can be calculated. the expressions within the braces in both

of yisy where [di,ds] denotes the lesst common multiple of fied that $((c_4,c_8)/[d_1,d_8])x^Sd$ is the highest common factor assume (c. ,d.) = 1 because of R being HCF) it can be veribe of degree s in x. If $b_1 = c_1/d_1$ and $b_2 = c_2/d_2$ (we can highest common factor of $b_1 x^{S_1}$ and $b_2 x^{S_2}$ (if it exists) must highest common factor of y_1, y_2 . Further if $s_1 = s_2 = s$, the Now if s_i < s_s it is easy to see that b_i x^S id is the

 $(x_{t}, x_{t}, x_{t}, x_{t}, x_{t}) = x_{t} x_{t} = x_{t}$ at tant (β) equt It five case (b) holds let y_1 be of type (α) and y_2 be of

dicand datelf (of example lithis chapter), Consequently y

and si b li bas $(x_1^{ix}, x_2^{ix}, x_3^{ix}) = sV$

HOF of the elements in the braces then rosd is the HCF of

Finally if (c) holds let $y_1 = r_{01}(1 + r_{11})$ for $x_1 = r_{01}(1 + r_{01})$

and if d is the HCF of the elements in the braces then $(s^{1}x_{s^{1}}, s^{2}x_{s}, + t)_{so} = sv_{s}$

 \cdot_{st} , τ_{os}) a is the HCF of τ_{tot} , τ_{so} .

To sum up, each pair of non units in S has the highest

common factor and this establishes the lemma.

Now let y be a general non zero non unit element in S

then $y = r_0 + \sum_{i=1}^{n} s_i x^i$; $r_0 \in \mathbb{R}$, $s_i \in \mathbb{K}$, and y can be of two

 $\mathbf{\hat{x}}'_{j}\mathbf{\hat{a}}\overset{\mathbf{r}}{\mathbf{\hat{z}}}+\mathbf{\hat{r}})_{o}\mathbf{\dot{q}}=\mathbf{\hat{v}}\quad (\mathbf{\hat{a}})$ types; (α) $y = bx^{S}(1 + \beta x^{1})$; $b \in K$, or