

Practical Machine Learning

Day 5: Sep22 DBDA

Kiran Waghmare

Agenda

- Regression
- Types of Regression

- -Encoders
- -Scaling
- 5.Splitting the dataset into Training set and Testing set.(.20)
- Apply the modelling algorithm

 LinearRegression()
- 7.Prediction for the testing datset
- 8. Visualising the training and testing dataset
- 9.Metrics
- 10.summary for model.

$$y = m X + C$$

First order Linear Equation

b >0; +ve: x,y(inere) b <0; -ve: x(in),y(dec) b =0; no effect CDAC Mumbai: Kiran Waghmare

However, house cost vary even among same size houses!

Estimating the Coefficients

- The estimates are determined by
 - drawing a sample from the population of interest,
 - calculating sample statistics.
 - producing a straight line that cuts into the data.

•
$$MeanSquaredError(mse) = \sqrt{(\frac{1}{n})\sum_{i=1}^{n}(y_i - x_i)^2}$$

• $MeanAbsoluteError(mae) = (\frac{1}{n}) \sum_{i=1}^{n} |y_i - x_i|$

Actual predicted value

The Estimated Coefficients

To calculate the estimates of the line coefficients, that minimize the differences between the data points and the line, use the formulas:

$$b_{1} = \frac{\operatorname{cov}(X,Y)}{s_{X}^{2}} \left(= \frac{s_{XY}}{s_{X}^{2}} \right)$$
$$b_{0} = \overline{Y} - b_{1}\overline{X}$$

The regression equation that estimates the equation of the first order linear model is:

$$\hat{Y} = b_0 + b_1 X$$

The Least Squares (Regression) Line

A good line is one that **minimizes the sum of squared** differences between the points and the line.

Sum of Squares for Errors

- This is the sum of differences between the points and the regression line.
- It can serve as a measure of how well the line fits the data.
 SSE is defined by

SSE =
$$\sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$
.

A shortcut formula

SSE =
$$(n-1)s_Y^2 - \frac{[cov(X,Y)]^2}{s_X^2}$$

Types of Linear Regression

- Linear regression can be further divided into two types of the algorithm:
- Simple Linear Regression:

If a single independent variable is used to predict the value of a numerical dependent variable, then such a Linear Regression algorithm is called Simple Linear Regression.

Multiple Linear regression:

If more than one independent variable is used to predict the value of a numerical dependent variable, then such a Linear Regression algorithm is called Multiple Linear Regression.

Simple Linear Regression $y = b_0 + b_1 x_1$ $y = b_0 + b_1 x_1 + b_2 x_2 + ... + b_n x_n$

Multiple Linear Regression

Polynomial Linear Regression

$$y = b_0 + b_1 x_1 + b_2 x_1^2 + ... + b_n x_1^n$$

CDAC Mumbai: Kiran Waghmare

Multiple Linear Regression ~

