第三讲

线性规划对偶理论

对偶的由来

$$Max$$
 $4x_1 + x_2 + 3x_3$
 $5.+$ $x_1 + 4x_2 \le 1$
 $3x_1 - x_2 + x_3 \le 3$
 $x_1, x_2, x_3 \ge 0$
五个可行解 给出最优的标、
砂報信品5 - 7下号...
女の $(1,0,0)^T \Rightarrow C^* \ge 4$
 $(0,0,3)^T \Rightarrow C^* \ge 9$

?一个可行解是程 optimed

我的需要 (*的上界!

 $10X_1 + X_2 + 3X_3 \leq 10$

Min $y_1 + 3y_2$ \Rightarrow S.t. $y_1 + 3y_2 > 4$ $4y_1 - y_2 > 1$ $y_2 > 3$ $y_1 > 0$

对偶的一般形式

力一个说法

 $Max 4x_1+3x_2$

Min 244, +264

5.4. $2X_1 + 3X_2 \le 24$ $5X_1 + 2X_2 \le 26$

5.4. 29, +59, >4

391+242 > 3

J1, J2 30

X, X270

一般井黄次丁。

$$(p) \max_{A \times \leq b} c^{T} \times (p) \qquad \text{min } b^{T} \text{y} = c$$

$$(p) \text{A} \times \leq b \qquad \text{for } b^{T} \text{y} = c$$

$$(p) \text{A} \times \leq b \qquad \text{for } b^{T} \text{y} = c$$

$$(p) \text{A} \times \leq b \qquad \text{for } b^{T} \text{y} = c$$

$$(p) \text{A} \times \leq b \qquad \text{for } b^{T} \text{y} = c$$

$$(p) \text{A} \times \leq b \qquad \text{for } b^{T} \text{y} = c$$

对偶例子

$$max z = 4x_1 + 3x_2$$

$$s.t. 2x_1 + 3x_2 \le 24$$

$$5x_1 + 2x_2 \le 26$$

$$x_1, x_2 \ge 0$$

对偶例子

$$max z = 4x_1 + 3x_2$$

$$s.t. 2x_1 + 3x_2 \le 24$$

$$5x_1 + 2x_2 \le 26$$

$$x_1, x_2 \ge 0$$

$$min z = 24y_1 + 26y_2$$

$$s.t. 2y_1 + 5y_2 \ge 4$$

$$3y_1 + 2y_2 \ge 3$$

$$y_1, y_2 \ge 0$$

对偶对应关系

原始 (P)			対偶		
max	$c^T x$		(D) min	$y^T b$	
s.t.	$a_i^T x \le b_i$	$i=1,\ldots,p$	s.t.	$y_i \ge 0$	
	$a_i^T x \ge b_i$	$i = p + 1, \dots, l$		$y_i \le 0$	
	$a_i^T x = b_i$	$i = l, \dots, m$		$y_i \leq 0$	
	$x_j \ge 0$	$j=1,\ldots,q$	A	$A_j^T y \ge c_j$	
	$x_j \leq 0$	$j = q + 1, \dots, h$	A	$A_j^T y \le c_j$	
	$x_j \leq 0$	$j = h, \dots, n$	F	$A_j^T y = c_j$	

 $max c^{T}x min y^{T}b$ $(P) s.t. Ax \le b (D) s.t. y^{T}A \ge c^{T}$ $x \ge 0 y \ge 0$

> 对偶的自反性:

设(D)是(P)的对偶问题,那么(P)也是(D)的对偶。

$$max c^{T}x min y^{T}b$$

$$(P) s.t. Ax \le b (D) s.t. y^{T}A \ge c^{T}$$

$$x \ge 0 y \ge 0$$

▶弱对偶定理

- 口若(P)和(D)均有有限可行解,(P)问题任一可行解的目标函数值总是不大于(D)问题的任一可行解的目标函数值
- 口设x和y分别是(P)和(D)的可行解,若二者的目标函数值相等,则它们分别是各自问题的最优解
- 口若(P)有无限最优解,则(D)不可行;若(D)有无限最优解,则(P)不可行

$$max$$
 c^Tx min y^Tb
$$(P) s.t. Ax \le b \qquad (D) s.t. y^TA \ge c^T$$

$$x \ge 0 \qquad y \ge 0$$

▶强对偶定理

若(P) (或(D)) 有有限最优解,则(D) (或(P)) 也有有限最优解,且目标函数值相等

$$max c^{T}x min y^{T}b$$

$$(P) s.t. Ax \le b (D) s.t. y^{T}A \ge c^{T}$$

$$x \ge 0 y \ge 0$$

▶强对偶定理

若(P) (或(D)) 有有限最优解,则(D) (或(P)) 也有有限最优解,且目标函数值相等

▶互补松弛定理

若 x^*, y^* 分别是(P), (D)的可行解,则

$$x^*, y^*$$
 最优
$$\begin{cases} (y^{*T}A - c^T)x^* = 0 \\ y^{*T}(Ax^* - b) = 0 \end{cases}$$

	c_B^T	c_{N}^{T}	
x_B	A_B	A_N	b

检验数

目标值相反数

	0	$c_N^T - c_B^T A_B^{-1} A_N$	$-c_B^T A_B^{-1} b$
x_B	$I_{m \times m}$	$A_B^{-1} \boldsymbol{A_N}$	$A_B^{-1}b$

$$max c^T x$$

$$(P) s.t. Ax \le b$$

$$(P) \quad s. t. \quad Ax \le b$$
$$x \ge 0$$

$$min$$
 y^Tb

(D) s.t.
$$y^T A \ge c^T$$

 $y \ge 0$

$$\frac{A \times + I \cdot \overline{x} = b}{C^{T} - C^{T}_{B} A^{T}_{B} A} - C^{T}_{B} A^{T}_{B} A$$

$$C^{T} - C^{T}_{B} A^{T}_{B} A - C^{T}_{B} A^{T}_{B} b$$

$$A^{T}_{B} A A A^{T}_{B} A > C^{T}$$

$$C^{T}_{B} A^{T}_{B} A > C$$

$$C^{T}_{B} A^{T}_{B} A > C$$

$$C^{T}_{B} A^{T}_{B} b = C^{T} x^{T} x$$

$$Y^{T} = C^{T}_{B} A^{T}_{R}$$

单纯形法

再四腹下单纯的表:

① 保证可行

换个角度

那么, 石过来呢?

- ①保证对偶可行 050
- ②逐步选兴使得 (原始)可行

AB6 20

一对偶单纯形式

例子

	O	-1	-2	0	6	
$\times_{\mathfrak{l}}$	ı	1	1	6	0	5
X ₄	0	2	1)	0	5
×5	0	-4	 1 -6	0	1	5 5 -9 44

对偶单纯形法

对偶单纯形法

- (1)初始单纯形表, 保证对偶可行 (5 < 0)
- (2) 林雪时行性 ABb 20? Yes, done

(3) 基当年
$$\overrightarrow{A}_{B} = (\widetilde{A}_{L}, -\widetilde{A}_{m})^{T}$$

