

O I P E
JUL 02 2002
PATENT & TRADEMARK OFFICE

Figure 1

Verfi: 1 to 3640

CCGGGGGAGTGGGGAGGAGGGGGGTCGGCCGCCGAGCCATGGAGGCCAAGTGGACCGGTTCTGTTCCAGGCCACGAAGCATCCCAT
M E A N W T A F L F Q A H E A S H 17 90
 CACCAACAGCAGGCAGCGAGAACAGCTTGCTGCCCTCTGAGTCTCTGCTGTTGGAGCCCTGATCAGAAACCGTTGCTCCAACTACCA
H Q Q Q A A Q N S L L P L L S S A V E P P D Q K P L L P I P 47 180
 ATTACTCAGAACCTCAGGTGACCCAGAACATTAAAGGATGCCATTGGGATTTAAAGAAAACCCAAAACCTCGTTGTGCTGCACT
I T Q K P Q A A P E T L K D A I G I K K E K P K T S F V C T 77 270
 TACTGCAGTAAAGCATTCAGGGACAGCTATCACCTGAGGCCCATCAGTCTGCCACACAGGGATCAAGTGGTGTCTGGCAAAGAAA
Y C S K A F R D S X H L R R H O S C H T G I K L V S R A K K 107 360
 ACCCCCACCRACGGTGGTCCCTTATCTCCACCATGCTGGGACAGCAGGCCAAGTGGTGTGCCAGTCTGCAAGAAACCCAGT
T P T T V V P L I S T I A G D S S R T S L V S T I A G I L S 137 450
 ACAGCTCACTACATCTCCCGGGACCAACCCAGCAGCAGGCCAGTACAGCAATGCCATGGCTGTGCCAGTCTGCAAGAAACCCAGT
T V T T S S S G T N P S S A S T T A M P V P Q S V K K P S 167 540
 AAGCTGTCAAGAAGAACCCAGCCTGTGAGATGTGGAAAGGCCCTCCGGGATGTGACCACTCAATCCGACAAGCTCTCCATTG
K P V K K N H A C E M C G K A F R D V X H L N R H K L S H 197 630
 GACGAAAAGCCCTTGTAGTGCTTATGTAACTAGCGCTTCAGAGGAAGGACCGATGACTTACCATGTGAGGTCTCATGAAGGAGGC
D E K P F E C P I C N O R E K R K D R M T X H V R S H E G G 227 720
 ATCACAAACCCATACTGCACTGTTGTGGAAAGGCTCTCAAGGCCATGGCTGTGCAAGACTACGGACACACATGGTGCACAGGAG
I T K P Y T C S V C G K G F S R P D H L S C H V K H V H S T 257 810
 GAAAGACCCCTCAATGCCAACCTGCACTGCTGCCCTTGGCCACCAAAGACAGACTACGGACACACATGGTGCACAGGAG
E R P F K C O T C T A A F A T K D R L R T H M V R H E G K V 287 900
 TCATGTAACATCTGTGGGAAGCTCTGAGTCAGCATATACCAAGCCACTAAAGACACATGGCAGAGGCCAAAGTATCAACTGTAAC
S C N I C G K L L S A A Y I T S H L K T H G Q S Q S I N C N 317 990
 ACGTGCAAACAAGGCATCAGCAAACAGTCAGTGAAGTGAGGAGACCGACAATCAGAAGCAGCAGCAGCAGCAGCAGCAGCAG
T C K Q G I S K T C M S E E T S N Q K Q Q Q Q Q Q Q Q Q Q Q Q 347 1080
 CAACAACAACAATGTGACAAGCTGGCAGGGAAAGCAGGTAGAGACACTGAGACTGTGGAAAGAGCTGTGCAAGCAAGAAGAG
Q Q Q Q Q H V T S W P G K Q V E T L R L W E E R V K A R K K E 377 1170
 GCTGCCAACCTGTGCCAACCTCACGGCTGCTACGACACCAGTGAECTCTCACTACTCCATTCAATATAACGTCTCTGTGCTGG
A A N L C Q T S T A A T T P V T L T T P F N I T S S V S S G 407 1260
 ACTATGTCAAACCCAGTCACAGTGGCAGCTGCAATGAGCATGAGAAGTCCAGTAAATGTCCTCAAGTGGCAAGTAAACATAACAGGCC
T M S N P V T V A A A M S M R S P V N V S S A V N I T S P L 437 1350
 GCCATGACCTCACCTTAAACACTCACCCAGTCACCCCTCCACCCCTGTGACCGCCCATGAAATATAGCACACCCCTGTACCCATC
A M T S P L T L T T P V N L P T P V T A P V N I A H P V T I 467 1440
 ACATCTCCAAATGAAACCTGCCACTCCATGACATTAGCTGCCCTCTCAATATAAGCAATGAGGCCCTGTAGAAAGTATGCC
T S P M N L P T P M T L A A P L N I A M R P V E S M P F L P 497 1530
 CAAGCTTGCCTACGTACCCGCCCTGGTAAAGATTATAAGCTAAATGGTAAAGTAAATTTACAGCAACTAACCTTAGTT
Q A L P T S P P W 506 1620
 GATTAAAGCAAAAGCAGACATGAAATTGGGAGGTTTATTATGTTAGTTAAAGAGTGTAGTAGCTCCAAATTGCTGGGTTGTT
AAAGTAGGTTATATGTTACTTATGACCTGACCTTTAGTTACTCAGAACCCCTTATAGCTGACACCAATTGCTTAAACAGGATAGTA
GCTGGCAAGACAAATGCCAGAATTAAACCAATCATAAAACCCATTCAAAATAAAACGATTATTGTTTATTATTATTTTAAT
ACAACAGAAATCATTATTGTTAAACACTGAGCAGAGTCTCTCTGCTACAGAGGTTTACCTGAGCTGAGCTGAGCTGAGCT
GAGAGCTAGTGTAGCATGCTGTGGTTGCTGCTGATGAGCTGAAACAGGCCATTGCTATAAAATGCTTACAGAGAAATATGCA
TACCTTGGAAATATGTTAATTTCAGGCAGATTCCCTATGGAAAGGTGATACAGGCTGTGATATGCAAAAGCATATGATAATTATGAT
TCTAACTCAACATATAATGGGATTGTGACTTATGGAGATGTAATTATTGCTCAGCATATACTCTGTGATGGAATATGAGCT
GTAGTTGACTTTAAAAAAACAAAAAAACAAAAAAAGGAAATTCCGAGCTGTGACTCTGCTGCTGATGTTGAATCTCTGGGATAGG
GGTGGCTTCAGAACCCAGAAGGGCAAGGCCAGAGCTCTGGCTGGAGGCTTACAGGAGCTGGCCGGGGTCCATAGAGACTGACAGGAG
TTGGCTTAGGCCAACAAAAGAGGCTTACAGGAGCTGGCTGGAGGCTTACAGGAGCTGGCTGGAGGCTTACAGGAGCTGGCTGG
AGTGTGAGCAGATGGTACTACTGAGCATGTCTACAGACCCAGTGTAGAGTGTGACTGTGGGATTTCCGGAGGTCCATCTCGGA
GACGGCTGGCAGCAGATGGTACTACTGAGCATGTCTACAGACCCAGTGTAGAGTGTGACTGTGGGATTTCCGGAGGTCCATCTCGGA
CTATCGCCGTGAGCCTGACTCCGCATGGCTGGCTGGGAGGCTTACAGGAGCTGGCTGGAGGCTTACAGGAGCTGGCTGG
TGGAGCAGCAATATGCCAGCCTCCATGGGAATGGAGGGAGTCTCCGCATGCCGCCAGGACACTGGCCTGTGGATGGAAG
CTTGGCAGACAGATGGTGAATGAGCTGGAGGAGGCTTACAGGAGGCTGGCTGGAGGCTTACAGGAGCTGGCTGGAGG
GATGGGGAGGCAAAAGGCCATCTGCAGATGGGACCCCTGCTGCTAGGGAGGGCCCTCCCTTCCCTTACAGGAGCTGG
TGGCAGCATGGCAGAGAGGAGGAGTACAGGCTGAGGCTGGAGGCTTACAGGAGCTGGCTGGAGGCTTACAGGAGCTGG
ACAGCCTGGCCTCTCGGCCACAGAGCATGGGCTAACAGATCTGGCTGGCTGGCTGGAGAACATCTGGGTCTGTG
AGTCCCACAAGACACCCTCCACCCAGAGAGCCATGGGGACCCATGGGGTGGACACCAGGGCTGGGTGGAGTGAACCTCTC
GGGCAAGGCTGGCTTACAGGAGCTGGCTGGCTGGAGAACATCTGGGTCTGTGAGTGAACCTCTCACCACAGGCTGG
TAGAGCAAGTACAGATGCCCTGTAGCCAGATTGGAGGCTGTCTGGTGTGCTAGGAGAAGGCCCTGCCCATTTG
TCTTAGGAGGTCTAGGACTGGGTATGGGAGTGGGGTCTGTGACTCTCAGTGGGCTCCCTGTCTAAGTGGTAAGGTGGGAT
TGTCTCATCTTGTCTAATAAAGCTGAGACTTGAAAAA

COPY OF PAPERS
ORIGINALLY FILED

Figure 2

Human DB1 DNA and Protein Sequences:

10 20 30 40 50 60
 AGCGGGGGAGTGGGAGGAGGGGGTCGGCCGCAGCCATGGAGGCCAACTGGACCG
 M E A N W T>
 70 80 90 100 110 120
 CGTTCCCTGTTCCAGGCCATGAAGCTTCCCACCAACAGCAGGCAGCACAGAACAGCT
 A F L F Q A H E A S H H Q Q Q A A Q N S>
 130 140 150 160 170 180
 TGCTGCCCTCCTGAGCTCTGCCGTGGAGCCCCCTGATCAGAAACCATTGCTTCCAATAC
 L L P L L S S A V E P P D Q K P L L P I>
 190 200 210 220 230 240
 CAATAACTCAGAAACCTCAGGGTGCACCAGAAACATTAAAGGATGCCATTGGGATTAAAA
 P I T Q K P Q G A P E T L K D A I G I K>
 250 260 270 280 290 300
 AAGAAAAACCCAAAACCTCATTGTGTGCACCTACTGCAGTAAAGCTTCAGGGACAGCT
 K E K P K T S F V C T Y C S K A F R D S>
 310 320 330 340 350 360
 ATCACCTGAGGCGCCACGAATCCTGCCACACAGGGATCAAGTTGGTGTCCCGGCCAAAGA
 Y H L R R H E S C H T G I K L V S R P K>
 370 380 390 400 410 420
 AAACCCCCACCACGGTGGTCCCTTATCTTACCATCGCTGGGACAGCAGCCGAACATT
 K T P T T V V P L I S T I A G D S S S R T>
 430 440 450 460 470 480
 CGTTGGTCTCGACCATTGCAGGCATCTTGTCAACAGTCAGTCACTACATCTCCTCGGGCACCA
 S L V S T I A G I L S T V T T S S S S G T>
 490 500 510 520 530 540
 ACCCCAGTAGCAGTGCCAGCACACAGCTATGCCAGTGAACCCAGTCTGTCAAGAAACCCA
 N P S S S A S T T A M P V T Q S V K K P>
 550 560 570 580 590 600
 GTAAGCCTGTCAAGAAGAACCATGCTTGTGAGATGTGTGGAAAGGCCTTCCGAGATGTGT
 S K P V K K N H A C E M C G K A F R D V>
 610 620 630 640 650 660
 ACCATCTCAATCGACACAAGCTCTCCATTCAAGATGAGAAACCCTTGAGTGTCCATT
 Y H L N R H K L S H S D E K P F E C P I>
 670 680 690 700 710 720
 GTAATCAGCGCTTCAAGAGGAAGGACCGGATGACTTACCATGTGAGGTCTCATGAAGGAG
 C N Q R F K R K D R M T Y H V R S H E G>
 730 740 750 760 770 780
 GCATCACCAAACCTATACTTGCAGTGTGGAAAGGCTTCTCAAGGCCTGACCACT
 G I T K P Y T C S V C G K G F S R P D H>

Figure 2 (con't)

790 800 810 820 830 840
 TAAGCTGTATGTAAAACATGTCCATTCAACAGAAAGACCCTCAAATGCCAAACGTGCA
 L S C H V K H V H S T E R P F K C Q T C>

 850 860 870 880 890 900
 CTGCTGCCCTTGCACCAAAGACAGACTGCGGACACACATGGTGCGCCATGAAGGCAAGG
 T A A F A T K D R L R T H M V R H E G K>

 910 920 930 940 950 960
 TATCATGTAACATCTGTGGGAAGCTCCTGAGTGCAGCATACTACACCAGCCACTTAAAGA
 V S C N I C G K L L S A A Y I T S H L K>

 970 980 990 1000 1010 1020
 CTCATGGGCAGAGCCAAAGTATCAACTGTAATACATGTAAACAAGGCATCAGTAAACAT
 T H G Q S Q S I N C N T C K Q G I S K T>

 1030 1040 1050 1060 1070 1080
 GCATGAGTGAAGAGAGCAGTAACCAAAAGCAGCAGCAGCAGCAGCAGCAACAACAC
 C M S E E T S N Q K Q Q Q Q Q Q Q Q Q Q>

 1090 1100 1110 1120 1130 1140
 AACAAACAACATGTGACAAGCTGCCAGGGAAAGCAAGTAGAAACACTCAGACTGTGGAAAG
 Q Q Q H V T S W P G K Q V E T L R L W E>

 1150 1160 1170 1180 1190 1200
 AAGCTGTTAAAGCAAGGAAGAAAGAAGCTGCTAACCTGTGCCAACCTCCACGGCTGCTA
 E A V K A R K K E A A N L C Q T S T A A>

 1210 1220 1230 1240 1250 1260
 CGACACCTGTGACTCTCACTACTCCATTCACTATAACATCCTCTGTGTCGTCTGAGACTA
 T T P V T L T T P F S I T S S V S S E T>

 1270 1280 1290 1300 1310 1320
 TGTCAAACCCAGTCACAGTGGCAGCTGCAATGAGCATGAGAAGTCCAGTAAATGTTCAA
 M S N P V T V A A A M S M R S P V N V S>

 1330 1340 1350 1360 1370 1380
 GTGCAGTTAACATAACCAGCCCAATGAACATAGGGCATCCTGTAACTATAACCAGTCCAT
 S A V N I T S P M N I G H P V T I T S P>

 1390 1400 1410 1420 1430 1440
 TATCCATGACCTCTCCTTAAACACTCACTACCCAGTCACACTCCCCACCCCCGTCACTG
 L S M T S P L T L T T P V N L P T P V T>

 1450 1460 1470 1480 1490 1500
 CCCCCAGTGAATATAGCACACCCCTGTCAACCACATCTCCAAATGAATCTACCCACACCTA
 A P V N I A H P V T I T S P M N L P T P>

 1510 1520 1530 1540 1550 1560
 TGACATTAGCCGCCCTCTCAATATAGCAATGAGACCTGTAGAGAGCATGCCCTTCTTGC
 M T L A A P L N I A M R P V E S M P F L>

Figure 2 (con't)

1570	1580	1590	1600	1610	1620
CCCAAGCTTGCCTACATCACCGCCTGGTAAACAGTATTATAAAATCAAAATATGGGTA					
P	Q	A	L	P	T
S	P	P	P	W	*
1630	1640	1650	1660	1670	1680
AAAGTAAATATTACCGCAACTAACCTTAACTTTAGTTGATTAAAGCAAAAGTAAACCATGA					
1690	1700	1710	1720	1730	1740
AATTGGGAGATTTATTACATTAGTTAATAAGAGTGTGGTAGCATTCTCCAATTGG					
1750	1760	1770	1780	1790	1800
CTGGGATTATTCAAAGTAGGGTGTGTATGTAACCTTATCACTGGACCACTTAGTTAAC					
1810	1820	1830	1840	1850	1860
AGAAATTCCCTTTAGCTGACAACATTGCTAACAGGATAGTAGTTGGCAAGATGAAATG					
1870	1880	1890	1900	1910	1920
CCAGAATTAAAACCAATCATAAGTAGAACCACACTCAAAATAAAAAACAGCATTACTAT					
1930	1940	1950	1960	1970	1980
TTCTAATCCCAAGGAATCACTTTATTGAAACACTAGCAGAACTCTTCTCCCTATACAAG					
1990	2000	2010	2020	2030	2040
GTGGATGGCTGATTTAACCTGAAATTAAATCCACAGATTGAGAGCTAGTGTAGAATT					
2050	2060	2070	2080	2090	2100
GTCTGTGTTATTGTTTATGAGTAAATACATGCATGTCATAATAAAATGCATTTCAG					
2110	2120	2130	2140	2150	2160
AGAATATGCATTTACCTTGGGAATATGTTAATTTCAGGCAGCATTCCCTATGGGAAAG					
2170	2180	2190	2200	2210	2220
GTGATACCAGCTCTGATATGCAAAGCATATGATAATTATCATTCTAACCTAACGTATA					
2230	2240	2250	2260	2270	2280
ATAGGGATTGTGACCTGATATTGGAGATGTAATATTGCTCAGCATATTAATCCCGATG					
2290	2300				
GAATATAGCATTGTAGTTGACTTTT					

Figure 3

Figure 4

Figure 5

Figure 6

22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Assignment of Vef1/mpuri:

Vef1	168	KPKKNAACMGKAFRUVHHLKLSNSDKPTECICHQPRKRDRTTHVPSHGGITKTYTCSVOKFSPDPLSCKVAVMASTERDFKQ	264
mpuri	275	KRURKHACMGKAFRUVHHLKLSNSDKPTECICHQPRKRDRTTHVPSHGGITKTYTCSVOKFSPDPLSCKVAVMASTERDFKQ	372
Vef1	265	TCTTAAPATHDRUHTMVHESKVSCHICLTLASAVTSHLHKTGQSINCNTCKGQISKTCSSETSTSKQOOOOOOOOOOOOOOOOQVTSWPKQ	360
mpuri	373	KCEAFAPATDRUHTMVHESKVSCHICLTLASAVTSHLHKTGQSINCNTCKGQISKTCSSETSTSKQOOOOOOOOOOOOOOQVTSWPKQ	469

Figure 7

Figure 8

Figure 9

Figure 10

Figure 11

Figure 12

Figure 13

A.

B.

C.

Figure 14

Figure 15**A: Jackson BSS Chromosome 2****B: Jackson BSS Chromosome 2**

17/20

Figure 16

Restriction Enzyme Map of a 20 kb Genomic DNA of the Vezf1 Gene

BamHI (B), EcoRI (E), EcoRV (E5), Eagl (Ea), NotI (N), PstI (P), SacI (S), XbaI (Xb), and Xhol (Xh).

— Intronic sequence;

1 Exon 1

2 Exon 2

Figure 17

Vezf1 EXPRESSION VECTORS

Figure 18