COM2109 Automata Robert Hierons

Composing Regular Languages

Motivation

How do we build large/complex finite automata?

How do we build large/complex finite automata that are correct?

Classic solution:

Compose (combine) simpler finite automata.

For regular languages L_1 and L_2 this will allow us to prove that:

Union: $L_1 \cup L_2$

Concatenation: L_1L_2

Star: L_1 *

Reversal: L_1^R

Complement: L_1

Intersection: $L_1 \cap L_2$

Are regular Languages

Show: Regular languages are closed under

Union: $L_1 \cup L_2$

Concatenation: L_1L_2

Star: $L_1 *$

Reversal: L_1^R

Complement: L_1

Intersection: $L_1 \cap L_2$

Non-determinism makes proofs

easier

A useful transformation: use one accept state

Equivalent

In General

NFA

Single
Initial and
accepting
states

Equivalent NFA

Special/extreme case

NFA without accepting state

Add an accepting state without transitions

So

We can assume that all finite automata considered:

- Have a single initial state
- Have a single final state

We only need to know how to compose such finite automata.

Take two languages

Regular language L_1

Regular language $\,L_2\,$

$$L(M_1) = L_1$$

$$L(M_2) = L_2$$

NFA M_2

Single accepting state

Single accepting state

$$L_1 = \{a^n b\}$$

$$M_1$$

$$a$$

$$b$$

Union

NFA for $L_1 \cup L_2$

NFA for
$$L_1 \cup L_2 = \{a^n b\} \cup \{ba\}$$

$$L_{1} = \{a^{n}b\}$$

$$\varepsilon$$

$$L_{2} = \{ba\}$$

Concatenation

NFA for L_1L_2

NFA for
$$L_1L_2 = \{a^nb\}\{ba\} = \{a^nbba\}$$

Star Operation

NFA for L_1*

$$w = w_1 w_2 \cdots w_k$$

NFA for
$$L_1^* = \{a^n b\}^*$$

Reverse

- 1. Reverse all transitions
- 2. Make initial state accepting state and vice versa

$$L_1^R = \{ba^n\}$$

Complement

- 1. Take the DFA that accepts $\,L_{1}\,$
- 2. Make accepting states non-final, and vice-versa

 M_1

$$\overline{L_1} = \{a,b\} * -\{a^n b\}$$

$$a \xrightarrow{b} a,b$$

Intersection

$$L_1$$
 regular $L_1 \cap L_2$ L_2 regular regular

DeMorgan's Law: $L_1 \cap L_2 = \overline{L_1} \cup \overline{L_2}$

$$L_1$$
, L_2 regular $\overline{L_1}$, $\overline{L_2}$ regular $\overline{L_1} \cup \overline{L_2}$ regular $\overline{L_1} \cup \overline{L_2}$ regular $\overline{L_1} \cup \overline{L_2}$ regular regular

$$L_1 = \{a^nb\} \quad \text{regular} \\ L_1 \cap L_2 = \{ab\} \\ L_2 = \{ab,ba\} \quad \text{regular} \\ \\ \text{regular}$$

Another Proof for Intersection Closure

Machine M_1

DFA for L_1

Machine M_2

DFA for L_2

Construct a new DFA $\,M\,$ that accepts $\,L_1\cap L_2\,$

 $\,M\,$ simulates in parallel $\,M_1\,$ and $\,M_2\,$

States in M

DFA M_2

initial state

initial state

DFAM

 $\rightarrow q_0, p_0$

New initial state

Both constituents must be accepting states

$$L_1 = \{a^n b\}$$

\boldsymbol{a} b $\sqrt{a,b}$ a,b

Automaton for intersection

$$L = \{a^n b\} \cap \{ab^n\} = \{ab\}$$

$\,M\,$ simulates in parallel $\,M_1\,$ and $\,M_2\,$

$$L(M) = L(M_1) \cap L(M_2)$$

Summary

We have many ways of combining regular languages

These lead to regular languages

Observation: for some parts, it was easier to deal with DFA, for others we need NFA.