Evolutionary Computing: Comprehensive Review

Matthew D. Branson

Department of Computer Science

Missouri State University

Springfield, MO

branson773@live.missouristate.edu

Abstract

This paper presents a comprehensive review of key topics in evolutionary computing, including genetic algorithms, multi-objective optimization, genetic programming, neuroevolution, and co-evolution.

Index Terms

Genetic algorithms, multi-objective optimization, genetic programming, neuroevolution, NEAT, co-evolution

I. GENETIC ALGORITHMS

A. Selection Pressure

Explain the role of selection pressure in Genetic Algorithms.

- What are the consequences of too high or too low selection pressure?
- Compare roulette wheel selection and tournament selection in this context.

B. Premature Convergence

Consider a binary-encoded GA solving a minimization problem.

- Why might premature convergence occur?
- Suggest at least two strategies to mitigate it.

II. MULTI-OBJECTIVE OPTIMIZATION

A. Pareto Dominance and Pareto Optimality

Differentiate between Pareto dominance and Pareto optimality. Illustrate your answer with a two objective optimization example.

B. Diversity Preservation

Explain the role of diversity preservation mechanisms in MOO.

C. Limitations

Why can't we scalarize all multi-objective problems into a single objective? Discuss limitations of the weighted sum approach with an example.

III. GENETIC PROGRAMMING

A. Comparing Genetic Programming and Genetic Algorithms

Compare Genetic Programming with Genetic Algorithms.

- Focus on representation, operators, and typical application domains.

B. Closure and Sufficiency

Explain how closure and sufficiency properties affect GP design. Give an example of a function and terminal set that satisfies both.

IV. NEUROEVOLUTION

A. NeuroEvolution of Augmenting Topologies

What are the key innovations introduced in NEAT? Explain historical markings, speciation, and complexification.

B. Comparison with Fixed Topology Neuroevolution

Discuss how NEAT differs from traditional fixed-topology neuroevolution. What advantages does evolving topology offer in dynamic environments?

C. Speciation

In NEAT, why is speciation important for protecting innovation? How is it implemented, and what are the risks if not used?

V. CO-EVOLUTION

A. Cooperative vs. Competitive Co-Evolution

Differentiate between cooperative and competitive co-evolution. Provide an example problem suited for each type.

B. The Red Queen Effect

Explain the concept of the Red Queen effect in co-evolutionary systems. How can it affect convergence in competitive settings?

C. Challenges in Co-Evolution

What challenges arise in fitness evaluation in co-evolutionary algorithms? Discuss with respect to relative vs. absolute fitness

VI. CONCLUSION

This paper has provided a comprehensive overview of key concepts in evolutionary computing, including genetic algorithms, multi-objective optimization, genetic programming, neuroevolution, and co-evolution.