Chapter 3: Section 1: Simple Harmonic Motion

- Example of a simple pendulum is a particle of mass m connected by a massless string to a rigid support
 - o Theta is angle that string makes with vertical and assume string is always taut
 - Assume only 2 forces on particle
 - Gravity and tension of string
 - Parallel forces add to zero assuming that string doesn't stretch or break
 - Perpendicular: $F_{theta} = -mgsin(theta)$
- Newton's second law tells us that this force is equal to the mass times the acceleration
 of the particle along the circular arc that is the particle's trajectory
 - \circ F_{theta} = md²s/dt²
 - Where arc is s = I*theta
 - Equation of motion is $(d^2(theta)/dt^2) = (-g/I)(theta)$
 - Central equation for SHM
 - General solution: theta = theta₀(sin(omega*t + phi))
 - Omega = $(g/I)^{\frac{1}{2}}$ and phi are constants that depend on initial displacement and velocity of the pendulum

<u>Chapter 3: Section 2: Making the Pendulum More Interesting: Adding Dissipation, Nonlinearity, and a Driving Force</u>

- Start by adding damping to simple example in section 1
 - Manner in which friction enters the equation of motion depends on the origin of the friction
 - Sources include effective bearing where the string of the pendulum connects to the support, air resistance, etc
 - Damping force is proportional to velocity
 - Equation of motion for damped pendulum: (d²theta/dt²) = (-g/l)(theta)-q(dtheta/dt)
 - Second term on right models friction
 - Still linear, can solve analytically
 - Underdamped solution: theta(t) = theta₀e^{-qt/2}sin((omega²-q²/4)^{1/2}t+phi))
 - Shows oscillatory behavior with frequency (omega²-q²/4)^{1/2}
 - Overdamped solution: theta(t) = theta_ne^{-(q/2+/-(q^2/4-omega^2)^1/2)*t}
 - Critically damped solution: theta(t) = (theta₀ + Ct)e^{-qt/2}
- Driven, damped pendulum undergoes a simple harmonic oscillation with angular frequency of driving force

Chapter 3: Section 3: Chaos in the Driven Nonlinear Pendulum

- Do not assume small-angle approximation, and do not expand the sin(theta) term
- Include friction of the form -q(dtheta/dt)
- Add to our model a sinusoidal driving force F_D sin(omega_Dt)
 - Put the three together: (d₂theta/dt²) = (-q/l)sin(theta)-q(dtheta/dt)+F_Dsin(omega_Dt)
 - Call this model for nonlinear, damped, driven pendulum (physical pendulum)