

Oxidos de carbono fluorados para protección de Li metálico mediante DFT

G. Molina^{1*}, S. Raviolo², M. Otero^{1,2}, L. G. Luque³

¹ Departamento de Física, Universidad Nacional de Río Cuarto, Córdoba, Argentina. ²Instituto de Física Enrique Gaviola, Córdoba, Argentina.

³ Instituto de Investigaciones en Físico-Química de Córdoba (INFIQC), Córdoba, Argentina.

(*) Pres. author: g98molina@gmail.com

Introducción

La creciente demanda de energía y la preocupación por la contaminación han resaltado la importancia de las energías renovables y el almacenamiento de energía. El litio metálico es un candidato prometedor, pero su inestabilidad plantea desafíos. En este estudio, exploramos la estabilidad de distintas estructuras carbonosas (como el grafeno y el óxido de grafeno reducido) funcionalizadas con flúor, las cuales son comúnmente utilizadas como "interlayers" para mejorar la formación de interfases sólido-electrolito en baterías de litio.

Métodos Computacionales

Se realizaron cálculos DFT con el programa Quantum Espresso en el formalismo PBE con energía de corte de 1090 eV y un grillado de puntos-k de 2x2x1 en los cálculos de optimización de geometría y energía. En los cálculos de DOS se usó un grillado de puntos-k de 10x10x10 para el RGO y 15x15x1 para el grafeno.

Resultados y Discusión

0

Η

Estructuras estudiadas

Grafeno fluorado (Gr-F)

Energías sin vacancia [eV]			Energías con vacancia [eV]		
Litiación	Adsorción LiF		Litiación	Litiación Adsorción	
	Mole.	Bulk		Mole.	Bulk
-3,20	-0,78	2,40	-1,33	-1,70	1,49

Óxido de grafito reducido fluorado (RGO-F)

Energías sin vacancia [eV]			Energías con vacancia [eV]		
Litiación	Absorc	ción LiF	Litiación	Absorción LiF	
	Mole.	Bulk		Mole.	Bulk
-4,38	-1,92	1,26	-2,36	-2,58	0,60

E(Litiación) = E(Total) - E(Sin Li) - E(Li_{Bulk}) E(Absorción LiF_{Mole./Bulk}) = E(Total) - E(Sin LiF) - E(LiF_{Mole./Bulk})

-Gr-vac

Análisis electrónico

RGO-F sin vacancia

RGO-F con vacancia

Conclusiones

Estructuras sin defectos:

- Se observó que en los casos sin Li, el F permanece unido a la red carbonosa mediante enlaces iónicos fuertes. Mientras que en las estructuras con Li, el F se desprende de la red carbonosa debido al fuerte enlace del LiF. Esto indica que la estructura de CF no es estable ante la presencia de litio.
- En las estructuras tipo RGO la interacción entre el Li y los grupos OH es muy fuerte y en la mayoría de los casos esto tiende a hacer que el LiF quede retenido formando enlaces con dichos grupos.

Estructuras con defectos:

• Se verificó que los defectos tipo vacancia ayudan a retener el F evitando la disociación del LiF. Por lo tanto, estos F cercanos a defectos que permanecen unidos a la estructura carbonosa en presencia de Li, podrían ser los responsables de mejorar el rendimiento del film protector.

Referencias

[1]WOOD, Kevin N., et al. Dendrites and pits: Untangling the complex behavior of lithium metal anodes through operando video microscopy. ACS central science, 2016, vol. 2, no 11, p. 790-801. [2]BOBNAR, Jernej, et al. Fluorinated reduced graphene oxide as a protective layer on the metallic lithium for application in the

high energy batteries. Scientific reports, 2018, vol. 8, no 1, p. 1-10.

Agradecimientos

Este trabajo utilizó recursos computacionales del CCAD-UNC, que forma parte del SNCAD-MinCyT, Argentina.