Hàm số mũ. Hàm số logarit

Bài 18. PHÉP TÍNH LŨY THỪA VỚI SỐ MŨ THỰC

A. TÓM TẮT LÝ THUYẾT

1. Lũy thừa

- a) Lũy thừa với số mũ nguyên dương:
 - $\mbox{\Large \ \ } a$ là số thực tùy ý, nnguyên dương: $a^n = \underbrace{a \cdot a \cdots a}_{n \text{ chữ số}}.$
 - $a \neq 0$: $a^0 = 1$, $a^{-n} = \frac{1}{a^n}$.
- b) Căn bậc n (n nguyên dương): của số a là b thỏa mãn $b^n = a$.
- c) Lũy thừa với số mũ hữu tỉ: $a^{\frac{m}{n}} = \sqrt[n]{a^m}$.
- d) Lũy thừa với số mũ thực: $a^{\alpha} = \lim_{n \to +\infty} a^{r_n}$, với $\lim_{n \to +\infty} r_n = \alpha$.

2. Tính chất lũy thừa

 \bigcirc Với $a \neq 0, b \neq 0, m, n$ là số thực:

$$\begin{split} a^m \cdot a^n &= a^{m+n}; \quad (a^m)^n = a^{mn}; \\ \left(\frac{a}{b}\right)^m &= \frac{a^m}{b^m}; \quad \frac{a^m}{a^n} = a^{m-n}; \\ (ab)^m &= a^m \cdot b^m; \end{split}$$

 \bigcirc Với n, k nguyên dương, m là số nguyên:

$$\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab}; \qquad \frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$$

$$(\sqrt[n]{a})^m = \sqrt[n]{a^m}; \qquad \sqrt[n]{\sqrt[k]{a}} = \sqrt[nk]{a};$$

$$\sqrt[n]{a} = \begin{cases} a & \text{khi } n \text{ l\'e} \\ |a| & \text{khi } n \text{ ch\~an}. \end{cases}$$

B. CÁC DẠNG TOÁN THƯỜNG GẶP

ե Dạng 1. Tính giá trị biểu thức chứa lũy thừa

Biến đổi các cơ số về nguyên tố, sử dụng các công thức để rút gọn và tính giá trị biểu thức.

1. Ví du mẫu

VÍ DU 1. Tính giá trị các biểu thức

a)
$$2^{-4}$$
;

b)
$$9 \cdot \left(\frac{3}{4}\right)^{-2}$$
;

b)
$$9 \cdot \left(\frac{3}{4}\right)^{-2}$$
; c) $\left(\frac{1}{2}\right)^{-2} : \left(\sqrt{3}\right)^{0}$.

VÍ DU 2. Tính giá trị của biểu thức

$$A = \left(\frac{1}{2}\right)^{-12} \cdot 8^{-3} + (0,2)^{-4} \cdot 25^{-2} + 243^{-1} \cdot \left(\frac{1}{3}\right)^{-6}.$$

VÍ DU 3. Tính giá trị biểu thức

$$A = \left(\frac{1}{2}\right)^{-8} \cdot 8^{-2} + (0,2)^{-4} \cdot 25^{-2}.$$

ĐIỂM:

"It's not how much time you have, it's how you use

QUICK NOTE

٠.	 	• • •	 	 	
٠.	 		 	 	

• • • •	 	

									•	•						•		
																	•	

	•	•	•	•	•						•	•	•	•	•	•						•	٠

7			Ç	,																												
							,		1		1	,	2		,	,		1	,	2	7											1
	_							•	1		•			7	1				•		•						•				_	
											•	•	•																	•		
		•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•		•	•	•	•		
•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		
			•	•	•	•	•	•	•	•	•	•	•			•	•	•	•	•	•	•	•	•	•	•		•		•		
											•	•	•																			
			•								•	•	•																	•		
		•	•	•	•	٠	٠	٠	٠	٠	•	•	•	٠	•						•	•		•	٠		•	•		•		
		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		
											•	•	•																			
		•																														
		•																														
		•	•	,	,						•	•	•	-	•		•	•	•	•	•	•		•		•					•	

2. Bài tấp rèn luyên

BÀI 1. Tính giá trị các biểu thức

a)
$$\left(\frac{3}{4}\right)^{-2} \cdot 3^2 \cdot 12^0$$
;

b)
$$(2^{-2} \cdot 5^2)^{-2} : (5 \cdot 5^{-5}).$$

BÀI 2. Tính giá tri các biểu thức

$$a) \ \left(\frac{1}{256}\right)^{-0.75} + \left(\frac{1}{27}\right)^{-\frac{4}{3}}; \quad b) \ \left(\frac{1}{49}\right)^{-1.5} - \left(\frac{1}{125}\right)^{-\frac{2}{3}}; \quad c) \ \left(4^{3+\sqrt{3}} - 4^{\sqrt{3}-1}\right) \cdot 2^{-2\sqrt{3}}.$$

BÀI 3. Thực hiện các phép tính

a)
$$27^{\frac{2}{3}} + 81^{-0.75} - 25^{0.5}$$
;

b)
$$4^{2-3\sqrt{7}} \cdot 8^{2\sqrt{7}}$$
.

BÀI 4. Biết $4^a = \frac{1}{5}$. Tính giá trị các biểu thức

a)
$$16^{\alpha} + 16^{-\alpha}$$
;

b)
$$(2^{\alpha} + 2^{-\alpha})^2$$
.

BÀI 5. Định luật thứ ba của Kepler về quỹ đạo chuyển động cho biết cách ước tính khoảng thời gian P (tính theo năm Trái Đất) mà một hành tinh cần để hoàn thành một quỹ đạo quay quanh Mặt Trời. Khoảng thời gian đó được xác định bởi một hàm số $P = d^{\frac{3}{2}}$, trong đó d là khoảng cách từ hành tinh đó đến Mặt Trời tính theo đơn vị thiên văn AU (1 AU là khoảng cách từ Trái Đất đến Mặt Trời, tức là 1 AU khoảng 93 000 000 dặm) (Nguồn: R.I. Charles et al., Algebra 2, Pearson). Hỏi Sao Hỏa quay quanh Mặt Trời thì mất bao nhiêu năm Trái Đất (làm tròn kết quả đến hàng phần trăm)? Biết khoảng cách từ Sao Hỏa đến Mặt Trời là 1,52 AU.

BÀI 6. Nếu một khoản tiền gốc P được gửi ngân hàng với lãi suất hằng năm r (r được biểu thi dưới dang số thập phân), được tính lãi n lần trong một năm, thì tổng số tiền A nhân được (cả vốn lẫn lãi) sau N kì gửi cho bởi công thức sau:

$$A = P\left(1 + \frac{r}{n}\right)^N.$$

Hỏi nếu bác An gửi tiết kiệm số tiền 120 triệu đồng theo kì hạn 6 tháng với lãi suất không đổi là 5% một năm, thì số tiền thu được (cả vốn lẫn lãi) của bác An sau 2 năm là bao nhiêu?

BÀI 7. Năm 2021, dân số của một quốc gia ở châu Á là 19 triệu người. Người ta ước tính rằng dân số của quốc gia này sẽ tăng gấp đôi sau 30 năm nữa. Khi đó dân số A (triệu người) của quốc gia đó sau t năm kể từ năm 2021 được ước tính bằng công thức $A=19\cdot 2^{\frac{t}{30}}$. Hỏi với tốc độ tăng dân số như vậy thì sau 20 năm nữa dân số của quốc gia này sẽ là bao nhiêu? (Làm tròn kết quả đến chữ số hàng triệu).

BÀI 8. Với một chỉ vàng, giả sử người thợ lành nghề có thể dát mỏng thành lá vàng rộng 1 m^2 và dày khoảng $1.94 \cdot 10^{-7}$ m. Đồng xu 5 000 đồng dày $2.2 \cdot 10^{-3}$ m. Cần chồng bao nhiêu lá vàng như trên để có đô dày bằng đồng xu loại 5 000 đồng? Làm tròn kết quả đến chữ số hàng trăm.

3. Bài tấp trắc nghiệm

CÂU 1. Cho số dương a và $m, n \in \mathbb{R}$. Mệnh đề nào sau đây đúng?

$$(\mathbf{A}) a^m \cdot a^n = (a^m)^n.$$

$$\mathbf{B}) a^m \cdot a^n = a^{m+n}.$$

CÂU 2. Cho $0 < a \neq 1$ và các số thực α , β . Khẳng định nào sau đây là khẳng định sai?

$$\mathbf{A} \frac{a^{\alpha}}{a^{\beta}} = a^{\alpha - \beta}.$$

$$\mathbf{B} (a^{\alpha})^{\beta} = a^{\alpha\beta}$$

CÂU 3. Cho a là số thực tùy ý, $(a^3)^2$ bằng

$$(\mathbf{A}) a^5.$$

$$(\mathbf{B}) a.$$

$$(\mathbf{c}) a^9$$

$$\bigcirc a^6$$

CÂU 4. Cho các số nguyên dương m, n và số thực dương a. Mệnh đề nào sau đây sai?

$$(\mathbf{A}) \sqrt[m]{\sqrt[n]{a}} = \sqrt[nm]{a}.$$

$$(\mathbf{B}) \sqrt[n]{a} \cdot \sqrt[m]{a} = \sqrt[mn]{a^{m+n}}.$$

$$(\mathbf{C}) \sqrt[n]{a} \cdot \sqrt[m]{a} = \sqrt[n+m]{a}.$$

$$(\mathbf{D})(\sqrt[n]{a})^m = \sqrt[n]{a^m}.$$

CÂU 5. Tính giá trị của biểu thức $A = \frac{\sigma}{2^{2+\sqrt{5}} \cdot 3^{1+\sqrt{5}}}$

$$\bigcirc A 6^{-\sqrt{5}}$$
.

$$\bigcirc$$
 1.

CÂU 6. Tính giá trị của biểu thức $P = 4^4 \cdot 8^{11} \cdot 2^{2017}$

$$(A) P = 2^{2407}.$$

B)
$$P = 2^{2054}$$
.

$$\bigcirc$$
 $P = 2^{2058}$.

$$(\mathbf{D}) P = 2^{2032}.$$

CÂU 7. Tính giá trị của biểu thức $P=3^{10}\cdot 27^{-3}+0,2^{-4}\cdot 25^{-2}+128^{-1}\cdot 2^9+0,1^{-5}\cdot 0,2^5.$

(A)
$$P = 32$$
.

B
$$P = 40$$
.

(C)
$$P = 30$$
.

$$(\mathbf{D}) P = 38.$$

CÂU 8. Cho số thực a > 1. Nếu $a^{3x} = 2$ thì $2a^{9x}$ bằng

$$\bigcirc$$
 8.

CÂU 9. Giá trị của biểu thức $A = \left(2+\sqrt{3}\right)^{2019} \left(2-\sqrt{3}\right)^{2020}$ bằng

$$\mathbf{A}$$
 $A=1$.

B
$$A = 2 - \sqrt{3}$$
.

(A)
$$A = 1$$
.
(C) $A = (2 - \sqrt{3})^{2019}$.

$$(\mathbf{D}) A = 2 + \sqrt{3}.$$

CÂU 10. Tính giá trị của biểu thức $P = \left(7 + 4\sqrt{3}\right)^{2020} \left(4\sqrt{3} - 7\right)^{2019}$.

(A)
$$P = 7 + 4\sqrt{3}$$
.

B
$$P = 7 - 4\sqrt{3}$$
.

(C)
$$P = 1$$
.

D
$$P = -7 - 4\sqrt{3}$$
.

CÂU 11. Cho $P = \left(5 - 2\sqrt{6}\right)^{2018} \left(5 + 2\sqrt{6}\right)^{2019}$. Ta có

A
$$P \in (9; 11)$$
. **B** $P \in (3; 7)$.

B
$$P \in (3;7)$$
.

$$(\mathbf{C}) P \in (7)$$

$$P \in (7;9).$$

CÂU 12. Cho x, y là hai số nguyên thỏa mãn $3^x \cdot 6^y = \frac{2^{15} \cdot 6^{40}}{9^{59} \cdot 12^{25}}$. Tính giá trị xy.

$$\bigcirc$$
 -445.

B
$$-755$$

$$(\mathbf{C}) - 540$$

$$\bigcirc$$
 -425.

CÂU 13. Cho hàm số $f(x) = \frac{4^x}{2+4^x}$ $(x \in \mathbb{R})$. Biết a+b=5 với a,b là hai số thực, hãy tinh K = f(a) + f(b-4)

$$\mathbf{B} K = \frac{3}{4}.$$

©
$$K = \frac{128}{129}$$
. **©** $K = \frac{512}{513}$

Dạng 2. Rút gọn biểu thức chứa lũy thừa

Sử dụng các tính chất của lũy thừa để chuyển về cùng một cơ số, rồi bằng cách đặt nhân tử chung hằng đẳng thức...để rút gọn biểu thức.

1. Ví dụ mẫu

VÍ DỤ 1. Rút gọn biểu thức $A = \frac{6^{2+\sqrt{5}} \cdot 2^{1-\sqrt{5}}}{3^{3+\sqrt{5}}}$.

VÍ DỤ 2. Rút gọn các biểu thức

a)
$$\frac{a^{\frac{7}{3}} - a^{\frac{1}{3}}}{a^{\frac{4}{3}} - a^{\frac{1}{3}}} - \frac{a^{\frac{5}{3}} - a^{-\frac{1}{3}}}{a^{\frac{2}{3}} - a^{-\frac{1}{3}}}, (a > 0, a \neq 1);$$

b)
$$\frac{\left(\sqrt[4]{a^3b^2}\right)^4}{\sqrt[3]{\sqrt{a^12b^6}}}$$
, $(a > 0, b > 0)$.

VÍ DỤ 3. Rút gọn biểu thức $A=rac{\left(a^{\sqrt{2}-1}
ight)^{1+\sqrt{2}}}{a^{\sqrt{5}-1}\cdot a^{3-\sqrt{5}}}$

2. Bài tập rèn luyện

BÀI 1. Rút gọn các biểu thức

a)
$$a^{\frac{1}{3}} \cdot a^{\frac{1}{2}} \cdot a^{\frac{7}{6}}$$
;

b)
$$a^{\frac{2}{3}} \cdot a^{\frac{1}{4}} : a^{\frac{1}{6}};$$

c)
$$\left(\frac{3}{2}a^{-\frac{3}{2}}b^{-\frac{1}{2}}\right)\left(-\frac{1}{3}a^{\frac{1}{2}}b^{\frac{3}{2}}\right)$$
.

BÀI 2. Rút gọn các biểu thức sau

a)
$$A = \frac{x^5y^{-2}}{x^3y}$$
, với $x, y \neq 0$;

b)
$$B = \frac{x^{\frac{1}{3}}\sqrt{y} + y^{\frac{1}{3}}\sqrt{x}}{\sqrt[6]{x} + \sqrt[6]{y}}$$
, với x, y dương.

QUICK NOTE

•	•	•	•	•	•	•	•	•	•	•	•	٠	٠	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	

																	•

BÀI 3. Cho số thực dương a. Rút gọn các biểu thức

a)
$$\frac{a^{\frac{4}{3}}\left(a^{-\frac{1}{3}}+a^{\frac{2}{3}}\right)}{a^{\frac{1}{4}}\left(a^{\frac{3}{4}}+a^{-\frac{1}{4}}\right)};$$

b)
$$\frac{a^{\frac{1}{5}} \left(\sqrt[5]{a^4} - \sqrt[5]{a^{-1}}\right)}{a^{\frac{2}{3}} \left(\sqrt[3]{a} - \sqrt[3]{a^{-2}}\right)}$$
.

BÀI 4. Tại một xí nghiệp, công thức $P(t)=500\cdot\left(\frac{1}{2}\right)^{\frac{t}{3}}$ được dùng để tính giá trị còn lại (tính theo triệu đồng) của một chiếc máy sau thời gian t (tính theo năm) kể từ khi đưa vào sử dung.

- a) Tính giá trị còn lại của máy sau 2 năm; sau 2 năm 3 tháng.
- b) Sau 1 năm đưa vào sử dụng, giá trị còn lại của máy bằng bao nhiêu phần trăm so với ban đầu?

3. Bài tập trắc nghiệm

(B)
$$P = a^{\frac{11}{6}}$$
.

$$(\mathbf{C}) P = a^{\frac{7}{6}}.$$

$$(\mathbf{D}) P = a^{\frac{6}{7}}.$$

CÂU 2. Rút gọn biểu thức $P = b^{\frac{1}{2}} \cdot b^{\frac{1}{3}} \cdot \sqrt[6]{b}$ với b > 0.

$$(\mathbf{A}) P = b.$$

B
$$P = b^{\frac{3}{11}}$$
.

(C)
$$P = b^{\frac{1}{36}}$$

$$(\mathbf{D}) P = b^{\frac{2}{3}}.$$

CÂU 3. Rút gọn biểu thức $P = x^{\frac{1}{3}} \cdot \sqrt[6]{x}$ với x > 0.

(A)
$$P = x^{\frac{1}{8}}$$
.

$$(\mathbf{B}) P = x^2.$$

(C)
$$P = x^{\frac{2}{9}}$$
.

$$(\mathbf{D}) P = \sqrt{x}.$$

CÂU 4. Rút gọn biểu thức $\sqrt{81a^4b^2}$ ta được

A
$$9a^2|b|$$
.

$$(B) -9a^2b.$$

©
$$9a^2b$$
.

CÂU 5. Cho biểu thức $\sqrt[5]{8\sqrt{2\sqrt[3]{2}}} = 2^{\frac{m}{n}}$, trong đó $\frac{m}{n}$ có dạng phân số tối giản. Gọi P = $m^2 + n^2$. Khẳng định nào sau đây đúng?

(B)
$$P \in (350; 360)$$

$$(A)$$
 $P \in (330; 340)$. (B) $P \in (350; 360)$. (C) $P \in (340; 350)$. (D) $P \in (360; 370)$.

$$(\mathbf{D}) P \in (360; 370).$$

CÂU 6. Rút gọn biểu thức $Q = b^{\frac{5}{3}} : \sqrt[3]{b}$ với b > 0. **(A)** $Q = b^{\frac{4}{3}}$. **(B)** $Q = b^{\frac{5}{9}}$. **(C)** $Q = b^2$. **(D)** $Q = b^{-\frac{4}{3}}$.

(B)
$$Q = b^{\frac{5}{9}}$$

$$\bigcirc Q = b^2$$

$$\widehat{\mathbf{D}} Q = b^{-\frac{4}{3}}$$

CÂU 7. Cho a là số thực dương tùy ý và a khác 1, đặt $A = \frac{a^{\sqrt{7}} \cdot a^{\sqrt{7}}}{(a^2)^{\sqrt{7}}}$. Mệnh đề nào dưới đây đúng?

A
$$A = 1$$
.

B
$$A = \frac{2}{a\sqrt{7}}$$
. **C** $A = \sqrt{7}$.

$$\bigcirc A = \sqrt{7}$$

$$\bigcirc A = a.$$

CÂU 8. Cho x, y là các số thực thỏa mãn $x \neq 0$ và $\left(3^{x^2}\right)^{3y} = 27^x$. Khẳng định nào sau đây là khẳng định đúng?

B
$$x^2 + 3y = 3x$$
. **C** $xy = 1$.

$$\bigcirc xy = 1$$

$$\mathbf{A}$$
 $x^{\frac{13}{15}}$

(B)
$$x^{\frac{1}{4}}$$
.

$$(\mathbf{c}) x^{\frac{1}{6}}.$$

$$\sum x^{\frac{13}{18}}$$
.

(A) x^{15} . (B) $x^{\frac{1}{4}}$. (C) $x^{\frac{1}{6}}$. (CAU 10. Rút gon biểu thức $P = \frac{a^{\sqrt{7}+1} \cdot a^{2-\sqrt{7}}}{\left(a^{\sqrt{2}-2}\right)^{\sqrt{2}+2}}$ với a > 0.

$$\mathbf{B}) P = a^2$$

$$\mathbf{\widehat{C}}) P = a^5$$

CÂU 11. Cho a là một số thực dương. Rút gọn biểu thức: $P = \frac{\left(a^{\sqrt{7}-3}\right)^{\sqrt{7}+3}}{a^{\sqrt{11}-4} \cdot a^{5-\sqrt{11}}}$?

$$P = a^3$$

B
$$P = a^{2\sqrt{7}-1}$$
. **C** $P = \frac{1}{a^3}$.

$$P = \frac{1}{a^3}$$
.

CÂU 12. Rút gọn biểu thức $A=\frac{\sqrt[3]{a^7}\cdot a^{\frac{11}{3}}}{a^4\cdot \sqrt[7]{a^{-5}}}$ với a>0 ta được kết quả $A=a^{\frac{m}{n}}$ trong đó $m, n \in \mathbb{N}^*$ và $\frac{m}{n}$ là phân số tối giản. Khẳng định nào sau đây đúng?

$$\mathbf{C}$$
 $m^2 - n^2 = -312$.

$$\bigcirc Q = 2ab$$

$$\mathbf{\widehat{C}}) Q = \sqrt{ab}.$$

(A) $Q = \sqrt[3]{ab}$.

(B) Q = 2ac.

(CÂU 14. Cho $5^x + 5^{-x} = a$. Rút gọn biểu thức $M = \frac{25^x + 25^{-x} + 1}{5^x + 5^{-x} + 1}$ bằng $a^2 + 1$.

(D) $a^2 - 1$.

$$\bigcirc$$
 $a+1$.

$$\bigcirc$$
 $a-1$.

$$(\mathbf{c}) a^2 + 1.$$

$$(\mathbf{D}) a^2 - 1$$

CÂU 15. Cho $f(x) = e_{...}^{\sqrt{1 + \frac{1}{x^2} + \frac{1}{(x+1)^2}}}$. Biết rằng $f(1) \cdot f(2) \cdot f(3) \cdot ... f(2019) = e^{\frac{m}{n}}$, với m, n là các số tự nhiên và $\frac{m}{n}$ tối giản. Tính $m-n^2$.

$$(\mathbf{A}) m - n^2 = 2018.$$

$$\mathbf{B} m - n^2 = 1.$$

$$\bigcirc m - n^2 = -2018.$$

$$(\widehat{\mathbf{D}}) \, m - n^2 = -1$$

🖶 Dạng 3. So sánh biểu thức lũy thừa

Biến đổi các biểu thức về cùng cơ số hoặc cùng số mũ, từ đó, dựa vào tính chất lũy thừa để so sánh.

1. Ví dụ mẫu

VÍ DỤ 1. Không sử dụng máy tính, hãy so sánh $3^{\sqrt{8}}$ và 3^3 .

VÍ DU 2. Không sử dụng máy tính, hãy so sánh các số $8^{\sqrt{3}}$ và $4^{2\sqrt{3}}$.

2. Bài tấp rèn luyên

BÀI 1. Không sử dụng máy tính cầm tay, hãy so sánh các số sau

a)
$$\sqrt{42}$$
 và $\sqrt[3]{51}$;

b)
$$16^{\sqrt{3}}$$
 và $4^{3\sqrt{2}}$;

c)
$$(0,2)^{\sqrt{16}}$$
 và $(0,2)^{\sqrt[3]{60}}$.

BÁI 2. Không sử dụng máy tính cầm tay, hãy so sánh

a)
$$5^{6\sqrt{3}}$$
 và $5^{3\sqrt{6}}$;

b)
$$\left(\frac{1}{2}\right)^{\frac{-4}{3}}$$
 và $\sqrt{2} \cdot 2^{\frac{2}{3}}$.

3. Bài tập trắc nghiệm

CÂU 1. Cho $\pi^{\alpha} > \pi^{\beta}$ với $\alpha, \beta \in \mathbb{R}$. Mênh đề nào dưới đây đúng?

$$(A) \alpha < \beta.$$

$$\bigcirc \alpha > \beta.$$

$$\alpha \leq \beta$$
.

CÂU 2. Cho a và b thuộc khoảng (0;1) và α , β là những số thực tùy ý. Khẳng định nào sau đây là khẳng định sai?

$$(\mathbf{A})^{\beta} = (a^{\beta})^{\alpha}.$$

$$(\mathbf{B}) a^{\alpha} > a^{\beta} \Leftrightarrow \alpha > \beta.$$

CÂU 3. Sắp xếp các số $a = \sqrt{2^3}$, b = 4, $c = \sqrt[3]{2}$ theo thứ tự từ nhỏ đến lớn ta được

$$(\mathbf{A}) \ a < b < c.$$

(B)
$$c < a < b$$
.

$$\bigcirc c < b < a.$$

CÂU 4. Cho biết $(x-2)^{-\frac{1}{3}} > (x-2)^{-\frac{1}{6}}$, khẳng định nào sau đây đúng?

$$(\mathbf{A}) x > 1.$$

B
$$2 < x < 3$$
.

$$(\mathbf{C})$$
 $x > 2$.

$$\bigcirc 0 < x < 1.$$

CÂU 5. Cho a > 0, b > 0 thỏa $a^{\frac{1}{2}} > a^{\frac{1}{3}}$ và $b^{\frac{2}{3}} > b^{\frac{3}{4}}$. Khi đó

$$(A)$$
 $a > 1, 0 < b < 1.$

B
$$a > 1, b > 1$$

$$\bigcirc$$
 0 < a < 1, 0 < b < 1.

$$\bigcirc$$
 0 < a < 1, b > 1.

Bài 19. PHÉP TÍNH LOGARIT

A. TÓM TẮT LÝ THUYẾT

	-				
ດ	ш	_	N	\sim	ш
			w	v	

1. Định nghĩa

7 Định nghĩa 19.1. Cho hai số thực dương a, b với a khác 1. Số thực c để $a^c = b$ được gọi là lôgarit cơ số a của b và kí hiệu là $\log_a b$, nghĩa là

$$c = \log_a b \Leftrightarrow a^c = b.$$

2. Tính chất

7 TÍNH CHẤT 19.1. Với số thực dương a khác 1, số thực dương b, ta có:

$$\log_a 1 = 0$$
; $\log_a a = 1$; $\log_a a^c = c$; $a^{\log_a b} = b$.

7 TÍNH CHẤT 19.2. Với ba số thực dương a, m, n và $a \neq 1$, ta có:

$$\Theta \log_a(mn) = \log_a m + \log_a n;$$

A

Ta có:

$$\log_a \left(\frac{1}{h}\right) = -\log_a b \ (a > 0, a \neq 1, b > 0).$$

7 TÍNH CHẤT 19.3. Cho $a>0, a\neq 1, b>0$. Với mọi số thực α , ta có:

$$\log_a b^{\alpha} = \alpha \log_a b.$$

7 TÍNH CHẤT 19.4. Với a, c là hai số thực dương khác 1 và b là số thực dương, ta có:

$$\log_a b = \frac{\log_c b}{\log_c a}.$$

 \P NHẬN XÉT. Với a>0 và $a\neq 1, b>0$ và $b\neq 1, c>0, \alpha\neq 0$, ta có những công thức sau:

$$\Theta \log_a b \cdot \log_b c = \log_a c;$$

3. Lôgarit thấp phân. Lôgarit tư nhiên

 $\mbox{\Large \ \ \, }$ Lôgarit cơ số 10 của số thực dương b được gọi là lôgarit thập phân của b và kí hiệu là $\log b$ hay $\lg b.$

 Θ Lôgarit cơ số e của số thực dương b được gọi là lôgarit tự nhiên của b và kí hiệu là $\ln b$.

4. Tính lôgarit bằng máy tính cầm tay

B. CÁC DẠNG TOÁN THƯỜNG GẶP

Dạng 4. Tính giá trị biểu thức chứa lôgarít

1. Ví dụ mẫu

VÍ DỤ 1. Cho $\log a = 4$. Tính giá trị của biểu thức $P = \log(100a^2)$.

VÌ DỤ 2. Cho $\log_a b = 2$. Tính $\log_a(a^2b)$.

VÍ Dụ 3. Cho a và b là hai số thực dương thỏa mãn $a^3b^2=32$. Tính giá trị của biểu thức $P=3\log_2 a+2\log_2 b$.

VÍ DỤ 4. Cho $\log_a b = 2$, $\log_a c = 3$. Tính $Q = \log_a (b^2 c)$.

- **VÍ DỤ 5.** Cho a là số thực dương khác 5. Tính $I = \log_{\frac{a}{5}} \left(\frac{a^3}{125} \right)$.
- **VÍ DỤ 6.** Cho a, b là hai số thực dương thỏa mãn $ab^3 = 8$. Tính giá trị của $\log_2 a + 3\log_2 b$.
- **VÍ DỤ 7.** Cho a > 0 và đặt $\log_2 a = x$. Tính $\log_8(4a^3)$ theo x.
- **VÍ DỤ 8.** Cho số a>1. Tính giá trị biểu thức $P=a^{2\log_a 3}$.
- **VÍ DỤ 9.** Đặt $\log_2 3 = a$, $\log_2 5 = b$. Tính $\log_5 3$ theo a, b.
- **VÍ DỤ 10.** Tính giá trị biểu thức $Q = \log \frac{10}{11} + \log \frac{11}{12} + \log \frac{12}{13} + \dots + \log \frac{999}{1000}$.
- **VÍ DỤ 11.** Cho a, b, c là các số thực dương, $a \neq 1$ và $\log_a b = 5$, $\log_a c = 7$. Tính giá trị của biểu thức $P = \log_{\sqrt{a}} \left(\frac{b}{c}\right)$.
- **VÍ DỤ 12.** Cho a, b, c là các số thực khác 0 thỏa mãn $4^a=25^b=10^c$. Tính $T=\frac{c}{a}+\frac{c}{b}$.
- **VÍ DỤ 13.** Cho a và b lần lượt là số hạng thứ nhất và thứ chín của một cấp số cộng có công sai $d \neq 0$. Tính giá trị của $\log_2\left(\frac{b-a}{d}\right)$.
- **VÍ DỤ 14.** Ba số $a + \log_2 3$; $a + \log_4 3$; $a + \log_8 3$ theo thứ tự lập thành cấp số nhân. Tìm công bội của cấp số nhân này.

2. Bài tập rèn luyện

- **BÀI 1.** Tính giá trị biểu thức $A = 2^{\log_4 9 + \log_2 5}$.
- **BÀI 2.** Cho hai số thực dương a,b thỏa mãn $a^2b^3=64$. Tính giá trị của biểu thức $P=2\log_2 a+3\log_2 b$.
- **BÀI 3.** Cho $0 < a \neq 1$. Tính giá trị của biểu thức $T = \log_a(a^3)$.
- **BÀI 4.** Cho a là một số thực dương tùy ý và $a \neq 2$. Tính $P = \log_{\frac{a}{2}} \frac{a^3}{8}$.
- **BÀI 5.** Cho a là số thực dương khác 1. Tính giá trị của biểu thức $I = \log_a a^{\frac{1}{2}}$.
- **BÀI 6.** Tính giá trị của biểu thức $M = \log_2 \sqrt{2\sqrt{32}}$.
- **BÀI 7.** Cho a là số thực dương tùy ý khác 1, tính giá trị $P = \log \sqrt[3]{a} a^3$.
- **BÀI 8.** Tính giá trị biểu thức $10^{\log 5} + 5^0$.
- **BÀI 9.** Biết $\log_3 5 = a$. Tính $\log_3 45$ theo a.
- **BÀI 10.** Cho a và b là hai số thực dương khác 1 thỏa mãn $\sqrt{a} = \sqrt[3]{b}$. Tính giá trị $\log_a b$.
- **BÀI 11.** Với a, b là hai số thực dương thỏa mãn $\log a = 11$, $\log b = 13$. Tính giá trị biểu thức $\log (ab^2)$.
- **BÀI 12.** Cho a,b là các số thực dương lớn hơn 1 thỏa mãn $\log_a b = 3$. Tính giá trị biểu thức

$$P = \log_{a^2 b} a^3 - 3\log_{a^2} 2 \cdot \log_4 \left(\frac{a}{b}\right).$$

- **BÀI 13.** Cho hai số dương a,b với $a \neq 1$, thỏa mãn $\log_{a^2} b + \log_a b^2 = 2$. Tính $\log_a b$.
- **BÀI 14.** Biết rằng $a = \log_2 3$, $b = \log_2 5$. Hãy biểu diễn $\log_{45} 4$ theo a và b.
- **BÀI 15.** Cho biểu thức $f(x) = \log_2\left(x \frac{1}{2} + \sqrt{x^2 x + \frac{17}{4}}\right)$, (0 < x < 1). Tính giá trị của biểu thức

$$T = f\left(\frac{1}{1000}\right) + f\left(\frac{2}{1000}\right) + \dots + f\left(\frac{999}{1000}\right).$$

3. Bài tập trắc nghiệm

- **CÂU 1.** Với a là số thực dương khác 1 tuỳ ý, giá trị $\log_{a^2}a^3$ bằng
 - **A** 8.
- **B** 6.
- $\frac{2}{3}$.
- \bigcirc $\frac{3}{2}$

•	٠	٠	٠	٠	٠	٠	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	•	•	٠	٠	٠	٠	٠	٠	•	٠
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

									•	•	•	•						•	

	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	•																															

	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
u																																			

	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
		•	•	•	•	•	•	•	•	•	•			•	•		•	•	•	•	•	•	•	•	•	•	•						•	
1	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	-

	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	

QUICK NOTE	CÂU 2. Cho $a \neq$	1 là số thực dương và ${\cal P}$	$=\log_{\sqrt[3]{a}}a^3$. Mệnh đề n	ào sau đây đúng?
		$\bigcirc P = 1.$	$P = \frac{1}{3}$.	$\bigcirc P = 9.$
	CÂU 3. Cho $a >$	$0, a \neq 1$. Biểu thức a^{\log_a}	a ² bằng	
	A 2.	$lacksquare$ a^2 .	\bigcirc 2a.	\bigcirc 2^a .
	CÂU 4. Giá trị c	ủa $\log_{\frac{1}{a}} \sqrt[3]{a^7}$ (với $a > 0, a$	$\neq 1$) bằng	
	$-\frac{7}{2}$.	$\frac{2}{2}$.	$\bigcirc \frac{5}{3}$.	\bigcirc 4.
	3	- 3 số thực dương tùy ý, ln (e	3	
		(B) $1 + \ln \pi + \ln \theta$	· ~ -	\bigcirc 1 + $\pi \ln a$.
	CÂU 6. Với a là s	số thực dương khác 1 tùy	_	
	$\mathbf{A} \frac{1}{5}$.	$\mathbf{B} \frac{4}{E}$.	© 20.	\bigcirc $\frac{5}{4}$.
	9	thực dương tùy ý, $\ln(5a)$	$-\ln(3a)$ bằng	○ 4
			$-\ln(3a)$ bang $\boxed{\mathbf{C}} \ln(2a).$	(D) $\ln \frac{5}{3}$.
	${\ln 3}$.	$\frac{\bullet}{\ln(3a)}$.	\square $\operatorname{III}(2a)$.	\mathbf{D} in $\frac{1}{3}$.
		b=2 với $a, b>0, a$ khá		
		_ , ,	3. $(\mathbf{C}) \log_a b^2 = 4.$	$\mathbf{D}\log_a\left(a^2b\right) = 4.$
		số thực dương tùy ý, log	1	
	A $2020 \log_3 a$.	B) $1010 + 2\log_3 6$	a. © $1010 + \frac{1}{2}\log_3 a$	$\mathbf{D} = \mathbf{D} = $
	CÂU 10. Giá trị	của $\log_a \frac{1}{a^3}$ với $a > 0$ và	$a \neq 1$ bằng	
	\bigcirc	(B) 3.	$\mathbf{c} - \frac{1}{2}$.	\bigcirc $\frac{1}{3}$.
			3	9 3.
	CAU 11. Với mọt $\mathbf{A} \ 2 \log_2^2 a$.	i số thực a dương, $\log_2^2 a^2$ $\mathbf{B} - 4 \log_2^2 a.$	$\overset{\circ}{\mathbf{c}}$ bằng $\overset{\circ}{\mathbf{c}}$ $2\log_2 a^2$.	A 10 m . 0
		<u> </u>	<u> </u>	$(\mathbf{D}) 4 \log_2 a.$
			T71 0 4. 1 \ 4.	
		số thực dương a, b bất kì. $a = a + \log b$.		
		$\log a + \log b$.		a+b).
		$\log a + \log b.$ $\log_b a.$		a+b).
		$\log a + \log b.$ $\log_b a.$ của $\log_2 16$ bằng		(a+b).
	$ \begin{array}{c} \textbf{(ab)} = \log \\ \textbf{(b)} = \log \left(\frac{a}{b}\right) = 1 \\ \textbf{(câu 13. Giá trị (a)} \\ \textbf{(a)} = 3. \end{array} $	$\log a + \log b$. $\log_b a.$ của $\log_2 16$ bằng \bigcirc \bigcirc \bigcirc \bigcirc 4.		$(a+b)$. $(a-b)$. \bigcirc
	$ \begin{array}{c} \textbf{(ab)} = \log \\ \textbf{(b)} = \log \left(\frac{a}{b}\right) = 1 \\ \textbf{(câu 13. Giá trị (a)} \\ \textbf{(a)} = 3. \end{array} $	$\log a + \log b.$ $\log_b a.$ của $\log_2 16$ bằng		$(a+b)$. $(a-b)$. \bigcirc
	$ \begin{array}{c} \textbf{(A)} \log(ab) = \log ab \\ \textbf{(C)} \log \left(\frac{a}{b}\right) = \log ab \\ \textbf{(CÂU 13. Giá trị (A)} 3. \\ \textbf{(CÂU 14. Cho } a, \\ \textbf{(A)} 4. \end{array} $	$\log a + \log b$. $\log_b a$. $\cosh a = 0$ 0 của $\log_2 16$ bằng $\cosh 4$. $\cosh a = 0$ 0 là các số thực dương the $\cosh 3$ 0.	$\mathbf{B} \log(ab) = \log(ab)$ $\mathbf{D} \log\left(\frac{a}{b}\right) = \log(ab)$ $\mathbf{C} - 3.$ $\mathbf{C} \cdot 3$ $\mathbf{C} \cdot 5.$	(a+b). (a-b). (a-b). (a-b). (a-b). (a-b).
	$ \begin{array}{c} \textbf{(ab)} = \log \\ \textbf{(b)} = \log \left(\frac{a}{b}\right) = 1 \\ \textbf{(câu 13. Giá trị (a)} \\ \textbf{(a)} 3. \\ \textbf{(câu 14. Cho } a, \\ \textbf{(a)} 4. \\ (câu 15. Tính gi$	og $a + \log b$. $\log_b a.$ của $\log_2 16$ bằng	$\begin{array}{c} \textbf{B} \ \log(ab) = \log(ab) \\ \textbf{D} \ \log\left(\frac{a}{b}\right) = \log(ab) \\ \textbf{C} \ -3. \end{array}$ oa mãn $a \neq 1$ và $\log_a b = 25$ $\textbf{C} \ 5. \\ \frac{2^5}{4^{-3}} \end{pmatrix}^2.$	(a+b). (a-b). \mathbf{D} -4. $=$ 3. Tính $\log_a(a^2b)$. \mathbf{D} 6.
	$ \begin{array}{c} \textbf{(A)} \log(ab) = \log ab \\ \textbf{(C)} \log \left(\frac{a}{b}\right) = \log ab \\ \textbf{(CÂU 13. Giá trị (A)} 3. \\ \textbf{(CÂU 14. Cho } a, \\ \textbf{(A)} 4. \end{array} $	$\log a + \log b$. $\log_b a$. $\cosh a = 0$ 0 của $\log_2 16$ bằng $\cosh 4$. $\cosh a = 0$ 0 là các số thực dương the $\cosh 3$ 0.	$\mathbf{B} \log(ab) = \log(ab)$ $\mathbf{D} \log\left(\frac{a}{b}\right) = \log(ab)$ $\mathbf{C} - 3.$ $\mathbf{C} \cdot 3$ $\mathbf{C} \cdot 5.$	(a+b). (a-b). (a-b). $= 3$. Tính $\log_a(a^2b)$.
	$ \widehat{\textbf{A}} \log(ab) = \log \left(\frac{a}{b}\right) $ $ \widehat{\textbf{CAU 13.}} \text{ Giá trị } $ $ \widehat{\textbf{A}} \text{ 3.} $ $ \widehat{\textbf{CAU 14.}} \text{ Cho } a, $ $ \widehat{\textbf{A}} \text{ 4.} $ $ \widehat{\textbf{CAU 15.}} \text{ Tính gi} $ $ \widehat{\textbf{A}} \frac{25}{3}. $	$\log a + \log b.$ $\log_b a.$ $\operatorname{của} \log_2 16 \text{ bằng}$ $\operatorname{\textbf{\textbf{B}}} 4.$ $b \text{ là các số thực dương thr}$ $\operatorname{\textbf{\textbf{B}}} 3.$ $\text{á trị của } A = \log_2 \left(\frac{8 \cdot 3}{\sqrt[3]{2} \cdot 1}\right)$ $\operatorname{\textbf{\textbf{B}}} \frac{164}{6}.$	$\begin{array}{c} \textbf{B} \ \log(ab) = \log(ab) \\ \textbf{D} \ \log\left(\frac{a}{b}\right) = \log(ab) \\ \textbf{C} \ -3. \end{array}$ oa mãn $a \neq 1$ và $\log_a b = 25$ $\textbf{C} \ 5.$ $\textbf{C} \ \frac{2^5}{4^{-3}} \right)^2.$ $\textbf{C} \ \frac{82}{3}.$	(a+b). (a-b). \mathbf{D} -4. $=$ 3. Tính $\log_a(a^2b)$. \mathbf{D} 6.
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	og $a + \log b$. og _b a . của $\log_2 16$ bằng B 4 . b là các số thực dương the B 3 . á trị của $A = \log_2 \left(\frac{8 \cdot \sqrt[3]{2} \cdot \sqrt[3]{2}}{\sqrt[3]{2} \cdot \sqrt[3]{6}}\right)$ B $\frac{164}{6}$. b là các số thực dương ka a (a^2b) bằng	$\begin{array}{c} \textbf{B} \log(ab) = \log(ab) \\ \textbf{D} \log\left(\frac{a}{b}\right) = \log(ab) \\ \textbf{C} - 3. \\ \text{oa mãn } a \neq 1 \text{ và } \log_a b = ab \\ \textbf{C} 5. \\ \\ \textbf{C} \frac{2^5}{4^{-3}} \end{pmatrix}^2. \\ \textbf{C} \frac{82}{3}. \\ \text{hác 1 thỏa mãn } \log_2 a = ab \\ \\ \textbf{C} \frac{82}{3}. \\ \\ \textbf{C} $	(a+b). $(a-b)$
	(A) $log(ab) = log(ab)$ (C) $log(\frac{a}{b}) = log(ab)$ (C) $log(\frac{a}{b}) = log(ab)$ (C) $log(\frac{a}{b}) = log(ab)$ (A) 3. (C) (C) (C) (C) (C) (C) (C) (A) 4. (C) (A) 25/3. (C)	og $a + \log b$. og _b a . của $\log_2 16$ bằng B 4 . b là các số thực dương the B 3 . á trị của $A = \log_2 \left(\frac{8 \cdot \sqrt[3]{2} \cdot \sqrt[$	$\begin{array}{c} \textbf{B} \ \log(ab) = \log(ab) \\ \textbf{D} \ \log\left(\frac{a}{b}\right) = \log(ab) \\ \textbf{O} \ \log\left(\frac{a}{b}\right) = \log(ab) \\ \textbf{O} \ -3. \\ \textbf{O} \ \text{oa mãn } a \neq 1 \ \text{và} \ \log_a b = ab \\ \textbf{O} \ 5. \\ \textbf{O} \ 5. \\ \textbf{O} \ \frac{2^5}{4^{-3}} \\ \textbf{O} \ \frac{82}{3}. \\ \textbf{O} \ \text{hác } 1 \ \text{thỏa mãn } \log_2 a = ab \\ \textbf{O} \ P = 2. \\ \textbf{O} \ P = 2. \\ \end{array}$	(a+b). (a-b). \mathbf{D} -4. $=3$. Tính $\log_a(a^2b)$. \mathbf{D} 6. \mathbf{D} $\frac{716}{3}$. $=2$ và $\log_4b=3$. Giá trị \mathbf{D} $P=1$.
	(A) $\log(ab) = \log a$ (C) $\log \left(\frac{a}{b}\right) = \log a$ (CÂU 13. Giá trị (A) 3. (CÂU 14. Cho a , (A) 4. (CÂU 15. Tính gi (A) $\frac{25}{3}$. (CÂU 16. Cho a , (B) $\frac{25}{3}$. (CÂU 16. Cho a , (B) $\frac{25}{3}$. (CÂU 17. Cho các	og $a + \log b$. og _b a . của $\log_2 16$ bằng B 4 . b là các số thực dương the B 3 . á trị của $A = \log_2 \left(\frac{8 \cdot \sqrt[3]{2} \cdot \sqrt[3]{2}}{\sqrt[3]{2} \cdot \sqrt[3]{2}}\right)$ B $\frac{164}{6}$. b là các số thực dương kang (a^2b) bằng B $P = 5$. c số thực dương a, b, c v	$\begin{array}{c} \textbf{B} \ \log(ab) = \log(ab) \\ \textbf{D} \ \log\left(\frac{a}{b}\right) = \log(ab) \\ \textbf{O} \ \log\left(\frac{a}{b}\right) = \log(ab) \\ \textbf{O} \ -3. \\ \textbf{O} \ \text{oa mãn } a \neq 1 \ \text{và} \ \log_a b = ab \\ \textbf{O} \ 5. \\ \textbf{O} \ 5. \\ \textbf{O} \ \frac{2^5}{4^{-3}} \\ \textbf{O} \ \frac{82}{3}. \\ \textbf{O} \ \text{hác } 1 \ \text{thỏa mãn } \log_2 a = ab \\ \textbf{O} \ P = 2. \\ \textbf{O} \ P = 2. \\ \end{array}$	(a+b). $(a-b)$
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	og $a + \log b$. og a của $\log_2 16$ bằng B 4. b là các số thực dương thư B 3. á trị của $A = \log_2\left(\frac{8 \cdot \sqrt[3]{2}}{\sqrt[3]{2}}\right)$ B là các số thực dương k $a(a^2b)$ bằng B $P = 5$. c số thực dương a, b, c voàng	$\begin{array}{c} \textbf{B} \ \log(ab) = \log(ab) \\ \textbf{D} \ \log\left(\frac{a}{b}\right) = \log(ab) \\ \textbf{O} \$	(a+b). $(a-b)$
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	og $a + \log b$. og _b a . của $\log_2 16$ bằng B 4 . b là các số thực dương the B 3 . á trị của $A = \log_2 \left(\frac{8 \cdot \sqrt[3]{2} \cdot \sqrt[$	$\begin{array}{c} \textbf{B} \log(ab) = \log(ab) \\ \textbf{D} \log\left(\frac{a}{b}\right) = \log(ab) \\ \textbf{O} \log\left(\frac{a}{b}\right) = \log(ab) \\ $	(a + b). (a -
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	og $a + \log b$. og a của $\log_2 16$ bằng B 4. b là các số thực dương the B 3. á trị của $A = \log_2\left(\frac{8 \cdot \sqrt[3]{2} \cdot \sqrt[3]{2}}{\sqrt[3]{2} \cdot \sqrt[3]{2}}\right)$ B $\frac{164}{6}$. b là các số thực dương ka a (a^2b) bằng B $P = 5$. c số thực dương a , b , c vo bằng B 8. a (xy^3) = $\log(x^2y) = 1$.	$\begin{array}{c} \textbf{B} \log(ab) = \log(ab) \\ \textbf{D} \log\left(\frac{a}{b}\right) = \log(ab) \\ \textbf{O} \log\left(\frac{a}{b}\right) = \log(ab) \\ $	(a + b). (a -
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	og $a + \log b$. og _b a . của $\log_2 16$ bằng B 4 . b là các số thực dương the B 3 . á trị của $A = \log_2\left(\frac{8 \cdot \sqrt[3]{2} \cdot$	$\begin{array}{c} \textbf{B} \log(ab) = \log(ab) \\ \textbf{D} \log\left(\frac{a}{b}\right) = \log(ab) \\ \textbf{O} \log\left(\frac{a}{b}\right) = \log(ab) \\ $	(a + b). (a -
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	og $a + \log b$. og a của $\log_2 16$ bằng B 4. b là các số thực dương thư B 3. á trị của $A = \log_2\left(\frac{8 \cdot \sqrt[3]{2} \cdot \sqrt[3$	$\begin{array}{c} \textbf{B} \log(ab) = \log(ab) \\ \textbf{D} \log\left(\frac{a}{b}\right) = \log(ab) \\ \textbf{O} \log\left(\frac{a}{b}\right) = \log(ab) \\ $	(a + b). (a -
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	og $a + \log b$. og a của $\log_2 16$ bằng B 4. b là các số thực dương thư B 3. á trị của $A = \log_2\left(\frac{8 \cdot \sqrt[3]{2} \cdot \sqrt[3$	$\begin{array}{c} \textbf{B} \log(ab) = \log(a) \\ \textbf{D} \log\left(\frac{a}{b}\right) = \log(a) \\ \textbf{C} \log\left(\frac{a}\right) = \log(a) \\ \textbf{C} \log\left(\frac{a}{b}\right) = \log(a) \\ \textbf{C} \log\left(\frac{a}{b}\right) = \log(a)$	(a + b). (a -
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	og $a + \log b$. og a của $\log_2 16$ bằng B 4. b là các số thực dương thư B 3. á trị của $A = \log_2\left(\frac{8 \cdot \sqrt[3]{2} \cdot \sqrt[3$	$\begin{array}{c} \textbf{B} \log(ab) = \log(a) \\ \textbf{D} \log\left(\frac{a}{b}\right) = \log(a) \\ \textbf{C} \log\left(\frac{a}\right) = \log(a) \\ \textbf{C} \log\left(\frac{a}{b}\right) = \log(a) \\ \textbf{C} \log\left(\frac{a}{b}\right) = \log(a)$	(a + b). (a -
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	og $a + \log b$. og a của $\log_2 16$ bằng B 4. b là các số thực dương thư B 3. á trị của $A = \log_2\left(\frac{8 \cdot \sqrt[3]{2} \cdot \sqrt[3$	$\begin{array}{c} \textbf{B} \log(ab) = \log(a) \\ \textbf{D} \log\left(\frac{a}{b}\right) = \log(a) \\ \textbf{C} \log\left(\frac{a}\right) = \log(a) \\ \textbf{C} \log\left(\frac{a}{b}\right) = \log(a) \\ \textbf{C} \log\left(\frac{a}{b}\right) = \log(a)$	(a + b). (a -

CÂU 21. Giá trị của biểu thức $M = \log_2 2 + \log_2 4 + \log_2 8 + \dots + \log_2 256$ bằng

(**A**) 56

B $8 \log_2 256$.

(C) 36.

(D) 48

CÂU 22. Giá trị của biểu thức $P = (e^3)^{\log_e 5}$ bằng

(A) 16

(B) 125.

(C) 32.

 \bigcirc 5.

CÂU 23. Tìm giá trị của biểu thức $A = \log_2\left(2\sin\frac{\pi}{12}\right) + \log_2\cos\frac{\pi}{12}$

(A) 3.

B) -2.

 $(\mathbf{C}) - 1.$

 \bigcirc 2.

CÂU 24. Cho a, b, c, là các số thực dương, khác 1 và thỏa mãn $\log_a b^2 = x$, $\log_{b^2} \sqrt{c} = y$. Giá trị của $\log_c a$ bằng

 \bigcirc 2xy.

 $\bigcirc \frac{1}{2xy}$.

 \bigcirc $\frac{2}{xy}$.

CÂU 25. Cho $\log_a x = 2$, $\log_b x = 5$ với a, b là các số thực lớn hơn 1. Giá trị của $\log_{\frac{a^2}{b}} x$

bằng

 $\stackrel{\bullet}{\triangle} \frac{6}{5}.$

B $\frac{5}{6}$.

 $\bigcirc \frac{5}{4}$.

D $\frac{4}{5}$.

CÂU 26. Cho a và b là hai số thực dương thỏa mãn $a^4b=16$. Giá trị của $4\log_2 a + \log_2 b$ bằng

(**A**) 4.

B) 2.

(C) 16.

(D) 8

CÂU 27. Cho các số thực dương a và b thỏa mãn $a^2 - 16b = 0$. Tính giá trị của biểu thức

 $P = \log_{\sqrt{2}} a - \log_2 b.$

 $(\mathbf{B}) P = 4.$

(C) P = 16.

 $\mathbf{D} P = \sqrt{2}.$

CÂU 28. Cho các số thực a, b, c thuộc khoảng $(1; +\infty)$ và $\log_{\sqrt{a}}^2 b + \log_b c \cdot \log_b \left(\frac{c^2}{b}\right) + 2 \cdot \log_b c \cdot \log_b \left(\frac{c^2}{b}\right)$

 $9\log_a c = 4\log_a b$. Giá trị của biểu thức $\log_a b + \log_b c^2$ bằng

A 2.

B $\frac{1}{2}$.

C 3.

 \bigcirc 1

CÂU 29. Cho cấp số cộng (u_n) có tất cả số hạng đều dương và $9(u_1 + u_2 + \dots + u_{2050}) = 4(u_1 + u_2 + \dots + u_{3075})$. Giá trị nhỏ nhất của biểu thức $P = \log_3^2 u_{14} + \log_3^2 u_{41} - \log_3^2 u_{122}$.

 \bigcirc -4.

 \bigcirc -2.

 (\mathbf{c}) 1.

D 3.

CÂU 30. Cho các số thực a, b, c thỏa mãn $a^{\log_3 7} = 27, b^{\log_7 11} = 49, c^{\log_{11} 25} = \sqrt{11}$. Giá trị của biểu thức $A = a^{(\log_3 7)^2} + b^{(\log_7 11)^2} + c^{(\log_{11} 25)^2}$ là

(A) 129.

B) 519.

(C) 469.

D 729.

🗲 Dạng 5. Biến đổi, rút gọn, biểu diễn biểu thức chứa lôgarít

1. Ví du mẫu

VÍ DỤ 1. Với a, x, y là các số thực dương tùy ý và khác 1. Rút gọn biểu thức $P = \frac{x^{\log_a y}}{y^{\log_a x}}$

VÍ DỤ 2. Biết $\log_7 2 = m$, biểu diễn biểu thức $\log_{49} 28$ theo m.

VÍ DỤ 3. Với a là số thực dương tùy ý, rút gọn biểu thức $\log_3(a^5)$.

VÍ DỤ 4. Cho các số thực a, b. Rút gọn biểu thức $A = \log_2 2^a + \log_2 2^b$.

VÍ DỤ 5. Biết rằng $\log_2 3 = a, \log_2 5 = b$. Tính $\log_{45} 4$ theo a và b.

VÍ DỤ 6. Cho hai số dương a, b với $a \neq 1$. Đặt $M = \log_{\sqrt{a}} \sqrt[3]{b}$. Tính M theo $N = \log_a b$.

VÍ DỤ 7. Biểu diễn $\log_{120} 600$ theo $a = \log_2 3$ và $b = \log_3 5$.

VÍ DỤ 8. Cho $\log 5 = a$. Tính $\log 25000$ theo a.

VÍ DỤ 9. Cho $a = \log 2, b = \log 3$. Tính $\log \sqrt[7]{0,432}$ theo a và b.

VÍ DỤ 10. Rút gọn biểu thức $M=2\log_{\sqrt{2}}(4x)-12\log_4\sqrt{x}+\log_{\frac{1}{2}}\frac{8}{x}$ với x>0.

QUICK NOTE

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

• •	• •	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

	•	•	•	•	•						•	•	•	•	•						

.....

	•	•	•	•	•	•	•	•	•	•	•			•	•	•	•	•	•	•	•	•	•	•			•

ລ	\cap
w	П
IC	
ĸ	
N	м
O	

VÍ DỤ 11. Cho $\log_2 5 = m$, $\log_3 5 = n$. Khi đó $\log_6 5$ tính theo m và n là

VÍ DỤ 12. Cho $\log_2 m = a$ và $A = \log_m (8m)$ với $m > 0, m \neq 1$. Tìm mối liên hệ giữa A và a.

VÍ DỤ 13. Cho các số thực dương x, a, b, c thỏa mãn

$$\log x = 2\log(2a) - 2\log b - 4\log\sqrt[4]{c}.$$

Biểu diễn x theo a, b, c.

VÍ Dụ 14. Cho các số nguyên a, b, c thỏa mãn $a + \frac{b + \log_2 5}{c + \log_2 3} = \log_6 45$. Tính tổng a + b + c.

VÍ DỤ 15. Cho $G=10^{10^{100}}$. Đặt $x=\log_{10}G$; $y=\log_x G$, khi đó $\log_y G$ có thể biểu diễn dưới dạng $\frac{m}{n}$ trong đó m, n là các số nguyên dương và ước chung lớn nhất của chúng bằng 1. Tính tổng các chữ số của số m+n.

2. Bài tấp rèn luyên

BÀI 1. Cho a là số thực dương tùy ý, đặt $\log_3 a = \alpha$. Biểu diễn biểu thức $P = \log_{\frac{1}{3}} a - \log_{\sqrt{3}} a$ theo α .

BÀI 2. Đặt $\log_5 3 = a$. Biểu diễn $\log_{\frac{1}{25}} 81$ theo a.

BÀI 3. Cho a là số thực dương khác 1 và x,y là các số thực dương thỏa mãn $\log_a x = -1$ và $\log_a y = 4$. Rút gọn biểu thức $P = \log_a (x^2 y^3)$.

BÀI 4. Cho các số thực x, y, z > 1 và $\log_{xy}(yz) = 2$. Rút gọn biểu thức $\log_{\frac{z}{y}}(x)^4 + \log_{\frac{z}{x}}(xy)$.

BÀI 5. Cho $\log_{12} 3 = a$. Tính $\log_{24} 18$ theo a.

BÀI 6. Đặt $a = \ln 2$ và $b = \ln 3$. Biểu diễn $S = \ln \frac{1}{2} + \ln \frac{2}{3} + \ln \frac{3}{4} + \dots + \ln \frac{71}{72}$ theo a và b.

BÀI 7. Rút gọn biểu thức $Q = \left(y^{\log_2 3}\right)^{\log_5 2}$ (với y > 0).

BÀI 8. Cho $\log_2 a = x$ và $\log_2 b = y$ với $a>0,\ b>0$ và $a\neq b$. Tìm biểu diễn của $\log_{a^{-2}b^3}(a^4b)$ theo x và y.

BÀI 9. Cho $\log_2 3 = a$. Biểu diễn biểu thức $\log_9 2$ theo a.

BÀI 10. Cho $0 < x \neq 1, \ 0 < y$ thỏa mãn $\log_2 x = y$ và $\log_x y = \frac{3}{y}$. Tính tổng x + y.

BÀI 11. Cho các số thực dương a, b thỏa mãn $\ln a = x, \ln b = y$. Tính $P = \ln (a^3b^2)$.

BÀI 12. Biết $\log_{15} 20 = a + \frac{2\log_3 2 + b}{\log_3 5 + c}$ với $a, b, c \in \mathbb{Z}$. Tính T = a + b + c.

BÀI 13. Cho $\log_2 3 = x$ và $\log_2 5 = y$. Biết rằng $\log_{20} 15 = \frac{ax + by}{cy + 2}$ với a, b, c là các số nguyên dương. Tính P = a + b + c.

BÀI 14. Cho tam giác ABC vuông tại A và AD là đường cao. Biết $AB = \log y$, $AC = \log 3$, $AD = \log x$, $BC = \log 9$. Tính $\frac{y}{x}$.

3. Bài tập trắc nghiệm

CÂU 1. Với mọi số thực a dương, $\log_2 \frac{4}{a}$ bằng

$$\bigcirc$$
 $4 - \log_2 a$.

$$\bigcirc 2 - \log_2 a.$$

CÂU 2. Với a là số thực dương tùy ý, $\log(10a^2)$ bằng

B
$$1 + 2 \log a$$
.

$$(c)$$
 1 + $(\log a)^2$

CÂU 3. Với a là số thực dương tùy ý, $\log \frac{5a}{2} + \log \frac{4}{a}$ bằng

$$\bigcirc$$
 1.

$$\bigcirc \log \frac{5a}{2} \cdot \log \frac{4}{a}$$
.

$$\mathbf{\hat{A}} 3\log a + \frac{1}{2}\log b.$$

$$\mathbf{B} 2\log a + 3\log b.$$

CÂU 5. Cho a và b là hai số thực dương thỏa mãn $2\log_2 b - 3\log_2 a = 2$. Khẳng định nào sau đây đúng?

$$(A) 2b - 3a = 2.$$

(B)
$$b^2 = 4a^3$$
.

(C)
$$2b - 3a = 4$$
.

$$\mathbf{\hat{D}}) b^2 - a^2 = 4$$

CÂU 6. Giả sử a, b là các số thực dương bất kỳ. Biểu thức $\ln \frac{a}{h^2}$ bằng

$$(\mathbf{B}) \ln a + 2 \ln b.$$

$$\bigcirc \ln a - 2 \ln b$$

CÂU 7. Cho $a = \log_3 4$. Khi đó $\log_3 36$ bằng

$$(\mathbf{A}) a + 4.$$

B
$$2a + 4$$
.

$$(\mathbf{c}) a + 2.$$

(D)
$$a + 9$$
.

CÂU 8. Xét a, b là các số thực dương thỏa mãn $4\log_2 a + 2\log_4 b = 1$. Khẳng định nào sau đây là đúng?

(A)
$$a^4b = 2$$
.

(B)
$$a^4b = 1$$
.

$$\bigcirc a^4b^2 = 2.$$

CÂU 9. Với mọi a, b, x là các số thực dương thoả mãn $\log_2 x = 5 \log_2 a + 3 \log_2 b$. Mệnh đề nào dưới đây đúng

$$(\mathbf{A}) x = 5a + 3b.$$

B)
$$x = a^5 + b^3$$
.

$$(\mathbf{c}) x = a^5 b^3.$$

CÂU 10. Cho a và b là hai số thực dương thỏa mãn $\sqrt{a} \cdot b^3 = 27$. Giá trị của $\log_3 a + 6 \log_3 b$ bằng

(A) 3.

 $(\mathbf{C}) 9.$

CÂU 11. Với mọi số thực dương x, $\log_3\left(\frac{x^3}{3}\right)$ bằng

$$\bigcirc$$
 $3 \log_3 x - 1$.

$$\bigcirc$$
 $\log_3 x - 1$.

$$\bigcirc$$
 $\log_3 x$.

D
$$3\log_3 x + 1$$
.

CÂU 12. Với mọi a, b thỏa mãn $2\log_9 a - 3\log_3 b = 1$, mệnh đề nào sau đây đúng?

(B)
$$2a - 3b = 1$$
. **(C)** $a^2 = 3b^3$.

$$\mathbf{\hat{C}} a^2 = 3b^3.$$

$$(D) $a = 3b^3.$$$

CÂU 13. Cho hai số thực dương a, b bất kì thỏa mãn $9\log^2 a + 4\log^2 b = 12\log a \cdot \log b$. Khẳng định nào dưới đây đúng?

$$(\mathbf{A}) \ 3a = 2b.$$

(B)
$$2a = 3b$$
.

$$(\mathbf{c}) a^2 = b^3.$$

CÂU 14. Đặt $x=\log_2 14$. Biết $\log_{98} 32=\frac{a}{bx-c}$ với $a,\,b,\,c$ là những số tự nhiên và biểu thức là tối giản. Giá trị của biểu thức S=2a+3b+5c là

CÂU 15. Cho a, b là các số thực dương tùy ý và $a \neq 1$. Đặt $P = \log_a b^3 + \log_{a^2} b^6$. Mệnh đề nào sau đây là đúng?

 $(\mathbf{A}) P = 9 \log_a b.$

$$\mathbf{B} P = 6 \log_a b.$$

$$\bigcirc P = 27 \log_a b.$$

$$\bigcirc P = 15 \log_a b$$

CÂU 16. Đặt $\log_2 3 = a$. Khi đó $\log_{12} 18$ bằng $\bigcirc \frac{2+a}{1+2a}$.

$$\bigcirc \frac{2+a}{1+2a}$$
.

B
$$\frac{1+2a}{2+a}$$
.

$$\bigcirc$$
 a.

CÂU 17. Với mọi số thực dương x, y thỏa mãn $x^2 + y^2 = 8xy$, mệnh đề nào dưới đây

CÂU 18. Cho các số thực dương x, y thỏa mãn $\log(xy^2) = 5$ và $\log(x^3y) = 10$. Tính $P = \log(xy)$.

$$\bigcirc P = 4.$$

(B)
$$P = 2$$
.

(C)
$$P = 5$$
.

(D)
$$P = 1$$
.

CÂU 19. Nếu $\log_5 2 = m \text{ thì } \log (2^{20} \cdot 5^{19}) \text{ bằng}$

A
$$\frac{19m+20}{m+1}$$
.

B
$$\frac{20m-19}{m+1}$$

$$\bigcirc$$
 $\frac{19m+20}{m-1}$.

$$\bigcirc \hspace{-.1in} \boxed{ \begin{array}{c} 20m+19\\ m+1 \end{array} }$$

<u> </u>				
QUICK NOTE	CÂU 20. Cho a, b, c l bằng			, ,
	(A) $1 + 2m + 5n$.	B $1 + \frac{1}{2}m + \frac{1}{5}n$.	$\bigcirc 1 + \frac{1}{5}m + \frac{1}{2}n.$	D $1 + 5m + 2n$.
	CÂU 21. Cho tam giá		CA = b, AB = c. Nếu c	a, b, c theo thứ tự lập
	thành một cấp số nhân	$=2\ln\sin B.$		
	CÂU 22. Xét các số th	nực dương a và b thỏa i	$\text{mãn } \log_5\left(5^a \cdot 25^b\right) = 5^1$	$\log_5 a + \log_5 b + 1$. Mệnh đề
	nào dưới đây đúng? $ (\mathbf{A}) \ a + 2b = ab. $		© $2ab - 1 = a + b$.	$\mathbf{\widehat{D}}) a + 2b = 2ab.$
	CÂU 23. cho ba số thu	_	_	_
	định nào sau đây là đú			_
		_	_	_
	CÂU 24. Cho $\log_2 5 = m^2 + n^2$.	$= a$, $\log_5 a = b$, blet in	$\log_{24} 15 = \frac{1}{n + ab}, \text{ vor}$	$1 m, n \in \mathbb{Z}$. $1 \text{inn } S =$
	$\bigcap_{n=1}^{\infty} \prod_{i=1}^{\infty} S = 2.$	B $S = 10$.	© $S = 5$.	D $S = 13$.
	CÂU 25. Cho các số t	hực a, b với $ab > 0$. Mệ	ệnh đề nào dưới đây sa	i?
		$-\ln b ^{-1}$.		$+\log b .$
	$\bigcirc \log a^4 = 4\log a .$		$\bigcirc \log(ab) = \log a +$	
	CÂU 26. Đặt $\log_2 5 =$	a , tính giá trị của \log_4	a 1250 theo a .	
	A $2(1+4a)$.	B $\frac{1+4a}{2}$.	\bigcirc 2(1 – 4a).	$\bigcirc \frac{1-4a}{2}$.
	CÂU 27. Cho $\log_2 3 =$	$a \log_2 5 = b$ khi đó lo	og. 675 được biểu diễn t	theo a b là đán án nào.
	sau đây?			
	$\frac{3a+2b}{b}.$			
	CÂU 28. Biết rằng log	$g_2 3 = a, \log_2 5 = b.$ Tír	theo a, b .	
	$ \qquad \qquad \mathbf{A} \frac{2a+b}{2}. $	$\mathbf{B} \frac{2b+a}{2}.$	$\bigcirc \frac{2}{2a+b}.$	\bigcirc $2ab$.
	CÂU 29. Biết $\log_2 3 =$	a , $\log_3 5 = b$. Khi đó l	$\log_{15} 12$ bằng	(4
	$\qquad \qquad \mathbf{A} \frac{a+2}{b+1}.$	$\mathbf{B} \frac{ab+1}{a+2}.$	$\bigcirc \frac{a+2}{a(b+1)}.$	
	CÂU 30. Cho a, b là c	ác số thực dương thỏa	$\log_4 a + \log_4 b^2 = 5 \text{ và}$	$\log_4 a^2 + \log_4 b = 7 \text{ th}$
	\int tích ab nhận giá trị bằn	ng	©) 2 ⁹ .	
	(A) 16.	B 2 ⁸ .		\bigcirc 2 ¹⁸ .
	CÂU 31. Cho $\log_{18} 6$ =	$=rac{a+\log_3 2}{b+\log_2 2}, ext{ với } a, b$ là	a các số nguyên. Giá tr	ị của $a+b$ bằng
	A 4.	B 5.	© 3.	D 2.
	CÂU 32. Biết $\log a =$	b và $\ln 10 = c$. Giá trị c	của $\log_{10e}(10a)$ bằng	
		\bigcirc $\frac{ab+a}{1+c}$.	$\bigcirc \frac{bc+b}{1+c}$.	
	CÂU 33. Cho $\log 3 = 6$	a , $\log 2 = b$. Khi đó giá	tri của log ₁₀₅ 30 được	tính theo a, b là
	$\frac{1+a}{3(1-b)}$.	B $\frac{4(3-a)}{3-b}$.	$\mathbf{C} \frac{a}{3+b}$.	
				5 W
	CÂU 34. Cho số thực	$lpha$ thoa mãn $9^{lpha}+9^{-lpha}$	~ = 23. Giá trị của bi	eu thức $\frac{1-3^{-\alpha}-3^{\alpha}}{1-3^{-\alpha}-3^{\alpha}}$
	$ \begin{array}{c c} \text{bằng} \\ \hline \mathbf{A} \frac{1}{2}. \end{array} $	B $-\frac{5}{2}$.	\bigcirc $\frac{3}{2}$.	(D) 2.
		2	<i>Z</i>	1.0
	CÂU 35. Cho $a > 0$,	b > 0 và a khác 1 the	ỏa mãn $\log_a b = \frac{6}{4}$; lo	$g_2 a = \frac{10}{b}$. Tính tổng

a + b. **(A)** 32.

12

D 10.

c 18.

B 16.

(A) $2(\log_2 a + \log_2 b)$.

- **B** $\frac{1}{2} (4 + \log_2 a + \log_2 b).$
- \bullet 4 + $\frac{1}{2} (\log_2 a + \log_2 b)$.
- $(\mathbf{D})(4 + \log_2 a + \log_2 b).$

CÂU 37. Giả sử a,b là các số thực sao cho $x^3+y^3=a\cdot 10^{3z}+b\cdot 10^{2z}$ đúng với mọi số thực

CÂU 38. Cho các số $a, b > 0, a \neq 1$ thỏa mãn $\log_{ab} \frac{a}{b} = \frac{1}{3}$. Giá trị của $\log_{a^3} \left(ab^6\right)$ bằng

- **B** $\frac{13}{4}$.

CÂU 39. Cho x,y và z là các số thực lớn hơn 1 và gọi w là số thực dương sao cho $\log_x w =$ 24, $\log_y 40$ và $\log_{xyz} w = 12$. Tính $\log_z w$.

- (**A**) 52.
- **(B)** -60.
- **(C)** 60.
- $(\mathbf{D}) 52.$

CÂU 40. Cho các số thực dương x, y thỏa mãn $\sqrt{\log x} + \sqrt{\log y} + \log \sqrt{x} + \log \sqrt{y} = 100$ và $\sqrt{\log x}$, $\sqrt{\log y}$, $\log \sqrt{x}$, $\log \sqrt{y}$ là các số nguyên dương. Khi đó kết quả xy bằng

- (A) 10^{200} .
- **(B)** 10^{100} .
- $(\mathbf{C}) 10^{164}.$
- $(\mathbf{D}) 10^{144}.$

🖶 Dạng 6. Toán thực tế, liên môn

- Θ Chỉ số hay độ pH của một dung dịch được tính theo công thức: pH = $-\log[H^+]$ với $[H^+]$ là nồng độ ion hydrogen. Người ta đo được nồng độ ion hydrogen của một cốc nước cam là 10^{-4} , nước dừa là 10^{-5} (nồng độ tính bằng mol L^{-1}).
- \odot Công thức lãi kép theo N kì han

Nếu đem gửi ngân hàng một số vốn ban đầu là P theo thể thức lãi kép với lãi suất hằng năm không đổi là r và chia mỗi năm thành m kì tính lãi thì sau t năm (tức là sau tm = N kì hạn) số tiền thu được (cả vốn lẫn lãi) là

$$A_m = P\left(1 + \frac{r}{m}\right)^N.$$

○ Công thức lãi kép liên tục

Với số vốn ban đầu là P, theo thể thức lãi kép liên tục, lãi suất hằng năm không đổi là r thì sau t năm, số tiền thu được cả vốn lẫn lãi sẽ là

$$A = Pe^{tr}$$
.

1. Ví dụ mẫu

VI DU 1. Trong hóa học, độ pH của một dung dịch được tính theo công thức pH = $-\log[\mathrm{H}^+]$, trong đó $[\mathrm{H}^+]$ là nồng độ H^+ (ion hydro) tính bằng mol/L. Các dung dịch có pH bé hơn 7 thì có tính acid, có pH lớn hơn 7 thì có tính kiềm, có pH bằng 7 thì trung tính.

- a) Tính độ pH của dung dịch có nồng độ $\mathrm{H^{+}}$ là 0,0001 mol/L. Dung dịch này có tính acid, hay kiềm hay trung tính?
- b) Dung dịch A có nồng độ H^+ gấp đôi nồng độ H^+ của dung dịch B. Độ pH của dung dịch nào lớn hơn và lớn hơn bao nhiêu? Làm tròn kết quả đến hàng phần nghìn.

VÍ DỤ 2. Bác An gửi tiết kiệm ngân hàng 100 triệu đồng kì hạn 12 tháng, với lãi suất không đổi là 6% một năm. Khi đó sau n năm gửi thì tổng số tiền bác An thu được (cả vốn lẫn lãi) cho bởi công thức sau:

$$A = 100 \cdot (1 + 0.06)^n$$
 (triệu đồng).

Hỏi sau ít nhất bao nhiêu năm, tổng số tiền bác An thu được là không dưới 150 triệu đồng?

VÍ DU 3. Một vi khuẩn có khối lượng khoảng $5 \cdot 10^{-13}$ gam và cứ 20 phút vi khuẩn đó tự nhân đôi một lần (Nguồn: Câu hỏi và bài tập vi sinh học, NXB DHSP, 2008). Giả sử các vi khuẩn được nuôi trong các điều kiện sinh trưởng tối ưu và mỗi con vi khuẩn đều tồn tại

_			_	-
ລບເ	CK	N	O.	
711	(_K	11/4	•	

☑ MŨ - LOGARIT

QUICK NOTE	trong ít nhất 60 giờ. Hỏi sau bao nhiêu giờ khối lượng do tế bào vi khuẩn này sinh ra sẽ đ tới khối lượng của Trái Đất (lấy khối lượng của Trái Đất là $6 \cdot 10^{27} \text{gam}$) (làm tròn kết q đến hàng đơn vị)?	
	2. Bài tập rèn luyện	
	BÀI 1. Trong nuôi trồng thuỷ sản, độ pH của môi trường nước sẽ ảnh hưởng đến sức kh và sự phát triển của thuỷ sản. Độ pH thích hợp cho nước trong đầm nuôi tôm sú là từ 7 đến 8,8 và tốt nhất là trong khoảng từ 7,8 đến 8,5. Phân tích nồng độ [H ⁺] trong một đầ nuôi tôm sú, ta thu được [H ⁺] = $8 \cdot 10^{-8}$ (Nguồn: https://nongnghiep.farmvina.com). Hợp pH của đầm đó có thích hợp cho tôm sú phát triển không?	7,2 im
	BÀI 2. Biết thời gian cần thiết (tính theo năm) để tăng gấp đôi số tiền đầu tư theo t thức lãi kép liên tục với lãi suất không đổi r mỗi năm được cho bởi công thức sau:	hể
	$t = \frac{\ln 2}{r}$.	
	Tính thời gian cần thiết để tăng gấp đôi một khoản đầu tư khi lãi suất là 6% mỗi năm (là tròn kết quả đến chữ số thập phân thứ nhất).	ım
	BÀI 3. Độ lớn M của một trận động đất theo thang Richter được tính theo công th	ức
	$M = \log \frac{A}{A_0}$, trong đó A là biên độ lớn nhất ghi được bởi máy đo địa chấn, A_0 là biên	
	tiêu chuẩn được sử dụng để hiệu chỉnh độ lệch gây ra bởi khoảng cách của máy đo địa ch so với tâm chấn $(A_0 = 1\mu m)$.	
	a) Tính độ lớn của trận động đất có biên độ A bằng	
	i) $10^{5,1}A_0$; ii) $65\ 000A_0$.	
	b) Một trận động đất tại địa điểm N có biên độ lớn nhất gấp ba lần biên độ lớn nh	ất
	của trận động đất tại địa điểm P . So sánh độ lớn của hai trận động đất.	au
	BÀI 4.	
	a) Nước cất có nồng độ H^+ là 10^{-7} mol/L. Tính nồng độ pH của nước cất.	
	b) Một dung dịch có nồng độ H ⁺ gấp 20 lần nồng độ H ⁺ của nước cất. Tính pH c dung dịch đó.	ủа
	BÀI 5. Biết rằng khi độ cao tăng lên, áp suất không khí sẽ giảm và công thức tính áp su	.ất
	dựa trên độ cao là $a = 15500(5 - \log p),$	
	trong đó a là độ cao so với mực nước biển (tính bằng mét) và p là áp suất không khí (tính bằng pascal). Tính áp suất không khí ở đỉnh Everest có độ cao 8850 m so với mực nư biển.	
	BÀI 6. Mức cường độ âm L đo bằng decibel (dB) của âm thanh có cường độ I (đo bằ	ng
	oát trên mét vuông, kí hiệu là $\rm W/m^2)$ được định nghĩa như sau:	
	$L(I) = 10 \log \frac{I}{I_0},$	
	-0	^
	trong đó $I_0 = 10^{-12} \text{ W/m}^2$ là cường độ âm thanh nhỏ nhất mà tai người có thể phát hi được (gọi là ngưỡng nghe). Xác định mức cường độ âm của mỗi âm sau:	ęn
	a) Cuộc trò chuyện bình thường có cường độ $I=10^{-7}~{ m W/m^2}.$	
	b) Giao thông thành phố đông đúc có cường độ $I=10^{-3}~{ m W/m^2}.$	
	3. Bài tập trắc nghiệm	
	CÂU 1. Sự phân rã của các chất phóng xạ được biểu diễn theo công thức $m(t) = m_0 e^{-t}$	λt
	$t = \frac{\ln 2}{T}$, trong đó m_0 là khối lượng ban đầu của chất phóng xạ (tại thời điểm $t = 0$), m_0	, (+)
	$t = \frac{1}{T}$, trong do m_0 là khối lượng chất phóng xạ tại thời điểm t , T là chu kì bán rã (tức là khoảng thời gian	_
	một nửa khối lượng chất phóng xạ biến thành chất khác). Khi phân tích một mẫu gỗ từ cô	ng
	trình kiến trúc cổ, các nhà khoa học thấy rằng khối lượng cacbon phóng xạ ¹⁴ C trong m	
	gỗ đã mất 45% so với lượng $_6^{14}C$ ban đầu của nó. Hỏi công trình kiến thúc đó có niên ở khoảng bao nhiều năm? Cho biết chu kì bán rã của $_6^{14}C$ là khoảng 5730 năm.	ıạı
	(A) 4942 (năm). (B) 5157 (năm). (C) 3561 (năm). (D) 6601 (năm).	

UI - LOGARII				V
CÂU 2. Biết rằng năm 2 đó là 1,7%. Cho biết sự t là dân số của năm lấy là năm). Hỏi nếu cứ tăng dấ triệu người?	ăng dân số được ước m mốc tính, S là dâi ân số với tỉ lệ như vậy	tính theo công thức n số sau N năm, r y thì đến năm nào c	$cS = A \cdot e^{Nr}$ (trong đó A là tỉ lệ tăng dân số hàng lân số nước ta ở mức 120	QUICK NOTE
(A) 2020.	B 2022.	© 2025.	D 2026.	
CÂU 3. Một người gửi sơ sau mỗi năm, số tiền lãi theo. Hỏi sau ít nhất bao triệu đồng? (Giả thiết lãi (A) 3 năm.	sẽ sinh ra được nhập nhiêu năm thì người	o vào vốn ban đầu đó sẽ lĩnh được số	tiền cả vốn lẫn lãi là 100	
CÂU 4. Một người gửi 5 không rút tiền khỏi ngân cho năm tiếp theo. Hỏi sa đó nhiều là 100 triệu? Gi đó không rút tiền ra. (A) 14 năm.	. hàng thì cứ mỗi năn au ít nhất bao nhiêu n	n số tiền lãi sẽ được năm thì tổng số tiền	cộng vào gốc để tính lãi n cả gốc lẫn lãi của người	
CÂU 5. Một người gửi ti Sau bao nhiêu năm người			g năm được nhập vào vốn.	
	B 6.	© 8.	D 7.	
CÂU 6. Cường độ một tr với A là biên độ rung chất trận động đất ở San Fran đất khác ở Nam Mỹ có l trận động đất ở San Fran 1 chữ số thập phân).	n tối đa và A_0 là một ncisco có cường độ 8, biên độ rung chấn tố:	biên độ chuẩn (hằn 3 độ richter. Trong i đa gấp 4 lần biên	g số). Đầu thế kỷ 20 , một cùng năm đó, trận động độ rung chấn tối đa của	
~ · · · · · /	B 12,3 richter.	© 8,9 richter.	D 2,1 richter.	
được nhập vào vốn. Sau 9			một năm và lãi hàng năm n được là bao nhiêu? 352,58 triệu.	
bằng số nào dưới đây nhấ	nét), tức là P giảm thực nước biển $(x=0)$, khí là 672,71 mmHg. ất?	neo công thức $P = I$ i là hệ số suy giảm Hỏi áp suất không	$P_0 \cdot \mathbf{e}^{xi}$, trong đó $P_0 = 760$. Biết rằng ở độ cao 1000 khí ở độ cao 3000 m gần	
(A) 530,23 mmHg.	B) 527,06 mmHg.	© 554,38 mmHg	. (D) 428,2 mmHg.	
CÂU 9. Một nguồn âm đ		1	_	
${\cal O}$ một khoảng ${\cal R}$ được tí	ính bởi công thức L_M	$r = \log \frac{\kappa}{R^2}$ (Ben), v	ới $k > 0$ là hằng số. Biết	
điểm O thuộc đoạn thẳng (Ben) và $l_B = 5$ (Ben). The chữ số thập phân).			và B lần lượt là $L_A=4,3$ ủa AB (làm tròn đến hai	
A 4,65 (Ben).	B 4,58 (Ben).	© 5,42 (Ben).	D 9,40 (Ben).	
Bài 20.	HÀM SỐ MŨ	. HÀM SỐ L	OGARIT	
A. TÓM TẮT LÝ	THIIVÊT			
	IIIOILI			
1. Định nghĩa				
7 Định nghĩa 20.1. Ch thực a^x được gọi là hàm		_	ứng mỗi số thực x với số	
Nhận xét: Hàm số $y = c$				
7 Định nghĩa 20.2. Đồ	thị hàm số $y = a^x$ (e	$a>0, a\neq 1)$ là một		
trục tung tại điểm có tur xuống nếu $0 < a < 1$.	ng độ bằng 1, nằm ở	phía trên trục hoàn	h và đi lên nếu $a > 1$, đi	

Nhận xét: Cho hàm số mũ $y = a^x \ (a > 0, a \neq 1)$.

$y = a^x \ (a > 1)$	$y = a^x \ (0 < a < 1)$
$\mathscr{D} = \mathbb{R}; T = (0; +\infty).$	$\mathscr{D} = \mathbb{R}, T = (0; +\infty).$
Tính liên tục: Hàm số liên tục trên \mathbb{R} .	Tính liên tục: Hàm số liên tục trên \mathbb{R} .
Giới hạn đặc biệt	Giới hạn đặc biệt
$\lim_{x \to -\infty} a^x = 0, \lim_{x \to +\infty} a^x = +\infty.$	$\lim_{x \to -\infty} a^x = +\infty, \lim_{x \to +\infty} a^x = 0.$
Sự biến thiên: Hàm số đồng biến trên \mathbb{R} .	Sự biến thiên: Hàm số nghịch biến trên \mathbb{R} .
Bảng biến thiên	Bảng biến thiên

 \boldsymbol{x} $+\infty$ $+\infty$ $y = a^x$

 $-\infty$ $+\infty$ $+\infty$ $y = a^x$

 \P Đị
NH NGHĨA 20.3. Cho số dương a khác 1. Hàm số cho tương ứng mỗi số thực dương
 xvới số thực $\log_a x$ được gọi là **hàm số lô-ga-rít** cơ số a, kí hiệu $y = \log_a x.$

Nhận xét: Cho hàm số $y = \log_a x \ (a > 0, a \neq 1)$.

	$y = a^x \ (a > 1)$	$y = a^x \ (0 < a < 1)$
	$\mathscr{D} = (0; +\infty); T = \mathbb{R}$	$\mathscr{D} = (0; +\infty); T = \mathbb{R}.$
	Tính liên tục: Hàm số liên tục trên $(0; +\infty)$.	Tính liên tục: Hàm số liên tục trên $(0; +\infty)$.
	Giới hạn đặc biệt	Giới hạn đặc biệt
	$\lim_{x \to +\infty} \log_a x = +\infty, \lim_{x \to 0^+} \log_a x = -\infty$	$\lim_{x \to +\infty} \log_a x = -\infty, \lim_{x \to 0^+} \log_a x = +\infty.$
	Hàm số đồng biến trên $(0; +\infty)$.	Hàm số nghịch biến trên $(0; +\infty)$.
Ī	D21:641:6	Dâng biến thiên

В	ång bi	ên thiên	
x	0	1	$+\infty$
$y = \log_a x$	$-\infty$	0	+∞

Hàm số ng			$+\infty$).	
В	ảng biế	n thiên		
x	0	1	$+\infty$	
$y = \log_a x$	+∞	0_	$-\infty$	

B. CÁC DẠNG TOÁN THƯỜNG GẶP

\vdash Dạng 7. Tập xác định của hàm số

Hàm số $y = \log_a f(x)$ $(0 < a \neq 1)$ xác định khi f(x) > 0.

1. Ví dụ mẫu

VÍ DỤ 1. Tìm tập xác định của hàm số $y = 12^x$.

VÍ DU 2. Tìm tập xác định của các hàm số

a)
$$y = \log_2(3 - 2x)$$
.

b)
$$y = \log_3(x^2 + 4x)$$
.

VÍ DU 3. Tìm tập xác định của các hàm số sau

a)
$$y = \log |x + 3|$$
;

b)
$$y = \ln(4 - x^2)$$
.

VÍ DỤ 4. Tìm tập xác định của các hàm số

a)
$$y = \log_5(2x - 3);$$

b)
$$y = \log_{\frac{1}{5}} (-x^2 + 4)$$
.

2. Bài tập rèn luyện

BÀI 1. Tìm tập xác định của các hàm số sau

a)
$$y = \log_6(x - 4)$$

e)
$$y = \log_2(x - x^2)$$

i)
$$y = \log_{2022} (3x - x^2)$$

b)
$$y = \log_5(2x - 1)$$

f)
$$y = \log_3(x - 4)$$

c)
$$y = \log_2(3 - 2x)$$

g)
$$y = \log_7(x+2)^2$$

d)
$$y = \log_{2021}(3 - x)$$

h)
$$y = \log(2 + x - x^2)$$

$$j) y = \log_2\left(\frac{x-6}{1+x}\right)$$

BÀI 2. Tìm tất cả giá trị của tham số m để hàm số sau xác định trên $\mathbb R$

a)
$$y = \log_2(x^2 - 2x + m)$$

d)
$$y = \ln(3x^2 + 12mx + 6)$$

b)
$$y = \log(x^2 - 2x - m + 1)$$

c)
$$y = \log_7 (x^2 - 2x - m^2 + 5)$$

e)
$$y = \log(x^2 - 8x + 10m - m^2)$$

3. Bài tập trắc nghiệm

CÂU 1. Tập xác định của hàm số $y = \left(2 - \sqrt{3}\right)^x$ là

$$lackbox{\textbf{B}}(-\infty;+\infty).$$

$$\bigcirc$$
 $[0;+\infty).$

$$\bigcirc$$
 $(-\infty;0).$

CÂU 2. Tập xác định của hàm số $y = 7^x$ là

$$(\mathbf{B}) (-\infty; +\infty).$$

$$\bigcirc$$
 $(0; +\infty).$

$$\bigcirc$$
 $(1; +\infty).$

CÂU 3. Tìm tập xác định \mathscr{D} của hàm số $y = \log_2 (x^2 - 2x - 3)$.

$$(-1;3).$$

CÂU 4. Hàm số $y = \log_3(2x - 3)$ có tập xác định là

$$lack {f A}$$
 ${\Bbb R}.$

$$\left(\mathbf{c} \right) \left(-\infty; \frac{3}{2} \right].$$

$$\bigcirc \left(-\infty; \frac{3}{2}\right).$$

CÂU 5. Tập xác định của hàm số $y = \log_3(2-x)$ là

(A)
$$[2; +\infty)$$
.

$$(\mathbf{B}) (-\infty; 2].$$

$$(\mathbf{C}) \mathbb{R} \setminus \{2\}.$$

$$(\mathbf{D})$$
 $(-\infty; 2)$.

CÂU 6. Gọi $\mathscr D$ là tập tất cả những giá trị của x để $\log_2(2018-x)$ có nghĩa. Tập $\mathscr D$ là

$$(\mathbf{A}) \mathscr{D} = [0; 2018].$$

D
$$\mathscr{D} = (0; 2018).$$

CÂU 7. Tập xác định \mathscr{D} của hàm số $y = \log_2(x-3) + \log_3(x+2)$ là

$$\mathbf{B} \mathscr{D} = (-2; +\infty).$$

$$\mathbf{C} \mathscr{D} = (3; +\infty).$$

$$(\mathbf{D}) \mathscr{D} = (-2; 3).$$

<u> </u>			₩ MU - LOGARI
QUICK NOTE	CÂU 8. Tìm tập xác định	\mathscr{D} của hàm số $y = \log_{13} \frac{x+2}{x-5}$.	
	$\mathbf{A} \mathscr{D} = (-\infty; 0] \cup (5; +\infty)$	_ ** 0	
	$\mathbf{C} \mathscr{D} = (-\infty; -2] \cup [5; +$		$-\infty; -2) \cup (5; +\infty).$
	CÂU 9. Tập xác định Ø củ	ia hàm số $y = \log_5 \frac{x+3}{x-2}$ là	
			$-\infty; -3] \cup [2; +\infty)$.
	$\bigcirc \mathscr{D} = [-3; 2) .$	=	$-\infty; -3] \cup (2; +\infty)$.
	CÂU 10. Tìm tập xác định	n \mathscr{D} của hàm số $y = \log(x^2 - 5)$	5x - 6).
		<u> </u>	$-\infty; -1] \cup [6; +\infty).$
		o). $(\mathbf{D}) \mathscr{D} = (-1)^{-1}$	$-\infty; 2) \cup (3; +\infty).$
	CÂU 11. Tập xác định của	a hàm số $y = \ln\left(x^2 - 5x + 6\right)$ l	à
	$(-\infty; 2] \cup [3; +\infty).$	\simeq '	$2)\cup(3;+\infty).$
	© [2; 3].	(\mathbf{D}) (2; 3).	
	CÂU 12. Tìm tập xác định	n \mathscr{D} của hàm số $y = \log \frac{2-x}{r^2+1}$	•
		~ " 1	
		\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc	$-1;1)\cup(2;+\infty).$
	CÂU 13. Tìm tập vác định	\mathcal{D} của hàm số $u = \frac{2}{1 - \frac{1}{2}}$	
		n \mathscr{D} của hàm số $y = \frac{2}{\log_4(4 - x)}$	<i>'</i>
			$-\infty; 4$). $-\infty; -60$) $\cup (-60; 4]$.
		của hàm số $y = \log_5(x^2 + 2x - \frac{1}{2})$	
		$+\infty$). (B) $\mathscr{D}=[-1]$	-3, 1]. $-\infty$; -3] \cup $[1; +\infty)$.
	, , ,	•	àm số $y = \log_3(x^2 - 2mx + m + 6)$
	có tập xác định là \mathbb{R} ?	tri nguyen cua tham so m de n	$am so y = \log_3(x - 2mx + m + 0)$
	A 4.	© 6.	D vô số.
	1 1 1 1 1	á trị thực của tham số m để h	àm số $y = \ln(x^2 - 2x + m + 1)$ co
	$ ag{A} m = 0.$	\bigcirc \bigcirc $0 < m$	< 3.
	\bigcirc $m < -1$ hoặc $m > 0$.	$(\mathbf{D}) m > 0$	
	Pana 8 Sur b	iến thiên và đồ thị của hàn	o số mũ và lôgarít
	≥ Bạng 0. 3ạ b	ien mien va ao mi caa nan	ir so ma va logam
	1. Ví dụ mẫu		
	·	niên và vẽ đồ thị hàm số $y=3^\circ$	<i>x</i> .
	VÍ DỤ 2. Vẽ đồ thị hàm số	$x = (1)^x$	
	VI DO 2. Ve do thị năm so	$y = \left(\frac{1}{2}\right)$.	
	VÍ DỤ 3. Vẽ đồ thị các hàn	n số sau:	
	a) $y = \log x$;	b) $y = \log x$	001 r
			· · · · · · · · · · · · · · · · · · ·
	VÍ Dụ 4. So sánh các cặp s	sô sau:	
	a) $\log_3 7$ và $3\log_3 2$.	b) $2\log_{0,4}$	5 và $3\log_{0,4}3$.
	VÍ DỤ 5. Sử dụng tính chấ	it của hàm số mũ, so sánh các	cặp số sau:
	a) $1,4^2$ và $1,4^{1,8}$.	b) $0.9^{-1.2}$ và $0.9^{-0.8}$.	c) $\sqrt[3]{2}$ và $\sqrt[5]{4}$.
		, ,	, .

2. Bài tập rèn luyện

BÀI 1. Trong các hàm số sau, hàm số nào đồng biến, hàm số nào nghịch biến trên khoảng xác định của hàm số đó? Vì sao?

a)
$$y = \left(\frac{\sqrt{3}}{2}\right)^x$$
;

a)
$$y = \left(\frac{\sqrt{3}}{2}\right)^x$$
; b) $y = \left(\frac{\sqrt[3]{26}}{3}\right)^x$; c) $y = \log_{\pi} x$; d) $y = \log_{\frac{\sqrt{15}}{4}} x$.

c)
$$y = \log_{\pi} x$$
;

d)
$$y = \log_{\frac{\sqrt{15}}{4}} x$$

BÀI 2. Lập bảng biến thiên và vẽ đồ thị hàm số $y = 4^x$;

BÀI 3. Vẽ đồ thị các hàm số sau: $y = \left(\frac{1}{3}\right)^x$.

BÀI 4. Vẽ đồ thị hàm số sau: $y = \left(\frac{1}{4}\right)^x$.

BÀI 5. Vẽ đồ thi các hàm số sau

a)
$$y = \log_{\frac{1}{4}} x$$
.

b)
$$y = \log_3 x$$

BÁI 6. So sánh các cặp số sau:

a) $\log_{\pi} 0.8$ và $\log_{\pi} 1.2$.

b) $\log_{0.3} 2$ và $\log_{0.3} 2,1$.

BÁI 7. So sánh các cặp số sau:

a) $1.3^{0.7}$ và $1.3^{0.6}$.

b) $0.75^{-2.3}$ và $0.75^{-2.4}$.

3. Bài tập trắc nghiệm

CÂU 1. Hàm số nào dưới đây đồng biến trên tập xác định của nó?

$$(A) y = (\sqrt{3})^x.$$

B
$$y = (0.6)^x$$
.

$$\mathbf{C}$$
 $y = \left(\frac{\mathrm{e}}{5}\right)^x$.

$$\mathbf{C} \ y = \left(\frac{\mathrm{e}}{5}\right)^x. \qquad \mathbf{D} \ y = \left(\frac{3}{4}\right)^x.$$

CÂU 2.

Hàm số nào sau đây có đồ thị như hình vẽ bên?

$$\mathbf{B} y = (\sqrt{3})^x.$$

$$\bigcirc y = (\sqrt{2})^x.$$

CÂU 3. Hàm số nào sau đây đồng biến trên khoảng $(-\infty; +\infty)$?

$$\bigcirc y = \left(\frac{\pi}{3}\right)^x.$$

CÂU 4. Hàm số nào sau đây đồng biến trên tập xác định của nó?

B
$$y = \left(\sqrt{2020} - \sqrt{2019}\right)^x$$
.

©
$$y = \log_{\frac{1}{2}}(x+4)$$
.

$$(D) y = \left(\frac{\sqrt{2} + \sqrt{3}}{e}\right)^x.$$

CÂU 5. Trong các hàm số sau, hàm số nào nghịch biến trên \mathbb{R} ?

$$\mathbf{\hat{D}} y = \log(x^3).$$

CÂU 6. Trong các hàm số dưới đây, hàm số nào nghịch biến trên khoảng \mathbb{R} ?

(A)
$$y = (0,5)^x$$
.

$$\mathbf{B} y = 2^x.$$

$$(\mathbf{C}) y = \pi^x.$$

$$(\mathbf{D}) y = e^x.$$

CÂU 7. Cho hàm số $y = e^x$. Mệnh đề nào sau đây là **sai**?

(A) Đồ thị hàm số đi qua điểm A(1;0).

(B) Tập xác định của hàm số $\mathscr{D} = \mathbb{R}$.

(**C**) Hàm số có đạo hàm $y' = e^x, \forall x \in \mathbb{R}$.

(**D**) Đồ thị hàm số nhận trục hoành là tiệm cận ngang.

CÂU 8. Tìm tất cả các giá trị của a để hàm số $y = (2020 - a)^x$ nghịch biến trên \mathbb{R} .

(A) a < 2019.

(B) 2019 < a < 2020.

 $(\mathbf{C}) 0 < a < 1.$

(D) a < 2020.

CÂU 9.

Đồ thị trong hình vẽ bên dưới là đồ thị của hàm số nào sau đây?

 \bigcirc $\left(\frac{1}{2}\right)^x$.

 \bigcirc $(\sqrt{3})^x$.

CÂU 10. Hàm số nào dưới đây nghịch biến trên tập xác định của nó?

B
$$y = \left(\frac{3}{2}\right)^x$$
. **C** $y = \left(\frac{\pi}{e}\right)^x$.

D
$$y = (0,5)^x$$
.

CÂU 11. Cho hai số thực a, b khác 1 và đồ thị của ba hàm số $y = a^x, y = b^x, y = 2^x$ trên cùng một hệ trực tọa độ có dạng như hình vẽ bên.

Mệnh đề nào sau đây đúng?

$$(A) 1 < a < 2, 1 < b < 2.$$

©
$$0 < a < 1, b > 2$$
.

D
$$1 < a < 2, b > 2.$$

CÂU 12.

Cho đồ thị ba hàm số $y = a^x$, $y = b^x$, $y = c^x$ như hình vẽ bên. Kết luận nào sau đây đúng?

$$\bigcirc$$
 0 < c < 1 < b < a.

B
$$0 < a < 1 < c < b$$
.

$$(c)$$
 0 < a < 1 < b < c.

$$\bigcirc$$
 0 < c < 1 < a < b.

CAU 13. Trong các hàm số sau đây, hàm số nào nghịch biến trên tập xác định của nó?

$$\bigcirc y = \log_{\frac{2}{e}} x.$$

$$D) y = \log_{\sqrt{3}} x.$$

CÂU 14.

Đường cong ở hình bên là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án dưới đây. Hỏi hàm số đó là hàm số nào?. $\begin{tabular}{c} 1 \end{tabular}$

- **(B)** $y = \log_{0.5} x$.
- **(c)** $y = 2^x$.
- $(\mathbf{D}) y = -x^2 + 2x + 1.$

CÂU 15.

Đường cong trong hình bên là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án $A,\,B,\,C,\,D$ dưới đây. Hỏi hàm số đó là hàm số nào?

- $(\mathbf{A}) y = \log_2 x.$
- $\bigcirc y = \log_2 2x.$
- $\mathbf{B} \ y = \log_{\sqrt{2}} x.$ $\mathbf{D} \ y = \log_{\frac{1}{2}} x.$

CÂU 16.

Tìm giá trị a của hàm số $y = \log_a x \; (0 < a \neq 1)$ có đồ thị như hình vẽ bên.

- (A) $a = \sqrt{2}$. (B) a = 2. (C) $a = \frac{1}{2}$. (D) $a = \frac{1}{\sqrt{2}}$.

CÂU 17.

Đồ thị sau là của hàm số nào dưới đây?

- $(\mathbf{A}) y = \ln x.$
- **(B)** $y = 2^x$.
- $\mathbf{C} y = \log_2 x.$

CÂU 18. Cho hàm số $y = \log_{\frac{1}{\sqrt{3}}} x$. Khẳng định nào dưới đây sai?

- (\mathbf{A}) Đồ thị hàm số đi qua điểm (1;0).
- (**B**) Đồ thị hàm số nằm phía trên trục hoành.
- (**C**) Hàm số nghịch biến trên $(0; +\infty)$.
- (**D**) Đồ thị hàm số nằm bên phải trực tung.

CÂU 19.

Đồ thị như hình vẽ bên là đồ thị của hàm số nào trong các hàm số sau

CÂU 20.

Cho đồ thị hàm số $y = a^x, y = \log_b x$ (như hình vẽ). Khẳng định nào sau đây đúng?

A
$$0 < b < 1 < a$$
.

(B) 0 < a < 1 < b.

$$(\mathbf{c})$$
 $a, b > 1$.

$$(\mathbf{D})$$
 0 < $a, b < 1$.

CÂU 21.

Cho hai hàm số $y = \log_a x$, $y = \log_b x$ với a, b là hai số thực dương, khác 1 có đồ thị lần lượt là (C_1) , (C_2) như hình vẽ. Khẳng định nào sau đây sai?

(A)
$$0 < b < a < 1$$
.

$$(\mathbf{B}) a > 1.$$

$$(\hat{\mathbf{C}}) 0 < b < 1 < a.$$

$$\bigcirc$$
 0 < b < 1.

CÂU 22. Cho a là số thực dương khác 1. Tìm mệnh đề đúng trong các mệnh đề sau.

- (A) Đồ thị hàmg số $y = a^x$ với 0 < a < 1 đồng biến trên khoảng $(-\infty; +\infty)$.
- **(B)** Hàm số $y = a^x$ với a > 1 nghịch biến trên khoảng $(-\infty; +\infty)$.
- (**C**) Đồ thị hàm số $y = a^x$ luôn đi qua điểm M(a; 1).
- (\mathbf{D}) Đồ thị hàm số $y = a^x$ và đồ thị hàm số $y = \log_a x$ đối xứng nhau qua đường thẳng y = x.

CÂU 23.

Cho đồ thị hàm số $y = a^x$, $y = \log_b x$ như hình vẽ. Trong các khẳng định sau, đâu là khẳng định

- (A) 0 < b < 1 < a.
- **(B)** a > 1, b > 1.
- **(C)** 0 < a < 1 < b.
- $(\mathbf{D}) 0 < a < 1, 0 < b < 1.$

CÂU 24.

Hàm số $y = \log_a x \ (0 < a \neq 1)$ có đồ thị là hình bên. Giá tri của cơ số a bằng

(A) $\sqrt[4]{2}$.

(B) 4.

(**C**) $\sqrt{2}$.

(**D**) 2.

CÂU 25.

Đường cong trong hình bên dưới là đồ thị của một trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào?

$$\bigcirc y = \log_{\frac{1}{2}} x.$$

 $\mathbf{B} \ y = 2^x.$ $\mathbf{D} \ y = \left(\frac{1}{2}\right)^x.$

CÂU 26.

Cho đồ thị các hàm số $y = a^x$, $y = b^x$ và $y = \log_c x$ như hình vẽ. Khẳng định nào sau đây đúng?

(A) b < a < c.

(B) c < b < a.

(C) c < a < b.

 (\mathbf{D}) a < b < c.

CÂU 27.

Cho đồ thị của ba hàm số $y = \log_a x, y =$ $\log_b x$, $y = \log_c x$ như hình vē. Khẳng định nào sau đây đúng?

 $(\mathbf{A}) b > c > a.$

 (\mathbf{B}) b > a > c.

(C) c > a > b.

 $(\mathbf{D}) c > b > a.$

Dạng 9. Bài toán thực tế

1. Ví du mẫu

VI DỤ 1. Ta coi năm lấy làm mốc để tính dân số của một vùng (hoặc một quốc gia) là năm 0. Khi đó, dân số của quốc gia đó ở năm thứ t là hàm số theo biến t được cho bởi công thức: $S = A \cdot e^{rt}$. Trong đó A là dân số của vùng (hoặc quốc gia) đó ở năm 0 và r là tỉ lệ tăng dân số hằng năm (Nguồn: Giải tích 12, NXBGD Việt Nam, 2021). Biết rằng dân số Việt Nam năm 2021 ước tính là 98564407 người và tỉ lệ tăng dân số 0.93%/năm (Nguồn: https://danso.org/viet-nam). Giả sử tỉ lệ tăng dân số hằng năm là như nhau tính từ năm 2021, nêu dự đoán dân số Việt Nam năm 2030 (làm tròn kết quả đến hàng đơn vị).

•																	
•																	

• • • • •	 	

٠.																
٠.																
٠.																

₹ MŨ - LOGARIT

QUICK NOTE	VÍ DỤ 2. Năm 2020, dân số thế giới là 7,795 tỉ người và tốc độ tăng dân số là $1,05\%$ /năm (nguồn: http://www.worldmeters.info/world-population). Nếu tốc độ tăng này tiếp tục duy trì ở những năm tiếp theo thì dân số thế giới sau t năm kể từ năm 2020 được tính bởi công thức
	$P(t) = 7,795 \cdot (1 + 0,0105)^t$ (tỉ người). (*)
	Khi đó, hãy tính dân số thế giới vào năm 2025 và năm 2030. (Mốc thời điểm để tính dân số của mỗi năm là ngày 1 tháng 7.)
	Chú ý: Với giả thiết tốc độ tăng dân số $1,05\%$ /năm không đổi, công thức (*) được áp dụng để tính dân số thế giới tại thời điểm bất kì sau năm 2020. Chẳng hạn, dân số thế giới tại thời điểm ngày 1 tháng 1 năm 2022 (ứng với $t=1,5$) là
	$P(1,5) = 7,795 \cdot (1+0,0105)^{1,5} \approx 7,918$ (tỉ người).
	VÍ DỤ 3. Trong Vật lí, sự phân rã của các chất phóng xạ được cho bởi công thức: $m(t)=$
	$m_0 \cdot \left(\frac{1}{2}\right)^{\frac{t}{T}}$; trong đó m_0 là khối lượng chất phóng xạ ban đầu (tại thời điểm $t=0$), $m(t)$
	(2)
	là khối lượng chất phóng xạ tại thời điểm t và T là chu kì bán rã (Nguồn: Giải tích 12, NXBGD Việt Nam, 2021). Hạt nhân Poloni (Po) là chất phóng xạ α có chu kì bán rã là 138
	ngày (Nguồn: Vật lí 12, NXBGD Việt Nam, 2021). Giả sử lúc đầu có 100 gam Poloni. Tính khối lượng Poloni còn lại sau 100 ngày theo đơn vị gam (làm tròn kết quả đến hàng phần
	mười).
	VÍ DỤ 4. Lốc xoáy là hiện tượng một luồng không khí xoáy tròn mở rộng ra từ một đám
	mây dông xuống tới mặt đất. Các cơn lốc xoáy thường có sức tàn phá rất lớn. Tốc độ của gió (đơn vị: dặm/giờ) gần tâm của một cơn lốc xoáy được tính bởi công thức: $S = 93 \log d + 65$,
	(Nguồn: Ron Larson, Intermediate Algebra, Cengage) trong đó d (đơn vị: dặm) là quãng đường cơn lốc xoáy di chuyển được. Hãy tính tốc độ của gió ở gần tâm (làm tròn kết quả
	đến hàng đơn vị) khi cơn lốc xoáy di chuyển được quãng đường là
	l) 10 Jy
	a) 5 dặm b) 10 dặm
	VÍ DỤ 5. Trong âm học, mức cường độ âm được tính bới công thức $L=10\log\left(\frac{I}{I_0}\right)$ (dB)
	(dB là đơn vị mức cường độ âm, đọc là đề-xi-ben), trong đó I là cường độ âm tính theo W/m^2 và $I_0 = 10^{-12} W/m^2$ là cường độ âm chuẩn (cường độ âm thấp nhất mà tai người bình thường có thể nghe được).
	(Nguồn: Vật lí 12, NXB Giáo dục Việt Nam, năm 2017, trang 52,53)
	a) Mức cường độ âm L thấp nhất mà tai người có thể nghe được là bao nhiêu?
	b) Cuộc trò chuyện có cường độ âm 10^{-9} W/m² thì có mức cường độ âm bằng bao nhiêu?
	c) Cường độ âm tại một khu văn phòng nằm trong miền từ $10^{-7}~{ m W/m^2}$ đến $5\cdot 10^{-6}$
	${ m W/m^2}$ (tức là $10^{-7} \le I \le 5 \cdot 10^{-6}$). Mức cường độ âm tại khu văn phòng này nằm
	trong khoảng nào? (Làm tròn kết quả đến hàng đơn vị).
	2. Bài tập rèn luyện
	BÀI 1. Giả sử một chất phóng xạ bị phân rã theo cách sao cho khối lượng $m(t)$ của chất còn lại (tính bằng kilôgam) sau t ngày được cho bởi hàm số $m(t) = 13e^{-0.0015t}$.
	a) Tìm khối lượng của chất đó tại thời điểm $t=0$.
	b) Sau 45 ngày khối lượng chất đó còn lại là bao nhiêu?
	BÀI 2. Các nhà tâm lí học sử dụng mô hình hàm số mũ để mô phỏng quá trình học tập của một học sinh như sau: $f(t) = c(1 - e^{-kt})$, trong đó c là tổng số đơn vị kiến thức học
	sinh phải học, k (kiến thức/ngày) là tốc độ tiếp thu của học sinh, t (ngày) là thời gian học và $f(t)$ là số đơn vị kiến thức học sinh đã học được (Nguồn: R.I. Charles et al., Algebra 2,
	Pearson). Giả sử một em học sinh phải tiếp thu 25 đơn vị kiến thức mới. Biết rằng tốc độ
	tiếp thu của em học sinh là $k = 0,2$. Hỏi em học sinh sẽ nhớ được (khoảng) bao nhiêu đơn vị kiến thức mới sau 2 ngày? Sau 8 ngày?

☑ MŨ - LOGARIT ♥ ♥

BÀI 3. Chỉ số hay độ pH của một dung dịch được tính theo công thức: pH = $-\log [\mathrm{H}^+]$. Phân tích nồng độ ion hydrogen $[\mathrm{H}^+]$ trong hai mẫu nước sông, ta có kết quả sau: Mẫu 1: $[\mathrm{H}^+] = 8 \cdot 10^{-7}$; Mẫu 2: $[\mathrm{H}^+] = 2 \cdot 10^{-9}$. Không dùng máy tính cầm tay, hãy so sánh độ pH của hai mẫu nước trên.

BÀI 4. Cường độ ánh sáng I dưới mặt biển giảm dần theo độ sâu theo công thức $I = I_0 \cdot a^d$, trong đó I_0 là cường độ ánh sáng tại mặt nước biển, a > 0 là hằng số và d là độ sâu tính bằng mét tính từ mặt nước biển.

(Nguồn: http://www.britannica.com/science/seawer/Optical-properties)

- a) Có thể khẳng định rằng 0 < a < 1 không? Giải thích.
- b) Biết rằng cường độ ánh sáng tại độ sâu 1m bằng $0.95I_0$. Tìm giá trị của a.
- c) Tại độ sâu 20m, cường độ ánh sáng bằng bao nhiêu phần trăm so với I_0 ? (Làm tròn kết quả đến hàng đơn vị.)
- **BÀI 5.** Một người gửi 10 triệu đồng vào ngân hàng theo hình thức lãi kép có kì hạn là 12 tháng vối lãi suất 6%/năm. Giả sử qua các năm thì lãi suất không thay đổi và người đó không gửi thêm tiền vào mỗi năm. Để biết sau y (năm) thì tổng số tiền cả vốn và lãi có được là x (đồng), người đó sử dụng công thức $y = \log_{1,06} \left(\frac{x}{10}\right)$. Hỏi sau bao nhiêu năm thì người đó có được tổng số tiền cả vốn và lãi là 15 triệu đồng? 20 triệu đồng? (Làm tròn kết quả đến hàng đơn vị).
- **BÀI 6.** Trong một nghiên cứu, một nhóm học sinh được cho xem cùng một danh sách các loài động vật và được kiểm tra lại xem họ còn nhớ bao nhiêu phần trăm danh sách đó sau mỗi tháng. Giả sử sau t tháng, khả năng nhớ trung bình của nhóm học sinh đó được tính theo công thức $M(t) = 75 20 \ln(t+1), \ 0 \le t \le 12$ (đơn vị: %). Hãy tính khả năng nhớ trung bình của nhóm học sinh đó sau 6 tháng.
- **BÀI 7.** Cường độ ánh sáng I dưới mặt biển giảm dần theo độ sâu theo công thức $I = I_0 \cdot a^d$, trong đó I_0 là cường độ ánh sáng tại mặt nước biển, a > 0 là hằng số và d là độ sâu tính bằng mét tính từ mặt nước biển.

(Nguồn: http://www.britannica.com/science/seawer/Optical-properties)

- a) Có thể khẳng định rằng 0 < a < 1 không? Giải thích.
- b) Biết rằng cường độ ánh sáng tại độ sâu 1m bằng $0.95I_0$. Tìm giá trị của a.
- c) Tại độ sâu 20m, cường độ ánh sáng bằng bao nhiêu phần trăm so với I_0 ? (Làm tròn kết quả đến hàng đơn vị.)
- **BÀI 8.** Công thức $h = -19.4 \cdot \log \frac{P}{P_0}$ là mô hình đơn giản cho phép tính độ cao h so với mặt nước biển của một vị trí trong không trung (tính bằng ki-lô-mét) theo áp suất không khí P tại điểm đó và áp suất P_0 của không khí tại mặt nước biển (cùng tính bằng Pa đơn vị áp suất, đọc là Pascal).

(Nguồn: http://doi.org/10.1007/s40828-020-0111-6)

- a) Nếu áp suất không khí ngoài máy bay bằng $\frac{1}{2}P_0$ thì máy bay đang ở độ cao nào?
- b) Áp suất không khí tại đỉnh của ngọn núi A bằng $\frac{4}{5}$ lần áp suất không khí tại đỉnh của ngọn núi B. Ngọn núi nào cao hơn và cao hơn bao nhiêu ki-lô-mét? (Làm tròn kết quả đến hàng phần mười.)

3. Bài tập trắc nghiệm

CÂU 1. Một quần thể vi khuẩn bắt đầu từ 100 cá thể và cứ sau 3 giờ thì số cá thể lại tăng gấp đôi. Bởi vậy số cá thể vi khuẩn được biểu thị theo thời gian t (đơn vị giờ) bằng công thức $N(t) = 100 \cdot 2^{\frac{1}{3}}$. Hỏi sau bao lâu thì quần thể này đạt tới 50000 cá thể (làm tròn đến hàng phần mười)?

(A)	36,8	giờ.

(B)	30.2	giờ.
· •	00,2	510.

C 26	5,9	giờ
-------------	-----	-----

D	18,6	già
D)	18,6	gi

	<u> </u>
QUICK NOTE	
QUICK NOIL	
	·
i .	

QUICK NOTE	10 năm tiếp theo,		sẽ tăng thêm 12% so v	150 tỉ đồng. Dự kiến trong ới năm liền trước. Theo dự ượt quá 360 tỉ đồng?
	rằng nếu không r vào vốn ban đầu rút ra 500 triệu đ	út tiền ra khỏi ngân hài (người ta gọi là lãi kép).	ng thì cứ sau mỗi năm Người đó định gửi tiền	hay đổi là 6%/ năm. Biết a, số tiền lãi sẽ được nhập trong vòng 3 năm, sau đó g ngân hàng (làm tròn đến
	A 420.	B 410.	© 400.	D 390.
	rằng cứ sau mỗi r nhất mà ông Hùn	năm số tiền lãi sẽ gộp vào	o vốn ban đầu. Số tiền để sau ba năm (mới rư	i suất $6,5\%$ một năm. Biết x (triệu đồng, $x \in \mathbb{N}$) nhỏ ít lãi) thì số tiền lãi có thể \bigcirc 308.
	CÂU 5. Ông X g	ửi vào ngân hàng 60 triệt	ı đồng theo hình thức l	ãi kép. Lãi suất ngân hàng
	là 8% trên năm. S từ lần gửi đầu tiê	Sau 5 năm ông X tiếp tục cn ông X đến rút toàn bộ	c gửi thêm 60 triệu đồi tiền gốc và tiền lãi đư	ng nữa. Hỏi sau 10 năm kể đợc là bao nhiêu? (Biết lãi
	(A) 217,695 (tr	đổi qua các năm ông X g iệu đồng)	un tien). (B) 231,815 (triệi	ı đồng)
	C 190,271 (tr	= *	D 197,201 (triệt	-,
				n lần lượt là 5000 VNĐ/ 1 bình hàng năm trong giai
	đoạn từ năm 2000 (A) 5,46%.	0 đến năm 2020 ở Việt N B 5%.	am. Hỏi $r\%$ bằng bao \bigcirc 4,56%.	nhiêu? D 5,64%.
	thức $S(t) = S(0)$ khuẩn A sau t phù nghìn con. Hỏi sao	$\cdot 2^t$, trong đó $S(0)$ là số l út. Biết sau 4 phút thì số	ượng vi khuẩn A lúc b lượng vi khuẩn A tron	hiệm được tính theo công an đầu, $S(t)$ là số lượng vi ag phòng thí nghiệm là 250 A trong phòng thì nghiệm
	là 1 triệu con? A 6 phút.	B 64 phút.	© 16 phút.	D 8 phút.
	rút tiền ra khỏi ng lãi cho năm tiếp t số tiền gửi ban đả thời gian này lãi s	gân hàng thì cứ sau mỗi n heo. Hỏi sau ít nhất bao ầu và số tiền lãi) gấp đôi suất không thay đổi và n	năm số tiền lãi được nh nhiêu năm nữa thì số i số tiền đã gửi ban đầ gười đó không rút tiền	
	(A) 9 năm.	(B) 10 năm.	© 12 năm.	(D) 11 năm.
	D > 1 O 1 D 1	UVANA TRÌVUI		- Toisuu saii sai
	Balzi. Pr	HUONG IRINH,	LÔGARIT	F TRÌNH MŨ VÀ
			LOOAKII	
	A. TÓM TẮ	T LÝ THUYẾT		
	1. Phương t			
······································		h mũ là phương trình có	chứa ẩn ở số mũ của l	ũv thừa.
		ıh mũ cơ bản ẩn x có dại		
).
		≤ 0 thì phương trình vô > 0 thì phương trình có i	=	og h
		, o om phidong trinin co i		~oa ~·
	7 NHẬN XÉT.	(4)		
		$\neq 1, b > 0 \text{ thì } a^{f(x)} = b < 0$		
	· ·	$\neq 1$ thì $a^{f(x)} = a^{g(x)} \Leftrightarrow$, ,	nitono nhón được về của
	$cd s\hat{o}$.	nuong triini mu imu tren	r endong duộc gọi ra bi	hương pháp đưa về cùng

2. Phương trình lôgarit

- ❷ Phương trình lôgarit là phương trình có chứa ẩn trong biểu thức dưới dấu lôgarit.
- **②** Phương trình lôgarit cơ bản có dạng $\log_a x = b \ (a > 1, a \neq 1)$. Phương trình đó có một nghiệm là $x = a^b$.
- 7 NHÂN XÉT.
 - $m{\Theta}$ Với $a>0, a\neq 1$ thì $\log_a f(x)=b \Leftrightarrow f(x)=a^b.$
 - **©** Cho $a > 0, a \neq 1$. Ta có: $\log_a f(x) = \log_a g(x) \Leftrightarrow \begin{cases} f(x) > 0 \\ f(x) = g(x). \end{cases}$

3. Bất phương trình mũ

- ❷ Bất phương trình mũ là bất phương trình có chứa ẩn ở số mũ của lũy thừa.
- ❷ Bất phương trình mũ cơ bản là bất phương trình có một trong những dạng sau:

$$a^x > b; a^x < b; a^x \ge b; a^x \le b \ (a > 0, a \ne 1).$$

- \odot Xét bất phương trình mũ: $a^x > b \ (a > 0, a \neq 1)$.
 - Nếu $b \leq 0$, tập nghiệm của bất phương trình đã cho là \mathbb{R} (vì $a^x > 0 \geq b, \forall x \in \mathbb{R}$).
 - Nếu b>0 thì bất phương trình tương đương với $a^x>a^{\log_a^b}$. Với a>1, nghiệm của bất phương trình là $x>\log_a b$. Với 0< a<1, nghiệm của bất phương trình là $x<\log_a b$.
- 7 NHÂN XÉT. Các bất phương trình mũ cơ bản còn lai được giải tương tư.

4. Bất phương trình lôgarit

- $\ensuremath{ \Theta}$ Bất phương trình lô
garit là bất phương trình có chứa ẩn trong biểu thức dưới dấu lôg
arit
- $\pmb{\Theta}$ Bất phương trình lôgarit cơ bản là bất phương trình lôgarit có một trong các dạng sau:

$$\log_a x > b; \log_a x < b; \log_a x \ge b; \log_a x \le b (a > 0, a \ne 1).$$

- $\mbox{\ensuremath{ \bigodot}}$ Xét bất phương trình $\log_a x > b \ (a>0, a\neq 1).$ Bất phương trình tương đương với $\log_a x > \log_a a^b.$
 - Với a > 1, nghiệm của bất phương trình là $x > a^b$.
 - Với 0 < a < 1, nghiệm của bất phương trình là $0 < x < a^b$.
- 🕈 NHẬN XÉT. Các bất phương trình lôgarit cơ bản còn lại được giải tương tự.

B. CÁC DẠNG TOÁN THƯỜNG GẶP

🗁 Dạng 10. Phương trình mũ, lôgarit cơ bản

Sử dụng các công thức

- $\bigcirc a^{f(x)} = b \Leftrightarrow f(x) = \log_a b \ (a, b > 0; a \neq 1).$
- Θ log_a $f(x) = b \Leftrightarrow f(x) = a^b \ (a > 0; a \neq 1).$

1. Ví dụ mẫu

VÍ DỤ 1. Tìm điều kiện xác định của các phương trình sau

a) $\log_2(2x-1) = 3$.

b) $\log_3(-x^2+2x)=-1$.

VÍ DU 2. Giải mỗi phương trình sau:

a) $4^{2x-3} = 5$;

b) $10^{x+1} - 2 \cdot 10^x = 8$.

VÍ DU 3. Giải phương trình $10^{x-1} = 2022$.

VÍ DU 4. Giải các phương trình sau

a)
$$2^x = \frac{1}{8}$$
.

b)
$$5 \cdot 10^x = 1$$
.

c)
$$3^{x+2} = \sqrt[3]{9}$$
.

d)
$$2 \cdot 10^{2x} = 30$$
.

VÍ DŲ 5. Giải mỗi phương trình sau:

a)
$$\log_2 x = 5;$$

b)
$$\log_4(5x - 4) = 2$$
.

VÍ DU 6. Giải phương trình $4 + 3 \log(2x) = 16$.

VÍ DU 7. Giải các phương trình sau

a)
$$\log_3 x = -2$$
.

b)
$$\log_{\frac{1}{2}}(x-2) = -2$$
.

2. Bài tập rèn luyện

BÁI 1. Tìm điều kiện xác định của các phương trình sau

a)
$$\log_5(3-4x) = 2$$
.

b)
$$\log(x^2 - 2x - 3) = 3$$
.

BAI 2. Giải các phương trình sau

a)
$$(0,3)^{x-3} = 1$$
.

b)
$$3^{x-1} = 27$$
.

c)
$$5^{3x-2} = 25$$
.

d)
$$3^{x+2} = 7$$
.

e)
$$3 \cdot 10^{2x+1} = 5$$
.

f)
$$10^{1-2x} = 100000$$
.

BÀI 3. Giải các phương trình sau

a)
$$\log(x+1) = 2$$
.

b)
$$\log_6(4x+4) = 2$$
.

c)
$$\log_{\frac{1}{2}}(x+1) = -3$$
.

d)
$$\log_3 x + \log_3(x-2) = 1$$
.

3. Bài tập trắc nghiệm

CÂU 1. Điều kiện xác định của phương trình $\log_3(x-2)=1$ là

$$(\mathbf{A}) x = 2.$$

$$\mathbf{B} \ x \ge 2.$$

$$(\mathbf{C})$$
 $x > 2$.

$$(\mathbf{D}) \, x > 5.$$

CÂU 2. Điều kiện xác định của phương trình $\ln \frac{1-x}{x+1}$

(A)
$$x < 1$$
.

$$(\mathbf{C})$$
 $x < -1$ hoặc $x > 1$.

$$(\mathbf{D})$$
 $-1 < x < 1.$

CÂU 3. Tìm nghiệm của phương trình $3^{x-1} = 27$.

$$\mathbf{B} \ x = 3$$

$$\bigcirc x = 4$$

$$\mathbf{D} x = 10.$$

CÂU 4. Tập nghiệm của phương trình $3^{2x^2-x}=3$ là

$$igate{A} \{0; 2\}$$

$$\bigcirc$$
 $\left\{-1; \frac{1}{2}\right\}.$

(D)
$$\left\{-\frac{1}{2};1\right\}$$
.

CÂU 5. Tập nghiệm của phương trình $\log_2(x^2-1)=3$ là

$$(A)$$
 $\{-3;3\}.$

B
$$\{-3\}$$
.

D
$$\{-\sqrt{10}; \sqrt{10}\}.$$

CÂU 6. Tập nghiệm của phương trình $\log(10x) = 2$ là

CÂU 7. Gọi x_1, x_2 là hai nghiệm của phương trình $2^{x^2-3x+2}=1$. Tính $P=x_1^2+x_2^2$.

(A)
$$P = 10$$
.

$$(\mathbf{B}) P = 8$$

$$\widehat{\mathbf{C}}$$
 $P=5$

$$(P) P = 13.$$

CÂU 8. Tìm tập nghiệm S của phương trình $\log_2(x-1) + \log_2(x+1) = 3$.

$$(A)$$
 $S = \{-3; 3\}.$

B
$$S = \{4\}.$$

$$\bigcirc S = \{3\}.$$

$$\widehat{\mathbf{D}} S = \{-\sqrt{10}; \sqrt{10}\}.$$

CÂU 9. Phương trình $2^x + 2^{x-1} + 2^{x-2} = 3^x - 3^{x-1} + 3^{x-2}$ có nghiệm

$$(\mathbf{B}) x = 2$$

$$(\mathbf{C}) x = 4.$$

- **(B)** 25.
- \bigcirc 2
- **(D)** 13.

CÂU 11. Tổng tất cả các nghiệm của phương trình $2^{x^2-2x-1} \cdot 3^{x^2-2x} = 18$ bằng

- **(A)** 1.
- (B) -2.
- **(C)** 2.
- $(\mathbf{D}) 1.$

CÂU 12. Tổng tất cả các nghiệm của phương trình $\log_2 |x^2 + 2x - 3| - \log_2 |x + 3| = 3$ bằng

- (\mathbf{A}) 9.
- (\mathbf{B}) -2.
- (c) -4.
- **D** 2.

🖒 Dạng 11. Bất phương trình mũ, lôgarít cơ bản

Xét bất phương trình mũ: $a^x > b \ (a > 0, a \neq 1)$.

- Nếu $b \leq 0$, tập nghiệm của bất phương trình đã cho là \mathbb{R} (vì $a^x > 0 \geq b, \forall x \in \mathbb{R}$).
- Nếu b>0 thì bất phương trình tương đương với $a^x>a^{\log_a^b}$. Với a>1, nghiệm của bất phương trình là $x>\log_a b$. Với 0< a<1, nghiệm của bất phương trình là $x<\log_a b$.

Bất phương trình tương đương với $\log_a x > \log_a a^b.$

- Với a>1, nghiệm của bất phương trình là $x>a^b$.
- Với 0 < a < 1, nghiệm của bất phương trình là $0 < x < a^b$.

1. Ví du mẫu

VÍ DỤ 1. Giải mỗi bất phương trình sau:

a) $5^x > 12;$

b) $(0,3)^{x+1} > 1,7$.

VÍ DỤ 2. Giải bất phương trình $16^x > \frac{1}{8}$.

VÍ DỤ 3. Giải mỗi bất phương trình sau

a) $\log_{\frac{1}{2}} x > -2;$

b) $\log_2(x+1) > 3$.

VÍ DỤ 4. Giải các bất phương trình sau

- a) $10^x < 0.001$.
- b) $0.4^x > 2.$
- $c) \left(\frac{1}{2}\right)^x \ge 2 \cdot 4^{2x}.$

VÍ DỤ 5. Giải các bất phương trình sau

a) $\log_{\frac{1}{3}}(x+1) < 2$.

b) $\log_5(x+2) \le 1$.

2. Bài tập rèn luyện

BÀI 1. Giải mỗi bất phương trình sau

a) $3^x > \frac{1}{243}$.

b) $\log(x-1) < 0$.

BÀI 2. Giải các bất phương trình sau

a) $\left(\frac{1}{3}\right)^{2x+1} \le 9$.

b) $4^x > 2^{x-2}$.

BÀI 3. Giải các bất phương trình sau

a) $\log_2(x-2) < 2$.

29

b) $\log(x+1) \ge \log(2x-1)$.

		(\$	j	Į	J	ľ	9)	K	(١	()	l	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
٠	•	٠	٠	٠	٠	•	•	•	•	•	٠	٠	٠	٠	٠	٠	•	

3. Bài tập trắc nghiệm

CÂU 1. Tìm tập nghiệm của bất phương trình $\left(\frac{1}{2}\right)^x < 4$.

$$(-2; +\infty).$$

B
$$(0;4)$$
.

$$\bigcirc$$
 $(-\infty;-2).$

$$\bigcirc$$
 $(-\infty; 2).$

CÂU 2. Giải bất phương trình $3^{x+2} \ge \frac{1}{0}$.

(A)
$$x > 0$$
.

$$\bigcirc$$
 $x \ge -4$.

$$(\mathbf{C}) x < 4$$

$$\widehat{\mathbf{D}} x < 0.$$

CÂU 3. Tập nghiệm của bất phương trình $\log_2(x-1) > 3$ là

$$(\mathbf{A})$$
 $(4; +\infty)$.

$$(\mathbf{B})$$
 $(9; +\infty)$.

$$(10; +\infty).$$

$$(\mathbf{D})$$
 $(1; +\infty)$.

CÂU 4. Tập nghiệm của bất phương trình $\log_3 x \le 1$ là

$$(\mathbf{A})$$
 $(-\infty;3]$.

$$(\mathbf{B})$$
 $(-\infty;1].$

$$\bigcirc$$
 (0;

$$(\mathbf{D})(0;1].$$

CÂU 5. Tìm tập nghiệm S của bất phương trình $\log_2(2x+1) \ge \log_2(x-1)$.

$$(\mathbf{A}) S = [2; +\infty).$$

$$\mathbf{B} S = [-2; +\infty).$$

$$\mathbf{C} S = \mathbb{R}.$$

$$(\widehat{\mathbf{D}}) S = (1; +\infty).$$

CÂU 6. Tập nghiệm của bất phương trình $\left(\frac{1}{2}\right)^{\sqrt{x}}<\frac{1}{2}$ là

$$(\mathbf{A})$$
 $(-\infty;1)$.

B)
$$(0;1)$$
.

$$(\mathbf{c})$$
 $(1 \cdot +\infty)$

$$\bigcirc$$
 \mathbb{R} .

CÂU 7. Tập nghiệm của bất phương trình $\log_2(3-x) < 2$ là

$$(A)$$
 (1; 3).

$$(\mathbf{B})$$
 $(3; +\infty)$.

$$(\mathbf{C})$$
 $(-\infty;1)$.

$$(\mathbf{D})$$
 (-1; 3).

CÂU 8. Tìm tập nghiệm S của bất phương trình $5^{x+1} - \frac{1}{5} > 0$.

$$(\mathbf{A}) S = (1; +\infty).$$

(A)
$$S = (1; +\infty)$$
. **(B)** $S = (-\infty; -2)$. **(C)** $S = (-2; +\infty)$.

$$S = (-2; +\infty).$$

$$(\mathbf{D}) S = (-1; +\infty).$$

CÂU 9. Tập nghiệm của bất phương trình $\left(\frac{3}{4}\right)^{2x^2-3x} \leq \frac{4}{3}$ là

$$\boxed{\mathbf{A}} \left[\frac{1}{2}; 1 \right].$$

$$\bullet$$
 $\left(\frac{1}{2};1\right)$.

CÂU 10. Bất phương trình $\log_3(x^2-x+7) < 2$ có tập nghiệm là khoảng (a;b). Tính

$$(\mathbf{A}) b - a = -1.$$

B
$$b-a=-3$$
. **C** $b-a=3$.

$$\mathbf{\widehat{C}}\,b - a = 3$$

CÂU 11. Nghiệm của bất phương trình $\log_{\frac{1}{2}} \left[\log_2(2-x^2) \right] > 0$ là

(A)
$$(-1;1) \cup (2;+\infty)$$
.

B
$$(-1;1)$$
.

$$\bigcirc$$
 $(-1;0) \cup (0;1).$

$$(-1;3)$$
.

CÂU 12. Cho hàm số $f(x) = \log_{0.9} (x^2 + 4x - 5)$. Gọi S là tổng tất cả các giá trị nguyên của x thuộc đoạn [-15; 15] thỏa mãn bất phương trình f'(x) > 0. Tính S.

$$(A) S = -105.$$

(B)
$$S = 120$$
.

$$(S = -117.)$$

D
$$S = 119$$
.

CÂU 13. Cho dãy số (u_n) thỏa mãn $u_1=2,\ u_{n+1}=u_n^2$ với mọi $n\geq 1$. Số tự nhiên n nhỏ nhất để $u_n > 2^{2018}$ là

(A)
$$n = 15$$
.

(B)
$$n = 13$$
.

(c)
$$n = 12$$
.

$$(\widehat{\mathbf{D}}) \, n = 11.$$

CÂU 14. Tập nghiệm của bất phương trình $\log_{\frac{1}{2}} \left(\log_2 \frac{3x-1}{x+1} \right) \le 0$ là

$$(-1; +\infty) \cup [3; +\infty).$$

$$\bigcirc$$
 $[3; +\infty).$

$$(\mathbf{C})(-1;+\infty).$$

$$(-1;3].$$

🖶 Dạng 12. Phương trình mũ, lôgarit đưa về cùng cơ số

Sử dung các công thức

$$\Theta \ \log_a f(x) = \log_a g(x) \Leftrightarrow \begin{cases} f(x) > 0 \\ f(x) = g(x) \end{cases} \ (a > 0; a \neq 1).$$

1. Ví dụ mẫu

 $\pmb{\mathsf{V}}$ Í $\pmb{\mathsf{D}} \pmb{\mathsf{U}}$ 1. Tìm điều kiện xác định của các phương trình sau

- a) $\log_2 x + \log_2(x 1) = \log_2(3 x)$.
- b) $\log_3(x^2 3x) = \log_3(x 1)$.

VÍ DỤ 2. Giải phương trình $4^{x-2} = 2^{3x+1}$.

VÍ DỤ 3. Giải phương trình $3^{x+1} = \frac{1}{3^{1-2x}}$.

VÍ DU 4. Giải các phương trình sau

a)
$$4^{2x} = 8^{2x-1}$$
.

b)
$$\left(\frac{1}{9}\right)^x = \frac{27^x}{3}$$
.

VÍ DỤ 5. Giải phương trình $\log_8(3x-6) = -\log_{\frac{1}{2}}(2x-2)$.

VÍ DỤ 6. Giải phương trình $\log_3(x+1) = \log_3(x^2-1)$.

VÍ DỤ 7. Giải các phương trình sau

a)
$$\log_2(x^2 - 3) = \log_2 2x$$
.

b)
$$\log_2(x+6) = \log_2(x+1) + 1$$
.

2. Bài tập rèn luyện

BÀI 1. Tìm điều kiện xác định của các phương trình sau

a)
$$\log_{0,5}(4-x) = \log_2 \frac{1}{x+2}$$
.

b)
$$\log (-x^2 + 5x + 6) = \log(x - 2)$$
.

BÀI 2. Giải các phương trình sau

a)
$$3^{x+1} = 9^{2x+1}$$
.

b)
$$9^{x-2} = 243^{x+1}$$
.

c)
$$100^{2x^2-3} = 0.1^{2x^2-18}$$
.

d)
$$5^x = 3^{2x-1}$$
.

BÀI 3. Giải mỗi phương trình sau:

a)
$$\log_5(3x-5) = \log_5(2x+1)$$
.

b)
$$\log_3(x^2 - 3x + 2) = \log_3(2x - 4)$$
.

c)
$$2\log_4 x + \log_2(x-3) = 2$$
.

d)
$$\ln x + \ln(x - 1) = \ln 4x$$
.

3. Bài tập trắc nghiệm

CÂU 1. Điều kiện xác định của phương trình $\log_2(x+1) = \log_2(2-x)$ là

(A)
$$x > -1$$

$$\bigcirc$$
 $x < 2$.

$$(\mathbf{c}) - 1 < r < 2$$

(D)
$$x > 2$$

CÂU 2. Điều kiện xác định của phương trình $\log_3(x-1) = \log_9(x-3)^2$ là

(A)
$$x > 1$$
.

(B)
$$x > 3$$
.

(**C**)
$$1 < x < 3$$
.

$$(\mathbf{D}) x > 1 \text{ và } x \neq 3.$$

CÂU 3. Nghiệm của phương trình $2^{2x-3} = 2^x$ là

$$\triangle$$
 $r=8$

B)
$$x = -8$$
.

(**C**)
$$x = 3$$
.

$$(\mathbf{D}) x = -3.$$

CÂU 4. Nghiệm của phương trình $3^{2x+1} = 3^{x-2}$ là

(A)
$$x = -1$$
.

$$\mathbf{B} \ x = 3.$$

(c)
$$x = -3$$

$$(\mathbf{D}) x = 1.$$

CÂU 5. Tập nghiệm của phương trình $\log_2 x = \log_2(2x+1)$ là

$$(\mathbf{D}) \{-1\}.$$

CÂU 6. Nghiệm của phương trình $125^{2x} = \left(\frac{1}{25}\right)^{x+1}$ là

(A)
$$x = -\frac{1}{4}$$
.

$$\bigcirc x = 4.$$

$$\bigcirc x = 1$$

$$(\mathbf{D}) x = -\frac{1}{8}.$$

CÂU 7. Nghiệm của phương trình $(4.5)^{4x-5} = \left(\frac{2}{9}\right)^{-x-1}$ là

$$\bigcirc x = 2.$$

©
$$x = \frac{5}{4}$$
.

CÂU 8. Nghiệm của phương trình $\log_3(x+1) + 1 = \log_3(4x+1)$ là

B
$$x = -3$$
.

C
$$x = 4$$
.

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

Q Q				♂ MŨ -	LOGARIT
QUICK NOTE	CÂU 9. Số nghiệm của p (A) 0.	phương trình $\log_3(x^2)$ B 3.	$(x-6) - \log_3(x-6)$	2) = 1 là	
	CÂU 10. Tổng các nghiệ	êm thực của phương	trình $3^{x^2-3x+8} =$	$=9^{2x-1}$ bằng	
		B 6.	\bigcirc -7.	D 7.	
	CÂU 11. Số nghiệm của	- Lphương trình log ₁ ($(x^3 - 2x^2 - 3x +$	$4) + \log_2(x-1) = 0$) là
		$(\mathbf{B}) 2.$	(C) 0.	(\mathbf{D}) 3.	, 10
	_		<u> </u>		
	CÂU 12. Gọi S là tập n Tổng các phần tử của S l	ghiệm của phương tr bằng	r inh $2\log_2(2x -$	$2) + \log_2(x - 3)^2 =$	$2 \operatorname{trên} \mathbb{R}$.
	1 = -		(c) $4 + \sqrt{2}$.	(D) 8.	
	_		0		
	► Dạng 13. B	ất phương trình m	nü, lögarit đưa	về cùng cơ số	
	1 Ví du mỗu				
	1. Ví dụ mâu				
	VÍ DỤ 1. Giải bất phươn	ng trình $\log_{0,3}(x+1)$	$1) \le \log_{0,3} \left(2x - \frac{1}{2}\right)$	1).	
	VÍ DỤ 2. Giải các bất pl	hương trình sau			
				$(1)^{x-2}$	$\setminus x$
	a) $2^x > 16$.	b) $0.1^x \le 0.0$	001.	c) $\left(\frac{1}{5}\right)^{x-2} \ge \left(\frac{1}{25}\right)^{x-2}$) .
	,			(0)	,
	VÍ DỤ 3. Giải các bất pl	hương trình sau			
	a) $\log_2(2x-1) \le 1$.		b) $\log_1(1-x)$	$) > \log_{\frac{1}{2}}(3x+2).$	
	, 52		$\frac{1}{2}$	$\frac{1}{2}$	
	2. Bài tập rèn luyệ	ện			
	BÀI 1. Giải mỗi bất phu	rong trình sau			
		O			
	a) $\left(\frac{2}{3}\right)^{3x-7} \le \frac{3}{2};$		b) $4^{x+3} \ge 32^x$;	
	3/ 2				
	c) $\log_{\frac{1}{2}}(2x-1) \ge \log_{\frac{1}{2}}$	(x+3);	$d) \ln(x+3) \ge$	$\ln(2x-8).$	
		1			
	BÁI 2. Giải các bất phư	ong trinh sau			
	a) $0.1^{2-x} > 0.1^{4+2x}$;		c) $\log_3(x+x)$	$7) \ge -1;$	
	b) $2 \cdot 5^{2x+1} \le 3$;		, 551	$-7 \ge \log_{0.5}(2x - 1)$	
	$0) 2 \cdot 3 = 5,$		$d = \log_{0,5}(x + y)$	$1 > 1 \ge \log_{0,5}(2x - 1)$,
	3. Bài tập trắc ngh	hiâm			
		•	$\sqrt{1 \setminus 3x}$		
	CÂU 1. Tập nghiệm bất	phương trình $(0,5)^3$	$3 < \left(\frac{1}{2}\right)$ là		
		(\mathbf{B}) $(-\infty; -1).$	$(\mathbf{C})(-1;+\infty)$. \bigcirc \bigcirc $(1; +\infty)$).
			_	<u> </u>	,
	CÂU 2. Tập nghiệm của \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc (0; 8).	bat phương trinh 4° \bigcirc \bigcirc \bigcirc .	$\mathbf{C} (-\infty; 8].$	\bigcirc [8; $+\infty$])
		<u> </u>	<u> </u>	<u> </u>	. •
	CÂU 3. Tập nghiệm của				
	$\boxed{ \qquad \left(-\infty; \frac{1}{9}\right]}.$	$\left[\frac{1}{9};+\infty\right).$	\bigcirc $(0; \frac{1}{9}].$	$\bigcirc \hspace{-0.1cm} \boxed{0;1\frac{1}{9}}$	
		$\sqrt{2} \sqrt{x^2 - x}$	$x \qquad (0)^{x-1}$		
	CÂU 4. Biết rằng bất ph	$\frac{1}{3}$	$\geq \left(\frac{3}{4}\right)$ có t	ập nghiệm là đoạn [d	$\iota; b]$. Tính
	1 •				

B b - a = 2.

B 2.

(A) b - a = 3.

A 3.

32

 \bigcirc -3.

CÂU 6. Tìm tập nghiệm S của bất phương trình $\log_2(x^2-x-2) \leq 2\log_2(3-x)$.

CÂU 7. Tập nghiệm của bất phương trình $\log_2(2x^2 - x) \le \log_{\sqrt{2}} x$ là

$$igate{A}(0;1).$$

$$\bigcirc \left[\frac{1}{2};1\right].$$

$$\bigcirc$$
 [0; 1]

CÂU 8. Tập nghiệm của bất phương trình $\log_2 \left(1 + \log_{\frac{1}{2}} x - \log_9 x\right) < 1$ có dạng S = $\left(\begin{array}{c} 1\\ a\end{array};b\right)$ với a,b là những số nguyên. Mối liên hệ giữa a và b là

$$(\mathbf{B}) a = -b.$$

$$\bigcirc a = b.$$

CÂU 9. Tập nghiệm của bất phương trình $(3^x+2)(4^{x+1}-8^{2x+1}) \leq 0$ là

$$(-\infty; 4].$$

$$egin{array}{c} egin{array}{cccc} oldsymbol{\mathbb{B}} & \left(-\infty; -\frac{1}{4}\right]. & oldsymbol{\mathbb{C}} & \left[-\frac{1}{4}; +\infty\right). \end{array}$$

$$\left(\mathbf{c} \right) \left[-\frac{1}{4}; +\infty \right)$$

$$\bigcirc$$
 $[4; +\infty).$

CÂU 10. Tập nghiệm của bất phương trình $\log_{0.5}(x^2+x) < \log_{0.5}(-2x+4)$ là

$$(A)$$
 $(-4; -1)$.

$$(\mathbf{B})$$
 $(-\infty; -4) \cup (2; +\infty).$

$$(\mathbf{C})$$
 $(-\infty; -4) \cup (1; +\infty).$

$$(-\infty; -4) \cup (1; 2).$$

CÂU 11. Tập nghiệm của bất phương trình $\log_{\sqrt{3}} x + \log_{\sqrt[4]{3}} x + \log_{\sqrt[6]{3}} x + \cdots + \log_{\sqrt[16]{3}} x < 36$

(A) $(0; \sqrt[4]{3})$.

B) $(1; \sqrt{3})$.

(c) $(0; \sqrt{3})$.

 $(\mathbf{D})(0;1).$

CÂU 12. Số nghiệm nguyên của bất phương trình $\left(\sqrt{10}-3\right)^{\frac{3-x}{x-1}}>\left(\sqrt{10}+3\right)^{\frac{x+1}{x+3}}$ là

CÂU 13. Tổng tất cả các nghiệm nguyên của bất phương trình $2\log_2\sqrt{x+1} \le 2-\log_2(x-1)$ 2) bằng

(**A**) 5.

(B) 12.

(C) 3.

(**D**) 9.

CÂU 14.

Cho hàm số bậc ba y = f(x) có đồ thị như hình vẽ. Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn [0;9] sao cho bất phương trình $2^{f^2(x)+f(x)-m}$ – $16 \cdot 2^{f^2(x) - f(x) - m} - 4^{f(x)} + 16 < 0$ có nghiệm $x \in$ (-1;1)?

(A) 8.

(B) 5.

(C) 6.

(D) 7.

CÂU 15. Cho bất phương trình $\left(3^{x^2-x}-9\right)\left(2^{x^2}-m\right)\leq 0$. Tìm số giá trị nguyên của mđể bất phương trình đã cho có đúng 5 nghiệm nguyên.

(A) 65022.

(B) 65024.

(D) 65023.

CÂU 16. Cho bất phương trình $\log_3(x^2-x+2)+1 \ge \log_3(x^2+x+m-3)$. Có bao nhiêu giá trị nguyên của tham số m để bất phương trình đã cho có nghiệm đúng với mọi giá trị xthuộc đoạn [0; 6]?

(A) 3.

(**B**) 6.

(C) 4.

CÂU 17. Tìm m để bất phương trình $1 + \log_5(x^2 + 1) \ge \log_5(mx^2 + 4x + m)$ thỏa mãn với mọi $x \in \mathbb{R}$.

(A) $2 < m \le 3$.

(B) 2 < m < 3.

 $(\mathbf{C}) - 1 < m \le 0.$

 $(\mathbf{D}) - 1 < m < 0.$

CÂU 18. Cho bất phương trình $\log_3(x^2 + 2x + 2) + 1 > \log_3(x^2 + 6x + 5 + m)$. Có tất cả bao nhiều giá trị nguyên của tham số m để bất phương trình trên nghiệm đúng với mọi $x \in (1;3)$?

QUICK NOTE	(A) 14.	B 16.	C vô số.	D 15.								
	CÂU 19. Tổng tất cả c	ác nghiệm nguyên củ	a bất phương trình loạ	$g_9(x+6) - \log_3 \left(5 - \sqrt[4]{19 - x}\right)$								
	$\begin{array}{ c c }\hline 0 \text{ là} \\\hline \bullet & -12.\end{array}$	B -11.	© 0.	D -9.								
	CÂU 20. Cho x, y là c	các số thực dương th	ỏa mãn $\ln x + \ln y \ge 1$	$\ln(x^2+y)$. Tìm giá trị nhỏ								
	nhất của $P = x + y$.	$\bigcirc P = \sqrt{17} \pm \sqrt{2}$	\overline{g} $\bigcirc P - 6$	(D) $P = 3 + 2\sqrt{2}$.								
		<u> </u>	<u> </u>	(m là tham số thực). Có								
				lã cho có đúng hai nghiệm								
	phân biệt.											
	(A) 26.		C Vô số.									
	CÂU 22. Cho $x \ge 0, y$	$y \ge 0, x + y > 0$ thỏa	$\min 2^{x^2 + y^2} + 2023^x$	$^{+y} \cdot \log_2 \frac{x^2 + y^2}{x + y} \le 4^{x+y} + 1$								
		trị lớn nhất và giá t	trị nhỏ nhất của biểu	thức $P = x^2 + y^2 - 8x - $								
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	B) 12.	\bigcirc $1 \pm 6.\sqrt{2}$	D $14 - 6\sqrt{2}$.								
			_	_								
		🗕 Dạng 14. Bài toớ	án thực tế, liên môi	h								
	1. Ví dụ mẫu											
	•	c ước tính theo công	g thức $S = A \cdot e^{rt}$.	trong đó A là dân số của								
	VÌ DỤ 1. Dân số được ước tính theo công thức $S = A \cdot e^{rt}$, trong đó A là dân số của năm lấy làm mốc tính, S là số dân sau t năm, r là tỉ lệ tăng dân số hằng năm. Giả sử $r = 1{,}14\%$ /năm, hỏi sau bao nhiêu năm dân số sẽ gấp đôi dân số ban đầu?											
	· '											
		VÍ DỤ 2. Chỉ số hay độ pH của một dung dịch được tính theo công thức: $pH = -\log[H^+]$ (trong đó $[H^+]$ chỉ nồng độ ion hydrogen). Đo chỉ số pH của một mẫu nước sông, ta có kết										
	(trong do $[H^+]$ chi nong dọ ion hydrogen). Đo chi so pH của mọt mau nước song, ta có ket quả là pH = 6,1. Hỏi nồng độ của ion hydrogen $[H^+]$ trong mẫu nước sông đó bằng bao											
	nhiêu?											
	VI DỤ 3. Giả sử giá tr được mô hình hóa bằng		riệu đồng) của một ch	iếc ô tô sau t năm sử dụng								
	duọc mo mmi noa bang											
		V(t) = 7	$(80 \cdot (0.905)^t.$									
		• -		trị của chiếc xe đó còn lại								
	không quá 300 triệu đồ	-	,									
	-			ết là $M_0(\mathbf{g})$ thì khối lượng								
	carbon-14 còn lại (tính t	theo gam) sau t năm ϵ	được tính theo công th	nức $M(t) = M_0 \left(\frac{1}{2}\right)^{\frac{t}{T}}$ (g),								
	trong đó $T=5730$ (nă	m) là chu kì bán rã	của carbon-14. Nghi	ên cứu hoá thạch của một								
				ng hoá thạch là $5 \cdot 10^{-13}$ g. thể sinh vật sống, người ta								
	xác định được khối lượ	ng carbon-14 trong o	cơ thể lúc sinh vật ch	ết là $M_0 = 1.2 \cdot 10^{-12}$ (g).								
	Sinh vật này sống cách	•	` -	,								
				g xạ từ khối lượng ban đầu								
	M_0 là $M(t) = M_0 \left(\frac{1}{2}\right)$	\overline{T} , trong đó t là thờ	i gian tính từ thời đi	ểm ban đầu và T là chu kì								
	bán rã của chất. Đồng											
		· -		$ium\#section{=}AtomicMass$								
	(1494011: 1111145.// [, wocheem. neede. neme. nem	i.gov/ciemeni/1 iuion	-Half-Life-and-Deca)								
	Từ khối lượng ban đầu	200 g, sau bao lâu t	hì khối lượng plutoni	um-234 còn lại là								
	a) 100 g?	b) 50 g?		20 g?								
		, ,	,									
				3. Nước chanh có độ acid lần)? (Làm tròn kết quả								
	đến hàng phần trăm).	(200 Day milet	, . (2011 NOT NOT QUA								

2. Bài tấp rèn luyên

BÁI 1. Một người gửi ngân hàng 100 triệu đồng theo hình thức lãi kép có kì hạn là 12 tháng với lãi suất là x %/năm (x > 0). Sau 3 năm, người đó rút được cả gốc và lãi là 119,1016 triêu đồng. Tìm x, biết rằng lãi suất không thay đổi qua các năm và người đó không rút tiền ra trong suốt thời gian gửi.

BÁI 2. Sử dung công thức tính mức cường đô âm L ở ví du 14, hãy tính mức cường đô âm mà tai người có thể nghe được, biết rằng tai người có thể nghe được âm với cường đô âm từ 10^{-12} W/m^2 đến 10 W/m^2 .

BÁI 3. Bác Minh gửi tiết kiệm 500 triệu đồng ở một ngân hàng với lãi suất không đổi 7.5% một năm theo thể thức lãi kép kì han 12 tháng. Tổng số tiền bác Minh thu được (cả vốn lãn lãi) sau n năm là:

$$A = 500 \cdot (1 + 0.075)^n$$
 (triệu đồng).

Tính thời gian tối thiểu gửi tiết kiệm để bác Minh thu được ít nhất 800 triệu đồng (cả vốn lẫn lãi).

BAI 4. Số lượng vi khuẩn ban đầu trong một mẻ nuôi cấy là 500 con. Người ta lấy một mẫu vi khuẩn trong mẻ nuôi cấy đó, đếm số lượng vi khuẩn và thấy rằng tỉ lệ tăng trưởng vi khuẩn là 40% mỗi giờ. Khi đó số lượng vi khuẩn N(t) sau t giờ nuôi cấy được ước tính bằng công thức sau:

$$N(t) = 500e^{0.4t}$$
.

Hỏi sau bao nhiêu giờ nuôi cấy, số lượng vi khuẩn vượt mức 80000 con?

BÁI 5. Giả sử nhiệt độ T (°C) của một vật giảm dần theo thời gian cho bởi công thức:

$$T = 25 + 70e^{-0.5t}$$
.

trong đó thời gian t được tính bằng phút.

- a) Tìm nhiệt độ ban đầu của vật.
- b) Sau bao lâu nhiệt độ của vật còn lai 30°C?

BAI 6. Tính nồng độ ion hydrogen (tính bằng mol/lít) của một dung dịch có độ pH là 8.

BAI 7. Chất phóng xạ polonium-210 có chu kì bán rã là 138 ngày. Điều này có nghĩa là cứ sau 138 ngày, lượng polonium còn lại trong một mẫu chỉ bằng một nửa lượng ban đầu. Một mẫu 100 g có khối lượng polonium-210 còn lại sau t ngày được tính theo công thức

$$M(t) = 100 \left(\frac{1}{2}\right)^{\frac{t}{138}} (g).$$

(Nguồn:https://pubchem.ncbi.nlm.nih.gov/element/Polonium#section= Atomic-Mass-Half-Life-and-Decay)

- a) Khối lương polonium-210 còn lai bao nhiều sau 2 năm?
- b) Sau bao lâu thì còn lại 40 g polonium-210?

BÀI 8. Nhắc lại rằng, mức cường độ âm L được tính bằng công thức $L = 10 \log \left(\frac{I}{I_0}\right)$ (dB), trong đó I là cường độ của âm tính bằng W/m^2 và $I_0 = 10^{-12} W/m^2$.

(Nguồn: Vật lí 12, NXB Giáo dục Việt Nam, năm 2017, trang 52)

- a) Một giáo viên đang giảng bài trong lớp học có mức cường độ âm là 50 dB. Cường độ âm của giọng nói giáo viên bằng bao nhiêu?
- b) Mức cường độ âm trong một nhà xưởng thay đổi trong khoảng từ 75 dB đến 90 dB. Cường độ âm trong nhà xưởng này thay đổi trong khoảng nào?

വ്വ	CK	N	OTI	
			\mathbf{z}	

	QU	ICK	NOTE	
				• • • • • • • • • • • • • • • • • • • •
• • • • • • •				• • • • • • • • • •
• • • • • • •				• • • • • • • • •

QUICK NOTE	3. Bài tập trắc	nghiệm			
	CÂU 1. Ông A gửi 100 triệu đồng vào ngân hàng theo thể thức lãi kép kì hạn một năm với lãi suất là 12% một năm. Sau n năm ông A rút toàn bộ tiền (cả vốn lẫn lãi). Tìm n nguyên dương nhỏ nhất để số tiền lãi nhận được hơn 40 triệu đồng. (Giả sử rằng lãi suất hàng năm không thay đổi).				
	A 5.	B 3.	© 2.	D 4.	
	hoàn thành tốt nhiệm 20%. Hỏi bắt đầu từ	n vụ thì cứ sau 6 tháng tháng thứ mấy kể từ n 20 triệu đồng(biết rằ nhiệm vụ?	làm việc, mức lương khi vào làm ở công t ng trong suốt thời gi	10 triệu đồng/ tháng. Nếu của anh lại được tăng thêm ty X, tiền lương mỗi tháng an làm ở công ty X anh A Tháng thứ 25.	
	CÂU 3. Đầu năm 2018, ông An thành lập một công ty sản xuất rau sạch. Tổng số tiền ông An dùng để trả lương cho nhân viên trong năm 2018 là 1 tỷ đồng. Biết rằng cứ sau mỗi năm thì tổng số tiền dùng để trả lương cho nhân viên trong cả năm tăng thêm 15% so với năm trước. Năm đầu tiên ông An phải trả lương cho nhân viên trong cả năm vượt qua 2 tỷ đồng là năm nào?				
	(A) Năm 2020.	B Năm 2025.	© Năm 2022.	D Năm 2023.	
	đúng 1 tháng kể từ n tiếp cách nhau đúng tiền ra, số tiền lãi của	gày gửi người này gửi 1 tháng. Giả định rằng	đều đặn thêm vào 1 g lãi suất không thay n vào vốn và tính lãi c	ãi suất 0,48% /tháng. Sau triệu đồng, hai lần gửi liêr đổi và người này không rút ho tháng kế tiếp. Hỏi sau ít nhất 50 triệu đồng. 18.	
	nhiêu tháng thì ông		in lãi nhiều hơn 60 t	5%/tháng. Hỏi ít nhất bac riệu đồng? Biết rằng trong chông rút tiền ra. (D) 36 tháng.	
	cho nhân viên trong : trả cho nhân viên tro là năm đầu tiên mà t	năm 2016 là 1 tỷ đồng ng cả năm đó tăng thể	g. Biết rằng cứ sau m ềm 15% so với năm tr	ền ông A dùng để trả lương lỗi năm thì tổng số tiền để ước. Hỏi năm nào dưới đây lhân viên trong cả năm lớn	
	hơn 2 tỷ đồng? (A) Năm 2021 .	B Năm 2022.	© Năm 2023.	D Năm 2020.	
	rằng nếu không rút ti vốn ban đầu (người t đó rút tiền ra để mua	lền ra khỏi ngân hàng ta gọi là lãi suất kép). a một căn hộ chung cư hàng để có đủ tiền m	thì cứ sau mỗi năm, s Người đó định gửi t trị giá 500 triệu đồn ua căn hộ chung cư (thay đổi là 8%/năm. Biết số tiền lãi sẽ được nhập vàc iền trong vòng 3 năm, sau g. Hỏi số tiền ít nhất ngườ kết quả làm tròn đến hàng	
	(A) 395 triệu đồng	g. (B) 396 triệu đồng	g. (C) 397 triệu đồ	ng. (D) 394 triệu đồng.	
	lãi suất hàng năm vẫ Nam phải gửi tiết kiệ	n không đổi là 8% mộ m vào ngân hàng theo	ot năm. Vây ngay từ	g sau 3 năm nữa. Biết rằng bây giờ số tiền ít nhất anh ó đủ tiền mua nhà (kết quả	
	làm tròn đến hàng tri (A) 395 triệu đồng		g. (C) 394 triệu đồ	ng. (D) 396 triệu đồng.	
	CÂU 9. Một người g với lãi suất 1,75%/mớ	gửi 300 triệu đồng vào	ngân hàng theo thể t t bao nhiêu tháng ng	hức lãi kép kì hạn một quý ười gửi có ít nhất 500 triệt	
	với lãi suất 0,85% mợ ngân hàng số tiền cố thức trả lãi và gốc kh	ột tháng. Nếu sau mỗi định là 10 triệu đồng l	i tháng, kể từ thời đi bao gồm cả tiền lãi va iốt quá trình anh An	i theo phương thức trả góp ểm vay, anh An trả nợ cho ay và tiền gốc. Biết phương trả nợ. Hỏi sau bao nhiêu i 10 triệu đồng).	
	A 66.	B 67.	© 65.	D 68.	

.....

.....

.....

♂ MŨ - LOGARIT				> >
triệu đồng để mua xẽ m . Hỏi m nhỏ nhất là $0,6$ %/tháng và hà	e. Hàng tháng anh A à bao nhiêu?(làm trò ng tháng số tiền lãi c	phải gửi vào ngân hàn n đến nghìn đồng). Bid	sau một năm sẽ có hơn 60 g một số tiền như nhau là ất rằng lãi suất ngân hàng ng. 4 812 000 đồng.	QUICK NOTE
số nguyên dương nhỏ		_	iá trị so với đầu năm. Tìm mất đi ít nhất 90% giá trị	
của nó? (A) 20.	B 16.	© 18.	D 22.	
tức. Kể từ ngày bắt ông A giảm đi 10% s xuất viện, biết ông đ	đầu nhập viện, sau to o với ngày trước đó. l	mỗi ngày điều trị thì l Hỏi sau ít nhất bao nhi	và được điều trị ngay lập ượng vi-rút trongg cơ thể êu ngày thì ông A sẽ được ể của ông không vượt quá	
30%? (A) 14 ngày.	B) 11 ngày.	© 12 ngày.	(D) 13 ngày.	
các loài sinh vật và t tháng, khả năng n $60-15\ln(t+1),t>$	được kiểm tra lại xe hớ trung bình của n	m họ nhớ bao nhiêu p nhóm học sinh được cl). Hỏi sau ít nhất bao	o xem cùng một danh sách hần trăm mỗi tháng. Sau no bởi công thức $M(t) =$ nhiều tháng thì nhóm học \bigcirc 25 tháng.	
•			ng chống dịch COVID-19.	
	_		$= \frac{1}{1 + ae^{-kt}}, \text{ với } P(t) \text{ là tỉ}$	
			$1 + ae^{-kt}$, vol 1 (a) have $1 + ae^{-kt}$, and $1 + ae^{-kt}$, are $1 + ae^{-kt}$, and $1 + ae^{-kt}$, and $1 + ae^{-kt}$, and $1 + ae^{-kt}$, are $1 + ae^{-kt}$, and $1 + ae^{-kt}$, and $1 + ae^{-kt}$, and $1 + ae^{-kt}$, are $1 + ae^{-kt}$, and $1 + ae^{-kt}$, and $1 + ae^{-kt}$, are $1 + ae^{-kt}$, and $1 + ae^{-kt}$	
1			% dân số nhận được thông	
\sin^2		_	,,	
(A) 5,5 giờ.	B 8 giờ.	C 4,5 giờ.	\bigcirc 6,6 giờ.	
	0 0		r nghiệm độ chính xác của	
			à điều chỉnh bộ xét nghiệm 1	
			$I(n) = \frac{1}{1 + 2020 \cdot 10^{-0.01n}}.$	
	t nhất bao nhiều lần ủa bộ xét nghiệm đó c		nh bộ xét nghiệm để đảm	
(A) 428.	(B) 427.	(C) 426.	(D) 425.	

Hàm số 1	mũ. Hàm số logarit	1
	Bài 18. Phép tính lũy thừa với số mũ thực	1
	A Tóm tắt lý thuyết	1
	B Các dạng toán thường gặp	1
	Dạng 1.Tính giá trị biểu thức chứa lũy thừa	
	Dạng 2.Rút gọn biểu thức chứa lũy thừa	
	► Dạng 3.So sánh biểu thức lũy thừa	5
	Bài 19. Phép tính logarit	5
	A Tóm tắt lý thuyết	5
	Các dạng toán thường gặp	6
	Dạng 4.Tính giá trị biểu thức chứa lôgarít	6
	🖿 Dạng 5.Biến đổi, rút gọn, biểu diễn biểu thức chứa lôgarít	9
	Dạng 6. Toán thực tế, liên môn	13
	Bài 20. HÀM SỐ MŨ. HÀM SỐ LOGARIT	15
	A Tóm tắt lý thuyết	15
	Các dạng toán thường gặp	17
	Dạng 7.Tập xác định của hàm số	17
	🖿 Dạng 8.Sự biến thiên và đồ thị của hàm số mũ và lôgarít	
	► Dạng 9.Bài toán thực tế	23
	Bài 21. Phương trình, bất phương trình mũ và lôgarit	26
	A Tóm tắt lý thuyết	26
	Các dạng toán thường gặp	27
	Dạng 10.Phương trình mũ, lôgarit cơ bản	27
	🖒 Dạng 11.Bất phương trình mũ, lôgarít cơ bản	29
	Dạng 12.Phương trình mũ, lôgarit đưa về cùng cơ số	
	Dạng 13.Bất phương trình mũ, lôgarít đưa về cùng cơ số	
	🗁 Dạng 14.Bài toán thực tế, liên môn	34

