

Matryoshka Representation Learning

Aditya Kusupati*†, Gantavya Bhatt*†, Aniket Rege*†,
Matthew Wallingford†, Aditya Sinha, Vivek Ramanujan†, William Howard-Snyder†,
Kaifeng Chen, Sham Kakade‡, Prateek Jain and Ali Farhadi†
†University of Washington, Google Research, Harvard University
{kusupati,ali}@cs.washington.edu,prajain@google.com

NeurIPS 2022 HUMANE Lab 김태균 2025.04.25

Background

- Limitations of existing fixed dimensional embeddings
 - web-scale bottleneck
 - lack of flexibility
- Previous approaches to add flexibility
 - training multiple models
 - optimizing sub-networks
 - post-hoc compression

Background

- These approaches fall short for adaptive large-scale deployment
 - high training/maintenance overhead
 - significant accuracy drop

=> Can we design a flexible representation that can adapt to multiple downstream tasks with varying computational resources?

Matryoshka Representation Learning

 Learning a single high-dimensional embedding vector such that any prefix of it can serve as a semantically meaningful and effective lowerdimensional embedding on its own

Training Process in MRL

- Extract the first m dimensions $z_{1:m}$ from the full vector $z \in \mathbb{R}^d$
 - e.g. for each $m \in M = \{8, 16, ..., 2048\}$ where d = 2048
- Use a corresponding classifier $W^{(m)}$ to make predictions from $z_{1:m}$, and compute the loss against the ground truth label y
- Sum all losses across different m and optimize the total loss

$$\min_{\left\{\mathbf{W}^{(m)}\right\}_{m\in\mathcal{M}},\ \theta_F} \frac{1}{N} \sum_{i\in[N]} \sum_{m\in\mathcal{M}} c_m \cdot \mathcal{L}\left(\mathbf{W}^{(m)} \cdot \underline{F}(x_i; \theta_F)_{1:m}; y_i\right) \\ \coloneqq z_{1:m}$$

Training Process in MRL

- After training, F generates a d-dimensional vector z
- For any $m \in M$, using only the first m dimensions $z_{1:m}$ is sufficient to perform the task effectively

MRL-E

- Using a separate classifier $\mathcal{W}^{(m)}$ for each m increases the number of parameters
- To reduce this, MRL-E adopts weight-tying
 - using a single large classifier W, and setting $W^{(m)} = W_{1:m}$
 - i.e. the first m columns of W

Matryoshka

• Set of wooden dolls of decreasing size placed one inside another

Applications

- Downstream applications of MRL for flexible large-scale deployment
 - Adaptive Classification (AC)
 - Adaptive Retrieval (AR)

Representation Learning Setups

- Supervised learning for vision
 - ResNet50 on ImageNet-1K
 - ViT-B/16 on JFT-300M
- Contrastive learning for vision + language
 - ALIGN on ALIGN data
- Masked language modelling
 - BERT on Wikipedia and BooksCorpus

Representation Learning Setups

- Baselines
 - FF (Fixed Feature)
 - SVD
 - Slimmable networks
 - Randomly selected features

Classification

At least as accurate as each FF model

Figure 2: ImageNet-1K linear classification accuracy of ResNet50 models. MRL is as accurate as the independently trained FF models for every representation size.

Classification

- High accuracy on large-scale models and datasets (scalability)
- Intermediate dimensional representations also perform well (flexibility)

Figure 4: ImageNet-1K 1-NN accuracy for ViT-B/16 models trained on JFT-300M & as part of ALIGN. MRL scales seamlessly to web-scale with minimal training overhead.

Figure 5: Despite optimizing MRL only for $O(\log(d))$ dimensions for ResNet50 and ViT-B/16 models; the accuracy in the intermediate dimensions shows interpolating behaviour.

Retrieval

At least as accurate as each FF model

Figure 7: mAP@10 for Image Retrieval on ImageNet-1K with ResNet50. MRL consistently produces better retrieval performance over the baselines across all the representation sizes.

MLM Accuracy

 Although it shows slightly lower accuracy than independently trained FF models at each dimension, the difference is minimal

Rep. Size	BERT-FF	BERT-MRL
12	60.12	59.92
24	62.49	62.05
48	63.85	63.40
96	64.32	64.15
192	64.70	64.58
384	65.03	64.81
768	65.54	65.00

MRL in Practice

- Recent embedding models based on MRL
 - OpenAI's text-embedding-3 series
 - Alibaba's gte-multilingual-base

•

Conclusions

- MRL provides flexible representations for adaptive deployment
 - enabling efficient and scalable performance across varying resource constraints

Open Questions

• What about using the postfix (z_{-m}) in MRL?