QUESTÃO 01 (1,0 ponto)

Projeto de Programação: Sistema RSA com Fatoração ρ de Pollard e Aplicação de Teoremas Modulares em Três Etapas.

Objetivo:

Implementar em C ou C++ um sistema completo de criptografia e descriptografia RSA, iniciando pela fatoração de números compostos usando o método p de Pollard, e aplicando corretamente conceitos de aritmética modular (como o Teorema de Fermat, o Teorema de Euler e a Divisão Euclidiana) para os cálculos de potência modular durante a codificação e decodificação de mensagens.

Etapa 1: Fatoração Interativa (Método p de Pollard)

Objetivo: Descobrir os fatores primos p e q de dois números compostos N_1 e N_2 .

Entrada de dados:

O programa deve solicitar dois números compostos distintos N₁ e N₂.

Restrição: Cada número deve possuir 3 ou 4 dígitos, ou seja, entre 100 e 9999.

Informe ao usuário que cada N_i deve ser produto de **primos distintos** para que o método ρ de Pollard seja eficiente.

Implementação do método p de Pollard:

Utilize a função de iteração: $g(x)=(x^2+1) \mod N_i$

Semente – $x_0=2$.

Em cada iteração, calcule: mdc ($|x_2-x_1|$, N_i) até encontrar um fator p_i não trivial de N_i

O programa deve exibir cada passo da iteração.

Definição dos primos RSA:

Seja p o fator encontrado de N₁

Seja q o fator encontrado de N₂.

Exiba claramente os valores de p e q.

**Observação: O cálculo do mdc deve ser feito utilizando o Algoritmo de Euclides, implementado pelo aluno (não é permitido usar funções prontas como std::gcd).

Etapa 2: -Geração das Chaves RSA

Objetivo: Construir o par de chaves pública e privada do sistema RSA.

Cálculo do módulo: $n = p \times q$

Totiente de Euler: $z(n) = (p-1) \times (q-1)$

Escolha do expoente público: Escolha o menor E > 1 e E < n tal que mdc (E, z(n)) = 1

Cálculo do expoente privado: Encontre D tal que: $D \times E \equiv 1 \mod z$

*Utilize o **Algoritmo Estendido de Euclides** para determinar o inverso modular de E em relação a z

Impressão das chaves:

Chave pública: (n,e)

Chave privada: (n,d)

Etapa 3 - Codificação (Criptografia) e Decodificação (Descriptografia)

Objetivo: Realizar a criptografia e a decodificação de uma mensagem, aplicando o teorema modular adequado e um sistema próprio de codificação numérica de letras.

Pré - Codificação

Antes de aplicar a criptografia RSA, cada caractere da mensagem deve ser convertido em um número segundo o sistema de pré-codificação do alfabeto: A = 11, B= 12, ..., Z= 36. Espaço = 00.

Codificação

Para cada bloco M formado pelos números da mensagem: $C \equiv M^{E} \pmod{n}$

O programa deve exibir o cálculo passo a passo da exponenciação modular.

Decodificação

Para cada bloco cifrado C: $M \equiv C^{D} \pmod{n}$

O resultado M deve ser reconvertido para letras segundo a tabela de pré-codificação.

* Lembre-se cada bloco será referente a apenas 2 dígitos.

Resolução da exponenciação modular

Durante o cálculo de M^{E} (mod n) e C^{D} (mod n), o programa deve:

- Verificar as condições e selecionar <u>automaticamente</u> o método de redução de expoente:
 - Pequeno Teorema de Fermat, se n for primo;
 - Teorema de Euler, se mdc(M,n)=1;
 - Teorema da Divisão Euclidiana, para reduzir o expoente.
- O programa deve <u>indicar na saída textual qual teorema foi aplicado</u> e mostrar o cálculo correspondente.

Observações

- Espaços e pontuações podem ser ignorados ou substituídos por um código fixo (exemplo: 00 para espaço).
- O código deve ser implementado em C ou C++, sem uso de bibliotecas externas de criptografia.
- Todas as funções fundamentais (como cálculo de mdc, inverso modular, e exponenciação modular) devem ser programadas pelo aluno.
- O programa deve imprimir o passo a passo de todos os pontos principais do cálculo, incluindo:
 - 1. Iterações do método ρ de Pollard;
 - 2. Cálculo do mdc (Algoritmo de Euclides);
 - 3. Determinação do inverso modular (Euclides Estendido);
 - 4. Escolha e aplicação do teorema modular (Fermat, Euler ou Divisão Euclidiana);
 - 5. Processo completo de criptografia e descriptografia;
 - 6. Reconversão numérica em texto.
- O sistema deve confirmar que a mensagem decifrada é idêntica à mensagem original.
- Os alunos devem comentar no código as decisões tomadas e justificar o método modular escolhido em cada etapa.

QUESTÃO 02 (0,5 ponto)