UNIVERSIDADE FEDERAL DE OURO PRETO – UFOP CIÊNCIA DA COMPUTAÇÃO

TEORIA DOS GRAFOS

LISTA 1

Marcus Vinícius Souza Fernandes

19.1.4046

Ouro Preto

2021

1) Grafo 01:

A) Fluxo viável:

Fluxo viável	
Arco	Flux
AICO	0
(vértice S, vértice 1)	0
(vértice S, vértice 2)	0
(vértice S, vértice 3)	2
(vértice 1, vértice 2)	4
(vértice 1, vértice 4)	2
(vértice 1, vértice 5)	0
(vértice 2, vértice 4)	7
(vértice 3, vértice 1)	2
(vértice 3, vértice 7)	2
(vértice 4, vértice 3)	2
(vértice 4, vértice 6)	7
(vértice 5, vértice 2)	3
(vértice 5, vértice T)	0
(vértice 6, vértice 5)	3
(vértice 6, vértice 7)	2
(vértice 6, vértice T)	2
(vértice 7, vértice 1)	2
(vértice 7, vértice T)	0
(vértice T, vértice S)	2

Fluxo máximo)
Arco	Fluxo
(vértice S, vértice 1)	10
(vértice S, vértice 2)	5
(vértice S, vértice 3)	10
(vértice 1, vértice 2)	4
(vértice 1, vértice 4)	2
(vértice 1, vértice 5)	10
(vértice 2, vértice 4)	12
(vértice 3, vértice 1)	2
(vértice 3, vértice 7)	10
(vértice 4, vértice 3)	2
(vértice 4, vértice 6)	12
(vértice 5, vértice 2)	3
(vértice 5, vértice T)	9
(vértice 6, vértice 5)	2
(vértice 6, vértice 7)	3
(vértice 6, vértice T)	7
(vértice 7, vértice 1)	4
(vértice 7, vértice T)	7

	Capacidade de corte mínimo
Χ	= {S, 2}
X'	= {1, 3, 4, 5, 6, 7, T}

2) Grafo 02:

A) Fluxo viável:

Fluxo viável	
Arco	Flux
AICO	0
(vértice S, vértice 1)	0
(vértice S, vértice 2)	0
(vértice 1, vértice 4)	0
(vértice 1, vértice 3)	0
(vértice 2, vértice 4)	0
(vértice 2, vértice 3)	0
(vértice 3, vértice T)	0
(vértice 4, vértice 3)	0
(vértice 4, vértice T)	0
(vértice T, vértice S)	0

Fluxo máximo	
Arco	Flux
AICO	0
(vértice S, vértice 1)	3
(vértice S, vértice 2)	4
(vértice 1, vértice 4)	3
(vértice 1, vértice 3)	0
(vértice 2, vértice 4)	3
(vértice 2, vértice 3)	1
(vértice 3, vértice T)	3
(vértice 4, vértice 3)	2
(vértice 4, vértice T)	4

Ca	pacidade de corte mínimo
Х	= {S, 2}
X'	= {1, 3, 4, T}

3) Grafo 03:

A) Fluxo viável:

Fluxo viável	
Arco	Flux
AICO	0
(vértice S, vértice 1)	4
(vértice 1, vértice 2)	0
(vértice 1, vértice 3)	3
(vértice 1, vértice 4)	1
(vértice 2, vértice 4)	2
(vértice 3, vértice 2)	2
(vértice 3, vértice 4)	1
(vértice 4, vértice T)	4
(vértice T, vértice S)	4

Fluxo máximo	
Arco	Flux
AICO	0
(vértice S, vértice 1)	9
(vértice 1, vértice 2)	2
(vértice 1, vértice 3)	3
(vértice 1, vértice 4)	4
(vértice 2, vértice 4)	4
(vértice 3, vértice 2)	2
(vértice 3, vértice 4)	1
(vértice 4, vértice T)	9

Ca	apacidade de corte mínimo
X	= {S}
Χ'	= {1, 2, 3, 4, T}

4) Grafo 04

A) Fluxo viável:

Fluxo viável	
Arco	Flux
AICO	0
(vértice S, vértice 3)	4
(vértice 3, vértice 2)	3
(vértice 3, vértice 4)	1
(vértice 3, vértice 6)	1
(vértice 2, vértice 6)	1
(vértice 2, vértice 5)	2
(vértice 4, vértice 7)	1
(vértice 5, vértice 6)	2
(vértice 6, vértice 7)	0
(vértice 6, vértice T)	4
(vértice T, vértice S)	4

Fluxo máximo	
Arco	Flux
AICO	0
(vértice S, vértice 3)	9
(vértice 3, vértice 2)	5
(vértice 3, vértice 4)	1
(vértice 3, vértice 6)	4
(vértice 2, vértice 6)	1
(vértice 2, vértice 5)	4
(vértice 4, vértice 7)	1
(vértice 5, vértice 6)	4
(vértice 6, vértice 7)	0
(vértice 6, vértice T)	9

C	Capacidade de corte mínimo
Х	= {S}
X	= {2, 3, 4, 5, 6, 7, T}

6)

- 7) O problema descrito pode ser modelado com a utilização do conceito de conjuntos determinantes. Neste contexto, um vértice equivale a um posto de vacinação e esses postos podem ser de coordenação ou distribuição, já as arestas representam a conexão entre estes. Os postos de coordenação fazem referência ao conjunto dominante e os de distribuição aos dominados. A quantidade mínima de postos de coordenação necessários é exatamente a cardinalidade do menor conjunto dominante do grafo evidenciado.
- 8) O problema descrito pode ser modelado com a utilização do conceito de coloração de vértices. Neste contexto, um vértice equivale ao exame de uma disciplina, já as arestas representam a conexão entre estas, significando que possuem algo em comum, no caso, alunos que farão exame. As disciplinas que possuem alunos em comum não podem agendar o exame para a mesma data. Apesar de não especificado mas buscando atender o menor número de dias possível (equivalente a buscar o menor número de subconjuntos independentes) podemos obter este valor analisando o número mínimo de cores necessárias para colorir o grafo dado, que seria seu número cromático.
- 9) O problema descrito pode ser modelado com a utilização do conceito de cliques. Neste contexto, um vértice equivale a uma criança da creche, já as arestas representam a conexão entre elas, neste caso, o horário comum que elas estão presentes na creche. Como gostaríamos de obter o número mínimo de escaninhos que atenda a demanda da creche em todos os horários, podemos fazer o uso do conceito citado e obter este valor através da cardinalidade da clique máxima, uma vez que ela iria satisfazer o número de alunos presentes no intervalo mais lotado e consequentemente os intervalos de menor lotação também.
- 10) O problema descrito pode ser modelado com a utilização do conceito de coloração de vértices. Neste contexto, um vértice equivale a uma lâmina, já as arestas significam a distinção de temperatura de refrigeração das lâminas, quer dizer que não podem ser armazenadas em um mesmo refrigerador. Como gostaríamos de obter o número mínimo de refrigeradores, com o uso do conceito citado, um conjunto de lâminas cujo necessitam de uma temperatura específica comum seriam preenchidas com a mesma coloração. Desta

11)

12) Grafos isomorfos são aqueles que possuem o mesmo número de vértices, grau de vértices, componentes e arestas, podendo haver divergência apenas na questão visual (disposição do grafo), como o número cromático está diretamente relacionado com as adjacências dos vértices, podemos concluir que caso G e H sejam isomorfos, $\chi(G) = \chi(H)$ é verdadeiro.

13)

Questoo 14)

A única ótrore geradora é o próprio grofo dado.

15)

Questão 15)

16)

Questão 16)

18)

19) $L = \{Shopping, Listening to music, Driving to work, Inspiration, Coffe, Making music, Coding, Driving home, Gamming, Supper, Sleeping\}.$

20) $L = \{7, 5, 11, 2, 3, 8, 9, 10\}.$