

Санкт-Петербургский государственный университет Кафедра системного программирования

Модификация протокола локального голосования для оптимизации балансировки загрузки ресурсов распределенной системы

Елена Александровна Борисоглебская, 21.М04-мм группа

Научный руководитель: д.ф.-м. н., Граничин О.Н., профессор кафедры системного программирования

Санкт-Петербург 2022

Постановка задачи

Целью работы является модификация протокола локального голосования для оптимизации балансировки загрузки ресурсов распределенной системы.

Задачи:

- Реализовать существующий алгоритм балансировки загрузки сети
- Разработать модифицированный алгоритм локального голосования
- Доказать сходимость алгоритма

Почему мультиагентные технологии?

- Новые задачи поступают все время;
- Не известно сколько всего задач;
- Не известно время появления новых задач;
- Не известно сколько новые задачи потребуют ресурсов;
- Большое количество узлов распределенной системы.

Балансировка загрузки сети. Постановка задачи

Изменение состояния агента описывается следующим уравнением:

$$q_{t+1}^i = q_t^i - r_t^i + z_t^i + u_t^i; \quad i = 1, \dots, n, \quad t = 0, 1, 2, \dots,$$

- $\mathbf{0}$ q_t^i загруженность очереди или длина очереди из атомарных элементарных заданий узла i в момент времени t,
- $oldsymbol{0}$ z_t^i новое задание, поступившее на узел i в момент времени t,
- u_t^i результат перераспределения задач между узлами (добавление или уменьшение).

Топология мультиагентной системы

Взаимодействие внутри системы, состоящей из n элементов, можно описать с помощью ориентированного графа $\mathcal{G}=(\mathcal{N},\mathcal{E})$, где $\mathcal{N}=1,...,n$ — множество вершин, а $\mathcal{E}\subseteq\mathcal{N}\times\mathcal{N}$ — множество дуг

Для узла $i\in N$, множество соседей обозначим $\mathcal{N}^i=\{j\in\mathcal{N}:(j,i)\in\mathcal{E}\}.$ Полустепень входа узла $i\in N$ равна $|N^i|.$

Сопоставим дуге $(j,i)\in\mathcal{E}$ вес (стоимость передачи данных по дуге) $c^{i,j}>0$ и $c^{i,j}=0$ для $(j,i)\notin\mathcal{E}$. $C=[c^{j,i}]$ — взвешенная матрица смежности или матрица связности.

Топология мультиагентной системы

Взвешенная полустепень входа узла $i\in N$ равна $\deg_i^+(C)=\sum_{j=1}^n c^{j,i}.\ \deg_{max}^+(C)$ - наибольшая полустепень входа среди всех узлов в графе $\mathcal G$.

Матрица степеней *D*:

$$d_{i,j} = egin{cases} deg_i^+(C), & \mathrm{i} = \mathrm{j}; \ 0, & \mathrm{otherwise}. \end{cases}$$

Балансировка загрузки сети. Постановка задачи

Пусть $\mathcal{N}=1,\ldots,n$ — набор агентов (узлов). Связь между узлами определяется, топологией динамической сети: в момент времени t графом $\mathcal{G}_t=(\mathcal{N},\mathcal{E}_t)$ с матрицей смежности A. Обозначим через $W_t=\mathcal{L}_t(C)=D-C$ лапласиан графа G_t .

Рис.: Пример топологии сети

Оптимальное решение 1

Пусть необходимо выполнить z задач, q_i — задачи, которые выполняет i-ый узел. Тогда:

$$\sum_{i=1}^n q_i = z.$$

Время обработки задач i-ым узлом равняется: $tm^i(q_i) = q_t^i/r_t^i$. Функционал среднего риска (Потенциал Лапласа):

$$F_t(q_t) = \sum_{i,j \in \{1,...,n\}} a_t^{i,j} (tm_t^i(q_j) - tm_t^j(q_i))^2 o \min_u.$$

¹N. Amelina, A. Fradkov, Y. Jiang, and D. J. Vergados, "Approximate consensus in stochastic networks with application to load balancing," IEEE Trans. Inf. Theory, vol. 61, no. 4, pp. 1739–1752, Apr. 2015.

Протокол локального голосования

Консенсусное мультиагентное управление, формируемое по так называемому «протоколу локального голосования» задаётся соотношением:

$$u_t^i = \alpha_t \sum_{j \in N_t^i} b_t^{i,j} (y_t^{i,j} - y_t^{i,i}),$$

где $lpha_t > 0$ — размеры шагов протокола управления, $b_t^{i,j} > 0, orall j \in \mathcal{N}_t^i$.

Протокол локального голосования — градиентный метод для потенциала Лапласа:

$$\frac{dF_t(q_t)}{dq_t^i} = \sum_{j=1}^m 2(a_t^{i,j} - a_t^{j,i}) \frac{1}{r_t^i} \left(tm_t^j(q_j) - tm_t^i(q_i) \right).$$

Борисоглебская Елена (СПбГУ)

Ускорение по Нестерову

На каждом шаге алгоритма оптимальное значение $\hat{\theta}_k$ обновляется в соответствии с направлением на предыдущем шаге v_{k-1} и в направлении антиградиента.

$$v_k = \gamma v_{k-1} + \eta \nabla_{\theta} F(\hat{\theta}_{k-1} - \gamma v_{k-1})$$
$$\hat{\theta}_k = \hat{\theta}_{k-1} - v_k$$

где γ и η — коэффициенты, F — минимизируемая функция.

Постановка задачи

Рассматривается модель для конкретного узла. Единственной доступной информацией служат измерения протокола локального голосования $Y_k(q)$, искаженные аддитивным шумом ξ_k :

$$Y_k(q) = \nabla F_k(q) + \xi_k, \quad k = 0, 1, 2, \dots$$
 (1)

Задача найти последовательность оценок $\{\hat{q}_k\}_{k=0}^\infty$ таких, что

$$\exists N, C < \infty : \forall k > N \quad \mathbb{E} \|\hat{q}_k - q_k\|^2 \le C. \tag{2}$$

Условия накладываемые на функцию

① Функции F_n имеют общую константу Липшица L>0 и общую константу строгой выпуклости $\mu>0$:

$$\forall x \in \mathbb{R}^d : \|\nabla F_n(x)\| \le L\|x - q_n\|,$$
$$\langle \nabla F_n(x), x - q_n \rangle \ge \mu \|x - q_n\|^2.$$

② Для $\forall n>0>0$ изменение функции F_n ограничено, т.е. существуют такие константы a,b,c, что для $\forall n>0$ выполняется:

$$||F_n(x) - F_{n+1}(x)|| \le a||\nabla F_n(x)|| + b,$$

 $||\nabla F_{n+1}(x) - \nabla F_n(x)|| \le c.$

3 Шум ξ_n имеет нулевое математическое ожидание и ковариация шума в среднем ограничены:

$$\mathbb{E}\xi_n=0, \mathbb{E}Q\leq \sigma_{\max}^2 I,$$

где Q - матрица ковариации случайного вектора ξ_n , I - единичная матрица, σ_{max}^2 - максимальное собственное число матрицы Q.

Алгоритм

- **①** Выбрать $\hat{q}_0 \in \mathbb{R}^d$ и $\gamma_0 > 0$, $v_0 = \hat{q}_0$. Выбрать $h > 0, \eta \in (0, \mu), \alpha_x \in (0, 1)$ такое, что неравенство (3) всегда выполнялось. Вычисляется значение $H_1 = h \frac{h^2 L}{2}$.
- На k-ой итерации:
 - **①** Найти $\alpha_k \in [\alpha_x, 1)$:

$$H_1 - \frac{\alpha_k^2}{2\gamma_{k+1}} > 0 \tag{3}$$

- **②** Вычислить $\gamma_{k+1} = (1 \alpha_k) * \gamma_k + \alpha_k * (\mu \eta)$
- Вычислить

$$z_k = \frac{\alpha_k \gamma_k \mathsf{v}_k + \gamma_{k+1} \hat{q}_k}{\gamma_k + \alpha_k (\mu - \eta)}$$

и посчитать значение $Y_k(z_k)$

4 Вычислить \hat{q}_{k+1} :

$$\hat{q}_k = z_k - hY_k(z_k)$$

 $oldsymbol{\circ}$ Вычислить $v_{k+1}=rac{1}{\gamma_k}igg[(1-lpha_k)\gamma_k v_k+lpha_k(\mu-\eta)z_k-lpha_k Y_k(z_k)igg]$

Сходимость алгоритма

Для доказательства сходимости метода введем следующие обозначения: Пусть $\{\alpha_k\}_{k=0}^{\infty}, \{\lambda_k\}_{k=0}^{\infty}, \{A_k\}_{k=0}^{\infty}, \{Z_k\}_{k=0}^{\infty}, \{D_k\}_{k=0}^{\infty}$ последовательности определенные следующим образом:

$$\alpha_{k} \in [\alpha_{x}, 1), \lambda_{0} = 1, \lambda_{k+1} = (1 - \alpha_{k})\lambda_{k},$$

$$A_{0} = 0,$$

$$A_{k+1} = (1 - \alpha_{k})((1 - \alpha_{k})a + A_{n}),$$

$$Z_{n} = (1 - \lambda_{k})(b + ac) + A_{k}c,$$

$$D_{0} = 0,$$

$$D_{k+1} = (1 - \alpha_{k})D_{k} + \frac{a(1 + \alpha_{k}) + hc}{4\epsilon} + (1 + \alpha_{k})b + (1 - \alpha_{k})Z_{k} + h^{2}\frac{L}{2}\sigma^{2} + \frac{\alpha_{k}c^{2}}{2n}.$$

Сходимость алгоритма

Тогда имеем:

$$D_{\infty} = \alpha_x^{-1} \left[\frac{2a + hc}{4\epsilon} + 2b + (1 - \alpha_x)(b + A_{\infty}c) + h^2 \frac{L}{2}\sigma^2 + \frac{c^2}{2\eta} \right],$$

где

$$\Gamma = \max_{n \ge 0} \gamma_k,$$

$$\epsilon \in \left(0, \frac{1}{a(1 + \alpha_x) + hc} \left(H_1 - \frac{\alpha_x^2}{2\Gamma}\right)\right]$$

Сходимость алгоритма

Теорема 2 Если предположения 1–3 выполнены, то алгоритм, описанный выше, решает проблему (2) со следующими параметрами:

$$C = \frac{2}{\mu} D_{\infty}$$

Ошибка оценки после конечного числа итераций ограничена:

$$\mathbb{E}_{k}F_{k}(\hat{q}_{k}) - F_{k}(q_{k}) \leq \prod_{i=1}^{k} (1 - \alpha_{k})(\phi_{0}(q_{0}) - F_{k}(q_{k}) + \Phi) + D_{k},$$

где
$$\phi_0(x) = F_0(\hat{q}_0) + \frac{\gamma_0}{2} \|x - v_0\|^2, \Phi = \frac{\gamma_0 c^2}{2\eta^2}.$$

²D. Kosaty, A. Vakhitov, O. Granichin, and M. Yuchi, "Stochastic fast gradient for tracking," in American Control Conference (ACC). IEEE, pp. 1476–1481, 2019.

Результаты

- Реализовала существующий алгоритм балансировки загрузки сети на основе протокола локального голосования
- Был найден алгоритм, позволяющий ускорить протокол локального голосования
- Изучены существующие доказательства сходимости алгоритмов ускоренных по Нестерову