Artin: Linear Algebra in a Ring

James Pagan

February 2024

Contents

1	Modules		2
	1.1	Definition	2
	1.2	Examples of Modules	2
	1.3	R-Module Homomorphisms	2
	1.4	Submodules	3
2	Free	Free Modules	
	2.1	R-Matrices	5
	2.2	Free Modules	6
	2.3	Matrices in Free Modules	7
3	Dia	gonalizing Integer Matrices	8

1 Modules

1.1 Definition

An **R-module** over a commutative ring R is an Abelian group M (with operation written additively) endowed with a mapping $\mu: R \times M \to M$ (written multiplicatively) such that the following axioms are satisfied for all $x, y \in M$ and $a, b \in R$:

- 1. 1x = x;
- 2. (ab)x = a(bx);
- 3. a(x+y) = ax + ay;
- 4. (a+b)x = ax + bx.

1.2 Examples of Modules

- If R is a ring, R[x] is a module.
- All ideals $\mathfrak{a} \subseteq R$ are R-modules using the same additive and multiplicative operations as R in particular R itself is an R-module.
- If R is a field, R-modules are R-vector spaces. In fact, the axioms above are identical to the vector axioms, defined over commutative rings instead of fields.
- Abelian groups G are precisely the modules over \mathbb{Z} .

1.3 R-Module Homomorphisms

A map $f: M \to N$ between two R-modules M and N is an R-module homomorphism (or is R-linear) if for all $a \in R$ and $x, y \in M$,

$$f(x+y) = f(x) + f(y)$$
$$f(ax) = af(x).$$

Thus, an R-module homomorphism f is a homomorphism of Abelian groups that commutes with the action of each $a \in R$. If R is a field, an R-module homomorphism is a linear map. A bijective R-homomorphism is called an R-isomorphism.

The set $\operatorname{Hom}_R(M, N)$ denotes the set of all R-module homomorphisms from M to N, and is a module if we define the following operations for $a \in R$ and $f, g \in \operatorname{Hom}_R(M, N)$:

$$(f+g)(x) = f(x) + g(x)$$
$$(af)(x) = af(x).$$

We denote $\operatorname{Hom}_R(M, N)$ by $\operatorname{Hom}(M, N)$ if the ring R is unambiguous.

Proposition 1. $\operatorname{Hom}_R(R,M) \cong M$

Proof. The mapping $\phi : \operatorname{Hom}_R(R, M) \to M$ defined by $\phi(f) = f(1)$ is a homomorphism, as verified by a routine computation: for all $f, g \in \operatorname{Hom}_R(M, N)$ and $a \in R$,

$$\phi(f+g) = (f+g)(1) = f(1) + g(1) = \phi(f) + \phi(g)$$
$$\phi(af) = (af)(1) = af(1) = a\phi(f),$$

so ϕ is an R-homomorphism. This mapping is injective, since each f is uniquely determined by f(1). It is also surjective; for each $m \in M$, set define a homomorphism by h(1) = m. Thus ϕ is the desired isomorphism.

Homomorphisms $u: M' \to M$ and $v: N \to N''$ induce mappings $\bar{u}: \operatorname{Hom}(M, N) \to \operatorname{Hom}(M', N)$ and $\bar{v}: \operatorname{Hom}(M, N) \to \operatorname{Hom}(M, N'')$ defined for $f \in \operatorname{Hom}(M, N)$ as follows

$$\bar{u}(f) = f \circ u$$
 and $\bar{v}(f) = v \circ f$.

I do not know why such a manipulation is noteworthy. The formulas above are quite easy to memorize if the time ever comes to invoke them.

1.4 Submodules

A submodule M' of M is an Abelian subgroup of M closed under multiplication by elements of the commutative ring R.

Proposition 2. a is an ideal of R if and only if it is an R-submodule of R.

Proof. The proof evolves from a fundamental observation:

 $R\mathfrak{a} = \mathfrak{a} \iff \text{scalar multiplication in the } R\text{-module }\mathfrak{a} \text{ is closed.}$

The rest of the multiplicative module conditions follow from the ring axioms. \Box

The following proof outlines the construction of quotient modules:

Theorem 1. The Abelian quotient group M / M' is an R-module under the operation a(x + M') = ax + M'.

Proof. We must perform four rather routine calculations: for all $x, y \in M$ and $a, b \in R$,

- 1. Identity: 1(x + M') = 1x + M' = x + M'.
- 2. Compatibility: a(b(x + M')) = a(bx + M') = abx + M' = (ab)(x + M').
- 3. **Left Distributivity**: (a + b)(x + M') = (a + b)x + M' = (ax + bx) + M' = (ax + M') + (bx + M') = a(x + M') + b(x + M').
- 4. Right Distributivity: a((x+M')+(y+M')) = a((x+y)+M') = a(x+y)+M' = (ax+M') + (ay+M') = a(x+M') + a(y+M)'.

Therefore, M/M' is an R-module. Also, this operation is naturally well-defined.

R-module homomorphisms $f: M \to N$ induce three notable submodules:

- 1. **Kernel**: Ker $f = \{x \in M \mid f(x) = 0\}$, a submodule of M.
- 2. **Image**: Im $f = \{f(x) \mid x \in M\}$, a submodule of N.
- 3. Cokernel: Coker f = N / Im f, a quotient of N.

The cokernel is perhaps an unfamiliar face. Such a quotient is not possible for rings or groups; images of homomorphisms need not be ideals of R nor normal subgroups of G.

Theorem 2 (First Isomorphism Theorem). $N / \operatorname{Ker} f \cong \operatorname{Im} f$.

Proof. Let $K = \operatorname{Ker} f$, and define a mapping $g: M/N \to \operatorname{Im} f$ by g(x+K) = f(x). We have for arbitrary $x, y \in N$ and $a \in R$ that

$$g(x+y+K) = f(x+y) = f(x) + f(y) = g(x+K) + g(y+K).$$

$$g(ax+K) = f(ax) = af(x) = ag(x+K).$$

Hence g is a homomorphism. For injectivity, suppose that g(x+K) = g(y+K) — that is, f(x) = f(y). Then

$$f(y-x) = f(y) - f(x) = 1,$$

so $y - x \in K$. Thus x + K = y + K. Surjectivity is quite clear. We conclude that g is the desired isomorphism.

Let $f:M\to N$ be an R-module homomorphism. Here are two special cases of the prior theorem:

1. If f is a monomorphism, them $M \cong \operatorname{Im} f$.

2. If f is an epimorphism, then $M / \text{Ker } f \cong N$.

For a submodule $N' \subseteq \text{Im } f$, I call $M' = \{x \in M \mid f(a) \in N'\}$ the **contraction module**.

Theorem 3 (Correspondence Theorem). Submodules of G which contain Ker f correspond one-to-one with submodules of Im f.

Proof. For each submodule $N' \subseteq \text{Im } f$ consider the contraction module $M' = \{x \mid f(x) \in N'\}$. Since this is an Abelian subgroup, we need only check for multiplicative closure: for all $x \in M'$ and $a \in R$, we have

$$f(ax) = af(x) \in N' \implies ax \in N'.$$

Hence M' is a submodule. It is clear that $\operatorname{Ker} f \subseteq M'$, so the First Isomorphism Theorem yields that

$$N'$$
 / Ker $f \cong M'$.

Thus this construction is injective. It is surjective, since for each $\text{Ker} \subseteq N' \subseteq N$, the subgroup N' is contracted by f(N'). The correspondence is now established.

2 Free Modules

2.1 R-Matrices

The free and finitely-generated R-modules are the R-vectors with entries in R and operations defined as follows:

$$\begin{bmatrix} r_1 \\ \vdots \\ r_n \end{bmatrix} + \begin{bmatrix} s_1 \\ \vdots \\ s_n \end{bmatrix} = \begin{bmatrix} r_1 + s_1 \\ \vdots \\ r_n + s_n \end{bmatrix} \quad \text{and} \quad s \begin{bmatrix} r_1 \\ \vdots \\ r_n \end{bmatrix} = \begin{bmatrix} sr_1 \\ \vdots \\ sr_n \end{bmatrix}.$$

Analogously to fields, we can define **R-matrices** — matrices with components in R — as R-module homomorphisms from R^n to R^m . Addition and multiplication of R-matrices is defined as expected. The set of all R-module homomorphisms forms the **general linear group**:

$$GL_n(R) = \{n\text{-by-}n \text{ invertible } R\text{-matrices}\}.$$

The **determinant** of an R-module is computed in precisely the same way, and satisfies a similar property: if T and S are R-matrices capable of multiplication,

$$det(TS) = det(T) det(S)$$

There is also the **cofactor matrix**: there exists a matrix $cof(\mathbf{T})$ such that $\mathbf{T} cof(\mathbf{T}) = cof(\mathbf{T})\mathbf{T} = det(\mathbf{T})\mathbf{I}$.

Lemma 1. Let T be a square R-matrix. Then the following holds:

- 1. **T** is invertible if and only if $det(\mathbf{T})$ is a unit.
- 2. T is invertible if and only if T has a one-sided inverse.
- 3. If T is invertible, then T is square.

Proof. Suppose that $\det(\mathbf{T})$ is a unit. Then $(\det(\mathbf{T})^{-1}) \cot(\mathbf{T})$ suffices as an inverse of \mathbf{T} by the properties of cofactor matrices; the converse holds as well. If \mathbf{T} has a one-sided inverse \mathbf{S} , then without loss of generality,

$$det(\mathbf{T}) det(\mathbf{S}) = det(\mathbf{TS}) = det(\mathbf{I}) = 1,$$

so $\det(\mathbf{T})$ is a unit; hence \mathbf{T} is invertible. Now, suppose that \mathbf{T} is invertible; if \mathbf{T} is not square, we can extend it and its inverse \mathbf{S} by adding rows (or columns) of zeroes. This yields the following equation without loss of generality:

$$\left[\begin{array}{c|c} \mathbf{T} & 0 \end{array}\right] \left[\begin{array}{c} \mathbf{S} \\ ---- \\ 0 \end{array}\right] = \mathbf{I}.$$

This is a contradiction, since the left-hand side has determinant 0 and the right-hand side has determinant 1.

When R has few units, invertibility is strong condition. For instance, a \mathbb{Z} -matrix is invertible if and only if its determinant is ± 1 . Thus $GL_n(\mathbb{Z}) \subset GL_n(\mathbb{R})$; of all integer matrices that are invertible as \mathbb{R} -matrices, few are invertible as \mathbb{Z} -matrices.

2.2 Free Modules

Given the similarity of free R-matrices with vector spaces, we may begin to investigate the generality of this connection. Hence, let M be an R-module. M is **finitely generated** if there exist $x_1, \ldots, x_n \in M$ such that

$$M = Rx_1 + \dots + Rx_n = \{r_1x_1 + \dots + r_n \mid r_1, \dots, r_n \in R\}.$$

A set of elements x_1, \ldots, x_n is **independent** if

$$r_1x_1 + \dots + r_nx_n = 0 \implies r_1, \dots, r_n = 0.$$

An independent set of generators is called a **basis**. As with vector spaces, $x_1, \ldots, x_n \in M$ is a basis of M if and only if all elements of M are a unique linear combination of x_1, \ldots, x_n . The **canonical basis** consisting of $\mathbf{e}_1, \ldots, \mathbf{e}_n$ is a basis of R^n .

If (x_1, \ldots, x_n) is an ordered set of elements in M, we can define a homomorphism $\mathbb{R}^n \to M$ defined by

$$\phi(r_1, \dots r_n) = \begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix} \begin{bmatrix} r_1 \\ \vdots \\ r_n \end{bmatrix} = r_1 x_1 + \dots + r_n x_n.$$

This homomorphism is injective if x_1, \ldots, x_n generates M, surjective if x_1, \ldots, x_n are independent, and bijective if x_1, \ldots, x_n constitute a basis of R^n . Hence M has a basis of length n if and only if $M \cong R^n$.

Most modules have no basis.

We arrive at the definition of this section: **free R-module** is a module that has a basis. Compare this definition to Atiyah's delineated in AbstractAlgebra/atiyah2.tex. A free Z-module is **free Abelian group**. Finite Abelian groups are never free — if desired without Atiyah's logic, this is obtained by observing that each element has finite order:

$$o(x_1)x_1 + \cdots + o(x_n)x_n = 0 + \cdots + 0 = 0$$

The **rank** of a free R-module M is the cardinality of a basis of M. The rank of a free R-module is analogous to the dimension of a vector space.

2.3 Matrices in Free Modules

Let **B** be the basis of a free M-module M. The **coordinate vector** X of an element $\mathbf{v} \in M$ is the unique column vector such that $\mathbf{v} = \mathbf{B}X$. If \mathbf{B}' is a change of basis, the relevant formula is $\mathbf{B}' = \mathbf{B}P$. We assert the following proposition without proof:

Proposition 3. The following two properties of bases hold:

- 1. A matrix \mathbf{T} of a change-of-basis in a free module is an invertible R-matrix.
- 2. All bases of a free R-module have the same cardinality.

Let M and N be free R-modules with bases $\mathbf{B} = (x_1, \dots, x_n)$ and $\mathbf{C} = (y_1, \dots, y_m)$ respectively. Then all R-module homomorphisms $f: M \to N$ admit the form of left-multiplication by an m-by-n R-matrix $\mathbf{T} = (t_{ij})$, with components given by

$$f(y_j) = \sum_{i=1}^{n} x_i t_{ij}$$

If X is the coordinate vector of $\mathbf{v} \in M$ — namely, if $\mathbf{v} = \mathbf{B}X$ — then $Y = \mathbf{T}X$ is the coordinate vector of its image.

$$\begin{array}{cccc}
R^n & \xrightarrow{\mathbf{T}} & R^m & & X & & & Y \\
\downarrow_{\mathbf{B}} & & \downarrow_{\mathbf{C}} & & \iff & & \downarrow_{\mathbf{v}} & & \downarrow_{\mathbf{v}} \\
M & \xrightarrow{f} & N & & & \mathbf{v} & & & \mathbf{f}(\mathbf{v})
\end{array}$$

Let the bases **B** and **C** change by invertible R-matrices **S** and **R**. Then if **T** is the R-matrix of $f: M \to N$, the new formula for **T** is the same for vector spaces: $\mathbf{T}' = \mathbf{R}^{-1}\mathbf{TS}$.

3 Diagonalizing Integer Matrices

The critical question is as follows: given an m-by-n \mathbb{Z} -matrix \mathbf{T} and $\mathbf{B} \in \mathbb{Z}^m$, when does there exist $\mathbf{A} \in \mathbb{Z}^n$ such that

$$AT = B$$
?

The most important of these questions is when $\mathbf{AT} = \mathbf{0}$. In a field, one often performs row reduction — but deprived of multiplicative inverses, most row reductions are not allowed. Rather, we allow both row *and* column reduction. One is permitted to perform any of the following operations:

- 1. Add an integer multiple of a row to a row or a column to a column.
- 2. Interchange two rows or two columns.
- 3. Multiply a row or column by -1.

Any such operation can be performed by multiplying **T** by an **elementary integer matrix**, which is always invertible. Therefore the final result of a sequence of operations has the form

$$\mathbf{T}' = \mathbf{Q}^{-1}\mathbf{T}\mathbf{P},$$

where \mathbf{Q}^{-1} and \mathbf{T} are invertible \mathbb{Z} -matrices of the appropriate sizes. \mathbf{Q}^{-1} documents row operations, while \mathbf{P} dictates column operations: those in \mathbf{P} are multiplied in the same order as performed, while those in \mathbf{Q} are in *reverse* order.

Theorem 4.

Proof.