1 Harmonic oscillator

Definition 1.1. Let \mathcal{H} be a Hilbert space in a harmonic potential

$$V(\hat{x}) = \frac{\omega^2}{2}\hat{x}^2, \qquad \omega^2 = \frac{k}{m}.$$
 (1)

We define the creation and annihilation operators as

$$\hat{a}^{\dagger} := \frac{\alpha}{\sqrt{2}} \left(\hat{x} - \frac{i}{m\omega} \hat{p} \right), \tag{2}$$

$$\hat{a} := \frac{\alpha}{\sqrt{2}} \left(\hat{x} + \frac{i}{m\omega} \hat{p} \right), \tag{3}$$

$$\alpha := \sqrt{\frac{m\omega}{\hbar}}.\tag{4}$$

Proposition 1.1. Let \mathcal{H} be a Hilbert space in a harmonic potential. Then,

$$\langle x | \hat{a}^{\dagger} = \frac{\alpha}{\sqrt{2}} \left(x - \frac{1}{\alpha^2} \frac{\mathrm{d}}{\mathrm{d}x} \right),$$
 (5)

$$\langle x | \hat{a} = \frac{\alpha}{\sqrt{2}} \left(x + \frac{1}{\alpha^2} \frac{\mathrm{d}}{\mathrm{d}x} \right),$$
 (6)

$$\alpha = \frac{m\omega}{\hbar}.\tag{7}$$

Proposition 1.2. Let \mathcal{H} be a Hilbert space with a harmonic potential. Then,

$$\hat{x} = \frac{1}{\sqrt{2}\alpha}(\hat{a}^{\dagger} + \hat{a}), \qquad \hat{p} = i\hbar \frac{\alpha}{\sqrt{2}}(\hat{a}^{\dagger} - \hat{a}).$$
 (8)

Proposition 1.3. Let \mathcal{H} be a Hilbert space with a harmonic potential. Then,

- 1. $\hat{a}, \hat{a}^{\dagger}$ are not hermitian.
- 2. $\left[\hat{a}, \hat{a}^{\dagger}\right] = \hat{I}$.

$$3. \ \hat{H} = \hbar\omega \left(\hat{a}^{\dagger} \hat{a} + \frac{1}{2} \right).$$

Definition 1.2. Let \mathcal{H} be a Hilbert space with a harmonic potential. We define the *number operator* as

$$\hat{N} \coloneqq \hat{a}^{\dagger} \hat{a}. \tag{9}$$

Proposition 1.4. Let \mathcal{H} be a Hilbert space with a harmonic potential. Then,

- Ĥ is hermitian.
- 2. $\left[\hat{N}, \hat{a}\right] = -\hat{a}, \left[\hat{N}, \hat{a}^{\dagger}\right] = \hat{a}^{\dagger},$
- 3. $\hat{H} = \hbar\omega \left(\hat{N} + \frac{1}{2}\hat{I}\right)$.

Proposition 1.5. Let \mathcal{H} be a Hilbert space with a harmonic potential. Then, \hat{H} and \hat{N} have a common basis of eigenvectors, which is countable, and

$$\hat{a}^{\dagger} | n \rangle = \sqrt{n+1} | n+1 \rangle, \qquad \hat{a} | n \rangle = \sqrt{n} | n-1 \rangle,$$
(10)

$$\hat{N}|n\rangle = n|n\rangle, \qquad \hat{H}|n\rangle = \hbar\omega \left(n + \frac{1}{2}\right)|n\rangle, \quad (11)$$

$$n \in \mathbb{N}.$$
 (12)

Corollary 1.6. Let \mathcal{H} be a Hilbert space with a harmonic potential. Then,

$$|n\rangle = \frac{1}{\sqrt{n!}} (\hat{a}^{\dagger})^n |0\rangle.$$
 (13)

Proposition 1.7. Let \mathcal{H} be a Hilbert space with a harmonic potential. Then, the eigenstates form a non-degenerate basis.

Definition 1.3 (Fock states). Let \mathcal{H} be a Hilbert space with a harmonic potential. We define the *Fock states* as the states that determine the basis $(|n\rangle)$ and have a well-defined number of excitations.

Definition 1.4. Let \mathcal{H} be a Hilbert space with a harmonic potential. We call the fundamental Fock state *the vaccum*.

Proposition 1.8. Let \mathcal{H} be a Hilbert space with a harmonic potential. Then, $\hat{a}, \hat{a}^{\dagger}$ and \hat{N} have the following matrix representation in the basis $(|n\rangle)$.

$$[\hat{N}]_B = \begin{pmatrix} 0 & 0 & 0 & \cdots \\ 0 & 1 & 0 & \cdots \\ 0 & 0 & 2 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}, \tag{14}$$

$$[\hat{a}]_B = \begin{pmatrix} 0 & \sqrt{1} & 0 & \cdots \\ 0 & 0 & \sqrt{2} & \cdots \\ 0 & 0 & 0 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}, \tag{15}$$

$$[\hat{a}^{\dagger}]_{B} = \begin{pmatrix} 0 & 0 & 0 & \cdots \\ \sqrt{1} & 0 & 0 & \cdots \\ 0 & \sqrt{2} & 0 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix},$$
 (16)

or in coefficient representation,

$$[\hat{N}]_{ii} = (i-1)\delta_{ii},\tag{17}$$

$$[\hat{a}]_{ij} = \sqrt{j-1}\delta_{i,j-1},$$
 (18)

$$[\hat{a}^{\dagger}]_{ij} = \sqrt{i-1}\delta_{i-1,j}.$$
 (19)

Proposition 1.9. Let \mathcal{H} be a Hilbert space with a harmonic potential. Then,

$$\varphi_0(x) = \langle x|0\rangle = \left(\frac{\beta^2}{\pi}\right)^{1/4} \exp\left(-\frac{\alpha^2 x^2}{2}\right),$$
 (20)

$$\varphi_n(x) = \frac{1}{\sqrt{n!}} \left(\frac{\beta}{\sqrt{2}} x - \frac{1}{\sqrt{2}\beta} \frac{\mathrm{d}}{\mathrm{d}x} \right) \varphi_0(x) =$$
 (21)

$$\frac{1}{\sqrt{2^n n!}} H_n(\beta x) \varphi_0(x). \tag{22}$$

Proposition 1.10. Let \mathcal{H} be a Hilbert space with a harmonic potential and $\hat{\sigma}$ a sequence formed by k \hat{a} and l \hat{a}^{\dagger} . Then,

$$\langle n | \hat{\sigma} | n \rangle \leftrightarrow k = l.$$
 (23)

Proposition 1.11. Let \mathcal{H} be a Hilbert space with a harmonic potential. Then,

$$\langle \hat{x} \rangle_n = 0, \qquad \langle \hat{x}^2 \rangle = \frac{\hbar}{2m\omega} (2n+1), \qquad (24)$$

$$\langle \hat{p} \rangle_n = 0, \qquad \langle \hat{p}^2 \rangle = \frac{\hbar m \omega}{2} (2n+1), \qquad (25)$$

$$\Delta x \Delta p = \frac{\hbar}{2} (2n+1). \tag{26}$$

Proposition 1.12. Let \mathcal{H} a Hilbert space with a harmonic potential. Then,

$$\langle T \rangle = \langle V \rangle \,. \tag{27}$$

Definition 1.5. Let \mathcal{H} be a Hilbert space with a harmonic potential. We define a *coherent state* as a state $|\alpha\rangle \in \mathcal{H}$ such that

$$\hat{a} |\alpha\rangle = \alpha |\alpha\rangle. \tag{28}$$

Definition 1.6. Let \mathcal{H} be a Hilbert space with a harmonic potential. We define the *displaced state* as the state $|\psi_{\alpha}\rangle \in \mathcal{H}$ determined by

$$\psi_{\alpha}(x) = \psi_0(x - x_0). \tag{29}$$

Proposition 1.13. Let \mathcal{H} be a Hilbert space with a harmonic potential and a force F = f. Then, the fundamental state is a displaced state with $x_0 = f/m\omega^2$.

Proposition 1.14. Let \mathcal{H} be a Hilbert space with a harmonic potential and $|\psi_{\alpha}\rangle \in \mathcal{H}$ a displaced state with displacement x_0 . Then, $|\psi_{\alpha}\rangle$ is a coherent state with eigenvalue

$$\alpha = \sqrt{\frac{m\omega}{2\hbar}} x_0. \tag{30}$$

Proposition 1.15. Let \mathcal{H} be a Hilbert space with a harmonic potential and $|\alpha\rangle \in \mathcal{H}$ a coherent state. Then,

$$|\alpha\rangle = e^{-|\alpha|^2/2} \sum_{n=0}^{\infty} \frac{\alpha^n}{\sqrt{n!}} |n\rangle = e^{-|\alpha|^2/2} e^{\alpha \hat{a}^{\dagger}} |0\rangle.$$
 (31)

Proposition 1.16. Let \mathcal{H} be a Hilbert space with a harmonic potential and $|\alpha\rangle$ a coherent state. Then,

$$\left\langle \hat{N} \right\rangle_{\alpha} = |\alpha|^2, \qquad p_{|\alpha\rangle}(n) = e^{-\left\langle \hat{N} \right\rangle} \frac{\left\langle \hat{N} \right\rangle^n}{n!}.$$
 (32)

Theorem 1.17 (Baker-Campbell-Hausdorff formula). Let \mathcal{H} be a Hilbert space and $\hat{A}, \hat{B}: \mathcal{H} \longrightarrow \mathcal{H}$ two operators such that $\left[\left[\hat{A}, \hat{B}\right], \hat{A}\right], \left[\left[\hat{A}, \hat{B}\right], \hat{B}\right] = 0$. Then,

$$\exp(\hat{A} + \hat{B}) = \exp\left(-\frac{1}{2}[\hat{A}, \hat{B}]\right) \exp(\hat{A}) \exp(\hat{B}). \tag{33}$$

Proposition 1.18. Let \mathcal{H} be a Hilbert space with a harmonic potential and $|\alpha\rangle \in \mathcal{H}$ a coherent state. Then,

$$\left[\bar{\alpha}\hat{a},\alpha\hat{a}^{\dagger}\right] = |\alpha|^2 \hat{I},\tag{34}$$

$$|\alpha\rangle = \exp(\alpha \hat{a}^{\dagger} - \bar{\alpha}\hat{a})|0\rangle := \hat{\mathcal{D}}(\alpha)|0\rangle.$$
 (35)

Definition 1.7. Let \mathcal{H} be a Hilbert space with a harmonic potential. We define the *displacement operator* as

$$\hat{\mathcal{D}}(\alpha) = \exp(\alpha \hat{a}^{\dagger} - \bar{\alpha}\hat{a}). \tag{36}$$

Proposition 1.19. Let \mathcal{H} be a Hilbert space with a harmonic potential. Then,

- 1. $\hat{\Gamma}(\alpha)$ is unitary.
- 2. $\hat{\mathcal{D}}^{\dagger}(\alpha) = \hat{\mathcal{D}}(-\alpha)$.
- 3. $\hat{\mathcal{D}}(\alpha)\hat{\mathcal{D}}^{\dagger}(\alpha) = \hat{I}$.

Proposition 1.20. Let \mathcal{H} be a Hilbert space with a harmonic potential. Then,

$$\hat{\mathcal{D}}(\alpha) = \exp\left(-i\frac{x_0\hat{p} - p_0\hat{x}}{\hbar}\right) = \tag{37}$$

$$\exp\left(-\frac{i}{2}\frac{x_0p_0}{\hbar}\right)\exp\left(i\frac{p_0\hat{x}}{\hbar}\right)\exp\left(-i\frac{x_0\hat{p}}{\hbar}\right), \quad (38)$$

$$x_0 = \sqrt{2}l \operatorname{Re}\{\alpha\}, \qquad p_0 = \sqrt{2}\frac{l}{\hbar} \operatorname{Im}\{\alpha\}, \qquad (39)$$

$$l = \sqrt{\frac{\hbar}{m\omega}}. (40)$$

Proposition 1.21. Let \mathcal{H} be a Hilbert space with a harmonic potential and $|\alpha\rangle \in \mathcal{H}$ a coherent state. Then,

$$\langle x | \alpha \rangle = \psi_{\alpha}(x) = \tag{41}$$

$$\left(\frac{m\omega}{\pi\hbar}\right)^{1/4} \exp\left(\frac{ip_0}{2\hbar}(2x-x_0)\right) \exp\left(-\frac{(x-x_0)^2}{4\sigma_x^2}\right),\tag{42}$$

$$\frac{1}{4\sigma_x^2} = \frac{1}{2} \frac{m\omega}{\hbar} \tag{43}$$

$$x_0 = \sqrt{\frac{2\hbar}{m\omega}} \operatorname{Re}\{\alpha\}, \qquad p_0 = \sqrt{2\hbar m\omega} \operatorname{Im}\{\alpha\}$$
 (44)

Proposition 1.22. Let \mathcal{H} be a Hilbert space with a harmonic potential and $\{|\alpha\rangle\}$ the set of coherent states. Then, they form a overcomplete basis, that is, not for all pair of states $|\alpha\rangle, |\alpha'\rangle$ it is satisfied $\langle\alpha'|\alpha\rangle = 0$. Hence,

$$\hat{I} = \frac{1}{\pi} \int |\alpha\rangle\langle\alpha| d^2\alpha, \qquad |\langle\alpha|\beta\rangle|^2 = e^{-|\alpha-\beta|^2}.$$
 (45)

Besides, $\langle \alpha | \beta \rangle \to 0$ if and only if $|\alpha - \beta| \gg 1$.

Proposition 1.23. Let \mathcal{H} be a Hilbert space with a harmonic potential and $|\alpha\rangle \in \mathcal{H}$ a coherent state. Then,

$$|\alpha\rangle(t) = e^{i\omega t/2} |\alpha(t)\rangle = e^{i\omega t/2} |\alpha_0 e^{i\omega t}\rangle.$$
 (46)

Proposition 1.24. Let \mathcal{H} be a Hilbert space with a harmonic potential and $|\alpha\rangle \in \mathcal{H}$ a coherent state. Then,

$$\langle \hat{x} \rangle = x_0 \cos(\omega t) + \frac{p_0}{m_U} \sin(\omega t),$$
 (47)

$$\langle \hat{p} \rangle = p_0 \cos(\omega t) - m\omega x_0 \sin(\omega t).$$
 (48)

a state. We say $|\psi\rangle$ is a minimum uncertainty state if and only if

$$\Delta x \Delta p = \frac{\hbar}{2}.\tag{49}$$

Proposition 1.25. Let \mathcal{H} be a Hilbert state, $|\in\rangle \mathcal{H}$ a state and $|\psi_x\rangle = \hat{\delta x} |\psi\rangle$, $|\psi_p\rangle = \hat{\delta p} |\psi\rangle$. Then,

$$\langle \psi_x | \psi_x \rangle \langle \psi_p | \psi_p \rangle \ge |\langle \psi_x | \psi_p \rangle|^2.$$
 (50)

and the equality only occurs when there exists a $\lambda \in \mathbb{C}$ such that $|\psi_p\rangle = \lambda |\psi_x\rangle$.

Proposition 1.26. Let \mathcal{H} be a Hilbert space and $|\psi\rangle \in$ H be a state. Then,

$$\left| \langle \psi | \hat{\delta x} \hat{\delta p} | \psi \rangle \right|^2 \ge \frac{1}{4} \left| \langle \psi | \left[\hat{\delta x}, \hat{\delta p} \right] | \psi \rangle \right|^2, \tag{51}$$

and the equality only occurs when $\{\hat{\delta x}, \hat{\delta p}\} = 0$.

Proposition 1.27. Let \mathcal{H} be a Hilbert space and $|\in\rangle \mathcal{H}$ a minimum uncertainty state. Then,

$$\langle x|\psi\rangle = \psi(x) = \tag{52}$$

$$C \exp \left[-\frac{|\lambda|}{2} (x - \langle x \rangle)^2 \right] \exp \left[\frac{ix \langle p \rangle}{\hbar} \right],$$
 (53)

for some $\lambda \in \mathbb{C}$ and with variance $\Delta x^2 = \hbar/2|\lambda|$.

Proposition 1.28. Let \mathcal{H} be a Hilbert space with a harmonic potential and $\hat{b} = \hat{a} - \alpha \hat{I}$. Then,

$$|\alpha\rangle = |0_{\alpha}\rangle, \qquad \hat{b}|0_{\alpha}\rangle = 0, \qquad \hat{N}_{b} = \hat{b}^{\dagger}\hat{b}, \qquad (54)$$

$$\left[\hat{b},\hat{b}^{\dagger}\right] = \hat{I}, \qquad \hat{N}_b \left| n \right\rangle_b = n \left| n \right\rangle_b, \tag{55}$$

$$\hat{b} |n\rangle_b = \sqrt{n+1} |n+1\rangle_b.$$
 (56)

Proposition 1.29. Let H be a Hilbert space with a harmonic potential, $\alpha = \sqrt{\frac{m\omega}{2\hbar}}x_0$ and $\hat{H} =$ $\hbar\omega\left(\frac{1}{2}+\hat{N}_b\right)$. Then,

$$\hat{H}' = \frac{\hat{p}^2}{wm} + \frac{m\omega^2}{2}(\hat{x} - x_0)^2 - \frac{m\omega^2}{2}x_0^2.$$
 (57)

Proposition 1.30 (Bogoliubov's transformation). Let ${\cal H}$ be a Hilbert space with a variant harmonic potential

$$V(\hat{x}) = \begin{cases} \frac{m_a \omega_a^2}{2} \hat{x}^2 & t < 0, \\ \frac{m_b \omega_b^2}{2} \hat{x}^2 & t \ge 0 \end{cases}$$
 (58)

Then,

$$\begin{cases} \hat{a} = \hat{b} \cosh \gamma + \hat{b}^{\dagger} \sinh \gamma, \\ \hat{a}^{\dagger} = \hat{b} \sinh \gamma + \hat{b}^{\dagger} \cosh \gamma \end{cases} , \tag{59}$$

$$\begin{cases} \hat{b} = \hat{a}\cosh\gamma - \hat{a}^{\dagger}\sinh\gamma, \\ \hat{b}^{\dagger} = -\hat{a}\sinh\gamma + \hat{a}^{\dagger}\cosh\gamma \end{cases}$$
 (60)

Proposition 1.31. Let \mathcal{H} be a Hilbert space with a variant harmonic potential. Then,

$$\left|0_{\gamma}\right\rangle = \left|0\right\rangle_{a} = \frac{1}{\sqrt{\cosh\gamma}} \exp\left[-\frac{1}{2}\tanh\gamma(\hat{b}^{\dagger})^{2}\right] \left|0\right\rangle_{b},$$

$$\ln\sqrt{\frac{m_a\omega_a}{m_b\omega_b}}.$$
(62)

Definition 1.8. Let \mathcal{H} be a Hilbert space and $|\psi\rangle \in \mathcal{H}$ Proposition 1.32. Let \mathcal{H} be a Hilbert space with a variant harmonic potential. Then,

$$|0_{\gamma}\rangle = \hat{S}(\gamma)|0\rangle_{b} = \exp\left[-\frac{\gamma}{2}(\hat{b}^{\dagger^{2}} - \hat{b}^{2})\right]|0\rangle_{b}.$$
 (63)

We call $\hat{S}(\gamma)$ the squeezing operator.

Proposition 1.33. Let \mathcal{H} be a Hilbert space with a avariant harmonic potential. Then,

- 1. If $\gamma \to \infty$, then $\Delta x \to 0$ and $|0_{\gamma}\rangle \to |x\rangle$.
- 2. If $\gamma \to -\infty$, then $\Delta p \to 0$ and $|0_{\gamma}\rangle \to |p\rangle$.

Proposition 1.34. Let \mathcal{H} be a Hilbert space with a harmonic potential and $|\psi\rangle \in \mathcal{H}$ a state. Then

- 1. If $|\psi\rangle$ is the vacuum state, Δp , Δx are constant.
- 2. If $|\psi\rangle$ is an squeezed state, Δp , Δx vary.

Proposition 1.35. Let \mathcal{H} be a Hilbert space, $\hat{a}, \hat{a}^{\dagger}$ ladder operators and $f(\hat{a}, \hat{a}^{\dagger}), f^{\dagger}(\hat{a}, \hat{a}^{\dagger})$ other ladder operators. Then, their general form is

$$f(\hat{a}, \hat{a}^{\dagger}) = \alpha \hat{I} + z_1 \hat{a} + z_2 \hat{a}^{\dagger}, \tag{64}$$

$$\alpha, z_1, z_2 \in \mathbb{C}, \ |z_1|^2 - |z_2|^2 = 1.$$
 (65)

Proposition 1.36. Let \mathcal{H} be a Hilbert space. squeezed states are the vacuum states of the operator

$$\hat{a}_{\gamma} = \cosh \gamma \hat{a} + \sinh \gamma \hat{a}^{\dagger}. \tag{66}$$

Proposition 1.37. Let \mathcal{H} be a Hilbert space. Then, coherent states are the vacuum states of the operator

$$\hat{a}_{\alpha} = \hat{a} - \alpha \hat{I}. \tag{67}$$

Proposition 1.38. Let \mathcal{H} be a Hilbert space. Then, the time dependent coherent states $|\alpha\rangle(t)$ are the coherent states of the operator

$$\hat{a}_t = e^{-i\omega t} \hat{a}. \tag{68}$$

2 Angular momentum

Definition 2.1. Let \mathcal{H} be a Hilbert space. We define the angular momentum operator on \mathcal{H} as the generator of rotations

$$\mathcal{D}_{\mathbf{n}}(\theta) = \exp\left(-\frac{i\theta}{\hbar} \langle \mathbf{n}, \mathbf{J} \rangle_{I}\right). \tag{69}$$

Proposition 2.1. Let \mathcal{H} be a Hilbert space. Then,

$$\left[\hat{J}_i, \hat{J}_j\right] = i\hbar \sum_k \epsilon_{ijk} \hat{J}_k. \tag{70}$$

Proposition 2.2. Let \mathcal{H} be a Hilbert space. Then, the angular momentum operator is hermitian, that is, $\hat{J}_i^{\dagger} = \hat{J}_i \ \forall i.$

the squared angular momentum operator as

$$\hat{J}^2 := \langle \mathbf{J}, \mathbf{J} \rangle_I. \tag{71}$$

Definition 2.3.

$$\hat{J}_{\mathbf{n}} := \langle \mathbf{n}, \mathbf{J} \rangle_{I}. \tag{72}$$

Proposition 2.3. Let \mathcal{H} be a Hilbert space. Then, \hat{J}^2 is unvariant under rotations, that is,

$$\left[\hat{J}^2, \hat{J}_{\mathbf{n}}\right] = 0, \ \forall \mathbf{n}. \tag{73}$$

Proposition 2.4. Let \mathcal{H} be a Hilbert space and $(|\beta,m\rangle)$ a common eigenbasis of \hat{J}^2 and \hat{J}_z . Then,

$$\beta \ge m^2. \tag{74}$$

Definition 2.4. Let \mathcal{H} be a Hilbert space and \hat{J}_i the angular momentum opperators. We define their ladder operators as

$$\hat{J}_{+} \coloneqq \hat{J}_{x} + i\hat{J}_{y}, \qquad \hat{J}_{-} \coloneqq \hat{J}_{x} - i\hat{J}_{y} = \hat{J}_{+}^{\dagger}. \tag{75}$$

Proposition 2.5. Let \mathcal{H} be a Hilbert space. Then,

$$\begin{cases} \hat{J}_x = \frac{1}{2}\hat{J}_+ + \frac{1}{2}\hat{J}_- \\ \hat{J}_y = -\frac{i}{2}\hat{J}_+ + \frac{i}{2}\hat{J}_- \end{cases}$$
 (76)

Proposition 2.6. Let \mathcal{H} be a Hilbert space. Then,

$$\left[\hat{J}_z, \hat{J}_{\pm}\right] = \pm \hbar \hat{J}_{\pm},\tag{77}$$

$$\left[\hat{J}_{+},\hat{J}_{-}\right] = 2\hbar\hat{J}_{z},\tag{78}$$

$$\left[\hat{J}^2, \hat{J}_{\pm}\right] = 0. \tag{79}$$

Proposition 2.7. Let \mathcal{H} be a Hilbert space. Then,

$$\hat{J}_{-}\hat{J}_{+} = \hat{J}^{2} - \hat{J}_{z}^{2} - \hbar J_{z}, \tag{80}$$

$$\hat{J}_{+}\hat{J}_{-} = \hat{J}^{2} - \hat{J}_{z}^{2} + \hbar J_{z}. \tag{81}$$

Proposition 2.8. Let \mathcal{H} be a Hilbert space. Then,

$$\hat{J}_{\pm} |j,m\rangle \propto |j,m\pm 1\rangle,$$
 (82)

$$\hat{J}^2 |j, m\rangle = \hbar^2 j(j+1) |j, m\rangle,$$
 (83)

$$\hat{J}_z |j, m\rangle = \hbar m |j, m\rangle. \tag{84}$$

Proposition 2.9. Let \mathcal{H} be a Hilbert space. Then,

$$\hat{J}_{+}|j,m\rangle = \hbar\sqrt{j(j+1) - m(m+1)}|j,m+1\rangle, \quad (85)$$

$$\hat{J}_{-}|j,m\rangle = \hbar\sqrt{j(j+1) - m(m-1)}|j,m-1\rangle$$
. (86)

Definition 2.5. Matrix representation of \hat{J}_z

$$[\hat{J}_z] = \delta_{jj'} \delta_{mm'} \hbar m. \tag{87}$$

Definition 2.2. Let \mathcal{H} be a Hilbert space. We define Corollary 2.10. Metrix representation of \hat{J}_z for j=10, 1/2, 1, 3/2

$$[\hat{J}_z^0] = (0), \tag{88}$$

$$[\hat{J}_z^{1/2}] = \begin{pmatrix} 1/2 & 0\\ 0 & -1/2 \end{pmatrix}, \tag{89}$$

$$[\hat{J}_z^1] = \begin{pmatrix} 1 & 0 & 1\\ 0 & 0 & 0\\ 0 & 0 & -1 \end{pmatrix}, \tag{90}$$

$$[\hat{J}_z^{3/2}] = \begin{pmatrix} 3/2 & 0 & 0 & 0\\ 0 & 1/2 & 0 & 0\\ 0 & 0 & -1/2 & 0\\ 0 & 0 & 0 & -3/2 \end{pmatrix}. \tag{91}$$

Proposition 2.11. Matrix representation of \hat{J}_{\pm}

$$[\hat{J}_{\pm}] = \hbar \sqrt{j(j+1) - m(m\pm 1)} \delta_{j'j} \delta_{m'm\pm 1}.$$
 (92)

Corollary 2.12. Metrix representation of \hat{J}_{\pm} for j=0, 1/2, 1, 3/2

$$[\hat{J}_{\perp}^{0}] = (0), \qquad (93)$$

$$\left[\hat{J}_{+}^{1/2}\right] = \begin{pmatrix} 0 & 1\\ 0 & 0 \end{pmatrix},\tag{94}$$

$$[\hat{J}_{+}^{1}] = \begin{pmatrix} 0 & \sqrt{2} & 1\\ 0 & 0 & \sqrt{2}\\ 0 & 0 & 0 \end{pmatrix}, \tag{95}$$

$$[\hat{J}_{+}^{3/2}] = \begin{pmatrix} 0 & \sqrt{3} & 0 & 0\\ 0 & 0 & \sqrt{4} & 0\\ 0 & 0 & 0 & \sqrt{3}\\ 0 & 0 & 0 & 0 \end{pmatrix}. \tag{96}$$

$$[(\hat{J}^0_{\perp})^2] = (0), \qquad (97)$$

$$[(\hat{J}_{+}^{1/2})^{2}] = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \tag{98}$$

$$\left[\left(\hat{J}_{+}^{1} \right)^{2} \right] = \begin{pmatrix} 0 & 0 & 2 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}, \tag{99}$$

$$\left[\left(\hat{J}_{+}^{3/2} \right)^{2} \right] = \begin{pmatrix} 0 & 0 & 2\sqrt{3} & 0\\ 0 & 0 & 0 & 2\sqrt{3}\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 \end{pmatrix}. \tag{100}$$

Proposition 2.13. Matrix representation of \hat{J}^2 .

$$[\hat{J}^2] = \hbar^2 j(j+1)\delta_{ij'}\delta_{mm'}.$$
 (101)

Definition 2.6. Let \mathcal{H} be a Hilbert space. We define the orbital angular momentum operator as

$$\mathbf{L} \coloneqq \mathbf{r} \times \mathbf{p} = -i\hbar \mathbf{r} \times \nabla. \tag{102}$$

Proposition 2.14. Let \mathcal{H} be a Hilbert space. Then,

1.
$$\left[\hat{L}_i, \hat{L}_j\right] = \sum_{k} \epsilon_{ijk} \hat{L}_k$$

2.
$$\left[\hat{L}^2, L_i\right] = 0 \ \forall i, \left[\hat{L}^2, \mathbf{L}\right] = \mathbf{0}.$$

Proposition 2.15. Let \mathcal{H} be a Hilbert space. Then,

1. Cartensian basis representation

$$\langle \mathbf{r} | \mathbf{L} = -i\hbar(y\partial_z - z\partial_y)\mathbf{e}_x.i\hbar(z\partial_x - x\partial_z)\mathbf{e}_y - i\hbar(x\partial_y - y\partial_x)\mathbf{e}_z.$$
(103)

2. Spherical basis representation

$$\langle \mathbf{r} | \mathbf{L} = -i\hbar \frac{\partial}{\partial \theta} \mathbf{e}_{\varphi} + i\hbar \frac{1}{\sin \theta} \frac{\partial}{\partial \varphi} \mathbf{e}_{\theta}.$$
 (104)

3. Sherical parameters representation

$$\langle \mathbf{r} | \hat{L}^2 = -\hbar^2 \left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \varphi^2} \right]$$
(105)

$$\langle \mathbf{r} | \hat{L}_z = -i\hbar \frac{\partial}{\partial \varphi}.$$
 (106)

Proposition 2.16. Let \mathcal{H} be a Hilbert space. Then,

$$L_z Y_l^m(\theta, \varphi) = \hbar m Y_l^m(\theta, \varphi) \tag{107}$$

$$L^{2}Y_{l}^{m}(\theta,\varphi) = \hbar^{2}l(l+1)Y_{l}^{m}(\theta,\varphi), \tag{108}$$

with

$$Y_l^m(\theta,\varphi) = \tag{109}$$

$$(-1)^{\frac{m+|m|}{2}} \left[\frac{(2l+1)(l-|m|)!}{4\pi(l-|m|)!} \right]^{1/2} e^{im\varphi} P_l^{|m|}(\cos\theta).$$
(110)

Definition 2.7. Let $\mathcal H$ be a Hilbert space and $\mathbf L$ the orbital angular momentum operator. We define its *ladder operators* as

$$L_{+} := L_{x} + iL_{y} = \hbar e^{i\varphi} \left[\frac{\partial}{\partial \theta} + i \cot \theta \frac{\partial}{\partial \varphi} \right], \quad (111)$$

$$L_{-} := L_{x} - iL_{y} = \hbar e^{i\varphi} \left[-\frac{\partial}{\partial \theta} + i \cot \theta \frac{\partial}{\partial \varphi} \right]$$
 (112)