Report MovieLens project

Introduction

In this project we use dataset Movielens included in the dslabs package. The Movilens is composed from users (userId) that give a rating between 0 and 5 (rating) in a specific date and time (timestamp) for the movies (movieId) that have a title and a genres associated. Our goal is using the inputs in one subset to predict movie ratings in the validation set that will compared with RMSE.

Data exploration

The first step, is to see the structur of our data (training dataset)

head(edx)

```
##
     userId movieId rating timestamp
                                                                   title
## 1
           1
                 122
                           5 838985046
                                                       Boomerang (1992)
## 2
           1
                 185
                           5 838983525
                                                        Net, The (1995)
                                                        Outbreak (1995)
## 4
           1
                 292
                           5 838983421
## 5
           1
                 316
                           5 838983392
                                                        Stargate (1994)
## 6
           1
                 329
                           5 838983392 Star Trek: Generations (1994)
##
                 355
                           5 838984474
                                               Flintstones, The (1994)
##
                              genres
## 1
                     Comedy | Romance
## 2
              Action | Crime | Thriller
      Action|Drama|Sci-Fi|Thriller
## 5
            Action | Adventure | Sci-Fi
## 6 Action|Adventure|Drama|Sci-Fi
           Children | Comedy | Fantasy
```

the data set edx, is composed by 6 six variable, of two type: 1) Quantitave variable:userId (number identify the user), movieId (number identify the movie), timestamp (number that iden identify date and time), rating (valutation of ranting movies - that is a discete variable, that have a value from 0.5 to 5) 2) Qualitative variable: title (name movie title - not unique), genres (type genres associated with the movie).

str(edx)

```
'data.frame':
                    9000055 obs. of 6 variables:
##
   $ userId
               : int
                      1 1 1 1 1 1 1 1 1 1 ...
##
   $ movieId
                      122 185 292 316 329 355 356 362 364 370 ...
               : num
                      5 5 5 5 5 5 5 5 5 5 ...
               : num
    $ timestamp: int
                      838985046 838983525 838983421 838983392 838983392 838984474 838983653 838984885 8
                      "Boomerang (1992)" "Net, The (1995)" "Outbreak (1995)" "Stargate (1994)" ...
##
     title
                chr
   $ genres
               : chr
                      "Comedy|Romance" "Action|Crime|Thriller" "Action|Drama|Sci-Fi|Thriller" "Action|A
```

this is summaries of every variable

summary(edx)

```
##
        userId
                         movieId
                                           rating
                                                          timestamp
                     Min.
                                                                :7.897e+08
##
    Min.
                                       Min.
                                              :0.500
                 1
                                  1
                                                        1st Qu.:9.468e+08
    1st Qu.:18124
                     1st Qu.:
                                648
                                       1st Qu.:3.000
##
    Median :35738
                     Median: 1834
                                       Median :4.000
                                                        Median :1.035e+09
            :35870
                               4122
                                              :3.512
                                                                :1.033e+09
    Mean
                     Mean
                                       Mean
                                                        Mean
##
    3rd Qu.:53607
                     3rd Qu.: 3626
                                       3rd Qu.:4.000
                                                        3rd Qu.:1.127e+09
    Max.
            :71567
                     Max.
                             :65133
                                       Max.
                                              :5.000
                                                        Max.
                                                                :1.231e+09
```

```
## title genres
## Length:9000055 Length:9000055
## Class :character Class :character
## Mode :character Mode :character
##
##
##
```

Count votes of genre

We see the top ten genres that have more review

```
## Selecting by count
## # A tibble: 10 x 2
##
     genres
                                count
      <chr>
                                <int>
##
## 1 Drama
                               733296
## 2 Comedy
                               700889
## 3 Comedy|Romance
                               365468
## 4 Comedy|Drama
                               323637
## 5 Comedy|Drama|Romance
                               261425
## 6 Drama|Romance
                               259355
## 7 Action|Adventure|Sci-Fi
## 8 Action|Adventure|Thriller 149091
## 9 Drama|Thriller
                               145373
## 10 Crime|Drama
                               137387
```

Count vote for user

This is a histogram that rapresent the number votes give for every user.

Count vote for user

Top 10 movies with most vote

Here we have the list of top ten movie with more movie review

```
## Selecting by count
  # A tibble: 10 x 2
##
      title
                                                                     count
                                                                     <int>
##
      <chr>
    1 Pulp Fiction (1994)
##
                                                                     31362
    2 Forrest Gump (1994)
                                                                     31079
##
##
   3 Silence of the Lambs, The (1991)
                                                                     30382
   4 Jurassic Park (1993)
                                                                     29360
   5 Shawshank Redemption, The (1994)
##
                                                                     28015
##
    6 Braveheart (1995)
                                                                     26212
   7 Fugitive, The (1993)
                                                                     25998
   8 Terminator 2: Judgment Day (1991)
                                                                     25984
  9 Star Wars: Episode IV - A New Hope (a.k.a. Star Wars) (1977) 25672
## 10 Apollo 13 (1995)
                                                                     24284
```

Model prediction

We applicate different model to predict the rating movies and we select one that have more lower RMSE (Residual Mean Standard Error)

• In a first model we use the mean of rating for predict the rating of movies This model find the mean of training set of reating movies

```
mu_edx <- mean(edx$rating)</pre>
mu_edx
## [1] 3.512465
rmse_results <- data_frame(method = "Only Mean", RMSE = mu_edx)</pre>
## Warning: `data_frame()` is deprecated, use `tibble()`.
## This warning is displayed once per session.
and the quality of model is:
basic_rmse <- RMSE(validation_New$rating,mu_edx)</pre>
basic_rmse
## [1] 1.061202
  • In a second model we applicate the penalty of the movie effect
moviePenalty <- edx %>%
  group_by(movieId) %>%
  summarize(b_movie = mean(rating - mu_edx))
moviePenalty
## # A tibble: 10,677 x 2
##
      movieId b_movie
##
        <dbl>
                <dbl>
## 1
            1 0.415
## 2
            2 -0.307
## 3
            3 -0.365
## 4
            4 -0.648
## 5
           5 -0.444
           6 0.303
## 6
## 7
            7 -0.154
## 8
          8 -0.378
           9 -0.515
## 9
           10 -0.0866
## 10
## # ... with 10,667 more rows
and we have the quality of predict model is
predict_ratings_movie<- validation %>%
  left_join(moviePenalty, by='movieId') %>%
  mutate(pred = mu_edx + b_movie)
modelMovies_rmse <- RMSE(validation_New$rating,predict_ratings_movie$pred)</pre>
rmse_results <- bind_rows(rmse_results, data_frame(method="Movie Effect Model", RMSE = modelMovies_rmse
modelMovies_rmse
```

[1] 0.9439087

Penalty Movie


```
## # A tibble: 10,677 x 2
##
      movieId b_movie
##
        <dbl>
                 <dbl>
##
    1
            1 0.415
    2
            2 -0.307
##
    3
            3 -0.365
##
##
    4
            4 -0.648
##
    5
            5 -0.444
            6 0.303
##
##
    7
            7 -0.154
            8 -0.378
##
##
    9
            9 -0.515
## 10
           10 -0.0866
     ... with 10,667 more rows
```

• In the third model, for predict tha rating we use the penalty of movie effect (the previous model) and the penalty of users effect

Before we calculate the penalty of users

```
penaltyUser <- edx %>%
  left_join(moviePenalty, by='movieId') %>%
  group_by(userId) %>%
  summarize(b_user = mean(rating - mu_edx - b_movie))
penaltyUser
```

```
## # A tibble: 69,878 x 2
```

```
##
      userId b_user
##
       <int>
               <dbl>
##
    1
           1
             1.68
           2 -0.236
##
    2
##
    3
           3
              0.264
    4
           4 0.652
##
##
    5
           5 0.0853
##
    6
           6 0.346
##
    7
           7
             0.0238
##
    8
           8 0.203
##
    9
           9 0.232
## 10
          10 0.0833
  # ... with 69,868 more rows
```

and now we can calculate the RMSE of this model, that is

```
predicted_ratings_user <- validation %>%
  left_join(moviePenalty, by='movieId') %>%
  left_join(penaltyUser, by='userId') %>%
  mutate(pred = mu_edx + b_movie + b_user)
# test rmse results
model_MoviesUsers_rmse <- RMSE(validation_New$rating,predicted_ratings_user$pred)
rmse_results <- bind_rows(rmse_results,data_frame(method="Movie and User Effect Model", RMSE = model_Momodel_MoviesUsers_rmse</pre>
```

[1] 0.8653488

• The fourth model, we consider users, movies, years, genres and than applicate the regularization

[1] 5.25

the RMSE in this model is:

```
min(rmses)
```

```
## [1] 0.864817
```

Results

We see the results with different model applicate and relative RMSE

```
rmse_results %>% knitr::kable()
```

method	RMSE
Only Mean	3.5124652
Movie Effect Model	0.9439087
Movie and User Effect Model	0.8653488
Regularized Movie and User Effect Model	0.8648170

Conclusion

We see the best model to predict the rating movies is the fourth model where we applicate the regularization