Definition of Data Mining

Data Mining is the process of discovering useful patterns, trends, correlations, or knowledge from large sets of data using techniques from statistics, machine learning, artificial intelligence, and database systems.

It is often called **Knowledge Discovery in Databases (KDD)**.

Principles of Data Mining

- 1. **Data Preparation** Cleaning, integrating, and transforming raw data into a usable format.
- 2. Pattern Discovery Extracting meaningful patterns (association, clustering, classification, regression).
- 3. Validation Ensuring discovered patterns are valid and not random.
- 4. Actionable Knowledge Converting insights into decision-making or business strategies.
- 5. **Scalability** Methods must handle very large volumes of data.
- 6. **Privacy & Security** Protecting sensitive data while mining.
- 7. **Iterative Process** Data mining is not one-time; results improve with continuous feedback.

Advantages of Data Mining

- **Improved decision-making** Helps businesses, governments, and researchers make evidence-based decisions.
- **V** Pattern & trend detection Identifies hidden relationships not obvious in raw data.
- Customer insights Useful in marketing, recommendations (Amazon, Netflix), and CRM.
- V Fraud detection Detects unusual behavior in banking, insurance, etc.
- **Cost reduction & efficiency** Automates analysis, reducing manual work.
- V Forecasting & prediction Predicts future trends (sales, stock markets, disease outbreaks).

Disadvantages of Data Mining

- X Privacy issues Sensitive data can be misused (e.g., personal browsing or medical records).
- X High cost Requires powerful hardware, software, and skilled professionals.
- X Complexity Interpreting mined patterns may be difficult.
- X Inaccuracy If data is noisy or incomplete, results can be misleading.
- X Ethical concerns Data misuse (e.g., targeted ads, surveillance).
- X Dependence on quality data "Garbage in, garbage out" poor data leads to poor results.

• Do you want me to also explain the **types of data mining techniques** (like classification, clustering, association rules, regression, etc.) with examples? That will make your notes more complete.

Perfect <u>heavily</u> Let's break down **Association Rules Mining** in simple terms.

Association Rule Mining - Definition

Association Rule Mining is a **data mining technique** used to find **relationships (associations)** between items in large datasets.

It tells us:

f "If a customer buys item X, they are likely to also buy item Y."

This is often used in **market basket analysis** in supermarkets, e-commerce, and recommendation systems.

Key Terms in Association Rule Mining

- 1. Itemset A group of items (e.g., {Milk, Bread}).
- 2. Support How frequently an itemset appears in the dataset.

$$Support(X) = rac{ ext{Transactions containing X}}{ ext{Total Transactions}}$$

Example: If 2 out of 10 transactions have {Milk}, then Support(Milk) = 20%.

3. **Confidence** – How often Y is bought when X is bought.

$$Confidence(X
ightarrow Y) = rac{Support(X \cup Y)}{Support(X)}$$

Example: If 5 customers buy Milk, and 3 of them also buy Bread \rightarrow Confidence(Milk \rightarrow Bread) = 3/5 = 60%.

4. Lift - Measures the strength of a rule compared to random chance.

$$Lift(X
ightarrow Y) = rac{Confidence(X
ightarrow Y)}{Support(Y)}$$

If Lift $> 1 \rightarrow X$ and Y are positively correlated.

Example (Market Basket Analysis)

- Dataset (5 transactions):
 - T1: {Milk, Bread, Butter}
 - T2: {Milk, Bread}
 - T3: {Bread, Butter}
 - T4: {Milk, Bread, Butter}
 - T5: {Milk, Butter}

- Rule: Milk → Bread
 - Support = 3/5 = 60%
 - Confidence = 3/4 = 75%
 - Lift = 0.75 / 0.8 = 0.9375 (<1 means weak relation)

So, Milk \rightarrow Bread is not as strong, but other rules (like Butter \rightarrow Bread) might be stronger.

Algorithms Used in Association Rule Mining

- 1. Apriori Algorithm Uses frequent itemsets and generates strong rules.
- 2. FP-Growth Algorithm Faster, avoids candidate generation.
- 3. **ECLAT Algorithm** Uses depth-first search with vertical data representation.

Applications of Association Rule Mining

- **Market Basket Analysis** "People who buy diapers also buy beer."
- **Example 2** Recommendation Systems Amazon, Netflix suggestions.
- **Fraud Detection** Detect unusual patterns in credit card use.
- Medical Diagnosis Linking symptoms with diseases.
- **Web Usage Mining** Understanding user navigation patterns.

• Do you want me to also **compare Apriori and FP-Growth** (both are main algorithms for association rule mining) with examples?

Great ____ You're asking about the **different algorithms used in Association Rule Mining**. Let me explain each one clearly:

1. Naïve Algorithm

- Idea:
 - Generate all possible itemsets (1-itemset, 2-itemset, ..., n-itemset).
 - For each itemset, count its frequency in the dataset.
 - Keep those itemsets that satisfy the **minimum support threshold**.
- Problem:
 - Very inefficient because the number of possible itemsets grows exponentially (2ⁿ).
 - Not practical for large datasets.

2. Apriori Algorithm

• Improvement over Naïve Algorithm

- Uses the Apriori Property:
 - "If an itemset is frequent, then all of its subsets must also be frequent."
 - "If an itemset is not frequent, then all of its supersets cannot be frequent."

• Steps:

- 1. Find frequent 1-itemsets.
- 2. Use them to generate candidate 2-itemsets.
- 3. Prune candidates whose subsets are not frequent.
- 4. Repeat until no more frequent itemsets exist.
- Advantage: Reduces the search space.
- **Drawback:** Still requires multiple database scans.

3. Direct Hashing and Pruning (DHP)

- Enhancement of Apriori using hashing.
- How it works:
 - While generating candidate itemsets, use a hash table to count pairs.
 - Example: For candidate 2-itemsets, hash them into buckets → if a bucket count < min support, prune all itemsets in that bucket.

• Benefits:

- Reduces the number of candidate itemsets.
- Less database scanning compared to Apriori.
- Use case: Efficient for 2-itemset generation.

4. Dynamic Itemset Counting (DIC)

- Improvement over Apriori that reduces database scans.
- Idea:
 - Instead of scanning the database level by level, DIC starts checking **frequent itemsets dynamically** while reading the database.
 - Itemsets are **added gradually** as the database is scanned.

Advantages:

- Fewer database scans than Apriori.
- More efficient for very large datasets.
- Drawback:
 - Algorithm is more complex to implement.

Comparison Table

Algorithm	Key Idea	Pros	Cons
Naïve Algorithm	Generate all itemsets	Simple	Exponential time, impractical
Apriori	Uses Apriori property (subset pruning)	Reduces search space	Multiple DB scans
Direct Hashing & Pruning (DHP)	Hash candidate itemsets to prune early	Faster, fewer candidates	Mostly effective for 2- itemsets
Dynamic Itemset Counting (DIC)	Finds itemsets dynamically during DB scan	Fewer scans, efficient for big data	More complex implementation

• Do you want me to also make a **diagram/flowchart** for Apriori vs DHP vs DIC (for your notes), so it's easier to revise before exams?

Good question <u>Let's clearly separate DHP (Direct Hashing and Pruning)</u> and DIC (Dynamic Itemset Counting), since both are improvements over Apriori but work differently.

Difference between DHP and DIC

Feature	DHP (Direct Hashing and Pruning)	DIC (Dynamic Itemset Counting)
Main Idea	Uses hashing to prune candidate itemsets early (mainly 2-itemsets).	Finds frequent itemsets dynamically during database scanning.
Focus	Efficiently reduces the number of candidate itemsets (especially 2-itemsets).	Efficiently reduces the number of database scans .
How it works	- Candidate itemsets are hashed into buckets If a bucket count < min support, all itemsets in that bucket are pruned.	 The database is divided into intervals. As transactions are scanned, itemsets are gradually added and counted. Frequent itemsets are determined dynamically.
Database Scans	Requires multiple scans (like Apriori, but fewer candidates per scan).	Requires fewer scans than Apriori (since counting is dynamic).
Efficiency	Best improvement when generating 2-itemsets .	Best improvement for large datasets where repeated scanning is costly.
Complexity	Relatively simpler (just hashing + pruning).	More complex implementation (needs intervalbased checking).
Example Use	Useful when dataset is small/medium but has many candidate pairs.	Useful for very large datasets where Apriori is too slow.

✓ Summary:

- DHP = reduces candidate set size (by hashing & pruning).
- **DIC = reduces database scans** (by dynamically updating itemsets).

• Do you want me to also **draw a simple diagram/flow illustration** (showing how hashing works in DHP vs how DIC scans dynamically) for your notes? That would make it crystal clear.

Nice de you're now asking about **Performance Evaluation of Algorithms** (in the context of Data Mining, like Apriori, DHP, DIC, etc.).

Performance Evaluation of Algorithms

Evaluating a data mining algorithm means checking **how well and how efficiently** it discovers useful patterns.

We consider **two main aspects**:

1. Efficiency (Computational Performance)

Measures how fast and resource-friendly the algorithm is.

Key Metrics:

- Execution Time How long does the algorithm take to run?
- Memory Usage How much RAM does it consume?
- **Number of Database Scans** Fewer scans = more efficient (Apriori scans multiple times, DIC fewer times).
- Candidate Generation How many candidate itemsets are generated? (DHP reduces this a lot).
- Scalability Can the algorithm handle very large datasets efficiently?

2. Effectiveness (Quality of Results)

Measures how good the discovered rules/patterns are.

Key Metrics:

- **Support** How frequently an itemset occurs.
- Confidence How reliable a rule is.
- Lift / Interestingness Whether a rule is meaningful or just random.
- **Accuracy** Proportion of correct predictions/patterns.
- Coverage How much of the dataset is explained by the rules.

3. Other Considerations

- Interpretability Are the discovered rules easy to understand?
- Robustness Does the algorithm handle noisy or incomplete data well?
- **Cost** Computational resources and implementation effort.

Example (Association Rule Mining Algorithms)

Algorithm	Efficiency	Effectiveness
Naïve	Very low (too many candidates, exponential time)	Correct rules but impractical
Apriori	Better (prunes candidates, but many DB scans)	Good rules but can be slow
DHP	More efficient (reduces candidate size using hashing)	Same quality as Apriori
DIC	Most efficient (fewer DB scans, good for large data)	Good rules, faster discovery

✓ Summary:

Performance evaluation of algorithms is done by balancing **efficiency (time, memory, scalability)** and **effectiveness (accuracy, support, confidence, interestingness)**.

Perfect <u>hearth of the Perfect of th</u>

Classification in Data Mining

1. Introduction

- Classification is a supervised learning technique in data mining.
- Goal: Assign a new data item into one of the predefined classes (categories) based on past data.
- Example: Email → {Spam, Not Spam}, Disease diagnosis → {Positive, Negative}.

2. Decision Tree

- A tree-like model where:
 - Internal nodes = conditions/tests (e.g., "Is age > 30?").
 - Branches = outcomes of the test.
 - Leaf nodes = class labels (final decision).
- Easy to interpret and widely used.

3. Tree Induction Algorithms (Splitting Criteria)

When building a decision tree, we must decide **which attribute to split on** at each node. Common algorithms use:

(a) Information Theory (Entropy & Information Gain)

- Based on **Shannon's entropy** (measure of impurity/uncertainty).
- Information Gain (IG):

$$IG(Attribute) = Entropy(Parent) - \sum rac{|Subset|}{|Parent|} imes Entropy(Subset)$$

- Attribute with highest IG is chosen for splitting.
- Example Algorithm: **ID3, C4.5**.

(b) Gini Index

- Used in CART (Classification and Regression Tree) algorithm.
- Formula:

$$Gini(D) = 1 - \sum (p_i^2)$$

where p_i is the probability of class i.

• Attribute with lowest Gini impurity is chosen for split.

4. Naïve Bayes Method

- A probabilistic classifier based on Bayes' Theorem.
- Assumes features are **independent** (naïve assumption).
- Formula:

$$P(Class|X) = rac{P(X|Class) imes P(Class)}{P(X)}$$

• Example: Spam filtering → probability of spam given words like "Free", "Offer", etc.

5. Estimating Predictive Accuracy of Classification Method

After building a classifier, we must evaluate its performance.

Common methods:

- Confusion Matrix \rightarrow TP, FP, TN, FN.
- Accuracy = (TP + TN) / Total.
- **Precision & Recall** → Useful for imbalanced data.
- **F1 Score** = 2 × (Precision × Recall) / (Precision + Recall).
- **Cross-validation (k-fold)** → Divides dataset into training/testing multiple times.
- **ROC Curve & AUC** → Measure classification performance.

✓ Summary:

- Classification assigns data to predefined classes.
- Decision Tree → interpretable, uses splitting criteria (Information Gain, Gini Index).

- Naïve Bayes \rightarrow probabilistic, assumes independence.
- Performance evaluation ensures reliability (accuracy, precision, recall, etc.).

 → Do you want me to also create a diagram-based note (like Decision Tree example + Confusion Matrix table) so you can revise faster?