Appendix

Joe Backer, Elle Dodd, Dan Humphrey, Dan Peckham 3/25/2017

```
library(haven)
library(sandwich)
library(stargazer)
library(ggplot2)
library(car)
library(knitr)
library(plyr)
library(lfe)
library(plm)
library(gtools)
library(pander)
afghan <- read_dta("~/Documents/Stats2/pivotproject/afghandata.dta")</pre>
#rename variables
afghan <- rename(afghan, c("f07_hh_id"= "hh_id",
                  "f07_heads_child_cnt" = "heads_child",
                  "f07_girl_cnt" = "girl",
                  "f07_age_head_cnt" = "age_head",
                  "f07_yrs_ed_head_cnt" = "yrs_ed_head",
                  "f07_jeribs_cnt" = "jeribs",
                  "f07_num_sheep_cnt" = "num_sheep",
                  "f07 duration village cnt" = "duration village",
                  "f07_farsi_cnt" = "farsi",
                  "f07_tajik_cnt" = "tajik",
"f07_farmer_cnt" = "farmer",
                  "f07_num_ppl_hh_cnt" = "num_ppl_hh",
                  "f07 test observed" = "test observed",
                  "f07_formal_school" = "formal_school",
                  "f07_nearest_scl" = "nearest_scl",
                  # non-matching new names#
                  "f07_age_cnt" = "age_child",
                  "f07_both_norma_total" = "test_score_normalized"
))
#age by gender
afghan$age_girl <- afghan$age_child*afghan$girl
afghan$age_girl[afghan$age_girl == 0] <- NA
afghan$age_boy <- afghan$age_child* !afghan$girl</pre>
afghan$age_boy[afghan$age_boy == 0] <- NA
#sheep per household member (proxy for wealth?)
afghan$sheep_per_hh_member = afghan$num_sheep / afghan$num_ppl_hh
attach(afghan)
# Create Balance Table
```

```
# create data frame of only the variables of interest
remove <- c("hh_id", "observation_id")</pre>
varlist <- colnames(afghan[, !names(afghan) %in% remove])</pre>
balance_variables <- afghan[, !colnames(afghan) %in% remove]
# generate counts
n_ctrl <- apply(balance_variables[balance_variables$treatment == 0, ], 2, function(x) length(which(!is.:</pre>
n_trt <- apply(balance_variables[balance_variables$treatment == 1, ], 2, function(x) length(which(!is.n
# generate table
balancetable <- cbind(n_ctrl, n_trt)</pre>
# drop treatment, test score, cluster rows
balancetable <- balancetable[!rownames(balancetable) == "treatment", ]</pre>
balancetable <- balancetable[!rownames(balancetable) == "test_score_normalized",
balancetable <- balancetable[!rownames(balancetable) == "clustercode", ]</pre>
# run t.tests, skipping treatment[14]
varlist
## [1] "heads_child"
                                 "girl"
## [3] "age_child"
                                 "age_head"
## [5] "yrs_ed_head"
                                 "jeribs"
## [7] "num_sheep"
                                 "duration_village"
## [9] "farsi"
                                 "tajik"
## [11] "farmer"
                                 "num_ppl_hh"
## [13] "test_observed"
                                 "treatment"
## [15] "clustercode"
                                 "chagcharan"
## [17] "formal_school"
                                 "nearest_scl"
## [19] "test_score_normalized" "age_girl"
## [21] "age_boy"
                                 "sheep_per_hh_member"
balance_tests <- lapply(varlist[c(1:13, 16:18, 20:22)], function(x) {</pre>
    t.test(as.formula(paste(x, "treatment", sep = "~")), data = balance_variables,
        alternative = "two.sided", mu = 0, paired = FALSE, var.equal = FALSE,
        conf.level = 0.95)
})
# extract and adjust p vals
balance_test_pvals <- t(sapply(balance_tests, function(x) {</pre>
    c(mean_crtl = unname(x$estimate[1]), mean_trt = unname(x$estimate[2]), diff_means = unname(x$estimate[2])
        unname(x$estimate[1]), p.value = p.adjust(x$p.value, method = "bonferroni",
        n = length(x))
}))
balance_test_pvals <- data.frame(balance_test_pvals, stringsAsFactors = FALSE)</pre>
balance_test_pvals[] <- lapply(balance_test_pvals[], function(x) as.numeric(as.character(x)))
balancetable <- cbind(balancetable, balance_test_pvals)</pre>
balancetable <- round(balancetable, 3)
# Show table
kable(balancetable)
```

	n_ctrl	n_trt	mean_crtl	mean_trt	diff_means	p.value
	n_ctrl	n_trt	mean_crtl	mean_trt	diff_means	p.value
heads_child	730	830	0.911	0.927	0.016	1.000
girl	730	830	0.456	0.478	0.022	1.000
age_child	730	830	8.321	8.322	0.001	1.000
age_head	730	830	40.219	40.090	-0.129	1.000
yrs_ed_head	730	830	3.101	3.531	0.431	0.165
jeribs	730	830	1.510	1.498	-0.011	1.000
num_sheep	730	830	6.404	9.586	3.181	0.000
duration_village	730	830	27.662	30.172	2.509	0.014
farsi	730	830	0.205	0.210	0.004	1.000
tajik	730	830	0.204	0.239	0.034	0.914
farmer	730	830	0.729	0.707	-0.022	1.000
num_ppl_hh	730	830	7.905	8.741	0.835	0.000
test_observed	730	830	0.925	0.925	0.001	1.000
chagcharan	730	830	0.429	0.663	0.234	0.000
formal school	730	830	0.264	0.731	0.467	0.000
nearest scl	730	830	3.149	2.881	-0.268	0.000
age_girl	333	397	8.327	8.332	0.005	1.000
age_boy	397	433	8.315	8.312	-0.003	1.000
sheep_per_hh_member	730	830	0.817	1.142	0.325	0.000

	n	mean	sd
% Test Taken - All	1560	0.925	0.263
% Test Taken - Treatment	830	0.925	0.263
% Test Taken - Control	730	0.925	0.264

```
# creating a dataset of only the attritted
afghanattrition <- afghan[!complete.cases(afghan), ]

# comparisons of treatment and control for attritted only

# omits test_observed[13], treatment[14], clustercode[15], and

# test_score[19]
attrition_by_treatment <- lapply(varlist[c(1:12, 16:18, 20:22)], function(x) {
    t.test(as.formula(paste(x, "treatment", sep = "~")), data = afghanattrition,
        alternative = "two.sided", mu = 0, paired = FALSE, var.equal = FALSE,
        conf.level = 0.95)</pre>
```

	mean_crtl	mean_trt	diff_means	p.value
heads_child	0.9109589	0.9265060	0.0155471	1.0000000
girl	0.4561644	0.4783133	0.0221489	1.0000000
age_child	8.3205479	8.3216867	0.0011388	1.0000000
age_head	40.2191781	40.0903614	-0.1288166	1.0000000
yrs_ed_head	3.1006849	3.5313253	0.4306404	0.1648415
jeribs	1.5095890	1.4981928	-0.0113963	1.0000000
num_sheep	6.4041096	9.5855422	3.1814326	0.0000010
$duration_village$	27.6623288	30.1716867	2.5093580	0.0137177
farsi	0.2054795	0.2096386	0.0041591	1.0000000
tajik	0.2041096	0.2385542	0.0344446	0.9137745
farmer	0.7287671	0.7072289	-0.0215382	1.0000000
num_ppl_hh	7.9054795	8.7409639	0.8354844	0.0000056
chagcharan	0.4287671	0.6626506	0.2338835	0.0000000
$formal_school$	0.2643836	0.7313253	0.4669417	0.0000000
nearest_scl	3.1492138	2.8811876	-0.2680262	0.0000229
age_girl	8.3273273	8.3324937	0.0051664	1.0000000
age_boy	8.3148615	8.3117783	-0.0030832	1.0000000
sheep_per_hh_member	0.8172399	1.1422055	0.3249656	0.0000787

No significant correlation between demographic variables greater than 0.35.

WHY CHOOSE PROBIT? PLOT the RESIDUALS? cross ref with balance tables

```
plot(predict(r2, type = "response"), predict(p2, type = "response"), xlab = "linear model",
    ylab = "probit model")
abline(a = 0, b = 1, col = "red")
```



```
linearHypothesis(p2, c("tajik = 0", "farsi = 0"), test = "F")
```

```
## Linear hypothesis test
##
## Hypothesis:
## tajik = 0
## farsi = 0
##
## Model 1: restricted model
## Model 2: formal_school ~ nearest_scl + girl + age_child + age_head + num_sheep +
       jeribs + yrs_ed_head + heads_child + duration_village + num_ppl_hh +
##
##
       tajik + farsi + farmer + sheep_per_hh_member + chagcharan
##
     Res.Df Df
                    F Pr(>F)
##
## 1
       1546
       1544 2 2.2791 0.1027
## 2
linearHypothesis(p2, c("num_sheep = 0", "jeribs = 0"), test = "F")
## Linear hypothesis test
## Hypothesis:
```

Model 2: formal_school ~ nearest_scl + girl + age_child + age_head + num_sheep +

num_sheep = 0
jeribs = 0

Model 1: restricted model

##

Table 4: Linear OLS model

Dependent variable:		
	formal school	
(1)	(2)	
0.231**	0.436***	
(0.100)	(0.111)	
-0.052^{***}	-0.018*	
(0.010)	(0.011)	
-0.112^{***}	-0.116***	
(0.024)	(0.021)	
0.051***	0.051***	
(0.007)	(0.007)	
-0.003**	-0.001	
(0.001)	(0.001)	
0.004	0.001	
(0.004)	(0.004)	
-0.008	0.008*	
(0.006)	(0.005)	
0.005	0.002	
(0.004)	(0.003)	
0.038	-0.010	
(0.047)	(0.039)	
0.0004	-0.001	
(0.001)	(0.001)	
0.002	-0.001	
(0.005)	(0.004)	
0.059*	0.042	
(0.030)	(0.027)	
-0.012	-0.0001	
(0.031)	(0.027)	
-0.057^{**}	-0.043^{*}	
(0.029)	(0.025)	
-0.011	-0.004	
(0.028)	(0.028)	
0.214***		
(0.025)		
No	Yes	
6 1,560	1,560	
0.120	0.339	
	forma (1) 0.231** (0.100) -0.052*** (0.010) -0.112*** (0.024) 0.051*** (0.007) -0.003** (0.001) 0.004 (0.004) -0.008 (0.006) 0.005 (0.004) 0.038 (0.047) 0.0004 (0.001) 0.002 (0.005) 0.059* (0.030) -0.012 (0.031) -0.057** (0.029) -0.011 (0.028) 0.214*** (0.025)	

* -0.1 ** -0.05 *** -0.01

Table 5: Probit model

	Depende	$Dependent\ variable:$	
	forma	l_school	
	(1)	(2)	
Constant	-0.737^{***}	-0.331	
	(0.276)	(0.363)	
nearest_scl	-0.146***	-0.070^*	
	(0.030)	(0.038)	
girl	-0.309***	-0.411***	
	(0.067)	(0.075)	
age_child	0.138***	0.174***	
<u> </u>	(0.020)	(0.023)	
age_head	-0.008**	-0.006	
0 —	(0.003)	(0.004)	
num_sheep	0.011	0.0004	
	(0.010)	(0.011)	
jeribs	-0.022	0.037*	
, ···	(0.016)	(0.019)	
yrs_ed_head	0.013	0.008	
,15 <u>_</u> 0a <u>_</u> 116aa	(0.010)	(0.011)	
heads_child	0.114	-0.054	
	(0.127)	(0.143)	
duration_village	0.001	-0.003	
_ 0	(0.002)	(0.003)	
num_ppl_hh	0.008	-0.002	
— —	(0.013)	(0.015)	
tajik	0.160*	0.158*	
v	(0.084)	(0.095)	
farsi	-0.032	-0.00003	
	(0.085)	(0.098)	
farmer	-0.154**	-0.156^*	
	(0.078)	(0.088)	
sheep_per_hh_member	-0.022	0.019	
· — · —	(0.082)	(0.089)	
chagcharan	0.576***		
	(0.070)		
clustercode fixed effects?	No	Yes	
Observations	7 1,560	1,560	

```
## jeribs + yrs_ed_head + heads_child + duration_village + num_ppl_hh +
## tajik + farsi + farmer + sheep_per_hh_member + chagcharan
##
## Res.Df Df F Pr(>F)
## 1 1546
## 2 1544 2 1.4186 0.2424
```