BST02: Using R for Statistics in Medical Research

Part A: Introduction

Eleni-Rosalina Andrinopoulou

Department of Biostatistics, Erasmus Medical Center

■ e.andrinopoulou@erasmusmc.nl

24 - 28 February 2020

What is this Course About

Statistics have flourished in the recent years mainly due to the possibility of doing complex analysis using computers

The **programming language R** is popular for Data Scientists

- ► The most valuable tool of a modern quantitative researcher is his/her personal computer
 - Many statistical software exist to do simple and specialized analysis
- Analysts must not only learn how to use the software but also the ideas behind it

What is this Course About (cont'd)

Therefore, the aim of this course is:

- ► Aim A: General Introduction
 - ▶ how does the programming language **R** work
- ► Aim B: Basic use of R
 - getting started with a data set, data visualizations
- ► Aim C: Programming
 - using and writing functions, popular functions which you will later need for the more advanced courses such as Repeated Measurements (CE08), Bayesian Statistics (CE09), etc.
- ▶ Aim D: Statistics with R
 - basic statistical tests, regression analysis
- ► Aim E: tools
 - some interesting tools for reporting data analyses in a reproducible manner

► Part A:

- ▶ What does R look like?
- ► What is R?
- ► A brief history of R
- ► Why learn R?
- ► Where do I get R?
- ► How does R work?
- ► How to get help in R?
- Disadvantages of R

Part B:

- ► Using R
- ► In practice examples
- Basics in R
- ► Common R objects
- Importing data and saving your work
- Data transformation
- ► Data exploration
- Visualization of data
- Indexing

- ► Part C:
 - Merging data sets
 - Functions
 - ► Loops
 - ► The apply family
 - ► Combine everything we learned

► Part D:

- Statistical tests
- ► Regression models
- Dummies, interaction and nonlinear effects
- Survival models
- Visualization of results

- ► Part E
 - Markdown
 - Creating reports

Schedule

- February 24: 10h00 13h00, 14h00 17h00
- February 25: 10h00 13h00, 14h00 17h00
- February 26: 10h00 13h00, 14h00 17h00
- ► February 27: 10h00 13h00, 14h00 17h00

Exams

▶ Date: February 28: 14h15 - 17h00

► Format: Assignment

▶ Open-book

Structure & Material

- ► Lectures: slides interchanged with live **R** sessions
- Practicals in-between the lectures
 - you will be asked to perform small and big tasks
 - solutions of the practicals available beforehand
- Material
 - slides
 - ▶ **R** code with the output
 - more than what we are going to cover!

Structure & Material (cont'd)

- ► You are welcome to try along
- ► You are welcome to interrupt and ask questions

References

▶ More books that use R (or S) can be found at:

http://www.r-project.org/doc/bib/R-books.html, or http://www.r-project.org/doc/bib/R-jabref.html

- R ships with a number of helpful manuals (illustrated later)
- Other manuals and helpful material are available on-line via CRAN: http://cran.r-project.org/other-docs.html

What does R look like?

What is R

- ▶ is a software environment for statistical computing and graphics.
- ▶ Unlike SPSS, R is purely command driven

A brief history of R

- ▶ 1993: University of Auckland, New Zealand by Ross Ihaka and Robert Gentleman
- ▶ **1997**: R core Team was formed (20 members)
- ▶ **2000**: R 1.0.0 released
- ▶ 2004: First international user conference in Vienna
- ▶ 2013: 5026 packages available
- ▶ **2017**: 10875 packages available
- ► Now: nrow(available.packages())

Why learn R?

- ▶ R is a free software environment for statistical computing and graphics
- It compiles and runs on LINUX, Windows and MacOS
- Open source language
- Users are allowed to modify and redistribute the code
- Advanced statistical language
- Supports extensions
- Related to other languages
- Flexible and fun!

Where do I get R?

- ► http://cran.r-project.org
- choose your platform, e.g., Windows, Linux
- ▶ e.g., for Windows: Windows → base → Download R 3.6.2 for Windows
- ► Install . . .

How does R work?

- ► Packaged built for specific tasks
- ▶ Download R packages from the CRAN web site → within R
 - Packages
 - ► Install package(s) . . .
 - make you choice(s)
 - ▶ load the package using library() (note: install does not mean load)

How to get help in R

- Within R
 - ► help.search("topic") or ??"topic" (depends on the installed packages)
 - ► RSiteSearch("topic") (requires internet connection)
 - ▶ help() or ? invoke the on-line help file for the specified function
 - checking the FAQ
- ▶ Online
 - R-help (https://stat.ethz.ch/mailman/listinfo/r-help mailing list)
 - R-seek (http://www.rseek.org Google-like searched engine)
 - R-wiki (http://rwiki.sciviews.org/doku.php)
 - CRAN Task Views (http://cran.r-project.org/web/views/ categorization of packages)
 - Crantastic (http://crantastic.org/ categorization of packages + reviews)
 - ► Equalis (http://www.equalis.com/forums/ R forum)
 - R4stats (http://www.r4stats.com/ examples of basic R programs)
 - ► R related Blogs (http://www.r-bloggers.com/ many useful illustrations of R and R packages)

Disadvantages of R

- appears intimidating to the first-time user
- output is not so nice looking (but there are some alternatives)
- exporting output is more difficult
- cannot easily handle very big data sets (depends on the installed RAM)
- a lot of things are available but it is sometimes hard to find your way
- the quality of the available packages is greatly varying