CLAIMS

What is claimed is:

5

10

1. A conformationally restricted polyamine analog of the formula: E-NH-B-A-B-NH-B-A-B-NH-B-A-B-NH-B-A-B-NH-B-A-B-NH-E wherein each Ais independently selected from the group consisting of: a single bond, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₆ cycloalkyl, C₃-C₆ cycloaryl, and C₃-C₆ cycloalkenyl; each B is independently selected from the group consisting of: a single bond, C₁-C₆ alkyl, and C₂-C₆ alkenyl, and C₂-C₆ alkenyl, and c₃-C₆ cycloalkyl, C₃-C₆ cycloalkyl, C₃-C₆ cycloalkyl, C₃-C₆ cycloalkyl, and C₃-C₆ cycloalkenyl; with the proviso that either at least one A moiety is selected from the group consisting of

15

or at least one B moiety is selected from the group consisting of C₂-C₆ alkenyl; and any salt or stereoisomer thereof.

C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₆ cycloalkyl, C₃-C₆ cycloaryl, and C₃-C₆ cycloalkenyl,

20

2. A conformationally restricted polyamine analog according to claim 1, selected from the group consisting of

or stereoisomer thereof.

3. A conformationally restricted polyamine analog of the formula:

E-NH-B-A-B-NH-B-A-B-NH(-B-A-B-NH)_x-E

wherein each A is independently selected from the group consisting of: a single bond, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₆ cycloalkyl, C₃-C₆ cycloaryl, and C₃-C₆ cycloalkenyl;

each B is independently selected from the group consisting of: a single bond, C₁-C₆ alkyl, and C₂-C₆ alkenyl;

each E is independently selected from the group consisting of H, C₁-C₆ alkyl, C₂-C₆ 15 alkenyl, C2-C6 alkynyl, C3-C6 cycloalkyl, C3-C6 cycloaryl, and C3-C6 cycloalkenyl; and x is an integer from 2 to 16;

with the proviso that either at least one A moiety is selected from the group consisting of C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₆ cycloalkyl, C₃-C₆ cycloaryl, and C₃-C₆ cycloalkenyl,

or at least one B moiety is selected from the group consisting of G₂-C₆ alkenyl; 20 and any salt or stereoisomer thereof.

publish

4. A conformationally restricted polyamine analog according to claim 3, selected from the group consisting of:

5

and any salt or stereoisomer thereof.

A polyamine analog of the formula:

E-NH-B-**A**-B-NH-B-A-B-NH(-B-A-B-NH)_x-E

10

wherein each A is independently selected from the group consisting of: a single bond, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_3 - C_6 cycloalkyl, C_3 - C_6 cycloaryl, and C_3 - C_6 cycloalkenyl; each B is independently selected from the group consisting of: a single bond, C_1 - C_6 alkyl, and C_2 - C_6 alkenyl;

each E is independently selected from the group consisting of C₁-C₆ alkyl, C₁-C₆ alkanol, C₃-C₆ cycloalkanol, and C₃-C₆ hydroxyaryl,

with the proviso that at least one E moiety be selected from the group consisting of C_1 - C_6 alkanol, C_3 - C_6 cycloalkanol, and C_3 - C_6 hydroxyaryl;

and x is an integer from 0 to 16

and any salt or stereoisomer thereof.

20

15

6. A polyamine analog according to claim 5, selected from the group consisting

of:

10

and all salts and stereoisomers thereof.

- 7. A conformationally restricted polyamine analog of the formula: E-NH-D-NH-B-A-B-NH-D-NH-B wherein each A is selected from the group consisting of C₂-C₆ alkynyl; each B is independently selected from the group consisting of: a single bond, C₁-C₆ alkyl, and C₂-C₆ alkenyl; each D is independently selected from the group consisting of C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₆ cycloalkyl, C₃-C₆ cycloalkenyl, and C₃-C₆ cycloaryl; and each E is independently selected from the group consisting of H, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₆ cycloalkyl, C₃-C₆ cycloaryl, and C₃-C₆ cycloalkenyl; and any salt or stereoisomer thereof.
- 8. A conformationally restricted polyamine analog according to claim 7, selected from the group consisting of

and any salt or stereoisomer thereof.

- 9. A conformationally restricted polyamine analog of the formula:
- 10 E-NH-B-A-B-NH-F-NH-B-A-B-NH-E wherein F is selected from the group consisting of C₁-C₆ alkyl; each A is independently selected from the group consisting of: a single bond, C₁-C₆ alkyl; C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₆ cycloalkyl, C₃-C₆ cycloaryl, and C₃-C₆ cycloalkenyl;
- each B is independently selected from the group consisting of: a single bond, C₁-C₆ alkyl, and C₂-C₆ alkenyl; and each E is independently selected from the group consisting of H, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ cycloalkyl, C₃-C₆ cycloaryl, and C₃-C₆ cycloalkenyl; with the proviso that either at least one A moiety is selected from the group consisting of C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₆ cycloalkyl, C₃-C₆ cycloaryl, and C₃-C₆ cycloalkenyl, or at least one B moiety is selected from the group consisting of C₂-C₆ alkenyl; and any salt or stereoisomer thereof.
 - 10. A conformationally restricted polyamine analog according to claim 9, selected from the group consisting of

15

5

NH H H

and any salt or stereoisomer thereof.

11. A conformationally restricted polyamine analog of the formula:

wherein A is independently selected from the group consisting of: a single bond, C₁-C₆ alkyl; C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₆ cycloalkyl, C₃-C₆ cycloaryl, and C₃-C₆ cycloalkenyl; each B is independently selected from the group consisting of: a single bond, C₁-C₆ alkyl, and C₂-C₆ alkenyl;

with the proviso that A and both B moieties are not all a single bond; and any salt or stereoisomer thereof.

12. A conformationally restricted polyamine analog according to claim 11, selected from the group consisting of:

15

$$H_2N$$
 NH_2 NH_2 , and

- 5 and any salt or stereoisomer thereof.
 - 13. A conformationally restricted polyamine analog of the formula: E-NH-D-NH-B-A-B-NH-D-NH-E

wherein A is selected from the group consisting of C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₆ cycloalkyl, C₃-C₆ cycloalkenyl, and C₃-C₆ cycloaryl; each B is independently selected from the group consisting of: a single bond, C₁-C₆ alkyl, and C₂-C₆ alkenyl; each D is independently selected from the group consisting of C₁-C₆ alkyl, C₂-C₆ alkenyl,

C2-C6 alkynyl, C3-C6 cycloalkyl, C3-C6 cycloalkenyl, and C3-C6 cycloaryl; and each E is independently selected from the group consisting of H and C₁-C₆ alkyl; with the proviso that either at least one A moiety is selected from the group consisting of C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_3 - C_6 cycloalkyl, C_3 - C_6 cycloaryl, and C_3 - C_6 cycloalkenyl, or at least one B moiety is selected from the group consisting of C₂-C₆ alkenyl; and the proviso that at least one E is selected from the group consisting of H or methyl;

20 and any salt or stereoisomer thereof.

14. A conformationally restricted polyamine analog according to chaim 13 of the formula

and any salt or stereoisomer thereof.

15. A conformationally restricted polyamine analog of the formula:

wherein A is trans-ethene

each B is independently selected from the group consisting of: a single bond, C_1 - C_6 alkyl, and C_2 - C_6 alkenyl;

each D is independently selected from the group consisting of C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₆ cycloalkyl, C₃-C₆ cycloaryl, and C₃-C₆ cycloalkenyl, with the proviso that D is not C₃ alkyl; and each E is independently selected from the group consisting of H, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₆ cycloalkyl, C₃-C₆ cycloaryl, and C₃-C₆ cycloalkenyl; and any salt thereof.

- 17. A method of treating an indication in an individual comprising the step of administering to the individual a therapeutic amount of a polyamine analog of claim 1.
 - 18. The method of claim 17, wherein the individual is a human.
 - 19. The method of claim 17, wherein the indication is a cancer.
- 20. The method of claim 19, wherein the cancer affects cells of the bladder, blood, brain, breast, colon, digestive tract, lung, ovaries, pancreas, prostate gland, or skin.

10

15

- 21. The method of claim 17, wherein the indication is Alzheimer's disease, epilepsy, multiple sclerosis, problems associated with tissue grafts and organ transplants, psoriasis, restenosis, stomach ulcers, or tissue overgrowth after surgery, or an infection or infestation of parasites, bacteria, fungi or insects.
 - 22. A method of suppressing cell growth in an individual comprising the step of administering to the individual a therapeutic amount of a polyamine analog of claim 1.

23. The method of claim 22, wherein the individual is a human.

- 24. A porphyrin-polyamine conjugate, comprising a polyamine compound covalently linked to a porphyrin compound.
- 25. A compound of claim 24, wherein the covalent link is an amide bond or a amine bond.

adday

26. A compound according to claim 24 of the formula

$$J_{5}$$
 J_{7}
 J_{8}
 J_{1}
 J_{1}
 J_{2}
 J_{3}

wherein at least one of J₁-J₈ is independently selected from the group consisting of

5 $-K_1$ -G-L-(N(P)-A)_n- K_2

where K_1 is independently selected from the group consisting of C_1 - C_8 alkyl and where the valence to the left of K_1 attaches to the porphyrin ring;

G is -O-, -(C=O)-, -C(=O)-O-, -O-(C=O)-, -O-(C=O)-N-, -N-(C=O)-O-, or a nonentity;

- L is C₁-C₈ alkyl, C₃-C₈ cycloalkyl, C₃-C₈ cycloaryl, C₁-C₈ alkoxy, C₁-C₈ alkyl-C₃-C₈ cycloalkyl, C₁-C₈ alkyl-C₃-C₈ cycloaryl, C₁-C₈ alkoxy-C₃-C₈ cycloaryl, C₃-C₈ cycloaryl, C₃-C₈ cycloaryl-C₁-C₈ alkyl, C₃-C₈ cycloaryl-C₁-C₈ alkyl, C₃-C₈ cycloaryl-C₁-C₈ alkoxy, C₃-C₈ cycloaryl-C₃-C₈ cycloalkyl, or a nonentity; each A is independently selected from the group consisting of C₁-C₈ alkyl, C₂-C₈ alkenyl,
- 15 C₂-C₈ alkynyl, C₃-C₈ cycloalkyl, C₃-C₈ cycloaryl, C₃-C₈ cycloalkenyl, and C₃-C₈ cycloalkynyl;

P is selected from the group consisting of H and C₁-C₈ akyl; n is an integer from 2 to 8;

10

15

20

and K₂ is independently selected from the group consisting of H, C₁-C₈ alkyl, C₂-C₈ alkenyl, C₃-C₈ cycloalkyl, C₃-C₈ cycloalkyl, C₃-C₈ cycloalkynyl, C₃-C₈ cycloalkynyl, C₁-C₈ alkanol, C₃-C₈ cycloalkanol, and C₃-C₈ hydroxyaryl; where the remainder of the groups J₁-J₈ are each independently selected from the group consisting of H, K₃, or K₄-COOH, where K₃ is independently selected from the group consisting of C₁-C₈ alkyl, C₂-C₈ alkenyl, C₂-C₈ alkynyl, C₃-C₈ cycloalkyl, C₃-C₈ cycloalkyl, C₃-C₈ cycloalkynyl, C₁-C₈ alkanol, C₃-C₈ cycloalkanol, and C₃-C₈ hydroxyaryl; and K₄ is independently selected from the group consisting of C₁-C₈ alkyl, C₂-C₈ alkenyl, C₂-C₈ alkynyl, C₃-C₈ cycloalkyl, C₃-C₈ cycloaryl, C₃-C₈ cycloalkynyl; and C₃-C₈ cycloalkynyl;

- 27. A compound according to claim 26, wherein K_1 and each A are independently selected from the group consisting of C_1 - C_8 alkyl, K_2 is independently selected from the group consisting of H and C_1 - C_8 alkyl, and the remainder of the groups J_1 - J_8 are each independently selected from the group consisting of H, K_3 , or K_4 -COOH, where K_3 and K_4 are independently selected from the group consisting of C_1 - C_8 alkyl.
 - 28. A compound according to claim 27, wherein K₁ is -CH₂-CH₂- or -CH₂-CH₂-.
 - 29. A compound according to claim 2λ wherein n is 4.
- 30. A compound according to claim 27, wherein J₃, J₄, J₇ and J₈ are independently selected from the group consisting of C₁-C₃ alkyl;
- J₅ and J₆ are independently selected from the group consisting of C₁-C₃ alkyl and C₁-C₃ alkyl-COOH;
 - and J₁ and J₂ are independently selected from the group consisting of
 - C_1 - C_3 alkyl-G- $N(P_1)$ -A-(NH- $A)_{n1}$ - K_5 ; wherein G is -(C=O)- or a nonentity;
- 30 P_1 is H or C_1 - C_3 alkyl;

each A is independently selected from the group consisting of C_1 - C_8 alkyl; n_1 is 3 or 4; and K_5 is independently selected from the group consisting of H and C_1 - C_8 alkyl.

31. A method of treating an indication in an individual comprising the step of administering to the individual a therapeutic amount of a porphyrin-polyamine conjugate of claim 24.