Fossil-fuel related PM_{2.5} pollution global mortality estimates using GEOS-Chem

Karn Vohra (kxv745@bham.ac.uk), Alina Vodonos, Joel Schwartz, Eloise A. Marais, Melissa P. Sulprizio, Loretta J. Mickley

Why fossil-fuel related PM_{2.5}?

4.2 million deaths attributed to ambient PM_{2.5} in 2015

[Cohen et al. 2017]

In this study, we use a chemical transport model GEOS-Chem to estimate PM_{2.5} contribution from fossil-fuel combustion

Previous health impact models have been useful but have had certain limitations

Integrated Exposure-Response (IER)

[Burnett et al., 2014]

Data includes active and passive smoking to address outdoor $PM_{2.5} > 40 \mu g m^{-3}$

Global Exposure Mortality Model (GEMM)

[Burnett et al., 2018]

41 cohort studies and model constrained using 4 parameters

We use concentration-response-function (CRF) from the meta-analysis of 53 studies

- Flexible shape of CRF
- Incorporates more studies
- Wider concentration and population age range
- Includes death from allcauses

[Vodonos et al., 2018]

We carry both global and regional scale GEOS-Chem simulations replicating 2012 pollution conditions

GEOS-Chem v10-01, driven by 2012 GEOS-5 offline assimilated meteorology

Regional (fine grid resolution : $0.5^{\circ} \times 0.67^{\circ}$)

Simulation 2: Fossil-fuel turned OFF

We carry both global and regional scale GEOS-Chem simulations replicating 2012 pollution conditions

GEOS-Chem v10-01, driven by 2012 GEOS-5 offline assimilated meteorology

Fossil-fuel estimates from GEOS-Chem simulations

China, Bangladesh and India have the highest annual mean fossil-fuel PM_{2.5} in 2012 [Vohra et al., in review, *Environ. Res.*]

Methodology for health impact calculation

Fossil-fuel PM_{2.5} from GEOS-Chem

Baseline mortality from GBD

Meta-analysis CRF from cohort studies

We use the derived fossil-fuel PM_{2.5} with baseline mortality in the meta-analysis CRF to estimate global mortality

Estimated global mortality from fossil-fuel combustion

10.2 million deaths attributed to fossil-fuel PM_{2.5} in 2012

[-47 million, 17 million]

[Vohra et al., in review, Environ. Res.]

Estimated global mortality from fossil-fuel combustion

10.2 million deaths attributed to fossil-fuel PM_{2.5} in 2012

[-47 million, 17 million]

[Vohra et al., in review, Environ. Res.]

Estimated global mortality from fossil-fuel combustion

30-50% decline in China

[Zhai et al., 2019]

[Vohra et al., in review, *Environ. Res.*]

Dramatic reduction in PM_{2.5} levels in China decreases premature deaths by 1.5 million; no evidence observed for India yet

Conclusions

- We estimate global mortality of **10.2 million** in 2012 from fossil-fuel PM_{2.5} derived using a chemical transport model GEOS-Chem and meta-analysis CRF
- Greatest mortality impact is estimated for regions with substantial fossil-fuel PM_{2.5}, notably China (~3.9 million) and India (~2.5 million) in 2012. Estimates for China decrease to ~2.4 million in 2018 because of decline in fossil fuel emissions
- Our estimates for fossil-fuel related PM_{2.5} are higher than premature mortality estimates from total PM_{2.5} mainly because of the choice of **CRF**

Any questions? kxv745@bham.ac.uk

