# Comparison of Average Victoria Temperature Vs Average Global Temperatures

### **Summary**

In this project, we will be analyzing local and Global temperatures. We will then compare the different temperature trends between Victoria and the overall global temperature.

We show the trend by making a comparison graph which is plotted from year 1828 to year 2015. Rather than the yearly average, we use a 7 year moving average to get a better picture of the analysis. Some points to remember.

- The moving average was calculated through Excel Sheet before importing to python.
- The rest of the analysis was done in Python Jupyter Notebook.

There are some key considerations taken into account on deciding how to visulize the trends

- It was decided that both datasets should have equal rows and should be plotted with the year as a the common axis with proper coloring to show the respective plots.
- Proper subsetting of the data needs to be done.
  - global\_data should be subsetted from 1828 to 2015
  - city\_data should be subsetted for Victoria

These are the basic considerations done to get the visualization. I am sure we can add more constraints to get a better pixture of the same.

# **Moving Average**

• The 7 year moving average for Victoria Dataset. Once a cell has been assigned a moving average, the cells are dragged to the whole dataset.

| WEEKDAY $\stackrel{\triangle}{\downarrow}$ $\times$ $\checkmark$ $f_X$ =AVG(D2:D8 |      |          |         |          |             |     |
|-----------------------------------------------------------------------------------|------|----------|---------|----------|-------------|-----|
|                                                                                   | Α    | В        | С       | D        | Е           | F   |
| 1                                                                                 | year | city     | country | avg_temp | moving_aver | age |
| 2                                                                                 | 1828 | Victoria | Canada  | 6.83     |             |     |
| 3                                                                                 | 1829 | Victoria | Canada  | 6.58     |             |     |
| 4                                                                                 | 1830 | Victoria | Canada  |          |             |     |
| 5                                                                                 | 1831 | Victoria | Canada  |          |             |     |
| 6                                                                                 | 1832 | Victoria | Canada  | 3.25     |             |     |
| 7                                                                                 | 1833 | Victoria | Canada  | 7.27     |             |     |
| 8                                                                                 | 1834 | Victoria | Canada  |          | =AVG(D2:D8  |     |
| 9                                                                                 | 1835 | Victoria | Canada  | 5.35     | 5.85        |     |
| 10                                                                                | 1836 | Victoria | Canada  | 6.52     | 5.84        |     |
| 11                                                                                | 1837 | Victoria | Canada  | 6.61     | 5.97        |     |
| 12                                                                                | 1838 | Victoria | Canada  | 6.37     | 6.03        |     |
| 13                                                                                | 1839 | Victoria | Canada  | 7.12     | 6.58        |     |

• Similarly the 7 year moving average for global data. Once a cell has been assigned a moving average, the cells are dragged to the whole dataset.

| WEEKDAY 💂     |      | × ✓      | $f_x$ =AVERAGE(   | B80:B86) |
|---------------|------|----------|-------------------|----------|
| $\mathcal{I}$ | Α    | В        | С                 | D        |
| 1             | year | avg_temp | moving_average    |          |
| 80            | 1828 | 8.17     |                   |          |
| 81            | 1829 | 7.94     |                   |          |
| 82            | 1830 | 8.52     |                   |          |
| 83            | 1831 | 7.64     |                   |          |
| 84            | 1832 | 7.45     |                   |          |
| 85            | 1833 | 8.01     |                   |          |
| 86            | 1834 | 8.15     | =AVERAGE(B80:B86) |          |
| 87            | 1835 | 7.39     | 7.87              |          |
| 88            | 1836 | 7.7      | 7.84              |          |
| 89            | 1837 | 7.38     | 7.67              |          |
| 90            | 1838 | 7.51     | 7.66              |          |
| 91            | 1839 | 7.63     | 7.68              |          |

## Getting data from SQL

To get data from the city\_data we put in the following SQL COMMAND

- SELECT \*
- FROM city\_data
- WHERE city = 'Victoria'
- AND country = 'Canada';

To get data from the global\_data we put in the following SQL COMMAND

- SELECT \*
- FROM global\_data;

We will then download the csv file and put it for further analysis.

## **Importing libraries for Analysis**

We are importing the required libraries for our analysis.

#### In [1]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

Lets import the city\_data.csv data and explore the 1st few rows.

#### In [2]:

```
city_data = pd.read_csv('city_data_victoria.csv')
print(city_data.head())
```

|   | year | city     | country | avg_temp | <pre>moving_average</pre> |
|---|------|----------|---------|----------|---------------------------|
| 0 | 1828 | Victoria | Canada  | 6.83     | NaN                       |
| 1 | 1829 | Victoria | Canada  | 6.58     | NaN                       |
| 2 | 1830 | Victoria | Canada  | NaN      | NaN                       |
| 3 | 1831 | Victoria | Canada  | NaN      | NaN                       |
| 4 | 1832 | Victoria | Canada  | 3.25     | NaN                       |

Lets import the global\_data.csv data and explore the 1st few rows.

#### In [3]:

```
# Lets look at the global dataframe
global_data = pd.read_csv('global_data.csv')
print(global_data.head())
```

|   | year | avg_temp | <pre>moving_average</pre> |
|---|------|----------|---------------------------|
| 0 | 1750 | 8.72     | NaN                       |
| 1 | 1751 | 7.98     | NaN                       |
| 2 | 1752 | 5.78     | NaN                       |
| 3 | 1753 | 8.39     | NaN                       |
| 4 | 1754 | 8.47     | NaN                       |

## **Cleaning the Data**

Here we explore our dataset and get more information for the comparison. This comprises of,

- · Removing Na's
- · Removing unnecessary Columns
- · Reindexing
- · Subsetting

Below we take the city\_data dataset and make a subset called Victoria\_temp containing the data for the city called Victoria. We will further remove the unnecessary columns and reindex the new dataset.

#### In [4]:

```
# Subsetting for My closest City which is Victoria. Also Dropping unnecessary colum
ns and also resetting the index.
Victoria_temp = city_data.reset_index().drop(['country', 'city','index','avg_temp'
], axis = 1)
print(Victoria_temp)
```

```
moving_average
     year
0
     1828
                         NaN
                         NaN
1
     1829
2
     1830
                         NaN
3
     1831
                         NaN
4
     1832
                         NaN
. .
     2009
                        8.13
181
182
     2010
                        8.11
                        7.86
183
     2011
184
     2012
                        7.79
185
     2013
                        8.01
```

```
[186 rows x 2 columns]
```

It is also very important to make sure all the columns have proper datatypes for ploting.

#### In [5]:

```
#Changing DataType for Moving average from 'object' to 'float'
Victoria_temp['moving_average'] = Victoria_temp['moving_average'].astype('float')
print(Victoria_temp.info())
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 186 entries, 0 to 185
Data columns (total 2 columns):
#
                     Non-Null Count Dtype
    Column
0
                     186 non-null
                                     int64
    year
1
    moving_average 180 non-null
                                     float64
dtypes: float64(1), int64(1)
memory usage: 3.0 KB
None
```

#### In [6]:

```
print(Victoria_temp)
```

|     | year  | <pre>moving_average</pre> |
|-----|-------|---------------------------|
| 0   | 1828  | NaN                       |
| 1   | 1829  | NaN                       |
| 2   | 1830  | NaN                       |
| 3   | 1831  | NaN                       |
| 4   | 1832  | NaN                       |
| • • | • • • | • • •                     |
| 181 | 2009  | 8.13                      |
| 182 | 2010  | 8.11                      |
| 183 | 2011  | 7.86                      |
| 184 | 2012  | 7.79                      |
| 185 | 2013  | 8.01                      |

[186 rows x 2 columns]

Now in the global\_data dataset, we can subset the same number of rows as the Victoria\_temp dataset so that we can use the *Year* column to be a common x axis.

#### In [7]:

```
# Indexing to same number of rows
global_data = global_data[global_data['year'] >= 1828]
print(global_data)
```

|     | year | avg_temp | <pre>moving_average</pre> |
|-----|------|----------|---------------------------|
| 78  | 1828 | 8.17     | NaN                       |
| 79  | 1829 | 7.94     | NaN                       |
| 80  | 1830 | 8.52     | NaN                       |
| 81  | 1831 | 7.64     | NaN                       |
| 82  | 1832 | 7.45     | NaN                       |
|     |      | • • •    | • • •                     |
| 261 | 2011 | 9.52     | 9.59                      |
| 262 | 2012 | 9.51     | 9.56                      |
| 263 | 2013 | 9.61     | 9.57                      |
| 264 | 2014 | 9.57     | 9.55                      |
| 265 | 2015 | 9.83     | 9.61                      |
|     |      |          |                           |

[188 rows x 3 columns]

# **Exploratory Data Analysis - Plotting**

Now we can plot the data and compare the Average Victoria temperatures vs Average Global temperatures

#### In [8]:

```
fig, ax = plt.subplots()
ax.plot(global_data.year,global_data.moving_average, color = 'b')
ax.set_ylabel('Avg Global Temp')
ax.set_xlabel('Year from 1828 to 2015')
ax.tick_params( colors = 'blue')
ax2 = ax.twinx()
ax2.plot(Victoria_temp.year,Victoria_temp.moving_average, color = 'r')
ax2.tick_params(colors = 'red')
ax2.set_ylabel('Avg Victoria Temp')
ax.set_title('Comparison of Victoria and global Temp from 1828 to 2015')
plt.show()
```



### **Observations**

- On an average, Victoria shows higher Average temperatures than Global average temperatures throughout the period of analysis but only by 0.5 degrees.
- It is very interesting to see that Average temperatures from Victoria follow a similar trend of the Average temperatures from Global scale for the period of analysis. There are a few outliers which may have been formed because of error in reporting or other causes which require a more in depth analysis.
- It seems that the overall trend suggests the world is getting hotter in the years to come. This trend began in the early 1940's till date.
- The temperatures seem to have risen at a much higher rate from 1975 till date and seems to be rising every year.

### **Conclusions**

From this small analysis we are able to get a lot of analysis on the average temperature rise over the years but we need to understand that further analysis is needed to get more information from the dataset and add to the above observations.