LISTA PROBLEME ALGORITMICA GRAURILOR

Multiple Choice

Identify the letter of the choice that best completes the statement or answers the question.

1. Dacă G = (X, U) este un graf si pentru $x \in X$, d(x) este gradul lui x atunci intre 2|U| si $\sum_{x \in X} d(x)$ avem relația:

 $\underline{\mathbf{c}}$ 2. Graful complet K_n este:

a. n-regulat

b. (n+1)-regulat

c. (n-1)-regulat

<u>b</u> 3. Rezultatul următor: "Graful G este bipartit <=> nu conține cicluri impare" se datorează lui:

a. ORE

b. KÖNIG

c. EULER

d. KURATOWSKI

b 4. Numărul muchiilor unui graf complet K_n este:

a.
$$\binom{n}{1}$$

b.
$$\binom{n}{2}$$

c.
$$\binom{n+1}{2}$$

a 5. Numărul muchiilor unui graf bipartit complet $K_{m,n}$ este:

a. mn

b. (m-1)n

c. m(n-1)

d. (m-1)(n-1)

b 6. Intr-un graf orientat G = (X, U) dacă notăm pentru $x \in X$ cu $d^+(x)$ gradul exterior al lui x și cu $d^-(x)$ gradul său interior atunci intre $\sum_{x \in X} d^+(x)$ si $\sum_{x \in X} d^-(x)$ avem relația:

c. >

<u>b</u> 7. Matricea de adiacență a unui graf neorientat G = (X, U) este:

a. antisimetrică

b. simetrică

c. tranzitivă

8. Rangul matricei de incidență nod-arc pentru un graf conex cu *n* noduri și *m* muchii este:

a. n

b. *m*

c. *n*-1

d 1
d. m-1
 9. Rangul matricei de incidență nod-arc pentru un graf cu n noduri și p componente conexe este: a. n-p+1
b. <i>n-p</i>
c. n+p
d. $n+p-1$
<u>d</u> 10. Un graf G are un arbore parțial dacă și numai dacă G este:
a. bipartit
b. regulat
c. ciclic d. conex
b 11. Orice arbore cu $n \ge 2$ vârfuri are cel puțin x vârfuri terminale, unde $x = 1$:
a. 1
b. 2
c. 3
d. n
<u>c</u> 12. Orice arbore cu <i>n</i> vârfuri are <i>x</i> muchii unde $x = :$
a. n
b. <i>n</i> +1
c. n-1 c 13. Algoritmul următor:
Intrare: A-matricea de adiacență a unui graf cu <i>n</i> varfuri
1. Se face k=1.
2. Pentru $i = 1,,n$, $j = 1,,n$ și $i, j \neq k$ se înlocuie elementele $a_{ij} = 0$
prin min (a_{ik}, a_{kj}) .
3. Se repetă pasul 2 pentru $k = 2,,n$,
determină la iesire
a. un arbore parțial al lui G
b. un arbore parțial de cost minim în G
c. matricea drumurilor lui <i>G</i>
<u>c</u> 14. Algoritmul lui Kruskal produce:
a. matricea drumurilor unui graf
b. un arbore parțial in Gc. un arbore parțial de cost minim in G
_e 15. Algoritmul următor:
Intrare: $G = (X, U)$ conex cu n vârfuri și funcția de cost c
1. Dintre muchiile nealese ale lui U se selectează o muchie de cost minim care să nu
formeze cicluri cu muchiile deja alese.
2. Dacã au fost alese $n-1$ muchii ne oprim, altfel se repetă pasul 1,
se datorează lui :
a. Roy-Warshall
b. Prim c. Floyd
d. Dijkstra
e. Kruskal
<u>b</u> 16. Complexitatea temporală a algoritmului lui Kruskal pentru un graf cu n vârfuri și m muchii este
a. $O(m,n)$

		b. $O(m \log m + n^2)$
		c. $O(m \log n)$
		d. $O(m^2 + \log n)$
c	17.	Algoritmul următor:
		Intrare: $G = (X, U)$ un graf cu n varfuri, D - matricea distanțelor dintre vârfuri
		1. $k = 1$.
		2. Pentru $i=1,,n$, $j=1,,n$, $i \neq j$ și $i,j \neq k$ se înlocuie elementul d_{ij} prin
		$\min \left(d_{ij}, d_{ik} + d_{kj}\right).$
		3. Se repetă pasul 2 pentru $k = 2,,n$,
		produce la iesire:
		a. matricea drumurilor
		b. un arbore parțial de cost minim
a	10	c. matricea distanțelor minime
<u>u</u>	10.	Complexitatea temporala a algoritmului lui Floyd pentru un graf cu n noduri este: a. $O(n)$
		b. $O(n^2)$
		<u>c.</u> <i>O</i> (1)
		d. $O(n^3)$
<u>d</u>	19.	Algoritmul lui Dijkstra determină:
		a. matricea drumurilorb. matricea distanțelor minime
		c. un arbore parțial de cost minim
		d. drumurile minime si lungimile acestora de la un vârf s dat la toate celelalte vârfuri
_b	20.	Complexitatea temporală a algoritmului lui Dijkstra pentru un graf orientat cu n vârfuri este:
		a. liniară
		b. pătratică
		c. cubică d. exponențială
а	21	Pentru o rețea de transport, intre valoarea maximă a fluxului de ieşire și capacitatea minimă a unei tăieturi
u	21.	există relația:
		a. =
		b. <
	22	
_C	22.	Rezultatul următor: "Pentru orice rețea de transport valoarea maximă a fluxului de ieșire este egală cu capacitatea minimă a unei tăieturi" se datorează lui:
		a. Roy-Warshall
		b. Kruskal
		c. Ford-Fulkerson
		d. Dijkstra
<u>a</u>	23.	Intr-o rețea de transport pentru orice flux ϕ , intre ϕ_t -fluxul de pe arcele de iesire și capacitatea oricărei
		tăieturi există relația:
		a. ≤ b. ≥
		c. =
а	24	La sfârșitul aplicării algoritmului lui Ford-Fulkerson, arcele ce unesc vârfurile etichetate cu varfurile
u_		neetichetate constituie:

```
a. o tăietură de capacitate minimă
            b. o componentă conexă a rețelei de transport
            c. o multime de arce saturate
<u>c</u> 25. Numarul tuturor grafurilor cu n noduri este:
            a. 2^n
                n(n+1)
<u>b</u> 26. Fie G=(X, U) un graf si \rho \subset X \times X o relatie binara pe X data prin: x \rho y < = x = x = y sau exista
            L=[x,...,y] lant in G. Atunci relatia \rho este:
            a. relatie de ordine
           b. relatie de echivalenta
            c. relatie de preordine
<u>c</u> 27. Algoritmul urmator:
                     intrare G=(X,U) graf si x_0 \in X fixat
                             Y \leftarrow \{x_0\}, V \leftarrow \emptyset
                             repeat
                                     Y' \leftarrow Y, V' \leftarrow V
                                     Y \leftarrow Y'U \{y \in X-Y' \mid \exists x \in Y' \text{ incat } xy \in U\}
                                     Y = \{xy \in U \mid x, y \in Y\}
                             until (Y=Y') si (V=V')
            determina:
            a. toti vecinii lui x<sub>0</sub>
            b. daca G este conex
           c. componenta conexa ce contine pe x_0
            d. daca G este ciclic
<u>d</u> 28. Algoritmul ce raspunde la intrebarea "Este un graf dat G=(X,U) ciclic?" se datoreaza lui:
            a. Fleury
            b. Kruskal
            c. Prim
           d. Marimont
<u>b</u> 29. Fie G=(X,U) un graf in care |X| = n? 3 si pentru orice xEX avem d(x) \ge \frac{n}{2}. Atunci G este:
            a. eulerian
           b. hamiltonian
            c. complet
<u>a</u> 30. Fie G=(X,U) un graf fara varfuri izolate, conex si pentru orice x\inX, d(x) este numar par. Atunci G
            este:
            a. eulerian
            b. hamiltonian
            c. complet
<u>d</u> 31. Algoritmul pentru obtinerea unui ciclu eulerian intr-un graf eulerian se datoreaza lui:
```

```
a. Euler
            b. Hamilton
            c. Marimont
           d. Fleury
<u>b</u> 32. Algoritmul urmator:
                    intrare G=(X,U) graf eulerian
                    fie x_0 \in X arbitrar, i \leftarrow 0, V \leftarrow U
                    while d(x_i)? 0 do
                            if \exists x_i y \in V ce nu este punte in (X, V)
                                                     then do V \leftarrow V - \{x_i y\}
                                                              i ← i+1
                                                              x_i \leftarrow y
                                                     else do alege puntea x_iy \in V
                                                              V \leftarrow V - \{x_i y\}
                                                              i ← i+1
                                                              x_i \leftarrow y,
            determina in G:
            a. o componenta conexa ce contine x_0
           b. un ciclu eulerian
            c. un lant ce porneste din x<sub>0</sub>
<u>c</u> 33. Fie G=(X,U) un graf. Se numeste arbore de traversare (arbore de acoperire sau arbore partial) un graf
            partial H=(X,V) al lui G care este:
            a. conex
            b. aciclic
           c. arbore
<u>b</u> 34. Fie G=(X,U) un graf si H=(X,V) un arbore de traversare al sau. Atunci elementele lui U-V se
            numesc:
            a. punti ale lui H
          b. coarde ale lui H
            c. muchii libere in H
<u>a</u> 35. Graful G=(X,U) contine un arbore de traversare \langle == \rangle G este graf:
           a. conex
            b. ciclic
            c. aciclic
<u>c</u> 36. Fie G=(X,U) un arbore cu |X|=2 varfuri. Atunci numarul varfurilor terminale este:
            b. 1
           c. cel putin 2
            d. cel mult 2
```

<u>d</u> 37. Fie G=(X,U) un graf in a carui reprezentare geometrica muchiile se intersecteaza doar in varfuri.

Atunci G este:
a. conex
b. ciclic
c. aciclic
d. planar

<u>c</u>	38.	Daca $G=(X,U)$ este un graf planar conex cu f fete atunci $ X - U +f=n$, unde n este:
		a. ()
		b. 1
		c. 2
		d. ≥3
c	39.	Teorema care spune ca intr-un graf planar conex $G=(X,U)$ cu f fete are loc relatia $ X - U +f=2$ se
		datoreaza lui:
		a. Kruskal
		b. Prim
		c. Euler
		d. Kuratowski
<u></u>	40.	Grafurile complete K_5 si $K_{3,3}$ sunt:
		a. neconexe
		b. aciclice
		c. neplanare
C	41.	Teorema de caracterizare a grafurilor planare se datoreaza lui:
		a. Euler
		b. Kruskal
		c. Kuratowski
		d. Prim
C	12	Fie G=(X,U) un digraf cu X =n varfuri. Atunci numarul maxim de arce in G este:
	4∠.	a. n^2-1
		b. n^2 -n
		c. n^2 d. n^2+1
<u>b</u>	43.	Fie $G=(X,U)$ un digraf cu $ X =n$ varfuri si fara bucle (adica xx nu apartine lui U pentru orice $x\in X$).
		Atunci numarul maxim de arce in G este:
		a. n^2-1
		b. n^2-n
		$\mathbf{c}. \mathbf{n}^2$
		d. n^2+n
a	44.	Numarul tuturor digrafurilor cu n varfuri este:
		a. 2^{n^2}
		b. 2^{n^2-1}
		c. 2^{n^2+1}
		d. 2^{n^2-n}
d	45	Numarul tuturor digrafurilor $G=(X,U)$ fara bucle (xx nu apartine lui U pentru orice x \in X) si cu n
u	43.	varfuri ($ X =n$) este:
		a. 2^{n^2}
		b. 2^{n^2-1}
		c. 2^{n^2+1}
		d. 2^{n^2-n}
C	16	Numarul digrafurilor complete cu n varfuri (n = 2) este:
<u>c</u>	4 0.	rumarur digiarumor complete cu ii varium (ii – 2) este.

		a. 1
		b. 2
		c. 3
		c. 3d. ≥3
b	47.	Fie G=(X,U) digraf in care exista x EX caruia i se asociaza o eticheta pentru a-l identifica. Atunci G
		se numeste digraf: a. marcat
		b. etichetat
		c. complet
a	48.	Fie $G=(X,U)$ un digraf in care pentru orice u din U lui u i se asociaza o marca m_u . Atunci G se
		numeste digraf:
		a. marcat
		b. etichetat
		c. complet
b	49.	Fie G=(X,U) digraf si a€X incat d⁻(a)? 0 si nu exista circuit in G care sa contina pe a. Atunci pentru
		orice A⊂X baza in G avem:
		a. a€A
		b. a nu apartine lui A
c	50.	Fie G=(X,U) un digraf in care oricare ar fi a,b€X, b este atins prin drumuri din a. Atunci G se
		numeste:
		a. conex
		b. complet
		c. tare conex
c	51.	Fie G=(X,U) un digraf si $\rho \subset X \times X$ relatie binara data prin: $x \rho y \Leftrightarrow x=y$ sau (x este atins din y si y
		este atins din x). Atunci ρ este relatie de:
		a. ordine
		b. preordine
		c. echivalenta
d	52.	Digraful redus al unui digraf dat este:
	0	a. conex
		b. complet
		c. ciclic
		d. aciclic
h	53	Numarul bazelor digrafului redus asociat unui digraf dat este:
	55.	a. 0
		b. 1
		c. 2
		d. ≥ 3
d	54.	
u	J 1.	numarul bazelor lui G este:
		a. 1
		b. p
		c. $ S_1 + S_2 + + S_p $
		d. $ S_1 \cdot S_2 \cdot \cdot S_p $

c	55.	Fie G=(X,U) un digraf cu n noduri, A matricea sa de adiacenta si Y= A^m , m= 1. Atunci numarul tuturor drumurilor de la nodul x_i la nodul x_i care au cate m arce este:
		a . a_{ij}
		b. m•a _{ii}
		7 4)
<u>d</u>	56.	Fie G=(X,U) un digraf cu n noduri si A matricea sa de adiacenta. Daca exista $m=n$ incat $A^m=0$
		atunci G este:
		a. conex
		b. ciclic
		c. neconex
		d. aciclic
c	57.	Fie G=(X,U) un digraf si M o multime minimala de K formule ale lui G. Atunci nodurile principale
		ale K-formulelor din M constituie:
		a. o componenta tare conexa a lui G
		b. o componenta conexa a lui G
		c. o baza a lui G
d	58.	Fie A= (X,U) un d-arbore binar complet cu n noduri terminale. Atunci $ U = p$, unde p este:
		a. n-1
		b. 2n
		c. n+1
		d. 2(n-1)
d	50	Fie A=(X,U) un d-arbore binar cu n noduri terminale, d_1 nivelul maxim al unui nod terminal si d_2
u	39.	nivelul minim al unui nod terminal. Atunci A este d-arbore binar echilibrat \Leftrightarrow d ₁ -d ₂ este:
		a. =0
		b. =1
		c. ≥1 d. ≤1
	60	
<u> </u>	60.	Fie A=(X,U) un d-arbore binar cu 2 ^m noduri terminale si d nivelul unui nod terminal. Atunci d=
		a. m-1
		b. m+1
		c. m
		d. 2m
<u>e</u>	61.	· ' '
		nivelul nodurilor terminale este:
		a. m
		b. m-1
		c. m sau m-1
		d. m+1
		e. m sau m+1
h	62.	Se cunosc n metode de parcurgere a d-arborilor binari, unde n este:
	٥	
		a. 2 b. 3
		c. 4
b	63	In d-arborele binar complet asociat, unei expresii aritmetice in care intervin numai operatori binari,
		nodurile neterminale sunt etichetate cu:
		noderno notorminuto punt ottoriotuto ou.

		a. operanzi b. operatori
d	64.	Numarul arborilor de sortare-cautare asociati unei liste cu n elemente este:
<u>u</u>	04.	a. 1
		b. n
		c. n!-1
		d. n!
a a	65.	
<u>d</u>	05.	cautare este:
		a. liniara
		b. constanta
		c. patratica
		d. logaritmica
		e. cubica
0	66	Intr-un arbore de decizie asociat unei tabele de decizie nodurile terminale sunt etichetate cu:
<u>C</u>	66.	a. conditii
		b. valorile 0 si 1
		c. actiuni
a	67	
<u>d</u>	67.	Fie T(n,m) o tabela de decizie si f(n) numarul arborilor de decizie asociati lui T. Atunci f(n)=
		a. $\sum_{i=1}^{n} i^{2^{n-i}}$
		i=1
		b. $m : 2^{m-i}$
		$\prod I$
		i=1
		C. $m = 2^{n-i}$
		$\sum_{i} i^{2}$
		i=1
		d. n
		$\prod i^{2^{n-i}}$
		$\begin{array}{c} 1 1 \\ i=1 \end{array}$
C	68	Fie R=(E, e _i , e _f , A, w) o retea de programare a activitatilor. Spunem ca R este ordonata topologic ⇔
	00.	oricare ar fi ijCA avem:
		a. i=j
		b. i>j
		c. i <j< th=""></j<>
a	60	
<u>u</u>	09.	Algoritmul pentru ordonarea topologica a unei retele de programare a activitatilor se datoreaza lui: a. Ford
		b. Dijkstra
		c. Ford si Fulkerson
		d. Fulkerson
	70	
<u>C</u>	70.	Fie $G=(X,U)$ un graf conex, $T=(X,V)$ un arbore de traversare al sau si $e=xy$ o coarda a lui T. Atunci
		graful G=(X,VU{e}) contine:
		a. cel putin un ciclu

- b. nici un ciclu
- c. exact un ciclu
- _a 71. Exista n modalitati standard de reprezentare a grafurilor, unde n este:
 - a. 2
 - b. 3
 - c. 4
- <u>b</u> 72. Exista n metode de parcurgere a unui graf oarecare, unde n este:
 - a. 2
 - b. 3
 - c. 4
- <u>b</u> 73. Fie G=(X,U) un digraf aciclic. Atunci G are n baze, unde n este:
 - a. 0
 - b. 1
 - c. 2
 - d. 3
- <u>c</u> 74. Fie G=(X,U) diraf cu n noduri, A matricea sa de adiacenta E_n matricea de ordin cu toate elementele 1 si G'=(X,V) complementarul lui G. Atunci matricea de adiacenta a lui G' este:
 - a. $I_n A$
 - b. $I_n + A$
 - c. $E_n A$
 - d. $E_n + A$

Yes/No

Indicate whether you agree with the sentence or statement.

- No 75. Este complet un graf G = (X, U) în care toate varfurile au acelasi grad strict mai mic decat |X| 1
- Yes 76. Este bipartit un graf în care orice două varfuri sunt adiacente?
- Yes 77. Este graful icosaedrului un graf 5-regulat cu 12 varfuri?
- No 78. Este graful dodecaedrului graf 4-regulat cu 20 vârfuri?
- No 79. Este graful-stea un graf bipartit complet $K_{p,q}$ cu p,q>1?
- <u>Yes</u> 80. Este simetric un graf orientat G=(X,U) cu proprietatea că oricare ar fi $(x,y) \in U => (y,x) \in U$?
- No 81. Pentru $n \in N^*$ dat, există diferență intre K_n si un graf (n-1)-regulat?
- No 82. Este matricea de adiacență a unui graf orientat simetrică?
- No 83. Este adevărată afirmația: Graful G=(X,U) este arbore \ll 6 este conex?
- <u>No</u> 84. Este adevărată afirmația: Graful G=(X,U) este arbore \ll 6 este aciclic?
- Yes 85. Este adevărată afirmația: Graful G=(X,U) este arbore <=>G este conex si |U|=|X|-1 <=>G este aciclic și |U|=|X|-1
- No 86. Algoritmul lui Kruskal determină matricea drumurilor?
- No 87. Algoritmul lui Roy-Warshall determină un arbore parțial de cost minim într-un graf conex ?
- Yes 88. Determină algoritmul lui Floyd matricea distanțelor minime într-un graf dat ?

- No 89. Determină algoritmul lui Dijkstra un arbore parțial de cost minim?
- No 90. Este complexitatea temporală a algoritmului lui Dijkstra pentru un graf orientat cu *n* varfuri, cubică?
- Yes 91. Dacă într-o rețea de transport notăm pentru sursa s cu φ_s fluxul de pe arcele de intrare și pentru iesirea t cu φ_s fluxul de pe arcele de iesire este adevărată relația $\varphi_s = \varphi_s$?
- Yes 92. Este numărul vârfurilor de grad impar într-un graf neorientat un număr par ?

Completion

Complete each sentence or statement.

- 93. Un graf conex si aciclic se numeste ... ARBORE
- 94. Dacă într-o rețea de transport G = (X, U) pentru arcul $u \in U$ notăm cu $\varphi(u)$ fluxul arcului u și cu c(u) capacitatea lui u, atunci pentru $\varphi(u) = c(u)$ spunem că arcul este **SATURAT**
- 95. Numărul tutror muchiilor incidente unui vârf x într-un graf se numește .GRAD.U.L...... lui x.
- 96. Un vârf de grad 1 se numește vârf ... TERMINAL.
- 97. Un vârf de grad zero se numește vârf . IZOLAT
- 98. In orice graf neorientat numărul vârfurilor de grad impar este .P.AR........
- 99. Dacă dintr-un graf G = (X, U) eliminăm anumite muchii obținem un GRAF PARTIAL al lui G.
- 100. Dacă dintr-un graf G = (X, U) eliminăm anumite vârfuri și toate muchiile incidente acestora obținem un **SUBGRAF**..... al lui G.
- 101. Intr-un graf G = (X, U) o succesiune finită de vârfuri cu proprietatea că oricare două vârfuri vecine sunt adiacente se numește LANT......
- 102. Dacă intr-un lanț toate nodurile sunt distincte, lanțul se numește .ELEMENTAR
- 103. Dacă intr-un lant toate muchiile sunt distincte, lantul se numește ... SIMPLU....
- 104. Un lanț in care extremitățile coincid se numește CICLU.....
- 105. Un graf in care orice două vârfuri sunt conectate printr-un lant se numește .CONEX...
- 106. Un subgraf conex și maximal cu această proprietate se numește .COMPONENTA CONEXA
- 107. Un graf în care orice două vârfuri sunt adiacente se numește graf ... COMPLET
- 108. Un graf în care toate vârfurile au acelasi grad se numeșe graf .REGULAT
- 109. Dacă un graf este regulat și gradul comun al vârfurilor este k, graful se mai numește și graf K-REGULAT
- 110. Un graf complet cu n vârfuri este (n-1) regulat.
- 111. Un graf 3-regulat se mai numește graf .CUBIC.....
- 112. Dacă mulțimea vârfurilor unui graf admite o partiție din două blocuri încât fiecare muchie unește vârfuri din blocuri distincte graful se numește graf **BIPARTIT**
- 113. Dacă intr-un graf bipartit orice vârf dintr-un bloc este adiacent cu orice vârf din celalalt bloc atunci graful se numește graf .BIPARTIT COMPLET
- 114. Un graf bipartit format dintr-un vârf central adiacent cu alte n vârfuri se numește graf .STEA..

- 115. Un graf G este bipartit <=> nu conține .CICLURI IMPARE
- 116. Pentru un graf orientat G = (X, U) și $x \in X$, numărul arcelor care au pe x extremitate inițială (care pleacă din x) se numește GRAD EXTERIO al lui x.
- 117. Pentru graful orientat G = (X, U) și $x \in X$, numărul arcelor care il au pe x extremitate finală deci care intră în x se numește GRAD INTERIORal lui x.
- 118. Dacă într-un graf orientat arcele unui lanț au o aceiasi orientare, de la extremitatea initială spre extremitatea finală, obținem noțiunea de .DRUM.
- 119. Dacă într-un graf orientat G = (X, U) pentru oricare $(x, y) \in U \Rightarrow (y, x) \in U$, graful se numește SIMETRIC
- 120. Dacă într-un graf orientat orice două vârfuri sunt conectate printr-un drum, graful se numește TARE CONEX
- 121. Vârfurile terminale într-un arbore se mai numesc și <u>FRUNZE</u>....
- 122. Dacă într-un graf dat G un graf parțial al sau este arbore, acesta se numește ARBORE PARTIAL al lui G.
- 123. Orice arbore cu $n \ge 2$ vârfuri are cel puțin două .VARFURI.TERMINALE
- 124. Orice arbore cu n vârfuri are muchii
- 125. Algoritmul lui Kruskal determină într-un graf conex ponderat un ARBORE PARTIAL de cost minim
- 126. Algoritmul lui Kruskal produce un arbore parțial de COST MINIM...
- MATRICEA DRUMURILOR
 128. Algoritmul lui Roy-Warshall produce unui graf orientat.
- 129. Condiția de conservare a fluxului în orice vârf *x* diferit de intrarea și ieșirea unei rețele de transport spune că
- suma fluxurilor de pe arcele care intră în x este . EGALA CU. suma fluxurilor de pe arcele care ies din x.
- 130. Condiția de marginire a fluxului de pe arcele unor rețele de transport spune că fluxul asociat unui arc nu trebuie SA DEPASEASC capacitatea arcului respectiv.
- 131. Pentru rețeaua de transport G = (X, U) și $A \subset X$, mulțimea arcelor lui G pentru care extremitatea inițială nu se află în A dar extremitatea finală se găseste în A se numește TAIETURA de suport A
- 132. Pentru orice rețea de transport valoarea maximă a fluxului la iesire este egala cu capacitatea MINIMA. a unei tăieturi
- 133. Dacă G = (X, U) este un graf si pentru $x \in X$, d(x) este gradul lui x atunci intre 2|U| si $\sum_{x \in X} d(x)$ avem relația = .
- 134. Graful complet K_n este ($\frac{n-1}{n}$)-regulat:
- 135. Rezultatul următor: "Graful G este BIPARTIT. <=> nu conține cicluri impare" se datorează lui KÖNIG.
- 136. Numărul muchiilor unui graf $\underbrace{\text{COMPLET}}_{K_n}$ este $\binom{n}{2}$
- 137. Numărul muchiilor unui graf bipartit complet $K_{m,n}$ este
- 138. Intr-un graf G = G G G decă notăm pentru G G G gradul exterior al lui G și cu G gradul său interior atunci intre $\sum_{x \in X} d^+(x)$ si $\sum_{x \in X} d^-(x)$ avem relația =.

- 139. Matricea de adiacență a unui graf neorientat G = (X, U) este SIMETRICA
- 140. Rangul matricei de incidență nod-arc pentru un graf conex cu *n* noduri și *m* muchii este n-1...
- 141. Rangul matricei de incidență nod-arc pentru un graf cu *n* noduri și *p* componente conexe este
- 142. Un graf G are un arbore parțial dacă și numai dacă G este . CONEX......
- 143. Orice arbore cu $n \ge 2$ vârfuri are cel putin x vârfuri terminale, unde x = 2:
- 144. Orice arbore cu *n* vârfuri are *x* muchii unde x = n-1
- 145. Algoritmul următor:

Intrare: A-matricea de adiacență a unui graf cu *n* varfuri

- 1. Se face k=1.
- 2. Pentru $_{i=1,\dots,n}$, $_{j=1,\dots,n}$ și $_{i,j\neq k}$ se înlocuie elementele $_{a_{ij}=0}$ prin $_{\min}$ $_{(a_{ik},a_{ik})}$.
- 146. Algoritmul următor:

Intrare: G = (X, U) conex cu n vârfuri și funcția de cost c

- 1. Dintre muchiile nealese ale lui U se selectează o muchie de cost minim care să nu formeze cicluri cu muchiile deja alese.
- 2. Dacă au fost alese *n*-1 muchii ne oprim, altfel se repetă pasul 1, se datorează lui . KRUSKAL
- 147. Complexitatea temporală a algoritmului lui KRUSKAL pentru un graf cu n vârfuri și m muchii este $O(m \log m + n^2)$
- 148. Algoritmul următor:

Intrare: G = (X, U) un graf cu n varfuri, D - matricea distanțelor dintre vârfuri

- 1. k = 1
- 2. Pentru $_{i=1,\ldots,n}$, $_{j=1,\ldots,n}$, $i \neq j$ și $_{i,j \neq k}$ se înlocuie elementul $_{d_{ij}}$ prin min $(d_{ij},d_{ik}+d_{ij})$.
- 3. Se repetă pasul 2 pentru k = 2, ..., n, produce la iesire MATRICE distanțelor minime.
- 149. Complexitatea temporala a algoritmului lui $\frac{\text{FLOYD}}{\text{FLOYD}}$... pentru un graf cu n noduri este $O(n^3)$
- 150. Algoritmul lui Dijkstra determină drumurile .MINIME ... si lungimile acestora de la un vârf *s* dat la toate celelalte vârfuri
- 151. Complexitatea TEMPORALA a algoritmului lui Dijkstra pentru un graf orientat cu n vârfuri este pătratică.
- 152. Pentru o rețea de transport, intre valoarea maximă a fluxului de ieșire și capacitatea minimă a unei TAIETURI există relatia =.
- 153. Rezultatul următor: "Pentru orice rețea de transport valoarea maximă a fluxului de ieșire este egală cu capacitatea minimă a unei tăieturi" se datorează lui .FORD..-Fulkerson.
- 154. Intr-o rețea de transport pentru orice flux φ, intre φ_t-fluxul de pe arcele de iesire și capacitatea oricărei TAIETURI. există relația ≤.

- 155. La sfârșitul aplicării algoritmului Ford-Fulkerson, arcele ce unesc vârfurile etichetate cu varfurile neetichetate constituie o tăietură de capacitate. MINIMA.
- 156. Fie G=(X,U) un graf in care |X| = n? 3 si pentru orice x \in X avem $d(x) \ge \frac{n}{2}$. Atunci G este graf HAMILTONIAN
- 157. Fie G=(X,U) un graf fara varfuri izolate, conex si pentru orice $x \in X$, d(x) este numar par. Atunci G este graf . EULERIAN
- 158. Algoritmul pentru obtinerea unui ciclu eulerian intr-un graf eulerian se datoreaza lui FLEURY
- 159. Algoritmul urmator:

```
intrare G=(X,U) graf eulerian fie x_0 \in X arbitrar, i \leftarrow 0, V \leftarrow U while d(x_i)? 0 do if \Im x_i y \in V ce nu este punte in (X,V) then do V \leftarrow V - \{x_i y\} i \leftarrow i+1 x_i \leftarrow y else do alege puntea x_i y \in V V \leftarrow V - \{x_i y\} i \leftarrow i+1 x_i \leftarrow y,
```

determina in G un ciclu .EULERIAN

- 160. Fie G=(X,U) un graf si H=(X,V) un arbore de traversare al sau. Atunci elementele lui U-V se numesc COARDE ...ale lui H
- 161. Graful G=(X,U) contine un arbore de traversare $\langle == \rangle G$ este graf
- 162. Fie G=(X,U) un arbore cu |X|=2 varfuri. Atunci numarul varfurilor terminale este cel putin $\stackrel{?}{\dots}$.
- 163. Fie G=(X,U) un graf in a carui reprezentare geometrica muchiile se intersecteaza doar in varfuri. Atunci G este graf .PLANAR......
- 164. Daca G=(X,U) este un graf planar conex cu f fete atunci |X|-|U|+f=n, unde n este 2.
- 165. Teorema care spune ca intr-un graf planar conex G=(X,U) cu f fete are loc relatia |X|-|U|+f=2 se datoreaza lui EULER
- 166. Grafurile complete K_5 si $K_{3,3}$ sunt NEPLANARE
- 167. Teorema de caracterizare a grafurilor planare se datoreaza lui KURATOWSKI
- 168. Fie G=(X,U) un digraf cu |X|=n varfuri. Atunci numarul MAXIM de arce in G este n^2 .
- 169. Fie G=(X,U) un digraf cu |X|=n varfuri si fara bucle (adica xx nu apartine lui U pentru orice $x \in X$). Atunci numarul MAXIM... de arce in G este n^2-n .
- 170. Numarul tuturor DIGRAFURILOR cu n varfuri este 2^{n²}
- 171. Numarul tuturor digrafurilor G=(X,U) FARA BUCLE si cu n varfuri (|X|=n) este 2^{n^2-n}

- No 1. Este complet un graf G = (X, U) în care toate varfurile au acelasi grad strict mai mic decat |X| 1
- Yes 2. Este bipartit un graf în care orice două varfuri sunt adiacente?
- Yes 3. Este graful icosaedrului un graf 5-regulat cu 12 varfuri?
- No. 4. Este graful dodecaedrului graf 4-regulat cu 20 vârfuri?
- No 5. Este graful-stea un graf bipartit complet $K_{p,q}$ cu p,q>1?
- Yes 6. Este simetric un graf orientat G=(X,U) cu proprietatea că oricare ar fi $(x,y) \in U \Rightarrow (y,x) \in U$?
- No 7. Pentru $n \in N^*$ dat, există diferență intre K_n si un graf (n-1)-regulat?
- No 8. Este matricea de adiacență a unui graf orientat simetrică?
- No 9. Este adevărată afirmația: Graful G=(X,U) este arbore \iff G este conex?
- No 10. Este adevărată afirmația: Graful G=(X,U) este arbore \iff G este aciclic?
- Yes 11. Este adevărată afirmația: Graful G=(X,U) este arbore $\leq G$ este conex si $|U|=|X|-1 \leq G$ este aciclic și |U| = |X| - 1
- No 12. Algoritmul lui Kruskal determină matricea drumurilor?
- No 13. Algoritmul lui Roy-Warshall determină un arbore parțial de cost minim într-un graf conex?
- Yes 14. Determină algoritmul lui Floyd matricea distantelor minime într-un graf dat?
- No 15. Determină algoritmul lui Dijkstra un arbore parțial de cost minim?
- No 16. Este complexitatea temporală a algoritmului lui Dijkstra pentru un graf orientat cu n varfuri, cubică?
- Yes 17. Dacă într-o rețea de transport notăm pentru sursa s cu φ , fluxul de pe arcele de intrare și pentru iesirea t cu φ , fluxul de pe arcele de iesire este adevărată relația $\varphi_* = \varphi_*$?
- Yes 18. Este numărul vârfurilor de grad impar într-un graf neorientat un număr par?
 - 19. Dacă G = (X, U) este un graf si pentru $x \in X$, d(x) este gradul lui x atunci ce relatie avem intre 2|U| si $\sum d(x)$
 - 20. Cum este graful complet K_n ? (n-1) regulat
 - 21. Cui se datoreaza rezultatul următor: "Graful G este bipartit <=> nu conține cicluri impare". KONIG
 - 22. Indicati numărul muchiilor unui graf complet K_n .
 - 23. Indicati numărul muchiilor unui graf bipartit complet $K_{m,n}$. mn
 - 24. Intr-un graf orientat G = (X, U) dacă notăm pentru $x \in X$ cu $d^+(x)$ gradul exterior al lui x și cu $d^{-}(x)$ gradul său interior atunci ce relatie este intre $\sum_{x \in X} d^{+}(x)$ si $\sum_{x \in X} d^{-}(x)$.
 - 25. Cum este matricea de adiacentă a unui graf neorientat G = (X, U). SIMETRICA
 - 26. Indicati rangul matricei de incidență nod-arc pentru un graf conex cu n noduri și m muchii. n-1
 - 27. Indicati rangul matricei de incidentă nod-arc pentru un graf cu n noduri și p componente conexe.
 - 28. Un graf G are un arbore partial dacă și numai dacă G este de ce tip? CONEX
 - 29. Orice arbore cu $n \ge 2$ vârfuri are cel puțin x vârfuri terminale. Cit este x ? 2
 - 30. Orice arbore cu n vârfuri are x muchii. Cit este x? n-1
 - 31. Fie algoritmul următor:

Intrare: A-matricea de adiacență a unui graf cu n varfuri

- 1.
- Se face k=1. Pentru i=1,...,n, j=1,...,n și $i,j\neq k$ se înlocuie elementele $a_{ij}=0$ 2. prin min (a_{ik}, a_{ki}) .
- 3. Se repetă pasul 2 pentru k = 2,...,n,

Ce determină la iesire acest algoritm? MATRICEA DRUMURILOR lui G

- 32. Ce produce la iesire algoritmul lui Kruskal. UN ARBORE PARTIAL DE COST MINIM
- 33. Fie algoritmul următor:

Intrare: G = (X, U) conex cu n vârfuri și funcția de cost c

- 1. Dintre muchiile nealese ale lui U se selectează o muchie de cost minim care să nu formeze cicluri cu muchiile deja alese.
- 2. Dacă au fost alese n-1 muchii ne oprim, altfel se repetă pasul 1,

Cui se datorează acest algoritm? LUI KRUSKAL

34. Indicati complexitatea temporală a algoritmului lui Kruskal pentru un graf cu *n* vârfuri și *m* muchii ?

35. Fie algoritmul următor:

Intrare: G = (X, U) un graf cu n varfuri, D - matricea distanțelor dintre vârfuri

- 1. k = 1.
- 2. Pentru i=1,...,n, j=1,...,n, $i\neq j$ și $i,j\neq k$ se înlocuie elementul d_{ii} prin $\min \left(d_{ii}, d_{ik} + d_{ki}\right).$
- 3. Se repetă pasul 2 pentru k = 2,...,n,

Ce produce la iesire acest algoritm? MATRICEA DISTANTELOR MINIME 36. Indicati complexitatea temporala a algoritmului lui Floyd pentru un graf cu *n* noduri.

- 38. Indicati tipul de complexitate temporală a algoritmului lui Dijkstra pentru un graf orientat cu n vârfuri.
- 39. Ce relatie exista pentru o rețea de transport, intre valoarea maximă a fluxului de ieșire și capacitatea minimă a unei tăieturi. =
- 40. Cui se datoreaza rezultatul următor: "Pentru orice rețea de transport valoarea maximă a fluxului de ieșire este egală cu capacitatea minimă a unei tăieturi"? LUI FORD-FULKERSON
- 41. Intr-o rețea de transport pentru orice flux Φ , ce relatie este intre Φ_{t} -fluxul de pe arcele de iesire și capacitatea oricărei tăieturi?
- 42. La sfârșitul aplicării algoritmului lui Ford-Fulkerson, ce constituie arcele ce unesc vârfurile etichetate cu varfurile neetichetate? O TAIETURA DE CAPACITATE MINIMA
- 43. Indicati numarul tuturor grafurilor cu n noduri.
- 44. Fie G=(X, U) un graf si $\rho \subset X \times X$ o relatie binara pe X data prin: $x \rho y <=> x=y$ sau exista L=[x,...,y] lant in G. Cum este atunci relatia ρ ? RELATIE DE ECHIVALENTA
- 45. Fie algoritmul urmator:

```
intrare G=(X,U) graf si x_0 \in X fixat
           Y \leftarrow \{x_0\}, V \leftarrow \emptyset
           repeat
                       Y' \leftarrow Y, V' \leftarrow V
                       Y \leftarrow Y'U \{y \in X-Y' \mid \exists x \in Y' \text{ incat } xy \in U\}
                       Y = \{xy \in U \mid x, y \in Y\}
           until (Y=Y') si (V=V')
```

Ce determina acest algoritm? COMPONENTA CONEXA CE CONTINE PE Xo

- 46. Cui se datoreaza algoritmul ce raspunde la intrebarea "Este un graf dat G=(X,U) ciclic?lui MARIMONT
- 47. Fie G=(X,U) un graf in care |X| = n? 3 si pentru orice xEX avem $d(x) \ge \frac{n}{2}$. Cum este G?

 HAMILTONIAN
- 48. Fie G=(X,U) un graf fara varfuri izolate, conex si pentru orice $x \in X$, d(x) este numar par. Cum este G? EULERIAN
- 49. Cui se datoreaza algoritmul pentru obtinerea unui ciclu eulerian intr-un graf eulerian? lui FLEURY
- 50. Fie algoritmul urmator:

```
intrare G=(X,U) graf eulerian
fie x_0 \in X arbitrar, i \leftarrow 0, V \leftarrow U
while d(x_i)? 0 do
          if \exists x_i y \in V ce nu este punte in (X, V)
                                         then do V \leftarrow V - \{x_i y\}
                                                    i ← i+1
                                                    x_i \leftarrow y
                                         else do alege puntea x_i y \in V
                                                    V \leftarrow V - \{x_i y\}
                                                    i ← i+1
                                                    x_i \leftarrow y,
```

Ce determina in G? UN CICLU EULERIAN

- 51. Fie G=(X,U) un graf. Se numeste arbore de traversare (arbore de acoperire sau arbore partial) un graf partial H=(X,V) al lui G. Ce proprietate are H? ESTE ARBORE
- 52. Fie G=(X,U) un graf si H=(X,V) un arbore de traversare al sau. Cum se numesc elementele lui U-V ? COARDE ALE LUI H
- 53. Graful G=(X,U) contine un arbore de traversare < == > G are o anumita proprietate. Care este aceasta proprietate? ESTE CONEX
- 54. Fie G=(X,U) un arbore cu |X|=2 varfuri. Care este numarul varfurilor terminale ? CEL PUTIN 2
- 55. Fie G=(X,U) un graf in a carui reprezentare geometrica muchiile se intersecteaza doar in varfuri. Cum se numeste G? PLANAR
- 56. Daca G=(X,U) este un graf planar conex cu f fete atunci |X|-|U|+f=n, Cit este n? 2
- 57. Cui se datoreaza teorema care spune ca intr-un graf planar conex G=(X,U) cu f fete are loc relatia |X|-|U|+f=2 ? lui EULER
- 58. Cum sunt grafurile complete K₅ si K_{3,3}? NEPLANARE
- 59. Cui se datoreaza teorema de caracterizare a grafurilor planare ? lui KURATOWSKI
- 60. Fie G=(X,U) un digraf cu |X|=n varfuri. Indicati numarul maxim de arce in G.
- 61. Fie G=(X,U) un digraf cu |X|=n varfuri si fara bucle ica xx nu apartine lui U pentru orice xEX). Indicati numarul maxim de arce in G?
- 62. Indicati numarul tuturor digrafurilor cu n varfuri.
- 63. Indicati numarul tuturor digrafurilor G=(X,U) fara bucle (xx nu apartine lui U pentru orice x \in X) si cu n varfuri (|X|=n).
- 64. Indicati numarul digrafurilor complete cu n varfuri (n = 2). 3
- 65. Fie G=(X,U) digraf in care exista x EX caruia i se asociaza o eticheta pentru a-l identifica. Cum se numeste G ?ETICHETAT
- 66. Fie G=(X,U) un digraf in care pentru orice u din U lui u i se asociaza o marca m_u . Cum se numeste G? MARCAT
- 67. Fie G=(X,U) un digraf in care oricare ar fi a,b€X, b este atins prin drumuri din a. Cum se numesteG ? TARE CONEX
- 68. Fie G=(X,U) un digraf si $\rho \subset X \times X$ relatie binara data prin: $x \rho y \Leftrightarrow x=y$ sau (x este atins din y si y este atins din x). Ce tip de relatie este ρ ? DE ECHIVALENTA
- 69. Cum este digraful redus al unui digraf dat. ACICLIC
- 70. Fie G=(X,U) un digraf cu n noduri, A matricea sa de adiacenta si Y= A^m , m=1. Indicati numarul tuturor drumurilor de la nodul x_i la nodul x_i care au cate m arce.
- 71. Fie G=(X,U) un digraf cu n noduri si A matricea sa de adiacenta. Daca exista m=n incat $A^m=0$ atunci cum este G? ACICLIC
- 72. Fie A=(X,U) un d-arbore binar complet cu n noduri terminale. Atunci |U| = p. Cit este p ? 2(n-1)
- 73. Fie A=(X,U) un d-arbore binar cu n noduri terminale, d_1 nivelul maxim al unui nod terminal si d_2 nivelul mi al unui nod terminal. Atunci A este d-arbore binar echilibrat $\Leftrightarrow d_1-d_2=p$. Cit este p?
- 74. Fie A=(X,U) un d-arbore binar cu 2^m noduri terminale si d nivelul unui nod terminal. Indicati valoarea lui d. m
- 75. Fie A=(X,U) un d-arbore binar cu un numar de noduri terminale cuprins intre 2^m si 2^{m+1}. Indicati nivelul nodurilor terminale. m sau m+1
- 76. Se cunosc n metode de parcurgere a d-arborilor binari, Cit este n ? 3
- 77. Fie R=(E, e_i, e_f, A, w) o retea de programare a activitatilor. Spunem ca R este ordonata topologic ⇔ oricare ar fi ij€A, care este relatia intre i si j? i<j