Laser pointer drawing

Let's speak together 2010 Tomáš Pokorný, Vojtěch Přikryl

Equipment

- camera
- projector
- computer
- laser pointer

lmage processing

- using framework CocoaSequenceGrabber
- goes pixel by pixel

- 0
- throws away pixels of bad color
- 2 methods

0

- finding lightness 5x5 pixels square
- finding ligtness pixel which inner and outer points are in specified range

Calibration

 determining where in image are corners of screen

sequential showing little square

in corners

same finding algorithm
like in image processing

Transformation

- the original image is distorted
- we need to make rectangle from quadrilateral
- various methods with various results

středa, 23. února 2011 5

Ratio transformation

- ratios of lengths stays kept
- generalised in 2 dimensions we get transformation
- not so accurate

středa, 23. února 2011 6

Two point transformation

- good results
- opposite sides of the quadrilateral intersects
- drawing lines through these points and found points
- intersection with sides defines ratios

Projective transformation

- using transformation 3x3 matrix
- mathematically correct
- very accurate

$$\begin{bmatrix} u' \\ v' \\ w' \end{bmatrix} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \cdot \begin{bmatrix} a_1 & a_2 & a_3 \\ a_4 & a_5 & a_7 \\ a_7 & a_8 & 1 \end{bmatrix}$$
$$x' = \frac{u'}{w'}$$
$$y' = \frac{v'}{w'}$$

Other transformations

- trapezoidal transformation
 - easy
 - not very accurate
- angle transformation
 - bad pricipe

Viewing

- using computed ratios
- need to use right color
 - good visibility
 - can't be determined as laser pointer

Drawing

- choosing between three colors
- resetting drawed picture
- export picture as SVG

Shooting balloons

- simple game for laser pointer
- shooting flying up balloons
- various speed, size, number, ...
- counting shooted and flown away balloons

středa, 23. února 2011 12

Thanks for your attention