음주운전 차량 자율 추적 로봇 시스템

창문 이용료 징수단 류재준, 양준혁, 이상우, 김주원

Project Overview

음주 단속 중 발생하는 도주 차량을 실시간으로 감지하고 추적하는 시스템.

인간과 협력하며 효율적인 음주 단속 & 도주 차량 안전하게 저지 가능.

음주운전 빈도 및 음주운전 관련 사고 & 경찰관의 추적 중 사고 위험 감소.

Modules & Functions

Main Detection Module

카메라 작동, 실시간 데이터 처리 및 저장, 분석 기능과 모듈 간 데이터 송수신 기능

Scenario

Drone 카메라에서 전달 받은 이미지에 사용자가 검문 영역을 지정

- > YOLO 기반 객체 감지를 통해 검문 영역 내 차량을 식별
- > 도주 차량 판단 알고리즘을 사용하여 지정된 검문 영역에서 감지된 차량이 5초 이하로 머물거나 특정 조건(사용자의 도주 시그널)이 달성되면 추적을 시작
- > 도주 이벤트의 인덱스, 차량 인덱스, 추적 시작 시간과 종료 시간, 추적 상황을 저장

Modules & Functions

Monitoring Module

중앙 감지 모듈에서 전달 받은 데이터를 시각화하는 기능과 사용자의 수동 제어(추적 종료 등)를 중앙 감지 모듈로 송신하는 기능

Scenario

PyQT로 구축, 보안 담당자가 AMR을 모니터링하고 일부 제어 가능

> 단속 중일 때 Drone에서 촬영된 단속화면과 검문 시작 시간, 검문 경과 시간이 포함된 인터페이스 시각화

> 추적 중일 때 경고 알람, 추적 시작 시간, 추적 경과 시간과 함께 AMR의 실시간 상태, 라이브 비디오 피드를 인터페이스에 표시하여 시각화

Modules & Functions

Autonomous Tracking Module

전달 받은 좌표로의 자율 추적, 카메라 감시를 수행하고 추적 상황과 이미지 데이터를 중앙 감지 모듈로 송신하는 기능

Scenario

ROS2와 SLAM(동시 위치 추정 및 매핑) 및 LiDAR를 사용하여 AMR이 보안 구역 내에서 자율적으로 이동하고 장애물을 회피하는 네비게이션 기능

- > Jetson-Orin에서 실행되는 YOLO 기반 객체 감지를 통해 도주 차량을 식별할 수 있는 기능
- > 초기 위치에서 빠르게 탈출하는 Waypoints(Multi-goals) 전달 *with linear interpolation
- > 목표 위치까지 이동 및 종료 명령에 따른 복귀

Problems

1. Object detection

화면 외부에서 다른 곳으로 진입할 때 추적 차량의 ID를 소실하는 문제가 발생. 사용자의 마우스 클릭을 통해서 수동으로 고유 ID를 다시 부여할 수 있게 만듦.

2. 초기 위치 탈출

Waypoint를 저장해서 뒤에 있는 목적지에 대한 빠른 탈출이 가능하도록 구현.

3. Scheduling

각자의 스케줄에 따라 역할과 분량을 분담. 사전에 개발 경험과 분야를 공유했으며 각자의 개발 속도에 따라 적절히 분배하고자 시도함.

4. System Integration

서로 다른 시점에 서로 다른 기능을 개발하며 통합에 어려움을 겪음. github 사용하며 환경과 코드를 공유하고 객체지향적인 개발을 하면서 점차 개선함.

Problems

5. About time

시간을 Display하고 Update하는 기능의 문제점들을 한 가지 함수에서 다루어 문제가 발생했는데 여러 함수로 나눠서 캡슐화를 하며 문제를 해결할 수 있었음.

Unsolved Problems

- 1. Object detection in Turtlebot
- >>> 터틀봇의 카메라로 객체를 감지하고 추적하는 기능이 구현되지 못함.
- 2. System Integration
- >>> Main Detection Module + Monitoring Module -> Done!
 - + AMR Controller —> Not Yet...
- 3. Security Problem

모든 사용자가 동일한 증명을 사용하고 동일한 권한을 가진 채로 시스템에 접속하므로 보안 위협에 노출되어 있음

4, Image logging

도주 발생 시 증거 수집을 위해 일부 구간의 이미지를 저장하는 기능이 구현되지 못함.

Unsolved Problems

5. Improve Object Detection Accuracy

Data Augmentation(Color)

How can we improve?

- 1. 다중 AMR 협동
- >>> 여러 대의 AMR이 협동해 넓은 지역을 효과적으로 감시하고 추적
- 2. 열화상 카메라 사용
- >>> 야간이나 가시거리 짧은 상황(눈, 비)에서의 탐지 능력 보존
- 3. 경로 예측 알고리즘
- >>> 추적 차량의 예상 경로로 접근하여 감속을 유도하고 차단하는 기능
- 4. 직접 제어
- >>> 인간이 직접 제어하는 기능을 추가해 효율을 일부 높일 수 있음

About Our Team

류재준(PM)

DB 및 Logging 기능 통합, Object Detection 기능 정확도 향상, 문서 작성, 중앙 감지 모듈 개발

이상우

시간 관련 기능 구현, 문서 작성, Object Detection 기능 정확도 향상, 문서 작성

김주원

모니터링 모듈 개발, 모듈 간 통합 총괄, 알림 기능 구현 및 통합

양준혁

터틀봇 실행 및 네비게이션 기능 구현, Object Detection 기능 구현 및 중앙 감지 모듈 개발, 문서 작성

What We've learned

1 로봇 시스템 개발의 전체 과정을 빠르게 실습해 보며 핵심 기술들을 실습함

2 좋은 Agile 개발도 Waterfall 처럼 잘 구조화되고 상세히 작성된 문서가 필요하다는 것을 깨달음

3 여러 기능을 빠르게 구현하고 테스트하는 과정에서 어떻게 체계화를 해야 효율적으로 진행할 수 있는지 파악할 수 있었음

4 이 시스템을 응용해 만들 수 있는 상황들이 많아 다른 시스템 개발이나 문제 해결에 응용할 수 있을 것으로 기대됨