Biological Pathways and Networks

DAVID L. TABB, PH.D.

With many valuable slide contributions from Bing Zhang, Baylor College of Medicine

Overview

- Organizing genes by "gene sets"
 - Pathways
 - Gene Ontology
 - Network modules
- Enrichment analysis methods
 - Over-representation analysis: WebGestalt
 - Gene Set enrichment analysis: GSEA

Omics studies generate lists of interesting genes

Reorganizing to pathways changes our perspective

- **CASP**
 - MAP Kinase
 - Apoptosis
- ■Ras
 - MAP Kinase
 - cAMP Signaling
- ■MEKK1
 - MAP Kinase
 - Apoptosis
- MLCP
 - cAMP Signaling

- MAP Kinase
 - CASP
 - Ras
 - MEKK1
- Apoptosis
 - CASP
 - MEKK1
- cAMP Signaling
 - Ras
 - MLCP

Advantages of pathway analysis

- Better interpretation
 - From interesting genes to interesting biological themes
- Improved robustness
 - Guards against noise in the data
- Improved sensitivity
 - Detecting minor but concordant changes in a pathway

Pathway databases

Databases

- BioCarta (http://www.biocarta.com/genes/index.asp)
- KEGG (http://www.genome.jp/kegg/pathway.html)
- MetaCyc (http://metacyc.org)
- Pathway commons (http://www.pathwaycommons.org)
- Reactome (http://www.reactome.org)
- STKE (<u>http://stke.sciencemag.org/cm</u>)

Signaling Gateway (http://www.signaling-gateway.org)

Wikipathways (http://www.wikipathways.org)

Limitation

- Limited coverage
- Inconsistency among different databases
- Relationship between pathways is not defined

Gene Ontology

- Structured, precisely defined, controlled vocabulary for describing the roles of genes and gene products
- ■Three organizing principles: molecular function, biological process, and cellular component
 - Dopamine receptor D2, the product of human gene DRD2
 - molecular function: dopamine receptor activity
 - biological process: synaptic transmission
 - cellular component: plasma membrane
- ■Terms in GO are linked by several types of *relationships:*"IS A" "PART OF" "HAS PART" "REGULATES"

Ontology: a theory about the nature of being or the kinds of things that have existence

Relationship examples

Annotation using GO terms

- ■Two types of GO annotations
 - Electronic annotation
 - Manual annotation
- •All annotations must:
 - be attributed to a source
 - indicate what evidence was found to support the GO termgene/protein association
- Types of evidence codes
 - Experimental codes IDA, IMP, IGI, IPI, IEP
 - Computational codes ISS, IEA, RCA, IGC
 - Author statement TAS, NAS
 - Other codes IC, ND

Handy interfaces to GO

- AmiGO 2 (GO service)
- Bioconductor (CRAN)
- QuickGO (EBI service)


```
Annotations
H. sapiens
M. musculus
R. norvegicus
G. gallus
D. rerio
D. melanogaster
C. elegans
```

How do we add to GO?

Annotations by aspect/species by evidence

KEGG molecular networks

WebGestalt: enrichment by pathway

Over-representation analysis

Development (1842 genes)

How often would one see even more genes than this at random?

Contingency Table

	Significant genes	Non-significant genes	Total
genes in the group	k	j-k	j
Other genes	n-k	m-n-j+k	m-j
Total	n	m-n	m

Hypergeometric test: given a total of *m* genes where *j* genes are in the functional group, if we pick *n* genes randomly, what is the probability of having *k* or more genes from the group?

$$p = \sum_{i=k}^{\min(n,j)} \frac{\binom{m-j}{n-i}\binom{j}{i}}{\binom{m}{n}}$$

Enriched GO terms

FDR ≤ 0.05

FDR > 0.05

Enriched pathway

TGF Beta Signaling

Enriched network modules

Over-representation analysis: limitations

- Thresholding can be quite arbitrary.
- Ignoring the order of genes in the significant gene list throws away magnitude of p-value.
- •Treating pathway genes as a set ignores that some genes are central to a pathway while others are less affiliated.

Gene Set Enrichment Analysis

Gene Set Enrichment Analysis: method

Pathway-based analysis

- Organizing genes by
 - Pathways
 - Gene Ontology
- Enrichment analysis methods
 - Over-representation analysis
 - Gene Set enrichment analysis
- •Major limitation: Existing knowledge of gene functions is far from complete

Intermission

Graph Theory Definitions

- Node: a vertex, generally representing an object or concept, particularly genes or proteins
- Edge: a relationship between a pair of nodes. May be directional (in digraph) or undirected
- Degree: the number of edges for a node
- Connected component: a set of interconnected nodes that have no edges to nodes outside the set

Advanced Definitions

- Clique: a set of nodes for which every possible connection is present
- •Module: sets of nodes that are more strongly connected among the set than outside it.
- ■Path length: how many edges must be traversed to get from node A to node B?
- Hub: a node of high degree that is *between* many pairs of other nodes.

Biological networks

Networks		Nodes	Edges
Physical interaction networks	Protein-protein interaction network	Proteins	Physical interaction, undirected
	Signaling network	Proteins	Modification, directed
	Gene regulatory network	TFs/miRNAs Target genes	Physical interaction, directed
	Metabolic network	Metabolites	Metabolic reaction, directed
Functional association networks	Co-expression network	Genes/proteins	Co-expression, undirected
	Genetic network	Genes	Genetic interaction, undirected

Properties of complex networks

Human protein-protein interaction network 9,198 proteins and 36,707 interactions

Scale-free (hubs)

Small world (6° separation)

Hierarchical modular

Network visualization

ASSORTED TOOLS

- GraphViz
- **■**VizANT
- Medusa3
- Ondex
- Pajek
- BioLayout Express^{3D}

CYTOSCAPE

Cytoscape integrates and visualizes through networks.

P Shannon et al. *Genome Research* (2003) 13: 2498-2504

ME Smoot et al. Bioinformatics (2011) 27: 431-432

Network distance *vs* functional similarity

- Proteins that lie closer to one another in a protein interaction network are more likely to have similar function and involve in similar biological process.
- Network-based gene function prediction
- Network-based disease gene prediction

Organizing genes based on network modules

- Protein-protein interaction modules
- Transcriptional regulatory modules
 - Transcription factor targets
 - miRNA targets
- Network module-based analysis

NetGestalt: network module-based interaction

Takeaway Messages

- •Building your assessment on pathways or networks rather than genes or proteins may have two key effects:
 - Biological interpretability should be far greater.
 - You will incorporate more data in each statistical test.
- •Biological pathways are built on a categorical basis, while biological networks borrow from graph theory for analysis.
- •Gene Set Enrichment Analysis and Over-Representation Analysis are two of the most common statistical tests for pathway and network data.