Changing trends in the prevalence of *H. pylori* infection in Japan (1908-2003): a systematic review and meta-regression analysis of 170,572 individuals

Chaochen Wang¹, Takeshi Nishiyama¹, Shogo Kikuchi¹, Manami Inoue², Norie Sawada², Shoichiro Tsugane², Yingsong Lin¹

1 Department of Public Health, Aichi Medical University, Nagakute, Aichi, Japan; 2 Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan

BACKGROUND

- ▶ Gastric cancer burden remains high in Japan, approximately 50,000 deaths/year in Japan (2nd leading cause of cancer deaths).
- ▶ Evidence supports a central role for *H. pylori* in the development of upper-gastrointestinal diseases, including peptic ulcer and noncardia gastric cancer.
- ▶ Studies have suggested that the prevalence of *H. pylori* infection increases with age, while the whole picture remains obscure.
- ▶ We systematically reviewed the existing literature that presented estimates of the prevalence of *H. pylori* infection in the Japanese population.
- ► The obejectives are:
- 1. to derive a robust prevalence estimate of *H. pylori* infection by birth year;
- 2. to clarify whether *H. pylori* infection exhibits a birth-cohort pattern.

DATA SOURCES AND SEARCH STRATEGY

- ▶ The PRISMA statement for preferred reporting of systematic reviews and meta-analyses was used as a guide to conduct this study. (Fig.1. Flowchart of Study Selection)
- ▶ **PubMed:** ("Helicobacter" [Mesh] OR "Helicobacter pylori"[title/abstract]) AND ("Prevalence"[Mesh] OR "prevalence" [title/abstract] OR "infection rate") AND ("Japan" [Mesh] OR "Japan" [title/abstract] OR "Japanese" [title/abstract])
- ► EMBASE: ("prevalence"/exp OR prevalence:ab, ti OR "infection rate"/exp OR "infection rate": ab, ti) AND ("Japan"/exp OR "Japan: ab, ti" OR "Japanese: ab, ti") AND ("helicobacter"/exp OR "helicobacter pylori": ab, ti) AND (humans)/lim.
- ▶ We also scrutinised the reference lists, and searched for unpublished data by contacting the head of ongoing projects.
- ▶ The risk-of-bias assessment was independently performed by two authors (Y.L. and C.W.) using the Joanna Briggs Institute Prevalence Critical Appraisal Tool^a.

 a http://joannabriggs.org/assets/docs/critical-appraisal-tools/JBI_Critical_Appraisal-Checklist_for_Prevalence_Studies.pdf

Figure 1: PRISMA Flowchart of Study Selection

STATISTICAL ANALYSIS (1)

- ▶ More details on how to estimate prevalence of *H. pylori* by birth year can be found **here**^a.
- ▶ Prevalence by birth year were extracted from 47 studies (300 data points).
- Observations weighted by the inverse of the sum of the within-study variance and the residual between-study variance using the meta package.

^ahttps://winterwang.github.io/For_Inoue_pylori/

STATISTICAL ANALYSIS (2)

- ▶ Penalized cubic spline was used to model the prevalence as a function of birth year in the framework of generalized additive mixed model (GAMM) implemented in the mgcv package in R.
- Pre-specified explanatory variables included in the meta-regression were as follows: Study ID, birth year, population source (community-based or clinical-based), diagnostic testing (serological test, or others; others: urinary assays, salivary assays, stool antigen tests, and gastric biopsy), types of ELISA kits for measuring *H. pylori* positivity (antigen derived from domestic or foreign strains), and data collection period (prior to the year 2000, or later than 2000), with study ID as a random effect and other variables as fixed effects.

RESULTS

- Details/characteristics of the studies included in the current meta-regression analysis are available online^a
- ▶ Summary of the results of risk of bias diagnosis is available **here**^b ^ahttp://rpubs.com/winterwang/288338 ^bhttp://rpubs.com/winterwang/riskofbias

Figure 2: Multivariable adjusted prevalence of *H. pylori* by birth year

Table 1. Estimated prevalence of *H. pylori* infection by birth year Birth Year Prevalence 95% Cl low 95% Cl high

DILLII	rear	Prevalence	e 95% CI low	95% Ci nign
190)8	0.574	0.520	0.626
190)9	0.580	0.530	0.628
191	LO	0.586	0.540	0.631
191	1	0.592	0.549	0.633
191	_2	0.597	0.559	0.635
	•			
192	25	0.650	0.634	0.667
192	26	0.651	0.635	0.667
192	27	0.652	0.636	0.666
192	28	0.651	0.637	0.665
192	29	0.651	0.637	0.664
	-			
199	96	0.080	0.064	0.100
199	97	0.075	0.059	0.095
199	8	0.070	0.054	0.091
200)2	0.053	0.036	0.076
200)3	0.049	0.032	0.074

CONCLUSION

▶ Prevalence of *H. pylori* infection exhibits a birth cohort effect in Japan, with prevalence decreasing steadily in individuals born in successive years, from 55.6% in 1950 to 12.8% in 1990.