

Primeira Prova Bimestral – Trabalho Substituto de 2020

PERÍODO NOTURNO

Prof^o Marcelo Porto Trevizan

Nome:	RA:
ssinatura:	Data: 25.09.2020 a 30.09.2020
(Prientações
• Este trabalho substituto de prova	é individual;
• por favor, resolver de forma organ	nizada e destacar as respostas;
• as questões possuem valores parametrizados por RA, conforme tabelas no arquivo ete103-n-p1-2020-valores-por-ra.ods, disponível no Moodle; muita atenção!, pois o uso de valor incorreto implicará em desconto de 50% na nota da questão;	
• contém 6 questões;	
• o prazo para entrega é até as 23h	59 da data final apontada no cabeçalho acima;
• o arquivo de entrega deverá estar	em formato PDF;
-	arquivo enviado; folhas avulsas poderão ser intercaladas
entre uma questão e outra;	
• pontuação máxima de 10,0 pontos	S.
Boa Prova!!!	

 $(Espaço\ reservado\ para\ rascunho.\ Poder\'a\ ser\ utilizado\ para\ continuar\ quest\~ao,\ desde\ que \\ \underline{devidamente}\ identificada.)$

Questão 1 (3,5). No circuito abaixo, o amperímetro indicou a corrente de I_{amp} A. Registrar 3,5 as etapas de cálculo.

2,75

2,5

2,25

2,0

1,75

1,5

1,25

1,0

Pede-se:

a) (1,0) O valor de V_1 .

b) (1,0) O balanço de potência.

- c) (0,5) Classificar os bipolos.
- d) (1,0) Determinar $V_{1_{min}}$ para V_2 se tornar receptor ativo.

Por favor, resolver de forma organizada e destacar as respostas!

Questão 2 (0,5). Supondo conhecidos os valores R_A , R_B , R_C , R_L , k e V_{CC} , determine a 0,5 expressão literal de V_L .

Questão 3 (1,5). Para o circuito abaixo, realizar o balanço de potência e classificar todos os 1,8 bipolos. Registrar os cálculos realizados e justificar a classificação.

Por favor, resolver de forma organizada e destacar as respostas!

Questão 4 (2,0). Determinar V_{R3} pelo *Teorema da Superposição de Efeitos*. Apresentar todas 2,0 as etapas.

Por favor, resolver de forma organizada e destacar as respostas!

Questão 5 (1,5). Um determinado material hipotético desenvolvido em laboratório – material ζ	1,5
(leia-se "material zeta") – apresenta coeficiente de temperatura (α) de \mathbf{A} °C ⁻¹ . Agora, deseja-	
se determinar sua condutividade a 20 °C. Para tanto, tomou-se uma amostra cilíndrica com	1,25
diâmetro de 1 cm e comprimento de 10 cm e aplicou-se uma tensão de 2 V nesta, num ambiente	
cuja temperatura era de ${f B}^{\circ}{f C}$. Em tal situação, foi medida uma corrente de 0,5 A. Pede-se:	1,0
	0,75
a) $(0,25)$ Esboço do material e circuito montado, com indicação das grandezas envolvidas.	
$(10) \sigma_{(110)}$	0,5
b) $(1,0) \sigma_{(20 {}^{\circ}\mathrm{C})}$.	0.25
c) $(0,25)$ Se o circuito de ensaio permanecer ligado por 1 semana, calcular a energia consu-	0,4
mida pelo material ζ , em calorias.	0,0

Por favor, resolver de forma organizada e destacar as respostas!

Questão 6 (1,0). Projetar um circuito para acender 10 LEDs convencionais simultaneamente	1,0
com um único resistor. Essencialmente, apresentar:	0,75
a) (0,25) Desenho do circuito.	
b) $(0,75)$ Dimensionamento do resistor. Apontar os cálculos e considerações.	0,28
A fonte de tensão a utilizar encontra-se na tabela de valores por RA.	0,0
Por favor, resolver de forma organizada e destacar as respostas!	