

机器学习概念

数据

- □ 数据是经验的另一种说法,也是信息的载体。
 - 结构化数据和非结构化数据(按数据具体类型划分)
 - 原始数据和加工数据(按数据表达形式划分)
 - 样本内数据和样本外数据(按数据统计性质划分)
- □ 结构化和非结构化
 - 结构化数据 (structured data) 是由二维表结构来逻辑表达和实现的数据。非结构化数据是没有预定义的数据,不便用数据库二维表来表现的数据。

结构化数据

□ 机器学习模型主要使用的是结构化数据,即二维的数据表。

非结构化数据

□ 非结构化数据包括图片,文字,语音和视频等

图片

文字

Dynamic Routing Between Capsules

State Salve

Michelan Pires

Confine E. Florian Energy Brain Square Loanshoot, Closest, gravitates/Signingto to

Abstract

A committed of prompt of formion is where it should written consciously. We determine the leading of the leadin

第2章 模型评估与选择

2.1 经验据差与过程会

棋谱

□图像型数据

□文本型数据

ASCII TABLE

Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char
0	0	[NULL]	32	20	[SPACE]	64	40	@	96	60	*
1	1	[START OF HEADING]	33	21	1	65	41	A	97	61	a
2	2	[START OF TEXT]	34	22	n	66	42	В	98	62	b
3	3	[END OF TEXT]	35	23	#	67	43	C	99	63	c
4	4	[END OF TRANSMISSION]	36	24	5	68	44	D	100	64	d
5	5	[ENQUIRY]	37	25	%	69	45	E	101	65	e
6	6	[ACKNOWLEDGE]	38	26	6.	70	46	F	102	66	f
7	7	[BELL]	39	27		71	47	G	103	67	q
8	8	[BACKSPACE]	40	28	(72	48	н	104	68	h
9	9	[HORIZONTAL TAB]	41	29)	73	49	1	105	69	i
10	A	[LINE FEED]	42	2A	*	74	4A	J	106	6A	i
11	В	[VERTICAL TAB]	43	2B	+	75	4B	K	107	6B	k
12	C	[FORM FEED]	44	2C		76	4C	L	108	6C	1
13	D	[CARRIAGE RETURN]	45	2D	-	77	4D	M	109	6D	m
14	E	[SHIFT OUT]	46	2E	-	78	4E	N	110	6E	n
15	F	[SHIFT IN]	47	2F	1	79	4F	0	111	6F	0
16	10	IDATA LINK ESCAPEI	48	30	0	80	50	P	112	70	p
17	11	[DEVICE CONTROL 1]	49	31	1	81	51	Q	113	71	q
18	12	[DEVICE CONTROL 2]	50	32	2	82	52	R	114	72	r
19	13	[DEVICE CONTROL 3]	51	33	3	83	53	S	115	73	S
20	14	[DEVICE CONTROL 4]	52	34	4	84	54	Т	116	74	t
21	15	[NEGATIVE ACKNOWLEDGE]	53	35	5	85	55	U	117	75	u
22	16	(SYNCHRONOUS IDLE)	54	36	6	86	56	V	118	76	v
23	17	[ENG OF TRANS, BLOCK]	55	37	7	87	57	w	119	77	w
24	18	(CANCEL)	56	38	8	88	58	X	120	78	×
25	19	[END OF MEDIUM]	57	39	9	89	59	Y	121	79	v
26	1A	(SUBSTITUTE)	58	3A	:	90	5A	Z	122	7A	z
27	18	[ESCAPE]	59	3B	:	91	5B	1	123	7B	1
28	10	[FILE SEPARATOR]	60	3C	<	92	5C	1	124	7C	1
29	1D	[GROUP SEPARATOR]	61	3D	=	93	5D	1	125	7D	3
30	1E	[RECORD SEPARATOR]	62	3E	>	94	5E	^	126	7E	~
31	1F	[UNIT SEPARATOR]	63	3F	?	95	5F		127	7F	[DEL]

□分类型变量

	得分	篮板	助攻	比赛结果
1	27	10	12	嬴
2	33	9	9	输
3	51	10	8	输
4	40	13	15	赢

两类变量用「0-1编码」,比如比赛结果= $\{$ 赢,输 $\}$ 表示成 y=[1001],1代表赢,0代表输。

	射门	传球	控球	比赛结果	
1	9	42	12	赢	
2	4	30	9	平	
3	6	14	8	赢	
4	0	22	15	输	

多类变量分别用 0, 1, 2 来表示, 那么 y = [0 1 0 2]。 也可使用独热编码

样本内和样本外

在统计中,把研究对象的全体称为总体 (population),而把组成总体的各个元素称为个体,把从总体中抽取的若干个体称为样本 (sample)。

样本内和样本外

数据规范化

Min-Max规范化:

$$x' = x'_{min} + rac{x - x_{min}}{x_{max} - x_{min}} imes (x'_{max} - x'_{min})$$

中心化:

$$x' = x - \bar{x}$$

标准化:

$$x' = rac{x - ar{x}}{\sigma}$$

机器学习基本概念

- □ 输入: $\mathbf{X} \in \mathcal{X}$, 输出: $\mathbf{Y} \in \mathcal{Y}$, 输出实例: $y \in \mathcal{Y}$
- □ 输入实例: $\mathbf{x} = (x_1, x_2, \dots, x_d) \in \mathcal{X}$ 或者 $\mathbf{x} = (x^1, x^2, \dots, x^d) \in \mathcal{X}$
- □ 目标函数: $Y = f(\mathbf{X})$; 目标分布: $P(Y|\mathbf{X})$
- □ 对具体的输入时: $y = f(\mathbf{x})$ 或 $P(y|\mathbf{x})$
- □ 数据集: $\mathcal{D} = \{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_N, y_N)\}$

机器学习三要素:模型

- □ 模型: 决策函数或者条件概率分布
- □ 假设空间:决策函数或者条件概率分布的集合
- □ 决策函数集合: $\mathcal{H} = \{f \mid Y = f(\mathbf{X}; \theta), \theta \in \mathbb{R}^n\}$
- □ 条件概率的集合: $\mathcal{H} = \{P \mid P(Y|X;\theta), \theta \in \mathcal{R}^n\}$

机器学习三要素:策略

- □ 策略: 从假设空间中选取最优模型
- □ 损失函数: *L*(*y*, *ŷ*)
 - 0-1损失函数:

$$L(Y, f(\mathbf{X})) = \llbracket f(\mathbf{X})
eq Y
rbracket = egin{cases} 1, & Y
eq f(\mathbf{X}) \ 0, & Y = f(\mathbf{X}) \end{cases}$$

■ 平方损失函数:

$$L(Y, f(\mathbf{X})) = (Y - f(\mathbf{X}))^2$$

■ 绝对损失函数:

$$L(Y, f(\mathbf{X})) = |Y - f(\mathbf{X})|$$

■ 对数损失函数:

$$L(Y, P(Y|\mathbf{X})) = -\mathbf{log} P(Y|\mathbf{X})$$

机器学习三要素:策略

例:在分类数为M的分类问题中,设 $p_i(x)$ 为分类器将x预测为类别i的概率,则其对数损失函数为?

$$L(y, P(y|\mathbf{x})) = -\mathbf{log}\,P(y|\mathbf{x}) = -\sum_{i=1}^M \llbracket y = i
rbracket \mathbf{log}\,p_i(\mathbf{x})$$

更进一步,考虑数据集容量为 N,则该数据集的平均损失函数(代价函数)为:

$$L(Y, P(Y|\mathbf{X})) = -\mathbf{log}\,P(Y|\mathbf{X}) = -rac{1}{N}\sum_{j=1}^{N}\sum_{i=1}^{M}\llbracket y_j = i
rbracket\mathbf{log}\,p_i(\mathbf{x_j})$$

机器学习三要素:策略

成本 (风险) 函数:

□ 期望风险:
$$R_{exp}(f) = \int_{\mathcal{X} \times \mathcal{Y}} L(y, f(\mathbf{x})) P(\mathbf{x}, y) d\mathbf{x} dy$$

给定训练集:
$$T = \{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_N, y_N)\}$$

□ 经验风险:

$$R_{emp}(f) = rac{1}{N} \sum_{i=1}^N L(y_i, f(\mathbf{x}_i))$$

□ 结构风险:

$$R_{srm}(f) = rac{1}{N} \sum_{i=1}^{N} L(y_i, f(\mathbf{x}_i)) + \lambda J(f)$$

策略:

$$\min_{f \in \mathcal{H}} R_{emp}(f)$$
 或者 $\min_{f \in \mathcal{H}} R_{srm}(f)$

机器学习三要素: 算法

- □ 算法: 学习模型的具体算法, 选取最优模型
- □ 最优化问题: $\min_{w,b} J(w,b)$
 - 极值问题
 - ■梯度下降
 - 牛顿法和拟牛顿法
 - 约束优化问题——拉格朗日乘数法

机器学习一般流程

步骤:

- 1. 得到一个有限的训练数据集合
- 2. 确定包含所有可能的模型的假设空间, 即学习模型的集合
- 3. 确定模型选择的准则, 即学习的策略
- 4. 实现求解最优模型的算法,即学习的算法
- 5. 通过学习方法选择最优模型
- 6. 利用学习的最优模型对新数据进行预测和分析。

- □ 按有无标签分类
 - 监督学习: 垃圾邮件分类、房价预测
 - 非监督学习: 异常检测
 - 半监督学习:标注语音
 - 强化学习: Alpha GO

- □ 按输出空间分类
 - 二分类: 垃圾邮件分类
 - 多分类: 图像分类
 - 回归:房价预测
 - 结构化学习: 机器翻译、语音识别、聊天机器人

▶Dog

图像分类

Cat

- □ 按模型分类
 - 生成式模型: GAN
 - 先确定P(x,y)
 - 然后利用贝叶斯定理: $P(y|x) = \frac{P(x,y)}{P(x)}$
 - 判别式模型: 决策树、支持向量机
 - 直接确定P(y|x)
 - $\mathfrak{A}f(x)$

Discriminative Model

Generative Model

- □ 按算法分类
 - 批量学习:一次性批量输入给学习算法,可以被形象的称为填鸭式学习
 - 在线学习:按照顺序,循序的学习,不断的去修正模型,进行优化
 - 主动学习:通过某种策略找到未进行类别标注的样本数据中最有价值的数据,交由专家进行人工标注后,将标注数据及其类别标签纳入到训练集中迭代优化分类模型,改进模型的处理效果

机器学习挑战

- □模型的预测效果
- □ 模型的稳定性
 - 对抗样本:攻击者通过在源数据上增加人类难以通过 感官辨识到的细微改变,但是却可以让机器学习模型 接受并做出错误的分类决定。
 - 一个典型的场景就是图像分类模型的对抗样本,通过 在图片上叠加精心构造的变化量,在肉眼难以察觉的 情况下,让分类模型产生误判。

"panda" 57.7% confidence

 $+.007 \times$

 $sign(\nabla_x J(\theta, x, y))$ "nematode"
8.2% confidence

 $x + \epsilon sign(\nabla_x J(\theta, x, y))$ "gibbon"

99.3 % confidence

机器学习挑战

- □模型结果的可解释性
 - 算法歧视

奥卡姆剃刀

奥卡姆剃刀(Occam's razor) 若有多个假设与观察一致,则选最简单的那个

没有免费的午餐

没有免费的午餐

假设样本空间x和假设空间H都是离散的。令P(h|X,Ca) 表示算法Ca基于训练数据X产生假设h的概率,再令f 代表我们希望学习的真实目标函数。则算法Ca在训练 集之外的所有样本上的误差为:

$$E_{ote}(\mathcal{L}_a|X,f) = \sum_h \sum_{\mathbf{x} \in \mathcal{X} - X} P(\mathbf{x}) \llbracket h(\mathbf{x})
eq f(\mathbf{x})
rbracket P(h|X, \mathcal{L}_a)$$

没有免费的午餐

考虑二分类问题,且真实目标函数可以是任何函数 $f: \mathcal{X} \to \{0,1\}$

对所有可能的函数按照均匀分布对误差求和,有

$$\sum_{f} E_{ote}(\mathcal{L}_{a}|X, f) = \sum_{f} \sum_{h} \sum_{\mathbf{x} \in \mathcal{X} - X} P(\mathbf{x}) [h(\mathbf{x}) \neq f(\mathbf{x})] P(h|X, \mathcal{L}_{a})$$

$$= \sum_{\mathbf{x} \in \mathcal{X} - X} P(\mathbf{x}) \sum_{h} P(h|X, \mathcal{L}_{a}) \sum_{f} [h(\mathbf{x}) \neq f(\mathbf{x})]$$

$$= \sum_{\mathbf{x} \in \mathcal{X} - X} P(\mathbf{x}) \sum_{h} P(h|X, \mathcal{L}_{a}) \frac{1}{2} 2^{|\mathcal{X}|}$$

$$= \frac{1}{2} 2^{|\mathcal{X}|} \sum_{\mathbf{x} \in \mathcal{X} - X} P(\mathbf{x}) \sum_{h} P(h|X, \mathcal{L}_{a})$$

$$= 2^{|\mathcal{X}| - 1} \sum_{\mathbf{x} \in \mathcal{X} - X} P(\mathbf{x}) \cdot 1$$

也就是: $\sum_{f} E_{ote}(\mathcal{L}_a|X,f) = \sum_{f} E_{ote}(\mathcal{L}_b|X,f)$

没有一种机器学习算法是适用于所有情况的

频率派和贝叶斯派

$$X_{N imes p} = (x_1, x_2, \cdots, x_N)^T, x_i = (x_{i1}, x_{i2}, \cdots, x_{ip})^T$$

假设每个观测都是由p(x|θ)生成的

频率派: 6是一个常量

- 以客观世界为研究主体,为了找到客观世界的某个规律
- 不关心参数空间的所有细节,相信数据都是在这个空间里的"某个"参数值下产生的

对于N个观测来说,观测集的概率为

$$p(X| heta) \equiv \prod_{i = 1}^N p(x_i| heta)$$

为了求 θ 的大小,我们采用最大对数似然MLE的方法

$$heta_{MLE} = \mathop{argmax}_{ heta} \log p(X| heta) \mathop{=}_{iid} \mathop{argmax}_{ heta} \sum_{i=1}^{N} \log p(x_i| heta)$$

频率派和贝叶斯派

贝叶斯派: θ 是一个满足预设的先验分布 $\theta \sim p(\theta)$

- 探究的是我们对某一事件发生的相信程度,且这种相信程度会因为观测到的客观事件而改变
- 关心参数空间里的每一个值,参数空间里的每个值都有可能是真实模型使用的值。

根据贝叶斯定理, 依赖观测集的参数后验为:

$$p(\theta|X) = \frac{p(X|\theta) \cdot p(\theta)}{p(X)} = \frac{p(X|\theta) \cdot p(\theta)}{\int\limits_{\theta} p(X|\theta) \cdot p(\theta) d\theta}$$

为了求θ的大小,我们采用最大参数后验MAP的方法

$$heta_{MAP} = \mathop{argmax}_{ heta} p(heta|X) = \mathop{argmax}_{ heta} p(X| heta) \cdot p(heta)$$

频率派和贝叶斯派

贝叶斯估计:

$$p(\theta|X) = \frac{p(X|\theta) \cdot p(\theta)}{\int\limits_{\theta} p(X|\theta) \cdot p(\theta)d\theta}$$

贝叶斯预测:

$$p(x_{new}|X) = \int\limits_{ heta} p(x_{new}| heta) \cdot p(heta|X) d heta$$

贝叶斯派: 概率图模型

• 求积分问题: MCMC

频率派: 统计机器学习的优化问题:

- 1) 建立模型、概率
- 2) 定义损失函数
- 3) 梯度下降/牛顿法求解

□ 例: 给定一个训练集, 输入为 $(x_1, x_2, \dots, x_N)^T$, 输出为 $(y_1, y_2, \dots, y_N)^T$, N = 10.

□过拟合

	M = 0	M=1	M = 3	M = 9
w_0^*	0.19	0.82	0.31	0.35
w_1^*		-1.27	7.99	232.37
w_2^*			-25.43	-5321.83
w_3^*			17.37	48568.31
w_4^*				-231639.30
w_5^*				640042.26
w_6^*				-1061800.52
w_7^*				1042400.18
w_8^*				-557682.99
w_9^*				125201.43

□增加数据量

例:多项式曲线拟合问题

□ 正则化:引入惩罚项

例:多项式曲线拟合问题

□引入惩罚项

	$\ln \lambda = -\infty$	$\ln \lambda = -18$	$\ln \lambda = 0$
w_0^*	0.35	0.35	0.13
w_1^*	232.37	4.74	-0.05
w_2^*	-5321.83	-0.77	-0.06
w_3^*	48568.31	-31.97	-0.05
w_4^*	-231639.30	-3.89	-0.03
w_5^*	640042.26	55.28	-0.02
w_6^*	-1061800.52	41.32	-0.01
w_7^*	1042400.18	-45.95	-0.00
w_8^*	-557682.99	-91.53	0.00
w_9^*	125201.43	72.68	0.01

过拟合和欠拟合

- □ 过拟合(泛化能力弱): 训练误差低,测试误差 高
- □ 欠拟合: 训练误差高

- □ 正则化:降低模型复杂度,减少测试误差
 - 惩罚项、训练集增强
 - Dropout earlystopping
- □ 范数:满足以下条件的函数

- (1) 非负的: $\forall \mathbf{x} \in \mathbf{R}^n, f(\mathbf{x}) \geq 0$
- (2) 正定的: $f(\mathbf{x}) = 0 \Leftrightarrow \mathbf{x} = 0$
- (3) 齐次的: $\forall \mathbf{x}, t, f(t\mathbf{x}) = |t|f(\mathbf{x})$
- (4) 三角不等式: $\forall \mathbf{x}, \mathbf{y} \in \mathbf{R}^n, f(\mathbf{x} + \mathbf{y}) \leq f(\mathbf{x}) + f(\mathbf{y})$

范数是欧式空间向量长度的推广,使用 f(x) = ||x||

□ 向量范数

$$l_p$$
 范数 $(p \ge 1)$: $\|\mathbf{x}\|_p = \sqrt[p]{\sum_{i=1}^n |x_i|^p}$

$$l_1$$
 范数 (曼哈顿距离): $\|\mathbf{x}\|_1 = \sum_{i=1}^n |x_i|$

$$l_2$$
 范数 (欧氏距离): $\|\mathbf{x}\|_2 = \sqrt{\sum_{i=1}^n x_i^2}$

 l_{∞} 无穷范数: $\|\mathbf{x}\|_{\infty} = \max_{i \in 1..n} |x_i|$

$$l_0$$
 零范数: $\|\mathbf{x}\|_0 = \#(i|x_i \neq 0)$

□ 矩阵范数: $||A|| = \max_{\|\mathbf{x}\| \neq 0} \frac{||A\mathbf{x}||}{||\mathbf{x}||} = \max_{\|\mathbf{x}\| = 1} ||A\mathbf{x}||$

l1 范数:

$$\|A\|_1 = \max_j \sum_i |a_{ij}|$$

l2 范数:

$$||A||_2 = \sqrt{\max_i |\lambda_i|}$$
 , 其中 λ_i 为 $A^T A$ 的特征值

l∞范数:

$$\|A\|_{\infty} = \max_{i} \sum_{i} |a_{ij}|$$

lo 范数:

$$\|A\|_0 = \sum_i \sum_j \llbracket a_{ij}
eq 0
bracket$$

F-范数:

$$\|A\|_F = \sqrt{\sum_i \sum_j a_{ij}^2}$$

- □ 目标函数: $\bar{J}(\omega,b) = J(\omega,b) + \frac{\lambda}{2N}\Omega(\omega)$

假设数据只有两个特征即, ω_1 , ω_2

$$\bar{J}(\omega_1, \omega_2) = J(\omega_1, \omega_2) + \frac{\lambda}{2N}(|\omega_1| + |\omega_2|)$$

$$L^{1}$$
 正则化 ω_{1} := $\omega_{1} - \alpha \frac{d\bar{J}}{d\omega_{1}}$
= $\omega_{1} - \frac{dJ}{d\omega_{1}} - \frac{\alpha\lambda}{2N} \operatorname{sign} \omega_{1}$

$$\Box L^{2}$$
 正则化:
$$\Omega(\omega) = \|\omega\|_{2}^{2}$$

$$\bar{J}(\omega_{1}, \omega_{2}) = J(\omega_{1}, \omega_{2}) + \frac{\lambda}{2N}(\omega_{1}^{2} + \omega_{2}^{2})$$

$$L^{2}$$
 正则化
$$\omega_{1} := \omega_{1} - \alpha \frac{d\bar{J}}{d\omega_{1}}$$

$$= \omega_{1} - \frac{dJ}{d\omega_{1}} - \frac{\alpha\lambda}{N} \omega_{1}$$

$$= \left(1 - \frac{\alpha\lambda}{N}\right) \omega_{1} - \frac{dJ}{d\omega_{1}}$$

模型选择:交叉验证

- □将数据分成训练集、验证集、测试集
- □ 交叉验证: 重复利用数据
 - 简单交叉验证: 从训练集中随机分成训练数据和测试 数据,对不同的模型进行测试,选择最优的。
 - K折交叉验证
 - 随机将已给数据分成K个互不相交、大小相同的子集
 - 利用K-1个子集的数据训练模型,余下的子集测试模型;
 - · 将这一过程对可能的K种选择重复进行
 - 最后选个K次评测中平均测试误差最小的模型
 - 留一交叉验证: K=N

K折交叉验证

过拟合

学习	开车
过拟合	车祸
VC维太大(模型过于复杂)	车开太快
数据有noise	道路崎岖
数据量不够	对路况的了解程度不够
从简单模型开始	先慢慢开
数据清洗/修剪	使用更加精确的道路信息
数据提示	利用更多的道路信息
正则化	踩刹车
验证	观察仪表盘
特征转换	踩油门

- □混淆矩阵
 - 真正 (True Positive, TP)
 - 假正 (Flase Positive, FP)
 - 假负 (False Negative, FN)
 - 真负 (True Negative, TN)

实值	Positive	Negtive
正	TP	FN
负	FP	TN

- □ 真正率 (True Positive Rate) TPR=TP/(TP+FN)
- □ 假正率 (Flase Positive Rate) FPR=FP/(FP+TN)
- □ 假负率 (False Negative Rate) FNR=FN/(TP+FN)
- □ 真负率 (True Negative Rate) TNR=TN/(FP+TN)

- □ 查全率、召回率 (Recall) 、灵敏度
 - \blacksquare Recall=TP/(TP+FN)
- □ 查准率、精确率 (Precision)
 - Precision=TP/(TP+FP)

- ☐ Precision-Recall curve
- □ 漏警率: MA=1-R
- □ 虚警率: FA=1-P
- □ F1值和 F_{β} 值:

 $F_{1} = \frac{2 \times P \times R}{P + R}$ $F_{\beta} = \frac{(1 + \beta^{2}) \times P \times R}{\beta^{2} P + R}$

- □ 准确率 (Accuracy)
 - \blacksquare ACC= (TP+TN)/(TP+TN+FP+FN)
- □ 错误率 (Error rate)
 - Error=1-ACC
- □ 计算速度: 分类器训练和预测需要的时间
- □ 鲁棒性: 处理缺失值和异常值的能力
- □ 可扩展性: 处理大数据集的能力
- □ 可解释性: 分类器的预测标准的可理解性

- □ ROC (Receiver operation characteristic) 曲线
 - TPR=TP/(TP+FN): 灵敏度 (Sensitivity)
 - FPR=FP/(TN+FP): 1-特异度 (Specificity)

- □ AUC值: ROC曲线下的面积
- ☐ Wilcoxon-Mann-Witney Test
 - Score: 表示每个测试样本属于正样本的概率
 - 任意给一个正样本和负样本,正样本的Score大于负样本 Score的概率。(AUC值)
 - AUC值越大,正样本的Score值越有可能大于负样本的值, 从而能够更好地分类
- □计算
 - 对Score从大到小排序,然后令最大Score对应的sample 的rank为n,第二大score对应sample的rank为n-1,以此类推

$$AUC = \frac{\sum_{i \in positiveClass} rank_i - \frac{M(1+M)}{2}}{M \times N}$$

Inst# Class Score Inst# Class 1 p .9 11 p 2 p .8 12 n 3 n .7 13 p 4 p .6 14 n	
2 p .8 12 n 3 n .7 13 p	Score
3 n .7 13 p	.4
	.39
4 n 6 14 n	.38
4 P .0 14 M	.37
5 p .55 15 n	.36
6 p .54 16 n	.35
7 n .53 17 p	.34
8 n .52 18 n	.33
9 p .51 19 p	.30
10 n .505 20 n	.1

□ AUC=0.68

模型评估指标: 回归问题

- □ 平均绝对误差 (MAE)
 - $\blacksquare MAE = \frac{1}{N} \sum_{i} |\hat{y}_{i} y_{i}|$
- □均方误差MSE
 - $\blacksquare MSE = \frac{1}{N} \sum_{i} (\hat{y}_i y_i)^2$
- □均方根误差RMSE
 - $\blacksquare RMSE = \sqrt{\frac{1}{N}} \sum_{i} (\hat{y}_{i} y_{i})^{2}$

THE END