

Online Incident Response Planning under Model Misspecification through Bayesian Learning and Belief Quantization

18th ACM CCS Workshop on Artifical Intelligence and Security Taipei, Taiwan, October 17 2025

Kim Hammar (kimham@kth.se) Tao Li (li.tao@cityu.edu.hk)

KTH Royal Institute of Technology and City University of Hong Kong

Contributions

- 1. We present MOBAL, an online method for incident response planning.
- 2. We establish bounds on misspecification and quantization errors.
- 3. We show that MOBAL obtains state-of-the-art performance on CAGE-2.

Misspecified Online Bayesian Learning (MOBAL)

POMDP Model of Incident Response

We formulate incident response planning as a POMDP and seek to find a near-optimal response strategy π that maps belief states to response actions.

Theoretical Results (Informal)

Proposition 1 (Consistent conjectures). The model conjecture learned by MOBAL is asymptotically consistent with respect to the information feedback.

Proposition 2 (Misspecification error bound). The difference between the conjectured optimal cost function \overline{J}^* and the true optimal cost function J^* is bounded as

$$\|\overline{J}^{\star} - J^{\star}\|_{\infty} \leq \frac{\gamma \alpha c_{\max}}{(1 - \gamma)^2},$$

where γ is the discount factor, α quantifies the difference between the transition probabilities in the conjectured model and the true model, and $c_{\rm max}$ is the maximum stage cost.

Proposition 3 (Approximation error bound). The difference between the cost function approximation \tilde{J} obtained through quantization and the conjectured optimal cost function \overline{J}^* is bounded as

$$| ilde{J}(\mathbf{b}) - \overline{J}^{\star}(\mathbf{b})| \leq rac{\epsilon}{1 - \gamma},$$

where γ is the discount factor and ϵ is the maximum variation of \overline{J}^{\star} within each belief space partition.

Proposition 4 (Asymptotic (conjectured) optimality). The cost function approximation \tilde{J} obtained through quantization converges to the conjectured optimal cost function \overline{J}^* as $r \to \infty$, where r is the quantization resolution.

Theorem 1 (Sub-optimality bound of MOBAL). The sub-optimality of the cost function approximation \tilde{J} obtained through MOBAL is bounded as

$$\|\tilde{J} - J^*\|_{\infty} \leq \frac{\epsilon}{1 - \gamma} + \frac{\gamma \alpha c_{\text{MAX}}}{(1 - \gamma)^2}.$$

Evaluation Results on the CAGE-2 Benchmark

Method	Offline/Online compute time (min)	Cost (↓ better)
No misspecification		
MOBAL	0/8.50	15.19 ± 0.82
CARDIFF	300/0.01	13.69 ± 0.53
PPO	1000/0.01	119.02 ± 58.11
C-POMCP	0/0.50	13.32 ± 0.18
POMCP	0/0.50	29.51 ± 2.00
Misspecification		
MOBAL	0/8.50	35.91 ± 9.01
CARDIFF	300/0.01	94.28 ± 33.27
PPO	1000/0.01	124.38 ± 55.49
C-POMCP	0/0.50	92.71 ± 27.67
POMCP	0/0.50	91.51 ± 28.23

(C-POMCP and CARDIFF are state-of-the-art methods.)

Online Response Planning, Belief Estimation, and Bayesian Learning

Figure: MOBAL: an iterative method for online learning of incident response strategies under model misspecification. The figure illustrates a time step during which (i) the posterior distribution over possible system models is updated via Bayesian learning based on feedback from the system; (ii) a conjectured model is sampled from the posterior and quantized into a computationally tractable MDP; and (iii) a response strategy is computed using dynamic programming. **Preprint:** https://arxiv.org/pdf/2508.14385.