3.
$$b = \frac{b-a}{0}$$
 $x_0 = a$ $x_{n-1} = b$
 $0 = 1$ $A_1 = \left(\frac{f(a) + f(b)}{2}, \frac{b-a}{1}\right)$
 $b = \frac{a}{2}$ $A_2 = \frac{f(a) + f(x_1)}{2}, \frac{b-a}{2}$ $A_3 = \frac{f(x_1) + f(b)}{2}, \frac{b-a}{2}$
 $= \left(\frac{b-a}{2}\right), \left(\frac{f(a) + f(x_1)}{2} + \frac{f(x_1) + f(b)}{2}\right)$
 $= \left(\frac{b-a}{2}\right), \left(\frac{f(a) + f(b)}{2} + f(x_1)\right)$
 $= \left(\frac{b-a}{2}\right), \left(\frac{f(a) + f(b)}{2} + f(x_1)\right)$
 $= \left(\frac{b-a}{2}\right), \left(\frac{f(a) + f(b)}{2} + f(x_1)\right)$
 $= \frac{f(x_2) + f(b)}{2}, \frac{b-a}{3}, \frac{f(x_1) + f(x_2)}{3}, \frac{b-a}{3} + \frac{f(x_2) + f(b)}{3}$
 $= \frac{b-a}{3}, \left(\frac{f(a) + f(b)}{2}, \frac{f(x_1)}{2}, \frac{f(x_2)}{2}, \frac{f(x_2)}{2}, \frac{f(b)}{2}\right)$
 $= \frac{b-a}{3}, \left(\frac{f(a) + f(b)}{2}, \frac{f(x_1)}{2}, \frac{f(x_2)}{2}, \frac{f(x_2)}{2}, \frac{f(b)}{2}\right)$
 $= \frac{b-a}{3}, \left(\frac{f(a) + f(b)}{2}, \frac{f(x_1)}{2}, \frac{f(x_2)}{2}, \frac{f(x_2)}{2}, \frac{f(b)}{2}\right)$
 $= \frac{b-a}{3}, \left(\frac{f(a) + f(b)}{2}, \frac{f(x_1)}{2}, \frac{f(x_2)}{2}, \frac{f(x_2)}{2}, \frac{f(b)}{2}\right)$