

Paroxysmal slow wave events as predictive markers for epilepsy

based on Zelig et al. research

Sol Amara

"Advanced topics in physiological signal processing"
March 2024

Background & Need

- **Epilepsy** is one of the most common neurological disorders in children and adults, characterized by the occurrence of spontaneous seizures. (Miller et al. 2014)
- The need: 1. Prediction Predicting epilepsy early may improve outcomes
 - 2. Diagnosis Diagnosing epilepsy is challenging

PSWE

Paroxysmal slow wave events (PSWEs) are defined as slow transient events, in which the network switches from apparently normal activity to brief periods of low-frequency activity.

MPF = median power frequency

In rats: MPF < 5 [Hz] for at least 10 consecutive seconds

In humans: MPF < 6 [Hz] for at least 5 consecutive seconds

At least two electrodes

Figure 1: ECoG signal and MPF per sec respectively. PSWE can be seen in the middle of the graph (in red) – when the MPF is less than 5 [Hz] for at least 10 [sec] (rats definition of PSWE).

Figure 2: MPF per sec respectively. PSWE can be seen in the middle of the graph (in red) – when the MPF is less than 6 [Hz] for at least 5 [sec] (humans definition of PSWE).

Previous studies:

- Occurrence per minute of PSWE is correlated to cognitive impairment (MMSE score)
- Occurrence per minute of PSWE was higher in Alzheimer's disease compares to controls in the same age
- PSWE more frequent and longer duration in epilepsy patient compared to controls

[1] Paroxysmal slow cortical activity in Alzheimer's disease and epilepsy is associated with blood-brain barrier dysfunction

- The occurrence of PSWE in early EEG from patients who later reported spontaneous seizures was significantly higher compared to seizures free patients and healthy controls
- Occurrence of PSWE predict epilepsy with AUC=0.72
- 72 hours after first seizure PSWEs have a high predictive value for epilepsy (0.82)

[2] Paroxysmal slow wave events predict epilepsy following a first seizure

Goals

The study aimed to confirm prior research suggesting certain PSWE features could forecast epilepsy, employing a logistic regression model capable of distinguishing between epilepsy and non-epilepsy.

Methods

- 184 Epilepsy + 154 non-epilepsy patients.
- Each patient had EEG data recorded using the conventional 10-20 method with 19 electrodes, with a minimum recording duration of 20 minutes.
- Fs: 250 Hz

- Pre-processing: Based on previous research
- 1. DC removal
- 2. BPF: 1-45 Hz
- 3. Reference to average

The features:

Based on the article:

- 1. Occurrence per minute
- 2. Mean MPF
- 3. Mean duration
- 4. Mean number of channels that pick up PSWEs

Additional features:

- 5. Energy: $E = \frac{1}{N} \sum_{n=1}^{N} x_n^2$ (assessment of signal strength)
- 6. Zero crossing: $ZC = \sum_{n=2}^{N} (x_n \cdot x_{n-1} \le 0)$ (estimation of instantaneous frequency)
- 7. Delta 0.5-3
- 8. Theta 3-8 Hz
- 9. Alpha 8-12 Hz
- 10. Beta 12-20 Hz

$$FT = \sum_{\text{all freq}} f_j \; ; \; \theta = \frac{1}{FT} \cdot \sum_{j=3}^{8} f_j$$

Classification model-logistic regression

80% train (separate to 80% train and 20% validation) and 20% test.

 Y_j (1 for epilepsy and 0 for non – epilepsy)

$$X_j = (x_{1j}, ... x_{Mj})$$
 – when M is the number of features

if
$$\pi(X_j) = P(Y_j = 1 | X_j) : \log\left(\frac{\pi(X_j)}{1 - \pi(X_j)}\right) = \beta_0 + \beta_1 x_{1j} + \dots + \beta_M x_{Mj}$$

$$\log P(\beta|Y,X) = \sum_{j=1}^{N} Y_j \cdot \log \pi(X_j) + (1 - Y_j) \cdot \log(1 - \pi(X_j))$$

$$\hat{\beta} = \arg \max \log P(\beta|Y,X)$$

Forward features selection algorithm

number of calculation =
$$\frac{1}{2}m(2d-m+1)$$

Optimal criterion: AUC

True positive rate = sensitivity

$$TPR = \frac{N_{TP}}{N_{TP} + N_{FN}}$$

False positive rate = (1- specificity)

$$FPR = \frac{N_{FP}}{N_{FP} + N_{TN}}$$

J optimal – maximum of the AUC

Results

The features that selected are: 'mean_MPF', 'mean_delta', 'mean_beta', 'Mean_duration'.

Figure 3: The AUC as function of the number of chosen features.

Results

Youden's J statistic: max (J); J = sensitivity + specificity - 1

Sensitivity = 0.8378, Specificity=0.667, AUC=0.7621

- 31 / 37 epileptic patients identified has epileptic.
- 21 / 31 non-epileptic patients identified has non-epileptic.

Figure 5: The ROC of the chosen model on the test data.

In red- the threshold that chosen using Youden J statistic.

Replicate the article model

Sensitivity = 0.7838, Specificity=0.5806, AUC=0.6459

- 29 / 37 epileptic patients identified has epileptic.
- 18 / 31 non-epileptic patients identified has non-epileptic.

Figure 6: The ROC of the chosen model on the test data. In red- the threshold that chosen using Youden J statistic.

Discussions

Article model	New model With 10 features and FFS
Sensitivity= 0.7838	Sensitivity=0.8378
Specificity=0.5806	Specificity=0.667
AUC=0.6459	AUC=0.7621
ODD ratio=8.79	ODD ratio=30.993

Differences in results from multiple runs

Conclusions and summary

- FFS identified four key features contributing to optimal model performance.
- Evaluation on validation data showed the model's effectiveness in distinguishing epilepsy from non-epilepsy cases.
- Model incorporating FFS demonstrated superior accuracy, sensitivity, and specificity.
- Model performance susceptible to data fluctuations or experimental conditions.
- Future studies include increasing dataset size or exploring alternative modeling approaches to enhance reliability.

Literature

[1]	R. S. Fisher et al., "ILAE Official Report: A practical clinical definition of epilepsy," Epilepsia, vol. 55, no. 4, pp. 475–482, 2014, doi: 10.1111/epi.12550.
[2]	J. W. Miller, H. P. Goodkin, S. Dickinson, and B. W. Abou-Khalil, <i>Epilepsy</i> . in Neurology in Practice. Chichester, England: Wiley, 2014.
[3]	E. Beghi, "The Epidemiology of Epilepsy," <i>Neuroepidemiology</i> , vol. 54, no. 2, pp. 185–191, 2020, doi: 10.1159/000503831.
[4]	O. Devinsky et al., "Epilepsy," Nat. Rev. Dis. Primer, vol. 4, no. 1, Art. no. 1, May 2018, doi: 10.1038/nrdp.2018.24.
[5] doi: 10.1684/epd.20	S. Beniczky and D. L. Schomer, "Electroencephalography: basic biophysical and technological aspects important for clinical applications," <i>Epileptic. Disord.</i> , vol. 22, no. 6, pp. 697–715, 2020, 20.1217.
[6]	L. Sörnmo, Bioelectrical signal processing in cardiac and neurological applications. in Biomedical Engineering. Boston; Elsevier Academic Press, 2005.
[7]	J. Engel Jr. and R. Surges, "Epilepsy Biomarkers," in The Treatment of Epilepsy, John Wiley & Sons, Ltd, 2015, pp. 103–109. doi: 10.1002/9781118936979.ch8.
[8]	J. Engel, A. Bragin, and R. Staba, "Nonictal EEG biomarkers for diagnosis and treatment," Epilepsia Open, vol. 3, no. Suppl Suppl 2, pp. 120–126, 2018, doi: 10.1002/epi4.12233.
[9]	J. Engel et al., "Epilepsy biomarkers," Epilepsia, vol. 54 Suppl 4, no. 0 4, pp. 61–69, Aug. 2013, doi: 10.1111/epi.12299.
[10] D. Z. Milikovsky <i>et al.</i> , "Paroxysmal slow cortical activity in Alzheimer's disease and epilepsy is associated with blood-brain barrier dysfunction," <i>Sci. Transl. Med.</i> , vol. 11, no. 521, p. eaaw8954, Dec. 2019, doi: 10.1126/scitranslmed.aaw8954.	
[11]	D. Zelig et al., "Paroxysmal slow wave events predict epilepsy following a first seizure," Epilepsia Cph., vol. 63, no. 1, pp. 190–198, 2022, doi: 10.1111/epi.17110.
[12]	"Tuh data."
[13]	"Makoto's preprocessing pipeline - SCCN." Accessed: Feb. 16, 2024. [Online]. Available: https://sccn.ucsd.edu/wiki/Makoto's_preprocessing_pipeline
[14]	D. Z. Milikovsky et al., "Paroxysmal Slow-Wave Events Are Uncommon in Parkinson's Disease," Sensors, vol. 23, no. 2, Art. no. 2, Jan. 2023, doi: 10.3390/s23020918.
[15]	A. Hyvärinen and E. Oja, "Independent component analysis: algorithms and applications," Neural Netw., vol. 13, no. 4, pp. 411–430, Jun. 2000, doi: 10.1016/S0893-6080(00)00026-5.
[16]	L. Kamintsky, "Seizure-triggered photorelease of caged GABA as a novel closed-loop approach for the treatment of epilepsy," Ben gurion, 2012.
[17]	"Logistic regression - Wikipedia." Accessed: Feb. 16, 2024. [Online]. Available: https://en.wikipedia.org/wiki/Logistic_regression