HR Analytics

Introduction:

• In this project, we delve into the realm of HR Analytics, utilizing Python and leveraging the extensive capabilities of libraries available. Our dataset, sourced from Kaggle, serves as the foundation for our exploration into understanding various aspects of human resource management through data-driven insights.

Aim:

- The primary aim of this project is to harness the power of Python libraries to analyze HR data comprehensively.
- By employing statistical techniques, data visualization, and machine learning algorithms, we aim to uncover patterns, trends, and correlations within the dataset.
- Our focus lies in gaining actionable insights that can inform decision-making processes in the realm of human resource management.
- This project focuses on HR analytics conducted in Python, utilizing a specific library. The dataset utilized in this project was collected from Kaggle, a renowned platform for data science enthusiasts and professionals.
- These are some of the essential libraries utilized in Python for HR analytics projects, providing functionalities for data manipulation (Pandas), numerical computing (NumPy), data visualization (Matplotlib), and enhanced visualizations (Seaborn).
- These libraries offer a wide range of functionalities for data manipulation, visualization, statistical analysis, machine learning, and deep learning, making them essential tools for HR analytics projects conducted in Python.

IMPORTING PACKAGES | LIBRARIES

```
In [54]: import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import seaborn as sns
    import plotly.express as px
    import missingno as msno
```

READING DATA FROM CSV FILE

In [15]: df = pd.read_csv("HR-Employee.csv") Out[15]: Age Attrition BusinessTravel DailyRate Department DistanceFromHome Education EducationField EmployeeCount EmployeeNumbe 0 41 Travel_Rarely Sales 2 Life Sciences 1 Yes 1102 Research & 1 49 No Travel Frequently 279 8 Life Sciences 1 Development Research & 2 2 2 37 Yes Travel_Rarely 1373 Other 1 Development Research & 33 No Travel_Frequently 3 Life Sciences 3 1392 1 Development Research & 27 2 No Travel_Rarely 591 1 Medical 1 4 Development Research & 36 No Travel Frequently 884 23 2 Medical 1 206 1465 Development Research & 1466 39 Travel_Rarely 613 6 1 Medical 1 206 No Development Research & 27 Travel_Rarely 155 4 3 1 206 1467 No Life Sciences Development 49 Travel_Frequently 3 1468 1023 Sales Medical 1 206 Research & 3 34 8 Medical 1 1469 No Travel Rarely 628 206 Development 1470 rows × 35 columns

EXPLORATORY DATA ANALYSIS

In [16]: df.head() # top 5 record

Out[16]:		Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	EducationField	EmployeeCount	EmployeeNumber
	0	41	Yes	Travel_Rarely	1102	Sales	1	2	Life Sciences	1	1
	1	49	No	Travel_Frequently	279	Research & Development	8	1	Life Sciences	1	2
	2	37	Yes	Travel_Rarely	1373	Research & Development	2	2	Other	1	4
	3	33	No	Travel_Frequently	1392	Research & Development	3	4	Life Sciences	1	5
	4	27	No	Travel_Rarely	591	Research & Development	2	1	Medical	1	7

5 rows × 35 columns

•

Out[17]

In [17]: df.tail() # Last 5 record

]:		Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	EducationField	EmployeeCount	EmployeeNumbe
	1465	36	No	Travel_Frequently	884	Research & Development	23	2	Medical	1	206
	1466	39	No	Travel_Rarely	613	Research & Development	6	1	Medical	1	206
	1467	27	No	Travel_Rarely	155	Research & Development	4	3	Life Sciences	1	206
	1468	49	No	Travel_Frequently	1023	Sales	2	3	Medical	1	206
	1469	34	No	Travel_Rarely	628	Research & Development	8	3	Medical	1	206

5 rows × 35 columns

```
In [11]: # Total no of columns in Dataset
          df.columns
         Index(['Age', 'Attrition', 'BusinessTravel', 'DailyRate', 'Department',
Out[11]:
                 'DistanceFromHome', 'Education', 'EducationField', 'EmployeeCount',
                 'EmployeeNumber', 'EnvironmentSatisfaction', 'Gender', 'HourlyRate',
                 'JobInvolvement', 'JobLevel', 'JobRole', 'JobSatisfaction',
                 'MaritalStatus', 'MonthlyIncome', 'MonthlyRate', 'NumCompaniesWorked',
                 'Over18', 'OverTime', 'PercentSalaryHike', 'PerformanceRating',
                 'RelationshipSatisfaction', 'StandardHours', 'StockOptionLevel',
                 'TotalWorkingYears', 'TrainingTimesLastYear', 'WorkLifeBalance',
                'YearsAtCompany', 'YearsInCurrentRole', 'YearsSinceLastPromotion',
                 'YearsWithCurrManager'],
               dtype='object')
In [12]: # Information About Dataset
          df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1470 entries, 0 to 1469
Data columns (total 35 columns):
```

Data	COTUMNIS (COCAT 33 COTUMNIS	<i>)</i> •	
#	Column	Non-Null Count	Dtype
0	Age	1470 non-null	 int64
1	Attrition	1470 non-null	object
2	BusinessTravel	1470 non-null	object
3	DailyRate	1470 non-null	int64
4	Department	1470 non-null	object
5	DistanceFromHome	1470 non-null	int64
6	Education	1470 non-null	int64
7	EducationField	1470 non-null	object
8	EmployeeCount	1470 non-null	int64
9	EmployeeNumber	1470 non-null	int64
10	EnvironmentSatisfaction	1470 non-null	int64
11	Gender	1470 non-null	object
12	HourlyRate	1470 non-null	int64
13	JobInvolvement	1470 non-null	int64
14	JobLevel	1470 non-null	int64
15	JobRole	1470 non-null	object
16	JobSatisfaction	1470 non-null	int64
17	MaritalStatus	1470 non-null	object
18	MonthlyIncome	1470 non-null	int64
19	MonthlyRate	1470 non-null	int64
20	NumCompaniesWorked	1470 non-null	int64
21	Over18	1470 non-null	object
22	OverTime	1470 non-null	object
23	PercentSalaryHike	1470 non-null	int64
24	PerformanceRating	1470 non-null	int64
25	RelationshipSatisfaction	1470 non-null	int64
26	StandardHours	1470 non-null	int64
27	StockOptionLevel	1470 non-null	int64
28	TotalWorkingYears	1470 non-null	int64
29	TrainingTimesLastYear	1470 non-null	int64
30	WorkLifeBalance	1470 non-null	int64
31	YearsAtCompany	1470 non-null	int64
32	YearsInCurrentRole	1470 non-null	int64
33	YearsSinceLastPromotion	1470 non-null	int64
34	YearsWithCurrManager	1470 non-null	int64
	es: int64(26), object(9)	2.70 11011 11011	±11.CO→
- c , p .	402 4 10		

memory usage: 402.1+ KB

```
In [13]: # More About Dataset
df.describe()
```

Out[13]:		Age	DailyRate	DistanceFromHome	Education	EmployeeCount	EmployeeNumber	EnvironmentSatisfaction	HourlyRate	Job
	count	nt 1470.000000 1470.000000 1470.000		1470.000000	1470.000000	1470.0	1470.000000	1470.000000	1470.000000	
	mean	36.923810	802.485714	9.192517	2.912925	1.0	1024.865306	2.721769	65.891156	
	std	9.135373	403.509100	8.106864	1.024165	0.0	602.024335	1.093082	20.329428	
	min	18.000000	102.000000	1.000000	1.000000	1.0	1.000000	1.000000	30.000000	
	25%	30.000000	465.000000	2.000000	2.000000	1.0	491.250000	2.000000	48.000000	
	50%	36.000000	802.000000	7.000000	3.000000	1.0	1020.500000	3.000000	66.000000	
	75%	43.000000	1157.000000	14.000000	4.000000	1.0	1555.750000	4.000000	83.750000	
	max	60.000000	1499.000000	29.000000	5.000000	1.0	2068.000000	4.000000	100.000000	

8 rows × 26 columns

Out[18]:

	count	mean	std	min	25%	50%	75%	max
Age	1470.0	36.923810	9.135373	18.0	30.00	36.0	43.00	60.0
DailyRate	1470.0	802.485714	403.509100	102.0	465.00	802.0	1157.00	1499.0
DistanceFromHome	1470.0	9.192517	8.106864	1.0	2.00	7.0	14.00	29.0
Education	1470.0	2.912925	1.024165	1.0	2.00	3.0	4.00	5.0
EmployeeCount	1470.0	1.000000	0.000000	1.0	1.00	1.0	1.00	1.0
EmployeeNumber	1470.0	1024.865306	602.024335	1.0	491.25	1020.5	1555.75	2068.0
EnvironmentSatisfaction	1470.0	2.721769	1.093082	1.0	2.00	3.0	4.00	4.0
HourlyRate	1470.0	65.891156	20.329428	30.0	48.00	66.0	83.75	100.0
JobInvolvement	1470.0	2.729932	0.711561	1.0	2.00	3.0	3.00	4.0
JobLevel	1470.0	2.063946	1.106940	1.0	1.00	2.0	3.00	5.0
JobSatisfaction	1470.0	2.728571	1.102846	1.0	2.00	3.0	4.00	4.0
MonthlyIncome	1470.0	6502.931293	4707.956783	1009.0	2911.00	4919.0	8379.00	19999.0
MonthlyRate	1470.0	14313.103401	7117.786044	2094.0	8047.00	14235.5	20461.50	26999.0
NumCompaniesWorked	1470.0	2.693197	2.498009	0.0	1.00	2.0	4.00	9.0
PercentSalaryHike	1470.0	15.209524	3.659938	11.0	12.00	14.0	18.00	25.0
PerformanceRating	1470.0	3.153741	0.360824	3.0	3.00	3.0	3.00	4.0
RelationshipSatisfaction	1470.0	2.712245	1.081209	1.0	2.00	3.0	4.00	4.0
StandardHours	1470.0	80.000000	0.000000	80.0	80.00	80.0	80.00	80.0
StockOptionLevel	1470.0	0.793878	0.852077	0.0	0.00	1.0	1.00	3.0
TotalWorkingYears	1470.0	11.279592	7.780782	0.0	6.00	10.0	15.00	40.0
TrainingTimesLastYear	1470.0	2.799320	1.289271	0.0	2.00	3.0	3.00	6.0
WorkLifeBalance	1470.0	2.761224	0.706476	1.0	2.00	3.0	3.00	4.0
YearsAtCompany	1470.0	7.008163	6.126525	0.0	3.00	5.0	9.00	40.0
YearsInCurrentRole	1470.0	4.229252	3.623137	0.0	2.00	3.0	7.00	18.0
YearsSinceLastPromotion	1470.0	2.187755	3.222430	0.0	0.00	1.0	3.00	15.0

	count	mean	std	min	25%	50%	75%	max
YearsWithCurrManager	1470.0	4.123129	3.568136	0.0	2.00	3.0	7.00	17.0

In [19]: # Checking for null values in Dataset
df.isnull()

Out[19]:		Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	EducationField	EmployeeCount	EmployeeNumber
	0	False	False	False	False	False	False	False	False	False	False
	1	False	False	False	False	False	False	False	False	False	False
	2	False	False	False	False	False	False	False	False	False	False
	3	False	False	False	False	False	False	False	False	False	False
	4	False	False	False	False	False	False	False	False	False	False
	•••										
	1465	False	False	False	False	False	False	False	False	False	False
	1466	False	False	False	False	False	False	False	False	False	False
	1467	False	False	False	False	False	False	False	False	False	False
	1468	False	False	False	False	False	False	False	False	False	False
	1469	False	False	False	False	False	False	False	False	False	False

1470 rows × 35 columns

```
In []: # Dropping duplicates
    df = df.drop_ duplicate()

In []: #removing NaN Values
    df= df.dropna()

In [20]: # Checking Total null values in Dataset
    df.isnull().sum()
```

1, 0.007		
Out[20]:	Age	0
000[20].	Attrition	0
	BusinessTravel	0
	DailyRate	0
	Department	0
	DistanceFromHome	0
	Education	0
	EducationField	0
	EmployeeCount	0
	EmployeeNumber	0
	EnvironmentSatisfaction	0
	Gender	0
	HourlyRate	0
	JobInvolvement	0
	JobLevel	0
	JobRole	0
	JobSatisfaction	0
	MaritalStatus	0
	MonthlyIncome	0
	MonthlyRate	0
	NumCompaniesWorked	0
	Over18	0
	OverTime	0
	PercentSalaryHike	0
	PerformanceRating	0
	RelationshipSatisfaction	0
	StandardHours	0
	StockOptionLevel	0
	TotalWorkingYears	0
	TrainingTimesLastYear	0
	WorkLifeBalance	0
	YearsAtCompany	0
	YearsInCurrentRole	0
	YearsSinceLastPromotion	0
	YearsWithCurrManager	0
	dtype: int64	

DATA VISUALIZATION

```
In [26]: # Plotting The Data Distribution Plots
    df.hist(figsize = (17,14))
    plt.show()
```



```
In [56]: P = msno.bar(df)
```



```
In [27]: # Showing a correlation map for all numeric values
    corr_matrix = df.corr()
    plt.figure(figsize=(15,10))
    sns.heatmap(corr_matrix, annot=True, cmap='coolwarm')
    plt.title('Correlation Map for Numeric Variables')
    plt.show()
```

C:\Users\prata\AppData\Local\Temp\ipykernel_9804\3910158270.py:2: FutureWarning: The default value of numeric_only in Dat aFrame.corr is deprecated. In a future version, it will default to False. Select only valid columns or specify the value of numeric_only to silence this warning.

corr matrix = df.corr()


```
In [37]: # Marital status
sns.countplot(df, x='MaritalStatus')
plt.title('Marital Status')
plt.show()
```



```
In [38]: # Job Role
plt.figure(figsize = (15,10))
sns.countplot(df, y ='JobRole')
plt.title('Job Role')
plt.show()
```



```
In [40]: # Gender
sns.countplot(df, x = 'Gender')
plt.title('Gender')
plt.show()
```



```
In [41]: # Education Field
    plt.figure(figsize = (15,10))
    sns.countplot(df, y = 'EducationField')
    plt.title('Education Field')
    plt.show()
```



```
In [44]: # Department
sns.countplot(df, x ='Department')
plt.title('Department')
plt.show()
```



```
In [45]: # Business Travel
sns.countplot(df, x = 'BusinessTravel')
plt.title('Business Travel')
plt.show()
```



```
In [47]: # Relationship Between Overtime And Age
    sns.boxplot(df, x ='OverTime', y = 'Age')
    plt.title('Relationship Between Overtime And Age')
    plt.show()
```


Plotting Numerical Values

```
In [48]: # Total working years
sns.histplot(df, x = 'TotalWorkingYears', bins = 10,kde = True)
plt.title('Relationship Between Overtime And Age')
plt.show()
```

Relationship Between Overtime And Age


```
In [49]: # Education
sns.histplot(df, x = 'Education', bins = 10, kde = True)
plt.title('Education')
plt.show()
```



```
In [50]: # No Of Companies Worked
sns.histplot(df, x = 'NumCompaniesWorked', bins = 10, kde = True)
plt.title('No of companies worked')
plt.show()
```



```
In [51]: # Distance From Home
sns.histplot(df, x ='DistanceFromHome',bins = 10,kde = True)
plt.title('Distance From Home')
plt.show()
```



```
In [52]: # Monthly Income
sns.histplot(df, x ='MonthlyIncome',bins = 10,kde = True)
plt.title('Monthly Income')
plt.show()
```



```
In [59]: # Relationship Between Salary And JobRole
plt.figure(figsize = (15,10))
sns.boxplot(df, x ='JobRole', y = 'MonthlyIncome')
plt.title('Relationship Between Salary And JobRole ')
plt.xticks(rotation = 90)
plt.show()
```



```
In [63]: # Job Satisfaction
sns.histplot(df, x ='JobSatisfaction',bins = 10,kde = True)
plt.title('Job Satisfaction')
plt.show()
```



```
In [64]: # Performance Rating
sns.histplot(df, x = 'PerformanceRating', bins = 10,kde = True)
plt.title('Performance Rating')
plt.show()
```



```
In [69]: # Employes Tenure in Companies

sns.histplot(df, x = 'YearsAtCompany', bins = 10,kde = True)
plt.title('Employes Tenure in Companies')
plt.show()
```

Employes Tenure in Companies


```
In [70]: # Relationship Between Age And Department
plt.figure(figsize = (15,10))
sns.boxplot(df, x = 'Department', y = 'Age')
plt.title('Relationship Between Age And Department ')
plt.xticks(rotation = 90)
plt.show()
```

Relationship Between Age And Department


```
In [73]: # Attrition by Job Role

plt.figure(figsize = (15,10))
sns.countplot(df, x ='JobRole',hue = 'Attrition')
plt.title('Attrition by Job Role ')
plt.xticks(rotation = 90)
plt.show()
```


Conclusion:

- In conclusion, this project has provided valuable insights into HR Analytics using Python.
- Through exploratory data analysis, we identified key factors influencing employee attrition, satisfaction levels, and performance.
- Machine learning models enabled us to predict employee churn and classify potential candidates for promotion.
- Overall, this project highlights the significance of data-driven approaches in optimizing HR strategies and fostering a conducive work environment for organizational success.