Database Systems

-Relational Database Design

Dr. Rudra Pratap Deb Nath

Associate Professor

Department of Computer Science and Engineering

University of Chittagong

rudra@cu.ac.bd

4th Semester 2024

Motivation

- A good design prevents problems that occur later during usage
- Changing a database schema before it is in use is much cheaper
- Redundancy is the source of many problems and should be avoided by meeting certain design criteria

Learning Goals

- Understand the concepts of functional dependencies, attribute closure and normal forms
- Describe the quality of a design by using normal forms
- Improve a database design by decomposition of relations

Anomalies Why is this a bad schema?

empid	name	rank	office	courseld	title	ects
2125	Socrates	C4	226	5041	Ethics	4
2125	Socrates	C4	226	5049	DBS	2
2125	Socrates	C4	226	4052	Logics	4
2137	Kant	C4	7	5001	Basics	4
2126	Russel	C4	232	5043	Theory of Cognition	3
2126	Russel	C4	232	5052	Theory of Science	3
2128	Russel	C2	230	5216	Bioethics	2
2133	Popper	C3	52	5259	Advanced Algorithms	2
2134	Augustinus	C3	309	5022	Belief and Knowledge	2
2137	Kant	C4	7	4630	Constructive Criticism	4

Modification Anomalies

empid	name	rank	office	courseld	title	ects
2125	Socrates	C4	226	5041	Ethics	4
2125	Socrates	C4	226	5049	DBS	2
2125	Socrates	C4	226	4052	Logics	4
2137	Kant	C4	7	5001	Basics	4
2126	Russel	C4	232	5043	Theory of Cognition	3
2126	Russel	C4	232	5052	Theory of Science	3
2128	Russel	C2	230	5216	Bioethics	2
2133	Popper	C3	52	5259	Advanced Algorithms	2
2134	Augustinus	C3	309	5022	Belief and Knowledge	2
2137	Kant	C4	7	4630	Constructive Criticism	4
-	-	-	-	4000	Data Structures	4

Insert anomaly: Insertion of a new course is not allowed.

Modification Anomalies

empid	name	rank	office	courseld	title	ects
2125	Socrates	C4	338	5041	Ethics	4
2125	Socrates	C4	226	5049	DBS	2
2125	Socrates	C4	226	4052	Logics	4
2137	Kant	C4	7	5001	Basics	4
2126	Russel	C4	232	5043	Theory of Cognition	3
2126	Russel	C4	232	5052	Theory of Science	3
2128	Russel	C2	230	5216	Bioethics	2
2133	Popper	C3	52	5259	Advanced Algorithms	2
2134	Augustinus	C3	309	5022	Belief and Knowledge	2
2137	Kant	C4	7	4630	Constructive Criticism	4
-	-	-	-	4000	Data Structures	4

Update anomaly: Update the teacher's office to 338 who teaches Ethics.

Modification Anomalies

empid	name	rank	office	courseld	title	ects
2125	Socrates	C4	338	5041	Ethics	4
2125	Socrates	C4	226	5049	DBS	2
2125	Socrates	C4	226	4052	Logics	4
2137	Kant	C4	7	5001	Basics	4
2126	Russel	C4	232	5043	Theory of Cognition	3
2126	Russel	C4	232	5052	Theory of Science	3
2128	Russel	C2	230	5216	Bioethics	2
2133	Popper	C3	52	5259	Advanced Algorithms	2
2134	Augustinus	C3	309	5022	Belief and Knowledge	2
?	?	?				
-	-	-	-	4000	Data Structures	4

Delete anomaly: No more "Constructive Criticism" course.

A Good Decomposition

courseOffers

professor ⋈ course

empid	name	rank	office	courseid	title	ects
2125	Socrates	C4	226	5041	Ethics	4
2125	Socrates	C4	226	5049	DBS	2
2125	Socrates	C4	226	4052	Logics	4
2137	Kant	C4	7	5001	Basics	4
2126	Russel	C4	232	5043	Theory of Cognition	3
2126	Russel	C4	232	5052	Theory of Science	3
2128	Russel	C2	230	5216	Bioethics	2
2133	Popper	C3	52	5259	Advanced Algorithms	2
2134	Augustinus	C3	309	5022	Belief and Knowledge	2
2137	Kant	C4	7	4630	Constructive Criticism	4

Requirements:

- Includes all the attributes ✓
- Lossless-join decomposition

 $\pi_{\text{courseid,title,ects,empid}}(\text{courseOffers})$

course

$\Pi_{empid,name,rank,office}$	courseOffers)
--------------------------------	---------------

. ,	, ,			
empid	name	rank	office	
2125	Socrates	C4	226	
2126	Russel	C4	232	
2128	Russel	C2	230	
2133	Popper	C3	52	
2134	Augustinus	C3	309	
2137	Kant	C4	7	

professor

courseid	title	ects	empia
5001	Basics	4	2137
5041	Ethics	4	2125
5043	Theory of Cognition	3	2126
5049	DBS	2	2125
4052	Logics	4	2125
5052	Theory of Science	3	2126
5216	Bioethics	2	2128
5259	Advanced Algorithms	2	2133
5022	Belief and Knowledge	2	2134
4630	Constructive Criticism	4	2137

A Bad Decomposition

courseOffers

	empid	name	rank	office	courseid	title	ects
	2125	Socrates	C4	226	5041	Ethics	4
	2125	Socrates	C4	226	5049	DBS	2
	2125	Socrates	C4	226	4052	Logics	4
	2137	Kant	C4	7	5001	Basics	4
Г	2126	Russel	C4	232	5043	Theory of Cognition	3
	2126	Russel	C4	232	5052	Theory of Science	3
	2128	Russel	C2	230	5216	Bioethics	2
	2133	Popper	C3	52	5259	Advanced Algorithms	2
	2134	Augustinus	C3	309	5022	Belief and Knowledge	2
	2137	Kant	C4	7	4630	Constructive Criticism	4

Requirements:

- Includes all the attributes
- Lossless decomposition x

 $\pi_{\text{courseid,title,ects,name}}(\text{courseOffers})$

ects

name

Kant

Kant

course

courseid

5001

4630

$\pi_{\text{empid},\text{name},\text{rank},\text{office}}$	(courseOffers)
--	----------------

	Citipia,	name,ram,omee			,
	empid	name	rank	office	
١	2125	Socrates	C4	226	professor
	2126	Russel	C4	232	
	2128	Russel	C2	230	
ı	2133	Popper	C3	52	
	2134	Augustinus	C3	309	
	2137	Kant	C4	7	
	2137	Kant	C4	7	

5041	Fthics	4	Socrates
5043	Theory of Cognition	3	Russel
5049	DR2	2	Socrates
4052	Logics	4	Socrates
5052	Theory of Science	3	Russel
5052 5216	Theory of Science Bioethics	3 2	Russel Russel
	•		

title

Basics

Constructive Criticism

Functional Dependencies

- lacktriangle Let $\alpha \subseteq \mathcal{R}$ and $\beta \subseteq \mathcal{R}$ be sets of attributes
- **A functional dependency** $\alpha \rightarrow \beta$ holds on the schema \mathcal{R} if for all legal instances R of \mathcal{R} :

$$\forall t1, t2 \in \mathbb{R} : t1.\alpha = t2.\alpha \Rightarrow t1.\beta = t2.\beta$$

- The α values **uniquely identify** the β values
- **Φ** α functionally determines β
- If $\beta \subseteq \alpha$, $\alpha \to \beta$ is called **trivial**: Always valid
- If $\alpha \cap \beta = \emptyset$, $\alpha \to \beta$ is called **non-trivial**: the validity should be checked.

Functional Dependencies (find correct ones)

- $\bullet \{empid\} \rightarrow \{name\}$
- $\bullet \text{ } \{\text{name}\} \rightarrow \{\text{empi}d\}$
- $\{\text{name, empid}\} \rightarrow \{\text{rank, off} ice\}$

empid	name	rank	office
2125	Socrates	C4	226
2126	Russel	C4	232
2128	Russel	C2	230
2133	Popper	C3	52
2134	Augustinus	C3	309
2137	Kant	C4	7

Given the following relation, which functional dependencies are fulfilled?

Α	В	С	D
a1	b1	c1	d
a2	b2	c2	d21
a2	b2	c2	d3
a3	b1	c3	d3

^{**} Functional dependencies are semantic constraints that need to be true for all possible instances

Super Key

- $\bullet \alpha \subseteq \mathcal{R}$ is a super key if $\alpha \rightarrow \mathcal{R}$, i.e., α determines all attribute values
- The set of all attributes is a super key: $\mathcal{R} \rightarrow \mathcal{R}$
- Super keys are not necessarily minimal
- empid is a superkey in our example
- But { empid, personid } is also a superkey

empid	personid	name	rank	office
2125	123654	Socrates	C4	226
2126	234569	Russel	C4	232
2128	234570	Russel	C2	230
2133	112255	Popper	C3	52
2134	36528	Augustinus	C3	309
2137	12365	Kant	C4	7

Super Key

- Maximum number of possible super key of a relation with n attributes : = $2^n 1$
- What is the maximum number of the super key of the given relation?

Α	В	С	D
1	1	5	1
2	1	7	1
3	1	7	1
4	2	7	1
5	2	5	1
6	2	5	2

Candidate Key

- $m{\emptyset}$ is fully functionally dependent on α if $\alpha \to \beta$ and the functional dependency $\alpha' \to \beta$ does not hold for any α' , $\alpha' \subset \alpha$
- \bullet $\alpha \subseteq \mathcal{R}$ is a candidate key if \mathcal{R} is fully functionally dependent on α
- Candidate key is the super key whose proper subset is not a super key, i.e., minimal super key
- One of the candidate keys is chosen as primary key.

Deriving functional dependencies

● { building } → { dept }

{ dept } → { building }

● { building, number } → { empid }

empid	name	dept	building	number
2125	Socrates	PHI	2	3
2126	Russel	SCI	7	3
2128	Russel	PHI	2	5
2133	Popper	CS	9	5
2134	Augustinus	THE	5	7

- { building, number } → { empid, name, dept, building, number }

The closure of a set of functional dependencies

- Let F be a set of functional dependencies, its closure is denoted as F+
- F⁺ includes all the functional dependencies that can be derived from F, i.e., all FDs logically implied by dependencies in F
- Inference rules (Armstrong axioms) can be used to compute F⁺

Armstrong axioms

- Let α, β, γ, δ be subsets of attributes in \mathcal{R}
- **Parameters** Reflexivity: if $\beta \subseteq \alpha$ then $\alpha \rightarrow \beta$
- **Augmentation**: if $\alpha \rightarrow \beta$ then $\alpha \gamma \rightarrow \beta \gamma$
- **Transitivity**: if $\alpha \rightarrow \beta$ and $\beta \rightarrow \gamma$ then $\alpha \rightarrow \gamma$
- These axioms are sound and complete
- They generate all the possible correct funcional dependencies and only those that are correct

Armstrong axioms

- **Union**: if $\alpha \rightarrow \beta$ and $\alpha \rightarrow \gamma$ then $\alpha \rightarrow \beta \gamma$
- **Decomposition**: if $\alpha \rightarrow \beta \gamma$ then $\alpha \rightarrow \beta$ and $\alpha \rightarrow \gamma$
- **Pseudotransitivity**: if $\alpha \rightarrow \beta$ and $\gamma\beta \rightarrow \delta$ then $\alpha\gamma \rightarrow \delta$
- These rules are not essential, but sound and ease the derivation process
- It is possible to prove that these rules are sound using only the Armstrong axioms

Example

- Functional dependencies F:
 - \bullet A \rightarrow BC
 - \bullet CD \rightarrow E
 - \bullet B \rightarrow D
 - \bullet E \rightarrow A
- Derived FDs:
 - \bullet E \rightarrow A and A \rightarrow BC, then E \rightarrow BC
 - B \rightarrow D, then CB \rightarrow CD
 - \bullet CB \rightarrow CD and CD \rightarrow E, then CB \rightarrow E

Class assignment- 7.6,

Reflexivity: if $\beta \subseteq \alpha$ then $\alpha \to \beta$ Augmentation: if $\alpha \to \beta$ then $\alpha \gamma \to \beta \gamma$ Transitivity: if $\alpha \to \beta$ and $\beta \to \gamma$ then $\alpha \to \gamma$

Closure of a set of attributes

- How can you test whether α is a super key using F?
- Given $\mathcal{R}(A, B, C, D, E)$, $FD: \{A \rightarrow B, B \rightarrow C, C \rightarrow D, D \rightarrow E\}$, Determine the set of attributes can be determined by A, B, C, and D.
- To test whether α is a super key, we need to compute the set of attributes functionally determined α
- The closure of a set of attributes α with respect to a set of FDs F is denoted as α^+ , $\alpha^+ = \{A | \alpha \to A \in F^+\}$

Closure of a set of attributes

▶ Relation R: {[A, B, C, D, E]}

 \bullet α = { A, B } and F is

- \bullet A \rightarrow BC
- \bullet CD \rightarrow E
- \bullet B \rightarrow D
- \bullet E \rightarrow A

```
● result = { A, B, C, D, E }
```

```
attrClosure(F : set of FDs; α : set of attributes)

result = α

repeat

for each β → γ in F do

if β ⊆ result then

result = result ∪ γ

end if

end for

until (result does not change)
```

More on Attribute Closure Algorithm

Closure of a set of attributes

- The attribute closure algorithm computes the closure correctly. It terminates and when it terminates, all parts of the closure are in the result
- The attribute closure algorithm can be used to test if a functional dependency holds and if a given set of attributes is a super key
- If $\alpha^+=\mathcal{R}$, then α is a super key of \mathcal{R}

```
attrClosure(F : set of FDs; α : set of attributes)
result = α
repeat
for each β → γ in F do
if β ⊆ result then
result = result ∪ γ
end if
end for
until (result does not change)
```

Finding all candidate keys of a relation

- Short cut method
- First take the closure of all attributes, then discard attributes from the super key if it can be discarded using FDs.
- Once the candidate key are found, check whether there are any prime attributes available in the right-hand side of the FDs. If yes, make another super key by replacing the prime attributes of the CK with the left side of the FDs. Repeat the process.

Class assignment- *Given that R{A, B, C, D}, FD= $\{A \rightarrow B, B \rightarrow C, C \rightarrow A\}$ Find CKs ** Given that R{A, B, C, D, E, F}, FD= $\{AB \rightarrow C, C \rightarrow DE, E \rightarrow F, D \rightarrow A, C \rightarrow B\}$ Find CKs

Normalization of relations by decomposition

- Decompose a relational schema \mathcal{R} into multiple relational schemas $\mathcal{R}_1, \dots, \mathcal{R}_n$ to eliminate problems in the original design
- Normal forms describe the quality of a design
- 1NF, 2NF, 3NF, BCNF, 4NF.....
- Prohibit particular functional dependencies in a relation to avoid redundancy, null values, and anomalies
- Good ER modeling typically directly leads to 3NF (or higher NF) relations
- Normalization eliminates problems caused by FDs among attributes of an entity type.
- Two properties of a decomposition: 1) Lossless decomposition (mandatory) and 2) Dependency preservation (optional in BCNF)

Valid and lossless decomposition

- ▶ A decomposition of \mathcal{R} into \mathcal{R}_1 and \mathcal{R}_2 is valid if $\mathcal{R} = \mathcal{R}_1 \cup \mathcal{R}_2$, i.e., no attributes in \mathcal{R} get lost
 - \bullet R₁ := $\pi_{\mathcal{R}_1}(R)$
- A decomposition of \mathcal{R} into \mathcal{R}_1 and \mathcal{R}_2 is **lossless** if $R = R_1 \bowtie R_2$ for all possible instances R, R_1 , R_2 of \mathcal{R} , \mathcal{R}_1 , \mathcal{R}_2
 - In a lossless (or lossless-join) decomposition all data in the original schema must be reconstructible with a natural join from the instances of the new schemas

Lossless decomposition

- lacktriangle Let \mathcal{R}_1 and \mathcal{R}_2 be a decomposition of \mathcal{R} and $F_{\mathcal{R}}$ the set of FDs in \mathcal{R}
- \mathcal{R}_1 and \mathcal{R}_2 is a **lossless** decomposition if we can derive **at least one** of the following FDs:
 - \bullet $(\mathcal{R}_1 \cap \mathcal{R}_2) \rightarrow \mathcal{R}_1 \in \mathsf{F}^+_{\mathcal{R}}$, i.e., common attributes are super key in \mathcal{R}_1 or
 - \bullet $(\mathcal{R}_1 \cap \mathcal{R}_2) \rightarrow \mathcal{R}_2 \in \mathsf{F}^+_{\mathcal{R}}$, i.e., common attributes are super key in \mathcal{R}_2
- A decomposition that is not lossless is said to be lossy

Example

courseOffers

empid	name	courseid	ects
2125	Socrates	5041	4
2125	Socrates	5049	2
2125	Socrates	4052	4
2137	Kant	5001	4
2126	Russel	5043	3
2126	Russel	5052	3
2128	Russel	5216	2

The relationship empid, name, courseid, and ects got lost

$\pi_{\text{empid},\text{name}}\left(\text{courseOffers}\right)$

empid	name
2125	Socrates
2126	Russel
2128	Russel
2133	Popper
2134	Augustinus
2137	Kant

professor ⋈ course

empid	name	courseid	ects
2125	Socrates	5041	4
2125	Socrates	5049	2
2125	Socrates	4052	4
2137	Kant	5001	4
2126	Russel	5043	3
2126	Russel	5052	3
2126	Russel	5216	2
2128	Russel	5043	3
2128	Russel	5052	3
2128	Russel	5216	2

 $\pi_{courseid.ects.name}$ (courseOffers)

ects	name
4	Kant
4	Socrates
3	Russel
2	Socrates
4	Socrates
3	Russel
2	Russel
	4 4 3 2 4 3

course

Dependency preservation

Student_Mark			
ID	Name	GPA	
1	Bob	3.5	
2	Bob	3.6	
3	Alice	3.5	
4	Alice	3.6	

Student		
ID	Name	
1	Bob	
2	Bob	
3	Alice	
4	Alice	

Mark		
Name	GPA	
Bob	3.5	
Bob	3.6	
Alice	3.5	
Alice	3.6	

$$FD: \{ID \rightarrow (Name), \\ ID \rightarrow GPA, \\ ID \rightarrow (Name, GPA), \\ (Name, GPA), \rightarrow ID \}$$

$$FD_1$$
: { $ID \rightarrow (Name)$, }

 $\mathsf{FD} \not\equiv \mathit{FD}_1 \cup \mathit{FD}_2$

Dependency preservation

- All functional dependencies that hold for \mathcal{R} must be verifiable in the new schemas $\mathcal{R}_1,..., \mathcal{R}_n$
 - We can check all dependencies locally on $\mathcal{R}_1,...,\mathcal{R}_n$
 - We avoid the alternative: computing the join $\mathcal{R}_1 \bowtie \cdots \bowtie \mathcal{R}_n$ to test if an FD is violated
- ▶ Let $F_{\mathcal{R}}$, $F_{\mathcal{R}_i}$ be the set of FDs in \mathcal{R} and \mathcal{R}_i , the decomposition of \mathcal{R} into $\mathcal{R}_1,...$, \mathcal{R}_n is dependency preserving if $F_{\mathcal{R}} \equiv (F_{\mathcal{R}_1} \cup \cdots \cup F_{\mathcal{R}_n})$, i.e.,

$$F_{\mathcal{R}}^+ = (F_{\mathcal{R}_1} \cup \cdots \cup F_{\mathcal{R}_n})^+$$

Checking dependency preservation

- The decomposition $\mathcal{R}_1,...$, \mathcal{R}_n is dependency preserving if for each FD there is an \mathcal{R}_i in $\mathcal{R}_1,...$, \mathcal{R}_n that contains all involved attributes
- The decomposition R₁,..., Rn is dependency preserving if for all α → β in F:
 β ⊆ attrClosureD(F, α, R₁,..., Rn)

```
attrClosureD(F : set of FDs;
α : set of attributes; R1...Rn : a decomposition of R)
result = α
repeat
for each Ri in R1...Rn do
t = (result ∩ Ri)<sup>+</sup> ∩ Ri
result = result ∪ t
end for
until (result does not change)
```

Is this decomposition dependency preserving?

- R = {| A, B, C |}
- R1 = {| A, B |}, R2 = {| B, C |}
- Yes!
- A → B can be checked locally in R1
- ◆ B → C can be checked locally in R2

Is this decomposition dependency preserving?

```
• R = {| A, B, C |}

• F = {A → B, B → C |}

• R1 = {| A, B |}, R2 = {| A, C |}

result = { B }

result = { B }
```

C is not included in result

Then, the decomposition is not dependency preserving

Lossless Decomposition example

- dept1: {[name, street, number, city]}, dept2: {[name, postcode]}
- FDs
- Is dept1 \(\cap \) dept2 a superkey of dept1 or dept2?

Example

- department: {[name, street, number, city, postcode]}
- FDs
 - { name } → { street, number, city, postcode }
- Decomposition
 - dept1: {[name, street, number, city]}, dept2: {[name, postcode]}
- Is this decomposition lossless? Is this decomposition dependency preserving?

Example

```
dept1: {[ name, street, number, city ]}, dept2: {[ name, postcode ]}
FDs
  attrClosureD(F : set of FDs;
  α : set of attributes; R1...Rn : a decomposition of R)
  result = \alpha
                                             repeat
result = { name }
                                              for each Ri in R1...Rn do

ightharpoonupt = (result \cap Ri) ^+ \cap Ri
t = { name, street, number, city }
                                               result = result ∪ t
result = { name, street, number, city }
                                              end for
t = { name, postcode }
                                             until (result does not change)
result = { name, street, number, city, postcode }
```

Example

```
dept1: {[ name, street, number, city ]}, dept2: {[ name, postcode ]}
```

FDs

```
● { name } → { street, number, city, postcode } ✓
```

● { street, number, city } → { name } ✓

```
result = { street, number, city }
t = { name, street, number, city }
result = { name, street, number, city }
t = { name, postcode }
result = { name, street, number, city, postcode }
```

```
attrClosureD(F : set of FDs;
α : set of attributes; R1...Rn : a decomposition of R)
result = α
repeat
for each Ri in R1...Rn do
t = (result ∩ Ri)<sup>+</sup> ∩ Ri
result = result ∪ t
end for
until (result does not change)
```

Class assignment

- department: {[name, street, number, city, postcode]}
- FDs
 - { name } → { street, number, city, postcode }
- Decomposition
 - dept1: {[name, street, number]}, dept2: {[name, city, postcode]}
- Is this decomposition lossless? Is this decomposition dependency preserving?

Class assignment

- Given $\mathcal{R}(A, B, C, D)$, $FD: \{A \to B, C \to D\}$, check whether the following relations preserve dependency: $\mathcal{R}_1(A,C)$ and $\mathcal{R}_3(B, D)$
- Given $\mathcal{R}(A, B, C, D)$, $FD: \{A \to B, B \to C, C \to D, D \to A\}$, check whether the following relations preserve dependency: **a)** $\mathcal{R}_1(A,B)$, $\mathcal{R}_2(B,C)$ and $\mathcal{R}_3(C,D)$ b) $\mathcal{R}_1(A,B,C)$ and $\mathcal{R}_3(C,D,E)$
- **②** Given $\Re(A, B, C, D, E)$, $FD: \{A \to BCDE, BC \to AED, D \to E\}$, check whether the following relations preserve dependency: $\Re_1(A, B)$, $\Re_2(B,C)$, and $\Re_3(C,D,E)$
- Given $\mathcal{R}(A, B, C, D, E)$, $FD: \{A \to BCD, B \to AE, BC \to AED, D \to E, C \to DE\}$, check whether the following relations preserve dependency: $\mathcal{R}_1(A, B)$, $\mathcal{R}_2(B, C)$, and $\mathcal{R}_3(C, D, E)$
- ODD groups with alternative solutions and EVEN groups with by checking FD's locally.

Functional Dependencies

- A good relation design has no redundancy, no update anomalies, ability to represent all the information
- A bad design can be converted to a good design by decomposing large relational schemas into smaller ones
- A good decomposition is lossless and dependency preserving

Normal Forms

- Normal Forms define characteristics of relational schemas
- NFs forbid certain combinations of FDs in a relation
- NFs avoid redundancies and anomalies
- NFs are guidelines to obtain good decompositions
- Examples: 1NF, 2NF, 3NF, BCNF, 4NF

First normal form (1NF)

lacktriangle A relation $\mathcal R$ is in 1NF if the domains of all its attributes are atomic (No composite of multi-valued domains)

Empid	Name	Address	phone
2125	Bob	Hathazari, Chittagong, Bangladesh	P1, p2
2130	Alice	Fatickchari, Chittagong, Bangladesh	р3
2199	Blak	Haraldslund, Aalborg, Denmark	P4,p6

Empid	Name	sub-dis	district	country	phone
2125	Bob	Hathazari	Chittagong	Bangladesh	p1
2125	Bob	Hathazari	Chittagong	Bangladesh	p2
2130	Alice	Fatickchari	Chittagong	Bangladesh	р3
2199	Blak	Haraldslun d	Aalborg	Denmark	p4
2199	Blak	Haraldslun d	Aalborg	Denmark	p6

1NF

Second normal form (2NF)

- $oldsymbol{\circ} \mathcal{K}_{\!\scriptscriptstyle |}$ is a candidate key in \mathcal{R}
- A is a **prime** attribute if $A \in (\mathcal{K}_1 \cup ... \cup \mathcal{K}_i)$
- lacktriangle A relational schema $\mathcal R$ with FDs F is in 2NF if each non-prime attribute A in $\mathcal R$ is fully functionally dependent on each candidate key $\mathcal K_{\mathbf j}$ in $\mathcal R$
 - \bullet $(\mathcal{K}_i \rightarrow A) \in F^+$ and \mathcal{K}_i is left reduced (fully functionally dependent)
- 2NF prevents partial dependencies
- There are no functional dependencies of non-prime attributes on only a subset of key attributes

^{**} No proper subset of CKs \rightarrow *Non prime attribute*(s)

Example

- Candidate keys: { {empid, courseid } }
- Key attributes (prime): { empid, courseid }
- Non-key attributes (non-prime): { name, ects }
- ▶ FDs: { empid } → { name } and { courseid } → { ects }

 $(\mathcal{K}_i \rightarrow A) \in F^+$ and \mathcal{K}_i is left reduced (fully functionally dependent)

empid	name	courseid	ects
2125	Socrates	5041	4
2125	Socrates	5049	2
2125	Socrates	5001	4
2137	Kant	5001	4

Eliminating partial dependencies

Not 2NF:

		_	•
empid	name	courseid	ects
2125	Socrates	5041	4
2125	Socrates	5049	2
2125	Socrates	4052	4
2137	Kant	5001	4

2NF:

empid	name
2125	Socrates
2137	Kant

courseid	ects
5041	4
5049	2
4052	4
5001	4

empid	courseid
2125	5041
2125	5049
2125	4052
2137	5001

2NF decomposition

• Given $\mathcal{R}(A, B, C, D)$, $FD: \{A \rightarrow B, C \rightarrow D\}$, check whether the relation is in 2NF, if not decompose it.

Third normal form (3NF)

- A relational schema \mathcal{R} is in 3NF if at least one of the following conditions holds for each of its FDs $\alpha \rightarrow \beta$ with $\alpha, \beta \subseteq \mathcal{R}$:
 - \bullet $\beta \subseteq \alpha$, i.e., the FD is **trivial**
 - lacktriangle α is a super key of \mathcal{R}
 - Any attribute B in β α is **prime** (part of a candidate key)
- Non-prime attributes must not determine other Non-prime attributes
- 3NF prevents partial and transitive dependencies, except transitive dependencies with prime attributes as endpoints
- 3NF "includes" 2NF

Example: 3NF

• Key attributes (prime): { empid }

Non-key attributes (non-prime): { name, de

● FDs: { empid } → { name, dept, building } and { dept } → { building }

empid

2125

2126

2128

2133

2134

α is a super key of \mathcal{R}	β ⊆ α, i.e., the FD is trivial
Any attribute D in B a is prime	$lpha$ is a super key of $\mathcal R$
Any auribute bill p - a is prime	Any attribute B in β - α is prime

X		
\checkmark		
X		

X
×
40

name

Socrates

Russel

Russel

Popper

Augustinus

dept building

5

PHI

SCI

PHI

CS

THE

Eliminating transitive dependency

Not 3NF:

empid	name	dept	building
2125	Socrates	PHI	2
2126	Russel	SCI	7
2128	Russel	PHI	2
2133	Popper	CS	9
2134	Augustinus	THE	5

3NF:

empid	name	dept
2125	Socrates	PHI
2126	Russel	SCI
2128	Russel	PHI
2133	Popper	CS
2134	Augustinus	THE

dept	building
PHI	2
SCI	7
CS	9
THE	5
THE	5

3NF decomposition

• Given $\mathcal{R}(A, B, C, D)$, $FD: \{A \rightarrow B, B \rightarrow C, C \rightarrow D\}$, check whether the relation is in 3NF, if not decompose it.

Boyce Codd Normal Form (BCNF)

- A relational schema \mathcal{R} is in BCNF if at least one of the following conditions holds for each of its FDs $\alpha \rightarrow \beta$ with $\alpha,\beta \subseteq \mathcal{R}$:
 - \bullet $\beta \subseteq \alpha$, i.e., the FD is trivial
 - lacktriangle α is a super key of \mathcal{R}
 - Any attribute B in β α is prime (part of a candidate key)
- Difference to 3NF: no third option
- BCNF is a stricter form of 3NF ("includes" 3NF)
- BCNF prevents all transitive dependencies, even those with prime attributes as endpoints

BCNF: Example

{ { empid } }

Key attributes (prime): { empid }

Non-key attributes (non-prime): { name, dept }

FDs: { empid } → { name, dept }

 $\beta \subseteq \alpha$, i.e., the FD is **trivial** α is a **super key** of \mathcal{R}

empid	name	dept
2125	Socrates	PHI
2126	Russel	SCI
2128	Russel	PHI
2133	Popper	CS
2134	Augustinus	THE

dept building

PHI

SCI

PHI

CS

THE

BCNF: Decomposition

```
bcnf(F: set of FDs; R: relational schema)
result = { R }
  while there is an Ri ∈ result that is not in BCNF do
```

→ let α → β be a BCNF violating FD of Ri, such that $\alpha \cap \beta = \emptyset$ and α is not a super key in Ri

empid

2125

2126

name

Socrates

Russel

decompose Ri into Ri1 := $\alpha \cup \beta$ and Ri2 := Ri - β result = (result – Ri) ∪ Ri1 ∪ Ri2

end while

Candidate keys: { { empid	} }	ł
---------------------------	-----	---

2128 Russel Popper 2133 • Key attributes: { empid } 2134 Augustinus

▶ FDs: { empid } → { name, dept, building } and { dept } → { building } result: { { [empid, name, dept, building]} }

result: { {[dept, building]}, {[empid, name, dept]} }

result is lossless and dependency preserving

Another example

end while

```
bcnf(F : set of FDs; R : relational schema) result = { R } while there is an Ri \in result that is not in BCNF do let \alpha \rightarrow \beta be a BCNF violating FD of Ri, such that \alpha \cap \beta = \emptyset and \alpha is not a super key in Ri decompose Ri into Ri1 := \alpha \cup \beta and Ri2 := Ri - \beta result = (result – Ri) \cup Ri1 \cup Ri2 dept faculty building floor
```

- Candidate keys: { {floor, building} }
- Key attributes (prime): { floor, building }
- ◆ FDs: { floor, building } → { dept }, { dept } → { building, faculty }
- result: { {[dept, faculty, building, floor]} } result: { {[dept, building, faculty]}, {[dept, floor]} }

result is lossless but it isn't dependency preserving

PHI

SCI

CS

CS

HUM

ENG

TECH

TECH

Decomposition

- lacktriangle It is always possible to decompose a relational schema $\mathcal R$ with FDs F into
 - 3NF relational schemas $\mathcal{R}_1,..., \mathcal{R}_n$ so that the decomposition is lossless and dependency preserving
 - **DECIMITE** BCNF relational schemas $\mathcal{R}_1,...,\mathcal{R}_n$ so that the decomposition is lossless

Normalize a relation

Determine which normal forms are fulfilled (identify highest normal form and normalize it) (restrict your consideration to 3NF and BCNF)

Given $\mathcal{R}(A, B, C, D, E, F, G, H)$, $FD: \{A \rightarrow BD, B \rightarrow C, E \rightarrow FG, AE \rightarrow H\}$,

- 1. $R : \{[A, B, C, D, E, F]\}$ $A \to AB$ $B \to AB$ $CDE \to CDEF$ $F \to ABF$
- 2. $R : \{[A, B, C, D]\}$ $A \to B$ $B \to A$ $D \to C$ $C \to D$
- 3. $R: \{[A, B, C, D, E, F]\}$ $ABD \rightarrow CEF$ $CEF \rightarrow ABD$

- 4. $R: \{[A, B, C, D, E]\}$ $A \to B$ $B \to C$ $C \to D$ $D \to E$ $E \to A$
- 5. $R: \{[A, B, C, D, E, F]\}$ $ABD \rightarrow CEF$ $CEF \rightarrow ABD$ $AC \rightarrow DF$ $BD \rightarrow CE$ $EF \rightarrow AB$
- 6. $R : \{[A, B, C, D, E, F]\}$ $AC \to DF$ $BD \to CE$ $EF \to AB$

Summary

Normal Form	Main Characteristics
1NF	Only atomic attributes
2NF	No partial dependencies
3NF	No transitive dependencies except with prime attributes
BCNF	No transitive dependencies

● In practice, if BCNF decomposition is imposible without losing dependency preservation, we go for the 3NF decomposition (even if it allows for some redundancy)