Álgebra Universal e Categorias

– Exame de recurso (27 de junho de 2016) — duração: 2h30 _____

1. Para cada $n \in \mathbb{N}$, seja $\mathcal{A}_n = (A_n; (f^{\mathcal{A}}, 0^{\mathcal{A}}))$ a álgebra de tipo (1,0), onde $A_n = \{0,1,2,\ldots,2n\}$, $0^{\mathcal{A}} = 0$ e $f^{\mathcal{A}}: A_n \to A_n$ é a operação definida por

$$f^{\mathcal{A}}(x) = \begin{cases} x+2 & \text{se} \quad x \in \{0, 1, 2, \dots, 2n-2\} \\ 1 & \text{se} \quad x = 2n-1 \\ 0 & \text{se} \quad x = 2n \end{cases}$$

Para cada $n \in \mathbb{N}$: i. Determine $Sg^{A_n}(\{1\})$ e $Sg^{A_n}(\{2\})$. ii. Indique todos os subuniversos de A_n .

2. Sejam $\mathcal{R}=(R;\wedge,\vee)$ um reticulado e \leq a relação de ordem parcial definida por

$$x \leq y$$
 se e só se $x = x \wedge y, \ \forall \, x, y \in R.$

Para cada $a \in R$:

(a) Mostre que a álgebra $\mathcal{I}_a=(I_a;\wedge^{\mathcal{I}_a},\vee^{\mathcal{I}_a})$, onde $I_a=\{x\in R:x\leq a\}$ e $\wedge^{\mathcal{I}_a}$ e $\vee^{\mathcal{I}_a}$ são as operações definidas por

$$x \wedge^{\mathcal{I}_a} y = x \wedge y, \quad x \vee^{\mathcal{I}_a} y = x \vee y, \ \forall x, y \in I_a,$$

é uma subálgebra de \mathcal{R} .

- (b) Mostre que se $\mathcal R$ é um reticulado distributivo, então a aplicação $\phi_a:R\to I_a$ definida por $\phi_a(x)=x\wedge a$, para todo $x\in R$, é um homomorfismo de $\mathcal R$ em $\mathcal I_a$.
- 3. Seja $\mathcal{A} = (A; (f^{\mathcal{A}})_{f \in O})$ uma álgebra.
 - (a) Mostre que se $\theta_1, \theta_2 \in Con\mathcal{A}$, então $\theta_1 \cap \theta_2 \in Con\mathcal{A}$.
 - (b) Se $\mathcal A$ é uma álgebra cujo reticulado de congruências pode ser representado pelo diagrama de Hasse seguinte

diga, justificando, se a álgebra A é:

- i. diretamente indecomponível. ii. subdiretamente irredutível. iii. c-distributiva.
- 4. Considere os operadores S, I e P. Mostre que SIP é um operador de fecho.
- 5. Sejam C, D e E as categorias definidas pelos diagramas seguintes

$$\mathbf{C} \quad \mathrm{id}_{A} \bigoplus_{g} B) \quad \mathrm{id}_{B}$$

$$\mathbf{D} \quad \mathrm{id}_{X} \bigoplus_{X} h$$

$$\mathbf{C} \quad \mathrm{id}_{A} \bigoplus_{g} B) \quad \mathrm{id}_{B}$$

$$\mathbf{D} \quad \mathrm{id}_{X} \bigoplus_{X} h$$

$$\mathbf{$$

- (a) Construa a categoria $\mathbf{C} \times \mathbf{D}$.
- (b) Diga, justificando, se (P,(f,g)) é um produto de R e S na categoria ${\bf E}$.
- 6. Sejam ${f C}$ uma categoria e $f:A\to B$ e $g:B\to C$ morfismos em ${f C}$. Mostre que se $g\circ f$ é um monomorfismo e f é invertível à direita, então f é um bimorfismo.
- 7. Sejam ${\bf C}$ uma categoria, $f,g:A\to B$ morfismos em ${\bf C}$ e (I,i) um igualizador de f e g. Mostre que se $\alpha:B\to C$ é um monomorfismo, então (I,i) é um igualizador de $\alpha\circ f$ e $\alpha\circ g$.
- 8. Sejam C, D e E categorias, $f:A\to B$ um C-morfismo e $F:C\to D$ e $G:D\to E$ funtores.
 - (a) Mostre que GF é um funtor da categoria ${\bf C}$ na categoria ${\bf E}$.
 - (b) Mostre que se F é fiel e pleno e F(f) é invertível à esquerda, então f é invertível à esquerda.