```
HOJA 1
                                                      b) B = 1(a, x): a ∈ IR)
[6. | a) B = \{ (-\infty, b) : b \in \mathbb{R} \}
        R = U(-\infty, n)
 B, B2 & B => Yx & B, OB2
    ∃B3 ∈ B_ , x ∈ B3 con B3 ⊂ B1 ∩ B2
 B_1 = (-\infty, b_1) B_2 = (-\infty, b_2)
Cogernos b = \min\{b_1, b_2\} \Rightarrow (-\infty, b) \subset (-\infty, b_1) \cap (-\infty, b_2)
Para B_, es anallogo.
Vamos a intentar demostrar que B:= B_ U B >>
base (una vez hecho esto el apartado iri sale solo)
\mathcal{L}_1, \mathcal{B}_2 \in \mathcal{B}
Basta demostrar el caso B, ∈ B = y B2 ∈ B →
   B_{1} = (-\infty, b_{1})
B_{2} = (a_{2}, b_{1})
B_{3} \in B
                                                                  ⇒ B=B= UB-,
no es una base
                                                                  pero es una sub-BASE
L, y nos vale para
                                                                      este ejercicio
 Tu = B_n = base para le top. vsual = = {(a,b) / a,b \in R_1, a < b}
  7 € B
 La pregunta es ¿Tu = C*?
```

fail fail

Mamernas Le a la roporogia generada por To a la generada por Bo. 10cc c c ?? (3) c T ← > T →? $(-\infty,b) = \bigcup_{\alpha \in \Lambda} (\alpha_{\alpha},\infty)$ $\exists k > b$ tal que $k \in (a_{\kappa}, \infty)$ contradicii Si se $da = \Rightarrow Ke(-\infty,b) \Rightarrow K< b$ no se pueden comparar. "la mínima top. que cont. a T_, T-Cant.

8.1 27 he 5 Buscamos ?), pero por el ejercicio 2.1 sabemos que no es UTX 2 = la mínima topología generada por le La familia J: J:= UTX Sea J la familia UT; Definimos la familia $\mathcal{B} = \{ \bigcap_{j \in \mathcal{I}} S_j : |\mathcal{I}| < \chi_0, S_j \in \mathcal{I} \quad \forall j \in \mathcal{I} \}$ finito Demostremos que B es base para una top. C^* sobre X. En efecto, $X \in \mathcal{B}$ pues $X \in \mathcal{T}_{\alpha}$, $\forall_{\alpha \in \Lambda}$. Además, dados B_1 , $B_2 \in \mathcal{B}$ se tiene que $B_1 = \bigcap S_1$, $B_2 = \bigcap S_2$ con $j \in \mathcal{J}_2$ 15, (0), 15, (0), Sied HeJuJz. Sea xe BuB2 = (Si Sea B3 = B1 UB2, entronces x ∈ B3 y B3 ⊆ B1 UB2. Como | J, UJ2 | < 00, entonces B3 E B. Luego existe T* tal que B es base de T*. Además VXEL, TXC T*, es decir UTX C T*. Veamos que si T' es otra topología tal que UTaCT' entonces T*CT!

Basta demostrar que si $B \in B$ entonces $B \in C'$. Pero $B = \bigcap_{j \in J} S_j$, $|J| < \chi_0$, $S_j \in J$ $\forall j \in J$, luego $\forall j \in J$ $\exists x \in \Lambda$ tal que $S_j \in T_x \subset I$ $\Rightarrow \bigcap_{j \in J} S_j \in C'$ por ser C' top. (pop. 3), es decir $B \in C'$.

~ := c*

[2.] X := conjunto con mas de dos i) T₁, T₂ sobre X tal que T₁UT₂ no es una topología.

Hecho cou el ejercicio de T_e y T_r.

| X={a,b,c} T₁={\phi, \fat, \text{X}} ii) $\{\tau_j\}_{j\in\mathcal{I}} \Longrightarrow \tau^* = \bigcap_{j\in\mathcal{I}}$ es top TIUTZ no cumple las prop. de to 4)iø, Xe T*? (omo Ø, Xe Tj, Vj => Ø, Xe T*) 2) d'Axlaen, Axe T* => UAxe T*? YaeA, AxeT; YjeJ => VjeJ HaeA, AxeG => => VjeJ (UAxeG) => UAxeC**
xeA 3) à A,BEC* -> ANBEC*? YjeJ, AEJ, BEJ Flop YjeJ, ANBEJ => ANBEC*. [7.] It base para ma $T \Longrightarrow T_B := la$ top, generade por B! es iqual a $\bigcap T_j$, donde T_j es top, que contiene a B. To D (gratis) ic? \square -Sea $B \in \mathcal{B}$; sea G topologia sobre X tal que $B \subset G$. Entonces $B \in T_j \implies B \in \bigcap T_j$

• Sea $G \in \mathcal{T}_{\mathcal{B}} \Rightarrow G = \bigcup_{\alpha \in \Lambda} B_{\alpha}$, $B_{\alpha} \in \mathcal{B} \Rightarrow \forall \alpha \in \Lambda$ $B_{\alpha} \in \Lambda \subseteq \mathcal{T}_{\mathcal{A}} = \mathcal{T}_{\mathcal{A}} =$

- I. I X conjunto infinito, C top. sobre X tal que todos los subconjuntos infinitos son abtos para $C \Rightarrow C = Td = P(X)$.

 $C \in C_d$ es gratis (trivial).
- Para demostrar que GCT basta ver que dp son abiertos y cerrados para T YpeX.

D K := Kpt es cerrado pues X | K = X | Kpt es un conjunto infinito, luego abto. para T.

 $\triangleright G := \{ p \}$ es abierto. Sea $Y := X \setminus G = X \setminus \{ p \}$ $\forall | Y | = \infty$. Sean $A, B \subseteq Y$ (subconjuntos propios de Y) tales que

 $Y = A \cup B$, $|A| = \infty$, $|B| = \infty$

Sea $A_1 = A \cup 1P$, $|A_1| = \infty$

Sea By = B V 1pt, |By | = N

Luego $A_1 \in \mathcal{T}$, $B_1 \in \mathcal{T}$ y además $A_1 \cap B_1 = \mathsf{Spt}$ Luego $G = \mathsf{Spt} \in \mathcal{T}$.

- 4.1 1) Trivialmente sabemos que Ø, X ∈ Ta.
 - 2) Sea A_{i} familia tal que $A_{i} \in T_{a}$, e.d., $\forall i \in \Lambda$ $a \in A_{i}$ $\delta A_{i} = \emptyset \Rightarrow a \in \bigcup_{i \in \Lambda} A_{i} \Rightarrow \bigcup_{i \in \Lambda} A_{i} \in T_{a}$
 - 3) Sean $A_1, ..., A_n \in T_a$, e.d., $a \in A_i$ of $A_i = \emptyset$ $\forall i \in \{1, ..., n\}$ -Si $A_i = \emptyset$ para algum $i \in \{1, ..., n\}$ $\Rightarrow \bigcap_{i=1}^n A_i = \emptyset \Rightarrow \bigcap_{i=1}^n A_i \in T_a$ -Si $A_i \neq \emptyset$ para todo $i \in \{1, ..., n\}$ $\Rightarrow a \in \bigcap_{i=1}^n A_i$ ($a \in A_i \forall i$) $\Rightarrow \bigcap_{i=1}^n A_i \in T_a$.

Hemos demostrado que Ta es una topología.

```
\boxed{5} a) Hay que ver que |d(x,y) - d(x',y')| \leq d(x,x') + d(y,y'),
 e.d., -d(x_1x') - d(y_1y') \leq d(x_1y) - d(x'_1y') \leq d(x_1x') + d(y_1y')
  [4] Parhinos de que d(x',y') \leq d(x',x) + d(x,y) + d(y,y)
  (designal da d triangular). Cambiando de signo:
 -d(x',y') \ge -d(x',x) - d(x,y) - d(y,y') \implies
     \Rightarrow d(x,y) - d(x,y') <math>\geq -d(x,x') - d(y,y')
[2] Partimos de que d(x,y) \in d(x,x') + d(x',y') + d(y',y)
  (designal dad triangular). Pasando restando d(x', y') obtenemos:
  d(x,y) - d(x',y') \leq d(x,x') + d(y,y')
 Japal que arriba partimos de:
  d(x_n, y_n) \leq d(x_n, x) + d(x, y) + d(y, y_n)
 Tomando límites: \lim_{n\to\infty} d(x_n, y_n) \leq d(x_i, y) + \lim_{n\to\infty} \left(d(x_n, x)\right) + \lim_{n\to\infty} \left(d(y_n, y)\right)
 Kecordando la def. de limite:
  lim Sn = so ( >> VE>0 FnoelN: |Sn-so| < E Yn > no
 En nuestro caso Sn se corresponde con d(xn,yn) y so con
 d(x,y). Hemos demostrado que d(xn,yn) < d(x,y) n > 0,
 e.d., |d(x_{n_{1}}y_{n}) - d(x_{1}y_{1})| \le 0  n \to \infty (recordar que d(x_{1}y_{1}) \ne d(x_{n_{1}}y_{n}) = d(x_{1}y_{1}) mando n \to \infty. d(x_{n_{1}}x_{1}) \to 0
```

- 1) p, R2 e T (esta claro)
- 2) $Ai |_{i \in \Lambda} \in T \implies \forall i \ \forall (a,b) \in A_i \ \exists E_i : ((a-E_i,a+E_i) \times A_b) \cup (A_i) \times (b-E_i,b+E_i)) \subset A_i \implies \forall (a,b) \in \bigcup A_i \ \exists E_i \in \Lambda$ (podemos coger cualquier E_i valido del A_i de procedencia del elemento (a,b)) $\implies \bigcup A_i \in T$
- 3) $A_1,...,A_n \in \mathbb{C} \implies \forall (a,b) \in A_1,...,A_n \exists \mathcal{E}_i : ((a-\mathcal{E}_i,a+\mathcal{E}_i) \times i)$ $U(a_i) \in \mathcal{E}_i$, $b+\mathcal{E}_i) \in \mathcal{E}_i$ $U(a_i) \in \mathcal{E}_i$, $b+\mathcal{E}_i) \in \mathcal{E}_i$ $U(a_i) \in \mathcal{E}_i$, a_i a_i

COMPLEMENTO 1
-RECUERDO: - (X, T) espacio topológico
Una base para T es una subfamilia $B \subset T$ tal que $T = \{UB : E \subset B\}$
$G \in \mathbb{Z} \longrightarrow \mathbb{F}_{CB}$ tal que $G = \bigcup_{B \in G}$
Una sub-base of para C es una subfamilia de C tal
que $\{ \bigcap_{j \in \mathcal{I}} B_j : 151 < X_o, B_j \in J \}$ forman una base para $\{ \bigcap_{j \in \mathcal{I}} B_j : 151 < X_o \}$
GET => G=U NBj, IJa / Xo, Yxe A => XeA je Ja / XBja e f
G se describe como unión arbitraria de intersecciones finitas de elementos de la sub-base.
Ejercicio: $f \in \mathcal{F}(x)$ $\mathcal{B} := \{ \bigcap_{\text{finites}} S, S \in \mathcal{f} \}$
ciExiste una topología T* en X tal que f es una sub-base para T*? ciEs B. base para una topología T* sobre X?
a) $X = \bigcup B$ \rightarrow para demostrar esto dependence de f , $p.ej$, $g = f(0,2), (1,3)$ intersecciones finitar de $g = g = g = g = g = g = g = g = g = g $

b) B₁, B₂ ∈ B ⇒ ∀x ∈ B₁∩B₂, ∃B₃ ∈ B ← tal que x ∈ B₃ ⊂ B₁∩B₂ → com inters. finitar de inters. finitar er finitar podemos B₃ = B₁∩B₂