METODY NUMERYCZNE – LABORATORIUM

Zadanie 2 – Rozwiązywanie układu N równań liniowych z N niewiadomymi

Opis rozwiązania

Metoda eliminacji Jordana:

Ogólny sposób postępowania dla k-tego wiersza:

1) sprawdzamy, czy wszystkie współczynniki k-tego wiersza nie są zerowe oraz czy wartość k-tego wiersza wektora (wartość po prawej stronie znaku równości) nie jest równa zero. Jeśli jest wyświetlamy komunikat o sprzeczności lub nieoznaczoności układu równań (w zależności czy k-ty wiersz wektora jest niezerowy czy nie) i kończymy algorytm.

Jeśli nie to:

- 2) dokonujemy częściowego wyboru elementu podstawowego poprzez szukanie maksymalnego elementu k-tej kolumny macierzy. Następnie zamieniamy miejscami wiersz z elementem największym (podstawowym) z k-tym wierszem.
- 3) dzielimy k-ty wiersz przez współczynnik akk (dla k równych od 1 do n),
- 4) dla wszystkich pozostałych wierszy (dla i równych od 1 do k-1 oraz od k+1 do n) mnożymy k-ty wiersz przez współczynnik aik, odejmujemy go od i-tego wiersza. Wracamy do kroku nr 1 i powtarzamy operacje dla wiersza k+1 aż do ostatniego wiersza macierzy.

Wyniki

Wybrane przykłady ze strony:

Przykład a):

x	у	Z		w.w.	wyniki programu		wyniki analityczne
3	3	1	=	12	Х	1	1
2	5	7	=	33	у	2	2
1	2	1	=	8	Z	3	3

Przykład b):

Układ nieoznaczony, wartości zmiennych są współzależne od siebie. Nieskończenie wiele rozwiązań.

X	У	Z		w.w.	wynil	ki programu	wyniki analityczne
3	3	1	=	1	X		
2	5	7	=	20	у	nieoznaczony	nieoznaczony
-4	-10	-14	=	-40	Z		

Przykład c):

x	у	Z	=	w. w.	ww. programu	w. analityczne
3	3	1	=	1	sprzeczny	sprzeczny
2	5	7	=	20		
-4	-10	-14	=	-20		

Przykład d):

X	у	Z	t		W.W.	wyniki programu		wyniki analityczne
0.5	-0.0625	0.1875	0.0625	Ш	1,5	Х	2	2
-0.0625	0,5	0	0	Ш	-1,625	у	ب	-3
0,1875	0	0,375	0,125	11	1	Z	1,5	1,5
0,0625	0	0,125	0,25	=	0,4375	t	0.5	0,5

Przykład e):

Układ sprzeczny, rozwiązanie nie istnieje w zbiorze liczb rzeczywistych.

Х	у	Z	t		w.w.	wynil	wyniki analityczne	
3	2	1	-1	=	0	Х	sprzeczny	sprzeczny
5	-1	1	2	=	-4	у		
1	-1	1	2	=	4	Z		
7	8	1	-7	=	6	t		

Przykład f):

X	у	Z	t		w.w.	wyniki programu		wyniki analityczne
3	-1	2	-1	=	-13	X	1	1
3	-1	1	1	=	1	у	3	3
1	2	-1	2	=	21	Z	-4	-4
-1	1	-2	-3	=	-5	t	5	5

Przykład g);

X	у	z	=	w. w.	ww. programu	w. analityczne
0	0	1	=	3	7	7
1	0	0	=	7	5	5
0	1	0	=	5	3	3

Przykład h):

X	у	z	=	w. w.	ww. programu	w. analityczne
10	-5	1	=	3	1	1
4	-7	2	=	-4	2	2
5	1	4	=	19	3	3

Przykład i):

 y muu i j.						
X	у	Z	=	w. w.	ww. programu	w. analityczne
6	-4	2	=	4		
-5	5	2	=	11	nieoznaczony	nieoznaczony
0,9	0,9	3,6	=	13,5		

Przykład j):

ĺ	X	у	Z	=	w. w.	ww. programu	w. analityczne
ľ	1	0,2	0,3	=	1,5	1	1
Ī	0,1	1	-0,3	=	0,8	1	1
	-0,1	-0,2	1	=	0,7	1	1

Wnioski

Metoda eliminacji Jordana:

- 1. W każdym kroku modyfikowane są jednocześnie wszystkie wiersze
- 2. Metoda eliminacji Jordana w czystej postaci jest niestabilna numerycznie- problem dzielenia przez zero. Optymalnym rozwiązaniem jest częściowy wybór elementu podstawowego
- 2. W każdym kroku należy pamiętać o właściwym wyborze elementu podstawowego żeby był jak największy w celu uzyskania dokładnych i poprawnych wyników
- 3. Oprócz zupełnej eliminacji zmiennych macierz pierwotna przekształcana jest w macierz jednostkową
- 4. W każdym kroku porównywane są współczynniki macierzy oraz wektora z zerem w celu wykrycia sprzeczności/nieoznaczoności układu. Dla tych przypadków znalezienie elementu podstawowego, który nie jest zerem jest niemożliwe przynajmniej w ostatnim kroku.
- 5. W celu porównania współczynników dokonano ich zaokrąglenia do 8 miejsca po przecinku, co pozwoliło na wyeliminowanie błędu niedokładności zapisu liczb zmiennoprzecinkowych.