

AULA28

Unsupervised Learning: Topic Analysis

Instrutor: Raphael Ballet

Background:

- > Engenheiro de Controle e Automação (IMT)
- > Mestre em Sistemas Aeroespaciais e Mecatrônica (ITA)
- Data Scientist Elo7

Interesses:

Drones

Aprendizado de Máquina

Processamento de Linguagem Natural

Robótica

Visão Computacional

Sistemas de recomendação

Planejamento:

- 1. Introdução
- 2. Principal Component Analysis (PCA)
- 3. T-SNE
- 4. Topic Analysis:
 - a) Non-Negative Matriz Factorization (NMF)
 - b) Latent Dirichlet Allocation (LDA)
- 5. Sistemas de recomendação
- 6. Case

Documentos

Visualização dos dados – 2D e 3D

Visualização mais do que 3D?

Visualização dos dados: notebook

Visualização 4 dimensões

Visualização 7 dimensões

- Problemas de NLP
- Vetor de atributos do texto:

Visualização NLP (>1k dimensões)

Visualização NLP (>10k dimensões): Desejo

2. Redução de Dimensionalidade

- Dois objetivos principais:
 - Facilitar visualização e intuição
 - » Amenizar o problema de similaridade entre observações

2. Redução de Dimensionalidade

- Dois objetivos principais:
 - Facilitar visualização e intuição
 - » Amenizar o problema de similaridade entre observações

Maldição da dimensionalidade

2. Redução de Dimensionalidade

- Técnicas principais:
 - > PCA
 - > T-SNE (Visualização apenas)
 - Topic Analysis (NMF e LDA)

- Principal Component Analysis:
 - ▶ Encontra atributos de maior variação → "mais importantes"
 - ➢ Elimina atributos de menor variação → "menos explicativos"

Componentes principais:

- PCA: Componentes principais:
 - Primeiro componente:
 - Direção (combinação linear) de maior variação nos dados

Segundo componente:

» Direção da segunda maior variação e ortogonal ao primeiro (descorrelacionado)

- Passos do algoritmo PCA:
 - 1) Remove média amostral dos dados
 - 2) Rotaciona os eixos para descorrelacionar os atributos
 - 3) Ordena os componentes principais em nível de variância
 - 4) Remove os componentes menos variantes (Opcional)

1) Remove média amostral dos dados

2) Rotaciona os eixos para descorrelacionar os atributos

3) Ordena os componentes principais em nível de variância

X₁: Primeiro componente principal

X₂: Segundo componente principal

4) Remove os componentes menos variantes (Opcional)

X₁: Primeiro componente principal

X₂: Segundo componente principal

- Quando remover componentes principais:
 - Atributos muito correlacionados
 - Componentes secundários pouco variantes → baixa variância explicada
 - Balanço entre precisão e simplificação
 - Encontrar dimensão intrínseca

• Exemplo: notebook

Vantagens:

- > Permite reduzir dimensionalidade do problema sem perder informação
- ▶ Menor dimensionalidade → Maior velocidade e menos memória para algoritmos de ML
- Resultados determinísticos

Desvantagens:

- » Dimensões resultantes (componentes principais) não representam os atributos
- > Perde a "explicabilidade" do algoritmo
- » Má escolha de número de componentes pode prejudicar análise
- Encontra apenas relações lineares

3. Visualização: T-SNE

- T-distributed Stochastic Neighbor Embedding
 - » Mapeia N-dimensões em 2 ou 3 dimensões
 - Distância é proporcional a probabilidade de proximidade entre pontos (afinidade)
 - » Método iterativo baseado em otimização (gradiente descendente)
 - > Procura manter a estrutura dos dados

• Mas, nós já temos o PCA. Por que usar T-SNE?

- Mas, nós já temos o PCA. Por que usar T-SNE?
 - PCA encontra apenas relações lineares
 - > Falha ao encontrar estruturas complexas

- Mas, nós já temos o PCA. Por que usar T-SNE?
 - > PCA encontra apenas relações lineares
 - > Falha ao encontrar estruturas complexas

- Existem basicamente 2 parâmetros:
 - Learning rate: Taxa de aprendizado gradiente descendente
 - » Perplexity: Número aproximado de vizinhos de um ponto

(observação) – Entre 5 e 50

- Exemplo: notebook
- Projetor T-SNE Tensorflow

3. T-SNE

Vantagens:

- > Permite a visualização de relações entre dados multidimensionais
- Mantém a estrutura dos dados (não-linear)
- » Rápido e eficiente mesmo para grandes dimensões e grande quantidade de observações

3. T-SNE

Desvantagens:

- > Depende da escolha dos parâmetros (nem sempre fácil)
- Não possui repitibilidade dos resultados
- Distâncias entre clusters não significam nada
- > Interpretação dos resultados não trivial

- Problema já conhecido:
 - Documentos + Palavras = Muitas dimensões

Solução:

- Redução de dimensionalidade
- Clustering

Solução:

- Redução de dimensionalidade
- Clustering

• Problema:

Perda de interpretabilidade dos dados

Objetivo:

Català

Encontrar estrutura implícita nos documentos – Tópicos / Temas

The febrile phase involves high fever, often over 40 °C (104 °F), and is associated with generalized pain and a headache;

IAIIOI

gastrointestinal

- Principais algoritmos:
 - Non-Negative Matrix Factorization (NMF)
 - Latent Dirichlet Allocation (LDA)

- Non-Negative Matrix Factorization (NMF)
- Principal objetivo:
 - Decompor a matriz de frequência de palavras em representações de tópicos
 - > Documentos são compostos de combinações de tópicos
 - > Tópicos são compostos de combinações de palavras

NMF: Fatoração → A = WH

- Matrizes:
 - » A: Matriz de frequência de termos (M) em documentos (N)
 - > W: Matriz de pesos → distribuição de tópicos (K) nos documentos
 - → H: Matriz de atributos → distribuição de palavras nos tópicos

- Principais características:
 - » Precisa definir o número de tópicos
 - » Matrizes A, W e H não podem ter valores negativos
 - » Matrizes W e H podem reconstruir matriz A (aprox.)

- NMF pode ser utilizado em vários outros cenários:
 - > Segmentação de fontes sonoras do áudio:
 - Documentos: áudio
 - Features: espectograma do áudio
 - Segmentação de imagens:
 - . Documentos: imagem
 - Features: pixels

Exemplo: notebook

• Vantagens:

- > Tópicos são interpretáveis
- Naturalmente agregador (clustering)
- » Pode ser utilizado em outros contextos (ex: imagens, áudio etc)

Desvantagens:

- Solução aproximada
- Pode causar overfitting
- Limitação de utilizar apenas features positivas

- Latent Dirichlet Allocation (LDA)
- Método probabilístico
- Representa documentos como uma mistura de tópicos
- Precisa definir o número de tópicos (igual NMF)

Documento → Místura de tópicos

Tópicos → Mistura de palavras

Exemplo:

Document 1		Document 2		Document 3	
Eat	Α	Cat	В	Cat	В
Fish	Α	Dog	В	Eat	Α
Vegetables	Α	Pet	В	Fish	?
Fish	Α	Pet	В	Cat	В
Eat	Α	Fish	В	Fish	Α

Exemplo:

Document 1		Document 2		Document 3	
Eat	Α	Cat	В	Cat	В
Fish	Α	Dog	В	Eat	Α
Vegetables	Α	Pet	В	Fish	?
Fish	Α	Pet	В	Cat	В
Eat	Α	Fish	В	Fish	Α

Tópico A: Comida

Tópico B: Animais

Exemplo:

Document 1		Document 2		Document 3	
Eat	Α	Cat	В	Cat	В
Fish	Α	Dog	В	Eat	Α
Vegetables	Α	Pet	В	Fish	?
Fish	Α	Pet	В	Cat	В
Eat	Α	Fish	В	Fish	Α

Documento 1: Apenas tópico A

Documento 2: Apenas tópico B

• Documento 3: Mistura dos tópicos A e B

• Exemplo:

Document 1		Document 2		Document 3			
Eat	Α		Cat	В	Cat	В	
Fish	Α		Dog	В	Eat	Α	
Vegetables	Α		Pet	В	Fish	?	
Fish	Α		Pet	В	Cat	В	
Eat	Α		Fish	В	Fish	Α	

- Qual o tópico associado a palavra "Fish" no documento 3?
 - > P('Fish' | tópico A) = 0.75 (3 A, 1 B)
 - > P('Fish' | tópico B) = 0.25

Exemplo:

Document 1		Document 2		Document 3		
Eat	Α	Cat	В	Cat	В	
Fish	Α	Dog	В	Eat	Α	
Vegetables	Α	Pet	В	Fish	?	
Fish	Α	Pet	В	Cat	В	
Eat	Α	Fish	В	Fish	Α	

- Qual a probabilidade de cada tópico no documento 3?
 - P(tópico A | Documento 3) = P(tópico B | Documento 3) = 0.5

Exemplo:

Document 1		Document 2		Document 3	
Eat	Α	Cat	В	Cat	В
Fish	Α	Dog	В	Eat	Α
Vegetables	Α	Pet	В	Fish	?
Fish	Α	Pet	В	Cat	В
Eat	Α	Fish	В	Fish	Α

Portanto, podemos concluir que "Fish" está contido no tópico A.

- O método é repetido para todas as palavras múltiplas vezes
- O algoritmo para quando não houver mais variação (convergência

- Método gerador:
 - » Supõe que os documentos são gerados por um modelo probabilístico
 - Objetivo é aproximar esse modelo

- Método gerador: Vantagens
 - > Podemos amostrar a partir do modelo encontrado
 - > Em outras palavras, podemos gerar novos documentos "artificiais"

Exemplo: notebook

• Vantagens:

- > Tópicos são interpretáveis
- » Permite variação de tópicos e palavras (distribuição)
- > Permite gerar documentos novos

Desvantagens:

Mesmas desvantagens do NMF

- Existem 2 grandes grupos:
 - » Proximidade de documentos (produtos, músicas, filmes etc)
 - Proximidade entre usuários (filtro colaborativo)

- Proximidade de documentos:
 - Distância entre documentos
 - > Similaridade de temas (tópicos)

- Proximidade de documentos:
 - Distância entre documentos
 - Similaridade de temas (tópicos)

- Proximidade entre usuários (filtro colaborativo):
 - > Usuários semelhantes consomem documentos semelhantes

- Proximidade entre usuários (filtro colaborativo):
 - > Usuários semelhantes consomem documentos semelhantes

Clustering Topic
Analysis

- Proximidade entre usuários (filtro colaborativo):
 - > Documentos:
 - → Histórico de consumo do usuário (compra, avaliação, leitura etc)
 - Atributos / Features:
 - → Lista de itens de consumo (produtos, livros, músicas, filmes etc)

• Exemplo: Recomendação de filmes

• Exemplo: Recomendação de filmes

• Exemplo: Recomendação de filmes

OBRIGADO!