Term Project Proposal

Real-time video-analytics system via camera stream

Professor: Mongkol Ekpanyapong

Presented by: st125457 - Ulugbek Shernazarov st124473 - Thang Sian Hoih

Overview

- 01 Introduction
- 02 Related Work
- 03 Methodology
- **04** Pipeline
- 05 Demo
- 06 Conclusion

Growing Need for Intelligent Video Analytics

Demand for enhanced security, efficient surveillance, and personalized services.
Key applications: Surveillance, Access Control, Customer Engagement.

Problems

Challenges in Real-Time Video Analytics

- Handling dynamic environments with multiple faces.
- Variations in lighting, occlusions, and movement.
 Ensuring system scalability and real-time
 - performance.

Multi-task Cascaded Convolutional Neural Network

Face Detection:

- Early Methods: Viola-Jones (Haar features, cascaded classifier)
- Deep Learning: MTCNN (Joint detection & alignment)
 Datasets: FDDB, WIDER
- FACE, AFLW

Scrfd - Sample and Computation Redistribution for Efficient Face Detection

Method	Venue	Train Data	LFW	CPLFW	AgeDB	CALFW	AVG	IJB-B	IJB-C
CosFace $(m = 0.35)$ [?]	CVPR18	MS1MV2	99.81	92.28	98.11	95.76	96.82	94.80	94.56
ArcFace $(m = 0.50)$ [?]	CVPR19	MS1MV2	99.83	93.08	98.02	96.30	96.81	94.58	94.03
AFRN [?]	ICCV19	MS1MV2	99.85	93.48	98.35	96.30	96.99	94.85	94.60
MV-Softmax [?]	AAAI20	MS1MV2	99.85	93.83	98.37	96.10	97.04	94.89	94.68
CurricularFace [?]	CVPR20	MS1MV2	99.80	93.24	98.32	96.20	97.16	94.80	94.51
URL [?]	CVPR20	MS1MV2	99.85	93.17	98.38	96.20	97.25	94.97	96.38
BroadFace [?]	ECCV20	MS1MV2	99.85	93.13	98.38	96.20	97.24	94.97	96.38
MagFace [?]	CVPR21	MS1MV2	99.83	93.32	98.23	96.03	97.10	94.74	94.96
SCF-ArcFace [?]	CVPR21	MS1MV2	99.80	93.16	98.18	96.03	97.10	94.75	94.95
DAM-CurricularFace [?]	ICCV21	MS1MV2	99.80	93.53	98.05	96.08	97.19	95.67	96.89
AdaFace $(m = 0.4)$	CVPR22	MS1MV2	99.82	93.53	98.05	96.08	97.19	95.67	96.89
VPL-ArcFace [?]	CVPR21	MS1MV3	99.83	93.45	98.06	96.12	97.42	95.56	96.70
AdaFace $(m = 0.4)$	CVPR22	MS1MV3	99.83	93.63	98.17	96.10	97.43	95.84	97.09
ArcFace* [?]	CVPR19	WebFace4M	99.83	93.45	98.06	96.12	97.46	95.75	97.16
AdaFace $(m = 0.4)$	CVPR22	WebFace4M	99.80	94.63	97.90	96.05	97.51	96.03	97.39

Face Recognition:

- Traditional: Eigenfaces, Fisherfaces (Linear techniques)
 Deep Learning: FaceNet, ArcFace, AdaFace (High-dimensional embeddings)
 Datasets: IJB-B, IJB-C

Adaptive Facial Embedding

Face Tracking:

• Traditional: Mean Shift, CAMShift (Basic tracking)

• Probabilistic Models: Kalman Filter (Temporal consistency)

• Modern: Déep learning-based trackers (Complex dynamics)

What have we implemented?

Combined Detection, Recognition, and Tracking
Real-time focus: DeepFace, OpenFace
Challenges: Scalability, Robustness, Dynamic

Environments

Face landmark + kpss

MTCNN Face detector

Face alignment

Adaface

feature vector 512

Tracking

no feature extraction for faces already assigned id

We store feature vectors usually use noSQL dbs (chromadb, elasticsearch)

Demo

INFO => Recognized person: Ulugbek Shernazarov => 2024-12-01 21:25:53,400 9:25 PM INFO => Recognized person: Ulugbek Shernazarov => 2024-12-01 21:26:13,752 9:26 PM INFO => Recognized person: Ulugbek Shernazarov => 2024-12-01 21:26:51,113 9:26 PM INFO => Recognized person: Ulugbek Shernazarov => 2024-12-01 21:27:49,642 9:27 PM INFO => Recognized person: Ulugbek Shernazarov => 2024-12-01 21:31:45,349 9:31 PM INFO => Recognized person: Ulugbek Shernazarov => 2024-12-01 21:32:17,987 9:32 PM INFO => Recognized person: Ulugbek Shernazarov => 2024-12-01 21:34:15,399 9:34 PM INFO => Recognized person: Ulugbek Shernazarov => 2024-12-01 22:45:54,837 10:45 PM INFO => Recognized person: Ulugbek Shernazarov => 2024-12-01 23:02:46,837 11:02 PM

Presented for Deep Learning for Computer Vision