Spaceship Titanic Data Science Project

Por Juan Manuel González Kapnik

Tabla de contenidos

Introducción al Proyecto

01

- a. Descripción del proyecto
- b. Set de datos
- c. Tecnologías y librerías utilizadas

Análisis Exploratorio de Datos (*EDA*)

03

- a. Porcentaje inicial de transportados
- b. Distribuciones
 - i. Edades
 - ii. Gastos
 - iii. Datos Categoricos

Entendimiento Básico de los Datos

02

- a. Diferencia entre los diferentes set de datos
- b. Búsqueda de valores faltantes (missing values)
- c. Cardinalidades

04

Feature Engineering

Nuevas categorías en base al

- a. ID
- b. Cabina
- c. Edad
- d. Gastos

Tabla de contenidos

Pre-Procesamiento de los Datos

05

- a. Manejo de missing values
- b. Transformación logarítmica
- c. Hot & Label Encoding

Modelo para Datos No Escalables

07

- a. Arbol de decision e. XGB
- b. Random Forest f. CatBoost
- c. Ada Boost
- d. Gradient Boost

Modelo para Datos Escalables

06

- a. Regresion Logistica
- b. K-Neighbors
- c. SVM
- d. Naive Bayes

Comparación de Modelos

a. Los más efectivos

Tabla de contenidos

Selección de *Hyper Parameters*

a. Para los más efectivos

Prediccion

a. Resultados obtenidos

01

Introducción al Proyecto

Descripción del proyecto

La nave espacial Titanic colisionó con una anomalía del espacio-tiempo oculta en una nube de polvo. Por desgracia, casi la mitad de los pasajeros fueron transportados a una dimensión alternativa Para ayudar a recuperar a los pasajeros perdidos, se le reta a predecir qué pasajeros fueron transportados por la anomalía utilizando los registros recuperados del sistema informático dañado de la nave espacial.

train.csv

Registros personales de aproximadamente dos tercios (~8700) de los pasajeros, que se utilizarán como datos de entrenamiento.

- PassengerId Un Id único para cada pasajero. Cada Id tiene la forma gggg_pp donde gggg indica el grupo con el que viaja el pasajero y pp es su número dentro del grupo
- HomePlanet El planeta del que partió el pasajero
- CryoSleep Indica si el pasajero ha decidido permanecer en animación suspendida durante el viaje
- Cabin El número del camarote en el que se aloja el pasajero. Adopta la forma cubierta/num/lado, donde lado puede ser P para babor o S para estribor
- Destination El planeta al que desembarcó el pasajero
- Age Edad del pasajero
- *VIP* Si el pasajero ha pagado por un servicio VIP especial durante el viaje.
- RoomService, FoodCourt, ShoppingMall, Spa, VRDeck Cantidad que el pasajero ha facturado en cada uno de los muchos servicios de lujo
- Name Nombre y apellido del pasajero
- Transported Si el pasajero fue transportado a otra dimensión

Set de datos test.csv

Registros personales para el tercio restante (~4300) de los pasajeros, que se utilizarán como datos de prueba. La tarea consiste en predecir el valor de Transportado para los pasajeros de este conjunto.

Tecnologías y librerías utilizadas

- Jupyter Lab Editor de código fuente
- Jupyter Notebook Cuaderno como entorno de Python
- Python3 Lenguaje de programación
- Librerias
 - Pandas
 - Numpy
 - Matplotlib.pyplot
 - Seaborn
 - Missingno
 - Sklearn
 - Lightgbm
 - Xgboost
 - Catboost

02 **Entendimiento** Básico de los **Datos**

Diferencia principal entre ambos data set

El dataset de entrenamiento contiene la columna de transportados que intentaremos predecir en el set de testing:

False

True

False

False

True

...

Disposición inicial: valores perdidos

train.csv	No. of Missing Values	% of Missing Values
Passengerid	0	0
HomePlanet	201	4.7
CryoSleep	217	5.07
Cabin	199	4.65
Destination	182	4.26
Age	179	4.19
VIP	203	4.75
RoomService	181	4.23
FoodCourt	183	4.28
ShoppingMall	208	4.86
Spa	183	4.28
VRDeck	188	4.4
Name	200	4.68
Transported	0	0

Disposición inicial: valores perdidos

test.csv	Number of Missing Values	% of Missing Values
Passengerid	0	0
HomePlanet	87	2.03
CryoSleep	93	2.17
Cabin	100	2.34
Destination	92	2.15
Age	91	2.13
VIP	93	2.17
RoomService	82	1.92
FoodCourt	106	2.48
ShoppingMall	98	2.29
Spa	101	2.36
VRDeck	80	1.87
Name	94	2.2

- 1. ¿La cantidad es alta?
- 2. ¿Qué podemos hacer al respecto?

Disposición inicial: Cardinalidades

train.csv	Cardinality
PassengerId	8693
HomePlanet	3
CryoSleep	2
Cabin	6560
Destination	3
VIP	2
Name	8473

test.csv	Cardinality
PassengerId	4277
HomePlanet	3
CryoSleep	2
Cabin	3265
Destination	3
VIP	2
Name	4176

- 1. ¿La cantidad es alta?
- 2. ¿Qué podemos hacer al respecto?

Análisis Exploratorio de Datos (EDA)

Dentro del set de entrenamiento

50.36% De las personas fueron transportadas

- 1. ¿Esta balanceado?
- ¿Necesitamos hacer over o under sampling?

Distribución de Edades

- La mayoría de pasajeros son de edades entre 18 y 32 años
- Pasajeros de entre 0 y 18
 años fueron altamente
 transportados,
 especialmente recien
 nacidos
- Pasajeros entre 18 y 38 años fueron menos transportados
- Pasajeros +38 fueron transportados equitativamente

Distribución de Gastos

- La mayoría de pasajeros no gastaron dinero
- RoomService, Spa y VRDeck tienen distribuciones similares
- Todas las distribuciones presentan asimetría estadística negativa. Por lo tanto, las transformaremos en distribuciones normales mediante la transformación logarítmica
- Aquellos pasajeros que gastaron menos tendieron a ser más transportados. Por lo tanto, podemos generar una nueva categoría que dictamine si el pasajero gasto o no
- Podemos generar una categoría que indique el total gastado para cada pasajero, y dividirlo en diferentes tipos de gastos como bajos, medios y altos

Distribución de Datos Categóricos

- HomePlanet. La mayoría de pasajeros vienen de la tierra (mayormente no transportados). Pasajeros de Marte fueron igualmente transportados, y pasajeros de Europa fueron mayormente transportados
- CryoSleep. Aquellos que no fueron criogenizados no fueron mayormente transportados, y aquellos que fueron criogenizados fueron mayormente transportados
- Destination. La mayoría tuvieron destino a Trappist-1e (mayormente no transportados).
 Aquellos con destino 55 Cancri e fueron mayormente transportados. Aquellos con destino PSO J318.5-22 fueron equitativamente transportados
- VIP. La mayoría de pasajeros no fueron VIP, pero tanto en aquellos que fueron como los que no tienen una distribución equitativa

O4 Feature Engineering

Dentro del set de entrenamiento

¿Cómo realizamos feature engineering en el ID del pasajero?

train.csv	PassengerId
0	0001_01
1	0002_01
2	0003_01
3	0003_02
4	0004_01

Cada pasajero tiene un ID con la forma gggg_pp donde:

- gggg indica el grupo con el que viaja
- pp es el número de persona del grupo

Podemos generar dos nuevas categorías: una que indique el número de personas por grupo, y otra que indique si el pasajero está viajando solo

Distribución de Tamaños de Grupos y Solo

- Según los tamaños de los grupos, la mayoría de los pasajeros viajaron solos (mayormente no transportados)
- Aquellos que viajaron con más pasajeros tendieron a ser más transportados

¿Cómo realizamos feature engineering en la cabina del pasajero?

train.csv	Cabin
0	B/0/P
1	F/0/S
2	A/0/S
3	A/0/S
4	F/1/S

Cada pasajero tiene un ID con la forma *cubierta/numero/lado* donde:

- cubierta indica la localización
- número de la cubierta
- lado puede ser P en caso de puerto, y S para estribor (starboard)

Podemos generar tres nuevas categorías, una para cada item

Distribución de Cubiertas y Lados

- De las cabinas observamos que la mayoría de pasajeros son de las cabinas F (mayormente no transportados) y G (equitativamente transportados). En la cabina A fueron equitativamente transportados. En la cabina B y C fueron mayormente transportados. En la cabina D y E fueron mayormente no transportados. Muy pocos pasajeros en la cabina T
- Casi la misma cantidad de pasajeros en el lado P (mayormente no transportados) y S (mayormente transportados)

Distribución de Números de Cabina

Según el histograma, cada
 ~300 hay un cambio entre
 mayormente transportados
 y no. Por lo tanto, podemos
 generar 6 regiones que
 indiquen en qué número se
 encuentra el pasajero

Distribución de Regiones

- La mayoría se encuentran en la región 1, y fueron los más transportados
- En las regiones 2, 5 y 6 fueron mayormente no transportados
- En las regiones 3 y 4 fueron mayormente transportados (ademas de la region 1)

Distribución de Grupos de Edades

- La mayoría de pasajeros son de edades entre 18 y 32 años
- Pasajeros de entre 0 y 18 años fueron altamente transportados, especialmente recien nacidos
- Pasajeros entre 18 y 38 años fueron menos transportados
- Pasajeros +38 fueron transportados equitativamente

Distribución de Gastos Totales

 Aquellos pasajeros que no gastaron fueron mayormente transportados, y aquellos que gastaron fueron mayormente no transportados

train.csv	Percentil
25%	0
50% (mediana)	716
75%	1441

Distribución de No gastos y de Categorías de gastos

05

Pre-Procesamiento de los Datos

Manejo de missing values

FoodCourt Distribution ShoppingMall Distribution Spa Distribution VRDeck Distribution Total Expenditure Distribution

Distribución de Gastos (transformación logarítmica)

Encoding para variables categoricas

06 Construcción de **Modelos para Datos Escalables**

Resultados del modelo de Regresión Logística

Precision en Training Data	77.95
Precision en Testing Data	76.94
Precision	0.75
Recall	0.80
F1 Score	0.78

Resultados del modelo de KNeighborsClassifier

Precision en Training Data	83.29
Precision en Testing Data	76.42
Precision	0.77
Recall	0.75
F1 Score	0.76

Resultados del modelo de Support Vector Classifier

Precision en Training Data	77.42
Precision en Testing Data	76.71
Precision	0.76
Recall	0.78
F1 Score	0.77

Resultados del modelo de Naive Bayes

Precision en Training Data	73.95
Precision en Testing Data	73.45
Precision	0.77
Recall	0.66
F1 Score	0.71

07 Construcción de **Modelos para Datos** No Escalables

Resultados del modelo de Árbol de Decisión

Precision en Training Data	98.47
Precision en Testing Data	75.04
Precision	0.75
Recall	0.75
F1 Score	0.75

Resultados del modelo de Random Forest Classifier

Precision en Training Data	98.46
Precision en Testing Data	80.39
Precision	0.83
Recall	0.76
F1 Score	0.79

Resultados del modelo de Adaboost Classifier

Precision en Training Data	79.98
Precision en Testing Data	79.24
Precision	0.76
Recall	0.84
F1 Score	0.80

Resultados del modelo de Gradient Boosting Classifier

Precision en Training Data	82.05
Precision en Testing Data	79.29
Precision	0.77
Recall	0.85
F1 Score	0.80

Resultados del modelo de XGB Classifier

Precision en Training Data	92.52
Precision en Testing Data	80.73
Precision	0.80
Recall	0.82
F1 Score	0.81

Resultados del modelo de CatBoost Classifier

Precision en Training Data	87.40
Precision en Testing Data	81.48
Precision	0.80
Recall	0.83
F1 Score	0.81

08

Comparación entre Modelos

El mejor rendimiento lo presentó Cat Boost con un ~81.48. Sin embargo RandomForest y XGBoost también presentaron buen rendimiento (+80)

09

Selección de *Hyper Parameters*

Hyper Parameters en modelo CatBoost

Learning Rate: [0.1, 0.3, 0.5, 0.6, 0.7]

Random State: [0, 42, 48, 50]

Depth: [8, 9, 10]

Iterations: [35, 40, 50]

Learning Rate: 0.3 Random State: 48

Depth: 8 Iterations: 40 Precision: 0.80

Hyper Parameters en modelo XGB

Learning Rate: [0.1, 0.3, 0.5, 1.0]

Random State: [0, 42, 50] N Estimators: [50, 100, 150]

Learning Rate: 0.1 Random State: 0 N Estimators: 50

Score: 0.80

Hyper Parameters en modelo Random Forest

Resultados del modelo de Stacking Classifier

Incluye: Cat Boost Classifier XGBoost Classifier Random Forest Classifier

Precision en Training Data 85.64

Precision en Testing Data 81.08

10 Prediccion

53.10% De las personas fueron transportadas

Según la predicción de 81% accuracy

Gracias por su atencion

Redes personales:

LinkedIn: Juan Manuel Gonzalez Kapnik

Github: just-juanma

E-mail: juanmanuelgonzalezkapnik@gmail.com

CREDITS: This presentation template was created by **Slidesgo**, and includes icons by **Flaticon**, and infographics & images by **Freepik**