Сравнительный анализ алгоритмов оценивания параметров многомерной линейной регрессии на модельных и эконометрических примерах

Кондратьев Роман Сергеевич, 522-я группа

Санкт-Петербургский Государственный Университет Математико-механический факультет Кафедра статистического моделирования

Научный руководитель — к.ф.-м.н., доцент **А.Н. Пепелышев** Рецензент — к.ф.-м.н., доцент **Н.П. Алексеева**

Санкт-Петербург 2007г.

Постановка задачи

- Выборка (Y, X)
 - Y вектор значений зависимого признака
 - X матрица значений независимых признаков

- Уравнение многомерной линейной регрессии
 - Векторная запись

$$Y = X_0\beta + \varepsilon$$

• Покомпонентная запись

$$y_i = \beta_0 + \beta_1 x_{1i} + \ldots + \beta_s x_{si} + \varepsilon_i, \quad i = 1, \ldots, m$$

• Оценка параметров

$$S(\beta) = ||Y - \mu||^2 = \sum_{i=1}^{m} (y_i - \mu_i)^2 \rightarrow \min_{\beta}, \ \mu = X_0 \beta, \ X_0 = (\mathbf{1}_{m \times 1} \dot{X})$$

• Ограничение

$$\sum_{i=1}^{s} |\beta_i| < t$$

Основные алгоритмы

- Обычная оценка МНК
- LARS (Efron, Hastie, Tibshirani, 2002)
 - **1** Положить β =0
 - $oldsymbol{2}$ Найти регрессор x_i имеющий наибольшую корреляцию с y
 - 🔞 Увеличить коэффициент eta_j в направление знака корреляции с y
 - f 4 Взять остатки $r=y-\widehat{y}$

 - $oldsymbol{0}$ Увеличивать (eta_j,eta_k) в их совместном направлении, пока еще какой-нибудь признак x_l не станет так же коррелировать с r
 - Делать шаги 2-6 пока все признаки не включены в модель

Дополнительные алгоритмы

- LinProg обычный МНК с ограничением
- ullet StageWise arepsilon шаги в направлении, как у LARS
- Lasso шаги от обычного МНК к нулю
- DLARS
- StageWise-LARS
- Lasso-LARS

Рост оценок параметров по алгоритму Lasso

Методы нахождения оптимального значения параметра алгоритмов

• Нахождение минимума по t средне-квадратичной ошибки МЕ для алгоритмов, зависящих от параметра t

$$\mathsf{ME} = \mathsf{E}\{\widehat{\eta}(X) - \eta(X)\}^2$$

• Нахождение минимума по k статистики риска выбора модели C_p для пошаговых алгоритмов, где k — номер шага

$$C_p(\widehat{\mu}) = \frac{\|y - \widehat{\mu}\|^2}{\sigma^2} - s + 2k$$

Метод вычисления оптимального параметра алгоритма

ullet Предварительное удаление выбросов посредством вычисления средне-квадратичной ошибки ME методом Jack-Knife

ullet Вычисление ME=ME(t) методом Cross-Validation

$$ME = \mathsf{E}\{\widehat{\eta}(X) - \eta(X)\}^2$$

Пример 1. Модельные данные

ullet Истинное значение eta

$$\beta = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10), \ \sigma^2 = 0.25$$

• Корреляционная матрица признаков

$$\begin{pmatrix} 1 & \rho & \rho^2 & \dots & \rho^{|s-1|} \\ \rho & 1 & \rho & \dots & \rho^{|s-2|} \\ \rho^2 & \rho & 1 & \dots & \rho^{|s-3|} \\ \vdots & \vdots & \vdots & \dots & \vdots \\ \rho^{|s-1|} & \rho^{|s-2|} & \rho^{|s-3|} & \dots & 1 \end{pmatrix}$$

- Полученные Оценки
 - ullet Оценка методом МНК, ho=0.99

$$\widehat{\beta}_{OLS} = (1.47 - 0.30 \ 3.61 \ 4.69 \ 6.71 \ 7.96 \ 8.96 \ 8.24 \ 9.56 \ 11.46)$$

ullet Оценка методом DLARS, ho=0.99

$$\widehat{\beta}_{DLARS} =$$
 (0 0 0 4.24 6.43 4.54 7.62 6.61 9.88 8.21) $ME_{DLARS} =$ 0.0180, $ME_{Lasso} =$ 0.0184

ullet Оценка методом DLARS, ho=0

$$\widehat{\beta}_{DLARS} = (0 \ 1.15 \ 2.50 \ 3.66 \ 4.34 \ 5.50 \ 6.66 \ 7.71 \ 8.94 \ 9.85)$$

$$ME_{DLARS} = 0.0169, \ ME_{Lasso} = 0.0031$$

- Результаты алгоритмов
 - не сильно зависят от корреляции
 - сильно зависит от выбросов

Пример 2. Реальные данные satisfaction-ratings.sta

- Семь признаков: производительность ПК, надежность, набор опций, выбор ПО, поддержка, гарантия, и цена
- Результаты
 - ullet Кривая ME

• Оценка методом Lasso

$$\hat{\beta}_{Lasso} = (0 -0.1551 \ 0.7136 \ -0.0837 \ 0 \ -0.0966)$$

• Оценка методом DLARS

$$\widehat{\beta}_{LARS} = (0 -0.2205 \ 0.7808 \ -0.1059 \ 0 \ -0.0846)$$

Пример 3. Эластичность

• Эластичность

$$E_D = \left| rac{\%$$
Изменение количества спроса на продукт X $}{\%$ Изменение цены на продукт X $}
ight| = rac{rac{\Delta Q_D}{Q_D}}{rac{\Delta P_D}{P_D}}$

$$E_D = \frac{P}{Q} \times \frac{\partial Q}{\partial P}$$

• Модель эластичности для группы товаров

$$\Delta Q_{i}^{j} = \alpha_{1} \Delta P_{i}^{1} + \alpha_{2} \Delta P_{i}^{2} + \dots + \alpha_{s} \Delta P_{i}^{s}$$

$$\Delta P_{i}^{j} = P_{i+1}^{j} - P_{i}^{j}, \ \Delta Q_{i}^{j} = Q_{i+1}^{j} - Q_{i}^{j}$$

Пример 3. Эластичность. Модельные данные

• Модель

$$Q_{i}^{j} = Q_{i-1}^{j} + \beta^{j} (P_{i}^{j} - P_{i-1}^{j}) + \sum_{k \neq j} (P_{i}^{k} - P_{i-1}^{k}) + \varepsilon^{j}$$

$$j = 1, ..., s, i = 2, ..., m, Q_1^j = const, P_1^j = const$$

- ullet Истинное значение eta^j
- Таблица оценок методом Lasso для всех 6 признаков

	β_1	β_2	β_3	β_4	β_5	β_6
Q_1	-4.46	1.12	0.66	-0.30	1.56	1.37
Q_2	1.99	-5.22	-0.62	0.58	1.24	1.83
Q_3	0.83	1.06	-5.23	1.11	0.78	1.12
Q_4	-0.03	1.13	0	-6.3	-2.87	0
Q_5	0.47	0.88	0.72	1.17	-4.66	1.05
Q_6	0.78	1.29	0.25	1.8	1.18	-7.24

Пример 3. Эластичность. Реальные данные

Шесть наименований шампуней

Результаты

• Оценка МНК

$$\widehat{\beta}_{OLS} = (-1.47 \ 0.12 \ 0.36 \ -8.30 \ -0.56 \ -1.37)$$

• Метод Lasso

$$\hat{\beta}_{\mathsf{Lasso}} = (-1.34 \ 0 \ 0.13 \ -7.07 \ -0.06 \ -1.16)$$

Метод DLARS

$$\widehat{\beta}_{\text{DLARS}} = (-1.31 \ 0 \ 0 \ -6.45 \ 0 \ -1)$$

- Изучены алгоритмы оценки параметров, дающие более удовлетворительные результаты в присутствии коррелированности признаков, чем обычный МНК
- Выявлена слабая зависимость от коррелированности данных и сильная зависимость от выбросов
- Исследована модель эластичности спроса по цене
- Разработаны программы в среде МАТLAB