

Predizione del Diabete di Tipo 1: Uno Studio sul Ruolo del Genoma per la Costruzione di Modelli di Machine Learning Explainable

Prof. Fabio Palomba Dott. Antonio della Porta Dott.ssa Viviana Pentangelo

Rosa Carotenuto Mat. 0512113246

INTRODUZIONE

DIABETE DI TIPO 1

Il **diabete di tipo 1 (T1D)** è una malattia autoimmune caratterizzata da distruzione delle cellule β del pancreas

STADI PATOGENESI: I

Primo stadio abbiamo l'**insulite** e di consegenza la comparsa di autoanticorpi anti-isole

IL PANCREAS

La componente endocrina è formata dalle **isole di Langherans**, dove troviamo le **cellule** β

STADI PATOGENESI: II E III

Il secondo stadio è caratterizzato da **disglicemia** o **intolleranza al glucosio**.

Il terzo stadio è caratterizzato da sintomi di i**perglicemia**, come la poliuria.

PREDISPOSIZIONE GENETICA

Il rischio di T1D nei fratelli è 15 volte superiore al rischio nella popolazione generale

SNP - polimorfismi a singolo nucleotide Modifica la struttura e il livello di espressione rendendo il gene unico per quell'individuo

PERCHÉ IL MACHINE LEARNING?

Offre **strumenti per analizzare** e interpretare dati ad alta dimensionalità

Costruire modelli di classificazione può facilitare la diagnosi precoce del T1D

Ma i modelli attuali presentano **limitazioni** in termini di interpretabilità e affidabilità

La comprensione delle decisioni è essenziale per ottenere la **fiducia dei medici e dei ricercatori**

METODOLOGIA

OBIETTIVO

Fornire agli esperti
modelli di machine
learning spiegabili
basati su dati di
espressione genica
permettendo di
confrontare i risultati
con le loro conoscenze

Analisi e pulizia dei **dati**

Scelta e costruzione dei **modelli**

Analisi dei **risultati** dei modelli

Utilizzo di tecniche di **explainability**

Analisi dei **risultati** delle tecniche utilizzate

10 pazienti positivi agli autoanticorpi

> 18 pazienti prediabetici

28 control, ognuno associato ad un paziente positivo agli autoanticorpi o prediabetico

Età infantile o adolescenziale

GSE9006

- **43 pazienti** con diagnosi di **T1D**
- > 12 pazienti con diagnosi di T2D
- **24** soggetti **sani**
- Età compresa tra i 2 e i 18 anni

GSE43488

PREPROCESSING

PRIMA

> PCA (Principal Component Analysis)
Tecnica di riduzione della
dimensionalità riducendo le variabili a
quelle più rilevanti.

RIDUZIONE DEL BATCH EFFECT

PREPROCESSING

Histogram of Gene Expression 200000 175000 150000 125000 Feque 100000 75000 50000 25000 **Expression Value**

PRIMA

È stata impostata una soglia pari a 5.

DEFINIZIONE DEL THRESHOLD

PREPROCESSING

MODELLI DI PREDIZIONE

- Basato sul gradient boosting
- Migliora correggendo errori precedenti
- Cerca uniperpiano perseparare i dati
- Utilizza il kernel trick
- Costruisce una collezione di alberi decisionali
- ► Combina il risultato

RISULTATI

CONSIDERAZIONI

SVM risulta essere il **migliore**, nonostante XGBoost e Random Forest siano valide alternative

- ► Ha migliori capacità nel classificare i campioni
- Mantiene un giusto
 compromesso tra accuracy
 e recall, confermato dall'F1
- ► Riesce a **separare bene** classi positive e negative

	XGBoost	SVM	Random Forest
Accuracy	0.794872	0.807692	0.794872
Precision	0.798007	0.812834	0.798007
Recall	0.794872	0.807692	0.794872
F1 Score	0.7943309	0.806899	0.794331
AUC-ROC	0.871794	0.876397	0.873767

CHE COS'È L'EXPLAINABILITY?

Possibilità di comprendere e interpretare le decisioni prese da un modello di machine learning

PERCHÉ EXPLAINABILITY?

- Migliorare la trasparenza
- Aumentare la **fiducia** degli utenti finali
- Confronti con le conoscenze degli esperti
- Facilita l'integrazione nella pratica clinica

High

Feature value

EXPLAINABILITY XGBOOST

Principali feature di Anchor

> PTPRN2

> IL2RA

TFN

CTSH

REGOLA ANCHOR

['PTPRN2 <= 6.68', 'TNF <= 7.46', 'CTSH > 9.96']

Lov

CONCLUSIONI

GRAZIE PER L'ATTENZIONE!

