Pontificia Universidad Católica de Chile Facultad de Matemáticas 2° semestre 2020

Ayudantía 06

02 de Octubre MAT2225 - Teoría de Números

1) Pruebe que si a es invertible en $\mathbb{Z}/p\mathbb{Z}$, entonces a es invertible en $\mathbb{Z}/p^k\mathbb{Z}$ para todo k natural.

Solución. Como a es invertible, existe un b en $\mathbb{Z}/p\mathbb{Z}$ tal que $ab \equiv_p 1$. Consideremos el polinomio f(x) = bx - 1. Notar que $f(a) = ab - 1 \equiv_p 1 - 1 \equiv_p 0$. $f'(x) = b \not\equiv_p 0$ (ya que b es invertible). Luego, por lema de Hensel existe un x tal que $x \equiv_{p^k} a$ y $f(x) \equiv_{p^k} 0$, por lo que tenemos lo pedido.

2) Pruebe que si a, k son coprimos con p, entonces a es una potencia k—ésima módulo p si y solo si es una potencia k—ésima módulo p^n para todo n natural.

Solución.

 \Leftarrow : Como es potencia k-ésima, existe un x tal que $x^k \equiv a \pmod{p^n}$. Esto dice que $x^k = p^n \cdot c + a$, por lo que $x^k \equiv_p a$.

 \Rightarrow : Tomemos el polinomio $f(x) = x^k - a$. Como a es potencia k-ésima módulo p, existe un b tal que $f(b) \equiv_p 0$. $f'(x) = kx^{k-1}$. La única solución a $f'(x) \equiv_p 0$ es $x \equiv_p 0$, pero si $f(0) \equiv_p 0$ entonces a no sería coprimo con $p, \rightarrow \leftarrow$. Usando lema de Hensel se tiene lo pedido.

3) Calcule todos los cuadrados módulo 25 y 125.

Solución. Recordemos que los cuadrados módulo 5 son 0,1 y 4. Los elementos módulo 25 son de la forma 25k+a, con $0 \le a < 25$. Si (5,25k+a) = 1, por la pregunta anterior 25k+a es cuadrado módulo 25 ssi es cuadrado módulo 5. Luego, a tiene que ser cuadrado módulo 5. Luego, a = 5j + 1

o 5j + 4. Esto nos da 1, 4, 6, 9, 11, 14, 16, 19, 21 y 24.

Si 25k + a no es coprimo con 5, entonces a = 5a'. Luego, 25k + 5a' = 5(5k + a'). Como es un cuadrado, 5k + a' es un múltiplo de 5 y a' = 5a''. Luego, a = 25a'' y $0 \le a < 25$, por lo que a = 0.

Por lo tanto, los residuos módulo 25 son 0, 1, 4, 6, 9, 11, 14, 16, 19, 21 y 24.

Para módulo 125, podemos escribir n=125k+a, donde $0 \le a < 125$. Si (a,5)=1, haciendo lo mismo de antes tenemos que todos los $a \equiv_5 1,4$ son cuadrados.

Si $(a,5) \neq 1$, entonces (a,5) = 5 y a = 5a'. Luego, n = 125k + 5a' = 5(25k + a'). Como 5(25k + a') es un cuadrado, $\nu_5(5(25k + a'))$ es par y a' = 5a''. Luego, n = 25(5k + a''). Como 5k + a'' es un cuadrado, entonces $a'' \equiv_5 0, 1$ o 4. Pero a = 25a'' y $0 \leq a < 125$, por lo que $0 \leq a'' < 5$. Revisando los 3 casos, se tiene que 0, 25 y 100 son cuadrados.

4) Sean a, n coprimos y l, m enteros positivos tales que $a^m \equiv_n a^l$. Pruebe que $m \equiv l \pmod{\operatorname{ord}_n(a)}$.

Solución. Multiplicando por a^{-l} a ambos lados, tenemos que $a^{m-l} \equiv_n 1$. Luego, $\operatorname{ord}_n(a) \mid m-l$ y $m \equiv l$ (mód $\operatorname{ord}_n(a)$) por definición.

5) Muestre que existen infinitos n tales que todos los divisores mayores a 1 de $2^n - 1$ son mayores que n.

Solución. Probaremos que los n > 2 primos funcionan. Sea $q \neq 1$ el divisor más pequeño de $2^n - 1$. Notar que q es impar y primo. Consideremos $\operatorname{ord}_q(2)$. Sabemos que $\operatorname{ord}_q(2) \mid n$. Como n es primo, $\operatorname{ord}_q(2) = 1$ o $\operatorname{ord}_q(2) = n$. Si $\operatorname{ord}_q(2) = 1$, entonces $2 \equiv_q 1$, $\rightarrow \leftarrow$. Luego, $\operatorname{ord}_q(2) = n$. Por Euler, $2^{q-1} \equiv_q 1$ y $n \mid q-1$, por lo que $n \leq q-1$ y n < q.

Bonus: Sea p > 2 primo. Muestre que si a es raíz primitiva módulo p y p^2 , entonces a es raíz primitiva módulo p^k para todo k natural.