Deep Residual Learning for Image Recognition

Leonardo Hügens

Faculdade de Ciências, Universidade do Porto

November 10, 2023

Paper

This presentation is based on the paper Deep Residual Learning for Image Recognition by He, Zhang, Ren & Sun, from Microsoft Research.

Deep Residual Learning for Image Recognition

Kaiming He Xiangyu Zhang Shaoqing Ren Jian Sun Microsoft Research {kahe, v-xiangz, v-shren, jiansun}@microsoft.com

Outline

1 Introduction

2 Solution

- Deeper neural networks are more difficult to train.
- The paper presents a *residual* learning framework to ease the training of networks that are substantially deeper than those used previously.

- Deeper neural networks are more difficult to train.
- The paper presents a *residual* learning framework to ease the training of networks that are substantially deeper than those used previously.
- The layers are reformulated as learning residual functions with reference to the layers inputs, instead of learning unreferenced functions.
- These networks are:
 - Easier to optimize
 - Can gain accuracy from considerably increased depth.

In a deep neural network (DNN) the "levels" of features can be enriched by the number of stacked layers.

Low-level features

Mid-level features

High-level features

The leading results on the challenging ImageNet dataset all exploit "very deep" models, with depth up to 30.

Question: Is learning better networks as easy as stacking more layers?

Question: Is learning better networks as easy as stacking more layers?

Problem: Vanishing/Exploding gradients.

Solution: Normalized initialization (e.g. for ReLU activation functions, the weights of the layer are He initialized, drawn from a Gaussian distribution with mean $\mu=0$ and variance $\sigma=\frac{2}{\#inputs}$), and intermediate normalization layers.

- With an increase of the depth of a network, a *degradation* problem arises, were accuracy gets saturated, and then degrades rapidly.

- With an increase of the depth of a network, a degradation problem arises, were accuracy gets saturated, and then degrades rapidly.
- This is not due to *overfitting*, and adding more layers leads to higher training error.

Solution

Deep residual learning framework - Instead of directly learning a desired underlying mapping $\mathcal{H}(\mathbf{x})$, a *residual* mapping $\mathcal{F}(\mathbf{x})$ is learned instead, were $\mathcal{F}(\mathbf{x}) := \mathcal{H}(\mathbf{x}) - \mathbf{x}$.

Solution

Deep residual learning framework - Instead of directly learning a desired underlying mapping $\mathcal{H}(\mathbf{x})$, a *residual* mapping $\mathcal{F}(\mathbf{x})$ is learned instead, were $\mathcal{F}(\mathbf{x}) := \mathcal{H}(\mathbf{x}) - \mathbf{x}$. This is done by using shortcut connections.

