Decision Theory: Part 3

Dr. Qiuzhuang Sun STAT3023

Review: Asymptotically minimax procedures

We have learned that $d(\cdot)$ is asymptotically minimax if it minimises

$$\lim_{n\to\infty}\max_{\theta\in[a,b]}R_{\mathbf{n}}(\theta|d).$$

An asymptotic minimax procedure can be found with 2 steps.

(i) Determine a lower bound on

$$\lim_{n\to\infty} \max_{a<\theta< b} R_n(\theta|d)$$

for any procedure $d(\cdot)$.

(ii) Show that a given procedure attains the lower bound.

Review: Asymptotic minimax lower bound

We introduce the following theorem last week about a lower bound to the limiting **maximum** (rescaled) risk for any estimator.

Theorem: Suppose that for sequence $\{L_n(\cdot|\theta)\}$ of loss functions and any $\theta_0 < \theta_1$, the corresponding sequence of Bayes procedures $\{\tilde{d}_n(\cdot)\}$ based on the $\mathrm{Unif}(\theta_0,\theta_1)$ prior $w(\theta)=(\theta_1-\theta_0)^{-1}1\{\theta_0<\theta<\theta_1\}$ is such that for each $\theta_0<\theta<\theta_1$,

$$\lim_{n\to\infty} E_{\theta}[L_n(\tilde{d}_n(\mathbf{X})|\theta)] = S(\theta),$$

where $S(\cdot)$ is a continuous function. Then, for any other sequence of procedures $\{d_n(\cdot)\}$ and any a < b,

$$\lim_{n\to\infty} \max_{a\leq\theta\leq b} E_{\theta}[L_n(d_n(\mathbf{X})|\theta)] \geq \max_{a\leq\theta\leq b} S(\theta).$$

We illustrated the use of the Asymptotic Minimax Lower Bound Theorem using an interval estimation of a Poisson distribution last week. Here is another example.

Example (Interval estimation of a normal mean): Suppose $\mathbf{X} = (X_1, \dots, X_n)$ consists of iid $N(\theta, 1)$ random variables for some unknown $\theta \in \Theta = \mathbb{R}$. Consider the decision space $\mathcal{D} = \mathbb{R}$ and the loss function:

$$L(d|\theta) = L_n(d|\theta) = 1\left\{|d-\theta| > \frac{c}{\sqrt{n}}\right\} = 1\{\sqrt{n}|d-\theta| > c\},\,$$

for some positive constant c. Find asymptotically minimax procedures over [a,b].

We have shown \bar{X} is asymptotically minimax in the last example. Indeed, there are other estimators that are also asymptotically minimax.

Consider the Bayes procedure using a conjugate $N(\mu_0, \sigma_0^2)$ prior:

$$w(\theta) = \frac{1}{\sigma_0 \sqrt{2\pi}} e^{-\frac{1}{\sigma^2}(\theta - \mu_0)^2}.$$

We know the posterior is also normal, namely

$$N\left(\frac{1}{1+n\sigma_0^2}\mu_0 + \frac{n\sigma_0^2}{1+n\sigma_0^2}\bar{X}, \frac{\sigma_0^2}{1+n\sigma_0^2}\right).$$

Use this prior to find another asymptotically minimax procedure.

Asymptotically minimax procedures

Example (Interval estimation of a Uniform scale parameter): Suppose $\mathbf{X}=(X_1,\ldots,X_n)$ consists of iid $U(0,\theta)$ random variables for some unknown $\theta>0$. Consider 0-1 loss $L(d|\theta)=1\{|d-\theta|>\frac{c}{n}\}$ for some c>0. Find asymptotically minimax procedures over [a,b].