A PROGRAMOZÁS ALAPJAI 1 (BMEVIEEAA00, 2024/25/1) NAGYHÁZI FELADAT

Shanon-Fano kódoló és dekódoló program

készítette:

Ferencz Péter (RFG7SN)

Budapesti Műszaki és Gazdaságtudományi Egyetem

Villamosmérnöki és Informatikai Kar

Mérnökinformatikus Bsc

2024 Október

1.	Spec	cifikáció		1
	1.1.	A progran	célja	1
	1.2.	Felhaszna	lói interakció	1
		1.2.1. k	dolás (kodol)	1
		1.2.2. d	ekódolás (dekodol)	1
	1.3.	A progran	altal elfogadott kapcsolók	2
		1.3.1. B	emenet	2
		1.3.2. K	menet	2
		1.3.3. K	ódtábla	2
		1.3.4. S	atisztika	2
		1.3.5. S	egítség	3
	1.4.	A progran	kimenete	3
2.	Adat	tszerkezet	mutató	5
			ezetek	5
3.	•	nutató		7
	3.1.	Fájllista		7
4.	Adat	tszerkezet	ek dokumentációja	9
	4.1.	Bits struk	úrareferencia	9
		4.1.1. R	észletes leírás	9
		4.1.2. A	datmezők dokumentációja	9
		4	1.2.1. b	9
		4	1.2.2. length	0
	4.2.	CodeWor	d struktúrareferencia	0
		4.2.1. R	észletes leírás	0
		4.2.2. A	datmezők dokumentációja	0
		4	2.2.1. bits	1
		4	2.2.2. codeWord	11
	4.3.	codeword	Frequency struktúrareferencia	11
		4.3.1. A	datmezők dokumentációja	12
		4	3.1.1. codeWord	12
			•	12
	4.4.		<u> </u>	12
				12
			•	12
				13
				13
				13
	. =			13
	4.5.			13
		4.5.1. R	észletes leírás	14

		4.5.2.	Adatmez	ők dokumentációja	. 14
			4.5.2.1.	currentBit	. 14
			4.5.2.2.	file	. 14
	4.6.	Node s	truktúraref	ferencia	. 14
		4.6.1.	Adatmez	ők dokumentációja	. 15
			4.6.1.1.	codeword	. 15
			4.6.1.2.	left_0	. 15
			4.6.1.3.	right_1	. 15
	4.7.	Output	FileBuffer	struktúrareferencia	. 15
		4.7.1.	Részletes	s leírás	. 16
		4.7.2.	Adatmez	ők dokumentációja	. 16
			4.7.2.1.	bits	. 16
			4.7.2.2.	file	. 16
_	Eáile	الديامان	montáciái	te.	17
э.			mentációj		
	5.1.		•	encia	
		5.1.1.	5.1.1.1.	bits pushBit()	
			5.1.1.2.	getBitFromRight()	
			5.1.1.2.		
	5.2.	oro/olo		print_bits()	
	5.2.			ájlreferencia	
	5.5.			iníciók dokumentációja	
		5.3.1.	5.3.1.1.	•	
		F 0 0			
		5.3.2.	5.3.2.1.	yek dokumentációja	
			5.3.2.1.	isNullbit()	
		F 0 0		dokumentációja	
		5.3.3.			
	E 4	oro/dob	5.3.3.1.		
	5.4.			eferencia	
		5.4.1.		finíciók dokumentációja	
			5.4.1.1.	——————————————————————————————————————	
			5.4.1.2. 5.4.1.3.	PRINTDEBUG_CUSTOM	
				PRINTDEBUG MALLOCNULL	
	5.5.	oro/dos	5.4.1.4.	referencia	
	5.5.	5.5.1.	•	yek dokumentációja	
		5.5.1.	5.5.1.1.		
			5.5.1.1.	appendCodeword()	
			5.5.1.3.	decode()	
			5.5.1.4.	freeTree()	
	5.6	src/enc		referencia	. 27

		5.6.1.	Függvény	ek dokumentációja	29
			5.6.1.1.	codewordToBits()	29
			5.6.1.2.	compare_by_bitlength()	29
			5.6.1.3.	compare_by_freq()	29
			5.6.1.4.	encode()	31
			5.6.1.5.	setCodeWord()	31
	5.7.	src/fileE	Buffer.c fájl	referencia	31
		5.7.1.	Függvény	vek dokumentációja	33
			5.7.1.1.	buff_createInputFileBuffer()	33
			5.7.1.2.	buff_createOutputFileBuffer()	33
			5.7.1.3.	buff_destroyInputFileBuffer()	33
			5.7.1.4.	buff_destroyOutputFileBuffer()	33
			5.7.1.5.	buff_flush()	34
			5.7.1.6.	buff_readBit()	34
			5.7.1.7.	buff_readBits()	34
			5.7.1.8.	buff_readChar()	34
			5.7.1.9.	buff_readInt()	34
			5.7.1.10.	buff_rewind()	34
			5.7.1.11.	buff_writeBit()	34
			5.7.1.12.	buff_writeBits()	35
			5.7.1.13.	buff_writeChar()	35
			5.7.1.14.	buff_writeInt()	35
	5.8.	src/grap	oh.c fájlref	erencia	35
	5.9.	src/mai	n.c fájlrefe	rencia	36
		5.9.1.	Enumerá	ciók dokumentációja	37
			5.9.1.1.	MODE	37
		5.9.2.	Függvény	vek dokumentációja	37
			5.9.2.1.	main()	37
			5.9.2.2.	parseCLA()	37
			5.9.2.3.	printHelp()	38
М	eta				39
VIC		Forráce	ok folhaczi	nált irodalom	39
				dorogramok	39
	0.11.				

1. fejezet

Specifikáció

1.1. A program célja

A program célja tetszőleges adat tömörítése majd ezek kitömörítése információvesztés nélkül. Ennek megvalósítására a Shanon-Fano tömörítő algoritmust ^{1 2} alkalmazza.

1.2. Felhasználói interakció

A felhasználó két üzemmódot választhat ki a program futtatásakor: kódolás vagy dekódolás. Ezeket az első parancssori argumentumban a 'kodol' és 'dekodol' kulcsszavakkal tudja kiválasztani.

1.2.1. kódolás (kodol)

Kódoló üzemmódban a bemenetet (lásd Bemenet) a Shanon-Fano kódoló algoritmust alkalmazva írja a kimenetre (lásd Kimenet) a kódolt adatot.

```
program kodol --bemenet <fájl> --kimenet <fájl>
```

1.2.2. dekódolás (dekodol)

Dekódoló üzemmódban a bemenetet (lásd Bemenet) a Shanon-Fano dekódoló algoritmust alkalmazva írja a kimenetre (lásd Kimenet) a dekódolt adatot.

```
program dekodol --bemenet <fájl> --kimenet <fájl>
```

¹C. E. Shannon, "A Mathematical Theory of Communication", 1948

²Robert M. Fano, "The Transmittion of Information", 1949

1.3. A program által elfogadott kapcsolók

A program futása során tetszőleges futtatást befolyásoló kapcsolókat (flageket) beállíthatunk. Ezek sorrendje tetszőlegesen választható.

1.3.1. Bemenet

Parancssori megnevezés: --bemenet <forrásfájl>

Opcionális paraméter.

Ha nincs megadva, de a program egy figyelmeztető üzenet kíséretében folytatja a lefutást.

A fájl méretétől és tartalmától független a program lefutása.

Az azt követő paraméter megadja a forrásfájl elérési útvonalát. Ha nincs megadva, stdin-ról kér be új sorral lezárt szöveget.

1.3.2. Kimenet

Parancssori megnevezés: --kimenet <célfájl>

Opcionális paraméter.

Ha nincs megadva, de a program egy figyelmeztető üzenet kíséretében folytatja a lefutást.

A fájl méretétől és tartalmától független a program lefutása.

Az azt követő paraméter megadja a célfájl elérési útvonalát. Ha nincs megadva, stdout-ra írja ki a program a program kimenetét.

1.3.3. Kódtábla

Parancssori megnevezés: --kodtabla

Opcionális paraméter.

Azt szabályozza, hogy a kódtáblát kiírja-e a program a standard kimenetre.

1.3.4. Statisztika

Parancssori megnevezés: --statisztika

Opcionális paraméter.

Azt határozza meg, hogy a program kiírjon-e további számitásokat a program hatékonyságára vonatkozólag. Az alábbi számítások történnek kiírásra:

- Tömörítés mértéke: bemenet mérete a tömörített adat méretéhez képest
- · Kódtábal mérete: Elgymástól eltérő kódok száma
- · Kódok mérete: legrövidebb kód, leghosszabb kód, kódok átlagos mérete
- Fa mérete: A generált fa mérete

1.3.5. Segítség

Parancssori megnevezés: --help

Opcionális paraméter.

A felhasználót tájékoztatja a program helyes használatáról. Ha ez a kapcsoló meg van adva, akkor a program nem ellenőrzi a többi kötelező kapcsoló jelenlétét, kiírja a szöveget majd kódolás / dekódolás nélkül befejezi a futást. Az alábbi szöveg íródik ki:

```
program [üzemmód] <...kapcsolók...>
Üzemmód: kodol, dekodol
Kapcsolók:
--bemenet <forrásfájl>: Bemeneti fájl (ha üres akkor stdin)
--kimenet <célfájl>: Bemeneti fájl (ha üres akkor stdout)
--kodtabla <fájl>: A kódtábla fájl (kötelező)
--statisztika: A tömörítés hatékonyságát értékelő statisztika (opcionális)
--help: Ezt az üzenetet írja ki (opcionális)
```

1.4. A program kimenete

Sikeres futtatás esetén a program a A program által elfogadott kapcsolók pontban meghatározott viselkedés szerint működik. Sikertelen futtatás esetén a konzolra kiíródik a probléma és egy nem nullás kilépési kóddal a program megáll.

A fájl ami generálódik a következőképpen épül fel: Kódtábla karaktereinek száma: Hány darab karaktert és annak kódolását tartalmaz a kódtábla. Lehetséges értékei: 0-255 -> 1-256

Illeszkedés hossza: A fájl végén hány darab 0 bit van a 8 bites fájlmentés kielégítéséhez.

Kódtábla, melynek minden eleme az alábbiakból épül fel:

- Karakter: nyolc bit, melyet tömörítünk
- a karaktert reprezentáló kód hossza 8 biten
- a kód, mely nullás és eggyesek sorozata

Kódolt adat

			Kó	dtábla			
Kódolt karakterek hossza (1-256)	Illeszkedés hossza (0-7)	karakter ASCII	karakterkód hosszza	kód		Kódolt adat	Illeszkedés (0)
	(0-7)	8 bit	n = 8 bit	n bit			
I = 8 bit	i = 3 bit		legalább l	* (8 + 8 + 1) b	it	legalább l bit	i bit

		kime	

2. fejezet

Adatszerkezet-mutató

2.1. Adatszerkezetek

Az összes adatszerkezet listája rövid leírásokkal:

Bits	
Tetszőleges hosszú bitsorozat eltárolására alkalmas struktúra	9
CodeWord	
Karakter, és az azt kódoló bitsorozat	10
codewordFrequency	11
commandLineArguments	
A program parancssori argumentumait rendező struktúra	12
InputFileBuffer	
Struktúra, mely lehetővé teszi a bitenkénti olvasást egy fájlból	13
Node	14
OutputFileBuffer	
Struktúra, mely lehetővé teszi a bitenkénti írást egy fájlba	15

6 2.1 Adatszerkezetek

3. fejezet

Fájlmutató

3.1. Fájllista

Az összes fájl listája rövid leírásokkal:

src/bin.c														 						 				17
src/cla.c														 						 				19
src/codeword.	С													 						 				20
src/debug.h .														 						 				23
src/decoder.c																								
src/encoder.c														 						 				27
src/fileBuffer.c																								
src/graph.c .																								
src/main.c														 						 				36

8 3.1 Fájllista

4. fejezet

Adatszerkezetek dokumentációja

4.1. Bits struktúrareferencia

Tetszőleges hosszú bitsorozat eltárolására alkalmas struktúra.

Adatmezők

- · long long unsigned int b
 - A tárolt szám A bitek jobbról balra értelmezendőek.
- size_t length

A tárolt bitsorozat hossza.

4.1.1. Részletes leírás

Tetszőleges hosszú bitsorozat eltárolására alkalmas struktúra.

4.1.2. Adatmezők dokumentációja

4.1.2.1. b

long long unsigned int Bits::b

A tárolt szám A bitek jobbról balra értelmezendőek.

4.1.2.2. length

size_t Bits::length

A tárolt bitsorozat hossza.

Ez a dokumentáció a struktúráról a következő fájl alapján készült:

• src/codeword.c

4.2. CodeWord struktúrareferencia

Karakter, és az azt kódoló bitsorozat.

A CodeWord osztály együttműködési diagramja:

Adatmezők

• uchar codeWord

Egy byte, melyet a Shanon-Fano kódolás szerint kódolunk.

· Bits bits

Egy bitsorozat, melyet a Shanon-Fano kódolás szerint a codeWord } kódolt változata.

4.2.1. Részletes leírás

Karakter, és az azt kódoló bitsorozat.

4.2.2. Adatmezők dokumentációja

4.2.2.1. bits

Bits CodeWord::bits

Egy bitsorozat, melyet a Shanon-Fano kódolás szerint a codeWord } kódolt változata.

4.2.2.2. codeWord

uchar CodeWord::codeWord

Egy byte, melyet a Shanon-Fano kódolás szerint kódolunk.

Ez a dokumentáció a struktúráról a következő fájl alapján készült:

• src/codeword.c

4.3. codewordFrequency struktúrareferencia

A codewordFrequency osztály együttműködési diagramja:

Adatmezők

- float freq
- CodeWord codeWord

4.3.1. Adatmezők dokumentációja

4.3.1.1. codeWord

CodeWord codewordFrequency::codeWord

4.3.1.2. freq

float codewordFrequency::freq

Ez a dokumentáció a struktúráról a következő fájl alapján készült:

• src/encoder.c

4.4. commandLineArguments struktúrareferencia

A program parancssori argumentumait rendező struktúra.

Adatmezők

- FILE * infile
 - A -bemenet kapcsoló által megadott stream.
- FILE * outfile
 - A -kimenet kapcsoló által megadott stream.
- bool displayTable

Megajda, hogy a program kiírja-e a kódtáblát.

· bool displayStatistics

Megajda, hogy a program kiírjon-e további számitásokat a program hatékonyságára vonatkozólag.

4.4.1. Részletes leírás

A program parancssori argumentumait rendező struktúra.

4.4.2. Adatmezők dokumentációja

4.4.2.1. displayStatistics

bool commandLineArguments::displayStatistics

Megajda, hogy a program kiírjon-e további számitásokat a program hatékonyságára vonatkozólag.

4.4.2.2. displayTable

bool commandLineArguments::displayTable

Megajda, hogy a program kiírja-e a kódtáblát.

4.4.2.3. infile

FILE* commandLineArguments::infile

A -bemenet kapcsoló által megadott stream.

4.4.2.4. outfile

FILE* commandLineArguments::outfile

A -kimenet kapcsoló által megadott stream.

Ez a dokumentáció a struktúráról a következő fájl alapján készült:

• src/cla.c

4.5. InputFileBuffer struktúrareferencia

Struktúra, mely lehetővé teszi a bitenkénti olvasást egy fájlból.

Adatmezők

• FILE * file

A fájl, melyből olvasunk.

uchar * currentBit

Megadja, hogy az adott fájl olvasásánál hanyadik bitnél tartunk. Értéke 0 és 7 közötti.

4.5.1. Részletes leírás

Struktúra, mely lehetővé teszi a bitenkénti olvasást egy fájlból.

4.5.2. Adatmezők dokumentációja

4.5.2.1. currentBit

```
uchar* InputFileBuffer::currentBit
```

Megadja, hogy az adott fájl olvasásánál hanyadik bitnél tartunk. Értéke 0 és 7 közötti.

4.5.2.2. file

```
FILE* InputFileBuffer::file
```

A fájl, melyből olvasunk.

Ez a dokumentáció a struktúráról a következő fájl alapján készült:

• src/fileBuffer.c

4.6. Node struktúrareferencia

A Node osztály együttműködési diagramja:

Adatmezők

- · char codeword
- struct Node * left_0
- struct Node * right_1

4.6.1. Adatmezők dokumentációja

4.6.1.1. codeword

char Node::codeword

4.6.1.2. left_0

struct Node* Node::left_0

4.6.1.3. right_1

```
struct Node* Node::right_1
```

Ez a dokumentáció a struktúráról a következő fájl alapján készült:

• src/graph.c

4.7. OutputFileBuffer struktúrareferencia

Struktúra, mely lehetővé teszi a bitenkénti írást egy fájlba.

Az OutputFileBuffer osztály együttműködési diagramja:

Adatmezők

• FILE * file

A fájl, melybe írunk.

• Bits * bits

A még nem a fájlba beírt bitek.

4.7.1. Részletes leírás

Struktúra, mely lehetővé teszi a bitenkénti írást egy fájlba.

4.7.2. Adatmezők dokumentációja

4.7.2.1. bits

Bits* OutputFileBuffer::bits

A még nem a fájlba beírt bitek.

4.7.2.2. file

FILE* OutputFileBuffer::file

A fájl, melybe írunk.

Ez a dokumentáció a struktúráról a következő fájl alapján készült:

• src/fileBuffer.c

5. fejezet

Fájlok dokumentációja

5.1. src/bin.c fájlreferencia

#include <stdio.h>
#include "codeword.c"
A bin.c definíciós fájl függési gráfja:

Ez az ábra azt mutatja, hogy mely fájlok ágyazzák be közvetve vagy közvetlenül ezt a fájlt:

Függvények

- Bits getBitFromRight (Bits bits, int n)
 - Adott bitsorozatnak megadja a jobról számított n -edik bitjét.
- void bits_pushBit (Bits *bits, Bits append)
 - Egy bitsorozatot bővít egy másik bitsorozattal jobb oldalról.
- void print_bits (Bits bits)

5.1.1. Függvények dokumentációja

5.1.1.1. bits_pushBit()

Egy bitsorozatot bővít egy másik bitsorozattal jobb oldalról.

Paraméterek

bits	a bővítendő bitsorozat
append	A hozzáfűzendő bitsorozat

5.1.1.2. getBitFromRight()

Adott bitsorozatnak megadja a jobról számított n -edik bitjét.

Paraméterek

bits	A bitsorozat, melyből kiválasztjuk a bitet
n	Jobbról számítva hányadik bit

Visszatérési érték

A keresett bit

5.1.1.3. print_bits()

5.2. src/cla.c fájlreferencia

```
#include <stdio.h>
#include <stdbool.h>
A cla.c definíciós fájl függési gráfja:
```


Ez az ábra azt mutatja, hogy mely fájlok ágyazzák be közvetve vagy közvetlenül ezt a fájlt:

Adatszerkezetek

• struct commandLineArguments

A program parancssori argumentumait rendező struktúra.

5.3. src/codeword.c fájlreferencia

#include <stdbool.h>
#include <stdint.h>

A codeword.c definíciós fájl függési gráfja:

Ez az ábra azt mutatja, hogy mely fájlok ágyazzák be közvetve vagy közvetlenül ezt a fájlt:

Adatszerkezetek

• struct Bits

Tetszőleges hosszú bitsorozat eltárolására alkalmas struktúra.

struct CodeWord

Karakter, és az azt kódoló bitsorozat.

Típusdefiníciók

• typedef unsigned char uchar Előjel nélküli 8 bites karakter.

Függvények

• bool bits_equ (Bits b1, Bits b2)

Összehasonlít két bitsorozatot.

• bool isNullbit (Bits b)

Megmondja, hogy egy adott bitsorozat értelmes-e.

Változók

• const Bits NULLBIT

Hibás kimenetet jelentő bitsorozat, melynek hossza 0.

5.3.1. Típusdefiníciók dokumentációja

5.3.1.1. uchar

```
typedef unsigned char uchar
```

Előjel nélküli 8 bites karakter.

5.3.2. Függvények dokumentációja

5.3.2.1. bits_equ()

Összehasonlít két bitsorozatot.

Paraméterek

Ł	51	Az összehasonlítandó bitsorozat
Ł	b2	Az összehasonlítandó bitsorozat

Visszatérési érték

igaz, hogyha a bitsorozatok hossza és bitjei megegyeznek, különben hamis

5.3.2.2. isNullbit()

Megmondja, hogy egy adott bitsorozat értelmes-e.

Paraméterek

b A vizsgálandó bitsorozat

Visszatérési érték

igaz, hogyha a bitsorozat hossza 0, különben hamis

5.3.3. Változók dokumentációja

5.3.3.1. NULLBIT

```
Const Bits NULLBIT

Kezdő érték:
= {
    .b = 0,
    .length = 0
}
```

Hibás kimenetet jelentő bitsorozat, melynek hossza 0.

5.4. src/debug.h fájlreferencia

Ez az ábra azt mutatja, hogy mely fájlok ágyazzák be közvetve vagy közvetlenül ezt a fájlt:

Makródefiníciók

• #define PRINTDEBUG_MALLOCNULL() ;;

Kiírja hogy egy memóriafoglalás sikertelen volt.

• #define PRINTDEBUG_FILEERR();;

Kiírja, hogy a fájlművelet sikertelen volt.

• #define PRINTDEBUG_CORRUPTEDFILE();;

Kiírja, hogy dekódolás közben nem várt karakterrel találkoztnk.

• #define PRINTDEBUG_CUSTOM(str, ...) ;;

Általános hibakeresésre használható, konzolra való kiírásra alkalmas.

5.4.1. Makródefiníciók dokumentációja

5.4.1.1. PRINTDEBUG_CORRUPTEDFILE

```
#define PRINTDEBUG_CORRUPTEDFILE( ) ;;
```

Kiírja, hogy dekódolás közben nem várt karakterrel találkoztnk.

5.4.1.2. PRINTDEBUG_CUSTOM

Általános hibakeresésre használható, konzolra való kiírásra alkalmas.

5.4.1.3. PRINTDEBUG_FILEERR

```
#define PRINTDEBUG_FILEERR( ) ;;
```

Kiírja, hogy a fájlművelet sikertelen volt.

5.4.1.4. PRINTDEBUG_MALLOCNULL

```
#define PRINTDEBUG_MALLOCNULL( ) ;;
```

Kiírja hogy egy memóriafoglalás sikertelen volt.

5.5. src/decoder.c fájlreferencia

```
#include <stdio.h>
#include <stdbool.h>
#include "debug.h"
#include "cla.c"
#include "bin.c"
#include "fileBuffer.c"
#include "codeword.c"
#include "graph.c"
```

A decoder.c definíciós fájl függési gráfja:

Ez az ábra azt mutatja, hogy mely fájlok ágyazzák be közvetve vagy közvetlenül ezt a fájlt:

Függvények

void appendCodeword (Node *root, Bits codeword, char set)

Egy fagráfhoz, codeword bitjeinek bejárása alapján beállítja egy elem kódolt karakterét. Ha az adott elérés nem létezik, a függvény létrehozza azt.

Node * createNodelfNotexists (Node *parent, int dir)

Egy fagráf adott eleméből megpróbál dir által meghatároott úton továbbhaladni. Ha az nem létezik, létrehozza azt.

void freeTree (Node *root)

Rekurzívan felszabadít egy fagráfot.

• int decode (commandLineArguments args)

Dekódol egy Shanon-Fano algoritmussal kódolt fájlt.

5.5.1. Függvények dokumentációja

5.5.1.1. appendCodeword()

```
void appendCodeword (
     Node * root,
     Bits codeword,
     char set )
```

Egy fagráfhoz, codeword bitjeinek bejárása alapján beállítja egy elem kódolt karakterét. Ha az adott elérés nem létezik, a függvény létrehozza azt.

Paraméterek

root	A fagráf gyökere
codeword	A bejárás bitjei: 0 = bal, 1 (minden más) = jobb
set	A beállítandó karakter, melyhez elérkeztünk a bejárás végén

5.5.1.2. createNodelfNotexists()

Egy fagráf adott eleméből megpróbál dir által meghatároott úton továbbhaladni. Ha az nem létezik, létrehozza azt.

Paraméterek

parent	Az elem, melyből kiindulunk
dir	Az irány: 0 = bal, 1 (minden más) = jobb

Visszatérési érték

A gráf azon eleme, mely parent -től dir irányba helyezkedik el

5.5.1.3. decode()

```
int decode ( {\tt commandLineArguments}\ {\tt args}\ )
```

Dekódol egy Shanon-Fano algoritmussal kódolt fájlt.

Paraméterek

```
args Parancssori bemenet, amely a dekódolás folyamatát módosítja
```

Visszatérési érték

0, ha a dekódolás sikeres volt. Minden más érték sikertelen

5.5.1.4. freeTree()

```
void freeTree (
     Node * root )
```

Rekurzívan felszabadít egy fagráfot.

Paraméterek

```
root a felszabadítandó gráf gyökere
```

5.6. src/encoder.c fájlreferencia

```
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "cla.c"
#include "fileBuffer.c"
#include "codeword.c"
#include "bin.c"
#include "./debug.h"
```

Az encoder.c definíciós fájl függési gráfja:

Ez az ábra azt mutatja, hogy mely fájlok ágyazzák be közvetve vagy közvetlenül ezt a fájlt:

Adatszerkezetek

• struct codewordFrequency

Függvények

• void setCodeWord (codewordFrequency codes[], int i, int j)

Rekurzívan beállítja egy kód tömbön az adott karakter Shanon-Fano algoritmus szerinti kódját.

• Bits codewordToBits (codewordFrequency code[], int codesLength, uchar find)

Megkeresi code tömbben, find karaktert.

• int compare_by_freq (const void *a, const void *b)

Frekvenciájuk alapján összehasonlít 2 frekvenciával rendelkező karakterkódolást.

• int compare_by_bitlength (const void *a, const void *b)

Kódolásuk hossza alapján összehasonlít 2 rendelkező karakterkódolást.

• int encode (commandLineArguments args)

Kódol Shanon-Fano algoritmus alkalmazásával egy fájlt.

5.6.1. Függvények dokumentációja

5.6.1.1. codewordToBits()

Megkeresi code tömbben, find karaktert.

Paraméterek

code	A kódtömb
codesLength	A kódtömb hossza
find	A keresett karakter

Visszatérési érték

A keresett kódolás vagy NULLBIT

5.6.1.2. compare_by_bitlength()

Kódolásuk hossza alapján összehasonlít 2 rendelkező karakterkódolást.

Paraméterek

а	Az összehasonlítandó karakterkódolás
b	Az összehasonlítandó karakterkódolás

Visszatérési érték

```
0 = \text{egyeznek}, > 0 = \text{a kódja hosszabb}, < 0 \text{ b kódja hosszabb}
```

5.6.1.3. compare_by_freq()

Frekvenciájuk alapján összehasonlít 2 frekvenciával rendelkező karakterkódolást.

Paraméterek

а	Az összehasonlítandó karakterkódolás
b	Az összehasonlítandó karakterkódolás

Visszatérési érték

0 = egyeznek, > 0 = b frekvenciája nagyobb, < 0 a frekvenciája nagyobb

5.6.1.4. encode()

```
int encode ( {\tt commandLineArguments}\ args\ )
```

Kódol Shanon-Fano algoritmus alkalmazásával egy fájlt.

Paraméterek

args Parancssori bemenet, amely a dekódolá	is folyamatát módosítja
--	-------------------------

Visszatérési érték

0, ha a dekódolás sikeres volt. Minden más érték sikertelen

5.6.1.5. setCodeWord()

Rekurzívan beállítja egy kód tömbön az adott karakter Shanon-Fano algoritmus szerinti kódját.

Paraméterek

codes	A kódtömb
i	A tömb kezdeti indexe (inkluzív)
j	A tömb vegső indexe (inkluzív)

5.7. src/fileBuffer.c fájlreferencia

```
#include <stdlib.h>
```

```
#include <stdbool.h>
#include "bin.c"
#include "codeword.c"
```

A fileBuffer.c definíciós fájl függési gráfja:

Ez az ábra azt mutatja, hogy mely fájlok ágyazzák be közvetve vagy közvetlenül ezt a fájlt:

Adatszerkezetek

struct InputFileBuffer

Struktúra, mely lehetővé teszi a bitenkénti olvasást egy fájlból.

• struct OutputFileBuffer

Struktúra, mely lehetővé teszi a bitenkénti írást egy fájlba.

Függvények

- InputFileBuffer buff_createInputFileBuffer (FILE *file)
- OutputFileBuffer buff_createOutputFileBuffer (FILE *file)
- void buff_destroyInputFileBuffer (InputFileBuffer buffer)
- void buff destroyOutputFileBuffer (OutputFileBuffer buffer)
- void buff_rewind (InputFileBuffer buffer)
- bool buff_writeBits (OutputFileBuffer buff, Bits bit)
- bool buff_writeBit (OutputFileBuffer buff, Bits bit)
- bool buff_writeChar (OutputFileBuffer buff, uchar val)
- bool buff writeInt (OutputFileBuffer buff, int val)
- bool buff_flush (OutputFileBuffer buff)
- Bits buff_readBit (InputFileBuffer buff)
- Bits buff_readBits (InputFileBuffer buff, int bitCount)
- Bits buff_readChar (InputFileBuffer buff)
- Bits buff_readInt (InputFileBuffer buff)

5.7.1. Függvények dokumentációja

5.7.1.1. buff_createInputFileBuffer()

5.7.1.2. buff_createOutputFileBuffer()

5.7.1.3. buff_destroyInputFileBuffer()

5.7.1.4. buff_destroyOutputFileBuffer()

```
void buff_destroyOutputFileBuffer ( {\tt OutputFileBuffer}\ buffer\ )
```

5.7.1.5. buff_flush()

5.7.1.6. buff_readBit()

5.7.1.7. buff_readBits()

5.7.1.8. buff_readChar()

5.7.1.9. buff_readInt()

5.7.1.10. buff_rewind()

5.7.1.11. buff_writeBit()

```
bool buff_writeBit (
                OutputFileBuffer buff,
                Bits bit )
```

5.7.1.12. buff_writeBits()

```
bool buff_writeBits (
                OutputFileBuffer buff,
                Bits bit )
```

5.7.1.13. buff_writeChar()

5.7.1.14. buff_writeInt()

5.8. src/graph.c fájlreferencia

```
#include "codeword.c"
A graph.c definíciós fájl függési gráfja:
```


Ez az ábra azt mutatja, hogy mely fájlok ágyazzák be közvetve vagy közvetlenül ezt a fájlt:

Adatszerkezetek

• struct Node

5.9. src/main.c fájlreferencia

```
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <getopt.h>
#include <stdbool.h>
#include "./debug.h"
#include "./encoder.c"
#include "./ecoder.c"
A main.c definíciós fájl függési gráfja:
```


Enumerációk

```
    enum MODE { ENCODE = 0 , DECODE = 1 , UNSET = -1 }
    Megadja, hogy a program a 'kodol' vagy 'dekodol' paraméterrel lett meghívva.
```

Függvények

- void printHelp ()
- int parseCLA (int argc, char **argv, commandLineArguments *args, enum MODE *mode)
 A bemeneti paraméterek feldolgozására szolgáló függvény.
- int main (int argc, char **argv)

5.9.1. Enumerációk dokumentációja

5.9.1.1. MODE

```
enum MODE
```

Megadja, hogy a program a 'kodol' vagy 'dekodol' paraméterrel lett meghívva.

Enumeráció-értékek

ENCODE	
DECODE	
UNSET	

5.9.2. Függvények dokumentációja

5.9.2.1. main()

```
int main (
          int argc,
          char ** argv )
```

5.9.2.2. parseCLA()

```
int parseCLA (
          int argc,
          char ** argv,
          commandLineArguments * args,
          enum MODE * mode )
```

A bemeneti paraméterek feldolgozására szolgáló függvény.

Paraméterek

argc	'argv' hossza
argv	parancssori argumentumok
args	

Visszatérési érték

0, ha sikeres volt az argumentumok elemzése, különben ettől eltérő

5.9.2.3. printHelp()

void printHelp ()

Meta

5.10. Források, felhasznált irodalom

- Wayback Machine: C. E. Shannon, "A Mathematical Theory of Communication", 1948 (https://web.archive.org/web/1998071501 labs.com/cm/ms/what/shannonday/shannon1948.pdf)
- Halley's Comet software: Robert M. Fano, "The Transmittion of Information", 1949 (https://hcs64.com/files/fano-tr65-ocr-only.pdf)
- Linux man pages online: (https://man7.org/linux/man-pages/index.html)
- BME InfoC: (https://infoc.eet.bme.hu)

5.11. Felhasznált segédprogramok

- Fejlesztői környezet: Visual Studio Code (https://code.visualstudio.com/)
- · C compiler: GNU Compiler Collection (GCC) (https://gcc.gnu.org/)
- Projekt fordítása: Make (https://www.gnu.org/software/make/)
- Dokumentáció: Doxygen (https://www.doxygen.nl/)