Groups:

Group 1:

Amelia Camino

Jake Magee

Amanda Muratore

Julissa Sarmiento

Group 2:

Finian Ashmead

Francis Burk

Mykola Chernyashevskyy

Mohamed Ismail

Ehteshamul Karim

Group 3:

Cullen Abelson

Alia Dawood

Mira Salman

Yunchong Zhang

Group 4:

Nathalie Chicoine

Lauren Elicker

Yoki Salcedo

Marcos Tamargo-Arizmendi

Probability Distributions

Statistics and Data Science Spring 2025

http://xkcd.com/1236/

STATISTICALLY SPEAKING, IF YOU PICK UP A SEASHELL AND DON'T HOLD IT TO YOUR EAR, YOU CAN PROBABLY HEAR THE OCEAN.

Goals for today: you should be able to...

- Explain the Bayesian definition of probability
- Apply Bayes' theorem
- * Lecture 5 notebook: Explain what the binomial distribution is and apply it
- Reminder: Homework due Friday!

Review: the Frequentist definition of "probability"

* In a well-controlled situation, we can define the *probability* of an event as the fraction of times it will occur if we infinitely repeat an experiment - i.e., its *frequency*.

$$P(x) = \lim_{n \to \infty} \frac{n_x}{n_t}$$

Another view of probability

- We've seen that in the frequentist view, probability is just the fraction of times an event happens out of an infinite number of trials.
- We can get very similar results with a very different definition: if we take probability to represent our state of knowledge that something will occur or that something is true; sometimes called its 'plausibility'
 - * It is possible to define logic so that not just 0=false and 1=true, but values between 0 and 1 work too.
 - Alternatively, in some formulations, probability is taken to indicate our degree of belief.
- These ideas were formalized in the ~1950's, but are related to methods developed by Rev. Thomas Bayes in the 1700's; as a result, this is referred to as the *Bayesian* definition of probability.

Applying this concept

- Consider flipping a coin again.
- If we know it is fair, then we would expect that one-half of the time we will get heads, and one-half of the time we will get tails.
- So we would assign the same probability to the two events: 1/2 and so would, presumably, any other person.

Odds

- * Another way of expressing probability is as the *odds* on an event: the probability it occurs, divided by the probability it does not occur (i.e., $\frac{p}{1-p}$)
- * So the odds of getting heads is 1 to 1 (or 1.0).
- * The odds of rolling a die and getting 2 would be 1 to 5 (or 0.2): it is 5 times more likely we roll something besides 2 than 2.
- * This is the inverse of typical gambling odds; e.g. something that happens one-fourth of the time would "pay 3 to 1".

What role does belief have in science?

- Many people are uncomfortable with the Bayesian view of probability:
- Our goal as scientists is to be impartial judges, right?
- Different scientists might have different beliefs about what the probabilities might be in the Bayesian view there may not be a single possible probability (vs. the frequentist view), but instead each of us has our own probability for event X!
- ☑ However, we often think about data in Bayesian ways (e.g., what should I conclude about the true magnitude of an object if I observe that it is 20+/-0.1)?
- ☑ In practice, using the Bayesian vs. frequentist definition can make little difference e.g., the probability on a coin flip is still 1/2 in each view.

Many things work out the same in both Bayesian & Frequentist views

- * R. T. Cox showed that if a definition of plausibility follows some simple assumptions e.g. p(A is false) = 1-p(A); if p(A) > p(B) and p(B) > p(C) then p(A) > p(C); and if plausibility depends only on the information received, not order it will lead to the "Kolmogorov" axioms of probability theory:
 - Any random event has probability p between 0 and 1
 - * An event that is certain to occur has p=1; the total probability that some event occurs is 1
 - * If A and B are mutually exclusive (i.e., both A and B cannot be true simultaneously), then p(A OR B)=p(A)+p(B)
- These axioms allow us to manipulate probabilities, define how they combine, etc.

Independence and conditional probabilities

Commonly treated as (important!) definitions:

- The events A and B are *independent* − i.e., whether A is true has no relation to whether B is true (i.e., what we know about B doesn't affect what we expect for A) − then: $p(A \text{ AND } B) = p(A) \times p(B)$
- Many things aren't independent. For instance, if it rains today, it is more likely (than if you averaged all days) that it will rain tomorrow. The **conditional probability** that A will be true, given that B is, turns out to be: $p(A \mid B) = p(A \mid AND \mid B)/p(B)$
- Note that if we combine these, we find that $p(A \mid B) = p(A)$ if and only if A and B are independent.

Manipulating probabilities

- * If events A and B are mutually exclusive, then $p(A \ OR \ B) = p(A) + p(B)$.
- * What if they aren't? In general, $p(A \ OR \ B) = p(A) + p(B) p(A \ AND \ B)$
- For instance, suppose it is 50% likely that when a particular couple have a child it will be a boy, and 50% likely that any child they have will have red hair.
- * Since these are independent, we calculate $p(red-haired\ boy) = \frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$, and $p(red-haired\ OR\ boy) = \frac{1}{2} + \frac{1}{2} \frac{1}{4} = \frac{3}{4}$.
- We could have figured this out by counting equally probable cases:

boy, red hair

girl, red hair

boy, brown hair

girl, brown hair

Marginalization

- Let's suppose there are a finite number of possible results for event B, $\{B_i\}$. E.g.: if we flip a coin, B='the coin came up heads' can be true or false, which we could call B_0 and B_1 .
- It's possible to show that:

$$p(A) = \sum_{i} p(A \mid B_i) \ p(B_i) = \sum_{i} p(A \mid AND \mid B_i)$$

- * We call this *marginalization*: we have probabilities for A & B, but can use those to just get out probabilities for A.
- * This can be extremely useful: e.g., if we want the probability distribution of the cosmological parameter $\Omega_{\rm m}$, irrespective of the value of another parameter h, when we know $p(\Omega_m \ AND \ h) = p(\Omega_m, h)$, we can get it from the continuous version of this:

•
$$p(A) = \int p(A \mid B) \ p(B) \ dB = \int p(A, B) \ dB$$

Example

- Let A= 'we roll 5 on a die', $B_1=$ 'the roll of that die is even', and $B_2=$ 'the roll of that die is odd'.
- Does $p(A) = \sum p(A \mid B_i) p(B_i)$?
- * We know p(A) = 1/6. If the result of a die is even, A is impossible, so $p(A \mid B_1) = 0$; while if the result is odd, A will occur one-third of the time (out of the equally likely possibilities 1, 3, 5), so $p(A \mid B_2) = \frac{1}{3}$.
- * It is equally likely that the roll is even or odd, so we'd get:

$$p(A) = (0)(\frac{1}{2}) + (\frac{1}{3})(\frac{1}{2}) = \frac{1}{6}$$

as expected!

An astronomical example

- * Suppose 40% of early-type (elliptical or 'lenticular') galaxies have AGN (actively accreting supermassive black holes), and 10% of late-type (spiral/irregular) galaxies have AGN: i.e., $p(A \mid E) = 0.4$, $p(A \mid L) = 0.1$. Further assume that galaxies are an even mix of early-and late-type: p(E) = p(L) = 0.5.
- What is the probability that a randomly-chosen galaxy harbors an AGN?
- Try to reason intuitively first, and then apply the formula:

$$p(A) = \sum p(A \mid B_i) p(B_i)$$

If you need a calculator, use python! e.g.: 0*(1/2)+(1/3)*(1/2) for the previous problem...

Summary: key rules of probability to remember

- → If events A and B are *independent* then: $p(A \text{ AND } B) = p(A) \times p(B)$
- The *conditional* probability A is true, given that B is true: $p(A \mid B) = p(A \mid AND \mid B)/p(B)$
- $\rightarrow p(A \mid B) = p(A)$ if and only if A and B are independent.
- ⇒In general, $p(A \ OR \ B) = p(A) + p(B) p(A \ AND \ B)$
- \rightarrow Marginalization: $p(A) = \sum p(A \mid B_i) p(B_i)$

Bayes' Theorem

An important result comes from setting:

$$p(AANDB) = p(BANDA)$$

so:

$$p(A \mid B) p(B) = p(B \mid A) p(A)$$

* so:

$$p(B|A) = p(A|B) p(B) / p(A)$$

- This last statement is known as Bayes' Theorem, after its discoverer (in the 1700's).
- Despite having Bayes in the name, it is equally valid in both Bayesian and frequentist views of probability.

Breaking it down

p(B|A) = p(A|B) p(B) / p(A)

* Let's let:

B = the true value of some set of parameters (some or all of which we want to know), and

A = the observed set of data

Then we call:

p(B|A): the *posterior probability*: i.e., the probability we'd conclude for B after applying Bayes' theorem

 $p(A \mid B)$: the *likelihood*: i.e., how likely is it we'd get A in scenario B

p(*B*): the *prior*: our guess at what the values of B might be, in the absence of experiment A

What about p(A)?

p(B|A) = p(A|B)p(B)/p(A)

- * You may notice that the book doesn't really talk about p(A) (which is sometimes called the "evidence").
- That's because it doesn't matter in many calculations it's basically a normalization factor.
- We could construct it, though, using a definition we encountered before:

$$p(A) = \sum p(A \mid B_i) p(B_i)$$

i.e., marginalizing over all possible values of B_i .

 The evidence is sometimes used to compare the effectiveness of different models in describing data.

How does this relate to Bayesian probability?

- Let's take probability to refer to our level of belief.
- * Then Bayes' theorem tells us how to **update** our beliefs based upon some set of observed data. The prior in fact represents our prior beliefs about the possible distribution of values for B.

$$p(B|A) = p(A|B)p(B)/p(A)$$

Bayesian vs. frequentist analyses

- Frequentist calculations often focus on how often we would get the observed result, given some presumed true situation (=hypothesis).
- * A Bayesian calculation would focus on how probable we find different possible true situations to be, given the observed result.
- * Notice that, if p(B) and p(A) are constant, we just have:
 - * $p(B \mid A) \propto p(A \mid B)$
- In many cases, the inference will be same whether we work from a Bayesian or frequentist perspective!

So how do the two views of probability differ?

- Much of the difference is not in whether they accept Bayes' theorem but in how seriously they take it.
- * Bayes' theorem requires a prior but assigning a prior generally is a subjective choice (there are some rules of thumb).
- In many cases, the choice of prior doesn't make much difference.
- * There are problems that are only really solvable in the frequentist view, and others that only work out from Bayesian assumptions.
- It is often most obvious how to pose a problem in the Bayesian view, so we'll generally be following that.

Why has Bayesianism become more common recently?

- Although much of the framework was developed at about the same time as classical statistics, Bayesian methods fell by the wayside.
- * This is mostly because it is computationally harder we have to integrate over more complicated functions (thanks to the prior), which may not be Gaussian.
- These days, numerical integration can handle almost arbitrarily complex scenarios easily.

Back to our example case

- Again, let's suppose 40% of early-type galaxies have AGN, and 10% of latetype galaxies have AGN. Further assume that galaxies are an even mix of early-and late-type.
- * You find a particular galaxy in an X-ray catalog, letting you know it's an AGN.
- * Is it more likely to be an early-type galaxy or a late-type galaxy? If someone bets you \$10 that it's a late-type galaxy (so you win \$10 if it's early-type, and lose \$10 if it's not), would you take the bet?
- Discuss with your groups!

$$p(B|A) = p(A|B)p(B)/p(A)$$

Bayesian (and frequentist) techniques can be applied to problems well outside of science

- * Go to: https://web.archive.org/web/20201009065503/https://election.princeton.edu/2020/06/19/its-alive-2/
 - used the average of polling in each state, together with the nominal statistical uncertainties and an estimate of extra uncertainty, to predict a range of election outcomes
 - * uses Monte Carlo simulations based on each poll's results to get predictions
 - basically a pure-frequentist implementation, plus a model of how uncertain polls are at some point in time at predicting results in November
- Actual result gave 306 electoral votes to Biden, https://www.270towin.com/ 2020_Election/interactive_map

We can think of expert opinion as being the equivalent of a strong prior:

- * Go to: https://www.270towin.com/maps/cook-political-2020-electoral-ratings
 - experts look at each state race on its own
 - polls are only one ingredient used to make judgements; past experience is key
 - * good track record; e.g. races listed as 'toss-ups' by Cook Report in the past have, on average, been won ~50% by Republicans, ~50% by Democrats
 - priors are one way of encoding expert knowledge: in the absence of other information, previous experience of similar years leads to judgements of how likely each candidate is to win

Hybrid techniques are also possible

- Go to: https://projects.fivethirtyeight.com/2020-election-forecast/
 - * uses a model incorporating national and state polling, how similar different states are, biases of different pollsters compared to the average, etc., to predict a range of possible results (using Monte Carlo simulations of how far off each poll could be). Priors are based on economic conditions.
 - * There's some amount of subjective choice in modeling. What properties of a state define 'similarity'? To what degree will this election be like past elections? The recipe the site uses has changed over time.
 - The models are tuned so that they give the right rates of success for past elections.
 - * There are now a number of forecasters doing this sort of thing; see https://projects.economist.com/us-2020-forecast/president for an open-source equivalent.

Let's generalize from coins and dice to more complicated situations...

- We'll come back to applications of Bayes' theorem, but need more background to go further.
- * Till now, we've mostly talked about probabilities with just a few possibilities, equally likely. However, we can instead consider arbitrary probabilities as a function of continuous variables: a *probability density function* or PDF (for functions of discrete variables, the term is *probability mass function* or PMF).
- * Probability density functions just have to be nonnegative everywhere, and integrate to 1 (or have sum 1 in the discrete case). For a continuous PDF f(x),

$$p(a < x < b) = \int_{a}^{b} f(x) \ dx$$

Sometimes, the term *probability distribution* is used instead of PDF.

More on distributions

* It is sometimes helpful to look at the fraction of the integral of f(x) which is below some value. This is the *cumulative distribution function* or CDF, generally written F(x):

$$F(x) = \int_{-\infty}^{x} f(y) \ dy$$

* Another useful thing to look at can be the expectation value of some function g(x):

$$\mathbf{E}g = \int_{-\infty}^{\infty} g(x) \, f(x) \, dx$$

* The expectation value is the value of g(x), weighted by the probability of each possible x.

Expectation values

- Ex.: suppose I'll pay you \$5 if a coin comes up heads, and you pay me \$5 if it comes up tails. What is the expectation value of your winnings after a coin toss?
- Some important expectation values are based on the moments of the distribution (remember basic mechanics...):
 - * The *mean* is, simply, the first moment of f(x) compare to the center of mass in mechanics. It provides a measure of the *location* or *center* of f(x).

$$\mu = \mu_1 = Ex = \int_{-\infty}^{\infty} x f(x) dx$$

Variance and standard deviation (of a probability distribution)

* We often are interested in the width, not just central value, of a probability distribution (e.g. an error bar). We can measure this with a second moment (compare to the moment of inertia about the center of mass):

$$\sigma^2 = \mu_2 = E(x - \mu)^2 = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx$$

- * In statistics, μ_2 is called the *variance*, and is equal to the *standard deviation* squared. σ provides a measure of width in the same units as x.
- * We can also construct statistics to describe other moments: the *skewness* = μ_3/σ^3 = $\mathbf{E}(x-\mu)^3/\sigma^3$ describes how asymmetric a distribution is, the *kurtosis* = μ^4/σ^4 describes how flattened it is, etc. A Gaussian distribution has 0 skewness and kurtosis of 3.

Although f(x) can take arbitrary form (if nonnegative and normalized to have integral 1), there are dozens of well-studied cases.

- Let's start, again, with dice rolls. What is the probability of getting M ones when we roll N dice? Open up today's jupyter notebook...
- * E.g.: if we roll 100 dice, how many 1's will we observe, in total? import numpy.random as random import numpy as np nsims=int(1E5) prob=1/6. is_one=(random.rand(????,100) < prob) ndice=100 # plot a histogram of the total # of 1's from each sim plt.hist(np.sum(is_one[:,0:ndice],????))
- We'd like to try this with ndice=2,5,10,50,100, and do a few repeats, plotting each time. This can get to be a pain retyping things or copying and pasting -- so I've made a function for you in a module file.

Using another module

- Last week, we wrote a function to give the result of 2 coin flips.
- * This time, I made a module for you that rolls dice: dice.py
- Download dice.py from Courseweb to a directory in your PYTHONPATH: e.g., ~/python/
- Open the file up in vscode to see what is in it...

Contents of dice.py

```
import numpy.random as random
import numpy as np
import matplotlib.pyplot as plt
```

Contents of dice.py

```
def rolldice(nsims):
# nsims is number of simulations to do
nsims =int(nsims)
    prob=1/6.
    is_one=(random.rand(nsims,100) < prob)</pre>
# generate nsims sets of 100 rolls
    ndice_array=[2,5,10,25,100]
    for i,ndice in enumerate(ndice_array):
     plt.figure(i) # create a new figure for each plot
        plt.hist( np.sum(is_one[:,0:ndice],axis=1),
range=(-0.5, ndice+0.5), bins=(ndice + 1)
        plt.title(str(ndice) + ' dice')
 # convert ndice to a string with str(), then use that to title the plot
```

Running the function

* Import dice and run dice.rolldice(), e.g., with 50_000 simulations.

What would we expect to see?

- * Let p = the probability of getting a 1 (=1/6.)
- * Each roll of the dice is independent of all others, so p(A AND B) = p(A) p(B) for each combination of die rolls
- e.g. probability of rolling a 1 on the first roll, the second, etc. N times must be p^N
- * probability of a 1 on the first M rolls, and non-1 all the rest would be: $p^{M}(1-p)^{N-M}$, since each roll is independent
 - * the same must be true for *any* specific ordering of the rolls that gives M ones total, as we'll have to have M factors of p and N factors of (1-p)

How many ways can we get M ones?

- ❖ If we have *N* things, there are *N*! (*N* factorial) different ways of ordering them.
- * However, any case with a 1 coming up on dice 1, 3, and 5 only, say, is indistinguishable, and we shouldn't double-count them.
- * There are M! ways to reorder the M cases of p that are indistinguishable, and then we can still reorder the N-M cases of (1-p) so there are a total of C(N,M)=N!/(M!(N-M)!)
- So, summing up the probability of each case with M ones (since they are mutually exclusive), we find:

 $prob(M \ ones) = C(N,M) \ p^{M} (1-p)^{N-M}$

The Binomial Distribution

* We didn't really use the fact that we're looking at dice anywhere in that derivation. In general, if there is a probability p of success, and we do N trials, then:

$$prob(M \ successes) = C(N,M) \ p^{M} \ (1-p)^{N-M}$$

- *This formula defines the binomial distribution. This is the distribution that controls coin tosses (like in the homework), or any other set of independent events of fixed probability.
- * It has mean = $\langle x \rangle$:

$$\mu = N p$$

* and variance = $< x^2 > - (< x >)^2$:

$$\sigma^2 = N \ p \ (1-p)$$

Testing our distributions

- * We expect that the number of ones we get will follow a binomial distribution with N=ndice. Let's test this by modifying the rolldice function in dice.py:
- 1) Does the data have mean $\mu = N p$?
- In python, we can check this with either np.mean or np.sum:

Note: some good links on f-string formatting: https://realpython.com/python-f-strings/, https://string.help/, https://string.help/, https://string.help/, https://cissandbox.bentley.edu/sandbox/wp-content/uploads/
2022-02-10-Documentation-on-f-strings-Updated.pdf

Be sure to reload the module when you make changes!

Testing our distributions

Be sure to reload the module when you make changes!

Results

Did that all check out? If so, let's make rolldice also plot the predicted distributions. First, we need to add an import:

```
from scipy.misc import factorial,comb

* Then, after:
   plt.hist( np.sum(n_ones[:,0:ndice],axis=1),range=(-0.5,ndice+0.5),bins=(ndice + 1) )

* add:
   x=np.arange(ndice)
   plt.plot(x,nsims*factorial(ndice)/factorial(x)/
   factorial(ndice-x)*prob**x*(1-prob)**(ndice-x),'r-')

* or:
   plt.plot(x,nsims*comb(ndice,x)*prob**x*(1-prob)**(ndice-x),'ro')
```

It works!

We could have used a scipy function instead

- * scipy has a class (i.e., type of object), scipy.stats.binom, that allows you to calculate pretty much anything you'd want about a binomial distribution.
- * It offers many subsidiary functions; scipy.stats.binom.pmf(x,n,prob) provides the probability of getting x occurrences out of n trials if the probability of an occurrence is prob (note that x can be an array!)
- alternatively, you can set up an object that is a member of the binomial class and inherits all of its functions ("methods"), but set up to assume n trials and probability prob, with e.g.

```
a = stats.binom(n,prob)
```

and then get the PMF (the discrete equivalent of a PDF) via

We could have also used a scipy function

- * import scipy.stats and look at the help information for binom. Now modify your function to add a curve to your plots showing the expected number of ones out of the simulation for each value of x using stats.binom; this should be nsims times the probability for one simulation...
- Note: you can actually look at the code for binom! Just do:??scipy.stats.binom