Siraj Bagwan

Project on Big Data Platform Engineering

Challenges

Improve click-through rates

Improving click-through rate (the number of clicks that your content receives divided by the number of times your content is shown.) by recommending content to relevant users.

Personalize online ads and content

Showing more relevant ads and content basis on their past interaction to online users to improve user experience.

Lead acquisition

By improving user experience and interaction can be able to raise the ratio of subscription.

Solution

Collect

Collect and gather data of user behavior and interaction and store it to data lake from different sources in order to process.

Process

Transform the click stream data on data lake and ingest it to data warehouse. Ingest the data from OLTP system to Data Warehouse.

Analyze

Analyze the data present on the cluster using different tools available in order to generate insights.

- Data retention period: 1 year
- Total data collected per year: 250 TB
- Data to be stored on each data node: 50 TB (10 TB * 6)
- Taken 6 disk to avoid over optimization of disks
- No. of data nodes required: 250/50 = 5
- 10% overhead (node failure): 1
- Total data nodes required: 6
- Kafka nodes: 3

Cluster Planning

Hosts	No. of Hosts Required	Specification
Master Hosts	3	Instance Type: r6a.4xlarge Ram: 128 GB Core: 16
Utility Hosts	2	Instance Type: r6a.4xlarge Ram: 128 GB Core: 16
Edge hosts	1	Instance Type: c6a.8xlarge Ram: 64 GB Core: 32
Worker Hosts	6	Instance Type: c5.12xlarge Ram: 96 GB Core: 48 HDD: 10 TB * 6

Cluster Planning

Nodes	Services
Master Node 1:	NN, JN, Failover Controller, Zookeeper
	Resource Manager,
Master Node 2:	Standby NN, JN, Failover Controller, Standby
	Resource Manager, Zookeeper
Master Node 3:	JN, Zookeeper, JHS,SHS
Utility Node 1:	Cloudera Manager
Utility Node 2:	HMS,HS2,ICS,SS,
Edge Node:	Gateway of HDFS, YARN, HIVE. HUE, OOZIE
Data Nodes:	DN, NM, ID
3 Kafka Nodes:	Kafka Brokers

Cluster Planning

- Block size of HDFS: 128 MB
- 1 MB fsimage size for per 1000 blocks (Suggested by Cloudera)
- 250 TB = 256000 GB = 262,144,000 MB
- Block Size = 128 MB
- Total No. of Blocks = 262144000/128 = 2,048,000
- Fsimage = 2,048,000/1000 = 2 GB
- Heap Size of name node = 2 GB = 4GB (Cloudera Suggest At least 4 GB)
- HDD: size 10 TB * 06 disks = 60TB
- IOPS is 4000 can be easily achieve throughput of 1000 MiB/S

Worker Host Configuration

STEP 1: Worker Host Configuration

Enter your likely machine configuration in the input boxes below. If you are uncertain what machines you plan on buying, put in some minimum values that will suit what you expect to buy.

Host Components	Quantity	Size	Total		Description
RAM	96G			96G	Node memory
CPU	24		1	48	Number of CF
HyperThreading CPU	yes				Does the CPU
HDD (Hard Disk Drive)	6		10T	60G	Number of Ha
Ethernet	1		10G	10G	Number of Et

Worker Host Planning

STEP 2: Worker Host Planning

Now that you have your base Host configuration from Step 1, use the table below to allocate resources, mainly CPU and memory, to the various software components that run on the host.

		CPU	Memory	
Service	Category	(cores)	(MB)	Notes
Operating System	Overhead	1	8192	Most operation
Other services	Overhead	0	0	Enter the requ
Cloudera Manager agent	Overhead	1	1024	Allocate 1GB
HDFS DataNode	CDH	1	2048	Allocation for
YARN NodeManager	CDH	1	2048	Allocation for
Impala daemon	CDH	1	16384	(Optional Ser
Hbase RegionServer	CDH	0	0	(Optional Ser
Solr Server	CDH	0	0	(Optional Ser
Kudu Server	CDH	0	0	(Optional Ser
Available Container Resources		43	68608	
Container resources				-
Physical Cores to Vcores Multiplier	T N	1		Set this ratio
YARN Available Vcores	Ti .	43		This value wi
YARN Available Memory			68608	This value wi
				-

STEP 3: Cluster Size

Enter the number of nodes you have (or expect to have) in the cluster

	Quantity		
Number of Worker Hosts in the cluster	6		

Yarn Tuning

STEP 4: YARN Configuration on Cluster

These are the first set of configuration values for your cluster. You can set these values in YARN->Configuration

YARN NodeManager Configuration Properties	Value	Note
yarn.nodemanager.resource.cpu-vcores	43	Copied from
yarn.nodemanager.resource.memory-mb	68608	Copied from S

STEP 5: Verify YARN Settings on Cluster

Go to the Resource Manager Web UI (usually http://<ResourceManagerIP>:8088/ and verify the "Memory Total" and "Vcores Total" matches the values above. If your machine has no bad nodes, then the numbers should match exactly.

Resource Manager Property to Check	Value	Note
Expected Value for "Vcores Total"	258	Calculated fro
Expected Value for "Memory Total" (in GB)	402	Calculated fro

STEP 6: Verify Container Settings on Cluster

In order to have YARN jobs run cleanly, you need to configure the container properties.

YARN Container Configuration Properties (Vcores)	Value	Description
yarn.scheduler.minimum-allocation-vcores		1 Minimum vco
yarn.scheduler.maximum-allocation-vcores	4	Maximum vcc
yarn.scheduler.increment-allocation-vcores		1 Vcore allocati

yarn.scheduler.minimum-allocation-mb	1024 Minimum me
yarn.scheduler.maximum-allocation-mb	68608 Maximum me
yarn.scheduler.increment-allocation-mb	512 Memory allo

Cluster Container Capacity

Step 6A: Cluster Container Capacity

This section will tell you the capacity of your cluster (in terms of containers).

Cluster Container Estimates	Minimum	Maximum
Max possible number of containers, based on memory configuration		402
Max possible number of containers, based on vcore configuration		258
Container number based on 2 containers per disk spindles		72
Min possible number of containers, based on memory configuration	6	
Min possible number of containers, based on vcore configuration	6	

STEP 6B: Container Sanity Checking

This section will do some basic checking of your container parameters in STEP 6 against the hosts.

	Check	
Sanity Check	Status	Description
Scheduler maximum vcores must be larger than minimum	GOOD	yarn.schedule
Scheduler maximum allocation MB must be larger than minimum	GOOD	yarn.schedule
Scheduler minimum vcores must be greater than or equal to 0	GOOD	yarn.schedule
Scheduler maximum vcores must be greater than or equal to 1	GOOD	yarn.schedule
Host voores must be larger than scheduler minimum voores	GOOD	yarn.nodema
Host voores must be larger than scheduler maximum voores	GOOD	yarn.nodemar
Host allocation MB must be larger than scheduler minimum	GOOD	yarn.nodemar
Host allocation MB must be larger than scheduler maximum	GOOD	yarn.nodemar
Small container limit	GOOD	If yarn.schedu

Service Stack

Services	Versions
 Hadoop 	3.0.0
Kafka	2.1.0
Sqoop	1.4.7
Spark	2.4.0
Hive	2.1.1
 Impala 	3.2.0
Hue	4.3.0
 Oozie 	5.1.0
 Zookeeper 	3.4.5
Sentry	2.1.0

osts	Count	Roles											
-10-0-0-105.ap-south-1.compute.internal	1	₿ FC	□ JN	NN	₩ RM	∦ s							
-10-0-0-113.ap-south-1.compute.internal	1	₫ G	€ G	(4) LB	(H) HS	(A) KTR	% G	os os	k ₅ G	₫G	⊚ G	₩ G	
-10-0-0-120.ap-south-1.compute.internal	1	₿ JN	₽ G	s SS	☆ HS	₩ JHS	i s						
-10-0-0-121.ap-south-1.compute.internal	1	В	₿ FC	₫ JN	□ NN	₩ RM	i s						
-10-0-0-122.ap-south-1.compute.internal	1	C AP	C ES	Снм	C RM	C SM							
-10-0-0-89.ap-south-1.compute.internal	1	% G	₩ HMS	₩ HS2	¥ ICS	¥ ISS	☆G						
-10-0-0-[69, 82, 84, 104, 115].ap-south-1.compute.internal	5	₿ DN	¥ ID	₩ NM									
o-10-0-0-[75, 77, 88].ap-south-1.compute.internal	3	% KB											

This table is grouped by hosts having the same roles assigned to them.

Improvements to be done: Could Be better by adding one more utility host and configuring high availability for Hive, oozie, Hue, Sentry

The sales and

Authentication Mechanism Enable

THANK YOU