

1

0

1

- 1. As the constraint-1 is of type '  $\leq$  ' we should add slack variable  $S_1$
- 2. As the constraint-2 is of type '  $\leq$  ' we should add slack variable  $S_2$
- 3. As the constraint-3 is of type '  $\leq$  ' we should add slack variable  $S_3$

## After introducing slack variables

 $\operatorname{Max} Z = -15 x_1 - 10 x_2 - 15 x_3 + 0 S_1 + 0 S_2 + 0 S_3$ 

subject to

$$3x_1 + 5x_2 + 2x_3 + S_1 = 15$$

$$2x_1 + x_2 + 3x_3 + S_2 = 12$$

$$-2x_1 - 3x_2 - 4x_3 + S_3 = -10$$

and  $x_1, x_2, x_3, S_1, S_2, S_3 \ge 0$ 

| Iteration-1 |       | $C_{j}$                                             | -15                   | -10                   | -15                   | 0              | 0     | 0     |
|-------------|-------|-----------------------------------------------------|-----------------------|-----------------------|-----------------------|----------------|-------|-------|
| В           | $C_B$ | $X_B$                                               | <i>x</i> <sub>1</sub> | <i>x</i> <sub>2</sub> | <i>x</i> <sub>3</sub> | S <sub>1</sub> | $S_2$ | $s_3$ |
| $S_1$       | 0     | 15                                                  | 3                     | 5                     | 2                     | 1              | 0     | 0     |
| $S_2$       | 0     | 12                                                  | 2                     | 1                     | 3                     | 0              | 1     | 0     |
| $S_3$       | 0     | -10                                                 | -2                    | ( - 3)                | -4                    | 0              | 0     | 1     |
| Z = 0       |       | $\mathbf{z}_{j}$                                    | 0                     | 0                     | 0                     | 0              | 0     | 0     |
|             |       | $Z_j$ - $C_j$                                       | 15                    | 10                    | 15                    | 0              | 0     | 0     |
|             |       | Ratio = $\frac{Z_j - C_j}{S_3, j}$ and $S_3, j < 0$ | -7.5                  | -3.3333 ↑             | -3.75                 |                |       |       |

Minimum negative  $X_B$  is -10 and its row index is 3. So, the leaving basis variable is  $S_3$ .

Maximum negative ratio is -3.3333 and its column index is 2. So, the entering variable is  $x_2$ .

.. The pivot element is -3.

Entering =  $x_2$ , Departing =  $S_3$ , Key Element = -3

 $+ R_3(\text{new}) = R_3(\text{old}) \div (-3)$ 

 $+ R_1(\text{new}) = R_1(\text{old}) - 5R_3(\text{new})$ 

 $+ R_2(\text{new}) = R_2(\text{old}) - R_3(\text{new})$ 

| Iteration-2           |       | $C_{j}$                                             | -15                   | - 10                  | -15                   | 0     | 0     | 0       |
|-----------------------|-------|-----------------------------------------------------|-----------------------|-----------------------|-----------------------|-------|-------|---------|
| В                     | $C_B$ | $X_B$                                               | <i>x</i> <sub>1</sub> | <i>x</i> <sub>2</sub> | <i>x</i> <sub>3</sub> | $S_1$ | $S_2$ | $S_3$   |
| $S_1$                 | 0     | -1.6667                                             | -0.3333               | 0                     | ( - 4.6667)           | 1     | 0     | 1.6667  |
| $S_2$                 | 0     | 8.6667                                              | 1.3333                | 0                     | 1.6667                | 0     | 1     | 0.3333  |
| <i>x</i> <sub>2</sub> | -10   | 3.3333                                              | 0.6667                | 1                     | 1.3333                | 0     | 0     | -0.3333 |
| Z = -33.3333          |       | $Z_j$                                               | - 6.6667              | -10                   | -13.3333              | 0     | 0     | 3.3333  |
|                       |       | $Z_j$ - $C_j$                                       | 8.3333                | 0                     | 1.6667                | 0     | 0     | 3.3333  |
|                       |       | Ratio = $\frac{Z_j - C_j}{S_1, j}$ and $S_1, j < 0$ | -25                   |                       | -0.3571 ↑             |       |       |         |

Minimum negative  $X_B$  is -1.6667 and its row index is 1. So, the leaving basis variable is  $S_1$ .

Maximum negative ratio is -0.3571 and its column index is 3. So, the entering variable is  $x_3$ .

: The pivot element is -4.6667.

Entering =  $x_3$ , Departing =  $S_1$ , Key Element = -4.6667

 $+ R_1(\text{new}) = R_1(\text{old}) \div (-4.6667)$ 



21/11/20, 10:41 am

1

1

1

- $+ R_2(\text{new}) = R_2(\text{old}) 1.6667R_1(\text{new})$
- $+ R_3$ (new) =  $R_3$ (old) 1.3333 $R_1$ (new)

| Iteration-3           |       | $C_{j}$       | -15                   | -10                   | -15                   | 0              | 0     | 0       |
|-----------------------|-------|---------------|-----------------------|-----------------------|-----------------------|----------------|-------|---------|
| В                     | $C_B$ | $X_B$         | <i>x</i> <sub>1</sub> | <i>x</i> <sub>2</sub> | <i>x</i> <sub>3</sub> | S <sub>1</sub> | $S_2$ | $s_3$   |
| <i>x</i> <sub>3</sub> | -15   | 0.3571        | 0.0714                | 0                     | 1                     | -0.2143        | 0     | -0.3571 |
| $S_2$                 | 0     | 8.0714        | 1.2143                | 0                     | 0                     | 0.3571         | 1     | 0.9286  |
| $x_2$                 | -10   | 2.8571        | 0.5714                | 1                     | 0                     | 0.2857         | 0     | 0.1429  |
| Z = -33.9286          |       | $Z_j$         | -6.7857               | -10                   | -15                   | 0.3571         | 0     | 3.9286  |
|                       |       | $Z_j$ - $C_j$ | 8.2143                | 0                     | 0                     | 0.3571         | 0     | 3.9286  |
|                       |       | Ratio         |                       |                       |                       |                |       |         |

Since all  $Z_j$  -  $C_j \ge 0$  and all  $X_{Bi} \ge 0$  thus the current solution is the optimal solution.

Hence, optimal solution is arrived with value of variables as :  $x_1$  = 0,  $x_2$  = 2.8571,  $x_3$  = 0.3571

Max Z = -33.9286

 $\therefore$  Min Z = 33.9286

NEVERNOTON.

occ

Solution provided by AtoZmath.com

Any wrong solution, solution improvement, feedback then Submit Here

Want to know about AtoZmath.com and me



Home

What's new

College Algebra

Games

Feedback

About us

Copyright © 2020. All rights reserved. Terms, Privacy

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

21/11/20, 10:41 am