Refresher on Bayesian and Frequentist Concepts

Bayesians and Frequentists

Models, Assumptions, and Inference

George Casella
Department of Statistics
University of Florida

Approaches to Statistics

- ▶ Frequentists: From Neymann/Pearson/Wald setup. An orthodox view that sampling is infinite and decision rules can be sharp.
- ▶ Bayesians: From Bayes/Laplace/de Finetti tradition. Unknown quantities are treated probabilistically and the state of the world can always be updated.
- ▶ Likelihoodists: From Fisher. Single sample inference based on maximizing the likelihood function and relying on the Birnbaum (1962) Theorem. Bayesians But they don't know it.
- ➤ So let's look at some critical differences between Frequentists and Bayesians...

Differences Between Bayesians and Non-Bayesians According to my friend Jeff Gill

Typical Bayesian

Typical Non-Bayesian

Differences Between Bayesians and Non-Bayesians What is Fixed?

Frequentist:

- ► Data are a repeatable random sample
 - there is a frequency
- ► Underlying parameters remain constant during this repeatable process
- ➤ Parameters are fixed

- ▶ Data are observed from the realized sample.
- ► Parameters are unknown and described probabilistically
- ➤ Data are fixed

Example: Application of Bayes Theorem to Aminoglycoside-Associated Nephrotoxicity (AAN)

- ► Kim et al. (2004 Journal of Clinical Pharmacology)
- ▶ Examine the incidence of AAN related to
 - ▶ Extended-interval dosing (EID)
 - ▶ Individualized pharmacokinetic monitoring (IPM)
 - ▶ Multiple-daily dosing (MDD)
- ▶ Meta-analysis of published results
- ► Bayesian methods used

Example: Application of Bayes Theorem to AAN -The Data-

	EID		IPM		MDD	
	Incidence of Nephrotoxicity	AAN Related	Incidence of Nephrotoxicity	AAN Related	Incidence of Nephrotoxicity	AAN Related
Studies	34 179 141 187 : 71 40 35 34 61	8 25 15 14 : 11 2 0 2 9	80 62 36 98 : 95 78	13 0 5 12 : 14 7	66 1756 272 151 : 146 140 113 108	11 129 48 18 : 28 14 11 10

Example: Application of Bayes Theorem to AAN -Histograms-

- ► Histograms of Relative Frequencies of AAN
- ▶ Protocols have similar means but different patterns

Example: Application of Bayes Theorem to AAN -Sampling Models-

Frequentist:

- For Protocol i, = 1,2,3, X=AAN frequency
- ► For Study j in Protocol i $> X_j \sim \text{Binomial}(n_j, p_i)$
- \triangleright p_i is the same for each study

- For Protocol i, = 1,2,3, X=AAN frequency
- ► For Study j in Protocol i $> X_j \sim \text{Binomial}(n_j, p_i)$
- $ightharpoonup p_i$ can vary from study to study

Example: Application of Bayes Theorem to AAN -Inference-

Frequentist:

- ► The true AAN rates p_1, p_2, p_3 are fixed
- ► The data are repeated
- ▶ Determine if p_1, p_2, p_3 are different

- ► The data from the studies are fixed
- ► The true AAN rates p_1, p_2, p_3 can vary
- \blacktriangleright Determine if p_1, p_2, p_3 are different

Differences Between Bayesians and Non-Bayesians What is Fixed?

Frequentist:

- ► Data are a repeatable random sample
 - there is a frequency
 - -The studies are repeatable
- ► Underlying parameters remain constant during this repeatable process
 -The studies (in protocol) have same
 AAN rate
- ➤ Parameters are fixed

- ► Data are observed from the realized sample
 - -The studies are fixed
- ► Parameters are unknown and described probabilistically
 - -The studies (in protocol) have varying AAN rates
- ► Data are fixed

- \blacktriangleright We see why Kim *et al.* used Bayesian Inference
- ▶ Difficult to assume that this "experiment" is repeatable
- ► The collection of studies is a one-time phenomenon

Differences Between Bayesians and Non-Bayesians General Inference

Frequentist:

- ▶ Point estimates and standard errors or 95% confidence intervals.
- ▶ Deduction from $P(data|H_0)$, by setting α in advance.
- ▶ Accept H_1 if $P(data|H_0) < \alpha$.
- ▶ Accept H_0 if $P(data|H_0) \ge \alpha$.

- ▶ Induction from $P(\theta|data)$, starting with $P(\theta)$.
- ▶ Broad descriptions of the posterior distribution such as means and quantiles.
- ► Highest posterior density intervals indicating region of highest posterior probability, regardless of contiguity.
- ▶ Frequentist: $P(data|H_0)$ is the sampling distribution of the data given the parameter
- \blacktriangleright Bayesian: $P(\theta)$ is the prior distribution of the parameter (before the data are seen)
 - $\triangleright P(\theta|data)$ is the posterior distribution of the parameter
 - ▶ Update of the prior with the data (more later)

Differences Between Bayesians and Non-Bayesians 90% Intervals

Frequentist:

► In repeated sampling 90% of realized intervals cover the true parameter

Bayesian:

➤ For these data, with probability 90% the parameter is in the interval

► These are different probabilities

Example: Application of Bayes Theorem to AAN -Construction of Confidence Intervals-

For Protocol i, = 1, 2, 3, X=AAN frequency

Frequentist:

- \blacktriangleright For Study j in Protocol i
 - $\triangleright X_j \sim \text{Binomial}(n_j, p_i)$
- \triangleright p_i is the same for each study
- \blacktriangleright Describe variability in X_j for fixed p_i

- ightharpoonup For Study j in Protocol i
 - $\triangleright X_j \sim \text{Binomial}(n_j, p_i)$
- \triangleright p_i has a prior distribution
- \blacktriangleright Describe variability in p_i for fixed X_j

-Construction of Confidence Intervals-

Frequentist:

ightharpoonup Describe variability in X_j for fixed p_i

Bayesian:

 \blacktriangleright Describe variability in p_i for fixed X_j

Distribution of Sample

Distribution of Parameter

Three General Steps for Bayesian Modeling

- I. Specify a probability model for unknown parameter values that includes some prior knowledge about the parameters if available.
- II. Update knowledge about the unknown parameters by conditioning this probability model on observed data.
- III. Evaluate the fit of the model to the data and the sensitivity of the conclusions to the assumptions. (Another time)

Where Do Priors Come From?

- ▶ Previous studies, published work.
- ► Researcher intuition.
- ► Substantive Experts
- ► Convenience (conjugacy, vagueness).
- ▶ Nonparametrics and other data sources.

Kim et al. 2004 Priors

- ► First Prior
- ► From Review of Literature
- ► And Expert Judgement

- ► Second Prior
- ► Eliminate Extremes
- ightharpoonup AAN > 35% Unlikely

Priors and Posteriors -Posterior Interval-

Distribution of Parameter

- ► Prior Distribution
- ▶ Before Data are Seen

- ► Posterior Distribution
- ▶ Prior Updated with Data
- ▶ 90% "Credible" Interval

Priors and Posteriors -Effect of the Prior-

- ▶ Prior has high variability
- ▶ Data information is very strong

- ► Intervals Similar
- ▶ But Inference Remains Different

Interpretations of Confidence

- ► Frequentist: A collection of intervals with 90% of them containing the true parameter
- ► Bayesian: An interval that has a 90% chance of containing the true parameter.

Distribution of Parameter

• Which interpretation *preferred*?.

So Why Did Frequency Win?

- ► 1950 1990 Nobody did Bayesian Analysis
 - ▶ Well Some, but on the fringe
- ▶ We want very automated, "cookbook" type procedures or that is what we sold.
- ► Computers were slow and relatively unavailable.
- ► Bayesian Statistics need Lots of computation

And the everything changed....

The History of Bayesian Statistics–Milestones

- ► Reverend Thomas Bayes (1702-1761).
- ▶ Pierre Simon Laplace.
- ► Pearson (Karl), Fisher, Neyman and Pearson (Egon), Wald.
- ▶ Jeffreys, de Finetti, Good, Savage, Lindley, Zellner.
- ➤ A world divided (mainly over practicality).
- ➤ The revolution: Gelfand and Smith (1990).
- ➤ Today...

Technologies that have changed my life:

- ► microwave ovens
- ► ATM machines
- ▶ pay-at-the-pump
- ► Gibbs sampling

Markov Chain Monte Carlo Gibbs Sampling and Variations

- ► Computational algorithms
- ► Cracked open countless problems
- ightharpoonup Research explosion 1990 2005
- ► Allowed solutions of
 - ▶ Practical Problems
 - ightharpoonup Complex Models

PKPD Medical Models - An Example from the Book

- ▶ Pharmacokinetics is the modeling of the relationship between the dosage of a drug and the resulting concentration in the blood.
- ► Estimate pharmacokinetic parameters using mixed-effects model and
- For a given dose d_i administered at time 0 to patient i, the measured log concentration in the blood at time t_{ij} , X_{ij} , is assumed to follow a normal distribution

$$X_{ij} \sim N(\log g_{ij}, \sigma^2),$$

$$g_{ij}(\lambda_i) = \frac{d_i}{V_i} \exp\left(-\frac{C_i t_{ij}}{V_i}\right).$$

- \circ C_i represents clearance
- $\circ V_i$ represents *volume* for patient *i*.

PKPD Medical Models - Cadralazine Concentration

- ▶ Wakefield et al. 1994 applied Statistics
- ▶ Data on 10 Cardiac Failure Patients
- ▶ Plasma Concentration after 30mg Dose

Hours After Administration

Patient	2	4	6	8	10	24
1	1.09	0.7	0.53	0.34	0.23	0.02
_		· · ·	0.00	3.5 =	00	
2	2.03	1.28	1.2	1.02	0.83	0.28
3	1.44	1.3	0.95	0.68	0.52	0.06
4	1.55	0.96	0.8	0.62	0.46	0.08
5	1.35	0.78	0.5	0.33	0.18	0.02
6	1.08	0.59	0.37	0.23	0.17	0
7	1.32	0.74	0.46	0.28	0.27	0.03
8	1.63	1.01	0.73	0.55	0.41	0.01
9	1.26	0.73	0.4	0.3	0.21	0
10	1.3	0.7	0.4	0.257	0.14	0

PKPD Medical Models Estimates of Log Clearance and Log Volume

Patient	Log Clearance	Log Volume
1	1.269	2.854
2	0.2877	2.624
3	0.6723	2.721
4	0.8287	2.71
5	1.219	2.642
6	1.472	2.763
7	1.257	2.666
8	0.8884	2.599
9	1.309	2.682
10	1.328	2.624

- ► Variability in Clearance
- ► Lesser variability in Volume?

- ▶ Std Error $\approx .07$
- ▶ With MCMC we can see more
- \blacktriangleright Have the entire posterior distribution for C and V

PKPD Medical Models Posterior Distribution of Log Clearance For All Patients

PKPD Medical Models Posterior Distribution of Log Volume For All Patients

PKPD Medical Models - Shape of the Curves

ightharpoonup Multimodal parameter distribution \Rightarrow distinct curves

Differences Between Bayesians and Frequentists

Frequentist:

- ➤ The parameters of interest are fixed and unchanging under all realistic circumstances.
- ➤ No information prior to the model specification.

- ► View the world probabilistically, rather than as a set of fixed phenomena that are either known or unknown.
- ▶ Prior information abounds and it is important and helpful to use it.

Differences Between Bayesians and Frequentists

Frequentist:

- ➤ Statistical results assume that data were from a controlled experiment.
- ► Nothing is more important than repeatability, no matter what we pay for it.

- ► Very careful about stipulating assumptions and are willing to defend them.
- ► Every statistical model ever created in the history of the human race is subjective; we are willing to admit it.
- ► Berger and Berry "Statistical Analysis and the Illusion of Objectivity" American Scientist 1988

But in the End

- We are Statisticians
- We should use all of our tools

Frequentist:

- ► Evaluative Paradigm
- ▶ Repeatability can be Important

- ► Modeling Paradigm
- ► Inference can be appropriate
- Bring what is needed to Solve the Problem

Thanks for your Attention

Thank You and Go Gators casella@ufl.edu

