SUBSTITUTE SEQUENCE LISTING

- (1) GENERAL INFORMATION:
 - (i) APPLICANT:
 - (A) NAME: GENSET SA
 - (B) STREET: 24 RUE ROYALE
 - (C) CITY: PARIS
 - (E) COUNTRY: FRANCE
 - (F) POSTAL CODE: 75008
- (ii) TITLE OF INVENTION: HUMAN DEFENSIN DEF-X GENE AND DNAC COMPOSITION CONTAINING SAME AND DIAGNOSTIC AND THERAPEUTIC APPLICATIONS
 - (iii) NUMBER OF SEQUENCES: 6
 - (iv) CORRESPONENCE ADDRESS:
 - (A) ADDRESSEE: Saliwanchik, Lloyd & Saliwanchik
 - (B) STREET: 2421 N.W. 41st Street, Suite A-1
 - (C) CITY: Gainesville
 - (D) STATE: Florida
 - (E) COUNTRY: USA
 - (F) ZIP: 32606
 - (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERARATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30 (EPO)
 - (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER (unassigned)
 - (B) FILING DATE: OCTOBER 18, 2001
 - (vii) PRIORITY APPLICATION DATA:
 - (A) APPLICATION NUMBER 09/486,580
 - (B) FILING DATE: FEBRUARY 25, 2000
 - (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Frank C. Eisenschenk, Ph.D.
 - (B) REGISTRATION NUMBER: 45,332
 - (C) REFERENCE/DOCKET NUMBER: GEN-100D1
- (2) INFORMATION FOR SEQ ID NO: 1:
 - (1) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 4415 BASE PAIRS
 - (B) TYPE: NUCLEOTIDE
 - (C) STRANDEDNESS: DOUBLE
 - (D) TOPOLOGY: LINEAR
 - (ii) MOLECULE TYPE: DNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
 - (ix) FEATURE:
 - (A) NAME/KEY: Exon 1
 - (B) LOCATION: 1836..1874

2 GEN-100DI

- (1x) FEATURE:
 - (A) NAME/KEY: Exon 2
 - (B) LOCATION: 3394..3577
- (ix) FEATURE:
 - (A) NAME/KEY: Exon 3
 - (B) LOCATION: 4161..4380
- (ix) FEATURE:
 - (A) NAME/KEY: start CDS
 - (B) LOCATION: 3406..3408
- (ix) FEATURE:
 - (A) NAME/KEY: stop CDS
 - (B) LOCATION: 4276..4278
- (ix) FEATURE:
 - (A) NAME/KEY: polyadenylation site
 - (B) LOCATION: 4374..4379
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

ACACCATTG TCTTCATGTA ACCCCATTAG CTATACCCTC TAGTGCAAGG AAACCATAGG 60 GCCTAGGTCA CACCATGAGG CTGCNCTTAC AAGTTATGCA AAAACTATGG ACTTGGGAGA 120 CCTGTGCGTA ACAACATCAC ACNCCAAATT TAACCAGCTC TCCCCATAAC AGCACGCTCA 180 TGTGTTACTG AGGAAATGCC TGTGGATTGG AGTGTGTTCT GTGTGCAGGA GGCTGGTCCA 240 GGTTTCACTT CTGCAGGACA CTGGACGTTT CCCAAAACCA GCAGACTTTC CCCACGTGCA 300 CACACACCC TTCTCATTTT GCCTCTACAT CCATATCCAC TGGGCCCTTC AGGCACCTAC 360 TAATGCCCTA GAACCTAAAA CCATCATCTG GGGCCCAGTT CCCTGAATGG CCCTAATCTC 420 TTCCTCTGCT GGAATGAGTC CAGTGCCCAC TTCCTCCAAC GGTGAAATTG CTGGGCTGCT 480 ACAGATCAGG AACTCACTGC TTCCTCATAG GGGCAGCCGA CTTCACTGCT CTGCAACAGC 540 GACCACCCT AGCGAGGCTT GAGATGCCTC TTGCCTCCTT AAGACTGAGG GAGACGCTTC 600 AGCTCTCACT CCACTGCCCC AAGTCCTCCA CAGCGCGGTG CCTGCTGCCT TCACACAGAG 660 CTGCAGGGGN AGGTCCTGTG TATCCGGCCT GCTGGACCAG CGCTGTGCAC AACCCTCCCA 720 TGGCAACAGT GGCTGCCCGG CCTGCACACT GGGCTTGGCA ACCTCGCTGT AGGTATTTAT 780 TCCCTCAGGA GTGACTGCAT TCTTTTCCCA TTTCCAGAAA ACTGATGCCA TTTACCTCAC 840 TATGAGGAGG AGGAGGAGGA GGAGGGTGGA GAGTGGTACA TTTTAAAATG TGCACTATTC 900 TCCCTAGGAC TCCCCCTCAA ATAACCCAGG AGGGACCATA CCAGCTCATT CCTGTGTATC 960 CCAAGCATAN GAGTAATCAT CCCACTCATG CTGAGTGTAT GGTGGCCATT AAGCCTGCCC 1020 TGAACTGGCT TTAGAACAAG GTGTTTGAGC ACACAGCACC GTCTTGCTGC CACCTTGGCC 1080 CCCTCCCTTG TGAGACCTCT GAGACACATT NAGGTCTCAC CTAAAAATCT CAGGATTTCT 1140

S \SHARE Sequences\GE\\100D1\SequenceList doc/D\B/jaj

3 GEN-100D1

AGGCCCAAAN CGGTCCTAAA	AAATTGTTCA	GTCTGAACTC	TCTAAGGTCA	AGAGAAGAGG	1200
TGGTTGCTCC CTCTAAGAAA	CCACATGTTG	CATGTACATC	CTTAATTCCG	GAAAGTCCAA	1260
CAAACCTGCC CTGCTTAGCA	ACACAAGCCG	AGGTGGTACT	CCTCTCACCC	GGGCATTCTC	1320
CAACACACCT GTTTGTCCAA	ACAGCTTTGA	TTTGTTTTTA	TAGTTGGACC	CCAGGTTCCC	1380
AGGAGGCTGG TTCAGGCCAT	ATTCCAAATC	CTCATCTGTG	TGTGAGTGGC	ATTCTTAGCC	1440
TAGCCTCCTT ACAGGGTGGA	TACTATGATA	CACAGCCAGG	CTGTCCCAGT	GGCTTTCAAT	1500
ATTCTTTTGG TCCAGATAGT	TCAGCCTCAG	CACCAGTGTA	GGCATCACAG	GGTCAATTGT	1560
CTTAGGAGTC ATGGAGAATT	CATAGTTGGT	AGCTACCTGG	GCCTGGCCAG	GGCTGACCAT	1620
AGACAAGGCA TCCCTCTGTG	AACTCCTATT	TTAATGCCAG	CTTCCCAACA	AATTTCTCAA	1680
CTGCTCTTAC CAGCAGGTAT	TTAAACTACT	CAATAGAAAG	TAACCCTGAA	AATTAGGACA	1740
CCTGTTCCCA AAAGACCCTT	AAATAGGGGA	AGTCCTTTCN	CTGCTTGTGC	ACAGCTGCTG	1800
ATGTGGCAAC ATGAGGCCTG	GGACAGGGGA	CTGTCCTCTG	CCCACTCTGG	TAGCCTCACG	1860
TAGCTTAACA ATCTGTCAGT	AATACAATAC	AAAACTTAAA	CTTTCATACT	GCGGTTCCAC	1920
CCAGGAAGCT GTGTTCCCAA	TCTGACCCGT	GATTATGGGG	CCACCTCAGA	GGGNACCCAG	1980
TGAGGGAATA TTTTGCCATC	TGGGACTGTT	GGTTGCTGGG	GGCAGTGGCT	ATGAGCTCAG	2040
TTAATAAACT CAAGCAGTTT	CCTTCCAAAC	ACACATGTCC	TACTTAACGT	GTCCAACAGA	2100
GATGATCATA CTCATANGCT	GCTAAAACAT	TANTTTTATT	TTGAGAAAAG	TCTATTCATG	2160
TTCTTGGCCC ATGGAGTTTT	CATTTNATTA	NTTTATTTAT	TTTGCAGAGA	TGGAGTCTCA	2220
CTATGTTGCT CAAGCTGGTC	TCCAACTCCT	GGGCTCAAGC	GATCTTCCTA	CTTTGGCCTT	2280
TGAAAGCGCT GAGATTGCCT	GTGTGAGCCA	TCATGGGGGC	TCACTGGCCC	ACTGATTAAT	2340
CAGATTAATT GTTTTTTGCT	ATTGAANTTG	TTTGACTTCC	TTGTATATTC	GGATATTTAC	2400
CCATTCTAAC ACGTAGGGTT	TGCAAATATT	TTCTCTCATG	TTCTGTGTTG	CCTTTTCACT	2460
CAGTTGATGG TTTCCTTTGC	TGTGCAGGTG	CTTTAGTGTT	CAACGCAGCC	CCGCTTGTCT	2520
ATTTTCCATT TTATTGCCTG	TCCCTTTGAT	GTCATAGCCA	AGAAATAATT	GCCCAGATTA	2580
ATGTCAAAAA GCTTTATCCC	TATATATTCT	TCTAGTAGTT	TATGGTTTCA	GATCTTATGT	2640
TTAGGTCTTC AATCCATTGA	GTTGATTTTT	GTATGTGGTA	TAAGAAAAA	GACCACATGT	2700
ATACATATCT CAAATTCTAA	GGTAGTATAT	ATTAGACACA	TACAATGTGT	CTATTTACAC	2760
ACATTGAGCT GAAAATAATA	AACATATTTT	TATCTTTCAA	TCAACTCTAT	CTCTATCTCA	2820
CTGAACTTGT TTCACCTATA	GCCTGATGAG	GTTGCTGTCC	TCTCTACCCC	AGCTCCTATA	2880
GGAGACTGCT CATCCCCTAA	CCTCAAAAAC	CCCTTCATGA	GGGTGATAAT	GCCCTTGAAT	2940
CCTGCAATGA ATTAGTTCTC	TACTACAGTG	GAATTCAGGT	CTGTTATGAG	GGTCTGGATC	3000

TCTGAAGAGA	AGAGCTCTCA	TTTTCAGAAA	ATAAGCAGGA	TTTATTCCCT	GAAATTACTG	3060
AATTAAATCA	CTGTTTCGAT	TACTTTTTGC	AATATTAAAA	GTAAATATTT	AAACAGGTAA	3120
AAACAGAAAT	AATGGTAGGG	TCCTTATCAT	CACCGTGAAT	TCCAAGCTAG	CATAGACACT	3180
AAACCTAGAG	ATTCACACTA	GAATGAAAGC	TGGGAGAGCA	GAGGAGTCTC	AGAAGGATGT	3240
GGAGGCCAAT	GGACACCTGC	AACCTCTCCA	ACGAAATGCC	TACCTCCTCT	CACTGCAGCA	3300
TCCATCTCTG	AGCCTTCTCG	CAGCAGAGCT	ATAAATTCAG	CCTGGCTCCT	CCGTTCCCAC	3360
ACATCCACTC	CTGCTCTCCC	TCCTCTCCTC	CAGGTGACTA	CAGTTATGAG	GACCCTCACC	3420
CTCCTCTCTG	CCTTTCTCCT	GGTGGCCCTT	CAGGCCTGGG	CAGAGCCGCT	CCAGGCAAGA	3480
GCTCATGAGA	TGCCAGCCCA	GAAGCAGCCT	CCAGCAGATG	ACCAGGATGT	GGTCATTTAC	3540
TTTTCAGGAG	ATGACAGCTG	CTCTCTTCAG	GTTCCAGGTG	AGAGATGCCA	GCATGCAGAG	3600
CTACAGACTA	GACAGAAGGA	CAGGAGACAG	GCTCTGGAAT	TGGATCTCAG	TGGCAGATGT	3660
CACTTAGGTG	GCTATACTTA	ACATCTCTGG	TCCTGGATTT	TCTCATATCT	AAATGGAATA	3720
GAGAACCAAA	GAAATCTAAG	AGATTTTTCT	TTCTCCAAAA	ACTTGATTCC	AAGATATGAC	3780
TGTGAAATTC	ACTAGATTTA	AGATATAAGG	AGATGCTACC	TAGTTCCTTC	TGGAGCCAGA	3840
CAAACAAGCT	TAAGTATATA	GGAAAATATT	TCACCCTGTC	TATATAGGAG	GTTTTAGAAC	3900
CTGGAGAGGA	GCCTAAGAAT	GTGTTCAGGT	GTGTGTGTGA	TGGGCAGGAA	TGCAGAAAAG	3960
TGAAGCAAAG	GAGAATGAGT	CTCGAATCCT	GTGTGACCAG	CACTGCTCTG	TGTATTTATT	4020
CCTATTGACT	GAGATTGTTT	GTGCTACCGG	CTGTAATACA	GCCAACATCA	CTCATCAGCC	4080
AACATGTGAC	TTCTCCAAGA	TTCCCTTTAC	CACCCACTGC	TGNACCCCGT	ACTCAGTTTC	4140
TGATGCTCTC	TCTGGGTCCC	CAGGCTCAAC	AAAGGGCTTG	ATCTGCCATT	GCAGAGTACT	4200
ATACTGCATT	TTTGGAGAAC	ATCTTGGTGG	GACCTGCTTC	ATCCTTGGTG	AACGCTACCC	4260
AATCTGCTGC	TACTAAGCTT	GCAGACTAGA	GAAAAAGAGT	TCATAATTTT	CTTTGAGCAT	4320
TAAAGGGAAT	TGTTATTCTT	ATACCTTGTC	CTCGATTTCC	TGTCCTCATC	CCAAATAAAT	4380
ACTTGGTAAC	ATGATTTCCG	GGTTTTTTTT	TTTTT			4419

- (2) INFORMATION FOR SEQ ID NO: 2:
 - (i) SEQUENCE CHARACTERISTIC:
 - (A) LENGTH: 453 BASE PAIRS
 - (B) TYPE: NUCLEOTIDE
 - (C) STRANDEDNESS: DOUBLE
 - (D) TOPOLOGY: LINEAR
 - (1i) MOLECULE TYPE: cDNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

CTCT	GCCC	CAC I	CTGG	STAGO	CC TC	CACGI	TAGCT	TAA	ACAAT	CTG	TGAC	CTACA	AGT T		G AGG E Arg	57
ACC Thr	CTC Leu	ACC Thr 5	CTC Leu	CTC Leu	TCT Ser	GCC Ala	TTT Phe 10	CTC Leu	CTG Leu	GTG Val	GCC Ala	CTT Leu 15	CAG Gln	GCC Ala	TGG Trp	105
GCA Ala	GAG Glu 20	CCG Pro	CTC Leu	CAG Gln	GCA Ala	AGA Arg 25	GCT Ala	CAT His	GAG Glu	ATG Met	CCA Pro 30	GCC Ala	CAG Gln	AAG Lys	CAG Gln	153
CCT Pro 35	CCA Pro	GCA Ala	GAT Asp	GAC Asp	CAG Gln 40	GAT Asp	GTG Val	GTC Val	ATT Ile	TAC Tyr 45	TTT Phe	TCA Ser	GGA Gly	GAT Asp	GAC Asp 50	201
														TGC Cys 65		249
														ACC Thr	TGC Cys	297
	ATC Ile											TAA * 95	GCT	rgca(GAC	346
TAG	AGAA	AAA (GAGT:	CAT	AA T	TTTC	rttg2	A GC	ATTA	AAGG	GAAT	TGT:	rat :	CTT	ATACCT	406
тстс	ግርጥር(י ידעני	דידירכי	rgre	TT C	ATCC	CAAAC	г аал	ATAC'	rtgg	TAAC	CATG				453

(2) INFORMATION FOR SEQ ID NO: 3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 94 AMINO ACIDS
 - (B) TYPE: AMINO ACID
 - (C) STRANDEDNESS: SINGLE
 - (D) TOPOLOGY: LINEAR
- (ii) MOLECULE TYPE: PROTEIN
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (ix) FEATURE:
 - (A) NAME/KEY: SIGNAL PEPTIDE
 - (B) LOCATION: 1..19
- (ix) FEATURE:
 - (A) NAME/KEY: PRO REGION
 - (B) LOCATION: 20..63
- (ix) FEATURE:
 - (A) NAME/KEY: MATURE PEPTIDE

- (B) LOCATION: 64..94
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:

Met Arg Thr Leu Thr Leu Leu Ser Ala Phe Leu Leu Val Ala Leu Gln
1 5 10 15

Ala Trp Ala Glu Pro Leu Gln Ala Arg Ala His Glu Met Pro Ala Gln 20 25 30

Lys Gln Pro Pro Ala Asp Asp Gln Asp Val Val Ile Tyr Phe Ser Gly 35 40 45

Asp Asp Ser Cys Ser Leu Gln Val Pro Gly Ser Thr Lys Gly Leu Ile 50 55 60

Cys His Cys Arg Val Leu Tyr Cys Ile Phe Gly Glu His Leu Gly Gly 65 70 75 80

Thr Cys Phe Ile Leu Gly Glu Arg Tyr Pro Ile Cys Cys Tyr 85 90

- (2) INFORMATION FOR SEQ ID NO: 4:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 19 AMINO ACIDS
 - (B) TYPE: AMINO ACID
 - (C) STRANDEDNESS: SINGLE
 - (D) TOPOLOGY: LINEAR
 - (ii) MOLECULE TYPE: SIGNAL PEPTIDE
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

Met Arg Thr Leu Thr Leu Leu Ser Ala Phe Leu Leu Val Ala Leu Gln 1 5 10

Ala Trp Ala

- (2) INFORMATION FOR SEQ ID NO: 5:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 44 AMINO ACIDS
 - (B) TYPE: AMINO ACID
 - (C) STRANDEDNESS: SINGLE
 - (D) TOPOLOGY: LINEAR
 - (ii) MOLECULE TYPE: PRO REGION
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:

Glu Pro Leu Gln Ala Arg Ala His Glu Met Pro Ala Gln Lys Gln Pro 1 5 10 15

Pro Ala Asp Asp Gln Asp Val Val Ile Tyr Phe Ser Gly Asp Asp Ser 20 25 30

Cys Ser Leu Gln Val Pro Gly Ser Thr Lys Gly Leu 35 40

- (2) INFORMATION FOR SEQ ID NO: 6:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 31 AMINO ACIDS
 - (B) TYPE: AMINO ACID
 - (C) STRANDEDNESS: SINGLE
 - (D) TOPOLOGY: LINEAR
 - (ii) MOLECULE TYPE: MATURE PEPTIDE
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:

Ile Cys His Cys Arg Val Leu Tyr Cys Ile Phe Gly Glu His Leu Gly
1 5 10 15

Gly Thr Cys Phe Ile Leu Gly Glu Arg Tyr Pro Ile Cys Cys Tyr 20 25 30