A Necessary and Sufficient Condition for Consensus Over Random Networks

Jeremy Krebs - Guillaume Soulié

Université Paris Saclay

15 janvier 2018

Le problème du consensus :

"Le consensus demande à ce qu'un certain nombre de processus s'accordent sur une valeur unique."

Le problème du consensus :

"Le consensus demande à ce qu'un certain nombre de processus s'accordent sur une valeur unique."

Le problème du consensus :

"Le consensus demande à ce qu'un certain nombre de processus s'accordent sur une valeur unique."

- Introduction
 - Etat de l'art
 - Objectif
- 2 Préambule mathémathique
 - Définitions
 - Ergodicité
- Résultats
 - Condition nécéssaire et suffisante
 - Valeur du consensus

Le problème de consensus suscite beaucoup d'intérêt :

- Coordination d'agents autonomes
- Calculs de moyennes d'un groupe de capteurs
- Problèmes de rendez-vous

Cependant ces problèmes considéraient un système déterministe.

- Temps discret : $t_0, t_1, ...$
- Systèmes stochastiques

- Temps discret : $t_0, t_1, ...$
- Systèmes stochastiques

Problème de la forme : $x_{k+1} = W_k.x_k$

 W_k peut être vu comme la matrice de poids d'arêtes d'un graphe aléatoire.

Il y a déjà eu plusieurs résultats sur le sujet :

• x(k) converge presque sûrement si les arêtes de $G(W_k)$ sont choisies de manière indépendante et avec la même probabilité,

Il y a déjà eu plusieurs résultats sur le sujet :

- x(k) converge presque sûrement si les arêtes de $G(W_k)$ sont choisies de manière indépendante et avec la même probabilité,
- La convergence en probabilité a été prouvée dans le cas d'un modèle avec des arêtes orientées et non-nécessairement indépendantes, avec une hypothèse un peu forte sur les matrices.

Objectif:

- Trouver une condition nécessaire et suffisante pour un consensus presque sûr
- S'intéresser à la valeur de convergence du consensus

$$x(k) = W_k(\omega)x(k-1)$$
 où W_k est une matrice de poids.

- Les W_k sont des matrices stochastiques indépendantes et identiquement distribuées (i.i.d.),
- j a accès à i si (i, j) est une arête,
- i et j communiquent si (i,j) et (j,i) sont des arêtes,
- La relation de communication est une relation d'équivalence qui permet de regrouper les arêtes par classes d'équivalence.

Consensus en probabilité :

$$\forall \ \epsilon > 0 \ \forall \ i,j=1,..,n \ P(|x_i(k)-x_j(k)|>\epsilon) \to 0$$
 lorsque $k \to 0$

Consensus en probabilité :

$$\forall \ \epsilon > 0 \ \forall \ i,j = 1,..,n \ P(|x_i(k) - x_j(k)| > \epsilon) \to 0$$
 lorsque $k \to 0$

Consensus presque sûr (plus forte) :

$$\forall i, j = 1, ..., n |x_i(k) - x_i(k)| \rightarrow 0$$
 presque sûrement.

$$x_k = W_k ... W_1 x_0$$

Intérêt d'étudier le produit infini de matrices W_i et son ergodicité.

Notons $U^{(k,p)} = W_{p+k}...W_{p+1}$ le produit à gauche des matrices de la séquence.

Définition - Ergodicité faible :

La séquence infinie $W_1, W_2, ...$ est faiblement ergodique si et seulement si

$$\forall i,j,s=1,..,n \;\; ext{et} \; \forall \; p>0 \; (U^{k,p}_{i,s}-U^{k,p}_{j,s}) o 0 \; ext{quand} \; k o \infty$$

Définition - Ergodicité forte :

La séquence infinie $W_1, W_2, ...$ est faiblement ergodique si et seulement si

$$\forall~i,s=1,..,n~U_{i,s}^{k,p} \rightarrow d_{s}^{p}$$
 quand $k \rightarrow \infty$ où d_{s}^{p} est une constante ne dépendant pas de i

Ergodicité - consensus

$$x(k) = W_k \cdot x(k-1)$$

$$\begin{pmatrix} x_0^k \\ x_1^k \\ \dots \\ x_n^k \end{pmatrix} = \begin{pmatrix} w_{00}^k & \dots & w_{0n}^k \\ w_{10}^k & \dots & w_{1n}^k \\ \dots & \dots & \dots \\ w_{n0}^k & \dots & w_{nn}^k \end{pmatrix} \cdot \begin{pmatrix} x_0^{k-1} \\ x_1^{k-1} \\ \dots \\ x_n^{k-1} \end{pmatrix}$$

Coefficient de d'ergodicité Une fonction $\tau(.)$ définie sur l'ensemble des matrices stochastiques de taille $n \times n$ est un coefficient d'ergodicité si $0 \le \tau(.) \le 1$.

Coefficient de d'ergodicité Une fonction $\tau(.)$ définie sur l'ensemble des matrices stochastiques de taille $n \times n$ est un coefficient d'ergodicité si $0 \le \tau(.) \le 1$.

Un coefficient d'ergodicité est dît propre si :

$$\tau(W) = 0 \iff W = \mathbf{1}d^T$$

Lien ergodicité faible - coefficient d'ergodicité L'ergodicité faible est équivalente à :

$$\lim_{k\to\inf}\tau(U^{(k,p)})=0\quad\forall p\in\mathbb{N}$$

Théorème 1 : L'ergodicité faible du produit à gauche des matrices stochastiques est équivalente à son ergodicité forte.

Théorème 1 : L'ergodicité faible du produit à gauche des matrices stochastiques est équivalente à son ergodicité forte.

Théorème 2 : Si $\tau(.)$ est un coefficient d'ergodicité propre et que pour les $\forall m \geq 1$ matrices stochastiques W_k , k = 1, ..., m on a $\tau(W_m...W_2W_1) \leq \prod_{k=1}^m \tau(W_k)$,

Théorème 1 : L'ergodicité faible du produit à gauche des matrices stochastiques est équivalente à son ergodicité forte.

Théorème 2 : Si $\tau(.)$ est un coefficient d'ergodicité propre et que pour les $\forall m \geq 1$ matrices stochastiques $W_k, \ k=1,..,m$ on a $\tau(W_m..W_2W_1) \leq \prod_{k=1}^m \tau(W_k)$,

Alors la séquence W_k est faiblement ergodique si et seulement si il existe une séquence d'entiers croissants $k_r, k = 1, 2, ...$ telle que :

$$\sum_{k=1}^{\infty} (1 - \tau(W_{k_{r+1}}..W_{k_r+1}) = \infty$$

L'ergodicité faible de $W_1, W_2, ...$ est un événement trivial.

L'ergodicité faible de $W_1, W_2, ...$ est un événement trivial.

La démonstration repose sur la loi du zéro un de Kolmorov.

L'ergodicité faible de $W_1, W_2, ...$ est un événement trivial.

La démonstration repose sur la loi du zéro un de Kolmorov.

Théorème 3

 $\{W_k\}_{k=0}^{\inf}=W_1,W_2,...$ i.i.d. matrices stochastiques, avec des coefficients diagonaux positifs.

L'ergodicité faible de $W_1, W_2, ...$ est un événement trivial.

La démonstration repose sur la loi du zéro un de Kolmorov.

Théorème 3

 $\{W_k\}_{k=0}^{\inf}=W_1,W_2,...$ i.i.d. matrices stochastiques, avec des coefficients diagonaux positifs. Il y a équivalence entre :

• $\{W_k\}_{k=0}^{\inf}$ est faiblement ergodique.

L'ergodicité faible de $W_1, W_2, ...$ est un événement trivial.

La démonstration repose sur la loi du zéro un de Kolmorov.

Théorème 3

 $\{W_k\}_{k=0}^{\inf}=W_1,W_2,...$ i.i.d. matrices stochastiques, avec des coefficients diagonaux positifs. Il y a équivalence entre :

- $\{W_k\}_{k=0}^{\inf}$ est faiblement ergodique.
- Le système $x(k) = (\mathbb{E}W_k)x(k-1)$ atteint un consensus.

L'ergodicité faible de $W_1, W_2, ...$ est un événement trivial.

La démonstration repose sur la loi du zéro un de Kolmorov.

Théorème 3

 $\{W_k\}_{k=0}^{\inf}=W_1,W_2,...$ i.i.d. matrices stochastiques, avec des coefficients diagonaux positifs. Il y a équivalence entre :

- $\{W_k\}_{k=0}^{\inf}$ est faiblement ergodique.
- Le système $x(k) = (\mathbb{E}W_k)x(k-1)$ atteint un consensus.
- $|\lambda_2(\mathbb{E}W_k)| < 1$

L'ergodicité faible de $W_1, W_2, ...$ est un événement trivial.

La démonstration repose sur la loi du zéro un de Kolmorov.

Théorème 3

 $\{W_k\}_{k=0}^{\inf} = W_1, W_2, \dots$ i.i.d. matrices stochastiques, avec des coefficients diagonaux positifs. Il y a équivalence entre :

- $\{W_k\}_{k=0}^{\inf}$ est faiblement ergodique.
- Le système $x(k) = (\mathbb{E}W_k)x(k-1)$ atteint un consensus.
- $|\lambda_2(\mathbb{E}W_k)| < 1$

Sa démonstration peut être faite au choix :

- En utilisant des résultats généraux de la théorie ergodique des chaines de Markov.
- En utilisant le théorème 2.

Lemme 2 - (D'après [19])

- $\alpha_1, ..., \alpha_s$: classes de communication associées à W.
- $\alpha_r[W]$ est la sous matrice de W associée à α_r
- alors α_r est initiale \iff spectre $(\alpha_r[W]) = \{1\}$.

Corrollaire 4 - (Résultat principal de l'article)

Consensus presque sûrement atteint $\iff |\lambda_2(\mathbb{E}W_k)| < 1$

=> vient généraliser certains papiers.

Valeur du consensus

On a vu $|\lambda_2(\mathbb{E}W_k)| < 1$ implique $x \to c\mathbf{1}$ (c dépend de x(0) et des matrices W_k .)

Valeur du consensus

On a vu $|\lambda_2(\mathbb{E}W_k)| < 1$ implique $x \to c\mathbf{1}$ (c dépend de x(0) et des matrices W_k .)

Théorème 5

For
$$y \in \mathbb{R}$$
, posons $S(y) = \{W \in S_n | y^T W = y^T \}$ si $|\lambda_2(\mathbb{E}W_k)| < 1$ et $\mu(S_n - s(y)) = 0$, alors

$$\lim_{k\to\inf} x(k) = (y^Tx(0))\mathbf{1}$$
 a.s.

Valeur du consensus

On a vu $|\lambda_2(\mathbb{E}W_k)| < 1$ implique $x \to c\mathbf{1}$ (c dépend de x(0) et des matrices W_k .)

Théorème 5

For
$$y \in \mathbb{R}$$
, posons $S(y) = \{W \in S_n | y^T W = y^T \}$ si $|\lambda_2(\mathbb{E}W_k)| < 1$ et $\mu(S_n - s(y)) = 0$, alors

$$\lim_{k\to\inf} x(k) = (y^Tx(0))\mathbf{1}$$
 a.s.

Les matrices W_k partagent le même vecteur propre de gauche (associé à la valeur propre 1).

Ce que le papier apporte :

- Le problème du consensus peut être réduit à un problème de faible ergodicité.
- Il est caractérisé par la valeur de la deuxième valeur propre de $\mathbb{E}W_k$.
- Sous certaines conditions des W_k , on peut déterminer de manière certaine la valeur de consensus.

Ce que le papier apporte :

- Le problème du consensus peut être réduit à un problème de faible ergodicité.
- Il est caractérisé par la valeur de la deuxième valeur propre de $\mathbb{E}W_k$.
- Sous certaines conditions des W_k , on peut déterminer de manière certaine la valeur de consensus.

Pour aller plus loin:

- Quelles sont les performances d'un tel consensus?
- Quelles réactions face aux perturbations? (ajout d'un 'bruit de communication' stochastique, ...)

Introduction Préambule mathémathique Résultats Conclusion

Questions?