Introduction
Baby step giant step
Another Example
Meet in the middle

Balanced Programming

Group Static

Shanghai Jiao Tong University

December 26, 2016

• Very useful idea when confronting the following cases:

- Very useful idea when confronting the following cases:
 - There are two algorithms, both of which have different features, such as one has lower complexity in query and the other has lower complexity in modification.

- Very useful idea when confronting the following cases:
 - There are two algorithms, both of which have different features, such as one has lower complexity in query and the other has lower complexity in modification.
 - ② The whole problem can be divided into several problems called "big problems" and these problems can be also divided into several smaller but common problems called "small problems".

- Very useful idea when confronting the following cases:
 - There are two algorithms, both of which have different features, such as one has lower complexity in query and the other has lower complexity in modification.
 - ② The whole problem can be divided into several problems called "big problems" and these problems can be also divided into several smaller but common problems called "small problems".
- The main idea is these algorithms learning from each other.

Problem

Find a smallest non-negative number x satisfying

$$A^{x} = B \pmod{P}$$

which P is a prime, $A, B \in [0, P)$.

According to Fermat Theory, when A, P is coprime, we have:

$$A^P = A \pmod{P}$$

the only special case is A=0, and in this case, B must be zero.

For $A \neq 0$, we can just iterate x from 0 to P-1 checking if $A^x = B \pmod{P}$. the complexity is O(P).

Yet Another Naive Algorithm

We mapped $A^x \to x, x \in [0, P-1)$ by using a Hash-Table.

For finding B, we just need to query B in this Hash-Table, which only requires O(1) time.

Preparing the Hash-Table needs O(P) time, which the total complexity is O(P+1)=O(P).

Balanced Programming

- First we choose a number $S \in [1, P-1]$.
- We mapped $A^x \to x, x \in [0, S)$ by using a Hash-Table.
- Calculate A^{-S} by using Fast Exponentiation.

In this step, we needs $S + \log P$ operations.

Balanced Programming

x can be represented as $i \times S + j$, we can transform the equation:

$$A^{i \times S + j} = B \Leftrightarrow A^{j} = B \times (A^{-S})^{i} \; (mod \; P)$$

which $j \in [0, S)$, and $i \leq \frac{P}{S}$.

We can just iterate i from 0 to $\frac{P}{5}$ checking if $B \times (A^{-S})^i$ is in Hash-Table. In worst occasion, we need to iterator $\frac{P}{5}+1$ times.

Total complexity evaluation

As you can see, the total operations we need to do is

$$S + \log P + \frac{P}{S} + 1$$

we want to choose S optimally to have the best total complexity.

when $S = \sqrt{P}$, the total operations is:

$$S + \log P + \frac{P}{S} + 1 = 2\sqrt{P} + \log P + 1 = O(\sqrt{P})$$

thus we get a $O(\sqrt{P})$ algorithm by choosing S optimally.

• an undirected graph

- an undirected graph
- add x to u

- an undirected graph
- add x to u

- an undirected graph
- add x to u

- an undirected graph
- add x to u
- query neighbors' sum

- an undirected graph
- add x to u
- query neighbors' sum

- an undirected graph
- add x to u
- query neighbors' sum
- O(m) = n

• store the value v[x]

- store the value v[x]
- O(n) space

- store the value v[x]
- O(n) space
- O(1) time for add

- store the value v[x]
- O(n) space
- O(1) time for add
- O(m) time for query

• store the sum s[x]

- store the sum s[x]
- O(n) space

- store the sum s[x]
- \circ O(n) space
- O(n) time for add

- store the sum s[x]
- \circ O(n) space
- O(n) time for add

- store the sum s[x]
- \circ O(n) space
- O(n) time for add

- store the sum s[x]
- \circ O(n) space
- O(n) time for add
- O(1) time for query

Observation

• bad when large deg(x)

Observation

- bad when large deg(x)
- "heavy" when deg(x) > B

Heavy-Light Divide

Heavy-Light Divide

Combined Approach

• $s[x] = \sum v[heavy\ neighbors] + \sum v[light\ neighbors]$

Combined Approach

- $s[x] = \sum v[heavy\ neighbors] + \sum v[light\ neighbors]$
- for $\sum v[heavy\ neighbors]$ use approach 1
- for $\sum v[light\ neighbors]$ use approach 2

Add(u, x) details

• if v is heavy, $vh[u] \leftarrow vh[u] + x$

Add(u, x) details

• if v is heavy, $vh[u] \leftarrow vh[u] + x$

Add(u, x) details

- if v is heavy, $vh[u] \leftarrow vh[u] + x$
- if u is light, $sl[v] \leftarrow sl[v] + x$, u, v are neighbors

Add(u, x) details

- if v is heavy, $vh[u] \leftarrow vh[u] + x$
- if u is light, $sl[v] \leftarrow sl[v] + x$, u, v are neighbors
- O(1) time for heavy

Add(u, x) details

- if v is heavy, $vh[u] \leftarrow vh[u] + x$
- if u is light, $sl[v] \leftarrow sl[v] + x$, u, v are neighbors
- O(1) time for heavy
- O(B) time for light

• $\sum v[heavy\ neighbors] = \sum_{y\ is\ heavy\ neighbor} vh[y]$

- $\sum v[heavy\ neighbors] = \sum_{y\ is\ heavy\ neighbor} vh[y]$
- $\sum_{s \mid |x|} v[light neighbors] = s \mid |x|$

- $\sum v[heavy\ neighbors] = \sum_{y\ is\ heavy\ neighbor} vh[y]$
- $\sum_{s \mid |x|} v[light neighbors] = s \mid |x|$

- $\sum v[heavy\ neighbors] = \sum_{y\ is\ heavy\ neighbor} vh[y]$
- $\sum v[light neighbors] = sl[x]$
- $O(1 + cnt_heavy)$ time

- $\sum v[heavy\ neighbors] = \sum_{y\ is\ heavy\ neighbor} vh[y]$
- $\sum v[light neighbors] = sl[x]$
- $O(1 + cnt_heavy)$ time
- $cnt_heavy \cdot B \le 2m = O(n)$

- $\sum v[heavy\ neighbors] = \sum_{y\ is\ heavy\ neighbor} vh[y]$
- $\sum v[light neighbors] = sl[x]$
- $O(1 + cnt_heavy)$ time
- $cnt_heavy \cdot B \le 2m = O(n)$
- O(n/B) time

O(n) space

- O(n) space
- O(B) time for add

- O(n) space
- \circ O(B) time for add
- O(n/B) time for query

- O(n) space
- O(B) time for add
- O(n/B) time for query
- make $B = \sqrt{n}$

- O(n) space
- O(B) time for add
- O(n/B) time for query
- make $B = \sqrt{n}$
- $O(\sqrt{n})$ for each operation

 Given an undirected graph whose nodes' degree is 5 and find a path from S to T.

- Given an undirected graph whose nodes' degree is 5 and find a path from S to T.
- dist(S, T) = L

- Given an undirected graph whose nodes' degree is 5 and find a path from S to T.
- dist(S, T) = L
- $O(4^L)$

- Given an undirected graph whose nodes' degree is 5 and find a path from S to T.
- dist(S, T) = L
- $O(4^L)$
- Meet in the middle
- $O(4^{L/2})$

Mo's algorithm

- Mo's algorithm
- Bolcked list

- Mo's algorithm
- Bolcked list
- Dinic(capacity is 1)

- Mo's algorithm
- Bolcked list
- Dinic(capacity is 1)
-

Introduction
Baby step giant step
Another Example
Meet in the middle
Thanks

Thanks

Thanks for listening. Questions are welcomed.