

规格说明书

单通道电容式触摸感应IC

AR101

V2.1

全国客服中心电话: 4006-992-661

直线电话: 0755-8369-3048

8297-7857

8297-7641

自动传真: 0755-2263-4057

E-mail: sinoada@vip.163.com

企业 QQ: 800-000-251

官方网站: www.sinoada.com

资料在公司官方网站上会随时更新, 恕不另行通知, 敬请留意!

1.	. 概述	3
	. 特性	
	. 功能描述	
	. 应用范围	
	. 标准封装(SOT23-6L)	
	. 管脚描述	
	' 电气特性	
	- CN 工	
O.	8.1 标准应用电路	
	关于触摸介质厚度的应用说明	7
	9.1 触摸介质厚度与铺地、感应电极大小对应关系	
1(0. 修改记录	8

1. 概述

AR101是一款专门针对小体积、低功耗、宽电压、高性价比而设计的电容式触摸感应IC,可直接取代传统的机械式的轻触按键:自锁式按键和非自锁式按键。

该技术已获得广泛使用,成熟度、稳定性、可靠性都已获消费电子、小家电、智能面板控制等应用领域内的大批量生产验证,是新产品、新概念等创新产品设计的优选之必备器件。

3. 功能描述

- 通过 OP1,OP2 两个选择脚,可以选择不同的工 作模式
- OP1=VSS 时,OUT 输出为高电平有效
- OP1=VDD 时, OUT 输出为低电平有效
- OP2=VSS 时,OUT 输出为同步模式(类似于非自锁的轻触键),有触摸则有有效电平输出,无触摸即无有效电平输出
- OP2=VDD 时, OUT 输出为保持模式(类似于带自锁的轻触键),有触摸即有有效电平输出,无触摸后,输出保持不变,再次触摸,输出变化一次

2. 特性

- ✓ 工作电压: 2.0V~5.5V
- ✓ 工作电流: max=10uA@3V,待机电流: max=1.5uA@3V
- ✓ 采用低功耗的CMOS技术
- ✓ 内置去抖动电路,可有效防止外部噪声干扰而引起的误动作
- ✔ 外围电路简单,使用方便,成本低廉
- ✓ 超小封装: SOT23-6L (RoHS认证)

4. 应用范围

- 取代传统的机械式按键:自锁式按键、非自锁式 按键
- 液面传感器——空气加湿器、水位检测、热水器、 马桶水位检测等
- 人体感知传感器——坐便器、工业保护装置等
- 电脑设备——电脑、显示器、传真机、复印机、 碎纸机、门禁系统、电灯控制、遥控器、玩具、 游戏机等
- 触摸开关──墙壁开关、台灯开关、设备电源开 关、电灯开关、启动开关、制动开关等各种开关 应用

5. 标准封装(SOT23-6L)

Symbol	Dimensions in mm			
Symbol	Min	Тур	Max	
Α	-	· /	1.35	
A1	0.04	-	0.15	
A2	1.00	1.10	1.20	
А3	0.55	0.65	0.75	
b	0.34	-	0.43	
b1	0.33	0.35	0.38	
С	0.15	-	0.21	
c1	0.14	0.15	0.16	
D	2.72	2.92	3.12	
E	2.60	2.80	3.00	
E1	1.40 1.60 1		1.80	
е	0.95BSC			
e1	1.90BSC			
L	0.30 - 0.		0.60	
θ	0	-	8°	

6. 管脚描述

管脚序号	管脚名称	用法	功能描述
1	OUT	0	输出端口
2	VSS	POWER	电源地端
3	Touch Input		触摸传感器信号输入端
4	OP1	1	选择输出电平:=VSS,高有效;=VDD,低有效
5	VDD	POWER	电源正端
6	OP2		选择信号方式,=VSS, 同步模式;=VDD,保持模式

7 电气特性

工作电压	2.0V~5.5V
工作电流	<10uA@3V
待机电流	1.5uA@3V
工作温度范围	-20℃~70℃
储存温度范围	-50℃~100℃
ESD	>4000V

8. 应用电路

标准应用电路 8.1

8.2 触摸 LED 台灯应用

通常使用直径10 mm~15 mm大小

触摸台灯的物料清单

序号	物料名称	物料规格	物料位号	物料数量	备注
1	触摸感应 IC	SOT23-6L	U1	1	
2	电容	10uF	C1	1	
3	电容	0.1uF	C2	1	
4	灵敏度电容		Cj	1	根据需要可选
5	电阻	1K	Rj,R2	2	根据需要可选
6	驱动管	NPN(8050等)	Q1	1	根据需要可选
7	负载 LED		D1~D5	5	根据需要可选
8	PCB 板			1	可做很小尺寸

说明:

- 1、Cj 电容是用于调节灵敏度的, 电容调整范围: 0pF~70pF; 电容值增大, 灵敏度会相应的降低
- 2、Rj 电阻是指在触摸电极和触摸输入脚之间串联的电阻,用于提高触摸的抗干扰能力,可根据具体应用进行选择
- 3、请采用 NPO 材质电容用于 Cj(如没有 NPO,可采用 5%精度的 X7R 贴片电容),因为此元件是灵敏度调节关键器件,需要电容特性稳定,温漂系数小。
- 4、VDD 与 GND 间需并联滤波电容以消除噪声。供电电源需稳定,如果电源电压漂移或者快速变化,可能引起灵敏度漂移或检测错误。
- 5、应该在触摸电极上铺好覆盖介质后再上电,这样芯片会在上电时候检测环境以及初始电容。如 在芯片已经初始化后再放上覆盖物,则有可能被系统检测到电容突变而无法将其作为环境,引 起误判断!

9 关于触摸介质厚度的应用说明

9.1 触摸介质厚度与铺地、感应电极大小对应关系

感应电极面积	PCB 顶层不铺地,底层不铺地,可触摸介质厚度	PCB 项层铺实铜,底层 35% 铺地,可触摸介质厚度	备注
6×6mm	8mm	1.7mm	
7×7mm	10mm	2.8mm	
8×8mm	14mm	3.8mm	
10×10mm	16mm	4.9mm	
12×12mm	18mm	6mm	
15×15mm	22mm	8mm	

说明:

- 1. 此表仅供参考, 具体焊盘大小应根据实际模具外壳厚度来调整。
- 2. 触摸焊盘面积越大,可穿透介质材料越厚。
- 3. PCB 铺地比例越小, PCB 点触焊盘与地之间的寄生电容越小, 人体触摸后新生的手指电容相对 PCB 寄生电容变化越大, 触摸灵敏度越高, 可穿透介质越厚。
- 4. PCB 铺地比例越小,越易受到外界干扰。
- 5. 建议实际应用时兼顾灵敏度和抗干扰设计 PCB 的铺地形式。如对穿透介质厚度要求不高,建议增加铺地比例以提高抗干扰性能。

9.2 触摸介质厚度与触摸引脚并联电容对应关系

电容值 (Cj)	可触摸介质厚度	测试条件	备注
NC	50mm 玻璃, 20mm 亚克力	感应电极(直径 15mm), PCB 顶层和 底层均不铺地	不接灵敏度电容
1pf	10mm 玻璃,5mm 亚克力	感应电极(直径 10mm), PCB 顶层铺 实铜,PCB 底层 35%铺地	
5pf	7mm 玻璃,3mm 亚克力	感应电极(直径 10mm), PCB 顶层铺 实铜,PCB 底层 35%铺地	
10pf	5mm 玻璃,2mm 亚克力	感应电极(直径 10mm), PCB 顶层铺实铜,PCB 底层 35%铺地	
20pf	2mm 玻璃, 1mm 亚克力	感应电极(直径10mm), PCB 顶层铺实铜,PCB 底层 35%铺地	
30pf	2mm 玻璃, 1mm 亚克力	感应电极 (直径 10mm), PCB 顶层铺 实铜,PCB 底层 35%铺地	

此表仅供参考,并联电容越小,可穿透介质材料越厚。

10. 修改记录

版本号	修改日期	修改记录描述	执行人	备注
V1.0	2011.08.08		Anny	
V1.1	2011.11.09	修正原理图	Anny	
V2.0	2012.02.25	应用经验	Anny	
V2.1	2012.12.17	修正原理图	Anny	