Introduction to Algorithm Analysis Part 2

David Fernández-Baca

Computer Science 311 Iowa State University

January 20, 2022

Examples and Further Properties of O-Notation

Proposition

$$5n^2 + 3n \log n + 2n + 5$$
 is $O(n^2)$.

Proof.

$$\log_2 n \le n$$
, for $n \ge 1$.

Therefore,

$$5n^2 + 3n\log n + 2n + 5 \le (5+3+2+5)n^2 = 15n^2$$
, for $n \ge 1$.

Hence, choose
$$c = 15$$
 and $n_0 = 1$.

Proposition

 $2n + 70 \log n$ is O(n).

Proof.

$$2n + 70 \log n \le \frac{72}{n}$$
, for $n \ge 1$.

Hence, choose c = 72 and $n_0 = 1$.

Proposition

 $3\log n + 2$ is $O(\log n)$.

Proof.

$$3\log n + 2 \le 5\log n$$
, for $n \ge 2$.

Hence, choose c = 5 and $n_0 = 2$.

Note. We use $n_0 = 2$ instead of 1, because $\log n = 0$ for n = 1.

Proposition

$$2^{n+2}$$
 is $O(2^n)$.

Proof.

$$2^{n+2} = 2^2 \cdot 2^n = 4 \cdot 2^n$$
, for $n \ge 1$

Hence, choose c = 4 and $n_0 = 1$.

Proposition

 n^2 is not O(n).

Proof.

• Recall: If f(n) = O(g(n)), then $\exists c > 0$ such that

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} \le c.$$

• But here $f(n) = n^2$, g(n) = n and

$$\lim_{n\to\infty}\frac{n^2}{n}=n\not\leq c\quad\text{for any fixed }c>0.$$

Proposition

 3^n is not $O(2^n)$.

Proof.

$$\lim_{n\to\infty}\frac{3^n}{2^n}=\left(\frac{3}{2}\right)^n\not\leq c\quad\text{for any fixed }c>0.$$

Properties of *O*-notation

Polynomials

Proposition (A polynomial is big-O of its leading term)

If f(n) is a polynomial of degree d, that is,

$$f(n) = a_0 + a_1 n + a_2 n^2 + \dots + a_d n^d,$$

and $a_d > 0$, then f(n) is $O(n^d)$.

Proof.

$$1 \le n \le n^2 \le \dots \le n^d$$
, for $n \ge 1$.

Thus,

$$a_0 + a_1 n + a_2 n^2 + \dots + a_d n^d \le (|a_0| + |a_1| + |a_2| + \dots + |a_d|)n^d.$$

Hence, choose

$$c = |a_0| + |a_1| + |a_2| + \dots + |a_d|$$
 and $n_0 = 1$.

Theorem (Properties of *O*-notation)

- (Reflexivity) f is O(f).
- **②** (Constants) If f is O(g) and c > 0, then $c \cdot f$ is O(g).
- **1** (Products) If f_1 is $O(g_1)$ and f_2 is $O(g_2)$, then $f_1 \cdot f_2$ is $O(g_1 \cdot g_2)$.
- **4** (Sums) If f_1 is $O(g_1)$ and f_2 is $O(g_2)$, then $f_1 + f_2$ is $O(\max\{g_1, g_2\})$.
- **1** (Transitivity.) If f is O(g) and g is O(h), then f is O(h).

Proof of 3: $f_1 = O(g_1)$ and $f_2 = O(g_2) \Rightarrow f_1 \cdot f_2 = O(g_1 \cdot g_2)$.

• $\exists c_1 > 0$ and $n_1 \geq 0$ such that

$$0 \le f_1(n) \le c_1 \cdot g_1(n)$$
, for all $n \ge n_1$.

• $\exists c_2 > 0$ and $n_2 \ge 0$ such that

$$0 \le f_2(n) \le c_2 \cdot g_2(n)$$
, for all $n \ge n_2$.

Then,

$$0 \le f_1(n) \cdot f_2(n) \le c_1 \cdot c_2 \cdot g_1(n) \cdot g_2(n)$$
, for all $n \ge \max\{n_1, n_2\}$.

• Big-O bound follows by taking $c = c_1 \cdot c_2$ and $n_0 = \max\{n_1, n_2\}$.

David Fernández-Baca (Computer Science 31 Introduction to Algorithm Analysis Part 2

Implication 1: Consecutive Operations

Property

An algorithm that consists of a O(f)-time step followed by an O(g)-time step, takes $O(\max\{f,g\})$ time.

Example

If $f(n) = n^2$ and g(n) = n, then total time is $O(n^2)$.

Implication 2: Loops

Property

If a O(f) operation is repeated O(g) times, the total time is $O(f \cdot g)$.

Example

If an $O(n^2)$ operation is performed $O(n\log n)$ times, the total time is $O(n^3\log n)$.

Classifying Functions by Growth Rate

A Hierarchy or Running Times

- Constant, O(1), functions don't grow at all.
 - ▶ Any operation that does not depend on input size is O(1); e.g., assignments, comparisons, and increments.
- Logarithmic, $O(\log n)$, functions grow more slowly than
- Linear, O(n), functions, which grow more slowly than
- Linearithmic, $O(n \log n)$, functions, which grown more slowly than
- Quadratic, $O(n^2)$, functions, which are a special case of
- Polynomial functions i.e., $O(n^k)$ functions, k constant which grow more slowly than
- Exponential functions i.e., α^n functions, $\alpha > 1$.

A Hierarchy of Running Times

Source: Wikipedia

A Hierarchy of Running Times

Clock rate: seconds/day seconds/year	1,000,000,000 86400 31536000					
size	log n	n	n log n	n^2	n^3	2^n
10	3 ns	0.00001 ms	0.00003 ms	0.0001 ms	0.0010 ms	0.00102 ms
20	4 ns	0.00002 ms	0.00009 ms	0.0004 ms	0.0080 ms	1.04858 ms
30	5 ns	0.00003 ms	0.00015 ms	0.0009 ms	0.0270 ms	1.0737 s
50	6 ns	0.00005 ms	0.00028 ms	0.0025 ms	0.1250 ms	13.0312 days
100	7 ns	0.00010 ms	0.00066 ms	0.0100 ms	1.0000 ms	4.0E+13 years
1000	10 ns	0.00100 ms	0.00997 ms	1.0000 ms	1000.0000 ms	3.4E+284 years
10000	13 ns	0.01000 ms	0.13288 ms	0.1000 s	1000.0000 s	#NUM!
100000	17 ns	0.10000 ms	1.66096 ms	10.0000 s	11.5741 days	#NUM!
1000000	20 ns	1.00000 ms	19.93157 ms	1000.0000 s	31.7098 years	#NUM!

Source: Steve Kautz

Exponential Time

Subset Sum

Input: An array A with n elements and a number K.

Question: Does A contain a subset that adds up to exactly K?

Notes

- ullet Fastest known algorithms for Subset Sum take time exponential in n.
- Subset Sum is NP-complete, and thus unlikely to have a polynomial-time algorithm.

An Exponential Time Algorithm for Subset Sum

Algorithm

- ullet Enumerate all subsets of the elements of A.
- ullet For each subset, see if its elements add up to K.

Analysis

ullet Two choices for each i: include or exclude A[i].

$$\Rightarrow$$
 number of subsets to enumerate $=\underbrace{2\cdot 2\cdot 2\cdot 2\cdot 2}_{n \text{ times}}=2^n$

- Time to add up each set is O(n).
 - \Rightarrow Algorithm takes $O(n \cdot 2^n)$ time.

More Asymptotic Notation

Beyond O-notation

Reminder

O-notation expresses upper bounds.

Other useful notations

 Ω -notation: For lower bounds.

 Θ -notation: For exact bounds.

o-notation: For strict upper bounds.

 ω -notation: For strict lower bounds.

Ω -notation

Definition

f(n) is $\Omega(g(n))$ if and only if there exist positive constants c and n_0 such that

$$0 \le c \cdot g(n) \le f(n)$$
, for all $n \ge n_0$.

$$f(n) = \Omega(g(n))$$

Ω -notation

Example

 $3n\log n - 2n$ is $\Omega(n\log n)$.

Justification

$$3n\log n - 2n = n\log n + 2n(\log n - 1) \ge n\log n$$
, for $n \ge 2$.

Thus, we can take c = 1 and $n_0 = 2$.

Θ -notation

Definition

f(n) is $\Theta(g(n))$ if and only if there exist positive constants c_1 , c_2 , and n_0 such that

$$c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n)$$
, for all $n \ge n_0$.

Θ -notation

Example

 $3n \log n + 4n + 5 \log n$ is $\Theta(n \log n)$.

Justification

$$3n \log n \le 3n \log n + 4n + 5 \log n \le (3 + 4 + 5)n \log n$$
, for $n \ge 2$.

Thus, we can take $c_1 = 3$, $c_2 = 12$, and $n_0 = 2$.

$$\Theta$$
, O , and Ω

Theorem

For any two functions f(n) and g(n),

$$f(n) = \Theta(g(n)) \Leftrightarrow f(n) = O(g(n)) \text{ and } f(n) = \Omega(g(n)).$$

Little-o and Little- ω (Not covered in class)

o-notation

Definition

f(n) is o(g(n)) if and only if for every positive constant c, there exists a constant n_0 such that

$$0 \le f(n) < c \cdot g(n), \quad \text{for all } n \ge n_0.$$

Note that

$$f(n) = o(g(n))$$
 \Rightarrow $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0.$

I.e., f(n) becomes insignificant relative to g(n) as n approaches infinity.

David Fernández-Baca (Computer Science 31 Introduction to Algorithm Analysis Part 2

Using o-notation

o-notation expresses upper bounds that are not asymptotically tight.

Example

$$2n = o(n^2)$$
, but $2n \neq o(n)$.

ω -notation

Definition

f(n) is $\omega(g(n))$ if and only if for every positive constant c, there exists a constant n_0 such that

$$0 \le c \cdot g(n) < f(n)$$
, for all $n \ge n_0$.

Note that

$$f(n) = \omega(g(n))$$
 \Rightarrow $\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty.$

and

$$f(n) = \omega(g(n)) \quad \Leftrightarrow \quad g(n) = o(f(n)).$$

David Fernández-Baca (Computer Science 31 Introduction to Algorithm Analysis Part 2

Using ω -notation

 ω -notation expresses lower bounds that are not asymptotically tight.

Example

$$\frac{n^2}{2} = \omega(n), \quad \text{but} \quad \frac{n^2}{2} \neq \omega(n^2).$$

Bibliography

References

- [CLRS] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein, *Introduction to Algorithms* (3rd edition), MIT Press, 2009.
 - [KT] Jon Kleinberg and Éva Tardos, *Algorithm Design*, Addison-Wesley, 2006.