"大雾实验工具"的开发

《程序设计进阶与实践》大作业报告

姓名(组长)	孙旭磊	学号	PB21000270
姓名(组员1)	张学涵	学号	PB21000079
姓名(组员2)	秦沁	学号	PB21111630
姓名(组员3)	赵弈	学号	PB21000033
姓名(组员4)	鲍政廷	学号	PB21111741
项目名称	大雾实验工具——绘制图像&计算不确定度&生成计算公式		

1 项目需求分析

2 项目功能设计

2.1 总体功能说明

大物实验在评课社区、知乎等网站上一直饱受争议,有多名同学指出实验报告撰写耗时长、专业作图软件难以使用、Word 中打数学公式麻烦等问题。鉴于此,曾经有学长在开发过一款大物实验数据处理工具,这是非常好的创意。但是,这款软件入门成本太高,故了解它的人很少。

本小组开发的大雾实验工具是一款网页应用, 无需安装任何软件,更不需要有编程基础,没有 任何学习成本。本工具的目标用户是中国科学技 术大学大一本科生,着力于解决其撰写实验报告 时最耗时的三件事情,即"绘制图像""计算不确 定度""在电脑上书写公式"。

当然,一些高级软件也能出色地完成上述的本工具的功能,如专业绘图软件 Origin,专业计算软件 Matlab 等。但我们的项目不是去取代这些强大的软件,而是将它们本地化。这些软件功能繁多,故学习成本相对较高,但我们的软件为每一个大物实验都写了专门的处理工具,封装到只需要用户上传数据表格的程度。相比动辄几个 GB的专业软件来说,我们的工具更加友好,更加便捷,更加有针对性——更加有效。

大雾实验工具是本组成员 2022 春季学期程序设计进阶与实践的大作业项目。本工具通过腾讯云服务器搭建于网页平台,支持任何设备自由访问。传入实验数据后,本工具立刻完成绘制图像、计算不确定度、生成计算公式等一系列操作,并将最终结果整理成一份 Word 文档,下载后即可直接使用。本实验工具支持一级大物的 25 个实验,如图 1 所示,这大大提升了学生们撰写实验报告的效率。由于本工具只是将传入的实验数据进行自动分析,故其不会造成抄袭、造假等学术不端问题。

2.2 具体功能点说明

使用本工具时,用户只需输入他们做实验时测量到的原始数据,而无需任何额外的计算处理,用户所要做的只有按照规定的格式上传 Excel 文档。本工具支持 xlsx, csv 等各种格式的数据表格。具体而言,每个实验都会有一张示例数据表供用户参考,如图 2 的界面所示。用户也可以直接下载示例数据,并直接在它的基础上进行修改。因此,本工具没有任何学习成本,是一款即点即用、免安装的简单轻应用。

大雾实验工具

绘制图像&计算不确定度&生成计算公式

链接:物理实验教学中心物理实验预约选课 > 去B站观看宣传片 <

加入QQ交流群: 658804871 实验讲义与指导 不确定度概观及常用表格 标准差和不确定度计算 最小二乘法线性回归 力热 重力加速度的测量 表面张力 落球法测定液体的粘度 质量和密度的测量 拉伸法测量钢丝杨氏模量 切变模量 固体比热 匀加速运动与碰撞 声速的测量 磁力摆 半导体温度计 示波器的使用 整流滤波电路及应用 直流电源特性 硅光电池特性研究 RGB配色 数字体温计 分光计的调节与使用 干涉法测微小量 透镜参数测量 显微镜的使用 衍射实验 光电效应 密立根油滴实验

图 1: 大雾实验工具网站主界面

生活中的物理实验

另外,本工具贴心地提供了不确定度表格与 通用的计算工具,并且每个实验都附有可在线浏 览的实验指导。

绘制图像

本工具根据输入的数据以及实验原理,自动生成美观的实验图像,支持平滑去噪、数据拟合、双y图等多种图像生成需求,如图3所示。

计算不确定度与生成计算公式

本工具在生成的 Word 文档中渲染了各种公式,如图 4 所示。用户可以直观看到不确定度每一步的计算过程,并在自己的报告中直接使用这些算式与结果。

在 Word 文档中除了有已经渲染好的公式外,我们还提供了它们的 LATEX 源码。这极大方便了用 LATEX, Markdown 等排版实验报告的用户,他们无需手动敲入每一个算式了。

2.3 功能点设计细节

本工具后端使用 Python 编写,使用的包与模块如表 1 所示。前端由 HTML 编写,并使用了Flask Web 应用框架。

2.3.1 图像绘制

图像由 Matplotlib 绘制。我们的规范如下:

- 面向绘图对象作图: fig, ax = matplotlib
 .pyplot.subplots()
- 设置副刻度为主刻度的一半,主刻度为默认: ax.xaxis.set_minor_locator(matplotlib .ticker.AutoMinorLocator(2))

图 2: "拉伸法测钢丝杨氏模量"的工具界面

图 3: 平滑连接的光电效应伏安特性曲线

图 4: 不确定度计算的详细过程

表 1: 本工具使用的全部 Python 包与模块

Python 包或模块	用途		
chardet	检测用户上传的数据表格的编码		
collections	通过 namedtuple 使代码更清晰		
Flask	Web 应用框架		
latex2mathml	LATEX 代码转换为 MathML 代码		
lxml	MathML 代码转 Office MathML		
math, numpy	不确定度数字运算		
Matplotlib	绘制物理图像		
os, random, shutil	后台文件操作与管理		
pandas	数据表格处理		
python-docx	生成 Word 文档		
SciPy	数据拟合		
SymPy	不确定度符号运算		
time, threading	定时删除生成的 Word 文档		
traceback	打印运行错误以便调试		

- 刻度朝内: matplotlib.rcParams["xtick direction"] = matplotlib.rcParams
 ["ytick.direction"] = "in"
- 若一张图有且只有一组点线,则点使用红色(color="r"),线使用蓝色(color="b"), 且线覆盖在点的上面;若一张图有多组点线, 则同一组点线的颜色应当相同,并依次使 用蓝(b)、红(r)、绿(g)、紫(m)、橙(orange)、 青(c)。
- 点的类型使用实心圆("o"),若一张图有多组点线,则依次使用实心圆(o)、正方形(s)、上三角(^)、菱形(D)、下三角(v)、星号(*)。
- 线条粗细使用 linewidth=1.5, 点的大小使用 markersize=3, 可视数据量、数据组数适当调 整, 但应保持统一性。

- 对象的 twinx() 方法。
- 只有一组点线的图,一般不显示图例。
- 图像字体: SourceHanSansSC-Regular.otf
- 轴标签和标题中的物理量名称与单位应使用 LAT_EX.

数据处理 2.3.2

无论使绘制图像时的线性拟合, 还是计算不 确定度的大小,都绕不开数据处理。我们利用 pandas, SciPy, SymPy 等包自主编写了 calc.py 应用程序接口,它提供以下函数:

科学计数法输出 numlatex: (num: float,

prec: int = 5) -> str

返回一个数的科学计数法形式的 IATEX 代码

num: 要转成科学计数法的数字

prec: 有效数字位数 (默认值: 5)

不确定度计算 analyse: (data: pandas.DataFrame, delta_b1: float = 0., delta_b2: float = 0., symbol: str = "x", unit: str = "",

confidence_C: float = 3., confidence_P:

float = 0.95) -> AnalyseData

计算一组数据的平均值、标准差、不确定度

data: 要处理的一组实验数据

delta_b1: 仪器最大允差 Δ_{\emptyset} (默认值: 0)

delta_b2: 估读最大允差 Δ_{ft} (默认值: 0)

symbol: 数据的物理符号(默认值: "x")

unit: 数据的单位(默认值: "")

confidence_C: 置信系数 C (默认值: 3)

confidence_P: 置信概率 P (默认值: 0.95)

AnalyseData: 数据计算结果的集合

• 绘制双 y 轴图使用 matplotlib.axes.Axes 最小二乘法线性回归 analyse_lsm: (data_X:

pandas.DataFrame, data_Y: pandas

.DataFrame, symbol_X: str = "X",

symbol_Y: str = "Y", unit_m: str = "",

unit_b: str = "") -> AnalyseLsmData

将一组数据用最小二乘法拟合成一条直线

data_X: x轴数据(自变量数据)

data_Y: y轴数据(因变量数据)

symbol_X: 自变量物理符号(默认值: "X")

symbol_Y: 因变量物理符号 (默认值: "Y")

unit_m: 斜率的单位(默认值: "")

unit b: 截距的单位 (默认值: "")

AnalyseLsmData: 直线拟合结果的集合

不确定度合成 analyse_com: (exp: str, varr: tuple = (), constt: tuple = (), unit: str = "", confidence_P: float = 0.95) -> AnalyseComData

根据表达式计算物理量的值和不确定度

exp: 物理量计算表达式 (字符串), 为一个物 理量=一些物理量(或常量)之积与之商的形 式,如 E=4*pi**2*1/T**2 代表 $E = \frac{4\pi^2 l}{T^2}$

varr: 物理量(元组),元组的每个元素均为 元组,该子元组的第1个元素为物理量名,第 2个元素为物理量值,第3个元素为其不确定 度(默认值:())

constt: 常量(元组),元组的每个元素均为 元组,该子元组的第1个元素为常量名,第2 个元素为常量值(默认值:())

unit: 要计算的物理量的单位(默认值: "") confidence_P: 置信概率 P (默认值: 0.95) AnalyseComData: 不确定度合成结果的集合

2.3.3 文档生成

Word 文档由 python-docx 生成。我们的规范如下:

- 字体使用微软雅黑: document.styles ['Normal'].font.name = "微软雅黑"
- 文档第一行是实验名称:
 document.add_paragraph(name())
 随后注明:
 - "【Latex 代码在下面,请向下翻阅】"
- 内容跨度较大的段落之间应当用一个空行。
- 文档中插入的数据一般保留 4 或 5 位有效数字: "%.5g"%x, 线性拟合的相关系数 r 保留 8 位有效数字。
- 若某张图片正好在第2页开头,而第1页尾部有很多空白区域,为避免误解,应在第1页的最后一个段落之后注明"【本文档不只有一页,请向下翻阅】"。
- 插入表格使用 docx.document.Document 对 象的 add table() 方法。

鉴于不确定度的计算方法是固定的、算法化的,我们利用 1xml 等包自主编写了 insert.py 应用程序接口,这样只需调用几个函数,就可以在Word 文档中完成数学算式的渲染与添加。具体可见公式插入 API 的说明文档,这里不再赘述。

3 测试、运行情况

3.1 测试情况

本程序的每一个实验模块由组员完成后,组 目中我们并没² 长会进行代码审核与测试,如果发现问题则要求 方面的小障碍:

继续修改,直到所有问题被解决后该实验模块才会发布。我们还建立了用户 QQ 群,并即时反馈用户提出的任何问题。

另一方面,各种 API 的编写与模块化编程也 让我们的程序在编写过程中更不容易出错,同时 规范、统一的码风也让调试变得轻松。

3.2 运行情况

本项目从 2022 年 4 月 27 日上线以来,有超过 9000 次的浏览量,总访客数达到了 2100。

最后一次大物实验于 2022 年 6 月 3 日结束。 在大物实验结束之前,平均每天约有 50 名同学访问了我们网站,如图 5 所示。考虑到每天只有不到 400 名大一学生做大物实验,本程序的使用率相对较高。用户的平均访问时长为 6 分 36 秒,这说明我们的大雾实验工具非常简明易用。

图 5: 4 月 27 日至 6 月 6 日的统计数据

4 设计、开发过程中的难点

鉴于我组成员都有一定的编程基础,整个项目中我们并没有遇到较大的困难,主要只有两个方面的小障碍.

第一,对实现的接口不够熟悉。由于我们编写的 API 参数较多,故未参与编写 API 的组员在一开始时需要花一点时间熟悉其调用方式。不过在后期大家也逐渐熟练地掌握了所有 API 的使用方式,而不用再去翻阅帮助文档。

第二,对物理实验本身不够了解。有的物理 实验原理复杂、参考资料有限,且实验课程标准 在不断变化,这会使程序生成的报告存在瑕疵, 影响本项目的声誉。

5 小组分工

孙旭磊:组织策划、前端与前后端衔接、数据处理 API 编写、公式插入 API 编写、数据处理示例程序编写、帮助文档编写、代码审查、海报和宣传片制作、实验报告修订,5个实验处理模块的开发;张学涵:实验报告编写、数据处理 API修订,5个实验处理模块的开发;秦沁:宣传推广、实验报告修订,4个实验处理模块的开发;赵奕:技术与安全支持、实验报告修订,4个实验处理模块的开发;鲍政廷:海报制作、实验报告修订,6个实验处理模块的开发。具体的实验模块分工可参考本项目源码中的 README.md。

6 总结与收获

本次实践不仅能帮助其他同学更轻松地完成 大物实验报告,我们自己也受益良多。

分工与合作 我们分工明确,每个人的任务都有截止时间,这使我们小组的进度有序推进。以往的经历中,代码与相关工作往往都是独立完成,代码规范与项目进程完全由自己安排。但是在这种大工程中,相关代码需要符合规

范,需要与队友交接,工作进度也要与队友 进度相符。在这种分工体系下,每个人都要 完成自己的任务,并顾及与他人的交互。

代码规范性 本次大作业中,我们建立了统一的码风,并制定了自主编写的 API 的使用说明。这样做一方面可以使得产品最终具有一致性——不同人写的代码能够基本一致;另一方面也使得最终的检验与调整能够更加方便——规范的代码提高了代码的可读性,降低了代码的审核成本。

软件开发技巧 在本次实践中,我们使用 git 进行 协作,代码注释清楚,帮助文档详细。这大大 提高了我们的开发效率。

接下来,我们计划将本项目开源,并增添诸如"网页上输入数据""手写实验数据 OCR"等功能。更进一步地,我们会考虑支持二级大物实验,以及将本产品推广至其他院校。

7 参考资料

Matplotlib, pandas, SciPy, SymPy, python-docx 等包的使用方法参考了官方文档,遇到的各种问题则是查阅 Stack Overflow 等网站上的讨论。在 Word 中渲染 LATEX 公式的方法,参考了python-docx 开源仓库里一份 Github Issues 中提出的解决方案。

另附

- 大雾实验工具网址: https://dawu.feixu. site/
- 宣传片地址 (发布于 B 站): https://www.bilibili.com/video/BV193411G7aP
- 项目源代码(文件目录见其中的 README.md)