CODE

the unsupported length due to reverse curvature bending. Column flexural strength shall be calculated for the factored axial force, consistent with the direction of the lateral forces considered, resulting in the highest flexural strength

- (b) The maximum shear obtained from factored load combinations that include E, with $\Omega_0 E$ substituted for E
- **18.4.3.2** Columns shall be spirally reinforced in accordance with Chapter 10 or shall be in accordance with 18.4.3.3 through 18.4.3.5. Provision 18.4.3.6 shall apply to all columns supporting discontinuous stiff members.
- **18.4.3.3** At both ends of the column, hoops shall be provided at spacing s_o over a length ℓ_o measured from the joint face. Spacing s_o shall not exceed the least of (a) through (c):
 - (a) For Grade 420, the smaller of $8d_b$ of the smallest longitudinal bar enclosed and 200 mm
 - (b) For Grade 550, the smaller of $6d_b$ of the smallest longitudinal bar enclosed and 150 mm
 - (c) One-half of the smallest cross-sectional dimension of the column

Length ℓ_o shall not be less than the longest of (d), (e), and (f):

- (d) One-sixth of the clear span of the column
- (e) Maximum cross-sectional dimension of the column
- (f) 450 mm
- **18.4.3.4** The first hoop shall be located not more than $s_o/2$ from the joint face.
- **18.4.3.5** Outside of length ℓ_o , spacing of transverse reinforcement shall be in accordance with 10.7.6.5.2.
- 18.4.3.6 Columns supporting reactions from discontinuous stiff members, such as walls, shall be provided with transverse reinforcement at the spacing s_o in accordance with 18.4.3.3 over the full height beneath the level at which the discontinuity occurs if the portion of factored axial compressive force in these members related to earthquake effects exceeds $A_g f_c'/10$. If design forces have been magnified to account for the overstrength of the vertical elements of the seismic-force-resisting system, the limit of $A_g f_c'/10$ shall be increased to $A_g f_c'/4$. Transverse reinforcement shall extend above and below the column in accordance with 18.7.5.6(b).

18.4.4 *Joints*

- **18.4.4.1** Beam-column joints shall satisfy the detailing requirements of **15.3.1.2**, **15.3.1.3**, and **18.4.4.2** through **18.4.4.5**.
- **18.4.4.2** If a beam framing into the joint and generating joint shear has depth exceeding twice the column depth,

COMMENTARY

ture bending, both clockwise and counterclockwise. Figure R18.4.2 demonstrates only one of the two options that are to be considered for every column. The factored axial force P_u should be chosen to develop the largest moment strength of the column within the range of design axial forces. Provision 18.4.3.1(b) for columns is similar to 18.4.2.3(b) for beams except it bases V_u on load combinations including the earth-quake effect E, with E increased by the overstrength factor Ω_o rather than the factor 2.0. In ASCE/SEI 7, $\Omega_o = 3.0$ for intermediate moment frames. The higher factor for columns relative to beams is because of greater concerns about shear failures in columns.

Transverse reinforcement at the ends of columns is required to be spirals or hoops. The amount of transverse reinforcement at the ends must satisfy both 18.4.3.1 and 18.4.3.2. Note that hoops require seismic hooks at both ends. The maximum spacing allowed for hoops is intended to inhibit or delay buckling of longitudinal reinforcement.

Discontinuous structural walls and other stiff members can impose large axial forces on supporting columns during earthquakes. The required transverse reinforcement in 18.4.3.6 is to improve column toughness under anticipated demands. The factored axial compressive force related to earthquake effect should include the factor Ω_o if required by the general building code.

R18.4.4 *Joints*

R18.4.4.2 For joints in which the beam depth is significantly greater than the column depth, a diagonal strut between

