Définition 9.1 - convergence simple d'une suite de fonctions

Soit E un \mathbb{K} espace vectoriel de dimension finie, $A \subset E$ et $(f_n)_{n \in \mathbb{N}} \in \mathcal{F}(A, \mathbb{K})^{\mathbb{N}}$. On dit que la suite $(f_n)_{n \in \mathbb{N}}$ converge simplement si pour tout $x \in A$, la suite $(f_n(x))_{n \in \mathbb{N}} \in \mathbb{K}^{\mathbb{N}}$ converge. Ainsi la fonction :

$$f: A \longrightarrow \mathbb{K}$$

$$x \longmapsto \lim_{n \to +\infty} f_n(x)$$

est appelée limite simple de la suite $(f_n)_{n\in\mathbb{N}}$. Ainsi,

$$\forall x \in A, \forall \epsilon > 0, \exists N \in \mathbb{N}, \forall n \geq N, |f_n(x) - f(x)| < \epsilon$$

Définition 9.4 - convergence uniforme d'une suite de fonctions

Soit E un \mathbb{K} espace vectoriel de dimension finie, $A \subset E$ et $(f_n)_{n \in \mathbb{N}} \in \mathcal{F}(A, \mathbb{K})^{\mathbb{N}}$. On dit que $la \ suite \ (f_n)_{n \in \mathbb{N}}$ converge uniformément si pour tout $x \in A$, la suite $(f_n(x))_{n \in \mathbb{N}} \in \mathbb{K}^{\mathbb{N}}$ converge. Ainsi la fonction :

$$f: A \longrightarrow \mathbb{K}$$

$$x \longmapsto \lim_{n \to +\infty} f_n(x)$$

est appelée limite uniforme de la suite $(f_n)_{n\in\mathbb{N}}$. Ainsi,

$$\forall x \in A, \forall \epsilon > 0, \exists N \in \mathbb{N}, \forall n \geq N, |f_n(x) - f(x)| < \epsilon$$

Théorème 9.15 - propriétés conservées par la limite uniforme

Soit E un \mathbb{K} -espace vectoriel de dimension finie, $A \subset E$ et $(f_n)_{n \in \mathbb{N}} \in \mathcal{F}(A, \mathbb{K})^{\mathbb{N}}$ convergeant uniformément vers $f: A \to E$.

- 1. Si les $(f_n)_{n\in\mathbb{N}}$ sont bornées, alors il en est de même pour f.
- **2.** Si les $(f_n)_{n\in\mathbb{N}}$ sont continues, alors il en est de même pour f.

Théorème 9.17 - de la double limite

Soit E un \mathbb{K} -espace vectoriel de dimension finie, $A \subset E$ et $(f_n)_{n \in \mathbb{N}} \in \mathcal{F}(A, \mathbb{K})^{\mathbb{N}}$ convergeant uniformément vers $f: A \to E$. Soit $a\overline{a}$.

Si pour tout $n \in \mathbb{N}$, f_n admet en a limite l_n , alors la suite $(l_n)_{n \in \mathbb{N}}$ converge et f converge en a vers sa limite :

$$\lim_{x \to a} \left(\lim_{n \to +\infty} f_n(x) \right) = \lim_{n \to +\infty} \left(\lim_{x \to a} f_n(x) \right)$$

Définition 9.19 - convergence uniforme d'une série de fonctions

Soit E un \mathbb{K} -espace vectoriel de dimension finie, $A \subset E$ et $(f_n)_{n \in \mathbb{N}} \in \mathcal{F}(A, \mathbb{K})^{\mathbb{N}}$. La série $\sum_n f_n$ converge uniformément sur A si sa suite des sommes partielles converge uniformément, c'est-à-dire que la suite $(R_n)_{n \in \mathbb{N}}$ de ses restes converge vers 0 pour $\|\cdot\|_{\infty}^A$:

$$||R_n||_{\infty}^A \xrightarrow{n \to +\infty} 0$$

ou bien

$$||S - S_n||_{\infty}^A \xrightarrow{n \to +\infty} 0$$

Définition 9.20 - convergence normale d'une série de fonctions

Soit E un \mathbb{K} -espace vectoriel de dimension finie, $A \subset E$ et $(f_n)_{n \in \mathbb{N}} \in \mathcal{F}(A, \mathbb{K})^{\mathbb{N}}$. La série $\sum_n f_n$ converge normalement sur A si la série $\sum_n \|u_n\|_{\infty}^A$ converge.

Proposition 9.25 - conditions nécessaires à la convergence normale

Soit $\sum_n f_n$ une série fonctions de normalement convergentes sur A. On a alors :

- 1. La série $\sum_n f_n$ converge absolument sur A et donc simplement sur A.
- **2.** La série $\sum_n f_n$ converge uniformément sur A.

Définition 9.40 - fonction continue par morceaux sur un intervalle

Soit I un intervalle de \mathbb{R} et f une fonction définie sur I. f est continue par morceaux si toute restriction de f à un segment est continue par morceaux.

Théorème 9.43 - Esc([a;b],F) dense dans $\mathcal{CM}([a;b],F)$ pour $\|\cdot\|_{\infty}$

Toute fonction continue par morceaux sur [a; b] est limite uniforme d'une suite de fonctions en escalier sur [a; b]:

$$\overline{\mathcal{E}([a;b],F)} = \mathcal{CM}([a;b],F)$$

Théorème 9.47 - premier de Weierstrass

Toute fonction continue sur [a; b], à valeurs réelles ou complexes, est limite uniforme d'une suite de fonctions polynomiales sur [a; b]

Théorème 9.49 - deuxième de Weierstrass

Toute fonction continue sur \mathbb{R} , à valeurs réelles ou complexes, T-périodique est limite uniforme d'une suite de fonctions polynomiales trigonométriques, fonctions de la forme :

$$t \mapsto \sum_{k=1}^{n} \alpha_k e^{\frac{2ik\pi}{T}t}$$