Table 1. Effect of aging (250°C for 1hr) on the mechanical properties of new alloys

						MCR.109 S-1	1-S 6U	
Alloy	State	TYS MPa	UTS MPa	E%	CYS MPa	150°C	200°C 55 MPa	CR mg/cm²/day
	٢	183	237	4	183	0.84	1.05	1.58
Example 3	1.	195	250	>	195	0.82	1.08	1.53
	6.1			, u	170	1 44	2.54	1.38
-		179	740	C		-		* * *
Example 6	T5	200	255	ς.	198	1.28	2.35	1.41
	<u></u>	188	236	5	186	1.05	1.95	1.35
Example 8	T.5	197	243	3	198	1.02	1.97	1.32
	; F	195	234	3	193	1.31	2.40	1.35
Example 14	T5	203	250	3	202	1.18	2.28	1.37

Fig.

Table 2. Chemical Compositions of Alloys

	Al	Min	Zn	Ca	Sn	Sr	Si	Fe	ï	Cu	Be
Alloy	%	%	%	%	%	%	%	%	%	%	%
Example 1	4.7	0.29		1.9	1.8	0.3	0.01	0.002	9000.0	0.0005	1
Example 2	5.3	0.31	0.3	1.8	0.3	1	0.01	0.007	0.0005	0.0006	0.0005
Example 3	5.1	0.30		2.9	1.0	1	0.01	0.003	0.0006	9000.0	ı
Example 4	4.9	0.30		2.0	2.0	0.3	0.01	0.003	0.0005	0.0005	1
Example 5	5.2	0.31		3.1	0.5	ŧ	0.01	0.002	0.0007	0.0004	0.0007
Example 6	6.1	0.29	9.0	2.2	2.0	1	0.01	0.007	0.0006	0.0006	1
Example 7	6.2	0.30		2.1	0.5	0.3	0.01	0.003	9000.0	0.0005	1
Example 8	6.2	0.28		2.8	1.5	1	0.01	0.003	0.0007	0.0005	ı
Example 9	5.9	0.26		3.0	0.5	0.3	0.01	0.002	0.0005	0.0006	2
Example 10	9.9	0.25	1	1.9	1.5	0.5	0.01	0.003	9000.0	0.0005	1
Example 11	7.1	0.26		2.0	0.5	ŝ	0.01	0.003	9000.0	0.0006	1
Example 12	7.0	0.23	0.8	2.1	2.0	,	0.01	0.002	0.0005	0.0005	1
Example 13	7.3	0.24	1	3.1	0.7		0.01	0.003	9000.0	0.0005	0.0004
Example 14	7.1	0.21	0.7	3.0	1,1	,	0.01	0.002	0.0005	0.0005	
Comparative Example 1	8.9	0.23	0.74	I.	ŧ	1	0.01	0.005	0.0007	6000.0	0.0009
Comparative Example 2	4.3	0.29	0.01	2.4% RE	ı	1	0.01	0.002	0.0008	0.0008	0.0008
Comparative Example 3	4.1	0.34	ſ	1.5	J	0.10	0.01	0.002	0.0005	0.0007	0.0009
Comparative Example 4	5.5	0.31	£	2.7	ı	0.15	0.01	0.003	0.0006	0.0008	0.0008
Comparative Example 5	7.9	0.24	0.7	2.2	1.0	-	0.01	0.003	0.0008	0.0007	1

Fig. 2

Table 3. Die castability properties of new alloys

Allow	Metal	Oxidation resistance	Fluidity	Die sticking	Rank
(Allo)	temperature [°C]				
Example 1	029	10	6	6	91.7
Example 2	069	10	10	8	86.7
Example 3	675	10	6	8	85.1
Example 4	089	10	10	6	93.3
Example 5	029	10	6	6	91.7
Example 6	029	10	6	10	98.4
Example 7	099	10	6	6	91.7
Example 8	099	10	6	6	91.7
Example 9	029	10	10	6	93.3
Example 10	675	10	10	6	93.3
Example 11	099	10	10	6	93.3
Example 12	099	10	10	10	100
Example 13	099	10	10	6	, 93.3
Example 14	099	10	10	6	93.3
Comparative Example 1	029	6	10	10	7.86
Comparative Example 2	069	8	8	6	80
Comparative Example 3	069	10	8	5	09
Comparative Example 4	675	10	6	7	78.3
Comparative Example 5	099	10	10	6	93.3

Fig. 3

Table 4. Intermetallic Phases in New Alloys

Alloy	Phase composition
Example 1	Mg-Al-Sn _{SS} , Al ₂ Ca, Al ₂ (Ca,Sn), Al ₂ (Ca,Sr), Al ₂ (Ca,Sn,Sr), Al _{0.54} Mn _{0.06}
Example 2	Mg-Alss, Al ₂ Ca, Al ₂ (Ca,Sn), Al _{0.56} Mn _{0.44}
Example 3	Mg-Al-Sn ₅₅ , Al ₂ Ca, Al ₂ (Ca,Sn), Al _{0.55} Mn _{0.45}
Example 4	Mg-Al-Sn ₅₅ , Al ₂ Ca, Al ₂ (Ca,Sn), Al ₂ (Ca,Sr), Al ₂ (Ca,Sll,Sl), Al ₀ S31VIII ₀ .41
Example 5	Mg-Alss, Al ₂ Ca, Al ₂ (Ca,Sn), Al _{0.58} Mn ₄₂
Example 6	Mg-Al-Zn-Snss, Al ₂ Ca, Al ₂ (Ca,Sn), Al ₀ 611 Min 39
Example 7	Mg-Alss, Al2Ca, Al2(Ca,Sr), Al2(Ca,Sn), Al2(Ca,Sll,Sl), Al0.5919110.41
Example 8	Mg-Al-Snss, Al ₂ Ca, Al ₂ (Ca,Sn), Al _{0.63} Mn _{0.37}
Example 9	Mg-Alss, Al ₂ Ca, Al ₂ (Ca,Sn), Al ₂ (Ca,Sr), Al ₂ (Ca,Sli,St), Al ₀ 621711038
Example 10	Mg-Al-Sn _{ss} , Al ₂ Ca, Al ₂ (Ca,Sr), Al ₂ (Ca,Sn,Sr)
Example 11	Mg-Alss, Al ₂ Ca, Al ₂ (Ca,Sn), Al ₀ 64Mn _{0.36}
Example 12	Mg-Al-Zn-Sn _{ss} , Al ₂ Ca, Al ₂ (Ca,Sn), Al _{0.65} Mn _{0.35}
Example 13	Mg-Al-Sn _{ss} , Al ₂ Ca, Al ₂ (Ca,Sn), Al _{0.62} Mn _{0.38}
Example 14	Mg-Al-Sn _{ss} , Al ₂ Ca, Al ₂ (Ca,Sn), Al ₀ 64Mn ₀ 36
Comparative example 1	Comparative example 1 Mg-Alss, Mg17(Al,Zn)12, AlgMn5
Comparative example 2	Comparative example 2 Mg-Alss, Al11RE3, Al10RE2Mn7
Comparative example 3	Comparative example 3 Mg-Alss, Al ₂ Ca, Al ₂ (Ca,Sr), Al ₀ s ₈ Mn _{0.42}
Comparative example 4	Comparative example 4 Mg-Alss, Al ₂ Ca, Al ₂ (Ca,Sr), Al _{0.54} Mn _{0.46}
Comparative example 5	Comparative example 5 Mg-Al-Sn-Zn _{ss} , Al ₂ Ca, Al ₂ (Ca,Sn)

Fig. 4

Table 5. Mechanical Properties and Creep Behavior

		TYS		UTS	ਲ %		CYS MPa		MCR·10 ⁹ , S ⁻¹	$0^{9}, S^{-1}$	CŖ.
p **		Mpa		IVII a	2				1500	200°C.	mg/cm ² /day
Alloy	20°C	175°C	200°C	20°C	20°C	20°C	175°C	200°C	100 MPa	55 MPa	0
			,	200	4	170	155	143	1.30	1.96	1.52
Example 1	175	160	145	177		7/1	501		1.05	1.85	1.50
Evample 2	172	158	142	235	2	175	961	140	7.7	1.05	1 58
Example 2	183	165	154	237	4	183	165	155	0.84	1.05	1.30
Example 3	170	191	142	236	9	171	160	143	1.05	1.40	1.48
Example 4	190	168	15.2	235	4	179	168	153	08.0	1.08	1.56
Example 5	170	165	145	240	5	179	164	147	1.44	2.54	1.38
Example 6	170	163	148	238	~	176	163	146	1.39	2.44	1.45
Example 7	0/1	100	155	750	, ~	186	169	155	1.05	1.95	1.37
Example 8	188	1/0	52,	000		106	170	157	0.95	1.88	1.49
Example 9	186	172	157	757	4	100	7/1	146	1.65	4.50	1.54
Example 10	179	162	145	250	2	180	100	140	1.03	08 1/	1 32
Evample 11	180	160	143	248	5	179	160	747	1.04	7.00	1 45
Tyomala 10	183	165	145	245	4	185	163	144	1.59	4.33	CT. I
Example 12	106	170	158	230	3	192	170	157	1.25	7.72	1.47
Example 13	105	174	160	234	3	193	173	161	1.31	2.40	1.32
Example 14	3	#/1	75	090	9	158	98	75	1426	2890	1.31
Comparative Example 1	160	88	2 3	2007	2	136	00	86	784	463	1.62
Comparative Example 2	135	88	8	740	71	27.	147	136	1 87	4.72	1.59
Comparative Example 3	160	148	138	225	2	CC	14	150	20.1	1 67	1 47
Comparative Example 4	179	160	145	220	3	178	191	144	0.87	10.1	1 30
Comparative Evenule 5	—	168	153	230		192	165	150	1.75	5.0	1.37

Fig. 5

Fig. 6A

Fig. 6B

Fig. 7A

Fig. 7B

Fig. 8A

Fig. 8B

Fig. 9A

Fig. 9B