

The right mentor for IIT (JEE), Medical, Olympiad & all other Competitive exams

The Extra Mile Work Sheet - 24

Class: X	Board: CBSE	Subject : Mathematics

Topic: Multiple Choice Questions

1. REAL NUMBERS

1. The L.C.M of 13 and 39 is [] b) 3 a) 13 d) 52 Which of the following number ends with 5 for any positive integer 'n'. 2.] b) 6ⁿ c) 12ⁿ d) 5ⁿ If \sqrt{p} is rational, then p is _____ 3. 1 a) Prime b) Composite c) Perfect square d) None 4. The value of 'x' and 'y' in the given figure are]

- a) 7, 13
- b) 13, 7
- c) 9, 12
- d) 12, 9
- If $x = \sqrt{8}$, $y = \sqrt{2}$ then which of the following is rational?

1

1

]

]

- b) x y
- c) \sqrt{xy}
- d) both A & C
- HCF of $2^5 \times 3^2 \times 7^1$ and $2^1 \times 3^3 \times 7^4$ is _____ a) $2^2 \times 3^2 \times 7$ b) $2 \times 3^2 \times 7^2$ c) $2 \times 3^2 \times 7$

- d) $2^3 \times 3^2 \times 7$

- The Units digit in $6^n + 11^n$, where $n \in \mathbb{N}$, is _____ 7.

- b) 1

- d) 7
- The H.C.F of $2^3 \times 3^2 \times 5^1 \times 7^2$ and $2^2 \times 3^1 \times 5^2 \times 7^1$ is _____ 8.
 - b) 240
- c) 420
- d) 180

CBSE MATHS 9. H.C.F of 2023 and 2024 is] b) 2024 c) 0 d) 1 10. The LCM of smallest and highest two digit natural number is ____] b) 99 d) 330 If the prime factorization of 100 is $2^a \times 3^b \times 5^c$ then find the value of a + b - c =11.] b) 1 c) 2 d) 3 If n is natural number then 4²⁰²³ ends with _____ 12. _digit] b) 6 c) 8 d) 2 13. The units place digit of 2⁵ is _] b) 4 a) 2 c) 6 d) 8 14. The number of factors of a prime number is __] b) 1 c) 3 d) 2 15. The H.C.F of 6, 8, 10 is] b) 2 c) 8 d) 10 If 'p' and 'q' are prime numbers, then L.C.M of 'p' and 'q' will be __ 16.] c) 1 d) pq The number in the unit place of 6^{2023} is 17.] a) 4 c) 9 d) 2 If a composite number 144, written as $2^a \times 3^b$, then the value of a + b =18.] b) 5 c) 12 d) 7 If a, b are two co-prime numbers, then HCF of (a, b) is ___ 19. Γ] b) b c) ab d) 1 20. If $180 = 2^a \times 3^b \times 5^c$ then $a + b + c = ___$] b) 2 c) 5 d) 10

KEY

1) c 2) d 3) c 4) a 5) d 6) c 7) d 8) c 9) d 10) c 11) a 12) a 13) a 14) d 15) b 16) d 17) b 18) a 19) d 20) c

1

]

1

]

2. POLYNOMIALS

4	XX 71 ' 1	C .1	C 11			1	
1	Which	of the	tollox	ving	18 2	noly	nomial.
1.	* * 111011	or the	10110	7 1115	10 4	POL	mommu.

a) $x^2 - 6\sqrt{x} + 2$ b) $\sqrt{x} + \frac{1}{\sqrt{x}}$

d) $\frac{4x^3 + 2x^2 + 3x}{}$

The value of $p(x) = x^2 + 5x + 6$ at x = -22.

b) 0

c) 5

d) 11

The zeroes of polynomial (x + 2) (x + 7) are ____ 3.

b) -2, -7

d) 2, -7

4. The quadratic polynomial having 2, 3 as zeroes is _____

a) $x^2 - 5x - 6$

b) $x^2 + 5x + 6$

c) $x^2 - 5x + 6$

d) $x^2 - 5x - 6$

Sum and product of the zeroes of polynomial $x^2 - 3$ are respectively 5.

a) 0, 3

b) 0, -3

c) -3, 0

d) 3, 0

6. Which of the following is a polynomial? a) 2x - 3

b) 2x

c) $\frac{1}{2}x^2 + 3x - 5$

d) All of these

Why $\frac{4}{3}x^4 - \sqrt{2}x^3 + 5x^{+2} + 7\sqrt{x} + 6$ is not a polynomial

1

a) The coefficient of x^4 is $\frac{4}{3}$

b) The coefficient of x^3 is $-\sqrt{2}$

c) The exponent of x is +2

d) The exponent of x is $\frac{1}{2}$

8.

If the polynomial, $P(x) = x^3 + 8$ then P(-2) =______ c) 14

d) 2

9. Sum of zeroes of the polynomial, $2x^2 - 8x + 11$ is ____

]

]

b) - 4

c) 8

d) 4

If the co - efficient of x^4 in the polynomial $x^5 + (a-4)x^4 + x + 2$ is zero then the value of a is ___

b) 4

d) 0

]

]

]

]

If α, β are the zeroes of $x^2 - 5x + 6$ then $\alpha^2 + \beta^2 = \underline{\hspace{1cm}}$

b) 13

d) 11

Quadratic polynomial having 3, -1 as zeroes is 12.

a) $x^2 + 2x - 3$

b) $x^2 - 2x + 3$

c) $x^2 - 2x - 3$

d) $x^2 + 2x + 3$

If $P(x) = 3x^5 - 4x^2 + 9x - 11$, then P(0) =

b) - 11

d) 1

The quadratic polynomial having zeroes $\sqrt{3}$ and $-\sqrt{3}$ is _____ 14.

1

a) $x^2 + \sqrt{3}$

b) $x^2 - \sqrt{3}$

c) $x^2 + 3$

d) $x^2 - 3$

Degree of the quadratic polynomial ___ 15.

a) 0

b) 1

c) 3

d) 2

16. From the adjacent figure Number of zeroes = _____

[

]

- a) 1
- b) 2
- c) 3
- d) No zeroes

- 17. If $P(x) = x^3 + 2x^2 + 5$ then P(-2) =
 - a) 3

b) 21

c) 5

- d) 5
- - a) 2

- b) 2
- c) 1

- d) 1
- 19. If the length of rectangle is 3 more than twice of its breadth then the polynomial represented by perimeter of the rectangle []
 - a) 2x + 3
- b) 3x + 2
- c) 6x + 6
- d) 4x + 6

20. If $P(x) = 4x^2 + x - \frac{1}{2}$ the $P\left(\frac{1}{4}\right) =$ _____

[]

a) $\frac{3}{4}$

b) $\frac{2}{4}$

c) $\frac{1}{4}$

d) 0

KEY

- $1) \, d \qquad 2) \, b \qquad 3) \, b \qquad 4) \, c \qquad 5) \, b \qquad 6) \, d \qquad 7) \, d \qquad 8) \, a \qquad 9) \, d \qquad 10) \, b$
- 11) b 12) c 13) b 14) d 15) d 16) d 17) c 18) b 19) c 20) d