Universidad Nacional de Río Negro - Profesorados de Física

Física II B 2015 Sonido

Asorey-Cutsaimanis

Práctica individual Entrega Jueves 26 de Noviembre

1. Didáctica (actividad grupal, un grupo, Martes 24 de Noviembre)

Discuta posibles experimentos que podría introducir en el aula en función de las experiencias y aprendizajes desarrollados a lo largo de este curso.

2. Para pensar (entregar todas)

- 1. En el libro "El Retorno del Rey", de J. R. R. Tolkien, Aragorn sabe del acercamiento de un ejercito con mucha anticipación al acostarse en el piso y acercar su oído al suelo. Explique como esto sucede y justifique sus apreciaciones.
- 2. Imagine un sistema compuesto por dos gases idénticos a muy distinta temperatura. Una onda se propaga por el primer medio (más frío) y es transmitida hacia el medio más caliente. ¿Cambia la longitud de onda? ¿y la frecuencia? ¿y la velocidad de propagación?
- 3. Explique la causa por la cuál la voz de una persona que inhaló helio se torna más aguda.
- 4. ¿Qué tiene una influencia más directa sobre el volúmen de una onda sonora: la amplitud del desplazamiento o de los cambios de presión?
- 5. El timbre de una cuerda de guitarra es diferente si la cuerda es punteada en el centro de la cuerda respecto a si es punteada cerca de la boca (el agujero que está en la caja). ¿Por qué?
- 6. Si se reduce a la mitad la amplitud de presión de una onda sonora ¿en qué factor disminuye su intensidad? ¿Cuántos decibeles menos tiene respecto a la condición inicial? ¿cuánto debe aumentar la amplitud de presión para que la intensidad aumente un factor de 30 dB?
- 7. Un alambre tensiondo vibra en su segundo sobretono produciendo un sonido con longitud de onda λ . ¿Cuál será la nueva longitud de onda del sonido (en términos de λ) si se duplica la tensión?

- 8. Cuál debe ser la relación en la longitud de dos tubos de organo de iglesia para que produzcan sonidos con la misma frecuencia fundamental, si uno de ellos es abierto-abierto y el otro es abierto-cerrado. En ese caso, ¿habrá alguna diferencia entre los sonidos escuchados?
- 9. En los instrumentos de viento, ¿cuál es la función de las llaves o pistones? ¿de qué forma estos cambian la frecuencia del sónido producido?
- 10. Se tiene dos tubos de igual longitud pero uno de ellos es abierto-abierto y el otro es abierto-cerrado. ¿Qué sobretono debe sonar en el tubo abierto-abierto para que resuene el tubo abierto-cerrado? ¿Y si el que suena es el abierto-cerrado, es posible que resuene el abierto-abierto? En caso afirmativo diga en que sobretono.
- 11. Haga un diagrama que explique como calcularía la velocidad de un avión supersónico utilizando la forma del frente de choque que este produce.

3. Problemas

Para hacer los gráficos puede usar excel, gnuplot o el sistema que le resulte más conveniente. Deberán entregar los ejercicios marcados con (*). Salvo indicación contraria, la velocidad del sonido en aire es $v=344~{\rm m~s^{-1}}$.

- 1. (*) Imagine que una onda de frecuencia $f=1000\,\mathrm{Hz}$ tiene una amplitud de desplazamiento de $10^{-8}\,\mathrm{m}$. Calcule:
 - *a*) la amplitud de presión correspondiente;
 - b) la longitud de onda de esas ondas;
 - c) la amplitud de desplazamiento tal que la variación de presión esté en el umbral de dolor;
 - d) la frecuencia y la longitud de onda que debería tener esta onda para que, con el mismo desplazamiento de 10⁻⁸ m, la amplitud de presión sea equivalente al umbral de dolor (30 Pa);
 - e) imagine que en vez de aire, la onda original se propaga en agua ($\eta_{T=293~K}=4,55\times 10^{-10}~Pa^{-1}$). En estas condiciones calcule:
 - 1) la velocidad del sonido en agua;
 - 2) la longitud de onda;
 - 3) la amplitud de la onda de presión;
 - 4) al amplitud del desplazamiento para que la amplitud de presión alcance el umbral de dolor;
 - 5) compare los valores obtenidos con los anteriores para el aire. Explique las diferencias observadas.
- 2. Dos altavoces, 1 y 2, se sitúan a 5 m de distancia entre si, y emiten sonido de manera uniforme y omnidireccional. La salida de potencia acústica de cada parlante es: $P_1 = 2 \times 10^{-3}$ W, $P_2 = 7 \times 10^{-4}$ W. Ambos vibran en fase con una frecuencia de 344 Hz.

a) Calcule la intensidad sonora que genera cada parlante en un punto *X* situado a 3 m del parlante 1 y 2 m del parlante 2, medidos sobre la línea que une a ambos parlantes. Calcule la intensidad sonora a Determine la diferencia de fase de las dos señales en un punto C sobre la línea que une A a B, a 3.00 m de B y 4.00 m de A (figura 16.46). b) Determine la intensidad y el nivel de intensidad de sonido en C debidos al altavoz .A si B se apaga, y haga lo mismo para el altavoz B si A se apaga. c) Con ambos alta-voces encendidos, determine la intensidad y el nivel de intensidad de sonido en C.