Introduction à l'optimisation sans contrainte Aspects numériques

Djaffar Boussaa

CNRS/LMA

Contact: boussaa@lma.cnrs-mrs.fr

Plan

Direction de descente

Recherches linéaires (Détermination du pas)

Méthode de la plus forte pente

Méthode de Newton

Méthodes quasi-newtoniennes

Méthodes du gradient conjugué

Plan

Direction de descente

Recherches linéaires (Détermination du pas)

Méthode de la plus forte pente

Méthode de Newton

Méthodes quasi-newtoniennes

Méthodes du gradient conjugué

Direction de descente

Définition

Un vecteur p est dit direction de descente pour la fonction f au point x si $p'\nabla f(x)<0$.

Exemples

- $ightharpoonup p = -\nabla f(x)$ en un point x où $\nabla f(x) \neq 0$.
- ► Toute direction de la forme $-D(x)\nabla f(x)$ où D(x) est une matrice définie positive en un point x où $\nabla f(x) \neq 0$.

Proposition

Si p est une direction de descente pour la fonction f au point x, alors il existe $\overline{t} > 0$ tel que f(x + tp) < f(x) pour tout $t \in]0, \overline{t}[$.

Direction de courbure négative

Définition

Une direction $p \in \mathbb{R}^n$ est dite direction de courbure négative pour la fonction f au point x si $p/\nabla^2 f(x)p < 0$.

En résumé

- ► Condition du premier ordre Si un point x^* est un minimum local alors il n'y a pas de direction de descente en x^*
- ► Condition du second ordre Si un point x^* est un minimum local alors il n'y a pas de direction de courbure négative en x^*

Algorithme 1 : Algorithme générique

```
\begin{array}{c|c} x \leftarrow x_0 \\ \textbf{pour } k = 0, 1, 2, \dots \textbf{ faire} \\ & \textbf{si } x_k \textbf{ est optimal alors} \\ & | \textbf{ retourner } x_k \\ & \textbf{fin} \\ & \text{calculer une direction de descente } p_k \\ & \text{calculer un pas } \alpha_k \textbf{ par recherche linéaire} \\ & \text{mettre à jour } x : x_{k+1} = x_k + \alpha_k p_k \end{array}
```

fin

Remarque

A chaque itération, p_k est pris souvent de la forme $p_k = -B_k^{-1} \nabla f_k$, et est typiquement (et dans toute la suite du cours) une direction de descente, c-à-d $\nabla f_k^T p_k < 0$. Si bien que pour α suffisamment petit, est garantie la relation $f(x_k + \alpha p_k) < f(x_k)$.

Plan

Direction de descente

Recherches linéaires (Détermination du pas)

Méthode de la plus forte pente

Méthode de Newton

Méthodes quasi-newtoniennes

Méthodes du gradient conjugué

Recherche linéaire exacte

▶ Une première idée Intuitivement, il semble souhaitable de choisir α_k tel que

$$\alpha_k = \arg\min_{\alpha>0} \phi(\alpha)$$

avec

$$\phi(\alpha) = f(x_k + \alpha p_k)$$

On parle de recherche linéaire exacte

Exemple Cas quadratique :

$$f(x) = \frac{1}{2}x^T Qx + b^T x + c$$
$$\alpha_k = -\frac{\nabla f_k^T p_k}{p_k^T Q p_k}$$

Recherche linéaire exacte (suite)

► Constat En général, pas de solution analytique, d'où recours aux méthodes numériques.

Vous pouvez mettre en œuvre votre méthode de minimisation unidimensionnelle favorite à cet effet :

- Méthode de Fibonacci
- Méthode du nombre d'or
- interpolation polynomiale
- etc.
- Conséquence La recherche linéaire exacte est "chère" et il existe des méthodes plus économiques : "il ne faut pas perdre de vue : ce qu'on souhaite, c'est minimiser f(x) et non $[\phi(\alpha)]$. Il est donc totalement inutile de chercher à minimiser f avec précision dans la direction courante, et ceci à chaque itération." (C. Lemaréchal)

On parle alors de recherche linéaire inexacte

Recherche linéaire inexacte

- ▶ **Idée** Se contenter d'un α_k non optimal.
- **Question** De quel α_k peut-on se contenter?
- ▶ **Certitude** Toute suite (α_k) tel que $f(x_k + \alpha_k p_k) < f(x_k)$ pour tout k ne suffit pas pour assurer la convergence.

Recherche linéaire inexacte (suite)

- Exemples à méditer (Dennis et Schnabel)
 - Exemple 1
 - Fonction-objectif: $f(x) = x^2$
 - ltéré initial : $x_0 = 2$
 - ▶ Directions de recherche : $\{p_k\} = \{(-1)^{k+1}\}$
 - Pas: $\{\alpha_k\} = \{2 + 3(2^{-(k+1)})\}$
 - ltérés : $\{x_k\} = \{(-1)^k (1+2^{-k})\}$
 - La suite $\{x_k\}$ ne converge pas (deux points d'accumulation -1 et +1)
 - Exemple 2
 - Fonction objectif: $f(x) = x^2$
 - ltéré initial : $x_0 = 2$
 - ▶ Directions de recherche : $\{p_k\} = \{-1\}$
 - Pas: $\{\alpha_k\} = \{2^{-k+1}\}$
 - ltérés : $\{x_k\} = \{1 + 2^{-k}\}$
 - La suite $\{x_k\}$ converge vers 1 qui n'est pas un minimum de f
- ► Conclusion II faut des conditions plus strictes que la simple décroissance pour assurer la convergence

Quelques conditions courantes : conditions d'Armijo

$$f(x_k + \alpha p_k) \le f(x_k) + c_1 \alpha \nabla f_k^T p_k$$

Conditions de Wolfe $(0 < c_1 < c_2 < 1)$

$$f(x_k + \alpha_k p_k) \leq f(x_k) + c_1 \alpha_k \nabla f_k^T p_k$$
$$\nabla f(x_k + \alpha_k p_k)^T p_k \geq c_2 \nabla f_k^T p_k$$

Condition de Goldstein (0 < c < 1/2)

$$f(x_k) + (1 - c)\alpha_k \nabla f_k^T p_k \leq f(x_k + \alpha_k p_k)$$

$$f(x_k + \alpha_k p_k) \leq f_k + c\alpha_k \nabla f_k^T p_k$$

Conditions fortes de Wolfe $(0 < c_1 < c_2 < 1)$

$$f(x_k + \alpha_k p_k) \leq f(x_k) + c_1 \alpha_k \nabla f_k^T p_k$$
$$\left| \nabla f(x_k + \alpha_k p_k)^T p \right| \leq c_2 \left| \nabla f_k^T p_k \right|$$

Une méthode simple

Algorithme 2 : méthode de rebroussement

Entrées :
$$\bar{\alpha}$$
, ρ , $c \in]0, \frac{1}{2}[$
Sorties : α
 $\alpha \leftarrow \bar{\alpha}$
tant que $f(x_k + \alpha p_k) > f(x_k) + c\alpha_k \nabla f_k^T p_k$ faire $\alpha \leftarrow \rho \alpha$

fin

Remarques

- ▶ En général $\bar{\alpha}=1$ dans le cas de la méthode de Newton et des méthodes quasi-newtoniennes
- Un pas acceptable sera trouvé après un nombre fini d'itérations
- Recherche linéaire acceptable pour la méthode de Newton.
- Elle est en général insuffisante.

```
Algorithme 3: (Wolfe "faible")
```

```
Initialisation : Choisir 0 < c_1 < c_2 < 1
Poser \alpha = 0, \beta = \infty et t = 1
répéter
    si f(x+td) > f(x) + c_1 t f'(x; d) alors
         \beta = t
         t = \frac{1}{2} \left( \alpha + \beta \right)
    sinon si f'(x + td; x) < c_2 f'(x; d) alors
          \alpha = t
          si \beta = +\infty alors
            t = 2\alpha
          sinon
           t = \frac{1}{2}(\alpha + \beta)
          fin
     sinon
          retourner t
     fin
fin
```

Algorithme 4: Wolfe "fort"

```
Entrées : \alpha_1 et \alpha_{max}
\alpha_0 \leftarrow 0
répéter
      évaluer \phi(\alpha_i)
      si \phi(\alpha_i) > \phi(0) + c_1 \alpha_i \phi'(0) ou [\phi(\alpha_i) \geq \phi(\alpha_{i-1}) \ et \ i > 1] alors
       \alpha_* \leftarrow \mathsf{zoom}(\alpha_{i-1}, \alpha_i) et stop
      fin
      évaluer \phi'(\alpha_i)
      si |\phi'(\alpha_i)| \leq -c_2\phi'(0) alors
       \alpha_* \leftarrow \alpha_i et stop
      fin
      si \phi'(\alpha_i) \geq 0 alors
       \alpha \leftarrow \mathsf{zoom}(\alpha_i, \alpha_{i-1}) et stop
      fin
      choisir \alpha_{i+1} \in (\alpha_i, \alpha_{\max})
      i \leftarrow i + 1
fin
```

Algorithme 5 : Algorithme zoom

Entrées : $\alpha_{\rm lo}$, $\alpha_{\rm hi}$ bornes d'un intervalle contenant des points satisfaisant les conditions de Wolfe

répéter

fin

```
trouver (e.g. par interpolation) un pas \alpha entre \alpha_{lo} et \alpha_{hi}
évaluer \phi(\alpha)
si \phi(\alpha) > \phi(0) + c_1 \alpha \phi'(0) ou \phi(\alpha) \geq \phi(\alpha_{lo}) alors
sinon
       évaluer \phi'(\alpha)
       si |\phi'(\alpha)| < -c_2\phi(0) alors
           \alpha_* \leftarrow \alpha et stop
       fin
       \mathbf{si} \ \phi'(\alpha)(\alpha_{hi} - \alpha_{lo}) \geq 0 \ \mathbf{alors}
       fin
       \alpha_{lo} \leftarrow \alpha
fin
```

Plan

Direction de descente

Recherches linéaires (Détermination du pas)

Méthode de la plus forte pente

Méthode de Newton

Méthodes quasi-newtoniennes

Méthodes du gradient conjugué

Algorithme 6 : Méthode de la plus forte pente

```
Entrées : f, \nabla f, x_0
Sorties : x, une approximation d'un minimum de f
x \leftarrow x_0
pour k=1,2,\ldots faire
     \mathbf{si} \ x \ est \ optimal \ \mathbf{alors}
          retourner x
     fin
     p \leftarrow -\nabla f(x)
     calculer un pas \alpha_k par recherche linéaire
     x \leftarrow x + \alpha p
```

fin

Méthode d'intérêt plutôt théorique

- ightharpoonup très lente (la suite des x_k est oscillante)
- La méthode devrait être "interdite" (C. Lemaréchal)
- La recherche sur la méthode continue! (e.g. Méthode de Barzilai-Borwein et ramifications)

Application au cas quadratique

► Fonction-objectif

$$f(x) = \frac{1}{2}x^{T}Qx + b^{T}x + c$$

où la matrice Q est supposée symétrique définie positive

- ▶ Le gradient de f est $\nabla f = Qx + b$
- Le pas donné par une recherche linéaire exact

$$\alpha_k = \frac{\nabla f_k^T \nabla f_k}{\nabla f_k^T Q \nabla f_k}$$

La mise à jour de x est

$$x_{k+1} = x_k - \frac{\nabla f_k^T \nabla f_k}{\nabla f_k^T Q \nabla f_k} \nabla f_k$$

Mise en oeuvre dans le cas bidimensionnel

$$Q = \begin{pmatrix} 1 & 0 \\ 0 & M \end{pmatrix} \qquad (M > 0)$$

$$f(x_1, x_2) = \frac{1}{2}(x_1^2 + Mx_2^2)$$

$$x_0 = \begin{pmatrix} M \\ 1 \end{pmatrix}$$

$$x_k = \begin{pmatrix} \frac{M-1}{M+1} \end{pmatrix}^k \begin{pmatrix} M \\ (-1)^k \end{pmatrix}$$

- si M est proche de 1, la convergence est très rapide
- ▶ si $M \gg 1$ ou $M \ll 1$, convergence très lente en zigzag (Cf. courbes ci-dessous)

► Comportement similaire en dimension supérieure

Plan

Direction de descente

Recherches linéaires (Détermination du pas)

Méthode de la plus forte pente

Méthode de Newton

Méthodes quasi-newtoniennes

Méthodes du gradient conjugué

Algorithme 7 : Méthode de Newton (forme de base)

Entrées : f, ∇f , $\nabla^2 f$, x_0

Sorties : x, une approximation d'un minimum de f

$$x \leftarrow x_0$$

pour $k = 1, 2, \ldots$ faire

si x est optimal alors retourner x

fin

$$p^{N} \leftarrow -\nabla^{2} f_{k}^{-1} \nabla f(x)$$
$$x \leftarrow x + p^{N}$$

fin

Méthode de Newton (suite)

Interprétations

 $lackbox{L'itéré }x_{k+1}$ minimise le développement au 2nd ordre de f au voisinage de x_k

$$q(x) = f(x_k) + \nabla f(x)^T (x - x_k) + \frac{1}{2} (x - x_k)^T \nabla^2 f(x_k) (x - x_k)$$

L'itéré x_{k+1} est une solution de la linéarisation autour de la condition d'optimalité

$$\nabla f(x_k) + \nabla^2 f(x)(x_{k+1} - x_k) = 0$$

Méthode de Newton (suite)

Avantages

- convergence quadratique si l'itéré initial est bon (combien d'itérartions sont-elles nécessaire dans le cas quadratique défini positif?)
- méthode non affectée par un changement d'échelle

Inconvénients

- Peut diverger ou échouer à converger
- Converge vers un point stationnaire dans sa forme de base

Des remèdes existent

- ► Modification de la hessienne
- Contrôle du pas

Plan

Direction de descente

Recherches linéaires (Détermination du pas)

Méthode de la plus forte pente

Méthode de Newton

Méthodes quasi-newtoniennes

Méthodes du gradient conjugué

Algorithme 8 : Méthodes quasi-newtoniennes

Entrées : x_0 , une approximation initiale de la hessienne B_0 ($B_0 = I$ est un choix possible)

pour k = 0, 1, 2, ... **faire**

 $\mathbf{si} \ x_k \ est \ optimal \ \mathbf{alors} \ \mathsf{stop}$

Calculer une direction quasi-newtonienne p_k en résolvant :

$$B_k p = -\nabla f(x_k)$$

Déterminer un pas α_k par recherche linéaire

Mettre à jour $x: x_{k+1} = x_k + \alpha_k p_k$

Calculer

$$s_k = x_{k+1} - x_k$$
$$y_k = \nabla f(x_{k+1}) - \nabla f(x_k)$$

Mettre à jour $B: B_{k+1} = B_k + \cdots$

fin

Méthodes quasi-newtoniennes (suite)

Idée remplacer $\nabla^2 f(x)$ par une approximation B moins "chère" à calculer et/ou à stocker

Plusieurs règles de mise à jour de B. Les différents méthodes différent par le choix de B.

Avantages

- B peut-être construite en utilisant les dérivées premières seulement. Plus besoin de calculer la hessienne. Travail et risque d'erreur réduits
- La direction de recherche peut être calculée en $O(n^2)$ opérations (plutôt qu'en $O(n^3)$ opérations pour la méthode de Newton)

Inconvénients

- Convergence rapide mais non quadratique
- nécessité de stockage d'une matrice. Toutefois, des versions sans stockage ou avec stockage limité existent (LBFGS)

Conditions (de bon sens) que doit satisfaire une approximation de la hessienne?

Il semble raisonnable qu'une approximation de la hessienne

- ▶ soit symétrique (n(n+1)/2 termes à déterminer)
- \triangleright soit définie positive (n relations)
- satisfasse l'équation de la sécante (n relations)
- soit minimale en un certain sens (pour fermer le problème)

Equation de la sécante

▶ Dans le cas monodimensionnel

$$f''(x_k) \approx \frac{f'(x_k) - f'(x_{k-1})}{x_k - x_{k-1}}$$

Dans le cas multidimensionnel

$$\nabla^2 f(x_k)(x_k - x_{k-1}) \approx \nabla f(x_k) - \nabla f(x_{k-1})$$

 $ightharpoonup B_k$ choisie telle que

$$B_k(x_k - x_{k-1}) = \nabla f(x_k) - \nabla f(x_{k-1})$$

On dit que B_k satisfait **l'équation de la sécante**.

Notations

$$s_k = x_{k+1} - x_k$$

$$y_k = \nabla f_{k+1} - \nabla f_k$$

Formule de Sherman-Morrison-Woodbury

lackbox Soit \overline{A} une modification de rang 1 d'une matrice carrée inversible A

$$\overline{A} = A + ab^T$$

Si \overline{A} est inversible alors

$$\overline{A}^{-1} = A^{-1} - \frac{A^{-1}ab^T A^{-1}}{1 + b^T A^{-1}a}$$

Méthode DFP

$$\min_{H} \|B - B_k\|$$
sous les contraintes $B = B,^T$ $Bs_k = y_k$

$$B_{k+1}^{\text{DFP}} = (1 - \gamma_k y_k s_k^T) B_k (I - \gamma_k s_k y_k^T) + \gamma_k y_k y_k^T$$

$$\gamma = \frac{1}{y_k^T s_k}$$

$$H_{k+1}^{\text{DFP}} = H_k - \frac{H_k y_k y_k^T H_k}{y_r^T H_k y_k} + \frac{s_k s_k^T}{y_r^T s_k}$$

Méthode BFGS (1970)

$$\min_{H} \|H - H_k\|$$
 sous les contraintes $H = H,^T$ $Hy_k = s_k$

La solution est

$$H_{k+1}^{BFGS} = (I - \rho_k s_k y_k^T) H_k (I - \rho_k y_k s_k^T) + \rho_k s_k s_k^T$$

οù

$$\rho_k = \frac{1}{y_k^T s_k}$$

- appellation consacrée en l'honneur de ses inventeurs (Broyden, Fletcher, Goldfarb, Shanno)
- ► Régle de mise à jour

$$B_{k+1}^{BFGS} = B_k - \frac{B_k s_k s_k^T B_k}{s_k^T B_k s_k} + \frac{y_k y_k^T}{y_k^T s_k}$$

Très utilisée en pratique

Algorithme 9 : Algorithme BFGS

Entrées : x_0 , ϵ et H_0 tant que $\|\nabla f_k\| \le \varepsilon$ faire $\|\nabla f_k\| \le \varepsilon$ calculer une direction de recherche

$$p_k = -H_k^{\rm BFGS} \nabla f_k$$

calculer un pas α_k satisfaisant les conditions de Wolfe $(\alpha_0=1)$ passer à l'itéré suivant $x_{k+1}=x_k+\alpha_k p_k$ calculer $s_k=x_{k+1}-x_k$ et $y_k=\nabla f_{k+1}-\nabla f_k$ calculer H_{k+1}^{BFGS} $k\leftarrow k+1$

fin

Plan

Direction de descente

Recherches linéaires (Détermination du pas)

Méthode de la plus forte pente

Méthode de Newton

Méthodes quasi-newtoniennes

Méthodes du gradient conjugué

Algorithme 10: Méthode GC non linéaire (Fletcher–Reeves)

$$\begin{split} & \textbf{Entrées}: x_0, \, \epsilon \\ & \text{\'evaluer } f_0 = f(x_0) \\ & \text{\'evaluer } \nabla f_0 = \nabla f(x_0) \\ & p_0 = -\nabla f_0 \\ & k \leftarrow 0 \\ & \textbf{tant que } \|\nabla f_k\| \leq \varepsilon \text{ faire} \\ & \text{calculer un pas } \alpha_k \\ & \text{poser } x_{k+1} = x_k + \alpha_k p_k \\ & \text{\'evaluer } \nabla f(x_{k+1}) \\ & \beta_{k+1}^{\mathrm{FR}} \leftarrow \frac{\nabla f_{k+1}^T \nabla f_{k+1}}{\nabla f_k^T \nabla f_k} \\ & p_{k+1} \leftarrow -\nabla f_{k+1} + \beta_{k+1}^{\mathrm{FR}} p_k \\ & k \leftarrow k+1 \end{split}$$

Méthode du gradient conjugué non linéaire (suite)

Méthode de Polak-Ribière $\beta_{k+1}^{\mathrm{PR}} \leftarrow \frac{\nabla f_{k+1}^T (\nabla f_{k+1} - \nabla f_k)}{\nabla f_k^T \nabla f_k}$ Méthode de Polak-Ribière modifiée $\beta_{k+1}^+ \leftarrow \max\left\{\beta_{k+1}^{\mathrm{PR}}, 0\right\}$