Diodo zener e LED

Nesta seção...

- Conceito de diodo zener ◀
 - Comportamento ◀
 - Características ◀
- Diodo zener como regulador de tensão ◀
- Conceito de LED (Light emitter diode diodo emissor de luz) ◀
 - Simbologia e características físicas ◀
 - Funcionamento <
 - Características funcionais do LED ◀
 - Teste do LED ◀
 - Utilização do LED em CC ◀

Conceito de diodo zener

O diodo zener é um tipo especial de diodo utilizado essencialmente como regulador de tensão. A sua capacidade de regulação de tensão é empregada principalmente nas fontes de alimentação, visando à obtenção de uma tensão de saída fixa.

O diodo é representado no diagrama mostrado na figura 1.

Fig. 1

Comportamento

O comportamento do diodo zener depende fundamentalmente da forma como é polarizado.

- a com polarização direta
- b com polarização inversa

Polarização direta

Sob essa condição, o diodo zener se comporta da mesma forma que um diodo retificador, porém em condução e assumindo uma queda de tensão típica.

A figura 2 mostra um diodo zener polarizado diretamente e a figura 3 mostra a curva característica de condução.

Fig. 2

Fig. 3

Normalmente, o diodo zener não é utilizado com polarização direta nos circuitos eletrônicos.

Polarização inversa

Até um determinado valor de tensão inversa, o diodo zener se comporta como um diodo comum, ficando em bloqueio. (Fig. 4)

O sinal negativo de Iz (-Iz) na figura 4 indica que essa corrente circula no sentido inverso pelo diodo. Em determinado valor de tensão inversa, o diodo zener entra subitamente em condução, apesar de polarizado inversamente.

A corrente inversa aumenta rapidamente e a tensão sobre o zener se mantém praticamente constante. (Fig. 5)

O valor de tensão inversa que faz com que o diodo zener entre em condução é denominado de tensão zener (Vz).

Enquanto houver corrente inversa circulando no diodo zener, a tensão sobre seus terminais se mantém praticamente no valor de tensão zener.

Atenção

O funcionamento típico do diodo zener é com corrente inversa, o que estabelece uma tensão fixa sobre seus terminais.

 $\acute{\rm E}$ importante observar que, no sentido reverso, o diodo zener difere do diodo retificador convencional.

Um diodo retificador nunca chega a conduzir intensamente no sentido reverso e, se isto acontecer, o diodo estará em curto, tornando-se inútil para uso.

O diodo zener é levado propositalmente a conduzir no sentido inverso, visando obter a tensão zener constante sobre seus terminais, sem que isto danifique o componente.

Características

As características elétricas importantes do diodo zener são:

- a tensão zener
- b potência zener
- c coeficiente de temperatura
- d tolerância
- a **Tensão zener**: é a que fica nos terminais do componente na condição de funcionamento normal (tensão de ruptura). Ela depende do processo de fabricação e da resistividade da junção semicondutora.

Os diodos zener são fabricados para valores de tensão zener da ordem de 2 V até algumas dezenas de volts. Este valor é fornecido pelo fabricante nos folhetos técnicos dos diodos zener.

b – **Potência zener**: o diodo zener funciona na região de ruptura, apresentando um valor determinado de tensão (Vz) sobre seus terminais, e sendo percorrido por uma corrente inversa. (Fig. 6)

Fig. 6

Nessas condições, verifica-se que o componente dissipa potência, em forma de calor. A potência dissipada é dada pelo produto de tensão e corrente:

$$P = V \cdot I$$
 $POTÊNCIA$
 \Longrightarrow
 $Pz = Vz \cdot Iz$
 $POTÊNCIA ZENER$

Os diodos zener são fabricados para determinados valores de potência de dissipação (0,4W, 1W, 10W), que determinam a dissipação máxima que o componente pode suportar.

Cada diodo zener tem um valor de dissipação máxima que é fornecido pelo fabricante nos folhetos técnicos.

Utilizando os valores de tensão zener fornecidos pelo fabricante em potência zener máxima, pode-se determinar a corrente máxima que o zener pode suportar.

Este valor da corrente não pode ser excedido, sob pena de danificar o diodo zener por excesso de aquecimento.

Os diodos zener de pequena potência (até 1 W) podem ser encontrados em encapsulamento de vidro ou plástico, enquanto os de maior potência são geralmente metálicos, para facilitar a dissipação de calor. (Figs. 7 e 8)

rig. 7

A região de funcionamento do zener é determinada por dois valores de corrente, uma vez que sua tensão inversa é constante.

Estes valores de corrente são:

- Iz máximo
- Iz mínimo (Fig. 9)

O valor de Iz máximo é definido pela potência zener:

$$Izmáx = \frac{Pz}{Vz}$$

O valor de Iz mínimo é definido como 10% do valor de Iz máximo.

$$Izmín = \frac{Izmáx}{10}$$

A tabela abaixo apresenta a especificação de alguns diodos zener.

1) 2)				(4.1)		
Vz +5%	1 4001/		1,3 W		2,5 W	20 W 10 W
1,4 2,1 2,8 3,3 3,6	BZ x 76 @Iz=1mA DO.7	C1V4 C2V1 C2V8 — C3V6		0mA		mA
3,9 4,3 4,7 5,1 5,6 6,2 6,8 7,5 8,2 9,1 10 11 12 13 15 16 18 20 22 24	BZ x B @Iz-10mA Am2-zi@	C4V7 C5V1 C5V6 C6V2 C6V8 C7V5 C8V2 C9V1 C10 C11 C12 C13 C15 C16 C18 C20 C22	BZ x 61	BZ x 87 C5V1 C5V6 C6V2 C6V2 C6V8 C7V5 C8V2 C9V1 C10 C11 © C12 C13 C15 C16 C18 C20 C22 C24 C27 © C27	BZ x 70 C10 C11 C12 C13 Z1 C15 © C16 C18 V20 C20 C22 C24 C21	Wm02-zI@ BZZ 14° BZZ 15° BZZ 16° C2V5 C8V2 C9V1 C10 C11 C12 C13 C15 C16 C18 C20 C22 C24 C27
27 30 33 36 39 43 47 51 56 62 68 75	O O © @Iz-2mA	C27 C30 C33 C36 C39 C43 C47 C51 C56 C62 C68 C75	C27 C30 C33 C36 C39 C43 C47 C51 C56 C62 C68 C75 C75	C27 C30 C33 C36 C39 C43 C47 C51 C56 C62 C68 C75 C75	ZI C27 C30 C33 C36 C39 V C47 C51 C56 C62 C68 C75	C30 C33 C36 C39 C43 C47 C51 C56 © C62 C68 C75

Diodo zener como regulador de tensão

As características de comportamento do diodo zener na região de ruptura permitem que o componente seja utilizado em circuitos que possibilitam a obtenção de uma tensão regulada, a partir de fontes que forneçam tensões variáveis ou mesmo com cargas de consumo variável. (Fig. 10)

Fig. 10

Para que o diodo zener seja utilizado como regulador de tensão, é necessário introduzir junto com o componente, no circuito regulador, um resistor que limite a corrente do zener abaixo do seu valor máximo (Izmáx).

A figura 11 apresenta a configuração característica de um circuito regulador de tensão com o diodo zener.

Fig. 11

A tensão sobre a carga é a mesma do diodo zener porque carga e zener estão em paralelo.

Funcionamento do circuito regulador

O circuito regulador com diodo zener deve receber na entrada uma tensão no mínimo 40% maior que o valor desejado na saída para que seja possível efetuar a regulação. Assim, se a tensão de saída desejada é de 6 V, o circuito regulador deve utilizar um diodo zener com Vz = 6 V e tensão de entrada pelo menos 8,4 V (Fig. 12)

Fig. 12

Condição normal

A aplicação de tensão de entrada superior à tensão de ruptura do diodo zener, coloca o componente na região de ruptura.

Dessa forma, a tensão sobre o zener assume o valor característico Vz. (Fig. 13)

Fig. 13

Como o diodo zener e a carga estão em paralelo, assumem a mesma tensão. (Fig. 14)

Fig. 14

Nessa condição, circula corrente através da carga e do diodo zener. (Fig. 15)

Através do resistor limitador, circula a soma das correntes do zener e da carga. (Fig. 16)

Fig. 16

Essas correntes provocam uma queda de tensão sobre o resistor, cujo valor é exatamente a diferença entre a tensão da entrada e a tensão do zener. (Fig. 17)

A figura 18 representa as duas condições adequadas ao funcionamento do circuito.

Fonte de alimentação com tensão de saída regulada a diodo zener

Uma fonte de alimentação com tensão de saída regulada a diodo zener se compõe basicamente dos três blocos apresentados na figura 19.

Fig. 19

- A retificação transforma CA em CC pulsante, podendo ser meia onda ou onda completa.
- A filtragem aproxima a forma de tensão de saída à CC.
- A regulação recebe a tensão filtrada. Esta contém uma ondulação e varia em função da carga e da CA de entrada, entregando na saída uma tensão constante. (Fig. 20)

A figura 21 mostra o chapeado de uma placa de circuito impresso para uma fonte de CC com tensão de saída regulada a zener, identificando os blocos do circuito.

Fig. 21

Observação

Não aparecem no circuito a chave liga-desliga, o fusível, a chave seletora 110 V e o transformador porque estão fora da placa de circuito impresso.

Caso seja necessário reparar ou testar uma fonte deste tipo, pode-se utilizar o fluxograma de teste apresentado a seguir.

Circuito para o fluxograma

Conceito de LED (Light emitter diode) – Diodo emissor de luz

É um tipo especial de diodo semicondutor que emite luz quando é polarizado diretamente.

Simbologia e características físicas

O diodo emissor de luz, identificado comumente como LED, é representado pelo símbolo apresentado na figura 22.

Fig. 22

Os LEDs são encontrados com as mais diversas formas e dimensões. A figura 23 apresenta alguns tipos construtivos de LED.

Fig. 23

O catodo de um LED pode ser identificado por um "corte" na base do encapsulamento. (Fig. 24)

Fig. 24

O LED é utilizado principalmente em substituição às lâmpadas incandescentes de sinalização, devido a uma série de vantagens que apresenta, tais como:

- baixo consumo;
- alta resistência a vibrações;
- nenhum aquecimento;
- grande durabilidade.

Funcionamento

Quando o LED é polarizado diretamente, entra em condução, permitindo a circulação de corrente. (Fig. 25)

Fig. 25

A circulação da corrente se processa pela liberação de portadores livres na estrutura dos cristais.

O deslocamento de portadores da banda de condução provoca a liberação de energia (emissão de fótons) em forma de luz. (Fig. 26)

Fig. 26

Características do LED

As características importantes do LED são:

- corrente direta nominal (IF)
- tensão direta nominal (VF)
- tensão inversa máxima (VR)
- corrente direta máxima (IFM)

Corrente direta nominal (I_F)

É um valor de corrente de condução indicado pelo fabricante com o qual o LED apresenta um rendimento luminoso ótimo (normalmente 20 mA)

Tensão direta nominal (V_F)

Especificação que define a queda da tensão típica do diodo no sentido de condução. A queda da tensão nominal (VF) ocorre no componente quando a corrente direta tem valor nominal (IF). (Fig. 27)

Fig. 27

Para valores de corrente direta diferentes do valor nominal (IF), a tensão direta de condução sofre pequenas modificações de valor.

Tensão inversa máxima (VR)

Especificação que determina o valor de tensão máxima que o LED suporta no sentido inverso sem sofrer ruptura.

A tensão inversa máxima do LED é pequena (da ordem de 5 V) uma vez que estes componentes não têm por finalidade a retificação.

A tabela a seguir apresenta as características de alguns LEDs.

LED	COR	VF a IF = 20 mA	IF máx.
LD 30C	vermelho	1,6 V	100 mA
LD 371	verde	2,4 V	60 mA
LD 351	amarelo	2,4 V	60 mA

Corrente direta máxima (IFM)

Especificação que define a corrente máxima de condução do LED, sem prejuízo para sua estrutura.

LED bicolor

O LED bicolor consiste, na verdade, de dois LEDs colocados dentro de uma mesma cápsula. Esses LEDs têm três terminais. (Figs. 28 e 29)

Um dos terminais é comum aos dois LEDs. Dependendo da cor que se deseja acender, polariza-se um dos diodos. (Figs. 30 e 31)

LED infravermelho

A luz infravermelha é um tipo de luz que não é visível ao olho humano.

Esse tipo de luz é usado, principalmente, em alarmes contra roubos e circuitos do gênero.

Existem LEDs que permitem luz infravermelha. Esses LEDs funcionam como os outros, porém não se pode observar visualmente se estão ligados ou não.

Teste do LED

Os LEDs podem ser testados como um diodo comum, usando-se um multímetro na escala de resistência.

Em um sentido o teste deve indicar baixa resistência e, em outro, alta resistência. (Figs. 32 e 33)

Fig. 32

Fig. 33

A identificação dos terminais anodo e catodo também pode ser feita com o multímetro, da mesma forma que em um diodo comum.

Utilização do LED em CC

A aplicação do LED em tensões contínuas exige a fixação da sua corrente direta nominal (IF). A limitação da corrente pode ser feita através de um resistor.

A figura 34 apresenta um circuito retificador de onda completa que utiliza o LED como indicador de fornecimento.

Fig. 34

O valor do resistor limitador é dado pela expressão

$$R = \frac{VCC - VF}{IF}$$

onde

Vcc ⇒ tensão de saída da fonte

 $V_F \;\;\Rightarrow\;\; tensão nominal de condução do LED$

IF ⇒ corrente nominal de condução do LED

Aplicação

Tomando-se como exemplo a fonte retificadora da figura 34 com:

VCC (tensão de saída da fonte) = 10 V (por exemplo, LED FLV 110) e, sabendo-se que o LED FLV 110 tem como características:

COR	IF (mA)	VF (V)	IFM (mA)
vermelho	20	1,7	50

calcular o valor e a potência do resistor para a limitação da corrente.

O valor seria:

$$R = \frac{VCC - VF}{IF}$$

$$R = \frac{10 - 1.7}{0.02} = 415 \Omega$$

 $R=390~\Omega~ou~470~\Omega~em~valores~padronizados$ A potência do resistor seria aproximadamente:

$$PR = VR \cdot IR$$

$$8,3 \text{ V} \cdot 0.02 \text{ A} = 166 \text{ mW}$$

Para trabalhar a frio:

$$PR = 0.5 W$$

