Development of a Membrane Filtration Cascade for the Recovery of Biomass-Derived Fatty Acids

Presentation · July 2020

CITATIONS READS

0 22

1 author:

Stewart Charles McDowall Leiden University
4 PUBLICATIONS 13 CITATIONS

SEE PROFILE

Development of a Membrane Filtration Cascade for the Recovery of Biomass-Derived Fatty Acids

Master of Chemistry – Thesis Presentation

Stewart Charles McDowall July 2020

Supervised by: Professor Dirk Enke (University of Leipzig)

Roy Nitzsche and Maria Braune (DBFZ)

Introduction

- A membrane filtration cascade was designed for the recovery of MCFAs from fermentation broth
- Three step filtration sequence
- First stage: membrane screening for UF and NF
- Second stage: optimisation of pretreatment and process parameters

Context

- The MCFAs are useful and valuable precursor chemicals
- Applications in lubricants, fragrances, pharmaceuticals, etc.
- Current source is food crops such as palm and coconut oil
- Separation from biogas broth is a potentially sustainable solution
- Most prior studies relate to extraction

$$\sim$$

Experimental Plan

Stage One

NF Membrane Screening

Experimental Plan

Stage Two

Process Parameter and Pretreatment Optimisation

The Process

Step 1: Removal of course solids

Basket press

Fermentation Broth

Filtrate 80%

Solids 20%

The Process

Step 2: Removal of fine solids and macromolecules (15 or 150 kD ceramic membrane)

Permeate 90%

Retentate 10%

The Process

Step 3: Concentration of MCFAs in NF retentate (150, 400 & 1000 D polymer membranes)

Retentate 60%

Permeate 40%

Labstak M20

Membrane Screening

Retention of C2-C8 FAs

- ETNA01 (1000 D): 20-30%
- NP030 (400 D): 40-60%
- TS80 (150 D): 90-100%

Membrane Screening

Flux vs Transmembrane Pressure

Flux vs Crossflow Velocity

Process Parameter and Pretreatment Optimisation

Ultrafiltration

- Little effect from pore size or heat treatment
- Initial flux increase from process instability or "prefilter" cake formation
- Similarity of 15 and 150 kD suggests flux limitation by surface layer

Process Parameter and Pretreatment Optimisation

Nanofiltration

- High initial flux but rapid flux decline, limit of 0.55-0.65 VR
- 15 kD heated flux initially high, but had similar endpoint
- No advantage of feed reintroduction after membrane cleaning

Process Parameter and Pretreatment Optimisation

Diafiltration

- Negligible flux increase
- No advantage for DF considering the significant costs
- Impurities and foulants could not be washed through the membrane

Membrane Fouling

- Possible foulants isolated from NF retentate
- Both pass through UF and precipitate during NF
- Their removal or breakdown must be investigated

Pyruvate?

NH₄MgPO₄

Humic Substances?

The Conclusions

Very effective separation in the first two steps:

- Basket press ~80%
- Ultrafiltration ~90%

Pretreatment and UF pore size had no effect on flux

Nanofiltration concentration limited by membrane fouling

Diafiltration was ineffective

Until fouling is controlled, process is not feasible

Partially concentrated NF retentate is an improved feedstock

What's next?

Identify NF foulants and attempt to remove them

Perform UF with tighter membranes (10, 5, 1 kD)

Screen other NF membranes

Still no luck? Optimise filtration cascade as a pretreatment for further purification