Puissance et travail d'une force-Théorème de l'énergie cinétique

Table des matières

1	Pui	ssance et travail d'une force	2
	1.1	Définition	2
	1.2	Exemples	2
		1.2.1 Taravail d'une force constante	2
		1.2.2 Travail d'une force de frottement	3
		1.2.3 Travail de la force magnétique	4
2	Ené	ergie cinétique-Théorème de l'énergie cinétique	4
	2.1	Energie cinétique - Théorème de la puissance cinétique	4
	2.2	Théorème de l'énergie cinétique	5
	2.3	Application: pendule simple	5
3	For	ces conservatives-Energie potentielle	5
	3.1	Notion d'une force conservative-Energie potentielle	5
	3.2		6
		-	6
			6
		3.2.3 Force de rappel élastique	7
		3.2.4 Champ de force newtonienne	7
4	Ene	ergie mécanique	8
	4.1	Définition	8
	4.2		8
	4.3		8
5	Equ	uilibre d'un point matériel dans un champ de forces conservatives	9
	5.1	Problème à un degré de liberté	9
	5.2	lacksquare	9
	5.3		9
	5.4		1
	5.5	•	2
			2
		~ · ·	2
			2

1 Puissance et travail d'une force

1.1 **Définition**

Définition : On définit la puissance P d'une force \overrightarrow{F} appliquée à un point matériel M de masse m et de vitesse $\overrightarrow{V}(M/R)$ par rapport à un référentiel R comme :

$$P = \overrightarrow{F} \cdot \overrightarrow{V}(M/R)$$
: unité: watt (w)

- P > 0: puissance motrice
- P < 0: puissance résistance
- le point M effectue un déplacement élémentaire $d\overrightarrow{OM}$ pendant l'intervalle du temps dt sous l'action d'une force \overrightarrow{F} , on définit le travail élémentaire par :

$$\delta W = \overrightarrow{F}.d\overrightarrow{OM}$$
: unité joule (J)

 $\blacktriangleright \delta W = \overrightarrow{F}.d\overrightarrow{OM} = \overrightarrow{F}.\overrightarrow{V}(M/R)dt = P.dt$

$$P = \frac{\delta W}{dt}$$

en coordonnées cartésiennes
$$\overrightarrow{F} = \begin{vmatrix} f_x \\ f_y \\ f_z \end{vmatrix}; \text{et} \quad d\overrightarrow{OM} = \begin{vmatrix} dx \\ dy \\ dz \end{vmatrix}$$

$$\delta W = f_x dx + f_y dy + f_z dz$$

• en coordonnées polaire (mouvement plan)
$$\overrightarrow{F} = \left| \begin{array}{c} f_r \\ R \end{array} \right| \begin{array}{c} f_r \\ f_\theta \end{array} ; \text{et} \quad \overrightarrow{R} \quad \left| \begin{array}{c} dr \\ rd\theta \end{array} \right|$$

$$\delta W = f_r dr + f_\theta . r d\theta$$

▶ le travail de \overrightarrow{F} le long de (C) : le point matériel passe de M_1 à M_2

$$W = \int_{M_1}^{M_2} \overrightarrow{F} \, \overrightarrow{dr}$$

avec
$$\overrightarrow{dr} = d\overrightarrow{OM}$$

1.2 **Exemples**

Taravail d'une force constante

• la force \overrightarrow{F} est constante en module et en sens

•
$$W = \int_{M_1}^{M_2} \overrightarrow{F} d\overrightarrow{OM} = \overrightarrow{F} (\overrightarrow{OM_2} - \overrightarrow{OM_1}) = \overrightarrow{F} . \overrightarrow{M_1 M_2}$$

$$W = \overrightarrow{F}.\overrightarrow{M_1M_2}$$

Conclusion : le travail d'une force constante ne dépend pas du chemin suivi

$$W = \overrightarrow{F}.\overrightarrow{M_1M_2}$$

• Cas de la force de pesanteur

$$\overrightarrow{P} = m \overrightarrow{g}$$
 est une force constante $W = m \overrightarrow{g} \cdot \overrightarrow{M_1 M_2}$ $W = mg(z_1 - z_2)$
$$W = W = mg(z_1 - z_2)$$

- Remarque
 - ightharpoonup si W > 0: travail moteur
 - ightharpoonup si W < 0: travail résistant

1.2.2 Travail d'une force de frottement

Considérons un point matériel qui se déplace sur ox avec une vitesse initiale \overrightarrow{v}_0 , il rebondit sur une paroi verticale et repasse par le point A .

- $\triangleright \text{ P.F.D}: \overrightarrow{R}_T + \overrightarrow{R}_N + m \overrightarrow{g} = m \overrightarrow{a}$
 - projection sur oy : $0 + R_N mg = 0$ donc $R_N = mg$
 - projection sur ox : $-R_T + 0 + 0 = ma$
 - $R_T = fR_N$ avec f : coefficient de frottement donc $R_T = fmg$
- \blacktriangleright le travail W_1 de la force de frottement \overrightarrow{R}_T au cours du trajet directe entre O et

A
$$W_{1} = \int_{O}^{A} \overrightarrow{R}_{T} \overrightarrow{dr} \text{ avec} : \overrightarrow{dr} = dx \overrightarrow{e}_{x}$$

$$W_{1} = -\int_{x_{O}}^{x_{A}} f.mgdx = -fmg(x_{A} - x_{O}) = -fmg.OA$$

$$W_1 = -fmg.OA$$

▶ le travail W_2 de \overrightarrow{R}_T lors du trajet OBA $W_2 = \int_{(OBA)} \overrightarrow{R}_T . \overrightarrow{dr} = \int_O^B \overrightarrow{R}_T . \overrightarrow{dr} + \int_B^A \overrightarrow{R}_T . \overrightarrow{dr} = -\int_{x_O}^{x_B} fmgdx - \int_{x_A}^{x_B} fmgdx$ $W_2 = -fmgOB - fmgBA$

$$W_2 = -fmg(OA + 2AB)$$

 $W_1 \neq W_2$ car R_T n'est pas une force constante elle change le sens

Conclusion : le travail du force de frottement dépend du chemin suivi .

1.2.3 Travail de la force magnétique

▶ la force magnétique

$$\overrightarrow{F} = q \overrightarrow{v} \wedge \overrightarrow{B}$$

 \bullet q: charge de la particule

 $\bullet \overrightarrow{v}$: vitesse de la particule

• \overrightarrow{B} : champ magnétique

▶ le travail de la force magnétique $W = \int \overrightarrow{F} . d\overrightarrow{OM} = \int \overrightarrow{v} dt . \overrightarrow{v} \wedge \overrightarrow{B} = 0$

2 Enérgie cinétique-Théorème de l'énergie cinétique

2.1 Energie cinétique - Théorème de la puissance cinétique

Considérons un point matériel de masse m qui se déplace avec une vitesse \overrightarrow{v} par rapport à un référentiel galiléen .

Définition : on définit l'énergie cinétique du point matériel de masse m et ed vitesse \overrightarrow{v} par

$$E_c = \frac{1}{2}m\overrightarrow{v}^2$$

• P.F.D $\overrightarrow{F} = m \frac{d\overrightarrow{V}}{dt}$ $P = \overrightarrow{F} \cdot \overrightarrow{V} = m \overrightarrow{V} \frac{d\overrightarrow{V}}{dt} = \frac{d}{dt} \left(\frac{1}{2} m \overrightarrow{V}^2 \right) = \frac{dE_c}{dt}$

Théorème de puissance cinétique : Par rapport à un référentiel galiléen la dérivée par rapport au temps dt de l'énergie cinétique E_c d'un point matériel égale à la puissance de la résultante des forces appliquées sur ce point matériel .

$$P = \frac{dE_c}{dt}$$

2.2 Théorème de l'énergie cinétique

• $P = \frac{dE_c}{dt} \Rightarrow dE_c = Pdt = \delta W$

$$\Delta E_c = W(\overrightarrow{F})$$

Enoncé: Dans un référentiel galiléen , la variation de l'énergie cinétique d'un point matériel entre deux instants t_1 et t_2 égale au travail de la résultante des forces appliquées sur ce point matériel entre ces deux instants

$$\Delta E_c = W(\overrightarrow{F})$$

2.3 Application: pendule simple

- à t=0 le pendule est repéré par θ_0
- \bullet à t le pendule est repéré par θ
- $E_c = \frac{1}{2}mv^2$
- $\overrightarrow{v} = \frac{d\overrightarrow{OM}}{dt} = \frac{d(l\overrightarrow{e}_r)}{dt} = l\dot{\theta}\overrightarrow{e}_{\theta}$
- $E_c = \frac{1}{2}ml^2\dot{\theta}^2$
- $E_c(t=0) = E_{c0} = \frac{1}{2}ml^2\dot{\theta}_0^2$
- $W(\overrightarrow{P}) = -mgh = -mgl(\cos\theta_0 \cos\theta_0)$
- $W(\overrightarrow{T}) = 0$
- théorème de l'énergie cinétique $\Delta E_c = W(\overrightarrow{P}) + W(\overrightarrow{T}) \Rightarrow \dot{\theta}^2 = \frac{2g}{l}(\cos\theta \cos\theta_0)$
- l'équation du mouvement

$$\boxed{\ddot{\theta}^2 + \frac{g}{l}\sin\theta = 0}$$

• pour les θ faibles : $\sin \theta \approx \theta$

$$\ddot{\theta} + \frac{g}{l}\theta = 0$$

3 Forces conservatives-Energie potentielle

3.1 Notion d'une force conservative-Energie potentielle

Définition : la force \overrightarrow{F} est dite conservative s'elle existe une fonction d'état E_p appelée énergie potentielle ne dépend pas du chemin suivi tel que :

$$\delta W(\overrightarrow{F}) = \overrightarrow{F}d\overrightarrow{OM} = -dE_p$$

•
$$dE_p = \frac{\partial E_p}{\partial x} dx + \frac{\partial E_p}{\partial y} dy + \frac{\partial E_p}{\partial z} dz$$

•
$$\overrightarrow{grad}E_p = \frac{\partial E_p}{\partial x}\overrightarrow{i} + \frac{\partial E_p}{\partial y}\overrightarrow{j} + \frac{\partial E_p}{\partial z}\overrightarrow{k}$$

•
$$d\overrightarrow{OM} = dx\overrightarrow{i} + dy\overrightarrow{j} + dz\overrightarrow{k}$$

•
$$\overrightarrow{grad}E_p.d\overrightarrow{OM} = \frac{\partial E_p}{\partial x}dx + \frac{\partial E_p}{\partial y}dy + \frac{\partial E_p}{\partial z}dz$$

$$\overrightarrow{grad}E_p.d\overrightarrow{OM} = dE_p$$

•
$$\delta W(\overrightarrow{F}) = \overrightarrow{F} d\overrightarrow{OM} = -dE_p = -\overrightarrow{grad}E_p.d\overrightarrow{OM}$$

$$\overrightarrow{F} = -\overrightarrow{grad}E_p$$

Conclusion : une force est dite conservative s'elle existe une fonction d'état E_p ne dépend pas du chemin suivi tel que

$$\overrightarrow{F} = -\overrightarrow{grad}E_p$$

3.2 Exemples

3.2.1 Particule dans un champ de pesanteur uniforme

•
$$\delta W(\overrightarrow{P}) = m \overrightarrow{g} \overrightarrow{dr}$$

•
$$\overrightarrow{dr} = dx \overrightarrow{e}_x + dy \overrightarrow{e}_y + dz \overrightarrow{e}_z$$
; et $\overrightarrow{g} = -g \overrightarrow{e}_z$

•
$$\delta W = -mgdz = -d(mgz + cte) = -dE_p$$

$$\delta W = -dE_p$$

l'énergie potentielle de pesanteur

$$E_p = mgz + cte$$

Conclusion

- la force de pesanteur $\overrightarrow{P} = m \overrightarrow{g}$ est une force conservative
- l'énergie potentielle de pesanteur

$$E_p = mgz + cte$$

3.2.2 Force de frottement

le travail de la force de frottement dépend du chemin suivi donc il s'agit d'une force non conservative

3.2.3 Force de rappel élastique

•
$$\overrightarrow{OM} = (l - l_0)\overrightarrow{e}_x = x\overrightarrow{e}_x$$

•
$$d\overrightarrow{OM} = \overrightarrow{dr} = dx \overrightarrow{e}_x$$

• force de rappel :
$$\overrightarrow{F} = -kx\overrightarrow{e}_x$$

•
$$\delta W = \overrightarrow{F} \cdot \overrightarrow{dr} = -kxdx$$

 $\delta W = -d(\frac{1}{2}kx^2 + cte) = -dE_p$

$$E_p = \frac{1}{2}kx^2 + cte$$

$$E_p = \frac{1}{2}kx^2 + cte = \frac{1}{2}k(l - l_0)^2 + cte$$

Conclusion:

- la force de rappel élastique est une force conservative
- l'énergie potentielle élastique

$$E_p = \frac{1}{2}kx^2 + cte = \frac{1}{2}k(l - l_0)^2 + cte$$

3.2.4 Champ de force newtonienne

► Force gravitatinnelle

•
$$\overrightarrow{F} = \overrightarrow{F}_{A \to B} = -G \frac{m_A m_B}{r^2} \overrightarrow{e}_r$$

 $\overrightarrow{r} = \overrightarrow{AB}$

•
$$\alpha = Gm_Am_B$$

$$\overrightarrow{F} = -\frac{\alpha}{r^2} \overrightarrow{e}_r$$

- En coordonnées sphériques : $\overrightarrow{dr} = dr \overrightarrow{e}_r + r d\theta \overrightarrow{e}_\theta + r \sin\theta d\varphi \overrightarrow{e}_\varphi$
- $\delta W = \overrightarrow{F} \overrightarrow{dr} = -\frac{\alpha}{r^2} dr = -d(-\frac{\alpha}{r} + cte) = -dE_p$

$$E_p = -\frac{\alpha}{r} + cte$$

▶ Force colombienne : interaction entre deux charges q_1 et q_2 ,la distance entre les deux charges r

$$\overrightarrow{F} = \frac{q_1 q_2}{4\pi\varepsilon_0} \frac{\overrightarrow{e}_r}{r^2} = -\frac{\alpha}{r^2} \overrightarrow{e}_r$$

avec
$$\alpha = -\frac{q_1 q_2}{4\pi\varepsilon_0}$$

Conclusion:

- la force newtonienne est conservative
- l'énergie potentielle newtonienne

$$E_p = -\frac{\alpha}{r} + cte$$

4 Energie mécanique

4.1 Définition

Définition : On appelle énergie mécanique E_m d'un point matériel M(m) la somme de son énergie cinétique E_c et son énergie potentielle E_p

$$E_m = E_c + E_p$$

4.2 Théorème de l'énergie mécanique

- \blacktriangleright la résultante des forces appliquées à un point matériel s'écrit : $\overrightarrow{F}=\overrightarrow{F}_c+\overrightarrow{F}_{nc}$
 - \overrightarrow{F}_c : la résultante des forces conservatives
 - \overrightarrow{F}_{nc} : la résultante des forces non conservatives
- $\blacktriangleright W(\overrightarrow{F}_c) = -\Delta E_p$
- ▶ théorème de l'énergie cinétique : $\Delta E_c = W(\overrightarrow{F}_c) + W(\overrightarrow{F}_{nc}) = -\Delta E_p + W(\overrightarrow{F}_{nc})$ donc $\Delta(E_c + E_p) = W(\overrightarrow{F}_{nc}) \Rightarrow \Delta E_m = W(\overrightarrow{F}_{nc})$

$$\Delta E_m = W(\overrightarrow{F}_{nc})$$

Enoncé : Dans un référentiel galiléen, la variation de l'énergie mécanique entre deux instants égale au travail de la résultante des forces non conservatives entre ces instants

$$\Delta E_m = W(\overrightarrow{F}_{nc})$$

• $\frac{dE_m}{dt} = P(\overrightarrow{F}_{nc})$: puissance des forces non conservatives

4.3 Intégrale première de l'énergie

• si $W(\overrightarrow{F}_{nc}) = 0$ alors $\Delta E_m = 0$

$$E_m = cte$$
: intégrale première de l'énergie

- dans ce cas on dit que l'énergie mécanique se conserve : l'énergie cinetique se transforme en énergie potentielle et inversement
- l'évolution du point matériel est dite conservative

Conclusion : Dans un référentiel galiléen l'énergie mécanique d'un point mtériel en évolution conservative reste constante . Cette constante représente l'intégrale première de l'énergie

$$E_m = cte$$

• Remarque : L'énergie mécanique est non conservative d'où le premier principe qui introduit l'énergie totele qui est conservative

$$\Delta E_{totale} = W(\overrightarrow{F}_{nc}) + Q$$

avec $E_{totale} = E_m + U$; U représente l'énergie interne

5 Equilibre d'un point matériel dans un champ de forces conservatives

5.1 Problème à un degré de liberté

- ▶ Le problème à un degré de liberté ne fait intervenir qu'une seule variable de position dans les grandeurs physiques mises en jeu .
- ▶ Considérons un point matériel M en mouvement rectiligne selon l'axe ox de vecteur de position $\overrightarrow{OM} = x \overrightarrow{e}_x$, soumis à l'action d'un champ des forces de la forme

$$\overrightarrow{F} = \overrightarrow{f}(M) = f(x)\overrightarrow{e}_{x}$$

$$\overrightarrow{f}_{M}$$

$$\overrightarrow{e}_{x}$$

$$M$$

▶ la force \overrightarrow{f} est conservative donc \overrightarrow{f} dérive de l'énergie potentielle $\delta W = \overrightarrow{f}.\overrightarrow{dr} = f(x)dx = -dE_p$

$$dE_p = -f(x)dx$$

5.2 Condition d'équilibre

Condition d'équilibre : On dit qu'il y a équilibre en $x = x_e$ si

$$\left(\frac{dE_p}{dx}\right)_{x=x_e} = -f(x_e) = 0$$

5.3 Condition de stabilité d'équilibre

▶ On se limite à un petit déplacement algébrique $(x - x_e)$ à partir de la position d'équilibre x_e .

▶ développement limité à l'ordre 2 au voisinage de x_e de $E_p(x)$ $E_p(x) \approx E_p(x_e) + (x - x_e) \left(\frac{dE_p}{dx}\right)_{x=x_e} + \frac{(x - x_e)^2}{2} \left(\frac{d^2E_p}{dx^2}\right)_{x=x_e} + \dots$ or $\left(\frac{dE_p}{dx}\right)_{x=x_e} = 0$ donc

$$E_p(x) \approx E_p(x_e) + \frac{1}{2}(x - x_e)^2 \left(\frac{d^2 E_p}{dx^2}\right)_{x = x_e}$$

$$f(x) = -\frac{dE_p}{dx} = -(x - x_e) \left(\frac{d^2 E_p}{dx^2}\right)_{x = x_e}$$

ightharpoonup position d'équilibre stable : la force \overrightarrow{F} a tendance de ramener le point matériel vers sa position d'équilibre donc

$$\left(\overrightarrow{F}.d\overrightarrow{OM}\right)_{x=x_e} < 0$$

ightharpoonup position d'équilibre instable : la force \overrightarrow{F} a tendance d'éloigner le point matériel de sa position d'équilibre donc

$$(\overrightarrow{F}.d\overrightarrow{OM})_{x=x_e} > 0$$

$$\overrightarrow{f}_2 \qquad \overrightarrow{f}_1 \qquad \text{équilibre stable}$$

$$\overrightarrow{f}_2 \qquad \overrightarrow{f}_1 \qquad \text{équilibre instable}$$

- \triangleright au voisinage d'équilibre stable x_e
 - supposons que le point matériel M se déplace dans le sens négative donc $x_e>x\Rightarrow x-x_e>0$
 - $d\overrightarrow{OM} = \overrightarrow{M_eM_2} = -dx\overrightarrow{e}_x$ avec : $dx = x_{M_e} x_{M_2} > 0$
 - $\overrightarrow{F} = f(x)\overrightarrow{e}_x = -(x x_e) \left(\frac{d^2 E_p}{dx^2}\right)_{x=x_e} \overrightarrow{e}_x$
 - $\overrightarrow{F} . d\overrightarrow{OM} = (x x_e) \left(\frac{d^2 E_p}{dx^2}\right)_{x = x_e} dx$ $\overrightarrow{F} . d\overrightarrow{OM} > 0 \Rightarrow \left(\frac{d^2 E_p}{dx^2}\right)_{x = x_e} > 0$

$$\left(\frac{d^2 E_p}{dx^2}\right)_{x=x_e} > 0$$

▶ au voisinage de l'équilibre instable : on montre que

$$\left(\frac{d^2 E_p}{dx^2} \right)_{x=x_e} < 0$$

Conclusion

• x_e position d'équilibre stable : $\left[\left(\frac{d^2 E_p}{dx^2} \right)_{x=x_e} > 0 \right]$

• x_e position d'équilibre instable : $\left(\frac{d^2 E_p}{dx^2}\right)_{x=x_e} < 0$

5.4 Exemples

► Barrière d'énergie potentielle

• $E_p(x) = a(x - x_e)^2 + b$; a < 0

▶ Puit (cuvette) de potentielle

• $E_p(x) = a(x - x_e)^2 + b$; a > 0

 $\bullet \left(\frac{d^2 E_p}{dx^2}\right)_{x=x_e} = 2a > 0 \text{ position}$ d'équilibre stable

Conclusion

- \bullet si x_e est la position d'équilibre stable , l'énergie potentielle est minimale en x_e
- \bullet si x_e est la position d'équilibre instable, l'énergie potentielle est maximale en x_e

5.5 Etat lié-Etat de diffusion

5.5.1 Barrière de l'énergie potentielle

• $E_m = E_c + E_p$ avec : $Ec \ge 0$ donc

$$E_m \geqslant E_p$$

• le domaine permis à la particule est

$$x \leqslant x_1; x \geqslant x_2$$

- ightharpoonup si à $t = 0, x_0 < x_1$ le point matériel ne peut franchir la barrière potentielle
- ightharpoonup si à $t=0,x_0>x_2$ le point matériele peut s'éloigner à l'infini , on dit qu'on a un état de diffusion .

5.5.2 Cuvette de l'énergie potentielle

Domaine permis est $[x_1, x_2]$: la particule effectue un mouvement périodique (en absence des frottements) ,on dit que la prticule se trouve dans l'état lié

5.5.3 Cas général

suivant les conditions initiales on peut prévoir :

- $E_m = E_1$: mouvement impossible $(E_c < 0)$
- $E_m = E_2$: mouvement possible dans $x \in [x_3, x_4]$: état lié

- $E_m = E_3$: mouvement possible dans $x \in [x_2, x_5] \cup [x_6, \infty[$
 - ightharpoonup si $x \in [x_2, x_5]$: état lié
 - $ightharpoonup x \in [x_6, \infty[$: état de diffusion
- $E_m = E_4$: mouvement possible $x \in [x_1, \infty[$: état de diffusion