SVM - Support Vector Machines 1 Strojevi s potpornim vektorima

- Izvorno SVM je linearni stroj
- Osnovna zamisao SVM: konstrukcija hiperravnine kao decizijske plohe, ali tako da je margina odvajanja između "pozitivne" i "negativne" skupine uzoraka (za u<u>čenje) m</u>aksimalna.

Slika 1: Primjer razdvajanja

Imamo skup uzoraka za učenje:
$$\left\{\left(\vec{X_i},d_i\right)\right\}_{i=1}^N, \text{gdje je}$$

 $\vec{X_i}; i=1,2,\ldots,N$ ulazni vektor uzoraka za i-ti primjer d_i - željeni odgovor klasifikatora

$$\begin{cases} \omega_1 > d_i = +1 \\ \omega_2 > d_i = -1 \end{cases}$$
 označeni uzorci

Pretpostavka : razredi ω_1 i ω_2 su linearno separatibilni Jednadžba decizijske ravnine:

$$\vec{W}^T \vec{X} + b = 0$$

 $ec{X}$ - ulazni vektor

 \vec{W} - vektor težinskih koeficije
nata

b - pomaknuće (w_0)

Vrijedi:
$$\vec{W}^T \vec{X} + b \ge 0 \text{ za } d_i = +1$$

$$\vec{W}^T \vec{X} + b < 0 \text{ za } d_i = -1$$

$$\vec{W}^T \vec{X} + b < 0$$
 za $d_i = -1$

 ${\bf Margina}:$ za zadani vektor težinskih koeficijenata \vec{W} i pomaknuće b udaljenost između hiperravnine i najbliže točke (uzorka) u n-dimenzionalnom prostoru naziva se MARGINA ODVAJANJA (engl. margin of separation) i označit ćemo ju s ρ.

Cilj: Naći posebnu hiperravninu za koju je margina odvajanja ρ maksimalna. Takva hiperravnina naziva se OPTIMALNA RAVNINA.

Slika 2: Optimalna ravnina

Optimalna hiperravnina:

$$\underbrace{\left\{\vec{W_0}, b_0\right\}}_{\text{dimalne vrijednost}}$$

$$\vec{W_0}^T \vec{X} + b_0 = 0$$

 $\vec{W_0}^T \vec{X} + b_0 = 0$ Decizijska funkcija: $g(\vec{X}) = \vec{W_0}^T \vec{X} + b_0$ daje mjeru udaljenosti \vec{X} -a od optimalne hiperravnine

Slika 3: Primjer decizijske funkcije

Par
$$(\vec{W_0}, b_0)$$
 mora zadovoljavati sljedeća ograničenja $\vec{W_0}^T \vec{X_i} + b_0 \ge 1$ za $d_i = +1$ (1) $\vec{W_0}^T \vec{X_i} + b_0 \le -1$ za $d_i = -1$ (2) $\vec{X_i} \in \left\{ (\vec{X_i}, d_i) \right\}_{i=1}^N$ Naravno ovo vrijedi ako su uzorci linerano odvojivi.

Uvijek možemo skalirati $\vec{W_0}$ i b_0 tako da nejednadžbe (1) i (2) vrijede!

$$r = \frac{\left| g(\vec{X}) \right|}{\left\| \vec{W}_0 \right\|}$$

možemo skalirati $\vec{W_0}$ i b_0 tako da za najbliže (hiperravnini $g(\vec{X})$) uzorke iz ω_1 i ω_2 bude $g(\vec{X}) = 1 \text{ za } \omega_1$

$$q(\vec{X}) = -1 \text{ za } \omega_2$$

Za uzorke (točke u n-dimenzionalnom prostoru) iz skupa za učenje i to za one

$$\vec{W_0}^T \vec{X} + b_0 = 1 \text{ za } d_i = +1$$

 $\vec{W_0}^T \vec{X} + b_0 = -1 \text{ za } d_i = -1$

kažemo da su potporni vektori(support vectors).

Potporni vektori su one točke koje leže najbliže decizijskoj hiperravnini i zato se najteže klasificiraju. Zbog toga oni imaju izravan utjecaj na optimalni položaj decizijske hiperravnine.

Potporni vektor $\vec{X}^{(s)}$:

$$g(\vec{s}) = \vec{X}(s) + b_0 = \mp 1 \text{ za } d^{(s)} = \mp 1$$

Algebarska udaljenost potpornog vektora $\vec{X}^{(s)}$ od optimalne hiperravnine je

$$\overline{r = \frac{\left| g(X^{\vec{s})} \right|}{\left\| \vec{W_0} \right\|}}$$

$$r = \begin{cases} \frac{1}{\left\| \vec{W_0} \right\|} & \text{ako je } d^{(s)} = +1 \\ -\frac{1}{\left\| \vec{W_0} \right\|} & \text{ako je } d^{(s)} = -1 \end{cases}$$

gdje znak + označava da $\vec{X}^{(s)}$ leži na pozitivnoj strani optimalne hiperravnine a - predznak pokazuje da je $\vec{X}^{(s)}$ na negativnoj strani optimalne hiperravnine. ρ - optimalna vrijedn
sot MARGINE ODVAJANJA između dva razreda koji definiraju skup uzoraka za učenje

$$\rho = 2r = \frac{2}{\|\vec{W_o}\|}$$

iz $\rho = 2r = \frac{2}{\|\vec{W_o}\|}$ slijedi da se maksimiziranje margine odvajanja temelji na minimizaciji norme vektora težinskih koeficijenata $\vec{W_0}$.

Optimalna hiperravnina: $\vec{W_0}^T \vec{X} + b = 0$ je jedinstvena u tom smislu da vektor $ec{W_0}$ daje maksimalnu separaciju između pozitivnih i negativnih uzoraka iz skupa za učenje.

CILJ: Razvoj djelotvorne procedure (uporabom skupa uzoraka za učenje) tako da nađemo optimalnu hiperravninu uz zadovoljenje ograničenja:

$$d_i \cdot (\vec{W}^T \vec{X}_i + b) \ge 1 \text{ za } i = 1, 2, \dots, N$$

Formalno postavljen problem:

- Zadan je skup uzoraka za učenje $\left\{(\vec{X_i}, d_i)\right\}_{i=1}^N$
- Nađi optimalnu vrijednost vektora težinskih koeficijenata \vec{W} i pomaknuće b tako da su zadovoljena ograničenja

$$d_i \cdot \vec{W}^T \vec{X}_i + b \ge 1 \text{ za } i = 1, 2, \dots, N$$

a pri tomu vektor težniskih koeficijenata \vec{W} minimizira kriterijsku funkciju $J(\vec{W}) = \frac{1}{2} \vec{W}^T \vec{W} \qquad \vec{W}^T \vec{W} = \left\| \vec{W} \right\|^2 |$ -nelinearni optimizacijski zadatak sa skupom linearnih nejednadžbi

$$J(\vec{W}) = \frac{1}{2}\vec{W}^T\vec{W} \qquad \vec{W}^T\vec{W} = \left\|\vec{W}\right\|^2$$

Optimizacijski problem riješiti metodom Lagrangeovih multiplikatora Primjer:

Određivanje vezanih ekstrema funkcije z = f(x, y) uz uvjet $\varphi(x, y) = 0$ svodi se na računanje slobodnih ekstrema Lagrangeove funkcije:

$$F = f(x, y) + \lambda \varphi(x, y)$$

 $\frac{\partial F}{\partial x}=0; \frac{\partial F}{\partial y}=0; \varphi(x,y)=0$ Iz tog se sustava jednadžbi određuju vrijednosti x,y i Lagrangeov multiplikator

- Ako je $d^2F < 0$ u izračunatoj točki, funkcija z=f(x,y) ima maksimum
- Ako je $d^2F > 0$ u izračunatoj točki, funkcija z=f(x,y) ima minimum

Tražimo ekstrem funkcije: z = x + 2y uz uvjet $x^2 + y^2 = 5$

- Lagrangeova funkcija: $F = x + 2y + \lambda(x^2 + y^2 5)$
- Računamo:

$$F_x = \frac{\partial F}{\partial x} = 1 + 2x\lambda$$

$$F_y = \frac{\partial F}{\partial y} = 2 + 2y\lambda$$

- iz sustava jednadžbi:

$$1 + 2\lambda x = 0$$

$$2 + 2\lambda y =$$

$$r^2 + u^2 =$$

$$2 + 2\lambda y = 0$$

$$2 + 2\lambda y = 0$$

$$x^2 + y^2 = 5$$
slijedi: $x = -\frac{1}{2\lambda}$; $y = -\frac{1}{\lambda}$
uvrštavamo z 3. jednadžbu:

$$\frac{1}{4\lambda^2} + \frac{1}{\lambda^2} = 5 / 4\lambda^2$$
$$5(1 - 4\lambda^2) = 0$$

$$5(1-4\lambda^2) = 0$$

$$\lambda_{1,2} = \pm \sqrt{\frac{1}{4}}$$

$$\lambda_1 = \frac{1}{2}; \ \lambda_2 = -\frac{1}{2}$$

$$\lambda_1 = \frac{1}{2}$$
; $\lambda_2 = -\frac{1}{2}$
za $\lambda_1 = \frac{1}{2}$ dobivamo : $x_1 = -1$ $y_1 = -2$
za $\lambda_2 = -\frac{1}{2}$ dobivamo : $x_2 = 1$ $y_2 = 2$

za
$$\lambda_2 = -\frac{1}{2}$$
 dobivamo : $x_2 = 1 \ y_2 = 2$

Računamo:

$$d^{2}F = \frac{\partial F^{2}}{\partial x^{2}}dx^{2} + 2\frac{\partial^{2}F}{\partial x\partial y}dxdy + \frac{\partial F^{2}}{\partial y^{2}}dy^{2}$$

$$F_{xx} = 2\lambda; F_{yy} = 2\lambda; F_{xy} = 0$$

$$d^{2}F = 2\lambda dx^{2} + 2\lambda dy^{2} = 2\lambda(dx^{2} + dy^{2})$$
za $(\lambda_{1} = \frac{1}{2}) d^{2}F > 0$ minimum

$$T_{xx} = 2\lambda$$
, $T_{yy} = 2\lambda$, $T_{xy} = 0$

$$d^2F = 2\lambda dx^2 + 2\lambda dy^2 = 2\lambda (dx^2 + dy^2)$$

za
$$(\lambda_1 = \frac{1}{2}) d^2 F > 0$$
 minimum

za
$$(\lambda_2 = -\frac{1}{2}) d^2 F < 0$$
 maksimum

funkcije f(x,y).

$$J(\vec{W}) = \frac{1}{2}\vec{W}^T\vec{W}$$

$$d_i \cdot (\vec{W}^T \vec{X}_i + b) \ge 1 \text{ za } i = 1, 2, \dots, N$$

Lagrangeova funkcija:

Eagrangeova runkcija.
$$J(\vec{W}, b, \lambda) = \frac{1}{2} \vec{W}^T \vec{W} - \sum_{i=1}^{N} \lambda_i \left[d_i \cdot (\vec{W}^T \vec{X}_i + b) - 1 \right]$$

 λ_i - Lagrangeovi multiplikatori

a)
$$\frac{\partial J(\vec{W},b,\lambda)}{\partial \vec{W}} = \vec{0}$$

b)
$$\frac{\partial J(\vec{W},b,\lambda)}{\partial b} = 0$$

c)
$$\lambda_i \left[d_i \cdot (\vec{W}^T \vec{X}_i + b) - 1 \right] = 0, i = 1, 2, \dots, N$$

d)
$$\lambda_i \geq 0, i = 1, 2, ..., N$$

$$\begin{split} \frac{\partial J(\vec{W},b,\lambda)}{\partial \vec{W}} &= \vec{W} - \sum_{i=1}^{N} \lambda_i d_i \vec{X}_i = \vec{0} \\ \vec{W} &= \sum_{i=1}^{N} \lambda_i d_i \vec{X}_i \\ \frac{\partial J(\vec{W},b,\lambda)}{\partial b} &= -\sum_{i=1}^{N} \lambda_i d_i = 0 \\ \sum_{i=1}^{N} \lambda_i d_i &= 0 \end{split}$$

- Traženi vektor \vec{W} određen je s $N_s \leq N$ vektora uzoraka $\vec{W} = \sum_{i=1}^N \lambda_i d_i \vec{X_i}, \ \lambda_i \neq 0$ Vektor \vec{W} je optimalno rješenje!
- Budući da je skup ograničenja $\lambda_i \left[d_i \cdot (\vec{W}^T \vec{X}_i + b) 1 \right] = 0, \ i = 1, 2, \dots, N \text{ potporni vektori leže u dvije hiperravnine:} \\ \vec{W}^T \vec{X} + b = \pm 1$

Potporni (support) vektori su oni vektori koji leže tako da su NAJBLIŽI hiperravnini linearnog klasifikatora i određuju kritične elemente skupa za učenje.

- Vektori $\vec{X_i}$ za koje je $\lambda_i=0$ mogu ležati izvan pojasa odvajanja, ali mogu ležati, također na jednoj od hiperravnina
- Rezultirajuća (optimalna) hiperravnina je neosjetljiva na broj i položaj takvih vektora
- \vec{W} je eksplicitno određena, b se može dobiti iz jednog od uvjeta $\lambda_i \left[d_i \cdot (\vec{W}^T \vec{X}_i + b) 1 \right] = 0, i = 1, 2, \dots, N$ za $\lambda_i \neq 0$ (*)
 U praksi, b se obično računa kao srednja vrijednost dobivena uporabom svih uvjeta tog tipa(*).

Optimalna hiperravnina linearnog klasifikatora je jedinstvena.

- $J(\vec{W})$ je konveksna (strogo)
- Nejednadžbe su linearne

lokalni minimum je ujedno i globalni!

Konvekina funkcija
$$f(\vec{0})$$
 $f: S \subseteq R \rightarrow R$
 $j: konvekina u S ako za svakci

 $\vec{0}: \vec{0}' \in S$ vnjedi:

 $f(2\vec{0} + (1-2)\vec{0}') \leq 2f(\vec{0}) + (1-2)f(\vec{0}')$

za svakci $2 \in [0,1]$
 $f(\vec{0})$

konvekina

funkcija

 $f(\vec{0})$

konkavna

funkcija$

Slika 4: Konveksno-konkavno

Lagrangeov dualni problem

- Optimizacijski zadatak: minimiziraj $J(\vec{W})$ uz ograničenje $\varphi_i(\vec{W}) \geq 0$, $i=1,2,\ldots,N$ Lagrangeova funkcija $J(\vec{W}.\vec{\lambda}) = J(\vec{W}) \sum_{i=1}^N \lambda_i \varphi_i(\vec{W})$ Neka je $J^*(\vec{W},\vec{\lambda}) = \max_{\vec{\lambda}} (J(\vec{W},\vec{\lambda}))$ Budući da je $\vec{\lambda} \geq \vec{0}$ i $\varphi_i(\vec{W}) \geq 0$
- Maksimalna vrijednost Lagrangeove funkcije onda kad je $\lambda_i=0; \quad i=1,2,\ldots,N$ ili kada je $\varphi_i(\vec{W})=0$ (ili oboje) u tom slučaju je $J^*(\vec{W},\vec{\lambda})=J(\vec{W})$ Originalni problem je ekvivalentan sa: $\min_{\vec{W}}J(\vec{W})=\min_{\vec{W}}\max_{\vec{\lambda}}J(\vec{W},\vec{\lambda})$

Dualni problem: $\max_{\vec{\lambda} \geq \vec{0}} \quad \underbrace{\min_{\vec{W}} J(\vec{W}, \vec{\lambda})}_{\text{rješenje ovog dijela}}$ $\vec{W} = \sum_{i=1}^{N} \lambda_i d_i \vec{X}_i$ i $\sum_{i=1}^{N} \lambda_i d_i = 0$

Detekcija živosti ruke
85 slika IR
29 živih ruku
56 neživih (umjetnih) ruku (2 tipa)

SVM
45 slika za učenje
40 slika za ispitivanje
žive ruke ∉ skupu za učenje
umjetne ruke ne pripadaju skupu za učenje
SVM s linearnom jezgrom 5%pogreške

Slika 5:

$$J(\vec{w}, 6, \lambda) = \frac{1}{2} \vec{w}^T \vec{w} - \sum_{i=1}^{N} \lambda_i \cdot d_i \vec{w}^T \vec{x}_i^2 - 6 \sum_{i=1}^{N} \lambda_i \cdot d_i + \sum_{i=1}^{N} \lambda_i \cdot d_i \vec{w}^T \vec{x}_i^2 = \sum_{i=1}^{N} \lambda_i \cdot \lambda_i \cdot d_i \cdot d_i \cdot \vec{x}_i^T \vec{x}_i^2$$

$$J(\vec{w}, 6, \lambda) = Q(\lambda)$$

$$Q(\lambda) = \sum_{i=1}^{N} \lambda_i - \frac{1}{2} \sum_{i=1}^{N} \lambda_i \cdot \lambda_i \cdot d_i \cdot d_i \cdot \vec{x}_i^T \vec{x}_i^2$$

uz ogranicenja:

(1)
$$\sum_{i=1}^{N} \lambda_i d_i = 0$$

Slika 6: Primjer SVM

Dualni problem - Lagrangeova dualnost (Wolfe dual representation)

Ako prvotni problem ima optimalno rješenje tada dualni problem ima također optimalno rješenje i odgovarajuća optimalna rješenja su jednaka. Maksimiziraj $J(\vec{W}, \vec{b}, \lambda)$ uz $\vec{W} = \sum_{i=1}^{N} \lambda_i d_i \vec{X}_i$

$$\vec{W} = \sum_{i=1}^{N} \lambda_i d_i \vec{X}_i$$

$$\sum_{i=1}^{N} \lambda_i d_i = 0$$

$$\lambda_i \ge 0, \quad i = 1, 2, \dots, N$$

Nalazimo Lagrangeove multiplikatore koji daju optimalno rješenje! Neke značajke dualnog pristupa: Kriterijska funkcija koja se treba maksimizirati zavisi samo od ulaznih uzoraka u obliku skupa skalarnog pro-

dukta
$$\left\{\vec{X_i}^T \middle| \vec{x_j}\right\}_{(i,j)=1}^N$$

Optimalno rješenje $\vec{W} = \vec{W_0}$ $\vec{W_0} = \sum_{i=1}^N \lambda_{0,i} d_i \vec{X_i}$ gdje je $\lambda_{0,i}$ optimalni Lagrangeov multiplikator $b_0 = 1 - \vec{W_0}^T \vec{X}^{(s)}$ za $d^{(s)} = 1$

(1)
$$J(\vec{W}, b, \lambda) = \frac{1}{2} \vec{W}^T \vec{W} - \sum_{i=1}^N \lambda_i \left[d_i \cdot (\vec{W}^T \vec{X}_i + b) - 1 \right]$$

(2)
$$\vec{W} = \sum_{i=1}^{N} \lambda_i d_i \vec{X}_i$$

(2)
$$\vec{W} = \sum_{i=1}^{N} \lambda_i d_i \vec{X}_i$$

(3) $\sum_{i=1}^{N} \lambda_i d_i = 0, \ \lambda_i \ge 0, \quad i = 1, 2, \dots, N$

Zamjenom (2) i (3) u (1) i nakon uređivanja dobiva se :

(**)
$$\max_{\lambda} (\sum_{i=1}^{N} \lambda_i - \frac{1}{2} \sum_{i,j}^{N} \lambda_i \lambda_j d_i d_j \vec{X_i}^T \vec{X_j})$$
 uz uvjet $\sum_{i=1}^{N} \lambda_i d_i = 0$, $\lambda_i \ge 0$

Optimalni Lagrangeovi multiplikatori se računaju optimiziranjem (MAK-SIMIZIRANJEM) izraza (**), a optimalna se hiperravnina dobiva $\vec{W} =$ $\sum_{i=1}^{N} \lambda_i d_i \vec{X_i}$, gdje su λ_i optimalni Lagrangeovi multiplikatori

PRIMJER:

$$\omega_1 = \{[1, 1]^T, [1, -1]^T\}$$

$$\omega_2 = \{[-1, 1]^T, [-1, -1]^T\}$$

$$g(\vec{X}) = \vec{W}^T \vec{X} + b = 0$$

$$w_1 x_1 + w_2 x_2 + b = 0$$

 $w_1 + w_2 + b - 1 \ge 0$

Ograničenja (linearne nejednadžbe):

$$\begin{split} & w_1 - w_2 + b - 1 \geq 0 \\ & w_1 - w_2 - b - 1 \geq 0 \\ & w_1 + w_2 - b - 1 \geq 0 \\ & d_i(\vec{W}^T \vec{X}_i + b) \geq 1 \\ & J(\vec{W}, b, \lambda) = \frac{1}{2} \vec{W}^T \vec{W} - \sum_{i=1}^4 \lambda_i [d_i(\vec{W}^T \vec{X}_i + b) - 1] \\ & J(\vec{W}, b, \lambda) = \frac{w_1^2 + w_2^2}{2} - \lambda_1 (w_1 + w_2 + b - 1) - \lambda_2 (w_1 - w_2 + b - 1) - \lambda_3 (w_1 - w_2 - b - 1) - \lambda_4 (w_1 + w_2 - b - 1) \\ & \text{KKT uvjeti su zadani sa:} \\ & \frac{\partial J}{\partial w_1} = 0 \Rightarrow w_1 = \lambda_1 + \lambda_2 + \lambda_3 + \lambda_4 \ (1) \\ & \frac{\partial J}{\partial w_2} = 0 \Rightarrow w_2 = \lambda_1 + \lambda_4 - \lambda_2 - \lambda_3 \ (2) \\ & \frac{\partial J}{\partial b} = 0 \Rightarrow \lambda_1 + \lambda_2 - \lambda_3 - \lambda_4 = 0 \ (3) \\ & \lambda_1 (w_1 + w_2 + b - 1) = 0 \ (4) \\ & \lambda_2 (w_1 - w_2 + b - 1) = 0 \ (5) \\ & \lambda_3 (w_1 - w_2 - b - 1) = 0 \ (6) \\ & \lambda_4 (w_1 + w_2 - b - 1) = 0 \ (7) \\ & \lambda_1, \lambda_2, \lambda_3, \lambda, 4 \geq 0 \end{split}$$

Slika 7: Primjer zadatka

7 jednadnžbi — 7 nepoznanica

Znamo rješenje s maksimalnom marginom (za ovaj jednostavan slučaj): $w_1 = 1, w_2 = 0, b = 0$

$$g(\vec{X}) = X_1 = 0$$

Uvrstimo $w_1 = 1$; $w_2 = 0$ i b = 0 u jednadžbe:

$$(1) \lambda_1 + \lambda_2 + \lambda_3 + \lambda_4 = 1$$

$$(2) \lambda_1 + \lambda_4 - \lambda_2 - \lambda_3 = 0$$

$$(3) \lambda_1 + \lambda_2 - \lambda_3 - \lambda_4 = 0$$

Sustav linearnih jednadžbi: 3 jednadžbe i 4 nepoznanice!

Očito \rightarrow više od jednog rješenja!

Međutim svako od rješenja vodi do JEDINSTVENE (OPTIMALNE) LIN-IJE RAZDVAJANJA!

Na primjer:

$$(1)+(3) 2\lambda_1 + 2\lambda_2 = 1 \Rightarrow \lambda_1 = \frac{1-2\lambda_2}{2}$$

$$(1)+(2) \ 2\lambda_1 + 2\lambda_4 = 1$$

$$(2)+(3) 2\lambda_1-2\lambda_3=0 \Rightarrow \lambda_1=\lambda_3$$

$$(2)+(3) 2\lambda_1 + 2\lambda_4 = 1$$

$$(2)+(3) 2\lambda_1 - 2\lambda_3 = 0 \Rightarrow \lambda_1 = \lambda_3$$
Uzmimo $\lambda_1 = \frac{1}{8} \Rightarrow \lambda_3 = \frac{1}{8}$

$$\lambda_2 = \frac{1-2\lambda_1}{2} = \frac{1-2\frac{1}{8}}{2} = \frac{\frac{3}{4}}{2} = \frac{3}{8}$$

$$\lambda_4 = \frac{1-2\lambda_1}{2} = \frac{3}{8}$$

$$\lambda_4 = \frac{1 - 2\lambda_1}{2} = \frac{3}{8}$$

$$\lambda_{4} = \frac{1}{2} = \frac{1}{8}$$

$$\vec{W} = \sum_{i=1}^{N=4} \lambda_{i} d_{i} \vec{X}_{i} = \lambda_{1} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \lambda_{2} \begin{bmatrix} 1 \\ -1 \end{bmatrix} - \lambda_{3} \begin{bmatrix} -1 \\ 1 \end{bmatrix} - \lambda_{4} \begin{bmatrix} -1 \\ -1 \end{bmatrix}$$

$$\vec{W} = \frac{1}{8} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \frac{3}{8} \begin{bmatrix} 1 \\ -1 \end{bmatrix} - \frac{1}{8} \begin{bmatrix} -1 \\ 1 \end{bmatrix} - \frac{3}{8} \begin{bmatrix} -1 \\ -1 \end{bmatrix}$$

$$\vec{W} = \frac{1}{8} \begin{bmatrix} 1\\1 \end{bmatrix} + \frac{3}{8} \begin{bmatrix} 1\\-1 \end{bmatrix} - \frac{1}{8} \begin{bmatrix} -1\\1 \end{bmatrix} - \frac{3}{8} \begin{bmatrix} -1\\-1 \end{bmatrix}$$

Slika 8: Prikaz margine zadatka

$$\vec{W} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$\lambda_1 = \frac{1}{4}, \ \lambda_2 = \frac{1}{4}, \ \lambda_3 = \frac{1}{4}, \ \lambda_4 = \frac{1}{4}$$

$$\vec{W} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \qquad g(\vec{X}) = x_1 = 0$$

SVM za M>2 razreda?

Podsjetimo se:

- za svaki od razreda tražimo optimalnu decizijsku funkciju $g_i(\vec{X}), \quad i=1,2,\ldots,M$ tako da $g_i(\vec{X})>g_j(\vec{X}), \quad \forall j\neq i$ ako je $\vec{X}\in\omega_i$

<u>za SVM tražimo</u> decizijsku funkciju $g_i(\vec{X})=0$ takva da bude optimalna hiperravnina koja odvaja razred ω_i od svih ostalih $g_i(\vec{X})>0$, za $\vec{X}\in\omega_i$, $g_i(\vec{X})<0$ inače

Klasifikacijsko pravilo: dodijeli \vec{X} u ω_i ako $i = argmax_k \left\{ {_k}(\vec{X})right \right\}.$