Introducción a Machine Learning

Taller invitado Gestión de Operaciones Escuela de Ingeniería Industrial - ULACIT

Nuestras Áreas

Analytics

Mobile

Cloud

QA/ QA Automation

Contenido

Intorducción a Machine Learning Estrategias de manufactura ULACIT 01.

02.

03.

Conceptos

Etapas del proceso

Consideraciones

éticas

04.

Aplicaciones en Ingeniería Industria; 05.

Aplicación

06.

Aplicación

Machine Learning

Datos

Unidades de información asociadas a un fenómeno observado.

¿Por qué es cada vez más importante?

- Crecimiento de plataformas digitales.
- Digitalización de servicios.
- Nuevas metodologías de análisis desbloquean nuevos potenciales.
- Más datos => Más responsabilidad.

Cómo se almacena la información

Qué tipo de información contiene

De qué tamaño es el conjunto de datos

Datos estructurados

- → Tablas como colecciones de vectores
- \rightarrow Mucha algebra lineal

Modelación Matemática

Construcciones que buscan aproximar la realidad a través de expresiones matemáticas.

$$C = S \cdot N(d_1) - X \cdot e^{-r \cdot T} \cdot N(d_2)$$

Donde $d_1 y d_2$ son tal que:

$$d_1 = \frac{\ln \frac{S}{X} + \left[r + \frac{\sigma^2}{2}\right] \cdot T}{\sigma \cdot \sqrt{T}}$$

$$d_2 = \frac{\ln \frac{S}{X} + \left[r - \frac{\sigma^2}{2}\right] \cdot T}{\sigma \cdot \sqrt{T}} = d_1 - \sigma \cdot \sqrt{T}$$

Machine Learning

Campo de estudio que construye sistemas capaces de aprender, en lugar de ser explícitamente programados.

- Los modelos de machine learning mejoran automáticamente a través de experiencia (exposición a datos).
- Los procesos de entrenamiento siguen reglas conocidas. ¡No son ni deben usarse como cajas mágicas!

Machine learning es optimización

Minimizar

Errores en valores Calsificaciones incorrectas

Maximizar

Diferencias entre categorías

Cantidad de información conservada

Quiénes hacen Machine Learning?

- Científicos y científicas de datos.
- Analistas de datos
- Profesionales de inteligencia de negocios
- Especialistas del área de aplicación*

Machine Learning?
Deep Learning?
Inteligencia Artificial?

Cómo se hace ML?

Identificar la pregunta

¿Existe una variable que responda esa pregunta? ¿Podría crearla?

¿De qué tipo es la variable objetivo?

- Numérica
- Categórica
 - Ordinal

- Cómo se relacionan las observaciones
- Cómo se relacionan las características

Aprendizaje supervisado

Aprendizaje no supervisado

Segmentación

Reducción de dimensiones

Explorar los datos

- 1. Entender el contenido.
- 2. Revisar la calidad de ese contenido (datos faltantes, valores extremos, etc.)
- 3. Estudiar el comportamiento de cada variable.
- 4. Estudiar las relaciones entre distintas variables.

Limpiar los datos

- Eliminar?
- Corregir?
- Rellenar?

Feature engineering

Idear, transformar y crear variables que capturen los comportamientos que el queremos usar dentro del modelo

Ajustar el modelo

- Elegir el modelo
 - Modelo flexible vs generalizable?
 - Qué tan complejo de interpretar?
- Definir hiper parámetros
 - Hiper parámetros: parámetros del modelo que se deben elegir manualmente para que se pueda dar el proceso de optimización.

Evaluar el modelo

Elegir métricas que se alineen al objetivo del modelo

- Si tengo 97% A y 3% B, puedo tener un 97% de precisión si solo digo que todo es A.
- Si quiero detectar cáncer, es más grave tener falsos negativos que falsos positivos.
- Si quiero predecir ingreso, el error promedio podría ser muy grande por solo unas cuantas observaciones.

Ciclo de trabajo en Machine Learning

Consideraciones éticas

Consideraciones éticas

¿Es adecuado que un sistema de machine learning guíe esas decisiones del todo?

Sobre los datos

¿De dónde vienen?

¿Fueron obtenidos de acuerdo a las respectivas regulaciones?

¿Hay claridad de cómo identificar los sesgos de la data?

Sobre el modelo

¿Entiendo la metodología?

¿Conozco qué está considerando para dar sus resultados?

¿Qué dice sobre el fenómeno que se está estudiando?

¿Es suficientemente preciso para quiar decisiones?

¿Debería hacerse un modelo del todo?

Referentes

Timnit Gebru @timnitGebru

Margaret Mitchell

@MMItchell_ai

Rachel Thomas

@math_Rachel

https://ethics.fast.ai/

Documental "Coded Bias"

Aplicaciones en ingeniería industrial

Análisis de cadenas de suministros

Optimización dinámica de rutas

Tradicionalmente:

- Recoger muchos datos.
- Construir la mejor ruta posible para esos datos.

Online learning

Construir una ruta óptima para un momento

VS

Construir rutas en pro medio *buenas* en todo momento

Modelación de demanda

Detección de anomalías

Rotación de personal

Amonestaciones Años en el puesto Años desde ultimo aumento Distancia al lugar de trabajo Horas extra no planeadas

Modelo: Regresión Logística

Regresión logística

Regresión logística

Regresión logística

Gracias!

Facebook

@gaplatam

Instagram

@gaplatam

Linkedin

Growth Acceleration Partners

Youtube

Growth Acceleration Partners LATAM

Demo

Aplicación: ejercicio.csv

