Worksheet 13: Coordinates and \mathcal{B} -Matrices (Theory) (§§3.4, 4.3)

(c)2015 UM Math Dept licensed under a Creative Commons By-NC-SA 4.0 International License.

Let V be any vector space, and suppose that $\mathcal{B} = (\vec{v}_1, \dots, \vec{v}_n)$ is an ordered basis of V. Let $L_{\mathcal{B}}: V \to \mathbb{R}^n$ be the \mathcal{B} -coordinate transformation defined by

$$L_{\mathcal{B}}(\vec{v}) = \begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}, \text{ where } \vec{v} = c_1 \vec{v}_1 + \dots + c_n \vec{v}_n.$$

Recall that $[\vec{v}]_{\mathcal{B}} \in \mathbb{R}^n$ is the \mathcal{B} -coordinate vector of \vec{v} , and that $L_{\mathcal{B}}$ is an isomorphism.

Problem 1: Warm-Up. Suppose $T: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation. Recall how to find the *standard matrix* $[T]_{\mathcal{E}}$ of T, and how to show that your formula for $[T]_{\mathcal{E}}$ is correct. (This is important to remember now, since we will generalize this fact along with its proof below).

Solution: If $T: \mathbb{R}^n \to \mathbb{R}^m$ is linear, then for all $\vec{x} \in \mathbb{R}^n$ we have

$$T(\vec{x}) = T\left(\sum_{i=1}^{n} x_i \vec{e}_i\right) = \sum_{i=1}^{n} x_i T(\vec{e}_i) = [T(\vec{e}_1) \cdots T(\vec{e}_n)] \vec{x},$$

so $[T]_{\mathcal{E}} = [T(\vec{e}_1) \cdots T(\vec{e}_n)].$

Problem 2: Change-of-Coordinates. Let V be a vector space. If we choose a pair of ordered bases $\mathcal{B} = (\vec{b}_1, \dots, \vec{b}_n)$ and $\mathcal{C} = (\vec{c}_1, \dots, \vec{c}_n)$ of V, then $L_{\mathcal{C}} \circ L_{\mathcal{B}}^{-1}$ is an isomorphism from \mathbb{R}^n to \mathbb{R}^n , so its standard matrix S will be an invertible $n \times n$ matrix which is called the *change-of-coordinates* matrix from \mathcal{B} to \mathcal{C} , denoted $S = S_{\mathcal{B} \to \mathcal{C}}$.

- (a) Given $1 \le i \le n$, what is the *i*th column of $S_{\mathcal{B} \to \mathcal{C}}$? Explain why your claim is correct.
- (b) Show that $S_{\mathcal{B}\to\mathcal{C}}[\vec{v}]_{\mathcal{B}} = [\vec{v}]_{\mathcal{C}}$ for all $\vec{v} \in V$.
- (c) How are $S_{\mathcal{B}\to\mathcal{C}}$ and $S_{\mathcal{C}\to\mathcal{B}}$ related to each other? Can you prove your claim?

Solution:

- (a) For each $1 \leq i \leq n$, the *i*th column of $S_{\mathcal{B} \to \mathcal{C}}$ is $S_{\mathcal{B} \to \mathcal{C}} \vec{e_i} = L_{\mathcal{C}} \left(L_{\mathcal{B}}^{-1}(\vec{e_i}) \right) = L_{\mathcal{C}}(\vec{b_i}) = [\vec{b_i}]_{\mathcal{C}}$.
- (b) $S_{\mathcal{B}\to\mathcal{C}}$ is the standard matrix of $L_{\mathcal{C}}\circ L_{\mathcal{B}}^{-1}$, so for all $\vec{v}\in V$ we have

$$S_{\mathcal{B}\to\mathcal{C}}[\vec{v}]_{\mathcal{B}} = L_{\mathcal{C}}(L_{\mathcal{B}}^{-1}([\vec{v}]_{\mathcal{B}})) = L_{\mathcal{C}}(\vec{v}) = [\vec{v}]_{\mathcal{C}}.$$

(c) For all $\vec{v} \in V$, $S_{\mathcal{C} \to \mathcal{B}} S_{\mathcal{B} \to \mathcal{C}}[\vec{v}]_{\mathcal{B}} = S_{\mathcal{C} \to \mathcal{B}}[\vec{v}]_{\mathcal{C}} = [\vec{v}]_{\mathcal{B}}$ and $S_{\mathcal{B} \to \mathcal{C}} S_{\mathcal{C} \to \mathcal{B}}[\vec{v}]_{\mathcal{C}} = S_{\mathcal{B} \to \mathcal{C}}[\vec{v}]_{\mathcal{B}} = [\vec{v}]_{\mathcal{C}}$, which implies that $S_{\mathcal{B} \to \mathcal{C}}^{-1} = S_{\mathcal{C} \to \mathcal{B}}$ and $S_{\mathcal{C} \to \mathcal{B}}^{-1} = S_{\mathcal{B} \to \mathcal{C}}$.

Problem 3: What if $V = \mathbb{R}^n$? Let $\mathcal{B} = (\vec{b}_1, \dots, \vec{b}_n)$ and $\mathcal{C} = (\vec{c}_1, \dots, \vec{c}_n)$ be ordered bases of \mathbb{R}^n , and write B and C for the invertible $n \times n$ matrices whose columns are the \mathcal{B} -basis vectors and the \mathcal{C} -basis vectors, respectively.

- (a) What are the standard matrices of $L_{\mathcal{B}}$ and $L_{\mathcal{C}}$?
- (b) Let $\vec{x} \in \mathbb{R}^n$. Using the matrices B and C, write equations relating \vec{x} to $[\vec{x}]_{\mathcal{B}}$ and to $[\vec{x}]_{\mathcal{C}}$.
- (c) Using the matrices B and C, write formulas for the change-of-coordinates matrices $S_{\mathcal{B}\to\mathcal{C}}$ and $S_{\mathcal{C}\to\mathcal{B}}$.

Solution:

- (a) Since $L_{\mathcal{B}}^{-1}(\vec{e}_i) = \vec{b}_i$ for each i, the standard matrix of $L_{\mathcal{B}}^{-1}$ is B, which means the standard matrix of $L_{\mathcal{B}}$ is B^{-1} . Similarly, the standard matrix of $L_{\mathcal{C}}$ is C^{-1} .
- (b) $B[\vec{x}]_{\mathcal{B}} = \vec{x}$ and $B^{-1}\vec{x} = [\vec{x}]_{\mathcal{B}}$. Similarly, $C[\vec{x}]_{\mathcal{C}} = \vec{x}$ and $C^{-1}\vec{x} = [\vec{x}]_{\mathcal{C}}$.
- (c) $S_{\mathcal{B}\to\mathcal{C}}$ is the standard matrix of $L_{\mathcal{C}} \circ L_{\mathcal{B}}^{-1}$, so from part (a) we see that $S_{\mathcal{B}\to\mathcal{C}} = C^{-1}B$. Likewise, $S_{\mathcal{C}\to\mathcal{B}} = B^{-1}C$.

Problem 4: The \mathcal{B} -matrix of a Linear Transformation. Let $\mathcal{B} = (\vec{b}_1, \dots, \vec{b}_n)$ be an ordered basis of the vector space V, and let $T: V \to V$ be a linear transformation of V. Prove that there exists a unique $n \times n$ matrix $[T]_{\mathcal{B}}$, called the \mathcal{B} -matrix of T, such that

$$[T]_{\mathcal{B}}[\vec{v}]_{\mathcal{B}} = [T(\vec{v})]_{\mathcal{B}}$$

for all $\vec{v} \in V$. Your proof should include finding an expression for $[T]_{\mathcal{B}}$ in terms of T and \mathcal{B} .

Solution: Consider the linear transformation $U = L_{\mathcal{B}} \circ T \circ L_{\mathcal{B}}^{-1}$ from \mathbb{R}^n to \mathbb{R}^n . We know that U has a standard matrix $[U]_{\mathcal{E}}$, which is unique, and has the property that $[U]_{\mathcal{E}}\vec{x} = U(\vec{x})$ for all $\vec{x} \in \mathbb{R}^n$. Let $\vec{v} \in V$ be arbitrary. Then

$$[U]_{\mathcal{E}}[\vec{v}]_{\mathcal{B}} = [U]_{\mathcal{E}}L_{\mathcal{B}}(\vec{v}) = U(L_{\mathcal{B}}(\vec{v})) = (L_{\mathcal{B}} \circ T \circ L_{\mathcal{B}}^{-1} \circ L_{\mathcal{B}})(\vec{v}) = L_{\mathcal{B}}(T(\vec{v})) = [T(\vec{v})]_{\mathcal{B}}.$$

Thus we see that $[T]_{\mathcal{B}} = [U]_{\mathcal{E}} = [U(\vec{e}_1) \cdots U(\vec{e}_n)] = [[T(\vec{b}_1)]_{\mathcal{B}} \cdots [T(\vec{b}_n)]_{\mathcal{B}}].$

Problem 5: Similarity. Let $\mathcal{B} = (\vec{b}_1, \dots, \vec{b}_n)$ and $\mathcal{C} = (\vec{c}_1, \dots, \vec{c}_n)$ be ordered bases of V, and let $T: V \to V$ be a linear transformation.

(a) Find a simple equation relating $[T]_{\mathcal{B}}$, $[T]_{\mathcal{C}}$, and $S_{\mathcal{B}\to\mathcal{C}}$.

Solution: $[T]_{\mathcal{C}} = S_{\mathcal{B} \to \mathcal{C}}[T]_{\mathcal{B}}S_{\mathcal{B} \to \mathcal{C}}^{-1}$, or equivalently $[T]_{\mathcal{B}} = S_{\mathcal{B} \to \mathcal{C}}^{-1}[T]_{\mathcal{C}}S_{\mathcal{B} \to \mathcal{C}}$.

- (b) The $n \times n$ matrix A is similar to the $n \times n$ matrix B if there is an invertible $n \times n$ matrix S such that $B = S^{-1}AS$. Prove that the relation "A is similar to B" is an equivalence relation on the set of $n \times n$ matrices; i.e., prove that it is:
 - \circ reflexive: A is similar to A;
 - \circ symmetric: if A is similar to B, then B is similar to A; and
 - \circ transitive: if A is similar to B and B is similar to C, then A is similar to C.

Solution:

- \circ For reflexivity, note that $A = I_n^{-1}AI_n$.
- For symmetry, if $B = S^{-1}AS$, then $(S^{-1})^{-1}BS^{-1} = A$.
- \circ For transitivity, if $B = S^{-1}AS$ and $C = P^{-1}BP$, then $C = (SP)^{-1}A(SP)$.
- (c) Find all matrices that are similar to I_n .

Solution: For any invertible $n \times n$ matrix S, we have $S^{-1}I_nS = S^{-1}S = I_n$, so the only matrix similar to I_n is I_n itself.