

Math Methods for Political Science

Lecture 11: Multivariate Calculus II

Partial derivative

Let $f: \mathbb{R}^n \to \mathbb{R}$ with $f(\mathbf{z}) \equiv f(x_1, \dots, x_n)$ for $\mathbf{z} = (x_1, \dots, x_n)$.

Definition 1 (Partial derivative)

The k-th partial derivative of f at z is defined as

$$\frac{\partial f(x_1, \dots, x_n)}{\partial x_k} = \lim_{h \to 0} \frac{f(x_1, \dots, x_k + h, \dots, x_n) - f(x_1, \dots, x_k, \dots, x_n)}{h}$$

- Interpretation: how a change in the *k*-th variable affects *f* while holding the other variables fixed.
- Notation: sometimes, we use $\partial f/\partial x_k$ or even $\partial_k f$.

Example 1 (Partial derivative)

- Let $\mathbf{z} = (x_1, x_2) \in \mathbb{R}^2$ and $f(x_1, x_2) = x_1^3 + x_2 1$.
- Let $\mathbf{z} = (x, y, w) \in \mathbb{R}^3$ and $f(x, y, w) = xyw + x^2w y^3$.

Second-order/cross partial derivative

Let $f: \mathbb{R}^n \to \mathbb{R}$ with $f(\mathbf{z}) \equiv f(x_1, \dots, x_n)$ for $\mathbf{z} = (x_1, \dots, x_n)$.

Definition 2 (Second-order/cross partial derivative)

If $1 \le i, j \le n$, then

- lacksquare $\partial_{i,j}f=rac{\partial^2 f}{\partial x_i\partial x_i}$ is the cross-partial derivative,
- lacksquare $\partial_{i,i}f=rac{\partial^2 f}{\partial x_i\partial x_i}$ is the second-order partial derivative.

Intuition:

- Cross: how the effect of x_i on f changes as x_i changes.
- Second-order:
 - the first-order derivative of the first-order derivative,
 - ▶ how the effect of x_i on f changes as x_i itself changes.

Note that

$$\partial_{i,j}f = \frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_i \partial x_j} = \partial_{j,i}f.$$

Second-order/cross partial derivative

Example 2 (Second-order/cross partial derivative)

Suppose a government's probability of re-election depends on the state of the economy, x, and the prime minister's personal popularity, y. Let the probability be denoted by p(x, y) = xy.

- 1. How does probability of re-election change if the economy improves slightly?
- 2. How does the probability of re-election change if the prime minister's personal popularity increases slightly?
- 3. How does the effect of the economy change if the prime minister's personal popularity increases slightly?
- 4. How does the effect of the prime minister's personal popularity change if the economy improves slightly?
- 5. What happens when p(x, y) = x(1 y) + y(1 x). Which theoretical do you find more plausible?

Gradient vector

Definition 3 (Gradient vector)

The gradient is the vector of partial derivatives of f at z:

$$\nabla f(\mathbf{z}) = \begin{bmatrix} \partial_1 f(\mathbf{z}) \\ \vdots \\ \partial_n f(\mathbf{z}) \end{bmatrix}.$$

Local extrema and the gradient

Definition 4 (Local extrema)

If $\exists \delta > 0$ s.t., $\forall \mathbf{z} \in (\mathbf{z}_0 - \delta, \mathbf{z}_0 + \delta) \cap D_f$,

- 1. $f(z) \ge f(z_0)$, then z_0 is a **local minimum**,
- 2. $f(z) \le f(z_0)$, then z_0 is a local maximum.

If 1. or 2. is true, then x_0 is a **local extremum**.

Definition 5 (Stationary point)

 z_0 is a stationary point if $\nabla f(z_0) = 0$.

Theorem 1 (Gradient at local extrema)

If f is differentiable at a local extremum \mathbf{z}_0 , then $\nabla f(\mathbf{z}_0) = 0$.

Example 2 (Local extrema and the gradient)

Consider $f(x, y) = x^2 + y^2$.

Hessian matrix

Definition 6 (Hessian matrix)

The hessian is the matrix of cross and second-order partial derivatives of f at z:

$$H(\mathbf{z}) = \begin{bmatrix} \partial_{1,1} f(\mathbf{z}) & \partial_{1,2} f(\mathbf{z}) & \cdots & \partial_{1,n} f(\mathbf{z}) \\ \partial_{2,1} f(\mathbf{z}) & \partial_{2,2} f(\mathbf{z}) & \cdots & \partial_{2,n} f(\mathbf{z}) \\ \vdots & \vdots & \ddots & \vdots \\ \partial_{n,1} f(\mathbf{z}) & \partial_{n,2} f(\mathbf{z}) & \cdots & \partial_{n,n} f(\mathbf{z}) \end{bmatrix}.$$

Example 3 (Hessian matrix)

$$f(x, y) = x^2y$$

$$f(x, y, z) = x^2/2 + y^2/2 + z^2/2$$

Note: $\partial_{i,j}f = \partial_{i,j}f \implies H$ is symmetric.

Definiteness

Let H be an $n \times n$ symmetric matrix.

Definition 7 (Definiteness)

H is

- 1. positive definite if $\mathbf{x}^{\top}H\mathbf{x} > 0$ for all $\mathbf{x} \neq \mathbf{0}$,
- 2. positive semidefinite if $\mathbf{x}^{\top}H\mathbf{x} \geq 0$ for all $\mathbf{x} \neq \mathbf{0}$,
- 3. negative definite if $\mathbf{x}^{\top}H\mathbf{x} < 0$ for all $\mathbf{x} \neq \mathbf{0}$,
- 4. negative semidefinite if $\mathbf{x}^{\top}H\mathbf{x} \leq 0$ for all $\mathbf{x} \neq \mathbf{0}$, and it is indefinite otherwise.

Example 4 (Definiteness)

- the identity matrix
- $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

Testing for definiteness

Let H be an $n \times n$ symmetric matrix.

Definition 8 (Principal submatrix and minor)

- The k-th order principal submatrix of H, H_k , is obtained by deleting the last n-k columns and rows.
- Its determinant, $|H_k|$, is the k-th order principal minor.

Example 5 (Principal submatrix and minor)

$$H = \begin{bmatrix} H_{11} & H_{12} & H_{13} \\ H_{21} & H_{22} & H_{23} \\ H_{31} & H_{32} & H_{33} \end{bmatrix} \implies H_1 = H_{11}, \ H_2 = \begin{bmatrix} H_{11} & H_{12} \\ H_{21} & H_{22} \end{bmatrix}, \ H_3 = H$$

Theorem 2 (Testing for definiteness)

- *H* is positive definite $|H_k| > 0 \forall k$.
- *H* is negative definite \iff $(-1)^k \mid H_k \mid > 0 \ \forall k$.
- H is indefinite otherwise.

For semi-definiteness, replace $> by \ge$.

Sufficient condition for extrema

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a function and H its hessian matrix.

Theorem 3 (Sufficient condition for extrema)

If \mathbf{z}_0 is a stationary point, then

- 1. $H(z_0)$ positive definite $\implies z_0$ is a local minimum,
- 2. $H(\mathbf{z}_0)$ negative definite $\implies \mathbf{z}_0$ is a local maximum.

Example 6 (Finding local extrema)

- $f(x,y) = x^2 + y^2$
- $f(x, y) = xe^{-x^2-y^2}$
- $f(x_1, x_2, x_3) = x_1^2 + 3x_2^2 3x_1x_2 + 4x_2x_3 + 6x_3^2$