

THE DESIGNATION OF A VERY NEW PROPERTY OF THE COMMENT OF THE PROPERTY OF THE P

TO ALL TO VII COLTHESIC PRESENTS SHALL COME:

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office

December 06, 2004

THIS IS TO CERTIFY THAT ANNEXED HERETO IS A TRUE COPY FROM THE RECORDS OF THE UNITED STATES PATENT AND TRADEMARK OFFICE OF THOSE PAPERS OF THE BELOW IDENTIFIED PATENT APPLICATION THAT MET THE REQUIREMENTS TO BE GRANTED A FILING DATE.

APPLICATION NUMBER: 60/514,307 FILING DATE: October 23, 2003

RELATED PCT APPLICATION NUMBER: PCT/US04/35039

Certified by

Jon W Dudas

Acting Under Secretary of Commerce for Intellectual Property and Acting Director of the U.S. Patent and Trademark Office

Date of Deposit: October 23, 2003

I hereby certify that this paper or fee is being deposited with the United States Postal Service "Express Mail Post Office to Addressee" service under 37 CFR §1.10 on the date indicated above and is addressed to the Commissioner for Patents, PO Box 1450, Alexandria, VA 22313-1450. Date: October 23, 2003 L. Couch' PROVISIONAL APPLICATION COVER SHEET This is a request for a PROVISIONAL APPLICATION under 37 CFR 1.53(c). Docket No. Type a plus sign (+) inside this Customer No. 27476 21455.001 $box \rightarrow$ INVENTOR(S)/APPLICANT(S) **LAST NAME FIRST NAME** MIDDLE INITIAL RESIDENCE (CITY AND EITHER STATE OR FOREIGN COUNTRY) Magagnoli Claudia TITLE OF INVENTION (280 characters max) METHOD OF PURIFYING LTK63 **CORRESPONDENCE ADDRESS** Marcella Lillis CHIRON CORPORATION Intellectual Property - Mail Stop R-3 P.O. Box 8097 Emeryville STATE: California ZIP CODE: 94662-8097 COUNTRY: USA ENCLOSED APPLICATION PARTS (check all that apply) X Specification Number of Pages: 9 Drawing(s) Number of Pages: Small Entity Statement Other (specify) METHOD OF PAYMENT (check one) X A check or money order is enclosed to cover the Provisional filing fees X The Commissioner is hereby authorized to charge any PROVISIONAL FILING FEE AMOUNT ENCLOSED \$160.00 additional fees and credit Deposit Account Number 03-1664. **CHECK NO. 8273** The invention was made by an agency of the United States Government or under a contract with an agency of the United States government. <u>X</u> Yes, the name of the U.S. Government agency and the Government contract number are: October 23, 2003 Respectfully submitted, CHIRON CORPORATION Intellectual Property - R440

CHIRON CORPORATION
Intellectual Property - R440
P.O. Box 8097
Emeryville, CA 94662-8097
(510) 923-3179 - (510) 655-3542 (fax)

Marcella Lillis
Attorney for Applicants
Reg. No. 36,583

102303

METHOD OF PURIFYING LTK63

INTRODUCTION

to identify an analytical method able to give information on integrity of the LT K63 molecule, produced and purified in the Technology Development Dept., to be utilized as mucosal adjuvant.

K63, an oligomeric protein of about 82 KDa, is a non-toxic mutant of LT (heat-labile enterotoxin), obtained by site-specific mutagenesis on subunit A, that retains the structural organization of the native molecule.

LT K63 subunit A is composed by a single polypeptidic chain of 240 aminoacids, with a MW of 27 KDa; subunit B is a pentamer formed by 5 identical monomers of 103 aa each, with a MW of 55 KDa. Both subunits contain high percent of positive charged aa; (sub. A IP = 6,3; sub. B_5 IP =9,1; AB_5 IP = 8,5).

[conventionally, the entire protein is indicated as AB_5 , the separate subunits as A and B_5 , and the single monomer of the B subunit as B_m].

Analytical tecniques currently used to characterize the LT K63 protein (electrophoresis and immunoblotting, mass spectrometry, aminoacid analysis) do not allow to monitor the AB_5 form of the molecule in comparison to A or B_5 : for example, in SDS-PAGE the protein is visible as separate subunit, A and B_5 in not denaturing or A and B_m in denaturing conditions.

GF-HPLC is the single method able to observe the AB_5 form of the protein in comparison to A or B_5 .

Unfortunately, Gel Filtration columns in use till now did not permit a good separation of the AB_5 and B_5 peaks, because of their extremely close retention times.

On the left: schematic representation of AB_s (top) and B_s (bottom) forms of LT K63

"Old" GF-HPLC analysis on TSK G3000SWxl

Instrument: Alliance 2695 Waters

Buffer: KPi 100 mM + Na_2SO_4 100 mM pH 7,2

Flow: 0,5 ml/min

Detection: PDA 996 @ 214 and 280 nm

Column: TSK G3000SWxl Tosoh

Material: silica gel

Surface mod: residual -OH groups

Particle size: 5 µm Porosity: 250 Å

Difference in RT (Retention Times) of the AB_5 and B_5 forms is minimum and the peaks are not well resolved, with a difficult determination of B_5 content in K63 samples; B_5 less than 20% is not detectable.

SampleName (1) K63 in PBS	INCOME.	C Steiner	Edwin E
TV K63 in PBS	100,00	214nm	4,00
K63 in Chaps 0,25%	100,00	214nm	4,00
K63 in citrate	100,00	214nm	4,00

K63 purified samples in which content of B_s respect to AB_s varies during storage, valued by SDS-PAGE (not shown) and GF-HPLC:

at time zero samples presented similar electrophoretic patterns, and superimposition of the respective chromatograms showed RT and peak profiles almost identical.

After five days, SDS-PAGE shows that in one sample the percent of B_5 has increased; in GF-HPLC the corresponding peak (green) is tailed and its RT moves to the right.

However, this separation does permit only a qualitative valuation of degradation of the AB, molecule.

"Novel" GF-HPLC analysis on Ultrahydrogel 250

Figure above shows the analysis of the same samples repeated on Ultrahydrogel 250 column.

2 peaks instead one!

By comparison with TSK G3000SWxl and with SDS-PAGE data became natural to attribute the peak with smaller RT to $B_{\rm 5}$; this suggests that the separation mechanism is not purely Gel Filtration, or that the relative dimensions of the molecules are not proportional to their MW.

Figure below, compare values of Area and Area % obtained for the same K63 sample in the 2 different columns (same analytical conditions).

Optimizing elution conditions

Pigure above shows the effect of ionic strength on selectivity of AB_5 and B, peaks in Ultrahydrogel column. Higher ionic strength causes a more net separation of the 2 peaks, until partial degradation of AB_5 when saline

Curiously, peak that mostly results affected by ionic strength variation concentration reaches 200 mM. is the AB_5 one, while RT of B_5 peak (in red) remains almost equal.

chromatographic the sample in the the left, of LT K63 profile elution buffer chosen:

KPi 200 mM + Na₂SO₄ 100 mM pH 7,2

Attributing AB₅ and B₅ peaks: Fractionation and SDS-PAGE

To verify the attribution of peaks obtained in GF-HPLC the AB_5 and B_5 forms of the sample was protein, a K63 fractionated for further investigation: it was injected 3 times and 6 fractions of 500 µl volume were collected for each run since 13,8 to 19,8 minutes. Same fractions of the single runs were then pooled to obtain a final volume of 1,5 ml/fraction.

214 nm chromatogram of a single fractionating run

Fraction 0-5 were then re-injected in the HPLC system (bottom left) and analyzed by SDS-PAGE (bottom right), and they confirm what previously supposed: peak with lower RT, present in fractions 1 and 2, contains only B_5 (visible in SDS-PAGE as monomer B_m), while peak with higher RT, present in fractions 3 and 4 migrates in SDS-PAGE as 2 distinct bands of A and B_m .

214 nm chromatograms of the re-injected fractions

Dimensional characterization: Apparent Molecular Weight

A calibration curve of the Ultrahydrogel column was made with standard proteins of known MW. The corresponding R^2 was 0,95.

Peak's retention time of CRM_{197} ref. protein on the curve gave an apparent MW of 57 KDa (56,9 theoretical); B_5 apparent MW on the same curve resulted 65 KDa (55 theor.). AB_5 MW resulted 9,6 KDa (82 theor.), confirming that separation mechanisms other than Gel Filtration act in this case.

Standard proteins	Rt (min)	M _w (Da)
Thyroglobulin (bovine)	1162	669.000
Apoferritin	13 13	476.316
B-amylase	\$\$ \$\frac{1}{3}58	224.340
Alcohol Deydrogenase	14:10	146.980
BSA	14/67	66.800
Carbonic Anhydrase	16 22	29.023
Sample proteins	Rt (min)	M _w exp.
CRM	15.28	57.099
K63 AB ₅	17.20	9.611
K63 B₅	15.07	65.607

Superimposition of standard proteins, CRM_{1,7} reference (bold blue), K63 (bold red) and calibration curve used for apparent MW determination.

Dimensional characterization: Light Scattering analysis

Table below groups MALLS data for 3 different K63 samples and for BSA used as control of instrument good functioning.

Following parameters are indicated:

- ✓ Absolute MW in Daltons (not referred to calibration curves)
- ✓ Peak poly-dispersion (value of 1 for mono-dispersed molecules = proteins)
- ✓ gyration radius in nm (measure of molecular dimension; sens. lower limit ≃ 10nm

(percent next to each value indicates instrumental variability)

sample	peak	Mw thear	Mw exp	%	Polydisp. Mw/Mn	%	Rz	%
BSA	monomer	66.800	65.970	0,3	1,000	0,5	6,5	5
								
sample	peak	MW theor	MW exp	%	Polydisp. Mw/Mn	%	Rz	%
(63 in 20 mM	ABa	82.000	85.450	0,3	1,001	0,4	5,1	5
phosphate K63 In 0,05%	AB ₅	82.000	85.300	0,3	1,001	0,5	6,5	6
chaps K63 in 0,25% chaps	AB ₅	82.000	85.470	0,3	1,000	0,4	4,3	5
Citapo	<u> </u>							
sample	peak	Mw theor	MW exp	%	Polydisp. Mw/Mn	%	Rz	%
K63 In 20 mM	Bs	55.000	58.030	0,4	1,000	0,6	16,5	3
phosphate K63 in 0,05%	B _s	55.000	57.030	0,4	1,000	0,6	15,2	5
chaps K63 in 0,25% chaps	B ₅	55.000	57.530	0,5	1,000	0,6	19,9	5

In all the samples, peak with the higher RT (AB₅) shows smaller value of gyration radius in comparison with B_5 . A possible explanation of chromatographic ' unusual behaviour of AB₅ molecule is that, MW, despite its heavier conformation results more compact than B_5 alone.

[this supposition has confirmed with other tecniques, because MALLS values are close to the sensitivity lower limit and show high variability]

Results are quite similar for all the K63 samples; 2 mono-dispersed peaks are present, with a MW of about 57 and 85 KDa in accord with the expected values for B₅ and AB₅. [N.B. the dn/dc ratio used was not determined experimentally, and this can explain at least in part the discrepancy between theoretical and experimental data)

Dimensional characterization: LC - ESI- MS

Instrument: Alliance 2695 Waters

Detection: PDA 996 Waters

MS ZQ 4000 Micromass

RP column: Jupiter Phenomenex C4

300 Å

A native K63 + 3 samples coming by GF-HPLC fractionation were analysed on LC-ESI-MS to confirm peak attribution:

conclusions

- \triangleright a GF-HPLC method able to discriminate AB₅ from B₅ was set up: this improves our capability to study degradation process of the protein and possibility of its stabilization.
- ➢ elution conditions were optimised: effect of ionic strength of eluent buffer was investigated, and it appears to influence especially the retention time of AB₅.
- \triangleright peaks attribution was verified: fractioning and SDS-PAGE permitted to identify B_5 and AB_5 peaks.
- > dimensional analysis: apparent Molecular Weight determination indicates that other separation mechanism than Gel Filtration acts at least for AB₅.
- \triangleright dimensional analysis: MALLS absolute MW result in accord with theoretical values for AB₅ and B₅ subunit; dispersity indicates that peaks are composed of homogeneus material; dimensional values suggest that AB₅ is in a more compact conformation respect to B₅.
- > dimensional analysis: LC-ESI-MS data provide another proof of peak attribution.

future works ...,

- hydrodinamic radius determination
- > GF-HPLC elution at different pH
- > experimental dn/dc determination

Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/US04/035039

International filing date: 22 October 2004 (22.10.2004)

Document type: Certified copy of priority document

Document details: Country/Office: US

Number: 60/514,307

Filing date: 23 October 2003 (23.10.2003)

Date of receipt at the International Bureau: 13 December 2004 (13.12.2004)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:	
BLACK BORDERS	
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES	
FADED TEXT OR DRAWING	
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING	
☐ SKEWED/SLANTED IMAGES	
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS	
GRAY SCALE DOCUMENTS	
LINES OR MARKS ON ORIGINAL DOCUMENT	
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY	

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.