Fenómenos de Transferência II

1. Num estudo experimental de absorção de SO_2 em água numa coluna de parede molhada determinou-se para K_G o valor de 0.768 kmol $h^{\text{-}1}$ $\text{m}^{\text{-}2}$ at $\text{m}^{\text{-}1}$ a 20^{o} e à pressão atmosférica. Não sendo a absorção de SO_2 controlada nem pelo filme gasoso nem pelo filme líquido, pode considerar-se que $\frac{1}{k_G} = \frac{H}{k_I}$.

Sabendo que o valor de K_G para absorção de NH_3 em água a $10^{\circ}C$ na mesma aparelhagem e com os mesmos caudais de gás e água é 2.217 kmole h^{-1} m^{-2} at m^{-1} , calcule a constante α na equação:

 $k_G = A (D_G)^{\alpha}$ em que D_G é o coeficiente de difusão do gás no ar.

- coeficiente de difusão de SO_2 em ar a 20° C, $D_{SO_2} = 0.041 \text{ m}^2/\text{h}$
- -coeficiente de difusão de NH₃ em ar a 10° C, $D_{NH_3} = 0.083 \text{ m}^2/\text{h}$

$$\frac{H_{SO_2}}{H_{NH_3}} = \frac{1}{0.018} \qquad \frac{D_{SO_2}/H_2O}{D_{NH_3}/H_2O} \cong 1$$

2. Ar e água são postos em contacto em contracorrente numa coluna de parede molhada de 30 mm de diâmetro.

Para a fase gasosa sabe-se que:

$$Sh = 0.023 \text{ Re}^{0.8} Sc_6^{0.44}$$

Mostre que na fase líquida, a quantidade transferida por unidade de tempo e por unidade de área de interface é k_L C_L $(x_i - x)$ Kmol/m² s; x_i e x são respectivamente as fracções molares de soluto na interface e na fase líquida, C_L a concentração molar de água $(C_L = 1000/18 \text{ kmol/m}^3)$ e k_L m/s.

Então mostre ainda que, com K_G e k_G em m/s, e H nas unidades em que é dado na

tabela
$$\frac{1}{K_G} = \frac{1}{k_G} + \frac{10^5 \text{ H}}{k_L C_L \text{ RT}}$$

Em experiências de desabsorção de oxigénio verificou-se que para a fase líquida $k_L=0,2$ mm/s.

Admitindo $k_L \alpha \sqrt{D_L}$, calcule o coeficiente global de transferência K_G quando o ar contém pequenas quantidades de a) NH₃, b) SO₂, c) CO₂ e a velocidade do ar é 0,40 m/s a uma pressão de 5×10^5 Pa e à temperatura de 20° c.

Dados: (a 20°C)

Gás	H(10 ⁵ Pa)	Sc _G	$D_L \times 10^9 (m^2/s)$
NH ₃	0,62	0,6	1,6
SO_2	12,2	1,3	1,4
CO_2	1420	1,0	1,7
O_2			2,1

Para o ar, $\mu = 1.84 \times 10^{-5} \text{ Ns m}^{-2}$

3. Experiências de absorção de SO_2 realizadas numa coluna de parede molhada, alimentada com um caudal de água constante, forneceram os seguintes resultados:

Caudal molar de gás	K _G	
(kmol/s)	(kmol/m²s Pa)	
0.04	8.4 x 10 ⁻⁵	
0.10	10 x 10 ⁻⁵	

- a) Para um caudal de gás de 0.5 kmol/s calcule o coeficiente global, K_G e os coeficientes individuais de transferência de massa, k_G e k_L .
- b) Calcule a percentagem de resistência exercida por cada uma das fases.

$$H = 20 \frac{\text{Pa m}^3}{\text{kmol}}$$
$$k_{_{G}} \propto \text{Re}_{G}^{0.8}$$

1. Num estudo experimental de absorção de SO_2 em água numa coluna de parede molhada determinou-se para K_G o valor de 0.768 kmol $h^{\text{-}1}$ $m^{\text{-}2}$ at $m^{\text{-}1}$ a 20° e à pressão atmosférica. Não sendo a absorção de SO_2 controlada nem pelo filme gasoso nem pelo filme líquido, pode considerar-se que $\frac{1}{k_G} = \frac{H}{k_I}$.

Sabendo que o valor de K_G para absorção de NH_3 em água a 10°C na mesma aparelhagem e com os mesmos caudais de gás e água é 2.217 kmole h^{-1} m^{-2} at m^{-1} , calcule a constante α na equação:

 $k_G = A (D_G)^{\alpha}$ em que D_G é o coeficiente de difusão do gás no ar.

- coeficiente de difusão de SO_2 em ar a 20° C, $D_{SO_2} = 0.041$ m²/h
- -coeficiente de difusão de NH₃ em ar a 10° C, $D_{NH_3} = 0.083 \text{ m}^2/\text{h}$

$$\frac{H_{SO_2}}{H_{NH_3}} = \frac{1}{0.018}$$
 $\frac{D_{SO_2}/H_2O}{D_{NH_3}/H_2O} \cong 1$

KG= 2,217 Knol NMs Nuratur P= 1 cefun KG= AD PP

D 302 = 0,041 m2

DN43=0,083 m2

$$\frac{1}{7.217} = \frac{1}{K_{GNH_3}} + \frac{0.018}{1.53}$$

$$K_{GNH_3} = \left(\frac{1}{2.217} - \frac{0.018}{1.53}\right)^{\frac{1}{2}}$$

$$= 2.27 \frac{K_{mal}}{h.m^2 a lm}$$

$$K_{GSO_2} = \frac{1}{0.65} = 1.53 \frac{K_{mal}}{h.m^2 a lm}$$

$$1.53 = A \left(0.041\right)^{\alpha}$$

$$2.27 = A \left(0.083\right)^{\alpha}$$

$$0.674 = \left(0.494\right)^{\alpha}$$

$$7,27 = A(0,083)$$
 $0,674 = (0,494)$
 $0,394 = 0,705 \times 2$
 $0,394 = 0,56$

K1=0,2x(53 m Kn x JDL I = 105 A KG KCLRT a Para NA3.