

AMENDMENTS TO THE CLAIMS

1. (Currently Amended) A semiconductor structure for use in the near infrared region, preferably in the range from 1.3 to 1.6 μm , said structure comprising:
 - an active zone consisting of a plurality of epitaxially grown alternating layers of Si and Ge which form a superlattice,
 - a base layer of a first conductivity type disposed on one side of said active zone,
 - a cladding layer of the opposite conductivity type to the base layer, the cladding layer being provided on the opposite side of said active zone from said base layer, wherein the Ge ~~Layers~~layers of the active zone each comprise a relatively thin layer of Germanium ~~material and a plurality of spaced apart islands or accumulations of Germanium~~, each island having a relatively greater thickness than said thin layer, said islands forming quantum dots providing quantized energy levels for holes, and wherein the thickness of each silicon layer of said active zone is less than 5nm, so that said holes are located in quantized energy levels associated with a valance band and electrons are localized in a miniband associated with the conduction band and resulting from the superlattice structure such that a direct transition between said miniband and said valence band is possible for charge carriers and light ~~emissions~~emission is based upon interband transitions.
2. (Currently Amended) The semiconductor structure in accordance with claim 1, wherein said active zone has a first side adjacent said base layer and said-a second side adjacent to said cladding ~~material layer and~~ wherein a dopant material is incorporated into the alternating layers of the active zone to generate a highest doping density at one of said first and second sides and a lowest doping density at the other one of said first and second sides and a doping gradient in said active zone between said first and second sides.
3. (Previously Presented) The semiconductor structure in accordance with claim 2, wherein at least one barrier layer is provided between one of said first and second sides of said active zone at which said highest doping density is present and the respective one of said base layer and said cladding layer.

4. (Cancelled)

5. (Original) The semiconductor structure in accordance with claim 4, wherein the substantially regularly spaced apart islands of each Ge layer are aligned in the direction of epitaxial growth with the islands of the other Ge layers.

6. (Original) The semiconductor structure in accordance with claim 1, wherein the germanium layers each have an average thickness in the range between 0.7 nm and 0.9 nm.

7. (Original) The semiconductor structure in accordance with claim 1, wherein said base layer comprises silicon.

8. (Cancelled)

9. (Original) The semiconductor structure in accordance with claim 3, wherein said barrier layer comprises at least one of intrinsic silicon and doped silicon and one of an intrinsic silicon-rich alloy of silicon and germanium and doped silicon-rich alloy of silicon and germanium.

10. (Original) The semiconductor structure in accordance with claim 2, wherein the highest doping density in the active zone is about 10^{18} cm^{-3} .

11. (Original) The semiconductor structure in accordance with claim 2, wherein the lowest doping density in the active zone is about $5 \times 10^{16} \text{ cm}^{-3}$.

12. (Original) The semiconductor structure in accordance with claim 2, wherein the dopant is one of Sb and P for n-type Si and one of B and In for p-type Si.

13. (Original) The semiconductor structure in accordance with claim 1, wherein said active zone comprises at least 12 alternating layers.

14. (Original) The semiconductor structure in accordance with claim 1, wherein said active zone comprises not more than 30 alternating layers.

15. (Original) The semiconductor structure in accordance with claim 1, wherein said active zone comprises from 15 to 25 alternating layers.

16. (Cancelled)

17. (Original) The semiconductor structure in accordance with claim 4, wherein the lateral germanium island density lies in the range of 10^{10} to 10^{11} cm^{-2} .

Claims 18-25 (Cancelled)