Теория автоматов и формальных языков За пределами контекстно-свободных языков

Автор: Григорьев Семён

Санкт-Петербургский государственный университет

10 декабря 2020

Слегка контекстно-зависимые языки (Mildly context sensitive)

Выйти за пределы КС языков, но сохранить "хорошие свойства"

- Полиномиальное время синтаксического анализа (для фиксированной грамматики)
- Невыразимость "слишком сложных структур"
- Полулинейность
- . . .

Multiple Context-Free Grammars

Больше информации в презентациях Sylvain Salvati

Определение

m-MCFG(r) это четвёрка $\langle \Sigma, N, S, P \rangle$

- **Σ** терминальный алфавит
- N нетерминальные символы. Максимальный ранг (арность, местность) равен т
- S— стартовый нетерминальный симовл ранга 1
- Р множество правил вида

$$A(s_1, \ldots, s_k) \leftarrow B_1(x_1^1, \ldots, x_{k_1}^1), \ldots, B_n(x_1^n, \ldots, x_{k_n}^n)$$

- \triangleright A нетерминал ранга k, B_i нетерминалы ранга k_i , $n \le r$
- \triangleright Bce x_i^i попарно различны (переменные)
- $s_i \in (\Sigma \cup X)^*, X = \bigcup_{i=1}^n \bigcup_{j=1}^{k_i} x_j^i$

Пример (КС грамматики)

$$S \rightarrow aSb$$

 $S \rightarrow \varepsilon$

$$S(axb) \leftarrow S(x)$$

 $S(\varepsilon) \leftarrow$

Пример (КС грамматики)

$$S \rightarrow aSb$$

 $S \rightarrow \varepsilon$

$$S(axb) \leftarrow S(x)$$

 $S(\varepsilon) \leftarrow$

$$S \rightarrow aSbS$$

 $S \rightarrow \varepsilon$

$$S(ax_1bx_2) \leftarrow S(x_1), S(x_2)$$
$$S(\varepsilon) \leftarrow$$

Пример

$$S(x_1y_1x_2y_2) \leftarrow P(x_1, x_2), Q(y_1, y_2)$$

$$P(ax_1, bx_2) \leftarrow P(x_1, x_2)$$

$$P(\varepsilon, \varepsilon) \leftarrow$$

$$Q(cx_1, dx_2) \leftarrow Q(x_1, x_2)$$

$$Q(\varepsilon, \varepsilon) \leftarrow$$

Пример

$$S(x_1y_1x_2y_2) \leftarrow P(x_1, x_2), Q(y_1, y_2)$$

$$P(ax_1, bx_2) \leftarrow P(x_1, x_2)$$

$$P(\varepsilon, \varepsilon) \leftarrow$$

$$Q(cx_1, dx_2) \leftarrow Q(x_1, x_2)$$

$$Q(\varepsilon, \varepsilon) \leftarrow$$

$$L = \{a^n c^m b^n d^m \mid n \in \mathbb{N}, m \in \mathbb{N}\}$$

Расширения MCFG

• PMCFG (parallel MCFG)

$$A(x, ax) \leftarrow B(x)$$

2

$$A(x) \leftarrow B(x), C(x)$$

3 simpleLMG

$$A(x,x) \leftarrow B(x), C(x)$$

Расширения MCFG

1 PMCFG (parallel MCFG)

$$A(x,ax) \leftarrow B(x)$$

2

$$A(x) \leftarrow B(x), C(x)$$

3 simpleLMG

$$A(x,x) \leftarrow B(x), C(x)$$

$$MCFL \subsetneq PMCFL \subsetneq simpleLMG = P$$

 $\{a^{2^n} \mid n \geq 0\} \in PMCFL - MCFL$
 $S(xx) \leftarrow S(x)$
 $S(a) \leftarrow$

Разновидности MCFG

• Неудаляющая — $orall i\in\{i,\ldots,n\}, j\in\{1,\ldots,k_i\}\; x_j^i$ используется в s_1,\ldots,s_k

Разновидности MCFG

- Неудаляющая $orall i \in \{i,\dots,n\}, j \in \{1,\dots,k_i\} \; x_i^j$ используется в s_1,\dots,s_k
- Непереставляющая $\forall i \in \{i,\dots,n\}, j,k \in \{1,\dots,k_i\},$ еслиj < k, то x_j^i встречается в s_1,\dots,s_k перед x_k^i

Разновидности MCFG

- Неудаляющая $orall i \in \{i,\dots,n\}, j \in \{1,\dots,k_i\} \; x_i^i$ используется в s_1,\dots,s_k
- Непереставляющая $\forall i \in \{i,\dots,n\}, j,k \in \{1,\dots,k_i\},$ еслиj < k, то x_i^i встречается в s_1,\dots,s_k перед x_k^i
- Well-nested неудаляющая, непереставляющая и

$$\forall i, i' \in \{i, ..., n\}, i \neq i',
j \in \{1, ..., k_i - 1\}, j \in \{1, ..., k_{i'} - 1\},
s_1 \cdots s_k \notin (\Sigma \cup X)^* x_j^i (\Sigma \cup X)^* x_{j'}^{i'} (\Sigma \cup X)^* x_{j+1}^{i} (\Sigma \cup X)^* x_{j'+1}^{i'} (\Sigma \cup X)^*$$

Пример well-nested MCFG

- ✓ $A(x_1, z_1, z_2, x_2, y_1, y_2, y_3, x_3) \leftarrow B(x_1, x_2, x_3), C(y_1, y_2, y_3), D(z_1, z_2)$
- \times $A(z_1, x_1, y_1, x_2, z_2, y_2, x_3, y_3) \leftarrow B(x_1, x_2, x_3), C(y_1, y_2, y_3), D(z_1, z_2)$

Лемма о накачке

Теорема (genaral MCFG)

$$orall L \in m ext{-MCFG} \ \exists n \geq 1 \ \underline{\exists z} \in L(|z| \geq n)$$
 $\exists \ p$ азбиение $z = u_1 v_1 w_1 s_1 u_2 \dots u_m v_m w_m s_m u_{m+1}, \Sigma |v_j s_j| \geq 1$ $\forall i \geq 0 : z_i = u_1 v_1^i w_1 s_1^i u_2 \dots u_m v_m^i w_m s_m^i u_{m+1} \in L$

Лемма о накачке

Теорема (genaral MCFG)

$$orall L \in m ext{-MCFG} \ \exists n \geq 1 \ \underline{\exists z} \in L(|z| \geq n)$$
 $\exists \ p$ азбиение $z = u_1 v_1 w_1 s_1 u_2 \dots u_m v_m w_m s_m u_{m+1}, \Sigma |v_j s_j| \geq 1$ $orall i \geq 0 : z_i = u_1 v_1^i w_1 s_1^i u_2 \dots u_m v_m^i w_m s_m^i u_{m+1} \in L$

Teopeмa (well-nested MCFG)

$$orall L \in m$$
-wn $MCFG \exists n \geq 1 \ \underline{\forall z} \in L(|z| \geq n)$ \exists разбиение $z = u_1 v_1 w_1 s_1 u_2 \dots u_m v_m w_m s_m u_{m+1}, \Sigma |v_j s_j| \geq 1$ $orall i \geq 0 : z_i = u_1 v_1^i w_1 s_1^i u_2 \dots u_m v_m^i w_m s_m^i u_{m+1} \in L$

Иерархии внутри MCFL

Теорема

(m*(k-1))-MCFL $(r-k)\subseteq m$ -MCFL(r) если $1\leq k\leq r-2$

Иерархии внутри MCFL

Теорема

$$(m*(k-1))$$
-MCFL $(r-k) \subseteq m$ -MCFL (r) если $1 \le k \le r-2$

Теорема (Seki et al)

 $L_{m+1}=\{a_1^nb_1^n\cdots a_{m+1}^nb_{m+1}^n\mid n\in\mathbb{N}\}$ является (m+1)-МСFL(1), но не является m-МСFL(r) ни для какого r

Иерархия по m

Теорема

1-MCFL = CFL

Теорема

1-MCFL = CFL

Теорема

1- $MCFL(1) \subsetneq 1$ -MCFL(2)

Теорема

1-MCFL = CFL

Теорема

1-MCFL(1) \subsetneq 1-MCFL(2)

Теорема

$$1-MCFL(r) = 1-MCFL(r+1), r \ge 2$$

Теорема (Ramow, Satta)

$$2$$
- $MCFL(2) = 2$ - $MCFL(3)$

Теорема

Если m > 2 или r > 2, то m-MCFL $(r) \subsetneq m$ -MCFL(r+1)

Иерархия по r

MIX

- $\mathit{mix} = \{\omega \in \{a,b\}^* \mid |\omega|_a = |\omega|_b\}$ контекстно-свободный язык
- $\mathit{MIX} = \{\omega \in \{a,b,c\}^* \mid |\omega|_a = |\omega|_b = |\omega|_c\}$ MCFL? Хотелось верить, что нет
 - ▶ MIX is a 2-MCFL and the word problem in \mathbb{Z}^2 is solved by a third-order collapsible pushdown automaton, Sylvain Salvati, 2011

MIX

- $\mathit{mix} = \{\omega \in \{a,b\}^* \mid |\omega|_a = |\omega|_b\}$ контекстно-свободный язык
- $\mathit{MIX}=\{\omega\in\{a,b,c\}^*\mid |\omega|_a=|\omega|_b=|\omega|_c\}$ MCFL? Хотелось верить, что нет
 - ▶ MIX is a 2-MCFL and the word problem in \mathbb{Z}^2 is solved by a third-order collapsible pushdown automaton, Sylvain Salvati, 2011
- $O_2 = \{\omega \in \{a, \overline{a}, b, \overline{b}\}^* \mid |\omega|_a = |\omega|_{\overline{a}} \wedge |w|_b = |w|_{\overline{b}}\}$
- $O_n = \{\omega \in \{a_1, \overline{a_1}, a_2, \overline{a_2}, \dots, a_n, \overline{a_n}\}^* \mid |\omega|_{a_1} = |\omega|_{\overline{a_1}} \wedge |w|_{a_2} = |w|_{\overline{a_2}} \wedge \dots \wedge |w|_{a_n} = |w|_{\overline{a_n}}\}$
- $MIX_n = \{\omega \in \{a_1, \dots, a_n\}^* \mid |\omega|_{a_1} = |\omega|_{a_2} = \dots = |\omega|_{a_n}\}$

MIX

- $\mathit{mix} = \{\omega \in \{a,b\}^* \mid |\omega|_a = |\omega|_b\}$ контекстно-свободный язык
- $\mathit{MIX}=\{\omega\in\{a,b,c\}^*\mid |\omega|_a=|\omega|_b=|\omega|_c\}$ MCFL? Хотелось верить, что нет
 - MIX is a 2-MCFL and the word problem in \mathbb{Z}^2 is solved by a third-order collapsible pushdown automaton, Sylvain Salvati, 2011
- $O_2 = \{\omega \in \{a, \overline{a}, b, \overline{b}\}^* \mid |\omega|_a = |\omega|_{\overline{a}} \wedge |w|_b = |w|_{\overline{b}}\}$
- $O_n = \{\omega \in \{a_1, \overline{a_1}, a_2, \overline{a_2}, \dots, a_n, \overline{a_n}\}^* \mid |\omega|_{a_1} = |\omega|_{\overline{a_1}} \wedge |w|_{a_2} = |w|_{\overline{a_2}} \wedge \dots \wedge |w|_{a_n} = |w|_{\overline{a_n}}\}$
- $MIX_n = \{\omega \in \{a_1, \dots, a_n\}^* \mid |\omega|_{a_1} = |\omega|_{a_2} = \dots = |\omega|_{a_n}\}$
- MIX_n регулярно эквивалентен O_n (существует алгоритм построения грамматики одного языка по грамматике другого)
 - ▶ O_n is an n-MCFL, Sylvain Salvati, 2018

Направления развития

- Уточнение внутренних иерархий
- Сопоставление с другими классами и иерархиями
- Представимость языков
 - ▶ Варианты леммы о накачке
 - ▶ Представимость конкретных языков
 - Многомерный язык Дика: Towards a 2-Multiple Context-Free Grammar for the 3-Dimensional Dyck Language, Konstantinos Kogkalidis, Orestis Melkonian, 2019
 - Шафл языков Дика: Context-sensitive data-dependence analysis via linear conjunctive language reachability, Qirun Zhang, Zhendong Su et al, 2017

Граммтики и искуственные нейронные сети

- Учёт синтаксической структуры при синтезе: Grammar variational autoencoder, Kusner M. J., Paige B., Hernandez-Lobato J. M., 2017
- Восстановление синтаксической структуры: End-to-end Graph-based TAG Parsing with Neural Networks, Jungo Kasai, Robert Frank et al, 2018
- Извлечение грамматик: Distributional Learning of Context-Free and Multiple Context-Free Grammars, Alexander Clark, Ryo Yoshinaka, 2019