Simulate continuous variables dataset

Contents

Purpose	1
Dependent variables	1
Simulate the data	1
Plot histograms and scatterplot	2
Independent variables	3
Simulate the data	3
Plot histograms and scatterplot	3
Simulate known linear regression	5
Simulate the data	5
Scatter plots	5
Apply linear regression model	6
Predict	6
References	8

Purpose

This script shows how to simulate a dataset that can be used in regression problems.

In regression, the variables that we are measuring are continuous, and the variable that we are predicting is continuous as well.

Dependent variables

Simulate the data

Create two Normally distributed datasets that have a relationship.

Play with the number of samples and we move the means around.

```
# From Harvard data science class (see references at the end of this notebook)
N = 10000
mu_N = 10
sd_N = sqrt(5)
sd_delta = 2

x <- rnorm(N, mean=mu_N, sd=sd_N)

# Initialize y with x...We would have a straight line if plotting y~x
y <- x

# Now inject variability to each, and we will not have a straight line exactly
x <- x + rnorm(N, sd=sd_delta)
y <- y + rnorm(N, sd=sd_delta)</pre>
```

Plot histograms and scatterplot

```
br<- -5:25 # set manually bins for histograms</pre>
\# save histograms for X and Y , don't plot yet
hx <- hist(x, breaks=br, plot=F)</pre>
hy <- hist(y, breaks=br, plot=F)</pre>
# prepare 2 panels in one plot:
old.par <- par(mfrow=c(1,2))</pre>
# plot histograms side by side using rbind
barplot(rbind(hx$density,hy$density),
        beside=T,
        col=c(rgb(0,0.2,1), rgb(0,1,0.3)),
        legend=c('X','Y'),
        main='Empirical distributions of X and Y',
        names=br[-1]
# Scatter plot
plot(x,y,
     xlab='X values',
     ylab='Y values',
     main='X vs Y scatterplot',
     pch=19,
     cex=0.3)
```

Empirical distributions of X and

X vs Y scatterplot

restore graphical attributes to previous values:
par(old.par)

Independent variables

Simulate the data

Create two independent Normally distributed datasets x and y.

Play with the number of samples and we move the means around.

```
# From Harvard data science class (see references at the end of this notebook)
# simulate sampling of 10000 values for X and for Y.
# We can play with the mean and sd. Should have same size to keep it balanced.
x <- rnorm(N, mean=mu_N, sd=sd_N)
y <- rnorm(N, mean=mu_N, sd=sd_N)</pre>
```

Plot histograms and scatterplot

```
# Set manually bins for histograms
br<- -5:25
# Save histograms for X and Y , don't plot yet
```

```
hx <- hist(x, breaks=br, plot=F)</pre>
hy <- hist(y, breaks=br, plot=F)</pre>
# prepare 2 panels in one plot:
old.par <- par(mfrow=c(1,2))</pre>
# plot histograms side by side using rbind
barplot(rbind(hx$density,hy$density),
        beside=T,
        col=c(rgb(0,0.2,1), rgb(0,1,0.3)),
        legend=c('X','Y'),
        main='Empirical distributions of X and Y',
        names=br[-1])
# Scatter plot
plot(x,y,
     xlab='X values',
     ylab='Y values',
     main='X vs Y scatterplot',
     pch=19,
     cex=0.3)
```

Empirical distributions of X and

X vs Y scatterplot

restore graphical attributes to previous values
par(old.par)

Simulate known linear regression

In this approach, we will simulate data where we know the linear regression parameters.

Simulate the data

Here we simulate X to be Uniformly distributed across a set of values.

We simulate Y with a known intercept, pus a slope time X with a random variability.

```
N = 100
sd_delta = 1
slope = 2
intersection = 1

# X has a uniform distribution over a sequence over a range
x <- seq(-3, 3, length=N)

# Y is based on X with a slope, an intercept and normal randomness
y <- intersection + slope*x+rnorm(100, sd=sd_delta)</pre>
```

Scatter plots

```
plot(x, y, pch=19, cex=0.7)
```


Apply linear regression model

```
m \leftarrow lm(y\sim x)
 summary(m)
##
## Call:
## lm(formula = y \sim x)
##
## Residuals:
                     Median
##
                                            Max
       Min
                 1Q
                                    ЗQ
## -2.69014 -0.56444 0.09413 0.67378 2.44796
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 0.96259 0.10208
                                   9.43 2.09e-15 ***
                           0.05835
                                   34.23 < 2e-16 ***
## x
               1.99718
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 1.021 on 98 degrees of freedom
## Multiple R-squared: 0.9228, Adjusted R-squared: 0.922
## F-statistic: 1172 on 1 and 98 DF, p-value: < 2.2e-16
```

Notice the intercept is 1.01, while our empirical value was 1.

And the slope is 1.96, while our empirical value was 2.

Predict

```
yp <- predict(m)</pre>
# Plot the prediction. Replot and add prediction points:
plot(x, y, pch=19, cex=0.7)
points(x,yp,col="red",pch=19,cex=0.7)
```


Prediction metrix

```
RSS \leftarrow sum((y - yp)^2)
                                       # Sum of Squares Estimated (aka SSE) (ISLR p.62)
RSE <- sqrt(RSS/(N-2))</pre>
                                       # Residual Standard Error (ISLR p.66)
TSS \leftarrow sum((y - mean(y))^2)
                                       # Sum of Squares Total (aka SST) (ISLR p.70)
SSR \leftarrow sum((yp - mean(y))^2)
                                       # Sum of Squares Regression
SE <- RSE/sqrt(sum((x-mean(x))^2))</pre>
                                       # Standard Error
R_squared <- (TSS-RSS)/TSS</pre>
                                       # R^2 Static (ISLR p.69)
roh_squared <- SSR / TSS</pre>
cat(' RSS = ', RSS, '...............Sum of Squares Estimated (aka SSE) (ISLR p.62)')
  RSS = 102.1186 .............Sum of Squares Estimated (aka SSE) (ISLR p.62)
cat('\n RSE = ', RSE, '.............Residual Standard Error (ISLR p.66)')
##
## RSE = 1.020797 ...........Residual Standard Error (ISLR p.66)
cat('\n TSS = ', TSS, '.....Sum of Squares Total (aka SST) (ISLR p.70)')
##
   TSS = 1322.911 .....Sum of Squares Total (aka SST) (ISLR p.70)
```

References

• Harvard "Elements of Statistical Learning" (2021) taught by professors Dr. Sivachenko, Dr. Farutin