Theorem: Let(A,*) be a semigroup. $\forall a \in A, (a^m)^n = a^{mn}, \forall m, n \in \mathbb{N}^*$

Proof: By induction on n.

Base Case: n = 1 $(a^m)^1 = a^m = a^{m \times 1}$

Inductive Step: Assume the result if true for n = p, i.e. $(a^m)^p = a^{mp}$ and seek to prove that $(a^m)^{p+1} = a^{m(p+1)}$

 $(a^m)^{p+1} = (a^m)^p * a^m = a^{mp} * a^m = a^{mp+m} = a^{m(p+1)}$ by the previous theorem.

7.2.1 General Associative Law

Let (A, *) be a semigroup. $\forall a_1, ..., a_s \in A, a_1 * a_2 * ... * a_s$ has the same value regardless of how the product is bracketed.

Proof Use associativity of *.

qed

NB: Unless (A, *) has a commutative binary operation, $a_1 * a_2 * ... * a_s$ does depend on the <u>ORDER</u> in which the $a'_i s$ appear in $a_1 * a_2 * ... * a_s$

7.3 Identity Elements

Definition: Let (A, *) be a semigroup. An element $e \in A$ is called an identity element for the binary operation * if $e * x = x * e = x, \forall x \in A$.

Examples:

- 1. $(\mathbb{R}, +)$ has 0 as the identity element.
- 2. (\mathbb{R}, \times) has 1 as the identity element.

- 3. Given a set A, $(P(A), \cup)$ has \emptyset (the empty set) as its identity element, whereas $(P(A), \cap)$ has A as its identity element.
- 4. $(M_n,*)$ has I_n , the identity matrix, as its identity element.

Theorem A binary operation on a set cannot have more than one identity element, **i.e.** if an identity element exists, then it is unique.

Proof: Assume not (proof by contradiction). Let e and e' both be identity elements for a binary operation on a set A. e = e * e' = e' qed

7.4 Monoids

Definition: A monoid is a set A endowed with an associative binary operation * that has an identity element e. In other words, a monoid is a semigroup (A, *), where * has an identity element e.

Definition: A monoid (A, *) is called <u>commutative</u> (or <u>Abelian</u>) if the binary operation * is commutative.

Example:

- 1. $(\mathbb{R}, +)$ is a commutative monoid with e = 0.
- 2. (\mathbb{R}, \times) is a commutative monoid with e = 1.
- 3. Given a set A, $(P(A), \cup)$ is a commutative monoid with $e = \emptyset$.
- 4. $(M_n,*)$ is a monoid since $e = I_n$, but it is not commutative since matrix multiplication is not commutative.
- 5. $(\mathbb{N}, +)$ is a commutative monoid with e = 0, whereas $(\mathbb{N}^*, +)$ is merely a semigroup (recall $\mathbb{N}^* = \mathbb{N} \setminus \{0\}$)

Theorem: Let (A, *) be a monoid and let $a \in A$. Then $a^m * a^n = a^{m+n}, \forall m, n \in \mathbb{N}$.

Remark: Recall that we proved this theorem for semigroups if $m, n \in \mathbb{N}^*$. We now need to extend that result.

Proof: A monoid is a semigroup $\implies \forall a \in A, a^m * a^n = a^{m+n}$ whenever $m, n \in \mathbb{N}^*, \text{ i.e. } m > 0 \text{ and } n > 0.$ Now let m = 0. $a^m * a^n = a^0 * a^n = e * a^n = a^0 + a^n = a^m * a^0 = a^m * e = a^m = a^{m+0}$. If $n = 0, a^m * a^n = a^m * a^0 = a^m * e = a^m = a^{m+0}$.

qed

Theorem: Let (A, *) be a monoid, $\forall a \in A \ \forall m, n \in \mathbb{N}, (a^m)^n = a^{mn}$.

Remark: Once again, we had this result for semigroups when m > 0 and n > 0.

Proof: By the remark, we only need to prove the result when m=0 or n=0. If $m=0, (a^0)^n=(e)^n=e=a^0=a^{0\times n}$. If n=0, then $(a^m)^0=e=a^0=a^{0\times m}$.

qed