

High-Nitrogen and High-Oxygen Chemistry

**R. Haiges,¹ S. Schneider,^{1,2}
T. Schroer,¹ CJ. Bigler Jones,¹
R. Wagner,¹ M. Yousufuddin,¹
M. Etzkorn,¹ G. K. Surya Prakash,¹
H. Taylor,¹ J. Boatz,²
W. Wilson,² K. Christe^{1,2}**

Report Documentation Page			Form Approved OMB No. 0704-0188	
Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.				
1. REPORT DATE JUL 2005	2. REPORT TYPE	3. DATES COVERED -		
4. TITLE AND SUBTITLE High-Nitrogen and High-Oxygen Chemistry			5a. CONTRACT NUMBER	
			5b. GRANT NUMBER	
			5c. PROGRAM ELEMENT NUMBER	
6. AUTHOR(S) R Haiges; S Schneider; J Boatz; W Wilson; K Christe			5d. PROJECT NUMBER 2303	
			5e. TASK NUMBER 0423	
			5f. WORK UNIT NUMBER	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Air Force Research Laboratory (AFMC),AFRL/PRSP,10 E. Saturn Blvd.,Edwards AFB,CA,93524-7680			8. PERFORMING ORGANIZATION REPORT NUMBER	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)			10. SPONSOR/MONITOR'S ACRONYM(S)	
			11. SPONSOR/MONITOR'S REPORT NUMBER(S)	
12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited				
13. SUPPLEMENTARY NOTES				
14. ABSTRACT N/A				
15. SUBJECT TERMS				
16. SECURITY CLASSIFICATION OF:			17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES 24
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	19a. NAME OF RESPONSIBLE PERSON	

Program Objectives

***Discover, synthesize, characterize, and scale-up
novel, highly energetic compounds***

Technical Approach:

- Exploit synergism between theory and synthesis
- Use calculations to identify the most promising candidates and predict their properties
- Employ experimental expertise to design synthetic approaches, prepare novel compounds, and characterize products

Outline

- Polynitrogen Chemistry
 - N_3^+ Chemistry
 - N_3NOF^+ and N_7O^+
 - New NMR Method
- Polyazide Chemistry
- Synthesis and Characterization of $\text{FN}(\text{NO}_2)_2$
- Stable Difluoramine Sources
- High-Oxygen Carriers and Oxidizer Balanced Ionic Liquids

Why are we interested in Polynitrogens?

The performance of polynitrogens as monopropellants would dwarf that of hydrazine, would greatly exceed even many bipropellants, and result in reduced signature

LPPN = Low performing polyN (N_5^+N_3^-);

HPPN = High performing polyN (cubic N_8)

Polynitrogens would also have great potential as high-performance explosives

Bulk Synthesis of N_3^+

- N_3^+ is a very promising candidate (is derived from a vibrationally stable radical and has high decomposition barrier)
- Studied F⁻ abstraction from FN₃ by strong Lewis acids
- Solved problem of synthesis and safe handling of FN₃ on a preparative scale, but found that N_a is a better donor than F
- HF addition to the FN₃-SbF₅ adduct, followed by N₂ elimination, results in the formation of NH₂F₂⁺ salts
- Are working on synthesis of XeN₃⁺ and its decomposition and on controlled photolytic decomposition of N₅⁺ as potential methods for the production of N₃⁺

Syntheses of N_3NOF^+ and N_7O^+

- The reactions

were studied in HF at $-78^\circ C$. $N_3NOF^+SbF_6^-$ was isolated and is stable up to $\sim 20^\circ C$. N_3NOF^+ exists as both a *z*- and an *e*-isomer.

- Nitrogen NMR spectroscopy is crucial for the identification of novel polynitrogen compounds. Unfortunately, ^{14}N has a large quadrupole moment which broadens most signals to a point where they become unobservable, and the natural abundance of ^{15}N (0.36%) is too low and its relaxation time too long to allow the observation of ^{15}N spectra without ^{15}N enrichment. Prof. Taylor has developed a **new NMR signal processing technique for the detection and enhancement of very weak NMR signals.**
- The power of this new method was demonstrated for the natural abundance ^{15}N spectrum of N_5^+ which allowed the observation of the complete spectrum with an excellent signal to noise ratio. We were also able to observe the ^{14}N - ^{15}N and ^{15}N - ^{15}N couplings in a partially ^{15}N enriched spectrum.

- Same raw natural abundance ^{15}N data processed by the new and the conventional FT NMR methods for N_5^+ .

New Method

Conventional
NMR

New Method

Conventional
FT NMR

Avoiding Enrichment

- One azido group contributes ~ 80 kcal/mol of endothermicity to a compound.
- Polyazides are highly energetic, sensitive materials which can be used for primary explosives. Typical example: $\text{Pb}(\text{N}_3)_4$.
- Have recently prepared and characterized numerous polyazides of S, Te, P, As, Sb, Ti, Mo and W, including spectacular compounds, such as $\text{N}_5^+[\text{P}(\text{N}_3)_6]^-$ and $\text{N}_5^+[\text{B}(\text{N}_3)_4]^-$.
- Results were published in a series of papers in Angewandte Chemie and Chemistry, A European Journal.

Synthesis of First Group 5 Binary Azides, $\text{Nb}(\text{N}_3)_5$, $\text{Ta}(\text{N}_3)_5$, $\text{Nb}(\text{N}_3)_5 \cdot \text{CH}_3\text{CN}$ and $[\text{Nb}(\text{N}_3)_6]^-$

- Synthesized $\text{M}(\text{N}_3)_5$ ($\text{M} = \text{Nb}, \text{Ta}$) in SO_2 according to

Both compounds are very sensitive and unstable. Raman spectra were recorded.

- Synthesized the adducts $\text{M}(\text{N}_3)_5 \cdot \text{CH}_3\text{CN}$ ($\text{M} = \text{Nb}, \text{Ta}$) according to

- Synthesized the anions $[\text{M}(\text{N}_3)_6]^-$ ($\text{M} = \text{Nb}, \text{Ta}$) according to

Structures of $Nb(N_3)_5$ and $Ta(N_3)_5$

- Contain both linear and bent M-N-N bonds
- Calculated structures are supported by observed Raman spectra

Crystal Structures of $Nb(N_3)_5 \cdot CH_3CN$ and $[Nb(N_3)_6]^-$

$Nb-N-N = 169^\circ$

First exp. evidence
for existence of
linear M-N-N bonds

Explanation for Linear M-N-N Bonds

Bonding schemes for transition metal azides (from top to bottom): (i) ionic azide, showing for didactic reasons the azide ion in one of its asymmetric resonance structures and only some of the empty s_2d_{10} orbitals on M; (ii) strongly bent two-center/monodative bond; (iii) moderately bent two-center/bidative bond; (iv) linear two-center/tridative bond.

IONIC
 $\mathbf{M}^+ \quad \mathbf{N}_3^-$

2c-1d
 $(\mathbf{M}-\mathbf{N}_\alpha-\mathbf{N}_\beta)=109.5^\circ$

2c-2d
 $(\mathbf{M}-\mathbf{N}_\alpha-\mathbf{N}_\beta)=125.5^\circ$

2c-3d
 $(\mathbf{M}-\mathbf{N}_\alpha-\mathbf{N}_\beta)=180.0^\circ$

Molybdenum and Tungsten Azides

- $\text{Mo}(\text{N}_3)_6$ and $\text{W}(\text{N}_3)_6$ are the first examples of neutral hexaaazides and binary Group VI azides. They were prepared from MoF_6 and WF_6 , respectively.

- Both compounds are highly shock sensitive and were characterized by low-temperature Raman spectroscopy and, in the case of $\text{W}(\text{N}_3)_6$, also by its crystal structure.

First Hepta-Azides

- Synthesized the $[W(N_3)_7]^-$, $[Mo(N_3)_7]^-$, $[Nb(N_3)_7]^{2-}$, $[Ta(N_3)_7]^{2-}$ anions

Possible arrangements for CN 7

$M(N_3)_7$ anions have 2 : 4 : 1 structures

Synthesis of Nitrido-Azides

- Solid $[PPh_4][W(N_3)_7]$ and $[PPh_4][Mo(N_3)_7]$ are very sensitive compounds and decompose explosively. However, in solution at $-30^{\circ}C$, partial N_2 evolution occurs with formation of nitrido-azides.

Oxoazides

- $\text{WO}(\text{N}_3)_4$, $[\text{cis-WO}_2(\text{N}_3)_4]^{2-}$, $[\text{trans-WO}_2(\text{N}_3)_4]^{2-}$, $[\text{MoO}(\text{N}_3)_5]^{2-}$, and $[\text{NbO}(\text{N}_3)_5]^{2-}$, **the first examples of transition metal oxoazides**, were prepared and characterized by their crystal structures and vibrational spectroscopy
- $[\text{trans-UO}_2(\text{N}_3)_4]^{2-}$, **the first example of an actinide oxoazide**, was also prepared and characterized by its crystal structure

Transition from Ionic to Covalent Azides

- Obtained crystal structures of $M(Ph)_4N_3$ where $M = P, As, Sb$
- $P(Ph)_4N_3$ and $As(Ph)_4N_3$ are ionic, while $Sb(Ph)_4N_3$ is covalent

Synthesis and Characterization of *FN(NO₂)₂*

- Prepared $\text{NF}_4^+\text{N}(\text{NO}_2)_2^-$ at low temp in SO_2 solution

and decomposed it according to:

- $\text{FN}(\text{NO}_2)_2$ was characterized by low-temperature multinuclear NMR spectroscopy and is unstable at room temperature
- Efforts are in progress to isolate it in pure form

SO₃NF₂⁻, a Stable Difluoramine Source

- Stable, safely storable sources for the generation of the highly explosive HNF₂ are of great interest for the synthesis of **gem-bis-difluoramino compounds**.
- In previous work, we have demonstrated the potential of (C₆H₅)₃CNF₂ for this application. However, the synthesis of (C₆H₅)₃CNF₂ requires pressurizing N₂F₄ in chlorobenzene solution and mercury and is cumbersome and dangerous.
- We have searched for a more convenient and accessible stable HNF₂ source. We found that alkali metal salts of the previously unknown SO₃NF₂⁻ anion can be prepared by a simple, one-step, direct fluorination of the sulfamate anion in water

The SO₃NF₂⁻ and related SO₃NHF⁻ salts were characterized by their crystal structures, vibrational and NMR spectroscopy, and theoretical calculations, and **shown to be excellent stable reagents for converting carbonyl groups into gem-bis-NF₂ groups**.

Crystal Structures of $SO_3NF_2^-$ and SO_3NHF^-

High-Oxygen Carriers and Ionic Liquid Propellants

- Ionic liquids have great potential for liquid propellants (Christe, Drake, pending US Patent).
- Because the bulky cations require large amounts of oxygen for complete combustion and high performance, there is a great need for high-oxygen carrying anions.
- We have investigated the usefulness of the tetranitrato-borate and tetranitrato-aluminate anions for these applications, and their ability to form room temperature ionic liquids.
- We have prepared and characterized numerous tetranitrato-borate salts. Although 1-ethyl-3-methyl imidazolium tetranitrato-borate forms a low freezing (-30 °C) ionic liquid, its thermal stability of 60 °C is insufficient for practical applications.

High-Oxygen Carriers and Ionic Liquid Propellants

- Replacement of $[B(NO_3)_4]^-$ by $[Al(NO_3)_4]^-$ was highly successful.
- We prepared and characterized 1-ethyl-3-methyl imidazolium tetranitrato-aluminate:
 - Thermal stability (DSC): >200 °C
 - Freezing Point = -30 °C
 - $\rho = 1.508 \text{ g/cm}^3$
 - Dropweight, negative at 10 kg·cm
 - Friction, 24 kg
 - Calcd Isp = 261 sec
- We are presently preparing tetrazolium tetranitrato-aluminates with predicted Isp values of 280-290 sec.

Conclusions

- Excellent progress is being made in the area of polynitrogen chemistry (N_3^+ , N_3NOF^+ , N_7O^+).
- A large number of novel polyazides, nitrido-azides and oxo-azides were prepared and characterized.
- A new NMR data processing method was developed and applied to N_5^+ which allows the observation of ^{15}N NMR spectra in natural abundance.
- The new $\text{FN}(\text{NO}_2)_2$ molecule was synthesized and characterized.
- The novel $\text{M}^+\text{SO}_3\text{NF}_2^-$ salts were synthesized and characterized, and their usefulness for preparing *gem*-bis-difluoramino compounds was demonstrated.
- High-oxygen carrying anions hold great promise for oxidizer-balanced, ionic liquid propellants.