

Applications

- High Efficiency Synchronous Rectification in SMPS
- Uninterruptible Power Supply
- High Speed Power Switching
- Hard Switched and High Frequency Circuits

Benefits

- Improved Gate, Avalanche and Dynamic dV/dt Ruggedness
- Fully Characterized Capacitance and Avalanche SOA
- Enhanced body diode dV/dt and dI/dt Capability
- Lead-Free

HEXFET® Power MOSFET

V_{DSS}		100V
R _{DS(on)}	typ.	9.3m Ω
	max.	11.6m Ω
I _D		103A

G	D	S
Gate	Drain	Source

Absolute Maximum Ratings

Symbol	Parameter	Max.	Units
$I_D @ T_C = 25^{\circ}C$	Continuous Drain Current, V _{GS} @ 10V	103	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	73	А
I _{DM}	Pulsed Drain Current ②	410	
$P_D @ T_C = 25^{\circ}C$	Maximum Power Dissipation	333	W
	Linear Derating Factor	2.2	W/°C
V_{GS}	Gate-to-Source Voltage	± 20	V
dv/dt	Peak Diode Recovery ④	23	V/ns
T_J	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	

Avalanche Characteristics

E _{AS}	Single Pulse Avalanche Energy (Thermally Limited) ②	460	mJ
I _{AR}	Avalanche Current ①	See Fig. 14, 15, 22a, 22b	Α
E _{AR}	Repetitive Avalanche Energy ①		mJ

Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units	
$R_{\theta JC}$	Junction-to-Case ® ®		0.50	°C/W	
$R_{\theta JA}$	Junction-to-Ambient (PCB Mount) ⑦		40		

Static @ T_J = 25°C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
$V_{(BR)DSS}$	Drain-to-Source Breakdown Voltage	100			V	$V_{GS} = 0V, I_{D} = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		0.10	—	V/°C	Reference to 25°C, I _D = 1.0mA①
R _{DS(on)}	Static Drain-to-Source On-Resistance		9.3	11.6	mΩ	$V_{GS} = 10V, I_D = 62A $ ④
$V_{GS(th)}$	Gate Threshold Voltage	2.0	—	4.0	V	$V_{DS} = V_{GS}$, $I_D = 250\mu A$
gfs	Forward Transconductance	110			S	$V_{DS} = 25V, I_{D} = 62A$
R_G	Internal Gate Resistance		2.2		Ω	
I _{DSS}	Drain-to-Source Leakage Current			20	μΑ	$V_{DS} = 100V, V_{GS} = 0V$
				250		$V_{DS} = 100V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			200	nA	V _{GS} = 20V
	Gate-to-Source Reverse Leakage			-200		V _{GS} = -20V

Dynamic @ T_J = 25°C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
Q_g	Total Gate Charge		100	150	nC	$I_D = 62A$
Q_{gs}	Gate-to-Source Charge		23		1	V _{DS} =50V
Q_{gd}	Gate-to-Drain ("Miller") Charge		42			V _{GS} = 10V ④
Q _{sync}	Total Gate Charge Sync. (Q _g - Q _{gd})		58		1	$I_D = 62A, V_{DS} = 0V, V_{GS} = 10V$
t _{d(on)}	Turn-On Delay Time		15		ns	$V_{DD} = 65V$
t _r	Rise Time		55	—	1	$I_D = 62A$
t _{d(off)}	Turn-Off Delay Time		77	—	1	$R_G = 2.7\Omega$
t _f	Fall Time		43		1	V _{GS} = 10V ④
C _{iss}	Input Capacitance		5380		pF	$V_{GS} = 0V$
C _{oss}	Output Capacitance		690			$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		100		1	f = 1.0 MHz, See Fig. 5
C _{oss} eff. (ER)	Effective Output Capacitance (Energy Related)		560			$V_{GS} = 0V$, $V_{DS} = 0V$ to 80V $©$, See Fig. 11
C _{oss} eff. (TR)	Effective Output Capacitance (Time Related)		750			$V_{GS} = 0V$, $V_{DS} = 0V$ to $80V$ \bigcirc

Diode Characteristics

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			103	Α	MOSFET symbol
	(Body Diode)					showing the
I _{SM}	Pulsed Source Current			410	Α	integral reverse
	(Body Diode) ②					p-n junction diode.
V_{SD}	Diode Forward Voltage			1.3	V	$T_J = 25^{\circ}C, I_S = 62A, V_{GS} = 0V \oplus$
t _{rr}	Reverse Recovery Time		110		ns	$T_J = 25$ °C $V_R = 85V$,
			120			$T_J = 125^{\circ}C$ $I_F = 62A$
Q _{rr}	Reverse Recovery Charge		570		nC	$T_J = 25^{\circ}C$ di/dt = 100A/ μ s \oplus
			710		l	$T_J = 125$ °C
I _{RRM}	Reverse Recovery Current		-9.5		Α	$T_J = 25^{\circ}C$
t _{on}	Forward Turn-On Time	Intrins	ic turn-	on time	is neg	ligible (turn-on is dominated by LS+LD)

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Limited by T_{Jmax} , starting $T_{J} = 25$ °C, L = 0.24mH $R_G = 50\Omega$, $I_{AS} = 62A$, $V_{GS} = 10V$. Part not recommended for use above this value.
- $\label{eq:loss_def} \mbox{ } \mbox{I}_{SD} \leq 62\mbox{A}, \mbox{ di/dt} \leq 1935\mbox{A/\mu s}, \mbox{ } \mbox{V}_{DD} \leq \mbox{V}_{(BR)DSS}, \mbox{ } \mbox{T}_{J} \leq 175\mbox{°C}.$
- 4 Pulse width $\leq 400 \mu s$; duty cycle $\leq 2\%$.
- © Coss eff. (TR) is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS} .
- $\ \, \mbox{\ensuremath{\mathbb{G}}} \ \, \mbox{\ensuremath{\mathbb{C}}}_{\mbox{\scriptsize oss}} \ \mbox{\scriptsize eff.} \ \mbox{\ensuremath{\mathbb{C}}} \mbox{\ensuremath{\mathbb{C}}} \mbox{\scriptsize is a fixed capacitance that gives the same energy as}$ C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS} .
- ② When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994.
- & R_{θ} is measured at T_J approximately 90°C.

Submit Datasheet Feedback

Fig 1. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

Fig 2. Typical Output Characteristics

Fig 4. Normalized On-Resistance vs. Temperature

Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

 T_C , Case Temperature (°C) Fig 9. Maximum Drain Current vs. Case Temperature

Fig 11. Typical C_{OSS} Stored Energy

Fig 8. Maximum Safe Operating Area

Fig 10. Drain-to-Source Breakdown Voltage

Fig 12. Maximum Avalanche Energy vs. DrainCurrent

Fig 13. Maximum Effective Transient Thermal Impedance Junction-to-Case

Fig 14. Typical Avalanche Current vs. Pulse Width

Fig 15. Maximum Avalanche Energy vs. Temperature

Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com)

- 1. Avalanche failures assumption:
- Purely a thermal phenomenon and failure occurs at a temperature far in excess of T_{jmax}. This is validated for every part type.
- 2. Safe operation in Avalanche is allowed as long asT_{imax} is not exceeded.
- 3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.
- 4. P_{D (ave)} = Average power dissipation per single avalanche pulse.
- 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche).
- 6. I_{av} = Allowable avalanche current.
- 7. ΔT = Allowable rise in junction temperature, not to exceed T_{jmax} (assumed as 25°C in Figure 13, 15).
- tav = Average time in avalanche.
- D = Duty cycle in avalanche = $t_{av} \cdot f$
- $Z_{thJC}(D, t_{av})$ = Transient thermal resistance, see Figures 13)

$$\begin{split} P_{D \text{ (ave)}} &= 1/2 \text{ (} 1.3 \cdot \text{BV} \cdot \text{I}_{av} \text{)} = \triangle \text{T/ Z}_{thJC} \\ I_{av} &= 2\triangle \text{T/ [} 1.3 \cdot \text{BV} \cdot \text{Z}_{th} \text{]} \\ E_{AS \text{ (AR)}} &= P_{D \text{ (ave)}} \cdot t_{av} \end{split}$$

5

Fig 16. Threshold Voltage vs. Temperature

Fig. 18 - Typical Recovery Current vs. dif/dt

Fig. 17 - Typical Recovery Current vs. dif/dt

Fig. 19 - Typical Stored Charge vs. dif/dt

Fig. 20 - Typical Stored Charge vs. dif/dt

Submit Datasheet Feedback

Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

Fig 22a. Unclamped Inductive Test Circuit

Fig 23a. Switching Time Test Circuit

Fig 24a. Gate Charge Test Circuit

Fig 22b. Unclamped Inductive Waveforms

Fig 23b. Switching Time Waveforms

Fig 24b. Gate Charge Waveform

Submit Datasheet Feedback

D²Pak (TO-263AB) Package Outline

Dimensions are shown in millimeters (inches)

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14,5M-1994
- 2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].

3\DIMENSION D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.127 [.005"] PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY AT DATUM H.

4. THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSION E, L1, D1 & E1.

5. DIMENSION 61 AND c1 APPLY TO BASE METAL ONLY.

- 6. DATUM A & B TO BE DETERMINED AT DATUM PLANE H.
- 7. CONTROLLING DIMENSION: INCH.
- 8. OUTLINE CONFORMS TO JEDEC OUTLINE TO-263AB.

S Y M		N			
B	MILLIM	ETERS	INC	HES	NOTES
L	MIN.	MAX.	MIN.	MAX.	S
Α	4.06	4.83	.160	.190	
A1	0,00	0.254	.000	.010	
b	0.51	0,99	.020	.039	
b1	0.51	0.89	.020	.035	5
b2	1,14	1.78	.045	.070	
b3	1,14	1.73	.045	.068	5
С	0.38	0.74	.015	.029	
c1	0.38	0.58	.015	.023	5
c2	1,14	1.65	.045	.065	
D	8.38	9.65	.330	.380	3
D1	6.86	-	.270		4
Ε	9.65	10.67	.380	.420	3,4
E1	6,22	-	.245		4
е	2,54	BSC	.100	BSC	
н	14.61	15.88	.575	.625	
L	1.78	2.79	.070	.110	
L1	-	1.65	-	.066	4
L2	1.27	1.78	-	.070	
L3	0.25	BSC	.010	.010 BSC	
L4	4,78	5.28	.188	.208	

LEAD ASSIGNMENTS

<u>HEXFET</u>

1.- GATE 2, 4.- DRAIN 3.- SOURCE

IGBTs, CoPACK

1.- GATE
2, 4.- COLLECTOR
3.- EMITTER

DIODES

1.- ANODE * 2, 4.- CATHODE 3.- ANODE

* PART DEPENDENT.

D²Pak (TO-263AB) Part Marking Information

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

8

D²Pak (TO-263AB) Tape & Reel Information

Dimensions are shown in millimeters (inches)

NOTES:

- 1. COMFORMS TO EIA-418.
- 2. CONTROLLING DIMENSION: MILLIMETER.
- 3 DIMENSION MEASURED @ HUB.
- (4) INCLUDES FLANGE DISTORTION @ OUTER EDGE.

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA
To contact International Rectifier, please visit http://www.irf.com/whoto-call/

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.