VIRGINIA POLYTECHNIC INST AND STATE UNIV BLACKSBURG --ETC F/G 20/4
THREE-DIMENSIONAL INCOMPRESSIBLE BOUNDARY LAYERS ON BLUNT BODIE--ETC(U)
MAY 77 D L DWOYER, C H LEWIS, P R GOGINENI
VPI/SU-AERO-063-PT-2 AD-A051 971 UNCLASSIFIED 1 OF 3 AD A 05/97/

Three-Dimensional Incompressible Boundary Layers On Blunt Bodies Including Effects Of Turbulence, Surface Curvature And Heat And Mass Transfer Part II: Computer Code User's Manual

by

D. L. Dwoyer, Clark H. Lewis and P. R. Gogineni

This research was sponsored by the Applied Physics Laboratory of the Johns Hopkins University under Subcontract Number 600325.

Aerospace and Ocean Engineering Department Virginia Polytechnic Institute and State University Blacksburg, Virginia 24061

May 1977

Approved for public release;
Distribution Unlimited

Three-Dimensional Incompressible Boundary Layers On Blunt Bodies Including Effects Of Turbulence, Surface Curvature And Heat And Mass Transfer

Part II: Computer Code User's Manual

by

D. L. Dwoyer, Clark H. Lewis and P. R. Gogineni

This research was sponsored by the Applied Physics Laboratory of the Johns Hopkins University under Subcontract Number 600325.

Aerospace and Ocean Engineering Department Virginia Polytechnic Institute and State University Blacksburg, Virginia 24061

May 1977

DISTRIBUTION STATEMENT A

Approved for public release; Distribution Unlimited

ABSTRACT

The computer code that was developed as a result of the analysis of Part I of this report, VPI-AERO-063, is herein described and documented. Included are programs input, expected output, description of mode of operation and other information useful in running the program.

TABLE OF CONTENTS

		Page
ABSTRACT		ii
TABLE OF CONTEN	rts	iii
LIST OF FIGURES		iv
NOMENCLATURE .		v
INTRODUCTION .		1
I. Program TAP	PGEN	2
1. Body Ge	eometry and Inviscid Velocities	2
2. Descrip	tion of Input Data	4
3. Descrip	tion of Program Output	22
II. Program ICB	BL3D	32
1. Program	n Input	33
2. Descrip	tion of Input Data	34
3. Descrip	tion of Output Data	41
4. Sample	Input/Output	45
APPENDIX I:	Job Control Language for Program TAPGEN	52
APPENDIX II:	TAPGEN Sample Input	55
APPENDIX III:	TAPGEN Sample Output	58
APPENDIX IV:	Program TAPGEN Data FORMAT Sheets	62
APPENDIX V:	TAPGEN Program Listings	108
APPENDIX VI:	Job Control Language for Program ICBL3D	119
APPENDIX VII:	ICBL3D Sample Input	121
APPENDIX VIII:	ICBL3D Sample Output	123
APPENDIX IX:	Program ICBL3D Data FORMAT Sheets	138
APPENDIX X:	Program ICBL3D Listing	152

LIST OF FIGURES

Figure		Page
1	Body Coordinate Systems for Inviscid and Boundary-Layer Calculations	46
2a	Block Diagram for ICBL3D Axisymmetric Bodies	47
2ъ	Block Diagram for ICBL3D Nonaxisymmetric Bodies	48
3	Flow Chart of Program ICBL3D), 50

NOMENCLATURE

h_{ξ}	metric coefficient of the ξ coordinate
h_{ω}	metric coefficient of the $\boldsymbol{\omega}$ coordinate
K_{ξ}	$(h_{\xi}h_{\omega})^{-1}\partial h_{\xi}/\partial \omega$, curvature of the ξ coordinate line
K_{ω}	$(h_{\xi}h_{\omega})^{-1}\partial h_{\omega}/\partial \xi$, curvature of the ω coordinate line
r	local body radius in stagnation point polar coordinates
s	surface distance along ξ coordinate
$\mathbf{U}_{\boldsymbol{\xi}}$	inviscid velocity component in $\boldsymbol{\xi}$ direction
U_{ω}	inviscid velocity component in $\boldsymbol{\omega}$ direction
U _e	inviscid velocity component in $\boldsymbol{\xi}$ direction at the body surface
W	$w = W_e$ at stagnation point and on symmetry planes, $W = U_e$ elsewhere
W _e	inviscid velocity component in $\boldsymbol{\omega}$ direction at the body surface
x	distance along stagnation point axis
^α 1	W/U _e
α_2	W_e/U_e
^α 3	W _e /W
β1	$(h_{\xi}U_{e})^{-1}$ $\xi \partial U_{e}/\partial \xi$
β2	$(h_{\omega}U_{e})^{-1} \xi \partial U_{e}/\partial \omega$
β3	$(h_{\omega}W_{e})^{-1} \xi \partial W_{e}/\partial \omega$
β ₄	$(h_{\xi}W_{e})^{-1}$ $\xi \partial W_{e}/\partial \xi$
ξ	orthogonal surface coordinate in longitudinal direction
σ	source density
φ	meridional angle in stagnation point coordinate system
ω	orthogonal surface coordinate in transverse direction

INTRODUCTION

A computer program has been developed for solving the three-dimensional boundary-layer flow on blunt bodies using a finite difference procedure. The program is capable of calculating laminar or turbulent flows and accounts for the effects of surface curvature. The equations solved, finite difference procedure used and results of test calculations with the code are presented in Ref. 1.

The boundary-layer program is not a stand alone program, but requires the generation of a data tape which describes the body geometry to be solved and the surface inviscid pressure distribution over the body. This report is divided into two sections, the first describes program TAPGEN which is capable of generating the required data tape for the boundary-layer code, and program ICBL3D which actually solves the boundary-layer equations for the body of interest.

All of the programs have been coded in FORTRAN IV and written for the IBM 370/158 computer with the JES2 operating system.

SECTION I

PROGRAM TAPGEN

In this section a brief description of the computer programs used to generate the inviscid data is presented to enable the user to execute the programs easily. The input data preparation and the outputs available have been described in detail. Finally the JCL required to execute the programs on IBM/370 Model 158 with JES2 operating system is listed.

The necessary computer programs are HESS, AOAT, BLOT, DERVAT and INVTAP. Program HESS generates the body geometry and inviscid velocity distribution for two onset flows: one in x-direction and the other in y-direction. These two flows are combined by program AOAT to give the inviscid velocity distribution at the given angle of attack. Programs HESS and AOAT may be replaced by program HESS3D for calculating the inviscid flow over bodies with non-axisymmetric shapes. Program BLOT reads this velocity distribution and computes the position of surface coordinates, metric coefficients and the inviscid velocities in surface coordinates. All this information is read by program DERVAT which computes the required derivatives. Program INVTAP fits appropriate Fourier series in ϕ ; computes the Fourier coefficients and writes them on a tape as required by the boundary layer programs. These programs taken together represent program TAPGEN.

1. Body Geometry and Inviscid Velocities

The boundary-layer equations have been written in

an orthogonal curvilinear surface coordinate system with its origin fixed at the stagnation point. The boundary-layer computations need the body geometry, metric coefficients and the inviscid velocity distribution. These are computed separately and a brief description of these computations follows.

The surface of the body is defined in the cartesian coordinate system shown in Fig. 1. These coordinates form the input to the computer program which computes the inviscid velocity distribution at the given angle of attack. This computer program is capable of handling axisymmetric bodies at angle of attack and three-dimensional bodies at zero-angle of attack.

The inviscid flow velocities obtained above have been transformed into a orthogonal curvilinear surface coordinate system in which boundary-layer computations were made. The position of the surface coordinate system and the metric coefficients have been determined as required by the boundary-layer program. The mathematical details of these computations can be found in Ref. 2 .

Since the position (x, r, ϕ) of the surface coordinates and the position of the inviscid velocity would not be the same in general, the inviscid velocities at the surface coordinates have been obtained by double interpolation technique in (x, ϕ) . Then the results are written on a scratch tape unit for every ξ =constant. The quantities on tape are ϕ , h_{ξ} , h_{ω} , r, s, U_{ξ} , U_{ω} and x. Since the boundary-layer program needs the first

derivatives with respect to ξ , of h_{ξ} , h_{ω} , U_{ξ} , U_{ω} , x, r and the second derivative of r, they have been computed using the five-point Lagrangian formula and written on the same tape. These data are fitted with appropriate Fourier series in ϕ and the Fourier coefficients have been written on another tape. It is from this tape that the boundary-layer program reads and obtains the necessary information about the geometry and inviscid velocity distribution of the body.

Immediately following is a description of the input to the inviscid program package along with sample input/output and a description of the Job Control Language required.

Basically, the calculation of the inviscid data tape is broken up into three steps as illustrated in the flow chart in Fig. 2. First the inviscid velocity distribution is generated with either of the potential flow programs of Refs.

3 or 4. Next the surface coordinate system is generated by program BLOT. The inviscid velocity field is then interpolated onto the surface coordinate system, Fourier fitted and written on the boundary-layer code data tape in programs DERVAT and INVTAP. Program AOAT is used only with the axisymmetric HESS code and serves to combine the zero and ninety degree angle of attack solutions into the solution at the desired angle of attack.

- Description of Input Data
 Program HESS (Axisymmetric)
 - A. <u>Card Column Parameter Locations</u>

 <u>Card 1</u> Header Card.

cc1-60	Header	Any alphanumeric run description.
cc63-68	Case	Case number.
Card 2 -	Control F	Flag Card
ccl	NB	Number of bodies $(1 \le NB \le 9)$.
cc2	NNU	Number of non-uniform flows (0 <nnu<5).< td=""></nnu<5).<>
cc3	IAXI	Axisymmetric flow flag.
cc4	ICRØSS	Crossflow flag.
cc5	IØFF	Off-body point input flag.
cc6	IØNLY	Basic-data-only flag.
cc7	IELPSE	Ellipse generator flag (see also Card 5).
cc8-10	(blank)	
cc11	IPRTRB	Perturbation velocities only.
cc12	IPØTNL*	Solve potential matrix.
cc14	IPTANV	Prescribed tangential velocity (for the last IPTANV bodies).
cc15	IVØRT	Strip-ring vorticity flag.
cc16	IØMITA	Omit axisymmetric uniform flow solution.
cc17	IOMITC	Omit crossflow uniform flow solution.
cc18	ISURFV	Surface vorticity (instead of sources) for the final ISURFV bodies.
cc19	IPRSCV	Prescribed values of the surface vortex strengths for the final ISURFV bodies will be input.
cc20	IALLV	All bodies are surface vorticity bodies.
cc21	IEXCRS*	Extra crossflow.
cc22	IGENBC	Generated boundary conditions.
cc23	IRNGW	Ring wing option.
cc28	IPNCH	Punched output.
cc29,30	IUNIT	Unit number for input coordinates (default = 05).

*Available if and only if NØNEWF = 1, ISIGF = 1 and IGEØMF = 1.

cc31	IVIJ	Matrix print flag.
cc32	ICØEF	Matrix-assembly coefficient print flag.
cc33	IPRINT	Very detailed matrix construction print flag.
cc 34	IRAKF	Automatic rake generation flag (see also Cards 8 & 9)
<u>Card 3</u> -	Chord/Mac	h number card.
cc1-10	CHØRD	Reference chord length (default = 1.0).
cc11-20	XMACH	Mach number for Goethert correction (0.0 implies incompressible).
cc21-80	(blank)	
Card 4 -	Body Cont:	rol Card 1 of 2.
ccl	IGEØMF	<pre>0 = curved elements; l = flat elements.</pre>
cc2	ISIGF	$0 = \text{parabolic } \sigma; 1 = \text{linear } \sigma;$ $2 = \text{constant } \sigma \text{ (on each element)}.$
cc3	ICURVN	<pre>0 = internally calculated element curvatures; 1 = input curvature (see card 7).</pre>
cc4	NØNEWF	0 = use the newest formulas; 1 = use the old formulas (implies flat elements and constant σ).
cc5	IFØRMT	Input format flag (see Card Set 6).
cc6-10	NN	Number of defining endpoints for this body.
cc11-20	XMULT	x-multiplier value (default = 1.0).
cc21-30	YMULT	y-multiplier value (default = 1.0).
cc31-40	THETA	Coordinate rotation value (degrees, measured about -Z-axis.
cc41-50	ADDX	x-increment (to be applied to all the input coordinates for this body).
cc51-60	ADDY	y-increment (to be applied to all the input coordinates for this body).

```
Card 5 - Body Control Card 2 of 2
                     "Body" number (sequential for bodies,
 cc1-10
          IBDN
                          zero for off-body points)
 cc11-20
          ISUBKS
                     Subcase flag
 cc21-30 NLF
                    Non-lifting flag (for combination cases,
 cc31-40 A
                     Semi-major axis for ellipse cases | If
                                                         IELPSE
 cc41-50 B
                    Semi-minor axis for ellipse cases | ≠ 0
 Card (Set) 6 - Body Definition Cards
          IF\emptysetRMT=0: X-coordinates (6F10.5), then Y-coordinates (6F10.5)
 IF
 IF
          IFØRMT=1: X, Y coordinates (2F10.5) (i.e., one
                          "point-set" per card).
 IF
          IFØRMT=2: X, Y coordinates (F10.5,10X,F10.5)
                          (i.e., one "point set" per card).
 Card (Set) 7 - Input curvature values (needed only if
                     ICURVN \neq 0)
 (6F10.5) CURV(I), I=1,NN-1 The curvature values for the
                    NN-1 elements which constitute this
                    body
Repeat Cards 4-7 a total of (NB+IØFF) times
 Card 8 - Rake Number Card (needed only if IRAKF # 0)
          NRAKES
 cc1-10
                    The number of "automatically" generated
                          mass-flow rakes
 Card 9 - Rake Definition Card (needed only if IRAKF ≠ 0)
                    Coordinates of "start" of the rake
 cc1-10
          X1
          Y1
 cc11-20
         X2
 cc21-30
                    Coordinates of the "end" of the rake
 cc31-40
          Y2
 cc41-45
         N
                    Number of intervals to be used in the
                          rake (note, 4<N<200, and N must be
                          an even integer)
```

Repeat Card 9 a total of NRAKES times.

Card 10 - Non-Un NNU ≠	iform Flow Control Card (needed only if O)
cc1-10 NUN	Flow identification number
cc11-20 MSF	<pre>0 = axisymmetric onset flow; 1 = cross- flow onset flow, 2 = both 0 and 1</pre>
cc21-30 TYPE	+1.0 = velocity will be input in x,y component form; 0 = velocities will be input in normal, tangential form; -1 = automatic generation of flow due to rotation about the Z-axis (for crossflow, only)
cc31-40 FG	Flow generator constant
	Non-Uniform Flow Velocities (needed only if NNU \neq 0)
(6F10.5)	<pre>VX(I) or VN(I), I = 1, total number of control points</pre>
(6F10.5)	<pre>VY(I) or VT(I), I = 1, total number of control points</pre>

Repeat Cards 10 and 11 a total of NNU times.

 $\frac{\text{Card (Set) 12}}{\text{needed only if IPTANV}} \ \textbf{-} \ \text{Specified Tangential Flow Velocities}$

(6F10.5) TG(I), I = 1, total number of control points on the last IPTANV bodies

B. Discussion of Parameters

In all cases, the integer values (indicated by the standard FØRTRAN IV naming convention) must be right adjusted within the specified input fields. For floating-point type input, the input decimal point will override the quoted FØRMAT specifications.

- Card 1. Self-explanatory.
- Card 2. Although most of these flags are unchanged from the original program, a brief description of each one will be given here for completeness.
 - NB The total number of separate "bodies" $(1 \le NB \le 8)$.
 - NNU The total number of (user specified) input non-uniform flows (0<NNU<5).
 - IAXI Axisymmetric flow flag (0: no axisymmetric flow, 1: axisymmetric flow)
- ICROSS Crossflow flag (0: no crossflow, 1: crossflow)
 - IOFF Off-body point input flag (0: no off-body points will be input, 1: off-body points will be input)
- IONLY Basic-data-only flag (0: full execution, 1: basic data only)
- IELPSE Ellipse generator flag (see also card 5)(0: standard body defining coordinates will be input, 1: coordinates for the ellipse whose properties are specified on card 5 are to be created automatically by the program).
- IPRTRB Perturbation velocities only (0: standard total net velocities including the onset flow will be printed, 1: perturbation velocities only will be printed).
- IPØTNL Solve the potential matrix (0: standard solution for the surface velocities, 1: solution for the surface velocity potential). Since the velocity potential problem for the higher order elements has not been coded in the present version, the solution for the

potential is available only for the case of flat elements and, in particular, through the usage of the "old" velocity formulas. These "old" formulas have been retained as a subsection of this new, higher order program and may be "reached" by setting the following quantities (on Card 4): IGEØMF = 1, ISIGF = 2, and NØNEWF = 1; in such a case, the solution for the potential is still available.

IPTANV Prescribed tangential velocity flag (0: standard zero normal velocity solution is to be obtained, 1: a user defined set of prescribed tangential velocities will be input on the last IPTANV bodies; obviously, IPTANV < NB).

IVØRT Strip ring vorticity onset flows for each of the bodies (0: no strip ring vorticity, 1: automatic generation of the strip ring vorticity onset flows).

IØMITA Omit the uniform axisymmetric flow solution (0: calculate the standard uniform axisymmetric flow solution if IAXI \neq 0, 1: omit this uniform axisymmetric flow solution even if IAXI \neq 0).

IØMITC Omit the uniform crossflow solution (0: calculate the uniform crossflow solution if ICROSS \neq 0, 1: omit the uniform crossflow solution even if ICRØSS \neq 0).

ISURFV Surface vorticity for axisymmetric flow (in place of surface sources) flag (0: use the standard source

distribution on all elements, $\neq 0$: use vorticity instead of a source distribution as the singularity on the elements of the last ISURFV bodies). Note that if ISURFV $\neq 0$, then both IVØRT and IPTANV must be $\neq 0$, and then in particular, IPTANV must = ISURFV). If we assume that IPTANV = ISURFV = k, and that M is the total number of elements on the last k bodies, then the surface vorticity option causes the source induced velocity formulas to be used on the first N-M elements of each matrix row, and the vortex formulas to be used on the remaining M elements of each matrix row. The solution for the unknown strengths then proceeds as it would have if only IPTANV was nonzero.

IPRSCV Prescribed vorticity flag for axisymmetric flow (0: prescribed vorticity values will not be input, 1: prescribed vorticity values (W_i) for the last IPRSCV bodies will be input; note that if IPRSCV is \neq 0, then both IVØRT and IPTANV must \neq 0, and then, in particular, IPTANV must = IPRSCV). If IPRSCV is \neq 0, then the vortex strengths of the affected elements are taken to be $W_i/4\pi$.

IALLV Total vorticity flag for axisymmetric flow (0: all elements are assumed to be source type elements (unless ISURFV ≠ 0), 1: all elements are assumed to be vortex type elements). Note that if IALLV is ≠ 0, the use of IPTANV is optional, but not mandatory.

- IEXCRS Extra crossflow flag (0: no "extra" crossflow, 1: generate an "extra" crossflow (i.e., having a potential which varies as the cosine of twice the circumferential angle)). Note that if IEXCRS \$\neq\$ 0, then N\nabla NEWF = 1, ISIGF = 2, and IGEOMF must = 1, since the higher order formulas for this kind of velocity potential have not been included in this program.
- IGENBC Generated boundary condition flag (0: do not generate any additional boundary conditions for the crossflow case; 1: generate the onset crossflow due to rotation about an axis normal to the axis of symmetry (see also the notes for Card 10)).
- IRNGW Ring wing option (0: no ring wing option, 1: use the ring wing option (see MDC Report J0741/01, April 1970 for further details)).
- Card 3. This card is usually left blank, which results in a default chord length of unity, and no Mach number corrections (i.e., incompressible results). If a non-zero value of the Mach number is input, the program uses the Goethert correction to account for compressibility.
- Card 4. Usage of the IGEOMF and ISIGF flags permit the user to "turn-off" any or all of the higher order element

curvature and/or varying source density terms.

The default values are curved elements with parabolically varying source density. If IGEOMF = 0, the program will automatically calculate the local element curvature values by the procedure described in Section II.A, unless ICURVN is non-zero, in which case the user must supply these curvature values (see Card 7). The value for the NØNEWF flag is ordinarily left blank (or zero), even if a flat element, constant source density solution is required. However, since certain of the original Douglas-Neumann Axisymmetric Potential Flow Program capabilities have not been made available in the higher order program (e.g., calculation of the potential (hence the added mass, etc.) the original formulas have been preserved within this version (see description of the IPOTNL and IEXCRS flags). original capacilities can be obtained by setting IGEOMF = 1, ISIGF = 2, and NONEWF = 1 for each of the input bodies, in which case the input instructions of Reference 5 apply.

The other parameters on Card 4 are self-explanatory, with the understanding that the order of coordinate transformations are as listed on the input.

Card 5. The "bodies" are normally loaded prior to any offbody points (although the latter require the usage of body control Cards 1 and 2, also). For this reason, the value of IBDN should be sequentially increasing beginning with unity. A non-zero value for ISUBKS means that the body definition cards for this body (Card Set 6), (say this is the ith body input under this header card) will not be included, but that the program is to use the ith set of points that were input under the previous header card. Obviously, this capability is useful only with "stacked" input cases.

- Card 6. The three input formats that are available are as shown. The value of IFORMT determines which format is used. The default format is the "old" format: x-coordinates, followed by the y-coordinates.
- Card 7. These values are to be input only if ICURVN \neq 0.
- Card 8. This card is needed only if IRAKF \neq 0. Note that 1 < NRAKES < 20.
- Card 9. These are the rake definition cards, which define the "start" and "end" of each mass flow rake. The sign convention that is employed is as follows: a positive mass flux means that the flow is from left to right to an observer traversing the rake from point (X1, Y1) to point (X2, Y2). For example, for an inlet without a bullet, point 1 is typically at y = 0.0, and point 2 would have a y-coordinate located on the inlet wall. Note that the x-coordinates need not be the same, i.e., a tilted rake may be used,

if desired. Note also that one rake may "overlap" another if so desired, since they are each treated independently. It should be pointed out that a Simpson Rule integration is performed over the "N" intervals (and therefore N must be an even integer), with the program automatically generating N-1 "intermediate" points as "off-body points" for each input rake (program limit is 500 total off-body points). The velocity values at the first and last rake points are obtained by linear extrapolation of the two nearest values. In this way, the difficulty associated with calculating induced velocities at off-body points which lie very near to, or on, the surface is avoided. Typically, values of N between 10 and 20 appear to be satisfactory for most cases.

Card 10. Self-explanatory, except that FG, if entered is used in the following way to generate the rotation onset flow:

$$V_{x_{i}} = y_{i}$$

$$V_{y_{i}} = FG - x_{i}$$

$$V_{N} = V_{x_{i}} \sin \alpha_{i} - V_{y_{i}} \cos \alpha_{i}$$

$$V_{T} = V_{x_{i}} \cos \alpha_{i} + V_{y_{i}} \sin \alpha_{i}$$

Card 11. Self-explanatory.

Program AOAT

Card 1. Format (313,F10.6)

cc1-3 IPRT = 1, writes the output of program HESS

on Unit 6; = 0, does not write

cc4-6 N, Number of elements used in the program HESS

cc7-9 KPL, Number of meriodonial planes required

cc10-19 ALPD, Angle of attack in degrees

Program HESS (3-D)

Card 1.

cc	CONTENTS	NOTES
1→60	Title	Header information
61	IFLAG	= "0" for input body coordinates (this
		is the usual case)
		= "1" for generated ellipsoids
		= "2" for generated bodies with
		elliptical cross section
62	LIST	= "0" for full execution
		= "1" for basic data listing only
63	KX	= "F" or blank for no generated uniform
		x-flow
		= "T" for generated uniform x-flow
		(calculate x-flow matrices)
64	KY	= "F" or blank for no generated
		uniform y-flow
		= "T" for generated uniform y-flow
		(calculate y-flow matrices)

<u>cc</u>	CONTENTS		NOTES
65	KZ	= "F" or b	olank for no generated
		uniform z-	-flow
		= "T" for	generated uniform z-flow
		(calculate	e z-flow matrices)
66	ISIG	= "0" for	no input guesses for source
		densities	
		= "1" for	input guesses for source
		densities	(rarely used)
67	IPRS	= "0" for	no mid-iteration print
		= "1" for	print of solution iterations
63	MPR	= "0" for	no intermediate matrix print
		= "1" for	V _{ij} print
		= "2" for	A _{ij} print
		= "3" for	${ m V}_{ m ij}$ and ${ m A}_{ m ij}$ print (Never use
		for large	case, or output is excessive)
69	METHØD	= "0" for	automatic solution selection
		= "1" for	direct matrix solution
		= "2" for	modified Seidel iterative
		solution	
70→71	NNØN	Number of	input onset flows
72	NSYM	Number of	symmetry planes
73	NØFF	= "0" for	no off-body points
		= "1" for	off-body points
74	КМАСН	= "0" for	no Mach number correction
		= "1" for	input Mach number

cc	CONTENTS	NOTES
75-76		
77-80	KASE Alpha-numeric	case identification
Mach Nu	mber is input on a separate	card only if KMACH = 1.

INPUT GENERATOR DATA

Card 2.

<u>cc</u>	CONTENTS	NOTES
1 →5	NLM1	Number of "latitudinal" element
		divisions
6→10	MMIN	Number of "longitudinal" element
		divisions
11→20	В	Y semi-axis of elliptical cross section
21→30	С	$\ensuremath{\mathbf{Z}}$ semi-axis of elliptical cross section

(If ellipsoid is generated, X semi-axis is unity)

NOTE: This card is input only when IFLAG \neq 0

X-Z INPUT

This input consists of the coordinate pairs $(X_1, Z_1, X_2, Z_2, \ldots, X_{NLM1+1}, Z_{NLM1+1})$ that define the profile in the x-z plane of the body of elliptical cross-section to be generated by the program. These coordinates are read with an 8F10.0 format.

ON-BODY COORDINATES

General (non-elliptical) bodies are input by giving the

coordinates of a large number of points on the body. The three dimensional coordinates defining the body surface(s) are input 2 points-to-a-card. Each point has associated with it a quantity called its "status" that has the following meaning:

VALUE	MEANING
"0" or blank	This point is on the same n-line as
	the last point
1	This point starts a new n-line
2	This point starts a new section
3	This is the last point of the input
NOTE: These cards are	e only input if IFLAG=0
OFF-BOI	DY POINT COORDINATES

The three-dimensional coordinates defining the off-body points are input with the identical format of the on-body coordinates. The only status flag used, however, is that of "3" for the last off-body point.

NOTE: These cards are input only if NØFF=1.

FLOW FLAGS

Each input onset flow is preceded by a card that describes the flow. All x-flows <u>must</u> precede all y-flows which precede all z-flows. (An "x-flow" is any flow that is solved using the matrix appropriate for a uniform onset flow parallel to the x-axis.)

cc	MEANING
1	= "1" if this is an x-flow
	= "2" if this is a y-flow
	= "3" if this is a z-flow
2	= "0" if this is a non-uniform onset
	flow, i.e., values of the onset flow
	velocities will be specified for each
	element
	= "1" if this is a uniform onset flow,
	the value of which is only specified
	once
3	= "0" if the onset flow velocity is
	expressed in component form
	= "1" if the onset flow is expressed
	in normal velocity values

NOTES: The onset flow velocities and sigma guesses are read with a "6F10.0" format.

This input is only required if $NN\emptyset N = 0$.

GENERAL PROCEDURES

All coordinates are input with the following format 2 (3F10.0, I1)

Except where noted elsewhere, zeroes or blanks may be interchanged on input.

Program BLOT

Card Name	Fortran Name	Format	Column	Description
TITLE	TITLE	9A8	6-77	Problem Identification - this will appear as a heading in the output
LIMTS	JMAX	15	6-10	Number of points across boundary layer
	KMAX	15	11-15	Number of points around body (in phi-direction)
	LITER	15	16-20	Number of iterations for initial profile
	IPRT	15	21-25	Every how many steps printing will occur along the body
	KPRT	15	26-30	Every how many steps printing will occur around the body
	PSIMAX	E10.0	31-40	Distance along body at which program will terminate
	UINF	E10.0	41-50	Freestream velocity - ${\rm V}_{\rm \infty}$
DW	DW(K)	E10.0	6-15	$\Delta\omega$'s around the body, $K = 1$, $KMAX - 1$.
			16-25	
			etc.	
DN	DN(J)	E10.0	6-15	$\Delta \eta$'s across the boundary layer. J = 1, JMAX - 1.
			16-25	
SIZE	A	E10.0	6-15	a - length of axis of triaxial ellipsoid (A>10 ⁶ gives paraboloids)

Card Name	Fortran Name	Format	Column	Description
	RB	E10.0	16-25	R _b - radius of curva- ture of nose of body in the plane y'= 0
	RC	E10.0	26-35	R_c - radius of curvature of nose of body in the plane $z'=0$
	EPS	E10.0	36-45	Convergence criterion used in calculating the body coordinates
	ALP	E10.0	46-55	α - angle of attack (deg)
	CAPTH	E10.0	56-65	⊖ - indicates which finite-difference scheme is being used.
				$= \begin{cases} 1 = \text{Kruase scheme} \\ 2 = \text{Crank-Nicolson} \end{cases}$
				2 = Crank-Nicolson scheme
	CRI	E10.0	66-75	$= \begin{cases} 1 & \text{Implicit scheme} \\ 1/2 & \text{Crank-Nicolson} \end{cases}$
				1/2 Crank-Nicolson scheme

Programs DERVAT and INVTAP

These programs obtain the necessary data sets internally and they do not need any external input.

3. Description of Program Output

Program HESS(Axisymmetric)

Unit 6

The main output of the program, which consists of calculated surface velocities and/or pressures has not been changed. Its format is that of Ref.2. The surface coordinates with which the calculated velocities are associated are the

transformed coordinates, i.e., the original input coordinates altered by any specified translations, multiplications, or rotations. Similarly, the format of the calculated velocities at the off-body points is similar to that of Ref. 5. The only change is that output at rake points (q.v.) is included.

The initial output, which details the surface geometry, has been changed considerably. The header identifies what kind of solution has been computed: (1) curved or flat elements; (2) constant, linear, or parabolic source density element curvatures. The header also specifies whether "new" or "old" velocity formulas have been used, the latter of which apply only to the flat-element constant-source case. In the body of the output, the first two columns are the untransformed (input) coordinates, and the third and fourth columns are the transformed coordinates, which are the endpoints of the surface elements. The fifth and sixth columns are the coordinates of the control points of the elements. Element arc lengths are given in column 7 and a running total of arc length is displayed in column 8. Column 9 lists the differences between average slopes of successive elements, i.e., the differences in the slopes of the two straight lines, through the respective element endpoints. The actual slope discontinuity at an endpoint between two parabolic elements is normally much smaller than the difference between the average slopes of the two elements. Moreover, this discontinuity approaches zero if the body contour approaches a parabola. The final (tenth) column lists elements curvatures.

A new output is entitled Automatic Rake Calculation. For each rake the two input points that bound the rake and the input identification are output together with three calculated quantities. The first is the surface area of the cone frustum defined by the two input rake points. The third is the total flux of fluid that crosses this area per unit time. The second quantity, average velocity, is the ratio of the third and the first quantities. There is a rake output for all axisymmetric flows, both uniform and non-uniform, but there is no rake output for cross-flow, because its circumferential variation guarantees zero flux.

With regard to surface vorticity solutions, there are only two possibilities. Either there are no vorticity solutions or there is one solution for each body, which corresponds to a unit vorticity strength on that body and zero vorticity strength on all other bodies. The order of these solutions is the same as the order in which the bodies are input. Thus, in particular, an inlet with centerbody has two vorticity solutions - one with vorticity on the inlet and one with vorticity on the centerbody. The second of these is not meaningful and should be discarded. (It may, of course, occur first on the output.)

Units 1-4,

7-15

Unit 16

These are scratch disks, which are used to write and read internally.

The coordinates x, y and the velocities T_1 , T_1 , T_2 are written in order one after the other for all axial stations.

Program AOAT

Unit 6

For each axial station (x), the pressure coefficient (CP), the velocities UX, UY, UZ are written. These velocities are in body axes. Finally, the stagnation point location XO is printed.

tion point location XO is printed.

For each axial station, two records are written unformated. The first record contains X and KPL. The second record contains the meridonial plane angle,

UX, UY, UZ and radius R for all planes.

This is not used.

Formated image of Unit 10.

Unit 10

Unit 22

Unit 30

Program BLOT

Unit 6

Initially all input data is printed out.

This includes several quantities which are computed strictly from the input.

Next, initial profile calculations, including all iterations are printed.

Finally, the solution at each desired location along and around the body is displayed. At each point where printing occurs, the following quantities appear:

X
Y
X
X,y,z coordinates

	R	r, radial distance to body surface			
	S	s, distance along surface in $\boldsymbol{\xi}\text{-direction}$			
	ALPHA	$\bar{\alpha} = w_e/u_e$			
	ALBET2	$\overline{\alpha}_2 = w_e/u_e$			
	ALBET3	$\overline{\alpha}_3 = w_e/W$			
	XIKA	parameter ξ $K_{\xi}/\overline{\alpha}$			
	UE	ue inviscid edge velocities in 5 and m			
	WE	$\left.\begin{array}{l} u_{e} \\ w_{e} \end{array}\right\}$ inviscid edge velocities in ξ and ω			
	BETA1	^β 1 \			
	BETA2	β2 inviscid velocity gradient parameters			
	BETA3	β_2 inviscid velocity gradient parameters β_3			
	BETA4	β ₄			
	DFDN	Not coloulated			
	DGDN	Not calculated			
1	HPSI	$\left.\begin{array}{c} h_{\xi} \\ \end{array}\right\}$ Metric coefficients			
	HOMEGA	h_{ω}			
	KAPPAS	K_{ξ} Curvatures of the coordinate lines			
	KAPPAW	K_{ω}			
	TOTAL SHEAR STRESS				
	TOTAL SKIN FRICTION	Not calculated			
	ANGLE				
Unit 8		Formated image of Unit 25			
Unit 11		The diagnostic printout from the			
		double interpolation subroutine SLOALL.			
		Useful for debugging only.			

Unit 25

For each (PSI) the longitudinal surface coordinate, the metric coefficients (HPSI, HW), R, S, UPSI, UW are written for each meridonial plane, unformated.

Program DERVAT

Unit 6

The angle of attack in radians and the number of meridonial planes are written.

Next the image of Unit 25 of program BLOT has been written.

Unit 26

The angle of attack in radians and KPL are written. Next, the station No. I, XS, HPSI, HW, R, S, UPSI, UW, X, and the derivatives of these D(UPSI), D(UW), D(R), the second derivative D2(R); D(HPSI), D(HW), D(X), are written in order for each meridonial plane. These are written unformated.

Unit 29

Formated image of part of Unit 26. The data written is I, XS, S, X, D(X), UPSI, D(UPSI), UW, and D(UW) for each plane.

Unit 30

Formated image of part of Unit 26. First the angle of attack in radians and KPL are written. Next I, XS, HPSI, D(HPSI), HW, D(HW), R, D(R) and D2(R) are written for each plane.

Program INVTAP

Unit 6 Errors and messages are written on

this unit.

Unit 10 For each station the Fourier coefficients

are written unformated. This is the data

set required by ICBL3D.

Unit 30 Formated image of Unit 10. Also at each

station the data written on Unit 26 of

program DERVAT is rewritten.

JCL

The programs described above require large memory, which made it necessary to execute them one after the other in a multistep job. Also the programs were compiled, linkedited and stored as members of a partition data set, named A30303. MARK1. SUBLIB. This has the advantages of avoiding handling large Fortran source decks and compiling everytime the job is executed. The input cards for each program have to be inserted after the //FT05F001 DD* card, except for the program BLOT for which they have to be after the //FT04F001 DD* card. Finally, the required inviscid data has been written on an on line disk (CHEKOV) as a partition data set named A505F3.INVTAP. The relevant JCL has been listed below.

- Job Card
- //JOBLIB DD DSN=A30303,MARK1,SUBLIB,DISP=(SHR,KEEP),
 //VOL=SER=USERPK,UNIT=SYSDA
- 3 //STEP1 EXEC PGM=HESS,TIME=1,REGION=520K
- 4 //FT06F001 DD DUMMY

```
5
           //FT01F001 DD UNIT=SYSDA, DISP=(NEW, DELETE), SPACE
           =(TRK, (50,1))
 6
           //FT02F001 DD UNIT=SYSDA, DISP=(NEW, DELETE), SPACE
           =(TRK, (50,1))
 7
           //FT03F001 DD UNIT=SYSDA, DISP=(NEW, DELETE), SPACE
           =(TRK, (50,1))
 8
           //FT04F001 DD UNIT=SYSDA, DISP=(NEW, DFLETE), SPACE
           =(TRK, (50,1))
 9
           //FT07F001 DD DUMMY
10
           //FT08F001 DD UNIT=SYSDA, DISP=(NEW, DELETE), SPACE
           =(TRK, (50,1))
11
           //FT09F001 DD UNIT=SYSDA, DISP=(NEW, DELETE), SPACE
           =(TRK, (50,1))
12
           //FT10F001 DD UNIT=SYSDA, DISP=(NEW, DELETE), SPACE
           =(TRK, (50,1))
13
           //FT11F001 DD UNIT=SYSDA, DISP=(NEW, DELETE), SPACE
          =(TRK, (50, 1))
14
           //FT12F001 DD UNIT=SYSDA, DISP=(NEW, DELETE), SPACE
           =(TRK, (50,1))
15
           //FT13F001 DD UNIT=SYSDA, DISP=(NEW, DELETE), SPACE
          =(TRK, (50,1))
           //FT15F001 DD UNIT=SYSDA, DISP=(NEW, DELETE), SPACE
16
          =(TRK, (50,1))
17
           //FT16F001 DD UNIT=SYSDA, DISP=(NEW, PASS), SPACE
          =(TRK, (50,1)), DSN=\&\&T1
18
           //FT05F001 DD *
19
           //STEP2 EXEC PGM=AOAT, COND=(0, NE), TIME=(0.30),
          REGION=150K
20
           //FT06F001 DD DUMMY
21
           //FT16F001 DD UNIT=SYSDA, DISP=(OLD, DELETE), DSN=&&T1
22
           //FT22F001 DD DUMMY
23
          //FT30F001 DD DUMMY
24
           //FT10F001 DD UNIT=SYSDA, DISP=(NEW, PASS), SPACE=
           (TRK, (50, 1)), DSN=\&\&T2
```

```
25
         //FT05F001 DD *
26
         //STEP3 EXEC PGM=BLOT, COND=(0, NE), TIME=5, REGION=350K
27
         //FT06F001 DD SYSOUT=A
28
         //FT08F001 DD SYSOUT=A
29
         //FT11F001 DD DUMMY
30
         //FT10F001 DD UNIT=SYSDA, DISP=(OLD, DELETE), DSN=&&T2
31
         //FT25F001 DD UNIT=SYSDA, DISP=(NEW, PASS), SPACE=
         (TRK, (50,1)), DSN=&&T3
32
         //FT04F001 DD *
33
         //STEP4 EXEC PGM=DERVAT, COND=(0, NE), TIME=1, REGION=650K
34
         //FT06F001 DD SYSOUT=A
35
         //FT25F001 DD UNIT=SYSDA, DISP=(OLD, DELETE).DSN=&&T3
36
         //FT26F001 DD UNIT=SYSDA, DISP=(NEW, PASS), SPACE=
         (TRK, (50,1)), DSN=&&T4
37
         //FT29F001 DD SYSOUT=A
38
         //FT30F001 DD SYSOUT=A
39
         //STEP5 EXEC PGM=INVTAP, COND=(0,NE), TIME=1, REGION=650K
40
         //FT06F001 DD SYSOUT=A
41
         //FT25F001 DD UNIT=SYSDA, DISP=(OLD, DELETE), DSN=&&T4
42
         //FT10F001 DD UNIT=SYSDA, DISP=(NEW, CATLG), SPACE=
         (TRK, (50,1))
         // DSN=A505F3.INVTAP, VOL=SER=CHEKOV
43
         //FT30F001 DD SYSOUT=A
```

JCL for use with Fortran source decks

In the JCL listed above the following changes have to be made:

1. Card 2 has to be removed.

2. In card 3 (PGM = HESS) has to be replaced by (FORTGCG)

19 (= AOAT) has to be replaced by (FORTGCG)

26 (= BLOT) has to be replaced by (FORTGCG)

33 (= DERVAT) has to be replaced by (FORTGCG)

39 (= INVTAP) has to be replaced by (FORTGCG)

3. After cards 3, 19, 26, 33, 39 insert the following card:

//FORT.SYSIN DD* and then appropriate Fortran source deck.

Listings of Job Control Language, sample data decks, sample output and program listings for the TAPGEN package are found in Appendices I through V_{\cdot} .

SECTION II

PROGRAM ICBL3D

In this section program ICBL3D is described. The general structure of the program is briefly described and then the input data and output of the program are described in detail. Finally, the Job Control Language required to execute the program on an IBM 370/158 computer with the JES2 operating system is listed.

A flow chart of the program appears in Fig. 3 where the function of the various subroutines are indicated. As can be seen, the code requires a small amount of card input, but its' primary mode of data input is from a data tape designated as logical unit 10. This data tape can be prepared using program TAPGEN described earlier in this report.

The program proceeds in a forward marching fashion from the body stagnation point downstream and from the windward to leeward symmetry planes. The number of solution planes around the body in the ω -direction is fixed by the user, while the step size in the ξ -direction is adjusted internally by the program as it proceeds downstream. The initial step size is set by the user and this step size is continually adjusted by the program based upon the number of iterations required to achieve a solution at a previous station. Further, at the user's option, the edge value of the transformed normal coordinate η can be automatically increased or decreased to meet a predetermined criteria for profile decay at the boundary-layer outer edge.

There is a special feature of the program for full three-dimensional solutions. If the program cannot obtain a converged solution at some point between the windward and lee-ward symmetry planes it will drop that point (and all subsequent points to the leeward plane) from the solution around the body at all subsequent streamwise stations. This feature allows the solution to proceed even after separation or other problems are encountered near the leeward plane of the body.

1. Program Input

As mentioned, input to the program is from two different sources: (1) cards or card image data and (2) data sets residing on tape or disk. The data sets residing on tape or disk are generated by program TAPGEN and basically consist of Fourier coefficients. The first record on the tape contains the angle of attack in radians and an integer variable giving the number of coefficients in each Fourier series. All the records on the file after the first are identical in format. They consist of the value of ξ followed by the Fourier coefficients for the series fits to r, $U_e, W_e, h_\xi, h_\omega$, s, $\partial U_e/\partial \xi, \partial W_e/\partial \xi, \partial r/\partial \xi, \partial r/\partial \xi^2, \partial h_\xi/\partial \xi, \partial h_\omega/\partial \xi, x, \partial x/\partial \xi$ in that order. The series are in terms of the angle φ and their range is from the windward to leeward planes of symmetry for constant ξ . All data on the tape are written with unformatted WRITE's. The data must appear on logical unit 10.

The card or card image data to the program will now be described.

2. Description of Input Data

CARD 1. LABEL (20A4)

LABEL is the title of the case and is a single subscripted array. LABEL is passed to the output routines and appears as the header to the program output.

CARD 2. IE (49X, I3)

IE is the number of points taken normal to the body. The program is dimensioned for a maximum of 101 points in the normal profile arrays. 101 is the recommended value; however, savings in execution time occur by decreasing IE. IE must be an odd number.

CARD 3. INJCT (49X, I3)

INJCT is the subscript of the XSTA array (see below) giving the surface location at which mass injection begins.

A zero value of INJCT is set to NSOLVE.

CARD 4. KADETA (49X, I3)

KADETA is an indicator for the adjustment of the transformed normal coordinate. If KADETA = 0, the maximum value of η is held constant. If KADETA = 1 the maximum η is adjusted when the velocity profiles fail to decay properly at the outer edge as prescribed by the input variable ADTEST. The value of η_{max} as adjusted up or down for windward symmetry plane only runs. For full three dimensional runs η_{max} is only adjusted up, and can be adjusted at every point. A value of 1 is recommended.

CARD 5. KEND2 (49X, I3)

KEND2 specifies the number of circumferential planes to be used in the solution, and thereby also sets the circumferential step size. The program can accept a maximum value of KEND2 = 61. A total of sixty-one planes would lead to excessive computing time, however, and a value of KEND2 = 11 is recommended.

CARD 6. KONSET (49X, I3)

KONSET is the subscript of the XSTA array giving the location of the onset of transition. At X = XSTA(KONSET) the variable LAMTRB is reset to 2 and transition to turbulence begins. A zero value is reset to NSOLVE.

CARD 7. KPRT (49X, I3)

KPRT is a print control parameter which controls the printing of profiles in the φ direction. The program prints every KPRT'th profile around the body at a given value of ξ starting with the φ = 0^O profile.

CARD 8. KTRANS (49X.I3)

KTRANS is an indicator for the transition model. If KTRANS = 0 transition to turbulence will be instantaneous, if KTRANS = 1 a smooth transition to turbulence will take place over the distance XBAR (see below).

CARD 9. LAMTRB (49X, I3)

LAMTRB indicates whether the flow is laminar or turbulent. LAMTRB = 1 indicates the solution begins with laminar

flow. LAMTRB = 2 means fully turbulent flow. When KONSET

0, LAMTRB = 1.

CARD 10. LPRT (49X, I3)

LPRT is the print control parameter in the streamwise direction. The program prints solutions at every LPRT'th station in ξ .

CARD 11. NIT1 (49X, I3)

NIT1 is an iteration counter used to adjust the streamwise step size. If the total number of iterations required to obtain the solution at a point is less than or equal to NIT1 then the ξ step size is doubled.

CARD 12. NIT2 (49X, I3)

NIT2 is an iteration counter used to adjust the streamwise step size. If the total number of iterations required to obtain a solution at a point is greater than NIT1 and less than NIT2 the ξ step size is unchanged.

CARD 13. NIT3 (49X, I3)

NIT3 is an iteration counter affecting ξ step size and the convergence of the solution. If the total number of iterations required for a solution at a particular point is greater than NIT3 the program halves the ξ step size and cuts back the value of ξ by the new step size. A solution at the smaller value of ξ is then tried. If this procedure fails three consecutive times execution is terminated.

NOTE: The $\boldsymbol{\xi}$ step size is adjusted only at the windward symmetry plane.

CARD 14. NOINJ (49X, I3)

NOINJ is the subscript of the XSTA array giving the surface location at which injection ends. NOINJ = 0 is reset to NOINJ = NSOLVE.

CARD 15. SFC (49X,A3)

SFC is a literal variable coded as either YES or NO to indicate whether surface curvature effects are to be included in the calculations.

CARD 16. NSOLVE (49X, I3)

NSOLVE is the number of variables in the XSTA array, and is therefore the subscript of the last XSTA value which indicates the end of the body. It is also the default value for INJCT, NOINJ, and KONSET.

CARD 17. ADTEST (49X, E14.6)

ADTEST is used in conjunction with KADETA. When KADETA is 1 ADTEST provides the convergence criteria for checking the streamwise velocity profile. When |F(IE) - F(IE-4)| or |G(IE) - G(IE-4)| is less than ADTEST/10 the maximum value of η is decreased by 10%. When it is greater than ADTEST the maximum value of η is increased by 10%.

CARD 18. AKSTAR (49X, E14.6)

AKSTAR is a numerical constant in the Van Driest inner eddy viscosity law (k* in Ref. 1). The recommended value is 0.435.

CARD 19. ALAMDA (49X,E14.6)

ALAMDA is a numerical constant in the outer eddy viscosity law used in the program (λ in Ref. 1). The recommended value is 0.09.

CARD 20. ASTAR (49X, E14.6)

ASTAR is a numerical constant used in the damping term of Van Driest's inner eddy viscosity law in the program (A* in Ref. 1). The recommended value is 26.0.

CARD 21. CWALL (49X, E14.6)

CWALL is the injection rate for mass transfer cases where the rate is a constant. CWALL = $v_{\tau t}/u_{\infty}$.

CARD 22. CONV (49X,E14.6)

CONV is the solution convergence criterion. The dependent variable arrays of streamwise and cross flow velocities are all checked for convergence at all points. When the largest percentage difference between the current and previous iterations is less than or equal to CONV the solution is taken to be converged.

CARD 23. DXMAX (49X, E14.6)

 $\ensuremath{\mathsf{DXMAX}}$ is the maximum step size, to be taken in the streamwise direction.

CARD 24. DX1 (49X, E14.6)

DX1 is the initial streamwise step size. Since this value will be adjusted internally it is not critical that

the user choose an accurate value. Usually a value of 0.01 is a good initial DX.

CARD 25. EDYLAW (49X,A3)

EDYLAW specifies the inner eddy viscosity law to be used in turbulent cases. Two options are available to the user: (1) EDYLAW = VAN DRIEST and (2) EDYLAW = REICHARDT. The program picks up only the first 3 letters of each name. The user should note the comments on these two laws for mass transfer problems stated in Ref. 1. In general the REICHARDT law is recommended.

CARD 26. ETAFAC (49X, E14.6)

ETAFAC controls the normal grid spacing. A value of 1.0 gives an equally spaced grid for the transformed normal coordinate. A value greater than 1.0 gives a finer grid at the wall than at the outer edge. A value of 1.04 is recommended with IE = 101 and ETAINF = 6.0. A value of 1.09 is recommended with IE = 101 and ETAINF = 100.0.

CARD 27. ETAINF (49X, E14.6)

ETAINF is the maximum value of η . A value between 6.0 and 10.0 is recommended for laminar flow. A value between 10.0 and 100.0 is recommended for turbulent flow. This value can be adjusted internally by specifying KADETA = 1.

CARD 28. PR (49X, E14.6)

PR is the value of the laminar Prandtl number in the fluid.

CARD 29. RTW (49X, E14.6)

RTW is the ratio of the wall temperature to stagnation temperature. It is used to calculate wall temperature when wall temperature is held constant.

CARD 29. TFS (49X, E14.6)

 $\,$ TFS is the free-stream static temperature in degrees Rankine.

CARD 30. CP (49X, E14.6) CP is the specific heat of the fluid in $\text{ft}^2/\text{sec}^{20}R$.

CARD 31. AMUINF (49X,E14.6)

AMUINF is the coefficient of viscosity in slugs/ft-sec.

CARD 33. PINF (49X,E14.6)PINF is the free-stream static pressure in lbf/ft².

CARD 34. XBAR (49X,E14.6)

XBAR is the relative length of the transition regime in turbulent cases. It is the ratio of the transition end point location to the transition onset distance.

CARD 35. UFS (49X,E14.6)

UFS is the free-stream velocity in ft/sec.

CARD 36 to 36+NSOLVE XSTA(I), I = 1, NSOLVE (F12.6)

XSTA is an important input array. It is an array of surface distances

solutions calculated. The program will always obtain solutions at these points regardless of internal adjustments to the streamwise step size. Both the value 0.0 and the end point of the body must be included in the array as well as any distances describing the beginning or end of injection and transition.

CARD 36+NSOLVE+1 TO LAST CARD XTW(I), TWX(I), XCI(I), CIX(I) (4E12.6)

TWX(I) is the wall temperature in degrees Rankine at XTW(I) which is a surface distance.

CIX(I) is the injection rate $\boldsymbol{v}_w/\boldsymbol{u}_{\infty}$ at XCI(I) which is a surface distance.

each. If none of these cards appear in the input deck the program will automatically assume constant wall temperature and injection rate values based on RTW and CWALL. This input allows the wall temperature distribution and injection rate distribution to be read in versus their own surface distance tables. If both distributions are to be read in versus the same distance table, then either one of the two distance tables may be left blank. Another important feature is the fact that the distributions need not cover the same surface distance. For instance, the wall temperature distribution might be defined over the entire body while the injection rate distribution might only be defined over a short distance.

3. Description of Output Data

The output from program ICBL3D is in the form of printed output. The printed output is presented in two forms,

station data and profile data. This section will define the output by listing the variable name as it appears in the output along with the definition of the variable. The program also prints miscellaneous messages which are described at the end of this section.

Station Data

Line 1

XO distance from the stagnation point along

the body axis non-dimensionalized by the

reference length (one foot)

R radial distance from the stagnation point

body axis to the body surface non-

dimensionalized by the reference length

PHI meridional angle about the stagnation

point body axis measured from the windward

symmetry plane in degrees

Line 2

XI longitudinal surface coordinate ξ

DXI $\Delta \xi$, streamwise step size

CWALL local injection rate v_w/u_∞

NIT number of iterations to obtain the solution

Line 3

HX metric coefficient h_{ε} evaluated at the body

HW metric coefficient h evaluated at the body

Line 4

TE nondimensional edge static temperature,

 $T_{\infty}C_{p}/u_{\infty}^{2} = T_{e}$

UE	nondimensional ξ component of velocity
	at the boundary-layer edge $u_e/u_\infty = U_e$
VE	nondimensional ω component of velocity
	at the boundary-layer edge $w_e/u_\infty = W_e$
Line 5	
DUEDX	θU _e /θξ
DVEDX	θW _e /θξ
DUEDW	$\partial U_{e}/\partial \omega$
DVEDW	$\partial W_{e}/\partial \omega$
Line 6	
LOCAL EDGE REYNOLDS N	$UMBER = \rho_{\infty} u_{e} \xi / \mu_{\infty}$
Line 7	
CFXINF	$C_{f_{\xi_{\infty}}} = 2_{\tau_{w_{\xi}}}/\rho_{\infty}u_{\infty}^{2}$, streamwise skin friction coefficient $C_{f_{\xi_{e}}} = 2_{\tau_{w_{\xi}}}/\rho_{\infty}u_{e}^{2}$, streamwise skin friction coefficient based on edge
CFXEDG	$c_{f_{\xi_{e}}} = 2 \frac{1}{\tau_{w_{\xi}}} / \rho_{\infty} u_{e}^{2}$, streamwise skin friction coefficient based on edge conditions
CFWINF	$c_{f_{\omega_{\infty}}} = 2_{\tau_{w_{\omega}}}/\rho_{\infty}u_{\infty}^{2}$, transverse skin friction coefficient based on free-conditions
CFWEDG	$c_{f_{\omega_e}} = 2_{\tau_{w_{\omega}}}/\rho_{\infty}u_e^2$, transverse skin friction coefficient based on edge conditions.
Line 8	
QW	$q_{\overline{w}}/\rho_{\infty}u_{\infty}^3$, wall heat transfer coefficient
CHIMAX	maximum vorticity Reynolds number n^2/ν $\partial u/\partial n$
Line 9	
LONGITUDINAL SKIN FRIC	CTION $\tau_{\omega_{z}}$ in lbf/ft ²
DELTA*(X)	δ_{ξ}^{*} , streamwise boundary-layer displacement

thickness in feet.

THETA(X) θ_{ξ} , streamwise boundary-layer

momentum thickness in feet.

Line 10

TRANSVERSE SKIN FRICTION $\tau_{w_{ij}}$, in lbf/ft²

DELTA*(PHI) δ_{ω}^* , transverse boundary-layer

displacement thickness in feet.

THETA(PHI) $\theta_{(i)}$, transverse boundary-layer

momentum thickness in feet.

Line 11

WALL HEAT TRANSFER RATE $q_{_{(j)}}$ in Btu/ft 2 /sec

DELTA(FT) δ , the boundary-layer thickness in

feet.

Profile Data

One group of boundary layer profile data is printed by the program. Every other point is printed in the profile arrays.

The following columns are identified:

ETA η , the transformed normal coordinate.

Y n, the physical normal distance nondimensionalized by the reference length.

F $h_{\xi}u/h_{\xi}.0^{U}e$

FN aF/an

G $h_{\omega}w/h_{\omega,0}W$ where W = W_e at the stagnation point and symmetry planes and W = U_e elsewhere.

GN aG/an

 $T T/T_e$

TN $\partial (T/T_{e})/\partial r_{l}$

V transformed normal velocity profile.

EPLUS ϵ^+ the eddy viscosity coefficient

Miscellaneous Messages

The program has a few internal messages which are written to indicate problems with the solution, or coordinate adjustments. A message is printed by subroutine ADDETA whenever η_{∞} is adjusted up or down. The direction of adjustment is given along with X, the old η_{∞} and the new $\eta_{\infty}.$

A message is printed by subroutine CHANGX indicating the beginning of transition or mass transfer. Included in the messages are the values of X and the particular integer counter involved. A similar message is also printed by CHANGX when mass transfer ends.

Whenever the program fails to obtain a converged solution within NIT3 iterations, a message is printed by subroutine CONTRL to that effect which includes the values of the transverse and streamwise solution counters and NIT. If this should occur three consecutive times, a message will be printed indicating that execution is terminating.

If a particular boundary-layer problem drops <u>all</u> of its circumferential solution planes due to convergence problems, a message will be printed by CONTRL indicating that execution is terminating.

A normal termination of the program is indicated by the message "THE END" printed out after the last station results.

3. Sample Input/Output

Listings of Job Control Language, sample input decks, sample outputs and format sheets for the input data cards and the program listings are found in Appendices VI through X.

Figure 1. BODY COORDINATE SYSTEMS FOR INVISCID AND BOUNDARY-LAYER CALCULATIONS

Figure 2a. BLOCK DIAGRAM FOR ICBL3D AXISYMMETRIC BODIES

Figure 2b. BLOCK DIAGRAM FOR ICBL3D NONAXISYMMETRIC BODIES

Figure 3. FLOW CHART OF PROGRAM ICBL3D

Figure 3 continued: FLOW CHART OF PROGRAM ICBL3D

() = Subroutine Names

REFERENCES

- Dwoyer, D. L., Lewis, C. H. and Gogineni, P. R., "Three-Dimensional Incompressible Boundary Layers on Blunt Bodies Including Effects of Turbulence, Surface Curvature and Heat and Mass Transfer. Part I: Analysis and Results." VPI&SU Aero-063, May 1977.
- Blottner, F. G. and Ellis, M., "Three-Dimensional Incompressible Boundary Layer on Blunt Bodies." Sandia Laboratories Report No. SLA-73-0366, Albuquerque, New Mexico, April 1973.
- 3. Hess, J. L. and Martin, R. P., Jr., "Improved Solution for Potential Flow about Arbitrary Axisymmetric Bodies by the Use of a Higher-Order Surface Source Method. Part I. Theory and Results." NASA Contractor Report No. NASA CR 134694, NASA Lewis Research Center, Cleveland, Ohio, July 1974.
- 4. Hess, J. L. and Smith, A.M.O., "Calculation of Non-Lifting Potential Flow about Arbitrary Three-Dimensional Bodies." March 1962, McDonnell-Douglas Report No. ES 40622.

APPENDIX I

Job Control Language for Program TAPGEN

```
// JOB CARD
/*PRIORITY URGENT
/*JOBPARM LINES=10,CARDS=0
//STEP1 EXEC FORTGCG,TIME=4,REGION=520K,PARM.FORT='NOSOURCE'
//FORT.SYSIN DD *
                            PROGRAM HESS
                                                                    FORTRAN SOURCE DECK
//GD.FT05F001 DD *
                      INPUT DATA DECK FOR PROGRAM HESS
//FT06F001
                             DD SYSOUT=A
DD DUMMY
DD UNIT=SYSDA,DISP=(NEW,DELETE),SPACE=(TRK,(50,1))
                              DD SYSOUT = A
//FT07F001
//FT01F001
//FT02F001
//FT03F001
//FT03F001
//FT08F001
//FT08F001
//FT09F001
//FT11F001
//FT12F001
//FT13F001
//FT15F001
 //FT16F001
//STEP2 EXEC FORTGCG,COND=(0,NE),TIME=1,REGION=300K
//FORT.SYSIN DD *
                      PROGRAM ADAT
                                                                  FORTRAN SOURCE DECK
//GO.FT05F001 DD *
                       INPUT DATA DECK FOR PROGRAM ADAT
//FT06F001 DD DUMMY
//FT16F001 DD UNIT=SYSDA,DISP=(OLD,DELETE),DSN=&&T1
//FT22F001 DD DUMMY
//FT30F001 DD DUMMY
//FT10F001 DD UNIT=SYSDA,DISP=(NEW,PASS),SPACE=(TRK,(50,1)),DSN=&&T2
//STEP3 EXEC FORTGCG,COND=(0,NE),TIME=10,REGION=500K
//FORT.SYSIN DD *
                       PROGRAM BLOT
                                                                  FORTRAN SOURCE DECK
//GO.FT05F001 DD DUMMY
                       INPUT DATA DECK FOR PROGRAM
                                                                                                        BLOT
```

```
//FT06F001 DD DUMMY
//FT08F001 DD DUMMY
//FT18F001 DD DUMMY
//FT18F001 DD UNIT=SYSDA,DISP=(NEW,DELETE),SPACE=(TRK,(50,1))
//FT13F001 DD UNIT=SYSDA,DISP=(NEW,DELETE),SPACE=(TRK,(50,1)),
//FT13F001 DD UNIT=SYSDA,DISP=(NEW,DELETE),SPACE=(TRK,(50,1)),
//FT09F01 DD UNIT=SYSDA,DISP=(OLD,DELETE),DSN=&ET2
//FT25F001 DD UNIT=SYSDA,DISP=(NEW,CATLG,CATLG),SPACE=(TRK,(50,1)),
//FT04F001 DD *

//FT04F001 DD *

PROGRAM DERVAT FORTRAN SOURCE DECK
//FT06F001 DD SYSOUT=A
//FT25F001 DD UNIT=SYSDA,DISP=(OLD,KEEP),DSN=AF01F3.T.T4
//FT29F001 DD SYSOUT=A
//FT29F001 DD SYSOUT=A
//FT29F001 DD SYSOUT=A
//FT29F001 DD SYSOUT=A
//FT3FD5D1 DD SYSOUT=A
//FT3FD5D1 DD SYSOUT=A
//FT3FD5D1 DD SYSOUT=A
//FT08F001 DD SYSOUT=A
```

APPENDIX II

TAPGEN Sample Input

INPUT DATA DECK FOR PROGRAM HESS

1011001 ELLIPSOID (4:1) AT ALPHA= 10 DEG 120 ELEMENTS

01001 121 1.0 1.0 1.0 0.25

2492

-56-

00000000	0.5
00000	1.0
0F ATTACK 100.0 002 002 002 003 003 003 003	•10.0
PROGRAM BLOT 1	.0000000
08.1.1 PROGRAM	.25
DATA DECK FOR ELLIPSGID14:1	.25
CANPUT D 3 202 202 202 203 203 203 203 203	4.00
S TILL STANDOOD STAND	SIZE

APPENDIX III

TAPGEN Sample Output

INVISCID EDGE CONDITIONS FOR ROUNDARY LAYER SOLUTION TAKEN FROM THE INVISCID FLOW FIELD DAIR

NUMBER OF PLANES IN THE INVISCID DATA = 24 ALPHA= 0.0 UNIFORM FLOW STARTING SOLUTION FOR THE INVISCIO FLOW FIFL) WALL DATA AT STATION 1, XI \approx .)

*	>>\cap\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0(X)	5050, 60, 60, 60, 60, 60, 60, 60, 60, 60, 6
N C K		O (HM)	20022020202000000000000000000000000000
13da	00000000000000000000000000000000000000	(1894))	60000000000000000000000000000000000000
v	\$0000000000000000000000000000000000000	02(8)	00000000000000000000000000000000000000
ů.	000000000000000000000000000000000000000	0(8)	
3	0000 0000000000000000000000000000000000	DEUWI	0.00 0.00
	55655656565656566656656		555555555555555555555555555555555555555
HPSI		DIUPSI)	00000000000000000000000000000000000000
¥	りょからここのももしゅられをここのももしゅうちょうころろくこうにしてしてこここ	¥	

	-60-		
000000000000000000000000000000000000000	マンストランストリーストリーストリーストリーストリーストリーストリーストリーストリーストリー	¥	
0.000000000000000000000000000000000000		4	0.478 6.00 6
0.1421090-14 0.1421090-14 0.2317250-14 0.74012420-15 0.75012420-16 0.7550520-16 0.7550750-16	ν 2 4 π υροφερτορές εθουμές το οροφοία 4 πορομοπορός εξουμές το οροφοία	AVSX	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
00-1101144770 01101144770 01101144770 01101144770 01101144770 01101144770 01101144770 0110114770 0110117	A 100-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0	ARADSX	
11111111111111111111111111111111111111	N 1 000000000000000000000000000000000000	ARDSXX	60000000000000000000000000000000000000
0000000 14444444 2000000 2000000 20000000 20000000 2000000	2 000000000000000000000000000000000000	AHYSY	
20000000000000000000000000000000000000		AHWSX	2000-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-
2		AX	60000000000000000000000000000000000000
		43.5	141 141 141 141 141 141 141 141 141 141

56	-0.7415285	100	0.0	0.0	0.1021410-15	-0-10 Common	-0.226430-1-	, , ,	1.1.2001017
MAL	L DATA AT	TAT	ION 2, XI = .	10000					
¥	HPSI		3 1	ď	s	1240	š 5	`	
りられをごし 口の 日 1 日 1 日 1 日 1 日 1 日 1 日 1 日 1 日 1 日		5255537655556555555555555555555555555555	05-50000000000000000000000000000000000			00000000000000000000000000000000000000	6 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	77777777777777777777777777777777777777	
×	DIUPSII		Ofum	0(8)	D2(8)	[[Sdm]]]	(* 1)	_	
6452000000000000000000000000000000000000	00000000000000000000000000000000000000	555555555555555555555555555555555555555	0.00 0.			0cc000cc00cccc00ccc00cc00c0 V41414 4441444144414444144 Femalian in management in man	DC2C3C3C2C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C	2016 - 1971 104 104 104 204 204 204 204 204 204 204 204 204 2	
			FOURIER	COEFFICIENTS					
¥	AXSRFS		ARADS	AHXS	AIKS	AUS	AVS		

APPENDIX IV

Program TAPGEN Data FORMAT Sheets

BM		FORTRAN C	FORTRAN Coding Form		Printed in U.S.A.
MOGRAM HESS			PUNCHING	SKAPHIC	PAGE OF
MOGRAMME		11.00	INSTRUCTIONS	HONG	CARD ELECTRU NUMBER
SATEMENT Z		FORTRAN	FORTRAN STATEMENT		PENNING AND STATES OF THE STAT
CARD 2 - CO	CONTROL FLAG CARD	20 S S S S S S S S S S S S S S S S S S S	10 10 10 10 10 10 10 10 10 10 10 10 10 1		
I PRTRE I DAKT I DAKT I CRØS\$ I CRØS\$	I KNCM I CENBC I PALL I PALL I PARCY I	INVIT INVIT INVIT INVIT INVIT			
(711,3X,2	11, 1X, 1011, 4 X,	12,411)			
N N		BODIES (1 4 NB 29)			
ON N	N UMBER OF NON	I FO	12 (0 × 1	NNU≤5)	
AXA C	AXISYMMETRIC	FLOW FLAG			
I OF F	20 FO	T INPUT FLAG			
IONLY		FL AG			
IEL PS	ELL I P'SE		EE AL	SO CARD 5).	
IPRTRB	PERT	VELOCITIES 0	NLY		
I P Ø TN	SOLV	AL MATRIX			
IP TANV	PRESCRIE	SED TAN GENTIAL VELOCITY (FOR	OCITY	LAST IP TANV	BODIES)
IVØRT	STRIP-RI	RTIC I TY F LAG			
IMMITA	OMIT AX	SYMMETRIC UNIFORM FLOW SOLUTION	N FL OW	SOLUTION	
IOMITC	OMIT CR	W UNIFORM FL	108 WQ	NOILON	
ISURFV	SURFACE	CITY (INSTEA	D 0F	SOURCES) FOR FINAL ISURFV	
IPRSCV	PRESCRI	VALUES OF SURFACE VORTEX STRI	A CE VO	BED VALUES OF SURFACE VORTEX STRENGTHS FOR FINAL	FINAL ISURFV
IALLV	ALL BOD	E SURFACE VO	RTI CI	TY BODIES	
IEXCR	S* EXTRA CROS	M O			
0. 4 8 6 0 1					

*Available if and only if NØNEWF = 1, ISIGF = 2, IGEGMF = 1.

¥
Σ
¥
¥
¥
¥
¥
Z
Σ
Σ
\mathbf{z}
-
_

	Conservation
FORTRAN Coding Form	DISTRICTIONS DISTRICTIONS

CAR D COMMON			
		PL140-11-00	PAGE OF
		PATICAL STATES	- 6380 5 12 CV 1338 0640
		FORTRAN STATEMENT	ON ACIDITATION OF THE STATE OF
		CENERATED BOUNDARY CONDITIONS RING WING OPTION	3.0
		UNIT NUMBER FOR INPUT COORDINATES (default = 05	5)
		MATRIX-AS SEMBLY COEFFICIENT PRINT FL AG	
	- P K O		
100			

1.11	HECC		NATI AUT	COLUMN COGING FORM			
				PUNCHING	GRAPHIC		-
	c		77	INSTRUCTIONS	PUNCH		CARD ELECTRO NUMBER-
INCO			FORTRAN	FORTRAN STATEMENT			IDENTIFICATION SEQUENCE
3 - СНО	CHORD MACH NI	NUMBER CARD	* 08	1 T T T T T T T T T T T T T T T T T T T	\$ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	27 48 13 60 E3 47 48 48 48 48 48 48 48 48 48 48 48 48 48	56 58 66 67 68 69 70 7 7 5
CHØRD	XMACH						
2FIG.6 CHORD		NCE CHORD	LENG TH	DEFAUL .	[= [0)		
XMACH		MACH NUMBER FOR	GOETHERT	CORRECTION	0)	O IMPLIES	IMPLI E S INCOMPRESSIBLE)
*THIS CARD	USUALLY LE	LEF T BLANK					
	A STATE OF THE PARTY OF THE PAR			-			

			FORTRAN C	FORTRAN Coding Form					GX28-7327-6 U/M 050* Printed in U.S.A.	-7327-6 U/M 050* Printed in U.S.A.
HESS				PUNCHING	SEAPHIC			PAGE	90	
		0.475		Instructions	MJMCH.			C48D EL	SCRO NUMBER	
			FORTRAN	FORTRAN STATEMENT					SENTERATION	NOBTO NOW
BODY C	ONTROL	BODY CONTROL CARD 1 OF 2	9		0 0 0 0	23 N 32 G 15 E	1	50		2
Z	XMULT	YMULT	THETA	ADDX	×	АРВУ				
		11 , 1 1 5, 5 F 10 . 4)	5 F 10 . 4)							
IGEØMF	0 = CURVED	VED EL EMEN T	EL EMEN TS: 1 = FLA T E LEME NTS	ELEME	NTS					
ISIGF	0 = PAR	0 = PARABOLI C 0; 1= LINEAR 0; 2= CONSTANT 0 (ON EACH EL EMENT)	- LI NEAR	0; 2=	CONSTAI	NO O IN	N EACH	EL EME	(LNE	
ICURVN	LNI = 0	0 - INTERNAL LY CALCUL ATE D EL EMENT CURVATUR ES	CUL ATE D E	LEMENT	CURVA	TURES				
NONEWF	0 = USE	0 = USE NEWEST FORM	FORMULAE; 1 = USE OLD FORMULAE (IMPLIES FLAT EL EMENTS	USE OF	D FORM	ULAE (IN	APLI ES	FLAT	EL EME	NTS
IF ORMI	INPUT	FORMAT FLA	5				¥	ND CON	AND CONSTANT 0)	6
			1						-	

IEORMI ICURVN ICURVN ICURVN ICE

CARD

HESS

IBM 84CS34W

THIS BODY

-Z-AXI

COORDINATE ROTATION VALUE (DEGREES, MEASURED ABOUT -Z-AXIX-INCREMENT (TO BE APPLIED TO ALL INPUT COORDINATES FOR Y-INCREMENT (TO BE APPLIED TO ALL INPUT COORDINATES FOR

NUMBER OF DEFINING ENDPOINTS FOR THIS BODY X-MULT IPLIER VALUE (DEFAULT = 1.0) Y-MULT IPLIER VALUE (DEFAULT = 1.0)

XMULT

THETA YMULT

ADDX ADDY GX28-7327-6 U/M 050** Printed in U.S.A. BODY POINTS) PAGE CARD E ZERO FOR OFF CASES, ONLY) IF IELPSE 70 "BODY" NUMBER (SEQUENTIAL FOR BODIES,
SUBCASE FLAG
NON-LIFTING FLAG (FOR COMBINATION CASE
SEMI-MAJOR AXIS FOR ELLIP SE CASES | 1F GRAPHIC m PUNCHING INSTRUCTIONS FORTRAN Cading Form FORTRAN STATEMENT X (3110, 2F10.3) 0F N N CARD 2 BODY CONTROL ISUBKS I B D N I S U B K S N L F HESS BDN W W 2 CARD IBM

-68-

Charles Callety

PPOGRAM	AOAT								- Street	0.40	SPAPPIC					PACE	10	
PROGRAMMER						8	0471		1 ST	ASTR, CTIONS	NO.C=					03 C44D E0	AND ELECTRO NUMBER*	
S STATEMENT	INO							FORT	FORTRAN STATEMENT	MENT							10ENE	DENTIFICATION
DATA	SET		9							2 2		50 SE		2	2 - 2	7		
IPRT	Z	ALPD																
	(3 13, F	10.6)																
I P R T		WRIT ES	THE	00	P UT	0F	PROG FD I	RAM T	TPUT OF PROGRAM HESS ON UNIT 6 MEN IS USED IN THE PROGRAM HESS	OSRA	N N		0	DOES	NOT	WRITE	Ш	
KPL		UMBER	OF.	MER	DON	IAL	PLAN	ESF	REGUI	RED			1					
ALPD		ANGLE OF A	4	TTA(N	GREE	<u>ν</u>										
-				-	1	-	The second second		The state of the s						The second second		Contract Course Contract	Contract of the second

0 2E10.0) GX28-7327-6 U/M 050* Printed in U.S.A. 7 E 10. 0 0 5X, E10.0 a - length of axis of triaxial ellipsoid R_b - radius of curvature of nose; plane y'=0 R_c - radius of curvature of nose; plane z'=0 Convergence criterion; body coordinates α - angle of attack (deg) 0 - indicates finite-difference scheme used 1 Implicit scheme, $^{1}_{2}$ Crank-Nicolson scheme 7E10 5X, 7E10 5X, 515, (5X 9 A 8 5 X, 5 X CRI CAPTH AL A RB RC EPS ALP CAPTH CRI UNF BODY FORTRAN Coding Form ORTRAN STATEMENT No. of pts. across boundary layer No. of pts. around body (in phi-direction) No. of iterations for initial profile Every how many steps printing will occur along the body Every how many steps printing will occur around the body Distance along body at which program will terminate Freestream velocity – V_{∞} ۵ ш u 프 MAX THREE-DIMENSIONAL, INCOMPRESSIBLE BOUNDARY LAYER ON BLUNT BODIES,
PART II: COMPUTER CODE - USER'S GUIDE, Molly A. Ellis, F. G. Blottner
RE: SLA-73-0704 ALONG 2 LAYEI PSI RC USED BOUNDARY KPRT DENTIFICATION BODY IPRT BE 0 RB H HL œ KMAXLITE **3**Z AROUND ACROSS STEPSI PROBLEM JMAX A Zu s Dn's 1 JMAX KMAX LITER IPRT KPRT KPRT KPRT UINF 30 TITLE L I MT S LIMTS 3 DW(K) DN(1) DPSI S I ZE S I ZE PART MO NO 2 4 5 9

"Number of forms per pad may vary a gr

APPENDIX V

TAPGEN Program Listings

1. Program BLOT Listing

```
BLOOD210

BLOOD220

BLOOD220

BLOOD220

BLOOD220

BLOOD220

BLOOD320

BLOOD320
                                             ### 10000120
### 10000120
### 10000120
### 10000120
### 10000120
### 10000120
### 10000120
### 10000120
### 10000120
### 10000120
                                                                    BL3D IS THE MAIN PROGRAM AND CALLS SEVERAL OTHER SUBROUTINES
                                                                                                                                                                                                                                                                                                                                                                          ** ARGUMENTS **

** ARGUMENTS **

** ARGUMENTS **

CS = COS OF ANGLE UPON WHICH R OR X DEPENDS.

SIN OF ANGLE UPON WHICH R OR X DEPENDS.

O = THE UNKNOWN - R OR X DEPENDS.

IMET = 2, IMPLIES SOLVING FOR X.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                PRXOR
                                            PROGRAM BL3D (INPUT, DUTPUT, TAPE 60=INPUT, TAPE 61= DUTPUT)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                PRX
                                                                                                                                                                                                                                                                                                                                                                                                  IN PHI-DIRECTION.

GLE UPON WHICH R OR X
MN - R OR X
MN - R OR X
IES SOLVING FOR X.

IES SOLVING FOR X.

VARIABLE - X OR R.
                                                                                                                                                                                                                                                                                                                                                 SUBROUTINE CALCUV (K,CS,SN,U,IMET,V)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              OT A
                                                                                           IMPLICIT REAL*8 (A-H,0-Z)
COMMON /COI/ JMAXZ
PSIMAX
WINF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               COMMON/CO30/ IA JK2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              DIMENSION V(100)

IF (IMET .NE. 1) GO TO 2(
CONTINUE

XX = Y(X)

CALL CXPOVA (XX)

U = KELL P (CS,SN,K)

GO TO 60

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CELLSP(CS,SN,K)
04/20/17
DATE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             10
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      30
                                                                                                                                                                                                                    10
                                                                                                                                                                                                                                                                                                                                                 -73-
```

```
L000470
L000480
L000590
L000510
L000530
L000530
                                                                                                                    2222222
                                                                                                                                                     VOLD - EITHER R OR X FROM THE PREVIOUS STEP.

VOLD - EITHER R OR X FROM THE PREVIOUS STEP.

VOLD - EITHER R OR X FROM THE PREVIOUS STEP.

VOLD - EITHER R OR X FROM THE PREVIOUS STEP.

VOLD - EITHER R OR X FROM THE PREVIOUS STEP.

VOLD - EITHER R OR X FROM THE PREVIOUS STEP.

IMPLIES SOLVING EXPLICITLY FOR X, IMPLICITLY

= 1, IMPLIES SOLVING EXPLICITLY FOR R, IMPLICITLY

N - SUBSCRIPT IN THE PHI-DIRECTION.
                                                                                                                               SUBROUTINE COORD CALCULATES THE R AND X CYLINDRICAL COORDINATES OF A POINT ON THE SURFACE OF THE BODY. ** ARGUMENTS ** IF IME = 2.
                                                                                                                                                                                                                                                                                                                                                  PRXOR
                                                                                                                                                                                                                                                                   COMMON/CO30/ "14, JK2", "OTA", PRX", P
COMMON /EXT/ 18ET
COMMON /EXT/ 18ET
DIMENSION ULLOO; VOLD(100), VOLD(100)
DIMENSION ULLOO; VOLD(100)
IF (K-NE.O) 60 70 60
                                                                                                                    SUBROUTINE COORDIVIU, UV, VOLD, UOLD, IMET, K, DS)
                                                                                                                                                                                                                                                             COMMON /COL/ A A A-H,0-Z)
                          CONTINUE
U = ELLPD (CS,SN,K)
CONTINUE
CALL CXPOVA(U)
RETURN
END
                                                                                                                                                                                                                                                                                                                                          88
                                                                                                                                                                                                                                                                                                                    COMMON/CO10/
COMMON/CO10/
COMMON/CO23/
                                                                                                                                                                                                                                                                                                 COMMON /CO4/
                                                                                                                                                                                                VOLD
34/23/77
DATE
                                                                                                                            50
                                                            09
```

-75-

```
= (V(K+1)*0TA + YO*COSPH(K+1)) / (RB*(1.000-XPOVA))
                                                                                                                                                                                                                                                                                                                                                                                                91 UV(K) = [V(K)*OTA+YO*COSPH(K)) / (RB*(1.300-XPOVA))
CONTINUE
GO TO 120
CONTINUE
TERM! = [UI - U2) / DPHI(K)
GO TO 120
CONTINUE
CONTINUE
CONTINUE
CALL CALCUV (K+1,CSPH3,SINPH3,US,IMET,V)
U3 = US
CALL CALCUV (K+1,CSPH4,SINPH4,US,IMET,V)
U4 = US
CALL CALCUV (K+1,CSPH(K+1),SINPH(K+1),US,IMET,V)
U4 = US
CALL CALCUV (K+1,COSPH(K+1),SINPH(K+1),US,IMET,V)
U6 = US
CALL CALCUV (K+1,COSPH(K+1),SINPH(K+1),US,IMET,V)
U6 = US
                                                                                                    ALCUV (K, CSPHZ, SINPHZ, US, IMET, V)
                              CALL CALCUVIK, CSPHI, SINPHI, US, IMET, V)
                                                                                                                                                                                                                                                                                      EEXT.EQ.0) GO TO 141
DPRX(COSPH(K+1),U(K+1),PRX)
                                                                                                                                                                                                                                                                                                                                                   EXT.EQ.0) GO TO 151
DPRX(COSPH(K+1),V(K+1),PRX)
                                             CALL CALCUV (K, CSPH2, SINPH2, US
02 10 (83,90), IMET
CONTINUE
1 (18 EXT. Eq.0) GO TO 81
1 (18 EXT. Eq.0) GO TO 81
1 (19 EXT. Eq.0) GO TO 81
1 (10 EXT. Eq.0) GO TO 81
1 (10 EXT. Eq.0) GO TO 81
1 (10 EXT. Eq.0) GO TO 100
1 GO TO 100
1 GO TO 100
                                                                                                                           ONTINUE
(18EXT.EQ.0) GO TO 91,
ALL DPRX(COSPH(K),V(K),PRX)
V(K)=PRX
                                                                                                                                                                                                                                                            GO TO 1140,150), IMET CONTINUE
04/20/77
                                                                                                                                                             10001
                                                                                                                                                                                                      -76-
                                                                                                                                                                                                                                                                                                                                                                                   160
                                                                                                                                                                                                                                                                                                                             141
DATE
                                                                                                                                                                                                                                                                                                                                            150
                                                                    80
                                                                                                                           06
```

```
, JMAXI
UINF
                                                                 PRXOR
                                                            KMAXI,JK
SI
YO
                                                    CXPOVA CALCULATES THE RELATION XPRIME/A.
**ARGUMENTS **
X - X-COORDINATE.
                                                           KMAX
SO
XO
OTA
                                                         SUBROUTINE CXPOVA (X)
04/20/17
DATE
                                                   0000
                                200
          170
              183
                        190
                                                                      10
                                                                          33
                                         -77-
```

BL002410

8E C C C C C C C C C C C C C C C C C C C	BL002680 -BL002690 -BL002710 BL002710 BL002740 BL002740 -BL002740 -BL002740 -BL002740 -BL002740 -BL002740
DOUBLE PRECISION FUNCTION ELLPD (COSP,SINP,K) PARABOLOID: ** ARGUMENTS ** ** ARGUMENTS ** ** COSP - COS OF THE ANGLE. SINP - SIN OF THE ANGLE. IMPLICIT REAL*8 (A-H,O-Z) COMMON /COL/ JMAXZ COMMON /COL/ JMAXZ COMMON /COL/ JMAXZ COMMON /COZ / WINF COMMON /COZ / REAL*8 (A-H,OO) COMMON /COZ / REAL*8 (A-H,OO) COMMON /COZ / WINF COMMON /COZ / REAL*8 (A-H,OO) COZ / REAL*8 (A-H,	DOUBLE PRECISION FUNCTION ELLSPICOSP,SINP,K) ** ARGUMENTS ** WHEN THE BODY GEOMERTY IS AN ELLIPSOID BLOOZFOO GEOMERTY IS AN ELLIPSOID BLOOZFOO GEOMERTY IS AN ELLIPSOID BLOOZFOO GEOMETRY IS AN ELLIPSOID GEOMETRY IN THE SALOR GEOMETRY IS AN ELLIPSOID GEOMETRY IN THE SALOR GEOMETRY IS AN ELLIPSOID GEOMETRY IN THE SALOR GEOMETR
000000 000000 0000000	00000

DATE

PRXOR x(100)

x(100) x(100) psrd , JMAXI , UINF CPTH2 INPUT READS INPUT DATA AND INITIALIZES A FEW PARAMETERS. ۵ | MPLICI'CD1 | AXX | SMAX | SAX | SA COMMON/CO25/ CAPTH , CPTHM COMMON/CO41/ CRI , KHALF COMMON/CO41/ CRI , KHALF OIMENSION IIIE(9) (TITLE(1),1=1,9) SUBROUTINE INPUT

000

```
(x(100)
(x(100)
(G0(50,100), B
                                                                                                                                                                                                                                                         PSIMAX, UINF
                                                                                                                                                   PSIMAX=",F10.4,10X,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         PARVAL - PARAMETER EVALUATION - - KEY PARAMETERS NEEDED FOR THE SOLUTION OF F.G. ADD V ARE CALCULATED IN THIS SUBROUTINE. ** ARGUMENTS ** AS SUBSCRIPT IN THE PHI-DIRECTION. IP - SUBSCRIPT IN THE PHI-DIRECTION.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      , JMAXI
PI
UINF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         , BETA1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              COSPH(100), DPH(100), PSIO
SINTHB
HM(100), HW0(100), BETAI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      CONTINUE
MRITE(1001,9900) (TILLE(I),1=1,9)
KRAXI = KMAX - JAX, KMAX, LITER, IPRT, KPRT, IBEXT,
KMAXI = JMAX - JMAX - JAX - JAX - JMAX - JMA -
                                                                              IF (EDF,60) 10,20
CONTINUE
MITTE[6,11] PSI,PSIMAX
FORMAT(1//10x, PSI = ",F10,4,5x, GREATER THAN
SO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      D FORMAT (141,20x,948)
O FORMAT (141,20x,948)
O FORMAT (5x,615,3E10.0)
O FORMAT (5x,7E10.0)
END
SUBROUTINE PARVAL (K,1P)
04/20/17
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  RETURN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           9000
9900
9010
9020
DATE
                                                                              201
```

BL00379 BRC003810 BRC003810 BRC003830 BRC003830 BRC0038850 BRC0038850 BRC0038850 BRC0038850	1003975 10039975 10039975 10039975 10039975 10039975		CO044004	C	100424 100424 100424 100424 100424
ALPH3(50) ALPH3(50) AZZXGLD(100)	BETAS P UPHP	CPTH2 PRXOR			CONCERNING CONCERNING RMINE THE
¥ . ×				* P R X S	T H H
				~	A DE
BETA4 ALPH2(50) ALPH6(50) SNTHB2 WE1 YPRXS THB(100)	, ALB3 , CO	. CPTHP	4 R D	*SINPH(K+1))*P	TING UE TO A A TEST IS MA IN ORDER TO E HAN OR = XTST
				*	SI
BETA3 ALPH1(50) ALPH5(50) P12 HH SINAL SINAL SINAL SOLD(100)	PUOM ALBAV ALB2 RC BO	. CPTHM . 01A	CV FKWPSI * FKWPSI	100 *COSPH(K+1)+UZP	INVOLVES SIGN R (-) SIGN DERIVATIVE X GREATER
242 PHO (50) 11 ER J 11 ER J 12 SP H2	CAPW(100) PWGU(100) ALBAV(100) BETA6 RB RB RB RG RG	CAPTH KIKA MEIAV I A JKZ	LOAP LOAP HPSA HPSTG URBSI	(K+1) SPH(K+1) NPH(K+1) Z, XPOVAS P + (UYP	ATION OF UE THER A (+) O TWO PARTIAL IGN FOR UE. IMED THAT FOR
COMMON /CO7/ COMMON /CO7/ COMMON/CO11/ COMMON/CO11/ COMMON/CO12/ COMMON/CO12/ COMMON/CO12/	COMMON/CO18/ COMMON/CO20/ COMMON/CO20/ COMMON/CO21/ COMMON/CO21/ COMMON/CO23/	COMMON/CO25/ COMMON/CO26/ COMMON/CO26/ COMMON/CO30/	00000000000000000000000000000000000000	FO (TH) EQ. (T	THE CALCULA CAN ASSUME ETT THE SIGNS OF T APPROPRIATE SI APPROPRIATE SI T IS ASSUM (+) SIGN SHOUL

```
09
  20
       20
10
   30
      40
ں
```

-82-

04/20/17

DATE

ALBERTALL BARDAR(K+1)

ALBERTAL BARDAR(K+1)

ALBERTAL BARDAR(K+1)

ALBERTAL BARDAR(K+1)

ALBERTAL BARDAR(K+1)

CALL AVERGINAL BOOK

CONTINUE

ALCONTINUE

ALCONTINUE

ALCONTINUE

CONTINUE

ALPHAKKI) = (SI-SO)*(CSP*CSP-SNP*SNP)/COMDE

CONTINUE

CONTINUE) = H INUE SINTHB / (CSP*CSP + SNTHB2*SNP*SNP) 04/20/77 DATE

```
SUBROUTINE PRECAL DOES ONE-TIME CALCULATIONS AND INITIALIZES VARIABLES. ALSO THE INITIAL INPUT IS PRINTED OUT IN THIS SUBROUTINE.
                                                                                                                                                          PI2
SINAL
SGLD(100) , THB(100) , XOLD(100)
                                                                                                                                                     TOOL
                                                                                                                                                     IN
LITER, JKI
COSAL
ROLD(100)
                                                                                                COMMON /COI/ A
                                                                              SUBROUTINE PRECAL
                                                                                                                                                     COMMON (COB)
COMMON (COD)
COMMON (COD)
COMMON (COD)
COMMON (COD)
                                                                                                                COMMON /C02/
                                                                                                                      COMMON /CO3/
                                                                                                                               COMMON /CO4/
                                                                                                                                        COMMON /COS/
04/20/17
              180
                                                                                  00000
                       190
                                       200
                                                      210
```

DATE 04/20/77

```
DD 30 K=2.KMAXI

PHI(K) = PI2 * DW(K)

PHI(K
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   A0 = 0.0

B0 = 2.4(1. + q)

C0 = 2.4(1. + q)

C0 = 13.0

C0 = 13.0

C0 = 13.0

C0 = 13.0

A0 = 0.0
04/20/17
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    120 00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           100
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          *****
DATE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 110
                                                                                                                                                                                                                                                                                                                                20 05
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            80
                                                                                                                                                                                                                                                                                                                                                                                                                                  09
                                                                                                                      30
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        -86-
```

```
### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 100 | ### 10
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             10166
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          190
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            -87-
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                180
                                                                                      130
                                                                                                                                                                                                                                                                                                                                              140
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        150
```

04/20/17

DATE

```
88100074420

88100074420

88100074430

88100074430

88100074430

8810007570

8810007570

8810007570

8810007570

8810007570

8810007570

8810007570

8810007570

8810007570

8810007570

8810007570

8810007570

8810007570
COMMON/CO30/ XPOVA

COMMON/CO30/ CO30/ C
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            . JMAXI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               KMAXI,JK
                                                                                                                                                                                                                                                                                                                                                                                                                                           RELATIONSHIP FOR DEFINING THE COORDINATE R.
                                                                                                                                                                                                                                                                                                                                                                                           DOUBLE PRECISION FUNCTION RELLIP (COSP,SINP,K)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        DSIMAX2

PSIMAX

NO WIND

MAPPA(100), DN(50)

ALPHA(100), S(100)

AD WEETX(100), RC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        COMMON /COI/ A (A-H, 0-Z)
                                                                                                                                                                                                                                                                                                                                                                                                                     000
```

8L007700

SUBROUTINE UXYZ (Y, Z, XPOVA)

U

DATE 04/20/17

U

SUBROUTINE GEOM

GEOM SETS UP THE PARAMETERS AND CALLS FOR SOLVING THE VARI EQUATIONS. IN DOING THIS A STEP IS TAKEN ALONG THE BODY (THE PSI-DIRECTION) AND SOLUTIONS FOR ALL PHI AT THIS LOCATIO ARE FOUND.

IMPLICIT REAL*8 (1A-H,0-Z)

REAL*8 KAPPAS, KAPPAM
COMMON (CO1, 4, EPS. JMAX.) JMAXZ, KMAX, KMAXI, JK, PI, PSIMAX, SO, SI,
COMMON (CO2/ALPHAIDO), DN(50), DNZ(50), R(100), RWIX(100), S(100), M(
LOO), K(100)
COMMON (CO2/ALPHAIDO), FO(50, 100), G(50, 100), GO(50, 100), UE(100), UE
COMMON (CO2/ALPHAIDO), WEO(100)
L(100), V(50, 100), WE(1100), PPHI(100), DPSI, DW(100), PHI(100), PSI, PS
L(100), V(50, 100), ALP, COSPHI(100), DPHI(1100), DPSI, DW(100), PHI(100), PSI, PS
L(100), V(50, 100), SINTHB
L(100), SINTHB
L(100),

OWNON (COTT ALPHO(50), ALPHI(50), ALPH2(50), ALPH3(50), ALPH4(50), ALPH6(50), ALPH6(50),

80008240 810008240 8100082460 8100082460 810008240 810008240 810008240 810008340 810008340 810008340 810008340 810008340

000000

-90-

COMMON /CO34/ IA.JK2.0T4.PRX.PRXOR.XPOVA
COMMON /CO34/ ICAP.FTST.NTT.VTST.VTST.
COMMON /CO34/ ICAP.FTST.NTT.VTST.VTST.VTST.
COMMON /CO34/ ECAP.FTST.NTST.NTT.VTST.VTST.
COMMON /CO34/ DRDST.XTST
COAT /COAC /COA

DATE

04/20/77

-91-

DATE 04/20/77

[ALL PARVAL (0,1P) 80

[ALL PARVAL (1,1P) 80

[ALL PA

DATE 04/20/77

140 CONTINUE
110 GO TO 160

150 JEL, CHAX 1 = 0.500* (G(J,KMAX)+FG(J,KS))

150 CONTINUE
150 CONTINUE
150 CONTINUE
150 CONTINUE
150 CONTINUE
170 CONTINUE
180 LF (NAX)=0.500* (G(J,KMAX)+FG(J,KMAX))

170 CONTINUE
180 LF (NAX)=0.500* (G(J,KMAX)+FG(J,KMAX))

170 CONTINUE
180 LF (NAX)=0.500* (G(J,KMAX)+FG(J,KMAX))

170 CONTINUE
180 LF (NAX)=0.500* (G(J,KMAX))

190 CALL PARVAL (KMAX)
190 CANTINUE
180 LF (NAX)
180 CONTINUE

CALCULATE THE COORDINATES AT A STEP AHEAD OF LOCATION WHERE

PREMERS PROVA

CONTINUE

CONTINUE

PREMERS PROVA

04/20/17

DATE

F (INPRI.NE IPRI) AND (PSIDIF-LE-0.001D0)) GO TO 420 0 330 J=1,JMAX (J,K)=0.500*(F(J,K)+F(J,K-1)) (J,K)=0.500*(G(J,K)+G(J,K-1)) DNIINU F (NII NE.1) GO TO 350 ALL PARVAL (KM1,IP) ALL CALEGALODO) GO TO 360 ALL SYMM (K) F (K, TC, KMAX) GO TO 430 KOLO(K+1)=X(K+1) SRDS1=(R(K+1)-ROLO(K+1))/DPS1 ICON=1 IF (ICON-NE.1) GO TO 380 CONTINUE CALL PSIMOM (IP.KM1) ICON=0 GO TO 390 = V(JIST,K) = V(JIST,K) IT.EQ.11 GO TO 380 CONV -95-350 390 330 360 370 400 410 450

04/20/17

DATE

```
GO BACK TO S AND TAKE ANOTHER STEP IN THE PSI-DIRECTION.
                  CONTINUE
IF (NPRT-EQ.IPRT) NPRT=0
PSIO=PSI
         SOLD(K+1)=R(K+1)
SOLD(K+1)=S(K+1)
                                 GO TO 10
CONTINUE
RETURN
04/20/17
DATE
                                    044
                                         450
```

```
COMMON (CO16/ ANGAL 1A3 B3.C3.DFDNI.DCDNI.GAMMA(50).TSS BLOO 267
COMMON (CO22/ ANGAL 1A3 PR. UPHP.USP.XP BLOO 279
COMMON (CO22/ ANGAL 157.NIT COMMON (CO32/ ANGAL 157.NIT CO32/ ANGAL 157.NIT (A3.1) ANGAL 157.
```

DATE

04/20/17

IF (K. EQ.1) WRITE (8:70)

UND.UZPND

UND.UZ 8888888 BLI IMPLICIT REAL*8(A-H,O-Z) COMHON /COI/ A,EPS,JMAX,JMAXI,JMAXZ,KMAX,KMAXI,JK,PI,PSIMAX,SO,SI,BLI LUINF,WINF,XO,YO DIMENSION ANYVA(130,5,19), XP(130), P(19), R(19), ADR(130), DROX(1BLC 04/20/17 DATE 50 0000 5000 0000 120 v S

1004597

-98-

```
| The control of the 
04/20/77
   DATE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 ♀
-99-
                                                                                                                                                                                                                                                                                                                                                    10
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    9
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           10
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   30
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         20
```

	00000000000000000000000000000000000000	とゆらかどうこののおんからかをでこのもとりらってころろろろろうとしこしここことにこことにここににここににここににここににいる。	-
	88 B B B B B B B B B B B B B B B B B B		8100
DATE 04/20/77	MRITE (6,90) JANYVA(I,1,1),NS WRITE (6,100) JANYVA(I,2,3),XP(I),DRDX(I),I=1,NS) REWIND 12 REWIND 13,62,52,52 130 FORMAT (7,12,45 13,65) 130 FORMAT (316,52,5213,6) 130 FORMAT (316,52,5215,6) 130 FORMAT (316,52,5215,6)	SUBROUTINE DERIVS (X,Y,NP,JP,IP,DVDX) IMPLICIT REAL *88(A,H,O-Z) DIMENSION X(130), Y(130), DYDX(130) DO 10 J=1,NP K= J IP *E P P P P P P P P P P P P P P P P P P	SUBROUTINE FD5 (X,X1,X2,X3,X4,X5,F1,F2,F3,F4,F5,FX)
0	® 00	2 0 0 7	

DATE

04/20/77

```
XX, Z(11) ARE THE INPUT VALUES; II IDENTIFIES THE ARRAY FROM Z ARRAYS (NV) WRITTEN ON THE DATA TAPE
    EACH CALL TO THE SUBROUTINE SLOW RETURNS A VALUE OF THE ARRAYS 2(JI) CORRESPONDING TO XX, Z(II). THE VALUES ARE OBTAINED BY DOUBLE INTERPOLATION FROM THE DATA READ FROM A TAPE
                                                             UNIT NO. (DATA TAPE) FROM WHICH DATA HAS TO BE READ
                                                                         FOR EACH XX , DATA ON UNIT IT, IS AS SHOWN BELOW
                                                                                                                                                                                                                       COMMON /COMIJK/ IJKEDG,IJK
COMMON /COMSLU/ X(5),Y(5,5,120),Y2(5,120),XX1,JJ
DIMENSION 2(5)
                                                                                                                                                                    DIAGNOSTIC PRINTOUT
                              DESCRIPTION OF ARGUMENTS
                                                                                                                                                                                                                                                     IF (NOR-LE-3) GO TO 10

MM II = 2

NC | = 2

NC | = 4

GO TO 20

MM II = 1

NC | = 1

NC | = 1
                                                                                                                                                                                                                                                                                                                       IF (NOR.EQ.3) NC1=2
NOR1=NOR+1
                                                                                                                                                                    SECOND :
                                                                                                                             2
                                                                                                                                          NDUMMY=0
                                                                                                                      NPRT=1
                                                                          NAXXII
NAXXII
NOR
```

-102-

DATE

04/20/77

```
| NORZENDREZ | NORZEZ-NOR | NORZEZ-NOR | NORZEN | NORZENDREZ | NORZENDREZ | NORZENDREZ | NORZENDREZ | NORZEZ-NOR | NORZENDREZ | NORZEZ-NOR | NORZENDREZ | NORZEZ-NOR | NORZEZ-
   04/20/77
DATE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       100
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         1300
                                                                                                                                                                                                                                                                                                                                                                                                                                                         90
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                90
                                                                                                                                                                                                                                                                                                                        30
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        -103-
```

	88810000000000000000000000000000000000	888888	00000	00000	8600	00000	000	860000000000000000000000000000000000000		000	
DATE 04/20/77	IF (MM.GT.(JJ-MMIL)) MM=JJ-MMIL MMI=MM-1 MPI=MM+1 MPI	D 00 250 Jalino 10 11.60.11 60 10 230 IF (NOR.60.3) 60 10 190 IF (NOR.60.4) 60 10 200 IF (NOR.60.1) WRITE (11.270) JI.(YZ(JI.MR), MR=MMI, MP1) CALL INFER3 (Z[[1], YZ(II.MM1), YZ(II.MM), YZ(II.MP1), YZ(JI.MH1), YZ(II.MM1), YZ(JI.MP1), YZ(JI.M	J F (NPRT-EQ.1) WRITE (11,270) J), (YZ(J), MR), MR=MMZ, MPI) CALL INTER4 (2(11), YZ(J), MMZ), YZ(II, MMI), YZ(II, MM), YZ(II, MPI), YZ(<pre>LF (NPTT-EQ.1) WRITE (11,270) J1,(Y2(J1,MR),MR=MM2,MP2) CALL INTERS (2(I1),Y2(I1,MM2),Y2(I1,MM1,Y2(I1,MM),Y2(I1,MM),Y2(I1,MM2),Y2(I1,MP2),Z2(J1,MP2),Z2(J1,MP2),Z2(J1,MP2),Z2(J1,MPZ),</pre>	2) F (NPRT.EQ.1) WRITE (11,280) 2(11),2(J1),J1	60 T0 230 CONTINUE 2(J1 = Y2(J1, MM) - (Y2(J1, MM) - Y2(J1, MM1))/(Y2(I1, MM) - Y2(I1, MM1))*(Y2 111, MM - Z(II)		0x,El5=13.61) 0x,El5.6,15x,El5.6) 0x,El5.6,5x,5El5.6) 0x,El5.6,5x,El5.6,2x,l3)	19 29 69 69 19 84 84 64 14 14 14 14 14 14 14 14 14 14 14 14 14	MPLICIT REAL+8(A-H,0-Z)	SUBROUTINE INTERS IS CALLED BY SUBROUTINES BLUNTI, BLUNTZ, EDGE, INIT, MACH, SLOW, MALL, ZRO, AND INTRPS.
DA		2	61	200	210	220	23	700000		U	ىن

とこののはしからからしてこれののとうちょうしてころののことにしているとうない。

とことととととこのも多とのちゃくちょうのもよりもあるかをこれるものというない。

THESE SUBROUTINES ARE DUMMIED TO GET THE INVISCID PRESSURE DISTRIBUTION FROM BLOTTNERS PROGRAM BLOTTNERS PROGRAM BLOTTNERS PROGRAM EVERON EVERON ENDOWNINE CALCV (IP,K)

SUBROUTINE AVERG (K, IP)

RETURN
SUBROUTINE CALCV (IP,K)
RETURN
SUBROUTINE CONV
SUBROUTINE CONV
END
SUBROUTINE OMEMOM (IP,K)
RETURN
END
SUBROUTINE PSIMOM (IP,K)
RETURN
END
SUBROUTINE SYMM (K)
RETURN
END
SUBROUTINE TRIDAG (M, MO,K, IP, WN)
RETURN
END

とうしょうしきししきしとうしゅうちしょうし

-200450-000

SUBROUTINE DPRX (COSP, RR, PRX)
IMPLICIT REAL#8(A-H,O-Z)
DIMENSION 2SLO(3)
PHI=DACGS (COSP)
XX=PHI
SLO(1)=RR
SLO(1)=RR
CALL SLOAL (XX, ZSLO, 1, 13, 3, 0, 0, 3, 0)
PRX=ZSLO(3)
RETURN

DATE 04/20/77

2. Program DERVAT Listing

```
C PROGRAM MAIN

CALLEIT RALEHEN-1-2)

DITERRATE RALEHEN MAIN

CONTINEE RRSET (227:259.11): 3-5-299

CONTINEE RRSET (227:259.11): 3-5-299

IN SUBGOUTINES DERIVATIVES OF THE VELGEITY COMPONENTS. PODY

RADIOS AND SCALE FACTORS THE MAIN DATA ALONG WITH THE

C RADIOS AND SCALE FACTORS OF THE RAW DATA IS READ FROM UNIT 25. THE

RADIOR SEQUENCE OF STATIVES OF THE WAS DATA ALONG WITH THE

IN SUBGOUTINES DERIVATIVES OF THE ORIGINAL DATA ALONG WITH THE

IN SUBGOUTINES DERIVATIVES OF WAITEN ON UNIT 26 DATA ALONG WITH THE

I SECONTINES DERIVATIVES OF TO 20

EN SUBGOUTINES OF XS(I): (ANVVA(I:K.J):K=1.7)

READ (25:EMD=50) XS(I): (ANVVA(I:K.J):K=1.7)

EN SUBGOUTINES OF XS(I): (ANVVA(I:K.J):K=1.7)

SO MATTE (6:180) (ANVVA(I:K.J):MAINS)

EN SUBGOUTINES OF XS(I): (ANVVA(I:K.J):K=1.7)

EN SUBGOUTINES OF XS(I): (ANVVA(I:K.J):K=1.7)

EN SUBGOUTINES OF XS(I): (ANVVA(I:K.J):K=1.7)

ANVVA(I:K.J):DADUM(I)

BO MANVA(I:K.J):DADUM(I)
```

-109-

らかそろしのもんの らかそくしのもんの らかをとしのもんり らんそんこのもんり りょかかかか ちをとをををとるところろろろろろろことしてしてしてして

4000

35/13/77

DATE

```
DATE 55/13/77

10.0 CONTINUE

11.0 DALL SAYS (XS.4DUM.NS.0.0.0.DADUM)

12.0 CALL DALL SAYS (XS.4DUM.NS.0.0.0.DADUM)

12.0 CALL DALL SAYS (XS.4DUM.NS.0.0.0.DADUM)

13.0 MRTTE [20.1 ADPHA.KPL

14.0 CALL TOLL INSTITUTE (20.1 ADPHA.KPL

14.0 CALL TOLL INSTITUTE (20.1 ADPHA.KPL

14.0 CALL TOLL INSTITUTE (20.1 ADPHA.KPL

14.1 SAYS (XS.1) ANYVA[[.1.1], ANYVA[[.1.1], ANYVA[[.1.2]], ANYVA[[.2]], ANYVA[[.2
```

-NES

~~~~~		XXXXXXX	DERO	000000000000000000000000000000000000000
11 K = JP	7	CALL FOS (xx,xx1,xx2,xx3,xx4,xx5,vv1,yv2,vv3,vv4,vv5,DER) Dydx(J)=DER DYDX(J)=DER LE (IR EQ.1) GO TO 20 CONTINUE RETURN END	SUBROUTINE FDS (X,X1,X2,X3,X4,X5,F1,F2,F3,F4,F5,FX) [MPLICIT REAL*3(A-H,D-Z) THIS SUBROUTINE FITS DATA AND CALCUTATES ITS FIRST DERIVATIVE USING A FIFTH ORDER POLYNOMIAL	Al=(X-X4)*(X-X4)*(X-X5)*(2.00*X-X2-X3)+(X-X2)*(X-X3)*(2.00*X-X4-X5) A2=(X-X4)*(X-X4)*(Z-00*X-X1-X3)+(X-X2)*(Z-00*X-X4-X5) A3=(X-X3)*(X-X3)*(Z-00*X-X1-X2)+(X-X1)*(X-X2)*(Z-00*X-X4-X5) A5=(X-X3)*(X-X3)*(X-X5)*(Z-00*X-X1-X2)+(X-X1)*(X-X2)*(Z-00*X-X4-X5) A5=(X-X3)*(X-X3)*(X-X1-X2)*(X1-X2)*(Z-00*X-X3-X5) D3=(X-X1)*(X1-X3)*(X1-X4)*(X1-X5) D3=(X2-X1)*(X1-X3)*(X1-X4)*(X1-X5) D4=(X4-X1)*(X1-X3)*(X1-X4)*(X1-X5) D5=(X2-X1)*(X1-X3)*(X1-X5) D5=(X2-X1)*(X1-X3)*(X1-X5) D5=(X2-X1)*(X1-X3)*(X1-X5) D5=(X2-X1)*(X1-X3)*(X1-X5) D5=(X2-X1)*(X1-X3)*(X1-X5) D5=(X2-X1)*(X1-X3)*(X1-X5) D5=(X2-X1)*(X1-X3)*(X1-X5) D5=(X2-X1)*(X1-X3)*(X1-X5) D5=(X2-X1)*(X1-X3)*(X1-X5) D5=(X2-X1)*(X1-X3)*(X1-X3)*(X1-X5) D5=(X2-X1)*(X1-X3)*(X1-X3)*(X1-X5) D5=(X2-X1)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X3)*(X1-X

-2

よのらかどとての 6億よのらかをとしての6億よのらってころろろろろしてしてしてしてしてしてしてしてしてしてしてしてし

22 -1114×800

00000 00000 00000

C4=44/04 C5=45/05 FX=C1*F1+C2*F2+C3*F3+C4*F4+C5*F5 RETURN END

DATE 35/13/77

3. Program INVTAP Listing

```
| PROGRAMY| | PROG
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      FORMAT (/10x, 60HGENERATING INVISCID DATA TAPE FOR BOUNDARY LAYER
                                                                                                                                                        PROGRAM INVIAP CREATES THE INVISCIO DATA TAPE AS REQUIRED BY THE BOUNDARY LAYER PROGRAMME: CALLING DISKIN IMPLICIT REAL*8(A-H,0-1)
                                                                                                                                                                                                                                                                                                                          WRITE (6,10)
CALL ERRSET (207,256,10,0,0,209)
                                                                                                                                                                                                                                                                                                                                                                                                                                 STOP DISKIN
05/13/17
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              20
```

日本のられをてていらの上のらかをこれらられるこれのものとからってことでしてもとうらってくてとなるとととととととととととなるといっていましているというというというというというというというというというといい

```
FLOWFIELD DATA FROM THE INVISCIO SOLUTION IS READ FROM UNIT 25
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                READ (25, END=130) ISTA, XS, ((FLOFLD(J, K), J=1,14), K=1, KL)
                                                                                                                                                                                                                                                                                                                                                                WRITE (30,170) ISTA,XS
WRITE (30,180)
DO 10 K=1,KL
WRITE (30,180)
MRITE (30,200) K,(FLOFLD([1,K],1=1,7)
CONTINUE
WRITE (30,190)
DO 20 K=1,KL
SO 10 60
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                FLOFLO (6,1) = 0.000

WRITE (30,170) ISTA,XS

WRITE (30,140)

MRITE (30,180)

MRITE (30,190)

MRITE (30,190)

MRITE (30,190)

MRITE (30,190)

MRITE (30,140)

MRITE (30,140)
                                                                                                                                                                                                                       UNIT 13 IS THE EDGE PROPERTY DATA SET
                                                                     PI=DARCOS(-1.0D0)
#RITE [30,143)
WRITE [30,143)
ALPH=ALPHA*[180,003/P1)
WRITE [30,163)
DATE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        8000 0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  50
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    64
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    60
```

05/13/77

35/13/77

DATE

2 000

```
AVS(11=0.00)

AVX(11=0.00)

AV
   05/13/77
DATE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  00<u>F</u>000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     32928
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     193
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    230
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                100
```

it.

### APPENDIX VI

Job Control Language for Program ICBL3D

```
// JOB CARD
/*PRIORITY URGENT
/*JOBPARM LINES=10
//SIEP1 EXEC FORIGCG,TIME=1,REGION=520K,PARM.FORT='NOSOURCE'
//FORT.SYSIN DD *

ICBL3D SOURCE DECK

//GO.SYSIN DD *

ICBL3D DATA DECK

//GO.FT06F001 DD SYSOUT=A
//GO.FT07F001 DD DUMMY
//GO.FT07F001 DD DSN=$$FT08,DISP=(NEW,DELETE),
// UNIT=SYSDA,SPACE=(6472,(61,10),;CONTIG),
DCB=(RECFM=F,BLKSIZE=6472,DSORG=DA)
//GO.FT10F001 DD DSN=A505F3.INVTAP.EL412,DISP=(OLD,KEEP)
/*
```

APPENDIX VII

ICBL3D Sample Input



### APPENDIX VIII

ICBL3D Sample Output

## THREE-DIMENSIONAL BOUNDARY LAYER PROGRAM LAMINAR OR TURBULENT FLOW SURFACE CUPWATURE EFFECTS DEVELOPED BY AEROSPACE ENGINEERINE OF AND STATE UNIVERSITY VIRGINIA POLYTECHIC INSTITUTE AND STATE UNIVERSITY STATE UNIVERSITY

# 4:1 ELLIPSOID AT 2 DEG - - WITHOUT CURVATURE EFFECTS

### FREE STREAM, STAGNATION, AND VEHICLE DATA:

DEG.R) E DBTAINED:	PHI = 0.0 DEG. NIT = 4	VF = 0.0 DUEDW= 0.0	CFWINF = 0.0 CFWEDG = 0.0	DELTA#(X) = 0.2753870-01 THETA(X) = 0.1190060-01 DELTA#(PHI)= 0.3053990-01 THETA(PHI)= 0.1317640-01
PSTAG = 0.2116400 04 PSTA TSTAG = 0.5003000 03 EG.R PINF = 0.1734300 03 EG.R TINF = 0.5000000 03 EG.R THOINF = 0.5000000 03 EG.R THOINF = 0.5000000 03 EG.R AMUINF 0.2000000 01 DEG. CP PR = 0.000000 01 DEG. CP PR = 0.1000000 01 DEG. REINF = 0.1000000 01 PT **2/(SEC ** 2 - DEG.R) PR = 0.1000000 01 PT **2/(SEC ** 2 - DEG.R) PR = 0.1000000 01 PT **2/(SEC ** 2 - DEG.R) TRAIL   XSTA(I)   0.000000 01   0.000000000000000000000	XO = 0.0 XI = 0.0 XI = 0.0 HX = 0.1000000 01 HW = 0.0	NONDIMENSIONAL EDGE PROPERTIES  TE = 0.300300D 03 UE = 0.0  DUEDX= 0.428070D 01 DVEDX= 0.0  LOCAL EDGE REYNOLDS NUMBER =0.0	NONDIMENSIONAL BOUNDARY LAYER PARAMETERS  CFXINF = 0.0  CFXEDG = 0.0  CM = -0.787501D-02  CHIMAX = 0.0	OIMENSIONAL BOUNDARY LAYER PARAMETERS  LONGITUDINAL SKIN FRICTION= 0.0  FRANSVERSE SKIN FRICTION = 0.0

	SOTOS	000000000000000000000000000000000000000					1161609-01	EPLUS
	>	60000000000000000000000000000000000000				0.0	ETA(X) = 0. ETA(PHI)= 0.	>
))	N	AN   AN   AN   AN   AN   AN   AN   AN	##	1 = 3	OVEDW= 0.0	CFWEDG=	10 00 HT	Z
0.1024660	-	999998831 999998831 9999998831 9999999835 9999999835 99999999 9999999999	**				3.2691830- 0.1929400- 0.1027720	-
DELTA (FT) =	NS	0.000000000000000000000000000000000000	*	= 20.00 DEG	E = 0.0 UEDW= 0.0	CFWINF= 0.0	DELTA*(X) = DELTA*(PHI) = DELTA (FT) =	<b>8</b> 9
00 BTU	9		*	PHI	V 00-0018	ERS	PSF PSF 00 BTU	9
-0.7747350	Z u	4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.		000	= 0.0 EDX=-0.26881 =0.0	ER PARAMET XEDG= 0.0 IMAX= 3.0	PARAMETERS 0.0 0.0 -0.798278D	Z.
R RATE =	uL.	00000000000000000000000000000000000000		OX DXI	PROPER UE DV NUMBER	UNDARY LAY	LAYER 1CT 10N= T 10N = ATE =	ı
HEAT TRANSFE	>	00000000000000000000000000000000000000		= 0.0 = 0.1000000	MENSIONAL ED = 0.300300D = 0.4409190 EDGE REYNOL	ENSIGNAL B = 0.0 =-3.811431	IGNAL BGUND JDINAL SKIN ERSE SKIN F	>
WALL	ETA	00000000000000000000000000000000000000		XXX	NOND I TE DUEDX LOCAL	CFXINF	LONGITUTE TRANSVE	ETA

2002000200200200020002000					1145860-01 8888940-02	EPLUS	00000
600000000000000000000000000000000000000					00		10000
0404406414641464146414641464146414641464			c	. 3.3	ETA(X) =	>	0.0 -0.4070- -0.1540 -0.3270
00 00000000000000000000000000000000000		2	•	£06≈	FF	z	090 088 072
		11	E 0 3	340		-	00000
	**	-	2		0-01 0-01 0-01		00000
00000000000000000000000000000000000000	# #				0.2655190 0.91783950 0.9116070	-	0.999834 0.999861 0.999888 0.999913
		DEG		0.	" " "		
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	<b>松</b> 松 林	00.6	00	F= 0	XHT.	25	9805 5157 6195 6760
/46/100000000000000000000000000000000000	#	0.0	U (I	2	* * A A A		256 246 246
-coacoccoccaccaccaccaccac		I = ALL=	ve	CF	0EL 0EL 0EL		-0000
10000000000000000000000000000000000000	* * *	A D	20-01	S	PSF PSF 00 81U	9	0.0 0.335589 0.584139 0.756691 0.868197
00000000000000000000000000000000000000			4823	.0 .0	ERS 010	z	822 866 538 538 610
00000000000000000000000000000000000000		000	000	ARA = 0	MET 089	ū	931 633 491 361
neneneennnneennnaennaennnne		" " "	16S DX=-	ER P XEDG IMAX	PARA 00.00 -0.00		00000
00000000000000000000000000000000000000		HXI IXI	ROPERT UE DVE UMBER	CFX CHI	S S		226 613 957
C6464646464646666666666666666666666666			P RG	DARY 2	LA TIOT ATE	u	1692
000000000000000000000000000000000000000		10	0.05E 0.13 0.14 0.05	5 9	NDARY IN FR FER R		00000
277072000000000000000000000000000000000		000	000 960 YNO	L 8	SKI		2555
00000000000000000000000000000000000000		0001	10NA 3003 4537 E RE	10NA 922	AL B NAL E SK	>	980-086
20000000000000000000000000000000000000		000	MENSI = 0.3 = 0.4 EDGE	YENS	S I ON TUDI VERS HEAT		00000
000000000000000000000000000000000000000			NGNO I	NDI	IMEN ONGI RANS		0000
######################################		XXX	NO OTE	5 79	A TEO	ETA	0.0000000000000000000000000000000000000

```
0.1116060-01
                                                                                                                                                                                                                                                                                                                                  FPLUS
 000000000
  200200000
                                                                                                                                                                                                                                                                                                                                              THETA(X) =
 2
                                                                                                                                                                                                                                                                                                                                               00000000
                                                                                                                                                                                                                                                                                                      000
                                                                                                                                                                                                                                                                                                     0.2583720-0
0.1724460-0
0.8836370-0
0.9999886
0.9999888
0.99999888
0.9999934
0.9999984
0.9999984
0.9999984
                                                                                                                                                                            0.66.
                                                                                                                                                                                                                                                                                                      DELTA*(X) =
DELTA*(PHI)=
DELTA (FT) =
5N
5N
50-675409
0.6650045
0.1287996
0.088169
0.0188173
0.0150391
                                                                                                                                                                            60.00
                                                                                                                                                                                                                     VE = DUEDW=
                                                                                                                                                                             CMALL =
0.00
0.03
0.78474
0.784334
0.984813
0.984986
0.9849864
0.9949335
                                                                                                                                                                                                                                                                                                      PSF
PSF
BTU
                                                                                                                                                                                                                   UE = 0.0
DVEDX=-0.166012D
                                                                                                                                                                                                                                                                                                                00
                                                                                                                                                                                                                                                       PARAMETERS
                                                                                                                                                                                                                                                                                                   0.0
                                                                                                                                                                                                                                                                                                                                 FN
0.934
0.6435622
0.6435624
0.6435624
0.1649608
0.1649608
0.0536422
0.0536422
DIMENSIONAL BOUNDARY LAYER PARAMETERS
                                                                                                                                                                                                                                                                  000
                                                                                                                                                                            000
                                                                                                                                                                                                                                                                  CFXEDG=
CHIMAX=
                                                                                                                                                                                                                                      =0.0=
                                                                                                                                                                                                        PROPERTIES
                                                                                                                                                                                                                                                      LAYEP
                                                                                                                                                                             0 0 0
                                                                                                                                                                                                                                                                                                   LONGITUDINAL SKIN FRICTION=
TRANSVERSE SKIN FRICTION =
WALL HEAT TRANSFER RATE =-
                                                                                                                                                                                                                                                                                                                                           0.00
0.257923
0.639718
0.639718
0.858064
0.918736
0.9786468
NUMBER
                                                                                                                                                                                                                                                      BOUNDARY
                                                                                                                                                                                                                                                                  CFXINF= 0.0
                                                                                                                                                                                                                    = 0.3003000 03
= 0.4756840 01
EDGE REYNOLDS
                                                                                                                                                                                                        EDGE
                                                                                                                                                                                        10
                                                                                                                                                                            0.000000
NONDIMENSIONAL
                                                                                                                                                                                                        NONDIMENSIONAL
                                                                                                                                                                                                                    TE =
                                                                                                                                                                                                                                     LOCAL
                                                                                                                                                                                                                                                                                                                                 E T A COUNTY OF TAIL O
```

######################################			o	0.0 = 5	HETA(X) = 0.1088557-0	V EPLUS	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
######################################	***	NIT = 2	DVEDW= 0.	CFWED	30-01 90-01 30-01	7	######################################
######################################		EG.		0	= 0.25088 = 0.16633 = 0.85723	-	
20000000000000000000000000000000000000	*	1 = 80.00 ALL= 0.0	VE = 0.0 DUFDW= 0.0	CFWINE 0.	DELTA*(X) DELTA*(PHI) DELTA (FI)	B	1.282273 0.6568898 0.4668898 0.162358 0.037611 0.001673 0.001673 0.001673 0.001673 0.001673 0.001673 0.001673 0.001673 0.001673
11111111111111111111111111111111111111	* * * *	40	700 00	ERS	PSF PSF 00 BTU	9	0.000000000000000000000000000000000000
00000000000000000000000000000000000000		200	= 0.0 = 0.3 = 0.2 = 0.0	YER PARAMETE FXEDG= 0.0 HIMAX= 0.0	PARAMETERS = 0.0 = 0.3 =-0.8677530	T.	0.937440 0.646421 0.646420 0.646420 0.055410 0.0053410 0.0053410 0.0053410 0.0053410 0.0053410
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000		OX LAW	GE PROPER 03 UE 01 DV DS NUMBER	OUNDARY LA	ARY LAYER FRICTION RICTION R RATE	u	00000000000000000000000000000000000000
20000000000000000000000000000000000000		= 3.3 = 3.0 = 0.130000D	IMENSIONAL ED = 0.3003000 x= 0.5052300 L EDGE REYNOL	ENSIONAL =-0.88235	NSIGNAL BOUND. ITUDINAL SKIN SVERSE SKIN FE HEAT TRANSFER	>	0.000000000000000000000000000000000000
wwwwaqqqwwwqqqppppppppppppppppppppppppp		XXI	NOND I TE DUEDX LOCAL	NONDIM CFXINF	DIMEN TRANS	ETA	0000-14-10/16/16/16/16/16/16/16/16/16/16/16/16/16/

				0.1083300-	> \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
3334513335131313131313131313131313131313		0	3.3	ETA(X)	000000000000000000000000000000000000000
	Z    *	DVEDM= 0.0	CFWEDG=	ΕE	00000000000000000000000000000000000000
	*****			0.2480269-01 3.1647139-01 3.8558176-01	10000000000000000000000000000000000000
10000000000000000000000000000000000000	****** ALL= 000.00 DE	VE DUESW= 0.0	CFM INF= 3.3	DELTA*(X) = 0£LTA*(PHI) = 0£LTA (FI) =	5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4
11111111111111111111111111111111111111	## ##	00	10	PSF PSF 6TU	00000000000000000000000000000000000000
2004 1045 40 88660 000 400 400 400 400 400 400 400 400 40	000	= 3.0 = 3.0 EDX=-0.401923D =0.0	YER PARAMETER FXEDG= 0.0 HIMAX= 0.0	PARAMETERS 0.0 0.0 0.0 0.8179390 00	FN 1978 P. 197
0.000000000000000000000000000000000000	01 XX	GE PROPER 03 UE 01 05 NUMBER	NDARY LA	FRICTION=	F F F F F F F F F F F F F F F F F F F
00000000000000000000000000000000000000	= 0.0 = 0.1000000	MENSIGNAL ED = 0.3003000 = 0.5267390 EDGE REYNOL	ENSIONAL 8 = 0.0 =-0.892456	IMENSIONAL BOUNDAR ONGITUDINAL SKIN F RANSVERSE SKIN FRI ALL HEAT TRANSFER	× 1000000000000000000000000000000000000
44wwwaaarreawa 44mwwaaarrea 6000000000000000000000000000000000000	Ç <b>≭</b> X	NONDI TE DUEDX	CFXINE	DIMENSION LONGITUDI TRANSVERS WALL HEAT	TA TANAMANA

00000000000					).1113940-0 ).8533440-0	EPLUS	
20002000000					0 = (	>	000000000000000000000000000000000000000
11111111111111111111111111111111111111			0	0.0	ETA(X) ETA(PHI		00000000000000000000000000000000000000
1000000000 100000000 100000000 100000000	<b>春</b> 4. 4.	111 = 2	DVEDW= 0.	CFWEDG=	-01 -01 1HT TH	Z	689-1648N-RENDOCCCO2000 689-1648N-1600000000000000 6000000000000000000000
000000000000000000000000000000000000000	*	<i>z</i>			0.2547350 0.1729370 0.8795760	1	0.000000000000000000000000000000000000
747-191-95-74V	#	3 DE	00	0.0	"""		44000000000000000000000000000000000000
10100000000000000000000000000000000000	**	ALL= 3.3	VE 0.	CFWINE	DELTA*(X) BELTA*(PH DELTA (FT	S	0.000000000000000000000000000000000000
00000000000000000000000000000000000000	* * *	H S	00		PSSF 8 TU	9	00000000000000000000000000000000000000
000-1000-000	*		3510	ERS	00		0.000000000000000000000000000000000000
NAME AND		000	= 3.3 0x=-0.338 =0.3	YER PARAMET	PARAMETERS 0.0 -0.8411170	F	0.000000000000000000000000000000000000
00000000000000000000000000000000000000		DXI HW	DGE PROPERT  33 UE 01 DVE LDS NUMBER	UNDARY LA	DARY LAYER FRICTION= RICTION=	ıL	0.000000000000000000000000000000000000
30000000000		00000	AL ED 3330 8510 EYNOL	8 J	SK IN KIN FE ANSFER		N-1-1-1-1-1-100000000000000000000000000
14000000000000000000000000000000000000		0.0	IMENSIUN = 0.300 X= 0.513 L EDGE R	IMENSIONA NF= 0.0	ITUDINAL SVERSE S HEAT TR	>	00000000000000000000000000000000000000
9996-1-1-8889-9-1-1-1-1-1-1-1-1-1-1-1-1-1-1-		XXI	NONDI TE DUEUX LOCAL	NONDI OF XIV	DIME!	ETA	00001111000000000000000000000000000000

				70-91 80-32	S n 1 d
200200				95064	
200220				00	000000000000000000000000000000000000000
-0.6550 -0.71450 -0.77430 -0.7730 -0.7730		2		ETA(X) =	00000000000000000000000000000000000000
0.0000000000000000000000000000000000000	11 = 2	DVEDW= 0.	CFWE0G=	101 -01 -01	None 24t + 1
***************************************				0.276252P 0.192198D 0.961279D	11111111111111111111111111111111111111
**************************************	=140.00 DE	OUEDW= 0.0	CFWINE= 0.0	DELTA*(X) = DELTA*(PHI) = DELTA*(FFI) =	6 N N N N N N N N N N N N N N N N N N N
1.0000 1.000031 1.0000031 1.0000046 1.0000003 **	CWA	10-017	S)	PSF PSF 00 8TU	00000000000000000000000000000000000000
0.000272 0.000271 0.000271 0.000271 0.000271	0000	1ES DX=-0.3096 =0.0	ER PARAMETE XEDG= 3.0 IMAX= 3.0	PARAMETERS 0.0 0.0 -0.7572590	P. V.
0.999593 0.999756 0.999756 0.999838 0.999919 1.000000	DXI HW	OS UE D'EE	OUNDARY LAYI	JARY LAYER FRICTION= RICTION=	F F F F F F F F F F F F F F F F F F F
200000	000	1 ED 320 320 YNOL	. 80 7360	SK IN IN FE	777777777777777777777777777777777777777
0.24340 0.24330 0.25530 0.2710 0.2410	= 0.0	MENSIONA = 0.3003 = 0.4457 EDGE RE	IMENSIONAL	NSIONAL BE SVERSE SK HEAT TRA	00000000000000000000000000000000000000
7.5500000000000000000000000000000000000	XXI	NONDI TE DUEDX LOCAL	CEXINE	DIMEN LONG TRAN	######################################

0.000000 1.000000 -0.000000 -0.7470 01 0.0	=100.00 DEG. NIT = 3	04= 0.0 04= 0.0	FMINE= 0.0	LTA*(X) = 0.3033310-01 THETA(X) = 0.1311330-0 LTA*(PHI)= 0.2035000-01 THETA(PHI)= 0.1012310-0 LTA (FI) = 0.1041060 00	SN T F FPLUS	1.267378 2.999881 2.9999881 2.9999881 2.9999881 2.9999881 2.9999882 2.9999882 2.9999882 2.9999883 2.9999983 2.9999983 2.9999983 2.9999983 2.9999983 2.9999983 2.9999983 2.9999983 2.9999983 2.9999983 2.9999983 2.9999983 2.9999983 2.9999983 2.9999983 2.9999983 2.9999983 2.9999983 2.9999983 2.9999983 2.9999983 2.9999983 2.9999983 2.9999983 2.9999983 2.9999983 2.9999983 2.9999983 2.9999983 2.9999983 2.9999983 2.9999983 2.9999983 2.9999983 2.9999983 2.9999983 2.9999983 2.9999983 2.9999983 2.9999983 2.9999983 2.9999983 2.9999983 2.9999983 2.9999983 2.9999983 2.9999983 2.9999983 2.9999983 2.9999983 2.9999983 2.9999983 2.9999983 2.9999983 2.9999983 2.9999983 2.9999983 2.9999983 2.9999983 2.9999983 2.9999983 2.9999983 2.9999983 2.9999983 2.9999983 2.9999983 2.9999983 2.9999983 2.9999983 2.9999983 2.9999983 2.9999983 2.9999983 2.9999983 2.9999983 2.9999983 2.9999983 2.9999983 2.9999983 2.9999983 2.9999983 2.9999983 2.9999983 2.9999983 2.9999983 2.9999983 2.9999983 2.9999983 2.9999983 2.9999983 2.9999983 2.9999983 2.99999983 2.9999983 2.9999983 2.9999983 2.9999983 2.9999983 2.99999983 2.99999983 2.99999983 2.99999983 2.99999983 2.99999983 2.99999999 2.99999999999 2.99999999999	<b>特特特特特特特特特特特特特特特特特特特特特特特特特特特特特特特特特特特特</b>
1.000000	PHI	SD 00 VE	SX	PSF PSF 00 BTU DEFE	9	00000000000000000000000000000000000000	***
0.000022	000	TIES EDX= 0.1001 =0.0	YER PARAMETE FXEDG= 0.0 HIMAX= 0.0	PARAMETERS = 0.0 = 0.0 =-0.7087060	Z.	######################################	
1.000000	0 01 HW	EDGE PROPERI 00 03 UE 6D 01 DVI	BOUNDARY LAY	NDARY LAYER IN FRICTION FRICTION FER RATE	u	0.000000000000000000000000000000000000	
0.3010 00	= 0.0	IMENSTONAL = 0.30030 X= 0.34904 L EDGE REY	ENSTONAL = 0.0	NSTONAL B SVERSE SK HEAT TRA	>	0.000000000000000000000000000000000000	
6.00000	SXI	NUNDI TE DUEDX LOCAL	CFXINE	DIME LONG TRAN	ETA	98884117766600000000000000000000000000000000	

PHI =180.00 DEG. NIT = 3	614780-15 VE = 0.0 0UE3M= 0.0 0UE3M= 0.0	ERS CFWINF= 0.0 CFMEDG= 0.0	PSF DELTA*(X) = 3.3254310-31 THETA(X) = 3.1437133-31 PSF DELTA*(PHI)= 0.1553910-31 D 30 BTU DELTA (FT) = 0.1261040 00	SON T T TN V EPLUS	2 0.161923 0.656461 0.9996847 0.0000084 -0.3880-01 0.9996847 0.00000849 -0.3880-01 0.99998847 0.00000849 -0.3880-01 0.99998847 0.00000849 -0.3880-01 0.99998847 0.00000849 -0.3880-01 0.99998848 0.00000849 -0.3880-01 0.9999848 0.00000849 -0.3880-01 0.9999848 0.00000849 -0.3880-01 0.9999848 0.00000849 -0.3880-01 0.9999848 0.00000849 -0.3880-01 0.9999848 0.00000849 -0.3880-01 0.9999848 0.00000849 -0.3880-01 0.9999848 0.00000849 -0.3880-01 0.9999848 0.00000849 -0.3880-01 0.9999848 0.00000849 -0.3880-01 0.9999848 0.00000849 -0.3880-01 0.9999848 0.00000849 -0.3880-01 0.9999848 0.00000849 -0.3880-01 0.9999848 0.00000849 -0.3880-01 0.9999848 0.00000849 -0.3880-01 0.9999848 0.00000849 -0.3880-01 0.9999848 0.00000849 -0.3880-01 0.9999848 0.00000849 -0.3880-01 0.9999848 0.00000849 -0.3880-01 0.9999848 0.00000849 -0.3880-01 0.9999848 0.00000849 -0.3880-01 0.9999848 0.00000849 -0.3880-01 0.9999848 0.00000849 -0.3880-01 0.9999848 0.00000849 -0.3880-01 0.9999848 0.00000849 -0.3880-01 0.9999848 0.00000849 -0.3880-01 0.9999848 0.00000849 -0.3880-01 0.9999848 0.00000849 -0.3880-01 0.9999848 0.00000849 -0.3880-01 0.9999848 0.00000849 -0.3880-01 0.9999848 0.00000849 -0.3880-01 0.9999848 0.0000849 -0.3880-01 0.9999848 0.0000849 -0.3880-01 0.9999848 0.0000849 -0.3880-01 0.9999848 0.0000849 -0.3880-01 0.9999848 0.0000849 -0.3880-01 0.9999848 0.0000849 -0.3880-01 0.9999848 0.0000849 -0.3880-01 0.9999848 0.0000849 -0.3880-01 0.9999848 0.0000849 -0.3880-01 0.9999848 0.0000849 -0.3880-01 0.9999848 0.0000849 -0.3880-01 0.9999848 0.0000849 0.0000849 -0.3880-01 0.9999848 0.0000849 -0.3880-01 0.9999848 0.0000849 -0.3880-01 0.9999848 0.0000849 0.0000849 0.0000849 0.0000849 0.0000849 0.0000849 0.0000849 0.0000849 0.0000849 0.0000849 0.0000849 0.0000849 0.0000849 0.0000849 0.0000849 0.0000849 0.0000849 0.0000849 0.0000849 0.0000849 0.0000849 0.0000849 0.0000849 0.0000849 0.0000849 0.0000849 0.0000849 0.0000849 0.0000849 0.0000849 0.0000849 0.0000849 0.0000849 0.0000849 0.0000849 0.0000849 0.0000849 0.0000849 0.0000849 0.0000849 0.0000849 0.00008	计操作条件 提供的证券	310-01 PHT = 0.0 DEG. NIT = 3
000	1ES = 0.0 0x= 0.2614 =0.0	YER PARAMET	PARAMETER 9.3	Z.	00000000000000000000000000000000000000		= 0.1972 = 0.2300 = 0.1239
ON HELL	GE PROPERT  03 UE  01 DVE  DS NUMBER	BOUNDARY LAY	ARY LAYER FRICTION= R RATE	ı	00000000000000000000000000000000000000		02 R 01 DX I 01 HW
= 0.0 = 0.0 = 0.1000000	MENSIONAL ED = 0.3003000 = 0.3080120 EDGE REYNOL	DNDIMENSIONAL 600 FXINF= 3.3	NSIGNAL BGUNDA ITUDINAL SKIN SVERSE SKIN FE HEAT TRANSFER	>	0.000000000000000000000000000000000000		= 0.3132600- = 0.20000000- = 0.1000000
SXX	NONDI TE DUEDX LOCAL	OVEN DE LE	DIME LONG TRANS	ETA	98884119866778444477777778679 9888711786777877787787778777877777777777		XXI

		.1331465-01	E PLUS	000000000000000000000000000000000000000			
4132960-02	6.6	ETA(X) = 0 ETA(PHI) = 0	>	20000000000000000000000000000000000000			.2947920-02
0.6 =WC3VG	CFWEDG	0-01 0-01 141	2	DAMES   THE VARIATION OF THE PARTY   THE	* *	111 = 3	OVEDW= 0.
	0	= 0.2834630 = 0.2933620 = 0.1042720	-	00000000000000000000000000000000000000	*	£6.	1370-03 1370-01
VE OUEOW= 0.0	CEALVE= 0.0	DELTA*(X) SELTA*(PHI) DELTA (FT)	NS	00000000000000000000000000000000000000	* * *	ALL = 23.30 DE	VE - 0.2399
10-028	55480 01 2571D-02	02 PSF 93 BTU	9	00000000000000000000000000000000000000	***	30-01 00-01 70 00	930-01
FDX = 3.92388 FDX = 0.164776D	ER PARAMET XEDG= 0.18 IMAX= 0.16	PARAMETERS = 0.1679270 = 0.0 =-0.6363130	Z	00000000000000000000000000000000000000		= 0.19740 = 0.23000 = 0.12401	FIES = 0.8311 EDX=-0.1783
E PROPER UE DV	BOUNDARY LAY 40-01 CF 30-02 CH	RY LAYER FRICTION ICTION RATE	u.	00000000000000000000000000000000000000		022 R 01 DXI	GE PROPER 03 UE 01
MENSIONAL EDG = 0.3003000 00 = 0.4119060 00 EDGE REYNOLD	MENSIONAL =-0.85009	SIONAL BOUNDA TUDINAL SKIN VERSE SKIN FR HEAT TRANSFER	>	00000000000000000000000000000000000000		= 0.3065410-0 = 0.2000000-0 = 0.1000230	MENSIONAL ED
NONDIN TE DUE OX	NONDIA CFXINF	DIMENS LONGIT TRANSK	ETA			O-X	NONDI TE DUEDX

		30-91 16-02	PLUS							
	03	120273	d							
	679510-0	00		50000000000000000000000000000000000000						
		74(X) 14(PHI)	>	63000000000000000000000000000000000000						
	CFWE03=	11	Z		*	2 =				
	~	10-0 80-0 90-0			* * *	I.				
	679510-03	0.27822 0.16982 0.10352	-	4649494848484848484848484848484848484848		•				
	0.10	=======================================			# #	O DE				
	CFW!NF=	ELTA*(	ELTA* ELTA* ELTA*	ELTA (	ELTA*(	ELTA*( ELTA*( ELTA*	00000000000000000000000000000000000000	* *	C.0 = 17	
		300		20000000000000000000000000000000000000		PHI				
06 0852991.	PARAMETERS DG= 0.186383D 01 AX= 0.1626640-02	PSF BTU	700		* * *	101				
		AMETERS 1703410 6424110- 8435810	AMETERS 173341D 642411D 843581D FN	0.000000000000000000000000000000000000		0.1978850- 0.2000000- 0.1243450	S			
0=	HIN H	PAR = 0.		wra-444443munrumaaaaaooooooo		11 11 11	TIE			
NUMBER	× ∟	Y LAYER RICTION CTION RATE	ų.	00000000000000000000000000000000000000		XOI XI	PROPERTI			
NULUS	80UNDA 30-01 10-02	SUNDARY		20022000000000000000000000		000-02 000-01	EDGE			
KEYN	7 25	BC SKIS RAN	>	00000000000000000000000000000000000000		200	NAL			
EUGE	MENSIO F= 0.4 =-0.8	SIONAL TUDINA VERSE HEAT T		COLOCOCOCOCOCOCOCOCCCCCCCCCCCCCCCCCCCC		= 0.28 = 0.20 = 0.10	MENS 10			
LULAL	CFXINE	DIMEN LONGI TRANS	ETA	0.000000000000000000000000000000000000		OHX SHX	IONON			

DVFDW=-0.1076200-02 VE = 0.2758120-03 DUEDW= 0.2284290-01 UE = 0.8411230-01 UVEUX=-0.1588990-01 TE = 0.3003000 03 UE = 0.8411200-OUEDX= 0.4268730 01 DVEDX=-0.1588990-LOCAL EDGE REYNOLDS NUMBER =0.1682240 00

NONDIMENSIONAL BOUNDARY LAYER PARAMETERS

	-01	ns			
	5230 3520				
3-03	3.923	000000000000000000000000000000000000000			-04
09480	" "			-05	5740
0.5	TA(X)			7545457-	0-1505740-0
CFWFDS=	17	00000000000000000000000000000000000000	4	DW=-0.7	CFWED6=
	10-00	onoccoccoccoccoccocco *		DVE	
099880-03	2763040- 1823196- 10295050	# 098798999999999999999999999999999999999		0-04	.1505740-04
503	070	0000000000000	DEG.	1988	150
FWINE O	ELTA*(X) ELTA*(PHI) ELTA (FT)	0.000000000000000000000000000000000000	= 60.00	EDW= 0.421	CFWINE=-0.
_	200	04500000000000000000000000000000000000	CHALL	oue oue	
740-01	2 PSF 1 PSF 0 BTU	COCCOCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	1000	0-01	350 01 560-02
185/	88 40-04		85960- 000000- 48440	574730 528260 950 00	ETER 1873 1644
06= 0. AX= 0.	.17422 .33320	00000000000000000000000000000000000000	0.200	5 = 0.85 =-0.55	R PARAM EDG= 0.
X.I	P P P P P P P P P P P P P P P P P P P			E X	Y XI
J.	LAYER ICTION TION	60000000000000000000000000000000000000	αQI XI	PROPERT UE OVE	RY L
80-01 20-32	UNDARY KIN FR N FRIC	00000000000000000000000000	-010	EDGE 00 03 70 01 NOLUS	0-0 0-0
721	A NIA		70560- 000000- 01950	AL 330	AL 038 421
3.86	I UNAL UD INAL ERSE S EAT TR	20000000000000000000000000000000000000	0.250	0.300 0.440 EDGE R	= 0.47(= 0.88)
XINF	MENS NGITU ANSV		" " "	DY=	OND ME
J.	O I	000001134777474777773444777747474747474747474	SXX	NON TE DUE	S US

-136-

DIMENSIONAL BOUNDARY LAYER PARAMETERS

.9765200-01	E PLUS					-03	.4310523-02
11 11		200000000000000000000000000000000000000			10	0906	00
TA(X)	>	c.1000.6500.00.00.00.00.00.00.00.00.00.00.00.00.			206870-	-0.550	ETA(X) ETA(PHI)
HI.	N.			m	FDW=-0.1	CFWEDG=	II
100		000000000000000000000000000000000000000	*	-	2		00-01
0.2730960 0.5228)10 0.1019000	-	00000000000000000000000000000000000000	*		30-03 10-01	509060-03	0.2692230 J.1009880 J.1008310
0 11 11				5 11 0	<b>766</b>		11 11 11
ELTA*(X) ELTA*(PH) ELTA (FT)	6N		**	= 80.33	E -0.52	CFW INF=-0	DELTA*(X) DELTA*(PHI DELTA (FT)
		##MANACAABBAAAAABBA##BBB###################		CEAN	>0		
PSF PSF 91U	9	00000000000000000000000000000000000000	* * *	100	000	8D 01 5D-02	PSF
-025		11	*	129- 000- 050	990-010	582 582	000
0.179921D 0.575945D 0.869377D	A.	00000000000000000000000000000000000000		= 0.19941 = 0.20000 = 0.12540	= 0.8788  X=-0.1207  0.1757800	EDG= 0.18	0.1874670 0.1874670 0.8871200
NO NO		000486404660000000000000000000000000000		××	ERTI UE DVED ER =	CFX	ON I
1001 1001	u	00000000000000000000000000000000000000		∝ĜĪ	ROP	RY L	CT I
FRICTION				777	A 2 2	<₹	F E E
N S F E R				7930-0 0000-0 3260 0	3330 0 5600 0 EYNOLD	8 - 8 110	SKIN FR KIN FR ANSFER
TRAL TRA	>	020011120000000000000000000000000000000		2002	10N 457 457	NO.1	AL FAL TR
EAT		020000000000000000000000000000000000000		000	MENS = 0.0	ENS	UDI VERS VERS
NSVA TASKA					~ × ~	NOND IM	LENS NSVI
LON	ETA	0000		SXX	NOND TE DUED LOCAL	NON X H	LON TRA MAL

## APPENDIX IX

Program ICBL3D Data FORMAT Sheets

LABEL TITLE OF CASE. APPEARS AS THE HEADE R TO PROGRAM OUTPUT  IE NUMBER OF POINTS NORMAL TO 8 ODY. RE COMMENDED VALUE 101  INJCT  INDCT  INDC	I CRI3D		
DECK    LABEL   LABBER OF POINTS NORMAL TO BODY. RE COMMENDED VALUE 101   LABEL   LABBER OF POINTS NORMAL TO BODY. RE COMMENDED VALUE 101   LABEL   LABBER OF POINTS NORMAL TO BODY. RE COMMENDED VALUE 101   LABEL   LABBER OF POINTS NORMAL TO BODY. RE COMMENDED VALUE 101   LABEL   LABBER OF POINTS NORMAL TO BODY. RE COMMENDED VALUE 101   LABEL   LABBER OF POINTS NORMAL TO BODY. RE COMMENDED VALUE 101   LABEL   LABBER OF POINTS NORMAL TO BODY. RE COMMENDED VALUE 101   LABBER OF POINTS NORMAL TO BODY. RE COMMENDED VALUE 101   LABBER OF POINTS NORMAL TO BODY. RE COMMENDED VALUE 101   LABBER OF POINTS NORMAL TO BODY. RE COMMENDED VALUE 101   LABBER OF POINTS NORMAL TO BODY. RE COMMENDED VALUE 101   LABBER OF POINTS NORMAL TO BODY. RE COMMENDED VALUE 101   LABBER OF POINTS NORMAL TO BODY. RE COMMENDED VALUE 101   LABBER OF POINTS NORMAL TO BODY. RE COMMENDED VALUE 101   LABBER OF POINTS NORMAL TO BODY. RE COMMENDED VALUE 101   LABBER OF POINTS NORMAL TO BODY. RE COMMENDED VALUE 101   LABBER OF POINTS NORMAL TO BODY. RE COMMENDED VALUE 101   LABBER OF POINTS NORMAL TO BODY. RE COMMENDED VALUE 101   LABBER OF POINTS NORMAL TO BODY. RE COMMENDED VALUE 101   LABBER OF POINTS NORMAL TO BODY. RE COMMENDED VALUE 101   LABBER OF POINTS NORMAL TO BODY. RE COMMENDED VALUE 101   LABBER OF POINTS NORMAL TO BODY. RE COMMENDED VALUE 101   LABBER OF POINTS NORMAL TO BODY. RECOMMENDED VALUE 101   LABBER OF POINTS NORMAL TO BODY. RECOMMENDED VALUE 101   LABBER OF POINTS NORMAL TO BODY. RECOMMENDED VALUE 101   LABBER OF POINTS NORMAL TO BODY. RECOMMENDED VALUE 101   LABBER OF POINTS NORMAL TO BODY. RECOMMENDED VALUE 101   LABBER OF POINTS NORMAL TO BODY. RECOMMENDED VALUE 101   LABBER OF POINTS NORMAL TO BODY. RECOMMENDED VALUE 101   LABBER OF POINTS NORMAL TO BODY. RECOMMENDED VALUE 101   LABBER OF POINTS NORMAL TO BODY. RECOMMENDED VALUE 101   LABBER OF POINTS NORMAL TO BODY.		SARAG GARAC	PAGE OF
LABEL  SONG CASE. APPEARS AS THE HEADE R TO PROC  A 9 X, 1 3)  SONG CASE. APPEARS AS THE HEADE R TO PROC  A 9 X, 1 3)  SONG CASE. APPEARS AS THE HEADE R TO PROC  A 9 X, 1 3)  INJCT  SUBSCRIPT OF XSTA ARRAY, GIVES LOCATION FOR	Parmes	\$2000000000000000000000000000000000000	CARD ELECTRO NUMBERY
LABEL  LABEL  LABEL  LABEL  LABEL  ( 20A4)  PROG    IE		FORTRAN STATEMENT	OGRAFICATION STOURNES
LABEL  LABE  LABE  LABE  (20A4)  2  2  2  2  2  1  1  1  1  1  1  1  1	A		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
LABEL TITLE OF CASE. APPEARS AS THE HEADE R TO PROG			
LABEL TITLE OF CASE. APPEARS AS THE HEADE R TO PROG		LABEL	
IE NUMBER OF POINTS NORMAL TO BODY. RE COMMENDED  INJCT SUBSCRIPT OF XSTA ARRAY, GIVES LOCATION FOR	LABEL	OF CASE. APPEARS AS THE	O PROGRAM OUTPUT
11E NUMBER OF POINTS NORMAL TO BODY. RE COMMENDED  3 1 NJCT SUBSCRIPT OF XSTA ARRAY, GIVES LOCATION FOR			
1 IN JCT SUBSCRIPT OF XSTA ARRAY, GIVES LOCATION FOR		(4 9 X. 1 3	
INJCT INJCT (49 X, 13) (10 X) TA ARRAY, GIVES LOCATION FOR	3	OF POINTS NORMAL	
SUBSCRIPT OF XSTA ARRAY, GIVES LOCATION FOR			
SUBSCRIPT OF XSTA ARRAY, GIVES LOCATION FOR			
	INJCT	PT OF XSTA ARRAY, GIVES	

Mai		FORTRAN Coding Form	Printed in U.S.A.
ICBL3D		PUNCHING GRAPHIC	
44°CO 40, 446°B	DA7E	NOTROCHONS PLACE NAME INC.	.83
2 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			
7 12 01 5 8 7 10 21 11 11 11 11 11 11 11 11 11 11 11 11	FORTRAN	FORTRAN STATEMENT	DENTIFICATION
CARD 13			
1		N173	
N I T 3	OT GOINT OF GOING	(4 9 <del>X, T</del> 3)	
	2		
CARD 14			
		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
		(49 X   3)	
TNION	SUBSCRIPT OF XSTA ARRAY,	IPT OF XSTA ARRAY, LOCATES END OF INJECTION	
CARD 15			
		SFC	
	1 1 1 2 2 2 3 7 1	(49X, A3)	
27.0	LII ER AL VARIABLE INDICA TE	S I F SURFACE CURVATURE EFFECTS INCLUDED	LUDED

-143-

SATE	CONV	ENCE CRITE RION	DXMAX	STEP SIZE (49X, E14.6)	XQ	STREA MWISE STEP SIZE (49X, E14.6)
108130		CONVER GE		MAXIMUM		INI TI AL
PROGRAM PROGRA	CARD 22	VNOO	CARD 23	DMAX	CARD 24	DX1

	TCB13D			SALCHAGO	GRAPHC		1
PROGRAMMER	i		DATE	14.1.010MS	PLINCIS		CARD ELIC 1 2 1, 1995 31
STATEMENT STATEMENT CO.			FORTRAN	FORTRAN STATEMENT			SENTIFICATION
6				3	55 55 55 55 55 55 55 55 55 55 55 55 55	90 55 55 55 55 55 55 55 55 55 55 55 55 55	200
						AMUINF	
	AMUINF	COEF FICIENT	0F VISCOS1TY		( 4	49X, E 14.6)	
CARD 3	3 2					PSTAG	
	PSTAG	FR EEST REAM T	FR EEST REAM TOTAL PRESSURE	1.1	(4)	(49 X, E 14. 6)	
CARD 33						P INF	
	PINF	FREE STREAM S	STAT IC PRESSURE	3 <u>5</u>	(49	(49 X, E14.6)	

CBISA			A CONTRACTOR OF THE CONTRACTOR			
20120			PUNCHING	CHARGO	PAGE	ot.
	0.478	16	INSTRUCTIONS	Poyce.	CARD ELECTRO NUMBER	NUMBER
		FORTRAN	FORTRAN STATEMENT			DENTIFICATION
0		12 12 12 15 to 5 15 15 19 to	7	29 25 25 25 25 25 25 25 25 25 25 25 25 25	1 2 1 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3	E
36 + N SOLVE +1	TO LAST CAR					
XTW(1)	TWX(1) XC	XC1(1)	( )X [ )			
+	( 4E 12.6)					
XTW(1)	ARRAY OF SURFACE	E DISTANCES		CORRESPONDING TO WA	WALL TEMPERATURES	URES
TWX(1)	AT		1			
XC1(1)	ARRAY OF SURFACE			CORRESPONDING TO INJECTION RATES	N JE CTI ON RAT	ES
	N JECH TON KA E	A CANAL CANA				
		Actual commercial and an experimental series of the commercial series o	Charles on the latest designation of the lat		the same of the sa	

## APPENDIX X

Program ICBL3D Listing

```
SUBSTITUTE AND ELLEGISTER THE CONFEIGNATE OF THE SUPERINGS AND THE SUBSTITUTES IN FIRITE-DIFFERENCE FORM FILLINGS IN FIRITE-DIFFERENCE FORM FILLINGS AND THE SUBSTITUTES IN FIRITE-DIFFERENCE FORM FILLINGS AND THE SUBSTITUTES FOR THE SERVICE FORM FILLINGS AND THE SUBSTITUTES FOR THE SERVICE FORM FILLINGS AND THE SUBSTITUTES FOR THE STAGNATION LINE AND THE SUBSTITUTES FOR THE STAGNATION LINE AND THE SUBSTITUTES AND THE STAGNATION LINE AND THE SUBSTITUTES AND THE STAGNATION LINE AND THE SUBSTITUTES AND THE STAGNATION LINE AND THE ST
```

8 3000

35/12/17

DATE

0000 00

DATE

05/12/77

5 3000

10

U

```
04TE 05/12/72

| FEZETE-11/2 | CG TO 20 | CG TO 20 | ETAIN | CT TO 10 | ETAIN | CG TO 10 | C
```

 $\frac{1}{2} \frac{1}{2} \frac{1}$ 

DATE

10 190 FW2(N)=1.000
FW2(N 05/12/77 DATE 160 180 190 -158-

-159-

05/12/77

SUBROUTINE BLUNT2 (ISNT)

REAL#8 (A-H,O-Z)

LOGHNON / REAL#8 (A-H,O-Z)

REAL#8 (A-H,O-SUBROUTINE AERO
LIMPL(CIT RESEL® (A-H, 0-2)
LIMPL(CIT RESEL® (A-H, 0-2)
COMMON FRESTRAM, RHOINE, PINE, TES, UES, AMUINE, CP, REINE, PR
COMMON FREF, PREF, TREFAMUREF
COMMON /STAG/ PSTAG, TSTAG, PNC, OMSTAG
DATA ROIN/4HRHOIL/PIN/4HPINE/ AMUREF=AMUINE
RHOINF=2, JOA(PSTAG-PINF)/UFS**2
RRINF=RHOINF=4,50J/CP*UFS**2
RETURN
RETURN RHGINF IS IN SLUGS
PINF IS IN PSIA
PSIAG IS IN PSIA
PREFEIS IS IN PSIA
PREFEIS IS IN PSIA
PREFEIS IN PINF SEC**Z/DEG.R
R IN FINF SEC**Z/DEG.R
UNS IN FINE IS SEC**Z/DEG.R
AMUREF IS IN (LB—SEC)/FI**Z

-160-

05/12/77 DATE

2000003

30

TO THE TOTAL TO TH

DATE

RXXNNSS[1] = 0.00 RXXXNNSS[1] = 0.00 RXXXNNSS[1] = 0.00 RXXNNSS[1] = 0.00 RXXNNSS[1]

DATE 05/12/17

```
FAC=(X-XXS(MM))/(XXS(M)-XXS(MM))

FAC=(D110

FAC=0.D00

CONTINUE

REDG=RADSUM(MM)+FAC+(RADSUM(M)-RADSUM(MM))

XO=XSUM(MM)+FAC+(XSUM(M)-XSUM(MM))

YEBOG=XADSUM(MM)+FAC+(XSUM(M)-XSUM(MM))

YEBOG=XADSUM(MM)+FAC+(XSUM(M)-XSUM(MM))

HAOD-HASUM(MM)+FAC+(XSUM(M)-XSUM(MM))

HAOD-HASUM(MM)+FAC+(XSUM(M)-XSUM(MM))

HADD-HASUM(MM)+FAC+(XSUM(M)-XSUM(MM))

YEBOG=XADSUM(MM)+FAC+(XSUM(M)-XSUM(MM))

YEBOG=XADSUM(MM)+FAC+(XSUM(M)-XSUM(MM))

HADD-HASUM(MM)+FAC+(XSUM(M)-XSUM(MM))

YEBOG=XADSUM(MM)+FAC+(XSUM(M)-XSUM(MM))

YEBOG=XADSUM(MM)+FAC+(XSUM(MM)-XSUM(MM))

YEBOG=XADSUM(MM)+FAC+(XSUM(MM)-XSUM(MM)-XSUM(MM)-XSUM(MM)-XSUM(MM)-XSUM(MM)-XSUM(MM)-XSUM(MM)-XSUM(MM)-XSUM(MM)-XSUM(MM)-XSUM(MM)-XSUM(MM)-XSUM(MM)-XSUM(MM)-XSUM(MM)-XSUM(MM)-XSUM(MM)-XSUM(MM)-XSUM(MM)-XSUM(MM)-XSUM(MM)-XSUM(MM)-XSUM(MM)-XSUM(MM)-XSUM(MM)-XSUM(MM)-XSUM(MM)-XSUM(MM)-XSUM(MM)-XSUM(MM)-XSUM(MM)-XSUM(MM)-XSUM(MM)-XSUM(MM)-XSUM(MM)-XSUM(MM)-XSUM(MM)-XSUM(MM)-XSUM(MM)-XSUM(MM)-XSUM(MM)-XSUM(MM)-XSUM(MM)-XSUM(MM)-XSUM(MM)-XSUM(MM)-XSUM(MM)-XSUM(MM)-XSUM(MM)-XSUM(MM)-XSUM(MM)-XSUM(MM)-XSUM(MM)-XSUM(MM)-XSUM(MM)-XSUM(MM)-XSUM(MM)-XSUM(MM)-XSUM(MM)-XSUM(MM)-XSUM(MM)-XSUM(MM)-XSUM(MM)-XSUM(MM)-XSUM(MM)-XSUM(MM)-XSUM(MM)-XSUM(MM)-XSUM(MM)-XSUM(MM)-XSUM(MM)-XSUM(MM)-XSUM(MM)-XSUM(MM)-XSUM(MM)-XSUM(MM)-XSUM(MM)-XSUM(MM)-XSUM(MM)-XSUM(MM)-XSUM(MM)-XSUM(MM)-XSUM(MM)-XSUM(
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         INTERPOLATION FOR EDGE PROPERTY VALUES AT
                                                                                          VSUM(1) = VSUM(1) + C(1, 1) + SHP
VXSUM(1) = VXSUM(1) + C(1, 1) + H+CHP
VXSUM(1) = VXSUM(1) + CX(1, 1) + H+CHP
VXNSUM(1) = VXSUM(1) + CX(1, 1) + H+CHP
CONTINUE
CONTINUE
CONTINUE
VSUM(MM) = 0.000
VSUM(MM) = 0.000
VSUM(MM) = 0.000
VXSUM(MM) = 0.000
05/12/77
DATE
                                                                                                                                                                                                   208
```

DAYONA = HXXXXXIII HAD FACE (RAYSUNIN) - FACE (R 140 150 160 170

SUBROUTINE CHANGX
IMPLICIT REAL*8(A-H, D-Z)
CHAN
ERAL*8 NOSE
NOSE
COMMUN /CONVEC, CONV.NITI,NITZ,NIT3,NIT
COMMUN /CONVEC, CONV.NITI,NITZ,NIT3,NIT

-165-

```
DX=0.5DQ*DX
CONTINUE
IF (X.EQ.XSTA(INJCT)) DX=DX/10.0D0
                                       2 8000
                                                 40
                                                   20
                         -166-
```

```
05/12/77
DATE
                       0000
          10
            စ္ထိပ္ရပ္ရပ္ရပ္
                   06
        09
    SUS
                  -167-
```

DATE 150

05/12/77

```
DIMENSION FGLD(101), GOLD(101), TOLD(101), TS(101,2)
DIMENSION GNN(2,101,2)
DIMENSION GNN(2,101,2)
NITOT=0
NITOT=0
ETAZSV=0.000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         OBTAIN EDGE, AND WALL INVISCID VALUES AND SET
MIDPOINT VALUES TO VALUES OBTAINED FOR THIS PLANE AT
THE LAST STREAMNISE STATION
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    BEGIN THE DO-LOOP FOR STEPPING AROUND THE BODY
                                                                                                                                                                                                                                                                                                                                         BEGIN THE LOOP FOR STEPPING DOWNSTREAM
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     DD 400 K=1.KEND

LC=3

LC=3

IF (K-EQ-1) LC=1

IF (K-EQ-1) AND-L-GT-1) LC=2

IF (K-EQ-1) AND-L-GT-1) LC=2

IF (K-EQ-1) AND-L-GT-1) LC=2

MX=M/MET RQ-000

IF (KLAST-GT-0) GO TO 30

METTE (6,440)

IF (K-GT-KLAST) GO TO 370

IF (K-GT-KLAST) GO TO 370
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                CALL EGPROP (LC)
CALL MALL
DO J=1, IE
FW(J)=F1, J, Z)
GW(J)=G1, J, Z)
GW(J)=G1, J, Z)
GW(J)=T(1, J, Z)
FW(J)=T(1, J, Z)
FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=FW(J)=
                                                                                                                                                                                                                          0002
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         20
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          2400000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               SOU
```

05/12/17

DATE

```
DATE 05/12/77

SAVE THE PROFILES FROM THE LAST ITERATION

OUT OF THE PROFILES FROM THE LAST ITERATION

OUT OF THE STANDARD STANDA
```

```
AND G ARRAYS
                                                                                                                     IF (NIT-LE-NIT3) GO TO 200
WRITE (6.420) K-L-NIT
IF (K.GI.1) GO TO 190
NITOT=NIT-NIT (1.13*NIT3)) WRITE (6.430) K,L.NITTOT
IF (NITTOT-GI.(3*NIT3)) STOP
CALL CHANGX
NIT = 0
0.0 TO 40
CONTINUE
KLAST=K-1
GO TO 370
CONTINUE
                                                                                                                                                                                       01F=0.000
01F=0.4=2.1E
01FF=0A88[F(2, J.2)-F0LD(J))/DABS(F0LD(J))
1F (01FF.GT.01F) 01F=01FF
1F (G0LD(J).EQ.0.000) G0 T0 210
                                                                                                                                                                               CONVERGENCE TEST ON ALL POINTS OF THE F
                                                                                                                 THE SOLUTION IS CHECKED FOR CONVERGENCE
05/12/17
DATE
                                                                                                                                                                        2000
                                                              150
                                                                                               55
                                                                                                     -171-
```

```
TEST THE ASYMPTOTIC NATURE OF THE SOLUTION AND ADJUST ETAINF IF NEGESARY.

IF NEGESARY.

IF KADETA.EQ.D.) GO TO 300

IF KADETA.EQ.D.) GO TO 300

IF KADETA.EQ.D.) GO TO 200

IF TADETA.EQ.D.) GO TO 200

IF TEST. ODD.

                                                                                                                                                                                                            DIFF=DABS(G(2, J, 2)-GOLD(J))/DABS(GOLD(J))

IF (DIFF.GT.DIF) DIF=DIFF
CONTINUEST.CONV) GO TO 60

IF (NIT.EQ.1) GO TO 60
                                                                                                                                                                                   SOLVE THE ENERGY CONSERVATION EQUATION
05/12/77
DATE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   27000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  260
                                                                                                                                                                   vvv
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      -172-
```

```
05/12/77
DATE
  280
    290
      300
        vvv
           0000
```

```
### STATE OF THE PROPERTY OF T
   05/12/77
DATE
                                                                                                                                                                                                                     310
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                350
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            340
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     -174-
```

```
FILE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  DO 10 J=IMIN,IMAX
K=J
[F (K.LI.(IMIN+1)) K=IMIN+1
[F (K.LI.(IMIN+1)) K=IMAX-1
[CAL K.GI.(IMAX-1)) K=IMAX-1
[CONTINUS (X(J),X(K-1),X(K),X(K+1),F(K-1),F(K),F(K+1),FP(J))
EFFURN
ENDRA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    u
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    OF
                                                                CONTINUE
NITTOT=0
NITTOT=0
NITTOT=0
NITTOT=0
NITTOT=0
VOLD(K)=VE2
CVOLD(K)=VE2
CVOLD(K)=VE3
CVOL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  SUBROUTINE DERIVA CALCULATES THE FIRST DERIVATIVES RESPECT TO X AND RETURNS THE ARRAY FP.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       SUBROUTINE DERIV (F,x,IMAX,IMIN,FP)
IMPLICIT REAL*8 (A-H,0-2)
DIMENSION F(101), X(101), FP(101)
05/12/77
DATE
                                                                                                                                                                                                                                                                                                                                                                                                                                             CC 4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    430
                                                                             380
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              10
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    0000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           -175-
```

05/12/77 DATE

SUBROUTINE DERIVE (FX,II,KK,X,IMAX,IMIN,FPX)
IMPLICIT REAL*8 (A-H,O-Z)
REAL*8 NOSE
COMMON /INTEGR/ IE,IM,KEND,KENDZ,KLX,KOUM,L,NBLNII,IND,KPRI,L
PR.LPR
DIMENSION X(101), FX(2,101,3), FP(101), F(101), FPX(2,101,3) F WITH DO 10 J=1, [E F[J]=FX[II.J.KK) CONTINUE DO 20 J=IMIN, IMAX K=J ( IMIN+1) K = IMIN+1 IF (K, CT. [IMAX-1] K = IMAX-1 [F (K, GT. [IMAX-1] K = IMAX-1 CONTINUE FPX[II.J.KK]=FP(J) CONTINUE FPX[II.J.KK]=FP(J) RETURN 90 SUBROUTINE DERIVA CALCULATES THE FIRST DERIVATIVES RESPECT TO X AND RETURNS THE ARRAY FP.

SUBROUTINE EDGCOF (LC)

REAL#8 NOSE

REAL#8 NOSE

COMMON / FOSE / LC |

REAL#8 NOSE

COMMON / FOSE / LC |

COMMON / SOC / LC |

COMMON / COOR / LC |

COM

10 20 30 vvvv -176-

```
SUBRUUTINE LECOFF CALCULATE GROUPS OF EDGE QUANTITLES USED IN
THE COEFFICIENTS OF THE GOVERNING PARTIAL DIFFERENTIAL EQUATIONS
                                                                                                          PI=DARCGS(-1.000)
B1=X[**CEE**1)** 560 T.00
B1=X[**CEE**1)** 560 T.00
B1=X[**CEE**1)*** 560 T.00
B1=X[**CEE**1)**** 560 T.00
B1=X[**CEE**1)**** 560 T.00
B1=X[**CEE**1)**** 560 T.00
B1=X[**CEE**1)*** 560 T.00
B2=X[**CEE**1)*** 560 T.00
B2=X[**CEE**1)** 560 T.00
B2=X[**CEE**1)*** 560 T.00
B2=
COMMON /PHI/ DALBOX,DALBOW,ALB6
COMMON /MSOLVE/ DW.W
DIMENSION ALBOLO(61)
DATA SHARP,BLUNI/SHSHARP,5HBLUNI/
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        20
                                                                                                                                                                                                                                                                                                                                                                                                                            10
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          30
                                                        0000
```

-177-

05/12/17

DATE

```
SUBROUTINE EDYVIS

REAL*8(A-H,D-Z)

REAL*8(A-H,D-Z)

REAL*8(A-H,D-Z)

REAL*8(A-H,D-Z)

REAL*8(A-H,D-Z)

REAL*8(A-H,D-Z)

REAL*8(A-H,D-Z)

REAL*8(A-H,D-Z)

REAL*8(A-H,D-Z)

REAL*8(B-H,VOL(101)*)*

COMMON / FESTRAM RHOINF PINF, TFS. UFS. AMUINF, CP.REINF, PR

COMMON / FESTRAM RHOINF PINF, TFS. UFS. AMUINF, CP.REINF, PR

COMMON / SOLP PR

COMMON / SOLP PR

COMMON / SOLE PR

COMMON / SOLD PR

COMMON / SOLE PR

COMMON / REAL*, CMIDI, TW(101)*

COMMON / REAL*, CMIDI, TW(10
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    DAL3BX
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    , £13.6,10H
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    11
86=84

AL8=2.00

AL2=0.00

AL3=1.00

CONTINUE

IM T = 0

IF (10.00) 60 TO 50

WRITE (6.60) 81,82,83,84,85,86

WRITE (6.70) AL1,4L2,4L3,XLAMB,DAL3DX

RETURN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          FORMAT (1H0,7H81-6 = ,6E13.6)
FORMAT (1H0,8HAL1-3 = ,3E13.6,9H XLAM8
16)
```

05/12/77 DATE

```
| F (XI.EJ.O.DDO) RETURN | CALCULATE THE PHYSICAL NORMAL DISTANCE PROFILE | EPSYD=DSQRI(I.DD/REINF) | EPSYD=DSQRI(I.DD/REINF) | EPSYD=DSQRI(I.DD/REINF) | EPSYD=DSQRI(I.DD/REINF) | EPSYD=DSQRI(XI/Z.DD/UEW) | EPSYD=DSQRI(XI/Z.DD/UEW) | EPSYD=DSQRI(XI/Z.DD/UEW) | EPSYD=DSQRI(XI/Z.DD/UEW) | EPSYD=DSQRI(XI/Z.DD/UEW) | EPSYD | EPS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      DO 40 N=1, IE
DO 40 N=2, IS
DO 40 N=2, IS
DO 50 N

IF IK = 60 1 D

IF IK =
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                CALCULATE THE TOTAL SHEAR FOR USE IN THE VAN DRIEST DAMPING TERM CALCULATE THE SCALAR VELOCITY FUNCTION USED IN THE EDDY VISCOSITY
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            DO 50 N=1, IE
VWPLUS=CWALL *UFS/DSQRI(TAU(;)/RHOINF)
ASTAR=26.0D0*DEXP(-5.9D0*VWPLUS)
ASTAR=26.0D0*DEXP(-5.9D0*VWPLUS)
CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             CALCULATE THE VAN DRIEST DAMPING TERM FOR THE INNER LAW
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          CALCULATE THE INNER EDDY VISCOSITY, VAN DRIEST EQ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              00 60 N=1, IE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           2000
2000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         3 000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     2000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           2000
                 0 000
```

-179-

```
CALCLATE THE INNER EDDY VISCOSITY, REICHARDI ED.

GALCLATE THE INNER EDDY VISCOSITY, REICHARDI ED.

GALCLATE THE INNER EDDY VISCOSITY, REICHARDI ED.

GALCLATE THE FORE EDDY VISCOSITY REICHARDINE FORE EDDY WERE

FORE EDDY FORE EDDY VISCOSITY REICHARDINE FORE EDDY WERE

GALCLATE EDDE FORE EDDY VISCOSITY FOR BOX OF THE FORE EDDY WERE

FORE EDDY FORE EDDY VISCOSITY FOR BOX OF THE F
                                                                                                   EPSININ)=RHOINF*AKSTAR**2*Y(N)**2*DAMP(N)*SCALAR(N)/AMUINF
CONTINUE
60 TO 110
05/12/77
DATE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               140
                                                                                                                                                  3 0000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                180-
```

SUBROUTINE ECPROP (LC)

REAL*8 NOSE

REAL*8 EDYV1320 EDYV1330 EDYV1340 EDYV1350 EDYV1350 CONTINUE 50 160 J=2, 1E Y(J)=Y(J)ZEPSVD RETURN 160

000 000

10

05/12/77

DATE

 $\begin{array}{c} 1 & \text{the multiper mentile ment$ 

20

05/12/17

DATE

```
SUBROUTINE ENERGY (LC)
REAL*8(A-H,O-Z)
REAL*8(
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                IF (NOSE.EQ.BLUNT.AND.L.EQ.1) PNC=DSART(2.0D0#DUE2DX)
DVDX=DVE2DX
DVDX=DVE2DX
DVDX=DVE2DX
DRDX=DVE2DX
DRDX=DVE2DX
IF (L.FQ.1) GG TG 50
XM=X-2X*(1.0D0-CR1)
RM=RE2X*(1.0D0-CR1)
RM=RE2X*(1.0D0) GG TG 50
XM=X-1 CR1.EQ.1.0D0) GG TG 50
XIM=XI
EGGGGF (LC)
RETURN
RETURN
                                                                                                                                                                                                                                                                                                                                                                                                                                                  PROPERTIES AT THE BOUNDARY LAYER EDGE ARE CALCULATED
                                                                                                                                                                                                            GO TO 40
                                                                                                             05/12/71
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        20
                                                                                                                                                                                                                                                                                                                                                                                                                  000
```

```
COMMON / ALCURD/ XIIXXI DXI; ALCULD (1011), ADTEST, KADETA

COMMON / ALCURD/ KIIXI PINISTI LANGUE COMMON / ALCURD/ KANDED KANDER COMMON / ALCURD/ KAND
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                50
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             30
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              04
```

UUUU

243000 F030000 SUBROUTINE FD3 CALCULATES THE FIRST DERIVATIVE-FX-CORRESPONDING TO POINT X USING 3 POINT LAGRANGIAN DIFFERENTIATION FORMULA. SUBROUTINE FD3 (X,X1,X2,X3,F1,F2,F3,FX) IMPLICIT REAL*8 (A-H,O-Z)

ال

DERIVATIVE-FX-CORRESPONDING DIFFERENTIATION FORMULA SUBROUTINE FDS CALCULATES THE FIRST OFRIVATIVE—FX—CORRESPONDIN TO POINT X USING 5 POINT LAGRANGIAN DIFFERENTIATION FORMULA ASSUMES XI "LE. X "LE. X5.

Al=(X-X4)*(X-X5)*(2.0*X-X1-X3)*(X-X3)*(2.0*X-X4-X5) A3=(X-X4)*(X-X5)*(2.0*X-X1-X3)*(X-X1)*(X-X3)*(2.0*X-X1-X3)*(X-X1)*(X-X3)*(2.0*X-X1-X3)*(X-X1)*(X-X2)*(2.0*X-X1-X5) A3=(X-X4)*(X-X3)*(X-X1)*(X-X2)*(2.0*X-X1-X5) A3=(X-X3)*(X-X3)*(X-X3)*(X-X1)*(X-X2)*(2.0*X-X3-X5) A3=(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X3)*(X-X SUBROUTINE FD5 (X,X1,X2,X3,X4,X5,F1,F2,F3,F4,F5,FX) IMPLICIT REAL*8 (A-H,D-Z) ×3 .LE. A1=2.0*x-x2-x3 A2=2.0*x-x2-x3 D1=(X1-x2)*(X1-x3) D2=(X2-x1)*(X2-x3) D3=(X3-x1)*(X2-x3) C1=A101 C1=A101 C3=A2102 C3=A3103 FX=C1*F1+C2*F2+C3*F3 × ·LE. × 05/12/77 ASSUMES

 $\begin{array}{c} \texttt{cuttaff} \\ \texttt{cuttaff}$ 

THIS SUCREMENT OF THE SECRETAGE CONFILCTENTS OF THE STORY INTEGRAL OF THE STORY INTEGRAL

05/12/77

DATE

00000



05/12/17 DATE

5 3000

30 8000 20

```
SUBROUTINE HOFN

IMPLICIT REAL*8(A-H,O-Z)

REAL*8 HOSE

REAL*8 HOSE

COEFFICIENTS AND THEIR DERIVATIVES

COMMON /INTEGR/ IE,IM,KEND,KENDZ,KLX,K,L,NBLNTI,IND,KPRT,LPRT,KPR,HOFN

COMMON /XICORD/ XI,XXI,OXI,XIOLD

COMMON /XICORD/ XI,XXI,OXI,XIOLD

COMMON /XICORD/ XI,XXI,OXI,XIOLD

COMMON /XICORD/ XI,XXI,OXI,XIOLD

COMMON /XICORD/ XEDG

LOSS WAX, OSR WAY, DRODM, DZRDX, DZRODW, DZRDXW, DZRDXW, DJRXDWW, DHADDW, DYRDWW, DYRDWW, DHADDW, DYRDWW, DYRDWW, DHADDW, DYRDWW, DHADDW, DYRDWW, DHADW, HOFN 150

COMMON / NEIGH / MX(IOI), HWM(IOI), HWM(IOI), HXW(IOI), HXN(IOI), HGFN 180

COMMON / NCGORD/ XN(IOI), ETAX, ETAW
                             05/12/7
DATE
                                                                       100
                                                                                                                                                                                                          110
                                                                                                                                                                                                                                                                                          0000
```

```
CCOMMON / FROLVE PROPERTY OF THE PROPERTY OF T
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            40
```

05/12/17

DATE

```
110
             100
  20
     09
           06
        80
                SOU
```

-190-

05/12/77

DATE

```
05/12/17
DATE
         130
             140
               150
                 160
                        8000
       120
```

SOU

07000 200

-192-

```
40 10 240

CONTINUE

THE SOUND SOUND
05/12/77
DATE
                                                                                  220
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             250
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          540
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   260
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 270
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               283
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           290
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      233
```

-193-

```
SUBROUTINE INIT

IMPLICIT REAL*8 (A-H,0-Z)

REAL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            FORMAT (1HO,5HTX = ,E13.6,6H TW = ,E13.6,7H TXX = ,E13.6,6HTXW | E13.6,7H TMX = ,E13.6,6HTXW | FORMAT (1HO,4HR = ,E13.6,6H RX = ,E13.6,7H RWX 
                                                                                                                                                                                                                                                                                                                                                                                                        0
                                                                                                                                                                                                                                                                                                                                                                                                             11
                                                                                                                                                                                                                                                                                                                                                                                               CALCULATE METRIC COEFFICIENTS FOR PROFILE POINTS WHEN TVC
                                                                                                                                                       CALL DERIV (HXN, ETA, IE, I, HXNN)
CALL DERIV (HW, ETA, IE, I, HWN)
RETURN
CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 00 320 1=1,1E
HX([)=HX0
HW([)=HW0
05/12/17
DATE
                                                                                                                                                                                                                                                                                                                        2
2
2
3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               320
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     340
```

```
COMMON VIRBUNIT ASTAK.AKSTAK.ALAMOA.YSUBLEVSCTVIIII).EDVLAW, FPLUS INIT 1900
COMMON VIRBUNIT ASTAK.AKSTAK.ALAMOA.YSUBLEVSCTVIIII).EDVLAW, FPLUS INIT 2000
COMMON VICTORIO (XITATIONI).PRINTED TAWNSOLVE
ALTI- 2000
VICTORIO (XITATIONI).PRINTED TAWNSOLVE
VICTORIO (XITATIONI).PRI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                DW=1.000

DFT4[1=0.000

ETA[1]=0.000

ETA[1]=0.0000

ETA[1]=0
```

```
0000000000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          SUBROUTINE INPUT
REAL*8 NOSE
REAL*8 NOSE
COMMON /CONVECTOR OF TENDER OF TEND
                                                                                                                                                                                                                                     CALCULATE INITIAL PROFILES
                                                                                DG 40 1=3 1M
DETA(1)=ETAFAC*DETA([-1)
ETA(1)=ETA(1-1)+DETA(1)
CONTINUE
DETA(1E)=DETA(1M)*ETAFAC
  05/12/17
DATE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        100
                                                                                                                                                                                                                                                                                                                                                                         200
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                06
                                                                                                                                           3 000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      80
```

-196-

```
COMMON /GEOM/ ALPHA,NOSE,RNOSE,MLST,XXX,MX
COMMON /INTEGT/ INJCT,NOINJ,MASTRN
COMMON /INTEGR/ IE,IM,KEND,KENDZ,KLX,K,L,NBLNTI,IND,KPRT,LPRT,KPR,INPU
LLPR
COMMON /STAG, FSTAG, PNC, DWSTAG
COMMON /SURFAZ, CHALL,CMIND,FWALL,TWALL,XTW(500),TWX(500),TNPU
COMMON /SURFAZ, CHALL,CMIND,FWALL,TWALL,XTW(500),TWX(500),TNPU
COMMON /THEE/ LABEL(2)
COMMON /TRANS,KONSET,XIF,CHIZ(1)11,CHIMAX,XBAR
INPU
COMMON /TRANS,KONSET,XIF,CHIZ(1)11,CHIMAX,XBAR
INPU
COMMON /TRANS,KONSET,XIF,CHIZ(1)11,CHIMAX,XBAR
INPU
COMMON /TRANS,KONSET,XIF,CHIZ(1)11,CHIMAX,XBAR
INPU
COMMON /ZCOORD, FTAR,AKSTAR,ALAMDA,YSUBL,EVSCF((101),EDYLAW,EPLUSINPU
L(101),LAMTBB
COMMON /ZCOORD, FTAR,AKSTAR,ALAMDA,YSUBL,EVSCF((101),EDYLAW,EPLUSINPU
COMMON /ZCOORD, FTAR,AKSTAR,AKSTAR,ALAMDA,YSUBL,EVSCF((101),EDYLAW,EPLUSINPU
COMMON /ZCOORD, FTAR,AKSTAR,AKSTAR,ATON,DXDLD,DSTALIOI),ADTEST,KADETA INPU
COMMON /TYCURY,SFC
COMMON /TYCURY,SFC
COMMON /TYCURY,SFC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          INPUT QUANTITIES ARE READ IN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            THE PROPERTY OF THE PROPERTY O
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        THE
```

UUU

```
PATE 05/12/27

READ (1)-00) AND LINE
READ (1)-00) AND READ (1)-00 AND LINE
READ (1)-00) AND READ (1)-00 AND LINE
READ (1)-00) AND READ (1)-00 AND LINE
READ (1)-00) AND LINE
READ (1)-00 AND LINE
```

ASSUMES X1 .LE. X .LE. X3.

A1=(x-x2)*(x-x3) A3=(x-x1)*(x-x3) A3=(x-x1)*(x-x3) D1=(x1-x2)*(x1-x3) D3=(x1-x2)*(x1-x3) D3=(x3-x1)*(x2-x3) C1=x1-x2 C3=x2/D2 C3=x2/D2 C3=x3/D3 EC1*F1+C2*F2+C3*F3 EC1*F1+C2*F2+C3*F3

IMPLICIT REAL #8(A-H, 0-2)

SUBROUTINE INTER3 INTERPOLATES FOR THE VALUE F CORRESPONDING POINT X USING 3 POINT LAGRANGIAN INTERPOLATION.

SUBROUTINE INTERS (x,x1,x2,x3,x4,x5,F1,F2,F3,F4,F5,F)

IMPLICIT REAL#8 (A-H,0-Z)

SUBROUTINE INTERS INTERPOLATES FOR THE VALUE F CORRESPONDING POINT X USING 5 POINT LAGRANGIAN INTERPOLATION FORMULA.

ASSUMES X1 "LE X "LE XS.

A1=(X-X2)*(X-X3)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X5)*(X-X

```
SUBROUTINE COUT.

SUBROUTINE COUT.

SUBROUTINE COUT.

SCHOOL FEEL *** (4-H,0-Z)

COMMON FEEL *** (4-H,
```

-201-

```
SUBROUTINE PHIMOM (LC)

IMPLICIT REAL#8(A—H, D—Z)

REAL#8(A—H, D—Z
                                                                                                                                                                                                                     | FORMAT (100%, 6HX] = , E13.6, 4X, 6HDX| = , E13.6, 4X, 6HCWALL=, E13.6, 5X, DUTZ 710 0UTZ 7
05/12/17
       DATE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    001
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    2000000
                                                                                                                                                                                                                                                          000
```

```
COMMON /GECOFF HXJHX0[10]; **RACHIO1]; **RACHIO1]; **RHV[101]; **R
```

JUJU

DATE 05/12/77

00 000

000 -207-

| THE PROPERTY | THE

```
POINT
  CALCULATE HEAT TRANSFER FOR A BLUNT CONE STAGNATION
     QMINF=EPSVD#TE2*05QMT(2,00*DUE2DX)*TN(2,1,2)/PRQMINF=QMINF*(-1,000)
QMINF=QMINF*(-1,000)
QMSTMINF*RHOINF*UFS**3*1.286D-03/PR
QMSTMG=QMOQMO=1.000
                   CONTINUE
RETURN
END
                 0
                                                                                              01
                                                                                                           20
Jugar
                                                          0000000
```

-208-

05/12/17

DATE

```
| COLUMN | C
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             50 50
```

SOLV

05/12/77

DATE

END

05/12/77 DATE

20 00

```
05/12/77
DATE
    100
 10
  80
   06
```

JUU

SUBROUTINE XMOM (LC)

XMOM 1

-212-

-213-

```
A5(J)=-X[*GW(J)*AL2/2.DO/HW(J)/HWDHWO(J)

COTING
CO
                                    200 000
                                                                                                                                                                                                                                                                                                                                                                                     30
```

05/12/77

DATE

-214-