Olympic Trial Running

Checks on Data

Data is running olympic trial data - 200,400,800, and 1500m runs only.

First, run Leven's Test of Homogeneity and D'Agostino Skewness Test on the model (Percent Difference by Stroke, Year, and Distance).

```
## Warning: package 'car' was built under R version 3.2.4
## Levene's Test for Homogeneity of Variance (center = median)
         Df F value
                       Pr(>F)
## group 59
            4.0231 < 2.2e-16 ***
##
        408
##
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
   D'Agostino skewness test
##
## data: ot.data$per.diff
## skew = 0.72183, z = 5.85870, p-value = 4.664e-09
## alternative hypothesis: data have a skewness
```

This, therefore requires non parametric testing. For this, Kruskal-Wallis Rank Sum Test with Pairwise Wilcoxon post hocs will be used.

Main effect of year

The KW result will be first followed by the Wilcoxon post hoc tests with Holm-Bonferroni corrections (value = p value for given comparison).

```
## Source: local data frame [12 x 4]
##
##
                             sd median(per.diff)
        year
                 mean
      (fctr)
                 (dbl)
                          (dbl)
                                            (dbl)
                                            17.53
## 1
        1972 17.44103 3.010350
## 2
        1976 14.25897 2.422689
                                            14.25
## 3
        1980 13.59436 1.970626
                                            13.17
        1984 12.51077 1.723934
                                            12.17
        1988 12.25897 2.206221
## 5
                                            12.01
## 6
        1992 13.00872 1.806688
                                            13.50
## 7
        1996 12.37897 2.164488
                                            12.53
## 8
        2000 12.78487 1.819634
                                            13.01
## 9
        2004 12.78667 1.711748
                                            13.02
## 10
        2008 12.67564 2.233084
                                            12.46
## 11
        2012 12.61795 1.633990
                                            13.15
        2016 12.41513 1.823132
## 12
                                            12.81
##
##
   Kruskal-Wallis rank sum test
## data: per.diff by year
## Kruskal-Wallis chi-squared = 86.588, df = 11, p-value = 7.747e-14
```

```
## [[1]]
## [1] X1
             Х2
                   value
## <0 rows> (or 0-length row.names)
## [[2]]
##
        Х1
             X2
                   value
## 1 1976 1972 0.002144
## 2 1980 1972 0.000005
## 3 1984 1972 0.000000
## 4 1988 1972 0.000000
## 5 1992 1972 0.000000
## 6 1996 1972 0.000000
## 7
     2000 1972 0.000000
## 8 2004 1972 0.000000
## 9 2008 1972 0.000000
## 10 2012 1972 0.000000
## 11 2016 1972 0.000000
##
## [[3]]
##
        Х1
             X2
                   value
## 1 1976 1972 0.002144
## 13 1980 1976 1.000000
## 14 1984 1976 0.047226
## 15 1988 1976 0.048880
## 16 1992 1976 0.726880
## 17 1996 1976 0.045591
## 18 2000 1976 0.336448
## 19 2004 1976 0.237746
## 20 2008 1976 0.550018
## 21 2012 1976 0.048880
## 22 2016 1976 0.033462
##
## [[4]]
##
        Х1
             X2
                   value
## 2 1980 1972 0.000005
## 13 1980 1976 1.000000
## 25 1984 1980 0.740924
## 26 1988 1980 0.629033
## 27 1992 1980 1.000000
## 28 1996 1980 1.000000
## 29 2000 1980 1.000000
## 30 2004 1980 1.000000
## 31 2008 1980 1.000000
## 32 2012 1980 1.000000
## 33 2016 1980 1.000000
##
## [[5]]
##
        Х1
             Х2
                   value
## 3 1984 1972 0.000000
## 14 1984 1976 0.047226
## 25 1984 1980 0.740924
## 37 1988 1984 1.000000
## 38 1992 1984 1.000000
## 39 1996 1984 1.000000
```

```
## 40 2000 1984 1.000000
## 41 2004 1984 1.000000
## 42 2008 1984 1.000000
## 43 2012 1984 1.000000
## 44 2016 1984 1.000000
##
## [[6]]
##
        Х1
             X2
                   value
## 4 1988 1972 0.000000
## 15 1988 1976 0.048880
## 26 1988 1980 0.629033
## 37 1988 1984 1.000000
## 49 1992 1988 1.000000
## 50 1996 1988 1.000000
## 51 2000 1988 1.000000
## 52 2004 1988 1.000000
## 53 2008 1988 1.000000
## 54 2012 1988 1.000000
## 55 2016 1988 1.000000
## [[7]]
        X1
             X2
                 value
## 5 1992 1972 0.00000
## 16 1992 1976 0.72688
## 27 1992 1980 1.00000
## 38 1992 1984 1.00000
## 49 1992 1988 1.00000
## 61 1996 1992 1.00000
## 62 2000 1992 1.00000
## 63 2004 1992 1.00000
## 64 2008 1992 1.00000
## 65 2012 1992 1.00000
## 66 2016 1992 1.00000
##
## [[8]]
##
        Х1
             Х2
                   value
## 6 1996 1972 0.000000
## 17 1996 1976 0.045591
## 28 1996 1980 1.000000
## 39 1996 1984 1.000000
## 50 1996 1988 1.000000
## 61 1996 1992 1.000000
## 73 2000 1996 1.000000
## 74 2004 1996 1.000000
## 75 2008 1996 1.000000
## 76 2012 1996 1.000000
## 77 2016 1996 1.000000
##
## [[9]]
##
        Х1
             Х2
                   value
## 7 2000 1972 0.000000
## 18 2000 1976 0.336448
## 29 2000 1980 1.000000
## 40 2000 1984 1.000000
```

```
## 51 2000 1988 1.000000
## 62 2000 1992 1.000000
## 73 2000 1996 1.000000
## 85 2004 2000 1.000000
## 86 2008 2000 1.000000
## 87 2012 2000 1.000000
## 88 2016 2000 1.000000
##
## [[10]]
##
       Х1
            Х2
                   value
## 8 2004 1972 0.000000
## 19 2004 1976 0.237746
## 30 2004 1980 1.000000
## 41 2004 1984 1.000000
## 52 2004 1988 1.000000
## 63 2004 1992 1.000000
## 74 2004 1996 1.000000
## 85 2004 2000 1.000000
## 97 2008 2004 1.000000
## 98 2012 2004 1.000000
## 99 2016 2004 1.000000
##
## [[11]]
##
        X1
             Х2
                    value
## 9
       2008 1972 0.000000
## 20 2008 1976 0.550018
## 31 2008 1980 1.000000
## 42
       2008 1984 1.000000
## 53 2008 1988 1.000000
## 64 2008 1992 1.000000
       2008 1996 1.000000
## 75
## 86 2008 2000 1.000000
## 97 2008 2004 1.000000
## 109 2012 2008 1.000000
## 110 2016 2008 1.000000
##
## [[12]]
##
        X1
             X2
                 value
## 10 2012 1972 0.00000
## 21 2012 1976 0.04888
## 32 2012 1980 1.00000
## 43 2012 1984 1.00000
## 54 2012 1988 1.00000
## 65 2012 1992 1.00000
## 76 2012 1996 1.00000
## 87 2012 2000 1.00000
## 98 2012 2004 1.00000
## 109 2012 2008 1.00000
## 121 2016 2012 1.00000
##
## [[13]]
##
        Х1
              Х2
                    value
## 11 2016 1972 0.000000
## 22 2016 1976 0.033462
```

```
## 33 2016 1980 1.000000

## 44 2016 1984 1.000000

## 55 2016 1988 1.000000

## 66 2016 1992 1.000000

## 77 2016 1996 1.000000

## 88 2016 2000 1.000000

## 99 2016 2004 1.000000

## 110 2016 2008 1.000000

## 121 2016 2012 1.000000
```

Main Effect for Distance

800

100 0.000000

The KW result will be first followed by the Wilcoxon post hoc tests with Holm-Bonferroni corrections (value = p value for given comparison).

```
## Source: local data frame [5 x 4]
##
##
     distance
                              sd median(per.diff)
                  mean
##
       (fctr)
                                             (db1)
                  (dbl)
                           (dbl)
## 1
          100 10.76310 1.304660
                                            10.685
## 2
         1500 13.96271 2.314637
                                            13.675
## 3
          200 11.99396 1.782750
                                            11.820
          400 14.11750 2.161179
## 4
                                            13.875
## 5
          800 14.99302 2.008115
                                            14.625
##
##
  Kruskal-Wallis rank sum test
##
## data: per.diff by distance
## Kruskal-Wallis chi-squared = 211.46, df = 4, p-value < 2.2e-16
## [[1]]
          X2 value
       X1
## 1 1500 100 0e+00
## 2 200 100 5e-06
## 3 400 100 0e+00
## 4
      800 100 0e+00
##
## [[2]]
##
       X1
            X2 value
## 2
      200
           100 5e-06
      200 1500 0e+00
## 11 400
           200 0e+00
## 12 800
           200 0e+00
##
## [[3]]
##
       Х1
            Х2
                  value
## 3
      400
           100 0.000000
## 7
      400 1500 0.680563
## 11 400
           200 0.000000
## 16 800
           400 0.001605
##
## [[4]]
##
       Х1
            Х2
                  value
```

Figures

Figure 1: Gender gap for each year and event

