Seja
$$f$$
 diferenciável em a , demonstre que $f'(a) = \lim_{h\to 0} \frac{f(a+h) - f(a-h)}{2h}$.

Resolução:

Primeiramente demonstrarmos que $f'(a) = \lim_{h\to 0} \frac{f(a) - f(a-h)}{h}$:

Tomando
$$k = -h$$
, $\lim_{h\to 0} \frac{f(a) - f(a-h)}{h} = \lim_{k\to 0} \frac{f(a) - f(a+k)}{-k} = \lim_{k\to 0} \frac{f(a+k) - f(a)}{k} = f'(a).$

Agora a demonstração principal:

$$\begin{split} &\lim_{h\to 0} \frac{f(a+h) - f(a-h)}{2h} \ = \\ &= \ \lim_{h\to 0} \frac{f(a+h) - f(a) + f(a) - f(a-h)}{2h} \ = \\ &= \ \frac{1}{2} (\lim_{h\to 0} \frac{f(a+h) - f(a)}{h} + \lim_{h\to 0} \frac{f(a) - f(a-h)}{h}) \ = \\ &= \ \frac{2f'(a)}{2} \ = \boxed{f'(a)} \end{split}$$
 Q.E.D.

Documento compilado em Thursday 13th March, 2025, 20:56, tempo no servidor.

Última versão do documento (podem haver correções e/ou aprimoramentos): "bit.ly/mathematicalramblings_public".

Comunicar erro: "a.vandre.g@gmail.com"