Algunos ejercicios

Ejercicio 1. Enumere todos los grupos abelianos de orden ≤ 10 salvo isomorfismo.

Ejercicio 2. Supongamos que en un grupo se cumple $g_1g_2g_3\cdots g_n=1$. Demuestre que

$$g_2g_3\cdots g_ng_1=g_3g_4\cdots g_ng_1g_2=g_4g_5\cdots g_ng_1g_2g_3=\cdots=g_ng_1g_2\cdots g_{n-1}=1.$$

Ejercicio 3. Sea G un grupo finito de orden n. ¿Cuántas ternas $(g_1, g_2, g_3) \in G^3$ satisfacen $g_1g_2g_3 = 1$?

Ejercicio 4. Sea $f: G \to H$ un homomorfismo de grupos. Sea $K \subset H$ un subgrupo. Demuestre que $f^{-1}(K)$ es un subgrupo de G.

Ejercicio 5. Sea k un cuerpo. El **grupo afín** Aff₁(k) consiste en las aplicaciones

$$f_{a,b}: k \to k,$$

 $x \mapsto ax + b,$

donde $a \in k^{\times}$ y $b \in k$ (recuerde el ejercicio 2.4 de las tareas).

- 1) Demuestre que las transformaciones con a=1 forman un subgrupo normal $N\subset Aff_1(k)$ y $N\cong k$.
- 2) Demuestre que las transformaciones con b = 0 forman un subgrupo $H \subset Aff_1(k)$ y $H \cong k^{\times}$.
- 3) Demuestre que $N \cap H = \{id\}$.
- 4) Demuestre que todo elemento de $Aff_1(k)$ puede ser escrito como $f \circ g$ donde $f \in N$ y $g \in H$.
- 5) Deduzca de 1)–4) que $\mathrm{Aff}_1(k)\cong k\rtimes k^{\times}$.

Ejercicio 6. Supongamos que el grupo cíclico $\mathbb{Z}/3\mathbb{Z}$ actúa sobre un conjunto finito X de 30 elementos. Demuestre que el número de puntos fijos de esta acción es divisible por 3.

Ejercicio 7. Se dice que dos sucesiones exactas cortas (extensiones de grupos)

$$1 \to H \xrightarrow{i} G \xrightarrow{p} K \to 1$$

y

$$1 \to H \xrightarrow{i'} G' \xrightarrow{p'} K \to 1$$

son **isomorfas** si existe un homomorfismo $f: G \to G'$ tal que el diagrama

es conmutativo (hemos probado en clase que en este caso f es un isomorfismo).

Encuentre todas las sucesiones exactas

$$0 \to \mathbb{Z}/2\mathbb{Z} \to \mathbb{Z}/4\mathbb{Z} \to \mathbb{Z}/2\mathbb{Z} \to 0$$

salvo isomorfismo.

Temas para revisar bien

- Grupos cociente.
- Grupos simples.
- Acciones de grupos.
- Descomposición de un *G*-conjunto en órbitas.
- Productos semidirectos.
- Sucesiones exactas cortas (extensiones de grupos).
- Estructura de grupos abelianos finitamente generados. Cómo encontrar todos los grupos abelianos de orden fijo salvo isomorfismo.