Proof of axiom of Appendix B/

Need to show that the two large diagrams at current page 30 contain the same 2-isomorphisms.

First of all, we need to include diagram (37) inside both of them, by expanding diagram (15) Skallit 9 easier Also removed legemost trightness parts of huge diagrams.

 $F_{n_1}F_{n_2}F_{n_2}F_{n_3} \xrightarrow{\varphi \varphi} F(m_1+n_1)F(m_2+n_2) \xrightarrow{\varphi} F(m_1+n_1+m_2+n_2) \xrightarrow{F\psi} F((m_1+n_1)+(m_2+n_1)+(m_2+n_2)+(m_1+n_2)+(m_2+n_2)+(m_1+$

 $f_{m_1}f_{n_2}f_{m_2}f_{m_3} \xrightarrow{\varphi \varphi} F(m_1 + m_2) \xrightarrow{\varphi \varphi} F(m_1 + m_2 + m_3) \xrightarrow{\varphi \varphi} F(m_1 + m_2) \xrightarrow{\varphi \varphi} F($

We see that the yellow parts have a lot of cononical maps from colimit properties: we bosically nant to "get vid" of the 4's 17 possible since they will not be deduced by sylleptic lox manoidal pseudogenous axiom!!

So using the modification oxiom for M at the top

diagon, and thorning array resulting ports that are the same (..... WORK....) we come down to proving Non-TRIVIAL

which was the great reduction step. I here digressed for a tay or two, become I thought I could get this from properties of Das a package (without breaking it down as in (37)) pllowing some related conditions in Day-Sweet, but PATLED: -C

The rest of the proof uses essentially all exibral around. But before jumping meo all of it, I did a sonity check which convinced me it will work! This molves checking components of the 2-cells molved, and seeing whether in principle, the LHS may give PHS why beiding exibras.

[HS] Bottom-right 91 is really Mmitmz, nithz. Top beyt

9 involves the component 1=2, m, m, × 1. All the vest is pseudo associativity components, call them w (29) as well as export components of \$\phi\$ (31)

PHY Top left un 15 really um, nxum2, nz. Bottom of involves the component 1 x um, nx 1. All the vert is

Express (Day-Sencet, Def. 14) has the two exioms for a broided lox mon pseudothin. If you look closely, they express (Dua, bec in terms of majo and majo

	To in principle going from LHS to PHS using those
	To in principle, going from LHD to PHD using those two exioms, I would perform
	[#) MWI+WS ! WINNI () MWINITUS) NWS WITHUS) NWS WITHUS) NWS WITHUS) NWINNI
	3×5 NWIN' WWINS MWSHI NWSINS I NWIMS
	which one 5 components of n, whereas I only have, 3 in PHJ. However Fis furthermore sylleptic. The relevant oxiom allows me to essentially consoled. Un, m2 and Nm2, n, when appropriately composed.
	5 in RHJ. HOWEVER His Jurthermore sylleptic.
	The relevant oxiom allows me to essentially concel
	Unime and Nm2, n, when oppopriately composed.
_	
	how depreted of gradiens and will be bossible. To ward
	: from geometry of diagrams, this will be possible! So indeed LHS reduces to um, n, um, nz, umznz LIKE RHS
	Social de la
	So this sonity deck gives very good drances of success! The rest is (poinful) computations!
	2000 COMPACTOR (SEE 1) (SOUNDACTORE)