计算机系统基础

Homework 1

姓名: 傅文杰

学号:22300240028

2023年10月3日

1 Number Conversion

先用按权乘数码相加法转化为十进制,然后用模n取余法转化为n进制

Octal	Binary	Decimal	Hexadecimal
2527	101 0101 0111	1367	0x557
753	1 1110 1011	491	0x1EB
3746	111 1110 0110	2022	0x7E6
177776	1111 1111 1111 1110	65534	0xFFFE

2 Operations

2.1 给出A = 0xF4, B = 0x11, 则

A & B = 0x10

 $A \mid B = 0xF5$

A $^{\circ}$ B = 0xE5

 $^{\sim}$ A | $^{\sim}$ B = 0xEF

```
A && B = 1
A || B = 1
```

2.2 用C语言将x的前半部分和y的后半部分结合

```
1 #include <stdio.h>
2 int combination(int x, int y)
3 {
4     return (x & 0xFFFF0000) + (y & 0x0000FFFF);
5 }
6 int main() {
7     int x, y;
8     scanf("%x%x", &x, &y);
9     int r = combination(x, y);
10     printf("%x\n", r);
11     return 0;
12 }
```

2.3 shift operations

X		x<<5		x>>3(logic)		x>>3(arithmetic)	
Hex	Binary	Binary	Hex	Binary	Hex	Binary	Hex
0xD1	1101 0001	0010 0000	0x20	0001 1010	0x1A	1111 1010	0xFA
0x92	1001 0010	0100 0000	0x40	0001 0010	0x12	1111 0010	0xF2
0x4F	0100 1111	1110 0000	0xE0	0000 1001	0x09	1110 1001	0xE9
0x36	0011 0110	1100 0000	0xC0	0000 0110	0x06	1110 0110	0xE6

3 Two's Complement Encodings

补码的补码就是源码,正数的补码就是自己,负数的补码就是相反数

3

Value	Two's Complement
66	0100 0010
-21	1110 1011
127	0111 1111
-49	1100 1111

4 Two's Complement Multiplication

参考资料:二进制补码计算——有符号数的乘法

X	у	x·y	Truncated x·y
[1000]	[0001]	$[1111 \ 1000] = -8$	[1000] = -8
[0100]	[0101]	$[0001 \ 0100] = 20$	[0100] = 4
[1101]	[0010]	$[1111 \ 1010] = -6$	[1010] = -6
[1110]	[1110]	$[0000 \ 0100] = 4$	[0100] = 4

5 Two's Complement

5.1
$$(x < y) == (-x > -y)$$

该表达式为真

证明:

$$\begin{aligned} &-x>-y\\ &\Leftrightarrow NOT(x)+1>NOT(y)+1\\ &\Leftrightarrow 2^{32}-1-x+1>2^{32}-1-y+1\\ &\Leftrightarrow x< y \end{aligned}$$

5 TWO'S COMPLEMENT

4

5.2
$$((x+y) << 4) + y - x == 17 * y + 15 * x$$

该表达式为真

证明:

$$((x+y) << 4) + y - x = (x+y) * 2^4 + y - x$$
$$= 16x + 16y + y - x$$
$$= 17y + 15x$$

5.3
$$\sim x + \sim y + 1 = = \sim (x + y)$$

该表达式为真

证明:

$$left = (2^{32} - 1 - x) + (2^{32} - 1 - y) + 1$$

$$= 2^{32} - 1 + (2^{32} - 1 - (x + y) + 1)$$

$$= 2^{32} - 1 - (x + y)$$

$$= NOT(x + y)$$

$$= right$$

5.4
$$(ux - uy) == -(unsigned)(y - x)$$

该表达式为假

反例:

$$ux - uy = -1 + 2^{32} \neq -1$$

5.5
$$((x >> 2) << 2) <= x$$

该表达式为真

证明:

$$(x >> 2) << 2 = \lfloor \frac{x}{4} \rfloor \cdot 4 \le \frac{x}{4} \cdot 4 = x$$