Exercise 9.9. Let $G = \mathbb{R} \setminus \{-1\}$ and define a binary operation on G by

$$a * b = a + b + ab.$$

Prove that G is a group under this operation. Show that (G,*) is isomorphic to the multiplicative group of nonzero real numbers.

Proof. By Exercise 3.7 from homework #2, (G,*) is an abelian group.

The map $\phi: G \to \mathbb{R}^*$ given by $\phi(x) = 1 + x$ is clearly a bijection and well defined on each set. ϕ preserves group operations as for any $a, b \in G$,

$$\phi(a) \cdot \phi(b) = (1+a) \cdot (1+b) \quad \text{by definition of } \phi$$

$$= 1+b+a+ab=a+b+ab+1$$

$$= \phi(a+b+ab) \quad \text{by definition of } \phi$$

$$= \phi(a*b) \quad \text{by definition of } *$$

So
$$(G,*) \simeq (\mathbb{R}^*,\cdot)$$
.

Exercise 9.12. Prove that S_4 is not isomorphic to D_{12} .

Proof. Consider $(1, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2) \in D_{12}$ which has order 12. Because every element of S_4 has order less than or equal to 4, the two groups cannot be isomorphic by Theorem from class that ord $[\phi(g_1)] = \operatorname{ord}(g_1)$.

Exercise 9.14. Show that the set of all matrices of the form $\begin{bmatrix} \pm 1 & k \\ 0 & 1 \end{bmatrix}$ is isomorphic to D_n where all entries in the matrix are in \mathbb{Z}_n .

Proof. Let $S = \left\{ \begin{bmatrix} \pm 1 & k \\ 0 & 1 \end{bmatrix} : k \in \mathbb{Z}_n \right\}$. Notice for any $\begin{bmatrix} \pm 1 & k \\ 0 & 1 \end{bmatrix} \in S$, we have

$$\begin{bmatrix} \pm 1 & k \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \pm 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}^k \begin{bmatrix} \pm 1 & 0 \\ 0 & 1 \end{bmatrix}$$

and $\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}^2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$. So $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ and $\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$ generate S. Furthermore, $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ has order n, and $\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$ has order 2, and

$$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}^{-1}$$

By Theorem 5.10, D_n is generated by all the products of $r, s \in D_n$ such that $r^n = s^2 = id$ and $srs = r^{-1}$. Define $f: S \to D_n$ by $f\left(\left[\begin{smallmatrix} 1 & k \\ 0 & 1 \end{smallmatrix}\right]\right) = r^k$ and $f\left(\left[\begin{smallmatrix} -1 & k \\ 0 & 1 \end{smallmatrix}\right]\right) = r^ks$. To check that f preserves group operations, there are four cases to check:

$$1. \ f\left(\left[\begin{smallmatrix} 1 & k \\ 0 & 1 \end{smallmatrix}\right]\left[\begin{smallmatrix} 1 & \ell \\ 0 & 1 \end{smallmatrix}\right]\right) = f\left(\left[\begin{smallmatrix} 1 & k+\ell \\ 0 & 1 \end{smallmatrix}\right]\right) = r^{k+\ell} = r^k r^\ell = f\left(\left[\begin{smallmatrix} 1 & k \\ 0 & 1 \end{smallmatrix}\right]\right) \cdot f\left(\left[\begin{smallmatrix} 1 & \ell \\ 0 & 1 \end{smallmatrix}\right]\right). \ \checkmark$$

$$2. \ f\left(\left[\begin{smallmatrix} -1 & k \\ 0 & 1 \end{smallmatrix}\right]\left[\begin{smallmatrix} 1 & \ell \\ 0 & 1 \end{smallmatrix}\right]\right) = f\left(\left[\begin{smallmatrix} -1 & k \\ 0 & 1 \end{smallmatrix}\right]\right) = r^{k-\ell}s = r^kr^{-\ell}s = \cdots = \cdots = f\left(\left[\begin{smallmatrix} -1 & k \\ 0 & 1 \end{smallmatrix}\right]\right) \cdot f\left(\left[\begin{smallmatrix} 1 & \ell \\ 0 & 1 \end{smallmatrix}\right]\right). \ \checkmark$$

$$3. \ f\left(\left[\begin{smallmatrix} 1 & k \\ 0 & 1 \end{smallmatrix}\right]\left[\begin{smallmatrix} -1 & \ell \\ 0 & 1 \end{smallmatrix}\right]\right) = f\left(\left[\begin{smallmatrix} -1 & k+\ell \\ 0 & 1 \end{smallmatrix}\right]\right) = r^{k+\ell}s = r^kr^\ells = r^k\left(r^\ells\right) = f\left(\left[\begin{smallmatrix} 1 & k \\ 0 & 1 \end{smallmatrix}\right]\right) \cdot f\left(\left[\begin{smallmatrix} -1 & \ell \\ 0 & 1 \end{smallmatrix}\right]\right). \checkmark$$

4.
$$f\left(\begin{bmatrix} -1 & k \\ 0 & 1 \end{bmatrix}\begin{bmatrix} -1 & \ell \\ 0 & 1 \end{bmatrix}\right) = f\left(\begin{bmatrix} 1 & k-\ell \\ 0 & 1 \end{bmatrix}\right) = r^{k-\ell} = r^k r^{-\ell} = r \left(srs\right)^{\ell} \cdots = \cdots = f\left(\begin{bmatrix} -1 & k \\ 0 & 1 \end{bmatrix}\right) \cdot f\left(\begin{bmatrix} 1 & \ell \\ 0 & 1 \end{bmatrix}\right)$$
.

Exercise 10.2. Find all the sub-groups of D_4 . Which sub-groups are normal? What are all the factors groups of D_4 up to isomorphisms?

Proof. The sub-groups are $D_4 = \{id, \rho, \rho^2, \rho^3, s, \rho s, \rho^2 s, \rho^3 s\} = \{id, (1234), (13)(24), (1432), (24), (12)(34), (13), (14)(23)\}$ are

- $1. \{id\}$
- 3. $\{id, s\}$
- 5. $\{id, \rho^2 s\}$
- 7. $\{id, \rho, \rho^2, \rho^3\}$ 9. $\{id, \rho^2, \rho s, \rho^3 s\}$

- 2. $\{id, \rho^2\}$
- 4. $\{id, \rho s\}$
- 6. $\{id, \rho^3 s\}$
- 8. $\{id, \rho^2, s, \rho^2 s\}$ 10. D_4

- 1. $\{id\}$ is normal.
- 2. $\{id, \rho^2\}$ is normal as $(1234)\{id, \rho^2\} = \{(1234), (1432)\} = \{id, \rho^2\}(1234)$ and $(24)\{id, \rho^2\} = \{(24), (13)\} = \{id, \rho^2\}(24)$ and $(12)(34)\{id, \rho^2\} = \{(12)(34), (14)(23)\} = \{id, \rho^2\}(12)(34).$
- 3. $\{id, s\}$ is not normal as $(1234)\{id, s\} = \{(1234), (12)(34)\} \neq \{(1234), (14)(23)\} = \{id, s\}(1234)$.
- 4. $\{id, \rho s\}$ is not normal as $(1234)\{id, \rho s\} = \{(1234), (13)\} \neq \{(1234), (24)\} = \{id, \rho s\} (1234)$
- 5. $\{id, \rho^2 s\}$ is not normal as $\rho \circ (\rho^2 s) = \rho^3 s \neq \rho s = (\rho^2 s) \circ \rho$.
- 6. $\{id, \rho^3 s\}$ is not normal as $\rho \circ (\rho^3 s) = s \neq \rho^2 s = (\rho^3 s) \circ \rho$.
- 7. $\{id, \rho, \rho^2, \rho^3\}$ is normal as $s\{id, \rho, \rho^2, \rho^3\} = \{s, \rho^3 s, \rho^2 s, \rho s\} = \{id, \rho, \rho^2, \rho^3\} s$.
- 8. $\{id, \rho^2, s, \rho^2 s\}$ is normal as $\rho \{id, \rho^2, s, \rho^2 s\} = \{\rho, \rho^3, \rho s, \rho^3 s\} = \{id, \rho^2, s, \rho^2 s\} \rho$.
- 9. $\{id, \rho^2, \rho s, \rho^3 s\}$ is normal as $\rho \{id, \rho^2, \rho s, \rho^3 s\} = \{\rho, \rho^3, \rho^2 s, s\}$. \checkmark
- 10. D_4 is normal.
- 2. The factor group $D_4/\{id, \rho^2\} = \{\{id, \rho^2\}, \{\rho, \rho^3\}, \{s, \rho^2 s\}, \{\rho s, \rho^3 s\}\}$.
- 7. The factor group $D_4/\{id, \rho, \rho^2, \rho^3\} = \{\{id, \rho, \rho^2, \rho^3\}, \{s, \rho^3 s, \rho^2 s, \rho s\}\}.$
- 8. $D_4/\{id, \rho^2, s, \rho^2 s\} = \{\{id, \rho^2, s, \rho^2 s\}, \{\rho, \rho^3, \rho s, \rho^3 s\}\}.$
- 9. $D_4/\{id, \rho^2, \rho s, \rho^3 s\} = \{\{id, \rho^2, \rho s, \rho^3 s\}, \{\rho, \rho^3, \rho^2 s, s\}\}.$

Exercise 10.7. Prove or disprove: If H is a normal sub-group of G such that H and G/H are abelian, then G is abelian.

Counterexample. Let $G = S_3$ and $H = A_3$. S_3 is non-abelian. By Corollary 9.4, $A_3 \simeq \mathbb{Z}_3$, so A_3 is abelian. We must show A_3 is normal and S_3/A_3 is abelian:

 A_3 is normal as for any $\sigma \in S_3$, $\sigma A_3 \sigma^{-1}$ is even whether σ is even or odd. So $\sigma A_3 \sigma^{-1} \subseteq A_3$, so A_3 is normal by Theorem 10.1.2. ✓

To show S_3/A_3 is abelian, notice by Lagrange's Theorem, $[S_3:A_3] = \frac{|S_3|}{|A_3|} = \frac{6}{3} = 2$. By Theorem 10.2, $|S_3/A_3| = [S_3:A_3]$. By Corollary 9.4, since $|S_3/A_3|=2$ and 2 is prime, $S_3/A_3\simeq\mathbb{Z}_2$, so S_3/A_3 is abelian. \checkmark

Exercise 10.11. If a group G has exactly one sub-group H of order k, prove that H is normal in G.

Proof. By Exercise 3.54 from homework #4, gHg^{-1} is a sub-group of G. By the assumption that H is the only sub-group of G, we have that $H = gHg^{-1}$. By Theorem 10.1.3, $H = gHg^{-1} \implies H$ is a normal subgroup of G.

Exercise 10.12. Define the *centralizer* of an element g in a group G to be the set

$$C(g) = \{x \in G : xg = gx\}.$$

Show that C(g) is a sub-group of G. If g generates a normal sub-group of G, prove that C(g) is normal in G.

Proof. For $C(g) \subseteq G$ to be a sub-group of G, it is sufficient to show

1. For all $a, b \in C(g)$, $a \circ b \in C(g)$.

- 3. For all $a \in C(g)$ there exists $a^{-1} \in C(g)$ such that $a \circ a^{-1} =$
- $e = a^{-1} \circ a$. 2. There exists $e \in C(g)$ such that $a \circ e = a = e \circ a$ for all $a \in C(g)$.

1. Consider $a, b \in C(g)$. Then $a, b \in G$ as $C(g) \subseteq G$. Then

$$(ab)x = a(bx)$$
 by associativity of elements of G
= $a(xb)$ by assumption that $b \in C(g)$
= $(ax)b$ by associativity of elements of G
= $(xa)b$ by assumption that $a \in C(g)$
= $x(ab)$ by associativity of elements of G

So $ab \in C(g)$. \checkmark

- 2. Because $e \in G$ by definition commutes with every element of $G, e \in C(g)$.
- 3. Consider $c \in C(g)$. Then $c \in G$ and $c^{-1} \in G$ as G is a group and $C(g) \subseteq G$. Then

$$\begin{array}{ll} c\in C(g) \implies cx = xc \\ \implies c^{-1}cxc^{-1} = c^{-1}xcc^{-1} & \text{by left and right multiplying by } c^{-1} \\ \implies xc^{-1} = c^{-1}x & \text{by condensing the $`$} c^{-1}c" \text{ and $`$} cc^{-1}" \text{ terms} \end{array}$$

So
$$c \in C(g) \implies c^{-1} \in C(g)$$
. \checkmark

So C(g) is a sub-group of G.

Because C(g) us clearly abelian, it follows that the left and right co-sets must be equal, and C(g) must be normal.

Exercise 11.2. Which of the following maps are homomorphisms? If the map is a homomorphism, what is the kernel?

(a) $\phi: \mathbb{R}^* \to GL_2(\mathbb{R})$ defined by

$$\phi(a) = \begin{bmatrix} 1 & 0 \\ 0 & a \end{bmatrix}$$

(b) $\phi: \mathbb{R} \to GL_2(\mathbb{R})$ defined by

$$\phi(a) = \begin{bmatrix} 1 & 0 \\ a & 1 \end{bmatrix}$$

(c) $\phi: GL_2(\mathbb{R}) \to \mathbb{R}$ defined by

$$\phi\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = a + d$$

(d) $\phi: GL_2(\mathbb{R}) \to \mathbb{R}^*$ defined by

$$\phi\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = ad - bc$$

(e) $\phi: \mathbb{M}_2(\mathbb{R}) \to \mathbb{R}$ defined by

$$\phi\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = b$$

Proof.

(a) ϕ is a homomorphism as for $a, b \in \mathbb{R}^*$,

$$\phi(a)\phi(b) = \begin{bmatrix} 1 & 0 \\ 0 & a \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & b \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & ab \end{bmatrix} = \phi(ab)$$

and $\ker \phi := \{x \in \mathbb{R}^* \text{ such that } \phi(x) = id\} = \{1\}.$

(b) ϕ is not a homomorphism as

$$\phi(a)\phi(b) = \begin{bmatrix} 1 & 0 \\ a & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ b & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ a+b & 1 \end{bmatrix} \neq \phi(ab).$$

(c) ϕ is not a homomorphism as

$$\phi\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\begin{bmatrix} \alpha & \beta \\ \gamma & \delta \end{bmatrix}\right) = \phi\left(\begin{bmatrix} a\alpha + b\gamma & a\beta + b\delta \\ c\alpha + d\gamma & c\beta + d\delta \end{bmatrix}\right) = a\alpha + b\gamma + c\beta + d\delta \neq a\alpha + a\delta + d\alpha + d\delta = \phi\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right)\phi\left(\begin{bmatrix} \alpha & \beta \\ \gamma & \delta \end{bmatrix}\right).$$

(d) ϕ is a homomorphism as

$$\phi\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\begin{bmatrix} \alpha & \beta \\ \gamma & \delta \end{bmatrix}\right) = \phi\left(\begin{bmatrix} a\alpha + b\gamma & a\beta + b\delta \\ c\alpha + d\gamma & c\beta + d\delta \end{bmatrix}\right) = (a\alpha + b\gamma)(c\beta + d\delta) - (a\beta + b\delta)(c\alpha + d\gamma)$$

$$= ac\alpha\beta + ad\alpha\delta + bc\beta\gamma + bd\gamma\delta - ac\alpha\beta - ad\beta\gamma - bc\alpha\delta - bd\gamma\delta$$

$$= ad\alpha\delta + bc\beta\gamma - ad\beta\gamma - bc\gamma\delta$$

$$= (ad - bc)(\alpha\delta - \beta\gamma) = \phi\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right)\phi\left(\begin{bmatrix} \alpha & \beta \\ \gamma & \delta \end{bmatrix}\right)$$

and $\ker \phi := \{M \in GL_2(\mathbb{R}) \text{ such that } \phi(A) = 1\} = SL_2(\mathbb{R}).$

(e) ϕ is not a homomorphism as

$$\phi\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\begin{bmatrix} \alpha & \beta \\ \gamma & \delta \end{bmatrix}\right) = \phi\left(\begin{bmatrix} a\alpha + b\gamma & a\beta + b\delta \\ c\alpha + d\gamma & c\beta + d\delta \end{bmatrix}\right) = a\beta + b\delta \neq b\beta = \phi\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right)\phi\left(\begin{bmatrix} \alpha & \beta \\ \gamma & \delta \end{bmatrix}\right).$$

Exercise 11.17. If H and K are normal sub-groups of G and $H \cap K = \{e\}$, prove that G is isomorphic to a sub-group of $G \setminus H \times G \setminus K$.

Proof. content...

Homework exercises I cited:

Exercise 3.7 Let $S = \mathbb{R} \setminus \{-1\}$ and define a binary operation on S by a * b = a + b + ab. Prove that (S, *) is an abelian group. An abelian group is a group G such that a * b = b * a for all $a, b \in G$.

Associative For all $a, b, c \in G$, (a * b) * c = a * (b * c).

$$(a*b)*c = (a*b) + c + (a*b)c$$
 by definition of $a*b$
 $= (a+b+ab) + c + (a+b+ab)c$ by definition of $a*b$
 $= a+b+c+ab+ac+bc+abc$
 $= a+(b+c+bc) + a(b+c+bc)$
 $= a+(b*c) + a(b*c)$ by definition of $a*b$
 $= a*(b*c)$ by definition of $a*b$

Identity element There exists an element $e \in G$ such that for any $a \in G$, e * a = a * e = a.

For any a, let b = 0. Then a * b = a + 0 + a(0) = a = 0 + a + 0(a) = b * a. So b = 0 is the identity element such that a * 0 = 0 * a for all $a \in G$.

Inverse element For each element $a \in G$ there exists an $a^{-1} \in G$ such that $a * a^{-1} = a^{-1} * a = e$. We know from above that e = 0. So given $a \in G$,

$$a+b+ab = 0$$

$$\implies b(1+a)+a = 0$$

$$\implies b = \frac{-a}{1+a}$$

which is defined for all $x \in S$. So $b = \frac{-a}{1+a}$ is the unique inverse element a^{-1} to each a such that $a * a^{-1} = a^{-1} * a = e$.

Commutative For all $a, b \in G$, a * b = b * a.

$$\begin{split} a*b &= a+b+ab\\ &= b+a+ab \quad \text{by commutative property of addition}\\ &= b+a+ba \quad \text{by commutative property of multiplication}\\ &= b*a \quad \text{by definition} \end{split}$$

So (S, *) is an abelian group.

Exercise 3.54. Let H be a sub-group of G. If $g \in G$, show that $gHg^{-1} := \{g^{-1}hg : h \in H\}$ is also a sub-group of G.

Proof. By theorem from class, for $gHg^{-1} \subseteq G$ to be a sub-group of G, it is sufficient to show

- 1. For all $a, b \in gHg^{-1}$, $a \circ b \in gHg^{-1}$.
- 2. There exists $e \in gHg^{-1}$ such that $a \circ e = a = e \circ a$ for all $a \in gHg^{-1}$.
- 3. For all $a \in gHg^{-1}$ there exists $a^{-1} \in gHg^{-1}$ such that $a \circ a^{-1} = e = a^{-1} \circ a$.

Notice that gHg^{-1} is necessarily a subset of G as every element in H is contained in G (by assumption that H is a sub-group of G). So $g, h, g^{-1} \in G$. Furthermore, every element in gHg^{-1} is of the form $g^{-1}hg$, and G is closed by assumption that G is a group. So $gHg^{-1} \subseteq G$.

Let $a, b \in gHg^{-1}$. Then $a = g^{-1}h_ag$ and $b = g^{-1}h_bg$ for some $h_a, h_b \in H$.

1. Consider

$$ab = (g^{-1}h_ag) (g^{-1}h_bg)$$

$$= (g^{-1}h_a) (gg^{-1}) (h_bg) \text{ by associativity of elements of } G$$

$$= (g^{-1}h_a) (e) (h_bg) \text{ by definition of } g^{-1}$$

$$= (g^{-1}h_a) (h_bg), \text{ by definition of } e$$

$$= g^{-1} (h_ah_b) g \text{ by associativity of elements of } G$$

and $(h_a h_b) \in H$ as H was assumed to be a sub-group, so H is closed. So $ab = g^{-1} (h_a h_b) g$ is of the form $g^{-1}hg$ for some $h \in H$. So gHg^{-1} is closed.

2. By assumption that H is a sub-group of $G, e \in H$. So $(g^{-1}eg) \in gHg^{-1}$ and

$$g^{-1}eg = g^{-1}g$$
 by definition of e
= e , by definition of g^{-1} .

So $(g^{-1}eg) \in gHg^{-1}$ and $g^{-1}eg = e$. so $e \in gHg^{-1}$.

3. By Proposition 3.4, if $a=g^{-1}h_ag$ then $a^{-1}=g^{-1}h_a^{-1}g$. So $a^{-1}\in gHg^{-1}$ if $h_a^{-1}\in H$, and h_a^{-1} is necessarily an element of H by assumption that H is a sub-group of G. So $a\in gHg^{-1}\implies a^{-1}\in gHg^{-1}$.

So this shows that gHg^{-1} is a sub-group of G.