# 2024 CCF 非专业级软件能力认证

# CSP-J/S 2024 **第二轮认证**

# 入门级

时间: 2024 年 10 月 26 日 08:30 ~ 12:00

| 题目名称    | 扑克牌       | 地图探险        | 小木棍        | 接龙        |
|---------|-----------|-------------|------------|-----------|
| 题目类型    | 传统型       | 传统型         | 传统型        | 传统型       |
| 目录      | poker     | explore     | sticks     | chain     |
| 可执行文件名  | poker     | explore     | sticks     | chain     |
| 输入文件名   | poker.in  | explore.in  | sticks.in  | chain.in  |
| 输出文件名   | poker.out | explore.out | sticks.out | chain.out |
| 每个测试点时限 | 1.0 秒     | 1.0 秒       | 1.0 秒      | 2.0 秒     |
| 内存限制    | 512 MiB   | 512 MiB     | 512 MiB    | 512 MiB   |
|         |           |             |            |           |
| 测试点数目   | 10        | 10          | 10         | 20        |

#### 提交源程序文件名

| 对于 C++ 语言 | poker.cpp | explore.cpp | sticks.cpp | chain.cpp |
|-----------|-----------|-------------|------------|-----------|
|-----------|-----------|-------------|------------|-----------|

#### 编译选项

| 对于 C++ 语言 -02 -std=c++14 -static |  |
|----------------------------------|--|
|----------------------------------|--|

# 注意事项(请仔细阅读)

- 1. 文件名(程序名和输入输出文件名)必须使用英文小写。
- 2. main 函数的返回值类型必须是 int,程序正常结束时的返回值必须是 0。
- 3. 提交的程序代码文件的放置位置请参考各省的具体要求。
- 4. 因违反以上三点而出现的错误或问题,申诉时一律不予受理。
- 5. 若无特殊说明,结果的比较方式为全文比较(过滤行末空格及文末回车)。
- 6. 选手提交的程序源文件必须不大于 100KB。
- 7. 程序可使用的栈空间内存限制与题目的内存限制一致。
- 8. 全国统一评测时采用的机器配置为: Intel(R) Core(TM) i7-8700K CPU @3.70GHz, 内存 32GB。上述时限以此配置为准。
- 9. 只提供 Linux 格式附加样例文件。
- 10. 评测在当前最新公布的 NOI Linux 下进行,各语言的编译器版本以此为准。

# 扑克牌 (poker)

#### 【题目描述】

小 P 从同学小 Q 那儿借来一副 n 张牌的扑克牌。

本题中我们不考虑大小王,此时每张牌具有两个属性:花色和点数。花色共有4种:方片、草花、红桃和黑桃。点数共有13种,从小到大分别为A23456789T

我们称一副扑克牌是**完整**的,当且仅当对于每一种花色和每一种点数,都**恰好**有一张牌具有对应的花色和点数。由此,一副完整的扑克牌恰好有  $4 \times 13 = 52$  张牌。以下图片展示了一副完整的扑克牌里所有的 52 张牌。



图 1: 一副完整的扑克牌

小 P 借来的牌可能不是完整的,为此小 P 准备再向同学小 S 借若干张牌。可以认为小 S 每种牌都有无限张,因此小 P 可以任意选择借来的牌。小 P 想知道他至少得向小 S 借多少张牌,才能让从小 S 和小 Q 借来的牌中,可以选出 52 张牌构成一副完整的扑克牌。

为了方便你的输入,我们使用字符 D 代表方片,字符 C 代表草花,字符 H 代表红桃,字符 S 代表黑桃,这样每张牌可以通过一个长度为 2 的字符串表示,其中第一个字符表示这张牌的花色,第二个字符表示这张牌的点数,例如 CA 表示草花 A,ST 表示黑桃 T (黑桃 10)。

#### 【输入格式】

从文件 poker.in 中读入数据。

输入的第一行包含一个整数 n 表示牌数。

接下来 n 行:

每行包含一个长度为 2 的字符串描述一张牌,其中第一个字符描述其花色,第二个字符描述其点数。

# 【输出格式】

输出到文件 poker.out 中。

输出一行一个整数,表示最少还需要向小 S 借几张牌才能凑成一副完整的扑克牌。

# 【样例1输入】

- 1 1
- 2 **SA**

# 【样例1输出】

1 51

# 【样例1解释】

这一副牌中包含一张黑桃 A,小 P 还需要借除了黑桃 A 以外的 51 张牌以构成一副 完整的扑克牌。

# 【样例 2 输入】

- 1 4
- 2 **DQ**
- 3 **H3**
- 4 DQ
- 5 **DT**

### 【样例 2 输出】

1 49

#### 【样例2解释】

这一副牌中包含两张方片 Q、一张方片 T(方片 D10)以及一张红桃 D3,小 D4 还需要借除了红桃 D3、方片 D7 和方片 D8 以外的 D9 张牌。

### 【样例 3】

见选手目录下的 *poker/poker3.in* 与 *poker/poker3.ans*。

# 【样例3解释】

这一副扑克牌是完整的,故不需要再借任何牌。

该样例满足所有牌按照点数从小到大依次输入,点数相同时按照方片、草花、红桃、 黑桃的顺序依次输入。

# 【数据范围】

对于所有测试数据,保证:  $1 \le n \le 52$ ,输入的 n 个字符串每个都代表一张合法的扑克牌,即字符串长度为 2,且第一个字符为 D C H S 中的某个字符,第二个字符为 A 2 3 4 5 6 7 8 9 T J Q K 中的某个字符。

| 测试点编号      | $n \leq$ | 特殊性质 |  |
|------------|----------|------|--|
| 1          | 1        | Λ    |  |
| $2 \sim 4$ |          | Α    |  |
| $5 \sim 7$ | 52       | В    |  |
| 8 ~ 10     |          | 无    |  |

特殊性质 A: 保证输入的 n 张牌两两不同。

特殊性质 B: 保证所有牌按照点数从小到大依次输入,点数相同时按照方片、草花、红桃、黑桃的顺序依次输入。

# 地图探险 (explore)

# 【题目描述】

丛林的地图可以用一个 n 行 m 列的字符表来表示。我们将第 i 行第 j 列的位置的 坐标记作  $(i,j)(1 \le i \le n, 1 \le j \le m)$ 。如果这个位置的字符为  $\mathbf{x}$ ,即代表这个位置上有障碍,不可通过。反之,若这个位置的字符为 .,即代表这个位置是一片空地,可以通过。

这个机器人的状态由位置和朝向两部分组成。其中位置由坐标  $(x,y)(1 \le x \le n, 1 \le y \le m)$  刻画,它表示机器人处在地图上第 x 行第 y 列的位置。而朝向用一个  $0 \sim 3$  的整数 d 表示,其中 d=0 代表向东,d=1 代表向南,d=2 代表向西,d=3 代表向北。

初始时,机器人的位置为  $(x_0, y_0)$ ,朝向为  $d_0$ 。保证初始时机器人所在的位置为空地。接下来机器人将要进行 k 次操作。每一步,机器人将按照如下的模式操作:

- 1. 假设机器人当前处在的位置为 (x,y), 朝向为 d。则它的方向上的下一步的位置 (x',y') 定义如下: 若 d=0, 则令 (x',y')=(x,y+1), 若 d=1, 则令 (x',y')=(x+1,y), 若 d=2, 则令 (x',y')=(x,y-1), 若 d=3, 则令 (x',y')=(x-1,y)。
- 2. 接下来,机器人判断它下一步的位置是否在地图内,且是否为空地。具体地说,它判断 (x',y') 是否满足  $1 \le x' \le n, 1 \le y' \le m$ ,且 (x',y') 位置上是空地。如果条件成立,则机器人会向前走一步。它新的位置变为 (x',y'),且朝向不变。如果条件不成立,则它会执行"向右转"操作。也就是说,令  $d' = (d+1) \mod 4$ (即 d+1 除以 4 的余数),且它所处的位置保持不变,但朝向由 d 变为 d'。

小 A 想要知道,在机器人执行完 k 步操作之后,地图上所有被机器人经过的位置(包括起始位置)有几个。

#### 【输入格式】

从文件 explore.in 中读入数据。

### 本题有多组测试数据。

输入的第一行包含一个正整数 T,表示数据组数。

接下来包含 T 组数据,每组数据的格式如下:

第一行包含三个正整数 n, m, k。其中 n, m 表示地图的行数和列数,k 表示机器人执行操作的次数。

第二行包含两个正整数  $x_0, y_0$  和一个非负整数  $d_0$ 。

接下来 n 行,每行包含一个长度为 m 的字符串。保证字符串中只包含  $\mathbf{x}$  和 . 两个字符。其中,第 x 行的字符串的第 y 个字符代表的位置为 (x,y)。这个位置是  $\mathbf{x}$  即代表它是障碍,否则代表它是空地。数据保证机器人初始时所在的位置为空地。

#### 【输出格式】

输出到文件 explore.out 中。

对于每组数据:输出一行包含一个正整数,表示地图上所有被机器人经过的位置 (包括起始位置)的个数。

#### 【样例1输入】

```
1 2
2 1 5 4
3 1 1 2
4 ....x
5 5 5 20
6 1 1 0
7 ....
8 .xxx.
9 .x.x.
10 ..xx.
```

### 【样例1输出】

```
1 32 13
```

#### 【样例1解释】

该样例包含两组数据。对第一组数据,机器人的状态以如下方式变化:

- 1. 初始时,机器人位于位置(1,1),方向朝西(用数字2代表)。
- 2. 第一步,机器人发现它下一步的位置 (1,0) 不在地图内,因此,它会执行"向右转"操作。此时,它的位置仍然为 (1,1),但方向朝北 (用数字 3 代表)。
- 3. 第二步, 机器人发现它下一步的位置 (0,1) 不在地图内, 因此, 它仍然会执行"向右转"操作。此时, 它的位置仍然为 (1,1), 但方向朝东 (用数字 0 代表)。
- 4. 第三步,机器人发现它下一步的位置 (1,2) 在地图内,且为空地。因此,它会向 东走一步。此时,它的位置变为 (1,2),方向仍然朝东。
- 5. 第四步,机器人发现它下一步的位置 (1,3) 在地图内,且为空地。因此,它会向东走一步。此时,它的位置变为 (1,3),方向仍然朝东。

因此,四步之后,机器人经过的位置有三个,分别为(1,1),(1,2),(1,3)。

对第二组数据,机器人依次执行的操作指令为:向东走到(1,2),向东走到(1,3),向东走到(1,4),向东走到(1,5),向右转,向南走到(2,5),向南走到(3,5),向南走到(4,5),向南走到(5,5),向右转,向西走到(5,4),向西走到(5,3),向西走到(5,2),向右转,向北走到(4,2),向右转,向右转,向南走到(5,2),向右转,向右转。

#### 【样例 2】

见选手目录下的 explore/explore2.in 与 explore/explore2.ans。 该样例满足第  $3 \sim 4$  个测试点的限制条件。

#### 【样例 3】

见选手目录下的 *explore/explore3.in* 与 *explore/explore3.ans*。 该样例满足第 5 个测试点的限制条件。

# 【样例 4】

见选手目录下的 *explore/explore4.in* 与 *explore/explore4.ans*。 该样例满足第 6 个测试点的限制条件。

#### 【样例 5】

见选手目录下的 explore/explore 5.in 与 explore/explore 5.ans。 该样例满足第 8  $\sim$  10 个测试点的限制条件。

#### 【数据范围】

对于所有测试数据,保证:  $1 \le T \le 5, 1 \le n, m \le 10^3, 1 \le k \le 10^6, 1 \le x_0 \le n, 1 \le y_0 \le m, 0 \le d_0 \le 3$ ,且机器人的起始位置为空地。

| 测试点编号 | n           | m           | k                | 特殊性质        |
|-------|-------------|-------------|------------------|-------------|
| 1     | = 1         | / 2         |                  |             |
| 2     | = 1         | $\leq 2$    |                  | <br>        |
| 3     | $\leq 10^2$ | $\leq 10^2$ | _ 1              |             |
| 4     | $  \leq 10$ |             |                  |             |
| 5     | = 1         |             | $< 2 \cdot 10^3$ | 地图上所有位置均为空地 |
| 6     | — I         |             |                  | 无           |
| 7     |             | $\leq 10^3$ |                  | 地图上所有位置均为空地 |
| 8     | $\leq 10^3$ |             | $\leq 10^{6}$    |             |
| 9     |             |             |                  | 无           |
| 10    |             |             |                  |             |

# 小木棍 (sticks)

#### 【题目描述】

小 S 喜欢收集小木棍。在收集了 n 根长度相等的小木棍之后,他闲来无事,便用它们拼起了数字。用小木棍拼每种数字的方法如下图所示。



图 2: 每种数字的小木棍拼法

现在小 S 希望拼出一个正整数,满足如下条件:

- 拼出这个数**恰好**使用 *n* 根小木棍;
- 拼出的数没有前导 0:
- 在满足以上两个条件的前提下,这个数尽可能小。

小 S 想知道这个数是多少,可 n 很大,把木棍整理清楚就把小 S 折腾坏了,所以你需要帮他解决这个问题。如果不存在正整数满足以上条件,你需要输出 -1 进行报告。

### 【输入格式】

从文件 sticks.in 中读入数据。

#### 本题有多组测试数据。

输入的第一行包含一个正整数 T,表示数据组数。

接下来包含 T 组数据,每组数据的格式如下:

一行包含一个整数 n,表示木棍数。

#### 【输出格式】

输出到文件 sticks.out 中。

对于每组数据:输出一行,如果存在满足题意的正整数,输出这个数;否则输出-1。

# 【样例1输入】

5
 1
 2
 3
 4
 3

```
5 6 18
```

# 【样例1输出】

```
    1 -1
    2 1
    3 7
    4 6
    5 208
```

### 【样例1解释】

- 对于第一组测试数据,不存在任何一个正整数可以使用恰好一根小木棍摆出,故输出 -1。
- 对于第四组测试数据,注意 Ø 并不是一个满足要求的方案。摆出 9、41 以及 111 都恰好需要 6 根小木棍,但它们不是摆出的数最小的方案。
- 对于第五组测试数据,摆出 208 需要 5+6+7=18 根小木棍。可以证明摆出任何一个小于 208 的正整数需要的小木棍数都不是 18。注意尽管拼出 006 也需要 18 根小木棍,但因为这个数有前导零,因此并不是一个满足要求的方案。

### 【数据范围】

对于所有测试数据,保证:  $1 \le T \le 50$ ,  $1 \le n \le 10^5$ 。

| 测试点编号 | $n \leq$ | 特殊性质         |  |
|-------|----------|--------------|--|
| 1     | 20       | 无            |  |
| 2     | 50       |              |  |
| 3     | $10^{3}$ | A            |  |
| 4,5   | $10^{5}$ | $\mathbf{A}$ |  |
| 6     | $10^{3}$ | В            |  |
| 7,8   | $10^{5}$ | D            |  |
| 9     | $10^{3}$ | 无            |  |
| 10    | $10^{5}$ |              |  |

特殊性质 A: 保证  $n \neq 7$  的倍数且 n > 100。

特殊性质 B: 保证存在整数 k 使得 n = 7k + 1,且 n > 100。

# 接龙 (chain)

#### 【题目描述】

在玩惯了成语接龙之后,小 J 和他的朋友们发明了一个新的接龙规则。

总共有 n 个人参与这个接龙游戏,第 i 个人会获得一个整数序列  $S_i$  作为他的词库。一次游戏分为若干轮,每一轮规则如下:

- n 个人中的某个人 p 带着他的词库  $S_p$  进行接龙。若这不是游戏的第一轮,那么这一轮进行接龙的人不能与上一轮相同,但可以与上上轮或更往前的轮相同。
- 接龙的人选择一个长度在 [2,k] 的  $S_p$  的连续子序列 A 作为这一轮的**接龙序列**,其中 k 是给定的常数。若这是游戏的第一轮,那么 A 需要以元素 **1** 开头,否则 A 需要以上一轮的接龙序列的最后一个元素开头。
  - 序列 A 是序列 S 的连续子序列当且仅当可以通过删除 S 的开头和结尾的若干元素(可以不删除)得到 A。

为了强调合作,小 J 给了 n 个参与游戏的人 q 个任务,第 j 个任务需要这 n 个人进行一次游戏,在这次游戏里进行恰好  $r_j$  轮接龙,且最后一轮的接龙序列的最后一个元素恰好为  $c_j$ 。为了保证任务的可行性,小 J 请来你判断这 q 个任务是否可以完成的,即是否存在一个可能的游戏过程满足任务条件。

# 【输入格式】

从文件 chain.in 中读入数据。

#### 本题有多组测试数据。

输入的第一行包含一个正整数 T,表示数据组数。

接下来包含 T 组数据,每组数据的格式如下:

第一行包含三个整数 n, k, q,分别表示参与游戏的人数、接龙序列长度上限以及任务个数。

接下来 n 行:

第 i 行包含  $(l_i+1)$  个整数  $l_i, S_{i,1}, S_{i,2}, \cdots, S_{i,l_i}$ ,其中第一个整数  $l_i$  表示序列  $S_i$  的长度,接下来  $l_i$  个整数描述序列  $S_i$ 。

接下来 q 行:

第 j 行包含两个整数  $r_i, c_i$ , 描述一个任务。

#### 【输出格式】

输出到文件 chain.out 中。

对于每个任务:输出一行包含一个整数,若任务可以完成输出 1,否则输出 0。

### 【样例1输入】

#### 【样例1输出】

```
      1
      1

      2
      0

      3
      1

      4
      0

      5
      1

      6
      0

      7
      0
```

#### 【样例1解释】

在下文中,我们使用  $\{A_i\} = \{A_1, A_2, \cdots, A_r\}$  表示一轮游戏中所有的接龙序列, $\{p_i\} = \{p_1, p_2, \cdots, p_r\}$  表示对应的接龙的人的编号。由于所有字符均为一位数字,为了方便我们直接使用数字字符串表示序列。

- 对于第一组询问, $p_1 = 1$ 、 $A_1 = 12$  是一个满足条件的游戏过程。
- 对于第二组询问,可以证明任务不可完成。注意  $p_1=1$ 、 $A_1=1234$  不是合法的游戏过程,因为此时  $|A_1|=4>k$ 。
- 对于第三组询问, $\{p_i\} = \{2,1\}$ 、 $\{A_i\} = \{12,234\}$ 是一个满足条件的游戏过程。
- 对于第四组询问,可以证明任务不可完成。注意  $\{p_i\} = \{2,1,1\}, \{A_i\} = \{12,23,34\}$  不是一个合法的游戏过程,因为尽管所有的接龙序列长度均不超过 k,但第二轮和第三轮由同一个人接龙,不符合要求。

- 对于第五组询问, $\{p_i\} = \{1, 2, 3, 1, 2, 3\}$ 、 $\{A_i\} = \{12, 25, 51, 12, 25, 516\}$  是一个满足条件的游戏过程。
- 对于第六组询问,可以证明任务不可完成。注意每个接龙序列的长度必须大于等于 2,因此  $A_1 = 1$  不是一个合法的游戏过程。
- 对于第七组询问, 所有人的词库均不存在字符 7, 因此任务显然不可完成。

#### 【样例 2】

见选手目录下的 chain/chain2.in 与 chain/chain2.ans。 该样例满足测试点 1 的特殊性质。

#### 【样例 3】

见选手目录下的 *chain/chain3.in* 与 *chain/chain3.ans*。 该样例满足测试点 2 的特殊性质。

#### 【样例 4】

见选手目录下的 *chain/chain4.in* 与 *chain/chain4.ans*。

该样例满足特殊性质 A,其中前两组测试数据满足  $n \le 1000$ 、 $r \le 10$ 、单组测试数据内所有词库的长度和 < 2000、q < 1000。

#### 【样例 5】

见选手目录下的 *chain/chain5.in* 与 *chain/chain5.ans*。

该样例满足特殊性质 B,其中前两组测试数据满足  $n \le 1000$ 、 $r \le 10$ 、单组测试数据内所有词库的长度和  $\le 2000$ 、 $q \le 1000$ 。

#### 【样例 6】

见选手目录下的 *chain/chain6.in* 与 *chain/chain6.ans*。

该样例满足特殊性质 C,其中前两组测试数据满足  $n \le 1000$ 、 $r \le 10$ 、单组测试数据内所有词库的长度和  $\le 2000$ 、 $q \le 1000$ 。

# 【数据范围】

对于所有测试数据,保证:

- $1 \le T \le 5$ ;
- $1 \le n \le 10^5$ ,  $2 \le k \le 2 \times 10^5$ ,  $1 \le q \le 10^5$ ;
- $1 \le l_i \le 2 \times 10^5$ ,  $1 \le S_{i,j} \le 2 \times 10^5$ ;

- $1 \le r_j \le 10^2$ ,  $1 \le c_j \le 2 \times 10^5$ ;
- 设  $\sum l$  为单组测试数据内所有  $l_i$  的和,则  $\sum l \leq 2 \times 10^5$ 。

| 测试点          | $n \leq$ | $r \leq$ | $\sum l \le$      | $q \leq$ | 特殊性质         |
|--------------|----------|----------|-------------------|----------|--------------|
| 1            | $10^{3}$ | 1        | 2,000             | $10^{3}$ | 无            |
| 2,3          | 10       | 5        | 20                | $10^{2}$ |              |
| 4, 5         | $10^{3}$ | 10       | 2,000             | $10^{3}$ | A            |
| 6            | $10^{5}$ | $10^{2}$ | $2 \times 10^{5}$ | $10^{5}$ | A            |
| 7,8          | $10^{3}$ | 10       | 2,000             | $10^{3}$ | В            |
| 9, 10        | $10^{5}$ | $10^{2}$ | $2 \times 10^{5}$ | $10^{5}$ | Б            |
| 11, 12       | $10^{3}$ | 10       | 2,000             | $10^{3}$ | $\mathbf{C}$ |
| 13, 14       | $10^{5}$ | $10^{2}$ | $2 \times 10^{5}$ | $10^{5}$ |              |
| $15 \sim 17$ | $10^{3}$ | 10       | 2,000             | $10^{3}$ | 无            |
| $18 \sim 20$ | $10^{5}$ | $10^{2}$ | $2 \times 10^{5}$ | $10^{5}$ |              |

特殊性质 A: 保证  $k = 2 \times 10^5$ 。

特殊性质 B: 保证  $k \le 5$ 。

特殊性质 C: 保证在单组测试数据中,任意一个字符在词库中出现次数之和均不超过 5。