24 2025-10-20 | Week 09 | Lecture 24

The nexus question of this lecture: How do we find a matrix to represent a linear transformation?

This lecture is based on section 5.2 and 5.3

24.1 The algebra of linear transformations

24.1.1 Algebraic operations

Let V and W be vector spaces. Consider two linear transformations $T:V\to W$ and $S:V\to W$. The function T+S is defined as

$$(T+S)(v) := T(v) + S(v), \ v \in V$$

And for $c \in \mathbb{R}$, cT is defined as

$$(cT)(v) := cT(v), \ v \in V$$

Theorem 110. If $T, S: V \to W$ are linear transformations, then so are T+S and cT.

In other words, the set of linear transformations $T:V\to W$ is closed under addition and scalar multiplication. This suggests that set of linear transformations from V to W forms a vector space. (It does. The rabbit hole goes deep...)

Example 111. Suppose

$$S \begin{bmatrix} x \\ y \end{bmatrix} := \begin{bmatrix} 2x - y \\ x + 2y \end{bmatrix}$$
 and $T \begin{bmatrix} x \\ y \end{bmatrix} := \begin{bmatrix} x + y \\ x - y \end{bmatrix}$

End of Example 111. \square

Question 1: What is S + 3T?

$$(S+3T)\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = S\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) + 3T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right)$$

$$= \begin{bmatrix} 2x - y \\ x + 2y \end{bmatrix} + 3\begin{bmatrix} x + y \\ x - y \end{bmatrix}$$

$$= \begin{bmatrix} 2x - y \\ x + 2y \end{bmatrix} + \begin{bmatrix} 3x + 3y \\ 3x - 3y \end{bmatrix}$$

$$= \begin{bmatrix} 5x + 2y \\ 4x - y \end{bmatrix}$$

Question 2: What is $S \circ T$?

$$S \circ T \begin{bmatrix} x \\ y \end{bmatrix} = S \left(T \begin{bmatrix} x \\ y \end{bmatrix} \right)$$

$$= S \begin{bmatrix} x+y \\ x-y \end{bmatrix}$$

$$= \begin{bmatrix} 2(x+y) - (x-y) \\ (x+y) + 2(x-y) \end{bmatrix}$$

$$= \begin{bmatrix} x+3y \\ 3x-y \end{bmatrix}$$

At this point we note that we can represent

$$S = \begin{bmatrix} 2 & -1 \\ 1 & 2 \end{bmatrix}, \quad T = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}, \quad S \circ T = \begin{bmatrix} 1 & 3 \\ 3 & -1 \end{bmatrix}, \quad S + 3T = \begin{bmatrix} 5 & 2 \\ 4 & -1 \end{bmatrix}$$

Notice that

$$\underbrace{\begin{bmatrix} 2 & -1 \\ 1 & 2 \end{bmatrix}}_{S} \underbrace{\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}}_{T} = \underbrace{\begin{bmatrix} 1 & 3 \\ 3 & -1 \end{bmatrix}}_{S \circ T} \quad \text{and that} \quad \underbrace{\begin{bmatrix} 2 & -1 \\ 1 & 2 \end{bmatrix}}_{S} + 3 \underbrace{\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}}_{T} = \underbrace{\begin{bmatrix} 5 & 2 \\ 4 & -1 \end{bmatrix}}_{S+3T}$$

24.1.2 Algebraic rules

The standard algebraic rules work with linear transformations:

Theorem 112. Let R, S, T be linear transformations and $c, d \in R$. Then

- S + T = T + S
- R + (S + T) = (R + S) + T
- c(dT) = (cd)T
- c(S+T) = cS + cT
- R(ST) = (RS)T
- R(S+T) = RS + RT
- (R+S)T = RT + ST
- c(ST) = (cS)T = S(cT)

Observe the glaring lack of the rule that ST = TS, which doesn't hold in general. In fact, all of the above rules are are identical to the rules for matrix algebra (i.e., if S, T, and R are matrices).

This makes sense because, as we show in the next section, linear transformations can be encoded with matrices.

24.2 Representing a linear transformation with a matrix

Let $T: V \to W$ be a linear transformation.

Goal: Find a matrix to represent T.

We'll start by choosing a basis for V and W. Let $\alpha = \{v_1, \ldots, v_n\}$ be a basis for V and $\beta = \{w_1, \ldots, w_m\}$ be a basis for W.

Following the ideas of Example 100, it is enough to understand how T acts on the basis v_1, \ldots, v_n . Observe that

- Every vector in W can be written as a unique linear combination of the basis vectors w_1, \ldots, w_m (because these form a basis).
- The vectors $T(v_1), \ldots, T(v_n)$ are all vectors in W.

From these two observations, we can find scalars $a_{ij} \in \mathbb{R}$ such that

$$T(v_1) = a_{11}w_1 + a_{21}w_2 + \dots + a_{m1}w_m$$

$$T(v_2) = a_{12}w_1 + a_{22}w_2 + \dots + a_{m2}w_m$$

$$\vdots$$

$$T(v_n) = a_{1n}w_1 + a_{2n}w_2 + \dots + a_{mn}w_m$$

We can change notation by writing thes as *coordinate vectors*:

$$T(v_1) = \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix}_{\beta} \qquad T(v_2) = \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{bmatrix}_{\beta} \qquad \cdots \qquad T(v_n) = \begin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{bmatrix}_{\beta}$$

Here, the subscript β indicates that these vectors represent linear combinations of the basis $\beta = \{w_1, \dots, w_m\}$. We can then represent T simply as the $m \times n$ matrix

$$[T]_{\alpha}^{\beta} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

whose columns are the above vectors. We call this matrix the matrix of T with respect to the bases α and β . It is denoted $[T]^{\beta}_{\alpha}$.

Example 113. Let $T \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x+y \\ x-y \end{bmatrix}$. Then we can write $v_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $v_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. Here, we take as our basis $\alpha = \beta = \{v_1, v_2\}$. Observe that

•
$$T(v_1) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

•
$$T(v_2) = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
.

Then

$$[T]_{\alpha}^{\beta} = \begin{bmatrix} & & | & & | \\ T(v_1) & T(v_2) & & \\ | & & | \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

Which makes sense, because

$$T\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x+y \\ x-y \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}.$$

End of Example 113. \square