FINDING A PATTERN

PROBLEM 1:

• Find the sum of the first 50 odd numbers?

STEP 1:Understand the problem

• The problem asks us what is the solution if we sum the first 50 odd numbers.

STEP 2:Making a Plan

You can use Finding a Pattern Strategy while solving this problem.

• Try to find a pattern.

STEP 3: Carry Out the Plan

• Examine this problem by looking for a pattern.

<u>Addends</u>	Number of Addends	Sum
1	1	1
1+3	2	4
1+3+5	3	9
1+3+5+7	4	16
1+3+5+7+	9 5	25
1+3+5+7+	9+11 6	36

Carry Out the Plan

- The table shows us there is a relation between the sum and the number of addends.
- It is clearly seen that the sum of the first n odd numbers is n^2 .
- In this problem *n(number of addends)=50*
- The answer is $50^2 = 2500$

STEP 4: Check the Solution

• Another method rather than Finding a Pattern:

You can solve this problem by writing out all of the odd numbers from 1 through 59 and adding them.

STEP 5: Extend the Problem

• Find the sum of the first 200 even numbers.

PROBLEM 2

In the figure above, we choose point(s) on a circle and connect them to form distinct, no overlapping regions.

What is number of regions obtained by connecting n-points?

UNDERSTAND THE PROBLEM:

What is given?

- If there is 1 point on the circle, this point divides the circle to the one region.
- If there are 2 points on the circle, these points divide the circle to no overlapping 2 regions.
- If there are 3 points on the circle, these points divide the circle to no overlapping 4 regions.
- If there are 4 points on the circle, these points divide the circle to no overlapping 8 regions.

What is asked?

What is number of regions obtained by connecting n points?

MAKE A PLAN:

- We can use "Finding a Pattern Strategy"
- By starting to construct a table showing number of points and maximum number of regions to recognize a pattern.

CARRY OUT THE PLAN:

Number of points	1	2	3	4	5	 n
Max number of regions	1	2	4	8		?

2ⁿ⁻¹????? for n points

Check/Look Back

- n= 6 number of regions:31
- n=6 ise $2^{n-1} = 2^5 = 32????$

• Number of Regions for n Points=1/24 (n⁴-6n³+23n²-18n+24)

EXTENSION

In the figure above, we choose point(s) on a circle and connect them to form distinct, no overlapping regions.

Is there any relationship between number of lines obtained by connecting n-points and regions obtained by line segments/chords?

REFERENCES

- http://www.teachervision.fen.com/problem-solving/teaching-methods/48900.html
- www.eduplace.com/math/mw/practice/3/problems/15_5.pdf
- http://www.nzetc.org/tm/scholarly/name-411876.html
- http://mathforum.org/library/topics/problem_solving/