MESTRADOS INTEGRADOS EM ENGª MECÂNICA E EM ENGª INDUSTRIAL E GESTÃO | 2015-16

EM0005/EIG0048 | ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA | 1º ANO - 1º SEMESTRE

Prova sem consulta. Duração: 2h (20m de tolerância).

2ª Prova de Reavaliação

- * Todas as folhas devem ser identificadas com o <u>nome completo</u>. Justifique adequadamente todos os cálculos que efetuar;
- * A entrega da prova e a desistência só serão possíveis após 1 hora do início da prova;
- * Não se pode utilizar telemóveis, máquinas de calcular gráficas e microcomputadores;
- * Resolva cada um dos quatro grupos utilizando folhas de capa distintas.

GRUPO I

1) [4,7] Sejam as transformações lineares $S, T \in L(\mathbb{R}^3, \mathbb{R}^3)$ dadas por

$$S(x, y, z) = (x + z, x + 2y + 3z, y + 2z)$$
 e $T(x, y, z) = (x + z, x - y, x + y + 2z)$

em relação à base canónica, E, para o espaço \mathbb{R}^3 .

- **a)** Obtenha o núcleo e o contradomínio de *T*. Para cada um destes subespaços, indique uma base e conclua em relação à sua dimensão.
- **b)** Mostre que apenas a função *S* é injetiva e determine a sua transformação inversa. Classifique as funções dadas quanto à sua sobrejetividade. Justifique.
- 2) [2,0] Seja a transformação linear $R: V \to W$. Mostre que se R é injetiva, então R é invertível e a sua função inversa $R^{-1}: R(V) \to V$ é linear.

GRUPO II

- 3) [4,7] Considere as transformações lineares $S,T \in L(\mathbb{R}^3,\mathbb{R}^3)$ da pergunta 1) e a base $U = \{(1,0,2),(-1,-1,0),(1,0,1)\} \subset \mathbb{R}^3$.
 - a) Usando o cálculo matricial, calcule as matrizes $S_{E,U} = m(S)_{E,U}$, representação matricial de S em relação às bases E e U, e $T_{U,E} = m(T)_{U,E}$, representação matricial de T em relação às bases U e E.
 - **b**) Recorrendo às matrizes obtidas na alínea anterior, calcule a matriz que representa a função ST^2 em relação à base U.

.....(continua no verso)

EM0005/EIG0048 | ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA | 1º ANO - 1º SEMESTRE

Prova sem consulta. Duração: 2h (20m de tolerância).

2ª Prova de Reavaliação

GRUPO III

4) [2,8] Calcule, indicando todas as operações efetuadas, o determinante e a característica da matriz real

$$\mathbf{A} = \begin{bmatrix} 2 & 1 & 0 & -1 \\ 3 & k & 1 & -1 \\ 2 & 1 & -2 & 1 \\ 2 & h & -3 & 3 \end{bmatrix}$$

GRUPO IV

5) [5,8] Considere a transformação linear $H: \mathbb{R}^3 \to \mathbb{R}^3$ representada pela matriz

$$\mathbf{H} = m(H) = \begin{bmatrix} 3 & -2 & 4 \\ -2 & 6 & 2 \\ 4 & 2 & 3 \end{bmatrix}$$

em relação à base canónica, E, para o espaço \mathbb{R}^3 . Seja o espaço próprio associado a um dos seus valores próprios: $W = \left\{ (x,y,z) \in \mathbb{R}^3 : x-2y=0 \land z+2y=0 \right\}$.

- a) Calcule os valores próprios da matriz H.
- **b**) Determine os espaços próprios e indique, para cada um desses subespaços, uma base e a dimensão.
- c) Verifique, justificando devidamente, se a função H admite uma base, U, de vetores próprios para o espaço \mathbb{R}^3 . Em caso afirmativo, obtenha as matrizes $H_{U,U}$ e $H_{U,E}$, e diga se alguma destas matrizes é semelhante à matriz H, apresentando as expressões matriciais que as relacionam.