Hausaufgabe 3

Aufgabe 16

Projektionen sind im Skript (Def. 1.84) deutlich allgemeiner als für nur 2 Untervektorräume definiert. Wir halten uns im folgenden an die Definition des Skripts.

a)

Es sei ein K-Vektorraum V, ein $n \in \mathbb{N}_0$ und ein n-Tupel (U_1, \dots, U_n) von K-Untervektorräumen von V mit $V = \sum_{i \in [1,n]} U_i$ gegeben.

Wir überprüfen die Kriterien für Vektorraumhomomorphismen (2.2): Seien $v, v' \in V$. Dann existieren $u, u' \in X_{i \in [1,n]} U_i$ sodass $v = \sum_{i \in [1,n]} u_i$ und $v' = \sum_{i \in [1,n]} u'_i$. Sei nun $i \in [1,n]$. Dann gilt

$$\operatorname{pr}_{i}^{V}(v+v') = \operatorname{pr}_{i}^{V}(\sum_{j \in [1,n]} (u_{j} + u'_{j})) \stackrel{\text{def}}{=} u_{i} + u'_{i} \stackrel{\text{def}}{=} \operatorname{pr}_{i}^{V}(\sum_{j \in [1,n]} u_{j}) + \operatorname{pr}_{i}^{V}(\sum_{j \in [1,n]} u'_{j}) = \operatorname{pr}_{i}^{V}(v) + \operatorname{pr}_{i}^{V}(v')$$

Sei weiter nun $a \in K$. Es gilt

$$\operatorname{pr}_{i}^{V}(av) = \operatorname{pr}_{i}^{V}(\sum_{j \in [1,n]} au_{j}) \stackrel{\text{def}}{=} au_{i} \stackrel{\text{def}}{=} a \cdot \operatorname{pr}_{i}^{V}(\sum_{j \in [1,n]} u_{j}) = a \cdot \operatorname{pr}_{i}^{V}(v)$$

Damit sind die Kriterien aus (2.2) erfüllt.

Es folgt, dass Projektionen (Endo-)Vektorraumhomomorphismen sind.

b)

Sei V ein K-Vektorraum. Sei weiter ein $n \in \mathbb{N}_0$ und ein n-Tupel (U_1, \dots, U_n) von K-Untervektorräumen von V mit $V = \sum_{i \in [1,n]} U_i$ gegeben. Dann existiert $u \in X_{i \in [1,n]} U_i$ sodass $v = \sum_{i \in [1,n]} u_i$. Sei nun $i \in [1,n]$ und $p := \operatorname{pr}_i^V$. Es gilt

$$(p \circ p)(v) = p(p(v)) \stackrel{\text{def}}{=} p(u_i) = p(\sum_{j \in [1,n]} \delta_{j,i} \cdot u_i) \stackrel{\text{def}}{=} u_i \stackrel{\text{def}}{=} p(\sum_{j \in [1,n]} u_j) = p(v)$$

wobei δ das Kronecker-Delta bezeichnet. Es folgt $p \circ p = p$.

c)

Für $v, v' \in V$ ist $\varphi(v) + \varphi(v') = \varphi(v + v') \in \text{Im } \varphi$. Ferner ist $\varphi(0) = 0 \in \text{Im } \varphi$. Für $a \in K$ ist schließlich $a\varphi(v) = \varphi(av) \in \text{Im } \varphi$. Damit ist nach (1.15) $U_1 := \text{Im } \varphi$ ein K-Untervektorraum von V.

Zuerst ist $0 = 0 - \varphi(0) \in U_2$. Für $v, v' \in V$ ist $(v + v') \in V$ und $(v - \varphi(v)), (v' - \varphi(v')) \in U_2$. Es gilt

$$(v - \varphi(v)) + (v' - \varphi(v')) = (v + v') - (\varphi(v) + \varphi(v')) = (v + v') - \varphi(v + v') \in U_2$$

Ferner ist für $a \in K$ auch $av \in V$ und damit

$$a(v - \varphi(v)) = av - a\varphi(v) = av - \varphi(av) \in U_2$$

Damit ist nach (1.15) U_2 ein K-Untervektorraum von V.

Sei nun
$$v \in V$$
. Es gilt $v = v + \varphi(v) - \varphi(v) = \varphi(v) + (v - \varphi(v)) \in (U_1 + U_2)$. Also $V \subseteq (U_1 + U_2)$.

Sei nun $v \in (U_1 + U_2)$. Dann gilt $v = u_1 + u_2$ für $u_1 \in U_1$ und $u_2 \in U_2$. Ferner gilt $u_1 = \varphi(w)$ und $u_2 = w' - \varphi(w')$ für $w, w' \in V$.

$$v = u_1 + u_2 = \varphi(w) + w' - \varphi(w') = \varphi(w) + \varphi(w' - w') = \varphi(w) \in U_1 \le V$$

Also
$$(U_1 + U_2) \subseteq V$$
. Es folgt $V = U_1 + U_2$.

d) Sei $u_1 \in U_1$. Dann gilt $u_1 = \varphi(v)$ für ein $v \in V$. Ferner gilt $\varphi \circ \varphi = \varphi$ (*). Es folgt

$$\varphi(u_1) = \varphi(\varphi(v)) \stackrel{*}{=} \varphi(v) = u_1$$

Sei nun $u_2 \in U_2$. Dann gilt $u_1 = v - \varphi(v)$ für ein $v \in V$. Es folgt

$$\varphi(u_2) = \varphi(v - \varphi(v)) = \varphi(\varphi(v - v)) = \varphi(0) = 0$$

Aufgabe 17

Sei $X \in V$ mit $X = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ für $a, b, c, d \in \mathbb{R}$. Es gilt

$$\varphi(X) = AXA = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} c & d \\ c & d \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & c+d \\ 0 & c+d \end{pmatrix}$$
(1)

Seien nun $X, X' \in V$. Dann ist $X = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ und $X' = \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix}$

für $a, b, c, d, a', b', c', d' \in \mathbb{R}$. Es folgt:

$$\varphi(X) + \varphi(X') \stackrel{\text{(1)}}{=} \begin{pmatrix} 0 & c+d \\ 0 & c+d \end{pmatrix} + \begin{pmatrix} 0 & c'+d' \\ 0 & c'+d' \end{pmatrix} = \begin{pmatrix} 0 & c+d+c'+d' \\ 0 & c+d+c'+d' \end{pmatrix} \stackrel{\text{(1)}}{=} \varphi(X+X')$$

Sei $X \in V$, also $X = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Sei ferner $x \in \mathbb{R}$. Es gilt

$$x\varphi(X) \stackrel{\text{\tiny (1)}}{=} x \cdot \begin{pmatrix} 0 & c+d \\ 0 & c+d \end{pmatrix} = \begin{pmatrix} 0 & xc+xd \\ 0 & xc+xd \end{pmatrix} \stackrel{\text{\tiny (1)}}{=} \varphi(\begin{pmatrix} xa & xb \\ xc & xd \end{pmatrix}) = \varphi(xX)$$

Nach (2.2) ist φ damit linear.

Mit (1) folgt für $a, b, c, d \in \mathbb{R}$

$$\operatorname{Kern}(\varphi) = \{v \in V \mid \varphi(v) = 0\} \stackrel{\text{\tiny (1)}}{=} \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid c = -d \} = \mathbb{R} \begin{pmatrix} 0 & 0 \\ 1 & -1 \end{pmatrix}$$

Es folgt direkt $\operatorname{Kern}(\varphi) = \langle \begin{pmatrix} 0 & 0 \\ 1 & -1 \end{pmatrix} \rangle$, also dass $\begin{pmatrix} 0 & 0 \\ 1 & -1 \end{pmatrix}$) eine Basis von $\operatorname{Kern}(\varphi)$ ist, da auch weiter $\begin{pmatrix} 0 & 0 \\ 1 & -1 \end{pmatrix} \neq 0$.

Ebenso folgt mit (1) für $a, b, c, d \in \mathbb{R}$

$$\operatorname{Im}(\varphi) = \{\varphi(v) \mid v \in V\} \stackrel{\text{\tiny (1)}}{=} \left\{ \begin{pmatrix} 0 & c+d \\ 0 & c+d \end{pmatrix} \mid c,d \in \mathbb{R} \right\} = \left\{ \begin{pmatrix} 0 & x \\ 0 & x \end{pmatrix} \mid x \in \mathbb{R} \right\} = \mathbb{R} \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} = \mathbb{R} A$$

Folglich gilt $\operatorname{Im}(\varphi) = \langle A \rangle$, also dass (A) eine Basis von $\operatorname{Im}(\varphi)$ ist, da auch weiter $A \neq 0$.

b)