IPV4

IPv4 IPv6

13/9/16 @ 23:00 World Population was

7,450,169,240

Number of IP
Addresses
World Population

= 4.70x6028 IP Addresses each

Describe the dotted decimal structure of a binary
 IP address and label its parts

IP version 4 (IPv4) is the current form of addressing used on the Internet.

 Describe the general role of 8-bit binary in network addressing and convert 8-bit binary to decimal

IPv4 Addresses

The computer using this IP address is on network 192.168.10.0.

Practice converting 8-bit binary to decimal

Binary To Decimal Conversion

11110101 in Binary = Decimal Number 245

Practice converting decimal to 8-bit binary

Decimal to Binary Conversion Activity

Given a decimal value, enter the correct binary values for each position.

Decimal Value	209							
Exponent	2^7th	2^6th	2^5th	2^4th	2^3rd	2^2nd	2^1st	2^0
Position	128	64	32	16	8	4	2	1
Bit								
	1	1						

Enter numbers for these 8 positions.

Change the following IPv4 addresses from binary notation to dotted-decimal notation.

- a. 10000001 00001011 00001011 11101111
- b. 11000001 10000011 00011011 11111111
- c. 11100111 11011011 10001011 01101111
- d. 11111001 10011011 11111011 00001111

Change the following IPv4 addresses from dotted-decimal notation to binary notation.

a. 111.56.45.78

b. 221.34.7.82

c. 241.8.56.12

d. 75.45.34.78

 Name the three types of addresses in the network and describe the purpose of each type

Address Types Network Host Network Address **Broadcast Address** Host Address

 Determine the network, broadcast and host addresses for a given address and prefix

Given address/prefix of 144.83.250.97 /17

\Box	For each row, enter the values for that type of address.					
1	Type of Address	Enter LAST octet in binary	Enter LAST octet in	Enter full address in		
			decimal	decimal		
-	Network	00000000	0	144.83.128.0		
-	Broadcast	11111111	255	144.83.255.255		
-	First Usable Host Address	00000001	1	144.83.128.1		
\rightarrow	Last Usable Host Address	11111110	254	144.83.255.254		

 Name the three types of communication in the Network Layer and describe the characteristics of each type

 Identify the address ranges reserved for these special purposes in the IPv4 protocol

Reserved IPv4 Address Ranges

Type of Address	Usage	Reserved IPv4 Address Range	RFC
Host Address	used for IPv4 hosts	0.0.0.0 to 223.255.255.255	790
Multicast Addresses	used for multicast groups on a local network	224.0.0.0 to 239.255.255.255	1700
Experimental Addresses	 used for research or experimentation cannot currently be used for hosts in IPv4 networks 	240.0.0.0 to 255.255.255.254	1700 3330

Define public address and private address

Describe the purpose of several special addresses

IP Address Classes

Address Class	1st octet range (decimal)	1st octet bits (green bits do not change)	Network(N) and Host(H) parts of address	Default subnet mask (decimal and binary)	Number of possible networks and hosts per network
A	1-127**	00000000- 01111111	N.H.H.H	255.0.0.0	128 nets (2^7) 16,777,214 hosts per net (2^24-2)
В	128-191	10000000- 10111111	N.N.H.H	255.255.0.0	16,384 nets (2^14) 65,534 hosts per net (2^16-2)
С	192-223	11000000- 11011111	N.N.N.H	255.255.255. 0	2,097,150 nets (2^21) 254 hosts per net (2^8-2)
D	224-239	11100000- 11101111	NA (multicast)		
E	240-255	11110000- 11111111	NA (experimental)		

^{**} All zeros (0) and all ones (1) are invalid hosts addresses.

 Explain the importance of using a structured process to assign IP addresses to hosts and the implications for choosing private vs. public addresses

 Explain how end user devices can obtain addresses either statically through an administrator or dynamically through DHCP

Assigning Dynamic Addresses

Describe the process for requesting IPv4 public addresses, the role ISPs play in the process, and the role of the regional agencies that manage IP address registries.

		IANA		
AfriNIC Africa Region	APNIC Asia/ Pacific Region	LACNIC Latin America And Caribbean Region	ARIN North America Region	RIPE NCC Europe, Middle East, Central Asia Region
	Africa	Africa Asia/ Region Pacific	AfriNIC APNIC LACNIC Africa Asia/ Latin Region Pacific America Region And Caribbean	AfriNIC APNIC LACNIC ARIN Africa Asia/ Latin North Region Pacific America America Region And Region Caribbean

 Identify different types of ISPs and their roles in providing Internet connectivity

Role of the Subnet Mask

 Describe how the subnet mask is used to create and specify the network and host portions of an IP address

Describe the general purpose of the ping command, trace the steps of its operation in a network, and use the ping command to determine if the IP-protocolais operational on a local host

 Use ping to verify that a local host can communicate with a gateway across a local area network

 Use ping to verify that a local host can communicate via a gateway to a device in remote network

Use tracert/traceroute to observe the path between two devices as they communicate and trace the steps of tracert/traceroute's operation

