Appello di Ingegneria Inform	atica del 9.01.2020: Compito A	(AULA 204 – ADAMO – DUE ORE)
Nome	Cognome	Matricola

Domanda 1	[2+3 punti]
Joinanua 1	[2+3 punti]

- 1.1 Dare una definizione di limite per una successione di numeri reali;

a.
$$a_n = (-1)^n \frac{\sin n}{n^2}$$

b.
$$a_n = \binom{n}{2} / (n^2 - n)$$

1.2 Calcolare il
$$\lim_{n \to \infty} a_n$$
:
a. $a_n = (-1)^n \frac{\sin n}{n^2}$
b. $a_n = \binom{n}{2} / (n^2 - n)$
c. $a_n = \frac{3n^n - 2n^2 + 7\sqrt{n}}{2^{n+3} + 5n^2}$

Risposta

(i)	 	 	 	

Domanda 2 [2+3 punti]

- Enunciare il teorema del Valor Medio per gli integrali; (i)
- Calcolare il valore medio di $f(x) = x^2 x$ su [0,3] e di $g(x) = (\sin x)^2$ su $[0,\pi/2]$ (ii)

Risoluzione

(i)	 	 	
(ii)		 	

Sia f: $\mathbb{R} \to \mathbb{R}$ la funzione da f(x) = xe ^{-x-} , allora	
a. f ha massimo assoluto e minimo assoluto;b. f ha minimo assoluto ma non massimo assoluto;	
c. f ha massimo assoluto ma non minimo assoluto;	
d. i limiti $\lim_{x \to \pm \infty} f(x)$ sono differenti.	
Risoluzione (giustificare la risposta)	
Esercizio 2	[3 punti]
$\sum_{i}^{\infty} \sin(\sin(\frac{1}{2})) \sin(\sin(\sin(\frac{1}{2})))$	լ <i>5</i> բահայ
Si consideri la serie $\sum_{n=2}^{\frac{\sin(\sin(\sin(\frac{\pi}{n})))}{\sqrt[3]{n}}} - \frac{\sin(\sin(\frac{\pi}{n})))}{\sqrt{n}} \text{allora:}$	
a. è assolutamente convergente;	
b. il termine generico non è infinitesimo;c. è a segni alterni;	
d. nessuna delle precedenti.	
Risoluzione (giustificare la risposta)	
Esercizio 3	[3 punti]
Sia $z = 1 - i \in \mathbb{C}$ allora $\log (1 - i)$	
a. è un insieme limitato del piano complesso;b. non esiste;	
c. è un insieme numerabile;	
d. ha parte reale pari a $\frac{\log 2}{2}$	
Risoluzione (giustificare la risposta)	

[3 punti]

Esercizio 1

Esercizio 4	[4 punt
Esercizio 4	[4 punt

Studiare la continuità, la derivabilità e la differenziabilità su \mathbb{R}^2 della funzione

$$f(x,y) = \begin{cases} \frac{x^4 - y^4}{x^4 + y^4} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

	(0	(x,y)=(0,0)	
Risoluzione			
Nisoluzione			
Esercizio 5			[4 punti
Risolvere il problema di Cauchy			
f(x)	$(x,y) = \begin{cases} y''(x) \\ y''(x) \end{cases}$	$y(0) + 4y = 8\alpha x + e^{x}$ $y(0) = 0$ $y'(0) = 0$	
al variare del parametro $lpha \ \epsilon \ \mathbb{R}.$			
Risoluzione			
Modrazione			

Esercizio 6	[5 punti]
-------------	-----------

Calcolare l'integrale doppio

$$\iint_D xy \, dxdy$$

in
$$D = \{(x, y) \in \mathbb{R}^2 : (x - 1)^2 + (y + 1)^2 \le 1, y \le x - 1\}.$$

Risoluzione		
		
·		