۱ جلسهی سیم

مثال ۱. نشان دهید که $\int_1^\infty \frac{1}{x^p} dx$ برای p>1 همگراست و برای 0

پاسخ. فرض کنیم ۱p>1، داریم:

$$\int \frac{1}{x^p} dx = \int x^{-p} dx = \frac{x^{-p+1}}{-p+1}$$

تابع x^{-p} در $x \geq 1$ پیوسته و از این رو در هر بازه ی $x \geq 1$ انتگرالپذیر است. داریم

$$\int_{1}^{t} x^{-p} dx = \frac{x^{-p+1}}{-p+1} \Big|_{1}^{t} = \frac{t^{1-p}}{1-p} - \frac{1}{1-p}$$

حد عبارت سمت راست بالا، وقتی $\infty o t$ موجود است، پس انتگرال مورد نظر همگراست.

حال فرض کنید ۱ p < r ، دوباره بنا به پیوستگی تابع در ۱ $x \geq r$ این تابع در هر بازه ی حال فرض کنید $x \geq r$ انتگرالیذیر است.

$$\int_{\gamma}^{t} \frac{1}{x^{p}} dx = \frac{x^{\gamma-p}}{\gamma-p} \Big|_{\gamma}^{t} = \frac{t^{\gamma-p}}{\gamma-p} - \frac{\gamma}{\gamma-p}\Big)$$

از آنجا که p < 1 حد عبارت بالا وقتی $\infty \to \infty$ موجود نیست (بینهایت می شود). یعنی در این حالت انتگرال واگراست.

p=1حالت

$$\int_{1}^{c} \frac{1}{x} dx = \ln c - \ln 1 = \ln c$$

$$\lim_{c \to \infty} \ln c = \infty$$

در این حالت نیز انتگرال واگراست.

مثال ۲. نشان دهید که $\int_{-\infty}^{\bullet} e^x dx$ همگراست.

. ست. برای هر $c< \cdot$ تابع e^x در بازه و $[c,\, \cdot]$ پیوسته و از این رو، انتگرالپذیر است.

$$\int_c^{\cdot} e^x dx = e^{\cdot} - e^c = 1 - e^c$$

 $\lim_{c \to -\infty} \mathbf{1} - e^c = \mathbf{1}$

بنابراین انتگرال مورد نظر همگراست.

توجه ۳. فرض کنید \mathbb{R} و $a\in\mathbb{R}$ و $\int_{-\infty}^{\infty}f(x)dx$ و $a\in\mathbb{R}$ هر دو همگرا باشند، آنگاه می گوئیم $\int_{-\infty}^{\infty}f(x)dx$ همگرا است و تعریف می کنیم:

$$\int_{-\infty}^{\infty} f(x)dx = \int_{-\infty}^{a} f(x)dx + \int_{a}^{\infty} f(x)dx$$

توجه ۴. اگر f(x)dx مطابق توجه قبل همگرا باشد آنگاه

$$\int_{-\infty}^{\infty} f(x)dx = \lim_{c \to \infty} \int_{-c}^{c} f(x)dx$$

مثال ۵. ثابت کنید که $\sin x dx$ واگراست.

پیوسته و از این رو انتگرالپذیر است. $c \leq \bullet$ پیوسته و از این رو انتگرالپذیر است.

$$\int_{c} \sin x dx = -\cos(\cdot) + \cos(c)$$

مىدانيم كه حد زير موجود نيست:

$$\lim_{c \to -\infty} \cos(c) - 1$$

. پس $\sin x dx$ هم موجود نیست. پس بنا به توجه $\int_{-\infty}^{\infty} \sin x dx$ هم موجود نیست. پس بنا به توجه قبل $\int_{-\infty}^{\infty} \sin x dx$ همگرا نیست.

توجه ۶. اما از طرفی، برای هر عدد c داریم

$$\int_{-c}^{c} \sin x dx = \cdot$$

یس (پون $\sin x$ تابعی فرد است.)

$$\lim_{c \to \infty} \int_{-c}^{c} \sin x dx = \cdot$$

پس از اینکه $\int_{-\infty}^{\infty} f(x)dx$ همگرا باشد نتیجه نمی گیریم که $\lim_{c \to \infty} \int_{-c}^{c} f(x)dx$ همگراست.

مثال ۷. نشان دهید که $\int_{-\infty}^{\infty} \frac{1}{1+x^{7}} dx$ همگراست.

. ست. تابع $\frac{1}{1+x^{\gamma}}$ در هر بازهی $[c,\,ullet]$ برای $c\leq ullet$ پیوسته و انتگرالپذیر است.

$$\int_{c}^{\cdot} \frac{1}{1+x^{\gamma}} dx = \tan^{-\gamma}(\cdot) - \tan^{-\gamma}(c) = \cdot - \tan^{-\gamma}(c)$$

$$\lim_{c \to -\infty} \int_{c}^{\cdot} \frac{1}{1+x^{7}} dx = \lim_{c \to -\infty} -\tan^{-1}(c) = 1$$

نمودار تابع 'tan':

. تابع $\frac{1}{1+x^{\gamma}}$ در هر بازهی $[{f \cdot},c]$ برای $c\geq {f \cdot}$ انتگرالپذیر است

$$\int_{-\infty}^{\infty} \frac{1}{1+x^{\gamma}} dx = \tan^{-1}(c)$$

$$\lim_{c \to \infty} \int_{1}^{c} \frac{1}{1 + x^{7}} dx = \lim_{c \to \infty} \tan^{-1}(c) = 1$$

از اینکه $\int_{-\infty}^{\infty} \frac{1}{1+x^{\intercal}} dx$ و $\int_{-\infty}^{\infty} \frac{1}{1+x^{\intercal}} dx$ هر دو همگرا هستند، نتیجه میگیریم که $\int_{-\infty}^{\infty} \frac{1}{1+x^{\intercal}} dx$ نیز همگراست.

۱.۱ آزمون مقایسه

فرض کنید توابع [a,c] انتگرالپذیر باشند و مدد م $c\geqslant a$ عدد $f,g:I o\mathbb{R}$ انتگرالپذیر باشند و

$$\forall x \in [a, \infty) \quad \bullet \leqslant f(x) \leqslant g(x)$$

آنگاه اگر $\int_a^\infty f(x)dx$ همگرا باشد، $\int_a^\infty g(x)dx$ هم همگراست.

مثال ۸. نشان دهید که $\int_{\cdot}^{\infty} e^{-x^{\mathsf{T}}} dx$ همگراست.

پیوسته، e^{-x} (برای $e^{-x}dx=-e^{-x}$) پیوسته، e^{-x} در هر بازهی e^{-x} (برای $e^{-x}dx=-e^{-x}$) پیوسته، و از این رو انتگرالپذیر است. همچنین

$$\int_{1}^{\infty} e^{-x^{\mathsf{T}}} dx = \int_{1}^{\mathsf{T}} e^{-x^{\mathsf{T}}} dx + \int_{1}^{\infty} e^{-x^{\mathsf{T}}} dx \quad (*)$$

: حال: معمواره پیوسته و انتگرالپذیر است $\int_{\cdot}^{\cdot} e^{-x^{\mathsf{T}}} dx$ معمواره یک عدد است. حال

$$\forall x \geqslant \mathsf{N} \quad x^{\mathsf{Y}} \geq x \Rightarrow -x^{\mathsf{Y}} \leq x \Rightarrow \quad e^{-x^{\mathsf{Y}}} \leqslant e^{-x} \Rightarrow$$
$$\int_{-\infty}^{\infty} e^{-x^{\mathsf{Y}}} dx \leqslant \int_{-\infty}^{\infty} e^{-x} dx$$

ادعا میکنیم $\int_1^\infty e^{-x}dx$ همگراست. تابع e^{-x} در هر بازهی [1,c] (برای $c\geq 1$) پیوسته و انتگرالیذیر است.

$$\int_{1}^{c} e^{-x} dx = -e^{-x} \Big|_{1}^{c} = -e^{-c} + \frac{1}{e}$$
$$\lim_{c \to \infty} -e^{-c} + \frac{1}{e} = \frac{1}{e}$$

. نیز همگراست. پس بنا به آزمون مقایسه، $\int_1^\infty e^{-x^\intercal} dx$ نیز همگراست. پس بنا به آزمون مقایسه، مگراست.

توجه ۹. یکی از انتگرالهای مهم که در کاربرد، بدان نیازمندیم انتگرال زیر است:

$$\int_{-\infty}^{\infty} e^{-x^{\mathsf{T}}} dx$$

در زیر روشی برای محاسبهی آن ارائه کردهایم که مربوط به درس ریاضی ۱ و امتحان آن نیست: اولاً

$$\int_{-\infty}^{\infty} e^{-x^{\mathsf{T}}} dx = \int_{-\infty}^{\infty} e^{-y^{\mathsf{T}}} dy$$

ثانياً داريم:

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (e^{-x^{\mathsf{T}}} \times e^{-y^{\mathsf{T}}}) dx dy = \int_{-\infty}^{\infty} e^{-x^{\mathsf{T}}} dx \times \int_{-\infty}^{\infty} e^{-y^{\mathsf{T}}} dy = (\int_{-\infty}^{\infty} e^{-x^{\mathsf{T}}} dx)^{\mathsf{T}}$$

$$A = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-x^{\mathsf{Y}} - y^{\mathsf{Y}}} dx dy = \int_{\cdot}^{\mathsf{Y}\pi} \int_{\cdot}^{\infty} e^{-r^{\mathsf{Y}}} r dr d\theta$$

$$u = -r^{\mathsf{Y}} \Rightarrow du = -\mathsf{Y} r dr$$

$$\int_{\cdot}^{\infty} e^{u} (-\frac{du}{\mathsf{Y}}) = -\frac{\mathsf{Y}}{\mathsf{Y}} \int_{\cdot}^{\infty} e^{u} du = -\frac{\mathsf{Y}}{\mathsf{Y}} e^{u} |_{\cdot}^{\infty} = -\frac{\mathsf{Y}}{\mathsf{Y}} e^{-r^{\mathsf{Y}}} |_{\cdot}^{\infty} = -\frac{\mathsf{Y}}{\mathsf{Y}} (\mathsf{Y} - \mathsf{Y}) = \frac{\mathsf{Y}}{\mathsf{Y}}$$

$$\lim_{r \to \infty} e^{-r^{\mathsf{Y}}} = \lim_{r \to \infty} \frac{\mathsf{Y}}{e^{r^{\mathsf{Y}}}} = \mathsf{Y}$$

$$\int_{\cdot}^{\mathsf{Y}\pi} \frac{\mathsf{Y}}{\mathsf{Y}} d\theta = \frac{\mathsf{Y}}{\mathsf{Y}} \times \mathsf{Y} \pi = \pi$$

$$\int_{-\infty}^{\infty} e^{-x^{\mathsf{Y}}} dx = \sqrt{\pi}$$

مثال ۱۰. نشان دهید $\int_{\cdot}^{\infty} \frac{1}{e^{x^{\intercal}}+1} dx$ همگراست.

پیوسته، و از این رو انتگرال پذیر است. (برای $c \geq \bullet$) پیوسته، و از این رو انتگرالپذیر است.

$$\forall x \geqslant \cdot \quad \frac{1}{1 + e^{x^{\mathsf{T}}}} \leqslant \frac{1}{e^{x^{\mathsf{T}}}} = e^{-x^{\mathsf{T}}}$$

در مثال قبل ثابت کردیم $\int_{\cdot}^{\infty} \frac{1}{e^{x^{\mathsf{Y}}}+1} dx$ همگراست. بنا به آزمون مقایسه کردیم مگراست.

مثال ۱۱. نشان دهید که $\int_{1}^{\infty} \frac{1}{x+\sqrt[3]{x}} dx$ واگراست.

ربرای ۱ ≥ 1 پیوسته و از این رو انتگرالپذیر است. تابع زیر انتگرالپذیر است. $(c \geq 1)$ (برای ۱ ≥ 1

$$\forall x \geqslant 1$$
 $\frac{1}{x + \sqrt[4]{x}} \geqslant \frac{1}{x + x} = \frac{1}{\sqrt[4]{x}}$

 \square . از آنجا که $\int_{1}^{\infty} \frac{1}{x+\sqrt[3]{x}} dx$ پس پس $\int_{1}^{\infty} \frac{1}{x+\sqrt[3]{x}} dx$ نیز بنا به آزمون مقایسه واگراست.

۲.۱ آزمون مقابسهی حدی

فرض کنید برای هر a,c انتگرالپذیر و مثبت $f,g:[a,+\infty)\to\mathbb{R}$ توابع $c\geqslant a$ توابع کنید برای هر کنید بازهی: $\lim_{x\to\infty}\frac{f(x)}{g(x)}=l$ نتگرالپذیر و مثبت باشند. فرض کنید d

آ.) اگر t > t آنگاه $\int_{a}^{\infty} f(x)dx$ همگراست، اگر و تنها اگر $\int_{a}^{\infty} g(x)dx$ همگرا باشد.

(ب.) اگر $t=\mathbf{1}$ آنگاه اگر g(x)dx نیز همگرا باشد، آنگاه گراست.

نیز $\int_a^\infty f(x)dx$ آنگاه اگر $\int_a^\infty g(x)dx$ واگرا باشد، آنگاه $\lim_{x\to\infty} \frac{f(x)}{g(x)}=\infty$ نیز واگراست.

مثال ۱۲. نشان دهید که $\int_{\cdot}^{\infty} \frac{1}{x^{\mathsf{T}} + x + \mathsf{T}} dx$ همگراست.

پاسخ. $f(x)=\frac{1}{x^{r}+x+r}$ است. میدانیم پازه ی $f(x)=\frac{1}{x^{r}+x+r}$ است. میدانیم که تابع g نیز تابعی مثبت است. که $\int_{1}^{\infty}\frac{1}{x^{r}}dx$ همگراست. قرار میدهیم $g(x)=\frac{1}{x^{r}}$ همگراست. قرار میدهیم داریم:

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = 1$$

بنابراین از همگرایی $\int_{1}^{\infty} \frac{1}{x^{r}+x+1} dx$ همگرایی همگرایی بنابراین از همگرایی همچنین داریم:

$$\int_{\cdot}^{\infty} \frac{1}{x^{\mathsf{r}} + x + \mathsf{Y}} dx = \int_{\cdot}^{\mathsf{Y}} \frac{1}{x^{\mathsf{r}} + x + \mathsf{Y}} dx + \int_{\mathsf{Y}}^{\infty} \frac{1}{x^{\mathsf{r}} + x + \mathsf{Y}} dx$$

$$\lim_{x \to \infty} \int_{\cdot}^{\infty} \frac{1}{x^{\mathsf{r}} + x + \mathsf{Y}} dx$$

مثال ۱۳. نشان دهید که $\int_{-\infty}^{\infty} \frac{e^x}{1+x^*} dx$ همگراست.

 (c, \bullet) ورای ازهی e^{-x} در هر بازهی $\int_{-\infty}^{\bullet} e^{-x} dx$ در هر بازهی (c, \bullet) (برای) پیوسته و از این رو انتگرالپذیر است و داریم:

$$\int_{-\infty}^{\cdot} e^x dx = \lim_{c \to -\infty} \int_{c}^{\cdot} e^x dx = \lim_{c \to -\infty} (e^{\cdot} - e^c) = 1$$

قرار دهید $[c, \bullet]$ و انتگرالپذیر $f(x) = \frac{e^x}{1+x^4}$ و انتگرالپذیر و مثت هستند. همچنین

$$\lim_{x \to -\infty} \frac{f(x)}{g(x)} = \lim_{x \to -\infty} \frac{1}{1 + x^{\dagger}} = \cdot$$

 $\int_{-\infty}^{\cdot} f(x) dx$ بنا به آزمون مقایسه می حدی از آنجا که $\int_{-\infty}^{\cdot} g(x) dx$ همگراست نتیجه می شود که همگراست.

مثال ۱۴. نشان دهید که $\int_{1}^{\infty} \frac{1}{1+\ln x} dx$ واگراست.

پاسخ. میدانیم که $\int_{1}^{\infty} \frac{1}{x} dx$ واگراست.

$$\lim_{x \to \infty} \frac{\frac{1}{1 + \ln x}}{\frac{1}{x}} = \lim_{x \to \infty} \frac{x}{1 + \ln x}$$

از لُپيتال استفاده ميكنيم:

$$\lim_{x \to \infty} \frac{1}{\frac{1}{x}} = \lim_{x \to \infty} x = \infty$$

بنا به آزمون مقایسه ی حدی $\int_1^\infty \frac{1}{1+\ln x} dx$ واگراست. (به مثبت بودن این دو تابع و انتگرالپذیر بودن $(c \geq 1)$ (برای $(c \geq 1)$ توجه شود).

۳.۱ آزمون انتگرال (برای سریها)

فرض کنید تابع \mathbb{R} و پیوسته باشد. $f:[1,\infty)\to\mathbb{R}$ مثبت، انتگرالپذیر، نزولی و پیوسته باشد. آنگاه سری $\sum_{n=1}^\infty f(n)dx$ همگراست اگر و تنها اگر $\sum_{n=1}^\infty f(n)$ همگرا باشد.

ایدهی اثبات

$$\sum_{n=1}^{\infty} f(x) \leqslant \int_{1}^{\infty} f(x) dx$$

$$\sum_{n=1}^{\infty} f(x) \geqslant \int_{1}^{\infty} f(x) dx$$

نتیجه ۱۵. سری $\sum_{n=1}^{\infty} \frac{1}{n^p}$ برای ۱p>1 همگرا و برای p<1 واگراست.

توجه ۱۶. به هیچ وجه ادعا نکردهایم که

$$\int_{1}^{\infty} f(x)dx = \sum_{n=1}^{\infty} f(x)$$

مثلاً

$$\int_{1}^{\infty} \frac{1}{x^{\mathsf{r}}} dx \neq \sum_{n=1}^{\infty} \frac{1}{x^{\mathsf{r}}} = \frac{\pi^{\mathsf{r}}}{\mathsf{r}}$$

توجه ۱۷. شاید برایتان مهم باشد که با یک روش عددی، علت همگرائی $\frac{1}{n^{\gamma}}$ و واگرائی $\frac{1}{n}$ را بررسی کنید. قرار دهید: $\frac{1}{n}$ $\frac{1}{n}$ $A=\sum_{n=1}^{\infty}\frac{1}{n^{\gamma}}$ داریم

$$A = 1 + \frac{1}{7} + (\frac{1}{7} + \frac{1}{7}) + (\frac{1}{5} + \frac{1}{7} + \frac{1}{7}) + (\frac{1}{4} + \frac{1}{15} + \frac{1}{17} + \frac{1}{17} + \frac{1}{17} + \frac{1}{17} + \frac{1}{15} + \frac{1}{15}) + \dots$$

$$\Rightarrow A \mapsto \infty$$

$$B = 1 + (\frac{1}{Y^{\tau}} + \frac{1}{Y^{\tau}}) + (\frac{1}{Y^{\tau}} + \frac{1}{\Delta^{\tau}} + \frac{1}{S^{\tau}} + \frac{1}{Y^{\tau}}) + (\frac{1}{Y^{\tau}} + \frac{1}{Y^{\tau}} + \frac{1}{Y^{\tau}} + \frac{1}{Y^{\tau}} + \frac{1}{Y^{\tau}} + \frac{1}{Y^{\tau}} + \frac{1}{Y^{\tau}} + \frac{1}{Y^{\tau}}) + (\frac{1}{Y^{\tau}} + \frac{1}{Y^{\tau}}) + (\frac{1}{Y^{\tau}} + \frac{1}{Y^{\tau}}) + (\frac{1}{Y^{\tau}} + \frac{1}{Y^{\tau}}) + (\frac{1}{Y^{\tau}} + \frac{1}{Y^{\tau}}) + \dots$$

$$= 1 + \frac{1}{Y} + \frac{1}{Y^{\tau}} + \frac{1}{Y^{\tau}} + \frac{1}{Y^{\tau}} + \frac{1}{Y^{\tau}} + \frac{1}{Y^{\tau}} + \dots = \frac{1}{1 - \frac{1}{Y^{\tau}}} = Y$$

مثال ۱۸. نشان دهید که انتگرالهای زیر همه، همگرا هستند.

$$\int_{1}^{\infty} e^{-x} dx$$

$$\int_{1}^{\infty}xe^{-x}dx$$

$$\int_{1}^{\infty} x^{7} e^{-x} dx$$

$$\int_{1}^{\infty} x^{n} e^{-x} dx$$

پاسخ. میدانیم که $\int_1^\infty \frac{1}{x^*} dx$ همگراست.

$$\lim_{x \to \infty} \frac{x^n e^{-x}}{\frac{1}{x^{\mathsf{Y}}}} = \lim_{x \to \infty} \frac{x^{n+\mathsf{Y}}}{e^x} = \mathbf{\cdot} \quad (*)$$

از آنجا که تابعهای $x^n e^{-x}$ و $\frac{1}{x^*}$ در بازههای به شکل [1,c] (برای $1 \geq x^n e^{-x}$) پیوسته و انتگرالپذیر و مثبت هستند، بنا به آزمون مقایسه ی حدی و رابطه ی (*) انتگرالهای یاد شده همه همگرا هستند.

خارج از درس: پاسخ ۲۰۸ در پیوند زیر، روش جالبی برای محاسبه ی $\frac{\sin x}{x}$ ارائه کرده است:

https://math.stackexchange.com/questions/5248/

evaluating-the-integral-int-0-infty-frac-sin-x-x-dx-frac-pi-2

همان انتگرال را میتوان با استفاده از توابع مختلط، به روش زیر محاسبه کرد:

 $\verb|https://math.stackexchange.com/questions/1739621/|$

the-infinite-integral-of-frac-sin-xx-using-complex-analysis