(6)

(7)

GATE 2021 BM

EE:1205 Signals and System Indian Institute of Technology, Hyderabad

Prashant Maurya **EE23BTECH11218**

Question 5:Let $X(j\omega)$ denotes the Fourier trans- For x = 0, form of x(t). If

$$X(j\omega) = 10e^{-j\pi f} \left(\frac{\sin(\pi f)}{\pi f} \right)$$
 (1)

$$X(j\omega) = 10e^{-j\pi f} \left(\pi f \right)$$
 (1) On comparing, we get $A = 10$ and $\tau = 1$,
$$10rect(t) \longleftrightarrow 10sinc(f)$$

then
$$\frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) d\omega =$$
. (where $\omega = 2\pi f$)

(D)
$$20\pi$$

GATE 2021

 $x(0) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) d\omega$

 $10rect(t) \longleftrightarrow 10sinc(f)$

Fig. 2

Solution

$$Arect\left(\frac{t}{\tau}\right) \longleftrightarrow A\tau sinc\left(f\tau\right) \tag{2}$$

$$x(t) \longleftrightarrow X(j\omega)$$
 (3)

$$x(t-a) \longleftrightarrow e^{-j\omega a} X(j\omega) \tag{4}$$

Fig. 1

Fig. 3

From the above figure, x(0) is 10. Hence, the correct option is (C).

Now, Fourier Transform of x(t) is

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega$$
 (5)