Fixed Point Arithmetic

FIXED POINT

<u>. i</u>	
	* INTRO
	- WHAT IS FIXED POINT
	- RELATION TO FLOATING POINT
	- WHY SEVERAL CHOICES
	* ARCHITOZTURAL CHOICIS
	- 2's COMMONT
	- 1's Comploment
	- SIGNED MAGNITUDUS
	- LONG INTEGERS
	- BCD
	- RESIDUE NUMBERS
	* MICROARCHITOCTURE MOCHANISMS
·	- ADDITION (THE CARRY PROBLET)
, <u>, , , , , , , , , , , , , , , , , , </u>	• LAC
	· KOGGE- STONE
	· THE POWER BALL (2x FREQUENCY)
	- MULTIPLICATION (THE ITERATION PROBLEM)
	· BOOTH'S ALGORITHM
a gyada diri salayana napangana galawa ayayan Makidi ni iya di sa	

INTERVAL = 1

FIXED POINT VS. FLOATING POINT

FIXED POINT	: BINARY POINT ALWAYS	IN THE SAME PLACE
00000.	. 00000	00.000
[[1]]		11. (11
Λ < X ≤ 31	05 X 5 31	05×53 \$

INTOCVAL = 1/32

INTERVAL = 1

FLOATING POINT: BINARY POINT MOVES FROM BINADE TO BINADE

IN ABOVE EXAMPLE, 2 BITS OF FRACTION. THEREFORE 3 SIGNIFICANT DIGITS.

NOTE: FLOATING POINT MOVES
NOTE: INTERVAL CHANGES

FIRMPL/5

Computer Arithmetic (Integers)

★ Why several choices for representation

* The Choices

- 2's complement
- 1's complement
- Signed magnitude
- Long integers Karatrusai Trus
- Decimal (BCD)
- Residue Arithmetic

* Why several choices?

Application space should drive architecture

- Compute intensive, low I/O
- Arbitrarily large precision
- Generally within a fixed set, with option to go to multiples of that size
- * The concept of "Long Integer" vs "Short Integer"

Fixed Pt./8

Three Most Common Schemes

- 2's complement
- 1's complement
- Signed magnitude

Example: (A 4-bit data path)

Representation	What is being Represented			
	2's Comp	1's Comp	<u>Sign-Mag</u>	
0000	0	0	0	
0001	1	1	· , 1	
0010	:2	2	2	
0011	3	: 3	3	
0100	4	4	· 4	
0101	5	5	5	
0110	6	6	6	
0111	7	7	7	
1000	- 8	- 7	0.	
1001	-7 ,	- 6	2	
1010	- 6	- 5	2	
1011	- 5 ¹	- 4	3	
1100	- 4	- 3	4	
	- 3	- 2	5	
1101		_ 1	6	
1110	- 2	- 1	7	
1111	-1	- 0	,	

- ★ Why 2's Complement?(Easy for Computer)
- ★ Why 1's Complement (Self-Delusion)
- ★ Why Signed-Magnitude? (Easy for Humans)

BCD Arilhatic

FixedP4/9

657 294 011001010101 01111 001010010100 951

0110 0101 0111 0110 0110 0110 001001001 0100

l

DECIMAL ARITHMETIC

(OR, VARIABLE LENGTH, PACKED BCD.)

* EACH DECIMAL DIGIT REPRESENTED BY

* SPECIAL ALU OR 3 CYCLES PER TERATION

* A VALUE REQUIRES TWO ELEMONTS (ADDR, LENGTH)

* EXAMPLE: ADD 2P3 To 598

WITH BINARY ALU IN ONE CYCLE: 0010 1000 0011
0101 1001 1000
1000 0001 1011

GARBAGE -> 8 1 B

WITH CONSTANT 666 AND THREE CYCLES

(1) 283 + 666 -> 8E9

(2) 8E9 + 598 -> E8*1*

(3) E81 - 600 -> 881

WHY SUBTRACT 600?

Residue Arikati (Exagle) Fixed Pt. /11 12345 00 137

Residue Arikmetic (Proof) Fixed P4/12 $\begin{pmatrix}
A \neq P, m + \langle a, \rangle \\
B \neq P, n + \langle a, \rangle
\end{pmatrix}$ $(p_{i}m + q_{i})(p_{i}n + s_{i})$ $p_{i}^{2}m_{i} + p_{i}m_{i}s_{i} + p_{i}q_{i}n + q_{i}s_{i}$ A+B= P,n+P,n+5,

Residue Arithmetic

* When?

Inputs, outputs are short integers

 Intermediate results may be very large

 Internally compute intensive, as opposed to having to do substantial I/O

★ How?

RESIDUE ARITHMUTIC (CONTINUED)

* IN GREATER DETAIL,

- PICK A SET OF MODULI PIDE2 ... PK SUCH THAT THEY ARE ALL RELATIVELY PRIME.
- WE CAN REPRESENT X AS X, X2 ... XK WHERE Xi = X mod Pi
- $|F| = 0 \le X \le TT f_i$, OR MONE REALISTICALLY $|F| = \frac{TT f_i}{2} \le X \le + \frac{TT f_i}{2},$

THEN THIS REPRESENTATION FOR X is

- FROM WHICH X+Y AND X*Y CAN

BE COMPUTED CONCURRENTLY BY K PROCESSING

ELEMONTS, EACH ONE COMPUTING

THE RESULT MODE:

* WHY DON'T WE DO IT ?

- TRANSFORMATIONS EXPENSIVE - COMPARISONS UNWIELDLY

fixed 11/15

RESIDUE ARITHMETIC (EXAMPLES.)

As IN CLASS: PI=9, P2=8, P3=9; TTP: =504 FOR THESE EXAMPLES, LET'S USE ONLY POSITIVES.

(2)
$$ADDITION: 19 531 + 24 306 - 137$$

(4) WHY IT WORKS:

$$A * B = (m p_i + a) * (n p_i + b)$$

$$= p_i (m p_i + an + bm) + ab$$

$$A * B) mod p_i = ab$$

Fited Pt./16

RESIDUE ARITHMETIC (CONTINUED)

INVERSE TRANSFORMATION

LET X BE REPRESENTED AS X, X2 X3. WHAT IS X?

$$X_1 X_2 X_3 = X_1 (100) + X_2 (010) + X_3 (001)$$

RESIDUE OF 1 FOR P=7. i.e. 288.

SIMILARLY, 010 IS A MULTIPLE OF 63. i.e. 441 SIMILARLY, 001 IS A MULTIPLE OF S6. i.e. 280.

THUS X CAN BE OBTAINED BY ADDING X, * 288 + X2 * 441 + X3 * 280, AND FINDING THE RESIDUE MOD 504.

A SIMPLER HARDWARE MECHANISM:

BOOTH'S ALGORITHM (A VARIATION)

 X 11	c	Control	ALU	Control	lc'	"
00	0	PASI	PASS	SHF 2	O	
ا م	0	PASS	ADD	SHF 2	0	
# 0	Ø	SHF I	ADD	SHF 1	0	٠.
ξ 1	0	PASS	SUB	SHF 2		
00	1	PASS	ADD	SHF 2	0	14
o I	١	SHE 1	ADD	SHF 1	o	
10	1	PASS	SUB	SHF 2		
	ı	PASS	PASS	SHF Z	- TEM	P

(3)