$$\int_{birth}^{death} study \: \mathrm{d} \: time = life$$

Fragment 1 多元函数极限

• 平面点集

$$P$$
 (x,y) $P_1(x_1,y_1)$ $P_2(x_2,y_2)$ $d(P_1,P_2)=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$ $d(P_1,P_2)\geq 0$ $P_1=P_2$ $d(P_1,P_2)\leq d(P_1,P_3)+d(P_3,P_2)$ $E=\{P\mid P$ $\}$

$$P_n$$
 δ $\{P \mid d(P,P_n) < \delta\}$ $N(P_n,\delta)$
$$P_0$$
 α $\{P \mid 0 < d(P,P_n) < \delta\}$ $N_{\alpha}(P_n,\delta)$
$$P_0$$
 δ

$$E$$
 P_0

- $egin{array}{ll} ullet \delta > 0 & N(P_0,\delta) \cap E = arnothing \end{array}$
- $egin{array}{ll} ullet \delta > 0 & N(P_0,\delta) \cap E
 eq arnothing & N(P_0,\delta) \cap E
 eq arnothing \end{array}$

.

$$\exists \delta > 0 \qquad N(P_0,\delta) \cap E = \{P_0\}$$

$$orall \delta > 0 \hspace{0.5cm} N(P_0,\delta) \cap E$$

$$orall \delta > 0 \hspace{0.5cm} N(P_0,\delta) \cap E$$

- \bullet $E\subset E^*$
- \bullet $E^* \subset E$
- ullet $F\subset E$

E

- $\exists M > 0 \quad E \subset N(O, M)$ O(0, 0)
- $\forall M > 0 \quad \exists P_0 \in E \quad P_0 \notin N(O, M)$

1. 义 值 为
$$d(P_1, P_2) = \sup_{P_1, P_2 \in E} d(P_1, P_2)$$
 则 E 且仅 $d(E)$ 为 值

- 2. $\{P_1(x_1,y_1)\}$ 且仅 $\{x_n\}$ $\{y_n\}$
- 2 F G 则 $F \setminus G$ $G \setminus F$.

E

PS 区 但 不一 区 例 分 区

• 二元函数极限

 \mathbb{R}^2 \mathbb{R}

/Define/

 $D\subset\mathbb{R}^2$ 则 f D 中 - P(x,y) - $z\in\mathbb{R}$ 与之 则 f 为 义 D 上 二元函 D 为 f 义 $P\in D$ z 为 f P 函 值 作 z=f(P) z=f(x,y) 全体函 值 为 f 值 作 $f(D)\subset\mathbb{R}$ 。

$$S = \{(x,y,z)|(x,y) \in D, z = f(x,y)\}$$

/Define/

义 f 为 义 $D \subset \mathbb{R}^2$ 上 二元函 P_0 为 D 一个 A 一个 $\forall \varepsilon > 0$ $\exists \delta > 0$ $\forall p \in (P_0, \delta) \cap D$ $|f(P) - A| < \varepsilon$ 则 A 为 f D 上 $P \to P_0$ 作

$$\lim_{(x,y) o(x_0,y_0)}f(P)=A \qquad \lim_{\substack{x o x_0\ y o y_0}}f(x,y)=A \qquad \lim_{(x,y) o(x_0,y_0)}f(x,y)$$

等价描述 $\forall \varepsilon>0$ $\exists \delta>0$ $\forall |x-x_0|<\delta$ $|y-y_0|<\delta$ 且 $(x,y)\neq (x_0,y_0)$ $|f(x,y)-A|<\varepsilon$ 。

理 (海涅 理) $f \qquad D \subset \mathbb{R}^2 \qquad P_0 \quad D \qquad \lim_{P \to P_0} f(P) = A$ $D \qquad P_n \neq P_0 \quad P_n \to P_0 \quad n \to \infty \qquad \{P_n\} \qquad \lim_{n \to \infty} f(P_n) = A$

PS

$$egin{aligned} \{P_n\}:P_n
ightarrow P_0 & \lim_{n
ightarrow \infty} f(P_n) \ \\ \{P_n\}:P_n
ightarrow P_1 & \{P_n'\}:P_n'
ightarrow P_2 & \lim_{n
ightarrow \infty} f(P_n)
eq \lim_{n
ightarrow \infty} f(P_n') & \lim_{n
ightarrow P_0} f(P) \end{aligned}$$

注意 $\lim_{x \to 0} f(x,kx) \equiv A$ $\lim_{(x,y) \to (0,0)} f(x,y) = A$

 $\lim_{(x,y) o (x_0,y_0)} f(x,y)$ (x_0,y_0)

$$z$$
 E 上 $-$ 则 z E 上 $f_x(x,y)$ 与 $f_y(x,y)$ 为偏 函 。 $z=f(x,y)$ (x_0,y_0) $f(x,y)=egin{cases} 1 & xy
eq 0 \ 0 & xy = 0 \end{cases}$ $(0,0)$

$$y=f(x)$$
 x_0 $\Delta y=f(x_0+\Delta x)-f(x_0)$ $A(x)\Delta x+o(\Delta x)(\Delta x o 0)$ $y=f(x)$ x_0 $A\Delta x$ y x_0 $dy=Adx$

/Define/

$$z=f(x,y)$$
 (x_0,y_0) 上 义 且 $\Delta z=f(x_0+\Delta x,y_0+\Delta y)-f(x_0,y_0)$

以
$$A\Delta x + B\Delta y + o(\rho)$$

$$ho=\sqrt{\Delta x^2+\Delta y^2}$$
 则 $z=f(x,y)$ (x_0,y_0) 。 $A\Delta x+B\Delta y$ 为 z (x_0,y_0) 分 为 $dz|_{(x_0,y_0)}=Adx+Bdy$

$$z=f(x,y) \qquad (x_0,y_0) \qquad \qquad z \qquad (x_0,y_0)$$

/proof/

$$egin{aligned} \lim_{(x,y) o(x_0,y_0)}f(x,y)&=\lim_{\Delta x o 0}f(x_0+\Delta x,y_0+\Delta y)\ &=\lim_{\Delta x o 0}f(x_0,y_0)+A\Delta x+B\Delta y+o(
ho)\ &=f(x_0,y_0)\quad (\Delta y o 0) \end{aligned}$$

$$z = f(x,y)$$
 (x,y) $dz(x,y) = Adx + Bdy$ $A = f_x(x,y)$ $B = f_y(x,y)$

/proof/

$$y$$
 即 $\Delta y = 0$ 则 $\rho = |\Delta x|$
$$f(x + \Delta x, y) - f(x, y) = A\Delta x + o(|\Delta x|)$$
 $\Rightarrow \frac{f(x + \Delta x, y) - f(x, y)}{\Delta x} = A + \frac{o(|\Delta x|)}{\Delta x}$

上
$$\Delta x \to 0$$
 则 到 $f_x(x,y) = A$

$$dz = f_x dx + f_y dy \hspace{1cm} du = f_x dx + f_y dy + f_z dz$$

(1). 一元函
$$y = f(x)$$

 (x_0, y_0) 分 $dy = f'(x_0)dx$
 (x_0, y_0) 切 $y - y_0 = f'(x_0)(x - x_0)$
(2). 二元函 $z = f(x, y)$
 (x_0, y_0, z_0) 分 $dz = f_x(x_0, y_0)dx + f_y(x_0, y_0)dy$
 (x_0, y_0, z_0) 切 $z - z_0 = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$

·可微性验证

$$\Delta z - f_x \Delta x - f_y \Delta y = o(
ho) \Leftrightarrow \lim_{
ho o 0^+} rac{\Delta z - f_x \Delta x - f_y \Delta y}{
ho} = 0$$
 $z = \sqrt{|xy|} \quad z \quad (0,0)$

/solution/

$$f_x(0,0) = \lim_{\Delta x \to 0} \frac{\sqrt{\Delta x \cdot 0} - 0}{\Delta x} = 0 \quad f_y(0,0) = 0$$

$$\lim_{\rho \to 0^+} \frac{(\sqrt{\Delta x \Delta y} - 0) - 0\Delta x - 0\Delta y}{\rho} = \lim_{\rho \to 0^+} \sqrt{|\sin \theta \cos \theta|}$$

不不

$$z=f(x,y) \hspace{0.5cm} (x,y) \hspace{0.5cm} f_x(x,y) \hspace{0.5cm} f_y(x,y) \hspace{0.5cm} (x,y) \hspace{0.5cm} f(x,y) \hspace{0.5cm} (x,y)$$

/proof/

$$\Delta z = f(x + \Delta x, y + \Delta y) - f(x, y)$$

$$= f(x + \Delta x, y + \Delta y) - f(x + \Delta x, y) + f(x + \Delta x, y) - f(x, y)$$
件 Δx 与 Δy 充分 $f(x, y)$

$$f(x + \Delta x, y)$$
 作 y 一元函 中值 $\theta_1 \in (0, 1)$ 使
$$f(x + \Delta x, y + \Delta y) - f(x + \Delta x, y) = f_y(x + \Delta x, y + \theta_1 \Delta y) \Delta y$$

$$\theta_2 \in (0, 1)$$
使 $f(x + \Delta x, y) - f(x, y) = f_x(x + \theta_2 \Delta x, y) \Delta x$

从

$$\begin{split} \Delta z - f_x(x,y) \Delta x - f_y(x,y) \Delta y \\ &= [f_y(x+\Delta x,y+\theta_1 \Delta y) - f_y(x,y)] \Delta y + [f_x(x+\theta_2 \Delta x,y) - f_x(x,y)] \Delta x \\ & \mp f_x(x,y) \quad f_y(x,y) \quad (x,y) \\ f_y(x+\Delta x,y+\theta_1 \Delta y) - f_y(x,y) & \to 0 \ (\rho \to 0^+) \qquad \not \exists \quad o(1) \\ f_x(x+\theta_2 \Delta x,y) - f_x(x,y) &= o(1) \qquad \bowtie \end{split}$$

$$\lim_{\rho \to 0^+} \frac{\Delta z - f_x(x,y) \Delta x - f_y(x,y) \Delta y}{\rho} = \lim_{\rho \to 0^+} \left(o(1) \frac{\Delta x}{\rho} + o(1) \frac{\Delta y}{\rho} \right)$$
为 $\left| \frac{\Delta x}{\rho} \right|, \left| \frac{\Delta y}{\rho} \right| \le 1$ 以上 为 $f(x,y)$ (x,y)

$$egin{aligned} f_x & f_y & (x,y) \ f(x+\Delta x,y+\Delta y) - f(x+\Delta x,y) &= \int_y^{y+\Delta y} f_y(x+\Delta x,s) ds \ &= \int_y^{y+\Delta y} [f_y(x,y)+o(1)] ds = f_y(x,y) \Delta y + o(1) \Delta y \end{aligned}$$

例
$$f(x,y) = egin{cases} (x^2+y^2) \sin rac{1}{x^2+y^2} & x^2+y^2
eq 0 \\ 0 & x^2+y^2=0 \end{cases}$$

(1). 中 件不 以

(2). 其中 $rac{\partial f}{\partial x},rac{\partial f}{\partial y}$ 关于 x,y 二元函 $rac{\partial x}{\partial s},rac{\partial x}{\partial t},rac{\partial y}{\partial s},rac{\partial y}{\partial t}$ 关于 s,t 二元函

 $\begin{cases} dx \\ dy \end{cases}$

全

utid

数值

PS

F(x,y,z)=0Q

z=z(x,y) $rac{\partial z}{\partial x}$ $rac{\partial z}{\partial y}$

/Define/

$$f(x,y) \qquad P_0(x_0,y_0)$$

则 为f

 $ec{l}=(1,0) \qquad f_l(P_0)$ 注意

/Define/

$$ec{l} = (\cos lpha_1, \ldots, \cos lpha_n) \qquad \quad \cos^2 lpha_1 + \cdots + \cos^2 lpha_n = 1$$

则 为
$$f$$
 P_0

为
$$\left.rac{\partial f}{\partial ec{l}}
ight|_{P_0}$$
 $f_{ec{l}}(P_0)$ 其中 $lpha_i$ 为

 $\cos^2\alpha + \cos^2\beta + \cos^2\gamma =$

/proof/

$$f(x_0 + \Delta x, y_0 + \Delta y, z_0 + \Delta z) - f(x_0, y_0, z_0) = f_x(P_0) \Delta x + f_y(P_0) \Delta y + f_z(P_0) \Delta z + o(
ho)$$

其中
$$ho = \sqrt{\Delta x^2 + \Delta y^2 + \Delta z^2}$$

$$\diamondsuit$$
 $(\Delta x, \Delta y, \Delta z) = t(\cos \alpha, \cos \beta, \cos \gamma) = t\vec{l}$ 则 $\rho = t$

$$t \to 0^+$$
 即 到

/Define/

$$f(x,y,z) = P_0(x_0,y_0,z_0)$$

则
$$(f_x(P_0), f_y(P_0), f_z(P_0))$$
 为 f f

$$\begin{cases} g_1(x,y,z) = 0 \\ g_2(x,y,z) = 0 \end{cases}$$

$$(x_0,y_0,z_0)$$

$$egin{cases} g_1(x_0,y_0,z_0) = 0 \ g_2(x_0,y_0,z_0) = 0 \end{cases}$$

$$(x_0, y_0, z_0)$$

$$\lambda_1,\lambda_2$$

$$egin{cases} f_x(x_0,y_0,z_0) + \lambda_1 g_{1x}(x_0,y_0,z_0) + \lambda_2 g_{2x}(x_0,y_0,z_0) = 0 \ f_y(x_0,y_0,z_0) + \lambda_1 g_{1y}(x_0,y_0,z_0) + \lambda_2 g_{2y}(x_0,y_0,z_0) = 0 \ f_z(x_0,y_0,z_0) + \lambda_1 g_{1z}(x_0,y_0,z_0) + \lambda_2 g_{2z}(x_0,y_0,z_0) = 0 \ g_1(x_0,y_0,z_0) = 0 \ g_2(x_0,y_0,z_0) = 0 \end{cases}$$

$$L(x,y,z)=f(x,y,z)+\lambda_1g_1(x,y,z)+\lambda_2g_2(x,y,z)$$

$$\begin{cases} L_x = L_y = L_z = 0 \\ g_1(x_0, y_0, z_0) = 0 \\ g_2(x_0, y_0, z_0) = 0 \end{cases}$$

m < n

Total 总结

 $\Rightarrow \qquad \Rightarrow$