Linear Stability Analysis of Fingering in Convective Dissolution in Porous Media

Rachel Lucena

Grupo de Estudos e Simulações Ambientais em Reservatórios – GESAR Universidade do Estado do Rio de Janeiro

4 de fevereiro de 2015

Sumário

Introdução

O problema

Modelagem matemática

Análise de Estabilidade Linear

Resultados

Referências

Introdução

O que são fingers?

Qual a importância desta pesquisa?

Por que a análise de estabilidade linear?

O problema

Figura : Desenho esquemático de sequestro de CO_2 . Créditos da imagem: http://www.amphos21.com/vistas/.

Equações governantes e Condições de Contorno

$$\nabla^2 \psi = -\omega_{\gamma} \tag{1}$$

$$\omega_z = \frac{\partial c}{\partial x}$$
 (2)

$$\frac{Dc}{Dt} = \nabla^2 c \qquad (3)$$

Análise de Estabilidade Linear

O estado base na ausência de qualquer fluxo ($\psi=0$) é:

$$\bar{c}(y,t) = 1 - \operatorname{erf}\left(\frac{y}{2\sqrt{t}}\right).$$
 (4)

Supomos que uma pequena perturbação é imposta ao estado-base:

$$c = \bar{c} + \tilde{c}$$
 e $\psi = \bar{\psi} + \tilde{\psi}$,

então:

$$\begin{pmatrix} c \\ \psi \end{pmatrix} = \begin{pmatrix} \bar{c} \\ 0 \end{pmatrix} (y, t) + \begin{pmatrix} \tilde{c} \\ i\tilde{\psi} \\ \bar{k} \end{pmatrix} (y) \exp(\sigma t + ikx).$$
 (5)

As equações de evolução linearizadas ficam:

$$\tilde{\psi}_{yy} - k^2 \tilde{\psi} = k^2 \tilde{c}
\sigma \tilde{c} + \tilde{\psi} \bar{c}_y = \tilde{c}_{yy} - k^2 \tilde{c}.$$
(6)

$$\sigma \tilde{c} + \tilde{\psi} \bar{c}_y = \tilde{c}_{yy} - k^2 \tilde{c}. \tag{7}$$

Seja $D^n = d^n/dy^n$, então:

$$\tilde{\psi} = (D^2 - k^2)^{-1} k^2 \tilde{c}.$$
 (8)

Logo temos a equação:

$$\left[\bar{c}\left(D^2 - k^2\right)^{-1}k^2 + \left(D^2 - k^2\right)\right]\tilde{c} = \sigma\tilde{c},\tag{9}$$

esta se torna um problema de autovalor/autofunção de um operador diferencial e não-simétrico, do tipo: $A\mathbf{v} = \sigma \mathbf{v}$.

Para solucionar este problema utilizamos o método espectral de Chebyshev.

Condição inicial

Utilizamos como condição inicial a seguinte fórmula:

$$c.i. = \left(1 - \operatorname{erf}\left(\frac{y}{2\sqrt{t_0}}\right)\right) + a\,\tilde{c}(t_0, y)\,\cos(k_0 x). \tag{10}$$

onde $\tilde{c}(t_0,y)$ é a autofunção associada ao k_0 , obtida a partir da análise de estabilidade linear em t=252 e a é a amplitude da perturbação.

Resultados

Utilizando o método dos elementos finitos para solucionar as Eqs. 1-3, obtemos, por exemplo:

Perfil médio

Figura : Curva com linha contínua é o perfil de concentração obtido nas simulações e com as marcas é a solução analítica da Eq. 4.

Figura: Curvas de dispersão.

Extração dos modos de Fourier

- 1. Obtemos o perfil de concentração na direção y (c_s), com a integração pela regra do trapézio;
- 2. Aplicamos a Transformada de Fourier no perfil obtido (c_{st}) ;
- 3. Para obtenção dos modos reais, multiplicamos à transformada o complexo conjugado (c_{st}^2 ficamos com os modos ao quadrado);
- 4. A partir desse vetor $c^i=c_{st}^2$ extraímos os modos, o primeiro é o modo fundamental, o segundo refere-se a formação de 1 finger, o terceiro a de 2 fingers, etc...

Extração da taxa de crescimento

A taxa de crescimento σ , é calculada a partir dos modos com a seguinte equação:

$$\sigma = \frac{1}{\Delta t} \left(\log c_{n+1} - \log c_n \right), \tag{11}$$

onde o c_n e c_{n+1} são os vetores que representam os modos de Fourier.

Modo 4 de Fourier

Figura : À esquerda: amplitude do modo 4 sem congelar o perfil base e à direita: amplitude do modo 4 com o perfil base congelado no tempo. Legenda: — $e^{2\sigma t}$, — $a=2\times 10^{-1}$, — $a=2\times 10^{-2}$, — $a=2\times 10^{-3}$, — $a=2\times 10^{-4}$, — $a=2\times 10^{-6}$

Taxa de crescimento

Figura : À esquerda: taxa de crescimento (modo 4) sem congelar o perfil base e à direita: taxa de crescimento (modo 4) com o perfil base congelado. Legenda: — $\sigma_{\rm exato}$, — $a=2\times 10^{-1}$, — $a=2\times 10^{-2}$, — $a=2\times 10^{-3}$, — $a=2\times 10^{-4}$, — $a=2\times 10^{-5}$, — $a=2\times 10^{-6}$

Conclusões

A evolução do problema no tempo depende fortemente da condição inicial.

Aumento do gradiente de concentração na interface aumenta a dissolução de CO_2 .

Referências

- HOMSY, G. M.. VISCOUS FINGERING IN POROUS MEDIA. Annu. Rev. Fluid Mech. 19, 271-311, 1987.
- ALMARCHA, C., TREVELYAN, P.M.J., GROSFILS, P., DE WIT, A.. CHEMICALLY DRIVEN HYDRODYNAMICS INSTABILITIES. Physical Review Letters, 104, 2010.
- LOODTS, V, Rongy, L, De Wit, A, 2014. CONVECTIVE DISSOLUTION OF CARBON DIOXIDE IN SALTED WATER: LINEAR STABILITY ANALYSIS AND EFFECT OF CONTROL PARAMETERS. Chaos, in press.

