Hochschule Konstanz Technik, Wirtschaft und Gestaltung Seminar - SS25 Advanced Topics in Data Analysis and Deep Learning – Jan Schlegel [DLT4] TabPFN https://github.com/jsjs19xx/DLT4.git

Agenda

- 1. Einleitung & Motivation
- 2. PFNs
- 3. Architektur von TabPFN
- 4. TabPFN Prior
- 5. TabPFN Training (Prior-Fitting)
- 6. Inferenz & Code-Live-Demo
- 7. Ergebnisse & Analyse
- 8. Limitationen & Ausblick
- 9. Q & A

Einleitung & Motivation

Tabellarische Daten dominieren

Einleitung & Motivation

TabPFN: A Transformer That Solves Small Tabular Classification Problems in a Second (2023)

(Noah Hollmann, Samuel Müller, Katharina Eggensperger, Frank Hutter)

mean radius	mean texture	mean perimeter		worst symmetry	worst fractal dimension	Diagnosis
17.99	10.38	122.8		0.4601	0.1189	0
20.57	17.77	132.9		0.275	0.08902	0
19.69	21.25	130		0.3613	0.08758	0
:	:	:	÷	:	:	:
19.51	16.03	119		0.213	0.1152	?

Einleitung & Motivation

Herkömmliche Ansätze

oft kleine Klassifizierungsaufgaben mit ≤ 1000 Trainingsdaten

DL-Ansätze bisher nicht geeignet, aufgrund geringer Trainingsdaten Overfitting, nicht robust

Bei tabellarischer Klassifikation dominieren **Gradient-Boosted Decision Trees**

Einleitung & MotivationGrundidee

PFNs (Prior-Fitted-Networks)

Bayesianische Grundidee

$$p(\theta \mid D) = \frac{p(D \mid \theta) \ p(\theta)}{p(D)}$$
Posterior Evidence

Bayes Formel

Posterior-Predictive-Distribution (PPD) Vorhersage eines konkreten Modells
$$\varphi$$
 Prior
$$p(y \mid x, D) \propto \int_{\Phi} p(y \mid x, \varphi) p(D \mid \varphi) p(\varphi) \, d\varphi$$
 Likelihood von φ für die Trainingsdaten

nicht exakt berechenbar bei großem Hypothesenraum Φ , wird z.B. mit MCMC oder VI approximiert

PFNs PFN-Idee

angelehnt an: https://youtu.be/qFnYgM2Yvfs?t=846

Architektur von TabPFN

Attention Mechanism

- Transformer ähnlich zu Vaswani et al., 2017, jedoch nur der Encoder, da TabPFN keine Sequenz generiert sondern klassifiziert.
- Kein Positionsencoding, da Trainings- und Testpunkte als Menge und nicht als Sequenz betrachtet werden ("Permutation Invariance").
- Kein Data Leakage: Trainingsdaten dürfen keine Informationen über Testdaten enthalten.
- Unabhängige Testdaten: Testdaten dürfen keine gegenseitigen Abhängigkeiten aufweisen.

TabPFN Prior

SCMs (Structural Causal Models)

Prior likelihood

TabPFN Prior

SCMs – Warum ein SCM Prior?

Tabellendaten spiegeln oft Kausalstrukturen wider. Solche Zusammenhänge beschreibt man mit Structural Causal Models (SCMs). Beispiel Gesundheitsnetz mit Collider:

TabPFN Prior SCMs – Anwendung

Abfolge:

- 1. SCM-Erzeugen
 - Ziehe zufällig einen DAG G (k Knoten = potentielle Spalten)
- 2. Features & Target wählen
 - Wähle zufällig k Knoten als Feature-Spalten
 - Wähle einen Knoten y als Target-Spalte
- Datensatz simulieren
 - Ziehe n-mal alle Rauschvariablen
 - Ziehe für jeden DAG i eine Funktion f_i (ReLU-Netz, Polynom, Tanh,...)
 - Propagiere Werte entlang G und lies schließlich z_x und z_y aus. Jede Ziehung erzeugt eine Zeile des Datensatzes

So entstehen Aufgaben, in denen:

- Feature-Abhängigkeiten $p\left(z_{x_i}, z_{x_j}\right) \neq p\left(z_{x_i}\right)p(z_{x_j})$ vorkommen,
- das Target Ursache oder Wirkung der Features sein kann,
- Nichtlinearität und Heteroskedastizität natürlich auftreten.

TabPFN Prior

BNNs (Bayesian Neuronal Networks)

TabPFN Prior BNNs – Anwendung

- 1. Architektur ziehen
- 2. Gewichte ziehen
- 1. Für jede Zeile i = 1, ... n:
 - Eingabe $x_i \sim p(x)$
 - Rauschen $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$
 - Ziel $y_i = f_{A,\theta}(x_i) + \epsilon_i$

$$A \sim \mathcal{P}(A)$$

$$\theta \mid A \sim \mathcal{P}(\theta \mid A)$$

TabPFN Training (Prior-Mix)

$$Prior = \begin{cases} SCM & mit Wahrscheinlichkeit 0.5 \\ BNN & mit Wahrscheinlichkeit 0.5 \end{cases}$$

Damit sieht das Modell gleichermaßen

- strukturelle, kausale Datensätze (SCM) viele Pfeile, Collider, Forks ...
- funktional-glatte Datensätze (BNN) hoch-nichtlineare, aber "black-box"-Abbildungen.

Das vergrößert die Aufgabenvielfalt und macht den gelernten Prior robuster.

TabPFN Training Loss (Kreuzentropie)

Die Erwartung wird über Datensätze genommen, die nach einer bestimmten Datenverteilung generiert werden.

Dabei wird ein Datensatz in ein Testset und ein Trainingsset unterteilt.

Verlustfunktion des PFNs

Für jedes Testbeispiel wird der negative Log-Likelihood der Vorhersage (das vom PFN gelernte Modell) berechnet, bedingt auf den Trainingsdaten und dem Testinput.

Minimieren dieser Verlustfunktion: lernen die wahre **Bayessche posterior-prädiktive Verteilung (PPD)** zu approximieren.

Inferenz & Code-Live-Demo

	precision	recall	f1-score	support
malignant	0.98	0.95	0.96	43
benign	0.97	0.99	0.98	71
accuracy			0.97	114
macro avg	0.97	0.97	0.97	114
weighted avg	0.97	0.97	0.97	114
weighted avg	6.97	0.97	6.97	114

Ergebnisse & Analyse Entscheidungsgrenze auf dem "toy-Datensatz"

Ergebnisse & Analyse

	LightGBM	CatBoost	XGBoost	ASKL2.0	AutoGluon	$TabPFN_{n.e.}$	TabPFN	TabPFN + AutoGluon
M. rank AUC OVO Mean rank Acc. Mean rank CE	6.9722 6.8889 5.7778	4.9444 4.9722 5.4444	6.1944 6.0556 6	4.4722 5.1667 6.4167	4 3.8889 3.1111	3.8056 3.8889 4.1389	2.9444 2.8889 3.0278	2.6667 2.25 2.0833
Mean AUC OVO Mean Acc. Mean CE	$0.862 \pm .012$	$0.864 \pm .011$	$0.866 \pm .011$	$0.87 \pm .014$	$0.881 \pm .01$	$0.873 \pm .0095$	0.934±.0086 0.879±.0089 0.716±.019	
Mean time (s) (Tune + Train + Predict)	3280	3746	3364	3601	3077	1.301 (CPU) 0.0519 (GPU)	37.59 (CPU) 0.6172 (GPU)	3109 (CPU) 3077 (GPU)

Ergebnisse & Analyse

Limitationen & Ausblick

Skalierung

Bislang nur Verarbeitung von ca. 1000 Zeilen und 100 Features möglich

→ Größere Datensätze mittels Sparse-/Longformer-Attention integrieren

Datentyp

Bislang Prior & Experimente rein numerisch, Leistung sinkt bei kategorischen Spalten und NAs.

→ Kategoriale Features besser kodieren, Missing-Value Handling ins Modell aufnehmen

Nicht informative Features

Viele Dummy-Spalten verschlechtern AUC

→ Prior um Rauschen ergänzen und mehr Robustheit gegenüber irrelevanten Features schaffen

Kausaler Scope

Bisher nur prädiktiv

→ Interventionen & Counterfactuals über SCM-Prior abschätzen

Literaturverzeichnis

 Hollmann, N., Müller, S., Eggensperger, K. & Hutter, F. (2022). TabPFN: A Transformer That Solves Small Tabular Classification Problems in a Second. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2207.01848

H T	!									Hochschule Konstanz Technik, Wirtschaft und Gestaltung
G		•		•	•	•				
•	•	•		•	٠	•	•	٠		
	len D fmerk			re					·	
	•	•	•	•	•		•			
•	•	•	٠	٠	٠		٠	·		
•	•	•	•	•	•	•	•	•		