STAT 5010: Advanced Statistical Inference

Lecturer: Tony Sit

Lecture 5

Scribe: Dominic Leung and Bencong Zhu

5 Anciallarity and Completeness

5.1 Recap: Minimal Sufficiency

Theorem 1 Let $\{p(x;\theta):\theta\in\Omega\}$ be a family of densities with respect to some measure μ (Lebesgue measure for continuous distributionm, counting measure for discrete distribution). Suppose that there exists a statistic T such that for every $x,y\in\mathcal{X}$

$$p(x;\theta) = C_{x,y}p(y;\theta), \Leftrightarrow T(x) = T(y).$$

for every θ and some $C_{x,y} \in \mathbb{R}$. Then T is a minimal sufficient statistic.

Reference from books: Theorem 6.2.3?, Theorem 3.11?.

Example 1 (Normal minimal sufficient statistic) Let X_1, \ldots, X_n be iid $N(\mu, \sigma^2)$, with μ and σ^2 unknown. Let x and y be two sample points, and let (\overline{x}, S_x^2) and (\overline{y}, S_y^2) be the sample means and variances corresponding to the x and y samples respectively.

$$\begin{split} \frac{f(x;\mu,\sigma^2)}{f(y;\mu,\sigma^2)} &= \frac{(2\pi\sigma^2)^{n/2} \exp\left[-\left\{n(\overline{x}-\mu)^2 + (n-1)S_x^2\right\}/(2\sigma^2)\right]}{(2\pi\sigma^2)^{n/2} \exp\left[-\left\{n(\overline{y}-\mu)^2 + (n-1)S_y^2\right\}/(2\sigma^2)\right]} \\ &= \exp\left[\left\{-n(\overline{x}^2 - \overline{y}^2) + 2n\mu(\overline{x} - \overline{y}) - (n-1)(S_x^2 - S_y^2)\right\}/(2\sigma^2)\right]. \end{split}$$

This ratio will be constant as a function of $\theta=(\mu,\sigma^2)$ if and only if $\overline{x}=\overline{y}$ and $S_x^2=S_y^2$. Thus, by the above theorem, (\overline{X},S^2) is a minimum sufficient statistic for θ , where $S^2=(n-1)^{-1}\sum_{i=1}^n(X_i-\overline{X})^2$.

Example 2 (Curved exponential family) Let $X_1, \ldots, X_N \stackrel{iid}{\sim} N(\sigma, \sigma^2), \sigma > 0$. Denote $\theta = \sigma$, then

$$\frac{p(x;\theta)}{p(y;\theta)} = \dots = \exp\left\{-\frac{1}{2\sigma^2} \left(\sum_{i=1}^n x_i^2 - \sum_{i=1}^n y_i^2\right) + \frac{1}{\sigma} \left(\sum_{i=1}^n x_i - \sum_{i=1}^n y_i\right)\right\}.$$

Hence, $T(X) = (T_1(X), T_2(X)) = (\sum_{i=1}^n X_i^2, \sum_{i=1}^n X_i)$ is minimal sufficient.

Remark 1 You should be reminded that if $p(x;\theta) = C_{x,y}p(y;\theta)$, x and y must be supported by the same θ (support of $X : \{x \in \mathcal{X} : p(x;\theta) > 0\}$). Otherwise, the 'constant' $C_{x,y}$ will be θ -dependent.

Example 3 Let $X_1, \ldots, X_n \stackrel{iid}{\sim} Uniform(0, \theta)$ and $T(X) = \max_{1 \leq i \leq n} X_i = X_{(n)}$. In that case for $x = (x_1, \ldots, x_n)$ such that $x_i > 0$, $i = 1, \ldots, n$,

$$p(x;\theta) = \prod_{i=1}^{n} \frac{1}{\theta} I(x_i < \theta) = \frac{1}{\theta^n} I(T(X) < \theta).$$

If T(x) and T(y) equals, then $p(x;\theta) = 1 \times p(y;\theta)$. The ratio between the two distributions does not depend on θ , so T is sufficient.

Conversely, if x, y > 0 (i.e. $x_i, y_i > 0$, i = 1, ..., n) are supported by the same θ 's, then

$$\{\theta \text{ supporting } x\} = (T(x), \infty) = \{T(y), \infty\} = \{\theta \text{ supporting } y\}.$$

Therefore, it implies T(x) = T(y) and is a minimal sufficient statistic.

Theorem 2 For any <u>minimal</u>, s-dimensional exponential family, the statistic $(\sum_{i=1}^n T_1(X_I), \dots, \sum_{i=1}^n T_s(X_i))$ is a minimal sufficient statistic. [Example 3.12 ?]

Proof 1 Let $p(x; \theta) = \exp \{ \eta(\theta) T(x) - B(\theta) \} h(x)$ be the density of an s-dimensional exponential family, where $\theta \in \Omega$. By NFFC, T is sufficient.

Suppose $p(x;\theta) \propto_{\theta} p(y;\theta)$, then

$$e^{\eta(\theta)T(x)} \propto_{\theta} e^{\eta(\theta)T(y)}$$

which imples that

$$\eta(\theta) \cdot T(x) = \eta(\theta) \cdot T(y) + C,$$

where the constant C may depend on both x and y (but is independent of θ).

If θ_0 and θ_1 are any two points in Ω ,

$$\{\eta(\theta_0) - \eta(\theta_1)\} \cdot T(x) = \{\eta(\theta_0) - \eta(\theta_1)\} \cdot T(y)$$

if and only if

$$\{\eta(\theta_0) - \eta(\theta_1)\} \cdot \{T(x) - T(y)\} = 0 \tag{1}$$

This shows that T(x) - T(y) is orthogonal to early vector in

$$\eta(\Omega) \ominus \eta(\Omega) \equiv \{\eta(\theta_0) - \eta(\theta_1) : \theta_0 \in \Omega, \theta_1 \in \Omega\},\$$

so it must lie in the orthogonal complement of the linear span of $\eta(\Omega) \ominus \eta(\Omega)$. In particular, if the linear span of $\eta(\Omega) \ominus \eta(\Omega)$ is all of \mathbb{R}^s , then T(x) must equal T(y) in which case T is minimal sufficient.

5.2 Anciallarity and Completeness

Illustration:

Exponential families \rightarrow significant data compression (without losing any information about θ).

Example 4 Consider $X_1, \ldots, X_n \stackrel{iid}{\sim} Cauchy(\theta)$, with densities

$$p(x;\theta) = \frac{1}{\pi} \frac{1}{1 + (x - \theta)^2} \equiv f(x - \theta).$$

Based on ? §1.5 result, we know that $(X_{(1)}, \ldots, X_{(n)})$ is minimal sufficient. The similar conclusion/observation can also be found for the double exponential location model: $p(x;\theta) \propto \exp(|x-\theta|)$. [The density is $f(x;\theta) = e^{|x-\theta|}/21$.

IDEA: Determine the amount of 'ancillarity' information stored in its minimal sufficient statistics.

Definition 3 A statistic A is ancillary for $X \sim p_{\theta} \in \mathcal{P}$ if the distribution of A(X) does not depend on θ .

Example 4 (Continued) Again $X_1, \ldots, X_n \stackrel{iid}{\sim} Cauchy(\theta)$, then

$$A(X) = X_{(n)} - X_{(1)}$$
 is ancillary,

even though $(X_{(1)}, \ldots, X_{(n)})$ is minimal sufficient.

To see this, observe that $X_i = Z_i + \theta$ for $Z_i \stackrel{iid}{\sim} Cauchy(0)$, so $X_{(i)} = Z_{(i)} + \theta$ and A(X) = A(Z), which does not depend on θ .

Definition 4 (First-order ancillary statistic) A statistic A is <u>first-order ancillary</u> for $X \sin p_{\theta} \in \mathcal{P}$ if $E_{\theta}(A(X))$ does not depend on θ .

Definition 5 (Complete statistic) A statistic T is <u>complete</u> for $X \sim p_{\theta} \in \mathcal{P}$ if no non-constant function of T is first-order ancillary. In other words, if $E_{\theta}(f(T(X)) = 0$ for all θ , then f(T(X)) = 0 with probability I for all θ .

Remark 2

- 1. If T is complete sufficient, then T is minimal sufficient. [Bahadur's theeorem].
- 2. Complete sufficient statistic yield optimal unbiased estimators.

Example 5 (Discrete Case) Let $X_1, \ldots, X_n \stackrel{iid}{\sim} Bernoulli(\theta)$, $\theta \in (0,1)$. Then $T(X) = \sum_{i=1}^n X_i$ is sufficient.

Suppose that $E_{\theta}[f(T(X))] = 0$ for all $\theta \in (0,1)$, then

$$\sum_{j=0}^{n} f(j) \binom{n}{j} \theta^{j} (1-\theta)^{n-j} = 0, \qquad \forall \theta \in [0,1].$$
 (2)

Dividing both sides by θ^n and substituting $\beta = \theta/(1-\theta)$, we can rewrite (2) as

$$\sum_{j=0}^{n} f(j) \binom{n}{j} \beta^{j} = 0 \qquad \forall \beta > 0.$$

If f are non-zero, then the quantity on the LHS is a polynomial of degree at most n. However, an nth-degree polynomial can have at most n roots. Hence, it is impossible for the LHS equals 0 for every $\beta > 0$ unless f = 0. So, T is complete.

Example 6 (Continuous Case) Let $X_1, \ldots, X_n \stackrel{iid}{\sim} N(\theta, \sigma^2)$ with unknown $\theta \in \mathbb{R}$ and $\sigma^2 > 0$. We can verify if $T(X) = \overline{X}_n = n^{-1} \sum_{i=1}^n X_i$ is complete for the model. [Note that T is minimal sufficient.]

Let's consider the case with n=1 and assume WLOG $\sigma^2=1$, $T(X)\sim N(\theta,1)$. Suppose

$$E_{\theta}(f(X)) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) \exp\left\{-\frac{(x-\theta)^2}{2}\right\} dx = 0, \quad \forall \theta \in \mathbb{R}.$$
 (†)

We then decompose f into its positive and negative parts as

$$f(x) = f_{+}(x) - f_{-}(x),$$

where $f_{+}(x) = \max(f(x), 0)$ and $f_{-}(x) = \max(-f(x), 0)$. Then $f_{+}(x) \ge 0$ and $f_{-}(x) \ge 0$ for all $x \in \mathbb{R}$.

Observation: $f_+(x) = f_-(x)$ if and only if $f_+(x) = f_-(x) = 0$.

- 1. If $f(x) \ge 0$ almost everywhere (a.e.) or $f(x) \le 0$ a.e., then (†) implies that f(x) = 0 a.e. because setting $\theta = 0$ because setting $\theta = 0$ gives us an integral of a nonnegative (resp. non-positive) function of zero. This gives/shows completeness.
- 2. Suppose f_+ and f_- have non-zero components, we may write

$$\frac{\int_{-\infty}^{\infty} f_{+}(x)e^{-\frac{x^{2}}{2}}e^{\theta x}dx}{\int_{-\infty}^{\infty} f_{+}(x)e^{-\frac{x^{2}}{2}}dx} = \frac{\int_{-\infty}^{\infty} f_{-}(x)e^{-\frac{x^{2}}{2}}e^{\theta x}dx}{\int_{-\infty}^{\infty} f_{-}(x)e^{-\frac{x^{2}}{2}}dx},\tag{\dagger\dagger}$$

since (\dagger) shows that the denominator of $(\dagger\dagger)$ are both equal. The quantity

$$\frac{f_{+}(x)e^{-\frac{x^{2}}{x}}}{\int_{-\infty}^{\infty} f_{+}(x)e^{-x^{2}}xdx}$$

defines a probability density and the LHS of (††) is the moment generating function of this density. Similarly, the RHS is the moment generating function of the density

$$\frac{f_{-}(x)e^{-\frac{x^2}{x}}}{\int_{-\infty}^{\infty} f_{-}(x)e^{-x^2}xdx}$$

It implies that $f_+(x) = f_-(x)$ a.e.. Then $f_+(x) = f_-(x) = 0$ a.e., or in other words, f(x) = 0 a.e.. Hence T is copmlete (and sufficient).

Example 7 (Example 3.16 of Keenen (2010))

Exercise 1 If $X_1, \ldots, X_n \stackrel{iid}{\sim} p(x, \theta) \propto h(x)e^{\theta x}$, then the Statistics T(x) = X is complete \rightarrow Suppose $\int f(x)h(x)e^{\theta x}dx = 0$ for all $\theta \in \Omega$

- \rightarrow decompose $f(x) = f_{+}(x) f_{-}(x)$ with $f_{+} \geq 0, f_{-} \geq 0$
- $\rightarrow f_+$ and f_- can be viewed as unnormalised densities $p_+(x)$ and $p_-(x)$, respectively.
- \rightarrow argue that the m.g.f.'s of p_+ and p_- are equal

Theorem 6 (Theorem 4.3.1 ?) (T_1, \ldots, T_n) is complete for any s-dimensional full rank exponential family. [see P. 117 of TSH]

Theorem 7 (Basu's Theorem) If T is complete and sufficient for $\mathcal{P} = \{P_{\theta} : \theta \in \Omega\}$ and V is ancillary, then $T(X) \perp \!\!\! \perp V$.

Proof 2 Define $q_A(t) = P_{\theta}(V \in A \mid T = t)$ or $q_A(T) = P_{\theta}(V \in A \mid T)$ and $p_A = P_{\theta}(V \in A)$. By sufficiency and ancillarity, neither p_A nor $q_A(t)$ depends θ . By smoothing

$$(P_A = P_\theta(V \in A) = E_\theta(P_\theta(V \in A \mid T)) = E_\theta(q_A(T))$$

and so by completeness, $q_A(T) = p_A$ a.e. for \mathcal{P} . Again, by smoothing/tower expectation,

$$P_{\theta}(T \in B, V \in A) = E_{\theta} (1_{B}(T)1_{A}(V))$$

$$= E_{\theta} (E_{\theta} (1_{B}(T)1_{A}(v) \mid T))$$

$$= E_{\theta} (1_{B}(T)E_{\theta} (1_{A}(v) \mid T))$$

$$= E_{\theta} (1_{B}(T)q_{A}(T))$$

$$= E_{\theta} (1_{B}(T) \cdot p_{A})$$

$$= P_{\theta}(T \in B) \cdot P_{\theta}(V \in A)$$

Hence, T and V are independent as A and B are arbitrary Borel sets.

Example 8 Let $X_1, \ldots, X_n \stackrel{iid}{\sim} N\left(\mu, \sigma^2\right)$, where both of μ and σ^2 are unknown. Then $\bar{X}_n \perp \!\!\! \perp n^{-1} \sum_{i=1}^n \left(X_i - \bar{X}_n\right)^2$ with $\bar{X}_n = n^{-1} \sum_{i=1}^n X_i$.

Fix any $\sigma > 0$ and consider the submodel $\mathcal{P}_{\sigma} = \{N\left(\mu, \sigma^2\right) : \mu \in \mathbb{R}\}$ In each submodel, \bar{X}_n is complete and sufficient, and $n^{-1} \sum_{i=1}^n \left(X_i - \bar{X}\right)^2$ is ancillary

$$X_i = Z_i + \mu$$
 $X_i - \bar{X}_n \to Z_i - \bar{Z}_i$

By Basu's theorem, $\bar{X}_n \perp \!\!\! \perp \sum_{i=1}^n \left(x_i - \bar{x}_n\right)^2$ under $N\left(\mu, \sigma^2\right)$ for any μ . Since σ is arbitrary, we can conclude that $\bar{X}_n \perp \!\!\! \perp \sum_{i=1}^n \left(x_i - \bar{x}_n\right)^2$ hold for the full model $\mathcal{P} = \left\{N\left(\mu, \sigma^2\right) : \mu \in \mathbb{R}, \sigma^2 > 0\right\}$

From data reduction to optimal Inference

Definition 8 A function $f: C \to \mathbb{R}$ with C convex is a convex function if $x \neq y \in C$ and $\gamma \in (0,1)$:

$$f(\gamma x + (1 - \gamma)y) \leqslant \gamma f(x) + (1 - \gamma)f(y)$$

The function f is said to be strictly convex if the above inequality holds strictly (ie. " < ")

Example 9 For any $\theta \in \Omega$, the function $f(d) = (d - \theta)^2$ is strictly convex on \mathbb{R} .

Example 10 For any $\theta \in \Omega$, the function $f(d) = |d - \theta|$ is convex, but not strictly convex.

Theorem 9 (Jensen's Inequality) If $f: C \to \mathbb{R}$ is convex on any open set C, $P(x \in C) = 1$ and E(X) exists, then

$$f(E(x)) \leqslant E(f(x))$$

If f is strictly convex, then the above inequality holds strictly unless X = E(X) w.p.1

Theorem 10 Suppose that T is sufficient for $\mathcal{P} = \{P_{\theta} : \theta \in \Omega\}$, that $\delta(X)$ is an estimator for $g(\theta)$ for which $E(\delta(x))$ exists and that $R(\theta, \delta) = E_{\theta}L(\theta, \delta(x)) < \infty$. If, in particular, $L(\theta, \cdot)$ is convex (as a function of $d \in \mathcal{D}$), then

$$R(\theta, \eta) \leqslant R(\theta, \delta)$$
 for $\eta(T(x)) = E(\delta(x) \mid T(x))$

If $L\left(\theta,\cdot\right)$ is strictly convex, then $R(\theta,\eta) < R(\theta,\delta)$ for any θ unless $\eta(T^{'}(x)) = \delta(x)$

Example 11 Let $X_1, \ldots, X_n \stackrel{iid}{\sim} Bernoulli(\theta), \theta \in (0,1)$, and consider $L(\theta,d) = (\theta-d)^2$. Suppose we start with an unresaonable estimator $\delta(X) = X_1$. We know that $T(X) = \bar{x}_n$ is sufficient, so we can apply Rao-Blackwell theorem to improve our eatimator δ

$$\underline{\eta(T(X))} = E(\delta(X) \mid T(X))$$

$$= \frac{1}{n} \sum_{i=1}^{n} E(X_1 \mid \bar{X}_n)$$

$$= E(\bar{X}_n \mid \bar{X}_n) = \bar{X}_n$$

Recall that in lecture I, we showed already that $R(\theta, \eta) = \frac{\theta(1-\theta)}{n} < \theta(1-\theta) = R(\theta, \delta)$.

$$(\delta_{naive}(X) = 1/2)$$
 $R(1/2, \delta_{naive}) < R(1/2, \delta')$

References