

Σχολή Τεχνολογικών Εφαρμογών (ΣΤΕΦ) Τμήμα Μηχανικών Πληροφορικής Τ.Ε. Διδάσκων: Γκόνκος Χρήστος

Μάθημα: Τεχνητή Νοημοσύνη (εργαστήριο

Δ' εξαμήνου)

Ακαδημαϊκό έτος 2016-2017 εαρινό εξάμηνο

Ασκήσεις Prolog

Άσκηση 1

Δίνεται η ακόλουθη βάση γνώσης:

```
likes(john, mary).
likes(john, trains).
likes(peter, fast cars).
likes(Person1, Person2):-
      hobby(Person1, Hobby),
      hobby(Person2, Hobby).
hobby(john,trainspotting).
hobby(tim, sailing).
hobby(helen, trainspotting).
hobby(simon, sailing).
```

- Α. Τι αποτελέσματα θα εμφανίσουν τα ακόλουθα ερωτήματα;
 - ?- likes(trains, john).
 - ?- likes(helen,john).
 - 3. ?- likes(tim, helen).
 - 4. ?- likes(john,X).
- Β. Σχεδιάστε το δένδρο αναζήτησης για την ερώτηση likes(john, X).
- Γ. Προσθέστε τον κανόνα ότι αν κάποιος έχει χόμπι το trainspotting τότε του αρέσουν τα τρένα.

Άσκηση 2

Δίνεται η ακόλουθη βάση γνώσης:

```
hold_party(X):-
      birthday(X),
      happy(X).
birthday(tom).
birthday(fred).
birthday(helen).
happy(mary).
happy(jane).
happy(helen).
```

- Α. Τι αποτελέσματα θα εμφανίσουν τα ακόλουθα ερωτήματα;
 - ?- birthday(jane).
 - 2. ?- hold party(X).
- Β. Σχεδιάστε το δένδρο αναζήτησης για την ερώτηση hold_party(X).
- Γ. Προσθέστε τον κανόνα ότι αν κάποιος έχει γενέθλια τότε είναι χαρούμενος. Τι θα εμφανίσει τώρα το ακόλουθο ερώτημα;
- ?- hold party(X).

Άσκηση 3

Δίνεται η ακόλουθη βάση γνώσης:

A. Πόσα είναι τα γεγονότα, πόσοι είναι οι κανόνες, πόσες είναι οι προτάσεις, πόσα και ποια είναι τα κατηγορήματα και πόσες είναι οι μεταβλητές που χρησιμοποιούνται στη βάση γνώσης; Περιγράψτε λεκτικά την τελευταία πρόταση της βάσης γνώσης.

Β. Τι αποτελέσματα θα εμφανίσουν τα ακόλουθα ερωτήματα;

```
    ?- woman(X).
    ?- loves(panos,X), woman(X).
    ?- loves(petros,X), woman(X).
```

4. ?- jealous(panos,X).

Γ. Προσθέστε τον απαραίτητο κώδικα έτσι ώστε όταν θα γίνεται η ερώτηση woman_loved(X) να εμφανίζει όλα τα ονόματα γυναικών που κάποιος τις αγαπά.

Δ. Σχεδιάστε το δένδρο αναζήτησης για την ερώτηση jealous (panos, X).

Άσκηση 4

Δίνεται η ακόλουθη βάση γνώσης

```
bigger(elephant, horse).
bigger(horse, donkey).
bigger(donkey, dog).
bigger(dog, monkey).
is_bigger(X,Y):-bigger(X,Y).
is_bigger(X,Y):-bigger(X,Z), is_bigger(Z,Y).
```

Α. Τι αποτελέσματα θα εμφανίσουν τα ακόλουθα ερωτήματα;

```
?- is_bigger(elephant, monkey).
?- is_bigger(X,donkey).
```

B. Διατυπώστε το ερώτημα: «Ποια είναι τα ζώα X που είναι μεγαλύτερα από monkey και μικρότερα από donkey;». Τι θα επιστρέψει το ερώτημα αυτό;

Γ. Σχεδιάστε το δένδρο αναζήτησης για την ερώτηση is_bigger(donkey, Y).

Άσκηση 5

Α. Με βάση το ακόλουθο σχήμα που δείχνει σε ένα υποθετικό κοινωνικό δίκτυο τις περιπτώσεις που ένα άτομο ακολουθεί ένα άλλο άτομο (π.χ. ο Πέτρος την Σοφία) καταγράψτε τη βάση γνώσης που ορίζει τα κατάλληλα γεγονότα και κανόνες που ζητούνται.

- 1. Ορίστε τα κατηγορήματα male/1 και female/1 που καθορίζουν το φύλο καθενός που συμμετέχει στο κοινωνικό δίκτυο.
- 2. Ορίστε το κατηγόρημα follows/2 για όλες τις περιπτώσεις που κάποιο άτομο ακολουθεί κάποιο άλλο άτομο.
- 3. Ορίστε το κατηγόρημα friends/2 που ορίζει ότι δύο άτομα είναι φίλοι αν ισχύει και για τους δύο ότι ο ένας ακολουθεί τον άλλο.
- 4. Ορίστε τα κατηγορήματα male_friends/2 και female_friends/2 που εντοπίζουν όλους τους άντρες φίλους και όλες τις γυναίκες φίλες ενός ατόμου αντίστοιχα.
- 5. Ορίστε το κατηγόρημα friend_same_gender/2 που εντοπίζει όλους τους φίλους που είναι του ίδιου φύλου.
- 6. Ορίστε το κατηγόρημα recommend_common_friends (X,Y) που εντοπίζει κάθε Y που είναι φίλος ενός φίλου του X (χωρίς να εμφανίζει και το ίδιο το X).
- Β. Εισάγετε τις ακόλουθες ερωτήσεις και καταγράψτε τα αποτελέσματα:
 - 1. Να βρεθούν όλα τα άτομα που ακολουθούν την Σοφία.
 - 2. Να βρεθούν όλες οι γυναίκες που ακολουθούν την Σοφία.
 - 3. Να βρεθούν όλα τα ζεύγη φίλων.
 - 4. Να βρεθούν οι άνδρες φίλοι του Πέτρου.
 - 5. Να βρεθούν όλα τα ζεύγη ατόμων που είναι φίλοι και είναι του ίδιο φύλου.
 - 6. Να βρεθούν για τον Ηλία οι προτάσεις νέων φίλων σύμφωνα με το κατηγόρημα recommend_common_friends/2.

Άσκηση 6

Σχεδιάστε το δένδρο αναζήτησης για το ερώτημα male_friends(petros,A) στην ακόλουθη βάση γνώσης.

```
friends(X,Y):-
    follows(Y,X).

male_friends(X,Y):-
    friends(X,Y),
    male(Y).

follows(ilias, petros).
follows(petros,ilias).
follows(petros, demos).
follows(demos, petros).
follows(petros, sofia).

male(ilias).
male(demos).
?- male_friends(petros,A).
```

Άσκηση 7

Σχεδιάστε το δένδρο αναζήτησης για το ερώτημα descend(anna,donna) στην ακόλουθη βάση γνώσης.

```
child(anna,bridget).
child(bridget,caroline).
child(caroline,donna).
child(donna,emily).
descend(X,Y):-child(X,Y).
descend(X,Y):-child(X,Z), descend(Z,Y).
?- descend(anna,donna).
```

Άσκηση 8

A. Να υλοποιηθεί ένα πρόγραμμα Prolog το οποίο να προσομοιώνει έναν ημιαθροιστή όπως απεικονίζεται στο ακόλουθο σχήμα

Х	Υ	XOR	AND
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Ημιαθροιστής

- 1. Υλοποιήστε τα κατηγορήματα and_gate/3, xor_gate/3 και half_adder/4.
- 2. Υποβάλετε το ερώτημα half_adder(X,Y,C,S) και καταγράψτε τα αποτελέσματα.
- Υποβάλετε το ερώτημα
 half_adder(X,Y,C,S), format('X=~w Y=~w C=~w S=~w ~n', [X,Y,C,S]), fail.
 Καταγράψτε και εξηγήστε το αποτέλεσμα που λαμβάνετε.

B. Επεκτείνατε το προηγούμενο πρόγραμμα έτσι ώστε να προσομοιώνει έναν πλήρη αθροιστή όπως απεικονίζεται στο ακόλουθο σχήμα.

Χ	Υ	OR
0	0	0
0	1	1
1	0	1
1	1	1

- 1. Υλοποιήστε τα κατηγορήματα or_gate/3 και full_adder/5.
- 2. Υποβάλετε το ερώτημα full_adder(0, X, Y, C, S) και καταγράψτε τα αποτελέσματα.
- 3. Υποβάλετε το ερώτημα full_adder(1, X, Y, C, S) και καταγράψτε τα αποτελέσματα.

Γ. Επεκτείνατε το πρόγραμμα έτσι ώστε να προσομοιώνει έναν αθροιστή 3 ψηφίων όπως απεικονίζεται στο ακόλουθο σχήμα (προσθέτει τους δυαδικούς αριθμούς $A_2A_1A_0$ και $B_2B_1B_0$ έχοντας ως κρατούμενο το C_0). Για παράδειγμα η πρόσθεση των αριθμών 101 και 110 με κρατούμενο 1 αντιστοιχεί σε A_2 =1, A_1 =0, A_0 =1, B_2 =1, B_1 =1, B_0 =0 και C_0 =1 και θα δώσει ως αποτέλεσμα τον δυαδικό αριθμό 1100 δηλαδή C_3 =1, C_3 =1, C_3 =0.

Αθροιστής δυαδικών αριθμών με 3 ψηφία

- 1. Υλοποιήστε το κατηγόρημα adder_3_digits(C0,A2,A1,A0, B2,B1,B0,C3,S2,S1,S0).
- 2. Εισάγετε το ερώτημα που πραγματοποιεί την άθροιση των δυαδικών αριθμών 011 και 001 με κρατούμενο 0.
- 3. Εισάγετε το ερώτημα που πραγματοποιεί την άθροιση των δυαδικών αριθμών 111 και 111 με κρατούμενο 1.

Άσκηση 9

Γράψτε το κατηγόρημα factorial/2 το οποίο υπολογίζει το παραγοντικό (n!=1*2*3*...*n) ενός ακεραίου αριθμού.

Άσκηση 10

Γράψτε τα κατηγορήματα sum/2 και prod/2 που υπολογίζουν το άθροισμα και το γινόμενο των στοιχείων μιας λίστας.

Πηγές

- 1. Τεχνικές Λογικού Προγραμματισμού Η Γλώσσα Prolog, Σακελλαρίου Ηλίας, Βασιλειάδης Νικόλαος, Κεφαλάς Πέτρος, Σταμάτης Δημοσθένης. Ελληνικά Ακαδημαϊκά Συγγράμματα και Βοηθήματα, 2015.
- 2. Learn Prolog Now http://www.learnprolognow.org