フィルタのノート

箱 (@o_ccah)

2019年5月12日

記号と用語

- 0を含む自然数全体の集合を、Nと書く.
- 集合 X の部分集合全体のなす集合を、 $\mathfrak{P}(X)$ と書く.
- A_0, \ldots, A_{n-1} などと書いた場合、特に断らない限り、 $n \in \mathbb{N}$ とする.
- 集合 X の部分集合について考えているとき、空な交叉は X、空な合併は \emptyset であると約束する.
- 集合 X の部分集合族 $\mathfrak A$ について、 $\mathfrak A$ が有限交叉性をもつとは、任意の有限個の元 $A_0,\ldots,A_{n-1}\in\mathfrak A$ に対して $A_0\cap\cdots\cap A_{n-1}\neq\emptyset$ であることをいう.
- 集合 X の部分集合族 $\mathfrak A$ と $X'\subseteq X$ に対して、 $\mathfrak A$ の X' への制限を $\mathfrak A|_{X'}=\{A\cap X'\mid A\in\mathfrak A\}$ と定める.

1 フィルタの定義

定義 1.1(フィルタ) 集合 X の部分集合族 $\mathfrak F$ が次の条件を満たすとき、 $\mathfrak F$ は X 上のフィルタであるといい、これらの組 $(X,\mathfrak F)$ をフィルタ付き集合という.

- (F1) F ∈ 𝔞 かつ <math>F ⊆ F' ⊆ X ならば F' ∈ 𝔞 である.
- (F2) $F_0, \ldots, F_{n-1} \in \mathfrak{F}$ ならば $F_0 \cap \cdots \cap F_{n-1} \in \mathfrak{F}$ である (特に $X \in \mathfrak{F}$ である).
- $\mathfrak{P}(X)$ を X 上の自明なフィルタという. 自明でないフィルタを真フィルタという.

容易にわかるように、集合 X 上のフィルタ \S が真フィルタであるための必要十分条件は、 $\emptyset \notin \S$ である. また、真フィルタは有限交叉性をもつ.

命題 1.2 X を集合, $\mathfrak F$ を X 上のフィルタとする。X の部分集合 A_0,\ldots,A_{n-1} に対して, $A_0\cap\cdots\cap A_{n-1}\in\mathfrak F$ であることと,すべての A_i が $\mathfrak F$ に属することとは同値である.

定義 1.3(フィルタの比較) 集合 X 上のフィルタ全体の集合を,包含関係によって順序集合とみなす.より詳しくは,集合 X 上のフィルタ \mathfrak{F}_0 , \mathfrak{F}_1 に対して, $\mathfrak{F}_0 \subseteq \mathfrak{F}_1$ であるとき, \mathfrak{F}_1 は \mathfrak{F}_0 よりも細かい, \mathfrak{F}_0 は \mathfrak{F}_1 よりも粗いという.より強く $\mathfrak{F}_0 \subset \mathfrak{F}_1$ であるとき,それぞれ真に細かい,真に粗いという.

2 準フィルタ基とフィルタ基

定義 2.1 (準フィルタ基・フィルタ基) X を集合、% を X 上のフィルタ、% を X の部分集合族とする.

(1) 3の元の有限交叉の拡大として表せる集合全体が 8と一致するとき、すなわち

$$\mathfrak{F} = \{ F \subseteq X \mid \text{ 有限個の元 } B_0, \dots, B_{n-1} \in \mathfrak{B} \text{ が存在して } B_0 \cap \dots \cap B_{n-1} \subseteq F \}$$
 (*)

であるとき、3 はフィルタ 5 の準フィルタ基である、あるいは 3 はフィルタ 5 を生成するという.

(2) 3の元の拡大として表せる集合全体が 8と一致するとき、すなわち

$$\mathfrak{F} = \{ F \subseteq X \mid \text{ ある } B \in \mathfrak{B} \text{ が存在して } B \subseteq F \}$$

であるとき、 $\mathfrak B$ はフィルタ $\mathfrak B$ のフィルタ基であるという。 $\mathfrak B$ が集合 X 上のあるフィルタのフィルタ基であるとき、単に $\mathfrak B$ は X 上のフィルタ基であるといい、 $\mathfrak B$ が X 上のある真フィルタのフィルタ基であるという。

容易にわかるように、集合 X の部分集合族 $\mathfrak B$ に対して、(*) の右辺は常に X 上のフィルタとなっている。 さらに、これは $\mathfrak B$ を含む X 上のフィルタの中で最小のものである。したがって、 $\mathfrak B$ が生成するフィルタとは、 $\mathfrak B$ を含むような最小のフィルタのことに他ならない。

命題 2.2 X を集合、 \mathfrak{B} をその部分集合族とする.

- (1) $\mathfrak B$ が X 上のある真フィルタの準フィルタ基である(すなわち、 $\mathfrak B$ が真フィルタを生成する)ための必要十分条件は、 $\mathfrak B$ が有限交叉性をもつことである.
- (2) $\mathfrak B$ が X 上の(あるフィルタの)フィルタ基であるための必要十分条件は,「 $B_0, \ldots, B_{n-1} \in \mathfrak B$ ならば,ある集合 $B \in \mathfrak B$ が存在して $B \subseteq B_0 \cap \cdots \cap B_{n-1}$ となる」ことである.
- (3) $\mathfrak B$ が X 上の真フィルタ基であるための必要十分条件は,(2) の条件に加えて $\emptyset \notin \mathfrak B$ が成り立つことである.
- 証明 (1) $\mathfrak B$ が有限交叉性をもたなければ、 $\mathfrak B$ の元の有限交叉として $\mathfrak B$ が得られるから、 $\mathfrak B$ は自明なフィルタを生成する. 逆に、 $\mathfrak B$ が有限交叉性をもてば、 $\mathfrak B$ の有限交叉の拡大全体は $\mathfrak B$ を含まないから、 $\mathfrak B$ は真フィルタを生成する.
- (2) 必要性を示す。 $\mathfrak{F} = \{F \subseteq X \mid \text{ある } B \in \mathfrak{B} \text{ が存在して } B \subseteq F\}$ がフィルタであるとする。 $B_0, \ldots, B_{n-1} \in \mathfrak{B}$ とすると,フィルタの定義より $B_0 \cap \cdots \cap B_{n-1} \in \mathfrak{B}$ だから, \mathfrak{F} の定義より $B \subseteq B_1 \cap \cdots \cap B_n$ なる $B \in \mathfrak{B}$ が存在する。よって,条件は必要である.

十分性を示す.件の条件が成り立つとする. $\mathfrak{F} = \{F \subseteq X \mid \text{ある } B \in \mathfrak{B} \text{ が存在して } B \subseteq F\}$ と置くと,(F1) は明らかに成り立ち,仮定より (F2) も成り立つ.よって,条件は十分である.

(3) \mathfrak{B} が X 上の真フィルタ基であるための必要十分条件は「(1) かつ (2)」だが、容易にわかるように、(2) の条件の下で (1) の条件は $\emptyset \notin \mathfrak{F}$ と同値なので、主張が従う.

3 極大フィルタ

定義 3.1(極大フィルタ) 集合 X 上の真フィルタのうち包含関係に関して極大であるものを, X 上の極大フィルタという.

命題 3.2 集合 X の部分集合族 $\mathfrak A$ について、次の 2 条件は同値である.

- (a) ¾ は *X* 上の極大フィルタである.
- (b) $\mathfrak A$ は有限交叉性をもち、かつ任意の $A\subseteq X$ に対して $A\in\mathfrak M$ または $A^c\in\mathfrak M$ が成り立つ.

証明 (a) \Longrightarrow (b) $\mathfrak A$ が X 上の極大フィルタであるとする。まず、 $\mathfrak A$ は真フィルタだから,有限交叉性をもつ。次に,ある $A\subseteq X$ に対して $A,A^c\notin \mathfrak A$ と仮定する。 $A^c\notin \mathfrak A$ だから, $\mathfrak A$ は A^c の部分集合を含まない。すなわち、 $\mathfrak A$ のすべての元は A と交わる。したがって, $\mathfrak A \cup \{A\}$ はまた有限交叉性をもつ。 $\mathfrak A \cup \{A\}$ が生成する真フィルタは $\mathfrak A$ よりも真に細かいが,これは $\mathfrak A$ の極大性に矛盾する。よって,任意の $A\subseteq X$ に対して $A\in \mathfrak A$ または $A^c\in \mathfrak A$ が成り立つ。

(b) \Longrightarrow (a) $\mathfrak A$ が (b) の条件を満たすとする。まず、 $\mathfrak A$ が真フィルタであることを示す。 $A\in\mathfrak A$ かつ $A\subseteq A'\subseteq X$ とすると、 $\mathfrak A$ の有限交叉性より $A'^c\notin\mathfrak A$ だから、 $A'\in\mathfrak A$ である。また、 $A_0,\ldots,A_{n-1}\in\mathfrak A$ とすると、 $A_0\cap\cdots\cap A_{n-1}\cap (A_0\cap\cdots\cap A_{n-1})^c=\emptyset$ だから、 $\mathfrak A$ の有限交叉性より $(A_0\cap\cdots\cap A_{n-1})^c\notin\mathfrak A$ であり、したがって $A_0\cap\cdots\cap A_{n-1}\in\mathfrak A$ である。さらに、 $\mathfrak A$ は有限交叉性をもつから $\emptyset\notin\mathfrak A$ である。よって、 $\mathfrak A$ は真フィルタである。

次に、 $\mathfrak A$ が極大フィルタであることを示す。 $A \notin \mathfrak A$ とすると、 $A^c \in \mathfrak A$ である。 $A \cap A^c = \emptyset$ だから、 $\mathfrak A \cup \{A\}$ を含む真フィルタは存在しない。よって、 $\mathfrak A$ は極大フィルタである。

命題 3.3 X を集合, $\mathfrak M$ を X 上の極大フィルタとする. X の部分集合 A_0,\ldots,A_{n-1} に対して, $A_0\cup\cdots\cup A_{n-1}\in\mathfrak M$ であることと、ある A_i が $\mathfrak M$ に属することとは同値である. 特に, $A_0\cup\cdots\cup A_{n-1}=X$ ならば、ある A_i が $\mathfrak M$ に属する.

証明 命題 3.2 より, $A_0 \cup \cdots \cup A_{n-1} \in \mathfrak{M}$ は「 $A_0^c \cap \cdots \cap A_{n-1}^c \in \mathfrak{M}$ 」の否定と同値であり,ある A_i が \mathfrak{M} に属することは「すべての A_i^c が \mathfrak{M} に属する」ことの否定と同値である.鉤括弧で囲った 2 つの条件は同値(命題 1.2)だから,主張が従う.

定理 3.4 集合 X 上の任意の真フィルタ % に対して、% よりも細かい極大フィルタが存在する.

証明 真フィルタ & よりも細かい真フィルタの全体に Zorn の補題を適用して,結論を得る. ロ

4 フィルタ射

定義 4.1(フィルタ射) $(X,\mathfrak{F}),(Y,\mathfrak{G})$ をフィルタ付き集合とする.写像 $f\colon X\to Y$ が (X,\mathfrak{F}) から (Y,\mathfrak{G}) へのフィルタ射であるとは,任意の $G\in\mathfrak{G}$ に対して $f^{-1}(G)\in\mathfrak{F}$ であることをいう.

命題 4.2 フィルタ付き集合 $(X,\mathfrak{F}),(Y,\mathfrak{G}),(Z,\mathfrak{H})$ の間の写像 $f\colon X\to Y,\ g\colon Y\to Z$ について、f と g がフィルタ射ならば、 $g\circ f$ もフィルタ射である.

命題 4.3 $(X,\mathfrak{F}),(Y,\mathfrak{G})$ をフィルタ付き集合, $f\colon X\to Y$ を写像とする. \mathfrak{B} が \mathfrak{G} の準フィルタ基であるとき,f がフィルタ射であるための必要十分条件は,任意の $B\in\mathfrak{B}$ に対して $f^{-1}(B)\in\mathfrak{F}$ となることである.

証明 必要性は明らかだから、十分性を示す。 $\mathfrak B$ が $\mathfrak B$ の準フィルタ基であり、任意の $B\in\mathfrak B$ に対して $f^{-1}(B)\in\mathfrak B$ が成り立つとする。任意に $G\in\mathfrak B$ をとると、準フィルタ基の定義より、 $B_0\cap\cdots\cap B_{n-1}\subseteq G$ を満たす $B_0,\ldots,B_{n-1}\in\mathfrak B$ が存在する。このとき

$$f^{-1}(B_0) \cap \cdots \cap f^{-1}(B_{n-1}) = f^{-1}(B_0 \cap \cdots \cap B_{n-1}) \subseteq f^{-1}(G)$$

が成り立つ. 条件より $f^{-1}(B_1), \dots, f^{-1}(B_n) \in \mathfrak{F}$ だから,フィルタの性質より $f^{-1}(G) \in \mathfrak{F}$ である.よって,f はフィルタ射である.

5 フィルタの誘導

5.1 始フィルタと終フィルタ

定義 5.1 (始フィルタ・終フィルタ) X を集合, $\{(Y_i, \mathfrak{G}_i)\}_{i \in I}$ をフィルタ付き集合族とする.

- (1) 写像族 $\{\phi_i: X \to Y_i\}_{i \in I}$ に対して,すべての ϕ_i がフィルタ射となるような X 上の最小のフィルタ構造 を, $\{((Y_i, \mathfrak{G}_i), \phi_i)\}_{i \in I}$ (あるいは単に $\{\phi_i\}_{i \in I}$) が誘導する X 上の始フィルタという.
- (2) 写像族 $\{\sigma_i: Y_i \to X\}_{i \in I}$ に対して、すべての σ_i がフィルタ射となるような X 上の最大のフィルタ構造 を、 $\{((Y_i, \mathfrak{G}_i), \sigma_i)\}_{i \in I}$ (あるいは単に $\{\sigma_i\}_{i \in I}$) が誘導する X 上の終フィルタという.

容易にわかるように、 $\{\sigma_i\}_{i\in I}$ が誘導する X 上の終フィルタは、

$$\{F \subseteq X \mid \text{ 任意の } i \in I \text{ に対して } \sigma_i^{-1}(F) \in \mathfrak{G}_i\}$$

で与えられる.

 \mathfrak{F} を X 上のフィルタとするとき, ϕ_i : $X \to Y_i$ が (X,\mathfrak{F}) から (Y_i,\mathfrak{G}_i) へのフィルタ射であるための必要十分条件は, \mathfrak{F} が $\phi_i^{-1}(G)$ $(G \in \mathfrak{G}_i)$ という形の集合をすべて含むことである.よって, $\{\phi_i\}_{i \in I}$ が誘導する X 上の始フィルタは, $\phi_i^{-1}(G)$ $(i \in I, G \in \mathfrak{G}_i)$ という形の集合全体が生成するフィルタに他ならない.より詳しく,次の命題が成り立つ.

命題 5.2 X を集合, $\{(Y_i, \mathfrak{G}_i)\}_{i \in I}$ をフィルタ付き集合族, $\{\phi_i \colon X \to Y_i\}_{i \in I}$ を写像族とする. $\{\phi_i\}_{i \in I}$ が誘導する X 上の始フィルタを \mathfrak{F}_i とする.各 $i \in I$ に対して, \mathfrak{C}_i が \mathfrak{G}_i の準フィルタ基ならば,

$$\widetilde{\mathfrak{B}} = \{ \phi_i^{-1}(C) \mid i \in I, \ C \in \mathfrak{C}_i \},$$

$$\mathfrak{B} = \{ \phi_{i_0}^{-1}(C_0) \cap \cdots \cap \phi_{i_{n-1}}^{-1}(C_{n-1}) \mid n \in \mathbb{N}, \ i_0, \dots, i_{n-1} \in I, \ C_k \in \mathfrak{C}_{i_k} \}$$

はそれぞれ % の準フィルタ基・フィルタ基である.

証明 \mathfrak{F} を X 上のフィルタとするとき,命題 4.3 より, ϕ_i : $X \to Y_i$ が (X,\mathfrak{F}) から (Y_i,\mathfrak{G}_i) へのフィルタ射であるための必要十分条件は, \mathfrak{F} が $\phi_i^{-1}(C)$ ($C \in \mathfrak{G}_i$) という形の集合をすべて含むことである.よって, $\{\phi_i\}_{i \in I}$ が誘導する X 上の始フィルタは, $\phi_i^{-1}(C)$ ($i \in I$, $C \in \mathfrak{G}_i$) という形の集合全体が生成するフィルタに他ならない.これは, \mathfrak{F} が \mathfrak{F}_i の準フィルタ基であることを示している. \mathfrak{B} は \mathfrak{F} の元の有限交叉全体だから, \mathfrak{F}_i のフィルタ基である.

特に、命題 5.2 で、 $\mathfrak{C}_i = \mathfrak{G}_i$ と置いたときの \mathfrak{F} と \mathfrak{B} を、それぞれ始フィルタ \mathfrak{F}_i の標準準フィルタ基・標準フィルタ基という.

命題 5.3(始フィルタ・終フィルタの特徴付け) X を集合, $\{(Y_i, \mathfrak{G}_i)\}_{i \in I}$ をフィルタ付き集合族とする.

(1) 写像族 $\{\phi_i\colon X\to Y_i\}_{i\in I}$ が誘導する X 上の始フィルタは,次の性質をもつ唯一の X 上のフィルタである.

任意のフィルタ付き集合 (Z, \mathfrak{H}) と写像 $f: Z \to X$ について、f がフィルタ射であることと、任意の $i \in I$ に対して $\phi_i \circ f$ がフィルタ射であることとは同値である.

(2) 写像族 $\{\sigma_i: Y_i \to X\}_{i \in I}$ が誘導する X 上の終フィルタは、次の性質をもつ唯一の X 上のフィルタである.

任意のフィルタ付き集合 (Z,\mathfrak{H}) と写像 $g: X \to Z$ について、g がフィルタ射であることと、任意の $i \in I$ に対して $g \circ \sigma_i$ がフィルタ射であることとは同値である.

証明 (1) $\{\phi_i\}_{i\in I}$ が誘導する X 上の始フィルタを \mathfrak{F}_i とする. このとき, フィルタ付き集合 Z と写像 $f:Z\to X$ に対して, 次の同値関係が成り立つ.

任意の $i \in I$ に対して $\phi_i \circ f$ がフィルタ射

 \iff 任意の $i \in I$ と $G \in \mathfrak{G}_i$ に対して $f^{-1}(\phi_i^{-1}(G)) \in \mathfrak{H}$

 \iff \mathfrak{F}_{i} の標準準フィルタ基の任意の元 B に対して $f^{-1}(B) \in \mathfrak{H}$

$$\iff$$
 任意の $F \in \mathfrak{F}_i$ に対して $f^{-1}(F) \in \mathfrak{H}$. (*)

一方で、X上のフィルタ $\mathfrak F$ によって X をフィルタ付き集合とみなすとき、f がフィルタ射であることは、次のようにいいかえられる.

任意の
$$F \in \mathfrak{F}$$
 に対して $f^{-1}(F) \in \mathfrak{H}$ (**)

任意のフィルタ付き集合 (Z,\mathfrak{H}) と写像 $f\colon Z\to X$ に対して $(*)\Longleftrightarrow (**)$ であることは, $\mathfrak{H}=\mathfrak{H}$ であることに他ならない.

(2) $\{\sigma_i\}_{i\in I}$ が誘導する X 上の終フィルタを \S_f とする. このとき,フィルタ付き集合 Z と写像 $g\colon X\to Z$ に対して,次の同値関係が成り立つ.

任意の $i \in I$ に対して $g \circ \sigma_i$ がフィルタ射

 \iff 任意の $i \in I$ と $H \in \mathfrak{H}$ に対して $\sigma_i^{-1}(g^{-1}(H)) \in \mathfrak{G}_i$

$$\iff$$
 任意の $H \in \mathfrak{H}$ に対して $g^{-1}(H) \in \mathfrak{F}_{\mathbf{f}}$. (***)

一方で、X上のフィルタ \S によって X をフィルタ付き集合とみなすとき、g がフィルタ射であることは、次のようにいいかえられる.

任意の
$$H \in \mathfrak{H}$$
 に対して $g^{-1}(H) \in \mathfrak{F}$. (****)

任意のフィルタ付き集合 (Z,\mathfrak{H}) と写像 $g\colon X\to Z$ に対して (****) \iff (****) であることは, $\mathfrak{F}_f=\mathfrak{F}$ であることに他ならない.

命題 5.4(始フィルタ・終フィルタの推移性) X を集合, $\{Y_i\}_{i\in I}$ を集合族, $\{(Z_{ij},\mathfrak{H}_{ij})\}_{i\in I,\ j\in J_i}$ (J_i は各 $i\in I$ に対して定まる添字集合)をフィルタ付き集合族とする.

- (1) $\{\phi_i: X \to Y_i\}_{i \in I}$, $\{\psi_{ij}: Y_i \to Z_{ij}\}_{i \in I, j \in J_i}$ を写像族とする.このとき, $\{\psi_{ij} \circ \phi_i\}_{i \in I, j \in J_i}$ が誘導する X 上の始フィルタと,「各 Y_i を $\{\psi_{ij}\}_{j \in J_i}$ が誘導する始フィルタによってフィルタ付き集合とみなすときの, $\{\phi_i\}_{i \in I}$ が誘導する X 上の始フィルタ」とは一致する.
- (2) $\{\sigma_i: Y_i \to X\}_{i \in I}$, $\{\tau_{ij}: Z_{ij} \to Y_i\}_{i \in I, j \in J_i}$ を写像族とする.このとき, $\{\sigma_i \circ \tau_{ij}\}_{i \in I, j \in J_i}$ が誘導する X 上の終フィルタと,「各 Y_i を $\{\tau_{ij}\}_{j \in J_i}$ が誘導する終フィルタによってフィルタ付き集合とみなすときの, $\{\sigma_i\}_{i \in I}$ が誘導する X 上の終フィルタ」とは一致する.
- 証明 (1) 始フィルタの特徴付け(命題 5.3 (1))より、 ϕ_i がフィルタ射であることと、任意の $j \in J_i$ に対して $\psi_{ii} \circ \phi_i$ がフィルタ射であることとは同値である.ここから結論が従う.
- (2) 終フィルタの特徴付け(命題 5.3 (2))より, σ_i がフィルタ射であることと,任意の $j \in J_i$ に対して $\sigma_i \circ \tau_{ij}$ がフィルタ射であることとは同値である.ここから結論が従う.

5.2 逆像フィルタと像フィルタ

定義 5.5(逆像フィルタ・像フィルタ) X,Y を集合, $f: X \to Y$ を写像とする.

- (1) Y をフィルタ構造 $\mathfrak G$ によってフィルタ付き集合とみなすとき,f が誘導する X 上の始フィルタを, $\mathfrak G$ の f による逆像フィルタといい, $f^{-1}(\mathfrak G)$ と書く.
- (2) X をフィルタ構造 $\mathfrak F$ によってフィルタ付き集合とみなすとき,f が誘導する Y 上の終フィルタを, $\mathfrak F$ の f による像フィルタといい, $f(\mathfrak F)$ と書く.

逆像フィルタ $f^{-1}(\mathfrak{G})$, 像フィルタ $f(\mathfrak{F})$ を具体的に書けば,

$$f^{-1}(\mathfrak{G}) = \{A \subseteq X \mid$$
ある $G \in \mathfrak{F}$ が存在して $f^{-1}(G) \subseteq A\}$, $f(\mathfrak{F}) = \{B \subseteq Y \mid f^{-1}(B) \in \mathfrak{F}\}$

となる.

命題 5.6 X,Y を集合, G を Y 上のフィルタ, $f: X \to Y$ を写像とする.

- (1) \mathfrak{C} が \mathfrak{G} の準フィルタ基ならば、 $\mathfrak{B} = \{f^{-1}(C) \mid C \in \mathfrak{C}\}\$ は $f^{-1}(\mathfrak{G})$ の準フィルタ基である.
- (2) \mathfrak{C} が \mathfrak{G} のフィルタ基ならば、 $\mathfrak{B} = \{f^{-1}(C) \mid C \in \mathfrak{C}\}$ は $f^{-1}(\mathfrak{G})$ のフィルタ基である.

証明 (1) 命題 5.2 から従う.

(2) \mathfrak{B} が $f^{-1}(\mathfrak{G})$ を生成することは (1) からわかるから, \mathfrak{B} が集合 X 上のフィルタ基であることを確かめればよい。 $C_0,\ldots,C_{n-1}\in \mathfrak{C}$ を任意にとる。 \mathfrak{C} はフィルタ基だから, $C\subseteq C_0\cap\cdots\cap C_{n-1}$ を満たす $C\in \mathfrak{C}$ がとれる。このとき, $f^{-1}(C)\subseteq f^{-1}(C_1)\cap\cdots\cap f^{-1}(C_n)$ が成り立つ。よって,命題 2.2 (2) より, \mathfrak{B} は X 上のフィルタ基である。

命題 5.7 X,Y を集合, $\mathfrak F$ を X 上のフィルタ, $f\colon X\to Y$ を写像とする. $\mathfrak B$ が $\mathfrak F$ のフィルタ基ならば, $\mathfrak C=\{f(B)\mid B\in\mathfrak B\}$ は $f(\mathfrak F)$ のフィルタ基である.

証明 一般に $B \subseteq X$ に対して $f^{-1}(f(B)) \supseteq B$ だから, $B \in \mathfrak{B} \subseteq \mathfrak{F}$ ならば $f^{-1}(f(B)) \in \mathfrak{F}$, したがって $f(B) \in f(\mathfrak{F})$ である. よって, $\mathfrak{C} \subseteq f(\mathfrak{F})$ である. 一方で, $G \in f(\mathfrak{F})$ ならば $f^{-1}(G) \in \mathfrak{F}$, したがってある $B \in \mathfrak{B}$ が存在して $B \subseteq f^{-1}(G)$ となる. このとき $f(B) \in \mathfrak{C}$ であり, $f(B) \subseteq G$ が成り立つ. よって, \mathfrak{C} は $f(\mathfrak{F})$

のフィルタ基である.

命題 5.8 X,Y,Z を集合, $f: X \rightarrow Y$, $g: Y \rightarrow Z$ を写像とする.

- (1) $Z \pm のフィルタ <math>\mathfrak{H}$ に対して、 $f^{-1}(g^{-1}(\mathfrak{H})) = (g \circ f)^{-1}(\mathfrak{H})$ である.
- (2) X 上のフィルタ \mathfrak{F} に対して, $g(f(\mathfrak{F})) = g \circ f(\mathfrak{F})$ である.

証明 始フィルタ・終フィルタの推移性(命題5.4)から従う.

命題 5.9 X,Y を集合, $f: X \to Y$ を写像, 6 を Y 上のフィルタとする. $f^{-1}(6)$ が真フィルタであるための必要十分条件は,任意の $G \in 6$ が f(X) と交わることである.特に,f が全射で 6 が真フィルタならば, $f^{-1}(6)$ も真フィルタである.

命題 5.10 X,Y を集合、% を X 上のフィルタ、 $f: X \rightarrow Y$ を写像とする.

- (1) % が真フィルタならば、f(%) も真フィルタである.
- (2) % が極大フィルタならば、f(%) も極大フィルタである.

証明 (1) 明らかである.

(2) 命題 3.2 より、 $\mathfrak F$ が極大フィルタであることは任意の $A\subseteq X$ に対して $A\in \mathfrak F$ または $A^c\in \mathfrak F$ が成り立つことと同値であり、 $f(\mathfrak F)$ が極大フィルタであることは任意の $B\subseteq Y$ に対して $B\in f(\mathfrak F)$ または $B^c\in f(\mathfrak F)$ が成り立つことと同値である。後者は前者から従う($A=f^{-1}(B)$ と置けばわかる)から、 $\mathfrak F$ が極大フィルタならば $f(\mathfrak F)$ も極大フィルタである.

命題 5.11 X,Y を集合, $f: X \rightarrow Y$ を写像とする.

- (1) X 上のフィルタ \mathfrak{F} に対して, $f^{-1}(f(\mathfrak{F})) \subseteq \mathfrak{F}$ である.
- (2) Y 上のフィルタ $\mathfrak G$ に対して, $f(f^{-1}(\mathfrak G)) \supseteq \mathfrak G$ である. $f(f^{-1}(\mathfrak G)) = \mathfrak G$ であるための必要十分条件は, $f(X) \in \mathfrak G$ である.

証明 (1) f は (X,\mathfrak{F}) から $(Y,f(\mathfrak{F}))$ へのフィルタ射であり, $(X,f^{-1}(f(\mathfrak{F})))$ から $(X,f(\mathfrak{F}))$ へのフィルタ射でもある.よって,始フィルタの最小性より, $f^{-1}(f(\mathfrak{F})) \subseteq \mathfrak{F}$ である.

(2) f は $(X, f^{-1}(\mathfrak{G}))$ から (Y, \mathfrak{G}) へのフィルタ射であり, $(X, f^{-1}(\mathfrak{G}))$ から $(Y, f(f^{-1}(\mathfrak{G})))$ へのフィルタ射でもある.よって,終フィルタの最大性より, $f(f^{-1}(\mathfrak{G})) \supseteq \mathfrak{G}$ である.

後半の主張を示す. $f(X) \in f(f^{-1}(\mathbb{G}))$ だから, $f(f^{-1}(\mathbb{G})) = \mathbb{G}$ ならば $f(X) \in \mathbb{G}$ である.逆に, $f(X) \in \mathbb{G}$ とする. $B \in f(f^{-1}(\mathbb{G}))$ を任意にとると, $f^{-1}(B) \in f^{-1}(\mathbb{G})$ だから,ある $G \in \mathbb{G}$ が存在して $f^{-1}(G) \subseteq f^{-1}(B)$ となる. このとき $G \cap f(X) = f(f^{-1}(G)) \subseteq B$ であり,仮定より $G, f(X) \in \mathbb{G}$ だから, $G \in \mathbb{G}$ である.よって, $G(f^{-1}(\mathbb{G})) \subseteq \mathbb{G}$ であり,前半の結論と合わせて $G(f^{-1}(\mathbb{G})) \subseteq \mathbb{G}$ を得る.

5.3 相対フィルタ

定義 5.12(相対フィルタ) X を集合, \S を X 上のフィルタ, $X' \subseteq X$ とする。 X を \S によってフィルタ付き 集合とみなすときの,包含写像 ι : $X' \to X$ が誘導する X' 上の始フィルタ(すなわち, ι による \S の逆像フィルタ)を, \S が誘導する X' 上の相対フィルタという。

 $\mathfrak F$ が誘導する X' 上の相対フィルタは,具体的には, $\mathfrak F$ の X' への制限 $\mathfrak F|_{X'}=\{F\cap X'\mid F\in\mathfrak F\}$ に一致する. 命題 5.13 X を集合, $\mathfrak F$ を X 上のフィルタ, $X'\subseteq X$ とする.

- (1) $\mathfrak B$ が $\mathfrak B$ の準フィルタ基ならば、 $\mathfrak B|_{X'}$ は $\mathfrak B$ が誘導する X' 上の相対フィルタの準フィルタ基である.
- (2) \mathfrak{B} が \mathfrak{F} のフィルタ基ならば、 $\mathfrak{B}|_{X'}$ は \mathfrak{F} が誘導する X' 上の相対フィルタのフィルタ基である.

証明 命題 5.6 から従う.

証明 始フィルタの推移性(命題 5.4(1)) から従う.

命題 5.15 X を集合, \S を X 上のフィルタ, $X' \subseteq X$ とする. \S が誘導する X' 上の相対フィルタが真フィルタであるための必要十分条件は, \S の任意の元が X' と交わることである.

証明 命題 5.9 から従う.

5.4 積フィルタ

定義 5.16(積フィルタ) $\{X_i\}_{i\in I}$ を集合族, $X = \prod_{i\in I} X_i$ とし,各 $i\in I$ に対して \mathfrak{F}_i を X_i 上のフィルタとする.各 X_i を \mathfrak{F}_i によってフィルタ付き集合とみなすときの,射影 $p_i\colon X\to X_i$ の全体が誘導する X 上の始フィルタを, $\{\mathfrak{F}_i\}_{i\in I}$ の積フィルタといい, $\prod_{i\in I}\mathfrak{F}_i$ と書く.

 $\mathfrak{F}_0, \ldots, \mathfrak{F}_{n-1}$ の積フィルタを、 $\mathfrak{F}_0 \times \cdots \times \mathfrak{F}_{n-1}$ とも書く.

積フィルタ $\prod_{i \in I} \mathfrak{F}_i$ の標準準フィルタ基・標準フィルタ基は、それぞれ

$$\widetilde{\mathfrak{B}} = \left\{ \prod_{i \in I} F_i \mid \text{ すべての } i \in I \text{ に対して } F_i \in \mathfrak{F}_i, \text{ 1 つの } i \in I \text{ を除いて } F_i = X_i \right\},$$

$$\mathfrak{B} = \left\{ \prod_{i \in I} F_i \mid \text{ すべての } i \in I \text{ に対して } F_i \in \mathfrak{F}_i, \text{ 有限個の } i \in I \text{ を除いて } F_i = X_i \right\}$$

で与えられる.

命題 5.17 $\{X_i\}_{i\in I}$ を集合族とし,各 $i\in I$ に対して \mathfrak{F}_i を X_i 上のフィルタとする.積フィルタ $\prod_{i\in I}\mathfrak{F}_i$ が真フィルタであるための必要十分条件は,すべての \mathfrak{F}_i が真フィルタであることである.

証明 積フィルタ $\prod_{i \in I} \delta_i$ の標準フィルタ基は

$$\mathfrak{B} = \left\{ \prod_{i \in I} F_i \;\middle|\;\;$$
すべての $i \in I$ に対して $F_i \in \mathfrak{F}_i, \;\;$ 有限個の $i \in I$ を除いて $F_i = X_i \right\}$

であった. \Im が真フィルタであることは $\emptyset \notin \Im$ と同値であり、これはすべての \Im が真フィルタであることと同値である.

命題 5.18 $\{X_{ij}\}_{i\in I,\ j\in J_i}$ $(J_i$ は各 $i\in I$ に対して定まる添字集合)を集合族とし、各 $i\in I,\ j\in J_i$ に対して \mathfrak{F}_{ij} を X_{ij} 上のフィルタとする.このとき、積フィルタ $\prod_{i\in I,\ j\in J_i}\mathfrak{F}_{ij}$ と、積フィルタの族の積フィルタ

 $\prod_{i \in I} \prod_{j \in J_i} \mathfrak{F}_{ij}$ とは等しい.

証明 始フィルタの推移性(命題 5.4(1)) から従う.

命題 5.19 $\{X_i\}_{i\in I}$ を集合族, $X=\prod_{i\in I}X_i$ とし,各 $i\in I$ に対して $X_i'\subseteq X_i$, $X'=\prod_{i\in I}X_i'$ とする.また,各 $i\in I$ に対して \mathfrak{F}_i を X_i 上のフィルタとする. \mathfrak{F}_i が誘導する X_i' 上の相対フィルタを \mathfrak{F}_i' , $\mathfrak{F}=\prod_{i\in I}\mathfrak{F}_i$ が誘導する X' 上の相対フィルタを \mathfrak{F}' とするとき, $\mathfrak{F}'=\prod_{i\in I}\mathfrak{F}_i'$ が成り立つ.

証明 $p_i: X \to X_i$ および $p_i': X' \to X_i'$ を射影, $\iota: X' \to X$ および $\iota_i: X_i' \to X_i$ を包含写像とする.フィルタ \mathfrak{F}' は,始フィルタの推移性(命題 $\mathfrak{5}.4$ (1))より, $\{p_i \circ \iota\}_{i \in I}$ が誘導する始フィルタに等しい.一方で,積フィルタ $\prod_{i \in I} \mathfrak{F}'_i$ は,同命題より, $\{\iota_i \circ p_i'\}_{i \in I}$ が誘導する始フィルタに等しい.ところが $p_i \circ \iota = \iota_i \circ p_i'$ だから,これらのフィルタは等しい.

命題 5.20 $\{X_i\}_{i\in I}$ を集合族とし、各 $i\in I$ に対して \mathfrak{F}_i を X_i 上のフィルタとする。 $X=\prod_{i\in I}X_i$ 、 $\mathfrak{F}=\prod_{i\in I}\mathfrak{F}_i$ と置き、 $p_i\colon X\to X_i$ を射影とする.このとき、各 $i\in I$ に対して、

$$p_i(\mathfrak{F}) = \mathfrak{F}_i$$

が成り立つ.

証明 積フィルタ $\mathfrak{F} = \prod \mathfrak{F}_i$ の標準フィルタ基は

$$\mathfrak{B} = \left\{ \prod_{i \in I} F_i \mid \text{ すべての } i \in I \text{ に対して } F_i \in \mathfrak{F}_i, \text{ 有限個の } i \in I \text{ を除いて } F_i = X_i \right\}$$

だったから、命題 5.7 より、 $p_i(\mathfrak{F})$ のフィルタ基として $\mathfrak{B}_i = \{p_i(B) \mid B \in \mathfrak{B}\}$ がとれる.ところが、 \mathfrak{B}_i は \mathfrak{F}_i に 等しい.よって、 $p_i(\mathfrak{F}) = \mathfrak{F}_i$ である.

参考文献

[1] N. Bourbaki (著), 森毅 (編・訳), 清水達雄 (訳), 『ブルバキ数学原論 位相 1』, 東京図書, 1968.