3. Plotting for Exploratory data analysis (EDA)

(3.1) Basic Terminology

- What is EDA?
- Data-point/vector/Observation
- Data-set.
- Feature/Variable/Input-variable/Dependent-varibale
- Label/Indepdendent-variable/Output-varible/Class/Class-label/Response label
- Vector: 2-D, 3-D, 4-D,.... n-D

Q. What is a 1-D vector: Scalar

(3.12) **Exercise**:

- Download Haberman Cancer Survival dataset from Kaggle. You may have to create a Kaggle account to download data. (https://www.kaggle.com/gilsousa/habermans-survival-data-set)
- 2. Perform a similar alanlaysis as above on this dataset with the following sections:
- High level statistics of the dataset: number of points, numer of features, number of classes, data-points per class.
- · Explain our objective.
- Perform Univaraite analysis(PDF, CDF, Boxplot, Voilin plots) to understand which features are useful towards classification.
- Perform Bi-variate analysis (scatter plots, pair-plots) to see if combinations of features are useful in classification.

• Write your observations in english as crisply and unambigously as possible. Always quantify your results.

```
In [1]: import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np

#Load haberman.csv into a pandas dataFrame.
haberman = pd.read_csv("haberman.csv")
haberman
```

Out[1]:

	age	year	nodes	status
0	30	64	1	1
1	30	62	3	1
2	30	65	0	1
3	31	59	2	1
4	31	65	4	1
5	33	58	10	1
6	33	60	0	1
7	34	59	0	2
8	34	66	9	2
9	34	58	30	1
10	34	60	1	1
11	34	61	10	1
12	34	67	7	1
13	34	60	0	1

and year nodes status

	aye	yeai	แบนธอ	อเตเนอ
14	35	64	13	1
15	35	63	0	1
16	36	60	1	1
17	36	69	0	1
18	37	60	0	1
19	37	63	0	1
20	37	58	0	1
21	37	59	6	1
22	37	60	15	1
23	37	63	0	1
24	38	69	21	2
25	38	59	2	1
26	38	60	0	1
27	38	60	0	1
28	38	62	3	1
29	38	64	1	1
276	67	66	0	1
277	67	61	0	1
278	67	65	0	1
279	68	67	0	1
280	68	68	0	1
281	69	67	8	2
282	69	60	0	1
283	69	65	0	1

and voar nodes status

	aye	yeai	แบนธอ	อเฉเนอ
284	69	66	0	1
285	70	58	0	2
286	70	58	4	2
287	70	66	14	1
288	70	67	0	1
289	70	68	0	1
290	70	59	8	1
291	70	63	0	1
292	71	68	2	1
293	72	63	0	2
294	72	58	0	1
295	72	64	0	1
296	72	67	3	1
297	73	62	0	1
298	73	68	0	1
299	74	65	3	2
300	74	63	0	1
301	75	62	1	1
302	76	67	0	1
303	77	65	3	1
304	78	65	1	2
305	83	58	2	2

306 rows × 4 columns

Here, our objective of this analysis to predict the survival status of

patients with given features: age, year, lymph nodes

Class Label: status

1 ==> means that a patient survied 5 years or longer

2 ==> means that a patient died within 5 years

Observations:

It is evident that the number of patients who survived 5 years or longer are more than the number of patients who died within 5 years

```
In [33]: haberman.columns
Out[33]: Index(['age', 'year', 'nodes', 'status'], dtype='object')
In [34]: #2-D Scatter-Plot
   haberman.plot(kind='scatter', x='age', y='year');
   plt.show()
```


From the above 2D scatter-plot it is difficult to distinguish between the two classes as there is a lot of overlapping between the two and there is no clear separability

```
In [38]: plt.close();
    sns.set_style("whitegrid");
    sns.pairplot(haberman, hue="status", size=3);
    plt.show()

C:\Users\Vikram\Miniconda3\lib\site-packages\seaborn\axisgrid.py:206
5: UserWarning: The `size` parameter has been renamed to `height`; pl
    eaes update your code.
        warnings.warn(msg, UserWarning)
    C:\Users\Vikram\Miniconda3\lib\site-packages\scipy\stats\stats.py:171
3: FutureWarning: Using a non-tuple sequence for multidimensional ind
    exing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In
    the future this will be interpreted as an array index, `arr[np.array
    (seq)]`, which will result either in an error or a different result.
    return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval
```

C:\Users\Vikram\Miniconda3\lib\site-packages\statsmodels\nonparametri c\kde.py:488: RuntimeWarning: invalid value encountered in true divid binned = fast_linbin(X, a, b, gridsize) / (delta * nobs) C:\Users\Vikram\Miniconda3\lib\site-packages\statsmodels\nonparametri c\kdetools.py:34: RuntimeWarning: invalid value encountered in double _scalars FAC1 = 2*(np.pi*bw/RANGE)**240.00 1.8

Univariate Analysis

```
In [39]: import numpy as np
survived=haberman.loc[haberman["status"] == 1]
died=haberman.loc[haberman["status"] == 2]
plt.plot(survived['age'],np.zeros_like(survived['age']),'o')
plt.plot(died['age'],np.zeros_like(died['age']),'o')
plt.show()
```


Observations:

There seems to be some separablity, but there is also a lot of overlapping between the two classes

So it is tough to predict a patients survival status based on age>33 and age<78

In [40]: import numpy as np survived=haberman.loc[haberman["status"] == 1] died=haberman.loc[haberman["status"] == 2] plt.plot(survived['year'],np.zeros_like(survived['age']),'b') plt.plot(died['year'],np.zeros_like(died['age']),'o') plt.show()

Observations:

There seems to be only one class that is visible on the graph.

So this feature cannot be used to a patient's survival status based on year of operation

```
In [41]: import numpy as np
survived=haberman.loc[haberman["status"] == 1]
    died=haberman.loc[haberman["status"] == 2]
    plt.plot(survived['nodes'],np.zeros_like(survived['age']),'b')
    plt.plot(died['nodes'],np.zeros_like(died['age']),'o')
    plt.show()
```


Observations:

If Number of positive auxillary nodes > 35: then the patient died

Observations:

The distributions of datapoints belonging to class 1 and class 2 are overlapping

warnings.warn(msg, UserWarning)
C:\Users\Vikram\Miniconda3\lib\site-packages\scipy\stats\stats.py:1713:
FutureWarning: Using a non-tuple sequence for multidimensional indexing
is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the futu
re this will be interpreted as an array index, `arr[np.array(seq)]`, wh
ich will result either in an error or a different result.
return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval

Observations:

The distributions of datapoints belonging to class 1 and class 2 are overlapping

```
.add_legend()
plt.show();

C:\Users\Vikram\Miniconda3\lib\site-packages\seaborn\axisgrid.py:230: U
serWarning: The `size` paramter has been renamed to `height`; please up
date your code.
  warnings.warn(msg, UserWarning)
C:\Users\Vikram\Miniconda3\lib\site-packages\scipy\stats\stats.py:1713:
FutureWarning: Using a non-tuple sequence for multidimensional indexing
```

C:\Users\Vikram\Miniconda3\lib\site-packages\scipy\stats\stats.py:1713: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the futu re this will be interpreted as an array index, `arr[np.array(seq)]`, wh ich will result either in an error or a different result.

return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval


```
print(bin edges);
         cdf = np.cumsum(pdf)
         plt.plot(bin edges[1:],pdf);
         plt.plot(bin_edges[1:], cdf)
         counts, bin_edges = np.histogram(died['nodes'], bins=10,
                                           density = True)
         pdf = counts/(sum(counts))
         plt.plot(bin edges[1:],pdf);
         plt.show();
                                 0.0222222 0.02666667 0.01777778 0.00444444
         [0.83555556 0.08
          0.00888889 0.
                                 0.
                                            0.00444444]
         [ 0. 4.6 9.2 13.8 18.4 23. 27.6 32.2 36.8 41.4 46. ]
          1.0
          0.8
          0.6
          0.4
          0.2
          0.0
                          20
                  10
                                  30
                                          40
                                                  50
In [48]: counts, bin edges = np.histogram(survived['nodes'], bins=10,
                                           density = True)
         pdf = counts/(sum(counts))
         print(pdf);
         print(bin_edges)
         #compute CDF
```

```
cdf = np.cumsum(pdf)
plt.plot(bin_edges[1:],pdf)
plt.plot(bin_edges[1:], cdf)
plt.show();
[0.8355556 0.08
                       0.02222222 0.02666667 0.01777778 0.00444444
0.00888889 0.
                       0.
                                   0.00444444]
[ 0. 4.6 9.2 13.8 18.4 23. 27.6 32.2 36.8 41.4 46. ]
1.0
0.8
0.6
0.4
0.2
0.0
         10
                  20
                           30
sns.boxplot(x='status',y='nodes', data=haberman)
```

```
In [49]: #Box-Plot
         plt.show()
```


In [50]: #Violin-plot sns.violinplot(x="status", y="nodes", data=haberman, size=8) plt.show()

C:\Users\Vikram\Miniconda3\lib\site-packages\scipy\stats\stats.py:1713:
FutureWarning: Using a non-tuple sequence for multidimensional indexing
is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the futu
re this will be interpreted as an array index, `arr[np.array(seq)]`, wh
ich will result either in an error or a different result.
 return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval

Bi-Variate Analysis

```
In [51]: sns.set_style("whitegrid")
    sns.FacetGrid(haberman, hue='status', size=4).map(plt.scatter, 'age', 'node
    s').add_legend()
    plt.show()

C:\Users\Vikram\Miniconda3\lib\site-packages\seaborn\axisgrid.py:230: U
    serWarning: The `size` paramter has been renamed to `height`; please up
    date your code.
    warnings.warn(msg, UserWarning)
```



```
In [52]: sns.set_style("whitegrid")
sns.FacetGrid(haberman,hue='status',size=4).map(plt.scatter,'nodes','ye
ar').add_legend()
plt.show()

C:\Users\Vikram\Miniconda3\lib\site-packages\seaborn\axisgrid.py:230: U
serWarning: The `size` paramter has been renamed to `height`; please up
date your code.
   warnings.warn(msg, UserWarning)
```



```
In [53]: sns.set_style("whitegrid")
sns.FacetGrid(haberman,hue='status',size=4).map(plt.scatter,'age','yea
r').add_legend()
plt.show()

C:\Users\Vikram\Miniconda3\lib\site-packages\seaborn\axisgrid.py:230: U
serWarning: The `size` paramter has been renamed to `height`; please up
date your code.
   warnings.warn(msg, UserWarning)
```

