Readme file of estimating a HANK_Model_CT

Main M files

- main_est_model_HANK_2job.m
- main_smc_2job.m
- main_j2_result.m

How to estimate a HANK_CT model

- You run a M file "main_est_model_HANK_2job.m", and then, this code call the M file "main_smc_2job.m" which loads a csv file as data and read a csv file as prior setting from "data" folder.
- You can change the following setting of SMC in M file "main_est_model_HANK_2job.m".

```
39
         disp('Start SMC^2 ')
         ncores = 8 % number of core of CPU for parallel computing
40
41
42
         data_country = 1 % 1: Japan, 2:US
43
         def_switch = 1 % 1st deference for GDP = 1, level = 0
44
45
         %% setting of SMC procedure
                  = ncores*50 % # of particles of parameters
46
         nsim
47
         nstage = 5
                            % # of stages
                  = 18;
                            % # of parameters
48
         npara
                 = 0.5; % adjustment coefficient of SMC
49
         N_Blocks = 5; % Number of random Blocks of sampling
50
51
```

• You can change the following setting of HANK in M file "main_est_model_HANK_2job.m".

```
17
          %% setting of environment of HANK model
18
           I = 100; % number of grids of one ASSET
19
           J = 2; % number of grids of states of JOB
           n_v = I^*J + 1; % number of JUMP variables (value function + inflation)
20
21
           n_g = I*J + 2; % number of ENDOGENOUS state variables (distribution + monetary + Fiscal policy)
22
                      % number of static relations: bond-market clearing, labor market clearing, consumption, output, to
23
           n_shocks = 3; % number of SHOCKS, i.e., monetary policy shock, fiscal policy shock, TFP shock.
24
           nEErrors = n_v;
25
           nVars = n_v + n_g + n_p;
26
```

• After estimating, this code makes a output file in "OUTPUT" folder. And also it print it at command windows as follows.

nstage = 2, particle (para) = 800						
[ESTIMATION RESULT]						
Parameter	Mean	Stdev	95%Low	95%Up	Geweke	Inef.
coefrra 1	.0925 0	.0001	1.0922 1	.0927 0	.742 0.3	345
frisch 0.4	4047 0.	0001 0	.4045 0.4	4050 0.5	62 0.2	66
adjfricshgridfrac	0.7716	0.0001	0.7713	0.7718	0.000	0.327
priceadjust 1	19.5237	0.0001	119.5235	5 119.524	0.000	0.235
taylor_inflation	1.4890	0.0001	1.4887	1.4892	0.000	0.271
taylor_outputgap	0.0328	0.000	0.032	6 0.0331	0.002	0.290
ssigma_MP	0.0327	0.0001	0.0325	0.0330	0.389	0.535
ttheta_MP	0.2649	0.0002	0.2647	0.2652	0.000	0.635
ssigma_FP	0.1168	0.0001	0.1165	0.1170	0.223	1.371
ttheta_FP	0.0619	0.0001	0.0617	0.0622	0.242 0	.233
ssigma_TFP	0.1329	0.0001	0.1326	0.1331	0.000	0.255
ttheta_TFP	0.1091	0.0001	0.1089	0.1094	0.364).856
TP_labor_22	0.0282	0.0002		0.0285	0.031	0.022
post -292	2.2740	0.2101 -				0.539
lik -303.		2085 -30			0.857	0.562
0.9075 0.2899 0.0000 1.0000 0.083 0.822						
rrho 0.0	0052 0.	0000 0	.0052 0.0	0052 0.6	529 0.2	71
accept_rate(1)			0.0000	0.0000	NaN	NaN
accept_rate(2)	0.9075	0.2899	0.0000	0.0000	0.083	0.822

How to summarize results

• You run a M file "main_j2_results.m", which calculate variance decomposition, and draws graph of Value functions, stationary distribution of agents, IRF and historical decomposition.

Asset

10

15

5

00

