The Heterogeneous Fleet Vehicle Routing Problem with Draft Limits

Mathematical Optimization - A.A. 2024-2025 Elma Huseinovic, Elisabetta Chisso

Problem Description

Context: In modern maritime transport, naval gigantism has led to increasingly large vessels with greater drafts

Operational issue: Ports have draft limits-ships that are too heavily loaded cannot enter them, which affects the sequence of port visits.

Objective: Minimize the total network cost (port access + sailing) by deciding how many and which ships (of different sizes) to use, and in what sequence to visit the ports.

Novelty:

- Incorporates load-dependent draft limits into routing decisions.
- Considers a heterogeneous fleet (ships with different capacities, costs, and drafts).
- Integrates fleet sizing and routing under draft constraints.

Formulation

SETS

- $I = [1, I_{max}] \rightarrow \text{set of ports}$
- $I0 = [0, I_{max}] \rightarrow$ set of ports including the depot
- $S = [1, S_{max}] \rightarrow \text{set of ships}$

PARAMETERS

- Q_s \rightarrow Capacity (tons) of the ship s
- $q_i o Demand (tons) of the port i$
- L_{is} \rightarrow Maximum loading for ship s to access port i (tons)
- $coords_i \rightarrow Coordinates of the port i$
- ω_s \rightarrow Velocity of the ship s
- c_s \rightarrow Hourly sailing cost for ship s (\in /h)
- r_{is} \rightarrow Access cost for ship s entering port $i \in S$

VARIABLES

• l_{is} \rightarrow Loading of ship s entering port i

• $u_i \in N^+ \ \forall i \in I$ \rightarrow Position of port i in the sequence of visited ports

• $d_{ij} = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$ \rightarrow Euclidian distance between ports i and j

• $t_{ij} = \frac{d_{ij}}{dt_{ij}}$ \rightarrow Sailing time between ports i and j (h)

DECISION VARIABLES

• $X_{ijs} \in \{0,1\} \ \forall i \in I0 \ \forall j \in I0 \ \forall s \in S$ Takes value 1 if the arc (i, j) is traversed by ship s

• $Y_{is} \in \{0,1\} \ \forall i \in I \ \forall s \in S$ Takes value 1 if port i is served by ship s

OBJECTIVE FUNCTION

The goal is to minimize the total network cost

$$\min\left(\sum_{i\in I_0}\sum_{i\in I_0}\sum_{s\in S}c_st_{ij}X_{ijs} + \sum_{i\in I}\sum_{s\in S}r_{is}Y_{is}\right)$$

where the first term

$$\sum_{i \in I0} \sum_{j \in I0} \sum_{s \in S} c_s t_{ij} X_{ijs}$$

represents the sailing cost, and the second term

$$\sum_{i \in I} \sum_{s \in S} r_{is} Y_{is}$$

represents the sum of the fixed costs to access ports

CONSTRAINTS

1)

$$\sum_{s \in S} Y_{is} = 1 \quad \forall i \in I$$

imply that each port is assigned to a ship

2)

$$\sum_{i \in I} q_i Y_{is} \le Q_s \quad \forall s \in S$$

ensure that the maximum load capacity of a ship is never exceeded

3)

$$\sum_{i \in I0} X_{ijs} = Y_{is} \quad \forall j \in I \quad \forall s \in S$$

if ship s serves port j, it must have previously visited another port including the depot

4)

$$\sum_{i \in I0} X_{ijs} = \sum_{i \in I0} X_{jis} \ \forall j \in I \ \forall s \in S$$

for each port and ship, the number of incoming arcs to j equals the number of outgoing arcs from j, ensuring flow conservation

5)

$$X_{0js} \le \sum_{j \in I} Y_{js} \quad \forall s \in S$$

a ship may depart from the depot only if it serves at least one port

6)

$$X_{0js} \ge \sum_{i \in I} \frac{Y_{js}}{I_{max}} \quad \forall s \in S$$

if a ship serves any port, it must depart from the depot

7)

$$u_j \ge u_i + 1 - I_{max}(1 - \sum_{s \in S} X_{ijs}) \quad \forall i \in I \quad \forall j \in I0$$

if ship s traverses arc (i, j), then port j must appear after port i in the visit sequence

8)

$$l_{js} \ge l_{is} - q_i - Q_s (1 - X_{ijs}) \quad \forall i \in I \quad \forall j \in I0 \quad \forall s \in S$$

if ship s travels from port i to port j, then the load at j must be at least the load at i minus the demand at i.

9)

$$l_{is} \leq L_{is} \ \forall i \in I \ \forall s \in S$$

the load of ship s upon entering port i must not exceed the port-specific loading limit L_{is}

10)

$$l_{0s} = \sum_{i \in I} q_i Y_{is} \ \forall s \in S$$

the initial load of ship *s* equals the total demand of the ports it serves

VALID INEQUALITIES

These inequalities help the solver reduce solution time by eliminating infeasible or suboptimal routes early.

VI1)

$$X_{0js} \le 1 - \frac{1}{TOT_q} \left(\sum_{i \in I} q_i Y_{is} - L_{js} \right) \quad \forall j \in I \quad \forall s \in S$$

for each port j, if the total load of the ship s, to which it has been assigned, is greater than the maximum allowed load for s to enter j, then j cannot be the first port visited in the route

VI2)

$$X_{ijs} = 0 \quad \forall i \in I \quad \forall j \in J \quad \forall s \in S \mid q_i + q_j > L_{is}$$

for each ship s and each pair of ports i and j, if the sum of their demand, q_i and q_j , is greater than the maximum allowed load for sto enter i, then j cannot be served immediately after i by ship s

VI3)

$$p_s - (u_i - 1)q_{big} \le L_{is} + Q_{is}(1 - Y_{is}) \quad \forall i \in I \quad \forall s \in S$$

$$q_{big} = \max_{i \in I} q_i$$

allows to identify the earliest position a port i can occupy in the visiting sequence, without violating draft limit constraints, given the ship s to which it has been assigned and the set of ports assigned to it

VI4)

$$u_i \leq I^* \quad \forall i \in I$$

that the latest position a port can assume in the visiting sequence is equal to the maximum number of ports that can be assigned simultaneously to the same ship, I^* .

 I^* is computed by sorting ports in non-decreasing order of demand and counting how many can be assigned to the largest ship before exceeding its capacity.

Matheuristic

OVERVIEW

- The mathematical model efficiently solves only small instances
- For larger networks, the computational time grows exponentially
- To handle larger instances, two matheuristics are proposed:
 - Large Neighborhood Search (LNS)
 - Iterated Local Search (ILS)
- Both methods combine mathematical programming with local search principles

PARAMETERS TUNING

- Both the heuristics depend on two parameters
 - 1. m which is the number of nodes involved by the destroy operator
 - 2. α which is the proximity threshold
- The parameters were calibrated using the medium size instances
- The best resulting values are
 - m = 5
 - $\alpha = 1.5$
- The two parameters are uncorrelated

LARGE NEIGHBORHOOD SEARCH (LNS)

Main idea:

- Use a randomized operator to partially destroy the solution and exploit the mathematical model to optimally rebuild a feasible solution starting from the partial solution obtained
- The destroy operator is

$$\rho_i = \alpha v_i$$

where v_i is the distance between the port i and its nearest port

Key advantage:

 A very large neighborhood can be efficiently explored at each itaration allowing to quickly move toward strongly better solution

PROCEDURE

- 1. Run the mathematical model with a short time limit and keep the solution obtrained so far
- 2. At each iteration are selected m random ports and removed from the solution
- 3. The destroy operator removes all the ports within a certain radius
- 4. The partially destroyed solution is passed to the model
- 5. If the obained solution is better than the actual best solution, it is kept as current best, otherwise is discarded
- 6. The procedure is repeated until the stopping condition is reached

PROCEDURE

- 1. Run the mathematical model with a short time limit and keep the solution obtrained so far
- 2. At each iteration are selected m random ports and removed from the solution
- 3. The destroy operator removes all the ports within a certain radius
- The partially destroyed solution is passed to the model
- 5. If the obained solution is better than the actual best solution, it is kept as current best, otherwise is discarded
- 6. The procedure is repeated until the stopping condition is reached

PROCEDURE

- 1. Run the mathematical model with a short time limit and keep the solution obtrained so far
- 2. At each iteration are selected m random ports and removed from the solution
- 3. The destroy operator removes all the ports within a certain radius
- 4. The partially destroyed solution is passed to the model
- 5. If the obained solution is better than the actual best solution, it is kept as current best, otherwise is discarded
- 6. The procedure is repeated until the stopping condition is reached

ITERATED LOCAL SEARCH (ILS)

Main idea:

Combine a deterministic Local Search (LS) phase with a randomized Diversification (DIV)
phase.

Algorithm outline:

- 1. Run the mathematical model with a short time limit and keep the solution obtrained so far
- 2. Run the Local Search phase with the current solution
- 3. When the LS is trapped into a local minima Diversification phase is applied
- 4.LS and DIV are repeated until the stopping condition is reached

Key advantage:

 Efficient in solving complex optimization problems, ensuring high solution quality with balanced computational effort

LOCAL SEARCH PROCEDURE

- 1. Every port is given a score $\sigma_i = \frac{\lambda_i}{v_i}$ where λ_i is the longest between the arc entering anche the arc exiting the port i
- 2. The m ports with the highest score are removed together with their neighborhood within a certain radius ρ_i
- 3. Use the mathematical model to optimally rebuild the partial destroyed one
- 4. Accept the new solution if it improves the objective function

LOCAL SEARCH PROCEDURE

- 1. Every port is given a score $\sigma_i = \frac{\lambda_i}{v_i}$ where λ_i is the longest between the arc entering anche the arc exiting the port i
- 2. The m ports with the highest score are removed together with their neighborhood within a certain radius ρ_i
- 3. Use the mathematical model to optimally rebuild the partial destroyed one
- 4. Accept the new solution if it improves the objective function

LOCAL SEARCH PROCEDURE

- 1. Every port is given a score $\sigma_i = \frac{\lambda_i}{v_i}$ where λ_i is the longest between the arc entering anche the arc exiting the port i
- 2. The m ports with the highest score are removed together with their neighborhood within a certain radius ρ_i
- 3. Use the mathematical model to optimally rebuild the partial destroyed one
- Accept the new solution if it improves the objective function

DIVERSIFICATION PROCEDURE

- 1. Randomly select m ports to remove from the best current solution
- 2. Include also nearby ports within a distance ρ_i
- 3. Use the mathematical model to optimally rebuild the partial destroyed one
- 4. The obtained solution, even if it is worse, is given as input to the LS

DIVERSIFICATION PROCEDURE

- 1. Randomly select *m* ports to remove from the best current solution
- 2. Include also nearby ports within a distance ρ_i
- 3. Use the mathematical model to optimally rebuild the partial destroyed one
- 4. The obtained solution, even if it is worse, is given as input to the LS

DIVERSIFICATION PROCEDURE

- 1. Randomly select *m* ports to remove from the best current solution
- 2. Include also nearby ports within a distance ρ_i
- 3. Use the mathematical model to optimally rebuild the partial destroyed one
- 4. The obtained solution, even if it is worse, is given as input to the LS

Dataset

- Parameters
 - Number of ships $s \in [3, 5, 6, 10]$
 - Number of ports $i \in [15, 25, 50]$
 - 2 scenarios for Draft Restriction (DR):
 - $LOW_{DR} = 30\%$ of ports affected by draft limits
 - $HIGH_{DR} = 70\%$ of ports affected by draft limits
 - 2 scenarios for Capacity Tightness ($CT = \frac{TOT_q}{TOT_O}$)
 - $LOW_{CT} = 30\%$ of ship capacity corresponds to the total demand
 - $HIGH_{CT} = 70\%$ of ship capacity corresponds to the total demand

SMALL INSTANCES

- 40 small instaces divided in 4 sets of 10 instances each
 - Set 1:
 - 15 ports
 - 3 ships
 - $(LOW_{DR} LOW_{CT})$
 - Set 2:
 - 15 ports
 - 3 ships
 - $(HIGH_{DR} LOW_{CT})$

- Set 3:
 - 15 ports
 - 3 ships
 - $(LOW_{DR} HIGH_{CT})$
- Set 4:
 - 15 ports
 - 3 ships
 - $(HIGH_{DR} HIGH_{CT})$

MEDIUM & LARGE INSTANCES

- 22 medium instances divided in 2 sets of 11 instances each
 - Set 5:
 - 25 ports
 - 5 ships
 - $(HIGH_{DR} HIGH_{CT})$
- 10 large instances in 1 set
 - Set 7:
 - 50 ports
 - 10 ships
 - $(HIGH_{DR} HIGH_{CT})$

- Set 6:
 - 25 ports
 - 6 ships
 - $(HIGH_{DR} HIGH_{CT})$

Mathematical model – Small instances

			AVG COMPUTATIONAL TIME (s)								
SET	BEST OF	BEST GAP	NO VI	VI1	VI2	VI3	VI4	VI1+VI4	VI2+VI4	VI3+VI4	ALL VI
1	306,995	0,003	16,757	14,233	17,611	13,907	9,526	9,447	9,367	21,613	21,942
2	306,995	0,003	14,753	9,924	14,529	11,435	9,839	7,302	9,300	22,872	17,779
3	439,852	0,006	57,709	43,258	56,489	128,282	150,548	57,017	28,059	54,539	48,892
4	439,852	0,005	48,722	23,758	74,850	41,460	33,429	13,799	34,007	49,130	21,937

Mathematical model – Medium instances

			AVG COMPUTATIONAL TIME (s)								
SET	BEST OF	BEST GAP	NO VI	1	2	3	4	1+4	2+4	3+4	ALL VI
5	738,777	0,182	TL	TL	TL	TL	TL	TL	TL	TL	TL
6	692,710	0,221	TL	TL	TL	TL	TL	TL	TL	TL	TL

The medium size instances were run with a 600s timelimit

Mathematical model – Large instances

			AVG COMPUTATIONAL TIME (s)								
SE	Γ BEST OF	BEST GAP	NO VI	1	2	3	4	1+4	2+4	3+4	ALL VI
7	840,011	0,351	TL	TL	TL	TL	TL	TL	TL	TL	TL

• The large size instances were run with a 600s timelimit

Matheuristic

	LI	NS	ILS			
SET	AVG GAP	AVG TIME	AVG GAP	AVG TIME		
1	0,030	20,754	0,019	23,063		
2	0,019	16,386	0,018	18,991		
3	0,012	31,604	0,020	35,950		
4	0,027	28,875	0,020	45,278		
5	0,047	172,255	0,013	125,760		
6	0,005	137,114	0,031	286,325		
7	0,012	245,695	0,015	339,918		

Matheuristic VS Mathematical Model

	MODEL 1 + 4	4	LNS		ILS		
	AVG GAP	AVG TIME	AVG GAP	AVG TIME	AVG GAP	AVG TIME	
1	0,004	9,447	0,030	20,754	0,019	23,063	
2	0,004	7,302	0,019	16,386	0,018	18,991	
3	0,006	57,017	0,012	31,604	0,020	35,950	
4	0,005	13,799	0,027	28,875	0,020	45,278	
5	0,182	TL	0,047	172,255	0,013	125,760	
6	0,221	TL	0,005	137,114	0,031	286,325	
7	0,351	TL	0,012	245,695	0,015	339,918	

Conclusions

- Developed and implemented a **mathematical model** for the HF-VRP-DL, integrating heterogeneous fleet assignment and draft-based routing constraints.
- Introduced valid inequalities that reduced computation times for small instances and improved model tractability.
- Designed and tested two **matheuristic approaches** (LNS and ILS) that provided better solutions with lower computational effort on medium and large instances.