Lecture 3

Permutations with repetition. Combinations. Enumeration, ranking and unranking algorithms

October 2014

Cuprins

- Enumeration, ranking and unranking algorithms for permutations with repetition
- Binary represention of subsets
- Fast generation of all subsets
- Lexicographically ordered combinations (or subsets)
- r-combinations: ranking and unranking algorithms

Permutations with repetition

The *r*-permutations with repetition of an alphabet $A = \{a_1, \ldots, a_n\}$ are the ordered sequences of symbols of the form

$$\langle x_1,\ldots,x_r\rangle$$

with $x_1, \ldots, x_r \in A$.

- \triangleright The same symbol of A can occur many times
- By the rule of product, there are n^r r-permutations with repetition

Permutations with repetition

Ranking and unranking algorithms in lexicographic order

The *r*-permutations with repetition can be ordered lexicographically:

 $ho \langle x_1, \dots, x_r \rangle < \langle y_1, \dots, y_r \rangle$ if there exists $k \in \{1, \dots, n\}$ such that $x_k < y_k$ and $x_i = y_i$ for all $1 \le i < k$.

Example $(A = \{a_1, a_2\} \text{ with } a_1 < a_2, \text{ and } r = 3)$

r-permutation with repetition of A	lexicographic rank	
$\langle a_1,a_1,a_1 angle$	0	
$\langle a_1,a_1,a_2 angle$	1	
$\langle a_1,a_2,a_1 angle$	2	
$\langle {\sf a}_1, {\sf a}_2, {\sf a}_2 angle$	3	
$\langle { extbf{\textit{a}}}_2, { extbf{\textit{a}}}_1, { extbf{\textit{a}}}_1 angle$	4	
$\langle a_2, a_1, a_2 angle$	5	
$\langle {\sf a}_2, {\sf a}_2, {\sf a}_1 angle$	6	
$\langle a_2, a_2, a_2 angle$	7	

Ranking and unranking of r-permutations cu repetition

Let
$$A = \{a_1, a_2, \dots, a_n\}$$
 with $a_1 < a_2 < \dots < a_n$.

• If we define $index(a_i) := i - 1$ for $1 \le i \le n$, and replace a_i with $index(a_i)$ in the lexicographic enumeration of the r-permutations, we get

<i>r</i> -permutation	encoding as number	lexicogaphic rank
with repetition	in base <i>n</i>	
$\langle a_1,\ldots,a_1,a_1,a_1\rangle$	$\langle 0,\dots,0,0,0 \rangle$	0
l :	:	:
$\langle a_1,\ldots,a_1,a_1,a_n\rangle$	$\langle 0,\ldots,0,0,n-1\rangle$	n-1
$\langle a_1,\ldots,a_1,a_2,a_1\rangle$	$\langle 0,\dots,0,1,0 angle$	n
l :	:	:
$\langle a_1,\ldots,a_1,a_2,a_n\rangle$	$\langle 0,\ldots,0,1,n-1\rangle$	2 n – 1
:	:	:

REMARK: The r-permutation with repetition of the indexes is the representation in base n of its lexicographic rank.

Ranking and unranking of *r*-permutations cu repetition Exercises

- **①** Define an algorithm which computes the rank of the *r*-permutation with repetition $\langle x_1, \ldots, x_r \rangle$ of $A = \{1, \ldots, n\}$ with respect to the lexicographic order.
- ② Define an algorithm which computes r-permutation with repetition $\langle x_1, \ldots, x_r \rangle$ with rank k of $A = \{1, \ldots, n\}$ with respect to the lexicographic order.
- **3** Define an algorithm which computes the *r*-permutation with repetition immediately after the *r*-permutation with repetition $\langle x_1, \ldots, x_r \rangle$ of *A*, in lexicographic order.

Combinations

The binary representation of subsets

An *r*-combination of a set $A = \{a_1, a_2, \dots, a_n\}$ is a subset with *r* elements of A.

There is a bijective correspondence between the set of *n*-bit strings and the set of subsets of *A*:

$$B \subseteq A \mapsto b_{n-1}b_{n-2}\dots b_0$$
 where $b_i = \left\{ egin{array}{ll} 1 & ext{if } a_{n-i} \in B \\ 0 & ext{otherwise.} \end{array} \right.$
 $n ext{-bit string } b_0b_1\dots b_{n-1} \mapsto ext{subset } \left\{ a_{n-i} \mid b_i = 1 \right\} \text{ of } A$

Example $(A = \{a, b, c, d, e\} \text{ with } a > b > c > d > e.)$

subset	<i>n</i> -bit string encoding	canonic rank		
	edcba			
Ø	00000	0		
{a}	00001	1		
{ <i>b</i> }	00010	2		
$\{a,b\}$	00011	3		
:	:	:		

The *n*-bit string encoding of a subset

The subset of an *n*-bit string encoding

```
Combination(b[0..n-1]: bit string,

A: ordered set \{a_1, \ldots, a_n\})

B:=\emptyset

for i:=0 to n-1 do

if b[i]=1 then

add a_{n-i} to B

return B
```

The ordering of combinations via bit string encodings

There is a bijective correspondence between the *n*-bit string encodings and the numbers from 0 to $2^n - 1$:

- ho *n*-bit-string $b[0 \dots n-1] \mapsto \operatorname{number} \sum_{i=0}^{n-1} b[i] \cdot 2^i \in \{0,1,\dots,2^n-1\}$
- ightarrow number $0 \le r < 2^n \mapsto \textit{n}\text{-bit-string } \textit{b}[0\mathinner{\ldotp\ldotp\ldotp} n-1]$ where
 - $b[i] := \left\lfloor \frac{c_i}{2^i} \right\rfloor$ where c_i is the remainder of dividing r with 2^{i+1} .

Definition

The canonic rank of a a subset B of an ordered set A with n elements is

$$\mathsf{CanonicRank}(B,A) := \sum_{i=0}^{n-1} b[i] \cdot 2^i$$

where b[0..n-1] is the *n*-bit-string encoding of B as subset of A.

The ordering of combinations via bit string encodings (2)

REMARK. This way of enumerating the subsets of a set is called canonic ordering, and the n-bit string $b_{n-1} \ldots, b_1 b_0$ is called canonic (or binary) code.

The ordering of combinations via bit string encodings (3)

Given an ordered set $A = \{a_0, a_1, \dots, a_{n-1}\}$, and $0 \le r < 2^n$ Find the subset B of A with rank r

Enumerating subsets in minimum change orde Grey codes

- Frank Grey discovered in 1953 a method to enumerate subsets in an order so that adjacent subsets differ by the insertion or deletion of only one element.
- His enumeration scheme is called standard reflected Grey code.

Example

With Grey's method, the subsets of $\{a, b, c\}$ are enumerated in the following order:

$$\{\}, \{c\}, \{b, c\}, \{b\}, \{a, b\}, \{a, b, c\}, \{a, c\}, \{a\}\}$$

The 3-bit-string encodings of these subsets are

000, 100, 110, 010, 011, 111, 101, 001

The standard reflected Grey code Description

We want to enumerate the subsets of $A = \{a_1, \ldots, a_n\}$ in minimum change order G_n . (G_n is the list of those subsets)

The standard reflected Grey code Description

We want to enumerate the subsets of $A = \{a_1, \dots, a_n\}$ in minimum change order G_n . (G_n is the list of those subsets)

We proceed recursively:

- **①** Compute the list G_{n-1} of subsets of $B = \{a_2, \ldots, a_n\}$ in the minimum change order of Gray.
- 2 Let G'_{n-1} be the list of subsets obtained by adding a_1 to every element of a reversed copy fo G_{n-1} .
- **3** G_n is the concatenation of G_{n-1} with G'_{n-1} .

Propertăți ale codurilor Grey reflectate

Se presupune că B este submulțime a mulțimii ordonate A cu n elemente.

Dacă

- m este rangul lui B in în ordinea enumerării lui Grey, și $m = \sum_{i=0}^{n-1} b_i \cdot 2^i$
- Codificarea ca șir de n biți a lui B este $c_0c_1 \dots c_{n-1}$

atunci

- $c_i = (b_i + b_{i+1}) \mod 2$ for all $0 \le i < n$, unde $b_n = 0$.
- Reciproc, se poate demonstra că

$$b_i = (c_i + c_{i+1} + \ldots + c_{n-1}) \mod 2$$
 pentru toţi $0 \le i < n$.

Coduri Grey

Example $(A = \{a, b, c\} \text{ cu } a < b < c)$

submulțime	rang Grey	$b_0 b_1 b_2$	șir de biți	rang
В	m	astfel încât	al lui <i>B</i>	al lui <i>B</i>
		$m = \sum_{i=0}^{2} b_{2-i} 2^{i}$	$c_0 c_1 c_2$	
{}	0	000	000	0
{ <i>c</i> }	1	100	100	4
{ <i>b</i> , <i>c</i> }	2	010	110	6
{ <i>b</i> }	3	110	010	2
	4	001	011	3
$ \begin{cases} a, b \\ b, c \end{cases} $	5	101	111	7
$\{a,c\}$	6	011	101	5
{a}	7	111	001	1

Se observă că $c_i = (b_i + b_{i+1}) \mod 2$ pentru toți $0 \le i < 3$, unde $b_3 = 0$.

Exerciții

- Folosiți ecuațiile de pe slide-ul precedent ca să implementați metodele de ordonare RankGrey(B,A) și de enumerare UnrankGrey(A,r) pentru enumerarea submulțimilor bazată pe coduri Grey.
- Să se definescă metoda NextGreyRankSubset(A,B) care calculează submulțimea lui A care urmează imediat după submulțimea B în enumerarea submulțimilor bazată pe coduri Grey.

k-combinări Generarea k-combinărilor

Se dă o mulțime ordonată A cu n elemente și $0 \le k \le n$. Să se genereze toate k-combinările lui A.

k-combinări Generarea k-combinărilor

Se dă o mulțime ordonată A cu n elemente și $0 \le k \le n$.

Să se genereze toate k-combinările lui A.

Metoda 1 (naivă și ineficientă): generare și testare

- Se generează toate cele 2ⁿ submulțimi ale lui A
- ② Se elimină submulțimile generate care nu au k elemente.

Se dă o mulțime ordonată A cu n elemente și $0 \le k \le n$.

Să se genereze toate k-combinările lui A.

Metoda 1 (naivă și ineficientă): generare și testare

- Se generează toate cele 2ⁿ submulțimi ale lui A
- ② Se elimină submulțimile generate care nu au k elemente.

Metoda 2 (recursie simplă): Dacă $A = \{a\} \cup B$ unde $a \notin B$ este cel mai mic element al lui A atunci

- Generează lista L_1 a tuturor (k-1)-combinărilor lui B, și fie L_2 lista tuturor k-combinărilor lui B.
- ② Fie L_3 lista ce se obține adăugând a la toate elementele lui L_1 .
- Returnează rezultatul concatenării listelor L₂ și L₃.

Ordonarea lexicografică a k-combinărilor

Enunțul problemei. Observații preliminare (1)

Se presupune că $A = \{1, 2, ..., n\}$ și $X = \{x_1, x_2, ..., x_k\} \subseteq A$ astfel încât $x_1 < x_2 < ... < x_k$.

1: Care este rangul lui *X* în enumerarea lexicografică a *k*-combinărilor lui *A*?

k-combinările care apar înaintea lui X în ordine lexicografică sunt de 2 feluri:

- Cele care conțin un element mai mic decât x_1 .
- ② Cele al căror element minim este x_1 , dar restul elementelor este o (k-1)-combinare mai mică decât $\{x_2, x_3, \ldots, x_k\}$.

Ordonarea lexicografică a k-combinărilor

Enunțul problemei. Observații preliminare (1)

Se presupune că $A = \{1, 2, ..., n\}$ și $X = \{x_1, x_2, ..., x_k\} \subseteq A$ astfel încât $x_1 < x_2 < ... < x_k$.

1: Care este rangul lui *X* în enumerarea lexicografică a *k*-combinărilor lui *A*?

k-combinările care apar înaintea lui X în ordine lexicografică sunt de 2 feluri:

- Cele care conțin un element mai mic decât x_1 .
- ② Cele al căror element minim este x_1 , dar restul elementelor este o (k-1)-combinare mai mică decât $\{x_2, x_3, \ldots, x_k\}$.
- \Rightarrow rangul lui X în enumerarea lexicografică a k-combinărilor lui A este N_1+N_2 unde
 - \triangleright N_1 este numărul k-combinărilor de primul fel
 - \triangleright N_2 este numărul k-combinărilor de al doilea fel

IPOTEZĂ: $A = \{1, 2, ..., n\}$. Cum putem calcula N_1 ?

IPOTEZĂ: $A = \{1, 2, ..., n\}$. Cum putem calcula N_1 ?

• Numărul k-combinărilor lui A care au pe i cel mai mic element este

IPOTEZĂ: $A = \{1, 2, \dots, n\}$.

Cum putem calcula N_1 ?

• Numărul k-combinărilor lui A care au pe i cel mai mic element este $\binom{n-i}{k-1}$

IPOTEZĂ: $A = \{1, 2, ..., n\}$.

Cum putem calcula N_1 ?

• Numărul k-combinărilor lui A care au pe i cel mai mic element este $\binom{n-i}{k-1} \Rightarrow N_1 = \sum_{i=1}^{x_1-1} \binom{n-i}{k-1}$ (regula sumei)

IPOTEZĂ: $A = \{1, 2, ..., n\}$.

Cum putem calcula N_1 ?

• Numărul k-combinărilor lui A care au pe i cel mai mic element este $\binom{n-i}{k-1} \Rightarrow N_1 = \sum_{i=1}^{x_1-1} \binom{n-i}{k-1}$ (regula sumei) Stim că $\binom{n}{\iota} = \binom{n-1}{\iota-1} + \binom{n-1}{\iota}$ (vezi curs 1)

IPOTEZĂ: $A = \{1, 2, ..., n\}$.

Cum putem calcula N_1 ?

• Numărul k-combinărilor lui A care au pe i cel mai mic element este $\binom{n-i}{k-1} \Rightarrow N_1 = \sum_{i=1}^{x_1-1} \binom{n-i}{k-1}$ (regula sumei) Ştim că $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$ (vezi curs 1) $\Rightarrow N_1 = \sum_{i=1}^{x_1-1} \binom{n-i+1}{k} - \binom{n-i}{k} = \binom{n}{k} - \binom{n-x_1+1}{k}$

Cum putem calcula N_2 ?

IPOTEZĂ: $A = \{1, 2, ..., n\}$.

Cum putem calcula N_1 ?

• Numărul k-combinărilor lui A care au pe i cel mai mic element este $\binom{n-i}{k-1} \Rightarrow N_1 = \sum_{i=1}^{x_1-1} \binom{n-i}{k-1}$ (regula sumei) Ştim că $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$ (vezi curs 1) $\Rightarrow N_1 = \sum_{i=1}^{x_1-1} \binom{n-i+1}{k} - \binom{n-i}{k} = \binom{n}{k} - \binom{n-x_1+1}{k}$

Cum putem calcula N_2 ?

• N_2 este rangul lui $\{x_2,\ldots,x_k\}$ în enumerarea lexicografică a (k-1)-combinărilor lui $\{x_1+1,x_1+2,\ldots,n-1,n\}$

IPOTEZĂ: $A = \{1, 2, ..., n\}$.

Cum putem calcula N_1 ?

• Numărul k-combinărilor lui A care au pe i cel mai mic element este $\binom{n-i}{k-1} \Rightarrow N_1 = \sum_{i=1}^{x_1-1} \binom{n-i}{k-1}$ (regula sumei) Ştim că $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$ (vezi curs 1) $\Rightarrow N_1 = \sum_{i=1}^{x_1-1} \binom{n-i+1}{k} - \binom{n-i}{k} = \binom{n}{k} - \binom{n-x_1+1}{k}$

Cum putem calcula N_2 ?

- N_2 este rangul lui $\{x_2,\ldots,x_k\}$ în enumerarea lexicografică a (k-1)-combinărilor lui $\{x_1+1,x_1+2,\ldots,n-1,n\}$
- $\bullet \Rightarrow N_2$ se poate calcula recursiv.

Ordonarea lexicografică a k-combinărilor

Din observațiile anterioare rezultă următoarea implementare recursivă a operației de calcul al rangului:

• RankKSubset($\{x_1, \ldots, x_k\}$, $\{\ell, \ldots, n\}$) calculează rangul în ordine lexicografică a k-combinării $\{x_1, \ldots, x_k\}$ a mulțimii ordonate $\{\ell, \ell+1, \ldots, n-1, n\}$. Se presupune că $x_1 < x_2 < \ldots < x_k$.

```
\begin{aligned} & \operatorname{RankKSubset}(\{x_1, \dots, x_k\}, \ \{\ell, \ell+1, \dots, n\}) \\ & \text{if } (n = k \text{ or } k = 0) \\ & \text{return 0,} \\ & p := x_1 - \ell + 1 \\ & \text{if } (k = 1) \\ & \text{return } p - 1 \\ & \text{else} \\ & \text{return } \binom{n}{k} - \binom{n-p+1}{k} + \operatorname{RankKSubset}(\{x_2, \dots, x_k\}, \{x_1 + 1, \dots, n\}) \end{aligned}
```

Enunțul problemei. Observații preliminare

Ipoteze:

- $A = \{1, 2, ..., n\}$ și $X = \{x_1, x_2, ..., x_k\}$ cu $x_1 < x_2 < ... < x_k$ este submulțimea lui A cu rangul m în enumerarea lexicografică a tuturor k-combinărilor lui A. [Reţinem că $0 \le m < \binom{n}{k}$.]
- **î**: Care sunt valorile lui x_1, x_2, \ldots, x_k ?

1 Numărul total al k-combinărilor lui A care conțin un element $< x_1$ este

$$\sum_{i=1}^{x_1-1} \binom{n-i}{k-1} = \binom{n}{k} - \binom{n-x_1+1}{k} \le m. \tag{1}$$

unde $\binom{n-i}{k-1}$ este numărul k-combinărilor în care cel mai mic element este $i \in \{1, \dots, x_1-1\}$. Acest număr este $\leq m$ fiindcă toate aceste k-combinări sunt lexicografic mai mici decât X, care are rangul m.

1 Numărul total al k-combinărilor lui A care conțin un element $< x_1$ este

$$\sum_{i=1}^{x_1-1} \binom{n-i}{k-1} = \binom{n}{k} - \binom{n-x_1+1}{k} \le m. \tag{1}$$

unde $\binom{n-i}{k-1}$ este numărul k-combinărilor în care cel mai mic element este $i \in \{1,\ldots,x_1-1\}$. Acest număr este $\leq m$ fiindcă toate aceste k-combinări sunt lexicografic mai mici decât X, care are rangul m.

② Numărul total al k-combinărilor lui A care conțin un element $\leq x_1$ este

$$\sum_{i=1}^{x_1} \binom{n-i}{k-1} = \binom{n}{k} - \binom{n-x_1}{k} > m. \tag{2}$$

unde $\binom{n-i}{k-1}$ este numărul k-combinărilor în care cel mai mic element este $i \in \{1,\ldots,x_1\}$. Acest număr este > m deoarece sunt m+1 întregi i între 0 și rangul lui X (care este m), și toate k-combinările cu un astfel de rang i conțin un element $\leq x_1$.

Numărul total al k-combinărilor lui A care conțin un element $< x_1$ este

$$\sum_{k=1}^{x_1-1} \binom{n-i}{k-1} = \binom{n}{k} - \binom{n-x_1+1}{k} \le m. \tag{1}$$

unde $\binom{n-i}{k-1}$ este numărul k-combinărilor în care cel mai mic element este $i \in \{1,\ldots,x_1-1\}$. Acest număr este $\leq m$ fiindcă toate aceste k-combinări sunt lexicografic mai mici decât X, care are rangul m.

② Numărul total al k-combinărilor lui A care conțin un element $\leq x_1$ este

$$\sum_{i=1}^{x_1} \binom{n-i}{k-1} = \binom{n}{k} - \binom{n-x_1}{k} > m. \tag{2}$$

unde $\binom{n-i}{k-1}$ este numărul k-combinărilor în care cel mai mic element este $i \in \{1,\dots,x_1\}$. Acest număr este > m deoarece sunt m+1 întregi i între 0 și rangul lui X (care este m), și toate k-combinările cu un astfel de rang i conțin un element $\leq x_1$.

 \Rightarrow putem folosi (??) și (??) ca să aflăm x_1 : $\binom{n}{k}-\binom{n-x_1+1}{k}\leq m<\binom{n}{k}-\binom{n-x_1}{k}$

1 Numărul total al k-combinărilor lui A care conțin un element $\langle x_1 \rangle$ este

$$\sum_{i=1}^{x_1-1} \binom{n-i}{k-1} = \binom{n}{k} - \binom{n-x_1+1}{k} \le m. \tag{1}$$

unde $\binom{n-i}{k-1}$ este numărul k-combinărilor în care cel mai mic element este $i \in \{1,\ldots,x_1-1\}$. Acest număr este $\leq m$ fiindcă toate aceste k-combinări sunt lexicografic mai mici decât X, care are rangul m.

② Numărul total al k-combinărilor lui A care conțin un element $\leq x_1$ este

$$\sum_{i=1}^{n} {n-i \choose k-1} = {n \choose k} - {n-x_1 \choose k} > m.$$
 (2)

unde $\binom{n-i}{k-1}$ este numărul k-combinărilor în care cel mai mic element este $i \in \{1,\dots,x_1\}$. Acest număr este > m deoarece sunt m+1 întregi i între 0 și rangul lui X (care este m), și toate k-combinările cu un astfel de rang i conțin un element $\leq x_1$.

 \Rightarrow putem folosi (??) și (??) ca să aflăm x_1 : $\binom{n}{k} - \binom{n-x_1+1}{k} \le m < \binom{n}{k} - \binom{n-x_1}{k}$ Celelalte elemente x_2, \ldots, x_k se pot determina recursiv.

Enumerarea lexicografică a k-combinărilor

```
UnrankKSubset(m, k, \{a_1, \ldots, a_n\}) produce k-combinarea
\{x_1,\ldots,x_k\} cu rangul m a lui \{a_1,\ldots,a_n\} în ordine lexicografică.
Se presupune că x_1 < \ldots < x_k si a_1 < \ldots < a_n.
UnrankKSubset(m, k, \{a_1, \ldots, a_n\})
if (k = 1)
    return a_{k+1}
else if (m=0)
    return \{a_1,\ldots,a_m\}
else
   u := \binom{n}{l}
   i \cdot = 1
   while \binom{i}{k} < u - m
   x1:=n-(i-1)
   return \{a_{n-i+1}\} \cup \text{UnrankKSubset}(m-u+\binom{n-x+1}{k}), k-1, \{a_{n-i+2}, \dots, a_n\}
```

References

 S. Pemmaraju, S. Skiena. Combinatorics and Graph Theory with Mathematica. Section 2.3: Combinations. Cambridge University Press. 2003.