SEMIGROUP NOTES

JS AND JY

1. Definitions

Let E be any set and let $\mathbb{T} := (T_t)_{t \geq 0}$ be a family of self-maps on E. The pair (E, \mathbb{T}) is called a semidynamical system if T_0 is the identity and \mathbb{T} has the semigroup property

$$T_{s+t} = T_t \circ T_s$$
 for all $s, t \in \mathbb{R}_+$.

If E is a vector space and each $T_t \in \mathbb{T}$ is linear, then (E, \mathbb{T}) is called an algebraic operator (AO) semigroup. If, in addition, E is an Banach space and $t \mapsto T_t u$ is continuous for all $u \in E$, then (E, \mathbb{T}) is called a C_0 -semigroup. When E is understood, we say that \mathbb{T} is a C_0 -semigroup.

2. Continuity results

In what follows, E is a Banach space and $\mathcal{L}(E)$ is the set of bounded linear operators from E to itself. The symbol $\|\cdot\|$ denotes either the norm on E or the operator norm on $\mathcal{L}(E)$, depending on context.

Let K be a compact subset of \mathbb{R} and let $\{T_t\}_{t\in K}$ be a subset of $\mathcal{L}(E)$. The following result is from Engel and Nagel (2006).

Lemma 2.1. The following statements are equivalent:

- (i) The map $t \mapsto T_t u$ is continuous on K for all $u \in E$.
- (ii) $||T_t||$ is bounded over $t \in K$ and there exists a dense subset D of E such that $t \mapsto T_t u$ is continuous on K for all $u \in D$.
- (iii) For any compact $C \subset E$, the map $(t, u) \mapsto T_t u$ is uniformly continuous on $K \times C$.

Proof. ((i) \Longrightarrow (ii)) By (i), for any $u \in E$, the map $t \mapsto T_t u$ is continuous on a compact set and, therefore, its image is bounded in E. Hence, by the uniform boundedness principle, $||T_t||$ is bounded over $t \in K$. The statement in (ii) regarding continuity is obvious.

Date: January 31, 2024.

2 JS AND JY

 $((ii) \implies (iii))$. Fix compact $C \subset E$ and $\varepsilon > 0$. We metrize $K \times C$ by setting $d((s,u),(t,v)) = \|u-v\| \vee |s-t|$. Choose M such that $\|T_t\| \leq M$ for all $t \in K$. Let D be the dense set in (ii) and observe that the set of open balls $B(u,\varepsilon/M)$ over $u \in D$ provides an open cover of C. As such, we can choose a finite set $D_F \subset D$ such that C is contained in $\bigcup_{u \in D_F} B(u,\varepsilon/M)$. Since, for each $u \in D_F$, the map $t \mapsto T_t u$ is continuous on a compact set, it is also uniformly continuous. As a result, we can select a $\delta_u > 0$ such that

$$|s-t| < \delta_u \implies ||T_s u - T_t u|| < \varepsilon.$$

Let δ be the minimum of $\{\delta_u\}_{u\in D_F}$ and ε/M . If we take $u,v\in C$ and $s,t\in K$ with $d((s,u),(t,v))<\delta$, then, choosing $w\in D_F$ with $||u-w||<\varepsilon/M$, we have

$$||T_{s}u - T_{t}v|| \le ||T_{s}u - T_{s}w|| + ||T_{s}w - T_{t}w|| + ||T_{t}w - T_{t}v||$$

$$= ||T_{s}(u - w)|| + ||T_{s}w - T_{t}w|| + ||T_{t}(w - v)|| < M(\varepsilon/M) + \varepsilon + M(2\varepsilon/M) = 4\varepsilon.$$

Hence $(t, u) \mapsto T_t u$ is uniformly continuous on $K \times C$, as claimed.

$$((iii) \implies (i))$$
 This claim is also obvious (take C to be a singleton).

Lemma 2.2. If $(T_t)_{t\geqslant 0}$ is a C_0 -semigroup on E, then $\sup_{t\leqslant \delta} \|T_t\| < \infty$ for all $\delta > 0$.

Proof. We first claim there exists an $\varepsilon > 0$ such that $\sup_{t \leq \varepsilon} ||T_t|| < \infty$. Indeed, if no such ε exists, then there exists a sequence $t_n \to 0$ such that $||T_{t_n}||$ is unbounded. But then, by the principle of uniform boundedness, there exists a $u \in E$ such that $||T_{t_n}u||$ is unbounded. This contradicts the continuity property of C_0 -semigroups.

Now let ε be as above and choose $M \in \mathbb{N}$ with $||T_t|| \leq M$ whenever $t \leq \varepsilon$. Fix $k \in \mathbb{N}$ and $t \leq k\varepsilon$. Since T_t is k compositions of $T_{t/k}$, and since $t/k < \varepsilon$, the semigroup property yields $||T_t|| \leq kM$. Hence $t \mapsto T_t$ is bounded on $[0, k\varepsilon]$. Since k was an arbitrary element of \mathbb{N} , this proves the claim in Lemma 2.2.

Lemma 2.3. An AO semigroup $(T_t)_{t\geqslant 0}$ on E is a C_0 -semigroup on E if and only if $\lim_{t\downarrow 0} T_t u = u$ for all $u \in E$.

Proof. Sufficiency is obvious. Regarding necessity, fix $u \in E$ and t > 0. We need to show that $||T_{t+h}u - T_tu|| \to 0$ as $h \to 0$. Suppose first that $h \downarrow 0$. Then

$$||T_{t+h}u - T_tu|| = ||T_tT_hu - T_tu|| \le ||T_t|| ||T_hu - u|| \to 0.$$

If, on the other hand $h \uparrow 0$, then

$$||T_{t+h}u - T_tu|| = ||T_{t+h}u - T_{t+h}T_{-h}u|| \le ||T_{t+h}|| ||u - T_{-h}u|| \to 0.$$

In the last step we used the fact that $||T_{t+h}||$ is bounded over h by Lemma 2.2.

Lemma 2.4. Let $(T_t)_{t\geqslant 0}$ be an AO semigroup on E. If there exists a dense subset D of E such that $\lim_{t\downarrow 0} T_t u = u$ for all $u \in D$ and, in addition, $\sup_{t\leqslant \delta} \|T_t\| < \infty$ for some $\delta > 0$, then $(T_t)_{t\geqslant 0}$ is a C_0 -semigroup on E.

Proof. Fix $u \in E$. In view of Lemma 2.3 it suffices to show that, for a given sequence $t_n \downarrow 0$, we have $T_{t_n}u \to u$ as $n \to 0$.

To see that this holds, fix $t_n \downarrow 0$ and choose a compact set K such that $\{t_n\} \subset K$. Since K is compact, $K \ni t \mapsto T_t w$ is continuous when $w \in D$, and $||T_t||$ is bounded over $t \in K$, Lemma 2.1 implies that $K \ni t \mapsto T_t u$ is continuous. In particular, $T_{t_n} u \to u$ as $n \to 0$.

References

Engel, K.-J. and Nagel, R. (2006). A Short Course on Operator Semigroups. Springer Science & Business Media.