PC7 : Convergence en loi & Théorème central de limite

Dernière modification 30 mai 2023

Rappels

- Formulations de la convergence en loi
 - 1. la suite $(X_n)_n$ converge en loi vers X, et nous écrivons $X_n \xrightarrow{\mathcal{L}} X$, si pour toute fonction f continue bornée sur \mathbb{R}^d ,

$$\mathbb{E}(f(X_n)) \xrightarrow{n \to +\infty} \mathbb{E}(f(X))$$

- 2. pour que $X_n \xrightarrow{\mathcal{L}} X$, il faut et il suffit que $F_n(x) \xrightarrow{n \to +\infty} F(x)$ pour tout x en lequel F est continue
- 3. **Théorème de Levy** : si les fonctions caracteristiques ϕ_{X_n} convergent simplement vers une fonction ϕ sur \mathbb{R}^d et si cette fonction est continue en 0, alors c'est la fonction caractéristique d'une v.a X et $X_n \xrightarrow{\mathcal{L}} X$.
- **Théorème de Slutsky** : soit $(X_n, Y_n)_n$ une suite de vecteurs aléatoires à valeurs dans $\mathbb{R}^d \times \mathbb{R}^d$. Supposons que $X_n \xrightarrow{\mathcal{L}} X$ et $Y_n \xrightarrow{\mathcal{L}} c \in \mathbb{R}^d$. Alors $(X_n, Y_n)_n$ converge en loi vers (X, c).
- Théorème de la limite centrale : soit $(X_n)_n$ une suite de v.a.r i.i.d de carré intégrable, de moyenne m et de variance $\sigma^2 > 0$, alors les variables

$$\frac{S_n - nm}{\sigma\sqrt{n}}$$

convergent en loi vers une v.a de loi $\mathcal{N}(0,1)$.

Exercice 3

Soit X_n telle que $\mathbb{P}(X_n=0)=p_n$ et $\mathbb{P}(X_n=n)=1-p_n$ pour tout $n\in\mathbb{N}$.

- Donner une condition nécessaire et suffisante sur la suite (p_n) pour que, quelle que soit la fonction $f: \mathbb{R} \to \mathbb{R}$ continue à support compact, $\mathbb{E}[f(X_n)]$ converge dans \mathbb{R} quand $n \to +\infty$. On rappelle que si f est à support compact, il existe un compact $K \subset \mathbb{R}$ tel quel, pour tout $x \notin K$, f(x) = 0.
- Donner une condition nécessaire et suffisante sur (p_n) pour que X_n converge en loi et donner sa limite.
- 1. f à support compact $\Longrightarrow \exists n \in \mathbb{N}, \quad \forall n \geq n_0 \quad f(n) = 0.$ Or, $\forall n \geq n_0 \quad \mathbb{E}(f(X_n)) = p_n f(0) + (1 - p_n) f(n) = p_n f(0).$ Donc $\mathbb{E}(f(X_n))$ converge $\iff p_n$ converge.
- 2. $X_n \xrightarrow{\mathcal{L}} X \iff \forall f$ continue bornée $\mathbb{E}(f(X_n)) \xrightarrow{n \to +\infty} \mathbb{E}(f(x))$. On note que si $p_n \xrightarrow{n \to +\infty} 1$ on a $\mathbb{E}(f(X_n)) \xrightarrow{n \to +\infty} f(0)$. Donc, $X_n \xrightarrow{\mathcal{L}} 0$.

Réciproquement, si $X_n \xrightarrow{\mathcal{L}} 0$, en prenant f continue à support compact on a $p_n \xrightarrow{n \to +\infty} p$. Soit $f(x) = \sin(x)$, $\mathbb{E}(f(X_n)) = (1 - p_n)\sin(n)$. Donc, $\mathbb{E}(f(X_n))$ converge $\iff 1 - p_n \xrightarrow{n \to +\infty} 0$.

On conclue que $X_n \xrightarrow{\mathcal{L}} X = 0 \iff p_n \xrightarrow{n \to +\infty} 1$

Exercice 5

Soit X_n une v.a de loi uniforme sur $\{0, \frac{1}{n}, \frac{2}{n}, ..., \frac{n-1}{n}, 1\}$.

- 1. Trouver la limite en loi de la suite $(X_n)_{n\geq 1}$. On notera X une v.a ayant cette loi.
- 2. Montrer que $\mathbb{P}(X_n \in \mathbb{Q})$ ne converge pas vers $\mathbb{P}(X \in \mathbb{Q})$. Comparer avec la définition de la convergence en loi.

1.

$$\mathbb{E}(f(X_n)) = \sum_{i=0}^{n} \frac{1}{n+1} f\left(\frac{i}{n}\right) \tag{1}$$

$$= \frac{1}{n+1} \sum_{i=0}^{n} f\left(\frac{i}{n}\right) \tag{2}$$

$$\xrightarrow{n \to +\infty} \int_0^1 f(x)dx \tag{3}$$

$$= \mathbb{E}(f(X)) \quad \text{pour } X \sim \mathcal{U}_{[0,1]} \tag{4}$$

Donc, $X_n \xrightarrow{\mathcal{L}} X$ avec $X \sim \mathcal{U}_{[0,1]}$.

2.

$$\begin{cases} \mathbb{P}(X_n \in \mathbb{Q}) &= 1\\ \mathbb{P}(X \in \mathbb{Q}) = \mathbb{E}(\mathbf{1}_{\mathbb{Q}}(x)) &= 0 \quad \text{car } \mathbb{Q} \text{ est de mesure nulle} \end{cases}$$
 (5)

Donc $\mathbb{P}(X_n \in \mathbb{Q}) \to \mathbb{P}(X \in \mathbb{Q})$. C'est compatible avec la définition de convergence en loi car $\mathbf{1}_{\mathbb{Q}}(x)$ n'est pas continue.

Exercice 6

Pour tout $n \geq 1$, on définit une fonction F_n sur [0,1] par

$$F_n: x \mapsto x - \frac{\sin(2\pi nx)}{2\pi n}$$

- 1. Montrer que pour tout $n \geq 1$ la fonction F_n (prolongé par 0 pour $x \leq 0$ et par 1 pour $x \geq 1$) est la fonction de répartition d'une variable X_n à densité.
- 2. Montrer que X_n converge en loi vers une variable à densité X, mais que la densité de X_n ne converge pas au sens de la convergence simple.
- 1. F_n est une fonction de repartition car
 - (a) $F_n \xrightarrow{n \to -\infty} 0$
 - (b) $F_n \xrightarrow{n \to +\infty} 1$
 - (c) F_n est croissante
 - (d) F_n est continue à droite

 $F_n'(x) = 1 - \cos(2\pi nx) \ge 0$. Donc, F_n admet densité $f_n(x) = 1 - \cos(2\pi nx)$.

2. On note que

$$F_n \xrightarrow{n \to +\infty} \begin{cases} x & \forall x \in [0, 1] \\ 0 & \text{si } x < 0 \\ 1 & \text{si } x > 1 \end{cases}$$
 (6)

Donc, $X_n \xrightarrow{\mathcal{L}} X \sim \mathcal{U}_{[0,1]}$. Mais, $f_n(x) = 1 - \cos(2\pi nx)$ ne converge pas (sauf pour un nombre dénombrable de x).