Project Planning Phase Project Planning Template (Product Backlog, Sprint Planning, Stories, Story points)

Sprint	Functional Requirement (EPIC)	User story Number	User story/Task	Story points	Priority	Team Members
Sprint-1	Create and configure IBM cloud services	USN-1	As a user, I need to enroll in cloud registration.		HIGH	S.Jijisha Starlin
Sprint-1		USN-2	After registration, I 2 will create a account in IBM cloud.		MEDIUM	S.Jijisha Starlin
Sprint-1		USN-3	After that, in IBM cloud, creating a Al platform	5	HIGH	R.V Rahitha
Sprint-1		USN-4	Create a node in IBM Watson platform	7	HIGH	R.V Rahitha
Sprint-1		USN-5	After creating node get device type and id	1	LOW	X. Reshma
Sprint-1		USN-6	Simulate the required data to view output	3	MEDIUM	X. Reshma
Sprint-2	Accumulation of required data	USN-7	Create a deep 5 HIGH learning by gathering data		HIGH	S. Jenet
Sprint-2		USN-8	Connect IBM Watson with deep learning through API key	2	LOW	S.Jenet
Sprint-2		USN-9	Built the project flow using deep learning	7 HIGH		S.Jijisha Starlin
Sprint-2		USN-10	Check the connection and view the output in data gathered	3	MEDIUM	S.Jijisha Starlin
Sprint-3	Create a database	USN-11	Launch the cloudant DB and create database to store the location data		HIGH	R.V Rahitha

Sprint-3		USN-12	Install python 2 LOW software		LOW	R.V Rahitha
Sprint-3		USN-13	Develop the python flask to publish details to IBM AI platform	6	HIGH	X. Reshma
Sprint-3		USN-14	Integrate the device id, authentication token in python flask	2	LOW	X. Reshma
Sprint-3		USN-15	Create a python code for the location	8	HIGH	S.Jenet
Sprint-4	Develop the python script	USN-16	Develop web application using deep learning	5	HIGH	S.Jenet
Sprint-4		USN-17	Connect the IBM Al platform and get the location and store the data in the cloudant	2	MEDIUM	S.Jijisha Starlin
Sprint-4		USN-18	Create a multilayered deep convolution nural network mode that tells the intensity of disaster	8	HIGH	S.Jijisha Starlin
Sprint-4		USN-19	Integrate the type of disaster is identified and show cased on the open CV window	11	HIGH	R.V Rahitha
Sprint-4		USN-20	Send the notification is the webcam to capture the video frame	4	HIGH	R.V Rahitha

Project Tracker, Velocity & Burndown Chart:

Sprint	Total Story points	Duration	Sprint start date	Sprint End Date(planned)	Story point completed(as planned End date)	Sprint Release Data (Actual)
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	20	29 Oct 2022
Sprint-2	17	6 Days	24 Oct 2022	29 Oct 2022	17	29 Oct 2022
Sprint-3	22	6 Days	24 Oct 2022	29 Oct 2022	22	29 Oct 2022
Sprint-4	30	6 Days	24 Oct 2022	29 Oct 2022	30	29 Oct 2022

Velocity:

Sprint-1

Average Velocity =Sprint duration / Velocity

=20/4

=5

Sprint-2

Average Velocity = Sprint duration / Velocity

=17/4

=4.25

Sprint-3

Average Velocity =Sprint duration / Velocity

=22/4

=5.5

Sprint-4

Average Velocity = Sprint duration / Velocity

=30/4

=7.5