PŘEDNÁŠKA 1 – Mikroskopie

- mikroskop

- optické zařízení, které umožňuje pozorovat malé objekty zvětšeně
- konstrukce
 - a) Finite-Tube

dvě soustavy čoček – objektiv a okulár
–> objekt je zobrazen objektivem do meziobrazu a okulár meziobraz zobrazí do lidského oka

rovnice tenké čočky

$$\frac{1}{a} + \frac{1}{b} = \frac{1}{f}$$

- zvětšení mikroskopu – součin zvětšení objektivem a zvětšení okulárem

$$\frac{b}{a} \times \frac{25 \text{ cm}}{f_{\text{okuláru}}}$$

25 cm ... konvenční zraková vzdálenost

- výhoda jednoduchá konstrukce
- nevýhoda nutné nastavení dohromady (nelze jen tak vyměňovat čočky)

b) Infinite-Tube

tři soustavy čoček – objektiv, tubus, okulár
–> objekt umisťujeme do ohniska, tedy
objektiv obraz nekonečna, tubus vytvoří
meziobraz a okulár obraz zobrazí do
lidského oka

- zvětšení mikroskopu – součin zvětšení objektivem a zvětšení okulárem

$$\frac{f_{\text{tubusu}}}{f_{objektivu}} \times \frac{25 \text{ cm}}{f_{\text{okuláru}}}$$

- výhoda objektiv a okulár můžeme nezávisle na sobě vyměňovat snadné vložení optického členu – filtry, clony, polarizátory...

- optika

- difrakce
 - jev, který nastává, pokud světlo prochází malými otvory, jejichž velikost je srovnatelná s $\lambda_{\mathrm{sv}\check{\mathrm{e}}\mathrm{tla}}$
 - Huygensův princip

- každý bod vlnoplochy, do něhož dospělo vlnění v určitém okamžiku, můžeme pokládat za zdroj elementárního vlnění, které se z něho šíří v elementárních vlnoplochách
- vlnoplocha v dalším časovém okamžiku je vnější obalová plocha všech elementárních vlnoploch
- poloha maxima

$$d\sin\theta = m\lambda, \quad m \in \mathbf{Z}$$

-> pozn. absolutně koherentní světlo - stejně dlouhá maxima

- teorie Ernsta Abbeho
 - k rekonstrukci obrazu (amplitudy i tvaru) potřebujeme mít alespoň paprsky 1. řádu
 větší čočka = více paprsků (vyšší řády) = lepší rozlišení
- Airyho disk (difrakční disk)
 - umožňují definovat limit rozlišení mikroskopu
 - -> velikost disku rozhoduje o rozlišovací schopnosti chceme, aby disk byl co nejmenší

limit rozlišení

- mikroskop je na mezi rozlišení, pokud minimum impulzní odezvy prvního bodu splývá s maximem impulzní odezvy druhého bodu
- Rayleighův limit rozlišení

$$d \approx 1.22 \frac{\lambda}{2 \text{ NA}}$$

-> pro zlepšení rozlišení mikroskopu větší čočky (větší NA)

imerzní olej (větší index lomu = větší NA)

kratší vlnové délky

- NA = numerická apertura
 - bezrozměrná veličina charakterizující velikost čočky

$$NA = n \sin \theta$$
, n... index lomu $NA = \frac{r}{f}$ θ ... úhel kužel vstupu paprsků do čočky r... poloměr čočky f... ohnisková vzdálenost

- osvětlení
 - Köhlerovo osvětlení
 - optický systém se speciálními optickými prvky sloužícími k zobrazování
 - hlavní myšlenka: využití homogenního osvětlení (nezaostřené)
 - -> způsobí maximální homogenní osvětlení preparátu, a navíc neoslňuje oko
 - soustava

- kolektorem sebereme světlo a promítneme do ohniska kondenzátoru nastavovací prvky
 - clona 1 šířka paprsku
 - clona 2 množství světla
- optická aberace (zkreslení/nedokonalosti/chyba)
 - dělení
 - 1) geometrická
 - a) sférická nedokonalost tvaru čočky (chyba při vybroušení)
 - projevuje se tak, že paprsky procházející blízko optické osy se nezobrazí do stejného místa jako paprsky procházející dál od optické osy
 - -> vznik rozostřeného obrázku
 - b) chyba plochosti
 - způsobeno nepoměrem velikostí čočky a zkoumaným objektem
 - -> nedokážeme zároveň zaostřit uprostřed a na kraji
 - 2) chromatická
 - závisí na vlnové délce (barvě) světla
 - -> paprsky různé vlnové délce neprochází po stejné dráze barevné proužky kolem hran
 - možné kompenzovat složitějšími soustavami achromatický objektiv, fluoritový objektiv...
- techniky zvýšení kontrastu
 - 1) mikroskopie tmavého pole (darkfield microscopy)
 - vložení tmavé clony do osvětlovacího paprsku (zablokování přímých paprsků)
 - -> pozorujeme světlé objekty na tmavém pozadí
 - 2) Rheinbergova iluminace
 - vložení barevné clony do osvětlovacího paprsku
 - -> získáme kombinaci obrazu brightfield a darkfield mikroskopie
 - 3) mikroskopie fázového kontrastu
 - vložíme fázový proužek proměnlivé tloušťky do osvětlovacího paprsku (různá zpoždění paprsků)
 - --> vložením objektu s různými indexy lomu dojde k interferenci paprsků a lepšímu pozorování

- 4) mikroskopie polarizovaného světla
 - vložíme polarizátor do osvětlovacího paprsku i do tubusu
 - -> při vložení dvojlomného objektu (index lomu různý pro různé směry polarizace) dojde k fázovému zpoždění – pozorujeme konstruktivní/destruktivní interferenci
 - převádíme změny indexu lomu v různých směrech na intenzitu
- 5) Hoffmanova modulace
 - funguje na principu optické derivace -> převádíme optický gradient na intenzitu
- 6) diferenciální interferenční kontrastní mikroskopie
 - zobrazuje rozdíly v optických cestách za pomocí Wollastonova prismatu (speciální krystal)
- 7) fluorescenční mikroskopie
 - fluorescence ozáření fluorescenční látky na určité frekvenci –> vyzáří světlo o nižší frekvenci
 - nutnost fluorescenčních barev speciálního mikroskopu umožňujícího osvětlování (typicky UV –> viditelné světlo) filtrů zabraňují vidět osvětlovací světlo
- pokročilé techniky
 - 1) 3D mikroskopie
 - a) konfokální mikroskopie
 - efektivní metoda jež slouží k potlačení signálu z hloubek, které nás nezajímají
 - princip
 - osvětlujeme zdrojem koherentním silným (např. laserem)
 - osvětlovací paprsek je optickou soustavou je promítnut na objekt, dále se odráží od zrcadla a poté případně prochází clonou
 - pokud paprsek přichází z ohniskové roviny projde clonou na detektor
 - pokud paprsek pochází z jiné hloubky, tak clonou neprojde
 - nevýhoda pomalé (nutné posouvat se soustavou i preparátem)
 - výhoda velmi dobré rozlišení
 - b) optická koherenční tomografie (OCT)
 - metoda založená na principu interferometru
 - přicházející paprsek je rozdělen na dva každý prochází svou cestou a poté je spojen
 –> signál na detektoru získáme pouze tehdy, když je délka optických cest stejná rozdíl je násobkem vlnové délky
 - soustava obsahuje zrcátka, jejichž naklopení nám umožní 3D mikroskopii
 - pozn. již nepracujeme s clonou = větší optická efektivita
 - c) dvou fotonová fluorescenční mikroskopie
 - již nevyužíváme UV (škodlivé pro organismus), ale silný koncentrovaný paprsek laseru
 - 2) ultrarezoluční mikroskopie
 - a) STED (stimulated emission depletion)
 - využití fázové modulace (osvícení vzorku dvakrát)
 - -> nejprve koblížkem s dírkou vysvícení části kolem centrální dírky
 - -> poté osvítíme normálně bude svítit jen centrální část, která se nestihla vyzářit předtím
 - b) STORM (stochastic optical reconstruction microscopy)
 - využití spontánní fluorescence objekty střídavě svítí a nesvítí
 - c) SEM (scanning electron microscopy)
 - nepoužíváme zobrazování fotony viditelného světla, ale elektrony
 –> elektrony vytvářeny elektrodovým dělem a urychlovány směrem k anodě
 vynikající rozlišení (několik nm)
 - nutné, aby oblast, ve které probíhá zobrazování byla vyčerpána nutnost vakua –> pokovení, kryofixace
 - typy reflexní elektronový paprsek udeří do preparátu –> vyrážení částic –> detekce transmisní paprsky prochází napříč
- mikroskopie výhody dobré prostorové rozlišení, informace i o barvě, relativně dostupná nevýhody – obtížné pozorování dějů v živých organismech, až na výjimky 2D

PŘEDNÁŠKA 2 – Rentgenologie

- rentgenové záření
 - elektromagnetické záření o vlnové délce $\lambda = 10 \text{ nm} 1 \text{ pm}$
 - dělení hard záření kratší vlnové délky (blíží se záření gama) soft záření delší vlnové délky
 - pro popis využívám vlnově-částicový dualismus
 - energie fotonu

$$E = hf$$
 $h \approx 6.6 \cdot 10^{-34} \text{ J} \cdot \text{s} \approx 4.1 \cdot 10^{-15} \text{ eV} \cdot \text{s}$
 $1 \text{ eV} \approx 1.6 \cdot 10^{-19} \text{ J}$

- rychlost šíření fotonu

$$c = f\lambda \approx 3 \cdot 10^8 \,\mathrm{m/s}$$

- ionizující radiace u fotonů s energií nad 10 eV ($\lambda = 120$ nm)
 - fotony mají dostatečnou energii k vyražení elektronu ionizace
 - v důsledku ionizace se zvýší chemická reaktivita a dojde k chemickým změnám
- zdroj rentgenového záření rentgenka

katoda – drátek z těžko tavitelného kovu (wolfram)

- -> prochází el. proud (zahřívání na vysokou teplotu) -> uvolnění elektronů zdroj vysoké napětí (15-150 kV)
- -> urychlení elektronů k anodě anoda
 - –> prudké zbrzdění elektronů –> vznik záření ve směru kolmém na zrychlení
- spektrum rentgenového záření

- celková energie závisí na čtverci napětí a proudu mezi katodou a anodou U^2I
- špičky charakteristické záření
 - = rozdíl energie před přeskokem a po přeskoku
 - –> dopadající elektron zapříčinil přeskok elektronů v obale zaoblení (vytvrzování svazku) – způsobeno vložením filtru
 - -> filtrace měkkého záření = snížení zátěže pacienta při zachování kvality zobrazení

- mechanismy interakce
 - 1) koherentní rozptyl (Rayleighův rozptyl)
 - dochází pouze k odchýlení dopadajícího fotonu, ale nikoliv ke změně jeho energie
 - nastává při nízkých energiích
 - -> pst výskytu klesá s rostoucí energií

$$Z_{\rm eff}^{8/3}/E^2$$
 Z_{eff} ... efektivní atomové číslo

- zvyšuje šum a rozostření obrázku

2) fotoelektrický jev

dochází k vyražení elektronu z obalu a přeskoku elektronu z vyšší energetické hladiny
 vznik charakteristického záření = záření o přesně dané frekvenci, jehož energie odpovídá

rozdílu energetických hladin

- jedná se o ionizující mechanismus
- nevznikají šumy foton je totálně pohlcen

3) Comptonův rozptyl

- foton vyrazí elektron z obalu a následně pokračuje dál po změněné trajektorii
 - -> čím větší změna energie, tím větší úhel odchýlení
- jedná se o ionizující mechanismus
- malý kontrast mezi různými druhy tkání
- zvyšuje šum a rozmazání obrázku

- -> intenzita záření po průchodu tkání o šířce x klesá exponenciálně s délkou x, které záření musí urazit
- s vyšší energii se zhoršuje kontrast, ale zlepšuje pronikání
- někdy je k výpočtu využíván hmotnostní koeficient útlumu $(\frac{\mu}{a})$ výhoda: nezávisí na konkrétní hustotě

struktura rentgenu

1) kolimátor (clona)

- způsobuje, že ozáříme jen požadovanou část
- clony se nejčastěji pokládají přímo na pacienta -> nejkratší polostín

2) protirozptylová mřížka

- účelem je zabránit pronikání odražených paprsků na film
 - -> propouštění pouze přímých paprsků

- -> velké atomy = velká pst, že se foton trefí a dojde k reakci
- při dopadu typicky dojde k vyzáření viditelného záření o různých barvách –> zvýšení citlivosti filmu film
- umístit ho můžeme jak před film, tak i za film

4) film

- nereaguje lineárně na intenzitu záření -> měříme v logaritmických souřadnicích a využíváme lin. část
- dnes již velký dynamický rozsah
- expozici řídíme pomocí velikosti proudu procházejícího rentgenkou
- používají se čím dál tím méně -> digitální senzory náhrada filmů
 - a) výpočetní radiografie (CR)
 - využití speciálních kovových destiček uchování pomocí oxidace –> následné přečtení
 - výhoda: zrychlení snímání, znovupoužití
 - b) digitální radiografie (DR)
 - čistě polovodičové detektory
 - typy FPD (flat-panel detector) deska se skládá z luminoforu a fotocitlivých prvků
 TFT (thin-film detector)
 - nevýhoda: obtížné vyrobit
 - výhoda: lepší dynamický rozsah, větší efektivita
 - c) CCD (charge coupled device)
 - výhoda: dobrá citlivost, málo zašuměné
 - nevýhoda: trvalé vystavení X-záření by vedlo k destrukci nelze umístit přímo do cesty

parametry rentgenového obrazu

1) signal-to-noise ratio (SNR)

$$SNR = \sqrt{\lambda}$$

λ... střední intenzita záření očekávána na daný pixel

- čím větší intenzita záření tím lepší SNR
 - -> zlepšení SNR 10x = 100x zvýšení intenzity
- filtrování zhoršuje SNR, nicméně snižuje radiační zátěž pacienta

2) rozlišení

- měříme dle různých funkcí point spread function, line spread function, edge spread function...
- závisí na vzdálenosti detektoru od zdroje záření, na velikosti pacienta...
 - -> nejlepší rozlišení pacient co nejblíže detektoru a zdroj záření co nejdále
- 3) poměr kontrast-šum (CNR)

$$\mathsf{CNR} = rac{|S_A - S_B|}{\sigma_N} = |\mathsf{SNR}_A - \mathsf{SNR}_B|$$

Light

X-ray Source

X-ray Beam

- aplikace v lékařství zobrazování trávicího traktu (použití kontrastní látky)
 angiografie = zobrazování cév metoda DSA (digitální subtraktivní angiografie)
 fluoroskopie = zobrazování v reálném čase
 mamografie = vyšetření prsu
- rentgenologie výhody: dobrá dustupnost, dobré zobrazení tvrdých tkání, široká znalost
 nevýhody: dávka ionizujícího záření, horší rozlišení měkkých tkání, 2D projekce

PŘEDNÁŠKA 3 – CT

- základní princip CT
 - zobrazení těla pacienta v sérii řezů -> výsledný obraz vzniká matematickou rekonstrukcí z řady rentgenových
 projekcí získaných postupně z různých úhlů
 - základní vztah
 - opouštíme předpoklad homogenity tkáně –> každý kousek může nyní mít jiný koeficient útlumu

- generace CT systémů
 1. generace − rentgenka a jeden detektor rotující spolu s rentgenkou
 - -> trvá dlouho, složitý mechanický pohyb
 - 2. generace rentgenka a jedna řada detektorů na kružnicové výseči
 - 3. generace rentgenka a více řad detektorů na kružnicové výseči
 - -> poměrně komplikované na konstrukci, ale snímáme více řezů najednou
 - 4. generace stacionární detektory s pohyblivou rentgenkou
 - -> nutnost většího počtu detektorů = dražší
- Hounsfieldova jednotka (HU)
 - jednotka popisující míru absorpce rentgenového záření v CT
 - -> lineární transformace lineárního koeficientu útlumu vztažená k vodě

$$HU = 1000 \frac{\mu_{tk\acute{a}n\check{e}} - \mu_{vody}}{\mu_{vody}} = 1000 \frac{\mu_{tk\acute{a}n\check{e}} - 0.19}{0.19}$$

- příklad: voda (0), vzduch (-1000), tuk (-400 až -50) krev (47), kosti (50 až 1000)
- výhoda: reprodukovatelnost
- rekonstrukce obrazu
 - dopředná Radonova transformace

- $o(\xi, \eta)$ denzitní funkce = předmětová funkce
- μ lineární součinitel zeslabení
- (ξ, η) původní souřadnice
- Φ snímací úhel
- (ξ', η') rotované souřadnice
- $p(\xi', \Phi)$ paprskový součet či průmět = projekce

$$p(\xi', \Phi) = \int o(\xi, \eta) \, d\eta' \quad I = I_0 e^{\int \mu(\xi, \eta) d\eta}$$
$$p(\xi', \Phi) = -\ln \frac{I_0}{I}$$
$$\xi' = \xi cos \Phi + \eta sin \Phi$$

- -> naměříme intenzitu záření po průchodu tkání
- -> uděláme logaritmus v poměru k původní intenzitě
- -> získáme hodnotu projekcí
- obrazy (sinogram) jeden bod sinusovka, amplituda vzdálenost od počátku, fáze úhel více bodů výsledný obraz je dán součtem jednotlivých sinusovek

- zpětná Radonova transformace
 - věta o centrálním řezu

- a) přímá zpětná projekce (backprojection)
 - naměřené projekce promítneme zpět podél směru získání
 - nevýhoda: není to přesná inverze
- b) analytická Fourierova rekonstrukce

- c) filtrovaná zpětná projekce
 - nejčastěji používaný algoritmus pro rekonstrukci v CT
 - postup
 - -> vezmeme všechny naměřené projekce a každou z nich modifikujeme filtrem h
 - -> získané modifikované projekce Q promítneme zpět

$$o(\xi, \eta) = \int_{0}^{\pi} Q_{\varphi}(\xi') d\varphi$$

$$Q_{\varphi}(\xi') = h(t) * P_{\varphi}(\xi') = \mathscr{F}^{-1} \{H(\omega)\} * P_{\varphi}(\xi')$$

$$H(\omega) = |\omega|$$

- filtr h
 - Ram-Lak filtr

- Ize různě omezovat Hamming filtr, Shepp-Logan filtr
- výhody: velmi rychlé
- nevýhody: předpoklad linearity, rovnoběžnosti paprsků a nekonečného počtu úhlů
- d) algebraická rekonstrukce
 - druhý nejčastěji používaná algoritmus pro rekonstrukci v CT
 - princip
 - řešíme soustavu lineárních rovnic pro neznáme f

$$g_i = \sum_j w_{ij} f_j$$
 f_j ... hodnoty pixelů g_i ... projekce

-> velké množství rovnic – řešíme iterativně w_{ij} ... váhy – jak moc daná hodnota koeficientu

- ART, SART, SIRT, ILST, MART

útlumu ovlivňuje celkový útlum, který měříme po dráze paprsku

$$\hat{f}_{ij}^{l} = \hat{f}_{ij}^{l-1} + rac{\mathbf{g_j} - \sum_{i=1}^N \hat{f}_{ij}^{l-1} w_{ij}}{\sum w_{ij}}$$
 \hat{f}_{ij}^{l-1} ... odhad z předchozí iterace \mathbf{g}_i ... skutečná paprskový součet \mathbf{w}_{ij} ... váhy

- -> máme k dispozici odhad koeficientu z předchozí iterace
- -> spočteme odhad projekce (odečteme of naměřené hodnoty získáme konstantní hodnotu)
- -> ke všem pixlům připočteme výslednou konstantní hodnotu
- -> opakujeme
- MART iterativní rekonstrukce

$$\hat{f}_{ij}^{l} = \hat{f}_{ij}^{l-1} \frac{g_{j}}{\sum_{i=1}^{N} \hat{f}_{ij}^{l-1} w_{ij}}$$

- -> místo připočtení konstantní hodnoty každý pixel násobíme konstantní hodnotou
- výhoda algebraické rekonstrukce oproti filtrované zpětné projekci
 - nemá tak přísné předpoklady linearita, rovnoběžnost, velké množství projekcí
 - lépe modeluje znalosti fyziky a geometrie
 - možnost regularizace -> méně artefaktů
- korekce rekonstrukce
 - 1) korekce offsetu -> když nedopadá žádný rentgenový signal, tak by detektory měli vracet nulu
 - změna intenzity rentgenky -> nastavíme multiplikativní koeficienty tak, aby hodnota byla stále stejná
 - 3) geometrická korekce -> případná kompenzace posunutí detektorů
 - 4) korekce vytvrzování svazku -> naměřený útlum nelineárně transformuje na lineární situaci
 - 5) kosinová korekce -> kompenzace vějířovitého svazku fan-beam (hlavně u 3. generace)
 - rekonstrukční metody
 - a) rebinning = rozhození naměřených paprsků do jednotlivých přihrádek, tak aby byly paralelní
 - -> pro každý úhel z původně naměřených vybereme rovnoběžné paprsky
 - -> pak využijeme filtrované zpětné projekce
 - b) Katsevich varianta filtrované zpětné projekce –> výpočetně náročné
 - c) algebraická rekonstrukce dokážeme zcela přesně namodelovat geometrickou konfiguraci
- 3D počítačová tomografie
 - a) metoda řez po řezu
 - princip rentgenka obkrouží pacienta –> zastaví –> stůl se pohne –> rentgenka opět obkrouží a zastaví
 - výhoda zaručí velmi dobrou kvalitu rekonstrukce jednotlivých řezů
 - nevýhoda nejedná se o plynulý pohyb, mechanicky náročné, trvá dlouho
 - b) spirálová metoda
 - princip pohyby rentgenky a stolku probíhají současně
 - výhoda jednodušší mechanika, rychlé (z 10 min –> na 1 min)
 - nevýhoda složitější rekonstrukce obrazu
 - pitch
 - relativní posun lůžka s pacientem na jednu otáčku vzhledem k šířce řezu

$$P = \Delta I/d$$

–> hodnoty P < 1 – nechceme –> oblasti se překrývají a pacienta zbytečně ozařujeme P > 2 – nechceme –> vznikají slepé oblasti P ~ 1.5 – typická hodnota –> kompromis

- úprava na konstantní z
 - hlavní myšlenka: interpolujeme projekce pro nějaká blízká z stejného úhlu
 - a) wide interpolation
 - interpolace dle hodnoty z nejbližší předchozí a nejbližší následující otáčky
 - větší efektivní tloušťka řezu, více kvalitní rekonstrukce
 - b) slim interpolation
 - interpolace dle hodnoty z nejbližší následující a jí o 180° posunuté otáčky
 - menší efektivní tloušťka řezu, méně kvalitní rekonstrukce

- parametry kvality obrazu CT
 - rozlišeni (0.5 mm)
 - kontrast schopnost rozlišit tkáně s různou denzitou (rozdíly v denzite 5-10 HU)
 - šum zvyšuje se snížením dávky
 - artefakty textura málo detektorů, špatná kalibrace

hvězdicové artefakty – přítomnost kovu (silné pohlcení záření), pohyb

 klinická aplikace – vyšetření hrudníku – zápal plic, rakovinné bujení hlavy – vnitřní krvácení, fraktura lebky

měkkých orgánů břicha

radiační dávka — absorbovaná dávka D – energie na kilogram tkáně

$$D = E/m [Gy - gray]$$

dávkový ekvivalent

$$H_{\mathsf{E}} = \sum_{i} w_{i} H_{i} = \sum_{i} w_{i} c_{i} D_{i}$$
 [Sv – sievert]

-> koeficienty c – jak moc je dané záření nebezpečné na jednotkovou absorbovanou dávku -> pro CT: c = 1 w – jak moc jsou jednotlivé druhy tkání citlivé na ozáření

- limity

- a) limity pro pracovníky
 - průměrně 20 mSv/rok v období 5 po sobě následujících let (maximální dávka 100 mSv/5 let)
 - dávka v jednom roce nesmí překročit 50 mSv
- b) limity pro obyvatelstvo
 - průměrně 1 mSv/rok v období 5 po sobě následujících let (maximální dávka 5 mSv/5let)
 - dávka v jednom roce nesmí překročit 5 mSv
- pozn. limitům nepodléhá lékařské ozáření a ozáření z přírodních zdrojů
 - 1 CT ~ 10 mSv, přírodní zdroje ~ 3 mSv/rok
- závěr CT
 - velmi užívaná metoda s výborným prostorovým rozlišením
 - schopnost pořízení 3D obrázků v řádu jednotek minut
 - nevýhoda menší kontrast měkkých tkání
 využití ionizujícího záření -> nutnost hlídat dávku záření

PŘEDNÁŠKA 4 + 5 – Ultrazvuk

- lékařský ultrazvuk (rychlý úvod)
 - ultrazvuk akustické vlny o vysoké frekvenci (2 50 MHz)
 - princip
 - vyšleme impulz, ten se odrazí a vrátí měříme čas a intenzitu odrazu

rychlost šíření tkání ~ 1500 m/s

-> pohlavní orgány: 0.2, plíce: 0.12, prsní tkáň: 0.1, kůže: 0.01

vlastnosti výhoda – neškodný, rychlý –> hodí se k zobrazení pohybujících se částí – srdce nevýhoda – neprochází vzruchem a tvrdou tkání

- akustika (teoretický úvod)
 - rozsahy fyzikálních veličin

měřená veličina	značení	jednotka	rozsah hodnot v klinické praxi
rychlost	С	m·s⁻¹	1540 m·s⁻¹ (měkká tkáň)
vlnová délka	λ	mm	0.6 – 0.15 mm (měkká tkáň)
kmitočet	f	Hz	2,5 – 10 MHz
modul pružnosti	E	Pa	25 GPa (kost)
akustická impedance	Z	kg·m ⁻² ·s ⁻¹	1.63·10 ⁶ kg·m ⁻² ·s ⁻¹
hustota	ρ	kg·m⁻³	1000 kg·m ⁻³ (voda)
intenzita	I	W·cm⁻²	1 – 10 mW·cm ⁻²
tlak	р	Pa nebo bar	0.006 MPa

- vlnová rovnice
 - odvození vlnové rovnice
 - rozdělíme tkáň do elementárních krychliček

A ...plocha Δz ...sířka ρ ...hustota $V = A \cdot \Delta z$...objem $m = \rho \cdot V = \rho \cdot A \cdot \Delta z$...hmotnost p(x) = 0 ...rychlost pohybu p ...tlak

 $m = \rho A \Delta z$

- vyjdeme ze dvou fyzikálních zákonů
 - 1) Newtonův zákon

$$\begin{split} F &= ma = m\frac{\mathrm{d}u}{\mathrm{d}t} = m\left(\frac{\partial u}{\partial t} + \frac{\partial u}{\partial z}\frac{\partial z}{\partial t}\right) \approx m\frac{\partial u}{\partial t} \\ F &= pA: \Longrightarrow (p(z) - p(z + \Delta z)) \, A = m\frac{\partial u}{\partial t} \implies \Delta z \ll z: \implies -\frac{\partial p}{\partial z}\Delta z \, A = m\frac{\partial u}{\partial t} \\ m &= \rho A \, \Delta z \implies \boxed{\rho\frac{\partial u}{\partial t} + \frac{\partial p}{\partial z} = 0} \end{split}$$

- -> prostorová derivace tlaku je rovna záporně vzaté časové derivaci rychlosti
- -> konstantou úměrnosti je hustota
- 2) zákon o zachování hmoty

$$\begin{split} &A\Big(u(z+\Delta z)\rho(z+\Delta z)-u(z)\rho(z)\Big)=-A\,\Delta z\frac{\partial\rho}{\partial t}\\ &\Delta z\ll z\colon -\!\!\!>\frac{\partial\rho u}{\partial z}=-\frac{\partial\rho}{\partial t}\quad -\!\!\!>\rho=\rho_0+\rho_1,\quad \rho_0=\text{const},\ \rho_1\ll\rho_0\ -\!\!\!>\rho_0\frac{\partial u}{\partial z}+\frac{\partial\rho_1}{\partial t}=0\\ &\frac{\rho_1}{\rho_0}=Kp,\quad K=1/E\ -\!\!\!>\frac{\partial u}{\partial z}+K\frac{\partial p}{\partial t}=0 \end{split}$$

- -> prostorová derivace rychlosti je rovna záporně vzaté časové derivaci tlaku
- -> konstantou úměrnosti je stlačitelnost
- rovnice zkombinujeme rovnici 1) zderivujeme podle z a rovnici 2) podle t

$$\begin{split} &\rho\frac{\partial u}{\partial t}+\frac{\partial p}{\partial z}=0 \quad \text{derive by } z \\ &\frac{\partial u}{\partial z}+K\frac{\partial p}{\partial t}=0 \quad \text{derive by } t \\ &\rho\frac{\partial^2 u}{\partial t\partial z}+\frac{\partial^2 p}{\partial z^2}=0 \\ &\frac{\partial^2 u}{\partial z\partial t}+K\frac{\partial^2 p}{\partial t^2}=0 \end{split} \qquad \Longrightarrow \quad \frac{\partial^2 p}{\partial z^2}-K\rho\frac{\partial^2 p}{\partial t^2}=0 \end{split}$$

- řešení vlnové rovnice – harmonická funkce

$$p = p_+ \cos(\underbrace{\omega t - kz}_{\phi})$$
 k... vlnové číslo [rad/m]

vlnová rychlost šíření (fázová rychlost)

$$\phi_0 = \omega t - kz \Rightarrow z = \frac{\omega}{k}t - \frac{\phi_0}{k} \Rightarrow c = \frac{\omega}{k}$$

dále (řešením diferenciální rovnice) -> $k^2=\rho K\omega^2$ -> $c=\frac{1}{\sqrt{\rho K}}$

-> rychlost šíření závisí s odmocninou nepřímo úměrně na hustotě a stlačitelnosti

- akustická impedance
 - veličina, která měří jak moc se daná látka (tkáň) brání pohybu

$$Z_a = rac{p ext{ (pressure)}}{I ext{ (flow)}} ext{ [Pa \cdot s/m}^3]$$

-> pro nekonečně dlouhou trubku lze rozdělit na část závislé na geometrii na část, která závisí jen na materiálu $Z = \rho_0 c \, \left[\text{kg/s} \cdot \text{m}^2 \right]$ = specifická akustická impedance (Z)

 $- \quad \text{orientačn\'i hodnoty} \qquad \quad \text{vzduch} - 0.004 \cdot 10^{\text{-}6} \text{ kg} \cdot \text{m}^{\text{-}2} \cdot \text{s}^{\text{-}1} \\ \quad \text{měkk\'e tk\'an\'e} - 1.5 \cdot 1.6 \cdot 10^{\text{-}6} \text{ kg} \cdot \text{m}^{\text{-}2} \cdot \text{s}^{\text{-}1} \\ \quad \text{kost} - 3.75 \cdot 7.38 \cdot 10^{\text{-}6} \text{ kg} \cdot \text{m}^{\text{-}2} \cdot \text{s}^{\text{-}1} \\ \quad \text{určuje, co se stane na rozhran\'e} \qquad \quad \text{Z} >> \lambda -> \text{na rozhran\'e dojde k odrazu a lom (zrcadlový odraz)} \\ \quad \text{Z} << \lambda \ \ -> \text{na rozhran\'e dojde k rozptylu}$

- - a) zrcadlový odraz
 - část energie dopadající vlny se odrazí zpět a část energie projde rozhraním -> množství odražené energie je tím větší, čím je větší rozdíl akustických impedancí
 - koeficient odrazu (pro kolmý dopad)
 - říká, jaký je poměr amplitudy odražené a dopadající vlny
 - -> jak moc se odrazí vlna zpět

$$R = \frac{p_{\rm o}}{p_{\rm d}} = \frac{Z_2 - Z_1}{Z_2 + Z_1}$$

orientační hodnoty tuk-sval – 0.1
mozek-lebka – 0.66
měkká tkáň-vzduch – 0.9995

-> vyrovnání akustické impedance - vyplnění vzduchové mezery gelem

zákon lomu (Snellův zákon)

- výpočet času
 - odraz na rozhraní ve vzdálenosti d od vysílače vyvolá dopad odražené vlny zpět na přijímač s časovým zpožděním t

$$t = \frac{2 \cdot d}{c}$$

- b) rozptyl
 - vlny se odráží skoro všemi směry -> na obrázku se projeví specifickou texturou (flíčky)
- zeslabování
 - při šíření vlny dochází k absorpci energie daným prostředím a k postupnému útlumu vlny -> intenzita vlny I, resp. amplituda A exponenciální klesají se vzdáleností

$$I(x) = I(0) e^{-2\alpha x}$$
 resp. $A(x) = A(0) e^{-\mu_a x}$

x vzdálenost od místa vybuzení

 μ_a koeficient útlumu amplitudy ultrazvukové vlny $\mu_a = -\frac{1}{x} \cdot \ln \frac{A(0)}{A(x)}$ (Np · cm⁻¹)

 α koeficient útlumu ultrazvukové vlny (log)

$$\alpha = 20 \,\mu_{\rm a} \cdot \log_{10} e \cong 8.7 \,\mu_{\rm a}$$

pozn. útlum přímo úměrně závisí na frekvenci vlny

-> čím chci hlouběji, tím nižší frekvenci potřebuji

orientační hodnoty – polotloušťka — voda – 380 cm měkká tkáň – 5-1 cm kost - 0.7-0.2 cm

- ultrazvuk v lékařství
 - rehabilitační lékařství a ortopedie
 gynekologie vyšetření plodu
 kardiologie vyšetření srdce
 vyšetření měkkých interních orgánů ledviny, jádra
 ultrazvukové čištění, odstraňování zubního kamene
 - zobrazovací módy
 - 1) A-mód (amplitude amplitudový)
 - lineární závislost amplitudy odezev na hloubce vniku ultrazvukového vlnění
 - -> vysoká amplituda odpovídá rozhraní o velkém koeficientu R
 - 2) B-mód (brightness jasový)
 - dvourozměrný obraz vypovídající o struktuře dané snímané tkáně
 - -> několik seřazených výsledků převodu hodnoty amplitudy z obrazu A na hodnoty stupňů šedi
 - 3) M-mód (motion pohybový)
 - ukazuje vývoj prostorové komponenty v čase
 - vyberu jeden směr v B-módu a vodorovně nechám probíhat čas
 - -> v pravidelných časových intervalech pořizuji jednorozměrný záznam
 - naměřená echa jsou pak zakódována do stupňů šedi a zobrazena

- 4) Q-mód (Dopplerovský mód)
 - -> jak rychle teče krev v jednotlivých místech
- artefakty posunutí pozice objektu + zkreslení (ne vše se musí posunout)
 –> dáno skladbou tkáně/změnou rychlosti šíření UZV
 násobná reflexe/falešná echa
 - -> nastává při velkém rozdílu akustických impedancí velká část signálu se odrazí zpět
 - -> poznáme podle toho, že odrazy jsou ve stejných vzdálenostech stín

-> dojde k zastínění ultrazvukového signálu částí tkáně měsíčkovité útvary

-> dáno konečnou šířkou a rozbíhavostí UZV paprsků pohybové a interferenční artefakty

- generování UZV signálu
 - požadavky na konstrukci

- relativně krátký impuls (2μs) o energii 10–100 mW/cm²
dostatečný odstup signál šum
tlumení zpětné akustické vlny
dostatečné pokrytí snímaného pole
potlačení vibrací
lehké a snadné na manipulaci

- zdroj UZV signálu piezoelektrické měniče
 - využití přímého a nepřímého piezoelektrického jevu
 - -> přivedením střídavého elektrického napětí dochází k mechanickým změnám
 - ultrazvuková sonda/ hlavice
 - měnič z jedné strany přilepen na kovové pouzdro
 - na druhou část měniče je připojen koaxiální vf kabel
 - -> přívod vysokofrekvenčního budícího pulsu z generátoru
 - ultrazvukové pole sondy
 - 1) blízké pole (Fresnelova oblast)
 - nelze zanedbat rozměr sondy
 - není příliš vhodná na zobrazování -> velmi proměnné, obtížná rekonstrukce
 - vzdálené pole (Fraunhoferova oblast)

$$L = \frac{D^2 - \lambda^2}{4\lambda}$$

- rozlišovací schopnost
 - není stejná ve všech směrech

– nejlepší – ve směru osy paprsku trochu horší – ve směru roviny sondy nejhorší – ve směru kolmém na zobrazovací rovinu

- typy
 - 1) lineární sonda dobré rozlišení v blízkém poli
 - 2) sektorová sonda široký obraz ve vzdáleném poli
 - 3) konvexní sonda kombinace s určitým kompromisem
 - -> nicméně lze využít řízení jednotlivých elementů ke směrování Linear

- směrování paprsků (beam forming)
 - 1) elektronické systémy s lineárním snímáním
 - postupně zapínáme jednotlivé elementy
 - výhoda jednoduché, homogenní pole
 - nevýhoda oblast dána rozměry sondy, rozlišení dáno elementy, nic nelze měnit
 - 2) elektronické systémy se sektorovým snímáním
 - provedeme časové zpoždění impulsů jednotlivých elementů
 - -> nasměrujeme vlnu libovolným směrem
- fokusace svazku UZV signálu
 - snažíme se o soustředění paprsku do daného ohniska -> lepší prostorové rozlišení
 - 1) akustická fokusace
 - využití různých typů čoček
 - -> tvarem zařídíme, aby se paprsky dostaly do ohniska ve stejnou dobu

$$d = 2.44 \frac{l_f}{D} \lambda$$

-> šířka paprsku v ohnisku závisí nepřímo úměrně na velikosti čočky

- 2) elektronická fokusace
 - provedeme časové zpoždění impulsů jednotlivých elementů (typicky parabolický profil) tak, aby jednotlivé paprsky dopadly do ohniska ve stejný čas
 - lze provádět i při přijmu (princip delay & sum)
 - signály nejdříve nasnímáme a potom teprve zpozdíme
 - provádíme pomocí zpožďovacích linek (mechanické nebo digitální)
 - -> nastavíme tak, aby jednotlivé výstupy dorazily ve stejný okamžik

- zpracování UZV signálu
 - blokové schéma
 - multiplexer přepíná velké množství kanálů
 - přepínač mění mezi příjmem a vysíláním
 - vysokofrekvenční generátor
 - zesílení řízený zesilovač a demodulátor
 - a) časové řízený zesilovač
 - kompenzace exponenciálního poklesu intenzity v čase
 - -> nastavení zesilovače tak, aby jeho zisk v dB v čase lineárně stoupal
 - b) amplitudově řízený zesilovač
 - nelineární transformace z důvodu obrovského rozsahu amplitud signálu
 - -> zajistíme kompresi dynamického rozsahu tak, aby to uměl zpracovat AD převodník

VZV

HELLIE.

(b)

časově řízený zesilovač

amplitudově řízený zesilovač

- princip
 - vyšleme impuls a virtuálně se posouváme směrem ↓
 - v okamžiku kdy se vrátí signál zakreslíme bod
 - -> intenzita odpovídá intenzitě signálu
 - posuneme se o jednu pozici doprava a opakujeme
- Dopplerovský ultrazvuk
 - slouží k zjišťování rychlosti a směru pohybu krve v krevním řečišti (měříme odraz od krvinek)
 - Dopplerův jev
 - jev, ke kterému dochází při vzájemném pohybu zdroje zvuku (vysílače) a pozorovatele (přijímače)
 - pro malé rychlosti lze aproximovat Dopplerovský posun je přímo úměrný rychlosti

$$f_e = f_0 \left(1 \pm \frac{v}{c} \right)$$

-> v případě Dopplerovské diagnostiky je nutné udělat dvojnásobek + zahrnout korekci úhlu

 $f_{\rm e}$ je frekvence odražené (přijímané) vlny

 f_0 je frekvence dopadající (generované) vlny

$$f_e = f_0 \, \left(1 \pm 2 \, rac{v \cdot \cos arphi}{c}
ight) \, \, v$$
 je rychlost pohybu překážky

 φ je úhel sevřený směry pohybu překážky a vyslané vlny

Dopplerova frekvence

- c je rychlost šíření vlny
- rozdíl mezi frekvencí vyslané a přijaté vlny

$$f_D = f_e - f_0 = \pm 2 f_0 \frac{v \cdot \cos \varphi}{c}$$

- demodulace signálu
 - a) kvadraturní demodulace
 - vysílač vyšle signál o frekvenci f_0
 - přijímač přijme signál o frekvenci $f_0 + f_D$
 - násobič součin daných signálů

- -> rozdílem získáme dopplerovskou frekvenci
- pozn. nevíme ale směr (cosinus = sudá fce) -> zavedeme směrovou demodulaci signálu

b) směrová demodulace

- oscilátor získáme fázově posunuté signály
- další fázový posun -> vždy bychom měli získat protifázi k jednotlivým signálům

-> rozlišení směru — f_D < 0 – na V_A získám 0 a na V_B Dopplerovský signál -> V_B je zpožděné k V_A – V_A = nulová amplituda f_D > 0 – na V_A získám Dopplerovský signál a na V_B 0 –> V_B předbíhá V_A – V_A = nenulová amplituda

- Dopplerovský systém
 - kontinuální Dopplerovský systém
 - kontinuálně vysíláme i přijímáme -> máme více elementů
 - výhoda umožňuje nám to detekovat vysoké rychlosti
 - nevýhoda nerozlišuje hloubku (nevíme kde to tak rychle proudí)
 - pulzní Dopplerovský systém
 - pulzně mění vysílání a příjem -> jeden element, který se přepíná
 - výhoda umožňuje rozlišení hloubky
 - nevýhoda omezený rozsah rychlosti, kterou jsem schopna měřit
 - \rightarrow nutnost vzorkování a dodržení vzorkovacího teorému $f_s > 2 f_{max}$

$$f_{Dmax} = \frac{1}{2}f_s \rightarrow f_0 \frac{2v_{max}}{c} = \frac{1}{2T_s} \rightarrow f_0 \frac{2v_{max}}{c} = \frac{2z_{max}}{c}$$
$$v_{max}z_{max} = \frac{c^2}{8f_0}$$

-> maximální možná měřitelná rychlost a maximální hloubka závisí na nosné frekvenci

čím větší chci měřit rychlost, tím v menší vzdálenosti mohu měřit

kontrastní látky

- látky, které nám umožňují lépe pozorovat dané struktury lidského těla
 - -> v ultrazvuku jsou to mikrobublinky
 - malé bublinky vzduchu (2 5 μm)
 - injekčně vpraveny do krve, kde vydrží přibližně 5–10 minut
 - zvýrazňují krevní řečiště -> umožňují dobře sledovat postup prokrvování a kam se krev dostává
 - chovají se nesymetricky vzhledem k působící síle -> nelineární odpověď harmonické frekvence
- harmonické zobrazování
 - základem je nelineárně zdeformovaný signál
 - základní princip
 - vyšleme signál o frekvenci f₀
 - filtrem zajistíme, že dojde ke zpracování jen harmonických frekvencí (především signálu o frekvenci 2f₀)
 - tento způsob výrazně zvýší kontrast mezi krví a zbytkem tkáně
 - -> užitečné k detekci nádoru
 - vylepšený princip Pulse Inversion Harmonic Imaging
 - vyšleme dva excitační impulsy s opačnou polaritou
 - získané odpovědi sečteme lineární reakce tkáně výsledný signál je nulový nelineární reakce tkáně rozdílový výsledný signál
 - nutnost speciální elektroniky, rychlého AD převodníku a paměti

shrnutí

- velmi rozšířená, relativně levná, přenosná, neinvazivní technika vhodná pro zobrazování měkkých tkání
- neproniká příliš hluboko (cenou je rozlišovací schopnost), neprostupuje vzduchem

PŘEDNÁŠKA 6+7+8+9+10 – Magnetická rezonance

- základní úvod do MRI
 - metoda využívající k získání obrazu magnet
 - -> různé tvary otevřený magnety tvaru písmena "C"
 výhoda velmi snadný přístup k pacientovi
 nevýhoda slabé magnetické pole –> obrázek není tak kvalitní uzavřený solenoidální magnety
 - výhoda silnější magnetické pole –> kvalitnější obraz
 - nevýhoda horší přístup k pacientovi
 - základní princip
 - 1. vložení objektu do magnetického pole
 - 2. vyslání radiofrekvenčního impulsu -> vybudí spiny
 - 3. excitace a následná deexcitace spinu -> vyzáří elektromagnetické vlny (radiofrekvenční vlny)
 - 4. příjem a záznam vln anténou
 - 5. rekonstrukce prostorového obrázku tkáně na základě záznamu
 - 6. vyjmutí objektu z magnetického pole
 - tomografické zobrazování
 - základní element 3D voxel 2D – pixel
 - využíváme rádiové frekvence o 10–100 MHz –> λ přibližně 5–10 m –> rozlišení přibližně 1 mm
 - -> nedodržuje Rayleigho vztah = nelze zobrazovat objekty o mnoho menší než λ
 - MRI používá prostorovou závislost frekvence a fáze absorbovaného či emitovaného záření, nikoliv prostorovou závislost amplitudy absorbovaného či emitovaného záření
- fyzikální základy
 - jaderný spin (I)
 - jedná se o číslo (násobky ½) popisující jádro
 - -> pro MRI jsou užitečné pouze jádra, pro která platí $I \neq 0$ (lichý počet p a n ¹H, ¹³C, ¹⁵N)
 - jádra s nenulovým spinem mají vlastní jaderný magnetický moment

$$\vec{\mu} = \gamma \vec{I} \dot{h} \ [\text{Am}^2 = \text{Nm}/T]$$
 γ ...gyromagnetická konstanta [MHz · T⁻¹] h ... Planckova konstanta (6.63 · 10⁻³⁴ Js)

- -> říká, jak velké bude měřitelné magnetické pole
- umístění do magnetického pole o intenzitě B=0 —> náhodné nastavení spinů $B \neq 0$ (jednotky Tesla)

-> orientace spinů ve směru magnetického pole

-> pohyb vykonáván s resonanční (Larmorovou) frekvencí

$$f = \gamma B$$

- přechod mezi stavy -> dodám energii (vyšlu foton o dané frekvenci)

$$E = hf = h\nu = h\gamma B$$

-> energetický diagram

- měřením závislost absorbované energie na frekvenci lze vyšetřovat složená materiálu
 každá špička (frekvence) spektra odpovídá danému izotopu dle tabulky
 - -> výška (množství absorbované energie) odpovídá množství materiálu

- Boltzmannova statistika
 - udává poměr částic, které jsou ve vysokofrekvenčním a nízkoenergetickém stavu

N-... počet spinů s nízkou energií

 $\frac{N^-}{N^+} = e^{-\frac{E}{kT}}$

N⁺ ... počet spinů s vysokou energií

k ... Boltzmannova konstanta (1.38 · 10⁻²³)

-> poměr částic závisí na energetickém rozdílu a na teplotě

- vektor magnetizace
 - celkový součet magnetických momentů jednotlivých spinů

$$\mathbf{M}=\sum \vec{\mu}$$

- makroskopický pohled na spin v magnetickém poli
 - 1. rovnovážný stav

- 2. působení radiofrekvenčním impulsem excitace spinu
 - -> změna vektoru magnetizace dle síly impulsu (překlopení/zmenšení podél osy z)
 - -> T_1 relaxace + T_2 relaxace = klesá transverzální magnetizace M_{xy} a zároveň dochází k návratu do rovnovážného stavu M_z -> M_0
 - T₁ relaxace návrat do rovnovážného stavu (po odeznění impulsu)

$$M_Z = M_0 \left(1 - \mathrm{e}^{-\frac{t}{T_1}} \right)$$

T₁ ... mřížková časová relaxační konstanta -> konstanta popisující změnu vektoru magnetizace v ose z

precese – rotace spinu okolo osy z s Larmorovou frekvencí

- -> vzniká střídavé elmag. pole
 - = užitečný signál pro rekonstrukci obrazu
- T₂ relaxace pokles transverzální magnetizace
 - = exponenciální snižování průměrné celkové magnetizace z důvodu desynchronizace spinů (ne všechny spiny rotují stejně rychle)

$$M_{xy} = M_{xy0} \mathrm{e}^{-\frac{t}{T_2}}$$

 T_2 ... spinová relaxační časová konstanta $-> T_2 < T_1$

- důvody molekulární interakce (konstanta T₂)
 nehomogenita magnetického pole (konstanta T₂^{inhom})
 - -> kombinovaná časová konstanta T₂* = T₂ + T₂^{inhom}
- přehled časy relaxace tkání (1.5 T)

tkáň	T_1 [ms]	T_2 [ms]
tuk	260	80
sval	870	45
mozek (šedá hmota)	900	100
mozek (bílá hmota)	780	90
játra	500	40
mozkomíšní tekutina	2400	160

- natočení vektoru magnetizace
 - vytvoříme magnetické pole ve směru osy x o dané rezonanční frekvenci -> B₁
 - Ize rozložit B_1^+ rotující polo okolo osy z s frekvencí f -> jeví se stacionárně vůči rotující soustavě B_1^- – rotující polo okolo osy z s frekvencí -f -> zanedbáme vůči rotující soustavě
 - vektor magnetizace M se natočí kolem osy x (B_1) o úhel α

$$\alpha = 2\pi \gamma \tau B_1$$

-> pokud působíme po čas τ magnetickým polem orientovaným podél osy x o intenzitě B₁, tak se spiny natočí o úhel α

- vychází to z Blochovy rovnice

$$\frac{\mathrm{d}\mathbf{M}}{\mathrm{d}t} = \gamma \mathbf{M} \times \mathbf{B}$$

- -> pokud na vektor magnetizace působíme magnetickým polem, tak se vektor začne otáčet ve směru kolmém jak na původní vektor magnetizace tak i na vektor magnetického pole
- chemický posun
 - snížení intenzity a tedy rezonanční frekvence magnetického pole vlivem chemických vazeb
 rezonanční frekvence se liší dle vazby atomu v molekule
 - rozdíl [ppm parts per million]

$$d = \frac{n - n_{\rm ref}}{n_{\rm ref}} 10^6$$

- excitační sekvence sekvence činností, kterou děláme, abychom vybudili signál a pak ho nasnímali
 - 1) FID = free induction decay (necháme amplitudu signálu volně klesat)
 - nejjednodušší sekvence
 - 1. vyšleme 90° impuls -> překlopíme vektor magnetizace do roviny xy
 - měříme indukci napětí snímací cívku v rovině xy
 získáme sinusový průběh s exponenciálně klesající amplitudou (z důvodu relaxací)
 - 3. sekvenci opakujeme s danou periodou opakování T_R
 - -> ovlivní výslednou amplitudu signálu

$$S \propto arrho (1-{
m e}^{-rac{T_R}{T_1}})$$
 ho ...hustota spinů

- -> maximální amplitudu získáme tehdy, když bude platit T_R > T₁
- časový diagram (jedna sekvence)

2) spin-echo sekvence

- daná sekvence
 - 1. vyšleme 90° impuls -> překlopíme vektor magnetizace do roviny xy
 - 2. vyčkáme po dobu T_E/2
 - 3. vyšleme 180° impuls -> překlopíme daných spinů resynchronizace
 - 4. měříme indukci napětí snímací cívku v rovině xy
 - -> získáme tzv. echo sinusový průběh s exponenciálně rostoucí a klesající amplitudou
 - 5. sekvenci opakujeme s danou periodou T_R
 - -> ovlivní výslednou amplitudu signálu

-> amplituda echa bude větší pro menší TE

časový diagram

výhody získávame prostor pro prepriod mezi vysladaní vást exponenciály máme možnost snímat 2x delší úsek -> i vzestupnou část exponenciály získáváme prostor pro přepnutí mezi vysíláním a přijímáním kompenzujeme nehomogenitu pole –> zvýšení síly signálu = kvality obrazu

- 3) Inversion recovery sekvence
 - daná sekvence
 - 1. vyšleme 180° impuls -> překlopíme vektor magnetizace na osu -z
 - 2. chvíli necháme zrelaxovat
 - 3. vyšleme 90° impuls -> překlopení do roviny xy
 - 4. sekvenci opakujeme s danou periodu T_R
 - -> ovlivní výslednou amplitudu signálu

$$S \propto arrho (1-2{
m e}^{-rac{T_I}{T_1}}+{
m e}^{-rac{T_R}{T_1}})$$
 ho ...hustota spinů

- -> amplituda signálu závisí na čase mezi vyslanými impulsy
- časový diagram

výhoda velmi robustni možnost potlačení vybrané tkáně – např. potlačení signálu z tuku

NMR spektroskopie

- integrální informace z celého objemu
- soustava

- chlazená nádoba čím větší zima, tím větší signál
- cívky generující (excitace vzorku) + snímací (snímáme signál)
- frekvenční generátor
- zapisovač osciloskop, počítač...

- kalibrace magnetického pole
 - field lock separátní NMR spektrometr se signálem deuteria
 - slouží ke stabilizaci magnetického pole v čase (jinak typicky mírně klesá)
 - -> korigování magnetického pole na základě polohy signálu známého vzorku
 - shimming korekční cívky
 - slouží ke stabilizaci magnetického pole v prostoru (jinak je nehomogenní)
 - -> kalibrace pole za účelem vyrovnání nehomogenity
- detekce NMR signálu
 - kvadraturní demodulace

-> využijeme trik směšování – posuneme frekvenci na nějakou mnohem nižší, kterou už umíme zpracovat

- principy zobrazování
 - kódování polohy
 - princip prostorového rozlišení
 - k zakódování polohy je možné použít další magnetické pole se zvyšující se intenzitou

-> jeden vzorek + dvě různé intenzity magnetického pole = 2 signály ve spektru

př. magnetické pole se zvyšuje ve směru osy x

$$B_z = B_0 + xG_x$$
 \longrightarrow $f = \gamma (B_0 + xG_x)$

G_x... gradient magnetického pole

- -> frekvence je přímo úměrná souřadnici x
- zpětná projekce
 - postup
 - 1. vložíme objekt do magnetického pole
 - 2. nastavíme gradient ve zvoleném směru (např. y) -> získáme projekci ve směru x (svislé osy)
 - 3. zopakujeme pro další úhly
 - nastavíme gradient jiným směrem -> lineární zvýšení magnetického pole
 - -> gradient v libovolném směru získám lineární kombinaci gradientu G_x a G_y

$$G_{x}=G_{f}\sin\varphi$$

$$G_y = G_f \cos \varphi$$

- opět získám projekci v kolmém směru
- časový diagram (90° FID jedna sekvence)

impuls nejlépe tvaru sinc(x)

-> aby ve frekvenci byl obdélník - pravoúhlý profil řezu

-> opakujeme s různou volbou intenzit gradientů

pozn. Gz se používá pro výběr řezu

- zapneme během excitačního impulsu
 - -> excitovány budou jen spiny s odpovídající frekvencí

Fourierovská MRI

- využívá tyto tři kódovací gradienty gradient výběru řezu (G_s) společně s RF
 gradient frekvenčního kódování (G_f) běh
 - gradient frekvenčního kódování (G_f) během snímání gradient fázového kódování (G_{ϕ}) před snímáním
 - -> gradient fázového kódování
 - princip
 - 1. spiny rotují stejnou konstantní frekvencí f
 - 2. zapneme G_φ -> rozfázujeme spiny rozdílné rychlosti podél osy
 - 3. vypneme G_{ϕ} –> spiny začnou rotovat původní rychlostí, ale již se změněnou fází
 - 4. změřením fáze spinu zjistíme pozici
 - -> již umíme kódovat ve dvou dimenzích dle frekvenčního kódování dle fázového kódování
- časový diagram (jedna sekvence)

pozn.

- k nasnímání celého 2D obrázku potřebujeme přibližně tolik sekvencí kolik je řádků v obrázku (~128 – 512 excitací)
- excitace se liší velikostí G_Φ chci různé měřicí podmínky
- matematický popis rekonstrukce
 - 1. signál jednoho spinového paketu
 - měříme dvě složky— složku ve směru x složku ve směru y
 - -> můžeme zapsat jako komplexní signál

$$s(t) \propto {
m e}^{-j\phi(t)}$$
 $\phi(t)=2\pi ft=2\pi\gamma Bt$ stacionární pole $\phi(t)=2\pi\gamma\int B(t)\,{
m d}t$ časově proměnné pole

- magnetické pole lze rozdělit na — konstantní magnetické pole pole vytvořené gradientními cívkami

$$\phi(t) = 2\pi\gamma \int B_0 + G_\phi(t)y\,\mathrm{d}t$$

-> zapnutí gradientní cívky způsobí změnu fáze – získáme zápis pro fázový posun

$$\Delta \phi = 2\pi \gamma y \int G_{\phi}(t) dt$$

= fázové zpoždění je přímo úměrné pozici ve směru y a integrálu gradientního pulsu pozn. dále budeme předpokládat pravoúhlý impuls – fyzikálně nerealizovatelný

$$\Delta \phi = 2\pi \gamma y G_{\phi} \tau_{\phi}$$

- signál po aplikaci fázového gradientu

$$s(t) \propto \mathrm{e}^{-2\pi j \gamma (B_0 t + G_\phi au_\phi y)}$$

- signál po aplikaci fázového a frekvenčního gradientu

$$s(t) \propto \mathrm{e}^{-2\pi j \gamma (B_0 t + G_\phi \tau_\phi y + G_f t x)}$$

- použití kvadraturní demodulace -> zmizí člen B₀t (kompenzace frekvenčním posunem)

$$s(t) \propto \mathrm{e}^{-2\pi j \gamma (G_\phi au_\phi y + G_f t x)}$$

- substituce (konvence MRI) -> k-prostor

$$s(t) \propto e^{-2\pi j(k_x x + k_y y)}$$
 $k_x = \gamma G_f t$ $k_y = \gamma G_\phi \tau_\phi$

2. signál z celého řezu = integrál všech signálů jednotlivých bodů řezu + váhování hustotou spinů

$$s(t) \propto \int_{(x,y) \in \check{\mathsf{rez}}} \rho(x,y) \mathrm{e}^{-2\pi j(k_x x + k_y y)} \, \mathrm{d}x \mathrm{d}y$$

-> přijímaný signál je 2D Fourierovou transformací hustoty spinů

$$s(t) \leftrightarrow s(k_x, k_y) \leftrightarrow FT \leftrightarrow \rho(x, y)$$

- výsledek trajektorie je určena časovým průběhem gradientů
 - -> z prostoru xy se pomocí FT dostaneme do prostoru k_xk_y, kde si můžeme zvolit trajektorii vzorkování, a to dle průběhu magnetických gradientů, jelikož ty nastavují k_x a k_y
 - zapnutí G_f -> zvětšování k_x = přesouváme se v řádku
 - zapnutí G_o -> zvětšování k_v = přesun na další řádek
- pozn. nutné dodržet vzorkovací větu jinak dojde k aliasingu

$$\begin{aligned} \text{FOV}_{x} & \triangleq \frac{1}{\Delta k_{x}} = \frac{1}{\gamma G_{f} t_{\mathsf{samp}}} \\ \text{FOV}_{y} & \triangleq \frac{1}{\Delta k_{y}} = \frac{1}{\gamma \Delta G_{\phi} \tau_{\phi}} \end{aligned}$$

-> zobrazovaný objekt musí být menší než převrácené hodnoty vzorkovacích kroků

- 3. získání obrazu
 - amplitudy jednotlivých špiček převedeme na intenzity v daném obrazu
- rozlišení
 - čím delší signál máme k dispozici = čím delší T_2^* tím přesněji umíme určit frekvenci a pozici tím lepší mám rozlišení
- MRI zobrazovací techniky
 - multislice imaging
 - technika zavedená pro zkrácení délky trvání MRI
 - postup -> myšlenka při čekání na odeznění excitace můžeme excitovat jiné řezy
 - 1. excitujeme daný řez o dané frekvenci RF pulsu
 - 2. excitujeme jiný řez o jiné frekvenci RF pulsu -> pozn. frekvence musí být dostatečně odlišné
 - 3. po odeznění 1. excitace opět můžeme excitovat o 1. frekvenci RF pulsu
 - 4. ... a takhle dokolečka (viz obrázek)

- výhoda lepší využití času –> zkrácení doby snímání až 10x
- šikmé zobrazování
 - docílíme ho lineární kombinací gradientů -> zapnutím více gradientních cívek současně

- excitační sekvence
 - 1) spinové echo
 - intenzita signálu

$$S \propto \varrho (1 - \mathrm{e}^{-rac{T_R}{T_1}}) \mathrm{e}^{-rac{T_E}{T_2}}$$

časový diagram

G_s - vždy s RF pulsem

G_Φ – zapínám mezi 90° a 180° RF impulsem -> mohu i po 180° RF = delší T_E (zbytečné)

G_f - zapnu i mezi RF pulsy -> kompenzace

2) inversion recovery

intenzita signálu

$$S \propto \varrho \big(1 - 2\mathrm{e}^{-\frac{T_I}{T_1}} + \mathrm{e}^{-\frac{T_R}{T_1}}\big)$$

časový diagram (+ diagram spin echa)

vhodnou volbou T₁ lze potlačit signál s určitým T₁

3) gradientní echo

časový diagram

pouze 1 excitační puls o tzv. flip úhlu (10° – 90°)

G_f – zapnu společně s G_Φ –> kompenzace pozn. nyní však s opačným znaménkem (už není 180° RF puls, který by to obrátil)

- porovnání se spinovým echem
 - rychlost SE – pomalé

GE – rychlé (krátké T_R díky malému flip úhlu)

citlivost na nehomogenitu pole SE – mensi (nenomogenity nompositi –> horší kvalita)

GE – vysoká (nekompenzuji –> horší kvalita)

-> GE použiji, pokud potřebuji vysokou rychlost snímání (např. rychlé 3D snímání)

-> SE použiji, když vyžaduji kalitnější obrazy (méně šumu, menší vliv nehomogenit)

kalibrace

- než začneme snímat provedeme několik kalibračních cyklů -> dojde ke stabilizaci
- kontrast
 - kontrast je dán jako rozdíl intenzity signálu daných tkání

$$C = S_A - S_B$$

-> ovlivním nastavením T_R, T_E, T_I a flip úhlu

- vážené sekvence T_1 vážený obraz – sekvence s kontrastem závisejícím na T_1 T_2 vážený obraz – sekvence s kontrastem závisejícím na ρ PD vážený obraz – sekvence s kontrastem závisejícím na ρ

-> volba parametrů (vychází z exponenciál)

T₁ vážení	$T_R \sim T_1$	$T_E \ll T_2$
T ₂ vážení	$T_R >> T_1$	$T_E \sim T_2$
PD vážení	$T_R >> T_1$	T _F << T ₂

vychází z

$$S \propto arrho ig(1 - \mathrm{e}^{-rac{T_R}{T_1}} ig) \mathrm{e}^{-rac{T_E}{T_2}}$$

 T_1 vážený: $e^{-0} = 1$ $\rightarrow T_E \ll T_2$ (ρ zanedbám) T_2 vážený: $e^{-\infty} = 0$ $\rightarrow T_R \gg T_1$ (ρ zanedbám)

- průměrování
 - nasnímání obrázek několikrát a poté zprůměrujeme
 - průměrujeme N excitací

$$SNR' = \frac{SNR}{\sqrt{N}} = \frac{\sigma_{tk\acute{a}\check{n}}}{\sqrt{N} \cdot \sigma_{pozad\acute{a}}}$$

-> užitečné u rychlých metod

hardware

- blokové schéma

místnost

- dostatečná nosnost podlahy
- magnetické stínění (vně i ven)
- stínění proti pronikání rádiových vln

posuvný stůl

- posun v ose z s přesností \sim 1 mm

řídicí počítač

- mimo místnost magnetu (kvůli rušení)
- několik procesorů
 - -> komunikace a zobrazování
 - -> řízení snímací sekvence
 - -> specializovaný procesor pro FFT

- magnet

typy permanentní magnet (nejslabší)
elektromagnet
supravodivý elektromagnet (nejsilnější)

- tvary otevřené (tvar C) – slabé pole, snadný přístup k pacientovi uzavřené (solenoidální) – silné pole, pacient nepřístupný

- nejčastěji 1.5 T – čím silnější, tím lepší (lepší poměr signál-šum, rychleji získám obraz)

- gradientní cívky

generují pole, které je směřováno v ose z, ale intenzita se mění podle jednotlivých os

$$B_z = B_0 + xG_x + yG_y + zG_z$$

-> využití tzv. Helmoholzových cívek = úzké cívky s velkým poloměrem zapojené antiparalelně

- RF cívky
 - úkolem je excitovat signál snímat signál
 - pro optimální přenos je zde nutnost ladění do resonance

$$2\pi f = \frac{1}{\sqrt{LC}}$$

typy ptačí klec – nejpoužívanější objemová cívka (hlavně při zobrazování hlavy) jednozávitový solenoid – nejpoužívanější pro zobrazení končetin fázové pole – několik cívek zpracovávaných zvlášť (informace navíc)

-> výhodné používat specializované (menší) cívky – lepší rozlišení, větší síla signálu

- kvadraturní demodulace
 - totožné jako u Dopplerovského ultrazvuku/NMR

- artefakty
 - příčiny vzniku

nevyvážený kvadraturní detektor

-> jasný bod v centru

nehomogenita Bo (hlavního magnetického pole) a také gradientů

-> geometrické zkreslení, změna intenzity

kovové materiály

-> změna intenzity

chemické vazby

-> chemický posun - vypadá jak kdyby došlo oddělení tkání

dále: pohyb, tok krve, vzorkování (aliasing, Gibbsův jev – oscilace ostrých hran)

- bezpečnost
 - výhody nepoužívá ionizující záření

neinvazivní

- rizika — silná magnetická pole

-> může způsobit pohyb kovových implantátů či selhání elektronických implantátů časově a prostorově proměnná magnetická pole

-> mohou indukovat elektrické napětí

použití kryogenních tekutin (tekutý dusík, tekuté helium)

rychlosti změn magnetického pole (pacient nesmí pocítit změnu)
tepelné limity – nesmí se indukovat větší výkon než 4–12 W/kg
hluku – špičková hodnota 140 dB

- lékařské aplikace
 - zobrazování mozku diagnóza tumoru, metastáze, malformace cév zobrazování plic a jater – diagnóza rakoviny vyšetření prostaty
- speciální techniky
 - 3D zobrazování
 - místo jednoho řezu snímáme celý objem
 - výhody lepší poměr signál šum, možnost zobrazení jakéhokoliv řezu objektem
 - nevýhody delší doba měření, větší objem dat, možnost volbu pouze jednoho typu kontrastu
 - techniky rychlého zobrazování
 - motivace pohodlí pacienta redukce artefakti

redukce artefaktů (dýchání, pohyb srdce, pohyb pacienta)

finanční důvody

- 1) fractional N_{ex} Imaging (částečné snímání k-prostoru)
 - využití symetrie FT (symetrie dle středu) pro reálný vstup
 - -> stačí nasnímat pouze polovinu k-prostoru a zbytek dopočítat
 - nevýhoda menší SNR
- 2) fractional Echo Imaging (částečné snímání echa)
 - využití časové symetrie echa v případě reálného obrazu
 - -> stačí nasnímat pouze polovinu
- 3) Fast Spin-Echo (několikanásobné echo)
 - použijeme více refokusačních 180° pulsů
 - -> způsobí snímání jiných řádků k-prostoru
 - časový diagram

- pozn. různá síla echa — první echa – silnější –> využijeme pro snímání centrální části pozdější echa – slabší –> využijeme ke snímání okrajů

- 4) EPI (echo planar imagining echoplanární zobrazování)
 - velmi rychlá metoda (20–100 ms/řez)
 - -> nasnímáme celý řez při jedné excitaci (předtím 1 excitace = 1 řádek)
 - princip
 - nastavením gradientů se pohybujeme v k-prostoru po předem zvolené trajektorii

- počáteční G_Φ a G_f nastaví počáteční bod trajektorie
- další G_Φ a G_f zajistí procházení k-prostoru po dané trajektorii
 –> dáno vztahem

$$k_X(t) = \gamma \int G_X(t) dt$$
 $k_Y(t) = \gamma \int G_Y(t) dt$

- pozn. nejčastěji se využívá trajektorie spirály
 - -> nejprve získáme centrální část (nízké frekvence, které určují globální tvar objektu)
 - -> poté postupujeme k okrajům (tolik už nás netrápí)
- podmínky správné funkčnosti výkonné zesilovače gradientních cívek

potřebujeme velmi rychle se měnící gradienty
 dostatečně homogenní magnetické pole

-> tak, aby nebyla nutná kompenzace

- 5) pMRI (paralelní magnetická rezonance)
 - myšlenka vzorkování k-prostor méně hustě (snímáme každou x. řádku)

-> dojde k aliasingu

využítí cívek s prostorovou senzitivitou

-> získání citlivostních map - kompenzace aliasingu

- princip (SENS rekonstrukce)
 - naměříme si citlivostní mapy jednotlivých cívek v každém bodě
 - vyřešíme soustavu lineárních rovnice -> získáme odhad rekonstrukce
 - pozn. využití snímání k-prostoru s variabilní hustotou
- další vylepšení
 - vliv šířky pásma (volba vzorkovací frekvence)

vzorkovací frekvence — nižší = nižší intenzita gradientu -> protažení sekvence
- výhody - méně šumu
- nevýhody - větší vliv chemického posunu, menší možný rozsah T_E
vyšší = vyšší intenzita gradientu

 omezeno výkonovým zesilovačem gradientních cívek a také možným účinkem na nervový sytém

- potlačení tuku
 - techniky _____ inversion recovery saturace
 - nejprve vybudíme protony náležící tuku frekvenčně saturačním pulsem
 - následně aplikujeme defázovací gradient = rozfázování spinů tuku
 - -> celkový makroskopický signál tuku bude nulový
 - podmínka dostatečně homogenní magnetické pole
 - -> aby měl tuk všude stejnou rezonanční frekvenci

- přesné měření T₁, T₂
 - získání času T₂
 - nasnímám sekvenci obrazů s různými časovými konstantami T_E -> snižuje se amplituda signálu
 - získám známou exponenciálu pomocí LS zjistím neznámý parametr T₂
 - získání času T₁
 - nasnímám sekvenci obrazů s různými časovými konstantami T_R -> zvyšuje se amplituda signálu
 - získám známou exponenciálu pomocí LS zjistím neznámý parametr T₁
 - nevýhoda nutné excitace navíc

- kontrastní látky
 - kovů Gd (gadolinium), ale i dalších využití — -> nutné zabalit do biologicky neaktivní molekuly - RDTA, DTPA (netoxické kyseliny) vzácných plynů – Xe, He
 - typicky injekční podání
 - využití vyšetřování cév
- angiografie (zobrazování toku)
 - metody
 - 1) time-of-flight (intervalová metoda)
 - využití klasické sekvence s použitím refokusačního pulsu o jiné energii než má impuls excitační -> zajistí většina statické tkáně – nulový užitečná signál krev – zvýraznění
 - phase contrast (fázový kontrast)
 - využití klasické sekvence s vložením bipolárního gradientu do gradientu výběru řezu a následné dvojité nasnímání (s opačnými polaritami)

- 3) contrast enahanced (s kontrastní látkou)
 - vstříknutí paramagnetické látky do krve
 - poskytuje nejlepší kontrast z uvedených angiografických metod
- další typy MRI
 - 1) perfúzní MRI
 - lze sledovat, jak se kontrastní látka šíří v těle
 - 2) tagged MRI
 - metoda využívající vytvoření virtuálních značek využívaných k přesnému sledování pohybu tkáně -> využití především k zobrazování srdce
 - SPAMM (metoda generování virtuálních značek)
 - vyšleme 90° RF puls magnetizace se přesune do roviny XY
 - spustíme gradient a vytvoříme prostorovou modulaci fáze
 - vyšleme další 90° RF puls návrat spinů z roviny XY (jen některé spiny)
 - následně využijeme klasické techniky
 - -> získáme signál jen tam, kde byla magnetizace vytvořena získáme proužky (virtuální značky)
 - difuzní MRI
 - metoda vyhodnocování difuzivity vody
 - -> popisuje prostorové uspořádání tkání velmi užitečné pro studium konektivity nervových vláken
 - princip
 - naměříme si intenzitu signálu pro mnoho směrů a různých velikostí
 - vyjdeme z následující rovnice (Stejskal-Tanner)

$$S_k = S_0 \exp(-b(g_k)^t T(g_k)))$$

- -> zeslabení je exponenciálně závislé na kvadratické formě, která závisí na tenzoru popisující lokální strukturu a na bipolárních gradientech, které určují, v kterých směrech měříme
- rekonstruujeme matici T -> soustava lineárních rovnic
- in-vivo spektroskopie
 - snímáme signál pouze z nějakého malého objemu
 - PRESS využití selektivních gradientů ve všech třech osách nevýhoda – poměrně pomalé (na každý zobrazovaný bod je nutná jedna excitace) využítí dvou fázově kódovacích gradientů prostorově spektrální zpětná projekce
- elektronová rezonance místo se spiny protonů pracujeme se spiny elektronů

PŘFDNÁŠKA 11 – fMRI

funkční zobrazování

- lokalizace struktury a funkce mozku invazivní následky zranění a operací, přímá stimulace, snímací elektrody, optické snímání neinvazivní MEG, EEG fMRI, PET
- přehled z hlediska prostorového a časového rozlišení

- porozumění struktuře mozku, procesům vnímání a myšlení vymýšlení terapií nových metod

 -> porozumění příčinám bolesti, duševních chorob, účinků drog plánování operací
 - -> identifikace nefunkčního centra, omezení poškození
- atlas mozku (Talairachův atlas)
 - referenční souřadný systém/mapa lidského mozku
 - slouží k mapování mozkových struktur nezávisle na individuálních rozdílech a velikostech
 - -> lze potom přesně udat souřadnice
 - pozn. dnes už jiné atlasy (3D registrace)
 - -> možnost pokrytí nelineárních deformací v menších prostorovém měřítku

fMRI

- základní objevy (důležité pro vývoj fMRI)
 - 1. tok krve se mění s aktivitou (jak fyzickou tak psychickou)
 - 2. v mozku existuje automatický regulační systém
 - senzory v cévách, které detekují nedostatek kyslíku v případě, že daná část mozku začne pracovat a neurony zpracovávat kyslík
 - 3. deoxyhemoglobin má paramagnetické vlastnosti -> narušuje lokální magnetické pole
 - 4. BOLD signal (blood oxygen level dependent) = signál s amplitudou závislou na lok. okysličení krve
 - velmi slabý signál (SNR přibližně 0.1)
 - -> nutné průměrování snímání bez aktivity + snímání s aktivitou
 - k jeho vzniku nedochází okamžitě (reakce není okamžitá)
 - -> reakce se nazývá hemodynamická odezva

- základní princip
 - nervová aktivace -> zvýšení průtoku krve = snížení procenta deoxyhemoglobinu
 - -> snížení lokálního rušení magnetického pole -> zvýšení amplitudy lokálního signálu
 - pozn. ovlivňuje T_2 relaxaci hodně okysličená krev velké T_2 hodně odkysličená krev malé T_2
 - -> čím více homogenní pole, tím rychlejší T₂ relaxace
- postup zpracování fMRI
 - 1. 3D rekonstrukce
 - 2. registrace namapování do standardního prostoru
 - 3. analýza jednotlivých voxelů analýza časových průběhů
 - SNR (Signal-Noise-Ratio)
 - poměr variability oproti té co nás nezajímá
 - zdroje šumu technické šumy scanner fyziologické příčiny – dýchání, srdeční činnost pohyby
 - SNR se zlepšuje s odmocninou počtu měření
 - -> 10x lepší výsledek = 100 měření
 - lineární model
 - snažíme se nalézt takovou lineární kombinaci námi daných časových průběhů tak, abychom co nejlépe popsali naměřený signál

$$\mathbf{y}_i = X \boldsymbol{\beta}_i + \mathbf{e}_i$$
 with noise $\mathbf{e}_i = \mathcal{N}(0, I\sigma_e^2)$

- výsledné hodnoty nám napovídají, jak moc byl daný voxel zapojen do dané podmínky
 aproximujeme časové průběhy pomocí koeficientů lineární kombinace
- -> pro každý voxel získáme jeden vektor délky N
 - dále vynásobíme tzv. kontrastem/efektem vektor o jedničce a nulách

$$z_i = \mathbf{c}^T \boldsymbol{\beta}_i$$

- -> vybereme si tak co nás zajímá
- výpočetně velmi rychlé
- pozn. do bázové matice vkládáme i jiné nekorelované průběhy bezpečností opatření
 výsledná design matice

- statistické testování
 - t-test
 - porovnávám hodnoty t-statistiky s předem danými tabulkovými hodnotami
 prohlásím aktivitu/neaktivitu daného voxelu

$$t = \frac{z_i}{\sigma_{z_i}}$$

- F-test
 - porovnávám hodnoty F-statistiky s předem danými tabulkovými hodnotami
 vrčení důležitosti časového průběhu (bázové funkce design matice)
 - princip
 - redukujeme lineární model odstraníme danou bázovou funkci
 - vypočteme

 $F = \frac{\text{chyba redukovan\'eho modelu - chyba původního modelu}}{\text{chyba původního modelu}}$

- -> velké číslo = navýšení chyby odebraná bázová funkce je důležitá
- -> malé číslo = snížená chyby odebraná bázová funkce není důležitá
- pozn. Bonferroniho korekce
 - zpřísnění prahu statistického testování
 - -> k falešně pozitivní detekci může dojít maximálně (celkově) s pst α
 - pro statistické testování jednotlivých voxelů tedy bude platit

$$\alpha_v = \frac{\alpha}{N}$$
 N... počet voxelů

- velmi přísná korekce voxely jsou korelované
 volí se něco mezi
- 4. grafické znázornění
- druhy experimentů ¬

blokové experimenty

pravidelně střídáme bloky aktivit
 experimenty založené na událostech
 stimuly vysíláme náhodně

- vlastnosti +: neinvazivní metoda in-vivo

relativně dobré prostorové rozlišení

 -: špatné časové rozlišení nutnost průměrování (nelze snímat ojedinělé jevy)