EE2000 Logic Circuit Design

Chapter 1 – Review of Boolean Algebra and Logic Function

Outline

- 1.1 Basic logic gates
- 1.2 Boolean algebra
- 1.3 Logic Circuit and Boolean Expression
- 1.4 Simplification using Boolean Algebra
 - SOP, POS, minterm, maxterm, canonical form

1.1 Logic Gate

• The term **gate** describes a circuit that performs a basic logic operation.

Binary decision output e.g, Yes/No; True/False and 1/0.

Logic Operator

	OR	AND	NOT
Binary / Unary operator?	Binary	Binary	Unary
Symbols	1: + 2: V	1: · 2: Λ 3: absence of an operator	1: ' 2: ~ 3: ¯
Examples	1: a + b 2: a V b		1: a' 2: ∼a 3: ā
Logic Gate Symbol	a b	<i>x</i>	a —f

а	b	a + b
0	0	0
0	1	1
1	0	1
1	1	1

Input Output

x	у	$x \cdot y$
0	0	0
0	1	0
1	0	0
1	1	1

Input Output

а	a'	
0	1	
1	0	

Input Output

Logic Operator

Operation		NAND	NOR	XOR	XNOR
а	b	(ab)'	(a+b)'	a ⊕ b	a ⊗ b
0	0	1	1	0	1
0	1	1	0	1	0
1	0	1	0	1	0
1	1	0	0	0	1
Symbol					

1.2 Boolean Algebra

A set of element S with at least two different elements (x, y) satisfying binary operations (+) and (•).

 For Boolean algebra in which S= {0,1}, the formulation is referred as switching function.

Basic Postulates

If
$$x, y \in S$$
,

$$x + y = y + x$$
$$x \cdot y = y \cdot x$$

commutative

If
$$x, y, z \in S$$
,

$$x + (y + z) = (x + y) + z$$
$$x \cdot (y \cdot z) = (x \cdot y) \cdot z$$

associative

If
$$x, y, z \in S$$
,

$$x + (y \cdot z) = (x + y) \cdot (x + z)$$

 $x \cdot (y + z) = (x \cdot y) + (x \cdot z)$ distributive

Distributive Law

• Proof
$$x + (y \cdot z) = (x + y) \cdot (x + z)$$

x	y	z	$y \cdot z$	$x + y \cdot z$	x + y	x + z	(x+y)(x+z)
0	0	0	0	0	0	0	0
0	0	1	0	0	0	1	0
0	1	0	0	0	1	0	0
0	1	1	1	1	1	1	1
1	0	0	0	1	1	1	1
1	0	1	0	1	1	1	1
1	1	0	0	1	1	1	1
1	1	1	1	1	1	1	1

Duality

 If an expression is valid in Boolean algebra, the dual of the expression is also valid.

Principle of duality:

$$0 \cdot x = 0$$

$$1 + x = 1$$

$$1 \cdot x = x$$

$$0 + x = x$$

$$x \cdot x = x$$

$$x + x = x$$

$$x + x' = 1$$

The expressions are interchangeable by replacing "0" by "1" and "+" by " \cdot ".

Theorems

Idempotent

$$x + x = x$$

$$x \cdot x = x$$

Involution

$$(x')'=x$$

Absorption

$$x + xy = x$$

$$x(x+y)=x$$

Logical adjacency

$$xy + xy' = x$$

DeMorgan

$$(x+y)'=x'y'$$

$$(xy)' = x' + y'$$

- The complement of sum is equal to the product of the complement
- The product of complement is equal to the sum of the complement

DeMorgan

$$X \longrightarrow \overline{X + Y} \equiv X \longrightarrow \overline{X}\overline{Y}$$

$$(x+y)'=x'y'$$

X	Y	$\overline{X+Y}$	$\overline{X}\overline{Y}$
0	0	1	1
0	1	0	0
1	0	0	0
1	1	0	0

$$\overline{X} = \overline{XY} = \overline{X} - \overline{X} + \overline{Y}$$

$$(xy)' = x' + y'$$

X	Y	\overline{XY}	$\overline{X} + \overline{Y}$
0	0	1	1
0	1	1	1
1	0	1	1
1	1	0	0

Consensus

- $at_1 + a't_2 + t_1t_2 = at_1 + a't_2$ ■ $(a + t_1)(a' + t_2)(t_1 + t_2) = (a + t_1)(a' + t_2)$
- The theorem shows that the consensus term, t_1t_2 , is redundant and can be eliminated
- Proof: $at_1 + a't_2 + t_1t_2$ ■ = $at_1 + a't_2 + t_1t_2 \cdot 1$ (identity) ■ = $at_1 + a't_2 + t_1t_2 \cdot (a + a')$ (complementation) ■ = $at_1 + a't_2 + at_1t_2 + a't_1t_2$ (distributivity) ■ = $at_1 + a't_2$ (absorption)

1.3 Logic Circuit and Boolean Expression

 To derive the Boolean expression of a given logic circuit, begin at the leftmost inputs and work towards the final output, writing the expression for each gate.

Boolean expression from a logic circuit

- Write down the output expression from all logic operators
- The Boolean function of this circuit is A (B + CD)
- Construct a truth table for above logic circuit

Truth table for a logic circuit

Examples of n		Inp	uts		Output	
Decimal	Hexadecimal	Α	В	С	D	A(B+CD)
0	0	0	0	0	0	0
1	1	0	0	0	1	0
2	2	0	0	1	0	0
3	3	0	0	1	1	0
4	4	0	1	0	0	0
5	5	0	1	0	1	0
6	6	0	1	1	0	0
7	7	0	1	1	1	0
8	8	1	0	0	0	0
9	9	1	0	0	1	0
10	Α	1	0	1	0	0
11	В	1	0	1	1	1
12	С	1	1	0	0	1
13	D	1	1	0	1	1
14	E	1	1	1	0	1
15	F	1	1	1	1	1

Completed solution for a logic circuit design must include:

- 1. Boolean Algebra
- 2. Circuit schematic
- 3. Truth table
- 4. Table Assignment

For the truth table, find the output as a following:

- 1. Write down all input possibility
- 2. Write down the stage output (i.e. CD, B + CD)
- 3. Write down the final stage output (i.e. A(B + CD))

Logic circuit from a Boolean expression

Provided that a Boolean function f(x,y,z)=xy'+x'z', then the logic circuit can be formed as:

or

Boolean function → **Truth Table**

 \blacksquare e.g. f(x, y, z) = xy' + x'z'

II	nput(s)		Output				
X	У	Z	xy'	x'z'	xy' + x'z'			
0	0	0	0	1	1			
0	0	1	0	0	0			
0	1	0	0	1	1			
0	1	1	0	0	0			
1	0	0	1	0	1			
1	0	1	1	0	1			
1	1	0	0	0	0			
1	1	1	0	0	0			

The number of rows is 2^n (n is the number of variables)

Truth Table → **Boolean function**

	Inputs	Output		
а	b	С	f	
0	0	0	0	
0	0	1	1	•
0	1	0	0	
0	1	1	0	
1	0	0	1	4
1	0	1	1	
1	1	0	0	
1	1	1	0	

f is 1 if
$$(a = 0 \text{ AND } b = 0 \text{ AND } c = 1) \text{ OR}$$

 $(a = 1 \text{ AND } b = 0 \text{ AND } c = 0) \text{ OR}$
 $(a = 1 \text{ AND } b = 0 \text{ AND } c = 1)$

$$f(a, b, c) = a'b'c + ab'c' + ab'c$$

Is it the simplest form?

1.4 Simplification using Boolean Algebra

Prove that the above Circuit (a) is equivalent to Circuit (b).

Solution by Boolean Algebra Simplification

$$AB + A(B+C) + B(B+C)$$

 $AB + AB + AC + BB + BC$
 $AB + AB + AC + B + BC$
 $AB + AC + B + BC$
 $AB + AC + B$
 $B+BC=B$
 $B+BC=B$
 $B+BC=B$
 $Absorption$

Boolean Algebra Simplification

Example 1

Simplify
$$f = \overline{AB} + \overline{AC} + \overline{A} \, \overline{B} \, C$$
 Simplify $f = \overline{(A+B)} \, \overline{C} \, \overline{D} + E + \overline{F}$

$$= (\overline{AB})(\overline{AC}) + \overline{A} \, \overline{B} \, C$$

$$= (\overline{A} + \overline{B})(\overline{A} + \overline{C}) + \overline{A} \, \overline{B} \, C$$

$$= (\overline{A} + \overline{B})(\overline{A} + \overline{C}) + \overline{A} \, \overline{B} \, C$$

$$= (\overline{A} + \overline{A})(\overline{A} + \overline{C}) + \overline{A} \, \overline{B} \, C$$

$$= (\overline{A} + \overline{A})(\overline{A} + \overline{C}) + \overline{A} \, \overline{B} \, C$$

$$= (\overline{A} + \overline{A})(\overline{A} + \overline{C}) + \overline{A} \, \overline{B} \, C$$

$$= (\overline{A} + \overline{A})(\overline{A} + \overline{C}) + \overline{A} \, \overline{B} \, C$$

$$= (\overline{A} + \overline{A})(\overline{A} + \overline{C}) + \overline{A} \, \overline{B} \, C$$

$$= (\overline{A} + \overline{A})(\overline{A} + \overline{C}) + \overline{A} \, \overline{B} \, C$$

$$= (\overline{A} + \overline{A})(\overline{A} + \overline{C}) + \overline{A} \, \overline{B} \, C$$

$$= (\overline{A} + \overline{A})(\overline{A} + \overline{C}) + \overline{A} \, \overline{B} \, C$$

$$= (\overline{A} + \overline{A})(\overline{A} + \overline{C}) + \overline{A} \, \overline{B} \, C$$

$$= (\overline{A} + \overline{A})(\overline{A} + \overline{C}) + \overline{A} \, \overline{B} \, C$$

$$= (\overline{A} + \overline{A})(\overline{A} + \overline{C}) + \overline{A} \, \overline{B} \, C$$

$$= (\overline{A} + \overline{A})(\overline{A} + \overline{C}) + \overline{A} \, \overline{B} \, C$$

$$= (\overline{A} + \overline{A})(\overline{A} + \overline{C}) + \overline{A} \, \overline{B} \, C$$

$$= (\overline{A} + \overline{A})(\overline{A} + \overline{C}) + \overline{A} \, \overline{B} \, C$$

$$= (\overline{A} + \overline{A})(\overline{A} + \overline{C}) + \overline{A} \, \overline{B} \, C$$

$$= (\overline{A} + \overline{A})(\overline{A} + \overline{C}) + \overline{A} \, \overline{B} \, C$$

$$= (\overline{A} + \overline{A})(\overline{A} + \overline{C}) + \overline{A} \, \overline{B} \, C$$

$$= (\overline{A} + \overline{A})(\overline{A} + \overline{C}) + \overline{A} \, \overline{B} \, C$$

$$= (\overline{A} + \overline{A})(\overline{A} + \overline{C}) + \overline{A} \, \overline{B} \, C$$

$$= (\overline{A} + \overline{A})(\overline{A} + \overline{C}) + \overline{A} \, \overline{B} \, C$$

$$= (\overline{A} + \overline{A})(\overline{A} + \overline{C}) + \overline{A} \, \overline{B} \, C$$

$$= (\overline{A} + \overline{A})(\overline{A} + \overline{C}) + \overline{A} \, \overline{B} \, C$$

$$= (\overline{A} + \overline{A})(\overline{A} + \overline{C}) + \overline{A} \, \overline{B} \, C$$

$$= (\overline{A} + \overline{A})(\overline{A} + \overline{C}) + \overline{A} \, \overline{B} \, C$$

$$= (\overline{A} + \overline{A})(\overline{A} + \overline{C}) + \overline{A} \, \overline{B} \, C$$

$$= (\overline{A} + \overline{A})(\overline{A} + \overline{C}) + \overline{A} \, \overline{B} \, C$$

$$= (\overline{A} + \overline{A})(\overline{A} + \overline{C}) + \overline{A} \, \overline{B} \, C$$

$$= (\overline{A} + \overline{A})(\overline{A} + \overline{C}) + \overline{A} \, \overline{B} \, C$$

$$= (\overline{A} + \overline{A})(\overline{A} + \overline{C}) + \overline{A} \, \overline{B} \, C$$

$$= (\overline{A} + \overline{A})(\overline{A} + \overline{C}) + \overline{A} \, \overline{B} \, C$$

$$= (\overline{A} + \overline{A})(\overline{A} + \overline{C}) + \overline{A} \, \overline{B} \, C$$

$$= (\overline{A} + \overline{A})(\overline{A} + \overline{C}) + \overline{A} \, \overline{B} \, C$$

$$= (\overline{A} + \overline{A})(\overline{A} + \overline{C}) + \overline{A} \, \overline{B} \, C$$

Please write the properties of switching algebra for every steps

Relationship

Relation between Boolean function, truth table and logic circuit diagram

A Boolean function can be represented by truth table and logic circuit diagram, and

Truth table

Boolean Circuit diagram

SOP & POS Implementation

Sum of products

A group of AND gates followed by a single OR gate

$$f_1(a, b, c) = ab + ac + bc$$

Product of sums

A group of OR gates followed by a single AND gate

$$f_2(a, b, c) = (a + b)(a + c)(b + c)$$

Description for minterms and maxterms for 3 variables logic function

			Minterms		Max	xterms
X	у	Z	Term	designation	term	designation
0	0	0	<i>x</i> ' <i>y</i> ' <i>z</i> '	m_0	x + y + z	M_0
0	0	1	<i>x</i> ' <i>y</i> ' <i>z</i>	m_{1}	x + y + z	M_1
0	1	0	<i>x</i> ' <i>y z</i> '	m_2	x + y' + z	M_2
0	1	1	<i>x</i> ' <i>y z</i>	m_3	x + y' + z'	M_3
1	0	0	<i>x y 'z '</i>	m_4	x' + y + z	M_4
1	0	1	xy'z	m_5	x' + y + z'	M_5
1	1	0	xyz'	m_6	x' + y' + z	M_6
1	1	1	x y z	m_7	x' + y' + z'	M_7

Minterm and Maxterm

[Minterm] For a function of *n* variables, if a product term contains each of the *n* variables **exactly one time** in complemented or uncomplemented form, the product term is called *minterm*. Complement = 0 and Uncomplement = 1.

Function	Minterm	Not minterm	Not minterm
f(A, B, C)	A' B' C	(A B)' C	A'B'

If the function is represented as a sum of minterms only, the function is in *standard sum of product (SOP)* form.

$$f(A,B,C) = \overline{A}B\overline{C} + AB\overline{C} + \overline{A}BC + ABC$$

Minterm	Code	Number
A'BC'	010	m_2
ABC'	110	m_6
A'BC	011	m_3
ABC	111	m_7

$$f(A,B,C) = m_2 + m_3 + m_6 + m_7$$

Minterm and Maxterm

[Maxterm] If a sum term of a function of n variables contains each of the n variables exactly one time in complemented or uncomplemented form, the sum term is called a *maxterm*. Complement = 1 and Uncomplement = 0.

Function	Maxterm	Not maxterm	Not maxterm
f(A, B, C)	A'+ B'+ C	(A + B)' C	A'+ B'

If a function is represented as a product of maxterms only, the function is in *standard* product of sum (*POS*) form.

$$f(A,B,C) = (A+B+C)(A+B+\overline{C})(\overline{A}+B+C)(\overline{A}+B+\overline{C})$$

Minterm	Code	Number
A + B + C	000	M_{o}
A + B + C'	001	M_1
A' + B + C	100	M_4
A' + B + C'	101	M_5

$$f(A,B,C) = M_0 M_1 M_4 M_5$$

Relationship

- $\blacksquare \overline{maxterm_i} = minterm_i \text{ (i.e. } \overline{M_i} = m_i \text{)}$
- $\overline{minterm_i} = maxterm_i \text{ (i.e. } \overline{m_i} = M_i \text{)}$

- \blacksquare e.g. $M_3' = (a + b' + c')'$
- = a'bc (De Morgan's Theorem)
- $= m_3$

Example: Find f, f' in SSP form

Inputs		Outputs		
а	b	С	f	f'
0	0	0	0	1
0	0	1	1	0
0	1	0	0	1
0	1	1	0	1
1	0	0	1	0
1	0	1	1	0
1	1	0	0	1
1	1	1	0	1

f is 1 if
$$(a = 0 \text{ AND } b = 0 \text{ AND } c = 1) \text{ OR}$$

 $(a = 1 \text{ AND } b = 0 \text{ AND } c = 0) \text{ OR}$
 $(a = 1 \text{ AND } b = 0 \text{ AND } c = 1)$
 $f(a, b, c) = a'b'c + ab'c' + ab'c$
 $= m_1 + m_4 + m_5$
 $= \Sigma m(1, 4, 5)$

f'(a, b, c) = a'b'c' + a'bc' + a'bc + abc' + abc

Abbreviated form:

 Σ = logical sum (Boolean OR) $\overline{}$

$$= m_0 + m_2 + m_3 + m_6 + m_7$$

$$\rightarrow = \Sigma m(0, 2, 3, 6, 7)$$

Example: Find f, f' in SPS form

Take the complement of f' to obtain f:

$$\begin{split} f(a,b,c) &= (f')' \\ &= (m_0 + m_2 + m_3 + m_6 + m_7)' \\ &= m_0' \cdot m_2' \cdot m_3' \cdot m_6' \cdot m_7' \\ &= M_0 \cdot M_2 \cdot M_3 \cdot M_6 \cdot M_7 \\ &= \Pi M \, (0,2,3,6,7) \qquad \text{or} = (a+b+c)(a+b'+c)(a+b'+c')(a'+b'+c') \end{split}$$

Following the same idea, we can obtain f' by:

$$f'(a, b, c) = (f)' = (m_1 + m_4 + m_5)'$$

 $= m_1' \cdot m_4' \cdot m_5'$
 $= M_1 \cdot M_4 \cdot M_5$
 $= \Pi M(1, 4, 5)$ or $= (a+b+c') (a'+b+c)(a'+b+c')$
Abbreviated form: $\Pi = \text{logical product (Boolean AND)}$