GROMACS Lysozyme in Water

Command	Purpose	Flags/Parameters Explained	Notes / Mnemonics
grep -v HOH 1aki.pdb > 1AKI_clean.pdb	Remove water molecules from PDB file	-v: inverse match (exclude lines with "HOH")	Clean PDB from water
gmx pdb2gmx -f 1AKI_clean.pdb -o 1AKI_processed.gro -water spce	Generate topology and processed structure file	-f: input file, -o: output file, -water spce: use SPC/E water model	"pdb2gmx" = PDB to GROMACS format
gmx editconf -f 1AKI_processed.gro -o 1AKI_newbox.gro -c -d 1.0 -bt cubic	Define box for solvation	-c: center, -d 1.0: 1 nm distance, -bt cubic: box type	"editconf" = edit configuration
gmx solvate -cp 1AKI_newbox.gro -cs spc216.gro - o 1AKI_solv.gro -p topol.top	Add water molecules	-cp: protein config, -cs: solvent config, -p: update topology	"solvate" = add solvent
gmx grompp -f ions.mdp -c 1AKI_solv.gro -p topol.top -o ions.tpr	Prepare for ion addition	grompp: preprocessor, -f: parameter file, -c: structure, -p: topology	"grompp" = GROMACS preprocessor
gmx genion -s ions.tpr -o 1AKI_solv_ions.gro -p topol.top -pname NA -nname CL -neutral	Add ions to neutralize system	-pname, -nname: names of ions, - neutral: neutralize charge	"genion" = generate ions
gmx grompp -f minim.mdp -c 1AKI_solv_ions.gro -p topol.top -o em.tpr	Prepare energy minimization	em.tpr: energy minimization input	"minim" = minimization
gmx mdrun -v -deffnm em	Run energy minimization	-v: verbose, -deffnm: default filenames prefix	"mdrun" = run MD simulation
gmx energy -f em.edr -o potential.xvg	Extract potential energy	-f: energy file, -o: output xvg plot	Potential energy check
gmx grompp -f nvt.mdp -c em.gro -r em.gro -p topol.top -o nvt.tpr	Prep for NVT equilibration	-r: reference structure	"NVT" = constant Number, Volume, Temperature
gmx mdrun -deffnm nvt	Run NVT equilibration	Output: nvt.gro, nvt.edr etc.	
gmx energy -f nvt.edr -o temperature.xvg	Check temperature stability	Temperature plot	

GROMACS Lysozyme in Water

gmx grompp -f npt.mdp -c nvt.gro -r nvt.gro -t nvt.cpt -p topol.top -o npt.tpr	Prep for NPT equilibration	-t: checkpoint (continuation)	"NPT" = constant Number, Pressure, Temperature
gmx mdrun -deffnm npt	Run NPT equilibration	Output: npt.gro, npt.edr	
gmx energy -f npt.edr -o pressure.xvg	Extract pressure profile		
gmx energy -f npt.edr -o density.xvg	Extract density profile		
gmx grompp -f md.mdp -c npt.gro -t npt.cpt -p topol.top -o md_0_1.tpr	Prep final production MD run	md.mdp: production parameters	
gmx mdrun -deffnm md_0_1	Run final MD simulation	Produces .xtc, .gro, .edr, .log	
gmx trjconv -s md_0_1.tpr -f md_0_1.xtc -o md_0_1_noPBC.xtc -pbc mol -center	Remove PBC and center molecule	-pbc mol: remove jumps, -center: center molecule	"trjconv" = trajectory conversion
gmx rms -s md_0_1.tpr -f md_0_1_noPBC.xtc -o rmsd.xvg -tu ns	Compute RMSD of MD run	-tu ns: time unit in nanoseconds	
gmx rms -s em.tpr -f md_0_1_noPBC.xtc -o rmsd_xtal.xvg -tu ns	RMSD vs. crystal structure	Compares simulation to starting (minimized) state	
gmx gyrate -s md_0_1.tpr -f md_0_1_noPBC.xtc - o gyrate.xvg	Radius of gyration plot	Measures compactness	

➤ pdb2gmx: Convert PDB to GROMACS

editconf: Edit box (Confine molecule)

solvate: Solvent additiongrompp: Pre-process input

genion: Add IONs

> mdrun: Run simulation

> energy: Extract energy terms

> trjconv: Trajectory conversion (post-processing)

> rms / gyrate: Analysis (structure deviation and compactness)

GROMACS Lysozyme in Water

