Dispositivi: Aspetti Avanzati

Microelettronica Digitale

Prof. Mario R. Casu

DET Department of Electronics and Telecommunicationswww.det.polito.it

Contenuti di questa lezione

- Comportamento non-ideale del transistor MOS
 - Effetti di alto campo
 - Degradazione della mobilità e saturazione di velocità
 - Modulazione della lunghezza di canale
 - Transistore come switch: Resistenza equivalente
 - Capacità di gate e delle diffusioni
 - Effetti relativi alla tensione di soglia
 - Body Effect, Drain-Induced Barrier Lowering e Short Channel Effect
 - Correnti di perdita
 - Subthreshold Leakage, Gate Leakage e Junction Leakage
- Variazioni di processo e ambientali
- Conclusioni

Contenuti di questa lezione

- Comportamente non-ideale del transistor MOS
 - Effetti di alto campo
 - Degradazione della mobilità e saturazione di velocità
 - Modulazione della lunghezza di canale
 - Transistore come switch: Resistenza equivalente
 - Capacità di gate e delle diffusioni
 - Effetti relativi alla tensione di soglia
 - Body Effect, Drain-Induced Barrier Lowering e Short Channel Effect
 - Correnti di perdita
 - Subthreshold Leakage, Gate Leakage e Junction Leakage
- Variazioni di processo e ambientali
- Conclusioni

Relazione I-V ideale

 \Box Con $\beta = \mu C_{ox} W/L e V_{dsat} = V_{gs}-V_{t}$

$$I_{ds} = \begin{cases} 0 & V_{gs} < V_{t} & \text{cutoff} \\ \beta \left(V_{gs} - V_{t} - \frac{V_{ds}}{2}\right) V_{ds} & V_{ds} < V_{dsat} & \text{linear} \\ \frac{\beta}{2} \left(V_{gs} - V_{t}\right)^{2} & V_{ds} > V_{dsat} & \text{saturation} \end{cases}$$

Relazione I-V simulata vs ideale

 \square 65 nm IBM process, $V_{DD} = 1.0 \text{ V}$

Correnti Ion e Ioff

- - Saturation

DET

Effetto dei campi elettrici

- \Box Campo verticale: $E_{vert} = V_{gs} / t_{ox}$
 - Attrae i portatori nel canale
 - A canale lungo: Q_{channel} ∝ E_{vert}

- \Box Campo laterale: $E_{lat} = V_{ds} / L$
 - Accelera i portatori da drain a source
 - A canale lungo: $v = \mu E_{lat}$

Degradazione delle mobilità

- Alti campi verticali E_{vert} riducono la mobilità
 - A causa delle collisioni con l'interfaccia dell'ossido

$$\mu_{\text{eff}-n} = \frac{540 \frac{\text{cm}^2}{\text{V} \cdot \text{s}}}{1 + \left(\frac{V_{gs} + V_t}{0.54 \frac{\text{V}}{\text{nm}} t_{\text{ox}}}\right)^{1.85}} \qquad \mu_{\text{eff}-p} = \frac{185 \frac{\text{cm}^2}{\text{V} \cdot \text{s}}}{1 + \frac{\left|V_{gs} + 1.5V_t\right|}{0.338 \frac{\text{V}}{\text{nm}} t_{\text{ox}}}}$$

Saturazione di velocità

- ☐ Se il campo laterale E_{lat} cresce troppo
 - I portatori raggiungono la velocità di saturazione, v_{sat}

Elettroni: 10⁷ cm/s

Lacune: 8 x 10⁶ cm/s

Causa: urti con gli atomi di Si

Saturazione di velocità

- ☐ Se il campo laterale E_{lat} cresce troppo
 - I portatori raggiungono la velocità di saturazione, $v_{\rm sat}$
 - Elettroni: 10⁷ cm/s
 - Lacune: 8 x 10⁶ cm/s
 - Causa: urti con gli atomi di Si
 - Modello più accurato:

$$v = \begin{cases} \frac{\mu_{\text{eff}} E}{1 + \frac{E}{E_c}} & E < E_c \\ v_{\text{sat}} & E \ge E_c \end{cases}$$

$$E_c = \frac{2v_{\text{sat}}}{\mu_{\text{eff}}}$$

Modello semplice lineare a tratti

- \square Velocità v proporzionale a E_{lat} finché non si raggiunge v_{sat}
- □ Saturazione quando $\mu E_{lat} = v_{sat} = \mu V_{dsat} / L$

$$V_{dsat} = v_{sat} L / \mu$$

Modello semplice lineare a tratti

- \square Velocità v proporzionale a E_{lat} finché non si raggiunge v_{sat}
- □ Saturazione quando $\mu E_{lat} = v_{sat} = \mu V_{dsat} / L$

$$-V_{dsat} = V_{sat} L / \mu$$

- Sostituendo nell'equazione in zona lineare/triodo al limite della saturazione
 - $I_{dsat} = \mu C_{ox} W/L(V_{gs} V_t V_{dsat}/2)V_{dsat}$

Modello semplice lineare a tratti

- \square Velocità v proporzionale a E_{lat} finché non si raggiunge v_{sat}
- □ Saturazione quando $\mu E_{lat} = v_{sat} = \mu V_{dsat} / L$

$$-V_{dsat} = V_{sat} L / \mu$$

- Sostituendo nell'equazione in zona lineare/triodo al limite della saturazione
 - $I_{dsat} = \mu C_{ox} W/L(V_{gs} V_t V_{dsat}/2)V_{dsat}$
- ☐ Infine, sostituendo l'espressione di V_{dsat} si ottiene
 - $I_{dsat} = C_{ox} W(V_{gs} V_t v_{sat}L/(2\mu))v_{sat}$
- I_{dsat} non più quadratico con V_{gs} ma lineare

Modello più accurato

Usando:
$$v = \begin{cases} \frac{\mu_{\text{eff}} E}{1 + \frac{E}{E_c}} & E < E_c \\ v_{\text{sat}} & E \ge E_c \end{cases}$$

$$E_c = \frac{2v_{\text{sat}}}{\mu_{\text{eff}}}$$

Si ottiene:
$$I_{ds} = \begin{cases} \frac{\mu_{\text{eff}}}{1 + \frac{V_{ds}}{V_c}} C_{\text{ox}} \frac{W}{L} (V_{GT} - V_{ds}/2) V_{ds} & V_{ds} < V_{\text{dsat}} \\ C_{\text{ox}} W (V_{GT} - V_{\text{dsat}}) v_{\text{sat}} & V_{ds} > V_{\text{dsat}} \end{cases}$$

DET

Modello α -Power

- □ Transistori reali sono solo parzialmente in saturazione di velocità
 - Approssimazione con " α -power law": $I_{ds} \propto V_{DD}^{\alpha}$
 - 1 < α < 2 determinato empiricamente (≈ 1.3 per 65 nm)

Modello α -Power

- □ Transistori reali sono solo parzialmente in saturazione di velocità
 - Approssimazione con " α -power law": $I_{ds} \propto V_{DD}^{\alpha}$
 - 1 < α < 2 determinate empiricamente (≈ 1.3 per 65 nm)

$$I_{ds} = \begin{cases} 0 & V_{gs} < V_t & \text{cutoff} \\ I_{dsat} \frac{V_{ds}}{V_{dsat}} & V_{ds} < V_{dsat} & \text{linear} \\ I_{dsat} & V_{ds} > V_{dsat} & \text{saturation} \end{cases}$$

$$I_{dsat} = P_c \frac{\beta}{2} \left(V_{gs} - V_t \right)^{\alpha}$$

$$V_{dsat} = P_v \left(V_{gs} - V_t \right)^{\alpha/2}$$

Vedi handouts, file sakurai_jssc90_alphapower.pdf

Contenuti di questa lezione

- Comportamente non-ideale del transistor MOS
 - √ Effetti di alto campo
 - ✓ Degradazione della mobilità e saturazione di velocità
 - Modulazione della lunghezza di canale
 - Transistore come switch: Resistenza equivalente
 - Capacità di gate e delle diffusioni
 - Effetti relativi alla tensione di soglia
 - Body Effect, Drain-Induced Barrier Lowering e Short Channel Effect
 - Correnti di perdita
 - Subthreshold Leakage, Gate Leakage e Junction Leakage
- Variazioni di processo e ambientali
- Conclusioni

Modulazione lunghezza di canale

- □ Regione di svuotamento delle giunzioni S-B e D-B polarizzate inversamente
 - Regione tra n and p priva di portatori liberi
 - Larghezza della regione svuotata L_d cresce tanto più quanto cresce la polarizzazione inversa
 - $L_{eff} = L L_{d}$

Modulazione lunghezza di canale

- Regione di svuotamento delle giunzioni S-B e D-B polarizzate inversamente
 - Regione tra n and p priva di portatori liberi
 - Larghezza della regione svuotata L_d cresce tanto più quanto cresce la polarizzazione inversa
 - $L_{eff} = L L_{d}$
- ☐ Minore L_{eff} implica più corrente
 - I_{ds} cresce con V_{ds}
 - Anche se in saturazione

Effetto su relazione I-V

$$I_{ds} = \frac{\beta}{2} \left(V_{gs} - V_t \right)^2 \left(1 + \lambda V_{ds} \right)$$

- \square λ = coefficiente di modulazione della lunghezza di canale
 - Non c'entra niente con il λ delle design rules...
 - Valore stimato empiricamente sulle caratteristiche I-V

Modello unificato per analisi manuale

$$I_{D} = 0 \text{ for } V_{GT} \le 0$$

$$I_{D} = k' \frac{W}{L} \left(V_{GT} V_{min} - \frac{V_{min}^{2}}{2} \right) (1 + \lambda V_{DS}) \text{ for } V_{GT} \ge 0$$
with $V_{min} = \min(V_{GT}, V_{DS}, V_{DSAT}),$

$$V_{GT} = V_{GS} - V_{T},$$
and $V_{T} = V_{T0} + \gamma(\sqrt{|-2\phi_{F} + V_{SB}|} - \sqrt{|-2\phi_{F}|})$

Contenuti di questa lezione

- Comportamente non-ideale del transistor MOS
 - √ Effetti di alto campo
 - ✓ Degradazione della mobilità e saturazione di velocità
 - ✓ Modulazione della lunghezza di canale
 - Transistore come switch: Resistenza equivalente
 - Capacità di gate e delle diffusioni
 - Effetti relativi alla tensione di soglia
 - Body Effect, Drain-Induced Barrier Lowering e Short Channel Effect
 - Correnti di perdita
 - Subthreshold Leakage, Gate Leakage e Junction Leakage
- Variazioni di processo e ambientali
- Conclusioni

Transistore ~ interruttore (1/4)

$$V_{GS} \ge V_T$$

Transistore ~ interruttore (1/4)

Transistore ~ interruttore (1/4)

$$R_{eq} = \frac{1}{2} \left(\frac{V_{DD}}{I_{DSAT}(1 + \lambda V_{DD})} + \frac{V_{DD}/2}{I_{DSAT}(1 + \lambda V_{DD}/2)} \right) \approx \frac{3}{4} \frac{V_{DD}}{I_{DSAT}} \left(1 - \frac{5}{6} \lambda V_{DD} \right)$$

Transistore ~ interruttore (2/4)

Transistore ~ interruttore (3/4)

- R_{on}=R_{eq} dipende inversamente da I_{ds}
- □ I_{ds} cresce con W e decresce con L
- Quasi) tutti i transistor hanno L minima, che garantisce I_{ds} massima e R_{on} minima
- W deve essere ottimizzata in modo globale (lo vedremo come "metodo del Logical Effort")

Transistore ~ interruttore (4/4)

Table 3.3 Equivalent resistance R_{eq} (*WIL*= 1) of NMOS and PMOS transistors in 0.25 μ m CMOS process (with $L = L_{min}$). For larger devices, divide R_{eq} by *WIL*.

V_{DD} (V)	1	1.5	2	2.5
NMOS (kΩ)	35	19	15	13
PMOS (kΩ)	115	55	38	31

Resistenze parassite

Contenuti di questa lezione

- Comportamente non-ideale del transistor MOS
 - √ Effetti di alto campo
 - ✓ Degradazione della mobilità e saturazione di velocità
 - ✓ Modulazione della lunghezza di canale
 - ✓ Transistore come switch: Resistenza equivalente
 - Capacità di gate e delle diffusioni
 - Effetti relativi alla tensione di soglia
 - Body Effect, Drain-Induced Barrier Lowering e Short Channel Effect
 - Correnti di perdita
 - Subthreshold Leakage, Gate Leakage e Junction Leakage
- Variazioni di processo e ambientali
- Conclusioni

Capacità nei MOS (1/2)

- Laddove ci sono due conduttori separati da un isolante c'è una capacità
- Il condensatore tra Gate e canale è fondamentale
 - Crea il canale di inversione necessario al funzionamento del MOS
- ☐ Esistono capacità Source-Body e Drain-Body
 - Poiché si tratta di diodi in polarizzazione inversa
 - Si definisce capacità di diffusione perché associata alle diffusioni di source/drain

Capacità nei MOS (2/2)

 \boldsymbol{G}

Capacità di Gate (1/2)

- Approssimando il canale come fosse collegato al Source
- \Box $C_{gs} = \varepsilon_{ox}WL/t_{ox} = C_{ox}WL = C_{permicron}W$
 - Di solito L è fisso al minimo della tecnologia
- C_{permicron} dell'ordine di 2 fF/μm

Capacità di Gate (2/2)

Operation Region	C_{gb}	C_{gs}	C_{gd}
Cutoff	$C_{ox}WL_{eff}$	0	0
Triode	0	$C_{ox}WL_{eff}/2$	$C_{ox}WL_{eff}/2$
Saturation	0	$(2/3)C_{ox}WL_{eff}$	0

- ☐ Regioni più importanti per il progetto digitale:
 - cutoff e saturazione
- Le capacità decrescono con L (minima, I_{ds} ↑ e R_{on} ↓)
- Non possiamo ridurre troppo W perché I_{ds} ↓ e R_{on} ↑

Capacità di Diffusione (1/2)

- \Box C_{sb} , C_{db}
- ☐ Indesirate, sono capacità parassite
- ☐ La capacità dipende da area e perimetro delle giunzioni s-b e d-b
 - Si devono ridurre quanto più possibile le dimensioni
 - Valore confrontabile con
 C_g per diffusioni contattate
 - ½ C_g se non contattate
 - Cambia con il processo tecnologico

Capacità di Diffusione (2/2)

$$\begin{split} C_{diff} &= C_{bottom} + C_{sw} = C_{j} \times AREA + C_{jsw} \times PERIMETER \\ &= C_{j}L_{S}W + C_{jsw}(2L_{S} + W) \end{split}$$

Contenuti di questa lezione

- Comportamente non-ideale del transistor MOS
 - √ Effetti di alto campo
 - ✓ Degradazione della mobilità e saturazione di velocità
 - ✓ Modulazione della lunghezza di canale
 - ✓ Transistore come switch: Resistenza equivalente
 - √ Capacità di gate e delle diffusioni
 - Effetti relativi alla tensione di soglia
 - Body Effect, Drain-Induced Barrier Lowering e Short Channel Effect
 - Correnti di perdita
 - Subthreshold Leakage, Gate Leakage e Junction Leakage
- Variazioni di processo e ambientali
- Conclusioni

Effetti su tensione di soglia

- □ V_t è la V_{qs} per cui si ha forte inversione
- Constante nei modelli ideali
- In realtà dipende (debolmente) da quasi tutto:
 - Potenziale di Body: Body Effect
 - Potenziale di Drain: Drain-Induced Barrier Lowering
 - Lunghezza di canale: Short Channel Effect

Body Effect (1/2)

- ☐ II Body è il quarto terminale del transistor MOS
- La tensione V_{sb} modifica la carica per l'inversione del canale
 - Aumentando V_s o diminuendo V_b si ha che V_t cresce

$$V_{t} = V_{t0} + \gamma \left(\sqrt{\phi_{s} + V_{sb}} - \sqrt{\phi_{s}} \right)$$

 \Box ϕ_s = potenziale di superficie alla soglia: per substrato p-type

$$\phi_s = 2v_T \ln \frac{N_A}{n_i}$$

- Dipende dal rapporto tra la concentrazione di drogante N_A e la concentrazione intrinseca n_i
- ightharpoonup = body effect coefficient

$$\gamma = \frac{t_{\text{ox}}}{\varepsilon_{\text{ox}}} \sqrt{2q\varepsilon_{\text{si}}N_A} = \frac{\sqrt{2q\varepsilon_{\text{si}}N_A}}{C_{\text{ox}}}$$

Body Effect (2/2)

 Si può linearizzare per piccole variazioni di V_{sb} intorno a 0V

$$V_t = V_{t0} + k_{\gamma} V_{sb}$$

$$k_{\gamma} = \frac{\gamma}{2\sqrt{\phi_s}} = \frac{\sqrt{\frac{q\varepsilon_{si}N_A}{v_T \ln \frac{N_A}{n_i}}}}{2C_{ox}}$$

DIBL

- Il campo elettrico nel drain ha effetto sul canale
- ☐ Più pronunciato nei transistori piccoli dove il drain è più vicino al canale
- Drain-Induced Barrier Lowering
 - La tensione di Drain ha quindi effetto su V_t

$$V_t' = V_t - \eta V_{ds}$$

Effetti di canale corto

- Nei transistori molto scalati, le regioni svuotate di source/drain si estendono nel canale
 - Hanno effetto sulla quantità di carica necessaria per l'inversione
 - Per cui, V_t diventa funzione della lunghezza
- □ Short Channel Effects (SCEs): V_t aumenta con L
 - In alcuni processi si verifica un fenomeno opposto (reverse short channel effect) in cui V_t decresce con L

SCEs

La soglia cambia con la lunghezza

Drain-induced barrier lowering per L piccola (canale corto)

Contenuti di questa lezione

- Comportamente non-ideale del transistor MOS
 - √ Effetti di alto campo
 - ✓ Degradazione della mobilità e saturazione di velocità
 - ✓ Modulazione della lunghezza di canale
 - ✓ Transistore come switch: Resistenza equivalente
 - √ Capacità di gate e delle diffusioni
 - ✓ Effetti relativi alla tensione di soglia
 - ✓ Body Effect, Drain-Induced Barrier Lowering e Short Channel Effect
 - Correnti di perdita
 - Subthreshold Leakage, Gate Leakage e Junction Leakage
- ☐ Variazioni di processo e ambientali
- Conclusioni

Leakage in subthreshold

Dipende esponenzialmente da V_{as}

$$I_{ds} = I_{ds0} e^{\frac{V_{gs} - V_{t0} + \eta V_{ds} - k_{\gamma} V_{sb}}{n v_{T}}} \left(1 - e^{\frac{-V_{ds}}{v_{T}}} \right)$$

- n dipende dal processo
 - typicamente 1.3-1.7
- Usando 10 come base ed evidenziando I_{off}:

$$I_{ds} = I_{\text{off}} 10^{\frac{V_{gs} + \eta \left(V_{ds} - V_{dd}\right) - k\gamma V_{sb}}{S}} \left(1 - e^{\frac{-V_{ds}}{v_t}}\right) \qquad S = \left\lceil \frac{d \left(\log_{10} I_{ds}\right)}{dV_{gs}}\right\rceil^{-1} = nv_T \ln 10$$

$$S = \left[\frac{d\left(\log_{10} I_{ds}\right)}{dV_{gs}}\right]^{-1} = nv_T \ln 10$$

- **Subthreshold Slope** S ≈ 100 mV/decade @ T ambiente
- Valore ideale 60 mV/decade se n=1

Leakage di gate

- Portatori passano per tunnel in ossidi di gate sottilissimi
- ☐ Dipendenza esponenziale da t_{ox} e V_{DD}

$$I_{\text{gate}} = W\!A\!\!\left(\frac{V_{D\!D}}{t_{\text{ox}}}\right)^{\!2} \mathrm{e}^{-B\frac{t_{\mathrm{OX}}}{V_{D\!D}}}$$

- A and B costanti tecnologiche
- Maggiore per e- che h+
 - Quindi nMOS più soggetti

□ Importante per
$$\leq$$
 65 nm ($t_{ox} \approx$ 10.5 Å)

Leakage delle giunzioni

- ☐ Tre contributi alla corrente in polarizzazione inversa
 - Corrente di saturazione inversa (Diode leakage)
 - Band-to-band tunneling (BTBT)
 - Gate-induced drain leakage (GIDL)

Diode leakage

Equazione del diodo

$$I_D = I_S \left(e^{\frac{V_D}{v_T}} - 1 \right)$$

- \square Se Vd è molto negativa, $I_D = -I_s$
- ☐ I_s dipende dal drogaggio
 - Ed è proporzionale a area e perimetro delle diffusioni
 - Tipicamente < 1 fA/μm² (trascurabile)

Band-to-Band Tunneling

- ☐ Tunneling attraverso giunzioni pn fortemente drogate
 - Specie sul lato drain-canale quando si utilizza halo doping per aumentare V_t e contrastare SCE
- ☐ La corrente di perdita è non trascurabile

$$I_{BTBT} = WX_{j} A \frac{E_{j}}{E_{g}^{0.5}} V_{dd} e^{-B \frac{E_{g}^{1.5}}{E_{j}}}$$

$$E_{j} = \sqrt{\frac{2qN_{halo}N_{sd}}{\varepsilon(N_{halo} + N_{sd})}} \left(V_{DD} + v_{T} \ln \frac{N_{halo}N_{sd}}{n_{i}^{2}}\right)$$

- X_i: profondità della giunzione drain-canale
- E_q: tensione di bandgap
- A, B: costanti tecnologiche

Gate-Induced Drain Leakage

- ☐ Si manifesta dove gate e drain si sovrappongono
 - Maggiore quando il drain è a V_{DD} e il gate a tensione negativa
 - Annulla i tentativi di ridurre il subthreshold leakage usando una tensione di gate negativa

Contenuti di questa lezione

- ☐ Comportamente non-ideale del transistor MOS
 - √ Effetti di alto campo
 - ✓ Degradazione della mobilità e saturazione di velocità
 - ✓ Modulazione della lunghezza di canale
 - ✓ Transistore come switch: Resistenza equivalente
 - √ Capacità di gate e delle diffusioni
 - ✓ Effetti relativi alla tensione di soglia
 - ✓ Body Effect, Drain-Induced Barrier Lowering e Short Channel Effect
 - ✓ Correnti di perdita
 - ✓ Subthreshold Leakage, Gate Leakage e Junction Leakage
- ☐ Variazioni di processo e ambientali
- Conclusioni

Variazioni di Processo

- I parametri dei transistori sono affetti da incertezza
 - Processo: L_{eff}, V_t, t_{ox} di nMOS e pMOS
 - Variano intorno a valori tipici (T)
- ☐ Fast (F)
 - L_{eff}: + corto
 - $-V_t$: + basso
 - t_{ox}: + sottile
- ☐ Slow (S): l'opposto
- Non tutti i parametri variano in modo indipendente per nMOS e pMOS

- Environmental variations: V_{DD} e T variano nel tempo e nello spazio
- ☐ Fast:
 - V_{DD}:____
 - T:

Corner	Voltage	Temperature
F		
Т	1.8	70 C
S		

- Environmental variations: V_{DD} e T variano nel tempo e nello spazio
- ☐ Fast:
 - V_{DD}: alta
 - T:

Corner	Voltage	Temperature
F		
Т	1.8	70 C
S		

- Environmental variations: V_{DD} e T variano nel tempo e nello spazio
- ☐ Fast:
 - V_{DD}: alta
 - T: bassa

Corner	Voltage	Temperature
F		
Т	1.8	70 C
S		

- Environmental variations: V_{DD} e T variano nel tempo e nello spazio
- ☐ Fast:
 - V_{DD}: alta
 - T: bassa

Corner	Voltage	Temperature
F	1.98	0 C
Т	1.8	70 C
S	1.62	125 C

Dipendenza dalla temperatura

- All'aumentare della temperatura
 - Si riduce la mobilità
 - Si riduce la V_t
- □I_{ON} decresce con T
- □ I_{OFF} aumenta con T

- ☐ I Process corners descrivono le variazioni worst case
 - Se un circuito funziona in tutti i corner,
 verosimilmente funzionerà per tutte le variazioni
- ☐ Si identificano con quattro lettere, ciascuna appartenente all'insieme (T, F, S), riferite a:
 - nMOS speed
 - pMOS speed
 - Voltage
 - Temperature

☐ I corner critici da simulare includono

Purpose	nMOS	pMOS	V _{DD}	Temp
Cycle time				
Power				
Subthreshold				
leakage				

☐ I corner critici da simulare includono

Purpose	nMOS	pMOS	V _{DD}	Temp
Cycle time	S	S	S	S
Power				
Subthreshold				
leakage				

I corner critici da simulare includono

Purpose	nMOS	pMOS	V _{DD}	Temp
Cycle time	S	S	S	S
Power	F	F	F	F
Subthreshold				
leakage				

☐ I corner critici da simulare includono

Purpose	nMOS	pMOS	V _{DD}	Temp
Cycle time	S	S	S	S
Power	F	F	F	F
Subthreshold	F	F	F	S
leakage				

Contenuti di questa lezione

- ☐ Comportamente non-ideale del transistor MOS
 - √ Effetti di alto campo
 - ✓ Degradazione della mobilità e saturazione di velocità
 - ✓ Modulazione della lunghezza di canale
 - ✓ Transistore come switch: Resistenza equivalente
 - √ Capacità di gate e delle diffusioni
 - ✓ Effetti relativi alla tensione di soglia
 - ✓ Body Effect, Drain-Induced Barrier Lowering e Short Channel Effect
 - ✓ Correnti di perdita
 - ✓ Subthreshold Leakage, Gate Leakage e Junction Leakage
- ✓ Variazioni di processo e ambientali
- Conclusioni

Conclusioni

- Transistori reali diversi dai transistori ideali
 - Tenere conto di riduzione della mobilità, modulazione lunghezza di canale, effetto body, capacità parassite
- □ I transistori attuali si comportano in modo assai diverso dai transistori di alcuni decenni fa
 - Tenere conto di alcuni effetti per simulare correttamente e progettare adeguatamente i circuiti
 - Effetti di canale corto, correnti di perdita
- Il progetto deve tenere conto di variazioni di processo ed ambientali per garantire il funzionamento in tutte le condizioni

