Advanced Topics in Control 2020: Large-Scale Convex Optimization

Exercise 4: Duality

Goran Banjac, Mathias Hudoba de Badyn, Andrea Iannelli, Angeliki Kamoutsi, Ilnura Usmanova

March 25, 2020

Date due: April 2, 2020 at 23:59.

Please submit your solutions via Moodle as a PDF with filename Ex04_Surname.pdf, replacing Surname with your surname.

1 Problem 1

Consider the convex optimization problem:

$$\min_{x} \quad c^{\top} x + \frac{1}{\mu} \sum_{i=1}^{m} \log \left(1 + e^{\mu(a_i^{\top} x - b_i)} \right), \tag{1}$$

where $x \in \mathbb{R}^n$, $\mu > 0$.

(a) Show that problem (1) is equivalent to:

$$\min_{x} \quad c^{\top} x + \frac{1}{\mu} \sum_{i=1}^{m} \log \left(1 + e^{\mu y_i} \right),$$
s.t.
$$Ax - b \le y,$$
(2)

where the matrix $A \in \mathbb{R}^{m \times n}$ has rows a_i^{\top} , $b \in \mathbb{R}^m$ has entries b_i , and $y \in \mathbb{R}^m$ has entries y_i .

- (b) Derive the Lagrange dual function and the Lagrange dual problem of (2).
- (c) Consider now the pair of primal and dual linear programs (LP):

$$\min_{x} c^{\top}x, \qquad \max_{z} -b^{\top}z,$$
s.t. $Ax \le b$, s.t. $A^{\top}z + c = 0$,
$$z \ge 0$$
,

where A, b, and c are the same matrices and vectors used in problem (2). Knowing that the primal LP has a finite optimal value p^* and the optimizer z^* of the dual LP has all the entries smaller than 1 (i.e. $z_i \leq 1 \ \forall i = 1,..,m$), show that

$$p^* \le q^* \le p^* + \frac{m \log(2)}{\mu},\tag{3}$$

where q^* denotes the optimal value of the original problem (1).

Hint: Plug in the optimizer x^* of the primal LP in the objective function of the original problem (1), and the optimizer z^* of the dual LP in the cost of the dual problem obtained in part (b). Express these two costs as a function of p^* and then try to bound them with respect to q^* .

2 Problem 2

Consider the optimization problem:

$$\min_{x_1, x_2} e^{-x_2},
\text{s.t.} \sqrt{x_1^2 + x_2^2} - x_1 \le 0,$$
(4)

where $x_1, x_2 \in \mathbb{R}$.

- (a) Verify that the optimization problem is convex, find its feasible set, and determine the optimal value.
- (b) What is the duality gap?
- (c) Can you prove that there is a nonzero duality gap without solving the dual problem? Explain why.

3 Problem 3

Consider the optimization problem:

$$\min_{x,y} ||y||_2 + \gamma ||x||_1,
\text{s.t.} Ax - b = y,$$
(5)

where $x \in \mathbb{R}^n$ and $y \in \mathbb{R}^m$ are the optimization variables, and $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $\gamma > 0$ are given.

- (a) Derive the dual problem of (5).
 - Hint: When you perform minimization of the Lagrangian L(x, y, z) with respect to the primal variables x, y in order to determine the dual function g(z), you will have to determine two constraints on z such that the dual function remains bounded. It might be helpful to recall, from Problem 4 of Exercise 2, that the conjugate function of a norm (in that problem you examined the case of Euclidean norm) is the indicator function of the dual norm unit ball.
- (b) Denote by x^* an optimal solution of (5). Assume that $Ax^* b \neq 0$ and define $r = \frac{Ax^* b}{\|Ax^* b\|_2}$. Show that the following holds:

$$||A^{\top}r||_{\infty} \le \gamma,$$

$$r^{\top}Ax^{\star} + \gamma||x^{\star}||_{1} = 0.$$
 (6)

Hint: Since x^* is an optimal solution, it will fulfill the KKT conditions for the problem.

4 Problem 4

Let g(x) = f(Lx + c) where $f: \mathbb{R}^m \to \mathbb{R} \cup \{\infty\}$ is closed convex, $L \in \mathbb{R}^{m \times n}$, and $c \in \mathbb{R}^m$. Knowing that relint dom $g \neq \emptyset$, show that:

$$g^*(s) = \inf_{\mu} (f^*(\mu) - \mu^{\top} c : s = L^{\top} \mu), \tag{7}$$

where g^* denotes the conjugate function of g.

 Hint : Derive an expression for g^* as the optimal value of a convex composite minimization problem, and then use Fenchel duality to obtain an expression which depends on the conjugate function f^* .