/N+128/N ²

右侧图像的直方图如下(假设 N=18):

绘制图像的.m 文件名为 draw_histogram_2.m。

3、(a)试给出求一个nxn邻域的中值的步骤。

步骤: 首先将 $n \times n$ 邻域看成一个 $n \times n$ 的矩阵,然后将该矩阵转变成一个一维数组,接着将数组排序,如果 n^2 为奇数则第 $(n^2+1)/2$ 个数为中位数,如果 n^2 为 偶数则第 $n^2/2$ 个数与第 $n^2/2+1$ 个数的平均值为中位数,该中位数即为 $n \times n$ 邻域的中值。

实现函数可见 find_median.m 文件。

(b)试提出一种逐像素的移动邻域的中心来更新中值的技术。

每移动一个像素生成一个相应的 n x n 邻域矩阵, 然后按照上一题的步骤即可得到相应的中值。按照这种技术就可以更新中值。