2022-33-28

$$S_m = -\sum_{\alpha} m_{\alpha} \int d\tau_{\alpha} \sqrt{g_{ij}(x_{\alpha})} \dot{x}_{\alpha}^{i} \dot{x}_{\alpha}^{j}$$

$$S_g = \kappa \int \underbrace{d\Omega \sqrt{|g|}}_{\text{invarien de Lorentz}} R$$

$$S = S_m + S_g$$

$$\frac{\delta S}{\delta g_{ij}} = 0o$$

$$\delta S_m = -\frac{1}{2} \sum_{\alpha} m_{\alpha} \int d\tau_{\alpha} \frac{1}{\sqrt{g_{ij} \dot{x}_{\alpha}^i \dot{x}_{\alpha}^j}} \dot{x}_{\alpha}^k \dot{x}_{\alpha}^l \delta g_{ki}(x_{\alpha})$$

On définit le tenseur énergie-impulsion

$$T^{ij} = \frac{1}{\sqrt{|g|}} \sum_{\alpha} m_{\alpha} \int d\tau_{\alpha} \dot{x}_{\alpha}^{i} \dot{x}_{\alpha}^{j} \delta^{2} (x - x_{\alpha}(\tau_{\alpha}))$$

Limite non-relativiste : les particules ne vont pas très vite et toutes les particules ont approximativement le même temps qu'on prend être le temps coordonnée.

$$T_{\rm classique}^{ij} = \delta_0^i \delta_0^j \frac{1}{|g|} \underbrace{\sum_{\alpha} m_{\alpha} \delta^3(\mathbf{r} - \mathbf{r}_{\alpha}(t))}_{\text{densit\'e de masse } (\rho(\mathbf{r}))}$$

$$\delta\sqrt{|g|}\stackrel{?}{=}\frac{1}{2}\sqrt{|g|}g^{ij}\delta g_i j$$

$$\ln \det M = \operatorname{tr} \ln M$$

$$\operatorname{tr} \ln g = \operatorname{tr} \delta(\ln g) \cdots$$

$$R = g^{ij}R_{ij}$$

 δR