Class 57

Pf. (1)
$$\because \{x^*(x_n)\}\$$
 conv. \Rightarrow bdd $\forall x^* \in X^*$
 $\Rightarrow \{\|x_n\|\}\$ bdd (\because unif. bddness principle $\because X^*$ is Banach space)

(2) Let Y =closed linear span of $\{x_n\}$

Assume $x \notin Y$

Then
$$\exists x^* \in X^* \to x^*(x) \neq 0 \& x^*(x_n) = 0 \forall n \geq 1$$
 (Hahn-Banach Thm)
$$\downarrow \\ x^*(x) = 0 \to \leftarrow$$

Hahn-Banach

$$(3) : \|x\| \stackrel{\downarrow}{=} \sup_{\|x^*\|=1} |x^*(x)| \leq \underline{\lim} \|x_n\|$$

$$|x^*(x_n)| \leq \|x^*\| \cdot \|x_n\| \Rightarrow \underline{\lim}_n |x^*(x_n)| \leq \underline{\lim}_n \|x_n\|$$

$$\frac{1}{|x^*(x)|}$$

Thm

X reflexive Banach space

 $K \subseteq X$ weakly sequentially compact $\Leftrightarrow K$ bdd & weakly closed

Note 1. Generalize: Bolzano-Weierstrass Thm in dim $X < \infty$:

Note 2. X normed space "K bdd, closed $\Leftrightarrow K$ compact" $\Leftrightarrow \dim X < \infty$ (cf. p.133)

Note 3. X Banach space, $K \subseteq X$

Then K weakly compact $\Leftrightarrow K$ weakly sequentially compact.

(Eberlein-Smulian Thm)

Ref. J.B.Conway, A course in functional analysis, 2nd.,p.163. Thm. V.13.1.

Note 4. X Banach space, Then X reflexive

$$\Leftrightarrow \{x \in X : ||x|| \le 1\}$$
 weakly compact

Ref. J.B.Conway, p.132, Thm.V.4.2.

Pf.: " \Rightarrow " (valid \forall normed space X)

Let *K* be weakly sequentially compact.

(1) *K* bdd:

Assume otherwise.

Then
$$\forall n, \exists x_n \in K \ni ||x_n|| \ge n$$
.

K weakly sequentially compact $\Rightarrow \exists x_{n_k} \ni x_{n_k} \to x \in K$ weakly

From preceding thm (1), $\{x_{n_k}\}$ bdd

But
$$||x_{n_k}|| \ge n_k \rightarrow \leftarrow$$

(2) K weakly closed:

Let
$$x_n \in K \ni x_n \to x$$
 weakly.

Then
$$\exists x_{n_k} \to y \in K$$
 weakly

But
$$x_{n_k} \to x$$

$$\Rightarrow x = y \in K$$

$$\therefore$$
 K closed

 $" \leftarrow "$

Let *K* be bdd & weakly closed.

Let
$$\{x_n\} \subseteq K$$

Check
$$\exists \left\{ x_{n_j} \right\}$$
 converges weakly

Let
$$Y = \overline{\vee \{x_n\}}$$

Then Y separable closed subspace of reflexive X

 \Rightarrow *Y* reflexive (Thm 4.10.5)

$$:: Y^{**} \cong Y \text{ separable}$$

$$\Rightarrow Y^*$$
 separable (Thm 4.10.1) Let $Y^* = \overline{\{x_n\}}$

Bolzano-Weierstrass Thm in $F \Rightarrow$

$$\Rightarrow \exists x_1^*(x_{n,1}) \text{ convergent}$$

$$\Rightarrow \exists x_1^*(x_{n,1}) \text{ convergent}$$

$$\therefore |x_2^*(x_{n,1})| \le ||x_2^*|| \cdot ||x_{n,1}|| \text{ bdd in } F$$

diagonalization $\{ \Rightarrow \exists x_2^*(x_{n,2}) \text{ convergent }$

$$\Rightarrow \exists x_k^*(x_{n,k})$$
 convergent

Let
$$y_k = x_{k,k}$$
 subseq. of x_n

Check: y_k weakly convergent, i.e., $x^*(y_k)$ converges $\forall x^* \in X^*$.

(i) Check: $z^*(y_k)$ converges $\forall z^* \in Y^*$ (Ex.4.10.2)

$$\therefore x_n^*(y_k)$$
 converges $\forall n$

Let
$$z^* \in Y^*$$

$$\because \left\{ x_n^* \right\} \text{ dense in } Y^*$$

$$\therefore \exists x_n^* \ni \left\| z^* - x_n^* \right\| < \varepsilon$$

$$\begin{split} \left. \left| z^{*}(y_{k}) - x_{n}^{*}(y_{j}) \right| &\leq \left| z^{*}(y_{k}) - x_{n}^{*}(y_{k}) \right| + \left| x_{n}^{*}(y_{k}) - x_{n}^{*}(y_{j}) \right| + \left| x_{n}^{*}(y_{j}) - z^{*}(y_{j}) \right| \\ &\leq \left\| z^{*} - x_{n}^{*} \right\| \cdot \left\| y_{k} \right\| + \left| x_{n}^{*}(y_{k}) - x_{n}^{*}(y_{j}) \right| + \left\| x_{n}^{*} - z^{*} \right\| \cdot \left\| y_{j} \right\| \\ &< \varepsilon \cdot M + \left| x_{n}^{*}(y_{k}) - x_{n}^{*}(y_{j}) \right| + \varepsilon \cdot M \end{split}$$

- \therefore small for large k, j
- : Cauchy
- $\Rightarrow z^*(y_k)$ converges

(ii) Check:
$$\exists y \in z \ni z^*(y_k) \to z^*(y) \ \forall z^* \in Y^*$$

 $\therefore y_k(z^*) \text{ converges } \forall z^* \in Y^*$
Thm.4.5.2 $\Rightarrow \exists y^{**} \in Y^{**} \ni y_k(z^*) \to y^{**}(z^*) \ \forall z^* \in Y^*$

 $z^*(y)$ (:: Y reflexive $\Rightarrow y^{**} = \hat{y}$ for some $y \in Y$) (i.e., unif. bddness principle) $z^*(y_k)$

(iii) Check:
$$x^*(y_k) \rightarrow x^*(y) \ \forall x^* \in X^*$$

Let
$$z^* = x^* Y$$

$$\therefore z^*(y_k) \rightarrow z^*(y) \text{ i.e., } y_k \rightarrow y \text{ weakly } \therefore K \text{ weakly closed} \Rightarrow y \in K$$

$$x^*(y_k) = x^*(y)$$