SECOND SEMESTER 2020-21 COURSE HANDOUT

Date: 15.01.2021

In addition to part I (General Handout for all courses appended to the Time table) this portion gives further specific details regarding the course.

Course No : CHEM F241

Course Title : Inorganic Chemistry-II
Instructor-in-Charge : SUROJIT PANDE

Instructor(s) :-

1. Course Description:

Coordination Chemistry: Bonding - Valence Bond, Crystal Field, and Molecular Orbital theories; Complexes - nomenclature, isomerism, coordination numbers, structure, electronic spectra, magnetic properties, chelate effect; Reactions - nucleophilic substitution reactions, kinetics, mechanisms; descriptive chemistry of Lanthanides and Actinides; Organometallic Chemistry: structure and reaction of metal carbonyls, nitrosyls, dinitrogens, alkyls, carbenes, carbynes, carbides, alkenes, alkynes, and metallocenes; catalysis by organometallic compounds; stereochemically non-rigid molecules.

2. Scope and Objective of the Course:

Throughout the semester representative topics from inorganic chemistry will be discussed to expose the students to the theories of bonding, electronic spectra and magnetic properties of complexes, reactions of metal complexes, detailed description of organometallic compounds and chemistry of lanthanides and actinides. Various theories such as VBT, CFT followed by MOT will explain many topics encompassed by electronic spectra, magnetic properties and finally in organometallic complexes in the field of Inorganic Chemistry. However, we will strive in this course to address the most important theories and applications of Inorganic Chemistry with the state of the art level which may motivate the students towards research.

By the end of the semester, you will be able to

- Predict structure and geometry of inorganic complex
- Envisage spinel structure and chelate effect
- Learn the application of character table
- Investigate the origins of color and transitions in inorganic complexes
- Indentify the magnetic properties of inorganic compounds
- Be familiar with the organometallic reactions, mechanism, structure & bonding, catalytic properties
- Explore the chemistry of bridging ligands
- Be trained in *f*-block elements from the periodic table

3. Text Books:

T1. "Inorganic Chemistry – Principles of Structure and Reactivity" Huheey, J. E.; Keiter, E. A.; Keiter, R. L.; Medhi O. K.; 4th Edition, Pearson.

4. Reference Books:

- **R1.** "Chemical Applications of Group Theory", F. Albert Cotton, 3rd Edition; A Wiley Interscience Publication
- **R2.** "Concise Inorganic Chemistry", Lee, J.D. 5th Edition, Wiley India Edition.
- **R3.** "Inorganic Chemistry", Shriver, D.F.; Atkins, P.W.; Overton T. L., Rourke, J. P., Weller, M. T., Armstrong, F. A. 4th edition, Oxford.

5. Course Plan:

Module No.	Lecture Session	Reference	Learning
			outcomes
1: Crystal Field	L 1.1: Crystal field splitting; d orbitals	T1: 428-444	Structure
Theory	in different crystal fields		prediction of
	L 1.2-1.3: applications of CFT such as		complexes using
	predicting stability of spinels		CFT
	T1: Exercise based on CFT		
2: Character Table	L 2.1: Reducible and Irreducible	T1: 52-65	Application of
and its Applications	Representations	R1: 17-29;	character table,
	L 2.2 Character Tables	R1: 44-50;	Verification of
	L 2.3 Optical Activity, Dipole	R1: 54-61;	the optical
	Moments	R1: 304-	activity, dipole
	L 2.4-2.5 Infrared and Raman	317;	moment, IR and
	Spectroscopy, Bonding	R1: 328-337	Raman activity of
	T2: Exercise based on applications of		compounds using
	Character table		group theory
3: MO theory of	L 3.1- 3.3: σ MO diagrams of	T1: 444-459	Structure
Coordination	octahedral, Tetrahedral and sq. planar	R1: 209-230	elucidation using
Compounds	complexes		MOT
	L 3.4-3.5: π MOs relation to crystal		
	field splitting		
	T3: Exercise based on MO theory		
4: Electronic spectra	L 4.1-4.3: Term symbols; d-d	T1: 461-475	Predicting the
of complexes	transitions	R1:253-281	electronic
	L 4.4-4.6: Tanabe-Sugano diagrams		transitions in a
	T4: Exercise based on electronic		complex;
	spectra		Investigate the
5: Octahedral	L 5.1: Stability through distortions	T1: 475-485	origins of color
distortion; charge	L 5.2: Allowed charge transfer		and transitions in
transfer	transitions	_	inorganic
	T5: Exercise based on distortion		complexes
6: Coordination	L 6.1: Nomenclature; Geometry of the	R2: 230-232	Naming the
Chemistry:	complexes based on coordination	T1: 495-506	coordination
Structure	number	T1: 508-511	complexes
		T1: 520-526	
7: Coordination	L 7.1: Geometrical and Optical	T1: 507-508	Identification of
Chemistry:	isomerism, Linkage, Ligand,	T1: 511-520	geometrical and
Isomerism &	Ionization, Solvate, Coordination	T1: 526-539	optical isomers
Chelate Effect	isomerism, Stabilization due to	R2: 232-236	possible for a
	entropy factors and electron	R3-225-229	given formula.
0.34	delocalization in the rings	TT1 407 403	T1 .'C .1
8: Magnetic	L 8.1: Para, ferro and antiferro-	T1: 485-492	Identify the
Properties of	magnetisms; Spin transitions	R3-544-546	magnetic
Complexes	T6: Exercise based on nomenclature,		properties of
	isomerism and magnetic properties		inorganic

		compounds
L 9.1: Substitution reactions in square planar complexes L 9.2: Trans Effect, Thermodynamic	T1: 542-569 R3: 551-576	Predict the reaction mechanisms of
L 9.3: Kinetics of Octahedral Substitution L 9.4: Mechanism of Redox reactions T 7: Exercise based on substitution		square planar and octahedral complexes
L 10.1: The 18 electron rule, Preparation & properties of carbonyl complexes	T1: 572-600	
L 10.2: Polynuclear Carbonyl Complexes; Carbonylate ions; Carbonyl hydride complexes; Parallels with non-metal chemistry		Be familiar with the organometallic compounds,
L 11.1: Terminal and Bridging ligands; Geometry of complexes T8: Exercise based on metal carbonyl, nitrosyl and dinitrogen complexes	T1: 601-606	structure & bonding
L 12.1: Synthesis; Structure of ligands in complexes; Orbital representations of Fischer and Schrock Carbenes; structural examples of carbido complexes:	T1: 606-615	
L 13.1: Molecular Orbitals of Metallocenes; Structures and Synthesis of Cyclopentadienyl compounds; Covalent versus ionic bonding; Arene complexes; Cycloheptatriene and tropylium complexes; Cyclooctatetraene and Cyclobutadiene complexes.	T1: 615-627	
carbenes, carbynes, carbides and metallocene	T1 (24 (40	0. 1
carbonyl complexes; Ligand Cone Angles; Oxidative Addition and Reductive Elimination; Insertion and Elimination L 14.2: Nucleophilic and electrophilic attack of coordinated ligands, Carbonylate anions as nucleophiles	T1: 634-649	Study the mechanism, catalytic properties of organometallic complexes Explore the chemistry of bridging ligands
	planar complexes L 9.2: Trans Effect, Thermodynamic and Kinetic Stability L 9.3: Kinetics of Octahedral Substitution L 9.4: Mechanism of Redox reactions T 7: Exercise based on substitution reactions L 10.1: The 18 electron rule, Preparation & properties of carbonyl complexes L 10.2: Polynuclear Carbonyl Complexes; Carbonylate ions; Carbonyl hydride complexes; Parallels with non-metal chemistry L 11.1: Terminal and Bridging ligands; Geometry of complexes T8: Exercise based on metal carbonyl, nitrosyl and dinitrogen complexes L 12.1: Synthesis; Structure of ligands in complexes; Orbital representations of Fischer and Schrock Carbenes; structural examples of carbido complexes; L 13.1: Molecular Orbitals of Metallocenes; Structures and Synthesis of Cyclopentadienyl compounds; Covalent versus ionic bonding; Arene complexes; Cycloheptatriene and tropylium complexes; Cyclooctatetraene and Cyclobutadiene complexes. T9: Exercise based on metal alkyls, carbenes, carbynes, carbides and metallocene L 14.1: Substitution reactions in carbonyl complexes; Ligand Cone Angles; Oxidative Addition and Reductive Elimination; Insertion and Elimination L 14.2: Nucleophilic and electrophilic attack of coordinated ligands,	planar complexes L 9.2: Trans Effect, Thermodynamic and Kinetic Stability L 9.3: Kinetics of Octahedral Substitution L 9.4: Mechanism of Redox reactions T 7: Exercise based on substitution reactions L 10.1: The 18 electron rule, Preparation & properties of carbonyl complexes L 10.2: Polynuclear Carbonyl Complexes; Carbonylate ions; Carbonyl hydride complexes; Parallels with non-metal chemistry L 11.1: Terminal and Bridging ligands; Geometry of complexes T8: Exercise based on metal carbonyl, nitrosyl and dinitrogen complexes L 12.1: Synthesis; Structure of ligands in complexes; Orbital representations of Fischer and Schrock Carbenes; structural examples of carbido complexes; L 13.1: Molecular Orbitals of Metallocenes; Structures and Synthesis of Cyclopentadienyl compounds; Covalent versus ionic bonding; Arene complexes; Cycloheptatriene and tropylium complexes; Cyclocatetraene and Cyclobutadiene complexes. T9: Exercise based on metal alkyls, carbenes, carbynes, carbides and metallocene L 14.1: Substitution reactions in carbonyl complexes; Ligand Cone Angles; Oxidative Addition and Reductive Elimination; Insertion and Elimination L 14.2: Nucleophilic and electrophilic attack of coordinated ligands, Carbonylate anions as nucleophiles

1			
	organometallic complexes		
15: Catalysis by organometallic compounds	L 15.1: Alkene hydrogenation; Tolman Catalytic Loops; Synthesis Gas; Hydroformylation; Monsanto Acetic acid process L 15.2: The Wacker Process; Synthetic Gasoline; Ziegler-Natta Catalysis; Immobilized homogeneous catalyst; photodehydrogenation catalyst T11: Exercise based on catalysis by organometallic compounds	T1: 649-661	
16:	L 16.1: Fluxional molecules,	T1: 196-202	Study of dynamic
Stereochemically	Techniques to study Fluxional		molecular
non-rigid molecules	molecules		structure
17: The Lanthanides	L 17.1: Stable oxidation states;	T1: 407-	f-block elements
and Actinides	Lanthanide and Actinide Contractions,	419	and their unique
	the f orbitals,		properties
	L 17.2: Absorption Spectra; Magnetic		
	Properties; Coordination Chemistry;		
	Lanthanide Chelates; Transactinide		
	elements; Periodicity of		
	Translawrencium elements	-	
	T12: Exercise based on		
	Stereochemically non-rigid molecules, lanthanides and actinides		
	ranulamues and acumues		

6. Evaluation Scheme:

Component	Duration	Weightage	Date & Time
		(%)	
Mid-Semester Test	90 min	30%	<test_ms></test_ms>
Tutorials* (Quiz/Assignment)		30%	Continuous
Comprehensive Examination	120 min	40%	<test_c></test_c>

^{*}Tutorials: The tutorial hour will be used for a quick review of the highlights of the material covered in the lectures, clarification of doubts, and problem solving and conducting tests. Tutorial tests will be conducted through cloud instance of Nalanda only.

- 7. Chamber Consultation Hour: Thursday, 5.00 pm
- 8. Notices: Notices, if any, will be displayed on Nalanda website.
- 9. Make-up Policy: Make up would be considered only for genuine cases.
- 10. Note (if any): -

Instructor in-Charge CHEM F241