Introduction to Calculus

What is Calculus?

- Small pebbles
- Used for counting in Abacus
- Continuous small Change
- One of the most widely used concept in Machine Learning Optimization

Rate of Change

Rate of Change

$$y = 2x + 3$$

Rate of Change Δy

Rate of Change

Rate of Change

∆ Distance
 ∆ Time

= 2KM/minute

$$Y = 1/x$$

$$X \neq 0$$

У	X	У	X
1	1	1	1
2	0.5	0.1	10
100	0.01	0.01	100
1000	0.001	0.001	1000
10,000	0.0001	0.0001	10,000
1,000,000	0.000001	0.000001	1,000,000

$$\lim_{x \to 0.5} \frac{1}{x} = 2$$

$$\lim_{x \to \infty} \frac{1}{x} = 0$$

$$\lim_{x \to 0} \frac{1}{x} = \infty$$

Differential Calculus

Slope between two points

Average Slope
$$= \frac{\triangle y}{\triangle x}$$

Derivative

Slope =
$$2x + \Delta X$$

$$\frac{dy}{dx} = \lim_{\Delta x \to 0} (2x + \Delta x)$$

$$\frac{dy}{dx} = 2x$$

Derivative

$$\frac{dy}{dx} = 2x$$

- 1) x = 4; slope = 8
- 2 x = -4; slope = -8

Differentiability and Rules

Derivative rules

- Derivative of a vertical line
- Derivative of a horizontal line
- Differentiability for various functions
- Power rule of derivative

Derivative Rules

Derivative Rules - Constant

Derivative of the constant is ZERO.

$$\nabla \lambda = 0$$

$$\frac{dy}{dx} = C$$

$$\frac{d(4)}{dx} = 0$$

Differentiability

Differentiability

Has to be a continuous function.

Differentiability

Power Rule of Derivative

$$y = f(x) = ax^n$$

$$\frac{dy}{dx} = a*n x$$

Power Rule of Derivative

$$y = f(x) = x^2 + 10$$

$$y = f(x) = x^{3} + 10$$

$$\frac{dy}{dx} = 3x^{2}$$
Remove constant
(Original Index *Original Coefficient)

(Original Index -1)

Power Rule of Derivative

$$y = f(x) = x^{3} + 10$$

$$\frac{dy}{dx} = 3x^{2}$$
Remove constant
(Original Index *Original Coefficient)

(Original Index -1)

$$y = f(x) = 2x + 4x - 7x + 9$$
 $\frac{dy}{dx} = 6x^2 + 8x - 7$

Direction, Maxima and Minima

Derivative for directions

$$y = f(x) = x^2 + 10$$

$$\frac{dy}{dx} = 2x$$

$$\frac{dy}{dx} = -8$$

$$\frac{dy}{dx} = +8$$

Second Order Derivative

$$\frac{d\left(\frac{dy}{dx}\right)}{dx} = \frac{dy}{dx^2}$$

Second Order Derivative

$$y = f(x) = x^{2} + 10$$

$$\frac{dy}{dx} = 2x$$

$$\frac{d^{2}y}{dx^{2}} = 2$$

$$y = f(x) = -x + 10$$

$$\frac{dy}{dx} = -2x$$

$$\frac{d^2y}{dx^2} = -2$$

Rules for Maxima and Minima

Second Derivative < 0 Local Maxima

Second Derivative > 0 Local Minima

Maxima or Minima?

$$y = f(x) = x^{2} + 10$$

Minima at y = 10

$$y = f(x) = -x^{2} + 10$$

Maxima at y = 10

Derivative for Maxima and Minima

$$y = 6x^4 - 2x^3 - 12x^2 + x + 1$$

Step 1 – Get the first Derivative

Step 2 – Get the Second Derivative

Step 3 – Identify points where slope is zero

Step 4 – Get the second derivative when slope is zero

Step 5 – Apply the rules for maxima and minima

Derivative for Maxima and Minima

$$y = 6x^4 - 2x^3 - 12x^2 + x + 1$$

$$\frac{dy}{dx} = 24x - 6x - 24x + 1$$

0.04131

1.1141

0.04131

1.1141

0.04131

1.1141

Partial Derivative

Partial Derivative

$$f(x,y) = x^2 + y^2$$

$$\frac{d(f(x,y))}{dx} = \frac{d(x^2 + y^2)}{dx} = \frac{d(x^2 + c)}{dx} = 2x$$

$$\frac{d(f(x,y))}{dy} = \frac{d(x^2 + y^2)}{dy} = \frac{d(c + y^2)}{dy} = 2y$$

Partial Derivative

$$f(x,y) = x^2 + y^2$$

$$\frac{\partial (f(x,y))}{\partial x} = 2x$$

$$\frac{\partial (f(x,y))}{\partial y} = 2y$$

Multiple variables in a function

Integration

Calculating the area of a circle

Calculating the area of a circle

Area =
$$\frac{\text{Height * Base}}{2}$$

$$= \frac{2 \pi r * r}{2}$$

Understanding the problem

Understanding the problem

Understanding the problem

Area =
$$f(x) * \triangle x$$

Area = $\sum_{i=1}^{n} f(x_i) * \triangle x_i$

Area =
$$\lim_{\triangle X \to 0} \sum_{i=1}^{n} f(x_i)^* \triangle x_i$$

Integration

Area =
$$\lim_{\triangle x \to 0} \sum_{i=1}^{n} f(x_i)^* \triangle x_i$$

$$\int_{x_1}^{x_2} f(x) dx$$

Thank You!