Memory Protection (HW)

Hvad er memory protection?

- MP bruges til at kontrollere memory access rettigheder.
- Hovedformålet er at **forhindre en process** i at tilgå hukommelse som ikke er blevet allokeret til den. -> forhindrer processen i at genere andre processer, eller selve OS.
- MP kan implementeres med MPU eller MMU.

Hvordan fungerer en MMU?

- MMU beskytter og styrer hukommelsen.
- Har virtuel hukommelse -> Flere programmer/processer kan tilgå samme adresse.
- Virtuel hukommelse er et memory, der er uafhængig af den fysiske hukommelse.
- MMU'en er en slags **oversætter**, der konvertere adresser af der er kompileret til at køre i virtuel hukommelse til den egentlige fysiske adresse. -> Programmer kan tilgå den samme virtuelle adresse fordi den bliver holdt forskellige steder.
- Translation Lookaside buffer (TLB):
 - Oversættelsen fra virtuel til fysisk adresse
 - Relocation register: Indeholder de sidst anvendte PTE (page table entries)
 - Hvis PTE ikke er gemt i Relocation register, hentes denne i page table i den fysiske hukommelse
 - Holder information omkring fysisk adresse, størrelse, rettigheder, cache

Hvordan laver man context switching vha. en MMU?

- Context switching vha. MMU:
 - Gem den aktive process's indhold og sleep den (dormant state)
 - Ryd cachen
 - Ryd TLB
 - Opdater med nye page tables
 - Genskab indholdet af den vågnende process og eksekver

Hvordan benytter Linux sig af en MMU?

Memory Protection (HW)

