Normed Vector Spaces

Vector Spaces

Throughout, $\mathbb{F} = \mathbb{R}$ or \mathbb{C} . A **vector space** over \mathbb{F} is a nonempty set V equipped with two operations: vector addition and scalar multiplication.

$$V \times V \xrightarrow{+} V$$
 $(v, w) \mapsto v + w$ Vector Addition $F \times V \to V$ $(\alpha, v) \mapsto \alpha v$ Scalar Multiplication

The vector space is an Abelian group, where $u, v, w \in V$ and $\alpha, \beta \in \mathbb{F}$, we have:

(i)
$$u + (v + w) = (u + v) + w$$

(ii)
$$\exists 0_v \in V$$
 with $\forall v \in V$, $0_v + v = v + 0_v = v$

(iii)
$$(\forall v \in V)(\exists w \in V)$$
 with $v + w = 0_v$

(iv)
$$\forall v, w \in V, v + w = w + v$$

(v)
$$\alpha(v+w) = \alpha v + \alpha w$$
, $(\alpha + \beta)v = \alpha v + \beta v$

(vi)
$$\alpha(\beta w) = (\alpha \beta) w$$

(vii)
$$1 \cdot v = v$$

Remarks:

- (a) 0_V is unique and known as the zero vector.
- (b) The vector w in (iii) is unique, and denoted -v.

(c)
$$0 \cdot v = 0_v$$

(d)
$$(-1) \cdot v = -v$$

(e) Property (iv) follows from all the other axioms.

(f) For
$$n \in \mathbb{N}$$
, $n \cdot v = \underbrace{v + v + \dots + v}_{n \text{ times}}$

Subspaces

Let V be a vector space over \mathbb{F} . A **subspace** is a nonempty subset $W \subseteq V$ satisfying the following:

(i)
$$w \in W, \alpha \in \mathbb{F} \to \alpha w \in W$$
.

(ii)
$$w_1, w_2 \in W \Rightarrow w_1 + w_2 \in W$$
.

Remark: 0_{ν} is always a member of any subspace; a subspace is also a vector space.

Proposition: Intersection of Subspaces

If $\{W_i\}_{i\in I}$ is a family of subspaces of V, then, $\bigcap W_i$ is a subspace of V.

Proposition: Union of Subspaces

It is not the case that the union of subspaces of V also a subspace. For example, consider \mathbb{R}^2 with the traditional vector space operations:

$$\begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x + x' \\ y + y' \end{pmatrix}$$

$$\alpha \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \alpha x \\ \alpha y \end{pmatrix}$$

If $W_1, W_2 \in V$ are subspaces such that $W_1 \cup W_2$ is a subspace, then $W_1 \subseteq W_2$ or $W_2 \subseteq W_1$.

Generated Subspaces

Let $S \subseteq V$ be any subset of a vector space V. Then,

$$\operatorname{span}(S) = \left\{ \sum_{j=1}^n \alpha_j v_j \mid \alpha_1, \dots, \alpha_n \in \mathbb{F}, v_1, \dots, v_n \in S \right\}$$

Remarks:

- $\operatorname{span}(S) \subseteq V$ is a subspace.
- $\operatorname{span}(S) = \bigcap W$, where $S \subseteq W$ and $W \subseteq V$ is a subspace. Thus, $\operatorname{span}(S)$ is the "smallest" subspace containing S, or the subspace generated by S.

Proposition: Quotient Group on Vector Space

Let V be a vector space, and let $W \subseteq V$ is a subspace. Define $u \sim_W v \leftrightarrow u - v \in W$.

- (1) \sim_W is an equivalence relation.
- (2) If $[v]_W$ denotes the equivalence class of v, then $[v]_W = v + W = \{v + w | w \in W\}$.
- (3) $V/W := \{[v]_W | v \in V\}$ is a vector space with $[v_1]_W + [v_2]_W = [v_1 + v_2]_W$ and $\alpha[v]_W = [\alpha v]_W$.

Proof of (1):

- Reflexive: $u \sim_W u$, since $u u = 0 \in W$.
- Transitive: Suppose $u \sim_W v$, and $v \sim_W z$. Then, $u v \in W$, and $v z \in W$. So, $(u v) + (v z) \in W$, so $u z \in W$. Whence, $u \sim_W z$.
- Symmetric: If $u \sim_W v$, then $u v \in W$, so $-1 \cdot (u v) \in W$, so $v u \in W$. Whence, $v \sim_W u$.

Proof of (2):

$$[v]_{W} = \{u \in V \mid u \sim_{W} v\}$$

$$= \{u \in V \mid u - v \in W\}$$

$$= \{u \in V \mid u = v + w \text{ some } w \in W\}$$

$$= \{v + w \mid w \in W\}$$

$$= v + W$$

Proof of (3): Prove that the operation is well-defined.

Bases

Let V be a vector space and $S \subseteq V$ be a subset.

- (1) S is said to be spanning for V if span(S) = V.
- (2) S is linearly independent if, for $\sum_{i=1}^{n} \alpha_{j} v_{j} = 0_{v}$ with $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{F}$, $v_{1}, \ldots, v_{n} \in S$, then $\alpha_{1} = \alpha_{2} = \cdots = \alpha_{n} = 0$.
- (3) S is a basis for V if S is linearly independent and spanning for V.

Proposition: Existence of Basis

Every vector space admits a basis. If $B_0 \subseteq V$ is linearly independent, $\exists B \subseteq V$ such that B is a basis and $B \supseteq B_0$.

Background: A relation on a set X is a subset $R \subseteq X \times X$. If R is reflexive $(x \sim x)$, transitive $(x \sim y, y \sim z \rightarrow x \sim z)$, and antisymmetric $(x \sim y, y \sim x \rightarrow x = y)$, then R is an ordering, and we write $x \leq y$.

If \leq is an ordering of X such that $\forall x, y \in X$, $x \leq y$ or $y \leq x$, then \leq is a total (or linear) ordering.

Let \leq be an ordering of X, let $Y \subseteq X$. An upper bound for Y is an element $u \in X$ such that $y \leq u \ \forall y \in Y$. A maximal element in X is an element $m \in X$ such that $x \in X$, $x \geq m \to x = m$.

Example: $\mathbb N$ under the division ordering defines $a \le b \Leftrightarrow a|b$. If we want to find the maximal elements of $A = \{2, 6, 9, 12\}$, we would see that they are 9 and 12 (since no element of A can be divided by 9 and 12). Meanwhile, $\mathbb N$ itself has no maximal elements.

This leads us to ask: given an ordered set, (X, \leq) , does X admit maximal elements.

Zorn's Lemma (or Axiom): Let (X, \leq) be an ordered set. Suppose that every totally ordered subset, $Y \subseteq X$ has an upper bound in X. Then, X admits at least one maximal element.

The proof of Zorn's Lemma relies on the Axiom of Choice (and Zorn's Lemma is equivalent to the Axiom of Choice).

Proof: Let $X = \{D \mid B_0 \subseteq D \subseteq V\}$ with D linearly independent. Since $B_0 \subseteq X$, $X \neq \emptyset$. Define $D, E \in X$, $D \subseteq E \Leftrightarrow D \subseteq E$. We will show that X has a maximal element.

Consider any totally ordered subset, $Y = \{D_i\}_{i \in I}$. Consider $D = \bigcup D_i$. Clearly, $B_0 \subseteq D \subseteq V$. Suppose $\sum \alpha_k v_k = 0_V$ with $v_1, \ldots, v_n \in D$. Therefore, $\exists D_j$ with $v_1, \ldots, v_n \in D_j$ because Y is totally ordered. However, by definition, D_j is a linearly independent set — therefore, $\alpha_k = 0$. Thus, D is linearly independent.

Since D is linearly independent, and $B_0 \subseteq D$, it must be the case that $D \in X$. D is also an upper bound for Y. So, by Zorn's Lemma, X has a maximal element, B.

So, $B_0 \subseteq B \subseteq V$, B is independent, and B is maximal in X. We claim that B is a basis for V. Suppose toward contradiction that $\exists v \in V$ such that $v \notin \text{span}(B)$. Consider $B' = B \cup \{v\}$.

Then, $B_0 \subseteq B'$, and B' is linearly independent — if $\sum \alpha_k v_k + \alpha v = 0$, where $v_1, \ldots, v_n \in B$, then either:

- If $\alpha = 0$, then $\alpha_k v_k = 0 \Rightarrow \alpha_k = 0$.
- If $\alpha \neq 0$, then $\sum \alpha_k v_k = -\alpha v$, which means $v \in \text{span}(B)$. \perp

Thus, we have a linearly independent set, B', with $B \subseteq B'$, and $B_0 \subseteq B'$. Therefore, $B' \in X$. However, this contradicts the maximality of B. Therefore, span(B) = V, and B is a basis for V.

Examples: Vector Spaces

(1) n-Dimensional Vectors:

$$\mathbb{F}^{n} = \left\{ \begin{pmatrix} x_{1} \\ \vdots \\ x_{n} \end{pmatrix} \mid x_{j} \in \mathbb{F} \right\}$$

$$\begin{pmatrix} x_{1} \\ \vdots \\ x_{n} \end{pmatrix} + \begin{pmatrix} y_{1} \\ \vdots \\ y+n \end{pmatrix} = \begin{pmatrix} x_{1}+y+1 \\ \vdots \\ x_{n}+y+n \end{pmatrix}$$

$$\alpha \begin{pmatrix} x_{1} \\ \vdots \\ x_{n} \end{pmatrix} = \begin{pmatrix} \alpha x_{1} \\ \vdots \\ \alpha x_{n} \end{pmatrix}$$

$$\beta = \{e_{1}, \dots, e_{n}\}$$

where e_i denotes the unit vector at position i.

(2) $m \times n$ Matrices:

$$\mathbb{M}_{m,n}(\mathbb{F}) = \left\{ \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} \mid a_{ij} \in \mathbb{F} \right\}$$
$$(a_{ij}) + (b_{ij}) = (a_{ij} + b_{ij})$$
$$\alpha(a_{ij}) = (\alpha a_{ij})$$
$$B = \{e_{ij}\}$$

where e_{ij} denotes a matrix of 0 everywhere except column i and row j.

(3) Functions with domain Ω :

$$\mathcal{F}(\Omega, \mathbb{F}) = \{ f \mid f : \Omega \to \mathbb{F} \}$$
$$(f+g)(x) = f(x) + g(x)$$
$$(\alpha f)(x) = \alpha f(x)$$

(4) Bounded functions with domain Ω :

$$\ell_{\infty}(\Omega, \mathbb{F}) = \{ f \in \mathcal{F}(\Omega, \mathbb{F}) \mid ||f||_{u} \le \infty \}$$
$$||f||_{u} = \sup_{x \in \Omega} |f(x)|$$

Exercises:

• Triangle Inequality: $||f + g||_u \le ||f||_u + ||g||_u$

• Scalar Multiplication/Absolute Homogeneity: $\|\alpha f\|_u = |\alpha| \|f\|_u$

• Positive Definite: $||f||_u = 0 \Rightarrow f = 0$

Proof of Triangle Inequality: Given $x \in \Omega$,

$$|(f+g)(x)| = |f(x) + g(x)|$$

$$\leq |f(x)| + |g(x)|$$

$$\leq ||f||_{u} + ||g||_{u}$$

Therefore.

$$\sup |(f+g)(x)| \le ||f||_u + ||g||_u$$
$$||f+g||_u \le ||f||_u + ||g||_u$$

(5) Continuous functions on closed and bounded intervals:

$$C([a, b], \mathbb{F}) = \{f : [a, b] \to \mathbb{F} \mid f \text{ continuous}\}\$$

Check that $C([a, b], \mathbb{F}) \subseteq \ell_{\infty}([a, b], \mathbb{F})$ is a subspace.

(6) Let $f : [a, b] \to \mathbb{R}$ be any function. Let $\mathcal{P} : a = x_0 < x_1 < x_2 < \cdots < x_n = b$.

$$\operatorname{var}(f; \mathcal{P}) := \sum_{k=1}^{n} |f(x_k) - f(x_{k-1})|$$

$$\operatorname{var}(f) = \sup_{\mathcal{P}} \operatorname{var}(f; \mathcal{P})$$

$$\operatorname{BV}([a, b]) = \{f : [a, b] \to \mathbb{R} \mid \operatorname{var}(f) < \infty\}$$

$$\|f\|_{\operatorname{BV}} = |f(a)| + \operatorname{var}(f)$$

BV([a, b]) is a vector space.

Question: Is $\mathbb{1}_{\mathbb{Q}} \in BV([0,1])$?

(7) Suppose $K \subseteq V$ is a *convex* subset of a vector space: $v, w \in K, t \in [0, 1] \Rightarrow (1 - t)v + tw \in K$. Let $Aff(K) = \{f : K \to \mathbb{R} \mid f \text{ is affine}\}$, where f is affine if $\forall v, w \in K, t \in [0, 1], f((1 - t)v + tw) = (1 - t)f(v) + tf(w)$.

Exercise: Show that $Aff(K) \subseteq \mathcal{F}(K, \mathbb{R})$ is a subspace.

(8) Let S be defined as

$$S = \{(a_k)_{k=1}^{\infty} \mid a_k \in \mathbb{F}\}.$$

Under pointwise operations, S is a vector space.

$$(a_k)_k + (b_k)_k = (a_k + b_k)_k$$
$$\alpha(a_k)_k = (\alpha a_k)_k$$

Note 1: $S = \mathcal{F}(\mathbb{N}, \mathbb{F})$.

Note 2: $c_{00} \subseteq \ell_1 \subseteq c_0 \subseteq c \subseteq \ell_\infty \subseteq S$.

- $c_{00} = \{(a_k)_k \mid \text{finitely many } a_k \neq 0\}$
- $c_0 = \{(a_k)k \mid (a_k)_k \to 0\}$

- $c = \{(a_k)_k \mid (a_k)_k \to a < \infty\}$
- $\ell_{\infty} = \{(a_k)_k \mid ||(a_k)_k||_u < \infty\}$
- $\ell_1 = \{(a_k)_k \mid \sum_{k=1}^{\infty} |a_k| = a < \infty \}$
- (9) $C_C(\mathbb{R}) \subseteq C_0(\mathbb{R}) \subseteq \ell_\infty(\mathbb{R})$ are all subspaces.
 - $C_C(\mathbb{R}) = \{f : \mathbb{R} \to \mathbb{F} \mid f \text{ compactly supported}\}: f : \mathbb{R} \to \mathbb{F} \text{ is compactly supported if } \exists [a, b] \text{ such that } x \notin [a, b] \Rightarrow f(x) = 0.$
 - $C_0(\mathbb{R}) = \{ f : \mathbb{R} \to \mathbb{F} \mid f \text{ continuous, } \lim_{x \to \pm \infty} f(x) = 0 \}$
- (10) Let S be any non-empty set.

$$\mathbb{F}(S) := \{ f : S \to \mathbb{F} \mid f \text{ finitely supported} \}$$

$$\mathsf{supp}(f) = \{ x \in S \mid f(x) \neq 0 \}$$

We claim that $\mathbb{F}(S) \subseteq \mathcal{F}(S,\mathbb{F})$ is a subspace. Consider $e_t : S \to \mathbb{F}$ defined as follows:

$$e_t(s) = \begin{cases} 1 & s = t \\ 0 & s \neq t \end{cases}.$$

We claim that $\xi = \{e_t\}_{t \in S}$ is a basis for $\mathbb{F}(S)$.

Indeed, given $f \in \mathbb{F}(S)$, we know that $\operatorname{supp}(f) = \{t_1, \ldots, t_n\} \subseteq S$. Therefore, $f = \sum_{k=1}^n f(t_k) e_{t_k} \in \operatorname{span}(\xi)$. Therefore, ξ is spanning for $\mathbb{F}(S)$. Suppose $\sum_{k=1}^n \alpha_{t_k} e_{t_k} = \emptyset$ for some $\alpha_k \in \mathbb{F}$, $t_k \in S$.

$$\left(\sum_{k=1}^{\alpha_{t_k}} e_{t_k}\right) = \mathbb{O}(t_1)$$

$$\alpha_{t_1} = 0.$$

Similarly, $\alpha_{t_j} = 0$ for j = 1, ..., n. Therefore, ξ is linearly independent. Since ξ is linearly independent and spanning, ξ forms a basis for $\mathbb{F}(S)$.

Note: The free vector space, $\mathbb{F}(S)$, displays the universal property.

There are functions $\iota: S \to \mathbb{F}(S)$, where $\iota(t) = e_t$, and given any map $\varphi: S \to V$ for V a vector space over \mathbb{F} , $\exists !$ linear map $T_{\varphi}: \mathbb{F}(S) \to V$ such that $\iota \circ T_{\varphi} = \varphi$.

Proof: Every $f \in \mathbb{F}(S)$ has a unique expression $f = \sum_{k=1}^{n} f(t_k) e_{t_k}$, where $\sup(f) = \{t_1, \dots, t_n\}$. Therefore,

$$T_{\varphi}(f) := \sum_{k=1}^{n} f(t_k) \varphi(t_k)$$

Exercise: Show T_{φ} is linear and unique.

Exercise 2: Suppose V is a vector space over $\mathbb F$ with basis B. Show that $\mathbb F(B)\cong V$. Remember that $V\cong W$ if $\exists\ T:V\to W$ such that T is bijective and linear.

Normed Spaces

To every vector $v \in V$, we want to assign a length to v, ||v||.

A **norm** on a vector space V is a map

$$\|\cdot\|:V\to\mathbb{R}^+$$
$$v\mapsto\|v\|\geq0$$

such that

- (i) Homogeneity: $\|\alpha v\| = |\alpha| \|v\|$
- (ii) Triangle Inequality: $||v + w|| \le ||v|| + ||w||$
- (iii) Positive definiteness: $||v|| = 0 \Rightarrow v = \mathbb{O}_V$.

If $p: V \to \mathbb{R}^+$ satisfies (i) and (ii), then p is a seminorm.

The pair $(V, \|\cdot\|)$ is called a normed space.

Two norms, $\|\cdot\|$ and $\|\cdot\|'$ are called **equivalent** if $\exists c_1, c_2 \geq 0$ with, $\forall v \in V$,

$$||v|| \le c_1 ||v||'$$

 $||v||' \le c_2 ||v||$

Note: On \mathbb{R}^n , all norms are equivalent.

Exercise: If p is any seminorm on V, then $|p(v) - p(w)| \le p(v - w)$.

Notation: If V is a normed space, then $B_V = \{v \in V \mid ||v|| \le 1\}$, and $U_V = \{v \in V \mid ||v|| < 1\}$ are the closed and open unit ball respectively.

Examples of Normed Spaces

(1) Given $V = \mathbb{F}^n$ and $x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$, we have different norms:

$$||x||_1 = \sum_{j=1}^n |x_j|$$

$$||x||_{\infty} = \max_{1 \le j \le n} |x_j|$$

$$||x||_2 = \left(\sum_{j=1}^n |x_j|^2\right)^{1/2}.$$

In general, for $1 \le p < \infty$,

$$||x||_p = \left(\sum_{j=1}^{\infty} |x_j|^p\right)^{1/p}.$$

Exercise: Show that $\|\cdot\|_1$ and $\|\cdot\|_\infty$ are norms. Show that $\lim_{p\to\infty}\|x\|_p=\|x\|_\infty$

We want to show that $\|\cdot\|_p$ defines a norm for $1 \le p < \infty$. If $1 \le p < \infty$, its conjugate index $q \in [1, \infty]$ whereby $\frac{1}{p} + \frac{1}{q} = 1$. For example, if p = 1, then $q = \infty$, and if $p = \infty$, then q = 1.

Lemma 1: For $1 , <math>p^{-1} + q^{-1} = 1$, $f: [0, \infty) \to \mathbb{R}$, $f(t) = \frac{1}{p}t^p - t + \frac{1}{q}$. Then, $f(t) \ge 0$ for all $t \ge 0$.

Proof 1: We can see that $f'(t) = t^{p-1} - 1$. Then, f'(t) = 0 at t = 1; f'(t) > 0 for t > 1 and f'(t) < 0 for $t \in [0, 1)$.

So, since $f(t) \ge f(1)$ for all $t \ge 0$, and f(1) = 0, $f(t) \ge 0$ for all $t \ge 0$.

Lemma 2: For $1 , <math>p^{-1} + q^{-1} = 1$, $z, y \ge 0$, $xy \le \frac{1}{p} x^p + \frac{1}{q} y^q$.

Proof 2: We know from Lemma 1, $t \leq \frac{1}{p}t^p + \frac{1}{q}$. Multiply by y^q to get

$$ty^q \le \frac{1}{p}t^p y^q + \frac{1}{q}y^q.$$

Set $t = xy^{1-q}$. Then,

$$xy^{1-q}y^q \le \frac{1}{p}x^py^{p-pq}y^q + \frac{1}{q}y^q.$$

Since $\frac{1}{p} + \frac{1}{q} = 1$, p - pq = -q, so

$$xy \le \frac{1}{p}x^p + \frac{1}{q}y^q.$$

With these two lemmas in mind, we get two important inequalities.

Hölder's Inequality: For $1 \le p \le \infty$, $p^{-1} + q^{-1} = 1$. Then, for $x, y \in \mathbb{F}^n$,

$$\left|\sum_{j=1}^n x_j y_j\right| \le \|x\|_p \|y\|_q.$$

Proof of Hölder's Inequality: For p = 1, the solution is as follows:

$$\left| \sum_{j=1}^{n} x_j y_j \right| \le \sum_{j=1}^{n} |x_j| |y_j|$$

$$\le \sum_{j=1}^{n} |x_j| ||y||_{\infty}$$

$$= ||x||_{\theta} ||y||_{\infty},$$

and similarly for $p = \infty$, q = 1.

For $1 , assume <math>||x||_p = ||y||_q = 1$.

$$\left| \sum_{j=1}^{n} x_{j} y_{j} \right| \leq \sum_{j=1}^{\infty} |x_{j}| |y_{j}|$$

$$\leq \sum_{j=1}^{n} \left(\frac{1}{p} |x_{j}|^{p} + \frac{1}{q} |y_{j}|^{q} \right)$$

$$= \frac{1}{p} \left(\sum_{j=1}^{n} |x_{j}|^{p} \right) + \frac{1}{q} \left(\sum_{j=1}^{n} |y_{j}|^{q} \right)$$

$$= \frac{1}{p} + \frac{1}{q}$$

$$= 1$$

If $||x||_p = 0$ or $||y||_q = 0$, then $x = \mathbb{O}_{\mathbb{F}}$ or $y = \mathbb{O}_{\mathbb{F}}$, the inequality still holds.

Assume $||x||_p \neq 0$, $||y||_p \neq 0$. Set

$$x' = \frac{x}{\|x\|_{\rho}}$$
$$y' = \frac{y}{\|y\|_{\rho}}.$$

It can be verified that $\|x'\|_p = 1 = \|y'\|_q$. Therefore,

$$\left| \sum_{j=1}^{n} x_j' y_j' \right| \le 1$$

$$\left| \sum_{j=1}^{n} \frac{x_j}{\|x\|_p} \frac{y_j}{\|y\|_q} \right| \le 1$$

$$\left| \sum_{j=1}^{n} x_j y_j \right| \le \|x\|_p \|y\|_q$$

Minkowski's Inequality: Given $x, y \in \mathbb{F}^n$, $1 \le p \le \infty$, $\frac{1}{p} = \frac{1}{q} = 1$,

$$||x + y||_p \le ||x||_p + ||y||_p$$

Proof of Minkowski's Inequality: We can verify for p = 1, $q = \infty$, and vice versa.

Assume 1 . Then,

$$\begin{split} \|x+y\|_{\rho}^{p} &= \sum_{j=1}^{n} |x_{j}+y_{j}|^{p} \\ &= \sum_{j=1}^{\infty} |x_{j}+y_{j}||x_{j}+y_{j}|^{p-1} \\ &\leq \sum_{j=1}^{\infty} |x_{j}||x_{j}+y_{j}|^{p-1} + \sum_{j=1}^{n} |y_{j}||x_{j}+y_{j}|^{p-1} \\ &\leq \left(\sum_{j=1}^{n} |x_{j}|^{p}\right)^{1/p} \left(\sum_{j=1}^{n} |x_{j}+y_{j}|^{pq-q}\right)^{1/q} + \left(\sum_{j=1}^{n} |y_{j}|^{p}\right)^{1/p} \left(\sum_{j=1}^{n} |x_{j}+y_{j}|^{pq-q}\right)^{1/q} \\ &= \|x\|_{\rho} \|x+y\|_{\rho}^{p/q} + \|y\|_{\rho} \|x+y\|_{\rho}^{p/q} \\ &= (\|x\|_{\rho} + \|y\|_{\rho}) \|x+y\|_{\rho}^{p-1} \end{split}$$

Divide by $||x + y||_p^{p-1}$ to get desired inequality.

(2) $\ell_{\infty}(\Omega, \mathbb{F})$ with $\|\cdot\|_u$. This includes subspaces that inherit the norm, such as

$$C([a, b]) \subseteq \ell_{\infty}(\Omega)$$
$$\ell_{\infty}(\mathbb{R}) \supseteq C_{0}(\mathbb{R}) \supseteq C_{C}(\mathbb{R})$$

Exercise: Show that $C_0(\mathbb{R}) \subseteq \ell_\infty(\mathbb{R})$ is a subspace

(3) $\Omega=\mathbb{N}$, $\boldsymbol{\ell}_{\infty}=\boldsymbol{\ell}_{\infty}(\mathbb{N})$ with $\|\cdot\|_{\infty}$. Subspaces that inherit the norm are

$$c_{00} \subseteq c_0 \le \ell_{\infty}$$
.

(4) ℓ_1 with $\|\cdot\|_1$,

$$||(a_k)_k||_1 = \sum_{k=1}^n |a_k|.$$

(5) C([a, b]) with

$$||f||_1 = \int_a^b |f(x)| dx.$$

(6) Let $1 \le p < \infty$.

$$\ell_p = \left\{ (a_k)_{k=1}^{\infty} \mid \sum_{k=1}^{\infty} |a_k|^p < \infty \right\}$$

is a normed space with

$$\|(a_k)_k\|_p = \left(\sum_{k=1}^{\infty} |a_k|^p\right)^{1/p}$$

We will show that the triangle inequality holds for this norm.

$$\left(\sum_{k=1}^{n} |a_k + b_k|^p\right)^{1/p} = \left\| \begin{bmatrix} a_1 + b_1 \\ \vdots \\ a_n + b_n \end{bmatrix} \right\|_{\ell_p^n}$$

$$= \left\| \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix} + \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix} \right\|_{\ell_p^n}$$

$$\leq \left\| \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix} \right\| + \left\| \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix} \right\|_{\ell_p^n}$$

$$\leq \left\| (a_k)_k \right\|_p + \left\| (b_k)_k \right\|_p.$$

Taking the limit as $n \to \infty$ (by the definition of an infinite series), we find that $\|(a_k)_k + (b_k)_k\|_p \le \|(a_k)_k\|_p + \|(b_k)_k\|_p$.

(7) $BV([a,b]) = \{f : [a,b] \to \mathbb{R} \mid Var(f) < \infty\}$ with the norm $||f||_{BV} = |f(a)| + Var(f)$ is a normed space:

$$||f||_{BV} = 0$$
$$|f(a)| = 0$$
$$Var(f) = 0$$

given $t \in (a, b]$, look at the partition $a < t \le b$. Then,

$$Var(f) \ge |f(t) - f(a)| + |f(b) - f(t)|$$

 $f(t) = 0$
 $f = 0_f$.

(8) $\mathbb{M}_{m,n}(\mathbb{F})$ with

$$||a||_{\text{op}} = \sup_{\|\xi\|_{\ell_2^n} \le 1} ||a\xi||_{\ell_2^m}$$

is a normed vector space. If $||a||_{op} = 0$, then

$$ae_j = 0$$
 $\forall j \in \{1, \ldots, n\}.$

take the dot product with $i \neq j$

$$ae_j \cdot e_i = a_{ij}$$
$$= 0$$

so $a_{ij} = 0$ for all a_{ij} , so a is the 0 matrix.

(9) Let V, W be vector spaces over \mathbb{F} . Then, $\mathcal{L}(V, W) = \{T \mid T : V \to W \text{ linear}\}$, where $T(\alpha v_1 + \beta v_2) = \alpha T(v_1) + \beta T(v_2)$.

 $\mathcal{L}(V,W)$ is a vector space with operations

$$(T+S)(v) = T(v) + S(v)$$
$$(\alpha T)(v) = \alpha T(v).$$

Notation: $\mathcal{L}(V) := \mathcal{L}(V, V)$ is all linear operators on V. $\mathcal{L}(V, \mathbb{F}) = V'$ is all linear functionals.

Suppose V and W are normed vector spaces. If $T: V \to W$, set

$$||T||_{op} := \sup_{\|v\|_{V} \le 1} ||T(v)||_{W},$$

$$\mathbb{B}(V, W) = \{T \in \mathcal{L}(V, W) \mid ||T||_{op} \le \infty\},$$

where $\mathbb{B}(V,W)$ is referred to as the set of all bounded linear maps from V to W. $\mathbb{B}(V,W)$ with $\|\cdot\|_{\mathrm{op}}$ is a normed space.

• Homogeneity:

$$\begin{split} \|\alpha T\|_{[op]} &= \sup_{\|v\|_{V} \le 1} \|\alpha T(v)\|_{W} \\ &= \sup_{\|v\|_{V} \le 1} |\alpha| \|T(v)\|_{W} \\ &= |\alpha| \sup_{\|v\|_{V} \le 1} \|T(v)\|_{W} \\ &= |\alpha| \|T\|_{\text{op}}. \end{split}$$

• Triangle Inequality: for $||v||_V \le 1$,

$$|| (T+S) (v) ||_{W} = || T(v) + S(v) ||_{W}$$

$$\leq || T(v) ||_{W} + || S(v) ||_{W}$$

$$\leq || T ||_{op} + || S ||_{op}$$

so

$$||T + S||_{op} = \sup_{||v|| \le 1} ||T + S(v)||$$

 $\le ||T||_{op} + ||S||_{op}$

• Positive Definite: If $||T||_{op} = 0$, then T(v) = 0 for all $v \in V$, $||v|| \le 1$.

Let $v \in V$, $v \neq 0$. Then, $\frac{v}{\|v\|} \in B_V$.

$$T\left(\frac{v}{\|v\|}\right) = 0$$

$$\frac{1}{\|v\|}T(v) = 0$$

$$T(v) = 0$$

Special Cases: $\mathbb{B}(V) = \mathbb{B}(V, V), V^* = \mathbb{B}(V, \mathbb{F}).$

Exercise: $\mathcal{L}(\mathbb{F}^n, \mathbb{F}^m) = \mathbb{B}(\ell_2^n, \ell_2^m)$.

(10) Inner Product Spaces (expanded upon below).

Inner Product Spaces

An inner product on a vector space V is a pairing

$$V \times V \xrightarrow{\langle \cdot, \cdot \rangle} \mathbb{F}$$

that satisfies

- (i) $\langle v_1 + v_2, w \rangle = \langle v_1, w \rangle + \langle v_2, w \rangle$, $\langle \alpha v, w \rangle = \alpha \langle v, w \rangle$.
- (ii) $\langle v, w \rangle = \overline{\langle w, v \rangle}$
- (iii) $\langle v, v \rangle \geq 0$.
- (iv) If $\langle v, v \rangle = 0$, then v = 0.

The pair $(V, \langle \cdot, \cdot \rangle)$ is known as an inner product space.

Remarks: $\langle v, w_1 + w_2 \rangle = \langle v, w_1 \rangle + \langle v, w_2 \rangle, \langle v, \alpha w \rangle = \overline{\alpha} \langle v, w \rangle.$

If $\langle \cdot, \cdot \rangle$ is an inner product on a linear space V, then set

$$||v||_2 := \langle v, v \rangle^{1/2}.$$

Exercise: $\|\alpha v\|_2 = |\alpha| \|v_2\|, \|v\|_2 = 0 \Rightarrow v = 0.$

 $v, w \in (V, \langle, \cdot, \cdot\rangle)$ are orthogonal if $\langle v, w \rangle = 0$.

The Pythagoran theorem states that for $v_1, \ldots, v_n \in V$ mutually orthogonal, then

$$\left\| \sum_{i=1}^{n} v_i \right\|^2 = \sum_{i=1}^{n} \|v_i\|^2.$$

For two vectors $v, w \in V$, $P_w(v) = \frac{\langle v, w \rangle}{\langle w, w \rangle} w$.

Exercise: Check that $\langle P_w(v), v - P_w(v) \rangle$, meaning

$$||v||^2 = ||P_w(v)||^2 + ||v - P_w(v)||^2$$

Cauchy-Schwarz Inequality: In any inner product space,

$$|\langle v, w \rangle| \leq ||v|| \cdot ||w||$$
.

Proof of Cauchy-Schwarz: From the exercise,

$$||v|| \ge ||P_w(v)||$$

$$||v|| \ge \left\| \frac{\langle v, w \rangle}{\langle w, w \rangle} w \right\|$$

$$= \frac{|\langle v, w \rangle|}{||w||^2} ||w||$$

therefore,

$$||v||||w|| \ge |\langle v, w \rangle|$$

The triangle inequality follows from the Cauchy-Schwarz inequality.

Proof of Triangle Inequality:

$$||v + w||_{2}^{2} = \langle v + w, v + w \rangle$$

$$= \langle v, v \rangle + \langle v, w \rangle + \langle w, v \rangle + |ww$$

$$= ||v||^{2} + ||w||^{2} + \langle v, w \rangle + \overline{\langle v, w \rangle}$$

$$= ||v||^{2} + ||w||^{2} + 2\operatorname{Re}\langle v, w \rangle$$

$$\leq ||v||^{2} + ||w||^{2} + 2|\langle v, w \rangle|$$

$$\leq ||v||^{2} + ||w||^{2} + 2||v|| ||w||$$

$$= (||v|| + ||w||)^{2}.$$

Cauchy-Schwarz Inequality

Take square roots on both sides.

(1) $\ell_2^n = \mathbb{F}^n$ with

$$\left\langle \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}, \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} \right\rangle = \sum_{i=1}^n x_i \overline{y_i}.$$

Cauchy-Schwarz is found as

$$\left| \sum_{j=1}^{n} x_{j} \overline{y_{j}} \right| \leq \left(\sum_{j=1}^{n} |x_{j}|^{2} \right)^{1/2} \left(\sum_{j=1}^{n} |y_{j}|^{2} \right)^{1/2}.$$

(2) ℓ_2 with

$$\langle (a_j)_j, (b_j)_j \rangle = \sum_{j=1}^{\infty} a_j \overline{b}_j.$$

We can see that for any finite n, the Cauchy-Schwarz inequality in ℓ_2^n states

$$\begin{split} \left| \sum_{j=1}^{n} a_{j} \overline{b_{j}} \right| &\leq \left(\sum_{j=1}^{n} |a_{j}|^{2} \right)^{1/2} \left(\sum_{j=1}^{n} |b_{j}|^{2} \right)^{1/2} \\ &\leq \left(\sum_{j=1}^{\infty} |a_{j}|^{2} \right)^{1/2} \left(\sum_{j=1}^{\infty} |b_{j}|^{2} \right)^{1/2}. \end{split}$$

Taking the limit as $n \to \infty$, we see that $\langle (a_j)_j, (b_j)_j \rangle$ is convergent.

(3) C([a, b]) with

$$\langle f, g \rangle = \int_{a}^{b} f(x) \overline{g(x)} dx.$$

(4) Let $V = \mathbb{M}_n(\mathbb{C})$.

Recall that if

$$a=(a_{ij})_{i,j},$$

then

$$a^* = (\overline{a_{ii}})_{i,j}$$
.

Let $\operatorname{Tr}: \mathbb{M}_n(\mathbb{C}) \to \mathbb{C}$, $\operatorname{Tr}((a_{ij})) = \sum_{i=1}^n a_{ii}$.

- $Tr(I_n) = n$
- $Tr(a + \alpha b) = Tr(a) + \alpha Tr(b)$
- Tr(ab) = Tr(ba)

Then, if $Tr(a^*a) = 0$, then $a = \mathbb{O}_{M_n}$.

$$a^*a = (\overline{a_{ji}})_{i,j}(a_{ij})_{i,j}$$

$$= \left(\sum_{k=1}^n \overline{ki} a_{kj}\right)_{i,j}$$

$$\operatorname{Tr}(a^*a) = \sum_{i=1}^n \sum_{k=1}^n \overline{a_{ki}} a_{ki}$$

$$= \sum_{i,k=1}^n |a_{ki}|^2$$

$$= \sum_{i,j=1}^n |a_{ij}|^2.$$

If $Tr(a^*a) = 0$, then $a_{ij} = 0$ for all i, j.

We define

$$\langle a, b \rangle_{\mathsf{HS}} = \mathsf{Tr}(b^*a).$$

(i)
$$(b_1 + b_2)^* = b_1^* + b_2^*$$

(ii)
$$(\alpha b)^* = \overline{\alpha} b^*$$

(iii)
$$(b_1b_2)^* = b_2^*b_1^*$$

(iv)
$$b^{**} = b$$

The norm is defined as

$$||a||_{HS} = \langle a, a \rangle^{1/2}$$

= $Tr(a^*a)^{1/2}$
= $\left(\sum_{i,j=1}^n |a_{ij}|^2\right)^{1/2}$

Metric Spaces

We looked at normed spaces, where we attach a length $\|v\|$ to very vector v. We can also speak of the distance between two vectors, defined as $d(v, w) = \|v - w\|$.

Notice that the following hold:

•
$$d(v, w) \geq 0$$

•

$$d(v, w) = ||v - w||$$

$$= ||(-1)(w - v)||$$

$$= |-1||w - v||$$

$$= ||w - v||$$

•

$$d(u, w) = ||u - w||$$

$$= ||u - v + v - w||$$

$$\leq ||u - v|| + ||v - w||$$

$$= d(u, v) + d(v, w).$$

• d(v, v) = ||v - v|| = 0. If d(v, w) = 0, then ||v - w|| = 0, so v - w = 0, so v = w.

In Real Analysis I, we studied the properties (such as convergence, limits, and continuity) of a particular normed vector space, namely $(\mathbb{R}, |\cdot|)$. We will expand these concepts to all metric spaces.

Definition of a Metric Space

Let X be a non-empty set. A **metric** on X is a map

$$d: X \times X \to \mathbb{R}^+$$
$$(x, y) \mapsto d(x, y) \ge 0$$

such that

- (i) Symmetry: d(x, y) = d(y, x) for all $x, y \in X$.
- (ii) Triangle Inequality: $d(x, z) \le d(x, y) + d(y, z)$ for all $x, y, z \in X$.
- (iii) Zero Distance: d(x, x) = 0
- (iv) Definite: $d(x, y) = 0 \Rightarrow x = y$

If d satisfies (i), (ii), and (iii), then d is called a semi-metric. If d satisfies (iv) as well, then d is a metric.

If d is a (semi-)metric on X, the pair (X, d) is called a (semi-)metric space.

Two metrics, d and ρ , on X, are equivalent if $\exists c_1, c_2 \geq 0$ such that $d(x, y) \leq c_1 \rho(x, y)$ and $\rho(x, y) \leq c_2 d(x, y)$ for all x, y.

Examples of Metric Spaces

(1) Discrete Metric:

$$d(x,y) = \begin{cases} 1 & x \neq y \\ 0 & x = y \end{cases}$$

for X any set.

(2) Hamming distance: between two bit strings of equal length. Let

$$X = \{0, 1\}^n$$

$$= \{0, 1\} \underbrace{\times \cdots \times}_{n \text{ times}} \{0, 1\}$$

$$d_H((x_i)_1^n, (y_i)_1^n) = |\{j \mid x_i \neq y_i\}|.$$

(3) Any normed space $(V, \|\cdot\|)$ is a metric space.

$$d(v,w) = ||v-w||.$$

Exercise: Show that if two norms are equivalent, their induced metrics are equivalent.

- (4) Subset of Metric Space: If (X, d) is a metric space, and $Y \subseteq X$ is non-empty. Then, (Y, d) is a metric space.
- (5) Paris metric: let (X, ρ) be a metric space. Let $p \in X$ be a fixed point.

$$\rho(x,y) := \begin{cases} 0 & x = y \\ \rho(x,p) + \rho(p,y) & x \neq y \end{cases}$$

(6) Bounded metric: Let ρ be a (semi-)metric on X. Set

$$d(x,y) = \frac{\rho(x,y)}{1 + \rho(x,y)}.$$

We claim that d is a (semi-)metric. Notice that $0 \le d(x, y) \le 1$.

Proof: Clearly, d(x, y) = d(y, x). Additionally, d(x, x) = 0. If d(x, y) = 0 and ρ is a metric, then $\rho(x, y) = 0$, so x = y.

To show the triangle inequality, we examine the function

$$f(t) = \frac{t}{1+t}$$
$$f'(t) = \frac{1}{(1+t)^2} > 0.$$

Since ρ satisfies the triangle inequality, $\rho(x,z) \le \rho(x,y) + \rho(y,z)$. Apply f on both sides. Then,

$$\underbrace{\frac{\rho(x,z)}{1+\rho(x,z)}}_{d(x,z)} \le \frac{\rho(x,y)+\rho(y,z)}{1+(\rho(x,y)+\rho(y,z))}
= \frac{\rho(x,y)}{1+\rho(x,y)+\rho(y,z)} + \frac{\rho(y,z)}{1+\rho(x,y)+\rho(y,z)}
\le \underbrace{\frac{\rho(x,y)}{1+\rho(x,y)}}_{d(x,y)} + \underbrace{\frac{\rho(y,z)}{1+\rho(y,z)}}_{d(y,z)}.$$

(7) If d_1, \ldots, d_n are metrics on $X, c_1, \ldots, c_n \ge 0$. Then,

$$d(x,y) = \sum_{k=1}^{n} c_k d_k(x,y)$$

is a metric.

(8) Let $\{\rho_k\}_{k=1}^{\infty}$ be a family of semi-metrics. Assume the family is separating — for all $x \neq y$, there exists k such that $\rho_k(x,y) \neq 0$.

Let d_k be defined as

$$d_k(x,y) = \frac{\rho_k(x,y)}{1 + \rho_k(x,y)}.$$

Note that $\{d_k\}_{k=1}^{\infty}$ is also separating.

Then,

$$d(x,y) = \sum_{k=1}^{\infty} 2^{-k} d_k(x,y)$$

is a metric.

(9) Frechet Metric: Let $X=C(\mathbb{R})$. For each $k=1,2,3,\ldots$, set $p_k(f)=\sup_{x\in [-k,k]}|f(x)|$.

We can verify that p_k defines a seminorm. We can then check $\rho_k(f,g) = p_k(f-g)$ is a semi-metric.

We claim that $\{\rho_k\}$ is separating: if $f \neq g$, then there exists $x_0 \in \mathbb{R}$ with $f(x_0) \neq g(x_0)$. Since f and g are continuous, there is a neighborhood $[x_0 - \delta, x_0 + \delta]$ such that $f(x) \neq g(x)$ for all $x \in [x_0 - \delta, x_0 + \delta]$. Find k such that $[x_0 - \delta, x_0 + \delta] \subseteq [-k, k]$. Then, $\rho_k(f - g) > 0$.

Construct d_k as above, and then d as follows:

$$d_{\mathsf{F}} = \sum \frac{2^{-k} p_k(f-g)}{1 + p_k(f-g)}$$