Übung 6

Pascal Diller, Timo Rieke

November 25, 2024

Aufgabe 2

(i)

Seien f und g zwei ungerade Funktionen. Somit gilt: f(-x) = -f(x) und g(-x) = -g(x). Zu zeigen: $(f \cdot g)(-x) = (f \cdot g)(x)$

$$(f \cdot g)(-x) = f(-x) \cdot g(-x) = -f(x) \cdot (-g(x)) = f(x) \cdot g(x) = (f \cdot g)(x)$$

Somit ist gezeigt, dass das Produkt zweier ungeraden Funktionen gerade ist.

(ii)

Sei f eine gerade Funktion (f(-x) = f(x)) und g eine ungerade Funktion (g(-x) = -g(x)). Zu zeigen: $(f \cdot g)(-x) = -(f \cdot g)(x)$

$$(f \cdot g)(-x) = f(-x) \cdot g(-x) = f(x) \cdot (-g(x)) = -(f(x) \cdot g(x)) = -(f \cdot g)(x)$$

Somit ist gezeigt, dass das Produkt einer gerade und einer ungeraden Funktion ungerade ist.

(iii)

Seien f und g zwei gerade Funktionen. Zu zeigen: (f+g)(-x)=(f+g)(x)

$$(f+g)(-x) = f(-x) + g(-x) = f(x) + g(x) = (f+g)(x)$$

Somit ist gezeigt, dass die Summe zweier geraden Funktionen auch gerade ist.

(iv)

Sei $\lambda \in \mathbb{N}$ und f eine gerade Funktion. Zu zeigen: $\lambda f(-x) = \lambda f(x)$

$$(\lambda f)(-x) = \lambda f(-x) = \lambda f(x)$$

Somit ist gezeigt, dass für λ und die gerade Funktion f das Produkt aus λf gerade ist.

Zu zeigen:

$$f_n: \mathbb{R} \to \mathbb{R}, x \to x^n$$
 gerade wenn n gerade ungerade wenn n ungerade

I.A. Sei
$$n=0$$
. Da $f_0(-x)=(-x)^0=f_0(x)=x^0=1$ ist f gerade.

Sei
$$n = 1$$
. Da $f_1(-x) = (-x)^1 = -f_1(x) = -x^1 = -x$ ist f ungerade.