SEAT No.:		
-----------	--	--

[Total No. of Pages: 2

P4644 [4960]-1252

		M.E. (E & TC) (VISI & Embedded Systems)			
	DIGITAL CMOS DESIGN				
Time	(2013 Pattern) Time: 3 Hours] [Max. Marks: 50]				
		ns to the candidates:			
	1) 2) 3) 4)	Answer any five questions. Neat diagrams must be drawn wherever necessary. Use of electronic pocket calculator is allowed. Assume suitable data if necessary.			
Q 1)	a)	What is need of technology scaling? What are its types? Explain in brief.[5]			
	b)	Draw MOSFET equivalent circuit and explore the parasitics in detail.[5]			
Q 2)	a)	Draw the cross section of an inverter and mention dimensions. Show various capacitances. [5]			
	b)	With the help of suitable diagrams, explain layout design rules in detail.[5]			
Q 3)	a)	Derive the expressions for static & dynamic power dissipations. Compare them. [4]			
	b)	With the help of suitable example, explain logical efforts. [4]			
	c)	What is cross talk? How to minimize on chip level? [2]			
Q4)	a)	Explain fan in & fan out of CMOS logic. Give the expressions & explain dependencies. [4]			
	b)	Derive the expression for power delay product. What is its significance?[4]			
	c)	How does layout introduce delay? Which parasitics are responsible for it? [2]			

Q 5)	a)	Design CMOS logic for $Y = AB + C + D(E + F)$. Calculate area on C	hip. [4]
	b)	Explore need of transmission gate. What are limitations?	[4]
	c)	Why is transistor sizing important? Give analysis for logic with & with sizing for justification.	nout [2]
Q6)	a)	Explain metastability. What are the reasons? What are solutions?	[4]
	b)	With help of suitable combinational logic, explore static & dyna hazards in detail. What are the sources & mitigation techniques?	mic [4]
	c)	How to achieve symmetry in the voltage transfer characteristics of CM inverter?	IOS [2]
Q 7)	a)	What is need of sense amplifier circuit? With the help of schema explain sense amplifier circuit for typical application in detail.	atic, [4]
	b)	Explore NORA logic in detail.	[4]
	c)	List high speed design techniques.	[2]
Q 8)	a)	Compare the circuit families in brief.	[4]
	b)	Write note on advance materials in CMOS design.	[4]
	c)	Explain the concept of ratioed circuit.	[2]

XXXX