1 The RSVP Framework

The Relativistic Scalar Vector Plenum (RSVP) framework proposes a field-theoretic model of neural representation, redefining learning as the dynamic evolution of coupled geometric fields. Unlike traditional optimization-centric approaches, which treat representations as static parameter sets, RSVP models cognition as a continuous interplay of semantic potential, flow, and uncertainty. We formalize the RSVP field triplet as:

$$\mathcal{F}(x,t) = \{\Phi(x,t), \vec{v}(x,t), \mathcal{S}(x,t)\}\$$

where $\Phi: \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}$ is the scalar semantic potential field, $\vec{v}: \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^n$ is the vector semantic flow field, and $\mathcal{S}: \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}_{>0}$ is the entropy field capturing semantic uncertainty.

1.1 Field Definitions

- Scalar Semantic Potential (Φ): Represents the magnitude of semantic content at a given point in representation space. For a neural network, $\Phi(x,t)$ can be derived from activation norms or task-specific projections, encoding the strength of conceptual grounding.
- Vector Semantic Flow (\vec{v}): Captures directional transitions in representation space, analogous to semantic "motion" between layers or time steps. For layered networks, $\vec{v}(x,t)$ approximates the difference in activations, $\vec{v}_i = h_{i+1} h_i$.
- Entropy Field (S): Quantifies uncertainty or ambiguity in the representation, derived from predictive entropy $(\mathbb{H}(p(y|x,h_i)))$ or activation variance. High S indicates representational instability or ambiguity.

1.2 Field Dynamics

The evolution of the RSVP field is governed by a partial differential equation that couples the scalar potential, vector flow, and entropy dissipation:

$$\frac{\partial \Phi}{\partial t} + \nabla \cdot (\Phi \cdot \vec{v}) = -\delta \mathcal{S}$$

This equation describes semantic transport, where Φ evolves under the influence of the divergence of the flux $\Phi \cdot \vec{v}$, modulated by entropy dissipation (δS). Intuitively, learning reduces uncertainty (S) while aligning semantic potential with coherent flow, driving representations toward stable configurations.

1.3 Torsion and Representational Fracture

Fractured Entangled Representations (FER) emerge when the vector field \vec{v} exhibits high torsion, indicating misaligned or conflicting semantic flows. We define the Torsion Entanglement Index as:

$$\mathcal{T}_{\rm ent} = \int_{\Omega} \|\nabla \times \vec{v}\|^2 \, dx$$

High \mathcal{T}_{ent} signals representational instability, where semantic flows loop or conflict, preventing convergence to coherent states. In contrast, Unified Factored Representations (UFR) exhibit low torsion, with \vec{v} aligning smoothly with gradients of Φ and \mathcal{S} .

1.4 Interpretation in Cognitive Terms

The RSVP framework draws parallels to cognitive processes. The scalar field Φ mirrors conceptual salience, \vec{v} reflects reasoning or inference trajectories, and \mathcal{S} captures uncertainty in belief states. By modeling learning as field evolution, RSVP provides a geometric lens for understanding how neural systems resolve ambiguity and achieve semantic coherence, offering a physically grounded alternative to parameter-centric views of representation.