

N-Channel 60-V (D-S) Single and Quad MOSFETs

PRODUCT SUMMARY						
Part Number	V _{(BR)DSS} Min (V) r _{DS(on)} Max		V _{GS(th)} (V)	I _D (A)		
2N6660	60	3 @ V _{GS} = 10 V	0.8 to 2	1.1		
VQ1004J/P	00	3.5 @ V _{GS} = 10 V	0.8 to 2.5	0.46		

FEATURES

• Low On-Resistance: 1.3 Ω

Low Threshold: 1.7 V

Low Input Capacitance: 35 pF

Fast Switching Speed: 8 ns

Low Input and Output Leakage

BENEFITS

- Low Offset Voltage
- Low-Voltage Operation
- Easily Driven Without Buffer
- High-Speed Circuits
- Low Error Voltage

APPLICATIONS

- Direct Logic-Level Interface: TTL/CMOS
- Drivers: Relays, Solenoids, Lamps, Hammers, Displays, Memories, Transistors, etc.
- Battery Operated Systems
- Solid-State Relays

Device Marking Side View

2N6660 "S" fllxxyy

"S" = Siliconix Logo f = Factory Code ll = Lot Traceability xxyy = Date Code

Sidebraze: VQ1004P

Device Marking Top View

VQ1004J "S" fllxxyy

VQ1004P "S" fllxxyy

"S" = Siliconix Logo f = Factory Code ll = Lot Traceability xxyy = Date Code

				Single		Total Quad	Unit	
Parameter		Symbol	2N6660	VQ1004J	VQ1004P	VQ1004J/P		
Drain-Source Voltage		V _{DS}	60	60	60		V	
Gate-Source Voltage		V_{GS}	±20	±30	±20			
Continuous Drain Current	T _C = 25°C	- I _D	1.1	0.46	± 0.46			
$(T_J = 150^{\circ}C)$	T _C = 100°C		0.8	0.26	0.26		Α	
Pulsed Drain Current ^a		I _{DM}	3	2	2		1	
D	T _C = 25°C		6.25	1.3	1.3	2	101	
Power Dissipation	T _C = 100°C	P _D	2.5	0.52	0.52	0.8	W	
Thermal Resistance, Junction-to-Ambient ^b		R_{thJA}	170	0.96	0.96	62.5		
Thermal Resistance, Junction-to-Case		R_{thJC}	20				°C/W	
Operating Junction and Storage Temperature Range		T _J , T _{stq}	-55 to 150					

Notos

a. Pulse width limited by maximum junction temperature.

b. This parameter not registered with JEDEC.

Vishay Siliconix

SPECIFICATIONS (T _A = 25°C UNLESS OTHERWISE NOTED)									
				Limits					
				2N6660		VQ1004J/P			
Parameter	Symbol	Test Conditions	Тура	Min	Max	Min	Max	Unit	
Static									
Drain-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 10 \mu\text{A}$	75	60		60		V	
Gate-Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}$, $I_D = 1 \text{ mA}$	1.7	0.8	2	0.8	2.5		
Gate-Body Leakage	lasa	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 15$	V		± 100		±100		
Gale-body Leakage	I _{GSS}	T _C = 1	25°C		±500		±500	nA	
		V _{DS} = 60 V, V _{GS} = 0 V		10					
		$V_{DS} = 35 \text{ V}, V_{GS} = 0 \text{ V}$	/				1	1	
Zero Gate		$V_{DS} = 48 \text{ V}, V_{GS} = 0 \text{ V}$	/						
Voltage Drain Current	I _{DSS}	T _C = 1	25°C		500		500	μΑ	
		V _{DS} = 28 V, V _{GS} = 0 V	/						
		T _C = 1	25°C					Ī	
On-State Drain Current ^b	I _{D(on)}	V _{DS} = 10 V, V _{GS} = 10	V 3	1.5		1.5		Α	
		$V_{GS} = 5 \text{ V}, I_D = 0.3 \text{ A}^{\circ}$	d 2		5		5		
Drain-Source On-Resistanceb	r _{DS(on)}	V _{GS} = 10 V, I _D = 1 A	1.3		3		3.5	Ω	
		T _C = 1	25°C ^d 2.4		4.2		4.9	1	
Forward Transconductance ^b	9fs	V _{DS} = 10 V, I _D = 0.5 A	A 350	170		170			
Common Source Output Conductance ^b	g _{os}	$V_{DS} = 10 \text{ V}, I_D = 0.1 \text{ A}$	A 1					mS	
Diode Forward Voltage	V _{SD}	$I_S = 0.99 \text{ A}, V_{GS} = 0 \text{ V}$	/ 0.8					V	
Dynamic									
Input Capacitance	C _{iss}		35		50		60		
Output Capacitance	C _{oss}	Vpc = 24 V Vcc = 0 V	25		40		50	pF	
Reverse Transfer Capacitance	C _{rss}	$V_{DS} = 24 \text{ V}, V_{GS} = 0 \text{ V}$ f = 1 MHz	7		10		10		
Drain-Source Capacitance	C _{ds}		30		40				
Switching ^c			•						
Turn-On Time	t _{ON}	$V_{DD} = 25 \text{ V, R}_{L} = 23.9$	Ω 8		10		10	ns	
Turn-Off Time	t _{OFF}	$I_D \cong 1 \text{ A, V}_{GEN} = 10 \text{ N}$ $R_G = 25 \Omega$	8.5		10		10] ''	

- Notes
 a. For DESIGN AID ONLY, not subject to production testing.
 b. Pulse test: PW ≤ 80 μs duty cycle ≤ 1%.
 c. Switching time is essentially independent of operating temperature.
 d. This parameter not registered with JEDEC on 2N6660.

VNDQ06

TYPICAL CHARACTERISTICS (T_A = 25°C UNLESS OTHERWISE NOTED)

Vishay Siliconix

TYPICAL CHARACTERISTICS (TA = 25°C UNLESS OTHERWISE NOTED)

V_{DS} - Drain-to-Source Voltage (V)

Load Condition Effects on Switching

Normalized Effective Transient Thermal Impedance, Junction-to-Case (TO-205AD)

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.

This datasheet has been downloaded from:

www. Data sheet Catalog.com

Datasheets for electronic components.