Numerical Exercise #1

Caspar Gutsche

October 30, 2024

1 Question #1

Figure 1: Analytical Solution for the neutron flux as a function of depth.

Flux values at the following locations (4 significant digits):

Flux value at x_0 : 13.5896 $cm^{-2}s^{-1}$

Flux value at 0^+ :12276.897875372839 $cm^{-2}s^-1$

2 Question #2

The differential Equation is given as

$$D\frac{d^2}{dx^2}\Phi - \Sigma_a\Phi = 0 \tag{1}$$

Right hand side

$$\frac{1}{dx^2}(D\phi_{n-1} - (D + dxBC_n + \Sigma_a dx^2)\phi_n) = 0$$

Left hand side:

$$\frac{1}{dx^{2}}(-(D + \Sigma_{a}dx^{2})\phi_{1} + D\phi_{2}) = -\frac{S}{2dx}$$

Middle:

$$\frac{D}{dx^2}(\Phi_{i-1} - 2\Phi_i + \Phi_{i+1}) - \Sigma_a \Phi_i = 0$$

Relationship between Φ_i , Φ_{i+1} , Φ_{i-1} at any point within the material:

$$D\frac{d^2}{dx^2}\Phi - \Sigma_a\Phi = 0 (2)$$

Coefficients of the matrix A (4 significant digits), for a mesh size of 0.1cm: Coef $A_{i,i} = -200.2411cm^{-2}$:

Coef $A_{i-1,i} = 99.9999cm^{-2}$:

Coef $A_{i+1,i} = 99.9999cm^{-2}$:

Relationship between Φ_i , $\Phi_{i-1/2}$, $\Phi_{i+1/2}$, at the source:

$$--$$
 (3)

at the RHS of the problem:

$$J_{x}^{-}\left(x_{n+\frac{1}{2}}\right) = 0 = \frac{1}{4}\Phi\left(x_{n+\frac{1}{2}}\right) + \frac{D}{2}\frac{d}{dx}\Phi$$

$$= \frac{\Phi_{n+\frac{1}{2}}}{4} + \frac{D}{2}\frac{\Phi_{n+\frac{1}{2}} - \Phi_{n}}{\frac{dx}{2}}$$
(5)

$$= \frac{\Phi_{n+\frac{1}{2}}}{4} + \frac{D}{2} \frac{\Phi_{n+\frac{1}{2}} - \Phi_n}{\frac{dx}{2}} \tag{5}$$

(6)

Associated coefficients of the matrix A (4 significant digits), for a mesh size of 0.1cm: at the source:

$$A_{1,1} = -100.2412cm^{-2} (7)$$

$$A_{1,2} = 100.0000cm^{-2} (8)$$

$$A_{2,1} = 100.0000cm^{-2} (9)$$

at teh right hand side:

$$A_{n,n} = -146.5724cm^{-2} (10)$$

$$A_{n-1,n} = 100.0000cm^{-2} (11)$$

$$A_{n,n-1} = 100.0000cm^{-2} (12)$$

Question #3 3

Figure 2: Distance between the solutions at each mesh point for a mesh size of 0.1 cm.

Flux values from the numerical solver at the following locations (4 significant digits): Flux value at $0^+=11979.0980cm^{-2}s^{-1}$: Flux value at $x_0=17.732cm^{-2}s^{-1}$:

Figure 3: Evolution with mesh size of the absolute error of $\Phi(x_0)$.

Figure 4: Evolution with mesh size of the absolute error of $\Phi(x_0)$.

In figure 3 you can see the sum of the errors and in 4 you can see the maximum deviation from the reference solution.