SOCIAL MEDIA TOURISM REPORT

ROHIT AGRAWAL

Contents

OCIAL MEDIA TOURISM	8
1.1 Introduction	8
a). Problem Statement	8
b). Need of the Study	8
c). Understanding Business/Social Opportunity	8
1.2 EDA and Business Implication	9
a). Understanding how data was collected in terms of time, frequency and methodology	9
b). Visual inspection of data (rows, columns, descriptive details)	10
c). Understanding of attributes (variable info, renaming if required)	12
d). Univariate analysis (distribution and spread for every continuous attribute, distribution of in categories for categorical ones)	
e). Bivariate analysis (relationship between different variables, correlations)	16
f). Any business insights using clustering	22
g). Other business insights	24
1.3 Data Cleaning and Pre-processing	25
a). Treating Bad Data	25
b). Removal of unwanted variables	27
c). Missing Value treatment	27
d). Outlier treatment	28
e). Variable Transformation / Addition of New Variables	29
f). Is the data unbalanced?	29
1.4 Model Building and Model Validation	30
Laptop	30
a). Build various models (You can choose to build models for either or all of descriptive, predictive or prescriptive purposes) and test your predictive model against the test set using	
various appropriate performance metrics	
b). Interpretation of the model(s)	45
c) Ensemble modelling, wherever applicable and Any other model tuning measures (if applicable)	
d). Interpretation of the hyper tuned models and Using SMOTE Techniques models	74
Mobile	75
a). Build various models (You can choose to build models for either or all of descriptive, predictive or prescriptive purposes) and test your predictive model against the test set using various appropriate performance metrics	76
b). Interpretation of the model(s)	91
c) Ensemble modelling, wherever applicable and Any other model tuning measures (if applicable)	91
d). Interpretation of the hyper tuned models and Using SMOTE Techniques models	120

1.5 Final interpretation / recommendation	121
1.5 Final interpretation / recommendation	121

List Of Tables

Table 1. Dataset Sample First 5 Records	9
Table 2. Dataset Sample Last 5 Records	9
Table 3. Data Dictionary	10
Table 4. Description of Dataset	
Table 5. Sample of Dataset with 3 Clusters	23
Table 6. Cluster Observation	24
Table 7. Classification Report for Training Data in Basic Logistic Regression Model for Laptop	32
Table 8. Classification Report for Test Data in Basic Logistic Regression Model for Laptop	32
Table 9. Classification Report for Training Data in Basic KNN Model for Laptop	34
Table 10. Classification Report for Test Data in Basic KNN Model for Laptop	35
Table 11. Classification Report for Training Data in Basic Naive Bayes Model for Laptop	37
Table 12. Classification Report for Test Data in Basic Naive Bayes Model for Laptop	37
Table 13. Classification Report for Training Data in Basic Bagging for Laptop	39
Table 14. Classification Report for Test Data in Basic Bagging for Laptop	39
Table 15. Classification Report for Training Data in Basic Ada Boosting for Laptop	41
Table 16. Classification Report for Test Data in Basic Ada Boosting for Laptop	42
Table 17. Classification Report for Training Data in Basic Gradient Boosting for Laptop	44
Table 18. Classification Report for Test Data in Basic Gradient Boosting for Laptop	44
Table 19. Basic Models Comparisons for Laptop	45
Table 20. Classification Report for Training Data in Logistic Regression Grid Search for Laptop	47
Table 21. Classification Report for Test Data in Logistic Regression Grid Search for Laptop	47
Table 22. Classification Report for Training Data in KNN Grid Search for Laptop	49
Table 24. Classification Report for Training Data in Naive Bayes Grid Search for Laptop	51
Table 25. Classification Report for Test Data in Naive Bayes Grid Search for Laptop	51
Table 26. Classification Report for Training Data in Bagging Grid Search for Laptop	54
Table 27. Classification Report for Test Data in Bagging Grid Search for Laptop	54
Table 28. Classification Report for Training Data in Ada Boosting Grid Search for Laptop	56
Table 29. Classification Report for Test Data in Ada Boosting Grid Search for Laptop	57
Table 30. Classification Report for Training Data in Gradient Boosting Grid Search for Laptop	59
Table 31. Classification Report for Test Data in Gradient Boosting Grid Search for Laptop	59
Table 32. Classification Report for Training Data in Logistic Regression SMOTE for Laptop	62
Table 33. Classification Report for Test Data in Logistic Regression SMOTE for Laptop	62
Table 34. Classification Report for Training Data in KNN SMOTE for Laptop	64
Table 35. Classification Report for Test Data in KNN SMOTE for Laptop	65
Table 36. Classification Report for Training Data in Naive Bayes SMOTE for Laptop	66
Table 37. Classification Report for Test Data in Naive Bayes SMOTE for Laptop	67
Table 38. Classification Report for Training Data in Bagging SMOTE for Laptop	69
Table 39. Classification Report for Test Data in Bagging SMOTE for Laptop	69
Table 40. Classification Report for Training Data in Ada Boosting SMOTE for Laptop	71
Table 41. Classification Report for Test Data in Ada Boosting SMOTE for Laptop	71
Table 42. Classification Report for Training Data in Gradient Boosting SMOTE for Laptop	73
Table 43. Classification Report for Test Data in Gradient Boosting SMOTE for Laptop	74

Table 44. Model Tuning Comparison for Laptop	75
Table 45. Using SMOTE models comparison for Laptop	
Table 46. Classification Report for Training Data in Basic Logistic Regression Model for Mobile	
Table 47. Classification Report for Test Data in Basic Logistic Regression Model for Mobile	
Table 48. Classification Report for Training Data in Basic KNN Model for Mobile	
Table 49. Classification Report for Test Data in Basic KNN Model for Mobile	
Table 50. Classification Report for Training Data in Basic Naive Bayes Model for Mobile	
Table 51. Classification Report for Test Data in Basic Naive Bayes Model for Mobile	
Table 52. Classification Report for Training Data in Basic Bagging for Mobile	
Table 53. Classification Report for Test Data in Basic Bagging for Mobile	
Table 54. Classification Report for Training Data in Basic Ada Boosting for Mobile	
Table 55. Classification Report for Test Data in Basic Ada Boosting for Mobile	
Table 56. Classification Report for Training Data in Basic Gradient Boosting for Mobile	
Table 57. Classification Report for Test Data in Basic Gradient Boosting for Mobile	
Table 58. Basic Models Comparisons for Mobile	
Table 59. Classification Report for Training Data in Logistic Regression Grid Search for Mobile	
Table 60. Classification Report for Test Data in Logistic Regression Grid Search for Mobile	
Table 61. Classification Report for Training Data in KNN Grid Search for Mobile	
Table 62. Classification Report for Test Data in KNN Grid Search for Mobile	
Table 63. Classification Report for Training Data in Naive Bayes Grid Search for Mobile	
Table 64. Classification Report for Test Data in Naive Bayes Grid Search for Mobile	
Table 65. Classification Report for Training Data in Bagging Grid Search for Mobile	
Table 66. Classification Report for Test Data in Bagging Grid Search for Mobile	
Table 67. Classification Report for Training Data in Ada Boosting Grid Search for Mobile	
Table 68. Classification Report for Test Data in Ada Boosting Grid Search for Mobile	
Table 69. Classification Report for Training Data in Gradient Boosting Grid Search for Mobile	
Table 70. Classification Report for Test Data in Gradient Boosting Grid Search for Mobile	
Table 71. Classification Report for Training Data in Logistic Regression SMOTE for Mobile	
Table 72. Classification Report for Test Data in Logistic Regression SMOTE for Mobile	
Table 73. Classification Report for Training Data in KNN SMOTE for Mobile	. 110
Table 74. Classification Report for Test Data in KNN SMOTE for Mobile	.110
Table 75. Classification Report for Training Data in Naive Bayes SMOTE for Mobile	. 112
Table 76. Classification Report for Test Data in Naive Bayes SMOTE for Mobile	. 112
Table 77. Classification Report for Training Data in Bagging SMOTE for Mobile	. 114
Table 78. Classification Report for Test Data in Bagging SMOTE for Mobile	.115
Table 79. Classification Report for Training Data in Ada Boosting SMOTE for Mobile	. 117
Table 80. Classification Report for Test Data in Ada Boosting SMOTE for Mobile	.117
Table 81. Classification Report for Training Data in Gradient Boosting SMOTE for Mobile	.119
Table 82. Classification Report for Test Data in Gradient Boosting SMOTE for Mobile	.119
Table 83. Model Tuning Comparison for Mobile	
Table 84. Using SMOTE models comparison for Mobile	
List of Figures Figure 1. Histogram and Box Plot	11
Figure 2. Count Plot for Categorical Variable	
Figure 3. Numerical Variable vs Taken_product	
1 iguic 3. inumericar y ariabic ys Taken_product	то

Figure 4. Categorical Variable vs Taken_product	20
Figure 5. Heat Map	21
Figure 6.Elbow Curve	22
Figure 7. Cluster Plot for 3 Clusters	22
Figure 8. Cluster Plot for 4 Clusters	23
Figure 9. Box Plot to check outliers	28
Figure 10. Box Plot after Outlier Treatment	29
Figure 11. Confusion Matrix for Training Data in Basic Logistic Regression Model for Laptop	31
Figure 12. Confusion Matrix for Test Data in Basic Logistic Regression Model for Laptop	32
Figure 13. ROC for Training Data in Basic Logistic Regression Model for Laptop	33
Figure 14. ROC for Test Data in Basic Logistic Regression Model for Laptop	33
Figure 15. Confusion Matrix for Training Data in Basic KNN Model for Laptop	34
Figure 16. Confusion Matrix for Test Data in Basic KNN Model for Laptop	34
Figure 17. ROC for Training Data in Basic KNN Model for Laptop	35
Figure 18. ROC for Test Data in Basic KNN Model for Laptop	35
Figure 19. Confusion Matrix for Training Data in Basic Naive Bayes Model for Laptop	36
Figure 20. Confusion Matrix for Test Data in Basic Naive Bayes Model for Laptop	36
Figure 21. ROC for Training Data in Basic Naive Bayes Model for Laptop	37
Figure 22. ROC for Test Data in Basic Naive Bayes Model for Laptop	38
Figure 23. Confusion Matrix for Training Data in Basic Bagging for Laptop	38
Figure 24. Confusion Matrix for Test Data in Basic Bagging for Laptop	39
Figure 25. ROC for Training Data in Basic Bagging for Laptop	40
Figure 26. ROC for Test Data in Basic Bagging for Laptop	40
Figure 27. Confusion Matrix for Training Data in Basic Ada Boosting for Laptop	41
Figure 28. Confusion Matrix for Test Data in Basic Ada Boosting for Laptop	41
Figure 29. ROC for Training Data in Basic Ada Boosting for Laptop	42
Figure 30. ROC for Test Data in Basic Ada Boosting for Laptop	42
Figure 31. Confusion Matrix for Training Data in Basic Gradient Boosting for Laptop	43
Figure 32. Confusion Matrix for Test Data in Basic Gradient Boosting for Laptop	43
Figure 33. ROC for Training Data in Basic Gradient Boosting for Laptop	44
Figure 34. ROC for Test Data in Basic Gradient Boosting for Laptop	
Figure 35. Confusion Matrix for Training Data in Logistic Regression Grid Search for Laptop	46
Figure 36. Confusion Matrix for Test Data in Logistic Regression Grid Search for Laptop	
Figure 37. ROC for Training Data in Logistic Regression Grid Search for Laptop	48
Figure 38. ROC for Test Data in Logistic Regression Grid Search for Laptop	48
Figure 39. Confusion Matrix for Training Data in KNN Grid Search for Laptop	49
Figure 40. Confusion Matrix for Test Data in KNN Grid Search for Laptop	49
Figure 41. ROC for Training Data in KNN Grid Search for Laptop	50
Figure 42. ROC for Test Data in KNN Grid Search for Laptop	50
Figure 43. Confusion Matrix for Training Data in Naive Bayes Grid Search for Laptop	51
Figure 44. Confusion Matrix for Test Data in Naive Bayes Grid Search for Laptop	51
Figure 45. ROC for Training Data in Naive Bayes Grid Search for Laptop	52
Figure 46. ROC for Test Data in Naive Bayes Grid Search for Laptop	52
Figure 47. Confusion Matrix for Training Data in Bagging Grid Search for Laptop	53
Figure 48. Confusion Matrix for Test Data in Bagging Grid Search for Laptop	53
Figure 49. ROC for Training Data in Bagging Grid Search for Laptop	54
Figure 50. ROC for Test Data in Bagging Grid Search for Laptop	55
Figure 51. Confusion Matrix for Training Data in Ada Boosting Grid Search for Laptop	56

Figure 52.	Confusion Matrix for Test Data in Ada Boosting Grid Search for Laptop	56
Figure 53.	ROC for Training Data in Ada Boosting Grid Search for Laptop	57
Figure 54.	ROC for Test Data in Ada Boosting Grid Search for Laptop	58
Figure 55.	Confusion Matrix for Training Data in Gradient Boosting Grid Search for Laptop	58
	Confusion Matrix for Test Data in Gradient Boosting Grid Search for Laptop	
Figure 57.	ROC for Training Data in Gradient Boosting Grid Search for Laptop	60
Figure 58.	ROC for Test Data in Gradient Boosting Grid Search for Laptop	60
Figure 59.	Confusion Matrix for Training Data in Logistic Regression SMOTE for Laptop	61
Figure 60.	Confusion Matrix for Test Data in Logistic Regression SMOTE for Laptop	61
-	ROC for Training Data in Logistic Regression SMOTE for Laptop	
_	ROC for Test Data in Logistic Regression SMOTE for Laptop	
-	Confusion Matrix for Training Data in KNN SMOTE for Laptop	
-	Confusion Matrix for Test Data in KNN SMOTE for Laptop	
_	ROC for Training Data in KNN SMOTE for Laptop	
•	ROC for Test Data in KNN SMOTE for Laptop	
-	Confusion Matrix for Training Data in Naive Bayes SMOTE for Laptop	
-	Confusion Matrix for Test Data in Naive Bayes SMOTE for Laptop	
-	ROC for Training Data in Naive Bayes SMOTE for Laptop	
	ROC for Test Data in Naive Bayes SMOTE for Laptop	
•	Confusion Matrix for Training Data in Bagging SMOTE for Laptop	
-	Confusion Matrix for Test Data in Bagging SMOTE for Laptop	
-	ROC for Training Data in Bagging SMOTE for Laptop	
	ROC for Test Data in Bagging SMOTE for Laptop	
-	Confusion Matrix for Training Data in Ada Boosting SMOTE for Laptop	
_	Confusion Matrix for Test Data in Ada Boosting SMOTE for Laptop	
-	ROC for Training Data in Ada Boosting SMOTE for Laptop	
•	ROC for Test Data in Ada Boosting SMOTE for Laptop	
-	Confusion Matrix for Training Data in Gradient Boosting SMOTE for Laptop	
	Confusion Matrix for Test Data in Gradient Boosting SMOTE for Laptop	
-	ROC for Training Data in Gradient Boosting SMOTE for Laptop	
-	ROC for Test Data in Gradient Boosting Grid Search for Laptop	
Figure 83.	Confusion Matrix for Training Data in Basic Logistic Regression Model for Mobile	77
	Confusion Matrix for Test Data in Basic Logistic Regression Model for Mobile	
Figure 85.	ROC for Training Data in Basic Logistic Regression Model for Mobile	78
Figure 86.	ROC for Test Data in Basic Logistic Regression Model for Mobile	79
Figure 87.	Confusion Matrix for Training Data in Basic KNN Model for Mobile	79
Figure 88.	Confusion Matrix for Test Data in Basic KNN Model for Mobile	80
Figure 89.	ROC for Training Data in Basic KNN Model for Mobile	81
Figure 90.	ROC for Test Data in Basic KNN Model for Mobile	81
Figure 91.	Confusion Matrix for Training Data in Basic Naive Bayes Model for Mobile	82
Figure 92.	Confusion Matrix for Test Data in Basic Naive Bayes Model for Mobile	82
Figure 93.	ROC for Training Data in Basic Naive Bayes Model for Mobile	83
Figure 94.	ROC for Test Data in Basic Naive Bayes Model for Mobile	83
-	Confusion Matrix for Training Data in Basic Bagging for Mobile	
-	Confusion Matrix for Test Data in Basic Bagging for Mobile	
_	ROC for Training Data in Basic Bagging for Mobile	
	ROC for Test Data in Basic Bagging for Mobile	
-	Confusion Matrix for Training Data in Basic Ada Boosting for Mobile	
-		

Figure 100. Confusion Matrix for Test Data in Basic Ada Boosting for Mobile	87
Figure 101. ROC for Training Data in Basic Ada Boosting for Mobile	
Figure 102. ROC for Test Data in Basic Ada Boosting for Mobile	88
Figure 103. Confusion Matrix for Training Data in Basic Gradient Boosting for Mobile	89
Figure 104. Confusion Matrix for Test Data in Basic Gradient Boosting for Mobile	89
Figure 105. ROC for Training Data in Basic Gradient Boosting for Mobile	90
Figure 106. ROC for Test Data in Basic Gradient Boosting for Mobile	90
Figure 107. Confusion Matrix for Training Data in Logistic Regression Grid Search for Mobile	
Figure 108. Confusion Matrix for Test Data in Logistic Regression Grid Search for Mobile	
Figure 109. ROC for Training Data in Logistic Regression Grid Search for Mobile	
Figure 110. ROC for Test Data in Logistic Regression Grid Search for Laptop	
Figure 111. Confusion Matrix for Training Data in KNN Grid Search for Mobile	
Figure 112. Confusion Matrix for Test Data in KNN Grid Search for Mobile	
Figure 113. ROC for Training Data in KNN Grid Search for Mobile	
Figure 114. ROC for Test Data in KNN Grid Search for Mobile	
Figure 115. Confusion Matrix for Training Data in Naive Bayes Grid Search for Mobile	
Figure 116. Confusion Matrix for Test Data in Naive Bayes Grid Search for Mobile	
Figure 117. ROC for Training Data in Naive Bayes Grid Search for Mobile	
Figure 118. ROC for Test Data in Naive Bayes Grid Search for Mobile	
Figure 119. Confusion Matrix for Training Data in Bagging Grid Search for Mobile	
Figure 120. Confusion Matrix for Test Data in Bagging Grid Search for Mobile	
Figure 121. ROC for Training Data in Bagging Grid Search for Mobile	
Figure 122. ROC for Test Data in Bagging Grid Search for Mobile	
Figure 123. Confusion Matrix for Training Data in Ada Boosting Grid Search for Mobile	
Figure 124. Confusion Matrix for Test Data in Ada Boosting Grid Search for Mobile	
Figure 125. ROC for Training Data in Ada Boosting Grid Search for Mobile	
Figure 126. ROC for Test Data in Ada Boosting Grid Search for Mobile	
Figure 127. Confusion Matrix for Training Data in Gradient Boosting Grid Search for Mobile	
Figure 128. Confusion Matrix for Test Data in Gradient Boosting Grid Search for Mobile	
Figure 129. ROC for Training Data in Gradient Boosting Grid Search for Mobile	
Figure 130. ROC for Test Data in Gradient Boosting Grid Search for Mobile	
Figure 131. Confusion Matrix for Training Data in Logistic Regression SMOTE for Mobile	107
Figure 132. Confusion Matrix for Test Data in Logistic Regression SMOTE for Mobile	
Figure 133. ROC for Training Data in Logistic Regression SMOTE for Mobile	
Figure 134. ROC for Test Data in Logistic Regression SMOTE for Mobile	
Figure 135. Confusion Matrix for Training Data in KNN SMOTE for Mobile	
Figure 136. Confusion Matrix for Test Data in KNN SMOTE for Mobile	
Figure 137. ROC for Training Data in KNN SMOTE for Mobile	
Figure 138. ROC for Test Data in KNN SMOTE for Mobile	
Figure 139. Confusion Matrix for Training Data in Naive Bayes SMOTE for Mobile	
Figure 140. Confusion Matrix for Test Data in Naive Bayes SMOTE for Mobile	
Figure 141. ROC for Training Data in Naive Bayes SMOTE for Mobile	
Figure 142. ROC for Test Data in Naive Bayes SMOTE for Mobile	
Figure 144. Confusion Matrix for Training Data in Bagging SMOTE for Mobile	
Figure 144. Confusion Matrix for Test Data in Bagging SMOTE for Mobile	
Figure 145. ROC for Training Data in Bagging SMOTE for Mobile	
Figure 146. ROC for Test Data in Bagging SMOTE for Mobile	
Figure 147. Confusion Matrix for Training Data in Ada Boosting SMOTE for Mobile	110

Figure 148. Confusion Matrix for Test Data in Ada Boosting SMOTE for Mobile	116
Figure 149. ROC for Training Data in Ada Boosting SMOTE for Mobile	117
Figure 150. ROC for Test Data in Ada Boosting SMOTE for Mobile	118
Figure 151. Confusion Matrix for Training Data in Gradient Boosting SMOTE for Mobile	118
Figure 152. Confusion Matrix for Test Data in Gradient Boosting SMOTE for Mobile	119
Figure 153. ROC for Training Data in Gradient Boosting SMOTE for Mobile	120
Figure 154. ROC for Test Data in Gradient Boosting Grid Search for Mobile	120

SOCIAL MEDIA TOURISM

1.1 Introduction

a). Problem Statement

An aviation company that provides domestic as well as international trips to the customers now wants to apply a targeted approach instead of reaching out to each of the customers. This time they want to do it digitally instead of tele calling. Hence, they have collaborated with a social networking platform, so they can learn the digital and social behaviour of the customers and provide the digital advertisement on the user page of the targeted customers who have a high propensity to take up the product.

Propensity of buying tickets is different for different login devices. Hence, you have to create 2models separately for Laptop and Mobile. [Anything which is not a laptop can be considered as mobile phone usage]. The advertisements on the digital platform are a bit expensive; hence, you need to be very accurate while creating the models

b). Need of the Study

- Digital media has penetrated all aspects of tourism and have led to fundamental changes in the way tourism experiences are planned, consumed, evaluated and marketed. In the tourism industry, websites and social media provide a wealth of information with regards to experiences and review of the destination, views, likes, comments, travel check ins.
- Social media marketing generates more business exposure, increased traffic and improved search, generating leads and improved sales at lower cost. With more than 2 million reviews and being updated every minute, hospitality and tourism marketers realised its importance due to the intangibility of the goods they sell. To understand what kind of information consumers seek online and how they actually use information acquired online from other consumers to make their travel and hospitality decisions.
- The project will help the aviation company learn about the digital behaviour of the customers. It will help in identifying the group of customers who have a high propensity to take up the product. To understand what is happening and why it's like this we need to study / analyze the existing data and predict the best solutions for the future.

c). Understanding Business/Social Opportunity

• The leading trends towards the Social Networking has drawn high public attention from past 'two' decades. For both small businesses and large corporations, social media is playing a key role in brand building and customer communication. Apart from social networking sites like Facebook, Twitter, Instagram, Snapchat etc, other categories like news, Communication, Commenting, Marketing, Banking, Entertainment etc. are also generating huge social media content every minute.

• The understanding of the customer's behaviours on a social media platform will result in targeting advertisements according to the needs and wants of the specific set of customers that can result in high propensity to take up the product. Apart from this company can understand the problems associated with the customers that have posted bad reviews. Then, instead of calling each and every customer company can utilize its resources to improve revenue

1.2 EDA and Business Implication

a). Understanding how data was collected in terms of time, frequency and methodology

Data is collected through social media monitoring and online marketing analytics of the company's page as well as various travelled related pages along with the monitoring of the customer's account throughout the year on daily basis.

Sample of the dataset

The dataset provided is stored as "Social+Media+Data+for+DSBA.csv". Output is displayed below for the dataset (first 5 records) after importing the file in python:

	UserID	Taken_product	Yearly_avg_view_on_travel_page	preferred_device	total_likes_on_outstation_checkin_given	yearly_avg_Outstation_checkins me	mber_iı
0	1000001	Yes	307.0	iOS and Android	38570.0	1	
1	1000002	No	367.0	iOS	9765.0	1	
2	1000003	Yes	277.0	iOS and Android	48055.0	1	
3	1000004	No	247.0	iOS	48720.0	1	
4	1000005	No	202.0	iOS and Android	20685.0	1	
1							-

Table 1. Dataset Sample First 5 Records

	UserID	Taken_product	Yearly_avg_view_on_travel_page	preferred_device	total_likes_on_outstation_checkin_given	yearly_avg_Outstation_checkins	memb
11755	1011756	No	279.0	Laptop	30987.0	23	
11756	1011757	No	305.0	Tab	21510.0	6	
11757	1011758	No	214.0	Tab	5478.0	4	
11758	1011759	No	382.0	Laptop	35851.0	2	
11759	1011760	No	270.0	Tab	22025.0	8	
4)

Table 2. Dataset Sample Last 5 Records

Data Dictionary

The dataset consists of 17 variables. The dataset consists of information regarding Social Media. The variables are as below:

Variable	Description
UserID	Unique ID of user
Buy_ticket	Buy ticket in next month
Yearly_avg_view_on_travel_page	Average yearly views on any travel related page by user
preferred_device	Through which device user preferred to do login
total_likes_on_outstation_checkin_	Total number of likes given by a user on out of station
given	checkings in last year
yearly_avg_Outstation_checkins	Average number of out of station check-in done by user
	Total number of relationship mentioned by user in the
member_in_family	account
preferred_location_type	Preferred type of the location for travelling of user
Yearly_avg_comment_on_travel_pa	
ge	Average yearly comments on any travel related page by user
total_likes_on_outofstation_checki	Total number of likes received by a user on out of station
n_received	checkings in last year
week_since_last_outstation_checki	Number of weeks since last out of station check-in update by
n	user
following_company_page	Weather the customer is following company page (Yes or No)
montly_avg_comment_on_compan	
y_page	Average monthly comments on company page by user
working_flag	Weather the customer is working or not
	Does user have close friends who also like travelling. 1 is
travelling_network_rating	highs and 4 is lowest
Adult_flag	Weather the customer is adult or not
Daily_Avg_mins_spend_on_travelin	Average time spend on the company page by user on daily
g_page	basis

Table 3. Data Dictionary

b). Visual inspection of data (rows, columns, descriptive details)

Dimension of the dataset:

Using shape function in python it was observed that the dataset contains data of 11760 customers and 17 variables.

Summary of the Dataset

	count	unique	top	freq	mean	std	min	25%	50%	75%	max
UserID	11760.0	NaN	NaN	NaN	1005880.5	3394.963917	1000001.0	1002940.75	1005880.5	1008820.25	1011760.0
Taken_product	11760	2	No	9864	NaN	NaN	NaN	NaN	NaN	NaN	NaN
Yearly_avg_view_on_travel_page	11179.0	NaN	NaN	NaN	280.830844	68.182958	35.0	232.0	271.0	324.0	464.0
preferred_device	11707	10	Tab	4172	NaN	NaN	NaN	NaN	NaN	NaN	NaN
total_likes_on_outstation_checkin_given	11379.0	NaN	NaN	NaN	28170.481765	14385.032134	3570.0	16380.0	28076.0	40525.0	252430.0
yearly_avg_Outstation_checkins	11685	30	1	4543	NaN	NaN	NaN	NaN	NaN	NaN	NaN
member_in_family	11760	7	3	4561	NaN	NaN	NaN	NaN	NaN	NaN	NaN
preferred_location_type	11729	15	Beach	2424	NaN	NaN	NaN	NaN	NaN	NaN	NaN
Yearly_avg_comment_on_travel_page	11554.0	NaN	NaN	NaN	74.790029	24.02665	3.0	57.0	75.0	92.0	815.0
total_likes_on_outofstation_checkin_received	11760.0	NaN	NaN	NaN	6531.699065	4706.613785	1009.0	2940.75	4948.0	8393.25	20065.0
week_since_last_outstation_checkin	11760.0	NaN	NaN	NaN	3.203571	2.616365	0.0	1.0	3.0	5.0	11.0
following_company_page	11657	4	No	8355	NaN	NaN	NaN	NaN	NaN	NaN	NaN
montly_avg_comment_on_company_page	11760.0	NaN	NaN	NaN	28.661565	48.660504	11.0	17.0	22.0	27.0	500.0
working_flag	11760	2	No	9952	NaN	NaN	NaN	NaN	NaN	NaN	NaN
travelling_network_rating	11760.0	NaN	NaN	NaN	2.712245	1.080887	1.0	2.0	3.0	4.0	4.0
Adult_flag	11760.0	NaN	NaN	NaN	0.793878	0.851823	0.0	0.0	1.0	1.0	3.0
Daily_Avg_mins_spend_on_traveling_page	11760.0	NaN	NaN	NaN	13.817432	9.070657	0.0	8.0	12.0	18.0	270.0

Table 4. Description of Dataset

- It clearly shows that there are high number of customers that have not purchased the product of the company.
- The average weeks since last outstation check-in is 2.62 and have below average travel rating of 2.71 meaning close friends of customers who also like travelling are very less.
- Most of the customers do not follow the company page as well and prefer "Tab" as the operating device.
- Most of the customers have a family size of 3 and travel 1 time in a year.
- The customers spend an average of 13.82 minutes on a travelling page on daily basis

c). Understanding of attributes (variable info, renaming if required)

Structure of the Dataset:

Structure of the Dataset was computed using .info () function in python. This function explains which variables are of what datatype.

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 11760 entries, 0 to 11759
Data columns (total 17 columns):
    Column
                                                  Non-Null Count Dtype
- - -
                                                  11760 non-null int64
 0
    UserID
    Taken product
                                                  11760 non-null object
 1
    Yearly_avg_view_on_travel_page
                                                  11179 non-null float64
 2
     preferred device
 3
                                                  11707 non-null object
     total_likes_on_outstation_checkin_given
                                                                 float64
 4
                                                  11379 non-null
 5
    yearly_avg_Outstation_checkins
                                                                 object
                                                  11685 non-null
    member in family
 6
                                                  11760 non-null
                                                                 object
 7
    preferred location type
                                                                 object
                                                  11729 non-null
    Yearly_avg_comment_on travel page
                                                                 float64
 8
                                                  11554 non-null
    total likes on outofstation checkin received 11760 non-null
 9
                                                                 int64
 10 week since last outstation checkin
                                                  11760 non-null
                                                                 int64
 11 following company page
                                                  11657 non-null object
 12 montly avg comment on company page
                                                  11760 non-null
                                                                 int64
 13 working flag
                                                  11760 non-null object
 14 travelling network rating
                                                  11760 non-null int64
 15
    Adult_flag
                                                  11760 non-null
                                                                 int64
 16 Daily Avg mins spend on traveling page
                                                  11760 non-null int64
dtypes: float64(3), int64(7), object(7)
memory usage: 1.5+ MB
```

This shows the number of columns in the data and data type of each and every column. The entire dataset consists of 3 float type variables, 7 integer type variables and 7 object or string type variables.

Checking for Missing Values

While analyzing the data. One of the key steps is that the missing values or "NA" needs to be checked and dropped from the dataset for the ease of evaluation. As null values can give errors or discrepancies in results. Missing Values was computed using .isnull().sum() function in python.

UserID	0
Taken_product	0
Yearly_avg_view_on_travel_page	581
preferred_device	53
total_likes_on_outstation_checkin_given	381
yearly_avg_Outstation_checkins	75
member_in_family	0
<pre>preferred_location_type</pre>	31
Yearly_avg_comment_on_travel_page	206
total_likes_on_outofstation_checkin_received	0
week_since_last_outstation_checkin	0
following_company_page	103

montly avg comment on company page	0
working flag	0
travelling network rating	0
Adult flag	0
Daily Avg mins spend on traveling page	0
dtype: int64	

From the above results we can see that there is 1430 missing value present in the dataset.

Checking for Duplicates

While analyzing the data. One of the key steps is that the duplicates needs to be checked and dropped from the dataset for the ease of evaluation. Else they will affect the analysis. Duplicates was computed using .duplicated().sum() function in python. After computing from python we have found that output the dataset does not have any duplicates.

d). Univariate analysis (distribution and spread for every continuous attribute, distribution of data in categories for categorical ones)

Univariate Analysis

➤ To begin with Histograms and Box plot are plotted for all the numerical variables using sns.distplot and sns.boxplot function from seaborn package. Also, distribution could be viewed. Whether the data is right skewed or left skewed.

Figure 1. Histogram and Box Plot

- Most of the numerical columns in the data are rightly skewed and have large number of outliers in the data set.
- The variable "Yearly average view on Travel page" is somewhat normally distributed but still have outliers on both sides of the distribution
- "week since last outstation check-in" variables has no outlier in it despite showing somewhat right skewness.
- ➤ In case of Categorical variable, we can observe the frequencies from count plot for Categorical variable. Using Seaborn count plot which gives the count of observations in each category.

Figure 2. Count Plot for Categorical Variable

- There are 11760 customers in the data out which less customers have purchased the product whereas most of the customers did not purchase the product.
- Mobile devices are preferred as only 1108 customers prefer "Laptop" devices.
- Most of the customers travel once per year (4544 customers) followed by twice per year visits (844).
- It also shows that most customers have 3 members in the family followed by 4 members.
- Most of the customers prefer "Beach" as their location closely followed by location for "Financial" purpose.
- Most of the people are not following the company page.
- Most of the customer base is a non-working class.

e). Bivariate analysis (relationship between different variables, correlations)

➤ We will pick one Numerical Variable and draw its relationship with variable Taken_product.

Figure 3. Numerical Variable vs Taken_product

- It can be observed that despite a greater number of "yearly average view on travel page" the customers have not purchased the product.
- Customers that have spent less on travel page viewing have high tendency to purchase the product.

- In most of the cases No cases have large number outliers.
- Fewer people have put likes in outstation check-in have purchased product whereas less people have purchased the product despite large number of likes on outstation check-in.
- Customer that have close friends which love to travel have high chances of purchasing the product but as the rating increases the likelihood of purchasing a product decline.
- ➤ Now we will pick one Categorical Variable and draw its relationship with variable Taken_product.

Figure 4. Categorical Variable vs Taken_product

- Customers that visits once in a year does not like to purchase the ticket from the company.
- As the family size of the customer increases the chances of purchasing the product decreases.
- The people that travel for beaches and financial purposes which are two major reasons for travel are less likely to buy the company's products.
- Customers following the company's page have high chances of purchasing the products.
- The working category have high chances of purchasing the product as compared to the people that are not working.
- It is observed that despite any preferred devices there is very high attrition rate amongst the customers as they are not interested in purchasing the product at all.

Heat Map (Relationship Analysis)

Below is Heat Map or Correlation Matrix to evaluate the relationship between different variables in our dataset. This graph can help us to check for any correlations between different variables.

Figure 5. Heat Map

- It can be observed that there is very weak correlation amongst the variables
- There are some variables like "total likes on outstation received" and "yearly average view on travel page" that have a moderate correlation of 0.48 between them.
- Variables like "Daily average minutes spend on travelling page" and "yearly average view on travel page" also have a moderate correlation of 0.58
- "Daily average minutes spend on travelling page" and "total likes on outstation received" of moderate correlation 0f 0.67 amongst them

f). Any business insights using clustering

- Performing K-Means clustering
- Standardize the dataset using Standard Scaler function
- Identify the inertia value for multiple cluster groups and identify the cut-off
- Plot the inertia values in a line plot (elbow curve) and identify the cutoff value

Figure 6.Elbow Curve

• As per the above plot i.e. within sum of squares (wss) method we can conclude that the optimal number of clusters is not clearly visible.

```
The Average Silhouette Score for 2 clusters is 0.20865
The Average Silhouette Score for 3 clusters is 0.2266
The Average Silhouette Score for 4 clusters is 0.17339
The Average Silhouette Score for 5 clusters is 0.16737
The Average Silhouette Score for 6 clusters is 0.17522
The Average Silhouette Score for 7 clusters is 0.1597
The Average Silhouette Score for 8 clusters is 0.16124
The Average Silhouette Score for 9 clusters is 0.15477
```


Figure 7. Cluster Plot for 3 Clusters

Figure 8. Cluster Plot for 4 Clusters

- It is also clear from the graph that there are overlapping of the cluster. For 3 cluster less overlapping in comparison to 4 clusters
- As there are less overlapping in cluster 3 So we will take no. of clusters is equal to 3.

Clusters are formed:

0 5419 1 2117 2 4224

Name: Clus_kmeans, dtype: int64

!lling_network_rating	Adult_flag	Daily_Avg_mins_spend_on_traveling_page	working_flag_lbl	following_company_page_lbl	preferred_location_type_lbl	Clus_kmeans
1.0	0.0	8.0	0.0	1.0	13.0	2
4.0	1.0	10.0	1.0	0.0	13.0	0
2.0	0.0	7.0	0.0	1.0	10.0	2
3.0	0.0	8.0	0.0	1.0	13.0	2
4.0	1.0	6.0	0.0	0.0	11.0	0
•)

Table 5. Sample of Dataset with 3 Clusters

Clus_kmeans	0	1	2
Taken_product	0.106108	0.092584	0.266335
Yearly_avg_view_on_travel_page	267.750784	360.917572	256.233546
preferred_device	1.000000	1.000000	1.000000
total_likes_on_outstation_checkin_given	28710.933475	28523.623288	27194.836174
yearly_avg_Outstation_checkins	8.498801	8.059991	7.822443
member_in_family	2.910685	3.059046	2.866004
Yearly_avg_comment_on_travel_page	75.201513	75.655881	73.436435
total_likes_on_outofstation_checkin_received	4896.112751	13716.650449	4628.143703
week_since_last_outstation_checkin	3.011257	4.381672	2.859848
montly_avg_comment_on_company_page	22.897767	23.299008	22.575994
Adult_flag	1.000000	0.610770	0.000000
Daily_Avg_mins_spend_on_traveling_page	11.211294	26.065187	10.510890
working_flag_lbl	0.160177	0.145961	0.149384
following_company_page_lbl	0.270530	0.292395	0.286932
preferred_location_type_lbl	11.344713	11.358999	11.307528
frequency	5419.000000	2117.000000	4224.000000

Table 6. Cluster Observation

- There are 5419 customers in Cluster 0, 2117 customers in Cluster 1 and 4224 customers in Cluster 2.
- Total likes on outstation check-ins received is the major differentiator between the clusters It shows that least likes received in Cluster 2 and Most likes received are grouped in Cluster 1.
- Yearly average view on travel page supports this grouping and shows a similar pattern. It shows that Yearly average view on travel page in cluster 0 is higher than Cluster 1 and Cluster 2
- From other variables we cannot generate more useful insights may be because clusters are not forming properly which can be attributed to the fact that data is highly imbalanced and due to which the boundaries are very less
- We cannot make much conclusions after performing clustering.

g). Other business insights

- It can be observed that most travelled location is beach and financial related travels and followed by medical related travels.
- company should come up with discount offer the user who travels for medical related travels as this will have good customer experience in these unprecedented times and it will increase brand value.
- The people who don't follow company page have high average view on company page and people who follow company page has less view.
- Social media campaigns should be there so that we can grab attention of social media mob as it clearly impact business.

1.3 Data Cleaning and Pre-processing

a). Treating Bad Data

• In Prefered_location_type column 'Tour Travel' and 'Tour and Travel' are same. We have replaced 'Tour Travel' with 'Tour and Travel'

Beach	2424
Financial	2409
Historical site	1856
Medical	1845
Other	643
Big Cities	636
Social media	633
Trekking	528
Entertainment	516
Hill Stations	108
Tour and Travel	107
NaN	31
Game	12
OTT	7
Movie	5

Name: preferred_location_type, dtype: int64

• In yearly_avg_Outstation_checkins column '*' in data present. We are replacing with the mode. So '*' is replaced with '1'.

```
4544
2
        844
10
        682
9
        340
7
        336
3
        336
8
        320
5
        261
        256
4
16
        255
6
        236
11
        229
24
        223
29
        215
23
        215
18
        208
15
        206
26
        199
20
        199
25
        198
28
        180
19
        176
14
        167
17
        160
12
       159
22
       152
13
       150
21
        143
```

27 96
NaN 75
Name: yearly_avg_Outstation_checkins, dtype: int64

• In member_in_family column 'Three' and '3' are same. We have replaced 'Three' with '3'.

3 4576 4 3184 2 2256 1 1349 5 384 10 11

Name: member_in_family, dtype: int64

• In Adult_flag column as per features there should be two factors only yes or no. However, we have 2 and 3 additional one so we will assume 2 and 3 are adult and rest are minors.

1 6712 0 5048 Name: Adult_flag, dtype: int64

• In following company page replacing with '1' with 'Yes' and '0' with 'No'

No 8360 Yes 3297 NaN 103

Name: following_company_page, dtype: int64

• In preferred_device column we have replaced all column with Mobile except Laptop. Replaced Mobile with 1 and Laptop with 0

1.0 10652 0.0 1108

Name: preferred device, dtype: int64

b). Removal of unwanted variables

We have dropped User_Id column from data.

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 11760 entries, 0 to 11759
Data columns (total 16 columns):
    Column
                                                   Non-Null Count Dtype
 0
    Taken product
                                                   11760 non-null object
    Yearly_avg_view_on_travel_page
                                                   11179 non-null float64
 1
    preferred device
 2
                                                   11760 non-null float64
     total_likes_on_outstation_checkin_given
 3
                                                   11379 non-null float64
    yearly_avg_Outstation_checkins
 4
                                                   11685 non-null object
    member in family
                                                                  object
 5
                                                   11760 non-null
 6
    preferred_location_type
                                                   11729 non-null object
    Yearly avg comment on travel page
                                                                  float64
 7
                                                   11554 non-null
     total likes on outofstation checkin received 11760 non-null
 8
                                                                  int64
    week since last outstation checkin
                                                   11760 non-null int64
 10
    following company page
                                                   11657 non-null object
    montly avg comment on company page
                                                   11760 non-null int64
    working flag
                                                                  object
                                                   11760 non-null
    travelling_network_rating
 13
                                                   11760 non-null
                                                                  int64
 14 Adult_flag
                                                   11760 non-null
                                                                  int32
    Daily_Avg_mins_spend_on_traveling_page
                                                   11760 non-null int64
dtypes: float64(4), int32(1), int64(5), object(6)
memory usage: 1.4+ MB
```

c). Missing Value treatment

In 1.2 C we have seen that there is 1430 missing value present in the dataset.

```
Taken product
                                                 0.000000
Yearly avg view on travel page
                                                 4.940476
preferred device
                                                 0.000000
total_likes_on_outstation_checkin_given
                                                 3.239796
yearly_avg_Outstation_checkins
                                                 0.637755
member_in_family
                                                 0.00000
preferred location type
                                                 0.263605
Yearly avg comment on travel page
                                                 1.751701
                                                 0.000000
total likes on outofstation checkin received
week since last outstation checkin
                                                 0.00000
following company page
                                                 0.875850
montly avg comment on company page
                                                 0.00000
working flag
                                                 0.000000
travelling network rating
                                                 0.00000
Adult flag
                                                 0.000000
Daily_Avg_mins_spend_on_traveling_page
                                                 0.00000
dtype: float64
```

After checking above data, we have found that maximum missing values is less than 5% so we will impute those value.

We will replace missing value in numerical column using median and object column using mode.

```
Taken_product
                                                  0
Yearly avg view on travel page
                                                  0
preferred device
                                                  0
total likes on outstation checkin given
                                                  0
yearly_avg_Outstation checkins
                                                  0
member in family
                                                  0
preferred_location_type
                                                  0
Yearly_avg_comment_on_travel_page
                                                  0
total_likes_on_outofstation_checkin_received
                                                  0
week since last outstation checkin
                                                  0
                                                  0
following company page
montly avg comment on company page
                                                  0
working flag
                                                  0
                                                  0
travelling network rating
Adult flag
                                                  0
Daily Avg mins spend on traveling page
dtype: int64
```

d). Outlier treatment

Figure 9. Box Plot to check outliers

Before, the treatment of outliers most of the variables has outliers. In order to treat those outliers in the data we replaced those outliers with the upper limit and lower limit of the particular columns. The values in the column that are greater than the upper limit are replace with its upper limit of that column and values that are lower than lower limit are replaced with the lower limit of that column.

Figure 10. Box Plot after Outlier Treatment

e). Variable Transformation / Addition of New Variables

- The target variable named "Taken product" is transformed where "Yes" is turned to 1 and "No" is turned to 0 with the variable type of float.
- The new variables like "working flag label" and "following company label" are added where "Yes" is turned to 1 and "No" is turned to 0 from variables like "working flag" and "following company label" respectively with the variable type of float.
- Some variables like "member in the family", "yearly average outstation check-in" and "Adult flag" are converted to float variable type.
- "travelling network rating" is converted to category variable.
- "preferred location type label" where Location is arranged from 1-14 with 14 being marked as the most preferred location and 1 as least preferred location from the "preferred location type".

f). Is the data unbalanced?

```
0.0 9864
1.0 1896
Name: Taken_product, dtype: int64

Normalized Score is
0.0 0.838776
1.0 0.161224
Name: Taken product, dtype: float64
```

- The data is highly imbalanced as out of 11760 customers there are 9864 customers that are not interested in purchasing our product which constitutes around 83.9%. This can be treated with the help of SMOTE or K-fold cross validation.
- This shows that there are customers that may purchasing the product of some other company rather than preferring the product of this company.
- It can also be observed that customers are not satisfied with company's service and ae switching to other companies.

1.4 Model Building and Model Validation

Laptop

a). Build various models (You can choose to build models for either or all of descriptive, predictive or prescriptive purposes) and test your predictive model against the test set using various appropriate performance metrics

Scaling

In regression or classification, it is often a good practice to centre the variables so that predictor have a mean of 0. This makes it easier to intercept the intercept term as the expected value of Yi when the predictor values are set to their means. Otherwise, the intercept is interpreted as the expected value of Yi when the predictors are set to 0, which may not be a realistic or interpretable situation. Another valid reason for scaling in regression is when one predictor variable has a very large scale. In that case, the regression coefficients may be on a very small order of magnitude which can be unclear to interpret. The convention that we standardize predictions primarily exists so that the units of the regression coefficients are the same. More often, the dataset contains feature highly varying in magnitudes, units and range. However, most of the machine learning algorithms use Euclidean distance between two data points in their computations, and this can be a potential problem. Also, scaling helps to standardize the independent features present in the data in a fixed range. If feature scaling is not done, then a machine learning algorithm tends to weigh greater values, higher and consider smaller values as the lower values, regardless of the unit of the values. The features with high magnitudes will weigh in a lot more in the distance calculations than features with low magnitudes. To suppress this effect, we need to bring all features to the same level of magnitudes.

Yes, Scaling is absolutely necessary in this case as we have Variables that carry absolute numbers and we have Variables that carry percentage. If we have data in different scales, the variables with larger scale will dominate, this is probably not what we want. After scaling there is variance look similar across all data.

Train and Test Split

Before splitting we need to determine the target variable. Hence, the target variable is "Taken Product"

We will split the data for 70:30 ratio with a random state =1.

Train Test Data Shape

```
X_train (775, 15)
X_test (333, 15)
y_train (775,)
y_test (333,)
```

Logistic Regression Model

Logistic regression is a process of modelling the probability of a discrete outcome given an input variable. The most common logistic regression models a binary outcome; something that can take two values such as true/false, yes/no, and so on.

We split the data into train and test using train_test_split command and fit our linear regression model into the train data and then try to predict the outcome of using the test data. Then we compare the actual against the predicted to calculate the accuracy of the model.

Performance Metrices Basic Logistic Regression Model

Model Score or Accuracy

- ➤ Accuracy for Training Data is 0.84
- > Accuracy for Test Data is 0.83

Confusion Matrix

We will now create a Confusion Matrix which will be used to describe the performance of a classifier on our Test and Train Dataset. It will allow us to visualise the performance of the Logistic Regression Model.

For Training Data

Figure 11. Confusion Matrix for Training Data in Basic Logistic Regression Model for Laptop

For Test Data

Figure 12. Confusion Matrix for Test Data in Basic Logistic Regression Model for Laptop

Classification Report

➤ For Training Data

\mathcal{C}						
The classifica	tion report precision	_	_		ng s e t is	
2.2	•					
0.0 1.0	0.85 0.74	0.95 0.46	0.90 0.57	594 181		
1.0	0.74	0.40	0.37	101		
accuracy			0.84	775		
macro avg	0.80	0.71	0.74	775		
weighted avg	0.83	0.84	0.82	775		

Table 7. Classification Report for Training Data in Basic Logistic Regression Model for Laptop

For Test Data

The classifica	tion report precision	_	_	ion testing support	s e t	is
0.0 1.0	0.83 0.87	0.97 0.49	0.89 0.63	238 95		
accuracy macro avg	0.85	0.73	0.83 0.76	333 333		
weighted avg	0.84	0.83	0.82	333		

Table 8. Classification Report for Test Data in Basic Logistic Regression Model for Laptop

ROC and AUC

An ROC Curve or Receiver Operating Characteristic curve is a graph showing the performance of a classification model. The curve is plotted between sensitivity and (1-specificity). (1-specificity) is also known as false positive rate and sensitivity is also known as True Positive Rate.

For Training Data

The AUC score for Logistic Regression training set is: 0.817

Figure 13. ROC for Training Data in Basic Logistic Regression Model for Laptop

For Test Data

The AUC score for Logistic Regression testing set is: 0.865

Figure 14. ROC for Test Data in Basic Logistic Regression Model for Laptop

KNN Model

KNN works by finding the distances between a query and all the examples in the data, selecting the specified number examples (K) closest to the query, then votes for the most frequent label (in the case of classification) or averages the labels (in the case of regression).

Performance Metrices Basic KNN Model

Model Score or Accuracy

- ➤ Accuracy for Training Data is 0.96
- ➤ Accuracy for Test Data is 0.88

Confusion Matrix

We will now create a Confusion Matrix which will be used to describe the performance of a classifier on our Test and Train Dataset.

> For Training Data

Figure 15. Confusion Matrix for Training Data in Basic KNN Model for Laptop

For Test Data

Figure 16. Confusion Matrix for Test Data in Basic KNN Model for Laptop

Classification Report

➤ For Training Data

The classifica	tion report precision			support
0.0	0.96	0.99	0.98	594
1.0	0.96	0.87	0.91	181
accuracy			0.96	775
macro avg	0.96	0.93	0.94	775
weighted avg	0.96	0.96	0.96	775

Table 9. Classification Report for Training Data in Basic KNN Model for Laptop

For Test Data

The classit	ıcatıon	report	tor KNN to	esting set	15
	prec	isi o n	recall	f1-score	support
0.	0	0.88	0.96	0.92	238
1.	0	0.88	0.68	0.77	95
accurac	У			0.88	333
macro av	'g	0.88	0.82	0.85	333
weighted av	'g	0.88	0.88	0.88	333

Table 10. Classification Report for Test Data in Basic KNN Model for Laptop

ROC and AUC

An ROC Curve or Receiver Operating Characteristic curve is a graph showing the performance of a classification model. The curve is plotted between sensitivity and (1-specificity). (1-specificity) is also known as false positive rate and sensitivity is also known as True Positive Rate.

> For Training Data

Figure 17. ROC for Training Data in Basic KNN Model for Laptop

For Test Data

The AUC score for KNN testing set is: 0.937

Figure 18. ROC for Test Data in Basic KNN Model for Laptop

Naïve Bayes Model

Naïve Bayes is a classification technique based on Bayes' Theorem with an assumption of independence among predictors. In simple terms, a Naïve Bayes classifier assumes that the presence of a particular feature in a class is unrelated to the presence of any other feature.

Performance Metrices Basic Naïve Bayes Model

Model Score or Accuracy

- ➤ Accuracy for Training Data is 0.83
- > Accuracy for Test Data is 0.84

Confusion Matrix

We will now create a Confusion Matrix which will be used to describe the performance of a classifier on our Test and Train Dataset.

> For Training Data

Figure 19. Confusion Matrix for Training Data in Basic Naive Bayes Model for Laptop

For Test Data

Figure 20. Confusion Matrix for Test Data in Basic Naive Bayes Model for Laptop

Classification Report

> For Training Data

The classification report for Naive Bayes Model set is precision recall f1-score support 0.88 0.0 0.91 0.89 594 0.66 0.59 0.62 1.0 181 accuracy 0.83 775 0.76 macro avg 0.77 0.75 775 eighted avg 0.83 0.83 0.83 775

Table 11. Classification Report for Training Data in Basic Naive Bayes Model for Laptop

For Test Data

The classification report for Naive bayes Model testing set is precision recall f1-score 0.0 0.87 0.91 0.89 238 95 1.0 0.75 0.66 0.70 0.84 333 accuracy macro avg 0.81 0.79 0.80 333 weighted avg 0.84 0.84 0.84 333

Table 12. Classification Report for Test Data in Basic Naive Bayes Model for Laptop

ROC and AUC

An ROC Curve or Receiver Operating Characteristic curve is a graph showing the performance of a classification model. The curve is plotted between sensitivity and (1-specificity). (1-specificity) is also known as false positive rate and sensitivity is also known as True Positive Rate.

0.8

1.0

> For Training Data

0.2

0.0

0.0

0.6 - 0.4 -

The AUC score for Naive Bayes training set is: 0.809

Figure 21. ROC for Training Data in Basic Naive Bayes Model for Laptop

For Test Data

The AUC score for Naive Bayes testing set is: 0.850

Figure 22. ROC for Test Data in Basic Naive Bayes Model for Laptop

Bagging

Bagging is designed to improve the performance of existing ML algorithms used in statistical classification or regression. It is most used with tree-based algorithms. It is a parallel method.

```
BaggingClassifier(base_estimator=RandomForestClassifier(),
n estimators=100,random state=1)
```

Performance Metrices Basic Bagging

Model Score or Accuracy

- ➤ Accuracy for Training Data is 1.0
- ➤ Accuracy for Test Data is 0.94

Confusion Matrix

We will now create a Confusion Matrix which will be used to describe the performance of a classifier on our Test and Train Dataset.

Figure 23. Confusion Matrix for Training Data in Basic Bagging for Laptop

For Test Data

Figure 24. Confusion Matrix for Test Data in Basic Bagging for Laptop

Classification Report

For Training Data

0.9987096774193548 precision recall f1-score support 1.00 594 0.0 1.00 1.00 1.00 0.99 1.00 181 775 accuracy 1.00 macro avg 1.00 1.00 1.00 775 1.00 1.00 weighted avg 1.00 775

Table 13. Classification Report for Training Data in Basic Bagging for Laptop

➤ For Test Data

0.9429429429429429								
	precision	recall	f1-score	support				
0.0	0.93	1.00	0.96	238				
1.0	1.00	0.80	0.89	95				
accuracy			0.94	333				
macro avg	0.96	0.90	0.93	333				
weighted avg	0.95	0.94	0.94	333				

Table 14. Classification Report for Test Data in Basic Bagging for Laptop

ROC and AUC

An ROC Curve or Receiver Operating Characteristic curve is a graph showing the performance of a classification model. The curve is plotted between sensitivity and (1-specificity). (1-specificity) is also known as false positive rate and sensitivity is also known as True Positive Rate.

For Training Data

Figure 25. ROC for Training Data in Basic Bagging for Laptop

For Test Data

Figure 26. ROC for Test Data in Basic Bagging for Laptop

ADA Boosting

This model is used to increase the efficiency of binary classifiers, but now used to improve multiclass classifiers as well. ADA boosting can be applied on top of any classifier method to learn from its issues and bring about a more accurate model and this it is called "best out of the box classifier"

AdaBoostClassifier(n_estimators=100, random_state=1)

Performance Metrices Basic Ada Boosting

Model Score or Accuracy

- ➤ Accuracy for Training Data is 0.95
- Accuracy for Test Data is 0.87

Confusion Matrix

We will now create a Confusion Matrix which will be used to describe the performance of a classifier on our Test and Train Dataset.

> For Training Data

Figure 27. Confusion Matrix for Training Data in Basic Ada Boosting for Laptop

Figure 28. Confusion Matrix for Test Data in Basic Ada Boosting for Laptop

Classification Report

0.94580645161	29032 precision	recall	f1-score	support	
0.0 1.0	0.94 0.97	0.99 0.79	0.97 0.87	594 181	
accuracy macro avg weighted avg	0.96 0.95	0.89 0.95	0.95 0.92 0.94	775 775 775	

Table 15. Classification Report for Training Data in Basic Ada Boosting for Laptop

➤ For Test Data

0.8708708708	708709			
	precision	recall	f1-score	support
0.0	0.89	0.94	0.91	238
1.0	0.82	0.69	0.75	95
accuracy			0.87	333
macro avg	0.86	0.82	0.83	333
weighted avg	0.87	0.87	0.87	333

Table 16. Classification Report for Test Data in Basic Ada Boosting for Laptop

ROC and AUC

An ROC Curve or Receiver Operating Characteristic curve is a graph showing the performance of a classification model. The curve is plotted between sensitivity and (1-specificity). (1-specificity) is also known as false positive rate and sensitivity is also known as True Positive Rate.

For Training Data AUC: 0.986

Figure 29. ROC for Training Data in Basic Ada Boosting for Laptop

For Test Data AUC: 0.926 1.0 0.8 0.6 0.4 0.2 0.0 0.0 0.2 0.4 0.6 0.8 10

Figure 30. ROC for Test Data in Basic Ada Boosting for Laptop

Gradient Boosting

This model is just like the ADA Boosting works by sequentially adding the misidentified predictors and under-fitted predictions to the ensemble, ensuring the errors identified previously are corrected. The major difference lies in what it does with the mis-identified values of the previous weak learner.

Performance Metrices Basic Gradient Boosting

Model Score or Accuracy

- ➤ Accuracy for Training Data is 0.99
- ➤ Accuracy for Test Data is 0.96

Confusion Matrix

We will now create a Confusion Matrix which will be used to describe the performance of a classifier on our Test and Train Dataset.

For Training Data

Figure 31. Confusion Matrix for Training Data in Basic Gradient Boosting for Laptop

For Test Data - 200 - 150 - 100 - 1

Figure 32. Confusion Matrix for Test Data in Basic Gradient Boosting for Laptop

Classification Report

➤ For Training Data

0.98580645161	29033 precision	recall	f1-score	support
0.0 1.0	0.98 1.00	1.00 0.94	0.99 0.97	594 181
accuracy macro avg weighted avg	0.99 0.99	0.97 0.99	0.99 0.98 0.99	775 775 775

Table 17. Classification Report for Training Data in Basic Gradient Boosting for Laptop

> For Test Data

0.9579579579	579579			
	precision	recall	f1-score	support
0.0	0.94	1.00	0.97	238
1.0	1.00	0.85	0.92	95
accuracy			0.96	333
macro avg	0.97	0.93	0.95	333
weighted avg	0.96	0.96	0.96	333

Table 18. Classification Report for Test Data in Basic Gradient Boosting for Laptop

ROC and AUC

An ROC Curve or Receiver Operating Characteristic curve is a graph showing the performance of a classification model. The curve is plotted between sensitivity and (1-specificity). (1-specificity) is also known as false positive rate and sensitivity is also known as True Positive Rate.

Figure 33. ROC for Training Data in Basic Gradient Boosting for Laptop

For Test Data

Figure 34. ROC for Test Data in Basic Gradient Boosting for Laptop

b). Interpretation of the model(s)

Pacia N	Basic Model		iracy	Preci	ision	Red	all	F1 S	core	Al	JC			
Dasici	viodei	Train	Test	Train	Test	Train	Test	Train	Test	Train	Test			
Logistic Regression	No Taken Product	0.84	0.83	0.85	0.83	0.95	0.97	0.9	0.89	0.02	0.87			
Logistic Regression	Yes Taken Product	0.64	0.65	0.74	0.87	0.46	0.49	0.57	0.63	0.82	0.67			
KNN	No Taken Product	0.96	0.88	0.96	0.88	0.99	0.96	0.98	0.92	0.99	0.94			
KIVIV	Yes Taken Product	0.96	0.90	0.96	0.90	0.00	0.96	0.88	0.87	0.68	0.91	0.77	0.33	0.54
Naïve Bayes	No Taken Product	· 0.83	0.83	0.84	0.88	0.87	0.91	0.91	0.89	0.89	0.81	0.85		
ivalve dayes	Yes Taken Product			0.63	0.83	0.65	0.03 0.04	0.66	0.75	0.59	0.66	0.62	0.7	0.61
Bagging	No Taken Product	1	0.94	1	0.93	1	1	1	0.96	1	0.99			
Daggilig	Yes Taken Product	1	0.94	1	1	0.99	0.8	1	0.89	1	0.99			
Ada Poosting	No Taken Product	0.95	0.87	0.94	0.89	0.99	0.94	0.97	0.91	0.99	0.93			
Aua Doostilig	Ada Boosting Yes Taken Product	0.33	0.67	0.97	0.82	0.79	0.69	0.87	0.75	0.33	0.95			
Gradient Boosting	No Taken Product	0.99	0.96	0.98	0.94	1	1	0.99	0.97	0.99	0.99			
Graulent Boosting	Yes Taken Product	0.99	0.99 0.96	1	1	0.94	0.85	0.97	0.92	0.99	0.99			

Table 19. Basic Models Comparisons for Laptop

- According to problem we will focus on the Customer who have taken the product.
- Logistic Regression model and KNN model provides accuracy of 84% and 83% on train set and 96% and 88% on test set respectively. In Logistic regression and KNN it can be observed that the accuracy for test set decreases.
- Naïve Bayes model have provided a decent accuracy on Training set that is 83% and applying the models to testing set, we see that the accuracy has improved a bit that is 84%
- The desired metric for the problem is Precision which is not good for the Logistic Regression and Naïve Bayes. In case of KNN for Precision is good for Train but when applied for test set it declined a bit.
- Bagging model has high score for all parameters in Training data but it has not performed well in Test data and hence it is overfitted model
- Gradient Boosting model is better than ADA model as it has high score in Accuracy, Precision, Recall, F1 score and AUC.

c) Ensemble modelling, wherever applicable and Any other model tuning measures (if applicable)

Model Tuning

Tuning is process of maximizing a model's performance without overfitting or creating too high of a variance. In ML, this is accomplished by selecting appropriate "hyper-parameters".

Logistic Regression Model – Grid Search

We split the data into train and test using train_test_split command and fit our linear regression model into the train data and then try to predict the outcome of using the test data. Then we compare the actual against the predicted to calculate the accuracy of the model. We will hyper tune the parameters that would enhance the outcome of the model.

Performance Metrices Logistic Regression Grid Search

Model Score or Accuracy

- Accuracy for Training Data is 0.84
- ➤ Accuracy for Test Data is 0.83

Confusion Matrix

We will now create a Confusion Matrix which will be used to describe the performance of a classifier on our Test and Train Dataset. It will allow us to visualise the performance of the Logistic Regression Model.

Figure 35. Confusion Matrix for Training Data in Logistic Regression Grid Search for Laptop

Figure 36. Confusion Matrix for Test Data in Logistic Regression Grid Search for Laptop

Classification Report

➤ For Training Data

0.8374193548	387097
--------------	--------

	pr ecisio n	recall	f1-score	support
0.0	0.85	0.95	0.90	594
1.0	0.74	0.46	0.57	181
accuracy			0.84	775
macro avg	0.80	0.71	0.74	775
weighted avg	0.83	0.84	0.82	775

Table 20. Classification Report for Training Data in Logistic Regression Grid Search for Laptop

> For Test Data

0.8348348	3483	48348 precision	recall	f1-score	support
	0.0 1.0	0.83 0.87	0.97 0.49	0.89 0.63	238 95
accur macro weighted	avg	0.85 0.84	0.73 0.83	0.83 0.76 0.82	333 333 333

Table 21. Classification Report for Test Data in Logistic Regression Grid Search for Laptop

ROC and AUC

An ROC Curve or Receiver Operating Characteristic curve is a graph showing the performance of a classification model. The curve is plotted between sensitivity and (1-specificity). (1-specificity) is also known as false positive rate and sensitivity is also known as True Positive Rate.

Figure 37. ROC for Training Data in Logistic Regression Grid Search for Laptop

Figure 38. ROC for Test Data in Logistic Regression Grid Search for Laptop

KNN - Grid Search

We split the data into train and test using train_test_split command and fit our KNN regression model into the train data and then try to predict the outcome of using the test data. Then we compare the actual against the predicted to calculate the accuracy of the model. We will hyper tune the parameters that would enhance the outcome of the model GridSearchCV(cv=5, estimator=KNeighborsClassifier(), param grid={'leaf size': [20, 30, 50], 'n neighbors': [10,

Performance Metrices Basic KNN Grid Search

Model Score or Accuracy

20, 30], 'p': [1, 2]})

- ➤ Accuracy for Training Data is 0.87
- ➤ Accuracy for Test Data is 0.80

Confusion Matrix

We will now create a Confusion Matrix which will be used to describe the performance of a classifier on our Test and Train Dataset.

> For Training Data

Figure 39. Confusion Matrix for Training Data in KNN Grid Search for Laptop

> For Test Data

Figure 40. Confusion Matrix for Test Data in KNN Grid Search for Laptop

Classification Report

0.86580645161	.29033 precision	recall	f1-score	support
0.0 1.0	0.86 0.95	0.99 0.45	0.92 0.61	594 181
accuracy macro avg weighted avg	0.90 0.88	0.72 0.87	0.87 0.76 0.85	775 775 775

Table 22. Classification Report for Training Data in KNN Grid Search for Laptop

					> F
0.79579579579					or Test
	precision	recall	f1-score	support	Data
0.0	0.79	0.97	0.87	238	Data
1.0	0.85	0.35	0.49	95	
accuracy			0.80	333	
macro avg	0.82	0.66	0.68	333	
weighted avg	0.81	0.80	0.76	333	

Table 23. Classification Report for Test Data in KNN Grid Search for Laptop

ROC and AUC

For Training Data

Figure 41. ROC for Training Data in KNN Grid Search for Laptop

For Test Data

Figure 42. ROC for Test Data in KNN Grid Search for Laptop

Naïve Bayes – Grid Search

We split the data into train and test using train_test_split command and fit our Naïve Bayes model into the train data and then try to predict the outcome of using the test data. Then we compare the actual against the predicted to calculate the accuracy of the model. We will hyper tune the parameters that would enhance the outcome of the model.

Performance Metrices Naïve Bayes Grid Search

Model Score or Accuracy

- ➤ Accuracy for Training Data is 0.83
- > Accuracy for Test Data is 0.84

Confusion Matrix

We will now create a Confusion Matrix which will be used to describe the performance of a classifier on our Test and Train Dataset.

➤ For Training Data

Figure 43. Confusion Matrix for Training Data in Naive Bayes Grid Search for Laptop

Figure 44. Confusion Matrix for Test Data in Naive Bayes Grid Search for Laptop

Classification Report

➤ For Training Data

0.8335483870	967741			
	pr ecisio n	recall	f1-score	support
0.0	0.88	0.91	0.89	594
1.0	0.66	0.59	0.62	181
accuracy			0.83	775
macro avg	0.77	0.75	0.76	775
weighted avg	0.83	0.83	0.83	775

Table 23. Classification Report for Training Data in Naive Bayes Grid Search for Laptop

For Test Data

0.84084084084	.08409 precision	recall	f1-score	support
9.9	0.87	0.91	0.89	238
1.0	0.75	0.66	0.70	95
accuracy			0.84	333
macro avg weighted avg	0.81 0.84	0.79 0.84	0.80 0.84	333 333

Table 24. Classification Report for Test Data in Naive Bayes Grid Search for Laptop

ROC and AUC

An ROC Curve or Receiver Operating Characteristic curve is a graph showing the performance of a classification model. The curve is plotted between sensitivity and (1-specificity). (1-specificity) is also known as false positive rate and sensitivity is also known as True Positive Rate.

Figure 45. ROC for Training Data in Naive Bayes Grid Search for Laptop

Figure 46. ROC for Test Data in Naive Bayes Grid Search for Laptop

Bagging – Grid Search

Bagging is an ensemble technique. Ensemble techniques are ML techniques that combine several base models to get an optimal model. Bagging is designed to improve the performance of existing ML algorithms used in statistical classification or regression. It is most used with tree-based algorithms. It is a parallel method.

GridSearchCV(cv=3,

Performance Metrices Bagging Grid Search

Model Score or Accuracy

- ➤ Accuracy for Training Data is 1.0
- > Accuracy for Test Data is 0.89

Confusion Matrix

We will now create a Confusion Matrix which will be used to describe the performance of a classifier on our Test and Train Dataset.

For Training Data

Figure 47. Confusion Matrix for Training Data in Bagging Grid Search for Laptop

> For Test Data

Figure 48. Confusion Matrix for Test Data in Bagging Grid Search for Laptop

Classification Report

For Training Data

1	.0	precision	recall	f1-score	support
	0.0	1.00	1.00	1.00	594
	1.0	1.00	1.00	1.00	181
	accuracy			1.00	775
	macro avg	1.00	1.00	1.00	775
M	eighted avg	1.00	1.00	1.00	775

Table 25. Classification Report for Training Data in Bagging Grid Search for Laptop

> For Test Data

0.89189189189	18919 precision	recall	f1-score	support
0.0 1.0	0.87 1.00	1.00 0.62	0.93 0.77	238 95
accuracy macro avg weighted avg	0.93 0.91	0.81 0.89	0.89 0.85 0.88	333 333 333

Table 26. Classification Report for Test Data in Bagging Grid Search for Laptop

ROC and AUC

An ROC Curve or Receiver Operating Characteristic curve is a graph showing the performance of a classification model. The curve is plotted between sensitivity and (1-specificity). (1-specificity) is also known as false positive rate and sensitivity is also known as True Positive Rate.

Figure 49. ROC for Training Data in Bagging Grid Search for Laptop

For Test Data

Figure 50. ROC for Test Data in Bagging Grid Search for Laptop

ADA Boosting - Grid Search

This model is used to increase the efficiency of binary classifiers, but now used to improve multiclass classifiers as well. ADA boosting can be applied on top of any classifier method to learn from its issues and bring about a more accurate model and this it is called "best out of the box classifier"

Performance Metrices Ada Boosting Grid Search

Model Score or Accuracy

Accuracy for Training Data is 0.95 Accuracy for Test Data is 0.88

Confusion Matrix

We will now create a Confusion Matrix which will be used to describe the performance of a classifier on our Test and Train Dataset.

Figure 51. Confusion Matrix for Training Data in Ada Boosting Grid Search for Laptop

> For Test Data

Figure 52. Confusion Matrix for Test Data in Ada Boosting Grid Search for Laptop

Classification Report

> For Training Data

0.9548387096774194

	precision	recall	f1-score	support
0.0	0.95	0.99	0.97	594
1.0	0.96	0.84	0.90	181
accuracy			0.95	775
macro avg	0.96	0.91	0.93	775
weighted avg	0.96	0.95	0.95	775

Table 27. Classification Report for Training Data in Ada Boosting Grid Search for Laptop

> For Test Data

0.87987987987	98799			
	precision	recall	f1-score	support
0.0	0.89	0.95	0.92	238
1.0	0.84	0.72	0.77	95
accuracy			0.88	333
macro avg	0.87	0.83	0.85	333
weighted avg	0.88	0.88	0.88	333

Table 28. Classification Report for Test Data in Ada Boosting Grid Search for Laptop

ROC and AUC

An ROC Curve or Receiver Operating Characteristic curve is a graph showing the performance of a classification model. The curve is plotted between sensitivity and (1-specificity). (1-specificity) is also known as false positive rate and sensitivity is also known as True Positive Rate.

Figure 53. ROC for Training Data in Ada Boosting Grid Search for Laptop

For Test Data

Figure 54. ROC for Test Data in Ada Boosting Grid Search for Laptop

Gradient Boosting - Grid Search

This model is just like the ADA Boosting works by sequentially adding the misidentified predictors and under-fitted predictions to the ensemble, ensuring the errors identified previously are corrected. The major difference lies in what it does with the mis-identified values of the previous weak learner.

Performance Metrices Gradient Boosting Grid Search

Model Score or Accuracy

- ➤ Accuracy for Training Data is 1.0
- ➤ Accuracy for Test Data is 0.99

Confusion Matrix

We will now create a Confusion Matrix which will be used to describe the performance of a classifier on our Test and Train Dataset.

Figure 55. Confusion Matrix for Training Data in Gradient Boosting Grid Search for Laptop

➤ For Test Data

Figure 56. Confusion Matrix for Test Data in Gradient Boosting Grid Search for Laptop

Classification Report

➤ For Training Data

1.0	precision	recall	f1-score	support
0.0 1.0	1.00 1.00	1.00 1.00	1.00 1.00	594 181
accuracy macro avg weighted avg	1.00 1.00	1.00 1.00	1.00 1.00 1.00	775 775 775

Table 29. Classification Report for Training Data in Gradient Boosting Grid Search for Laptop

➤ For Test Data

0.98798798798	37988			
	pr ecisio n	recall	f1-score	support
0.0	0.98	1.00	0.99	238
1.0	1.00	0.96	0.98	95
accuracy			0.99	333
macro avg	0.99	0.98	0.99	333
weighted avg	0.99	0.99	0.99	333

Table 30. Classification Report for Test Data in Gradient Boosting Grid Search for Laptop

ROC and AUC

An ROC Curve or Receiver Operating Characteristic curve is a graph showing the performance of a classification model. The curve is plotted between sensitivity and (1-specificity). (1-specificity) is also known as false positive rate and sensitivity is also known as True Positive Rate.

For Training Data

Figure 57. ROC for Training Data in Gradient Boosting Grid Search for Laptop

Figure 58. ROC for Test Data in Gradient Boosting Grid Search for Laptop

SMOTE

SMOTE (synthetic minority oversampling technique) is one of the most commonly used oversampling methods to solve the imbalance problem.

It aims to balance class distribution by randomly increasing minority class examples by replicating them.

SMOTE synthesises new minority instances between existing minority instances. It generates the virtual training records by linear interpolation for the minority class. These synthetic training records are generated by randomly selecting one or more of the k-nearest neighbors for each example in the minority class. After the oversampling process, the data is reconstructed and several classification models can be applied for the processed data.

New data shape after SMOTE (1188, 15)

Logistic Regression Model – SMOTE

LogisticRegression(max iter=10000, n jobs=2)

Performance Metrices Logistic Regression SMOTE

Model Score or Accuracy

- ➤ Accuracy for Training Data is 0.74
- ➤ Accuracy for Test Data is 0.73

Confusion Matrix

We will now create a Confusion Matrix which will be used to describe the performance of a classifier on our Test and Train Dataset. It will allow us to visualise the performance of the Logistic Regression Model.

> For Training Data

Figure 59. Confusion Matrix for Training Data in Logistic Regression SMOTE for Laptop

Figure 60. Confusion Matrix for Test Data in Logistic Regression SMOTE for Laptop

Classification Report

➤ For Training Data

6	3.7432659932	2659933 precision	recall	f1-score	support	
	0.0 1.0		0.75 0.74	0.74 0.74	594 594	
b	accuracy macro ave veighted ave	g 0.74	0.74 0.74	0.74 0.74 0.74	1188 1188 1188	

Table 31. Classification Report for Training Data in Logistic Regression SMOTE for Laptop

For Test Data

0.72972972972	97297			
	precision	recall	f1-score	support
0.0	0.90	0.70	0.79	238
1.0	0.52	0.80	0.63	95
accuracy			0.73	333
macro avg	0.71	0.75	0.71	333
weighted avg	0.79	0.73	0.74	333

Table 32. Classification Report for Test Data in Logistic Regression SMOTE for Laptop

ROC and AUC

An ROC Curve or Receiver Operating Characteristic curve is a graph showing the performance of a classification model. The curve is plotted between sensitivity and (1-specificity). (1-specificity) is also known as false positive rate and sensitivity is also known as True Positive Rate.

➤ For Training Data

Figure 61. ROC for Training Data in Logistic Regression SMOTE for Laptop

For Test Data

Figure 62. ROC for Test Data in Logistic Regression SMOTE for Laptop

KNN - SMOTE

Performance Metrices Basic KNN SMOTE

Model Score or Accuracy

- > Accuracy for Training Data is 0.99
- > Accuracy for Test Data is 0.91

Confusion Matrix

We will now create a Confusion Matrix which will be used to describe the performance of a classifier on our Test and Train Dataset.

Figure 63. Confusion Matrix for Training Data in KNN SMOTE for Laptop

Figure 64. Confusion Matrix for Test Data in KNN SMOTE for Laptop

Classification Report

> For Training Data

0.98653198653	19865 precision	recall	f1-score	support	
0.0 1.0	1.00 0.98	0.97 1.00	0.99 0.99	594 594	
accuracy macro avg weighted avg	0.99 0.99	0.99 0.99	0.99 0.99 0.99	1188 1188 1188	

Table 33. Classification Report for Training Data in KNN SMOTE for Laptop

For Test Data

0.0 0.96 0.91 0.94 23 1.0 0.81 0.92 0.86 9 accuracy 0.91 33 macro avg 0.89 0.91 0.90 33	0.9129129129	129129			
1.0 0.81 0.92 0.86 9 accuracy 0.91 33 macro avg 0.89 0.91 0.90 33		precision	recall	f1-score	support
accuracy 0.91 33 macro avg 0.89 0.91 0.90 33	0.0	0.96	0.91	0.94	238
macro avg 0.89 0.91 0.90 3	1.0	0.81	0.92	0.86	95
	accuracy			0.91	333
weighted avg 0.92 0.91 0.91 33	macro avg	0.89	0.91	0.90	333
	weighted avg	0.92	0.91	0.91	333

Table 34. Classification Report for Test Data in KNN SMOTE for Laptop

ROC and AUC

An ROC Curve or Receiver Operating Characteristic curve is a graph showing the performance of a classification model. The curve is plotted between sensitivity and (1-specificity). (1-specificity) is also known as false positive rate and sensitivity is also known as True Positive Rate.

➤ For Training Data

Figure 65. ROC for Training Data in KNN SMOTE for Laptop

For Test Data

Figure 66. ROC for Test Data in KNN SMOTE for Laptop

Naïve Bayes – SMOTE

Performance Metrices Naïve Bayes SMOTE

Model Score or Accuracy

- ➤ Accuracy for Training Data is 0.71
- > Accuracy for Test Data is 0.65

Confusion Matrix

We will now create a Confusion Matrix which will be used to describe the performance of a classifier on our Test and Train Dataset.

> For Training Data

Figure 67. Confusion Matrix for Training Data in Naive Bayes SMOTE for Laptop

For Test Data

Figure 68. Confusion Matrix for Test Data in Naive Bayes SMOTE for Laptop

Classification Report

For Training Data

0.71380471380	947138 precision	recall	f1-score	support	
0.0 1.0	0.78 0.67	0.60 0.83	0.68 0.74	594 594	
accuracy macro avg weighted avg	0.73 0.73	0.71 0.71	0.71 0.71 0.71	1188 1188 1188	

Table 35. Classification Report for Training Data in Naive Bayes SMOTE for Laptop

> For Test Data

546547			
precision	recall	f1-score	support
0.89	0.59	0.71	238
0.44	0.82	0.58	95
•		0.65	333
0.67	0.70	0.64	333
0.76	0.65	0.67	333
	0.89 0.44 0.67	precision recall 0 0.89 0.59 0 0.44 0.82 0 0.67 0.70	precision recall f1-score 0 0.89 0.59 0.71 0 0.44 0.82 0.58 0 0.65 0 0.67 0.70 0.64

Table 36. Classification Report for Test Data in Naive Bayes SMOTE for Laptop

ROC and AUC

An ROC Curve or Receiver Operating Characteristic curve is a graph showing the performance of a classification model. The curve is plotted between sensitivity and (1-specificity). (1-specificity) is also known as false positive rate and sensitivity is also known as True Positive Rate.

Figure 69. ROC for Training Data in Naive Bayes SMOTE for Laptop

Figure 70. ROC for Test Data in Naive Bayes SMOTE for Laptop

Bagging – SMOTE

Performance Metrices Bagging SMOTE

Model Score or Accuracy

- ➤ Accuracy for Training Data is 1.0
- > Accuracy for Test Data is 0.98

Confusion Matrix

We will now create a Confusion Matrix which will be used to describe the performance of a classifier on our Test and Train Dataset.

For Training Data

Figure 71. Confusion Matrix for Training Data in Bagging SMOTE for Laptop

For Test Data

Figure 72. Confusion Matrix for Test Data in Bagging SMOTE for Laptop

Classification Report

For Training Data

1.0	precision	recall	f1-score	support
0.0 1.0	1.00 1.00	1.00 1.00	1.00 1.00	594 594
accuracy macro avg weighted avg	1.00 1.00	1.00 1.00	1.00 1.00 1.00	1188 1188 1188

Table 37. Classification Report for Training Data in Bagging SMOTE for Laptop

> For Test Data

0.9789789789	78979				
	precision	recall	f1-score	support	
0.0	0.99	0.98	0.99	238	
1.0	0.96	0.97	0.96	95	
accuracy			0.98	333	
macro avg	0.97	0.98	0.97	333	
weighted avg	0.98	0.98	0.98	333	

Table 38. Classification Report for Test Data in Bagging SMOTE for Laptop

ROC and AUC

An ROC Curve or Receiver Operating Characteristic curve is a graph showing the performance of a classification model. The curve is plotted between sensitivity and (1-specificity). (1-specificity) is also known as false positive rate and sensitivity is also known as True Positive Rate.

➤ For Training Data

Figure 73. ROC for Training Data in Bagging SMOTE for Laptop

For Test Data

Figure 74. ROC for Test Data in Bagging SMOTE for Laptop

ADA Boosting – SMOTE

AdaBoostClassifier(n estimators=100, random state=1)

Performance Metrices Ada Boosting SMOTE

Model Score or Accuracy

- ➤ Accuracy for Training Data is 0.92
- ➤ Accuracy for Test Data is 0.83

Confusion Matrix

We will now create a Confusion Matrix which will be used to describe the performance of a classifier on our Test and Train Dataset.

For Training Data

Figure 75. Confusion Matrix for Training Data in Ada Boosting SMOTE for Laptop

For Test Data

Figure 76. Confusion Matrix for Test Data in Ada Boosting SMOTE for Laptop

Classification Report

For Training					
0.922558	392255	89226			
		pr ecisio n	recall	f1-score	support
	0.0	0.93	0.92	0.92	594
	1.0	0.92	0.93	0.92	594
accu	iracy			0.92	1188
macro	avg	0.92	0.92	0.92	1188
weighted	lavg	0.92	0.92	0.92	1188

Table 39. Classification Report for Training Data in Ada Boosting SMOTE for Laptop

> For Test Data

0.83183183183			64	
	precision	recall	f1-score	support
0.0	0.93	0.83	0.88	238
1.0	0.66	0.83	0.74	95
accuracy			0.83	333
macro avg	0.79	0.83	0.81	333
weighted avg	0.85	0.83	0.84	333

Table 40. Classification Report for Test Data in Ada Boosting SMOTE for Laptop

ROC and AUC

An ROC Curve or Receiver Operating Characteristic curve is a graph showing the performance of a classification model. The curve is plotted between sensitivity and (1-specificity). (1-specificity) is also known as false positive rate and sensitivity is also known as True Positive Rate.

Figure 77. ROC for Training Data in Ada Boosting SMOTE for Laptop

Figure 78. ROC for Test Data in Ada Boosting SMOTE for Laptop

$Gradient\ Boosting-SMOTE$

GradientBoostingClassifier(random_state=1)

Performance Metrices Gradient Boosting SMOTE

Model Score or Accuracy

- ➤ Accuracy for Training Data is 0.99
- > Accuracy for Test Data is 0.0.95

Confusion Matrix

We will now create a Confusion Matrix which will be used to describe the performance of a classifier on our Test and Train Dataset.

> For Training Data

Figure 79. Confusion Matrix for Training Data in Gradient Boosting SMOTE for Laptop

Figure 80. Confusion Matrix for Test Data in Gradient Boosting SMOTE for Laptop

Classification Report

For Training Data

0.99158249158	24916			
	pr ecisio n	recall	f1-score	support
0.0	1.00	0.98	0.99	594
1.0	0.99	1.00	0.99	594
accuracy			0.99	1188
macro avg	0.99	0.99	0.99	1188
weighted avg	0.99	0.99	0.99	1188

Table 41. Classification Report for Training Data in Gradient Boosting SMOTE for Laptop

➤ For Test Data

0.954954954955						
	precision	recall	f1-score	support		
0.0	0.99	0.95	0.97	238		
1.0	0.88	0.97	0.92	95		
			0.05	222		
accuracy			0.95	333		
macro avg	0.94	0.96	0.95	333		
weighted avg	0.96	0.95	0.96	333		

Table 42. Classification Report for Test Data in Gradient Boosting SMOTE for Laptop

ROC and AUC

An ROC Curve or Receiver Operating Characteristic curve is a graph showing the performance of a classification model. The curve is plotted between sensitivity and (1-specificity). (1-specificity) is also known as false positive rate and sensitivity is also known as True Positive Rate.

For Training Data

Figure 81. ROC for Training Data in Gradient Boosting SMOTE for Laptop

Figure 82. ROC for Test Data in Gradient Boosting Grid Search for Laptop

d). Interpretation of the hyper tuned models and Using SMOTE Techniques models.

Cuid Coouch N	Grid Search Model Tuning		racy	Prec	ision	Red	all	F1 S	core	Al	JC								
Grid Search N	noder runing	Train	Test	Train	Test	Train	Test	Train	Test	Train	Test								
Logistic Bogression	No Taken Product	0.84	0.83	0.85	0.83	0.95	0.97	0.9	0.89	0.02	0.87								
Logistic Regression	Yes Taken Product	0.64	0.65	0.74	0.87	0.46	0.49	0.57	0.63	0.82	0.67								
KNN	No Taken Product	0.87	0.8	0.86	0.79	0.99	0.97	0.92	0.87	0.96	0.92								
KININ	Yes Taken Product	0.67	0.67	0.87	0.6	0.95	0.85	0.45	0.35	0.61	0.49	0.50	0.92						
Naïve Bayes	No Taken Product	0.83	0.83	0.83 0.84	0.83	0.83	U 83	0.83	0.83	U 83	0.04	0.88	0.87	0.91	0.91	0.89	0.89	0.81	0.85
ivalve bayes	Yes Taken Product				0.64	0.66	0.75	0.59	0.66	0.62	0.7	0.61	0.05						
Pagging	No Taken Product	1	1 0.89	1	0.87	1	1	1	0.93	1	0.99								
Bagging	Yes Taken Product	1	0.69	1	1	1	0.62	1	0.77	1	0.99								
Ada Boosting	No Taken Product	0.95	0.88	0.95	0.89	0.99	0.95	0.97	0.92	0.99	0.95								
Aua DUUSUNg	Yes Taken Product		0.00	0.96	0.84	0.84	0.72	0.9	0.77	0.99	0.95								
Gradient Boosting	No Taken Product	1	0.99	1	0.98	1	1	1	0.99	1	1								
Gradient Boosting	Yes Taken Product	1 0.9	0.99	1	1	1	0.96	1	0.98	1	1								

Table 43. Model Tuning Comparison for Laptop

SMOTE		Accu	iracy	Prec	ision	Red	all	F1 S	core	Al	JC					
SIVIC)IE	Train	Test	Train	Test	Train	Test	Train	Test	Train	Test					
Logistic Regression	No Taken Product	0.74	0.73	0.74	0.9	0.75	0.7	0.74	0.79	0.82	0.86					
Logistic Regression	Yes Taken Product	0.74	0.75	0.74	0.52	0.74	0.8	0.74	0.63	0.82 0.86						
KNN	No Taken Product	0.99	0.91	1	0.96	0.97	0.91	0.99	0.94	1	0.96					
KININ	Yes Taken Product	0.99	0.99	0.91	0.98	0.81	1	0.92	0.99	0.86	1	0.96				
Naïve Bayes	No Taken Product	0.71	0.71 0	0.71 0.65	0.71	0.71	0.71	0.65	0.78	0.89	0.6	0.59	0.68	0.71	0.81	0.84
Naive dayes	Yes Taken Product				0.67	0.44	0.83	0.82	0.74	0.58	0.61	0.64				
Bagging	No Taken Product	1	0.98	1	0.99	1	0.98	1	0.99	1	0.99					
Dagging	Yes Taken Product	1	0.36	1	0.96	1	0.97	1	0.96	1	0.55					
Ada Boosting	No Taken Product	0.92	0.83	0.93	0.93	0.92	0.83	0.92	0.88	0.98	0.93					
Aua boostilig	Yes Taken Product	0.92	0.65	0.92	0.66	0.93	0.83	0.92	0.74	0.98	0.93					
Gradient Poesting	No Taken Product	0.99	0.95	1	0.99	0.98	0.95	0.99	0.97	0.99 0.	0.99					
Gradient Boosting	Yes Taken Product	0.99	0.95	0.99	0.88	1	0.97	0.99	0.92		0.99					

Table 44. Using SMOTE models comparison for Laptop

- According to problem we will focus on the Customer who have taken the product.
- There is not much improvement in performance for the Logistic Regression model after hyper tuning and SMOTE technique. For LR model performance declined after applying SMOTE Technique.
- For KNN after Hyper tuning model performance declined and after applying SMOTE
 Technique there is improvement in process but Precision is good for training set but
 decreases in Test Set
- There is not much improvement in performance for the Naïve Bayes model after hyper tuning and SMOTE technique. For Naïve Bayes model performance declined after applying SMOTE Technique.
- For Bagging model performance declined when hyper tuning model but in case of SMOTE technique model is performing well.
- For the ADA Boosting Model there is not much improvement in performance after hyper tuning and SMOTE technique. For ADA Boosting model performance declined after applying SMOTE Technique.

Mobile

a). Build various models (You can choose to build models for either or all of descriptive, predictive or prescriptive purposes) and test your predictive model against the test set using various appropriate performance metrics

Scaling

In regression or classification, it is often a good practice to centre the variables so that predictor have a mean of 0. This makes it easier to intercept the intercept term as the expected value of Yi when the predictor values are set to their means. Otherwise, the intercept is interpreted as the expected value of Yi when the predictors are set to 0, which may not be a realistic or interpretable situation. Another valid reason for scaling in regression is when one predictor variable has a very large scale. In that case, the regression coefficients may be on a very small order of magnitude which can be unclear to interpret. The convention that we standardize predictions primarily exists so that the units of the regression coefficients are the same. More often, the dataset contains feature highly varying in magnitudes, units and range. However, most of the machine learning algorithms use Euclidean distance between two data points in their computations, and this can be a potential problem. Also, scaling helps to standardize the independent features present in the data in a fixed range. If feature scaling is not done, then a machine learning algorithm tends to weigh greater values, higher and consider smaller values as the lower values, regardless of the unit of the values. The features with high magnitudes will weigh in a lot more in the distance calculations than features with low magnitudes. To suppress this effect, we need to bring all features to the same level of magnitudes.

Yes, Scaling is absolutely necessary in this case as we have Variables that carry absolute numbers and we have Variables that carry percentage. If we have data in different scales, the variables with larger scale will dominate, this is probably not what we want. After scaling there is variance look similar across all data.

Train and Test Split

Before splitting we need to determine the target variable. Hence, the target variable is "vote_Labour"

We will split the data for 70:30 ratio with a random state =1.

Train Test Data Shape

```
X_train (7456, 15)
X_test (3196, 15)
y_train (7456,)
y_test (3196,)
```

Logistic Regression Model

Logistic regression is a process of modelling the probability of a discrete outcome given an input variable. The most common logistic regression models a binary outcome; something that can take two values such as true/false, yes/no, and so on.

We split the data into train and test using train_test_split command and fit our linear regression model into the train data and then try to predict the outcome of using the test data. Then we compare the actual against the predicted to calculate the accuracy of the model.

Performance Metrices Basic Logistic Regression Model

Model Score or Accuracy

- ➤ Accuracy for Training Data is 0.87
- ➤ Accuracy for Test Data is 0.87

Confusion Matrix

We will now create a Confusion Matrix which will be used to describe the performance of a classifier on our Test and Train Dataset. It will allow us to visualise the performance of the Logistic Regression Model.

For Training Data - 6000 - 5000 - 4000 - 4000 - 3000 - 1000

Predicted

Figure 83. Confusion Matrix for Training Data in Basic Logistic Regression Model for Mobile

Figure 84. Confusion Matrix for Test Data in Basic Logistic Regression Model for Mobile

Classification Report

➤ For Training Data

The classifica	tion report	for Logist	tic Regress	ion trainin	g s et i s
	precision	recall	f1-score	support	
				633.0	
0.0	0.87	0.99	0.93	6330	
1.0	0.71	0.20	0.31	1126	
accuracy			0.87	7456	
macro avg	0.79	0.59	0.62	7456	
weighted avg	0.85	0.87	0.83	7456	

Table 45. Classification Report for Training Data in Basic Logistic Regression Model for Mobile

For Test Data

The classifica	tion report precision	_	_	sion testing support	s e t
0.0 1.0	0.88 0.74	0.98 0.23	0.93 0.35	2702 494	
accuracy macro avg	0.81	0.61	0.87 0.64	3196 3196	
weighted avg	0.85	0.87	0.84	3196	

Table 46. Classification Report for Test Data in Basic Logistic Regression Model for Mobile

ROC and AUC

An ROC Curve or Receiver Operating Characteristic curve is a graph showing the performance of a classification model. The curve is plotted between sensitivity and (1-specificity). (1-specificity) is also known as false positive rate and sensitivity is also known as True Positive Rate.

For Training Data

The AUC score for Logistic Regression training set is: 0.786

Figure 85. ROC for Training Data in Basic Logistic Regression Model for Mobile

For Test Data

The AUC score for Logistic Regression testing set is: 0.798

Figure 86. ROC for Test Data in Basic Logistic Regression Model for Mobile

KNN Model

KNN works by finding the distances between a query and all the examples in the data, selecting the specified number examples (K) closest to the query, then votes for the most frequent label (in the case of classification) or averages the labels (in the case of regression).

Performance Metrices Basic KNN Model

Model Score or Accuracy

- ➤ Accuracy for Training Data is 0.99
- > Accuracy for Test Data is 0.97

Confusion Matrix

We will now create a Confusion Matrix which will be used to describe the performance of a classifier on our Test and Train Dataset.

> For Training Data

Figure 87. Confusion Matrix for Training Data in Basic KNN Model for Mobile

For Test Data

Figure 88. Confusion Matrix for Test Data in Basic KNN Model for Mobile

Classification Report

➤ For Training Data

_				
The classifica	tion report	for KNN s	e t is	
	precision	recall	f1-score	support
0.0	0.99	1.00	0.99	6330
1.0	0.98	0.93	0.95	1126
accuracy			0.99	7456
macro avg	0.98	0.96	0.97	7456
weighted avg	0.99	0.99	0.99	7456

Table 47. Classification Report for Training Data in Basic KNN Model for Mobile

For Test Data

The classifica	tion report	for KNN t	esting set	is
	precision	recall	f1-score	support
0.0	0.98	0.99	0.98	2702
1.0	0.95	0.86	0.90	494
accuracy			0.97	3196
macro avg	0.96	0.93	0.94	3196
weighted avg	0.97	0.97	0.97	3196

Table 48. Classification Report for Test Data in Basic KNN Model for Mobile

ROC and AUC

An ROC Curve or Receiver Operating Characteristic curve is a graph showing the performance of a classification model. The curve is plotted between sensitivity and (1-specificity). (1-specificity) is also known as false positive rate and sensitivity is also known as True Positive Rate.

For Training Data

The AUC score for KNN training set is: 0.999

Figure 89. ROC for Training Data in Basic KNN Model for Mobile

For Test Data

The AUC score for KNN testing set is: 0.988

Figure 90. ROC for Test Data in Basic KNN Model for Mobile

Naïve Bayes Model

Naïve Bayes is a classification technique based on Bayes' Theorem with an assumption of independence among predictors. In simple terms, a Naïve Bayes classifier assumes that the presence of a particular feature in a class is unrelated to the presence of any other feature.

Performance Metrices Basic Naïve Bayes Model

Model Score or Accuracy

- ➤ Accuracy for Training Data is 0.86
- > Accuracy for Test Data is 0.85

Confusion Matrix

We will now create a Confusion Matrix which will be used to describe the performance of a classifier on our Test and Train Dataset.

➤ For Training Data

Figure 91. Confusion Matrix for Training Data in Basic Naive Bayes Model for Mobile

> For Test Data

Figure 92. Confusion Matrix for Test Data in Basic Naive Bayes Model for Mobile

Classification Report

➤ For Training Data

The classifica	tion report	for Naive	Bayes Mode	l s e t is
	pr ecisio n	recall	f1-score	support
0.0	0.88	0.96	0.92	6330
1.0	0.56	0.28	0.37	1126
accuracy			0.86	7456
macro avg	0.72	0.62	0.65	7456
weighted avg	0.83	0.86	0.84	7456

Table 49. Classification Report for Training Data in Basic Naive Bayes Model for Mobile

For Test Data

The classiticat	ion report	tor Naive	-bayes Mode	L testing	set	ĺS
	precision	recall	f1-score	support		
0.0	0.88	0.95	0.92	2702		
1.0	0.53	0.31	0.39	494		
				2486		
accuracy			0.85	3196		
macro avg	0.71	0.63	0.65	3196		
weighted avo	0.83	0.85	0.83	3196		

Table 50. Classification Report for Test Data in Basic Naive Bayes Model for Mobile

ROC and AUC

An ROC Curve or Receiver Operating Characteristic curve is a graph showing the performance of a classification model. The curve is plotted between sensitivity and (1-specificity). (1-specificity) is also known as false positive rate and sensitivity is also known as True Positive Rate.

For Training Data

The AUC score for Naive Bayes training set is: 0.765

Figure 93. ROC for Training Data in Basic Naive Bayes Model for Mobile

For Test Data

The AUC score for Naive Bayes testing set is: 0.774

Figure 94. ROC for Test Data in Basic Naive Bayes Model for Mobile

Bagging

Bagging is designed to improve the performance of existing ML algorithms used in statistical classification or regression. It is most used with tree-based algorithms. It is a parallel method.

```
BaggingClassifier(base_estimator=RandomForestClassifier(),
n estimators=100,random state=1)
```

Performance Metrices Basic Bagging

Model Score or Accuracy

- ➤ Accuracy for Training Data is 1.0
- ➤ Accuracy for Test Data is 0.96

Confusion Matrix

We will now create a Confusion Matrix which will be used to describe the performance of a classifier on our Test and Train Dataset.

Figure 95. Confusion Matrix for Training Data in Basic Bagging for Mobile

For Test Data

Figure 96. Confusion Matrix for Test Data in Basic Bagging for Mobile

Classification Report

➤ For Training Data

0.998524678	3111588			
	precision	recall	f1-score	support
0.	0 1.00	1.00	1.00	6330
1.	0 1.00	0.99	1.00	1126
accurac	y		1.00	7456
macro av	/g 1.00	1.00	1.00	7456
weighted av	/g 1.00	1.00	1.00	7456

Table 51. Classification Report for Training Data in Basic Bagging for Mobile

> For Test Data

0.9637046307	884856 precision	recall	f1-score	support
0.0 1.0	0.96 1.00	1.00 0.77	0.98 0.87	2702 494
accuracy macro avg weighted avg	0.98 0.97	0.88 0.96	0.96 0.92 0.96	3196 3196 3196

Table 52. Classification Report for Test Data in Basic Bagging for Mobile

ROC and AUC

An ROC Curve or Receiver Operating Characteristic curve is a graph showing the performance of a classification model. The curve is plotted between sensitivity and (1-specificity). (1-specificity) is also known as false positive rate and sensitivity is also known as True Positive Rate.

For Training Data AUC: 1.000

Figure 97. ROC for Training Data in Basic Bagging for Mobile

For Test Data

Figure 98. ROC for Test Data in Basic Bagging for Mobile

ADA Boosting

This model is used to increase the efficiency of binary classifiers, but now used to improve multiclass classifiers as well. ADA boosting can be applied on top of any classifier method to learn from its issues and bring about a more accurate model and this it is called "best out of the box classifier"

AdaBoostClassifier(n estimators=100, random state=1)

Performance Metrices Basic Ada Boosting

Model Score or Accuracy

- ➤ Accuracy for Training Data is 0.88
- ➤ Accuracy for Test Data is 0.88

Confusion Matrix

We will now create a Confusion Matrix which will be used to describe the performance of a classifier on our Test and Train Dataset.

Figure 99. Confusion Matrix for Training Data in Basic Ada Boosting for Mobile

For Test Data

Figure 100. Confusion Matrix for Test Data in Basic Ada Boosting for Mobile

Classification Report

For Training Data

			19742	0.8807671673819
support	f1-score	recall	precision	ţ
6330	0.93	0.98	0.89	0.0
1126	0.46	0.33	0.73	1.0
7456	0.88			accuracy
7456	0.70	0.66	0.81	macro avg
7456	0.86	0.88	0.87	weighted avg

Table 53. Classification Report for Training Data in Basic Ada Boosting for Mobile

> For Test Data

0.88110137672	209012			
	precision	recall	f1-score	support
0.0	0.90	0.97	0.93	2702
1.0	0.71	0.39	0.50	494
accuracy			0.88	3196
macro avg	0.80	0.68	0.72	3196
weighted avg	0.87	0.88	0.87	3196

Table 54. Classification Report for Test Data in Basic Ada Boosting for Mobile

ROC and AUC

An ROC Curve or Receiver Operating Characteristic curve is a graph showing the performance of a classification model. The curve is plotted between sensitivity and (1-specificity). (1-specificity) is also known as false positive rate and sensitivity is also known as True Positive Rate.

For Training Data

AUC: 0.877

Figure 101. ROC for Training Data in Basic Ada Boosting for Mobile

For Test Data

AUC: 0.861

Figure 102. ROC for Test Data in Basic Ada Boosting for Mobile

Gradient Boosting

This model is just like the ADA Boosting works by sequentially adding the misidentified predictors and under-fitted predictions to the ensemble, ensuring the errors identified previously are corrected. The major difference lies in what it does with the mis-identified values of the previous weak learner.

Performance Metrices Basic Gradient Boosting

Model Score or Accuracy

- ➤ Accuracy for Training Data is 0.91
- ➤ Accuracy for Test Data is 0.90

Confusion Matrix

We will now create a Confusion Matrix which will be used to describe the performance of a classifier on our Test and Train Dataset.

> For Training Data

Figure 103. Confusion Matrix for Training Data in Basic Gradient Boosting for Mobile

> For Test Data

Figure 104. Confusion Matrix for Test Data in Basic Gradient Boosting for Mobile

Classification Report

> For Training Data

0.9138948497854077

	precision	recall	f1-score	support
0.0	0.91	0.99	0.95	6330
1.0	0.91	0.48	0.63	1126
accuracy			0.91	7456
macro avg	0.91	0.73	0.79	7456
weighted avg	0.91	0.91	0.90	7456

Table 55. Classification Report for Training Data in Basic Gradient Boosting for Mobile

➤ For Test Data

0.90237797246	55819			
	precision	recall	f1-score	support
0.0	0.90	0.99	0.94	2702
1.0	0.88	0.43	0.57	494
accuracy			0.90	3196
macro avg	0.89	0.71	0.76	3196
weighted avg	0.90	0.90	0.89	3196

Table 56. Classification Report for Test Data in Basic Gradient Boosting for Mobile

ROC and AUC

An ROC Curve or Receiver Operating Characteristic curve is a graph showing the performance of a classification model. The curve is plotted between sensitivity and (1-specificity). (1-specificity) is also known as false positive rate and sensitivity is also known as True Positive Rate.

> For Training Data

Figure 105. ROC for Training Data in Basic Gradient Boosting for Mobile

Figure 106. ROC for Test Data in Basic Gradient Boosting for Mobile

b). Interpretation of the model(s)

Basic Model		Accuracy Precision		sion	on Recall		F1 Score		AUC													
Basic i	vioaei	Train	Test	Train	Test	Train	Test	Train	Test	Train	Test											
Laciatia Daguassian	No Taken Product	0.07	0.07	0.87	0.88	0.99	0.98	0.93	0.93	0.70	0.8											
Logistic Regression	Yes Taken Product	0.87	0.87	0.71	0.74	0.2	0.23	0.31	0.35	0.79	0.8											
KNN	No Taken Product	0.99	0.97	0.99	0.98	1	0.99	0.99	0.98	0.99	0.99											
KININ	Yes Taken Product	t 0.99	0.97	0.98	0.95	0.93	0.86	0.95	0.9	0.99	0.99											
News Person	No Taken Product	1 0.86 l	0.85	0.88	0.88	0.96	0.95	0.92	0.92	0.77	0.77											
Naïve Bayes	Yes Taken Product		0.80	0.80	0.60	0.86	0.00	0.80	0.80	0.86	0.60	0.00	0.80	0.00	0.80 0.83	0.56	0.53	0.28	0.31	0.37	0.39	0.77
Pagging	No Taken Product	1	0.96	1	0.96	1	1	1	0.98	1	0.99											
Bagging	Yes Taken Product		0.90	1	1	1	0.77	1	0.87	1	0.99											
Ada Paasting	No Taken Product	0.88	0.88	0.89	0.9	0.98	0.97	0.93	0.93	0.00	0.86											
Ada Boosting	Yes Taken Product	0.88	0.88	0.73	0.71	0.33	0.39	0.46	0.5	0.88	0.86											
Gradient Paesting	No Taken Product	0.91	0.9	0.91	0.9	0.99	0.99	0.95	0.94	0.04	0.92											
Gradient Boosting	Yes Taken Product	0.91	0.9	0.91	0.88	0.48	0.43	0.63	0.57	0.94	0.92											

Table 57. Basic Models Comparisons for Mobile

- According to problem we will focus on the Customer who have taken the product.
- Logistic Regression model and KNN model provides accuracy of 87% and 87% on train set and 99% and 97% on test set respectively. In Logistic regression accuracy remain same for train test and but in KNN it can be observed that the accuracy for test set decreases.
- Naïve Bayes model have provided a decent accuracy on Training set that is 86% and applying the models to testing set, we see that the accuracy has declined a bit that is 85%
- The desired metric for the problem is Precision which is not good for the Logistic Regression and Naïve Bayes. In case of KNN for Precision is good for Train but when applied for test set it declined a bit.
- Bagging model has high score for all parameters in Training data but it has not performed well in Test data and hence it is overfitted model
- Gradient Boosting model is better than ADA model as it has high score in Accuracy, Precision, Recall, F1 score and AUC.

c) Ensemble modelling, wherever applicable and Any other model tuning measures (if applicable)

Model Tuning

Tuning is process of maximizing a model's performance without overfitting or creating too high of a variance. In ML, this is accomplished by selecting appropriate "hyper-parameters".

Logistic Regression Model - Grid Search

We split the data into train and test using train_test_split command and fit our linear regression model into the train data and then try to predict the outcome of using the test data.

Then we compare the actual against the predicted to calculate the accuracy of the model. We will hyper tune the parameters that would enhance the outcome of the model.

Performance Metrices Logistic Regression Grid Search

Model Score or Accuracy

- ➤ Accuracy for Training Data is 0.87
- ➤ Accuracy for Test Data is 0.87

Confusion Matrix

We will now create a Confusion Matrix which will be used to describe the performance of a classifier on our Test and Train Dataset. It will allow us to visualise the performance of the Logistic Regression Model.

> For Training Data

Figure 107. Confusion Matrix for Training Data in Logistic Regression Grid Search for Mobile

Figure 108. Confusion Matrix for Test Data in Logistic Regression Grid Search for Mobile

Classification Report

>	For Training D					
	a.86/221038	04Z	9182			
		ı	or ecisio n	recall	f1-score	support
	0.	0	0.87	0.99	0.93	6330
	1.	0	0.72	0.20	0.31	1126
	accurac	У			0.87	7456
	macro av	g	0.80	0.59	0.62	7456
	พeighted av	g	0.85	0.87	0.83	7456

Table 58. Classification Report for Training Data in Logistic Regression Grid Search for Mobile

For	Test	Data

0.8679599499374218								
	precision	recall	f1-score	support				
0.0	0.87	0.99	0.93	2702				
1.0	0.74	0.23	0.35	494				
accuracy	,		0.87	3196				
macro av	9.81	0.61	0.64	3196				
weighted av	0.85	0.87	0.84	3196				

Table 59. Classification Report for Test Data in Logistic Regression Grid Search for Mobile

ROC and AUC

An ROC Curve or Receiver Operating Characteristic curve is a graph showing the performance of a classification model. The curve is plotted between sensitivity and (1-specificity). (1-specificity) is also known as false positive rate and sensitivity is also known as True Positive Rate.

For Training Data

Figure 109. ROC for Training Data in Logistic Regression Grid Search for Mobile

For Test Data

Figure 110. ROC for Test Data in Logistic Regression Grid Search for Laptop

KNN - Grid Search

We split the data into train and test using train_test_split command and fit our KNN regression model into the train data and then try to predict the outcome of using the test data. Then we compare the actual against the predicted to calculate the accuracy of the model. We will hyper tune the parameters that would enhance the outcome of the model

Performance Metrices Basic KNN Grid Search

Model Score or Accuracy

- ➤ Accuracy for Training Data is 0.95
- ➤ Accuracy for Test Data is 0.92

Confusion Matrix

We will now create a Confusion Matrix which will be used to describe the performance of a classifier on our Test and Train Dataset.

For Training Data

Figure 111. Confusion Matrix for Training Data in KNN Grid Search for Mobile

➤ For Test Data

Figure 112. Confusion Matrix for Test Data in KNN Grid Search for Mobile

Classification Report

> For Training Data

0.94755901287	755365 precision	recall	f1-score	support
0.0	0.94	1.00	0.97	6330
1.0	0.98	0.67	0.79	1126
accuracy			0.95	7456
macro avg	0.96	0.83	0.88	7456
weighted avg	0.95	0.95	0.94	7456

Table 60. Classification Report for Training Data in KNN Grid Search for Mobile

➤ For Test Data

0.91802252	2816	32002			
		pr e cisi o n	recall	f1-score	support
e	9.0	0.92	0.99	0.95	2702
1	1.0	0.94	0.50	0.66	494
accura	асу			0.92	3196
macro a	avg	0.93	0.75	0.80	3196
weighted a	avg	0.92	0.92	0.91	3196

Table 61. Classification Report for Test Data in KNN Grid Search for Mobile

ROC and AUC

For Training Data AUC: 0.991

Figure 113. ROC for Training Data in KNN Grid Search for Mobile

Figure 114. ROC for Test Data in KNN Grid Search for Mobile

Naïve Bayes – Grid Search

We split the data into train and test using train_test_split command and fit our Naïve Bayes model into the train data and then try to predict the outcome of using the test data. Then we compare the actual against the predicted to calculate the accuracy of the model. We will hyper tune the parameters that would enhance the outcome of the model.

```
GridSearchCV(cv=5, estimator=GaussianNB(), n jobs=1,
```

Performance Metrices Naïve Bayes Grid Search

Model Score or Accuracy

- ➤ Accuracy for Training Data is 0.86
- ➤ Accuracy for Test Data is 0.85

Confusion Matrix

We will now create a Confusion Matrix which will be used to describe the performance of a classifier on our Test and Train Dataset.

For Training Data

Figure 115. Confusion Matrix for Training Data in Naive Bayes Grid Search for Mobile

For Test Data 2500 2000 0.0 2568 134 True label - 1500 1000 343 151 1.0 500 1.0 0.0 Predicted label

Figure 116. Confusion Matrix for Test Data in Naive Bayes Grid Search for Mobile

Classification Report

➤ For Training Data

0.85756437768	324035 precision	recall	f1-score	support
0.0 1.0	0.88 0.56	0.96 0.28	0.92 0.37	6330 1126
accuracy macro avg weighted avg	0.72 0.83	0.62 0.86	0.86 0.65 0.84	7456 7456 7456

Table 62. Classification Report for Training Data in Naive Bayes Grid Search for Mobile

For Test Data

0.8507509386	733417 precision	recall	f1-score	support
0.0 1.0	0.88 0.53	0.95 0.31	0.92 0.39	2702 494
accuracy macro avg weighted avg	0.71 0.83	0.63 0.85	0.85 0.65 0.83	3196 3196 3196

Table 63. Classification Report for Test Data in Naive Bayes Grid Search for Mobile

ROC and AUC

An ROC Curve or Receiver Operating Characteristic curve is a graph showing the performance of a classification model. The curve is plotted between sensitivity and (1-specificity). (1-specificity) is also known as false positive rate and sensitivity is also known as True Positive Rate.

Figure 117. ROC for Training Data in Naive Bayes Grid Search for Mobile

➤ For Test Data

Figure 118. ROC for Test Data in Naive Bayes Grid Search for Mobile

Bagging – Grid Search

Bagging is an ensemble technique. Ensemble techniques are ML techniques that combine several base models to get an optimal model. Bagging is designed to improve the performance of existing ML algorithms used in statistical classification or regression. It is most used with tree-based algorithms. It is a parallel method.

Performance Metrices Bagging Grid Search

Model Score or Accuracy

- ➤ Accuracy for Training Data is 1.0
- > Accuracy for Test Data is 0.90

Confusion Matrix

We will now create a Confusion Matrix which will be used to describe the performance of a classifier on our Test and Train Dataset.

For Training Data

Figure 119. Confusion Matrix for Training Data in Bagging Grid Search for Mobile

➤ For Test Data

Figure 120. Confusion Matrix for Test Data in Bagging Grid Search for Mobile

Classification Report

➤ For Training Data

0.9974517167381974

	precision	recall	f1-score	support
0.0	1.00	1.00	1.00	6330
1.0	1.00	0.98	0.99	1126
accuracy			1.00	7456
macro avg	1.00	0.99	0.99	7456
weighted avg	1.00	1.00	1.00	7456

Table 64. Classification Report for Training Data in Bagging Grid Search for Mobile

➤ For Test Data

0.89831038798	349812			
	precision	recall	f1-score	support
0.0	0.89	1.00	0.94	2702
1.0	1.00	0.34	0.51	494
accuracy			0.90	3196
macro avg	0.95	0.67	0.73	3196
weighted avg	0.91	0.90	0.88	3196

Table 65. Classification Report for Test Data in Bagging Grid Search for Mobile

ROC and AUC

An ROC Curve or Receiver Operating Characteristic curve is a graph showing the performance of a classification model. The curve is plotted between sensitivity and (1-specificity). (1-specificity) is also known as false positive rate and sensitivity is also known as True Positive Rate.

For Training Data AUC: 1.000

Figure 121. ROC for Training Data in Bagging Grid Search for Mobile

Figure 122. ROC for Test Data in Bagging Grid Search for Mobile

ADA Boosting – Grid Search

This model is used to increase the efficiency of binary classifiers, but now used to improve multiclass classifiers as well. ADA boosting can be applied on top of any classifier method to learn from its issues and bring about a more accurate model and this it is called "best out of the box classifier"

Performance Metrices Ada Boosting Grid Search

Model Score or Accuracy

Accuracy for Training Data is 0.89 Accuracy for Test Data is 0.88

Confusion Matrix

We will now create a Confusion Matrix which will be used to describe the performance of a classifier on our Test and Train Dataset.

Figure 123. Confusion Matrix for Training Data in Ada Boosting Grid Search for Mobile

Figure 124. Confusion Matrix for Test Data in Ada Boosting Grid Search for Mobile

Classification Report

For Training Data 0.8862660944206009 precision recall f1-score support 0.94 0.0 0.89 0.98 6330 0.34 0.48 1.0 0.78 1126 0.89 7456 accuracy macro avg 0.84 7456 0.66 0.71 weighted avg 0.88 0.89 0.87 7456

Table 66. Classification Report for Training Data in Ada Boosting Grid Search for Mobile

> For Test Data

0.88297872	23404	42553			
		precision	recall	f1-score	support
(9.0	0.90	0.98	0.93	2702
:	1.0	0.74	0.37	0.50	494
accura	асу			0.88	3196
macro a	avg	0.82	0.68	0.72	3196
weighted a	avg	0.87	0.88	0.87	3196

Table 67. Classification Report for Test Data in Ada Boosting Grid Search for Mobile

ROC and AUC

An ROC Curve or Receiver Operating Characteristic curve is a graph showing the performance of a classification model. The curve is plotted between sensitivity and (1-specificity). (1-specificity) is also known as false positive rate and sensitivity is also known as True Positive Rate.

Figure 125. ROC for Training Data in Ada Boosting Grid Search for Mobile

Figure 126. ROC for Test Data in Ada Boosting Grid Search for Mobile

Gradient Boosting – Grid Search

This model is just like the ADA Boosting works by sequentially adding the misidentified predictors and under-fitted predictions to the ensemble, ensuring the errors identified previously are corrected. The major difference lies in what it does with the mis-identified values of the previous weak learner.

Performance Metrices Gradient Boosting Grid Search

Model Score or Accuracy

- ➤ Accuracy for Training Data is 1.0
- ➤ Accuracy for Test Data is 0.97

Confusion Matrix

We will now create a Confusion Matrix which will be used to describe the performance of a classifier on our Test and Train Dataset.

> For Training Data

Figure 127. Confusion Matrix for Training Data in Gradient Boosting Grid Search for Mobile

For Test Data

Figure 128. Confusion Matrix for Test Data in Gradient Boosting Grid Search for Mobile

Classification Report

> For Training Data 0.9970493562231759 precision recall f1-score support 1.00 0.0 1.00 1.00 6330 1.0 1.00 0.98 0.99 1126 accuracy 1.00 7456 macro avg 1.00 0.99 0.99 7456

1.00

Table 68. Classification Report for Training Data in Gradient Boosting Grid Search for Mobile

1.00

1.00

7456

> For Test Data

weighted avg

0.9690237797	246558			
	precision	recall	f1-score	support
0.0	0.97	1.00	0.98	2702
1.0	0.98	0.82	0.89	494
accuracy			0.97	3196
macro avg	0.97	0.91	0.94	3196
weighted avg	0.97	0.97	0.97	3196

Table 69. Classification Report for Test Data in Gradient Boosting Grid Search for Mobile

ROC and AUC

An ROC Curve or Receiver Operating Characteristic curve is a graph showing the performance of a classification model. The curve is plotted between sensitivity and (1-specificity). (1-specificity) is also known as false positive rate and sensitivity is also known as True Positive Rate.

Figure 129. ROC for Training Data in Gradient Boosting Grid Search for Mobile

For Test Data

Figure 130. ROC for Test Data in Gradient Boosting Grid Search for Mobile

SMOTE

SMOTE (synthetic minority oversampling technique) is one of the most commonly used oversampling methods to solve the imbalance problem.

It aims to balance class distribution by randomly increasing minority class examples by replicating them.

SMOTE synthesises new minority instances between existing minority instances. It generates the virtual training records by linear interpolation for the minority class. These synthetic training records are generated by randomly selecting one or more of the k-nearest neighbors for each example in the minority class. After the oversampling process, the data is reconstructed and several classification models can be applied for the processed data.

New data shape after SMOTE (1188, 15)

Logistic Regression Model – SMOTE

LogisticRegression(max_iter=10000, n_jobs=2)

Performance Metrices Logistic Regression SMOTE

Model Score or Accuracy

- Accuracy for Training Data is 0.73
- ➤ Accuracy for Test Data is 0.71

Confusion Matrix

We will now create a Confusion Matrix which will be used to describe the performance of a classifier on our Test and Train Dataset. It will allow us to visualise the performance of the Logistic Regression Model.

> For Training Data

Figure 131. Confusion Matrix for Training Data in Logistic Regression SMOTE for Mobile

➤ For Test Data

Figure 132. Confusion Matrix for Test Data in Logistic Regression SMOTE for Mobile

Classification Report

> For Training Data

0.72582938388	6256			
	precision	recall	f1-score	support
0.0	0.73	0.72	0.72	6330
1.0	0.72	0.73	0.73	6330
accuracy			0.73	12660
macro avg	0.73	0.73	0.73	12660
weighted avg	0.73	0.73	0.73	12660

Table 70. Classification Report for Training Data in Logistic Regression SMOTE for Mobile

0.7130788485	607009			
	pr ecisio n	recall	f1-score	support
0.0	0.94	0.70	0.81	2702
1.0	0.32	0.76	0.45	494
accuracy			0.71	3196
macro avg	0.63	0.73	0.63	3196
weighted avg	0.85	0.71	0.75	3196

Table 71. Classification Report for Test Data in Logistic Regression SMOTE for Mobile

ROC and AUC

An ROC Curve or Receiver Operating Characteristic curve is a graph showing the performance of a classification model. The curve is plotted between sensitivity and (1-specificity). (1-specificity) is also known as false positive rate and sensitivity is also known as True Positive Rate.

Figure 133. ROC for Training Data in Logistic Regression SMOTE for Mobile

Figure 134. ROC for Test Data in Logistic Regression SMOTE for Mobile

KNN - SMOTE

Performance Metrices Basic KNN SMOTE

Model Score or Accuracy

- ➤ Accuracy for Training Data is 0.99
- > Accuracy for Test Data is 0.97

Confusion Matrix

We will now create a Confusion Matrix which will be used to describe the performance of a classifier on our Test and Train Dataset.

➤ For Training Data

Figure 135. Confusion Matrix for Training Data in KNN SMOTE for Mobile

> For Test Data

Figure 136. Confusion Matrix for Test Data in KNN SMOTE for Mobile

Classification Report

For Training Data

_			
Θ.	99225	90837	7282781

	pr ecisio n	recall	f1-score	support
0.0 1.0	1.00 0.99	0.98 1.00	0.99 0.99	6330 6330
accuracy macro avg weighted avg	0.99 0.99	0.99 0.99	0.99 0.99 0.99	12660 12660 12660

Table 72. Classification Report for Training Data in KNN SMOTE for Mobile

> For Test Data

α	0705	88235	: OO4 :	1176
•	. 9/03	00233	1 Z D+ .	

	pr ecisio n	recall	f1-score	support
0.0 1.0	1.00 0.85	0.97 0.98	0.98 0.91	2702 494
accuracy macro avg weighted avg	0.92 0.97	0.97 0.97	0.97 0.95 0.97	3196 3196 3196

Table 73. Classification Report for Test Data in KNN SMOTE for Mobile

ROC and AUC

An ROC Curve or Receiver Operating Characteristic curve is a graph showing the performance of a classification model. The curve is plotted between sensitivity and (1-specificity). (1-specificity) is also known as false positive rate and sensitivity is also known as True Positive Rate.

For Training Data AUC: 1.000

Figure 137. ROC for Training Data in KNN SMOTE for Mobile

AUC: 0.991

Figure 138. ROC for Test Data in KNN SMOTE for Mobile

Naïve Bayes – SMOTE

Performance Metrices Naïve Bayes SMOTE

Model Score or Accuracy

- ➤ Accuracy for Training Data is 0.68
- ➤ Accuracy for Test Data is 0.66

Confusion Matrix

We will now create a Confusion Matrix which will be used to describe the performance of a classifier on our Test and Train Dataset.

For Training Data

Figure 139. Confusion Matrix for Training Data in Naive Bayes SMOTE for Mobile

Figure 140. Confusion Matrix for Test Data in Naive Bayes SMOTE for Mobile

Classification Report

For Training Data 0.6844391785150079 precision recall f1-score support 0.0 0.70 0.65 0.67 6330 1.0 0.67 0.72 0.70 6330 0.68 12660 accuracy macro avg 0.69 0.68 0.68 12660

Table 74. Classification Report for Training Data in Naive Bayes SMOTE for Mobile

0.68

0.68

12660

0.69

For Test Data

weighted avg

0.65957446808	951063 precision	recall	f1-score	support
0.0 1.0	0.93 0.28	0.64 0.75	0.76 0.40	2702 494
accuracy macro avg weighted avg	0.60 0.83	0.70 0.66	0.66 0.58 0.71	3196 3196 3196

Table 75. Classification Report for Test Data in Naive Bayes SMOTE for Mobile

ROC and AUC

An ROC Curve or Receiver Operating Characteristic curve is a graph showing the performance of a classification model. The curve is plotted between sensitivity and (1-specificity). (1-specificity) is also known as false positive rate and sensitivity is also known as True Positive Rate.

➤ For Training Data

AUC: 0.765

Figure 141. ROC for Training Data in Naive Bayes SMOTE for Mobile

For Test Data

AUC: 0.770

Figure 142. ROC for Test Data in Naive Bayes SMOTE for Mobile

Bagging – SMOTE

Performance Metrices Bagging SMOTE

Model Score or Accuracy

- ➤ Accuracy for Training Data is 1.0
- ➤ Accuracy for Test Data is 0.98

Confusion Matrix

We will now create a Confusion Matrix which will be used to describe the performance of a classifier on our Test and Train Dataset.

> For Training Data

Figure 143. Confusion Matrix for Training Data in Bagging SMOTE for Mobile

> For Test Data

Figure 144. Confusion Matrix for Test Data in Bagging SMOTE for Mobile

Classification Report

For Training Data

	precision	recall	f1-score	support
0.0 1.0	1.00 1.00	1.00 1.00	1.00 1.00	6330 6330
accuracy macro avg weighted avg	1.00 1.00	1.00 1.00	1.00 1.00 1.00	12660 12660 12660

Table 76. Classification Report for Training Data in Bagging SMOTE for Mobile

0.9812269	3316	6458			
		pr ecisio n	recall	f1-score	support
	0.0	0.98	0.99	0.99	2702
	1.0	0.96	0.92	0.94	494
accur	асу			0.98	3196
macro	avg	0.97	0.95	0.96	3196
weighted	avg	0.98	0.98	0.98	3196

Table 77. Classification Report for Test Data in Bagging SMOTE for Mobile

ROC and AUC

An ROC Curve or Receiver Operating Characteristic curve is a graph showing the performance of a classification model. The curve is plotted between sensitivity and (1-specificity). (1-specificity) is also known as false positive rate and sensitivity is also known as True Positive Rate.

➤ For Training Data

Figure 145. ROC for Training Data in Bagging SMOTE for Mobile

Figure 146. ROC for Test Data in Bagging SMOTE for Mobile

ADA Boosting - SMOTE

AdaBoostClassifier(n_estimators=100, random_state=1)

Performance Metrices Ada Boosting SMOTE

Model Score or Accuracy

- ➤ Accuracy for Training Data is 0.84
- > Accuracy for Test Data is 0.82

Confusion Matrix

We will now create a Confusion Matrix which will be used to describe the performance of a classifier on our Test and Train Dataset.

For Training Data

Figure 147. Confusion Matrix for Training Data in Ada Boosting SMOTE for Mobile

For Test Data

Figure 148. Confusion Matrix for Test Data in Ada Boosting SMOTE for Mobile

Classification Report

For Training Data

0.8409162717	219589			
	precision	recall	f1-score	support
0.0	0.83	0.85	0.84	6330
1.0	0.85	0.83	0.84	6330

1.0	0.85	0.83	0.84	0330
accuracy			0.84	12660
macro avg	0.84	0.84	0.84	12660
weighted avg	0.84	0.84	0.84	12660

Table 78. Classification Report for Training Data in Ada Boosting SMOTE for Mobile

➤ For Test Data

0.81695869837	729662			
	pr ecisio n	recall	f1-score	support
0.0	0.93	0.85	0.89	2702
1.0	0.44	0.64	0.52	494
accuracy			0.82	3196
macro avg	0.68	0.75	0.70	3196
weighted avg	0.85	0.82	0.83	3196

Table 79. Classification Report for Test Data in Ada Boosting SMOTE for Mobile

ROC and AUC

An ROC Curve or Receiver Operating Characteristic curve is a graph showing the performance of a classification model. The curve is plotted between sensitivity and (1-specificity). (1-specificity) is also known as false positive rate and sensitivity is also known as True Positive Rate.

➤ For Training Data

Figure 149. ROC for Training Data in Ada Boosting SMOTE for Mobile

For Test Data AUC: 0.845 10 0.8 0.6 0.4 0.2 0.0 0.0 0.2 0.4 0.6 0.8 10

Figure 150. ROC for Test Data in Ada Boosting SMOTE for Mobile

Gradient Boosting – SMOTE

GradientBoostingClassifier(random_state=1)

Performance Metrices Gradient Boosting SMOTE

Model Score or Accuracy

- ➤ Accuracy for Training Data is 0.90
- > Accuracy for Test Data is 0.0.87

Confusion Matrix

We will now create a Confusion Matrix which will be used to describe the performance of a classifier on our Test and Train Dataset.

For Training Data

Figure 151. Confusion Matrix for Training Data in Gradient Boosting SMOTE for Mobile

Figure 152. Confusion Matrix for Test Data in Gradient Boosting SMOTE for Mobile

Classification Report

➤ For Training Data

0.90236966824	64455			
	precision	recall	f1-score	support
0.0	0.89	0.92	0.90	6330
1.0	0.91	0.89	0.90	6330
accuracy			0.90	12660
macro avg	0.90	0.90	0.90	12660
weighted avg	0.90	0.90	0.90	12669

Table 80. Classification Report for Training Data in Gradient Boosting SMOTE for Mobile

➤ For Test Data

0.8745306633291614									
	precision	recall	f1-score	support					
0.0	0.94	0.91	0.92	2702					
1.0	0.58	0.69	0.63	494					
accuracy			0.87	3196					
macro avg	0.76	0.80	0.78	3196					
weighted avg	0.89	0.87	0.88	3196					

Table 81. Classification Report for Test Data in Gradient Boosting SMOTE for Mobile

ROC and AUC

An ROC Curve or Receiver Operating Characteristic curve is a graph showing the performance of a classification model. The curve is plotted between sensitivity and (1-specificity). (1-specificity) is also known as false positive rate and sensitivity is also known as True Positive Rate.

For Training Data AUC: 0.966

Figure 153. ROC for Training Data in Gradient Boosting SMOTE for Mobile

> For Test Data

AUC: 0.897

Figure 154. ROC for Test Data in Gradient Boosting Grid Search for Mobile

d). Interpretation of the hyper tuned models and Using SMOTE Techniques models.

Grid Search Model Tuning		Accuracy		Precision		Recall		F1 Score		AUC	
		Train	Test	Train	Test	Train	Test	Train	Test	Train	Test
Logistic Regression	No Taken Product	0.87	0.87	0.87	0.87	0.99	0.99	0.93	0.93	0.79	0.8
	Yes Taken Product	0.67		0.72	0.74	0.2	0.23	0.31	0.35		
KNN —	No Taken Product	0.95	0.92	0.94	0.92	1	0.99	0.97	0.95	0.99	0.97
	Yes Taken Product	0.95		0.98	0.94	0.67	0.5	0.79	0.66		
Naïve Bayes	No Taken Product	0.86	0.85	0.88	0.88	0.96	0.95	0.92	0.92	0.77	0.77
	Yes Taken Product	0.80		0.56	0.53	0.28	0.31	0.37	0.39		
Bagging	No Taken Product	1	0.9	1	0.89	1	1	1	0.94	1	0.99
	Yes Taken Product			1	1	0.98	0.34	0.99	0.51		
Ada Boosting	No Taken Product	0.89	0.87	0.89	0.9	0.98	0.98	0.94	0.93	0.88	0.87
	Yes Taken Product	0.69	0.67	0.78	0.74	0.34	0.37	0.48	0.5		
Gradient Boosting	No Taken Product	1	0.97	1	0.97	1	1	1	0.98	- 1	0.99
	Yes Taken Product			1	0.98	0.88	0.82	0.99	0.89		

Table 82. Model Tuning Comparison for Mobile

SMOTE		Accuracy		Precision		Recall		F1 Score		AUC	
		Train	Test	Train	Test	Train	Test	Train	Test	Train	Test
Logistic Regression	No Taken Product	0.73	0.71	0.73	0.94	0.72	0.7	0.72	0.81	0.79	0.79
	Yes Taken Product	0.73		0.72	0.32	0.73	0.76	0.73	0.45		
KNN	No Taken Product	0.99	0.97	1	1	0.98	0.97	0.99	0.98	1	0.99
	Yes Taken Product			0.99	0.85	1	0.98	0.99	0.91		
Naïve Bayes	No Taken Product	- 0.68	0.66	0.7	0.93	0.65	0.64	0.67	0.76	0.77	0.77
	Yes Taken Product			0.67	0.28	0.72	0.75	0.7	0.4		
Bagging	No Taken Product	1	0.98	1	0.98	1	0.99	1	0.99	1	0.99
	Yes Taken Product			1	0.96	1	0.92	1	0.94		
Ada Boosting	No Taken Product	0.84	0.93	0.83	0.93	0.85	0.85	0.84	0.89	0.93	0.85
	Yes Taken Product	0.04		0.85	0.44	0.83	0.64	0.84	0.52		
Gradient Boosting	No Taken Product	0.9	0.87	0.89	0.94	0.92	0.91	0.9	0.92	0.97	0.9
	Yes Taken Product			0.91	0.58	0.89	0.69	0.9	0.63		

Table 83. Using SMOTE models comparison for Mobile

- According to problem we will focus on the Customer who have taken the product.
- There is not much improvement in performance for the Logistic Regression model after hyper tuning and SMOTE technique. For LR model performance declined after applying SMOTE Technique.
- For KNN after Hyper tuning model performance declined and after applying SMOTE
 Technique there is improvement in process but Precision is good for training set but
 decreases in Test Set
- There is not much improvement in performance for the Naïve Bayes model after hyper tuning and SMOTE technique. For Naïve Bayes model performance declined after applying SMOTE Technique.
- For Bagging model performance declined when hyper tuning model but in case of SMOTE technique model is performing well.
- For the ADA Boosting Model there is not much improvement in performance after hyper tuning and SMOTE technique. For ADA Boosting model performance declined after applying SMOTE Technique.
- For the Gradient Boosting model improvement in performance after hyper tuning but model performance declined after applying SMOTE Technique.

1.5 Final interpretation / recommendation

Interpretation of the most optimum model

- Based on our model evaluation, performing visual inspection, stacking and bagging models. We finally are able to combine all the results and can clearly infer that after Using SMOTE Technique Bagging using base estimator as Random Forest is the best performing model for both Mobile phone users and Laptop users, with the highest accuracy of 98%.
- Bagging is performing well in terms of Recall, Precision and F1-Score for both Laptop and Mobile users.

- The desired metric for this problem which is Precision, is also observed to be significantly the highest for Random Forest models with 96% for Laptop users and 96% for Mobile phone users.
- From this observation Precision quantifies the number of positive class predictions that actually belong to the positive class. Hence this should be interpreted as 96% of total customers who use Laptops who were predicted to purchase the product actually purchases the product.
- Similarly, among the total customers who use Mobile phones 96% of all the customers predicted to purchase the product actually buys the product.
- Hence, on building two different models based on preferred device of our customers, both the model provided highly satisfactory results using SMOTE Technique Bagging using base estimator as Random Forest whose results are statistically significant and are safe to be deployed for further evaluation of test cases.

Business Implications

- By selecting the right model, the prediction capabilities of that model greatly increase.
 This makes the model more reliable for decision making. While using Bagging base estimator as Random Forest while applying SMOTE Technique, we then train the model considering the whole dataset as train set, and the resulting model will be ready to make predictions provided with independent variables.
- In our case, provided with the social media components of personnel which includes the time Customers spends in travel websites, number of likes received and given, etc. we will now be able to predict the likeliness of that customer to purchase the travel packages offered by the aviation company with an accuracy of 98%.
- We the help of this model company can identify which customers can purchase the product in the new future. Also, this helps in better reach and target the audience accordingly.
- This can also increase the traffic on the company's site resulting in better minimizing the click per cost expense for the company.

Recommendations

- Target the customers who have not checked in in the last few weeks as outstation checkin is the most important feature.
- Plan a campaign for people who spend a lot of time on the page and target the customers more on the mobile device.
- Adults play a critical role in the buying decision, thus they should be targeted more wisely.
- The aviation company should invest their budget in acquiring the dataset from the networking platform to learn about their behavior and target these customers.
- Using optimum model i.e. SMOTE Technique Bagging using base estimator as Random Forest can also increase the traffic on the company's site resulting in better minimizing the click per cost expense for the company.
- As, the higher the number of hits on website increases, more chances of purchasing the product also increases bringing in the surge in revenues for the company.

- This in turn provided a targeted approach for the aviation company to approach their customer base, thereby reducing cost and making the most returns out of the expenditure they put in digital marketing campaigns.
- Company should come up with discount offer the user who travels for medical related travels as this will have good customer experience in these unprecedented times and it will increase brand value.

THE END!!!