# **DAIRY GOODS SALES PREDICTION**

**Group Members:** 

VISHWANATH, LOVELY PROFESSIONAL UNIVERSITY, 12108780

# **Table of Contents**

| S.NO | TOPIC                        | PAGE NO |
|------|------------------------------|---------|
| 1    | Acknowledgement              | 3       |
| 2    | Project Objective            | 4       |
| 3    | Project Scope                | 5       |
| 4    | Data Description             | 6       |
| 5    | Data Pre-Processing          | 8       |
| 6    | Model Building               | 12      |
| 7    | Code                         | 20      |
| 8    | Future Scope of Improvements | 55      |
| 9    | Project Certificate          | 56      |

# Acknowledgement

I take this opportunity to express my profound gratitude and deep regards to my faculty Prof. Arnab Chakraborty for his exemplary guidance, monitoring, and constant encouragement throughout the course of this project. The blessing, help and guidance given by him/her time to time shall carry me a long way in the journey of life on which I am about to embark.

I am obliged to my project team members for the valuable information provided by them in their respective fields. I am grateful for their cooperation during the period of my assignment.

VISHWANATH .R

# **Project Objective**

In this project we have a shortened 'The Dairy Goods Sales Prediction' Dataset from Kaggle. In this dataset, the target attribute is the Approx\_Total Revenue(INR) . So, in this project we need to do regression based on the attributes present in our dataset and predict sales of dairy products. Our objective in this project is to study the given dataset of 'The Dairy Goods Sales'. We might need to pre-process the given dataset if we need to. Then, we would train 4 models viz. 'Linear Regression model', 'Lasso model', 'Random Forest Regressor model' and 'Ridge model'. After training the aforementioned models, we will need to find out the r2\_score,MSE. Our next step would be to use the trained models to predict the outcomes using the given test dataset and compare the outcome of each model. We would then choose the best model based on the accuracy score. Our methodology for solving the problems in the given project is described below:

- Load the required dataset.
- Study the dataset.
- Describe the dataset.
- Visualise the dataset.
- Find out if the dataset needs to be pre-processed. It will be determined on the basis of whether the dataset has null values or outliers or any such discrepancy that might affect the output of the models to be trained.
- If the dataset is required to be pre-processed, take the necessary steps to pre-process the data.
- Find out the principal attributes for training.
- Split the given dataset for training and testing purpose.
- Fit the previously split train data in the aforementioned 4 models.
- Calculate the accuracy of the 4 models.
- Plot the necessary graphs.
- Use each trained model to predict the outcomes of the given test dataset.
- Choose the best model among the 4 trained models bases on the accuracy and MSE

# **Project Scope**

The broad scope of 'Dairy Goods Sales Prediction' project is given below:

- The given dataset has attributes based on which the status of the approval of the Dairy Sales will be predicted.
- It is a useful project as the Regression models can be used to quickly determine the dairy sales of large datasets.
- To enhance the keeping quality of products.
- To provide quality products at affordable prices to the consumers.
- The dataset given to us is a shortened form of the original dataset from Kaggle. So, the results might have some mismatch with the real-world applications. But that can be avoided if the models are trained accordingly.

# **Data Description**

Source of the data: Kaggle.

- The given dataset is a shortened version of the original dataset in Kaggle.
- Data Description: The given train dataset has 150 rows and 15 columns.

| Columns                       | Туре                | Description                  | Target<br>Attribute |
|-------------------------------|---------------------|------------------------------|---------------------|
| Product_Location              | categorical         | Location of product          | No                  |
| Product_ID                    | Non-<br>categorical | Id of product                | No                  |
| Product_Name                  | categorical         | Name of product              | No                  |
| Brand                         | categorical         | Brand of product             | No                  |
| Quantity(liters/kg)           | Non-<br>categorical | Quantity of product          | No                  |
| Price_per_Unit                | Non-<br>categorical | Price per unit of product    | No                  |
| Total_Value                   | Non-<br>categorical | Total value of product       | No                  |
| Storage_Condition             | categorical         | Storage condition of product | No                  |
| Production_Date               | Non-<br>categorical | Production date of product   | No                  |
| Expiration_Date               | Non-<br>categorical | Expiration date of product   | No                  |
| Quantity_Sold                 | Non-<br>categorical | Quantity sold                | No                  |
| Price_per_Unit_Sold           | Non-<br>categorical | Price per unit sold          | No                  |
| Approx_Total_Revenue(INR)     | Non-<br>categorical | Total revenue generated      | Yes                 |
| Sales_Channel                 | categorical         | Sales channels of product    | No                  |
| Quantity_in_Stock_(liters/kg) | Non-<br>categorical | Quantity in stock of product | No                  |

# Data description for numeric values:

|       | Product_I<br>D | Quantit<br>y<br>(liters/k<br>g) | Price_per_Un | Total_Val<br>ue     | Quantity_Sol<br>d | Price_per_Unit_So | Approx_Total<br>Revenue(INR) | Quantity_in_Stock_(liters/kg) |
|-------|----------------|---------------------------------|--------------|---------------------|-------------------|-------------------|------------------------------|-------------------------------|
| count | 150            | 150                             | 150          | 150                 | 147               | 147               | 150                          | 150                           |
| mean  | 5.166667       | 497.2643                        | 58.222733    | 28141.5851          | 268.639456        | 58.238844         | 15128.78673                  | 225.413333                    |
| std   | 2.997575       | 289.3637                        | 25.374899    | 21557.0132          | 230.703924        | 25.914929         | 15822.426                    | 204.858805                    |
| min   | 1              | 8.47                            | 11.58        | 722.0892            | 1                 | 8.69              | 58.09                        | 0                             |
| 25%   | 3              | 253.1525                        | 36.84        | 10256.7427          | 77                | 36.17             | 3946.06                      | 48                            |
| 50%   | 5              | 512.445                         | 58.265       | 21891.7226          | 190               | 60.15             | 9408.025                     | 195                           |
| 75%   | 8              | 723.7075                        | 82.18        | 41158.5913          | 415               | 81.615            | 21150.87                     | 348                           |
| max   | 10             | 999.78                          | 99.96        | 91387.7055 956 103. |                   | 103.49            | 66719.24                     | 929                           |

# **Data Pre-processing**

Now we will pre-process the data. The methodology followed is given below:

We searched for null values in our dataset and formed the following table:

| Column Name                   | Count of Null values |
|-------------------------------|----------------------|
| Product_Location              | 0                    |
| Product_ID                    | 0                    |
| Product_Name                  | 0                    |
| Brand                         | 3                    |
| Quantity(liters/kg)           | 0                    |
| Price_per_Unit                | 0                    |
| Total_Value                   | 0                    |
| Storage_Condition             | 6                    |
| Production_Date               | 0                    |
| Expiration_Date               | 0                    |
| Quantity_Sold                 | 3                    |
| Price_per_Unit_Sold           | 3                    |
| Approx_Total Revenue(INR)     | 0                    |
| Sales_Channel                 | 0                    |
| Quantity_in_Stock_(liters/kg) | 0                    |

- Checking for null values. o If null values are present, we will fill them or drop the row containing the null value based on the dataset.
- Checking for outliers. o If outliers are present, they will either be removed or replaced by following a suitable method depending on the dataset. Or can be replaced using the module LabelEncoder from sklearn.

To visualise the null values, we made a heatmap plot using seaborn library function heatmap. The heatmap plot is given below:



To remove the null values, we had the following methodology:

- filling Null values in 'Brand', 'storage\_condition' with mode as they are categorical values .
- filling Null values in 'Quantity\_Sold',' Price\_per\_Unit\_Sold' with median as they are non-categorical/Numeric values.

After removing the null values, the following heatmap was obtained:



# Conversion of non-categorical values is done by sklearn.LabelEncoder in this project

```
# Preprocessing Task before model building
# Label Encoding

from sklearn.preprocessing import LabelEncoder
le=LabelEncoder()

df['Product_Location']=le.fit_transform(df['Product_Location'])

df['Product_Name']=le.fit_transform(df['Product_Name'])

df['Brand']=le.fit_transform(df['Brand'])

df['Storage_Condition']=le.fit_transform(df['Storage_Condition'])

df['Sales_Channel']=le.fit_transform(df['Sales_Channel'])

df.head()
```

|   | Product_Location | Product_Name | Brand | Quantity(liters/kg) | Price_per_Unit | Total_Value | Storage_Condition | Quantity_Sold | Price_per_Unit_Sold | Approx_Total<br>Revenue(INR) |
|---|------------------|--------------|-------|---------------------|----------------|-------------|-------------------|---------------|---------------------|------------------------------|
| 0 | 3                | 5            | 1     | 222.40              | 85.72          | 19064.1280  | 0                 | 7.0           | 82.24               | 575.68                       |
| 1 | 4                | 7            | 0     | 687.48              | 42.61          | 29293.5228  | 1                 | 558.0         | 39.24               | 21895.92                     |
| 2 | 3                | 9            | 1     | 503.48              | 36.50          | 18377.0200  | 1                 | 256.0         | 33.81               | 8655.36                      |
| 3 | 3                | 2            | 0     | 823.36              | 26.52          | 21835.5072  | 0                 | 601.0         | 28.92               | 17380.92                     |
| 4 | 1                | 1            | 1     | 147.77              | 83.85          | 12390.5145  | 1                 | 145.0         | 83.07               | 12045.15                     |
| ( |                  |              |       |                     |                |             |                   |               |                     | )                            |

Now we have successfully handled Null values and converted non-numeric values to Numeric values. We didn't drop the rows with null values as we have a small dataset (only 150 entries). So, we are moving on to find if there are any outliers in our data and find the correlations of different attributes to our target i.e. 'Approx\_Total Revenue(INR)' column in the dataset. The following table gives the correlation value of each attribute with our target attribute i.e. 'Approx\_Total Revenue(INR):

| Columns                       | Correlation Value |
|-------------------------------|-------------------|
| Quantity(liters/kg)           | 0.611             |
| Price_per_Unit                | 0.262             |
| Total_Value                   | 0.738             |
| Quantity_Sold                 | 0.870             |
| Price_per_Unit_Sold           | 0.261             |
| Quantity_in_Stock_(liters/kg) | 0.034             |
| Product_Location              | 0.000             |
| Product_Name                  | 0.098             |
| Brand                         | 0.154             |
| Storage_Condition             | 0.220             |
| Sales_Channel                 | 0.140             |

# **Model Building**

Splitting data for training and testing purpose We split the given train dataset into two parts for training and testing purpose. The split ratio we used is 0.75 which indicates we used 75% data for training purpose and 25% data for testing purpose. We will be using the same split ratio for all the models trained.

#### Models used:

- Linear Regression
- Lasso
- Random Forest Regressor
- Ridge

#### LINEAR REGRESSION

Linear Regression is an algorithm that belongs to supervised Machine Learning. It tries to apply relations that will predict the outcome of an event based on the independent variable data points. The relation is usually a straight line that best fits the different data points as close as possible.

Linear regression can be expressed mathematically as:

$$y = \beta 0 + \beta 1x + \epsilon$$

#### Here,

- Y= Dependent Variable
- X= Independent Variable
- $\beta$  0= intercept of the line
- $\beta 1$  = Linear regression coefficient (slope of the line)
- $\varepsilon = \text{random error}$

## **Types of Linear Regression**

Linear Regression can be broadly classified into two types of algorithms:

## 1. Simple Linear Regression

A simple straight-line equation involving slope (dy/dx) and intercept (an integer/continuous value) is utilized in simple Linear Regression. Here a simple form is:

y=mx+c where y denotes the output x is the independent variable, and c is the intercept when x=0. With this equation, the algorithm trains the model of machine learning and gives the most accurate output

## 2. Multiple Linear Regression

When a number of independent variables more than one, the governing linear equation applicable to regression takes a different form like:

y= c+m1x1+m2x2... mnxn where represents the coefficient responsible for impact of different independent variables x1, x2 etc. This machine learning algorithm, when applied, finds the values of coefficients m1, m2, etc., and gives the best fitting line.

## 3. Non-Linear Regression

When the best fitting line is not a straight line but a curve, it is referred to as Non-Linear Regression.

#### **LASSO**

The full form of LASSO is the Least Absolute Shrinkage and Selection Operation. As the name suggests, LASSO uses the "shrinkage" technique in which coefficients are determined, which get shrunk towards the central point as the mean.

The LASSO regression in regularization is based on simple models that posses fewer parameters. We get a better interpretation of the models due to the shrinkage process. The shrinkage process also enables the identification of variables strongly associated with variables corresponding to the target.

Lasso regression is also called Penalized regression method. This method is usually used in machine learning for the selection of the subset of variables. It provides greater prediction accuracy as compared to other regression models. Lasso Regularization helps to increase model interpretation.

The less important features of a dataset are penalized by the lasso regression. The coefficients of this dataset are made zero leading to their elimination. The dataset with high dimensions and correlation is well suited for lasso regression.

Lasso Regression Formula:

# D= Residual Sum of Squares or Least Squares Lambda \* Aggregate of absolute values of coefficients

Lambda denotes the amount of shrinkage in the lasso regression equation.

#### RANDOM FOREST REGRESSOR

Random Forest Regression is a supervised learning algorithm that uses ensemble learning method for regression. Ensemble learning method is a technique that combines predictions from multiple machine learning algorithms to make a more accurate prediction than a single model.



#### **RIDGE**

Ridge regression is a specialized technique used to analyze multiple regression data that is multi collinear in nature. It is a fundamental regularization technique, but it is not used very widely because of the complex science behind it. However, it is fairly easy to explore the science behind ridge regression in r if you have an overall idea of the concept of multiple regression. Regression stays the same, but in regularization, the way the model coefficients are determined is different.



 Ridge regression penalize the size of the regression coefficients based on their l<sup>2</sup> norm:

$$argmin_{\beta} \sum_{i} (y_i - \boldsymbol{\beta}' \boldsymbol{x}_i)^2 + \lambda \sum_{k=1}^{K} \beta_k^2$$

# Comparison of the Models trained We trained 4 models using the 4 algorithms viz.

- 1. Linear Regression
- 2. Lasso
- 3. Random Forest Regressor
- 4. Ridge

The 4 models had different accuracy. The comparison of the accuracies of the models are given below:

| Model             | Accuracy% |
|-------------------|-----------|
| Linear Regression | 82%       |
| Lasso             | 83%       |
| Random Forest     | 76%       |
| Ridge             | 88%       |

# Comparison among the regression models(Accuracy)



The comparison of the mean squared error of the models are given below:

| Model             | Mean Squared Error |
|-------------------|--------------------|
| Linear Regression | 43966520.5580716   |
| Lasso             | 39862068.07829146  |
| Random Forest     | 56832382.3657430   |
| Ridge             | 27670732.3551490   |



▶ So we select Ridge model to predict the dataset as it has the highest accuracy and low MSE .

## Code

# **Dairy Goods Sales Prediction**

```
# importing the libraries
import pandas as pd #for handling data
import matplotlib.pyplot as plt #for plotting graphs
import numpy as np # for numpy function and ndarrays
import seaborn as sns # for plotting graphs
```

```
# Load the dataset

data=pd.read_csv('dairy_dataset.csv')

df=data.copy()

df.describe(include='all')
```

|        | Product_Location | Product_ID | Product_Name | Brand | Quantity(liters/kg) | Price_per_Unit | Total_Value  | Storage_Condition | Production_Date |
|--------|------------------|------------|--------------|-------|---------------------|----------------|--------------|-------------------|-----------------|
| count  | 150              | 150.000000 | 150          | 147   | 150.000000          | 150.000000     | 150.000000   | 144               | 150             |
| unique | 5                | NaN        | 10           | 2     | NaN                 | NaN            | NaN          | 2                 | 147             |
| top    | Haryana          | NaN        | Milk         | Amul  | NaN                 | NaN            | NaN          | Refrigerated      | 06-08-2022      |
| freq   | 34               | NaN        | 23           | 84    | NaN                 | NaN            | NaN          | 108               | 2               |
| mean   | NaN              | 5.166667   | NaN          | NaN   | 497.264333          | 58.222733      | 28141.585181 | NaN               | NaN             |
| std    | NaN              | 2.997575   | NaN          | NaN   | 289.363745          | 25.374899      | 21557.013218 | NaN               | NaN             |
| min    | NaN              | 1.000000   | NaN          | NaN   | 8.470000            | 11.580000      | 722.089200   | NaN               | NaN             |
| 25%    | NaN              | 3.000000   | NaN          | NaN   | 253.152500          | 36.840000      | 10256.742750 | NaN               | NaN             |
| 50%    | NaN              | 5.000000   | NaN          | NaN   | 512.445000          | 58.265000      | 21891.722650 | NaN               | NaN             |
| 75%    | NaN              | 8.000000   | NaN          | NaN   | 723.707500          | 82.180000      | 41158.591300 | NaN               | NaN             |
| max    | NaN              | 10.000000  | NaN          | NaN   | 999.780000          | 99.960000      | 91387.705500 | NaN               | NaN             |
| 4      |                  |            |              |       |                     |                |              |                   |                 |

| Total_Value | Storage_Condition | Production_Date | Expiration_Date | Quantity_Sold | Price_per_Unit_Sold | Approx_Total<br>Revenue(INR) | Sales_Channel | Quantity_in_Stock_(liters/kg) |
|-------------|-------------------|-----------------|-----------------|---------------|---------------------|------------------------------|---------------|-------------------------------|
| 150.000000  | 144               | 150             | 150             | 147.000000    | 147.000000          | 150.000000                   | 150           | 150.000000                    |
| NaN         | 2                 | 147             | 144             | NaN           | NaN                 | NaN                          | 3             | NaN                           |
| NaN         | Refrigerated      | 06-08-2022      | 31-10-2022      | NaN           | NaN                 | NaN                          | Online        | NaN                           |
| NaN         | 108               | 2               | 2               | NaN           | NaN                 | NaN                          | 54            | NaN                           |
| 8141.585181 | NaN               | NaN             | NaN             | 268.639456    | 58.238844           | 15128.786733                 | NaN           | 225.413333                    |
| 1557.013218 | NaN               | NaN             | NaN             | 230.703924    | 25.914929           | 15822.426521                 | NaN           | 204.858805                    |
| 722.089200  | NaN               | NaN             | NaN             | 1.000000      | 8.690000            | 58.090000                    | NaN           | 0.000000                      |
| 0256.742750 | NaN               | NaN             | NaN             | 77.000000     | 36.170000           | 3946.060000                  | NaN           | 48.000000                     |
| 1891.722650 | NaN               | NaN             | NaN             | 190.000000    | 60.150000           | 9408.025000                  | NaN           | 195.000000                    |
| 1158.591300 | NaN               | NaN             | NaN             | 415.000000    | 81.615000           | 21150.870000                 | NaN           | 348.000000                    |
| 1387.705500 | NaN               | NaN             | NaN             | 956.000000    | 103.490000          | 66719.240000                 | NaN           | 929.000000                    |
| 4           |                   |                 |                 |               |                     |                              |               | <b>)</b>                      |

data.head()

|   | Product_Location | Product_ID | Product_Name | Brand           | Quantity(liters/kg) | Price_per_Unit | Total_Value | Storage_Condition | Production_Date | Expiration_Date | Q |
|---|------------------|------------|--------------|-----------------|---------------------|----------------|-------------|-------------------|-----------------|-----------------|---|
| 0 | Tamil Nadu       | 5          | Ice Cream    | Mother<br>Dairy | 222.40              | 85.72          | 19064.1280  | Frozen            | 27-12-2021      | 21-01-2022      |   |
| 1 | West Bengal      | 1          | Milk         | Amul            | 687.48              | 42.61          | 29293.5228  | Refrigerated      | 03-10-2021      | 25-10-2021      |   |
| 2 | Tamil Nadu       | 4          | Yogurt       | Mother<br>Dairy | 503.48              | 36.50          | 18377.0200  | Refrigerated      | 14-01-2022      | 13-02-2022      |   |
| 3 | Tamil Nadu       | 3          | Cheese       | Amul            | 823.36              | 26.52          | 21835.5072  | Frozen            | 15-05-2019      | 26-07-2019      |   |
| 4 | Haryana          | 8          | Buttermilk   | Mother<br>Dairy | 147.77              | 83.85          | 12390.5145  | Refrigerated      | 17-10-2020      | 28-10-2020      |   |
| ( |                  |            |              |                 |                     |                |             |                   |                 |                 | • |

#### data.head()

| Total_Value | Storage_Condition | Production_Date | Expiration_Date | Quantity_Sold | Price_per_Unit_Sold | Approx_Total<br>Revenue(INR) | Sales_Channel | Quantity_in_Stock_(liters/kg) |
|-------------|-------------------|-----------------|-----------------|---------------|---------------------|------------------------------|---------------|-------------------------------|
| 19064.1280  | Frozen            | 27-12-2021      | 21-01-2022      | 7.0           | 82.24               | 575.68                       | Wholesale     | 215                           |
| 29293.5228  | Refrigerated      | 03-10-2021      | 25-10-2021      | 558.0         | 39.24               | 21895.92                     | Wholesale     | 129                           |
| 18377.0200  | Refrigerated      | 14-01-2022      | 13-02-2022      | 256.0         | 33.81               | 8655.36                      | Online        | 247                           |
| 21835.5072  | Frozen            | 15-05-2019      | 26-07-2019      | 601.0         | 28.92               | 17380.92                     | Online        | 222                           |
| 12390.5145  | Refrigerated      | 17-10-2020      | 28-10-2020      | 145.0         | 83.07               | 12045.15                     | Retail        | 2                             |
| •           |                   |                 |                 |               |                     |                              |               | <b>)</b>                      |

## # Checking the dataset for any null values

print("null values count:\n",df.isnull().sum())

| null values count:            |   |
|-------------------------------|---|
| Product_Location              | 0 |
| Product_ID                    | 0 |
| Product_Name                  | 0 |
| Brand                         | 3 |
| Quantity(liters/kg)           | 0 |
| Price_per_Unit                | 0 |
| Total_Value                   | 0 |
| Storage_Condition             | 6 |
| Production_Date               | 0 |
| Expiration_Date               | 0 |
| Quantity_Sold                 | 3 |
| Price_per_Unit_Sold           | 3 |
| Approx_Total Revenue(INR)     | 0 |
| Sales_Channel                 | 0 |
| Quantity_in_Stock_(liters/kg) | 0 |
| dtype: int64                  |   |

## # Shape of the dataset

df.shape

(150, 15)

#### # Info of the dataset

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 15 columns):
# Column

| #  | Column                        | Non-Null Count | Dtype   |
|----|-------------------------------|----------------|---------|
|    | •••••                         |                |         |
| 0  | Product_Location              | 150 non-null   | object  |
| 1  | Product_ID                    | 150 non-null   | int64   |
| 2  | Product_Name                  | 150 non-null   | object  |
| 3  | Brand                         | 147 non-null   | object  |
| 4  | Quantity(liters/kg)           | 150 non-null   | float64 |
| 5  | Price_per_Unit                | 150 non-null   | float64 |
| 6  | Total_Value                   | 150 non-null   | float64 |
| 7  | Storage_Condition             | 144 non-null   | object  |
| 8  | Production_Date               | 150 non-null   | object  |
| 9  | Expiration_Date               | 150 non-null   | object  |
| 10 | Quantity_Sold                 | 147 non-null   | float64 |
| 11 | Price_per_Unit_Sold           | 147 non-null   | float64 |
| 12 | Approx_Total Revenue(INR)     | 150 non-null   | float64 |
| 13 | Sales_Channel                 | 150 non-null   | object  |
| 14 | Quantity_in_Stock_(liters/kg) | 150 non-null   | int64   |
|    |                               |                |         |

dtypes: float64(6), int64(2), object(7)

memory usage: 17.7+ KB

```
# Visualizing null values using heatmap
sns.heatmap(df.isnull(), cbar=False, cmap='viridis')
plt.title('Missing Values Heatmap')
plt.show()
```



## df.describe()

|       | Product_ID | Quantity(liters/kg) | Price_per_Unit | Total_Value  | Quantity_Sold | Price_per_Unit_Sold | Approx_Total<br>Revenue(INR) | Quantity_in_Stock_(liters/kg) |
|-------|------------|---------------------|----------------|--------------|---------------|---------------------|------------------------------|-------------------------------|
| count | 150.000000 | 150.000000          | 150.000000     | 150.000000   | 147.000000    | 147.000000          | 150.000000                   | 150.000000                    |
| mean  | 5.166667   | 497.264333          | 58.222733      | 28141.585181 | 268.639456    | 58.238844           | 15128.786733                 | 225.413333                    |
| std   | 2.997575   | 289.363745          | 25.374899      | 21557.013218 | 230.703924    | 25.914929           | 15822.426521                 | 204.858805                    |
| min   | 1.000000   | 8.470000            | 11.580000      | 722.089200   | 1.000000      | 8.690000            | 58.090000                    | 0.000000                      |
| 25%   | 3.000000   | 253.152500          | 36.840000      | 10256.742750 | 77.000000     | 36.170000           | 3946.060000                  | 48.000000                     |
| 50%   | 5.000000   | 512.445000          | 58.265000      | 21891.722650 | 190.000000    | 60.150000           | 9408.025000                  | 195.000000                    |
| 75%   | 8.000000   | 723.707500          | 82.180000      | 41158.591300 | 415.000000    | 81.615000           | 21150.870000                 | 348.000000                    |
| max   | 10.000000  | 999.780000          | 99.960000      | 91387.705500 | 956.000000    | 103.490000          | 66719.240000                 | 929.000000                    |

## df['Quantity\_Sold'].describe()

count 147.000000 268.639456 mean std 230.703924 min 1.000000 25% 77.000000 50% 190.000000 415.000000 75% 956.000000 max

Name: Quantity\_Sold, dtype: float64

```
df['Price_per_Unit_Sold'].describe()
count
        147.000000
mean
         58.238844
std
         25.914929
min
         8.690000
25%
         36.170000
50%
         60.150000
75%
         81.615000
         103.490000
max
Name: Price_per_Unit_Sold, dtype: float64
# Filling the numeric null values in dataset with mean imputation
df['Quantity_Sold'].fillna(df['Quantity_Sold'].mean(),inplace=True)
df['Price_per_Unit_Sold'].fillna(df['Price_per_Unit_Sold'].mean(),inplace=True)
df.isnull().sum()
Product Location
                                0
Product_ID
                                0
Product_Name
Brand
                                 3
Quantity(liters/kg)
                                0
Price_per_Unit
                                0
Total_Value
Storage_Condition
                                6
Production Date
                                0
Expiration_Date
Quantity_Sold
Price_per_Unit_Sold
Approx_Total Revenue(INR)
Sales Channel
```

dtype: int64

Quantity\_in\_Stock\_(liters/kg)

#### df['Storage\_Condition'].describe()

count 144
unique 2
top Refrigerated
freq 108

Name: Storage\_Condition, dtype: object

#### df['Brand'].describe()

count 147 unique 2 top Amul freq 84

Name: Brand, dtype: object

. .. -

## df['Brand'].mode()

0 Amul

Name: Brand, dtype: object

### df['Storage\_Condition'].mode()

0 Refrigerated

Name: Storage\_Condition, dtype: object

```
Product Name
                                0
Brand
Quantity(liters/kg)
Price_per_Unit
Total_Value
                                0
Storage_Condition
Production Date
Expiration_Date
Quantity Sold
                                0
Price_per_Unit_Sold
Approx_Total Revenue(INR)
Sales_Channel
Quantity_in_Stock_(liters/kg)
dtype: int64
```

```
# Checking all null values are filled using heatmap
sns.heatmap(df.isnull(), cbar=False, cmap='viridis')
plt.title('Missing Values Heatmap')
plt.show()
```



```
# Selecting based on general requirements

df.drop(['Product_ID'],axis=1,inplace=True)

df.drop(['Production_Date'],axis=1,inplace=True)

df.drop(['Expiration_Date'],axis=1,inplace=True)
```

#### df.head()

|   | Product_Location | Product_Name | Brand           | Quantity(liters/kg) | Price_per_Unit | Total_Value | Storage_Condition | Quantity_Sold | Price_per_Unit_Sold |
|---|------------------|--------------|-----------------|---------------------|----------------|-------------|-------------------|---------------|---------------------|
| 0 | Tamil Nadu       | Ice Cream    | Mother<br>Dairy | 222.40              | 85.72          | 19064.1280  | Frozen            | 7.0           | 82.24               |
| 1 | West Bengal      | Milk         | Amul            | 687.48              | 42.61          | 29293.5228  | Refrigerated      | 558.0         | 39.24               |
| 2 | Tamil Nadu       | Yogurt       | Mother<br>Dairy | 503.48              | 36.50          | 18377.0200  | Refrigerated      | 256.0         | 33.81               |
| 3 | Tamil Nadu       | Cheese       | Amul            | 823.36              | 26.52          | 21835.5072  | Frozen            | 601.0         | 28.92               |
| 4 | Haryana          | Buttermilk   | Mother<br>Dairy | 147.77              | 83.85          | 12390.5145  | Refrigerated      | 145.0         | 83.07               |
| 4 |                  |              |                 |                     |                |             |                   |               |                     |

df.head()

| Quantity(liters/kg) | Price_per_Unit | Total_Value | Storage_Condition | Quantity_Sold | Price_per_Unit_Sold | Approx_Total<br>Revenue(INR) | Sales_Channel | Quantity_in_Stock_(liters/kg) |
|---------------------|----------------|-------------|-------------------|---------------|---------------------|------------------------------|---------------|-------------------------------|
| 222.40              | 85.72          | 19064.1280  | Frozen            | 7.0           | 82.24               | 575.68                       | Wholesale     | 215                           |
| 687.48              | 42.61          | 29293.5228  | Refrigerated      | 558.0         | 39.24               | 21895.92                     | Wholesale     | 129                           |
| 503.48              | 36.50          | 18377.0200  | Refrigerated      | 256.0         | 33.81               | 8655.36                      | Online        | 247                           |
| 823.36              | 26.52          | 21835.5072  | Frozen            | 601.0         | 28.92               | 17380.92                     | Online        | 222                           |
| 147.77              | 83.85          | 12390.5145  | Refrigerated      | 145.0         | 83.07               | 12045.15                     | Retail        | 2                             |
| 4                   |                |             |                   |               |                     |                              |               | <b>)</b>                      |

## # EDA(Exploratory Data Analysis) using Pandas Profiling

from pandas\_profiling import ProfileReport
profile=ProfileReport(df,title="Pandas Profiling Report")



## Overview



#### Variables





## Price\_per\_Unit Real number (R)

| Distinct     | 149       |
|--------------|-----------|
| Distinct (%) | 99.3%     |
| Missing      | 0         |
| Missing (%)  | 0.0%      |
| Infinite     | 0         |
| Infinite (%) | 0.0%      |
| Mean         | 58.222733 |

| Minimum      | 11.58   |
|--------------|---------|
| Maximum      | 99.96   |
| Zeros        | 0       |
| Zeros (%)    | 0.0%    |
| Negative     | 0       |
| Negative (%) | 0.0%    |
| Memory size  | 1.3 KiB |



More details

## Total\_Value

| Distinct     | 149       |
|--------------|-----------|
| Distinct (%) | 99.3%     |
| Missing      | 0         |
| Missing (%)  | 0.0%      |
| Infinite     | 0         |
| Infinite (%) | 0.0%      |
| Mean         | 28141.585 |

| Minimum      | 722.0892  |
|--------------|-----------|
| Maximum      | 91387.705 |
| Zeros        | 0         |
| Zeros (%)    | 0.0%      |
| Negative     | 0         |
| Negative (%) | 0.0%      |
| Memory size  | 1.3 KiB   |



#### Storage\_Condition

Categorical

| Distinct     | 2       |
|--------------|---------|
| Distinct (%) | 1.3%    |
| Missing      | 0       |
| Missing (%)  | 0.0%    |
| Memory size  | 1.3 KiB |

| R | efrigerated |
|---|-------------|
|   | Frozen      |

More details

## Quantity\_Sold Real number (R)

| Distinct     | 126       |
|--------------|-----------|
| Distinct (%) | 84.0%     |
| Missing      | 0         |
| Missing (%)  | 0.0%      |
| Infinite     | 0         |
| Infinite (%) | 0.0%      |
| Mean         | 268.63946 |

| Minimum      | 1       |
|--------------|---------|
| Maximum      | 956     |
| Zeros        | 0       |
| Zeros (%)    | 0.0%    |
| Negative     | 0       |
| Negative (%) | 0.0%    |
| Memory size  | 1.3 KiB |



More details

#### Price\_per\_Unit\_Sold

Real number (R)

| Distinct     | 147       |
|--------------|-----------|
| Distinct (%) | 98.0%     |
| Missing      | 0         |
| Missing (%)  | 0.0%      |
| Infinite     | 0         |
| Infinite (%) | 0.0%      |
| Mean         | 58.238844 |

| Minimum      | 8.69    |
|--------------|---------|
| Maximum      | 103.49  |
| Zeros        | 0       |
| Zeros (%)    | 0.0%    |
| Negative     | 0       |
| Negative (%) | 0.0%    |
| Memory size  | 1.3 KiB |



More details

#### Approx\_Total Revenue(INR)

Real number (R)

| Distinct     | 149       |
|--------------|-----------|
| Distinct (%) | 99.3%     |
| Missing      | 0         |
| Missing (%)  | 0.0%      |
| Infinite     | 0         |
| Infinite (%) | 0.0%      |
| Mean         | 15128.787 |

| Minimum      | 58.09    |
|--------------|----------|
| Maximum      | 66719.24 |
| Zeros        | 0        |
| Zeros (%)    | 0.0%     |
| Negative     | 0        |
| Negative (%) | 0.0%     |
| Memory size  | 1.3 KiB  |



#### Sales\_Channel

Categorical

| 3       |
|---------|
| 2.0%    |
| 0       |
| 0.0%    |
| 1.3 KiB |
|         |



More details

#### Quantity\_in\_Stock\_(liters/kg)

Real number (R)

| Distinct     | 130       |
|--------------|-----------|
| Distinct (%) | 86.7%     |
| Missing      | 0         |
| Missing (%)  | 0.0%      |
| Infinite     | 0         |
| Infinite (%) | 0.0%      |
| Mean         | 225.41333 |
|              |           |

| Minimum      | 0       |
|--------------|---------|
| Maximum      | 929     |
| Zeros        | 1       |
| Zeros (%)    | 0.7%    |
| Negative     | 0       |
| Negative (%) | 0.0%    |
| Memory size  | 1.3 KiB |



More details











# Correlations



## Correlations



```
# Preprocessing Task before model building
# Label Encoding

from sklearn.preprocessing import LabelEncoder
le=LabelEncoder()
df['Product_Location']=le.fit_transform(df['Product_Location'])
df['Product_Name']=le.fit_transform(df['Product_Name'])
df['Brand']=le.fit_transform(df['Brand'])
df['Storage_Condition']=le.fit_transform(df['Storage_Condition'])
df['Sales_Channel']=le.fit_transform(df['Sales_Channel'])
df.head()
```

| Product_Location | Product_Name | Brand | Quantity(liters/kg) | Price_per_Unit | Total_Value | Storage_Condition | Quantity_Sold | Price_per_Unit_Sold | Approx_Total<br>Revenue(INR) |
|------------------|--------------|-------|---------------------|----------------|-------------|-------------------|---------------|---------------------|------------------------------|
| 3                | 5            | 1     | 222.40              | 85.72          | 19064.1280  | 0                 | 7.0           | 82.24               | 575.68                       |
| 4                | 7            | 0     | 687.48              | 42.61          | 29293.5228  | 1                 | 558.0         | 39.24               | 21895.92                     |
| 3                | 9            | 1     | 503.48              | 36.50          | 18377.0200  | 1                 | 256.0         | 33.81               | 8655.36                      |
| 3                | 2            | 0     | 823.36              | 26.52          | 21835.5072  | 0                 | 601.0         | 28.92               | 17380.92                     |
| 1                | 1            | 1     | 147.77              | 83.85          | 12390.5145  | 1                 | 145.0         | 83.07               | 12045.15                     |
| (                |              |       |                     |                |             |                   |               |                     |                              |

# # Splitting our data into train and test from sklearn.model\_selection import train\_test\_split X=df.drop('Approx\_Total Revenue(INR)',axis=1) y=df['Approx\_Total Revenue(INR)'] X\_train, X\_test, y\_train, y\_test = train\_test\_split(X,y, random\_state=101, test\_size=0.2)

X\_train

|     | Product_Location | Product_Name | Brand | Quantity(liters/kg) | Price_per_Unit | Total_Value | Storage_Condition | Quantity_Sold | Price_per_Unit_Sold | Sales_Cha |
|-----|------------------|--------------|-------|---------------------|----------------|-------------|-------------------|---------------|---------------------|-----------|
| 104 | 2                | 7            | 1     | 105.47              | 27.19          | 2867.7293   | 1                 | 50.0          | 27.00               |           |
| 89  | 4                | 4            | 0     | 729.21              | 16.37          | 11937.1677  | 1                 | 458.0         | 12.86               |           |
| 116 | 1                | 1            | 0     | 682.38              | 46.20          | 31525.9560  | 1                 | 313.0         | 41.50               |           |
| 82  | 3                | 3            | 0     | 336.47              | 65.23          | 21947.9381  | 1                 | 108.0         | 61.59               |           |
| 112 | 1                | 2            | 0     | 448.41              | 64.90          | 29101.8090  | 1                 | 36.0          | 63.90               |           |
|     |                  |              |       |                     |                |             |                   |               |                     |           |
| 63  | 1                | 4            | 0     | 838.85              | 61.21          | 51346.0085  | 1                 | 392.0         | 61.22               |           |
| 70  | 1                | 4            | 1     | 455.19              | 44.64          | 20319.6816  | 1                 | 420.0         | 48.13               |           |
| 81  | 4                | 0            | 0     | 705.44              | 77.71          | 54819.7424  | 1                 | 279.0         | 80.91               |           |
| 11  | 1                | 6            | 0     | 653.04              | 84.60          | 55247.1840  | 1                 | 345.0         | 88.05               |           |
| 95  | 4                | 7            | 0     | 280.10              | 78.72          | 22049.4720  | 1                 | 163.0         | 75.83               |           |

120 rows × 11 columns

| v   | + | _ | _  | + |
|-----|---|---|----|---|
| Ă.  | L | ۳ | ٠, | L |
| • • |   | - | -  | - |

|                | Product_Location | Product_Name | Brand | Quantity(liters/kg) | Price_per_Unit | Total_Value | Storage_Condition | Quantity_Sold | Price_per_Unit_Sold | Sales_Cha |
|----------------|------------------|--------------|-------|---------------------|----------------|-------------|-------------------|---------------|---------------------|-----------|
| 33             | 3                | 4            | 0     | 581.50              | 43.88          | 25516.2200  | 1                 | 86.000000     | 41.490000           |           |
| 16             | 0                | 4            | 1     | 663.34              | 48.83          | 32390.8922  | 1                 | 438.000000    | 52.790000           |           |
| 43             | 1                | 5            | 0     | 675.77              | 52.35          | 35378.5595  | 0                 | 6.000000      | 54.410000           |           |
| 129            | 2                | 8            | 0     | 374.12              | 49.82          | 18838.6584  | 1                 | 148.000000    | 51.770000           |           |
| 50             | 3                | 1            | 1     | 410.48              | 41.31          | 16956.9288  | 1                 | 141.000000    | 43.020000           |           |
| 123            | 4                | 1            | 0     | 833.58              | 20.43          | 17030.0394  | 1                 | 463.000000    | 16.510000           |           |
| 68             | 2                | 9            | 1     | 548.97              | 27.07          | 14880.6179  | 1                 | 386.000000    | 25.290000           |           |
| 53             | 0                | 0            | 0     | 30.69               | 89.80          | 2755.9620   | 0                 | 22.000000     | 92.230000           |           |
| 146            | 4                | 9            | 1     | 365.86              | 69.14          | 25295.5804  | 1                 | 286.000000    | 65.310000           |           |
| 1              | 4                | 7            | 0     | 687.48              | 42.61          | 29293.5228  | 1                 | 558.000000    | 39.240000           |           |
| 147            | 0                | 7            | 1     | 448.09              | 75.81          | 33989.7029  | 1                 | 329.000000    | 71.750000           |           |
| 32             | 0                | 8            | 1     | 595.79              | 44.30          | 28393.4970  | 1                 | 137.000000    | 46.820000           |           |
| 31             | 0                | 0            | 0     | 985.95              | 92.69          | 91387.7055  | 1                 | 56.000000     | 96.860000           |           |
| 122            | 1                | 0            | 1     | 771.93              | 19.17          | 14797.8981  | 0                 | 554.000000    | 15.520000           |           |
| 127            | 0                | 6            | 0     | 333.33              | 16.94          | 5646.6102   | 1                 | 127.000000    | 12.870000           |           |
| 74             | 0                | 7            | 0     | 373.21              | 38.88          | 14510.4048  | 1                 | 166.000000    | 38.180000           |           |
| 88             | 2                | 0            | 1     | 535.10              | 13.66          | 7309.4860   | 0                 | 18.000000     | 8.830000            |           |
| 96             | 2                | 6            | 0     | 331.30              | 67.30          | 22298.4900  | 1                 | 135.000000    | 67.910000           |           |
| 42             | 3                | 6            | 0     | 797.52              | 92.04          | 73403.7408  | 1                 | 715.000000    | 89.080000           |           |
| 134            | 3                | 5            | 1     | 249.49              | 89.82          | 22409.1918  | 0                 | 180.000000    | 87.330000           |           |
| 80             | 2                | 5            | 0     | 69.59               | 95.30          | 6631.9270   | 0                 | 36.000000     | 98.670000           |           |
| 48             | 1                | 6            | 0     | 681.45              | 78.56          | 53534.7120  | 1                 | 552.000000    | 74.450000           |           |
| 90             | 1                | 1            | 0     | 149.16              | 86.32          | 12875.4912  | 1                 | 140.000000    | 81.470000           |           |
| 65             | 4                | 7            | 1     | 62.79               | 95.03          | 5966.9337   | 1                 | 16.000000     | 93.220000           |           |
| 97             | 0                | 7            | 0     | 229.17              | 29.49          | 6758.2233   | 1                 | 159.000000    | 34.040000           |           |
| 64             | 0                | 0            | 1     | 791.17              | 45.01          | 35810.5817  | 0                 | 534.000000    | 58.238844           |           |
| 93             | 0                | 3            | 1     | 865.53              | 45.95          | 39771.1035  | 1                 | 581.000000    | 49.380000           |           |
| 114            | 0                | 5            | 0     | 950.71              | 38.42          | 38528.2782  | 0                 | 459.000000    | 38.690000           |           |
| 25             | 2                | 8            | 0     | 888.35              | 62.21          | 55139.8335  | 1                 | 268.639456    | 66.700000           |           |
| 41             | 0                | 6            | 1     | 112.80              | 91.62          | 10334.7380  | 1                 | 104.000000    | 93.930000           |           |
| $\blacksquare$ |                  |              |       |                     |                |             |                   |               |                     | •         |
|                |                  |              |       |                     |                |             |                   |               |                     |           |

```
y_train
104
        1350.00
89
        5889.88
       12989.50
116
82
        6651.72
        2300.40
112
        ...
63
       23998.24
70
       20214.60
81
       22573.89
11
       30377.25
95
       12360.29
Name: Approx_Total Revenue(INR), Length: 120, dtype: float64
```

```
y_test
33
      3568.14
      23122.02
16
43
       326.46
129
       7661.96
50
       6065.82
123
       7644.13
68
       9761.94
       2029.06
53
146
     18678.66
      21895.92
1
147
      23605.75
32
       6414.34
31
       5424.16
122
       8598.08
127
       1609.09
74
       6005.88
       158.94
88
96
      9167.85
42
      63692.20
134
     15719.40
80
       3552.12
48
      41096.40
90
      11405.80
      1491.52
65
      5412.36
64
     25637.34
93
      28689.78
      16840.71
114
25
      56361.50
41
       9768.72
Name: Approx_Total Revenue(INR), dtype: float64
```

### # Standarization

```
from sklearn.preprocessing import StandardScaler
sc=StandardScaler()
X_train_std=sc.fit_transform(X_train)
X_test_std=sc.transform(X_test)
```

### X train std

```
array([[ 0.71450187, -0.16072873, -0.84515425, 0.30362616, -0.5865793 ,
       -0.14000487, 0.55167728, -0.7947494, -0.6788458, 1.36825105,
      [-1.41128881, -0.16072873, 1.18321596, 0.58539627, -0.3890633 ,
        0.17564943, 0.55167728, 0.71910821, -0.2309563 , 0.15202789,
        0.0077685],
      [-0.70269192, 0.18995214, -0.84515425, 0.628192 , -0.24860747,
        0.31273796, -1.81265393, -1.13880795, -0.16674559, 1.36825105,
        2.209393391.
      [ 0.00590497, 1.24199473, -0.84515425, -0.41037046, -0.3495601 ,
       -0.45579184, 0.55167728, -0.52810403, -0.27138526, 1.36825105,
        0.01272711],
      [ 0.71450187, -1.21277133, 1.18321596, -0.28518521, -0.68912801,
        -0.53300937, 0.55167728, -0.55820915, -0.61820236, -1.06419526,
        0.225947541,
      [ 1.42309876, -1.21277133, -0.84515425, 1.17152215, -1.52228642,
       -0.52965245, 0.55167728, 0.8266265, -1.66895906, 0.15202789,
        0.72676762],
      [ 0.00590497, 1.5926756 , 1.18321596, 0.19162737, -1.25733566,
       -0.62926262, 0.55167728, 0.49547015, -1.32095288, -1.06419526,
       -0.30462423],
      [-1.41128881, -1.5634522 , -0.84515425, -1.5927789 , 1.24573077,
       -1.18505446, -1.81265393, -1.06999624, 1.33229698, 0.15202789,
       -1.068250881,
       [ 1.42309876, 1.5926756 , 1.18321596, -0.43880914, 0.42135085,
       -0.15013658, 0.55167728, 0.06539697, 0.26528942, -1.06419526,
      [ 1.42309876, 0.89131387, -0.84515425, 0.66850881, -0.63725512,
        0.03343204, 0.55167728, 1.23519603, -0.76802734, 1.36825105,
       -0.46825851],
      [-1.41128881, 0.89131387, 1.18321596, -0.15569629, 0.68749867,
        0.24814138, 0.55167728, 0.25032844, 0.5205468, 1.36825105,
        -0.51784465],
      [-1.41128881, 1.24199473, 1.18321596, 0.35282576, -0.56982037,
       -0.09972422, 0.55167728, -0.57541208, -0.46758465, 1.36825105,
        1.1631257 ],
      [-1.41128881, -1.5634522 , -0.84515425, 1.69612272, 1.36104819,
        2.8845201 , 0.55167728, -0.92377135, 1.51581277, 0.15202789,
        3.498633191,
      [-0.70269192, -1.5634522 , 1.18321596, 0.95926498, -1.57256322,
        -0.63214243, -1.81265393, 1.2179931, -1.70819894, 0.15202789,
       -0.03190042],
      [-1.41128881, 0.540633 , -0.84515425, -0.55080793, -1.66154518,
       -1.05232878, 0.55167728, -0.61841939, -1.82116222, 1.36825105,
      [-1.41128881, 0.89131387, -0.84515425, -0.41350354, -0.78609041,
       -0.64534284, 0.55167728, -0.45069085, -0.88931423, 0.15202789,
       -0.08148657],
      [ 0.00590497, -1.5634522 , 1.18321596, 0.14387381, -1.79242447,
       -0.97597785, -1.81265393, -1.08719916, -1.97336538, 0.15202789,
        1.45568397],
      [ 0.00590497, 0.540633 , -0.84515425, -0.5577971 , 0.34793076,
       -0.28784052, 0.55167728, -0.58401354, 0.36834364, 0.15202789,
       -0.13603133],
      [ 0.71450187, 0.540633 , -0.84515425, 1.04736978, 1.33511175,
        2.05877661, 0.55167728, 1.91041092, 1.20744282, 1.36825105,
       -0.7013134 ].
```

#### **Model Building**

```
# LinearRegression Model

from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(X_train_std,y_train)

* LinearRegression
LinearRegression()
```

```
Y_pred_lr=lr.predict(X_test_std)
```

from sklearn.metrics import r2\_score, mean\_absolute\_error, mean\_squared\_error

```
print(r2_score(y_test,Y_pred_lr))
h1=mean_absolute_error(y_test,Y_pred_lr)
print(h1)
g1=mean_squared_error(y_test,Y_pred_lr)
print(g1)
score = r2_score(y_test,Y_pred_lr)
print("The accuracy of the model is {}%".format(round(score, 2) *100))
```

```
0.8158321311411573
3610.290759970679
43966520.5580716
The accuracy of the model is 82.0%
```

```
# Lasso Model
from sklearn.linear_model import Lasso
ls=Lasso()
ls.fit(X_train_std,y_train)
```

```
▼ Lasso
Lasso()
```

```
Y_pred_ls=ls.predict(X_test_std)
```

```
print(r2_score(y_test,Y_pred_ls))
h2=mean_absolute_error(y_test,Y_pred_ls)
print(h2)
g2=mean_squared_error(y_test,Y_pred_ls)
print(g2)
score1 = r2_score(y_test,Y_pred_ls)
print("The accuracy of the model is {}%".format(round(score1, 2) *100))
```

0.8330249464114738 3525.013044916586 39862068.07829146 The accuracy of the model is 83.0%

```
# RandomForestRegression

from sklearn.ensemble import RandomForestRegressor

rfr=RandomForestRegressor()

rfr.fit(X_train_std,y_train)
```

RandomForestRegressor

RandomForestRegressor()

```
Y_pred_rfr=rfr.predict(X_test_std)
```

```
print(r2_score(y_test,Y_pred_rfr))
h3=mean_absolute_error(y_test,Y_pred_rfr)
print(h3)
g3=mean_squared_error(y_test,Y_pred_rfr)
print(g3)
score2 = r2_score(y_test,Y_pred_rfr)
print("The accuracy of the model is {}%".format(round(score2, 2) *100))
```

0.7721721035375838 3312.4050899999975 54389508.63461696 The accuracy of the model is 77.0%

```
# Ridge model
from sklearn.linear_model import Ridge
r=Ridge()
r.fit(X_train_std,y_train)
```

▼ Ridge

Ridge()

```
Y_pred_r=r.predict(X_test_std)
```

```
print(r2_score(y_test,Y_pred_r))
h4=mean_absolute_error(y_test,Y_pred_r)
print(h4)
g4=mean_squared_error(y_test,Y_pred_r)
print(g4)
score3 = r2_score(y_test,Y_pred_r)
print("The accuracy of the model is {}%".format(round(score3, 2) *100))
```

0.8840922651388735

3146.1586018305175

27670732.35514907

The accuracy of the model is 88.0%





#### Comparison among the regression models(mean\_absolute\_error)



#### Comparison among the regression models(mean\_squared\_error)



## **Future Scope of Improvements**

Various product based companies use these models and modify them according to their needs to use in sales. This will reduce the manual labour and time spent.

- Companies who intend to sell products online, retail or wholesale can use these trained models to check whether their sales prediction is correct or not. The trained models would be required to be implemented in a platform or interface easily accessible as well as with an easy GUI.
- And more improvement can be done in this application by adding customer detail more precisely and fulfilling there needs accordingly with their past order records.
- •Post delivery of the product customer reviews/feedback survey information should be collected and attached in database for future requirements.

## Certificate

This is to certify that Mr Vishwanath.R of Lovely Professional University, registration number: 12108780, has successfully completed a project on Dairy Goods Sales Prediction using Machine Learning with Python under the guidance of Prof. Arnab Chakraborty.

Arnab Chakraborty