Reply to Reviewer 4

Anonymous Authors¹

1. Computational consumption

Figure 1. The number of parameters of each model (Lorenz-96 dataset, p=100, T=1000).

Figure 2. The trend of KANGCI's parameter as the time series dimension increases (Lorenz-96 dataset, *T*=1000).

2. AUPRC comparisons

Table 1. AUPRC of the Lorenz-96 dataset.				
	AUROC			
Models	p = 10, F = 10	p = 40, F = 40	p = 40, F = 40	
	T = 1000	T = 1000	T = 500	
cMLP	0.968 ± 0.002	0.791±0.012	0.685±0.057	
cLSTM	0.964 ± 0.004	0.865 ± 0.015	0.726 ± 0.035	
TCDF	0.732 ± 0.012	0.524 ± 0.042	0.445 ± 0.122	
eSRU	$\boldsymbol{1.0} {\pm 0.00}$	0.943 ± 0.007	0.893 ± 0.023	
GVAR	$\boldsymbol{1.0} {\pm 0.00}$	0.925 ± 0.009	0.886 ± 0.036	
NAVAR (MLP)	0.989 ± 0.005	0.742 ± 0.041	0.631 ± 0.079	
NAVAR (LSTM)	0.991 ± 0.005	0.784 ± 0.037	0.682 ± 0.071	
JGC	0.987 ± 0.004	0.923 ± 0.029	0.843 ± 0.044	
CUTS+	$\boldsymbol{1.0} {\pm 0.00}$	0.979 ± 0.003	0.925 ± 0.024	
JRNGC	$\boldsymbol{1.0} {\pm 0.00}$	0.966 ± 0.006	0.892 ± 0.035	
KANGCI	$\boldsymbol{1.0} \!\pm\! 0.00$	0.990 ± 0.003	$0.953 {\scriptstyle \pm 0.021}$	

Table 2. AUPRC of the Dream-3 dataset, T=966, p=100

Models			AUROC		
	Ecoli-1	Ecoli-2	Yeast-1	Yeast-2	Yeast-3
cMLP	0.023	0.019	0.020	0.015	0.014
cLSTM	0.017	0.017	0.015	0.023	0.031
TCDF	0.012	0.011	0.014	0.014	0.013
eSRU	0.036	0.034	0.041	0.052	0.044
GVAR	0.103	0.117	0.098	0.103	0.104
NAVAR (MLP)	0.102	0.107	0.073	0.105	0.089
NAVAR (LSTM)	0.013	0.012	0.030	0.038	0.052
JGC	0.018	0.016	0.026	0.050	0.059
CUTS+	0.154	0.143	0.121	0.128	0.105
JRNGC	0.198	0.202	0.172	0.142	0.130
KANGCI	0.177	0.163	0.154	0.138	0.132

Table 3. AUPRC of the VAR dataset.

		AUROC	
Models	p = 10, T = 1000	p = 10, T = 1000	p = 10, T = 1000
	sparsity = 0.2	sparsity = 0.3	sparsity = 0.2
	lag = 3	lag = 3	lag = 5
cMLP	1.0±0.00	0.832±0.006	0.973±0.004
cLSTM	0.964 ± 0.005	0.854 ± 0.006	0.911 ± 0.006
TCDF	0.812 ± 0.013	0.681 ± 0.012	0.734 ± 0.012
eSRU	$1.0{\pm}0.00$	0.989 ± 0.002	$\boldsymbol{1.0} {\pm 0.00}$
GVAR	$1.0{\pm}0.00$	0.985 ± 0.003	$1.0{\pm}0.00$
NAVAR (MLP)	0.987 ± 0.003	0.943 ± 0.006	0.981 ± 0.004
NAVAR (LSTM)	0.985 ± 0.003	0.957 ± 0.007	0.959 ± 0.003
JGC	$1.0{\pm0.00}$	0.990 ± 0.002	$1.0{\scriptstyle\pm0.00}$
CUTS+	$1.0{\pm0.00}$	1.0 ± 0.00	$1.0{\scriptstyle\pm0.00}$
JRNGC	$1.0{\pm}0.00$	0.992 ± 0.002	$1.0{\pm}0.00$
KANGCI	$1.0{\pm0.00}$	$0.987 {\scriptstyle\pm0.002}$	$1.0{\scriptstyle\pm0.00}$

Figure 3. The trend of KANGCI's GPU memory consumption as the time series dimension increases (Lorenz-96 dataset, T=1000).

Table 4. AUPRC of the fMRI BOLD				
Dateset .	AUROC			
	CUTS+	JRNGC	KANGCI	
Sim1	0.704±0.08	0.688 ± 0.07	0.672 ± 0.09	
Sim2	$0.694{\scriptstyle\pm0.07}$	$0.682{\scriptstyle\pm0.06}$	$0.701 {\pm 0.07}$	
Sim3	$0.638{\scriptstyle\pm0.07}$	$0.651{\scriptstyle\pm0.08}$	$0.636{\scriptstyle\pm0.06}$	
Sim4	$0.643{\scriptstyle\pm0.06}$	$0.632{\scriptstyle\pm0.06}$	0.601 ± 0.03	
Sim5	$0.728{\scriptstyle\pm0.05}$	0.731 ± 0.06	$0.739 {\scriptstyle \pm 0.05}$	
Sim6	$0.734{\scriptstyle\pm0.06}$	$0.729{\scriptstyle\pm0.07}$	$0.748 {\scriptstyle \pm 0.07}$	
Sim7	$0.744{\scriptstyle\pm0.07}$	$0.721{\scriptstyle\pm0.07}$	$0.793 {\scriptstyle \pm 0.07}$	
Sim8	$0.635{\scriptstyle\pm0.08}$	0.621 ± 0.04	$\textbf{0.654} {\pm 0.11}$	
Sim9	$0.698{\scriptstyle\pm0.05}$	$0.685{\scriptstyle\pm0.05}$	$\textbf{0.719} {\scriptstyle \pm 0.08}$	
Sim10	$0.678{\scriptstyle\pm0.04}$	$0.663{\scriptstyle\pm0.08}$	$0.692{\scriptstyle\pm0.09}$	
Sim11	$0.695{\scriptstyle\pm0.05}$	$0.682{\scriptstyle\pm0.08}$	0.621 ± 0.07	
Sim12	$0.660{\scriptstyle\pm0.06}$	$0.649{\scriptstyle\pm0.07}$	$0.678 {\pm} 0.06$	
Sim13	$0.696{\scriptstyle\pm0.05}$	$0.720{\scriptstyle\pm0.08}$	$\textbf{0.744} {\pm 0.08}$	
Sim14	$0.657{\scriptstyle\pm0.04}$	$0.642{\pm0.06}$	$0.686{\scriptstyle\pm0.09}$	
Sim15	0.641 ± 0.07	$0.632{\pm0.09}$	$0.659 {\scriptstyle \pm 0.07}$	
Sim16	$0.654{\scriptstyle\pm0.11}$	$0.668{\scriptstyle\pm0.12}$	$0.688{\scriptstyle\pm0.09}$	
Sim17	$0.724 {\scriptstyle\pm0.04}$	0.721 ± 0.05	0.714 ± 0.05	
Sim18	$0.710{\scriptstyle\pm0.06}$	$0.696{\scriptstyle\pm0.08}$	$0.725{\scriptstyle\pm0.09}$	
Sim19	$0.847{\scriptstyle\pm0.07}$	$0.833{\scriptstyle\pm0.04}$	$0.873 {\scriptstyle \pm 0.03}$	
Sim20	$0.861{\scriptstyle\pm0.07}$	$0.857{\scriptstyle\pm0.05}$	$0.886 {\pm 0.04}$	
Sim21	$0.696{\scriptstyle\pm0.08}$	$0.677{\scriptstyle\pm0.06}$	$0.711 {\scriptstyle\pm0.07}$	
Sim22	$0.727{\scriptstyle\pm0.04}$	$0.722{\scriptstyle\pm0.06}$	$\textbf{0.746} {\pm 0.09}$	
Sim23	$0.551{\scriptstyle\pm0.06}$	0.544 ± 0.08	$0.527{\scriptstyle\pm0.11}$	
Sim24	$0.490{\scriptstyle\pm0.08}$	$0.504 {\pm 0.08}$	0.476 ± 0.09	
Sim25	$0.643{\scriptstyle\pm0.05}$	$0.649{\scriptstyle\pm0.07}$	$0.661{\scriptstyle\pm0.08}$	
Sim26	0.561 ± 0.09	$0.561{\scriptstyle\pm0.08}$	$0.632{\scriptstyle\pm0.12}$	
Sim27	$0.661{\scriptstyle\pm0.07}$	$0.634{\scriptstyle\pm0.09}$	$0.672 {\scriptstyle \pm 0.08}$	
Sim28	$0.715{\scriptstyle\pm0.09}$	$0.709{\scriptstyle\pm0.10}$	$0.732 {\scriptstyle\pm0.09}$	
AVG	0.681 ± 0.07	0.675 ± 0.09	0.691±0.09	

163164

Figure 4. The visualization of the spline(x) function during the causal inference.

Figure 5. The architecture of KANGCI.