Ghost code in action: Automated verification of a symbolic interpreter using Why3

<u>Benedikt Becker</u>, Claude Marché Inria Saclay & LRI, Université Paris-Saclay, France

> Gallium seminar, Inria Paris May 27, 2019

> > Submitted to VSTTE 2019

1

Context: Project CoLiS (Correctness of Linux Scripts)

Collaboration between IRIF (Université Paris), LINKS (Inria Lille), and Toccata (Inria Saclay)

Questions

Can the execution of a given Shell script (Debian maintainer script) fail? Does it play well with the other maintainer scripts? (They are executed as root!)

Approach

Symbolic execution with tree constraints to represent the file system

http://colis.irif.fr/
https://github.com/colis-anr/

Context: Project CoLiS

Achievements

- a trustworthy parser for POSIX shell: Morbig, Morsmall
- CoLiS language: "Shell with sane semantics"
 - verified concrete interpreter

[JFLA 2016, VSTTE 2017]

- verified symbolic execution engine
- ▶ in progress: symbolic specifications of Linux utilities
- ▶ verification with Why3, a platform for deductive program verification

This seminar

- 1. Sketch of the symbolic correctness properties
- 2. Concrete semantics of IMP and concrete execution
- 3. Symbolic execution of IMP
- Formalisation of symbolic correctness properties and proof techniques
- 5. Application to Debian maintainer scripts in the CoLiS project
- (6. And no fancy symbolic execution techniques ...)

Example program p_0

```
y := x - y - 1;

if y ≠ 0 then

x := y - 3

else

y := x - 3
```

Concrete execution

Concrete state: variable environment

 $\Gamma: PVar \rightarrow \mathbb{Z}$

A partial mapping from program variables to integers.

executing a program in an initial state results in a possibly changed result state

interp
$$(x \mapsto 2, y \mapsto 0)$$
 $(p_0) = (x \mapsto -2, y \mapsto 1)$
interp $(x \mapsto 2, y \mapsto 1)$ $(p_0) = (x \mapsto 2, y \mapsto -1)$

Concrete execution

Concrete state: variable environment

 $\Gamma: PVar \rightarrow \mathbb{Z}$

A partial mapping from program variables to integers.

executing a program in an initial state results in a possibly changed result state

$$\begin{split} & \mathsf{interp}\,(x\mapsto 2,y\mapsto 0)\,(p_0) = (x\mapsto -2,y\mapsto 1) \\ & \mathsf{interp}\,(x\mapsto 2,y\mapsto 1)\,(p_0) = (x\mapsto 2,y\mapsto -1) \\ & \mathsf{interp}\,(x\mapsto 2)\,(p_0)\,\,\mathsf{raises}\,\,\mathsf{UnboundVar} \end{split}$$

Concrete execution

Concrete state: variable environment

 $\Gamma: PVar \rightarrow \mathbb{Z}$

A partial mapping from program variables to integers.

executing a program in an initial state results in a possibly changed result state

$$\begin{split} & \mathsf{interp}\,(x\mapsto 2,y\mapsto 0)\,(p_0) = (x\mapsto -2,y\mapsto 1) \\ & \mathsf{interp}\,(x\mapsto 2,y\mapsto 1)\,(p_0) = (x\mapsto 2,y\mapsto -1) \\ & \mathsf{interp}\,(x\mapsto 2)\,(p_0)\,\,\mathsf{raises}\,\,\mathsf{UnboundVar} \\ & \mathsf{interp}\,(x\mapsto -1)\,(\mathsf{while}\,x\,\mathsf{do}\,x := x-1\,\mathsf{done}) = \dots \end{split}$$

(Reminder: $p_0 = y := x - y - 1$; **if** y **then** x := y - 3 **else** y := x - 3)

Correctness properties of a concrete interpreter

Completeness A concrete interpreter is complete if "it produces any result specified by the semantics."

Soundness An interpreter is sound if "any result corresponds to the semantics."

Symbolic state

 $(\sigma \mid C)$

- ightharpoonup symbolic variable environment $\sigma: PVar \rightarrow SVar$, a partial map from program variables to symbolic variables
- constraint C on symbolic variables

$$\begin{array}{l} \operatorname{sym-interp}\left(x\mapsto v_1,y\mapsto v_2\mid v_1=2\land v_2=0\right)(p_0)=\\ \left(x\mapsto v_4,y\mapsto v_3\mid v_4=-2\land v_3=1\right) \end{array}$$

Symbolic state

 $(\sigma \mid C)$

- \triangleright symbolic variable environment $\sigma: PVar \rightarrow SVar$, a partial map from program variables to symbolic variables
- ▶ constraint C on symbolic variables

```
\begin{array}{l} \operatorname{sym-interp}\left(x\mapsto v_1,y\mapsto v_2\mid v_1=2\land v_2=0\right)(p_0)=\\ \left(x\mapsto v_4,y\mapsto v_3\mid v_4=-2\land v_3=1\right) \underset{\mathsf{Normal}}{\mathsf{Normal}}\\ \operatorname{sym-interp}\left(x\mapsto v_1\mid v_1=2\land v_2=0\right)(p_0)=\\ \left(x\mapsto v_1,y\mapsto v_2\mid v_1=2\land v_2=0\right) \underset{\mathsf{UnboundVar}}{\mathsf{UnboundVar}} \end{array}
```

Symbolic state

 $\sigma \mid C$

- \triangleright symbolic variable environment $\sigma: PVar \rightarrow SVar$, a partial map from program variables to symbolic variables
- > symbolic states describes an (infinite) set of concrete states

$$\begin{array}{l} \text{sym-interp} \ (x \mapsto v_1, y \mapsto v_2 \mid v_1 - v_2 - 1 \neq 0) \ (p_0) = \\ (x \mapsto v_4, y \mapsto v_3 \mid v_1 - v_2 - 1 \neq 0 \wedge v_3 = v_1 - v_2 - 1 \wedge v_4 = v_3 - 3)_{\mathsf{Normal}} \end{array}$$

Symbolic state

 $(\sigma \mid C)$

- \triangleright symbolic variable environment $\sigma: PVar \rightarrow SVar$, a partial map from program variables to symbolic variables
- symbolic states describes an (infinite) set of concrete states
- symbolic result state sets capture different execution paths

```
\begin{array}{l} \text{sym-interp} \ (x \mapsto v_1, y \mapsto v_2 \mid \top) \ (p_0) = \\ \{ (x \mapsto v_4, y \mapsto v_3 \mid v_3 = v_1 - v_2 - 1 \wedge v_3 \neq 0 \wedge v_4 = v_3 - 3)_{\text{Normal}}, \\ (x \mapsto v_1, y \mapsto v_4 \mid v_3 = v_1 - v_2 - 1 \wedge v_3 = 0 \wedge v_4 = v_1 - 3)_{\text{Normal}} \} \end{array}
```

Handling of branching language constructs

How to execute conditionals?

Execute all branches.

While loops?

- unroll loop iterations
- problem: makes symbolic execution generally non-terminating
- ▷ (simplest) solution: limit the number of loop iterations

Example program p_1

```
y := 1;
while x > 1 do y := y * x; x := x - 1 done
```

Example program p_1

```
y := 1;
while x > 1 do y := y * x; x := x - 1 done
```

```
\begin{array}{l} \operatorname{sym-interp}_{N}\left(x\mapsto v_{1}\mid\top\right)\left(p_{1}\right) = \\ \left\{\left(x\mapsto v_{1},y\mapsto v_{2}\mid v_{2}=1 \,\wedge\, v_{1}\leq1\right)_{\mathsf{Normal}} \end{array}
```

Example program p_1

```
y := 1;
while x > 1 do y := y * x; x := x - 1 done
```

```
\begin{array}{l} \mathsf{sym\text{-}interp}_N\left(x\mapsto v_1\mid\top\right)\left(p_1\right) = \\ \left\{\left(x\mapsto v_1,y\mapsto v_2\mid v_2=1 \land v_1\leq 1\right)_{\mathsf{Normal}} \\ \left(x\mapsto v_3,y\mapsto v_4\mid v_2=1 \land v_1=2 \land v_3=1 \land v_4=2\right)_{\mathsf{Normal}} \end{array}
```

Example program p_1

```
y := 1;
while x > 1 do y := y * x; x := x - 1 done
```

```
\begin{array}{l} \mathsf{sym\text{-}interp}_N\left(x\mapsto v_1\mid \top\right)\left(p_1\right) = \\ \left\{(x\mapsto v_1, y\mapsto v_2\mid v_2=1 \land v_1\leq 1)_{\mathsf{Normal}} \\ (x\mapsto v_3, y\mapsto v_4\mid v_2=1 \land v_1=2 \land v_3=1 \land v_4=2)_{\mathsf{Normal}} \\ (x\mapsto v_5, y\mapsto v_6\mid v_2=1 \land v_1=3 \land v_5=1 \land v_6=6)_{\mathsf{Normal}} \end{array}
```

Example program p_1

```
y := 1;
while x > 1 do y := y * x; x := x - 1 done
```

```
\begin{array}{l} \mathsf{sym\text{-}interp}_N\left(x\mapsto v_1\mid \top\right)(p_1) = \\ \left\{ (x\mapsto v_1,y\mapsto v_2\mid v_2=1 \land v_1\leq 1)_{\mathsf{Normal}} \\ (x\mapsto v_3,y\mapsto v_4\mid v_2=1 \land v_1=2 \land v_3=1 \land v_4=2)_{\mathsf{Normal}} \\ (x\mapsto v_5,y\mapsto v_6\mid v_2=1 \land v_1=3 \land v_5=1 \land v_6=6)_{\mathsf{Normal}} \\ (x\mapsto v_5,y\mapsto v_6\mid v_2=1 \land v_1=2 \land v_5>1 \land v_6=6) \\ \end{array} \right\} \\ \begin{array}{l} \mathsf{Incomplete} \end{array} \right\}
```

Correctness properties of symbolic execution

Definition: Over-approximation - I "covers all concrete executions"

A symbolic execution is an over-approximation, if

"a concrete execution in a state that corresponds to the initial symbolic state results in a concrete state that corresponds to one of the result states."

Definition: Under-approximation – I

"no useless result states"

A symbolic execution is an under-approximation, if

"every concrete state corresponding to a result state is the result of the concrete execution in a concrete state corresponding to the initial state."

(Also called coverage and precision)

This seminar

- 1. Sketch of the symbolic correctness properties
- 2. Concrete semantics of IMP and concrete execution
- 3. Symbolic execution of IMP
- **4.** Formalisation of symbolic correctness properties and proof techniques
- 5. Application to Debian maintainer scripts in the CoLiS project

The IMP language

Syntax

```
\bar{n} \in \bar{\mathbb{Z}}
                                    — Integer literal
                                    - Program variable
x \in PVar
e := \bar{n} | x | e - e
                                    - Expression
                                    - Instructions
i ::= skip
      x := e

    Assignment

     i; i
                                    - Sequence
      if e then i else i

    Conditional

      while e do i
                                    Loop
```

(Condition e is true when non-zero)

Three semantic judgments

Semantic rules – expressions

$$\begin{array}{c} \operatorname{Literal} \\ \bar{n}/_{\Gamma} \Downarrow \operatorname{Normal} n \\ \\ \frac{\operatorname{Var}}{x \leq \operatorname{dom}(\Gamma)} \qquad \Gamma[x] = n \\ \hline x/_{\Gamma} \Downarrow \operatorname{Normal} n \\ \\ \frac{e_1/_{\Gamma} \Downarrow \operatorname{Normal} n_1}{e_1 - e_2/_{\Gamma} \Downarrow \operatorname{Normal} n_1 - e_2/_{\Gamma} \Downarrow \operatorname{Normal} n_2} \\ \\ \frac{e_1/_{\Gamma} \Downarrow \operatorname{Normal} n_1 \qquad e_2/_{\Gamma} \Downarrow \operatorname{Normal} n_2}{e_1 - e_2/_{\Gamma} \Downarrow \operatorname{UnboundVar}} \\ \\ \frac{\operatorname{Sub-err-1}}{e_1/_{\Gamma} \Downarrow \operatorname{UnboundVar}} \\ \frac{e_1/_{\Gamma} \Downarrow \operatorname{UnboundVar}}{e_1 - e_2/_{\Gamma} \Downarrow \operatorname{UnboundVar}} \\ \\ \frac{e_1/_{\Gamma} \Downarrow \operatorname{Vormal} n_1 \qquad e_2/_{\Gamma} \Downarrow \operatorname{UnboundVar}}{e_1 - e_2/_{\Gamma} \Downarrow \operatorname{UnboundVar}} \\ \end{array}$$

- ▶ (only) unbound variables cause abnormal behaviour UnboundVar
- abnormal behaviour is propagated through binary operations

Semantic rules - instructions

$$i/_{\Gamma} \Downarrow^{N} \beta/_{\Gamma'}$$

$$\begin{array}{c} \operatorname{Skip} & \operatorname{While} \\ \operatorname{skip}/_{\Gamma} \Downarrow^{\mathsf{N}} \operatorname{Normal}/_{\Gamma} & \frac{e_{\ell}, i_{\ell}/_{\Gamma} \Downarrow^{\mathsf{NN}} \beta/_{\Gamma'}}{\operatorname{while} \ e \ do \ i_{\ell}/_{\Gamma} \Downarrow^{\mathsf{NN}} \beta/_{\Gamma'}} \\ \operatorname{Assign} & \operatorname{Assign-err} & \operatorname{Seq} \\ \frac{e_{\ell}/_{\Gamma} \Downarrow \operatorname{Normal} n}{x := e_{\ell}/_{\Gamma} \Downarrow^{\mathsf{N}} \operatorname{Normal}/_{\Gamma[x \leftarrow n]}} & \frac{e_{\ell}/_{\Gamma} \Downarrow \operatorname{UnboundVar}/_{\Gamma}}{x := e_{\ell}/_{\Gamma} \Downarrow^{\mathsf{N}} \operatorname{Normal}/_{\Gamma[x \leftarrow n]}} & \frac{\operatorname{Seq}}{i_{1}/_{\Gamma} \Downarrow^{\mathsf{N}} \beta/_{\Gamma_{1}}} & \frac{i_{2}/_{\Gamma_{1}} \Downarrow^{\mathsf{N}} \beta/_{\Gamma_{2}}}{i_{1}; i_{2}/_{\Gamma} \Downarrow^{\mathsf{N}} \beta/_{\Gamma_{1}}} \\ & \frac{\operatorname{Cond-true}}{i_{1}, i_{2}/_{\Gamma} \Downarrow^{\mathsf{N}} \beta/_{\Gamma_{1}}} & \frac{e_{\ell}/_{\Gamma} \Downarrow \operatorname{Normal} n}{i_{1} e \operatorname{then} i_{1} \operatorname{else} i_{2}/_{\Gamma} \Downarrow^{\mathsf{N}} \beta/_{\Gamma'}} \\ & \frac{\operatorname{Cond-false}}{i_{1} e \operatorname{then} i_{1} \operatorname{else} i_{2}/_{\Gamma} \Downarrow^{\mathsf{N}} \beta/_{\Gamma'}} & \frac{\operatorname{Cond-err}}{i_{1} e \operatorname{then} i_{1} \operatorname{else} i_{2}/_{\Gamma} \Downarrow^{\mathsf{N}} \operatorname{UnboundVar}}{i_{1} e \operatorname{then} i_{1} \operatorname{else} i_{2}/_{\Gamma} \Downarrow^{\mathsf{N}} \operatorname{UnboundVar}/_{\Gamma}} \end{array}$$

 abnormal behaviour is propagated from expressions and sub-instructions

Semantic rules - loops

$$e,i/_{\Gamma} \downarrow^{n/N} \beta/_{\Gamma'}$$

- ▶ loop terminates normally when the condition is false
- when the condition is true and loop body executes without error, the loop execution continues with increased counter
- ▶ unbounded loops with $N = \infty$

A sound, concrete interpreter in Why3

let env = Env.empty ()

```
let rec interp_ins (i : ins) : unit diverges
 ensures \{i/_{(old\ env)} \downarrow^{\infty} Normal/_{env}\}
 \textbf{raises} \ \{ \ \mathsf{UnboundVar} \rightarrow i/_{(\textbf{old} \ \mathsf{env})} \ \Downarrow^{\infty} \ \mathsf{UnboundVar}/_{\mathsf{env}} \ \}
= match i with
  | Skip \rightarrow ()
  Assign x e \rightarrow \text{Env.set env } x \text{ (interp\_exp env } e)
  Seq i_1 i_2 \rightarrow interp_ins i_1; interp_ins i_2
  | If e i_1 i_2 \rightarrow
    if interp_exp env e \neq 0
    then interp_ins i<sub>1</sub> else interp_ins i<sub>2</sub>
  I While e i \rightarrow
    let ghost env_0 = env.model in
    let ghost ref n = 0 in
    while interp_exp env e \neq 0 do
      invariant \{ \forall \beta/_{\Gamma'}.
       e,i/_{\mathrm{env}} \downarrow^{n/\infty} \beta/_{\Gamma'} \rightarrow
       e, i/_{\text{env}_0} \downarrow^{0/\infty} \beta/_{\Gamma'}
      interp ins i;
      n \leftarrow n + 1
    done
```

- using an imperative, global variable environment env
- abnormal behaviour as exceptions
- soundness stated in post-conditions
- unbound loops, no incomplete behaviour
- loop invariant: if the loop terminates when starting in the current evaluation state, the loop terminates with the same result when starting in the initial evaluation state
- ▶ all 22 VCs proven automatically

This seminar

- 1. Sketch of the symbolic correctness properties
- 2. Concrete semantics of IMP and concrete execution
- 3. Symbolic execution of IMP
- **4.** Formalisation of symbolic correctness properties and proof techniques
- 5. Application to Debian maintainer scripts in the CoLiS project

Symbolic execution context of IMP

Symbolic state

 $(\sigma \mid C)$ with symbolic variable environment $\sigma PVar \rightarrow SVar$

Symbolic expression

$$se ::= n \mid v \mid se - se$$

Constraint

$$C ::= \top \mid se = se \mid se \neq se \mid C \land C \mid \exists v. C$$

Natural extension of σ to expressions

$$\sigma(e) = se \text{ when } vars(e) \subseteq dom(\sigma)$$

Set of symbolic states with behaviour

$$(\sigma \mid C)_{\beta} \in \Sigma$$

Function signature: Initial symbolic state

Val sym-interp $_N(\sigma \mid C)(i): \Sigma$ Finite loop limit $\in \mathbb{N}$

Symbolic execution of assignment – I

```
let rec sym-interp_N(\sigma \mid C)(i) = match i with ... | Assign x \in A try let Se = \sigma(e) in let Se = \sigma(e
```

Symbolic execution of assignment – II

```
let rec sym-interp<sub>N</sub>(\sigma \mid C)(i) =
  match i with ...
   | Assign x \ e \rightarrow
     try
        let se = \sigma(e) in
                                                                    Existential quantification of
         let v = fresh_var () in
                                                                    a shadowed variable
         let \sigma' = \sigma[x \leftarrow v] in
         let C' = match \sigma(x) with
            | None \rightarrow C \land v = se end in
            | Some v' \rightarrow \exists v'. C \land v = se in
         \{(\sigma' \mid C')_{Normal}\}
     with Unbound_var \rightarrow \{(\sigma \mid C)_{\text{UnboundVar}}\} end
```

Symbolic execution of assignment – III

```
val quantify-existentially (v) (C) : Constraint
                                                                          Existential quantification,
let rec sym-interp_N(\sigma \mid C)(i) =
                                                                          or quantifier elimination to
  match i with ...
                                                                          reduce constraint size
   | Assign x \ e \rightarrow
     trv
        let se = \sigma(e) in
        let v = fresh var () in
        let \sigma' = \sigma[x \leftarrow v] in
        let C' = match \sigma(x) with
            | None \rightarrow C \land v = se end in
            | Some v' 	o 	ext{quantify-existentially } v' \ (C \wedge v = se) in
        \{(\sigma' \mid C')_{Normal}\}
     with Unbound_var \rightarrow \{(\sigma \mid C)_{\text{InboundVar}}\} end
```

Symbolic execution of conditionals

```
\begin{array}{l} \textbf{let rec } \mathsf{sym\text{-}interp}_N(\sigma \mid C)(i) = \\ & \textbf{match } i \textbf{ with } \dots \\ & | \text{ If } e \ i_1 \ i_2 \rightarrow \\ & \textbf{try} \\ & \textbf{let } se = \sigma(e) \textbf{ in} \\ & \textbf{let } \Sigma = (* \text{ then-branch } *) \\ & \text{sym\text{-}interp}_N\left(\sigma \mid C \land se = 0\right)(i_1) \textbf{ in} \\ & \textbf{let } \Sigma' = (* \text{ else-branch } *) \\ & \text{sym\text{-}interp}_N\left(\sigma \mid C \land se \neq 0\right)(i_2) \textbf{ in} \\ & \Sigma \cup \Sigma' \\ & \textbf{with } \textbf{UnboundVar} \rightarrow \left\{ (\sigma \mid C)_{\textbf{UnboundVar}} \right\} \textbf{ end} \end{array}
```

State explosion!

- combinatoric explosion of result states

Symbolic execution of conditionals with state pruning

```
val maybe sat (C: Constraint) : \mathbb{B}
   ensures { result = False \rightarrow \nexists \rho. \rho \models C }
                                                                          Semi-decidable satisfiability
let rec sym-interp_N(\sigma \mid C)(i) =
                                                                          predicate for constraints
   match i with ...
   | If e i_1 i_2 \rightarrow
      try
         let se = \sigma(e) in
         let \Sigma = (* then-branch *)
            if maybe sat (C \land se = 0)
            then sym-interp<sub>N</sub> (\sigma \mid C \land se = 0) (i_1)
                                                                             Prune branches with
            else Ø in
                                                                             inconsistent constraints
         let \Sigma' = (* else-branch *)
            if maybe sat (C \land se \neq 0)
            then sym-interp<sub>N</sub> (\sigma \mid C \land se \neq 0) (i_2)
            else Ø in
         \Sigma \cup \Sigma'
      with UnboundVar \rightarrow \{(\sigma \mid C)_{\text{UnboundVar}}\} end
```

Symbolic execution properties: Over-approximation

Given a symbolic execution

$$\operatorname{sym-interp}_N(\sigma \mid C)(i) = \Sigma$$

Definition: Over-approximation – I "covers all concrete executions"

Symbolic execution over-approximates the concrete execution, if

"a concrete execution in a state that corresponds to the initial symbolic state results in a concrete state that corresponds to one of the result states."

Constraint interpretations

Interpretation

 $\rho: SVar \rightarrow \mathbb{Z}$

partial map from symbolic variables to values

Solution

 \triangleright interpretation ρ is a solution of C, $\rho \models C$, iff.

$$\operatorname{vars}(C) \subseteq \operatorname{dom}(\rho) \land \begin{cases} \top & \text{when } C = \top \\ \rho(se_1) = \rho(se_2) & \text{when } C = (se_1 = se_2) \\ \rho(se_1) \neq \rho(se_2) & \text{when } C = (se_1 \neq se_2) \\ \rho \models C_1 \land \rho \models C_2 & \text{when } C = C_1 \land C_2 \\ \exists \, n. \, \rho[v \leftarrow n] \models C_1 & \text{when } C = \exists \, v.C_1 \end{cases}$$

Concrete states and symbolic states

- ightharpoonup composition of an interpretation with a symbolic environment, $ho \circ \sigma$, is a concrete environment
- ▶ Γ is an instance $\Gamma \in Inst(\sigma \mid C)$, when there exists a solution $\rho \models C$ such that $\Gamma = \rho \circ \sigma$.

Symbolic execution properties: Over-approximation

Given a symbolic execution

$$\operatorname{sym-interp}_N(\sigma \mid C)(i) = \Sigma$$

Definition: Over-approximation - II

Symbolic execution over-approximates the concrete execution, if

for any

▶ instance of the initial symbolic state, and

 $\forall \ \Gamma \in \mathit{Inst}(\sigma \mid C)$

▷ corresponding concrete evaluation result

$$\forall \; \beta, \, \Gamma'. \; i/_{\Gamma} \Downarrow^N \beta/_{\Gamma'}$$

there exists

- ▶ a symbolic result state with the same behaviour
- $\exists \, (\sigma' \mid C')_{\beta} \in \Sigma$
- ightharpoonup that has the concrete evaluation result as instance. $\Gamma' \in \mathit{Inst}(\sigma' \mid C')$

Symbolic execution properties: Over-approximation

Given a symbolic execution

$$\operatorname{sym-interp}_N(\sigma \mid C)(i) = \Sigma$$

Definition: Over-approximation - III

Symbolic execution over-approximates the concrete execution, if

$$\forall \rho, \beta, \Gamma'. \rho \models C \rightarrow i/_{\rho \circ \sigma} \Downarrow^{N} \beta/_{\Gamma'} \rightarrow \exists \sigma', C', \rho'. (\sigma' \mid C')_{\beta} \in \Sigma \land \rho' \models C' \land \Gamma' = \rho' \circ \sigma'$$

Symbolic execution properties: Under-approximation

Given a symbolic execution

$$\operatorname{sym_interp_ins}_N(\sigma \mid C)(i) = \Sigma$$

Definition: Under-approximation - I

"no useless result states"

Symbolic execution under-approximates the concrete execution, if

"every concrete state corresponding to a result state is the result of the concrete execution in a concrete state corresponding to the initial state."

Symbolic execution properties: Under-approximation

Given a symbolic execution

$$sym_interp_ins_N(\sigma \mid C)(i) = \Sigma$$

Definition: Under-approximation - II

Symbolic execution under-approximates the concrete execution, if

for any

> symbolic result state with behaviour, and

 $(\sigma' \mid C')_{\beta} \in \Sigma$

instance of the result state

$$\Gamma' \in \mathit{Inst}(\sigma' \mid C')$$

there exists

an instance of the initial state, such that

$$\Gamma \in Inst(\sigma \mid C)$$

$$\triangleright i/_{\Gamma} \Downarrow^{N} \beta/_{\Gamma'}.$$

Symbolic execution properties: Under-approximation

Given a symbolic execution

$$\operatorname{sym_interp_ins}_N(\sigma \mid C)(i) = \Sigma$$

Definition: Under-approximation - III

Symbolic execution under-approximates the concrete execution, if

$$\forall \ \sigma', \ C', \ \beta, \ \rho'. \ (\sigma' \mid C')_{\beta} \in \Sigma \to \rho' \models C' \to \beta$$

$$\exists \ \rho. \ \rho \models C \land i/_{\rho \circ \sigma} \Downarrow^{N} \beta/_{\rho' \circ \sigma'}$$

Problem: existential quantification

- existential quantifications are hard for automatic (SMT) provers
- ▶ two (problematic) sources of existential quantifications
 - interpretations in conclusions
 - \triangleright witness for solution predicate, $\rho \models \exists v. C$

Ghost annotations in Why3

Before

```
let f(x) returns y ensures \{ \ \forall z. \, P(x,z) \rightarrow \exists \, t. \, Q(x,y,z,t) \ \}
```

After

```
let f(x, \text{ghost } z) returns (y, \text{ghost } t) requires { P(x,z) } ensures { Q(x,y,z,t) }
```

- ▶ use program code to construct ghost values required in the proof
- ghost code and ghost values cannot influence the program and are removed by the Why3 extraction

Ghost-extended symbolic states

Idea

- ightharpoonup make the interpretation ho a ghost field of the symbolic state
- use ghost code in symbolic interpreter to create witnesses for existential quantifications

Ghost-extended symbolic states

Idea

- \triangleright make the interpretation ρ a ghost field of the symbolic state
- use ghost code in symbolic interpreter to create witnesses for existential quantifications

New signature of symbolic interpreter:

Reformulated correctness properties of symbolic execution

Definition: Over-approximation - IV, final

Symbolic execution over-approximates the concrete execution:

$$\forall \beta, \Gamma'. \rho \models C \rightarrow i/_{\rho \circ \sigma} \Downarrow^{N} \beta/_{\Gamma'} \rightarrow \exists \sigma', C', \rho'. (\sigma' \mid C'; \rho')_{\beta} \in \Sigma \land \rho' \models C' \land \Gamma' = \rho' \circ \sigma'$$

Definition: Under-approximation - IV, final

Symbolic execution under-approximates the concrete execution, if

$$\forall \sigma', C', \rho', \beta. (\sigma' \mid C'; \rho')_{\beta} \in \Sigma \to \rho' \models C' \to \rho \models C \land i/_{\rho \circ \sigma} \Downarrow^{N} \beta/_{\rho' \circ \sigma'}$$

Symbolic interpreter in Why3

Signature with reformulated correctness properties as post-conditions

```
type sym_state = (\sigma \mid C; \text{ ghost } \rho)

let rec sym-interp_N(\sigma \mid C; \rho)(i)
ensures \{ (* \text{ Over-approximation } *)
\forall \beta, \Gamma'. \ \rho \models C \rightarrow i/_{\rho\circ\sigma} \Downarrow^N \beta/_{\Gamma'} \rightarrow
\exists \sigma', C', \rho'. \ (\sigma' \mid C'; \rho')_\beta \in \Sigma \land \rho' \models C' \land \Gamma' = \rho' \circ \sigma' \ \}
ensures \{ (* \text{ Under-approximation } *)
\forall \sigma', C', \rho', \beta. \ (\sigma' \mid C'; \rho')_\beta \in \Sigma \rightarrow \rho' \models C' \rightarrow
\rho \models C \land i/_{\rho\circ\sigma} \Downarrow^N \beta/_{\rho'\circ\sigma'} \ \}
= match i with ...
```

Symbolic interpreter in Why3

Symbolic execution of assignment – IV, final

```
let rec sym-interp<sub>N</sub>(\sigma \mid C; \rho)(i) =
   match i with ...
   | Assign x \ e \rightarrow
      try
         let se = \sigma(e) in
         let v = fresh_var () in
         let \sigma' = \sigma[x \leftarrow v] in
         let C' = match \sigma(x) with
            | None 
ightarrow C \wedge (v = se) end in
            | Some v' \rightarrow quantify-existentially v' \in C \land (v = se) in
         let ghost \rho' = \rho[v \leftarrow \rho(se)] in
         \{(\sigma' \mid C'; \rho')_{Normal}\}
                                                                        Update ghost interpretation to keep
      with Unbound_var \rightarrow \{(\sigma \mid C; \rho)_{\text{UnboundVar}}\}
                                                                         it a solution.
                                                                         Values become witnesses when vari-
   end
                                                                        ables are existentially quantified!
```

Solutions for existential constraints

 witnesses of existentials in interpretation allow for simplifying the solution predicate

Implication of (not) modelling existential constraints

Problem

Solution is not invariant to α -renaming!

Implication of (not) modelling existential constraints

Solution

```
1. All variables in the symbolic
type sym state = (\sigma \mid C; \rho)
                                                                                 state are in the domain of the
   invariant { codom(\sigma) \cup vars(C) \subseteq dom(\rho) }
                                                                                 interpretation
val fresh_var (\rho) : SVar
                                                                                 2. Fresh variables not in do-
   ensures { result \notin dom(\rho) }
                                                                                 main of the interpretation
val quantify-existentially v \in C: Constraint
                                                                                 3. Existential quantification
                                                                                 does not introduce new vari-
   ensures { vars(result) \subseteq vars(\exists v. C) }
                                                                                 ables
   ensures { \forall \rho. \rho \models \text{result} \leftrightarrow \rho \models \exists v. C }
                                                                                 4. Extension of an interpreta-
tion: all values are retained
predicate \rho \sqsubseteq \rho' =
   dom(\rho) \subseteq dom(\rho') \land \forall v \in dom(\rho). \rho(v) = \rho'(v)
                                                                                 5. All result interpretations
                                                                                 are extensions of the initial
let rec sym-interp<sub>N</sub> (\sigma \mid C; \rho)(i)
                                                                                 interpretation
   (* Result interpretations extend initial interpr
   ensures { \forall (\sigma' \mid C'; \rho')_{\beta} \in \text{result} \rightarrow \rho \sqsubseteq \rho' }
   ensures { (* Over-/underapproximation *) ... }
```

Proofs of the symbolic interpreter

- three main functions for symbolic execution: sym-interp, sym-interp-list, sym-interp-loop
- post-conditions covering over-approximation, under-approximation, extension of interpretations
- 31 verification goals, 86 lightweight interactive transformations, 186 leaf verification conditions

Prover	Verification conditions	Fastest	Slowest	Average
CVC4 1.6 Alt-Ergo 2.2.0	162 20	0.03	2.57 3.59	0.26 0.42
Eprover 2.2	4	0.03	0.31	0.42

Extraction to OCaml

- ▶ Why3 code is extracted to OCaml and can be executed
 - ▶ test unsatisfiability of constraints using Alt-Ergo library
 - symbolic variables substituted by abstract OCaml type that ensure post-condition of fresh_var

```
\begin{array}{l} \texttt{\$ symbolic-imp } p_0 \\ \texttt{Initial state: } (x \rightarrow v_1, y \rightarrow v_2 \mid \top) \\ \texttt{Normal states: } 2 \\ \texttt{state o:} \\ (x \rightarrow v_1, y \rightarrow v_3 \mid \exists \, v_4. \; \exists \, v_2. \, \top \wedge v_4 = v_1 - v_2 - 1 \wedge v_4 = 0 \wedge v_3 = v_1 - 3) \\ \texttt{state 1:} \\ (x \rightarrow v_5, y \rightarrow v_4 \mid \exists \, v_1. \; \exists \, v_2. \, \top \wedge v_4 = v_1 - v_2 - 1 \wedge v_4 \neq 0 \wedge v_5 = v_4 - 3) \\ \end{array}
```

CoLiS Workflow for script analysis

Identifying bugs in Debian maintainer scripts using symbolic execution

Example

```
$ colis --run-symbolic --add-symbolic-fs simple.fs \\
    sgml-base.preinst install
- id: error-11
 root: r3879
 clause: ∃ lib4, var5, sbin8, lib11, local12, lib14...
    r_1[bin]bin_{35} \wedge r_1[etc]etc_{3889} \wedge r_1[run]run_{21} \wedge ...
    r1[usr]usr17 \( \tau_1[var]var5 \( \tau_1[lib]lib_4 \\ \dots \)...
    etc3889[sgml]sgml3873 / file(sgml3873)...
    etc3889[sgml]sgml3873 / file(sgml)...
 stdout: |
    [UTL] test 'install' = 'install': strings equal
    [UTL] test 'install' = 'upgrade': strings not equal
    [UTL] test -d /var/lib/sgml-base: no resolve
    [UTL] mkdir /var/lib/sgml-base: create directory
    [UTL] test -d /etc/sgml: path resolves to file
    [UTL] mkdir /etc/sgml: target already exists
 ... 20 normal states and 74 other error states
```

▶ CoLiS interpreters available at https://github.com/colis-anr/colis-language

Identifying bugs in Debian maintainer scripts using symbolic execution

Example

```
$ colis --run-symbolic --add-symbolic-fs simple.fs \\
    sgml-base.preinst install
- id: error-11
 root: r3879
 clause: ∃ lib4, var5, sbin8, lib11, local12, lib14...
    r1[bin]bin35 \(\lambda\) r1[etc]etc3889 \(\lambda\) r1[run]run21 \(\lambda\)...
    r1[usr]usr17 \( \tau_1[var]var5 \( \tau_1[lib]lib_4 \\ \dots \)...
    etc3889[sgml]sgml3873 / file(sgml3873)...
    etc3889[sgml]sgml3873 / file(sgml)...
 stdout: |
    [UTL] test 'install' = 'install': strings equal
    [UTL] test 'install' = 'upgrade': strings not equal
    [UTL] test -d /var/lib/sgml-base: no resolve
    [UTL] mkdir /var/lib/sgml-base: create directory
    [UTL] test -d /etc/sgml: path resolves to file
    [UTL] mkdir /etc/sgml: target already exists
 ... 20 normal states and 74 other error states
```

Concrete test

```
$ touch /etc/sgml
$ apt install sgml-base
dpkg: error processing archive /var/cache/apt/
archives/sgml-base_1.29_all.deb (--unpack):
new sgml-base package pre-installation script subprocess
returned error exit status 1
Errors were encountered while processing:
/var/cache/apt/archives/sgml-base_1.29_all.deb
E: Sub-process /usr/bin/dpkg returned an error code (1)
```

sgml-base.preinst

```
if [ ! -d /var/lib/sgml ]; then
  mkdir /var/lib/sgml 2>/dev/null
fi
...
```

- ▶ CoLiS interpreters available at https://github.com/colis-anr/colis-language
- Statistics for Debian maintainer scripts at http://ginette.informatique.
 univ-paris-diderot.fr/~niols/colis-covering-report/

What to verify on an installation script?

- no runtime error (i.e. return code of script should be o)
- composition properties
 - ▶ install ; purge = identity
 - ▶ failed install; successful install = successful install
 - proper combinations of preinst/postinst/prerm/postrm with respect to the Debian Policy

Installation of foo (Not Installed)

https://www.debian.org/doc/debian-policy/ap-flowcharts.html

Conclusions

- formalisation of correctness properties of a symbolic interpreter
- formalised and verified symbolic interpreter for IMP
- ghost annotations useful to reformulate correctness properties
- transfer of correctness properties to the symbolic interpreter for CoLiS language

Thanks for your attention! Questions?