Disequazioni irrazionali

disequazioni con una radice quadrata ed un polinomio a secondo membro

$$\sqrt{A} > B \qquad \rightarrow \qquad \begin{cases} A \ge 0 \\ B < 0 \end{cases} \qquad V \qquad \begin{cases} B \ge 0 \\ A > B^2 \end{cases} \qquad \sqrt{A} < B \qquad \rightarrow \qquad \begin{cases} A \ge 0 \\ B > 0 \\ A < B^2 \end{cases}$$

$$\sqrt{A} \ge B \qquad \rightarrow \qquad \begin{cases} A \ge 0 \\ B < 0 \end{cases} \qquad V \qquad \begin{cases} B \ge 0 \\ A \ge B^2 \end{cases} \qquad \sqrt{A} \le B \qquad \rightarrow \qquad \begin{cases} A \ge 0 \\ B \ge 0 \\ A \le B^2 \end{cases}$$

disequazioni con una radice quadrata: casi particolari

con un numero positivo n a secondo membro	con un numero negativo — n a secondo membro	con lo zero a secondo membro	
$\sqrt{A} > n \rightarrow A > n^2$	$\sqrt{A} > -n \rightarrow A \ge 0$	$\sqrt{A} > 0 \rightarrow A > 0$	
$\sqrt{A} \geq n \rightarrow A \geq n^2$	$\sqrt{A} \geq -n \rightarrow A \geq 0$	$\sqrt{A} \geq 0 \rightarrow A \geq 0$	
$\sqrt{A} < n \rightarrow \left\{ \begin{array}{l} A \geq 0 \\ A < n^2 \end{array} \right.$	$\sqrt{A} < -n ightarrow rac{}{}^{ ext{nessuna}}$ soluzione	$\sqrt{A} < 0 ightarrow rac{ ext{nessuna}}{ ext{soluzione}}$	
$\sqrt{A} \leq n \rightarrow \left\{ \begin{array}{l} A \geq 0 \\ A \leq n^2 \end{array} \right.$	$\sqrt{A} \leq -n ightarrow rac{}{}_{ ext{soluzione}}^{ ext{nessuna}}$	$\sqrt{A} \leq 0 \rightarrow A = 0$	

disequazioni	con du	e radici	quadrate	(o indice pari)	
					١

$$\sqrt{A} > \sqrt{B} \to \begin{cases}
A \ge 0 \\
B \ge 0 \\
A > B
\end{cases}$$

$$\sqrt{A} \ge \sqrt{B} \to \begin{cases}
A \ge 0 \\
B \ge 0 \\
A \ge B
\end{cases}$$

$$\sqrt{A} < \sqrt{B} \to \begin{cases}
A \ge 0 \\
B \ge 0 \\
A < B
\end{cases}$$

$$\sqrt{A} \le \sqrt{B} \to \begin{cases}
A \ge 0 \\
B \ge 0 \\
A \le B
\end{cases}$$

cioè per risolvere una disequazione con due radici quadrate basta isolare le radici ai due membri e risolvere il sistema formato dai radicandi posti maggiori o uguali a zero e dalla disequazione ottenuta elevando al quadrato entrambi i membri

1

gli schemi precedenti si possono applicare solo se, una volta isolate le radici ai due membri, gli stessi risultano positivi

disequazioni con radici cubiche

con una sola radice cubica	con due radici cubiche		
$\sqrt[3]{A} \geqslant B \rightarrow A \geqslant B^3$	$\sqrt[3]{A} \geqslant \sqrt[3]{B} \rightarrow A \geqslant B$		

cioè per risolvere una disequazione con radici cubiche basta isolare la (o le) radici ed elevare entrambi i membri al cubo

disequazioni con radici ad indice diverso

nel caso di disequazioni con radici ad indice diverso, si calcola il **mcm** degli indici, si portano le radici allo stesso indice (il mcm degli indici), si sviluppano i calcoli e si risolve la disequazione ottenuta applicando uno degli schemi precedenti. Se l'indice risultante è pari si usano gli schemi della radice quadrata, se è dispiari si usano gli schemi della radice cubica.

$$\sqrt{A} \geqslant \sqrt[3]{B} \rightarrow \sqrt[6]{A^3} \geqslant \sqrt[6]{B^2}$$