1 Derivate

1.1 Rapporto incrementale e derivate

Per poter comprendere le derivate è essenziale comprendere il concetto di **rapporto incre**mentale

Definizione 1 (Rapporto Incrementale):

Premettiamo: $A \subseteq \mathbb{R}, f: A \to \mathbb{R}, x_0 \in A \cap D(A)$

 x_0 è un punto di accumulazione, non isolato e f una funzione con dominio A e codominio \mathbb{R} .

$$R_f(x_0): A \setminus \{x_0\} \to \mathbb{R}, \quad R_f(x_0)(x) = \frac{f(x) - f(x_0)}{x - x_0}$$
 (1)

Una funzione si dice **derivabile** in x_0 se esiste il limite, ed è finito:

$$\lim_{x \to x_0} R_f(x_0) : A \setminus \{x_0\} \to \mathbb{R}, = \lim_{x \to x_0} R_f(x_0)(x) = \frac{f(x) - f(x_0)}{x - x_0}$$
 (2)

Il limito che abbiamo appena definito si chiama derivata di f in x_0

$$f'(x_0) = \lim_{x \to x_0} R_f(x_0)(x) = \frac{f(x) - f(x_0)}{x - x_0}, \ f'(x_0) \in \mathbb{R}$$
 (3)

Se il limite, del rapporto incrementale, non appartiene ai numeri reali ed è $\pm \infty$, allora la funzione è derivabile in senso esteso.

Il limite del rapporto incrementale si può riscrivere come:

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} \qquad (h = x - x_0) \tag{4}$$

Definizione 2:

Se una funzione f è derivabile in un punmto x_0 allora:

$$\exists \lambda \in \mathbb{R}, \exists \omega : A \to \mathbb{R} \ \omega(x) \to \omega(x_0) = 0 | x \to x_0$$
 (5)

Allora:

$$f(x) = f(x_0) + \lambda \cdot (x - x_0) + \omega(x)(x - x_0) \ \forall x \in A$$

$$\lambda = \frac{f(x) - f(x_0)}{x - x_0} \qquad w(x) \grave{e} \ infinitesima \ (=0)$$

$$\lambda = f'(x_0)$$

$$(6)$$

Definizione 3:

Premettiamo: $A \subseteq \mathbb{R}, f: A \to \mathbb{R}, x_0 \in A \cap D(A)$

 x_0 è un punto di accumulazione, non isolato e f una funzione con dominio A e codominio \mathbb{R} . Se f è derivabile in x_0 allora f è continua in x_0 .

Questa nozione è dimostrabile sapendo che: $\lim_{x\to x_0} f(x) = f(x_0)$, e la tesi viene provata dal fatto che x_0 è un punto di accumulazione del suo dominio A.

Esempio 1.

Non è vero l'opposto di quanto abbiamo appena affermato: esistono infatti funzioni continue non derivabili, come per esempio la funzione **modulo**:

$$f(x) = |x| \tag{7}$$

DIMOSTRAZIONE 1.

Lo si può facilmente dimostrare per il limite destro e sinistro in 0:

$$\nexists \lim_{x \to x_0} |x| : \begin{cases} \lim_{x \to x_0^+} |x|, & 1 \\ \lim_{x \to x_0^-} |x|, & -1 \end{cases}$$
(8)

Dato che i due limiti non coincidiono il limite, nel punto x_0 non esiste.

Esempio 2.

La derivata di $f'(e^x) = e^x$

Alcune proprietà delle derivate:

• La somma delle derivate è la derivata della somma, ed è derivabile in x_0 :

$$(f+g)'(x_0) = f'(x_0) + g'(x_0)$$
(9)

• La regola di Leibniz: $(f \cdot g \text{ è derivabile in } x_0)$

$$(f \cdot g)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0)$$
(10)

• La derivata del quoziente (ponendo $g(x_0) \neq 0$), $\frac{f}{g}$ è derivabile in x_0 ;

$$\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{g^2(x_0)} \tag{11}$$

• La derivata della composta è:

Prendiamo due funzioni tali che:

 $A, B \subseteq \mathbb{R}, f : A \to \mathbb{R}, g : B \to \mathbb{R}, f(A) \subseteq B; \ x_0 \in A \cap D(A), f \text{ derivabile in } x_0, \ f(x_0) \in D(B), g \text{ derivabile in } f(x_0)$:

$$(g \circ f)'(x_0) = g'(f(x_0)) \cdot f'(x_0) \tag{12}$$

• L'inversa della derivata è la complementare della derivata:

$$(f^{-1})'(y_0) = \frac{1}{f'(x_0)}$$
(13)

Definizione 4 (Estremanti massimo, minimi e relativi):

Sia $A \subseteq \mathbb{R}$, $f: A \to \mathbb{R}$ derivabile, sia $x_0 \in A$ (che vuol dire che esiste un intorno di x_0 tutto dentro a ad A).

Se x_0 è un punto estremante relativo (min o max realtivo) allora $f'(x_0) = 0$

DIMOSTRAZIONE 2.

Prendiamo come esempio x_0 max relativo, allora sarà vero:

$$\exists \rho > 0 : f(x) - f(x_0) \le 0 \ \forall x \in]x_0 - \rho, x_0 + \rho[$$
 (14)

Sapendo che x_0 è tutto interno, supponiamo che sia tutto incluso in A:

$$\frac{f(x) - f(x_0)}{x - x_0} \le 0 \ \forall x \in]x_0, x_0 + h[$$

$$\frac{f(x) - f(x_0)}{x - x_0} \ge 0 \ \forall x \in]x_0 - h, x_0[$$

Dalla derivabilità della funzione possiamo capire che:

$$\begin{cases} f'(x_0) = \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} \le 0\\ f'(x_0) = \lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} \ge 0 \end{cases}$$
 (15)

Quindi $f'(x_0)$ deve essere uguale a 0

Funzione $f(x)$	Derivata della funzione $f'(x_0)$
k	0
	sgnx
x^{α}	$\alpha x^{\alpha-1}$
x	1
$\log_a x$	$\frac{1}{x}\log_a e$
$\log x$	$\frac{1}{x}$
$\log_a x $	$\frac{1}{ x }$
$\log x $	$\frac{1}{x}$
$\log f(x) $	$\frac{f'(x_0)}{f(x)}$
a^x	$a^x \log a$
e^x	e^x
$\sinh x$	$\cosh x$
$\cosh x$	$\sinh x$
$\sin x$	$\cos x$
$\cos x$	$-\sin x$
$\arcsin x$	$\frac{1}{\sqrt{1-x^2}}$
$\arccos x$	$-\frac{1}{\sqrt{1-x^2}}$
$\tan x$	$1 + \tan^2 x$
$\arctan x$	$\frac{1}{1+x^2}$
\sqrt{x}	$\frac{1}{2\sqrt{x}}$

 \sqrt{o}