

planetmath.org

Math for the people, by the people.

dense ring of linear transformations

 ${\bf Canonical\ name} \quad {\bf Dense Ring Of Linear Transformations}$

Date of creation 2013-03-22 15:38:46 Last modified on 2013-03-22 15:38:46

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 10

Author CWoo (3771)
Entry type Definition
Classification msc 16K40
Synonym dense ring
Related topic SchursLemma

Defines Jacobson Density Theorem

Let D be a division ring and V a vector space over D. Let R be a subring of the ring of endomorphisms (linear transformations) $\operatorname{End}_D(V)$ of V. Then R is said to be a *dense ring of linear transformations* (over D) if we are given

- 1. any positive integer n,
- 2. any set $\{v_1, \ldots, v_n\}$ of linearly independent vectors in V, and
- 3. any set $\{w_i, \ldots, w_n\}$ of arbitrary vectors in V,

then there exists an element $f \in R$ such that

$$f(v_i) = w_i$$
 for $i = 1, ..., n$.

Note that the linear independence of the v_i 's is essential in insuring the existence of a linear transformation f. Otherwise, suppose $0 = \sum d_i v_i$ where $d_1 \neq 0$. Pick w_i 's so that they are linearly independent. Then $0 = f(\sum d_i v_i) = \sum d_i f(v_i) = \sum d_i w_i$, contradicting the linear independence of the w_i 's.

The notion of "dense" comes from topology: if V is given the discrete topology and $\operatorname{End}_D(V)$ the compact-open topology, then R is dense in $\operatorname{End}_D(V)$ iff R is a dense ring of linear transformations of V.

Proof. First, assume that R is a dense ring of linear transformations of V. Recall that the compact-open topology on $\operatorname{End}_D(V)$ has subbasis of the form $B(K,U) := \{f \mid f(K) \subseteq U\}$, where U is open and K is compact in V. Since V is discrete, K is finite. Now, pick a point $g \in \operatorname{End}_D(V)$ and let

$$B = \bigcup_{\alpha \in I} \bigcap_{i=1}^{n(\alpha)} B(K_{i\alpha}, U_{i\alpha})$$

be a neighborhood of g, I some index set. Then for some $\alpha \in I$, $g \in \bigcap B(K_{i\alpha}, U_{i\alpha})$. This means that $g(K_{i\alpha}) \subseteq U_{i\alpha}$ for all $i = 1, \ldots, n(\alpha)$. Since each $K_{i\alpha}$ is finite, so is $K := \bigcup K_{i\alpha}$. After some re-indexing, let $\{v_1, \ldots, v_n\}$ be a maximal linearly independent subset of K. Set $w_j = g(v_j), j = 1, \ldots, n$. By assumption, there is an $f \in R$ such that $f(v_j) = w_j$, for all j. For any $v \in K$, v is a linear combination of the v_j 's: $v = \sum d_j v_j, d_j \in D$. Then $f(v) = \sum d_j f(v_j) = \sum d_j g(j) = g(v) \in U_{i\alpha}$ for some i. This shows that $f(K_{i\alpha}) \subseteq U_{i\alpha}$ and we have $f \in \bigcap B(K_{i\alpha}, U_{i\alpha}) \subseteq B$.

Conversely, assume that the ring R is a dense subset of the space $\operatorname{End}_D(V)$. Let v_1, \ldots, v_n be linearly independent, and w_1, \ldots, w_n be arbitrary vectors in V. Let W be the subspace spanned by the v_i 's. Because the v_i 's are linearly independent, there exists a linear transformation g such that $g(v_i) = w_i$ and g(v) = 0 for $v \notin W$. Let $K_i = \{v_i\}$ and $U_i = \{w_i\}$. Then the K_i 's are compact and the U_i 's are open in the discrete space V. Clearly $g \in \{h \mid h(v_i) = w_i\} = B(K_i, U_i)$ for each $i = 1, \ldots, n$. So g lies in the neighborhood $B = \cap B(K_i, U_i) \subseteq \operatorname{End}_D(V)$. Since R is dense in $\operatorname{End}_D(V)$, there is an $f \in R \cap B$. This implies that $f(v_i) = w_i$ for all i.

Remarks.

- If V is finite dimensional over D, then any dense ring of linear transformations $R = \operatorname{End}_D(V)$. This can be easily observed by using the second half of the proof above. Take a basis v_1, \ldots, v_n of V and any set of n vectors w_1, \ldots, w_n in V. Let g be the linear transformation that maps v_i to w_i . The above proof shows that there is an $f \in R$ such that f agrees with g on the basis elements. But then they must agree on all of V as a result, which is precisely the statement that $g = f \in R$.
- It can be shown that a ring R is a primitive ring iff it is isomorphic to a dense ring of linear transformations of a vector space over a division ring. This is known as the . It is a generalization of the special case of the Wedderburn-Artin Theorem when the ring in question is a simple Artinian ring. In the general case, the finite chain condition is dropped.