Семинар #2: Типы данных. Домашнее задание.

тип	размер (байт)	диапазон значений $(2^{\#bits})$	спецификатор
char	1	от -128 до 127	%hhi
short	2	от -32768 до 32767	$\%\mathrm{hi}$
int	4	примерно от -2-х миллиардов до 2-х миллиардов	$\%\mathrm{i}$
long	4 или 8	такой же как у int или long long в зависимости от системы	%li
long long	8	примерно от -10^{19} до 10^{19}	%lli
unsigned char	1	от 0 до 255	$\% \mathrm{hhu}$
unsigned short	2	от 0 до 65535	$\%\mathrm{hu}$
unsigned int	4	примерно от 0 до 4-х миллиардов	$\%\mathrm{u}$
unsigned long	4 или 8	такой же как y unsigned int или unsigned long long	%lu
unsigned long long	8	от 0 до $2^{64} \approx 2*10^{19}$	%llu
size_{t}	4	примерно от 0 до 4-х миллиардов	$\%\mathrm{zu}$
10-тичная система	-	-	%d
8-ричная система	-	-	%o
16-ричная система	-	-	$\%\mathrm{x}$

тип	размер (байт)	значимые цифры	диапазон экспоненты	спецификатор
float	4	6	от -38 до 38	%f
double	8	15	от -308 до 308	%lf
long double	от 8 до 16	≥ 15	не хуже чем у double	$\%\mathrm{Lf}$
печать только 3-х чисел после запятой	-	-	-	%.3f
печать без нулей на конце	-	=	-	$\%\mathrm{g}$
печать в научной записи	-	-	-	%e

Задача 1: Факториал

Для вычисления факториала была написана следующая простая программа.

```
#include <stdio.h>
int fact(int n) {
    int result = 1;
    for (int i = 1; i <= n; ++i) {
        result *= i;
    }
    return result;
}
int main() {
    int k;
    scanf("%i", &k);
    printf("%i\n", fact(k));
}</pre>
```

Однако, выяснилось, что эта программа правильно работает только для k от 0 до 12. При больших k программа выдаёт неверный ответ. Почему это происходит? Немного измените программу, чтобы она работала для k до 20 включительно.

вход	выход
5	120
13	6227020800
17	355687428096000
20	2432902008176640000

Задача 2: Размещения

В комбинаторике размещением (из n по k) A_n^k называется упорядоченный набор из k различных элементов из некоторого множества различных n элементов. Размещения вычисляются следующим образом: $A_n^k = \frac{n!}{(n-k)!}$. Напишите программу, которая будет вычислять размещения при условии, что $A_n^k < 2^{64}$. Проверьте вашу функцию на следующих значениях:

вход	выход
5 2	20
20 10	670442572800
30 12	41430393164160000
60 11	13679492361575040000

Задача 3: Простые функции

• Напишите функцию int round(float x), которая принимает на вход вещественное число и возвращает ближайшее целое к этому числу.

x	round(x)
5.4	5
5.6	6
-3.2	-3
-3.8	-4

• Напишите функцию int is_equal(float a, float b), которая принимает 2 числа и возвращает 1, если эти числа равны с точностью $\epsilon = 10^{-2}$. В ином случае программа должна возвращать 0. Используйте функцию fabs.

a b	is_equal(a, b)	
1 1.005	1	
2 2.1	0	
3 10	0	
4 3.999	1	

- Напишите функцию, int is_leap_year(int year) которая принимает на вход номер года и возвращает 1 если год является високосным и 0, если год таким не является.
 - год, номер которого кратен 400, високосный
 - остальные годы, номер которых кратен 100, невисокосные
 - остальные годы, номер которых кратен 4, високосные
- Напишите функцию, float yearfrac(int year, int day) которая принимает номер года year и номер дня с начала года day и возвращает прошедшую долю года.

year day	yearfrac(year, day)
2019 300	0.82192
2019 100	0.27397
2020 100	0.27322

Проверьте все эти функции, запустив их из функции main.

Задача 4: Объём п-мерного шара

 Φ ормула для n-мерного объёма n-мерного шара имеет вид:

$$V_n(R) = \begin{cases} \frac{2(\frac{n-1}{2})! \cdot (4\pi)^{\frac{n-1}{2}}}{n!} R^n, & \text{если } n - \text{нечётное} \\ \frac{\pi^{\frac{n}{2}}}{\frac{n}{2}!} R^n, & \text{если } n - \text{чётное} \end{cases}$$

Напишите программу, которая по заданному n будет вычислять отношение объёма n-мерного куба к объёму вписанному в него n-мерного шара, то есть $\frac{(2R)^n}{V_n(R)}$. Вам может понадобиться функция роw из библиотеки math.h.

вход	выход
1	1
2	1.27324
3	1.909859
6	12.384589
10	401.542796
15	85905.301384

Задача 5: Гамма-функция

Гамма-функция – это обобщение понятия факториала на вещественные числа. Определяется следующим образом:

$$\Gamma\left(x\right) = \int_{0}^{\infty} t^{x-1}e^{-t}dt$$

Легко вывести, что $\Gamma(n)=(n-1)!$ для натуральных n. Написать функцию, double gamma(double x), которая будет вычислять значение гамма-функции в точке x, при x>1. Для вычисления интеграла использовать метод трапеций с шагом step = 1e-2. Суммирование продолжать до тех пор пока площадь трапеции превышает eps = 1e-8 (то есть 10^{-8}). step и eps задать как константы. Понадобятся функции pow и exp из библиотеки math.h.

вход	выход
2	1.0
6	120.0
20	1.21645e+17
1.5	0.88623
2.5	1.32934
4.14159	7.188082

Задача 6: Угол

На вход программе поступают компоненты двух векторов. Нужно найти угол между ними в градусах.

вход	выход	
1 0	90	
0 1		
1 0	45	
1 1		
-1 0	135	
1 1		
-2 8	74.2913	
7 4		

Вам могут понадобиться следующие функции:

```
double sqr(double x) {
    return x * x;
}
double distance(double x1, double y1, double x2, double y2) {
    return sqrt(sqr(x1 - x2) + sqr(y1 - y2));
}
double length(double x, double y) {
    return distance(x, y, 0, 0);
}
double scalar_product(double x1, double y1, double x2, double y2) {
    return x1 * x2 + y1 * y2;
}
const double pi = 3.14159265359;
double to_degrees(double rad) {
    return rad * 180 / pi;
}
```

Задача 7: Две окружности

Напишите программу, которая проверяет пересекаются ли 2 окружности. Программа должна принимать на вход координаты центров окружностей и их радиусы и печатать следующее

- Outside если окружности не пересекаются и не находятся внутри друг друга
- Inside если малая окружность полностью находится внутри большой
- ullet Touching Outside если окружности касаются друг друга снаружи (с точностью $\epsilon=10^{-8}$).
- Touching Inside если окружности касаются друг друга изнутри (с точностью $\epsilon = 10^{-8}$).
- Intersecting если окружности пересекаются

Задача 8: Бинарный поиск

Пусть у нас есть монотонно возрастающая функция f(x), а наша задача заключается в том, чтобы найти решение уравнения f(x) = 0 на отрезке (l, h). Причём f(l) < 0, а f(h) > 0.

Для решения этой задачи можно применить метод бинарного поиска. Для этого находим значение функции в центре отрезка, то есть в точке $m=\frac{l+h}{2}$. Если в этой точке функция положительна или равна нулю, то изменяем значение h=m. Если же в этой точке функция отрицательна, то изменяем значение l=m. Таким образом отрезок, на котором находится решение был уменьшен в 2 раза. Повторяем эту процедуру до тех пор пока длина отрезка не станет меньше чем $\epsilon=10^{-8}$.

Напишите программу, которая будет решать эту задачу. Функция f(x) и значения l и h должны задаваться в тексте программы.

f(x), 1, h	выход
$f(x) = x^2 - 2$	1.41421
1 = 0, h = 2	
$f(x) = x^2 - 7$	2.64575
1 = 0, h = 7	
$f(x) = x^5 + 2x^4 + 5x^2 + 4x - 500$	3.05614
1 = 0, h = 10	
$f(x) = e^x \ln(x) - 7$	2.1896095
1 = 1, h = 5	

Задача 9: Окружность и отрезок

Напишите программу, которая проверяет пересекаются ли окружность и отрезок. Окружность задаётся координатами центра и радиусом, а отрезок – координатами начала и конца. Если окружность и отрезок пересекаются, то нужно найти координаты точки (или точек) пересечения.