Definition

Given:

ightharpoonup a manifold \mathcal{M} ;

Definition

Given:

- \triangleright a manifold \mathcal{M} ;
- ▶ a Morse function $f: \mathcal{M} \to \mathbb{R}$ with distinct critical values;

Definition

Given:

- \triangleright a manifold \mathcal{M} ;
- ▶ a Morse function $f: \mathcal{M} \to \mathbb{R}$ with distinct critical values; the **Reeb graph** of f is the 1-dimensional simplicial complex

$$\mathcal{R}(f) = \mathcal{M}/\sim$$
.

Definition

Given:

- ightharpoonup a manifold \mathcal{M} ;
- ▶ a Morse function $f: \mathcal{M} \to \mathbb{R}$ with distinct critical values; the **Reeb graph** of f is the 1-dimensional simplicial complex

$$\mathcal{R}(f) = \mathcal{M}(f)$$

$$x \sim y \text{ if } f(x) = f(y) \text{ and they belong to the same connected component of } f^{-1}(f(x))$$

Definition

Given:

- \triangleright a manifold \mathcal{M} ;
- ▶ a Morse function $f: \mathcal{M} \to \mathbb{R}$ with distinct critical values; the **Reeb graph** of f is the 1-dimensional simplicial complex

$$\mathcal{R}(f) = \mathcal{M}/\sim$$
.

The **segmentation map** is the quotient map

Desired algorithm

Input:

- a PL manifold M
 → a triangulated mesh M;
- a non-degenerate PL scalar field f on M
 → a scalar value f(v) for each vertex v of M.
 - pairwise different, in order to ensure non-degeneracy; this

Time complexity: graph + segmentation map

 \triangleright $O(m \cdot \log m)$, where m is the size of the 2-skeleton of \mathcal{M} .

#vertices + #edges + #triangles

#vert

Output:

Geometry of critical points

There are three kinds of critical points:

- ► (local) minima
 ~> Link⁻ empty;
- saddles

→ Link⁻ or Link⁺ disconnected.

How to detect them on a PL manifold?

Given a vertex v, the **star** of v is the union of all simplices containing v.

The **link** of v is the boundary of its star.

$$Link^+(v) = \{x \in Link(v) : f(x) > f(v)\}\$$

 $Link^-(v) = \{x \in Link(v) : f(x) < f(v)\}\$

Significance of critical points

The critical points of f are closely related to the topology of the Reeb graph $\mathcal{R}(f)$.

- ► Maxima and minima
 - → nodes of valence 1 (leaves).
- Saddles
 - \rightsquigarrow nodes of valence ≥ 2 .

 - ▶ **Split saddles**: multiple components above. in dimension ≥ 3