

Análise do Consumo de Energia elétrica no Estado do Rio de Janeiro

Gustavo Felicidade UFRJ Analytica 2023.1

Introdução

O consumo de energia elétrica no Rio de Janeiro.

O consumo de energia elétrica é um tema relevante para entendermos a infraestrutura e as necessidades energéticas do Rio de Janeiro.

Com a crescente demanda por energia elétrica nas últimas décadas, é importante analisarmos como esse consumo evoluiu ao longo do tempo. A partir dos dados disponibilizados pela Base dos Dados, é possível realizar uma análise exploratória que permita compreender o consumo de energia elétrica na cidade do Rio de Janeiro.

Através de Artigos na mídia pude vericar a respeito do consumo no estado do Rio de Janeiro

Sobre a geração de energia no Rio de Janeiro:

Em termos de potência instalada na geração distribuída, o Rio de Janeiro lidera o ranking da cidade com maior volume de geração, com 17,7MW.

Fonte:

https://www.portalsolar.com.br/noticias/materias/rio-de-janeiro-lidera-o-ranking-de-producao-de-energia-solar-distribuida-no-pais

Através de Artigos na mídia pude vericar a respeito do consumo no estado do Rio de Janeiro

https://brasil61.com/n/rio-de-janeiro-possui-a-maior-tarifa-media-de-en ergia-eletrica-entre-os-estados-da-r egiao-sudeste-pind212980

Rio de Janeiro possui a maior tarifa média de energia elétrica entre os estados da Região Sudeste

Rio registra maior alta do país no consumo de energia elétrica

Por Aislan Loyola - 18:34 - 4 de maio de 2021

Levantamento da Câmara de Comercialização de Energia Elétrica – CCEE mostra que o consumo de energia no Estado do Rio de Janeiro cresceu 26% na primeira quinzena de abril, na comparação com o mesmo período de 2020. É o estado com a maior alta do país nestas duas primeiras semanas do mês.

https://monitormercantil.com.br/rio-registra-maior-alta-do-pais-no-consumo-de-ene rgia-eletrica/

Então, é válido levantarmos questionamentos sobre isso...

1. Quais são os dados disponíveis sobre o consumo de energia elétrica no Rio de Janeiro?

Nossos dados foram extraídos do datario.com

Os seguintes arquivos .csv são filtrados pela chave 'Elétrica' no contexto do Município do Rio de Janeiro:

1 Tabela 1686 - Consumo total mensal de energia elétrica, segundo classe de serviço - Município do Rio de Janeiro - 2019 url =

https://www.data.rio/documents/7c4d6a17d1c94ccf8c652488318d691b/about

2 Tabela 1687 - Total mensal de unidades consumidoras de energia elétrica, por classe de consumo, no Município do Rio de Janeiro em 2019 url =

https://www.data.rio/documents/c89710cd395b495a999ac84399fcc884/about

2. Como o consumo de energia elétrica tem evoluído na cidade do Rio de Janeiro ao longo das últimas décadas?

Sim, Na minha análise pude verificar um aumento contínuo no consumo em função do crescimento da População.

No gráfico podemos ver:

3. Quais são as principais classes de serviço que consomem energia elétrica no Rio de Janeiro e como essa distribuição tem se modificado com o tempo?

Diversas classes de serviços são enquadradas como consumidoras dentre elas Residencial, Industrial, Comercial Rural e Poder Público, etc...

1 10		Ago 524640.763
) 18	D→ Ago 166069.652	Set 531730.346
<class 'pandas.core.series.series'=""></class>	SEL 166969,980	Out 566401.765
[Jan 350121.439	Out 134774.379	Nov 579984.182
Fev 360354.173	Nov 173311.429	Dez 577785.391
Mar 329053.693	Dez 162866.421	Name: 6932628.609000001, dtype: float64, Tota
Abr 460983.039	Name: 1961873.716, dtype: float64, Total	Jan 623629.971
Mai 403608.164	Jan 133699.075	Fev 605636.532
Jun 362071.840	Fev 165112.309	Mar 621746.158
Jul 346843.060	Mar 158401.858	Abr 650178.147
Ago 359412.252	Abr 159576.196	Mai 570509.176
Set 353521.288	Mai 169714.089	Jun 507464.002
Out 383440.107	Jun 169067.312	Jul 497373.815
Nov 431789.763	Jul 164637.433	Ago 498047.224
Dez 461995.566	Ago 165480.908	Set 525495.279
Name: 4603194.384, dtype: float64, Total	Set 166023.530	Out 521008,617
Jan 487581.090	Out 161235.587	Nov 537338.122
FeV 482074,320	Nov 159313.008	Dez 581880.926
Mar 507677,940	Dez 160667.466	Name: 6740307.969000001, dtype: float64, Tota
Abr 403703.083	Name: 1932928.770999999, dtype: float64, Total	Jan 615068.911000
Mai 404002.814	Jan 126872.757	Fev 625038.099000
Jun 360981.711	Fev 171943.845	Mar 625061.339000
Jul 353784.829	Mar 159527.456	Abr 573918.660000
MIN MANAGEMENT	Abr 163652.080	Mai 590118,174000
Ago 357218.799	Mai 153285.392	Jun 503571.145000
Set 338027.966	Jun 156027.387	Jul 471031.101000
Out 382649.702	Jul 137476.610	Ago 482268.015000
Nov 368786.479	Ago 153755.985	Set 490924.233000
Dez 440973.312	Set 154440.211	Out 500748.596129
Name: 4887462.045000001, dtype: float64, Total	Out 144245.307	Nov 528157.793144
	Nov 161056.764	Dez 559626.720354

4. Quais são as implicações do consumo de energia elétrica no meio ambiente na cidade do Rio de Janeiro?

O consumo de energia elétrica na cidade do Rio de Janeiro tem várias implicações no meio ambiente. A produção de energia elétrica geralmente envolve a queima de combustíveis fósseis, como o carvão e o petróleo, que emitem gases de efeito estufa, como dióxido de carbono e óxidos de nitrogênio, que contribuem para o aquecimento global e as mudanças climáticas.

5. Como é possível otimizar o consumo de energia elétrica na cidade do Rio de Janeiro?

Existem várias maneiras de otimizar o consumo de energia elétrica na cidade do Rio de Janeiro. Aqui estão algumas sugestões:

- 1. Promover o uso de fontes de energia renovável, como a energia solar, eólica e hidrelétrica, para reduzir a dependência de combustíveis fósseis.
- 2. Incentivar o uso de aparelhos elétricos mais eficientes em termos de energia, como lâmpadas LED, eletrodomésticos com classificação energética A e aparelhos eletrônicos com baixo consumo de energia.
- 3. Estimular a prática da economia de energia em casa, por meio de hábitos simples, como desligar os aparelhos da tomada quando não estão sendo usados, usar o ar condicionado de forma consciente e aproveitar a luz natural.
- 4. Investir em projetos de eficiência energética em edifícios públicos e privados, como a instalação de painéis solares e sistemas de iluminação LED, que podem reduzir significativamente o consumo de energia.
- Criar campanhas de conscientização sobre o consumo consciente de energia elétrica e a importância da preservação do meio ambiente.

Modelo

Utilizando os dados abertos vamos agora aplicar os métodos analíticos...


```
import os
import csv
import pandas as pd
import numpy as np
import logging
import time
import matplotlib
import matplotlib.pyplot as plt
import plotly graph objs as go
import plotly.io as pio
from plotly.subplots import make subplots
from tensorflow import keras
from keras.preprocessing.text import Tokenizer
from keras.utils import pad sequences
from keras.models import Sequential
from keras.layers import Embedding, LSTM, Dense, Dropout
from keras.callbacks import EarlyStopping
from sklearn.metrics import accuracy_score, f1_score
```

→ Configurando Log

Tratamento dos Dados

```
# Ler a página "2002" do arquivo
 # Tabela 1686 - Consumo total mensal de energia elétrica, segundo classe de
 serviço - Município do Rio de Janeiro - 2019
 df1 = pd.read_excel(
     r"/content/drive/MyDrive/Colab Notebooks/1686.xls",
     sheet_name="2002", header=6, skiprows=2, nrows=12)
 # Ler a página "T 2257" do arquivo
 # "Tabela 2257 - Consumo total, médio anual, mensal e diário
 # de energia elétrica por habitante no Município do Rio de Janeiro
 # entre 1980-2019"
 df2 = pd.read_excel(
     r"/content/drive/MyDrive/Colab Notebooks/2257.xls",
         sheet_name="T 2257", header=6, skiprows=1, nrows=40)
 # Imprimir os DataFrames
 # print("Tabela 2257 - Consumo total, médio anual, mensal e diário \n de
 # energia elétrica por habitante no Município do Rio de Janeiro entre 1980-2019")
 # print(df2)
```


Extraindo Dataframe: Como o arquivo .xsl vem com informações além da tabela precisamos extrair o dataframe antes de analisá-los.

A função collect_dataframes fará esta extração retornando o dataframe armazenado em lista.

Note que o laço de repetição itera sobre os anos e assim obtemos os dataframes de cada aba:

```
def collect_dataframes(file_path):
    # criar uma lista vazia para armazenar os dataframes de cada ano
    df_list = []
    # percorrer os anos de 2002 a 2019
    for year in range(2002, 2020):
        # criar o nome da sheet com base no ano
        sheet_name = str(year)
        # ler o dataframe da sheet especificada
        df = pd.read_excel(file_path, index_col=0, sheet_name=sheet_name, header=6, skiprows=2, nrows=12)
        # adicionar o dataframe à lista
        df_list.append(df)
    # retornar a lista de dataframes
    return df_list
```


Usaremos a função collect_dataframes para extrair as tabelas referentes

ao consumo mensal de energia elétrica, segundo classe de serviço no

Municipio do Rio de Janeiro - 2002 até 2019

Isso gera uma lista contendo DataFrames

Vamos selecionar a coluna referente ao total de consumo por mês;

Para isso a função print_second_column é definida como:

```
[8] def print_second_column(df_list):
    # percorrer cada dataframe na lista
    for df in df_list:
        # selecionar a segunda coluna e imprimir
        print(df.iloc[:, ])
```

A Função Consumo Mensal

Extração das colunas por consumo ao longo dos anos.

A Função Consumo Mensal

Extração das colunas por consumo ao longo dos anos

```
# Tabela 1686 # Tabela 1686 - Consumo mensal de energia elétrica, segundo classe de serviço -
       # Municipio do Rio de Janeiro - 2002 a 2019
       def consumo_mensal(df_list):
            # percorrer cada dataframe na lista e extraindo
# colunas individualmente
            # Coluna Consumo Total
            consumo_total = []
# Coluna Consumo Residencial
            consumo_residencial = []
# Coluna Consumo Insdutrial
            consumo_industrial = []
            # Coluna Consumo Comercionsumo_comercial = []
            # Coluna Consumo Rural
consumo_rural = []
            # Coluna Consumo Poder Público
consumo_poder_publico = []
            # Coluna Consumo Residencial
consumo_residencial = []
            # Coluna Consumo Iluminação Pública
            consumo_iluminacao_publica = []
            # Coluna Consumo Serv. público
consumo_serv_publico = []
            consumo_consumo_proprio = []
            res = []
```

```
18 <class 'pandas.core.series.Series'>
```

```
[11] # selecionar a coluna "Residencial" de todos os dataframes na lista
    residencial_list = [df.iloc[:, 2] for df in df_list]
    print("residencial_list")
    print(type(residencial_list))
```


Na Tabela 2257 - Consumo total, médio anual, mensal e diário de energia elétrica por habitante no Município do Rio de Janeiro entre 1980 e 2019:

```
populacao = df2.iloc[:, 5]
ano = df2.iloc[:, 0]
ano_populacao = df2.iloc[:, 0::5]
# print(f"Ano e populacao \n {ano_populacao}")
print(populacao)
```

D.	Ano	e populacao	
		Unnamed: 0	
	9	200000	5.090790e+06
	1	1981	5.125066e+06
	2	1982	5.159573e+06
	3	1983	5.194312e+06
	4	1984	5.229285e+06
	5	1985	5.264493e+06
	6	1986	5.299939e+06
	7	1987	5.335623e+06
	8	1988	5.371547e+06
	9	1989	5.407713e+06
	10	1990	5.444123e+06
	11	1991	5.480778e+06
12 13	7.75	1992	5.521452e+06
	13	1993	5.562429e+06
	14	1994	5.603709e+06
	15	1995	5.645295e+06
	16	1996	5.687191e+06
	17	1997	5.729397e+06
	18	1998	5.771916e+06
	19	1999	5.814751e+06
	20	2000	5.857904e+06
	21	2001	5.897485e+06
	22	2002	5.937253e+06
	23	2003	5.974081e+06
	24	2004	6.051399e+06
	25	2005	6.094183e+06
	26	2006	6.136652e+06
27 28 29 30	27	2007	6.132342e+06
	28	2008	6.161047e+06
	29	2009	6.186710e+06
	30	2010	6.320446e+06
	31	2011	6.355949e+06
	32	2012	6.390290e+06
	33	2013	6.429923e+06
	34	2014	6.453682e+06
	35	2015	6.476631e+06
	36	2016	6.498837e+06
	37		6.520266e+06
	38		6.688927e+06
	39	777777	6.718903e+06

Análise Exploratória dos Dados

Com o gráfico de consumo médio podemos analisar uma aumento considerável no consumo de energia no Rio de Janeiro

```
# Gráfico de linha para população
fig1 = go.Figure()
fig1.add_trace(go.Scatter(x=df2.iloc[:, 0], y=df2.iloc[:, 5], name='População'))
# Gráfico de barras para consumo residencial
fig2 = go.Figure()
fig2.add_trace(go.Bar(x=[str(year) for year in range(2002, 2020)], y=[df.iloc[:, 2].sum() for df in df_list], name='Consumo residencial'))
# Criar um mesmo gráfico com os dois plots
fig = make_subplots(rows=1, cols=2, shared_xaxes=True)
fig.add_trace(fig1.data[0], row=1, col=1)
fig.add_trace(fig2.data[0], row=1, col=2)
# Configurar o layout
fig.update_layout(title='População e consumo residencial do Rio de Janeiro (2002-2019)',
                  xaxis_title='Ano',
                 yaxis_title='População / Consumo residencial (MWh)')
# Mostrar o gráfico
fig.show()
```

D

População e consumo residencial do Rio de Janeiro (2002-2019)

Análise Exploratória dos Dados

Sumários visuais do consumo de energia no Rio de Janeiro

Análise Exploratória dos Dados

Sumários visuais do consumo de energia no Rio de Janeiro

População e consumo residencial do Rio de Janeiro (2002-2019)

Consumo de energia elétrica no Rio de Janeiro (2002-2019)

Análise Exploratória dos Dados

Consumo de energia elétrica no Rio de Janeiro (2002-2019)

Modelo

Utilizando Modelo LSTM para fazermos predições...

Modelo LSTM

```
def prepare_data(res):
    # Combine all the series in the list into one dataframe
    df = pd.concat(res, axis=1)

# Transpose the dataframe to have each row represent a residency and each column a time step
    df = df.T

# Convert the dataframe to a numpy array
    data = df.values

# Normalize the data
    data = (data - np.mean(data)) / np.std(data)

# split the data into input (X) and output (y) sequences
    X, y = data[:, :-1], data[:, -1]
    print(type(X),len(X), type(y),len(y))
    # Reshape X to be 3-dimensional (samples, time steps, features)
    X = X.reshape(X.shape[0], X.shape[1], 1)
    return X, y
```

```
def train_model(X_train, y_train, X_val, y_val):
    model = create_model(input_shape=X_train.shape[1:])
    early_stopping = EarlyStopping(monitor='val_loss', patience=5)
    history = model.fit(X_train, y_train, epochs=15, batch_size=32, validation_data=(X_val, y_val))
    return model, history
```

```
def plot_loss(history):
    plt.plot(history.history['loss'], label='train')
    # plt.plot(history.history['val_loss'], label='validation')
    plt.xlabel('Epoch')
    plt.ylabel('Loss')
    plt.legend()
    plt.show()
```



```
# Exemplo de uso

X, y = prepare_data(res) # list of pandas series
X_train, y_train = X[:18], y[:18]
X_val, y_val = X[10:12], y[10:12]
X_test, y_test = X[12:], y[12:]
model, history = train_model(X_train, y_train, X_val, y_val)
plot_loss(history)
```

Como nosso dataset é pequeno testei diferentes batch_size e diferentes epochs para alcançar o melhor resultado possível,.

```
<class 'numpy.ndarray'> 18 <class 'numpy.ndarray'> 18
Epoch 1/15
                                      ==] - 1s 519ms/step - loss: 0.8840 - val_loss: 0.0065
Epoch 2/15
                                           0s 158ms/step - loss: 0.7273 - val_loss: 0.0043
Epoch 3/15
1/1 [====
                                            0s 169ms/step - loss: 0.6182 - val_loss: 0.0027
Epoch 4/15
1/1 [=====
                                            0s 133ms/step - loss: 0.5074 - val_loss: 0.0016
Epoch 5/15
1/1 [====
                                            0s 144ms/step - loss: 0.3686 - val_loss: 0.0012
Epoch 6/15
                                           0s 177ms/step - loss: 0.2811 - val_loss: 0.0016
1/1 [=====
Epoch 7/15
1/1 [=====
                                           0s 149ms/step - loss: 0.2036 - val loss: 0.0028
Epoch 8/15
1/1 [=====
Epoch 9/15
                                           0s 165ms/step - loss: 0.1653 - val loss: 0.0051
1/1 [=====
Epoch 10/15
                                           0s 151ms/step - loss: 0.1428 - val_loss: 0.0084
1/1 [=====
Epoch 11/15
                                           0s 174ms/step - loss: 0.1577 - val loss: 0.0128
1/1 [======
Epoch 12/15
                                           0s 173ms/step - loss: 0.1856 - val_loss: 0.0176
1/1 [=====
Epoch 13/15
                                            0s 133ms/step - loss: 0.1672 - val_loss: 0.0219
1/1 [======
Epoch 14/15
                                            0s 163ms/step - loss: 0.1497 - val_loss: 0.0250
1/1 [======
Epoch 15/15
                                           0s 175ms/step - loss: 0.1450 - val_loss: 0.0260
                                         - 0s 137ms/step - loss: 0.1559 - val_loss: 0.0252
```

10 epochs

100 epochs

Avaliando o resultado do nosso modelo...

Avaliando o resultado do nosso modelo...

```
# Calcula a precisão (accuracy) para os dados de teste def calculate_accuracy(y_true, y_pred):
    y_pred = np.round(y_pred)
    return accuracy_score(y_true, y_pred)
```

```
[21] # Calcula a medida F1 (F1-score) para os dados de teste
    def calculate_f1_score(y_true, y_pred):
        y_pred = np.round(y_pred)
        return f1_score(y_true, y_pred)
```

```
import numpy as np
from sklearn.metrics import f1_score
# set threshold value
threshold = 0.5
# convert y_test to binary
y_test_binary = np.where(y_test >= threshold, 1, 0)
# make predictions
y_pred = model.predict(X_test)
# convert y_pred to binary
y_pred_binary = np.where(y_pred >= threshold, 1, 0)
# calculate accuracy and f1 score
accuracy = calculate_accuracy(y_test_binary, y_pred_binary)
f1 = f1_score(y_test_binary, y_pred_binary)
# print the results
print("Accuracy: {:.2f}%".format(accuracy * 100))
print("F1 Score: {:.4f}".format(f1))
```

Obtemos uma acurácia de 66.67% e um F1 Score de 0.7500

. 1/1 [=======] - 0s 495ms/step Accuracy: 66.67%

F1 Score: 0.7500

Plotando as predições

```
import plotly.graph_objs as go
from plotly.subplots import make_subplots

def plot_predictions(model, X_test, y_test):
    y_pred = model.predict(X_test)
    y_pred = y_pred.reshape(y_pred.shape[0],)
    fig = make_subplots(rows=1, cols=1)
    fig.add_trace(go.Scatter(x=list(range(len(y_test))), y=y_test, name='Actual', mode='lines'))
    fig.add_trace(go.Scatter(x=list(range(len(y_pred))), y=y_pred, name='Predicted', mode='lines'))
    fig.update_layout(title='Actual vs. Predicted', xaxis_title='Time', yaxis_title='Consumption')
    fig.show()
```

Os valores preditos são as estimativas do consumo de energia elétrica para o período de teste (ou seja, os próximos 6 meses) com base nos dados históricos fornecidos ao modelo. Esses valores representam a saída (ou "y_pred") do modelo treinado.

Avaliando o resultado do nosso modelo...

Os valores de MAE (Mean Absolute Error) e MSE (Mean Squared Error) são medidas de desempenho do modelo em relação aos dados de teste. O MAE é a média da diferença absoluta entre as previsões e os valores reais, enquanto o MSE é a média dos quadrados das diferenças entre as previsões e os valores reais. Essas métricas permitem avaliar o quão bem o modelo está ajustando aos dados e quanto erro ele está cometendo em relação aos valores reais. No seu caso, o modelo parece ter um bom desempenho, já que o valor de MAE é relativamente baixo (0.23) e o valor de MSE também é baixo (0.11).

```
from sklearn.metrics import mean_absolute_error, mean_squared_error

mae = mean_absolute_error(y_test, y_pred)

mse = mean_squared_error(y_test, y_pred)

print('MAE:', mae)

print('MSE:', mse)

MAE: 0.3460727441582632

MSE: 0.13992042805749247
```

MAE: 0.3460727441582632 MSE: 0.13992042805749247

Através da análise dos dados referentes ao consumo de energia elétrica disponibilizados pelo data rio fomos capaz de extrair informações práticas com o uso de ferramentas de linguagem de programação, no caso python e técnicas de tratamento de dados, análise exploratória e técnicas de predição usando redes neurais