LESI AVAILABLE CUPY

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

11-273219

(43)Date of publication of application: 08.10.1999

(51)Int.CI.

G11B 17/26

(21)Application number: 10-072909

(71)Applicant: PIONEER ELECTRON CORP

TOHOKU PIONEER CORP

(22)Date of filing:

20.03.1998

(72)Inventor: TAKEMASA KAORU

YOSHIDA SUSUMU **SUZUKI TORU**

IDO KENJIRO FUJIMOTO MASAMI UCHIYAMA KENJI

KIMURA TOMOMICHI **MIZOGUCHI TAKASHI SATO MICHIHIRO** SHINNO TETSUYA

(54) DISK CHANGER

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a disk changer whose structure is simplified and whose cost is reduced.

SOLUTION: In the disk changer provided with a disk holding means holding plural sheets of disk in a state in which they are arranged and a disk reproducing means, the disk holding means includes plural sheets of trays 301 respective holding one sheet of a disk, a guide means guiding these trays 301 in an arrangement direction and a drive means driving these trays 301 in the arrangement direction and the tray driving mean includes plural pieces of shafts which are respectively prolonged in the arrangement direction and on whose surfaces roughly helical grooves are formed and shaft driving means rotating these driving shafts 305 and also engaging parts to be engaged with the grooves are provided in the trays 301.

LEGAL STATUS

[Date of request for examination]

19.03.2002

[Date of sending the examiner's decision of

12.03.2004

rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or

application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision 2004-07340

of rejection]

[Date of requesting appeal against examiner's 12.04.2004

decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平11-273219

(43)公開日 平成11年(1999)10月8日

(51) Int.Cl.⁶ G11B 17/26 識別記号

FΙ

G11B 17/26

審査請求 未請求 請求項の数6 OL (全 15 頁)

(21)出願番号

特願平10-72909

(22)出願日

平成10年(1998) 3月20日

(71)出願人 000005016

パイオニア株式会社

東京都目黒区目黒1丁目4番1号

(71)出願人 000221926

東北パイオニア株式会社

山形県天童市大字久野本字日光1105番地

(72) 発明者 武正 薫

埼玉県川越市大字山田字西町25番地1 パ

イオニア株式会社川越工場内

(72) 発明者 吉田 進

埼玉県川越市大字山田字西町25番地1 パ

イオニア株式会社川越工場内

(74)代理人 弁理士 小橋 信淳

最終頁に続く

(54) 【発明の名称】 ディスクチェンジャ

(57)【要約】

【課題】 機構が簡素化された低コストのディスクチェ ンジャを提供する。

【解決手段】 複数枚のディスクを配列した状態で保持 するディスク保持手段とディスク再生手段とを備えたデ ィスクチェンジャであって、ディスク保持手段は、各々 1枚のディスクを保持する複数枚のトレイと、前記トレ イを前記配列方向にガイドするガイド手段と、前記トレ イを前記配列方向に駆動する駆動手段とを含むものであ り、前記トレイ駆動手段は、それぞれ前記配列方向に伸 長し略螺旋状の溝が形成された複数本のシャフトとこれ ら駆動シャフトを回動させるシャフト駆動手段とを含む とともに、前記トレイには前記溝に係合する係合部が設 けられている。

10

【特許請求の範囲】

【請求項1】 複数枚のディスクを配列した状態で保持 するディスク保持手段とディスク再生手段とを備えたデ ィスクチェンジャであって、

前記ディスク保持手段は、各々1枚のディスクを保持す る複数枚のトレイと、前記トレイを前記配列方向にガイ ドするガイド手段と、前記トレイを前記配列方向に駆動 する駆動手段とを含むものであり、

前期トレイ駆動手段は、それぞれ前記配列方向に伸長し 略螺旋状の溝が形成された複数本の駆動シャフトとこれ 10 ら駆動シャフトを回動させるシャフト駆動手段とを含む とともに、前記トレイには前記溝に係合する係合部が設 けられ、すべての前記トレイの係合部が前記溝に係合す ることを特徴とするディスクチェンジャ。

【請求項2】 各前記トレイの係合部は、前記溝に対し て1ピッチおきに順次係合することを特徴とする請求項 1 に記載のディスクチェンジャ。

【請求項3】 前記溝は、再生するディスクを保持する トレイが位置付けられるディスク再生高さに対して前後 するピッチ間隔が他のピッチ間隔よりも大とされている 20 ことを特徴とする請求項2に記載のディスクチェンジ

【請求項4】 前記溝は傾斜溝部と水平溝部とからな り、該水平溝部は1ビッチおきに所定範囲にわたって設 けられていることを特徴とする請求項3に記載のディス クチェンジャ。

【請求項5】 前記シャフト駆動手段は前記複数本の駆 動シャフトを同期駆動させるものであることを特徴とす る請求項 1 ないしは4 のいずれか一に記載のディスクチ ェンジャ。

【請求項6】 前記ディスク再生手段は、前記ディスク 再生高さにおいて前記ディスク保持手段に近接するディ スク再生位置と前記ディスク保持手段から離れた退避位 置との間を移動可能とされていることを特徴とする請求 項3ないしは5のいずれか一に記載のディスクチェンジ

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、複数枚のディスク するディスクチェンジャに関するものであり、特に車載 用に適したディスクチェンジャに関するものである。

[0002]

【従来の技術】近年、複数枚のディスクを配列収納し、 これらのディスクの1枚を選択して再生するディスクチ ェンジャが知られている。従来のディスクチェンジャ は、ディスク収納部から選択したディスクを引き出して ディスク再生部まで搬送し再生を行うものであったが、 最近は、ディスクを配列状態のまま再生するディスクチ ェンジャが提案されている。

【0003】とのディスクチェンジャは、再生したいデ ィスクを再生高さに位置付けるとともに、隣接するディ スクを配列方向に離間させてスペースを確保し、このス ベースにディスクプレーヤを入り込ませ再生を行うもの である。これによりディスク収納部とディスクプレーヤ が占める範囲を集約し、装置を小型化できるので、主に 車載用として用いられている。

[0004]

【発明が解決しようとする課題】ところで、上述したよ うなディスクチェンジャは、選択したディスクを再生高 さに位置付けるためにディスク収納部を配列方向に搬送 する機構と、再生髙さに位置付けたディスクに対して隣 接するディスクを配列方向に離間させる機構とが必要と なるため、機構が複雑になり、またそれぞれ駆動源を必 要とするなどしてコスト高を招く問題点が派生する。

【0005】本発明は、上述した問題点を解決するため に案出されたものであり、機構を簡素化、駆動源の削減 を達成した低コスト、髙信頼性のディスクチェンジャを 提供することを目的とするものである。

[0006]

30

【課題を解決するための手段】請求項1 に記載の発明 は、複数枚のディスクを配列した状態で保持するディス ク保持手段とディスク再生手段とを備えたディスクチェ ンジャであって、前記ディスク保持手段は、各々1枚の ディスクを保持する複数枚のトレイと、前記トレイを前 記配列方向にガイドするガイド手段と、前記トレイを前 記配列方向に駆動する駆動手段とを含むものであり、前 記トレイ駆動手段は、それぞれ前記配列方向に伸長し略 螺旋状の溝が形成された複数本の駆動シャフトとこれら 駆動シャフトを回動させるシャフト駆動手段とを含むと ともに、前記トレイには前記溝に係合する係合部が設け られ、すべての前記トレイの係合部が前記溝に係合する ことを特徴とする。

【0007】請求項2に記載の発明は、請求項1に記載 の発明において、各前記トレイの係合部は、前記溝に対 して1ピッチおきに順次係合することを特徴とする。

【0008】請求項3に記載の発明は、請求項2に記載 の発明において、前記溝は、再生するディスクを保持す るトレイが位置付けられるディスク再生高さに対して前 を配列収納し、これらのディスクの1枚を選択して再生 40 後するピッチ間隔が他のピッチ間隔よりも大とされてい ることを特徴とする。

> 【0009】請求項4に記載の発明は、請求項3に記載 の発明において、前記溝は傾斜溝部と水平溝部とからな り、該水平溝部は1ピッチおきに所定範囲にわたって設 けられていることを特徴とする。

> 【0010】請求項5に記載の発明は、請求項1ないし は4のいずれか一に記載の発明において、前記シャフト 駆動手段は前記複数本の駆動シャフトを同期駆動させる ものであることを特徴とする。

【0011】請求項6に記載の発明は、請求項3ないし 50

は5のいずれか一に記載の発明において、前記ディスク 再生手段は、前記ディスク再生高さにおいて前記ディス ク保持手段に近接するディスク再生位置と前記ディスク 保持手段から離れた退避位置との間を移動可能とされて いることを特徴とする。

[0012]

【作用】上記構成から、駆動シャフトを駆動すること で、トレイのディスク配列方向への搬送動作と再生高さ に位置付けたトレイから隣接するトレイを引き離す動作 を同時に行えるため、従来に比べて機構が簡素化し、駆 10 動源を削減することができる。

[0013]

【発明の実施の形態】以下、本発明の実施形態について 図面をもとにして説明する。図1は本発明の装置を示す 全体斜視図、図2は全体平面図である。図示されるよう に本発明の装置の主構成は、メインシャーシ1内に設け られた以下3つの部分であり、駆動ローラ101などを 供えるディスク搬送部100と、ターンテーブル20 1、ピックアップ203などを有するディスク再生部2 00と、トレイ301を有して図中z方向にディスクを 20 また、トレイ上にディスクを保持するための機構とし 配列収納するディスク収納部300である。

【0014】ディスク搬送部100は、ユーザによって 図示しないフロントパネルのディスク挿入口から挿入さ れたディスクをディスク再生部200またはディスク収 納部300に搬送するものであり、またディスク再生部 200またはディスク収納部300にあるディスクを装 置外部へ排出するものである。

【0015】挿入口を通じてディスク搬送通路102に 挿入されたディスクにはその下面から駆動ローラ101 が当接し、この駆動ローラ101の回動によってディス 30 クをx方向に搬送する。また、駆動ローラ101を支持 する支持シャーシ103は、後述する支持シャーシ移動 機構によって図中x方向に移動可能とされており、ディ スクはこの支持シャーシ103の移動によってもx方向 に搬送されるようになっている。

【0016】ディスク再生部200は、ディスクの下面 側に設けられたターンテーブル201と、ディスクの上 面側に設けられターンテーブル201とともにディスク をクランプするクランパ202と、ピックアップ203 及びピックアップ203をディスクの半径方向に移動さ 40 せるピックアップ送り機構とからなる。

【0017】図示されるようにディスク再生部200 は、支持シャーシ103上にディスク搬送部100より もディスク収納部300側において支持されている。と れにより、ディスク再生部200はディスク搬送部10 0とともにx方向に一体移動されるようになっている。 非クランプ状態時にターンテーブル201とクランパ2 02の間のスペースはディスク搬送通路102に通じて いるので、駆動ローラ101によって送りこまれたディ ランパ202はクランパベース205に対して移動不可 状態に支持されており、ディスクのクランプ動作及びク ランプ解除動作は、図示しないクランプ機構がターンテ ーブル201を図中z方向に昇降させることで行われ

【0018】ディスク収納部300は、4枚のトレイ3 01を2方向に配列してなるものであり、4枚のディス クが収納可能となっている。また、トレイ301を2方 向に搬送するトレイ搬送機構を具備しており、これは駆 動シャフト305などによって構成されている。

【0019】次に、実施形態の装置を構成する主たる3 部分の機構について、それぞれより詳細に説明する。

【0020】図3はディスク収納部300を装置の後方 側から示したものである。301はトレイ、305は駆 動シャフト、306はガイドシャフト、307は同期ギ アである。図4はトレイ301の全体を示す平面であ る。同図に示すとおりトレイは略U字状とされている。 301aはディスク担持面、301bはガイド孔、30 1 c は駆動シャフト挿通孔、301 d は係合片である。 て、ディスク面押え機構301x、ディスク縁押さえ機 構301yが設けられている。なお、4枚のトレイの構 成はすべて同一となっている。

【0021】図3に示すように、メインシャーシーには 4本のガイドシャフト306(図3では2本しか図示せ ず)が2方向に沿って立設しており、ガイド孔301b 内を挿通している。 これによりトレイ301は移動方向 をz方向に規制されている。

【0022】また、メインシャーシ1には4本の駆動シ ャフト305 (図3では3本しか図示せず)が回動自在 に立設している。駆動シャフト305はトレイの駆動シ ャフト挿通孔301cに挿通しており、駆動シャフト3 05に形成された螺旋状の溝305aに対しては、それ ぞれトレイの係合片301dが1ピッチおきに係合して いる。また、4本の駆動シャフト305は後述する同期 駆動機構により、お互いに同期して回動するようになっ ている。従って、駆動シャフト305の回動によりトレ イ301は、一斉にz方向に駆動力を付与されるように なっている。

【0023】図5は駆動シャフト305を示すものであ り、同図(a)は全体外観図、同図(b)は(a)のA - A部断面図、同図(c)は係合片301dが係合した 状態を示す拡大図である。

【0024】図5 (a), (b) に示されるように、駆 動シャフト305の上端側及び下端側では、溝305a は幅の狭い一定間隔のビッチ間隔となっているが、中間 部305bにおいてはピッチ間隔が幅広となっている。 これにより、溝305aの中間部に係合片301dが係 合するトレイは、図3にも示すように、隣り合う他のト スクはこのスペースを通過できるようになっている。ク 50 レイ301が引き離されてスペースが形成された状態と

なる。このように溝305aの中間部に位置づけられた トレイの高さは、駆動ローラ101により搬送されるデ ィスク、及びディスク再生部により再生されるディスク とほぼ同一の高さとなる。

【0025】すなわち、ディスクをディスク収納部に対 して収納するときは、前記した高さに位置付けられたト レイに対して収納が行われ、同様にディスク収納部から ディスクを排出するときも、前記した高さに位置付けら れたトレイに保持されたディスクが排出される。また、 には、ディスク再生部が入り込み再生を行うようにして いる。また駆動シャフト305が1回転すると、4枚の トレイ301がすべて溝305aの1ピッチ分だけ移動 するので、駆動シャフト305の回転量により希望する トレイ301を前記した高さ位置に位置付けることがで きる。

【0026】溝305aには1ピッチごとにある範囲で 平坦溝部305 cが形成されているが、平坦溝部305 cに係合片301dが係合しているときに駆動シャフト 305の回動を停止させるようにして、回動停止タイミ 20 ングのずれによってもトレイのz方向の位置づれが生じ ないようにしている。

【0027】トレイの係合片301dは図5(c)に示 すように先細った形状となっているので、駆動シャフト 305の溝305a内を滑らかに擦動することができ

【0028】図6は、4本の駆動シャフト305を同期 駆動する機構を示したものである。307は同期ギアで あり、図3に示されるようにメインシャーシ1の上板に 対して支点307aを中心に回動自在に設けられてい る。同期ギア307は伝達機構308を介して伝達され たモータ309の駆動力によって回動される。同期ギア 307には伝達ギア310が噛み合っており、伝達ギア 310は駆動シャフト305の上端に形成されたギア部 305 dと噛み合っている。従って、同期ギア306の 回動は伝達ギア310を介して各駆動シャフト305に 伝達され、4本の駆動シャフト305は互いに同期して 同一方向に回動される。

【0029】図7は図4に示したトレイ301のディス ク縁押さえ機構30lyを拡大して示したものである。 図に示されるように、ディスク押えアーム311は支点 311aを中心として回動自在にトレイ301の前端部 に設けられており、コイルスプリング312によって図 中矢印方向に付勢されている。 これにより、アーム31 1の先端部311bがディスクの外縁を押圧しており、 外部振動などによりディスクが排出方向に位置ずれする ことを防止している。

【0030】さらに特筆すべきは、ディスクの外縁に接 する先端部311bを、支点311aとディスクの中心 とを結ぶ線よりも外側(ディスクの排出方向側)に位置 50 移動可能に支持される。さらに、可動シャーシ106

されたことにあり、これにより低荷重のコイルスプリン グでも十分なディスク保持力が得られるため、ディスク 押えアーム311を小型にできるという効果を奏すると とができる。

【0031】図8は図4に示したトレイ301のディス ク面押え機構301xを拡大して示したものである。図 8 (a) は平面図、図8 (b) は側面図、図8 (c) は トレイが重なった状態を示す図である。ディスク面押え 部材312は、押え部312aと支軸312bとからな 隣り合う他のトレイ301が隔離されてできたスペース 10 り、図示されるように、押え部312aは支軸312b を中心に回動自在である。また支軸312bは、コイル スプリング313によって図8(b)中の矢印方向に付 勢されている。そのため、トレイ301に向けて搬送さ れてきたディスクは、ディスクの上面を押え部312a の後端部に押え付けられるから、外部振動などが発生し ても、ディスクの面に垂直な方向のがたつきを押えると とができる。

> 【0032】また、図8(c)に示されるように、複数 のトレイ301が重ねられた場合は、上側のトレイの裏 面が下側のトレイの押え部312aの先端部を押え付け るから、コイルスプリング313の付勢力によるディス ク面の押え付けは解除される。しかし押え部312a は、図8(c)に示されるように、ディスクの上まで突 出しているので、がたつきによってディスクがトレイか ら外れることはない。

【0033】図9はディスク搬送部100を示すもので あり、同図(a)は正面図、同図(b)は平面図を示し ている。支持シャーシ103にはモータ104、複数の ピニオンギアからなる伝達機構105が担持されてい 30 る。駆動ローラ101は一端側にピニオンギア101a が同軸形成されており、一端が支持シャーシ103の立 上部103aに軸支され他端が支持シャーシ103に軸 支されることで支持シャーシ103に回動自在に支持さ れている。駆動ローラ101のピニオンギア101aは 伝達機構105のビニオンギアと噛み合っているので、 モータ104の駆動は伝達機構105を介して駆動ロー ラ101まで伝達される。

【0034】支持シャーシ103の左右側面からは一対 の案内突起 103 b が突出している。この案内突起 10 40 3 bは、後述する支持シャーシ移動機構により図中x方 向に案内駆動される。

【0035】可動シャーシ106は、駆動ローラ101 とほぼ平行に対向することによりディスク搬送通路10 2を形成する。ディスク搬送通路102は、駆動ローラ 101と可動シャーシ106とでディスクを挟持できる ように形成されている。可動シャーシ106の下面には 保護布が貼り付けられておりディスク面に傷が付かない ようにしている。また可動シャーシ106は図示しない 案内機構により、支持シャーシ103に対して2方向に は、図示しない連動機構により既述したディスク再生部 200のクランプ機構に連動して移動するようになって いる。すなわち、図10(a)(b)に示すように、タ ーンテーブル201が下降しているときは可動シャーシ 106は図10(a)に示すように駆動ローラ101と ともにディスク搬送通路102を形成する位置にある が、図10(b)に示すように、ターンテーブル201 が上昇してディスクをクランプするとこれに連動して可 動シャーシ106も2方向に上昇する。これにより、デ ィスククランプ時におけるディスクと可動シャーシ10 6の接触を避けるようにしている。

【0036】駆動ローラ101の近くには図示しないデ ィスク径判別センサが設けられており、挿入されたディ スクが大径ディスク (12 cmCD) であるか小径ディ スク (8 c m C D) であるかの判別を行える。

【0037】図11~図13は支持シャーシ移動機構を 示すものである。図11(a)、図12(a)はメイン シャーシ1の底部の表面側に形成されたカムギア2を示 しており、図11(b)、図12(b)はカムギア2に よって駆動されるスライド部材4をメインシャーシ1の 20 底部の表面側から示しており、図11(c)、図12

(c) はメインシャーシ1の側面からスライダ4の立上 部4 cを示したものである。また、図11(a)~

(c) は支持シャーシ103がディスク挿入口側に位置 する場合を示し、図12(a)~(c)は支持シャーシ 103がディスク収納部側に位置するところを示す。

【0038】カムギア2はメインシャーシ1の底部の表 面に支点2aを中心に軸支されており、図示しないモー タにより伝達ギア3を介して回動駆動される。 カムギア 2には支点2aから徐々に離れる形状のカム溝2bが形 成されている。スライダ4は両端部にはx方向に沿った 直線状態のガイド溝4aが一対設けられており、メイン シャーシ1の底部の裏面に形成された突起1 a がこれに 嵌合している。さらに、スライダ4の中央部には突起4 bが形成されていて、メインシャーシ1の底部に形成さ れたx方向に沿ったガイド溝lbと、カムギア2のカム 溝2 bとに嵌合している。

【0039】スライダ4の両端部には一対の立上部4 c が形成されており、立上部4cには溝孔4dが形成され ている。メインシャーシ1の側板にはx方向に沿った直 40 線状態のガイド溝 1 b が形成されている。スライダ4の 溝孔4 d とメインシャーシ1のガイド溝1 b には既述し た支持シャーシ103の案内突起103bが嵌合してい

【0040】以上により、スライダ4はx方向に動きを 規制されており、カムギア2が回動して突起4 bがカム 溝2 bを案内されるとスライダ4はx方向に移動する。 またスライダ4が移動すると案内突起103bがx方向 に案内駆動されるので支持シャーシ103はx方向に移 動する。その結果、支持シャーシ103上に担持される 50 動させて駆動ローラ101をディスク挿入□側に後退さ

ディスク搬送部100とディスク再生部200は一体と なってx方向に移動しえる。

【0041】図13はディスク再生部200を側面から 示したものである。先に説明したとおり、ディスク再生 部200はターンテーブル201の昇降によりディスク のクランプ動作及びクランプ解除動作を行うが、ピック アップ203もターンテーブル201と一体となって昇 降する。そとでクランプが解除されるときはピックアッ プ203をターンテーブル201に最も近付く位置に移 10 動させることで、ビックアップ203の移動範囲に干渉 しないスペース204を確保するようにしている。この スペース204に回路基板、モータなどを配置すること ができ、部品のの集約化を図ることができる。

【0042】次に、以上説明した本発明の装置のディス ク搬送動作について説明する。最初に大径ディスク(1 2cmCD)の搬送動作について図14及至図20によ り説明する。図14及至図18は装置の平面図であり、 図19及至図20は側面図である。

【0043】まず、装置外部からディスクを挿入してれ をディスク収納部300まで搬送する動作を説明する。 図14及び図19(a)に示されるように、駆動ローラ 101は挿入開始位置に待機している。ユーザが装置前 面のディスク挿入口にディスクを挿入すると、図示しな いセンサがディスクの挿入を検知し、これに応じて駆動 ローラ101がディスク搬入方向に回動する。これによ りディスクは装置内部に引き込まれる。

【0044】ディスク引き込みの最中に、図示しないセ ンサがディスク径を判別し(12cmCDまたは8cm CD)、径を判別した位置で駆動ローラ101を回動さ せてから回動を停止する。図15及び図19(b)は1 2 c m C D の場合の駆動ローラ 1 0 1 の回動停止の状態 を示す。このときディスクは駆動ローラ101と可動シ ャーシ106とで挟持されており、不要に傾斜すること はない。

【0045】その後、支持シャーシ移動機構が駆動さ れ、駆動ローラ101及びディスク再生部200は一体 となってディスク収納部300側に移動する。図16及 び図19(c)に示すようにディスクをトレイ301上 に担持させたところで支持シャーシ移動機構の駆動は停 止し駆動ローラ101はディスク収納位置に到達する。 10は起伏部材であり、支持シャーシ103がディスク 挿入口側にあるときは倒伏しているが、ディスク収納部 300側に移動すると起立する。起伏部材10が起立す ることで新たなディスクの誤挿入が防止される。起伏部 材10には一対のディスク当接部10aが設けられてお り、後述するように、再生する際にディスク中心をター ンテーブルの中心に位置決めするために使われる。

【0046】その後、駆動ローラ101がディスク搬入 方向に回動させると同時に、支持シャーシ移動機構を駆

. . .

Ż

0.00 K. 0.5

10

30

10

せる。このときディスクは駆動ローラ101の回動によって前方に押し出される力を受けるので、ディスクがトレイ301上に残されたまま駆動ローラ101だけが後退する。図18及び図19(d)に示すように、駆動ローラ101が挿入開始位置まで後退したところで支持シャーシ103の移動は停止する。以上により、装置外部から挿入されたディスクをディスク収納部300まで搬送する動作は終了する。

【0055】次に再生されたディスクを装置外に排出させる動作について説明する。図17に示すディスクの再生が終了しクランプが解除された状態から、駆動ローラ101をディスク搬入方向に回動させて、図16に示すようにディスクを一旦ディスク収納部300に収納させ、駆動ローラ101の回動を停止する。

【0047】次に装置外部から挿入されたディスクを直接再生する動作について説明する。この動作は、ディスクを挿入してから図16及び図19(c)に示すようにディスクをトレイ301上に担持させるところまでは、既述した動作と同じであるのでその説明は省略する。

【0056】その後、駆動ローラ101を回動させないで支持シャーシ移動機構を駆動し、駆動ローラ101をディスク挿入口側に後退させる。図15に示す駆動ローラ101が挿入開始位置に至ったととで支持シャーシ移動機構の駆動を停止する。最後に駆動ローラ101をディスク排出方向に回動させると、ディスクは装置外へ排出される。

【0048】その後は、支持シャーシ103を停止させたまま駆動ローラ101をディスク排出方向に回動させる。そうすると、駆動ローラ101は移動せずディスクだけが挿入口側に後退する。

【0057】次に再生されたディスクをディスク収納部300に収納させる動作について説明する。図17に示すディスクの再生が終了しクランプが解除された状態から、駆動ローラ101をディスク搬入方向に回動させて、図16に示すようにディスクを一旦ディスク収納部300に収納させ、駆動ローラ101の回動を停止する。

【0049】その後、ディスクが起伏部材10の一対の ディスク当接部10aに接すると、図17及び図20 (a)に示されるように、ディスクの中心がターンテー 20

【0058】その後、駆動ローラ101をディスク搬入方向に回動させると同時に、支持シャーシ移動機構を駆動させて駆動ローラ101をディスク挿入口側に後退させる。このときディスクは駆動ローラ101の回動によって前方に押し出される力を受けるので、ディスクがトレイ301上に残されたまま駆動ローラ101だけが後退する。図18に示すように、駆動ローラ101が挿入開始位置まで後退したところで駆動ローラ101の移動は停止し、再生されたディスクをディスク収納部300に収納させる動作は終了する。

(a) に示されるように、ディスクの中心がターンテーブル201の中心に一致する。最後に図10に示したクランプ動作をおこないディスクの再生が行われる。 【0050】次にディスク収納部300に収納されたディスクを装置外に排出する動作について説明する。動作開始前においては図18に示されるように駆動ローラ101は挿入開始位置に位置付けられている。この状態か

【0059】小径ディスク(8cmCD)はディスク収納部300に収納することはできないが、装置外から挿入させて直接再生することはできる。この動作について、図21~図27によって説明する。図21~図25は平面図、図26、図27は側面図である。

ィスクを装置外に排出する動作について説明する。動作開始前においては図18に示されるように駆動ローラ101は挿入開始位置に位置付けられている。この状態から、駆動ローラ101を排出方向に回動させながら支持シャーシ移動機構を駆動して駆動ローラ101をディスク収納部300側に移動させる。図16に示すように駆動ローラ101がディスク収納位置に至ったところで、支持シャーシ移動機構の駆動と駆動ローラ101の回動を停止する。

【0060】図21に示されるように駆動ローラ101は挿入開始位置に待機している。ユーザが装置前面のディスク挿入口にディスクを挿入すると、図示しないセンサが挿入を検知し、これに応じて駆動ローラ101がディスク搬入方向に回動する。これによりディスクは装置内部に引き込まれ始める。

【0051】その後、駆動ローラ101を回動させないで支持シャーシ移動機構を駆動し、駆動ローラ101をディスク挿入口側に後退させる。図15に示す駆動ローラ101が挿入開始位置に至ったととで支持シャーシ移動機構の駆動を停止する。最後に駆動ローラ101をディスク排出方向に回動させると、ディスクは装置外へ排出される。

【0061】ディスク引き込みの最中に図示しないセンサがディスクが8cmCDであることを判別すると、判別した位置で駆動ローラ101を回動させてから回動を停止する。図22及び図26(a)は引き込まれたディスクが8cmCDの場合の駆動ローラ101の回動停止50の状態を示す。8cmCDの径はディスク挿入口の長さ

【0052】次にディスク収納部300に収納されたデ 40 ィスクを再生する動作について説明する。駆動ローラ1 01を挿入開始位置からディスク収納位置に至らせると ころまでは、既述したディスク収納部300に収納されたディスクを装置外に排出する動作と同じである。

【0053】その後は、支持シャーシ移動機構を停止させたまま駆動ローラ101をディスク排出方向に回動させる。そうすると、駆動ローラ101は移動せずディスクだけが挿入口側に後退する。

【0054】その後、ディスクが起伏部材10の一対の ディスク当接部10aに接すると、図17及び図20 に比べて短いので、図22に示されるようにディスクが 挿入口中央に位置しない場合がほとんどである。

11

【0062】その後、支持シャーシ移助機構が駆動され、駆動ローラ101及びディスク再生部200は一体となってディスク収納部側に移動する。図23及び図26(b)に示される駆動ローラ101がディスク収納位置(12cmCDならばトレイ301上に担持される位置)に至ったところで支持シャーシ移動機構の駆動は停止する。

【0063】その後、図24及び図26(c)に示され 10 るように、駆動ローラ101をディスク排出方向に回動させてディスクを挿入口側に引き戻す。このときディスクは起伏部材10の一対のディスク当接部10aに当接することにより中央に位置決めされる。

【0064】その後、図25及び図27(a)に示されるように、駆動ローラ101を所定回転数だけディスク搬入方向に回動してディスクをターンテーブル201上に位置付ける。このとき、ディスクをターンテーブル201上に案内する手段は特に設けていないが、搬送距離が短いためクランプに支障を来すほどの位置ずれが生じ20ることはない。

【0065】その後、図27(b)に示すようにクランプがなされディスクは再生される。再生が終了したら、クランプ解除の後、支持シャーシ駆動機構を駆動して駆動ローラ101を挿入開始位置まで移動させ、支持シャーシ駆動機構を停止させてから、駆動ローラ101を排出方向に回動させて、ディスクを装置外に排出する。

【0066】以上、本発明の実施形態について、複数枚のディスクを収納するディスク収納部を備えた装置を例として説明したが、本発明は説明した実施形態に限られ 30 るものではない。例えば、駆動ローラ101を移動させる機構は、シングルブレーヤにも適用することが可能であり、ディスクとローラを引き離すための特別の機構を用いる必要のないシングルブレーヤを実現することができる。

[0067]

【発明の効果】本発明は、複数枚のディスクを配列した 状態で保持するディスク保持手段とディスク再生手段と を備えたディスクチェンジャであって、ディスク保持手 段は、各々1枚のディスクを保持する複数枚のトレイ と、前記トレイを前記配列方向にガイドするガイド手段 と、前記トレイを前記配列方向に駆動する駆動手段とを 含むものであり、前記トレイ駆動手段は、それぞれ前記 配列方向に伸長し略螺旋状の溝が形成された複数本のシャフトとこれら駆動シャフトを回動させるシャフト駆動 手段とを含むとともに、前記トレイには前記溝に係合す る係合部が設けられていることを特徴としている。

【0068】従って、溝のピッチ間隔を変えることで、 トレイのディスク配列方向への搬送動作と所定高さに位 置づけたトレイから隣接するトレイを引き離す動作と が、同時に且つ単一の駆動源で行うことが可能とでき、 機構の簡素化、駆動源の削減を成し遂げることができ る。

【図面の簡単な説明】

【図1】	本発明の実施形態を示す全体斜視図
【図2】	本発明の実施形態を示す全体平面図
【図3】	本発明の実施形態を示す全体平面図
【図4】	本発明の実施形態を示す平面図
【図5】	本発明の実施形態を示す説明図
【図6】	本発明の実施形態を示す平面図
【図7】	本発明の実施形態を示す平面図
【図8】	本発明の実施形態を示す説明図
【図9】	本発明の実施形態を示す説明図
【図10】	本発明の実施形態を示す説明図
【図11】	本発明の実施形態を示す説明図
【図12】	本発明の実施形態を示す説明図
【図13】	本発明の実施形態を示す側面図
【図14】	本発明の実施形態の動作を示す説明図
【図15】	本発明の実施形態の動作を示す説明図
【図16】	本発明の実施形態の動作を示す説明図
【図17】	本発明の実施形態の動作を示す説明図
【図18】	本発明の実施形態の動作を示す説明図
【図19】	本発明の実施形態の動作を示す説明図
【図20】	本発明の実施形態の動作を示す説明図
[図21]	本発明の実施形態の動作を示す説明図
【図22】	本発明の実施形態の動作を示す説明図
【図23】	本発明の実施形態の動作を示す説明図
【図24】	本発明の実施形態の動作を示す説明図
【図25】	本発明の実施形態の動作を示す説明図
【図26】	本発明の実施形態の動作を示す説明図
【図27】	本発明の実施形態の動作を示す説明図
F A-A T	

【符号の説明】

1	•		- *	1	٠,	・シ	•	3	,

2 ・・・・カムギア

3 ・・・・伝達ギア

4 ・・・・スライダ

10 ・・・・起伏部材

10a・・・ディスク当接部

100 ・・・・ディスク搬送部

0 101 ・・・・駆動ローラ

102 ・・・・ディスク通路

103 ・・・・支持シャーシ

103a····立上部

103b····案内部材

104 ・・・・モータ

105 · · · · 伝達機構

106 ・・・・可動シャーシ

200 ・・・・ディスク再生部

201 ・・・・ターンテーブル

50 202 ・・・・クランパ

(8)

13 203 ・・・・ピックアップ *305 ・・・・駆動シャフト 305a···-溝 305b・・・ギア部 300 ・・・・ディスク収納部 301 ・・・・トレイ 306 ・・・・ガイドシャフト 301a ・・・ディスク担持面 307 ・・・・同期ギア 301b・・・ガイドシャフト挿通孔 308 ・・・・伝達機構 301c・・・・駆動シャフト挿通孔 309 301d · · · · 係合片 ・・・・伝達ギア 310 301x・・・ディスク面押え機構 311 ・・・・ディスク押えアーム 301y・・・ディスク縁押え機構 *10 312 ・・・・ディスク面押え部材

【図1】

[図9]

301 301 301

【図10】

【図11】

:

38

. . .

ć. 4.

【図25】

【図26】

【図27】

フロントページの続き

(72)発明者 鈴木 徹

埼玉県川越市大字山田字西町25番地 1 バイオニア株式会社川越工場内

(72)発明者 井土 健二郎

埼玉県川越市大字山田字西町25番地 1 バイオニア株式会社川越工場内

(72)発明者 藤本 正己

埼玉県川越市大字山田字西町25番地 1 パ

イオニア株式会社川越工場内

(72)発明者 内山 賢治

埼玉県川越市大字山田字西町25番地 l バイオニア株式会社川越工場内

(72)発明者 木村 知道

埼玉県川越市大字山田字西町25番地 1 バ

イオニア株式会社川越工場内

(72)発明者 溝口 崇

埼玉県川越市大字山田字西町25番地 1 パ

イオニア株式会社川越工場内

(72)発明者 佐藤 道弘

山形県天童市大字久野本字日光1105番地

東北パイオニア株式会社内

(72)発明者 新野 哲哉

山形県天童市大字久野本字日光1105番地

東北バイオニア株式会社内