Exercises: Planar-Region Projection, Surface Areas, and Surface Integral by Area

Problem 1. Let g be a region (bounded by a continuous curve) in the plane x + y + z = 1. Let g_{xy} be the projection of g onto the xy-plane. If we know that the area of g is 1, what is the area of g_{xy} .

Problem 2. Consider the surface $S: z = x^2 + y^2$ with $0 \le z \le 1$. Compute the area of S.

Problem 3. Consider the surface S in a parametric form r(u,v) = [x(u,v),y(u,v),z(u,v)] where

$$x(u,v) = u+v$$

$$y(u,v) = u-v$$

$$z(u,v) = uv$$

with (u, v) in the disc $u^2 + v^2 \le 1$. Compute the area of S.

Problem 4. Let S be the surface x + y + z = 1 with $x \in [0,1]$, $y \in [0,1]$, and $z \in [0,1]$. Compute $\iint_S x \, dA$.

Problem 5. Let *S* be the surface r(u, v) = [x(u, v), y(u, v), z(u, v)] where $x(u, v) = u, y(u, v) = v, z(u, v) = u^3$ with $u \in [0, 1]$ and $v \in [-2, 2]$. Compute $\iint_S (1 + 9xz)^{1/2} dA$.

Problem 6. Define $f(x, y, z) = [-x^2, y^2, 0]$. Let S be the surface r(u, v) = [x(u, v), y(u, v), z(u, v)] where x(u, v) = u, y(u, v) = v, z(u, v) = 3u - 2v with $0 \le u \le 1$ and $0 \le v \le 1$. Calculate $\iint_S \mathbf{f} \cdot \mathbf{n} \, dA$.