TCS/TIT-405

B. Tech. (CS & IT) (Fourth Semester) Mid Semester EXAMINATION, 2017 THEORY OF COMPUTATION

Time: 1:30 Hours] [Maximum Marks: 50

Note: (i) This question paper contains two Sections.

(ii) Both Sections are compulsory.

Section—A

- $(1 \times 5 = 5 \text{ Marks})$ Fill in the blanks/True-False: 1.
 - Consider the language $L1 = \{\phi\}$ and $L2 = \{a\}$. (a) Value of L1 L2* UL1* is
 - The complement of the language accepted by (b) the NFA shown below is

- (c) Given the language L = {ab, aa, baa}. The valid string of length 9 is
- (d) $L = \{a^{nk}/k > 0 \text{ and n is a positive integer constant}\}$. The minimum number of states needed in DFA to recognize L is
- (e) Let w be any string of length n is {0, 1}*. Let L be the set of all substring of w. The minimum number of states is NFA that accepts L in terms of n is
- 2. Attempt any five parts:

(3×5=15 Marks)

- (a) Define Finite automata and its types with examples.
- (b) Define Mealy and Moore machines with examples.
- (c) Define pumping lemma for regular languages.
- (d) Prove Arden's theorem.

A-28

- (e) Write regular expression for the language L over $\Sigma = \{0, 1\}$ such that all the strings are of even length.
- (f) Write regular expression for the language L over $\Sigma = \{0, 1\}$ such that all the strings are of odd length.

Section-B

- 3. Attempt any two parts of choice from (a), (b) and (c). (5×2=10 Marks)
 - (a) Construct an equivalent DFA for the given NFA:

•						
	Q/E	. 0	1			
	Α	A, B	В			
	В	С	С			
	C	D	D			
	D	I	В			

where $M = (\{A, B, C, D\}, \{0, 1\}, A, \{c\}, \delta).$

(b) Minimize the following DFA:

Γ	Q/Σ	a	b
T	q0	ql	q2
		q3	q4
	q2	q4	q3
	q1 q2 q3	q5	q5
	q4	q3 q4 q5 q5 q5	q2 q4 q3 q5 q5
	q5	q5	q5

where $M = (\{q0, q1, q2, q3, q4, q5\}, \{a, b\}, q0, \{q1, q2, q5\}, \delta).$

- (c) Write regular expression for the following languages over $\Sigma = \{0,1\}$:
 - L1 = set of all strings having at least two 0's. L2 = set of all strings having at least two consecutive 1's.

P. T. O.

- 4. Attempt any two parts of choice from (a), (b) and (c). (5×2=10 Marks)
 - (a) Convert the following Moore machine to Mealy machine:

Present State	Next State		Output
	a = 0	a=1	Jourpur
→ a	d	b	1
b	a	d	0
С	С	c	0
d	b	a	1

(b) Convert the following Mealy machine to Moore machine:

,a	"]	Next State		
Decement	a = 0		a = 1	
Present State	Next State	Output	Next State	Output
→ a	d	0	b	1
b	a	1	d	0
С	С	1	С	0
d	b	0	a	1

(c) Compare Moore and Mealy machine. Design Moore machine to recognize 2's complement of a given binary number.

[5] TCS/TIT-405

- 5. Attempt any two parts of choice from (a), (b) and (c). (5×2=10 Marks)
 - (a) Construct equivalent DFA for the following regular expression:

(b) Derive the regular expression of the following DFA:

(c) Prove that the language $L = \{z^{n^2}/n >= 0\}$ is not regular.

A-28

TCS/TIT-405

340