• BJT Implementation:

- ightharpoonup Needs additional circuitry $(I_O-Q_3-Q_4)$
- $ightharpoonup Q_3$ - Q_4 diode-connected transistors and both are biased by the same current I_Q
- This produces a *DC bias* V_{BIAS} between the *bases*of Q_1 - Q_2

Circuit Schematic

- \triangleright Consider *idling condition* with R_L opencircuited $(I_0 = 0)$
- > Neglecting base currents of Q_1 - Q_2 , I_Q flows through Q_3 - Q_4 and develops a voltage drop:

$$V_{BIAS} = V_{BE3} + V_{BE4} = V_{T} \ln \left(\frac{I_{Q}^{2}}{I_{S3}I_{S4}} \right)$$

- $> I_Q$, I_{S3} , and I_{S4} chosen such that $V_{BIAS} \approx 2V_{\gamma}$
- \gt{Note} : V_{BIAS} is also equal to $(V_{BE1} + V_{EB2})$
 - $\Rightarrow Q_1$ - Q_2 remain at the verge of conduction, carrying a standby (or idling) current $I_{Standby}$

- This *extra current* of $(I_Q + I_{standby})$ causes *standby* (or *idling*) power dissipation
- ➤ Noting that:

$$V_{\text{BIAS}} = V_{\text{BE1}} + V_{\text{EB2}} = V_{\text{T}} \ln \left(\frac{I_{\text{Standby}}^2}{I_{\text{S1}}I_{\text{S2}}} \right)$$

$$\Rightarrow I_{Standby} = I_{Q} \sqrt{\frac{I_{S1}I_{S2}}{I_{S3}I_{S4}}}$$

Now, Q_1 - Q_2 has to supply/sink large amount of current to/from load \Rightarrow Their BE junction areas are made large \Rightarrow Large I_{S1} - I_{S2}

$\succ I_{S1}$ - I_{S2} typically 10 times or more than I_{S3} - I_{S4}

- $\Rightarrow I_{standby} \geq 10I_Q$
- ⇒ Adds to the power overhead of the circuit
- > Another option of prebias circuit:
 - V_{BE}-Multiplier
 - $V_{BIAS} = V_{BE3} (1 + R_2/R_1)$
 - Values of R_1 and R_2 chosen to give $V_{BIAS} = 2V_{\gamma}$

The Voltage Transfer Characteristic (VTC)

- > The VTC does not pass through origin
- > Intercepts (known as input-output offset):
 - $V_i = 0, V_o = +V_{EB2}$
 - $V_o = 0, V_i = -V_{EB2}$
- For $V_i > -V_{EB2}$, V_{be1} and $V_{eb2} \checkmark$, with their sum remaining constant at V_{BIAS}
 - \Rightarrow Q_1 starts to conduct and supply current to the load (R_L), while Q_2 starts to go deeper into cutoff
 - $\Rightarrow V_o$ starts to follow V_i with a slope ~1 (CC stage)

- $\succ V_o$ can rise all the way up to $[V_{CC} V_{CEI}(HS)]$, provided that V_i can drive it that far
- Similarly, for $V_i < -V_{EB2}$, V_{eb2} and V_{be1} , with their sum again remaining constant at V_{BIAS}
 - \Rightarrow Q_2 starts to conduct and pull current away from the load (R_L), while Q_1 starts to go deeper into cutoff
 - \Rightarrow V_o again starts to follow V_i with a slope ~1, and can go down all the way to $[V_{EE} + V_{EC2}(HS)]$