Intégration et Probabilités

ENS Paris, 2024/2025

Benoît Laslier laslier@dma.ens.fr

 $TD6 : Espaces L^p$

Exercice 1. [Comparaison de convergences]

- 1. Soit $(f_n)_{n\geq 0}$ une suite de $L^p(E,\mathcal{E},\mu)\cap L^q(E,\mathcal{E},\mu)$ avec $p,q\in [1,+\infty[$ et $p\neq q.$ On suppose que $f_n\to 0$ dans L^p quand $n\to\infty$ et que $(f_n)_{n\geq 0}$ est une suite de Cauchy dans L^q . Montrer que $f_n\to 0$ dans L^q quand $n\to\infty$.
- 2. Soit $(f_n)_{n\geq 0}$ une suite de $L^p(E,\mathcal{E},\mu)$ qui converge dans L^p vers f et qui converge également μ -p.p. vers g. Montrer que $g\in L^p$ et que f=g μ -p.p.

Exercice 2. [Uniforme intégrabilité] Soit (E, \mathcal{E}, μ) un espace mesuré tel que $\mu(E) < \infty$. On considère une suite $(f_n)_{n\geq 0}$ de $L^p(E, \mathcal{E}, \mu)$, $p\in]1,\infty]$, que l'on suppose bornée dans L^p , c'est-à-dire $\sup_{n\geq 1}\|f_n\|_p<\infty$. On considère aussi une fonction mesurable f sur (E, \mathcal{E}, μ) telles que $f_n\to f$ μ -p.p. quand $n\to\infty$.

- 1. Montrer que $f \in L^p(E, \mathcal{E}, \mu)$.
- 2. Montrer que pour tout $\epsilon > 0$, $\mu(|f_n f| \ge \epsilon) \to 0$.
- 3. En déduire que $f_n \to f$ dans L^r pour tout $r \in [1, p[$.

Exercice 3. Soit (E, \mathcal{E}, μ) un espace mesuré et soit $p \in [1; +\infty[$.

- 1. Montrer que les fonctions étagées h vérifiant $\mu(h \neq 0) < +\infty$ sont denses dans $L^p(E, \mathcal{E}, \mu)$.
- 2. Soit K un compact et soit U un ouvert de \mathbb{R}^d vérifiant $K \subset U$. Montrer qu'il existe φ continue à support compact vérifiant $\mathbf{1}_K \leq \varphi \leq \mathbf{1}_U$.
- 3. Montrer que les fonctions continues à support compact sont denses dans $L^p(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d), \lambda)$, en notant λ la mesure de Lebesgue sur \mathbb{R}^d .

Exercice 4. [CS] Soit (E, \mathcal{A}, μ) un espace mesuré et $f : E \to]0, \infty[$ une fonction mesurable telle que f et 1/f sont intégrables, montrer que μ est finie.

Exercice 5. [Inégalité de Young pour la convolution] On note λ la mesure de Lebesgue, soient $1 \leq p, q, r \leq \infty$ tels que $\frac{1}{p} + \frac{1}{q} = 1 + \frac{1}{r}$. Soient $f \in L^p(\mathbb{R}, \lambda)$ et $g \in L^q(\mathbb{R}, \lambda)$ on définit la convolution de f et g par $f * g : x \in \mathbb{R} \mapsto \int f(x-y)g(y)\lambda(\mathrm{d}y)$.

- 1. On suppose d'abord $r = \infty$. Montrer que $||f * g||_r \le ||f||_p ||g||_q$.
- 2. On suppose maintenant $r < \infty$. Posons $q' = \frac{q}{q-1}$ et $h(x,y) = |f(x-y)|^{1-p/q'}|g(y)|$. Montrer que

$$|f * g(x)| \le ||h(x, \cdot)||_q ||f||_p^{p/q'}.$$

3. Démontrer l'inégalité de Minkovski généralisée : pour tout $s \ge 1$,

$$\int \left(\int h(x,y)^s dx \right)^{1/s} dy \ge \left(\int \left(\int h(x,y) dy \right)^s dx \right)^{1/s}$$

4. Montrer que

$$\left(\int \left(\int h(x,y)^q dy\right)^{r/q} dx\right)^{q/r} \le \|f\|_p^{pq/r} \|g\|_q^q.$$

5. En déduire $||f * g||_r \le ||f||_p ||g||_q$.

Exercice 6. [Continuité de l'opérateur de translation] Soient $f:(\mathbb{R},\mathcal{B}(\mathbb{R})) \to (\mathbb{R},\mathcal{B}(\mathbb{R}))$ une fonction mesurable et $h \in \mathbb{R}$. On définit $\tau_h f$ par $\tau_h f: x \in \mathbb{R} \mapsto f(x-h)$.

- 1. Vérifier que l'opérateur de translation τ_h est une isométrie de l'espace $L^p(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$ pour $p \in [1, +\infty]$.
- 2. On suppose $p < \infty$. Montrer que si $f \in L^p(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$ alors,

$$\lim_{h \to 0} \|\tau_h f - f\|_p = 0 \text{ et } \lim_{|h| \to +\infty} \|\tau_h f - f\|_p = 2^{1/p} \|f\|_p$$

Indication: on pourra traiter tout d'abord le cas où f est continue à support compact.

- 3. Que deviennent les résultats de la question précédente si $p = \infty$?
- 4. (Lemme de Riemann-Lebesgue). Soit $f \in L^1(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. Montrer que quand $t \to \infty$ on a $\int_{\mathbb{R}} e^{ixt} f(x) dx \to 0$.
- 5. Déduire des questions précédentes que si $\lambda(A) > 0$, alors l'ensemble A A (l'ensemble des x y pour $x \in A$ et $y \in A$) contient un voisinage de 0.

Exercice 7. [Lemme de Scheffé] Soient $p \in [1, \infty[$ et $(f_n)_{n\geq 0}$ une suite de $L^p(E, \mathcal{E}, \mu)$ qui converge μ -p.p. vers une fonction f de $L^p(E, \mathcal{E}, \mu)$. Montrer l'équivalence suivante :

$$\lim_{n \to \infty} ||f_n - f||_p = 0 \quad \iff \quad \lim_{n \to \infty} ||f_n||_p = ||f||_p.$$

Indication : considérer $g_n = 2^{p-1}(|f_n|^p + |f|^p) - |f_n - f|^p$.

Exercice 8.

1. Soient $p \in [1, +\infty[$ et $f \in L^p(\mathbb{R}_+, \mathcal{B}(\mathbb{R}_+), \lambda)$. On pose $F(x) = \int_0^x f(t) dt$. Montrer que F est bien définie et que si q est l'exposant conjugué de p, alors

$$\lim_{h \to 0} \frac{\sup_{x \in \mathbb{R}} |F(x+h) - F(x)|}{|h|^{1/q}} = 0.$$

2. En déduire que si g est une fonction sur \mathbb{R}_+ de classe \mathcal{C}^1 intégrable telle que $g' \in L^p(\mathbb{R}_+)$ pour un $p \in [1, +\infty[$, alors $g(x) \to 0$ quand $x \to +\infty$.

Exercice 9. Soient (E, \mathcal{E}, μ) un espace mesuré σ -fini et $p \in [1, \infty[$. Soit $g : E \to \mathbb{R}$ une fonction mesurable telle que, pour toute fonction $f \in L^p$, on a $fg \in L^p$. Montrer que $g \in L^\infty$.

Exercice 10. [Absolue continuité] Soient μ et ν deux mesures positives sur (E, \mathcal{A}) .

1. On suppose que pour tout $\epsilon > 0$ il existe $\eta > 0$ tel que pour tout $A \in \mathcal{A}$

$$\mu(A) \le \eta \Longrightarrow \nu(A) \le \epsilon$$
.

Montrer que ν est absolument continue par rapport à μ .

2. Montrer que la réciproque est vraie dans le cas où la mesure ν est finie. Donner un contre-exemple dans le cas où ν est infinie.