

CS 412 Intro. to Data Mining

Chapter 10. Cluster Analysis: Basic Concepts and Methods

Chapter 10. Cluster Analysis: Basic Concepts and Methods

Cluster Analysis: An Introduction

- Partitioning Methods
- **Hierarchical Methods**
- Density- and Grid-Based Methods
- Evaluation of Clustering (Coverage will be based on the available time)
- **Summary**

What Is Cluster Analysis?

- What is a cluster?
 - A cluster is a collection of data objects which are
 - □ Similar (or related) to one another within the same group (i.e., cluster)
 - Dissimilar (or unrelated) to the objects in other groups (i.e., clusters)
- □ Cluster analysis (or *clustering*, *data segmentation*, ...)
 - ☐ Given a set of data points, partition them into a set of groups (i.e., clusters) which are as similar as possible
- Cluster analysis is unsupervised learning (i.e., no predefined classes)
 - ☐ This contrasts with *classification* (i.e., *supervised learning*)
- Typical ways to use/apply cluster analysis
 - As a stand-alone tool to get insight into data distribution, or
 - ☐ As a preprocessing (or intermediate) step for other algorithms

What Is Good Clustering?

- □ A good clustering method will produce high quality clusters which should have
 - High intra-class similarity: Cohesive within clusters
 - Low inter-class similarity: Distinctive between clusters
- Quality function
 - There is usually a separate "quality" function that measures the "goodness" of a cluster
 - It is hard to define "similar enough" or "good enough"
 - The answer is typically highly subjective
- ☐ There exist many similarity measures and/or functions for different applications
- Similarity measure is critical for cluster analysis

3726040 25 4 (6 8 9 0 0 4) 82 WANTED

The K-Means Clustering Method

- K-Means (MacQueen'67, Lloyd'57/'82)
 - Each cluster is represented by the center of the cluster
- ☐ Given K, the number of clusters, the *K-Means* clustering algorithm is outlined as follows
 - Select K points as initial centroids ช่วงเพนจงจ คลุ่ม พี่ใช้ โรงกาติ ของโ
 - □ Repeat ทำเรื่อยลนกร่าละดยบกางนด
 - □ Form K clusters by assigning each point to its closest centroid
 - Re-compute the centroids (i.e., *mean point*) of each cluster
 - Until convergence criterion is satisfied
- Different kinds of measures can be used
- ☐ Manhattan distance (L₁ norm), Euclidean distance (L₂ norm), Cosine similarity

Townson The Example: K-Means Clustering

Variations of *K-Means*

☐ There are many variants of the <i>K-Means</i> method, varying in different aspects		
☐ Choosing better initial centroid estimates	940/1/1911/20	
□ K-means++, Intelligent K-Means, Genetic	14 0 0	ીના:ીર આવલવાપ્ય જિલ્લાના be discussed in this lecture
Choosing different representative prototypes for the clusters		
□ K-Medoids, K-Medians, K-Modes		K-Means
		cussed in this lecture
 Applying feature transformation technique 	es จะสำนานหลุด b ขึ้	imos roulitals
Weighted K-Means, Kernel K-Means	To be discussed in	this lecture