The Single-Sample t Test

Chapter 9

t distributions

- > Sometimes, we do not have the population standard deviation, σ .
 - Very common!
- > So what can we do?

t distributions

- > The *t* distribution is used when we do not know the population information.
 - So we use the sample to estimate the population information.
 - Because we are using the sample, the t distribution changes based on that sample.

The t Statistic

- > When sample size increases:
 - *s or sd* (the spread of t) $\rightarrow \sigma$
 - Therefore, t and z become more equal

- > The *t* distributions
 - Distributions of differences between means

Wider and Flatter t Distributions

Check Your Learning

- > When would you use a z test?
- > When would you use a *t* test?

Types of t

- > Single sample *t*
 - One sample (group of people), population mean to compare against
- > Dependent sample t
 - One sample tested <u>twice</u> to compare those two scores
- > Independent sample *t*
 - Two <u>samples</u> to compare those two groups

Hypothesis Tests: The Single Sample *t* Test

- > The single sample *t* test
 - When we know the population mean, but not the standard deviation
 - So, we will use the sample to estimate SD
 - But that means we have to use the sample to estimate cut off scores too, since the distribution spread is not set.

> The t test

- The six steps of hypothesis testing
 - > 1. Identify population, distributions, assumptions
 - >2. State the hypotheses
 - >3. Characteristics of the comparison distribution
 - >4. Identify critical values df =N-1
 - >5. Calculate
 - >6. Decide

- > Assumptions:
 - DV is scale
 - Random selection → random assignment?
 - Normal \rightarrow N > 30?

- > Label the sample and the population
- > Pick a null and research
 - Remember the combinations are:
 - >Greater
 - >Lesser
 - >Two Tailed = Different

- > Label:
 - Sample M
 - Sample SD
 - Sample SE
 - Sample N
 - Population u

- > Something new:
 - Degrees of freedom
 df = N 1 where N is sample size
- > This number is used in two ways:
 - Estimation of SD
 - Calculating the cut off score

t distributions

Sample Standard Deviation

$$SD = \sqrt{\frac{\sum (X - M)^2}{N}}$$

What we did before... Biased estimate Population Standard Deviation

$$s = \sqrt{\frac{\sum (X - M)^2}{(N - 1)}}$$

New formula... Unbiased estimate

Based on some error

Calculating in R

- > summary(dataset)
 - mean(dataset, na.rm = T)
- > sd(dataset\$column, na.rm = T)
- > OR you can enter the data:
 - data = c(#,#,#,#,#)
 - sd(data, na.rm = T)

Calculating Standard Error for the t Statistic

> Using the standard error

$$S_M = \frac{S}{\sqrt{N}}$$

Calculating in R

- > se = sd / sqrt(N)
 - If you have all the data in R you can try:
 - sd(data) / sqrt(length(data))
 - > Remember the sd function gives you SD
 - >The sqrt() function is square root
 - >length() calculates the number of items or N
 - > Remember that *data* can be one column or *dataset\$column*

- > Use df to find the cut off score
- > qt(alpha p, df, lower.tail = T or F)
 - Alpha p is set at .05 or .01
 - Remember, for a two tailed test, do alpha /
 2

TABLE 9-1. Excerpt from the *t* Table

When conducting hypothesis testing, we use the *t* table to determine critical values for a given *p* level, based on the degrees of freedom and whether the test is one- or two-tailed.

One-Tailed Tests				Two-Tailed Tests		
df	0.10	0.05	0.01	0.10	0.05	0.01
1	3.078	6.314	31.821	6.314	12.706	63.657
2	1.886	2.920	6.965	2.920	4.303	9.925
3	1.638	2.353	4.541	2.353	3.182	5.841
4	1.533	2.132	3.747	2.132	2.776	4.604
5	1.476	2.015	3.365	2.015	2.571	4.032

Stop and think. Which is more conservative: one-tailed or two-tailed tests? Why?

> The t found statistic

$$t = \frac{(M - \mu_M)}{S_M}$$

Calculating in R

- > To get t
 - Mean mu / se
- > If you have the calculated numbers (i.e. you are given M, u, SD, N), then you can fill in the formulas.
- > If you are given the raw numbers, then we can calculate with the t.test() function.

Calculating in R

> t.test(column of y data, mu = #,

alternative = "less" OR "greater" OR "two.sided",

conf.level = .95 OR .99)

Note: alternative and conf.level options.

> Decide to reject or fail to reject the null hypothesis.

- > Beyond hypothesis testing:
 - Calculate effect size
 - Calculate confidence interval

Calculating Effect size

$$d = \frac{(M - \mu)}{S}$$

Confidence Interval

- > We are usually discussion two tailed confidence intervals
 - You can do one tailed confidence intervals but they are not very common.
- > They are calculated in the same way as z-tests but with a t-critical instead of z-critical.

Confidence Interval

- > Lower = $M_{sample} t_{critical}^*SE$
- > Upper = $M_{\text{sample}} + t_{\text{critical}} * SE$
- > A quicker way!
 - Use t.test() with a TWO tailed test to get the two tailed confidence interval.

Interpretation of Confidence Interval

If we were to sample N students from the same population over and over, the 95% confidence interval would include the population mean 95% of the time.

t, Effect Size, and Confidence Interval Cheat!

- > Use the effsize and calculate code Dr. B has written.
 - Not required, but if you want to check to make sure you doing it correctly.
 - <u>Definitely</u> much easier to use when calculating d for other types of t-tests.

t, Effect Size, and Confidence Interval Cheat!

Make sure the functions appear in your window or you won't be able to use them!

