Retrieval-based Neural Source Code Summarization

Jian Zhang¹ Xu Wang² Hailong Sun⁴ Xudong Liu⁵ SKLSDE Lab, Beihang University, China

Hongyu Zhang³

The University of Newcastle, Australia

No Photo

Name: Jian Zhang

Affiliation: Beihang University

Contributions

ISSTA 2019	Author of Androlic: An Extensible Flow, Context, Object, Field, and Path-Sensitive Static Analysis Framework for Android within the Tool Demonstration-track
ICSE 2020	Author of Retrieval-based Neural Source Code Summarization within the Technical Papers-track
ICSE 2019	Author of A Novel Neural Source Code Representation based on Abstract Syntax Tree within the Technical Track-track
ISSTA 2018	Author of LAND: A User-Friendly and Customizable Test Generation Tool for Android Apps within the ISSTA Tool Demonstrations-track
* ICSE 2018	Author of Poster T39: Semantically Enhanced Tag Recommendation for Software CQAs via Deep Learning within the Posters -track

Xu Wang (王旭)

Assistant Professor

Research Directions:

Software Engineering, Software Reliability and Scalability, Distributed Systems

Research Interests:

Improve software development efficiency and software quality through Al techniques, program analysis and algorithm optimization.

Hongyu Zhang

Contact Email: hongyujohn@gmail.com

Research Area:

My research area is software engineering, in particular:

- software analytics, mining software repository, data-driven software engineering
- software measurement and empirical software engineering
- software quality assurance, testing, debugging
- software reuse (generative programming and software product lines)
- software maintenance

粉海龙 Hailong Sun

Associate Professor, School of Computer Science and Engineering, Beihang University

Intelligent Software Engineering (combining AI/big data with software engineering),

Crowd Intelligence (crowdsourcing, human computation, human-AI collaboration),
Distributed Systems,
Service Oriented Computing

Xudong Liu

Beihang University

ICSE 2020	Author of Retrieval-based Neural Source Code Summarization within the Technical Papers-track
ICSE 2019	Author of A Novel Neural Source Code Representation based on Abstract Syntax Tree within the Technical Track-track
* ICSE 2018 *	Author of Poster T39: Semantically Enhanced Tag Recommendation for Software CQAs via Deep Learning within the Posters -track

Related Work

- Information Retrieval
 - On the use of automated text summarization techniques for summarizing source code.
 - Clocom: Mining existing source code for automatic comment generation

- Neural Machine Translation
 - Summarizing source code using a neural attention model
 - Deep code comment generation

Motivation

 The NMT-based methods generally prefer high-frequency words in the corpus and may have trouble with low-frequency words

- Combine the NMT-based and IR-based methods
 - the words in the expected summaries (including the low-frequency ones) are also highly probable to appear in similar code snippets

Motivation

```
def create_app(name, site, sourcepath, apppool=None):
   pscmd = list()
    pscmd.append("New-WebApplication -Name '{0}' -
                        Site' {1}'". format (name, site))
    pscmd. append (" -PhysicalPath ' {0}' ". format (sourcepath))
    if apppool:
       pscmd.append("-applicationPool' {0}'".format(apppool))
    cmd ret = srvmgr(str().join(pscmd))
    if cmd ret['retcode'] == 0:
        if name in list apps(site): return True
    return False
```

```
Ground truth: create an iis application.

Syntactic retrieval: remove an iis application.

Semantic retrieval: create an iis virtual directory.

NMT: create the new app.
```

Overview

Retrieval-based Neural Summary Generation

Dataset

• PCSD: 10872 pairs.

• JCSD: 69708 pairs

Dataset	Source C	Code Len	gth (#words)	Summary Length (#words)			Word Freq	uency ≤10	Word Frequency ≤100		
	MaxL	AvgL	UniT	MaxL	AvgL	UniT	NumW	NumS	NumW	NumS	
PSCD	157,116	133.1	481,756	333	9.9	37,111	32,093(86.5%)	46,481(42.8%)	36,003(97.0%)	87,626(80.6%)	
JSCD	4842	99.9	230,336	670	17.1	35,535	30,342(85.4%)	34,207(41.4%)	34,223(96.3%)	63,954(77.3%)	

• Baseline

	Method	Description
	LSI	Key world similarity
IR	VSM	Word frequence similarity
	NNGen	Vector similarity
	CODE-NN	LSTM+attention
NMT	TL-CODESum	API+LSTM+attention
	Hybrid-DRL	AST+LSTM+attention
IR&NMT	GRNMT	N-gram represented

• RQ1:Howdoes our proposed approach perform compared to the baselines?

Methods		PCSD								JCSD						
		BLEU-1/	/2/3/4(%))	METEOR(%)	ROUGE-L(%)	CIDER		BLEU-1/	/2/3/4(%))	METEOR(%)	ROUGE-L(%)	CIDER		
LSI	36.3	23.6	20.1	17.6	17.2	40.0	1.982	31.4	22.5	19.3	17.3	14.4	34.8	1.803		
VSM	38.9	26.1	22.1	19.3	19.0	42.7	2.216	33.3	24.4	21.1	19.0	15.4	36.6	1.983		
NNGen	36.5	23.8	20.1	17.4	17.1	40.2	1.967	33.0	24.4	20.9	18.7	15.0	36.3	1.933		
CODE-NN	30.8	15.4	10.7	8.1	13.4	35.1	1.229	23.9	12.8	8.6	6.3	9.1	28.9	0.978		
TL-CodeSum	31.1	16.5	12.5	10.4	13.6	35.3	1.335	29.9	21.3	18.1	16.1	13.7	33.2	1.66		
Hybrid-DRL	41.1	26.2	19.5	15.0	17.9	42.2	2.042	32.4	22.6	16.3	13.3	13.5	36.5	1.656		
GRNMT	38.6	24.0	18.8	15.8	18.5	43.4	1.978	32.6	22.6	17.9	15.5	15.0	37.6	1.732		
Rencos	43.1	29.5	24.2	20.7	21.1	47.5	2.449	37.5	27.9	23.4	20.6	17.3	42.0	2.209		

Example

```
public void removeColumn(final String columnName){
  if (columnName == null) { return; }
  List < String > cols = Arrays.asList(getInfo().headers);
  final int colIndex = cols.indexOf(columnName);
  removeColumn(colIndex);
Reference: remove the column represented by its name
LSI: get index of this column name
VSM: adds the given column to this table
NNGen: get index of this column name
CODE-NN: remove a column from the table.
TL-CodeSum: remove column at specified index .
Hybrid-DRL: removes a column from the column .
GRNMT: remove a column from the table .
Our approach: remove the column represented by the index
```

• RQ2: How effective are the main components of our approach?

Descriptions		PCSD							JCSD						
F	BLEU-1/2/3/4(%)				METEOR(%)	ROUGE-L(%)	CIDER	-	BLEU-1/2/3/4(%)			METEOR(%)	ROUGE-L(%)	CIDER	
Only Syntactic Retrieval	39.8	27.4	23.3	20.2	19.5	43.5	2.296	33.9	25.2	21.7	19.5	15.9	37.4	2.020	
Only Semantic Retrieval	39.5	27.1	23.1	20.1	19.1	43.1	2.270	33.7	25.3	22.1	19.9	15.4	37.0	2.049	
NMT	37.5	22.5	17.1	14.2	17.3	42.3	1.871	31.1	20.7	16.0	13.8	13.8	36.3	1.633	
NMT+Syntactic Retrieval	41.9	28.2	22.8	19.5	20.4	46.5	2.344	36.3	26.7	22.1	19.5	16.7	40.9	2.106	
NMT+Semantic Retrieval	42.2	28.4	23.2	19.8	20.6	46.6	2.362	36.8	27.2	22.6	19.9	17.0	41.3	2.164	
NMT+Both Retrieval	43.1	29.5	24.2	20.7	21.1	47.5	2.449	37.5	27.9	23.4	20.6	17.3	42.0	2.209	

 RQ3: Does our approach perform better than NMT-based methods for tackling the low-frequency word problem?

Word Frequency		1	2	5	10	20	50	100
PCSD	NMT	452	376	272	176	145	84	82
	Rencos	799	515	344	223	184	88	109
	Ratio	1.77	1.37	1.26	1.27	1.27	1.05	1.33
JCSD	NMT	126	75	45	27	38	28	16
	Rencos	243	138	73	38	49	37	18
	Ratio	1.93	1.84	1.62	1.41	1.29	1.32	1.11

 RQ4: Will our approach perform better if we retrieve top k (k>1) similar code snippets and filter them according to a similarity threshold

• Human Evaluation: Amazon Mechanical Turk (AMT)

Score	1	2	3	4	5	Avg	≥4	≥3	≤ 2
VSM	24	18	31	17	10	2.71	27	58	42
Hybrid-DRL	0	26	48	23	3	3.03	26	74	26
Rencos	2	13	39	30	16	3.45	46	85	15

Conclusion

 We propose a novel retrieval-based neural architecture to enhance the NMT model for summarizing source code with the help of most similar code snippets. To the best of our knowledge, this is the first work that combines retrieval-based and NMT-based methods in source code summarization

We conduct extensive experiments to evaluate our approach on two real-world datasets. We also perform a human evaluation through Amazon Mechanical Turk (AMT). All results confirm that the proposed approach is effective and outperforms the state-of-the-art methods.