Notes on the book: $Ash, Probability and Measure Theory, \\ 2nd edition$

Meng-Gen Tsai plover@gmail.com

August 9, 2022

Contents

ter 1: Fundamentals of Measure and Integration Theory	
. Introduction	
Problem 1.1.1	
Problem 1.1.2	
Problem 1.1.5	
Problem 1.1.6	
. Fields, σ -Fields, and Measures	
Problem 1.2.1	
Problem 1.2.2	
Problem 1.2.3	
Problem 1.2.5	
Problem 1.2.6	
Problem 1.2.10	

Chapter 1: Fundamentals of Measure and Integration Theory

1.1. Introduction

Problem 1.1.1.

Establish formulas (1)-(5).

Formulas.

- (1) If $A_n \uparrow A$, then $A_n^c \downarrow A^c$; If $A_n \downarrow A$, then $A_n^c \uparrow A^c$.
- (2)

$$\bigcup_{i=1}^{n} A_i = A_1 \cup (A_1^c \cap A_2) \cup (A_1^c \cap A_2^c \cap A_3)$$
$$\cup \dots \cup (A_1^c \cap \dots \cap A_{n-1}^c \cap A_n).$$

(3) Furthermore,

$$\bigcup_{n=1}^{\infty} A_n = \bigcup_{n=1}^{\infty} \left(A_1^c \cap \dots \cap A_{n-1}^c \cap A_n \right).$$

(4) If the A_n form an increasing sequence, then

$$\bigcup_{i=1}^{n} A_{i} = A_{1} \cup (A_{2} - A_{1}) \cup \cdots \cup (A_{n} - A_{n-1}).$$

(5) If the A_n form an increasing sequence, then

$$\bigcup_{n=1}^{\infty} A_n = \bigcup_{n=1}^{\infty} (A_n - A_{n-1})$$

(take A_0 as the empty set).

Proof of Formula (1).

(1) Suppose that $A_n \uparrow A$ is an increasing sequence of sets with limit A. Then $A_1 \subset A_2 \subset \cdots$ and $\bigcup_{n=1}^{\infty} A_n = A$. So $A_1^c \supset A_2^c \supset \cdots$ and

$$\bigcap_{n} A_n^c = \left(\bigcup_{n} A_n\right)^c = A^c$$

by the De Morgan laws. Hence $A_n \uparrow A$ implies that $A_n^c \downarrow A^c$.

(2) Conversely, suppose that $A_n \downarrow A$ is an decreasing sequence of sets with limit A. Then $A_1 \supset A_2 \supset \cdots$ and $\bigcap_{n=1}^{\infty} A_n = A$. So $A_1^c \subset A_2^c \subset \cdots$ and

$$\bigcup_{n} A_{n}^{c} = \left(\bigcap_{n} A_{n}\right)^{c} = A^{c}$$

by the De Morgan laws. Hence $A_n \downarrow A$ implies that $A_n^c \uparrow A^c$.

Proof of Formula (2).

(1) Set

$$B_i = A_1^c \cap \dots \cap A_{i-1}^c \cap A_i$$

for $i = 1, \dots, n$. Observe that $B_1 = A_1$. So it is equivalent to show that

$$\bigcup_{i=1}^{n} A_i = \bigcup_{i=1}^{n} B_i.$$

- (2) Since each B_i is a subset of A_i , $\bigcup_{i=1}^n A_i \supset \bigcup_{i=1}^n B_i$.
- (3) Conversely, given any $x \in \bigcup_{i=1}^n A_i$. $x \in A_j$ for some j. Now take the minimal value of j such that $x \in A_j$. The minimality of j implies that $x \notin A_1, A_2, \dots, A_{j-1}$. Hence

$$x \in A_1^c \cap \cdots \cap A_{j-1}^c \cap A_j = B_j \subset \bigcup_{i=1}^n B_i.$$

Therefore, $\bigcup_{i=1}^n A_i \subset \bigcup_{i=1}^n B_i$.

(4) By (2)(3), $\bigcup_{i=1}^{n} A_i$ and $\bigcup_{i=1}^{n} B_i$ are equal.

Proof of Formula (3). Same as the proof of formula (2) since the minimality of j described in part (3) exists. \square

Proof of Formula (4).

(1) As A_n form an increasing sequence, $A_1 \subset A_2 \subset \cdots$ or $A_1^c \supset A_2^c \supset \cdots$. Hence

$$A_1^c \cap \cdots \cap A_{i-1}^c = A_{i-1}^c$$
.

Therefore, B_i is reduced to

$$B_i = A_1^c \cap \cdots \cap A_{i-1}^c \cap A_i = A_{i-1}^c \cap A_i = A_i - A_{i-1}.$$

(2) Now formula (2) becomes

$$\bigcup_{i=1}^{n} A_i = \bigcup_{i=1}^{n} B_i = \bigcup_{i=1}^{n} (A_i - A_{i-1}).$$

Proof of Formula (5). Note that $B_n = A_n - A_{n-1}$ in the proof of formula (4). Formula (3) becomes $\bigcup_{n=1}^{\infty} A_n = \bigcup_{n=1}^{\infty} (A_n - A_{n-1})$. \square

Problem 1.1.2.

Define sets of real numbers as follows. Let $A_n = (-\frac{1}{n}, 1]$ if n is odd, and $A_n = (-1, \frac{1}{n}]$ if n is even. Find $\limsup_n A_n$ and $\liminf_n A_n$.

Proof.

(1) Write

$$\bigcup_{k=n}^{\infty} A_k = \left(\bigcup_{k=\lfloor \frac{n}{2} \rfloor}^{\infty} A_{2k+1}\right) \cup \left(\bigcup_{k=\lfloor \frac{n+1}{2} \rfloor}^{\infty} A_{2k}\right)$$

$$= \left(\bigcup_{k=\lfloor \frac{n}{2} \rfloor}^{\infty} \left(-\frac{1}{2k+1}, 1\right]\right) \cup \left(\bigcup_{k=\lfloor \frac{n+1}{2} \rfloor}^{\infty} \left(-1, \frac{1}{2k}\right]\right)$$

$$= \left(-\frac{1}{2\lfloor \frac{n}{2} \rfloor + 1}, 1\right] \cup \left(-1, \frac{1}{2\lfloor \frac{n+1}{2} \rfloor}\right)$$

$$= (-1, 1]$$

for each k. Hence

$$\limsup_{n} A_{n} = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_{k} = \bigcap_{n=1}^{\infty} (-1, 1] = (-1, 1].$$

(2) Similarly, for each k we have

$$\bigcap_{k=n}^{\infty} A_k = \left(\bigcap_{k=\lfloor \frac{n}{2} \rfloor}^{\infty} A_{2k+1}\right) \cap \left(\bigcap_{k=\lfloor \frac{n+1}{2} \rfloor}^{\infty} A_{2k}\right)$$

$$= \left(\bigcap_{k=\lfloor \frac{n}{2} \rfloor}^{\infty} \left(-\frac{1}{2k+1}, 1\right]\right) \cap \left(\bigcap_{k=\lfloor \frac{n+1}{2} \rfloor}^{\infty} \left(-1, \frac{1}{2k}\right]\right)$$

$$= [0, 1] \cup (-1, 0]$$

$$= \{0\}.$$

Hence

$$\liminf_{n} A_{n} = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_{k} = \bigcup_{n=1}^{\infty} \{0\} = \{0\}.$$

Problem 1.1.5.

Establish formulas (10)-(13).

Formulas.

(10)
$$\left(\limsup_{n} A_{n}\right)^{c} = \liminf_{n} A_{n}^{c}.$$

(11)
$$\left(\liminf_{n} A_{n}\right)^{c} = \limsup_{n} A_{n}^{c}.$$

(12)
$$\liminf_{n} A_{n} \subset \limsup_{n} A_{n}.$$

(13) If $A_n \uparrow A$ or $A_n \downarrow A$, then $\liminf_n A_n = \limsup_n A_n = A$.

Proof of Formula (10). The De Morgan laws shows that

$$\left(\limsup_{n} A_{n}\right)^{c} = \left(\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_{k}\right)^{c}$$

$$= \bigcup_{n=1}^{\infty} \left(\bigcup_{k=n}^{\infty} A_{k}\right)^{c}$$

$$= \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_{k}^{c}$$

$$= \limsup_{n} A_{n}^{c}.$$

Proof of Formula (11). Similar to the proof of formula (10).

$$\left(\liminf_{n} A_{n} \right)^{c} = \left(\bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_{k} \right)^{c}$$

$$= \bigcap_{n=1}^{\infty} \left(\bigcap_{k=n}^{\infty} A_{k} \right)^{c}$$

$$= \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_{k}^{c}$$

$$= \lim_{n} \sup_{n} A_{n}^{c}.$$

Proof of Formula (12). Formulas (7) and (9) give all. \square

Proof of Formula (13).

(1) If $A_n \uparrow A$, then

$$\limsup_{n} A_{n} = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_{k} = \bigcap_{n=1}^{\infty} A = A$$

and

$$\liminf_{n} A_n = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k = \bigcup_{n=1}^{\infty} A_n = A.$$

(2) If $A_n \downarrow A$, then

$$\limsup_{n} A_{n} = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_{k} = \bigcap_{n=1}^{\infty} A_{n} = A$$

and

$$\liminf_{n} A_n = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k = \bigcup_{n=1}^{\infty} A = A.$$

Problem 1.1.6.

Let A = (a, b) and B = (c, d) be disjoint open intervals of \mathbb{R} , and let $C_n = A$ if n is odd, $C_n = B$ if n is even. Find $\limsup_n C_n$ and $\liminf_n C_n$.

Proof.

(1)
$$\limsup_{n} C_{n} = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} C_{k} = \bigcap_{n=1}^{\infty} (A \cup B) = A \cup B.$$

(2)
$$\liminf_{n} C_{n} = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} C_{k} = \bigcup_{n=1}^{\infty} \emptyset = \emptyset.$$

1.2. Fields, σ -Fields, and Measures

Problem 1.2.1.

Let Ω be a countably infinite set, and let \mathscr{F} consist of all subsets of Ω . Define $\mu(A) = 0$ if A is finite, $\mu(A) = \infty$ if A is infinite.

- (a) Show that μ is finitely additive but not countably additive.
- (b) Show that Ω is the limit of an increasing sequence of sets A_n with $\mu(A_n) = 0$ for all n, but $\mu(\Omega) = \infty$.

Proof of (a).

(1) Show that μ is finitely additive. Given a finitely collection of disjoint sets A_1, A_2, \ldots, A_n in \mathscr{F} . If each set A_k $(k = 1, 2, \ldots, n)$ is finite, then $\bigcup A_k$ is also finite and thus we have

$$\mu\left(\bigcup_{k=1}^{n} A_k\right) = 0 = \sum_{k=1}^{n} \mu(A_k).$$

If there is some $A_{k'}$ is infinite, then $\bigcup A_k \supset A_{k'}$ is also infinite and thus

$$\mu\bigg(\bigcup_{k=1}^{n} A_k\bigg) = \infty = \sum_{k=1}^{n} \mu(A_k).$$

(2) Show that μ is not countably additive. Write

$$\Omega = \{\omega_1, \omega_2, \ldots\}$$

(since Ω is countably infinite) and $A_n = \{\omega_n\}$ for all $n = 1, 2, \ldots$ Hence A_1, A_2, \ldots is a countably infinitely collection of disjoint sets and $\bigcup_{n=1}^{\infty} A_n = \Omega$. Therefore,

$$\mu\bigg(\bigcup_{n=1}^{\infty} A_n\bigg) = \mu(\Omega) = \infty$$

but

$$\sum_{n=1}^{\infty} \mu(A_n) = \sum_{n=1}^{\infty} 0 = 0.$$

Proof of (b).

(1) Similar to the proof of (a). Write $\Omega = \{\omega_1, \omega_2, \ldots\}$ and

$$A_n = \{\omega_1, \omega_2, \dots, \omega_n\}.$$

for all $n = 1, 2, \ldots$

(2) Therefore, $A_n \uparrow \Omega$, $\mu(A_n) = 0$ for all n but $\mu(\Omega) = \infty$. (Theorem 1.2.7 implies that μ cannot be a countably additive.)

Problem 1.2.2.

Let μ be counting measure on Ω , where Ω is an infinite set. Show that there is a sequence of sets $A_n \downarrow \emptyset$ with $\lim_{n\to\infty} \mu(A_n) \neq 0$.

Proof.

(1) Take a sequence of elements

$$\omega_1, \omega_2, \ldots$$

from Ω . It is possible since Ω is an infinite set.

(2) Define

$$A_n = \{\omega_n, \omega_{n+1}, \ldots\} \subset \Omega$$

for all $n=1,2,\ldots$ So $A_n\downarrow\varnothing$ and each $\mu(A_n)=\infty$ (since each A_n is infinite). Hence

$$\lim_{n \to \infty} \mu(A_n) = \infty.$$

Problem 1.2.3.

Let Ω be a countably infinite set, and let \mathscr{F} be the field consisting of all finite subsets of Ω and their complements. If A is finite, set $\mu(A) = 0$, and if A^c is finite, set $\mu(A) = 1$.

- (a) Show that μ is finitely additive but not countably additive on \mathscr{F} .
- (b) Show that Ω is the limit of an increasing sequence of sets $A_n \in \mathscr{F}$ with $\mu(A_n) = 0$ for all n, but $\mu(\Omega) = 1$.

Proof of (a).

(1) Show that μ is finitely additive. Given a finitely collection of disjoint sets A_1, A_2, \ldots, A_n in \mathscr{F} . If each set A_k $(k = 1, 2, \ldots, n)$ is finite, then $\bigcup A_k$ is also finite and thus we have

$$\mu\bigg(\bigcup_{k=1}^{n} A_k\bigg) = 0 = \sum_{k=1}^{n} \mu(A_k).$$

(2) If there is some $A_{k'}$ is infinite, then there is only one such k'. (Assume that there were another k'' such that $A_{k''}$ is infinite. Since $A_{k'} \cap A_{k''} = \emptyset$, the De Morgan laws shows that

$$A_{k'}^c \cup A_{k''}^c = \Omega.$$

That is, a countably infinite set is a union of two finite subsets, which is absurd.) Hence

$$\mu\left(\bigcup_{k=1}^{n} A_k\right) = 1 = 0 + \dots + 0 + \underbrace{1}_{k' \text{-th}} + 0 + \dots + 0 = \sum_{k=1}^{n} \mu(A_k).$$

(3) Show that μ is not countably additive. Write

$$\Omega = \{\omega_1, \omega_2, \ldots\}$$

(since Ω is countably infinite) and $A_n = \{\omega_n\}$ for all $n = 1, 2, \ldots$ Hence A_1, A_2, \ldots is a countably infinitely collection of disjoint sets and $\bigcup_{n=1}^{\infty} A_n = \Omega$. Therefore,

$$\mu\bigg(\bigcup_{n=1}^{\infty} A_n\bigg) = \mu(\Omega) = 1$$

but

$$\sum_{n=1}^{\infty} \mu(A_n) = \sum_{n=1}^{\infty} 0 = 0.$$

Proof of (b). Write $\Omega = \{\omega_1, \omega_2, \ldots\}$ and

$$A_n = \{\omega_1, \omega_2, \dots, \omega_n\} \in \mathscr{F}.$$

for all $n=1,2,\ldots$ Therefore, $A_n \uparrow \Omega$, $\mu(A_n)=0$ for all n but $\mu(\Omega)=1$. (Theorem 1.2.7 implies that μ cannot be a countably additive.) \square

Problem 1.2.5.

Let μ be a nonnegative, finitely additive set function on the field \mathscr{F} . If A_1, A_2, \ldots are disjoint sets in \mathscr{F} and $\bigcup_{n=1}^{\infty} A_n \in \mathscr{F}$, show that

$$\mu\left(\bigcup_{n=1}^{\infty} A_n\right) \ge \sum_{n=1}^{\infty} \mu(A_n).$$

Proof.

(1) Note that μ is a nonnegative, finitely additive set function on \mathscr{F} . Hence,

$$\mu\left(\bigcup_{n=1}^{\infty} A_n\right) \ge \mu\left(\bigcup_{n=1}^{m} A_n\right)$$
 (Theorem 1.2.5)
$$= \sum_{n=1}^{m} \mu(A_n)$$

for every m.

(2) Since $\sum_{n=1}^{m} \mu(A_n)$ is bounded by $\mu(\bigcup_{n=1}^{\infty} A_n)$ and μ is nonnegative, the result is established as letting $m \to \infty$.

Problem 1.2.6.

Let $f: \Omega \to \Omega'$, and let \mathscr{C} be a class of subsets of Ω' . Show that

$$\sigma(f^{-1}(\mathscr{C})) = f^{-1}(\sigma(\mathscr{C})),$$

where $f^{-1}(\mathscr{C}) = \{f^{-1}(A) : A \in \mathscr{C}\}.$ (Use the good sets principle.)

Proof.

(1) Show that $\sigma(f^{-1}(\mathscr{C})) \subset f^{-1}(\sigma(\mathscr{C}))$. Note that $f^{-1}(\sigma(\mathscr{C}))$ is a σ -field. Hence by $\mathscr{C} \subset \sigma(\mathscr{C})$ we have

$$\sigma(f^{-1}(\mathscr{C})) \subset \sigma(f^{-1}(\sigma(\mathscr{C}))) = f^{-1}(\sigma(\mathscr{C})).$$

(2) Show that $\sigma(f^{-1}(\mathscr{C})) \supset f^{-1}(\sigma(\mathscr{C}))$. Let

$$\mathscr{S} = \{ A \subset \Omega' : f^{-1}(A) \in \sigma(f^{-1}(\mathscr{C})) \}.$$

So \mathscr{S} is a σ -field containing \mathscr{C} (by observing that $f^{-1}(\bigcup A_n) = \bigcup f^{-1}(A_n)$). Hence $\mathscr{S} \supset \sigma(\mathscr{C})$. Now given any $f^{-1}(A) \in f^{-1}(\sigma(\mathscr{C}))$ with $A \in \sigma(\mathscr{C})$. As $\sigma(\mathscr{C}) \subset \mathscr{S}$, $f^{-1}(A) \in \sigma(f^{-1}(\mathscr{C}))$ or $f^{-1}(\sigma(\mathscr{C})) \subset \sigma(f^{-1}(\mathscr{C}))$.

Problem 1.2.10.

Let μ be a finite measure on the σ -field \mathscr{F} . If $A_n \in \mathscr{F}, n = 1, 2, \ldots$ and $A = \lim_{n \to \infty} A_n$ (see Section 1.1), show that $\mu(A) = \lim_{n \to \infty} \mu(A_n)$.

Proof.

(1) $A = \lim_n A_n$ if $\liminf_n A_n = \limsup_n A_n = A$. By writing

$$A = \liminf_{n} A_n = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k = \bigcup_{n=1}^{\infty} B_n$$

with $B_n = \bigcap_{k=n}^{\infty} A_k$, we have $B_n \uparrow A$. Theorem 1.2.7 implies that

$$\mu(A) = \lim_{n \to \infty} \mu(B_n) = \lim_{n \to \infty} \mu\left(\bigcap_{k=n}^{\infty} A_k\right) \le \lim_{n \to \infty} \mu(A_n).$$

(2) Similarly, by writing

$$A = \limsup_{n} A_n = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k = \bigcap_{n=1}^{\infty} C_n$$

with $C_n = \bigcup_{k=n}^{\infty} A_k$, we have $C_n \downarrow A$. Theorem 1.2.7 (with a finite measure μ) implies that

$$\mu(A) = \lim_{n \to \infty} \mu(C_n) = \lim_{n \to \infty} \mu\left(\bigcup_{k=n}^{\infty} A_k\right) \ge \lim_{n \to \infty} \mu(A_n).$$

(3) Hence

$$\mu(A) = \lim_{n \to \infty} \mu(A_n).$$