**Q1**) A figura 1 apresenta a resposta ao degrau para o controlador obtido ao final do treinamento (tendo fitness igual a 1). Visualmente, já é possível notar que o tempo de acomodação foi inferior a 0,5s, que era o tempo demandado. Considerando a definição de tempo de subida (tempo de 10% a 90% do set point), também fica evidente que o critério de 0,04s foi atendido.

A figura 2 apresenta qual indivíduo possuía melhor fitness a cada geração (série preta) e qual o fitness médio da população a cada geração. Indivíduos com fitness 1 são notados desde antes da décima geração, mas a população por completo não chega a atingir este nível, mesmo após as 50 gerações.

A figura 3 exibe o valor de cada um dos 3 ganhos do PID para o indivíduo de melhor fitness, onde pode-se notar que eles oscilam intensamente nas primeiras gerações e vão estabilizando próximos ao valor que dá o melhor resultado.

A figura 4 apresenta a intensidade da mutação não uniforme aplicada nas gerações. Esta intensidade varia de uma geração para outra e é determinante para encontrar novas soluções de bom desempenho.



Figura 1: Amplitude x Tempo.



Figura 2: Indivíduo com melhor fitness e fitness médio x Geração.



Figura 3: Ganhos do controlador PID a cada geração.



Figura 4: Mutação a cada geração.

Q3) Parte 1) Para a execução com o algoritmo de Kohonen, primeiro foi encontrada a solução para a cidade 1, com configuração inicial dos neurônios como mostrada na figura 5. Kohonen é um método de aprendizado não supervisionado, o que significa não ser necessário informar ao código valores ditos certos ou errados, a abstração se dá apenas pelos dados de entrada. Cada neurônio é ajustado para, no caso, a cidade de maior representatividade (mais próxima) e seus vizinhos também são ajustados para essa proximidade, com menos intensidade. O algoritmo insere 1 neurônio entre vizinhos de maneira a promover um neurônio representante para cada cidade. A solução final é mostrada na figura 6, tendo demandado 408 iterações e utilizado um total de 100 neurônios (como era de se esperar, já que haviam 100 cidades). O tamanho do percurso encontrado variou de 799.9697 a 821.8836 nas 5 execução realizadas, indicando que as soluções encontradas realmente podem não ser ótimas (pelo menos 4 das 5 não são), mas caracterizam boas propostas para realizar percursos eficientes.

## Parte 2) Pseudo-código da solução evolutiva:

- 1. Primeiro, cria-se um vetor 2D com as posições de cada uma das M cidades;
- 2. Cria-se N rotas, cada uma iniciando em 1 cidade e conectando-se com a cidade mais próxima não percorrida até completar o percurso;
- 3. Usa-se as duas melhores rotas (menor percurso) para crossover e geram N/2 rotas filhas, as quais substituem as N/2 piores rotas;
- 4. Sob uma probabilidade P para cada uma das N/2 rotas filhas, ocorre mutação;
- 5. Repete-se o passo 3 até atingir o critério de parada.

Definições utilizadas no pseudo-código:

```
> M = 100;
```

- > N = 20;
- P = 2%;
- ➢ Operador de Crossover: Sendo cada rota descrita pelo índice de cada cidade seguido da ordem em que ela é acessada (Ex: cidade A → quinta, cidade B → décima quarta...) a ser acessada, o operador pega as melhores rotas de duas a duas e troca 20% das ordens de acesso das cidades de uma com a outra. É importante ressaltar que não se deve trocar a ordem dos índices, mas sim as ordens de acesso nas cidades, senão poderia causar repetição de algumas cidades e não visitação de outras;
- ➤ Operador de Mutação: Há chance de 2% para cada rota "filha" gerada de que ocorra a mutação, consistindo em trocar a ordem de acesso a 10% das cidades dela mesma;
- Critério de Parada: Atingir 2000 gerações.

Nota-se que o algoritmo evolutivo aproxima-se da melhor solução encontrada logo no início da execução, antes de 250 gerações, e fica estabilizada assim até o final (2000ª geração). A figura 7 mostra a evolução do fitness ao longo das gerações.

A figura 8 exibe a melhor solução encontrada ao final do algoritmo (tamanho: 5811), enquanto que a figura 9 mostra a melhor solução ao longo da quinta geração (tamanho da rota: 14793) e deixa clara a melhora ocorrida ao longo da busca.



Figura 5: Configuração inicial dos neurônios distribuídos de maneira semi-uniforme.



Figura 6: Configuração final dos neurônios com a solução por Kohonen.



Figura 7: Melhor rota encontrada com o algoritmo evolutivo sobre 50 cidades.



Figura 8: Melhor fitness da população por geração.



Figura 9: Melhor fitness na 5ª geração.

- **Q5**) a) São 10000 amostras de 9 variáveis, sendo binárias (de 1 a 2), exceto a variável 2, que varia de 1 a 7.
- b) Na figura 10, está a rede resultante dos dados utilizados. Nas figuras 11 e 12, estão as tabelas de probabilidades de cada nó.



Figura 10: Rede Bayesiana resultante.

| Tabela 1 |        |            |        |        |        |        |        |
|----------|--------|------------|--------|--------|--------|--------|--------|
| Entrada  | FALSO  | VERDADEIRO |        |        |        |        |        |
| 00       | 1      | 0          |        |        |        |        |        |
| 01       | 0      | 1          |        |        |        |        |        |
| 10       | 0      | 1          |        |        |        |        |        |
| 11       | 1      | 0          |        |        |        |        |        |
|          |        |            | Tabela | 2      |        |        |        |
| Entrada  | 1      | 2          | 3      | 4      | 5      | 6      | 7      |
| 0        | 0,2633 | 0,1904     | 0,1769 | 0,1641 | 0,1182 | 0,0655 | 0,0216 |
| 1        | 0,1159 | 0,1414     | 0,1283 | 0,1261 | 0,1657 | 0,1548 | 0,1677 |
| Tabela 3 |        |            |        |        |        |        |        |
| Entrada  | FALSO  | VERDADEIRO |        |        |        |        |        |
| 0        | 0,3373 | 0,6627     |        |        |        |        |        |
| 1        | 0,9802 | 0,0198     |        |        |        |        |        |
| Tabela 4 |        |            |        |        |        |        |        |
| Entrada  | FALSO  | VERDADEIRO |        |        |        |        |        |
| 0        | 0,5949 | 0,4051     |        |        |        |        |        |
| 1        | 0,7509 | 0,2491     |        |        |        |        |        |
|          |        |            |        |        |        |        |        |

Figura 11: Tabelas de probabilidades dos nós de 1 a 4 (de cima para baixo).

| Tabela 5 |        |            |  |  |  |  |  |
|----------|--------|------------|--|--|--|--|--|
| Entrada  | FALSO  | VERDADEIRO |  |  |  |  |  |
|          | 0,1481 | 0,8519     |  |  |  |  |  |
|          |        |            |  |  |  |  |  |
| Tabela 6 |        |            |  |  |  |  |  |
| Entrada  | FALSO  | VERDADEIRO |  |  |  |  |  |
| 00       | 0,8788 | 0,1212     |  |  |  |  |  |
| 01       | 0,5888 | 0,4112     |  |  |  |  |  |
| 10       | 0,0528 | 0,9472     |  |  |  |  |  |
| 11       | 0,1587 | 0,8413     |  |  |  |  |  |
|          |        |            |  |  |  |  |  |
| Tabela 7 |        |            |  |  |  |  |  |
| Entrada  | FALSO  | VERDADEIRO |  |  |  |  |  |
|          | 0,5028 | 0,4972     |  |  |  |  |  |
|          |        |            |  |  |  |  |  |
| Tabela 8 |        |            |  |  |  |  |  |
| Entrada  | FALSO  | VERDADEIRO |  |  |  |  |  |
|          | 0,482  | 0,518      |  |  |  |  |  |
|          |        |            |  |  |  |  |  |
| Tabela 9 |        |            |  |  |  |  |  |
| Entrada  | FALSO  | VERDADEIRO |  |  |  |  |  |
|          | 0,5022 | 0,4978     |  |  |  |  |  |
|          |        |            |  |  |  |  |  |

Figura 12: Tabelas de probabilidades para os nós de 5 a 9 (de cima para baixo).

- c) Pois é um atributo condicionalmente independente, não influenciando os demais nós.
  - d) Segundo a tabela da figura 11, 85,19%.
  - e) 41,12% de probabilidade para ser verdade.
  - f) "OU-Exclusivo".

g) 
$$P(5 = 1 | 3 = 1) = P(5 = 1 ^ 3 = 1) / P(3 = 1)$$

Numerador:  $P(5 = 1 ^3 = 1) = P(5 = 1 ^3 = 1) + P(5 = 1 ^3 = 1 ^4 = 0) = (0.0198*0.2491*0.8519) + (0.8519 * 0.7509 * 0.6627) = 0.428125420359.$ 

Denominador:  $P(3 = 1) = P(5 = 1 ^3 = 1 ^4 = 1) + P(5 = 1 ^3 = 1 ^4 = 0) + P(5 = 0 ^3 = 1 ^4 = 1) + P(5 = 0 ^3 = 1 ^4 = 0) = (0,8519*0,2491*0,0198) + (0,8519*0,7509*0,6627) + (0,1481*0,4051*0,0198) + (0,1481*0,5949*0,6627) = 0,48770030556$ 

Total:  $P(5 = 1 | 3 = 1) = P(5 = 1 ^ 3 = 1) / P(3 = 1) = 0.877845 = 87.78\%$ 

6)

item 3) Como atributos numéricos temos temperatura média, umidade média, altura da chuva mensal e precipitação 21 dias. Todos estes possuem como estatística o valor mínimo, máximo, médio e desvio padrão.

Como atributos categóricos, há local e classe, ambos possuindo estatística de classe e peso.

item 7) Taxa de acerto = 87,1429%

```
=== Confusion Matrix ===

a b <-- classified as
4 7 | a = 0
2 57 | b = 1
```

Figura 13: Matriz de confusão.

A matriz de confusão representa quanta vezes um atributo da classe a (primeiro nó), na primeira coluna, foi classificado como sendo da classe a ou b. O mesmo ela apresenta para os atributos da classe b.



Figura 14: Árvore de decisão gerada.

item 8) De acordo com a árvore da figura 14,

Se a temperatura > 21,87, então classificada no nó 0; Se não: Se numero dias de chuva > 4, ento nó 1; Se não: Se CASO de 'local' [ ID, IM, PM, CHI, GAL] respectivamente em nó [1, 1, 1, 0, 0]

Obs: Nó 1 representa que HÁ aquela espécie ali. Nó 0 representa que não há.

item 9) minNunObj: Instâncias mínimas por folha. Garante que, a cada divisão, pelo menos "minNunObj" dos ramos tenham o número mínimo de instâncias.

```
=== Confusion Matrix ===

a b <-- classified as
3 8 | a = 0
1 58 | b = 1
```

Figura 15: Matriz de confusão ao alterar minNunObj para 2.

unpruned: Aplicar ou não o método de poda para redução de erro.

A árvore se tornou um único nó raiz (temperatura) e dois filhos com este método ativo, e a matriz de confusão ficou igual à figura 15. A ramificação para o numero de dias com chuva se tornou apenas uma classificação de nó 1 (há a espécie ali).

item 10) Utilizando um dataset para CPUs do próprio site do WEKA, foi gerada a árvore abaixo:



Figura 16: Árvore para definir a classe de desempenho de CPUs.

Obteve-se uma taxa de acertos de 92,74%, sendo um bom método para classificar as CPUs deste dataset quanto ao desempenho de acordo com os atributos, tais como memória máxima e memória cache.