Page Problem#1.)

Vn E Zt: £ 2i-1=n2 Claim: É 2i-1=n2. Proof: by Induction

Base: n=1 2.1-1=12 is True Induction: show that it holds for 1+1. $\sum_{i=1}^{n+1} 2i - 1 = (n+1)^{2}$ $n^{2} + 2(n+1) - 1 = n^{2} + 2n + 1 = n^{2} + 2n + 1$ Problem #2. $\left| \sum_{i=1}^{n} \frac{1}{i(i+1)} \right|$ Claim: $\frac{1}{1.2} + \frac{1}{2.3} + \dots + \frac{1}{n(n+1)} = \sum_{i=1}^{n} \frac{1}{l(i+1)} = \frac{n}{n+1}$ Proof: by Induction

Base: n=1 $\frac{1}{i(1+1)} = \frac{n}{n+1}$ $\frac{1}{2} = \frac{1}{2}$ Base is True Page #2 Induction: We assume that P(1) is true for n=1. Show that P(n+1) is also true. $\sum_{i=1}^{n+1} \frac{1}{i(i+1)} = \left(\sum_{i=1}^{n} \frac{1}{i(i+1)}\right) + n+1 = \frac{n}{n+1} + \frac{1}{(n+1)(n+2)} = \frac{n(n+2)+1}{(n+1)(n+2)}$ i=1 $\frac{n}{n+1} + \frac{1}{(n+1)(n+2)} - \frac{n(n+2)+1}{(n+1)(n+2)} = \frac{n+1}{(n+1)(n+2)} - \frac{n+1}{n+2}$ Problem#3) $\forall n \in \mathbb{Z} : n^2 \text{ is even} \Rightarrow n \text{ is even}$ daim: n'is even => n is even proof: For purposes of contradiction, assume that n is $add \Rightarrow n^2$ is odd Observation: 1) Assume n is add 2) Then n = 2*k+1 for some integer k This completes the proof by contradiction. Problem #4) Step #4 is incorrect. We can't divide both sides by (a-b) because division only makes sense when the number we are dividing by is non-zero. In this proof, a-b=0, because a=b. Thers, Step #4 is incorrect.

Page #3 Hoblem #5) The functions f(n) and g(n) are asymtotically non negative, there exists no such that f(n) > 0 and g(n) > 0 +n≥no. Thus, we have that for +n≥no, $f(n) + g(n) \ge f(n) \ge 0$ and $f(n) + g(n) \ge g(n) \ge 0$. Adding both inequalities we get f(n) = $f(n) + g(n) \ge \max(f(n), g(n))$ for all $n \ge n_0$.

This proves that $\max(f(n), g(n)) \le C(f(n) + g(n))$ $\forall n \ge n_0 \text{ with } C = 1 = \max(f(n), g(n)) = O(f(n) + g(n))$ Similarly, max $(f(n), g(n)) \ge f(n)$ and $\max(f(n), g(n)) \ge g(n) + n \ge n_0$ Adding these two inequalities: $2 \max(f(n), g(n)) \ge (g(n) + f(n))$ tn≥no Problem #6) $\Theta(\log_{8_1} n) = \Theta(\log_{8_2} n)$ for any $\delta_1, \delta_2 > 1$. Whenever the base of the logarithm is a constant, it doesn't matter what base we use in asymptotic notation. Because There is a mathematical formula that says logan=logen for all positive numbers a, b, and n. Therefore, if a and b are constants, then logan and logen differ only by a factor of logea, and that's a constant factor, which we can ignore in asymptotic notation.

age #4

Problem #7

 $f(n) = n(-1)^n$, $f(n) \in \Theta(n)$

This bound doesn't hold because the definition of O(g(n)) requires that every member $f(n) \in O(g(n))$ be assymptotically nonnegative, that is, that f(n) be nonnegative whenever n is sufficiently large. Which doesn't hold for $f(n) = n(-1)^n$ if n is odd.