Lecture Module - Electrical Systems

ME3050 - Dynamic Modeling and Controls

Mechanical Engineering
Tennessee Technological University

Topic 4 - Mechatronics Applications

Electrical Systems

- What is Mechatronics?
- Example: DC Motor
- Governing Equations
- Model Derivation
- Response Equation

What is Mechatronics?

What is Mechatronics?

Example: DC Motor

Armature Controlled Brushed DC Motor

Field circuit

Example: DC Motor

Armature Controlled Brushed DC Motor

 v_a : armature voltage (input)

 R_a : armature resistance Torque on armature

$$T = (nBLi_a) r = (nBLr) i_a = K_T i_a$$

Back EMF (electromotive force) voltage

$$v_b = nBLv = (nBLr)\omega = K_b\omega$$

Example: DC Motor

Armature Controlled Brushed DC Motor

Kirchoff's Voltage Law

$$v_a - R_a i_a - L_a \frac{di_a}{dt} - K_b \omega = 0$$

Newtons's Second Law

$$I\frac{d\omega}{dt} = T - c\omega - T_L = K_T i_a - c\omega - T_L$$

lmage: System Dynamics, Palm, 4th, Pg. 376-378

Example: DC Motor

Animation on Web

source: wikipedia

Governing Equations

Governing Equations

Governing Equations

Model Derivation

Response Equation