MID SEMETER EXAMINATION, SPRING 2023-2024

Subject: Discrete Mathematics Code: MA21002 B. Tech.
Fourth Semester (_AB & Back)
Spring 2023-2024 (SAS)

Full Marks: 20

Time: 90 minutes

Answer any FOUR QUESTIONS including question No. 1 which is compulsory.

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

All parts of a question should be answered at one place only.

Q.1	Answer the following Questions	
a)	Let p : It is below freezing, q : It is snowing. Express the English sentence "That it is below freezing is necessary and sufficient for it to be snowing" as a proposition using p , q , and logical connectives.	[1]
b)	Find the converse and contrapositive of the conditional statement "I come to class whenever there is going to be a quiz."	[1]
c)	What is the negation of the statement "All Indians eat vegetables"	[1]
d)	How many reflexive relations are there if the relation is defined on a set with 5 elements.	[1]
e)	Find the power set of the set $A = \{\varphi, \{\varphi\}\}\$	[1]
Q.2		
a)	Show that $p \land (q \lor r)$ and $(p \land q) \lor (p \land r)$ are logically equivalent.	[2.5]
b)	Show that $(p \land q) ightarrow (p \lor q)$ is a tautology by developing a series of logical equivalences.	[2.5]
Q.3 a)	Using mathematical induction prove that for every positive integer n , $1.2 + 2.3 + 3.4 + \dots + n(n+1) = \frac{n(n+1)(n+2)}{3}.$	[2.5]
b)	Find M_{R^3} , where $R = \{(1,1), (1,3), (2,2), (3,1), (3,3)\}$ is a relation on $A = \{1,2,3\}$.	[2.5]
Q.4 a)	How many positive integers are not exceeding 1500 is divisible by 7, 13, or 21.	[2.5]
b)	Show that the argument form is valid using rules of inference with premises $(p \land t) \rightarrow (r \lor s)$, $q \rightarrow (u \land t)$, $u \rightarrow p$, $\neg s$ and conclusion $q \rightarrow r$.	[2.5]
Q.5	Find reflexive closure and symmetric closure of the relation $R = \{(p,q), (q,p), (q,r), (r,s), (s,p)\}$ on the set $A = \{p,q,r,s\}$ Find the transitive closure of R using Warshall's algorithm.	[5]
