

Limits and derivatives

Differentials (Δ) measure the change in the dependent variable while **derivatives** $(\frac{d}{dx}f(x))$ measure the rate of the change of the dependent variable with respect to the independent variable.

$$f'(x) = \frac{d}{dx}f(x) = \frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Newton's notation

Leibniz's notation

Numerical differentiation

$$\lim_{h\to 0} \frac{f(x+h) - f(x)}{h}$$

When x is known, h is very small and f unknown.

Symbolic differentiation

$$f(x) = x^2 \to \frac{d}{dx} f(x) = 2x$$

Convert a function into a differentiable computational graph PyTensor

Gradient Descent

If the multivariable function F(x) is defined and differentiable in a neighborhood of a point a, then F(x) decrease fastest if one goes from a in the direction of the negative gradient of F at a.

$$\boldsymbol{a}_{n+1} = \boldsymbol{a}_n - \gamma \Delta F(\boldsymbol{a}_n)$$

Derivative rules

Common Functions	Function	Derivative
Constant	С	0
Line	X	1
	ax	a
Square	x^2	2x
Square Root	$\sqrt{_{ m X}}$	$(^{1}/_{2})X^{^{-1}/_{2}}$
Exponential	e ^x	e ^x
	a^{x}	ln(a) a ^x
Logarithms	ln(x)	1/x
	$\log_a(x)$	1 / (x ln(a))
Trigonometry (x is in <u>radians</u>)	sin(x)	cos(x)
	cos(x)	$-\sin(x)$
	tan(x)	sec ² (x)
Inverse Trigonometry	sin ⁻¹ (x)	$1/\sqrt{(1-x^2)}$
	cos ⁻¹ (x)	$-1/\sqrt{(1-x^2)}$
	tan ⁻¹ (x)	$1/(1+x^2)$

Rules	Function	Derivative
Multiplication by constant	cf	cf'
<u>Power Rule</u>	x ⁿ	nx ⁿ⁻¹
Sum Rule	f + g	f' + g'
Difference Rule	f - g	f' - g'
<u>Product Rule</u>	fg	f g' + f' g
Quotient Rule	$\frac{f}{g}$	$\frac{f'g-fg'}{g^2}$
Reciprocal Rule	1/f	-f'/f ²
Chain Rule (as <u>"Composition of</u> <u>Functions")</u>	f°g	(f' ° g) × g'
Chain Rule (using ')	f(g(x))	f'(g(x))g'(x)
Chain Rule (using $\frac{d}{dx}$)	$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$	

