LISTING OF THE CLAIMS

1-14 (Cancelled).

15. (Original) A fluoroalkanol-substituted α,β -unsaturated ester having the structure of

formula (V)
$$\begin{array}{c} R^1 & R^3 \\ R^{15} & R^{16} \\ \end{array}$$
 (V)
$$\begin{array}{c} R^2 & R^{R} \\ R^{R} & R^{R} \\ \end{array}$$

wherein:

 R^1 is selected from hydrogen, C_1 - C_{24} alkyl, substituted C_1 - C_{24} alkyl, C_1 - C_{24} alkoxy, and substituted C_1 - C_{24} alkoxy;

 R^2 , R3, R^4 , and R^5 are independently selected from hydrogen, C_1 - C_{24} alkyl, and substituted C_1 - C_{24} alkyl, and further wherein any two of R^1 , R^2 , R^3 , R^4 , and R^5 may be taken together to form a ring;

 R^{6A} is selected from hydrogen, C_1 - C_{24} alkyl, substituted C_1 - C_{24} alkyl, and -(CO)-R in which R is hydrogen, hydroxyl, halo, C_1 - C_{24} alkyl, substituted C_1 - C_{24} alkyl, amino, C_1 - C_{24} alkylamino, or di(C_1 - C_{24} alkyl)amino;

 R^{7A} is C_1 - C_{24} alkyl or substituted C_1 - C_{24} alkyl, and further wherein R^{6A} and R^{7A} may be taken together to form a ring, with the proviso that at least one of R^{6A} and R^{7A} is fluorinated; and one of R^{15} and R^{16} is hydrogen, and the other has the structure of formula (VI)

in which R¹⁷ is selected from hydrogen, fluoro, C₁-C₄ alkyl, fluorinated C₁-C₄ alkyl, -CH₂-COOH, -CH₂-COOR, and -CF₂-COOR²⁰, R¹⁸ is hydrogen or fluoro, R¹⁹ is hydrogen, fluoro, or -COOH, and R²⁰ is a nonhydrogen substituent.

16. (Original) The fluoroalkanol-substituted α,β-unsaturated ester of claim 15, wherein:

 R^1 is selected from hydrogen, C_1 - C_{12} alkyl, C_1 - C_{12} hydroxyalkyl, fluorinated C_1 - C_{12} alkyl, fluorinated C_1 - C_{12} hydroxyalkyl, fluorinated C_1 - C_{12} alkyl substituted with a protected hydroxyl group, and C_1 - C_{12} alkoxy;

R² is selected from hydrogen, C₁-C₁₂ alkyl and substituted C₁-C₁₂ alkyl;

 R^3 , R^4 , and R^5 are independently selected from hydrogen, C_1 - C_{12} alkyl, C_1 - C_{12} hydroxyalkyl, fluorinated C_1 - C_{12} alkyl, fluorinated C_1 - C_{12} hydroxyalkyl, and fluorinated C_1 - C_{12} alkyl substituted with a protected hydroxyl group, and further wherein any two of R^1 , R^3 , R^4 , and R^5 may be taken together to form a C_1 - C_{20} alicyclic group:

R^{6A} is selected from hydrogen, C₁-C₁₂ alkyl, and C₁-C₁₂ haloalkyl;

R^{7A} is C₁-C₁₂ alkyl or C₁-C₁₂ haloalkyl;

 R^{17} is selected from hydrogen, fluoro, methyl, trifluoromethyl, -CH₂-COOH, and -CH₂-COOR²⁰;

R¹⁸ and R¹⁹ are independently selected from hydrogen and fluoro; and R²⁰ is selected from C₁-C₁₂ alkyl and substituted C₁-C₁₂ alkyl.

17. (Original) The fluoroalkanol-substituted $\alpha_i\beta_i$ -unsaturated ester of claim 16, wherein: $R^1 \text{ is selected from hydrogen, } C_1\text{-}C_8 \text{ alkyl, } C_1\text{-}C_8 \text{ alkoxy, and fluorinated hydroxyalkyl} \\ \text{having the structure -}(L^1)_{a_1\text{-}}\text{CR}^8R^9\text{-}\text{OH in which n1 is zero or 1, } L^1 \text{ is } C_1\text{-}C_6 \text{ aliphatic, } R^8 \text{ is selected from hydrogen, } C_1\text{-}C_8 \text{ alkyl, and fluorinated } C_1\text{-}C_8 \text{ alkyl, and } R^9 \text{ is fluorinated } C_1\text{-}C_8 \\ \text{alkyl;} \\ \text{alkyl;} \\ \text{alkyl;} \\ \text{} \\$

R2 is hydrogen or C1-C8 alkyl;

 R^3 , R^4 , and R^5 are independently selected from hydrogen, C_1 - C_8 alkyl, and fluorinated hydroxyalkyl having the structure - $(L^2)_{82}$ - $CR^{8A}R^{9A}$ -OH in which n2 is zero or 1, L^2 is C_1 - C_6 aliphatic, R^{8A} is selected from hydrogen, C_1 - C_8 alkyl, and fluorinated C_1 - C_8 alkyl, and R^{9A} is fluorinated C_1 - C_8 alkyl, and further wherein any two of R^1 , R^3 , R^4 , and R^5 may be taken together to form a C_3 - C_{18} alicyclic group;

R^{6A} is selected from hydrogen, C₁-C₈ alkyl, and fluorinated C₁-C₈ alkyl;

R^{7A} is C₁-C₈ alkyl or fluorinated C₁-C₈ alkyl;

R17 is selected from hydrogen and methyl; and

R18 and R19 are hydrogen.

18. (Original) The fluoroalkanol-substituted α,β -unsaturated ester of claim 17, wherein: $R^1 \text{ is selected from hydrogen, } C_1\text{-}C_4 \text{ alkyl, } C_1\text{-}C_4 \text{ alkoxy, and -}(L^1)_{n1}\text{-}CR^8R^9\text{-}OH \text{ in which}}$ $n1 \text{ is zero or } 1, L^1 \text{ is } C_1\text{-}C_4 \text{ aliphatic, } R^8 \text{ is selected from hydrogen, methyl, trifluoromethyl,}$ difluoromethyl, and fluoromethyl, and R^9 is selected from methyl, trifluoromethyl, difluoromethyl, and fluoromethyl;

R2 is hydrogen or C1-C4 alkyl;

 R^3 , R^4 , and R^5 are independently selected from hydrogen, C_1 - C_4 alkyl, and - $(L^2)_{n2}$ - $CR^{8A}R^{9A}$ -OH in which n2 is zero or 1, L^2 is C_1 - C_4 aliphatic, R^{8A} is selected from hydrogen, methyl, trifluoromethyl, difluoromethyl, and fluoromethyl, and R^{9A} is selected from methyl, trifluoromethyl, difluoromethyl, and fluoromethyl, and further wherein any two of R^1 , R^3 , R^4 , and R^5 may be taken together to form a C_5 - C_{14} alicyclic group;

 $R^{6A} \ is \ selected \ from \ hydrogen, C_1-C_4 \ alkyl, \ semi-fluorinated \ C_1-C_4 \ alkyl, \ and$ perfluorinated $C_1-C_4 \ alkyl; \ and$

 $R^{7\Delta}$ is selected from C_1 - C_4 alkyl, semi-fluorinated C_1 - C_4 alkyl, and perfluorinated C_1 - C_4 alkyl.

19. (Original) The fluoroalkanol-substituted α , β -unsaturated ester of claim 17 wherein R^2 and R^3 are taken together to form a C_3 - C_{18} alicyclic group.

20. (Original) The fluoroalkanol-substituted α , β -unsaturated ester of claim 18, wherein R^2 and R^3 are taken together to form a C_5 - C_{14} allicyclic group.

21. (Original) The fluoroalkanol-substituted $\alpha.\beta$ -unsaturated ester of claim 18, wherein R^4 and R^5 are hydrogen.

22. (Original) The fluoroalkanol-substituted α,β -unsaturated ester of claim 19, wherein R^4 and R^5 are hydrogen.

- 23. (Original) The fluoroalkanol-substituted α , β -unsaturated ester of claim 20, wherein R^4 and R^5 are hydrogen.
- 24. (Original) The fluoroalkanol-substituted α,β -unsaturated ester of claim 18, wherein R^{6A} and R^{7A} are both trifluoromethyl.
- 25. (Original) The fluoroalkanol-substituted $\alpha_i\beta$ -unsaturated ester of claim 18, wherein one of R^{6A} and R^{7A} is methyl and the other is trifluoromethyl.
- 26. (Original) The fluoroalkanol-substituted α , β -unsaturated ester of claim 15, wherein R^{15} is hydrogen and R^{16} has the structure of formula (VI)

$$(VI) \qquad \qquad \bigcup_{\mathsf{R}^{19}}^{\mathsf{R}^{18}}$$

27. (Original) The fluoroalkanol-substituted α,β -unsaturated ester of claim 15, wherein R^{15} has the structure of formula (VI)

and R16 is hydrogen.

28-49 (Cancelled).

50. (Original) A method for synthesizing a fluoroalkanol-substituted α,β -unsaturated ester from a fluorinated polyol having the structure of formula (IV)

(IV)
$$\begin{array}{c} R^1 \\ R^{13} \\ R^2 \\ R^{6A} \\ \end{array}$$

wherein

 R^1 is selected from hydrogen, C_1 - C_{24} alkyl, substituted C_1 - C_{24} alkyl, C_1 - C_{24} alkoxy, and substituted C_1 - C_{24} alkoxy,

R², R³, R⁴, and R⁵ are independently selected from hydrogen, C₁-C₂₄ alkyl, and substituted C₁-C₂₄ alkyl, and further wherein any two of R¹, R², R³, R⁴, and R⁵ may be taken together to form an alicyclic group,

 R^{6A} is selected from hydrogen, C_1 - C_{24} alkyl, substituted C_1 - C_{24} alkyl, and -(CO)-R in which R is hydrogen, hydroxyl, halo, C_1 - C_{24} alkyl, substituted C_1 - C_{24} alkyl, amino, C_1 - C_{24} alkylamino, or di(C_1 - C_{24} alkyl)amino,

 R^{7A} is C_1 - C_2 4 alkyl or substituted C_1 - C_2 4 alkyl, and further wherein R^{6A} and R^{7A} may be taken together to form a ring, with the proviso that at least one of R^{6A} and R^{7A} is fluorinated, and one of R^{13} and R^{14} is hydroxyl and the other is selected from hydrogen and hydroxyl, the method comprisine:

contacting the fluorinated polyol with an acylation reagent selected from acyl chlorides of the formula $CI-(CO)-CR^{17}=CR^{18}R^{19}$ and anhydrides of the formula $O[(CO)-CR^{17}=CR^{18}R^{19}]_2$ under reaction conditions effective to result in esterification of a hydroxyl group present at R^{13} , R^{14} , or at both R^{13} and R^{14} , to provide an $-O-(CO)-CR^{17}=CR^{18}R^{19}$ substituent, wherein R^{17} is selected from hydrogen, fluoro, C_1-C_4 alkyl, fluorinated C_1-C_4 alkyl, $-CH_2-COOH$, $-CF_2-COOH$, $-CH_2-COOR^{20}$, and $-CF_2-COOR^{20}$, R^{18} is hydrogen or fluoro, R^{19} is hydrogen, fluoro, or -COOH, and R^{20} is a nonhydrogen substituent.

- 51. (Original) The method of claim 50, wherein prior to admixture of the fluorinated polyol with the acylation reagent, the fluorinated polyol is treated with a deprotonating base.
 - 52. (Original) The method of claim 51, wherein:

 R^1 is selected from hydrogen, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, and - $(L^1)_{n1}$ - CR^2R^9 -OH in which n1 is zero or 1, L^1 is C_1 - C_4 aliphatic, R^8 is selected from hydrogen, methyl, trifluoromethyl, difluoromethyl, and fluoromethyl, and R^9 is selected from methyl, trifluoromethyl, difluoromethyl, and fluoromethyl;

R2 is hydrogen or C1-C4 alkyl;

 R^3 , R^4 , and R^5 are independently selected from hydrogen, C_1 - C_4 alkyl, and - $(L^2)_{n2}$ - $CR^{8A}R^{9A}$ -OH in which n2 is zero or 1, L^2 is C_1 - C_4 aliphatic, R^{8A} is selected from hydrogen, methyl, trifluoromethyl, difluoromethyl, and fluoromethyl, and R^{9A} is selected from methyl, trifluoromethyl, difluoromethyl, and fluoromethyl, and further wherein any two of R^1 , R^3 , R^4 , and R^5 may be taken together to form a C_5 - C_{12} alicyclic group;

Application No. 10/729,453 Response dated June 25, 2007 Response to Office Action dated February 23, 2007

 $R^{6A} \ is \ selected \ from \ hydrogen, \ C_1-C_4 \ alkyl, \ semi-fluorinated \ C_1-C_4 \ alkyl, \ and$ perfluorinated \ C_1-C_4 \ alkyl; and

 $R^{7\Delta} is \ selected \ from \ C_1\text{-}C_4 \ alkyl, semi-fluorinated \ C_1\text{-}C_4 \ alkyl, and perfluorinated \ C_1\text{-}C_4 \ alkyl.$ alkyl.

- 53. (Original) The method of claim 51, wherein the acylation reagent is an acyl chloride of the formula Cl-(CO)-CR¹⁷=CR¹⁸R¹⁹.
- 54. (Original) The method of claim 53, wherein R^{17} is selected from hydrogen, fluoro, methyl, trifluoromethyl, -CH₂-COOH, and -CH₂-COOR²⁰, R^{18} and R^{19} are independently selected from hydrogen and fluoro, and R^{20} is selected from C_1 - C_{12} alkyl and substituted C_1 - C_{12} alkyl.
- 55. (Original) The method of claim 51, wherein the acylation reagent is an anhydride of the formula O[(CO)-CR¹⁷=CR¹⁸R¹⁹]₂.
- 56. (Original) The method of claim 55, wherein R^{17} is selected from hydrogen, fluoro, methyl, trifluoromethyl, -CH₂-COOH, and -CH₂-COOR²⁰, R^{18} and R^{19} are independently selected from hydrogen and fluoro, and R^{20} is selected from C_1 - C_{12} alkyl and substituted C_1 - C_{12} alkyl.

57-70 (Cancelled).

-9-

71. (Original) A fluoroalkanol-substituted α,β -unsaturated esters selected from the group consisting of

H₃CO.

$$\begin{array}{c} CF_3 \\ CF_4 \\ CF_3 \\ CF_4 \\ CF_4 \\ CF_5 \\ CF$$

72-74 (Cancelled).

-13-