

微软亚洲研究院创研论坛

CVPR 2020 论文分享会

陈润发, **黄文炳**, 黄柄惠, 孙富春, 方斌 *清华大学计算机系*

01 • Content

- **>** Background
- **➤** Motivation
- > NICE-GAN
- **Experiments**
- **➤** Conclusion

Background

Cumulative number of named GAN papers by month

跨域图片转换是图片编辑(换脸)、迁移学习、多模态融合等任务的关键步骤; GAN已经成为图片转换技术是最有效的方法之一

Isola et al. CVPR 2017

然而,存在无穷多的映射,无法捕捉不同域的instance-level的相似性关联

Enforcing $\sum_{Y} P(X|Y)P(Y|X) = I$

Zhu et al. ICCV 2017

Zhu et al. ICCV 2017

• Background: 无监督图片转换

- ➤ A Discriminator for domain alignment by using GAN training.
- ➤ An Encoder to embed the input image to a low-dimension hidden space.
- A Generator to translate hidden vectors to images of the other domain

The discriminator should conduct semantics encoding of the input images before it can tell what images are true/false.

Radford ea al. DCGAN, ICLR 2016.

Random filters

Trained filters

Strongly responses to the input image are observed in the first 6 layers of the discriminator after training.

Can we integrate encoder into discriminator, since it has done the encoding thing

- ➤ A Discriminator for domain alignment by using GAN training.

 Reusing early layers to embed the input image to a low-dimension hidden space.
- A Generator to translate hidden vectors to images of the other domain

- ➤ More compact architecture!
- ➤ More effective training of the encoder (directly using the discriminative loss)!

• NICE-GAN (No Independent Component for Encoding)

- > Reusing discriminator for encoding
- ➤ Multi-scale discriminator
- > Self-reconstruction
- > Decoupled training

What and Why decoupled training?

$$\min_{\boldsymbol{E_{x}},G_{x\to y}} \max_{D_{y}=\boldsymbol{E_{y}}\circ C_{y}} L_{gan}^{x\to y} + \min_{\boldsymbol{E_{y}},G_{y\to x}} \max_{D_{x}=\boldsymbol{E_{x}}\circ C_{x}} L_{gan}^{y\to x}$$

Decoupled Training

$$\min_{G_{x \to y}} \max_{D_y = \mathbf{E_y} \circ C_y} L_{gan}^{x \to y} + \min_{G_{y \to x}} \max_{D_x = \mathbf{E_x} \circ C_x} L_{gan}^{y \to x}$$

The encoders are minimized and maximized at the same time!!!

The Overall Flowchart

Update Generator

Update iscriminator

• Experiments

- ➤ Comparisons with SOTAs (how does it perform quantitatively and qualitatively)
- ➤ Ablation Study (how does each component help)
- ➤ Analysis (why it works)

• Experiments: Comparison with SOTAs

					_			
Dataset	$dog \rightarrow cat$		winter \rightarrow summer		photo \rightarrow vangogh		$zebra \rightarrow horse$	
Method	FID	$KID \times 100$	FID	$KID \times 100$	FID	$KID \times 100$	FID	$KID \times 100$
NICE-GAN	48.79	1.58	76.44	1.22	122.27	3.71	149.48	4.29
NICE-GAN*	51.98	1.50	79.02	1.35	122.59	3.53	150.57	4.43
U-GAT-IT-light	80.75	3.22	80.33	1.82	137.70	6.03	145.47	3.39
CycleGAN	119.32	4.93	79.58	1.36	136.97	4.75	156.19	5.54
UNIT	59.56	1.94	95.93	4.63	136.80	5.17	170.76	6.30
MUNIT	53.25	1.26	99.14	4.66	130.55	4.50	193.43	7.25
DRIT	94.50	5.20	78.61	1.69	136.24	5.43	200.41	10.12
_	$cat \rightarrow dog$		$summer \rightarrow winter$		$vangogh \rightarrow photo$		horse → zebra	
Dataset	cat	$\rightarrow dog$	summe	$er \rightarrow winter$	vangog	$gh \rightarrow photo$	horse	e → zebra
Dataset Method	cat FID	$\rightarrow dog$ $KID \times 100$	summe FID	$er \rightarrow winter$ $KID \times 100$	vangog FID	$gh \rightarrow photo$ $KID \times 100$	horse FID	$e \rightarrow zebra$ $KID \times 100$
						1		
Method	FID	KID × 100	FID	$KID \times 100$	FID	$KID \times 100$	FID	$KID \times 100$
Method NICE-GAN	FID 44.67	KID × 100	FID 76.03	KID × 100 0.67	FID 112.00	KID × 100 2.79	FID 65.93	KID × 100 2.09
Method NICE-GAN NICE-GAN*	FID 44.67 55.72	KID × 100 1.20 1.89	FID 76.03 77.13	0.67 0.73	FID 112.00 117.81	KID × 100 2.79 3.61	FID 65.93 84.89	XID × 100 2.09 3.29
Method NICE-GAN NICE-GAN* U-GAT-IT-light	FID 44.67 55.72 64.36	KID × 100 1.20 1.89 2.49	FID 76.03 77.13 88.41	0.67 0.73 1.43	FID 112.00 117.81 123.57	KID × 100 2.79 3.61 4.91	FID 65.93 84.89 113.44	2.09 3.29 5.13
Method NICE-GAN NICE-GAN* U-GAT-IT-light CycleGAN	FID 44.67 55.72 64.36 125.30	1.20 1.89 2.49 6.93	FID 76.03 77.13 88.41 78.76	0.67 0.73 1.43 0.78	FID 112.00 117.81 123.57 135.01	XID × 100 2.79 3.61 4.91 4.71	FID 65.93 84.89 113.44 95.98	2.09 3.29 5.13 3.24

06

• Experiments: Human preference results

<u>th</u>

• Experiments: Visualization

06

• Experiments: Visualization

• Experiments: More Compact Architecture

Table 2: Total number of parameters and FLOPs of network modules. NICE-GAN* are the version that the generator network is composed of only four residual blocks.

Module	Total number of params(FLOPs)			
Method	Generators	Discriminators		
U-GAT-IT-light	21.2M(105.0G)	112.8M(15.8G)		
NICE-GAN	16.2M(67.6G)	93.7M(12.0G)		
NICE-GAN*	11.5M(48.2G)	93.7M(12.0G)		

06

• Experiments: Ablation Study

Data	Components					FID	KID
Set	NICE	RA	C_x^0	C_x^1	C_x^2	FID	× 100
	×	×	√	√	√	80.75	3.22
	×	\checkmark	\checkmark	\checkmark	\checkmark	67.60	2.94
_	✓	X	\checkmark	\checkmark	\checkmark	63.80	3.27
dog	_	\checkmark	\checkmark	\checkmark	\checkmark	48.55	1.23
\rightarrow	✓	\checkmark	\checkmark	\checkmark	\checkmark	48.79	1.58
cat	+	\checkmark	\checkmark	\checkmark	\checkmark	53.52	1.84
	✓	\checkmark	\checkmark	\checkmark	×	203.56	15.27
	✓	✓	✓	×	×	216.03	18.57
	×	×	√	√	√	64.36	2.49
	×	\checkmark	\checkmark	\checkmark	\checkmark	64.62	2.41
	✓	×	\checkmark	\checkmark	\checkmark	51.49	1.68
cat	_	\checkmark	\checkmark	\checkmark	\checkmark	52.92	1.82
\rightarrow	✓	\checkmark	\checkmark	\checkmark	\checkmark	44.67	1.20
dog	+	\checkmark	\checkmark	\checkmark	\checkmark	54.90	2.17
	V	\checkmark	\checkmark	\checkmark	×	238.62	21.41
	✓	\checkmark	\checkmark	×	×	231.24	22.12

Figure 6: **Decoupled Training Analysis.** NICE-GAN:

• Experiments: Why it works?

- > Shortening the transition path between domains in the latent space,
- > NICE-GAN can probably facilitate domain translation in the image space.

Conclusion

- This paper contends a novel role of the discriminator by reusing it for encoding the images of the target domain.
- ➤ We develop a decoupled training strategy by which the encoder is only trained when maximizing the adversary loss while keeping frozen otherwise.
- Extensive experiments on four popular benchmarks demonstrate the superior performance of NICE-GAN over state-of-the-art methods in terms of FID, KID, and also human preference.

謝謝观看 THANKYOU

