Assignment Project Exam Help Operating Systems and Concurrency

Lecture 4: Processes Scheduling https://stance.com

Geert De Maere

Add We (sale Triguero) O.W.c.o.der

University Of Nottingham United Kingdom

2018

Assignment Project Exam Help • Processes have "control structures" associated with them (process

- control blocks and process tables)
- Processes conchave different states and transition between them (e.g. new, ready, running, blocked, terminated)
- The operating system maintains multiple process queues (e.g. ready
- The operating system manages processes on the constant (e.g. fork(), exit(), ...)

- Introduction to process scheduling
 Types turbess scheduling
- Evaluation criteria for scheduling algorithms
- Typical process scheduling algorithms
 Add WeChat powcoder

- The OS is responsible for managing and scheduling processes
 - Decide when to **admit** processes to the system (new \rightarrow ready)
 - Decide which process to run next (read) crun)

 Decide when and waich processes in interrupt (unking pready)
- It relies on the scheduler (dispatcher) to decide which process to run next, which uses a scheduling algorithm to do so
- The type of Corit Muse by hated in the whole to the type of operating system (e.g., real time vs. batch)

As spenning by deciding which processes to admit to the system when

- A good mix of CPU and I/O bound processes is favourable to keep all resturces as by symptoms by COCCT. COM
- Usually absent in popular modern OS
- Medium term: controls swapping and the degree of multi-programming
- Short/term: decide which orddess to run next DOWCOde1
 - Invoked very frequently, hence must be fast
 - Usually called in response to clock interrupts, I/O interrupts, or blocking system calls

Exam 2013-2014: Where do the process schedulers fit in with the state transitions?

Figure: Queues in OS

- Non-preemptive: processes are only interrupted voluntarily (e.g., I/O) operation or "nice" system call - yield())
 - Withhat and become more of rej
- Preemptive: processes can be interrupted forcefully or voluntarily
 - This requires context switches which generate overhead, too many of them should be avoided (recall last lecture)
 - Most popular modern operating systems are preemptive

A SS1 sepond on the property of the property o

- Turnaround time: minimise the time between creating the job and finishing it
- Petaris in merver on the second
- System oriented criteria:
 - Throughput: maximise the number of jobs processed per hour
 - Fairness: Addrocessing Continued equal prismous oder
 - Are some processes kept waiting excessively long (starvation)
- Evaluation criteria can be conflicting, i.e., improving the response time may require more context switches, and hence worsen the throughput and increase the turn around time

- First Come First Served (FCFS)/ First In First Out (FIFO)
- Shortest job first
- Bound Robin //powcoder.com
- Performance measures used:
 - Average response time: the average of the time taken for all the
 - Average turnaround time: the average time taken for all the processes to finish
- Images/animations by Jon Garibaldi!

First Come First Served

- Concept: a non-preemtive algorithm that operates as a strict queueing mechanism and schedules the processes in the same order that her very added/to the queue Color Com
- Advantages: positional fairness and easy to implement
- Disadvantages:
 - Favours tong processes over short ones (think of the supermarket powcoder
 - Could compromise resource utilisation, i.e., CPU vs. I/O devices

First Come First Served

- Average response time = $0 + 7 + 9 + 15 = \frac{31}{4} = 7.75$
- Average turn around time = $7 + 9 + 15 + 20 = \frac{51}{4} = 12.75$

Shortest Job First

- Concept: A non-preemtive algorithm that starts processes in order of ascending processing time using a provided/known estimate of the processing S://powcoder.com

 Advantages: always result in the optimal turn around time
- Disadvantages:
 - Starvation mining occur a starvation minin

 - Processing times have to be known beforehand

Shortest Job First

- Average response time = $0 + 2 + 7 + 13 = \frac{22}{4} = 5.5$
- Average turn around time = $2+7+13+20=\frac{42}{4}=10.5$

Scheduling Algorithms Round Robin

Concept: a preemptive version of FCFS that forces context switches

Support The Processes run in the order that they were added to the queue

- Processes are forcefully interrupted by the timer
- Advantages: proposed and the sport of the
 - Effective for general purpose interactive/time sharing systems
- Disadvantages:
 - Increased context switching and thus everhead.
 Favours PU bound processes (which usually run long) ever to processes (which do not run long)
 - Can be prevented by working with multiple queues?
 - Can reduce to FCFS

Exam 2013-2014: Round Robin is said to favour CPU bound processes over I/O bound processes. Explain why may this be the case (if this is the case at all)?

- The length of the time slice must be carefully considered!
- For instance, assuming a multi-programming system with preemptive schedulingrand a context switch time of the COM
 - E.g., a good (low) lesponse time is achieved with a small time slice (e.g. 1ms) ⇒ low throughput
 - E.g., a **high throughput** is achieved with a **large time slice** (e.g. 1000ms)

 Ahigh response in the content of the content
- If a time slice is only used partially, the next process starts immediately

Scheduling Algorithms Round Robin

- Average response time = $0 + 1 + 2 + 3 = \frac{6}{4} = 1.5$
- Average turn around time = $6 + 17 + 19 + 20 = \frac{62}{4} = 15.5$

Assignment Project Exam Help • Concept: A preemptive algorithm that schedules processes by priority

- Concept: A preemptive algorithm that schedules processes by priority (high → low)
 - A round robin is used within the same priority levels.
 - The draces priorities averagent by the process controllick
- Advantages: can prioritise I/O bound jobs
- Disadvantages: low priority processes may suffer from **staryation** (when priorities are static **VeCnat powcode1**

Exam 2013-2014: Out of the following four scheduling algorithms, which one can lead to starvation: FCFS, shortest job first, round robin, highest priority first? Explain your answer.

Scheduling Algorithms Priority Queues

- Average response time = $0 + 1 + 11 + 13 = \frac{25}{4} = 6.25$
- Average turn around time = $10 + 11 + 13 + 20 = \frac{54}{4} = 13.5$

Scheduling Algorithms Priority Queues

Give the order in which the processes are scheduled when using sibely during depending the processes are available at the time of scheduling)

You tentable a time size of 15 millised and com

Calculate the average response and turn around time

Add	FCFSFosition 6	Plyberst tij	ne Pribrity
Process A	VV CCITAL	67	1 (high)
Process B	2	37	1 (high)
Process C	3	14	2 (low)
Process D	4	16	2 (low)

- The OS is responsible for process scheduling
- Diffe entity per sche partice of section o
- Different evaluation criteria exist for process scheduling
- Different algorithms should be considered Add WeChat powcoder