Nome: Mattia data inizio: 26/1/2021

Cognome: Bracco data consegna: 2/2/2021

Classe: 2A data assenza /

TITOLO: Principio di conservazione dell' energia meccanica.

OBBIETTIVO: Verificare che durante il moto parabolico in ogni istante si mantiene costante l' energia.

TEORIA ED ASPETTATIVE:

$$E_c = \frac{1}{2} \text{ m * } v^2$$

$$E_p = m * g * h$$

$$E_m = E_c + E_p$$

$$H = nome * 10$$

$$t_{caduta} = \sqrt{(H * 2)/g}$$

$$sy = \frac{1}{2} * g * (t_{caduta})^2$$

$$h = H - sy$$

$$Vy = g * t_{caduta}$$

Mi aspetto che l' energia meccanica (E_m) sia costante in quanto al diminuire dell' energia potenziale (E_p) aumenta l' energia cinetica (E_c) .

MATERIALI E SCHEMI DI MONTAGGIO USATI:

Excel, calcolatrice

MISURE DATI E GRAFICI:

DATI					
BRACCO	2				
MATTIA	13				
massa	20	Kg			
Н	130	m			
g	9,81	m/s ²			
Vx	2	m/s			

t caduta	5,148	S
almeno 15 intervalli	0,34	S

m	Н	g	Vx	
Kg	m	m/s ²	m/s	
20	130	9,81	2	

t caduta	sy	h	Ер	Vy	V totale	Ec	Em
S	m	m	J	m/s	m/s	J	J
0	0,0	130,0	25506,00	0	2	40,00	25546
0,25	0,3	129,7	25445,8524	2,4525	3,16461	100,15	25546
0,5	1,2	128,8	25265,4098	4,905	5,297077	280,59	25546
0,75	2,8	127,2	24964,6719	7,3575	7,624487	581,33	25546
1	4,9	125,1	24543,639	9,81	10,0118	1002,36	25546
1,25	7,7	122,3	24002,3109	12,2625	12,42453	1543,69	25546
1,5	11,0	119,0	23340,6878	14,715	14,85029	2205,31	25546
1,75	15,0	115,0	22558,7694	17,1675	17,28361	2987,23	25546
2	19,6	110,4	21656,556	19,62	19,72167	3889,44	25546
2,25	24,8	105,2	20634,0474	22,0725	22,16293	4911,95	25546
2,5	30,7	99,3	19491,2438	24,525	24,60641	6054,76	25546
2,75	37,1	92,9	18228,1449	26,9775	27,05153	7317,86	25546
3	44,1	85,9	16844,751	29,43	29,49788	8701,25	25546
3,25	51,8	78,2	15341,0619	31,8825	31,94517	10204,94	25546
3,5	60,1	69,9	13717,0778	34,335	34,3932	11828,92	25546
3,75	69,0	61,0	11972,7984	36,7875	36,84183	13573,20	25546
4	78,5	51,5	10108,224	39,24	39,29094	15437,78	25546
4,25	88,6	41,4	8123,35444	41,6925	41,74044	17422,65	25546
4,5	99,3	30,7	6018,18975	44,145	44,19028	19527,81	25546
4,75	110,7	19,3	3792,72994	46,5975	46,6404	21753,27	25546
5	122,6	7,4	1446,975	49,05	49,09076	24099,03	25546
5,148	130,0	0,0	1,60116466	50,50188	50,54147	25544,40	25546

PROCEDIMENTO:

H è stato determinato dal nome mentre Vx dal cognome.

Abbiamo calcolato l' energia potenziale, l' energia cinetica e l' energia meccanica inoltre abbiamo anche determinato sy, h, Vy, e V totale.

CONCLUSIONE:

Dopo aver determinato l' energia potenziale (E_p), l' energia cinetica (E_c), sy, Vy, h e v totale abbiamo determinato che l' energia meccanica, calcolata dalla somma dell' energia potenziale e di quella cinetica ha sempre lo stesso valore questo avviene perché al diminuire di E_p aumenta E_c mantenendo il valore costante.

Questo si può vedere nell' ultimo grafico con la rappresentazione in 3 serie dell' energia potenziale, di quella cinetica e infine di quella meccanica.