Chapter 10

Implementing Subprograms

Chapter 10 Topics

- The General Semantics of Calls and Returns
- Implementing "Simple" Subprograms
- Implementing Subprograms with Stack-Dynamic Local Variables
- Nested Subprograms
- Blocks
- Implementing Dynamic Scoping

The General Semantics of Calls and Returns

- The subprogram call and return operations of a language are together called its subprogram linkage
- General semantics of calls to a subprogram
 - Parameter passing methods
 - Stack-dynamic allocation of local variables
 - Save the execution status of calling program
 - The execution status is everything needed to resume execution of the calling program unit.
 - Transfer of control and arrange for the return
 - If subprogram nesting is supported, access to nonlocal variables must be arranged

The General Semantics of Calls and Returns

- General semantics of subprogram returns:
 - In mode and inout mode parameters must have their values returned
 - Deallocation of stack-dynamic locals
 - Restore the execution status
 - Return control to the caller

Implementing "Simple" Subprograms

Call Semantics:

- Save the execution status of the caller
- Pass the parameters
- Pass the return address to the called
- Transfer control to the called

Implementing "Simple" Subprograms (continued)

Return Semantics:

- If pass-by-value-result or out mode parameters are used, move the current values of those parameters to their corresponding actual parameters
- If it is a function, move the functional value to a place the caller can get it
- Restore the execution status of the caller
- Transfer control back to the caller

Required storage:

- Status information, parameters, return address, return value for functions, temporaries

Implementing "Simple" Subprograms (continued)

- Two separate parts: the actual code and the non-code part (local variables and data that can change)
- The format, or layout, of the non-code part of an executing subprogram is called an activation record
- An activation record instance is a concrete example of an activation record (the collection of data for a particular subprogram activation)

An Activation Record for "Simple" Subprograms

Local variables

Parameters

Return address

Code and Activation Records of a Program with "Simple" Subprograms

Note: A, B and C are subprograms.

Implementing Subprograms with Stack-Dynamic Local Variables

- More complex activation record
 - The compiler must generate code to cause implicit allocation and deallocation of local variables
 - Recursion must be supported (adds the possibility of multiple simultaneous activations of a subprogram)

(Definition from Chapter 5)

Stack-dynamic variable: Storage bindings are created for variables when their declaration statements are *elaborated*. For example, the variable declarations that appear at the beginning of a Java method are elaborated when the method is called and the variables defined by those declarations are deallocated when the method completes its execution.

Typical Activation Record for a Language with Stack-Dynamic Local Variables

Parameters

Dynamic link

Return address

Implementing Subprograms with Stack-Dynamic Local Variables: Activation Record

- The activation record format is static, but its size may be dynamic
- The dynamic link points to the top of an instance of the activation record of the caller
- An activation record instance is dynamically created when a subprogram is called
- Activation record instances reside on the run-time stack
- The Environment Pointer (EP) must be maintained by the run-time system. It always points at the base of the activation record instance of the currently executing program unit

Note: The **EP**, which is further discussed in Section 10.3, is used to access parameters and local variables during the execution of a subprogram.

An Example: C Function

```
void sub(float total, int part)
{
  int list[5];
  float sum;
  ...
}
```


Revised Semantic Call/Return Actions

Caller Actions:

- Create an activation record instance
- Save the execution status of the current program unit
- Compute and pass the parameters
- Pass the return address to the called
- Transfer control to the called

Prologue actions of the called:

- Save the old EP in the stack as the dynamic link and create the new value
- Allocate local variables

<u>Note</u>: In general, the linkage actions of the called can occur at two different times, either at the beginning of its execution or at the end. These are sometimes called the *prologue* and *epilogue* of the subprogram linkage.

Revised Semantic Call/Return Actions (continued)

Epilogue actions of the called:

- If there are pass-by-value-result or out-mode parameters, the current values of those parameters are moved to the corresponding actual parameters
- If the subprogram is a function, its value is moved to a place accessible to the caller
- Restore the stack pointer by setting it to the value of the current EP-1 and set the EP to the old dynamic link
- Restore the execution status of the caller
- Transfer control back to the caller

An Example Without Recursion

```
void fun1(float r) {
   int s, t;
   fun2(s);
void fun2(int x) {
   int y;
   fun3(y);
void fun3(int q) {
void main() {
   float p;
   fun1(p);
```

```
main calls fun1
fun1 calls fun2
fun2 calls fun3
```

An Example Without Recursion

ARI = activation record instance

Dynamic Chain and Local Offset

- The collection of dynamic links in the stack at a given time is called the dynamic chain, or call chain
- Local variables can be accessed by their offset from the beginning of the activation record, whose address is in the EP. This offset is called the local_offset
- The local_offset of a local variable can be determined by the compiler at compile time

An Example With Recursion

 The activation record used in the previous example supports recursion

Activation Record for factorial

Functional value

Parameter

n

Dynamic link

Return address

Stacks for calls to factorial

ARI = activation record instance

Stacks for returns from factorial

ARI = activation record instance

Nested Subprograms

- Some non-C-based static-scoped languages
 (e.g., Fortran 95+, Ada, Python, JavaScript, Ruby, and Lua) use stack-dynamic local variables and allow subprograms to be nested
- All variables that can be non-locally accessed reside in some activation record instance in the stack
- The process of locating a non-local reference:
 - 1. Find the correct activation record instance
 - 2. Determine the correct offset within that activation record instance

Locating a Non-local Reference

- Finding the offset is easy
- Finding the correct activation record instance
 - Static semantic rules guarantee that all nonlocal variables that can be referenced have been allocated in some activation record instance that is on the stack when the reference is made

Static Scoping

- A static chain is a chain of static links that connects certain activation record instances
- The static link in an activation record instance for subprogram A points to one of the activation record instances of A's static parent
- The static chain from an activation record instance connects it to all of its static ancestors
- Static_depth is an integer associated with a static scope whose value is the depth of nesting of that scope

Static Scoping (continued)

- The chain_offset or nesting_depth of a nonlocal reference is the difference between the static_depth of the reference and that of the scope when it is declared
- A reference to a variable can be represented by the pair:

```
(chain_offset, local_offset), where local_offset is the offset in the activation record of the variable being referenced
```

Example JavaScript Program

```
function main(){
 var x;
 function bigsub() {
  var a, b, c;
  function sub1 {
   var a, d;
   function main(){
 var x;
 function bigsub() {
  var a, b, c;
  function sub1 {
   var a, d;
    a = b + c; \leftarrow -----1
  } // end of sub1
  function sub2(x) {
   var b, e;
```

Example JavaScript Program (continued)

```
function sub3() {
    var c, e;
    sub1();
   e = b + a; \leftarrow-----2
  } // end of sub3 ...
  sub3();
  a = d + e; \leftarrow -----3
  } // end of sub2
  sub2(7);
} // end of bigsub
 bigsub();
} // end of main
```

Example JavaScript Program (continued)

Call sequence for main

```
main calls bigsub bigsub calls sub2 sub2 calls sub3 sub3 calls sub1
```

Stack Contents at Position 1

ARI = activation record instance

Static Chain Maintenance

- At the call,
 - The activation record instance must be built
 - The dynamic link is just the old stack top pointer
 - The static link must point to the most recent ari of the static parent
 - Two methods:
 - 1. Search the dynamic chain
 - 2. Treat subprogram calls and definitions like variable references and definitions

Evaluation of Static Chains

- Problems:
 - 1. A nonlocal areference is slow if the nesting depth is large
 - 2. Time-critical code is difficult:
 - a. Costs of nonlocal references are difficult to determine
 - b. Code changes can change the nesting depth, and therefore the cost

Blocks

- Blocks are user-specified local scopes for variables
- An example in C

```
{int temp;
  temp = list [upper];
  list [upper] = list [lower];
  list [lower] = temp
}
```

- The lifetime of temp in the above example begins when control enters the block
- An advantage of using a local variable like temp is that it cannot interfere with any other variable with the same name

Implementing Blocks

Two Methods:

- 1. Treat blocks as parameter-less subprograms that are always called from the same location
 - Every block has an activation record; an instance is created every time the block is executed
- 2. Since the maximum storage required for a block can be statically determined, this amount of space can be allocated after the local variables in the activation record

Implementing Dynamic Scoping

- Deep Access: non-local references are found by searching the activation record instances on the dynamic chain
 - Length of the chain cannot be statically determined
 - Every activation record instance must have variable names
- Shallow Access: put locals in a central place
 - One stack for each variable name
 - Central table with an entry for each variable name

Using Shallow Access to Implement Dynamic Scoping

```
void sub3() {
  int x, z;
  x = u + v;
void sub2() {
  int w, x;
void sub1() {
  int ∨, w;
void main() {
  int v, u;
```


(The names in the stack cells indicate the program units of the variable declaration.)

Summary

- Subprogram linkage semantics requires many action by the implementation
- Simple subprograms have relatively basic actions
- Stack-dynamic languages are more complex
- Subprograms with stack-dynamic local variables and nested subprograms have two components
 - actual code
 - activation record

Summary (continued)

- Activation record instances contain formal parameters and local variables among other things
- Static chains are the primary method of implementing accesses to non-local variables in static-scoped languages with nested subprograms
- Access to non-local variables in dynamicscoped languages can be implemented by use of the dynamic chain or thru some central variable table method