We know that,

$$P_{K}(x) := E(Y = K | X = x)$$

$$= \pi_{K} f_{K}(x)$$

$$\stackrel{\stackrel{\longrightarrow}{=}}{=} \pi_{K} f_{L}(x)$$
Here one distribution is normal
$$f_{K}(x) := \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2\sigma_{K}^{2}}(x - \mu_{K})^{2}\right)$$
We get,
$$P_{K}(x) := \pi_{K} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2\sigma_{K}^{2}}(x - \mu_{K})^{2}\right)$$

$$\stackrel{\stackrel{\longrightarrow}{=}}{=} \pi_{L} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2\sigma_{K}^{2}}(x - \mu_{K})^{2}\right)$$

$$\stackrel{\stackrel{\longrightarrow}{=}}{=} \pi_{L} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2\sigma_{K}^{2}}(x - \mu_{K})^{2}\right)$$

Pr (91) =
$$\pi_{k} \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^{2}}(\alpha - \mu_{k})^{2}\right)$$

Becomes σ is dependent on k , here σ

would be σ_{k} .

Pr (91) = $\pi_{k} \frac{1}{\sqrt{2\pi}\sigma_{k}} \exp\left(-\frac{1}{2\sigma_{k}^{2}}(\alpha - \mu_{k})^{2}\right)$

Let $\alpha = \frac{1}{\sqrt{2\pi}\sigma_{k}} \exp\left(-\frac{1}{2\sigma_{k}^{2}}(\alpha - \mu_{k})^{2}\right)$

because α is independent of k le it does not vary with k .

Taking $\log \alpha$ both sides

 $\log (P_{k}(\alpha)) = \log(\alpha) + \log(\pi_{k}) - \log(\sigma_{k})$
 $+ \left(-\frac{1}{2\sigma_{k}^{2}}(\alpha + \mu_{k})^{2}\right)$
 $\log (P_{k}(k)) = \left(-\frac{1}{2\sigma_{k}^{2}}(\alpha + \mu_{k})^{2}\right)$
 $\log (P_{k}(k)) = \left(-\frac{1}{2\sigma_{k}^{2}}(\alpha + \mu_{k})^{2}\right)$