

实验台介绍

实验二: 传感器综合实验1

- 1. 金属箔式应变片性能及全桥测试实验
- 2. 移相器实验
- 3. 相敏检波器实验

注意事项

- 1. 差动放大器, 逆时针旋到底增益最大, 差动放大器需要先调零, 再接入电路。
- 2. 实验电路板所有的地,请在使用过程中接一起,防止电路板的地没有共到一起。
- 3. 能用短的连接线就不用长的,不要两根线拼接使用。
- 4. 实验过程多记录,有些需要保存图片进行说明,请选取合适素材,完成最终实验报告电子版。
- 5. 保持实验台整洁。

示波器使用

- ▶ 多功能旋钮,重要!!
- ▶ 旋转可以进行选项调整
- ▶ 按下可以进行选择确认

Auto进行自动测量

旋钮调节波形 垂直、水平位移

旋钮调节波形 垂直、水平比例 探针头 接待测信号

鳄鱼夹 接地

探头衰减系数切换 小信号不衰减,选X1

通道设置

DS1000U 系列提供双通道输入。每个通道都有独立的垂直菜单。每个项目都按不同的通道单独设置。

按 CH1 或 CH2 功能键,系统将显示 CH1 或 CH2 通道的操作菜单,说明见下表 (以 CH1 为例)。

图 2-1

表 2-1 通道设置菜单

功能菜单	设定	说明		
耦合	直流 交流 接地	通过输入信号的交流和直流成分 阻挡输入信号的直流成分 断开输入信号		
带宽限制	打开 关闭	限制带宽至 20MHz, 以减少显示噪音 满带宽		
探头	1X 5X 10X 50X 100X 500X 1000X	根据探头衰减因数选取相应数值,确份垂直标尺读数准确		
数字滤波		设置数字滤波		
(下一页)	1/2	进入下一页菜单(以下均同,不再说明)		

数字滤波的影响

Measure自动测量

图 2-112 自动测量功能按键

菜单说明:

自动测量功能键,系统将显示自动测量操作菜单。 按 Measure

该系列示波器提供 22 种自动测量的波形参数,包括 10 种电压参数和 12 种时间参数: 峰峰值、最大值、最小值、顶端值、底端值、幅值、平均值、均方根值、过冲、预冲、 频率、周期、上升时间、下降时间、正占空比、负占空比、延迟 $1 \rightarrow 2^{f}$ 、延迟 $1 \rightarrow 2^{f}$ 、 相位 $1 \rightarrow 2f$ 、相位 $1 \rightarrow 2f$ 、正脉宽和负脉宽。

图 2-113

Measure 言源选择 CH1

清除测量 全部测量 关闭

表 2-71 测量功能菜单

功能菜单	显示	说明			
信源选择	CH1 CH2	设置被测信号的输入通道			
电压测量		选择 <mark>测量</mark> 电压参数			
时间 <mark>测量</mark>		选择 <mark>测量</mark> 时间参数			
清除 <mark>测量</mark>		清除 <mark>测量</mark> 结果			
全部 <mark>测量</mark>	关闭 打开	关闭全部 <mark>测量</mark> 显示 打开全部 <mark>测量</mark> 显示			

10 种电压测量参数

12种时间测量参数

Cursor光标测量

图 2-124 光标测量功能按键

信号比较小又有比较多可见杂波的时候,采用光标模式,进行手动测量,可以提取有用信息。

按 Cursor → 光标模式 → 手动,进入下面所示菜单。

图 2-125 表 2-79 手动模式菜单

Cursors
光标模式
手动
光标类型
Y
信源选择
CH1
CurA
Ð
CurB
Ð

功能菜单	设定	说明			
光标模式	手动	手动调整光标间距以测量X或Y参数			
光标类型	X Y	光标显示为垂直线,测量时间值 光标显示为水平线,测量电压值			
信源选择	CH1 CH2 MATH	选择被测信号的输入通道			
CurA		设置光标 A 有效,调整光标 A 位置			
CurB		设置光标 B 有效,调整光标 B 位置			

▶ 通过旋动多功能旋钮(

-) 改变选中的光标的位置。
- ▶ 选择 X 光标类型时,获得相应波形处的时间值及差值。
- ➤ 选择 Y 光标类型时,获得相应波形处的电压值及差值。

Storage波形图片存储

3 插入U盘

图 2-67

存储功能按键

图 2-69

表 2-40 存储设置菜单(存储类型为位图存储)

)	2	

Storage	
存储类型	
位图存储	
参数保存	
打开	
外部存储	
rès de da rell	
磁盘管理	

功能菜单	设定	说明
存储类型	位图存储	存储或删除位图文件(适用于外部存
17 1417		储器)
参数保存	打开	设置在保存位图文件时,是否以同一
2 200111	关闭	文件名保存示波器参数文件
外部存储		进入外部存储菜单
磁盘管理		进入磁盘管理菜单

图 2-74 文件系统说明图

请及时在电脑查看并保存记录的图片,防止意外发生造成数据丢失!!

Storage波形图片存储

参数保存关闭

参数保存打开

Analog Ch CH1 CH2	State On On	Scale 5.00V/ 5.00V/	Position 10.0V -10.0V	Coupling DC DC	BW Limit Off Off	Invert Off Off
Analog Ch CH1 CH2	Impedano 1M Ohm 1M Ohm	ce Prob 1X 1X	е			
Time Time Ref Main Scale Delay Main Center 100.0us/ 0.000000s						
Trigger S Edge C	ource H1	Slope Rising		Coupling DC	Level 0.00u	
Acquisition Normal	•	_	Memory Dept Normal	h Sampl 2.500	e Rate MSa	

实验2.1: 金属箔式应变片性能及全桥测试实验

信号发生模块 直流电源

传感器信号模块 被测对象力的变化转 变为电阻值的变化

信号显示记录模块 电压表,也可以用 万用表的直流档

信号处理模块 电桥、差动变换器1 对微弱信号调理、放大

电桥原理

电路分析-差动放大器1放大倍数分析

左侧 虚短分析: $U_6 = U_{in2}$ $U_2 = U_{in1}$ 虚断分析: $\frac{U_{out2} - U_{out1}}{U_6 - U_2} = \frac{R_{10} + Rw_4 + R_{12} + R_{11}}{Rw_4 + R_{12}}$

右侧 虚短分析: $U_2' = U_3'$ 虚断分析: $U_2' = \frac{1}{2}(U_{out2} + U_{out})$ $U_3' = \frac{1}{2}(U_{out1} + 0)$

整体分析 $\frac{U_{out}}{U_{in1}-U_{in2}}=????$

实验2.2: 移相器实验

电路分析-移相器移相范围分析

交流电路中阻抗,定义为:
$$Z=rac{\dot{V}}{\dot{I}}$$

 $\dot{Z_R}=R$ 电阻的阻抗为:

电容的容抗为: $\dot{Z_C}=rac{1}{j\omega C}=-jrac{1}{\omega C}$ 电感的感抗为: $\dot{Z_L}=rac{j\omega L\dot{I}}{\dot{I}}=j\omega L$

实验2.3: 相敏检波器实验

➤ 采用DC直流控制模式

● DC正电压:输出与输入的关系?

● DC负电压:输出与输入的关系?

> 采用AC交流控制模式

- AC与Uin 0°相位差:输出与输入的关系?
- AC与Uin 180°相位差:输出与输入的关系?
- AC与Uin 任意角度相位差:输出与输入的 关系?

电路分析-相敏检波器

