Performance Metrics for Machine Learning

Sargur N. Srihari srihari@cedar.buffalo.edu

Topics

- 1. Performance Metrics
- 2. Default Baseline Models
- 3. Determining whether to gather more data
- 4. Selecting hyperparamaters
- 5. Debugging strategies
- 6. Example: multi-digit number recognition

Topics in Performance Metrics

- 1. Metrics for Regression: squared error, RMS
- 2. Metric for Density Estimation: KL divergence
- 3. Metrics for Classification: Accuracy
- 4. Metrics for Unbalanced data:
 - Loss, Specificity/Sensitivity
- 5. Metrics for Retrieval: Precision and Recall
- 6. Combining Precision and Recall: F-Measure
- 7. Metrics for Image Segmentation: Dice Coefficient

Metrics for Regression

• Sum of squares of the errors between the predictions $y(x_n, w)$ for each test data point x_n and target value t_n

$$E(\boldsymbol{w}) = \sum_{n=1}^{N} \{y(\boldsymbol{x}_n, \boldsymbol{w}) - t_n\}^2$$

- where w are M parameter weights such as those associated with M basis functions
- RMS error

$$E_{\rm RMS} = \sqrt{2E(\boldsymbol{w})\,/\,N}$$

Metric for Density estimation

- K-L Divergence
 - information required as a result of using $q(\mathbf{x})$ in place of $p(\mathbf{x})$

$$KL(p \mid\mid q) = -\int p(x) \ln q(x) dx - \left(\int p(x) \ln p(x) dx\right)$$
$$= -\int p(x) \ln \left\{\frac{p(x)}{q(x)}\right\} dx$$

- Not a symmetrical quantity: $KL(p||q) \neq KL(q||p)$
- K-L divergence satisfies KL(p||q)>0 with equality iff p(x)=q(x)

Metric for Classification

- For classification and transcription we often measure accuracy of the model
- Accuracy is proportion of examples for which the model produces the correct output
- Error rate: proportion of examples for which model produces an incorrect output
- Error rate is referred to as expected 0-1 loss
 - -0 if correctly classified and 1 if it is not

Loss Function

- Sometimes it is more costly to make one kind of mistake than another
- Ex: email spam detection
 - Incorrectly classifying legitimate message as spam
 - Incorrectly allowing a spam message to appear in in box
- Assign higher cost to one type of error
 - Cost of blocking legitimate message is higher than allowing spam messages

Summary of Loss Functions

• Given a prediction (p) and a label (y), a loss function measures the discrepancy between the algorithm's prediction and the desired output. Squared loss is the default

Loss	Function	Minimizer	Example usage
Squared	$\frac{1}{2}(p-y)^2$	Expectation (mean)	Regression Expected return on stock
Quantile	$\tau(y-p)\mathbb{I}(y\geq p)+(1-\tau)(p-y)\mathbb{I}(y\leq p)$	Median	Regression What is a typical price for a house?
Logistic	$\log(1+\exp(-yp))$	Probability	Classification Probability of click on ad
Hinge	$\max(0,1-yp)$	0-1 approximation	Classification Is the digit a 7?
Poisson		Counts (Log Mean)	Regression Number of call events to call center
Classic	Squared loss without importance weight aware updates	Expectation (mean)	Regression squared loss often performs better than classic.

Precision and Recall

Definitions for binary classification

	Correct Label=T	Correct Label=F
Classifier Label=T	TP	FP Type1 error
Classifier Label=F	FN Type 2 error	TN

Accuracy =
$$\frac{TP + TN}{TP + TN + FP + FN}$$
Precision =
$$\frac{TP}{TP + FP}$$
 Recall =
$$\frac{TP}{TP + FN}$$
F-measure ==
$$\frac{2}{\frac{1}{P} + \frac{1}{R}} = \frac{2PR}{P + R}$$

Classification examples

Classifier 2 is dumb: always outputs F. Yet has same accuracy as Classifier 1

Sample #	Correct Label	Classifier Label	1		Correct Label=T	Correct Label=F
1	F	F		Classifier	1 (TP)	1 (FP)
2	F	F		Label=T		
3	F	F		Classifier Label=F	0 (FN)	4 (TN)
4	F	F	Ac	curacy = 5	/ 6 = 83%	7
5	F	Т		ecision = 1	,	
6	T	Т	Re	call = 1/1	= 100%	
			F-r	measure = 1	2/3 = 66%	Ó

Sample #	Correct Label	Classifier 2 Label		Correct Label=T	Correct Label=F	
1	F	F	Classifier	0 (TP)	0 (FP)	
2	F	F	Label=T			
3	F	F	Classifier	1 (FN)	5 (TN	
4	F	F	Label=F			
5	F	F	Accuracy = 83%			
6	Т	F	Precision = $0/0$ = ? Recall = $0/1$ = 0%			
			Recall	= 0 / 1 = 0	70	
			F-meas	sure = ?		

Precision and Recall are useful when the true class is rare, e.g., rare disease. Same holds true in information retrieval when only a few of a large no. of documents are relevant

Precision-Recall in IR

Precision-Recall are evaluated w.r.t. a set of queries

Precision-Recall Curve

Thresh method: threshold *t* on similarity measure Rank Method: no of top choices presented Typical inverse relationship

Orange better than blue curve

Text to Image search

Experimental settings:

• $150 \times 100 = 15,000$ word images

- 10 different queries
- Each query has 100 relevant word images

Combined Measures of Precision-Recall

$$F = \frac{2}{\frac{1}{P} + \frac{1}{R}} = \frac{2PR}{P + R} \qquad \text{Harmonic mean of precision and recall High value when both P and R are high}$$

 $E = 1 - \frac{1}{\frac{u}{P} + \frac{1 - u}{R}} = 1 - \frac{PR}{(1 - u)P + uR}$ u = measure of relative importance of P and R $u = 1/(v^2 + 1)$

The coefficient u has range [0,1] and can be equivalently written as $E = 1 - \frac{(v^2 + 1)PR}{r^2 R + R}$

E-measure reduces to F-measure when precision and recall are equally weighted, i.e. v=1 or u=0.5

$$F = 1 - E = \frac{(v^2 + 1)PR}{v^2 P + R} = \frac{2PR}{P + R}$$

Example of Precision/Recall curve and F-measu

Best F-measure value is obtained when recall = 67% and precision = 50%

Arabic word spotting

Metric for Image Segmentation

Dice Coefficient

X = ROI output by model, a mask

Y = ROI produced by human expert

Metric is (twice) the ratio of the intersection over the sum of areas. It is 0 for disjoint areas, and 1 for perfect agreement.

E.g., model performance is written as 0.82 (0.23), where the parentheses contain the standard deviation.