Quiz Submissions - Algorithm Analysis Reading Quiz

×

Chork Hieng (username: gt9182iu)

Attempt 1

Written: Feb 26, 2022 2:27 AM - Feb 26, 2022 2:34 AM

Submission View

Your quiz has been submitted successfully.

Question 1 6 / 6 points

Order the following functions from slowest-growing to fastest-growing. (This refers to the growth of the function as \mathbf{n} increases, not the execution time of an algorithm with that order of growth.)

Give the equations time to display properly; D2L is often a bit slow about that.

$$\checkmark$$
 2 $f(N) = lg(N)$

$$\checkmark$$
 3 $f(N) = N$

$$\checkmark$$
 4 $f(N) = N \lg(N)$

$$\checkmark -6 - f(N) = N^3$$

$$\checkmark -5 - f(N) = N^2$$

$$\checkmark$$
 1 $f(N) = 1$

Question 2 2 / 2 points

The tilde approximation of

$$\frac{n^3}{6} - \frac{n^2}{2} + \frac{n}{3}$$

is:

 n^3

$$\frac{n}{3} - \frac{n^2}{2}$$

/()

$$\frac{n^3}{6}$$

Question 3

2/2 points

The order of growth of

$$\frac{n^3}{6} - \frac{n^2}{2} + \frac{n}{3}$$

is:

$$\frac{n}{3} - \frac{n^2}{2}$$

~

$$n^3$$

$$\frac{n^3}{6}$$

Question 4 2 / 2 points

By the authors' definition of a tilde approximation,

$$g(n) \sim f(n)$$

means that

$$\lim_{n \to \infty} \frac{g(n)}{f(n)} = 1$$

.

False

Attempt Score: 12 / 12 - 100 %

Overall Grade (highest attempt): 12 / 12 - 100 %

Done