Day 6

2015 Dataset

In [1]:

import numpy as np
import pandas as pd

In [2]:

d=pd.read_csv(r"c:\Users\user\Downloads\2015.csv")
d

Out[2]:

	Country	Region	Happiness Rank	Happiness Score	Standard Error	Economy (GDP per Capita)	Family	Health (Life Expectancy)
0	Switzerland	Western Europe	1	7.587	0.03411	1.39651	1.34951	0.94143
1	Iceland	Western Europe	2	7.561	0.04884	1.30232	1.40223	0.94784
2	Denmark	Western Europe	3	7.527	0.03328	1.32548	1.36058	0.87464
3	Norway	Western Europe	4	7.522	0.03880	1.45900	1.33095	0.88521
4	Canada	North America	5	7.427	0.03553	1.32629	1.32261	0.90563
153	Rwanda	Sub- Saharan Africa	154	3.465	0.03464	0.22208	0.77370	0.42864
154	Benin	Sub- Saharan Africa	155	3.340	0.03656	0.28665	0.35386	0.31910
155	Syria	Middle East and Northern Africa	156	3.006	0.05015	0.66320	0.47489	0.72193
156	Burundi	Sub- Saharan Africa	157	2.905	0.08658	0.01530	0.41587	0.22396
157	Togo	Sub- Saharan Africa	158	2.839	0.06727	0.20868	0.13995	0.28443
158 rows × 12 columns								

Mean, median, mode, describe

In [3]:

data=pd.DataFrame(d[['Happiness Score', 'Happiness Rank']][0:500])
data

Out[3]:

	Happiness Score	Happiness Rank
0	7.587	1
1	7.561	2
2	7.527	3
3	7.522	4
4	7.427	5
153	3.465	154
154	3.340	155
155	3.006	156
156	2.905	157
157	2.839	158

158 rows × 2 columns

In [4]:

print(data.mean())

Happiness Score 5.375734 Happiness Rank 79.493671

dtype: float64

In [5]:

print(data.median())

Happiness Score 5.2325 Happiness Rank 79.5000

dtype: float64

In [6]:

```
data.fillna(value=1)
```

Out[6]:

	Happiness Score	Happiness Rank
0	7.587	1
1	7.561	2
2	7.527	3
3	7.522	4
4	7.427	5
153	3.465	154
154	3.340	155
155	3.006	156
156	2.905	157
157	2.839	158

158 rows × 2 columns

In [7]:

```
print(data.mode())
```

Happiness Score Happiness Rank 0 5.192 82

In [8]:

print(data.describe())

	Happiness Score	Happiness Rank
count	158.000000	158.000000
mean	5.375734	79.493671
std	1.145010	45.754363
min	2.839000	1.000000
25%	4.526000	40.250000
50%	5.232500	79.500000
75%	6.243750	118.750000
max	7.587000	158.000000

Sum,cumsum,count,min,max

In [9]:

print(data.sum())

Happiness Score 849.366 Happiness Rank 12560.000

dtype: float64

In [10]:

```
print(data.cumsum())
     Happiness Score
                       Happiness Rank
0
               7.587
1
              15.148
                                     3
2
              22.675
                                     6
3
              30.197
                                    10
4
              37.624
                                    15
153
             837.276
                                 11934
154
             840.616
                                 12089
155
             843.622
                                 12245
156
             846.527
                                 12402
157
             849.366
                                 12560
[158 rows x 2 columns]
In [11]:
print(data.count())
Happiness Score
                    158
Happiness Rank
                    158
dtype: int64
In [12]:
print(data.min())
                    2.839
Happiness Score
Happiness Rank
                    1.000
dtype: float64
In [13]:
print(data.max())
```

Happiness Score 7.587 Happiness Rank 158.000

dtype: float64

covariance and correlation (spearman and pearsons)

```
In [14]:
```

```
data1=data['Happiness Score'][0:10]
data1
Out[14]:
     7.587
1
     7.561
2
     7.527
3
     7.522
4
     7.427
5
     7.406
     7.378
6
7
     7.364
8
     7.286
9
     7.284
Name: Happiness Score, dtype: float64
In [15]:
data2=data['Happiness Rank'][0:10]
data2
Out[15]:
0
      1
      2
1
2
      3
3
      4
4
      5
5
      6
6
      7
      8
7
8
      9
9
     10
Name: Happiness Rank, dtype: int64
In [16]:
from numpy import cov
print(cov(data1,data2))
[[ 0.01213373 -0.32888889]
 [-0.32888889 9.16666667]]
In [17]:
from scipy.stats import pearsonr
print(pearsonr(data1,data2))
(-0.9861574478166932, 1.57982971907728e-07)
In [18]:
from scipy.stats import spearmanr
print(spearmanr(data1,data2))
SpearmanrResult(correlation=-0.999999999999999, pvalue=6.646897422032013e
-64)
```

	-	-	
Tn	- 1	- 1	•
ти.		- 1	•