EE-508: Hardware Foundations for Machine Learning Modeling Accelerators

University of Southern California

Ming Hsieh Department of Electrical and Computer Engineering

Instructors:
Arash Saifhashemi

Row Stationary (Eyeriss)

- Keep Filter row stationary
- Stream the IFMAP into PE

- Keep Filter row stationary
- Stream the IFMAP into PE

- Keep Filter row stationary
- Stream the IFMAP into PE

- Keep Filter row stationary
- Stream the IFMAP into PE

Filter rows are reused across PEs horizontally

Fmap rows are reused across PEs diagonally

Partial sums accumulate across PEs vertically

- Convolutional reuse (Only CONV layers):
 - A small amount of unique input data can be shared across many operations.
 - Each **filter weight** is reused E² times in the same ifmap plane.
 - Each **ifmap pixel**, i.e., **activation**, is usually reused R² times in the same filter plane.

- Convolutional reuse (Only CONV layers):
 - A small amount of unique input data can be shared across many operations.
 - Each **filter weight** is reused E² times in the same ifmap plane.
 - Each **ifmap pixel**, i.e., **activation**, is usually reused R² times in the same filter plane.
- Filter reuse (both CONV and FC layers):
 - Each filter weight is further reused across the batch of N ifmaps in both CONV and FC layers.

- Convolutional reuse (Only CONV layers):
 - A small amount of unique input data can be shared across many operations.
 - Each **filter weight** is reused E² times in the same ifmap plane.
 - Each **ifmap pixel**, i.e., **activation**, is usually reused R² times in the same filter plane.
- Filter reuse (both CONV and FC layers):
 - Each filter weight is further reused across the batch of N ifmaps in both CONV and FC layers.
- ifmap reuse (both CONV and FC layers):
 - Each **ifmap** pixel is further reused across **M** filters (to generate the **M** output channels).

- Weight Stationary (WS)
 - Each filter weight remains stationary in the RF to maximize **convolutional** and **filter** reuse.
 - Once a weight is fetched from DRAM to the RF, the PE runs all NE² operations that use the same filter weight.

$$O_{n,m,p,q} = \sum_{c,r,s} I_{n,c,Up+r,Uq+s} \times F_{m,c,r,s}$$

- Output Stationary (OS)
 - The accumulation of each ofmap pixel stays stationary in a PE.
 - Multiple/Single ofmap channels (MOC) vs (SOC)
 - Multiple/Single ofmap-plane pixels (MOP) vs. (SOP)
 - There are three practical variants.

Figure 3. Comparison of the three different OS dataflow variants: (a) SOC-MOP, (b) MOC-MOP, and (c) MOC-SOP. The red blocks depict the ofmap region that the OS dataflow variants process at once.

$$O_{n,m,p,q} = \sum_{c,r,s} I_{n,c,Up+r,Uq+s} \times F_{m,c,r,s}$$

- No Local Reuse (NLR)
 - Does not exploit data reuse at the RF level
 - Uses inter-PE communication for ifmap reuse and psum accumulation.

$$O_{n,m,p,q} = \sum_{c,r,s} I_{n,c,Up+r,Uq+s} \times F_{m,c,r,s}$$

Row Stationary (RS)

- Evaluation Setup
 - Same total area
 - 256 PEs
 - AlexNet
 - Batch size = 16

Comparison of Reuse in Different Dataflows (CONV Layers)

RS optimizes for the best **overall** energy efficiency

Comparison of Reuse in Different Dataflows (CONV Layers)

RS uses 1.4× – 2.5× lower energy than other dataflows

Comparison of Reuse in Different Dataflows (FC Layers)

RS uses at least 1.3× lower energy than other dataflows

Row Stationary Higher than 2d Convolution

Multiple fmaps

Row Stationary Higher than 2d Convolution

Multiple filters

Row Stationary Higher than 2d Convolution

Multiple channels

Row Stationary Example: Eyeriss

- An energy-efficient deep convolutional neural network (CNN) accelerator.
- Row-Stationary (RS) Dataflow: Designed to minimize data movement, optimizing energy efficiency.
- Spatial Architecture: Parallel processing with an array of PEs.
- On-chip Global Buffer: Reduces energy-consuming off-chip memory access.
- **Dynamic-Configurability**: Each PE can adapt to different layer parameters in a CNN.

Row Stationary Example: Eyeriss

- The third to fifth layers of AlexNet, each 2-D convolution only uses a 13x3 PE array
- The second layer of AlexNet, it requires a 27x5 PE array to complete the 2-D convolution

