- Sazuc u osusee pewerwe 4(x)=Gehix+..+Gehnx 2) Среди корней есъ кошплексно-сопрященная пара, т.е. Barunoe choûct bo: eau S(x)= S1(x)+S2(x), o Supe peur auset bug $\lambda_{i} = a \pm i b$, $a_i b \in \mathbb{R}$ (be kommercial Kophu raphue). 4(x)=4,(x)+4,(x)+4,(x), 2ge 2(9)4,=5,,2(9)4,=5,,2(9)4,=0 Un coorbercibyor dazuerne pennenne e^{ax} sinbx u e^{ax} cosbx The Nyote npabas racts f(x)= Pm(x)e ar cos bx, were sin 6 x Тусть ДБІВ -корень кратности S. Тогда ещу соответствуют rge Рт(х)-иногоглен степени теМ; О, в е.В. Тогда Э! реш вида $y_{L}(x) = X^{S}Q_{m}(X)e^{\alpha x}(A\cos \theta x + B\sin \theta x)$, $ge Q_{n}(x)$ -energonous Sazuchne peuvenus ex, xex, xex, xex, xsiexx λ= α+i в не является порням хор-го ур-я. Тогда. S=0 4) _{Лиг} = a±ib - кории кратности S качидый. Иш соответствуют Бадисные решения e^{ax}cosbx, e^{ax}sinbx,...,e^{ax}x^{s-1}osbx, e^{ax}x^{s-1}sinbx 2) Л= a+i в - корень хар-ю ур-я. Гогда S- его кратность Этот сиугой нод-ся резонансными (отныма к X+ихх=Ест 1 Propostio 19/11/21 Merog вариации постоянной для ур-я L(Д) У(х)= S(х) 1.2 Types oduse peutine ognopognor yp. uneer bug $y_1(x) = l_1(y_1(x) + ... + l_n q_n(x))$. Toga oduse peutine neggropognor uneer bug $y_1(x) = l_1(x) q_n(x) + ... + l_n(x) q_n(x)$, $tge l_1(x)$ onpecuties $y_1(x) = l_1(x) q_n(x) + ... + l_n(x) q_n(x)$ generot of current всегда совместа, т.к. $\mathcal{L}_{1}^{\prime}(x)\,\varphi_{1}^{\prime}(x)+\ldots+\mathcal{L}_{n}^{\prime}(x)\,\varphi_{n}^{\prime}(x)=0$ $C_1'(x) \varphi_1^{(n-2)}(x) + ... + C_n'(x) \varphi_n^{(n-2)}(x) = 0$ $C'_{1}(x)\varphi_{1}^{(n-1)}(x)+...+C'_{n}(x)\varphi_{n}^{(n-1)}(x)=\frac{S(x)}{a_{n}}$ Onp. Уравнение Эйлера: ax²y"+axy'+a,y=5(x), x>0, a; єl Заменой X=et сводится к шнейнолиу с постояними коэфф $\langle \wedge \rangle$ 1) Все содож значения 1; е.R кратности 1 Геперь научилих решах неоднородные уравнених. Torga \exists Sazuc $\overrightarrow{U}_{1}, \overrightarrow{U}_{n}$ uz coderbennsx benopob $\Rightarrow \overrightarrow{X}(t) = \sum_{i=1}^{n} \overrightarrow{U}_{i} e^{\lambda_{i}t}$ $\overrightarrow{x} = A\overrightarrow{x} + \overrightarrow{S}(t)$, $zge \overrightarrow{S}(t) = \begin{pmatrix} S_1(t) \\ S_2(t) \end{pmatrix} \in C(I)$ 2) Есть кратине Л, но Эбазис из собственных векторов В силу линейности работает формула $\vec{X}(t) = \vec{X_o}(t) + \vec{X_o}(t)$ 2) Пара кошплексно-сопрящённых $\lambda_i = a + i b$ и $\lambda_i = a - i b$. \overline{V} огда или соответствуют иобе \overline{V} венные вектора \overline{V}_{0} и \overline{V}_{0} у (U_{i} е \mathcal{L}) 1) \$(t)= Pm(t) ept singt (um cospt) Πρατέρι $\lambda_k = \overline{\lambda_1}$ α $\overline{\mathcal{U}}_{00} = \overline{\mathcal{U}}_{00}$, r.e. $\operatorname{Re} \lambda_k = \operatorname{Re} \lambda_2$ $\operatorname{Re} \overline{\mathcal{U}}_k = \operatorname{Re} \overline{\mathcal{U}}_k$ τουνατικινοι construction $\operatorname{Im} \lambda_k = \operatorname{Im} \lambda_2 = \operatorname{Im} \lambda_2$ $\operatorname{Im} \overline{\mathcal{U}}_k = \operatorname{Im} \overline{\mathcal{U}}_k$ berrop-kbazumnororen, nanpunep $\binom{t-2}{t^2+1}e^t\cos t$ Vолическое сопримение $Im \lambda_t = Im \lambda_t = Im \lambda_t = Im U_t = Im U_$ That Tyor \$(4)= Pr(t)eatsinbt (sudo Pr(t)eatosbt Torga 3 perience buga $\vec{X}_z = \vec{Q}_{m+k}^{(1)}(t)e^{at} \sin bt + \vec{Q}_{m+k}^{(2)}(t)e^{at} \cos bt$ [k=0, ели ланів не собочв значение (не резонана) кадина напрашиті пирдавой ценських гели л-анів-собочв значение (резонак) Moboe PCP, r.e. nober Dozuc -> $\vec{v}_{z}^{2} = \frac{i}{2L}(\vec{u}_{z}e^{kt}\vec{u}_{z}e^{kt}) = \sum_{m}[\vec{u}_{z}e^{kt}]$ Vin Vr-genorbutersuse 143 perserus One. $e^{At} = E + \sum_{k=1}^{\infty} \frac{A^k t^k}{k!} - \mu$ агритная экспонента Jp 3. Pennie cucremy (x=-4 А-матрица пхп, Е-единигная матр пхп, е^{яt}-тыше матр пхп. Peu. 1) Kap-e yp-e $\begin{bmatrix} -\lambda & -1 \\ 4 & -\lambda \end{bmatrix} = \lambda^2 + 1 = 0$ => $\lambda_1 = \hat{i}$, $\lambda_2 = -\hat{i}$ ₩: 4 e^{ot} = E Найдём собственный вектор для $\lambda = i : (A-i\cdot E)\vec{u} = \vec{0}$ 2) $A = \begin{pmatrix} \lambda_0 & 0 & 0 \\ 0 & \lambda_0 & 0 \\ 0 & 0 & \lambda \end{pmatrix}$, $A^k = \begin{pmatrix} \lambda_0^k & 0 & 0 \\ 0 & \lambda_0^k & 0 \\ 0 & 0 & \lambda_0^k \end{pmatrix}$ $\begin{pmatrix} -i & -1 & | & 0 \\ 1 & -i & | & 0 \end{pmatrix} \stackrel{\text{i.o.}}{\sim} \begin{pmatrix} 1 & -i & | & 0 \\ 1 & -i & | & 0 \end{pmatrix} \stackrel{\text{i.o.}}{\sim} \begin{pmatrix} 1 & -i & | & 0 \\ 1 & -i & | & 0 \end{pmatrix}$ $\text{Fo. } e^{At} = \underbrace{E+\sum_{k=1}^{A} \frac{A^k t^k}{A!}}_{A!} = \underbrace{\begin{bmatrix} \frac{2(k+1)}{2k+1} & 0 & 0 \\ \frac{2(k+1)}{2k+1} & 0 & 0 \\ 0 & \frac{2(k+1)}{2k+1} & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}}_{0} = \underbrace{\begin{pmatrix} e^{At} & 0 & 0 \\ 0 & e^{At} & 0 \\ 0 & 0 & e^{At} \end{pmatrix}}_{0} = \underbrace{\begin{pmatrix} e^{At} & 0 & 0 \\ 0 & 0 & e^{At} \\ 0 & 0 & e^{At} \end{pmatrix}}_{0}$ $U = -i\omega$ Pozga gue $\lambda_{\nu} = -i$ $\overrightarrow{U}_{\nu} = \overrightarrow{U}_{\ell} = \begin{pmatrix} -i \\ \ell \end{pmatrix}$ 2) $\vec{\mathcal{U}}_{\perp}e^{\lambda_{\perp}t} = \begin{pmatrix} i \\ 1 \end{pmatrix} e^{it} = \begin{pmatrix} i \\ 1 \end{pmatrix} (\cos t + i \sin t) = \begin{pmatrix} -\sin t \\ \cos t \end{pmatrix} + i \begin{pmatrix} \cos t \\ \sin t \end{pmatrix}$ 1) Y Marpunger A Wittell pag & Att abcombine exoguirar ! Osuse pemerne: $\binom{x(t)}{y(t)} = C_1 \binom{-\sin t}{\cos t} + C_2 \binom{\cos t}{\sin t}$ \mathcal{L}) $e^{At}e^{Bt} = e^{Bt}e^{At} = e^{(A+B)t}$, ecu AB = BA4) Есть кратиме Л, но не существует базиса из собственних вежгоров. В этом случае придёти всё делачь <u>хитро.</u> Uz 2-го св-ва при В=-А пацгаем е^{4t}e-^{At}=Е 3 ospatnas waipuya ⇒ det e^{At}≠0! Опр. Пусть Л-содітвенное значение преобразования А и пусть 3) $\frac{d}{dt}e^{At} = Ae^{At} = e^{At}A$ Beneropou ti,.., ti: $\frac{d}{dt} \left(E + tA + \frac{t^k}{2} A^k + ... + \frac{t^k}{k!} A^k + ... \right) = A + tA^k + ... + \frac{t^{k-1}}{(k-1)!} A^k + ... = A e^{At}$ At = 1t, t, +0 A 12= 12+12 ATE = 1 TE + TR-1 Uz Свв 1-3 пацусаем, кто стадцы матрицы. $e^{At}=(\bar{q}_0)_{\bar{q}_0}(t)$ обрадуют РСР ур-х $\dot{\vec{x}}=A\vec{x}$! Porga t_{1}^{2} -coverbenus bestop, a bestope t_{2}^{2} , t_{3}^{2} the repucce-guienns we have py t_{1}^{2} . $\{t_{1}^{2}$, $t_{3}^{2}\}$ -unpganoba yenorsa. Howno nonozare, to $\{t_{1}^{2}$, $t_{3}^{2}\}$ -M.3. Oduge pemerine $\vec{x}(t) = e^{At} \vec{C}$ tradey marrant $\vec{C} = \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}$ Fr. 1 1 - 2211 The для инбого предградования А Звазис, согрозиций из гиор-дановых ценочек. (Морданов базис). В этам базисе А= (1)

II. Неоднородные уравнения.

r.e. L(9)-y =0

 $\mathcal{L}(\mathfrak{D}) \cdot \mathbf{y} = \mathcal{F}(\mathbf{x})$

Лусть 4x(х)- решенше ур-а (3), т.е. L(д):Уr=F(х) (демаги замену y(х)=yr(х)+yr(х) => L(д)уr+L(д)Уr=F(х)

4(x) = 4.(x) + 42

Будем искать решение в виде $y(x) = e^{\lambda x}$, $\lambda \in \mathbb{R}$

Россиотрим несколько случаев:

 $\mathcal{L}(\mathcal{D}) \, \mathcal{C}^{\lambda x} = \left(a_n \, \mathcal{D}^n + \ldots + a_1 \, \mathcal{D} + a_0 \right) \, \mathcal{C}^{\lambda x} = \left(a_n \, \lambda^n + \ldots + a_1 \, \lambda + a_0 \right) \, \mathcal{C}^{\lambda x} = 0$

1) Л.,.., Л. е. R - корни хар-го ур-г кратности 1. Гогда е.х., е.х.

 $L(1) = a_n \lambda^n + a_{n-1} \lambda^{n-1} + \dots + a_1 \lambda + a_0 = 0$ - xapakTepuctureckoe yp-e

																CHOBO	- nooc	nouuu	aem	шна	ıl		01				
	•	•		•			•		•		٠					При	заше	HE D	азиса	(µa	p nepe	xoga	7)				
																A=	: SA'	s ⁻²	92= S	A'S-1	3A'S =	SA2	3-1	AKE	SA, ks	;-1	
																	Of	t= 00	A'tc-1	npeod	E Danuar	n mare	0110 11	2010 11	А		
	۰	۰		•	۰	•	۰	۰		۰	۰	۰	۰		0	_			, ,	прессо	baygen	a jak	· we, n	uk ii	.,		
															_	Чигор	wie !	ешен	ul.	0	,,,		0 /			,	
																1) F	(axogi	uu Di	иис и	z coder uraem x = (6 Beic)	юров	H (ilii	u uz H	lopg we	norek)	
																2) B	DONE !	. Sazi	ce cr	waeu	. е ^н	'£					
																3)	e ^{at} =.	Se ^{#t} .	S [™] =>	x = 0	e ^{At} Ĉ						
0		•		•			۰		۰	0	۰	۰				۰	۰	۰		۰	0	0		•	0	0	0
	۰	•	۰				٠			•	٠	٠	٠			٠	۰	٠	۰	٠	•				•	0	0
	۰	•	•	•	•	•	۰		•	•	۰	۰	•	•	•	۰	۰	۰	۰	۰	•	•	•	•	•	0	0
0	۰	•		•			۰		۰	0	۰	۰				۰	۰	۰		۰	0	0		•	0	0	0
	۰	۰	۰				٠			•	٠	٠	۰			٠	۰	٠	۰	٠	•				•	0	
	0	•	۰	•		0	•		•		۰	•				۰	۰			•	•		•	•	•	0	
0	•	•				0		۰	۰		•					0					•				0	0	0
		۰					•				۰					۰					۰				•	0	
	0	•	۰	•	•	0	•		•		۰	•				۰				•	•		•	•	•	0	
0	•	•				0	0	۰	۰		•					۰					•				0	0	0
	۰	•	۰				٠			•	٠	٠	۰			٠	۰	٠	۰	٠	•				•	0	
	0	•	۰	•	•	0	•		•		۰	•				۰				•	•		•	•	•	0	
	•	۰		•	•	•	۰		۰	•	۰	۰	•	•		۰	۰	۰		۰	•	0	•	•	0	0	0
																۰											
		۰									۰			٠	٠	۰				۰	۰	•			•	0	0
	۰	•	•	•		۰	۰	•	•	•	۰	۰	•	•	٠	۰	۰		•	۰	•	•	•	•	•	•	•
																										0	
0	•	•		•		0	۰			•	۰	۰				۰	0				•		•		•	0	
																۰											
	۰						۰				٠				۰	٠				۰	•					0	
	0		0								٠					٠				٠							•
	0																								0	0	
0	۰	0	0	•	•	0	0		•		•	0	•		0	۰	0				0		•	•	0	0	0
	۰						•				٠	•				۰	0			۰	•					0	•