Modelska analiza II 2011/12

12. naloga – Navier-Stokesov sistem

Jože Zobec

1 Razmislek

V tej nalogi bomo reševali Navier-Stokesov sistem dvo-dimenzionalne nestisljive tekočine (kapljevine). Izmed možnosti, ki so nam na voljo, bomo za to vajo uporabili metodo, ki reducira eno izmed enačb – metodo, ki dinamiko napove prek vrtinčnosti, ' ζ ',

$$\frac{\partial \zeta}{\partial t} + \frac{\partial u\zeta}{\partial x} + \frac{\partial v\zeta}{\partial y} - \frac{1}{\text{Re}} \left(\frac{\partial^2 \zeta}{\partial x^2} + \frac{\partial^2 \zeta}{\partial y^2} \right) = 0.$$

Hitrostno polje, $\mathbf{v} = (u, v)$, dobimo iz tokovne funkcije, ' ψ ',

$$u = \frac{\partial \psi}{\partial u}, \qquad v = -\frac{\partial \psi}{\partial x},$$

ki je z vrtinčnostjo povezana prek Poissonove enačbe,

$$\nabla^2 \psi = \zeta. \tag{1}$$

Pri tem je zagotovljena identiteta $\partial_x u + \partial_y v = 0$. Časovni korak je omejen po Courtanovem pogoju. Robni pogoj za ψ prevedemo na robni pogoj ζ , toka v steno ne sme biti. Vse odvode prepišemo v diskretne in dobimo eksplicitne enačbe za časovni razvoj:

$$\zeta_{i,j}^{t+1} = \zeta_{i,j}^t + \Delta_{i,j}^t, \tag{2}$$

$$\Delta_{i,j}^{t} = \frac{\delta}{h} \left[\frac{1}{h \text{Re}} \left(\zeta_{i,j+1}^{t} + \zeta_{i,j-1}^{t} + \zeta_{i+1,j}^{t} + \zeta_{i-1,j}^{t} - 4 \zeta_{i,j}^{t} \right) - \frac{1}{2} \left((u \zeta)_{i,j+1}^{t} - (u \zeta)_{i,j-1}^{t} + (v \zeta)_{i+1,j}^{t} - (v \zeta)_{i-1,j}^{t} \right) \right],$$
(3)

hitrostno polje dobimo kot

$$\frac{1}{2h} \left(\psi_{i+1,j}^t - \psi_{i-1,j}^t \right) = u_{i,j}^t, \quad \frac{1}{2h} \left(\psi_{i,j-1}^t - \psi_{i,j+1}^t \right) = v_{i,j}^t. \tag{4}$$

Enačbo (1) lahko rešujemo na mnogo različnih načinov, vendar mislim, da gre najhitreje z metodo SOR s Čebiševim pospeševanjem konvergence.

2 Implementacija

Tako kot prej sem napisal karseda za hitrost optimizirano različico programa v programskem jeziku C, kjer sem najbolj požrešne funkcije pohitril/nadomestil ob namigih program $\operatorname{\mathsf{gprof}}$. Dodatno optimizacijo sem napravil tako, da je za mojo $N \times N$ mrežo bil N vedno

lih. Skušal sem napraviti program, ki bi čim manj preverjal parametre in se čim bolj osredotočil na računanje.

Nekako je bilo treba pravilno doložiti δ (tj. časovni korak). Tega sem določil tako, da sem prvih 10 časovnih iteracij δ računal sproti s hitrostmi in rekel

$$\delta = \frac{1}{40Nv_{\text{max}}},$$

nato pa preostanek upošteval po zadnjem izračunanem δ . Za izračun nove iteracije ζ sem imel pripravjeno pomožen blok spomina. Za izračun ζ^{t+1} sem ju zamenjal v konstantem času (tj. zgolj zamenjal naslov spominskega bloka).

Tabela~1: Spodaj vidimo kolikšen delež časa izvajanja programa vzame posamezen del algoritma. Kot vidimo, se je Čebiševo pospeševanje izplačalo, saj je računanje Poissonove enačbe primerljivo z računanjem eksplicitne časovne sheme za ζ .

delež	Proces
31%	lihi koraki (SOR)
31%	sodi koraki (SOR)
22%	$\zeta^t o \zeta^{t+1}$
11%	izračuni u_{ij} in v_{ij}
0%	izračun δ
0%	zamenjava spominskega bloka
5%	ostalo (alokacija spomina, robni pogoji ζ)

Začetno stanje sem izbral $\psi_{i,j} \equiv 0$, $v_{i,j} \equiv 0$. Tudi $u_{i,j}$ je povsod 0, razen na spodnjem robu, tam je $u_{N,j} \equiv 1$. Zaradi tega je tudi $\zeta_{i,j}$ povsod 0, razen vrstici $\zeta_{N-1,j}$ in $\zeta_{N,j}$.

3 Rezultati

Tokovnice so prikazane na spodnjih slikah (tj. 1, 2, 3, 4 in 5), animacije pa so v priloženi datoteki anim.tar.gz. Hitrosti animacij niso sorazmerne s hitrostmi tekočine, ampak so skalirane tako, da se čim bolje vidi začetni prehod iz mirne tekočine v vrtečo se gmoto z vrtincem.

 $Slika\ 1:$ Tokovnice za Re $=0.1,\ N=101.$ Animacija je v datoteki Re-0.avi. Ker je mreža premajhna, padejo nekateri markerji v stik s ploščo, ki jih nato zaradi robnega pogoja odnese s sabo.

Slika~2: Tokovnice za Re $=10,\,N=201.$ Ne razlikujejo se bistveno od grafa na sliki 1. Animacija je v datoteki Re-10.avi.

Slika3: Tokovnice za Re $=100,\,N=201.$ Tukaj je situacija že malo drugačna in premikajoča se stranica vrtinec potegne proti sebi. Animacija je v datoteki Re-100.avi.

Slika~4: Imamo prehoden primer med tokovnicami na sliki3in 5. Tu je Re=400in N=201. Animacija je v datoteki Re-400.avi.

Slika~5: Tokovnice za Re=1000,~N=201. Vidimo, da se vrtinec iz 4 v tem primeru končno centrira. Animacija je v datoteki Re-1000.avi.