МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им. В. Г. ШУХОВА» (БГТУ им. В. Г. Шухова)

Кафедра программного обеспечения вычислительной техники и автоматизированных систем

Лабораторная работа № 2

по дисциплине: Исследование операций

тема: «Симплекс-метод в чистом виде»

Выполнил: ст. группы ПВ-223

Игнатьев Артур Олегович

Проверил:

проф. Вирченко Юрий Петрович

Лабораторная работа №2

«Симплекс-метод в чистом виде»

Цель работы: изучение симплекс-метода для решения задачи линейного программирования с использованием симплекс-таблиц, получение навыков кодирования изученного алгоритма, отладки и тестирования соответствующих программ.

$$z = 7x_2 + 8x_4 + x_6 \rightarrow max;$$

$$\begin{cases} x_1 - 3x_2 - 4x_4 - 2x_6 = 10\\ 5x_2 + 5x_4 + x_5 + x_6 = 26\\ 4x_2 + x_3 - 6x_4 - 3x_6 = 12 \end{cases}$$

$$x_i \ge 0 (i = \overline{1,6})$$

Ход выполнения лабораторной работы:

Запрограммировать и отладить изученный алгоритм.

Блок-схемы

Исходный код программы:

Файл task1.tpp

```
#define OPERATIONS RESEARCH TASK1 TPP
template <std::size t T>
    for (int i = 0; i < function.size() - 1; i++)
        if (std::abs(function[i]) < EPS)</pre>
            functionBasisVars.push back(i);
    for (auto& basis : getAllBasises(matrix)) {
        bool isAllBsMoreOrEqualToZero = true;
        for (int i = 0; i < basis.matrix.size() && isAllBsMoreOrEqualToZero;</pre>
            if (basis.matrix[i].back() < EPS)</pre>
                isAllBsMoreOrEqualToZero = false;
        if (!isAllBsMoreOrEqualToZero) {
        std::sort(basis.indices.begin(), basis.indices.end());
        if (std::includes(basis.indices.begin(), basis.indices.end(),
functionBasisVars.begin(), functionBasisVars.end()))
    throw std::invalid argument("No basis for function found");
```

```
simplexMatrix.push back(function);
        simplexMatrix.back()[i] *= -1;
             for (int j = 0; j < simplexMatrix[i].size(); j++) {</pre>
plexMatrix.back()[minColumnIndex] > simplexMatrix.back()[i]))
             if (simplexMatrix[i][minColumnIndex] <= EPS) continue;</pre>
RowIndex] [minColumnIndex] >
                      simplexMatrix[i].back() / simplexMatrix[i][minColumn-
        if (baseIndices)
             (*baseIndices) [minRowIndex] = minColumnIndex;
        for (int j = 0; j < simplexMatrix[i].size(); j++) {</pre>
             std::cout << std::setw(10) << simplexMatrix[i][j];</pre>
        std::cout << std::endl;</pre>
    std::cout << std::endl;</pre>
    for (int i = 0; i < matrix.size(); i++)</pre>
```

Файл task1.cpp

Результат работы программы:

```
Zmax: 41.6
```

Дополнительно проведём тестирование при помощи программы отбора базисных решений (см. лабораторная работа №1 задание 2).

Результат выполнения программы:

```
Обнаружено опорное решение: {62; 0; 90; 0; 0; 26; 0}
Значение функции z(B): 26
_______
Обнаружено опорное решение: {10; 0; 12; 0; 26; 0; 0}
Значение функции z(B): 0
Обнаружено опорное решение: {30.8; 0; 43.2; 5.2; 0; 0; 0}
Значение функции z(B): 41.6
Обнаружено опорное решение: {28.8421; 4.73684; 0; 0; 0; 2.31579; 0}
Значение функции z(B): 35.4737
______
Обнаружено опорное решение: {19; 3; 0; 0; 11; 0; 0}
Значение функции z(B): 21
Обнаружено опорное решение: {26.48; 4.32; 0; 0.88; 0; 0; 0}
Значение функции z(B): 37.28
Zmax: 41.6
Оптимальный план: {30.8; 0; 43.2; 5.2; 0; 0; 0}
```

Результаты вычислений:

Имеем целевую функцию $z = 7x_2 + 8x_4 + x_6 \rightarrow max$. И систему уравнений

$$\begin{cases} x_1 - 3x_2 - 4x_4 - 2x_6 = 10\\ 5x_2 + 5x_4 + x_5 + x_6 = 26\\ 4x_2 + x_3 - 6x_4 - 3x_6 = 12 \end{cases}$$

Приведём систему уравнений к базисному виду. Базисными переменными выберем x_1, x_3 и x_6 .

Привели систему к базисному виду

$$\begin{cases} x_1 = 10 + 3x_2 + 4x_4 + 2x_6 \\ x_3 = 12 - 4x_2 + 6x_4 + 3x_6 \\ x_6 = 26 - 5x_2 - 5x_4 - x_5 \end{cases}$$

Построим симплекс- таблицу

Баз. Пер.	Св. чл.	x_1	x_2	χ_3	x_4	x_5	<i>x</i> ₆
X ₁	10	1	-3	0	-4	0	-2
Х3	12	0	4	1	-6	0	-3
Х ₆	26	0	5	0	5	1	1
Z	0	0	-7	0	-8	0	-1

Баз. Пер.	Св. чл.	x_1	x_2	x_3	x_4	x_5	<i>x</i> ₆
x ₁	$30\frac{4}{5}$	1	1	0	0	$\frac{4}{5}$	$-1\frac{1}{5}$
X ₄	$43\frac{1}{5}$	0	10	1	0	$1\frac{1}{5}$	$-1\frac{4}{5}$
X ₅	$5\frac{1}{5}$	0	1	0	1	$\frac{1}{5}$	$\frac{1}{5}$
Z	$41\frac{3}{5}$	0	1	0	0	$1\frac{3}{5}$	$\frac{3}{5}$

Ответ: $z_{max}=41$,6. Координаты точки максимума: $x_1=30\frac{4}{5}$, $x_2=0$, $x_3=43\frac{1}{5}$, $x_4=5\frac{1}{5}$, $x_5=0$, $x_6=0$. Результаты ручных вычислений совпали с результатами выполнения программы.

Вывод: в ходе лабораторной работы разработали и отладили программу, находящую оптимальное решение в системе линейных уравнений для целевой функции, и использующей симплекс метод.