Algoritmusok és adatszerkezetek II. Kiegyensúlyozott keresőfák

Szegedi Tudományegyetem

Mit értünk kiegyensúlyozott keresőfa alatt?

Emlékeztető

Az eddig tárgyalt műveletek h magas fákra O(h) idejűek voltak A továbbiakban szeretnénk, ha $h = \Theta(\log n)$ is teljesülne

Véletlen építésű bináris keresőfák

- n elemű bináris fa **legrosszabb esetben** $\Theta(n)$ magas is lehet
- n növekedésével a legrosszabb eset bekövetkezése azonban egyre valószínűtlenebb
- Ha egy bináris keresőfa előállítása során csak beszúrás műveleteket alkalmazunk, úgy igazolható a következő

Tétel

Egy n különböző kulcsot tartalmazó véletlen építésű bináris keresőfa várható magassága $O(\log n)$.

AVL fák (Adelson-Velsky, Landis, 1962)

- Tetszőleges műveletsorozat végrehajtása után legrosszabb esetben is Θ(log n) magasságú kiegyensúlyozott keresőfa
- Garancia: semelyik csúcs egyensúlyi faktorának abszolút értéke nem lehet nagyobb 1-nél

Definíció

Egy p csúcs **egyensúlyi faktor**a fiai magasságának különbsége.

Definíció

Üres fa magassága: h(nil) = 0

p gyökerű fa magassága: h(p) = max(h(p.bal), h(p.jobb)) + 1

AVL fa implementációja

```
class Node {
    Object kulcs;
    int magassag;
    Node *apa;
    Node *bal;
    Node *jobb;
}
```


AVL fa implementációja

```
class Node {
    Object kulcs;
    int magassag;
    Node *apa;
    Node *bal;
    Node *jobb;
}
```

Megjegyzés

Találkozni olyan implementációval is, ahol a magasság helyett az egyensúlyi faktort tárolják

Legalább hány kulcsból áll egy h magas AVL fa?

magasság	m
1	1
2	2
3	1+2+1=4
4	2+4+1=7
5	4+7+1=12
6	7+12+1=20
7	12+20+1=33
8	20+33+1=54
:	:

Legalább hány kulcsból áll egy h magas AVL fa?

magasság	m
1	1
2	2
3	1+2+1=4
4	2+4+1=7
5	4+7+1=12
6	7+12+1=20
7	12+20+1=33
8	20+33+1=54
:	:
h	$m_{h-2} + m_{h-1} + 1$

- Jelölje m_h a h magas AVL fában lévő minimálisan található kulcsok számát ($m_1=1, m_2=2$)
- Általánosságban (h > 2 esetén): $m_h = m_{h-2} + m_{h-1} + 1$
- $m_{h-2} < m_{h-1}$ természetesen teljesül, ahonnan

$$m_h > 2m_{h-2}$$

- Jelölje m_h a h magas AVL fában lévő minimálisan található kulcsok számát ($m_1=1, m_2=2$)
- Általánosságban (h > 2 esetén): $m_h = m_{h-2} + m_{h-1} + 1$
- $m_{h-2} < m_{h-1}$ természetesen teljesül, ahonnan

$$m_h > 2m_{h-2} > 2 * 2m_{h-4} > \ldots > 2^i m_{h-2i}$$

- Jelölje m_h a h magas AVL fában lévő minimálisan található kulcsok számát ($m_1=1, m_2=2$)
- Általánosságban (h > 2 esetén): $m_h = m_{h-2} + m_{h-1} + 1$
- $m_{h-2} < m_{h-1}$ természetesen teljesül, ahonnan

$$m_h > 2m_{h-2} > 2 * 2m_{h-4} > \ldots > 2^i m_{h-2i}$$

• $m_h > 2^i m_{h-2i}$ összefüggést m_1 -ig kijátszva $m_h > 2^{h/2}$

- Jelölje m_h a h magas AVL fában lévő minimálisan található kulcsok számát ($m_1=1, m_2=2$)
- Általánosságban (h > 2 esetén): $m_h = m_{h-2} + m_{h-1} + 1$
- $m_{h-2} < m_{h-1}$ természetesen teljesül, ahonnan

$$m_h > 2m_{h-2} > 2 * 2m_{h-4} > \ldots > 2^i m_{h-2i}$$

- $m_h > 2^i m_{h-2i}$ összefüggést m_1 -ig kijátszva $m_h > 2^{h/2}$
- Tegyük fel, hogy egy h magas AVL fa $n \ge m_h$ csúcsból áll, azaz $n > 2^{h/2}$, vagyis $h < 2\log_2(n)$

- Jelölje m_h a h magas AVL fában lévő minimálisan található kulcsok számát ($m_1=1, m_2=2$)
- Általánosságban (h > 2 esetén): $m_h = m_{h-2} + m_{h-1} + 1$
- $m_{h-2} < m_{h-1}$ természetesen teljesül, ahonnan

$$m_h > 2m_{h-2} > 2 * 2m_{h-4} > \ldots > 2^i m_{h-2i}$$

- $m_h > 2^i m_{h-2i}$ összefüggést m_1 -ig kijátszva $m_h > 2^{h/2}$
- Tegyük fel, hogy egy h magas AVL fa $n \ge m_h$ csúcsból áll, azaz $n > 2^{h/2}$, vagyis $h < 2 \log_2(n)$

Megjegyzés

Az élesebb $h < 1.44 \log_2(n)$ korlát is bizonyítható.

AVL fák kiegyensúlyozottságának fenntartása forgatásokkal

(a) x körüli balra forgatás előtt

AVL fák kiegyensúlyozottságának fenntartása forgatásokkal

(a) x körüli balra forgatás előtt

(b) x körüli balra forgatva

AVL fák kiegyensúlyozottságának fenntartása forgatásokkal

(a) x körüli balra forgatás előtt

(b) x körüli balra forgatva

Amikor egy forgatás nem elég

(a) x körüli balra forgatás előtt

Amikor egy forgatás nem elég

(a) x körüli balra forgatás előtt

Amikor egy forgatás nem elég

(a) x körüli balra forgatás előtt

Amikor egy forgatás nem elég – segédforgatás

Megoldás

y körül jobbra forgatunk, majd x körül balra

Amikor egy forgatás nem elég – segédforgatás

Amikor egy forgatás nem elég – segédforgatás

Miért kellett kettőt forgassunk?

Mert (kiinduláskor) x **jobboldali** részfája volt magasabb És mert ennek a részfának már a **baloldali** részfája volt magasabb (zikk-zakk)

Megjegyzések a helyreállításokhoz

- A tárgyalt esetek tükörképei is előfordulhatnak
- A törlés hatására elromló AVL-fát azonos módon állítjuk helyre

Általános keresőfák

- Az általános keresőfát az különbözteti meg a bináris keresőfától, hogy egy csúcs több kulcsot is tartalmazhat
- Keresőfa tulajdonság kiterjesztése
 - A csúcsban található kulcsok < szerint rendezettek
 - A tárolt kulcsok értékei meghatározzák a kulcsértékeknek azon tartományait, amelyekbe a részfák kulcsai eshetnek

Általános keresőfák

- Az általános keresőfát az különbözteti meg a bináris keresőfától, hogy egy csúcs több kulcsot is tartalmazhat
- Keresőfa tulajdonság kiterjesztése
 - A csúcsban található kulcsok < szerint rendezettek
 - A tárolt kulcsok értékei meghatározzák a kulcsértékeknek azon tartományait, amelyekbe a részfák kulcsai eshetnek

B-fa definíciója

Definíció

t-rangú B-fa alatt olyan általános keresőfát értünk, amelyre teljesül, hogy:

- Minden gyökértől különböző p csúcsára $t \leq Rang(p) \leq 2t^a$
- ullet r gyökerének rangjára pedig $1 \leq Rang(r) \leq 2t$
- Minden nemlevél p csúcsra és $1 \le i \le Rang(p) + 1$ esetén $Fiu(p, i) \ne Nil$
- Minden $p \in F$ levélpontra d(p) = h(F), azaz minden levél pont mélysége azonos.

^arang alatt a fapontban tárolt kulcsok számát értjük

B-fa implementációja

```
class Node {
    Object[] kulcsok;
    int meret;
    Node *apa;
    Node *gyerekek[meret+1];
    boolean level;
}
```


B-fa implementációja

```
class Node {
    Object[] kulcsok;
    int meret;
    Node *apa;
    Node *gyerekek[meret+1];
    boolean level;
}
```

Fontos!

Az eddigiektől eltérően egy csúcsban több kulcs is található.

A csúcson belüli kulcsokra érvényesül a < rendezés.

A csúcsokról eltároljuk, hogy levelek-e (level változó)

B-fában keresés

```
B-FÁBANKERES(x, k) {
  i = 0
  while i < meret és k > x.kulcsok[i] {
     i = i+1
  if (i < meret és k = x.kulcsok[i]) {
     return (x,i) // az x csúcs i-edik kulcsát kerestük
  if (x.level) {
     return nil // a B-fa nem tartalmazza k-t
  } else {
     // a megfelelő ágban keresünk tovább
     return B-FÁBANKERES(x.gyerekek[i], k)
```


B-fák kiegyensúlyozottsága

- A B-fák kiegyensúlyozottsága abból fakad, hogy minden levél azonos mélységen található, illetve, hogy minden (nemgyökér) csúcs legalább t+1 elágazással rendelkezik
 - t értéke a gyakorlatban nagy, ezen a kurzuson 2-nek vesszük (hacsak más nem mondunk)
- Az AVL-fánál "kiegyensúlyozottabb", magassága $O(\log_t(n))$
 - Aszimptotikusan nincs jelentősége a logaritmus alapjának, viszont ha másodlagos háttértárról olvasunk, számíthat

- B-fákba is levélként szúrunk be
- ullet 2t méretű csúcsba beszúrva, 2t+1 méretű csúcsot kapunk

- B-fákba is levélként szúrunk be
- 2t méretű csúcsba beszúrva, 2t+1 méretű csúcsot kapunk a "középső" elem mentén kettévágva éppen 2t méretű csúcsunk lesz (a középső elemet küldjük föl az ősbe)
- Szükség szerint ismételjük az előző lépést

- B-fákba is levélként szúrunk be
- 2t méretű csúcsba beszúrva, 2t+1 méretű csúcsot kapunk a "középső" elem mentén kettévágva éppen 2t méretű csúcsunk lesz (a középső elemet küldjük föl az ősbe)
- Szükség szerint ismételjük az előző lépést

- B-fákba is levélként szúrunk be
- 2t méretű csúcsba beszúrva, 2t+1 méretű csúcsot kapunk a "középső" elem mentén kettévágva éppen 2t méretű csúcsunk lesz (a középső elemet küldjük föl az ősbe)
- Szükség szerint ismételjük az előző lépést

- Kulcs törlése t méretű csúcsból t-1 méretűvé teheti azt
- Itt is megelőzővel helyettesítünk
- Két eset lehetséges
 - Szomszédtól kölcsönzünk, ha rendelkezik felesleggel (azaz > t méretű)
 - Összeolvasztjuk a kritikusan kicsi csúcsot a (kölcsönadni nem tudó) szomszéddal $\Rightarrow t+(t-1)+1=2t$ méretű csúcs jön létre

Összegzés

- A bináris keresőfák műveletei O(h) idejűek
- Legrosszabb esetben azonban n is lehet a fák magassága $(\Theta(\log n) \text{ helyett})$
- Kiegyensúlyozott keresőfák használatával garantálható, hogy a keresőfa kiegyensúlyozottsága sose romoljon el "túlságosan"

