FACULTAD DE CIENCIAS GEOMETRÍA ANALÍTICA I, GRUPO 4059 SEGUNDO EXAMEN PARCIAL, TIPO A; OCTUBRE 12 DE 2018

	Pregunta	Puntos	Puntuación
	1	31/2	
	2	3	
	3	31/2	
	Total	10	

Nombre: ______ Apellido Paterno Apellido Materno Nombre(s) No. Cuenta

Apellido Paterno Apellido Materno Nombre(s) Nota: El examen dura 1 hora y esta hoja debe entregarse con su nombre.

Cada respuesta debe ser debidamente **justificada**, de otra forma **no será contabilizada**

- 1. (3½ puntos) Considerando la figura 1a
 - (a) Demuestre que los triángulos $\triangle PQR$ y $\triangle RST$ son semejantes.
 - (b) Demuestre que si las ecuaciones de las rectas ℓ y ℓ' son y = mx + c y y = mx + c' respectivamente, la distancia de ℓ a ℓ' es

$$\frac{|\mathbf{c} - \mathbf{c}'|}{\sqrt{1 + m^2}}.$$

(Sugerencia: Calcule las magnitudes (PR), (RS) y (RT), luego utilice el teorema de Tales.)

- 2. (3 puntos) Sean $P,Q,R \in \mathbb{R}^n$ (n=2 ó n=3), puntos distintos entre si. Demuestre que, si P,Q y R son colineales entonces existen $\lambda,\mu\in\mathbb{R}$ tales que $P=\lambda Q+\mu R$, con $\lambda+\mu=1$.*
- 3. (3½ puntos) Sean \mathbb{S}^1 la circunferencia con centro en el origen de radio 1 y P un punto en \mathbb{S}^1 que está en el primer cuadrante, véase la figura 1b. Determine la representación vectorial de la recta ℓ que es tangente a \mathbb{S}^1 y que pasa por el punto P; además, dé las coordenadas del punto Q que es la intersección de ℓ con el eje Y.

^{*} Recordamos que tres puntos en \mathbb{R}^n , distintos entre si, son *colineales* si y sólo si existe una recta, en \mathbb{R}^n , que los contiene.