Lecture 2: Classical Control Theory & Design

Textbook Sections 2.1-2.6

Dr. Jordan D. Larson

Model-based design: use dynamical systems theory to model real-world processes

Introduction

- Model-based design: use dynamical systems theory to model real-world processes
- Simplest model: single input, single output (SISO) and linear, time-invariant (LTI)
 - System to be designed: controller, K
 - System to be controlled: plant, G

Introduction

- Model-based design: use dynamical systems theory to model real-world processes
- Simplest model: single input, single output (SISO) and linear, time-invariant (LTI)
 - System to be designed: controller, K
 - System to be controlled: plant, G
- Dvnamical systems: many varieties
 - Flight dynamics: MIMO, nonlinear, time-varying
 - Flight control design: MIMO, linear, time-invariant with robustness to model uncertainty
 - Classical control applies SISO LTI theory and design to multiple loops for aerospace vehicles

Introduction

- Model-based design: use dynamical systems theory to model real-world processes
- Simplest model: single input, single output (SISO) and linear, time-invariant (LTI)
 - System to be designed: controller, K
 - System to be controlled: plant, G
- Dynamical systems: many varieties
 - Flight dynamics: MIMO, nonlinear, time-varying
 - Flight control design: MIMO, linear, time-invariant with robustness to model uncertainty
 - Classical control applies SISO LTI theory and design to multiple loops for aerospace vehicles
- Open- and closed-loop control laws
 - A.k.a. feedforward and feedback, respectively
 - Feedback accounts for disturbances/uncertainties to plant model

Open-Loop Control

Simplest types of control laws: open-loop control strategies, a.k.a. feedforward control

Open-Loop Control

- Simplest types of control laws: open-loop control strategies, a.k.a. feedforward control
- In general, logic flow:
 - 1 User specifies commanded output y_c
 - 2 Control law sets input *u* as function of commanded output
 - 3 Dynamically changes output y(t)

Open-Loop Control

- Simplest types of control laws: open-loop control strategies, a.k.a. feedforward control
- In general, logic flow:
 - 1 User specifies commanded output y_c
 - **2** Control law sets input *u* as function of commanded output
 - **3** Dynamically changes output y(t)
- Open-loop control of SISO LTI systems block diagram:

Open-Loop Control: Actuation System

• For real systems, *u* will undergo some dynamics itself, i.e. plant input won't instantaneously reach electric controller's computed *u*

Open-Loop Control: Actuation System

- For real systems, u will undergo some dynamics itself, i.e. plant input won't instantaneously reach electric controller's computed u
- Truly actuated using some electro-mechanical interface: represent by actuation system, a.k.a. **actuator**

Open-Loop Control: Actuation System

- For real systems, *u* will undergo some dynamics itself, i.e. plant input won't instantaneously reach electric controller's computed *u*
- Truly actuated using some electro-mechanical interface: represent by actuation system, a.k.a. actuator
- Additional consideration results in following block diagram for SISO LTI systems

Open-Loop Control Actuation System (continued)

• Using dynamical systems theory, one can typically model actuation systems, A(s), as first- or second-order LTI systems, e.g.

$$A(s) = \frac{\omega_a}{s + \omega_a} \tag{1}$$

Open-Loop Control Actuation System (continued)

• Using dynamical systems theory, one can typically model actuation systems, A(s), as first- or second-order LTI systems, e.g.

$$A(s) = \frac{\omega_a}{s + \omega_a} \tag{1}$$

$$A(s) = \frac{\omega_a^2}{s^2 + 2\zeta_a\omega_a s + \omega_a^2}$$
 (2)

- ω_a : bandwidth of actuator
- ζ_a : damping

Open-Loop Control Actuation System (continued)

• Using dynamical systems theory, one can typically model actuation systems, A(s), as first- or second-order LTI systems, e.g.

$$A(s) = \frac{\omega_a}{s + \omega_a} \tag{1}$$

$$A(s) = \frac{\omega_a^2}{s^2 + 2\zeta_a\omega_a s + \omega_a^2}$$
 (2)

- ω_a : bandwidth of actuator
- ζ_a : damping
- Actuators also typically have hard limits on minimum and maximum output as well as hard rate limits

- For real systems will have additional disturbances to plant model
 - Modeled as additive disturbance signal, w, to control input, u, which results in a as

- For real systems will have additional disturbances to plant model
 - Modeled as additive disturbance signal, w, to control input, u, which results in a as
- Block diagram for SISO LTI systems:

- For real systems will have additional disturbances to plant model
 - Modeled as additive disturbance signal, w, to control input, u, which results in a as
- Block diagram for SISO LTI systems:

- If no explicit knowledge of disturbances: may not guarantee control system satisfies design requirements using only open-loop control
 - · Strategy does not gather any information about disturbances as they occur

- For real systems will have additional disturbances to plant model
 - Modeled as additive disturbance signal, w, to control input, u, which results in a as
- Block diagram for SISO LTI systems:

- If no explicit knowledge of disturbances: may not guarantee control system satisfies design requirements using only open-loop control
 - Strategy does not gather any information about disturbances as they occur
- To reject these disturbances and account for system uncertainties: use alternative control strategies

- Closed-loop control, a.k.a. feedback control:
 - Feed plant output signal back to control law

- Closed-loop control, a.k.a. feedback control:
 - Feed plant output signal back to control law
- Block diagram for SISO LTI systems:

- Closed-loop control, a.k.a. feedback control:
 - Feed plant output signal back to control law
- Block diagram for SISO LTI systems:

• Use output of plant, y(t), to compute tracking error, e(t), directly affects control input to plant, u(t), in turn, affects plant output and so on, as time continues

- Closed-loop control, a.k.a. feedback control:
 - Feed plant output signal back to control law
- Block diagram for SISO LTI systems:

- Use output of plant, y(t), to compute tracking error, e(t), directly affects control input to plant, u(t), in turn, affects plant output and so on, as time continues
- For real systems, output signal measured by sensor system, or sensor:
 - Measures output of system using physical phenomena converted into a measured signal
 - · Similar to input signal being actuated in real systems

Closed-Loop Control: Sensor System

• No sensor provides perfect information: consider additive noise signal, v, to output, y

Closed-Loop Control: Sensor System

- No sensor provides perfect information: consider additive noise signal, v, to output, y
- Block diagram for SISO LTI systems:

Open- and Closed-Loop Control

Feedforward and feedback control combined as block diagram:

Stability Augmentation Systems

- Special type of feedback control system: stability augmentation system (SAS)
 - Plant controlled by external operator, e.g. pilot, but inherent response characteristics, e.g. modal stability or damping, not within design specifications
 - SAS used to "augment" plant dynamics to achieve certain dynamic responses, typically stability or excessive damping

Stability Augmentation Systems

- Special type of feedback control system: stability augmentation system (SAS)
 - Plant controlled by external operator, e.g. pilot, but inherent response characteristics, e.g. modal stability or damping, not within design specifications
 - SAS used to "augment" plant dynamics to achieve certain dynamic responses, typically stability or excessive damping
- SAS for SISO LTI systems as block diagram:

Proportional Stability Augmentation System

 Classical stability augmentation system design method: root locus method as proportional SAS (P-SAS):

$$K_{P-SAS}(s) = \frac{u_k(s)}{y(s)} = k \tag{3}$$

k > 0: negative feedback gain

• G(s): actuator-plant-sensor combination

- *G*(*s*): actuator-plant-sensor combination
- K(s): controller

- *G*(*s*): actuator-plant-sensor combination
- K(s): controller
- y_c: desired output signal

- *G*(*s*): actuator-plant-sensor combination
- *K*(*s*): controller
- y_c: desired output signal
- e: tracking error signal

- *G*(*s*): actuator-plant-sensor combination
- *K*(*s*): controller
- y_c: desired output signal
- e: tracking error signal
- *u*: control input signal

- G(s): actuator-plant-sensor combination
- K(s): controller
- y_c: desired output signal
- e: tracking error signal
- u: control input signal
- w: noise signal to dynamic system input, e.g. disturbance

- *G*(*s*): actuator-plant-sensor combination
- K(s): controller
- y_c: desired output signal
- e: tracking error signal
- u: control input signal
- w: noise signal to dynamic system input, e.g. disturbance
- y: system output signal

Classical Feedback Control System Model

- G(s): actuator-plant-sensor combination
- K(s): controller
- y_c : desired output signal
- e: tracking error signal
- u: control input signal
- w: noise signal to dynamic system input, e.g. disturbance
- y: system output signal
- v: noise signal on dynamic system output, e.g. sensor noise

Classical Feedback Control System Model

- *G*(*s*): actuator-plant-sensor combination
- K(s): controller
- y_c: desired output signal
- e: tracking error signal
- *u*: control input signal
- w: noise signal to dynamic system input, e.g. disturbance
- y: system output signal
- v: noise signal on dynamic system output, e.g. sensor noise
- v_m: measured output signal

$$L(s) = G(s)K(s) \tag{4}$$

- Plays large role in analysis of SISO LTI control system
- Note: *L(s)* control system transfer function if open-loop control design

$$L(s) = G(s)K(s) \tag{4}$$

- Plays large role in analysis of SISO LTI control system
- Note: *L(s)* control system transfer function if open-loop control design
- 3 input signals (external/independent): y_c, w, v

$$L(s) = G(s)K(s) \tag{4}$$

- Plays large role in analysis of SISO LTI control system
- Note: *L(s)* control system transfer function if open-loop control design
- 3 input signals (external/independent): y_c, w, v
- 4 output signals (internal/dependent): e, u, y, y_m

$$L(s) = G(s)K(s) \tag{4}$$

- Plays large role in analysis of SISO LTI control system
- Note: *L(s)* control system transfer function if open-loop control design
- 3 input signals (external/independent): v_c , w, v
- 4 output signals (internal/dependent): e, u, v, v_m
- Input-output pairs have associated transfer function, 12 total:

$$\begin{bmatrix} y(s) \\ y_m(s) \\ e(s) \\ u(s) \end{bmatrix} = \begin{bmatrix} \frac{GK}{1+GK} & \frac{G}{1+GK} & -\frac{GK}{1+GK} \\ \frac{GK}{1+GK} & \frac{G}{1+GK} & \frac{1}{1+GK} \\ \frac{1}{1+GK} & -\frac{G}{1+GK} & -\frac{1}{1+GK} \\ \frac{K}{1+GK} & -\frac{GK}{1+GK} & -\frac{K}{1+GK} \end{bmatrix} \begin{bmatrix} y_c(s) \\ w(s) \\ v(s) \end{bmatrix}$$
(5)

• Four fundamental transfer functions (ignoring sign)

$$\frac{1}{1+G(s)K(s)}, \frac{G(s)K(s)}{1+G(s)K(s)}, \frac{G(s)}{1+G(s)K(s)}, \frac{K(s)}{1+G(s)K(s)}$$
(6)

Four fundamental transfer functions (ignoring sign)

$$\frac{1}{1+G(s)K(s)}, \frac{G(s)K(s)}{1+G(s)K(s))}, \frac{G(s)}{1+G(s)K(s)}, \frac{K(s)}{1+G(s)K(s)}$$
(6)

- Selecting K(s) affects four fundamental transfer functions
 - Study of fundamental transfer functions: key to classical control systems theory

• Four fundamental transfer functions (ignoring sign)

$$\frac{1}{1+G(s)K(s)}, \frac{G(s)K(s)}{1+G(s)K(s))}, \frac{G(s)}{1+G(s)K(s)}, \frac{K(s)}{1+G(s)K(s)}$$
(6)

- Selecting K(s) affects four fundamental transfer functions
 - Study of fundamental transfer functions: key to classical control systems theory
- Error transfer function:

$$S(s) = \frac{e(s)}{y_c(s)} = \frac{1}{1 + G(s)K(s)} = \frac{1}{1 + L(s)}$$
 (7)

• Four fundamental transfer functions (ignoring sign)

$$\frac{1}{1+G(s)K(s)}, \frac{G(s)K(s)}{1+G(s)K(s)}, \frac{G(s)}{1+G(s)K(s)}, \frac{K(s)}{1+G(s)K(s)}$$
(6)

- Selecting K(s) affects four fundamental transfer functions
 - Study of fundamental transfer functions: key to classical control systems theory
- Error transfer function:

$$S(s) = \frac{e(s)}{y_c(s)} = \frac{1}{1 + G(s)K(s)} = \frac{1}{1 + L(s)}$$
(7)

Closed-loop transfer function:

$$T(s) = \frac{y(s)}{y_c(s)} = \frac{G(s)K(s)}{1 + G(s)K(s)} = \frac{L(s)}{1 + L(s)}$$
(8)

Sensitivity Transfer Function

• S(s) a.k.a. sensitivity transfer function

Sensitivity Transfer Function

- S(s) a.k.a. sensitivity transfer function
- T(s) a.k.a. complementary sensitivity transfer function:

$$S(s) + T(s) = \frac{1}{1 + G(s)K(s)} + \frac{G(s)K(s)}{1 + G(s)K(s)}$$
(9)

$$S(s) + T(s) = 1 \quad \forall \ s \in \mathbb{C}$$
 (10)

Aside: P-SAS Root Locus

• P-SAS produces overall system transfer function:

$$y(s) = \left[\frac{G(s)}{1 + kG(s)}\right] u_c(s) \tag{11}$$

Aside: P-SAS Root Locus

• P-SAS produces overall system transfer function:

$$y(s) = \left[\frac{G(s)}{1 + kG(s)}\right] u_c(s) \tag{11}$$

Closed-loop system poles:

$$d_G(s) + kn_G(s) = 0 (12)$$

- $n_G(s)$: numerator polynomial of G(s)
- $d_G(s)$: denominator polynomial of G(s)

Aside: P-SAS Root Locus

• P-SAS produces overall system transfer function:

$$y(s) = \left[\frac{G(s)}{1 + kG(s)}\right] u_c(s) \tag{11}$$

Closed-loop system poles:

$$d_G(s) + kn_G(s) = 0 (12)$$

- $n_G(s)$: numerator polynomial of G(s)
- $d_G(s)$: denominator polynomial of G(s)
- Sweeping through values of k from 0 to ∞ , alter system poles from $d_G(s)$ to $n_G(s)$ and/or $\pm\infty$
 - Depends on number of zeros relative to number of poles
 - Behavior: **root locus plot** of system poles and zeros as k varies from 0 to ∞

Control system design, at minimum, requires stability

- Control system design, at minimum, requires stability
- For classical feedback control system model: if and only if all transfer functions stable

- Control system design, at minimum, requires stability
- For classical feedback control system model: if and only if all transfer functions stable
- Simplify by considering numerator-denominator of G(s) and K(s)

$$G(s) = \frac{n_G(s)}{d_G(s)} \tag{13}$$

$$K(s) = \frac{n_K(s)}{d_K(s)} \tag{14}$$

- Control system design, at minimum, requires stability
- For classical feedback control system model: if and only if all transfer functions stable
- Simplify by considering numerator-denominator of G(s) and K(s)

$$G(s) = \frac{n_G(s)}{d_G(s)} \tag{13}$$

$$K(s) = \frac{n_K(s)}{d_K(s)} \tag{14}$$

• $d_G d_K + n_G n_K$ denominator for each fundamental transfer function: SISO feedback control system characteristic polynomial

SISO feedback control system characteristic equation:

$$d_G(s)d_K(s) + n_G(s)n_K(s) = 0$$
 (15)

SISO feedback control system characteristic equation:

$$d_G(s)d_K(s) + n_G(s)n_K(s) = 0$$
(15)

- Roots/poles in left half of complex plane → feedback system stable
 - True even if pole-zero cancellations

SISO feedback control system characteristic equation:

$$d_G(s)d_K(s) + n_G(s)n_K(s) = 0$$
(15)

- Roots/poles in left half of complex plane → feedback system stable
 - True even if pole-zero cancellations
- Note: 1 + L = 1 + GK appears in denominator of each fundamental transfer function

$$1 + L(s) = 1 + G(s)K(s) = 1 + \frac{n_G n_K}{d_G d_K} = \frac{d_G(s)d_K(s) + n_G(s)n_K(s)}{d_G(s)d_K(s)}$$
(16)

• Numerator of 1 + L(s): SISO LTI feedback characteristic polynomial

SISO feedback control system characteristic equation:

$$d_{G}(s)d_{K}(s) + n_{G}(s)n_{K}(s) = 0$$
(15)

- Roots/poles in left half of complex plane → feedback system stable
 - True even if pole-zero cancellations
- Note: 1 + L = 1 + GK appears in denominator of each fundamental transfer function

$$1 + L(s) = 1 + G(s)K(s) = 1 + \frac{n_G n_K}{d_G d_K} = \frac{d_G(s)d_K(s) + n_G(s)n_K(s)}{d_G(s)d_K(s)}$$
(16)

- Numerator of 1 + L(s): SISO LTI feedback characteristic polynomial
- As 1 + L(s) still affected by pole-zero cancellations: stable feedback control system if and only if
 - **1** No RHP pole-zero cancellations when forming L(s)
 - 2 1 + L(s) no zeros in RHP

Critical Gain Model

• Consider scaling perturbation to *G*(*s*):

• *g* > 0: some scalar constant

Critical Gain Model

• Consider scaling perturbation to *G*(*s*):

- *g* > 0: some scalar constant
- Define perturbed open-loop transfer function as gL(s)

Critical Gain Model

• Consider scaling perturbation to *G*(*s*):

- *g* > 0: some scalar constant
- Define perturbed open-loop transfer function as gL(s)
- Gain margin determined by assessing for what critical values of g feedback control system goes unstable

Critical Gain Computation

- Recall feedback control system stable if
 - 1. No pole-zero cancellations
 - **2.** Zeros of 1 + L(s) = 0 only in LHP

Critical Gain Computation

- Recall feedback control system stable if
 - 1. No pole-zero cancellations
 - **2.** Zeros of 1 + L(s) = 0 only in LHP
- Critical gain, g_0 , occurs when zeros of $1 + g_0L(j\omega_0)$ on imaginary axis for some critical frequency ω_0 , i.e.

$$1 + g_0 L(j\omega_0) = 0 \tag{17}$$

Critical Gain Computation

- · Recall feedback control system stable if
 - 1. No pole-zero cancellations
 - **2.** Zeros of 1 + L(s) = 0 only in LHP
- Critical gain, g_0 , occurs when zeros of $1 + g_0 L(j\omega_0)$ on imaginary axis for some critical frequency ω_0 , i.e.

$$1 + g_0 L(j\omega_0) = 0 \tag{17}$$

Rewriting:

$$L(j\omega_0) = -\frac{1}{q_0} \tag{18}$$

Critical Gain Computation (continued)

• Polar form (i.e. gain and phase):

$$|L(j\omega_0)|e^{j\angle L(j\omega_0)} = -\frac{1}{g_0} \tag{19}$$

Critical Gain Computation (continued)

• Polar form (i.e. gain and phase):

$$|L(j\omega_0)|e^{j\angle L(j\omega_0)} = -\frac{1}{q_0} \tag{19}$$

• Magnitude/gain and phase:

$$g_0 = \frac{1}{|L(j\omega_0)|} \tag{20}$$

$$\angle L(j\omega_0) = \pm 180^{\circ} \tag{21}$$

Identify gain margins by:

- Identify gain margins by:
 - **1.** Identify all $\omega_{0,i}$ where $\angle L(j\omega_{0,i}) = \pm 180^{\circ}$

- Identify gain margins by:
 - **1.** Identify all $\omega_{0,i}$ where $\angle L(j\omega_{0,i}) = \pm 180^{\circ}$
 - **2.** Calculate all "candidate" $g_{0,i}$ using inverse of gain at $\omega_{0,i}$, i.e.

$$g_{0,i} = \frac{1}{|L(j\omega_{0,i})|} \tag{22}$$

- Identify gain margins by:
 - **1.** Identify all $\omega_{0,i}$ where $\angle L(j\omega_{0,i}) = \pm 180^{\circ}$
 - **2.** Calculate all "candidate" $g_{0,i}$ using inverse of gain at $\omega_{0,i}$, i.e.

$$g_{0,i} = \frac{1}{|L(j\omega_{0,i})|} \tag{22}$$

- 3. Upper gain margin: $\bar{g} = \min_i g_{0,i} > 1$
- **4.** Lower gain margin: $\underline{g} = \max_{i} g_{0,i} < 1$

- Identify gain margins by:
 - **1.** Identify all $\omega_{0,i}$ where $\angle L(j\omega_{0,i}) = \pm 180^{\circ}$
 - **2.** Calculate all "candidate" $g_{0,i}$ using inverse of gain at $\omega_{0,i}$, i.e.

$$g_{0,i} = \frac{1}{|L(j\omega_{0,i})|} \tag{22}$$

- 3. Upper gain margin: $\bar{g} = \min_i g_{0,i} > 1$
- **4.** Lower gain margin: $\underline{g} = \max_{i} g_{0,i} < 1$
- Feedback control system stable:

$$\underline{g} \le g \le \bar{g}$$
 (23)

Note: not all systems have upper and lower gain margins

Gain Margin Computation

- Identify gain margins by:
 - **1.** Identify all $\omega_{0,i}$ where $\angle L(j\omega_{0,i}) = \pm 180^{\circ}$
 - **2.** Calculate all "candidate" $g_{0,i}$ using inverse of gain at $\omega_{0,i}$, i.e.

$$g_{0,i} = \frac{1}{|L(j\omega_{0,i})|} \tag{22}$$

- **3.** Upper gain margin: $\bar{g} = \min g_{0,i} > 1$
- **4.** Lower gain margin: $g = \max_{i} g_{0,i} < 1$
- Feedback control system stable:

$$g \le g \le \bar{g}$$
 (23)

- Note: not all systems have upper and lower gain margins
- FDC: feedback control system typically sufficiently robust if $\underline{g} \leq$ 0.5 and $\bar{g} \geq$ 2 for gain margin
 - I.e. $g \le -6$ dB and $\bar{g} \ge 6$ dB

Critical Phase Model

• Consider phase perturbation to *G*(*s*)

Critical Phase Model

• Consider phase perturbation to *G*(*s*)

• Define perturbed open-loop transfer function as $e^{-j\theta}L(s)$

Critical Phase Model

• Consider phase perturbation to *G*(*s*)

- Define perturbed open-loop transfer function as $e^{-j\theta}L(s)$
- \bullet Phase margin determined by assessing for what critical values of θ feedback control system goes unstable

Critical Phase Computation

- Recall feedback control system stable if
 - 1. No pole-zero cancellations
 - **2.** Zeros of 1 + L(s) = 0 only in LHP

Critical Phase Computation

- Recall feedback control system stable if
 - 1. No pole-zero cancellations
 - **2.** Zeros of 1 + L(s) = 0 only in LHP
- Critical phase, θ_0 , occurs when zeros of $1 + e^{-j\theta}L(j\omega_0)$ on imaginary axis for some critical frequency ω_0 , i.e.

$$1 + e^{-j\theta_0}L(j\omega_0) = 0 \tag{24}$$

Critical Phase Computation

- · Recall feedback control system stable if
 - 1. No pole-zero cancellations
 - **2.** Zeros of 1 + L(s) = 0 only in LHP
- Critical phase, θ_0 , occurs when zeros of $1 + e^{-j\theta}L(j\omega_0)$ on imaginary axis for some critical frequency ω_0 , i.e.

$$1 + e^{-j\theta_0}L(j\omega_0) = 0 \tag{24}$$

Rewriting:

$$L(j\omega_0) = -e^{j\theta_0} \tag{25}$$

• Polar form (i.e. gain and phase):

$$|L(j\omega_0)|e^{j\angle L(j\omega_0)} = -e^{j\theta_0}$$
(26)

• Polar form (i.e. gain and phase):

$$|L(j\omega_0)|e^{j\angle L(j\omega_0)} = -e^{j\theta_0} \tag{26}$$

Magnitude/gain and phase:

$$|L(j\omega_0)|=1 \tag{27}$$

$$\theta_0 = \pm 180^\circ + \angle L(j\omega_0) \tag{28}$$

• Polar form (i.e. gain and phase):

$$|L(j\omega_0)|e^{j\angle L(j\omega_0)} = -e^{j\theta_0} \tag{26}$$

Magnitude/gain and phase:

$$|L(j\omega_0)|=1 \tag{27}$$

$$\theta_0 = \pm 180^\circ + \angle L(j\omega_0) \tag{28}$$

• θ_0 typically represented as positive number

• Polar form (i.e. gain and phase):

$$|L(j\omega_0)|e^{j\angle L(j\omega_0)} = -e^{j\theta_0} \tag{26}$$

Magnitude/gain and phase:

$$|L(j\omega_0)|=1 \tag{27}$$

$$\theta_0 = \pm 180^\circ + \angle L(j\omega_0) \tag{28}$$

- θ_0 typically represented as positive number
- ullet Phase margin referenced to either ± 180 and symmetric for positive and negative heta

Identify phase margin by:

- Identify phase margin by:
 - **1.** Identify $\omega_{0,i}$ where $|L(j\omega_{0,i})| = 1$

- Identify phase margin by:
 - **1.** Identify $\omega_{0,i}$ where $|L(j\omega_{0,i})| = 1$
 - **2.** Calculate "candidate" $\theta_{0,i}$ using distance from 180°, i.e.

$$\theta_{0,i} = \pm 180^{\circ} + \angle L(j\omega_0) \tag{29}$$

- Identify phase margin by:
 - **1.** Identify $\omega_{0,i}$ where $|L(j\omega_{0,i})| = 1$
 - **2.** Calculate "candidate" $\theta_{0,i}$ using distance from 180°, i.e.

$$\theta_{0,i} = \pm 180^{\circ} + \angle L(j\omega_0) \tag{29}$$

3. Phase margin, $\bar{\theta} = \min_{i} |\theta_{0,i}|$

- Identify phase margin by:
 - **1.** Identify $\omega_{0,i}$ where $|L(j\omega_{0,i})| = 1$
 - **2.** Calculate "candidate" $\theta_{0,i}$ using distance from 180°, i.e.

$$\theta_{0,i} = \pm 180^{\circ} + \angle L(j\omega_0) \tag{29}$$

- **3.** Phase margin, $\bar{\theta} = \min_{i} |\theta_{0,i}|$
- Feedback control system stable:

$$-\bar{\theta} \le \theta \le \bar{\theta} \tag{30}$$

- Identify phase margin by:
 - **1.** Identify $\omega_{0,i}$ where $|L(j\omega_{0,i})| = 1$
 - **2.** Calculate "candidate" $\theta_{0,i}$ using distance from 180°, i.e.

$$\theta_{0,i} = \pm 180^{\circ} + \angle L(j\omega_0) \tag{29}$$

- **3.** Phase margin, $\bar{\theta} = \min_{i} |\theta_{0,i}|$
- Feedback control system stable:

$$-\bar{\theta} \le \theta \le \bar{\theta} \tag{30}$$

• FDC: feedback control system typically sufficiently robust if $\bar{\theta} \geq$ 45° for phase margin

Feedback Control System

Feedback Control System

- Synthesize K(s) to achieve design requirements:
 - 1 Stable with good stability margins

Feedback Control System

- Synthesize K(s) to achieve design requirements:
 - 1 Stable with good stability margins
 - **2** Good tracking, i.e. transfer function from $y_c \rightarrow e$ small
 - **3** Disturbance rejection, i.e. transfer function from $w \rightarrow y$ small
 - **4** Sensor noise filtering, i.e. transfer function from $v \rightarrow e$ small
 - **5** Control effort realistic, i.e. |u| not too large
- Performance requirements: 2-5

Loop-Shaping to Satisfy Requirements

- **Loop-shaping** control design for synthesizing K(s) for SISO systems:
 - "Shape" SISO open-loop transfer function, L(s) = G(s)K(s), to have certain frequency response characteristics

Loop-Shaping to Satisfy Requirements

- **Loop-shaping** control design for synthesizing K(s) for SISO systems:
 - "Shape" SISO open-loop transfer function, L(s) = G(s)K(s), to have certain frequency response characteristics
- Primary aspect of loop-shaping: K(s) has additive effect on magnitude subplot of Bode plot when considered in decibels:

$$20\log_{10}|L(j\omega)| = 20\log_{10}|G(j\omega)K(j\omega)| = 20\log_{10}|G(j\omega)| + 20\log_{10}|K(j\omega)|$$
(31)

Loop-Shaping to Satisfy Requirements

- **Loop-shaping** control design for synthesizing K(s) for SISO systems:
 - "Shape" SISO open-loop transfer function, L(s) = G(s)K(s), to have certain frequency response characteristics
- Primary aspect of loop-shaping: K(s) has additive effect on magnitude subplot of Bode plot when considered in decibels:

$$20\log_{10}|L(j\omega)| = 20\log_{10}|G(j\omega)K(j\omega)| = 20\log_{10}|G(j\omega)| + 20\log_{10}|K(j\omega)|$$
(31)

- To form suitable L(s), use multiple **control stages** for different regions of Bode plot using this additive property for shaping L(s)
- Multiplying each stage together, i.e. using each stage *in series*: provides full controller transfer function K(s)

L(s) for Stability Requirement

- If open-loop transfer function, L(s), satisfies following:
 - 1 No poles or zeros in RHP
 - 2 |L(0)| > 0
 - **3** Single gain crossover frequency ω_c
 - 4 $|L(j\omega)|_{\mathrm{dB}}/\mathrm{decade} \geq -30$ dB/decade for $\frac{\omega_c}{\sqrt{10}} < \omega < \sqrt{10}\omega_c$
 - **5** $|L|_{dB} \geq 6$ dB for $\omega \leq \frac{\omega_c}{\sqrt{10}}$
 - **6** $|L|_{dB} \leq -6$ dB for $\omega \geq \sqrt{10}\omega_c$

Then, confidently claim feedback control system achieves stability requirements

• Recall S + T = 1: one cannot simultaneously satisfy all design requirements

- Recall S + T = 1: one cannot simultaneously satisfy all design requirements
- Key idea in frequency domain control design: output commands designed to be low frequency signals relative to any high frequency noise signals on actual output

- Recall S + T = 1: one cannot simultaneously satisfy all design requirements
- Key idea in frequency domain control design: output commands designed to be low frequency signals relative to any high frequency noise signals on actual output
- Requires feedback control system satisfies:
 - **1** $|S(j\omega)|$ ≪ 1 at low ω
 - $2 |T(j\omega)| \ll 1$ at high ω

- Recall S + T = 1: one cannot simultaneously satisfy all design requirements
- Key idea in frequency domain control design: output commands designed to be low frequency signals relative to any high frequency noise signals on actual output
- Requires feedback control system satisfies:
 - $|S(j\omega)| \ll 1$ at low ω
 - $2 |T(j\omega)| \ll 1$ at high ω
- Translating 1 and 2 to open-loop transfer function, $L(j\omega)$, provides equivalent loop-shaping performance requirements:
 - 1 $|L(j\omega)| \gg 1$ at low ω
 - **2** $|L(j\omega)| \ll 1$ at high ω
 - $3 \left| \frac{K(j\omega)}{1 + L(j\omega)} \right| \ll 1 \ \forall \ \omega$

Loop-Shaping Visualization

• Analyzed visually using magnitude subplot of Bode plot of $L(j\omega)$

Loop-Shaping Visualization

• Analyzed visually using magnitude subplot of Bode plot of $L(j\omega)$

- For control effort requirement: analyze Bode plot of $K(j\omega)S(j\omega)$ in parallel with loop-shaping of L(s)
 - Typically design $K(j\omega)$ not too large where $G(j\omega)$ small
 - Similar to high frequency requirement for sensor noise filtering

 Loop-shaping uses multiple N control stages to shape different frequency regions of L(s)

- Loop-shaping uses multiple N control stages to shape different frequency regions of L(s)
- Design controllers in series form:

$$K(s) = K_1(s) \cdots K_N(s) \tag{32}$$

- Additive in Bode plot: primary analysis tool
- Each stage in series \rightarrow multiplying each together provides full controller, K(s)

- Loop-shaping uses multiple N control stages to shape different frequency regions of L(s)
- Design controllers in series form:

$$K(s) = K_1(s) \cdots K_N(s) \tag{32}$$

- Additive in Bode plot: primary analysis tool
- Each stage in series \rightarrow multiplying each together provides full controller, K(s)
- Four typical control stages:
 - Proportional
 - 2 Integral
 - 3 Lead
 - 4 Low-Pass Filter

- Loop-shaping uses multiple N control stages to shape different frequency regions of L(s)
- Design controllers in series form:

$$K(s) = K_1(s) \cdots K_N(s) \tag{32}$$

- Additive in Bode plot: primary analysis tool
- Each stage in series \rightarrow multiplying each together provides full controller, K(s)
- Four typical control stages:
 - 1 Proportional
 - 2 Integral
 - 3 Lead
 - 4 Low-Pass Filter
- Typically least number of stages, i.e., less complexity, preferred by control designers

General SISO Loop-Shaping Design

 Consider following iterative procedure for loop-shaping design of K(s) until all design requirements satisfied

General SISO Loop-Shaping Design

- Consider following iterative procedure for loop-shaping design of K(s) until all design requirements satisfied
 - 1 Use proportional gain control stage to set loop bandwidth, ω_c
 - May need to obtain requirements on ω_c from t_s

- Consider following iterative procedure for loop-shaping design of K(s) until all design requirements satisfied
 - 1 Use proportional gain control stage to set loop bandwidth, ω_c
 - May need to obtain requirements on ω_c from t_s
 - **2** Use lead control stage(s) to reduce $|L(j\omega)|$ slope about ω_c to >-30 dB/10 ω for stability and robustness

- Consider following iterative procedure for loop-shaping design of K(s) until all design requirements satisfied
 - 1 Use proportional gain control stage to set loop bandwidth, ω_c
 - May need to obtain requirements on ω_c from t_s
 - 2 Use lead control stage(s) to reduce $|L(j\omega)|$ slope about ω_c to >-30 dB/10 ω for stability and robustness
 - **3** Use integral control stage(s) to increase $|L(j\omega)|$ at low ω , i.e. good tracking
 - May need to obtain requirements on $L(j\omega)$ from $S(j\omega)$ or e_{ss}

- Consider following iterative procedure for loop-shaping design of K(s) until all design requirements satisfied
 - 1 Use proportional gain control stage to set loop bandwidth, ω_c
 - May need to obtain requirements on ω_c from t_s
 - 2 Use lead control stage(s) to reduce $|L(j\omega)|$ slope about ω_c to >-30 dB/10 ω for stability and robustness
 - **3** Use integral control stage(s) to increase $|L(j\omega)|$ at low ω , i.e. good tracking
 - May need to obtain requirements on $L(j\omega)$ from $S(j\omega)$ or e_{ss}
 - **4** Use low-pass filter stage(s) to decrease $|L(j\omega)|$ at high ω , i.e. good noise filtering
 - May need to obtain requirements on $L(j\omega)$ from $T(j\omega)$

- Consider following iterative procedure for loop-shaping design of K(s) until all design requirements satisfied
 - 1 Use proportional gain control stage to set loop bandwidth, ω_c
 - May need to obtain requirements on ω_c from t_s
 - 2 Use lead control stage(s) to reduce $|L(j\omega)|$ slope about ω_c to >-30 dB/10 ω for stability and robustness
 - **3** Use integral control stage(s) to increase $|L(j\omega)|$ at low ω , i.e. good tracking
 - May need to obtain requirements on $L(j\omega)$ from $S(j\omega)$ or e_{ss}
 - **4** Use low-pass filter stage(s) to decrease $|L(j\omega)|$ at high ω , i.e. good noise filtering
 - May need to obtain requirements on $L(j\omega)$ from $T(j\omega)$
 - 5 Potentially iterate:
 - Integral and filter stages may slightly affect ω_c

 Most common classical control design method: proportional-integral-derivative (PID) control law defined in parallel form:

$$K_{PID}(s) = \frac{u(s)}{e(s)} = K_p + \frac{K_i}{s} + K_d s$$
 (33)

- K_p : proportional gain
- K_i: integral gain
- K_d : derivative gain

PID Control

 Most common classical control design method: proportional-integral-derivative (PID) control law defined in parallel form:

$$K_{PID}(s) = \frac{u(s)}{e(s)} = K_p + \frac{K_i}{s} + K_d s$$
 (33)

- K_p : proportional gain
- K_i: integral gain
- K_d : derivative gain
- If $K_d = 0$: proportional-integral (PI) controller

 Most common classical control design method: proportional-integral-derivative (PID) control law defined in parallel form:

$$K_{PID}(s) = \frac{u(s)}{e(s)} = K_p + \frac{K_i}{s} + K_d s$$
 (33)

- K_p : proportional gain
- K_i: integral gain
- K_d : derivative gain
- If $K_d = 0$: proportional-integral (PI) controller
- If $K_i = 0$: proportional-derivative (PD) controller

 Most common classical control design method: proportional-integral-derivative (PID) control law defined in parallel form:

$$K_{PID}(s) = \frac{u(s)}{e(s)} = K_p + \frac{K_i}{s} + K_d s$$
 (33)

- K_p : proportional gain
- K_i: integral gain
- K_d : derivative gain
- If $K_d = 0$: proportional-integral (PI) controller
- If $K_i = 0$: proportional-derivative (PD) controller
- If $K_d = K_i = 0$: simple proportional (P) controller

Alternative Forms of PID Controller

For PID control design via loop-shaping: series form, a.k.a. interacting form, of PID controller

$$K_{PID}(s) = k \left(\frac{s + \omega_i}{s}\right) \left(\frac{1}{\omega_d}s + 1\right)$$
 (34)

- k: overall gain
- ω_i : integral frequency
- ω_d : derivative frequency

PID Control

- Noting derivative boost stage: derivative term increases asymptotic slope of open-loop transfer function, L(s)
 - Amplifies any high frequency sensor noise in y_m in classical feedback control system

- Noting derivative boost stage: derivative term increases asymptotic slope of open-loop transfer function, L(s)
- ullet Amplifies any high frequency sensor noise in y_m in classical feedback control system
- To overcome unfavorable outcome, often derivative term in PID control alternatively implemented using filtered derivative

- Noting derivative boost stage: derivative term increases asymptotic slope of open-loop transfer function, L(s)
 - Amplifies any high frequency sensor noise in y_m in classical feedback control system
- To overcome unfavorable outcome, often derivative term in PID control alternatively implemented using filtered derivative
- PID filtered parallel form:

$$K_{PID'}(s) = K_p + \frac{K_i}{s} + K_d \frac{\omega_{\infty}}{1 + \omega_{\infty} \frac{1}{s}} = K_p + \frac{K_i}{s} + K_d \frac{s}{\frac{1}{\omega_{\infty}} s + 1}$$
(35)

- Noting derivative boost stage: derivative term increases asymptotic slope of open-loop transfer function, L(s)
 - Amplifies any high frequency sensor noise in y_m in classical feedback control system
- To overcome unfavorable outcome, often derivative term in PID control alternatively implemented using filtered derivative
- PID filtered parallel form:

$$K_{PID'}(s) = K_p + \frac{K_i}{s} + K_d \frac{\omega_{\infty}}{1 + \omega_{\infty} \frac{1}{s}} = K_p + \frac{K_i}{s} + K_d \frac{s}{\frac{1}{\omega_{\infty}} s + 1}$$
(35)

PID filtered series form:

$$K_{PID'}(s) = k \left(\frac{s + \omega_i}{s}\right) \left(\frac{\beta^2 s + \omega_\infty}{s + \omega_\infty}\right)$$
 (36)

PID Control via Loop-shaping Control Stages

• Equivalently, by substitutions $\omega_{\infty} = \beta \omega_c$:

$$K_{PID'}(s) = k\beta \left(\frac{s + \omega_i}{s}\right) \left(\frac{\beta s + \omega_c}{s + \beta \omega_c}\right)$$
 (37)

PID Control via Loop-shaping Control Stages

• Equivalently, by substitutions $\omega_{\infty} = \beta \omega_{c}$:

$$K_{PID'}(s) = k\beta \left(\frac{s + \omega_i}{s}\right) \left(\frac{\beta s + \omega_c}{s + \beta \omega_c}\right)$$
 (37)

- Demonstrates filtered PID control has particular loop-shaping controller employing three control stages:
 - Proportional gain of $k\beta$
 - Integral boost at ω_i
 - Lead stage at β and $\omega_{c}=\frac{\omega_{\infty}}{\beta}$

PID Control via Loop-shaping Control Stages

• Equivalently, by substitutions $\omega_{\infty} = \beta \omega_{c}$:

$$K_{PID'}(s) = k\beta \left(\frac{s + \omega_i}{s}\right) \left(\frac{\beta s + \omega_c}{s + \beta \omega_c}\right)$$
 (37)

- Demonstrates filtered PID control has particular loop-shaping controller employing three control stages:
 - Proportional gain of $k\beta$
 - Integral boost at ω_i
 - Lead stage at β and $\omega_{c} = \frac{\omega_{\infty}}{\beta}$
- Thus, stages allow loop-shaping design procedure to iterate on values to affect low frequency and crossover regions of the $L(j\omega)$
 - Also implement as classical parallel PID control gains

PID Control with Filter Subsystem

- Note: PID controller does not inherently use any low-pass filter stages
 - Many need to use low-pass filter stage in addition to PID controller

PID Control with Filter Subsystem

- Note: PID controller does not inherently use any low-pass filter stages
 - · Many need to use low-pass filter stage in addition to PID controller
 - Often part of filter subsystem for y_m

PID Control with Filter Subsystem

- Note: PID controller does not inherently use any low-pass filter stages
 - Many need to use low-pass filter stage in addition to PID controller
 - Often part of filter subsystem for y_m

 Digital system typically limits update rate, i.e. frequency, of y_c upstream of control system

PID Control

 Another alternative: measure output derivative directly instead of computing derivative of tracking error signal

- Another alternative: measure output derivative directly instead of computing derivative of tracking error signal
- Derivative term in PID control alternatively implemented **rate feedback control**: derivative of output, i.e. "rate," fed back

- Another alternative: measure output derivative directly instead of computing derivative of tracking error signal
- Derivative term in PID control alternatively implemented rate feedback control: derivative of output, i.e. "rate," fed back
- PI control with rate feedback block diagram:

- Another alternative: measure output derivative directly instead of computing derivative of tracking error signal
- Derivative term in PID control alternatively implemented rate feedback control: derivative of output, i.e. "rate," fed back
- PI control with rate feedback block diagram:

Considered SIMO feedback control system: two separate outputs fed back to controller: error and output rate

- Another alternative: measure output derivative directly instead of computing derivative of tracking error signal
- Derivative term in PID control alternatively implemented rate feedback control: derivative of output, i.e. "rate," fed back
- PI control with rate feedback block diagram:

- Considered SIMO feedback control system: two separate outputs fed back to controller: error and output rate
- Also considered stability augmentation system (SAS) using rate, second closed-loop PI controller using output error

- SISO LTI "Classical" Feedback Control System
 - Negative feedback to cascaded controller, K, and plant, G
 - Characterized by four fundmental transfer functions
 - Open-loop transfer function: L = GK

- SISO LTI "Classical" Feedback Control System
 - Negative feedback to cascaded controller, K, and plant, G
 - Characterized by four fundmental transfer functions
 - Open-loop transfer function: L = GK
- SISO LTI System: Stability and Robustness
 - Numerator of 1 + L(s): SISO LTI feedback characteristic polynomial
 - Classical margins: gain or phase when 1 + L(s) zeros $\rightarrow \mathsf{RHP}$

- SISO LTI "Classical" Feedback Control System
 - Negative feedback to cascaded controller, K, and plant, G
 - Characterized by four fundmental transfer functions
 - Open-loop transfer function: L = GK
- SISO LTI System: Stability and Robustness
 - Numerator of 1 + L(s): SISO LTI feedback characteristic polynomial
 - Classical margins: gain or phase when 1 + L(s) zeros $\rightarrow RHP$
- Loop-Shaping Control Design
 - Output commands: low frequency signals & output noise signals: high frequency
 - Shape low frequency tracking, stability margins, high frequency suppression
 - Stages: Proportional Gain, Lead, Integral/Low Frequency Boost, Rolloff

- SISO LTI "Classical" Feedback Control System
 - Negative feedback to cascaded controller, K, and plant, G
 - Characterized by four fundmental transfer functions
 - Open-loop transfer function: L = GK
- SISO LTI System: Stability and Robustness
 - Numerator of 1 + L(s): SISO LTI feedback characteristic polynomial
 - Classical margins: gain or phase when 1 + L(s) zeros $\rightarrow RHP$
- Loop-Shaping Control Design
 - Output commands: low frequency signals & output noise signals: high frequency
 - Shape low frequency tracking, stability margins, high frequency suppression
 - Stages: Proportional Gain, Lead, Integral/Low Frequency Boost, Rolloff
- PID Control Design
 - Uses 3-stages in parallel or series
 - Tuning using time- or frequency-domain techniques