

Towards Universal Sequence Representation Learning for Recommender Systems

<u>Yupeng Hou¹</u>, Shanlei Mu¹, Wayne Xin Zhao ^{1™}, Yaliang Li², Bolin Ding², Ji-Rong Wen¹

1 Renmin University of China2 Alibaba Group

• Sequential Recommendation

Next Item Prediction

Historical Behavior Sequences

Sequential Recommendation

• Existing methods: explicit item ID modeling;

Sequence Model

ID Embedding

Item ID, BOOTNNWMXI

- Sequential Recommendation
 - Existing methods: explicit item ID modeling;
- Issues

New Item!

- Sequential Recommendation
 - Existing methods: explicit item ID modeling;
- Issues
 - Cold-start items;
 - New domains;

Sequence Model on a **Big** Domain

Sequence Model on a *New/Small* Domain

- Solution for small data: Transfer Learning
 - Foundation Models
 - Pre-training on large scale corpus;
 - Transfer to downstream tasks;

- Solution for small data: Transfer Learning
 - Foundation Models
 - Pre-training on large scale corpus;
 - Transfer to downstream tasks;

Can we build foundation models for RecSys?

- Solution for small data: Transfer Learning
 - Foundation Models
 - Pre-training on large scale corpus;
 - Transfer to downstream tasks;

- Solution for small data: Transfer Learning
 - Foundation Models
 - Pre-training on large scale corpus;
 - Transfer to downstream tasks;

- Same data format;
- Large corpus;

- Solution for small data: Transfer Learning
 - Foundation Models
 - Pre-training on large scale corpus;
 - Transfer to downstream tasks;

- Same data format;
- V Large corpus;
- X Different item ID dictionaries;

Foundation Models for NLP (Universal)

Foundation Models for NLP (Universal)

• Universal Sequence/Item Representations for RecSys?

Idea

• Universal Sequence/Item Representations for RecSys?

Idea

• Item text -> Transferable representations

Challenges:

h₁
h₂
.
.
.
.
.
.
.
.
.
.

Textual representations for Rec?

Idea

• Item text -> Transferable representations

Challenges:

Textual representations for Rec?

Learning from multiple domains?

UniSRec, universal sequence representation learning approach

UniSRec

Universal Item Representation

$$\boldsymbol{v}_i = \sum_{k=1}^G g_k \cdot \widetilde{\boldsymbol{x}}_i^{(k)},$$

$$\widetilde{\mathbf{x}}_i = (\mathbf{x}_i - \mathbf{b}) \cdot \mathbf{W}_1,$$

UniSRec

Pre-training on multi-domain sequences

$$\ell_{S-I} = -\sum_{j=1}^{B} \log \frac{\exp \left(\mathbf{s}_{j} \cdot \mathbf{v}_{j} / \tau\right)}{\sum_{j'=1}^{B} \exp \left(\mathbf{s}_{j} \cdot \mathbf{v}_{j'} / \tau\right)},$$

$$\ell_{S-S} = -\sum_{j=1}^{B} \log \frac{\exp \left(\mathbf{s}_{j} \cdot \widetilde{\mathbf{s}}_{j} / \tau\right)}{\sum_{j'=1}^{B} \exp \left(\mathbf{s}_{j} \cdot \widetilde{\mathbf{s}}_{j'} / \tau\right)}.$$

Sequence model

e.g., Transformer encoder

Negative samples from multiple domains

alleviate the seesaw phenomenon and capture their semantic correlation

UniSRec

Parameters in behavior encoder are fixed

while fine-tuning the pre-trained model

Experiments – Setting

Scientific, Pantry,

Instruments, Arts, Office

Online Retail in UK

Experiments – Overall

Scenario	Dataset	Metric	SASRec	BERT4Rec	FDSA	S ³ -Rec	CCDR	RecGURU	ZESRec	$\mathrm{UniSRec}_t$	UniSRec $_{t+ID}$	Improv.
Cross- Domain	Scientific	Recall@10	0.1080	0.0488	0.0899	0.0525	0.0695	0.1023	0.0851	0.1188*	0.1235*	+14.35%
		NDCG@10	0.0553	0.0243	0.0580	0.0275	0.0340	0.0572	0.0475	0.0641*	0.0634*	+10.52%
		Recall@50	0.2042	0.1185	0.1732	0.1418	0.1647	0.2022	0.1746	0.2394*	0.2473*	+21.11%
		NDCG@50	0.0760	0.0393	0.0759	0.0468	0.0546	0.0786	0.0670	<u>0.0903</u> *	0.0904*	+15.01%
	Pantry	Recall@10	0.0501	0.0308	0.0395	0.0444	0.0408	0.0469	0.0454	0.0636*	0.0693*	+38.32%
		NDCG@10	0.0218	0.0152	0.0209	0.0214	0.0203	0.0209	0.0230	0.0306*	0.0311*	+35.22%
		Recall@50	0.1322	0.1030	0.1151	0.1315	0.1262	0.1269	0.1141	0.1658*	0.1827*	+38.20%
		NDCG@50	0.0394	0.0305	0.0370	0.0400	0.0385	0.0379	0.0378	<u>0.0527</u> *	0.0556*	+39.00%
	Instruments	Recall@10	0.1118	0.0813	0.1070	0.1056	0.0848	0.1113	0.0783	0.1189*	0.1267*	+13.33%
		NDCG@10	0.0612	0.0620	0.0796	0.0713	0.0451	0.0681	0.0497	0.0680	0.0748*	_
		Recall@50	0.2106	0.1454	0.1890	0.1927	0.1753	0.2068	0.1387	0.2255*	0.2387*	+13.34%
		NDCG@50	0.0826	0.0756	0.0972	0.0901	0.0647	0.0887	0.0627	0.0912	0.0991*	+1.95%
	Arts	Recall@10	0.1108	0.0722	0.1002	0.1003	0.0671	0.1084	0.0664	0.1066	0.1239*	+11.82%
		NDCG@10	0.0587	0.0479	0.0714	0.0601	0.0348	0.0651	0.0375	0.0586	0.0712	_
		Recall@50	0.2030	0.1367	0.1779	0.1888	0.1478	0.1979	0.1323	0.2049*	0.2347*	+15.62%
		NDCG@50	0.0788	0.0619	0.0883	0.0793	0.0523	0.0845	0.0518	0.0799	0.0955*	+8.15%
	Office	Recall@10	0.1056	0.0825	0.1118	0.1030	0.0549	0.1145	0.0641	0.1013	0.1280*	+11.79%
		NDCG@10	0.0710	0.0634	0.0868	0.0653	0.0290	0.0768	0.0391	0.0619	0.0831	_
		Recall@50	0.1627	0.1227	0.1665	0.1613	0.1095	0.1757	0.1113	0.1702	0.2016*	+14.74%
		NDCG@50	0.0835	0.0721	0.0987	0.0780	0.0409	0.0901	0.0493	0.0769	0.0991	+0.41%
Cross- Platform	Online Retail	Recall@10	0.1460	0.1349	0.1490	0.1418	0.1347	0.1467	0.1103	0.1449	0.1537*	+3.15%
		NDCG@10	0.0675	0.0653	0.0719	0.0654	0.0620	0.0658	0.0535	0.0677	0.0724	+0.70%
		Recall@50	0.3872	0.3540	0.3802	0.3702	0.3587	0.3885	0.2750	0.3604	0.3885	0.00%
		NDCG@50	0.1201	0.1131	0.1223	0.1154	0.1108	0.1188	0.0896	0.1149	0.1239*	+1.31%

Experiments – Pre-trained datasets

Experiments – Ablation study

Experiments – Long-tail items

Experiments – Case study

Conclusion & QA

presented by Yupeng Hou, houyupeng@ruc.edu.cn

https://github.com/RUCAIBox/UniSRec

All implemented by RecBole

