DT/PT CORRESPONDENCE USING MOTIVIC HALL ALGEBRAS

PATRICK LEI

ABSTRACT. A DT/PT correspondence for projective Calabi-Yau threefolds was proved by Bridgeland in 2011 and for orbifolds by Beentjes-Calabrese-Rennemo in 2018. We will state the necessary results about motivic Hall algebras and then discuss the DT/PT correspondence.

1. Introduction

Let \mathcal{X} be a proper smooth Deligne-Mumford stack with $\omega_{\mathcal{X}} = \mathcal{O}_{\mathcal{X}}$, $\mathsf{H}^1(\mathcal{X}, \mathcal{O}_{\mathcal{X}}) = 0$, and projective coarse moduli space X . Note here that X is Gorenstein, Calabi-Yau, and has at worst quotient singularities. We will also impose that \mathcal{X} satisfies the hard Lefschetz condition, which says that age is invariant under the map $\mathsf{I}\colon \mathsf{I}\mathcal{X}\to \mathsf{I}\mathcal{X}$ taking $(\mathsf{x},\mathsf{g})\mapsto (\mathsf{x},\mathsf{g}^{-1})$.

Now let $N(\mathfrak{X})$ denote the numerical K-theory of \mathfrak{X} , that is $K(D(\mathfrak{X}))$ modulo the Euler pairing

$$\chi(E,F) = \sum (-1)^i \dim \operatorname{Ext}_{\mathfrak{X}}^i(E,F).$$

Then denote $N_{\leq 1}(\mathfrak{X})$ denote the classes with support in dimension at most 1 and $N_0(\mathfrak{X})$ be the classes with 0-dimensional support. Then choose¹ a splitting

$$N_{\leq 1}(\mathfrak{X}) = N_1(\mathfrak{X}) \oplus N_0(\mathfrak{X}) \ni (\beta, c).$$

Finally, we call a class $\beta \in N_1(\mathfrak{X})$ *effective* if it is represented by an actual sheaf $F \in Coh_{\leq 1}(\mathfrak{X})$.

Now let $Y = \text{Quot}(\mathcal{O}_{\mathcal{X}}, [\mathcal{O}_{x}])$ for a non-stacky point $x \in \mathcal{X}$. Then Y is a smooth projective Calabi-Yau threefold and there is a map $f \colon Y \to X$, which is a crepant resolution. Then, if we consider the universal sheaf on $Y \times \mathcal{X}$ by $\mathcal{O}_{\mathcal{Z}}$, the Fourier-Mukai transform

$$\Phi = \mathfrak{p}_{\mathfrak{X}*}(\mathfrak{O}_{\mathfrak{Z}} \otimes \mathfrak{p}_{\mathbf{Y}}^*(-)) \colon \mathsf{D}(\mathsf{Y}) \to \mathsf{D}(\mathfrak{X})$$

is a derived equivalence, called the *McKay correspondence*. Then there is a map $N_{\leqslant 1}(Y) \to N_{\leqslant 1}(\mathfrak{X})$, and thus we obtain a splitting $N_{\leqslant 1}(Y) = N_{n\text{-exc}}(Y) \oplus N_{exc}(Y)$. Finally, write $N_{mr}(\mathfrak{X}) = \Phi(N_{\leqslant 1}(Y))$ and $N_{1,mr}(\mathfrak{X}) = \Phi(N_{n\text{-exc}}(Y))$. Also, write $\Psi := \Phi^{-1}$.

Date: April 21, 2022.

¹For a manifold, ch₃ defines a canonical splitting, but this cannot always be done for orbifolds.

PATRICK LEI

Then define following DT and PT generating series:

$$\begin{split} DT(\mathfrak{X})_{\beta} &= \sum_{c \in N_0(\mathfrak{X})} DT(\mathfrak{X})_{(\beta,c)} \mathfrak{q}^c; \\ DT(\mathfrak{X})_0 &= \sum_{c \in N_0(\mathfrak{X})} DT(\mathfrak{X})_{(0,c)} \mathfrak{q}^c; \\ PT(\mathfrak{X})_{\beta} &= \sum_{c \in N_0(\mathfrak{X})} PT(\mathfrak{X})_{(\beta,c)} \mathfrak{q}^c. \end{split}$$

Theorem 1.1 (DT/PT correspondence). Let $\beta \in N_{1,mr}(\mathfrak{X})$. Then there is an equality of generating series

$$PT(\mathfrak{X})_{\beta} = \frac{DT(\mathfrak{X})_{\beta}}{DT(\mathfrak{X})_{0}}.$$

2. CATEGORICAL PRELIMINARIES

Definition 2.1. Let B be an abelian category. Then a *torsion pair* is a pair of full subcategories (T,F) such that Hom(T,F)=0 for all $T\in T,F\in F$ and every $E\in B$ fits into a (unique) short exact sequence

$$0 \to T_F \to E \to F_F \to 0$$

with $T_E \in T$, $F_E \in F$.

2

This can be naturally generalized to the notion of a torsion n-tuple (B_1, \ldots, B_n) .

Example 2.2. Let $T = Coh_{\leq d}(\mathcal{X})$ and $F = Coh_{\geq d+1}(\mathcal{X})$ be the category of sheaves with no subsheaves of dimension $\leq d$. Then (T,F) is a torsion pair on $Coh(\mathcal{X})$.

For a torsion pair (T,F), we can define a new abelian category

$$\mathtt{B}^{\flat} = \Big\{ \mathtt{E} \in \mathsf{D}^{[-1,0]}(\mathtt{B}) \mid \mathsf{H}^{-1}(\mathtt{E}) \in \mathtt{F}, \mathsf{H}^{0}(\mathtt{E}) \in \mathtt{T} \Big\}.$$

This is called *tilting* at the torsion pair (T, F).

Example 2.3. Define the category $Coh^{\flat}(\mathfrak{X})$ by tilting at the torsion pair of the previous example for d=1.

Unfortunately, this category is too large for our purposes, so we will define a new category. First, if $\mathcal{C}_1,\ldots,\mathcal{C}_n\subset D(\mathcal{X})$ are full subcategories, let $\langle \mathcal{C}_1,\ldots,\mathcal{C}_n\rangle_{ex}\subset D(\mathcal{X})$ be the smallest full subcategory of $D(\mathcal{X})$ containing all of the \mathcal{C}_i and closed under extensions. Now we may define

$$\mathtt{A} = \left\langle \mathtt{O}_{\mathfrak{X}}[1], \mathtt{Coh}_{\leqslant 1}(\mathfrak{X}) \right\rangle_{ex} \subset \mathtt{Coh}^{\flat}(\mathfrak{X}).$$

This is a Noetherian abelian category with the inclusions $Coh_{\leqslant 1}(\mathfrak{X}) \subset A \subset D(\mathfrak{X})$ being exact. In addition, A contains all ideal sheaves $I_C[1]$, PT stable pairs, and Bryan-Steinberg pairs.

Definition 2.4. Let T,F be full subcategories of $Coh_{\leq 1}(\mathfrak{X})$. Write $Pair(T,F) \subset A$ for the full subcategory on objects E such that rk E = -1, Hom(T,E) = 0 for $T \in T$, and Hom(E,F) = 0 for $F \in F$.

Example 2.5. For example, if $T_{PT} = Coh_0(\mathfrak{X})$ and $F_{PT} = Coh_1(X)$, then a (T_{PT}, F_{PT}) -pair is a PT stable pair.

For a pair of full subcategories as above, we may also define

$$V(T,F) := \{E \in A \mid Hom(T,E) = Hom(E,F) = 0\}.$$

If (T, F) and $(\widetilde{T}, \widetilde{F})$ are torsion pairs, then $(T, V(T, \widetilde{F}), \widetilde{F})$ is a torsion triple on A.

3. Moduli stack

There is a stack \mathfrak{Mum}_Y parameterizing objects $E \in D(Y)$ such that $Ext^{<0}(E,E) = 0$ which is an Artin stack locally of finite type, which was constructed by Lieblich in $2006.^2$ Because Fourier-Mukai transforms behave well in families, by the McKay correspondence, we have a corresponding stack $\mathfrak{Mum}_{\mathfrak{X}}$. In addition, there is a decomposition

$$\mathfrak{Mum}_{\mathfrak{X}} = \bigsqcup_{\alpha \in \mathsf{N}(\mathfrak{X})} \mathfrak{Mum}_{\mathfrak{X},\alpha}$$

into open and closed substacks by the numerical K-theory class. If $\mathtt{C} \subset \mathtt{D}(\mathfrak{X})$ is a full subcategory of objects with vanishing self-Ext $^{<0}$ and defines an open substack of $\mathfrak{Mum}_{\mathfrak{X}}$, then we will call the corresponding open substack $\underline{\mathtt{C}} \subset \mathfrak{Mum}_{\mathfrak{X}}$.

Definition 3.1. A torsion pair (T,F) on $Coh_{\leq 1}(X)$ is *open* if T,F are open subcategories.

Lemma 3.2. The following conditions define open substacks of $\mathfrak{Mum}_{\mathfrak{X}}$ for full, open subcategories T, F of $Coh(\mathfrak{X})$:

- (1) $H^0(E) \in T$ and $E \in D^{[-1,0]}(X)$;
- (2) $H^{-1}(E) \in F$ and $E \in D^{[-1,0]}(\mathfrak{X})$.

In particular, if (T,F) is an open torsion pair, then the objects of the tilt of $Coh(\mathfrak{X})$ at (T,F) form an open substack of $\mathfrak{Mum}_{\mathfrak{X}}$

Proposition 3.3. Let (T,F) be open torsion pairs on $Coh_{\leq 1}(X)$. Suppose that $Coh_0(X) \subset T$. Then the substack $\underline{Pair}(T,\widetilde{F}) \subset \mathfrak{Mum}_X$ is open.

In particular, $Coh^{\flat}(\mathfrak{X})$ is an open subcategory. In addition, the category $\mathtt{A}_{\mathsf{rk}\geqslant -1}\subset Coh^{\flat}(\mathfrak{X})$ is open. This means that

$$\underline{\mathtt{A}}_{rk\geqslant -1}\subset\underline{\mathtt{Coh}}^{\flat}(\mathfrak{X})\subset\mathfrak{Mum}_{\mathfrak{X}}$$

are inclusions of open substacks, and in particular, the first two stacks are Artin stacks locally of finite type.

²As with all students of Johan, this was actually done in maximal generality for a proper morphism of algebraic spaces.

PATRICK LEI

4

4. MOTIVIC HALL ALGEBRAS

Recall the Grothendieck ring of varieties $K(Var_{\mathbb{C}})$ (taken with Q-coefficients), which is spanned by isomorphism classes of varieties with the relations $[X] = [Z] + [X \setminus Z]$ for a closed subvariety $Z \subset X$ and $[X] \cdot [Y] = [X \times Y]$. This will not be helpful when we consider stacks, so instead we will consider the following two relations.

Definition 4.1. Let Y be connected. Then a morphism $f\colon X\to Y$ is a Zariski fibration if there is an open cover $Y=\bigcup U_i$ such that $f^{-1}(U_i)=U_i\times F_i.^3$

Definition 4.2. A morphism $f: X \to Y$ is a *geometric bijection* if f induces a bijection on \mathbb{C} -points.

Lemma 4.3. $K(Var_C)$ is spanned by isomorphism classes of varieties with the following relations:

- (1) If $f: X \to Y$ is a geometric bijection, then [X] = [Y];
- (2) $[X_1] + [X_2] = [X_1 \sqcup X_2].$

Now we say that a morphism $f\colon X\to Y$ of stacks is a Zariski fibration if for any scheme T, the base change $f_T\colon X\times_Y T\to T$ is a Zariski fibration of schemes. Of course, the definition of geometric bijection should be changed to that of inducing an equivalence on groupoids of \mathbb{C} -points.

Definition 4.4. The *Grothendieck ring of stacks* $K(St_{\mathbb{C}})$ is the Q-vector space spanned by symbols [X] for finite type Artin stacks with affine stabilizers X with the following relations:

- (1) $[X \sqcup Y] = [X] + [Y];$
- (2) If $f: X \to Y$ is a geometric bijection, then [X] = [Y];
- (3) If $X_1, X_2 \rightarrow Y$ are Zariski fibrations with the same fibers, then [X] = [Y].

For any Artin stack S locally of finite type with affine stabilizers, then there is a relative version $K(\operatorname{St}_S)$, which is a module over $K(\operatorname{St}_C)$. For our purposes, we will take $C=\operatorname{Coh}^\flat(\mathfrak{X})$ and let $S=\underline{C}$.

Proposition 4.5. There exists an Artin stack $\underline{C}^{(2)}$ locally of finite type parameterizing short exact sequences in C. This stack is equipped with maps

$$\pi_i \colon \underline{c}^{(2)} \to \underline{c} \qquad [0 \to \mathsf{E}_1 \to \mathsf{E}_2 \to \mathsf{E}_3 \to 0] \mapsto \mathsf{E}_i$$

for i=1,2,3. Then the morphism $(\pi_1,\pi_3)\colon \underline{\mathtt{C}}^{(2)}\to \underline{\mathtt{C}}$ is of finite type.

Now, for $[X_1 \to \underline{c}], [X_2 \to \underline{c}] \in K(St_{\underline{c}})$, define the stack $X_1 * X_2$ as the fiber product

$$\begin{array}{ccc} X_1 * X_2 & \longrightarrow & \underline{\underline{C}}^{(2)} & \xrightarrow{\pi_2} & \underline{\underline{C}} \\ \downarrow & & \downarrow (\pi_1, \pi_3) \\ X_1 \times X_2 & \longrightarrow & \underline{\underline{C}} \times \underline{\underline{C}}. \end{array}$$

³Given our assumptions, all F_i are isomorphic.

This defines an associative product on $K(St_{\underline{C}})$, and we define the *motivic Hall algebra* $H(C) := (K(St_{\underline{C}}), *)$.

There is an inclusion $K(Var_{\mathbb{C}})[\mathbb{L}^{-1},(1+\cdots+L^n)^{-1}\mid n\geqslant 1]\to K(St_{\mathbb{C}})$. Then we define the subalgebra of *regular elements* $H_{reg}(C)$ to be the $K(Var_{\mathbb{C}})[\mathbb{L}^{-1},[\mathbb{P}^n]^{-1}\mid n\geqslant 1]$ -submodule generated by schemes $[Z\to\underline{C}]$.

Proposition 4.6. $H_{reg}(C)$ is closed under * and the quotiennt $H_{reg}(C)/(\mathbb{L}-1)H_{reg}(C)$ is commutative with Poisson bracket given by $\{f,g\} = \frac{f*g-g*f}{\mathbb{L}-1}$. This is called the semi-classical Hall algebra.

Let $Q[N(\mathfrak{X})]$ with product $t^{\alpha_1} \star t^{\alpha_2} = (-1)^{\chi(\alpha_1,\alpha_2)} t^{\alpha_1+\alpha_2}$ be the *Poisson torus*. The Poisson bracket is defined by $\left\{t^{\alpha},t^{\beta}\right\} = (-1)^{\chi(\alpha,\beta)}\chi(\alpha,\beta)t^{\alpha+\beta}$. Then there is a Poisson algebra homomorphism

$$I \colon H_{sc}(\mathtt{C}) \to \mathbb{Q}[\mathsf{N}(\mathfrak{X})] \qquad [\mathtt{s} \colon \mathsf{Y} \to \mathtt{C}_\alpha \hookrightarrow \mathtt{C}] = e(\mathsf{Y}, \mathtt{s}^{-1}\nu),$$

where $v: C \to \mathbb{Z}$ is the Behrend function.

We will not be considering the motivic Hall algebra but rather a completed version $H_{gr}(C)$ which is analogous to the completion from Laurent polynomials to Laurent series. There is an algebra $H_{gr,reg}(C)$ of regular elements and a semi-classical algebra $H_{gr,sc}(C)$, which comes with an integration morphism

$$I \colon H_{gr,sc}(\mathtt{C}) \to \mathbb{Q}\{\mathsf{N}(\mathfrak{X})\} = \left\{ \sum_{\alpha \in \mathbb{N}(\mathfrak{X})} n_{\alpha} t^{\alpha} \right\}.$$

5. Wall-crossing and the DT/PT correspondence

Definition 5.1. A torsion pair (T, F) on $Coh_{\leq 1}(\mathfrak{X})$ is called *numerical* if whenever $[T \in T] = [F \in F]$ in $N(\mathfrak{X})$, then T = F = 0.

All of the torsion pairs we will consider are numerical.

Proposition 5.2. Let (T,F) be an open numerical torsion pair and suppose that $\mathcal{M} \subset \underline{\mathtt{Pair}}(T,F)$ is an open and finite type substack. Then $(\mathbb{L}-1)[\mathcal{M}] \in \mathsf{H}_{reg}(C)$.

Lemma 5.3. Assume that $Pair(T_-, F_-)$, $Pair(T_+, F_+)$, W define elements of $H_{gr}(C)$ and let $\alpha \in N(A)$. The following are equivalent:

- (1) The stack $\underline{Pair}(T_+, F_-)_{\alpha}$ is of finite type.
- (2) The stack $(\underline{Pair}(T_+, F_+) * \underline{W})_{\alpha}$ is of finite type.
- (3) The stack $(\underline{W} * \underline{\mathtt{Pair}}(T_-, F_-))_{\alpha}$ is of finite type.

Definition 5.4. A full subcategory $W \subset Coh_{\leq 1}(X)$ is *log-able* if

- (1) W is closed under direct sums and summands;
- (2) W defines an element of $H_{gr}(C)$;
- (3) If $\alpha \in N(\mathfrak{X})$, there are only finitely many ways to write $\alpha = \alpha_1 + \cdots + \alpha_n$, where each α_i represents a nonzero element in W.

PATRICK LEI

Theorem 5.5 (No-poles). *If* W *is log-able, then*

6

$$(\mathbb{L}-1)\log[\underline{\mathbf{W}}] \in \mathbf{H}_{gr,reg}(\mathbf{C}).$$

We are finally ready to do wall-crossing, but we need one more definition.

Definition 5.6. Let (T_{\pm}, F_{\pm}) be open torsion pairs on $Coh_{\leq 1}(\mathfrak{X})$ such that $T_{+} \subset T_{-}$. Let $W = T_{-} \cap F_{+}$. These torsion pairs are *wall-crossing material* if W is log-able and the categories $Pair(T_{+}, F_{-})$, $Pair(T_{-}, F_{+})$, $Pair(T_{+}, F_{-})$ define elements of $H_{gr}(C)$.

Theorem 5.7. Suppose (T_{\pm}, F_{\pm}) are open torsion pairs with $T_{+} \subset T_{-}$ which are wall-crossing material. Then $w := I((\mathbb{L} - 1) \log[\underline{W}])$ is well-defined and

$$\mathrm{I}((\mathbb{L}-1)[\underline{\mathtt{Pair}}(\mathtt{T}_+,\mathtt{F}_+)]) = \exp(\{w,-\})\mathrm{I}((\mathbb{L}-1)[\underline{\mathtt{Pair}}(\mathtt{T}_-,\mathtt{F}_-)]).$$

Proof of DT/PT correspondence. Let $T_{DT}=0$, $F_{DT}=Coh_{\leqslant 1}(\mathfrak{X})$, $W=Coh_{0}(X)$. Then the torsion pairs (T_{DT},F_{DT}) , (T_{PT},F_{PT}) are wall-crossing material, so we can apply the previous theorem. Isolating the terms with class β and noting that (T_{DT},F_{DT}) -pairs are ideal sheaves I[1], we obtain

$$\mathrm{DT}(\mathfrak{X})_{\beta}z^{\beta}\mathsf{t}^{-[\mathfrak{O}_{\mathfrak{X}}]}=\exp(\{w,-\})\mathrm{PT}(\mathfrak{X})_{\beta}z^{\beta}\mathsf{t}^{-[\mathfrak{O}_{\mathfrak{X}}]}.$$

Now let $c \in N_0(\mathfrak{X})$. Applying the McKay equivalence, we have $\Psi(c) \in N_{\leqslant 1}(Y)$. Because β is multi-regular, $\Psi(\beta,c') \in N_{\leqslant 1}(Y)$ for all $c' \in N_0(\mathfrak{X})$. But then the Euler pairing is trivial on $N_{\leqslant 1}(Y)$, so

$$\chi(c, (\beta, c')) = \chi(\Psi(c), \Psi(b, c')) = 0.$$

Next, write $w = \sum_{c \in N_0(\mathfrak{X})} w_c q^c$. We then have $\{w, z^\beta q^{c'}\} = 0$, so

$$\exp(\{w,-\}) PT(\mathfrak{X})_{\beta} z^{\beta} t^{-[\mathfrak{O}_{\mathfrak{X}}]} = PT(\mathfrak{X})_{\beta} z^{\beta} \exp(\{w,-\}) t^{-[\mathfrak{O}_{\mathfrak{X}}]}.$$

Combining this with the first DT-PT identity, we have

$$\frac{\mathrm{DT}(\mathfrak{X})_{\beta}}{\mathrm{PT}(\mathfrak{X})_{\beta}} = \mathsf{t}^{[\mathfrak{O}_{\mathfrak{X}}]} \exp(\{w, -\}) \mathsf{t}^{-[\mathfrak{O}_{\mathfrak{X}}]}.$$

Finally, noting that $PT(\mathfrak{X})_0=1$ because $\mathfrak{O}_{\mathfrak{X}}[1]$ is the only stable pair with $\beta=0$, we obtain

$$\frac{\mathrm{DT}(\mathfrak{X})_{\beta}}{\mathrm{PT}(\mathfrak{X})_{\beta}} = \frac{\mathrm{DT}(\mathfrak{X})_{0}}{\mathrm{PT}(\mathfrak{X})_{0}} = \mathrm{DT}(\mathfrak{X})_{0}.$$