EERCISES FOR CHAPTER 4: CONSTRAINED PROBLEMS

Exercises for everyone: All exercises in parts **A** and **B**.

A. Non-assessed Exercises (corrected in class):

0.1.1; 0.1.3; 0.1.11; 0.2.5; 0.2.6; 0.2.9; 0.2.11 (a); 0.3.1; 0.3.3; 0.3.5; 0.4.3; 0.4.5.

B. Assessed Assignments (to be submitted):

0.1.2; 0.1.4; 0.1.6; 0.1.7; 0.1.10; 0.1.13; 0.1.15-0.1.18; 0.2.1; 0.2.2; 0.2.3; 0.2.7; 0.2.8; 0.2.10; 0.2.11 (b); 0.2.13; 0.2.15; 0.3.4; 0.3.6; 0.4.1; 0.4.2; 0.4.4.

C. Bonus Exercises: Remaining exercises.

0.1 FIRST AND SECOND-ORDER CONDITIONS (EQUALITY CONSTRAINTS)

Exercise 0.1.1. Consider the problem

minimize
$$f(x_1, x_2) = 2x_1^2 - x_2^2$$

subject to $h(x_1, x_2) = x_1^2 x_2 - x_2^3 = 0$.

Show that the point $\mathbf{x}^* = (0,0)$ is a global minimizer but \mathbf{x}^* is not regular.

Exercise 0.1.2. Solve problem

minimize
$$x^2 + 4y^2 + 16z^2$$

subject to $xyz = 1$.

ANS. Global minimizers

$$(2,1,1/2), (2,-1,-1/2), (-2,1,-1/2), (-2,-1,1/2).$$

¹This means all exercises from 0.1.15 to 0.1.18.

Exercise 0.1.3. Find the points of \mathbb{R}^3 lying on the surface defined by $x^4 + y^4 + z^4 = 1$ with smallest and largest distance from the origin.

(*Hint:* In problems involving the minimization of a norm or of a distance it is often simpler to minimize the square of the norm or distance.)

ANS. Points with shortest distance:

$$(\pm 1, 0, 0), (0, \pm 1, 0), (\pm 1, 0, 0), \text{ distance} = 1.$$

Points with farthest distance:

$$\left(\alpha \frac{1}{\sqrt[4]{3}}, \beta \frac{1}{\sqrt[4]{3}}, \gamma \frac{1}{\sqrt[4]{3}}\right), \text{ distance} = \sqrt{3}$$

where $\alpha, \beta, \gamma \in \{\pm 1\}$.

Exercise 0.1.4. Find the distance from a given point \mathbf{x}_0 in \mathbb{R}^n to a given hyperplane $\mathbf{a}^T \mathbf{x} = \alpha$.

ANS.
$$d = |\mathbf{a}^T \mathbf{x}_0 - \alpha|/|\mathbf{a}|$$
 at the point $\mathbf{x}^* = \mathbf{x}_0 - \frac{\mathbf{a}^T \mathbf{x}_0 - \alpha}{|\mathbf{a}|^2} \mathbf{a}$.

Exercise 0.1.5. Let $\mathbf{x}_1, \mathbf{x}_2 \in \mathbb{R}^n$ and let H be the hyperplane $H = \{\mathbf{x} \in \mathbb{R}^n : \mathbf{a}^T\mathbf{x} = \alpha\}$. Find $\mathbf{x} \in H$ such that $f(\mathbf{x}) = |\mathbf{x}_1 - \mathbf{x}|^2 + |\mathbf{x}_2 - \mathbf{x}|^2$ is minimum. (*Hint*: Apply Exercise 0.1.4 with $\mathbf{x}_0 = \frac{1}{2}(\mathbf{x}_1 + \mathbf{x}_2)$.)

Exercise 0.1.6. Let a_1, \ldots, a_n be positive numbers. Determine the minimum value that the expression

$$y = \sum_{i=1}^{n} a_i x_i^2$$

under the constraint

$$\sum_{i=1}^{n} x_i = c,$$

where c is another given constant.

ANS.
$$x_j = c/(aa_j)$$
, where $a = \sum_{i=1}^n \frac{1}{a_i}$.

Exercise 0.1.7. Let **A** be a matrix of full row rank. Find the point in the set $\mathbf{A}\mathbf{x} = \mathbf{b}$ which minimizes $f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T\mathbf{x}$.

Exercise 0.1.8. Let $\alpha_i \geq 1$, $i = 1, \dots n$, and $\sigma > 0$ be fixed numbers. Solve the problem

maximize
$$\prod_{i=1}^{n} x_{i}^{\alpha_{i}}$$
 subject to
$$\sum_{i=1}^{n} \alpha_{i} x_{i} = \sigma$$

$$x_{i} > 0.$$

From the solution of the problem derive the inequality for the arithmetic and the geometric means.

ANS.
$$x_1^* = \cdots = x_n^* = \sigma / \sum_{i=1}^n \alpha_i$$
.

Exercise 0.1.9. Solve the problem

maximize
$$\sum_{i=1}^n |x_i|^p$$
 subject to
$$\sum_{i=1}^n |x_i|^q = 1, \ x_i \in \mathbb{R},$$

where p > 1 and q > 1 are fixed numbers.

ANS. $\mathbf{x}^* = \pm \mathbf{e}_i$, where $\mathbf{e}_1, \dots, \mathbf{e}_n$ is the standard basis in \mathbb{R}^n if q < p; $\mathbf{x}^* = (\pm n^{-1/q}, \dots, \pm n^{-1/q})$ if q > p; the case p = q is trivial.

Exercise 0.1.10. Let $\mathbf{a} \in \mathbb{R}^n$. Solve the problem

maximize
$$\mathbf{a}^T \mathbf{x}$$

subject to $|\mathbf{x}| = 1, \ \mathbf{x} \in \mathbb{R}^n$.

Use the result to derive the Cauchy-Schwarz Inequality.

ANS. If
$$\mathbf{a} \neq \mathbf{0}$$
, then $x_i^* = a_i/|\mathbf{a}|, i = 1, \dots, n$.

Exercise 0.1.11. Let $\mathbf{a} \in \mathbb{R}^n$. Solve the problem

minimize
$$f(\mathbf{x}) = \mathbf{a}^T \mathbf{x}$$

subject to $\sum_{i=1}^n x_i = 0$
 $\sum_{i=1}^n x_i^2 = 1$.

Exercise 0.1.12. Find the maximum and minimum values of

$$f(x_1, x_2) = \int_{x_1}^{x_2} \frac{1}{1 + t^4} dt$$

over the region determined by $x_1^2x_2^2=1$.

Exercise 0.1.13. Determine all maxima and minima of

$$f(x_1, x_2, x_3) = \frac{1}{x_1^2 + x_2^2 + x_3^2}$$

subject to

$$h_1(x_1, x_2, x_3) = 1 - x_1^2 - 2x_2^2 - 3x_3^2 = 0$$

$$h_2(x_1, x_2, x_3) = x_1 + x_2 + x_3 = 0.$$

Exercise 0.1.14. Determine all maxima and minima of

$$f(x, y, z) = xz + y^2$$

on the sphere $x^2 + y^2 + z^2 = 1$.

Exercise 0.1.15. Show that the problem

minimize
$$f(x,y) = x^2 + y^2$$

subject to $(x-2)^3 - y^2 = 0$

admits no Lagrange multipliers and explain why. Solve this problem graphically.

Exercise 0.1.16. Let $f(\mathbf{x})$ and $g(\mathbf{x})$ be coercive functions with continuous first partial derivatives on \mathbb{R}^n . Suppose the equations $f(\mathbf{x}) = 1$ and $g(\mathbf{x}) = 1$ define nonintersecting surfaces in \mathbb{R}^n . Show that the vector $\mathbf{x}^* - \mathbf{y}^*$ of minimum norm satisfying $f(\mathbf{x}^*) = g(\mathbf{y}^*) = 1$ is perpendicular to both surfaces.

Exercise 0.1.17. Find the point on the ellipse

$$5x^2 - 6xy + 5y^2 = 4$$

for which the tangent line is at a maximum distance from the origin. State and solve its general problem in \mathbb{R}^n .

Exercise 0.1.18. Let **A** be a positive definite 3×3 -matrix. Let \mathbf{x}^* be the vector of largest norm on the ellipsoid

$$\mathbf{x}^T \mathbf{A} \mathbf{x} = 1.$$

Show that \mathbf{x}^* is an eigenvector of \mathbf{A} and relate $|\mathbf{x}^*|$ to the corresponding eigenvalue of \mathbf{A} . State and solve its general problem in \mathbb{R}^n .

Exercise 0.1.19. Show that if **A** is an $n \times n$ -symmetric matrix, then **A** has n mutually orthogonal eigenvectors of unit length.

(*Hint*: Prove by induction: if $\mathbf{x}_1, ..., \mathbf{x}_k$, $(1 \le k \le n-1)$ are k mutually orthogonal unit eigenvectors, show that the problem

maximize
$$f(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x}$$
subject to
$$h_1(\mathbf{x}) = |\mathbf{x}|^2 - 1 = 0,$$
$$h_2(\mathbf{x}) = \mathbf{x}_1^T \mathbf{x} = 0,$$
$$\vdots$$
$$h_{k+1}(\mathbf{x}) = \mathbf{x}_k^T \mathbf{x} = 0.$$

has a solution.)

0.2 INEQUALITY CONSTRAINTS

Exercise 0.2.1. Consider the constraint

$$g(\mathbf{x}) = \left(\frac{1}{2}x_1^2 + \frac{1}{2}x_2^2 - 1\right)^3 \ge 0.$$

- (a) Determine which feasible points are regular points and which are not.
- (b) Consider the constraint $\tilde{g}(\mathbf{x}) = \frac{1}{2}x_1^2 + \frac{1}{2}x_2^2 1 \ge 0$. Show that the constraint $\tilde{g}(\mathbf{x}) \ge 0$ is equivalent to the constraint $g(\mathbf{x}) \ge 0$. Show also that every feasible point for $\tilde{g}(\mathbf{x}) \ge 0$ is also a regular point of this constraint. Thus regularity is not a result of the geometry of the feasible region, but a result of its algebraic representation.

Exercise 0.2.2. Show that the point $\mathbf{x}^* = \mathbf{0} \in \mathbb{R}^2$ is a global minimum point for the problem

Show that the KKT conditions have no solution. Explain!

Exercise 0.2.3. Determine the solutions to the KKT conditions for problem

minimize
$$-2x_1 - x_2$$

subject to $x_1 + 2x_2 - 6 \le 0$
 $x_1^2 - 2x_2 = 0$.

Which of these solutions represent minimum points? Illustrate the problem graphically.

Exercise 0.2.4. Solve the problem

minimize
$$f(\mathbf{x}) = x_1 + x_2$$

subject to $\log x_1 + 4 \log x_2 \ge 1$.

(**Note:** $\log t$ is another notation for $\ln t$.)

Exercise 0.2.5. Consider the quadratic problem

minimize
$$q(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T\mathbf{Q}\mathbf{x} + \mathbf{c}^T\mathbf{x}$$

subject to $\mathbf{A}\mathbf{x} \leq \mathbf{b}$. (0.2.1)

Show that if $\mathbf{d}^T \mathbf{Q} \mathbf{d} \geq 0$ for all directions \mathbf{d} satisfying the condition that $\mathbf{a}_i^T \mathbf{d} \leq 0$ for all $i \in I(\mathbf{x}^*)$, where \mathbf{a}_i $(1 \leq i \leq n)$ are columns of \mathbf{A} , then \mathbf{x}^* is a local minimizer of problem (0.2.1).

Exercise 0.2.6. Consider the problem

minimize
$$f(\mathbf{x}) = \mathbf{a}^T \mathbf{x}$$

subject to $\mathbf{x}^T \mathbf{Q} \mathbf{x} \le 1$,

where **Q** is a positive-definite symmetric matrix.

- (i) Solve the problem. What is the optimal objective value?
- (ii) What is the solution when the objective function is to be maximized?

Exercise 0.2.7. Let \mathbf{Q} be an $n \times n$ symmetric matrix.

(i) Find all stationary points of the problem

maximize
$$f(\mathbf{x}) = \mathbf{x}^T \mathbf{Q} \mathbf{x}$$

subject to $\mathbf{x}^T \mathbf{x} = 1$.

Determine which of the stationary points are global maximizers.

(ii) How do your results in part (i) change if the constraint is replaced by $\mathbf{x}^T \mathbf{A} \mathbf{x} \le 1$, where \mathbf{A} is symmetric and positive definite?

Exercise 0.2.8. Use the optimality conditions to find all local solutions to the problem

minimize
$$f(\mathbf{x}) = x_1 + x_2$$

subject to $(x_1 - 1)^2 + x_2^2 \le 2$
 $(x_1 + 1)^2 + x_2^2 \ge 2$.

Exercise 0.2.9. We have a rope of length a to tie a box from top to bottom along the two perpendicular directions. What is the maximum volume that such a box can contain?

The mathematical problem is

$$\begin{array}{ll} \text{maximize} & V(x_1,x_2,x_3) = x_1 x_2 x_3 \\ \text{subject to} & 2x_1 + 2x_2 + 4x_3 \leq a, \\ & x_1,x_2,x_3 \geq 0, \end{array}$$

where x_1, x_2, x_3 are the sides of the boxed and x_3 is the height.

ANS.
$$x_1 = x_2 = a/6$$
, $x_3 = a/12$.

Exercise 0.2.10. Let $\mathbf{a} \in \mathbb{R}^n$. Solve the problem

$$\begin{split} & \text{minimize} & & |\mathbf{x}|^4 + |\mathbf{x} - \mathbf{a}|^2 \\ & \text{subject to} & & |\mathbf{x}|^2 \leq 1. \end{split}$$

Exercise 0.2.11. Let $\alpha_1, \ldots, \alpha_k$ be positive numbers and $\mathbf{x}_1, \ldots, \mathbf{x}_k \in \mathbb{R}^n$ be given points.

(a) Find a point x lying on the unit sphere in \mathbb{R}^n for which $\sum_{i=1}^k \alpha_i |\mathbf{x} - \mathbf{x}_i|^2$ is smallest.

(b) Find a point x belonging to the unit ball in \mathbb{R}^n for which $\sum_{i=1}^k \alpha_i |\mathbf{x} - \mathbf{x}_i|^2$ is smallest.

ANS.

(a)
$$\begin{cases} \mathbf{x}^* = \bar{\mathbf{x}}/|\bar{\mathbf{x}}| & \text{if } \bar{\mathbf{x}} \neq \mathbf{0} \\ |\mathbf{x}^*| = 1 & \text{is arbitrary if } \bar{\mathbf{x}} = \mathbf{0}, \end{cases}$$
 (b)
$$\mathbf{x}^* = \begin{cases} \bar{\mathbf{x}} & \text{if } |\bar{\mathbf{x}}| \leq 1 \\ \bar{\mathbf{x}}/|\bar{\mathbf{x}}| & \text{if } |\bar{\mathbf{x}}| > 1, \end{cases}$$
 where
$$\bar{\mathbf{x}} = \left(\sum_{i=1}^k \alpha_i \mathbf{x}_i\right) / \sum_{i=1}^k \alpha_i.$$

Exercise 0.2.12. Consider the problem

minimize
$$\max_{1 \le i \le m} f_i(\mathbf{x})$$

This problem is called a **minimax** problem.

- (i) Formulate the minimax problem as a constrained optimization problem.
- (ii) Use the optimality conditions for the constrained optimization problem to derive the optimality conditions for the minimax problem.

Exercise 0.2.13. Apply the Karush-Kuhn-Tucker Theorem to locate all solutions of the following problem

minimize
$$f(x,y) = e^{-(x+y)}$$

subject to $e^x + e^y \le 20$,
 $x > 0$.

Exercise 0.2.14. Apply the Karush-Kuhn-Tucker Theorem to locate all solutions of the following problem

minimize
$$f(x,y) = x^2 + y^2 - 4x - 4y$$

subject to $x^2 - y \le 0$,
 $x + y \le 2$.

Exercise 0.2.15. Let **A** be an $m \times n$ matrix and let $\mathbf{b} \in \mathbb{R}^m$ be a fixed vector. Suppose the convex program

minimize
$$|\mathbf{x}|^2$$

subject to $\mathbf{A}\mathbf{x} \leq \mathbf{b}$

has solution \mathbf{x}^* and there is $\bar{\mathbf{x}}$ with $\mathbf{A}\bar{\mathbf{x}} < \mathbf{b}$. Use the Karush-Kuhn-Tucker conditions to show that there is a vector \mathbf{y} in \mathbb{R}^m such that $\mathbf{x}^* = \mathbf{A}^T \mathbf{y}$.

0.3 PENALTY AND BARRIER METHODS

Exercise 0.3.1. Prove the following statement: If $g(\mathbf{x})$ has continuous first partial derivatives on \mathbb{R}^n , the same is true of $h(\mathbf{x}) = [g^+(\mathbf{x})]^2$. Moreover,

$$\frac{\partial h}{\partial x_i}(\mathbf{x}) = 2g^+(\mathbf{x}) \frac{\partial g}{\partial x_i}(\mathbf{x}), \quad i = 1, 2, \dots, n,$$
(0.3.1)

for all $\mathbf{x} \in \mathbb{R}^n$.

Exercise 0.3.2. Solve the following problems by the penalty method:

(a) minimize
$$(x_1 - 1)^2 + x_2^2$$
, subject to $x_2 \ge x_1 + 1$. (b) minimize $x_1 + x_2$, subject to $x_2 = x_1^2$.

Exercise 0.3.3. Consider the problem

minimize
$$\frac{1}{2}x_1^2 + \frac{1}{2}x_2^2$$
,
subject to $x_1 + x_2 \ge 1$.

Suppose that the logarithmic barrier method is used to solve this problem.

Exercise 0.3.4. Consider the one-dimensional problem

minimize
$$\frac{-1}{x^2 + 1}$$
 subject to $x \ge 1$.

Show that the logarithmic barrier function is unbounded below in the feasible region. Show also that the logarithmic barrier function has a local minimizer that approaches the solution $x^* = 1$ as $\mu \to 0$.

Exercise 0.3.5. Consider the problem

minimize
$$f(x_1,x_2) = \frac{1}{3}(x_1+1)^3 + x_2,$$
 subject to
$$g_1(x_1,x_2) = -x_1 + 1 \le 0$$

$$g_2(x_1,x_2) = -x_2 \le 0.$$

(i) Solve the problem using the penalty function

$$P(\mathbf{x}) = \left(g_1^+(\mathbf{x})\right)^2 + \left(g_2^+(\mathbf{x})\right)^2.$$

(ii) Solve the problem using the barrier function

$$B(\mathbf{x}) = -\frac{1}{g_1(\mathbf{x})} - \frac{1}{g_2(\mathbf{x})}.$$

ANS. (a)
$$x_1^*(c) = -1 - c + c\sqrt{1 + 4/c}$$
, $x_2^*(c) = -1/2c$, $\mathbf{x}^* = (1, 0)$, $f_{\min} = 8/3$. (b) $x_1^*(\mu) = \sqrt{1 + \sqrt{\mu}}$, $x_2^*(\mu) = \sqrt{\mu}$.

Exercise 0.3.6. Use the Penalty Method with the term $(g^+(x,y))^2$ to solve the following problem

minimize
$$f(x,y) = x^2 + y^2$$

subject to $g(x,y) = 1 - x - y \le 0$.

0.4 DUALITY AND DUAL METHODS

Exercise 0.4.1. Consider the problem

minimize
$$f(x_1, x_2) = \frac{1}{2}ax_1^2 + \frac{1}{2}x_2^2 + x_1$$

subject to $x_1 \ge 0$.

Determine the solution to this problem for the cases a=1 and a=-1. For each of the two cases, formulate the dual and determine whether its local solution gives the Lagrange multipliers at the optimal primal solution.

Exercise 0.4.2. Given the quadratic problem

minimize
$$(x_1 - 2)^2 + x_2^2$$

subject to $2x_1 + x_2 - 2 \le 0$.

- (a) Determine the optimal solution of the primal problem using the dual problem.
- (b) Solve the primal problem geometrically.

Exercise 0.4.3. Given the problem

minimize
$$-3x_1 - x_2$$

subject to $x_1^2 + 2x_2^2 - 2 \le 0$.

- (a) Solve the dual problem,
- (b) Use part (a) to determine the solution to the primal problem.
- (c) Solve the primal problem geometrically.

Exercise 0.4.4. Consider the problem

minimize
$$f(\mathbf{x}) = \sum_{i=1}^{n} x_i \log(x_i/c_i)$$

subject to $\mathbf{A}\mathbf{x} = \mathbf{b}$,

where the constants c_i , i = 1, ..., n, are positive, **A** is a matrix of full row rank, and $\Omega = \{\mathbf{x} : \mathbf{x} > \mathbf{0}\}$. What is the dual to this problem? Determine expressions for the first and second derivatives of the dual function.

Exercise 0.4.5. Suppose that \mathbf{Q} is an $n \times n$ -positive definite matrix and that $\mathbf{a} \in \mathbb{R}^n$, $\mathbf{a} \neq \mathbf{0}$, $c \in \mathbb{R}$. Consider the quadratic program

minimize
$$f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T\mathbf{Q}\mathbf{x}$$

subject to $\mathbf{a}^T\mathbf{x} \le c \quad (c < 0).$

Solve the dual problem, then determine the solution to the primal problem.