CH 03 LINEAR REGRESSION CONCEPTUAL

Tuesday, January 31, 2017 5:24 PM

1. Describe the null hypotheses to which the p-values given in Table 3.4 correspond. Explain what conclusions you can draw based on these p-values. Your explanation should be phrased in terms of sales, TV, radio, and newspaper, rather than in terms of the coefficients of the linear model.

	Coefficient	Std. error	t-statistic	p-value
Intercept	2.939	0.3119	9.42	< 0.0001
TV	0.046	0.0014	32.81	< 0.0001
radio	0.189	0.0086	21.89	< 0.0001
newspaper	-0.001	0.0059	-0.18	0.8599

TABLE 3.4. For the Advertising data, least squares coefficient estimates of the multiple linear regression of number of units sold on radio, TV, and newspaper advertising budgets.

ANSWER:

- Null Hypothesis $H_0 = Coeffiencet \ of \ TV, Radio \ \& \ Newspaper = 0 \ \textit{OR}$
- \circ Null Hypothesis $H_0 = Advertisement spen on TV, Radio & Newspaperhave NO effect on predicting the Sales$
- Conclusion based on p-Values:
 - Coefficients of TV and Radio & Intercept term estimated (based on the sample training data) has a p-Value < 0.00001 which means:
 - □ A statistically significant evidence exist that Sales is dependent on advertisement spend on TV and Radio
 - □ It indicates that the coefficient values of TV, Radio and Intercept are highly unlikely to be 0 as the 95% confidence interval for both does NOT include 0
 - □ Coefficients of TV and Radio both have +VE signs indicating a positive effect on Sales with increasing value of both variables
 - □ For \$1000 spent in TV advertisement Sales is likely to go up by average 46 units when all other variables stay same
 - □ For \$1000 spent in Radio advertisement Sales is likely to go up by **average 189 units** when all other variables stay same
 - Coefficients of Newspaper term estimated (based on the sample training data) has a p-Value of 0.8599 which means:
 - □ A statistically significant evidence exist that Sales is unlikely to depend on advertisement spend on Newspaper
 - □ It indicates that the, during repeated estimation, coefficient values of Newspaper is highly likely to be 0 as the 95% confidence interval for both includes 0
- 2. Carefully explain the differences between the KNN classifier and KNN regression methods.
 - KNN classifier and KNN regression methods are closely related in formula. However, the final result of KNN classifier is the classification output for Y (qualitative), where as the output for a KNN regression predicts the quantitative value for f(X)
 - In a default working mode the output of KNN Classifier is decided based on the "majority votes" a class receives. The output of KNN-Regression is the average of Y-value of K nearest neighbors
- 3. Suppose we have a data set with five predictors, X1 = GPA, X2 = IQ, X3 = Gender (1 for Female and 0 for Male), X4 = Interaction between GPA and IQ, and X5 = Interaction between GPA and Gender. The response is starting salary after graduation (in thousands of dollars). Suppose we use least squares to fit the model, and get $^{\circ}\beta0$ = 50, $^{\circ}\beta1$ = 20, $^{\circ}\beta2$ = 0.07, $^{\circ}\beta3$ = 35, $^{\circ}\beta4$ = 0.01, $^{\circ}\beta5$ = -10.
 - (a) Which answer is correct, and why?
 - i. For a fixed value of IQ and GPA, males earn more on average than females.
 - ii. For a fixed value of IQ and GPA, females earn more on average than males.
 - iii. For a fixed value of IQ and GPA, males earn more on average than females provided that the GPA is high enough.
 - iv. For a fixed value of IQ and GPA, females earn more on average than males provided that the GPA is high enough.
 - (b) Predict the salary of a female with IQ of 110 and a GPA of 4.0.
 - (c) True or false: Since the coefficient for the GPA/IQ interaction term is very small, there is very little evidence of an interaction effect. Justify your answer.

ANSWER:

(a) >> iii

```
Y = 50 + 20*GPA + 0.07*IQ + 35*(Gender) + 0.01*(IQ*GPA) - 10*(Gender*GPA) For Male: Y = 50 + 20*GPA + 0.07*IQ + 0.01*(IQ*GPA) For Female: Y = 50 + 20*GPA + 0.07*IQ + 35 + 0.01*(IQ*GPA) - 10GPA Y = 85 + 10*GPA + 0.07*IQ + 0.01*(IQ*GPA) Male Salary > Female Salary WHEN: 50 + 20*GPA + 0.07*IQ + 0.01*(IQ*GPA) > 85 + 10*GPA + 0.07*IQ + 0.01*(IQ*GPA) > 50 + 20*GPA > 85 + 10*GPA > 35 >> 50 + 20*GPA > 35
```

When GPA is high enough (> 3.5) Males earns more than female...

(b) >> 137.1 units

```
Y = 50 + 20*4 + 0.07*110 + 35 + 0.01*(110*4) - 10*(4)
= 50 + 80 + 7.7 + 35 + 4.4 - 40
= 137.1
```

(c) >> FALSE

To verify if the GPA/IQ has an impact on the quality of the model we need to test the hypothesis H0: β 4^=0H0: β 4^=0 and look at the p-value associated with the tt or the FF statistic to draw a conclusion.

4. Q4, Q5, Q6, Q7

URL: https://rpubs.com/ppaquay/65559