KCSE 2024

MATHS PAPER 2

MARKING SCHEME

NO.	WORKING	MARKS	REMARKS
1.	x + 4 = 0		
	$x - \frac{2}{3} = 0 \to 3x - 2 = 0$		
		3.61	D 1
	(x+4)(3x-2) = 0 x(3x-2) + 4(3x-2) = 0	M1	Factorization by
	$3x^2 - 2x + 12x - 8 = 0$	M1	grouping Expansion
	$3x^2 + 10x - 8 = 0$	A1	Dapansion
		111	$3x^2 + 10x - 8 = 0$ seen
	Total	3	
2.	$(p-q)$ $\max(p-q)$ $\max p - \min q$		
	$\max\left(\frac{p-q}{q+p}\right) = \frac{\max(p-q)}{\min(q+p)} = \frac{\max p - \min q}{\min q + \min p}$		
	$\frac{\max p - \min q}{\min q + \min p} = \frac{8 - 3}{3 + 2}$	M1	
	$\frac{1}{\min q + \min p} - \frac{1}{3+2}$	1411	
	= 5	A1	
	Total	2	
3.	2	B1	Identifying sin 90° and
	$\overline{1+\sqrt{3}}$		tan 60 ⁰ in terms of
	-(- 5		numbers
	$\frac{2(1-\sqrt{3})}{(1+\sqrt{3})(1-\sqrt{3})}$	M1	
	$(1+\sqrt{3})(1-\sqrt{3})$	171 1	Multiplying by $1 - \sqrt{3}$
	$2-2\sqrt{3}$ $2-2\sqrt{3}$ $2-2\sqrt{3}$	۸ 1	$\sqrt{3} - 1$ seen
	$\frac{2 - 2\sqrt{3}}{1 - (\sqrt{3})^2} = \frac{2 - 2\sqrt{3}}{1 - 3} = \frac{2 - 2\sqrt{3}}{-2} = \sqrt{3} - 1$	A1	
	Total	3	
4.	$\log_2(8-x) - \log_2(x-3) = 2\log_2 2$	M1	Write 2 as 2log ₂ 2
''	$\log_2(8-x) - \log_2(x-3) = \log_2 2^2$	1,11	WIIIC 2 00 21052 2
	(8-x)		
	$\log_2\left(\frac{8-x}{x-3}\right) = \log_2 4$		
	$\frac{8-x}{x-3}=4$	M1	
	4(8-x) = x - 3 32 - 4x = x - 3		
	$32 + 3 = x + 4x \rightarrow 5x = 35$		
	x = 7	A1	
	Total	3	

5.	Amount = 1,800,000 $\left(1 - \frac{10}{100}\right)^2$ = 1,458,000	M1	
	Amount = 1,458,000 $\left(1 - \frac{15}{100}\right)^3$ 895,394.25	M1 A1	
	Total	3	

NO.	WORKING	MARKS	REMARKS
6.	$AB = OB - OA = \begin{pmatrix} -2\\3\\8 \end{pmatrix} - \begin{pmatrix} 4\\-5\\6 \end{pmatrix} = \begin{pmatrix} -6\\8\\2 \end{pmatrix}$ $ AB = \sqrt{(-6)^2 + 8^2 + 2^2}$		AB = -6i + 8j - 2k or
	$AB = OB - OA = \begin{pmatrix} 3 \\ 0 \end{pmatrix} - \begin{pmatrix} -5 \\ 6 \end{pmatrix} = \begin{pmatrix} 8 \\ 2 \end{pmatrix}$	B1	equivalent in column
	$ AR = \sqrt{(-6)^2 + 8^2 + 2^2}$	M1	form seen
	$= \sqrt{104}$	IVI 1	
	= 10.198 units	A1	10.198 seen
	Total	3	
7.	$\frac{1}{-1}$		
	$\frac{1}{2} \times v(26 + 45) = 852$	M1	
	v(71) = 852		
	$v = \frac{852}{17} = 24 \text{ m/s}$	A1	
	Total	2	
8.	$(px)^2 = x^2 + \frac{m}{Q}$ $p^2x^2 - x^2 = \frac{m}{Q}$ $x^2(p^2 - 1) = \frac{m}{Q}$ $x^2 = \frac{m}{Q} \times \frac{1}{p^2 - 1}$		
	Q	M1	
	$p^2x^2 - x^2 = \frac{m}{Q}$		
	$\frac{Q}{m}$	M1	
	$x^2(p^2-1)\equiv \overline{Q}$	101 1	
	$x^2 = \frac{m}{x} \times \frac{1}{x^2}$		
	$Q p^2 - 1$		
	$x = \pm \sqrt{\frac{m}{Q(p^2 - 1)}}$	A 1	
		A1	
	Total	3	
9.	$x^2 + 6x + 3^2 + y^2 - 10y + (-5)^2$		
	$=2+3^2+(-5)^2$		
	(D1	Equation of the simple in
	$(x+3)^2 + (y-5)^2 = 36$ (x+3)^2 + (y-5)^2 = 6^2	B1	Equation of the circle in the form $(x - a)^2 + (y - a)^2$
	$\begin{bmatrix} (x + 3) + (y + 3) = 0 \end{bmatrix}$		$b)^2 = r^2$
		B1	
	Centre \rightarrow (-3, 5)	5 .	Centre (-3, 5) seen
	Doding = 6 units $\lambda Area = - 2.6 \times 6 = 2.6 = $	B1	26,5000
	Radius = 6 units \rightarrow Area = $\pi \times 6 \times 6 = 36\pi$ Total	3	36π seen
10.	(a) Binomial co-efficients 1, 6, 15, 20,	3	
10.	(a) Difference of Chicicins 1, 0, 10, 20,		

$(1+3x)^6 = 1 + 6(3x) + 15(3x)^2 + 20(3x)^3 + \cdots$ $(1+3x)^6 = 1 + 18x + 135x^2 + 540x^3 + \cdots$	M1	
(b) $1 + 3x = 0.0997 \rightarrow 3x = 0.997 - 1 = -0.003$ x = -0.001 $(0.997)^6 = 1 + 18(-0.001) + 135(-0.001)^2$	M1	
$+540(-0.001)^{3} + \cdots$ $(0.997)^{6} = 0.98213446$ $= 0.98213$	A1	
Total	3	

NO.	WORKING							MARK S	REMARKS					
11.	у	1	1.5	2	2.5	3	3.5	4	4.5	5				
	<u> </u>	2	1.2	1	1.2	2	3.2	5	7.2	1	B1	Missing values of y all		
	x			_		2		3			Di	correct		
			5		5		5		5	0				
	h —	5 –	$\frac{1}{-} = 1$											
		-			25.	2 2 5	. 7.0	->			M1			
	Area				25 + .re un		+ 7.2	5)			A1			
	Tot		- 13 3	qua	irc uii	.113					3			
12.	Cha	ange	in lo	ngi	tude=	: 10°	+ 50	0 =	60°		B1			
	RT :	$=\frac{6}{26}$	$\frac{0}{60} \times 2$	$\times \frac{27}{5}$	2 , × 63	70 c	os 37º				M1			
			50 5,329.5								A1			
	Tot		<u>, </u>								3			
13.	-		/			/	A				В1	Bisecting line AB		
						B1	Parallel line 2cm away from AB							
		_			\geq	4	R	<u> </u>		7	B1	Bisecting angle at C		
		В								С	B1	Arc radius 1.5 cm and centre C		
											B1			

Total 14. $ \cos \theta = \frac{7}{24} \rightarrow \theta = \cos^{-1}\left(\frac{7}{24}\right) = 73.04^{\circ} $ $ \angle A0B = 2 \times 73.04^{\circ} = 146.08^{\circ} $ $ Area of \triangle A0B = \frac{1}{2} \times 24 \times 24 \times \sin 146.08^{\circ} = 160.7140 \text{ cm}^{2} Area of sector = \frac{146.08^{\circ}}{360} \times \frac{22}{7} \times 7 \times 7 = 62.4898 \text{ cm}^{2} Shaded Area = 160.7140 - 62.4898 = 98.2242 = 98.2242 = 98.2242 = 98.2242 = 98.2242 = 98.22 \text{ cm}^{2} (4 \text{ significant figures}) A1 Total 4 NO. WORKING MARK S 15. 300x + 700y \le 21,000 x + y > 20 x < 2y x > 15 B1 x < 2y x > 15 Total 4 P and Q in 1 day \rightarrow \frac{1}{4} + \frac{1}{6} = \frac{5}{12} P and Q in 2 days \rightarrow 2 \times \frac{5}{12} = \frac{5}{6} Remainder = 1 - \frac{5}{6} = \frac{1}{6} Q does \frac{1}{6} in 1 day A1 Work done by P and Q together in 1 day Work done by P and Q together in 2 days A1 Total$				R shaded and labeled
$\cos\theta = \frac{7}{24} \rightarrow \theta = \cos^{-1}\left(\frac{7}{24}\right) = 73.04^{\circ}$ $\angle AOB = 2 \times 73.04^{\circ} = 146.08^{\circ}$ $Area of \triangle AOB = \frac{1}{2} \times 24 \times 24 \times \sin 146.08^{\circ}$ $= 160.7140 \text{ cm}^{2}$ $Area of sector = \frac{146.08^{\circ}}{360} \times \frac{22}{7} \times 7 \times 7$ $= 62.4898 \text{ cm}^{2}$ $Shaded Area = 160.7140 - 62.4898$ $= 98.2242$ $= 98.22 \text{ cm}^{2} \text{ (4 significant figures)}$ $15. 300x + 700y \le 21,000$ $x + y > 20$ $x < 2y$ $x > 15$ $16. P \text{ and } Q \text{ in 1 day} \rightarrow \frac{1}{4} + \frac{1}{6}$ $= \frac{5}{12}$ $P \text{ and } Q \text{ in 2 days} \rightarrow 2 \times \frac{5}{12} = \frac{5}{6}$ $Remainder = 1 - \frac{5}{6} = \frac{1}{6}$ $Q \text{ does } \frac{1}{6} \text{ in 1 day}$ $A1$ $B1$ $M1$ $Work done by P \text{ and } Q \text{ together in 1 day} \text{together in 2 days} A1$		Total	5	
Total 4 NO. WORKING MARK S 15. $300x + 700y \le 21,000$ B1 $x + y > 20$ B1 $x < 2y$ B1 $x > 15$ B1 B1 Work done by P and Q together in 1 day B1 M1 Work done by P and Q together in 2 days Remainder = $1 - \frac{5}{6} = \frac{1}{6}$ A1 A1 A1	14.	$\cos \theta = \frac{7}{24} \rightarrow \theta = \cos^{-1}\left(\frac{7}{24}\right) = 73.04^{\circ}$ $\angle AOB = 2 \times 73.04^{\circ} = 146.08^{\circ}$ Area of $\triangle AOB = \frac{1}{2} \times 24 \times 24 \times \sin 146.08^{\circ}$ $= 160.7140 \text{ cm}^{2}$ Area of sector $= \frac{146.08^{\circ}}{360} \times \frac{22}{7} \times 7 \times 7$ $= 62.4898 \text{ cm}^{2}$ Shaded Area = $160.7140 - 62.4898$ $= 98.2242$	M1	
Total 4 NO. WORKING MARK S REMARKS 15. $300x + 700y \le 21,000$ B1 $x + y > 20$ B1 B1 $x < 2y$ B1 B1 $x > 15$ B1 B1 Total 4 Work done by P and Q together in 1 day P and Q in 1 day → $\frac{1}{4} + \frac{1}{6}$ M1 Work done by P and Q together in 1 day P and Q in 2 days → 2 × $\frac{5}{12} = \frac{5}{6}$ M1 Work done by P and Q together in 2 days Remainder = 1 - $\frac{5}{6} = \frac{1}{6}$ A1 A1		$= 98.22 \text{ cm}^2 \text{ (4 significant figures)}$	۸.1	
NO. WORKING MARK S REMARKS 15. $300x + 700y \le 21,000$ B1 B1 $x + y > 20$ B1 B1 $x < 2y$ B1 B1 $x > 15$ B1 B1 Total 4 Work done by P and Q together in 1 day P and Q in 2 days $\rightarrow 2 \times \frac{5}{12} = \frac{5}{6}$ M1 Work done by P and Q together in 2 days P and Q does $\frac{1}{6}$ in 1 day A1 A1		Total		
S 15. $300x + 700y \le 21{,}000$ B1 B1 B1 B1 B1 B1 B1 B	NO		 	REMARKS
x + y > 20 $x < 2y$ $x > 15$ $B1$ $B1$ $B1$ $B1$ $B1$ $B1$ $B1$ $B1$		World		
x < 2y $x > 15$	15.	$300x + 700y \le 21,000$	B1	
Total P and Q in 1 day $\rightarrow \frac{1}{4} + \frac{1}{6}$ P and Q in 2 days $\rightarrow 2 \times \frac{5}{12} = \frac{5}{6}$ Remainder $= 1 - \frac{5}{6} = \frac{1}{6}$ Q does $\frac{1}{6}$ in 1 day B1 Work done by P and Q together in 1 day M1 Work done by P and Q together in 2 days A1				
Total416. $P \text{ and } Q \text{ in 1 day} \rightarrow \frac{1}{4} + \frac{1}{6}$ M1Work done by $P \text{ and } Q$ together in 1 day $P \text{ and } Q \text{ in 2 days} \rightarrow 2 \times \frac{5}{12} = \frac{5}{6}$ M1Work done by $P \text{ and } Q$ together in 2 days $Remainder = 1 - \frac{5}{6} = \frac{1}{6}$ A1		•		
16. $P \text{ and } Q \text{ in 1 day} \rightarrow \frac{1}{4} + \frac{1}{6}$ $= \frac{5}{12}$ $P \text{ and } Q \text{ in 2 days} \rightarrow 2 \times \frac{5}{12} = \frac{5}{6}$ $Remainder = 1 - \frac{5}{6} = \frac{1}{6}$ $Q \text{ does } \frac{1}{6} \text{ in 1 day}$ M1 Work done by $P \text{ and } Q$ together in 1 day $M1 \text{ Work done by } P \text{ and } Q$ $\text{together in 2 days}$				
$P \text{ and } Q \text{ in 2 days} \rightarrow 2 \times \frac{3}{12} = \frac{3}{6}$ $Remainder = 1 - \frac{5}{6} = \frac{1}{6}$ $Q \text{ does } \frac{1}{6} \text{ in 1 day}$ $A1$ Work done by P and Q together in 2 days	16	1 1	!	Wanta dana haa Danad O
i iniai	10.	P and Q in 2 days $\rightarrow 2 \times \frac{3}{12} = \frac{3}{6}$		together in 1 day Work done by <i>P</i> and <i>Q</i>

NO.	WORKING	MARKS	REMARKS
17.	(a) $\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 4 & 3 \\ -1 & -1 & 2 \end{pmatrix} = \begin{pmatrix} 0 & 2 & 7 \\ -1 & -1 & 2 \end{pmatrix}$	M1	
	A'(0,-1), B'(2,-1), C'(7,2)	A1	
	(b) A'B'C' drawn	В1	

	Shear; line $x = -1$ invariant, $C(3, 2)$ mapped onto $C'(7, 2)$	B1, B1	
(c)	$\Delta A''B''C''$ drawn	В1	
	A''(-2,-1), B''(-4,-1) and $C''(-7,2)$	B1	
	Let the matrix be $\binom{p}{r} \binom{q}{r}$, $\binom{p}{r} \binom{q}{r} \binom{2}{-1} \binom{2}{-1} \binom{4}{-1} \binom{2}{-1} \binom{-2}{-1} \binom{-4}{-1} \binom{2}{-1} \binom{2p-q}{4p-q} \binom{4p-q}{3p+2q} = \binom{-2}{-1} \binom{-4}{-1} \binom{-7}{2}$ $2p-q=-2 \dots \times 2$ $3p+2q=-7$ $4p-2q=-4$ $7p=-11 \rightarrow p=\frac{-11}{7}$		
То	otal	10	

NO.	WORKING	MARKS	REMARKS
18.	(a) $T_1 = 5 \times 1 - 3 = 3$ $T_2 = 5 \times 2 - 2 = 8$	В1	All first 3 terms
	$T_3 = 5 \times 3 - 2 = 13$		correct
	(b) $T_3 = ar^{3-1} = ar^2 = 18$ $T_6 = ar^{6-1} = ar^5 = 486$ $ar^5 = 486$		
	$\frac{ar^3}{ar^2} = \frac{486}{18}$ $r^3 = 27$	M1	

	1	I
$r = \sqrt[3]{27} = 3$	M1, A1	Ratio of 6th to 3rd
		terms
(c) Number of terms		
$-3094 = \frac{n}{2}(8 + (-190))$	M1	Taking $\sqrt[3]{27}$, 3 seen
<u> </u>	IVII	_
$-3094 \times 2 = n(8 - 190)$		
$n = \frac{-3094 \times 2}{(8 - 190)}$		
n = (8 - 190)		
n = 34	A1	
(d) $T_2 = a + d$, $T_4 = a + 3d$, $T_7 = a + 6d$		
2+d, 2+3d, 2+6d,		
2 + 6d 2 + 3d		
$\frac{2+6d}{2+3d} = \frac{2+3d}{2+d}$	M1	
(2+6d)(2+d) = (2+3d)(2+3d)		
2(2+d)+6d(2+d)		
= 2(2+3d) + 3d(2+3d)		Expression for
$4 + 14d + 6d^2 = 4 + 12d + 9d^2$		common ratio
$14d - 12d = 9d^2 - 6d^2$		00
$2d = 3d^2 \rightarrow 2 = 3d$	M1	
2	A 1	
$d=\frac{2}{3}$	A1	
		Simplification
$r = \frac{2+6\times\frac{2}{3}}{2+3\times\frac{2}{3}} = \frac{3}{2} = 1\frac{1}{2} \text{ or } 1.5$	ъ.	_
$r = \frac{3}{2} = \frac{3}{2} = \frac{1}{2}$ or 1.5	B1	2 - seen
$2+3\times\frac{2}{3}$ 2		3 seen
		1.5 seen
Total	10	

NO.	WORKING	MARKS	REMARKS
19.	(a) (i) Relationship		
	$P = kQ^2 + \frac{c}{\sqrt{R}}$		
	$11\frac{1}{3} = 4k + \frac{c}{\sqrt{9}} \to \frac{34}{3} = 4k + \frac{c}{3} \to 34$		
	$= 12k + c \dots (i)$ $14\frac{3}{4} = 5k + \frac{c}{\sqrt{64}} \to \frac{59}{4} = 5k + \frac{c}{8} \to 118$	M1	Forming 2 equations in k and c
	= 40k + c (ii) $12k + c = 34$	M1	
	$ \frac{40k + c = 118}{-28k = -84} $		Correct attempt to solve the
	$k = \frac{-84}{-28} = 3$	A1	equations simultaneously
	$12 \times 3 + c = 34 \rightarrow c = 34 - 12 \times 3$ c = -2 Hence	B1	Values of k and c

$P = 3Q^{2} - \frac{2}{\sqrt{R}}$ (ii) Q when $P = 145\frac{11}{18}$ and $R = 1.44$ $P = 3Q^{2} - \frac{2}{\sqrt{R}} \to 145\frac{11}{18} = 3Q^{2} - \frac{2}{\sqrt{1.44}}$ $3Q^{2} = 145\frac{11}{18} + \frac{2}{1.2}$	M1	Relationship between <i>P</i> , <i>Q</i> and <i>R</i>
$3Q^{2} = 145 \frac{1}{18} + \frac{1}{1.2}$ $3Q^{2} = \frac{2651}{18}$ $Q^{2} = \frac{2651}{18} \times \frac{1}{3} = \frac{2651}{54}$ $Q = \sqrt{\frac{2651}{54}} = 7.007$	A1	
(b) A, B, C and D $A \propto \frac{kB\sqrt{C}}{D^2} \to A = \frac{kB\sqrt{C}}{D^2}$ $B_1 = 1.21B, \ C_1 = \sqrt{0.64C} = 0.8\sqrt{C}$ and $D_1 = (1.1D)^2 = 1.21D^2$	M1	
$A_1 = \frac{k(1.21B)0.8\sqrt{C}}{1.21D^2} = \frac{1.21 \times 0.8}{1.21} \left(\frac{kB\sqrt{C}}{D^2}\right)$ $A_1 = 0.8A$ Percentage change in A = $\frac{0.8 - 1}{1} \times 100$ = -20% A decrease of 20%	M1 M1 A1	Values of B_1 , C_1 and D_1 in terms of B , C and D Expression for A_1
Total	10	A0 if left as –20%

NO.	WORKING	MARKS	REMARKS
20.	(a) $S = 5^3 - 5 \times 5^2 + 4$	M1	
	S = 4 metres	A1	
	(b) Velocity at $t = 5$		
	$\frac{dS}{dt} = 3t^2 - 10t$	M1	Differentiation
	$v = 3 \times 5^2 - 10 \times 5$	M1	Substitution
	v = 75 - 50 = 25 m/s	A1	

	1	1
(c) Time at $v = 0$ $3t^2 - 10t = 0$ t(3t - 10) = 0 t = 0	M1	Equation v to 0
$3t = 10 \rightarrow t = 3\frac{1}{3}$	A1	Both values of t
Hence $t = 3\frac{1}{3}$ seconds	B1	t = 0 discriminated
(d) a at $t=2$		
$\frac{dv}{dt} = 6t - 10$	M1	Differentiating v
$a = 6 \times 2 - 10 = 2 \text{ m/s}^2$	A1	
Total	10	
21. (a) $VN = \sqrt{12^2 - 7.5^2}$	M1	
$VN = \sqrt{87.75} = 9.367 \text{ cm}$		
$VO = \sqrt{9.367^2 - 4^2}$	3.54	
$V0 = 8.46998 \cong 8.47 \text{ (2 decimal places)}$	M1	
(2 decimal places)	A1	
(b) Volume of pyramid		
Volume = $\frac{1}{3} \times 8 \times 15 \times 8.47 = 338.80$	B1	
(c) Consider ΔVMN where M is the midpoint of AD	M1	
$8^2 = 2 \times 9.367^2 - 2 \times 9.367^2 \cos V$		
$\frac{8^2 - 2 \times 9.367^2}{-2 \times 9.367^2} = \cos V$	M1	
$\cos V = 0.63529$	A1	
$V = \cos^{-1}(0.63529) = 50.56^{0}$	B1	
Obtuse $\angle VMN = 180^{0} - 50.56^{0} = 129.44^{0}$		
(d) Consider ΔVDO		
8.47	M1	
$\sin\theta = \frac{8.47}{12}$		
$\theta = \sin^{-1}\left(\frac{8.47}{12}\right) = 44.90^{0}$	A1	
Total	10	

N O.	WORKIN	IG							MARI	KS	REM	ARKS	3	
22.	(a) Table	Valu	es											
	x	00	30°	60°	90°	120°	150°	180°	210^{0}	240°	270°	300°	330^{0}	360^{0}

у	0.5	0.8	1	0.8	0.8	0.0	-	-	-	-	-	0.0	0.5
$=\sin(x)$	0	7		7	7	0	0.5	0.8	1.0	0.8	0.5	0	0
$+30^{0}$)								7	0	7	0		
у	1.7	1.0	0.0	-	-	-	-	-	0.0	1.0	1.7	2.0	1.7
$= 2 \cos(x)$	3	0	0	1.0	1.7	2.0	1.7	1.0	0	0	3	0	3
+ 30 ⁰)				0	3	0	3	0					

B2 – all table values correct (B1 for at least 10 table values correct)

S1 – given scales used

P1 – plotting $y = \sin(x + 30^{\circ})$

 $C1 - \text{drawing } y = \sin(x + 30^{\circ})$

 $P1 - plotting y = 2\cos(x + 30^0)$

 $C1 - \text{drawing } y = 2\cos(x + 30^{\circ})$

(c) $x = 36^{\circ}$ and $x = 216^{\circ} \pm 6^{\circ}$	B1	
(d) 2	B1	
Total	10	

NO.	WORKING	MARKS	REMARKS
23.	P		
	3 5		
	5		
	R^{p}		
	$\frac{2}{5}$		
	$ \tilde{O} \qquad \qquad \frac{2}{3} \qquad \qquad q \qquad \tilde{S} \qquad \frac{1}{3} \qquad \tilde{Q} $		
	(a) (i) $QR = QO + OR$		
	$QR = -q + \frac{2}{5}p$	B1	QR
	(ii) $PS = PO + OS$	5.4	
	$PS = -p + \frac{2}{3}q$	B1	PS
	(b) (i) $\mathbf{Q}\mathbf{T} = h\mathbf{Q}\mathbf{R} \to \mathbf{Q}\mathbf{T} = h\left(-\mathbf{q} + \frac{2}{5}\mathbf{p}\right)$		
	$\boldsymbol{QT} = \frac{2h}{5}\boldsymbol{p} - h\boldsymbol{q}$	В1	
	Also		
	$PT = kPS \rightarrow PT = k\left(-p + \frac{2}{3}q\right)$		
	$PT = \frac{2k}{3}q - kp$	В1	
	(ii) $QT = QQ + QT = q - hq + \frac{2h}{5}p$		
	$\mathbf{OT} = (1 - h)\mathbf{q} + \frac{2h}{\epsilon}\mathbf{p}$	D1	
	Also	B1	
	$OT = OP + PT \rightarrow p - kp + \frac{2k}{3}q$		
	$\mathbf{OT} = (1 - k)\mathbf{p} + \frac{2k}{3}\mathbf{q}$	B1	
	(c) h and k		
	$\frac{2h}{5} = 1 - k \to 2h + 5k = 5 \dots (i) \times 3$		
	$\begin{bmatrix} 5 \\ 2k \end{bmatrix}$	እ / 1	Comparing
	$1 - h = \frac{2k}{3} \rightarrow 3h + 2k = 3 \dots (ii) \times 2$	M1	coefficients of p and q
	6h + 15k = 15		•
	$\frac{6h + 4k = 6}{11k = 9 \rightarrow k} = \frac{9}{11}$	M1	Correct attempt to
	$11k = 9 \to k = \frac{11}{11}$	A1	solve the two equations
	$2h + 5 \times \frac{9}{11} = 5$	***	Value of k
	$2h + 5 \times \frac{9}{11} = 5$ $2h = 5 - \frac{45}{11}$		
	$2h = \frac{10}{11} \rightarrow h = \frac{10}{11} \div 2 = \frac{5}{11}$		
	2n - 11 $n - 11 + 2 - 11$	В1	
			Value of <i>h</i>
	Total	10	

NO.	WORKING						MAR	KS	REMAR	KS
24.	Frequenc	cy Tal	ole	A:	= 73					
	Marks	f	х	d = x - A	fd	d^2	fd^2	cf	U.C.B	
	61 –	4	63	-10	-40	100	400	4	65.5	
	65									
	66 –	5	68	-5	-25	25	125	9	70.5	
	70									
	71 –	9	73	0	0	0	0	18	75.5	
	75									
	76 –	8	78	5	40	25	200	26	80.5	
	80									
	81 –	8	83	10	80	100	800	34	85.5	
	85									
	86 –	6	88	15	90	225	1350	40	90.5	
	90									
		40			145		2875			

All *d* correct – B1

All fd correct - B1

(a) (i) Mean

Mean
$$(\bar{x}) = A + \frac{\sum fd}{\sum f} = 73 + \frac{145}{40} - M1$$

Mean = 76.625 - A1

(ii) Standard Deviation

$$s = \sqrt{\frac{\sum fd}{f}} - \left(\frac{\sum fd}{\sum f}\right)^2$$
$$s = \sqrt{\frac{2875}{40}} - \left(\frac{145}{40}\right)^2$$
$$s = 7.664$$

- (b) (i) Ogive
 - (ii) 25th Student

Total 10
