Lecture 8 Support Vector Machines

EE-UY 4563/EL-GY 9123: INTRODUCTION TO MACHINE LEARNING PROF. SUNDEEP RANGAN, WITH MODIFICATION BY YAO WANG

Learning Objectives

- □ Interpret weights in linear classification of images
- ☐ Define the margin in linear classification
- ☐ Describe the SVM classification problem.
- ☐ Write equations for solutions of constrained optimization using the Lagrangian.
- ☐ Describe a kernel SVM problem
- Select SVM parameters from cross-validation

Outline

- Motivating example: Recognizing handwritten digits
 - Why logistic regression doesn't work well.
 - ☐ Maximum margin classifiers
 - ■Support vector machines
 - ☐ Constrained optimization
 - ☐ Kernel trick

MNIST Digit Classification

HANDWRITING SAMPLE FORM

- ☐ Problem: Recognize hand-written digits
- ☐ Original problem:
 - Census forms
 - Automated processing
- □ Classic machine learning problem
- ☐ Benchmark

From Patrick J. Grother, NIST Special Database, 1995

A Widely-Used Benchmark

Classifiers [edit]

This is a table of some of the machine learning methods used on the database and their error rates, by type of classifier:

Type \$	Classifier +	Distortion +	Preprocessing +	Error rate (%) \$
Linear classifier	Pairwise linear classifier	None	Deskewing	7.6 ^[9]
K-Nearest Neighbors	K-NN with non-linear deformation (P2DHMDM)	None	Shiftable edges	0.52 ^[14]
Boosted Stumps	Product of stumps on Haar features	None	Haar features	0.87 ^[15]
Non-Linear Classifier	40 PCA + quadratic classifier	None	None	3.3 ^[9]
Support vector machine	Virtual SVM, deg-9 poly, 2-pixel jittered	None	Deskewing	0.56 ^[16]
Neural network	2-layer 784-800-10	None	None	1.6 ^[17]
Neural network	2-layer 784-800-10	elastic distortions	None	0.7 ^[17]
Deep neural network	6-layer 784-2500-2000-1500-1000-500-10	elastic distortions	None	0.35 ^[18]
Convolutional neural network	Committee of 35 conv. net, 1-20-P-40-P-150-10	elastic distortions	Width normalizations	0.23 ^[8]

- ☐ We will look at SVM today
- Not the best algorithm
- ☐ But quite good
- ☐...and illustrates the main points

Dataset with low resolution: 8 x 8 Images

```
from sklearn import datasets, linear_model, preprocessing
digits = datasets.load_digits()
images = digits.images
labels = digits.target
images.shape
(1797, 8, 8)
```

(2/2/)

☐ Directly in sklearn datasets

Dataset with high resolution: 28 x 28 Images

```
In [3]: from sklearn.datasets import fetch_mldata
    mnist = fetch_mldata("MNIST original")

In [4]: mnist.data.shape
Out[4]: (70000, 784)
```

- ☐ Will look at higher resolution version
- ☐Also, in sklearn
- ☐But needs to download from external site
- □70,000 samples.
- ☐ Each image sample is a row vector, that is formed by stacking 28 rows of an image.

Matrix and Vector Representation

- □ Images can be represented as 2D matrices or 1D vectors
- ☐ Grayscale: Each pixel value is between 0 (black) and 255 (white)

$$S = Mat(x) = \begin{bmatrix} s_{11} & \cdots & s_{1,28} \\ \vdots & \vdots & \vdots \\ s_{28,1} & \cdots & s_{28,28} \end{bmatrix}$$

$$x = \text{vec}(S) = \begin{bmatrix} x_1 & \cdots & x_{784} \end{bmatrix}$$

Displaying Images in Python

4 random images in the dataset

A human can classify these easily

```
def plt_digit(x):
   nrow = 28
   ncol = 28
   xsq = x.reshape((nrow,ncol))
   plt.imshow(xsq, cmap='Greys_r') ◀
                                                 Key command
   plt.xticks([])
   plt.yticks([])
# Convert data to a matrix
X = mnist.data
y = mnist.target
# Select random digits
                                                 Sample
nplt = 4
nsamp = X.shape[0]
                                                 permutation is
Iperm = np.random.permutation(nsamp)
                                                 necessary for this
# Plot the images using the subplot command
                                                 dataset, as the
for i in range(nplt):
   ind = Iperm[i]
                                                 original data is
    plt.subplot(1,nplt,i+1)
                                                 ordered by digits
    plt digit(X[ind,:])
```


Try a Logistic Classifier

```
y = mnist.target
ntr = 5000
Xtr = X[Iperm[:ntr],:]
ytr = y[Iperm[:ntr]]
```

- ☐ Train on 5000 samples
 - To reduce training time.
 - In practice want to train with ~40k
- ☐ Select correct solver (lbfgs)
 - Others can be very slow. Even this will take minutes

Performance

- □Accuracy = 85%. Very bad
- ☐ Some of the errors seem like they should have been easy to spot
- ■What went wrong?

```
Xts = X[Iperm[ntr:],:]
yts = y[Iperm[ntr:]]
yhat = logreg.predict(Xts)
acc = np.mean(yhat == yts)
print('Accuaracy = {0:f}'.format(acc))
Accuaracy = 0.849767
```


Recap: Logistic Classifier

- $\square \text{Will select } \hat{y} = \arg \max_{k} P(y = k | x) = \arg \max_{k} z_{k}$
 - \circ Output z_k which is largest
- \square When is z_k large?

Interpreting the Logistic Classifier Weights

- \square Suppose $\mathbf{z} = \mathbf{W}\mathbf{x}$. Then: $z_k = \mathbf{w}_k^T\mathbf{x}$
 - \circ w_k is 784-dim row of W
- \square When is z_k large?
- \square Theorem (proof on board): If u is any vector, then

$$\arg\max_{\|x\|=1} u^T x = \frac{u}{\|u\|}$$

- \square Conclusion: For a given ||x||, $z_k = w_k^T x$ is maximized when $x = \alpha w_k$
 - \circ Output of class k will be large when $m{x}$ is aligned with $m{w}_k$
 - Called the "matched filter" in signal processing

Visualizing the Weights

- ☐ Each class weight can be viewed as an image.
- \square Class weight output z_k will be large when it is aligned with w_k

Optimized weights for logistic classifier

Why are they blurry?

Problems with Logistic Classifier

- ☐ Linear weighting cannot capture many deformities in image
 - Rotations
 - Translations
 - Variations in relative size of digit components
- ☐ Can be improved with preprocessing
 - E.g. deskewing, contrast normalization, many methods
- □ Is there a better classifier?

Outline

- ☐ Motivating example: Recognizing handwritten digits
 - Why logistic regression doesn't work well.
- Maximum margin classifiers
- ■Support vector machines
- ☐ Constrained optimization
- ☐ Kernel trick

Linear Separability and Non-Uniqueness of Separating plane

- ☐ When the samples are linearly separable, one can find a separating hyper-plane as a linear classifier.
- ☐ Separating hyper-plane is not unique
- ☐ Fig. on right: Many separating planes
- ☐ Which one is optimal?

Hyperplane Basics

□ A hyperplane in d-dimensional space is defined by

$$b + w_1 x_1 + \cdots w_d x_d = 0$$
 or $b + \mathbf{w}^T \mathbf{x} = 0$

- ☐ The parameters are unique only to a scaling factor:
 - \circ (b, \mathbf{w}) and $(\alpha b, \alpha \mathbf{w})$ define the same plane.
 - For unique definition, we can require ||w||=1.
- \square The norm vector to the hyperplane is $w/\|w\|$.
- \square Distance of any point **x** to the hyperplane is $f(x)/\|\mathbf{w}\|$, where $f(x) = b + \mathbf{w}^T x$.
- □ See ESL Sec. 4.5.

□ESL: Hastie, Tibshirani, Friedman, "The Elements of Statistical Learning". 2nd Ed. Springer.

Recap: Linear Separability and Margin

- □Given training data (x_i, y_i) , i = 1, ..., N
- \square Binary class label: $y_i = \pm 1$
- \square Perfectly linearly separable if there exists a $\theta=(b,w_1,...,w_d)$ and $\gamma>0$ s.t.:

$$m = \frac{\gamma}{\|\boldsymbol{w}\|}$$

- $b + w_1 x_{i1} + \cdots w_d x_{id} > \gamma$ when $y_i = 1$
- $b + w_1 x_{i1} + \cdots w_d x_{id} < -\gamma$ when $y_i = -1$
- $\square(w,b)$ defines the separating hyperplane
- \blacksquare m is the margin: the minimal distance of a sample to the plane
- ☐ Single equation form:

$$y_i(b + w_1x_{i1} + \cdots w_dx_{id}) > \gamma \text{ for all } i = 1, ..., N$$

Recall that the distance of a point x to the line is $(b + w^T x)/||w||$. For points on the margin line, $b + w^T x = \gamma$, distance m= $\gamma/||w||$.

Which separating plane is better?

From Fig. 9.2 and Fig. 9.3 in ISL.

Maximum Margin Classifier

- ☐ For the classifier to be more robust to noise, we want to maximize the margin!
- □ Define maximum margin classifier

$$\max_{w,\gamma} \gamma$$

$$\circ \text{ Such that } y_i(b + \mathbf{w}^T \mathbf{x}) \ge \gamma \text{ for all } i$$

$$\circ \qquad \sum_{i=1}^d w_i^2 \le 1$$

Maximizes the margin

Ensures all points are correctly classified

Scaling on weights

- □ Called a constrained optimization
 - Objective function and constraints
 - More on this later.
- See closed form solution in Sec. 4.5.2 in ESL. Note notation difference.

Visualizing Maximum Margin Classifier

- ☐ Fig. 9.3 of ISL
- ☐ Margin determined by closest points to the line
 - The maximal margin hyperplane represents the midline of the widest "slab" that we can insert between two classes
- ☐ In this figure, there are 3 points at the margin

ISL: James, Witten, Hastie, Tibshirani, An Introduction to Statistical Learning, Springer. 2013.

Problems with MM classifier

- □ Data is often not perfectly separable
 - Only want to correctly separate most points

- ■MM classifier is not robust
 - A single sample can radically change line

Fig. 9.4

Outline

- ☐ Motivating example: Recognizing handwritten digits
 - Why logistic regression doesn't work well.
- ☐ Maximum margin classifiers
- Support vector machines
- ☐ Constrained optimization
- ☐ Kernel trick

Support Vector Machine

- ■Support Vector Machine (SVM)
 - Vladimir Vapnik, 1963
 - But became widely-used with kernel trick, 1993
 - More on this later
- ☐Got best results on character recognition
- ☐ Key idea: Allow "slack" in the classification
 - Support vector classifier (SVC): Directly use raw features.
 Good when the original feature space is roughly linearly separable
 - Support vector machine (SVM): Map the raw features to some other domain through a kernel function

Hinge Loss

- \Box Fix $\gamma = 1$
- □ Want ideally: $y_i(\mathbf{w}^T \mathbf{x} + b) \ge 1$ for all samples i
 - Equivalently, $y_i z_i \ge 1$, $z_i = b + \mathbf{w}^T \mathbf{x}$
- ☐ But, perfect separation may not be possible
- □ Define hinge loss or soft margin:
 - $L_i(\mathbf{w}, b) = \max(0, 1 y_i z_i)$
- ☐ Starts to increase as sample is misclassified:
 - $y_i z_i \ge 1 \implies \text{Sample meets margin target}, \ L_i(w) = 0$
 - ∘ $y_i z_i \in [0,1)$ ⇒ Sample margin too small, small loss
 - $y_i z_i \le 0 \Rightarrow$ Sample misclassified, large loss

SVM Optimization

- \square Given data (x_i, y_i)

$$J(\mathbf{w}, b) = C \sum_{i=1}^{N} \max(0, 1 - y_i(\mathbf{w}^T \mathbf{x}_i + b)) + \frac{1}{2} ||\mathbf{w}||^2$$

Hinge loss term
Attempts to reduce

C controls final margin

Misclassifications

margin=1/||w||

- \square Constant C > 0 will be discussed below
- Note: ISL book uses different naming conventions.
 - We have followed convention in sklearn

Alternate Form of SVM Optimization

☐ Equivalent optimization:

$$\min J_1(\boldsymbol{w}, b, \boldsymbol{\epsilon}), \qquad J_1(\boldsymbol{w}, b, \boldsymbol{\epsilon}) = C \sum_{i=1}^N \epsilon_i + \frac{1}{2} \|\boldsymbol{w}\|^2$$

■Subject to constraints:

$$y_i(\mathbf{w}^T \mathbf{x}_i + b) \ge 1 - \epsilon_i$$
 for all $i = 1, ..., N$

- ϵ_i = amount sample i misses margin target
- \square Sometimes write as $J_1(w, b, \epsilon) = C \|\epsilon\|_1 + \frac{1}{2} \|w\|^2$
 - $\| \epsilon \|_1 = \sum_{i=1}^N \epsilon_i$ called the "one-norm"
 - Generally one-norm would have absolute sign over ϵ_i . But in this case, when the constraint is met, ϵ_i >=0.

Interpreting Parameters

- \square Margin is 1/||w||
- \square Parameter ϵ_i called the slack variable
 - $\epsilon_i = 0 \Rightarrow$ Sample on correct side of margin
 - $0 \le \epsilon_i < 1 \Rightarrow$ Sample violates the margin (are inside the margin)
 - \circ $\epsilon_i \ge 1 \Rightarrow$ Sample misclassified (wrong side of hyperplane)
- \square Parameter C:
 - Balance between first term (violations) and second term (inverse of margin)
 - C large: Forces minimum number of violations, but small margin.
 - Highly fit to data. Low bias, higher variance
 - C small: Enables more samples violations, but large margin.
 - Higher bias, lower variance
 - Found by cross-validation

Support Vectors

- □ Support vectors: Samples that either:
 - Are exactly on margin: $y_i(\mathbf{w}^T \mathbf{x}_i + b) = 1$
 - Or, on wrong side of margin: $y_i(\mathbf{w}^T \mathbf{x}_i + b) \leq 1$
- ☐ Changing samples that are not SVs
 - Does not change solution
 - Provides robustness

Illustrating Effect of C

- ☐ Fig. 9.7 of ISL
 - Note: *C* has opposite meaning in ISL than python
 - Here, we use python meaning
- \square Low C:
 - Leads to large margin
 - But allow many violations of margin.
 - Many more SVs
 - Reduces variance by using more samples
- ☐ Large C:
 - Leads to small margin
 - Reduce number of violations, and fewer SVs.
 - Highly fit to data. Low bias, higher variance
 - More chance to overfit

Relation to Logistic Regression

□ Logistic regression also minimizes a loss function:

$$J(\mathbf{w}, b) = \sum_{i=1}^{N} L_i(\mathbf{w}, b), \qquad L_i(\mathbf{w}, b) = \ln P(y_i | \mathbf{x}_i) = -\ln(1 + e^{-y_i z_i})$$

Outline

- ☐ Motivating example: Recognizing handwritten digits
 - Why logistic regression doesn't work well.
- ☐ Maximum margin classifiers
- ■Support vector machines
- Constrained optimization
- ☐ Kernel trick

Constrained Optimization

- ☐ In many problems, variables are constrained
- □ Constrained optimization formulation:
 - Objective: Minimize f(w)
 - Constraints: $g_1(\mathbf{w}) \leq 0, ..., g_M(\mathbf{w}) \leq 0$
- ■Examples:
 - Minimize the mpg of a car subject to a cost or meeting some performance
 - In ML: weight vector may have constraints from physical knowledge
- □ Often write constraints in vector form: Write $g(\mathbf{w}) \leq 0$

$$g(\mathbf{w}) = [g_1(\mathbf{w}), \dots, g_m(\mathbf{w})]^T$$

Lagrangian

- \square Constrained optimization: Min f(w) s.t. $g(w) \le 0$
- \square Consider first a single constraint: g(w) is a scalar
- □ Define Lagrangian: $L(\mathbf{w}, \lambda) = f(\mathbf{w}) + \lambda g(\mathbf{w})$
 - **w** is called the primal variable
 - \circ λ is called the dual variable
- \square Dual minimization: Given a dual parameter λ , minimize

$$\widehat{\boldsymbol{w}}(\lambda) = \arg\min_{\boldsymbol{w}} L(\boldsymbol{w}, \lambda), \qquad L^*(\lambda) = \min_{\boldsymbol{w}} L(\boldsymbol{w}, \lambda)$$

- Minimizes a weighted combination of objective and constraint.
- Higher $\lambda \Rightarrow$ Weight constraint more (try to make g(w) smaller)
- Lower $\lambda \Rightarrow$ Weight objective more (try to make f(w) smaller)

KKT Conditions

- \square Given objective f(w) and constraint g(w)
- \square KKT Conditions: $\widehat{\boldsymbol{w}}$, $\widehat{\lambda}$ satisfy:
 - \widehat{w} minimizes the Lagrangian: $\widehat{w} = \arg\min_{w} L(w, \widehat{\lambda})$
 - Either
 - $g(\widehat{\mathbf{w}}) = 0$ and $\widehat{\lambda} \ge 0$ [active constraint]
 - $g(\widehat{\boldsymbol{w}}) < 0$ and $\widehat{\lambda} = 0$ [inactive constraint]
- ☐ Theorem: Under some technical conditions,
 - \circ if \hat{w} , $\hat{\lambda}$ are local mimima of the constrained optimization, they must satisfy KKT conditions

General Procedure for Single Constraint

■Suppose:

- $\mathbf{w} = (w_1, ..., w_d)^T$: d unknown primal variables
- $g(\mathbf{w}) \leq 0$: scalar constraint
- □ Case 1: Assume constraint is active:
 - Solve w and λ : $\partial L(w,\lambda)/\partial w_i=0$ and g(w)=0 (resulting from setting $\partial L(w,\lambda)/\partial \lambda=0$)
 - $\circ d + 1$ unknowns and d + 1 equations
 - Verify that $\lambda \geq 0$
- ☐ Case 2: Assume constraint is inactive
 - Solve primal objective $\partial f(\mathbf{w})/\partial w_i = 0$ ignoring constraint
 - $\circ d$ unknowns and d equations
 - Verify that constraint is satisfied: $g(\mathbf{w}) \leq 0$

KKT Conditions Illustrated

☐ Example 1: Constraint is "active"

$$\min_{w} w^2 \quad s.t. \ w + 1 \le 0$$

☐ Example 2: Constraint is "inactive"

$$\min_{w} w^2 \quad s.t. \ w - 1 \le 0$$

☐ Examples worked on board with illustration

Multiple Constraints

- □ Now consider constraint: $g(\mathbf{w}) = [g_1(\mathbf{w}), ..., g_M(\mathbf{w})]^T \le 0$.
- ☐ Lagrangian is:

$$L(\mathbf{w}, \lambda) = f(\mathbf{w}) + \lambda^T g(\mathbf{w}) = f(\mathbf{w}) + \sum_{m=1}^{M} \lambda_m g_m(\mathbf{w})$$

- Weighted sum of all *M* constraints
- \circ λ is called the dual vector
- ☐ KKT conditions extend to:
 - $\widehat{\boldsymbol{w}}$ minimizes the Lagrangian: $\widehat{\boldsymbol{w}} = \arg\min_{\boldsymbol{w}} L(\boldsymbol{w}, \widehat{\lambda})$
 - \circ For each $m=1,\ldots,M$
 - $g_m(\widehat{\boldsymbol{w}}) = 0$ and $\hat{\lambda}_m \ge 0$ [active constraint]
 - $g_m(\widehat{\boldsymbol{w}}) < 0$ and $\hat{\lambda}_m = 0$ [inactive constraint]

SVM Constrained Optimization

☐ Recall: SVM constrained optimization

$$\min J_1(\boldsymbol{w}, b, \boldsymbol{\epsilon}), \qquad J_1(\boldsymbol{w}, b, \boldsymbol{\epsilon}) = C \sum_{i=1}^N \epsilon_i + \frac{1}{2} \|\boldsymbol{w}\|^2$$

- Constraints: $y_i(\mathbf{w}^T \mathbf{x}_i + b) \ge 1 \epsilon_i$ and $\epsilon_i \ge 0$ for all i = 1, ..., N
- □ After applying KKT conditions and some algebra [beyond this class], solution is
 - Optimal weight vector: $\mathbf{w} = \sum_{i=1}^{N} \alpha_i y_i \mathbf{x}_i$ linear combination of instances
 - \circ Dual parameters α_i minimize

$$\sum_{i=1}^{N} \alpha_i + \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j \quad \text{s. t. } 0 \le \alpha_i \le C$$

Support Vectors

- \square Classifier weight is: $\mathbf{w} = \sum_{i=1}^{N} \alpha_i y_i \mathbf{x}_i$
- \square Can show that $\alpha_i > 0$ only when x_i is a support vector
 - On boundary or violating constraint
 - \circ Otherwise $\alpha_i = 0$

Correlation Interpretation of SVM

☐ Classifier weight is:

$$\mathbf{w} = \sum_{i=1}^{N} \alpha_i y_i \mathbf{x}_i$$

- \square Now suppose we are given a new sample x to classify
- \square Classifier discriminant function for any test sample x is:

$$\circ \hat{z}(x) = \mathbf{w}^T x + b = \sum \alpha_i y_i \mathbf{x}_i^T \mathbf{x} + b$$

- ☐ Classifier output
 - $\circ \hat{y}(x) = \operatorname{sign}(\hat{z}(x))$
 - \circ Measure "correlation" $oldsymbol{x}_i^Toldsymbol{x}$ of new sample $oldsymbol{x}$ with each support vector $oldsymbol{x}_i$ in training data
 - Predicted label depends on the weighted average of labels for the support vectors, with weights proportional to the correlation of the test sample with the support vector.

Outline

- ☐ Motivating example: Recognizing handwritten digits
 - Why logistic regression doesn't work well.
- ☐ Maximum margin classifiers
- ■Support vector machines
- ☐ Constrained optimization
- Kernel trick

Transform Problem

- \square Transform problem: replace x with $\phi(x)$
 - Enables more rich, non-linear classifiers
 - Examples: polynomial classification $\phi(x) = [1, x, x^2, ..., x^{d-1}]$
- ☐ Tries to find separation in a feature space

The SVM algorithm

From https://www.dtreg.com/solution/view/20

Transform Problem

□SVM problem in transformed domain:

$$J(\mathbf{w}, b) = C \sum_{i=1}^{N} \max(0, 1 - y_i(\mathbf{w}^T \phi(\mathbf{x}_i) + b)) + \frac{1}{2} ||\mathbf{w}||^2$$

■ Solution is of the form:

$$\mathbf{w} = \sum_{i=1}^{N} \alpha_i y_i \phi(\mathbf{x}_i)$$

□ Classifier discriminant function:

$$z = b + \mathbf{w}^T \mathbf{x} = b + \sum_{i=1}^{N} \alpha_i y_i \phi(\mathbf{x}_i)^T \phi(\mathbf{x})$$

$$K(x_i, x) = \text{"kernel"}$$

Kernel Trick

□Classifier is:

$$z = b + \mathbf{w}^T \mathbf{x} = b + \sum_{i=1}^{N} \alpha_i y_i K(\mathbf{x}_i, \mathbf{x}), \quad K(\mathbf{x}_i, \mathbf{x}) = \phi(\mathbf{x}_i)^T \phi(\mathbf{x})$$

$$\hat{y} = \operatorname{sign}(z) = \begin{cases} 1 & \text{if } z > 0 \\ -1 & \text{if } z < 0 \end{cases}$$

- \square Do not need to explicitly compute $\phi(x)$
- \square Can directly compute kernel $K(x_i, x)$
 - \circ Provided kernel corresponds to some $\phi(x)$

Understanding the Kernel

- \square Kernel function $K(x_i, x)$:
 - \circ measures "similarity" between new sample x and training data x_i
 - $K(x_i, x)$ large $\Rightarrow x_i, x$ close
 - $K(x_i, x) \approx 0 \Rightarrow x_i, x \text{ far}$
- $\Box \text{Linear discriminant } z = b + \sum_{i=1}^{N} \alpha_i y_i K(\mathbf{x}_i, \mathbf{x})$
 - Weighs sample x_i that are close to x

Possible Kernels

☐ Radial basis function:

$$K(x, x') = \exp[-\gamma ||x - x'||^2]$$

- \circ 1/ γ indicates width of kernel
- - \circ Typically d=2

Parameter Selection

- □ Consider SVM with:
 - \circ Parameter C > 0, RBF with $\gamma > 0$
- \square Higher C or γ
 - Fewer SVs
 - Classifiers averages over smaller set
 - Lower bias, but higher variance
- ☐ Typically select via cross-validation
 - Try out different (C, γ)
 - Find which one provides highest accuracy on test set
- ☐ Python can automatically do grid search

http://peekaboo-vision.blogspot.com/2010/09/mnist-for-ever.html

Multi-Class SVMs

- \square Suppose there are K classes
- One-vs-one:
 - Train $\binom{K}{2}$ SVMs for each pair of classes
 - Test sample assigned to class that wins "majority of votes"
 - Best results but very slow
- One-vs-rest:
 - \circ Train K SVMs: train each class k against all other classes
 - Pick class with highest z_k
- ☐ Sklearn has both options

MNIST Results

- ☐ Run classifier
- □ Very slow
 - Several minutes for 40,000 samples
 - Slow in training and test
 - Major drawback of SVM
- \square Accuracy ≈ 0.984
 - Much better than logistic regression
- ☐ Can get better with:
 - pre-processing
 - More training data
 - Optimal parameter selection

```
from sklearn import svm

# Create a classifier: a support vector classifier
svc = svm.SVC(probability=False, kernel="rbf", C=2.8, gamma=.0073,verbose=10)

svc.fit(Xtr,ytr)

[LibSVM]

SVC(C=2.8, cache_size=200, class_weight=None, coef0=0.0,
    decision_function_shape=None, degree=3, gamma=0.0073, kernel='rbf',
    max_iter=-1, probability=False, random_state=None, shrinking=True,
    tol=0.001, verbose=10)

yhat1 = svc.predict(Xts)
acc = np.mean(yhat1 == yts)
print('Accuaracy = {0:f}'.format(acc))
```

Accuaracy = 0.984000

MNIST Errors

■Some of the error are hard even for a human

What you should know

- □ Interpret weights in linear classification of images (logistic regression): Match filters
- ☐ Understand the margin in linear classification and maximum margin classifier
- □SVM classifier: Allow violation of margin by introducing slack variables (More robust than linear classifier)
- ☐ Solve constrained optimization using the Lagrangian.
 - Understand KKT conditions for a single constraint
- ☐ Extend to nonlinear classifier by feature transformation: SVM with nonlinear kernels
- Select SVM parameters from cross-validation

