Instabilités:

Document: autorisés

Si R est le rayon de courbure de l'interface $z=\eta(x,t)$ délimitant deux fluides non miscibles, la tension superficielle induit une différence de pression $p_2-p_1=T/R$ où T est une constante, $p_2=p|_{z=\eta^+}$ et $p_1=p|_{z=\eta^-}$ (figure 1). Lorsque η est petit, cette condition s'écrit

 $p_2 - p_1 = T \frac{\partial^2 \eta}{\partial x^2}$ en $z = \eta(x, t)$. (1)

FIGURE 1 – Interface de deux couches infinies en prenant en compte la tension superficielle.

On suppose ici que le deux fluides sont incompressible de masses volumiques respectives ρ_1 et ρ_2 avec $\rho_1 \geq \rho_2$. À l'équilibre, la couche la plus lourde est au repos et occupe le demi-espace $z \leq 0$. On s'intéresse aux petites perturbations modélisées par les équations d'Euler 2D :

$$\operatorname{div} \underline{U}_{2} = 0 \qquad \text{et} \qquad \frac{\partial \underline{U}_{2}}{\partial t} + \underline{U}_{2} \cdot \operatorname{grad} \underline{U}_{2} = -\frac{1}{\rho_{2}} \operatorname{grad} p_{2} - g \underline{e}_{z} ,$$

$$\operatorname{div} \underline{U}_{1} = 0 \qquad \text{et} \qquad \frac{\partial \underline{U}_{1}}{\partial t} + \underline{U}_{1} \cdot \operatorname{grad} \underline{U}_{1} = -\frac{1}{\rho_{1}} \operatorname{grad} p_{1} - g \underline{e}_{z} , \qquad (2)$$

où $\underline{x} = x \underline{e}_x + z \underline{e}_z$ est le vecteur des coordonnées, $\underline{U}_1(\underline{x},t) = u_1 \underline{e}_x + w_1 \underline{e}_z$ et $\underline{U}_2(\underline{x},t) = u_2 \underline{e}_x + w_2 \underline{e}_z$ sont les champs de vitesses respectifs des deux couches et $p_1(\underline{x},t)$ et $p_2(\underline{x},t)$ leurs champs de pression. Le vecteur unitaire \underline{e}_z est vertical et g est l'intensité de la gravité.

- 1) D'où proviennent les conditions aux limites $\frac{\partial \eta}{\partial t} + u_1 \frac{\partial \eta}{\partial x} = w_1$, $\frac{\partial \eta}{\partial t} + u_2 \frac{\partial \eta}{\partial x} = w_2$ et $p_1 = p_2 T \frac{\partial^2 \eta}{\partial x^2}$ en $z = \eta(x,t)$? Justifier les conditions aux limites $w_1 = 0$ en $z = -\infty$ et $w_2 = 0$ en $z = \infty$.
- 2) Indiquer brièvement les étapes qui permettent de modéliser les petites oscillations irrotationnelles de la surface libre à l'aide du système d'équations $\underline{U}_1 = \underline{\text{grad}} \ \phi_1$, $\Delta \phi_1 = 0$, $\underline{U}_2 = \underline{\text{grad}} \ \phi_2$, $\Delta \phi_2 = 0$, $p_1 = p_{r1} \rho_1 \ g \ z \rho_1 \ \frac{\partial \phi_1}{\partial t}$, $p_2 = p_{r2} \rho_2 \ g \ z \rho_2 \ \frac{\partial \phi_2}{\partial t}$. Comparer les constantes d'intégration p_{r1} et p_{r2} entre elles.

- 3) Justifier les conditions aux limites $\rho_1 \left(\frac{\partial \phi_1}{\partial t} + g \, \eta \right) = \rho_2 \left(\frac{\partial \phi_2}{\partial t} + g \, \eta \right) + T \, \frac{\partial^2 \eta}{\partial x^2}, \, \frac{\partial \eta}{\partial t} = \frac{\partial \phi_1}{\partial z}$ et $\frac{\partial \eta}{\partial t} = \frac{\partial \phi_2}{\partial z}$ en z = 0.
- 4) Justifier la recherche de solutions de la forme $\phi_1 = \Phi_1(z) e^{i k_x x + s t}$, $\phi_2 = \Phi_2(z) e^{i k_x x + s t}$ et $\eta = \eta_m e^{i k_x x + s t}$ où $\Phi_1(z)$, $\Phi_2(z)$ et η_m sont complexes. Montrer que l'on peut écrire $\Phi_1(z) = \Phi_{1m} F_1(kz)$ et $\Phi_2(z) = \Phi_{2m} F_2(kz)$ avec $k = |k_x|$ où F_1 et F_2 sont deux fonctions que l'on explicitera.
- 5) En déduire la relation de dispersion s'écrit $\rho_1(\gamma + s^2) = \rho_2(\gamma s^2) T k^3$ où γ est une constante que l'on déterminera.
- 6) En déduire que les racines sont de la forme $s=\pm i\,\omega$ avec

$$\omega = \sqrt{\widetilde{g}(k) k \frac{\rho_1 - \rho_2}{\rho_1 + \rho_2}}$$

où $\widetilde{g}(k)$ est une fonction de k que l'on exprimera.

- 7) Exprimer la relation de dispersion des ondes de surface dans le cas $\rho_1 \gg \rho_2$.
- 8) Lorsque la couche supérieure est animée d'une vitesse moyenne U_2 , la relation de dispersion dans le cas T=0 (pas de tension superficielle) est

$$ho_1 \left[g \, k + rac{s^2}{2}
ight] =
ho_2 \left[g \, k - (s + i \, k_x \, U_2)^2
ight] \; .$$

Comment cette relation se généralise-t-elle au cas $T \neq 0$ (prise en compte de la tension superficielle).

9) Dans le cas de l'interface air-eau, on mesure $T=7\,10^{-2}$ N/m. En déduire l'ordre de grandeur des longueurs d'onde à partir desquelles on peut négliger la tension superficielle. On pourra prendre $\rho_1=1000$ kg/m³ et g=10 m/s².

Exercice (système discret)

On considère un pendule simple amorti, dont la position par rapport à la verticale est repérée par l'angle θ ; l'équation du mouvement est (μ et ω_0 sont des nombres réels):

$$\frac{d^2\theta}{dt^2} + \mu \frac{d\theta}{dt} + \omega_0^2 \sin(\theta) = 0.$$

- 1) En posant $x_1 = \theta$, $x_2 = d\theta/dt$, écrire l'équation du mouvement sous la forme $d\mathbf{x}/dt = \mathbf{f}(\mathbf{x})$ où $\mathbf{x} = (x_1, x_2)$ et \mathbf{f} est une fonction à déterminer.
- 2) Trouver les points fixes (solutions stationnaires) de l'équation précédente et étudier leur stabilité (linéaire).