ANALISI FUNZIONALE PROF. ALESSIO MARTINI A.A. 2023-2024

ESERCITAZIONE 12

- 1. Per ogni $\underline{w} \in \ell^{\infty}$, sia $D_{\underline{w}} \in \mathcal{B}(\ell^2)$ l'operatore di moltiplicazione per \underline{w} .
 - (a) Dimostrare che c_{00} è un sottospazio invariante per $D_{\underline{w}}$ per ogni $\underline{w} \in \ell^{\infty}$.

Sia dunque $R_{\underline{w}} = D_{\underline{w}}|_{c_{00}} : c_{00} \to c_{00}$ la restrizione di $D_{\underline{w}}$ a c_{00} per ogni $\underline{w} \in \ell^{\infty}$. Pensiamo c_{00} come spazio pre-hilbertiano con il prodotto scalare indotto da ℓ^2 .

- (b) Dimostrare che $R_{\underline{w}} \in \mathcal{B}(c_{00})$ e $||R_{\underline{w}}||_{op} = ||\underline{w}||_{\infty}$ per ogni $\underline{w} \in \ell^{\infty}$.
- (c) Dimostrare che, se $\underline{w} \in c_{00}$, allora $R_{\underline{w}}$ ha rango finito.
- (d) Dimostrare che, se $\underline{w} \in c_0$, allora $R_{\underline{w}}$ è limite in $\mathcal{B}(c_{00})$ di una successione di operatori di rango finito. Sia $\underline{x}^{(k)} = \sum_{j=0}^{k} 2^{-j} \underline{e}^{(j)}$ per ogni $k \in \mathbb{N}$.
- (e) Dimostrare che $(\underline{x^{(k)}})_k$ è una successione limitata a valori in c_{00} , che converge in ℓ^2 .
- (f) Dimostrare che, se $\underline{w} \in \ell^{\infty} \setminus c_{00}$, allora $(R_w \underline{x}^{(k)})_k$ non ha sottosuccessioni convergenti in c_{00} , e dunque $R_{\underline{w}} \notin \mathcal{K}(c_{00}).$
- (g) Dimostrare che $\mathcal{K}(c_{00})$ non è chiuso in $(\mathcal{B}(c_{00}), \|\cdot\|_{\text{op}})$.
- (h) Perché il punto precedente non contraddice la proprietà di chiusura dello spazio degli operatori compatti discussa nella teoria?
- 2. Sia H uno spazio di Hilbert. Sia $T \in \mathcal{B}(H)$. Sia $V \subseteq H$ un sottospazio vettoriale chiuso invariante sia per T che per T^* .
 - (a) Dimostrare che V^{\perp} è un sottospazio vettoriale chiuso di H invariante per T e T^* .

Consideriamo $V \in V^{\perp}$ come spazi di Hilbert con il prodotto scalare indotto da H. Inoltre consideriamo le restrizioni $T|_V:V\to V$ e $T|_{V^\perp}:V^\perp\to V^\perp$ come operatori limitati su V e V^\perp rispettivamente.

- (b) Dimostrare che $||T||_{\text{op}} = \max\{||T|_V||_{\text{op}}, ||T|_{V^{\perp}}||_{\text{op}}\}.$ (c) Dimostrare che $\text{Ker } T = \text{Ker}(T|_V) \oplus \text{Ker}(T|_{V^{\perp}})$ e $\text{Im } T = \text{Im}(T|_V) \oplus \text{Im}(T|_{V^{\perp}}).$
- (d) Dimostrare che $T \in \mathcal{B}(H)$ è invertibile se e solo se entrambi $T|_V \in \mathcal{B}(V)$ e $T|_{V^\perp} \in \mathcal{B}(V^\perp)$ sono invertibili.
- (e) Dimostrare che $\sigma(T) = \sigma(T|_V) \cup \sigma(T|_{V^{\perp}})$.
- (f) Dimostrare che $\sigma_p(T) = \sigma_p(T|_V) \cup \sigma_p(T|_{V^{\perp}}).$
- (g) Dimostrare che $T \in \mathcal{K}(H)$ se e solo se $T|_{V} \in \mathcal{K}(V)$ e $T|_{V^{\perp}} \in \mathcal{K}(V^{\perp})$.
- 3. Sia $T: \ell^2 \to \ell^2$ definito da

$$T\underline{x} = \left(\frac{x_{k+1}}{k+1}\right)_{k \in \mathbb{N}}$$

per ogni $\underline{x} \in \ell^2$.

- (a) Dimostrare che $T \in \mathcal{B}(\ell^2)$ e determinare $||T||_{\text{op}}$.
- (b) Dimostrare che $T \in \mathcal{K}(\ell^2)$.
- (c) Determinare $\sigma(T)$, $\sigma_p(T)$, $\sigma_r(T)$ e $\sigma_c(T)$.
- (d) Dimostrare che max $\{|\lambda| : \lambda \in \sigma(T)\} < \|T\|_{\text{op}}$.
- (e) Determinare l'operatore aggiunto T^* .
- (f) Determinare $\sigma(T^*)$, $\sigma_p(T^*)$, $\sigma_r(T^*)$ e $\sigma_c(T^*)$.
- 4. Sia $A: \ell^2 \to \ell^2$ definito da

$$(A\underline{x})_k = \begin{cases} x_0 - x_1 & \text{se } k = 0, \\ x_0 + x_1 & \text{se } k = 1, \\ x_k & \text{altrimenti} \end{cases}$$

per ogni $x \in \ell^2$.

- (a) Dimostrare che $A \in \mathcal{B}(\ell^2)$ e determinare $||A||_{\text{op}}$.
- (b) Determinare se $A \in \mathcal{K}(\ell^2)$.
- (c) Determinare l'aggiunto A^* .
- (d) Determinare $\sigma(A)$, $\sigma_p(A)$, $\sigma_c(A)$ e $\sigma_r(A)$.

5. Sia H uno spazio di Hilbert complesso. Il raggio spettrale r(T) di un operatore $T \in \mathcal{B}(H)$ è definito da

$$r(T) = \max\{|\lambda| \, : \, \lambda \in \sigma(T)\}.$$

(a) Dimostrare che r(T) è ben definito e che $r(T) \leq ||T||_{\text{op}}$ per ogni $T \in \mathcal{B}(H)$.

Sia $\{e_1, e_2\} \subseteq H$ un insieme ortonormale e sia $S: H \to H$ dato da $Sx = \langle x, e_1 \rangle e_2$ per ogni $x \in H$.

(b) Dimostrare che $S \in \mathcal{B}(H)$ e determinare $||S||_{\text{op}}$ e r(S).

Supponiamo ora che $T \in \mathcal{K}(H)$ e che T sia normale.

- (c) Dimostrare che $r(T) = ||T||_{\text{op}}$.
- (d) Dimostrare che $||T||_{\text{op}} = \max\{|\langle Tx, x \rangle| : x \in H, ||x||_H \le 1\}.$
- 6. Sia H uno spazio di Hilbert separabile.
 - (a) Sia $A = A^*$ una perturbazione compatta dell'identità. Dimostrare che esiste una base ortonormale di H i cui elementi sono autovettori di A.
 - (b) Siano $T, S \in \mathcal{K}(H)$ autoaggiunti e tali che TS = ST. Dimostrare che esiste una base ortonormale di H i cui elementi sono simultaneamente autovettori di T e di S.

[Suggerimento: si applichi il teorema spettrale a $S|_V$ per ogni autospazio V di T.]

7. Sia $K \in L^2((a,b) \times (a,b))$, ove $-\infty < a < b < +\infty$. Si consideri l'equazione integrale

$$f(x) + \int_{a}^{b} K(x, y) f(y) dy = g(x)$$
 per q.o. $x \in (a, b)$, (†)

ove $f, g \in L^2(a, b)$.

- (a) Si dimostri che, per fissato K, l'equazione (\dagger) ha una e una sola delle due seguenti proprietà:
 - (i) Se $g \equiv 0$ l'equazione (†) ha soluzioni $f \in L^2(a,b)$ che non sono (quasi ovunque) nulle.
 - (ii) Per ogni $g \in L^2(a,b)$ esiste un'unica soluzione $f \in L^2(a,b)$ di (\dagger) .
- (b) Si dimostri che l'equazione (†) ha soluzioni $f \in L^2(a,b)$ se e solo se $\langle g,\phi \rangle = 0$ per ogni $\phi \in L^2(a,b)$ tale che

$$\phi(x) + \int_a^b \overline{K(y,x)} \, \phi(y) \, dy = 0$$
 per q.o. $x \in (a,b)$.

Si supponga ora che a = 0, b = 1, $K(x, y) = -e^{x-y}$.

(c) Dimostrare che l'equazione (†) ha soluzioni $f \in L^2(0,1)$ se e solo se

$$\int_0^1 g(x) e^{-x} dx = 0.$$

- (d) Esibire una $g \in L^2(0,1)$ tale che (†) non abbia soluzioni $f \in L^2(0,1)$.
- (e) Esibire una $g \in L^2(0,1)$ tale che (†) abbia soluzioni $f \in L^2(0,1)$, e per tale g esibire due soluzioni f distinte.
- 8. Sia $A: L^2(0, \pi/2) \to L^2(0, \pi/2)$ definito da

$$Af(x) = \int_0^{\pi/2} \cos(x - y) f(y) dy$$

per ogni $f \in L^2(0, \pi/2)$ e $x \in (0, \pi/2)$.

- (a) Dimostrare che A è un operatore compatto e autoaggiunto su $L^2(0,\pi/2)$.
- (b) Dimostrare che esiste una base ortonormale di $L^2(0, \pi/2)$ fatta di autovettori di A.
- (c) Dimostrare che Im $A = \text{span}\{\phi, \psi\}$, ove

$$\phi(x) = \cos x, \qquad \psi(x) = \sin x \qquad \forall x \in (0, \pi/2).$$

- (d) Determinare $\sigma(A)$ e $\sigma_p(A)$; inoltre, per ogni $\lambda \in \sigma_p(A)$, determinare l'autospazio $E_A(\lambda)$. [Suggerimento: gli autovettori relativi ad autovalori non nulli sono elementi di Im A.]
- 9. Si consideri l'equazione integrale

$$f(x) - \mu \int_0^{\pi/2} \cos(x - y) f(y) dy = g(x)$$
 per q.o. $x \in (0, \pi/2)$, (‡)

ove $f, g \in L^2(0, \pi/2)$ e $\mu \in \mathbb{C}$.

- (a) Determinare tutti i valori di $\mu \in \mathbb{C}$ tali che, comunque si prenda $g \in L^2(0, \pi/2)$, l'equazione (‡) ha un'unica soluzione $f \in L^2(0, \pi/2)$.
- (b) Supponiamo ora che g(x)=1 per ogni $x\in(0,\pi/2)$. Determinare tutti i valori di $\mu\in\mathbb{C}$ tali che l'equazione

$$f(x) - \mu \int_0^{\pi/2} \cos(x - y) f(y) dy = 1$$
 per q.o. $x \in (0, \pi/2)$

ha almeno una soluzione $f \in L^2(0, \pi/2)$.

[Suggerimento: utilizzare i risultati dell'esercizio 8.]