Matemática Discreta

Estratégias de Demonstração: Princípio de Indução

Universidade de Aveiro 2016/2017

http://http://moodle.ua.pt

Matemática Discreta

Estratégias de demonstração por indução

Princípio de indução completa

Regra de inferência do princípio de indução

O Princípio de indução baseia-se na seguinte regra de inferência:

$$(P(n_0) \land (\forall n \geq n_0)(P(n) \Rightarrow P(n+1))) \Rightarrow (\forall n \geq n_0)P(n),$$

onde *n* é uma variável inteira e

$$(\forall n \geq n_0) (P(n) \Rightarrow P(n+1))$$

denota a conjunção das proposições $P(n) \Rightarrow P(n+1)$ quando n percorre todos os valores inteiros não inferiores a n_0 .

Note-se que para cada valor particular de n,

$$P(n) \Rightarrow P(n+1)$$

é uma proposição.

Matemática Discreta

Estratégias de demonstração por indução

Demonstração por indução

Princípio de indução

Para cada inteiro positivo n, seja P(n) uma proposição. Para mostrar que a proposição P(n) é verdadeira para todo o inteiro $n \ge n_0$, basta mostrar que

- a) a proposição $P(n_0)$ é verdadeira \leftarrow Condição inicial.
- **b)** para cada inteiro $k \ge n_0$, a implicação

$$P(k) \Rightarrow P(k+1)$$

é também verdadeira, ou seja, se P(k) é verdadeira, então P(k+1) é também verdadeira.

• $P(k) \Rightarrow P(k+1)$ constitui o passo de indução.

Exemplo

Vamos demonstrar que para todo o número natural n,

$$1+2+3+\ldots+n=\frac{n(n+1)}{2}.$$

- Condição inicial $P(1): 1 = \frac{1 \times (1+1)}{2}$.
- Passo de indução

Hipótese de indução (
$$P(k)$$
): $1 + 2 + 3 + ... + k = \frac{k(k+1)}{2}$.
Tese: $P(k+1): 1 + 2 + 3 + ... + k + (k+1) = \frac{(k+1)(k+2)}{2}$.

$$1 + 2 + 3 + \dots + k + (k+1) = \frac{k(k+1)}{2} + (k+1) \text{(por H.l.)}$$

$$= \frac{k(k+1) + 2(k+1)}{2}$$

$$= \frac{(k+1)(k+2)}{2}.$$

Matemática Discreta

Princípio de indução completa

Princípio de indução completa

Variante do princípio de indução

Admita-se que a condição inicial $P(n_0)$ é verdadeira e que, para todo $k \ge n_0$, a implicação

$$((\forall n \in [n_0, k])P(n)) \Rightarrow P(k+1)$$

é verdadeira, onde $[n_0, k] = \{n \in \mathbb{N} : n_0 \le n \le k\}$. Então a proposição P(n) é verdadeira para todo o $n \ge n_0$.

Exemplo

Vamos mostrar que se $\alpha_0 = 12, \alpha_1 = 29$ e, para $n \ge 2$, a igualdade

$$\alpha_n = 5\alpha_{n-1} - 6\alpha_{n-2} \tag{1}$$

é verdadeira, então

$$\alpha_n = 5 \times 3^n + 7 \times 2^n, \tag{2}$$

para todo o inteiro $n \ge 0$.

Matemática Discreta

Princípio de indução completa

Solução

1. Para n = 0 e n = 1:

$$\alpha_0 = 12 = 5 \times 3^0 + 7 \times 2^0, \ \alpha_1 = 29 = 5 \times 3^1 + 7 \times 2^1$$

- **2.** hipótese de indução: $\alpha_n = 5 \times 3^n + 7 \times 2^n$, para todo o inteiro $n \in [0, k], k \ge 1$ inteiro.
- **3.** tese: $\alpha_{k+1} = 5 \times 3^{k+1} + 7 \times 2^{k+1}$

$$\begin{array}{ll} \alpha_{k+1} &= 5\alpha_k - 6\alpha_{k-1} & \text{(por (1))} \\ &= 5(5\times 3^k + 7\times 2^k) - 6(5\times 3^{k-1} + 7\times 2^{k-1}) & \text{(por (2))} \\ &= 5\times 3^{k+1} + 7\times 2^{k+1}. \end{array}$$