1. Preverjanje znanja - Računalniška grafika (28.10.2010)

Čas za opravljanje preverjanja: 20 min Skupno je možnih 10 točk.

1. Naloga (1 točka)

Kateri vektor predstavlja vsoto vektorjev $\mathbf{c} = \mathbf{a} + \mathbf{b}$, kjer sta $\mathbf{a} = \begin{bmatrix} 3 & 5 & 8 \end{bmatrix}^T$ in $\mathbf{b} = \begin{bmatrix} -1 & 4 & 9 \end{bmatrix}^T$.

a)
$$\mathbf{c} = \begin{bmatrix} -4 & -1 & 1 \end{bmatrix}^T$$

b)
$$\mathbf{c} = \begin{bmatrix} 2 & 1 & -1 \end{bmatrix}^T$$

c)
$$\mathbf{c} = \begin{bmatrix} 2 & 9 & 18 \end{bmatrix}^T$$

d)
$$\mathbf{c} = \begin{bmatrix} 4 & 9 & 17 \end{bmatrix}^T$$

2. Naloga (1 točka)

Norma vektorja $\mathbf{a}=\left[\begin{array}{cccc} 5 & -4 & 9 \end{array}\right]^T$ je. $\mbox{\bf 9}$

3. Naloga (1 točka)

Izračunaj skalarni produkt vektorjev $\mathbf{a} = \begin{bmatrix} 1 & 5 & 8 \end{bmatrix}^T$ in $\mathbf{b} = \begin{bmatrix} 5 & 6 & 2 \end{bmatrix}^T$. 96

4. Naloga (2 točki)

Kdaj je vektorski produkt dveh vektorjev ničelni vektor? (obkroži pravilne odgovore)

- a) kadar je eden izmed vektorjev ničelni vektor
- b) kadar sta vektorja pravokotna
- c) kadar sta vektorja vzporedna
- d) kadar sta vektorja kolinearna
- e) kadar je dolžina enega vektorja enaka 0

a2* b3 - a3* b2 a3* b1 - a1* b3 a1* b2 - a3* b1
5. Naloga (2 točki)

Izračunaj vektorski produkt vektorjev:
$$\mathbf{a} = \begin{bmatrix} 1 & 4 & 7 \end{bmatrix}^T$$
 in $\mathbf{b} = \begin{bmatrix} 6 & 1 & 8 \end{bmatrix}^T$.

25

-7

6. Naloga (3 točke)

Kako bi s pomočjo spodaj naštetih transformacij, ki jim določite parametre $(n \text{ in } \alpha)$, iz leve slike dobili desno? Zapiši z veriženjem transformacij. Točka označena na liku predstavlja središče vrtenja lika.

 ${f I}$. . . trenutna transformacija (identiteta)

 $\mathbf{T}_x(n)$...premik v smeri x za n enot

 $\mathbf{T}_y(n)$... premik v smeri y za n enot

 $\mathbf{T}_z(n)$...
premik v smeri z za n enot

 $\mathbf{S}(k)$... razteg za faktor k v vseh smereh

 $\mathbf{R}(\alpha)$...vrtenje okoli osi z za α stopinj

