ARIA 양자 구현 논문 리뷰

https://youtu.be/vEVPVxSrZyQ

논문

Chauhan, A.K., Sanadhya, S.K.: Quantum resource estimates of grover's key search on aria.
In: Security, Privacy, and Applied Cryptography Engineering: 10th International Conference, SPA
CE 2020, Kolkata, India, December 17–21, 2020, Proceedings 10, Springer (2020) 238–258 2, 9,
10, 11, 12, 13, 14, 15

Yang, Y., Jang, K., Oh, Y., & Seo, H. (2023). Depth-Optimized Quantum Implementation of ARI
 A. Cryptology ePrint Archive.

$$S_1(\alpha) := \mathbf{A}.\alpha^{-1} + \mathbf{a}$$

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \end{bmatrix} \text{ and } \mathbf{a} = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \end{bmatrix}$$

$$S_2(\alpha) := \mathbf{B}.\alpha^{247} + \mathbf{b}$$

$$S_2(\alpha) := \mathbf{B} \cdot (\alpha^{-1})^8 + \mathbf{b} = \mathbf{B} \cdot \mathbf{C} \cdot \alpha^{-1} + \mathbf{b}$$

= $\mathbf{D} \cdot \alpha^{-1} + \mathbf{b}$

$$\mathbf{D} = \begin{bmatrix} 0 & 1 & 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 1 & 1 & 0 \end{bmatrix} \text{ and } \mathbf{b} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

$$S_1^{-1}(\alpha) := (\mathbf{A}^{-1}.(\alpha + \mathbf{a}))^{-1}$$

$$\mathbf{A}^{-1} = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \end{bmatrix} \text{ and } \mathbf{a} = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \end{bmatrix}$$

$$S_2^{-1}(\alpha) = (\mathbf{D}^{-1}.(\alpha + \mathbf{b}))^{-1}$$

$$\mathbf{D}^{-1} = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 \end{bmatrix} \text{ and } \mathbf{b} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

- Itoh-Tsujii algorithm
 - 곱셈과 제곱으로 이루어진 연산

$$\alpha^{-1} = \alpha^{254} = ((\alpha.\alpha^2).(\alpha.\alpha^2)^4.(\alpha.\alpha^2)^{16}.\alpha^{64})^2$$

- Squaring (제곱기)
 - PLU 분해 사용

Fig. 1. Circuit for squaring in $\mathbb{F}_2[x]/(x^8+x^4+x^3+x+1)$.

CNOT gate: 12

Depth: 7

- Multiplication (곱셈기)
 - Schoolbook multiplication (Mastrovito)

Fig. 2. Circuit for multiplier in $\mathbb{F}_2[x]/(x^8+x^4+x^3+x+1)$.

- Karatsuba Multiplication (Jang.et.al)
 - 카라추바 알고리즘을 재귀적으로 사용하여 Toffoli depth가 1인 곱셈 (81개 중 38개의 ancilla qubit 재사용)

Table 1: Quantum resources required for multiplication.

Source	#Clifford	#T	Toffoli depth	Full depth
CMMP [2]	435	448	28	195
J++ [11]	390	189	1	28

*: The multiplication size n is 8.

- Affine function
 - PLU 분해 사용

CNOT gate: 26

X gate: 4

CNOT gate: 18

X gate: 4

CNOT gate: 35

X gate: 4

CNOT gate: 27

X gate: 4

• S-box

$$\alpha^{-1} = \alpha^{254} = ((\alpha.\alpha^2).(\alpha.\alpha^2)^4.(\alpha.\alpha^2)^{16}.\alpha^{64})^2$$

Chauhan, et. al

- Yang.et.al
 - Squarings : 11
 - Multiplications : 4
 - Qubits: 162 (38)

- Chauhan.et.al
 - Squarings : 33
 - Multiplications : 7
 - Qubits: 40 (24)

Substitution Layer

• *S*₁

Toffoli gates : $64 \times 7 = 448$

CNOT gate: $12 \times 33 + 21 \times 7 + 26 = 569$

X gate: 4

• *S*₂

Toffoli gates : $64 \times 7 = 448$

CNOT gate: $12 \times 33 + 21 \times 7 + 35 = 578$

X gate: 4

• S_1^{-1}

Toffoli gates : $64 \times 7 = 448$

CNOT gate: $12 \times 33 + 21 \times 7 + 18 = 561$

X gate: 4

• S_2^{-1}

Toffoli gates : $64 \times 7 = 448$

CNOT gate: $12 \times 33 + 21 \times 7 + 27 = 570$

X gate: 4

Substitution Layer

Toffoli gates : $448 \times (4 \times 4) = 7,168$

CNOT gate: $(569 + 561 + 578 + 570) \times 4 = 9{,}112$

X gate : $4 \times (4 \times 4) = 64$

Diffusion Layer

- Diffusion Layer
 - PLU 분해 사용

Yang.et.al

- CNOT gates : 768

- Depth: 31

Chauhan.et.al

- CNOT gates: 768

- Depth: 26

Round function

Round function

Therefore, the total number of quantum gates needed to implement the substitution layer are as follows.

- Total number of Toffoli gates = $448 \times (4 \times 4) = 7,168$
- Total number of CNOT gates = $(569 + 561 + 578 + 570) \times 4 = 9,112$
- Total number of Pauli-X gates = $4 \times (4 \times 4) = 64$.
- 3. **Diffusion Layer (DL):** It is a linear operation and implementing it requires only 768 CNOT gates.

Therefore, one round of ARIA requires the following number of gates:

- Total number of Toffoli gates = 7,168
- Total number of CNOT gates = 128 + 9, 112 + 768 = 10, 008
- Total number of Pauli-X gates = 64.

- Key Schedule Chauhan.et.al
 - Key initialization

- Total number of Toffoli gates = 7,168
- Total number of CNOT gates = 128 + 9,112 + 768 = 10,008
- Total number of Pauli-X gates = 64.

KeyWords (W_i)	# Pauli-X	# CNOT	# Toffoli
W_0	0	128	0
W_1		10,008 + 128 = 10,136	
W_2		10,008 + 128 = 10,136	
W_3	64 + 57 = 121	10,008 + 128 = 10,136	7,168
Total	379	30,536	21,504
Round Subkeys	# Pauli-X	# CNOT	# Toffoli
RK_i for each i	0	$128 \times 4 = 512$	0

- Key Schedule Yang.et.al
 - Key initialization
 - CNOT gate를 X gate로 대체

KeyWords (W_i)	# Pauli-X	# CNOT	# Toffoli
W_0	0	1 28	0
\overline{W}_1	64 + 65 = 129	10,008 + 128 = 10,136	7,168
W_2	64 + 65 = 129	$10,008 + \overline{128} = 10,136$	7,168
W_3	64 + 57 = 121	10,008 + 128 = 10,136	7,168
Total	379	30,536	21,504
Round Subkeys	# Pauli-X	# CNOT	# Toffoli
RK_i for each i	0	$128 \times 4 = 512$	0

- Key Schedule Chauhan.et.al
 - Key generation
 - RK_i 하나의 큐비트 세트(w₄)만 사용
 → 라운드 연산 후 역연산을 통해 초기화
 - 'zig-zag' 방식 사용 → 큐비트 최적화

KeyWords (W_i)	# Pauli-X	# CNOT	# Toffoli
W_0	0	128	0
W_1	64 + 65 = 129	10,008 + 128 = 10,136	7,168
W_2	64 + 65 = 129	10,008 + 128 = 10,136	7,168
W_3	64 + 57 = 121	10,008 + 128 = 10,136	7,168
Total	379	30,536	21,504
Round Subkeys	# Pauli-X	# CNOT	# Toffoli
RK_i for each i	0	$128 \times 4 = 512$	0

- Key Schedule Yang.et.al
 - Key generation
 - RK_i 하나의 큐비트 세트(w_4)만 사용
 - → 라운드 연산 후 역연산을 통해 초기화
 - RK_i 생성 시 w_0 을 사용하는 경우 X gate로 대체
 - → CNOT gate 256개 감소
 - 'pipeline' 방식 사용 → depth 최적화

```
ek_1 = (W_0) \oplus (W_1 \gg 19), \quad ek_2 = (W_1) \oplus (W_2 \gg 19)
KeyWord: ek_3 = (W_2) \oplus (W_3 \gg 19), \quad ek_4 = (W_0 \gg 19) \oplus (W_3)
                                                                                   # Toffoli
               ek_5 = (W_0) \oplus (W_1 \gg 31), \quad ek_6 = (W_1) \oplus (W_2 \gg 31)
W_0
              ek_7 = (W_2) \oplus (W_3 \gg 31), \quad ek_8 = (W_0 \gg 31) \oplus (W_3)
              ek_9 = (W_0) \oplus (W_1 \ll 61), \quad ek_{10} = (W_1) \oplus (W_2 \ll 61) 7.168
W_1
              ek_{11} = (W_2) \oplus (W_3 \ll 61), \quad ek_{12} = (W_0 \ll 61) \oplus (W_3) 7,168
W_2
              ek_{13} = (W_0) \oplus (W_1 \ll 31), \quad ek_{14} = (W_1) \oplus (W_2 \ll 31)
W_3
           ek_{15} = (W_2) \oplus (W_3 \ll 31), \quad ek_{16} = (W_0 \ll 31) \oplus (W_3) \ 7.168
               ek_{17} = (W_0) \oplus (W_1 \ll 19)
Total
                                                                                    21,504
Round Subkeys | # Pauli-X
                                                # CNOT
                                                                                    # Toffoli
RK_i for each i
                                                128 \times 4 = 512
                                                                                    0
```


Quantum resource estimation

• ARIA 양자 자원 추정

Table 2: Required quantum resources for ARIA quantum circuit implementation

Cipher	Source	#X	#CNOT	#Toffoli	Toffoli depth	#Qubit	Depth	TD-M cost
ARIA-128	CS[2]	1,595	231,124	157,696	4,312	1,560	9,260	6,726,720
	This work	1,408	285,784	25,920	60	29,216	3,500	1,752,960
ARIA-192	CS[2]	1,851	273,264	183,368	5,096	1,560	10,948	7,949,760
	This work	1,624	324,136	29,376	68	32,928	3,978	2,239,104
ARIA-256	CS[2]	2,171	325,352	222,208	6,076	1,688	13,054	10,256,288
	This work	1,856	362,488	32,832	76	36,640	4,455	2,784,640

Table 3: Required decomposed quantum resources for ARIA quantum circuit implementation

Variant		#Cliford	#T	T-depth	#Qubit	Full depth
ARIA-128	$CS[2]^{\diamondsuit}$	1,494,287	1,103,872	17,248	1,560	37,882
	This work	$494,\!552$	181,440	240	29,216	$4,\!650$
ARIA-192	$\text{CS}[2]^{\diamondsuit}$	1,742,059	1,283,576	20,376	1,560	44,774
	This work	560,768	$205,\!632$	272	32,928	$5,\!285$
ARIA-256	CS[2] ^{\$}	2,105,187	1,555,456	24,304	1,688	51,666
	This work	627,000	229,824	304	36,640	5,919

Grover's key search

- ARIA Grover 공격 비용 추정
 - Grover 공격 최적 iteration $\left[\frac{\pi}{4}\sqrt{2^k}\right]$
 - Oracle에는 2개의 회로 필요 \rightarrow 2 x $\left[\frac{\pi}{4} \sqrt{2^k}\right]$ x quantum resources
 - $r = [key \ size / \ block \ size]$ 개의 평문-암호문 쌍을 얻는 것이 고유한 키를 식별할 수 있음.

$$ightarrow$$
 Grover 공격 비용 : 2 x r x $\left[\frac{\pi}{4}\sqrt{2^k}\right]$ x quantum resource

• ARIA 는 NIST Level 1, 3, 5를 달성

Table 4: Cost of the Grover's key search for ARIA

Cipher	Source	Total gates	Full depth	Cost (complexity)	#Qubit	FD- M cost
ARIA-128	CS[2]	$1.998\cdot 2^{85}$	$1.816\cdot 2^{79}$	$1.814 \cdot 2^{165}$	1,561	$1.26\cdot 2^{86}$
	This work		$1.783\cdot 2^{76}$	$1.991\cdot2^{160}$	29,217	$1.313\cdot 2^{84}$
ARIA-192	CS[2]	$1.146\cdot 2^{119}$	5 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	- T/A		$1.489\cdot 2^{118}$
	This work		$1.013\cdot 2^{109}$	$1.216\cdot 2^{226}$		$1.677\cdot2^{116}$
ARIA-256						$1.921\cdot 2^{150}$
	This work	$1.336 \cdot 2^{149}$	$1.135 \cdot 2^{141}$	$1.516\cdot 2^{290}$	72,081	$1.043 \cdot 2^{149}$

Q&A