Проверка гипотезы о нормальном распределении случайных величин

Импорт необходимых библиотек

```
import math
import warnings

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from scipy import stats

pd.options.mode.copy_on_write = True
warnings.filterwarnings("ignore")
```

Чтение и загрузка исходных и сохраненных ранее данных

Чтение исходных данных

Загрузим наши исходные данные сразу в серию **ds**:

```
In [2]: ds = pd.read_csv("data.txt", header=None)[0]
Out[2]: 0
              62,205030
              57.438075
        1
              59.852134
              56.268755
             58.469126
        123 58.991015
        124 63.145081
        125
              58.386862
        126
              60.965588
        127
              59.430169
        Name: 0, Length: 128, dtype: float64
```

Загрузка сохраненных результатов расчета

Чтение файла "result_statistics.csv":

```
In [3]: data = pd.read_csv("result_statistics.csv", delimiter=",", header=None)
    data
```

```
Out[3]:
                                1
         0
                count 128.000000
         1
                 M(X)
                        60.123230
         2
                Mo(X)
                        59.047368
         3
                Me(X)
                        60.167023
         4
                 D(X)
                        9.023117
         5 Std_dev(X)
                         3.003850
             Skewness
                        -0.225097
         7
              Kurtosis
                        -0.373055
```

Приведем полученный DataFrame к прежнему виду.

Для этого пересохраним его столбец 1 как объект Series:

```
In [4]: result_statistics = pd.Series(data=data[1])
        result_statistics
Out[4]: 0
             128.000000
              60.123230
        1
        2
              59.047368
        3
              60.167023
        4
               9.023117
        5
               3.003850
              -0.225097
        7
              -0.373055
        Name: 1, dtype: float64
        И перепишем в нем индексы согласно столбцу 0 исходного DataFrame:
```

```
In [5]:
        result_statistics.index = data[0]
        result_statistics
Out[5]: 0
                      128,000000
        count
        M(X)
                      60.123230
        Mo(X)
                      59.047368
        Me(X)
                      60.167023
        D(X)
                       9.023117
        Std_dev(X)
                       3.003850
        Skewness
                       -0.225097
        Kurtosis
                       -0.373055
        Name: 1, dtype: float64
```

Загрузка таблицы с основой вариационного ряда

```
In [6]: table_2 = pd.read_csv("table_2.csv", delimiter=",", index_col=0)
        table_2
```

Out[6]:		x_left	x_right	x_avr	n_f	p_f
	0	51.790	53.747	52.7685	3	0.023438
	1	53.747	55.704	54.7255	7	0.054688
	2	55.704	57.661	56.6825	15	0.117188
	3	57.661	59.619	58.6400	32	0.250000
	4	59.619	61.576	60.5975	25	0.195312
	5	61.576	63.533	62.5545	31	0.242188
	6	63.533	65.490	64.5115	12	0.093750
	7	65.490	67.448	66.4690	3	0.023438

Приведение вариационного ряда к стандартному нормальному виду

Рассчитаем нормированные значения границ интервалов по формуле

$$t_i = rac{x_i - M(X)}{\sigma(X)}:$$

Out[7]:		x_left	x_right	x_avr	n_f	p_f	t_left	t_right
	0	51.790	53.747	52.7685	3	0.023438	-2.774183	-2.122686
	1	53.747	55.704	54.7255	7	0.054688	-2.122686	-1.471189
	2	55.704	57.661	56.6825	15	0.117188	-1.471189	-0.819691
3	3	57.661	59.619	58.6400	32	0.250000	-0.819691	-0.167861
	4	59.619	61.576	60.5975	25	0.195312	-0.167861	0.483636
	5	61.576	63.533	62.5545	31	0.242188	0.483636	1.135133
	6	63.533	65.490	64.5115	12	0.093750	1.135133	1.786630
	7	65.490	67.448	66.4690	3	0.023438	1.786630	2.438460

Заменим внешние границы крайних интервалов на $-\infty$ и $+\infty$:

```
In [8]: table_2.loc[min(table_2.index), "t_left"] = -float("inf")
  table_2.loc[max(table_2.index), "t_right"] = float("inf")
```

Out[8]:		x_left	x_right	x_avr	n_f	p_f	t_left	t_right
	0	51.790	53.747	52.7685	3	0.023438	-inf	-2.122686
	1	53.747	55.704	54.7255	7	0.054688	-2.122686	-1.471189
	2	55.704	57.661	56.6825	15	0.117188	-1.471189	-0.819691
	3	57.661	59.619	58.6400	32	0.250000	-0.819691	-0.167861
	4	59.619	61.576	60.5975	25	0.195312	-0.167861	0.483636
	5	61.576	63.533	62.5545	31	0.242188	0.483636	1.135133
	6	63.533	65.490	64.5115	12	0.093750	1.135133	1.786630
	7	65.490	67.448	66.4690	3	0.023438	1.786630	inf

Создание объекта "нормального распределения"

Создадим из пакета stats библиотеки scipy объект стандартного нормального распределения с параметрами M(X)=0 и $\sigma(X)=1$.

Функция stats.norm(loc, scale) принимает две переменных:

- loc Математическое ожидание;
- **scale** Среднеквадратическое отклонение.

```
In [9]: expected_value = 0
std_dev = 1

norm_distribution = stats.norm(loc=expected_value, scale=std_dev)
norm_distribution
```

Out[9]: <scipy.stats._distn_infrastructure.rv_continuous_frozen at 0x115a40d70>

Сохраненный в переменной norm_distribution объект позволяет:

- .rvs(size=1, random_state=None) генерировать выборки случайных величин из полученного закона;
- $\mathsf{.pdf}(\mathsf{x})$ получать значения функции плотности распределения f(x);
- $\mathsf{Lcdf}(\mathsf{x})$ получать значения функции распределения F(x);
- .ppf(k) получать процентную точку распределения по вероятности (обратно методу .cdf(x)).

Сгенерируем для примера массив из 10 случайных величин, подчиняющихся созданному нами нормальному закону распределения:

```
In [10]: n = 10
    norm_distribution.rvs(size=n)
```

```
Out[10]: array([-0.74192572, -0.02144121, 1.65364733, 0.3750158, -0.47542067, 1.66143381, 0.96784331, -1.22285659, -0.79811476, -0.75242191])
```

При перезапуске предыдущей ячейки мы каждый раз будем получать новые значения. Для того, чтобы этого избежать, необходимо указать значение дополнительной переменной **random_state**, фиксирующей начальную точку работы генератора случайных чисел:

Построим графики функции распределения F(x) и плотности распределения f(x) для стандартного нормального закона:

Определим область построения графика по оси x ограничив значения аргументов вероятностью попадания случайной величины в пределах от $P_0=(0.001\dots0.999)$:

```
In [12]: norm_distribution.ppf(0.001), norm_distribution.ppf(0.999)
```

Out[12]: (-3.090232306167813, 3.090232306167813)

Разобьем этот отрезок на один массив с шагом 0.1:

```
Out[13]: array([-3.09023231, -2.99023231, -2.89023231, -2.79023231, -2.69023231, -2.59023231, -2.49023231, -2.39023231, -2.29023231, -2.19023231, -2.09023231, -1.99023231, -1.89023231, -1.79023231, -1.69023231, -1.59023231, -1.49023231, -1.39023231, -1.29023231, -1.19023231, -1.09023231, -0.99023231, -0.89023231, -0.79023231, -0.69023231, -0.59023231, -0.49023231, -0.39023231, -0.29023231, -0.19023231, -0.09023231, -0.09023231, -0.19023231, -0.09023231, -0.09023231, -0.19023231, -0.19023231, -0.09023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0.19023231, -0
```

Построим сам график функции плотности распределения функции f(x) и функции распределения F(x) применив функционал библиотеки f(x) matplotlib:

• Создадим область построения графика:

```
In [14]: fig, ax = plt.subplots()
   plt.show()
```


• Построим график функции плотности распределения функции f(x):

Функция .pdf(x) рассчитает значения функции плотности распределения f(x) во всех точках массива x:

```
In [15]: # Создадим массив аргументов для функции
         x = np.arange(norm_distribution.ppf(0.001),
                       norm_distribution.ppf(0.999), 0.1)
         # Рассчитаем значения функции плотности распределения вероятностей
         norm distribution.pdf(x)
Out[15]: array([0.00336709, 0.00456342, 0.00612326, 0.00813454, 0.01069891,
                 0.01393168, 0.01796074, 0.02292462, 0.02896924, 0.03624342,
                 0.04489297, 0.05505344, 0.06684173, 0.08034669, 0.09561925,
                 0.11266258, 0.13142293, 0.15178178, 0.17355023, 0.19646617,
                 0.220195 , 0.24433415, 0.26842189, 0.29195019, 0.31438125,
                 0.33516725, 0.35377209, 0.36969418, 0.38248879, 0.39178867,
                 0.39732151, 0.39892325, 0.39654609, 0.39026091, 0.38025373,
                 0.36681659, 0.35033337, 0.33126161, 0.31011142, 0.28742297,
                 0.26374378, 0.2396073 , 0.21551372, 0.19191409, 0.16919824,
                 0.14768687, 0.12762771, 0.1091956 , 0.09249587, 0.0775705 ,
                 0.06440623, 0.05294394, 0.04308853, 0.03471876, 0.02769643,
                 0.02187461, 0.01710464, 0.01324173, 0.01014921, 0.00770153,
                 0.00578601, 0.00430366])
```

• Подставим необходимые значения в функции построения графика:

• Добавим к графику "легенду" и сетку:

• Добавим график функции распределения функции F(x):

Функция .cdf(x) работает аналогично функции .pdf(x) только рассчитывает значения функции распределения F(x):

```
In [18]: # Создание области построения графика
         fig, ax = plt.subplots()
         # Создание списка аргументов для функций
         x = np.arange(norm_distribution.ppf(0.001),
                       norm_distribution.ppf(0.999), 0.1)
         # Построение графика функции плотности распределения функции f(x) на оси ах
         ax.plot(x, norm_distribution.pdf(x),
                 label="Функция плотности \праспределения $f(X)$", lw=2)
         # Построение графика функции распределения F(x) на оси ах
         ax.plot(x, norm_distribution.cdf(x),
                 label="Функция распределения $F(X)$", lw=2)
         # Вывод сетки на график
         ax.grid()
         # Вывод легенды графика
         ax.legend(loc="upper left")
         # Показ графика
         plt.show()
```


Проверка гипотезы о нормальности распределения по критерию χ^2 Пирсона

Найдем теоретические частости $p_{\scriptscriptstyle \mathrm{T}}$ и частоты $n_{\scriptscriptstyle \mathrm{T}}$ попадания в интервалы

Рассчитаем значения $\frac{1}{2}\Phi(t_i)$ эквивалентные полученным ранее значением из таблицы интеграла вероятности

```
In [19]:  \begin{array}{ll} \mbox{table}\_2["1/2\Phi(t_{_{}}\Pi)"] = 0.5 * (norm\_distribution.cdf(table}\_2["t\_left"]) - \\ & \mbox{norm\_distribution.cdf(-table}\_2["t\_left"])) \\ \mbox{table}\_2["1/2\Phi(t_{_{}}\Pi p)"] = 0.5 * (norm\_distribution.cdf(table}\_2["t\_right"]) - \\ & \mbox{norm\_distribution.cdf(-table}\_2["t\_right"])) \\ \mbox{table}\_2[["t\_left", "t\_right", "n_f", "p_f", "1/2\Phi(t_{_{}}\Pi)", "1/2\Phi(t_{_{}}\Pi p)"]] \\ \end{array}
```

Out[19]:		t_left	t_right	n_f	p_f	1/2Ф(t_л)	1/2Ф(t_пр)
	0	-inf	-2.122686	3	0.023438	-0.500000	-0.483110
	1	-2.122686	-1.471189	7	0.054688	-0.483110	-0.429380
	2	-1.471189	-0.819691	15	0.117188	-0.429380	-0.293804
	3	-0.819691	-0.167861	32	0.250000	-0.293804	-0.066654
	4	-0.167861	0.483636	25	0.195312	-0.066654	0.185678
	5	0.483636	1.135133	31	0.242188	0.185678	0.371840
	6	1.135133	1.786630	12	0.093750	0.371840	0.463001
	7	1.786630	inf	3	0.023438	0.463001	0.500000

Найдем теоретические частости

$$p_{\scriptscriptstyle
m T} = rac{1}{2} \Phi(t_{\scriptscriptstyle
m IIp}) - rac{1}{2} \Phi(t_{\scriptscriptstyle
m I}):$$

Out[20]:		t_left	t_right	n_f	p_f	p_t
	0	-inf	-2.122686	3	0.023438	0.016890
	1	-2.122686	-1.471189	7	0.054688	0.053730
	2	-1.471189	-0.819691	15	0.117188	0.135576
	3	-0.819691	-0.167861	32	0.250000	0.227150
	4	-0.167861	0.483636	25	0.195312	0.252332
	5	0.483636	1.135133	31	0.242188	0.186162
	6	1.135133	1.786630	12	0.093750	0.091161
	7	1.786630	inf	3	0.023438	0.036999

Проверим, что сумма полученных частостей $p_{\scriptscriptstyle \rm T}$ равна единице:

Out[21]: 1.0

Рассчитаем теоретические частоты

$$n_{_{
m T}}=p_{_{
m T}}\cdot N:$$

Out[22]:		t_left	t_right	n_f	p_f	1/2Ф(t_л)	1/2Ф(t_пр)	p_t	n_t
2	0	-inf	-2.122686	3	0.023438	-0.500000	-0.483110	0.016890	2.161932
	1	-2.122686	-1.471189	7	0.054688	-0.483110	-0.429380	0.053730	6.877435
	2	-1.471189	-0.819691	15	0.117188	-0.429380	-0.293804	0.135576	17.353722
	3	-0.819691	-0.167861	32	0.250000	-0.293804	-0.066654	0.227150	29.075220
	4	-0.167861	0.483636	25	0.195312	-0.066654	0.185678	0.252332	32.298451
	5	0.483636	1.135133	31	0.242188	0.185678	0.371840	0.186162	23.828785
6	6	1.135133	1.786630	12	0.093750	0.371840	0.463001	0.091161	11.668629
	7	1.786630	inf	3	0.023438	0.463001	0.500000	0.036999	4.735826

Проверим, что $\sum n_{\scriptscriptstyle
m T} = N$:

Out[23]: 128.0

Вычислим χ^2 -расстояние для каждого интервала

$$rac{(n_{\phi_i} - n_{_{{
m T}_i}})^2}{n_{_{{
m T}_i}}}$$
 :

Out[24]:		t_left	t_right	n_f	p_f	p_t	n_t	(n_f-n_t)^2 / n_t
	0	-inf	-2.122686	3	0.023438	0.016890	2.161932	0.324875
	1	-2.122686	-1.471189	7	0.054688	0.053730	6.877435	0.002184
	2	-1.471189	-0.819691	15	0.117188	0.135576	17.353722	0.319240
	3	-0.819691	-0.167861	32	0.250000	0.227150	29.075220	0.294214
	4	-0.167861	0.483636	25	0.195312	0.252332	32.298451	1.649224
	5	0.483636	1.135133	31	0.242188	0.186162	23.828785	2.158160
	6	1.135133	1.786630	12	0.093750	0.091161	11.668629	0.009410
	7	1.786630	inf	3	0.023438	0.036999	4.735826	0.636234

Тогда фактическое значение χ_f^2 будет равно:

$$\chi_f^2 = \sum_{i=1}^n rac{(n_{oldsymbol{\varphi}_i} - n_{_{oldsymbol{\mathsf{T}}_i}})^2}{n_{_{oldsymbol{\mathsf{T}}_i}}}$$

Out[25]: 5.393542387781168

Создание объекта " χ^2 распределения Пирсона"

Функция stats.chi2(df) принимает одну переменную:

• df - Количество степеней свобод.

Для примера построим на одном графике несколько χ^2 распределений при степенях свобод от $\mathbf{start_df}$ до $\mathbf{end_df}$:

В контексте нашей задачи дельта степеней свобод (delta degrees of freedom) равна 2, тогда в общем случае у нашего распределения останется:

$$r = n - 1 - ddof$$

степеней свобод.

Out[27]: 5

Создадим сам объект χ^2 распределения Пирсона:

Out [29]: 11.070497693516351

Проверим нашу гипотезу по критерию Пирсона:

$$\chi^2_{fact} \leq \chi^2_{p_0}$$

Out[30]: 'Гипотеза не отвергается'

Построим график χ^2 распределения

• Построим функцию плотности ранее полученного χ^2 распределения chi2_distribution:

• Отметим на графике область принятия и отрицания гипотезы:

```
In [32]: fig, ax = plt.subplots()
x = np.arange(chi2_distribution.ppf(0), chi2_distribution.ppf(0.999), 0.1)
```

```
ax.plot(x, chi2_distribution.pdf(x),
        label=f"$\chi^2$ распределение при df: {degrees of freedom}")
# Выбор аргументов из x попадающих в промежуток x < chi2\_critical
x qr = x[x < chi2 critical]
# Заливка области принятия гипотезы
ax.fill_between(x_gr,
                chi2 distribution.pdf(x[x < chi2 critical]),</pre>
                color="g", alpha=1.0,
                facecolor="none", hatch="\\",
                label="Область принятия гипотезы")
# Выбор аргументов из х попадающих в промежуток chi2_critical < х < х_тах
x \text{ red} = x[(x>\text{chi2 critical}) \& (x< max(x))]
# Заливка области отрицания гипотезы
ax.fill_between(x_red,
                chi2_distribution.pdf(x_red),
                alpha=1.0, color="r",
                facecolor="none", hatch="/",
                label="Область отрицания гипотезы")
# Построение линий разделяющих области
# Горизонтальная линия от точки (0, 0) длиной \max(x)
ax.hlines(0, 0, max(x), lw=1, color="black")
# Вертикальная линия от точки (chi2_critical, 0) высотой f(chi2_critical)
ax.vlines(chi2_critical, 0,
          chi2_distribution.pdf(chi2_critical), color="black", lw=1)
plt.legend()
plt.show()
```


• Добавим на график наше фактическое значение χ^2 :

```
In [33]: fig, ax = plt.subplots()
         x = np.arange(chi2\_distribution.ppf(0), chi2\_distribution.ppf(0.999), 0.1)
         ax.plot(x, chi2 distribution.pdf(x),
                 label=f"$\chi^2$ распределение при df: {degrees_of_freedom}")
         # Выбор аргументов из x попадающих в промежуток x < chi2 critical
         x qr = x[x < chi2 critical]
         # Заливка области принятия гипотезы
         ax.fill between(x gr,
                          chi2_distribution.pdf(x[x < chi2_critical]),</pre>
                          color="g", alpha=1.0,
                          facecolor="none", hatch="\\",
                          label="Область принятия гипотезы")
         # Выбор аргументов из x попадающих в промежуток chi2 critical < x < x max
         x_red = x[(x>chi2_critical) & (x< max(x))] # & (x<z)
         # Заливка области отрицания гипотезы
         ax.fill between(x red,
                          chi2_distribution.pdf(x_red),
                          alpha=1.0, color="r",
                          facecolor="none", hatch="/",
                          label="Область отрицания гипотезы")
         # Построение линий, разделяющих области
         # Горизонтильная линия от точки (0, 0) длиной \max(x)
         ax.hlines(0, 0, max(x), lw=1, color="black")
         # Вертикальная линия от точки (chi2_critical, 0) высотой f(chi2_critical)
         ax.vlines(chi2 critical, 0,
                   chi2_distribution.pdf(chi2_critical), color="black", lw=1)
         # Заливка области фактической доверительной вероятности
         ax.fill between(x[x < chi square fact],
                          chi2_distribution.pdf(x[x < chi_square_fact]),</pre>
                          color="b", alpha=1.0,
                          facecolor="none", hatch="0",
                          label="Фактическая доверительная \nвероятность")
         # Построение вертикальной границы в точке chi square fact
         ax.vlines(chi_square_fact, 0,
                   chi2 distribution.pdf(chi square fact), color="black", lw=1)
         plt.legend()
         # Сохраним полеченный график в файл "f(x)_graf.png"
         plt.savefig("Pirson test.png")
         plt.show()
```


Проверка гипотезы по критерию Пирсона стандартными средствами

Используем функцию stats.chisquare(f_obs, f_exp, ddof) из библиотеки scipy

Переменные:

- **f_obs** список фактических частот n_f , попавших в интервалы;
- **f_exp** список ожидаемых теоретических частот n_t ;
- **ddof** дельта степеней свобод (в нашем случае 2 (переменная **ddof** была определена ранее)).

Out[34]: Power_divergenceResult(statistic=5.393542387781168, pvalue=0.36976058549690 96)

В результате создания объекта мы видим рассчитанное значение **chi_square_fact** и значение pvalue paвное:

$$pvalue = 1 - P_{0_{fact}}$$

Сравним эти значения с теми, что мы получили ранее:

```
In [35]: p_val = 1 - chi2_distribution.cdf(chi_square_fact)
    chi_square_fact, p_val
```

Out[35]: (5.393542387781168, 0.3697605854969096)

Получить сами значения из объекта χ^2 теста можно обратившись к атрибутам объекта напрямую:

```
In [36]: chi_square_fact_scipy = chi_test_scipy.statistic
    p_val_scipy = chi_test_scipy.pvalue
    chi_square_fact_scipy, p_val_scipy
```

Out[36]: (5.393542387781168, 0.3697605854969096)

Альтернативный расчет значений теоретической частоты $n_{\scriptscriptstyle \mathrm{T}}$

Создадим новую подтаблицу table_3 из таблицы table_2

```
In [37]: table_3 = table_2[["x_left", "x_right", "n_f"]]
  table_3
```

```
Out[37]:
            x_left x_right n_f
         0 51.790 53.747
                           3
         1 53.747 55.704
                          7
         2 55.704 57.661
                         15
         3 57.661 59.619
                          32
         4 59.619 61.576
                         25
         5 61.576 63.533
                          31
         6 63.533 65.490
                         12
         7 65.490 67.448
                           3
```

Заменим крайние значения интервалов на $\pm\infty$:

```
In [38]: table_3.loc[min(table_3.index), "x_left"] = -float("inf")
table_3.loc[max(table_3.index), "x_right"] = float("inf")
table_3
```

```
Out[38]:
              x_left x_right n_f
          0
                -inf
                      53.747
                               3
             53.747
                      55.704
                               7
             55.704
                      57.661
                              15
             57.661
                      59.619
                              32
             59.619
                      61.576
                              25
            61.576
                     63.533
                              31
          6 63.533 65.490
                              12
          7 65.490
                         inf
                               3
```

Создадим объект нормального распределения с нашими параметрами M(x) и $\sigma(x)$:

Рассчитаем значения теоретических вероятностей p_t как разность значений функции распределения

$$p_{t_i} = F(x_{{\mathrm{np}}_i}) - F(x_{{\mathrm{n}}_i})$$

```
Out[40]:
              x_left x_right n_f
                                        p_t
          0
                -inf
                      53.747
                                  0.016890
             53.747
                      55.704
                                  0.053730
          2 55.704
                      57.661
                              15
                                   0.135576
             57.661
                      59.619
                              32
                                   0.227150
             59.619
                      61.576
                              25
                                  0.252332
             61.576
                     63.533
                              31
                                   0.186162
          6 63.533
                     65.490
                              12
                                   0.091161
          7 65.490
                         inf
                               3 0.036999
```

Проверим, что $\sum p_t = 1$:

```
In [41]: table_3.sum()["p_t"]
```

Out[41]: 1.0 Рассчитаем теоретические частоты n_t как $p_t \cdot N$: In [42]: table_3["n_t"] = table_3["p_t"] * result_statistics["count"] table_3 Out[42]: x_left x_right n_f p_t n_t -inf 53.747 3 0.016890 2.161932 **1** 53.747 55.704 7 0.053730 6.877435 **2** 55.704 57.661 15 0.135576 17.353722 57.661 59.619 32 0.227150 29.075220 59.619 61.576 25 0.252332 32.298451 **5** 61.576 63.533 31 0.186162 23.828785 **6** 63.533 65.490 12 0.091161 11.668629 **7** 65.490 inf 3 0.036999 4.735826 Проверим, что $\sum n_t = N$: In [43]: table_3.sum()["n_t"] Out[43]: 128.0 Сравним полученные значения с **table_2**: In [44]: table_2[["x_left", "x_right", "n_f", "p_t", "n_t"]] Out[44]: x_left x_right n_f p_t n_t **0** 51.790 53.747 3 0.016890 2.161932 7 0.053730 6.877435 **1** 53.747 55.704 **2** 55.704 57.661 15 0.135576 17.353722 57.661 32 0.227150 29.075220 59.619 59.619 61.576 25 0.252332 32.298451

Критерий Колмогорова-Смирнова

0.186162 23.828785

0.091161 11.668629

3 0.036999 4.735826

5 61.576

6 63.533 65.490

7 65.490 67.448

63.533

31

12

Для проверки гипотезы о нормальности распределения по критерию Колмогорова-Смирнова рассчитаем накопленные фактические $p_{\scriptscriptstyle \mathrm{T}}$ и теоретические $p_{\scriptscriptstyle \mathrm{T}}$ частоты:

Out[45]:		x_left	x_right	n_f	p_f	p_t	n_t	p_f_cum	p_t_cum
	0	51.790	53.747	3	0.023438	0.016890	2.161932	0.023438	0.016890
	1	53.747	55.704	7	0.054688	0.053730	6.877435	0.078125	0.070620
2	2	55.704	57.661	15	0.117188	0.135576	17.353722	0.195312	0.206196
	3	57.661	59.619	32	0.250000	0.227150	29.075220	0.445312	0.433346
4	4	59.619	61.576	25	0.195312	0.252332	32.298451	0.640625	0.685678
	5	61.576	63.533	31	0.242188	0.186162	23.828785	0.882812	0.871840
(6	63.533	65.490	12	0.093750	0.091161	11.668629	0.976562	0.963001
	7	65.490	67.448	3	0.023438	0.036999	4.735826	1.000000	1.000000

$$D = |\sum p_{\rm p} - \sum p_{\rm t}|$$

Out[46]: -		x_left	x_right	p_f	p_t	p_f_cum	p_t_cum	D
	0	51.790	53.747	0.023438	0.016890	0.023438	0.016890	0.006547
	1	53.747	55.704	0.054688	0.053730	0.078125	0.070620	0.007505
_	2	55.704	57.661	0.117188	0.135576	0.195312	0.206196	0.010884
	3	57.661	59.619	0.250000	0.227150	0.445312	0.433346	0.011966
	4	59.619	61.576	0.195312	0.252332	0.640625	0.685678	0.045053
5	5	61.576	63.533	0.242188	0.186162	0.882812	0.871840	0.010972
	6	63.533	65.490	0.093750	0.091161	0.976562	0.963001	0.013561
	7	65.490	67.448	0.023438	0.036999	1.000000	1.000000	0.000000

Найдем максимальную разность D:

```
In [47]: d_max = max(table_2["D"])
d_max
```

Out[47]: 0.04505281546172535

Фактическое значение статистики λ может быть найдено по формуле:

$$\lambda_f = D_{ ext{max}} \cdot \sqrt{N}$$

```
In [48]: lambda_fact = d_max * result_statistics["count"] ** 0.5
lambda_fact
```

Out[48]: 0.5097144211925141

Критеческое значение λ для доверительной вероятности P_0 при $P_0 \approx 1$ может быть найдено по формуле:

$$\lambda_{P_0}pprox \sqrt{-rac{1}{2} ext{ln} rac{1-P_0}{2}}$$

Out[49]: 1.3581015157406193

Проверим нашу гипотезу по критерию Колмогорова-Смирнова:

$$\lambda_{fact} \leq \lambda_{p_0}$$

Out[50]: 'Гипотеза не отвергается'

Проверка гипотезы по критерию Колмогорова-Смирнова стандартными средствами

Используем функцию stats.kstest(rvs, cdf, args) из библиотеки scipy

Переменные:

- rvs выборка значений, для которой выполняется проверка;
- cdf функция плотности распределения F(x) проверяемого закона распределения;
- args необходимые параметры для расчета функции плотности распределения F(x) (могут быть определены при создании объекта закона

распределения).

Выполним проверку по критерию Колмогорова-Смирнова для исходного набора данных из нашей серии **ds** с параметрами нормального распределения расчитанными из вариационного ряда:

Аналогичный результат может быть получен с помощью явной передачи параметров нормального закона при создании объекта распределения:

Мы можем напрямую рассчитать необходимые нам параметры нормального закона, применив к исходной серии **ds** методы .mean() и std():

```
In [53]: stats.kstest(ds, stats.norm(loc=ds.mean(), scale=ds.std()).cdf)
```

отметим, что в последнем случае мы получили меньшее значение статистики D (атрибут statistic полученного объекта KstestResult), что объясняется более точными значениями M(x) и $\sigma(x)$, получаемыми из исходной серии данных ${\bf ds}$ напрямую.

Построим графики функции плотности распределения f(x) и функции распределения F(x)

График функции плотности распределения f(x)

Создадим список с границами интервалов из вариационного ряда:

```
In [54]: bins = list(table 2["x left"])
         bins.append(table_2["x_right"][max(table_2.index)])
Out[54]: [51.79, 53.747, 55.704, 57.661, 59.619, 61.576, 63.533, 65.49, 67.448]
In [55]: # Загрузим библиотеку matplotlib для построения графиков
         import matplotlib.pyplot as plt
         # Создадим объект нормального распределения с параметрами,
         # полученными из вариационного ряда
         norm func = stats.norm(loc=result statistics["M(X)"],
                                scale=result_statistics["Std_dev(X)"])
         # Создадим список аргументов для функции
         x = np.arange(norm func.ppf(0.001), norm func.ppf(0.999), 0.01)
         # Создадим область построения графика
         fig, ax = plt.subplots()
         # Добавим на нее линейный график теоретической
         # функции плотности распредления
         ax.plot(x, norm_func.pdf(x),
               label="Teopeтическая функция \пплотности нормального распределения")
         # Добавим на нее фактическую гистограмму плотности распредления
         # Построенную по исходной серии данных ds c
         # определенными выше границами интервалов bins
         ax.hist(ds, edgecolor = 'black', density=True, alpha=0.6,
                 bins = bins,
                 facecolor="none", hatch="/",
                 label="Гистограмма фактической плотности распределения")
         # Добавим подписи осей и название графика
         plt.title("Гистограмма плотности теоретического \n" + \
                   "и фактического распределения")
         plt.xlabel("x")
         plt.ylabel("p(x)")
         # plt.grid()
         # plt.legend(loc="upper right")
         # Сохраним полученный график в файл "f(x)_graf.png"
         plt.savefig("f(x) graf 1.png")
         plt.show()
```

Гистограмма плотности теоретического и фактического распределения

График теоретической и фактической функции распределения F(x)

При построении графика функции распределения F(x) будем использовать ранее определенную переменную **bins**, содержащую границы наших интервалов:

```
In [57]: # Возьмем данные из нашей таблицы table_2
p_f_cum = list(table_2["p_f_cum"])
# Добавим в полученный список накопленную вероятность,
# равную 0 на 0 позицию списка
p_f_cum.insert(0, 0)
p_f_cum
```

```
Out[57]: [0,
          0.0234375,
           0.078125,
           0.1953125,
           0.4453125,
           0.640625,
           0.8828125,
           0.9765625,
           1.01
In [58]: # Загрузим библиотеку matplotlib для построения графиков
         import matplotlib.pyplot as plt
         # Создадим объект нормального распределения с параметрами,
         # полученными из вариационного ряда
         norm func = stats.norm(loc=result statistics["M(X)"],
                                 scale=result statistics["Std dev(X)"])
         # Создадим область построения графика
         plt.figure(figsize=(8, 3.5))
         # Создадим список аргументов для функции
         x = np.arange(norm func.ppf(0.001), norm func.ppf(0.999), 0.01)
         # Построим на оси ах линейный график
         \# теоретической функции распредления F(x)
         plt.plot(x, norm_func.cdf(x),
                  label="Teopeтическая функция распределения F(x)", lw=2)
         # Построим на оси ах линейный график
         # эмпирической функции распредления F(x)
         plt.plot(bins, p_f_cum,
                  label="Эмпирическая функция распределения F(x)", lw=2)
         plt.legend()
         plt.grid()
         plt.show()
```


Построим наш график точнее, используя все исходные данные из серии **ds**

Для этого:

• Отсортируем нашу серию **ds** по возрастанию и сохраним результат в серию **ds_sort**:

```
In [59]: ds_sort = ds.sort_values()
         ds_sort
Out[59]: 43
               51.789754
         35
               53.371319
         103
               53.632930
               53.954021
         24
         78
               54.167908
                  . . .
              65.211240
         9
         63
              65.218526
         120 66.449405
         105 66.594009
         111
               66.944692
         Name: 0, Length: 128, dtype: float64
```

• Рассчитаем накопленные частости $\sum p_{_{
m T}}$ к каждому значению отсортированной серии ${f ds_sort}$:

• Объединим полученные данные в общий DataFrame plot_data:

```
In [61]: plot_data = pd.DataFrame({"x": ds_sort, "p_f_cum": p_f_cum})
    plot_data
```

```
        x
        p_f_cum

        43
        51.789754
        0.0000000

        35
        53.371319
        0.007812

        103
        53.632930
        0.015625

        24
        53.954021
        0.023438

        78
        54.167908
        0.031250

        ...
        ...
        ...

        9
        65.211240
        0.960938

        63
        65.218526
        0.968750

        120
        66.449405
        0.976562

        105
        66.594009
        0.984375

        111
        66.944692
        0.992188
```

Out[61]:

128 rows × 2 columns

• Построим график по полученным данным:

```
In [62]: import matplotlib.pyplot as plt
         # Создадим объект нормального распределения с параметрами,
         # полученными из вариационного ряда
         norm_func = stats.norm(loc=result_statistics["M(X)"],
                                scale=result_statistics["Std_dev(X)"])
         # Создадим список аргументов для функции
         x = np.arange(norm_func.ppf(0.001), norm_func.ppf(0.999), 0.01)
         # Создадим область построения графика
         plt.figure(figsize=(8, 3.5))
         # Построим на оси ах линейный график
         # теоретической функции распредления F(x)
         plt.plot(x, norm_func.cdf(x),
                  label="Теоретическая функция распределения F(x)", lw=2)
         # Построим на оси ах линейный график
         \# эмпирической функции распредления F(x)
         plt.plot(plot_data["x"], plot_data["p_f_cum"],
                  label="Эмпирическая функция распределения F(x)", lw=2)
         plt.legend()
         plt.grid()
         # Сохраним полученный график в файл "F(x)_graf.png"
         plt.savefig("F(x)_graf_2.png")
```


Рассчитаем значение **D** статистики по этим данным.

Для этого:

• Добавим в наш DataFrame столбец **p_t_cum**, заполнив его значениями теоретической функции распределения F(x):

Out[63]:		x	p_f_cum	p_t_cum
	43	51.789754	0.000000	0.002766
	35	53.371319	0.007812	0.012296
	103	53.632930	0.015625	0.015361
	24	53.954021	0.023438	0.019999
	78	54.167908	0.031250	0.023708
	•••			
	9	65.211240	0.960938	0.954851
	63	65.218526	0.968750	0.955081
	120	66.449405	0.976562	0.982399
	105	66.594009	0.984375	0.984386
	111	66.944692	0.992188	0.988424

128 rows × 3 columns

Рассчитаем **D** статистику как:

$$D = |\sum p_{\rm p} - \sum p_{\rm t}|$$

In [64]: plot_data["D"] = abs(plot_data["p_t_cum"] - plot_data["p_f_cum"])
 plot_data

Out[64]:		x	p_f_cum	p_t_cum	D
	43	51.789754	0.000000	0.002766	0.002766
	35	53.371319	0.007812	0.012296	0.004483
	103	53.632930	0.015625	0.015361	0.000264
	24	53.954021	0.023438	0.019999	0.003438
	78	54.167908	0.031250	0.023708	0.007542
	•••				
	9	65.211240	0.960938	0.954851	0.006086
	63	65.218526	0.968750	0.955081	0.013669
	120	66.449405	0.976562	0.982399	0.005836
	105	66.594009	0.984375	0.984386	0.000011
	111	66.944692	0.992188	0.988424	0.003764

128 rows × 4 columns

Найдем максимальное значение статистики D_{\max} :

```
In [65]: d_{\max} = \text{plot\_data.max}()["D"] d_{\max}

Out[65]: 0.06097804188320988

Выведем целиком строку из нашего DataFrame, содержащую статистику D_{\max}:

In [66]: plot_{\max} = d_{\max}

Out[66]: x p_{\max} = d_{\max}

Out[66]: x p_{\max} = d_{\max}

Cpabhum полученный pesyльтат с полученным ранее через функцию stats.kstest:

In [67]: stats.kstest(ds, stats.norm(loc=result_statistics["M(X)"], scale=result_statistics["Std_dev(X)"]).cdf)

Out[67]: stats.kstest(statistic=0.06097804188320988, pvalue=0.7045976411793098, statistic_location=61.9900174, statistic_sign=-1)
```