Assigned videos and readings

1. Computational thinking (Feb 1)

- a. Introduction [5 min]: https://www.youtube.com/watch?v=qbnTZCj0ugl
- b. Introduction [Reading]: https://www.americanscientist.org/article/computational-thinking-in-science
- c. A perspective on programming vs coding [first 3 min]: https://www.youtube.com/watch?v=rkZzg7Vowao
- d. Be curious [11 min]: https://www.youtube.com/watch?v=ilUbD7EoQnk
- e. Solving a first problem
 - i. [40 min]: https://www.youtube.com/watch?v=C1lhuz6pZC0
 - ii. [40 min]: https://www.youtube.com/watch?v=uK5yvoXnkSk

2. Statistics & probability (Feb 6)

- a. Stochastic thinking [40 min]: https://www.youtube.com/watch?v=-1BnXEwHUok
- b. Sampling [40 min]: https://www.youtube.com/watch?v=soZv KKax3E
- c. Hypothesis testing [15 min]: https://www.youtube.com/watch?v=0oc49DyA3hU
- d. P-value caution [11 min]: https://www.youtube.com/watch?v=vemZtEM63GY
- e. Maximum likelihood [6 min]: https://www.youtube.com/watch?v=XepXtl9YKwc
- f. Extra reading:
 - i. Probability concepts and terminology: https://ocw.mit.edu/courses/18-05-introduction-to-probability-and-statistics-spring-2022/resources/mit18 05 s22 probability pdf/
 - ii. Statistics concepts and terminology: https://ocw.mit.edu/courses/18-05-introduction-to-probability-and-statistics-spring-2022/resources/mit18 05 s22 statistics pdf/

3. Data handling & visualization (Feb 8)

- a. Exploratory data analysis with Python [40 min]: https://www.youtube.com/watch?v=xi0vhXFPegw
- b. Basic visualization with Python [35 min]: https://www.youtube.com/watch?v=UO98IJQ3QGI

4. Dimensionality reduction (Feb 13)

- a. Introduction [first 24 min]: https://www.youtube.com/watch?v=pAwjiGkafbM
- b. More technical [first 33 min]: https://www.youtube.com/watch?v=MnRskV3NY1k
- c. Principal component analysis
 - i. Main idea [22 min]: https://www.youtube.com/watch?v=FgakZw6K1QQ
 - ii. Practical points [8 min]: https://www.youtube.com/watch?v=oRvgq966yZg
 - iii. Parallel explanation with Python code [7 min]: https://www.youtube.com/watch?v=Oi4SJqJIL2E
 - iv. Extra: https://www.youtube.com/watch?v=xBf_LZ5ZgY4
- d. t-distributed stochastic neighbor embedding [12 min]: https://www.youtube.com/watch?v=NEaUSP4YerM

5. Clustering (Feb 15)

- a. Introduction [50 min]: https://www.youtube.com/watch?v=esmzYhuFnds
- b. k-mean clustering [8 min]: https://www.youtube.com/watch?v=4b5d3muPQmA

- c. hierarchical clustering [11 min]: https://www.youtube.com/watch?v=7xHsRkOdVwo
- d. DBSCAN [9 min]: https://www.youtube.com/watch?v=RDZUdRSDOok
- e. More technical [53 min]: https://www.youtube.com/watch?v=mU3GZaOoVDA

6. Machine learning (Feb 20)

- a. Introduction & some models
 - i. [50 min]: https://www.youtube.com/watch?v=h0e2HAPTGF4
 - ii. [50 min]: https://www.youtube.com/watch?v=eg8DJYwdMyg
- b. Linear model
 - i. Ridge regression [20 min]: https://www.youtube.com/watch?v=Q81RR3yKn30
 - ii. LASSO regression [8 min]: https://www.youtube.com/watch?v=NGf0voTMlcs
 - iii. Logistic regression
 - 1. [19 min]: https://www.youtube.com/watch?v=vN5cNN2-HWE
 - 2. [11 min]: https://www.youtube.com/watch?v=BfKanl1aSG0
 - iv. Support vector machine [20 min]: https://www.youtube.com/watch?v=efR1C6CvhmE

7. Tree model (Feb 22)

- a. Decision tree [18 min]: https://www.youtube.com/watch?v= L39rN6gz7Y
- b. Random forest [10 min]: https://www.youtube.com/watch?v=J4Wdy0Wc xQ
- c. Adaptive boosting [21 min]: https://www.youtube.com/watch?v=LsK-xG1cLYA
- d. Bias versus variance [6 min]: https://www.youtube.com/watch?v=EuBBz3bI-aA
- e. XGBoost in Python [56 min]: https://www.youtube.com/watch?v=GrJP9FLV3FE

8. Artificial Intelligence (Feb 27)

- a. Introduction to AI [60 min, skip a lot]: https://www.youtube.com/watch?v=16Dir4QqCUg
- b. How AI can improve healthcare [54 min]: https://www.youtube.com/watch?v=7rs79MUDId0
- c. Doctor who code [6 min]: https://www.youtube.com/watch?v=Et5HC8SR0BA

9. Deep learning (Feb 29)

- a. Deep learning [58 min]: https://www.youtube.com/watch?v=QDX-1M5Nj7s
- b. Convolutional neural networks [55 min]: https://www.youtube.com/watch?v=NmLK WQBxB4

10. Explainability (Mar 5)

- a. Motivation [28 min]: https://www.youtube.com/watch?v= DYQdP F-LA
- b. Techniques [first 30 min]: <a href="https://www.youtube.com/watch?v="https://www.youtube.com/wat
- c. Evaluation [first 40 min]: https://www.youtube.com/watch?v=htjpbbvHJQo

11. Al project design (Mar 7)

- a. Medical AI consideration [48 min] https://www.youtube.com/watch?v=UZEstizNxkg
- b. ML product decision [31 min]: https://www.youtube.com/watch?v=2aWh3-Wnb-A
- c. Implementation of AI in healthcare [83 min]: https://www.youtube.com/watch?v=RCIleZj3rp8

More materials

- MIT 6.S191 deep learning & AI: https://www.youtube.com/playlist?list=PLtBw6njQRU-rwp5 7C0olVt26ZgjG9NI
- Tubingen intro to ML: https://www.youtube.com/playlist?list=PL05umP7R6ij35ShKLDqccJSDntugY4FQT

- MIT 6.0002 computational thinking: https://www.youtube.com/playlist?list=PLUI4u3cNGP619EG1wp0kT-7rDE_Az5TNd
- MIT 6.S897 ML for healthcare: https://ocw.mit.edu/courses/6-s897-machine-learning-for-healthcare-spring-2019/
- StatQuest YouTube channel: https://www.youtube.com/@statquest

Assigned Python practices

Feel free to find interesting problem to practice on https://leetcode.com/problemset/ and https://programming.in.th/tasks

Week 1

- Python editors [25 min]: https://www.youtube.com/watch?v=5pf0_bpNbkw
- https://www.kaggle.com/learn/intro-to-programming
- https://www.kaggle.com/learn/python

Week 2

- https://www.kaggle.com/learn/pandas
- https://www.kaggle.com/learn/data-visualization
- Kaggle Titanic dataset: https://www.kaggle.com/competitions/titanic
 - Explore the distribution of passenger characteristics
 - o Identify characteristics that contribute to survival with statistical tests
 - Tell a story with graphs

Week 3

- https://www.kaggle.com/learn/data-cleaning
- https://www.pythonhealthdatascience.com/content/02 stat prog/03 exercises front page.ht
 ml
 - ED data wrangling
 - Stroke data wrangling
 - Visualizing time-series data
- Operating room utilization dataset:

https://www.dropbox.com/scl/fi/rrua76vmq6m224awlunby/2022 Q1 OR Utilization.xlsx?rlkey =6vecn2leeh1a0ufh5wzpq4sgn&dl=0

- Perform data exploration and visualization
- Tell a story from the data
- Study queue simulation [22 min]: https://www.youtube.com/watch?v=QppldN-t4pQ
- o Implement a queue simulation from OR data
- Simulate some synthetic datasets
- Colorectal dataset
 - Perform various dimensionality reduction and clustering techniques to identify subtypes
 - Compare the results
 - Identify genes and mutations associated with each subtypes
 - Tell a story about your finding

Week 4

- https://www.kaggle.com/learn/intro-to-machine-learning
- https://www.kaggle.com/learn/intermediate-machine-learning

- https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0201016
 - o Predicting hospital admission at emergency department

Week 5

- https://www.kaggle.com/learn/intro-to-deep-learning
- https://www.kaggle.com/learn/computer-vision
- Kaggle digit MNIST: https://www.kaggle.com/competitions/digit-recognizer
 - o Perform dimensionality reduction
 - Use classical techniques
 - o Implement a fully-connected network
 - o Implement a CNN
 - Use a pre-trained CNN
- https://github.com/cmb-chula/cu-covid19-isolation/tree/main
 - o Predict hospital admission following COVID-19 home isolation

Week 6

- https://www.kaggle.com/learn/time-series
- https://www.kaggle.com/learn/machine-learning-explainability
- https://colab.research.google.com/github/alistairewj/cvpr-2021-cxrtutorial/blob/main/cvpr 2021 tutorial.ipynb
 - o Just study and run the code and we will talk about it