- 36. Seja G um grupo. Para cada $a \in G$, considere a aplicação $\theta_a : G \to G$ definida por $\theta_a(x) = axa^{-1}$. Mostre que:
 - (a) Para cada $a \in G$ a aplicação θ_a é um automorfismo de G. Para cada $a \in G$, o automorfismo θ_a designa-se por automorfismo interno de G;
 - (b) Para cada $\alpha \in \operatorname{Aut}(G)$ e cada $a \in G$, $\alpha \theta_a \alpha^{-1} = \theta_{\alpha(a)}$;
 - (c) $\{\theta_a : a \in G\}$ é um subgrupo normal do grupo $\operatorname{Aut}(G)$. Este subgrupo representa-se por $\operatorname{Inn}(G)$;
 - (d) A correspondência ϕ definida por $a \mapsto \theta_a$, com $a \in G$, é um morfismo de G em $\operatorname{Aut}(G)$;
 - (e) Nuc $\phi = Z(G)$.

Resolução

(a) Consideremos um elemento qualquer $a \in G$ e θ_a a aplicação definida conforme o enunciado. Observemos primeiro que θ_a é um morfismo. De facto, para quaisquer $x, y \in G$, temos

$$\theta_a(xy) = a(xy)a^{-1} = (ax)(a^{-1}a)(ya^{-1}) = (axa^{-1})(aya^{-1}) = \theta_a(x)\theta_a(y).$$

Vejamos de seguida que θ_a é sobrejetiva. Seja y um elemento qualquer de G. Procuramos $x \in G$ tal que $\theta_a(x) = y$, i.e., tal que $axa^{-1} = y$. Por G ser grupo, sabemos que esta equação tem, exatamente, uma solução. Calculemo-la:

$$\begin{aligned} axa^{-1} &= y &\Leftrightarrow a^{-1}(axa^{-1})a = a^{-1}ya \\ &\Leftrightarrow (a^{-1}a)x(a^{-1})a = a^{-1}ya \\ &\Leftrightarrow 1_Gx1_G = a^{-1}ya \\ &\Leftrightarrow x = a^{-1}ya. \end{aligned}$$

Assim, o elemento $x \in G$ tal que $\theta_a(x) = y$ é $x = a^{-1}ya$. Finalmente, mostremos que θ_a é injetiva. Sejam $x, y \in G$ tais que $\theta_a(x) = \theta_a(y)$. Então $axa^{-1} = aya^{-1}$ e

$$axa^{-1} = aya^{-1} \Leftrightarrow a^{-1}(axa^{-1})a = a^{-1}(aya^{-1})a$$

 $\Leftrightarrow (a^{-1}a)x(a^{-1}a) = (a^{-1}a)y(a^{-1}a)$
 $\Leftrightarrow 1_Gx1_G = 1_Gy1_G \Leftrightarrow x = y.$

Portanto, θ_a é um automorfismo.

(b) Sejam $\alpha \in \operatorname{Aut}(G)$ e $a \in G$. Claramente $\theta_{\alpha(a)}$ e $\alpha \theta_a \alpha^{-1}$ são morfismos de G em G. Para qualquer $b \in G$, temos

$$\begin{array}{ll} (\alpha \theta_a \alpha^{-1})(b) &= \alpha [\theta_a [\alpha^{-1}(b)]] = \alpha [a \, \alpha^{-1} \, (b) a^{-1}] \\ &= \alpha (a) \, \alpha (\alpha^{-1}(b)) \, \alpha (a^{-1}) \\ &= \alpha (a) b (\alpha (a))^{-1} = \theta_{\alpha (a)} (b). \end{array}$$

Assim, $\alpha \theta_a \alpha^{-1} = \theta_{\alpha(a)}$.

(c) Seja $A = \{\theta_a : a \in G\}$. Pela alínea (a), A está contido no grupo $\operatorname{Aut}(G)$. Além disso, $\theta_{1_G} \in A$ e, portanto, $A \neq \emptyset$. Sejam θ_a, θ_b elementos arbitrários de A. Vejamos que $\theta_a\theta_b$ é ainda um elemento de A. Como $a, b \in G$ e G é grupo, $ab \in G$ e, portanto, o candidato natural de A a ser a aplicação $\theta_a\theta_b$ é θ_{ab} . Verifiquemos que, de facto, $\theta_a\theta_b = \theta_{ab}$. Ambas as aplicações têm o mesmo domínio e o mesmo conjunto de chegada, pelo que resta ver que cada elemento de G tem a mesma imagem por ambas as aplicações. Seja G0. Temos:

$$(\theta_a \theta_b)(x) = \theta_a(\theta_b(x)) = \theta_a(bxb^{-1}) = a(bxb^{-1})a^{-1}$$

= $(ab)x(b^{-1}a^{-1}) = (ab)x(ab)^{-1} = \theta_{ab}(x).$

Portanto, $\theta_a\theta_b=\theta_{ab}\in A$. Seja $\theta_a\in A$. Começamos por observar que, como $a\in G$ e G é grupo, $a^{-1}\in G$, pelo que $\theta_{a^{-1}}\in A$. Mostremos que $(\theta_a)^{-1}=\theta_{a^{-1}}$. Dado $x\in G$, tem-se

$$(\theta_a \theta_{a^{-1}})(x) = \theta_a (\theta_{a^{-1}}(x)) = \theta_a (a^{-1}xa)$$

$$= a(a^{-1}xa)a^{-1}$$

$$= (aa^{-1})x(aa^{-1})$$

$$= x$$

e, analogamente, $(\theta_a\theta_{a^{-1}})(x)=x$. Portanto, $\theta_a\theta_{a^{-1}}=\theta_{a^{-1}}\theta_a=\mathrm{id}_G$, pelo que $\theta_{a^{-1}}=(\theta_a)^{-1}$. Por uma das caracterizações de subgrupo, concluimos que $A<\mathrm{Aut}(G)$.

Finalmente, seja $\alpha \in \operatorname{Aut}(G)$. Por (b), $\alpha \theta_a \alpha^{-1} = \theta_{\alpha(a)}$ e, portanto $\alpha A \alpha^{-1} \subseteq A$. Logo, $A \triangleleft \operatorname{Aut}(G)$.

(d) Por (a), para cada $a \in G$, $\theta_a \in \operatorname{Aut}(G)$. Além disso, é claro que, dados $a, b \in G$,

$$a = b \Rightarrow \theta_a = \theta_b$$
,

uma vez que, para qualquer $x \in G$, se tem

$$\theta_a(x) = axa^{-1} = bxb^{-1} = \theta_b(x).$$

Assim, ϕ é uma aplicação de G em $\operatorname{Aut}(G)$. Mostremos, de seguida, que ϕ respeita as operações dos grupos G e $\operatorname{Aut}(G)$. Sejam g_1,g_2 elementos quaisquer de G. Temos, por (c), que

$$\phi(g_1g_2) = \theta_{q_1q_2} = \theta_{q_1}\theta_{q_2} = \phi(g_1)\phi(g_2).$$

Portanto, ϕ é um morfismo.

(e) Por definição de núcleo de um morfismo, sabemos que

Nuc
$$\phi = \{g \in G : \phi(g) = \text{id } G\}$$
.

Assim,

$$\begin{aligned} \text{Nuc} \ \phi &= \left\{g \in G : \theta_g = 1_{\text{Aut}\,(G)}\right\} \\ &= \left\{g \in G : \theta_g(x) = \text{id}_{\ G}(x), \ para \ todo \ x \in G\right\} \\ &= \left\{g \in G : gxg^{-1} = x, \ para \ todo \ x \in G\right\} \\ &= \left\{g \in G : gx = xg, \ para \ todo \ x \in G\right\} \\ &= Z(G). \end{aligned}$$