Harsh Rajkumar Vaish Prof. Yongfeng Zhang Recommendation based on MovieLens-20M Dataset March 20, 2020

MovieLens-TranseE

This document details work done on the MovieLense-TransE project over the last semester. Code is accessible here.

Code Structure: There are 4 branches - baselines, TransE, RL-DQN and master. There is a separate data processing done for each of the models as detailed in section Code.

Data Sources:

Data sources can be accessed here.

KB4Rec: There are 3 files in this dataset, however, we just use one: ml2fb.txt. It maps MovieLens 20M to Freebase.

Each line in ml2fb.txt is in the following format:

RS_item_ID[\tab]FB_item_ID

where RS_item_ID & FB_item_ID denote item_ID's from ML20M and FreeBase dataset respectively.

FreeBase: We use 1 step graph within our knowledge graph. This has been provided in graph_movie_1step.txt

MovieLens20M(ML20M):

We also used freebase dataset: You can find the data in

We used the MovieLense-20M dataset which can be access through **here**. As of *March 20 2020*, there's a new dataset MovieLens-25M available. This dataset contains 20 million ratings & 465K tags of 27K movies rated by 138K users. The dataset contains 5 csv files:

- movies.csv (movield, title, genre)
 - Errors and inconsistencies may exist in titles.
 - Genres are a pipe-separated list of [Action, Adventure, Animation, Children's, Comedy, Crime, Documentary, Drama, Fantasy, Film-Noir, Horror, Musical, Mystery, Romance, Sci-Fi, Thriller, War, Western, (no genres listed)]
- ratings.csv (userId, movieId, rating, timestamp)
 - Ratings are made on a 5-star scale, with 0.5-star increments (0.5-5.0 stars).

- Timestamps represent seconds since midnight Coordinated Universal Time (UTC) of January 1, 1970.
- tags.csv (userld, movield, tag, timestamp)
 - Tags are user-generated metadata about movies. Each tag is typically a single word or short phrase. The meaning, value, and purpose of a particular tag is determined by each user.
- links.csv (movield, imdbld, tmdbld)
- movield, imdbld, tmdbld are identifiers used by https://movielens.org, https://movielens.org, https://movielens.org, https://www.themoviedb.org respectively.
 - genome-tags.csv (tagld, tag)
 - genome-score.csv (movield, tagld, relevance)

Code:

Translational-Embedding Model:

Data Cleaning: Preprocessed data can be accessed <u>here</u>.

Relevant code: util.py and class MovieLens -> kg_construction.py

Since the amount of data to be processed was huge, multiprocessing is used to make the code efficient. Relevant functions with self-explanatory comments included in kg_construction.py and util.py

 Using graph_movie_1step.txt we first create data_processed/data_freebase.txt in the format :

FB_item_ID[\tab]relation_name[\tab]FB_item_ID
This involves removing links and just retaining the id's present for FB_item_ID.
We format relation_name as entity_name.relation_name.entity_name

- We map all the entities and relations from this file and store it in entities/<entity_-name>.txt and relations/<relation_name>.txt.
 - Each of these files store distinct FB_item_ID separated by newline character.
 - Using KB4Rec/ml2fb.txt we transform FB item ID to RS item ID.
 - We also create user.watched.movie relation which we populate using ml20m/ratings.csv
 - We again transform all the freebase ids into numerical ids starting with 0
- We only use relations which have occurrence frequency>10000. This can be modified to reduce/ increase density of out embeddings.
- We skip users who have watched less than or equal to 5 movies.
- The final data(with only indexes) that we use can be found in relation_indices/<relation_name>.txt

Training/ Test Data

- We use all relations and 70% of user.watched.movie relation as training_data
- We use remaining 30% of user.watched.movie relation as test_data

Running the code:

- All the data is loaded and stored in edicts defined in class MovieLensDataLoader -> kg_construction.py
- We create embeddings using code in train_embedding.py
- Evaluation of the embeddings is done using code in test embedding.py

Results

The results are formatted as following:

Precision: train 0.45, test 0.10. Recall: train 0.08, test 0.07. AUC: train 0.92, test 0.91.

Results are stored in results.txt for all the algorithms

Baselines:

We ran multiple baseline models:

- CKE TensorFlow implementation
 - We use ml20m/ratings.csv
 - Relevant code can be found in CKE/train_cke.py
- BPR PyTorch implementation
 - We use ml20m/ratings.csv
 - Relevant code can be found in CKE/train_cke.py
- OpenKE PyTorch implementation
 - We create the following files: run OpenKE/kg_construction_OpenKE.py to generate all these files except for type_constraint.txt
 - Training
 - entity2id.txt <FB_item_ID> index. First line contains total number of entities.
 - relation2id.txt <relation_name> index. First line contains total number of relations.
 - train2id.txt <entity_1_index entity_2_index relation>. First line contains total number of triples for training.
 - Testing
 - test2id.txt <entity_1_index entity_2_index relation>. First line contains total number of triples for testing.
 - valid2id.txt <entity_1_index entity_2_index relation>. First line contains total number of triples for validating.

- type_constraint.txt First line is the total number of relations followed by the type constraint for each relation. This file can be generated using OpenKE/nn.py
 - For instance: relation 1268 has 2 head entities (13005, 12781) and 1 tail entity (12683).

```
1268 2 13005 12781
1268 1 12683
```

- Run OpenKE/train_transe.py to generate embeddings
- Run OpenKE/test_transe.py to get the results

Results

The results are formatted as following:

Precision: train 0.45, test 0.10.
Recall: train 0.08, test 0.07.
AUC: train 0.92, test 0.91.

Results are stored in results.txt for all the algorithms

RL-DQN model:

This was done using PyTorch based OpenAl gym implementation. The same convention as Baselines and Translational-Embedding is followed here as well.