Diszkrét matematika 2. C szakirány

7. előadás

Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/~nagy

Komputeralgebra Tanszék

2016. tavasz

2016. tavasz

Polinomok felbonthatósága

Definíció

Legyen R egységelemes integritási tartomány.

Ha a $0 \neq f \in R[x]$ polinom nem egység, akkor felbonthatatlannak (irreducibilisnek) nevezzük, ha $\forall a, b \in R[x]$ -re

$$f = a \cdot b \Longrightarrow (a \text{ egység} \lor b \text{ egység}).$$

Ha a $0 \neq f \in R[x]$ polinom nem egység, és nem felbonthatatlan, akkor felbonthatónak (reducibilisnek) nevezzük.

Megjegyzés

Utóbbi azt jelenti, hogy f-nek van nemtriviális szorzat-előállítása (olyan, amiben egyik tényező sem egység).

Emlékeztető

Test nullosztómentes, így F test és $f, g \in F[x]$ esetén: $\deg(fg) = \deg(f) + \deg(g)$.

Állítás

Legyen $(F;+,\cdot)$ test. Ekkor $f\in F[x]$ pontosan akkor egység, ha deg(f)=0.

Bizonyítás

 \leftarrow

Ha deg(f)=0, akkor f nem-nulla konstans polinom: $f(x)=f_0$. Mivel F test, ezért létezik $f_0^{-1} \in F$, amire $f_0 \cdot f_0^{-1}=1$, így f tényleg egység.

 \Longrightarrow

Ha f egység, akkor létezik $g \in F[x]$, amire $f \cdot g = 1$, és így deg(f) + deg(g) = deg(1) = 0 (Miért?), ami csak deg(f) = deg(g) = 0 esetén lehetséges.

Állítás

Legyen $(F;+,\cdot)$ test, és $f\in F[x]$. Ha deg(f)=1, akkor f-nek van gyöke.

Bizonyítás

Ha deg(f)=1, akkor felírható $f(x)=f_1x+f_0$ alakban, ahol $f_1\neq 0$. Azt szeretnénk, hogy létezzen $c\in F$, amire f(c)=0, vagyis $f_1c+f_0=0$. Ekkor $f_1c=-f_0$ (Miért?), és mivel létezik $f_1^{-1}\in F$, amire $f_1\cdot f_1^{-1}=1$ (Miért?), ezért $c=-f_0\cdot f_1^{-1}\left(=-\frac{f_0}{f_1}\right)$ gyök lesz.

Megjegyzés

Ha $(R; +, \cdot)$ nem test, akkor egy R fölötti elsőfokú polinomnak nem feltétlenül van gyöke, pl. $2x - 1 \in \mathbb{Z}[x]$.

Állítás

Legyen $(F; +, \cdot)$ test, és $f \in F[x]$. Ha deg(f) = 1, akkor f felbonthatatlan.

Bizonyítás

Legyen $f=g\cdot h$. Ekkor deg(g)+deg(h)=deg(f)=1 (Miért?) miatt $deg(g)=0 \wedge deg(h)=1$ vagy $deg(g)=1 \wedge deg(h)=0$. Előbbi esetben g, utóbbiban h egység a korábbi állítás értelmében.

Megjegyzés

Tehát nem igaz, hogy egy felbonthatatlan polinomnak nem lehet gyöke.

Állítás

Legyen $(F; +, \cdot)$ test, és $f \in F[x]$. Ha $2 \le deg(f) \le 3$, akkor f pontosan akkor felbontható, ha van gyöke.

Bizonyítás

 \leftarrow

Ha c gyöke f-nek, akkor az f(x) = (x - c)g(x) egy nemtriviális felbontás (Miért?).

 \Longrightarrow

Mivel 2=0+2=1+1, illetve 3=0+3=1+2, és más összegként nem állnak elő, ezért amennyiben f-nek van nemtriviális felbontása, akkor van elsőfokú osztója. A korábbi állítás alapján ennek van gyöke, és ez nyilván f gyöke is lesz.

Tétel

 $f \in \mathbb{C}[x]$ pontosan akkor felbonthatatlan, ha deg(f) = 1.

Bizonyítás

 \leftarrow

Mivel $\mathbb C$ a szokásos műveletekkel test, ezért korábbi állítás alapján teljesül.

 \Longrightarrow

Indirekt tfh. $deg(f) \neq 1$. Ha deg(f) < 1, akkor f = 0 vagy f egység, tehát nem felbonthatatlan, ellentmondásra jutottunk. deg(f) > 1 esetén az algebra alaptétele értelmében van gyöke f-nek. A gyöktényezőt kiemelve az f(x) = (x-c)g(x) alakot kapjuk, ahol $deg(g) \geq 1$ (Miért?), vagyis egy nemtriviális szorzat-előállítást, így f nem felbonthatatlan, ellentmondásra jutottunk.

Tétel

 $f \in \mathbb{R}[x]$ pontosan akkor felbonthatatlan, ha

- deg(f) = 1, vagy
- deg(f) = 2, és f-nek nincs (valós) gyöke.

Bizonvítás

Ha deg(f) = 1, akkor korábbi állítás alapján f felbonthatatlan. Ha deg(f) = 2, és f-nek nincs gyöke, akkor f nem áll elő két elsőfokú polinom szorzataként (Miért?), vagyis csak olyan kéttényezős szorzat-előállítása lehet, melyben az egyik tényező foka 0, tehát egység.

Ha f felbonthatatlan, akkor nem lehet deg(f) < 1. (Miért?) Ha f felbonthatatlan, és deg(f) = 2, akkor tfh. van gyöke. Ekkor az ehhez tartozó gyöktényező kiemelésével egy nemtriviális felbontását kapjuk f-nek (Miért?), ami ellentmondás.

Bizonyítás folyt.

Tfh. $deg(f) \geq 3$. Az algebra alaptétele értelmében f-nek mint $\mathbb C$ fölötti polinomnak van $c \in \mathbb C$ gyöke. Ha $c \in \mathbb R$ is teljesül, akkor a gyöktényező kiemelésével f egy nemtriviális felbontását kapjuk (Miért?), ami ellentmondás.

Mivel $f \in \mathbb{R}[x]$, ezért \overline{c} is gyöke, hiszen

$$f(\overline{c}) = \sum_{j=0}^{\deg(f)} f_j(\overline{c})^j = \sum_{j=0}^{\deg(f)} \overline{f_j} \cdot \overline{c^j} = \sum_{j=0}^{\deg(f)} \overline{f_j} c^j = \left(\sum_{j=0}^{\deg(f)} f_j c^j\right) = \overline{f(c)} = \overline{0} = 0.$$

Legyen $g(x)=(x-c)(x-\overline{c})=x^2-2\operatorname{Re}(c)x+|c|^2\in\mathbb{R}[x].$ f-et g-vel maradékosan osztva létezik $q,r\in\mathbb{R}[x]$, hogy f=qg+r. r=0, mert deg(r)<2, és r-nek gyöke $c\in\mathbb{C}\setminus\mathbb{R}.$ Vagyis f=qg, ami egy nemtriviális felbontás, ez pedig ellentmondás.

2016. tavasz

Polinomok felbonthatósága

Definíció

 $f \in \mathbb{Z}[x]$ -et primitív polinomnak nevezzük, ha az együtthatóinak a legnagyobb közös osztója 1.

Tétel (Schönemann-Eisenstein)

Legyen $f(x) = f_n x^n + f_{n-1} x^{n-1} + \ldots + f_1 x + f_0 \in \mathbb{Z}[x], f_n \neq 0$ legalább elsőfokú primitív polinom. Ha található olyan $p \in \mathbb{Z}$ prím, melyre

- p / f_n ,
- \bigcirc
 - - p^2 / f_0 ,

akkor f felbonthatatlan \mathbb{Z} fölött.

Bizonyítás

NB. (Lehet, hogy később igen.)

Megjegyzés

A feltételben f_n és f_0 szerepe felcserélhető.

Megjegyzés

A tétel nem használható test fölötti polinom irreducibilitásának bizonyítására, mert testben nem léteznek prímek, hiszen minden nem-nulla elem egység.

11.

Racionális gyökteszt

Tétel

Legyen $f(x) = f_n x^n + f_{n-1} x^{n-1} + \ldots + f_1 x + f_0 \in \mathbb{Z}[x], \ f_n \neq 0$ primitív polinom. Ha $f\left(\frac{p}{q}\right) = 0, \ p, q \in \mathbb{Z}, \ (p,q) = 1, \ \text{akkor} \ p|f_0 \ \text{\'es} \ q|f_n.$

Bizonyítás

$$0 = f\left(\frac{p}{q}\right) = f_n\left(\frac{p}{q}\right)^n + f_{n-1}\left(\frac{p}{q}\right)^{n-1} + \ldots + f_1\left(\frac{p}{q}\right) + f_0 \quad / \cdot q^n$$

$$0 = f_n p^n + f_{n-1} q p^{n-1} + \ldots + f_1 q^{n-1} p + f_0 q^n$$

$$p|f_0 q^n, \text{ mivel az \"{o}sszes t\"{o}bbi tagnak oszt\acute{o}ja } p, \, \acute{e}s \, \acute{e$$

A racionális gyökteszt alkalmazása

Állítás

 $\sqrt{2} \notin \mathbb{Q}$.

Bizonyítás

Tekintsük az $x^2 - 2 \in \mathbb{Z}[x]$ polinomot.

Ennek a $\frac{p}{q}$ alakú gyökeire $(p,q\in\mathbb{Z},\,(p,q)=1)$ teljesül, hogy p|2 és q|1, így a lehetséges racionális gyökei ± 1 és ± 2 .

Véges testek

Tekintsük valamely p prímre a \mathbb{Z}_p testet, továbbá egy $f(x) \in \mathbb{Z}_p[x]$ felbonthatatlan főpolinomot. Vezessük be a $g(x) \equiv h(x) \pmod{f(x)}$, ha f(x)|g(x)-h(x) relációt. Ez ekvivalenciareláció, ezért meghatároz egy osztályozást $\mathbb{Z}_p[x]$ -en.

Minden osztálynak van deg(f)-nél alacsonyabb fokú reprezentánsa (Miért?), és ha deg(g), deg(h) < deg(f), továbbá g és h ugyanabban az osztályban van, akkor egyenlőek (Miért?). Tehát deg(f) = n esetén bijekciót létesíthetünk az n-nél kisebb fokú polinomok és az osztályok között, így p^n darab osztály van.

Az osztályok között értelmezhetjük a természetes módon a műveleteket. Ezeket végezhetjük az n-nél alacsonyabb fokú reprezentánsokkal: ha a szorzat foka nem kisebb, mint n, akkor az f(x)-szel vett osztási maradékot vesszük.

Véges testek

 $f \not| g$ esetén a bővített euklideszi algoritmus alapján d(x) = u(x)f(x) + v(x)g(x).

Mivel f(x) felbonthatatlan, ezért d(x) = d konstans polinom, így $\frac{v(x)}{d}$ multiplikatív inverze lesz g(x)-nek.

Tétel (NB)

Az ekvivalenciaosztályok halmaza a rajta értelmezett összeadással és szorzással testet alkot.

Megjegyzés

Tetszőleges p prím és n pozitív egész esetén létezik p^n elemű test, mert létezik n-ed fokú felbonthatatlan polinom \mathbb{Z}_p -ben.

Megjegyzés

Véges test elemszáma prímhatvány, továbbá az azonos elemszámú testek izomorfak.

Véges testek

Példa

Tekintsük az $x^2+1\in\mathbb{Z}_3[x]$ felbonthatatlan polinomot (Miért az?). A legfeljebb elsőfokú polinomok: 0,1,2,x,x+1,x+2,2x,2x+1,2x+2. Az összeadás műveleti táblája:

Diszkrét matematika 2. C szakirány

+	U	1	2	×	X+1	X+2	2x	2x+1	2x+2
0	0	1	2	×	x+1	x+2	2x	2x+1	2x+2
1	1	2	0	x+1	x+2	×	2x+1	2x+2	2x
2	2	0	1	x+2	Х	x+1	2x+2	2x	2x+1
×	X	x+1	x+2	2x	2x+1	2x+2	0	1	2
×+1	x+1	x+2	×	2x+1	2x+2	2x	1	2	0
x+2	x+2	Х	x+1	2x+2	2x	2x+1	2	0	1
2x	2x	2x+1	2x+2	0	1	2	×	×+1	x+2
2x+1	2x+1	2x+2	2x	1	2	0	x+1	x+2	×
2x+2	2x+2	2x	2x+1	2	0	1	x+2	Х	x+1

Például:

$$2x + 2 + 2x + 1 = 4x + 3 = x$$

17.

Véges testek

Példa folyt.

	0	1	2	×	x+1	x+2	2x	2x+1	2x+2
0	0	0	0	0	0	0	0	0	0
1	0	1	2	×	x+1	x+2	2x	2x+1	2x+2
2	0	2	1	2x	2x+2	2x+1	×	x+2	x+1
×	0	×	2×	2	x+2	2x+2	1	x+1	2x+1
×+1	0	x+1	2x+2	x+2	2x	1	2x+1	2	×
x+2	0	x+2	2x+1	2x+2	1	×	x+1	2x	2
2x	0	2x	х	1	2x+1	x+1	2	2x+2	x+2
2x+1	0	2×+1	x+2	x+1	2	2x	2x+2	×	1
2x+2	0	2x+2	x+1	2x+1	×	2	x+2	1	2x

Például:

$$(2x+2)(2x+1) = 4x^2 + 6x + 2 \stackrel{\mathbb{Z}_3}{=} x^2 + 2 = (x^2+1) + 1$$

Feladat: Legyen $\mathbb{F}_9 = \mathbb{Z}_3[x]/(x^2+1)$. Mik lesznek a $z^2+1 \in \mathbb{F}_9[z]$ polinom gyökei?

A kommunikáció során információt hordozó adatokat viszünk át egy csatornán keresztül az információforrástól, az adótól az információ címzettjéhez, a vevőhöz.

A kommunikáció vázlatos ábrája

Megjegyzés

Az információ átvitele térben és időben történik. Egyes esetekben az egyik, más esetekben a másik dimenzió a domináns (pl. telefonálás; információ rögzítése adathordozóra, majd későbbi visszaolvasása).

Definíció

Az információ új ismeret. Shannon nyomán az általa megszüntetett bizonytalansággal mérjük.

Kódolás

Definíció

Tegyük fel, hogy egy információforrás nagy számú, összesen n üzenetet bocsát ki. Az összes ténylegesen előforduló különböző üzenet legyen a_1, a_2, \ldots, a_k .

Ha az a_j üzenet m_j -szer fordul elő, akkor azt mondjuk, hogy a gyakorisága m_j , relatív gyakorisága pedig $p_j = \frac{m_j}{n} > 0$.

A p_1, p_2, \ldots, p_k szám k-ast az üzenetek eloszlásának nevezzük $(\sum_{j=1}^k p_j = 1)$. Az a_j üzenet egyedi információtartalma $l_j = -\log_r p_j$, ahol r egy 1-nél nagyobb valós szám, ami az információ egységét határozza meg. Ha r=2, akkor az információ egysége a bit.

Az üzenetforrás által kibocsátott üzenetek átlagos információtartalma, vagyis $H_r(p_1, p_2, \ldots, p_k) = -\sum_{j=1}^k p_j \log_r p_j$ a forrás entrópiája. Ez csak az üzenetek eloszlásától függ, a tartalmuktól nem.

Egy k tagú eloszlásnak olyan pozitív valós számokból álló p_1, p_2, \ldots, p_k sorozatot nevezünk, amelyre $\sum_{j=1}^k p_j = 1$. Ennek az eloszlásnak az entrópiája $H_r(p_1, p_2, \ldots, p_k) = -\sum_{j=1}^k p_j \log_r p_j$.