Pre-trained language models (LMs) with billions of parameters are the go-to models for many NLP tasks. The sheer scale of their training corpora and parameter counts appears to endow them with the ability to compete with, and frequently outperform, task-specific models. LMs, however, can often have unexpected failure modes and are notoriously difficult to control. The responsible refinement and improvement of these models depends upon the creation of the necessary tools and frameworks for understanding them. While an undergraduate at Harvard and subsequently as a pre-doctoral researcher at AI2, I have adopted an approach of **drawing on linguistics** such as syntax and formal language theory to develop practical and theoretical frameworks towards **understanding and evaluating** language models as **general-purpose NLP systems.**

Understanding and improving LMs through linguistics Modern NLP has become largely divorced from our understanding of linguistics and cognition in humans. Reconciling these two can lend clarity to our understanding of how LMs work. As my first foray into this effort, I set out to discover how modern LMs handle syntactic agreement. In my first-author ACL 2021 paper [1] we intervene on individual neurons in large transformers to observe their causal effect on syntactic agreement. We find, among other things, that transformers learn two distinct mechanisms for number agreement, and that these mechanisms are distributed in the activations of the network, rather than concentrated in any single model component, as was found with gender bias [2]. These findings constitute a step forward in being able to understand and interpret how LMs mimic syntactic behavior, shedding light into the black box model. Subsequent research has built on our work in order to interpret other linguistic phenomena such as distributivity [3]. During my PhD, I hope to explore the potential of this style of research to evaluate and improve the linguistic capabilities of LMs. As an example, I am interested in leveraging the language acquisition literature to evaluate and improve LMs' abilities to acquire new words by inferring their meaning from context. Improving this ability might be achieved via a self-supervised pre-training objective that randomly replaces lexical items with new unseen words, forcing the model to learn how to generalize effectively. Success here would result in LMs that are more robust to linguistic distribution shifts and adapt to evolving language.

Understanding LMs through formal languages I am excited by projects that borrow from formal language theory to increase our understanding of LMs. This approach makes it possible to answer questions that might otherwise be very difficult to approach using natural language. For instance, I used regular languages to measure the capabilities of transformers as general instruction followers in RegSet, my first-author EMNLP 2022 paper [4]. Large, pre-trained LMs can solve some NLP tasks by conditioning their generations on natural language instructions for the task [5, 6]. On the other hand, research has shown that neural models consistently struggle with compositional generalization [7]. This bodes poorly for the instruction following regime where the space of task descriptions is both intractably large and highly compositional. Moreover, the complexity of natural language makes it difficult to predict what types of instructions may be challenging for transformers. To solve this predicament, we propose a controllable proxy for studying instruction learning by studying LMs' ability to follow instructions in the form of regular expressions. We test the effects of attributes of regular languages, such starfreeness, on their difficulty as instructions. Our experiments lead us to a number of intriguing hypotheses about what makes instruction learning hard, including evidence that even large transformers struggle with modular counting (e.g., determining whether something is even or odd). By taking advantage of the well studied attributes of formal languages, we achieve fine-grained control over our data, leading to findings that would have been extremely difficult and expensive to obtain on natural data. This approach can be applied more broadly to develop benchmarks that isolate and measure progress towards specific abilities in transformers that we might hope to see in natural language settings.

I am interested in deriving theoretical results that help us understand modern neural architectures through formal languages. I am currently developing a framework for understanding what transformers can learn

from instructions. In particular, I hope to show which families of formal languages are provably (un)learnable by transformers in the instruction learning setting. This builds on prior work [8], and provides both a principled way to study transformers and bounds on what we can expect them to learn. Another useful direction could be to extend recent work [9] which proves that subtask decomposition via step-by-step reasoning enables learning difficult sequence-to-sequence tasks. Extending this work to characterize the additional computational power afforded to transformers via subtask decomposition would be both intellectually interesting and relevant towards understanding why step-by-step reasoning has emerged as such an effective strategy for prompting LMs.

Methods and risks for general-purpose LMs Some of my past and current work deals with methods for utilizing pre-trained language models as general-purpose solvers and the potential risks associated with this paradigm. In a preprint currently under submission to ICLR 2023 [10], I implement a modular prompting method for recursively prompting large LMs in order to vastly improve generalization to longer sequence lengths compared to few-shot and step-by-step reasoning style prompting. In my current work, I am engineering a decoding procedure for using frozen LMs as black boxes to generate their own task-specific prompts. I hope to apply this work to study adversarial prompts: prompts that appear to elicit one behavior but cause the model to exhibit another. These prompts could be generated by simultaneously decoding for fluency for one task and accuracy on another. I hope to continue research into adversarial attacks such as this during my PhD in order to further the development of secure and ethical general-purpose NLP systems.

Evaluating general-purpose LMs Proper evaluation is critical to advancing general-purpose NLP systems. Current evaluation schemes are insufficient to handle the latest wave of general-purpose models. For instance, existing datasets for are too narrow in scope to holistically evaluate general-purpose math reasoning skills in LMs. To address this, I led a team of 11 researchers in compiling a comprehensive and diverse natural language math reasoning benchmark called LīLA [11] (first-author paper, EMNLP 2022). We curate over 140K math problems and provide valuable annotations for math reasoning via program synthesis. Our experiments show that multitask learning and augmenting the model with a Python interpreter massively improves LM performance while also providing explicit reasoning steps via generated programs. Our publicly released multitask model, Bhāskara, outperforms similarly-sized T5 and GPT-Neo models when fine-tuning on new mathematical reasoning tasks. LĪLA shows that LMs in their current form are woefully deficient when it comes to math reasoning, and highlights the need for these kinds of unified evaluations for aspiring general-purpose math reasoning models. During my PhD I plan to continue to create thoughtful and comprehensive evaluations to measure and promote research into models with greater general utility. In particular, I hope to work towards align evaluation metrics with human and expert human judgements on open-ended tasks. From my work on LīLA, I experienced how evaluation becomes increasingly difficult as tasks become more open-ended. F1, exact match, and even more sophisticated metrics like Rouge, still leave much to be desired. I am interested in developing *learned* metrics, i.e., using a model to assign scores, that can capture the subtle nuances required to evaluate open-ended tasks, and realign automatic evaluation with human judgement.

Why ELLIS I place great value on autonomy in choosing my research directions. My best work comes from focusing my energy on research problems in NLP and computational linguistics that excite me intellectually and allow me to explore new ideas. ELLIS provides a unique opportunity to work with top researchers across multiple European institutions, thereby offering the multi-perspective experience wherein I can thrive. The unique exchange program and dual advisors further enrich this experience. I expect that ELLIS will set me up for success as in my academic career by opening avenues for mentorship and development during

my PhD, and lasting relationships that I intend to maintain beyond into postdoctoral research, eventually helping me fulfill my goal of becoming a PI.

References

- [1] Matthew Finlayson, Aaron Mueller, Sebastian Gehrmann, Stuart Shieber, Tal Linzen, and Yonatan Belinkov. Causal analysis of syntactic agreement mechanisms in neural language models. In *Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)*, pages 1828–1843, Online, August 2021. Association for Computational Linguistics.
- [2] Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov, Sharon Qian, Daniel Nevo, Yaron Singer, and Stuart M. Shieber. Investigating gender bias in language models using causal mediation analysis. In *NeurIPS*, 2020.
- [3] Pangbo Ban, Yifan Jiang, Tianran Liu, and Shane Steinert-Threlkeld. Testing pre-trained language models' understanding of distributivity via causal mediation analysis. *ArXiv*, abs/2209.04761, 2022.
- [4] Matthew Finlayson, Kyle Richardson, Ashish Sabharwal, and Peter Clark. What makes instruction learning hard? an investigation and a new challenge in a synthetic environment. *EMNLP*, abs/2204.09148, 2022.
- [5] Swaroop Mishra, Daniel Khashabi, Chitta Baral, and Hannaneh Hajishirzi. Cross-task generalization via natural language crowdsourcing instructions. In *ACL*, 2022.
- [6] Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du, Andrew M. Dai, and Quoc V Le. Finetuned language models are zero-shot learners. In *ICLR*, 2022.
- [7] Brenden M. Lake and Marco Baroni. Generalization without systematicity: On the compositional skills of sequence-to-sequence recurrent networks. In *ICML*, 2018.
- [8] William Merrill and Ashish Sabharwal. Log-precision transformers are constant-depth uniform threshold circuits. *ArXiv*, abs/2207.00729, 2022.
- [9] Noam Wies, Yoav Levine, and Amnon Shashua. Sub-task decomposition enables learning in sequence to sequence tasks. *ArXiv*, abs/2204.02892, 2022.
- [10] Tushar Khot, H. Trivedi, Matthew Finlayson, Yao Fu, Kyle Richardson, Peter Clark, and Ashish Sabharwal. Decomposed prompting: A modular approach for solving complex tasks. *ArXiv*, abs/2210.02406, 2022.
- [11] Swaroop Mishra, Matthew Finlayson, Pan Lu, Leonard Tang, Sean Welleck, Chitta Baral, Tanmay Rajpurohit, Oyvind Tafjord, Ashish Sabharwal, Peter Clark, and A. Kalyan. Lila: A unified benchmark for mathematical reasoning. *EMNLP*, abs/2210.17517, 2022.