

La Vérification Formelle

Basics

Stephane Maag
CNRS Samovar

Stephane.Maag@it-sudparis.eu

Content

- 3 Techniques de Verification
 - Equivalence de modèles
 - Preuves
 - Model-checking
- CTL
- Sat / BDD

Rappel

继續附

Techniques de Vérification formelle

3 techniques majeures

Vérification du code

- Analyse statique pas de modèles formels
- Reverse engineering
- □ BLAST, SLAM : pour les prog. C
- Bandera: JAVA
- □ Verisoft: C++

• 3 types de Vérification des modèles

- Equivalences de modèles
- Méthodes déductives (preuve)
- Model checking

Equivalence de modèles

- Equivalence de modèles (Equivalence checking)
 - Comparaison de 2 spécifications : comparaison de modèles
 - Prouver que le comportement d'un système est équivalent à un comportement donné
 - Vérification complète, mais en pratique non réalisable sur des gros modèles

Techniques de « preuve »

- Méthodes déductives (Theorem proving)
 - Prouver mathématiquement qu'une propriété extraite du cahier des charges est vérifiée dans le modèle
 - Exple: timer dans un datagramme TCP respecté dans la spécification
 - □ Outil COQ (INRIA) « theorem prover » inférence
 - HOL (Higher Order Logic Austrialian National University) Meta-Language (ML)
 - Essentiellement pour les propriétés qualitatives/fonctionnelles
 - Vérification sur des systèmes à états infinis

Samovar CNIS Institut TE

Techniques de model-checking

Model checking

- Idée: trouver, dans un modèle formel, le contre exemple d'une propriété définie à l'aide d'un langage logique.
- Modèles Markoviens ou quantative-bound LTS
- Beaucoup plus répandu utilisé dans de nombreux domaines
- De nombreux outils
- Prop. qualitative/quantitative adapté à la QoS
- Outils: SPIN, PRISM, UPPAAL, etc.
- Intérêt industriel certain car aide à la modélisation et rapide obtention des erreurs

Principes de base du model-checking

Modèle: un terme plein de bon sens!

- Here models as they are used for model-checking are just annotated graphs:
 - A finite set of states, S
 - Some initial state s₀
 - A transition relation between states, T⊆S×S
 - A finite set of atomic propositions, AP
 - A labelling function L : S → P(AP)
- known as a Kripke structure:
 - Labelled Transition systems, LTS
 - Finite State machines, FSM
 - State charts, ...

* For a physicist a "model" is a differential equation; For a biologist, it may be ... mice or frogs

An Example

 $AP = \{empty, full\}$

Some LTL formula that are valid for this model:

empty
$$\Rightarrow$$
 (X ¬empty)
full \Rightarrow (X ¬full)

(X is for neXt)

What are models good for?

- System description and design:
 - The future system must conform to the model(s)
 - The model(s) may be used as a starting point for (automatic) development
- System analysis
 - Observing the existing system, one extracts a model and studies it
- **...**
- Essential role in V and V and quality assurance

Programs

■ Everybody knows what it is ⊕

■ Here:

- A program is a piece of text in a (hopefully) well defined language
- There is a syntax, some semantics, and compilers

■ "A program is a very detailed solution to a much more abstract problem" [Ball2005]

```
{i=0; read(x); repeat { i++; perd(x, i); } until term(i,x); ...
```


多數學

Why are programs useful?

■ They can be compiled and embedded into some systems.

```
{i=0; read(x); repeat { i++; perd(x, i); } until term(i,x); ... output
```


Interlude

■ A program text or a specification text is NOT the system!

Systems Systems

- A system is a dynamic entity, embedded in the physical world
- It is observable via some limited interface/procedure
- It is not always controllable
- Quite different from a piece of text (formula, program) or a diagram

Systems are the actual objects of interest

How to ensure that a system satisfies certain properties?

- Properties?
 - 1. Texts in natural languages...

"Calls to lock and unlock must alternate."

- Formulas in a given specification logic
 (locked ⇒ X unlocked) ∧ (unlocked ⇒ X locked)
- 3. Sets of mandatory or forbidden behaviours

一份多数

The classical process

光量粉

Properties..., specification languages...

- Logic-based specification languages
 - VDM, Z, CASL, HOL, B, JML, ...
 - Temporal Logics: LTL, CTL, ...
- Behaviour-based specification languages
 - Lotos, Promela, CSP, State charts, Petri Nets, Timed automata...
- Usages
 - Global requirement on the system as a whole, or of some subsystems
 - Assertions in programs and models: pre-conditions, post-conditions, invariants.

Types de propriétés fonctionnelles

Atteignabilité	Un état du système peut être atteint
	Le train peut traverser le passage à niveau
Vivacité	Sous certaines conditions, un évènement finira par se produire
	Lorsque le train a annoncé son arrivée, la barrière finira par s'ouvrir
Sûreté	Un évènement indésirable ne se produira jamais
	Il est impossible que la barrière soit ouverte et le train soit au niveau de la barrière.
Absence de blocage	Le système ne se trouvera jamais dans une situation où il ne peut plus évoluer
	Lorsque la barrière est fermée, elle peut toujours se réouvrir
Équité	Un évènement se produira infiniment souvent
	La barrière sera ouverte infiniment souvent

一般實際

Model-checking problem

The CTL Logic Computation Tree Logic

CTL allows to reason on computation tree

Examples

There exists a path with a state in which P holds

EFP

Temporal operators on an execution : X, F, G, U

- $\mathbf{X} \mathbf{\phi}$: the next state satisfies $\mathbf{\phi}$ (neXt)
- \blacksquare F ϕ : there exists a state in the future which satisfies ϕ (Future)
- **G** φ : all the states satisfy φ (Global)

$$G \phi (= \neg F \neg \phi)$$

φ U Ψ : a state in which Ψ holds and up to this state φ holds true (Until)

$$F \Psi \Leftrightarrow true U \Psi$$

EXAMPLES

On each path there exists a state in which P holds true AF P (= ¬E¬F P)

In all reachable states, P holds true AG P (= ¬EF ¬P)

There exists an infinite path on which P holds in each state EG P (= E ¬F ¬P)

The temporal operators are of two types

- on an execution (a path) E
- on all executions (all paths) A

Samovar CNRS Institut TEI

||祝夏遐音

Formulas associated to the states of the automaton $L(openi) = \{open, level = i\}, i=0,1,2$ $L(closei) = \{\neg open, level = i\}, i=0,1,2$

an execution of the automaton

Notation: $s = P \Leftrightarrow s, 0 = P$

Temporal operators on all executions : A, E

 \blacksquare A ϕ : all the executions starting from the current state

satisfy ϕ

E φ : there ex state φ

 \blacksquare E F ϕ : we ca

 \blacksquare A F ϕ : we w

from the current

afety property eness property

Notation : A $\mid = \phi$ iff s,0 $\mid = \phi$ where ϕ contains A or E

Samovar CNRS Institut TELECON

Example

Asc the controller of the lift:

Asc
$$\mid$$
= AG (¬open \Rightarrow EX open)

Precise definition of CTL

- Syntactical restrictions:
 - Each temporal operator X, F, G, U have to be on immediate scope of a A or E, the combinations are:
 - AX,AF, AG, AU, EX, EF, EG, EU
- Syntax: atomic propositions are CTL formulas
 - if f and g are CTL formulas, then
 ¬f, f ∧ g, AX f, EX f, A(fUg), E(fUg) are also CTL formulas
- Extensions:
 - $f \lor g = \neg(\neg f \land \neg g)$
 - AF g = A(true U g) EF g = E(true U g)
 - AG $f = \neg E(true U \neg f)$ EG $f = \neg A(true U \neg f)$

被實際

Semantic of CTL

- | s | = f (f atomic) iff $f \in L(s)$
- s = ¬f
- \blacksquare s |= f \land g
- s,0 |= AX f
- s,0 |= EX f
- s,0 |= A (f U g)
- s,0 |= E (f U g)

it exists a s s.t. $s_0 = s,0$ and it exists $i \ge 0$ s.t. $s,i \models g$ and

for all j < i, s, j | = f

iff
$$s = f$$
 and $s = g$

iff for all s such that $s_0 = s,0$, s,1|= f

iff it exists a s such that $s_0 = s,0$ and s,1 = f

iff for all s s.t. $s_0 = s,0$, it exists $i \ge 0$ s.t. $s,i \models g$ and

for all j < i, s, j | = f

iff

Algorithme CTL

Principe:

- On dénote A (structure Kripke) et φ une formule CTL
- On marque chaque état q de A et chaque sous formule Ψ de ϕ si q |= Ψ
 - On construit q. φ à partir de q. Ψ
 - \Box A |= ϕ iff q0. ϕ = vrai
- Le nombre d'états doit être fini

被實際

Algorithme CTL (1)

procedure marking(phi, A)

```
■ cas 1 : φ = f (*atomic*)

for all q in A.Q do

if f ∈ L(q) then q. φ := true

else q. φ := false
```

```
■ cas 2 : φ = ¬Ψ
marking (Ψ, A);
for all q in A.Q do q. φ := not(q. Ψ)
```

```
■ cas 3 : φ = Ψ1 ∧ Ψ2
marking (Ψ1, A); marking (Ψ2, A);
for all q in A.Q do
q. φ := and (q.Ψ1, q.Ψ2)
```

```
cas 4 : φ = EX Ψ
marking(Ψ, A);
for all q in A.Q do q. φ := false;
for all (q, q') in A.T do
if q'. Ψ then q. φ := true
```

```
cas 5: \varphi = AX \Psi (* as \neg EX \neg \Psi *)
    cas 6 : φ = Ε Ψ1 U Ψ2
     marking (Ψ1, A); marking (Ψ2, A);
     (*initialisations: *)
    for all q in A.Q do
                q. \phi := false; q.dejavu := false;
    (* at the beginning LL = \{q \mid q \mid = \Psi 2\}: *)
    LL := \{ \} ;
    for all q in A.Q do
                if q. \Psi2 then LL := LL + {q};
    for all q in LL do
                LL := LL \{q\}; q. \phi := true;
    for all (q', q) in A.T do
                if q'.dejavu = false then
                  q'.dejavu := true;
                  if q'. \Psi 1 then LL := LL + \{q'\};
cas 7: phi = A Ψ1 U Ψ2
(*+complex, same principle*)
```


Cons and pro of CTL

Model checking of linear complexity

 difficulties or unwillingness to express some kinds of properties (but they are advanced techniques resolving that issue!)

Other temporal logics:

CTL*, PLTL (PSPACE complet), FCTL (*Fairness*), TCTL (*Timers*), Logiques avec *passé*: pas de model-checkers.

Problème !!

■ Le nombre d'états d'un système est exponentiel dans son nombre de variables

⇒ Les algorithmes naïfs des model-checkers ne suffisent plus

⇒ Comment éviter, ou du moins restreindre l'effet négatif de l'explosion combinatoire?

Model-checking Symbolique: ens. d'états, BDD

- Il existe plusieurs autres techniques pour gérer un nombre colossal d'états: les explorations on-thefly, abstractions;
- En combinant toutes ces techniques, nous savons gérer de gros automates:
 - En 1992, 10² états ont été analysés, en 2012: 10⁵⁰
 A = < Q, T, L >
 - Notations:

Sat (Φ) = ensemble d'états satisfaisant Φ S \subseteq Q, Pre (S) = ens. des prédécesseurs immédiats de S

Obtention de Sat(Φ), $\Phi \in CTL$ (1)

$$Sat(\neg \Psi) = Q \setminus Sat(\Psi)$$

$$Sat(\Psi \land \Psi) = Sat(\Psi) \cap Sat(\Psi)$$

$$Sat(EX \Psi) = Pre(Sat(\Psi))$$

$$Sat(AX \Psi) = Q \setminus Pre(Q \setminus Sat(\Psi))$$

$$Sat(EF \Psi) = Pre*(Sat(\Psi))$$

Obtention itératives d'états

Calcul de Pre*(S)

```
X := S ; Y := { } ;
while Y ≠ X do (*computation of the fix point*)
Y := X ; X := X + Pre(X) ;
(* + is the union*)
return(X) ;
```


Obtention de Sat(Φ), $\Phi \in CTL$ (2)

Cas de A Y1 U Y2 - définition récursive:

```
Ψ2 \lor (Ψ1 \land EX true \land AX(A Ψ1 U Ψ2))

P1 := Sat [Ψ1] ; P2 := Sat [Ψ2] ;

X := P2 ; Y := { } ;

while Y \neq X do

Y := X ; X := X + (P1 \land pre(Q) \land (Q \land Pre(Q \land X)))

return(X) ;
```


一般實際

Ce qui est recherché

- Une implémentation efficace
 - Pour représenter l'ens. Sat(f) avec f atomic,
 - Pour calculer Pre(S) à partir de la représentation de S,
 - Pour calculer le complémentaire, l'union et l'intersection,
 - Pour l'égaliter de 2 ensembles.

BDD - Binary Decision Diagrams

- x1, ..., xn: variables booléennes
- <b1, ..., bn>: vecteur de booléens
- Comment représenter l'ens. de vecteurs tq

$$\Phi$$
 (x1,...,xn) soit vraie ?

Solution classique: arbre de décision

BDD BDD

Exemple: $(x1 \lor x3) \land (x2 \Rightarrow x4)$

Avantage: Test en *n* comparaisons

Inconvénient: taille exponentielle

BDD BDD

BDD = arbre de décision réduit

- 1. Les sous arbres étant les mêmes sont partagés
- 2. Le choix inutiles sont omis

Ex.: si b1 et b2 sont vrais, b3 est inutile

選擇

Opérations sur les BDD

■ Ensemble vide, seulement une feuille F

■ Comparaison de 2 ens.: même BDD

■ Complémentaire: on remplace les feuilles T par les feuilles F et réciproquement

Union et Intersection:, non ... complexité quadratique stop!

選出

BDD pour représenter un automate

■ Principe: coder les états et transitions par des n-tuples de booléens.

Ex.:

Les états:

6 états q0, ..., q5, une variable booléen *open*, une variable *level* qui peut prendre les valeurs 0, 1, 2 et ND.

3 bits pour q, 1 pour open et 2 pour level.

FFT T FF

« en q1, open est vraie et level vaut 0 »

 $\Rightarrow \neg open \land level = ND$

■ Les transitions:

- Si les états sont codés par *n* bits
 - Vecteur de *n n* bits où on « priorise » le dernier *n*

Calcul de Pre(S) (1)

- Soit des BDD_T ou BDD_S
- On construit BDD_s où chaque bi des BDD_s devient b'i (complexité: O(n))

- On construit BDD'_s ∩ BDD_s
 - ens. de couples <s,s'> de T tq s'∈S (complexité O(n²))

Calcul de Pre(S) (2)

On « abstrait » / b'i (i.e. on l'oublie)(complexité O(n²))

Nous avons maintenant tous les éléments pour implémenter le model-checker symbolique de CTL.

Problème: la complexité en mémoire au pire des cas est exponentielle

⇒ les performances sont dépendantes de l'ordre des variables

Few Model-Checkers

- SPIN (Promela, *LTL*)
- NuSMV 2 (*CTL*) combines BDD-based model checking with SAT-based model checking.
- FDR (CSP, refinements)
- Timed automata: UPPAAL, KRONOS
- Stochastic models: PRISM, APMC

REFERENCES

Deux livres:

A Roadmap for Formal Property Verification, Pallab Dasgupta, Springer-Verlag New York Inc., 2006

Applied Formal Verification, Douglas L. Perry et Harry Foster, McGraw-Hill Professional, 2005

