

香港考試及評核局2013年香港中學交憑考試

化學 試卷二

本試卷必須用中文作答 一小時完卷(上午十一時四十五分至下午十二時四十五分)

考生須知

- (一) 本試卷共有甲、乙和丙三部。考生須選答任何兩部中的全部試題。
- (二) 答案須寫在所提供的 DSE(D) 答題簿內,每題(非指分題)必須另起新頁作答。
- (三) 本試卷的第 8 頁印有周期表。考生可從該周期表得到元素的原子序及相對原 子質量。

考試結束前不可將試卷攜離試場

甲部 工業化學

回答試題的所有部分。

- 1. (a) 對於氣體反應,溫度上升導致反應速率增加。
 - (i) 以下坐標圖顯示在兩個溫度 T_1 和 T_2 時,一氣體的分子動能的麥克斯韋-波爾茲曼分佈曲線。

- (1) 以上坐標圖中的 x 和 y 軸分別代表什麼?
- (2) 參照以上坐標圖,提出爲什麼溫度上升可導致氣體反應的速率增加。 (5 分)
- (ii) 在一個化學動力學的實驗裏,於不同溫度 (T) 測定一個反應的速率常數 (k) 。以下坐標圖顯示 ℓ og k 對 $\frac{1}{T}$ 的圖像。計算這反應的活化能。 (氣體常數 $R=8.31~\mathrm{J~K^{-1}~mol^{-1}}$)

(3分)

1. (b) 苯甲酸丁香酚酯是一個常用的食物香味劑。在硫酸作為均相催化劑的條件下,丁香酚 與苯甲酸的反應可合成苯甲酸丁香酚酯。

(i) 提出爲什麼催化劑能令反應加速。

(1分)

(ii) 在上述反應中,使用濃硫酸還是使用稀硫酸會給出較佳的苯甲酸丁香酚酯產率?解釋你的答案。

(1分)

(iii) 在固體酸作爲非均相催化劑的條件下,丁香酚與苯甲酸的反應也可合成苯甲酸 丁香酚酯。參照苯甲酸丁香酚酯的合成,寫出一項使用均相催化劑的優點和 一項使用非均相催化劑的優點。

(2分)

(c) 氧化丙烯 (H₃C)是一個常用於塑膠工業的化學品。下面顯示兩個生產氧化丙烯的方法:

<u>方法 1</u>

<u>方法_2</u>

$$CH_3CH=CH_2 \ + \ H_2O_2 \ \longrightarrow \ H_3C \ \ \ \ \ \ \ H_2O$$

(i) 方法 1 所用的 Cl_2 和 NaOH 是氨鹼工業產品。簡略描述這兩個化學品是怎樣生產的。

(3分)

(ii) 方法 1 的原子經濟是 29.7%。計算方法 2 的原子經濟。

(1分)

(iii) 從兩個不同角度,討論方法 1 抑或方法 2 較爲綠色。

(2分)

(iv) 評論以下陳述,並解釋你的答案:

甲部完

乙部 物料化學

回答試題的所有部分。

2. (a) 纖維素的部分結構顯示如下:

- (i) 纖維素是葡萄糖的縮合聚合物。
 - (1) 「縮合聚合物」一詞是什麼意思?
 - (2) 繪出一個葡萄糖分子的結構。

(2分)

(ii) 纖維素的相對分子質量一般介乎 2.5×10^5 至 1.0×10^6 之間。提出爲什麼纖維素的相對分子質量範圍是這麼濶。

(1分)

(iii) 解釋爲什麼葡萄糖和纖維素在水中的溶解度有明顯差異。

(3分)

(b) (i) 甲基纖維素是從纖維素合成出來的聚合物。它常用作牆紙膠漿的有效成分。 甲基纖維素的部分結構顯示如下:

(在這結構中,R可以是H或CH3。)

乾了的甲基纖維素膠漿是白色固體。寫出並解釋當把這白色固體徐徐加熱直至 非常高的溫度時,它所呈現的習性。

(3分)

(ii) 聚2-氰基丙烯酸甲酯常用作超能膠的有效成分。聚2-氰基丙烯酸甲酯的結構顯示如下:

- 2. (b) (ii) (1) 繪出聚2-氰基丙烯酸甲酯的單體的結構。
 - (2) 丙酮(CH₃COCH₃)是一個常用來去除硬化了的超能膠的溶劑。解釋爲什麼 丙酮能溶解聚2-氰基丙烯酸甲酯。

(3分)

- (iii) 甲基纖維素抑或聚2-氰基丙烯酸甲酯較容易在環境中降解?解釋你的答案。 (2 分)
- (c) 液晶廣泛用於製造視像顯示。在各液晶的結構中可有不同的相。
 - (i) 比較液晶的向列相和近晶相。

(2分)

(ii) 解釋以下化合物 A 和 B , 哪一個會形成螺旋相液晶。

$$C_2H_5$$
— CH — CH_2 — CH_2 — CH_2) CH_3

(iii) 提出爲什麼液晶在非常低溫時會失去其液晶特性。

(1分)

(iv) 有機發光二極管 (OLED) 在有電流通過時會發光。OLED亦可用來製造視像顯示。解釋爲什麼液晶顯示的功率被視爲比OLED顯示的較低。 (2分)

乙部完

丙部 分析化學

回答試題的所有部分。

- 3. (a) 概述如何可利用物理方法,從一個己-1-烯、辛烷和水的混合物獲取己-1-烯。 (沸點: 己-1-烯=63℃;辛烷=125℃;水=100℃) (4分)
 - (b) 白餐酒和紅餐酒均含 SO_2 防腐劑,而 SO_2 被固定於不同形式中。進行了一個容量分析實驗來測定在一個白餐酒樣本中 SO_2 的總濃度。在實驗中,把 $25.00~cm^3$ 的這餐酒樣本轉移至一錐形瓶。按某些指定程序,把NaOH(aq) 和 H_2SO_4 (aq)依次加入這瓶中,以釋出餐酒內全部的 SO_2 。立刻以 $0.00412~mol~dm^{-3}~I_2$ (aq) 滴定所得到的溶液,並用剛配製的澱粉溶液爲指示劑。重複這實驗數次,到達終點所需用 I_2 (aq)的平均體積是 $10.50~cm^3$ 。
 - (i) 一個反應須滿足某些條件才可用作容量分析。寫出其中**一項**。 (1分)
 - (ii) 解釋爲什麼須立刻滴定所得到的溶液。 (1 分)
 - (iii) 寫出在滴定終點的預期顏色變化。 (1 分)
 - (iv) 這滴定所涉及反應的化學方程式如下:

 $SO_2(aq) + I_2(aq) + 2H_2O(1) \rightarrow 2HI(aq) + H_2SO_4(aq)$

(v) 解釋一個這樣的實驗是否可測定在紅餐酒樣本中的 SO₂ 總濃度。 (1 分)

- (c) 某牌子蕃茄醬的色素主要是茄紅素(橙紅色)和 β-胡蘿蔔素(黃色)。爲把茄紅素從這蕃茄醬分離出來,進行了一個涉及溶劑提取、薄層色譜法 (TLC) 和柱色譜法的實驗。
 - (i) TLC 的結果顯示如下:

計算茄紅素點的 R_t 值。

(1分)

(4分)

(ii) 参照 TLC 的結果,解釋若以相同的固定相和流動相進行柱色譜法,首先收集得的有色層是茄紅素還是 β-胡蘿蔔素。

(1分)

- 3. (c) (iii) 提出一個儀器方法,可用來測定在所收集到茄紅素色層中茄紅素的濃度。寫出 所需要量度的茄紅素色層的物理性質。 (2 分)
 - (iv) 茄紅素的紅外光譜顯示如下:

參照下表所列的特徵紅外吸收波數域(伸展式),提出以下哪一個結構 $(\mathbf{W} \times \mathbf{X} \times \mathbf{Y})$ 或 \mathbf{Z}) 會是茄紅素的結構。解釋你的答案。

特徵紅外吸收波數域(伸展式)

44人	「一世紀11」では八人子が第5日	波數域 / cm ⁻¹
鍵合	化合物類別	
C=C	烯	1610 至 1680
C=O	醛、酮、羧酸及其衍生物	1680 至 1800
C≡C	炔	2070 至 2250
C≡N		2200 至 2280
OH	帶「氫鍵」的酸	2500 至 3300
C-H	烷、烯及芳烴	2840 至 3095
O-H	帶「氫鍵」的醇及酚	3230 至 3670
N-H	胺	3350 至 3500

丙部完 試卷完

PERIODIC TABLE 周期表

					i			Ι			Τ			Т			Т			٦		
	c	2	He	4.0	10	Š	20.2	18	Ar	40.0	36	X.	83.8	54	Xe	131.3	98	Ru	(222)			
				IIA	6	፲	19.0	17	ರ	35.5	35	Br	79.9	53	_	126.9	85	At	(210)			
				VI	8	0	16.0	16	Ø	32.1	34	Š	79.0	52	-J	127.6	84	Po	(506)			
				Λ	7	Z	14.0	15	<u>_</u>	31.0	33	As	74.9	51	Sp	121.8	83	Bi	209.0			
				^	9	Ü	12.0	14	Š	28.1	32	g	72.6	50	Sn	118.7	82	Pb	207.2			
	141			Ħ	S	æ	10.8	13	¥	27.0	31	Ğ	69.7	49	Ţ	114.8	81	E	204.4			
				L	•			I			30	Zn	65.4	48	Cq	112.4	80	Hg	200.6			
										i	29	J	63.5	47	Ag	107.9	79	Αn	197.0			
								質量			28	Z	58.7	46	Pd	106.4	78	Z	195.1	•		
								相對原子質量			_			-		102.9	-					
	r 原子角							atomic mass					55.8	\vdash		101.1						
	atomic number 原子序							relative atom			25	Mn	54.9	 		(86)						
	aton /					/	/	rela								95.9						
	\	1	۰							Γ						92.9					Dp	(292)
										- 1			-			91.2	-			_		_
										- 1			$\overline{}$			88.9						_
桗			2	=	4	Be .	0.6	12	Mg	\rightarrow	_		\neg			\neg						_
GROUP B			۰	- -			\dashv	11	_	+			\dashv			-			-		-	
Ū				[<u> </u>		•	``])		-	<u>~ </u>						

				102 103		
	69	Tm	168.9	101	Md	(950)
	89	Æ	167.3	100	Fm	(557)
	29	Ho	164.9	66	Es	(050)
	99	Ď	162.5	86	ت ر	(150)
	65	Tp	158.9	76	B	(747)
	49	દ	157.3	96	Сш	(747)
	63	Eu	152.0	95	Am	(243)
	62	Sm	150.4	94	Pu	(244)
	19		_	93	ď	(237)
	09	PZ	144.2	92	n	238.0
	59	Pr	140.9	16		(231)
	58	ల	140.1	06	4	232.0
•	*			*	_	