ADDING DENSE LAYERS

A dense layer is a deeply connected neural network layer. It is the most common and frequently used layer.

```
import tensorflow as tf
model = tf.keras.models.Sequential([
    # Note the input shape is the desired size of the image 200x 200 with 3 bytes
    # The first convolution
    tf.keras.layers.Conv2D(16, (3,3), activation='relu', input_shape=(200, 200,
3)),
    tf.keras.layers.MaxPooling2D(2, 2),
    # The second convolution
    tf.keras.layers.Conv2D(32, (3,3), activation='relu'),
    tf.keras.layers.MaxPooling2D(2,2),
    # The third convolution
    tf.keras.layers.Conv2D(64, (3,3), activation='relu'),
    tf.keras.layers.MaxPooling2D(2,2),
    # The fourth convolution
    tf.keras.layers.Conv2D(64, (3,3), activation='relu'),
    tf.keras.layers.MaxPooling2D(2,2),
    # The fifth convolution
    tf.keras.layers.Conv2D(64, (3,3), activation='relu'),
    tf.keras.layers.MaxPooling2D(2,2),
    # Flatten the results to feed into a dense layer
    tf.keras.layers.Flatten(),
    # 128 neuron in the fully-connected layer
    tf.keras.layers.Dense(128, activation='relu'),
    # 5 output neurons for 5 classes with the softmax activation
    tf.keras.layers.Dense(27, activation='softmax')
1)
```

The number of neurons in the Dense layer is the same as the number of classes in the training set. The neurons in the last Dense layer, use softmax activation to convert their outputs into respective probabilities.

Understanding the model is a very important phase to properly using it for training and prediction purposes. Keras provides a simple method, a summary to get the full information about the model and its layers.

```
model.summary()
```