```
In [ ]:
            Instructions: Review the instructor video titled Geospatial Analysis
            - Part 1 and provide the code that will create
         2
         3
            a state-level choropleth map of the United States using COVID-19 cases. Be sur
         4
                #1. include all the states for the choropleth map (do not exclude Alaska a
         5
                #2. include a basemap using the contextily library.
                #3. use mapclassify for the legend display.
         6
         7
                #4. do not display the x and y axis on the map.
         8
                #5. set a cmap argument of your choice.
                #6. provide a figure title that includes your full name.
```

```
In [9]:
          1 df = pd.read csv("https://raw.githubusercontent.com/CSSEGISandData/COVID-19/ma
            df = df.melt(id vars=["UID",
                                  'iso2",
          3
                                  "iso3",
          4
          5
                                  "code3",
                                  "FIPS",
          6
                                  "Admin2",
          7
          8
                                  "Province State",
          9
                                  "Country_Region",
                                  "Lat",
"Long_"
         10
         11
         12
                                  "Combined Key"],
         13
                        var name='date',
         14
                        value name="cases")
         15
         16 df = df[df.iso3 == 'USA'].copy()
         17 df['date'] = pd.to datetime(df.date)
         18 df = df[df.date == df.date.max()]
         19 df = df[["FIPS","Admin2","Province_State","date","cases","Lat","Long_"]].copy(
         20 df[df.Lat==0]["Admin2"].values
         21 df = df[df.Admin2 != "Unassigned"].copy()
         22 df = df[df.Admin2.str.contains("Out") == False].copy()
         23 df = df[df.Admin2.str.contains("Correction") ==False].copy()
         24 gdf = gpd.GeoDataFrame(df,
         25
                                    crs="EPSG:4326", #format for lang/long data
         26
                                    geometry=gpd.points from xy(df.Long , df.Lat))
         27 world = gpd.read file(gpd.datasets.get path('naturalearth lowres'))
         28 usa = world[world.name == 'United States of America']
         29 usa.plot()
```

Out[9]: <AxesSubplot:>


```
In [5]: 1 df.tail()
```

Out[5]:

	FIPS	Admin2	Province_State	date	cases	Lat	Long_	geometry
2242476	56037.0	Sweetwater	Wyoming	2021-11- 22	8049	41.659439	-108.882788	POINT (-108.88279 41.65944)
2242477	56039.0	Teton	Wyoming	2021-11- 22	5362	43.935225	-110.589080	POINT (-110.58908 43.93522)
2242478	56041.0	Uinta	Wyoming	2021-11- 22	4006	41.287818	-110.547578	POINT (-110.54758 41.28782)
2242480	56043.0	Washakie	Wyoming	2021-11- 22	1831	43.904516	-107.680187	POINT (-107.68019 43.90452)
2242481	56045.0	Weston	Wyoming	2021-11- 22	1188	43.839612	-104.567488	POINT (-104.56749 43.83961)

```
In [31]: 1 fig, ax = plt.subplots()
2 usa.plot(ax=ax)
3 contextily.add_basemap(ax, crs = 4326)
4 contextily.add_basemap(ax, crs=usa.crs.to_string())
```



```
In [13]: 1 print(state_geometry.columns)
2 print(gdf.columns)
```

Index(['pop_est', 'continent', 'name', 'iso_a3', 'gdp_md_est', 'geometry'], dtyp
e='object')
Index(['FIPS', 'Admin2', 'STATE_NAME', 'date', 'cases', 'Lat', 'Long_'], dtype
='object')

```
In [ ]: 1
```

Out[12]:

	FIPS	Admin2	STATE_NAME	date	cases	Lat	Long_
2239140	1001.0	Autauga	Alabama	2021-11-22	10477	32.539527	-86.644082
2239141	1003.0	Baldwin	Alabama	2021-11-22	38000	30.727750	-87.722071
2239142	1005.0	Barbour	Alabama	2021-11-22	3688	31.868263	-85.387129
2239143	1007.0	Bibb	Alabama	2021-11-22	4337	32.996421	-87.125115
2239144	1009.0	Blount	Alabama	2021-11-22	10640	33.982109	-86.567906

```
In [44]: 1 g = gdf.groupby(["STATE_NAME"], as_index=False)['cases'].sum()
```

Out[19]: <AxesSubplot:>


```
In [22]:
             import mapclassify
             gdf_merged.plot(column='cases',
                       scheme='quantiles',
           3
           4
                       cmap='OrRd',
           5
                       legend=True,
                       legend_kwds={'loc': 'lower left'},
           6
           7
                       figsize=(12,8))
           8
             plt.axis("off")
             plt.title("Jiwon Mok")
           9
             plt.show()
```

Jiwon Mok


```
In [ ]: 1
```