

MOCK TEST OF MATHEMATICS FOR UNIVERSITY ADMISSION

Paper 2

YEARS	APPLICATIONS

Sketching the curve $(x^2 + y^2 - 1)^2 = 1$ in the real plane gives:

 ${f A}$ a pair of quadratic parabolas

B a pair of quartic parabolas

C a pair of lines

 ${f D}$ a circle

E a pair of circles

20 YEARS	APPLICATIONS

The number of solutions to $\sin(x^{-1}) = 0$ when 0 < x < 1 is:

 $\mathbf{A} 0$

2.

 $\mathbf{B} 1$

 \mathbb{C} 2

D 4

 ${f E}$ infinitely many

Suppose the integer n^3 is divisible by 3. Consider the following the sentences

- (1) n is divisible by 3
- (2) 27 is a factor of n^3
- (3) if d is a multiple of 3 which divides n^3 , then n^3/d is a multiple of 3.

Which of the above sentences are **implications** of n^3 being divisible by 3?

A none

- \mathbf{B} (1) only
- C (1) and (2) only
- \mathbf{D} (1) and (3) only
- \mathbf{E} (1), (2), and (3)

Consider a quadratic $q(x) = x^2 + ax + b$.

How many points belonging to q would be **sufficient** to determine the values of a and b?

A 1

 \mathbf{B} 2

C 3

 $\mathbf D$ it is not possible to determine q only with points

A function is said be *strictly convex* on an interval (a, b) if, in the interval, **every** line segment joining two points on the graph of f lies **above** the rest of the graph between those points.

A sufficient condition, if f is assumed to be twice-differentiable, is that f''(x) > 0 on (a, b).

Which of the following functions illustrates that this condition on twice-differentiable functions is sufficient but **not** necessary?

$$\mathbf{A} x^2 + \cos x$$

$$\mathbf{B} x + \cos x$$

$$\mathbf{C} |x|$$

$$\mathbf{D} x^4$$

$$\mathbf{E} \ x^2 (1+x^2)^{-1}$$

Let μ be a positive real number and consider the following simultaneous equations:

$$\begin{cases} a+b=\mu\\ a^2+b^2=\mu \end{cases}$$

What is the full range of values for μ such that the system has no solutions?

$$\mathbf{A} \ \mu > \sqrt{2}$$

$$\mathbf{B} \ \mu > 2$$

C
$$\mu > 1$$

D
$$1 < \mu < 2$$

E
$$0 < \mu < 1$$
 or $\mu > \sqrt{2}$

Suppose (α) , (β) , (γ) and (δ) are statements for which:

- (α) implies (β)
- (δ) implies (β)
- (not γ) implies (δ)
 - (γ) implies (α)

This means:

- **A** (α) implies (γ)
- **B** (not α) implies (not β)
- \mathbf{C} (β) implies (δ)
- \mathbf{D} (α) implies (not δ)
- E the set of statements is inconsistent (i.e. contains a contradiction)

Which of the following is **sufficient** for the polynomial $z(x) = x^4 + px^3 + qx^3 + rx^2 + sx + t$ to have 4 (real) roots?

A z'(x) has 3 roots

 ${\bf B}~z$ has either two maxima or two minima

 \mathbf{C} z has two stationary points, one of which is positive and the other is negative

$$\mathbf{D} z(x) = (x^2 + ax + b)(x^2 + cx + d)$$
 for some a, b, c, d such that $(ac)^2 > 16bd$

 ${\bf E}$ there are 4 distinct polynomials (up to scaling) that divide z

F none of these conditions are sufficient

A word is a finite string of letters. A permutation of a word is a word made of the same letters, including multiplicity. For instance, a permutation of 'txiotw' is 'xoittw'.

Which of the following is **necessary** for a 5-letter word to have **exactly** 20 permutations (including itself)?

A it contains exactly two identical consecutive letters

B it contains exactly two identical letters

C it contains two identical letters and three other identical letters, in some order

 ${f D}$ it contains exactly three identical letters

E none of these conditions are necessary

A student claims they have found two real numbers α and β such that they can integrate any cubic over the interval (-1,1) by simply plugging in α and β and adding, i.e.

$$\int_{-1}^{1} p(x) \, \mathrm{d}x = p(\alpha) + p(\beta)$$

where p is any cubic polynomial.

The student's proof:

Assume there are such values.

(1) Since integration is linear, we can ignore coefficients and consider terms separately:

$$\int_{-1}^{1} x^3 dx = \alpha^3 + \beta^3; \qquad \int_{-1}^{1} x^2 dx = \alpha^2 + \beta^2; \qquad \int_{-1}^{1} x dx = \alpha + \beta$$

- (2) The last equation tells us that $\alpha = -\beta$.
- (3) Applying this to the middle integral gives $\alpha = \pm \frac{1}{\sqrt{3}}$ and $\beta = \mp \frac{1}{\sqrt{3}}$.
- (4) These pairs agree with the first integral, hence the conjecture is true.

A the proof is correct

 \mathbf{B} there is a flaw at line (1)

C there is a flaw in line (2)

D there is a flaw in line (3)

E there is a flaw in line (4)

We are given the following functions:

$$a(x) = x + 1;$$
 $b(x) = x - 1,$ $c(x) = x^{-1};$ $d(x) = 2x$

Call a function 'abcd-composite' if it can be written as a composition of a, b, c and d in some order, using each exactly once. For instance, b(d(c(a(x)))) is abcd-composite.

Which of the following functions **cannot** be *abcd*-composite?

A
$$(1-x)(1+x)^{-1}$$

$$\mathbf{B} (x+2)(1-x)^{-1}$$

C
$$2x(2x-1)^{-1}$$

$$\mathbf{D} (2x)^{-1}$$

E
$$(x+3)(x-1)^{-1}$$

$$\mathbf{F} - \frac{1}{2}(2x+1)(x+1)^{-1}$$

a, b, c are positive integers such that a, b are coprime (that is, they share no common factors other than 1) and 7a = bc.

Which of the following is **necessary** for this to hold?

 $\mathbf{A} b = 7$

 $\mathbf{B} \ c = 7$

 ${\bf C}$ either b or c is equal to 7

 \mathbf{D} b is either 1 or 7

 \mathbf{E} c is either 1 or 7

Let f(x) be the function defined by:

$$f(x) = \begin{cases} 2^{-k} & \text{when } 2k \leqslant x < 2k + 1 \text{ for each integer } k \\ -2^{-k} & \text{when } 2k - 1 \leqslant x < 2k \text{ for each integer } k \end{cases}$$

Let F be the integral function defined for x > 0 by:

$$F(x) = \int_0^x f(y) \, \mathrm{d}y$$

Consider the following (false) claims, with h being any integrable function:

- (1) if $\int_0^x h(y) dy > 0$ for all x > 0 then $h(x) \ge 0$ for all x > 0.
- (2) for any integrable function h, we have $\int_0^x |h(y)| dy > 0$.
- (3) if the integral function $H(x) = \int_0^x h(y) dy$ is not increasing, then h(x) is not increasing.

F is a **counterexample** to:

- \mathbf{A} (1) only
- \mathbf{B} (2) only
- \mathbf{C} (3) only
- **D** (1) and (2)
- E(2) and (3)
- **F** (1) and (3)
- G(1), (2), and (3)

In logic, the *principle of explosion* postulates that a statement beginning with a false premise must be read as true, regardless of what follows this premise. For instance, the *statement* "if 0 = 1 then the Earth is flat" is a *logically true*.

Consider now the following two sentences:

- (i) "it is raining in Paris **or** it is raining in New York" [inclusive **or**]
- (ii) "if it is not raining in Paris, then it is raining in New York"

Assuming we know nothing about the weather in either city:

A these statements are logically equivalent (i.e. they express the same thing)

B statement (i) implies (ii) but not the other way around

C statement (ii) implies (i) but not the other way around

D these statements are logically incomparable

Consider the sequence (ξ_n) defined by:

$$\xi_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n \right]$$

all $n \ge 0$. Given that, for all $k \ge 0$, the following identities hold for this sequence:

$$1 + \xi_0 + \xi_2 + \dots + \xi_{2k} = \xi_{2k+1}$$

$$\xi_1 + \xi_3 + \dots + \xi_{2k+1} = \xi_{2k+2}$$

one can deduce:

A ξ_n is always an integer

 $\mathbf{B} \xi_n$ is always an integer and if n > 1, ξ_n is odd when n is even and ξ_n is even when n is odd

 $\mathbf{C} \xi_n$ alternates between being an integer and not being an integer

D ξ_n is never an integer but the sequence is increasing

E the subsequences (ξ_{2n}) and (ξ_{2n+1}) are increasing but (ξ_n) is not

Consider the inequality

$$|x + a|x|| > |x + |x||$$

and the following solution attempt:

- (1) The only instances in which both sides are simultaneously equal to 0 are when $a \neq 1$ and x = 0, or when a = 1 and x < 0, so we can rule these out of our solution set.
- (2) When x > 0 both expressions within the absolute values are positive, hence we can remove them and the inequality becomes (a + 1)x > 2x, which is satisfied exactly when a > 1 (since we have assumed x > 0).
- (3) When x < 0, the right hand side is equal to 0, so the inequality becomes |x + a|x|| > 0 which is always true since we have assumed $x \neq 0$ and $a \neq 1$.
- (4) Hence the full solution set is:

$$\begin{cases} a > 1 \text{ and } x \neq 0 \\ a < 1 \text{ and } x < 0 \end{cases}$$

A the solution is correct

B the solution is incomplete and there is a flaw in line (1)

C the solution is incomplete and there is a flaw in line (2)

D the solution is incomplete and there is a flaw in line (3)

E the solution is incomplete and there are flaws in lines (1) and (2)

F the solution is incomplete and there are flaws in lines (2) and (3)

G the solution is incomplete and there are flaws in lines (1) and (3)

H the solution is incomplete because (4) does not take into account a result from (1), (2) or (3)

Consider the following statements:

- (1) if a function has a vertical asymptote at 0, then its integral on (0,1) is not finite (i.e. diverges).
- (2) for any $\alpha \neq -1$, the function x^{α} is integrable on (0,1).
- (3) for a function to be integrated on (0,1), it needs to be defined at 0 and 1.
- (4) if a function is ≥ 1 for infinitely many x in (0,1) then its integral on (0,1) is ≥ 1 .

The integral

$$\int_0^1 \frac{\mathrm{d}x}{\sqrt{x}}$$

is a **counterexample** to:

- \mathbf{A} (1) only
- \mathbf{B} (2) only
- \mathbf{C} (3) only
- \mathbf{D} (4) only
- E(1) and (3)
- \mathbf{F} (2) and (4)

A sequence of real numbers (x_n) converges to a value a if the following statement is true:

For every $\epsilon > 0$ there exists a positive integer N such that for all $n \ge N$, $|x_n - a| < \epsilon$

Which of the following sentences expresses the **negation** of convergence to a value a?

A For every $\epsilon > 0$ and every positive integer N, if n > N then $|x_n - a| \ge \epsilon$

B For every $\epsilon > 0$ there is no integer N such that if n > N then $|x_n - a| < \epsilon$

C There exists $\epsilon > 0$ such that for all integers N, if n > N then $|x_n - a| \ge \epsilon$

D There exists $\epsilon > 0$ such that for all integers N, there exists n > N where $|x_n - a| \ge \epsilon$

E There exists $\epsilon > 0$ such that for all integers N, if $|x_n - a| < \epsilon$ then n > N

Consider the following (true) statements:

- (1) $\sqrt{2}$ is irrational.
- (2) $\sqrt{2}^{\sqrt{2}}$ is either rational or irrational.
- (3) $(\sqrt{2}^{\sqrt{2}})^{\sqrt{2}}$ is rational since it is equal to 2.

These statements combined **prove** which of the following:

A an irrational number to an irrational power can be rational

B an irrational number to an irrational power is always irrational

C a rational number to an irrational power is always irrational

D a rational number to a rational power is never irrational

[a number is rational if and only if it can be written as a fraction of integers]

Let $T_1, T_2, T_3...$ be the sequence defined by $T_n = 2^n$, and let $V_1, V_2, V_3...$ be the sequence resulting from taking the ordered positive integers and removing all powers of 2 other than $2^0 = 1$.

Define now the sequence (Φ_n) by:

$$\begin{cases} \Phi_0 = 0, \ \Phi_1 = 1 \\ \Phi_{T_k} = k \text{ for each } k \geqslant 1 \\ \Phi_{V_{k+1}} = \Phi_{V_k} + 1 \text{ for each } k \geqslant 1 \end{cases}$$

The sequence (Φ_n) has which of the following properties?

- (i) (Φ_n) is non-increasing but (Φ_{A_n}) is increasing for every arithmetic sequence of positive integers (A_n) with difference ≥ 2 and first term > 0
- (ii) (Φ_n) is non-increasing but the sequence (μ_n) defined by $\mu_n = \Phi_n + \Phi_{n+1}$ is increasing
- (iii) (Φ_n) is non-increasing but (Φ_{G_n}) is increasing for every geometric sequence of positive integers (G_n) with ratio ≥ 2 and first term > 1
- (iv) (Φ_n) is non-increasing but the sequence (ρ_n) defined by $\rho_n = \Phi_n \Phi_{n+1}$ is increasing
- A (i) only
- **B** (ii) only
- C (i) and (ii)
- **D** (iii) only
- E (iv) only
- \mathbf{F} (iii) and (iv)
- \mathbf{G} (Φ_n) has none of the above properties