CPE301 - SPRING 2019

Design Assignment X

Student Name: Ricky Perez Student #: 5002297620

Student Email: perezr1@unlv.nevada.edu

Primary Github address: https://github.com/RickyPerez79/submission_da

Directory: DA4A

Submit the following for all Labs:

1. In the document, for each task submit the modified or included code (only) with highlights and justifications of the modifications. Also, include the comments.

- 2. Use the previously create a Github repository with a random name (no CPE/301, Lastname, Firstname). Place all labs under the root folder ESD301/DA, sub-folder named LABXX, with one document and one video link file for each lab, place modified asm/c files named as LabXX-TYY.asm/c.
- 3. If multiple asm/c files or other libraries are used, create a folder LabXX-TYY and place these files inside the folder.
- 4. The folder should have a) Word document (see template), b) source code file(s) and other include files, c) text file with youtube video links (see template).

1. COMPONENTS LIST AND CONNECTION BLOCK DIAGRAM w/ PINS

- Multi-Functional Shield
- 35BY48B06 -Unipolar Stepper Motor
- DC Motor
- External Power source

2. INITIAL/MODIFIED/DEVELOPED CODE OF TASK 1/A

```
* DA4A.c
* Created: 4/10/2019 1:37:12 PM
* Author : perezr1
/************** Define Variable/Include Libraries *************/
#define F CPU 1600000UL
#include <avr/io.h>
#include <util/delay.h>
#include <avr/interrupt.h>
/************************ Function Prototype ************************/
void init adc(void);
/*********************************/lobal Variable****************************/
int status motor = 0; // status of the motor each time push button is pressed
int main()
DDRD = 0x40; //enable port D
    DDRC = 0x04; // set Port C as outputs
    PORTC |= (1<<2); // enable pull-up pin
TCCR0A=0x83; // set fast PWM & clear OCR0A on MATCH
    TCCR0B=0x05; // 1024 prescalar
PCICR = 0x02; // 0x02 is PCIE1, that is, enable PCIE1 for PCMSK1 to work
    PCMSK1 = 0x04; // enable pin changes on PCINT9 (PC1)
    init_adc(); // function call for init_adc
    sei(); // enable interrupt
    while (1)
```

```
{
              // wait here
void init_adc(void) // Initiate ADC functions
       ADMUX = (1<<REFS0); // Reference voltage at A ref
       ADCSRA = (1 < ADEN) | (1 < ADSC) | (1 < ADATE) | (1 < ADPS2) | (1 < ADPS1) | (1 < ADPS0); //
enable ADC/Start Conversion , 128 prescalar
// Pin Change Interrupt Service Routine
ISR(PCINT1 vect)
       if(!(PINC & (1<<PINC2))) // if push button is pressed go in if statement</pre>
              if(status_motor == 0) // motor will be OFF
                     OCR0A = 0;
                     _delay_ms(1000); // delay for debouncing
              if (status_motor == 1) // motor will be ON
                     while((ADCSRA&(1<<ADIF))==0); // wait for conversion</pre>
                     // when convertion is done, it will store the value into OCR0A
                     OCR0A = ADC/10; // Converts ADC/Output value to OCR0A
                     _delay_ms(1000); // delay for debouncing
              status_motor ^= 1; //update status (ON = 1, OFF = 0) of the motor when push
button is pressed
       }
}
```

3. SCHEMATICS

4. SCREENSHOTS OF EACH TASK OUTPUT (ATMEL STUDIO OUTPUT)

5. SCREENSHOT OF EACH DEMO (BOARD SETUP)

6. VIDEO LINKS OF EACH DEMO

https://youtu.be/RaAgurkVjFg

7. GITHUB LINK OF THIS DA

https://github.com/RickyPerez79/submission_da

Student Academic Misconduct Policy

http://studentconduct.unlv.edu/misconduct/policy.html

"This assignment submission is my own, original work".

RICKY PEREZ