平成21年度・平成20年度(10月期)		金沢大学大学院自然科学研究科			自然科学研究科	博士前期課程入学試験
		間	起	用	紙	
尊攻名	電子情報工学	***			and the second	
試験科目名	専門科目 ③電子回路	P.	3	∕5		

注:問1と間2の解答は別々の答案用紙に書くこと、

- 問1)図1に示すバイポーラトランジスタを用いた増幅回路について、以下の間に答えよ、
 - (1) 図 1(a) の回路の小信号等価回路を描け、ただし、バイポーラトランジスタの等価回路は図 1(b) で表す ものとする。また、交流信号に対して、各コンデンサのインピーダンスは十分小さいものとする。
 - (2) 図 I (a) の回路の電圧利得 G₀ = v_o / v_i を求めよ.
 - (3) 図 1(a) の回路において、 C_{ϵ} がないときの電圧利得 $G=v_{\epsilon}/v_{\epsilon}$ を求めよ、
 - (4) C_E がないときの回路を図 1 (c) に示す負帰還回路で表すとき、H を求めよ、なお、図 1 (c) における G_0 は、(2) で求めた G_0 である。

図 1 バイポーラトランジスタを用いた増幅回路

問 2. 図 2 に示す演算増幅器を用いた増幅回路について、以下の問に答えよ、ただし、演算増幅器 は理想的な特性(入力インピーダンスは無限大、出力インピーダンスはゼロ、電圧利得は無限大) を持つものとする。また、R₁ = 10 kΩとする。

- (1) 図 2 (a) の回路に対して回路網方程式を立て、利得 $G_0 = \nu_0 \vee \nu_1$ を求めよ、
- (2) R_2 が 10 $k\Omega$ から 1 $M\Omega$ まで変化するとき、利得 G_0 の取りうる範囲を求めよ、
- (3) 図 2 (b) の回路に対して回路網方程式を立て、利得 G₁= v₂/v₁を求めよ。
- (4) R_2 および R_3 がともに $\sqrt{10 \, k\Omega}$ から $1 \, M\Omega$ まで変化するとき、利得 G_1 の取りうる範囲を求めよ。

