เนื้อหากระบวนวิชา 203103

Part I

- 💙 บทน้ำ/ปริมาณสัมพันธ์
- 💙 💙 แก๊ส ของเหลว
- 💙 💙 💙 ของแข็ง

เคมี

เป็นวิชาทางวิทยาศาสตร์ ที่ศึกษาส่วนประกอบของสสาร ละเอียดถึงระดับอะตอม โมเลกุล โครงสร้างและสมบัติของสสาร รวมทั้งการเปลี่ยนแปลงและผลที่เกิดขึ้นจาการเปลี่ยนแปลง

วิธีทางวิทยาศาสตร์

(The Scientific Method)

หน่วยของการวัด (Units)

Le Systeme Internationale (SI) units

Quantity	Base Unit	Symbol
Length	meter	m
Mass	kilogram	kg
Time	second	S
Temperature	Kelvin	K
Substance quantity	mole	mol
Electric current	ampere	A
Luminous intensity	candela	cd

Derived SI Units

Physical quantity	Abbreviation	Physical quantity	Abbreviation
Area	m^2	Frequency	Hz, s ⁻¹
Volume	m^3	Force	N, kg m s ⁻²
velocity	$m s^{-1}$	Pressure	Pa, N m ⁻²
Acceleration	$m s^{-2}$	Energy	J, kg m ² s ⁻²
Density	kg m ⁻³	Power	J s ⁻¹ (W)
Molar mass	kg mol ⁻¹	Electric charge	$A s^{-1}(C)$
Molar volume	m ³ mol ⁻¹	Electric potential difference	e J A ⁻¹ (V)
Molar concentration	n mol m ⁻³	Electric resistance	V A ⁻¹

SI Prefixes

Multiple	Prefix
10^{18}	exa (E)
10^{15}	peta (P)
10^{12}	tera (T)
10^{9}	giga (G)
10^{6}	mega (M)
10^{3}	kilo (k)
10^{2}	hecto (h)
10	deca (da)
10^{-1}	deci (d)
10^{-2}	centi (c)
10^{-3}	milli (m)
10^{-6}	micro $(\mu)^a$
10^{-9}	nano (n)
10^{-12}	pico (p)
10^{-15}	femto (f)
10^{-18}	atto (a)

^aThe Greek letter μ (pronounced "mew").

Big Units

Small Units

ตัวอย่างอุปกรณ์ที่เกี่ยวข้องกับการวัดปริมาตรสาร

กระบวกตวง cylinder

ปีเปต pipet

บิวเรต buret

ขวดปริมาตร volumetric flask

ความไม่แน่นอนในการวัด

(Uncertainty in Measurement)

ตัวเลขที่ได้จากการวัดแต่ละครั้ง จะมีความไม่แน่นอนเกิดขึ้น เสมอขึ้นกับอุปกรณ์ที่เลือกใช้และผู้ที่ทำการวัด

คนที่	ปริมาตร(mL)
1	22.2 <u>5</u>
2	22.2 <u>8</u>
3	22.2 <u>6</u>
4	22.27
5	22.2 <u>6</u>

ตัวเลขตัวสุดท้ายเป็นตัวเลขไม่แน่นอน (uncertain)

ได้จากการประมาณ

ความแม่นยำ (Precision) & ความถูกต้อง (Accuracy)

ความถูกต้อง (accuracy) : ความใกล้เคียงกันของค่าเฉลี่ยของผลลัพธ์ที่ ได้จากการทดลองกับค่าที่แท้จริงหรือค่าที่ยอมรับ

ความแม่นยำ (Precision) : ความใกล้เคียงกันของผลลัพธ์ที่ได้จากการ ทดลองหลาย ๆครั้งภายใต้สภาวะเดียวกัน

*

$$\overline{X} = \frac{\sum_{i=1}^{N} X_{i}}{N} = \frac{X_{1} + X_{2} + ... X_{N}}{N}$$

$$SD = \sqrt{\frac{\sum_{i=1}^{N} (X_{i} - \overline{X})^{2}}{N-1}}$$

Accurate? No

Precise? Yes

Accurate? Yes

Precise? Yes

Precise? No

Accurate? No

Accurate? Yes

Precise? We can not say!

ความผิดพลาด (Error)

Systematic error (ความคลาดเคลื่อนจากระบบ)

ความผิดพลาดจากระบบของการวัด เช่น เครื่องมือไม่เที่ยงตรง
วิธีการทดลองไม่ถูกต้องและความสามารถที่จำกัดของผู้ทดลอง ทำ
ให้ค่าที่วัดได้มีแนวโน้มเป็นไปในทิศทางเดียวกัน อาจสูงเกือบ
ทั้งหมดหรือต่ำเกือบทั้งหมด

- ** Systematic error มาก => Accuracy น้อย
- Random error (ความคลาดเคลื่อนแบบสุ่ม)

ความผิดพลาดที่หลีกเลี่ยงไม่ได้ เช่น ผลของอุณหภูมิต่อสมบัติ ต่าง ๆ ทำให้ค่าที่วัดได้อาจสูงหรือต่ำมีการกระจายตัวสูง เกิดขึ้นได้ จากการประมาณตัวเลขสุดท้ายจากการวัด

** Random error มาก => Precision น้อย

Ex. 1 ในการวิเคราะห์น้ำเสีย อะไรคือความแตกต่าง เมื่อผู้ทดลอง ตวงตัวอย่างน้ำ 25.00 mL ด้วยปีเปต ณ บริเวณหนึ่ง และ ตวงน้ำตัวอย่าง 25 mL ด้วยกระบอกตวง ณ อีกบริเวณหนึ่ง

ป็เปต 25.00 mL → 24.99 - 25.01 mL

กระบวกตวง 25 mL 🛨 24 - 26 mL

*** การวัดด้วยปีเปตมีความแม่นยำมากกว่า ***

เลขนัยสำคัญ

(Significant Figures)

• เป็นจำนวนตัวเลขทุกหลักที่วัดได้แน่นอนนับรวมกับ หลัก ที่ไม่แน่นอนหลักแรก

🌣 ใช้ในการรายงานผลการทดลองของการวัดแต่ละครั้ง

1.15 หมายความว่า 1.15 ± 0.01

มีเลขนัยสำคัญ (SF) = 3

- 🌣 แสดงถึงความไม่แน่นอนจากการวัดและการคำนวณ
- 💠 จำนวน S.F. = certain digits + uncertain digit 1 ตัว
- ♣ โดยทั่วไปแสดงความไม่แน่นอนเท่ากับ ± 1 ของ ตัวเลขสุดท้ายของค่าที่รายงาน เช่นค่าที่วัดได้เป็น 1.23 cm หมายถึง 1.23 ± 0.01 cm มีเลขนัยสำคัญ (SF) = 3

Significant Figures

จำนวนเลขที่มีนัยสำคัญขึ้นอยู่กับอุปกรณ์ที่ใช้ในการวัด

เช่นต้องการตวงน้ำ 8.5 mL โดยใช้ภาชนะต่าง ๆต่อไปนี้

กระบอกตวง ขนาด 10 mL อ่านได้ 8.5<u>0</u>* => 3 **SF**ขนาด 50 mL อ่านได้ 8.<u>5</u> => 2 **SF**ขนาด 100 mL อ่านได้ <u>8</u> => 1 **SF**ปิเปต อ่านได้ 8.5<u>0</u> => 3 **SF**อ่านได้ 8.5<u>0</u> => 3 **SF**

*กระบอกตวง 10 mL ของบางบริษัทอ่านได้ทศนิยม 1 ตำแหน่ง

หลักการนับจำนวนเลขนัยสำคัญ

เริ่มนับจากตัวเลขที่แน่นอนตัวแรกที่ไม่ใช่ศูนย์ไปจนถึง ตัวเลขสุดท้ายที่มีค่าไม่แน่นอนเพียงตัวเดียว

- ตัวเลขที่ไม่ใช่เลขศูนย์ทุกตัวเป็นเลขนัยสำคัญ
- เลขที่มีเลขนัยสำคัญไม่จำกัดจำนวน
 - เลขจำนวนนับ เช่น 5 ชิ้น 10 โมเลกุล
 - เลขในสูตร เช่น T(°F) = (9/5)T(°C) + 32
 - เลขเปลี่ยนหน่วย (conversion unit) เช่น
 - 1 in = 2.54 cm
 - เลขทางคณิตศาสตร์ เช่น π = 3.14159265...,
 - e = 2.7182818...

หลักการพิจารณาเลขศูนย์

- * เลขศูนย์ที่นำหน้า (Leading zeros) ทุกตัวไม่เป็นเลข นัยสำคัญ เช่น 0.0025 มี 2 SF
- * เลขศูนย์ที่อยู่ระหว่างเลขอื่น (Captive zeros) ทุกตัวเป็น เลขนัยสำคัญ เช่น 0.1002 มี 4 SF
- * เลขศูนย์ที่อยู่ท้าย (Trailing zeros) จะเป็นเลขนัยสำคัญเมื่อ จำนวนนั้นมีจุดทศนิยม

เช่น 200 มี 1 SF, 0.02<mark>00</mark> มี 3 SF

จำนวน S.F.

0.501

8.50

0.0050003 5

0.0500

108

700

 $700 \pm 100 = 7 \times 10^2 \text{ SF} = 1$

 $700 \pm 10 = 7.0 \times 10^2 \text{ SF} = 2$

 $700 \pm 1 = 7.00 \times 10^2 \text{ SF} = 3$

เลขนัยสำคัญในการคำนวณ

- คำนวณต่อเนื่องจนได้ผลลัพธ์
- การปัดตัวเลข
 - > 5 ปัดขึ้น 1.28 -> 1.3 ถ้า < 5 ปัดทิ้ง 1.24 -> 1.2 = 5 (เลขหน้าคู่ให้ปัดทิ้ง เลขหน้าคี่ให้ปัดขึ้น) $1.35 \rightarrow 1.4$ $1.25 \rightarrow 1.2$
- ผลลัพธ์จากการบวก-ลบ ให้เหลือทศนิยมเท่ากับตัวเลขที่มีทศนิยม

• ผลลัพธ์จาการคูณ-หารให้เหลือเท่าตัวเลขที่มีเลขนัยสำคัญน้อยสุด (3.14x2.751)/0.64 = 13

เลขนัยสำคัญกับการคำนวณ

Logarithm → SF ของ mantissa (หลังทศนิยม) ของค่า log เท่ากับ SF ของเลขเริ่มต้น เช่นการหาค่า pK ูของกรดอ่อน

pKa =
$$-\log(1.8 \times 10^{-5}) = 4.74$$

4 → characteristics

74 → mantissa

Antilogarithm → SF ของค่า antilog เท่ากับ SF ของ mantissa เช่น การหา [H⁺] จากค่า pH

pH =
$$-\log [H^+] = 5.00$$

[H⁺] = antilog 5.00 = 1.0×10^{-5}

Ex. 2 จงหาคำตอบของการคำนวณต่อไปนี้ พร้อมระบุเลข นัยสำคัญที่ถูกต้อง

$$12.735 + 2.1 - 7.53 = ?$$
 $12.735 + 2.1 - 7.53 = 7.305$

เนื่องจากเลขทศนิยมน้อยที่สุดคือ หนึ่งตำแหน่ง ดังนั้นคำตอบเป็น 7.3 ซึ่งมีเลขนัยสำคัญเท่ากับ 2 Ex. 3 จงคำนวณค่าคงที่ของแก๊ส R จาก PV = nRT ถ้าทำการ
 ทดลอง วัดปริมาตรของแก๊ส 1.00 mol ที่ 0.0 ºC ความดัน
 1.00 atm ได้เท่ากับ 22.4 L

= 0.082006223 atm.L/K.mol

ดังนั้น R = 0.0820 atm.L/K.mol (เลขนัยสำคัญเท่ากับ 3 SF)

เลขนัยสำคัญกับการคำนวณหลายขั้นตอน

เพื่อให้ได้คำตอบที่ถูกต้องคำนวณที่ละขั้น การปัด ตัวเลขควรทำเพียงครั้งเดียวหลังจากคำนวณ เสร็จสิ้น

- $(1) \quad 6.455 6.13 = 0.325$
- $(2) \quad 107.3x0.325 = 34.8725$
- (3) 50.71+3<u>4</u>.8725 = 8<u>5</u>.5825 ปัดเป็น <mark>86</mark>

Ex. 4 จงหาจำนวนเลขนัยสำคัญของข้อต่อไปนี้

- a. นักเรียนคนหนึ่งสกัดชาได้คาเฟอีน 0.0105 g a. 3 SF
- b. นักเคมีบันทึกน้ำหนักการทดลองหนึ่ง 0.050080 g b. 5 SF
- c. ในการทดลองหนึ่งใช้เวลา $8.060x10^{-3} s$ c. 4 SF

Ex. 5 จงคำนวณและแสดงผลที่มีจำนวนเลขนัยสำคัญถูกต้อง

- a. $1.05 \times 10^{-3} / 6.135 = 1.71 \times 10^{-4}$ มี 3 SF
- b. 21 13.8 = 7 1 SF

Ex. 6 จงคำนวณค่าตัวเลขต่อไปนี้ โดยคิดนัยสำคัญ

- 1. 26.5862 L + 0.17 L
- 2.9.1 g 4.682 g
- 3. $(7.1x10^4 \text{ dm}) \times (2.264x10^2 \text{ dm})$
- 4. 6.52 g / 86.5542 ml
- 5. $(7.55x10^4 \text{m}) (8.62x10^3 \text{ m})$

Answer

1. = 26.76

2. = 4.4

 $3. = 1.6 \times 10^7$

4. = 0.0753

 $5. = 6.69 \times 10^4$

Ex. 7 จงคำนวณความหนาแน่นของสารที่มีมวลเท่ากับ 5.789 g และปริมาตรเท่ากับ 3.12 ml

Ex. 8 อุณหภูมิ 36.4°C คิดเป็น °F จะได้เท่าไร