

MEET OUR TEAM

Sally Cao

Business Analyst, Credit Card Marketing Growth

Sally works in the governances and monitoring team. She creates control management and key risk indicator reports within Centralized Pricing in the credit card space.

Sudarshan Kumar

Software Engineer, Home Lending Advice

Sudarshan is a software engineer that designs and develop software for the loan organization application and the modernization process.

Sunil Mathur

Architect, Data and Engineering

Sunil is part of the CCB Architecture, Data and Engineering team. He is responsible for the Architecture for Digital Behavioral Analytics Platform.

Drew McKnight

Software Engineer, Home Lending Technology

Drew is a software engineer within CCB Lending Technology. He creates Web applications using Java and spring boot.

Amanda Morley

Financial Analysis, Chase Auto Finance

Amanda is responsible for Planning and Analysis within the Chase Auto line of business. She is responsible for monthly reporting, budgeting, forecasting, and quarterly earnings reporting.

Machine Learning Decision Making Via The Al Canvas

What task/decision are you examining?

The task being analyzed is determine whether or not a customer will subscribe to a term deposit using a marketing campaign data set targeted to existing customers from a Portuguese banking institution: link to data https://www.openml.org/d/1461

Prediction

Predict whether an existing customer would subscribe to a term Deposit Product based on a phone Marketing campaign.

Judgment

campaign

Look at the Customer demographics and previous campaign data and determine the following payoff from the prediction. Right - the bank will have a customer enrolled into the term deposit with another product from bank Wrong – customer does not want the deposit and/or move to new company after annoyed with reaching out about

Action

Provide a campaign that fits the customers needs with the bank.

Customer opens or declines a Deposit account with the Bank

Determine the subscribed acceptance rate of the campaign

Training

Historical marketing campaign data matched with the historical outcome data. This data is used to train and calibrate the Al model before it is deployed

🕸 Input

Historical banking data on existing customers to get a better understanding on which ones to target for campaign

Feedback

Historical data from similar marketing campaigns in the past is compared with the outcome of the current campaign. The feedback is then incorporated to update the model, improving the Al

How will this AI impact on the overall workflow?

Will give Bank the opportunity to understand Customer preferences based of the feedback received from the calls in the campaign and determine if any new or better product is better suited for the particular Customer demographics.

EDA

Dataset

Key Findings:

- Relatively clean dataset: 45,211 rows and 17 columns, and no missing values
- Most instances did <u>not</u> subscribe

Initial Correlation Testing

Key Findings:

- Initial correlation characteristic heatmap on numerical categories
- Duration was noted to be a highly correlated feature in our initial EDA

Tuning & Baseline

Model	Tuning	Score
Baseline (Non modeled)	Poutcome (Previous Outcome Success)	88.30
Decision tree	Best parameters: {'criterion': 'gini', 'max_depth': 7, 'imputer_strategy': 'median'}	90.245
Random Forest	Gini, entropy	90.63
SVC	Kernel: ['linear', 'poly', 'rbf'] Degree: [3, 4, 5]	89.875
Xgboost	Best parameters: {'modelmax_depth': 2, 'modeln_estimators': 100, 'pcan_components': 20}	89.47

Model Selection:- "Random Forest" with Score "90.63%" is selected as the final model.

MODEL SELECTION

Models:

• We tested 7 different types of models and have chosen Random Forest as the most accurate

Baseline vs. Model Accuracy

FEATURE IMPORTANCE

Random Forest:

• For our chosen model we graphed the feature importance and similar to our early EDA, duration, balance, age, and day are noted as important features

KEY INSIGHTS

Duration:

• We have noted that duration seems to be the key feature for prediction. Our suggestion is that the bankers are trained to engage the potential clients in meaningful conversation as they will be more likely to subscribe.

Balance:

• Balance was also an important feature that could be researched in advance by the bankers. This could help target better who to market to.

Age:

• Age also appeared to be a considerable feature. This will help to target demographics that are more likely to subscribe.

Day:

• Day of the week seemed to also be an important feature. This could be driven by subscribers being more relaxed on specific days and could change the way that the bankers are staffed.

ML WEB APP DEMO

ADDITIONAL STREAMLIT VISUALIZATIONS

Streamlit (team5ud.herokuapp.com)

