CHECKPOINT 3

Projeto ETL – Dimensão Cliente por Faixa Etária (DBurger – Parte II)

Professor: Prof. Salvio Padlipskas

Turma: 2TSCPR

Grupo Insight Hunters:

- Diego Alves Moreira RM552603
- Guilherme Yuiti Matsushita Nakamura RM85355
- João Pedro de Souza Nunes RM: 554066

SÃO PAULO, 2025

FIAP - FACULDADE DE INFORMÁTICA E ADMINISTRAÇÃO PAULISTA

Sumário

1)	IN	NTRODUÇÃO	. 3
2)	P	REPARAÇÃO DO AMBIENTE	. 3
3)	D	ESENVOLVIMENTO	. 6
а	1)	Criação do Data Factory e Conexões	. 6
b))	Criando os Datasets	. 8
4)	14	^a ENTREGA	11
5)	2 ⁴	^a ENTREGA	12
а	1)	Populado as Dimensões	12
b))	Fato Venda	13
6)	3	^a ENTREGA	15
а	1)	VB_DIM_CLIENTE_INSIGHTHUNTERS	15
		VB_DIM_FAIXA_ETARIA_INSIGHTHUNTERS	
С		VB_FTO_VENDA_INSIGHTHUNTERS	

1) INTRODUÇÃO

Este trabalho tem como objetivo gerar um pipeline ETL robusto que:

- Calcule a idade dos clientes a partir da data de nascimento.
- Classifique cada cliente em uma faixa etária definida.
- Associe estratégias comerciais adequadas a cada faixa.
- Carregue os dados transformados em tabelas SQL para posterior análise e segmentação.

2) PREPARAÇÃO DO AMBIENTE

Primeiro preparamos o ambiente foi necessário criar as ferramentas em cloud que utilizaríamos no Azure Data Factory

Storage Account

FIAP - FACULDADE DE INFORMÁTICA E ADMINISTRAÇÃO PAULISTA

Enviando os dados de origem

Criando SQL Server via Script

```
-- SCRIPT PARA CRIAÇÃO DO SQL SERVER E BANCO SQL

-- Cria o SGBD Azure SQL chamado sqlserver-kidelicia
az sql server create -l brazilsouth -g cp3-dw -n kidelicia -u admsql -p
db@FIAP25 --enable-public-network true

-- Cria o banco de dados chamado dbinsighthuntersrm554066
az sql db create -g cp3-dw -s kidelicia -n dbinsighthuntersrm554066 --
service-objective Basic --backup-storage-redundancy Local --zone-
redundant false

-- Libera o acesso para qualquer endereço IP da rede (somente para testes
iniciais)
az sql server firewall-rule create -g cp3-dw -s kidelicia -n AllowAll --
start-ip-address 0.0.0.0 --end-ip-address 255.255.255
```

FIAP - FACULDADE DE INFORMÁTICA E ADMINISTRAÇÃO PAULISTA

Criando Data Factory

3) DESENVOLVIMENTO

a) Criação do Data Factory e Conexões

O *Data Factory* foi configurado para orquestrar os *pipelines*. A conexão com o *Storage Account* e o SQL Server garantiu a integração entre fontes de dados.

Em todos os passos habilitamos a virtualização para facilidade de ver os dados

Storage Account

ORACLE (Banco Fiap)

SQL Server

FIAP - FACULDADE DE INFORMÁTICA E ADMINISTRAÇÃO PAULISTA

b) Criando os Datasets

Para armazenar os dados brutos, foi criado um *Storage Account* no Azure, contendo dois containers: um para dados de entrada (*input*) e outro para saída (*output*).

Dados de entrada (input):

FaixaEtaria.xlsx

Dados de saída (output):

dim_cliente.csv

FIAP - FACULDADE DE INFORMÁTICA E ADMINISTRAÇÃO PAULISTA

DBURGER.V_DB_CLI_3O_CHECKPOINT

VB_FTO_VENDA_INSIGHTHUNTERS

VB_DIM_CLIENTE_INSIGHTHUNTERS

VB DIM FAIXA ETARIA INSIGHTHUNTERS

4) 1a ENTREGA

Primeiro criamos uma *Piperlines* para poder receber os dados da oracle executado a seguinte query:

```
SELECT * FROM DBURGER.V_DB_CLI_30_CHECKPOINT
WHERE SG_ESTADO = 'SP';
```

Fluxo Data Fatory

Verificação de dados

FIAP - FACULDADE DE INFORMÁTICA E ADMINISTRAÇÃO PAULISTA

Arquivos

5) 2ª ENTREGA

Para segunda entrega executamos o script "cria_vendebem.sql" os foi adaptado pela nossa equipe para que possa criar o seguinte modelo dimensional:

- VB_DIM_CLIENTE_INSIGHTHUNTERS
- VB_DIM_FAIXA_ETARIA_INSIGHTHUNTERS
- VB_FTO_VENDA_INSIGHTHUNTERS

a) Populado as Dimensões

Para receber os dados nas dimensões Cliente e Faixa Etária criamos o seguinte Fluxo:

FIAP - FACULDADE DE INFORMÁTICA E ADMINISTRAÇÃO PAULISTA

Fluxo Data Fatory

Verificação de dados

b) Fato Venda

Para finalizar criamos um fluxo de dados para tabela Fato Venda:

FIAP - FACULDADE DE INFORMÁTICA E ADMINISTRAÇÃO PAULISTA

Fluxo Data Fatory

Verificação de dados

6) 3ª ENTREGA

Para validamos tiramos os *prints* do banco de dados antes e depois de rodar o fluxo de dados:

a) VB_DIM_CLIENTE_INSIGHTHUNTERS

Query:

SELECT * FROM VB_DIM_CLIENTE_INSIGHTHUNTERS;

Antes:

Depois:

b) VB_DIM_FAIXA_ETARIA_INSIGHTHUNTERS

Query:

SELECT * FROM VB_DIM_FAIXA_ETARIA_INSIGHTHUNTERS;

Antes:

Depois:

c) VB_FTO_VENDA_INSIGHTHUNTERS

Query:

SELECT * FROM VB_FTO_VENDA_INSIGHTHUNTERS;

Antes:

Depois:

