Chapter 7 - Discrete Probability

15 October 2019 09:42

Sample Spaces, events, probability distributions
Independence, conditional probability
7.3 Bayes Theorem be applications
7.4 Random variables or expectation, limently of expectations
7.4 Markov or Chebyshev's inequalities

Ask the question: What are the possible extremes of this experiment?"

Sample Space Ω the possible extremes, set $\Omega = \{H, T\}^T$ (for a cain flipped 7 times)

Event

The probability of an event, E is the number of outcomes in E divided by the total number of outcomes;

Probability Distributions

P: $\Omega = \{0,1\}$ such that $\sum_{s \in \Omega} P(s) = 1$ assuming all outcomes equally linky

For event $E \subseteq \Omega$, the complement event, $E = \Omega - E$

Supose Eo, E, E2... are a finitificantable sequence of painwise disjoint events from the sample space A in other words, $E_i \subseteq A$, and $E_i \cap E_j = 0$ for all $i, j \in N$ then; $P(V \in E_i) = \sum_i P(E_i)$

· Additionaly, for each event ESSL, P(E) = 1-P(E)

Conditional Probability of Egiven F, denoted P(E/F) is;

P(EIF) = P(EnF)

Independent Probability

Independent if knowing whether I occurred does not after the probability of the often

Pairwise Independent if every pair of events are independent

Mitally Independent if for every subset $J\subseteq\{1,...n\}$, $P(\bigcap_{i\in J}=\bigcap_{j\in J}P(E_j)$

* mital independence implies pairwise independence but not vice versa "typically when we refer to two events as independent we mean multiply

Biased Coins & Bemoulli trials

Bemoulli trial 'biased coin' - a probabilistic experiment that has two outcomes; success

Bemoulli triul 'biased coin' - a probabilistic experiment that has two outcomes; success or failure.

· Assumption that trials are multivally independent

The probability of exortly k successes in n (nutually independent) Bernouli trials, with probability p of success and q=(1-p) of failure in each trial is; $b(k;n,p)=\binom{n}{k}p^kq^{n-k}$

THE BINOMIAL DISTRIBUTION

Proof. We can associate each B. trial with cutcomes $\Omega = \{H, T\}^n$ of Each seguence $s = (s, ..., s_n)$ with exactly k heads and n-k tails occurs with probability proposition. There are (k) such seguences with exactly k heads

Random Variables reither a variable nor remoon

Random Variable is a function $X: \Omega \to \mathbb{R}$ that assing a real value to each outcome of For random variable $X: \Omega \to \mathbb{R}$ we write P(X=r) as short hand for the probability $P(ls\in \Omega \mid X(s)=r^3)$. The distribution of a random writh X is given by the set of pairs $(r, P(X=r) \mid r)$ is in the range of X?

Biased Coins & Geometric Distribution—

A random variable $X: \Omega \to \mathbb{N}$, is said to have a geometric distribution with parameter ρ , $0 \le \rho \le 1$, if for all positive integers $k \ge 1$, $P(X=k) = (1-p)^{k-1}\rho$

7 92 Morote Corlo Algorithms

Probabilistic Algorithma muke random choias

" Monte Carlo Algorithms Research:

If the probability that an element chosen at random from 5 closs not have a particular property is less than 7, there exists an element in 5 with this property

THE PROBABILISTIC METHOD

7.3 BAYES THEOREM

 $p(f|E) = \frac{p(E|F)p(F)}{p(E|F)p(F) + p(E|F)p(F)}$

Generalized; Suppose E, $F_1 ... F_n$ events in a sample space with $V_i^n f_j = \Omega$ and $F_i \cap F_i = \emptyset$. Then:

Generalized; Suppose E, $F_1...F_n$ events in a sample space with $U_i^n f_j = \Omega$ and $F_i \cap F_j = \emptyset$. Then; $P(F_i|E) = \frac{P(E|F)P(F_i)}{\sum_{i=1}^{n} P(E|F_i)P(F_i)}$

7.4 EXPECTED VALUE & VARIENCE

Expected Value of a random neurable is the sum over all elements in a Sample space of the product of the pobobility of the element and the value of the random variable at this element

-> The weighted everage of the rather of a random raviable expectation/mean

 $E(x) = \sum_{s} p(s) X(s) - box$

If X is a random variable and p(X=r) is the probability that X=r, so that p(X=r) = [ses, X(s)=r P(s), thun; $E(X) = \sum_{n=1}^{\infty} p(X=r)r$

2 The expected number of success when n mutually independent Bernoulli trials are 2014, where p is the populatily of success on each trial is np.

 X_i , i=1,2,3... with n a postitive integer are number variables on S, and if a r b are real numbers them; i) $E(X_1 + X_2 + \cdots + X_n) = E(X_1) + E(X_2) + \cdots + E(X_n)$ (a) = (ax + b) = af(x) + b

LINEARITY OF EXPECTAION

7.4.5 The Geometric Distro

> (Often) in the case of a random voriable with infinitly many outcomes

Geometric Distribution A random veriable has geometric distribution with powerter p if p(X=k) = (1-p) for k=1,2..., where 0 \(\rightarrow \)

7.46 Independence of Random Vanables

The rendom variables X and Y on a sample space S are independent if $\rho(X=r_1 \land Y=r_2) = \rho(X=r_1) \cdot \rho(Y=r_2)$

Then; E(XY) = E(X)E(Y)

7-4.7 Varience

Varience Let X be a random unichle on a sample space S. The

Varience Let X be a random unichle on a sample space S. The namence of X, denoted by V(X) is, $V(X) = \sum_{S \in S} (X(S) - E(X))^2 p(S)$ * Standard devention $\sigma(X) = JV(X)$

 $V(X) = E(X^2) - E(X)^3$ Useful Wentity

Markors Inequality.

What is the probability that the value of the s.V, X, is far from its expectation?

For a non-regative random variable, $X: \Omega \to R$, where $X(s) \ge 0$ for all $s \in \Omega$, for any positive not number a > 0; $P(X \ge a) \le E(X)$

MARKOVS INEQ.

Let $X: \Omega \rightarrow R$ be any random variable, and let r>0 be any positive real number. Then;

CHEBYSHEUS INEQ.

Birthday Panadox

Suppose that each of $m \ge 1$ pigeons independently and uniformly at random enter 1 of $n \ge 1$ pigeon help. It; $m \ge (1.1175 \cdot 50^{-1}) + 1$

then the probability that 2 pigeons go in the same pigeon hole is grater than 2.

HALFWAY POINT OF B.D PARADOX

Ranky Numbers

Suppose that in a group of 6 people, every pair are either friends or enemies — Then, there are either 3 midal friends or 3 midal enemies.

For any positive integer, k, there is a positive integer n such that in any undirected graph with n or more vertices:

"ather there are k vertices that are mutually coefacered, meaning they

graph with n or more vortices: " other there are k vertices that are mutually coefacerd, maning they or there are k vortices that are nutally non adjacent, fining a k-independent set

For each integer $k \ge 1$, Let R(k) be the smallest integer $n \ge 1$ such that every undirected graph with n or more notices has either a k-clique of a k independent set as an included subgraph.

The number R(R) are called diagonal famely number. $R(k) \leq 2^{2k-1}$