

X-48B Flight Research Progress Overview

Tim Risch NASA Dryden Flight Research Center

Fundamental Aeronautics Program 2nd Annual Meeting Atlanta, GA October 7-9, 2008

Program Objectives

- Assess stability & control characteristics of a BWB class vehicle in free-flight conditions:
 - Assess dynamic interaction of control surfaces
 - Assess control requirements to accommodate asymmetric thrust
 - Assess stability and controllability about each axis at a range of flight conditions
- Assess flight control algorithms designed to provide desired flight characteristics:
 - Assess control surface allocation and blending
 - Assess edge of envelope protection schemes
 - Assess takeoff and landing characteristics
 - Test experimental control laws and control design methods
- Evaluate prediction and test methods for BWB class vehicles:
 - Correlate flight measurements with ground-based predictions and measurements

SFW System Level Metrics

CORNERS OF THE TRADE SPACE	N+1 (2015 EIS) Generation Conventional Tube and Wing (relative to B737/CFM56)	N+2 (2020 IOC) Generation Unconventional Hybrid Wing Body (relative to B777/GE90)	N+3 (2030-2035 EIS) Generation Advanced Aircraft Concepts (relative to user defined reference)
Noise	- 32 dB (cum below Stage 4)	- 42 dB (cum below Stage 4)	55 LDN (dB) at average airport boundary
LTO NOx Emissions (below CAEP 6)	-60%	-75%	better than -75%
Performance: Aircraft Fuel Burn	-33%**	-40%**	better than -70%
Performance: Field Length	-33%	-50%	exploit metro-plex* concepts

^{**} An additional reduction of 10 percent may be possible through improved operational capability

N+1 Conventional

Fundamental Aeronautics Program Subsonic Fixed Wing Project

N+2 Hybrid Wing/Body

N+3 Generation

^{*} Concepts that enable optimal use of runways at mutiple airports within the metropolitan areas EIS = Entry Into Service; IOC = Initial Operating Capability

X-48B Flight Research Program

Flight research provides:

- Flight Control System risk reduction
- Required to ensure HWB configuration is as safe as a conventional airplane

Investigate:

- Stall Characteristics
- Departure Onset Boundaries
- Asymmetric Thrust Control
- Flight Control Algorithms
- Envelope Protection Schemes
- Dynamic Ground Effects
- Control Surface Hinge Moments

Major Program Accomplishments

- 30 successful flights including 2 flights in 1 day four times
- Completion of envelope expansion phases in both slats extended and slats retracted configurations
- Aircraft capable of operating from hard surface and lakebed runways at Dryden
- Both Boeing and NASA pilots trained to fly aircraft and first NASA pilot mission flown on 8/13/08
- High quality data for various maneuvers recorded and archived for future use
- Preliminary data analysis ongoing with quick look data report for first 20 flights available before end of year
- Five high AOA flights performed and stable AOA limit found
- Multiple versions of software upgrades performed resulting in stable test platform
- Significant positive press coverage of flight test including articles in Aviation
 Week and Space Technology, Popular Science, Outside, Aviation/Yahoo,
 AeroTech News

Definition of Test Flight Blocks

Flight Test Progress

X-48B BWB Low Speed Vehicle

- Two X-48B Aircraft and Ground Control Station (GCS)
 - Research Partnership of Boeing, NASA, and AFRL
 - Design and fabrication contracted to Cranfield Aerospace
- Air Vehicle Highlights:
 - Dynamically Scaled
 - Uninhabited Air Vehicle
 - Flown by Pilot from Ground Station
 - Powered by 3 Small Turbojets
 - Ground Start only
 - Conventional takeoff and landing
 - Non-retractable Tricycle Gear
 - Slats are Fixed for either Extended or Retract
 - Recovery System
 - Drogue, Parachute, and Air Bags

X-48B Vehicle

Design Approach

- Use low cost (COTS) equipment where possible
 - Engines JetCat P200
 - Landing Gear mountain bike shocks & brakes
- Use normal industry practice for electronic equipment
- Use aircraft spec equipment where necessary
 - Radios, IMU, Actuators, Flight Termination System (FTS) parts
- Save weight to meet dynamic scaling requirements

JetCat P200 Engines

Nose & Main Landing Gear

X-48B 30x60 Wind Tunnel Test

- NASA / AFRL contributed test time in ODU Langley Full-Scale Tunnel
- Wind tunnel test completed April / May 2006
- 250 hours of testing with flight control hardware active
- Data used by Boeing for X-48B simulation and flight control software

8.5% Dynamically Scaled X-48B

Subsonic Fixed Wing Project

11

X-48B Configuration – Top View

Fundamental Aeronautics Program Subsonic Fixed Wing Project

X-48B Configuration – Internal View

X-48B Configuration – Underside View

Recovery System

Main

Airbags

Fundamental Aeronautics Program Subsonic Fixed Wing Project

Spin Chute Testing

Fundamental Aeronautics Program Subsonic Fixed Wing Project

Ground Control Station - Trailer

Fundamental Aerol Subsonic Fixed Wing Project

GCS - Pilot Station

Fundamental Aeronautics Program Subsonic Fixed Wing Project

Lakebed Operations

Subsonic Fixed Wing Project

19

X-48B Skyray 1st Flight Highlights

X-48B Flight Research Summary - I

- Twenty Flights completed in Blocks 1 & 2
 - 11 Flights w/ Slats Extended
 - Slats result in lower speeds and higher lift
 - 9 Flights w/ Slats Retracted
 - New Flight Control Laws / "1st Flight"
 - Envelope Expansion to Max Speed

- Test Maneuvers
 - Real-Time Stability Margins Envelope Expansion
 - Automated Parameter Identifications (PID) Freq Sweeps/Doublets
 - Steady Heading Sideslips Simulate Cross-winds
 - Lazy-8s and Wind-up Turns
 - Airspeed Calibrations (Triangle method)
 - Approach to Stalls

X-48B Flight Research Summary - II

- Ten Flights completed in Block 3 (all slats extended)
- Highlights:
 - Test Maneuvers
 - Real-Time Stability Margins
 - Automated Parameter Identifications (PID) Freq Sweeps/Doublets
 - Steady Heading Sideslips Simulate Cross-winds
 - Lazy-8s and Wind-up Turns
 - AOA Maneuvers above C_Lmax

High Angle of Attack Maneuver

Real Time Stability Margin (RTSM)

- In-Flight Stability has a long history at NASA Dryden Flight Research Center
 - Application to a wide variety of flight programs
 X-29, X-36, X-43, X-45, NF-15B 837
 - Method is motivated by inability to break loops on unstable aircraft
- Proprietary dynamic inversion based flight control
 - Numerous options for on-board excitations
- Excitation parameters and command sent via telecommand from GCS
 - Selectable injection points
 - Selectable waveforms
 - Selectable magnitudes

RTSM Results

From: Regan, Christopher, "In-Flight Stability Analysis of the X-48B Aircraft," AIAA Paper AIAA-2008-6571, AIAA Atmospheric Flight Mechanics Conference and Exhibit, Honolulu, Hawaii, Aug. 18-21, 2008.

X-48B Initial Flight Research Results

- Extremely Maneuverable in Roll
- Aircraft Very Closely Matches GCS for Up/Away Flight (and Landing)
- Stall AOA matches wind tunnel measurements within 1 degree
- Control system modeling generally matches actual flight behavior in the regions examined

- Flight Control Design is Very Robust
- Overall, the Aircraft Flies Extremely Well
 - Despite no peripheral cues (2-D only) / no seat-of-the-pants

X-48B What's Next for the Future

- Current plan to finish 40+ flights in early CY2009
 - Follow-on Testing planned to continue thru FY2010
- Continue Phase 3/4 :
 - Stalls / High Alpha / Engine Out Assessment
- Phase 5/6:
 - Departure Resistance Limiter Assaults / High Beta
- Potential new Engine Design
 - More Efficient = More Duration
- Low Noise Modifications
- Intelligent Flight Controls

Questions?

