Def Series

If (ap) keln \$-4 seq. in R

称 Sn = 是an お它的 nth partial sun.

(Sn) to its sequence of partial sums,

我们使用 Enk 这一符号是义 the infinite series determined by (Ak):

• # converges if $\lim_{k \to \infty} \frac{2}{k} a_k = U$ informal notation. • # diverges, otherwise $\sum a_k < \infty$

note: 是ax 代表一个limit而非 algebriac operation

(2) Given a, r ∈ R and m∈Z, Eark is called a geometric series.

Claim If $r \neq r$, the partial sums of $\underset{k=n}{\overset{n}{\underset{k=n}{\sum}}} ar^{k}$ is $\underset{k\neq n}{\overset{n}{\underset{k=n}{\sum}}} ar^{k} = \alpha \frac{r^{m} r^{n+1}}{|-r|}$

Bh $\mathcal{E}_{k}^{ar^{k}} = \lim_{r \to \infty} \left(a \frac{r^{m} - r^{n+1}}{1 - r} \right) = \int_{-\infty}^{\infty} \frac{ar^{m}}{1 - r}, if |r| \leq 1$

 $\frac{Pf}{(+r)} \underbrace{\hat{\Sigma}}_{k=m}^{n} ar^{k} = a \underbrace{(r^{m} + ... + r^{n+1})}_{r} - (r^{m+1} + ... + r^{n+1})$ $\Rightarrow \underbrace{\hat{\Sigma}}_{k=m}^{n} ar^{k} = a \underbrace{\frac{r^{m} - r^{n+1}}{|-r|}}_{r}$

(3) Given $p \in \mathbb{R}$, a series of the form $\sum_{n=1}^{\infty} f_n^{-1} p^n$ is called a p-series

Claim a p-serier conv. iff p>1

Pf Case $p \le 1 \implies n^p \le n \implies n^p \ge \frac{1}{n^p} \ge \frac{1}{n^p$

$$\frac{2}{n} \int_{n=1}^{\infty} \frac{1}{n^{p}} = 1 + 2^{p} + 3^{p} + (4^{p} + ... + \frac{1}{7^{p}}) + ... + (4^{p} + ... + \frac{1}{15^{p}}) + ... + (4^{p} + ... + \frac{1}{15^{p}})$$

(4)
$$\sum_{n=1}^{\infty} (\frac{1}{k} - \frac{1}{k+1}) = (1 - \frac{1}{2}) + (\frac{1}{2} - \frac{1}{3}) + ... = \lim_{n \to \infty} (1 - \frac{1}{n+1}) = 1$$
(telescoping)

15) The atternations harmonic series
$$\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} = (1-\frac{1}{2}) + (\frac{1}{3}-\frac{1}{4}) + ...$$
Let $Sn = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} \implies (S_{2n}) \mathcal{J}$ (S_{2n+1}) \(\text{Thus} \)
$$\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} = \sup\{S_{2n}\} = \inf\{S_{2n+1}\} = \ln 2$$

Thm Suppose Σ an and Σ bn Σ conv. Let $C \in \mathbb{R}$ Σ (i) Σ can = Σ c Σ an Σ (ii) Σ (an + Σ bn) = Σ an + Σ bn note: Σ and Σ (Σ an) Σ (Σ an)

Test | Cauchy Criterion for convergence Let $\Sigma \alpha_{k}$ be a series, (S_{n}) & ε 65 seq. of partial sums. $\Sigma \alpha_{k}$ conv. iff (S_{n}) is Cauchy. ∞ Recall: Cauchy seq. means $\forall \varepsilon > 0$, $\ni N \in \mathbb{N}$ st $|S_{n} - S_{m}| < \varepsilon$ whenever $N \leq m \leq n$ $= |\sum_{k=m+1}^{\infty} \alpha_{k}|$ If if ε Test 2 The nth term test contropositive 很有用.

(Gn) + 0 then \(\sigma \text{conv.} \)

(tLB converse 显然不成立)

 $p_{k\to\infty} = \lim_{k\to\infty} (S_k - S_{k-1}) = \lim_{k\to\infty} S_k - \lim_{k\to\infty} S_{k-1} = 0$

Test3 The companison test

Let (an) be a seq. of nonnegative numbers (bn) be any seq.

⇒ (i) if \(\San\) conv. \(\Delta\) [bn] \(\san\) for all \(n\) ⇒ Ebn conv-

(ii) if ∑an =00 and lon ≥ an for all n

 $\Rightarrow \Sigma b_n = \infty$

Pf は(Sn)知(tn)的表表示 Zak和 Ebk 的 seq. of partial sums.

(i) If Ibn1 san for all n

So Sby Child Couchy Critorion => conv.

(ii) 易得

* Fact Companison test Jes finite tail BP ≥ bn conv. iff =NGW st. |bn| ≤ an for all n >N (of course then the limit is different)

 $ex = \sum_{n=2}^{\infty} \frac{\sin(n)}{n^2 \ln (n)}$ conv. by the companion test with $\Sigma_{n^2}^{-1}$ since for all sufficiently large n, $\left|\frac{\sin(n)}{n^2\ln(n)}\right| \leq \frac{1}{n^2}$

Det Absolute convergence The series Eak converges absolutely $f \lesssim |a_k|$ converges.

Thm Absolute convergence Ett convergence 更强的多样. if Σa_n conv. absly $\Longrightarrow \Sigma a_n$ conv.

Pt Suppose Elax conv. Then for all $m \le n$, $|S_n - S_m| = |\sum_{k=m+1}^{\infty} a_k| \le \sum_{k=m+1}^{\infty} |a_k|$ So Iax satisfies Cauchy Criterion if Ilax loves.

Def Conditional convergence

A conv. series that does not conv. aboly
is said to converge conditionally

ex & (+v)k+1 conv. condly.

Disturbing Fact

\$ -7 condly conv. series The be made to conv. to 1419-14 by "reordering" its terms condly wonv 的 series 在 reorder后会改建 limit, 并A 通过reorder始仍甚至可以让&conv. 如任何一个交配

ex \(\frac{(-1)^{+1}}{4} = (-\frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \dots \) 1=1+3+号-ゴ+ラ+サナボナはーなーー 只要把卡的terms 放到前面,然后在超过了时放上新面大的terms 作为compensate。最后会comv.to Jz

f/ae作,我们都可从apply这一个过程,使得rearder后的senies conv. to a, 只需要调整 comparsate 的加和频率来可以了. 但是我们希望一个 series 中的项的次带最知是可以 reorder bs.

Reassuring Fact Absly. WNV. By series & clased under BP: if Eak conv. abily reordenly to a

首先我们claim; 对于wnv. Zan, 如果 ax > 0 for all k EW,

AMON Hoj f: N→N, Σακω=Σακ D d

这直观.回忆我们回才的"改变 condly conv.的 senes bolimit"的方法, 水为通过特动多项作为"compensate"来实现,但在正规交替到不可能改变[imit]

过是思证的因为这一条件下,(\Signa_{k=1} \Delta_{fill}) new 都为 increasing sequence 且有相同的sup. 因而它们limit相同

而后始的使用claimの来证明general case:

Sugase San conv. abry,

Let $bn = \begin{cases} an, & \text{if } an > 0 \\ o, & \text{otherwise} \end{cases}$, $Cn = \begin{cases} lanl, & \text{if } an < 0 \\ o, & \text{otherwise} \end{cases}$

an=bn-cn for all nelv) &

Dotation conv. aboly $\Rightarrow \Xi(a_n | conv.)$ Note: $|b_k| \le a_k$, $|C_k| \le a_k$ for all k $\exists b_k | Comparison test, <math>\Sigma b_n \exists b \Sigma C_n conv. aboly.$ $\Sigma a_n = \Sigma(b_n - C_n) = \Sigma b_n - \Sigma C_n$ Define $\exists b_k, C_k \ge 0$ for all $k \in \mathbb{N}$, we apply claim $\varpi: \Sigma b_n = \Sigma b_{fin}$, $\Sigma C_n = \Sigma C_{fin}$ by $\Xi a_n = \Sigma b_{fin} - \Sigma C_{fin} = \Sigma (b_{fin} - C_{fin})$ $= \Sigma a_{fin}$

Test 4 Root test

Let (an) be a seq. in \mathbb{R} ; let $p=\lim\sup |a_n|^{\frac{1}{n}}$ \Rightarrow (i) if $p<1\Rightarrow\sum a_n$ conv. aboly. (ii) if $|a_n|\geqslant 1$ for infly many n (which happens when $p\geqslant 1$) $\Rightarrow\sum a_n$ diverges

*Note: L=linsup(an) > VE>0, {neN | an> LtE} is finite
and (neN/an> LE) is infinite

Pf (i) Assuming p < 1Fix $p \le r < 1 \not\in N \in N \text{ St. } |a^n|^{\frac{1}{n}} \le r$ (by limsup Boilth) $\Rightarrow |a_n| \le r^n \text{ for all } n \geqslant N$ Since $0 \le r < 1 \Rightarrow \sum r^n \text{ conv.}$ $\Rightarrow \sum |a_n| \text{ conv. by Comparison Test}$ (ii) if $|a_n| \ge 1$ for infly many n, then $(a_n) + \infty > 0$ So $\sum a_n \text{ div. by the } n^{th} \text{ term test}$

Tests Ratio Test

Let (an) be a seq. of nonzero numbers.

(i) 如果 [imsup | anti | < 1] ⇒ Ean [conv. aboby.]

Cii) 如果 [iminf | anti | > 1) ⇒ Ean [div.]

Pf This follows from the Rout Test and the fact that

[iminf | anti | < | iminf | anti | < | imsup | anti | anti

Remarks

1. rout test implies radio test. rout test 通常比 radio test 更强。

2. not & ratio test & linsup | an | n = 1, | in | an | = 1

BLE inconclusive to B

(ex: $\alpha_n = \frac{1}{n}$, $b_n = \frac{1}{n^2}$...)

3. 如果 |an| th -> r 或 |anti| -> r, 则 San Tabsly conVi when r<1, div when r>1.

*Note: not test \$ ratio test r<1 imply 的结果
File convergence FOLL abs convergence.

4. whenever the root test is inconclusive, the ratio test - 定也 inconclusive.

(图加干用再试)

Test 6 Alternating Senies Test

If (ak) is a decreasing seq. of positive numbers

who, to 0, Prace (-1) ax conv

If Assume the hypothesis, for each nEN let $S_n = \sum_{k=1}^{n} (-1)^{k+1} a_k$ (+) (+)

Since $S_{2n} = (a_1 - a_2) + (a_3 - a_4) + (a_5 - a_6) + \dots$ = $a_1 + (-a_2 + a_3) + (-a_4 + a_5) + (-a_6 + a_7) + \dots$ (-)

图而 San 是 increasing 且 bounded above by ai 的

-> (Sen) conv. Say (Sen) -> b

现在我们证明: (Sin+1)也→し.

Let $\varepsilon > 0$. fix $N \in \mathbb{N}$ st. $|S_M - L| < \frac{\varepsilon}{2}$ and $|a_{MH}| < \frac{\varepsilon}{2}$ whenever $n \gg N$.

27 (S2nt1)→1 = €

(Szn) → レ及 (Sznti) → し) (Sn) → し 日面 Eak=し. Test 7 Integral test Let f be positive. I decreasing to function on [1,00] → Ĕf(k) conv. (iff) the improper integral for dx conv.

= lim 5b for dx note: 此处我们还没有严谨定义在integra 图而 integral test 的证明从后再证 但其实很直观. $f(k) \leq \int_{k}^{k} f(x) dx \leq f(k)$

Numerical Series Summany

71 test

- (1) Cauchy Criterion: Zak conv. if (an) is Cauchy
- (2) nth not Test: (an) to => Sax div.
- (3) Comparison Test: |bn| ≤ an → b果 Sak conv
- aboly (4) Root Test: limsup lant | Anti) ...
- - (b) Alternating Series Test: positive 上的 (an) (的 alternating 一克 conv.
 - (7) Integral Test: $\sum_{k=1}^{n} f(k)$ conv. iff $\int_{1}^{\infty} f(x) dx$ conv. Abs Conv. > Conv

Abs Conv. is closed under reordents, condly. conv. NTZ