10 Теорема Фубини

Пусть $E \subset \mathbb{R}^{k+m}$, E — измеримое множество, элементами которого являются точки (x,y), где $x \in \mathbb{R}^k$, $y \in \mathbb{R}^m$. Положим

$$E(x) = \{ y \in \mathbb{R}^m \mid (x, y) \in E \}.$$

Теорема 10.1. Пусть E – множество конечной меры. Тогда:

- 1) Для n.e. $x \in \mathbb{R}^k$ множество E(x) измеримо $u \mid E(x) \mid < \infty$.
- 2) Функция |E(x)| измерима и суммируема на \mathbb{R}^k , причем

$$\int_{\mathbb{R}^k} |E(x)| \, dx = |E| \tag{10.1}$$

Доказательство. 1) Пусть $E = \Delta = [a, b)$. В этом случае утверждение теоремы не вызывает сомнений, так как $\Delta = \Delta' \times \Delta''$, причем $|\Delta| = |\Delta'| \times |\Delta''|$.

- 2). Пусть $E = \bigcup_{\ell=1}^{n} \Delta_{\ell}$, где Δ_{ℓ} попарно непересекающиеся промежутки. Тогда в силу п. 1) $E(x) = \bigcup_{\ell=1}^{n} \Delta_{\ell}(x)$ имеет конечную меру, функция $|E(x)| = \sum_{\ell=1}^{n} |\Delta_{\ell}(x)|$ измерима и справедлива формула $(\ref{eq:constraint})$.
- 3). Пусть E произвольное открытое множество конечной меры. Представим E в виде объединения счетного набора непересекающихся промежутков $E=\bigcup_{\ell=1}^{\infty} \Delta_{\ell}$.

Положим $E_n = \bigcup_{\ell=1}^n \Delta_\ell$. В силу п. 2) $E_n(x) = \bigcup_{\ell=1}^n \Delta_\ell(x)$ имеет конечную меру, $|E_n(x)|$ измерима и

$$\int_{\mathbb{R}^k} |E_n(x)| \, dx = |E_n| \tag{10.2}$$

В то же время $E(x) = \lim_{n \to \infty} E_n(x)$, $E_n(x)$ — неубывающая последовательность множеств конечной меры. Поэтому $|E(x)| = \lim_{n \to \infty} |E_n(x)|$. Кроме того, последовательность $\{E_n\}$, не убывая, сходится к E.

Поэтому, переходя в (10.2) к пределу при $n \to \infty$ и используя теорему Б. Леви, приходим к $(\ref{eq:condition})$.

4). Пусть теперь E является множеством типа G_{δ} , т.е. $E = \bigcap_{\ell=1}^{\infty} G_{\ell}$, где G_{ℓ} – открытые множества. Тогда $E_n = \bigcap_{\ell=1}^{n} G_{\ell}$ – открытое множество. E_n , монотонно не возрастая, сходится к E, $E_n(x)$, монотонно не возрастая, сходится к E(x). В силу п.3 множества $E_n(x)$ и функции $|E_n(x)|$ измеримы и верно равенство (10.2). Переходя в (10.2) к пределу, снова приходим к (??).

5). Пусть E — множество нулевой меры. Тогда для всякого $n\geqslant 1$ существует открытое множество $G_n\supset E$ такое, что $|G_n|<1/n$. Поэтому $E\subset E_0=\bigcap\limits_{k=1}^\infty G_k$ и $|E_0|=0$.

В силу п. 4) множества $E_0(x)$ измеримы, измеримы функции $|E_0(x)|$ и

$$\int_{\mathbb{R}^k} |E_0(x)| \, dx = |E_0| = 0.$$

Следовательно $|E_0(x)| = 0$ для почти всех x. Но $E(x) \subset E_0(x)$. Следовательно |E(x)| = 0 для почти всех x. Очевидно теперь, что

$$\int_{\mathbb{R}^k} |E(x)| \, dx = |E| = 0.$$

6). Пусть теперь E – произвольное измеримое множество конечной меры. Тогда существуют множество E_1 типа G_δ и множество E_2 нулевой меры, что $E_1 = E \cup E_2$. Так как утверждение теоремы верно для E_1 и E_2 , то оно верно и для E.

Теорема доказана.

Замечание 10.1. Если $|E| = \infty$, то утверждение теоремы 10.1 также имеет место.

Теорема 10.2. Пусть функция f(x,y) задана и измерима на E. Тогда для n.в. $x \in \mathbb{R}^k$ функция f(x,y), рассматриваемая как функция аргумента y, измерима на E(x).

Доказательство. Построим последовательность простых функций вида

$$f_n(x,y) = \sum_{k=1}^{N_n} y_k^{(n)} \chi_{E_k^{(n)}}(x,y), \qquad (10.3)$$

сходящихся к f(x,y) для $(x,y) \in E$.

В силу теоремы 10.1 множество $E_k^{(n)}(x)$ измеримо для п.в. x и имеет конечную меру. Поскольку таких множеств счетный набор, то для п.в. x все они измеримы и имеют конечную меру одновременно, Тогда для этих значений x последовательность (10.3) представляет собой последовательность простых функций аргумента y, сходящихся к f(x,y). В силу этого функция f(x,y), рассматриваемая как функция аргумента y, измерима на E(x).

Теорема доказана.

Теорема 10.3. (Теорема Фубини) Пусть $f \in L_1(E)$. Тогда:

1) Функция

$$F(x) = \int_{E(x)} f(x, y) dy$$
 (10.4)

измерима и суммируема на E', причем

$$\int_{\mathbb{R}^k} F(x) dx = \int_{\mathbb{R}^k} \left[\int_{E(x)} f(x, y) dy \right] dx = \int_{E} f(x, y) dx dy.$$
 (10.5)

Доказательство. Представим f в виде $f = f^+ - f^-$ и докажем теорему для f^+ и f^- , то есть для $f \geqslant 0$. Рассмотрим неубывающую последовательность простых функций вида (10.3), сходящуюся к f(x,y) для $(x,y) \in E$. Напомним, что $|E_k^{(n)}| < \infty$.

Из теорем 10.1 и 10.2 следует, что для почти всех x множества $E_k^{(n)}(x)$ измеримы и функция f(x,y) измерима как функция аргумента $y \in E(x)$. Кроме того, функция

$$F_n(x) = \int_{E(x)} f_n(x, y) \, dy = \sum_{k=1}^{N_n} y_k^{(n)} |E_k^{(n)}(x)|$$
 (10.6)

измерима и суммируема на \mathbb{R}^k , причем

$$\int_{\mathbb{R}^k} F_n(x) dx = \int_E f_n(x, y) dx dy$$
 (10.7)

В силу теоремы Б. Леви в равенствах (10.6), (10.7) можно перейти к пределу и получить (10.4) и (10.5).

Теорема доказана.

Замечание 10.2. Пусть $E' = \{x \in \mathbb{R}^k \mid \text{mes } E(x) > 0\}$. Тогда формулу (10.5) можно переписать в следующем виде

$$\int_{E'} \left[\int_{E(x)} f(x, y) \, dy \right] dx = \int_{E} f(x, y) \, dx dy. \tag{10.8}$$

Следствие 10.1. Пусть функция f(x,y) измерима на $E \subset \mathbb{R}^{k+m}$. Если

$$\int_{\mathbb{R}^k} \left[\int_{E(x)} |f(x,y)| \, dy \right] dx < \infty,$$

 $mo \ f \in L(E)$.

Доказательство. Положим

$$g_N(x,y) = \chi_{B_N}(x,y)[|f|]_N(x,y).$$

Применяя к g_N теорему Фубини, имеем

$$\int_{E} g_{N}(x,y) \, dx dy = \int_{\mathbb{R}^{k}} \left[\int_{E(x)} g_{N}(x,y) \, dy \right] dx \leqslant \int_{\mathbb{R}^{k}} \left[\int_{E(x)} |f(x,y)| \, dy \right] dx$$

Так как $g_N(x,y)$, монотонно неубывая, сходится к |f(x,y)|, то в силу теоремы Б. Леви $f \in L(E)$.

Следствие доказано.