КЕРАМИЧЕСКИЕ КОНДЕНСАТОРЫ МНОГОСЛОЙНЫЕ К10-17Б имп.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Конденсаторы керамические многослойные изолированные (окукленные) с однонаправленными выводами (радиальные) предназначены для работы в цепях постоянного, переменного и импульсного тока.

Тип диэлектрика	NPO (COG)	X7R	Y5V (Z5U)			
Температурный коэффициент (в диапазоне рабочих температур)	15% (-55+125 °C) +30%-80% (-25+85°C) +22%-56% (+10+85°C) +					
Тангенс угла потерь, макс.	0,15% +/-0,2	2,5% +/-0,2	3,5% +/-0,2			
(условия измерения)	(20 °C, 1МГц, 1В пост.)	(20°С, 1кГц, 1В пост.)	(20°С, 1кГц, 1В пост.)			
Рабочее напряжение, В пост. *		50				
Точность	С: +/-0,25 пФ J: +/-5%	M:+/-20%	S:-20+50%			

^{*} На заказ поставляются конденсаторы с рабочим напряжением 25, 100, 200, 500 и 1000 Вольт.

1206

1210

2225

0805

Размеры, мм

ТИПОРАЗМЕРЫ, ТИПЫ ДИЭЛЕКТРИКОВ И ДИАПАЗОН ПОСТАВЛЯЕМЫХ ЕМКОСТЕЙ

ТИПИЧНЫЕ ТЕМПЕРАТУРНЫЕ ЗАВИСИМОСТИ

NPO(COG) -используется в прецизионных цепях, в рабочем диапазоне емкость практически не зависит от температуры, времени, напряжения и частоты. TKE = $0 \pm 30 \cdot 10^{-6} 1/$ °C.

X7R- стабильный диэлектрик с предсказуемой температурной, частотной и временной зависимостью

Y5V(Z5Y)-имеет высокую диэлектрическую постоянную, используется в цепях общего применения.

ПОДБОР ДИЭЛЕКТРИКА

Выбор диэлектрика определяется требуемой температурной стабильностью схемы. Чем более стабильный диэлектрик - тем больше размеры конденсатора и тем он дороже.

Отечественное обозначение	Замена на:						
H10	X7R						
H20, H30, H50, H70, H90	Y5V(Z5Y)						
П33, МПО, M33	NP0(C0G)						
M47, M1500, П60, П100	NP0(C0G), X7R						

УПАКОВКА

Конденсаторы поставляются в пакетах по 1000 шт Возможна поставка на лентах для автоматизированного монтажа.

	Размеры,	ММ						,		1210		1812				2225	_
	F			5,0			5,0			5,0			5,0			5,0	
Н мин. L макс. W макс.			10,0			10,0			10,0			10,0			10,0	-	
			4,2			5,0			7,5			8,5			10,5	,	
			3,2			4,5			5,5			8,5			9,5	_	
	Т макс.			3,8			3,8			3,8			3,8			4,2	
	Емкость, пФ	Код	NP0	X7R	Y5V	NP0	X7R	Y5V	NP0	X7R	Y5V	NP0	X7R	Y5V	NP0	X7R	Ţ
	1	1R0															Τ
	10	100															Т
	12	120															Ť
	15	150															t
	18	180															t
	22	220															t
	27	270															t
	33	330															t
	39	390															t
	47	470		_													t
	56	560		\vdash											_		t
	68	680															+
	75	750		-													+
	82			_													+
		820		_													+
	100	101		-	-				-	_		-		-	-		+
	120	121		-								-					+
	150	151		_											-		+
	180	181		_					_			_			_		+
	220	221		_													1
	270	271		-				-	-			-		-	_		1
	330	331													_		+
	390	391			_							_		_	_		1
	470	471										_			_		1
	560	561															1
	680	681															1
	820	821															1
	1000	102															1
	1200	122															1
	1500	152															1
	1800	182															1
	2200	222															1
	2700	272															1
	3300	332															1
	3900	392															1
	4700	472															1
	5600	562															1
	6800	682															1
	8200	822															1
	0,010	103															L
	0,012	123															L
	0,015	153															L
	0,018	183															ı
	0,022	223															L
	0,027	273															ı
	0,033	333															ĺ
	0,047	473															ĺ
	0,056	563															L
	0,068	683															ſ
	0,082	823															ſ
	0,10	104															I
	0,12	124															I
	0,15	154															I
	0,18	184															I
	0,22	224															ı
	0,27	274															T
	0,33	334															ľ
	0,39	394															T
	0,47	474															Ť
	0,56	564															Ť
	0,68	684															T
	0,82	824															t
	1,0	105															f
	1,2	125															t
	1,5	155															t
	1,8	185															t
	2,2	225															t
	2,7	275															t
	3,3	335															t

на конденсатор