DATA STRUCTURES

By

Dr. Yasser Abdelhamid

OUTLINE

- Analysis of algorithms
- Asymptotic notations
- Counting algorithm steps
- * Insertion Sort

ANALYSIS OF ALGORITHMS

- It is extremely important to expect the resources required by an algorithm.
 - Execution Time
 - Amount of Memory
 - Other resources (disk usage, communication ports, software resources, etc.)

ALGORITHM PERFORMANCE

- Time Complexity is a function describing the amount of time required to run an algorithm in terms of the size of the input.
- Space Complexity is a function describing a mount of memory to run an algorithm takes in terms of the size of the input.

COMPLEXITY ANALYSIS ASSUMPTIONS

- Analysis is independent of the configuration of the computer where it will be executed.
- * Analysis is independent of the programming language that will be used.
- We are interested in cases where the input data (n) asymptotes to infinity (extremely big number of input elements).

ASYMPTOTIC NOTATIONS

ASYMPTOTIC NOTATIONS

- * Three standard notations: \mathbf{O} , Ω , θ .
- O, provides upper bound (Worst case) of the algorithm performance.
- $* \Omega$ provides lower bound (Best case) of the algorithm performance.
- * O, Ω , θ identify classes of functions
- Expected time (T) is a function of the number of input data elements (n)

WORST CASE

- The case that causes maximum number of steps to be executed.
- T(n) = upper bound on running time of an algorithm for an input of size n.

Example: Search for number 8

2 3	5	4	1	7	6
-----	---	---	---	---	---

O NOTATION ("BIG-O")

- * f(n) has the upper order (worst case) O(g(n)) if there is a constant c which is greater than 0, and nother constant n_0 that is greater than or equal to zero and f(n) is always less than or equal to c.g(n) for all values of $n \ge n_0$
- * f(n)=O(g(n)) if c > 0 and $n_0 >= 0$ such that f(n) <= c.g(n) for all values of $n >= n_0$.

BEST CASE

- The case that causes minimum number of steps to be executed.
- Example: Search for number 2

2 3 5 4 1 7 6

Ω NOTATION ("BIG-OMEGA")

- * f(n) has the lower order (best case) $\Omega(g(n))$ if there is a constant c which is greater than 0, and nother constant n_0 that is greater than or equal to zero, and f(n) is always greater than or equal to c.g(n) for all values of n greater than than or equal to n_0 .
- * $f(n) = \Omega(g(n))$ if c > 0 and $n_0 >= 0$ such that f(n) >= c.g(n) for all values of $n >= n_0$.

AVERAGE CASE

- We take all possible inputs and calculate computing time for all of the inputs
- T(n) =expected time of algorithm over all inputs of size n

ONOTATION ("BIG-THETA")

* f(n) has the average order $\theta(g(n))$ if there is a constant c_1 , c_2 which are greater than 0, and nother constant n_0 that is greater than or equal to zero, and f(n) is always greater than or equal to $c_1 \cdot g(n)$ and less than or equal to $c_2 \cdot g(n)$ for all values of n greater than than or equal to n_0 .

* $f(n) = \theta(g(n))$ if c_1 , $c_2 > 0$ and $n_0 > = 0$ such that $c_1 \cdot g(n) < = f(n) < = c_2 \cdot g(n)$ for all values of n

 $>= n_0.$

Find T(n) for the following program.

$$for(int \ i = 1; i \le n; i + +)$$

 $print \ i;$

* How many times does sum++ run?

ı	j	count
4	0,1,2,,n	n-0+1 = n-1
5	0,1,2,,n	n-0+1 = n-1
•••	•••	•••
n-1	0,1,2,,n	n-0+1 = n-1

number of times	= (n-1 -4 +1) * (n-1)
*	= (n-4)(n-1) = n(n-1)-4(n-1)
*	$= n^2 - 5n + 4$
*	$pprox O(n^2)$

How many times does sum++ run?

l l	j	count	
4	0,1,2,3,4	5	
5	0,1,2,3,4,5	6	
•••	•••	•••	
n-1	0n-1	n	

*	num	ber	of	times
•	114111	\sim 0 i	\mathbf{v}	

$$= \sum_{i=5}^{n} i = \sum_{i=1}^{n} i - \sum_{i=1}^{4} i$$

$$n(n+1)$$

$$= \frac{n(n+1)}{2} - 10$$

$$\approx \frac{1}{2} \mathbf{n}^2$$

$$\approx \bar{O}(n^2)$$

•

INSERTION SORT

- An efficient algorithm for sorting a list of small number of elements
- Works the way many people sort a hand of playing cards
- Start with an empty left hand and the cards are on the table
- Then remove one card at a time from the table and insert it into the correct position in the left hand.
- * To find the correct position for a card, we compare it with each of the cards already in the hand, starting from right.


```
Abdelhamid
```

```
"pseudocode"
```

```
INSERTION-SORT (A)

1 for j = 2 to A.length

2 key = A[j]

3 // Insert A[j] into the sorted sequence A[1 ... j - 1].

4 i = j - 1

5 while i > 0 and A[i] > key

6 A[i + 1] = A[i]

7 i = i - 1

8 A[i + 1] = key
```


EXAMPLE

ANALYSIS OF INSERTION SORT ALGORITHM

IN	SERTION-SORT (A)	cost	times
1	for $j = 2$ to A.length	c_1	n
2	key = A[j]	c_2	n-1
3	// Insert $A[j]$ into the sorted		
	sequence $A[1 j - 1]$.	0	n-1
4	i = j - 1	c_4	n-1
5	while $i > 0$ and $A[i] > key$	c_5	$\sum_{j=2}^{n} t_j$
6	A[i+1] = A[i]	c_6	$\sum_{j=2}^{n} (t_j - 1)$
7	i = i - 1	c_7	$\sum_{j=2}^{n} (t_j - 1)$
8	A[i+1] = key	c_8	n-1

- o t_j denotes the number of times the while loop test in line 5 is executed for that value of j.
- Comments are not executable statements, and so they take no time.

ANALYSIS OF INSERTION SORT ALGORITHM

Running Time of Insertion Sort:

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8 (n-1).$$

In INSERTION-SORT, the best case occurs if the array is already sorted.

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 (n-1) + c_8 (n-1)$$

= $(c_1 + c_2 + c_4 + c_5 + c_8) n - (c_2 + c_4 + c_5 + c_8)$.

THANK YOU

