电类工程学导论 C 实验报告 8

518030910406 郑思榕

一、 实验准备

- 1. 实验环境介绍
 - a) 环境:在 windows 系统中使用 VirtualBox 5.2.18 安装 Ubuntu14.04 虚拟机,从而在 UNIX 系统环境下进行本次实验。
 - b) 工具:本实验主要使用了分布式系统基础架构 Hadoop
- 2. 实验目的
 - a) 练习使用基础的 hadoop 命令来填写下列表格:

Number of Maps	Number of samples	Time(s)	π
2	10		
5	10		
10	10		
2	100		
10	100		

- b) 找到一个解决方法使得计算得出的π近似到小数点后五位
- 3. 实验原理

利用 Hadoop 自带的π计算程序进行计算。该程序模拟投掷飞镖的过程,当在单位正方形内做内切圆,在正方形内随机投掷飞镖,则单位正方形面积:单位内切圆面积=单位正方形内的飞镖数:内切圆内的飞镖数,记该比值为 k。应用圆面积=1/4*π*r*r 可以得到 k=(r*r)/ (1/4*π*r*r), 所以π=4/k。

二、实验过程

1. ex1

当安装好 hadoop 并配置好相关的环境变量后, 使用 start-dfs.sh 和 start-yarn.sh 打开运行 Hadoop。 然后使用下面的命令运行 Hadoop 自带的计算π的程序。其中 jar 为运行一个 jar 文件。<nMaps>

\$ hadoop jar /usr/local/hadoop/share/hadoop/mapreduce/hadoop-mapreduceexamples-2.7.3.jar pi <nMaps> <nSamples>

为 mapper 任务的数量,<nSamples>为每个 mapper 任务里要投掷的飞镖数,这两个量分别对应 表格里的 Number of Maps 和 Number of samples。所以,当输入<nMaps>和<nSamples>的值分 别为 2 和 10,得到结果如下图:

> Job Finished in 27.81 seconds Estimated value of Pi is 3.80000000000000000000

当运行完五个例子,得到最终表格如下图。可以见到 Number of Maps 增大时,运行时间大幅增加,

Number of Maps	Number of samples	Time(s)	π
2	10	24.852	3.80000000 000000000 0
5	10	32.283	3.280000000 0000000000 0
10	10	39.915	3.20000000 000000000 0
2	100	21.647	3.1200000000 0000000000
10	100	41.782	3.148000000 0000000000 0

Number of samples 增大时,运行时间较小幅度增加。两者增大时, π 的计算精度提高。

2. ex2

要想至少得到小数点后五位的π估计值,需要同时提高<nMaps>和<nSamples>的值。所以输入二者分别为 100 和 1000000,输入命令并运行,得到结果如下图。

三、 实验总结

1. 实验概述

本实验通过 Hadoop 自带的 map/reduce 程序 pi 来计算 π 。该程序通过 quasi-Monte Carlo 方法模拟随机投掷飞镖的过程来计算 pi。随着<nMaps>和<nSamples>的提高,运行时间提高,计算得到的 π 的精度也提高。

2. 实验心得

- a) 认识了解了 Hadoop 的 map 和 reduce 的过程。
- b) 学会了 Hadoop 的基本操作。

c) 学会了如何运用 Hadoop 自带的 pi 计算程序来计算 pi 值。

最后, 衷心感谢实验中老师和各位助教的帮助!