Compute Express Link (CXL)

20231202

Keynote

• Memory disaggregation

- Compute Express Link
 - CXL protocols
 - Types of CXL device
- DirectCXL [ATC'22]

Storage Disaggregation

• Separates secondary storage devices (e.g., SSDs) from compute servers

Memory Disaggregation

- On the basis of storage disaggregation
- Memory Disaggregation
 - Split compute and memory with Remote Direct Memory Access (RDMA)

Disaggregation

- In disaggregated datacenter,
 - Compute (e.g., CPUs and GPUs),
 - Memory (e.g., DRAM),
 - Storage (e.g., SSDs and NVMs)
- are **physically separated** from each other, managed in independent resource pools

• Compute nodes (Hosts), memory nodes (CXL devices)

Disaggregation is the future of datacenter

Operational Benefits of Disaggregation

C2

M2

S2

VM₂

C1

M1

VM1

• Independent failures

• Independent expansion

• Independent allocation

Types of Memory Disaggregation

Kernel-space approaches

Page-based

Pros

- Unmodified applications
- Transparent infra evolution

Cons Page Fault

- High performance cost
- High development cost

Software runtimes have been proposed to enable applications to transparently, without code changes, use remote memory.

User-space approaches

Object-based

Pros

- No kernel overhead
- Fine-grained control
- Customized optimizations

Cons

Application modifications

RDMA

- Remote Direct Memory Access
 - Low CPU utilization
 - High network speed

App Send Queue Recv Queue Recv Queue NIC RDMA NIC RDMA NIC Mem

Client Machine Server Machine

1-sided RDMA: RDMA operations are

one-sided, since an RDMA operation can

complete without any knowledge of the

remote process.

RDMA

- Existing memory disaggregation approaches reply on RDMA
 - Host and multiple memory node
 - RDMA NIC
 - Memory regions (MRs)
 - Memory translation table (MTT)

Figure 1: Data movement over RDMA.

Compute Express Link®: An open industry-standard interconnect enabling heterogeneous data-centric computing

Debendra Das Sharma

Intel Senior Fellow, Data Platforms and AI Group, Intel Corporation, Santa Clara, CA 95052, USA debendra.das.sharma@intel.com

Background of CXL

Compute Express Link

- Intel 2019
- •解决异构(heterogeneous)设备的缓存和内存访问一致性(coherency)的问题
- Based on PCIe
- Device: GPU, FPGA, Smart NIC, etc.
- Host: CPU 所在的主机
- Enable the communication between
 - memory of devices
 - memory of the server
 - cache of the server's CPU

Datacenter: Expanding Scope of CXL

Scenarios of CXL 1.0, 2.0, 3.0

Direct attached

Add Capacity Add Bandwidth Slower-cheaper tier

Pooled Memory

Amortize CXL infra cost Flexible allocation

Shared Memory

Dedur lication Host2host communication large datasets

Fabric Memory

Scaling to huge datasets

PCIe 协议

Transaction Layer Packet (TLP)

TLP Types:

- Memory Read / Write
- IO Read / Write
- Configuration Read / Write
- Completion
- Message
- AtomicOp

Data Link Layer Packet (DLLP)

- Power Management
- Link Flow Control
- Vendor-Specific

信息以包的形式在PCIe设备之间传递: TLP DLLP PLP

TLP 用于承载PCIe事务,由发送设备根据Device Core提供 的信息在事务层生成,穿过RC或Switch, 到达最终的目标设 备的事务层后才得以处理。

CXL协议缓存一致性

CXL是基于PCIe5.0的。PCIe是一种高速串行计算机扩展总线标准,已经使用了很多年。在PCIe 5.0版本中,CPU和外围设备能够以每秒32千兆次(32GT/s)的速度进行传输。但是,在具有大型共享内存池和许多需要高带宽的设备的环境中,PCIe具有一些局限性。PCIe中没有指定支持一致性的机制,不能有效地管理隔离的内存池,也无法有效管理系统中多个设备之间的共享内存。

PCIe设备要访问主机内存,一般是使用直接存储器访问技术DMA,且**主机无法缓存PCIe设备的数据**。在CXL中,利用三个子协议:CXL.io,CXL. cache以及CXL.mem,为主机和需要共享内存资源的设备(例如加速器和内存扩展器)之间的内存访问提供了低延迟的访问路径以及缓存一致性保证。

CXL.cache可以提升效率的根本原因就是,原来需要 DMA+软件才能完成的事儿,使用硬件加速了,它的本 质也是硬件卸载加速。

Figure 1: CXL enables coherency and memory semantics and builds on top of PCIe's physical subsystem.

CXL Protocols & Standards

- The CXL standard supports a variety of use cases via 3 protocols
- CXL.io
- CXL.cache
- CXL.memory

cxl.io protocol

Discovery, configuration, interrupts, register access, enumeration, etc.

Similar to PCIe

This allows the home agent to view the accelerator memory in the same way it views its own memory

cxl.mem protocol

The home agent can access the device (accelerator) memory w/o software interventions. The accelerator memory looks like DDR attached to the application, resulting in lower latency.

cxl.cache protocol

- cxl.mem enables processor to access device attached memory
- cxl.cache enables device to access processor memory

• **cxl.cache** establishes **coherency** and fast communication between host processor and CXL devices.

Three Types of CXL Devices

• Cache-coherent interconnects for connectivity between CPUs, accelerators, and I/O devices

- Supports all devices, from accelerators to memory
 - Type 1: device accessing host memory
 - Type 2: device and host accessing each other's memory
 - Type 3: host accessing device memory

- 1. Smart NIC, ...
- 2. GPU, FPGA, ...
- 3. Memory, ...

Type 1 Device CXL.lo + CXL.cache Accelerators, smart NICs with coherent cache · Device coherently accesses Host memory memory Root complex controlle

Type 2 Device

- CXL.lo + CXL.cache +CXL.mem
- Accelerators with attached memory and optional coherent cache
- · Device coherently accesses Host memory; Host accesses Device memory

Type 3 Device

- CXL.lo + CXL.mem
- · Memory buffers/expanders
- · Host accesses and manages attached Device memory

Usages:

- · PGAS NIC
- · NIC atomics Protocols:
- · CXL.io
- · CXL.cache

Accelerator NIC Cache Processor

Accelerators with Memory

Usages:

- · GPU
- Dense Computation

Protocols:

- · CXL.cache

Memory Buffers

Usages:

- · Memory BW expansion
- · Memory capacity expansion
- Storage Class Memory Protocols:
- · CXL.io
- · CXL.mem

CXL 2.0

CXL交换器: 在一层内实现多个Host和多个异构Device的互联

Heterogeneous devices

Switch可以实现不同Type CXL互联,同时支持PCIe协议的设备 Switch内可以划分VCS (Virtual CXL Switch)实现细粒度资源分配和隔离 Switch可以进行结构管理(FM), 实现每个交换机的中心化管理

Direct Access, High-Performance Memory Disaggregation with DIRECTCXL

Donghyun Gouk, Sangwon Lee, Miryeong Kwon, Myoungsoo Jung

Computer Architecture and Memory Systems Laboratory,

Korea Advanced Institute of Science and Technology (KAIST)

http://camelab.org

DirectCXL

- An alternative approach to disaggregating memory using CXL
- Motivation: RDMA Cost
 - Data is copied over the network
 - Network latency
 - DMA operations on both sides
 - Data is copied between applications and NIC-registered memory region

Compared to RDMA

- Direct PCIe access through load/store instructions
 - No network latency
 - No extra data copies

- How to enable direct access to CXL memory?
 - Convert load/store instructions to CXL packets
 - An FPGA-based controller converts them back

- How to enable flexible memory configuration?
 - A CXL switch with a reconfigurable crossbar

- How to present CXL memory to applications?
 - Leveraging Linux virtual memory system

- RDMA-based memory disaggregation incurs **networking overhead** and **extra memory copies**
- DirectCXL provides a CXL solution via direct PCIe access, a CXL switch, and a software runtime
- Application performance is significantly improved without modifications

• 结束