

1024K X 16 BIT LOW POWER CMOS SRAM Rev. 0.1

REVISION HISTORY

Revision **Description Issue Date** Rev. 0.1 Initial Issue Jul.13.2011

1024K X 16 BIT LOW POWER CMOS SRAM

Rev. 0.1

FEATURES

Fast access time: 55/70nsLow power consumption:

Operating current : 45/30mA (TYP.) Standby current : 10μA (TYP.) LL-version

■ Single 2.7V ~ 5.5V power supply

■ All inputs and outputs TTL compatible

■ Fully static operation

Tri-state output

■ Data byte control : LB# (DQ0 ~ DQ7)

UB# (DQ8 ~ DQ15)

Data retention voltage : 1.5V (MIN.)Green package available

■ Package: 48-pin 12mm x 20mm TSOP-I

GENERAL DESCRIPTION

The LY62W102516 is a 16,777,216-bit low power CMOS static random access memory organized as 1,048,576 words by 16 bits. It is fabricated using very high performance, high reliability CMOS technology. Its standby current is stable within the range of operating temperature.

The LY62W102516 is well designed for low power application, and particularly well suited for battery back-up nonvolatile memory application.

The LY62W102516 operates from a single power supply of $2.7V \sim 5.5V$ and all inputs and outputs are fully TTL compatible

PRODUCT FAMILY

Product	Operating	Vcc Range Speed -		Power Dissipation			
Family	Temperature	vcc Kange	Speed	Standby(IsB1,TYP.)	Operating(Icc,TYP.)		
LY62W102516	0 ~ 70℃	2.7 ~ 5.5V	55/70ns	10μA(LL)	45/30mA		
LY62W102516(I)	-40 ~ 85°C	2.7 ~ 5.5V	55/70ns	10μA(LL)	45/30mA		

FUNCTIONAL BLOCK DIAGRAM

PIN DESCRIPTION

SYMBOL	DESCRIPTION
A0 - A19	Address Inputs
DQ0 – DQ15	Data Inputs/Outputs
CE#, CE2	Chip Enable Input
WE#	Write Enable Input
OE#	Output Enable Input
LB#	Lower Byte Control
UB#	Upper Byte Control
Vcc	Power Supply
Vss	Ground

Lyontek Inc. reserves the rights to change the specifications and products without notice.

5F, No. 2, Industry E. Rd. IX, Science-Based Industrial Park, Hsinchu 300, Taiwan.

Rev. 0.1 1024K X 16 BIT LOW POWER CMOS SRAM

PIN CONFIGURATION

TSOP-I

ABSOLUTE MAXIMUN RATINGS*

PARAMETER	SYMBOL	RATING	UNIT
Voltage on Vcc relative to Vss	V _{T1}	-0.5 to 6.5	V
Voltage on any other pin relative to Vss	VT2	-0.5 to Vcc+0.5	V
Operating Temperature	т.	0 to 70(C grade)	$^{\circ}$
Operating Temperature	TA	-40 to 85(I grade)	C
Storage Temperature	Tstg	-65 to 150	$^{\circ}$
Power Dissipation	Po	1	W
DC Output Current	Іоит	50	mA

^{*}Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to the absolute maximum rating conditions for extended period may affect device reliability.

Rev. 0.1

1024K X 16 BIT LOW POWER CMOS SRAM

TRUTH TABLE

MODE	CE#	CE2	OE#	WE#	# LB# UB# I/O OPERATION		I/O OPERATION		SUPPLY CURRENT
WIODL	CL#	CLZ	OL#	VV L#	LD#	05#	DQ0-DQ7 DQ8-DQ		SOFFEI CORRENT
	Н	Х	Х	Х	Χ	Х	High – Z	High – Z	
Standby	Х	L	Х	Х	Χ	Х	High – Z	High – Z	I _{SB} ,I _{SB1}
	Х	Х	Х	Х	Н	Н	High – Z	High – Z	
Output Disable	L	Н	Н	Н	L	Х	High – Z	High – Z	Icc,Icc1
Output Disable	L	Н	Н	Н	Χ	L	High – Z	High – Z	100,1001
	L	Н	L	Н	L	Н	D _{OUT}	High – Z	
Read	L	Н	L	Н	Н	L	High – Z	D _{OUT}	Icc,Icc1
	L	Н	L	Н	L	L	D_OUT	D _{OUT}	
	L	Н	Х	L	L	Н	D_IN	High – Z	
Write	L	Н	Х	L	Н	L	High – Z	D_IN	Icc,Icc1
	L	Н	Х	L	L	L	D_IN	D _{IN}	

Note: $H = V_{IH}$, $L = V_{IL}$, X = Don't care.

DC ELECTRICAL CHARACTERISTICS

PARAMETER	SYMBOL	TEST CONDITION		MIN.	TYP. *4	MAX.	UNIT
Supply Voltage	Vcc			2.7	3.0	5.5	V
Input High Voltage	V _{IH} *1	Vcc = 4.5~5.5V	<u>-</u>	2.4	-	Vcc+0.3	V
Input High Voltage		Vcc = 2.7~4.5V		2.2	-	Vcc+0.3	V
Input Low Voltage	VIL ^{*2}			- 0.2	-	0.6	V
Input Leakage Current	ILI	$Vcc \ge Vin \ge Vss$		- 1	-	1	μΑ
Output Leakage Current	ILO	Vcc ≧ Vouт ≧ Vss Output Disabled		- 1	-	1	μA
Output High Voltage	Vон	Iон = -1mA, Vcc = 4.5~5.5V	loн = -1mA, Vcc = 4.5~5.5V		-	-	V
Output High Voltage	VOH	Іон = -1mA, Vcc = 2.7~4.5V		2.2	-	-	V
Output Low Voltage	Vol	IoL = 2mA		-	-	0.4	V
	lcc	Cycle time = Min. CE# = V _{IL} and CE2 = V _{IH}	- 55	-	45	60	mA
Average Operating		I⊮o = 0mA Other pins at V _{IL} or V _{IH}	- 70	-	30	45	mA
Power supply Current	Icc1	Cycle time = 1μ s CE# \leq 0.2V and CE2 \leq Vcc-0.2V I _{VO} = 0mA Other pins at 0.2V or Vcc-0.2V		-	8	16	mA
Ctandby Dayyar	I _{SB}	CE# = V _{IH} or CE2 = V _{IL} Other pins at V _{IL} or V _{IH}		-	0.3	2	mA
Standby Power Supply Current		CE# ≧Vcc-0.2V	-LL	-	10	60	μA
oupply ourrent	I _{SB1}	or CE2≦0.2V Other pins at 0.2V or Vcc-0.2V	-LLI	-	10	100	μΑ

- 1. $V_{IH}(max) = V_{CC} + 3.0V$ for pulse width less than 10ns.
- 2. VIL(min) = Vss 3.0V for pulse width less than 10ns.
- 3. Over/Undershoot specifications are characterized, not 100% tested.

^{4.} Typical values are included for reference only and are not guaranteed or tested.

Typical values are measured at Vcc = Vcc(TYP.) and TA = 25°C

Rev. 0.1

1024K X 16 BIT LOW POWER CMOS SRAM

CAPACITANCE (TA = 25° , f = 1.0MHz)

PARAMETER	SYMBOL	MIN.	MAX	UNIT
Input Capacitance	Cin	-	6	pF
Input/Output Capacitance	C _{I/O}	-	8	pF

Note: These parameters are guaranteed by device characterization, but not production tested.

AC TEST CONDITIONS

Input Pulse Levels	0.2V to V _{CC} - 0.2V
Input Rise and Fall Times	3ns
Input and Output Timing Reference Levels	1.5V
Output Load	$C_L = 30pF + 1TTL$, $I_{OH}/I_{OL} = -1mA/2mA$

AC ELECTRICAL CHARACTERISTICS

(1) READ CYCLE

PARAMETER	SYM.	LY62W102516-55		LY62W10	UNIT	
		MIN.	MAX.	MIN.	MAX.	
Read Cycle Time	trc	55	-	70	-	ns
Address Access Time	taa	-	55	-	70	ns
Chip Enable Access Time	tACE	-	55	-	70	ns
Output Enable Access Time	toe	-	30	-	35	ns
Chip Enable to Output in Low-Z	tcLz*	10	-	10	-	ns
Output Enable to Output in Low-Z	tolz*	5	-	5	-	ns
Chip Disable to Output in High-Z	tcHz*	-	20	-	25	ns
Output Disable to Output in High-Z	tonz*	-	20	-	25	ns
Output Hold from Address Change	tон	10	-	10	-	ns
LB#, UB# Access Time	t _{BA}	-	55	-	70	ns
LB#, UB# to High-Z Output	t _{BHZ} *	-	25	-	30	ns
LB#, UB# to Low-Z Output	t _{BLZ} *	10	-	10	-	ns

(2) WRITE CYCLE

PARAMETER	SYM.	LY62W102516-55		LY62W1	UNIT	
		MIN.	MAX.	MIN.	MAX.	
Write Cycle Time	twc	55	-	70	-	ns
Address Valid to End of Write	taw	50	-	60	-	ns
Chip Enable to End of Write	tcw	50	-	60	-	ns
Address Set-up Time	tas	0	-	0	-	ns
Write Pulse Width	twp	45	-	55	-	ns
Write Recovery Time	twr	0	-	0	-	ns
Data to Write Time Overlap	tow	25	-	30	-	ns
Data Hold from End of Write Time	tон	0	-	0	-	ns
Output Active from End of Write	tow*	5	-	5	-	ns
Write to Output in High-Z	twHz*	1	20	-	25	ns
LB#, UB# Valid to End of Write	t _{BW}	45	-	60	-	ns

^{*}These parameters are guaranteed by device characterization, but not production tested.

Rev. 0.1

1024K X 16 BIT LOW POWER CMOS SRAM

TIMING WAVEFORMS

READ CYCLE 1 (Address Controlled) (1,2)

READ CYCLE 2 (CE# and CE2 and OE# Controlled) (1,3,4,5)

Notes:

- 1.WE#is high for read cycle.
- 2. Device is continuously selected OE# = low, CE# = low, CE2 = high, LB# or UB# = low.
- 3.Address must be valid prior to or coincident with CE# = low, CE2 = high, LB# or UB# = low transition; otherwise tAA is the limiting parameter.
- . 4.tclz, tblz, tolz, tchz, tbhz and tohz are specified with CL = 5pF. Transition is measured $\pm 500 \text{mV}$ from steady state.
- 5.At any given temperature and voltage condition, t_{CHZ} is less than t_{CLZ} , t_{BHZ} is less than t_{BLZ} , t_{OHZ} is less than t_{OLZ} .

5F, No. 2, Industry E. Rd. IX, Science-Based Industrial Park, Hsinchu 300, Taiwan.

Rev. 0.1

1024K X 16 BIT LOW POWER CMOS SRAM

WRITE CYCLE 1 (WE# Controlled) (1,2,3,5,6)

WRITE CYCLE 2 (CE# and CE2 Controlled) (1,2,5,6)

Lyontek Inc. reserves the rights to change the specifications and products without notice. 5F, No. 2, Industry E. Rd. IX, Science-Based Industrial Park, Hsinchu 300, Taiwan. TEL: 886-3-6668838

Rev. 0.1

1024K X 16 BIT LOW POWER CMOS SRAM

WRITE CYCLE 3 (LB#,UB# Controlled) (1,2,5,6)

Notes

- 1.WE#,CE#, LB#, UB# must be high or CE2 must be low during all address transitions.
- 2.A write occurs during the overlap of a low CE#, high CE2, low WE#, LB# or UB# = low.
- 3.During a WE# controlled write cycle with OE# low, twp must be greater than twHz + tpw to allow the drivers to turn off and data to be placed on the bus.
- 4. During this period, I/O pins are in the output state, and input signals must not be applied.
- 5.If the CE#, LB#, UB# low transition and CE2 high transition occurs simultaneously with or after WE# low transition, the outputs remain in a high impedance state.
- 6.tow and twHz are specified with $C_L = 5pF$. Transition is measured $\pm 500mV$ from steady state.

5F, No. 2, Industry E. Rd. IX, Science-Based Industrial Park, Hsinchu 300, Taiwan.

Rev. 0.1

1024K X 16 BIT LOW POWER CMOS SRAM

DATA RETENTION CHARACTERISTICS

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT	
Vcc for Data Retention	Vdr	CE# \geq V _{CC} - 0.2V or CE2 \leq 0.2V		1.5	-	5.5	V
Data Retention Current	I _{DR}	$V_{CC} = 1.5V$ CE# $\geq V_{CC}$ -0.2V or CE2 \leq 0.2V	-LL	-	8	50	μΑ
Data Retention Current			-LLI	-	8	80	μΑ
Chip Disable to Data Retention Time	tcdr	See Data Retention Waveforms (below)		0	-	-	ns
Recovery Time	t _R			t _{RC∗}	-	-	ns

tRC* = Read Cycle Time

DATA RETENTION WAVEFORM

Low Vcc Data Retention Waveform (1) (CE# controlled)

Low Vcc Data Retention Waveform (2) (CE2 controlled)

Low Vcc Data Retention Waveform (3) (LB#, UB# controlled)

Rev. 0.1

1024K X 16 BIT LOW POWER CMOS SRAM

PACKAGE OUTLINE DIMENSION

48-pin 12mm x 20mm TSOP-I Package Outline Dimension

VARIATIONS (ALL DIMENSIONS SHOWN IN MM)

	•			
	SYMBOLS	MIN.	NOM.	MAX
	A	ı	_	1.20
	A1	0.05	_	0.15
	A2	0.95	1.00	1.05
	ь	0.17	0.22	0.27
	c	0.10	_	0.21
Λ		19.80	20.00	20.20
Λ	□1	18.30	18.40	18.50
Δ	E	11.90	12.00	12.10
	₽	0	0.50 BASI	С
	L	0.50	0.60	0.70
Δ	L1	1	0.80	-
Δ	Υ	_	_	0.10
Δ	Ð	Ģ	_	5*

NOTES:

- 1 JEDEC OUTLINE : MO-142 DO
- 2.PROFILE TOLERANCE ZONES FOR 01 AND E DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE MOLD PROTRUSION ON E IS 0.15 mm PER SIDE AND ON 01 IS 0.25 mm PER SIDE.
- 3.DIMENSION IS DOES NOT INCLUDE DAMBAR PROTRUSION ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08mm TOTAL IN EXCESS OF THE IS DIMENSION AT NAXIMUN MATERIAL CONDITION DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT.

Lyontek Inc. reserves the rights to change the specifications and products without notice.

5F, No. 2, Industry E. Rd. IX, Science-Based Industrial Park, Hsinchu 300, Taiwan. TEL: 886-3-6668838

Rev. 0.1

1024K X 16 BIT LOW POWER CMOS SRAM

ORDERING INFORMATION

1024K X 16 BIT LOW POWER CMOS SRAM Rev. 0.1

THIS PAGE IS LEFT BLANK INTENTIONALLY.