

Deep Learning A Neuron to Many Neurons

陳俊豪 教授

Outline

1. A Neuron & Case Study: Iris

2. A Neuron to Many Neurons

3. Case Study: MINIST

4. Conclusions

1. A Neuron & Case Study: Iris

Basic Unit of Deep Learning – A Neuron

- ✓ A Neuron
 - The smallest unit of neuron network
 - Based on the input values to predict the outcome
- ✓ How a neuron work, e.g.

x_i: input value

w_i: weight

b: bias

y: output

$$y = x_0^* w_0 + x_1^* w_1 + x_2^* w_2 + x_3^* w_3 + b$$

Bias – Another Input Attribute

- √ The bias can be represented as another attribute
- √The neuron can be re-construct as follows

x_i: input value

w_i: weight

b: bias

y: output

$$y = x_0^* w_0 + x_1^* w_1 + x_2^* w_2 + x_3^* w_3 + b$$

An Example

- ✓ Take "play tennis" as an example
 - Input attributes: temperature (T), humidity (H), wind (W), outlook (O)
 - Output target: Play tennis, Not Play tennis

An Example (Cont.)

- ✓ The output value y = 30.1
 - Not easy to identify "Play Tennis" or "Not Play Tennis"

Activation Function

- ✓ Use to enhance the learning ability for non-linear rules
- ✓ e.g. → Sigmoid function: $sig(x) = 1/(1 + e^{-x})$

- Range of sigmoid is between [0, 1]
- e.g.,
 - sig(10) = 0.999954
 - sig(1) = 0.731
 - sig(0) = 0.5
 - sig(-1) = 0.268
 - sig(-10) = 0.000045

Consider Activation Function

√ The neuron is changed as follows

Loss Function

- ✓ Evaluate the Goodness of A Neuron
 - For every instance \rightarrow (A₁, A₂, ..., A_n, y)
 - For a neuron → Based on the weights, a predicted value y' can be genereated
 - Sum of Distance between the y and y' of all instances
- ✓ e.g.
 - Mean square error (MSE)

$$L = \frac{1}{2N} \sum_{i=0}^{n} (y_i' - y_i)^2$$

An Example

✓ Given the following 3 instances

	X ₀	\mathbf{x}_1	X ₂	X ₃	у
Instance ₁	5.1	3.5	1.4	0.2	0
Instance ₂	4.9	3.0	1.4	0.2	1
Instance ₃	4.7	3.2	1.3	0.2	0

- ✓ Let weights are set at **0.1** for all attributes
- **✓** MSE

$$\checkmark$$
y₀' = f_s (5.1*0.1+3.5*0.1*1.4*0.1+0.2*0.1+b) = f_s (1.12) = 0.7539

$$\checkmark$$
y₁' = f_s (1.05) = 0.7407

$$\checkmark$$
y₂' = f_s (1.04) = 0.7388

✓ MSE =
$$[(0.7539 - 0)^2 + (0.7407 - 1)^2 + (0.7388 - 0)^2] / 2*3 = 0.19169$$

Goal of Learning A Neuron

- ✓ Train a good neuron means → Minimize the loss function L
 - Obtain the weights: $(w_0, w_1, ..., w_n, b)$ that can minimize the loss function

How to Update Weights of A Neuron

- ✓ Two steps
 - Step 1: Partial derivative of the loss function \boldsymbol{L} on every weight $\boldsymbol{w_i}$
 - Step 2: Update weight using the value after partial derivative
- ✓ Take w_0 as an example

Step 1
$$\begin{cases} L = \frac{1}{2N} \sum_{i=0}^{n} (y_i' - y_i)^2 \\ \frac{\partial L}{\partial w_0} = \frac{1}{N} \sum_{i=0}^{n} \{ (y_i' - y_i) * y_i' * (1 - y_i') * A_i^1 \} \end{cases}$$
 Step 2
$$\begin{cases} \text{new } w_0 = w_0 - \eta * \frac{\partial L}{\partial w_0} \\ \text{Learning rate (eta): [0, 1]} \end{cases}$$

Physical Meaning of Partial Derivative

 \checkmark Find the gradient (slop) of the weight w_i on the loss function L

Continue Previous Example

- \checkmark Take updating weight w_0 as an example
 - Let learning rate $\eta = 0.5$

	x _o	$\mathbf{x_1}$	X ₂	X ₃	у	у'
Instance ₁	5.1	3.5	1.4	0.2	0	0.75
Instance ₂	4.9	3.0	1.4	0.2	1	0.74
Instance ₃	4.7	3.2	1.3	0.2	0	0.73

$$\frac{\partial L}{\partial w_0} = \frac{1}{N} \sum_{i=0}^{n} \{ (y_i' - y_i) * y_i' * (1 - y_i') * A_i^0 \}
= [(0.75 - 0) * 0.75 * (1 - 0.75) * 5.1 + (0.74 - 1) * 0.74 * (1 - 0.74) *
4.9 + (0.73 - 0) * 0.73 * (1 - 0.73) * 4.7] / 3 = 0.3827$$

new
$$w_0 = 0.1 - 0.5 * \frac{\partial L}{\partial w_0} = 0.1 - 0.5 * 0.3827 = 0.1 - 0.1913 = -0.0913$$

After Update All Weights

- ✓ The original neuron
 - $y' = f_s(0.1 * x_0 + 0.1 * x_1 + 0.1 * x_2 + 0.1 * x_3 + 0.1)$
- ✓ The updated neuron
 - $y' = f_s(0.0724 * x_0 + 0.795 * x_1 + 0.0952 * x_2 + 0.10008 * x_3 + 0.0943)$

From the original neuron
To get the updated neuron

The processes call a Epoch (週期)

Implementation by Python

- ✓ Three steps
 - Step 1: Prepare training and testing datasets
 - Step 2: Strat to Train the neuron
 - Step 3: Test the accuracy of the neuron

Step 1: Prepare Training & Testing Datasets

- ✓ Iris dataset (https://archive.ics.uci.edu/ml/datasets/iris)
 - Four attributes → Length and width of sepals (花萼) and petals(花瓣)
 - Three classes
 - ✓ Iris versicolor(雜色鳶尾), Iris setosa(山鳶尾), Iris virginica(維吉尼亞鳶尾)
 - Use 100 instances contain two classes in this example

Three classes

http://www.lac.inpe.br/~rafael.santos/Docs/CAP394/WholeStory-Iris.html

Read Irsi Datasets

- 1. import numpy as np
- import pandas as pd
- 3. df = pd.read_csv('iris.data', header=None) # use padas
- 4. print(df) # The dataset contains 150 instances

```
5.1 3.5 1.4 0.2
                      Iris-setosa
                      Iris-setosa
    3.2 1.3 0.2
                      Iris-setosa
                      Iris-setosa
                      Iris-setosa
    3.9 1.7 0.4
                      Iris-setosa
    3.4 1.4 0.3
                      Iris-setosa
                      Iris-setosa
                      Iris-setosa
                      Iris-setosa
5.4 3.7 1.5 0.2
                      Iris-setosa
                      Iris-setosa
    3.4 1.6 0.2
                      Iris-setosa
                      Iris-setosa
                      Iris-setosa
5.7 4.4 1.5
                      Iris-setosa
                      Iris-setosa
                      Iris-setosa
                      Iris-setosa
                      Iris-setosa
```

```
125 7.2 3.2 6.0 1.8 Iris-virginica
126 6.2 2.8 4.8 1.8 Iris-virginica
    6.1 3.0 4.9 1.8 Iris-virginica
    6.4 2.8 5.6 2.1 Iris-virginica
    7.2 3.0 5.8 1.6 Iris-virginica
        2.8 6.1 1.9 Iris-virginica
131 7.9 3.8 6.4 2.0 Iris-virginica
    6.4 2.8 5.6 2.2 Iris-virginica
    6.3 2.8 5.1 1.5 Iris-virginica
    6.1 2.6 5.6 1.4 Iris-virginica
135 7.7 3.0 6.1 2.3 Iris-virginica
    6.3 3.4 5.6 2.4 Iris-virginica
    6.4 3.1 5.5 1.8 Iris-virginica
    6.0 3.0 4.8 1.8 Iris-virginica
        3.1 5.4 2.1 Iris-virginica
    6.7 3.1 5.6 2.4 Iris-virginica
    6.9 3.1 5.1 2.3 Iris-virginica
        2.7 5.1 1.9 Iris-virginica
    6.8 3.2 5.9 2.3 Iris-virginica
    6.7 3.3 5.7 2.5 Iris-virginica
            5.2 2.3 Iris-virginica
    6.3 2.5 5.0 1.9 Iris-virginica
    6.5 3.0 5.2 2.0 Iris-virginica
    6.2 3.4 5.4 2.3 Iris-virginica
    5.9 3.0 5.1 1.8 Iris-virginica
[150 rows x 5 columns]
```

Data Processing on the Irsi Datasets

- import numpy as np
- 2. import pandas as pd
- 3. df = pd.read_csv('iris.data', header=None)
- 4. x = df.iloc[0:100,[0, 1, 2, 3]].values # iloc() use to determine selected range
- 5. y = df.iloc[0:100,4].values # .values() use to get attribute values
- 6. y = np.where(y=='Iris-setosa', 0, 1) # if 'Iris-setosa' => 0, else 1

print(x)

```
[[ 5.1 3.5 1.4 0.2]

[ 4.9 3. 1.4 0.2]

[ 4.7 3.2 1.3 0.2]

[ 4.6 3.1 1.5 0.2]

[ 5. 3.6 1.4 0.2]

[ 5.4 3.9 1.7 0.4]

[ 4.6 3.4 1.4 0.3]

[ 5. 3.4 1.5 0.2]

[ 4.4 2.9 1.4 0.2]

[ 4.9 3.1 1.5 0.1]

[ 5.4 3.7 1.5 0.2]

[ 4.8 3.4 1.6 0.2]

[ 4.8 3.4 1.6 0.2]
```

```
['Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa
 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa
 'Iris-setosa' 'Iris-setosa' 'Iris-setosa'
 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa
 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa
 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor'
 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor
 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor'
 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor'
 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor'
 'Iris-versicolor' 'Iris-versicolor']
```

print(y)//line 6

After Data Processing

- ✓ The extracted 100 instances
 - x = df.iloc[0:100,[0, 1, 2, 3]].values # iloc() use to determine selected range
 - y = df.iloc[0:100,4].values # .values() use to get attribute values

	X (Features)	Y (Classes)	
Class = 0	50 instances	50 instances	Number 0 to 49
Class = 1	50 instances	50 Instances	Number 50 to 99

Divide Dataset Into Training and Testing

- ✓ How to get suitable training and testing datasets
- ✓ e.g.
 - Let the proportion of training and testing is 8:2

	X (Features)	Y (Classes)
C = 0	50 instances	50 instances
C = 1	50 instances	50 Instances

80 instances for training

20 instances for testing

Using Python to Get Training and Testing

- #prepare empty arrays
- 2. $x_{train} = np.empty((80, 4))# size: 80*4 to store attribute values$
- 3. $x_{\text{test}} = \text{np.empty}((20, 4)) \# \text{size}: 20*4$
- 4. y_train = np.empty(80) # size: 80*1 to store class values
- 5. $y_{test} = np.empty(20) # size: 20*1$
- 6. #Divide 100 instances into 80 instances for training and 20 for testing
- 7. $x_{train}[:40]$, $x_{train}[40:] = x[:40]$, x[50:90] # 0~39 -> C=1 & 50~89 -> C=2
- 8. $x_{test}[:10], x_{test}[10:] = x[40:50], x[90:100]$
- 9. $y_{train}:40]$, $y_{train}:40:] = y:40]$, y:50:90]
- 10. $y_{test}[:10]$, $y_{test}[10:] = y[40:50]$, y[90:100]

Step 2: Strat to Train the neuron network

- ✓ Prepare the needed functions
 - 1. Sigmoid function
 - 2. Activation function
 - 3. Updating weight function
- ✓ Start to train the neuron

1. Define the Sigmoid function

✓ Sigmoid function is defined as follows

def sigmoid(x):
 return 1/(1+np.exp(-x))

2. Define the Activation function

✓ Activation function is defined as follows

3. Updating Weight function

✓ Updating weight function is defined as follows

Step 2: Start to Train the Neuron Network

- ✓ Let epoch = 15, learning rate = 0.1, and initial weights are 0.1
 - 1. weights = np.ones(4)/10 #Initialize weights
 - 2. bias = np.ones(1)/10 #Initialize bias
 - 3. eta=0.1 #Set learning rate
 - 4. for _ in range(15): #epoch = 15
 - 5. weights, bias = update(x_train, y_train, weights, bias, eta=0.1)
 - 6. print('weights = ', weights, 'bias = ', bias)


```
weights = [-0.1490311 - 0.38795727 0.64200298 0.34623798]
bias = [0.00359432]
```

Step 3: Test the Trained Neuron (epoch=15)

✓ True 20 Test data class: y_test

Different of them are large

- ✓ Use x_test, weights, bias as parameters for activation function
 - Predicted y values

Step 3: Test the Trained Neuron (Epoch = 999)

✓ True Test data: y_test

They are similar now

- ✓ Use x_test, weights, bias as parameters for activation function
 - Predicted y values
 - array([0.05395003, 0.17599855, 0.07863967, 0.10059897, 0.0991089 0.10288262, 0.05693354, 0.0853523, 0.05103666, 0.06962544, 0.96078244, 0.95579566, 0.92428386, 0.86254368, 0.94491158, 0.92028125, 0.93194228, 0.93172487, 0.77415845, 0.92844899])

Recap

- ✓ So far, you need to know the following terms
 - A neuron
 - Training dataset
 - Testing dataset
 - Weights
 - Activation function
 - Loss function
 - Updating weight function

2. A Neuron to Many Neurons

Question

- ✓ In the previous slides
 - The neuron → Identify two classes (Binary Classification)

If the dataset contains many classes, what can we suppose to do to solve the problem? e.g., the iris dataset contains three classes.

Solution for Handling Multiple Classes

✓ Step 1: Add neurons

✓ Step 2: Add layers

Step 1: Add Neurons

✓ From a neuron to three neurons

Changes of the Neuron Structure

✓ Let the number of neurons is 3, input attributes is 3, and 3 classes

Step 2: Add Layers

- ✓ Between input and output → Add hidden layer (隱藏層)
- ✓ e.g., add a hidden layer with 4 neurons
 - Denoted as $\vec{h} = \{h_0, h_1, h_2, h_3\}$

The Constructed Neuron Network

- ✓ Consist of three layers
 - Input layer, Hidden layer and Output layer

3. Case Study: MINIST

An Example - MNIST

- ✓ MNIST(Mixed National Institute of Standards and Technology dataset)
 - Can be download at http://yann.lecun.com/exdb/mnist/
 - Handwritten digits for number 0 to 10, and totally 70,000 images
 - Size of each image is 28*28 pixels with correct answer

https://www.tensorflow.org/datasets/catalog/mnist

A Image in MNIST Dataset

- ✓ Take image of digit '5' as an example
 - 28 * 28 pixels, and value of a pixel is between [0, 255]
 - Totally 748 pixels

Dataset Preparation

- ✓ Download the MNIST dataset
 - Already divided into four parts: x_train, y_train, x_test, y_test
 - Use 60,000 images for training, and 10,000 images for testing

THE MNIST DATABASE

of handwritten digits

Yann LeCun, Courant Institute, NYU
Corinna Cortes, Google Labs, New York
Christopher J.C. Burges, Microsoft Research, Redmond

The MNIST database of handwritten digits, available from this page, has a training set of 60,000 examples, and a test set of 10,000 examples. It is a subset of a larger set available from NIST. The digits have been size-normalized and centered in a fixed-size image.

It is a good database for people who want to try learning techniques and pattern recognition methods on real-world data while spending minimal efforts on preprocessing and formatting.

Four files are available on this site:

train-images-idx3-ubyte.gz:
train-labels-idx1-ubyte.gz:
t10k-images-idx3-ubyte.gz:
t10k-labels-idx1-ubyte.gz:
t10k-labels-idx1-ubyte.gz:
t10k-labels-idx1-ubyte.gz:
training set images (9912422 bytes)
training set images (9912422 bytes)
training set images (9912422 bytes)

Download these four files

Training and Testing Datasets

60000 instances

✓ The four files

- train-images-idx3-ubyte.gz: training set images (9912422 bytes)
- train-labels-idx1-ubyte.gz: training set labels (28881 bytes)
- t10k-images-idx3-ubyte.gz: test set images (1648877 bytes)
- t10k-labels-idx1-ubyte.gz: test set labels (4542 bytes)

t labels (4542 bytes)

t10k-images

t10k-labels

x_test

y_test

10K instances

After Download the .gz files

- ✓ Put the four .gz files and the load_mnist.py in the same folder
- 1. #Python code
- 2. import load_mnist as lm
- 3. import gzip
- 4. dataset = lm.load_mnist()
- 5. #A dictionary four keys: x_test, x_train, y_test, y_train
- 6. dataset

Result of the "dataset" Dictionary

- √ The dataset dictionary contain four pairs
 - {'x_test': array(), 'x_train': array(), 'y_test': array(), 'y_train': array() }

Details of the load_mnist.py

- ✓ Contain a key_file dictionary and four functions
 - import numpy as np Provide us to open and read import gzip .gzip file directly key file = { 'x train':'train-images-idx3-ubyte.gz', 'y train':'train-labels-idx1-ubyte.gz', Dictionary: use to store the file names 'x test':'t10k-images-idx3-ubyte.gz', 'y test':'t10k-labels-idx1-ubyte.gz' 8. def load_image(file_name): Read from the 16th byte 10. file path = file name with gzip.open(file_path, 'rb') as f: 11. images = np.frombuffer(f.read(), np.uint8, offset=16) 12. 13. return images ----- Return a 1D array with length 47,040,000 (= 784 * 60K)

Details of the load mnist.py (Cont.)

```
14. def load_label(file_name):
     file_path = file_name
                                              Read from the 8<sup>th</sup> byte
     with gzip.open(file_path, 'rb') as f:
16.
       labels = np.frombuffer(f.read(), np.uint8, offset=8) → an array that has 60,000
17.
       one_hot_labels = np.zeros((labels.shape[0], 10))
                                                               or 10,000 digits
18.
19.
       for i in range(labels.shape[0]):
20.
         return one_hot_labels → Return a 2D array with length 60,000*10 or 10,000*10
21.
22.def convert_into_numpy(key_file):
     dataset = {}
23.
     dataset['x_train'] = load_image(key_file['x_train'])
24.
                                                          Call load image() and load label()
     dataset['y_train'] = load_label(key_file['y_train'])
25.
                                                          to store Image from .gz files to
     dataset['x_test'] = load_image(key_file['x_test'])
                                                          dataset (a dictionary)
26.
     dataset['y_test'] = load_label(key_file['y_test'])
27.
28.
     return dataset
```

Details of the load_mnist.py (Cont.)

to 2D array (10K * 784)

```
29. def load_mnist():
     dataset = convert_into_numpy(key_file)
30.
     dataset['x_train'] = dataset['x_train'].astype(np.float32)
31.
                                                                    Set type from uint8 to
     dataset['x_test'] = dataset['x_test'].astype(np.float32)
32.
                                                                    np.float32
     dataset['x_train'] /= 255.0
33.
     dataset['x_test'] /= 255.0
34.
     dataset['x_train'] = dataset['x_train'].reshape(-1, 28*28)
35.
     dataset['x_test'] = dataset['x_test'].reshape(-1, 28*28)
36.
     return dataset
37.
                                              Reshape the 1D array (47,040,000 = 784 * 60K)
                                              to 2D array (60K * 784)
```

Reshape the 1D array (47,040,000 = 784 * 60K)

48

Question

✓ Now, we can use x_train and y_train to learn a neuron network for the MINST dataset

How many parameters should be learned?

Learn A Network for MNIST Dataset

- ✓ The neuron network has three layers
 - Input layer: 60K instances, each one has 784 attributes
 - Hidden layer: 100 neurons
 - Output layer: 10 neurons (since the number of classes is 10)

Goal: Minimize the Loss Function

- ✓ Previously the loss function is MSE
- ✓ Update the weight for a neuron by 2 steps

Step 1
$$\begin{cases} L = \frac{1}{2N} \sum_{i=0}^{n} (y_i' - y_i)^2 \\ \frac{\partial L}{\partial w_0} = \frac{1}{N} \sum_{i=0}^{n} \{ (y_i' - y_i) * y_i' * (1 - y_i') * A_i^1 \} \end{cases}$$
Step 2
$$\begin{cases} \text{new } w_0 = w_0 - \eta * \frac{\partial L}{\partial w_0} \\ \text{Learning rate (eta): [0, 1]} \end{cases}$$

79510 parameters should be learned and how to learn it effectively is an import issue

By back propagation (反向傳遞)

What is Forward Propagation?

✓ Computational graph of the loss function

The computational graph shows the forward propagation

9 Variables in the Computational Graph

- √ To know an impact of a variable to the loss function
 - Use partial derivative
 - e.g., to find the impact of variable S on $L \rightarrow$ Calculate $\frac{\partial L}{\partial S} \rightarrow$ Simple

But, how to know the impact of other variables to the Loss value, e.g., y₂?

Concept of Back Propagation

- ✓ Every variable only need to focus on the nearest computational result to find its impact on the loss function L
 - To find the impact of variable S no $L \rightarrow$ Calculate $\frac{\partial L}{\partial S}$
 - To find the impact of variable y_2 no $L \rightarrow$ Calculate $\frac{\partial S}{\partial y_2} \rightarrow \frac{\partial L}{\partial y_2} = \frac{\partial L}{\partial S} * \frac{\partial S}{\partial y_2}$

Chain rule (連鎖法則)
$$\Rightarrow \frac{\partial L}{\partial y_2} = \frac{\partial L}{\partial s} * \frac{\partial S}{\partial y_2}$$

Partial Derivative of L on a_2 ($\frac{\partial L}{\partial a_2}$)

$$\frac{\partial L}{\partial a_2} = \frac{\partial L}{\partial S} * \frac{\partial S}{\partial y_2} * \frac{\partial y_2}{\partial a_2}$$
Already know

Partial Derivative of L on $\overline{b}^{"}$ ($\frac{\partial L}{\partial \overline{b}^{"}}$)

$$\frac{\partial L}{\partial \overline{b''}} = \frac{\partial L}{\partial S} * \frac{\partial S}{\partial y_2} * \frac{\partial y_2}{\partial a_2} * \frac{\partial a_2}{\partial \overline{b''}}$$
Already know

Back Propagation

- √ From last outcome to fist computational result
 - Call back propagation
 - Advantage Effectively calculate the partial derivative

This is back propagation

The Result of 9 Variables

$$\frac{\partial L}{\partial S} = 1$$

$$6 \frac{\partial a_2}{\partial y_1} = W''^T$$

$$7 \frac{\partial y_1}{\partial a_1} = y_1 * (1 - y_1)$$

$$3 \frac{\partial y_2}{\partial a_2} = y_2 * (1 - y_2)$$

$$8 \frac{\partial a_1}{\partial \overrightarrow{b'}} = 1$$

$$4 \frac{\partial a_2}{\partial \overrightarrow{b''}} = 1$$

$$9 \frac{\partial a_1}{\partial w'} = \mathbf{x}_{\text{train}}^{\text{T}}$$

$$\int \frac{\partial a_2}{\partial w''} = \mathbf{y_1}^\mathsf{T}$$

```
\# y_2 y_{train} \rightarrow \text{shape}(60K, 10)
```


$$y_1 \rightarrow$$
 Output of hidden layer shape(60K, 10)

$$\# y_1^T \rightarrow \text{shape}(10, 60K)$$

$$\# W^{"T} \rightarrow \text{shape}(10, 100)$$

$$\# x_{train} \rightarrow shape(60K, 784)$$

$$\# x_{train} \rightarrow \text{shape}(784, 60K)$$

Implementation by Python

- ✓ Related Python files
 - load_mnist.py (already explained previously)
 - ✓ Read the MNIST dataset
 - neuralnet.py
 - ✓ Prepare needed function for the neuron network
 - learn.py
 - ✓ Use to learn the neuron network

neuralnet.py - Initializing weight

return w list, b list

13.

import numpy as np # 輸入每層神經元數目的陣列, 例如 shape_list = [784, 100, 10] def make_params(shape_list): 3. w_list = [] 4. 5. b list = [] for i in range(len(shape_list)-1): 6. #產生初始值為遵從標準常態分佈的亂數 7. weight = np.random.randn(shape_list[i], shape_list[i+1]) 8. #始值全部設定 0.1 9. bias = np.ones(shape_list[i+1])/10.0 10. 11. w_list.append(weight) 12. b_list.append(bias)

neuralnet.py - Activation Function

- 14. def sigmoid(x): # sigmoid 函式
- 15. return 1/(1+np.exp(-x))
- 16. def inner_product(x_train, w, b):# 內積再加上偏權值
- 17. return np.dot(x_train, w)+ b
- 18. def activation(x_train, w, b):
- 19. return sigmoid(inner_product(x_train, w, b))

neuralnet.py – Calculate Function

```
20. def calculate(x_train, w_list, b_list):
21.
22.
      val_dict = {}
      a_1 = inner_product(x_train, w_list[0], b_list[0]) # (N, 100)
23.
     y_1 = sigmoid(a_1) # (N, 100)
24.
     a_2 = inner_product(y_1, w_list[1], b_list[1]) # (N, 10)
25.
26.
     y 2 = sigmoid(a 2)
     y 2 /= np.sum(y 2, axis=1, keepdims=True) # 這裡進行簡單的正規化
27.
28.
     val_dict['y_1'] = y_1
      val_dict['y_2'] = y_2
29.
30.
31.
      return val_dict
```

neuralnet.py - Update Function

- 32. def update(x_train, w_list, b_list, y_train, eta):
- 33. $val dict = {}$
- 34. val_dict = calculate(x_train, w_list, b_list)
- 35. $y_1 = val_dict['y_1']$
- 36. y 2 = val dict['y 2']
- 37. d12 d11 = 1.0 #1
- 38. $d11_d9 = 1/x_{train.shape}[0]*(y_2 y_{train}) #2$
- 39. d9 d8 = y 2*(1.0 y 2) #3
- 40. d8 d7 = 1.0 #4
- 41. d8 d6 = np.transpose(y_1) #5
- 42. $d8_d5 = np.transpose(w_list[1]) #6$
- 43. d5 d4 = y 1 * (1 y 1) #7
- 44. d4 d3 = 1.0 #8
- 45. d4 d2 = np.transpose(x train) #9

$$\frac{\partial S}{\partial y_2} = \frac{1}{N} (y_2 - y_{train})$$

$$3 \frac{\partial y_2}{\partial a_2} = y_2 * (1 - y_2)$$

$$4 \frac{\partial a_2}{\partial \overrightarrow{b''}} = 1$$

$$\frac{\partial y_1}{\partial a_1} = y_1 * (1 - y_1)$$

$$8 \quad \frac{\partial a_1}{\partial \overrightarrow{b}'} = 1$$

$$6 \quad \frac{\partial a_2}{\partial y_1} = W''T$$

$$9 \frac{\partial a_1}{\partial w'} = \mathbf{x}_{\mathsf{train}}^\mathsf{T}$$

neuralnet.py – Update Function

47.
$$d12_d8 = d12_d11 * d11_d9 * d9_d8 # 1 \times 2 \times 3$$

48. b_list[1] -= eta*np.sum(d12_d8 * d8_d7, axis=0) #
$$1 \times 2 \times 3 \times 4$$

49.
$$w_list[1] = eta*np.dot(d8_d6, d12_d8) # 1 × 2 × 3 × 5$$

$$\frac{\partial L}{\partial \overline{b''}} = \frac{\partial L}{\partial S} * \frac{\partial S}{\partial y_2} * \frac{\partial y_2}{\partial a_2} * \frac{\partial a_2}{\partial \overline{b''}}$$

$$\frac{\partial L}{\partial \overline{W''}} = \frac{\partial L}{\partial S} * \frac{\partial S}{\partial y_2} * \frac{\partial y_2}{\partial a_2} * \frac{\partial a_2}{\partial \overline{W''}}$$

51.
$$d12_d8 = d12_d11 * d11_d9 * d9_d8$$

52.
$$d12 d5 = np.dot(d12 d8, d8 d5)$$

53.
$$d12_d4 = d12_d5 * d5_d4$$

56.
$$w_{list}[0] = eta * np.dot(d4_d2, d12_d4)$$

54.

$$\frac{\partial L}{\partial \overrightarrow{b'}} = \frac{\partial L}{\partial S} * \frac{\partial S}{\partial y_2} * \frac{\partial y_2}{\partial a_2} * \frac{\partial a_2}{\partial y_1} * \frac{\partial y_1}{\partial a_1} * \frac{\partial a_1}{\partial \overrightarrow{b'}}$$

$$\frac{\partial L}{\partial \overline{W}'} = \frac{\partial L}{\partial S} * \frac{\partial S}{\partial y_2} * \frac{\partial y_2}{\partial a_2} * \frac{\partial a_2}{\partial y_1} * \frac{\partial y_1}{\partial a_1} * \frac{\partial a_1}{\partial \overline{W}'}$$

Learn.py – Learn the Network

1. import numpy as np import neuralnet as nl 2. 3. import load mnist as Im np.random.seed(21) 4. 5. dataset = Im.load mnist() 6. x train = dataset['x train'] 7. y train = dataset['y train'] 8. x test = dataset['x test'] 9. y test = dataset['y test'] w list, b list = nl.make params([784, 100, 10])10. 11. for epoch in range(1): — 1 epoch 12. ra = np.random.randint(60000,size=60000) 13. for i in range(60): → 60 batches x batch = x train[ra[i*1000:(i+1)*1000],:] 14. For a batch, 10K images are used 15. y batch = y train[ra[i*1000:(i+1)*1000],:] w list, b list = nl.update(x batch, w list, b list, y batch, eta=2.0) 16.

Learn.py – Verify the Network

Results of 1 Epoch (60 batches)

✓ The network still has space to be improved

```
Index
array([[0.07, 0. , 0.01, 0. , 0. , 0.3, 0. , 0.59], 0.01, 0.01], \triangle 7
     [0.47, 0., 0.01], 0.05, 0., 0., 0., 0.21, 0.25, 0.], \times 2
     [0.68], 0.05, 0.07, 0.02, 0. , 0. , 0.04, 0.04, 0.09, 0.02], \triangle 0
     [0.01, 0., 0., 0.02, 0.9], 0.01, 0.04, 0.02, 0., 0.], \checkmark 4
     [0.2, 0., 0.01, 0., 0.24, 0.13, 0., 0.08, 0., 0.34], \times 4
    [0.44, 0., 0.02, 0.13, 0.09, 0.12, 0.14, 0.04, 0., 0.], X 9
    [0., 0.04, 0., 0., 0.4, 0.01], 0.05, 0.49, 0., 0.], <math>\times 5
    [0.85, 0., 0., 0., 0.02, 0.01, 0., 0., 0.04, 0.07]]) × 9
```

Results of 200 Epoch (100 batches)

√ The network can predict all most correctly

Verify the Network by Measurements

✓By Accuracy (準確率) and Loss (總誤差值)

- def predict(X, w_list, b_list, t): # 這裡進行預測
- 2. val_list = calculate(X, w_list, b_list, t)
- 3. $y \overline{2} = val list['y 2']$
- 4. $result = np.zeros_like(y_2)$
- # 對應樣本數
- 6. for i in range(y 2.shape[0]):
- 7. result[i, np.:argmax(y_2[i])] = 1
- 8. return result
- 9. def accuracy(X, w_list, b_list, t): # 這裡計算準確率
- 10. pre = predict(X, w list, b list, t)
- 11. result = np.where(np.argmax(t, axis=1)==np.argmax(pre, axis=1), 1, 0)
- 12. acc = np.mean(result)
- 13. return acc
- 14. def loss(X, w_list, b_list, t): # 這裡計算總損失
- 15. L = calculate(X, w list, b list, t)['L']
- 16. return L

ps: 將三函式加到neuralnet.py中

The Updated Python Files

- ✓ Related Python files
 - load_mnist.py → load_mnist_acc_loss.py
 - ✓ Read the MNIST dataset
 - neuralnet.py neuralnet_acc_loss.py
 - ✓ Prepare needed function for the neuron network
 - learn.py → learn_acc_loss.py
 - ✓ Use to learn the neuron network

After 100 Epochs

✓ Accuracy and Loss

epoch:99,

Accuracy: 0.915700,

Loss: 0.063376

Recap

- ✓ A neuron to Many neurons (A neural network)
- ✓ Implementation through the MINIST dataset
 - load_mnist.py
 - ✓ Read the MNIST dataset
 - neuralnet.py
 - ✓ Prepare needed function for the neuron network
 - learn.py
 - ✓ Use to learn the neuron network