STAT115: Introduction to Biostatistics

University of Otago Ōtākou Whakaihu Waka

Lecture 28: Inference for Proportions

Outline

- A closer look at hypothesis tests for p
- Compare probabilities between two (independent) groups
- Difference in proportions: $p_1 p_2$
 - ► Confidence interval
 - Hypothesis test

Hypothesis Testing for a Proportion

- We may wish to test the hypotheses:
 - \vdash $H_0: p = p_0$
 - \vdash $\mathsf{H}_A: p \neq p_0$
- A test statistic can be found using:

$$z = \frac{\text{estimate} - \text{null}}{\text{standard error}} = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$$

- Two things to note:
 - Find standard error assuming null hypothesis is true: $\sigma_{\hat{p}} = \sqrt{\frac{p_0(1-p_0)}{n}}$
 - ► Find *p*-value from a (standard) normal distribution
 - That's why the test statistic is z, not t

Looking again at hypothesis test for myopia

• To test if probability of myopia in randomly chosen Australian (aged 18–22) is different from 0.23: set $p_0=0.23$

```
# estimate of p
x = 342: n=1344
phat = x/n
p0 = 0.23
# Find standard error under HO
se = sqrt(p0*(1-p0)/n)
# Find test statistic
z = (phat - p0)/se
# Find pvalue
pval = 2*pnorm(-abs(z))
pval
  [1] 0.03307
Lecture 28
```

```
z
## [1] 2.131
```


Hypothesis testing in R

- prop.test conducts the hypothesis test in a slightly different way
- By default it uses a continuity correction, etc.
- Details outside the scope of the course
- Differences in methodology have a relatively small impact
 - ▶ P-values 0.033 versus 0.036 in myopia example

Normal approximation

- Binomial: The sampling distribution for \hat{p} was approximated by a normal
 - Provided n is large, and p is not too close to 0 or 1
- This formed the basis for finding confidence intervals and doing hypothesis tests
- Why does this work, and does it generalise?
 - ▶ I.e. will this also work for other 'non-normal' distributions?

Central Limit Theorem

- If we collect a large sample of independent observations from a population with mean μ and standard deviation σ , the sampling distribution of \bar{Y} will be approximately normal
 - \blacktriangleright Mean μ
 - Standard error $\frac{\sigma}{\sqrt{n}}$
- This is known as the Central Limit Theorem

What has the Central Limit Theorem got to do with proportions?

- A proportion can be viewed as a mean
- Consider n=5 binary observations: 0, 0, 1, 1, 0.
- The sample mean is $\bar{y} = \frac{1}{5}(0+0+1+1+0) = 2/5 = 0.4$
- In other words, $\bar{y} = \hat{p}$ (sample proportion)
- So the Central Limit Theorem justifies use of normal distribution when working with proportions

Wider implications

- Implications are far wider.
- The Central Limit Theorem justifies methodology for confidence intervals and tests for all of the following, even if the data themselves are not notmal:
 - \blacktriangleright Population mean μ with one sample: use t.test
 - ▶ Difference in two means $\mu_1 \mu_2$: use t.test
 - ANOVA: use aov
 - ► Linear regression: use lm
- Just need sufficiently large sample size; n > 30 a very rough rule of thumb.

Data: Smallpox in Boston

• Data are 6224 observations from individuals in Boston in 1721 who were exposed to ${\rm smallpox}^1$

► Inoculated: yes or no

Result: lived or died

 We are interested in comparing the probability of death for those who were inoculated to those who were not

		inoculated		
		yes	no	Total
result	lived	238	5136	5374
	died	6	844	850
	Total	244	5980	6224

¹This is the same data that we saw earlier.

Models for binomial data

- We don't yet have the tools to answer the question
 - \blacktriangleright We only know how to estimate p, not compare p across two groups
- We can look at model extensions for binomial data that parallel those we explored for normal models, e.g.
 - Comparing two or more independent groups
 - ▶ Regression-type models: probability of success depends on predictor variables
 - Called logistic regression
 - ▶ Defer many of these extensions to later courses (i.e. STAT 210)
- For smallpox data: two independent binomials
 - ▶ Inoculated: modelled as binomial with probability of death p₁
 - $-x_1=6, n_1=244$
 - \blacktriangleright Not inoculated: modelled as binomial with probability of death p_2

$$-x_2 = 844, n_2 = 5980$$

Big picture

- We want to compare the survival between inoculated and uninoculated
- There are multiple ways we could do this, e.g.
 - ▶ Difference in probabilities: $p_1 p_2$
 - ▶ Ratio of probabilities (also called relative risk): p_1/p_2
- For now we will focus on $p_1 p_2$
- It is straightfoward to estimate this difference
 - $\hat{p}_1 \hat{p}_2$
- We also know those estimates are uncertain
 - ► Found from data (a sample from the population)
 - Find a confidence interval

Confidence interval for $p_1 - p_2$

• Find a confidence interval using

estimate \pm multiplier imes standard error

- Estimate: $\hat{p}_1 \hat{p}_2$
- · Multiplier: we again approximate the sampling distribution with normal
 - ▶ Multiplier is $z_{1-\alpha/2}$
- Standard error: $\sigma_{\hat{p}_1-\hat{p}_2}=\sqrt{rac{p_1(1-p_1)}{n_1}+rac{p_2(1-p_2)}{n_2}}$
 - ► Estimate this with: $s_{\hat{p}_1 \hat{p}_2} = \sqrt{\frac{\hat{p}_1(1 \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 \hat{p}_2)}{n_2}}$

Wald confidence interval for $p_1 - p_2$

• Putting this together we have the $100(1-\alpha)\%$ Wald confidence interval:

$$\hat{p}_1 - \hat{p}_2 \pm z_{1-\alpha/2} \sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}$$

- This is the interval returned by prop.test when we have two groups
- As with the Wald interval for p
 - The interval is not that reliable if either n_1 or n_2 is small and either p_1 or p_2 is close to 0 or 1
 - ► Improved confidence intervals do exist
 - Such intervals can be found in other R packages
- We will use the Wald interval in prop.test

In R

```
x = c(6, 844); n = c(244, 5980) # smallpox data
prop.test(x, n)
##
    2-sample test for equality of proportions with continuity correction
##
## data: x out of n
## X-squared = 26, df = 1, p-value = 3e-07
## alternative hypothesis: two.sided
## 95 percent confidence interval:
## -0.14002 -0.09307
## sample estimates:
## prop 1 prop 2
## 0.02459 0.14114
```

• We are 95% confident that the probability of death was between 0.0931 and 0.14 lower for those who were inoculated compared to those who were not

Hypothesis test

- Both p_1 and p_2 are conditional probabilities
 - $ightharpoonup p_1$ is the survival probability given inoculated
 - $ightharpoonup p_2$ is the survival probability given not inoculated
- If $p_1 = p_2$ then survival does not depend on inoculation
 - Survival and inoculation are independent
- We can test the hypotheses:
 - $H_0: p_1 p_2 = 0$ (this is equivalent to $p_1 = p_2$)
 - ightharpoonup $H_A: p_1-p_2
 eq 0$ (this is equivalent to $p_1
 eq p_2$)

Hypothesis test

• A test statistic can be found using:

$$z = \frac{\text{estimate} - \text{null}}{\text{standard error}}$$

- Estimate is $\hat{p}_1 \hat{p}_2$
- Null value is 0
- We need the standard error assuming null hypothesis is true
 - ▶ The two groups have the same probability: $p_1 = p_2$
 - ▶ The null hypothesis doesn't specify what this value is
 - Let's call it p^*

Hypothesis test

- The standard error is: $\sigma_{\hat{p}_1 \hat{p}_2} = \sqrt{\frac{p^*(1-p^*)}{n_1} + \frac{p^*(1-p^*)}{n_2}}$
 - ▶ This is the standard error above evaluated at $p_1 = p_2 = p^*$
- We don't know p^*
 - ► Estimate it: $\hat{p}^* = \frac{\text{total success}}{\text{total trials}} = \frac{x_1 + x_2}{n_1 + n_2} = \frac{n_1 \hat{p}_1 + n_2 \hat{p}_2}{n_1 + n_2}$
 - \hat{p}^* is sometimes call the pooled proportion
- Use this to estimate the standard error: $s_{\hat{p}_1-\hat{p}_2} = \sqrt{\frac{\hat{p}^*(1-\hat{p}^*)}{n} + \frac{\hat{p}^*(1-\hat{p}^*)}{n}}$
- This hypothesis test is found using prop.test. As with the test for p:
 - ► The implementation in R contains minor refinements (e.g. continuity correction)

Hypothesis test: in R

• Using prop.test to find the *p*-value

```
prop.test(x,n)
##
   2-sample test for equality of proportions with continuity correction
##
## data: x out of n
## X-squared = 26, df = 1, p-value = 3e-07
## alternative hypothesis: two.sided
## 95 percent confidence interval:
## -0.14002 -0.09307
## sample estimates:
## prop 1 prop 2
## 0.02459 0.14114
```

Interpretation

- ullet The $p ext{-value}$ quantifies the incompatibility between the null hypothesis and the data
 - ▶ The p-value $< \alpha = 0.05$, which suggests the data are unusual if the two groups (inoculated and uninoculated) truly had the same probability of survival

Alternate Estimands I: Relative Risk

- There are other ways we could have compared between groups
 - ▶ Consider a broad overview of two alternatives, widely used in medicine.
- We could use the relative risk: $RR = \frac{p_1}{p_2}$
 - ► Ratio of the probabilities
 - ▶ Think of p_i as the risk in group i
- For smallpox example: $RR=\frac{p_1}{p_2}=\frac{\text{risk of death for those inoculated}}{\text{risk of death for those uninoculated}}$
- The main advantage of the RR is interpretability
 - ightharpoonup A RR=1.5 means the risk is 50% higher in group 1 than group 2
- It is possible to find estimates, confidence intervals, etc.

Alternative Estimands II: Odds Ratio

- What are odds?
 - ▶ In popular usage: "What are the odds of that?!?"
 - ► Even so, odds are not well understood
- If probability of event A is p, then the odds of event A are p/(1-p)
- If the probability of rain tomorrow is 0.5, the odds are 1 (to 1)
- If the probability of rain tomorrow is 0.8, the odds are 4 (to 1)

Alternative Estimands II: Odds Ratio

continued

- We can compare two groups with an odds ratio: $OR = \frac{p_1/(1-p_1)}{p_2/(1-p_2)}$
 - Harder to interpret, but more reliable in certain situations
 - ▶ Useful when comparing to regression-like models for binomial data
- When p_1 and p_2 small (e.g. rare disease), $OR = \frac{p_1/(1-p_1)}{p_2/(1-p_2)} pprox \frac{p_1}{p_2} = RR$
- Will see relative risk and odds ratio 'in action' in later lectures.

Relative Risk and Odds Ratio for Smallpox Data (in R)

```
p1hat = 6/244 # Estimated prob death for innoculated
p2hat = 844/5980 # Estimated prob death for not innoculated
odds1 = p1hat/(1-p1hat); odds2 = p2hat/(1-p2hat)
c(odds1,odds2)
## [1] 0.02521 0.16433
RR = p1hat/p2hat
R.R.
## [1] 0.1742
OR = odds1/odds2
ΩR.
## [1] 0.1534
```

Summary

- ullet Look at inference for a proportion p
- Methods theoretically supported by Central Limit Theorem
- Explored comparison between two groups: $p_1 p_2$
 - Confidence intervals
 - Hypothesis test
- Compared relative risk and odds ratio