UNCLASSIFIED

AD NUMBER

AD008348

CLASSIFICATION CHANGES

TO: unclassified

FROM: confidential

LIMITATION CHANGES

TO:

Approved for public release, distribution unlimited

FROM:

Distribution authorized to U.S. Gov't. agencies only; Administrative/Operational Use; MAY 1952. Other requests shall be referred to Office of Naval Research, Ballston Center Tower One, Code ONR 06 Rm 215, 800 North Quincy St., Arlington, VA 22217-5660.

AUTHORITY

dept of the navy ltr, 10 sep 1954; onr via ltr dtd nov 9, 1977

THIS REPORT HAS BEEN DELIMITED AND CLEARED FOR PUBLIC RELEASE UNDER DOD DIRECTIVE 5200.20 AND NO RESTRICTIONS ARE IMPOSED UPON ITS USE AND DISCLOSURE.

DISTRIBUTION STATEMENT A

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

Recliention Bullin No. 3

REPRODUCTION QUALITY NOTICE

This document is the best quality available. The copy furnished to DTIC contained pages that may have the following quality problems:

- Pages smaller or larger than normal.
- Pages with background color or light colored printing.
- · Pages with small type or poor printing; and or
- Pages with continuous tone material or color photographs.

Due to various output media available these conditions may or may not cause poor legibility in the microfiche or hardcopy output you receive.

If this block is checked, the copy furnished to DTIC contained pages with color printing, that when reproduced in Black and White, may change detail of the original copy.

SECURITY INFORMATION

EXPERIMENTAL TOWING TANK STEVENS INSTITUTE OF TECHNOLOGY HOBOKEN, NEW JERSEY

LIFT AND DRAG OF HYDROFOILS:

APPLICATION OF THEORY TO EXPERIMENTAL RESULTS

by

B.V. Korvin-Kroukovsky Robert J. Wernick

PREPARED UNDER CONTRACT Near 263-01 U.S. NAVY OFFICE OF HAVAL RESEARCH (E.T.T. PROJECT DZ1407)

May 1952

Report Nr

SECURITY INFORMATION

33

045

EXPERIMENTAL TOWING TANK
STEVENS INSTITUTE OF TECHNOLOGY
HOBOKEN, NEW JF-5EY

LIFT AND DRAG OF HYDROFOILS:

APPLICATION OF THEORY

TO

EXPERIMENTAL RESULTS

by

B.V. Korvin-Kroukovsky and Robert J. Wernick

PREPARED UNDER
CONTRACT Near 263-01
U.S. NAVY
CFFICE OF NAVAL RESEARCH
(E.T.T. PROJECT DZ1407)

May 1952

Report No. 438

TABLE OF CONTENTS

	Page
Summary	1
Introduction	3
Symbols	5
Hydrofoil Theory	7
Induced Diag	7 11 11 19
Analysis of Experimental Results	21
Description of Models and Sources of Test Data Determination of Profile Drag Model Is Model Ib Model II	21 21 21 23 24
Results and Discussion	25
Variation of Profile Drag with Lift Coefficient and Depth Dependence of Profile Drag on Reynolds Number Slope of Lift Coefficient with Angle of Attack	25 26 26
Concluding Remarks	28
References	30
Tables I - III	32
Figures 1 - 18	

R-439

ACKNOWLEDCEMENT

This report has been prepared by the Staff of the Experimental Towing Tank, Stevens Institute of Technology, in connection with Office of Naval Research Contract No. Nonr 263-01.

R-438 -1-

SUMMARY

A hydrofoil moving at a given angle of actack near the surface of a fluid experiences a resistance which can be broken down into the following components: a wave-making drag caused by bound vortices in proximity to the surface, an induced dong caused by trailing vortices resulting from a finite span, and a profile drag consisting of the frictional and addymaking drag of the hydrofoil.

It is found in the present report that the induced drag of a hydrofoil of aspect ratio > 6 (the smallest investigated) can be computed with sufficient ac wacy by a procedure similar to that used for airfoils in an infinite medium.

The several methods for computing the wave-making drag of a hydrofoil in media of finite or infinite depth are compared and discussed. In shellow water, there is a maximum velocity for the propagation of waves, termed the critical velocity. If the hydrofoil moves at a supercritical relocity, the waves caused by the bound vortices cannot follow, and wavemaking drag is mil. However, in the transition range near the critical velocity, the rats at which wave-making drag decreases with velocity from a finite value to zero is not given by existing theories. In the present report, an empirical correction factor depending on the ratio of velocity to critical velocity is applied to the equation for the two-dimensional wave-making drag of a flat plate in a medium of infinite depth in order to approximate the decrease of the wave-making drag in a medium of finite depth. In the actual operation of a hydrofoil in open water, this correction factor becomes magligible.

Wave-making drag and induced drag are subtracted from experimental total drag to give values of profile drag. At examination of the resulting profile drag curves and those obtained directly from N.A.C.A. windtunnel tests shows:

- (1) very close agreement when the hydrofoil and airfoil sections were tested at the same Raynolds numbers,
- (2) similar form and reasonable magnitude when the hydrofoil was tested at lower Reynolds numbers.

Since the wave-making drag and induced drag of a hydrofoil are independent of scale effect, it is possible, given the profile drag at a

SECURITY INFORMATION

R-438 - 2 -

CONFIDENTIAL

suitable Reynolds number, to find the fo. scale total dreg at that Reynolds number.

It is also shown that the slope of the lift coefficient with angle of attack is a function of submergence, and increases with depth toward a Shecretical infinite-depth value depending on the aspect ratio.

CONFIDENTIAL

438

3 -

INTRODUCTION

This report is a study of the application of the theories of induced downwash angle and of wave-making resistance to the analysis of experimental lift and drag data on hydrofoils. A deeply-submerged hydrofoil acts an airfoil in an intinite radium, i.e., the effect of the free surface is negligible. In the case of a foil of infinite span, there is no induced downwash angle and thus no induced drag. Therefore, the only observable resistance is the profile or section drag. However, in the case of a deeply-submerged hydrofoil of finite wash trailing vortices occur, causing a downwash angle and thereby modafying the slope of the curve of lift coefficient vs. angle of attack. The induced downwash angle will produce induced (trailing vorter) drag, so that the total drag is the sum of the profile and induced drag components.

A foil traveling near the surface produces when which, in turn, provide added increments of velocity to the flow around it, further andifying the lift and dray. Modifications caused by the proximity of the bound vortices to the autrace occur weather the squa is finite or infinite. There are reveral macheds available for evaluating the wave-making (bound vortice) drag, Vavos (Exference 1) capresents the full as a single verter filament and empoidess the relation of the life to the theoristics to be the same as as great depth, i.e., the Kunta-Joukowski equation, Notchin (Reference 2) also represents the fail as a single vortex filament, but considers the effect of the free anxince on the relationship between the lift and the obviolation. Toldysch and Lavrentiev (Exference 3), in their study of the free surface effects, represent the fail by a lifting surface, i.e., a surface of discontinuity on which sources and vortices of varying atrength are placed. These three methods are compared and discussed here-

In shellow water, there is a maximum velocity for the propagation of waves, termed the critical velocity. If a hydroficil moves with a supercritical velocity, the waves caused by the bound vortices cannot follow, and wave-making resintance is nil. However, in the transition range near the critical velocity, the rate of decrease of the wave-making drag from a finite value to sere is not given by oristing theories. Therefore, an empirical relationship is developed in this report for the value of wave-making drag in the transition range between subcritical and supercritical velocities.

CONFIDENTIAL

It should be emphasized that the vanishing of the wave-making resistance at supercritical velocities is essentially a result of laboratory conditions; at would occur in full-scale only in shallow water. The evaluation of the wave-making drag of a full-scale hydrofoil under normal conditions of operation therefore depends on the theory developed for a foil in a medium of great depth. In the present analysis of the shallow-water data obtained as a towing tank, the equations resulting from deep-water theory are modified to take into account the depth of the medium.

In this report, the term "wave-making drag" is applied, in lifting line theory, to the effects of the bound vortex in proximity to the free surface (or, in lifting surface theory, to the effects of the distribution of bound vortices). These effects are determined for the infinite apan, i.e., for two-dimensional flow with the formation of transverse waves. The term "induced drag" is applied, following aeronautical usage, to the increment of drag caused by a finite span, i.e., caused by the trailing vortices. The trailing vortices also form waves, but of oblique form.

The above nomenciature differs from that recently used by Vavra in Reference 1. The terminology of "bound vortex drag" and "trailing vortex drag" is used by Vavra and Mayer, and in Reference 1 Vavra groups both of these under the name of "asym-making drag," which is defined as including all resistance in excess of the drag of a foil in an infinite two-dimensional medium, i.e., profile drag. In Vavra's notation, then, the drag of the trailing vortices is divided into two perts:

- (a) the induced drag of the finite aspect ratio foil in an infinite medium,
- (h) an additional increment due to the effect of the surface included as part of the expression for bound vortex drag.

It was felt by the present authors that this terminology might lead to some confusion, and so the terms "wave-making" and "induced" drag as defined in the preceding paragraph are used in this report.

SYMBOLS

The various terms and coefficients used in this report are as follows:

General Symbols

- g = acceleration of gravity, 32 l7 ft./sec.2
- ν = kinematic viac mity

4° ۱۰ و د به بایت کتفیاست دیگ

p = mass density

Asrodynamic and Hydrodynamic Symbols

- A = aspect ratio
- A. = equivalent aspect ratio
- b = span of the hydrofoil, ft.
- t_ = squivalent span, ft.
- C = induced drag coefficient
- C. = profile drag coefficient
- C. total drag coefficient
- C = wave-making drag coefficient
- C. = three-dimensional lift coefficient
- Cf = two-dimensional lift coefficient
- e = chord length, ft.
- $Bi(x) = exponential integral, \int_{-\infty}^{\infty} (e^{u}/u) du$
- F = Froude number, V/√gc, based on the chord as characteristic length
- H = tank water depth, ft.
- h = hydrofoil depth of submersion, it.
- L = total lift force, lb.
- L, = lift force per unit span, lb./ft.
- M Munk span factor (see equetion (2))
- P_1 , P_2 , Q_1 , Q_2 = coefficients (see equations (25)-(28))
- Re = Reynolds number, Ve/v
- S = plauform area, ft. 2
- Y = horizontal velocity of the foil, ft./sec.
- V. = critical velocity, ft./sec.
- w = downwash velocity, it./sec.
- a rngle of attack, radians
- a, = section angle of attack, i.e., angle of attack of a foil of infinite span, radians
- ag . angle of attack at zero lift, radians

CONFIDENTIAL

·R-438

CONFIDENTIAL

 δ = planform factor (see page 10)

" - circulation

e - downwash angle, radians

 κ = a form of Froude number, $V^2/2gc$

 λ = a form of Froude number, $2gh/V^2$, based on subscription as characteristic length

σ = Munk interferen factor (see page 8)

HYCROFOIL THEORY

HIDUCED DRAG

There are several developments of expressions for trailing vortex dray. Vladimirov (Reference 4) ives a sketchy treatment based on a single horseshoe vortex, and Vavra and Meyer have treated the problem (Reference 1) in the case of the bound vortex line of varying strength and a complete trailing vortex sheet. This latter treatment gives a double integral which is soluble in closed form for only s few limiting cases (see equations (19)-(22) of the present report). The necessary numerical integration for the more general cases has not yet been completed. There is also a study being made at the E.T.T. in which the effect of the trailing vortices is considered, but the results are not yet available. Consequently, as this section of the report, a simplified expression is used which considers the surface disturbance caused by the trailing vortices to be negligible, which is actually the condition at high speeds. This permits the application of a technique widely used in aerodynamics.

The induced downwash angle of airfoils is determined by integrating the vertical velocities induced by the trailing vortices. In the particular case of an elliptic lift distribution, it may be shown that the downwash velocity is uniform along the span and can be computed by momentum theory, using as the virtual mass the mass of a cylinder of fluid having a diameter equal to the span of the airfoil (Sketch A below).

AIRFOIL IN AN

SKETCH A

PLANING FOIL

SKETCH B

For a body moving near the water surface, the system can be completed by its reflection from the surface. Thus, for a body planing on the surface of the water, good results are obtained by taking half the cylinder (Sketch B, page 7) us the virtual mass (References 5 and 6).

In the present derivation of the expression for the induced drag coefficient, $C_{p,\ell}$, an image span 'Shatch C, page 9) is assumed at a distance h (equal to the subsergence of the actual foil) above the undisturbed surface. The induced drag is then developed by a procedure similar to that for a biplane in an infinite medium. In biplane theory (Reference 7), the induced drag is found by determining the dimensions of a monoplane equivalent to the biplane (Seetch D, page 9) and then proceeding by monoplane theory.

The equivalent mosoplane span; be, is given by

$$b_{\mu} = \mu b \qquad . \tag{1}$$

H is the Mank span factor, and is defined as

$$H = \frac{(1+\xi)\mu}{\sqrt{\mu^2 + 2\mu\xi\sigma + \xi^2}} , \qquad (2)$$

mbere

 $\xi = L_a/L_b$, the ratio of the lifts of each span

 $\mu = B_{\perp}/B_{\perp}$, the ratio of the span lengths

 σ = the Munk interference factor.

For the hydrofoil, $\mu = \xi = 1$, and the expression for M becomes

$$\mu = \frac{2}{\sqrt{2(1+\sigma)}} \qquad . ag{3}$$

The interference factor is determined by numerical integration of the double integral found on page 247 of Reference 7. It is shown plotted against an extended range of h'/b (where h' is the distance between the two spans, equal to 2h) on Figure 1. For the hydrofoil of rectangular planform, the equivalent aspect ratio, A_a , is given by

$$A_0 = \frac{(Hb)^2}{28} \tag{4}$$

R-438 - 9 -

CONFIDENTIAL

By using the same method as in Reference 6, the lift is written as

$$L = C_L \frac{\rho}{2} V^2 S + \rho V \sigma J \qquad , \tag{5}$$

where $J = \pi b_e^2/8$, the shaded area in Sketch D below.

ACTUAL AND IMAGE FOILS

EQUIVALENT FOIL

SKETCH C

SKETCH E

Solving equation (5) for the downwash velocity, w, gives

$$= \frac{vsc_k}{2L} , (6) .$$

The downwash angle at the lifting line is e = w/2V. Therefore,

$$\epsilon = \frac{SC_1}{AI} \qquad . \tag{7}$$

The induced drag coefficient is given by

$$C_{b_i} = \epsilon C_b = \frac{8C_i^2}{4J^2} \qquad .$$
(8)

When the foil has a rectangular planform, $S = bc = e^2A$. Substituting for S and J in equation (8) gives

$$C_{p_i} = \frac{2C_i^2}{m^2 A}$$
 (9)

From equation (4), $A_e = M^2b^2/2be = M^2A/2$ for the rectangular foil. Therefore,

$$C_{p_{i}} = \frac{C_{i}^{2}}{m_{i}} \qquad (10)$$

CONFIDENTIAL

In terms of the interference factor,

$$C_{p_{i}} = \frac{1+\sigma}{\pi A} \cdot C_{L}^{2} \qquad . \tag{11}$$

Equation (11) may be obtained in a different way. Equation (28) on page 248 of Reference 7 gives the induced drag of a biplane as the induced drag of each span plus the interference effects of each span on the other, i.e., the induced drag, D_i , is

$$D_i = D_{aa} + 2D_{ab} + D_{bb} = \frac{2}{\pi \rho V^2} \left(\frac{L_a^2}{B_a^2} + 2\sigma \frac{L_a L_b}{B_a B_b} + \frac{L_h^2}{B_b^2} \right)$$

However, in the case of the hydrofoil, only the induced drag of a single actual span and the interference effect of an assumed image span are considered. Thus,

$$D_{i} = D_{aa} + D_{ab} = \frac{2}{\pi \rho V^{2}} \left(\frac{L^{2}}{b^{2}} + \sigma \frac{L^{2}}{b^{2}} \right) \qquad (12)$$

Therefore,

$$D_{i} = \frac{2L^{2}(1+\sigma)}{m\sigma^{2}k^{2}} \qquad . \tag{13}$$

Dividing by $(\rho/2)V^2S$ and substituting $C_2(\rho/2)V^2S$ for L give

$$C_{g_1} = \frac{2C_L^2}{\pi M^2 A} = \frac{1+\sigma}{\pi A} C_L^2$$

which is equation (11).

Equations (10) and (11) hold for the elliptic foil; for the rectangular foil, the induced drag is obtained by multiplying the induced drag coefficient for the elliptic foil by (1 + 8), where 8 is a planform factor. Thus, equations (10) and (11) become

$$C_{\theta_i} = \frac{(1+8)C_i^2}{m_0^2} = \frac{(1+8)(1+\sigma)C_i^2}{m_0^2}$$
 (14a)

The factors σ and δ are small, so that for low aspect ratios, equation

(14a) may be written as

$$C_{B_{i}} = \frac{(1+\sigma+\delta)C_{i}^{2}}{rA}$$
 (14b)

Values of 8 over an extended range of A are abstracted from Reference 8 and plotted on Figure 2.

CRITICAL VELOCITY

In Reference 9, Vavra shows analytically that in shallow water, e.g., a towing tank, two entirely different flow regimes exist, one for $V < \sqrt{gH}$, and he other for $V > \sqrt{gH}$, where H is the depth of the water in the tank. $V = \sqrt{gH}$ is termed the critical velocity, which is the maximum velocity of waves in shallow water.

At supercritical velocities, the free transverse waves caused by the bound vortices cannot follow at the speed of the model, and the surface disturbence takes the form of a solitary wave traveling with the model. There is no wave train in the wake, and consequently no energy loss, and no component of wave-making drag. The tests reported in Meference 10 were all made at velocities above the critical, and in the analysis of the data made in the present report (see Figures 11 and 12), the exclusion of a wave-making drag gives results which are closely checked by wind-tunnel tests (Reference 11).

The data of Reference 12 include velocities ranging from subcritical to supercritical, and the problem arises as to how abruptly the wave-making drag coases to exist at the critical velocity: whether there is a jump discontinuity, or a smooth decrease in the amount of energy transmitted to the wake as Y increases toward the critical.

MAVE-MAKING DRAG THEORIES

In Reference 1, Vavra gives the following equation for the two-dimensional wave-making drag, D_y , of a single vortex line in a medium of infinite depth:

$$\frac{D_y}{L} = \frac{gL_1}{\rho \gamma^4} e^{-\lambda} \quad , \tag{15}$$

where the symbols are those given on page 5. He compares this equation

with the expression obtained by Kotchin in Reference 2,

$$D_y = \frac{\rho_g \Gamma^2}{v^2} e^{-\lambda} \qquad , \tag{16}$$

and states that with the circulation obtained by the Kutta-Joukowski equation

$$\Gamma = \frac{L_1}{\rho V} \qquad , \tag{17}$$

equations (15) and (16) are identical. However, equation (17) applies only to an infinite medium. Kotchin gives the equation for L_1 in the case of a semi-infinite medium (infinite depth, free surface) as

$$L_1 = \rho V \Gamma - \frac{\rho \Gamma^2}{4\pi \hbar} + \frac{\rho g \Gamma^2}{\pi V^2} e^{-\lambda} Ei(\lambda) \qquad (18a)$$

where $Ei(\lambda) = \int_{-a}^{a\lambda} (e^a/u) du$. Equation (18a) is thus seen to be the Kutta-Joukowski lift times a factor varying with depth, velocity, and circulation:

$$L_1 = \rho V \Gamma \left[1 - \frac{\Gamma}{4\pi V h} + \frac{g \Gamma}{\pi V^2} e^{-\lambda} E i(\lambda) \right] \qquad (18b)$$

The actual error involved in using equation (17) in a semi-infinite medium will be a slight one at low values of V/\sqrt{gh} , decreasing to zero at $V/\sqrt{gh} \approx 1.57$, and increasing with V/\sqrt{gh} thereafter.

In Reference 13, Vevre gives an expression for the wave-making drag of a vortex line of finite span, b, noving in a fluid of finite depth, with varying circulation around the span (lift variable along the span):

$$\underline{D}_{g} = \frac{L_{1}}{256\rho V^{2}} \int_{-\beta}^{\beta} \int_{-\beta}^{\beta} \left[\left[1 - \frac{\eta_{1}^{2}}{\beta^{2}} \right] \left[1 - \frac{\eta_{2}^{2}}{\beta^{2}} \right] \right]^{n} \left\{ e^{-\lambda} \left[1 + \frac{i\lambda^{2}}{4a^{2}} H_{g}^{(1)} (ia) - \frac{1}{a} \left(\lambda + \frac{v^{2}}{a^{2}} \right) H_{1}^{(1)} (ia) \right] - \frac{v^{2}}{ma^{4}} \right\} d\eta_{1} d\eta_{2} ,$$
(19)*

CONTROL OF THE PROPERTY OF THE

Again, there is confucion in the necessiators: in Reference 15, beend vertex drog is called g_{μ} , so in the necessiators of this report, and in Reference 1, it is torsed g_{-} .

where

$$L_{1_{\underline{\alpha}}} = \frac{2L}{h \int_{\beta}^{\beta} [1 - (4\eta^2/b^2)]^{n} d\eta}$$

n = an exponent depending on the distribution of lift along the span (for uniform distribution, n = 1; for elliptic distribution, n = %)

$$u = \frac{\lambda}{2} \sqrt{1 + [(\eta_2 - \eta_1)/4]^2}$$

$$v = \frac{\lambda}{2} \sqrt{1 - [(\eta_2 - \eta_1)/4]^2}$$

Ha(1) and H1(2) = Hankel functions.

Closed solutions of equation (19) are possible only in three limiting cases:

(a) Very small values of β :

$$\frac{D_{g}}{L} = \frac{gL_{1}}{\rho V^{4}} \left\{ \frac{gbe^{-\lambda/2}}{gV^{2}} \left[iH_{0}^{(1)} \left(\frac{i\lambda}{2} \right) - \left(1 + \frac{1}{\lambda} \right) H_{1}^{(1)} \left(\frac{i\lambda}{2} \right) \right] - \frac{4}{\eta \lambda^{2}} \right\}$$
(20)

(b) Very large values of β :

$$\frac{D_q}{L} = \frac{gL_1}{gV^4} e^{-\lambda} \frac{\overline{(L_1^2)}}{fL_1^2}$$
 (21)

where

 $\overline{(L_1^{\,\,2})}$ " mean value of $L_1^{\,\,2}$ along the span

 $(\overline{L_1})^2$ = square of the mean value of L_1 along the span.

The quotient $(\overline{L_1}^{-1})/(\overline{L_1})^2$ is unity for uniform lift distribution, and 1.08 for elliptic lift distribution.

(c) Very small values of λ :

$$D_{\psi} = \frac{2L^2}{\rho V^2 b^2} \left\{ \frac{\ln\left[1 + (b^2/4b^2)\right]}{8} \right\} \qquad (22)$$

If the wave-making drag is obtained from equation (19), the induced drag, D_i , is taken in Reference 1 as that for a foil in an infinite medium, because surface effects are assumed to be equivalent for by the following term in equation (19):

$$\int_{\beta}^{\beta} \int_{-\beta}^{\beta} \left\{ \left[1 - \frac{\eta_1^2}{\beta^2}\right] \left[1 - \frac{\eta_2^2}{\beta^2}\right] \right\}^n \frac{v^2}{m_0^4} d\eta_1 d\eta_2$$

It will be noted that this term is identical to the interference factor σ given in Reference 7 which is discussed surlier in the present report on page 8.

In Reference 3, Keldyech and Lassattiev develop general expressions for the lift and wave-making drag of various bodies subserged in a twodimensional semi-infinite medium. For a hydrofoil, the problem is to find the characteristic function of flow having a given velocity V and a given discontinuity of the tangential and normal velocities along a cambered line representing the foil. By placing on this line sources of intensity q(s) de and vortices of intensity $\gamma(s)$ de which give the same flow pattern as that actually occurring about a thin foil, the desired discontinuity of the normal and tangential velocities is obtained. The boundary conditions due to the free surface are imposed on the sum of the sources and vortices. From the flow pattern thus obtained, expressions for the lift and drag at may angle of attack are formulated. Actually, in Reference 3, the derivation is carried through only for a thin flat plate at an angle of attack ag, chord e, and subsergence h. In the present report, the actual hydrofoil is assumed to be equivalent to the thin flat plate. The zero angle of attack for asymmetric foils is assumed to be the angle of sero lift, ag,

The expressions for two-dimensional lift and wave-making drag as developed in Reference 3 are as follows:

$$L_1 = \eta \rho e Y^2 \alpha_{\rho} (P_1 - \alpha_{\rho} P_2)$$
 , (23)

$$D_g = \pi^2 e^2 a_0^2 \rho_{\rm E}(Q_1 - a_0 Q_2) \qquad . \tag{24}$$

The dimensionless coefficients P_1 , P_2 , Q_1 , and Q_2 are given as

$$P_1 = 1 - \frac{e^2}{16h^2} + \frac{1}{\kappa} \left[-\frac{\pi e^{-\lambda}}{2} + \frac{\pi^2 e^{-2\lambda}}{4\kappa} - \frac{c}{8h} + \frac{e^{-\lambda} \operatorname{Bi}(\lambda)}{8\kappa} \right] , \qquad (25)$$

R-438

$$P_{2} = \frac{c}{2h} - \frac{e^{-h}}{\kappa} \left[gi(\lambda) + \frac{\pi c}{2h} + \frac{\pi}{8\kappa} - \frac{\pi e^{-h} gi(\lambda)}{\kappa} \right] , \qquad (26)$$

$$Q_{1} = e^{-\lambda} \left\{ 1 - \frac{\pi e^{-\lambda}}{\kappa} - \frac{e^{2}}{8h^{2}} + \frac{1}{\kappa} \left[-\frac{e}{4h} - \frac{1}{64\kappa} + \frac{e^{-\lambda}E(\lambda)}{4\kappa} + \frac{3\pi^{2}e^{-2\lambda}}{4\kappa} \right] \right\}, \tag{27}$$

$$Q_2 = e^{-\lambda} \left\{ \frac{e}{2h} - \frac{1}{\kappa} \left[\frac{1}{4} + e^{-\lambda} \operatorname{Ei}(\lambda) + \frac{\pi e^{-\lambda}}{2h} - \frac{\pi e^{-2\lambda} \operatorname{Ei}(\lambda)}{\kappa} \right] \right\} . \tag{28}$$

where

$$\lambda = 2gh/V^2$$

 P_1 , P_2 , Q_1 , and Q_2 are shown plotted against κ at various submergences on Figures 3, 4, 5, and 6.

There is a certain amount of confusion in the reference material regarding the above expressions. In Reference 3, an additional coefficient of 2 is found in equation (24). It is omitted here since it is not found in Reference 4, which quotes the Keldysch and Lavrentiev results, or in Reference 14, which develops the same expressions independently. On the other hand, Vladimirov, in Reference 4, apparently concentrated his attention on higher speeds and deeper submergences, since he wrote the wave-making drag expression as

$$D_{g} = \pi^{2} \alpha_{0}^{2} \rho_{g} e^{2} e^{-\lambda} \left\{ 1 - \frac{\pi e^{-\lambda}}{\kappa} + \alpha_{0} \left[\frac{1}{4\kappa} - \frac{e}{2\lambda} + \frac{e^{-\lambda} \operatorname{E}i(\lambda)}{\kappa} \right] \right\} , \quad (29)$$

emitting the following terms of equations (27) and (28):

$$-\frac{e^2}{8h^2} + \frac{1}{\kappa} \left\{ -\frac{e}{4h} - \frac{1}{64\kappa} + \frac{e^{-h} g_i(\lambda)}{4\kappa} + \frac{3\pi^2 e^{-2\lambda}}{4\kappa} + \frac{\alpha_0}{\kappa} \left[-\frac{\pi e^{-2\lambda}}{2h} + \frac{\pi e^{-2h} g_i(\lambda)}{\kappa} \right] \right\}.$$

The term $1/64\pi$ is of such negligible magnitude that it may be emitted at all but the very levest speeds. Ei(0.3725)=0, but $Ei(\lambda)$ rapidly becomes appreciable at values of λ above and below 0.3725. It is easily seen that the other terms will be of sufficient size to be included at moderate speeds and submergences. Therefore, in the present report, the complete expres-

CONFIDENTIAL

sions, i.e., equations (27) and (28), are used.

In coefficient form, equations (23) and (24) become

$$C_2 = 2m_{\phi}(P_1 - \alpha_{\phi}P_2)$$
 (30)

$$C_{\theta_{\theta}} = \frac{\pi^2 \alpha_{\theta}^2}{\kappa} (Q_1 - \alpha_{\theta} Q_2) \qquad . \tag{31}$$

Any comparison of the theoretical results for a finite-span hydrofoil in a finite-depth medium obtained by the formulas of Vavra and those used in the subsequent analysis must necessarily be made on the basis of the sum of the induced and wave-making drag coefficients. The reason for this is that Vavra uses the induced drag of the foil in an infinite medium and corrects for all surface effects in the wave-making drag term, whereas the expressions applied to experimental data in the present report take into account a surface effect in both the induced and wave-making drag terms.

In order to compare the two authods, take the particular case of a hydrofoil under the following conditions: A = 20, c = 2.5 in., H = 5.33.ft., h =one chord, and beam-depth ratio, $\beta = 20$.

Consider first Vavra's method. Since β is large, equation (21) is applicable for determining C_{p_g} . A uniform distribution of lift along the span is assumed. The wave-making drag per unit span is then

$$D_{g} = \frac{gL_{1}^{2}e^{-\lambda}}{v^{4}} \qquad , \tag{32a}$$

or, in coefficient form.

$$C_{\theta,\phi} = \frac{e^{-\lambda}C_L^2}{4\pi} \qquad (32h)$$

The induced drug coefficient for a feil in an infinite medium is $(1+\delta)^{n/2}/mL$. Therefore,

$$C_{\mu_g} + C_{\mu_i} = C_L^2 \left(\frac{e^{-\lambda}}{4\kappa} + \frac{1+\delta}{\pi A} \right)$$
 (33)

This second method uses the Keldysch-Lavrentiev formula, equation (31), medified by a factor to take into account the fact that the medium is of

R-438

finite depth. This factor is discussed further on page 22. The ab-llow-water wave-making drag coefficient, $C_{\mathfrak{p}_n}$, is given by

$$C_{\theta_{\theta}} = \left[1 - \left(\frac{\gamma}{V_c}\right)\right] C_{\theta_{\theta}} = \left[1 - \left(\frac{\gamma}{V_c}\right)\right] \left[\frac{\pi^2 \alpha_{\theta}^2}{\kappa} (Q_1 - \alpha_{\theta} Q_2)\right],$$
 (34)

where $V_e = \sqrt{gH}$, the critical ··locity. The induced drag is found by equation (14a). The sum of the wave-making and induced drag coefficients in shallow water them becomes

$$C_{\theta_{\theta}}$$
, $C_{\theta_{1}} = \left[1 - \left(\frac{V}{V_{c}}\right)\right] \left[\frac{\pi^{2}\alpha_{\theta}^{2}}{\kappa}(Q_{1} - \alpha_{\theta}Q_{2})\right] + \frac{(1+\sigma)(1+8)C_{1}^{2}}{m!}$. (35)

The results of equations (33) and (35) are plotted against C_{ℓ} and A on Figure 7. It will be noted that equation (33) consistently gives higher results in this case.

For a semi-infinite medium, i.e., tank depth # very large, it will be seen that in equation (35).

$$\lim_{z \to 0} \left[1 - \left(\frac{y}{V_c} \right) \right] = 1$$

There are three equations for the two-dimensional wave-making drag of the hydrofoil in a semi-infinite fluid: Vavra's (equation (15)), Kotchin's (equation (16)), and that of Keldysch and Lavrentiev (equation 31)) In coefficient form, equation (15) because.

$$C_{9_g} = \frac{C_g^2}{4\pi} e^{-h} . (36)$$

In order to put equation (16) into coefficient form, it is necessary to find an expression for the excellation, Γ . In a design memorandum (Reference 15), Gibbs and Cox, Inc. suggested that the value of Γ around a thin symmetrical fail is an infinite medium be used to approximate the circulation around a hydrofoil. From Reference 7, pages 198-204, this circulation is found to be $m_{e}eV$. Substituting $m_{e}eV$ for Γ in equation (16) gives

$$C_{g_{\varphi}} = \frac{\pi^2 \alpha_{\varphi}^2}{\mu} e^{-\lambda} \qquad (37)$$

Replacing I by mary in equation (18b) results in

$$L_1 = C_R \frac{\rho}{2} V^2 c = \rho V^2 \pi \alpha_0 c \left\{ 1 - \alpha_0 \left[\frac{c}{4\lambda} - \frac{gc}{v^2} e^{-\lambda F_0(\lambda)} \right] \right\}$$

20

$$\alpha_0 = \frac{C_{\ell}}{2\pi(1 - \alpha_e K)} \tag{CB}$$

where $K = [c/4h] - [(gc/V^2)e^{-h}Ei(\lambda)]$. Substituting equation (38) into (37) gives

$$C_{e_g} = \frac{C_{\mathcal{L}^2 e^{-\lambda}}}{4..(1 - \alpha_{e} K)^2} . (39)$$

In order to put equation (31) into the same form, equation (30) is rearranged:

$$\alpha_0 = \frac{Cg}{2\pi(P_1 - \alpha_0 P_2)}$$

Substituting for a in equation (31) yields

$$C_{\theta,y} = \frac{C_{\theta}^{2}(Q_{1} - \alpha_{\theta}Q_{2})}{4\kappa(P_{1} - \alpha_{\theta}P_{2})^{2}} . \tag{40}$$

Equations (36), (39), and (40), which are all in the form $(Cg^2/4\kappa)R_j$ (where j = 1,2,3), are compared in Figure 8, where R_j is plotted against Fronds number, $VN_{\overline{S}}C_j$ at various depths.

At the deeper submergences, it is seen that the three equations are in close agreement. However, equations (36) and (39) butome less and less accurate as the submergence decreases, since they are based on values of lift derived from the circulation around a single vortex in an infinite medium, and neglect the considerable effort of the proximity to the free surface on the circulation. On page 38 of Reference 14, Kotchin gives an expression for I which takes into account the free surface, but it is considered too complicated to evaluate for the purposes of this report. Let it suffice to say, therefore, that equations (36) and (39) give good results at the deeper submergences in a medium of great depth.

CONFIDENTIAL

Equation (40), which considers a number of sources and vortices distributed along a line of discontinuity, with the free surface as a boundary condition, defines the circulation by the requirement of a finite velocity at the trailing edge. It also has its limitations in proximity to the surface, since at access froude numbers at shallow submergences, it results in a negative wave-making drag, which is physically impossible. However, at shallower submergences (about 1.5c to 0.75c), the results obtained using equation (40) are more reliable than those obtained using equations (35) and (39).

RELATION BETWEEN LIFT COEFFICIENT AND ANGLE OF ATTACK

If the usual pattern of deriving the lift coefficient slope used in airfoil theory (Reference 7) is followed, the angle of attack of a foil of finite span with respect to the undisturbed surface, a, can be defined as

$$a = a_1 + \epsilon$$
 (41)

where

- a = the angle of attack exclusive of the induced velocity component, i.e., the angle of attack at infinite aspect ratio, for the same lift coefficient.
- angle due to the vertical velocity induced at the lifting line as the result of finite span.

Differentiating with respect to the lift coefficient, G, gine

$$\frac{d\alpha}{dC_L} = \frac{d\alpha_L}{dC_L} + \frac{d\epsilon^{-1}}{dC_L} \qquad (42)$$

For a deeply-submerged hydrofoil, $da_{\phi}/dG_{L}=1/2\pi$, and, from equation (7),

$$\epsilon = \frac{SC_1}{AI}$$

As the submergence increases, J approaches $\pi b^2/4$, or,

$$(\epsilon)_{h=\sigma} = \frac{SC_L}{m^2} = \frac{C_L}{m} \qquad (43)$$

Coasequently,

CONFIDENT! AL

$$\left(\frac{\frac{dc}{dC_L}\right)_{h=\infty} = \frac{1}{nA} .$$

and

$$\left(\frac{d\alpha}{dC_1}\right)_{h=\infty} = \frac{1}{2\pi} + \frac{1}{\pi A} \qquad (44)$$

Therefore,

$$\left(\frac{dC_L}{da}\right)_{h=0} = 2\pi \frac{A}{A+2} \quad . \tag{45}$$

To obtain the slope of the lift coefficient with angle of attack at infinite aspect ratio, equation (42) is rearranged:

$$\frac{da_{\ell}}{dG_{L}} = \frac{da}{dG_{L}} - \frac{de}{dG_{L}} \qquad (46)$$

The term da/dG_{i} may be obtained from experimental data, and from equation (7),

$$\frac{de}{dC_L} = \frac{S}{4J} = \frac{1}{ml_0} = \frac{1+\sigma}{ml} \tag{47}$$

for the elliptic foil. From equation (14a),

$$\frac{dc}{dC_L} = \frac{1+5}{m_0} = \frac{(1+3)(1+2)}{m_0}$$
 (40)

for the rectangular foil.

R-438

ANALYSIS OF EXPERIMENTAL RESULTS

DESCRIPTION OF MODELS AND SOURCES OF TEST DATA

The towts reported in Reference 16 were conducted at the E.T.T. on a wooden model of N.A.C.A. 641-A412 section, hereinaiter termed Model In (chord length = 2% in.; aspect ratio = 20). The velocity range was from 4.85 to 9.70 ft./sec., and the maximum lift coefficient was 0.62. Reference 10 reports the tests conducted at the N.A.C.A. on a stainless steel model of N.A.C.A. 641-A412 section, hereinafter termed Model Ib (chord length = 8 in.; aspect ratio = 10). The velocity range was from 15 to 35 ft./sec., and the maximum lift coefficient was just over 0.50. References 12 and 17 report the results of tests made at the E.T.T. on a symmetrical aluminum model of N.A.C.A. 0012 section, hereinafter termed Model II (chord length = 5 in.; aspect ratio = 6). The velocity range was from 3.5 to 16.0 ft./sec., and the tests were run at two water depths, 5.33 ft. and 3.75 ft., to give a variation of the critical velocity. The maximum lift coefficient was 0.68.

DETERMINATION OF PROFILE DRAG

MOREL 1s. The angle of attack (a)°, lift coefficient (C_L), and total drag coefficient (C_p)° reported for the hydrofoil in Reference 16 are given in columns 4, 5, and 6, respectively, of Table I. The C_{p_p} values of the foil are plotted against C_L^2 in Figure 9, and least squares curves of the form C_{p_p} ° $= cC_L^2 + b$ are drawn through the points for each Fronde number and submergence...

Since the tests of Paference 16 were all made at subcritical velocities, it was originally assumed that the profile drag, C_{θ_p} , could be written as

$$C_{s_p} = C_{s_q} - C_{s_i} - C_{s_q} \qquad , \tag{49}$$

apere

Corrected for ground effect in the present report. All ground effect corrections to angle of attack and total drag are obtained from the equations on page 5 of Anforcese 18.

^{**} Corrected for structure and ground effect in the present report; structure corrections are obtained from Figure III-1 of Deference 18.

$$C_{B_{i}} = \frac{(1+\delta)(1+\sigma)C_{i}^{2}}{\pi A} , \text{ from equation (14a)}$$

$$C_{B_{ij}} = \frac{\pi^{2}\alpha_{i}^{2}}{\pi}(Q_{1} - \alpha_{i}Q_{2}) , \text{ from equation (31)}$$

When the results thus obtained were plotted against G, 2, it was seen that Co, decreased with lift. (This was also observed when equation (49) was applied to Model II data at subcritical velocities.) However, in the windtunnel tests reported in Reference 11, the profile drag invariably showed an increase with lift for every Reynolds number. It was assumed, therefore, that this show i hold true for the range of Reynolds numbers considered in Reference 16. Equation (14a) was derived with the assumption that the surface disturbance is negligible. This assumption is shown to be reasonable from the analysis of the recults for Models Ib and II at high (supercritical) Fronde numbers, where no wave-making drag exists, since the profile drag is found to increese slightly with lift, as expected. Equation (31) was derived for a two-dimensional foil in a semi-infinite medium, whereas the data analyzed are obtained from tests on a three-dimensional foil in a medium of finite depth. It was assumed, therefore, that although both equations are in error at low Froude numbers, the results of equation (31) contribute by far the greater part of the error. It was decided to apply an empirical correction factor to the wave-making dreg term in equation (49) to take into account the fact that there is a critical wave-making velocity. The factor decided upon was [1 " 1///2], where V is the critical velocity, $V_a = \sqrt{g E}$. The application of this factor gives a smooth transition to a wave-making drag of zero at Y = Ye, indicating a stoady coursels of the sevent of energy transmitted by the bound vertex as the velocity approaches the critical. In the aubcritical range, the expression for C, then becomes

$$c_{\theta_{\theta}} = c_{\theta_{\phi}} - c_{\theta_{\phi}} - (1 - (V/V_{\phi}))c_{\theta_{\theta}} + c_{\theta_{\phi}} - c_{\theta_{\phi}} - c_{\theta_{\phi}}'$$
 (50)

At supercritical velocities $C_{p_n} \equiv 0$.

It should be noted that the use of Vavra's formula, equation (33), will give values of C_{p_g} which decrease with lift, since the $C_{p_\ell} + C_{p_g}$ results are higher than those obtained by the use of equation (35).

The results of applying equation (50) to the Model Ia data are given in Table I: column 7 lists values of $C_{\theta_1} + C_{\theta_2}$, and solumn 8 shows C_{θ_p} obtained by subtracting column 7 from C_{θ_1} (column 6). On Figure 10, C_{θ_p} is plotted against C_L^2 and a least squares curve of the form $C_{\theta_p} = aC_L^2 + b$ is drawn through the points to $C_L^2 = 0$.

Model Ia is an asymmetrical model, and therefore its point of minimum profile drag does not occur at $C_L^2 = 0$, as indicated by the form of the least squares equation adopted. To obtain a parabolic curve with a minimum point at $C_L^2 \neq 0$, the least squares equation should be of the form $C_{\theta\rho} = (aC_L + b)^2$. The point of minimum $C_{\theta\rho}$ found for this foil in Reference 11° is at $C_L^2 = 0.04$. Above this value of C_L , the datum points through which the two curves (i.e., $C_{\theta\rho} = aC_L^2 + b$, and $C_{\theta\rho} = (aC_L + b)^2$) must be drawn can fit either curve closely. But since it is easier to compute the coefficients in the equation $C_{\theta\rho} = aC_L^2 + b$, this is the form used. The least squares curve below $C_L^2 = 0.04$ is shown dotted on Figure 10.

MODEL 15. Reference 10 gives faired plots of C_L and C_{B_T} vs. velocity at various angles of attack and submergences. Values of C_L and C_{B_T} were taken off these plots at Froude numbers corresponding, insofar as possible, to those reported in Reference 16. The drag and angle of attack were corrected for ground effect, and strut tares were subtracted from the total drag coefficient. The lift and drag were then cross-faired by plotting them against depth of submersion and angle of attack. C_L and C_{B_T} were then read offatths submergences tested at the E.T.T. on Model In. The corrected and cross-faired values of α_0 , C_L , and C_{B_T} are given in columns 4, 5, and 6, respectively, of Table II. The C_{B_T} values are plotted against $C_L^{\,2}$ in Figure 11, and least squares curves of the form $C_{B_T} = cC_L^{\,2} + b$ are drawn through the points for each Freude number and depth of submersion.

Since the tests reported in Reference 10 were all rum at supercritical velocities, $C_{\theta,\theta}$ is found by

$$C_{\mathfrak{p}_{p}} = C_{\mathfrak{p}_{p}} - C_{\mathfrak{p}_{i}} \qquad , \tag{51}$$

where $C_{\theta_{\psi}}$ is obtained, as before, from equation (14a).

^{*} Reference 11 reports the test conducted on the N.A.C.A. 64,-412 section, which differs from the N.A.C.A. 64,-412 section, which differs from the N.A.C.A. 64,-412 section, which differs from the

[.] The excest tare one takes from Figure 7 of Reference 10.

The results of applying equation (51) to the Model Ib data are given in Table II: values of C_{0j} are listed in column 7 and C_{0j} in column 8. Figure 12 shows C_{0j} plotted against C_{1}^{2} , with least squares curves of the form $C_{0j} = aC_{1}^{2} = b$ drawn through the points to $C_{2}^{2} = 0$. This form is adopted for the same reasons given above for Model Ia. The minimum profile drag is also assumed to occur at the same point as for Model Ia, i.e., at $C_{1}^{2} = 0.04$. Below this point, the least squares curve is shown as a dotted line.

MODEL II. Columns 4, 5, and 6 of Table III list the values of a° , G_L , and $G_{B_T}^{\circ}$, reported in References 12 and 17. Figure 13 shows G_{B_T} plotted against $G_L^{\circ 2}$, with least squares curves of the form $G_{B_T} = aC_L^{\circ 2} + b$ drawn through the points at the various Froude numbers and submergences.

The tests reported in References 12 and 17 range in velocity from the subcritical to the supercritical range, and the profile drag is obtained from equations (50) and (51). The results of the analysis are given in Table III: column 7 shows $C_{\theta_i} + C_{\theta g'}$ (at supercritical velocities, $C_{\theta g'} = 0$) and column 8 lists values of $C_{\theta g}$ found by subtracting column 7 from column 6 $(C_{\theta g})$. $C_{\theta g}$ is plotted against C_L^2 on Figure 14, with least squares curves of the form $C_{\theta g} = aC_L^2 + b$ drawn through the points. Model II is a symmetrical foil, and the minimum profile drag point occurs, therefore, at $C_L^2 = 0$.

[•] Corrected for ground effect in the present report.

Corrected for ground offset and street tare in the present report. Street tares were not determined in the tests of References 12 and 17 and are contend to be 1/3 as great as those given in Figure 181-1 of Reference 18.

25 -

RESULTS AND DISCUSSION

VARIATION OF PROFILE DRAG WITH LIFT COEFFICIENT AND DEPTH

Figures 10, 12, and 14 show the G_{2p} results at various velocities for Models Is, Ib, and II, relactively. These profile drag points are obtained from G_{2p} data at various submergences. Since profile drag is the drag in an infinite medium, it should show no dependence on the depth of submersion of the hydrofoil. It is seen that, almost invariably, the G_{2p} points fall close to the least squares lines, with only a normal amount of scatter. The only exceptions are in the case of Model Is at low speeds (Figure 10), which may be explained by the fact that there is a large spread in the G_{2p} data. However, on Figure 12, it is seen that there is practically no scatter of the G_{2p} points, which were obtained from cross-faired G_{2p} values. This indicates that if all the G_{2p} values had been cross-faired, the scatter in the G_{2p} values of Figures 10 and 14 would have been greatly reduced.

With the adoption of the empirical correction to the wave-making drag, it is also seen, on Figures 10 and 14, that there is a small positive slope to the least squares lines drawn through the $C_{\theta\rho}$ points at each Froude number, i.e., the $C_{\theta\rho}$ increases slightly with lift. Thus, at lower Re (below the critical velocity), the use of the correction factor gives results which are reasonable when compared with those obtained from wind-tunnel tests at higher Re.

Figure 12 shows the variation of $C_{\theta p}$ with lift within the range of Reynolds numbers reported for the wind-tunnel tests of Reference 11. The smooth surface and standard roughness $C_{\theta p}$ values of Reference 11 are also pletted on Figure 12. Comparison shows that the $C_{\theta p}$ values obtained by applying equation (51) to the $C_{\theta p}$ from the towing-tank tests of Reference 10 are slightly higher than the smooth surface $C_{\theta p}$ of the wind-tunnel tests and well below the standard roughness $C_{\theta p}$. However, as is mentioned in Reference 10, the surface of the hydrofoil model was slightly pitted during the tests by the salt water in the tank, and therefore was probably somewhat rougher than the smooth sirfoil tested in the wind-tunnel.

A very interesting and illuminating result is obtained in the case of the Model II data at V=12.05 ft./sec. (Figure 14). The $G_{8\gamma}$ data from which these profile drag points were obtained were taken at two submer-

gences (h = 0.75c and 1.50c) and three tank depths (H = 3.75 ft., 5.33 ft., and 5.83 ft.). Although at H = 5.33 ft. and H = 5.83 ft., the velocity is subcritical and equation (50) applies, and at H = 3.75 ft. the velocity is supercritical and equation (51) applies, it may be seen that the points obtained in each case fall very close to the least squares line drawn through all of them.

DEPENDENCE OF PROFILE DRAG ON REYNOLDS NUMBER

The values of minimum $C_{\theta p}$ for the three hydrofoils considered are plotted against Reynolds number on Figure 15. (For Models Is and Ib, the minimum $G_{\theta p}$ accurs at $G_L^2=0.04$; for Model II, the minimum $G_{\theta p}$ is at $G_L^2=0$.) The following curves are also plotted for comparison:

- (a) Blasius laminar line
- (b) Prandtl transition line
- (c) Scioenherr mean line
- (d) Smooth surface G_{s_p} for N.A.C.A. 641-413 and M.A.C.A. 0012 sections
- (e) Standard roughness G, for N.A.C.A. 641-412 and N.A.C.A. 0012 rections.

The slope of the Model Is minimum $C_{B,p}$ points is greater than that of the Blasius laminar line, but the general shape of the curve indicates that the flow was laminar, with separation causing a high drag.

The section shape of Models Is and Ib was designed to give laminar flow even at high Reynelds numbers, under favorable conditions. Examination of the Model Ib data on Figure 15 indicates that the flow was probably at least partly laminar at the lower Reynolds numbers. As Re increases, the data fall very close to the transition line.

The line drawn through the Model II points is exactly parallel to the Schoenherr mean line, which indicates that the flow around the foil was turbulent. However, the line is displaced slightly above the Schoenherr line. This may be due to roughness of the model surface, separation of the flow, or a combination of both.

SLOPE OF LIFT COEFFICIENT WITH ANGLE OF ATTACK

The angles of attack (corrected for ground effect) and lift coefficients from the tests of References 10, 12, 16, and 17 are given in

CONFIDENTIAL

columns 4 and 5, respectively, of Tables I - III. These are plotted with a as abscissa and G_1 as ordinate on Figures 16, 17, and 18 for Models Ia, Ib, and II, respectively, and least squares curves of the form $G_1 = na + n$ are drawn through the points. Also shown on these figures is the theoretical lift coefficient at infinite depth, $(G_1)_{Ano}$, which is obtained by integrating equation (45):

$$(G_5)_{A=0} = 2\pi a \frac{A}{A+2} + K$$
 (52)

where K is a constant determined by a at zero lift, a_{L_0} . For Models In and Tb, $a_{L_0} = -9.035$, radian; for Model II, $a_{L_0} = 0$ radian.

An examination of the curves on Figures 16, 17, and 18 shows that the slopes increase with depth toward the theoretical value obtained from equation (52).

[•] In sector of the runs of Inference 13 (des Tuble 111), it is noted that on error was used in the management of engls of attack, 6. The arror was "0.21", and on Figure 18 the correct 6 is used.

CONCLUDING REMARKS

It should be possible to apply the expressions given in this report to the prediction of the lift and drag of a full-scale hydrofoil. In the previous sections, theories of induced and wave-making resistance, modified for laboratory conditions, were applied to towing-tank data. The results obtained in regard to profile drag are constatent with wind-tunnel results, and in the cases where direct comparison is possible, they are found to agree very closely with wind-tunnel results. It therefore appears that the initial hypothesis that the total drag of a hydrofoil may be divided into three components (induced, wave-making, and profile drag) is verified, and can be accepted as a physical fact.

Induced drag is a function of aspect ratio, depth-to-span rutie, and lift coefficient; wave-making drag depends on Froude number, depth-to-chord ratio, and lift coefficient (circulation). Therefore, the Froude Law of Comparison holds, i.e., these components of drag are independent of scale effect.

Thus, for a full-scale hydrofoil, equation (14a) on page 10 may be used to predict induced drag.

$$C_{p_{ij}} = \frac{(1+8)(1+\sigma)C_{ij}^{2}}{74}$$

and equation (31) on page 16 to predict wave-making drag.

$$C_{g_{g}} = \frac{\pi^{2}\alpha_{g}^{2}}{\kappa}(Q_{1} - \alpha_{g}Q_{2})$$

See Figures 5 and 6 for values of Q1 and Q1.

The pre-file drag, however, is a function of the foil shape and Reynelds number. A full-size hydrofoil having a chord length of say 10 ft. may operate, for instance, at a designed $Re \approx 5 \times 10^7$, and C_{p_p} may be determined from wind-tunnel tosts of the foil at this Reynelds number.

In the special case of a hydrofoil in shallow water (which is the condition under which towing-tank tests are conducted), it must be remouhered that the wave-making drag component vanishes at velocities beyond the critical. The procedures followed in analyzing the test data in

R-438 - 29 - -438 29 -

the present report may be considered analogous to those used when reducing raw wind-tunnel data to readily applicable form.

REFERENCES

- Vavra, M.H. Review of Wave Drag Theories. The Hydrofoil Corp., Annapolis, Md., Technical Memorandum No. IM-13, April 1951. CCHFIDENTIAL
- 2. Kotchin, N.E.; Kibel, J.A.; and Rose, N.B. Theoretical Hydromechanics Chapter VIII, Arc. 19, Moscow, 1948. (Translation by B.V. Korvin-Kroukovsky, unpublished.)
- Keldysch, M.V., and Lavrentiev, M.A. On the Motion of an Aerofoil Under the Surface of a Heavy Fluid, i.e., a Liquid. Science Translatio. Service, Cambridge, Mass., STS-75, November 1949.
- 4. Vladimirov, A. Approximate Hydrodynamic Calculation of a Hydrofoil of Finite Span. ZAHI Report No. 311; English Translation, Admiralty Document PG/53280/NID, May 1946.
- 5. Wagner, H. Plening of Watercraft. N.A.C.A. TM No. 1139, April 1948.
- 6. Korvin-Kroukovsky, B.V. Lift of Planing Surfaces. Journal of the Institute of Aeronautical Sciences, Vol. 17, No. 9, September 1950.
- You Mises, R. Theory of Flight. First Edition, McGraw-Hill, New York, 1945.
- 8. Hydrofoil Research Craft for Office of Navel Research. Bath Iron Works
 Corp., by Gibbs and Cox. Inc., Technical Report No 1. COMPIDENTIAL
- 9. Vavra, M.H. Wave Drug of Submerged Foils in Shellow Mater. The Hydrofoil Corp., Annapolis, Md., Technical Memorandum No. HM-3, November 1950. CONTINENTIAL
- 10. Wadlin, K.L.; Remen, J.A.; and McGeboo, J.R. Tank Tests at Subcavitation Speeds of an Aspect-Ratio-10 Hydrofoil with a Single Strut. N.A.C.A. TM No. L9K14a. CONFIDENTIAL
- Loftin, L.K., and Smith, H.A. Aerodynamic Characteristics of 15 N.A.C.A. Sections at Seven Reynolds Numbers from 0.7 x 10⁶ to 9.0 x 10⁶. N.A.C.A. IN 1945, October 1949.
- 12. Sutherland, V.H. Letter Report on Tests of 5" Chord Aspect Ratio 6 Hydrofoil Model. Experimental Towing Tank Report No. 414, June 1951.
- 13. Vavra, M.H. Neve Drag of Subserged Foils. The Hydrofeil Corp., Assapolis, Md., News No. HM-1, October 4, 1950. CONFIDENTIAL

- 16. Kotchin, N.E. On the Nave-Makir. Resistance and Lift of Bodies Sub-aerged in Nater. Transactions of the Conference on the Theory of Wave Resistance, U.S.S.R., Moscow, 1937; Translation by A.I.(T) Air Ministry, R.T.P. No. 666, March 1938, The Society of Naval Architects and Marine Engineers Technical and Research Bulletin No. 1-8, August 1951.
- 15. Michel, W.H. Comparison of Wave Drag Theories. Gibbs and Cox, Inc., Design Memorandum, March 1, 1951. COMPIDENTIAL
- 16. Sutherland, W.H. Letter Report on Extension of Single and Tenden Fail Tasts of 2%" Chord Aspect Ratio 20 Hydrofoil. Experimental Towing Tank Report No. 410, June 1951. COMPIDENTIAL
- 17. Kaplan, P. Letter Report on Extension of Single and Tandem Poil
 Tests of 2%" Chord Aspect Ratio 20 Hydrofoil and 5" Chord Aspect
 Ratio 6 Hydrofoil. Experimental Towing Tank Report No. 428,
 November 1951. COMPIDENTIAL
- 18. Satherland, W.H. Exploratory Model Tests for Engineering Design of a Hydrofeil Vessel. Experimental Towing Tank Report No. 407, Jamesy 1951. COMPIDENTIAL

TABLE I

EXPERIMENTAL AND THEORETICAL RESULTS N.A.G.A. OF $_{\rm I}$ -AVI2 (HODEL Ia)

(Experimental Drog Coefficients Are Corrected for Strut Tare and Assumd Effect)

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
F. V/√6€	Avg. V, ft./sec.	Re, Ve/v	a, °	CL	CDT	C. + C.	C ₀ , - (c) - (7)
KHORD L	ENGTH = 2+ ()	. TAI	NK WATER	DEPTH =	5.96 FT.	DEF	TH = 1 CH0.70
.1 67	4.85	0.96 x 10 ⁵	2.01 2.01 2.01 4.01	.149 .141 .166 .209 .300 .323	.0252 .0239 .0239 .0363 .0362 .0362	.0020 .0020 .0026 .0085 .0097 .0106	.0132 .0219 .0262 .0274 .0206 .0216
2.42	7.30	1.44 = 10 ⁵	9.01 2.01 2.01 2.01 4.01	.253 .403 .404 .436 .542	.0200 .0287 .0315 .0296 .0304	.0034 .0007 .0000 .0001 .0001	.0174 .0206 .0125 .0205 .0226
3.28	0.50	1.40 v 10 ⁵	0.01 0.01 2.01 4.01	.344 .261 .428 .558	.0187 .0109 .0258 .0333	.0027 .04.8 .643* .014.	.0140 .0159 .0176 .0193
8.76	9.76	1.92 x 16 ⁵	9.91 3.91 2.91 4.91	.231 .259 .423 .434 .576	.0171 .0170 .0126 .0141 .0107	.0022 .0025 .0072 .0075 .0122	.2169 .0145 .0156 .0156 .0178
CHOSO L	ENSTH = 2 11	N, TAN	K WATER	DEPTH -	5.96 FT.	DEPT	H = 1.5 CHORDS
1.07	4.05	9.96 x 10 ⁵	2.01 0.01	.103 .350 .514	.0197 .0191 .0501	.0023 .0493 .0193	. 6274 . 6198 . 6196
2.82	1.30	1.44 x 10 ⁵	0.01 2.03 4.63	.173 .437 .578	. 0230 . 0319 . 0302	. 0075 . 0160	.0193 .0216 .0214
3.26	8.50	1.66 ± 10 ⁵		.284 .495 .664	.0202 .0261 .0342	.0033 .0105 .0156	.0167 .0156 .0166
2.75	9.70	1.92 m 10 ⁵	0.61 2.61	:200 :459	.0178 .0237	. 0031 : 0079	.0147 .0158
CH080 (ENSTH = 2+ 11	N. TAN	K WATER	DEPTH .	5.96 FT.	DEPTI	1 = 1 .8 CHORDS
1.07	4.05	0.96 ±10 ⁵	2.91 2.91 2.01 4.01	.180 .196 .381 .396 .559	.0205 .0261 .0246 .0108	.0020 .0024 9092 .0099 .0197	. 0265 . 0237 . 0254 . 0209 . 0206
2.62	7.30	1.44 π 10 ⁵	0. 61 2. 61 4. 61 6. 61	.178 .469 .593 .603	.0200 .0202 .0167 .0116 .0155	.0016 .0108 .0166 .0173 .0173	.0172 .0102 .0203 .0164 .0162
3.28	9.50	1.68 × 10 ⁵	0.61 0.61 2.61	.28 .394 .472	0192 .0187 561	. 0033 . 0034 . 0091	.0159 .0152 .0170
3.78	9.70	1.92 ± 10 ⁵	4.01 0.01 . 0.01 2.0i	.618 .284 .292 .478	.0229 .0179 .0173 .0231	.0187 .0010 .0030 .0003	.0172 .0164 .0143 .0148

^{*} Corrected for ground offices

TABLE II

EXPERIMENTAL AND THEORETICAL RESULTS N.A.C.A. σu_1 -A812 (MODEL 15)

(Experimental Drag Coefficients Are Corrected for Strut Tare and Ground Effect)

(1)	(2)	(2)	(4)	(5)	(\$)	(7)	(8)
F. V/√8c	Avg. V. ft./wec.	Re, Vc/v	a, * deg.	C,	C, **	Cai + Cai	$C_{\theta,p} = (7)$
CHORD LE	NGTH = 8 IN	TAN	WATER O	EPTH = 6	.00 FT.	DEP	TH = 1 CHORD
3.24	15.03	0.95 x 10 ⁶	0.5 1.6	. 226 . 265 . 305 . 344	.0103 .0115 .0130 .0143	.0016 .0016 .0018 .0061	. 8677 . 8679 . 6666 . 8683
3.74	17.34	1.10 x 10 ⁶	2.6 2.5 3.6 0.5	.383 .422 .462 .226 .265	.0140 .0179 .0196 .0098	.0075 .0061 .0109 .0026 .0636	.0005 .0023 .0009 .0072 .0074
			1.6 2.6 2.5 3.6	.305 .344 .303 .422 .462	.0122 .0136 .0152 .0171 .0190	.0048 .0061 .0075 .0091 .0109	.0074 .0075 .0077 .0000 .0001
4.64	21.50	1.36 # 10 ⁶	1.0	.2% .355 .308 .344 .303	.0096 .0106 .0118 .0132 .0147	.0026 .0016 .0040 .0061 .0075	.0078 .0070 .0070 .0071 .0072 .0074
5.41	25.05	1.58 ± 10 ⁶	2.5 3.6 0.5 1.7	.422 .462 .226 .265 .305	.0165 .0183 .0084 .0106 .0117 .0130	.0109 .0026 .0016 .0040 .0061	.0074 .0070 .0069 .0069
6.40	30.40	0 1.90 x 10 ⁶	2.0 7.5 3.0 0.5	.383 .422 .07 .226 .455	.0145 .0143 .0181 .0096 .0105	.0075 .2491 .0109 .0026 0036	.0070 .0072 .0072 .0076 .0059
7.86	35.00	2.21 = 10 ⁶	1.5 2.6 3.5	145 .344 .303 473 .467	.0117 .0130 .0145 .0163 .0181	.048 .061 .0075 .0091 .0109	.0050 .0050 .0070 .0073 .0073
7.30		8.88 4 30°	9.5 1.8 2.6 2.5	.226 .265 .395 .344 .303	.0105 .6117 .0130 .0145 .0163	.0026 .0036 .0048 .0061 .0075	.010 .069 .069 .069 .010
CHOSE L		TA	3.0 TE	.462 DEPTH *	.0181 6.00 FT.	. 9199 DEPTH	.9972 =1.5 CHORDS
3.34	15.07	0.95 ± 10 ⁵	0 1.0 1.5	.224 .276 .318 .259 .401	.0107 .0110 .0131 .0146 .0144	.0074 .0036 .0048 .0061 .0076	.001 .002 .003 .003 .006
			3.6	:405	. 02 02	:0111	:001

[·] Servered for second affect

^{**} Taken form areas.faloud minte

TABLE II (Cont'd.)

(1)	(2)	(2)	(4)	(5)	(6)	(7)	(e)
V/√94	Ang. Y. 16./166.	Re, Ve/v	a, * dog.	C	Copen	Coi + Cep	$C_{0,p} = (2)$
CHCHO L	EHSTN - 8 IN	i. 7.4	WATER	DEPTH -	5.00 FT.	DEPTI	= 1.5 CHULDS
3.74	17.34	1.10 7 104	•	.534	,0106	,5023	.0077
			9.5 1.6	.276	.0113 .0135	.0384	. £377 7789
1			2.8	.359	.0140	.8041	4779
	1		2.8	.461	.0137	.4676	1690
1			3.6	.485	.0196	.0111	.0646
4.64	\$1.50	1.36 x 10 ⁶	. •	.234	.0100	.0096	.6476
i :	i		0.5 1.0	.376	.6199	.0448	\$700. \$100.
1		•	1.5	.401	.0136 ,0152	.0116	6179. 8170.
	1		2.5	.41	,0170	.0010	.0077
1			3.0	.445	.0190	.6111	.0019
9.41	86.66	1.50 = 15		.234	.0000	.0096	.0073 2709
	1		1:3	.270	.0120		.6073
i i	i i	•	1.5	.441	.0134	.0061	.6778
1	·		2.5	.443	.0150	.0016	.8917
			3.3	.405	.0100	.0111	.0017
6.46	₩.₩	1.90 = 10 ³		.234	.0000	.0006 .5%36	.0078
			0.5 1.0	.276	.6106 .6120	,0446	.9079
1			1.5	.259	.0114	.0161	\$129. \$13\$.
	1		2.6 2.5	.444	.0150	3616 0000 1119	.0277
			1.0	.443	.4106		.6417
7.86	34.44	9.21 = 14 ⁹	0.5	.234	.0000	3006 3050	.007E
			1.0	.316	.6170	.0051	.0282
			1.4	.310	.6156	.0053	.0613 .0614
			2.5	.448	.0170	.0074 .0008	,4657
	ll		3.6	.446	.0140	.0411	.0077
G1500 LA		. TAN	N BATER (BEPTH - (5.60 PT.	DEPTH	- 1.8 (Mines
8.86	M.W	0.06 a 10 ⁶		.236	,6196	.0006 .0006	.0468 .6264
1	1		1.0	.310 .320	.0119	.0047	.0005
1			1.6	.343	.RLIS	.0060	9009. 9623.
]	;		2.4	.428 .647	.6148	.0001	.6398
1			3.6	.449	.0010	.3100	.6004
2.76	37.86	1.10 = 10		.234	.8104	. \$476 . 0135	.6779 .6779
	1		0.5 1.0	.576 .350	.0114 .0126		.6179
	1		1.5	. 848	.0340 .8130	.0000	433
) 1	1		2.8	.425	.6176	.0001	1000
	l I		1:1	.400	.0197	.8100	.0000
4.66	21.64	1.56 = 360	8.4	.274 .518	.0101	.0426	.9016
	;		1:	.194	,8138	1003.	.ears
	1		3.6	.543 304.	.0139 6230.	\$203. \$750.	.0077 .0078
			2.5.	. 847	.4171	6791	.6490
			3.0	.400	.0131	.440	. 6698

^{*} Corrected for ground addout

or Taken from erece-fallent alass

-438 35 **-**

TABLE II (Cont'd.)

		471	ore II	(COM	. 4.,		
(1)	(2)	(\$)	(4)	(5)	(6)	(7)	(8)
F. V/√gc	Avg. V. ft./sec.	Re, Vc/v	a, °	C.	C _B , **	Cai + Ca	C _{p,} = (7)
	NETH - 8 IN		WATER DE	PTH = 6			= 1.8 CHORGS
8.41	25.45	1.88 ± 10 ⁶	0.5 1.0 1.5 2.0 2.5	.216 .278 .320 .363 .406	.0100 .0100 .0121 .0135 .0151	.0025 .0033 .0047 .0040 .0075	.0075 .0074 .0074 .0075 .0075 .0075
6.48	30.00	1.90 z 10 ⁶	0.5 1.5	.409 .234 .278 .320 .343 .405	.0189 .0100 .0109 .0121 .0135	.0109 .0025 .0035 .0047 .0060	.0008 .0075 .0074 .0074 .0075
7.56	35.00	2.21 x 10 ⁶	8.5 8.6 0.5 1.0 1.5	.447 .489 .236 .278 .320 .363 .405	.0169 .0109 .0109 .0109 .0109 .0121 .0135	.0091 .0109 .0025 .0035 .0047 .0040	.0078 .0000 .0078 .0074 .0075 .0075
			3.6	.447	.0169 .0189	.0109 .001	.0013
							
							,

^{*} Corrected for ground effect
** Taken from ernes-feired place

TABLE III

EXFERIMENTAL AND THEORETICAL RESULTS H.A.C.A. ODIZ (MODEL II)

(Experimental Brag Coefficients Are Corrected for Strut fore and Brownd Effect)

(1)	(2)	(8)	(4)	(6)	(0)	(7)	(8)
V/√8€	Avg. V, ft./000.	Re, Vc/v	a, **	C,	Cen	$C_{\mathfrak{g}_{i}}+C_{\mathfrak{g}_{q}}$	$C_{By} = (0) - (7)$
CHORS L	EHSTH = 5 I	N.	TANK DEP	TH - 5 33	PT.	DEPTH .	0.25 01000
1.42	8.20	2.06 x 10 ⁵	-0.01 -0.01 +4.00 4.01 0.02	-,135 -,062 +,066 ,064 ,316	.0131 .0152 .0100 .0141		•
1.69	6.90	2.73 x 10 ⁵	-0.61 +4.01* 4.01 0.03* 0.03*	015 +.097 .121 .274 .290	.0147 .0119 .0165 .0262 .0103 .0172		
2.36	p. 4 6	9.42 x 10 ³	-0.01° 44.01° 4.01° 4.01°	069 068 066 199 .116 .117	.0115 .0114 .0114 .0120 .0112 .0112		
1.01	19.39	4.07 g 10 ⁵	4.61° 4.61° 4.61° 8.68 6.69	.811 064 +.169 .119 .819 .819	.0122 .0126 .0126 .0131 .026 .0264		
1.39	12.66	4.76 x 10 ⁸	44.00 -0.01	.871 054 065 043 043 +.145	.0104 .9192 .0112 .0109 .0109 .0117		
8.76	19.76	6.4; ± 19 ²	-0.01° -4.03°	04.6 04.6 +.17.6	.010y .0113 .0134 .0100	.0000 .0000 .0000 .0000	.0106 .0116 .0006 .0111
4.34	35.60	6.12 ± 10 ⁵	4.4	049 049 041 +.183 .106	.0118 .0118 .0118 .0138	.0002 .0002 .0002 .0001 .0003	.0000 .0111 .0113 .0100 .0113
CHORD L	EMSTH - 5 I	N.	TANK SEP	TH = 5.51	FT.	DEPTH 4	0.75 CHONO
1.48	5.29	2.06 a 20 ⁶	-0.00 -0.00	005" 015 016 + .016 157 157 158 158 158 158 158 158 158 158 158	0139 ⁶ .0120 .0100 .0130 .0131 .0172 .0143 ⁶ .0440 .0450 .0450 .0466		

Hospirod & in orror Corrected for ground affect Bopth of veter in test = 3.15 ft.

TABLE III (Cont'd.)

(i) (2) (8) (4) (5) f6) (7) (8	_
)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	•
Y/√gt ft./oos. Vc/v dog. (e) -	(7)
CHORD LENGTH = \$ IN. TANK DEPTH = \$.33 FT. DEPTH = 0.75 C	HORD
1.00 6.00 2.78 x 10 ⁵ 1 -2.01115 .0131 .0025 .01	•
	19. 48°
	44
4.052 120 .0142 .0043 .00 6.062 .2164 .01642 .00454 .01	21-
4.44 1.51 .014 .014 .014	₩ .
	66 7 () 2
9.30 8.45 9.42 ± 10 ⁵ -8.61°126 .6118 .6015 .01	66 67
9 - 010	97. 13
16. 0000. 1100. 120.0 00.0 00.0 00.0 00.0	e 7
0, 600 (122 (161 (161 (161 (161 (161 (161 (161	07. 14°
)	12
0.00° .0132 .0100 .01 0.00 .0170 .0176 .0101 .01	19
0.04 .317 .0076 .0147 .01 6.04 .319 .0245 .0140 .01 0.18 .419 .0170 .0170 .01	17. 54.
10. 2119. 000. 123. 000. 10. 0100. 0000. 000. 010.0	26
. و . و . و . و . و . و . و . و . و . و	
0000 .0101 .0001 .01 0 +.000 ciss 0 .01	•
	••
10, 1 4000, 1 7140, 1 910, 1 40,01 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	35 ⁴ 14
19. 1960. 1931 .0013 .0013 .0013 .0013 .0013 .0013 .0013 .0013 .0013 .0013 .0013 .0013 .0013 .0013 .0013 .0013	
	76. 46 ^E
10. 2000. 2019. 212. 122. 122. 1	13
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
io. 6100. 6720. 676. 60.6	32
0.04 .017 .0134 .0134 .0134 .0134 .0134 .0134 .0137 .0	H
0.00° .003 .0130 .0100 .01 0.00° .0040 .0041 .0100 .01	17 44
10. 2014. 2014. 2014. 2014. 2014.	14
10. 1010. 1400. 1401. 1010.	38
0.000 0.000	62, 11,
	31" 20"
1.90 10.00 0.30 m 10 ⁰ 0 ⁰ .000 ⁰ .0130 ⁰ 0 ⁰ .01 0.07 ⁰ .154 ⁰ .0057 ⁰ .0050 ⁰ .0150 ⁰ .015	132
	115
8.29 42.05 4.70 = 10 ⁵ -2.02°150 .0171 .0410 .017 -2.01°140 .0157 .0017 .01	18
60 4 60 60 60 60 60 60 60 60 60 60 60 60 60	# 11
	11 th
\$ 000 1971 10100 0000 1M	83_
	17
10. 0015. 1206. 1206. 1206.	34]
10, 1 2128, 1 2218, 1 222, 1 222, 1 2	33
	11.2

* Corrected for grand effect

K-0 "

CONFIDENTIAL

TABLE III (Cont'd.)

(1)	(1)	(2)	(4)	(5)	(0)	. (7)	(8)
81-18c	Arg. V. ft./sec.	No. Ve/v	0,**	C _a	Cay	C9, C9,	(0) - (7)
CHORD (LENSTN - S I	M.	TAME DE	PTH = 9.30	77.	SEPTH	0.75 CHORD
3.16	19.75	5.45 ± 10 ⁵	4.01°	144 441 +. 613* 601	.0138 .0160 .0146	.0016 .0091 .0005	.0000 .0161 .0146 ² .0007
4.34	15.50	6.12 a 10 ⁸	6.00 6.00 6.00 6.00 6.00 9.2.00 9.00 9.00 9.00 9.00 9.00	.819 .916 .916 .648 .647 .429 	.0179 .0101 .0102 .0210 .6210 .6211 .0276 .0126 .0009 .0145 .0001 .0001	.0462 .0462 .0464 .0138 .0146 .0146 .0146 .0289* .0416 .0401 .0401 .0401 .0401 .0401 .0401	.0110 .0139# .0006 .0106 .0104 .0104 .0131# .0110 .0102 .0000 .0145 .0141 .0044 .0047 .0116
()(20)	CHOTH - 5 1	W.	TARE PE	PTH - 3.75	FT.	DEPTH	0.75 CHORD
8.89	12.06	4.74 = 10 ⁵	:	008 006 006	.0096 .0000 .0006	•	. 0075
3.41	19.20	5.21 ± 10 ⁵	2.00 4.00 5.11 6.12 7.01 4.00 4.00 4.00	- 466 - 567 - 567 - 567 - 567 - 567 - 567 - 564 - 561 - 561	.0004 .0004 .0150 .0150 .0150 .0150 .0150 .0151 .0122 .0122 .0125 .0161 .0161 .0161	0 .0011 .0012 .0000 .0171 .0173 0 0 .0015 .0015 .0047 .0146	.0008 .0064 .0113 .0117 .0116 .0196 .0196 .0192 .0192 .0192 .0113 .0118 .0118 .0114
8.00	14.10	~6.81 ± 10 ⁸	9.13 9.03 4.04 4.07 4.00 6.10	.000 000 +.117 .236 .246 .240 .240	.0121 .0121 .0120 .0159 .0147 .0727 .0227 .0237	.0109 .013 .0013 .0044 .0010 .0105 .0106 .0109	.0140 .0191 .0115 .0116 .0114 .0191 .0191
4.31	16.40	6.12 # 10 ⁵	2.66 4.67 6.67 6.16 6.10	.001 .190 .310 .310 .310	.0110 .0133 .0168 .0170 .0267	.013 .0013 .0053 .0053 .0121	.0110 .0110 .0115 .0117 .0120
7000	E1007N - 5 /	۹.	AME DEF	TH • 5.33	PT.	DEPTH .	1.50 CHORDS
1.44	5.50	2.66 ± 16 ⁵	4.44 9.67 9.67	+.046 +.314 570 290	.0100 .0244 .0412 .0406		

[·] Bressed & to serve

P Booth of soler is task # 2.75 fs.

TABLE III (Cont'd.)

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
V/√ s c	Arg. V, ft./eec.	Re, Vc/v	a, •	CL	CpT	(i, + C,	$C_{p_{p}}$ (6) - (7)
CHOLD I	EMUTH = 5 I	N,	TANK DEP	TH - 5.33	FT.	DEPTH .	1.50 CHORDS
1.89	6.90	2.73 ± 10 ⁵	4: 83	002 +.277 .577	.0162 .0120 .0459	.0074	.9162 .0156 .0126
2.36	0.65	3.42 ± 10 ⁵	4.63 0.07	.580 .001 .272 593	.0467 .0142 .0195	. 0338 6 . 0065 . 0369	.0129 .0142 .0130 .012:
2.82	10.30	4.07 ± 10 ⁵	4.65	.003 .006 .272	.0139 .0125 .0183	.0059	.0139 .0135 .0124
3.29	12.65	4.76 ± 10 ⁸	4.94	.600 .804 .296 .299	.0408 .0119 .0194 .0200	.0282 .0062 .0063	.0126 .0110 .0133 .0145
3.74	13.75	5.45 = 10 ⁵	8.00	.623 .623 .004	.9410 .9411 .9110 .9116	.0275 .0277	.0135 .0134 .0110 .0116
4.34	15.50	6.17 x 10 ⁸	4.64	.309 .309 002 001 +.303	.0104 .0107 .0125 .0120 .0219	.045 .045	.0139 .0142 .0125 .0120 .0156
i			3:4	7.310	.0196	:0066	:0130
CHORD L	EMSTH = 5 11	1.	TAME DEP	TH • 5.83	FT.	DEPTH =	1.50 CHORDS
1.49	5.20	2.06 x 10 ⁵	•	015	. 0150	•	. 0150
1.90	6.96	9.75 ± 10 ⁵	4.03 6.04 6.04 6.06	+.276 +38 -439 \$61 009 006 + 136	.0127 .0146 .0150 .0497 .0120 .0140 .0159	.0177 .0196 .0198 .0100	.0150 .0150 .0159 .0197 .0120 .0130 .0139
			4.02 4.03 6.04 6.04 6.04 6.04	.257 .389 .422 .424 .424 .436	.0190 .0194 .0104 .0114 .0223 .0100	.0667 .0067 .0179 .0181 .0101 .0102	.0123 .0127 .0125 .0125 .0133 .0142 .0126 .0138
2.34	0.45	8.48 m 10 ⁵	2.01 4.82 6.83 6.85 6.85	007 0 +.133 .250 .392 .522 .525 .519	.0117 .0124 .0134 .0174 .0174 .0271 .0396 .0413	.0018 .0018 .0059 .0197 .0059 .0178	.0117 .0124 .0121 .0117 .0134 .0144 .0135
2.80	10.16	4.09 x 10 ⁵	2.01 4.01 6.04 6.04	.576 .046 '.014 .118 .269 .399	.0410 .0110 .0113 .0126 .0179 .0270	. 0290 0 0 . 0014 . 0650 . 0126	.0120 .0110 .0113 .0111 .0123 .0146

^{*} Corrected for ground offeet

TABLE III (Cont'4.)

(1)	(2)	(2)	(4)	(5)	(6)	(7)	(8)
F, V/√ <u>8</u> €	Avg. V. fi./eec.	Re, Ye/v	a, °	C,	C _D ,	$C_{\mathfrak{p}_i} + C_{\mathfrak{p}_g}'$	(a) - (.)
				TH - 5.83		DEPTH -	1.50 CHORDS
	218TH = 5		7AM DEF	- 5.83 - 005 - 005 - 105 - 206 - 412 - 245 - 566		DEPTH = 0 .0014 .0047 .0130 .C212 .0224	
		4				·	

a Corrected for grand affect

CONFIDENTIAL

										C	ON	FID	EN	TI	۱L											R
			Ţ	-	_	:	1	:	7	111	T			; ··	1::	<u>i· :</u>	- 1	i: ·	1	1111.	· · ·	;:	:		:	
	-: 	•	İ	• •		· ·	-	 -	-	T.:	-	1	::-	1.7		7	:	-	F.::			ļ				
!			 	!	├-	!	╁	†:	1	+ :	1	1.,	1		-	 	-	-	;:		. :	:::	=	-	::	:::
	•		١.				·	!	-	†		1::	1	1		17	- -	:-:		 	<u> </u>					
	;	÷		 -	<u> -</u>	 	 .	 				-				<u> </u>		<u>:</u>	-	::			:		-	
	1	• •	:	:	¦•	 		†:-	1	-i	1		1	†:-	-	i	 	<u> </u>			 	 	t	 -;: -	:	•
1			-	 	 -	├-	+	+	-	 :		ļ	1.		†=			::.	1::		<u> </u>		=		÷	
7		<u>-</u>	- •	:	i	١.	T	[-:	T	ļ	1.1			†:	::	 		-	-	 	-	 :-	-	-		
+				-	 -	H		-	H	1.		-	115	1		-	-		-	-	-	-	-			:
	- 1	- :	-: -			1	I	-	H				1	1		:1:							-			
 -			-:-		_ :	Н	Н	╁						115				1:::					#	:		•
			-				÷	1-		₩	H		1#			1:::	-	:::								•
-						-	Н			1				-		-	:			-		-				
	7 0:							1	-	1		1	<u> </u>	1	<u> </u>		-	.:::			:					
 	RATIOS				-	1:	1	₩	1	1	-	11	<u> </u>	1	H	·	-			H	-	-	4	::	::	
 	王	·		-	-		1	H	-	11		1.1				:i.			:::	::::	-	:::		 -		
	1			:		1:::	-	#	ļ.: <u>.</u>	+1				1								-				
<u> </u>	EPTH			_	ļ <u>.</u>	<u> </u>	1	#					1			-			===	<u> </u>	<u> </u>					
	믬				ļ_	Ŀ	Ц	11	!			1	1		<u> </u>	<u> </u>	i.ii	:::	::: <u>:</u>	Ш		-	유			
FIGURES	• • •	: -		-	ļ.:: .			11				1	1	Ш	ш	<u> </u>	-:::		:::		::::	<u>:</u>		į,		
2	Snow	_				· · ·	Ш		L	1::::	1		1	<u> ::::</u>	<u> </u>		::::		:::		<u> </u>	::-	. ;	\$		
5	ž				-	···			IJ										::::	<u>::::</u>		:::	:::.			
	\$			•		Ŀ	1	١.	W			Ţ:::		1	:::	::::	•	•	::	• •				×		
	7					: "		1	H			<u> </u>		Y		:::	:::								_	:
! _	- 1			<u>. </u>			L	1		17	•:	įΧ	:::					::. <u>.</u>	::::	٠.						
	X					•	<u>[</u>	1		仏	: :	<u> :.:\</u>	<u>:</u>	Ľ	<u>\</u>	:-:	:::		:::		, <u>;</u>					
Li	S	_			_:		<u> :</u>		<u> </u>	II		:::	1:	<u>ŀ".</u>	Δ	ļ: <u>;</u>	. ::		::	::.	:		٠	٠.		
	۵,		!		٠	·		177		M	X	<u></u>	X		::	4.	::	:::		:::	: : :					
-		_					F :			Ţ			::13	1	.::	1		•		:::	:::					
		,			٠		::		1		1	$\mathbf{\Lambda}$		$ \mathbf{X} $					•	:	•					Ţ
			·	\cdot			.,,		1	-1	${\it H}$	X														
	ij	7		$\overline{\cdot}$;			F		1,1				1	:-			:	• •	•					•
		Ī				_	:::		T	:		K	T						\		:::				1	1
77		Ī			_			Ş .	1	:.:	9	1				: \					11					
;	• !	- 1					[<u>.</u> :	/	: '	7			1.	-		X			1						
				1								7		12	·		Ė		:		*		**			\neg
	-:[· • • ÷			سد		j				•			:					1	.:.					• -
		,-	7				Ť					-:	.::		<u> </u>						.:		i			
	!	• •	: ۰۰	-	! !	• • • •	•						::	 	<u>-</u> ا			<u>:</u>	1				!		:	-1
+	-+	4		-			•) ·						-		,		-	-	•		\ '	
. !	.•		2		;		• -				•	٠٠٠٠		-			┯╁	-	:	٠ ٠			+	. !		٠٠

CONFIDENTIAL

Company of the Compan

Mill' meters & mes structure a manes of

CONFIDENTIAL MB 12 Z C. + Q. FROUDE 44 * 1200 Π. GENT AT VARIOUS Ö COEFFIC A PROFIL CONFIDENTIAL

of Planters in an incommendate of the bear.

CONFIDENTIAL

<u></u>		_			-							•	ÇO	Н	FIC	E	iTl	ΑL	•												••
	•.	.	. !	į	1		ī			i	Ι.	1	П				1.	T	-	-		-		11:	7 :	ı'	- 1	-	_	T	<u> </u>
L	<u>. -</u>	1	j	: {	i					Ī	÷	-		: •		1	† !-		7		 . :			<u> </u>	1:	<u>- - :</u>	+		-		-
ŀ.				Ţ	Ţ	7	-	7	•		1	j.,		::	: •	1::		<u> </u>	i.	+		7		<u> </u>	+			-	-	┼─	-
	1.		1.		1.	_ -				ļ	1::	+			:	t-:	ļ	1:	+	-		-		∤ ∺	1.:		-: -	-			
	1.	Ţ		1::		ij	1.	::1		11:	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		7						:+	.::		å	1::.	-	+	+	۲		-	::
		 	† :	1		:	卞	=			-:-	1:	-	-	Ξ,	-	-	-	-	4	-	-		-	-	1:	-				
F	-	+ 	1-			; -	+	-Ş		-	-	-	+		11: 11:	H	-	<u>.</u>	+	-		_			1		: X	ب			
1	+:	1	- 	+-	-	 		-6		÷		1:-						T.	1	-		-	: :: 	1. 1	Ļ.	·;:-:		!			
-	 -	 -	+	+		+		-	-	<u> </u>	-	+-			;•··ì	-	<u>:::</u> ,	Ŀ	#		:: :	4	7	;	E	1	×			<u> </u>	23
-	- 8		!	+		-	- -	4	1.1		i.	1:					1.	<u>L : :</u>	1.				14		Ŀ	1			•		. Ci
-	NUMBERS	 	-	1		-	<u>.</u>	4	إيا	-: .		L			.:;		ر :	Ž,	<u>ll:</u>	1			:::			: :::	Ł	<u> </u>	·		11.
-	=	_	- 		4	12	, J			1	155	1					<u>(</u>		¥		<u>l</u> :			::	:	1	1:	1	V.	;	:
-	13	<u> </u>		~~~		E	٢				::1	Ľ.		٠		Ť				:.[:	-:[4	:::	1		3		•]	::1	3.
ļ	ببرا	<u> </u> _:		UNPRO	1	1.			3 .	Ŀi	:: <u>`</u> :	1		¥.		.; {	{1¢ 1¢'\$	1.13		.4	T		Ç.	-			Ŷ.	4	7		2
-	13	_	L		4	L	1		Ľ			<u> </u>	:[:		i.	Ţ	1.		H]		\cdots	; ·		ļi,i	7	i		-	
-	FROUDE	:		Ţ				5	þ.]			ii.	1						Į.				ij	ii.		1:1:				-	一
L		A		1000		1.	.0	*			4.5		F	,		Ė	1	ŀ	ij	I	11						T	f	1		
	Ž	1, 1	8.	13 44	.::		7.77	,,,,					1.6	~			Ì		Ħ				S.				H	4	\parallel	-	B
<u> </u>	Ridus	102 750	ŭ		J		0.3					:::	1				ü	Ħ	Ħ								₽-	+	+		-
2	\$	*		Ü		-								ij.			ü	÷									2	٠,	#	-4	Н
35	AT	*	5		-	1::	0	۲	#							: -1			H			#		1:			γ.	-	#	-	
13		¥	*	1		Ħ	-	#	+				H		-1		47		4	1.		#	¥		:.	-	Υ,	Ž.	-#		=
FIGU	Z						1.11	Ē	E L			****				- 1		4	H	+	-	-	-			-	ļ.:.	L	: #	·	
	CIENT	3			-		ļ		H	Н			"	: : : K	4				+	4:	4	Ŀ		-	-		نا	P	#		4
	1	4	1-	H	SXID	H		1.3		H		::::	-					Ų	F	ļ-			-	XXIO		!::: - 	<u> </u> _	4	#		
 -	监	꽃!			2.5			111		H	Щ		Ł	Щ,	X	-11			ŧ.	1			¥			. :	Ļ	Ł	1		r.
	COE	-	j. į	ال_ ا	Ģ			-	l į-	1	4	<u>;;;</u>		12	1	4	4	ΞĮ	1		:	1:	4			:: <u>:</u> .		7		ij,	7
		<u></u> .		<u>ا</u>				1	Ш.	H	::::::::::::::::::::::::::::::::::::::		Ë	Ш	#	1		1		Ŀ	1:1	1	:	- T		. :	<u>::</u>	1	1	<u> </u>	
 	DRAG	_<	0	- 4		-4	<u> </u>	-			<u>:: </u> :	•		1.	1			3	iI.				T:	·		: :::	i.	F	I		
$\vdash \downarrow$	ã,						·	L	Ш			:::	ä		SE			=	1	Į.	. E	1	$\int_{\mathbb{R}^{3}}$	Š	: }	• •		7	1	- r	
	E E		0	ز ۔	S	. # #	:		!!']	Ŀ	1	:::	9	į.	HI:	. N.		. *	Ţ	1	1	T		7		:	. 1	Ŧ	1	<u> </u>	3
			אַע			_	' <u></u> -	1.			:: :	:::	it			. 1	;:[]	Ţ	Į <u>.</u>		1.						,	-	7	7
	8				/SEC.		::	• •	Ŀ				= -	1	ijľ.				J			T			÷		;	4	-	1	7
	•	İ	$\cdot $		2	:]		::	F.I				4		2			- 1	1		ļ.,	i .	T	1.58			<u>.</u>	P	#-	+-	1
i	Ī		Ī	.]	1		.]	-					Ŭ.	. 7				#	1	11.		1	1	<u>:</u> †			<u>::</u>	Ť	什		5
	- [1	1	-	2	1		.;	1.					2	Ė			Ħ	H	·-	-	† :-	1	200	1		<u>:</u>	fi i	-	-	1
		-	T	ij	e i	, i	::	.	11	1.				1	Ė			-7	H		-		1:3	3	,	-	<u>.</u>	+	\vdash	+	-
		+,	-	•	Y-15.03 FT	7			Ħ					E				:#			-		+		+	-	-	-	ŀ	- 	-
一	<u>-</u> -	-	†	-		7	<u>- ‡</u>		+	+		-				+	1	1	Ч		-:-	10			- 1.	4	-	1	+-	#	4
		-¦-	-†-	-#	· .†	· ‡	-9	<u>.</u> .	1: 	†	1:	1			H	+	7	:: ;-	∺	·			L		#	<u>ؠ</u>			ļ.	! -	-
'	-	-}-	 	+		+	+		2	+	╬	+		:::	1	4.	÷	\$			-	_	ļ.,	1		1	_		<u>ļ</u> _	<u>ا</u> ۔	4
• `	• •	ï	· -	٠;٠	-+		-		; !		+	4			ļ.=	-	+	₹.	-¦		<u>:</u>	ļ	1			-	. 4			!	
		<u>.</u>	ــــــــــــــــــــــــــــــــــــــ		<u></u> L	丄				ــنــ	1	Ή.	ان		<u>L.</u>	1	:1.	_L					i		i	İ	:		i		1

														N	- 11	13(IT	Αl	-											
		:				T	!	7	•		T	!	Ţ			1:		T	7				Ţ		Ţ	ļ.·.	Γ	<u>; </u>		Γ,
		<u> </u>	:		·-:	Ϊ	-	"	• •	·	T.	Ī	7	·	Ī.	1	1		-7	-	7	;- I .		-	1		1.		Ϊ.	<u></u>
			;	7	1			7			1	+			Ī		1	1	.]		_	1		-	1:5	1		:	1	<u> </u>
•		1	-i ·	1.		1	Ţ	.	::-		†-	1.	:†		<u>.</u>	1.	i		-	 ·· ·	 			ļ.;¬	1		j-	+-	·	١.
_		1		T	- <u> </u> -	+	+	7		 -	+	╁	7	Š	-	Ė	1	+	•	· · ·	-	-	8	-	1:	1.	ļ		+-	İ٠.
	 	·	- i ·	1-		┪-	<u> </u>	-			+:	╀	+	::	L	H	╁	₫.			77	ļ	-:-		 	-	Į.≟.	-		!. -
	<u> </u>	-				╂	+	4	0 × 6	-	+.	<u>:1 ·</u>	-		<u> </u>		<u> -</u>	9	-		-	ļ <u>.</u>		-	ŀ-	_:ا	₽-	 	┼-	Ļ
•	:		-i	-¦-		-	į.	-	χ (†		Ļ	Ţ.	4	•		Ľ,	ļ	4		•				:-	Ŀ	; 	Ģ.,_	1		!
	· 	-	 	↓.	<u> </u>	-	÷		-	<u>.</u>	<u>Ľ</u> .	<u>: .</u>	4	*	-	Ŀ	 	4	<u>l</u>	_	ļ <u>.</u>		100		1.	! !	۴	<u>i .</u>	↓	9
	ι	L .	ļ 			L	_	- #	E.		ļ.,	<u> :</u>	.1	ď		<u> </u>	Ŀ.	Ł	-1	. :	<u>. :</u> .	-	2		Ŀ		ŧ	; 	<u> </u>	; N
	NUMBERS	1	; 4	<u>.</u>		Ŀ	<u> </u>	. /	Δ	::.	T_{\cdot}	Ľ		\cdot :		::.:	Ŀ	小			_:	::	:::.	3.	Ŀ	1.7	N	Ŀ	1	
	85		::		3 . '	.:	1.	7			: -	1	1		•::•	11:	7	.].:	X	ii.			.:::			<i>V.:</i>		X	7:	Ϊ.
	Ę	۱	Ţ.	±	3	T	y	3]::	:[7:	7	Y	13						į	۱٦		:
			1	Ų.	ROKENKE	T -	1	g	-7			1	1	7			1	\$	궠				126					57		7
	VARIOUS FROUDE	1-	T.	PRPRE	<u> </u>	1	¥	ø			1:	1			<u>:</u>	1	<u> </u>	9		1	: :- -			- - :			7	t	 - -	; - [']
	ğ	1	1		g	†=	1	1			<u>:::</u>		1				H	T:		+	::				-	1.3	F	너	1-	- -
	4	=	 	È	3	-	-	4	::									Ŧ							-		<u>بنا</u>	P	 -	<u> </u>
	*	A	H	Ž-	5	 	1	Ę.	井			4		es.	**.:			4	4	-	:::		68		-	٠	-5	\vdash	 →	R
2	ŏ	냽	5	₩.		 		3						Ĭ.	1:1:		ij.	'n.	7				_	:::		Щ		E.		
=	<u>r</u>	MODEL THE				1::	<u> </u>	7	-::							4::		¥:	발		::::	<u>::::</u> :			<u>: :</u>				بعا	4
CONLD)	3	3	186.	Ī					∷		E:							I						?			<u>:::</u> :			2
•	ب	00	3	Ĭ				Ť	Fi								£:	F	¥			.:.		:::						
N	COEFFICIENTA	1	12.	į			1	1	'n		1	Ľ.		3		::::	ī				E::	:1::				Į	1			-
BUNDI	Z	4		9	V ::		1											E			T					1		5		i
5	3	6		•	1::-	1	1.	1					1		10				+					ě				П		
•	Ē	7	11.	†	2	t ::	-	‡	7	Н	1	=	+	N.	OK TO	:::		t	ŧ	#		::	**	4 X TO				H	1	-
i	Ti-	3	1			+-	-	+	-	7.		i.	Ċ	-				۲		rli		-	-	147	!:.	-			L.,	.04
:	<u>Q</u> .	.=.	1	ļ	3	∤ ÷::	1.	+		ıŦ	-	1	+				j		i	-#		-		. K.		1		}		-
				į	-	ļ	<u>, </u>	+		Н	 	:::	ŀ	∺	-		i.	<u></u>		4							1	Ц	 '	
. - ,	DRAG	L•	≥ :	1	. 2	<u> </u>	j	Ļ			<u> </u>	<u>::: ٰ</u>	1	-	1	<u> ;</u>			*	1	·. !			7.18 B. R.		ı.	: : .	Þ		_
			_	ı		<u>L</u> _	_	1	. :#		ــــا	L	Ŀ	Ŕ.	-			L	Ľ	4			8	0	<u>.::</u>	i.	<u> </u>	11]_:	
ا	1,5			: <u>-</u> .	ė	_	<u>.</u>	<u>.</u>	-3		Ľ	L.	T.	?	i.	: :	L	Ŀ					٠						L_;	3
	Œ.		- 0	•		<u></u>	<u>.</u>	Ŀ			·	<u> </u>	1	- <u> </u>	-	Ξ	1::	ļ. <u>.:</u>	1	ii	}		•	1.6	÷:	1	::	ï	<u> </u>	••
i	SK SK				녆								T	•	3		Ī	1		П	· :]				•••	1	:		ļ .	
	T.			,	15			T		1					5		1	Ī.:	1	T	- 1	7		5	•	•		7	Ϊi	_
- 	-			,	F		1	Ī	:	Ē	:::		Ŧ	j		-:	1			#	. 7	7	8	F7.78.0	. :	1		11		ş
!	•-	• •	<u></u> -	···	: == : ••	- '	i -	1-					Ħ	+	9	- <u>::</u>	†			†:1	-+			Ö	- - -			11	-	
	- +				10		 	+		Ħ	:	•	F	-	귊	=		 : :	#	H	-+		: ;	밁	•	i .		1		
;			· - ·		Vars.08 FT /SEC.		-	+		+	· .		+	::¦:	쒸	:::	1.	 :::	+1/	ŀ÷	٠	<u>f</u>		V=88.D0	<u>-</u>	-				
	-¦						:	H	لن	4			ļ;	•	W- AD CO FT. / EEC		2			+	1					با	_			
. :	. !	- 1			! 	;		Ţ.	:‡			• • •	P:	-: :				<u> </u>	Ŀ	- -		۲								
4] }				·	L		i †	0	Ŀļ		:	Ľ	-!		. [· ·	1	1	.	_	1	<u>.: </u>				. !	٤		
!-	. :	•		Ĺ				ļ.		; ;			Ľ	<u>:1</u>		ا: :	<u>.</u>	Ŀ	5	_[_	· !				:	l	1			
;•	į				. !	- :	-	;-	-				1.	Ξί.	· T	- 1	·	· ·		7		T	7.	7		7	!		ĺ	

and and a second and and second

CONFIDENTIAL FIGURE 138 COMPUTED INDUCED AND WAVE-MAKING DRAG COMPARED WITH EXPERIMENTAL TOTAL CRAG. AT VARIOUS FROUDE NUMBERS NACA COIZ (MODEL II) 43.75 H. COM (8.53 FT. 13 H (3.75 FT. -----V=5.20 Ft.7sEd VI 6 DO FTI SEC F+ i.89 ..04 ¢0⊤ 0.1495 € 10.0116 03 03 P-10.1911 C-+0.0116 02 4-10:20 FE/Sec. 有をはしない Ca. Ciliss C 5 - Olesie

CONFIDENTIAL

17

CONFIDENTIAL

teri entre que establica de la company de la company de la company de la company de la company de la company d

CONFIDENTIAL

CONFIDENTIAL 0 Q Q -----;-3.6 9 38 NUMBERS +0.0138 3, NACA GOIZ (NODEL IE) SQUARES CO. NO. COSS CE -00153 C 28 23 8 100.00 #. 52 27.24 5004828 QZ: COEPFICIENT 9 🗆 * V 4 00 PX 08564 F14.60 まずいまり、大気のよって、日本「ある人 PRCFIL !

CONFIDENTIAL Ø -1 0.0103 Ç Ş \$3 NUMBERS 103 VE 14.00 FT. 18EG. F44.37: Ī LEAST SQUARES Cd. O DOZE CTO 0 ROUDE 3 SOURRES 75 44 EKST SCUANS C. 10.002D S COZPELSIEN (CONTUS FROM NACA CONTUS FROM NACA CONTUNCE IN CONTUS FROM NACA CONTUS (NODE, II) LEGST 02 35 +0,0110 8 Union states CONFIDENTIAL

FIGURE 13
MINIMUM PROFILE DRAG COEFFICIENT VS. REYNOLDS NUMBER

GONFIDENTIAL!

A MANAGE OF STATE AND THE TREE.

	FIGURE IS			
LIFT COEFFICIEN	TVS. ANGLE	OFIATT	ACK	1 1 1
AT VARIOU	FROUDE NU	MBERS		
NAC (POISICHOPEL 1	αı		
PERFECT OF THE PROPERTY OF THE	LABTILA + BE	BYDEOL	. pag	H:141
LEAST SOUTHER CLAT	Vara Es		Q:Eb	12:22
LESST SQUARES OF AT		f	0.7\$	8.33
LEAST SUCATES IN AT	15 ET SQ	<u> </u>	-4.78	5.33
			1.50	5.63
			, 	
V=5 20 8	II.12 £C.	بمرا		
				<u> </u>
├ - : ;			و ا ا	
0,4		<u>/ : </u>	- P	
		لمريا		
	المراكز ا			
	1/1	ا ا		
02	1	7, 7, 7, 7	اللها	- - - -
	1	1777		
		7-1-1-1		
	CX.DEG.		· - T	
1	· .W.DEG		- 	
!			! !	_ _ ; _
I				
V#6/70 F1	/44			
F. 1. 5 % at		ا مما ا	<i>/</i>	ii'
			1	:
0.4				
	أتمنز أنال	1	77 77.1	
		<u> </u>	777	1-1
			7:1-1-1	
0 2		J-1-1-1	╌┼╌┠╌┼╌╂	···
	サイドレング	╌╬╌┠╌╏╌╬	7 - 1	
			┼╌┼╌┼	╌┼╌┼╌├╌╌
	. [أ إ إ إ إ			
} 			- 	
- L - L - L - L - L - L - L - L - L - L	-1:4-4:4:4			
╶ ╌╌┈┞╌┈╶┩╶╌┈ ┠┈ ┿╸┿╌ ┢ ┩╶┾╌┈╅╼┼┈┼╌┼	A,DED.			
9			1 1 1	
			<u> </u>	
┠╌┊┋╌┊┃╌ ┆ ╌┨╶╬╶┃╼╌┣ ╶╽ ╂╌╂╼╈╼╅	1111			
benegati, ki a sala sa da a		1		- -
		7	+	
	7-1-1		1 1	
				

SECURITY INTURINATION FIGURE 18 LCONTIN LIFT COEFFICIENT VS. ANGLE CF ATTACK AT VARIOUS FROUDE NUMBERS CAPUTED C. AT had to 1 C. 27/A 489 " h/4 BYHBOL 5 33 5 33 LEAST SQUARES G AT WOLD THE O.Th 3.75 5,33 1.50 1.50 V: 8, 65 AT. / SEC. FF2.44 A,DEG. V-10.30 FT./8EG Q,DED. SECURITY INFORMATION

جِعُ

FIGURE IS CONTON COFFEICIENT IVS. ANGLA OF ATTACK NACA COLZ (HOUSE TI) NACA COLZ (HOUSE TI) LAG HOUSE TO HOUSE TI HES C AN A/GN . TY g. Phy 3.3¥ 1.30 1.50 V-18.05 FT /SEC. SECURITY **INFORMATION**

·,, ...