Infraestrutura de Hardware

Aula 03 - Tecnologia de Sistemas Computacionais

2016.2

João Marcelo Teixeira joao.marceloteixeira@ufrpe.br

DEINFO - UFRPE

3 Tecnologia de Sistemas Computacionais

Ação recíproca entre arquitetura, hardware e software

- Inovações na arquitetura incluenciam a tecnologia
- Avanços tecnológicos determinam mudanças na arquitetura

Tópicos neste Capítulo					
3.1	De Componentes a Aplicações				
3.2	Sistemas Computacionais e seus Elementos				
3.3	Gerações de Progresso				
3.4	Tecnologias de Processador e Memória				
3.5	Periféricos, E/S e Comunicações				
3.6	Sistemas de Software e Aplicações				

3.1 De Componentes a Aplicações

Figura 3.1 Subáreas ou visões em engenharia de sistemas computacionais.

Computer Architecture, Background and Motivation

O que é Arquitetura (de Computadores)?

Figura 3.2 Assim como um arquiteto de construções, cujo lugar está nas interfaces entre artes/engenharia e objetivos/meios, mostradas no diagram, um arquiteto de computadores concilia várias demandas conflitantes.

3.2 Sistemas Computacionais e seus Elementos

Figura 3.3 Destacado em vermelho está o espaço de sistemas computacionais, que representa o que normalmente conhecemos por "computador".

Figura 3.4 Classificação de computadores por poder computacional e faixa de preço.

Computadores Automotivos Embarcados

Figura 3.5 Computadores embarcados são ubíquos, porém invisíveis. Podem ser encontrados em automíveis, utensílios domésticos e em vários outros lugares.

Computadores Pessoais e Estações de Trabalho

Figura 3.6 Notebooks, um tipo comum de computador portátil, são bem menores do que desktops, oferencendo substancialmente as mesmas capacidades. Quais os principais motivos para a diferença no tamanho?

Computer Architecture, Background and Motivation

Subsistemas de Computadores Digitais

Figura 3.7 As (três, quatro, cinco ou) seis unidades principais de um computador digital. Usualmente, a unidade "conexão" (um barramento simples ou uma rede mais elaborada) não está incluída explicitamente nesses tipos de diagramas.

3.3 Gerações de Progresso

Tabela 3.2 As 5 gerações de computadores digitais, e seus antecessores.

Geração (início)	Tecnologia de Processador	Inovações de Memória	Dispositivos de E/S introduzidos	Aspecto visual dominante
0 (1600s)	(Eletro) mecânico	Engrenagem, cartão	Nível, discador, cartão perfurado	Equipamento de fábrica
1 (1950s)	Tubo a vácuo	Disco magnético	Fita de papel, fita magnética	Tamanho de um vão
2 (1960s)	Transistor	Núcleo magnético	Disco, impressora, terminal de texto	Mainframe do tamanho de uma sala
3 (1970s)	SSI/MSI	RAM/ROM chip	Disco, teclado, monitor	Tamanho de uma mini-escrivaninha
4 (1980s)	LSI/VLSI	SRAM/DRAM	Rede, CD, mouse, som	Desktop/laptop micro
5 (1990s)	ULSI/GSI/ WSI, SOC	SDRAM, flash	Sensor/atuador, toque	Invisível/ embarcado

Computer Architecture, Background and Motivation

Slide

Produção de Circuitos Integrados e Rendimento

Figura 3.8 Processo de fabricação de um circuito integrado.

Efeito do Tamanho da Célula no Rendimento

Figura 3.9 Visualizando a queda de rendimento com células maiores.

Rendimento =_{def} (número de células boas) / (número total de células)

Rendimento = Rendimento do Wafer \times [1 + (Densidade defeituosa \times Área da célula) / a]^{-a}

Custo da célula = (Custo do Wafer) / (Número total de células × rend<mark>imento) = (Custo do Wafer) × (Área da célula / Área do Wafer) / (Rendimento da Célula)</mark>

3.4 Tecnologias de Processador e Memória

Figura 3.11 Encapsulamento do processador, memória e outros componentes.

Figura 3.10 Tendência no desempenho de processadores e capacidade de memória DRAM (Lei de Moore).

Computer Architecture, Background and Motivation

Jan. 2007

Falácias de Predições sobre Tecnologias Computacionais

"DOS addresses only 1 MB of RAM because we cannot imagine any applications needing more." Microsoft, 1980

"640K ought to be enough for anybody." Bill Gates, 1981

"Computers in the future may weigh no more than 1.5 tons." *Popular Mechanics*

"I think there is a world market for maybe five computers." Thomas Watson, IBM Chairman, 1943

"There is no reason anyone would want a computer in their home." Ken Olsen, DEC founder, 1977

"The 32-bit machine would be an overkill for a personal computer." Sol Libes, *ByteLines*

3.5 Entrada/Saída e Comunicações

(b) Some removable storage media

Figura 3.12 Unidades de memória de discos magnéticos e óticos.

Tecnologias de Comunicação

Figura 3.13 Características de latência e banda de diferentes canais de comunicação.

Computer Architecture, Background and Motivation

3.6 Sistemas de Software e Aplicações

Figura 3.15 Categorização de Software, com exemplos em cada uma das classes.

Programação de Alto vs Baixo Nível

More abstract, machine-independent; More concrete, machine-specific, error-prone; easier to write, read, debug, or maintain harder to write, read, debug, or maintain Very High-level Assembly Machine high-level language language language statements instructions, instructions, language objectives mnemonic binary (hex) Interpreter Assembler Sompiler or tasks Swap v[i] temp=v[i] \$2,\$5,\$5 00a51020 add v[i]=v[i+1] \$2,\$2,\$2 \$2,\$4,\$2 and v[i+1]add 00421020 v[i+1] = temp00821020 add \$15,0(\$2) lw 8c620000 \$16,4(\$2) 8cf20004 lw \$16,0(\$2) SW acf20000 \$15,4(\$2) ac 620004 SW ir \$31 03e00008 One task = One statement = Mostly one-to-one several instructions many statements

Figura 3.14 Modelos e abstrações em programação.

