6° CAPÍTULO

Extracção de cor e textura

Prof. Arnaldo Abrantes

- Percepção de cor depende de 3 principais factores:
 - O modo como a energia da fonte de iluminação se distribui ao longo do espectro
 - A reflectância da superfície do objecto, ou seja qual a relação entre o espectro emitido pela fonte e o espectro radiado pela superfície
 - A sensibilidade espectral do sensor
 - Um objecto diz-se 'azul' se quando iluminado com luz branca parece azul. O mesmo objecto parece violeta se iluminado com luz vermelha. Um carro azul iluminado com luz solar intensa (branca) aquece e radia energia na banda IR (invísivel ao olho humano mas vísivel por sensor IR)

- Outros factores que afectam a percepção de um objecto:
 - Material (superfícies especulares ou matizadas), distância, orientação

Sensibilidade dos receptores

- Os receptores de cor (*cones*) da retina são sensíveis apenas a uma dada gama de comprimentos de onda
- O Sistema Visual Humano (SVH) dispõe de 3 tipos de cones
- O cérebro é responsável pela fusão da informação proveniente destas 3 fontes – Percepção de cor
- Como é possível?
 - Existem infinitas possibilidades de distribuições espectrais, mas apenas são necessárias 3 características.

• Nota importante:

 Os sensores CCD têm, geralmente, boa sensibilidade na zona do infravermelho (vantagem ou desvantagem?)

Resumo

- A cor percepcionada depende da:
 - Fonte de iluminação

 $E(\lambda)$

 $S(\lambda)$

- Reflectância do objecto (albedo)
- Sensibilidade do observador
- $f_C(\lambda), C \in \{R, G, B\}$

(linha escura
$$\rightarrow$$
 sensibilidade dos *rods*)

$$G = \int_{\lambda} E(\lambda) S(\lambda) f_G(\lambda) d\lambda$$

$$B = \int_{\lambda} E(\lambda) S(\lambda) f_B(\lambda) d\lambda$$

$$R = \int_{\lambda} E(\lambda) S(\lambda) f_R(\lambda) d\lambda$$

Representação de cor na base RGB

- Actualmente, os sistemas gráficos usam 3 bytes (RGB) para representar a cor de um pixel (*true color*) → 16.777.216 codificações possíveis (cores possíveis?)
 - 16 bits/pixel é considerado suficiente (5 bits para cada uma das componentes RGB, mais um bit adicional para o verde). O SVH tem maior sensibilidade na zona do verde.

5

Outros sistemas de representação de cor

	Sistema aditivo RGB	Sistema subtractivo	HSI
RED	(255, 0, 0)	(0,255,255)	(0.0 , 1.0, 255)
YELLOW	(255,255, 0)	(0, 0,255)	(1.05, 1.0, 255)
	(100,100, 50)	(155,155,205)	(1.05, 0.5, 100)
GREEN	(0,255, 0)	(255, 0,255)	(2.09, 1.0, 255)
BLUE	(0, 0,255)	(255,255, 0)	(4.19, 1.0, 255)
WHITE	(255,255,255)	(0, 0, 0)	(-1.0, 0.0, 255)
CREY	(192,192,192) (127,127,127) (63, 63, 63)	(63, 63, 63) (128,128,128) (192,192,192)	(-1.0, 0.0, 127)
BLACK	(0, 0, 0)	(255,255,255)	(-1.0, 0.0, 0)

6

Crominância:

$$r = \frac{R}{R + G + B}$$

$$g = \frac{G}{R + G + B}$$

Luminância:

$$I = (R + G + B)/3$$

Outra alternativa:

• normalizar pelo *max*(R,G,B)

Representação HSI

Efeito provocado pela alteração da componente saturação:

Conversão de RGB para HSI

```
Conversion of RGB encoding to HSI encoding.
R<sub>*</sub>G<sub>*</sub>B : input values of RGB all in range [0,1] or [0,255];
I : output value of intensity in same range as input:
S: output value of saturation in range [0,1];
H: output value of hue in range [0,2\pi), -1 if S is 0;
R,G,B,H,S,I are all floating point numbers:
      procedure RGB_to_HSI( in R,G,B; out H,S,I)
    I := \max (R, G, B); Deve ser V
      \min := \min (R, G, B);
      if (I \ge 0.0) then S := (I - min)/I else S := 0.0;
      if (S \le 0.0) then \{H := -1.0; return; \}
         "compute the hue based on the relative sizes of the RGB components".
      diff := I - min:
      "is the point within +/- 60 degrees of the red axis?"
      if (r = I) then H := (\pi/3)^*(g - b)/diff;
      "is the point within +/- 60 degrees of the green axis?"
      else if (g = I) then H := (2 * \pi/3) + \pi/3 * (b - r)/diff;
      "is the point within +/- 60 degrees of the blue axis?"
      else if (b = I) then H := (4 * \pi/3) + \pi/3 * (r - g)/diff;
      if (H < 0.0) H := H + 2\pi;
```

$$HSI$$

$$I = \frac{R + G + B}{3}$$

$$HSV$$

$$V = max\{R, G, B\}$$

$$HSL$$

$$L = \frac{max_{RGB} + min_{RGB}}{2}$$

Histograma de cor

 $Intersection\{h_I, h_M\} = \sum_{j=1}^K \min\{h_I(j), h_M(j)\}$

$$match\{h_{I},h_{M}\} = \frac{\sum_{j=1}^{K} \min\{h_{I}(j),h_{M}(j)\}}{\sum_{j=1}^{K} h_{M}(j)}$$

$$d_{L1}\{h_I, h_M\} = \sum_{j=1}^K |h_I(j) - h_M(j)|$$

Classificação usando cor

Color matching – CIE XYZ

Cores primárias: R, G, B

Problema: Algumas cores produzem coeficientes negativos

Solução: Transformação linear.
As cores primárias são agora imaginárias → XYZ

Diagrama de cromaticidade x,y

Coordenadas cromáticas:

$$x = \frac{X}{X + Y + Z}$$
$$y = \frac{Y}{X + Y + Z}$$
$$z = 1 - x - y$$

Relação com as cores primárias, RGB:

$$\begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = \begin{pmatrix} 0.619 & 0.177 & 0.204 \\ 0.299 & 0.586 & 0.115 \\ 0.000 & 0.056 & 0.944 \end{pmatrix} \begin{pmatrix} R \\ G \\ B \end{pmatrix}$$

O que é textura?

- É difícil definir qual o significado de textura
- Textura dá-nos informação acerca da distribuição espacial das intensidades e/ou cores
- É uma característica útil em segmentação de imagens em regiões
- Exemplo:
 - Um mesmo histograma, mas diferentes texturas

14

Abordagem estrutural

textura é o modo como um conjunto de padrões elementares (texels)
 estão dispostos numa região

Abordagem estatística

 textura é uma medida quantitativa de como as intensidades luminosas estão dispostas numa região

Textura 15

Medidas quantitativas

Densidade (*edgeness*) e direcção dos edges

$$F_{edgeness} = \frac{\left| \left\{ p \mid Mag(p) \ge T \right\} \right|}{N}$$
$$F_{magdir} = \left(H_{mag}(R), H_{dir}(R) \right)$$

- Exemplo
 - 2 níveis de amplitude: forte e fraco
 - 3 níveis de direcção: horizontal, vertical e diagonal

$$F_{magdir} = ((0.24, 0.76)(0.48, 0.52, 0.00))$$

$$F_{edgeness} = \frac{6}{25} = 0.24$$

$$F_{magdir} = ((0.00, 0.24)(0.00, 0.00, 0.24))$$

Distância entre histogramas

$$L_1(H_1, H_2) = \sum_{i=1}^{n} |H_1(i) - H_2(i)|$$