Pre-Calculus 11 6.4 Reciprocal Functions

Created by Yi-Chen Lin

June 19, 2025

 Created by Yi-Chen Lin
 Pre-Calculus 11
 June 19, 2025
 1

Overview

What We Will Learn

- Understand the concept of reciprocal functions
- Learn about asymptotes and invariant points
- Graph reciprocal functions of linear and quadratic functions
- Oetermine domain and range of reciprocal functions
- Apply these concepts to solve problems

Key Questions:

- How do we find the reciprocal of a function?
- What happens to the graph when we take the reciprocal?
- Where do asymptotes occur and why?
- What are invariant points and why are they important?

June 19, 2025

What is a Reciprocal?

Definition

The reciprocal of a number a is $\frac{1}{a}$, where $a \neq 0$. a = 0.

Key Properties:

- $a \cdot \frac{1}{a} = 1$ (product of a number and its reciprocal is 1)
- The reciprocal of 1 is 1, the reciprocal of -1 is -1
- The reciprocal of 0 is undefined
- Taking the reciprocal preserves the sign

Examples of Reciprocals

Complete the table:

Number	Reciprocal	Check
2	$\frac{1}{2}$	$2 \cdot \frac{1}{2} = 1$
-5	$-\frac{1}{5}$	$-5\cdot(-\tfrac{1}{5})=1$
0.5	2	$0.5 \cdot 2 = 1$
1	1	$1 \cdot 1 = 1$
-1	-1	$-1\cdot (-1)=1$
0	Undefined	Cannot divide by zero

Pattern: Small numbers have large reciprocals, large numbers have small reciprocals.

The Reciprocal of a Function

Definition

Given a function f(x), its reciprocal function is $y = \frac{1}{f(x)}$. $f(x)y = \frac{1}{f(x)}$

Examples:

- If f(x) = x + 3, then $y = \frac{1}{x+3}$
- If $f(x) = 2x^2 5$, then $y = \frac{1}{2x^2 5}$
- If $f(x) = \sqrt{x}$, then $y = \frac{1}{\sqrt{x}}$

Important Notes:

- The reciprocal function is undefined where f(x) = 0
- The sign of f(x) is preserved in the reciprocal
- The reciprocal function has different behavior than the original function.

Asymptotes and Invariant Points

Key Concepts

- **1** Vertical Asymptotes : Occur where f(x) = 0
- **② Horizontal Asymptote** : Usually y = 0 as $x \to \pm \infty$
- **3** Invariant Points : Where f(x) = 1 or f(x) = -1

Why These Points Are Important:

- Vertical asymptotes: Division by zero is undefined
- Invariant points: $\frac{1}{1} = 1$ and $\frac{1}{-1} = -1$
- These points help us sketch the graph accurately

Understanding Asymptotes

Vertical Asymptotes:

- Occur when f(x) = 0 because $\frac{1}{0}$ is undefined
- The graph approaches but never touches these lines
- Example: For f(x) = x 2, the reciprocal has a vertical asymptote at x = 2

Horizontal Asymptotes:

- Usually y=0 because as |f(x)| gets large, $\frac{1}{f(x)}$ gets small
- ullet The graph approaches this line as $x o \pm \infty$
- Example: For $f(x) = x^2$, as $x \to \infty$, $y = \frac{1}{x^2} \to 0$

Graphing the Reciprocal of a Linear Function

Step-by-Step Process:

- **①** Graph the original linear function f(x)
- ② Find where f(x) = 0 (vertical asymptote)
- **③** Find where f(x) = 1 and f(x) = -1 (invariant points)
- Take the reciprocal of y-coordinates for other points
- Sketch the reciprocal function

Example: f(x) = x - 1

- f(x) = 0 when x = 1 (vertical asymptote)
- f(x) = 1 when x = 2 (invariant point)
- f(x) = -1 when x = 0 (invariant point)

Graphing Example: f(x) = x - 1

Original Function: f(x) = x - 1 (linear) **Reciprocal Function:** $y = \frac{1}{x-1}$

Key Points:

- Vertical asymptote: x = 1
- Invariant points: (2,1) and (0,-1)
- As $x \to \infty$, $y \to 0^+$
- As $x \to -\infty$, $y \to 0^-$

Graphing Example: f(x) = x - 1 (Enlarged)

Graphing the Reciprocal of a Quadratic Function

Key Differences from Linear Functions:

- Quadratic functions can have 0, 1, or 2 x-intercepts
- Each x-intercept becomes a vertical asymptote
- Can have up to 4 invariant points (2 for f(x) = 1, 2 for f(x) = -1)
- The graph has more complex behavior

Example: $f(x) = x^2 - 4$

- f(x) = 0 at x = 2 and x = -2 (two vertical asymptotes)
- f(x) = 1 at $x = \pm \sqrt{5}$ (two invariant points)
- f(x) = -1 at $x = \pm \sqrt{3}$ (two invariant points)

Graphing Example: $f(x) = x^2 - 4$

Original Function: $f(x) = x^2 - 4$ (parabola)

Reciprocal Function: $y = \frac{1}{x^2 - 4}$

Key Features:

• Vertical asymptotes: x = 2 and x = -2

• Invariant points: $(\pm\sqrt{5},1)$ and $(\pm\sqrt{3},-1)$

• Horizontal asymptote: y = 0

• Three distinct regions: left, middle, right

 Created by Yi-Chen Lin
 Pre-Calculus 11
 June 19, 2025
 12 / 22

Graphing Example: $f(x) = x^2 - 4$ (Enlarged)

Domain and Range

Domain

All real numbers x such that $f(x) \neq 0$. $f(x) \neq 0x$

Range

All real numbers $y \neq 0$ (except possibly at invariant points). $y \neq 0$

Examples:

- For $y = \frac{1}{x+2}$: Domain = $\{x | x \neq -2\}$, Range = $\{y | y \neq 0\}$
- For $y = \frac{1}{x^2}$: Domain = $\{x | x \neq 0\}$, Range = $\{y | y > 0\}$

◆□▶ ◆□▶ ◆■▶ ◆■▶ ● めので

Practice: Find the Reciprocal Function and Key Features

For each function f(x) below, complete the following:

- **①** Write the reciprocal function $y = \frac{1}{f(x)}$
- Find all vertical asymptotes
- Find all invariant points
- State the domain and range
- Describe the key features of the graph

Functions to analyze:

- f(x) = x + 2
- f(x) = 2x 4
- $f(x) = x^2 1$
- $f(x) = x^2 + 2x + 1$
- $f(x) = x^2 + 4$

Solution Q1: f(x) = x + 2

Reciprocal Function: $y = \frac{1}{x+2}$

Vertical Asymptote: x = -2 (where f(x) = 0)

Invariant Points:

- f(x) = 1 when x + 2 = 1, so x = -1. Point: (-1, 1)
- f(x) = -1 when x + 2 = -1, so x = -3. Point: (-3, -1)

Domain: $\{x | x \neq -2\}$

Range: $\{y|y\neq 0\}$

Graph Features: Hyperbola with vertical asymptote at x=-2, approaches y=0 as $x\to\pm\infty$

Solution Q2: f(x) = 2x - 4

Reciprocal Function: $y = \frac{1}{2x-4}$

Vertical Asymptote: x = 2 (where f(x) = 0)

Invariant Points:

• f(x) = 1 when 2x - 4 = 1, so x = 2.5. Point: (2.5, 1)

• f(x) = -1 when 2x - 4 = -1, so x = 1.5. Point: (1.5, -1)

Domain: $\{x|x \neq 2\}$ Range: $\{y|y \neq 0\}$

Graph Features: Hyperbola with vertical asymptote at x=2, approaches y=0 as $x\to\pm\infty$

Solution Q3: $f(x) = x^2 - 1$

Reciprocal Function: $y = \frac{1}{x^2 - 1}$

Vertical Asymptotes: x = 1 and x = -1 (where f(x) = 0)

Invariant Points:

• f(x) = 1 when $x^2 - 1 = 1$, so $x^2 = 2$, $x = \pm \sqrt{2}$. Points: $(\sqrt{2}, 1)$, $(-\sqrt{2}, 1)$

• f(x) = -1 when $x^2 - 1 = -1$, so $x^2 = 0$, x = 0. Point: (0, -1)

Domain: $\{x | x \neq 1, x \neq -1\}$

Range: $\{y|y \neq 0\}$

Graph Features: Three regions separated by vertical asymptotes, approaches y=0 as $x \to \pm \infty$

Solution Q4: $f(x) = x^2 + 2x + 1 = (x+1)^2$

Reciprocal Function: $y = \frac{1}{(x+1)^2}$

Vertical Asymptote: x = -1 (where f(x) = 0)

Invariant Points:

- f(x) = 1 when $(x + 1)^2 = 1$, so $x + 1 = \pm 1$, x = 0 or x = -2. Points: (0, 1), (-2, 1)
- f(x) = -1 when $(x+1)^2 = -1$ (no real solution)

Domain: $\{x | x \neq -1\}$

Range: $\{y|y>0\}$ (since $(x+1)^2 \ge 0$)

Graph Features: Always positive, vertical asymptote at x=-1, approaches y=0 as $x\to\pm\infty$

◆□▶ ◆圖▶ ◆圖▶ ◆圖▶ ■ りへで

Solution Q5: $f(x) = x^2 + 4$

Reciprocal Function: $y = \frac{1}{x^2+4}$

Vertical Asymptotes: None (since $x^2 + 4 > 0$ for all real x)

Invariant Points:

• f(x) = 1 when $x^2 + 4 = 1$, so $x^2 = -3$ (no real solution)

• f(x) = -1 when $x^2 + 4 = -1$, so $x^2 = -5$ (no real solution)

Domain: All real numbers \mathbb{R}

Range: $\{y|0 < y \le \frac{1}{4}\}$ (maximum at x = 0)

Graph Features: Bell-shaped curve, maximum at $(0, \frac{1}{4})$, approaches y = 0 as $x \to \pm \infty$

Additional Practice: Match Functions with Their Reciprocals

Match each function with its reciprocal function:

- **1** f(x) = x 3
- $f(x) = x^2 9$
- $f(x) = x^2 + 1$
- f(x) = 3x + 6

Reciprocal Functions:

- ① $y = \frac{1}{x-3}$
- $y = \frac{1}{y^2 0}$
- $y = \frac{1}{x^2 + 1}$
- $y = \frac{1}{3x+6}$

Created by Yi-Chen Lin Pre-Calculus 11

Summary

Key Points

- **①** The reciprocal of f(x) is $y = \frac{1}{f(x)}$
- ② Vertical asymptotes occur where f(x) = 0
- **1** Invariant points occur where f(x) = 1 or f(x) = -1
- **1** Domain excludes values where f(x) = 0
- **5** Range is usually all real numbers except y = 0
- The graph behavior changes significantly from the original function

Graphing Strategy:

- Find vertical asymptotes (where f(x) = 0)
- ② Find invariant points (where $f(x) = \pm 1$)
- **3** Determine behavior as $x \to \pm \infty$
- Sketch the graph using these key features

Pre-Calculus 11 June 19, 2025