

预测泰坦尼克号旅客生存概率

数据准备

数据准备

下载泰坦尼克号旅客的数据集

```
import urllib.request
import os

data_url="http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/titanic3.xls"

data_file_path="data/titanic3.xls"

if not os.path.isfile(data_file_path):
    result=urllib.request.urlretrieve(data_url, data_file_path)
    print('downloaded:', result)

else:
    print(data_file_path,'data_file_already_exists.')
```

读取数据

```
import numpy
import pandas as pd

# 读取数据文件,结果为DataFrame格式
df_data = pd.read_excel(data_file_path)
```

筛选提取需要的特征字段

```
#筛选提取需要的特征字段,去掉ticket, cabin等
selected_cols=['survived','name','pclass','sex','age','sibsp','parch','fare','embarked']
selected_df_data=df_data[selected_cols]
```

定义数据预处理函数

```
from sklearn import preprocessing
def prepare data(df data):
   df=df_data.drop(['name'], axis=1) #删除姓名列
   age_mean = df['age'].mean()
   df['age'] = df['age']. fillna(age_mean) #为缺失age记录填充值
   fare_mean = df['fare'].mean()
   df['fare'] = df['fare']. fillna(fare_mean) #为缺失fare记录填充值
   df['sex']= df['sex']. map(('female': 0, 'male': 1}). astype(int) #把sx值由字符串转换为数值
   df['embarked'] = df['embarked'].fillna('S') #为缺失embarked记录填充值
   df['embarked']=df['embarked'], map({'C':0, 'O': 1, 'S': 2}), astype(int) #把embarked情由字符串转换为数值
   ndarray data = df. values #转换为ndarray数组
   features = ndarray data[:,1:] #后7列是特征值
   label = ndarray data[:,0] #第0列是标签值
   # 特征值标准化
   minmax scale = preprocessing. MinMaxScaler (feature range=(0, 1))
   norm features=minmax scale.fit transform(features)
   return norm features, label
```


数据准备

shuffle, 打乱数据顺序, 为后面训练做准备

shuffle, 打乱数据顺序, 通过Pandas的抽样函数sample实现, frac为百分比 # selected df data数据保持不变

shuffled_df_data=selected_df_data.sample(frac=1)

得到处理后的数据集

x_data, y_data=prepare_data(shuffled_df_data)

划分训练集和测试集

```
train_size = int(len(x_data) *0.8)
```

x_train = x_data[:train_size]
y_train = y_data[:train_size]

x_test = x_data[train_size:]
y test = y data[train size:]

建立多层神经网络模型

建立模型结构


```
import tensorflow as tf
```

建立Keras序列模型 model = tf.keras.models.Sequential()

模型设置

模型结构

model.summary()

Layer (type)	Output Shape	Param #
dense (Dense)	(None, 64)	512
dense_1 (Dense)	(None, 32)	2080
dense_2 (Dense)	(None, 1)	33

Total params: 2,625

Trainable params: 2,625 Non-trainable params: 0

模型设置

- optimizer可以是优化器的名字,如'adam',也可以是优化器的实例
- loss是损失函数名
 - 用sigmoid作为激活函数,一般损失函数选用binary_crossentropy
 - ⁻ 用softmax作为激活函数,一般损失函数选用categorical_crossentropy
- metrics 模型要训练和评估的度量值

更多详细信息查阅API文档

https://www.tensorflow.org/versions/r1.10/api_docs/python/tf/keras/Model

Train on 837 samples, validate on 210 samples

Epoch 1/100

- 0s - loss: 0.3358 - acc: 0.8590 - val_loss: 0.5392 - val_acc: 0.7762

Epoch 2/100

- 0s - loss: 0.3346 - acc: 0.8578 - val_loss: 0.5384 - val_acc: 0.7857

- x:输入的特征数据 y:标签数据
- validation split:验证集所占的比例
- verbose: 训练过程显示模式

取值 0: 不显示, 1: 带进度条模式, 2: 每epoch显示一行

• 返回值:过程历史对象,包括训练过程的loss和acc数据,以及验证过程的(如果有)

対 デナタ城市学院 ZHEJIANG UNIVERSITY CITY COLLEGE

train_history.history

- {'val_loss': [0.580418274516151,
 - 0. 5365407637187413,
 - 0.49857869886216666,
 - 0.4796800400529589,
 - 0.4473303187461126.
 - 0.4379332661628723,
 - A 404504050400000
 - 'loss': [0.6573422585336965,
 - 0.5653840109723728,
 - 0.5279814491989792,
 - 0.4977049786984707,
 - 0.48072773634746513,
 - 0. 46581221944257495,
 - 0.4604507074774807,

训练过程的历史数据: 字典模式存储

train_history.history.keys()

dict_keys(['val_loss', 'val_acc', 'loss', 'acc'])

模型训练过程可视化


```
import matplotlib.pyplot as plt
def visu train history (train history, train metric, validation metric):
    plt.plot(train history.history[train metric])
    plt.plot(train history.history[validation metric])
    plt. title ('Train History')
    plt.ylabel(train metric)
    plt. xlabel ('epoch')
    plt.legend(['train', 'validation'], loc='upper left')
    plt.show()
```

```
visu_train_history(train_history,'acc','val_acc')
```

```
visu_train_history(train_history, 'loss', 'val_loss')
```


模型训练过程可视化

visu_train_history(train_history, 'acc', 'val_acc')

模型评估

模型评估

262/262 [=========] - 0s 15us/step

[0.49095327822306684, 0.7748091598503463]

model.metrics_names

['loss', 'acc']

▶ model.metrics_names: 评估结果返回值的标签

模型应用

应用模型进行预测

加入Jack & Rose的数据

Jack: 3等舱, 男性, 票价5, 年龄 23; Rose: 头等舱, 女性, 票价100, 年龄20

```
# Jack和Rose的旅客信息
Jack_info = [0 ,'Jack', 3, 'male' , 23, 1, 0, 5.0000,'S']
Rose_info = [1 ,'Rose', 1, 'female', 20, 1, 0, 100.0000,'S']
```

```
# 创建新的旅客DataFrame
new_passenger_pd=pd.DataFrame([Jack_info, Rose_info], columns=selected_cols)
```

```
# 在老的DataFrame中加入新的旅客信息
all_passenger_pd=selected_df_data.append(new_passenger_pd)
```


应用模型进行预测

加入Jack & Rose的数据

Jack: 3等舱, 男性, 票价5, 年龄 23; Rose: 头等舱, 女性, 票价100, 年龄20

all_passenger_pd[-3:]

	survived	name	pclass	sex	age	sibsp	parch	fare	embarked
1308	0	Zimmerman, Mr. Leo	3	male	29.0	0	0	7.875	S
C	0	Jack	3	male	23.0	1	0	5.000	S
1	1	Rose	1	female	20.0	1	0	100.000	S

执行预测

再次执行数据预处理,然后使用model.predict执行预测

```
# 数据准备
x features, y label=prepare data(all passenger pd)
# 利用模型计算旅客生存概率
surv probability=model.predict(x features)
surv probability[:5]
array([[0.98063767],
      [0.7744939],
      [0.988727]
      [0.43560937],
      [0.9756891]], dtype=float32)
```


查看预测结果

合并数据, 查看预测结果

在数据表最后一列插入生存概率

all_passenger_pd. insert (len(all_passenger_pd. columns), 'surv_probability', surv_probability)

all_passenger_pd[-5:]

	survived	name	pclass	sex	age	sibsp	parch	fare	embarked	surv_probability
1306	0	Zakarian, Mr. Mapriededer	3	male	26.5	0	0	7.225	С	0.200157
1307	0	Zakarian, Mr. Ortin	3	male	27.0	0	0	7.225	С	0.196501
1308	0	Zimmerman, Mr. Leo	3	male	29.0	0	0	7.875	S	0.150551
0	0	Jack	3	male	23.0	1	0	5.000	S	0.147279
1	1	Rose	1	female	20.0	1	0	100.000	S	0.992087

模型训练日志记录、模型存储的实现

模型训练过程中的回调

模型回调参数设置


```
# 设置回调参数,内置的回调还包括:
# tf. keras. callbacks. LearningRateScheduler()
# tf. keras. callbacks. EarlyStopping
logdir = './logs'
checkpoint path = './checkpoint/Titanic. {epoch:02d}-{val loss:.2f}.ckpt'
callbacks = [
    tf. keras. callbacks. TensorBoard(log dir=logdir,
                                  histogram freq=2),
    tf. keras. callbacks. ModelCheckpoint (filepath=checkpoint path,
                                        save weights only=True,
                                        verbose=1,
                                        period=5)
```


查看模型训练日志文件

	TensorFlowCodes > TF_ZUCC_16_KERAS > logs					
,	名称	修改日期	类型	大小		
	events.out.tfevents.1546704071.MINGHUIWU	2019/1/6 0:01	MINGHUIWU 文件	2,936 KB		

查看模型存储文件

sorFlowCodes > TF_ZUCC_16_KERAS > checkpoint			•
名称	修改日期	类型	大小
checkpoint	2019/1/6 0:01	文件	1 KB
Titanic.80-0.41.ckpt.data-00000-of-00001	2019/1/6 0:01	DATA-00000-OF-0	15 KB
Titanic.80-0.41.ckpt.index	2019/1/6 0:01	INDEX 文件	1 KB
Titanic.85-0.42.ckpt.data-00000-of-00001	2019/1/6 0:01	DATA-00000-OF-0	15 K B
Titanic.85-0.42.ckpt.index	2019/1/6 0:01	INDEX 文件	1 KB
Titanic.90-0.44.ckpt.data-00000-of-00001	2019/1/6 0:01	DATA-00000-OF-0	15 KB
Titanic.90-0.44.ckpt.index	2019/1/6 0:01	INDEX 文件	1 KB
Titanic.95-0.41.ckpt.data-00000-of-00001	2019/1/6 0:01	DATA-00000-OF-0	15 KB
Titanic.95-0.41.ckpt.index	2019/1/6 0:01	INDEX 文件	1 KB
Titanic.100-0.42.ckpt.data-00000-of-00001	2019/1/6 0:01	DATA-00000-OF-0	15 KB
Titanic.100-0.42.ckpt.index	2019/1/6 0:01	INDEX 文件	1 KB