Линейные пространства над конечным полем

OneNote

5 января 2023 г. 1:32

Конечные поля

Конечное множество X называется конечным полем (или полем Галуа) если имеют место следующие свойства:

- На множестве определены операции сложения и умножения, результат этих операций принадлежит множеству.
- Для любых элементов $x_i, x_j, x_k \in X$ выполняются следующие равенства:

$$(x_i + x_j) + x_k = x_i + (x_k + x_j),$$

 $(x_i \cdot x_j) \cdot x_k = x_i \cdot (x_k \cdot x_j),$
 $x_i + x_j = x_j + x_i,$
 $x_i \cdot x_j = x_j \cdot x_i,$
 $(x_i + x_j) \cdot x_k = x_i \cdot x_k + x_j \cdot x_k.$

• Существует нулевой элемент для сложения $x_0 \in X$ и единичный элемент для умножения $x_1 \in X$:

$$x_i + x_0 = x_0 + x_i = x_i,$$

 $x_i \cdot x_1 = x_1 \cdot x_i = x_i.$

• Для каждого элемента $x_i \in X$ существует единственный элемент $x_i \in X$, обратный для сложения

$$x_i + x_i = 0$$
,

ullet Для каждого элемента $x_i \in X$, кроме x_0 , существует единственный элемент $x_j \in X$, обратный для умножения

$$x_i \cdot x_i = 1$$
.

В литературе, конечное поле обозначается как GF(q), где q – число элементов в поле.

Пример

Рассмотрим конечное поле $GF(5)=\{0,1,2,3,4\}$, которое включает в себя все вычеты по модулю 5. Здесь $x_0=0$, $x_1=1$.

Таблица: Таблица сложения (слева) и умножения (справа) в поле *GF*(5)

	0	1	2	3	4		0	1	2	3	4
	0					0	0	0	0	0	0
1	1	2	3	4	0		0				
2	2	3	4	0	1	2	0	2	4	1	3
3	3	4	0	1	2	3	0	3	1	4	2
4	4	0	1	2	3	4	0	4	3	2	1

Пусть X – конечное поле и $\mathbf{x}=(x_1,x_2,...,x_n)\in X^n$ – вектор, каждая компонента которого принадлежит X. Тогда cymma векторов $\mathbf{x}\in X^n$ and $\mathbf{y}\in X^n$ определяется как

$$\mathbf{x} + \mathbf{y} = (x_1 + y_1, x_2 + y_2, ..., x_n + y_n).$$
 (1)

Если $c \in X$, тогда умножение вектора \mathbf{x} на скаляр c определяется как

$$c \cdot \mathbf{x} = (c \cdot x_1, c \cdot x_2, ..., c \cdot x_n). \tag{2}$$

Пример. Рассмотрим два вектора $\mathbf{x}=(1,2,3,4)$ и $\mathbf{y}=(4,2,3,1)$, каждый элемент которого принадлежит GF(5). Тогда $\mathbf{x}+\mathbf{y}=(0,4,1,0)$. Пусть c=2, тогда $c\cdot\mathbf{x}=(2,4,1,3)$.

Линейные пространства над конечным полем

Множество векторов ${f V}$ формируют *линейное пространство*, если это множество является замкнутым по отношению к операциям сложения и умножения на скаляр. Это означает, что для любого $k=\{1,2,3,...\}$, вектор

$$z = \sum_{i=1}^{k} c_i \cdot x_i \tag{3}$$

принадлежит ${f V}$ для любого $c_i\in X$ и ${f x}_i\in X^n$. Правая часть (3) называется линейной комбинацией векторов ${f x}_1,{f x}_2,...,{f x}_k$. Пример. Рассмотрим два множества векторов V_1 и V_2 над полем $GF(2)=\{0,1\}$.

$$\textbf{V}_1 = \left\{ \begin{array}{c} 000\\110\\011\\101 \end{array} \right\}, \textbf{V}_2 = \left\{ \begin{array}{c} 000\\100\\010\\001 \end{array} \right\}$$

Множество V_1 является линейным пространством, потому что сумма любой пары векторов из V_1 принадлежит V_1 . Множество V_2 не является линейным пространством.

Польшомоство линомного простронство, для моторого выполняются во

OneNote

подмножество линеиного пространства, для которого выполняются все свойства линейного пространства, называется линейным подпространством.

Пример. Рассмотрим два множества векторов V_1 и V_2 в поле $GF(2)=\{0,1\}.$

$$\mathbf{V}_1 = \left\{egin{array}{c} 000 \\ 001 \\ 010 \\ 100 \\ 101 \\ 110 \\ 111 \end{array}
ight\}, \mathbf{V}_2 = \left\{egin{array}{c} 000 \\ 110 \\ 011 \\ 101 \end{array}
ight\}.$$

Множество V_2 является линейным подпространством пространства V_1 .

Векторы $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_k$ называются линейно независимыми, если равенство

$$c_1 \cdot \mathbf{x}_1 + c_2 \cdot \mathbf{x}_2 + \dots + c_k \cdot \mathbf{x}_k = \mathbf{0}, \tag{4}$$

где 0 - нулевой вектор, выполняется, если

$$c_1 = c_2 = \dots = c_k = 0.$$
 (5)

Пример. Векторы (0,1,1,1) и (0,2,2,2) над полем GF(5) являются линейно зависимыми, поскольку $2\cdot(0,2,2,2)+(0,1,1,1)=(0,0,0,0)$.

В каждом линейном пространстве существуют линейно независимые векторы $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_k$, такие что каждый вектор

$$\mathbf{x}_i = c_1 \cdot \mathbf{x}_1 + c_2 \cdot \mathbf{x}_2 + c_k \cdot \mathbf{x}_k. \tag{6}$$

Такие векторы называются *базисными векторами* линейного пространства.

Пример. Рассмотрим два множества векторов \mathbf{V}_1 и \mathbf{V}_2 над полем $GF(2)=\{0,1\}.$

$$\mathbf{V}_1 = \left\{egin{array}{c} 000 \\ 001 \\ 010 \\ 100 \\ 101 \\ 110 \\ 111 \end{array}
ight\}, \mathbf{V}_2 = \left\{egin{array}{c} 100 \\ 010 \\ 001 \end{array}
ight\}.$$

Векторы, принадлежащие ${f V}_2$ являются базисными векторами для линейного пространства ${f V}_1$.

Жирный ноль - множество нулевых векторов