STUDENT ID NO

MULTIMEDIA UNIVERSITY

FINAL EXAMINATION

TRIMESTER 1, 2018/2019

EEE 7296 – ENERGY MONITORING AND AUDITING

26 OCTOBER 2018 10.00 a.m. – 1.00 p.m. (3 Hours)

INSTRUCTIONS TO STUDENTS

- 1. This Question paper consists of 5 pages including cover page with 4 Questions only.
- 2. Answer ALL questions. All questions carry equal marks and the distributions of the marks for each question is given.
- 3. Please write all your answers in the Answer Booklet provided. Draw the graph on the given graph paper.

Question 1

- a) What are the key steps involved in supporting energy management and their benefits? [8 marks]
- b) Table Q1 (a) shows the dimensions of the first floor of a Software Developing Company. 80% of the floor area has been occupied. The company works from Monday to Friday a week between 9.30 am to 6.30 pm. The energy consumption data of the company are given in Table Q1 (b). Make use of the given formula, and compute the BEI (kWh/m²/year).

[17 marks]

Table Q1 (a) - Floor Dimensions

Section	Length (mm)	Width (mm)			
First Floor Overall Dimension	50000	30000			
Common and Service Areas					
Réception Lobby	12000	8000			
Lift Lobby	10000	8000			
Waiting Areas	6000	6000			
Registration Area	10600	6300			

Table Q1 (b) - Energy consumption

1 doing (1 (a) Sweeg) acres man beautiful and 1								
Month	Air-conditioner	Lighting						
Monun	consumption (kWh)	consumption (kWh)						
January	10500	7100						
February	11900	6200						
March	11700	6950						
April	18000	6200						
May	14100	7750						
June	13900	7300						
July	14750	7550						
August	13100	7900						
September	14100	7400						
October	12300	8900						
November	11900	7500						
December	12800	8700						

Formula

$$BEI = \frac{(TBEC - CPEC - DCEC)}{(GFA - DCA - (GLA \times FVR))} \times \frac{52}{WOH}$$

Continued...

TBEC - Total Building Energy Consumption (kWh/year)

CPEC - Carpark Energy Consumption (kWh/year)

DCEC - Data Centre Energy Consumption (kWh/year)

GFA – Gross Floor Area exclusive of car park (m²)

DCA – Data Centre Area (m²)

GLA – Gross Lettable Area (m²)

FVR - Weighted floor vacancy rate of GLA (%)

52 - Typical weekly hours of office buildings in KL/Malaysia (hrs/week)

WOH-Weighted weekly operating hours of GLA exclusive of DCA (hrs/week)

Question 2

- a) The daily energy consumption data of an Aluminium Factory is shown in Table Q2 (a). The data were collected on Monday and Tuesday from 8.00 to 17.30 hours at every 30 minutes' interval. Assuming same production rate on both days,
 - (i) Plot the graph for energy consumption (kWh) versus time on the given graph paper. Comment on the unit production cost on these two days, and

[11 marks]

(ii) Analyze the data and give reasons for the hike in energy consumption. [4 marks] Table O2 (a)

								10	.010	K- 1										
Time	800	830	900	930	1000	1030	1100	1130	1200	1230	1300	1330	1400	1430	1500	1530	1600	1630	1700	1730
Monday (kWhr)	2300	2500	2600	2700	3400	5300	6740	6300	7800	6720	6930	6320	5800	5900	5530	4820	4790	3490	3390	2900
Tuesday (kWhr)	2300	2700	2540	2630	2900	4890	5760	5780	5600	5400	5900	5870	5490	5600	5270	5400	4600	3120	2950	2650

b) For a Medium-sized Shopping Mall in Malaysia, the Energy Consumption data for two years are given in Figure Q2 (b). The Mall functions on all week days between 10.00 am to 10.00 pm. The head count of the visitors and the workers of the Mall are given in Table Q2 (b). Analyze the energy data and explain whether the Mall operates efficiently or not.

[10 marks]

Continued...

Month	Number of visitors & workers							
Month	Year 2016	Year 2017						
January	1800	2000						
February	2050	2100						
March	2100	1100						
April	2200	2300						
May	2070	2050						
June	2150	2100						
July	2060	1980						
August	2100	2010						
September	2030	1870						

2120

2800

2150

October November

December

2050

2010

1980

Table O2 (b) - Number of Visitors & Workers

Question 3

- a) What are the basic components of a well-organized audit report? Briefly explain each component. [10 marks]
- b) In an unbalanced 3-phase distribution system, the load draws 150 A, 180 A and 120 A from the three phases. Compute the extra power loss due to unbalancing. Assume the neutral wire has half the cross section of the phase wires and same power factor for each load.

 [5 marks]
- c) A small indoor stadium is to be illuminated by 10 HPMV lamps having each of 80 W rating. The other alternative is to replace the HPMV lamps with 10 groups of LED lamps having a 30 W rating for each group. Both the system produces same illumination. If the cost of the LED lamp is 2.5 times the HPMV lamp, compute the number of months after which excess cost of LED lamps will be compensated by the savings in the energy cost. Given the energy cost of RM 0.2/kWh, number of working hours per day is 6.

[5 marks]

d) A motor in an air-conditioner works on ON/OFF mode with 12 minutes ON and 8 minutes OFF period in each cycle. It draws a full load current at 0.9 off during the ON period. To maintain the same temperature, the motor may also run continuously at a lower speed drawing 80% of the full load current at 0.8 pf. Compute the energy saving per day.

[5 marks]

Continued...

Question 4

- a) Briefly explain the working of the following Energy Audit instruments.
 - (i) Flue Gas analyzer

[5 marks]

(ii) Remote sensing thermometer or Pyrometer, and

[5 marks]

(iii) An ultrasonic flow meter

[5 marks]

- b) A manometer connected to a pipe indicates a negative gauge pressure of 50 mm of Mercury. What is the absolute pressure in the pipe in Newton per square meter if the atmospheric pressure is 1 bar? [5 marks]
- c) The filament of a 75 W light bulb may be considered as a black body radiating into a black enclosure at 70° C. The filament diameter is 0.10 mm and length is 5 cm. Considering the radiation, determine the filament temperature. [5 marks]

End of Paper