4 Technické aspekty softwarového projektu, projektová dokumentace: uživatelská specifikace, technická specifikace a návrh, testování, validace a integrace. Systémy pro správu konfigurace a podporu vývoje. (A4B33SI)

4.1 Technické aspekty softwarového projektu

- řízení projektu viz otázka 03
- dodržování ISO spolehlivost, efektivita, užitečnost, udržovatelnost, flexibilita...

4.2 Projektová dokumentace

4.2.1 Uživatelská specifikace

- zjištění aktuálního stavu, jak s ním jsou uživatelé spokojeni, co jím vadí, co by pořebovali
- výsledkem je Specifikace požadavků
- nutnost:
 - vše správně pochopit (elicitation)
 - správně popsat (specification)
 - sjednat podstatu problému (validation)
 - sjednat hranice problému (negotiation)
 - = opakuji, dokud není vše jasné!

4.2.2 Technická specifikace a návrh

- vychází z uživatelské specifikace a přesně stanovuje, co se má udělat
- ! vyvarova se obecnému jazyku => kniha ≠svazek knihy; přítomna × nepřítomna (ztracena, zapůjčena, zničena,...)
- vypracování všech use-cases hiearchické uspořádání => rozložení do menších celků
 - ideálně přiřazení konkrétních stakeholderů
- priority: MoSCoW
 - Must have (nejvyšší priorita)
 - Should have (chtěné)
 - Could have (když zbyde čas/peníze)
 - Won't have (dnes ne)
- stanovení funkčních a nefunkčních (rychlost, spolehlivost, jednoduchost,...) požadavků

CMM (Capability Maturity Model)

 \bullet na začátku opakovatelný level (analýza, requirements,...) => definitivní level (techické řešení, V+V,...)

SPI (Software Process Increment)

• stanovení hypotézy => sesbírání dat informací => interpretace dat Oznovu, dokud nemáme vše

Odhad ceny

- 1. kvantitavní modely
- 2. kvalitativní modely
- 3. **COCOMO** (Constructive Cost Model) dobře dokumentované na výpočty, podle typu a velikosti projektu
- 4. **FPA** (Function Point Analysis) stanovení ceny dle struktury, vstupů, funkcí,...
- těžké správně odhadnout

4.2.3 Testování

- nutné testovat, dle metodiky je nejvhodnější testovat už v průběhu vývoje (levnější)
- poměr 2:3 (tester:vývojář)
- testování je měření kvality SW ISO 9000
 - funkčnost (správnost, spolehlivost), inženýrské řešení (efektivita, dokumentace), adaptibilita (opětovné použitá, údržba)
- kritéria pokrytí testů:
 - 1. řádky každý řádek se vykoná alespoň jednou => nedostatečné
 - 2. větve každá musí být alespoň 1 pravdivá a 1 nepravdivá
 - 3. podmínky zkontroluje všechny možnosti nastalé podmínky a vyhodnotí je (vyžaduje armáda a letectví)
 - 4. úplné pokrytí cest v praxi neproveditelné
- definování pomocí grafů:
 - -uzly = objekty, o které se zajímáme
 - hrany = vztah objektů a relací mezi uzly
 - postup:
 - * definuj graf
 - * definuj relace
 - * navrhni testy pro pokrytí uzlů a hran
 - * otestuj a porovnej s očekávanými výsledky
 - * nahvrhni a otestuj testy smyček
- po testování je nutné mít přesné a pdrobné specifikace! (jinak se nedá testovat, není co)

- automatizace testování:
 - klady:
 - * častější testování
 - * ověření na nové verzi programu
 - * opakovatelnost testů
 - zápory:
 - * nereálná očekávání
 - * slabší testovací praxe
 - * údržba automatizovaných testů

4.3 Systémy pro správu konfigurace a podporu vývoje

WBS (Work Breakdown Structure) - rozložení projektu na menší struktury

PERT chart (Program Evaluation and Review Technique) - analýza úkolu a rozvržení času na dokončení jednotlivých částí rozložení projektu na menší struktury

GANTT chart - zobrazuje rozložení a stav jednotlivých částí v čase

SVN - synchronizace kódu, verzování,...