Presentación

• Docentes:

Profesor: Ing. Marcelo E. Romeo meromeo @electron.frba.utn.edu.ar

marcelo.romeo@gmail.com

Skype: meromeo msn: romeomar@hotmail.com

Auxiliares:

Pablo Montalti: pmontalti@hotmail.com

Hernán Pérez: hernanf_perez@yahoo.com.ar

Vinculación:

TDII_4R01-subscribe@gruposyahoo.com.ar

www.campusvirtual.frba.utn.edu.ar

• Horario: Martes de 8.30 a 12.30

1

Vinculación

- Campus Virtual (preferencial)
- Entrar en:
 - http://www.campusvirtual.frba.utn.edu.ar/
 - Palabra Clave: Digitales2
- Grupo Yahoo: Enviar un mail a:
 - TDII_4R01-subscribe@gruposyahoo.com.ar

Presentación

- •Reglamento de Trabajos Prácticos
- •Programa y Bibliografía
- •Metodología Proyectos
- •Fecha límite para la definición del Proyecto: 4 de mayo.
- •Filosofía de la asignatura

Técnicas Digitales II - 4R01

3

Importante

Los Parciales NO se preparan en una semana

Técnicas Digitales II - 4R01

Fechas de Parciales

- 13 de Julio 9 hs
- 23 de Noviembre 9 hs
 - Los parciales serán práctico teóricos tomados sobre PC. El programa deberá compilarse sin errores y responder a la lógica solicitada.
 - Se emplearán herramientas gratuitas que se difundirán el primer día de clase

Técnicas Digitales II - 4R01

5

Algunos temas a repasar

- PALs
- Decodificadores
- Buffers
- Latches
- Buses

UNSAM - PACM - Cap 1

Introducción

- 1. Planteo General.
- 2. Introducción.
- 2.1 Lógica cableada vs. Lógica programada
 - Una unidad central de proceso o microprocesador
 - Circuitos de comunicación con el mundo exterior o interfaces
 - Una memoria semiconductora

UNSAM - PACM - Cap 1

7

Objetivo del Capítulo

- Sistemas Dedicados
 - ¿Qué son los sistemas dedicados?
 - Desafíos en el diseño de los sistemas dedicados
 - Metodología de diseño

UNSAM - PACM - Cap 1

UNSAM - PACM - Cap 1

.

Algunos sistemas dedicados

- Asistente Personal Digital (PDA)
- Impresoras
- Teléfonos Celulares
- Autos: Motor, Frenos, Tablero, etc.
- Televisión
- Equipos para el hogar (Línea Blanca)
- Teclado de PC (Barrido de teclas)

UNSAM - PACM - Cap 1

Sistemas Empotrados (embedded)#

- Basados en componentes programambles (ej. Microcontroladores, DSPs....)
- Son generalmente sistemas reactivos de tiempo real:
- "Reaccionan" a eventos externos
- Mantienen interacción permanente.
- Están continuamente funcionando.
- Están sujetos a restricciones externas de tiempo
- Realizan varias tareas concurrentemente.

UNSAM - PACM - Cap 1

13

Un ejemplo completo de SS.EE.

UNSAM - PACM - Cap 1

Clasificación de las computadoras

- Tamaño y prestaciones
 - Grandes computadoras
 - Mini-computadoras
 - Microcomputadoras Personales
 - Microcomputadoras hogareñas

Clasificación de las computadoras

- Conectividad y usuarios
 - Computadoras Monousuario
 - Computadoras Multiusuario
 - Redes de computadoras
 - Servidor centralizado
 - Vinculación horizontal (peer to peer)

UNSAM - PACM - Cap 1

17

Clasificación de las computadoras

- Complejidad de su repertorio de instrucciones
 - Computadoras CISC
 - Computadoras RISC

UNSAM - PACM - Cap 1

Distintos tipos

- •Microprocesador: Solo tiene las unidades de ejecución y control, registros y ALU
- •Microcontrolador: Además incluye internamente interfaces de E/S y Memoria (opcionalmente, conversores, PLLs, etc.). Distintos tipos y potencias de procesamiento
- •Procesador Digital de Señales (DSP): Microprocesador optimizado para trabajar en tiempo real

UNSAM - PACM - Cap 1

Arquitecturas de las computadoras

Barras ("buses").

UNSAM - PACM - Cap 1

27

Arquitecturas de las computadoras

Barras ("buses").

- BARRA DE DIRECCIONES
- BARRA DE DATOS
- BARRA DE CONTROL

UNSAM - PACM - Cap 1

Arquitecturas de las computadoras

Barras ("buses").

• Escritura

Lectura

UNSAM - PACM - Cap 1

29

Principales características de las computadoras

- Longitud de la palabra de instrucción
 - Palabra de instrucción de 8 bits
 - Palabra de instrucción de 16 bits
 - Palabra de instrucción de 32 bits
 - Palabra de instrucción de 64 bits

UNSAM - PACM - Cap 1

Principales características de las computadoras

• Extensión de la barra de direcciones

8088	20	1,048,576
8086	20	1,048,576
80188	20	1,048,576
80186	20	1,048,576
80286	24	16,777,216
80386sx	24	16,777,216
80386dx	32	4,294,976,296
80486	32	4,294,976,296
80586 / Pentium (Pro)	32	4,294,976,296

UNSAM - PACM - Cap 1

31

Cantidad de direcciones en la palabra de instrucción

4 Direcciones

UNSAM - PACM - Cap 1

Cantidad de direcciones en la palabra de instrucción

3 Direcciones

UNSAM - PACM - Cap 1

33

Implementación en un Microcontrolador

En los microcontroladores de 32 bits se implementa una versión de las máquinas de 3 direcciones en las que las direcciones de los operandos se da por medio de registros de 32 bits que apuntan a posiciones de memoria en la que se encuentran los mismos

UNSAM - PACM - Cap 1

2 Direcciones

UNSAM - PACM - Cap 1

35

Cantidad de direcciones en la palabra de instrucción

1 Dirección

UNSAM - PACM - Cap 1

Uso del Acumulador

• Cargar el operando R al acumulador:

Realizar la operación suma.

$$(Acc) \leftarrow (Acc.) + (S)$$

• Guardar el resultado en T.

UNSAM - PACM - Cap 1

37

38

UNSAM - PACM - Cap 1

Otros modos de Registro direccionamiento

- - MOV R1,R2
- Registro Indirecto
 - MOV A, [R1]
 - MOV A, @R1
- Relativo
 - SJMP ALLA ; 8 bits
- Indexado
 - MOV A, [TAB_CONV + X]

UNSAM - PACM - Cap 1

39

Ciclo perpetuo de ejecución

Búsqueda Cod Op

Decodificación Cod Op

Ejecución

UNSAM - PACM - Cap 1

Análisis de la ejecución de un tramo de programa

Posición de Memoria	Contenido	Nemónico	Comentario
2040H	A0	MOV AL,(1234H)	;Traer a AL el contenido de la posició memoria 1234H
	34		;Parte baja de la dirección
	12		;Parte alta de la dirección
2043H	04	ADD AL,0F6H	;Sumar 0F6H al registro AL
	F6		;Operando a sumar
2045H	72	JC ALFA	.Si hubo acarreo saltar a la etiqueta
	F5		; Parte baja de la dirección ALFA
	23		; Parte alta de la dirección ALFA
2048H	F6	NOT AL	;Complemento a 1 de AL
23F5 ALFA:			

UNSAM - PACM - Cap 1

43

Análisis de la ejecución de un tramo de programa

- Primera instrucción (MOV AL,1234H)#
- Primer ciclo de máquina: Búsqueda de código de operación.
 - (IP) \rightarrow Bus Direcciones \rightarrow (2040H) \rightarrow Bus Datos \rightarrow A0H \rightarrow (IR)
 - (IP) ← (IP + 1) (2041H)
- Segundo ciclo de máquina: Lectura de memoria.
 - (IP) → Bus Direcciones → (2041H) → Bus Datos → 34H → (MAL)
 - $(IP) \leftarrow (IP + 1) (2042H)$
- Tercer ciclo de máquina: Lectura de memoria.
 - (IP) \rightarrow Bus Direcciones \rightarrow (2042H) \rightarrow Bus Datos \rightarrow 12H \rightarrow (MAH)
 - (IP) \leftarrow (IP + 1) (2043H)
- Cuarto ciclo de máquina: Lectura de memoria.
 - (MAR) \rightarrow Bus Direcciones \rightarrow (1234H) \rightarrow Bus Datos \rightarrow 10H \rightarrow (AL)

UNSAM - PACM - Cap 1

Análisis de la ejecución de un tramo de programa

- Segunda instrucción (ADD AL,0F6H)#
- Primer ciclo de máquina: Búsqueda de código de operación.

```
- (IP) \rightarrow Bus Direcciones \rightarrow (2043H) \rightarrow Bus Datos \rightarrow 04H \rightarrow (IR)
```

- $(IP) \leftarrow (IP + 1) (2044H)$
- Segundo ciclo de máquina: Lectura de memoria.
 - (IP) → Bus Direcciones → (2044H) → Bus Datos → F6H → (Data Register)
 - $(IP) \leftarrow (IP + 1) (2045H)$
 - (AL) ← (AL) + (Data Register) AL = 06 CY = 1

UNSAM - PACM - Cap 1

45

Análisis de la ejecución de un tramo de programa

- Tercera instrucción (JC 23F5H)#
- Primer ciclo de máquina: Búsqueda de código de operación.
 - (IP) → Bus Direcciones → (2045H) → Bus Datos → 72H → (IR)
 - (IP) ← (IP + 1) (2046H)
- Segundo ciclo de máquina: Lectura de memoria.
 - (IP) → Bus Direcciones \rightarrow (2046H) \rightarrow Bus Datos \rightarrow F5H \rightarrow (MAL)
 - (*IP*) ← (*IP* + 1) (2047H)
- Tercer ciclo de máguina: Lectura de memoria.
 - (IP) → Bus Direcciones → (2047H) → Bus Datos → 23H → (MAH)
 - (IP) ← (MAR) (23F5H)
 - Ejercicio.
 - Repetir el ejemplo anterior, pero suponiendo que el contenido de la posición de memoria 1234H es 01H.

UNSAM - PACM - Cap 1

