Aula 6: O Modelo de Dados Relacional

Conceitos do Modelo Relacional

O Modelo de Dados Relacional foi introduzido por Codd (1970). Entre os modelos de dados de implementação, o modelo relacional é o mais simples, com estrutura de dados uniforme, e também o mais formal.

O modelo de dados relacional representa os dados da base de dados como uma coleção de relações. Informalmente, cada relação pode ser entendida como uma tabela ou um simples arquivo de registros. Por exemplo, a base de dados de arquivos representada pela Figura 1, é considerada estando no modelo relacional. Porém, existem diferenças importantes entre relações e arquivos.

ESTUDANTE	Nome	Número	Classe	Departamento
	Soares	17	1	DCC
	Botelho	8	2	DCC

	CURSO	Nome	Número	Créditos	Departamento
_		Introd. Ciências de Comp.		4	DCC
Estrutura de Dados		Estrutura de Dados	DCC3320	4	DCC
	Matemática Discreta		MAT2410	4	MAT
		Base de Dados	DCC3380	4	DCC

PRÉ-REQUISITO	Número	Pré-requisito
	DCC3380	DCC3320
	DCC3380	MAT2410
	DCC3320	DCC1310

SEÇÃO	Número	Curso	Semestre	Ano	Professor
	85	MAT2410	1	86	Kotaro
	92	DCC1310	1	86	Alberto
	102	DCC3320	2	87	Kleber
	112	MAT2410	1	87	Carlos
	119	DCC1310	1	87	Alberto
	135	DCC3380	1	87	Souza

HISTÓRICO	NúmeroEstudante	NúmeroSeção	Nível
	17	112	В
	17	119	С
	8	85	Α
	8	92	Α
	8	102	В
	8	135	Α

Figura 1: Exemplo de uma base de dados relacional.

Quando uma relação é vista como uma **tabela** de valores, cada linha representa uma coleção de valores relacionados. Esses valores podem ser interpretados como um fato que descreve uma entidade ou uma instância de relacionamento. O nome da tabela e os nomes das colunas são usados para ajudar a interpretar o significado dos valores em cada linha da tabela.

Por exemplo, na Figura 1 anterior, a primeira tabela é chamada ESTUDANTE porque cada linha representa o fato sobre uma particular entidade estudante. Os nomes das colunas - Nome, Número, Classe, Departamento - especificam como interpretar os valores em cada linha, baseandose nas colunas em que cada um se encontra. Todos os valores de uma mesma coluna são, normalmente, do mesmo tipo.

Na terminologia de base de dados relacional, a linha é chamada de **tupla**, a coluna é chamada de **atributo** e a tabela de **relação**. O tipo de dado que especifica o tipo dos valores que podem aparecer em uma coluna é chamado de **domínio**.

Uma **relação esquema** é um conjunto de atributos. Cada atributo indica o nome do papel de algum domínio na relação esquema. O **grau** de uma relação é o número de atributos da relação. Considere o exemplo de uma relação esquema de grau 7, que descreve estudantes universitários:

ESTUDANTE(Nome, NSS, Telefone, Endereço, TelComercial, Anos, MPA)

A Figura 2 mostra um exemplo de uma relação ESTUDANTE, que corresponde ao esquema estudante especificado anteriormente. Cada tupla na relação representa uma entidade estudante. A relação é mostrada em forma de tabela, onde cada tupla é representada pelas linhas e cada atributo na linha de cabeçalho indicando os papéis ou a interpretação dos valores encontrados em cada coluna.

Atributos

ESTUDANTE	Nome	NSS	Telefone	Endereço	TelComercial	Anos	MPA
	Joaquim	305	555-444	R. X, 123	null	19	3.21
	Katarina	381	555-333	Av. K, 43	null	18	2.89
tuplas	Daví	422	null	R. D, 12	555-678	25	3.53
	Carlos	489	555-376	R. H, 9	555-789	28	3.93
	Barbara	533	555-999	Av. f, 54	null	19	3.25

Figura 2: Exemplos de instâncias para uma relação ESTUDANTE.

Generalização e Especialização

A generalização e a especialização são conceitos usados para representar objetos do mundo real que possuem os mesmos atributos e que podem ser categorizados e que podem ser representados em uma hierarquia que mostra as dependências entre entidades de uma mesma categoria.

O uso da Generalização é indicado quando existe algum atributo que seja aplicável a mais de

uma entidade no Modelo Entidade Relacionamento. Se existe, devemos usar a Generalização e criar uma entidade mãe que contenha os atributos comuns às outras entidades especializadas.

Uso da Especialização é indicado quando temos atributos específicos para um determinado sub-conjunto de ocorrências dentro de uma Entidade. Por exemplo, na entidade CLIENTES temos clientes que são empresas e outros clientes são pessoas comuns. Os clientes que são empresas possuem atributos especificos como CNPJ e Inscrição Estadual. Neste caso podemos promover uma especialização e criar a entidade CLIENTE-EMPRESA que especializa a entidade CLIENTE e que possui atributos específicos de uma empresa.

Não devemos usar Generalização/Especialização caso não existam atributos ou relacionamentos que justifiquem uma entidade especializada ou uma entidade mãe. Caso contrário, estaremos "poluindo" o modelo com a inserção de detalhes desnecessários. Ou seja, não faz sentido ter uma entidade especializada que não possui atributos específicos ou que não tenha um relacionamento específico com outra entidade.

Restrições de Integridade

Observa-se, na Figura 3 abaixo, que o atributo DNÚMERO tanto de DEPARTAMENTO quanto de LOCAIS_DEPTO referem-se ao mesmo conceito do mundo real - o número dado a um departamento. Este mesmo conceito é chamado NDEP em EMPREGADO e DNUM em PROJETO. Isto significa que é permitido dar nomes de atributos distintos para um mesmo conceito do mundo real. Permite-se, também, que atributos que representam conceitos diferentes tenham o mesmo nome desde que em relações diferentes. Por exemplo, poderia ter sido usado NOME ao invés de PNOME e DNOME nas relações esquemas PROJETO e DEPARTAMENTO, respectivamente.

EMPREGADO

PNC	OME	MNOME	SNOME	NSS	DATANASC	ENDEREÇO	SEXO	SALARIO	NSSSUPER	NDEP

DEPARTAMENTO

DNOME DNÚMERO NSSGER DATINICGER

LOCAIS_DEPTO

DNÚMERO DLOCALIZAÇÃO

PROJETO

PNOME <u>PNÚMERO</u> PLOCALIZAÇÃO DNUM

TRABALHA EM

NSSEMP PNRO HORAS

DEPENDENTE

NSSEMP NOMEDEPENDENTE SEXO DATANIV RELAÇÃO

Figura 3: Esquema de base de dados relacional COMPANHIA.

Restrições de Integridade sobre um Esquema de Base de Dados Relacional: as **restrições de chave** especificam as chaves-candidatas de cada relação esquema; os valores das chaves-candidatas devem ser únicos para todas as tuplas de quaisquer instâncias da relação esquema. Além da restrição de chave, dois outros tipos de restrições são consideradas no modelo relacional: integridade de entidade e integridade referencial.

A **restrição de integridade de entidade** estabelece que nenhum valor da chave-primária pode ser nulo. Isso porque, o valor de uma chave-primária é utilizado para identificar tuplas em uma relação. Por exemplo, se duas ou mais tuplas tiverem o valor null para a chave- primária, não haverá como diferenciar uma tupla da outra.

_	AD	0	EΩ	-	-

PNOME	MNOME	SNOME	NSS	DATANASC	ENDEREÇO	SEXO	SALARIO	NSSSUPER	NDEP
John	В	Smith	123456789	09-JAN-55	R. A, 1	M	3000	333445555	5
Franklin	T	Wong	333445555	08-DEZ-45	R. B, 2	M	4000	888665555	5
Alida	J	Zelaya	999887777	19-JUL-58	Av. C, 3	F	2500	987654321	4
Jennifer	S	Wallace	987654321	20-JUN-31	Trav. D, 4	F	4300	888665555	4
Ramesh	K	Narayan	666884444	15-SET-52	R. E, 5	M	3800	333445555	5
Joyce	A	English	453453453	31-JUL-62	R. F, 6	F	2500	333445555	5
Ahmad	V	Jabbar	987987987	29-MAR-59	Av G, 7	M	2500	987654321	4
James	E	Borg	888665555	10-NOV-27	AvH,8	M	5500	null	1

DEPARTAMENTO

DNOME	DNÚMERO	NSSGER	DATINICGER
Pesquisa	5	333445555	22-MAI-78
Administrativo	4	987654321	01-JAN-85
Gerencial	1	888665555	19-JUN-71

LOCAIS DEPTO

DNÚMERO	DLOCALIZAÇÃO
1	Houston
4	Stafford
5	Bellaire
5	Sugariand
5	Houston

PROJETO

PNOME	PNÚMERO	PLOCALIZAÇÃO	DNUM
ProdutoX	1	Bellaire	5
ProdutoY	2	Sugarland	5
ProdutoZ	3	Houston	5
Automação	10	Stafford	4
Reorganização	20	Houston	1
Beneficiamento	30	Stafford	4

TRABALHA_EM

NSSEMP	PNRO	HORAS
123456789	1	32.5
123456789	2	7.5
666884444	3	40.0
453453453	1	20.0
453453453	2	20.0
333445555	2	10.0
333445555	3	10.0
333445555	10	10.0
333445555	20	10.0
999887777	30	30.0
999887777	10	10.0
987987987	10	35.0
987987987	30	5.0
987654321	30	20.0
987654321	20	Null

DEPENDENTE

NSSEMP	NOMEDEPENDENTE	SEXO	DATANIV	RELAÇÃO
333445555	Alice	F	05-ABR-76	FILHA
333445555	Theodore	M	25-OUT-73	FILHO
333445555	Joy	F	03-MAI-48	ESPOSA
987654321	Abner	M	29-FEV-78	MARIDO
123456789	Michael	M	01-JAN-78	FILHO
123456789	Alice	F	31-DEZ-78	FILHA
123456789	Bizabeth	F	05-MAI-57	ESPOSA

Figura 4: Instâncias para a base de dados relacional COMPANHIA.

As restrições de chave e de integridade de entidade aplicam-se apenas a relações individuais. A restrição de integridade referencial é uma restrição que é especificada entre duas relações e é usada para manter a consistência entre tuplas de duas relações. Informalmente, a restrição de integridade referencial estabelece que uma tupla de uma relação que se refere à outra relação deve se referir a uma tupla existente naquela relação. Por exemplo, na Figura 4, o atributo NDEP de EMPREGADO indica o número do departamento que cada empregado trabalha. Assim, todos os valores de NDEP nas tuplas da relação EMPREGADO devem pertencer ao conjunto de valores do atributo DNÚMERO da relação DEPARTAMENTO.

Uma base de dados tem muitas relações, e usualmente possuem muitas restrições de integridade referencial. Para especificar estas restrições, o projetista deve ter um claro entendimento do significado ou papel que os atributos desempenham nas diversas relações esquemas da base de dados. Normalmente, as restrições de integridade referencial são derivadas dos relacionamentos entre entidades representadas pelas relações esquemas. Por exemplo, considere a base de dados mostrada na 4. Na relação EMPREGADO, o atributo NDEP refere-se ao departamento em que cada empregado trabalha; desse modo, designa-se NDEP como a chave-estrangeira de EMPREGADO referenciando a relação DEPARTAMENTO. Isso significa que um valor de NDEP em alguma tupla t1 da relação EMPREGADO deve ter um valor correspondente para a chave-primária da relação DEPARTAMENTO - o atributo DNÚMERO - em alguma tupla t2 da relação DEPARTAMENTO ou o valor de NDEP pode ser null se o empregado não pertencer a nenhum departamento. Na Figura 4, a tupla do empregado "John Smith" referencia a tupla departamento de "Pesquisa", indicando que "John Smith" trabalha para este departamento.

Note-se que uma chave-estrangeira pode referenciar sua própria relação. Por exemplo, o atributo NSSSUPER em EMPREGADO refere-se ao supervisor de um empregado; isto é, um outro empregado. Pode-se, diagramaticamente, mostrar as restrições de integridade desenhando-se arcos direcionados partindo da chave-estrangeira para a relação referenciada. A Figura 5 ilustra o esquema apresentado na Figura 3 com as restrições de integridade referencial anotadas desta maneira.

Figura 5: Esquema COMPANHIA com restrições de integridade.

Exercícios

Gere o modelo relacional de todos os exercícios da **Lista de Exercícios MER e DER**. *Exemplo*:

a) Um programador pode trabalhar em vários programas e cada programa pode ser elaborado por um conjunto de programadores. A gerência da empresa deseja saber, no início de cada trabalho, quais os programadores alocados para realizá-lo. Ao término de um programa, um analista avalia o trabalho de cada programador em cada programa atribuindo-lhe uma nota. Um analista pode avaliar vários programadores em vários programas.

Resolução:

Programador (<u>CodProgramador</u>, NomeProgramador)

Programa (CodPrograma, NomePrograma)

Analista (CodAnalista, NomeAnalista)

Faz (#CodProgramador, #CodPrograma, #CodAnalista, Nota)