

AN OBSTRUCTION TO ASYMPTOTIC SEMISTABILITY AND APPROXIMATE CRITICAL METRICS

TOSHIKI MABUCHI

1. INTRODUCTION

For a polarized algebraic manifold (M, L) with a Kähler metric of constant scalar curvature in the class $c_1(L)_{\mathbb{R}}$, we consider the Kodaira embedding

$$\Phi_{|L^m|} : M \hookrightarrow \mathbb{P}(V_m), \quad m \gg 1,$$

where $V_m := H^0(M, \mathcal{O}(L^m))^*$. Even when a linear algebraic group of positive dimension acts nontrivially and holomorphically on M , we shall show that the vanishing of an obstruction to asymptotic Chow-semistability allows us to generalize Donaldson's construction [3] of approximate solutions for equations of critical metrics[†] of Zhang [20]. This generalization plays a crucial role in our forthcoming paper [14], in which the asymptotic Chow-stability for (M, L) above will be shown under the vanishing of the obstruction, even when M admits a group action as above.

2. STATEMENT OF RESULTS

Throughout this paper, we assume that L is an ample holomorphic line bundle over a connected projective algebraic manifold M . Let n and d be respectively the dimension of M and the degree of the image $M_m := \Phi_{|L^m|}(M)$ in the projective space $\mathbb{P}(V_m)$ with $m \gg 1$. Then to this image M_m , we can associate a nonzero element \hat{M}_m of $W_m := \{\text{Sym}^d(V_m)\}^{\otimes n+1}$ such that its natural image $[\hat{M}_m]$ in $\mathbb{P}(W_m)$ is the Chow point associated to the irreducible reduced algebraic cycle M_m on $\mathbb{P}(V_m)$. For the natural action of $H_m := \text{SL}(V_m)$ on W_m and also on $\mathbb{P}(W_m)$, the subvariety M_m of $\mathbb{P}(V_m)$ is said to be *Chow-stable* or *Chow-semistable*, according as the orbit $H_m \cdot \hat{M}$ is closed in W_m or the origin of W_m is not in the closure of $H_m \cdot \hat{M}$ in W_m . Fix an increasing sequence

$$(2.1) \quad m(1) < m(2) < m(3) < \cdots < m(k) < \cdots$$

of positive integers $m(k)$. For this sequence, we say that (M, L) is *asymptotically Chow-stable* or *asymptotically Chow-semistable*, according as for some $k_0 \gg 1$, the subvariety $M_{m(k)}$ of $\mathbb{P}(V_{m(k)})$ is Chow-stable or Chow-semistable for all $k \geq k_0$.

To appear in Osaka Journal of Mathematics **41**(2004).

[†] In (2.6) below, $\omega = c_1(L; h)$ is called a *critical metric* if $K(q, h)$ is a constant function on M . The same concept was later re-discovered by Luo [12] (see [14]).

Let $\text{Aut}^0(M)$ denote the identity component of the group of all holomorphic automorphisms of M . Then the maximal connected linear algebraic subgroup G of $\text{Aut}^0(M)$ is the identity component of the kernel of the Jacobi homomorphism

$$\alpha_M : \text{Aut}^0(M) \rightarrow \text{Aut}^0(\text{Alb}(M)), \quad (\text{cf. [4]}).$$

For the maximal algebraic torus Z in the center of G , we consider the Lie subalgebra \mathfrak{z} of $H^0(M, \mathcal{O}(T^{1,0}M))$ associated to the Lie subgroup Z of $\text{Aut}^0(M)$. For the isotropy subgroup, denoted by \tilde{S}_m , of H_m at the point $[\hat{M}_m] \in \mathbb{P}(W_m)$, we have a natural isogeny

$$\iota_m : \tilde{S}_m \rightarrow S_m,$$

where S_m is an algebraic subgroup of G . For $Z_m := \iota_m^{-1}(Z)$, we have a Z_m -action on M naturally induced by the Z -action on M . Since the Z -action on M is liftable to a holomorphic bundle action on L (see for instance [7]), the restriction of ι_m to Z_m defines an isogeny of Z_m onto Z . The vector space V_m is viewed as the line bundle $\mathcal{O}_{\mathbb{P}(V_m)}(-1)$ with the zero section blown-down to a point, while the line bundle $\mathcal{O}_{\mathbb{P}(V_m)}(-1)$ coincides with L^{-m} when restricted to M . Hence, the natural \tilde{S}_m -action on V_m induces a bundle action of Z_m on L^m which covers the Z_m -action on M . Infinitesimally, each $X \in \mathfrak{z}$ induces a holomorphic vector field $X' \in H^0(L^m, \mathcal{O}(T^{1,0}L^m))$ on L^m . Since the \mathbb{C}^* -bundle $L \setminus \{0\}$ associated to L is an m -fold unramified covering of the \mathbb{C}^* -bundle $L^m \setminus \{0\}$, the restriction of X' to $L^m \setminus \{0\}$ naturally induces a holomorphic vector field X'' on $L \setminus \{0\}$. Since X'' extends to a holomorphic vector field on L , the mapping $X \mapsto X''$ defines inclusions

$$(2.2) \quad \rho_m : \mathfrak{z} \hookrightarrow H^0(L, \mathcal{O}(T^{1,0}L)), \quad m = 1, 2, \dots,$$

inducing lifts, from M to L , of vector fields in \mathfrak{z} . For a sequence as in (2.1), we say that *the isotropy actions for (M, L) are stable* if there exists an integer $k_0 \gg 1$ such that

$$(2.3) \quad \rho_{m(k)} = \rho_{m(k_0)}, \quad \text{for all } k \geq k_0.$$

For the maximal compact subgroup $(Z_m)_c$ of Z_m , take a $(Z_m)_c$ -invariant Hermitian metric λ for L^m . By the theory of equivariant cohomology ([1], [8]), we define (see [15], [13]):

$$(2.4) \quad \mathcal{C}\{c_1^{n+1}; L^m\}(X) := \frac{\sqrt{-1}}{2\pi} (n+1) \int_M \lambda^{-1}(X\lambda) c_1(L^m; \lambda)^n, \quad X \in \mathfrak{z},$$

where $X\lambda$ is as in [13], (1.4.1). Then the \mathbb{C} -linear map $\mathcal{C}\{c_1^{n+1}; L^m\} : \mathfrak{z} \rightarrow \mathbb{C}$ which sends each $X \in \mathfrak{z}$ to $\mathcal{C}\{c_1^{n+1}; L^m\}(X) \in \mathbb{C}$ is independent of the choice of h . The following gives an obstruction to asymptotic Chow-semistability (see [5], [15], [16] for related results):

Theorem A. *For a sequence as in (2.1), assume that (M, L) is asymptotically Chow-semistable. Then for some $k_0 \gg 1$, the equality $\mathcal{C}\{c_1^{n+1}; L^{m(k)}\} = 0$ holds for all $k \geq k_0$. In particular, for this sequence, the isotropy actions for (M, L) are stable.*

The following modification of a result in [7] shows that, as an obstruction, the stability condition (2.3) is essential, since the vanishing of (2.4) is straightforward from (2.3).

Theorem B. *For sufficiently large $(n+2)$ distinct integers m_k , $k = 0, 1, \dots, n+1$, suppose that $\rho_{m_0} = \rho_{m_1} = \dots = \rho_{m_{n+1}}$. Then $\mathcal{C}\{c_1^{n+1}; L^{m_k}\} = 0$ for all k .*

If $\dim Z = 0$, by setting $m(k) = k$ in (2.1) for all $k > 0$, we see that ρ_m are trivial for all $m \gg 1$, and consequently (2.3) holds. Note also that Donaldson's result [3] treating the case $\dim G = 0$ depends on his construction of approximate solutions for equations of critical metrics of Zhang [20]. In Theorem C down below, assuming (2.3), we generalize Donaldson's construction to the case $\dim G > 0$.

Put $N_m := \dim_{\mathbb{C}} V_m - 1$. Let h be a Hermitian metric for L such that $\omega = c_1(L; h)$ is a Kähler metric on M . By the inner product

$$(2.5) \quad (\sigma, \sigma')_h := \int_M \langle \sigma, \sigma' \rangle_h \omega^n, \quad \sigma, \sigma' \in V_m^*,$$

on $V_m^* = H^0(M, \mathcal{O}(L^m))$, we choose a unitary basis $\{\sigma_0^{(m)}, \sigma_1^{(m)}, \dots, \sigma_{N_m}^{(m)}\}$ for V_m^* . Here, $\langle \sigma, \sigma' \rangle_h$ denotes the function on M obtained as the pointwise inner product of the sections σ, σ' by the Hermitian metric h^m on L^m . Put

$$(2.6) \quad K(q, h) := \frac{n!}{m^n} \sum_{i=0}^{N_m} \|\sigma_i^{(m)}\|_h^2,$$

where $\|\sigma\|_h^2 := \langle \sigma, \sigma \rangle_h$ for all $\sigma \in V_m^*$, and we set $q := 1/m$. We then have the asymptotic expansion of Tian-Zelditch (cf. [18], [19]) for $m \gg 1$:

$$(2.7) \quad K(q, h) = 1 + a_1(\omega)q + a_2(\omega)q^2 + a_3(\omega)q^3 + \dots,$$

where $a_i(\omega)$, $i = 1, 2, \dots$, are smooth functions on M . Then $a_1(\omega) = \sigma_\omega/2$ (cf. [11]) for the scalar curvature σ_ω of ω . Put $C_q := \{m^n c_1(L)^n [M]/n!\}^{-1} (N_m + 1)$. Then

Theorem C. *For a Kähler metric ω_0 in the class $c_1(L)_{\mathbb{R}}$ of constant scalar curvature, choose a Hermitian metric h_0 for L such that $\omega_0 = c_1(L, h_0)$. For a sequence as in (2.1), assume that the isotropy actions for (M, L) are stable, i.e., (2.3) holds. Put $q = 1/m(k)$. Then there exists a sequence of real-valued smooth functions φ_k , $k = 1, 2, \dots$, on M such that $h(\ell) := h_0 \exp(-\sum_{k=1}^{\ell} q^k \varphi_k)$ satisfies $K(q, h(\ell)) - C_q = O(q^{\ell+2})$ for each nonnegative integer ℓ .*

The last equality $K(q, h(\ell)) - C_q = O(q^{\ell+2})$ means that there exist a positive real constant $A = A_\ell$ independent of q such that $\|K(q, h(\ell)) - C_q\|_{C^0(M)} \leq A_\ell q^{\ell+2}$ for all $0 \leq q \leq 1$ on M . By [19], for every nonnegative integer j , a choice of a larger constant $A = A_{j,\ell} > 0$ keeps Theorem C still valid even if $C^0(M)$ -norm is replaced by $C^j(M)$ -norm.

3. AN OBSTRUCTION TO ASYMPTOTIC SEMISTABILITY

The purpose of this section is to prove Theorems A and B. Fix a sequence as in (2.1), and in this section, any kind of stability is considered with respect to this sequence.

Proof of Theorem A: Assume that (M, L) is asymptotically Chow-semistable, i.e., for some $k_0 \gg 1$, the subvariety $M_{m(k)}$ of $\mathbb{P}(V_{m(k)})$ is Chow-semistable for all $k \geq k_0$. Then the isotropy representation of $Z_{m(k)}$ on the line $\mathbb{C} \cdot \hat{M}_{m(k)}$ is trivial (cf. [5], [15]) for $k \geq k_0$, and hence by [15], (3.5) (cf. [16]; [20], (1.5)), we obtain the required equality

$$(3.1) \quad \mathcal{C}\{c_1^{n+1}; L^{m(k)}\}(X) = 0, \quad X \in \mathfrak{z},$$

for all $k \geq k_0$. For λ in (2.4), by setting $h := \lambda^{1/m}$, we have a Hermitian metric h for L . Put $\chi_m := \mathcal{C}\{c_1^{n+1}, L^m\}/m^{n+1}$ for positive integers m . Then by the Leibniz rule,

$$(3.2) \quad \chi_m(X) = \frac{\sqrt{-1}}{2\pi} (n+1) \int_M h^{-1}(Xh)_{\rho_m} c_1(L; h)^n, \quad X \in \mathfrak{z},$$

where the complexified action $(Xh)_{\rho_m}$ of X on h as in [13], (1.4.1), is taken via the lifting ρ_m in (2.2). Then by (3.1),

$$\chi_{m(k_0)} = \chi_{m(k_0+1)} = \dots = \chi_{m(k)} = \dots,$$

and since lifts in (2.2), from M to L , of holomorphic vector fields in \mathfrak{z} are completely characterized by χ_m (cf. [7]), we obtain (2.3), as required. \square

Proof of Theorem B: For $q := \text{l.c.m}\{m_k; k = 0, 1, \dots, n+1\}$, we take a q -fold unramified cover $\nu : \tilde{Z} \rightarrow Z$ between algebraic tori. Then the Z -action on M naturally induces a \tilde{Z} -action on M via this covering. Since ν factors through Z_{m_k} , the lift, from M to L^{m_k} , of the Z_{m_k} -action naturally induces a lift, from M to L^{m_k} , of the \tilde{Z} -action. The assumption

$$(3.3) \quad \rho_{m_0} = \rho_{m_1} = \dots = \rho_{m_{n+1}}$$

shows that the lifts, from M to L^{m_k} , $k = 0, 1, \dots, n+1$, of the \tilde{Z} -action come from the same infinitesimal action of \mathfrak{z} as vector fields on L . For brevity, the common ρ_{m_k} in (3.3) will be denoted just by ρ . Then the proof of [6], Theorem 5.1, is valid also in our case, and the formula in the theorem holds. By $Z_{m_k} \subset \text{SL}(V_{m_k})$ and by its contragredient representation, the \tilde{Z} -action on $V_{m_k}^* = H^0(M, \mathcal{O}(L^{m_k}))$ comes from an algebraic group homomorphism: $\tilde{Z} \rightarrow \text{SL}(V_{m_k}^*)$. Hence, by the notation in (3.2) above, $\int_M h^{-1}(Xh)_\rho c_1(L; h)^n = 0$ for all $X \in \mathfrak{z}$, i.e., $\mathcal{C}\{c_1^{n+1}; L^{m_k}\} = 0$ for all k , as required. \square

4. PROOF OF THEOREM C

Throughout this section, we assume that the first Chern class $c_1(L)_{\mathbb{R}}$ admits a Kähler metric of constant scalar curvature. Then a result of Lichnérowicz [10] (see also [9]) shows that G is a reductive algebraic group, and consequently the identity component of the center of G coincides with Z in the introduction. Let K be a maximal compact subgroup of G . Then the maximal compact subgroup Z_c of Z satisfies

$$(4.1) \quad Z_c \subset K.$$

For an arbitrary K -invariant Kähler metric ω on M in the class $c_1(L)_{\mathbb{R}}$, we write ω as the Chern form $c_1(L; h)$ for some Hermitian metric h for L . Let $\Psi(q, \omega)$ denote the power series in q given by the right-hand side of (2.7). Then

$$(4.2) \quad \int_M \{\Psi(q, \omega) - C_q\} \omega^n = \int_M \left\{ -C_q + \frac{n!}{m^n} \sum_{i=0}^{N_m} \|\sigma_i^{(m)}\|_h^2 \right\} \omega^n = 0.$$

Let h_0 be a Hermitian metric for L such that $\omega_0 := c_1(L; h_0)$ is a Kähler metric of constant scalar curvature on M . We write

$$\omega_0 = \frac{\sqrt{-1}}{2\pi} \sum_{\alpha, \bar{\beta}} g_{\alpha \bar{\beta}} dz^\alpha \wedge d\bar{z}^\beta,$$

for a system (z^1, z^2, \dots, z^n) of holomorphic local coordinates on M . In view of [10] (see also [9]), replacing ω_0 by $g^* \omega_0$ for some $g \in G$ if necessary, we may assume that ω_0 is K -invariant. Let D_0 be the Lichnérowicz operator, as defined in [2], (2.1), for the Kähler manifold (M, ω_0) . Since ω_0 has a constant scalar curvature, D_0 is a real operator. Let \mathcal{F} denote the space of all real-valued smooth K -invariant functions φ such that $\int_M \varphi \omega_0^n = 0$. Since the operator D_0 preserves the space \mathcal{F} , we write D_0 as an operator $D_0 : \mathcal{F} \rightarrow \mathcal{F}$, and the kernel in \mathcal{F} of this operator will be denoted by $\text{Ker } D_0$. Let \mathfrak{z}_c denote the Lie subalgebra of \mathfrak{z} corresponding to the maximal compact subgroup Z_c of Z . Then

$$(4.3) \quad \gamma : \text{Ker } D_0 \cong \mathfrak{z}_c, \quad \eta \leftrightarrow \gamma(\eta) := \text{grad}_{\omega_0}^{\mathbb{C}} \eta,$$

where $\text{grad}_{\omega_0}^{\mathbb{C}} \eta := (1/\sqrt{-1}) \sum g^{\bar{\beta} \alpha} \eta_{\bar{\beta}} \partial/\partial z^\alpha$ denotes the complex gradient of η with respect to ω_0 . We then consider the orthogonal projection

$$P : \mathcal{F} (= \text{Ker } D_0 \oplus \text{Ker } D_0^\perp) \rightarrow \text{Ker } D_0.$$

Starting from $h(0) = h_0$ and $\omega(0) := \omega_0$, we inductively define a Hermitian metric $h(k)$ for L , and a Kähler metric $\omega(k) := c_1(L; h(k))$, called the k -approximate solution, by

$$\begin{aligned} h(k) &= h(k-1) \exp(-q^k \varphi_k), & k = 1, 2, \dots, \\ \omega(k) &= \omega(k-1) + \frac{\sqrt{-1}}{2\pi} q^k \partial \bar{\partial} \varphi_k, & k = 1, 2, \dots, \end{aligned}$$

for a suitable function $\varphi_k \in \text{Ker } D_0^\perp$, where we require $h(k)$ to satisfy $K(q, h(k)) - C_q = O(q^{k+2})$. In other words, by (4.2), each $\omega(k)$ is required to satisfy the following conditions:

$$(4.4) \quad (1 - P)\{\Psi(q, \omega(k)) - C_q\} \equiv 0, \quad \text{modulo } q^{k+2},$$

$$(4.5) \quad P\{\Psi(q, \omega(k)) - C_q\} \equiv 0, \quad \text{modulo } q^{k+2}.$$

If $k = 0$, then $\omega(0) = \omega_0$, and by [11], both (4.4) and (4.5) hold for $k = 0$. Hence, let $\ell \geq 1$ and assume (4.4) and (4.5) for $k = \ell - 1$. It then suffices to find $\varphi_\ell \in \text{Ker } D_0^\perp$ satisfying both (4.4) and (4.5) for $k = \ell$. Put

$$\Phi(q, \varphi) := (1 - P) \{ \Psi(q, \omega(\ell - 1) + (\sqrt{-1}/2\pi) q^\ell \partial \bar{\partial} \varphi) - C_q \}, \quad \varphi \in \text{Ker } D_0^\perp.$$

Then by (4.4) applied to $k = \ell - 1$, we have $\Phi(q, 0) \equiv u_\ell q^{\ell+1}$ modulo $q^{\ell+2}$, where u_ℓ is a function in $\text{Ker } D_0^\perp$. Since $2\pi\omega(\ell - 1) = 2\pi\omega_0 + \sqrt{-1} \sum_{k=1}^{\ell-1} q^k \partial\bar{\partial}\varphi_k$, we have $\omega(\ell - 1) = \omega_0$ at $q = 0$. Since the scalar curvature of ω_0 is constant, the variation formula for the scalar curvature (see for instance [2], (2.5); [3]) shows that

$$\Phi(q, \varphi_\ell) \equiv \Phi(q, 0) - q^{\ell+1}(D_0\varphi_\ell/2) \equiv (2u_\ell - D_0\varphi_\ell)(q^{\ell+1}/2),$$

modulo $q^{\ell+2}$. Since u_ℓ is in $\text{Ker } D_0^\perp$, there exists a unique $\varphi_\ell \in \text{Ker } D_0^\perp$ such that $2u_\ell = D_0\varphi_\ell$ on M . Fixing such φ_ℓ , we obtain $h(\ell)$ and $\omega(\ell)$. Thus (4.4) is true for $k = \ell$.

Now, we have only to show that (4.5) is true for $k = \ell$. Before checking this, we give some preliminary remarks. Note that $C_q = 1 + O(q)$. Moreover, by (2.7), $\Psi(q, \omega) = 1 + q\{a_1(\omega) + a_2(\omega)q + \dots\}$, and hence

$$\begin{aligned} \Psi(q, \omega(\ell)) - C_q &= \Psi(q, \omega(\ell - 1) + (\sqrt{-1}/2\pi) q^\ell \partial\bar{\partial}\varphi_\ell) - C_q \\ &\equiv \Psi(q, \omega(\ell - 1)) - C_q \equiv 0, \quad \text{modulo } q^{\ell+1}. \end{aligned}$$

By [17], p. 35, the G -action on M is liftable to a bundle action of G on the real line bundle $(L \cdot \bar{L})^{1/2} = (L^m \cdot \bar{L}^m)^{1/2m}$. Then the induced K -action on $(L \cdot \bar{L})^{1/2}$ is unique, because liftings, from M to L^m , of the G -action differ only by scalar multiplications of L^m by characters of Z . In this sense, $h(\ell)$ is K -invariant. Put $r := \dim_{\mathbb{C}} Z$. Then we can write $Z_m = \mathbb{G}_m^r = \{t = (t_1, t_2, \dots, t_r) \in (\mathbb{C}^*)^r\}$. By the natural inclusion

$$\psi_m : Z_m \hookrightarrow H_m = \text{SL}(V_m),$$

we can choose a unitary basis $\{\tau_0, \tau_1, \dots, \tau_{N_m}\}$ for $(V_m^*, (\ ,)_{h(\ell)})$ (cf. (2.5)) such that, for some integers α_{ij} with $\sum_i \alpha_{ij} = 0$, the contragredient representation ψ_m^* of ψ_m is given by

$$\psi_m^*(t) \tau_i = \left(\prod_{j=1}^r t_j^{\alpha_{ij}} \right) \tau_i, \quad i = 0, 1, \dots, N_m,$$

for all $t \in (\mathbb{C}^*)^r = Z_m$. Now by (2.3), for some $\rho : \mathfrak{z} \hookrightarrow H^0(L, \mathcal{O}(T^{1,0}L))$, we can write $\rho_{m(k)} = \rho$ for all $k \geq k_0$. Consider the Kähler metric $\omega_m := c_1(L; h_m)$ on M in the classes $c_1(L)_{\mathbb{R}}$, where $h_m := (|\tau_0|^2 + |\tau_1|^2 + \dots + |\tau_{N_m}|^2)^{-1/m}$. From now on, let $m = m(k)$, where k is running through all integers $\geq k_0$. Put $X_j := t_j \partial/\partial t_j$. Then $\{X_1, X_2, \dots, X_r\}$ forms a \mathbb{C} -basis for the Lie algebra \mathfrak{z} such that, using the notation as in (3.2), we have

$$(4.6) \quad h_m^{-1}(X_j h_m)_\rho = -\frac{\sum_i \alpha_{ij} |\tau_i|^2}{m \sum_i |\tau_i|^2}, \quad 1 \leq j \leq r, \quad \text{for } m = m(k) \text{ with } k \geq k_0,$$

where in the numerator and the denominator, the sum is taken over all integers i such that $0 \leq i \leq N_m$. From (2.3) and Theorem B, using the notation as in (3.2), we obtain

$$(4.7) \quad \int_M h(\ell)^{-1}(X_j h(\ell))_\rho \omega(\ell)^n = 0, \quad 1 \leq j \leq r.$$

By $\int_M h_0^{-1}(X_j h_0)_\rho \omega_0^n / \int_M \omega_0^n = 0$, we have $\eta_j := h_0^{-1}(X_j h_0)_\rho \in \text{Ker } D_0$. Then $\gamma(\eta_j) = \sqrt{-1} X_j$. Hence $\{\eta_1, \eta_2, \dots, \eta_r\}$ is an \mathbb{R} -basis for $\text{Ker } D_0$. Since $\Psi(q, \omega(\ell)) \equiv C_q$ modulo $q^{\ell+1}$, it follows that

$$(4.8) \quad -C_q + \frac{n!}{m^n} \sum_{i=0}^{N_m} \|\tau_i\|_{h(\ell)}^2 \equiv v_\ell q^{\ell+1}$$

modulo $q^{\ell+2}$ for some $v_\ell \in \text{Ker } D_0$, because (4.4) is true for $k = \ell$. In view of (4.2), (4.6), $h_m - h_0 = O(q)$ and $\omega(\ell) - \omega_0 = O(q)$, we see from (4.8) that, modulo $q^{\ell+2}$,

$$\begin{aligned} q^{\ell+1} \int_M \eta_j v_\ell \omega_0^n &\equiv \int_M \eta_j \left(-C_q + \frac{n!}{m^n} \sum_{i=0}^{N_m} \|\tau_i\|_{h(\ell)}^2 \right) \{\omega(\ell)\}^n \\ &\equiv \int_M h_0^{-1}(X_j h_0)_\rho \left(-C_q + \frac{n!}{m^n} \sum_{i=0}^{N_m} \|\tau_i\|_{h(\ell)}^2 \right) \{\omega(\ell)\}^n \\ &\equiv \int_M h_m^{-1}(X_j h_m)_\rho \left(-C_q + \frac{n!}{m^n} \sum_{i=0}^{N_m} \|\tau_i\|_{h(\ell)}^2 \right) \{\omega(\ell)\}^n \\ &\equiv \int_M \frac{\sum_i \alpha_{ij} \|\tau_i\|_{h(\ell)}^2}{m \sum_i \|\tau_i\|_{h(\ell)}^2} \left(C_q - \frac{n!}{m^n} \sum_{i=0}^{N_m} \|\tau_i\|_{h(\ell)}^2 \right) \{\omega(\ell)\}^n, \end{aligned}$$

Since $\sum_i \alpha_{ij} = 0$ for all j , we obtain, modulo $q^{\ell+2}$,

$$\begin{aligned} q^{\ell+1} \int_M \eta_j v_\ell \omega_0^n &\equiv C_q \int_M \frac{\sum_i \alpha_{ij} \|\tau_i\|_{h(\ell)}^2}{m \sum_i \|\tau_i\|_{h(\ell)}^2} \{\omega(\ell)\}^n \equiv C_q \int_M h_m^{-1}(X_j h_m)_\rho \{\omega(\ell)\}^n \\ &\equiv C_q \int_M \{h_m^{-1}(X_j h_m)_\rho - h(\ell)^{-1}(X_j h(\ell))_\rho\} \{\omega(\ell)\}^n, \end{aligned}$$

where the equivalence just above follows from (4.7). The last integrand is rewritten as

$$\begin{aligned} h_m^{-1}(X_j h_m)_\rho - h(\ell)^{-1}(X_j h(\ell))_\rho &= X_j \log\{h_m/h(\ell)\} = -\frac{1}{m} X_j \log \left(\frac{n!}{m^n} \sum_{i=0}^{N_m} \|\tau_i\|_{h(\ell)}^2 \right) \\ &\equiv -q X_j \log(C_q + v_\ell q^{\ell+1}) \equiv -C_q^{-1}(X_j v_\ell) q^{\ell+2} \equiv 0, \quad \text{mod } q^{\ell+2}. \end{aligned}$$

Therefore, $\int_M \eta_j v_\ell \omega_0^n = 0$ for all j . From $v_\ell \in \text{Ker } D_0$, it now follows that $v_\ell = 0$. This shows that (4.5) is true for $k = \ell$, as required. \square

5. CONCLUDING REMARKS

As in Donaldson's work [3], the construction of approximate solutions in Threorem C is a crucial step to the approach of the stability problem for a polarized algebraic manifold with a Kähler metric of constant scalar curvature. Actually, in a forthcoming paper [14], this construction allows us to prove the following:

Theorem. *For a sequence as in (2.1), assume that the isotropy actions for (M, L) are stable. Assume further that $c_1(L)_{\mathbb{R}}$ admits a Kähler metric of constant scalar curvature. Then for this sequence, (M, L) is asymptotically Chow-stable.*

Moreover, if a sequence (2.1) exists in such a way that (2.3) holds, then the same argument as in the case $\dim G = 0$ (cf. [3]) is applied, and we can also show the uniqueness, modulo the action of G , of the Kähler metrics of constant scalar curvature in the polarization class $c_1(L)_{\mathbb{R}}$. We finally remark that, if $\dim G = 0$, the asymptotic Chow-stability implies the asymptotic stability in the sense of Hilbert schemes (cf. [17], p.215). Hence the result of Donaldson [3] follows from the theorem just above.

REFERENCES

- [1] N. Berline et M. Vergne : *Zeros d'un champ de vecteurs et classes caractéristiques équivariantes*, Duke Math. J. **50**(1983), 539–549.
- [2] E. Calabi : *Extremal Kähler metrics II*, in “Differential Geometry and Complex Analysis” (ed. I. Chavel, H. M. Farkas), Springer-Verlag, Heidelberg, 1985, 95–114.
- [3] S. K. Donaldson: *Scalar curvature and projective embeddings, I*, J. Differential Geom. **59** (2001), 479–522.
- [4] A. Fujiki : *On automorphism groups of compact Kähler manifolds*, Invent. Math., **44**(1978), 225–258.
- [5] A. Fujiki : *Moduli space of polarized algebraic manifolds and Kähler metrics*, Sugaku **42** (1990), 231–243; English translation: Sugaku Expositions **5** (1992), 173–191.
- [6] A. Futaki and T. Mabuchi: *An obstruction class and a representation of holomorphic automorphisms*, in “Geometry and Analysis on Manifolds” (ed. T. Sunada), Lect. Notes in Math. **1339**, Springer-Verlag, Heidelberg, 1988, 127–141.
- [7] A. Futaki and T. Mabuchi : *Moment maps and symmetric multilinear forms associated with symplectic classes*, Asian J. Math. **6** (2002), 349–372.
- [8] A. Futaki and S. Morita : *Invariant polynomials of the automorphism group of a compact complex manifold*, J. Differential Geom. **21** (1985), 135–142.
- [9] S. Kobayashi : *Transformation groups in differential geometry*, Springer-Verlag, Berlin-Heidelberg-New York, 1972.
- [10] A. Lichnérowicz: *Isométrie et transformations analytique d'une variété kählérienne compacte*, Bull. Soc. Math. France **87** (1959), 427–437.
- [11] Z. Lu: On the lower order terms of the asymptotic expansion of Tian-Yau-Zelditch, Amer. J. Math. **122** (2000), 235–273.
- [12] H. Luo : *Geometric criterion for Gieseker-Mumford stability of polarized manifolds*, J. Differential Geom. **49** (1998), 577–599.
- [13] T. Mabuchi : *An algebraic character associated with Poisson brackets*, in “Recent Topics in Differential and Analytic Geometry,” Adv. Stud. Pure Math. **18-I** (1990), 339–358.
- [14] T. Mabuchi : *An energy-theoretic approach to the Hitchin-Kobayashi correspondence for manifolds*, in preparation.
- [15] T. Mabuchi and Y. Nakagawa: *The Bando-Calabi-Futaki character as an obstruction to semistability*, to appear in Math. Annalen.
- [16] T. Mabuchi and L. Weng : *Kähler-Einstein metrics and Chow-Mumford stability*, 1998, preprint.

- [17] D. Mumford, J. Fogarty and F. Kirwan: Geometric invariant theory, 3rd edition, *Ergebnisse der Math. und ihrer Grenzgebiete* **34**, Springer-Verlag, 1994, 1–292.
- [18] G. Tian: *On a set of polarized Kähler metrics on algebraic manifolds*, J. Differential Geom. **32** (1990), 99–130.
- [19] S. Zelditch : *Szegö kernels and a theorem of Tian*, Internat. Math. Res. Notices **6** (1998), 317–331.
- [20] S. Zhang : *Heights and reductions of semi-stable varieties*, Compositio Math. **104** (1996), 77–105.

DEPARTMENT OF MATHEMATICS, GRADUATE SCHOOL OF SCIENCE, OSAKA UNIVERSITY, TOYONAKA, OSAKA, 560-0043 JAPAN