

Principle and Automated Application of Industrial Robot

Course number: ME4202

Class schedule: Thursday, 9am-12pm

Venue: E2-414

Instructors:

Pr. Jiing-Yih Lai, 賴景義 教授

Pr. Terence Essomba, 伊泰龍 副教授

Teaching Assistants

王齊,蘇敬勛,吳定祐,周韋安,洪琳傑

Content

Chapter 1: History of robots

Chapter 2: Nature of robots

Chapter 3: Robotic manipulators

Chapter 4: Architecture of robots

Chapter 5: Operation of robots

Chapter 6: Kinematic model

Chapter 7: Application to DRV70L

Chapter 1

History of robots

Etymology of "robot"

Slavic countries languages: "worker, slave"

Russian: "работа" (work), "раб" (slave)

Polish: "robotnik" (worker)

Byelorussian: "работнік" (worker)

Czech: "pracovník" (worker)

First instances of "mechatronic" humanoid

1809: "The Pin Man", Hermann Mac Coolish Rotenberg Caistria

1818: "The Sandman", Ernst Theodor Amadeus Hoffmann

1885: "The electric man", Luis Senarens

First mention of "robots"

1921: Karel Čapek, Rossum's Universal Robots

1927: "Metropolis" movie, Thea von Harbou, Fritz Lang's novel

1942: Isaac Asimov

I, Robot (1950) and later collections: The Complete Robot (1982), Robot Dreams (1986), and Robot Visions (1990)

"The Bicentennial Man" (1976) or The Positronic Man (1992) - short story later developed into a complete novel

"Mother Earth" (1948) - short story, in which no individual robots appear, but positronic robots are part of the background

The Caves of Steel (1954) - first Robot series/R. Daneel Olivaw novel

The Naked Sun (1957) - second Robot series/R. Daneel Olivaw novel

"Mirror Image" (1972) - short story about R. Daneel Olivaw and detective Elijah Baley

The Robots of Dawn (1983) - third Robot series/R. Daneel Olivaw novel

Robots and Empire (1985) - fourth Robot series/R. Daneel Olivaw novel

First instances of automaton

1495: Leonard Da Vinci

Technical sketch of a horseman, able to move on its own

1738: Jacques de Vaucanson Human doll playing music instrument Duck doll eating food

- First humanoid robots

1928: Eric humanoid robot, annual exhibition

of the Model Engineers Society, London

1937: Elektro humanoid robot, Westinghouse

Electric Corporation

First robotic manipulators

1948: first electronic autonomous robots

1954: first digital and programmable robot, Unimate

1961: first use of a robot by General Motors (Unimate)

ME4202 - Principle and Automated Application of Industrial Robot

Chapter 2

Nature of robots

Chapter 2: Nature of robots

- Robotics manipulators

Manipulation of object in space End effector for grasping and/or interaction

Chapter 2: Nature of robots

Mobile robots

Free navigation in an environment Locomotion method: legs or wheel

Chapter 2: Nature of robots

Humanoid robots

Human-like robots (not cyborg!)
Often with locomotion system

Chapter 3

Robotic manipulators

Chapter 3: Robotic manipulators

Composition of a robotic system

Chapter 3: Robotic manipulators

Mechanical part of robots

Mechanism: device transmitting or transforming motion/force

Chapter 3: Robotic manipulators

Mechanical part of robots

Manipulator: manipulate objects in space

End effector: hold object or interact with object/environment

Chapter 4

Architecture of robots

Degrees of freedom (DoF)

Independent position variables required to locate an object

Independent motion ability between two successive solids

Linear or angular DoF

- One axis (direction) of motion
- One position variable

- Kinematic pairs (joints)

Allow motion(s) between two successive solids

Non-exclusive list of joints:

Rigid: no DoF

Helical: 1 combined DoF

Revolute: 1 angular DoF

Cylindrical: 1 angular

and 1 linear DoF

Prismatic: 1 linear DoF

Spherical: 3 angular DoF

- Serial vs. parallel
- Serial mechanism One series of linkage
- Parallel mechanism
 Close kinematic loop

Manipulators	Serial	Parallel
Workspace	Larger	Smaller
Rigidity	Lower	Higher
Accuracy	Lower	Higher
Active joints	All	Some
Fwd kinematic	Simple	Very complex
Inv kinematic	Complex	Accessible

Architecture of robots

Common industrial architecture

Anthropomorphic

And many other types

Chapter 5

Operation of robots

Chapter 5: Operation of robots

Degree of autonomy

Automatic: the task is (planed and) automatically provided by the system

Controlled: the system is controlled by a direct or remote control

Semi-automatic: both characteristics combined

Positioning method

Passive: No actuator, require manual intervention → just a mechanism

Semi-active: Motion by both actuators and manual intervention (power is cut in passive

mode) or motion partly active (passive and active parts)

Fully active: motion using actuator exclusively

Programming method

Offline: use of computer software with realistic graphics to plan and program tasks without use of robot hardware.

Lead-Through: end-effector physically guided by human operator through desired position for memorization.

Teach: use of integrated interface for motion control and task programming.

Chapter 6

Kinematic model

Chapter 6: Kinematic model

Definitions

Relationship between joint coordinates and end effector coordinates

Chapter 6: Kinematic model

- Transformation matrix

Coordinates of reference frame Rotation matrix and position vector

$$\mathbf{T_{12}} = \begin{bmatrix} \mathbf{R}_{12} & \mathbf{p}_{12} \\ \mathbf{0}_{3\times 1} & 1 \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & r_{13} & p_x \\ r_{21} & r_{22} & r_{23} & p_y \\ r_{31} & r_{32} & r_{33} & p_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Classical rotation matrices

where
$$C\alpha = \cos \alpha$$
 , $S\alpha = \sin \alpha$

Chapter 6: Kinematic model

- Product of transformation matrices

General transformation matrix:

$$\mathbf{T_{0n}}(\mathbf{q}) = \prod_{i=1}^{n} \mathbf{T_{i-1,i}}(q_i) = \mathbf{T_{01}T_{12}} \dots \mathbf{T_{n-1,n}}$$

Chapter 7

Application to DRV70L

Kinematic drawing

Transformation matrices:

Revolute joint: axis **z**₀

Linkage: ignored

Transformation matrix: T_{01}

$$\mathbf{T_{01}} = \begin{bmatrix} \cos q_1 & -\sin q_1 & 0 & 0\\ \sin q_1 & \cos q_1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Transformation matrices:

Revolute joint: axis x2

Linkage: $l_2\mathbf{y_1}$

Transformation matrix: T₁₂

$$\mathbf{T_{12}} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos q_2 & -\sin q_2 & l_2 \\ 0 & \sin q_2 & \cos q_2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Transformation matrices:

Revolute joint: axis x₃

Linkage: I₃z₂

Transformation matrix: T_{23}

$$\mathbf{T_{23}} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos q_3 & -\sin q_3 & 0 \\ 0 & \sin q_3 & \cos q_3 & l_3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- Transformation matrices:

Revolute joint: axis y₄

Linkage: *I*₄**z**₃

Transformation matrix: T_{34}

$$\mathbf{T_{34}} = \begin{bmatrix} \cos q_1 & 0 & \sin q_1 & 0 \\ 0 & 1 & 0 & 0 \\ -\sin q_1 & 0 & \cos q_1 & l_4 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- Transformation matrices:

Revolute joint: axis x₅

Linkage: $l_5\mathbf{y_4}$

Transformation matrix: T_{45}

$$\mathbf{T_{45}} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos q_5 & -\sin q_5 & l_5 \\ 0 & \sin q_5 & \cos q_5 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Transformation matrices:

Revolute joint: axis y₆

Linkage: $l_6 \mathbf{y_5}$

Transformation matrix: **T**₅₆

$$\mathbf{T_{56}} = \begin{bmatrix} \cos q_1 & 0 & \sin q_1 & 0 \\ 0 & 1 & 0 & 0 \\ -\sin q_1 & 0 & \cos q_1 & l_4 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Result:

Product of transformation matrices

$$T_{06}(q) = \prod_{i=1}^{6} T_{i-1,i}(q_i) = T_{01}T_{12}T_{23}T_{34}T_{45}T_{56}$$

Final transformation matrix: T_{06}

$$\mathbf{T_{06}} = \begin{bmatrix} \mathbf{R_{06}} & \begin{bmatrix} p_x \\ p_y \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Linear coordinates:

$$\mathbf{p_{06}} = \begin{bmatrix} p_x \\ p_y \\ p_z \end{bmatrix} = \begin{bmatrix} p_x = f_x(q_1 \cdots q_n) \\ p_y = f_y(q_1 \cdots q_n) \\ p_z = f_z(q_1 \cdots q_n) \end{bmatrix}$$

- Result:

Product of transformation matrices

$$\mathbf{T_{06}}(\mathbf{q}) = \prod_{i=1}^{6} \mathbf{T_{i-1,i}}(q_i) = \mathbf{T_{01}} \mathbf{T_{12}} \mathbf{T_{23}} \mathbf{T_{34}} \mathbf{T_{45}} \mathbf{T_{56}}$$

Final transformation matrix: T_{06}

$$\mathbf{T_{06}} = \begin{bmatrix} & & p_x \\ \mathbf{R_{06}} & & p_y \\ & & p_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Angular coordinates:

$$\mathbf{R_{06}} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} = \begin{bmatrix} C2C3 & -C2S3 \\ C1S3 + S1S2C3 & C1C3 - S1S2S3 & -S1C2 \\ S1S3 - C1S2C3 & S1C3 + C1S2S3 & C1C2 \end{bmatrix}$$

$$\varphi_2 = \sin^{-1} r_{13} \quad \varphi_1 = ATAN2 \left(-\frac{r_{23}}{C2}, \frac{r_{33}}{C2} \right) \quad \varphi_3 = ATAN2 \left(-\frac{r_{13}}{C2}, \frac{r_{11}}{C2} \right)$$

T₀₆