Package 'alphashape'

April 29, 2020

Type Package

Title Create Delaunay triangulations, Voronoi vertices and alpha shape for n number of dimension using the QHULL library		
Version 1.2		
Date 2019-03-15		
Maintainer Pascal Omondiagbe <pre><mondiagbep@landcareresearch.co.nz></mondiagbep@landcareresearch.co.nz></pre>		
Description Makes an Alpha shape for any number of N dimension using the Delaunay triangulations generated using via the Qhull library (www.qhull.org) This package has been tested to work up to 5 number of dimension.		
License MIT + file LICENSE		
Depends R (>= $3.5.1$)		
Imports devtools		
Encoding UTF-8		
LazyData true		
RoxygenNote 7.1.0		
Suggests testthat		
NeedsCompilation no		
R topics documented: alphashape . alpha_complex . alpha_shape . convex_hull . delaunay . find_simplex . grid_coordinates . in_convex_hull . voronoi .		
Index		

2 alpha_complex

-		
aln	hash	iane

Computation of n dimension α -shape

Description

Implementation in n dimension of the alpha shape using the Q-hull library

Package: alphashape Date: 2019-03-14 License: GPL-2 LazyLoad: yes

Author(s)

Pascal Omondiagbe Tom Etherington

Maintainers: pascal Omondiagbe <omondiagbep@landcareresearch.co.nz>

References

http://www.qhull.org/html/qh-code.htm

alpha_complex

Alpha complex

Description

This function calculates the alpha complex of a set of n points in d-dimensional space using the Qhull library.

Usage

```
alpha_complex(points = NULL, alpha = Inf)
```

Arguments

points a n-by-d dataframe or matrix. The rows represent n points and the d columns

the coordinates in d-dimensional space.

alpha a real number between zero and infinity that defines the maximum circumradii

for a simplex to be included in the alpha complex. If unspecified alpha defaults

to infinity.

Value

Returns a list consisting of: [1] a s-by-d+1 matrix of point indices that define the s simplices that make up the alpha complex; [2] a s-by-d matrix of circumcentres for each simplex; [3] a list of s circumradii for each simplex; and [4] the input points used to create the alpha complex.

alpha_shape 3

References

Barber CB, Dobkin DP, Huhdanpaa H (1996) The Quickhull algorithm for convex hulls. ACM Transactions on Mathematical Software, 22(4):469-83 https://doi.org/10.1145/235815.235821.

Edelsbrunner H, Mücke EP (1994) Three-dimensional alpha shapes. ACM Transactions on Graphics, 13(1):43-72 https://dl.acm.org/doi/abs/10.1145/174462.156635.

Examples

alpha_shape

alpha_shape

Description

Compute an alpha Shape Grid using the Q-hull library.

Usage

```
alpha_shape(point, alphaRange, maxs, mins, n)
```

Arguments

point observation as dataframe or matrix

alphaRange, range of alpha value

mins Vector of length n listing the point space minimum for each dimension. @param

maxs Vector of length n listing the point space maximum for each dimension.

n n dimension point co-ordinate

Details

The calculation is done by assigning the trigulation index when the grid cell center lies within the trigulation or -1 if it lies outside

Value

grid stack as vector, gridSimplex, and the inputted grid point.

4 convex_hull

Examples

```
x = c(30,70,20,50,40,70,20)

y = c(35,80,70,50,60,20,30)

p = data.frame(x,y)

alpha\_shape(point = p,maxs = c(70,80),mins = c(20,20),n = 5,alphaRange = c(1:20))
```

convex_hull

Convex hull

Description

This function calculates the convex hull around a set of n points in d-dimensional space using the Qhull library.

Usage

```
convex_hull(points = NULL)
```

Arguments

points

a n-by-d dataframe or matrix. The rows represent n points and the d columns the coordinates in d-dimensional space.

Value

Returns a list consisting of: [1] a matrix for which each row is the pair of point indices that define the egde of the convex hull; [2] a vector of the point indicies that form the convex hull; [3] a matrix of point coordinates that form the convex hull; and [4] the input points used to create the convex hull.

References

Barber CB, Dobkin DP, Huhdanpaa H (1996) The Quickhull algorithm for convex hulls. ACM Transactions on Mathematical Software, 22(4):469-83 https://doi.org/10.1145/235815.235821.

See Also

```
convex_layer
```

Examples

```
# Define points
x <- c(30, 70, 20, 50, 40, 70)
y <- c(35, 80, 70, 50, 60, 20)
p <- data.frame(x, y)
# Create convex hull and plot
ch <- convex_hull(points = p)
plot(p, pch = as.character(seq(nrow(p))))
polygon(ch$hull_points, border = "red")</pre>
```

delaunay 5

delaunay

Delaunay triangulation

Description

This function calculates the Delaunay triangulation of a set of n points in d-dimensional space using the Qhull library.

Usage

```
delaunay(points = NULL)
```

Arguments

points

a n-by-d dataframe or matrix. The rows represent n points and the d columns the coordinates in d-dimensional space.

Value

Returns a list consisting of: [1] a s-by-d+1 matrix of point indices that define the s simplices that make up the Delaunay triangulation; [2] a list containing for each simplex the neighbouring simplices; and [3] the input points used to create the Delaunay triangulation.

References

Barber CB, Dobkin DP, Huhdanpaa H (1996) The Quickhull algorithm for convex hulls. ACM Transactions on Mathematical Software, 22(4):469-83 https://doi.org/10.1145/235815.235821.

Examples

```
# Define points
x <- c(30, 70, 20, 50, 40, 70)
y <- c(35, 80, 70, 50, 60, 20)
p <- data.frame(x, y)
# Create Delaunay triangulation and plot
dt <- delaunay(points = p)
plot(p, pch = as.character(seq(nrow(p))))
for (s in seq(nrow(dt$simplices))) {
   polygon(dt$input_points[dt$simplices[s,],], border="red")
   text(x=colMeans(dt$input_points[dt$simplices[s,],])[1],
        y=colMeans(dt$input_points[dt$simplices[s,],])[2],
        labels=s, col="red")
}</pre>
```

6 grid_coordinates

find_simplex

Find simplex

Description

Returns the simplicies of a Delaunay triangulation or alpha complex that contain the given set of test points.

Usage

```
find_simplex(tri, inputPoint, testPoint)
```

Arguments

simplicies A Delaunay trigulation list object created by delaunay or a alpha complex list

object created by alpha_complex.

test_points a n-by-d dataframe or matrix. The rows represent n points and the d columns

the coordinates in d-dimensional space.

Value

A n length vector containing the index of the simplex the test point is within, or a value of zero if a test point is not within any of the simplicies.

Examples

```
# Define points and create a Delaunay triangulation x \leftarrow c(30, 70, 20, 50, 40, 70) y \leftarrow c(35, 80, 70, 50, 60, 20) p \leftarrow data.frame(x, y) dt \leftarrow delaunay(points = p) # Check which simplex the test points belong to p_test \leftarrow data.frame(c(20, 50), c(20, 50), c(60, 60)) simplex \leftarrow find_simplex(simplicies = dt, test_points = p_test)
```

grid_coordinates

Grid Coordinates

Description

Create an n-dimensional grid of coordinates across space.

Usage

```
grid_coordinates(mins, maxs, nCoords)
```

in_convex_hull 7

Arguments

mins Vector of length n listing the point space minimum for each dimension.

Wector of length n listing the pointspace maximum for each dimension.

Number of coordinates across the point space in all dimensions.

Details

This function creates a grid of coordinates systematically located throughout the specified point space to enable visualisation of alpha shape . The extent of the grid is given by the mins and maxs, and the number of coordinates for each dimension is given by nCoords.

Value

A matrix with n columns.

Examples

```
# Point space grid coordinates usage
xy = grid_coordinates(mins=c(15,0), maxs=c(35,200), nCoords=5)
```

Description

Given a d-dimensional convex hull this function checks to see which of a set of n test points are within the convex hull. This function uses the Qhull library.

Usage

```
in_convex_hull(hull = NULL, test_points = NULL)
```

Arguments

hull A convex hull list object created by convex_hull

test_points a n-by-d dataframe or matrix. The rows represent n points and the d columns

the coordinates in d-dimensional space.

Value

A n length vector containing TRUE if test point n lies within the hull and FALSE if it lies outside the hull.

References

Barber CB, Dobkin DP, Huhdanpaa H (1996) The Quickhull algorithm for convex hulls. ACM Transactions on Mathematical Software, 22(4):469-83 https://doi.org/10.1145/235815.235821.

See Also

```
convex_hull
```

8 voronoi

Examples

```
# Define points to create the convex hull x <- c(30, 70, 20, 50, 40, 70) y <- c(35, 80, 70, 50, 60, 20) p <- data.frame(x, y) ch <- convex_hull(points = p) # Check if some test points are in the convex hull p_test <- data.frame(c(20, 50), c(20, 50), c(60, 60)) checks <- in_convex_hull(hull = ch, test_points = p_test)
```

voronoi

Voronoi diagram

Description

This function calculates the Voronoi digram of a set of n points in d-dimensional space using the Qhull library.

Usage

```
voronoi(points = NULL)
```

Arguments

points

a n-by-d dataframe or matrix. The rows represent n points and the d columns the coordinates in d-dimensional space.

Value

Returns a list consisting of...

References

Barber CB, Dobkin DP, Huhdanpaa H (1996) The Quickhull algorithm for convex hulls. ACM Transactions on Mathematical Software, 22(4):469-83 https://doi.org/10.1145/235815.235821.

Examples

```
# Define points
x <- c(30, 70, 20, 50, 40, 70)
y <- c(35, 80, 70, 50, 60, 20)
p <- data.frame(x, y)
# Create Voronoi diagram and plot
vd <- voronoi(points = p)
plot(p, pch = as.character(seq(nrow(p))))</pre>
```

Index

```
*Topic package
alphashape, 1
alpha_complex, 2, 6
alpha_shape, 3
alphashape, 1
convex_hull, 4, 7
convex_layer, 4
delaunay, 5, 6
find_simplex, 6
grid_coordinates, 6
in_convex_hull, 7
voronoi, 8
```