CSC3631 Cryptography - Asymmetric Encryption II Thomas Gross CSC3631 Cryptography - Asymmetric

Roadmap

- El Gamal Encryption
 - Number Theory Foundations
 - Underlying Assumptions
 - El Gamal
 - Attacks on El Gamal

Goal for today:

- What is El Gamal?
- What can go wrong with El Gamal

SC3631 Cryptography – Asymmetric Encryption II 21

21

Blinding with a Random Element II Exponentiation

Given a finite group G w/ generator g and order q.

Choose a random x in \mathbf{Z}_q . Then $g' = g^x$ is a **random element** of G again.

Blinding with a Random Element I Multiplication

Given a finite group *G* and a arbitrary element *m*

Choose a random g in G. Then $g' = m \cdot g$ is a **random element** of G again.

Example: $(\mathbf{Z}_7)^*$ random $g = \mathbf{S}$ { 1, 2, 3, 4, 5, 6 }

22

Roadmap

- El Gamal Encryption
 - Number Theory Foundations
 - Underlying Assumptions
 - El Gamal
 - Attacks on El Gamal

Goal for today:

- What is El Gamal?
- What can go wrong with El Gamal

C3631 Cryptography – Asymmetric Encryption II

24

What is the Discrete Logarithm?

Given a h in $(\mathbf{Z}_p)^*$ with generator g, find the x such that

$$g^x = h \pmod{p}$$

Example: $(\mathbf{Z}_{17})^*$, g=3

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}

CSC3631 Cryptography – Asymmetric Encryption II

25

25

Decisional Diffie-Hellman Assumption*

What's the basis of the Diffie-Hellman key exchange?

Setup: $((\mathbf{Z}_p)^*, q, g) \leftarrow \mathbf{GenGroup}(1^n)$, where $q = \mathbf{ord}(g)$ Compute $h_1 = g^x \pmod{p}$ and $h_2 = g^y \pmod{p}$

Input for Adversary **A**: $(\mathbf{Z}_p)^*$, q, g, h₁, h₂, K

where $K = g^z$ or $K = g^{xy}$

Output of Adversary **A**: Decision for g^z or g^{xy}

Adversary A success: if guessed type of K

The Decisional Diffie Hellman problem is **hard** relative to GenGroup if all probabilistic and polynomial-time adversaries **A** only have negligible success probability to distinguish g^{xy} from a random number.

[*) In the key exchange lecture, we only considered the Computational Diffie-Hellman, as simplification.]

The Discrete Logarithm Assumption*

What's the basis of the DH and El Gamal crypto systems?

Setup: $((\mathbf{Z}_p)^*, \mathbf{q}, \mathbf{g}) \leftarrow \mathbf{GenGroup}(1^n)$, where $\mathbf{q} = \mathbf{ord}(g)$

Choose h from $(\mathbf{Z}_p)^*$ by $h = g^{x'}$ (mod p)

Input for Adversary **A**: $(\mathbf{Z}_p)^*$, q, g, h

Output of Adversary **A**: $x \text{ in } \mathbf{Z}_q$

Adversary A success: if $g^x = h \pmod{N}$

The Discrete Logarithm problem is **hard** relative to GenGroup if all probabilistic and polynomial-time adversaries **A** only have negligible success probability.

[*) The Discrete Logarithm Assumption holds in arbitrary cyclic groups or order q.]

26

26

Roadmap

- El Gamal Encryption
 - Number Theory Foundations
 - Underlying Assumptions
 - El Gamal
 - Attacks on El Gamal

Goal for today:

- What is El Gamal?
- What can go wrong with El Gamal

CSC3631 Cryptography – Asymmet Encryption II

El Gamal Key Generation

How to create a strong setting for El Gamal?

 $GenElGamal(1^n)$

Input: key length *n*

Create a cyclic group G

(e.g. in $(\mathbf{Z}_{p})^{*}$)

with order q and generator g.

Choose random ${\bf x}$ in ${\bf Z}_q$

Compute $h = g^x \pmod{q}$

Output: pk=(G

pk=(G, q, g, h), sk=(G, q, g, x)

CSC3631 Cryptography – Asymmetric Encryption II

29

29

Correctness of El Gamal

Ciphertext: $(c_1=g^y, c_2=h^y \cdot m)$ **Message:** $m = c_2 \cdot (c_1^x)^{-1}$

CSC3631 Cryptography – Asymmetric Encryption II

31

El Gamal Encryption (e.g. in $(\mathbf{Z}_p)^*$)

KeyGen: pk=(G, q, g, h), $sk=(G, q, g, x) \leftarrow GenElGamal(1^n)$

Enc: Given pk=(G, q, g, h) and a message m:

Choose random y in \mathbf{Z}_q

Ciphertext: $(c_1=g^y, c_2=h^y \cdot m)$

Dec: Given sk=(G, q, g, x) and ciphertext (c_1, c_2) :

$$m = c_2 \cdot (c_1^x)^{-1}$$

CSC3631 Cryptography – Asymmetric Encryption II

30

30

Correctness of El Gamal

Ciphertext: $(c_1=g^y, c_2=h^y \cdot m)$ Message: $m = c_2 \cdot (c_1^x)^{-1}$

CSC3631 Cryptography – Asymmetric Encryption II

Example of El Gamal

GenElGamal: prime p = 2357, generator g = 2 of $(\mathbf{Z}_{2357})^*$ Private key x = 1751. Public key $h = g^x \pmod{p} = 2^{1751} \pmod{2357} = 1185$

Encryption: Message m = 2035, select random y = 1520 $c_1 = g^y \pmod{p} = 2^{1520} \pmod{p} = 1430$ $c_2 = h^y \cdot m \pmod{p} = 1185^{1520} \cdot 2035 \pmod{2357} = 697$

Decryption: Ciphertext c_1 = 1430, c_2 = 697 $m = c_2 \cdot c_1^x \text{ (mod p)} = 697 \cdot (1430^{1751})^{-1} \text{ (mod 2357)} = 2035$ [Example adapted from Menezes et al., Handbook of Applied Cryptography]

CSC3631 Cryptography – Asymmetric Encryption II

33

33

El Gamal Decryption Graphically Random c Random c Random c Random c Random c Multiply inverse of g^{xy} Random c Multiply inverse of g^{xy} and c CSC3621 Cryptography - Digital Signatures 1

34

Roadmap

- El Gamal Encryption
 - Number Theory Foundations
 - Underlying Assumptions
 - El Gamal
 - Attacks on El Gamal

Goal for today:

- What is El Gamal?
- What can go wrong with El Gamal

GC3631 Cryptography – Asymmetri Encryption II

Attacks on Weak Randomness

Critical to use **different** y in each encryption.

What can go wrong?

CSC3631 Cryptography – Asymmetric Encryption II

37

