Welcome to CHE 384T: Computational Methods in Materials Science

Defects in crystals

LeSar App. B1-B5

Lecture Outline

Crystal structure

Unit cell

Bravais Lattices

Example Crystal structures from the cubic space group

Brief on Crystallographic notation

Defects can alter the properties of the host material

Optical Properties- colored diamonds

Electrical Properties

https://learn.sparkfun.com/tutorials/transistors/all

Mechanical Properties

S.E. Merzlikin et al. Practical Metallography. 48, 365-375 (2011)

the diffuses → embrittlement

Types of Defects

OD Point Defects: Impurities, Vacancies, Interstitials

1D Line Defects: Edge and Screw Dislocations

2D Interfacial Defects: Grain boundaries

Point defects in crystals (monatomic)

Figure 4.1 Two-dimensional representations of a vacancy and a self-interstitial.

(Adapted from W. G. Moffatt, G. W. Pearsall, and J. Wulff, *The Structure and Properties of Materials*, Vol. I, *Structure*, p. 77. Copyright © 1964 by John Wiley & Sons, New York, NY. Reprinted by permission of John Wiley & Sons, Inc.)

Scanning probe micrograph that shows a vacancy on a (111)-type surface plane for silicon. native point paints

Point defects in crystals (monatomic)

Figure 4.2 Two-dimensional schematic representations of substitutional and interstitial impurity atoms. (Adapted from W. G. Moffatt, G. W. Pearsall, and J. Wulff, The Structure and Properties of Materials, Vol. I, Structure, p. 77. Copyright © 1964 by John Wiley & Sons, New York, NY. Reprinted by permission of John Wiley & Sons, Inc.)

extrinsic point defects

Lattice Strain from point defects

Equilibrium concentration of (point) defects

Equilibrium concentration of (point) defects

defects

H defects

N

Exp (-
$$\frac{\Delta E_D}{k_BT}$$
)

A lattice

C room temp

~ 25 meV

Equilibrium concentration of (point) defects: Microstates

Configurational Entropy: How many microstates are there for a given macrostate?

microstaves: #?

N= # lattice sites n= # defect sites

Equilibrium concentration of (point) defects: Derivation

$$\Delta G = \Delta H - T \Delta S \text{ config}$$

$$= n \Delta E_D - T k_B en W$$

$$= n \Delta E_D - T k_B en W \text{ input}$$

$$= n \Delta E_D - k_B T \ln \left[\frac{N'}{(N\pi)!n!} \right]$$

$$\Delta G > 0 \text{ req. energy}$$

$$= n \Delta E_D - k_B T \ln \left[\frac{N'}{(N\pi)!n!} \right]$$

$$\Delta G > 0 \text{ req. energy}$$

$$\Delta G > 0 \text{ spontaneous}$$

Edge Dislocation

Screw Dislocation

Figure 4.5 (a) A screw dislocation within a crystal. (b) The screw dislocation in (a) as viewed from above. The dislocation line extends along line AB. Atom positions above the slip plane are designated

solid circles. [Figure (b) from W. T. Read, Jr., Dislocations in Crystals, McGraw-Hill Book Company, New York, NY, 1953.]

Mixed Dislocations

Plastic deformation through motion of dislocations

Figure 7.1 Atomic rearrangements that accompany the motion of an edge dislocation as it moves in response to an applied shear stress. (a) The extra half-plane of atoms is labeled A. (b) The dislocation moves one atomic distance to the right as A links up to the lower portion of plane B; in the process, the upper portion of B becomes the extra half-plane. (c) A step forms on the surface of the crystal as the extra half-plane exits. (Adapted from A. G. Guy, Essentials of Materials Science, McGraw-Hill Book Company, New York, 1976, p. 153.)

Figure 7.3 The analogy between caterpillar and dislocation motion.

Grain Boundaries

Figure 4.8 Schematic diagram showing smalland high-angle grain boundaries and the adjacent atom positions.

polycrystalline

Grain Boundaries

S.E. Merzlikin et al. Practical Metallography. 48, 365-375 (2011)

Image from Industrial Metallurgists, LLC

Bubble Raft Videos

Used to understand defects in metals using a 2D HCP model

Narrated by Sir William Lawrence Bragg

From The Royal Institution archives