

Hash Tables

Reminder: Basics of Hash Tables

Want Θ(1)-Time Operations

- Array or linked list
 - Overall O(n) time
- Binary search trees
 - Expected $\theta(\log n)$ -time search, insertion, and deletion
 - But, $\theta(n)$ in the worst case
- Balanced binary search trees
 - Guarantees $O(\log n)$ -time search, insertion, and deletion
 - Red-black tree, AVL tree
- Balanced *k*-ary trees
 - Guarantees O(log n)-time search, insertion, and deletion w/ smaller constant factor
 - 2-3 tree, 2-3-4 tree, B-trees
- Hash table
 - Expected $\theta(1)$ -time search, insertion, and deletion

Hash Tables

- Stack, queue, priority queue
 - do not support *search* operation
- Hash table support quick search, insertion, and deletion
 - But, does not support finding the minimum (or maximum) element
- Applications that need very fast operations
 - 119 emergent calls and locating caller's address
 - Air flight information system
 - 주민등록 시스템

Address Calculator

Hash Functions

Toy functions

- Selection digits
 - h(001364825) = 35
- Folding
 - h(001364825) = 1190

Modulo arithmetic

- $h(x) = x \mod tableSize$
- tableSize is recommended to be prime

Multiplication method

- $h(x) = (xA \mod 1) * tableSize$
- *A*: constant in (0, 1)
- *tableSize* is not critical, usually 2^p for an integer p

Collision Resolution

Collision:

a key maps to an occupied location in the hash table

 $h(224) = 224 \mod 101 = 22$ table[22] is occupied

123

0

table[]

An example: $h(x) = x \mod 101$

100

Collision resolution

- resolves collision by a seq. of hash values
- $h_0(x)(=h(x)), h_1(x), h_2(x), h_3(x), \dots$
- The most important in hash tables

Collision-Resolution Methods

Open addressing (resolves in the table)

Full version:

Linear probing

•
$$h_i(x) = (h_0(x) + i) \%$$
 tableSize

 $h_i(x) = (h_0(x) + ai + b) \%$ tableSize

Quadratic probing

•
$$h_i(x) = (h_0(x) + i^2) \% \ tableSize$$

Simple version

Double hashing

•
$$h_i(x) = (h_0(x) + i \cdot \beta(x))$$
 % $tableSize$

• $\beta(x)$: another hash function

Full version:

 $h_i(x) = (h_0(x) + ai^2 + bi + c) \%$ tableSize

Separate chaining

• Each *table*[*i*] is maintained by a linked list

Open Addressing

Linear probing

 $h_i(x) = (h_0(x) + i) \mod tableSize$ bad w/ primary clustering

Linear probing with

$$h_i(x) = (h_0(x) + i) \mod 101$$

삽입 순서: 123, 24, 224, 22, 729, ...

$$h_0(123) = h_0(224) = h_0(22) = h_0(729) = 22$$

$$i+1$$

$$i+2$$
 $h_0(24) = 24$

$$i+3$$

$$i+4$$

Open Addressing

Quadratic probing

 $h_i(x) = (h_0(x) + i^2) \mod tableSize$ bad w/ secondary clustering

Quadratic probing with

$$h_i(x) = (h_0(x) + i^2) \mod 101$$

Open Addressing

Double hashing

$$h_i(x) = (h_0(x) + i\beta(x)) \mod 101$$

Double hashing with

$$h_0(x) = x \mod 101$$

 $\beta(x) = 1 + (x \mod 97)$

table[]

i

22 123

22

i

53 **224**

45

:

73 **729**

:

 $h_0(123) = h_0(224) = h_0(22) = h_0(729) = 22$

 $\beta(22) = 23, h_1(22) = 45$

 $\beta(224) = 31, h_1(224) = 53$

 $\beta(729) = 51, h_1(729) = 73$

Be Careful in Deletion

Hash function:

$$h_i(x) = (h_0(x) + i) \mod 13$$

0	13
1	1
2	15
3	16
4	28
5	31
6	38
7	7
8	20
9	
10	
11	
12	25

(a) Delete element 1

0	13	
1		V
2	15	
3	16	
4	28	
5	31	
6	38	
7	7	
8	20	
9		
10		
11		
12	25	•

(b) Search 38, wrong result!

		···.
0	13	
1	DELETED	XXXXXXX
2	15	1
3	16	4
4	28	1
5	31	4
6	38	*
7	7	
8	20	
9		
10		
11		
12	25	•

(c) Okay: marking with DELETED

Insertion

```
hashInsert(x):

◀ table[]: hash table, x: new key to insert

if (table[h(x)] is not occupied)

table[h(x)] \leftarrow x

else

Find an appropriate location k by a collision-resolution method table[k] \leftarrow x

numItems++
```

Deletion

When the Load Factor is Higher than Wanted

$$\alpha = \frac{\text{# of occupied slots}}{\text{hash table size}}$$

- A hash table performs bad when the load factor(α) is too high
- Generally, set a threshold and if the load factor surpasses it
 - Double the size of the hash table and rehash all the elements in the table

Separate Chaining

Table[] is a header array of linked lists

No interference bet'n keys not collided (Open addressing may interfere...)

Operations in Chained Hash Table

```
search(table[], x):
    Search x in the list table[h(x)]

insert(table[], x):
    Insert x in the list table[h(x)]

delete(table, x):
    Delete x in the list table[h(x)]
```

Observation

- No difference among probing methods when the load factor is low
- Successful search follows the same path as that of insertion

Internal/External Hashing

- Hash table is in the main memory(internal hashing) or in the disk(external hashing)
- In an external hashing, the # of disk accesses is critical

External Hash Table

Efficiency of Hash Tables

Search Time in Chaining

Assuming a uniform distribution of data, a search takes $\Theta(\max(1, \alpha))$ on average

Search Time in Open Addressing

Assumption (uniform hashing)

- $h_0(x)$, $h_1(x)$, ..., $h_{m-1}(x)$ is a permutation of $\{0, 1, ..., m-1\}$
- Every permutation is equally likely

Note: collision probability = $\frac{n}{m}$

rm: table size

n: # of elements in the table(= # of occupied slots)

[Theorem 1]

The expected #probes in an unsuccessful search or an insertion is at most $\frac{1}{1-\alpha}$

proof>

 $p_i = Pr(\text{exactly } i \text{ probes access occupied slots})$

 q_i = Pr(at least *i* probes access occupied slots)

Expected # probes $= 1 + \sum_{i \ge 1} i p_i$ $= 1 + \sum_{i \ge 1} i (q_i - q_{i+1})$ $= 1 + \sum_{i \ge 1} q_i$ $\leq 1 + \sum_{i \ge 1} \alpha^i \longleftarrow q_i = \frac{n}{m} \frac{n-1}{m-1} \cdots \frac{n-i+1}{m-i+1} \le \left(\frac{n}{m}\right)^i = \alpha^i$ $= \frac{1}{1-\alpha}$

[Theorem 2]

The expected #probes in a successful search is at most $\frac{1}{\alpha} \ln \frac{1}{1-\alpha}$

proof>

Note: a successful search exactly follows the path of insertion

- The load factor α right after i^{th} key had been inserted was $\frac{i}{m}$
- If x is the $(i + 1)^{th}$ key inserted, then the expected #probes in a successful search for x is, by the previous thm, at most $\frac{1}{1 \frac{i}{m}}$
- Average over all keys

$$\frac{1}{n}\sum_{i=0}^{n-1} \frac{m}{m-i} = \frac{m}{n}\sum_{i=0}^{n-1} \frac{1}{m-i}$$
$$\leq \frac{1}{\alpha}\int_0^n \frac{1}{m-x} dx$$
$$= \frac{1}{\alpha}\ln\frac{1}{1-\alpha}$$

A Creative Utilization of Hash Tables

Minhash

- Suggested by Andrei Broder, 1997
- Min-wise locality sensitive permutation hashing
- Fast computation of similarity of two sets is possible

```
Similarity of two vectors documents web pages stock patterns
```

Jaccard Similarity

Jaccard similarity
$$J(A,B) = \frac{|A \cap B|}{|A \cup B|}$$

e.g.
$$A=\{1, 2, 3, 4, 5\}$$
 $\longrightarrow J(A,B) = \frac{3}{7}$ $B=\{3, 4, 5, 6, 7\}$

For sets $A_1, A_2, ..., A_n$, we often need to computer their pairwise similarities or similarity to another set B

h_{min}(S): A Permutation Hashing

h(x): a hash function

 $h_{min}(S) = x \in S$ that minimizes h(x)

$$S = \{a, b, c, d, e\}$$

$$h(a) \ h(b) \ h(c) \ h(d) \ h(e)\}$$

$$minimum$$

$$Then, \ h_{min}(S) = d$$

$$A \cap B$$

$$Prob(h_{min}(A) = h_{min}(B)) = J(A, B)$$

Usage in Fields

Using one $h_{min}()$ just probabilistically matches with Jaccard similarity

Prepare many enough $h_{min}()$'s: $h_{min}^1(), h_{min}^2(), ..., h_{min}^k()$ \leftarrow k different hash functions

For all A_i , i = 1, 2, ..., n, compute (just one time) $h_{min}^1(..., h_{min}^2(..., h_{min}^k(..., h_{mi$

$$J(A_i, A_j) = \frac{\text{\# of the same } h_{min}'s}{k}$$

$$= \frac{\sum_{r=1}^k \delta(h_{min}^r(A_i), h_{min}^r(A_j))}{k}, \qquad \delta(a, b) = \begin{cases} 1, \text{ if } a = b \\ 0, \text{ if } a \neq b \end{cases}$$
The Monte Carlo Integral

An example of Monte Carlo approximation (random sampling based...)

$$\delta(a,b) = \begin{cases} 1, & \text{if } a = b \\ 0, & \text{if } a \neq b \end{cases}$$

Applying Minhash to DNA Pairwise Similarity

A good example, although they made some variation

Overview of the MinHash bottom sketch strategy for estimating the Jaccard index. First, the sequences of two datasets are decomposed into their constituent k-mers (
$$top$$
, $blue$ and red) and each k-mer is passed through a hash function h to obtain a 32- or 64-bit hash, depending on the input k-mer size. The resulting hash sets, A and B , contain $|A|$ and $|B|$ distinct hashes each ($small$ $circles$). The Jaccard index is simply the fraction of shared hashes ($purple$) out of all distinct hashes in A and B . This can be approximated by considering a much smaller random sample from the union of A and B . MinHash sketches $S(A)$ and $S(B)$ of size $s = 5$ are shown for A and B , comprising the five smallest hash values for each ($filled$ $circles$). Merging $S(A)$ and $S(B)$ to recover the five smallest hash values overall for $A \cup B$ ($crossed$ $circles$) yields $S(A \cup B)$. Because $S(A \cup B)$ is a random sample of $A \cup B$, the fraction of elements in $S(A \cup B)$ that are shared by both $S(A)$ and $S(B)$ is an unbiased estimate of $J(A,B)$