4.

EQUIVALENCE RESULTS FOR REGULAR LANGUAGES

The big picture

REVIEW – FROM LAST LECTURES

Regular expressions and their language

$$L(\emptyset) = \{ \}$$

$$L(\varepsilon) = \{\varepsilon\}$$

$$L(a) = \{a\}$$

$$L(E+F) = L(E) \cup L(F)$$

$$L(E F) = L(E) L(F)$$

$$L(E^*) = L(E)^*$$

DFAs and NFAs and their languages

 $(Q, \Sigma, \delta, q_0, F)$

• where δ : Q x $\Sigma \rightarrow$ Q

Accepts the language

• $\{w \mid \underline{\delta}(q_0, w) \text{ is in } F\}$

$$\frac{\delta(q,\epsilon) = q}{\delta(q,wa) = \delta(\underline{\delta}(q,w),a)}$$

 δ is written δ on these slides

 $(Q, \Sigma, \delta, q_0, F)$

• where δ : Q x $\Sigma \rightarrow P(Q)$

Accepts the language

• $\{w \mid \underline{\delta}(q_0, w) \text{ contains a state from F}\}$

$$\frac{\delta(q,\epsilon) = \{q\}}{\delta(q,wa) = \delta(q_1,a) \cup ... \cup \delta(q_k,a)}$$
where $\underline{\delta}(q,w) = \{q_1,...,q_k\}$

The big picture

Formal definition

A non-deterministic finite automaton with ε-moves consists of

- Q: a finite set of states
- Σ: a finite set of input symbols, an alphabet
- δ: Q x (Σ U {ε}) → P(Q): a transition function
 for each state q in Q and perhaps a symbol a in Σ it
 determines a set of new states δ(q,a)
- q₀: the initial state; an element of Q
- F: the final states; a subset of Q

Often written as $A = (Q, \Sigma, \delta, q_0, F)$

does not need to

read a symbol

Example: A lamp

The language accepted by an ε-NFA

• How can we define the extended transition function δ ? I.e. $\underline{\delta}(q_0,a) = ?$

IDEA:

- 1. follow as many ε -transitions as you want
- 2. Read a
- 3. follow as many ε-transitions as you want

ECLOSE(q) - ε-closure

- q is in ECLOSE(q)
- If p is in ECLOSE(q) and r is in δ(p,ε)
 then r is in ECLOSE(q)

Example

q	ECLOSE(q)
1	
2	
3	
4	
5	
6	
7	

The language of the ε-NFA

By induction on the length of the string w:

```
• \underline{\delta}(q,\epsilon) = ECLOSE(q)
```

```
• \underline{\delta}(q,wa) = \underline{ECLOSE}(\delta(q_1,a) \cup ... \cup \delta(q_k,a))

where \underline{\delta}(q,w) = \{q_1,...,q_k\} and \underline{ECLOSE}(\{q_1',...,q_k'\})

= ECLOSE(q_1') \cup ... \cup ECLOSE(q_k')
```

```
The language of A = (Q, \Sigma, \delta, q<sub>0</sub>, F)
L(A) = {w|\delta(q<sub>0</sub>,w) contains a state from F}
```

Let's Exercise 2.5.1 (a,b) and 2.5.3 (b)

Exercise 2.5.1: Consider the following ε -NFA:

	ε	a	b	С
→p	Ø	{p}	{q}	{r}
q	{p}	{q}	{r}	Ø
*r	{q}	{r}	Ø	{p}

- a) compute the ε-closure of each state
- b) give all the strings of length two or less accepted by the automaton

Exercise 2.5.3: Construct an ε -NFA accepting the set of strings either 01 repeated one or more times or 010 repeated one or more times.

The big picture

From RE to ε-NFA

- For each of the different forms of regular expressions we show how to construct an ϵ -NFA.
- We maintain the invariants:
 - Exactly one accepting state
 - No transitions entering the initial state
 - No transitions leaving the final state
- Recall what we did for Program Graphs

Automata for base cases

• ε

a

Automata in the inductive cases

• R+S

R S

• R*

complexity: O(n)

Example: (0 + 1)* 1 (0 + 1)

Exercise 3.2.4(a) and 3.2.7

Exercise 3.2.4 (a) Use the algorithm to convert the regular expression 01^* to an ε -NFA.

Exercise 3.2.7 Potential simplifications

- 1. For union: merge the two start states and the two accepting states rather than generating new ones
- 2. For concatenation: merge the accepting state of the first automata with the start state of the second
- 3. For closure: introduce ε-transitions between initial state and final state (rather than introducing the additional states)

Individually each of these simplifications are fine – but to what extend can they be combined?

The big picture

The subset construction

- For each NFA we construct a DFA that accepts the same language
 - The DFA may have 2ⁿ states when the NFA have n states – exponential blow up!
 - But the good news is that in most cases it will have the same number of states but a larger number of transitions

The subset construction (2ⁿ)

- Let $A_N = (Q_N, \Sigma, \delta_N, q_{NO}, F_N)$ be a NFA.
- Construct the DFA $A_D = (Q_D, \Sigma, \delta_D, q_{D0}, F_D)$ as follows:
 - $-Q_D$ is the set of all subsets of Q_N (so $Q_D = P(Q_N)$)
 - $-q_{D0}$ is the set $\{q_{F0}\}$
 - $-F_D$ is the subsets of Q_N that contains states from F_N
 - $-\delta_D: Q_D \times \Sigma \rightarrow Q_D$ constructed from $\delta_N: Q_N \times \Sigma \rightarrow P(Q_N)$

$$\delta_{D}(\{q_{1},...,q_{k}\},a) = \delta_{N}(q_{1},a) \cup ... \cup \delta_{N}(q_{k},a)$$

Example

Becomes

Exercise 2.3.3

 Use the algorithm to convert the following NFA to a DFA and informally describe the language it accepts:

	0	1
→p	{p,q}	{p}
q	{r,s}	{t}
r	{p,r}	{t}
*s	Ø	Ø
*t	Ø	Ø

Is our construction correct?

- Let $A = (Q, \Sigma, \delta_N, q_0, F)$ is a NFA and assume that the DFA $A = (Q, \Sigma, \delta_D, q_0, F)$ is constructed by the subset construction.
- Then L(A) = L(A)

Proof: It is sufficient to show that

$$\underline{\delta}_{N}(q,w) = \underline{\delta}_{D}(\{q\},w)$$

for all q and w

Proof

• To prove $\underline{\delta}_{N}(q,w) = \underline{\delta}_{D}(\{q\},w)$ we proceed by induction on the length of the string w

```
\begin{split} \underline{\delta}_{N}(q,\epsilon) &= \{q\} \\ \underline{\delta}_{N}(q,wa) &= \delta_{N}(q_{1},a) \text{ u ... u } \delta_{N}(q_{k},a) \\ \text{where } \underline{\delta}_{N}(q,w) &= \{q_{1},...,q_{k}\} \\ \end{split} \qquad \qquad \underbrace{\delta}_{D}(\{q\},\epsilon) &= \{q\} \\ \underline{\delta}_{D}(\{q\},wa) &= \delta_{D}(\{q_{1},...,q_{k}\},a) \\ \text{where } \underline{\delta}_{D}(\{q\},w) \\ &= \{q_{1},...,q_{k}\} \end{split}
```

The big picture

From NFA to ε-NFA

- Any language accepted by an NFA is also accepted by an ϵ -NFA
 - This is trivial but why?

The big picture

From ε-NFA to DFA

- We shall mimic the subset construction
- Given a ε -NFA (Q_F, Σ , δ _F, q_{FO}, F_F)
- We shall construct a DFA $(Q_D, \Sigma, \delta_D, q_{DO}, F_D)$:
 - $-Q_D = P(Q_E)$ the subsets of Q_E
 - $-q_{D0} = ECLOSE(q_{E0})$
 - F_D: all subsets of Q_E containing states from F_E
 - Transition function:

```
\delta_{D}(\{q_1,...,q_k\},a) = ECLOSE(\delta_{E}(q_1,a) \cup ... \cup \delta_{E}(q_k,a))
```


Is transformed into the DFA

From ε-NFA to DFA

How can we prove that this is correct?

We prove that for all strings w

$$\underline{\delta}_{E}(q_0, w) = \underline{\delta}_{D}(ECLOSE(q_0), w)$$

The proof is by induction on w – see the book!

Exercise 2.5.1 (again)

• Consider the following ε-NFA:

	ε	a	b	С
→p	Ø	{p}	{q}	{r}
q	{p}	{q}	{r}	Ø
*r	{q}	{r}	Ø	{p}

- a) compute the ϵ -closure of each state
- b) give all the strings of length two or less accepted by the automaton
- c) convert the automaton to a DFA

READING MATERIAL AND EXERCISES

Reading material

- Covered in the lecture today:
 - HMU chapter 2: pages 60-65, 72-79
 - HMU chapter 3: pages 102-107
- Exercises for today
 - From NFAs to DFAs: HMU 2.3.3
 - On ε-NFAs: HMU 2.5.1, 2.5.3(b)
 - From RE to ε-NFAs: HMU 3.2.4(a,b), 3.2.5, 3.2.7
 - For 3.2.5: you can try two approaches (and compare the results):
 - constructing the ϵ -NFA with the algorithm, and then simplifying it.
 - constructing the DFA directly