

# Vision 2023

A Course for GATE & PSUs

**Computer Science Engineering** 

**Algorithm** 

**CHAPTER 4** 

**Greedy Method** 



# **CHAPTER**



4

#### **GREEDY METHOD**

- "Greedy Method finds out of many options, but you have to choose the best option."
  In this method, we have to find out the best method/option out of many present ways.
  In this approach/method we focus on the first stage and decide the output, don't think about the future.
- Greedy Algorithms solve problems by making the best choice that seems best at the particular moment. Many optimization problems can be determined using a greedy algorithm. Some issues have no efficient solution, but a greedy algorithm may provide a solution that is close to optimal.
   A greedy algorithm works if a problem exhibits the following two properties:
  - 1. **Greedy Choice Property:** A globally optimal solution can be reached at by creating a locally optimal solution. In other words, an optimal solution can be obtained by creating "greedy" choices.
  - 2. **Optimal substructure:** Optimal solutions contain optimal sub-solutions. In other words, answers to subproblems of an optimal solution are optimal.

#### Spanning Tree:

Let G (V, E) be an undirected connected graph A subset T (V, E') of G (G, E) is said to be a spanning tree if T is a tree.

#### Connected graph:

In a connected graph between every pair of vertices there exists a path. e.g.





#### **Complete graph:**

In a complete graph between every pair of vertices there exists are edge.

e.g.



→ Total no of edges in a complete undirected graph with n vertices =  $(n - 1) + (n - 2) + \dots + 0$  $= \frac{n(n-1)}{2}$ 

e.g.



Vertices: 1 2 3

Outbeg: 2 + 1 + 0 = 3

 $\rightarrow$  Total no of edge in a complete directed graph with n vertices =  $2\times\left(\frac{n\left(n-1\right)}{2}\right)$  = n (n - 1)

e.g.



 $\Rightarrow$  2 × 3 = 6 edges



#### **Theorem:**

Prove that maximum no. of undirected graph with 'n' vertices = 2 no. of edges e.g. Take n = 3 vertices.

 $\Rightarrow$  Maximum no. of edges  $\frac{n(n-1)}{2} = \frac{3(3-1)}{2} = 3$  edges

↓ undirected graph.

Case (i): Graph with 'o' no of edges.



Case (ii): Graph with '1' no. of edges.



Case (iii): Graph with '2' no. of edges.



Case (iv): Graph with '3' no. of edges.



 $\therefore$  Total no. of graph = 1 + 3 + 3 + 1 = 8

#### **Proof:**

n = vertices

edges = 
$$\frac{n(n-1)}{2}$$

(i) Graph with '0' edge = 
$$\frac{n(n-1)}{2_{C_0}}$$

(ii) Graph with '1' edge 
$$=\frac{n(n-1)}{2_{C_1}}$$



Graph with 
$$\frac{n(n-1)}{1}$$
 edges =  $\frac{\frac{n(n-1)}{2}}{C}$   $\frac{n(n-1)}{2}$ 

$$\label{eq:total_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_cont$$

$$= 2 \frac{n(n-1)}{2} \left[ : ^n C_0 + ^n C_1 + \dots + ^n C_n = 2^n \right]$$

∴ Total no. of graph = 2 No. of edges.

#### **Properties of spanning tree:**

- 1) Every spanning tree of G (V, E)
- 2) To construct spanning tree of G (V, E) we have to remove (E V + 1) no. of edges from G (V, E)
- 3) Every spanning tree is maximally a cyclic that is by addition of 1 edge to the S.T. it forms a cycle.
- 4) Every spanning tree (S.T.) is minimally connected i.e. by the removal of a 1 edge from ST it becomes disconnected.
- 5) Maximum no of possible ST of the complete graph G (V, E) is  $V^{V-2}$ .
- 6) To identify minimum cost ST out of  $V^{V-2}$  ST we can take help of either prim's or Kruskal's algorithm.

#### Ex:

Consider a weighted complete graph G on the vertex set  $\{v_1, v_2, ..... v_n\}$  such that weight of are edge  $\langle v_i, v_j \rangle = 2 \mid i - j \mid$ . Then weight of minimum cost spanning tree (MST) =

A. n<sup>2</sup>

B. 2n - 1

C. 2n - 2

D. n/2

 $\rightarrow$  e.g.



⇒ 
$$\langle vi, vj \rangle = 2 |i - j|$$
  
=  $2 |1 - 2|$   
=  $2$ 





Put n = 3 is options & check out gives 4 or not.



#### Ex:

Let 'w' be the minimum weight among all edge weights that are undirected connected graphs. Let 'e' be a specific edge which contains weight 'w'. Which of the following is false.

- A. There is a MST which contains an edge 'e'.
- B. Every MST contains an edge of weight 'w'.
- C. If 'e' is not in MST, 'T' then by adding c to 'T' it forms a cycle.
- D. Every MST contains an edge 'e'.



Here we have to take some weight edges because we count more than 1 MST.

### BYJU'S

#### Kruskal's Algorithm:

Fine MST for the following graph.





COST = 99

It satisfies all the properties of spanning trees.

#### **Analysis of Kruskal's Algorithm:**

- 1) Edges must be arrange in the increasing order of their weight with order of ElogE time.
- 2) In each iteration delete root node from priority queue with log E time and include it into the partially constructed forest without forming a cycle.

In the worst case we may perform an E delete operation. So time complexity for deletion is E log E.

## BYJU'S

#### Prim's Algorithm:

Apply Prim's algo. On the following graph on starting vertex 1.



- $\rightarrow$  Comparison between Prim's & K. Algo.
- 1. Structure of MST w.r.t. Prim's & K.A. is always some if graph contains distinct edge weights.
- 2. K.A. does not maintain continuity where prim's algo. maintain continuity.

#### **Analysis of Prim's Algo:**

- 1) By using adjacency matrix : Since the adjacency matrix contains  $n^2$  elements, time complexity is bounded by  $O(n^2)$ .
- 2) By using binary heap (Priority queue):

By using binary heap time complexity  $= 0((v + E)\log V)$ 

#### Ex:

For the undirected weighted graph given below which of the following sequence of edges represent correct execution of Prim's algo to construct MST.



- A. (a, b) (d, f) (f, c) (g, i), (d, a) (c, e) (f, h)
- B. (c, e) (c, f) (f, d) (d, a) (a, b) (g, h) (h, f) (g, i)
- C. (d, f) (f, c) (d, a) (a, b) (c, e) (f, h) (g, h) (g, i)
- D. (h, g) (g, i) (h, f) (f, c) (f, d) (d, a) (a, b) (c, e)
- $\rightarrow$  No. of edges = V 1 = 8



#### Difference between Prim's and Kruskal's algorithm-

| PRIM'S ALGORITHM                                                      | KRUSKAL'S ALGORITHM                               |  |  |  |  |  |
|-----------------------------------------------------------------------|---------------------------------------------------|--|--|--|--|--|
| It starts to build the Minimum Spanning Tree                          | It starts to build the Minimum Spanning Tree from |  |  |  |  |  |
| from any vertex in the graph.                                         | the vertex carrying minimum weight in the graph.  |  |  |  |  |  |
| It traverses one node more than one time to get the minimum distance. | It traverses one node only once.                  |  |  |  |  |  |
| Prim's algorithm has a time complexity of                             | Kruskal's algorithm's time complexity is O(E log  |  |  |  |  |  |
| $O(V^2)$ , V being the number of vertices and can                     | V), V being the number of vertices.               |  |  |  |  |  |
| be improved up to O(E + log V) using Fibonacci                        | i                                                 |  |  |  |  |  |
| heaps.                                                                |                                                   |  |  |  |  |  |
| Prim's algorithm gives connected components                           | Kruskal's algorithm can generate                  |  |  |  |  |  |
| as well as it works only on connected graphs.                         | s. forest(disconnected components) at any instant |  |  |  |  |  |
|                                                                       | as well as it can work on disconnected            |  |  |  |  |  |
|                                                                       | components                                        |  |  |  |  |  |
| Prim's algorithm runs faster in dense graphs.                         | Kruskal's algorithm runs faster in sparse graphs. |  |  |  |  |  |

#### **SINGLE SOURCE SHORTEST PATHS**

In a shortest- paths problem, we are given a weighted, directed graph G = (V, E), with weight function  $w: E \to R$  mapping edges to real-valued weights. The weight of path p = (v0, v1, ..... vk) is the total of the weights of its constituent edges:

$$w\left(P\right) = \sum_{i=1}^{k} w\left(v_{i-1}v_{i}\right)$$

#### **Single Source Shortest Paths**

We define the shortest - path weight from u to v by  $\delta(u,v) = \min(w(p): u \rightarrow v)$ , if there is a path from u to v, and  $\delta(u,v) = \infty$ , otherwise.

The shortest path from vertex s to vertex t is then defined as any path p with weight w (p) =  $\delta(s,t)$ .

#### 1. Dijkstra Algorithm-

#### Single Source Shortest Path (Dijkstra's Algorithm)

- $\rightarrow$  Time complexity : O(V + E)log V) using binary min heap.
- $\rightarrow$ Drawback of Dijikstra'sAlgorithm : It will not give the shortest path for some vertices if the graph contain-negative weight cycle.
- $\rightarrow$  Time complexity of Dijkstra's and Prim's algorithm using various data structures.

(i)Using Binary Heap :  $O(V + E)\log V$ )

(ii) Fibonacci heap:  $O((V \log V + E))$ 

(iii)Binomial Heap :  $O((V + E)\log V)$ 

(iv)Array :  $O(V^2 + E)$ 



#### Conditions-

It is important to note the following points regarding Dijkstra Algorithm-

- The Dijkstra algorithm works only for connected graphs.
- The Dijkstra algorithm works only for those graphs that do not contain any negative weight edge.
- The actual Dijkstra algorithm does not output the shortest paths.
- It only provides the value or cost of the shortest paths.
- By making minor modifications in the actual algorithm, the shortest paths can be easily obtained.
- Dijkstra algorithm works for directed as well as undirected graphs.

#### **Time Complexity Analysis-**

#### Case-01:

This case is valid when-

- The given graph G is represented as an adjacency matrix.
- Priority queue Q is represented as an unordered list.

Here,

- A[i,j] stores the information about edge (i,j).
- Time taken for selecting i with the smallest dist is O(V).
- For each neighbor of i, time taken for updating dist[j] is O(1) and there will be maximum V neighbors.
- Time taken for each iteration of the loop is O(V) and one vertex is deleted from Q.
- Thus, total time complexity becomes O(V2).

#### **Case-02:**

This case is valid when-

- The given graph G is represented as an adjacency list.
- Priority queue Q is represented as a binary heap.

Here,

- With adjacency list representation, all vertices of the graph can be traversed using BFS in O(V+E) time.
- In min heap, operations like extract-min and decrease-key value takes O(logV) time.
- So, overall time complexity becomes  $O(E+V) \times O(logV)$  which is  $O((E+V) \times logV) = O(ElogV)$
- This time complexity can be reduced to O(E+VlogV) using the Fibonacci heap.

#### Example-

Using Dijkstra's Algorithm, find the shortest distance from source vertex 'S' to remaining vertices in the following graph-





Also, write the order in which the vertices are visited.

#### **Solution-**

#### **Step-01:**

The following two sets are created-

• Unvisited set : {S , a , b , c , d , e}

• Visited set : { }

#### **Step-02:**

The two variables  $\Pi$  and d are created for each vertex and initialized as-

•  $\Pi[S] = \Pi[a] = \Pi[b] = \Pi[c] = \Pi[d] = \Pi[e] = NIL$ 

• d[S] = 0

•  $d[a] = d[b] = d[c] = d[d] = d[e] = \infty$ 

#### **Step-03:**

- Vertex 'S' is chosen.
- This is because shortest path estimate for vertex 'S' is least.
- The outgoing edges of vertex 'S' are relaxed.

#### **Before Edge Relaxation-**



Now,

• 
$$d[S] + 1 = 0 + 1 = 1 < \infty$$

$$\therefore$$
 d[a] = 1 and  $\Pi$ [a] = S

• 
$$d[S] + 5 = 0 + 5 = 5 < \infty$$

$$d[b] = 5$$
 and  $\Pi[b] = S$ 

After edge relaxation, our shortest path tree is-





Now, the sets are updated as-

• Unvisited set : {a , b , c , d , e}

• Visited set : {S}

#### Step-04:

• Vertex 'a' is chosen.

• This is because shortest path estimate for vertex 'a' is least.

• The outgoing edges of vertex 'a' are relaxed.

#### **Before Edge Relaxation-**



Now,

• 
$$d[a] + 2 = 1 + 2 = 3 < \infty$$

$$\therefore$$
 d[c] = 3 and  $\Pi$ [c] = a

• 
$$d[a] + 1 = 1 + 1 = 2 < \infty$$

$$d[d] = 2$$
 and  $\Pi[d] = a$ 

• 
$$d[b] + 2 = 1 + 2 = 3 < 5$$

$$\therefore$$
 d[b] = 3 and  $\Pi$ [b] = a

After edge relaxation, our shortest path tree is-





Now, the sets are updated as-

• Unvisited set : {b , c , d , e}

• Visited set : {S , a}

#### Step-05:

• Vertex 'd' is chosen.

• This is because shortest path estimate for vertex 'd' is least.

• The outgoing edges of vertex 'd' are relaxed.

#### **Before Edge Relaxation-**



Now,

• 
$$d[d] + 2 = 2 + 2 = 4 < \infty$$

$$\therefore$$
 d[e] = 4 and  $\Pi$ [e] = d

After edge relaxation, our shortest path tree is-



Now, the sets are updated as-

• Unvisited set : {b , c , e}

• Visited set : {S , a , d}

# BYJU'S EXAM PREP

#### Step-06:

- Vertex 'b' is chosen.
- This is because shortest path estimate for vertex 'b' is least.
- Vertex 'c' may also be chosen since for both the vertices, shortest path estimate is least.
- The outgoing edges of vertex 'b' are relaxed.

#### **Before Edge Relaxation-**



Now,

• d[b] + 2 = 3 + 2 = 5 > 2

∴ No change

After edge relaxation, our shortest path tree remains the same as in Step-05.

Now, the sets are updated as-

• Unvisited set : {c , e}

• Visited set : {S, a, d, b}

#### **Step-07:**

- Vertex 'c' is chosen.
- This is because the shortest path estimate for vertex 'c' is least.
- The outgoing edges of vertex 'c' are relaxed.

#### **Before Edge Relaxation-**



Now,

- d[c] + 1 = 3 + 1 = 4 = 4
- ∴ No change

After edge relaxation, our shortest path tree remains the same as in Step-05.

Now, the sets are updated as-

• Unvisited set : {e}

• Visited set : {S , a , d , b , c}



#### Step-08:

- Vertex 'e' is chosen.
- This is because the shortest path estimate for vertex 'e' is least.
- The outgoing edges of vertex 'e' are relaxed.
- There are no outgoing edges for vertex 'e'.
- So, our shortest path tree remains the same as in Step-05.

Now, the sets are updated as-

- Unvisited set : { }
- Visited set : {S , a , d , b , c , e}

#### Now,

- All vertices of the graph are processed.
- Our final shortest path tree is as shown below.
- It represents the shortest path from source vertex 'S' to all other remaining vertices.



**Shortest Path Tree** 

The order in which all the vertices are processed is:

#### <u>S, a, d, b, c, e</u>

#### 2. Bellman Ford Algorithm-

- It finds the shortest path from source to every vertex. If the graph doesn't contain a negative weight cycle.
- If a graph contains a negative weight cycle, it doesn't compute the shortest path from source to all other vertices but it will report saying "negative weight cycle exists".

Time complexity = O(VE) when dense graph E = V2 and for sparse graph E = V.



#### Difference Between Bellman fors's and Dijkstra's Algorithm.

| BELLMAN FORD'S ALGORITHM                       | DIJKSTRA'S ALGORITHM                              |  |  |  |  |
|------------------------------------------------|---------------------------------------------------|--|--|--|--|
| Bellman Ford's Algorithm works when there      | Dijkstra's Algorithm doesn't work when there is   |  |  |  |  |
| is a negative weight edge, it also detects the | a negative weight edge.                           |  |  |  |  |
| negative weight cycle.                         |                                                   |  |  |  |  |
| The result contains the vertices which         | The result contains the vertices containing whole |  |  |  |  |
| contain the information about the other        | information about the network, not only the       |  |  |  |  |
| vertices they are connected to.                | vertices they are connected to.                   |  |  |  |  |
| It can easily be implemented in a distributed  | It can not be implemented easily in a distributed |  |  |  |  |
| way.                                           | way.                                              |  |  |  |  |
| It is more time consuming than Dijkstra's      | It is less time consuming. The time complexity    |  |  |  |  |
| algorithm. Its time complexity is O(VE).       | is O(E logV).                                     |  |  |  |  |
| Dynamic Programming approach is taken to       | Greedy approach is taken to implement the         |  |  |  |  |
| implement the algorithm.                       | algorithm.                                        |  |  |  |  |

#### Job sequencing problem:

Find maximum profit by processing below jobs.

| Job        | $J_1$ | $J_2$ | $J_3$ | J <sub>4</sub> |
|------------|-------|-------|-------|----------------|
| Dead lines | 2     | 1     | 2     | 1              |
| Profit     | 100   | 10    | 15    | 27             |

- $\rightarrow$  Let us consider n jobs (J<sub>1</sub>, J<sub>2</sub>, ...... J<sub>n</sub>)
- → Each job having deadline di & it cue process the job within its deadline we
- $\rightarrow$  only one job can be process at a time
- → Only one CPU is available for processing all jobs.
- → CPU can take only one unit at time for processing any job.
- $\rightarrow$  All jobs arrived at the same time.
- ightarrow Objective of job sequencing (JS) is process as many job as possible within its dead line & generate maximum profit.

#### **Shortcut:**

If there are n jobs, possible subsets are 2<sup>n</sup>. Objective of J.S. is to find the subset which generates maximum profit.

Arrange all jobs in decreasing order of process their profit & then process in that order within its deadline.

$$J_1 \ge J_4 \ge J_3 \ge J_2$$
  
 $< J_1 . J_4 > \Rightarrow 100 + 27 = 127$ 



Ex:

|          | $\mathbf{J_1}$ | $\mathbf{J}_{2}$ | <b>J</b> 3 | $J_4$ | $J_5$ | $J_6$ | $J_7$ | J <sub>8</sub> |
|----------|----------------|------------------|------------|-------|-------|-------|-------|----------------|
| Deadline | 6              | 5                | 6          | 6     | 3     | 4     | 4     | 5              |
| Profit   | 10             | 8                | 9          | 12    | 3     | 6     | 11    | 13             |

 $J_8 \geq J_4 \geq J_7 \geq J_1 \geq J_3 \geq J_2 \geq J_6 \geq J_5$ 



Max. Profit = 63

Ex: Linked que.

| Task     | $T_1$ | $T_2$ | Т3 | $T_4$ | <b>T</b> 5 | <b>T</b> 6 | <b>T</b> <sub>7</sub> | T <sub>8</sub> | <b>T</b> 9 |
|----------|-------|-------|----|-------|------------|------------|-----------------------|----------------|------------|
| Deadline | 7     | 2     | 5  | 3     | 4          | 5          | 2                     | 7              | 3          |
| Profit   | 15    | 20    | 30 | 18    | 18         | 10         | 23                    | 16             | 25         |

- 1. Are all tasks completed?
- A. All are completed
- B. T<sub>1</sub> & T<sub>6</sub> are left out
- C. T<sub>4</sub> & T<sub>6</sub> are left out
- D. T<sub>1</sub> & T<sub>8</sub> are left out

Ans. C

$$T_3 \geq T_9 \geq T_7 \geq T_2 \geq T_4 \geq T_5 \geq T_8 \geq T_1 \geq T_6$$

- 2. What is the maximum profit?
- A. 144
- B. 147
- C. 150
- D. 152



#### **Analysis of Job sequencing:**

To implement J.S. we use a priority queue where priorities are assigned to the profits of a job. So, the <u>time complexity</u> is  $O(n \log n)$ .

#### **Knapsack Problem:**

Find maximum profit by placing below objects into the knapsack.



| Objects                                         | 01 | 02 | 03 |
|-------------------------------------------------|----|----|----|
| (W <sub>1</sub> W <sub>2</sub> W <sub>3</sub> ) | 18 | 15 | 10 |
| (P <sub>1</sub> P <sub>2</sub> P <sub>3</sub> ) | 25 | 24 | 15 |

Greedy about weight 
$$\Rightarrow$$
 Profit =  $0(25) + \frac{10}{15}(24) + 1(15)$ 

$$= 31$$

Greedy about profit 
$$\Rightarrow$$
 Profit  $= 1(25) + \frac{2}{15}(24) + 0(15)$ 

$$= 28.5$$

Greedy about unit weight profit ⇒

$$\begin{aligned} \frac{P_1}{W_2} &= \frac{25}{18} = 1.3 \\ \frac{P_2}{W_2} &= \frac{24}{15} = 1.6 \\ \frac{P_2}{W_3} &= \frac{15}{10} = 1.5 \end{aligned}$$

$$\therefore \text{ Profit} = 0(25) + 1(24) + \frac{5}{10}(15)$$

$$= 31.5$$

#### **Shortcut:**

Arrange all unit weight profit into decreasing order & then process objects in that order without exceeding knapsack size.

 $\rightarrow$  Since we are using priority queue, where priority is assigned to unit weight profit. So, time complexity = 0 (n log n)

#### Note:

Let 'x' denote decision on i<sup>th</sup> object then  $0 \le x_i \le 1$  (Fractional knapsack problem).

#### **Optimal Merge Problem:**

Let us consider 3 files  $F_1$ ,  $F_2$  &  $F_3$  with their corresponding record length 30, 10 & 20 respectively.

Since n = 3, we can arrange in  $n ! \Rightarrow 3 ! \Rightarrow 6$  ways.

But merging can be done in  $\frac{n!}{2}$  ways  $\Rightarrow \frac{3!}{2} = 3$  ways.

Objective of OMP is out of  $\frac{11}{2}$  way, we have to find the weight with least no. of record movement.

#### **Shortcut:**

Arrange all files in the increasing order of their record length and in **each iteration** select two files which are having least no. of records and merge them into a single file.



Continue the process until all files are merged.

$$\rightarrow$$
 Here, n = 3

 $F_1$   $F_2$   $F_3$ 

(30) (10) (20)

3! = 6 ways

$$\Rightarrow \frac{n!}{2} = \frac{3!}{2} = 3 \text{ ways}$$



 $(I_1 + I_2)$ 

In (a) Total no. of record movements = 100

In (B) Total no. of record movements = 90

In (C) Total no. of record movements = 110

Find least no. of record movement.

 $F_1$   $F_2$   $F_3$   $F_4$   $F_5$   $F_6$   $F_7$  4 8 15 3 7 9 10

A. 150

B. 171

C. 169

D. 170



 $F_4 \leq F_1 \leq F_5 \leq F_2 \leq F_6 \leq F_7 \leq F_3$ 



#### Note:

Total no. of record movements  $= \sum_{i=1}^{n} d_i q_i$ 

Where,  $d_i$  = distance from root to  $i^{th}$  file  $q_i$  = Length of  $i^{th}$  file.

For above

Total no. of record movements

$$= 4(3) + 4(4) + 3(7) + 3(8) + 3(9) + 2(10) + 2(15)$$

- = 150
- ⇒ Analysis:
- Time complexity =  $0 (n \log n)$
- We are using a priority queue where priorities are assigned to record lengths.

#### **Huffman Encoding:**

Objective of H.E. is to encode letters with least no. of bits. Let us consider a Gmail application which contains letters a, b, c, d, e. With corresponding frequency 10, 20, 4, 15, 6 respectively.

Therefor there are 5 letters to encode letter we need at least 3-bits,

So, total no. of bits required =  $(10 + 20 + 4 + 5 + 6) \times 3 = 165$ 

No. of bits. No. of letters to be encoded

1 
$$\begin{cases} 0 - a \\ 1 - b \end{cases}$$



$$2 \begin{cases} 00-a \\ 01-d \\ 10-c \\ 11-b \end{cases}$$
 
$$\begin{cases} 000-\\ 001-\\ 010-\\ 011-a \\ 100-e \\ 101-h \\ 110-c \\ 111-d \end{cases}$$

#### Step 1

Arrange all letters in the increasing order of their frequencies & then in each iteration construct binary tree by assigning  $1^{st}$  least frequency letter as left child &  $2^{nd}$  least frequencies letter as a sight child.

#### Step 2

After constructing a binary tree from root to leaf path every left branch is assigned with O & right branch is assigned with 1.









#### Note:

to with  $\rightarrow$ 

Total no of bits required  $= \sum_{i=1}^{n} d_i q_1$ 

Where,  $d_i$  = distance from root to  $i^{th}$  letter  $q_i$  = frequency of  $i^{th}$  letter

In H.E. a more frequently occurring letter is encoded with least no. of bits.

\*\*\*\*