1.1.

Let x be an arbitrary element of S. We need to prove $(x,x) \in R_f^+$.

Let $x_0 = x$ and $x_1 = f^i(x)$ for each I \in N. Since |S| = n, some two of $x_0, x_1, ..., x_n$ must be equal. Say $x_i = x_j$, where i<j. Applying f^{-1} j-i times, we get $x = x_0 = x_{j-i} = f^{-1}(x)$, where j-l>0. Thus, $(x,x) \in R_f^+$.

1.2

Suppose $(x,y) \in R_f^+$. We need to prove $(y,x) \in R_f^+$.

From part 1, for every x in S there exists a k in N such that $f^k(x) = x$. Also, since $(x,y) \in R_f^+$, there exists some I in N such that $y = f^1(x)$. Let m be a multiple of k greater than I. Then $f^k(y) = f^m(x) = x$. Thus, $(y,x) \in R_f^+$.

2.1.

 $P^* = Q^n_k$ intersection $\{f \mid f \text{ is a bijection from S to S and } f(n) = n\}$ is in bijective correspondence with Q_{n-1}^k as follows. $f \text{ in } P^*$ is mapped $g \text{ in } Q_{n-1}^k$, where g(x) = f(x) for all x in $\{1,...,n-1\}$. R_g^+ has k-1 equivalence classes, namely, the equivalence classes of R_f^+ other than $\{n\}$ (nothing else is in the equivalence class of n). Note that every $g \text{ in } Q_{n-1}^k$ has a unique preimage $f \text{ in } P^*$ under this mapping, where f(x) = g(x) for all $x \text{ in } \{1,...,n-1\}$, and f(n) = n.

2.2

For a fixed z in $\{1,...,n-1\}$ let us count the size of the set $P_z = Q^n_k$ intersection $\{f \mid f \text{ is a bijection from S to S and } f(n) = z\}$. P_z is in bijective correspondence with Q^n-1_k as follows. P_z is mapped to g in Q_{n-1}_k , where Q^n-1_k and for all other x in P_z . Note that the equivalence classes of P_z are the same as those of P_z , except that n disappears from its equivalence class, which contains more elements (eg. z). Given a g in Q^n-1_k , the unique f in P_z which maps to g is given by P_z is given by P_z and for all other x in P_z in P_z is given by P_z is are disjoint, and their union is P_z is a bijection from S to S and P_z is a bijection from S to S and P_z is a bijection from S to S and P_z is a bijection from S to S and P_z is a bijection from S to S and P_z is a bijection from S to S and P_z is a bijection from S to S and P_z is a bijection from S to S and P_z is a bijection from S to S and P_z is a bijection from S to S and P_z is a bijection from S to S and P_z is a bijection from S to S and P_z is a bijection from S to S and P_z is a bijection from S to S and P_z is a bijection from S to S and P_z is a bijection from S to S and P_z is a bijection from S to S and P_z is a bijection from S to S and P_z is a bijection from S to S and P_z is a bijection from S and P_z is a bijection from S and P_z is a bijection from S and P_z in P_z in P_z is a bijection from S and P_z is a bijection from S and P_z in P_z in P_z is a bijection from S and P_z in P_z in P_z is a bijection from S and P_z in P_z in P_z is a bijection from S and P_z in P_z in P_z is a bijection from S and P_z in P_z in