

ADAMAS UNIVERSITY

END SEMESTER EXAMINATION

Semester: Paper Code:	II CSE21816	
Paper Code:	CSE21816	
Time Duration:	3 Hrs	
Total No of Pages:	2	
1. At top sheet, clearly mention Name, Univ. Roll No., Enrolment No., Paper Name & Code, Date of Exam.		
 All parts of a Question should be answered consecutively. Each Answer should start from a fresh page. Assumptions made if any, should be stated clearly at the beginning of your answer. 		
1	Total No of Pages: me, Univ. Roll No., Enrolmen nswered consecutively. Each A	

	Group A		
1	Answer All the Questions (5 x 1 = 5) Which of the following is a widely used and effective machine learning algorithm based on the idea of bagging? a) Decision Tree b) Regression c) Classification d) Random Forest	Remembering	CO2
2	The output at each node is called a) node value b) weight c) neurons d) axons	Analyzing	CO1
3	Bayesian Belief Network is also known as - a) belief network b) decision network c) Bayesian model d) All of the above	Remembering	CO5
4	If the parent solutions are 1000111 and 1010101 and crossover site is 4, which of the following indicates one of the new offspring? a) 1010100, b) 1000101, c) 1110110, d) 1000011	Remembering	CO4
5	Which of the following is not a supervised learning? a) Naive Bayesian b) PCA c) Linear Regression d) Decision Tree Answer	Remembering	CO2
	Group B		
6 a)	Answer All the Questions (5 x 2 = 10) Classify positive and negative examples for the target concept.	Understanding	CO1
	(OR)		
6 b) 7 a)	Define the inductive Learning Hypothesis Distinguish between crossover and mutation.	Remembering Analyzing	CO2 CO3
<i>, u,</i>	(OR)	Amary Emg	

7 b)	Explain genetic programming.	Understanding	CO2
8 a)	Define Bayes Theorem.	Remembering	CO1
	(OR)		
8 b)	Illustrate the biological motivation for studying ANN.	Understanding	CO1
9 a)	Show the radial basis function network.	Understanding	CO1
	(OR)	·	
9 b)	Define crowding.	Remembering	CO2
10 a)	Illustrate how the Instance-based learning methods differ from function approximation.	Understanding	CO1
	(OR)		
10 b)	What are the difference between Regression, Residual,		
100)	Kernel function.	Remembering	CO3
	Group C		
	Answer All the Questions $(7 \times 5 = 35)$		
11 a)	Explain whether the Candidate –Elimination Algorithm	Evaluating	CO3
11 4)	Converge to the Correct Hypothesis or not.	L'undumg	000
	(OR)		
11 b)	Point out how the eager learning differs from lazy learning?	Remembering	CO3
12 a)	Compose what is decision tree. Draw the decision	Remembering	
12 4)	trees to represent the following Boolean functions:		
	a)A ∧ ¬ B	Creating	CO4
	b) AV[BAC]		CO4
	c)A XOR B		
	d)[AAB] V[CAD]		
	(OR)	T	
12 b)	Discuss in detail the rule for estimating training values.	Creating	CO4
13 a)	Explain about the Futility of Bias-Free Learning.	Evaluating	CO3
	(OR)	<u> </u>	
13 b)	Discuss about perceptron with an example.	Creating	CO4
14 a)	Explain the prototypical example of ANN.	Evaluating	CO3
	(OR)		
14 b)	Illustrate with an example why Gibbs Algorithm is better than the Bayes Optimal classifier.	Understanding	CO4
15 a)	Summarize in detail the relationship between		CO3
10 4)	Bayes theorem and Concept learning.	Understanding	000
	(OR)		
15 b)	Explain the radial basis functions.	Evaluating	CO4
16 a)	Compose the three properties that is shared by the Instance		
10 a)	based methods.	Creating	CO3
	(OR)	,	
16 b)	Build short notes on Radial basis functions.	Creating	CO4
17 a)	Show the voronoi diagram for k nearest neighbour.	Remembering	CO4
	(OR)		
17 b)	Build short notes on Inductive Bias.	Creating	CO1
_			