AD 648007

REPORT NUMBER 133 NOVEMBER 1963

# STRESS REPORT NOSE LANDING GEAR ASSEMBLY



ARCHIVE COPY

#### DDC AVAILABILITY NOTICES

- 1. Distribution of this document is unlimited.
- 2. This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of US Army Aviation Materiel Laboratories, Fort Eustis, Virginia 23604.
- 3. In addition to security requirements which must be met, this document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of USAAVLABS, Fort Eustis, Virginia 23604.
- 4. Each transmittal of this document outside the agencies of the US Government must have prior approval of US Army Aviation Materiel Laboratories, Fort Eustis, Virginia 23604.
- 5. In addition to security requirements which apply to this document and must be met, each transmittal outside the agencies of the US Government must have prior approval of US Army Aviation Materiel Laboratories, Fort Eustis, Virginia 23604.
- 6. Each transmittal of this document outside the Department of Defense must have prior approval of US Army Aviation Materiel Laboratories, Fort Eustis, Virginia  $23604\,$
- 7. In addition to security requirements which apply to this document and must be met, each transmittal outside the Department of Defense must have prior approval of US Army Aviation Materiel Laboratories, Fort Eustis, Virginia 23604.
- 8. This document may be further distributed by any holder <u>only</u> with specific prior approval of US Army Aviation Materiel Laboratories, Fort Eustis, Virginia 23604.
- 9. In addition to security requirements which apply to this document and must be met, it may be further distributed by the holder <u>only</u> with specific prior approval of US Army Aviation Materiel Laboratories, Fort Eustis, Virginia 23604.

#### DISCLAIMER

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as

in any manner licensing the holder or any other person or corporation, or conveying any rights or permission, to manufacture, use, or sell any patented invention that may in any way be related thereto.

12. Trade names cited in this report do not constitute an official endorsement or approval of the use of such commercial hardware or software.

#### **DISPOSITION INSTRUCTIONS**

- 13 Destroy this report when no longer needed. Do not return it to originator.
- 14. When this report is no longer needed, Department of the Army organizations will destroy it in accordance with the procedures given in AR 380-5.

Report 133



Stress Report
Nose Landing Gear Assembly

TV-5A Lift Fan
Flight Research Aircraft Program



November 1963



ADVANCED ENGINE AND TECHNOLOGY DEPARTMENT GENERAL ELECTRIC COMPANY CINCINNATI, OHIO 45215





## TABLE OF CONTENTS

|     |                                                                  | Page         |
|-----|------------------------------------------------------------------|--------------|
| 1.0 | Preface                                                          | 9            |
| 2.0 | References                                                       | 10           |
| 3.0 | Drawing References                                               | 11 - 12      |
| 4.0 | Minimum Margins of Safety                                        | 13 Thru 17   |
| 5.0 | Discussion                                                       | 18 Thru 20   |
| 6.0 | Stress Symbols                                                   | 21 Thru 23   |
| 7.0 | Basic Geometry                                                   | 24 Thru 28   |
| 8.0 | Basic Loads                                                      | 29 Thru 31   |
|     | Section 1:                                                       | 32 Thru 41   |
|     | Unit Solution                                                    | 32           |
|     | Section 2:                                                       | 42 Thru 132  |
|     | Deflection Analysis:                                             | 42           |
|     | Outline of Strut Deflection (Matrix)                             | 42 Thru 132  |
|     | Deflection Due to Spin-up (Fwd.) 9200#                           | 115          |
|     | Deflection Due to Springback (Fwd.) 9200#                        | 122          |
|     | Deflection Due to Turning (Fwd.) 12,500#                         | 132          |
|     |                                                                  |              |
|     | Section 3:                                                       | 133 Thru 149 |
| ٠   | Attach Point and Bearing Reactions (Including Secondary Bending) | 133          |
|     | · · · · · · · · · · · · · · · · · · ·                            | 4.7          |

| CALC  | Towales's | REVISED | DATE           |                                                                           | 10110  |
|-------|-----------|---------|----------------|---------------------------------------------------------------------------|--------|
| CHECK |           |         | NOSE GEAR XV5A | 1511L                                                                     |        |
| APR   |           |         |                |                                                                           | Ryan   |
| APR   |           |         |                | H. W. LOUD MACHINE WORKS, INC.<br>887 East Second St., Pomona, California | PAGE 3 |

5

| · ·                            |              |
|--------------------------------|--------------|
|                                | Page         |
| Section 4:                     | 150 Thru 191 |
| Cylinder Analysis (1511L104)   | 151 Thru 191 |
| Trunnion Pin (1511L108)        | 181          |
| Section 5:                     | 192 Thru 210 |
| Inner Cylinder (1511L103)      | 196          |
| Section 6:                     | 211 Thru 238 |
| Torque Link - Upper (1511L135) | 213 Thru 219 |
| Pin (1511L134)                 | 220 Thru 222 |
| Torque Link - Lower (1511L136) | 223 Thru 236 |
| Ball - Apex (1511L137)         | 237 - 238    |
| Section 7:                     | 239 Thru 268 |
| Pin - Drag Brace (1511L146)    | 240          |
| Drag Brace - Lower (1511L201)  | 241 Thru 246 |
| Drag Brace - Upper (1511L202)  | 247 Thru 254 |
| Bol; - Crossbeam (1511L220)    | 255          |
| Crossbeam (1511L203)           | 256 Thru 267 |
| Pin - Trunnion (1511L204)      | 268          |
| •                              |              |

| CALC  | J. Southist | REVISED | DATE | 8                                                                         | 15111  |
|-------|-------------|---------|------|---------------------------------------------------------------------------|--------|
| CHECK |             |         |      | NOSE GEAR XV5A                                                            | Ryan   |
| APR   |             |         |      | H. W. LOUD MACHINE WORKS, INC.<br>887 East Second St., Pomona, California | PAGE 4 |

|                          |          |    | Page         |
|--------------------------|----------|----|--------------|
| Section 8:               |          |    | 269 Thru 281 |
| Axle (1511L130)          |          |    | 278 Thru 280 |
| Support (1511L129)       |          |    | 281          |
| • • • •                  | .1       |    |              |
| Section 9:               | 4.12     |    | 282 Thru 301 |
| Piston Head (1511L124)   |          |    | 286 - 287    |
| Cam - Lower (1511L123    | )        |    | 288 - 289    |
| Bearing Adapter (1511L.  | 121)     |    | 290 - 291    |
| Orifice Support Tube (15 | 11L126)  |    | 292 Thru 296 |
| Gland Nut (1511L127)     |          |    | 297 Thru 299 |
| Pin - Metering (1511L12  | 5)       |    | 300 Thru 301 |
| Section 10: - Retraction | Actuator |    | 302 Thru 312 |
| Cylinder Assembly (151)  | L303)    |    | 305 Thru 308 |
| Piston (1511L302)        |          |    | 309          |
| Bearing (1511L304)       |          | 5. | 310          |
| Nut (1511L305)           | 3.5      |    | 311 - 312    |

| CALC Soulis | REVISED | DATE |                                                                           |        |
|-------------|---------|------|---------------------------------------------------------------------------|--------|
| CHECK       |         |      | NOSE GEAR XV5A                                                            | 1511L  |
| APR         |         |      | NOSE GEAR AVSA                                                            | Ryan   |
| APR         |         |      | H. W. LOUD MACHINE WORKS, INC.<br>837 East Second St., Pomona, California | PAGE 5 |

|      |                                          | Page         |
|------|------------------------------------------|--------------|
|      | TABLES                                   | . (1)        |
| ı.   | Variable Strut Dimensions                | 26           |
| n.   | Torque Arm Geometry                      | 27           |
| ш.   | Summary Loads                            | 30           |
| IV.  | Summary Taxi Loads                       | 31           |
| v.   | Piston Bending Moment (Matrix)           | 43 Thru 56   |
| VI.  | Bearing Reactions (Matrix)               | 57 Thru 68   |
| VII. | Cylinder Reactions (Matrix)              | 79 Thru 102  |
| VЩ.  | Summary Cylinder Reactions               | . 103        |
| ıx.  | Summary Bearing Reactions                | 104          |
| x.   | Cylinder Bending Moment (Matrix)         | 105 Thru 132 |
| XI.  | Strut Reactions (With Secondary Bending) | 133 Thru 149 |
|      |                                          |              |

D

| CALC  | Bothis | REVISED | DATE | NOSE GEAR XV5A                                                            | 12114  |
|-------|--------|---------|------|---------------------------------------------------------------------------|--------|
| CHECK |        |         |      |                                                                           | 1511L  |
| APR   |        |         |      |                                                                           | Ryan   |
| APR   |        |         |      | H. W. LOUD MACHINE WORKS, INC.<br>887 East Second St., Pomona, California | PAGE 4 |

|      |                                                                   |      | Pag      | <u> </u> |
|------|-------------------------------------------------------------------|------|----------|----------|
|      | FIGURES                                                           |      |          |          |
| ı.   | Attach Point Diagram                                              |      | 25       |          |
| u.   | Torque Arm Geometry                                               |      | 28       |          |
| III. | <br>Elastic Curve for Piston and Cylinder<br>Spin-up (Fwd.) 9200# | .114 | -        | 115      |
| IV.  | Elastic Curve for Piston and Cylinder Springback (Fwd.) 9200#     | 121  | \<br>\ - | 122      |
| . v. | Elastic Curve for Piston and Cylinder Turning (Fwd.) 12,500#      | 131  |          | 132      |
| VI.  | Cylinder (Sections)                                               | -    | 151      |          |
| VII. | Loading                                                           |      | 152      |          |
| νш   | Inner Cylinder (Sections)                                         |      | 193      |          |
| IX   | Torque Link - Upper (Sections)                                    |      | 213      |          |
| x    | Torque Link - Lower (Sections)                                    |      | 223      |          |
| xı   | Crossbeam (Sections)                                              |      | 256      |          |
| хп   | Axle                                                              |      | 270      |          |
| XIII | Orifice Support Tube                                              |      | 292      |          |
| VIX  | Retraction Actuator                                               |      | 303      |          |

| CALC  | Buthis | REVISED | DATE |                                                                           | id whans |
|-------|--------|---------|------|---------------------------------------------------------------------------|----------|
| CHECK |        |         |      | NOSE GEAR XVSA                                                            | 1511L    |
| APR   |        |         |      | NOSE GEAR AV SA                                                           | Ryan     |
| APR   |        |         |      | H. W. LOUD MACHINE WORKS, INC.<br>887 EAST SECOND ST., POMONA, CALIFORNIA | PAGE 7   |

|                                                   | Page |
|---------------------------------------------------|------|
| CURVES                                            |      |
| Piston Bending Moment                             | 50   |
| Cylinder Bending Moment                           | 111  |
| Cylinder Bending Moment (Deflected)               | 155  |
| Piston Bending Moment (Deflected)                 | 194  |
| Bending Modulus of Rupture - 7079T6 Alum. Alloy   | 314  |
| Bending Mcdulus of Rupture for Round Alloy Steel  | 315  |
| Bending Modulus of Rupture 180/200 ksi Steel      | 316  |
| Bending Modulus of Rupture 220/240 ksi Steel      | 317  |
| Bending Modulus of Rupture 2014-T6 Alum. Alloy    | 313  |
| Bending Modulus of Rupture 260/280 ksi Steel Tub- | 318  |
|                                                   |      |

| CALC  | Salait. | REVISED | DATE |                                         | 1511L |
|-------|---------|---------|------|-----------------------------------------|-------|
| CHECK |         |         |      | NOSE GEAR XV5A                          | 12117 |
| APR   |         |         |      | NOSE GEAR AVJA                          | Ryan  |
| APR   |         |         |      | H. W. LOUD MACHINE WORKS, INC.          | PAGE  |
|       |         |         |      | 887 East Second St., Pomona, California | 8     |

## 1.0 PREFACE

This report consists of data substantiating the structural integrity of the nose landing gear assembly and the trunnion pins required for attachment to the airplane.

This assembly is for the Ryan Aeronautical Corporation, San Diego, Ryan XV5A Airplane. The basic landing and taxi loads are obtained from Ryan (basic loads) report dated October 10, 1962 hereafter noted as reference (1) in this stress analysis.

All loads are considered as limit and proper conversion to ultimate loads have been made.

| CALC  | Berthit | REVISED | DATE |                                                                           | 1511L  |
|-------|---------|---------|------|---------------------------------------------------------------------------|--------|
| CHECK | 1       | _       |      | NOSE GEAR XV5A                                                            |        |
| APR   |         |         |      | 11000 001.11 11 011                                                       | Ryan   |
| APR   |         |         |      | H. W. LOUD MACHINE WORKS, INC.<br>887 East Second St., Pomona, California | PAGE 9 |

## 2.0 REFERENCES

- 1. Ryan Report dated, 10 October 1962, and Drawing SCDL002 (Geometry)
- 2. MIL-HDBK5
- 3. Roark Second Edition Stress and Strain
- 4. Peery Aircraft Structures 1950

| CALC TO CETTAL | REVISED | DATE |                                                                           |            |
|----------------|---------|------|---------------------------------------------------------------------------|------------|
| CHECK          |         |      | NOSE GEAR XV5A                                                            | 1511L      |
| APR            |         |      |                                                                           | Ryan       |
| APR            | _       |      | H. W. LOUD MACHINE WORKS, INC.<br>887 East Second St., Pomona, California | PAGE<br>10 |

## 3.0 DRAWING REFERENCES

| 1511L103 | Inner Cylinder       |
|----------|----------------------|
| 1511L104 | Cylinder             |
| 1511L108 | Trunnion Pin         |
| 1511L121 | Bearing Adapter      |
| 1511L123 | Cam                  |
| 1511L124 | Piston Head          |
| 1511L125 | Pin - Metering       |
| 1511L126 | Orifice Support Tube |
| 1511L127 | Gland Nut            |
| 1511L129 | Support              |
| 1511L130 | Axle                 |
| 1511L134 | Pin (Torque Link)    |
| 1511L135 | Torque Link - Upper  |
| 1511L136 | Torque Link - Lower  |
| 1511L137 | Ball - Apex          |
| 1511L146 | Pin - Drag Brace     |
| 1511L201 | Drag Brace - Lower   |
| 1511L202 | Drag Brace - Upper   |
| 1511L203 | Crossbeam            |

| CALC  | Beelist | REVISED | DATE |                                                                           | 15110   |
|-------|---------|---------|------|---------------------------------------------------------------------------|---------|
| CHECK |         |         |      | NOSE GEAR XV5A                                                            | 1511L   |
| APR   |         |         |      | Moss Grave Wall                                                           | Ryan    |
| APR   | APR     |         |      | H. W. LOUD MACHINE WORKS, INC.<br>887 East Second St., Pomona, California | PAGE 11 |

## 3.0 DRAWING REFERENCES (con't)

1511L204 Pin - Trunnion

1511L220 Bolt - Crossbeam

1511L300 . Retraction Actuator

1511L302 Piston

1511L303 · Cylinder Assembly

1511L304 Bearing

1511L305 Nut

|       |        |         |      |                                                                           | •     |
|-------|--------|---------|------|---------------------------------------------------------------------------|-------|
| CALC  | Backet | REVISED | DATE |                                                                           |       |
| CHECK |        | 1120    |      | NOSE GEAR XV5A                                                            | 1511L |
| APR   |        |         |      | NOOL GEAR AVIA                                                            | Ryan  |
| APR   |        |         |      | H. W. LOUD MACHINE WORKS, INC.<br>887 EAST SECOND ST., POMONA, CALIFORNIA | PAGE  |

## 4.0 MINIMUM MARGINS OF SAFETY

# BASED ON ULTIMATE LOADS

| PART                      | SECTION                  | CRITICAL COND.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |          | LOADIN   | G           |               | MARGIN |
|---------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|----------|-------------|---------------|--------|
| FALL                      | SECTION                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BEND | TEN.     | сомр.    | TORSION     | SHEAR         |        |
| ef:                       | A-A                      | Turning<br>(FWD)<br>Spin-up                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | x    | x        |          | x           | x             | 2.68   |
| Cylinder                  | B-B                      | (FWD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | x    | x        | x        |             | x             | . 104  |
| (1511L104)<br>P. 165 thru | C-C                      | Spin-up<br>(FWD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | x    | x        |          |             | x             | . 580  |
| P. 191                    | Drag Brace               | Spin-up<br>(FWD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |          |          |             | Shear<br>Brg. | .37    |
| · · ·                     | Trunnion                 | Spin-up<br>(FWD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |          |          |             | Brg.          | . 04   |
|                           | Trunnion Pin<br>1511L108 | Spin-up<br>(FWD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | х    |          |          |             | x             | 1. 38  |
| • 20                      | Trunnion<br>Left Hand    | Spin-up<br>(FWD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | x    |          | х        | x           | x             | .81    |
| \$**                      | Bulkhead                 | VTOL(AF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1)   |          | ^        | • • •       | x             | . 135  |
|                           | - June                   | Max Vert.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |          |          |             | 17            |        |
|                           | ,<br>,                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |          |          |             | 1.7           |        |
| Inner                     | A-A                      | Spin-up                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |          |          |             | 1             |        |
| Cylinder (1511L103)       | B+B                      | (FWD)<br>Spin-up                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Х    |          | X        |             | /¥ <b>x</b>   | 49_    |
| P. 196 thru               |                          | (FWD)<br>Spin-up                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _х   | <b>x</b> | X        | ,           | 4             | .03    |
| P. 210                    | C-C                      | (FWD)<br>Spin-up                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | x    |          | х        | /           | / x           | 13_    |
| A                         | D-D                      | (FWD)<br>Turning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | X    |          | Х.       | x./         | X             | . 05_  |
|                           | E-E                      | (FWD)<br>Spin-up                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _x . |          | <b>X</b> |             | \ <b>x</b>    | . 034  |
| , '                       | E-E                      | (FWD)<br>Spin-up                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | х.   |          | X        |             | - <b>∤x</b> . | 1.51   |
| ·/                        | F-F                      | (FWD)<br>Turning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | x.   |          | x        |             | - X -         | 1.90   |
|                           | <u>F-F</u>               | (FWD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Х.   |          | <b>x</b> |             | 1.x           | . 075  |
| /                         |                          | and the second s |      | 2775     |          |             |               |        |
|                           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |          |          |             |               |        |
| 2 1                       |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |          |          |             |               |        |
|                           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |          |          |             |               |        |
| •                         |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ١١   |          | L        |             | -+-           |        |
|                           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |          |          |             | 3             |        |
| ALG Sich                  | REVISE                   | DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |          |          |             |               | 16111  |
| сиеск                     |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NOS  | E GEA    | R XV5A   | 9           |               | 1511L  |
| APR                       |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | V LOUD   | MACHINE  | VORKS, INC  |               | Ryan   |
|                           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |          |          | NA CALIFORN | NIA .         | 13     |

# 4.0 MINIMUM MARGINS OF SAFETY CONT'D

| PART                      | SECTION     | CRITICAL COND.      |        |       | LOADIN  | <u>G</u>                    |            | MARGI<br>OF |
|---------------------------|-------------|---------------------|--------|-------|---------|-----------------------------|------------|-------------|
| · TAKI                    | SECTION     | COND.               | BEND   | TEN.  | COMP.   | TORSION                     | SHEAR      |             |
| Torque Link               | ۸-۸         | Turning<br>(FWD)    | x      |       |         |                             | <b>x</b>   | . 45        |
| Upper                     | B-B         | 10                  | x      |       |         | E E1                        | <b>x</b> _ | 1.58        |
| (1511L135                 | C-C         | 11                  | x      |       |         | <u> </u>                    | X          | .61         |
| P. 215 thru               | D-D         | 11                  | х      |       | •       |                             | x          | 1.79        |
| P. 219                    | E-E         | 11                  | x      | х     |         |                             | _x_        | . 95        |
|                           |             |                     |        |       |         |                             | : .        |             |
| Pin<br>(1511L134)         | A-A         | Turning<br>(FWD)    | x      |       |         |                             |            | + LGE       |
| P. 220 thru<br>P. 222     | B-B         | 91                  | x      |       |         |                             | x          | + LGE       |
| Torque Link               |             | Turning             |        |       |         | ;                           | 2          |             |
| Lower                     | A-A         | (FWD)               |        |       |         | _x                          | <u>i</u>   | . 15        |
| (1511L136)<br>P. 224 thru | <b>B-</b> B | 11                  | X      |       |         | ,                           | X          | + LGE       |
| P. 236                    | C-C         | 11                  |        | . X   |         |                             | <b>x</b>   | + LGE       |
|                           | D-D         | 11                  | _x_    | x     |         | ,                           | <b>x</b>   | 32_         |
|                           | Socket      |                     |        |       |         |                             | Brg.       | . 59        |
| Ball                      |             |                     |        |       |         |                             |            |             |
| (1511L137)<br>P. 237-238  | 3           | Turning<br>(FWD)    | . x_   | ·     |         | 181                         | X          | 1.81        |
| Į:                        |             |                     |        |       |         |                             |            |             |
| Pin-Drag Brace            |             | Springback<br>(FWD) | X      |       |         |                             | x          | . 26        |
| (1511L146) P. 240         |             |                     |        |       |         |                             |            |             |
| HECK                      | AEVIS       | ED DATE             | NOS    | SE GE | AR XV5A | y.=                         |            | 15111       |
| PH PA                     |             |                     | - La 1 |       | MACHINE | WORKS, INC.                 |            | Ryan        |
| <del></del>               |             |                     |        |       |         | WORKS, INC.<br>DNA CALIFORN | 114        | 14          |

## 4.0 MINIMUM MARGINS OF SAFETY CONTE

| PART                                  | SECTION            | CRITICAL COND.                 |                                          |                 | LOADIN       | G           |                                       | MARGIN<br>OF |
|---------------------------------------|--------------------|--------------------------------|------------------------------------------|-----------------|--------------|-------------|---------------------------------------|--------------|
| FARI                                  | SECTION            | COND.                          | BEND                                     | TEN.            | COMP.        | TORSION     | SHEAR                                 |              |
| Drag Brace                            | 7                  | Spin-up<br>(FWD)               | in 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | a cross a s mis |              |             | Shear<br>Brg.                         | . 20         |
| Lower                                 | A-A                | Springback<br>(FWD)            | Ė                                        | ,               | <b>x</b>     |             |                                       | ,21          |
| (15) 1 L 201)<br>B. 246 thru          |                    | LE W.DJ                        | # · · · · ·                              |                 |              |             |                                       |              |
| Drag Brace                            | ,                  |                                |                                          |                 |              |             | :                                     | t+ ,         |
| Upper<br>(1511L202)                   | Α-Α                | Springback<br>(FWD)<br>Spin-up | x_                                       |                 | x            |             |                                       | 1.31         |
| P. 248 thru                           | Λ-Α .              | (FWD)                          | Х_                                       | _X              |              | A           | 1.1                                   | 1.58         |
| P. 254                                | Column             | Springback                     |                                          |                 | x            |             | /                                     | . 055        |
|                                       | Lug                | Spin-up<br>(FWD)               |                                          |                 |              |             | x                                     | . 24         |
|                                       | Attachment<br>Hole | Springback                     |                                          |                 |              |             | Brg.                                  | . 28         |
|                                       |                    |                                |                                          |                 |              |             | -                                     |              |
|                                       |                    | ļi                             |                                          |                 |              |             |                                       | 100          |
| ÷.                                    |                    |                                |                                          |                 |              | 7.          |                                       |              |
| Bolt                                  |                    |                                |                                          |                 | <del> </del> | 14          |                                       |              |
| (1511L220)<br>P. 255                  | •                  |                                |                                          |                 |              | 6 ,1        | X                                     | . 20         |
| i e                                   | \                  |                                |                                          | W)              |              | 7.6         |                                       | - 3          |
| · · · · · · · · · · · · · · · · · · · |                    |                                |                                          |                 |              |             |                                       |              |
| Crossbeam                             |                    |                                |                                          |                 |              |             |                                       | 113          |
| (1511L203)                            | Trunnion<br>Lng    | Springback<br>(FWD)            |                                          | x               |              |             |                                       | .01          |
| P. 257 thru                           | A-A                |                                | x                                        | Ω               | x            |             | X                                     | + LGE        |
| P. 267                                | B-B                | Extension (PROOF)              | ` x                                      |                 |              |             | X                                     | . 05         |
|                                       | C-C                | 11                             | х                                        |                 |              |             |                                       | 1.12         |
|                                       |                    |                                |                                          |                 |              |             |                                       | . %          |
|                                       |                    |                                |                                          |                 |              |             | · · · · · · · · · · · · · · · · · · · |              |
| ALG Town                              | AEVISE             | D DATE                         |                                          |                 |              |             | 1                                     | 1511L        |
| PR                                    |                    |                                | NOS                                      | SE GE           | AR XV5A      |             |                                       | Ryan         |
| r d                                   |                    |                                |                                          |                 |              | VORKS, INC. | J1 A                                  | PAGE 15      |

# 4.0 MINIMUM MARGINS OF SAFETY CONTE

| D * 20 m                  | an amin's  | CRITICAL              |                                         |         | LOADIN                   | G          |            | MARGIN<br>OF |
|---------------------------|------------|-----------------------|-----------------------------------------|---------|--------------------------|------------|------------|--------------|
| PART                      | SECTION    | COND.                 | BEND                                    | TEN.    | COMP.                    | TORSION    | SHEAR      |              |
| Pin                       | Shear Face |                       | x                                       |         |                          |            | x          | .01          |
| (1511L204)<br>P. 268      |            |                       |                                         |         |                          |            | ;          |              |
| Axle (1511L130)           |            | Townson               |                                         |         |                          |            |            |              |
| P. 278 thru               | Α-Α        | Turning<br>(FWD)      | x                                       |         |                          |            |            | . 52         |
| P. 280                    | Retainer   | 11                    |                                         |         |                          |            | Х          | . 32         |
| Support (1511L129)        |            |                       |                                         |         |                          |            |            |              |
| P. 281                    |            |                       | *************************************** |         |                          |            | _ <b>x</b> | . 10         |
|                           |            |                       | •                                       |         |                          |            |            |              |
| Piston Head (1511L124)    |            | VTOL(AF)              | ()                                      |         |                          |            |            |              |
| P. 286-287                | Threads    | VTOL(AFT<br>Max Vert. |                                         |         |                          |            | X          | + LGE        |
| Cam-Lower                 |            |                       |                                         |         |                          | ļ          | - 1        |              |
| (1511L123)                |            | Extended              |                                         |         |                          |            | Brg.       | . 30         |
| P. 288-289                |            | MANUA                 |                                         |         |                          |            | 7          | ***********  |
| Bearing<br>Adapter        |            |                       |                                         |         |                          |            |            |              |
| (1511L121)                |            |                       |                                         |         |                          |            | Brg.       | .62          |
| P. 290-291                |            |                       |                                         |         |                          |            |            | -            |
| Orifice Sup-<br>port Tube |            |                       | • •• •• •• •• •• ••                     | P       | THE PERSON NAME OF PARTY |            |            |              |
| (1511L126)                |            |                       |                                         |         | X                        |            |            | . 03         |
| P. 292 thru               |            |                       |                                         |         |                          |            |            |              |
| P. 296                    |            |                       |                                         |         |                          |            |            |              |
| j                         |            | 1                     | <u></u>                                 |         |                          | 1          |            |              |
| ALG (There                | REVISE     | D DATE                | NO                                      | SE CE   | AR XV5A                  |            |            | 1571L        |
| APR                       |            |                       | 1100                                    | , E GE? | 14 A 7 7 A               |            |            | Ryan         |
| APR                       |            |                       |                                         |         |                          | NORKS, INC |            | PAGE<br>16   |

## 4.0 MINIMUM MARGINS OF SAFETY CONTE

|                                                  | 27.07.0 | CRITICAL |                   |                                         | LOADIN    | G                            |               | MARGIN     |
|--------------------------------------------------|---------|----------|-------------------|-----------------------------------------|-----------|------------------------------|---------------|------------|
| PART                                             | SECTION | сойр.    | BEND              | TEN.                                    | COMP.     | TORSION                      | SHEAR         |            |
| Gland Nut<br>(1511L127)<br>P. 297 thru<br>P. 299 | A-A     |          | an garge on one o |                                         |           |                              | Brg.          | 1.68       |
|                                                  | B-B     |          | х                 | x                                       |           |                              |               | .04        |
| Pin<br>(1511L125)<br>P. 300-301                  | ·       |          |                   |                                         |           |                              | ×             | + LGE      |
| i.                                               |         |          | RETI              | RACTIO                                  | N ACTU    | ATOR                         |               |            |
| Cylinder<br>(1511L303)                           | Lug     |          |                   |                                         |           |                              | Shear<br>Brg. | . 09       |
| P. 303 thru<br>P. 308                            | Threads |          |                   |                                         |           |                              | х             | + LGE      |
| Piston<br>(1511L302)                             |         |          |                   |                                         |           |                              |               |            |
| P. 309                                           |         |          |                   | ×                                       |           |                              |               | 1, 56      |
| Bearing<br>(1511L304)                            |         |          |                   |                                         |           |                              |               |            |
| (1511L30 <b>9</b> )<br>P. 316                    |         |          | {                 |                                         |           | :                            | Brg.          | . 20       |
| Nut<br>(1511L <b>305</b> )                       |         |          |                   |                                         |           | -                            |               |            |
| P. 311-312                                       | A-A     | <u></u>  | X                 |                                         |           |                              |               | . 07       |
|                                                  | В-В     |          | X                 | Х                                       |           |                              |               | 1.24       |
|                                                  |         | ٥        |                   |                                         |           |                              |               | احربر      |
|                                                  |         |          |                   | • • • • • • • • • • • • • • • • • • • • |           |                              |               |            |
|                                                  |         |          | ,                 |                                         |           |                              |               | >(         |
| Le Marche                                        | REVISE  | D DATE   | NO                | E GF                                    | AR YVSA   | <u></u>                      | 1             | 1511L      |
| 4                                                |         |          | <u> </u>          |                                         | GEAR XV5A |                              |               | Ryan       |
| 7                                                |         |          |                   |                                         |           | VORKS, INC.<br>DNA. CALIFORN | NA :          | PAGE<br>17 |

## 5.0 DISCUSSION

This report includes an analysis of the XV5A Nose Landing Gear Assembly major components. These components and their material and heat treat condition are as follows:

|          |                      | •                   | Ultimate              |
|----------|----------------------|---------------------|-----------------------|
| Com      | ponents              | Material            | H. T. Condition       |
| 1511L103 | Inner Cylinder       | AMS6427 (4330 Mod.) |                       |
| 1511L104 | Cylinder             | 7079T6 Alum. Alloy  | 71 KSI (Hand Forging) |
| 1511L108 | Trunnion Pin         | 4140 Steel          | 180/200 KSI           |
| 1511L121 | Bearing Adapter      | 2024T4 Alum. Alloy  | 70 KSI                |
| 1511L123 | Cam-Lower            | 7075T6 Alum. Alloy  | 80 KSI                |
| 1511L124 | Piston Head          | 7075T6 Alum. Alloy  | 80 KSI                |
| 1511L125 | Pin-Metering         | 2024T4 Alum. Alloy  | 70 KSI                |
| 1511L126 | Orifice Support Tube | 2024T4 Alum. Alloy  | 70 KSI                |
| 1511L127 | Gland Nut            | 2024T4 Alum. Alloy  | 70 KSI                |
| 1511L129 | Support              | 2024 T4 Alum. Alloy | 62 KSI                |
| 1511L130 | Axle                 | 4340 Steel          | 180/200 KSI           |
| 1511L134 | Pin (Torque Link)    | 4140 Steel          | 180/200 KSI           |
| 1511L135 | Torque Link-Upper    | 2014T6 Alum. Alloy  | 64 KSI                |
| 1511L136 | Torque Link-Lower    | 2014T6 Alum. Alloy  | 64 KSI                |
| 1511L137 | Ball-Apex            | 17-4PH Steel        | 180/200 KSI           |
| 1511L146 | Pin-Drag Brace       | 4140 Steel          | 180/200 KSI           |
| ł        |                      |                     |                       |

| CALC Bichil | REVISED        | DATE    |                                                                           |            |
|-------------|----------------|---------|---------------------------------------------------------------------------|------------|
| HECK        | NOSE GEAR XV5A | 1511L   |                                                                           |            |
| APR         |                |         |                                                                           | Ryan       |
| APR 1       |                | <b></b> | H. W. LOUD MACHINE WORKS, INC.<br>887 East Second St., Pomona, California | PAGE<br>18 |

## 5.0 DISCUSSION (con't)

| Con      | ponents           | Material             | Ultimate<br>H. T. Condition |
|----------|-------------------|----------------------|-----------------------------|
| 1511L201 | Drag Brace-Lower  | . 7075T6 Alum. Alloy | 80 KSI                      |
| 1511L202 | Drag Brace-Upper  | 7075T6 Alum. Alloy   | 80 KSI                      |
| 1511L203 | Crossbeam         | 7075T6 Alum. Alloy   | 77 KSI                      |
| 1511L204 | Pin-Trunnion      | 7075T6 Alum. Alloy   | 77 KSI                      |
| 1511L220 | Bolt-Crossbeam    | 7075T6 Alum. Alloy   | 77 KSI                      |
| 1511L302 | Piston            | 4140 Steel           | 125/150 KSI                 |
| 1511L303 | Cylinder Assembly | 2024T4 Alum. Alloy   | 62 KSI                      |
| 1511L304 | Bearing           | 2024T4 Alum. Alloy   | 62 KSI                      |
| 1511L305 | Nut               | 2024T4 Alum. Alley   | 62 KSI                      |

| CALC  | Buchil | REVISED | DATE           | 4                                                                         | 1511L      |
|-------|--------|---------|----------------|---------------------------------------------------------------------------|------------|
| СНЕСК |        |         | NOSE GEAR XV5A | *****                                                                     |            |
| APR   |        |         |                |                                                                           | Ryan       |
| APR   |        |         |                | H. W. LOUD MACHINE WORKS, INC.<br>887 East Second St., Pomona, California | PAGE<br>19 |

#### 5.0 DISCUSSION (con't)

Secondary bending due to strut deflection is included in the analysis of the cylinder and inner cylinder (also known as the piston). The effect of strut deflection is also included in the attach point reactions. The deflection was taken in the direction of the load for each critical condition with gear at F. E. -1.6 and F. E. -5.3. Loads were taken from Ryan Report dated 10 October 1962, and are listed in Tables III and IV of this report.

Conditions - Spin-up (Fwd.) 9200#, Springback (Fwd.) 9200#, and Turning (Fwd.) 12,500# are used for strut deflections. The calculated deflection at the axle centerline for Spin-up (Fwd.) 9200# is 1.23 in., Springback (Fwd.) 9200# is -1.144 in., and for Turning (Fwd.) 12,500# is .290 in. These deflections are utilized in determining the reaction loads on the cylinder, piston, drag brace, crossbeam, and axle. These reaction loads are determined by matrix system on pages 133 thru 149.

The minimum margins of safety for all of the nose landing major components are listed on pages 13 thru 17.

|       |        | <br>    |      |                                                                           |            |
|-------|--------|---------|------|---------------------------------------------------------------------------|------------|
| CALC  | Bochil | REVISED | DATE |                                                                           | 1511L      |
| CHECK |        |         |      | NOSE GEAR XV5A                                                            |            |
| APR   |        |         |      | Ryan                                                                      |            |
| APR   |        |         |      | H. W. LOUD MACHINE WORKS, INC.<br>887 East Second St., Pomona, California | PAGE<br>20 |

#### 6.0 LIST OF STRESS SYMBOLS

### ALLOWABLE STRESSES

Ptu = Allowable Ultimaté Tensile Stress - psi

F<sub>tv</sub> = Allowable Yield Tensile Stress - psi

F<sub>b</sub> = Allowable Bending Stress - psi.

F<sub>br</sub> = Allowable Bearing Stress - psi

F<sub>CU</sub> = Allowable Ultimate Compressive Stress - psi

F<sub>Cy</sub> = Allowable Yield Compressive Stress - psi

F<sub>CC</sub> = Upper Limit of Column Stress For Local Failure - psi

F<sub>CO</sub> = Upper Limit of Column Stress for Primary Pailure

Fst = Allowable Torsional Stress - psi

F<sub>su</sub> = Allowable Shear Stress - psi

#### ALLOWABLE LOADS

Phru - Ultimate Allowable Shear Bearing Load - lbs.

Ptu = Ultimate Allowable Tension Load - lbs.

#### STRESS RATIOS

Rbu = Ultimate Tension or Compression Bending Modulus Stress Ratio

R<sub>C</sub> = Compressive Stress Ratio

R, '= Tension Stress Ratio

Rht = Tension or Compression Hoop Stress Ratio

R<sub>su</sub> = Ultimate Transverse Shear Stress Ratio

R<sub>st</sub> = Torsion Stress Ratio

| CALC Taralis | REVISED | DATE |                                                                           | * 1811  |
|--------------|---------|------|---------------------------------------------------------------------------|---------|
| CHECK        |         |      | NOSE GEAR TXVSA                                                           | 15/10   |
| APR          |         |      |                                                                           | RYAN.   |
| APR          |         |      | H. W. LOUD MACHINE WORKS, INC.<br>887 EAST SECOND ST., PONONA, CALIFORNIA | PAGE 21 |

#### 6.0 STRESS SYMBOLS (cont.)

### STRESSES

ft z Tensile Stress - psi

f b = Bending Stress - psi

fbr = Bearing Stress - psi

fc = Compressive Stress - psi

fs = Shear Stress - psi

fst = Torsional Shear Stress - psi

tht = Hoop Tension Stress - psi

the = Hoop Compressive Stress - psi

## MISCELLANEOUS SYMBOLS

P = Axial Load - lbs.

M = Bending Moment - in.-lbs.

T = Torsional Moment - in-lbs.

S = Shear Force - lbs.

E = Tensile Modulus of Elasticity - psi

Ec = Compressive Modulus of Elasticity - psi

G = Modulus of Rigidity - psi

Radius of Gyration - in.

I = Moment of Inertia - (in.) 4

e = Eccentricity - in.

O.D. - Outer Diameter - in.

I.D. = Inner Diameter - in.

A = Area =  $(ih.)^2$ 

| CALC Trochit | REVISED DATE |                                         |      |
|--------------|--------------|-----------------------------------------|------|
| CHECK        |              | NOSE GEAR XV5A                          | 归过   |
| APA          |              |                                         | RYAN |
| APR          |              | H. W. LOUD MACHINE WORKS, INC.          | PAGE |
|              |              | 887 EAST SECOND ST., POMONA, CALIFORNIA | 2.2  |

## 6.0 STRESS SYMBOLS (cont.)

#### MISCELLANEOUS SYMBOLS - (cont'd)

c - Distance from Neutral Axis to Extreme Fiber - in.

c = Fixity Coefficient.

1 = Length - in.

t = Thickness

= Angular Deflection - degrees

△ = Linear Deflection - in.

MA = Allowable Bending Moment - in. - lbs.

 $P_{A}$  = Allowable Load - lbs.

TA = Allowable Torsional Moment - in. - lbs.

PSI = Pounds per Square Inch .

LBS = Pounds

IN. = Inch

Q = First Moment of Area

Le Poisson's Ratio

 $A_t$  = Tension Area - (in.) 2

 $A_{br}$  = Bearing Area - (in.) <sup>2</sup>

K = Bending Modulus of Rupture Parameter

 $Z = Section Modulus - (in.)^3$ 

In = Polar Moment of Inertia - (in.) 4

| CALC  | Fralit | REVISED | DATE |                             |         |
|-------|--------|---------|------|-----------------------------|---------|
| CHECK |        |         |      | HOSE GEAR XVSA              | うり      |
| APR   |        |         |      |                             | RYAN    |
| APR   |        |         |      | W. LOUD MACHINE WORKS, INC. | PAGE 23 |

NOSE GEAR

BASIC GEOMETRY

D

I

| CALC TOTAL | REVISED | DATE |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1511 |
|------------|---------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| CHECK      |         |      | NOSE GEAR XVSA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |
| APR        |         |      | The second secon | KYAN |
| APR        |         |      | H. W. LOUD MACHINE WORKS, INC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PAGE |
|            |         |      | 887 EAST SECOND ST., POMONA, CALIFORNIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 24   |



# VARIABLE STRUT DIMENSIONS

## EXTENDED DIMENSIONS

a= 6.218

b= 21.007

C = 38.35

d = c - (b+a) = 38.35 - 27.225 = 11.125

| م مدده | F.E.   | F.E1.6 | F.E 5.3 |
|--------|--------|--------|---------|
| a      | 6.218  | 7.818  | 11.518  |
| p .    | 21.007 | 19.407 | 15,707  |
| د      | 38.35  | 36.75  | 33.05   |
| 4      | 11.125 | 9.525  | 5.825   |

| CALC  | 75. alit | REVISED | DATE | NOSE GEAR XV5A                                                            | SIL          |
|-------|----------|---------|------|---------------------------------------------------------------------------|--------------|
| CHECK |          | 1       |      |                                                                           |              |
| APR   |          |         |      | VARIABLE STRUT                                                            | RYAN         |
| APR   |          |         |      | H. W. LOUD MACHINE WORKS, INC.<br>887 East Second St., Pomona, California | PAGE<br>2.Ca |

## TORQUE ARM GEOMETRY

## TABLE I

| SOLEO                                           | F.E.    | F.E1.6 | F.E5.3 |
|-------------------------------------------------|---------|--------|--------|
| e= 10.507 - SoiED                               | 10.507  | 8.907. | 5.207  |
| $\theta = \frac{4.200 - 1.75}{10.507}$          | 13.12   | 15.38  | 25,20  |
| SIN 5                                           | .22699  | .26522 | 42578  |
| $g = \frac{4.200 - 1.75}{5 \text{ in } \theta}$ | 10.793  | 9.238  | 5.754  |
|                                                 | 30.610  | 40.49  | 55.85  |
| B= 0+ ×                                         | 43.73*  | 55.87° | 81.05  |
| Sin B                                           | .69126  | .82777 | .98782 |
| cos (3                                          | -722GI. | -56107 | 15557  |
| f= 1.75+6.88 sin B                              | 6.506   | 7.445  | 8.546  |
| h = 6.88 cos/3                                  | 4.972   | 3.860  | 1.070  |
| j= e-h                                          | 5.535   | 5.047  | 4.137  |
| k= j438                                         | 5.097   | 4.609  | 3.699  |
| m'= a+k                                         | 11:315  | 12.427 | 15.217 |
|                                                 |         | 1 154  |        |

| CALC  | O'Fichis                                | REVISE | DATE | NOSE GEAR                                                                 | XV5A     | ISIL |
|-------|-----------------------------------------|--------|------|---------------------------------------------------------------------------|----------|------|
| CHECK |                                         |        |      |                                                                           |          |      |
| APR   |                                         |        |      | torque arm                                                                | GEOMETRY | RYAN |
| APR   |                                         | ·      |      | H. W. LOUD MACHINE WORKS, INC.<br>887 East Second St., Pomona, California |          | PAGE |
|       | 000000000000000000000000000000000000000 |        |      |                                                                           |          | 27   |



### BASIC LOADS



517 5° = .08716

V = F, cos 5° + FD sin 5°
D = -F, sin 5° + FD cos 5°
S = S

V = .99619 FV + .08716 FD

D = -.08716 FV + .99619 FD

S = FS

| ¥   | 11. |
|-----|-----|
| . 2 | 1   |
|     | 1   |
|     |     |

| CALC  | 75 stlick | REVISED | DATE | ANGE CENT MAIN                                                            |          |
|-------|-----------|---------|------|---------------------------------------------------------------------------|----------|
| CHECK |           |         |      | NOSE GEAR XVSA                                                            | ISIIC    |
| APR   |           |         |      | BASIC LOADS                                                               | RYAN     |
| APR   |           |         |      | H. W. LOUD MACHINE WORKS, INC.<br>887 East Second St., Pomona, California | PAGE Z.9 |

N IT'S 0 0 0 0 SPINUP & SPRING BACK LOADS NORMAL & PARALLEL TO OLEO. DRIFT. DRIFT D I 0 0 0 0 ジエト SIDE SIDE DRIFT LOADS ARE IN 7 0 0 7 0 0 (CEAR FEO) \$ P. P. 250 MAX. VERT. REA. MAX. VERT. REA. 1009 (GEAR AFT) D 1558 T 500 ã 0 OLEO. 3263 8448 8489 \* 6347 7 6230 ) L 3212 or LOADS SPRINGBACK -2438 SPRINGBACK - 4441 -2242 50407 ρ PARALLEL 0 SIDE 3192 6205 3199 TABLE III 7 THE GROUND, SUMMARY > SUMMARY 3500 1935 2001 MAX. VERT. REACTION ۵ Δ SPINUP SPINUP MORMAL 3238 3132 5827 > > MALIGHT P. 10 VED CETT **b**0 9200 12500 9200 9200 ROTATED かんろん REF. I C.C. 240 C.6.240 C.G. 240 GCAR GEAR Nork ノロトフ MON 7007 REVISED CALC DATE 1511 YX CHECK APR RYAN APR H. W. LOUD MACHINE WORKS, INC. PAGE 887 EAST SECOND ST., POMONA, CALIFORNIA

| CEAR WEIGHT FY FOR NORMY C & ROTATED NORMY C & R |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| APR H. W. LOUD MACHINE WORKS, INC. PAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

den general per di ser proposition de la recursión de la recur

SECTIONI

UNIT SOLUTION

| CALC J. SociliA | REVISED | DATE | MOSE GEAR XVSA                                                            | らい         |
|-----------------|---------|------|---------------------------------------------------------------------------|------------|
| APR             |         |      | UNIT SOLUTION                                                             | RYAN       |
| APR             |         |      | H. W. LOUD MACHINE WORKS, INC.<br>887 East Second St., Pomona, California | PAGE<br>32 |

## UNIT SOLUTION - TORQUE ARM APEX LOAD

$$fR_{7} + 2.00 = 0$$

$$R_{7} = \frac{-2.00 - Mv_{0}}{f}$$

$$R_{7} = -(2.00/f) = -(1/f) Mv_{0}$$

| CALC Tradit | REVISED | DATE | NOSE GEAR XVSA                 | SIL |
|-------------|---------|------|--------------------------------|-----|
| CHECK       |         |      |                                |     |
| APR         |         |      | UNIT SOLUTION R                | MAY |
| APR         |         |      | H. W. LOUD MACHINE WORKS, INC. | GE  |

#### UNIT SOLUTION - ATTACH POINT REACTIONS

EMSEF

 $12.757 P_{55} - 2.00 V_{0} - (c) D_{0} + M_{50} = 0$   $P_{55} = \frac{2.00 V_{0} + (c) D_{0} - M_{50}}{12.757}$ 

PBD = .1568 Vo + .0783 (c) Do - .0783 Mso

PVBD = PBB COS X = .7201 PBB = .7201 [.1568V0+.0783(C) D0--0783 M50]

PVBD = .1129 Vo + .0564 (c) Do - .0564 MSO

PDBD = - PBD SIN X = -.6939 PBD = -.6939 [.1568 Vo +.0783 (C) Do -.0783 M50]

PDB0 = -. 1088 Vo - . 0543 (C) Do +. 0543 Ms0

| CALC STELLE | REVISED | DATE |                                | 15110      |
|-------------|---------|------|--------------------------------|------------|
| CHECK       |         |      | MOSE GEAR XV5A                 | 1.5(10     |
| APR         |         |      | UNIT SOLUTION                  | RYAN       |
| APR         |         |      | H. W. LOUD MACHINE WORKS, INC. | PAGE<br>34 |

### UNIT SOLUTION - ATTACH POINT REACTIONS-CONTO

EMOC

16.44 RVF + 8.22 Vo+ (c) So+ MDo + 8.22 PVBO = 0

RVF = -8.22 Vo - (c) So - MDo - 8.22 PVBO

RVF = -.500 Vo - .0608 (c) So -.0608 MDO -.500 PVED

RVF = -.500V0 -.0608 (C) 50 -.0608 MD0 -.500[.1129 V0+.0564 (E) D0 -.0564 M50]

RyF = -. 500 Vo -. 0608 (c) So -. 0608 MDo - . 0565 Vo - . 0282 (c) Do +. 0282 M50

RVF = -.5565 Vo -.0608 (C) So -.0282 (C) Do -.0608 MDo +.0282 M50

| CALC Prochet | REVISED | DATE | NOSE GEAR XVSA                                                            | 1511    |
|--------------|---------|------|---------------------------------------------------------------------------|---------|
| CHECK        |         |      |                                                                           |         |
| APR          |         |      | UNIT SOLUTION                                                             | RHAN    |
| APR          |         |      | H. W. LOUD MACHINE WORKS, INC.<br>887 East Second St., Pomona, California | PAGE 35 |

### UNIT SOUTION-ATTACH POINT REACTIONS CONTO

E MDE

-16.44 Rue - 8.22 Vo+ (c) So + MDO - 8.22 PVBO =0

 $R_{VE} = -.500 V_0 + .0608 (C) 50 + .0608 M_{D0} -.500 P_{VBD}$   $R_{VE} = -.500 V_0 + .0608 (C) 50 + .0608 M_{D0}$   $-.500 [.1129 V_0 + .0564 (C) D_0 - .0564 M_{50}]$ 

Rue = -. 500 Vo + . 0608 (c) So + . 0608 MD0 - . 0565 Vo - . 0282 (c) Do + . 0282 Mso

RVE = -.5565 Vo +.0608 (C) So -.0282 (C) Do +.0608 MDo +.0282 MSo

| CALC  | 13 Tilul | REVISED | DATE | HOSE GEAR XVSA ISI                                                          | 11 |
|-------|----------|---------|------|-----------------------------------------------------------------------------|----|
| CHECK |          |         |      |                                                                             |    |
| APR   |          |         |      | UNIT SOLUTION . RYA                                                         | w  |
| APR   |          |         |      | H. W. LOUD MACHINE WORKS, INC. PAGE 687 EAST SECOND ST., POMONA, CALIFORNIA |    |

#### UNIT SOLUTION - ATTACH POINT REACTIONS CONTO

# Z MVE

-16.44 RDF - 8.22 Do + 2.00 So + Mvo - 8.22 PD50=0

RDF = -8.22 Do + 2.00 So + MVO - 8.22 PDBD

RDF = -. 500 Do +. 1217 So +. 0608 MVO -. 500 PD BD

RDF = -,500 Do +, 1217 So +',0608 Myo

-.500 [-.1088 Vo -.0543 (C) Do +.0543 Mg

RDE = -. 500 Do +. 1217 So +. 0608 Myo +. 0544 Vo +. 0272 (C) Do - . 0272 Mso

RDF = .0544 Vo+ .1217 So - .500 Do + .0272 (C) Do - .0272 Mso + .0608 Mvo

Rof = .0544 V0 + .1217 So + (.0272 c - .500) Do - .0272 Mso + .0608 Mvo

| CALC Thirdies | REVISED | DATE | NOSE GEAR XVSA                                                            | ラル   |
|---------------|---------|------|---------------------------------------------------------------------------|------|
| APR           |         |      | UNIT SOLUTION.                                                            | RYAN |
| APR           |         |      | H. W. LOUD MACHINE WORKS, INC.<br>867 East Second St., Pomona, California | PAGE |

### UNIT SOLUTION - ATTACH POINT REACTIONS CONTO

### Z MVF

16.44 RDE + 8.22 Do + 2.00 So + Mvo + 8.22 PDED = 0

RDE = -. 500 Do -. 1217 So -. 0608 My -. 500 PD FD

- .500[-.1088 Vo - .0543 (C) Do+ .0543 Mso]

RDE = -.500 Do -.1217 So -.0608 Mvo +.0544 Vo +.0272 (C) Do -.0272 Mso

RDE = .0544 NO - .1217 SO + (.0272(C) - .500) Do

25

$$R_{SF} = 0$$

$$R_{SF} = S_0$$
For -S\_0

| CALC Beachit | REVISED  | DATE | NOSE GEAR XV5A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15.11      |
|--------------|----------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| CHECK        |          |      | TO SOUTH TO THE SO | 1511       |
| APR          |          |      | UNIT SOLUTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RYAN       |
| APR          | <u> </u> |      | H. W. LOUD MACHINE WORKS, INC.<br>887 East Second St., Pomona, California                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PAGE<br>38 |

#### UNIT SOLUTION - BEARING REACTIONS

E MSLB

E MSUB

E Molo

| CALC  | Theolis | REVISED | DATE | MOSE GEAR XVSA                                                            | ISIL       |
|-------|---------|---------|------|---------------------------------------------------------------------------|------------|
| CHECK |         |         |      |                                                                           |            |
| APR   |         |         |      | UNIT SOLUTION                                                             | RYAN       |
| APR . |         | ).<br>  |      | H. W. LOUD MACHINE WORKS, INC.<br>887 East Second St., Pomona, California | PAGE<br>39 |

UNIT SOLUTION - BEARING REACTIONS CONTO

$$(a+b) = 27.225$$

| CALC  | Billick | REVISED | DATE | NO'SE GEAR XUSA               | ISIL       |
|-------|---------|---------|------|-------------------------------|------------|
| CHECK |         |         |      |                               | 13110      |
| APR   |         |         |      | UNIT SOLUTION                 | RYAN       |
| APR   |         | 8       |      | . W. LOUD MACHINE WORKS, INC. | PAGE<br>40 |

1115 = 0

MGG- = - 2.00 Vo - 10.938 Do + MSO

MsG+ = MsG-

MSLB = -2.00 Vo - 6 Do + Mso

MD0 = 7.9 50

MDG- = 10.938 So+ MDO

 $MDG_{+} = 10.938 So - h RT + MDO$   $= 10.938 So + \frac{2h}{f} So + \frac{h}{f} Mvo + MDO$ 

MOLO = 50 + kR+ + MOO = 50 - 2k 50 - k/f Mvo + MOO f

| CALC  | 75 miles |      | REVISED | DATE | MOSE GEAR XVSA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
|-------|----------|------|---------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| CHECK | 1.50     | 301  | 100     | 3 ,  | TO SE SEAR AND A SEAR | 15/10     |
| APR . |          | N=15 |         |      | UNIT SOLUTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RYAN      |
| APR   |          |      |         |      | H. W. LOUD MACHINE WORKS, INC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PAGE VATE |
|       |          | .017 | Ğ       |      | 107 EAST SECOND ST., POMONA, CALIFORNIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 41        |

# SECTION 2

# DEFLECTION, ANALYSIS

| CALC  | Brilled. | REVISED | DATE | MOSE GEAR XVSA                                                             | ISIL       |
|-------|----------|---------|------|----------------------------------------------------------------------------|------------|
| CHECK |          |         |      |                                                                            | 1.5        |
| APR   |          |         |      | DEFLECTION                                                                 | RYAN       |
| APR   |          |         |      | H. W. LOUD MACHINE VIORKS, INC.<br>887 East Second St., Pomona, California | PAGE<br>42 |

# TABLE I - MATRIX

# PISTON BENDING MOMENT

| CALC  | 15 this | REVISED | DATE | NOSE GEAR XVSA                                                             | 15111  |
|-------|---------|---------|------|----------------------------------------------------------------------------|--------|
| CHECK |         |         |      |                                                                            | 13110  |
| APR   |         |         |      |                                                                            | RYAN   |
| APR . |         |         |      | H. W. LOUD MACHINE WORKS, INC.<br>8 17 EAST SECOND ST., POMONA, CALIFORNIA | PAGE . |

#### PISTON BENDING MOMENT MATRIX GENERAL CONDITION - ALL CONDITIONS ·V0 So MVO Do Mso Moo $\sum$ Ms. MD. 7.9 Mo Msc. -2.00 BEP.01-1.00 Mog. 10.938 1.00 MG-MsG+ - 2.00 -10.938 1.00 10.938+2h HDG+ 1.00 HG+ HSLB! - -- 2.00 1.00 MOLB 1.00 HLB 15116 NOSE LEMI メソリム **8741** APH

H W LQUD MACHINE WORKS INC.

887 EAST SECOND ST POMONA CALIFORNIA

PA I

44

# PISTON BENDING MOMENT

DETAILED MATRIX

CONDITION - F.E. - 1.6

| _       |                                           |            |         |           |       | 4           |         |
|---------|-------------------------------------------|------------|---------|-----------|-------|-------------|---------|
|         |                                           | Vo         | D.      | S         | MVo   | <b>М</b> о. | Mso     |
|         | ٤                                         |            |         |           |       |             |         |
| Ms.     |                                           |            |         |           |       |             |         |
| НО.     |                                           |            |         | 7.9       |       |             | ·       |
| Mo      |                                           | ·          |         |           |       |             |         |
| Msc.    |                                           | -2.00      | -10.938 | ,         | •     | ·           | 1.00    |
| Mog.    |                                           |            |         | 10.438    |       | 1.00        | '       |
| MG-     |                                           |            |         | ·         |       | ·           |         |
| Msc+    | A Min regional talk on the sec. ( Major ) | -2.00      | -10.938 |           |       | 7.          |         |
| HDG+    |                                           |            |         | 11.975    | -518  | 1.00        | 5.4     |
| MG+     |                                           |            |         | î         | ,     |             | ·       |
| 1:SLB   |                                           | -2.00      | -19.407 |           |       |             | 1.00    |
| MOLB    |                                           |            |         | 18.159    | 619   | 1.00        | ,       |
| M LB    |                                           |            |         |           | E . U |             |         |
| CALC 75 | this                                      | REVISED DA | NOSE    | GEAR      | XVS   | 4           | 15116   |
| APR     | -7                                        |            |         |           |       | - 19        | RYAN    |
| APR     |                                           | }          |         | W LOUD MA |       |             | PAGE 45 |

# PISTON BENDING MOMENT

DETAILED MATRIX

CONDITION - F.E. - 5.3

|       |      | T           | ·       | T      | <del></del> | Υ        | <del></del>        |
|-------|------|-------------|---------|--------|-------------|----------|--------------------|
|       |      | . Vo        | D.      | So     | MVo         | Mo.      | Mso                |
|       | Σ    |             |         |        |             |          |                    |
| Ms.   |      |             |         |        |             |          |                    |
| MD.   |      |             |         | 7.9    |             |          |                    |
| H.    |      | · ·         |         |        | ·           |          |                    |
| Msc.  |      | -2.00       | -10.938 |        |             |          | ١.٥٥               |
| Mog.  |      |             |         | 10.938 |             | 1.00     |                    |
| MG-   |      |             |         |        |             |          |                    |
| Msc+  |      | -2.00       | -10.938 |        |             |          | 1.00               |
| HDG+  |      |             |         | 11.188 | .125        | 1.00     |                    |
| MG+   |      |             |         |        |             |          |                    |
| HSLB  |      | -2.00       | -15,707 |        | •           |          | 1.00               |
| MOLB  | -    |             |         | 14.841 | 437         | 1.00     |                    |
| MLB   |      |             |         |        |             |          |                    |
| CHECK | chit | HEVISED DAT | Nose    | GEAR   | メンシ         | <u>\</u> | 15116              |
| APH   |      |             |         |        | CHINE WORKS |          | RYAN<br>PAGE<br>46 |

PISTON BENDING MOREUT EXTENDED . I KTRIX CONDITION - SPINUP (FWD) F.E. - 1.6 9200# MVo Moo 3600 0 Mso MD. Mo MSG. -51031 -11654 -39377 Mog. HG-Msc+ 51031 -11654 -39371 HDG+ HG+ HSLB 81519 -11654 -69865 HOLB M LB CALC NOSE GEAR XYSA ISIIL CHECK RYAN -H. W. LOUD MACHINE WORKS, INC. PAGE BET EAST SECOND ST., PCHOIA, CALIFORNIA

PISTON BENDING MOMENT

EXTENDED MATRIX

Di

CONDITION - SPRINGBACK (FWD) F.E.-1.6 9200#

|         |       | Vo          | D.    | S                              | MVo  | Mo.      | Mso        |
|---------|-------|-------------|-------|--------------------------------|------|----------|------------|
|         | Σ     | 6205        | -4441 | 0                              | 0    | 0        | 0          |
| Me,     |       |             | • .   |                                | ,    |          |            |
| HD.     |       |             |       | ·                              |      | <u>.</u> |            |
| Mo      |       |             |       |                                |      |          |            |
| Msc.    | 36166 | -12410      | 48576 |                                |      |          |            |
| MDG-    |       |             |       |                                |      |          |            |
| MG-     | \     |             |       |                                |      |          |            |
| Msc+    | 36166 | -12410      | 48576 |                                |      |          |            |
| HDG+    |       |             |       |                                |      |          |            |
| MG+     |       |             | , ,   |                                |      |          |            |
| HSLB    | 73766 | -12410      | 56156 |                                |      |          | \.         |
| MOLB    |       | П           |       |                                |      |          |            |
| MLB     |       |             |       |                                |      |          |            |
| CALC 75 | whit  | REVISED DAT | Nose  | GEAR                           | XV5A |          | 15116      |
| APR     |       |             |       |                                |      |          | RYAN       |
| APR     |       |             |       | I. W. LOUD MA<br>EAST SECOND ! |      |          | PAGE<br>48 |

## PISTON BENDING MOMENT

#### EXTENDED MATRIX

CONDITION - TURNING (FWD) F.E. -5.3 12500#

|      | · · · · · · · · · · · · · · · · · · · |             | <del></del> | · · · · · · · · · · · · · · · · · · · |      |     | T       |
|------|---------------------------------------|-------------|-------------|---------------------------------------|------|-----|---------|
| 1    |                                       | Vo          | D.          | S                                     | Mvo  | Moo | Mso     |
|      | ۶                                     | 3193        | -279        | 1602                                  | 0    | 0   | 2204    |
| Mso  |                                       |             |             |                                       |      |     |         |
| MD.  | 12656                                 | =           |             | 12656                                 |      |     |         |
| Мо   |                                       | •           |             | `                                     |      |     |         |
| Msc. | -1130                                 | -6386       | 3052        |                                       |      |     | 2204    |
| Mog. | 17523                                 |             |             | 17523                                 |      | ·   |         |
| MG-  |                                       |             |             |                                       |      |     |         |
| Msa+ | -1130                                 | -6386       | 3052        |                                       |      |     | 2204    |
| HDG+ | 17923                                 |             |             | 17923                                 |      | • 4 |         |
| HG+  |                                       |             |             |                                       |      |     |         |
| HSLB | 200                                   | -6386       | 4382        |                                       |      |     | 2204    |
| Molb | 23775                                 |             |             | 23775                                 |      |     |         |
| MLB  |                                       |             |             |                                       |      |     |         |
|      | this                                  | REVISED DAT | Nose        | GBAR                                  | XVSA |     | 15116   |
| APR  |                                       |             |             |                                       |      |     | RYAN    |
| APR  |                                       |             |             | H. W. LOUD MA                         |      |     | PAGE 49 |





INNER CYLINDER INERTIA CALCULATIONS - CONTO TAKEN 3.333 IN. FROM & AXLE



| L |            |      |      |        |       |       | •                  |        |        |         |
|---|------------|------|------|--------|-------|-------|--------------------|--------|--------|---------|
|   |            | A    | P    | S      | AS    | AD.   | 452                | ADZ    | J. 0-0 | I02-5   |
| ' | .291x.15   | .045 | .984 | .260   | ,0117 | .0442 | .0030              | .04-36 | .00032 | P0000 . |
| 2 | .115×1.662 | .122 | .531 | .058   | 1500. | 8440. | .0004              | .0344  | £1000. | .01150  |
| 3 | .241X.15%  | .045 | 850. | . 2,40 | .0117 | .0035 | ن <del>د</del> ەە، | .00077 | .00032 | ,00009  |
|   | ٤٠         | .212 |      |        | .0305 | .1125 | .0064              | -07827 | .00077 | .01168  |

$$S = \frac{\Sigma AS}{\Sigma A} = \frac{.0305}{.212} = .1439$$

$$D = \frac{\Sigma AD}{\Sigma A} = \frac{.1125}{.212} = .531$$

D

IS-5= .01168+ .07827 - .531 (.1125) = .03025 . W. 4

ID-0= .00077+ .0064- .1439 (.0305) = .0027 IN.4

| CALC  | 75 tilis | REVISED | DATE | NOSE GEAR XVSA                                                            | 15116      |
|-------|----------|---------|------|---------------------------------------------------------------------------|------------|
| CHECK |          |         |      |                                                                           |            |
| AFR   |          |         |      | DEFLECTION ANALYSIS                                                       | RYAN       |
| APR   |          |         |      | H. W. LOUD MACHINE WORKS, INC.<br>887 East Second St., Pomona, California | PAGE<br>52 |

INNER CYLINDOR

INERTIA CALCULATIONS

TAKEN 10.50 IN FROM Q AXLE - (9.566)

0.0. = 2.615

5.371

2.2954

I.D. = 2.290

4.119

1.349

2t= .325

A = 1.252

J= .9445

t = .1625

TAKEN 12.805IN, FROM & AKLE USE 13.88

O.D. = 2.491

4.873

1. 8400 ...

I.D. = 2,290

4.119

1.3499

2t = .201

A = .754

I= .5401

t = . 1005

TAKEN 16.774 IN. FROM & AXLE

O.D. = 2.491

4.873

0098.1

I.D. = 2.251

3.980

1.2603

Zt = .240

t = .120

A= .893

I = .6297

| CALC  | O. Forchit | REVISED | DATE | NOSE GEAR XVSA                                                            | 1511    |
|-------|------------|---------|------|---------------------------------------------------------------------------|---------|
| CHECK |            |         |      |                                                                           | ,       |
| APR   |            |         |      | DEFLECTION ANALYSIS                                                       | RYAN    |
| APR   |            |         |      | H. W. LOUD MACHINE WORKS, INC.<br>887 EAST SECOND ST., POMONA, CALIFORNIA | PAGE 53 |



INNER CYLINDER 1511 LIO3

SPINUP (FUD) F.E

| 1     | 7.              | 3                   | 4       | 5             | 6              | 7                    | 8                      | 9                             | 10         |
|-------|-----------------|---------------------|---------|---------------|----------------|----------------------|------------------------|-------------------------------|------------|
| PANEL | POINT O TO L.H. | M<br>(ULT)<br>×10-3 | I       | EI.           | M<br>EI        | L<br>PANEL<br>LENGTH | X 103<br>PANEL<br>AREA | CENTROID<br>FROM R.H.<br>BDG& | Z.         |
|       |                 |                     |         | 4 x <u>29</u> | 3/6            |                      | <u>(0,0</u> 10         | د ما د ع                      | @ <b>*</b> |
| 1     | 0               | 23.500              | 7x.0303 | 1.755         | 0              | 5.∞                  | 30.415                 | 3.333                         | 3.3        |
| Z     | Ŋ               | 23.500<br>38.000    | 2X.0545 | 3.451         | 6.810          | 3.00                 | 26.732                 | 1.620                         | ن.ن        |
| 3     | 8               | 38.000<br>51.031    | .9445   | 27. <b>%¶</b> | 1.367          | 2.95                 | 4.794                  | 1.549                         | 9.5        |
| 4     | 10.95           | 51.031<br>54.500    | .9445   | 27.391        | 1.843          | .737                 | 1.420                  | .375                          | 11.3       |
| 5     | 11.687          | 54.500<br>67.000    | ,5401   | 15.663        | 3.480<br>3.458 | 2.188                | 8.137                  | 1,118                         | 12,        |
| ٥     | 13.875          | 62.000<br>81.520    | .6291   | 18.261        | 3.395          | 5.532                | 21,756                 | 2.899                         | 16.7       |
| 7     | 19.40           | 81.520<br>27.000    | .6297   | 18.761        | 4.444          | 5,213                | 15.443                 | 2.169                         | 21.4       |
| 8     | 24.62           | 27.000<br>10.500    | .4177   | 12.113        | 2.229          | 1.630                | 2.523                  | ٠6٩٤                          | 25.        |
| q     | 26.25           | 10.58               | .3034   | 8.799         | 1.193          | <b>7</b> 97 <b>5</b> | . <b>5</b> 82          | , <b>3</b> 25                 | 26.        |
|       |                 |                     |         |               |                | 2.00                 |                        | er fan A                      | D 6        |

A

|                                       |                |                 |                       |                                |                 |                                  | le de la comp             |                         |      |                                                          |
|---------------------------------------|----------------|-----------------|-----------------------|--------------------------------|-----------------|----------------------------------|---------------------------|-------------------------|------|----------------------------------------------------------|
| <u> </u>                              | 3_             | SPI             |                       | 7200#                          | F. E.           | ١.٤                              |                           | 1.1                     |      |                                                          |
|                                       | 6              | 7               | 8                     | 9                              | 10              |                                  | 12                        | . 15                    | 14   | 18 4                                                     |
|                                       | M.<br>EH       | PANEL<br>LENGTH | X103<br>PANEL<br>AREA | CENTROID<br>FROM R.H.<br>BIDGE | 2.+3            | A(2+2)<br>E01x                   | ¥<br>[∧(2+¥)]             | E<br>A(SLOPE)           | e ea | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ |
| 29                                    | 3/5            |                 | <u>(0,0)0</u>         | ٢                              | 2+9             | 8 × (b)                          | SUM (I)<br>FROM<br>BOTTOM | SUM B<br>FROM<br>BOTTOM | @×®  | O-6                                                      |
| 5                                     | 0              | 5.∞             | 30.475                | 3.333                          | 3.353           | 101,573                          | 1.223                     | ,112                    | ٥    | 1,223                                                    |
| <b>5</b> 1                            | 11.011         | 3.00            | 26.732                | 1.620                          | 6.620           | 176.966                          | 1.121                     | 180.                    | 205  |                                                          |
| <b>5</b> 1                            | 1.387          | 2.95            | 4.794                 | 1.549                          | 7AKEAT.         | 45.778                           | .944                      | .055                    | .440 | - 44                                                     |
| <b>1</b>                              | 1.863          | .737            | 1.420                 | .375                           | 11.325          | 16.082                           | .846                      | .050                    | 548  | 4                                                        |
| <b>-</b> 3                            | 3.480<br>3.958 | 2.188           | 8.137                 | 1,118                          | 12.505          | 104,194                          | .882                      | .048                    | 9    |                                                          |
| -1                                    | 3.395          | 5,532           | Z1.758                | 2.899                          | \G.774          | 364,63 <u>5</u>                  | .7 <b>78</b>              | .040                    | 596  | 423                                                      |
| . 1                                   | 4.444<br>1.479 | 5,213           | 15.443                | 2.169                          | 21.576          | <b>3</b> 3 <b>4</b> .21 <b>7</b> | -414                      | .0IB                    | 344  | .04                                                      |
| 3                                     | 2.229          | 1.630           | 2.523                 | .696                           | 75.316          | 63,872                           | .679                      | +003                    | 174  | -009                                                     |
| ٩                                     | 1.193          | <b>7</b> 975    | .58z                  | 137S                           | 26. <b>5</b> 75 | 15,467                           | .0161                     | نياههن.                 | -    |                                                          |
|                                       |                |                 |                       |                                |                 |                                  |                           |                         |      |                                                          |
| · · · · · · · · · · · · · · · · · · · |                | And Fred        |                       |                                |                 | $^{t}\setminus eta$              |                           |                         |      |                                                          |

j

h

INHOR CYLINDOR

INERTIA CALCULATIONS

TAKEN 8.0 FROM Q AXLE



|   |            | A    | D     | D    | <b>'</b> \5 | A     | 45 <sup>2</sup> | ADZ   | I. D.D | I. 5-5 |
|---|------------|------|-------|------|-------------|-------|-----------------|-------|--------|--------|
| 1 | .447X.229  | .102 | 1.103 | .334 | .0346       | .1125 | 07110.          | .1241 | F100.  | .00045 |
| 2 | 815.1XZ11. | .140 | .609  | .058 | 1800.       | .0853 | .00041          | .0519 | .00015 | .01735 |
| 3 | .447×.225  | .102 | .115  | P&&. | .0344       | 7110. | .01170          | E100. | .0017  | .00045 |
|   | ح.         | .344 |       |      | ٠٥٦٦ ع      | .2095 | .02387          | בררו. | .00355 | .01825 |

Is-3= .01825+ .1773 - .6090 (.2095) = .06795 INI4

In-oz . 00355 + .02387 - . 2247 (.0773) = .01000 10.4

| CALC  | Sitelis | REVISED | DATE | HOSE GEAR XVSA                          | ISIL  |
|-------|---------|---------|------|-----------------------------------------|-------|
| CHECK |         |         |      | 11020 0076 7797                         | 13110 |
| APR   |         |         |      | DEFLECTION ANALYSIS                     | RYAN  |
| APR   |         |         |      | H. W. LOUD MACHINE WORKS, INC.          | PAGE  |
| Š.,   | 5 5 15  |         |      | 887 EAST SECOND ST., POMONA, CALIFORNIA | 56    |

Le control de la company de la

# TABLE VI - MATRIX

# BEARING REACTIONS

| CALC  | Boolis | REVISED | DATE | NOSE GEAR XVSA                 | ISIL       |
|-------|--------|---------|------|--------------------------------|------------|
| CHECK |        |         |      | TO CONC MISK                   | 13110      |
| APR   |        |         |      | DEFLECTION ANALYSIS            | RYAN       |
| AFR   |        |         |      | H. W. LOUD MACHINE WORKS, INC. | PAGE<br>57 |

#### BEARING REACTIONS MATRIX ALL CONDITIONS .Vo My. Do 9. U.S Hip Hs. RT \_2.00/f - 1/¢ 2.00/ Rous b/a -1/a 6-2.00k/f RSUB 1/2 ROLB 2.00/2 27.225 1/2 2.0m 27.225 RSLB m/fa ' - 1/a CONDITION -Vo HV. Moo Ms. $\leq$ 口。 S. RT Rous RSUB ROLB RSLB REVISED NOSE GEAR XVSA 15111 CHECK RYAN APR

H. W. LOUD MACHINE WORKS, INC. 887 EAST SECOND ST., POMONA, CALIFORNIA

PAGE 58

#### BEARING REACTIONS DETAILED MATRIX CONDITION -F.E. -1.6 **V**. S. Hv. Ho. Hs. Σ Do RT 0 0 0 -.269 -.134 0 Rous .256 2.482 0 -.128 0 0 RSUB 0 0 .128 2.324 0 -.079 ROLB .256 0 .128 -3.482 0 RSLB 0 0 3.055 .213 -.128 CONDITION -V. MDO Ms. H,v. D S. $\leq$ RT Rous RsuB ROLB RSLB

Brahil

CALC

CHECK

APR

REVISED

DATE

NOSE GEAR

XVSA

H. W. LOUD MACHINE WORKS, INC. 887 EAST SECOND ST., POMONA, CALIFORNIA ISIIL

RYAN

PAGE 59 BEARING REACTIONS

DETAILED MATRIX

CONDITION - F.E. - 5.3

|      | <b>~</b> |          |        |        | ·    |                  |       |
|------|----------|----------|--------|--------|------|------------------|-------|
|      | ٤        | Vo       | Do     | s.     | Hv.  | H <sub>D</sub> . | Hs.   |
| RT   |          | 0        | ပ      | 234    | 117  | 0                | 0     |
| Roys |          | .174     | 1.364  | 0      | 0    | ό                | 087   |
| RSUB | • —      | 0        | 0      | 1.289  | 038  | .087             | 0     |
| Rolb |          | 174      | -2.364 | 0      | ٥    | 0                | . 087 |
| RSLB |          | ,0<br>,0 | 0      | -2,054 | .155 | 087              | 0     |

CONDITION -

|      |            |     |   |        |         |           | - 11   |      |                                              |     |            |
|------|------------|-----|---|--------|---------|-----------|--------|------|----------------------------------------------|-----|------------|
| •    |            | 2   | Ξ |        | 1.      | Q         |        | S.   | HV.                                          | Mo. | Ms.        |
| R    |            |     |   |        | ,       |           | J. H.  |      | <b>\</b> \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |     |            |
| Ro   | u <b>e</b> |     |   |        |         |           | ,i     |      |                                              | ±   |            |
| Rs   | υB         |     |   |        | , • • · |           |        |      |                                              |     |            |
| RE   | LB         | . ' |   |        |         |           | 114    |      |                                              |     |            |
| Rs   | LB         |     | 4 |        | • !     |           |        |      |                                              |     |            |
| CALC | Zi.        | hi  |   | REVISE | 0 04    | TR.       | 10 (36 | CBAR | XV52                                         |     | ISIL       |
| APR  |            |     |   |        |         | $\exists$ |        | •    |                                              |     | RYNN       |
| APR  |            |     |   |        |         |           |        |      | ACHINE WORK<br>St., Pumona C                 |     | PAGE<br>GO |

| BEARING REACTIONS |          |             |               |      |                             |                  |               |  |  |  |
|-------------------|----------|-------------|---------------|------|-----------------------------|------------------|---------------|--|--|--|
| EXTER             | ADED V   | MATRI       | <u>×</u>      |      |                             |                  |               |  |  |  |
|                   |          | (=          | (aw           |      |                             |                  |               |  |  |  |
| COND              | TION -   | SPIN        | 9200          | **   | F.E                         | 1.6              |               |  |  |  |
|                   |          |             | 1 200         |      | Υ                           | γ                |               |  |  |  |
|                   | Σ        | 5827        | Do<br>3600    | s.   | Hv.                         | H <sub>b</sub> . | Hs.           |  |  |  |
| RT                |          | 0           | Ò             | 0    |                             |                  | •             |  |  |  |
| Rous              | 10427    | 1492        | 8935          |      |                             |                  | (±)           |  |  |  |
| RSUB              |          | 0           | 0             | ,    |                             |                  |               |  |  |  |
| Rolb              | -14027   | -1492       | -12535        |      |                             |                  |               |  |  |  |
| RSLB              |          | 0           | 0             | 0    |                             |                  |               |  |  |  |
| CONT              | WT1051 - |             | (AFT)         |      | F.E.                        |                  |               |  |  |  |
| CONC              | ITION -  |             | 9700:<br>RGEN |      | 7,0.                        | - 1. 0           |               |  |  |  |
|                   | ٤        | 3132        | D.            | s.   | Mv.                         | Mo.              | Ms.           |  |  |  |
| RT                |          | 0           | ٥             | 0 -  |                             |                  |               |  |  |  |
| Rous              | 5405     | ಕಿಂಬ        | 4803          |      | •                           |                  |               |  |  |  |
| RsuB              |          | 0           | ٥             |      |                             |                  |               |  |  |  |
| Rolb              | -7540    | -802        | -6738         |      |                             |                  |               |  |  |  |
| RSLB              |          | 0           | 0             | 0    |                             |                  |               |  |  |  |
| CALC CALCA        | hil      | REVISED DAT | NOSE          | GEAR | XV5A                        |                  | 1511L<br>RYAN |  |  |  |
| APR .             |          |             |               |      | CHINE WORK<br>St. Pomona. C |                  | PAGE GI       |  |  |  |

D I

| BEARING REACTIONS                    |                |                              |                                                 |         |      |        |     |  |  |  |  |
|--------------------------------------|----------------|------------------------------|-------------------------------------------------|---------|------|--------|-----|--|--|--|--|
| EXTE                                 | NDED           | MATRI                        | <u>x</u>                                        |         |      |        |     |  |  |  |  |
|                                      |                |                              | (EWO)                                           | •       |      |        | . 1 |  |  |  |  |
| COND                                 | ITION -        | SPIN                         | •                                               |         | F. 6 | E 1.6  |     |  |  |  |  |
|                                      | 12500#         |                              |                                                 |         |      |        |     |  |  |  |  |
|                                      | ٤              | 3238                         | Do 72001                                        | 5.      | Hv.  | Ho.    | Hs. |  |  |  |  |
| RT                                   |                | 0                            | Ō                                               | 0       |      |        |     |  |  |  |  |
| Rous                                 | 5795           | 829                          | 4966                                            |         |      |        |     |  |  |  |  |
| RSUB                                 |                | 0                            | 0                                               |         |      |        | ·   |  |  |  |  |
| Rolb                                 | -7796          | -829                         | -6967                                           | ,       |      |        |     |  |  |  |  |
| RSLB                                 |                | 0                            | 0                                               | 0       |      |        |     |  |  |  |  |
|                                      |                |                              |                                                 |         |      |        |     |  |  |  |  |
|                                      |                |                              | (EVID                                           |         |      | · ** § |     |  |  |  |  |
| COND                                 | NTION -        | SPRI                         | NGBAC                                           | K       |      | F.E1   |     |  |  |  |  |
| COND                                 | PITION -       | SPRI                         | •                                               | K       |      | F.E1   |     |  |  |  |  |
| COND                                 | E E            | SPRII<br>Vo<br>6205          | 920<br>D                                        | K       | Hv.  |        | Ma. |  |  |  |  |
| COND                                 |                | \\\\o                        | 920<br>D                                        | × 0#    |      |        |     |  |  |  |  |
|                                      |                | V.<br>6205                   | 920<br>920<br>-9441                             | × 0#    |      |        |     |  |  |  |  |
| R <sub>T</sub>                       | Σ.             | \<br>6205                    | 920<br>920<br>-4441<br>0                        | ×<br>5. |      |        |     |  |  |  |  |
| RT<br>Rous                           | Σ.             | V0<br>6205                   | 920<br>920<br>-4441<br>0                        | ×<br>5. |      |        |     |  |  |  |  |
| RT<br>Rous<br>Rsus                   | -943 <b>5</b>  | V <sub>0</sub><br>6205<br>0  | 920<br>-4441<br>0<br>-11023                     | ×<br>5. |      |        |     |  |  |  |  |
| Rous<br>Rous<br>Rous<br>Rous<br>Rous | -9435<br>13876 | Vo<br>6205<br>0<br>1588<br>0 | 920<br>D.<br>-9441<br>0<br>-11023<br>0<br>15464 | S. 0    |      | Moo    |     |  |  |  |  |
| RT ROUS RSUB                         | -9435          | Vo<br>GZ05<br>0<br>1588<br>0 | 920<br>D.<br>-9441<br>0<br>-11023<br>0<br>15464 | 4 5. 0  | Hv.  | Moo    | Ma. |  |  |  |  |

to the second of the self-second and a find a later to the second and the second

, .

1

The same with the same of the same of the same

| EXTE              | NDED /   | MATRI       | <u>×</u>                                                    |                      |      | •           |      |
|-------------------|----------|-------------|-------------------------------------------------------------|----------------------|------|-------------|------|
|                   |          |             | (AFT)                                                       |                      |      |             |      |
| COND              | TION -   | ·SPR        | 9200°                                                       |                      |      | F.E1        | وي ، |
|                   | ·        | E           | MERG                                                        | •                    |      |             |      |
|                   | ٤        | 3199        | Do -2242                                                    | S.                   | Hv.  | Ho. Hs.     |      |
| Rr                |          | 0           | 0                                                           | 0                    |      |             | ,    |
| 2008              | -4746    | 819         | -5545                                                       |                      |      |             |      |
| Rsub              |          | 0           | 0                                                           |                      |      |             |      |
| <u> </u>          |          | 0.10        | 7807                                                        |                      | 5:   |             |      |
| ROLB              | 6988     | -819        |                                                             |                      |      |             |      |
| < 5 LB            | 6488     | 0           | 0                                                           | 0                    |      |             |      |
| ₹ 5 <sub>LB</sub> | 6988<br> | 0           | (FW                                                         | )<br>:k              | F.C. | \.Co        |      |
| ₹ 5 <sub>LB</sub> |          | 0           | O (FWI                                                      | )<br>:k              | F.E. | -1.6<br>Mbo | Ms.  |
| ₹ 5 <sub>LB</sub> | NTION -  | SPR         | 0<br>(FWI<br>1250                                           | )<br>×               |      |             | Ms.  |
| CONE              | NTION -  | SPR.        | 0<br>(FWI<br>1250<br>1250                                   | o)<br>×<br>o#<br>\$. |      |             | Ma.  |
| R SLB             | E E      | SPR<br>3192 | 0<br>(FWE)<br>1250<br>1250<br>1250                          | o)<br>×<br>o#<br>\$. |      |             | Mg.  |
| CONE              | E E      | SPR1        | 0<br>(F W T<br>NG BA<br>1250<br>1250<br>-2438               | o)<br>×<br>o#<br>\$. |      |             | Y.s. |
| CONE              | -523A    | SPR<br>3192 | 0<br>(F W T<br>NG BA<br>1250<br>1250<br>-2438<br>0<br>-6051 | o)<br>×<br>o#<br>\$. |      |             | ۲90  |

The state of the s

| BEAR     | ING RE  | LACTIO      | NS        | e e         |                               |          |                                       |  |  |  |  |  |
|----------|---------|-------------|-----------|-------------|-------------------------------|----------|---------------------------------------|--|--|--|--|--|
| EXTE     | NDED    | MATRI       | X .       |             |                               |          |                                       |  |  |  |  |  |
|          | u.      |             | (FWE      | 9           |                               |          |                                       |  |  |  |  |  |
| CONDI    | TION -  | MAX.        | الحكوم    | ICAL        | 7.7                           | 1.6      |                                       |  |  |  |  |  |
| 9200#    |         |             |           |             |                               |          |                                       |  |  |  |  |  |
|          | E V. D  |             |           | 5.          | Hv.                           | Hs.      | Hs.                                   |  |  |  |  |  |
| RT       |         | 0           | 0         | 0           | i i                           |          | <br>                                  |  |  |  |  |  |
| Raus     | 4128    | 1654        | 2504      |             |                               |          |                                       |  |  |  |  |  |
| RSUB     | 3 - 2   | 0           | .0        |             |                               | 3        |                                       |  |  |  |  |  |
| Role     | -5137   | -1624       | -3513     |             |                               |          | ·                                     |  |  |  |  |  |
| RSLB     | ·       | 0           |           | 0           |                               | •.       |                                       |  |  |  |  |  |
| <u> </u> |         | 120         | (FWD      | )           | .E                            | 82 Ta. 5 |                                       |  |  |  |  |  |
| COND     | ITION - | MAX.        | 1250      | <del></del> | F                             | ·E1.     | 6                                     |  |  |  |  |  |
|          |         |             | 1250      |             | Ι                             | Les      |                                       |  |  |  |  |  |
|          | Σ       | 3263        | D.<br>519 | S.          | MV.                           | Moo      | Mes                                   |  |  |  |  |  |
| RT       |         | 0           | 0         | 0           |                               |          |                                       |  |  |  |  |  |
| Rous     | 2123    | 835         | 1288      | * *         |                               |          |                                       |  |  |  |  |  |
| Rsus     |         | 0           | 0         |             |                               |          |                                       |  |  |  |  |  |
| ROLB     | -2642   | -835        | -1807     |             |                               |          | · · · · · · · · · · · · · · · · · · · |  |  |  |  |  |
| RSLB     |         | . 0 .       | ٥         | 0           |                               |          |                                       |  |  |  |  |  |
| CALC CAL | -li-    | REVISED DAT | NOSE-     | GEAR        | × <b>V</b> 5                  | A        | 15114                                 |  |  |  |  |  |
| APR      |         |             |           |             |                               |          | RYAN                                  |  |  |  |  |  |
| APR      |         |             |           |             | ACHINE WORK<br>ST , POMONA. C |          | PAGE<br>64                            |  |  |  |  |  |

......

.

.

| BEAR      | ING RE  | LACTIO      | NS                           |        |            |      |               |
|-----------|---------|-------------|------------------------------|--------|------------|------|---------------|
| EXTE      | NDED /  | MATRI       | ×_                           |        | •          |      | ~ .           |
| COND      | ITION - | - MAXII     | (AFT)<br>MUM<br>9200 =       | #      | CAL        | F.E  | -1.6          |
| •         | ٤       | V. 3270     | Do 520                       | S.     | Hy.        | HB.  | Ms.           |
| RT        |         | 0           | 0                            | 0      | ·          |      |               |
| Rous      | 2178    | 837         | 1291                         |        | ·          |      | ·             |
| RSUB      |         | 0           | 0                            |        |            |      |               |
| Rolb      | -2648   | -837        | -1811                        |        |            |      |               |
| RSLB      |         | 0.          | 0                            | - 0    | ·          |      | •             |
| COND      | NTION - |             | (AF<br>MAX<br>9 200=<br>ERGE | · VER- | TICAL      | F.E. | 1.4           |
|           | ٤       | 0448        | Do -739                      | S.     | HV.        | Moo  | Ms.           |
| RT        |         | 0           | 0                            | 0      |            |      |               |
| Rous      | 329     | 2163        | -1834                        |        |            |      |               |
| RsuB      |         | 0           | 0                            |        |            |      |               |
| ROLB      | 410     | -2163       | 2573                         |        |            |      | ·             |
| RSLB      |         | ٥           | C)                           | 0      | 4          |      |               |
| CALC CATE | Kiel    | REVISED DAT | POSE                         | GEAR   | XV5A       |      | 1511L<br>RYAN |
| APR       |         |             |                              |        | CHINE WORK |      | PAGE<br>GS    |

I D BEARING REACTIONS

EXTENDED MATRIX

(FWD)

CONDITION - UNSYMM. BRAKING

F.E.-5.3

12500#

|      |       |      |             |       | · · · · · · · · · · · · · · · · · · · |      |     |  |
|------|-------|------|-------------|-------|---------------------------------------|------|-----|--|
|      | ٤     | 4876 | Do<br>- 427 | 5,    | Hv.                                   | MD0  | Hs. |  |
| RT   | -259  | 0    | 0           | - 259 | 0 -                                   | 0    | 0   |  |
| Rous | 266   | 848  | -582        | 0     |                                       | 0    |     |  |
| RSUB | 2184  | 0    | 0           | 1424  |                                       | 760  |     |  |
| ROLB | 161   | -848 | 1009        | 0     |                                       | 0    |     |  |
| RSLB | -3030 | 0    | 0           | -2270 | 0                                     | -760 | 0   |  |

(FWO)

CONDITION - TURNING

F.E. - 5.3

15200 #

|           | Σ     | 3193           | D 279 | So.                            | HV.  | MD0   | Mes     |
|-----------|-------|----------------|-------|--------------------------------|------|-------|---------|
| RT        | -375  | 0              | 0     | -315                           | 0    | 0     | 6       |
| Rous      | 175   | 55             | -381  |                                |      | . 0   |         |
| Rsus      | 3166  | 0              | 0.40  | 2065                           |      | NO    |         |
| Role.     | . 104 | -556           | 669.  | O                              |      | 0     |         |
| RSLB      | -4392 | <sup>6</sup> 0 | 0     | -3291                          | 0    | -1101 | 0       |
| CALC TECH | tit   | REVISED DAT    | Nose  | GEAR                           | XVSA |       | ISIL    |
| APR       |       |                |       | H. W. LOUD H/<br>7 EAST SECOND |      |       | PAGE GG |

BEARING REACTIONS .

EXTENDED MATRIX

(AFT)

CONDITION - UNSYMMETRICAL BRAKING F.E. - 5.3
9200#

|      | ٤     | 4-171 | Do<br>-345 | <u>ح</u><br>الإي | Hv. | HD. 5032 | Hs. |
|------|-------|-------|------------|------------------|-----|----------|-----|
| RT   | -149  | 0     | 0          | -149             | 0-  | 0        | 0 . |
| Rous | 228   | 726   | -498       | 0                |     | 0        |     |
| RSUB | 1259  | . 0   | 0          | 821              |     | 438      |     |
| Rolb | 137   | -726  | ८८३        | 0                |     | 0        |     |
| RSLB | -1746 | 0     | <b>o</b> . | -1308            | - 0 | -438     | 0.  |

(AET)

CONDITION - TURNING . F.E. - 5.3

9200#

|      |       |            |            |               |     |       | the second secon |
|------|-------|------------|------------|---------------|-----|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | Σ     | 3198       | Vo Do 1380 |               | Hv. | 10702 | Meo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Ŗŧ   | -323  | 0          | 0          | - 323         | 0-  | 0     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Rous | 174   | 556        | -382       | 0.            | •   | 0     | 11 252                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Rsus | 2727  | , 0        | Ç          | 1779          |     | 948   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ROLB | 106   | -556       | 662        | 0             |     | 0     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| RSLB | -3783 | 0          | , 0        | -2835         | 0   | -948  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|      | -lis  | REVISED DA | NOSE       | - GBAR        | XVS | 4_    | ISIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| APR  |       |            | F-1        |               | ••  | . 1/1 | RYAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| APR  |       |            |            | H. W. LOUD MA |     |       | PAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

# BEARING REACTIONS

## EXTENDED MATRIX

(FWB)

CONDITION - 3PT BRAKED ROLL F.E .- 5.3

|      | ٤   | 3193 | Do -279 | s. | Hv. | Ho. | Hs. |
|------|-----|------|---------|----|-----|-----|-----|
| RT   |     | 0    | 0       | 0  |     |     |     |
| Rous | 175 | 556  | -381    |    |     |     |     |
| RSUB |     | 0    | 0       |    |     | :   |     |
| Rolb | 104 | -556 | 660     |    |     |     |     |
| RSLE |     | 0    | 0       | 0  |     |     |     |

(AFT)

CONDITION - 3PT BRAKED ROLL F.E. - 5.3

9200#

|          | Σ     | 383     | 5 -  | 336      | S     | ,                | HV.          | Moe      | Me         |
|----------|-------|---------|------|----------|-------|------------------|--------------|----------|------------|
| RT       |       | 0       |      | 0        | 0     |                  |              | 4        |            |
| Rous     | 204   | 66      | 7 -  | 458      |       |                  |              |          |            |
| Rsus     |       | .0      |      | ٥        | ,     | v <sub>I</sub> , |              | 5 s      | . :32      |
| ROLB     | 127   | -66     | 7 .  | 794      |       |                  |              | 14.      |            |
| RSLB     |       | 0       |      | ٥        | 0     | ,,.              | 41.77        | 1        |            |
| CALC 33- | Elis) | REVISED | DATE | NOSE     |       |                  | XV5/         | <u> </u> | ISIL       |
| APR      |       |         |      | H<br>637 | W. LO | UD MAG           | T. POHONA. C | S. INC.  | PAGE<br>G8 |

GENERAL EQUATIONS



6IN 15° = .2588'

51n 66° = . 9135 Cos 66° = . 4067

SIDE BRACES WILL THE ASSUMED AXIAL LOADED AS FOLLOWS:

Ry - RF4 SIN 150 - RFJ SIN 660 = 0

RSE - REH COS 150 - REJ COS 660 =0

- . 2588 REH - . 9135 RFJ + RVE =0

- .9659 RF4 - .4067 RFJ + RSF = 0

- . 2500 RFH - . 8823 RFJ + . 9659 RVF

- . 2500 REH - . 1053 REJ + . 2588 RSF

- .7770 REJ + .9659 RVF - . 2588 RSF

RFJ = .9659 RVF -. 2588 RSF

סרדר.

REJ = 1.243 RVF - .335 RSF

| CHECK | Jonatha . |              | REVISED | DV.TE | HOSE GEAR XVSA                 | IPIIC |
|-------|-----------|--------------|---------|-------|--------------------------------|-------|
| APR   |           |              |         |       | DEFLECTION ANALYSIS            | RYAN  |
| APR   |           | <del>)</del> |         |       | H. W. LOUD MACHINE WORKS, INC. | PAGE  |

# CYLINDER REACTIONS GENERAL EQUATIONS - CONT D

RFJ = 1.243 [-.5565 Vo -.0608 (C) So -.0282 (C) Do -.0608 MDo +.0282 MSo ]-.333 RSF

RFJ = -.6917 Vo -.0756 (C) 50 - .0350 (C) Do -.0756 MDo +.035 (C) M50-.333 (-50)

RF1 = -.6917 Vo + [.333-.0756 (C)] So -.0350 (C) Do
-.0756 MD0 +.0350 (C) MS0

- .1053 RFH - .3715 RFJ + .4067 RVF - .8823 RFH - .3715 RFJ + .4135 RSF .7770 RFH + .4067 RVF - .4135 RSF

RFH = -. 4067 RVF + .9135 RSF

RFH = - . 5234 RVF + 1.1757 RSF

RFH = -.5234 [-.5565 Vo - .0608 (C) So -.0282(C) Do -.0608 Moo +.0282 Mino] + 1.1757 RSF

RFH = .2913 Vo + .0318 (C) So+ .0148 (C) Do + .0318 MDo - .0148 M50 + 1.1757 (-50)

| CALC  | Buchit | HEVISED | DATE | NOSE GEAR XVSA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1511  |
|-------|--------|---------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| CHECK |        |         |      | THE STATE OF THE S | 13115 |
| APR   |        |         |      | DEFLECTION ANALYSIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RYAN  |
| APR   |        |         |      | H. 1. LOUD MACHINE WORKS, INC.<br>887 El ST SECOND ST., POMONA, CALIFORNIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PAGE  |

### GENERAL EQUATIONS - CONTO

REKE 1.243 RYE.

Ren = - . 5234 RVE

| CALC Secluit | REVISED DAT                           | HOSE GEAR XVSA                                                        | 15110  |
|--------------|---------------------------------------|-----------------------------------------------------------------------|--------|
| CHECK APR    |                                       | DEFLECTION ANALYSIS                                                   | RYAN   |
| APR          | · · · · · · · · · · · · · · · · · · · | H. W. LOUD MACHINE WORKS, INC. 1997 1997 1997 1997 1997 1997 1997 199 | PAGE . |

### CYLINDER BENDING MOMENT GENERAL EQUATIONS

MSLB = MOLB = 0

MSc - = - 2.56 RDLB

MSC+ = -2.56 RDLB + 3.50 PVBO = -2.56 RDLB + 3.50 (.7201 PBD) = -2.56 RDLB + 2.520 PBD

MSL = -4.343 ROLB + 3.50 PVBD -. 1783 PDBD = -4.343 ROLB + 3.50 (.7201 PBD) - 1.783 (-.439 PBD) = -4.343 ROLB + 3.757 PBD

### MS\_+ = MS\_- = -4.343 ROLB + 3.757 PBO

MSUB = - a ROLB + 3.50 PVBD - (a - 2.56) PDBD

- (a - 4.343) PDOOR

= - a ROLB + 2.520 PBD - (a - 2.56) (-.6939 PBD)

- (a - 4.343) PDOOR

= - a ROLB + 2.520 PBD

- (-.6939 a PBD + 1.776 PBD)

- (a - 4.343) PDOOR

= - a ROLB + 2.520 PBD + .6939 a PBD

- 1.776 PBD - (a - 4.343) PDOOR

| CALC  | Josephia | REVISED | DATE | MOSE GEAR XYSA                                                            | らいし        |
|-------|----------|---------|------|---------------------------------------------------------------------------|------------|
| CHECK |          |         |      | No 30 SCALE AT 3A                                                         |            |
| APR   |          |         |      | DEFLECTION ANALYSIS                                                       | RYAN       |
| APR   |          |         |      | H. W. LOUD MACHINE WORKS, INC.<br>887 East Second Ft., Pomona, California | PAGE<br>72 |

# CHUNDER BENDING MOMENT

MSM = - (1.730+2.56) RDLB + 3.50 PVBD -1.730 PDBD + (.970+1.730) RDN

MSM = - 4.290 RDG + .7201 (3.50) PBD . - 1.730 (-.6934 PBD) + 2.700 RDN

RON = 0

Msm = -4.290 Rous + 3.721 PBO

M34 -= -1.590 RDLB

MSN + = MSN- = -1.590 RDLB

| CALC Truliel | REVISED | DATE |
|--------------|---------|------|
| CHECK        |         |      |
| APR          |         |      |
| APR          |         |      |

| Action The same | NOSE GEAR XVSA                                                            | いろいし       |
|-----------------|---------------------------------------------------------------------------|------------|
|                 | DEFLECTION ANALYSIS                                                       | RYAN       |
| -               | H. W. LOUD MACHINE WORKS, INC.<br>887 EAST SECOND ST., POMONA, CALIFORNIA | PAGE<br>73 |

the first of the state of the s

# CHUINDER BENDING MOMENT

| CALC  | market | REVISED | DATE | MOSE GEAR XVEA                                                            | SIL   |
|-------|--------|---------|------|---------------------------------------------------------------------------|-------|
| CHECK |        |         |      |                                                                           | 13110 |
| APR   |        |         |      | DEFLECTION ANALYSIS                                                       | RYNN  |
| APR   |        |         |      | H. W. LCUD MACHINE WORKS, INC.<br>687 EAST E COND ST., POMONA, CALIFORNIA | PAGE  |

CHUNDER BENDING MOMENT GENERAL EQUATIONS - CONTO

1.730+.970 Ren + (3.852+j)  $R_T = 0$   $R_{SN} = \frac{-(3.852+j)R_T}{2.700} = -1.427R_T - .370jR_T$  $R_{SN} = (-1.427 - .370j)R_T$ 

 $-2.700 R_{SM} + (1.152+j)R_{T} = 0$   $R_{SM} = \frac{(1.152+j)R_{T}}{2.700} = .427 R_{T} + .370 j R_{T}$   $R_{SM} = (.427 + .370 j) R_{T}$ 

| CALC  | Bolif |     | REVISED | DATE     | NOSE GEAR XVSA                              | ر ، نسر ا |
|-------|-------|-----|---------|----------|---------------------------------------------|-----------|
| CHECK |       |     |         |          | TO SOME XYSA                                | 1511      |
| APR   |       | 7.1 |         |          | DE: FLECTION ANALYSIS                       | RYA       |
| APR 1 |       |     |         | 1.11     | W. LOUD MACHINE WORKS, INC.                 | PAGE !    |
|       |       |     | 7       | 1 1 de 1 | - CB'   EASY SECOND ST., POMONA, CALIFORNIA | 75        |

CYLINDER BENDING MOMENT GENERAL EQUATIONS - CONTO

MON = 1.590 Roles

}

MOC = 2.56 RSLB + [- RSN] = 2.56 RSLB + (1.427 + .370 j) RT

Mon = (2.56 + 1.730) Rous - (3.852 + j) RT

MOL = 4.343 ROLB + (4.343-.438+ 1) RT

MOLL = 4:343 RSLB + (4.343 - .438 + j) RT + 2.43 REJ COS 24° - 2.43 REK COS 24° = 4.343 RSLB + (3.905 + j) RT + 2.220 RFJ

- 2.220 REK

Moss =  $a R_{SUB} + (a - .438 + j)R_{T} + 2.220 R_{FJ}$   $-2.220 R_{EK} + (a - 4.343) R_{FJ} sin 24^{\circ}$  $-(a - 4.343) R_{EK} sin 24^{\circ}$ 

= a Rsub + (a -. 438 + j) RT + (4067a +. 454) RFJ + (-. 454 -. 4067a) REK

| CALC  | Becchie | REVISED | DATE | HOSE GEAR XVSA                          | 15110 |
|-------|---------|---------|------|-----------------------------------------|-------|
| CHECK |         |         |      |                                         |       |
| APR   |         |         |      | DEFLECTION ANALYSIS                     | RYAN  |
| APR   | 4)      |         |      | H. W. LOUD MACHINE WORKS, INC.          | PAGE  |
|       |         |         |      | 887 EAST SECOND ST., POMONA, CALIFORNIA | 76    |

### CHLINDER BENDING MOMENT GENERAL EQUATIONS - CONTD

D)

I

MOEF - = (a+d) RSLB + d RSUB+ (17.34-.438+j) RT + 2.43 RES cos 24° - 2.43 REX cos 24° + 13.00 RES sin 24° - 13.00 ROX sin 24°

> = (a+d) Rsus +d Rsus + (16:902+j) RT + 2.22 RFJ - 2.22 REX. + 5.287 RFJ - 5.287 REX

= (a+d) Rsus+d Rsus+(16,902+j) RT +7.507 RF1 - 7.507 REK

Most = (a+d) Rsis + d Rsis - 8:22 Rvs + 8.22 Rvs + (17:34-438+j) Rr = (a+d) Rsis + d Rsis - 8:22 Rvs + 8:22 Rvs + (16:902+j) RT

|       |        |         | N    |                                         |       |
|-------|--------|---------|------|-----------------------------------------|-------|
| CALC  | Buchis | REVISED | DATE | HOSE GEAR XYSA                          | 1=111 |
| CHECK |        | ,       |      |                                         |       |
| APR   |        |         |      | DEFLECTION ANALYSIS                     | BYAN  |
| APR   |        |         |      | H. W. LOUD MACHINE WORKS, INC.          | PAGE  |
|       | •      | i i     |      | 237 EAST SECOND ET., POMONA, CALIFORNIA | .77   |

# CYLINDER REACTIONS DUE TO DOOR MOMENT ABOUT PIVOT POINT FROM AIR LOADS. TO BE ADDED WHERE CRITICAL ONLY

MEF = - 3740 IN. LTS.

MEF + 12.76 PDB = 0

PBD = 292 LBS.

PVBD = 292 COS 43.94" = 292 % .7201 = 210 LBS

PDBD = -292 SIN 43,940 = -292x.6940 = - 20308

RVE = - . 500 TVB0 = -105 LB5

RDE = -. 500 PDBO = 102 LBS

RVE = - . 500 PVBO = - 105 LBS

ROF = - - 500 PDBD = 102 LTS

REJ = 1.243 RVE = -131 LBS

REH = - .5234 RVE = 55 LBS

REK = 1.243 RUE = - 131-485

REH = - . 5234 RVE = 55 LBS

RSEF = 0

DOOR ATTACH LOAD

PDOOR = 3740/12.50 = 300 LBS.

| CALC  | Bookis | REVISED | DATE     | MOSE GEAR XVSA                          | 15111 |
|-------|--------|---------|----------|-----------------------------------------|-------|
| CHECK |        |         |          |                                         |       |
| APR   |        |         |          | DEFLECTION ANALYSIS                     | RYNN  |
| APR   |        |         | <u> </u> | H. W. LOUD MACHINE WORKS, INC.          | PAGE  |
|       |        |         |          | 887 East Second St., Pomona, California | 78    |

### TABLE VII - MATRIX

## CYLINDER REACTIONS

| CALC  | Carried | REVISED | DATE | MOSE GEAR XVSA                 | ISIL  |
|-------|---------|---------|------|--------------------------------|-------|
| CHECK | •       | 197     |      |                                | 13110 |
| APR   |         |         |      | DEFLECTION ANALYSIS            | RYNN  |
| APR   |         |         |      | H. W. LOUD MACHINE WORKS, INC. | PAGE  |

GENERAL MATRIX

CONDITION - ALL CONDITIONS

|      |       |       |                   |                    |                                       |                   | •      |
|------|-------|-------|-------------------|--------------------|---------------------------------------|-------------------|--------|
|      |       | Vo    | D.                | 5.                 | Mv.                                   | Ho.               | Mso    |
| 7    | ٤     | ,     |                   |                    |                                       |                   |        |
| Pob  |       | .1568 | .07 <b>83</b> (c) | 4                  |                                       |                   | 0783   |
| PVDB |       | .1129 | .05CA(C)          |                    | 10 F                                  | ing of the second | 0564   |
| Pops |       | 1088  | 05A3(c)           |                    | =ih                                   | 110 - A           | .0543  |
| RVE  |       | 5565  | ozez(c)           | .0608(c)           |                                       | . Ocob            | .0282  |
| 202  |       | .0544 | .0272(C)<br>=00   | 1217               | 0608                                  |                   | 0272   |
| RUF  |       | 5565  | 0282(C)           | -:0coe(c)          |                                       | 000               | .ರಾಕಿಸ |
| RDF  |       | -0544 | .0272(c)<br>500   | .1217              | - Oco8                                |                   | 0272   |
| RSEF | = .74 | •     | 2                 | -1.00              |                                       | _ 1 7.            |        |
| RF1  |       | 6917  | - 03 GC (C)       | 0156(C)            | * * * * * * * * * * * * * * * * * * * | <br>منخه          | :035U  |
| RFH  | ,     | .2913 | .014 <b>8</b> (د) | 2318(C)<br>-1.1757 |                                       | . BIEO.           | 014B   |
| REK  |       | 6917  | - 0350(c)         | .o.zr(c)           | ,                                     | ٠٥٦٥٤             | .0350  |
| REH  |       | .2913 | •014B(c)          | 03x8(c)            |                                       | 0318              | 0148   |

| CALC Coolil | REVISED DATE | NOSE GEAR XV5A                                                         | 15116      |
|-------------|--------------|------------------------------------------------------------------------|------------|
| APR         |              | •                                                                      | RYAN       |
| APR         | 4.1          | H W LOUD MACHINE WORKS, INC<br>887 East Second St., Pomona, California | PAGE<br>80 |

DETAILED MATRIX

C = 36.75

CONDITION - CONDITION F.E. - 1.6

|      |   | Vo      | D.      | s.      | Mv.                                     | Но.                             | Mso           |
|------|---|---------|---------|---------|-----------------------------------------|---------------------------------|---------------|
|      | ٤ | · ·     |         |         |                                         |                                 |               |
| PoB  |   | .1568   | 2.8775  |         |                                         |                                 | E810          |
| PVDB |   | .1129   | 2.0127  |         |                                         |                                 | 054           |
| Pops |   | 1088    | -1.9955 |         |                                         |                                 | .0543         |
| RVE  |   | 5565    | -1.0364 | 2.2544  |                                         | .0608                           | .0787         |
| 205  |   | .0544   | .4996   | 1217    | 0608                                    |                                 | 0272          |
| RVF  |   | 5545    | -1.0364 | -2.2344 | -                                       | œo8                             | .0282         |
| RDF  |   | .0544   | .4996   | .1217   | , 000g                                  | man a deserment and security of | 0212          |
| RSEF |   |         |         | -1.00   |                                         |                                 | ,             |
| RFJ  |   | -, CA17 | -1.2863 | -2.4453 |                                         | 0756                            | ·0350         |
| RFH  |   | .2913   | .544    | 007     |                                         | .0318                           | -,0148        |
| REK  | · | 6917    | -1.2863 | Z.7783  | s et control (App o glandos Spars edi.) | .0754                           | <i>مڪ</i> ڌه. |
| REH  |   | .2913   | .544    | -1.1687 | •                                       | 0318                            | 0148          |

| CALC Southis | REVISED | DATE | NOSE GEAR XVSA                         | 15111 |
|--------------|---------|------|----------------------------------------|-------|
| CHECK        |         |      |                                        |       |
| APR          |         | ·    |                                        | RYAL  |
| APR          |         |      | H. W. LOUD MACHINE WORKS, INC          | PAGE  |
|              |         |      | 887 EAST SECOND ST. POMONA. CALIFORNIA | 81    |

DETAILED MATRIX

C = 33.05

CONDITION - F.E. - 5.3 (STATIC)

|       |   | Vo    | D.      | S.                                                                                                            | Mvo.         | H 0.         | Mso   |
|-------|---|-------|---------|---------------------------------------------------------------------------------------------------------------|--------------|--------------|-------|
|       | ٤ | to.   |         |                                                                                                               |              |              |       |
| Pos   |   | .156  | 2.5878  | e de la companya de |              |              | 0183  |
| PVDB  |   | .1129 | 1,8640  |                                                                                                               |              |              | 054   |
| Pops  |   | 1088  | -1.7946 |                                                                                                               |              |              | .05A3 |
| RVE   |   | 5545  | 43Z0    | 2.0094                                                                                                        |              | .0608        | .೦೭೪೭ |
| 20E   |   | .0544 | .3990   | -1217                                                                                                         | 068          |              | 0272  |
| RUF   |   | 5545  | -,9320  | _2.0094                                                                                                       |              | 0608         | .028z |
| RDF   |   | 0544  | -3495   | • <b>1217</b>                                                                                                 | <b>8020.</b> |              | 0272  |
| RSEF  |   |       |         | -1.00                                                                                                         |              |              |       |
| 8-7-4 |   | -6417 | -1.1568 | -2.1656                                                                                                       |              | 0756         | .055  |
| Rem   |   | ,2913 | .4891   | 1248                                                                                                          |              | .031B        | 0148  |
| REK   |   | 6917. | -1.1568 | 2.4986                                                                                                        |              | •01 <b>=</b> | .035  |
| REH   |   | -2913 | .4894   | -1:05 <u>1</u> 0                                                                                              |              | -COBIB       | 0148  |

| CALC  | Buthis  | REVISED | DATE | NOSE GEAR XV54                          | IBN'L |
|-------|---------|---------|------|-----------------------------------------|-------|
| CHECK |         |         |      |                                         | 2 20  |
| APR   |         |         |      |                                         | RYAN  |
| APR   | 1000000 |         |      | H. W. LOUD MACHINE WORKS, INC.          | PAGE  |
| 1 .   |         |         |      | 837 EAST SECOND ST., POMONA, CALIFORNIA | 82    |

#### CYLINDER REACTIONS EXTENDIOD MATRIX CONDITION - SPINUP (FWD) F.E. - 1.6 Vo So Do Mu Hoo Mso $\mathbf{\Sigma}$ 5827 3600 POB 11275 10359 914 PVDB 8120-7462 658 Pope 7818 634 7184 RVE 6974 3731 3243 ROE 2116 317 1799 PAF 4 6979 3243 -3731 RDF 2116 1799 317. RSEF ٥. 0 0 REJ - 8662 -4031 -4631 RFH 3655 1697 1958 REK 8662 -4031 -4631 REH 3655 1697 1958 CALC NOSE GEAR 1511 L CHECK RYAH AFR

PAGE

83

H W LOUD MACHINE WORKS, INC.

I.U.

CYLINDER REACTIONS

CONDITION - SPINUP (FWD) F.E. -1.6

(9200#)

| T     |                   | Curr . I Corr                           |        |
|-------|-------------------|-----------------------------------------|--------|
| ,     | DUE TO DOOR LOADS | extended<br>Matrix                      | ٤      |
|       | 3002 00.03        | , , , , , , , , , , , , , , , , , , , , |        |
| Pos   | 292               | 11273                                   | 11565  |
| PVBD  | 210               | 8120                                    | 8330   |
| Poso  | - 203             | -7818                                   | - 8021 |
| RVE   | -105              | -6974                                   | -7079  |
| Roe   | 102               | 2116                                    | 2218   |
| RYF   | -105              | -6974                                   | -7079  |
| Ros   | 102               | 2116                                    | 2218   |
| Rser  | 0                 | 0                                       | 0 .    |
| RFJ   | -1.31             | - 8622 .                                | -8793  |
| RFH   | 55                | 3655                                    | 3710.  |
| REK . | -13F              | -8622                                   | -8793  |
| REH   | 55                | 3655                                    | 3710.  |

| CALC  | the list | REVISED | DATE |                                                                           | ISHIL     |
|-------|----------|---------|------|---------------------------------------------------------------------------|-----------|
| CHECK |          |         |      | NOSE GEAR XVSA                                                            | 13/110    |
| APR   |          |         |      |                                                                           | RYAN      |
| APR   |          |         |      | H. W. LOUD MACHINE WORKS, INC.<br>887 East Second St., Pomona, California | MGE<br>84 |

#### EXTENDED MATRIX

D.

# CONDITION - SPINUT (AFT) F.E. - 1.6

|       |        | · Vo  | D.    | S. | Mv. | H Do           | Mso |
|-------|--------|-------|-------|----|-----|----------------|-----|
|       | E      | ろいって  | 1935  |    |     |                |     |
| Pos   | 4059   | 491   | 5568  | \  |     |                | /   |
| PVDB  | 4865   | 354   | 4011  |    |     |                |     |
| Pope  | _ 420Z | - 341 | -3861 |    |     |                | /   |
| RVE   | -3748  | -1743 | -2005 |    |     |                |     |
| 200   | 1137   | 170   | 967   |    |     |                |     |
| RVF . | -3748  | -1743 | -2005 | •  |     |                |     |
| RDF   | 1137   | 170   | 967   | *  |     | 1              |     |
| RSEF  |        |       |       |    |     |                |     |
| RF1   | - 4455 | -2166 | -2489 | ,  | /   |                |     |
| RFH   | 1965   | 912   | 1053  |    | , . | l <sub>l</sub> | \ , |
| REK   | -4455  | -2166 | -2489 | /. |     | in<br>ati      |     |
| REH   | 1965   | 912   | 1053  |    |     |                |     |

| CALC     | Birling | REVISED | DATE | NOSE GEAR XV5A                                                          | ISIIL      |
|----------|---------|---------|------|-------------------------------------------------------------------------|------------|
| CHECK    | 1       | 1969    |      | 11-1-11-11-11-11-11-11-11-11-11-11-11-1                                 |            |
| APR      |         |         |      | *                                                                       | RYAN       |
| <u> </u> |         |         |      | H W LOUD MACHINE WORKS, INC.<br>BBJ EAST SECOND ST . POMONA, CALIFORNIA | PAGE<br>85 |

EXTENDED MATRIX

CONDITION - SPINUP (FWD) F.E. -1.6

|                 |       | Vo     | D.     | S.  | Mv. | Н о.       | Mso |
|-----------------|-------|--------|--------|-----|-----|------------|-----|
|                 | ٤     | 3238   | 2001   |     |     |            |     |
| PDB             | 6266  | 508    | 5758   |     |     |            |     |
| PVDB            | 4513  | 366    | 4147   |     |     |            |     |
| Poos            | -4345 | - 352  | _3993  |     |     |            |     |
| RVE             | -3876 | - 18az | -2074  |     |     |            |     |
| ROE.            | 1176  | 176    | 1000   |     |     |            |     |
| RUF             | -3876 | -1802  | - 2074 |     |     | <i>[</i> - | •   |
| R <sub>DF</sub> | 1176  | 176    | 1000   |     |     |            |     |
| RSEF            | •     |        |        |     |     |            |     |
| RF1             | -4814 | -2240  | -2574  | ,   |     |            |     |
| REM             | 2032  | 943    | 1089   | . / |     |            |     |
| REK             | -4814 | -2240  | -2574  |     |     |            |     |
| REH             | 2032  | 943    | १०८१   |     |     |            |     |
|                 |       |        |        |     |     |            |     |

| CALC Bellit | REVISED | DATE | NOSE GEAR XVSA               | 15111      |
|-------------|---------|------|------------------------------|------------|
| CHECK .     |         |      |                              | 131.5      |
| APR         |         |      | • )                          | RYAN       |
| APR         |         |      | H W LOUD MACHINE WORKS, INC. | PAGE<br>SG |

### XISTAM CECHETXE

CONDITION - SPRINGBACK F.E. - 1.6 (FWD)
9200#

| ·    |        | Vo    | D <sub>o</sub> | S | Mv.  | Ho.   | Mso   |
|------|--------|-------|----------------|---|------|-------|-------|
|      | ٤      | 6205  | -4441          | \ |      |       |       |
| PoB  | -11806 | 973   | -12779         |   |      |       |       |
| PVDB | +0=04  | 101   | - 9205         |   |      |       |       |
| Poos | 8187   | - 675 | <br>8862       |   |      | Adams |       |
| RVE  | 1150   | -3453 | 4603           | / |      |       |       |
| Roe  | -1881  | 338   | -2219          |   |      |       |       |
| RVF  | 1150   | -3453 | 4603           |   |      |       | a + / |
| RDF  | -1881  | 338 . | -5514          |   | .,/. |       |       |
| RSEF |        |       |                |   |      |       | 81    |
| RF1  | 1420   | -4292 | 5712           | , |      |       | •     |
| RFH  | -608   | 1808  | -2416          |   |      |       |       |
| REK  | 1420   | -4292 | 5712           |   |      |       |       |
| REH  | ~608   | 8081  | -2416          |   |      |       |       |

| CALC Sathit | REVISED | DATE | NOSE GEAR XVSA                                                         | 15116      |
|-------------|---------|------|------------------------------------------------------------------------|------------|
| CHECK APR   |         |      | A .                                                                    | RYAN       |
| APR         |         |      | H W LOUD MACHINE WORKS, INC<br>887 East Second St., Pomona, California | PAGE<br>87 |

CONDITION - SPRINGBACK (FWD) F.E.-I.C (9200#)

#### SUMMARY

|      | DUE TO<br>DOOR LOADS | EXTENDED ,<br>MATRIX | 3     |
|------|----------------------|----------------------|-------|
| Pos  | 292                  | -11806               |       |
| Pubo | 210                  | -8504                | ~-    |
| Poso | -203                 | 8187                 |       |
| RVE  | -105                 | 1150                 | -     |
| Roc  | . 102                | -1881                |       |
| RVF  | -105                 | 1150                 | V 255 |
| Roe  | 102                  | -1881                |       |
| Roer | 0                    | 0                    |       |
| RFJ  | -124                 | 1420                 |       |
| RFH  | 51                   | -608                 |       |
| Rek  | -124                 | 1420                 | **    |
| REH  | 51                   | - 608                |       |

SINCE DOOR LOADS REDUCE TO WE WILL USE EXTENDED MATRIX LOADS.

| CALE Buthit | REVISED | DATE | NOSE SEAR VIEW                                                            | 1511       |
|-------------|---------|------|---------------------------------------------------------------------------|------------|
| CHECK       |         |      | NOSE GEAR XVSA                                                            | 13110      |
| APR         |         |      |                                                                           | RYAN       |
| APR         |         |      | H. W. LOUD MACHINE WORKS, INC.<br>887 East Second St., Pomona, California | PAGE<br>88 |

The an intermediate or a tale to be a subtract the hold has been a subtract

CONDITION - SPRINGBACK F.E.-1.6 (FWO)

#### SUMMARY

| and the second | h              | <u> </u>           | 35 E. M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------------|----------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                | DUE TO         | extended<br>Matrix | ٤                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 7.1            | 297.           | 11806 ···          | e gada se je gada                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| PVBD           | 210            | -8504              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Poso           | - 20%          | 8187               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| RVE            | -105           | 1150               | The state of the s |
| Roc.           | 102            | -1881              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| RVE            | ,^_·\ <b>5</b> | 11,50              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Pos            | 102            | -1881              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Rser           | 0              | 0                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| RFJ            | -131           | 1420               | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| RFH            | 55             | -608               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| REK            | -131           | 1420               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| REH            | 55             | -608               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

SINCE DOOR LOADS REDUCE & WE WILL USE EXTENDED MATRIX LAADS

12. I de tre de la vier de block de la familia de la lacada de lacada de la lacada de la lacada de la lacada de lacada de la lacada de la lacada de la lacada de lacada de la lacada de la lacada de la lacada de lacada delacada de lacada de lacada de lacada delacada de lacada de lacada de lacada delacada de lacada de lacada delacada delaca

| CALC  | Frihis | REVISED | DATE | LICE CEAR VICES                         | ISIL |
|-------|--------|---------|------|-----------------------------------------|------|
| CHECK |        |         |      | NOSE GEAR XVSA                          |      |
| APR   |        |         |      |                                         | RYAN |
| APR   |        |         |      | H. W. LOUD MACHINE WORKS, INC.          | PACE |
|       | . 1.   | 8 (     |      | 837 KAST SECOND ST., POMONA, CALIFORNIA | 60   |

### EXTENDED MATRIX

CONDITION - SPRINGBACK F.E.-1.6 EMERGENCY

|      |       | . Vo   | D.     | S. | Mv. | Нь. | Mso |
|------|-------|--------|--------|----|-----|-----|-----|
|      | ٤     | 3199   | -2242  |    | •   | i   |     |
| PoB  | -5949 | 50.2   | - 6451 |    |     | 82  |     |
| PUDB | -4286 | 361    | -4647  |    | ·   |     |     |
| Pope | 4126  | - 348  | 4474   |    |     |     |     |
| RVE  | 544   | -1780  | 2324   |    |     | . / |     |
| ROE  | -946  | 174    | -1120  |    |     |     |     |
| RVF  | 544   | -1780  | 2324   |    |     |     | •   |
| RDF  | -946  | 174    | -1120  |    |     |     |     |
| RSEF |       | 8 0    |        |    |     |     |     |
| RF1  | 671   | -2213  | 2884   |    |     |     |     |
| RFH  | -288  | 932    | - 1220 |    | 4   |     |     |
| REK  | 671   | - 2213 | 2884   |    |     |     |     |
| REH  | -288  | 932    | -1220  |    |     | •   |     |
|      |       |        |        |    |     |     |     |

| CALC  | 7. Seclis | REVISED | DATE | HOSE GEAR XV5A               | ISIL    |
|-------|-----------|---------|------|------------------------------|---------|
| CHECK |           |         |      |                              | 131.5   |
| APR   |           |         |      | _                            | RYAN    |
| APR   |           |         |      | H W LOUD MACHINE WORKS, INC. | PAGE 90 |

EXTENDED MATICIX

CONDITION - SPRINGBACK (FWD) F.E. -1.6

12500#

1000

|      |       | Vo     | D.    | S. | Mv.    | Н о 。 | Mso |
|------|-------|--------|-------|----|--------|-------|-----|
|      | ٤     | 3192   | -2438 |    | /      |       |     |
| PDB  | -6514 | 501    | -7015 |    |        |       | ./  |
| PVDB | -4693 | 360    | -5053 |    |        |       |     |
| Poos | 4518  | -347   | 4865  |    |        |       |     |
| RVE  | . 751 | -1776  | 2527  |    |        |       |     |
| Roe  | -1044 | 174    | -1218 |    | . \    |       |     |
| RUF  | 751   | - 1776 | 2527  |    | .'     |       |     |
| RDF  | -1044 | 174    | -1218 | ·  |        |       |     |
| RSEF |       | •      |       | ·  |        |       |     |
| RFJ  | 928   | -2208  | 3136  |    | / si . |       |     |
| RFH  | -396  | 930    | -1326 |    |        |       |     |
| REK  | 928   | -2208  | 3136  |    |        |       |     |
| REH  | -396  | 930    | -1326 |    |        | 4     |     |

| CALC 75 | which | REVISED | DATE | NOSE GEAR XV5A                                                          | ISILL |
|---------|-------|---------|------|-------------------------------------------------------------------------|-------|
| CHECK   |       |         |      |                                                                         | RYAN  |
| APR '   |       |         |      |                                                                         |       |
| APR     |       |         |      | H. W. LOUD MACHINE WORKS, INC. 1387 EAST SECOND ST., POMONA, CALIFORNIA | 91    |

| الم  | LINDER | REAC   | TIONS         |    |        |        |     |
|------|--------|--------|---------------|----|--------|--------|-----|
| EXTE | COCIN  | MATR   | / X           |    |        |        | : : |
| CON  | DITION | - MAX. | VERTIC<br>920 |    | (D) F. | E,-1.6 |     |
|      |        | Vo     | D.            | S. | Mv.    | Нь.    | Mso |
|      | ٤      | 6342   | POOI          |    |        |        |     |
| Pob  | 3897   | 994    | 2903          |    |        |        |     |
| PVDB | 2807   | 716    | 2091          |    |        |        |     |
| Poos | -2703  | -690   | -2013         |    |        |        |     |
| RVE  | -4575  | - 3529 | -1046         |    |        | -,     |     |
| ROE  | 849    | 345    | 504           |    |        |        |     |
| RUF" | -4575  | -3529  | -1046         |    | 0.1    |        |     |
| RDF  | 849    | 345    | 504           |    |        |        |     |
| RSEF |        |        |               |    |        |        |     |
| RFJ  | -5485  | -4387  | -1298         |    |        |        |     |
| RFH  | 2396   | 1847   | 549           |    | 46     |        |     |
| REK  | -5685  | -4387  | -1263         |    |        |        |     |
| REH  | 2396   | 1847   | 569           |    |        |        |     |

| CALC | Sochie | REVISED | DATE | NISE GEAR XVSA              | 15111        |
|------|--------|---------|------|-----------------------------|--------------|
| APR  |        |         |      |                             | RYAN         |
| APR  |        |         |      | H W LOUD MACHINE WORKS, INC | PAGE .<br>92 |

### EXTENDED MATRIX

CONDITION - MAX, VERTICAL (FWD) F.E .- 1.6

|       | •     | Vo     | D.    | S.  | Mv.      | Нь. | Mso |
|-------|-------|--------|-------|-----|----------|-----|-----|
|       | Σ     | 3263   | 519   |     |          |     |     |
| Pos   | 2005  | 512    | 1493  |     | /* · · · |     |     |
| PVDB. | 1444  | 368    | 1076  |     |          |     |     |
| Pope  | -1391 | - 355  | -1036 |     |          |     |     |
| RVE   | -2354 | -1816  | - 538 | ·   |          |     |     |
| POL   | 437   | 178    | 259   |     |          |     |     |
| Ruf!  | -2354 | -1816  | -538  | ·   |          |     |     |
| RDF   | 4-3-7 | ודפ    | 259   |     |          |     |     |
| RSEF  |       |        |       | ,   |          |     |     |
| RF1   | -2925 | - 2257 | 668   | _0_ |          |     |     |
| REH   | 1233  | 951    | 282   |     |          |     |     |
| REK   | -2925 | -2257  | -66   |     |          |     |     |
| REH   | 1233  | 951    | 282   |     | ·        |     |     |
|       |       |        |       |     |          |     |     |

| CALC  | Thechie | REVISED | DATE | NOSE GEAR XY5A                         | 15111  |
|-------|---------|---------|------|----------------------------------------|--------|
| CHECK |         | 1       |      |                                        | 1.51.0 |
| APR   |         |         |      | *                                      | RYAN   |
| APR   |         |         |      | H. W. LOUD MACHINE WORKS, INC.         | PAGE   |
|       |         |         |      | 887 EAST SECOND ST . POMONA CALIFORNIA | 93     |

EXTENDED MATRIX

CONDITION - MAX. (AFT) VERTICAL F.E.-1.6
9200# EMERGENCY

كالاتما كموفقه كالمحسك فيبطالهم فالقرائد برسامه وفوداك في يتفاقسا أوماه يتواهي ولاتمامها أوماء الإنجامة

|      |        | Vo    | D.    | s. | Mv. | Н о. | Mso |
|------|--------|-------|-------|----|-----|------|-----|
|      | ٤      | 3270  | 520   |    |     |      |     |
| PoB  | 2009   | 513   | 1496  |    | ,   |      | /   |
| PVDB | 1447   | 369   | 8101  |    |     |      |     |
| Pops | -1395  | -357  | -1038 |    | ·   |      |     |
| RVE  | - 2359 | -1820 | -539  |    |     |      |     |
| 20ء  | 438    | 178   | 260   |    | \.  |      | •   |
| Ruf  | - 2359 | -1820 | -539  |    | . \ |      |     |
| RDF  | 438    | 178   | 260   |    |     |      |     |
| RSEF |        |       | 2011  |    |     |      |     |
| RF1  | -2931  | -2262 | - 669 |    |     |      |     |
| REM  | 1236   | 953   | 283   |    |     |      |     |
| REK  | -2931  | -2262 | -669  |    |     |      |     |
| KEH  | 1236   | 953   | 283   |    |     | •    |     |

| CALL Machiel |   | REVISED | DATE | NOSE GEAR XVSA                                                     | 15116 |
|--------------|---|---------|------|--------------------------------------------------------------------|-------|
| APH          | - |         |      |                                                                    | RYAN  |
| APH          |   |         |      | H W LOUD MACHINE WORKS INC<br>887 East Second ST POMONA CALIFORNIA | 94    |

CYLINDER REACTIONS EXTENDED MATRIX CONDITION - UTOL (AFT) MAX. VERTICAL 9200# EMERGONCY Mv. Ho. Vo Do S Mso Z 8448 -739 PoB 801 1325 - 2126 PVDB 578 954 -1532 PODB 1475 556 919 RVE 3935 4701 766 ROL 91 460 369 RUF 3935 4701 766 RDF 91 460 369 RSEF REJ 5843 4892 951 RFH 402 2461 2059 REK 5843 951 4892 REH 2059 2461 REVISED DITE CALC NOSE GEAR XVSA 15116 CHECK RYAH APR H. W, LOUD MACHINE WORKS, INC. EST EAST SECOND ST., POMONA, CALIFORNIA

Landstrik (L. 1)

EXTENDED MATRIX

CONDITION - UNSHMM. BRAKING (AFT) F.E. - 5.3

|      |        | Vo     | D.    | S.           | Mv.                                      | Ho.   | Mso   |
|------|--------|--------|-------|--------------|------------------------------------------|-------|-------|
|      | ٤      | 4171   | -365  | 637          |                                          | 5032  | 2884  |
| PoB  | -517   | 654    | -945  | *            |                                          |       | - 226 |
| PVDB | - 372  | 471    | - 680 |              |                                          |       | - 163 |
| Poos | 358    | - 454  | 655   |              |                                          |       | 157   |
| RVE  | -314   | - 2321 | 340   | 1280         |                                          | 306   | 81    |
| eo€  | - 75   | 227    | -146  | ₽r. <b>~</b> | $\left\lfloor , \cdot \right\rfloor_{-}$ |       | - 78  |
| RVF  | - 3486 | -2321  | 340   | -1280        |                                          | - 306 | 81    |
| RDF  | 81     | 227    | -146  | 78           | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\   |       | -78   |
| RSEF | -'637  |        |       | -637         |                                          |       |       |
| RF3  | -4121  | -2885  | 422   | 1379         |                                          | - 380 | 101   |
| RFH  | 1074   | 12.15  | - 179 | - 79         |                                          | 160   | _ 43  |
| REK  | -390   | -2885  | 422   | 1592         |                                          | 380.  | 101   |
| KEH  | 164    | 1215   | -179  | - 669        |                                          | -160  | -43   |

| LALE Portlick | <br>MEVISLO | DATE | HOSE GEAR XVSA             | 15116 |
|---------------|-------------|------|----------------------------|-------|
| APH           | •           | 1    |                            | RYAN  |
| ^~*           |             |      | H W LOUD MACHINE WORKS INC | 96    |

EXTENDED MATRIX

CONDITION - UNSHMM. BRAKING (FWD) F.E. - 5.3

|       | Va                                                    | , D <sub>0</sub>                                                                                        | S.                                                                                                                                                                                                                                                                                                                                                                                                                  | Miz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ho.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mso                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ٤     |                                                       | -427                                                                                                    | 1105                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8730                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| -605  | 764                                                   | - 1105                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - 264                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| - 435 | 551                                                   | -796                                                                                                    | TA II                                                                                                                                                                                                                                                                                                                                                                                                               | 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - 190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 418   | -531                                                  | 766                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 183                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 551   | -2713                                                 | 398                                                                                                     | 2220                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 531                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | . 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| -131  | 265                                                   | -170                                                                                                    | - 134                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| -4971 | -2713                                                 | 398                                                                                                     | -2220                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -531                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 137   | 265                                                   | -170                                                                                                    | 134                                                                                                                                                                                                                                                                                                                                                                                                                 | $\land$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| -1105 |                                                       |                                                                                                         | -1105                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| -5814 | -3373                                                 | 494                                                                                                     | - 2393                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 وي                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1301  | 1420                                                  | - 209                                                                                                   | <del>-</del> 138                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 278                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 660   | - 3373                                                | 494                                                                                                     | 276                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ٠<br>٥٥ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 278   | 1420                                                  | -209                                                                                                    | -1161                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -278                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       | -605 -435 418 531 -131 -4971 137 -1105 -5814 1301 660 | -605 764 -435 551 418 -531 531 -2713 -131 265 -4971 -2713 137 265 -1105 -5814 -3373 1301 1420 660 -3373 | E       4876       -427         -605       764       -1105         -435       551       -796         418       -531       766         531       -2713       398         -131       265       -170         -4971       -2713       398         137       265       -170         -1105       -105       -170         -5814       -3373       494         1301       1420       -209         660       -3373       494 | E       4876       -427       1105         -605       764       -1105         -435       551       -796         418       -531       766         531       -2713       398       2220         -131       265       -170       -134         -4971       -2713       398       -2220         137       265       -170       134         -1105       -105       -105         -5814       -3373       494       -2393         1301       1420       -209       -138         660       -3373       494       2761 | E       4876       -427       1105       0         -605       764       -1105       0         -435       551       -796       0         418       -531       766       0         531       -2713       398       2220         -131       265       -170       -134         -4971       -2713       398       -2220         137       265       -170       134         -1105       -1105       -105         -5814       -3373       494       -2393         1301       1420       -209       -138         660       -3373       494       2761 | E       4876       -427       1105       0       8730         -605       764       -1105       -105       -435       551       -796       -796       -435       551       -796       -796       -436       -796       -796       -796       -796       -796       -796       -796       -796       -796       -796       -796       -796       -796       -796       -796       -796       -796       -796       -796       -796       -796       -796       -796       -796       -796       -796       -796       -796       -796       -796       -796       -796       -796       -796       -796       -796       -796       -796       -796       -796       -796       -796       -796       -796       -796       -796       -796       -796       -796       -796       -796       -796       -796       -796       -796       -796       -796       -796       -796       -796       -796       -796       -796       -796       -796       -796       -796       -796       -796       -796       -796       -796       -796       -796       -796       -796       -796       -796       -796       -796       -796       -796 |

The state of the s

| CALC  | Bodit _ | REVISED | DATE | NOSE GEAR XYSA                                                       | 15116      |
|-------|---------|---------|------|----------------------------------------------------------------------|------------|
| CHECK |         |         |      |                                                                      | 13116      |
| APR   |         |         |      |                                                                      | RYAN       |
| APR   |         |         |      | H W LOUD MACHINE WORKS, INC. 387 EAST SECOND ST., POMONA, CALIFORNIA | PAGE<br>97 |

EXTENDED MATRIX

CONDITION - SPT BRAKED ROLL F.E. - 5.3

|      |       | Vo     | D.    | S.  | Mv.         | Ho. | Mso   |
|------|-------|--------|-------|-----|-------------|-----|-------|
|      | ٤     | 3193   | -279  |     |             |     | 2204  |
| POB  | -394  | 501    | -722  |     |             |     | - 173 |
| PUDB | - 284 | 360    | - 520 |     |             |     | -124  |
| Pops | 274   | - 347  | 501   |     |             |     | 120   |
| RVE  | -1455 | - ררלו | 260   |     |             | /   | 62    |
| 20€  | 3     | 174    | _111  |     | $\setminus$ |     | - 60  |
| Ruf  | -1455 | -ררדו  | 260   |     |             |     | 62    |
| RDF  | 3     | 174    | -111  |     |             |     | ده.   |
| RSEF |       |        | 1,45  |     |             |     |       |
| RFJ. | -1809 | - 2209 | 373   |     | ·           |     | 77    |
| RFH  | 761   | 930    | -136  | 1 / | • •         |     | 33    |
| REK  | -1809 | -2209  | 373   |     | 1           |     | 77    |
| REH  | 761   | 930    | -136  |     |             |     | -33   |

| CALC | Fachit | REVISED | DATE | NOSE GEAR XVEA                 | 1511 L     |
|------|--------|---------|------|--------------------------------|------------|
| APR  |        |         |      |                                | RYAN       |
| APR  |        | <br>    |      | H. W. LOUD MACHINE WORKS, INC. | PAGE<br>98 |

### EXTENDED MATRIX

CONDITION - 3PT BRAKED ROLL (AFT) F.E .- 5.3

| 13.5 |       | Vo    | , D.  | S. | Mva                     | Н 0. | Mso   |
|------|-------|-------|-------|----|-------------------------|------|-------|
|      | Σ     | 3835  | -336  |    |                         |      | 2654  |
| Pos  | -4-77 | 601   | -870  |    |                         |      | - 208 |
| PVPB | -343  | 433   | -62G  |    | ,                       |      | -150  |
| Pops | 330   | -417  | E'02  |    |                         |      | 144   |
| RVE  | 41746 | -2134 | 313   |    |                         | 4.7. | ຸກຣຸ  |
| 202  | 3     | 209   | -134. |    | $\backslash :$ $/$      |      | -72   |
| PUF" | -1746 | 2134  | 313   |    | $\mathcal{N}$           |      | าร    |
| RDE  | 3     | 209   | 434   |    | $\bigwedge$             |      | - 72  |
| RSEF |       |       |       |    | $/$ $\cdot$ $\setminus$ |      |       |
| REL  | -2171 | -2653 | 389   |    |                         |      | 93    |
| RFH  | 914   | 1117  | -164. |    |                         |      | - 39  |
| REK  | -2171 | -2653 | 3589  |    |                         |      | 93    |
| REH  | 914   | 1117. | -164  |    |                         |      | - 39  |

| Tarlist |            | REVISED   | DATE      | NOSE GEAR XV54                 | ISIL           |
|---------|------------|-----------|-----------|--------------------------------|----------------|
|         | •          |           |           |                                |                |
|         |            |           |           |                                | RYAN           |
| 11      |            |           |           | H. W. LOUD MACHINE WORKS, INC. | PAGE<br>99     |
|         | Thurlist . | Thulist . | REVISED . | AEVISED DATE                   | NOSE GEAR XV5A |

EXTENDED MATRIX

CONDITION - TURNING (FWD) F.E. -5.3

|      |       | Vo     | D.    | S.     | Mv. | Ho.   | Mso      |
|------|-------|--------|-------|--------|-----|-------|----------|
|      | ٤     | 3193   | -279  | 1602   | 0   | 12656 | 0        |
| Pos  | - 221 | 501    | -722  | 0      |     |       | 0.       |
| PVDB | -100  | 360    | - 520 |        | 100 |       | , 12 ·   |
| Poos | 154   | -347   | 501   |        |     |       |          |
| RVE  | 2471  | -1777  | 260   | . 3219 |     | 769   | , .<br>, |
| 20E  | -132  | 174    | -114  | -19:3  | 0   |       | 0        |
| RUF  | -5505 | - 1777 | 260   | -3219  |     | -769  | 0        |
| RDF  | 254   | 174    | -111  | 195    | 0   |       | . 0      |
| RSEF | -1602 |        |       | -1602  |     |       |          |
| RF1  | -6312 | -2209  | 328   | -3469  |     | -957  | 0        |
| RFH  | 996   | 930    | -13C  | - 200  |     | 402   | 0        |
| REK  | 3074  | -2209  | 323   | 4003   |     | 957   | . 0      |
| PEH  | -1292 | 930    | -136  | -1684  |     | -402  | 0        |

| 1511. | XV SA           | DATE | REVISED      | <br>Milie | CALC |  |  |
|-------|-----------------|------|--------------|-----------|------|--|--|
| RYAN  | 1 -             |      |              | ,         | APR  |  |  |
| PAGE  | HINE WORKS, INC |      | <del> </del> |           | ^^*  |  |  |
| •     |                 |      |              |           | APR  |  |  |

CONDITION - TURNING (FWD), F.E. -5.3 (12500#)

SUMMARY

| ,     | DUE TO<br>DOOR LIADS | extended<br>Matrix | ٤        |
|-------|----------------------|--------------------|----------|
| Pos   | 292                  | -221               |          |
| Pues  | 210                  | -160               |          |
| Poso  | -203                 | 154                | * .<br>* |
| RVE   | -105                 | 2471               | ng a     |
| Roe   | 102                  | -132               |          |
| RVF # | -105                 | -5505              |          |
| Ros   | 102                  | 258                |          |
| RSEF  | 0                    | -1602              |          |
| REJ   | -124                 | -6312              |          |
| RFH   | 51                   | 996                |          |
| Rek   | -124                 | 3074               | , and    |
| REH   | 51                   | -1292              |          |

| CALC  | Buthis | REVISED | DATE | NOCE CEAR VINEA                                                           | 15111 |
|-------|--------|---------|------|---------------------------------------------------------------------------|-------|
| CHECK |        |         |      | NOSE GEAR XV5A                                                            | 13110 |
| APR   |        |         |      |                                                                           | RYAN  |
| APR   |        |         |      | H. W. LOUD MACHINE WORKS, INC.<br>597 EAST SECOND ST., POMONA, CALIFORNIA | PAGE  |

### EXTENDED MATRIX

# CONDITION - TURNING (AFT) F.E .- 5.3

|      |       | Vo    | D.    | S.     | Mve          | Ho.    | Mso   |  |  |
|------|-------|-------|-------|--------|--------------|--------|-------|--|--|
|      | ٤     | 3198  | -280  | 1380   |              | 10902  | 2212  |  |  |
| Pos  | -398  | 501   | -725  |        |              |        | - 174 |  |  |
| PVDB | -286  | 361   | -522  |        |              |        | -125  |  |  |
| Pope | 274   | -348  | 502   |        | $\sum_{k} k$ | Sea 32 | 120   |  |  |
| RVE  | เลาล  | +1786 | 74.   | 2773   | 14           | 448    | ৈত    |  |  |
| 20E  | -100  | 174   | - 112 | - 168  | 1/           |        | 200   |  |  |
| evr  | -4893 | -1780 | 201   | -12713 | · V:         | m(-C-3 | . હર  |  |  |
| Rop  | 170   | 174   | 2112  | 148    | · // "       |        | _ 60  |  |  |
| RSEF | -1380 | 14.   |       | -1380  | 1            |        |       |  |  |
| RF1  | -5621 | -2212 | -324  | -2986  | 1.12         | - 824  | ררי   |  |  |
| RFH  | 937   | 932   | -157  | -17Z   | $I^*\Lambda$ | -347   | ≟+33  |  |  |
| REK  | 2461  | -2212 | 324   | 3448   | 1 1          | 874    | 77    |  |  |
| REH  | -1035 | 952   | -137  | - 1450 |              | -847   | -33   |  |  |

| 735     | 1927 P. ST | i i   |         |     | Vacanta de la companya della companya della companya de la companya de la companya della company | 0.2.3                |
|---------|------------|-------|---------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| CALC.   | Bulie      |       | MEVIBED | MYE | A STATE OF THE PARTY OF THE PAR | 15174                |
| CHECK   |            |       | -       |     | The state of the s | RYFU                 |
| APR .   |            | 71.00 | 46.0    |     | ** No. 100 (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AND LONG TO THE YEAR |
| 5.547,4 | 19.7-1.97  | 17.67 | 118 2   | 0   | H. W. LOUD MACHINE WORKS INC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 102                  |

SUMMARY: CYCINDER REACTIONS

I

|       |               | ۱۸۱   | ı A l  | ا لہ         | _               | <u></u>  | 1 .                                              |               |                                      |                     | -                                             | 1                   |                |                 |                                       | ا ہے   | 10                             |  |     |     |      |    |          |
|-------|---------------|-------|--------|--------------|-----------------|----------|--------------------------------------------------|---------------|--------------------------------------|---------------------|-----------------------------------------------|---------------------|----------------|-----------------|---------------------------------------|--------|--------------------------------|--|-----|-----|------|----|----------|
| Ken   |               | 35.55 | 1965   | 202          | -608            | 892-     | 786-                                             | 2396          | 2521                                 | 7221                | 2055                                          | 164                 | 212            | 761             | 919                                   | 2621-  | -1025                          |  | ,   |     |      |    |          |
| Rek   |               | -8662 | -4655  | 4184-        | 1470            | 123      | 928                                              | 6685          | 5262-                                | 1562-               | -4892                                         | - 7590              | 075            | -1809           | 1112-                                 | 3014   | 2461                           |  |     |     |      |    |          |
| RFH   |               | 3661  | 1965   | 2501         | 907-            | -788     | -396                                             | 2786          | 8521                                 | 123%                | 2059                                          | 1074                | io             | 161             | 914                                   | 496    | <b>L</b> \$-6                  |  |     |     |      |    |          |
| Rrs   |               | -8662 | -4655  | -4814        | 1470            | 5        | 928                                              | -56.85        | -2425                                | -2931               | -4892                                         | 1214-               | -5814          | \$              | 1L12-                                 | -6312  | 1295-                          |  |     |     |      |    |          |
| Res   |               | 0     | 0      | . 0          | 0               | o        | O                                                | 0             | 0                                    | o                   | o                                             | -631                | 5011-          | o               | o                                     | 707-   | -1380                          |  |     |     |      |    |          |
| Roc   | Г             | 2116  | 1137   | שרוו         | - 1881          | 1986     | -1044                                            | 849           | L & \$                               | 438                 | و                                             | ā                   | تغ             | 'n              | 40                                    | 452    | 110                            |  |     |     |      |    |          |
| Rus   |               | -6974 | -3748  | J-86-        | 0%:1            | 444      | 181                                              | 215.4-        | -2354                                | X552-               | -3435                                         | 4                   | 1164-          | -1455           | -1746                                 | -\$505 | -4693                          |  |     |     |      |    | !        |
| Ros   |               | بزاو  | 1137   | 711          | 1881-           | -906     | -1044                                            | 849           | 437                                  | 85.28               | F                                             | 21-                 | 181-           | ્ત              | lg.                                   | 251-   | - 166                          |  |     |     | XIII |    |          |
| RVE   |               | 415   | -3748  | -3876        | 150             | 244      | 181                                              | -4575         | A252-                                | P2555-              | -3435                                         | -314                | 1531           | -1455           | -1746                                 | 12471  | 1979                           |  |     |     | BE   |    |          |
| Poso  |               | -7818 | 7020-  | -4345        | 1018            | 4126     | 8134                                             | €0L2-         | 18/1-                                | N SKIT              | 58                                            | 36                  | 418            | 412             | 330                                   | 154    | 274                            |  |     |     | DE L |    | <u>#</u> |
| 780   | 8             | 9219  | 4365   | 4513         | -8504           | -        | -4693                                            | 1867          | 1944                                 | 1447                | - 578                                         | 215-                | 550-           | <b>V82-</b>     | -343                                  | -160   | 982-                           |  |     |     |      |    |          |
| PBD   |               | 51211 | 5000   | 7777         | -11806          | 5000     | -6514                                            | 78847         | 2005                                 | 2002                | 8                                             | L15-                | 507-           | -394            | -477                                  | 122-   | -348                           |  | 13  |     |      |    |          |
|       | (03 H) CO2145 | ш     | T.61.6 | 5.61.6 (FWD) | SPENGRACK (FWD) | 4) JONES | FERNIES (FWD)                                    | F. E1.6 9200# | MAK. VERTICAL (FWD)<br>F.C1.6 12500# | MAX. VELTICAL (AFT) | 470- (ACT) MAK, VETAT.<br>F.C1.6 EMCRG. 97200 | Act) F.C5.3 (92008) | F.ES.S. 12500# | 597. E.S. 12500 | 397. BRAKOD KOLL<br>AFT) T.C5,5 92008 | (cmo)  | TURNING (AFT)<br>F.E 5.3 4200# |  |     |     |      | -  |          |
| CALC  | -             | ۲,4   |        | لمثلا        |                 |          | REVI                                             | SED           | DAT                                  | E.                  |                                               |                     |                |                 |                                       |        |                                |  | 15  | 511 |      |    |          |
| CHECK | 4             |       |        |              | -               |          | -                                                |               | -                                    | $\dashv$            |                                               |                     |                |                 |                                       |        |                                |  | R.  | イヘン |      |    |          |
| APR   | +             |       |        |              |                 |          | <del>                                     </del> |               |                                      | 7                   |                                               |                     |                |                 |                                       |        |                                |  | PAG |     |      |    |          |
|       | T             |       |        |              |                 |          |                                                  |               | •                                    |                     |                                               |                     |                |                 |                                       |        |                                |  |     |     |      | EO |          |

|               | 7. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. |              |                     |              |                  |                     | ٠                                      |                  |                   |                                         |                                              | -1746                  | -2030           |                                   |                        | -4592         | -3783         |            |             |   |
|---------------|-------------------------------------------|--------------|---------------------|--------------|------------------|---------------------|----------------------------------------|------------------|-------------------|-----------------------------------------|----------------------------------------------|------------------------|-----------------|-----------------------------------|------------------------|---------------|---------------|------------|-------------|---|
| SNOIL         | Race                                      | -14021       | -1540               | -77°.6       | 25876            | 6466                | . 2191                                 | L\$15-           | -2642             | -2648                                   | 410                                          | L&1                    | 151             | 104                               | L21                    | 184           | 106           |            |             |   |
| REACTIONS     | RSS                                       |              | ¥                   |              |                  |                     |                                        |                  |                   |                                         |                                              | 1256                   | 2184            |                                   |                        | 3156          | 7212          |            |             | , |
| BEARING       | Rose                                      | 10427        | 50%                 | 5795         | -9436            | 2474-               | - 5234                                 | 4120             | 2123              | 8212                                    | 525                                          | 822                    | 206             | 511                               | 209                    | 51.1          | ¥L1           | ¥          |             |   |
| ARY: P        | RY                                        |              |                     |              |                  |                     |                                        |                  |                   |                                         |                                              | -149                   | -250            |                                   |                        | 21.4.         | -323          | 7 3 44T    |             |   |
| SUMMA         | COLOLION                                  | 501NUP (FMO) | 501NUP (AFT) CMOCG. | 501400 (FWD) | EPRINGENCK (FWD) | F.E1.6 ENERGY (AFT) | \$PRINGEMENT (FWD)<br>F.E1.6 12500 # . | MAK. VOUT. (FWD) | MAK. YOUT. (F.WD) | MAK, YELT. (AFT)<br>F.C1.C. EMCRG. 9200 | VTOL (AFT) MAK, VOTT,<br>F.C1.4 CMOLLO. 9200 | UNSVMM, TOTAKING (AFT) | F.C 5.3 (2500\$ | 571. BEAKOD RALL<br>F.C5.3 12500# | 5-1. BENCED (201 (AFT) | TURMING (FWO) | TURNING (AFT) |            |             |   |
|               |                                           |              |                     |              |                  |                     |                                        |                  |                   |                                         |                                              |                        |                 | Ξ                                 |                        |               | 8             | (6)        | *           |   |
| CALC<br>CHECK | <u> </u>                                  | œh.          |                     |              | REV              | /ISED               | Β./                                    | ATE              |                   |                                         |                                              |                        |                 | <u> </u>                          |                        |               |               | A<br>LYSIS | RYAN        |   |
| APR           |                                           |              | E                   |              | E                |                     |                                        |                  |                   |                                         | H. W                                         | . LO                   | JD M            | ACH                               | NE V                   | VOR           | (S, II        |            | PAGE<br>104 |   |

## TABLE X - MATRIX

## CYLINDER BENDING MOMENT

D

| CALC  | Bookis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | REVISED | DATE | HOSE GEAR XVSA                 | らこし         |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------|--------------------------------|-------------|
| CHECK | A CONTRACTOR OF THE CONTRACTOR |         |      |                                |             |
| APR   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |      | DEFLECTION ANALYSIS            | RYNO        |
| APR   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |      | H. W. LOUD MACHINE WORKS, INC. | PAGE<br>105 |

|                      |          |            | P 200 R |         |      |        |       |        |       |       |       |       |        |        |        |        |       |        |        | 3.475  |            | -17.00  |             |
|----------------------|----------|------------|---------|---------|------|--------|-------|--------|-------|-------|-------|-------|--------|--------|--------|--------|-------|--------|--------|--------|------------|---------|-------------|
|                      |          |            | RT      |         |      | ,      |       |        |       |       | 3.294 |       | -8.844 |        | 8.952  | 77     | 8.452 |        | 12.427 |        | 21.944     |         | 8.22 21.949 |
|                      |          |            | RVF     |         |      |        |       |        |       |       |       |       |        |        |        |        |       |        |        | ٠      |            |         |             |
| -                    |          |            | RVE     |         | ,    |        |       |        |       |       | ,     |       |        |        |        |        |       |        |        |        |            |         | 12.8-       |
|                      |          |            | REK     |         |      |        | - 1   |        |       |       |       |       |        |        |        | II.    | -2,20 | •      | 4.4    |        | -7.507     |         | 1           |
|                      |          |            | RFJ     | S.      |      |        | ÷     |        |       |       |       |       |        |        |        |        | 2.220 |        | 3.634  |        | 7.507      |         |             |
| - 3.                 | a" (e    |            | Rsse    |         | 580  |        | ٠     |        |       |       |       |       |        | 7      | u<br>L |        |       |        |        |        | 9.525      | . T     | 9.525       |
| HOMENT               |          |            | RDua    |         |      |        |       |        |       | 12    |       |       |        |        |        |        |       |        |        |        |            | -9.525  | 14          |
|                      |          | 9-1        | Poe     | ·       |      |        | (i)   |        |       |       |       | 2.520 |        | 121.5  |        | 7.157  |       | 3,757  |        | د. رق  |            | 12.718  |             |
| BENDING              | MATRIX   | 11.11.     | RSLB    |         |      |        | 1.590 |        |       |       | 2.56  |       | 4.290  |        | 4.343  |        | 4.343 | ,      | 7.818  |        | 17.348     |         | mises       |
|                      |          | 7          | ROB     |         |      | 065.1- |       | 065-1- |       | -2.56 |       | -2.54 |        | -4.290 |        | -4.743 |       | -4.343 |        | -7.618 |            | -17.343 |             |
| CYLINDER             | DETAILED | COND: 410N |         | Z       |      |        |       | > 8    |       |       |       |       |        | _      | `      |        |       |        |        |        |            |         |             |
| 5                    |          | Col        |         |         | X    | HSM.   | HON+  | Msn+   | X     | Hsc-  | Moc+  | MSc+  | How    | HSH.   | Ho     | MSL-   | MPL+  | MS.+   | Hove   | Msue   | HOEE       | HSEF    | ,           |
| CALC<br>CHEGI<br>APR | _        | in la      |         |         | REVI |        | DAT   |        | NO    | SE    | G     | EA    | R      | ×      | 75     | A      | •     |        | -:     | 10     | 511<br>244 | J       |             |
|                      |          |            |         | 1 - 6-7 |      |        |       |        | adi f | 887   | EAST  | SEC   | 3 GHC  | T., P  | MON    | A. CA  | LIFOR | AIM    |        |        | GE OC      |         |             |

Poor 21.1--13.00 28 8.042 15.217 21.039 21.039 8.042 7.989 24 Y 22.8 RVF RVE F -2.20 -7.507 -5.138 RE 2.220 5,138 5 RFJ ۴ RSUB 5.825 5.8.5 TOW WOL -5.825 Dug Y 2.520 3.157 Poe 8.736 8242 3.757 3,721 BENDING RSLB 1.500 4.342 11.518 M.343 4.343 4.92 4.290 MATRIX ų Ų RAB -17.343 -1.590 4.790 -7.56 4.343 -1.5% 子が 41.518 4.343 l CYLINDER CONDITION DETAILED W MSM+ HOEE HON+ MSC+1 HSc-Hove HSEF Hoc+ HOL+ Maye , Mor. MSL-HS:+ How HSH REVISED DATE NOSE GEAR 15116 CHECK RYAW APR APR PAGE 107 H. W. LOUD MACHINE WORKS, INC. 887 EAST SECOND ST. POMONA, CALIFORNIA

13 - 13 A. A.

1043 3400 Poor 300 + ( 0 Y -1079 RVF Cain Pror-RVE (FWD) (9200# -8793 19520 60000 31954 Z F F -31954 -8793 14520 -66000 RFJ RSJB ا ا د 0 HOW MOH Roug 12401-44317 H. P. 43033 43450 43450 4861 8222 29144 になら Poe BENDING SPINOR RSLB EXTENDED HATRIX 0 ROB -24-3270 -10966 14027 -22303 £05.22--25409 POLON--60919 5189 703ſ CYLINDER CONDITION 505.22--23303 31362 -17469 -35409 1575 -1746 -17143 202 W 0 0 0 HOEE MSEF MSC+ HOLL HON+ HSM Hsc-HDC+ Hoe MSL-Move Hsue HSH MOW REVISED DATE CALC NOSE GEAR 15116 CHECK RYAN APR APR W. LOUD MACHINE WORKS, INC. PAGE 887 EAST SECOND ST., POMONA, CALIFORNIA

Poor 300 カナノー 2 1 0 Y 9453 38 RVF 45004 -9453 800 RVE Ł 30 -10660 2515 1420 Rek 下、「こ」 10660 1420 3 3152 RFJ Ñ Raus 0 SPRINGBACK (FIND) Rove TOW WOL 9435 -8986.8 158051 -43430 -44355 4455 1542-Poe -1180 -72831-BENDING RSLB HATRIX 0 Ros 22023 35523 108483 57.57B 22022 35523 57209 240651 -13676 cores. 1 CYLINDER CONDITION EXTENDED Mocet 10 22022 22022 25523 SSAB 15908 15908 35652 2115 とのよ W 0 0 O MSEF HSM+ TON+ MON-MSc+ HOL+ Hous! MOEF HSM. Moct HSUB Hori MSL HOW HSH REVIBED DATE. CALC CHECK RYAN APR +74 AFR "H. W. LOUD MACHINE WORKS, INC. PAGE

| G (FWD) E.C S. > (12500#)  G (FWD) E.C S. > (12500#)  -221 - 175 - 3146 - 6312 3074 2471 - 5265 375  -221 - 175 - 3146 - 6312 3074 2471 - 5265 375  -822                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    | 1                                     | .*     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------------------------|--------|
| POB RDUB RSUB RFJ REK RVE . RVE  221 -175-3166-6312 3074 2471 -5505  221 -175-3166-6312 3074 2471 -5505  257 - 14013-6824  830 -14013-6824                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7846               |                                       | 7005   |
| FWD) F.C S3 (12500#)  DB RDUB RSUB RFJ REK RVE.  221 -175 -3166 -6312 3074 2471  557  650  650  650  -14013 -4824  650  -3243 -15144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                                       | -46361 |
| De Roue RSue RFJ REK 221 -175-3166-6312 307 251 -175-3166-6312 307 257 - 175-3166-6312 307 257 - 175-3166-6312 307 258 - 19013-682                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                                       | 2000   |
| De Roue Roue Roue Roue Roue Roue Roue Rou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -25077             |                                       |        |
| HOMENT (FWD) Dea Rove 2221 -175 221 -175 230 6330 6330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 492 -              |                                       |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -18442             |                                       | LIBAAS |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    | 5101                                  | 34.    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -1931              | 4282-                                 |        |
| BENDING  HATRIX  HATRING  LB RSLB PC  CG CA83  CG CA84  CG CA83  CG CA84  C                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 76170              |                                       | 76170  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1198               | 1804                                  | 4      |
| COLD: TION<br>COLD: TION<br>COLD: TION<br>COLD: TION<br>COLD: TION<br>COLD: TION<br>COLD: TION<br>Su-12555<br>Su-12555<br>Su-12555<br>Su-12555<br>Su-12555<br>Su-12555<br>Su-12555<br>Su-12555<br>Su-12555<br>Su-12555<br>Su-12555<br>Su-12555<br>Su-12555<br>Su-12555<br>Su-12555<br>Su-12555<br>Su-12555<br>Su-12555<br>Su-12555<br>Su-12555<br>Su-12555<br>Su-12555<br>Su-12555<br>Su-12555<br>Su-12555<br>Su-12555<br>Su-12555<br>Su-12555<br>Su-12555<br>Su-1255<br>Su-12555<br>Su-12555<br>Su-12555<br>Su-12555<br>Su-12555<br>Su-12555<br>Su-12555<br>Su-12555<br>Su-12555<br>Su-12555<br>Su-12555<br>Su-12555<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1255<br>Su-1 | -4843              | 0                                     | ~0~    |
| TO T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Msue<br>Moer       | HSEF                                  | Marri  |
| CALC CALC REVISED DATE NOSE GEAR XVSA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RYF<br>PAGE<br>JIC | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |        |

....

1



CULVERING

Constitution Hamiltonia

ľ

SOGNITH

## INERTIA CALCULATIONS

## TAKEN 1.060 IN, FROM L.B.

0.D. = 3.520 '

9.731

7. 5340

I.D. - 3.245

8.270

5.4428

2t = .275

4 = 1,461 IN.2

I= 2.0932 IN.4

t= .1375 .

#### TAKEN 2.119 IN FROM L.B.

6.D. = 3.520

9.731

7.5360

I.D. = 3.002

7.078

3.9920

2t = .518

A = 2.653

I = 3. 5440 W

t = .259 ··

#### TAKON 3.551 IN. FROM L.B.

O.D. = 3.310

8.605

5.8920

I.D. = 3.002

7.078

3.9920

2t = .308

A=1.527 10.2

T = 1.9000 IN.

t= .154

## TAKEN 6.269 IN. FROM L.TS.

I= 1.9000 1N.4

#### TAKEN 9,520 IN. FROM L.B.

J = 1,9000 1U.4

## TAKEN 13.459 IN. FROM L.B.

I= 1.9000 14,4

| CALC  | Direlie | REVISED | DATE | NOSE GEAR XVSA                          | 1511   |
|-------|---------|---------|------|-----------------------------------------|--------|
| CHECK |         | 13 6    | 11   |                                         |        |
| APR   |         |         |      | DEFLECTION ANALYSIS                     | RYAN   |
| APR   |         |         |      | H. W. LOUD MACHINE WORKS, INC.          | PAGE . |
|       |         |         |      | 887 EAST SECOND ST., POMONA, CALIFORNIA | 112    |

| 1     | 2          | 3                | 4      | 5       | 6     | ٦                    |
|-------|------------|------------------|--------|---------|-------|----------------------|
| PANEL | POINT L.B. | X (51.73         | I      | EH.     | ΣH    | L<br>PANEL<br>LENGTH |
|       |            |                  |        | 4,03    | 3/5   |                      |
| ١     | O          | 0<br>23.303      | 2.0932 | 21.540  | 0     | 1.540                |
| 2     | 1.590      | 23.303<br>35.909 | 3.5440 | 36.503  | .484  | 9970                 |
| 3     | 2.56       | 6.765            | 1.0500 | 14.570  | .893  | 1.730                |
| 4     | 4.290      | 17.469<br>39.362 | 1,4000 | 14.570  | 2.011 | 5.528                |
| Ð     | 7,818      | 39.362<br>24.333 | 1.9800 | in Fin  | 1.242 | 3.700                |
| 6     | 11.58      | 24,235<br>*10    | 1.9500 | 14.5.70 | 1.243 | 5.822                |
|       |            |                  |        | ×       |       |                      |
|       | Ж          |                  |        |         |       |                      |
|       |            |                  |        |         |       |                      |
|       |            |                  |        |         |       |                      |

A

| T | 7                    | 8                 | q                                 | 10     | 11     | 12                  | 13                      | 14    | 15                            |
|---|----------------------|-------------------|-----------------------------------|--------|--------|---------------------|-------------------------|-------|-------------------------------|
|   | L<br>PANEL<br>LENGTH | A ONEL A          | Z<br>CENTROID<br>FROM R.H<br>BDGE | Z+Ž    | A(2+2) | Z<br>[A(Z+Z)]       | E<br>A(SLOPE)           | 2 24  | A WITH<br>RESPECT<br>TO PT LA |
|   |                      | ( <u>O</u> +O)(1) |                                   | 2.9    | 8 4 6  | SUM (1) FROM BOTTOM | SUM 8<br>FROM<br>BOTTOM | 2 ×3  | @- <b>®</b>                   |
| - | 1.540                | . 859             | 1.060                             | 1.060  | .911   | .1445               | .0175                   | 0     | .1445                         |
| 1 | .970                 | .787              | .5294                             | 2.119  | 1.668  | .1436               | 7،0،                    | .0266 | .1170                         |
| 1 | 1.730                | 1,072             | .991                              | 3.551  | 3.807  | .1419               | .0158                   | .0404 | .1015                         |
| 1 | 5,528                | 5.123             | 1.979                             | 6.269  | 32.116 | .1380               | .0148                   | .0635 | .0745                         |
|   | 3.700                | 6.020             | 1.702                             | 9.520  | 57.310 | .1060               | JP00.                   | .0751 | POF 0.                        |
| - | 5.822                | 3.619             | 1.941                             | 13.459 | 48.708 | .04 <del>8</del> 7  | .0036                   | .0415 | .0072                         |
| - |                      |                   |                                   |        |        |                     |                         |       |                               |
| - |                      |                   |                                   |        |        |                     |                         |       |                               |
|   |                      |                   |                                   |        |        |                     |                         |       |                               |
|   |                      |                   |                                   |        |        |                     |                         |       |                               |

## SPINUP (FWD) F.E.-1.6 (9200#)



DEFLECTION.

-INCHES

STRUT

Ų

ALONG

DISTANCE

San Delica

20 DIVISIONS PER INCH BOTH WAYS 120 AV LO DIVISIONS

P. 114 Osmlick

## SPINUP (FWD) F.E., -1.6 (9200#)

FIG. III



DEFLECTION OF STRUT & -INCHES

P. 115



INNER CYLINDER

" top a CHANCE.

INERTIA CALCULATIONS

TAKEN 3,333 IN, FROM & AXLE

I = 2x.03025 = .0605 IN.4

TAKEN G.CIE IN. FROM GAKLE

I = 2x.0545 = .1190 14.4

TAKEN 9.547 IN FROM QAKLE

I= .9445 IN.4

TAKEN 13.504 IN. FROM & AXLE

I= . 5401 IN.4

TAKEN 17.635 IN, FROM & AKLE

I= .6297 1N.4

TAKOU 21.377 IN. FROM & AKLE

I= .6297 IN.4

TAKEN 25, 150 IN, FROM CAKLE

 $\Delta t = \frac{2.491 - 2.375}{2} \times (25.750 - 23.44) = .0485$ 

.. O.D. = 2.491-2(.0485) = 2.394

O.D. = 2.394

4.501

.6123

I.D. = 2.251

3.980

1.2603

2t = .143

A = +521 IN.2 .

TE .3520 IN.

t= .0715

| CALC  | Thelis | REVISED | DATE | HOSE GEAR XVSA                                                            | 15111       |
|-------|--------|---------|------|---------------------------------------------------------------------------|-------------|
| CHECK |        |         |      | HOSE GEAR ATSA                                                            | 13110       |
| APR   |        |         |      | DEFLECTION ANALYSIS                                                       | RYAN        |
| APR   |        |         |      | H. W. LOUD MACHINE WORKS, INC.<br>887 EAST SECOND ST., POMONA, CALIFORNIA | PAGE<br>117 |

SPRINGEACK (F

| ī                                   | 2                          | 3                   | 4       | 5         | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7                    | 8       |
|-------------------------------------|----------------------------|---------------------|---------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------|
| PANEL                               | POINT O<br>TO L.H.<br>EDGE | M<br>(ULT)<br>X10-3 | 1       | EI<br>×10 | M<br>EI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | L<br>PANEL<br>LENGTH | A C PAR |
|                                     |                            |                     |         | 4×29      | 3/5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      | (C)+(   |
| •                                   | 0                          | 0<br>16.500         | .0605   | 1.755     | 0<br>9.402                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.000                | Z. 13.  |
| 2                                   | 5.000                      | 16.500<br>26.500    | .1190   | 3.451     | 4.781                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.000                | 18.0    |
| <b>3</b> 3                          | 8 30                       | 26.500<br>36.166    | .9445   | 27.391    | .767                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 9 <b>38</b>        | ن       |
| 4                                   | 10,2%,                     | 36. ac.             | . J&C   | 19.663    | ১৯.৪৯৭<br>১৯.৯৮                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4. 169               | · · ·   |
|                                     | 15.70                      |                     | .6297   | ٠٠٠. ا    | 7. AA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3,400                | •       |
| Z'n                                 | 19:00                      | 1 6 C               | .6297   | 18.261    | 4,040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.EAS                | ١ ٠,١   |
| ,                                   | to the second              | . 2                 | . W D D | 10.7408   | ۲.۹۶۵<br>۲                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | z. 225               | 4.5     |
|                                     |                            |                     |         |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |         |
| in conference and conference in the |                            |                     |         |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |         |
|                                     |                            |                     |         |           | AND THE RESIDENCE OF THE STATE |                      |         |

K

11 MG BACK (FWD) F.E. -1.6 9200#.

| 7               | 8                     | 9                                  | 10          | - 11                  | 1 12                | 13                      | 14      | 16                            |
|-----------------|-----------------------|------------------------------------|-------------|-----------------------|---------------------|-------------------------|---------|-------------------------------|
| PANEL<br>LENGTH | K103<br>PANEL<br>AREA | E<br>CENTROID<br>FROM R.H.<br>NDGE | Z+Z         | A(*+2)<br>×103        | \(\bar{\gamma} \)   | E<br>A (Slope)          | Z EA    | A WITH<br>RESPECT<br>TO PT. O |
|                 | (Q+Q)(1)<br>2         |                                    | 2+9         | 8 × (b)               | SUM (1) FROM BOTTOM | SUM 8<br>FROM<br>BOTTOM | 2 x (3) | (L)                           |
| 5.000           | 23.505                | 3.333                              | 3.333       | 78.342                | 1.066               | .091                    | 0       | 1.066                         |
| 3.000           | 18.690                | 1.615                              | 6.615       | 125,634               | .987                | ,068                    | .340    | .647                          |
| 2938            | 3.360                 | 1.547                              | 9.547       | 32.078                | P2B.                | .049                    | ·392    | .۵٦٤                          |
| 4.769           | 14.259                | 7. , Es. alas                      | 13.504      | 197.554               | . <del>8</del> 32   | .045                    | . ۵۹ ح  | -340                          |
| 3,700           | 12.302                | 1.928                              | 17.635      | 234.5BI               | , <b>د</b> ۳۵۰      | .031                    | .487    | 52                            |
| 4.5AZ           | 13.113                | 1.970                              | Z 1 . 75777 | * <del>3</del> 5.∉ 11 | .404                | 810.                    | . ५५५   | .055                          |
| 5.225           | 4.818                 | 1.015                              | ೭5∴ ಎ       | 124,064               | .124                | .005                    | ٠١٠٤٥   | .004                          |
|                 | / <b>(</b> )          |                                    |             |                       |                     |                         |         |                               |
|                 |                       |                                    |             |                       |                     |                         |         |                               |
|                 |                       |                                    |             |                       |                     |                         |         |                               |

B

P. 118 .



PRINTED IN U. S.A. ON CLEARPHINT TECHNICAL PAPER NO. 1015

PAGE 119 Osmalik CYLINDER

SPRINGBACK (FWD) F.E .- 1.6

|       | 2                          | 3                |        | 5          |               | 7                    | 8               | 9                             | 10                     |
|-------|----------------------------|------------------|--------|------------|---------------|----------------------|-----------------|-------------------------------|------------------------|
| ·     |                            | <u> </u>         | 4      | 3          | 6             |                      |                 | Ž.                            | 10                     |
| PANEL | POINT O<br>TO L.H.<br>EDGE | M<br>(ULT)       | I      | EI<br>×106 | M<br>EI       | L<br>PANEL<br>LENGTH | PANEL<br>AREA   | CENTROID<br>FROM R.H.<br>BDGE | <b>E</b> + \(\varphi\) |
|       |                            | ,                |        | 4×10.3     | 3/5           |                      | <u>(0,-0,10</u> |                               | 2+1                    |
| l     | 0                          | 0<br>22.063      | 2.0932 | 21.540     | 0             | I.SAO                | . 813           | 1.060                         | 1.06                   |
| 2.    | 1.590                      | 27.063<br>35.523 | 3.5440 | 36.503     | .604          | .970                 | .705            | .523                          | 2.11"                  |
| 3     | 7.54.0                     | 35.523<br>15.548 | 1,9000 | 19,570     | 1.815         | 1.783                | 2.329           | .782                          | 3.34                   |
| 4     | 4.343                      | 15.5A8           | 1.900€ | 19.570     | .797<br>558.1 | 3.475                | 4.552           | 1.951                         | 6.2                    |
| ÚI    | 7.818                      | 35.457<br>27.∞0  | 1.900C | 19.570     | 1.822         | 3.700                | 5,450           | ۵٥۲.۱                         | 9.57                   |
| Q     | 11.518                     | 22.000<br>O      | 1.900  | 19.570     | 1.124         | 5.822                | 3.272           | 1.941                         | 13.4                   |
|       |                            |                  |        |            |               |                      |                 |                               |                        |
|       |                            | •                |        |            |               |                      |                 |                               |                        |
|       | •                          |                  |        |            |               |                      |                 |                               |                        |
|       |                            |                  |        |            |               |                      |                 |                               |                        |

A

PRINGBACK (FWD) F.E. - 1.6 9200#

|                |                 | . (6)           |                               |                 |          |                     |                         |       |                                |
|----------------|-----------------|-----------------|-------------------------------|-----------------|----------|---------------------|-------------------------|-------|--------------------------------|
| 6              | ٦               | 8               | q                             | 10              | ,11      | 12                  | 13                      | 14    | 16                             |
| <u>N</u><br>EI | PANEL<br>LENGTH | PANEL<br>AREA   | CENTROID<br>PROM R.H.<br>BDGE | 178<br>+<br>181 | A(14-12) | <b>∑</b><br>[A(₹¥)] | E<br>A(SLOPE)           | Z EA  | A WITH<br>RESPECT<br>TO PT.LES |
| 3/5            |                 | <u>(0+0)</u> 10 |                               | Q+ <b>9</b>     | 8 × @    | SUM (I) FROM BOTTOM | SUM 8<br>FROM<br>BOTTOM | ② ×③  | <b>©- ©</b>                    |
| 1.023          | 1.5A0           | . 813           | 1.060                         | 1.060           | ·862     | .135                | ,0172                   | 0     | .135                           |
| .604           | .970            | .765            | .523                          | 2.113           | 1.616    | .1754               | .0164                   | .026  | .108                           |
| 1.815          | 1.783           | 2.329           | .782                          | 3.342           | 7.784    | .132                | .0156                   | .040  | .092                           |
| .797<br>.388.1 | 3.475           | 4.552           | 1.951                         | 6.294           | 28.650   | .125                | . O133                  |       | -067                           |
| 1.822          | 3.700           | 5,450           | 1.706                         | 9.524           | 51.906   | · 83                | . <b>78</b> 00.         | , ೧५8 | 850,                           |
| 1.124          | 5,822           | <b>3.</b> 272   | 1.941                         | 13.459          | 44.038   | . 044               | · 0033                  | .038  | ,<br>000                       |
|                |                 |                 |                               |                 |          |                     |                         |       |                                |
|                |                 |                 |                               |                 |          |                     |                         |       |                                |
|                |                 |                 |                               |                 |          |                     |                         |       |                                |
| 100            |                 | ·               |                               |                 |          |                     |                         |       |                                |

6



DEFLECTION OF STRUT & - INCHES

SPRINGBACK (FWD) F.E.-1.6 9200#





| _/_ | ,         | ,                               |        | ·        |               | 125             | <b>*</b> 00  |
|-----|-----------|---------------------------------|--------|----------|---------------|-----------------|--------------|
| 1   |           | 3                               | 4      | 5        | 6             | 7               | 8            |
|     | 2<br>L.H. | M<br>(UCT)<br>X10 <sup>-3</sup> | I      | EI       | MEI           | PANEL<br>LENGTH | A PAN<br>ARI |
|     |           |                                 |        | 4 x 10.3 | 3/5           |                 | (O,+(0       |
| 1   | 0         | 12.353                          | 2.0932 | 21.560   | .513          | 2.560           | .73          |
| 2   | 2.56      | 12.353                          | 1.9000 | 19.570   | .631          | 1.730           | 1.5          |
| 3   | 4.240     | 1.253<br>4.667                  | 1.9000 | 19.570   | .238          | 3.710           | ·5X          |
| 4-  | 8.50      | 4.667<br>8.068                  | 1.9000 | 19.570   | .238          | 3.518           | 1.1-         |
| -50 | 11.518    | 8.0.8<br>O                      | 1.9000 | 19.570   | .412          | 3.682           | .79          |
|     |           |                                 |        |          |               |                 |              |
|     |           |                                 |        |          |               |                 |              |
|     |           |                                 |        |          |               |                 |              |
|     |           |                                 |        |          | in the second |                 |              |
|     |           |                                 |        |          |               |                 |              |

A

LAMBERT

G (FWD) F.E. - 5.3

| 125             | ×00#                  |                             |        |               |                      |                         |       |                               |
|-----------------|-----------------------|-----------------------------|--------|---------------|----------------------|-------------------------|-------|-------------------------------|
| 7               | 8                     | 9                           | 10     | 11            | 12                   | 13                      | 14    | 15                            |
| PANEL<br>LENGTH | PANEL<br>AREA         | ENTROID<br>FROM R.H<br>EDGE | 2 + 2  | (5+5)<br>E01X | \[\(\z\{\z\{\z\}\)\] | E<br>A (SLOPE)          | ZEA   | A WITH<br>RESPECT<br>TO PT.LE |
|                 | <u>(0,+0)(1)</u><br>2 |                             | 2+9    | 8 × (b)       | SUM (1)              | SUM 8<br>FROM<br>BOTTOM | 2 x3  | <b>@-@</b>                    |
| 2.560           | .733                  | 1.707                       | 1.707  | 1.251         | .0312                | .∞47                    | 0     | .0312                         |
| 1.730           | 1.522                 | .948                        | 3.508  | 5,339         | .0300                | .0040                   | .0102 | .0198                         |
| 3.710           | .540                  | 2.213                       | 6.503  | 3.642         | .0246                | .0075                   | ro/o. | .0139                         |
| 3.518           | 1.143                 | 1.916                       | ۹.۹۱۵  | 11.334        | ,0210                | .001 <del>4</del>       | .0152 | .0058                         |
| 3.682           | .758                  | 1.227                       | 12.745 | 9,661         | .0097                | .coos.                  | ·0092 | .000S                         |
|                 | ,                     |                             |        |               |                      |                         |       |                               |
|                 |                       |                             |        |               |                      |                         |       |                               |
|                 |                       |                             |        |               |                      | * *                     |       |                               |
|                 |                       |                             |        |               |                      |                         |       |                               |
|                 |                       |                             | 7      |               |                      |                         |       | PA.                           |
|                 | 1,00                  | 4                           |        | B             |                      |                         | **    | 1                             |



INDER CYLINDER

|   |              | ^    | ٥    | S     | AS     | AD    | ASZ   | ADZ    | Iop.o   | I. 3-3 |
|---|--------------|------|------|-------|--------|-------|-------|--------|---------|--------|
| ı | .245×.184    | .033 | .964 | .238  | .0079  | .0318 | .0019 | .0307  | . 00017 | .00005 |
| 2 | .115 × 1.032 | .119 | .516 | .0575 | 8200.  | 0614  | .0004 | .0317  | .00013  | ,0106  |
| 3 | .245X.134    | .033 | .068 | . 258 | .007 q | .0022 | .0019 | .00015 | .00017  | ,00005 |
|   | ٤            | .185 |      |       | .0226  | .0954 | .0042 | .06255 | .00047  | 01010  |

$$5 = \frac{EAS}{EA} = \frac{.022C}{.185} = .122$$

$$D = \frac{ZAD}{ZA} = \frac{.0954}{.185} = .516$$

IS-5= .0107 + .06255 - .516 (.0954) = .02405 IN.4

ID-D = .00047 + .0042 - .122 (.0226) = .00187 IN.4

| Brelis | REVISED | DATE                           | NOSE GEAR XVSA      | ISIL                |
|--------|---------|--------------------------------|---------------------|---------------------|
|        | Ave.    |                                |                     | -                   |
|        |         |                                | DEFLECTION ANALYSIS | RYAN                |
| PR     |         | H. W. LOUD MACHINE WORKS, INC. | PAGE<br>124         |                     |
|        | Bulit   | Associate Revised              | REVISED DATE        | DEFLECTION ANALYSIS |

INNER CHLINDER

INERTIA CALCULATIONS - CONTO

TAKEN 6.036 IN: FROM C ANLIE



| ٠ |            | A    | Ū     | . S. | AS     | AD    | AST    | YD3    | To      | In s. s |
|---|------------|------|-------|------|--------|-------|--------|--------|---------|---------|
| 1 | 203X:416   | .084 | 1.054 | ,323 | .0271  | -0885 | .0087  | .0433  | .00122  | . 00029 |
| 2 | .115×1.156 | .188 | .578  | .058 | 7700   | .0169 | .00045 | .0444  | .000146 | .01483  |
| 3 | .203K.416  | ,064 | .102  | .323 | 1750-  | .0086 | .0087  | 18000. | .00122  | .00029  |
|   | ٤          | -301 |       |      | -06-19 | ,1740 | .0174  | .1386  | .0025A  | .01541  |

| CALC  | J.Suchil |   | REVISED | DATE | NOSE GEAR XVSA                          | らいし   |
|-------|----------|---|---------|------|-----------------------------------------|-------|
| CHECK |          |   | 4       |      | - 1703E GENE AV3A                       | 13.10 |
| APR   |          | - |         |      | DEFLECTION ANALYSIS                     | RYAN  |
| APR   |          |   |         |      | H. W. LOUD MACHINE WORKS, INC.          | PAGE  |
| 1.    |          |   | 1       |      | 887 EAST SECOND ST., POMONA, CALIFORNIA | 157   |

INNER CYCINDER

INERTIA CALCULATIONS - CONTO

TAKON AT 10.50 IN FROM Q AXLE (9.495)

O.D. E 2.615

5.371

I.D. = 2.290 4.119

1.3499

2t = .325 A= 1.252 N. T = .9445 N.

t = .1625.

TAKEN AT 13.437 IN. FROM & AXLE

1.8900

T.D. = 2.290 4.119

1.3449

2t= .201

t= .1005

TAKEN AT 17.435 IN FROM & AKLE

O.D. = 2.491

4.873

..... en 00

I D. - 2.251

3.480

1.2603

24= . 240

A = .893 . T = . G297 . . . .

t = .120

TAKEN AT 21, 375 IN FROM & AXLE

I = . 6297 IN.4.

| CALC  | 35 valid | V 2 | REVISED                                 | DATE | NOSE GEAR XYSA                          | ISIL   |
|-------|----------|-----|-----------------------------------------|------|-----------------------------------------|--------|
| CHECK |          |     | $\mathcal{T}_{\mathbf{k}} = //\epsilon$ |      | 7 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 |        |
| APR   | 97.5     | 1   | 5 1                                     |      | DEFLECTION ANALYSIS                     | RHAN   |
| APR   | 100      |     | 7 7                                     |      | H. W. LOUD MACHINE WORKS, INC.          | PAGE 1 |
| 1     | 3,750,00 |     | 4 -                                     |      | 887 EAST SECOND SY., POMONA, CALIFORNIA | 128    |

## INNER CYLINDER

t= .0865

## INERTIA CALCULATIONS - CONTO

## TAKEN 25.075 IN. FROM CAXLE



$$\Delta t = \frac{2.491 - 2.375}{26.25 - 23.44} \times (25.075 - 23.44) = .0337$$

I .= .4343 in.4

1.6946

1.2603

| 10SE GEAR XVSA                 | ISIL                           |  |  |
|--------------------------------|--------------------------------|--|--|
|                                |                                |  |  |
| EFLECTION ANALYSIS             | RYAN                           |  |  |
| H. W. LOUD MACHINE WORKS, INC. |                                |  |  |
| _                              | H. W. LOUD MACHINE WORKS, INC. |  |  |

|           |                              |                |                      |                       | _      |           |                                     |                    |       |
|-----------|------------------------------|----------------|----------------------|-----------------------|--------|-----------|-------------------------------------|--------------------|-------|
|           | 9                            | 8              | 7                    | 6                     | 5      | 4         | 3                                   | 2                  | 1     |
| R.H.      | CENTROID<br>FROM R.H<br>BDGC | PANEL<br>AREA  | L<br>PANEL<br>LENGTH | MEI                   | EI     | I         | (ULT)<br>×10-3                      | POINT D<br>TO L.H. | PANEL |
| 2         |                              | <u>(0,0)0</u>  |                      | 3/5                   | 4 29   |           |                                     |                    |       |
| +0 24     | 2.040                        | 7.492          | 4.000                | 2.000                 | 7.250  | .230      | 12.656                              | 0                  | 1     |
| 56 6.0    | 2.036                        | 8.414          | 4.000                | 2.207                 | 7.250  | *<br>-250 | 14.500                              | 4                  | z     |
| TAKE 10-4 | 1.495                        | 8.778          | 2.938                | .584                  | 27.391 | .9445     | 16.000                              | ಕ್ರಿ               | 3     |
| 19 13.    | 2,499                        | 6.348          | 4.769                | 1.144                 | 15.663 | .5401     | 17.923<br>23.775                    | 10,938             | 4     |
| 8 17.     | 1.778                        | 4.029          | 3,700                | 1.302                 | 18.261 | .6297     | 23.775                              | 5.707              | 5)    |
| 8 21      | 1.968                        | 2.829          | 4.593                | .876<br>.356          | 18.261 | .6297     | 6.500                               | 19.407             | G     |
| 5 25      | 1.075                        | .832           | 3.225                | . = 16                | 12.595 | .4343     | 0.500                               | 24.000             | 7     |
|           |                              |                |                      |                       |        |           |                                     |                    |       |
|           |                              |                |                      |                       |        |           |                                     |                    |       |
|           |                              |                |                      |                       |        |           |                                     |                    |       |
| 29        | 1.90                         | 4.029<br>2.829 | 3,700<br>4.593       | 1.302<br>.876<br>.876 | 18.261 | .6297     | 23.775<br>16.000<br>15.000<br>6.500 | \ 9.407            | G     |

SSUMED I VALUES

A

| RNIN            | 16 (FV               | 0) F                  | .c5                   | ·s (1:                    | L 500#)        |                     |                         |        |              |
|-----------------|----------------------|-----------------------|-----------------------|---------------------------|----------------|---------------------|-------------------------|--------|--------------|
| 6               | 7                    | 8                     | 9                     | 1 10                      | T vi           | 12                  | 13                      | 14     | 1            |
| ΣH              | L<br>PANEL<br>LENGTH | PANEL<br>AREA         | CENTROID<br>FROM R.H. | 2+2                       | A(2+2)<br>~01× | Z<br>[A(2+8)]       | E<br>A(SLOPE)           | ZEA    | A WI         |
| 3/6             |                      | <u>(0,40)(1)</u><br>2 |                       | 2.9                       | 8 × (b)        | SUM (1) FROM BOTTOM | SUM 8<br>FROM<br>BOTTOM | 2 ×®   | <b>(L)</b> - |
| .000            | 4.000                | 7.492                 | 2.040                 | 2.040                     | 15.284         | .320                | .032                    | 0      | .32          |
| .207            | 4.000                | 8.414                 | 2.036                 | 6.036                     | 50.787         | .305                | .024                    | .0960  | .20          |
| <del>58</del> 4 | 2.938                | 1.798                 | 1.495                 | 7446 AT<br>10.40<br>9.495 | בדס,דו         | . 254               | .0158                   | .1264  | . \2         |
| 518             | 4.769                | 6.348                 | 2,499                 | 13.437                    | 85,298         | . 2 37              | .014                    | .1531  | .08          |
| 302             | 3,700                | 4.029                 | 1.778                 | 17.435                    | 70.246         | .152                | . 7700.                 | .1209  | .01          |
| 356             | 4.593                | 2.829                 | 1.968                 | 21. <del>3</del> 75       | 60,470         | 180.                | ٦٤٠٥٥ .                 | .STO.™ | , 00         |
| 100             | 3.225                | .832                  | 1.075                 | 25.015                    | 20.862         | .021                | 8000.                   | .0192  | ,00          |
|                 |                      |                       |                       |                           |                |                     |                         |        |              |
|                 |                      |                       |                       |                           |                |                     |                         |        |              |
|                 |                      |                       |                       |                           |                |                     |                         |        |              |
|                 |                      |                       |                       |                           |                | β                   |                         | PAG    | 5            |

...

# TURNING (FWD) F.E. - 5.3



CLARPORT CHARDS

TURNING (FWD) F.C. - 5.3



## SECTION 3

# ATTACH POINT AND BEARING REACTIONS INCLUDING SECONDARY BENDING

| CALC STAIL | REVISED | DATE | NOSE G  | AR XVSA         | ISIL        |
|------------|---------|------|---------|-----------------|-------------|
| APR .      |         |      | DEFLECT | N ANALYSIS      | RYAN        |
| APR        | -       |      |         | INE WORKS, INC. | PAGE<br>133 |

#### UNIT SOLUTION

## INCREASE IN REACTIONS DUE TO BENDING

| CALC OBOCCHIA | REVISED | DATE | NOSE GEAR XVSA                                                             | うし           |
|---------------|---------|------|----------------------------------------------------------------------------|--------------|
| CHECK         |         |      |                                                                            |              |
| APR           |         |      | DEFLECTION ANALYSIS                                                        | RYAN         |
| APR           |         |      | H. W. LOUD MACHINE WORKS, INC.<br>867 East Second St., Potiona, California | PAGE<br>134- |

# SECONDARY BENDING

$$R_{SLB} = -S_0 \left[ \frac{27.225 - 2.00 (m/f)}{a} \right] + (m/f_a) Mv_0$$

$$-(1/a) Mo_0 - m/f_c (\Delta_5 D_0) + m/f_a (\Delta_0 S_0)$$

$$-1/a (\Delta_5 V_0)$$

| CALC Toutlik | REVISEO | DATE | HOSE    | SEAR XVSA           | 1511 |
|--------------|---------|------|---------|---------------------|------|
| CHECK        |         |      |         |                     |      |
| APR          |         |      | LIEFCEC | TON ANALYSIS        | KYNN |
| APR          |         |      |         | MACHINE WORKS, INC. | 795  |

# EXTERNAL REACTIONS - INCLUDING SECONDARY BENDING

PBD = .1568 Vo +.0783 (C) Do -.0783 Mso +.0783 (Δονο)

RVE = -.5565 Vo -.0608 (C) 50 -. 0282 (C) Do -.0608 MED +.0282 MSO -.0608 (AS Vo)

RVE = -.5565 Vo +.0608 (C) So -.0282 (C) Do +.0608 MDo +.0282 MSo +.0608 (Δ5 Vo)

RO<sub>2</sub> = .05AA Vo +.1217 So + [.0272 (C) -.500] Do.
-.0272 M<sub>50</sub> +.0608 M<sub>Vo</sub>
-.0608 (Δ5 Do) +.0608 (ΔD So)

ROZ = .0544 Vo - .121750+ [.0272 (c) - .500] Do - .0608 Mvo - .0272 M50 + .0608 (Δ5 Us) - .0608 (Δ050)

RSEF = -50+0 = -50

D,

| CALC TSUNCE | REVISED | DATE | NOS | - GEAR                              | XVSA      | اخارز  |
|-------------|---------|------|-----|-------------------------------------|-----------|--------|
| CHECK APR   |         |      |     |                                     | ANIALYSIS |        |
| APR         |         |      |     | JUD MACHINE WO<br>SECOND ST., POMON |           | PAGE ! |

# TABLE XI - MATRIX

# STRUT REACTIONS

INCLUDING SECONDARY BENDING

| CALC Booker | REVISED | DATE | 1 1 0 0 m 0 m 1 1 1 m 1                                                  | .==   |
|-------------|---------|------|--------------------------------------------------------------------------|-------|
| CHECK       |         |      | MOSE GEAR XVSA                                                           | 15116 |
| APR         |         |      | DEFLECTION ANALYSIS                                                      | RYAN  |
| APR         |         |      | H W. LOUD MACHINE WORKS, INC.<br>687 EAST SECOND ST., POMONA, CALIFORNIA | 7465  |

## STRUT REACTIONS

WITH SECONDARY BENDING

# ATTACH POINT REACTIONS

GENERAL MATRIX

CONDITION: ALL

|         | 70             | D°.         | $\sigma$  | Moo          | P80                       | DP00            | ع                                     |  |  |  |
|---------|----------------|-------------|-----------|--------------|---------------------------|-----------------|---------------------------------------|--|--|--|
|         |                |             |           |              |                           |                 |                                       |  |  |  |
| PBD     | .1568          | (2)EBTO.    |           |              |                           |                 |                                       |  |  |  |
| 1P80    | .078300        |             |           |              |                           |                 |                                       |  |  |  |
| EPBO    |                | ,           |           |              | ,                         |                 |                                       |  |  |  |
| Rve     | <del>5</del> ∞ |             | (S) 8020. | B0≥0.        | 340                       |                 |                                       |  |  |  |
| DRVE    | .ంటంక∆క        |             |           |              |                           | 360             |                                       |  |  |  |
| 2 Rvc   |                |             |           |              |                           |                 |                                       |  |  |  |
| RYE     | 500            |             | ocoe (c)  | 8020.        | 340                       |                 |                                       |  |  |  |
| DRUF    | o∞o8∆s         |             |           |              |                           | 360             |                                       |  |  |  |
| ERVE    |                |             |           |              |                           |                 | ,                                     |  |  |  |
| RDE     |                | 500         | 1217      |              | .347                      |                 |                                       |  |  |  |
| DROE    |                | . o608∆s    | oco8AD    |              |                           | .347            |                                       |  |  |  |
| ZROE    |                |             |           |              |                           |                 |                                       |  |  |  |
| Ros     |                | 1300        | ٠١٣١٦ .   | •            | . 347                     |                 |                                       |  |  |  |
| 4 Rope  |                | 0608Δs      | GΔ8020.   |              |                           | .347            |                                       |  |  |  |
| ERDF    |                |             |           |              |                           |                 | • 1                                   |  |  |  |
| RSCF    |                |             | -1.000    |              | ,                         |                 | · · · · · · · · · · · · · · · · · · · |  |  |  |
| CALC CA | ahit           | REVISED DAT | No.       | ise ge       |                           | WSA             | 1511                                  |  |  |  |
| APR     |                |             | DEF       | FLECTIC      | NA NO                     | ALYSIS          | RYAN                                  |  |  |  |
| APR     |                | \$          | 857 E     | W. LOUD MACH | INE WORKS,<br>POHONA, CAL | INC.<br>IFORNIA | Mass<br>138                           |  |  |  |

STRUT REACTIONS CONTO

### PISTON REACTIONS

CONDITION! ALL

|        | Vo      | D.              | S.                     | MPo   | Peo | APBD   | ٤    |
|--------|---------|-----------------|------------------------|-------|-----|--------|------|
| ,      |         |                 |                        |       |     |        |      |
| RT     |         |                 | -2.00/f                |       |     |        |      |
| DRT    |         | 1/4 ds          | -1/4 00                |       | γ   |        |      |
| ERT    |         |                 |                        |       |     |        |      |
| Rave   | 2.00/a  | 6/a             |                        |       |     |        |      |
| DRais. | 1/a DD  |                 |                        |       |     |        |      |
| ERag   |         |                 |                        |       |     |        |      |
| Ras    | -2,00/a | - 27.225<br>. a |                        |       |     |        |      |
|        | -1/a Do |                 |                        |       |     | Ф43 -4 | ,    |
| ZRas   |         |                 |                        |       |     |        | ,    |
| RSUB   |         |                 | b-2.00 k/f             | 1/4   |     |        | *    |
| ۵Rسع   | 1/a 05  | le/fa Ds        | -k/faDD                |       |     |        |      |
| 2 Roug |         |                 | 1<br>_                 |       |     |        |      |
| Ran    |         | •               | 2.00 m/fa<br>-27.225/a | - 1/a |     |        |      |
| DRUG   | -1/2 Ds | - m/fa Δs       | m/fa AD                |       | •   |        |      |
| ERMO   |         |                 |                        |       |     | (d.    | e qe |
|        |         |                 |                        |       |     |        |      |

| CALC  | Pardi'l | REVISED | DATE | NOSE       | GEAR XV5A                    | 1511  |
|-------|---------|---------|------|------------|------------------------------|-------|
| CHECK |         |         |      |            |                              | 13110 |
| APR   |         |         |      | DEFUEC     | TION ANALYSIS                | RYAN  |
| APR   | •       |         |      |            | ID MACHINE WORKS, INC.       | PAGE  |
|       |         |         |      | 887 EAST E | SOND ST., POMONA, CALIFORNIA | 139   |

# STRUT REACTIONS

WITH SECONDARY BENDING

## ATTACH POINT REACTIONS

DETAIL MATRIX

D,

CONDITION: F.E. -1.6

| 33.7     | 31110N. | F. E.       |                 |              |      |      |      |
|----------|---------|-------------|-----------------|--------------|------|------|------|
|          | ٧,      | o°          | J               | Moo          | P80  | ΔP00 | ٤    |
|          |         |             |                 |              |      |      |      |
| PBD      | 8021.   | 2.8775      |                 | ,            |      |      |      |
| APRO     | .0783AD |             |                 |              |      |      |      |
| EPBO     |         |             | ,               |              | '    |      |      |
| Rve      | 500     |             | 2.2344          | 80w.         | 360  |      |      |
| DRVE     | ·060805 |             |                 |              |      | 360  |      |
| ERVE     |         |             |                 |              |      |      |      |
| RyF      | 500     |             | -2.2344         | 0608         | 340  |      |      |
| DR VF    | 0608∆s  |             |                 |              |      | 340  |      |
| ERVE     |         |             |                 |              |      |      |      |
| ROE      |         | 500         | 1217            |              | .347 |      |      |
| DROC     |         | .0c08∆s     | <u>-√80∞.</u> - |              |      | .347 |      |
| ZRoc     |         |             |                 |              |      |      | 78   |
| Ros      |         | <b>-</b> .₩ | .1217           |              | .347 |      |      |
| AROF     |         | ∞o&∆s       | .060g Ad        |              |      | .347 |      |
| ERDF     |         | •           |                 |              |      |      |      |
| RSCF     | 1       |             |                 |              |      |      |      |
| CALC CAL | This !  | REVISED DAT | · 7.5           | SE GE: A     |      |      | 1511 |
| APR      |         |             |                 | ECTION       |      |      | RYAN |
| -77      |         |             |                 | W. LOUD MACH |      |      | 140  |

# STRUT REACTIONS CONTO

# PISTON REACTIONS

DETAIL MATRIX

CONDITION: F.E. -1.6

|             |          | •        |         | 1     |     | 1    | _ |
|-------------|----------|----------|---------|-------|-----|------|---|
|             | Vo       | Po       | S.      | Moo   | Pas | 4PBD | ٤ |
|             |          |          |         |       |     |      | • |
| RT          |          | J#       | 2686    |       |     |      |   |
| <b>DR</b> T |          | .1343∆s  | 1343∆D  |       |     |      |   |
| ERT         |          | ,        |         |       |     |      |   |
| Ras         | .2558    | 7.4873   |         |       |     |      |   |
|             | .1279 00 |          |         |       |     |      |   |
| ERag        |          |          |         |       |     |      |   |
| Rag         |          | -3.4823  |         |       |     |      |   |
|             | 1279 DD  |          |         |       |     |      |   |
| ERas        |          |          |         | •     |     |      |   |
| RSUB        |          |          | 2.3240  | .1279 |     |      | 2 |
| ۵R          | .1279 ۵5 | .0792 AS | 079Z DO |       |     |      |   |
| 2 Rsug      |          |          |         |       |     |      |   |
| Ran         |          |          | -3.055  | 1279  |     |      |   |
| DTZ20       | 1279 As  | 2135∆s   | .2135Da |       |     |      |   |
| ERMO        |          |          |         |       |     |      | Ŋ |
|             |          |          |         |       |     |      |   |

| CALC  | Buchie | REVISED                   | DATE | NOSE C     | EAR XVSA         | 1511        |
|-------|--------|---------------------------|------|------------|------------------|-------------|
| CHECK |        | The state of the state of |      | 170 30 3   | \                |             |
| APR   |        |                           |      | DEFLECTIO: | J ANALYSIS       | RYAN        |
| APR   |        |                           |      |            | HINE WORKS, INC. | PAGE<br>141 |

## STRUT REACTIONS

WITH SECONDARY BENDING

ATTACH POINT REACTIONS

DETAIL MATIRIX.

CONDITION: F.E. - 5.3

|                                         | Vo ·                | D <sub>o</sub>                          | So                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Moo             | P80        | ΔPEO                    | ٤           |
|-----------------------------------------|---------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------|-------------------------|-------------|
|                                         |                     |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |            |                         |             |
| Peo                                     | .1568               | 2.5878                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |            |                         |             |
| APap                                    | OZ 8810.            |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |            |                         |             |
| EPSO                                    | . 7-74              | 1. L. C. T.                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |            |                         |             |
| 2                                       | 500                 |                                         | 2.0094                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .0408           | 360        |                         |             |
| may make it the major of the second     | L.0608AS            |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |            | 360                     | 1           |
| TRUE.                                   | Land bed bed a bear |                                         | <b>建筑</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 464             |            |                         |             |
| A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | - 500               |                                         | -2.0094                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0608            | 360        |                         |             |
| d 8 9 0 5 1 2 5                         | 0coods              | Maria Control                           | 4300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A LAND          | -          | 360                     |             |
| Commercial and a series                 | - 27.34             | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1987年                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100             | 120        |                         | 13/12       |
| Tene:                                   |                     | Section Section                         | 1217                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 实验              | .347       |                         | Grade,      |
| 4                                       |                     | 103 C. St. Wassell N.                   | The state of the s | A Shirt Charles |            | ,347                    | 17,700      |
| ZROE                                    |                     | TOTAL STATE                             | 1440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>ENTRACE</b>  | 4.444      |                         | (表答,,       |
| Repa                                    |                     | 500                                     | 1217                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 | .347       | <b>Charle</b>           | 1           |
| D. Poer                                 | 1                   | A Sandraha                              | 0460AD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13:44 de 16:16: |            | 347                     | 1816        |
| ZREE                                    | 1000                | 10000                                   | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 | 32.0       |                         |             |
| Page                                    | September 1         | THE PERSON                              | -1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 375 45          |            | 12.1                    | 1           |
| -                                       | 2                   |                                         | NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | T. Dittot Care  | AR X       | 4. 4. 6. 4. 4. 4. 4. 4. | ISII        |
| and the second second second            | 112 30 A 177        |                                         | N.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | W. LOUD WACK    | HINE WORKS | S. INC.                 | PAGE<br>142 |

CONTO REACTIONS

#### PISTON REACTIONS

MATRIX

K.,

F.E . - 5.3

| PT2340  DRT .1170AS1170AD  ERT  Ray .1736 1.3637  DROWN .0868AD  ERUG  Ray1736 -2.3637  DROWN0868AD  ZROW  Roy .0868AS .0376AS0376AD  ERUG  RSUM .0868AS .0376AS0376AD  ERSUM  RSUM0868AS1546AS .154.AD  ERSUM0868AS1546AS .154.AD  ERSUM0868AS1546AS .154.AD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         | Vo                            | Do               | S.          | MDo          | Pao                                   | APBO                                    | ٤           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------|------------------|-------------|--------------|---------------------------------------|-----------------------------------------|-------------|
| ΔRT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |                               | ·                |             |              |                                       |                                         |             |
| ERT  Rous .1736 1.3637  AROUS .0868 AD  EROUS  ROUS17362.3657  AROUS0868 AS  1.2885                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RT                                      |                               |                  | 2340        |              |                                       |                                         |             |
| Rous .1736 1.3637 ΔRous .0868 ΔD  ERous  Rous17362.3637 ΔRous0868 ΔS  ERous  Rrous0868 ΔS .0376 ΔS0376 ΔD  ERous                | DR.                                     |                               | .۱۱٦٥∆5          | 1170 AD     |              |                                       |                                         |             |
| EROLD .0868 AD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ERT.                                    |                               | . 59.            |             |              | · · · · · · · · · · · · · · · · · · · |                                         |             |
| EROLD  EROLD 17362.5657 2.5657 2.5657 2.5657 2.5657 2.5657 2.5657 2.5657 2.5657 2.5657 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6667 2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Rava                                    | .1736                         | 1.3637           |             |              |                                       |                                         |             |
| Rola17362.367<br>ΔROLA0868ΔΕ<br>ΣROLD<br>Roll 1.2885 .0868<br>ΔRoll 0.0876Δ50868<br>ΔRoll 2.0868Δ5 .0376Δ50376ΔD<br>ΣRoll 2.0868Δ51546Δ5 .1546ΔD<br>ΣRoll 2.0868Δ51546Δ5 .1546ΔD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         | GA 8380.                      | A                |             | / / - mai/   | 1.7                                   |                                         | 10 g        |
| Roll1736 -2.3637<br>ΔROLL0868ΔΕ<br>ΣROLD<br>Roll 1.2885 .0868<br>ΔRoll 1.2885 .0868<br>ΔRoll 2.0868ΔΕ .0376ΔΕ -Δ376ΔD<br>ΣRoll 2.0868ΔΕ1546ΔΕ1546ΔΕ<br>ΣRoll 2.0868ΔΕ1546ΔΕ .1546ΔΕ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ERag                                    |                               |                  |             |              |                                       |                                         | ·           |
| ΣΡουβ0868Δ= .0868 .0876Δ= .0868  ΔΡουβ0868Δ= .0876Δ=0876ΔD  ΣΡουβ0868Δ=1546Δ= .1546Δ= .1546                   | 11                                      |                               | -2.34.57         | ** }        |              |                                       | 1 / E                                   |             |
| ΣΡουβ  1.2885 .0868  ΔΡουβ .0868 Δε .037 ( Δε Δ37 ( Δρ)  ΣΡουβ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                               |                  |             |              |                                       |                                         |             |
| Room   1.7885   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .0868   .08   | Me man !                                |                               |                  |             |              |                                       |                                         |             |
| ΔR <sub>5-17</sub> -0868 ΔS .0376 ΔS0376 ΔD  2R <sub>5-17</sub> -2 (15450868)  ΔR <sub>5-17</sub> 0868 ΔS1546 ΔS .154 - ΔD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |                               |                  |             | .0868        | A HARAN                               |                                         |             |
| 2 R2003  R3  -2 (15Δ508L8.)  ΔR20308C8Δ515ΔC Δ5 .15C .ΔD  2 R203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | J 30 6 30                               | -0868 45                      | 1. Te art 12. 17 | ar Standard |              |                                       |                                         |             |
| R2 (5450848.) ΔR0848Δ51544. Δ5 .154. Δ5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 111111111111111111111111111111111111111 |                               |                  |             |              |                                       |                                         |             |
| ΔR08csΔs15AL Δs .15L - ΔD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.4 (4.14.)                             |                               |                  | -2.0545     | 0848.        |                                       |                                         |             |
| ZRAS AND STATE OF THE STATE OF | DR.B                                    | - 0848As                      |                  | 154-40      |              |                                       |                                         |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ER                                      | ाक्षेत्रक्षेत्रक्षेत्रकः<br>- |                  |             |              |                                       |                                         | -           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                               |                  |             |              |                                       |                                         |             |
| CALC TOURSEL REVISED DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CHECK :                                 | 医巨额性病院                        |                  |             |              | 4.11                                  | , , , , , , , , , , , , , , , , , , , , | RYAN        |
| CHECK CHECK CAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | APR                                     |                               |                  | H.          | W. LOUD MACH | NE WORKS.                             | INC.                                    | PAGE<br>143 |

| CALC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Frethis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     | REVISED | DATE | 175,5 | HOSE GEAR XVEA                            | ie   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------|------|-------|-------------------------------------------|------|
| CHECK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17 5 12.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |         | 5.1  |       |                                           | 1311 |
| APR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     | 41.47   |      | 三     | EFLECTION ANALYSIS                        | RYAN |
| APR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |         |      |       | H. W. LOUD MACHINE WORKS, INC.            | PAGE |
| The second secon | and the state of t | 4.5 |         |      |       | EST EAST SECOND ST., POMONA, CALIFORNIA . | 143  |

STRUT REACTIONS

WITH SECONDARY BEN'DING

## ATTACH POINT REACTIONS

### EXTENDED MATRIX

CONDITION: SPINUP (FWD) F.E.-1.6 9200#

|           | Vo    | D <sub>o</sub> | S  | Moo             | P80        | ΔPeo | ٤           |
|-----------|-------|----------------|----|-----------------|------------|------|-------------|
|           | 5827  | 3600           | 0  | 0               | 11273      | 559  |             |
| PED       | 914   | 10359          |    | ,       /       |            |      | 11273       |
| APRO      | , 559 | ·              |    |                 |            |      | 55A         |
| EPBO      |       |                |    |                 |            |      | 11832       |
| Rye       | -2914 | ٠              |    |                 | -4058      |      | -6972       |
| DRVE      |       |                |    |                 |            | -201 | - 201       |
| 2 Rve     |       |                |    |                 |            |      | -7173       |
| RyF       | -2914 |                |    |                 | -4058      |      | -6972       |
| DR VE     | •     |                |    |                 |            | -201 | -201        |
| ERVE      |       |                |    |                 |            |      | -7173       |
| Roc       |       | -1800          |    |                 | 3912       |      | 2112        |
| DROC      |       | 144            |    |                 |            | 194  | 194         |
| ZRoc      |       |                |    |                 |            |      | 2306        |
| Ros       |       | -1800          |    |                 | 3912       |      | 2112        |
| A Ros     |       | ·              |    |                 |            | 194  | 194         |
| ERDE      | •     |                |    |                 |            |      | 2306        |
| RSCF      |       |                |    |                 |            |      |             |
| CALC (35. | whit  | REVILLO DAT    |    | SE GE<br>ECTION |            |      | 1511        |
| APR       |       |                | 1. | W. LOUD MACH    | INE WORKS. | INC. | PAGE<br>144 |

# STRUT REACTIONS CONTO

|         |       | PISTON         | REACT | 1045             |                                         | •      | =* 1             |
|---------|-------|----------------|-------|------------------|-----------------------------------------|--------|------------------|
|         |       | SPINI          |       | (D) F.E.         | 1.6                                     | 926    | <del>50</del> #_ |
|         | Vo    | D <sub>o</sub> | S.    | MBo              | Pan                                     | APBO   | ٤                |
|         | 5827  | 3600           | O     | 0                |                                         |        |                  |
| RT      | ·     |                |       | . /              |                                         |        |                  |
| DR-     | •     | ٥              |       |                  |                                         | ,      |                  |
| ERT     |       |                |       |                  |                                         |        |                  |
| Rous    | 1491  | 8936           |       | / •              | ,                                       |        | 10427            |
| 1Ras    | 915   |                |       |                  |                                         |        | 915              |
| ERag    |       |                |       |                  |                                         |        | 11342            |
| Ros     | -1491 | -12536         |       | <i>/ · · ·</i>   | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 107    | -14027           |
|         | -915  |                |       |                  |                                         | 20     | -915             |
| ERas    |       |                |       |                  |                                         |        | -14942           |
| RSUB    |       |                |       |                  |                                         |        |                  |
| ۵R      | O     | 0              |       |                  |                                         |        |                  |
| 2 Rsuo  |       |                | 7     | 3.               |                                         |        |                  |
| Ream    |       |                |       | ,                |                                         |        |                  |
| DRUG    | 0     | 0              |       | 1                |                                         |        |                  |
| ERGUS   | -     |                |       |                  |                                         |        | 110              |
|         |       | 121            |       | }                |                                         |        |                  |
|         | m lis | REVISED DAT    | NC    | 5- 6             | EAR X                                   | NSA    | 1511             |
| APR APR |       |                |       | W. LOJD MACH     |                                         | ALYSIC | RYAN             |
|         |       |                |       | EAST ( COND ST., |                                         |        | 14               |

# STRUT REACTIONS

WITH SECONDARY BENDING

## ATTACH POINT REACTIONS

## XISTAM COOKSTX

CONDITION: SPRINGBACK (FWD) F.E.-I.G 9200#

|                  | ٧.    | Do         | S <sub>o</sub> ' | Moa           | Peo    | ΔPeo  | ٤           |
|------------------|-------|------------|------------------|---------------|--------|-------|-------------|
| ****             | 6205  | - 4941     |                  |               | -11806 | -558  |             |
| Peo              | 973   | -12779     |                  |               | †      |       | -11806      |
| 4Peo             | -558  |            |                  |               |        |       | -558        |
| EPBO             |       |            |                  |               |        |       | -12.364     |
| RVE              | -3103 |            |                  |               | - 4250 |       | 1147        |
| DRVE             | 0     |            |                  |               |        | . 201 | 201         |
| 2 Rve            |       |            |                  |               |        |       | 1348        |
| RYE              | -3103 |            |                  |               | 4250   |       | 1147        |
| DR VF            | 0,    |            |                  |               |        | 201   | 201         |
| ER <sub>VE</sub> |       |            |                  | N             |        |       | 1348        |
| Roc              |       | 2221       |                  |               | 4097   |       | -1876       |
| DROE             |       | 0          |                  |               |        | -194  | -194        |
| ZRoc             |       |            |                  |               |        |       | -2070       |
| Rof              |       | 2221       |                  |               | -4097  |       | -1876       |
| A Ros            | U     | 0          |                  |               |        | -194  | -194        |
| ERDE             |       |            |                  |               |        |       | -2070       |
| 25CF             |       |            |                  | \             |        |       |             |
| ALC 73.          | alit  | REVISED DA | TE NO            | عاجات كا      | AR X   | V SA  | 1511        |
| LPR .            |       |            | DEFL             | ECTION        | ANAL   | Y515  | RYAN        |
| APR              |       | <u> </u>   |                  | W. LIDUD MACH |        |       | PAGE<br>146 |

# STRUT REACTIONS CONTO

| 1417    | h se     | CONDAR         | in set hi                                | DING         |            |      | · 3112 |
|---------|----------|----------------|------------------------------------------|--------------|------------|------|--------|
|         |          | PISTON         | REACT                                    | 10015        |            | •    |        |
|         |          | MATR           |                                          | (-, )        |            |      | "      |
| CONT    | : אסידיכ | SPRI           | J G TSACK                                | (FWO)        | <u>∓.€</u> | -1.6 | 1200#  |
|         | ٧,       | D <sub>o</sub> | 5,                                       | MD           | Pro        | AP80 | ٤      |
|         | 6205     | -4441          |                                          |              | - • • •    |      |        |
| RT      |          |                | \ '                                      | 1/           |            |      |        |
| DR.     |          | 0              | <u> </u>                                 | 1 /          |            |      |        |
| ERT     |          |                |                                          | /_           |            |      |        |
| Ras     | 1587     | -11024         | 1.                                       |              |            |      | - 9437 |
| brais.  | -906     |                |                                          | /            | i'j        |      | - 906  |
| ERag    |          |                | 1                                        |              |            |      | -10343 |
| Ras     | -1587    | 15465          | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | /            |            |      | 13878  |
| DROUB   | 906      |                | 1.                                       | <b>X</b>     |            |      | 906    |
| ZRas    | •        |                |                                          |              | . !        |      | 14784  |
| RSUB .  |          |                |                                          |              | 1          |      |        |
| ۵Rرم ع  | 0        | 0              |                                          |              |            |      |        |
| £R5∪0   |          |                |                                          |              |            |      |        |
| Ras     | 21       |                | 1/1                                      |              | 1          |      |        |
| DRas    | 0        | 0              | /                                        |              |            |      | 17     |
| ERLO    |          |                | /                                        | \            | 1          |      | 4,     |
|         | (*)      |                | · ( ·                                    |              | 5          |      |        |
| CALC ZZ | celiet   | REVISED DA     | . 2                                      | ose g        | EAR        | XVSA | 1511   |
| APR     |          |                | -                                        | ECTION       |            |      |        |
| APR     |          | 1              |                                          | W. LOUD MACH |            |      | PAGE   |

STRUT REACTIONS

WITH SECONDARY BENDING

ATTACH POINT REACTIONS

EXTENDED MATRIX

CONDITION! TURNING (FWD) F.E .- 5.3 12500#

|           | Vo.   | Do           | S        | Moo!        | Pool       | DPED. | ٤           |
|-----------|-------|--------------|----------|-------------|------------|-------|-------------|
|           | 3193  | -279         | 1602     | 12656       | -221       | 0.    |             |
| Pap       | 501   | -122         |          |             | -!<br>`i . | . = . | -221        |
| AP80      | 0     |              |          |             |            |       |             |
| EPBO      | ,     |              |          |             | 013        |       | -221        |
| RVE       | -1547 |              | 3219     | 769         | 80         |       | 2471        |
| DRVE      | 56    |              | ·        |             |            | 0     | .54         |
| 2 Rve     |       |              |          |             |            |       | 2527        |
| RyE       | -1597 |              | -3219    | -769        | 80         |       | 5505        |
| DR VF     | - 56  |              |          |             |            | 0     | -56         |
| ERVE      |       |              |          |             |            |       | -5561       |
| Roc       |       | . 140        | - 195    |             | -77        |       | -132        |
| DROE      |       | -5           | Ö        | -           |            | 0     | -5          |
| ZRoi      |       |              |          | ).          |            |       | -137        |
| Ros       |       | 140          | 195      | •           | <b></b> 11 |       | 258         |
| 1 Rox     |       | · 5          | O        |             |            | 0     | 5           |
| ERDF      |       |              |          |             |            |       | 262         |
| RSCF      |       |              | -1602    | ·           |            |       | -1602       |
| CALC CALC | alit  | REVI: 1/ DAT | <u> </u> | SE GEA      |            |       | RYAN        |
| APR       |       |              |          | W LOUD MACH |            |       | PAGE<br>148 |

# STRUT REACTIONS CONTO

# PISTON REACTIONS

EXTENDED MATRIX

CONDITION: TURNING (FND) F.E.-5.3 12500#

|        |      |           |        |        | 7    | 7           |       |
|--------|------|-----------|--------|--------|------|-------------|-------|
|        | Vo   | Do        | S.     | MBo    | Pao  | APED.       | ٤     |
|        | 3193 | - 279     | 1602   | izesc  |      | 7           | ·     |
| RT     |      |           | - 315  |        |      |             | -315  |
| DRT    |      | - 9.50    | 0      |        |      |             | - 9.5 |
| ERT    |      |           | 1111   |        |      | * .*        |       |
| Rous   | 554  | - 380     |        | ,      |      |             | - 385 |
| - DRas | 0    |           | •      |        | 7 42 |             | 174   |
| ERas   |      | <b></b> . |        |        |      |             | /1 \  |
| 1_ 1   | -554 | 1         | .,1    |        | `    | <del></del> | 174   |
| DROUB! |      | 659       |        |        |      |             | 105   |
| 1      | 0    |           |        |        |      |             |       |
| ERas   |      |           |        |        |      |             | 105   |
| RSUB   |      |           | .2064  | 1099   |      |             | 3163  |
| DR Sus | 08   | -3.041    | 0      |        |      |             | T N   |
| 2 RSUG |      |           |        | il il  |      |             | 77.   |
| Rear   |      |           | - 3291 | -1099  |      |             | 3240. |
| 1 - 1  | - 80 | 12.50     |        | - 1049 |      |             | -4390 |
| ERGUS  | ·    |           | 0      |        |      |             | - 68  |
| - 45   |      |           |        |        |      |             | -4458 |

| CALC  | Bulit | REVISED | DATE |                                                                      |       |
|-------|-------|---------|------|----------------------------------------------------------------------|-------|
| CHECK |       |         |      | NOSE GEAR XVSA                                                       | 15111 |
| APR   |       |         |      | DEFLECTION ANALYSIS                                                  | RYAN  |
|       |       |         |      | H W LOUD MACHINE WORKS, INC. 887 EAST SECOND ST., POMONA, CALIFORNIA | PAGE  |

# SE-CTION 4

CYLINDER ANALYSIS

D

| CALC  | Bothief | REVISED | DATE | MOSE GEAR XV5A                                                            | ISIL        |
|-------|---------|---------|------|---------------------------------------------------------------------------|-------------|
| CHECK |         |         |      | TOOC GOAL AVOID                                                           |             |
| APR   |         |         |      | CYLINDER ANALYSIS                                                         | RYAN        |
| APR   | 1       | ·       |      | H. W. LOUD MACHINE WORKS, INC.<br>867 East Second St., Pomona, California | PAGE<br>150 |





RFJ= 1.243 RVF -. 353 RSF

REK = 1.243 RNE

FOR SPINUP F.E .- 1.6 (FWD) 9200#

RFJ = 1.243 (-7173) -. 333 (0) = - 8916

REK= 1,243 (-7173) = -8916

FOR SPRINGBACK F.E -1.6 (FWD) 9200#

RFJ = 1.243 (1348) - . 333(0) = 1676

RCK = 1.243 (1348) = 1676

FOR TURNING F.E. - 5.3 (FWD) 12500#

RFJ = 1.243(-5561) - .333 (-1602) = -6379

REK = 1.243 (2527) = 3141

| CALC  | Bookert |     | REVISED | DATE | 2106 | SE GEAR XVSA                       | اجارن |
|-------|---------|-----|---------|------|------|------------------------------------|-------|
| CHECK | 32.52   |     |         |      |      |                                    | 13110 |
| APR   |         | 1 1 |         | 4 2  | CYLI | NOER ANALYSIS!                     | RYAN  |
| APR   |         | - 1 |         |      | Н    | W. LOUD MACHINE WORKS, INC.        | PAGE  |
|       |         |     |         |      |      | AST SECOND ST., POMONA, CALIFORNIA | 155   |

Poor 200 TY T JUNIONAC! 0 58962 - 58962 -7173 RVF 5117-RVE SACOLDARA 25699 -8916 4500年 32401 19794 Ne K -32401 66932 -8916 - 19794 RFJ イトラ SPINUTO (TWD) T.R. - 1.6 RSUB 0 0 FUW WOI R Dug -11342 108033 44453 151189 44453 75002 29817 11832 44027 Poe BENDING RSLB TATRIX 0 ٥ -C4893--23758 RDB -38252 -38252 -116817 -25A13A 14942 -64893 -23158 -64101 . [ CYLINDER EXT ENDORU CONDITION -23758 448CB -38252 -20440 85127--8435 **PL002-**-20440 ~0~ 0 W 0 0 0 MOEEL MSEF MSC+ Mort Hove Moct HSN. TONT Mor Hsug MOM HSH REVISED DATE Buthil CALC NOSE 15116 CHECK RYAN ANALYSIS APR APR PAGE H W LOUD MACHINE WORKS, INC. 887 EAST LECOND ST., POMONA, CALIFORNIA

# SPINUP (TWD) F.E.-1.6 9200#.



[]I 1

|    | •                  |                |             | Poor        |        |       |        |      |               |    |       |              |        |      |        |      |        |       |       |        |        |            |        |              |
|----|--------------------|----------------|-------------|-------------|--------|-------|--------|------|---------------|----|-------|--------------|--------|------|--------|------|--------|-------|-------|--------|--------|------------|--------|--------------|
|    | 22.0               |                |             | RT          | 0      |       |        |      |               |    |       |              |        |      |        |      |        |       |       |        |        |            | , .    |              |
|    | 10000 ACC          |                | _           | RVF         | 1348   | ٠     |        |      |               |    |       |              |        |      |        |      |        |       |       |        |        |            |        | 11081        |
|    | アンダ                |                | 9200#       | RVE         | 1348   | `     |        |      |               |    |       | 12.6         |        |      |        |      |        |       | •     |        |        |            |        | -11081 11081 |
|    | THE CONTRACT.      |                | و           | R<br>R<br>R | 167    |       |        |      |               |    | •     |              |        |      |        |      |        | 1215- |       | - C091 |        | -12582     |        |              |
|    |                    |                | 7.6.1.6     | RFJ         | 1676   |       |        |      |               |    |       |              |        |      |        |      |        | 1218  |       | 16091  |        | 12582      |        |              |
|    | ゴトラー               |                | ı           | RSUB        | 0      |       |        |      |               |    |       |              |        |      |        |      |        |       |       |        |        |            | ٠      |              |
|    | トスリそのエ             | •              | (034)       | Roug        | 10343  |       |        |      |               |    |       |              |        |      |        |      |        |       |       |        |        |            | -485n  |              |
|    |                    | •              | SPRINGBACK  | Poe         | -12364 |       |        |      |               |    |       |              | -31157 |      | -460ac |      | -46452 |       | -4452 |        | -76274 |            | 187987 |              |
|    | S N D Z H B        | XXX            | DARING      | RSLB        | O      |       |        |      |               |    |       |              |        |      |        |      |        |       |       |        |        |            |        |              |
|    | N T                | MATRI          | ı           | RDB         | -14784 |       | 123507 |      | 73501         |    | 37847 |              | 37847  |      | 63423  |      | 64207  |       | 64207 |        | 185511 |            | 256399 |              |
|    | CYLINDE<br>CYLINDE | DIVIDIVE VILLE | CONDITION   |             | W      |       | 13501  |      | 10552         |    | 37847 |              | CCAO   |      | 17417  |      | 35771  |       | 32111 | 0      | 39307  | 0          | ~0~    | C            |
| (  |                    | NX TA          | CON         |             |        | 7     | HSN.   | HON+ | +751          |    | Hsc-  | Moc+         | MSc+   | Mon  | HSH    | Hor- |        | HDC+  | MSC+  | Hous   | Hsue   | HOEF       | HSEF   | Moer         |
| -  | LC                 | <i>0,</i> 5    | soul        | 4           |        | REVIS | ED     | DAT  | $\overline{}$ | 70 |       | . <b>(</b> i | EA     |      | ×      | .V 5 | 5A     | _     | •     |        | 1,     | 511<br>24A | L      | 1            |
| AP |                    |                | <del></del> |             |        | /     |        |      |               |    | Н     | V.           | LOU    | AM C | CHIN   | E WO | ORKS   | , INC | ,     |        |        | GE<br>SG   | I      | ;            |

SPRINGBACK (FWD) F.E 9200#



SET HOW - E.OIX LINDWOW PAGE 157

CACINDER

|        | ·                  |           | Poor |       |       |        |       |       |    |          |                       |           |       |      |       |      |                                      |      |          |       |                 |        | ,            |
|--------|--------------------|-----------|------|-------|-------|--------|-------|-------|----|----------|-----------------------|-----------|-------|------|-------|------|--------------------------------------|------|----------|-------|-----------------|--------|--------------|
| ት<br>[ | 920000             |           | RT F | 385   |       |        |       |       |    |          | 1139                  |           | ع دمد |      | 3096  |      | 3096                                 |      | 5859     |       | 8100            | -      | 8160         |
| I      | 35                 | أبدا      | RVF  | -5561 |       |        |       |       |    |          |                       |           |       |      |       |      |                                      |      |          |       |                 |        | -45111. 8160 |
|        | 7                  | 12500#    | RVE  | 7552  | ,     |        |       |       |    |          |                       |           |       |      |       | *    |                                      |      |          |       |                 |        | 21102-       |
|        | SECONDARY          | 1         | REK  | 3141  | į.    |        |       |       |    |          |                       |           |       |      |       |      | -6913                                |      | -16138   |       | -23579          |        |              |
|        |                    | 5.3       | RFJ  | -6319 |       |        |       |       |    |          |                       |           |       |      |       |      | -14161                               |      | 32115    |       | -41687          |        |              |
|        | 11.3               | 14<br>(v) | Rssa | -3240 |       |        |       |       |    |          |                       |           |       |      |       |      |                                      |      | ,        |       | -18873          |        | -18873       |
|        | 1 2 U E            | (DM)      | RDuB | 411-  |       |        |       |       |    |          |                       |           |       |      |       |      |                                      |      |          |       |                 | 1014   |              |
| П      | How.               |           | Poe  | -221  |       |        |       |       |    |          |                       | F557      |       | -822 |       | -830 |                                      | -830 |          | 1861- |                 | -2824  |              |
|        | BEND'N<br>HATRIX   | TURNING   | RS.B | 4458  |       |        | 7088  |       |    |          | 11412                 |           | 19125 |      | 19361 |      | 19361                                |      | 51347    | •     | 77315           |        | ミルシィア        |
|        | N                  | 1         | Role | -105  |       | 167    |       | 167   |    | 592      |                       | 572       |       | 0114 |       | 4%   |                                      | 456  |          | 12:09 |                 | 1851   |              |
|        | CYLINDER           | CONDITION |      | M     |       | 167    | 7088  | 167   |    | 269      | 15521                 | -788      | 10222 | 218- | 22457 | -374 | 2221                                 | -374 | 8293     | -722  | -4924           | ~ 0 ~  | ~ 0 >        |
|        | CYL                | 00        |      |       | 2     | T.S.T. | +20.7 | +75.7 | V. | Msc-     | Moc+                  | MSc+      | riom  | HSH  | Mor-  | Msr- | MD_+                                 | MS.+ | T. D.c.B | Msue  | いのらに            | MSEF   | Moce+        |
| En .   | CALC CHECK APR APR | Souli     | 7    |       | REVIS | ED     | DAT   | -     |    | <u> </u> | G<br>7<br>W I<br>EAST | ر<br>امار | .MAC  | AL   | E WC  | PRKS | -<br>-<br>-<br>-<br>-<br>-<br>-<br>- | >    |          | Ŕ     | 511<br>44<br>83 | ر<br>ر |              |

(WITH SECONDARY BENDING)
TURNING (FWD) F.E. - 5.3 12500#



. 1

- 4

### CYLINDER BENDING MOMENT

### SUMMARY

CONDITION: SPINUP (FWD) F.E.-1.6 (9200#)

MSN-= ,- 23758 IN.#

MSN+= -23758 IN.#

MSC- = - 38252 IN.#

MSC+= -8435 IN.A

MSM = -20074 IN.#

MS\_\_= -20040 IN.#

MSL+ = - 20040 IN.#

MSUB= -44868 IN. #

MSEF = 0

# 1) REF. P. 154

| CALC Carclist | REVISED | DATE | NOSE GEAR XV5A                                                            | ISIL        |
|---------------|---------|------|---------------------------------------------------------------------------|-------------|
| CHECK         |         |      | TO DE GERR ATOR                                                           | 13110       |
| APR           |         |      | CYLINDER ANALYSIS                                                         | RYAN        |
| APR           |         |      | H. W. LOUD MACHINE WORKS, INC.<br>887 East School St., Pomona, California | PAGE<br>160 |

### CYLINDER BENDING MOMENT

#### SUMMARY

CONDITION: SPRINGBACK (FWD) F.E.-1.6 (9200#)

MSN- = 23507 IN.#

MSH = 23507 IN. #

MSC- = 37847 IN. #

MSC+ = 6690 IN. #

Man = 17417 14.4

MS\_ = 17755 14. #

MSL+ = 17755 IN, #

MSUB = 39307 IN. #

MSEF = 0

PREF. P. 156

| CALC | Torchat. | REVISED | DATE | NOSE CENS WIE                                                             | 100      |
|------|----------|---------|------|---------------------------------------------------------------------------|----------|
| M    | -        |         |      | NOSE GEAR XVSA                                                            | 15116    |
| ned  | 2        |         |      | CYLINDER ANALYSIS                                                         | RYAN     |
| APR  |          |         |      | H. W. LOUD MACHINE WORKS, INC.<br>587 EAST SECOND ST., POMONA, CALIFORNIA | PAGE 161 |

### CYLINDER BENDING MOMENT

#### SUMMARY

CONDITION: TURNING (FWD) F.E .- 5.3 (12500#)

MDN+ = 7088 --- 167 = 7090 IN.#

MOC = 12551 -- 288 = 12555 IN.#

MDM = 22201 -- 372 = 22210 IN#

MOL- = 22457 +- 374 = 22460 IN.#

MOL+= 1323 += 374 = 1375 IN.#

Mours = 8293 -- 722 = 8325 IN.#

MOEF = - 4924

MOEF+ = 0

D REF. P. 158

| CALC Charles | REVISED | DATE | NOSE GEAR XVSA                                                            | 15111       |
|--------------|---------|------|---------------------------------------------------------------------------|-------------|
| CHECK        |         |      | HOSE GENE ATSA                                                            | 13110       |
| APR          |         |      | CYLINDER ANALYSIS                                                         | RYAN        |
| APR          |         |      | H. W. LOUD MACHINE WORKS, INC.<br>EB7 EAST SECOND ST., POMONA, CALIFORNIA | PAGE<br>167 |

PDBD = -PBD SIN AA° = -.6947 PBD

PVBD = PBD COS AA° = .7201, PBD

RFJ = 1.243 RVF - .333 RSF

REK = 1.243 RVE

RSFJ = RFJ SIN 24° = .4067 RFJ

RSEK = REK SIN 24° = .4067 REK

| CALC  | Buthit | REVISED | DATE | MOSE GEAR XV5A                                                            | ISIL        |
|-------|--------|---------|------|---------------------------------------------------------------------------|-------------|
| CHECK |        |         |      |                                                                           | 13.10       |
| APR   |        |         |      | CYUNDER ANALYSIS                                                          | RYAN        |
| APR   |        |         |      | H. W. LOUD MACHINE WORKS, INC.<br>887 East Second St., Pomona, California | PAGE<br>163 |

# CYLINDER

# FOR 7079 TG ALUM, ALLOY

| CALC  | Bochil | E | REVISED . | DATE | NOSE GEAR XVSA                          | 1511 |
|-------|--------|---|-----------|------|-----------------------------------------|------|
| CHECK |        |   |           |      | HOSE SERR AT SA                         | , 3  |
| APR   | •      |   |           |      | CYLINDER: ANALYSIS                      | RYN  |
| APR   |        |   |           |      | H. W. LOUD MACHINE WORKS, INC.          | PAGE |
| 74    |        | 7 |           |      | 887 EAST SECOND ST., POMONA, CALIFORNIA | 164  |

CYLINDER - 1511L104 SECTION A-A 111.518 IN. FROM L.B. TURNING (FWD) FE. - 5.3 (9200#) CRITICAL MA-A = 8325 IN.# 1) PTENSION = PVBO : .7201 x 221 = 159# PSHEAR = ROLB+ DBD-+-RECT PSES + RECK = -105+154 +- 4458 -- 2594+1277 49 +1 3141= 3142年 TORQUE = RT + = 385 x 8.546 = 3290 IN. O.D. = 3.310 . 5.605 5.8521 I.D. = 3.007. 870.7 3.9267 .30: J N. A= 1.527 IN.2 D/t = 21.49 For 91500 PSI 3 FOR 7079 & HAND FORGING: Fbu = 91=7 (71) = 87790 PSI Vo = 310 # PISTON / EA = 4,897 IN.2 PRESS. 11 - DUE TO VO = 3193 4.897 REF. T// 3 REF. P. 314 nose Gear CHECK らいし APR RYAN H. W. LOUD MACHINE WORKS, INC. 887 EAST SECOND ST., POMONA, CALIFORNIA

# SECTION A-A CONTO

| CALC   | Bookil      |       | REVISED | DATE    | NOSE GEAR XV SA                         | 15111 |
|--------|-------------|-------|---------|---------|-----------------------------------------|-------|
| CHECK  | to Vicin    |       |         | 11      | TO SE GEAR AV SA                        | 13116 |
| APR    |             | ring. | 1.1     |         | CYLINDER ANALYSIS                       | RYAN. |
| APR    | #1.5 F/15 · |       |         | 192 - 1 | H. W. LOUD MACHINE WORKS, INC.          | PAGE  |
| - 11 - | 17-4-1      |       |         | 91      | 887 EAST SECOND ST., POMONA, CALIFORNIA | 166   |

SECTION B-B 7.818 IN. FROM L.B.

SPINUP (FWD) F.E. -1.6 (9200#) CRITICAL

MB-B = -44868 IN.# 1 = MSUB

PCOMPR = PVBD = .7201 X 11832 = 8520#

PSHEAR = ROLB + POBO = 14942 - . 6947 (11832) 6722 #

TORQUE = 0

O.D. = 3,310

8.405

5.8921

I.D. = 3.002

7.078

2t = .308 in. A= 1.527 in. I = 1.9054 in.

t= .154 IN.

D/t = 21.49

Fbu = 91500 PSI 4

FOR 7079 TO HAND FORGING:

Fbu = 91500 (71) = 87790 PSI

Vo = 5827

PISTON AREA = 4.897 IN?

PRESSURE DUE TO VO = 5827 - 1190 PSI

REF. P. 144

REF. P. 144

REF. P. 145

REF. P. 145

| CALC Brochil | REVISED | DATE | HOSE GEAR XVSA                                                            | 1511  |
|--------------|---------|------|---------------------------------------------------------------------------|-------|
| CHECK        |         |      |                                                                           | 13110 |
| APR          | 10.0    |      | CYLINDER ANALYSIS                                                         | RYAN  |
| APR          |         |      | H. W. LOUD MACHINE WORKS, INC.<br>887 East Second St., Pomona, California | PAGE  |

### SECTION B-B CONTO

| CALC  | Buchis | REVISED | DATE | HOSE GEAR XV5A                                                            | ISIL   |
|-------|--------|---------|------|---------------------------------------------------------------------------|--------|
| CHECK |        | 1       |      | THO THE GOAR AT SA                                                        | 13110  |
| APR   |        |         |      | CYLINDER ANALYSIS                                                         | RYAN   |
| APR   |        |         |      | H. W. LOUD MACHINE WORKS, INC.<br>887 East Second St., Pomona, California | PAGE : |

SECTION C-C 2.56 IN. FROM L.B. SPINUP (FWD) F.E.-1.6 (9200#) CRITICAL

Mc.c = - 38252 IN.#

PSHEAR = ROLB = 14942#

TORQUE = 0 .

Vo= 5827#

PISTON AREA = 4.897 IN. 2

PRESSURE = 1190 PSI

0.0. = 3.438

9.283

6.8579

I.D. = 3.002

850.F

3.9867

2t= .436

A= 2.205 .N.2

I=2.8712 W.+

tz . 218

D/t= 15.77

Fbu = 95000 PSI 2

### FOR TOTA TO HAND FORGING:

Fbu = 95000 (71) = 91105 PS1

REF. P. 145

| CALC  | Brillie | REVISED | DATE | NOSE GEAR XYSA                          | ISIL |
|-------|---------|---------|------|-----------------------------------------|------|
| CHECK |         |         |      | CYLINDER ANALYSIS                       |      |
| APR   |         |         |      | H. W. LOUD MACHINE WORKS, INC.          | RYAN |
|       |         |         |      | 887 EAST SECOND ST., POMONA, CALIFORNIA | 169  |

### SECTION C-C CONTO

| CALC   | Brodist |    | REVISED | DATE | NOSE GEAR XYSA                          | ISIIL |  |
|--------|---------|----|---------|------|-----------------------------------------|-------|--|
| CHECK  |         |    | 9.7     | \$22 | TODE OUR ATOM                           | 13110 |  |
| APR    |         |    | 7       |      | CHLINDER ANALYSIS                       | RYAN  |  |
| APR    | 1       | 1  |         | 4    | H. W. LOUD MACHINE WORKS, INC.          | PAGE  |  |
| 1 17 1 |         | 1. |         |      | 887 EAST SECOND ST., POMONA, CALIFORNIA | 170   |  |

in the first of the second for the second of the second

DRAG BRACE WG

SPINUP (FWO) F.E.-I.G (9200#) CRITICAL



PBD= 11832# 1> LOAD/LUG = 11832/2= 5916#

D= 1.1255+.06 = 1.187

W= 2x 834 = 1.668

W/0= 1,405

t = . 475

a/D= .703

Kbr = .36

Kt = .99

Aby = Dt = .564

At = (W-D)t = .228



SALVAGE BUSHING ALLOWANCE

REF. P. 144

| CALC  | Bulis | REVISED | DATE                           | HOSE GEAR XVSA                          | 1511 |
|-------|-------|---------|--------------------------------|-----------------------------------------|------|
| CHECK |       |         |                                |                                         |      |
| APR   |       |         |                                | CYLINDER ANALYSIS                       | RYAN |
| APR   |       |         | H. W. LOUD MACHINE WORKS, INC. | PAGE                                    |      |
|       |       | 14      |                                | 887 East Second St., Pomona, California | 171  |

CYLINDER -1511 LIOA

DRAG BRACE LUG-CONTO

#### TENSION

Ptu = Kt Ftu At = . 99 x 71000 x.228 = 16026#

P/LUG = 5916 X1.5 = 8874#

#### SHEAR BEARING

Pbru = Kbr Ftux Abr = .36 x 69000 x. 564 = 14010#

VIELD M.S. = 1.5 × 14010 -1 = 1.06

#### LUG YIELD

## FITTING FACTOR

| CALC Sitelit | REVISED | DATE | NOSE GEAR XVSA                                                             | 1511        |
|--------------|---------|------|----------------------------------------------------------------------------|-------------|
| CHECK        |         |      |                                                                            | 131.0       |
| APR          |         |      | CYLINDER ANALYSIS                                                          | RYAN        |
| APR          |         |      | H. W. LOUD MACHINE WORKS, INC.<br>887 East Second St., Pomona, California, | PAGE<br>172 |

#### CYLINDER -1511L104

#### DRAG BRACE LUG - CONTO

M = 1.56 x 5916 = 9229 in.4

M/WG= 9229/2= 4615 1N,#

AREA = 2.87 x .475 = 1.363 1 L.2

K=1.50

Fbu= (71) 105000 = 100695 751

Z = .475 x 2.872 = .651 IN.3

fbu = 4615 x1.5 = 10633 PSI

Rbu = 10633 = .106

ftux = Pobo x 1.5 = .6947 x 11832 x 1.5 = 4523 PSI

Rtux = 4523 = .068

M.S. = 106+.068 -1 = 4.75

# REF. P. 314

| CALC  | Bodist        |       | REVISED | DATE | NOSE GEAR XVSA                          | 12111     |
|-------|---------------|-------|---------|------|-----------------------------------------|-----------|
| CHECK | . =           |       |         | 10   |                                         | 13110     |
| APR   |               | 19.1  |         |      | CYLINDER ANALYSIS                       | RYAN      |
| APR   | 1.            | ert.  | 6.0     |      | H. W. LOUD MACHINE WORKS, INC.          | PAGE . 1" |
|       | 4 m 1 1 1 1 1 | 11 12 |         |      | 887 EAST SECOND ST., POMONA, CALIFORNIA | 173       |

CYUNDER-1511L104

# DRAG BRACE LUG - CONTO

BUSHING - BEARING ON DRAG BRACE LUG

Aby = .475 x 1.125 = .534 IN?

2

FITTING FACTOR

1) REF. 2 P. 306

3 REF. P. 171

| CALC Suntil | REVISED | DATE | MARC CITATO VICTO                                                         | 1511        |
|-------------|---------|------|---------------------------------------------------------------------------|-------------|
| CHECK       |         |      | NOSE GEAR XVSA                                                            | 113110      |
| APR         |         |      | CYLINDER ANALYSIS                                                         | RYAN        |
| APR         |         |      | H. W. LOUD MACHINE WORKS, INC.<br>887 EAST SECOND ST., POMONA, CALIFORNIA | PAGE<br>174 |



|    | REF. | ۳, | 144 |
|----|------|----|-----|
| 1/ |      |    |     |

| CALC  | Trechel | REVISED | DATE | NOSE GEAR XV5A                          | ISIL   |
|-------|---------|---------|------|-----------------------------------------|--------|
| CHECK |         |         |      |                                         |        |
| APR   |         | ,       |      | CYLINDER ANALYSIS                       | RYAN   |
| APR   |         |         |      | H. W. LOUD MACHINE WORKS, INC.          | PAGE 1 |
|       | /       |         | 7.11 | 887 EAST SECCIO ST., POMONA, CALIFORNIA | 175    |

CYLINDER 136,= W, - W, +W2 X = 49512 - (49512+36597) X 49512 - 82010 X TOTAL MOMENT MT = (:510+x) 7535 = MOMENT ON SOCKET MS= SBS- dxdx = ) (49512-82010 x) dxdx

$$= \frac{49512(x^{2})}{2} - \frac{82010(x^{3})}{6} = 24756(x^{2}) - 13668(x^{3})$$

| ALC   | Townsleet | REVISED | DATE |   | HOSE GEAR XV5A                 | 1511        |
|-------|-----------|---------|------|---|--------------------------------|-------------|
| HECK  |           |         |      | _ |                                | <u> </u>    |
| APR   |           |         |      | 1 | 1LINDER ANALYSIS               | RYAN        |
| LPR - |           | 8       |      |   | H. W. LOUD MACHINE WORKS, INC. | PAGE<br>176 |

#### CYLINDER

#### TRUNNION LUG ANAUSIS - CONTO

# MOMENT ON PIN

$$x = + 49512 \pm \sqrt{(49512)^2 - 4(41004)(7535)}$$
2 (41004)

$$= \frac{49512 \pm \sqrt{24.514 \times 10^8 - 4(4.1004)^{10^4}(:7535)^{10^4}}}{2(4.1004)^{10^4}}$$

$$= 49512 \pm \sqrt{24.514 \times 10^{-8} - 12.3584 \times 10^{8}}$$
$$= 2(4.1004) 10^{4}$$

$$= 49512 \pm \sqrt{12.1554 \times 108}$$

$$= 2(4.1004)10^4$$

$$= \frac{49512 \pm 34865}{2(4.1004)10^4} = \frac{14647 \times 10^{-4}}{8.2008} = \frac{1.4647}{8.2008}$$

| CALC  | J. S. Etchil | REVISED | DATE | NOSE GEAR XVSA                                                            | ISIII |
|-------|--------------|---------|------|---------------------------------------------------------------------------|-------|
| CHECK |              |         |      | HODE OCK ATSA                                                             | 13110 |
| APR   |              |         | /    | CYLINDER ANALYSIS                                                         | RYAN  |
| APR   |              |         | -    | H. W. LOUD MACHINE WORKS, INC.<br>687 East Second St., Pomona, California | PAGE  |

CYLINDER -1511 LIO4

TRUNNION LUG ANALYSIS - CONTO

MAX. PIN BENDING FROM POINT 'C' . 179+.510 = .689

SOCKET ANALYSIS - LAST 3/8 IN. OF SOCKET X= 1.050-.38/2= .860

AVE. BEARING LOAD = Toby = 49512-82010 (.86) = - 21017 #/10.

a = .86

a/0= .764

Kbr = . =0

D= 1.125

Abr = Dt = . 428 Kt = .98

t= .38

At= (W-D)t= .226

W= 2x.86 = 1.72 W/D= 1.529 .

Pbv = 38x 21017 x1.5 = 11980#

Pbr = Kbr Abr Ftux = . 50x. 428 x 67000 = 14338#

M.S. = 14338

| CALC Vistalias | REVISED | DATE     | NOCE CEAS WATER                                                           |             |
|----------------|---------|----------|---------------------------------------------------------------------------|-------------|
| CHECK          |         |          | NOSE GEAR XV50                                                            |             |
| APR            |         |          | CYLINDER ANALYSIS                                                         | FLYAN       |
| APR            |         | - u- = i | H. W. LOUD MACHINE WORKS, INC.<br>887 East Second St., Pomona, California | PAGE<br>178 |

#### CYLINDER

#### TRUNNION LUG ANALYSIS - CONTO

Ftu= 71000.PSI

Ptu = Pbr = 11980

Ptu = Kt At Ftu = .98 x . 226 x 71000 = 15691

15691

MIDDLE OF SOCKET = 1.050/2 = .525

THEN: X = , 525

ANE. BRG LOAD = 49512 - 82010 (.525)

= 6457 #/N.

ASSUME a = . 69 a/D= . 613

Kbr = .20

D= 1.125

Abr = Dt = . 281

4= .25

Por = . 25 x 6457 x1.5 = 2422#

Pbr = .20x .281 x 67000 = 3752#

| CALC | O.Sitchiel | REVISED | DATE | NOSE GEAR XUSA                 | ISIL |
|------|------------|---------|------|--------------------------------|------|
| APR  |            |         |      | CHLINDOR ANALYSIS              | RYAN |
| APR  |            |         |      | H. W. LOUD MACHINE WORKS, INC. | PAGE |

#### CYLINDER - 1511 LIDA

#### TRUMMION LUG ANALYSIS - CONTO

Ms= 24756 (.525)2- 13668 (.525)3= 4851 IN.#

0.D. E 1.375

1.485

.1755

I.D. = 1.125

.994

2800

Zt = ...250

A = .491 1N2

I= .0969 IN.4

t = .125

D/t= 11.0

Fbu = 98000 (71) = 93980 PSI

fb = 4851 ×1.5 ×.687 = 51537 PSI

Rbu= 51537 = .548

fsb = 2422 = 4933 PSI

Rsbr = 4933 = .115

M.S. = -1= .79

NEF. P. 314

| CALC Conflict | REVISED | DATE | NOSE CENT VIEN                 | 15111 |
|---------------|---------|------|--------------------------------|-------|
| CHZCK         |         |      | HOSE GEAR XVSA                 | 13110 |
| APR           |         |      | CYLINDER ANALYSIS"             | でする   |
| APR           |         |      | H. W. LOUD MACHINE WORKS, INC. | PAGE  |

## TRUNNION PIN-1511 LIOB SPINUP (FWD) 9200# CRITICAL MMX = 3843 +7535 (.179) -24756 (.179)2+13668 (.179)3 = 3843 + 1349 -792.+78 = 4478 IN. # O.D. = .993 .774 -0477 .399 .0127 I.D. = -713 A = .375 , W. t= .140 D/4 = 7.09 + bu = 262000 PSI Ftu= 180,000 PSI fbu = 4478 X1.5 X.4965 = 95287 PSI .0350 M.S. = 262000 -1 = 1.75 AT SHEAR FACE M = .510 X7535= 3843 IN.# A = . 375 IN? D/t = .993/.140 = 7.09 T= .0350 IN.4 F31= 109000 PSI Flu = 259 000 PSI 3×1.5×.4965 = 81775 PS1 Rbu= 81775 = .316 fsu = 7535 × 1.5 = 70140 PS1 RSu= 30140 = .277 M.S. = - 1 - 1.38 2 REF. P. 175 REF. P. 316 REVISED DATE HOSE GEAR XYSA 1511 CHECK CYLINDER ANALYSIS RYAN H. W. LOUD MACHINE WORKS, INC. 887 EAST SECOND ST., POMONA, CALIFORNIA 181



CYLINDER - 1511 LIO4.

TRUNNION - LEFT HAND CONTD

SECTION TAKEN 1.54 IN. FROM 'C' AT 43° 30'

|   | ·          | A     | Х     | Ÿ | ×Α    | AY | AX2   | AYz | I0 x-x | 10 7-7 |
|---|------------|-------|-------|---|-------|----|-------|-----|--------|--------|
| ١ | -312× 1.72 | .534  | 1.156 | 0 | .617  | 0  | .713  | 0   | .1323  | .0043  |
| 2 | 1.00× 1.24 | 1.240 | .50   | 0 | .620  | ٥  | .310  | 0   | .1621  | .1040  |
|   | ٤          | 1374  |       |   | 1,237 | :  | 1.023 |     | -2944  | .1083  |

X = EAX 1.237 = .697 IN.

IX-X= , 2944 IN.4

Iy-y= 1.023 + 2944 - 1.774 (.697) = .4554 .N.4

My-4= (7535 cos 43° 30') 1.54 - (7535 sin 43° 30').021

= (7535 X7254) 1.54 - (7535 X.6884) .021

#.ul POE8 =

Mx-x = 2306 x 1.54 = 3551 1N.#

COMPRESSION = 7535 SIN 43° 30' = 7535 X. C884

SHEAR Y = 2306#

TORQUE = 2306 X . 021 = 48 IN.#

| CALC | Fralist | REVISED | DATE | NOSE GEAR XVSA                                                            | 1511        |
|------|---------|---------|------|---------------------------------------------------------------------------|-------------|
| APR  |         |         | i    | CYLINDER ANALYSIS                                                         | RYAN        |
| APR  |         |         |      | H. W. LOUD MACHINE WORKS, INC.<br>887 EAST SECOND ST., POMONA, CALIFORNIA | PAGE<br>183 |

CYLINDER -1511L104

#### TRUNNION - LEFT HAND CONTO



|   |           | Α    | Ψ    | YA    |
|---|-----------|------|------|-------|
| 1 | -312X.BC  | .268 | .43  | .115  |
| 2 | .62041.00 | .620 | .310 | .192  |
|   | ٤         | .888 |      | .7507 |

Q x - x = AY = . 307

| CALC Some | REVISED | DATE | NOSE GEAR XVSA                 | 1511        |
|-----------|---------|------|--------------------------------|-------------|
| CHECK     |         | 1    |                                |             |
| APR       |         |      | CYLINDER ANALYSIS              | RYAN        |
| APR       |         |      | H. W. LOUD MACHINE WORKS, INC. | PAGE<br>184 |

## CYLINDER-1511CIOA

# TRUNNION - LEFT HAND CONTO



$$\bar{X} = \frac{\bar{E}AX}{\bar{E}A} = \frac{.302}{.864} = .350$$

C = . G97

$$K_{9-9} = \frac{2Q_{9-7}C}{I_{9-9}} = \frac{2\times.302\times.697}{.4554} = .924$$
 USC 1.0

| CALC 75 | alil | REVISED | DATE | NOSE GEAR XVSA                                                            | 1511        |
|---------|------|---------|------|---------------------------------------------------------------------------|-------------|
| CHECK   |      |         |      |                                                                           |             |
| APR     |      |         |      | CYLINDER ANALYSIS                                                         | RYAN        |
| APR     |      |         |      | H. W. LOUD MACHINE WORKS, INC.<br>887 East Second St., Pomona, California | PAGE<br>185 |

CYLINDER - 1511L104

TRUNNION - LEFT HAND CONTD

SPINUP (FWD) F.E. -1.6 (9200#)

Kx-x = 1.8

Ky-y= 1.0

ASSUME DRAG LOAD (2300#) TAKEN BY LOWER LEG

Rby-y= 9560 = .135

Fc = 65000 PSI

D REF. P. 314

2 REF. 2 P.121

| CALC  | Totalis ! | REVISED | DATE | NOSE GEAR XV5A                          | ISIIL |
|-------|-----------|---------|------|-----------------------------------------|-------|
| CHECK |           |         |      |                                         |       |
| APR   |           |         |      | CYLINDER ANALYSIS                       | RYAN  |
| APR   |           |         |      | H. W. LOUD MACHINE WORKS, INC           | PAGE  |
|       |           |         |      | 887 EAST SECOND ST., POMONA, CALIFORNIA | 106   |

CYLINDER -1511L104

TRUNNION - LEFT HAND CONTO

POINT 'B'

LOWER LEG' TAKES DRAG LOAD (Mx-x)

Tx-x= 12 = .132 144

fby-7= 8309 x:615 x1.5 = 16826 PSI

Rby-y= 16826 = .237

fbx-x = 3551 x .86 x 1.5 = 34702 PSI

Rbx-x= 34702 = ,293

Rc= .067

BENDING, TENSION & COMPRESSION

M.S. = -1= 1.16

| CALC  | OSTAIL |   | REVISED | DATE | NOSE GEAR XVSA                          | 1511 |
|-------|--------|---|---------|------|-----------------------------------------|------|
| CHECK |        |   | •       | 1    |                                         |      |
| APR   |        |   |         |      | CYLINDER ANALYSIS                       | RYAN |
| APR   |        | , |         |      | H. W. LOUD MACHINE WORKS, INC.          | PAGE |
|       |        |   |         |      | 887 EAST SECOND ST., POMONA, CALIFORNIA | 187  |

# CYLINDER - 1511 L104

#### TRUNNION - LEFT HAND CONTD

# POINT C'

TENSILE BENDING, COMPRESSION & SHEAR

# D REF. 2 P. 121

| CALC | Beelis | REVISED | DATE | MOSE GEAR XVSA                                                            | 150  |
|------|--------|---------|------|---------------------------------------------------------------------------|------|
| CHEC | K      |         |      | TODE GENE AVER                                                            | (3)  |
| APR  |        |         |      | CYLINDER ANALYSIS                                                         | RYAN |
| APR  |        |         |      | H. W. LOUD MACHINE WORKS, INC.<br>887 EAST SECOND ST., POMONA, CALIFORNIA | PAGE |



CYLINDER - 1511 L104

TRUNNION - LEFT HAND CONTO

POINT D CONTO .

$$fsr = \frac{48 \times 1.5 \left[ 3 \times .86 \right) + (1.8 \times .156)}{8 \times (86)^2 \times (.156)^2}$$

$$= \frac{72 \left(2.58 + .261\right)}{8(.74)(.024)} = \frac{206}{.142} = 1451 \text{ PSI}$$

TENSILE BENDING, COMPRESSION BIAXIAL SHEAR & TORSION.

M.5. = 
$$\frac{1}{\left[\left(.116 - .067\right)^2 + \left(.290 + .225 + .034\right)^2\right]^{1/2}} - 1 = .81$$

$$R_{5x} = \frac{4392}{43000} = .102$$

VERY LARGE

D REF. P. 183

| Thalist | REVISED  | DATE             | NOSE CEAR YUEA                 | 1511                             |
|---------|----------|------------------|--------------------------------|----------------------------------|
|         |          |                  | 170 DE GOTIC X15A              | 13110                            |
|         |          |                  | CYLINDER ANALYSIS              | RYAN                             |
|         |          |                  | H. W. LOUD MACHINE WORKS, INC. | PAGE                             |
| 1       | Thealist | Thoulist REVISED | That's REVISED DATE            | NOSE GEAR XV5A CYLINDER ANALYSIS |

CHLINDER

BULKHEAD (PRESSURE DOME)

YTOL (AFT) MAX. VERTICAL F.E .- 1-6 (9200#) EMERG.

Vo = 8448#

APISTON = .7854 (2.497)= 4.897 IN?

PRESSURE DUE TO VO:

P= 8448/4.897 = 1725 PSI

Sr = 3W [1-262 (109 a)]

 $= \frac{3 \times 8448 \times 1.5}{2 \times 3.14 \times 141} \left[ \frac{1 - 2(.25)}{2.06} \left( \log \frac{1.520}{.500} \right) \right]$ 

= 42926 [1-.243 (1093.04)] = 42926 (1-.117)

= 37904 PSI

Rs= 37904 = .881

M.S. = -1 -1 = -135

REF. 3 P. 194 CASE 20

| CALC Juilest | REVISED | DATE | NOSE GEAR XVSA                 | ISIL       |
|--------------|---------|------|--------------------------------|------------|
| APR          |         | ·    | CYLINDER ANALYSIS              | RYAN       |
| APR          |         |      | H. W. LOUD MACHINE WORKS, INC. | MGE<br>191 |

# SECTION 5

# (PISTON) INNER CYLINDER ANALYSIS

(1511 (103)

Ftu = 220 000 PSI

Fty = 185000 PSI

Fcy = 215000 PSI

Fbu = Fb vs D/ OR Fb vs K

Fby = Fby vs D/t or Fby vs K

FSU = 125000 PSI

REF. P. 317

| CALC Sittleit | REVISED | DATE |                                                                           |             |
|---------------|---------|------|---------------------------------------------------------------------------|-------------|
| CHECK         |         | 1    | NOSE GEAR XYSA                                                            | 1511        |
| APR           |         |      | PISTON ANALYSIS                                                           | RYAN        |
| APR           |         |      | H. W. LOUD MACHINE WORKS, INC.<br>887 East Second St., Pomona, California | PAGE<br>192 |





20 d NS PE BOTH 120 DIVIS

CRITICAL CONDITIONS

SPINUP (FWD) F.E. -1.6 (9200#)

RDUB= 11342 # REF. P. 145

RSUB = 0

a = 7.818 IN.

REF. P. 26

MLB= 7.818 X 11342 = 88672 14.# .

SPRINGBACK (FWD) F.E. -1.6 9200#

RDUB = -10343# REF. P. 147

RSUB = 0

L = 7.818 IN.

REF. P. 26

MLB= 7.818 X (- 10343) = -80862 IN.#

TURNING (FWO) F.E. -5.3 (12500#)

ROUB = 174#

REF. P. 149

12300 = 3240 #

RUB= 174 ++ 3240= 3245#

a = 11.518 IN.

REF. P. 26

MLB= 11.518 X 3245 = 37376 1N.#

RT = -385# REF. P.

MDG- = 1602 X (7.9 + 10.938) = 30178 IN. #

MOG+ = MOG\_+ h RT = 30178 + 1.070 x 385 = 30590

MD0 = 7.9 X 1602 = 12656 IN.#

| CALC J. Surchis | REVISED | DATE | NOTE CEAR NAME                                                            | 1511  |
|-----------------|---------|------|---------------------------------------------------------------------------|-------|
| CHECK           |         |      | HOSE GEAR XVSA                                                            | 15110 |
| APR             |         |      | PISTON ANALYSIS                                                           | RYAN  |
| APR             |         |      | H. W. LOUD MACHINE WORKS, INC.<br>887 EAST SECOND ST., POMONA, CALIFORNIA | PAGE  |

INNER CYLINDER SECTION A-A ( .975 IN. TSELOW U.B.) SPINUP (FWD) F.E. - 1.6 (9200#) CRITICAL M ... 11500 IN. # 1) 1 1 60 4 5 O.D. = 2.375 4.430 I.D. = 2.251 3.980 A = .450 IN.2 2t = .124 エ= 、ろのらいか t = .062 Fbu = 243000 PSI 2 D/t = 38.31 160 = 11500x 1.5 x 1.1875 = 67942 PSI Rbu = 67942 = .280 +SMAX = 2×11342 ×1.5 = 75613 PSI RSMAK = 75613 = .605 O.D. PISTON (INNER CYL.) = 2.497 IN. PISTON AREA = 4.897 IN.2

PRESSURE DUE TO VO = 5827 X 1.5 = 1785 PSI

1.5618

1.2603

2 REF. P. 317 REF. P. 194

| CALC  | 3. Sodiet | REVISED | DATE | NOSE GEAR XVSA                                                            | 1511        |
|-------|-----------|---------|------|---------------------------------------------------------------------------|-------------|
| CHECK |           | i       |      | NOSC GEAR X13A                                                            | 131.0       |
| APR   |           |         |      | PISTON ANALYSIS                                                           | RYAN        |
| APR   | V .       |         |      | H. W. LOUD MACHINE WORKS, INC.<br>887 East Second St., Pomona, California | PAGE<br>196 |

INNER CYLINDER

SECTION B-B (& L.B. FOR F.E. - 1.6)

SPINUP (FWD) F.E.-I.C (7.818 IN. FROM & L.B.)

MBB = 88672 IN.# 1

, E. -, S O.D. = 2.491

4.873

1.8900

I.D. = 2.251

3.980

1.2603

2t = .240 A= .893 IN.2

t = .120

D/t = 20.76 Fbu = 275000 FSI 2

fbue 88672 XI.5 X 1.2455 = 263090 PSI

Rb = 263090 = .957

PRESSURE DUE TO VO = 1785 PSI 3

fc = 1785 PSI

Rc = 1785 = .008

 $fh_{t} = \frac{1785(\frac{2.491+2.251}{2})}{.240} = 17634PSI$ 

Rht = 17634 = .000

M. S. =  $\frac{1}{\left[(.\infty8+.957)^2+(.080)^2\right]^{1/2}}-1=.03$ 

3 REF. P. 196

2 REF. P. 317 1) REF. P. 195

| CALC  | OSochiel | REVISED | DATE | HOSE GEAR XV5A                                                            | ISIL        |
|-------|----------|---------|------|---------------------------------------------------------------------------|-------------|
| CHECK |          |         |      | MOSE GOAR AVSA                                                            | , , , , ,   |
| APR   |          |         |      | PISTON ANALYSIS                                                           | RYAN        |
| APR   |          |         |      | H. W. LOUD MACHINE WORKS, INC.<br>887 East Second St., Pomona, California | PAGE<br>197 |

INNER CYLINDER SECTION C-C (13.315 IN. BELOW QU.B.) SPINUP (FWD) F.E. - 1.6 (9200#) CRITICAL Mc-c = 63500 IN.LB. O.D. = 2.491 4.873. 1.8900 I.D. = 2.290 4.119 1.3499 A = .754 IN. I = .5401 IN.4 2t = .201 t = .1005 D/t = 24.79 Fbu = 267000 PSI 2 160= 63500 X1.5 X 1.2455 = 219647 PSI Rby = 219647 = -823 fc = 5827 × 1.5 = 11592 PS1 Rc = 11592 = -054 fs = 2 x 3600 x 1.5 = 14324 PS1 Rs = 14324 = -115 M.S. = [(.823)2+(-115)2]1/2 + .054

REF. P. 317 REF. P. 194

| CALC Statist | REVISED | DATE | NOSE CELE VIIIA                                                           | ISIL   |
|--------------|---------|------|---------------------------------------------------------------------------|--------|
| CHECK        | 4       |      | NOSE GEAR XVSA                                                            | 13110  |
| APR          |         |      | PISTON ANALYSIS                                                           | RYAN   |
| APR          |         |      | H. W. LOUD MACHINE WORKS, INC.<br>887 East Second St., Pomona, California | PAGE . |

INNER CYLINDER

SECTION D-D (10.34 IN. FROM & AXLE)

SPINUP (FWD) F.E.-I.G (9200#) CRITICAL

Vo = 5827# .Do = 3600#

5 = 0

DD= 1.230 €

TORQUE = 1/2 [10.34 x 3600 x 1.5 + (2.00+1.23) x 5827 x 1.5] = 84068/Z = 42034 IN. # (ULTIMATE)

TORQUEUMIT = 1/2 [10.34×3600 + 3.23×5827] = 56045/2= 28023 IN. # (LIMIT)

Myur = 1/2 (2.734-1.500) 5400 = 3332 (N.# (ULT.)

MVLIMIT = 1/2 (2.734 -1.500) 3600 = 2221 IN. # (LIMIT)

MOULT = 1/2 (1.234) 8741 = 5394 IN. \$ (ULT.)

MOLIMIT = 1/2 (1.234) 5827 = 3596 IN. # (LIMIT)

2 REF. P. 115 NEF. P. 30

| CALC  | 0. Soulit | REVISED | DATE  | NOSE GEAR XVSA                                                            | ISIL |
|-------|-----------|---------|-------|---------------------------------------------------------------------------|------|
| CHECK |           |         | 10.00 |                                                                           | -    |
| APR   |           |         |       | PISTON ANALYSIS                                                           | RYAN |
| APR   |           |         |       | H. W. LOUD MACHINE WORKS, INC.<br>887 EAST SECOND ST., POMONA, CALIFORNIA | PAGE |

INNER CYLINDER SECTION D-D CONTO SPINUP (FWD) 9200# CRITICAL MOMENTS (ULTIMATE) RESOLUTION OF W= 3332 IN.# X = 15° SIN4 = . 2588 COSM= .965A T= 42034 IN.# T cos x + My sin x = 42034 x 19659 + 3332 x .2588 414C3 IN. # My cos x - Tsinx = 3332x,9659 - 42034x,2588 -7660 (ル・井 Mo = 5394 IN. # RESOLUTION OF FORCES 14= 5827 X1.5/2 = 4370# D= 3600X1.5/2= 2700# V'= 4370 x .9659 = 4221# S' = 4370 X.2588 = 1131 # REF. P. 199 D'= 2700# REVISED DATE しいこし XVSA NOSE GEAR CHECK

PISTON

APR APR ANALYSIS

H. W. LOUD MACHINE WORKS, INC.

887 EAST SECOND ST., POMONA, CALIFORNIA

RYNN

200

PAGE

## INNER CYLINDER SECTION D-D CONTO

0.D. = 1.615

2.048

.3339

I.D. = 1.385

1.506

.1804

.2t = .230

A= .542 IN.2 I = .1535 IN.4

t= .115

D/L= 1.615/.115= 14.0 L/D= 2.25/1.615= 1.39

FSE = 133000 PSI 1 Fbu = 291000 PSI 2

fb = 5394 x . 8075 = 28378 PSI

Rbo= 28378 = .098

fby = 7660 x . 8075 = 40299 PSI

Rbv= 40299 = .138

fsp= 2700 = 4982 PSI Rsp= 4982 = .040

fsv= 4221 = 7788 PSI Rsv= 7788 = .062

fst = 41463 x . 807 = 109048 PSI

RSE= 133000 = .820

2 REF. P. 317

D REF. 2 P. 59 FIG. 2.4.3.2 (h)

| CALC  | Bathit | REVISED | DATE | NOCE ( - 10 V.) -                                                         |          |
|-------|--------|---------|------|---------------------------------------------------------------------------|----------|
| CHECK |        |         | 111  | NOSE GEAR XV5A                                                            | ISIIL    |
| APR   | ·      |         |      | PISTON ANALYSIS                                                           | RYAN     |
| APR   |        |         |      | H. W. LOUD MACHINE WORKS, INC.<br>887 East Second St., Pomona, California | PAGE 201 |

HICHORKS 6.84 M. 2. M. 2. P. .

# SECTION D-D CONTO

$$f_c = \frac{1131}{.542} = 2087 \text{ PSI}$$
 $R_c = \frac{2087}{215000} = \frac{.010}{}$ 

$$R_{707NZ} \left( R_{bo} + R_{bv} + R_{c} \right) + \left( R_{5v} + R_{5o} + R_{5e} \right)$$

$$= \left( .098 + .138 + .010 \right) + \left( .062 + .040 + .820 \right)$$

$$= \left( .237 \right) + \left( .922 \right) = .952$$

| CALC Sattlie | REVISED | DATE | MOSE GEAR XVSA                                                            | 1511     |
|--------------|---------|------|---------------------------------------------------------------------------|----------|
| CHECK .      |         |      |                                                                           | •        |
| APR          |         |      | PISTON ANALYSIS                                                           | RYAN     |
| APR          |         |      | H. W. LOUD MACHINE WORKS, INC.<br>887 East Second St., Pomona, California | PAGE 202 |

INNER CYLINDER

SECTION E-E (B.72 IN. FROM GAXLE)



|   |          | 4    | P     | 5    | DA    | 45            | ADZ    | N-52   | I      | Ios-c |
|---|----------|------|-------|------|-------|---------------|--------|--------|--------|-------|
| ١ | .25x.625 | .154 | 1.125 | .312 | .1755 | .0487         | .1974  | .0152  | .00508 | .0008 |
| 2 | .1254.75 | .094 | .625  | .مدر | .0588 | .00 <b>58</b> | .0367  | .00036 | .00012 | ,0044 |
| 3 | .25X.625 | .156 | .125  | .312 | .0195 | .0487         | .0024  | .0152  | .00508 | 8000. |
| 4 | .25R.    | .013 | .306  | .181 | .0040 | .0024         | .0012  | .0004  |        | •     |
| 5 | .25R     | .013 | .944  | .181 | 2210. | .0024         | .6116  | .0004  |        | •     |
|   | ع        | .432 |       |      | .270  | .1080         | . 2493 | .0316  | 50103  | .0000 |

S = EAS = .1080 = .250

D= EAD = .270 = .625

Is-5= .0060+.2493 = .2553 IN.4

ID-D= .0103+ .0316- .250 (.1080) = .0149 IN.4

Q5-5= ;250x.625 x.500 + .125 x.375 x.188 = .0869

QD-D= ZX .371 X.250 X.186 = .0345

K5-5= 2x.0869 x.625 = .425 USE K5-5= 1.0

KO-0 = 2x.0345x.371 = 1.72 USE KO-0=1.5

| CALC Judeil | REVISED | DATE | NOSE GEAR XVSA                                                            | 15111       |
|-------------|---------|------|---------------------------------------------------------------------------|-------------|
| CHECK       |         |      | NOSE GEAR AVSA                                                            | 13110       |
| APR         |         |      | PISTON ANALYSIS                                                           | RYAN        |
| APR         |         |      | H. W. LOUD MACHINE WORKS, INC.<br>887 EAST SECOND ST., POMONA, CALIFORNIA | PAGE<br>203 |

INNER CYLINDER SECTION E-E CONTO TURNING (FWD) F.E .- 5.3 (12500#) CRITICAL 50-50 DISTRIBUTION OF SO Vo= 3193# 1> So= 1602x .50 = 801# Mp = 801 x 8.72 = 6985 IN.# +amo = 2.00/10.812 = . 18497 REF. DWG 1511L103 D= 10 291 .. SIN 0 = . 18195 COS 0 = .9833 VANIALE V COSO = (MOD + VO) COSO = (17656 + 3193).9833 = (2315+1597).9833 = 3847 # V'TRANS = VSING= (2315+1597).1820=712# Fb = 32.60,00 PSI Fb = 220000 PSI + 5 = 6985 x .371 x 1.5 = 260883 PSI Rb = 260883 = .800 The TIZX B.72 X.625 XI.5 = 22797 PSI Rb = 22797 = .104 fc = 3847 XI.5 = 13357 PSI Rc = 13357 = .062 2 REF. P. 317 REF. P. 31 REVISED DATE NOSE GEAR XVSA 1511 PISTON ANALYSIS APR H. W. LOUD MACHINE WORKS, INC. 887 EAST SECOND ST., POMONA, CALIFORNIA

TURNING (FMD) 12 500# - CONTO

$$f_{50} = \frac{712 \times 1.5}{.432} = 2472PS1$$
  $R_{50} = \frac{2472}{125000} = \frac{.020}{.020}$ 

| CALC  | Bitchil | REVISED | DATE | NOSE GEAR XYSA                                                            | ISIL     |
|-------|---------|---------|------|---------------------------------------------------------------------------|----------|
| CHECK |         |         |      | THE SCHOOL MICH.                                                          | 13116    |
| APR   |         |         |      | CYLINDER ANALYSIS                                                         | RYAN     |
| APR   |         |         |      | H. W. LOUD MACHINE WORKS, INC.<br>887 East Second St., Pomona, California | PAGE 205 |

INNER CYLINDER D= 1.23 € SECTION E-E CONTD SPINUP (FWD) F.E.-1.6 +am0 = (1.23-.4A)+2.00 (9200#) CRITICAL  $=\frac{2.790}{10.812}$  - .23( V= 5827/2 = 2914 # SING = . 2298 D= 3600/2=1800# D cose = .9732 Fbs = 220000 PSI PAKIAL = VCOSO - D'SING = 2914 X.9732 - 1800 X.2298 = 2422# PTRANSV. = VSINO + 10 COSO = 2914 x.2298+ 1800 x.9732 = 24214 MS= 8.72 X 2421 = 21110 14 fbs= 21110 x.625x1.5 = 77612 PSI Rbes = 17612 = .353  $f_c = \frac{2422 \times 1.5}{.432} = 8409 \text{ PSI}$   $R_c = \frac{8409}{215000} = \frac{.039}{.039}$  $f_{50} = \frac{2421 \times 1.5}{125000} = 8407 \text{ PSI}$   $R_{5} = \frac{8407}{125000} = .067$ RTOTAL = .039 + (.353 ++ .067) = .398 M.S. = -1 = 1.51 + LE 2 REF. P. 115 D REF. P. 30 REVISED 1511 NOSE GEAR XYSA PISTON ANALYSIS RYAU APR H. W. LOUD MACHINE WORKS, INC PAGE 887 EAST SECOND ST., POMONA, CALIFORNIA 200

INNER CYLINDER

# SECTION F-F (1.38 IN. FROM & AXLE)



#### NEGLECTING FILLETS:

|   |           | A     | D    | ,5   | DA    | AS    | ADZ    | AS2   | IOD-D   | I. 5-5  |
|---|-----------|-------|------|------|-------|-------|--------|-------|---------|---------|
| 1 | .125K.540 | -0425 | .928 | 051. | .039  | .007  | .0366  | .0012 | PE000.  | .000055 |
| 2 | .115×.740 | -0650 | .495 | .058 | .042  | .005  | .0208  | £0003 | ,00009  | P8500.  |
| 3 | 1254.340  | .ars  | .063 | .170 | .0027 | .007  | .00017 | .0012 | .00039  | .000055 |
|   | Z         | .170  |      |      | .0837 | .0190 | .0576  | .0027 | 78000 · | .00400  |

Is-5= .0040+.0576 = .0616 14.4

ID-D= .00087+ .0027 - -112(.0190) = .001614

Q5-5= .125x,340 x.307 +.115x.370 x.185 = .0209

QD-D= 2x .125x .228 x .114 = .0065

Ks-5 = 2x.0209 x.495 = .376 USE KS-5 = 1.0

KD-D = 2x .0065 x . 228 = 1.85 USE KD.DE 1.50

| CALC | Finilit | REVISED | DATE | HOSE GEAR XVSA                                                            | 1511     |
|------|---------|---------|------|---------------------------------------------------------------------------|----------|
|      |         |         |      | TOSO SONE XYSX                                                            |          |
| APR  |         |         |      | PISTON ANALYSIS                                                           | RYAN     |
| APR  |         | 4       |      | H. W. LOUD MACHINE WORKS, INC.<br>887 East Second St., Pohona, California | PAGE 207 |

## INNER CYLINDER

#### SECTION F-F CONTO

#### SPINUP (FWD) F.E-1.6 (9200#)

$$V = 5827/2 = 2914 \pm \Delta D = 1.23$$

$$D = 3600/2 = 1800 \pm \tan \theta = \frac{(1.23 - 1.06) + 2.00}{10.812}$$

## 1) REF. P. 115

| CALC  | Buttlist | REVISED | DATE | NOSE GEAR XV5A                                                          | 1511        |
|-------|----------|---------|------|-------------------------------------------------------------------------|-------------|
| CHECK |          |         |      |                                                                         | 13110       |
| APR   |          |         |      | PISTON ANALYSIS                                                         | RYAN        |
| Ang   |          | • 4     |      | H. WLOUD MACHINE WORKS, INC.<br>887 EAST SECOND ST., POMONA, CALIFORNIA | PAGE<br>ZOS |

#### inner chunder

## SECTION F-F CONTO

## TURNING (FWD) F.E. - 5.3 (12500#) CRITICAL

50-50 DISTRIBUTION

51nd = .1820

COS \$ = .9833

$$V'_{AXIAL} = V_{COS} \Phi = \left(\frac{12656}{5.468} + \frac{3193}{2}\right).9833$$
  
=  $\left(2315 + 1597\right).9833 = 3847 \pm 3847$ 

REF. P. 195

2 REF. P. 204

| CALC Stadie | REVISED | DATE | NOSE GEAR XVSA                                                            | 15116       |
|-------------|---------|------|---------------------------------------------------------------------------|-------------|
| APR         |         |      | PISTON ANALYSIS                                                           | RYAN        |
| APR         |         |      | H. W. LOUD MACHINE WORKS, INC.<br>UU7 Enst Eccond St., Pomona, California | PAGE<br>ZO9 |

INNER CYLINDER

D

SECTION F-F CONTO

TURNING (FWO) 12500# -CONTD

$$R_{\text{TOTAL}} = .158 + \left[ (.725 + .039)^2 + (.057 + .050)^2 \right]^{1/2}$$
$$= .158 + \left[ .584 + .011 \right]^{1/2} = .158 + .772 = .930$$

| CALC Jours | REVISED | DATE | NOSE GEAR XV5A                          | ISIL |
|------------|---------|------|-----------------------------------------|------|
| CHECK .    |         |      | PISTON ANALYSIS                         | 0    |
| APO APO    |         |      | H. W. LOUD MACHINE WORKS, INC.          | RYAN |
|            |         | 4    | SUY EAST SECOND ST., POMONA, CALIFORNIA | 210  |

## SECTION 6

#### 1. TORQUE LINK - UPPER (15114135)

MATL: 2014 TG ALUM, ALLOY PER QQ-A-ZUL

Ftu = 64000 PSI

Fay = 59000 PSI

FSU= 39000 PSI

FW = Fb vs D/L or Fb vs K

## 2. PIN (TORQUE LINK) (1511L134)

MATL: 4140 STEEL

Ftu = 180000/200000 PS1

Fcy = 179000 751

FSU= 109000 PSI

Fbu = Fb vs D/t or Fb vs K

## 3. TORQUE LINK-LOWER (1511L136)

MATL: 2014 TG ALUM, ALLOY QQ-A-201/266

Ftu = 64000 PSI

Fcy = 59000 PSI

TSU = 39000 PSI

Fbu= Fb us D/L OR Fb us K

PREF. Z P. CG

2 REF. 2 P. 28

| CALC         | J.Stidie | REVISED | DATE | NOSE GEAR XY SA                                                           | 15116    |
|--------------|----------|---------|------|---------------------------------------------------------------------------|----------|
| CHECK<br>APR |          |         |      |                                                                           | RYAN     |
| APR          |          | 9       |      | H. W. LOUD MACHINE WORKS, INC.<br>697 East Second St., Pomona, California | FAGE 211 |

## SECTION 6 CONTO

## 4. BALL - APEX (1511L137)

MATL: 17-4 PH ST. STEEL

Ftu = 180000 PSI

FSU = 109000 PSI

Fbu = Fb vs D/t or Fb vs K



| CALG  | Theolis | REVISED | DATE | NOCE CEAR VIEW                 | 1511        |
|-------|---------|---------|------|--------------------------------|-------------|
| CHECK |         |         |      | NOSE GEAR XVSA                 | 1           |
| APR   |         |         |      |                                | RYAN        |
| AHR   |         |         |      | H. W. LOUD MACHINE WORKS, INC. | PAGE<br>212 |



#### TORQUE LINK-UPPER

#### SPREADING EARS . 250 IN. TO ENGAGE BALL SOCKET

| CALC         | J.S. talis | REVISED  | STAG | NOSE GEAR XVSA                                                          | 1511        |
|--------------|------------|----------|------|-------------------------------------------------------------------------|-------------|
| CHECK<br>APR |            |          |      | TORQUE LINK ANALYSIS                                                    | RYAN        |
| APR          |            | <b>9</b> |      | H. W. LOUD MACHINE WORKS, INC. 807 EAST DECOND ST. WEN - IA, CALIFORNIA | PAGE<br>214 |

## TURNING (FWD) 12500# CRITICAL



#### SECTION A-A



Mp= 75 X 385 = 289 IN. 4

$$I_{D-D} = \frac{.604 \times .356^3 - .264 \times .356^3}{12}$$

$$= \frac{.356^3 (.340)}{12} = .0012610.4$$

$$Q = \left[ \frac{.356(.604 - .764)}{2} \right] \frac{.356}{4}$$

## REF. P. 313

| CALC Stately | REVISED | DATE | NOSE GEAR XVSA                                                            | ISIL        |
|--------------|---------|------|---------------------------------------------------------------------------|-------------|
| CHECK        |         |      | THE SOUR AVSA                                                             |             |
| APR          |         |      | TORQUE LINK ANALYSIS                                                      | RYAN        |
| A.18         | N       |      | H. W. LOUD MACHINE WORKS, INC.<br>807 East Szcond Ct., Pohona, California | PAGE<br>215 |

#### TORQUE LINK - UPPER SECTION A-A CONTO

$$f_{SJ} = \frac{385 \times 1.5}{.121} = 4773 PSI$$
  $R_{SJ} = \frac{4773}{39000} = \frac{.122}{.122}$ 

$$R_{SJ} = \frac{4773}{39000} = \frac{.122}{.122}$$

#### SECTION B-13



As= ,356x ,375= . 111 1N.2

$$F_{50} = \frac{32918}{90528} = .364$$

$$F_{50} = \frac{32918}{90528} = .133$$

$$F_{50} = \frac{5203}{39000} = .133$$

| CALC TREELIS | REVISED | DATE | NOSE GEAR XVSA                                                               | 1511 |
|--------------|---------|------|------------------------------------------------------------------------------|------|
| APR          |         |      | TORQUE LINK AHALYSIS                                                         | アイメン |
| AFR          |         |      | M. W. LOUD N. OM. II WOLLG, II D.<br>587 Mart Sissind Lt. Pundna, Califoliga | 1216 |

#### TORQUE LINK - UPPER

#### SECTION C-C

Mp= 385x . 228 = 88 IN.#

| CALC Tables | REVISED | DATE | NOSE GEAR XV5A                                                            | 15114 |
|-------------|---------|------|---------------------------------------------------------------------------|-------|
| CHECK APR   |         |      | TORQUE LINK ANALYSIS                                                      | RYAN  |
| Aris        |         |      | H. W. LOUD MACHINE WORKS, INC.<br>287 East Second Ut., Porona, California | PAGE  |

# 

 $K_{D-D} = \frac{2 \times .0489 \times .969}{.0836} = 1.13$  $F_{DJ} = \left(\frac{64}{65}\right) 72000 = 70891 PS1$ 

fb D-D = 1359 x .969 x 1.5 = 23628 PSI

$$f_{SJ} = \frac{385 \times 1.5}{.115} = 5022 PSI R_{SJ} = \frac{5022}{39000} = \frac{.129}{.115}$$

2 REF. P. 313

| CALG  | J. Southief | REVISED | DATE | NOSE GEAR XVSA                                                           | 1511         |
|-------|-------------|---------|------|--------------------------------------------------------------------------|--------------|
| CHECK |             |         |      |                                                                          |              |
| APR   |             |         |      | TORQUE LINK ANALYSIS                                                     | RYNN         |
| ステオ   |             |         |      | H. W. LOUD MACHINE WORKS, INC.<br>887 EAST SECOND DR. PUNDNA, CALIFORNIA | PAGE<br>2.18 |

TORQUE LINK-UPPER

SECTION E-E



Asect = .240x,980 = .256,4.

In The souling

K = 1.50

Fbu = 94000 PSI

PCOL = 6.000 × 385 = 991 #

<₹

MD-D= . 625 x 385 = 241 1N.#

Rb 0-0= 39404 = .410

LUG LOAD = 385X 6.000 = 972#

ftu = 972× 1.5 = 6204 PSI Rtu = 6204 = .097

for = 385 x1.5 = 2460 PSI RSU = 2460 = .063

M. S. = (-410 + .097) -- .063 -1= .95

2 REF. P. 213

P. RCF. P. 313

| CALC  | Buthit | REVISED | DATE | NOSE GEAR                                      | XVEA | 1511 |
|-------|--------|---------|------|------------------------------------------------|------|------|
| CHECK |        |         |      | TORQUE LINK                                    |      | RMN  |
| APR   |        |         |      | H. W. LOUD MACHINE<br>887 EAST SECOND ST., POM |      | 219  |



#### PIN - TORQUE LINK - CONTO

#### ASSUME UNIFORM LOAD DISTRIBUTION

#### SECTION A-A

| CALC  | REVISED | DATE | NOSE GEAR XYSA                          | 1511  |
|-------|---------|------|-----------------------------------------|-------|
| CHECK |         |      | MUSE GEAR AYSA                          | 13110 |
| APR   |         |      | PIN ANALYSIS                            | RYAN  |
| APR   |         |      | H. W. LOUD MACHINE WORKS, INC.          | PAGE  |
|       |         |      | 887 EAST SECOND ST., POMONA, CALIFORNIA | 221   |

#### PIN - TORQUE LINK - CONTO

#### SECTION B-B

A = . 184 147

T = .0030 INA

M = (.097 + .302) 1114 = 276 14.#

fbu = 276x.2495x1.5 = 34430PSI

Rby = 34430 = .104

fsu= 1114 x 1.5 = 9080 PSI Rsu = 9080 = .083

M.S. = 1 = + LGE

FITTING FACTOR

| CALC Tatalil | REVISED DATE | MOSE GEAR XV5A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ISIL        |
|--------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| CHECK        |              | TO THE REAL PROPERTY OF THE PR |             |
| APR          |              | PIN ANALYSIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RYAN        |
| APR          |              | H. W. LOUD MACHINE WORKS, INC.<br>887 EAST SECOND ST., POMONA, CALIFORNIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PAGE<br>ZZZ |



TORQUE LINK-LOWER (1511L136)

TURNING (FWD) 12500# CRITICAL

SECTION A-A

TORQUE T = .476 x 385 = 183 . W. #

SECT. A-A (MIN. SECTION) NEGLECTING FILLETS



2 REF. 4 P.33 1) REF. P. 149

**[**] .

| The state of the s |         |      |                                |             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------|--------------------------------|-------------|
| CALC Buthis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | REVISED | DATE | HOSE GEAR XVSA                 | ISIL        |
| CHECK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         | 1    |                                |             |
| APR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |      | TORQUE LINK ANALYSIS           | RYAN        |
| APR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |      | H. W. LOUD MACHINE WORKS, INC. | PAGE<br>220 |

TORQUE LINK LOWER

SECTION B-B



|   |           | A     | D    | 5     | CA    | AS    | ADE   | AST   | I.,    | I.,    |
|---|-----------|-------|------|-------|-------|-------|-------|-------|--------|--------|
| ١ | .240K.240 | .0574 | .120 | 1.048 | .0069 | .0632 | 8000. | .0644 | 85000. | 85000  |
| 2 | .115×.738 | .0849 | .058 | ٩٥٠.  | .0049 | .0517 | .0003 | .0315 | .00009 | .00386 |
| 3 | .240×.240 | .05%  | .120 | .120  | .0069 | ,0064 | .0008 | .000  | 85000. | .00028 |
|   | £         | .2001 |      |       | .0187 | .1218 | .0019 | .1017 | .0006  | . 0044 |

IB-B= .0044 + .1017= .1061 14.4

QD-D= :240 X.240 X.469 + .115 X .369 X .185 = .0358

KD-D = 2x.0358 x.609 = .410 USE KO-D= 1.0

F60-0= 64000 PSI

NEF. P. 313

| CALC  | Cottleil | REVISED | DATE | NOSE GEAR XVSA                                                            | 1511 |
|-------|----------|---------|------|---------------------------------------------------------------------------|------|
| CHECK |          |         |      | TOSE GEAR AVSA                                                            |      |
| APR,  |          |         |      | TORQUE LINK ANALYSIS                                                      | RYAN |
| APR   |          |         |      | H. W. LOUD MACHINE WORKS, INC.<br>887 EAST SECOND ST., POMONA, CALIFORNIA | 225  |

TORQUE LINK-LOWER (ISIILIBG)
TURNING (FWD) F.E.- 5.3 (12500#) CRITICAL

SECTION B-B

SIN 230= ,3907

RT = MAX. APEX LOAD = -385#

05 23 2 . 9 205

My = .80 (-385) cos 28° = -283 IN.#

MD= 385x 1:899/ cos 230 = 793 1N.#

OR:

MD= .80x 385 51423 + 1.899 x 385 x c05 250



D REF. P. 225

| CALC  | OSaliel | REVISED | DATE     | HOSE GEAR XYSA                                                            | らいし         |
|-------|---------|---------|----------|---------------------------------------------------------------------------|-------------|
| CHECK |         |         | <u> </u> |                                                                           |             |
| APR   |         |         |          | TORQUE LINK ANALYSIS                                                      | RYNN        |
| APR   |         |         |          | H. W. LOUD MACHINE WORKS, INC.<br>887 East Second St., Porona, California | PAGE<br>226 |

TORQUE LINK - LOWER

TURNING (FWD) 12500# CRITICAL

SECTION C-C (5.125 IN. FROM QAPEX)



C= .240x.240 x .386 + .188 x .115 x .188 = .0263 = .332 IN.

SPAN = 1.28+.332+.332 = 1.944 IN.

$$P = \frac{M_V}{2.052} = \frac{283}{2.052} = 138 \pm$$

A SECT. = 2(.0792)

= .158.4.2

A= .2402 = .058 (N.2

RSD= 3569 = .092

Reu= 11516 = .180

M.S. = -1 = +LGE

NEF. P. 226

| CALC  | Findrick | REVISED | DATE | NOSE GEAR XVSA                                                            | 1511        |
|-------|----------|---------|------|---------------------------------------------------------------------------|-------------|
| CHECK |          |         |      | TOSE SEAR XVSA                                                            | 13110       |
| APR   |          |         |      | TORQUE LINK ANALYSIS                                                      | RYAN        |
| APR   |          |         |      | H. W. LOUD MACHINE WORKS, INC.<br>887 East Second St., Pomona, California | PAGE<br>227 |

TORQUE LINK - LOWER

TURNING (FWD) 12500#

SECTION D-D (.CZ5IN. FROM & LUG)

A SECT . = . 240X.980 = . 235 IN.2

K=1.50 Fbu = 1.50x Ftu = 96000 PSI

Man = .625x 385 + .120x 1135 = 377 IN. #

fb=== 377x.120x1.5 = 61690PS1

Rb = 61690 : 643

LUG LOAD = 385 x 6.875 = 1114#

M.S. = (-643+.111) +- .063

| CALC  | Bookie | • | REVISED | DATE | NOSE GEAR XV5A                          | 1511   |
|-------|--------|---|---------|------|-----------------------------------------|--------|
| CHECK |        |   |         |      | NOSE GEAR XVSA                          | , 3,,, |
| APR   |        |   |         |      | TORQUE LINK ANALYSIS                    | RYAL   |
| APR   |        |   |         |      | H. W. LOUD MACHINE WORKS, INC.          | PAGE   |
|       |        |   | 200     |      | 887 EAST SECOND ST., POMONA, CALIFORNIA | 228    |

#### TORQUE LINK - LOWER CONTO



de . 626 IN.

4 - .307

a = .490

W/L= 3.25

Abr = dt = . 189 in?

#### TENSION

Pt' = Kt Ft At = .92 x 55000 x .107 = 5414#

| CALC  | Bullit | REVISED | DATE | NOSE GEAR XVSA                                                            | ISIL        |
|-------|--------|---------|------|---------------------------------------------------------------------------|-------------|
| CHECK |        |         | -    | TORQUE LINK ANALYSIS                                                      | RYN         |
| APR . |        |         |      | H. W. LOUD MACHINE WORKS, INC.<br>887 EAST SECOND ST., POMONA, CALIFORNIA | PAGE<br>229 |

#### TORQUE LINK-LOWER CONTO

#### SHEAR BEARING

Ftux = 64000 PSI

# 2085 = 181. X00042 X 84. =

#### LUG YIDO

١٠١ = ١٠١

| CALC Sache | REVISED | DATE | NOSE CENT WITE                                                            | 1511     |
|------------|---------|------|---------------------------------------------------------------------------|----------|
| CHECK      |         |      | MOSE GEAR XV5A                                                            | 13110    |
| APR        |         |      | TORQUE LINK ANALYSIS                                                      | RYAN     |
| APR        |         |      | H. W. LOUD MACHINE WORKS, INC.<br>687 EAST SECOND ST., POMONA, CALIFORNIA | PAGE 250 |

#### TORQUE LINK-LOWER CONTO

LUG LOAD = 1114# 1

TORG LENGTH = . 302 - . 040 = . 262 IN.

I.D. MIN = .500

Abra = . 500 x . 262 = . 131 10.

Fb, = 50000 PSI 2

fbrq = 1114 x1.5 = 12756 PS1

M.S. = 50000 -1 = 2.41

#### BEARING ON TORQUE LINK LUG

Fby = 77000 3

Bry LENGTH = . 262 IN.

0.D. = .626

Abra = , 626x.262 = .1641N2

fbrq = 1114x1.5 = 10190PS1

2 REF. 2 P. 206

FITTING FACTOR

> REF. P. 228

3 REF. 2 P.67

| CALC  | Thechil | REVISED | DATE | NOSE CEAR WHEA                                                            |          |
|-------|---------|---------|------|---------------------------------------------------------------------------|----------|
| CHECK |         | į,      |      | NOSE GEAR XVSA                                                            | 1511     |
| APR   |         |         |      | TORQUE LINK ANALYSIS                                                      | RYAN     |
| APR   |         |         |      | H. W. LOUD MACHINE WORKS, INC.<br>887 East Second St., Pomona, California | PAGE Z31 |





SSHEAR = RT = 385#

#### AT A-A

. M = . 570 X 385 = 219 1N. #

| CALC Tople's | REVISED | DATE | NOSE GEAR XVSA                                                            | 1511        |
|--------------|---------|------|---------------------------------------------------------------------------|-------------|
| CHECK        |         |      | I HOUSE GEAR ATTA                                                         |             |
| APR          | i i     |      | TORQUE LINK ANALYSIS                                                      | RYAN        |
| APR          |         |      | H. W. LOUD MACHINE WORKS, INC.<br>887 East Second St., Pomona, California | PAGE<br>232 |

#### TURQUE LINK-LOWER CONTO

#### BEARING LOAD DISTRIBUTION

$$B_{b_{1}} = W_{1} - \frac{W_{1} + W_{2}}{L} \times$$

$$= 3358 - \left(\frac{3358 + 2481}{.900}\right) \times$$

$$= 3358 - 6488(X)$$

#### TOTAL MOMENT

#### MOMENT ON SOCKET

$$M_{5} = \iint_{5} B_{5} dx dx = \iint_{5} (3558 - 6488) dx dx$$

$$= \frac{3358}{2} (x)^{2} - \frac{6488(x)^{3}}{6} = 1679(x)^{2} - 1081(x)^{3}$$

#### MOMENT ON PIN

$$M_P = M_T - M_S$$
  
= 219+385(x)-1679(x)2+1081(x)3

## POINT OF MAX. BENDING ON PIN

| CALC  | Boulit | REVISED | DATE | NOSE CELE                                                                 |          |
|-------|--------|---------|------|---------------------------------------------------------------------------|----------|
| CHECK |        |         |      | MOSE GEAR XVSA                                                            | 1511     |
| APR   |        |         |      | TORQUE LINK ANALYSIS                                                      | RYAN     |
| APR   |        |         |      | H. W. LOUD MACHINE WORKS, INC.<br>887 East Second St., Pomona, California | PAGE 733 |

## TORQUE LINK - LOWER CONTO

#### SOCKET ANALYSIS

1ST , 164 IN. FROM EDGE OF SOCKET

X = .164/2 = .082

AVE BEARING LOAD = 3358 - 6488 (.082) = 2826 4/N.

a = .365.

a/D= .728

Kbr = .42

D = .501

t = .250 .

Abr = Dt = .17.5 IN. Kt = . 99

W= 2(.365)= .730 At= (W-D)t= .057 14.3

W/D= 1.46

Feux = 65000 PSI

Pbv = .250 x 2826= 707#

P 6, E Kb, Ab, Ftux = .42x.125x 65000 = 3412#

M.S= 3412 -1= 1.80

Ptu= . 250 X 2826= 707#

Ptu= Kt At Ftu= .99x .057 x 64000 = 3584#

M.S. = 3584 -1 = 1.94

| CALC Bookist | REVISED | DATE | NOSE GEAR XV5A                                                            | 1511        |
|--------------|---------|------|---------------------------------------------------------------------------|-------------|
| CHECK        |         |      | TORQUE LINK ANALYSIS                                                      | RYAN        |
| APR          |         |      | H. W. LOUD MACHINE WORKS, INC.<br>887 East Second St., Pomona, California | PAGE<br>234 |

TORQUE LINK-LOWER (CONT'D)

MIDDLE OF SOCKET = . 900/2 = . 450 IN.

X = 1.410 - .450 = .9601N.

AVE TORE LOAD = 3358-6488 (.960) = - 2870 =/10.

Pb,= .250x 2870 = 718#

P'br = . 42 x . 125 x 65000 = 3412#

M5 = 1679 (.960)2-1081 (.960)3 = 591 IN.#

ASSUME TUBULAR SECTION (CONSERVATIVE)

O.D. = .730

I.D. = .501

.176

.0139

2t = .229

A = . 222 IN.

. 41B

1 = .0108 IN.4

t= .1145

D/= 6.4

Tbu= (4) 90000 = 88614 PSI

Rb = 29960 = .338

fsbr = 718×1.5 = 4851 PSI

Rsbr = 4851 = .124

M.S. = 1 -1 = 1.78

NEF. P. 313

| CALC  | Mithie | REVISED | DATE | NOSE GEAR XVEA                                                            | ISIL        |
|-------|--------|---------|------|---------------------------------------------------------------------------|-------------|
| CHECK |        |         | İ    | TOSE OCAR XISA                                                            | 13.10       |
| APR   |        |         |      | TORQUE LINK ANALYSIS                                                      | RYAN        |
| APR   |        |         |      | H. W. LOUD MACHINE WORKS, INC.<br>887 East Second St., Pomona, California | PAGE<br>235 |

## TORQUE LINK - LOWER (CONTO)

## UNST . 250 IN. OF SOCKET

X= 1.410 - . 250/2= 1.285 IN.

AVE TORG WAD = 3358 - 6488 (1,285) = -4979#/IN.

Pbr = . 250 × 4979 = 1245#

P'br = . 42x . 125 x 65000 = 3412#

M.S. = 3412

Ptu= 12454

Ptu= .99x.057x 64000 = 3584#

M.5. = 3584 -1= 67

| CALC STEE | lil | REVISED | DATE | NOSE GEAR XVSA                                                            | ISIIC       |
|-----------|-----|---------|------|---------------------------------------------------------------------------|-------------|
| CHECK     |     |         |      | TORQUE LINK ANALYSIS                                                      | RYAN        |
| APR       |     |         |      | H. W. LOUD MACHINE WORKS, INC.<br>867 EAST SECOND ST., POMONA, CALIFORNIA | PAGE<br>236 |

## BALL - APEX (151167)

#### POINT OF MAX. TENDING ON PIN - CONTO

X= .13114.

MAX, PIN BENDING = .570+.131= ,701



SECT. () MAX. BENDING POINT . 674IN. FROM & BALL

Mp= 219 + 385(131) - 1679 (.131)2 +1081 (.131)3

= 219 + 50.435 - 28.543 + 2.407 = 243 IN.#

O.D. = .374 IN.

D/4 = 2

A PIN = .109 IN.

Fbu = 300000 PSI

I = .00096 14.4

fbu= 243x.187 x1.5 = 71000 PS1

M.S. = 300000 -1= +LGE

D REF. P. 316

| CALC  | Tardil | REVISED | DATE | NOSE GEAR XVSA                                                            | 15116    |
|-------|--------|---------|------|---------------------------------------------------------------------------|----------|
| CHECK |        |         |      | 11000 001110 111011                                                       |          |
| APR   |        |         |      | BALL ANALYSIS                                                             | Rym      |
| APR   |        |         |      | H. W. LOUD MACHINE WORKS, INC.<br>887 East Second St., Pomona, California | PAGE 237 |

BALL - APEX CONTO

SECT. (2) AT . SIO IN. (AT EDGE OF SOCKET)

O.D. = .330 IN. A = .0855 IN. I = .00057 IU.4

+bu = :510 × 38 5 × 165 × 1.5 = 85257 PSI

Rb = 85257 = .284

fsu= 385 × 1.5 = 6754 PSI

RSJ = 6754 = .062

M.S. = 1 = 1.45 -284 -- .062 = +LGE

SECT. 3 AT . 348 IN. FROM G BALL

0,D. = . 271 IN. A = .058 IN. I = .000265 IN.

fby = 385x.348 x .1355 x 1.5 = 102795 PSI

Rbu= 102795 = .343

fsu = 385×1.5 = 9957 PSI

Rsu = 9957 = .091

M.S. = 1 -1 = 1.81

| CALC  | Therebuch | REVISED | DATE | NOSE CELE MILES                                                           | 1,= , , ,   |
|-------|-----------|---------|------|---------------------------------------------------------------------------|-------------|
| CHECK |           |         |      | NOSE GEAR XVSA                                                            | 15116       |
| APR   |           |         |      | BALL APEX                                                                 | RYM         |
| APR   |           | <br>1   | -    | H. W. LOUD MACHINE WORKS, INC.<br>837 EAST SECOND ST., POMONA, CALIFORNIA | PAGE<br>238 |

#### SECTION7

1. PIN - DRAG BRACE (ISIILIAL)

MATL: 4140 STEEL

FSU = 109000 PSI

Fbu = Fb vs D/E OR Fb vs K

2. DRAG BRACE - LOWER (1511LZOI)

MATL: 7075 TG ALUM, AL. PER QQ-A-277/282

Ftu = 80 000 PSI

Fcy = 72000 PSI

Fsu = 44000 PSI

3. DRAG BRACE-UPPER (1511LZOZ)

MATL: 7075 TC ALUM. AL. PER QQ-A-277/282

FLU = 80000 PSI

Fcy = 72000 PSI

FSU = 44000 PSI

**₹** 

4. BOLT-CROSSBEAM (1511LZZO)

MATL: 7075 TG ALUM, AL. PER QQ-A-282-1

FSU = 46000 PSI

3>

5. CROSSIBEAM (1511L203)

MATL: 7075 TC ALUM. AL. PER QQ-A-282

FW= 77000 PSI

Fcy = 66000 PSI

FSU= 46000 PSI

3

Fbu = Fb vs D/L OR Fb vs K

6. PIN-TRUNNION (ISILZO4)

MATL: 7075 TG PER QQ-A-277

Ftw = 80000 PSI

2

| 1) REF. 2 P. 28 | 3 22    | EF. 2 | P.114 3 REF. 2 P.113           | 1    |
|-----------------|---------|-------|--------------------------------|------|
| CALC STELLE     | REVISED | DATE  | NOSE GEAR XYSA                 | 1511 |
| CHECK APR       |         |       |                                | RYAN |
| APR             |         |       | H. W. LOUD MACHINE WORKS, INC. | PAGE |



#### DRAG BRACE -LOWER (1511L201) SPINUP (FWO) 9200# CRITICAL



PBD= 11832# (TENSION)

PUBO: 8330# (TENSION)

POBO = -BOZI # (COMPRESSION)

a= .906

a/10 = .763

781.1 = CT

Kb, = .500

Kt= .982

W = 1.812

t = .515

W/0= 1.53

Abr = Dt = . 611 1 N.2

Ati= (N-D)t= .322 12.2

NEF. P.144

| CALC TENTLIS | REVISED D | ATE | NOSE GEAR XVSA                                                         | 1511        |
|--------------|-----------|-----|------------------------------------------------------------------------|-------------|
| CHECK        |           |     |                                                                        |             |
| APR          |           |     | DRAG BRACE ANALYSIS                                                    | RYAN        |
| APA          |           | _   | H. W. LOUD MACHINE WORKS, INC. 887 EAST SECOND ST., POMONA, CALIFORNIA | PAGE<br>ZAI |

#### DRAG BRACE LOWER - CONTO

#### TENSION

P'tu = Kt Ftu At = .982 x 80000 x .322 = 25280#

M.S. = 25280 -1=.24

#### SHEAR BR.G

Pbru = Kbr Ftux Abr = . 500 x 80000 x . 611 = 24440 #

M.S. = 24440 1.15×11832×1.5

## LUG YIELD

Pu'(HIU) = 24A40 = .500 :. C = 1.1
Abr Feu . GIIX80000

Py = c (Fty) Pu (min) = 1.1 (72) 24440 = 24196#

YICLO MIS = 1.5x24196 -1=.78

| CALC  | 03 This | REVISED | DATE | HOSE GEAR                                         | XVSA | しらし         |
|-------|---------|---------|------|---------------------------------------------------|------|-------------|
| CHECK |         |         |      | DRAG BRACE                                        |      | RYAN        |
| APR   |         |         |      | H. W. LOUD MACHINE V<br>897 East-Second St., Pomo |      | PAGE<br>242 |

### DRAG BRACE LOWER - CONTO

At= (W-D)t- .7854(.127)2= .3220- .0126= .3094 IN2

P= Pven = 8330# Ftux = 65000 PSI

ftu= : 8330 × 1.5 = 17950 PSI

| CALC  | Thatliet | REVISED | DATE | MOSE GEAR XVSA                                                            | 1511        |
|-------|----------|---------|------|---------------------------------------------------------------------------|-------------|
| CHECK |          |         | İ    |                                                                           |             |
| APR   |          |         |      | DRAG BRACE ANALYSIS                                                       | RYAN        |
| APR   |          |         |      | H. W. LOUD MACHINE WORKS, INC:<br>887 East Second St., Pomona, California | PAGE<br>243 |

## DRAG BRACE LOWER - CONTO



A,= 4 (.414) .130 = .215

Az= 2(.050) 1.740 = . 124 EA = . 339 IN.2

 $I_{X-X} = .930 \times 1.240^3 - .570 \times 1.240^3 - 2(.130 \times .385^3)^{-1}$ 

= .1478 - .0906 - .0012 = .0561N.4

 $T_{y-y} = \frac{1.240 \times .930^3}{12} = \frac{1.240 \times .930^3}{12} = \frac{2(.385 \times .130^3)}{12}$ 

.0831 - .0191 - .0001 = .0639 IN.4

| CALC  | 75-this | REVISED | DATE | NOSE GEAR XV5A                                                            | 1511        |
|-------|---------|---------|------|---------------------------------------------------------------------------|-------------|
| CHECK |         |         |      | NOSE GEAR XV5A                                                            | 13110       |
| APR   |         |         |      | DRAG BRACE ANALYSIS                                                       | RVAN        |
| APR   |         |         |      | H. W. LOUD MACHINE WORKS, INC.<br>587 East Second St., Pomona, California | PAGE<br>244 |

### DRAG BRACE LOWER - CONTO SECTION A-A CONTO

L= 11.236 IN.

$$C = \sqrt{\frac{1}{A}} = \frac{0.056}{0.339} = 0.406$$

TRANSITIONAL L'/C = 1.414 TT 
$$\sqrt{E/F_{CO}}$$
= 4.440  $\sqrt{\frac{10.3 \times 10^6}{7.74 \times 10^4}}$ 
= 4.440 (11.53) = 51.19

#### SHORT COLUMN

$$F_{c} = F_{co} \left[ 1 - F_{co} \left( \frac{1}{p} \right)^{2} / 4\pi^{2} E \right]$$

$$= 77400 \left[ 1 - 77400 \left( \frac{27.(6A)^{2}}{4(3.14)^{2}(10.3)(0^{6})^{2}} \right) \right]$$

$$= 77400 \left[ 1 - 7.74 \left( 7.(6A) \right) / 4(9.86)(10.3) \right]$$

$$= 77400 \left( 1 - \frac{59.134}{406.232} \right) = 77400 \left( 1 - \frac{196}{106} \right)$$

$$= 66100 PS1$$

D REF. 2 P.141

| CALC  | Thank! | REVISED | DATE | MOSE GEAR XVSA                                                            | ISIL        |
|-------|--------|---------|------|---------------------------------------------------------------------------|-------------|
| CHECK |        |         |      | 1703C GEAR XVSA                                                           | 13110       |
| APR   |        |         |      | DRAG BRACE ANALYSIS                                                       | RYAN        |
| APR   |        |         |      | H. W. LOUD MACHINE WORKS, INC.<br>587 East Second St., Pomona, California | PAGE<br>245 |

## DRAG BRACE LOWER CONTO

SECTION A-A CONTO

SPRINGBACK (FWD) 9200# CRITICAL

PBD = -12364# (COMPRESSION)

M.S. = GC100 -1 = -21

TENSION AT SELT. A-A
SPINUP (FWD) 9200# CRITICAL

flu= 11832 × 1.5 = 52355 PSI

M.S. = 80000 -1= .53

DREF. P.146

| CALC  | Thickit | AZVISED | DATE                                                                      | NOSE GEAR XV5A      | ISIL |
|-------|---------|---------|---------------------------------------------------------------------------|---------------------|------|
| CHECK |         |         |                                                                           | HOSE GEAR ATSA      |      |
| APR   |         |         |                                                                           | DRAG BRACE ANALYSIS | RYAN |
| APR   |         |         | H. W. LOUD MACHINE WORKS, INC.<br>887 East Second St., Pomona, California | PAGE                |      |

## DRAG BRACE-UPPER (1511LZOZ)



#### SECTION A-A



51 18°40' = . 3201 COS 18°40' = . 9474 A = . 375 X 1.240 = . 465 IN.

K= 1.5

| 1> | REF. | P. | 3 | 14  |
|----|------|----|---|-----|
|    |      |    | _ | , — |

| CALC  | Beckist | REVISED | DATE | NOSE GEAR XVSA                                                            | ISIL        |
|-------|---------|---------|------|---------------------------------------------------------------------------|-------------|
| CHECK |         |         |      |                                                                           |             |
| APR   |         |         |      | DRAG BRACE ANALYSIS                                                       | RYAN        |
| AFR   |         |         |      | H. W. LOUD MACHINE WORKS, INC.<br>537 East Second St., Pomona, California | PAGI<br>ZAT |

## DRAG BRACE-UPPER CONTO

## SPRINGBACK (FWD) 9200# CRITICAL SECTION A-A

$$f_c = \frac{C525 \times 1.5}{.465} = 21049 PS1$$

| CALC  | Portlick | REVISED | DATE | NOSE GEAR                                   | XYSA     | 1511        |
|-------|----------|---------|------|---------------------------------------------|----------|-------------|
| CHECK |          |         |      |                                             |          |             |
| APR   |          |         |      | DRAG BEACE                                  | ANALYSIS | アノハン        |
| APR . |          | -       |      | H. W. LOUD MACHINE 887 EAST SECOND ST., POM |          | PAGE<br>248 |

DRAG BRACE - UPPER CONTO

SPINUT (FWD) 9200# CRITICAL

P = MAX, TENSILE LOAD = 11852/2 = 5916\$

PM = 5916/.9474 = 6244#

PL = 5916 (.3201) = 1894#

MA-A= .781 X 1894 - . 190 X 6244 = 293 IN.# 1

fbu = 293x.188x1.5 = 15301 PSI

Rbu= 15301 = .135

ftu= 6244 X1.5 = 20142 PSI Rc= 20142 = .252

M.S. = 1 -1= 1.58

D REF. P. 247

| CALC  | O. Gottlie | REVISED | DATE | NOSE GEAR XVSA                                                            | 1511        |
|-------|------------|---------|------|---------------------------------------------------------------------------|-------------|
| CHECK |            | ñ.s.)   |      | ROBE GOAR ATSK                                                            |             |
| APR   |            |         |      | DRAG BRACE ANALYSIS                                                       | RYNU        |
| APR,  |            |         |      | H. W. LOUD MACHINE WORKS, INC.<br>887 EAST SECOND ST., POMONA, CALIFORNIA | PAGE<br>249 |

## DRAG BRACE - UPPER CONTO COLUMN LOADING DUE TO COMPRESSION. SPRINGBACK (FWD) 9200 # CRITICAL Fc= 1.075 Fcy = 1.075 x 72000 = 77400 PSI O.D. = 1.190 .0984 J.D.= 1.000 .0491 I = .0493 IN.4 C= JI/A = [.0493] 1/2 = .288 L' = L/(c)1/2 = L L/p= 22.0/.388 = 56.70 TRANSITIONAL L'P= 1.414TT /E/FCO = 4.440 \[ \frac{10.3\tio6}{7.74\tio4} \] = 4.440 (133.07) 1/2 = 51.21 :. FC = TT = ((1/p) = 9.860 × 10.3 × 106 = 101.558 × 106 = 56.70 × 56.70 = 3.215 × 10 = 31589 PS1 fc = 6525 X1.5 = 29931 PSI M.S. = 31589 D. REF. 2 P. 141 NOSE GEAR 15116 CHECK RYNN H. W. LOUD MACHINE WORKS, INC. 887 EAST SECOND ST., POMONA, CALIFORNIA

# DRAG BRACE - UPPER CONTO



## SPINUP (FWO) 9200# CRITICAL

$$P_{1} = 11832/2 = 5916 \pm 1$$

$$Q_{2} = .052 + \sqrt{(.620)^{2} - .1053(.7505)^{2}} - .383(.7505)$$

$$= .052 + \left[.384 - .058\right]^{1/2} - .287$$

$$= .052 + .572 - .287 = .537$$

REF. P. 241

| CALC Buttlief | REVISED | DATE | NOSE GEAR                                      | UNEA     | ISIL        |
|---------------|---------|------|------------------------------------------------|----------|-------------|
| CHECK         | 949     |      | NO SE GORR                                     | XVOA     | , 5         |
| APR           |         |      | DRAG BRACE                                     | ANALYSIS | RYNN        |
| APR           |         |      | H. W. LOUD MACHINE<br>887 EAST SECOND ST., PON |          | PAGE<br>251 |

# DRAG BRACE - UPPER CONTO

Ptu= ,9 At Ftu

At= 2 x. 620 x. 427 - 2 x. 099 x. 161 - .7505 x. 427

= .529 - .032 - .320

= .177 18.2

Ptu= .9 x.177 x 80000 = 12744#

M.S. = 12744 -1= .25

Pbru= + D Fbru= .427 x .7505 x 96000 = 30764#

M.S. = +. LGE

| CALC TOOL | il | REVISED | DATE | NOSE GEAR XVSA                   | 15116       |
|-----------|----|---------|------|----------------------------------|-------------|
| CHECK     |    |         |      | NOSE GER XISA                    | 13110       |
| APR       |    | ,       |      | DRAG BRACE ANALYSIS              | RYAN        |
| APR       |    |         |      | , H. W. LOUD MACHINE WORKS, INC. | PAGE<br>252 |

## DRAG BRACE - UPPER (1511LZOZ)



## SPINUP (FWO) 9200# CRITICAL

## D REF. P. 249

| CALC Josephie | REVISED | DATE | NOSE GEAR XYSA                                                            | 1511      |
|---------------|---------|------|---------------------------------------------------------------------------|-----------|
| CHECK         | 1.      |      |                                                                           |           |
| APR           |         |      | DRAG BRACE ANALYSIS                                                       | RYAN      |
| AFR           |         |      | H. W. LOUD MACHINE WORKS, INC.<br>887 East Second St., Pomona, California | *AGE 1253 |

DRAG BRACE - UPPER ( SILZOZ) CONTÓ

SPRINGBACK (FWD) 9200# CRITICAL

Pc= .50 PM = .50 x C525 = 3263#

Abr = 2[.312(.120)]= .075 IN.

Fbru = 96000 PSI 2

fbr = 3263×1.5 = 65267 PSI

M.S. = 96000 -1 = .38

2 REF. 2 P.114

PEF. P. 248

| CALC  | Butlit | REVISED | DATE | NOSE GEAR XYSA                                                            | 15116 |
|-------|--------|---------|------|---------------------------------------------------------------------------|-------|
| CHECK |        |         |      | DRAG BRACE ANALYSIS                                                       | RYAN  |
| APR   | _      |         |      |                                                                           |       |
| APR   | -      | Û.      |      | H. W. LOUD MACHINE WORKS, INC.<br>887 East Second St., Pomona, California | 254   |

## BOLT- CROSS BEAM (1511LZZO)

SPRINGBACK (FWD) 9200# CRITICAL

MATL: 7075 TG ALUM, ALLOY PEIZ QQ -A - ZBZ-I COND.TG



PM = 6525# 1

Ps= ,50 x6525 = 3263 +

A5= .7854 (.3053) = .0732 IN.2

FSU = 46000 PSI 2

fs = 3263 X1.5 = 33442PSI

M.S. = 46000 -1 = .20

3 FITTING FACTOR
2 REF. 2 P. 113

| CALC  | Buthit | REVISED | DATE                                                                      | MOSE GEAR XVSA  | 1511 |
|-------|--------|---------|---------------------------------------------------------------------------|-----------------|------|
| CHECK |        | 1       |                                                                           | 11030 GOAR A13A |      |
| APR   |        |         |                                                                           | BOLT ANALYSIS   | RYNN |
| APR   |        |         | H. W. LOUD MACHINE WORKS, INC.<br>887 EAST SECOND ST., POMONA, CALIFORNIA | 755             |      |





#### CROSSIBEAM - CONTO

TRUNNION LUG ANALYSIS - CONTO

#### BEARING LOAD DISTRIBUTION

$$B_{5} = W_{1} - \frac{W_{1} + W_{2}}{L} \times = 43087 - \left(\frac{43087 + 30284}{990}\right) \times = 43087 - 74112(x)$$



#### TOTAL MOMENT

MT = (.468+x) 6182 = 2893+6182 X

## MOMENT ON SOCKET

$$M_{5} = \iint B_{5} d_{x} d_{x} = \iint (45087 - 74112x) d_{x} d_{x}$$

$$= \frac{43087(x^{2})}{2} - \frac{74112(x)^{3}}{6} = 21544(x^{2}) - 12352(x^{3})$$

#### MOMENT ON PIN

$$M_{P} = M_{T} - M_{S}$$

$$= 2895 + 6182(x) - \left[21544(x^{2}) - 12352(x^{3})\right]$$

$$= 2893 + 6182(x) - 21544(x^{2}) + 12352(x^{3})$$

| CALC TS, TOLIL | REVISED | DATE | NOSE CEAR WIEN                                                            | 151 4       |
|----------------|---------|------|---------------------------------------------------------------------------|-------------|
| CHECK          |         |      | NOSE GEAR XVSA                                                            |             |
| APR            |         |      | CROSSBEAM ANALYSIS                                                        | RYAN        |
| APR            |         |      | H. W. LOUD MACHINE WORKS, INC.<br>887 East Second St., Pomoha, California | PAGE<br>ZSS |

#### CROSSTSTAM

## TRUNNION LUG AMALYSIS - CONTO

$$\frac{dmp}{dx} = 6182 - (21544 \times) 2 + (12352 \times^2) 3$$

$$= 6182 - 43088 \times + 37056 \times^2$$

$$X = +43088 \pm \sqrt{(43088)^2 - 4(37056) -182}$$

## MAX. PIN BENDING FROM POINT C .168+ .468= .636

## SOCKET ANALYSIS - LAST 3/8 IN. OF SOCKET X= .990- .375/2= .802 IN.

AVE. BEARING LOAD

a = .680

a/0= .776

Kb, =..52

D= .876

Ab = Dt = .333 10.2 Ke = .99

t = .38

At= (w-0)t = .142 12.2

W = 1.250

W/0= 1.427

| CALC Tratal | REVISED | DATE | NOSE GEAR XVSA                                                            | 1511        |
|-------------|---------|------|---------------------------------------------------------------------------|-------------|
| CHECK       |         |      |                                                                           |             |
| APR         |         |      | CROSSBEAM ANALYSIS                                                        | RYNU        |
| APR         |         | •    | H. W. LOUD MACHINE WORKS, INC.<br>887 East Second St., Pomona, California | PAGE<br>259 |

#### TRUNNION WE ANALYSIS - CONTO

Pbr= . 38×16351 = 6213#

P'br = Kbr Abr Ftux = . 52 x. 333 x 70000 = 12110\$

M.S. = 12110

Ptu= Pbv= 6213#

Ptu = Kt At Flu = .99x .142 x77000 = 10825#

M.S. = 10825

MIDDLE OF SOCKET .990/2 = .495

X= .49=

/ AVE BRG LOAD = 43087 -74112 (.495) = 6402 #/11.

Pbra . 25x 6402 = 1600#

Pbr = 12110#

M.S. = 12110 -1= + LCC

| CALC  | Bothit | REVISED | DATE | NOSE GEAR XV5A                                                            | ISIL        |
|-------|--------|---------|------|---------------------------------------------------------------------------|-------------|
| CHECK |        | 1       |      |                                                                           |             |
| APR   |        |         |      | CROSSBEAM ANALYSIS                                                        | RYAN        |
| APR   |        | i i     |      | H. W. LOUD MACHINE WORKS, INC.<br>887 EAST SECOND ST., POMONA, CALIFORNIA | PAGE<br>240 |

#### CROSSTSTAM

## TRUNNION LUG ANALYSIS - CONTO

Ms = 21544 (.495) - 12352 (.495) = 3784 IN.#

#### CONSERVATIVELY ASSUME A CYLINDRICAL TUBE

0.D. = 1.250

J.D. = .876

2t = .3741

t= .187

1.227

.602

A = . 425 10.2 T= 0909

.1198

.0289

D/t= 6.68

Tbu = 103000 PSI

3784×1.5×.625 = 39028 PSI -0909

1600 X1.5 = 3840 PSI

46000

## REF. P. 260

| CALC  | Trochit | REVISED | DATE | NOSE CEAR VIEW                                                                 |             |
|-------|---------|---------|------|--------------------------------------------------------------------------------|-------------|
| CHECK |         |         |      | NOSE GEAR XVSA                                                                 | ISIIL       |
| APR   |         |         |      | CROSSIBEAM ANALYSIS                                                            | RYAN        |
| APR   |         |         |      | H. W. LOUD MACHINE WORKS, INC. 1919<br>887 East Second St., Pomona, California | PAGE<br>261 |

SECTION A-A SPIZINGBACK (FWD) CRITICAL



P, = 6182# PM = 6525# PL= 1979#

PN= PL/cos 18º40 = 1979/.9474 = 2089#

MA-A= 1.125 X 2089 = 2350 10.4



A = 1875 X.990= . 86610.

SHEAR X = 2089#

Ty-y= .990x.8753 = .0551N.4

Q= .990x .438x .219= .09=

K= 2x.095x.438 = 1.50

2 REF. P. 314

| <i>i</i> > | REF. | P. | 248 |
|------------|------|----|-----|
|            |      |    |     |

| CALC  | C.S. well: | REVISED | DATE | 11000                                                                     |             |
|-------|------------|---------|------|---------------------------------------------------------------------------|-------------|
| CHECK |            | 8       |      | NOSE GEAR XVSA                                                            | 15116       |
| APR   |            |         |      | CROSSEEAM ANALYSIS                                                        | RYAN        |
| APR   |            |         |      | H. W. LOUD MACHINE WORKS, INC.<br>887 East Second St., Pomona, California | PAGE<br>262 |

SECTION A-A CONTO

Rc= 10707 = .167

TENSILE BENDING; COMPRESSION & SHEAR

| CALC  | Buthiel | REVISED | DATE |                                         |        |
|-------|---------|---------|------|-----------------------------------------|--------|
| CHECK |         |         |      | MOSE GEAR XYSA                          | 1511   |
| APR   | ·       |         | ·    | CROSS BEAM ANALYSIS                     | RYN    |
| APR   |         |         |      | H. W. LOUD MACHINE WORKS, INC.          | PAGE ' |
|       |         |         |      | 887 EAST SECOND ST., POMONA, CALIFORNIA | 763    |

MAX. BENDING IN CROSSBEAM IS DURING RETRACTION OF ACTUATOR

| CALC  | Bothit | REVISED | DATE                                                                      | NOSE GEAR XVSA     | ISIL |
|-------|--------|---------|---------------------------------------------------------------------------|--------------------|------|
| CHECK |        |         |                                                                           |                    |      |
| APR   |        |         |                                                                           | CROSSBEAM ANALYSIS | RYNN |
| APR   |        |         | H. W. LOUD MACHINE WORKS, INC.<br>887 East Second St., Pomona, California | PAGE<br>264        |      |

#### SECTION B-B (NEGLECT FILLETS)



|   | <del></del> | 7     |       |        |        |       |
|---|-------------|-------|-------|--------|--------|-------|
|   |             | A     | γ     | AY     | A42    | Tox-x |
| ١ | 1.00 × .250 | .2500 | 1.562 | . 3405 | . 6100 | .0013 |
| 2 | .25 ×.090   | .0225 | 1.341 | .0313  | . 04%  | .0001 |
| 3 | .25×.09     | .0225 | .296  | .0047  | -0020  | .000  |
| 4 | 1.00×.250   | .2500 | .125  | .0310  | P500   | .0013 |
| , | E           | .5450 | - 1   | .4595  | .6594  | 0028  |

IX-x = .6594 +.0028 - .843 x .4595 = .275 , U.\$

Qx-x= . 250 × 1.00 × 718 + . 09 × .25 x . 547 = .192

Kx-x= 2x.192 x.843 = 1.176

Fbu= (77) 85000 = 88400 PSI

1) REF. P. 314

| CALC  | J. Sidel |   | REVISED | DATE 1 | NOSE GEAR XVSA                          | ISIL |
|-------|----------|---|---------|--------|-----------------------------------------|------|
| CHECK |          |   |         |        | 1403E GOAL XYSK                         |      |
| APR   |          |   |         |        | CROSSIBEAM ANALYSIS                     | RYAN |
| APR   |          |   |         |        | H. W. LOUD MACHINE WORKS, INC.          | PAGE |
|       |          | 1 |         |        | 887 East Second St., Pomona, California | 265  |

- V:

CROSSTERAM

SECTION B-3 CONTO

$$f_{50} = \frac{7227}{2 \times .545} = 6631 PS1$$

$$Rb_{0} = \frac{83276}{88400} = .942$$

$$R_{50} = \frac{6631}{46000} = \frac{144}{14000}$$

| CALC         | Becchiet | REVISED | DATE | HOSE GEAR XV5A                                                            | ISIL        |
|--------------|----------|---------|------|---------------------------------------------------------------------------|-------------|
| CHECK<br>APR |          |         |      | CROSSBEAM ANALYSIS                                                        | RYAN        |
| APR          |          |         |      | H. W. LOUD MACHINE WORKS, INC.<br>887 East Second St., Pomona, California | PAGE<br>266 |

SECTION C-C (NEGLECT FILLETS)



IX-X = 2 x . 250 x 1.00 x (1187 - . 250) = . 219 1W.4

Qx-x= .250 x 1.00 x .468 = .117

Kx-x = 2x.117 x.593 = .63 USE K=1

Mc-c= 13003 IN.#

fbu = 13003 X.543 = 35208 PSI

## NEF. P. 314

| CALC  | Buthit | REVISED | DATE | NOSE GEAR XVSA                 | ISIL     |
|-------|--------|---------|------|--------------------------------|----------|
| CHECK |        |         |      | CROSSBEAM ANALYSIS             | RYAN     |
| APR   |        |         |      | H. W. LOUD MACHINE WORKS, INC. | PAGE 267 |

## PIN- TRUNNION (1511204) MATL: 707576 ALUM. AL. PER QQ-A-277 MMAX = 2893+6182 (.168) - 21544 (.168)2+12352 (.168)3 2893+ 1039 - 603 + 58 = 3271 IN.# 0.D. = .747 .438 .0153 I.D. = .220 .०३८ 10001 t= . 264 Fs. , = 46000 PSI D/4 = 2.85 Fbu = (80) 114000 = 123234 PSI -bu = 3271 x . 3735 x 1.5 = 120563 PSI M.S. = 123234 -1 = .02 AT SHEAR FACE M = :468 x 6182 = 2893 1N.# A = .400 IN.2 fbu = 2893 x.3735 x1.5 = 106630 Rbu= 106630 = .850 23183 PSI RSU= 23183 = . 504 M.S. = 1 - 01 PEF. P. 314 REVISED DATE いらいし NOSE GEAR XV5A CHECK PIN RYAN ANALYSIS APR H. W. LOUD MACHINE WORKS, INC.

887 EAST SECOND ST., POMONA, CALIFORNIA

768

## SECTION B

## 1. AXLE (1511L130)

MATL: 4340 STEEL PER MIL-S-5000

Ftu = 180000 PS1

FSU = 109000 PSI

Fbu = Fb vs D/L OR Fb vs K

## 2. SUPPORT (ISILLIZA)

MATL: 2024 TA AWM. AUDY PER QQ-A-268

Ftu = 62000 PSI

Fsu= 37000 PSI





| CALC  | Osaluit | REVISED | DATE | NOSE GEAR XVSA                                                            | 1511        |
|-------|---------|---------|------|---------------------------------------------------------------------------|-------------|
| CHECK |         |         |      | NOSE GEAR XVSA                                                            | 13110       |
| APR   |         |         |      |                                                                           | RYAN        |
| APR   |         |         |      | H. W. LOUD MACHINE WORKS, INC.<br>887 East Second St., Pomona, California | PAGE<br>269 |



AXLE

#### CRITICAL LOAD DETERMINATION



| CALC  | 7. Frechit | REVISED | DATE | MOSE GEAR XVEA                 | ISIL     |
|-------|------------|---------|------|--------------------------------|----------|
| CHECK |            |         | (4   | 14036 GEAR XVSA                | 13116    |
| APR   |            |         |      | AXLE "                         | RYAN     |
| APR   |            |         |      | H. W. LOUD MACHINE WORKS, INC. | PAGE 271 |

AXLE

CRITICAL LOAD DETERMINATION - CONTO

E MV, =0

5.468 RV4 + 4.194 RV3 + 1.274 RV2 = 0

RV4 = -4.194 RV3 - 1.274 RV2

= -,767 Rv2 - . 233 Rv,

 $R_{V_4} = -.767(-.500V - 2.7055) - .235(-.500V + 2.7055)$ = .384 V + 2.0755 + .117 V - .6305 = .501 V + 1.4455

ZMVA = 0
- 5.468 RV, -4.194 RV2 - 1.274 RV3 = 0

RV, = -4.194 RV2 - 1.274 RV3

= -4.194 RV2 - 1.274 RV3

= -4.194 RV2 - 1.274 RV3

= -767 RV2 - .233 RV3

 $R_{V_1} = -.767(-.500V + 2.7055) - .233(-.500V - 2.7055)$  = .384V - 2.0755 + .117V + .6305 = .501V - 1.4455

| CALC  | Bulit | REVISED | DATE | NOSE CEAR YUE                                                             | 1511  |
|-------|-------|---------|------|---------------------------------------------------------------------------|-------|
| CHECK |       | 1       |      | NOSE GEAR XV5A                                                            | 13110 |
| APR   |       |         |      | AXLE                                                                      | RYNN  |
| APR   |       |         |      | H. W. LOUD MACHINE WORKS, INC.<br>587 East Second St., Pomona, California | PAGE  |

AXLE

CRITICAL LOAD DETERMINATION - CONTO

SPRINGBACK F.E. -1.6 (FWD) 9200#

R = -.50 x 6205 +- - 4441/2 = 3816#

R2 = -. 50 x 6205 -- - 4441/2 = 3816#

MAX. VERTICAL F.E. - 1.6 (FWD) 9200#

R, = -. 50 x 6342 + 1009/2 = 3211#

R2= -. 50 x 6342 - 1009/2 = 3211#

YTOL F.E. -1.6 (AFT) MAX, VERTICAL 9200# EMERG.

R = - . 50 x 8448 -- -739/2 = 4240#

R2= -. 50 x 8448 +-- -739/2 = 4240#

UNSYMM, BRAKING F.E. -5.3 (FWD) 12500#

 $R_1 = -.50 \times 4876 + 2.705 \times 1105 + -427/2$   $= 592 \pm$ 

 $R_{2} = -.50 \times 4876 - 2.705 \times 1105 - 4 - 427/2$ = 5431#

TURNING F.E. - 5.3 (FWD) 12500#

R\_= -.50× 5193+2.705 ×1602 -- -279/2 = 2740#

 $R_2 = -.50 \times 3193 - 2.705 \times 1602 + -279/2$ = -5932#

| CALC  | J. Swelit _ | REVISED | DATE | HOSE GEAR XVSA                                                            | ISIL  |
|-------|-------------|---------|------|---------------------------------------------------------------------------|-------|
| CHECK | ,           |         |      |                                                                           |       |
| APR   |             |         |      | AXLE                                                                      | RYAN  |
| APR   |             |         |      | H. W. LOUD MACHINE WORKS, INC.<br>887 East Segond St., Pomona, California | 2.7.2 |

## CRITICAL LOAD DETERMINATION CONTO

## TURNING (FWD) 12500# CRITICAL

Ry = .501V-1.4455

= .501 × 3193 - 1.445 × 1602

= - 715#

Ryz = -. 500V + 2,705 5

= -. 500 x 3193 + 2.705 x 1602

= 2736#

Ruz = -. 500 Y - 2.705 S

= -,500 X3193 - 2,705 X 1602

= - 5930#

Rv4 = . 501 V + 1.445 5

= .501 x 3193 + 1.445 x 1602

= 3915#

| CALC  | Bethit | REVISED | DATE | NOSE GEAR XVSA                                                             | 1511        |
|-------|--------|---------|------|----------------------------------------------------------------------------|-------------|
| CHECK |        |         |      | HODE GORE ATOM                                                             | 10          |
| APR   |        |         | ·    | AXLE                                                                       | RYAN        |
| APR   |        |         |      | H. W. LOUD MACHINE WORKS, INC.<br>887, EAST SECOND ST., POMONA, CALIFORNIA | PAGE<br>274 |

AXLE

#### CRITICAL LOAD DETERMINATION - CONTD



EMD3 = 0

EMD2=0

EMD4 = 0.

| CALC  | Ostalis | REVISED | DATE | NOSE GEAR XVSA                                                            | ISIL        |
|-------|---------|---------|------|---------------------------------------------------------------------------|-------------|
| CHECK | •       |         |      | THE GEAR ATTA                                                             | 13110       |
| APR   |         |         |      | AXLE                                                                      | RYAN        |
| APR   |         |         |      | H. W. LOUD MACHINE WORKS, INC.<br>887 EAST SECOND ST., POMONA, CALIFORNIA | PAGE<br>275 |

CRITICAL LOAD DETERMINATION - CONTO

0= ,0M3

-5.468 RD4 - 4.194 RD3 - 1.274 RDZ = 0

Ro4 = -4.194 Ro3 -1.274 Roz 5.468

= -.767 Ro3 -. 233 Roz

RD4 = -.767 (-.500 D) -. 233 (-.500 D)

= .501 D

| CALC  | Balil | REVISED | DATE | NOSE CEAR VIEW                                                            | 1511        |
|-------|-------|---------|------|---------------------------------------------------------------------------|-------------|
| CHECK |       |         |      | NOSE GEAR XYSA                                                            | 13110       |
| APR   |       |         |      | AXLE                                                                      | RYAN        |
| APR   |       |         |      | H. W. LOUD MACHINE WORKS, INC.<br>887 East Second St., Pomona, California | PAGE<br>276 |

#### AXLE

TURNING (FWD) 12500# - CONTO

RD = . 501 D = . 501 (-279) = -140#

Roz= -. 500 D = -. 500 (-279) = 140#

Ra = -. 500D = -. 500 (-279) = 140#

RD4 = . 501 D = . 501 (-279) = -140#

#### SUMMARY

R, = Rv, --- Ro, = -715 --- -140 = 729#

R2 = Rv2 += R02 = 2736 += 140 = 2740#

R3= RV3 -- RO3= -5930 -- 140 = -5932#

. R4 = R14 +-- R04 = 3915 +-- -140 = 3918#



B.M. @ Rz = 729 X 1.274 = 929 IN.#

B.M. @ R3 = 3918 X1.274 = 4992 IN. #

| CALC Britlish | REVISED | DATE | NOSE GEAR XVSA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ISIL        |
|---------------|---------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| CHECK         |         |      | THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE P |             |
| APR           |         |      | AXLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RIAN        |
| APR           |         |      | H. W. LOUD MACHINE WORKS, INC.<br>887 East Second St., Pomona, California                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PAGE<br>277 |

AXLE (1511L130)

TURNING (FWD) 12500# CRITICAL

SECTION A-A

M= 4992 IN.# 1

0.D. = .9938

.7757

.0479

I.D. = 17600

.4536

2t = . 2338 A= . 3221 IN.2 I = . 0315 IN.4

t= . 1169 IN.

D/t = 8.5 Fbu = 256000 PSI (2)

160 = 4992 X . 4969 X 1.5 = 118126 PSI

M.S. = 180000 -1 = .52

fs = 2x 5932x1.5 = 55251PS1

M.S. = 109000 -1 = .97

1) REF. P. 277

2 REF. P. 316

| CALC  | Bethe | REVISED | DATE | NOSE GEAR XV5A                                                           | ISIL     |
|-------|-------|---------|------|--------------------------------------------------------------------------|----------|
| CHECK |       |         |      |                                                                          | •        |
| APR   | ·     |         |      | AXLE ANALYSIS                                                            | RYAN     |
| APR   |       |         |      | H. W LOUD MACHINE WORKS, INC.<br>887 East Second St., Pomona, California | 7AGE 278 |

## AXLE - CONTO

## TENSION AT RELIEF DIA.

## TENSION AT THO RELIEF

| CALC  | O. Suthil | REVISED | DATE | NOSE GEAR XVSA                                                            | 1511        |
|-------|-----------|---------|------|---------------------------------------------------------------------------|-------------|
| CHECK |           | 8       |      | MOSE GENE ATSA                                                            | 13110       |
| APR   | <u></u>   |         |      | AXLE ANALYSIS                                                             | RYAN        |
| APR   |           |         |      | H. W. LOUD MACHINE WORKS, INC.<br>887 EAST SECOND ST., POMONA, CALIFORNIA | PAGE<br>279 |

AXLE

## TURNING (FWD) 12500# CRITICAL





M= 50x /2. = 1602 x 7.9 = 12656 IN. #.

| CALC To g | REVISED | DATE | NOSE GEAR XVSA                                                            | 1511        |
|-----------|---------|------|---------------------------------------------------------------------------|-------------|
| APR       |         |      | AXLE ANALYSIS                                                             | RYA         |
| APR       |         |      | H. W. LOUD MACHINE WORKS, INC.<br>887 East Second St., Pomona, California | PAGE<br>280 |

## SUPPORT - AXLE (1511L129)



NEF. P. 280

| CALC  | J. Satelit | REVISED | DATE |          | NOSE GEAR XV5A                                                           | ISIL         |
|-------|------------|---------|------|----------|--------------------------------------------------------------------------|--------------|
| CHECK |            |         |      |          |                                                                          |              |
| APR   |            |         | 7    | <u>s</u> | SPPORT ANALYSIS                                                          | RYAN         |
| APR   |            |         |      | ;        | H. W. LOUD MACHINE WORKS, INC.<br>87 East Second St., Pohona, California | PAGE<br>Z.BI |

## SECTION 9

#### INTERNAL COMPONENTS

### 1. PISTON HEAD (ISILIZA)

MATL: 7075 TG J.WM. AL. PER Q-Q-A-282/277-

LUC Ftu = 80000 PSI

P. 11 FSU= 44000 PSI



## 2. CAM-LOWER (1511L123)

MATL: 7075 TG ALUM. AL.

Ftu = 80000 PS1

FSU = 44000 PSI



#### 3. BEARING ADAPTER (ISILLIZI)

MATL: 2024 T4 AWM. AL. PER QQ-A-268/267

7:2 Ftu = 70000 PSI

FSU = 38000 PSI



## 4. ORIFICE SUPPORT TUBE (ISILIZLE)

MATL: 2024 T4 ALUM, AL, PER QQ-A-267

Ftu = 70000 PSI

12 FSU = 38000 PSI

Fcy = 50000 PSI



## 5. GLAND NUT (ISILLIZT)

MATL: 2024 T4 ALUM. AL. PER QQ-A-267

FEU = 70000 PSI

FSU= 38000 PSI



| CALC  | J. Godlist | REVISED | DATE | NOSE GEAR XVSA                                                            | 1=11        |
|-------|------------|---------|------|---------------------------------------------------------------------------|-------------|
| CHECK |            |         |      | NOSE GEAR XVSA                                                            |             |
| APR   |            |         |      |                                                                           | RYAN        |
| APR   |            | _       |      | H. W. LOUD MACHINE WORKS, INC.<br>887 East Second St., Pomona, California | PAGE<br>Z82 |

## SECTION 9 CONTO

## 6. PIN - METERING (1511L125)

MATL: ZOZA TA ALUM, AL. PER QQ-A-267

Ftu= 70000 PSI

7.82

FSU = 38000 PSI



| PEF. | 2 | 7. | 114 |
|------|---|----|-----|
|------|---|----|-----|

2 REF. 2 P. 82

| CALC  | Jordies | REVISED | DATE | NOSE CEAR YVEA                                                            | ISIL        |
|-------|---------|---------|------|---------------------------------------------------------------------------|-------------|
| CHECK |         |         |      | NOSE GEAR XV5A                                                            | 13110       |
| APR   |         |         |      |                                                                           | RYAN        |
| APR   |         |         |      | H. W. LOUD MACHINE WORKS, INC.<br>887 East Second St., Pohona, California | PAGE<br>283 |

#### AIR PRESSURE CALCULATIONS



$$P_1V_1 = P_2V_2$$
  
 $(x + 2.70)(1) = 4(x)$   
 $x = \frac{2.70}{3} = .90$ 

COMPRESSION RATIO
4:1

COS X = .996

 $A_{e} = 4.897 \text{ IN.}^{2}$   $(2.70 + .90)P_{s} = (8.00 + .90)P_{e}$   $P_{e} = \frac{(2.70 + .90)P_{s}}{(8.00 + .90)} = .404P_{s}$ 

STATIC WHEEL LOAD = 1966# STATIC OLED LOAD = 1966/.996 = 1974# STATIC AIR PRESS. = 1974/4.897 = 403 PSIG = 418 PSIA

| CALC  | 75 mili | REVISED | DATE | NOSE GEAR XVSA                                                            | 15111       |
|-------|---------|---------|------|---------------------------------------------------------------------------|-------------|
| CHECK |         |         |      | 10000 GETIC AVSA                                                          | 13110       |
| APR   |         |         |      |                                                                           | RYAN        |
| APR   |         |         |      | H. W. LOUD MACHINE WORKS, INC.<br>887 East Second St., Pomona, California | PAGE<br>284 |

### AIR PRESSURE CALCULATIONS - CONTD

Pe= .404 x 418 = 169 PSIA

(2.70+,90)Ps= .90 Pc

Pc = 3.60×418 = 1672 PSIA.

FOR F.E - 5.3 (STATIC) (CHECK)

Peve = Psvs

Vc= 4.897 x.90 = 4.407 , W.3

Ps= 1672 × 4.407

V= 4.897 x (2.70+.90)

Ps = 418 PSIA. .

Vic= 4.897 x (90+6,40) = 35.748 123

. . . . .

FOR F.E. -1.6

Pever Pic Vin

P1.6 = 1672 × 4.407 = 206 PSIA.

FOR TURNING (FWD) 9200#

STATIC WHEEL LOAD = 3193#

STATIC OLED LOAD = 3193/.996=3206# 5TATIC AIR PRESS, = 3206/4.897 = 655 PSIG

PCVC= PbVs

| CALC  | 75 mil | REVISED   | DATE | NOSE CEAR VIEW                                                            | ISIL        |
|-------|--------|-----------|------|---------------------------------------------------------------------------|-------------|
| CHECK | •      | 1 / 1 / 1 |      | NOSE GEAR XVSA                                                            | 15110       |
| APR   |        |           |      |                                                                           | RYAN        |
| APR   |        |           |      | H. W. LOUD MACHINE WORKS, INC.<br>887 East Second St., Pomona, California | PAGE<br>285 |

## PISTON HEAD (ISIILIZA)



PAXIAL 3.0 X EXTENDED AIR PRESSURE X AREA
OF CHL. SEAL

PRESS. EXT. = 1697514 = 1547516

A CHL. SEAL = 4.897 14.2

PAXIAL = 3.0 × 154 × 4.897 = 2262#

THOS IN SHEAR DUE TO PAXIAL

PITCH DIA. OF 2.50-16UN-3B THO = 2.4594/2.4648

NEF. P. 285

| CALC  | Jorchit. | REVISED | DATE | NOSE GEAR XVSA                                                            | 15.16        |
|-------|----------|---------|------|---------------------------------------------------------------------------|--------------|
| CHECK |          |         |      | NOBE GEAR AVSA                                                            |              |
| APR   |          |         |      | PISTON HEAD ANALYSIS                                                      | RYAN         |
| APR   |          |         |      | H. W. LOUD MACHINE WORKS, INC.<br>887 Jast Second St., Pomona, California | PAGIL<br>286 |

#### PISTON HEAD - CONTO

LOADED AGAINST CYL. FACE.

UTOL (AFT) MAX, VERTICAL - CRITICAL CONDITION

M.S. = 44000 -1= + WE

BEARING ON CYL. (ISILLIOA)

1 bm = rdA

L= 1.490- , 260-,030= 1.2001N.

Abr = 3.14x 2.995 x 1.200 = 11.285 1N.2

COND. SPINUP F.E .- I. (FWD) 9200# CRITICAL

ROUB = 11342# 2

Rous = 0

Fbry = 6000 PSI 3

M.S. = 6000 -1 = + LGE

2 REF. P. 145

PEF. P. 30

3) REF. MIL-5-8552A

|       |          |         | _    |                                                                           |             |
|-------|----------|---------|------|---------------------------------------------------------------------------|-------------|
| CALC  | (Booket) | REVISED | DATE | MOSE GEAR XVSA                                                            | 1511        |
| CHECK | 1 .      | l l     |      | 1000 GEAR X15A                                                            | 13110       |
| APR   |          |         |      | PISTON HEAD ANALYSIS                                                      | RYAN        |
| APR   |          |         |      | H. W. LOUD MACHINE WORKS, INC.<br>887 East Second St., Pomona, California | PAGE<br>287 |

### CAM - LOWER (1511L123)



d= 34°29'

cos & = .8243 cos & = .5662

L= 3.0 x CXTENDED AIR PRESSURE X AP = 3.0 x 154 x 4.897 = 2262#

Pz = P, cos B = 2744x. 5662 = 1554#

LOAD APPLIED ON MEAN DIA:

 $T = P_2\left(\frac{2.782}{2}\right) = 1554 \times 1.391 = 2162 \text{ (N.} #$ 

CAM WALL THICKNESS = 2.997-2.563 = . 217

TOTAL Ab = 2 (.156). 217 = .06814.2

| CALC Bottlesh REVISED | DATE | HOSE GEAR XVSA                                                            | 1511     |
|-----------------------|------|---------------------------------------------------------------------------|----------|
| CHECK                 |      | 1403E GEAIL XVSA                                                          | 13110    |
| APR                   |      | CAM ANALYSIS                                                              | RYAN     |
| APR                   |      | H. W. LOUD MACHINE WORKS, INC.<br>887 East Second St., Pomona, California | PAGE 288 |

#### CAM-LOWER CONTO

M.S. = 105000 - 1 = .30



3 REF. P. 288

BEARING FACTOR

REF. P. 114

| CALC C | Salis | REVISED | DATE | NOS! | GEAR XVSA             | 15116 |
|--------|-------|---------|------|------|-----------------------|-------|
| CHECK  |       |         |      |      | JEAR RISA             | 13.10 |
| APR    |       |         |      | CAI  | ANALYSIS              | RYAN  |
| APR    |       |         |      |      | D MACHINE WORKS, INC. | 289   |



#### BEARING ADAPTER - CONTO

RDLB = 14942# 1

Fbr = 12000 PSI (ASSUMED)

Abr = 3.240 x.935 = 3.029 1N.2

fbr = 14942 X1.5 = 7396 PSI

M.S. = 12000 -1= .62

> REF. P. 145

| CALG         | Farlis | REVISED | DATE | MOSE GEAR XYSA                                                            | 1511        |
|--------------|--------|---------|------|---------------------------------------------------------------------------|-------------|
| CHECK<br>APR |        |         |      | BEARING ANALYSIS                                                          | RYAN        |
| APR          | 1      |         |      | H. W. LOUD MACHINE WORKS, INC.<br>887 East Second St., Pomona, California | PAGE<br>291 |



#### ORIFICE SUPPORT TURE - CONTO

AL = (A3-A4) = 1.208 - .950 = .2581N.

A Bypass = 2TTdt = 2x3.14 x.255x 1.240-1.100

Aet = . 258- .112 = .14610.2

fty = 3903 x1.5 = 40099 PSI

M.S. = 70000 -1= .75

#### CROSS SECTION UNDER SEAL

A= A6-A7 = .519-.158 = .3611N.2

ftu = 3903×1.5 = 16218 PSI

M.S. = 70000 = +LGE

THO'S IN SHEAR 1.00-14 NS-3THO

P.D. = .9536/,9494

L= .240

AS= .9494 X3.14 X.240 = .357 IN.2

f50 = 3903×1.5 = 16400 PS1

M.S. = 38000 -1= 1.32

| CALC Bother | REVISED | DATE | MOSE GEAR XVSA                                                            | ISIL        |
|-------------|---------|------|---------------------------------------------------------------------------|-------------|
| CHECK       |         | )    | 11036 0676 7137                                                           |             |
| APR         |         |      | ORIFICE SUPPORT                                                           | RYAN        |
| APR         |         |      | H. W. LOUD MACHINE WORKS, INC.<br>657 East Second St., Pomona, California | PAGE<br>293 |

ORIFICE SUPPORT TUBE - CONTO BEARING OF 1.490 DIA. ON CYL. (IN COMPRESSION) 1.490 DIA = 1.744 IN? (TUBE O.D.) 1.040 PIA = .849 IN.2 (CHAMFOR DIA.)  $\Delta A = .895 IN.^2$ UTOL MAX. (AFT) VERTICAL CRITICAL Vo= 8448# 1 Fbr= 85000 fbr = 8448 x 1.5 = 14159 PS1 M.S. = 85000 -1 = + LGE COLUMN IN COMPRESSION ASSUME FIXED ENDS C=4 L= 11,380 IN. · O.D. = 1.740 1.208 .1161 I.D. = 1.100 .0719 J= .0442 14.4 · t = .070 L'= L/JC = 11.380/2= 5.690 **2**  $C = \sqrt{\frac{1}{A}} = \sqrt{\frac{.0442}{.759}} = .414$ L/p= 5.690/.414= 13.74  $F_{c_0} = F_{c_1} \left[ 1 + \frac{F_{c_1}}{200000} \right] = 50000 \left[ 1 + \frac{50000}{2000000} \right] = 62500 PSI$ NEF. P. 30 ( REF. 2 P. 141

1511

RYAN

PAGE

294

NOSE GEAR XUSA

ORIFICE SUPPORT

H. W. LOUD MACHINE WORKS, INC.

887 EAST SECOND ST., POMONA, CALIFORNIA

CALC Subil

APR

REVISED

## ORIFICE SUPPORT TUBE - CONTD

TRANSITIONAL L'/p = 1.732TT VE/Fco
= 1.732 x 3.14 x [10.5 x 10/6.25 x 104] 1/2
= 5.438 x 12.98
= 70.59

USE SHORT COLUMN EQU. 1.3.8.5

 $F_{c} = F_{co} \left[ 1 - .385 \left( \frac{L}{P} \right) / \pi \sqrt{E/F_{co}} \right]$   $= (2500 \left[ 1 - .385 \left( 13.74 \right) / 3.14 \left( 12.98 \right) \right]$   $= (2500 \times .870 = 54375 \text{ PSI}$ 

PCOLUMN = 8448#

Fc = 50000 PSI

A = . 258

ASSUME . 021 ECCENTRICITY

$$f_{c} = \left[ \frac{.021 \times 8448 \times .670}{.0442} + \frac{8448}{.258} \right] 1.5 = 52848 \text{ PSI}$$

M.S. = 54375 -1= .03

) REF. 2 P. 82

| CALC Brodeil | REVISED DATE | NOSE GEAR XVSA                                                            | 1511     |
|--------------|--------------|---------------------------------------------------------------------------|----------|
| CHECK        |              | ORIFICE SUPPORT                                                           | RXN      |
| APR          |              | H W. LOUD MACHINE WORKS, INC.<br>887 ILAST SECOND ST., POMONA, CALIFORNIA | PAGE 295 |

#### ORIFICE SUPPORT TUBE - CONTO

## SHEAR OF 1.625-18 NEF- 313THD DUE TO

P.D. = 1.5889 /1.5937

## SHEAR OF .500-20 UNF-315 THO

P.D. = .4675 /.4717

| CALC  | Theodie | REVISED | DATE | NOSE GEAR XYSA                                                            | ISIIL       |
|-------|---------|---------|------|---------------------------------------------------------------------------|-------------|
| CHECK |         |         |      | TODE OCAR ATSA                                                            | 13.10       |
| APR   |         |         |      | ORIFICE SUPPORT                                                           | RYAN        |
| APR   |         |         | ·    | H. W. LOUD MACHINE WORKS, INC.<br>887 East Second St., Pomona, California | PAGE<br>296 |

### GLAND NUT (ISIILIZ7)



ASSUME MAX. PRESS. LOAD ACTS ON PISTON SEAL:

PRESS = 1657 PSIG

PSEAL= 1657 x .7854(3.2452-2.8722)=1657 x 1.792 = 2969#

PREARING = 1657 X .7854 (2.8722 - 2.4962)=1657 X 1.585

PAKIAL = 2969 + 2626= 5595#

REF. P. 285

| CALC  | Bowhist | REVISED | DATE | NOSE GEAR XVSA                          | ISIL  |
|-------|---------|---------|------|-----------------------------------------|-------|
| CHECK |         |         |      | TO SE SEAR AVEA                         | 13110 |
| 'APR  |         |         |      | GLAND NUT                               | RYAN  |
| APR   |         | 1       |      | H. W. LOUD MACHINE WORKS, INC.          | PAGE  |
|       |         | 1       |      | 997 EAST SECOND ST., POMONA, CALIFORNIA | 297   |

#### GLAND NUT - CONTO

#### SECTION A-A



$$M_{a-a} = 5595 \left( \frac{3.126 - 2.802}{2} \right) = 806 \text{ in.} \#$$
 $K = 1.5$ 

## D REF. P. 313

D

| REVISED | DATE    | NOSE CEAR YNEA                 | 1511                         |
|---------|---------|--------------------------------|------------------------------|
| ě       | 1 1     | NOSC GEAR AVEA                 |                              |
|         |         | GLAND NUT                      | RYAN                         |
| į.      |         | H. W. LOUD MACHINE WORKS, INC. | PAGE<br>799                  |
|         | REVISED | REVISED DATE                   | NOSE GEAR XV SA<br>GUAND NUT |

## GLAND NUT-CONTO

#### SECTION B-B

= 167310.#

$$Z = \frac{1}{6} \times 3.14 \times \frac{3.400 + 3.126}{2} \times \left(\frac{3.400 - 3.126}{2}\right)^{2}$$

= .03Z(N.

| CALC Sittlest | REVISED D | NOSE GE          | AR XVSA ISIL |
|---------------|-----------|------------------|--------------|
| CHECK APR     |           | GLAND            | NUT RYAN     |
| APR           |           | H. W. LOUD MACH! |              |



## PIN-METERING COUTD

TO DEVELOP 8448 # MAX. VO, CONSIDER

ORIFICE INITIALLY BLOCKED OFF BY METERING

PIN.

$$f_{S} = \frac{4958 \times .196}{.735} = 1322'PSI$$

M.S. =  $\frac{38000}{1322} - 1 = + 160$ 

1.872 DIA. IN SHORR

 $A_5 = 3.14 \times 1.872 \times .240 = 1.410 \times 10.2$   $A_7 = .7854 \times 1.872^2 = 2.752 \times 10.2$   $P_5 = 2.752 \times 1057 = 4560 \pm 10.2$ 

$$f_{SJ} = \frac{4500 \times 1.5}{1.410} = 4851 \text{ PSI}$$

$$M.S. = \frac{38000}{4851} - 1 = \pm 405$$

|              | /       | // Table 0.5 |                                                                           |             |
|--------------|---------|--------------|---------------------------------------------------------------------------|-------------|
| CALC Brillis | REVISED | DATE         | NOSE GEAR XYSA                                                            | 1511        |
| CHECK        |         |              | PIN ANALYSIS                                                              | RYAN        |
| APR          | 72      |              | H. W. LOUD MACHINE WORKS, INC.<br>887 EAST SECOND ST., POHONA, CALIFORNIA | PAGE<br>301 |

## SECTION 10

#### RETRACTION ACTUATOR

1. CYLINDER ASSEMBLY (15111303)

MATL: 2024-T4 AWM, AUDY PER QQ-A-268/267

Ftu = 62000 PSI

Fcy = 40000 PSI

FSU= 37000 PSI

2. PISTON (ISHLECZ)

MATL: 4140 STEEL PER MIL-5-5676

Ftu= 125000 PSI

2

3. BEARING (15112304)

MATL: 2024 T4 ALUM, ALLOH PER QQ-A-268/267

Feu = 62000 PSI

Fcy= 40000

FSU = 37000 PSI

4. NUT (15112305)

MATL: 2024 TA ALUM. ALLOY PER QQ-A-268/267

Few = 62000 PSI

Fou = 37000 PSI

PEF. 2 P. 83

2 REF. 2 P. 28

| CALC  | C Carlis REVISED DATE | NOSE GEAR XV5A | 1511                                    |      |
|-------|-----------------------|----------------|-----------------------------------------|------|
| CHECK |                       |                |                                         |      |
| APR   |                       |                |                                         | RYAN |
| APR   |                       |                | H. W. LOUD MACHINE WORKS, INC.          | PAGS |
|       |                       |                | 887 EAST SECOND ST., POMONA, CALIFORNIA | 302  |



# COWMN ANALYSIS - CONTO

 $P_{c} = 4500 \times .7854 (1.430)^{2} = 7230 \#$   $E_{i}I_{i} = 10.5 \times 10^{6} \times .1857 = 1.950 \times 10^{6}$   $E_{z}I_{z} = 29 \times 10^{6} \times .0109 = .3161 \times 10^{6}$   $L_{i}/L = \frac{12.56}{23.46} = .535 = a/L$   $E_{z}I_{z}/E_{i}I_{z} = .3161/1.950 = .1621$ 

PCR/PE = .26

 $P_{E} = \pi^{2} E_{1} I_{1} / L^{2}$   $= \frac{9.860 \times 1.950 \times 10^{6}}{550}$  = 34944

: PCR = .26 × 34944 = 9085#

M.S. = 9085 -1= .26

| CALC  | Partleit | REVISED | DATE | NOSE (ELD VIII)                                                      | 15110       |
|-------|----------|---------|------|----------------------------------------------------------------------|-------------|
| CHECK |          |         |      | MOSE GEAR XYSA                                                       | 13110       |
| APR   |          |         |      | RETRACTION ACTUATOR                                                  | RYXN        |
| APR   |          |         |      | H. W. LOUD MACHINE WORKS, INC.<br>887 East Second Pomona, California | PAGE<br>504 |

## RETRACTION ACTUATOR - CONTO CYLINDER (1511 L303) ANALYSIS

## DIAMETRIC BREATHING AT 1.430 DIA. BORE

t= .125

## RADIAL DISPLACEMENT

2 REF. 3 P. 356 1) REF. 3 P. 258 CASE I

| CALC Butil | REVISED D | ATE | NOSE GEAR XVSA                                                            | 1511        |
|------------|-----------|-----|---------------------------------------------------------------------------|-------------|
| APR .      |           |     | RETRACTION ACTUATOR                                                       | RYNN        |
| APR        |           |     | H. W. LOUD MACHINE WORKS, INC.<br>887 East Second St., Pomona, California | 7AGE<br>305 |



## RETRACTION ACTUATOR CYLINDER LUG ANALYSIS - CONTO

#### TENSION

 $P_{t} = 4500 \times .7854 \times (1.430^{2} - .805^{2}) = 4937 #$   $P_{tu} = K_{t} F_{tu} A_{t} = .95 \times 62000 \times .139 = 8187 #$ 

M.S. = BIBT -1= .44

## SHEAR BRG

Pbru = Kbr Ftux Abr = . 48 x 50000 x . 257 = 6168#

M.S. = 6168

#### LUG YIELD

| CALC Brilis | REVISED | DATE | NOCE CE                                                                   |             |
|-------------|---------|------|---------------------------------------------------------------------------|-------------|
| CHECK       |         |      | MOSE GEAR XVSA                                                            | 1511        |
| APR         |         |      | RETRACTION ACTUATOR                                                       | RYAN        |
| APR         | 5       |      | H. W. LOUD MACHINE WORKS, INC.<br>887 East Second St., Pomona, California | PAGE<br>307 |

#### CYLINDER - BUUKHEAD

t= .270 MIN.

$$t_{REQD} = .81 R \sqrt{\frac{P}{F_{50}}} = .81 \left(\frac{1.470}{2}\right) \sqrt{\frac{7500}{37000}}$$
  
= .7681N.

#### THOS IN SHEAR ON CYL. DUE TO PROOF PRESS

THO = 17/8-16 UN-3A THO

P.D. = 1.8344/1.8304

1 = .490 = ENGAGEMENT LENGTH

As= .5 x 3.14 x 1.8304 x.490 = 1.407 12.

| CALC Jordin | REVISED | DATE | NOSE GEAR XV5A                                                         | 1511         |
|-------------|---------|------|------------------------------------------------------------------------|--------------|
| CHECK       |         | ]    | 1703E GERR 2154                                                        | 13110        |
| APR         |         |      | RETRACTION ACTUATOR                                                    | RYNN         |
| APR         |         |      | H. W. LOUD MACHINE WORKS, INC. 887 EAST SECOND ST., POMONA, CALIFORNIA | PAGE<br>PAGE |

## PISTON (1511L302) ANALYSIS

### LOAD DUE TO PRESSURE:

## HOOP COMPRESSION ( RELIEF DIA.)

## 1 REF. 3 P. 306 CASE 30

| CALC         | Buthish | REVISED | DATE | MOSE GEAR XVSA                                                            | 1511 |
|--------------|---------|---------|------|---------------------------------------------------------------------------|------|
| CHECK<br>APR |         | ) And   |      | RETRACTION ACTUATOR                                                       | RVAN |
| APR          |         |         |      | H. W. LOUD MACHINE WORKS, INC.<br>387 East Second St., Pomona, California | 309  |

## PEARING (15112304)

#### THEN:

REF. P. 304

| CALC Brilish | REVISED | DATE | NOSE GEAR XVSA        | 1511         |
|--------------|---------|------|-----------------------|--------------|
| CHECK        |         |      |                       |              |
| APR          |         |      | RETRACTION ACTUATOR T | アイトし         |
| APR          |         |      |                       | PAGE.<br>310 |

## NUT (15111305)



#### SECTION A-A



L= 1.910TT = 5.997 IN.

A = 5.997 x.255 = 1.529 IN.

== - X.5×3.14×1.910×.2552 = .032 1N.3

 $M_{a-a} = 7230\left(\frac{1.910-1.184}{2}\right) = 2624 \text{ in.} #$ 

$$fb_{y} = \frac{2624}{.032} = 82000 PSI$$

M.S. = 87668 -1= .07

## NEF. P. 313

| CALC  | Badiet | REVISED | DATE | NOSE GEAR XVSA                                                            | 1511        |
|-------|--------|---------|------|---------------------------------------------------------------------------|-------------|
| CHECK |        |         |      | HOSE GENE ATSA                                                            |             |
| APR   |        |         |      | RETRACTION ACTUATOR                                                       | RYAN        |
| APR   |        |         |      | H. W. LOUD MACHINE WORKS, INC.<br>887 East Second St., Pomona, California | PAGE<br>311 |

## MUT (15116305) CONTO

#### SECTION B-B

$$M_{B-B} = 7230 \left[ \left( \frac{1.910 - 1.184}{2} \right) + \left( \frac{2.250 - 1.910}{2} \right) \right]$$

$$Z = \frac{1}{6} \times 3.14 \times \frac{2.250 + 1.910}{2} \times \frac{2.250 - 1.910}{2}$$
= .185 IN.3

$$f_b = \frac{3854}{.185} = 20832 PSI R_b = \frac{20832}{81768} = .237$$

$$ft = \frac{7230}{.555} = 13030 PSI$$
  $Rt = \frac{13030}{62000} = .210$ 

| CALC Frazlit | REVISED | DATE         | NOSE GEAR XVSA                                                         | 1511 |
|--------------|---------|--------------|------------------------------------------------------------------------|------|
| CHECK        |         | <del> </del> | RETRACTION ACTUATOR                                                    | RYAN |
| APR          |         |              | H. W. LOUD MACHINE WORKS, INC. 887 East Second St., Pomona, California | PAGE |

Ft = 65 000 PSI Ft = 55000 PSI WOULD CLOS 100 K, FORM FACTOR

PAGE BIB

MODULUS Citation Cult 120 BRIDING 110 Fb x 10-3 751

PAGE SIA

MODULUS OF FURTHER FOR 180000 PS THEFTH MEETING OF ANC S PANEL DH MAY 24 1944 - - TEM III 2A ATTACH WENTER 200 -240 1.2 2.0 1,0 1.4 1.6 1.8

FL X10-3 PSI ECNOING MODULUS

K-FORM FACTOR

PAGE 31



PAGE 317

BENDING MODILUS OF RUBTURE FOR SECTIONS = 260 000 FS1 E = 29 X10 P51 480 Fors Die & Fors 460 440 Fbx 10-3 PSI BENDING MODULUS -420 300 360 340 320 1 280 240-.10 . .. 30 K, ORM FACTOR

PAGE BIS