Roll No.		Paper Code: TEC-101/201
	1 1 1 1	

B.Tech. (First Semester) Back Paper Examination, 2017 BASIC ELECTRONICS ENGINEERING

Time: Three Hours

MM:100

Note:

- I) This question paper contains five questions.
- II) All questions are compulsory
- III) Each question carries three parts a, b and c. Attempt any two parts of your choice in each question.
- IV) Each part carries ten marks. Total marks assigned to each question are twenty.
- 1. (a) Perform following arithmetic operations:
 - (i) Convert (ECE)16 to its equivalent binary number.
 - (ii) (1110011)₂ (0100101)₂ using 2's complement.
 - (b) Perform following Boolean operations:
 - (i) State the De-morgan principle with expression.
 - (ii) Draw logic gate diagram of the simplified Boolean expression of $\overline{(A \cdot \overline{B})} \cdot \overline{(\overline{A} \cdot B)}$
 - (c) (i) Realize the following with basic logic gates: ABCD+BCD+ACD+ABD.
 - (ii) Realize the Ex-Or gate using NOR gate.
- 2. (a) Explain the reasons for the following effects:
 - (i) An intrinsic semiconductor behaves like an insulator at 0-deg Kelvin.
 - (ii) Temperature co-efficient of resistance for a semiconductor is negative,
- (b) In an extrinsic semiconductor, concentrations of the holes and the electrons are 4.52×10^{24} /m³ and 1.25×10^{14} /m³, respectively. If the mobility of an electron is 0.38m²/Vs and that of a hole is 0.18m²/Vs, then determine the following:
 - (i) What type of extrinsic semiconductor (p-type or n-type) is this material and why?
 - (ii) Carrier concentration in an undoped (i.e., pure) specimen of this semiconductor,
 - (iii)Conductivity of the intrinsic semiconductor, and

- (iv) Conductivity of the doped semiconductor.
- (c) Explain Avalanche breakdown. State two of its differences with the Zener breakdown mechanisms.
- 3. (a) Explain the effect of change in temperature on the I-V characteristics of a diode with the help of a neat diagram.
 - (b) Draw the circuit of a full-wave bridge rectifier circuit and derive following parameters:
 - (i) Average Current,
 - (ii) R. M. S. Current, and
 - (iii) Ripple Factor.
- (c) Draw the circuit of a common emitter (CE) configuration using NPN transistor. Draw its output characteristics, clearly indicating the active, the saturation and the cut-off regions.
- 4. (a) Name the below-mentioned circuit. Assuming diode to be ideal, draw waveform of its output voltage, V_{out} , for the given sinusoidal input:

- (b) Explain the following in detail.
 - (i) Explain the working principle of an LED
 - (ii) Working of integrator using IC-741.

- (c) Various parameters in a CE silicon transistor ($V_{BE} = 0.7V$) amplifier are given as follows: $V_{CC} = 22V$, $R_{B1} = 39k\Omega$, $R_{B2} = 3.9k\Omega$, $R_{C} = 10k\Omega$, $R_{E} = 1.5 k\Omega$ and $\beta = 140$. Answer the following for the adjacent circuit:
 - Name the type of biasing configuration used in the circuit,
 - ii. Determine the collector current, I_C , and
 - iii. Determine the collector-emitter voltage, V_{CE}
- 5. (a) Draw circuit diagrams and derive their input-output relations to show how an OPAMP works as:
 - (i) Inverting Amplifier, and
 - (ii) Differentiator.
- (b) Calculate the output voltage of an OPAMP based *adder* (as shown in the figure below) for the following input voltages and resistances: $V_1 = 1V$, $V_2 = 2V$, $V_3 = 3V$, $R_1 = 500k\Omega$, $R_2 = 1M\Omega$, $R_3 = 1M\Omega$, and $R_F = 1M\Omega$.

- (c). Write short notes on any four of the following questions:
 - i. Explain the working of a diode based clamper, with its neat circuit diagram.
 - ii. Represent EX-NOR gate using NAND gates only.
 - iii. Explain working principles of the C and the Pi filters with help of their circuit diagrams.
 - iv. List any four characteristics of an ideal OPAMP.
 - Provide any two differences between FET (Field Effect Transistor) and BJT. Also, indicate one advantage and one disadvantage of FET over BJT.