Importing the necessary libraries

In [8]: import itertools
import sympy as sym

Generalized n variable Template Function for any given mathematical problem with given constraints

Generalized Optimizer - Lagrangian Solver - All feasible solutions are given along with local minima/maxima

Input:

1. Minimize/Maximize Objective Function

$$f(x_1, x_2, \ldots, x_n)$$

2. Equality Constraints -

$$h_i(x_1, x_2, \dots, x_n) = 0 \quad i = 1, 2, \dots, p$$

3. Inequality Constraints

$$g_j(x_1,x_2,\ldots,x_n) \leq 0 \quad j=1,2,\ldots,m$$

Solver Variables:

1. Lagrange Function - $L(f, x, \lambda, h, \mu, g, s)$

$$L(f,x,\lambda,h,\mu,g,s) = f(x) + \sum_{i=1}^p \lambda_i h_i(x) + \sum_{j=1}^m \mu_i (g_j(x) + s_j^2)$$

2. Lagrange Multipliers - λ_i, μ_i, s_i

$$\mu_j \geq 0, s_j \geq 0 \quad j=1,2,\ldots,m$$

Necessary Conditions (Stationarity):

1. Lagrange Equation

$$rac{\partial L}{\partial x_k} = 0 \quad k = 1, 2, \dots, n$$

2. KKT Conditions

$$rac{\partial L}{\partial \lambda_i} = 0 \quad i = 1, 2, \dots, p$$

$$\frac{\partial L}{\partial \mu_j} = 0 \quad j = 1, 2, \dots, m$$

$$rac{\partial L}{\partial s_j} = 0 \quad j = 1, 2, \dots, m$$

Feasibility Conditions:

$$s_j^2 \geq 0 \quad j=1,2,\ldots,m$$

$$g_j(x) \leq 0 \quad j = 1, 2, \dots, m$$

Switching/Orthogonality Conditions:

$$\mu_j \times g_j(x) = 0$$
 $j = 1, 2, \ldots, m$

Sufficient Conditions:

$$\exists \lambda^* = [\lambda_1^*, \lambda_2^*, \dots, \lambda_p^*] \quad \exists \mu^* = [\mu_1^*, \mu_2^*, \dots, \mu_m^*]$$

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

```
In [59]: def solve lagrangian(f, h, g, side constraints):
             1.1.1
             This function solves the Constrained Optimization Problem using the Lagr
             f : sympy expression
             h : list of sympy expressions (Equality Constraints)
             g : list of sympy expressions (Inequality Constraints)
             side constraints : list of sympy expressions (Side Constraints)
             # Type check if f, h, g are sympy expressions
             if not isinstance(f, sym.Expr) or not isinstance(h, list) or not isinsta
                 raise Exception("f, h, g must be sympy expressions")
             # Get Free Symbols from f, h, g
             symbols = list(set(f.free symbols).union(*[set(h i.free symbols) for h i
             # Find number of equality constraints
             p = len(h)
             # Creating Lambda matrix
             l = sym.Matrix([sym.symbols(f"l {i}") for i in range(p)])
```

```
# Find number of inequality constraints
m = len(q)
# Creating Mu matrix
u = sym.Matrix([sym.symbols(f"u_{j}") for j in range(m)])
# Creating S matrix
s = sym.Matrix([sym.symbols(f"s_{j}") for j in range(m)])
# Writing Lagrangian
L = f + sum([l[i]*h[i] for i in range(p)]) + sum([u[j]*(g[j] + s[j]**2)f
# Finding the partial derivatives of the Lagrangian
L x = sym.Matrix([sym.diff(L, x) for x in symbols])
# Finding Hessians of f, every h i, and every g j
H f = sym.hessian(f, symbols)
H h = [sym.hessian(h i, symbols) for h i in h]
H g = [sym.hessian(g j, symbols) for g j in g]
# Now we need Switching Conditions
# We will have 2<sup>m</sup> cases
# First we need to find all possible combinations of m binary variables
# We will use 0 to represent m i = 0 and 1 to represent m i > 0
# We will use 0 to represent g i = 0 and 1 to represent g i < 0
# All possible combinations of m binary variables
all combinations = list(itertools.product([0, 1], repeat=m))
# Defining cases and their checks
cases = []
case checks = []
for combination in all combinations:
    # 0 represents m i = 0 i.e. q i < 0 and 1 represents m i > 0 i.e. q
    curr case = []
    curr checks = []
    for i in range(m):
        if combination[i] == 0:
            curr case.append(sym.Eq(u[i], 0))
            curr checks.append(g[i] < 0)</pre>
        else:
            curr case.append(sym.Eq(g[i], 0))
            curr checks.append(u[i] > 0)
    # Adding side constraints
    curr checks += side constraints
    # Append Lagrandian partial derivative equations
    curr case += [sym.Eq(L x[i], 0) for i in range(len(symbols))]
    # Add h i = 0 equations
    curr case += [sym.Eq(h i, 0) for h i in h]
```

```
# Adding the case and its checks
    cases.append(curr case)
    case checks.append(curr checks)
# Let's solve all the cases and check if they are feasible
solutions = []
symbols to solve = symbols.copy()
symbols to solve.extend(l)
symbols_to_solve.extend(u)
for i in range(len(cases)):
    # Solving the current case
    curr solution = sym.solve(cases[i], symbols to solve)
    # Check if curr solution is a list of tuples
    if isinstance(curr solution, list):
        # There can be multiple solutions
        # We will try all the solutions and check if they are feasible
        for solution in curr solution:
            # Flag to check if solution is a real number
            flag = True
            # Converting the solution to a dictionary
            sol dict = {}
            for j in range(len(symbols_to_solve)):
                # Checking if the solution[j] is a Complex Number
                if sym.im(solution[j]) != 0:
                    flag = False
                    break
                sol_dict[symbols_to_solve[j]] = solution[j]
            if not flag:
                solutions.append(None)
                continue
            # Checking if the current solution is feasible
            curr checks res = [check.subs(sol dict) for check in case ch
            solutions.append(solution if all(curr checks res) else None)
    else:
        # Single solution
        # Flag to check if solution is a real number
        flag = True
        # Curr soln is a dictionary
        for sol in curr solution.values():
            if sym.im(sol) != 0:
```

```
flag = False
                break
        if not flag:
            solutions.append(None)
            continue
        curr checks res = [check.subs(curr solution) for check in case of
        solutions.append(curr solution if all(curr checks res) else None
# Now we need to check if the solutions are local minima or local maxima
# We will use the following conditions
# H f + sum(l i*H h i) + sum(u j*H g j) is positive semidefinite
for i in range(len(solutions)):
    if solutions[i] is not None:
        \# Substituting the solution in the Hessian and adding all the He
        R = H f.copy()
        for i in range(p):
            R += l[i]*H h[i]
        for j in range(m):
            R += u[j]*H_g[j]
        R = R.subs(solutions[i])
        # Checking if the Hessian is positive semidefinite
        solutions[i]["type"] = "max" if not R.is positive semidefinite ε
        # Add F-value to the solution
        solutions[i]["F"] = f.subs(solutions[i])
# Return Non-None Solutions
return [solution for solution in solutions if solution is not None]
```

Example 1:

```
Minimize - f(x_1,x_2)=x_1^2+x_2^2-4x_1-6x_2 subject to x_1+x_2-2\leq 0 and 2x_1+3x_2-12\leq 0 and x_1\geq 0 and x_2\geq 0
```

```
In [60]: x1, x2 = sym.symbols("x1 x2")
f = x1**2 + x2**2 - 4*x1 - 6*x2
g = [x1 + x2 - 2, 2*x1 + 3*x2 - 12]
h = []
side_constraints = [x1 >= 0, x2 >= 0]
solve_lagrangian(f, h, g, side_constraints)
```

```
Out[60]: [{x2: 3/2, x1: 1/2, u_0: 3, u_1: 0, 'type': 'min', 'F': -17/2}]
```

Example 2:

```
Minimize - f(x_1,x_2)=(x_1-2.5)^2+(x_2-2.5)^2 subject to 2x_1+2x_2-3\leq 0 and x_1\geq 0 and x_2\geq 0
```

```
In [61]: x1, x2 = sym.symbols("x1 x2")
    f = (x1 - 2.5)**2 + (x2 - 2.5)**2
    h = []
    g = [2*x1 + 2*x2 - 3]
    side_constraints = [x1 >= 0, x2 >= 0]

solve_lagrangian(f, h, g, side_constraints)
```

Example 3:

Minimize -
$$f(x_1,x_2)=(x_1-2.5)^2+(x_2-2.5)^2$$
 subject to $2x_1+2x_2=3$ and $x_1\geq 0$ and $x_2\geq 0$

```
In [62]: x1, x2 = sym.symbols("x1 x2")
f = (x1 - 2.5)**2 + (x2 - 2.5)**2
g = []
h = [2*x1 + 2*x2 - 3]
side_constraints = [x1 >= 0, x2 >= 0]
solve_lagrangian(f, h, g, side_constraints)
```

Example 4:

Minimize -
$$f(x_1,x_2,x_3)=x_1^2+2x_1x_2+3x_2^2+4x_2x_3+x_3^2-6x_3$$

```
In [65]: x1, x2, x3 = sym.symbols("x1 x2 x3")
    f = x1**2 + 2*x1*x2 + 3*x2**2 + 4*x2*x3 + x3**2 - 6*x3
    g = []
    h = []
    side_constraints = []

solve_lagrangian(f, h, g, side_constraints)
```

```
Out[65]: [{x3: -3, x2: 3, x1: -3, 'type': 'max', 'F': 9}]
```

Example 5:

Minimize - $f(x_1,x_2)=x_1^2+2x_2^2-3x_1-6x_2$ subject to $x_1+x_2\leq 3$ and $x_1+3x_2\leq 10$ and $x_2\geq 0$

```
In [66]: x1, x2 = sym.symbols("x1 x2")
    f = x1**2 + 2*x2**2 - 3*x1 - 6*x2
    g = [x1 + x2 - 3, x1 + 3*x2 - 10]
    h = []
    side_constraints = [x2 >= 0]

solve_lagrangian(f, h, g, side_constraints)
```

Out[66]: []

If you wish to test more examples, you can input you functions f, g, h and run it on this code.

Solving Example 1 Step-by-Step to show the execution of the code

Problem Statement:

Write a code to minimise $f(x)=x_1^2+x_2^2-4x_1-6x_2$ and subject to the constraints $x_1+x_2\leq 2$ and $2x_1+3x_2\leq 12$ and $x_1\geq 0$ and $x_2\geq 0$.

Solution:

We will use the **Lagrange Multiplier Method** to solve this problem.

Step 1: We will first define the function f(x) and the constraints g(x) and h(x).

Step 2: We will then define the Lagrangian function $L(x, \lambda, \mu)$.

Step 3: We will then find the partial derivatives of the Lagrangian function with respect to x_1 , x_2 and put them equal to 0 to get some conditions.

Step-4: We will create switching conditions using the equation: $\mu_j g_j(x) = 0$.

Step-5: Solve all switch cases using Constraints, and another inequality which tells $\mu_j \geq 0$.

Step-6: We will then compare solutions of all switch cases and find the optimal solution.

Code

Step-1: Define the function f(x) and the constraints g(x) and h(x).

In [12]:
$$x1$$
, $x2$, $l1$, $l2$, $m1$, $m2$ = $sym.symbols('x1 x2 l1 l2 m1 m2')
 $f = x1**2 + x2**2 - 4*x1 - 6*x2$
 $g_1 = x1 + x2 - 2$
 $g_2 = 2*x1 + 3*x2 - 12$$

Step-2: Define the Lagrangian function $L(x, \lambda, \mu)$.

$$L(x,\lambda,\mu)=f(x)+\sum_{i=1}^p \lambda_i h_i(x)+\sum_{j=1}^m \mu_i(g_j(x)+s_j^2)$$

$$L(x,\lambda,\mu) = x_1^2 + x_2^2 - 4x_1 - 6x_2 + \mu_1(x_1 + x_2 - 2 + s_1^2) + \mu_2(2x_1 + 3x_2 - 12 + s_2^2)$$

(We do not need to consider λ as we do not have equality constraints.)

(Also we do not need to code this function as we will be using the partial derivatives of this function.)

Step-3: Find the partial derivatives of the Lagrangian function with respect to x_1 , x_2 and put them equal to 0 to get some conditions.

$$\frac{\partial L}{\partial x_1} = 2x_1 - 4 + \mu_1 + 2\mu_2 = 0$$

$$\frac{\partial L}{\partial x_2} = 2x_2 - 6 + \mu_1 + 3\mu_2 = 0$$

Out[13]:
$$(m1 + 2*m2 + 2*x1 - 4, m1 + 3*m2 + 2*x2 - 6)$$

Step-4: Create switching conditions using the equation: $\mu_j g_j(x) = 0$.

$$\mu_1g_1(x)=0$$
 and $\mu_2g_2(x)=0$

CASE 1:
$$\mu_1 = 0$$
 ($g_1(x) < 0$) and $\mu_2 = 0$ ($g_2(x) < 0$)

CASE 2:
$$\mu_1 = 0$$
 $(g_1(x) < 0)$ and $g_2(x) = 0$ $(\mu_2 > 0)$

CASE 3:
$$g_1(x)=0$$
 ($\mu_1>0$) and $\mu_2=0$ ($g_2(x)<0$)

CASE 4:
$$g_1(x)=0$$
 ($\mu_1>0$) and $g_2(x)=0$ ($\mu_2>0$)

```
In [14]: # Switching Conditions
          case 1 = [sym.Eq(m1, 0), sym.Eq(m2, 0)]
          case 1 checks = [g 1 < 0, g 2 < 0, x1 >= 0, x2 >= 0]
          case_2 = [sym.Eq(m1, 0), sym.Eq(g_2, 0)]
          case_2_checks = [g_1 < 0, m2 > 0, x1 >= 0, x2 >= 0]
          case 3 = [sym.Eq(g 1, 0), sym.Eq(m2, 0)]
          case 3 checks = [m1 > 0, q 2 < 0, x1 >= 0, x2 >= 0]
          case_4 = [sym.Eq(g_1, 0), sym.Eq(g_2, 0)]
          case 4 checks = [m1 > 0, m2 > 0, x1 >= 0, x2 >= 0]
          case 1, case 1 checks, case 2, case 2 checks, case 3, case 3 checks, case 4,
Out[14]: ([Eq(m1, 0), Eq(m2, 0)],
          [x1 + x2 - 2 < 0, 2*x1 + 3*x2 - 12 < 0, x1 >= 0, x2 >= 0],
           [Eq(m1, 0), Eq(2*x1 + 3*x2 - 12, 0)],
           [x1 + x2 - 2 < 0, m2 > 0, x1 >= 0, x2 >= 0],
           [Eq(x1 + x2 - 2, 0), Eq(m2, 0)],
           [m1 > 0, 2*x1 + 3*x2 - 12 < 0, x1 >= 0, x2 >= 0],
           [Eq(x1 + x2 - 2, 0), Eq(2*x1 + 3*x2 - 12, 0)],
           [m1 > 0, m2 > 0, x1 >= 0, x2 >= 0])
          Step-5: Solve all switch cases using Constraints, and another inequality which tells \mu_i \geq 0.
         CASE 1:
         \mu_1 = 0 (g_1(x) < 0) and \mu_2 = 0 (g_2(x) < 0)
                                       2x_1 + 3x_2 - 12 = 0
                                         x_1 + x_2 - 2 = 0
                                             x_1 \geq 0
                                             x_2 > 0
                                             \mu_1 \geq 0
                                             \mu_2 \geq 0
In [15]: # Case 1
          case 1 constraints = [sym.Eq(L x1, 0), sym.Eq(L x2, 0)] + case 1
          case_1_solution = sym.solve(case_1_constraints, [x1, x2, m1, m2])
         case 1 solution
Out[15]: {x1: 2, x2: 3, m1: 0, m2: 0}
In [16]: # Perform checks
          case 1 checks res = [check.subs(case 1 solution) for check in case 1 checks]
          if all(case 1 checks res):
              print('Case 1 is valid')
```

```
else:

print('Case 1 is invalid')

Case 1 is invalid

Case 1 is not feasible

CASE 2:

u_1 = 0 (a_1(x) < 0) and a_2(x) = 0 (u_2 > 0)
```

$$\mu_1=0$$
 $(g_1(x)<0)$ and $g_2(x)=0$ $(\mu_2>0)$
$$2x_1+3x_2-12=0$$

$$x_1+x_2-2=0$$

$$x_1\geq 0$$

$$x_2\geq 0$$

$$\mu_1\geq 0$$

$$\mu_2\geq 0$$

```
In [17]: # Case 2
    case_2_constraints = [sym.Eq(L_x1, 0), sym.Eq(L_x2, 0)] + case_2

# Solve Case 2 and find x1, x2, m1, m2
    case_2_solution = sym.solve(case_2_constraints, [x1, x2, m1, m2])
    case_2_solution
```

```
Out[17]: {x1: 24/13, x2: 36/13, m1: 0, m2: 2/13}
```

```
In [18]: # Perform checks for Case 2
    case_2_checks_res = [check.subs(case_2_solution) for check in case_2_checks]

if all(case_2_checks_res):
    print('Case 2 is valid')
else:
    print('Case 2 is invalid')
```

Case 2 is invalid

Case 2 is not feasible

CASE 3:

$$g_1(x)=0$$
 ($\mu_1>0$) and $\mu_2=0$ ($g_2(x)<0$)
$$2x_1+3x_2-12=0$$

$$x_1+x_2-2=0$$

$$x_1\geq 0$$
 $x_2\geq 0$

$$\mu_1 \geq 0$$
 $\mu_2 \geq 0$

```
In [19]: # Case 3
         case_3_constraints = [sym.Eq(L_x1, 0), sym.Eq(L_x2, 0)] + case_3
         # Solve Case 3 and find x1, x2, m1, m2
         case 3 solution = sym.solve(case 3 constraints, [x1, x2, m1, m2])
         case 3 solution
```

Out[19]: {x1: 1/2, x2: 3/2, m1: 3, m2: 0}

```
In [20]: # Perform checks for Case 3
         case 3 checks res = [check.subs(case 3 solution) for check in case 3 checks]
         if all(case 3 checks res):
             print('Case 3 is valid')
         else:
             print('Case 3 is invalid')
```

Case 3 is valid

Since Case 3 is feasible, we will solve it.

Finding the function value at $x_1, x_2 = (\frac{1}{2}, \frac{3}{2})$

```
In [21]: f val = f.subs(case 3 solution)
         f val
```

Out[21]: $-\frac{17}{2}$

The function value is -8.5

Checking for local minima/maxima.

To check this, we will use the following condition:

$$egin{aligned} igtriangledown^2 f(x) + \mu_1 igtriangledown^2 g_1(x) + \mu_2 igtriangledown^2 g_2(x) \geq 0 \end{aligned}$$

```
In [22]: # Checking if the solution is a local minimum or a local maximum
         F = sym.hessian(f, [x1, x2])
         G1 = sym.hessian(g 1, [x1, x2])
         G2 = sym.hessian(g 2, [x1, x2])
         R = F + m1*G1 + m2*G2
         R.subs(case 3 solution)
         R
```

```
Out[22]: \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}
In [23]: F, G1, G2, R
Out[23]: (Matrix([
            [2, 0],
            [0, 2]]),
            Matrix([
            [0, 0],
            [0, 0]]),
            Matrix([
            [0, 0],
            [0, 0]]),
            Matrix([
            [2, 0],
            [0, 2]]))
In [24]: if sym.Matrix(R.subs(case 3 solution)).is positive semidefinite:
               print('Case 3 is a local minimum')
           else:
               print('Case 3 is a local maximum')
```

Case 3 is a local minimum

The solution is a local minimum.

We cannot say that this is the true minimum value of this function using this method because we have not checked for all the possible solutions till now.

CASE 4:

$$g_1(x)=0$$
 ($\mu_1>0$) and $g_2(x)=0$ ($\mu_2>0$) $2x_1+3x_2-12=0$ $x_1+x_2-2=0$ $x_1\geq 0$ $x_2\geq 0$ $\mu_1\geq 0$

```
In [25]: # Case 4
    case_4_constraints = [sym.Eq(L_x1, 0), sym.Eq(L_x2, 0)] + case_4

# Solve Case 4 and find x1, x2, m1, m2
    case_4_solution = sym.solve(case_4_constraints, [x1, x2, m1, m2])
    case_4_solution
```

```
Out[25]: {x1: -6, x2: 8, m1: 68, m2: -26}
```

```
In [26]: # Perform checks for Case 4
    case_4_checks_res = [check.subs(case_4_solution) for check in case_4_checks]

if False in case_4_checks_res:
    print('Case 4 is not feasible')
else:
    print('Case 4 is feasible')
```

Case 4 is not feasible

Case 4 is not feasible

Step-6: Find the true minimum value returned by this function by checking all the possible solutions.

Since, we have gotten only one feasible situation, and that solution is a local minimum, we can say that this is the true minimum value of this function.

Hence, the true minimum value of this function is -8.5 at $x_1,x_2=(\frac{1}{2},\frac{3}{2})$