TITLE: EARTHQUAKE PREDICTION MODEL USING PYTHON.

PROBLEM DEFINITION:

* Measuring energy consumption directly in Java typically requires specialized hardware or system-level access that is not readily available through standard Java libraries. However, you can use Java to interact with hardware or retrieve energy-related data if the necessary APIs or libraries are available for your specific platform and hardware.

DESIGN:

1.PROGRAM DESCRIPTION:

* The program simulates earthquake predictions based on random magnitudes.

2. FUNCTION DEFINITION:

`predict_earthquake()`:

- * This function generates a random earthquake prediction based on magnitude.
- * Input: None.
- * Output:

A string representing the prediction ("No Earthquake," "Minor Earthquake," "ModerateEarthquake," or "Major Earthquake").

3.MAIN PROGRAM:

Within the `if __name_

"__main__": block

Call the

`predict_earthquake()`

function.

* Display the generated earthquake prediction.

4.ALGORITHM:

Import the random module.

- * Define the
- `predict_earthquake function:
- * Generate a random magnitude between 2.0 and 9.0.
- * Check the magnitude to classify the prediction.

 Output the generated earthquake prediction.

5. EXAMPLE OUTPUT:

An example of what the program's output might look like:

Earthquake Prediction: Moderate Earthquake

6.ADDITIONAL CONSIDERATION:

* This is a simple simulation for educational purposes and should not be used for actual earthquake prediction.

* The program uses random values to generate predictions, which will vary with each run.

Real earthquake prediction models involve complex scientific methods, data analysis, and extensive research in seismology.

* This textual design outlines the key components and logical flow of the program. You can use this design to implement the Python code based on the earlier provided program.

PROGRAM:

import random

```
def predict_earthquake():
    # Simulate a basic random prediction
    magnitude = random.uniform(2.0, 9.0)
    if magnitude < 5.0:
        return "No Earthquake"
    elif magnitude < 6.0:</pre>
```

```
return "Minor Earthquake"
elif magnitude < 7.0:
    return "Moderate Earthquake"
else:
    return "Major Earthquake"

if __name__ == "__main__":
    prediction = predict_earthquake()
    print(f"Earthquake Prediction: {prediction}")</pre>
```

OUTPUT:

* Earthquake Prediction: Moderate Earthquake