Algorytmy Zaawansowane - POLE

Piotr Izert, Łukasz Dragan 24 marca 2016

Spis treści

1	Przedstawienie problemu		
		Treść zadania	
2	Opi	s rozwiązania	
	$2.\overline{1}$	Pole wielokąta	
	2.2	Zawieranie punktu w wielokącie	
	2.3	Sprawdzanie, czy wielokąt jest prosty	
3	Analiza poprawności		
	3.1	Pole wielokąta	
	3.2	Zawieranie punktu w wielokącie	
	3.3	Sprawdzanie, czy wielokąt jest prosty	
Į	Opi	s wejścia/wyjścia	
		Wejście	
		Wyjście	

1 Przedstawienie problemu

1.1 Treść zadania

Zaprojektować i zaimplementować algorytm, który w czasie liniowym względem n oblicza pole n-wierzchołkowego prostego wielokąta oraz sprawdza, czy podany punkt leży wewnątrz tego wielokąta. Program powinien zawierać procedurę sprawdzającą, czy dany wielokąt jest prosty.

2 Opis rozwiązania

2.1 Pole wielokata

W celu obliczenia pola powierzchni wielokąta prostego stosujemy algorytm wykorzystujący tzw. wzór trapezowy Gaussa $S=\frac{1}{2}\sum_{i=1}^n(x_i+x_{i+1})*(y_{i+1}-y_i)$, gdzie S to pole powierzchni wielokąta, x_i,y_i dla i=1...n to współrzędne kolejnych wierzchołków wielokąta, a n to liczba wierzchołków wielokąta. Zakładamy, że $x_{n+1}=x_1$ oraz $y_{n+1}=y_1$.

Algorytm

- 1. area = 0
- 2. j = n
- 3. dla i = 1 do n wykonaj:
- 4. $area = area + (x_i + x_i) * (y_i y_i)$
- 5. j=i
- 6. area = area/2
- 7. RETURN area

2.2 Zawieranie punktu w wielokacie

Sprawdzenie, czy punkt zawiera się w wielokącie jest realizowane przez zliczenie przecięć półprostej zaczynającej się w badanym punkcie z bokami wielokąta. Jeżeli liczba przecięć jest nieparzysta, to znaczy, że punkt leży wewnątrz wielokąta. W przeciwnym razie punkt leży na zewnątrz wielokąta.

Rysunek 1: Sprawdzanie zawierania się punktu w wielokącie

W zaimplementowanym algorytmie półprosta prowadzona jest równoleg
le do osi X w kierunku rosnących wartości. Oznaczmy prze
z $x_i,y_i\ dla\ i=1...n$ współrzędne kolejnych wierzchołków wielokąta, a prze
zXi Ywspółrzędne badanego punktu.

Algorytm

- 1. inside = false
- 2. dla i = 1 do n wykonaj:
- 3. sprawdź, czy krawędź i, i+1 przecina prostą y=Y
- 4. jeżeli tak, to sprawdź, czy współrzędna x punktu przecięcia jest większa od \boldsymbol{X}
- 5. jeżeli tak, to inside = !inside

Sprawdzenie z punktu 3. realizowane jest w następujący sposób - sprawdzane jest, czy współrzędne y obydwu końców krawędzi leżą na różnych półpłaszczyznach wyznaczanych przez prostą - warunek:

$$(y_i > Y)! = (y_{i+1} > Y)$$

Sprawdzenie z punktu 4. realizowane jest przez znalezienie punktu przecięcia krawędzi z prostą i porównanie go do wartości X:

$$X < x_i + (x_j - x_i) \frac{y_i - Y}{y_i - y_j}$$

Przykład zasady obliczania punktu przecięcia został przedstawiony na rysunku 2.

Rysunek 2: Obliczanie punktu przecięcia krawędzi z prostą

2.3 Sprawdzanie, czy wielokąt jest prosty

3 Analiza poprawności

3.1 Pole wielokąta

Poprawność

W pierwszej iteracji pętli z kroku 3. $area=(x_n+x_1)*(y_n-y_1)(=(x_n+x_{n+1})*(y_n-y_{n+1}))$. W kolejnych iteracjach j jest zawsze o 1 mniejsze od i, stąd do area dodawana jest wartość $(x_j+x_{j+1})*(y_j-y_{j+1})$ dla j=1...n-1. Stąd ostatecznie $area=(x_n+x_{n+1})*(y_n-y_{n+1})+(x_1+x_2)*(y_1-y_2)+...+(x_{n-1}+x_n)*(y_{n-1}-y_n)=\sum\limits_{i=1}^n(x_i+x_{i+1})*(y_{i+1}-y_i)$. Po podzieleniu area przez 2 otrzymujemy wzór Gaussa na pole powierzchni wielokąta.

Interpretacja geometryczna

Sumę we wzorze na pole wielokąta można interpretować jako sumę pól trapezów. Zostało to zilustrowane na rysunku ??.

Złożoność czasowa

Algorytm działa w czasie O(n), gdyż główna pętla algorytmu wykonuje dokładnie n kroków.

- 3.2 Zawieranie punktu w wielokącie
- 3.3 Sprawdzanie, czy wielokat jest prosty

4 Opis wejścia/wyjścia

4.1 Wejście

Program domyślnie jako wejście przyjmuje zawartość pliku "in.txt", który powinien zawierać w kolejnych liniach:

- 1. Dane w postaci $x_1 y_1 \dots x_n y_n$, gdzie $(x_i, y_i) \in \Re^2 dla i = 1, 2, ..., n$ to współrzędne kolejnych punktów a n to liczba wierzchołków wielokąta.
- 2. Dane postaci x y, gdzie $(x,y) \in \Re^2$ będące współrzędnymi punktu, którego zawieranie w wielokącie ma zostać sprawdzone.

Przykładowe wejście

344,8 91,2 68,8 121,6 352,8 218,4 448 114,4 288,8 136

4.2 Wyjście

Rezultat działania programu zapisywany jest w pliku "out.txt" w postaci S Ans gdzie S to pole powierzchni wielokąta a $Ans \in \{ "TAK", "NIE" \}$ to odpowiedź na pytanie, czy dany punkt jest zawarty w wielokącie. W przypadku, gdy dany wielokąt nie jest prosty, rezultatem działania programu jest NOT SIMPLE. Jeżeli dane podane na wejściu są niepoprawne, program zapisze do pliku BAD INPUT.

Przykładowe wyjście 1243,33 TAK