Problem Set 6

[Due in class on Thursday, December 6.]

Question 1:

This question asks you to reconsider the model of optimal sin taxes that we studied in class with a different distribution of types. Assume that everyone has $\rho=60$ and $\gamma=30$. Assume further that proportion α of the population has $\beta=0.95$ while proportion $1-\alpha$ has $\beta=1$ (both types have $\delta=1$).

- (a) As a function of α and t, what is the uniform lump-sum transfer?
- (b) As a function of α and t, derive an expression for social welfare.
- (c) Solve for the optimal tax.
- (d) How does the optimal tax depend on α ? Provide some intuition for this answer.

Question 2:

This question asks you to reconsider the model of optimal sin taxes that we studied in class when there is heterogeneity in people's susceptibility to health consequences from potato-chip consumption (in addition to heterogeneity in self-control problems). Suppose that everyone has $\rho = 60$ (everyone has the same tastes for potato-chip consumption). Suppose that 1/2 of the population has $\beta = 1$ while 1/2 of the population has $\beta = 0.95$. Suppose further that 1/4 of the population has $\gamma = 50$ and the other 3/4 of the population has $\gamma = 25$, where the distributions of β and γ are independent.

Note that there are four types: (i) people with $\beta = 1$ and $\gamma = 50$; (ii) people with $\beta = 1$ and $\gamma = 25$; (iii) people with $\beta = 0.95$ and $\gamma = 50$; and (iv) people with $\beta = 0.95$ and $\gamma = 25$.

- (a) As a function of t, how many potato chips will each type consume?
- **(b)** As a function of t, what is the uniform lump-sum transfer?
- (c) For each type, compare people's utility for t = 0% vs. t = 10%.
- (d) Are all types better off when t = 10%? Provide some intuition for this answer.
- (e) Are the two types with $\beta = 1$ on average better off? Are the two types with $\beta = 0.95$ on average better off? Provide some intuition for this answer.

Question 3:

Suppose that Ogre and Donkey both have "social-welfare preferences" of the form introduced by Charness & Rabin (that we discussed in class). They differ, however, in that Ogre takes a utilitarian view of social welfare (he has $\delta=0$) while Donkey takes a maximin view of social welfare (he has $\delta=1$). Note: For each game, you should specify how their behavior depends on their λ .

- (a) Solve for Ogre and Donkey's behavior in the Prisoners' Dilemma for the case when they believe that their opponent is playing D (use the version of the Prisoners' Dilemma from class).
 - (b) Solve for Ogre and Donkey's behavior in the Dictator Game.
- (c) Solve for Ogre and Donkey's behavior in the role of Player 2 in the Ultimatum Game when they are offered a share $s \le 1/3$.
- (d) To what extent can social-welfare preferences explain experimental results in the Prisoners' Dilemma, the Dictator Game, and the Ultimatum Game?

Question 4:

Suppose Ogre and Donkey have social-welfare preferences as in Question 3. In contrast, Fiona has "inequity aversion" of the form introduced by Fehr & Schmidt (that we discussed in class). Note: For each game, you should specify how Ogre and Donkey's behavior depends on their λ , and how Fiona's behavior depends on her α and β . Also, if you like, you may assume that Player 1 can choose non-integer divisions — e.g., Player 1 might keep 25.9 tokens and give 24.1 tokens.

- (a) Consider the following modified dictator game: Player 1 divides 50 tokens between Player 1 and Player 2. Each token is worth \$2 to Player 1, and each token is worth \$6 to Player 2. How would Ogre, Donkey, and Fiona behave in this game?
- (b) Consider the following modified dictator game: Player 1 divides 40 BLUE tokens and 20 RED tokens between Player 1 and Player 2. Each BLUE token is worth \$2 to Player 1 and \$1 to Player 2. Each RED token is worth \$3 to Player 1 and \$5 to Player 2. How would Ogre, Donkey, and Fiona behave in this game?

Question 5:

Consider a simple dictator game in which Player 1 has 4 options from which to choose:

(A)
$$(\$10,\$10)$$
 (B) $(\$15,\$75)$ (C) $(\$25,\$40)$ (D) $(\$75,\$0)$

How would Ogre, Donkey, and Fiona behave in this game? Provide some intuition for your answers. Note: You should specify how Ogre and Donkey's behavior depends on their λ , and how Fiona's behavior depends on her α and β .

Question 6 (NOT TO BE TURNED IN):

Marge has inequity aversion, but with the following non-linear form:

$$u^{1}(x_{1},x_{2}) = \begin{cases} 2(x_{1})^{1/2} - \alpha [x_{2} - x_{1}] & \text{if } x_{1} \leq x_{2} \\ \\ 2(x_{1})^{1/2} - \beta [x_{1} - x_{2}] & \text{if } x_{1} \geq x_{2} \end{cases}$$

(a) Suppose Marge plays a dictator game in which she must divide \$10 between herself and another person. As a function of her α and β , how will she behave?

Note: Rather than solve for the *share* that Marge offers (as we did in class), it is perhaps easier to solve for the *amount* that Marge offers — i.e., if she offers amount z, then she will keep (10-z)for herself.

(b) In class, we discussed how the linear version of inequity aversion does not explain well the quantitative results in experimental dictator games. Does this non-linear version work better?

Question 7 (NOT TO BE TURNED IN):

Homer has simple altruism, but with the following non-linear form:

$$u^{1}(x_{1},x_{2}) = \ln(x_{1}+1) + \phi \left[\ln(x_{2}+1)\right]$$

(a) Suppose Homer plays a dictator game in which he must divide \$10 between himself and another person. As a function of his ϕ , how will he behave?

(b) In class, we discussed how the linear version of simple altruism does not explain well the
quantitative results in experimental dictator games. Does this non-linear version work better?