THE HIGHER ALGEBRAIC K-THEORY OF STABLE ∞-CATEGORIES

KEIMA AKASAKA

Abstract. We summarize the higher algebraic K-theory of stable ∞ -categories.

Contents

1. Introduction	1
1.1. Notation	1
2. Preliminaries	2
2.1. The Grothendieck Group	2
2.2. Arrow Categories and Twisted Arrow Categories	2
2.3. Verdier Sequences and Squares	3
2.4. Additive and Grouplike Functors	5
2.5. Waldhausen's Fibration Theorem	6
3. The Higher K-Theory of Stable ∞ -Categories	6
3.1. Simplicial Objects	6
3.2. The algebraic K-Theory	7
3.3. Waldhausen's S-Construction	9
4. The Additivity Theorem	10
4.1. The Additivity Theorem	10
4.2. The algebraic K-Theory Spectrum	10
5. The Universality Theorem	11
6. The Localization Theorem	12
7. The Cofinality Theorem	13
References	14

1. Introduction

This paper is a summary of the workshop on the higher algebraic K-theory held in Kyoto in September 2024. Although we do not plan to write a detailed introduction, we are making it available to the public. To make it easier to read, all proofs are included in Appendix (if we write).

- 1.1. **Notation.** From here all categories are assumed to be ∞ -categories. We let
 - An denote the category of anima.
 - Cat denote the category of small categories.
 - Cat^{lex} denote the category of small categories which admit finite limits, with left exact functors
 - Catst denote the category of small stable categories with exact functors.
 - Cat^{perf} denote the category of small idempotent complete stable categories with exact functors
 - Sp denote the category of spectra.

2. Preliminaries

2.1. The Grothendieck Group.

Definition 2.1. Let (\mathcal{C}, \oplus) be a stable category, and let X and Y be objects of \mathcal{C} . We let [X] denote the connected component of X. The connected component set $\pi_0(\operatorname{core} \mathcal{C})$, together with the operation + defined by

$$[X] + [Y] := [X \oplus Y]$$

forms an ordinary monoid $(\pi_0(\operatorname{core} \mathcal{C}), +)$. We define the *Grothendieck group* $\mathcal{K}_0(\mathcal{C})$ of \mathcal{C} as

$$\mathcal{K}_0(\mathcal{C}) := (\pi_0(\operatorname{core} \mathcal{C}), +)/\sim$$

where \sim is the equivalence relation generated by the following relation: [X] = [X'] + [X''] whenever $X' \to X \to X''$ is a cofiber sequence in \mathcal{C} .

Remark 2.2. The connected component set $\pi_0(\text{core }\mathcal{C})$ is the set of equivalence classes of objects of \mathcal{C} . Moreover, the Grothendieck group $\mathcal{K}_0(\mathcal{C})$ is actually abelian.

- (1) The zero object 0 of \mathcal{C} is a unit object [0] of $\mathcal{K}_0(\mathcal{C})$, since $X \to X \to 0$ is a cofiber sequence in \mathcal{C} for every object X of \mathcal{C} .
- (2) For every object X of \mathbb{C} , $[\Omega X]$ and $[\Sigma X]$ are inverse objects of [X] in $\mathcal{K}_0(\mathbb{C})$, since $\Omega X \to 0 \to X$ and $X \to 0 \to X$ are cofiber sequences in \mathbb{C} .
- (3) For every objects X and Y of \mathcal{C} , we have [X] + [Y] = [Y] + [X], since $X \to X \oplus Y \to Y$ and $Y \to X \oplus Y \to X$ are cofiber sequences in \mathcal{C} .

Remark 2.3 (Eilenberg swindle). Let \mathcal{C} be a stable category with countable coproduct. Then the Grothendieck group $\mathcal{K}_0(\mathcal{C})$ is trivial. It follows from that $X \to \bigoplus_{n \geq 0} X \to \bigoplus_{n \geq 1} X$ is a cofiber sequence in \mathcal{C} for every object X of \mathcal{C} , and that the last two terms are equivalent.

Remark 2.4. The construction $\mathcal{C} \mapsto \mathcal{K}_0(\mathcal{C})$ determine a functor $\mathcal{K}_0 : h \operatorname{Cat}^{\operatorname{st}} \to \operatorname{Ab}$.

2.2. Arrow Categories and Twisted Arrow Categories.

Definition 2.5. Let \mathcal{C} be a category. We define the arrow category $Ar(\mathcal{C})$ of \mathcal{C} as

$$Ar(\mathcal{C}) := Fun([1], \mathcal{C}).$$

Definition 2.6. Let C be a category. We define the *twisted arrow category* TwAr^r(C) of C as a right fibration classifying the mapping anima functor. That is, the source-target projection

$$(s,t): \operatorname{TwAr}^{\mathbf{r}}(\mathcal{C}) \to \mathcal{C} \times \mathcal{C}^{\mathrm{op}}$$

is the right fibration classifying the mapping anima functor $\mathrm{Map}_{\mathcal{C}}: \mathcal{C} \times \mathcal{C}^\mathrm{op} \to \mathrm{An}^\mathrm{op}$.

Remark 2.7. Let \mathcal{C} be a category. Let see the objects and morphisms of $Ar(\mathcal{C})$ and $TwAr^{r}(\mathcal{C})$.

- The objects of both are both morphisms in C.
- A morphism from f to g in $Ar(\mathcal{C})$ is a diagram, depicted as

• A morphism from f to g in TwAr^r(\mathcal{C}) is a diagram, depicted as

Notation 2.8. Let \mathcal{C} be a stable category. We let $Seq(\mathcal{C})$ denote the full subcategory of $Fun(\Delta^1 \times \Delta^1, \mathcal{C})$ spanned by the bifiber sequences in \mathcal{C} . We have an equivalence $Seq(\mathcal{C}) \simeq Ar(\mathcal{C})$, so that the category $Seq(\mathcal{C})$ is stable.

Notation 2.9. Let \mathcal{C} be a stable category. We define functors from $Seq(\mathcal{C})$ to \mathcal{C} as

$$\begin{aligned} & \text{fib}: \text{Seq}(\mathcal{C}) \to \mathcal{C}: (X \to Y \to Z) \mapsto X \\ & \text{mid}: \text{Seq}(\mathcal{C}) \to \mathcal{C}: (X \to Y \to Z) \mapsto Y \\ & \text{cofib}: \text{Seq}(\mathcal{C}) \to \mathcal{C}: (X \to Y \to Z) \mapsto Z. \end{aligned}$$

2.3. Verdier Sequences and Squares.

Definition 2.10. Let $\mathcal{C} \xrightarrow{f} \mathcal{D} \xrightarrow{p} \mathcal{E}$ be a sequence in $\operatorname{Cat}^{\operatorname{st}}$. We will say that the sequence has vanishing composition if the composition pf is a zero object of $\operatorname{Cat}^{\operatorname{st}}$. In this case, the functor pf is equivalent to the functor $\mathcal{C} \to 0 \to \mathcal{E}$, since the full subcategory of $\operatorname{Fun}^{\operatorname{ex}}(\mathcal{C}, \mathcal{E})$ spanned by the zero objects is contractible.

Definition 2.11. Let $\mathcal{C} \xrightarrow{f} \mathcal{D} \xrightarrow{p} \mathcal{E}$ be a sequence in $\operatorname{Cat}^{\operatorname{st}}$ with vanishing composition. We will say that this sequence is $\operatorname{Verdier}$ if it is a bifiber sequence in $\operatorname{Cat}^{\operatorname{st}}$. In this case, we will refer to the functor f as the $\operatorname{Verdier}$ inclusion and to the functor p as the $\operatorname{Verdier}$ projection.

Definition 2.12. Let $\mathcal{C} \xrightarrow{f} \mathcal{D} \xrightarrow{p} \mathcal{E}$ be a Verdier sequence. We will say that this sequence is *split* if the functor p admits left and right adjoint functors. In this case, we will refer to the functor f as the *split Verdier inclusion* and to the functor p as the *split Verdier projection*.

Definition 2.13. Let $\mathcal{C} \xrightarrow{f} \mathcal{D} \xrightarrow{p} \mathcal{E}$ be a sequence in $\operatorname{Cat}^{\operatorname{st}}$ with vanishing composition. We will say that this sequence is Karoubi if its idempotent completion $\mathcal{C}^{\natural} \to \mathcal{D}^{\natural} \to \mathcal{E}^{\natural}$ is a bifiber sequence in $\operatorname{Cat}^{\operatorname{perf}}$. In this case, we will refer to the functor f as the Karoubi inclusion and to the functor p as the Karoubi projection.

We can characterize Verdier inclusions and projections.

Definition 2.14. Let $f: \mathcal{C} \to \mathcal{D}$ be an exact functor between stable categories. We will say that a morphism in \mathcal{D} is an *equivalence modulo* \mathcal{C} in \mathcal{D} if its (co)fiber belongs in the essential image of f. We define the category \mathcal{D}/\mathcal{C} as the localization of \mathcal{D} with respect to the set of equivalences modulo \mathcal{C} in \mathcal{D} . We will refer to the category \mathcal{D}/\mathcal{C} as the *Verdier quotient* of \mathcal{D} by \mathcal{C} .

The next proposition implies that the Verdier quotient is universal.

Proposition 2.15 ([NS18] Theorem.1.3.3). Let $f: \mathcal{C} \to \mathcal{D}$ be an exact functor between stable categories. Then

- (1) The Verdier quotient \mathcal{D}/\mathcal{C} is stable, and the localization functor $\mathcal{D} \to \mathcal{D}/\mathcal{C}$ is exact.
- (2) For every stable category \mathcal{E} , the restriction functor

$$\operatorname{Fun}^{\operatorname{ex}}(\mathfrak{D}/\mathfrak{C},\mathcal{E}) \to \operatorname{Fun}^{\operatorname{ex}}(\mathfrak{D},\mathcal{E})$$

is fully faithful, and its essential image consists of the functors which vanish after composing with f.

(3) The sequence $\mathcal{C} \to \mathcal{D} \to \mathcal{D}/\mathcal{C}$ is a cofiber sequence in Catst.

Proposition 2.16. Let $\mathcal{C} \xrightarrow{f} \mathcal{D} \xrightarrow{p} \mathcal{E}$ be a sequence in Catst with vanishing composition. The following conditions are equivalent:

- (1) The sequence is Verdier.
- (2) The functor f is fully faithful and its essential image is closed under retracts in \mathcal{D} , and the functor p exhibits \mathcal{E} as the Verdier quotient of \mathcal{D} by \mathcal{C} .
- (3) The functor f exhibits \mathcal{C} as the kernel of p, and the functor p is a localization.

We can characterize split Verdier inclusions and projections.

Proposition 2.17. Let $\mathcal{C} \xrightarrow{f} \mathcal{D} \xrightarrow{p} \mathcal{E}$ be a sequence in Catst with vanishing composition. The following conditions are equivalent:

- (1) The sequence is split Verdier.
- (2) The functor p admits fully faithful left and right adjoint functors.
- (3) The functor f admits fully faithful left and right adjoint functors.

We can characterize Karoubi inclusions and projections.

Proposition 2.18. Let $\mathcal{C} \xrightarrow{f} \mathcal{D} \xrightarrow{p} \mathcal{E}$ be a sequence in Cat^{st} with vanishing composition. The following conditions are equivalent:

- (1) The sequence is Karoubi.
- (2) The functor f is fully faithful and the functor p has the dense essential image, and the restriction to the essential image of p is a Verdier projection.

We can describe Karoubi sequences using Ind-categories.

Theorem 2.19 (Thomason-Neeman's localization theorem). Let $\mathfrak{C} \xrightarrow{f} \mathfrak{D} \xrightarrow{p} \mathcal{E}$ be a sequence in $\operatorname{Cat}^{\operatorname{st}}$ with vanishing composition. The following conditions are equivalent:

- (1) The sequence is Karoubi.
- (2) The sequence $\operatorname{Ind}(\mathfrak{C}) \to \operatorname{Ind}(\mathfrak{D}) \to \operatorname{Ind}(\mathcal{E})$ is Verdier (of non-necessarily small stable categories).

We introduce the relative versions of these sequences.

Definition 2.20. A square in Catst is called

- Verdier if it is (co)Cartesian and its both vertical maps are Verdier projections.
- split Verdier if it is (co)Cartesian and its both vertical maps are split Verdier projections.
- Karoubi if its idempotent completion is Verdier.

Remark 2.21. Every Verdier (split Verdier, Karoubi) square is also coCartesian in Catst.

Remark 2.22. Every Verdier square is a Karoubi square, since the idempotent completion preserves small limits. A Karoubi square is a Verdier square if and only if its both vertical maps are essentially surjective.

2.4. Additive and Grouplike Functors.

Definition 2.23. Let \mathcal{E} be a category with a terminal object, and let $F: \operatorname{Cat}^{\operatorname{st}} \to \mathcal{E}$ be a functor. We will say that F is *reduced* if the object F(0) is equivalent to a terminal object of \mathcal{E} , where 0 is a zero object in $\operatorname{Cat}^{\operatorname{st}}$.

Definition 2.24. Let \mathcal{E} be a category with finite limits, and let $F: \operatorname{Cat}^{\operatorname{st}} \to \mathcal{E}$ be a reduced functor. The functor F is called

- Verdier-localizing if it takes every Verdier square in Catst to a Cartesian square in E.
- additive if it takes every split Verdier square in Catst to a Cartesian square in \mathcal{E} .
- Karoubi-localizing if it takes every Karoubi square in Catst to a Cartesian square in \mathcal{E} .

Definition 2.25. Let \mathcal{E} be a category with finite limits, and let $F: \operatorname{Cat}^{\operatorname{st}} \to \mathcal{E}$ be an additive functor. We will say that F is $\operatorname{grouplike}$ if it lifts to the category $\operatorname{Mon}_{\mathbb{E}_{\infty}}(\mathcal{E})$ takes values in $\operatorname{Grp}_{\mathbb{E}_{\infty}}(\mathcal{E})$.

Definition 2.26. Let \mathcal{E} be a category with finite limits, and let $F: \operatorname{Cat}^{\operatorname{st}} \to \mathcal{E}$ be a reduced functor. We will say that F is *extension-splitting* if, for every stable category \mathcal{C} , the fiber-cofiber map

(fib, cofib) : Seq(
$$\mathcal{C}$$
) $\to \mathcal{C}^2$

induces an equivalence $F(\text{Seq}(\mathcal{C})) \to F(\mathcal{C})^2$.

Example 2.27. We give some (counter)examples.

- The core functor core : $Cat^{st} \to An$ is additive grouplike.
- The algebraic K-theory $\mathcal{K}: \operatorname{Cat}^{\operatorname{st}} \to \operatorname{An}$ and the algebraic K-theory spectrum $\mathcal{K}_{\geq 0}: \operatorname{Cat}^{\operatorname{st}} \to \operatorname{Sp}$ are Verdier-localizing (theorem 6.1) and grouplike (corollary 4.5), but not Karoubi-localizing.
- The functor $\mathcal{K} \circ (-)^{\natural} : \operatorname{Cat}^{\operatorname{st}} \to \operatorname{An}$ is Karoubi-localizing (corollary 7.8).
- The functor $\mathcal{K}_{\geq 0} \circ (-)^{\natural} : \operatorname{Cat}^{\operatorname{st}} \to \operatorname{Sp}$ is additive, but not Verdier-localizing.

Proposition 2.28. The additive, Verdier-localizing, Karoubi-localizing, and extension-splitting functors preserve finite products.

The additivity can be verified for split Verdier sequences if a codomain category $\mathcal E$ is stable.

Proposition 2.29. Let \mathcal{E} be a category with finite limits, and let $F: \operatorname{Cat}^{\operatorname{st}} \to \mathcal{E}$ be a reduced functor. If \mathcal{E} is stable, then the following conditions are equivalent:

- (1) The functor F is additive (resp. Verdier-localizing, Karoubi-localizing).
- (2) The functor F takes every split Verdier sequence (resp. Verdier sequence, Karoubi sequence) in $\operatorname{Cat}^{\operatorname{st}}$ to a fiber sequence in \mathcal{E} .

The relationship between Verdier-localizing and Karoubi-localizing functors is as follows.

Definition 2.30. Let $f: \mathcal{C} \to \mathcal{D}$ be a functor between categories. We will say that f has the dense image if, for every object X of \mathcal{D} , there exists an object Y in the essential image of \mathcal{C} such that Y is a retract of X.

Definition 2.31. Let $f: \mathcal{C} \to \mathcal{D}$ be an exact functor between stable categories. We will say that f is a *Karoubi equivalence* if it is fully faithful and has the dense image.

Proposition 2.32. Let \mathcal{E} be a category with finite limits, and let $F: \operatorname{Cat}^{\operatorname{st}} \to \mathcal{E}$ be a reduced functor. The following conditions are equivalent:

(1) The functor F is Karoubi-localizing.

(2) The functor F is Verdier-localizing and inverts Karoubi equivalences.

The next proposition implies that additive grouplike functors and extension-splitting functors are equivalent.

Proposition 2.33. Let \mathcal{E} be a category with finite limits, and let $F: \operatorname{Cat}^{\operatorname{st}} \to \mathcal{E}$ be a reduced functor. The following conditions are equivalent:

- (1) The functor F is additive grouplike.
- (2) The functor F is extension-splitting.

We can construct Karoubi-localization functors from Verdier-localizing functors using the idempotent completion.

Proposition 2.34. Let \mathcal{E} be a category with finite limits, and let $F: \operatorname{Cat}^{\operatorname{st}} \to \mathcal{E}$ be a Verdier-localizing functor. Suppose that F takes every Cartesian square in $\operatorname{Cat}^{\operatorname{st}}$ whose vertical maps are dense inclusions, to a Cartesian square in \mathcal{E} . Then the functor $F \circ (-)^{\natural}: \operatorname{Cat}^{\operatorname{st}} \to \mathcal{E}$ is Karoubi-localizing.

2.5. Waldhausen's Fibration Theorem. In this section, we recall Waldhausen's fibration theorem. We will use this theorem in the proof of the localization theorem (theorem 6.1).

Notation 2.35. Let \mathcal{D} be a stable category, let \mathcal{C} be a stable full subcategory of \mathcal{D} , and let \mathcal{I} be a category. We let $\operatorname{Fun}^{\mathcal{C}}(\mathcal{I},\mathcal{D})$ denote the full subcategory of $\operatorname{Fun}(\mathcal{I},\mathcal{D})$ spanned by the functors which take every maps in \mathcal{I} to equivalences modulo \mathcal{C} .

Theorem 2.36 (Waldhausen's fibration theorem). Let $\mathcal{C} \to \mathcal{D} \to \mathcal{E}$ be a Verdier sequence, and let $F: \operatorname{Cat}^{\operatorname{st}} \to \operatorname{An}$ be an additive grouplike functor. Then, for every $n \geq 0$, the constant map

const :
$$\mathcal{D} \to \operatorname{Fun}^{\mathfrak{C}}([n], \mathcal{D}) : X \mapsto (X \to \cdots \to X)$$

induces a bifiber sequence of \mathbb{E}_{∞} -groups

$$F(\mathcal{C}) \to F(\mathcal{D}) \to |F\operatorname{Fun}^{\mathcal{C}}([-], \mathcal{D})|.$$

We can deduce when an additive functor becomes a Verdier-localizing functor.

Corollary 2.37. Let $F: \operatorname{Cat}^{\operatorname{st}} \to \operatorname{An}$ be an additive functor. These conditions are equivalent:

- (1) The functor F is Verdier-localizing.
- (2) For every Verdier sequence $\mathcal{C} \to \mathcal{D} \to \mathcal{E}$, the canonical map $|F \operatorname{Fun}^{\mathcal{C}}([-], \mathcal{D})| \to F(\mathcal{E})$ is an equivalence of anima.
 - 3. The Higher K-Theory of Stable ∞-Categories

3.1. Simplicial Objects.

Definition 3.1. The inclusion $N(\Delta) \subseteq Cat$ induces an adjunction

$$\operatorname{asscat}:\operatorname{Fun}(\operatorname{N}(\Delta)^{\operatorname{op}},\operatorname{An})\rightleftarrows\operatorname{Cat}:\operatorname{N}^r.$$

We will refer to the left adjoint as the associated category functor, and to the right adjoint as the Rezk nerve.

Definition 3.2. Let C be a category. We will refer to a functor

$$X: \mathcal{N}(\Delta)^{\mathrm{op}} \to \mathfrak{C}$$

as a simplicial object of \mathcal{C} . We will say that X is a simplicial anima if \mathcal{C} is An.

Remark 3.3. Let \mathcal{C} be a category. For every $n \geq 0$, we have an equivalence of anima

$$N_n^r(\mathcal{C}) \simeq \operatorname{Map}_{\operatorname{Cat}}([n], \mathcal{C}) \simeq \operatorname{core} \operatorname{Fun}([n], \mathcal{C}).$$

Notation 3.4. We let [n] denote the category the ordinary nerve N([n]) of [n], instead of Δ^n . On the other hand, we let Δ^n denote the functor

$$\Delta^n := \operatorname{Map}_{\operatorname{Cat}}(-, [n]) : \operatorname{N}(\Delta)^{\operatorname{op}} \to \operatorname{An}.$$

Then we have an equivalence of functors $N^r([n]) \simeq \Delta^n$.

We define the Segal condition and completeness specifically for simplicial anima, although these concepts are applicable to every category.

Definition 3.5. Let $X: N(\Delta)^{op} \to An$ be a simplicial anima. We will say that X is *Segal* if the n-spine inclusion $\operatorname{sp}^n \subseteq \Delta^n$ induces an equivalence of anima

$$X_n \simeq \operatorname{Map}_{\operatorname{Fun}(\operatorname{N}(\Delta)^{\operatorname{op}},\operatorname{An})}(\Delta^n,X) \to \operatorname{Map}_{\operatorname{Fun}(\operatorname{N}(\Delta)^{\operatorname{op}},\operatorname{An})}(\operatorname{sp}^n,X) \simeq X_1 \times_{X_0} \cdots \times_{X_0} X_1$$
 for every $n \geq 0$.

The Segal condition can be interpreted as stating that a Segal simplicial anima has a unique spine lifting up to a choice of contractible spaces.

Definition 3.6. Let $X: N(\Delta)^{op} \to An$ be a Segal simplicial anima. We will say that X is *complete* if the following diagram is a Cartesian diagram in An.

$$X_0 \xrightarrow{\text{diag}} X_0 \times X_0$$

$$\downarrow \qquad \qquad \downarrow (s, s)$$

$$X_3 \xrightarrow{(d^{\{0,2\}}, d^{\{1,3\}})} X_1 \times X_1$$

The completeness condition can be understood as indicating that the higher simplices of a complete Segal simplicial anima correspond to equivalences related to its degenerate edges.

Proposition 3.7. The Rezk nerve $N^r : Cat \to Fun(N(\Delta)^{op}, An)$ is fully faithful. Moreover, its essential image precisely consists of complete Segal simplicial anima.

3.2. The algebraic K-Theory.

Definition 3.8. Let \mathcal{C} be a category with finite limits. For every $n \geq 0$, we let $Q_n(\mathcal{C})$ denote the full subcategory of Fun(TwAr^r[n], \mathcal{C}) spanned by the diagrams which take every square in TwAr^r[n] to a Cartesian square in \mathcal{C} .

The construction $n \mapsto Q_n(\mathcal{C})$ determines a functor

$$Q(\mathcal{C}): \mathcal{N}(\Delta)^{\mathrm{op}} \to \mathrm{Cat}^{\mathrm{lex}}$$

and furthermore, the construction $\mathcal{C} \mapsto Q(\mathcal{C})$ defines a functor

$$Q: \operatorname{Cat}^{\operatorname{lex}} \to \operatorname{Fun}(\operatorname{N}(\Delta)^{\operatorname{op}}, \operatorname{Cat}^{\operatorname{lex}}).$$

We will refer to this functor as the (Quillen's) Q-construction.

Proposition 3.9. Let C be a category with finite limits. Then the simplicial object in Cat^{lex}

$$Q(\mathcal{C}): \mathcal{N}(\Delta)^{\mathrm{op}} \to \mathrm{Cat}^{\mathrm{lex}}$$

is complete Segal. In particular, the simplicial anima

$$\operatorname{core} Q(\mathfrak{C}) : \operatorname{N}(\Delta)^{\operatorname{op}} \to \operatorname{An}$$

is complete Segal.

This proposition follows from the following lemmata.

Notation 3.10. For every $n \geq 0$, we let \mathcal{J}_n denote the full subcategory of TwAr^r[n] spanned by the images of objects $(i \leq j)$ in [n] satisfying $j \leq i + 1$.

Lemma 3.11. Let \mathcal{C} be a category with finite limits, and let $F : \operatorname{TwAr}^{\mathbf{r}}[n] \to \mathcal{E}$ be a functor. The following conditions are equivalent:

- (1) The functor F belongs to $Q_n(\mathcal{C})$.
- (2) The functor F is a right Kan extension of its restriction to \mathcal{J}_n along the inclusion $\mathcal{J}_n \subseteq \operatorname{TwAr}^{\mathrm{r}}[n]$.

Lemma 3.12. Let \mathcal{C} be a category with finite limits. Then the restriction of Fun(TwAr^r[n], \mathcal{C}) along the inclusion $\mathcal{J}_n \subseteq \text{TwAr}^r[n]$ induces an equivalence of categories

$$Q_n(\mathcal{C}) \to \operatorname{Fun}(\mathcal{J}_n, \mathcal{C}).$$

Remark 3.13. Lemma 3.12 implies that, if \mathcal{C} is stable, then $Q_n(\mathcal{C})$ is stable. Therefore we obtain functors

$$Q(\mathcal{C}): \mathcal{N}(\Delta)^{\mathrm{op}} \to \mathcal{C}at^{\mathrm{st}} \text{ and } Q: \mathcal{C}at^{\mathrm{st}} \to \mathcal{F}un(\mathcal{N}(\Delta)^{\mathrm{op}}, \mathcal{C}at^{\mathrm{st}}).$$

Moreover, for every stable category \mathcal{C} , the category $Q_n(\mathcal{C})$ is a complete Segal simplicial anima, since $\operatorname{Cat}^{\operatorname{st}}$ is stable under finite limits in Cat .

Definition 3.14. Let \mathcal{C} be a category with finite limits. Then we define the *category of spans* in \mathcal{C} as

$$\operatorname{Span}(\mathfrak{C}) := \operatorname{asscat} \operatorname{core} Q(\mathfrak{C}).$$

The construction $\mathcal{C} \mapsto \operatorname{Span}(\mathcal{C})$ determines a functor

$$\mathrm{Span}: \mathrm{Cat}^{\mathrm{lex}} \to \mathrm{Cat}.$$

Definition 3.15. Let \mathcal{C} be a stable category. Then we define the algebraic K-anima (or algebraic K-theory anima, or projective class anima) as

$$\mathcal{K}(\mathcal{C}) := \Omega |\operatorname{Span}(\mathcal{C})| \simeq \Omega |\operatorname{core} Q(\mathcal{C})|$$

where the base object of the loop space is given by the zero object of $Span(\mathcal{C})$.

The construction $\mathcal{C} \mapsto \mathcal{K}(\mathcal{C})$ determines a functor

$$\mathcal{K}: Cat^{st} \to An.$$

We will refer to this functor as the algebraic K-theory (or algebraic K-functor).

Definition 3.16. Let \mathcal{C} be a stable category. For every $n \geq 1$, we define the n-th K-group of \mathcal{C} as the abelian group

$$\mathfrak{K}_n(\mathfrak{C}) := \pi_n \mathfrak{K}(\mathfrak{C}).$$

Remark 3.17. Let C be a stable category. Then we have an equivalence

$$\pi_0 \mathcal{K}(\mathcal{C}) \simeq \mathcal{K}_0(\mathcal{C})$$

where $\mathcal{K}_0(\mathcal{C})$ is the Grothendieck group of \mathcal{C} .

3.3. Waldhausen's S-Construction. In this section, we construct the algebraic K-theory using Waldhausen's S-construction.

Definition 3.18. Let \mathcal{C} be a stable category. An [n]-gapped object of \mathcal{C} is a functor $F : \operatorname{Ar}[n] \to \mathcal{C}$ which satisfies the following properties:

- (1) For every $0 \le i \le n$, F(i, i) is a zero object of \mathcal{C} .
- (2) For every $i \leq j \leq k$, the following diagram is a (co)Cartesian diagram in \mathcal{C} .

$$F(i,j) \longrightarrow F(i,k)$$

$$\downarrow \qquad \qquad \downarrow$$

$$0 \simeq F(j,j) \longrightarrow F(j,k)$$

We let $S_n(\mathcal{C})$ denote the full subcategory of Fun(Ar[n], \mathcal{C}) spanned by the [n]-gapped objects of \mathcal{C} .

Remark 3.19. Let \mathcal{C} be a stable category. We can describe the low-dimensional simplices of $S_n(\mathcal{C})$.

- The category $S_0(\mathcal{C})$ is the full subcategory of \mathcal{C} spanned by the zero objects of \mathcal{C} . Thus $S_0(\mathcal{C})$ is contractible.
- The category $S_1(\mathcal{C})$ is equivalent to \mathcal{C} , since every object of $S_1(\mathcal{C})$ is of the form $0 \to X \to 0$, where X is an object of \mathcal{C} .
- The category $S_2(\mathcal{C})$ is equivalent to the arrow category $Ar(\mathcal{C})$ of \mathcal{C} , since every object of $S_2(\mathcal{C})$ is of the form $0 \to X' \to X \to X'' \to 0$, where $X' \to X \to X''$ is a cofiber sequence in \mathcal{C} .

Remark 3.20. Let C be a stable category. We have an equivalence of categories

$$S_n(\mathcal{C}) \simeq \operatorname{Fun}([n-1], \mathcal{C})$$

for every $n \geq 0$. Thus, if \mathcal{C} is stable, then $S_n(\mathcal{C})$ is stable.

Definition 3.21. The construction $n \mapsto S_n(\mathcal{C})$ determines a functor

$$S(\mathcal{C}): \mathcal{N}(\Delta)^{\mathrm{op}} \to \mathcal{C}at^{\mathrm{st}}$$

and furthermore, the construction $\mathcal{C} \mapsto S(\mathcal{C})$ determines a functor

$$S: \operatorname{Cat}^{\operatorname{st}} \to \operatorname{Fun}(\operatorname{N}(\Delta)^{\operatorname{op}}, \operatorname{Cat}^{\operatorname{st}}).$$

We will refer to this functor as (Waldhausen's) S-construction.

Definition 3.22. Let C be a stable category. Then we define the algebraic K-anima as

$$\mathcal{K}_S(\mathfrak{C}) := \Omega |\operatorname{core} S(\mathfrak{C})|.$$

The construction $\mathcal{C} \mapsto \mathcal{K}_S(\mathcal{C})$ determines a functor

$$\mathfrak{K}_S: \mathrm{Cat}^{\mathrm{st}} \to \mathrm{An}.$$

We will refer to this functor as the algebraic K-theory.

Remark 3.23. Let \mathcal{C} be a stable category. Then the anima $|\operatorname{core} S(\mathcal{C})|$ admits a canonical base point given by a map

$$0 \simeq \operatorname{core} S_0(\mathcal{C}) \to |\operatorname{core} S(\mathcal{C})|.$$

Moreover, $|\operatorname{core} S(\mathcal{C})|$ is connected, since the canonical map

$$0 \simeq \pi_0 \operatorname{core} S_0(\mathcal{C}) \to \pi_0 |\operatorname{core} S(\mathcal{C})|$$

is surjective.

Proposition 3.24. The two definitions of algebraic K-anima (definitions 3.15 and 3.22) induce an equivalence of anima

$$\mathcal{K}(\mathcal{C}) \simeq \mathcal{K}_S(\mathcal{C})$$

for every stable category C.

4. The Additivity Theorem

4.1. **The Additivity Theorem.** The goal of this section is to prove the additivity theorem.

Theorem 4.1 ([HLS23] Theorem.4.1 (The Additivity Theorem)). Let C be a stable category. Then the source-target projection induces an equivalence of anima

$$(s,t): |\operatorname{Span}(\operatorname{Ar}(\mathfrak{C}))| \to |\operatorname{Span}(\mathfrak{C})|^2.$$

The proof of theorem 4.1 follows from the next two propositions.

Proposition 4.2. Let \mathcal{C} be a stable category. Then there are canonical equivalences of categories

$$\operatorname{Span}(\mathfrak{C}) \to \operatorname{Span}(\mathfrak{C}^{\operatorname{op}}) \quad \operatorname{and} \quad \operatorname{Span}(\operatorname{Ar}(\mathfrak{C})) \simeq \operatorname{Span}(\operatorname{TwAr}^r(\mathfrak{C})).$$

Moreover, they fit together into a natural commutative diagram

Proposition 4.3. Let C be a stable category. Then the source-target projection

$$(s,t): \operatorname{Span}(\operatorname{TwAr}^{\mathbf{r}}(\mathcal{C})) \to \operatorname{Span}(\mathcal{C}) \times \operatorname{Span}(\mathcal{C}^{\operatorname{op}})$$

is cofinal.

We introduce some corollaries of the additivity theorem.

Corollary 4.4. Let \mathcal{C} be a stable category. Then the source-target projection $(s,t): Ar(\mathcal{C}) \to \mathcal{C}$ induces an equivalence of anima

$$\mathcal{K}(Ar(\mathcal{C})) \to \mathcal{K}(\mathcal{C})^2$$
.

Corollary 4.5. The algebraic K-theory $\mathcal{K}: \mathrm{Cat}^{\mathrm{st}} \to \mathrm{An}$ is additive grouplike.

Proposition 4.6 (Eilenberg swindle). Let \mathcal{C} be a stable category with countable coproducts. For every additive grouplike functor $F: \operatorname{Cat}^{\operatorname{st}} \to \operatorname{An}$, we have

$$F(\mathcal{C}) \simeq 0$$

for every stable category \mathcal{C} . In particular, *i*-th K-groups vanish for every i > 0.

4.2. The algebraic K-Theory Spectrum. We can define an algebraic K-theory spectrum $\mathcal{K}_{>0}: \mathrm{Cat^{st}} \to \mathrm{Sp}$.

Definition 4.7. Corollary 4.5 implies that the K-theory functor lifts to a functor

$$\mathcal{K}: \operatorname{Cat}^{\operatorname{st}} \to \operatorname{Grp}_{\mathbb{E}_{\infty}}(\operatorname{An}).$$

Since we have the equivalence $\operatorname{Grp}_{\mathbb{E}_{\infty}}(\operatorname{An}) \simeq \operatorname{Sp}_{>0}$, we obtain a functor

$$\mathfrak{K}_{\geq 0}: \operatorname{Cat}^{\operatorname{st}} \to \operatorname{Sp}_{\geq 0} \subseteq \operatorname{Sp}.$$

We will refer to this functor as the algebraic K-theory spectrum.

Remark 4.8. There is the equivalence $\Omega^{\infty}: \mathrm{Sp}_{\geq 0} \rightleftarrows \mathrm{Grp}_{\mathbb{E}_{\infty}}(\mathrm{An}): \Sigma^{\infty}$. We can recover the algebraic K-functor from algebraic K-theory spectrum as

$$\mathcal{K} \simeq \Omega^{\infty} \mathcal{K}_{\geq 0} : \mathrm{Cat}^{\mathrm{st}} \to \mathrm{Sp}_{\geq 0} \simeq \mathrm{Grp}_{\mathbb{E}_{\infty}}(\mathrm{An})$$

since Σ^{∞} is fully faithful.

5. The Universality Theorem

The goal of this section is to prove the universality theorem.

Theorem 5.1 ([HLS23] Theorem.5.1 (The Universality Theorem)). The algebraic K-theory $\mathcal{K}: \mathrm{Cat^{st}} \to \mathrm{An}$ is an initial additive grouplike functor under the core functor core: $\mathrm{Cat^{st}} \to \mathrm{An}$. That is, the natural map $\tau: \mathrm{core} \Rightarrow \mathcal{K}$ is an initial object in the category $\mathrm{Fun}(\mathrm{Cat^{st}}, \mathrm{An})^{\mathrm{add,grp}}_{\mathrm{core}}$.

Notation 5.2. Let $F: \operatorname{Cat}^{\operatorname{st}} \to \operatorname{An}$ be a reduced functor. We denote a functor

$$GF(-) := \Omega |FQ(-)| : \operatorname{Cat}^{\operatorname{st}} \to \operatorname{An}.$$

For example, the functor G core is equivalent to the algebraic K-theory K.

Proof. We want to show that the natural transformation $\tau : \operatorname{core} \Rightarrow \mathcal{K}$ induces an equivalence

$$\tau^* : \operatorname{Nat}(\mathcal{K}, F) \to \operatorname{Nat}(\operatorname{core}, F)$$

for every additive grouplike functor $F: Cat^{st} \to An$.

Now consider the following diagram

where the upper square commutes since G is a functor, and the other there parts commute since η is natural. Suppose the red-colored maps are equivalent, then we can show that the upper horizontal map $(\eta_{\text{core}})^*$ is an equivalence. If we apply this to the case $F \simeq \text{core}$, then we obtain the desired result. This assumption follows from the next two propositions.

The next proposition implies that $(\eta_F)_*$ and $(G\eta_{\text{core}})^*$ are equivalences.

Proposition 5.3. Let $F: \operatorname{Cat}^{\operatorname{st}} \to \operatorname{An}$ be an additive grouplike functor. Then the natural transformation

$$\eta_F: F \Rightarrow GF$$

is an equivalence.

The next proposition implies that $(\eta_{G \text{ core}})$ is an equivalence.

Proposition 5.4. Let $F: \operatorname{Cat}^{\operatorname{st}} \to \operatorname{An}$ be an additive functor. Then the two natural transformations

$$\eta_{GF}, G\eta_F : GF \Rightarrow GGF$$

differ by an automorphism of the target. That is, the following diagram commutes

$$GF \xrightarrow{G\eta_F} GGF$$

$$\downarrow \simeq$$
 GGF .

6. The Localization Theorem

The goal of this section is to prove the localization theorem.

Theorem 6.1 ([HLS23] Theorem.6.1 (The Localization Theorem)). The algebraic K-theory $\mathcal{K}: \operatorname{Cat}^{\operatorname{st}} \to \operatorname{An}$ and the algebraic K-theory spectrum $\mathcal{K}_{\geq 0}: \operatorname{Cat}^{\operatorname{st}} \to \operatorname{Sp}$ are Verdier-localizing.

By the corollary of theorem 2.36, an additive grouplike functor $F: \operatorname{Cat}^{\operatorname{st}} \to \operatorname{An}$ is Verdier-localizing if and only if it satisfies the following condition:

(*) For every Verdier sequence $\mathcal{C} \to \mathcal{D} \to \mathcal{E}$, the canonical map $|F \operatorname{Fun}^{\mathcal{C}}([-], \mathcal{D})| \to F(\mathcal{E})$ is an equivalence of anima.

The next proposition implies that it is enough to prove that the core functor satisfies (*).

Proposition 6.2. Let $F: \operatorname{Cat}^{\operatorname{st}} \to \operatorname{An}$ be an additive functor. If F satisfies (*), then |FQ(-)| and $\Omega|FQ(-)|$ also satisfy (*).

Remark 6.3. If the core functor satisfies (*), then the K-theory functor also satisfies (*). Indeed, we can write

$$\mathcal{K}(-) \simeq \Omega |\operatorname{Span}(-)| \simeq \Omega |\operatorname{asscat} \operatorname{core} Q(-)| \simeq \Omega |\operatorname{core} Q(-)|.$$

To prove the proposition, we need the following lemma.

Lemma 6.4. Verdier sequences are stable under applying the functor

$$\operatorname{Fun}(\mathfrak{I},-):\operatorname{Cat}^{\operatorname{st}}\to\operatorname{Cat}^{\operatorname{st}}$$

for every finite poset \mathcal{I} .

From the above discussion, we need to show that the core functor satisfies (*). Let \mathcal{D} be a stable category, and let \mathcal{C} be a stable subcategory of \mathcal{D} . We let $\mathcal{D}_{\mathcal{C}}$ denote the full subcategory of \mathcal{D} spanned by the equivalences modulo \mathcal{C} in \mathcal{D} . Then we obtain

$$\operatorname{core} \operatorname{Fun}^{\mathfrak{C}}([-], \mathfrak{D}) \simeq \operatorname{core} \operatorname{Fun}([-], \mathfrak{D}_{\mathfrak{C}}) \simeq \operatorname{Map}_{\operatorname{Cat}}([-], \mathfrak{D}_{\mathfrak{C}}) \simeq \operatorname{N}^r(\mathfrak{D}_{\mathfrak{C}}).$$

Since the canonical map $|N^r(\mathcal{D}_{\mathfrak{C}})| \to |\mathcal{D}_{\mathfrak{C}}|$ is an equivalence of anima, we have an equivalence

$$|\operatorname{core} \operatorname{Fun}^{\mathcal{C}}([-], \mathcal{D})| \simeq |\mathcal{D}_{\mathcal{C}}|.$$

Thus it suffices to show the following proposition.

Proposition 6.5. Let \mathcal{D} be a stable category, and let \mathcal{C} be a stable subcategory of \mathcal{D} . We let $\mathcal{D}_{\mathcal{C}}$ denote the full subcategory of \mathcal{D} spanned by the equivalences modulo \mathcal{C} in \mathcal{D} . Then the map

$$|\mathcal{D}_{\mathcal{C}}| \to \operatorname{core}(\mathcal{D}/\mathcal{C})$$

is faithful. If the inclusion $\mathcal{C} \subseteq \mathcal{D}$ is a Verdier inclusion, then this map is an equivalence.

This proposition is a special case of the following proposition.

Proposition 6.6. Let \mathcal{C} be a category, and let S be a subcategory of \mathcal{C} . If S is closed under 2-out-of-3 and pushouts in \mathcal{C} , then a map

$$|S| = S[S^{-1}] \to \mathcal{C}$$

is faithful. Moreover, the following conditions are equivalent:

- (1) The inclusion $|S| \subseteq \operatorname{core} \mathcal{C}[S^{-1}]$ is fully faithful.
- (2) The category S is closed under 2-out-of-6 in \mathcal{C} .
- (3) A morphism in \mathcal{D} belongs to S if and only if its source and target are in S and it is invertible in $\mathcal{C}[S^{-1}]$.

7. The Cofinality Theorem

The goal of this section is to prove the cofinality theorem.

Theorem 7.1 ([HLS23] Theorem.7.1 (The Cofinality Theorem)). Let $f : \mathcal{C} \to \mathcal{D}$ be a functor between stable categories. If f is a dense inclusion, then it induces a fiber sequence

$$\mathcal{K}(\mathcal{C}) \to \mathcal{K}(\mathcal{D}) \to \mathcal{K}_0(\mathcal{D})/\mathcal{K}_0(\mathcal{C}).$$

In particular, maps of abelian groups

$$\mathfrak{K}_i(\mathfrak{C}) \to \mathfrak{K}_i(\mathfrak{D})$$

are isomorphisms for every $i \geq 1$, and there exists a short exact sequence

$$0 \to \mathcal{K}_0(\mathcal{C}) \to \mathcal{K}_0(\mathcal{D}) \to \mathcal{K}_0(\mathcal{D})/\mathcal{K}_0(\mathcal{C}) \to 0.$$

Definition 7.2. Let $f: X \to Y$ be a map of \mathbb{E}_{∞} -monoids in An. We will say that f is *cofinal* if it satisfies the following conditions:

- (1) The map $\pi_0(f): \pi_0(X) \to \pi_0(Y)$ is an inclusion.
- (2) For every object y in $\pi_0(Y)$, there exists an object y' in $\pi_0(Y)$ such that y + y' in $\pi_0(X)$. We will say that a cofinal map is *dense* if it satisfies the following conditions:
 - (3) An object y in $\pi_0(Y)$ belongs to $\pi_0(X)$ if there exists an object x in $\pi_0(X)$ such that x + y in $\pi_0(X)$.

Definition 7.3. Let $F: \operatorname{Cat}^{\operatorname{st}} \to \operatorname{An}$ be an additive functor. We will say that F is *Karoubian* if it satisfies the following conditions:

- (1) The functor F takes every dense inclusion between stable categories to a dense map of \mathbb{E}_{∞} -monoids.
- (2) The functor F preserves every Cartesian square in Cat^{st} whose vertical maps are dense.

Example 7.4. The core functor core : $Cat^{st} \rightarrow An$ is Karoubian.

Theorem 7.1 holds for a broader class of additive Karoubian functors.

Notation 7.5. Let $F: \operatorname{Cat}^{\operatorname{st}} \to \operatorname{An}$ be an additive Karoubian functor. We will refer to the functor

$$F^{\text{grp}} := \Omega |FQ - |$$

as the group completion of F. For example, the functor (core)^{grp} is equivalent to the algebraic K-theory \mathcal{K} .

Theorem 7.6. Let $F: \operatorname{Cat}^{\operatorname{st}} \to \operatorname{An}$ be an additive Karoubian functor. For every dense inclusion $\mathfrak{C} \subseteq \mathfrak{D}$ between stable categories, the canonical map of \mathbb{E}_{∞} -monoids

$$F(\mathfrak{D})/F(\mathfrak{C}) \to F^{\mathrm{grp}}(\mathfrak{D})/F^{\mathrm{grp}}(\mathfrak{C})$$

is an equivalence. Hence maps of abelian groups

$$\pi_i F^{\operatorname{grp}}(\mathfrak{C}) \to \pi_i F^{\operatorname{grp}}(\mathfrak{D})$$

are isomorphisms for every $i \geq 1$, and there exists a short exact sequence

$$0 \to \pi_0 F^{\operatorname{grp}}(\mathfrak{C}) \to \pi_0 F^{\operatorname{grp}}(\mathfrak{D}) \to \pi_0 F^{\operatorname{grp}}(\mathfrak{D}) / \pi_0 F^{\operatorname{grp}}(\mathfrak{C}) \to 0.$$

Corollary 7.7. If a functor $F: \operatorname{Cat}^{\operatorname{st}} \to \operatorname{An}$ is additive Karoubian, then so is the group completion F^{grp} of F.

Corollary 7.8. Let $F: \operatorname{Cat}^{\operatorname{st}} \to \operatorname{An}$ be an additive Karoubian functor. If the functor F^{grp} is Verdier-localizing, then the functor

$$F^{\mathrm{grp}} \circ (-)^{\natural} : \mathrm{Cat}^{\mathrm{st}} \to \mathrm{An}$$

is Karoubi-localizing. In particular, the functor $\mathcal{K} \circ (-)^{\natural} : \operatorname{Cat}^{\operatorname{st}} \to \operatorname{An}$ is Karoubi-localizing.

Corollary 7.9. Let \mathcal{D} be a stable category, and let \mathcal{C} be a dense stable subcategory of \mathcal{D} . Then the canonical maps of abelian groups

$$\mathcal{K}_i(\mathcal{C}) \to \mathcal{K}_i(\mathcal{D})$$

are isomorphisms for every $i \geq 1$.

References

- [HLS23] Fabian Hebestreit, Andrea Lachmann, and Wolfgang Steimle. *The localisation theorem* for the K-theory of stable ∞-categories. 2023. arXiv: 2205.06104 [math.KT]. URL: https://arxiv.org/abs/2205.06104.
- [NS18] Thomas Nikolaus and Peter Scholze. On topological cyclic homology. 2018. arXiv: 1707.01799 [math.AT]. URL: https://arxiv.org/abs/1707.01799.