准考 证号									工位号			
					注意	: 只均	真写准	達考证	号和工位	ī号,	否则试	卷作废
		密			封				;	线		

全国软件和信息技术专业人才大赛模拟题

单片机设计与开发科目

竞赛时间: 5小时

题 号	—	1.1	111	总分
配 分	10 分	30 分	60 分	100 分
得 分				

"温度记录器"设计任务书

功能简述

关注微信公众号:嵌入式基地后台回复:蓝桥杯获取资料

设备按照用户通过按键设定的时间间隔自动采集并存储温度数据,并具有采集完成提醒、数码管显示等功能,系统硬件部分主要由按键电路、电源供电电路、RTC 时钟、传感器电路和显示电路组成。系统框图如图 1 所示:

图 1. 系统框图

单总线驱动程序、DS1302 芯片驱动程序、CT107D 单片机考试平台电路原理图以及本题所涉及到的芯片数据手册,可参考计算机上的电子文档。程序流程图及相关工程文件请以考生号命名,并保存在计算机上的考生文件夹中(文件夹名为考生准考证号,文件夹位于Windows桌面上)。

设计任务及要求

1. 数码管显示

关注微信公众号: 嵌入式基地

后台回复: 蓝桥杯 获取资料

1.1 设备上电后,自动进入参数设置界面(图 1)此时,通过按键 S4 切换 4 个温度 采集间隔时间,分别为1秒、5秒、30秒和60秒;

8	8	8	8	8	•	0	1
		数码管熄灭	提示符	默认采集门	间隔: 1秒		

图 1. 参数设置界面(上电默认)

按下按键 S5, 确认采集间隔时间, 并退出参数设置界面 (图 1), 进入时钟显示界 面(图 2) 并开始采集温度。

0	0	-	0	0	•	1	0
0 时		提示符1	0	分	提示符 2	10	秒

图 2. 时钟显示界面

要求: 时钟显示界面(图2)下,提示符1、2以1秒为间隔闪烁

1.2 当设备按照用户设定的采集间隔采集到 10 个数据后,指示灯 L1 闪烁提示本 次温度采集已经完成,此时进入数码管温度采集显示界面(图3):

-	0	0	8	8	-	2	4
提示符1	索引: 0		数码管		提示符 2	采集温度	度: 24℃

图 3. 温度采集显示界面

此时, 按下 S6, L1 熄灭, 按照时间先后顺序, 切换显示设备内存储的温度数据: 按下 S7 按键进入参数设置界面(图 1), 待用户输入温度采集间隔之后,可以进行 下一次的温度采集工作。

说明:索引指的是当前显示的温度按照采集时间先后顺序的编号(00-09)。

2. 温度检测功能

使用 DS18B20 温度传感器完成温度测量功能。

3. RTC

使用 DS1302 时钟芯片完成 RTC 的相关功能。

4. 设备工作模式说明

- (1) 默认 RTC 时间: 23 时 59 分 50 秒;
- (2) 默认温度数据采集间隔为1秒:
- (3) 设备处在不同的显示界面下,与该界面无关的按键操作无效;
- (4) 温度数据最大存储容量: 10 个

5. 电路原理图设计

使用基本阻容元器件、集成运算放大器设计硬件电路,完成如下功能: 已知某种类型的传感器输出 4-20mA 电流信号,设计电路将电流信号转换为 0V-5V 的电压信号。简述所设计电路的工作原理,并绘制出电路原理图。

关注微信公众号:嵌入式基地后台回复:蓝桥杯获取资料

项目名称	得分	评卷人
电路设计		

一. 电路原理图设计

根据设计任务要求,使用 Protel 99se 或 Altium Designer Summer09 软件设计电路原理图,标明元器件参数,说明电路工作原理。原理图文件保存在考生文件夹中(文件夹以考生的准考证号命名)。

项目名称	得分	评卷人
程序设计		

二. 程序编写及流程图绘制

- 1. 画出程序流程图,保存在考生文件夹中;
- 2. 按照设计要求完成程序设计任务,并将工程文件保存在考生文件夹中。

项目名称	得分	评卷人
硬件调试		

三. 软、硬件统调

将编译通过的程序下载到单片机芯片中,进行软、硬件统调。

- 1. 设备初始化状态;
- 2. LED 指示功能;
- 3. 数码管显示数据及显示界面切换功能;
- 4. 按键的功能实现;
- 5. 温度测量功能实现;
- 6. RTC 实时时钟的功能实现。