Informal discussion on medanes:

X - nonempty set.

A measure on X is a for
$$\mu: \mathfrak{M} \longrightarrow [0,\infty]$$
 $P(X)$

Such that

(a):
$$\mu(\emptyset) = 0$$

(b): $\mu(\coprod E_n) = \sum \mu(E_n)$
Aisjoint union

(countable)

whenever (En) is a sequence

of disjoint sets

call
$$\mu$$
 finite if $\mu(X) < \infty$

.
$$\phi$$
, $\chi \in \mathfrak{M}$

countable = uncountable = 0

(a)
$$M = P(X)$$
, $M(E) = |E|$

Counting measure

- There is a measure λ on $\mathbb{M} \subset P(\mathbb{R})$ s.t. all intervals are in \mathbb{M} , and $\lambda([0,1]) = 1$ $\lambda(E+r) = \lambda(E)$ $\forall r \in \mathbb{R}, E \in \mathbb{M}$ Under bosic axions of set theory (AoC), \mathbb{M} cannot be $P(\mathbb{R})!$
- · work mad I for convenience

Define an eq. rel'n on S' by $x - y \in Q$.

Using A.C., pick one representative from each equivalence class; call this set E.

for
$$q \in Q \cap S'$$
, set $E_q := E + q$.

Notice
$$[0,1) = \coprod E_q$$
 quantities

$$= \sum_{i} \lambda(E) = \lambda(E) \cdot \sum_{i} 1 \cdot \text{contradiction}$$

$$(\text{nothing } \cdot \infty = 1).$$

formal discussion:

X a non-empty set "measurable sets"

Defo: call MCP(X) on algebra if

1) Mis closed under finite unions

@ M is closed under complements (E'=X\E).

Observe: Every algebra m

· contains X = EILE

· contains Ø = X°

. is closed under finite intersections:

$$\bigcap_{i} E_{i} = \left(\bigcap_{i} E_{i}\right)^{cc} = \left(\bigcap_{i} E_{i}^{c}\right)^{c}$$

Exs

- (i) {\psi} \tau_{\text{x}} \tau_{\text{vivial}} \sigma_{\text{-algebra}}
- (): P(X) discrete o-algebra
- 2: if X is uncountable, $M = \{E \mid E \text{ or } E^c \text{ is } ctble}\}$ 15 a σ -algebra.

Exercises:
(Disjointification) If
$$(E_n)$$
 is a sequence of subsets of X ,
Let $F_i = E_i$, $F_n = E_n \setminus \bigcup_{i=1}^{n-1} E_i$. $(A \setminus B = A \cap B^c)$
Then $(F_n) \subset M$ and $\bigcup_{i=1}^{n-1} E_i = \coprod_{i=1}^{n-1} F_n$.