

Technical Environmental System: Course Introduction

Piacenza Campus

B. Najafi

Importance of Building Energy Sector

Data source: Eurostat, 2014.

Europe's Energy consumption by Sector

- Smart buildings can be a part of internet of things
 - ✓ Smart Homes

Credit: Schneider Electric

Smart buildings can be a part of Smart grids

Credit: Schneider Electric

Hype Cycle for Emerging Technologies, 2017

Gartner's diagram of emerging technologies, July 2017

Gartner's diagram of emerging technologies, July 2018

Career Opportunities

- * Applications in Building Design and Architecture Career path:
- ✓ Design of Nearly-zero Energy Building
- ✓ Sustainable Building Design Considering the Energetic Behaviour Aspects
- Building System Oriented Career Perspective:
 - Current Trends
 - Energy Manager
 - Energy Audit expert and Consultant in Energy Sector
 - **Emerging Trends:**
 - ✓ Energy Analyst, Energy Data Analyst and Energy Data Scientist

Topics

- * A Brief review of principles of applied physics: Physical quantities and units of measurement
- * Conductive, convective, and radiative heat transfer along with solar radiation
- * Heat transfer through walls and windows: simplifications
- Thermal comfort
- * Humid air (psychrometrics) fundamentals, heat gains, and infiltration
- * Residential and non-Residential heating and cooling load calculation (ASHRAE RLF and Heat balance methods)
- * First and second law of thermodynamics and fundamentals of refrigeration cycles
- Centralized and decentralized heating, ventilation, and air conditioning (HVAC) systems
- Fundamentals of solar thermal units, different types of cycles, categories of collectors, storage units, and integration of solar thermal systems in buildings

- EnergyPlus:
 - ✓ Open-Souce tool developed by the Department of Energy, US
 - ✓ Employed for simulating both Building performance and HVAC system
- OpenStudio interface is employed in this course
- OpenStudio creates an add-on over SketchUp, Hence the design can be made in SketchUp

OpenStudio

GitHub Platform utilized for submission:

SketchUp with OpenStudio Extension

Browse Weather Data

Click on the markers in the map below to access weather data.

Building Component Library

- An Internet-connected source of building energy modeling data:
 - Enables drag-and-drop modeling for quick technology evaluation
 - · Provides consistent, detailed inputs to drive decision-making
 - Searchable readily available within applications
 - The BCL is key to OpenStudio's extensibility

- * The evaluation is based on the marks obtained in 3 different parts as follows:
- Written Exam: 15 marks
- Continuous Assessment (weekly submissions): 10 marks
- > Final Project (presented as a group): 5 marks
- ✓ In order to receive a mark, the student should pass the written exam (18/30)