EE263 Autumn 2012–13 Stephen Boyd

- orthonormal set of vectors
- ullet Gram-Schmidt procedure, QR factorization
- orthogonal decomposition induced by a matrix

Orthonormal set of vectors

set of vectors $\{u_1,\ldots,u_k\}\subset\mathbf{R}^n$ is

- normalized if $||u_i|| = 1$, i = 1, ..., k(u_i are called unit vectors or direction vectors)
- orthogonal if $u_i \perp u_j$ for $i \neq j$
- orthonormal if both

slang: we say u_1, \ldots, u_k are orthonormal vectors' but orthonormality (like independence) is a property of a *set* of vectors, not vectors individually

in terms of $U = [u_1 \cdots u_k]$, orthonormal means

$$U^T U = I_k$$

- an orthonormal set of vectors is independent (multiply $\alpha_1 u_1 + \alpha_2 u_2 + \cdots + \alpha_k u_k = 0$ by u_i^T)
- hence $\{u_1, \ldots, u_k\}$ is an orthonormal basis for

$$\mathrm{span}(u_1,\ldots,u_k)=\mathcal{R}(U)$$

• warning: if k < n then $UU^T \neq I$ (since its rank is at most k) (more on this matrix later . . .)

Geometric properties

suppose columns of $U = [u_1 \cdots u_k]$ are orthonormal

if
$$w = Uz$$
, then $||w|| = ||z||$

- ullet multiplication by U does not change norm
- mapping w = Uz is *isometric*: it preserves distances
- simple derivation using matrices:

$$||w||^2 = ||Uz||^2 = (Uz)^T (Uz) = z^T U^T Uz = z^T z = ||z||^2$$

- inner products are also preserved: $\langle Uz, U\tilde{z} \rangle = \langle z, \tilde{z} \rangle$
- ullet if w=Uz and $\tilde{w}=U\tilde{z}$ then

$$\langle w, \tilde{w} \rangle = \langle Uz, U\tilde{z} \rangle = (Uz)^T (U\tilde{z}) = z^T U^T U\tilde{z} = \langle z, \tilde{z} \rangle$$

- norms and inner products preserved, so angles are preserved: $\angle(Uz,U\tilde{z})=\angle(z,\tilde{z})$
- ullet thus, multiplication by U preserves inner products, angles, and distances

Orthonormal basis for R^n

- suppose u_1, \ldots, u_n is an orthonormal basis for \mathbf{R}^n
- then $U = [u_1 \cdots u_n]$ is called **orthogonal**: it is square and satisfies $U^T U = I$

(you'd think such matrices would be called orthonormal, not orthogonal)

ullet it follows that $U^{-1}=U^T$, and hence also $UU^T=I$, i.e.,

$$\sum_{i=1}^{n} u_i u_i^T = I$$

Expansion in orthonormal basis

suppose U is orthogonal, so $x = UU^Tx$, i.e.,

$$x = \sum_{i=1}^{n} (u_i^T x) u_i$$

- $u_i^T x$ is called the *component* of x in the direction u_i
- \bullet $a = U^T x$ resolves x into the vector of its u_i components
- x = Ua reconstitutes x from its u_i components
- $x = Ua = \sum_{i=1}^{n} a_i u_i$ is called the $(u_i$ -) expansion of x

the identity $I = UU^T = \sum_{i=1}^n u_i u_i^T$ is sometimes written (in physics) as

$$I = \sum_{i=1}^{n} |u_i\rangle\langle u_i|$$

since

$$x = \sum_{i=1}^{n} |u_i\rangle\langle u_i|x\rangle$$

(but we won't use this notation)

Geometric interpretation

if U is orthogonal, then transformation w=Uz

- preserves *norm* of vectors, *i.e.*, ||Uz|| = ||z||
- preserves angles between vectors, i.e., $\angle(Uz, U\tilde{z}) = \angle(z, \tilde{z})$

examples:

- rotations (about some axis)
- reflections (through some plane)

Example: rotation by θ in \mathbb{R}^2 is given by

$$y = U_{\theta}x, \quad U_{\theta} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

since $e_1 \to (\cos \theta, \sin \theta)$, $e_2 \to (-\sin \theta, \cos \theta)$

reflection across line $x_2 = x_1 \tan(\theta/2)$ is given by

$$y = R_{\theta}x, \quad R_{\theta} = \begin{bmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{bmatrix}$$

since $e_1 \to (\cos \theta, \sin \theta)$, $e_2 \to (\sin \theta, -\cos \theta)$

can check that U_{θ} and R_{θ} are orthogonal

Gram-Schmidt procedure

• given independent vectors $a_1, \ldots, a_k \in \mathbf{R}^n$, G-S procedure finds orthonormal vectors q_1, \ldots, q_k s.t.

$$\operatorname{span}(a_1,\ldots,a_r)=\operatorname{span}(q_1,\ldots,q_r)$$
 for $r\leq k$

- ullet thus, q_1,\ldots,q_r is an orthonormal basis for $\mathrm{span}(a_1,\ldots,a_r)$
- rough idea of method: first *orthogonalize* each vector w.r.t. previous ones; then *normalize* result to have norm one

Gram-Schmidt procedure

- step 1a. $\tilde{q}_1 := a_1$
- ullet step 1b. $q_1:= ilde{q}_1/\| ilde{q}_1\|$ (normalize)
- \bullet step 2a. $\tilde{q}_2 := a_2 (q_1^T a_2)q_1$ (remove q_1 component from a_2)
- ullet step 2b. $q_2:= ilde{q}_2/\| ilde{q}_2\|$ (normalize)
- step 3a. $\tilde{q}_3 := a_3 (q_1^T a_3)q_1 (q_2^T a_3)q_2$ (remove q_1 , q_2 components)
- ullet step 3b. $q_3:= ilde{q}_3/\| ilde{q}_3\|$ (normalize)
- etc.

for $i = 1, 2, \dots, k$ we have

$$a_{i} = (q_{1}^{T} a_{i})q_{1} + (q_{2}^{T} a_{i})q_{2} + \dots + (q_{i-1}^{T} a_{i})q_{i-1} + \|\tilde{q}_{i}\|q_{i}$$
$$= r_{1i}q_{1} + r_{2i}q_{2} + \dots + r_{ii}q_{i}$$

(note that the r_{ij} 's come right out of the G-S procedure, and $r_{ii} \neq 0$)

QR decomposition

written in matrix form: A = QR, where $A \in \mathbf{R}^{n \times k}$, $Q \in \mathbf{R}^{n \times k}$, $R \in \mathbf{R}^{k \times k}$:

$$\underbrace{\left[\begin{array}{ccccc} a_1 & a_2 & \cdots & a_k \end{array}\right]}_{A} = \underbrace{\left[\begin{array}{ccccc} q_1 & q_2 & \cdots & q_k \end{array}\right]}_{Q} \underbrace{\left[\begin{array}{ccccc} r_{11} & r_{12} & \cdots & r_{1k} \\ 0 & r_{22} & \cdots & r_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & r_{kk} \end{array}\right]}_{R}$$

- $Q^TQ = I_k$, and R is upper triangular & invertible
- ullet called QR decomposition (or factorization) of A
- usually computed using a variation on Gram-Schmidt procedure which is less sensitive to numerical (rounding) errors
- ullet columns of Q are orthonormal basis for $\mathcal{R}(A)$

General Gram-Schmidt procedure

- in basic G-S we assume $a_1, \ldots, a_k \in \mathbb{R}^n$ are independent
- if a_1, \ldots, a_k are dependent, we find $\tilde{q}_j = 0$ for some j, which means a_j is linearly dependent on a_1, \ldots, a_{j-1}
- modified algorithm: when we encounter $\tilde{q}_j = 0$, skip to next vector a_{j+1} and continue:

```
r=0; for i=1,\ldots,k { 	ilde{a}=a_i-\sum_{j=1}^r q_jq_j^Ta_i; if 	ilde{a} 
eq 0 	binom{r=1,\ldots,k}{r=1} f(a)=\frac{r}{r} f(a)=\frac{
```

on exit,

- q_1, \ldots, q_r is an orthonormal basis for $\mathcal{R}(A)$ (hence $r = \mathbf{Rank}(A)$)
- ullet each a_i is linear combination of previously generated q_j 's

in matrix notation we have A=QR with $Q^TQ=I_r$ and $R\in \mathbf{R}^{r\times k}$ in upper staircase form:

'corner' entries (shown as \times) are nonzero

can permute columns with \times to front of matrix:

$$A = Q[\tilde{R} \ S]P$$

where:

- $\bullet \ Q^T Q = I_r$
- $\tilde{R} \in \mathbf{R}^{r \times r}$ is upper triangular and invertible
- $P \in \mathbf{R}^{k \times k}$ is a permutation matrix (which moves forward the columns of a which generated a new q)

Applications

- ullet directly yields orthonormal basis for $\mathcal{R}(A)$
- yields factorization A = BC with $B \in \mathbf{R}^{n \times r}$, $C \in \mathbf{R}^{r \times k}$, $r = \mathbf{Rank}(A)$
- to check if $b \in \text{span}(a_1, \dots, a_k)$: apply Gram-Schmidt to $[a_1 \cdots a_k \ b]$
- ullet staircase pattern in R shows which columns of A are dependent on previous ones

works incrementally: one G-S procedure yields QR factorizations of $[a_1 \cdots a_p]$ for $p=1,\ldots,k$:

$$[a_1 \cdots a_p] = [q_1 \cdots q_s] R_p$$

where $s = \mathbf{Rank}([a_1 \ \cdots \ a_p])$ and R_p is leading $s \times p$ submatrix of R

'Full' QR factorization

with $A = Q_1 R_1$ the QR factorization as above, write

$$A = \left[\begin{array}{cc} Q_1 & Q_2 \end{array} \right] \left[\begin{array}{c} R_1 \\ 0 \end{array} \right]$$

where $[Q_1 \ Q_2]$ is orthogonal, *i.e.*, columns of $Q_2 \in \mathbf{R}^{n \times (n-r)}$ are orthonormal, orthogonal to Q_1

to find Q_2 :

- ullet find any matrix \tilde{A} s.t. $[A\ \tilde{A}]$ has rank $n\ (e.g.,\ \tilde{A}=I)$
- ullet apply general Gram-Schmidt to $[A\ ilde{A}]$
- ullet Q_1 are orthonormal vectors obtained from columns of A
- Q_2 are orthonormal vectors obtained from extra columns (\tilde{A})

i.e., any set of orthonormal vectors can be extended to an orthonormal basis for \mathbf{R}^n

 $\mathcal{R}(Q_1)$ and $\mathcal{R}(Q_2)$ are called *complementary subspaces* since

- they are orthogonal (i.e., every vector in the first subspace is orthogonal to every vector in the second subspace)
- their sum is \mathbb{R}^n (*i.e.*, every vector in \mathbb{R}^n can be expressed as a sum of two vectors, one from each subspace)

this is written

- $\bullet \ \mathcal{R}(Q_1) \stackrel{\perp}{+} \mathcal{R}(Q_2) = \mathbf{R}^n$
- $\mathcal{R}(Q_2) = \mathcal{R}(Q_1)^{\perp}$ (and $\mathcal{R}(Q_1) = \mathcal{R}(Q_2)^{\perp}$) (each subspace is the *orthogonal complement* of the other)

we know $\mathcal{R}(Q_1) = \mathcal{R}(A)$; but what is its orthogonal complement $\mathcal{R}(Q_2)$?

Orthogonal decomposition induced by A

from
$$A^T = \left[\begin{array}{cc} R_1^T & 0 \end{array} \right] \left[\begin{array}{c} Q_1^T \\ Q_2^T \end{array} \right]$$
 we see that

$$A^T z = 0 \iff Q_1^T z = 0 \iff z \in \mathcal{R}(Q_2)$$

so
$$\mathcal{R}(Q_2) = \mathcal{N}(A^T)$$

(in fact the columns of Q_2 are an orthonormal basis for $\mathcal{N}(A^T)$)

we conclude: $\mathcal{R}(A)$ and $\mathcal{N}(A^T)$ are complementary subspaces:

- $\mathcal{R}(A) \overset{\perp}{+} \mathcal{N}(A^T) = \mathbf{R}^n \text{ (recall } A \in \mathbf{R}^{n \times k} \text{)}$
- $\mathcal{R}(A)^{\perp} = \mathcal{N}(A^T)$ (and $\mathcal{N}(A^T)^{\perp} = \mathcal{R}(A)$)
- called orthogonal decomposition (of \mathbf{R}^n) induced by $A \in \mathbf{R}^{n \times k}$

- every $y \in \mathbf{R}^n$ can be written uniquely as y = z + w, with $z \in \mathcal{R}(A)$, $w \in \mathcal{N}(A^T)$ (we'll soon see what the vector z is . . .)
- can now prove most of the assertions from the linear algebra review lecture
- switching $A \in \mathbf{R}^{n \times k}$ to $A^T \in \mathbf{R}^{k \times n}$ gives decomposition of \mathbf{R}^k :

$$\mathcal{N}(A) \stackrel{\perp}{+} \mathcal{R}(A^T) = \mathbf{R}^k$$