Chapter Title: Vectors

Sections: Unit Vectors, Multiplying Vectors

Unit Vectors

It is a vector with a magnitude of 1, no units, and a direction in a particular orientation.

Purpose: To point a direction in space.

It has been distinguished from a vector by inserting a caret or hat () sign.

Example, $\hat{\eta}$ is a unit vector.

In a 3D co-ordinate system, unit vectors are presented as, \hat{i} , j, and \hat{k} along the x, y, and z axis.

Adding Vectors by Components

$$\vec{A} = A_x \hat{\imath} + A_y \hat{\jmath} + A_z \hat{k}$$

$$\vec{B} = B_x \hat{\imath} + B_y \hat{\jmath} + B_z \hat{k}$$

$$\vec{R} = \vec{A} + \vec{B}$$

$$\vec{R} = (A_x \hat{\imath} + A_y \hat{\jmath} + A_z \hat{k}) + (B_x \hat{\imath} + B_y \hat{\jmath} + B_z \hat{k})$$

$$\vec{R} = (A_x + B_x) \hat{\imath} + (A_y + B_y) \hat{\jmath} + (A_z + B_z) \hat{k}$$

$$\vec{R} = R_x \hat{\imath} + R_y \hat{\jmath} + R_z \hat{k}$$

Multiplying Vectors

A vector can be multiplied in 3 ways.

- 1. Multiplying a Vector by a Scalar
- 2. Multiplying a Vector by a Vector: That has two types:
 - a) Scalar Product
 - b) Vector Product

Multiplying Vectors: Multiplying a Vector by a Scalar

$$m\vec{A} = \vec{R}$$

Where m is a scalar and \vec{R} is a new vector with the same direction as \vec{A} .

Multiplying Vectors: Multiplying a Vector by a Vector

Scalar Product

$$\vec{A} \cdot \vec{B} = AB \cos \theta$$

It is also known as the dot product.

Here, θ is the angle between \vec{A} and \vec{B} . \vec{A} . $\vec{B} = A(B\cos\theta) = A \times (Horizontal Projection)$. The dot product uses the horizontal or parallel projection of a vector, as it measures how much one vector aligns with or contributes to the direction of the other. If $\theta = 0^{\circ}$, $B\cos\theta = B\cos0^{\circ} = B$, which gives a perfect projection value. Then, it reduces to \vec{A} . $\vec{B} = AB$, which is like a regular multiplication of two scalar numbers.

$$\vec{A} = A_x \hat{\imath} + A_y \hat{\jmath} + A_z \hat{k}$$

$$\vec{B} = B_x \hat{\imath} + B_y \hat{\jmath} + B_z \hat{k}$$

$$\vec{A} \cdot \vec{B} = A_x B_x + A_y B_y + A_z B_z$$

Scalar Product of Unit Vectors

$$\hat{\imath}.\,\hat{\imath} = \hat{\jmath}.\,\hat{\jmath} = \hat{k}.\,\hat{k} = 1$$

$$\hat{\imath}.\,\hat{\jmath} = \hat{\imath}.\,\hat{k} = \hat{\jmath}.\,\hat{k} = 0$$

$$\vec{A} = A_x\hat{\imath} + A_y\hat{\jmath} + A_z\hat{k}$$

$$\vec{B} = B_x\hat{\imath} + B_y\hat{\jmath} + B_z\hat{k}$$

$$\vec{A}.\,\vec{B} = (A_x\hat{\imath} + A_y\hat{\jmath} + A_z\hat{k}).\,(B_x\hat{\imath} + B_y\hat{\jmath} + B_z\hat{k})$$

$$\vec{A}.\,\vec{B} = A_xB_x + A_yB_y + A_zB_z$$

Multiplying Vectors: Multiplying a Vector by a Vector

Vector Product

$$\vec{A} \times \vec{B} = AB \sin \theta \,\hat{\eta}$$

It is also known as the cross product.

Here, θ is the angle between \vec{A} and \vec{B} . $\vec{A} \times \vec{B} = A(B \sin \theta) = A \times (Vertical Projection)$. The cross product uses the vertical or perpendicular projection of a vector, as it measures the area of the parallelogram formed by two vectors (*i.e.*, area of a parallelogram = $Bh = \text{base} \times \text{height}$). Here, $B \sin \theta$ works as the height of a parallelogram, and A is the base of that parallelogram. If $\theta = 90^{\circ}$, $B \sin \theta = B \sin 90^{\circ} = B$, which gives a perfect projection value. Then, it reduces to

PHY 107, LECTURE 5

 $\vec{A} \times \vec{B} = AB$, but the area is a vector that works perpendicular to the surface. Therefore, a unit vector is placed to provide the direction of the vector.

If \vec{C} is a third vector such that,

$$\vec{C} = \vec{A} \times \vec{B}$$

The direction of $\vec{C} = ?$

Use Right-Hand Rule

$$\vec{C} = -\vec{B} \times \vec{A}$$

$$\vec{A} \times \vec{B} = -\vec{B} \times \vec{A}$$

$$\vec{A} \times \vec{B} = ?$$

$$\vec{A} = A_x \hat{\imath} + A_y \hat{\jmath} + A_z \hat{k}$$

$$\vec{B} = B_x \hat{\imath} + B_y \hat{\jmath} + B_z \hat{k}$$

Vector Product of Unit Vectors

$$\hat{\imath} \times \hat{\imath} = \hat{\jmath} \times \hat{\jmath} = \hat{k} \times \hat{k} = 0$$

$$\hat{\imath} \times \hat{\jmath} = -\hat{\jmath} \times \hat{\imath} = \hat{k}$$

$$\hat{\jmath} \times \hat{k} = -\hat{k} \times \hat{\jmath} = \hat{\imath}$$

$$\hat{k} \times \hat{\imath} = -\hat{\imath} \times \hat{k} = \hat{\jmath}$$

$$\vec{A} \times \vec{B} = (A_x \hat{\imath} + A_y \hat{\jmath} + A_z \hat{k}) \times (B_x \hat{\imath} + B_y \hat{\jmath} + B_z \hat{k})$$

$$\vec{A} \times \vec{B} = (A_y B_z - B_y A_z) \hat{\imath} + (A_z B_x - B_z A_x) \hat{\jmath} + (A_x B_y - B_x A_y) \hat{k}$$

The direction of $\vec{B} \times \vec{A}$

Anti-Clockwise