

ALJABAR LINEAR

Dr. Eng. Sulfayanti

Prodi Informatika
Fakultas Teknik
UNIVERSITAS SULAWESI BARAT

Sub-CPMK

Mampu memahami konsep vector termasuk operasi-operasinya untuk menyelesaikan permasalahan matematik secara efektif dan efisien

Indikator:

- Ketepatan memahami dan menyelesaikan soal tentang Dot product vector
- Memahami dan menyelesaikan soal tentang satuan vektor

Besaran

a. Skalar Besaran yang memiliki nilai

Ex: luas, panjang, massa, suhu

b. Vektor Besaran yang memiliki nilai dan arah

Ex: kecepatan, gaya, berat

Konsep Vektor

Definisi

✓ Besaran yang memiliki nilai dan arah

Penulisan

✓ Vektor: huruf kecil tebal (ex: a, k, v, w, dan x)

✓ Skalar: huruf kecil miring (ex: a, k, v, w, dan x)

Konsep Vektor

Representasi

✓ Ruas garis berarah atau panah dalam ruang 2D atau 3D

Gambar: vektor AB

Gambar: vektor-vektor yang ekuivalen (Vektor-vektor yang panjang dan arahnya sama)

Jika v dan w adalah 2 vektor sebarang. Maka penjumlahan:

$$\nabla + \mathbf{w} = \mathbf{w} + \nabla$$

V V+W

Gambar: jumlah v+w

Gambar: $\mathbf{v} + \mathbf{w} = \mathbf{w} + \mathbf{v}$

Vektor yang panjangnya nol : vektor nol, dinyatakan dengan 0.

Maka $0 + \mathbf{v} = \mathbf{v} + \mathbf{0} = \mathbf{v}$ untuk setiap vektor \mathbf{v} .

Jika **v** adalah sebarang vektor tak-nol, maka –v, **negatif** dari **v** (vektor yang besarnya sama dengan **v**, tetapi arahnya terbalik).

Sifat vektor:

$$\nabla + (-\nabla) = 0$$

Gambar: negatif dari **v** yang mempunyai panjang yang sama dengan v, tetapi arahnya terbalik

Jika v dan w adalah 2 vektor sebarang. Maka selisih: $\mathbf{v} - \mathbf{w} = \mathbf{v} + (-\mathbf{w})$

Gambar: jumlah v-w

Jika \mathbf{v} adalah vektor tak-nol, dan k suatu bilangan real tak-nol (skalar), maka hasil kali $k\mathbf{v}$ = vektor yang panjangnya |k| kali panjang \mathbf{v} dan yang arahnya sama dengan arah \mathbf{v} jika k>0 dan berlawanan arah dengan \mathbf{v} jika k<0. (**penggandaan vektor**)

$$(-1)\mathbf{v} = -\mathbf{v}$$

$$\mathbf{v} = \frac{1}{2}\mathbf{v} \quad (-1)\mathbf{v} \quad 2\mathbf{v} \quad (-3)\mathbf{v}$$

Vektor dalam sistem koordinat

Vektor dalam ruang **2-dimensi** dan **3-dimensi**

Ditulis:

$$\mathbf{v} = (v_1, v_2)$$
 atau

$$\mathbf{V} = (v_1, v_2, v_3)$$

Vektor dalam Sistem Koordinat

Jika terdapat dua vektor **v** dan **w** dalam ruang 3-dimensi, dimana:

$$\mathbf{v} = (v_1, v_2, v_3)$$
 and $\mathbf{w} = (w_1, w_2, w_3)$

Maka, kedua vektor ekuivalen jika:

$$v_1 = w_1, \quad v_2 = w_2, \quad v_3 = w_3$$

Vektor dalam Sistem Koordinat

$$\mathbf{v} = \overrightarrow{P_1 P_2} = \overrightarrow{OP_2} - \overrightarrow{OP_1}$$

Jika suatu vektor memiliki titik pangkal yang tidak berada pada titik origin, sehingga $P_1(x_1, y_1)$ adalah titik pangkal dan $P_2(x_2, y_2)$ adalah titik ujung, maka:

$$\overrightarrow{P_1P_2} = \overrightarrow{OP_2} - \overrightarrow{OP_1} = (x_2, y_2) - (x_1, y_1) = (x_2 - x_1, y_2 - y_1)$$

$$\overrightarrow{P_1P_2} = (x_2 - x_1, y_2 - y_1)$$

Dalam ruang 3-d:

$$\overrightarrow{P_1P_2} = (x_2 - x_1, y_2 - y_1, z_2 - z_1)$$

Vektor dalam Sistem Koordinat

Contoh:

The components of the vector $\mathbf{v} = \overrightarrow{P_1P_2}$ with initial point $P_1(2, -1, 4)$ and terminal $\mathbf{P}_2(7, 5, -8)$ are

Operasi Penjumlahan Vektor

Jika diketahui vektor **v** dan **w**, maka penjumlahannya:

$$\mathbf{v} + \mathbf{w} = (v_1 + w_1, v_2 + w_2)$$

Operasi Perkalian Vektor dengan Skalar

a

$$\mathbf{v} + \mathbf{w} = (v_1 + w_1, v_2 + w_2)$$

 $k\mathbf{v} = (kv_1, kv_2)$

Operasi Vektor

DEFINITION 3 If $\mathbf{v} = (v_1, v_2, \dots, v_n)$ and $\mathbf{w} = (w_1, w_2, \dots, w_n)$ are vectors in \mathbb{R}^n , and if k is any scalar, then we define

$$\mathbf{v} + \mathbf{w} = (v_1 + w_1, v_2 + w_2, \dots, v_n + w_n)$$
 (10)

$$k\mathbf{v} = (kv_1, kv_2, \dots, kv_n) \tag{11}$$

$$-\mathbf{v} = (-v_1, -v_2, \dots, -v_n) \tag{12}$$

$$\mathbf{w} - \mathbf{v} = \mathbf{w} + (-\mathbf{v}) = (w_1 - v_1, w_2 - v_2, \dots, w_n - v_n)$$
(13)

Operasi Vektor

Contoh:

If
$$\mathbf{v} = (1, -3, 2)$$
 and $\mathbf{w} = (4, 2, 1)$, then

- $1. \quad V + W$
- 2. W
- 3. 2**v**
- 4. V-W

Operasi Vektor

THEOREM 3.1.1 If \mathbf{u} , \mathbf{v} , and \mathbf{w} are vectors in \mathbb{R}^n , and if k and m are scalars, then:

- (a) $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$
- (b) $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$
- (c) u + 0 = 0 + u = u
- (*d*) $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$
- (e) $k(\mathbf{u} + \mathbf{v}) = k\mathbf{u} + k\mathbf{v}$
- $(f) \quad (k+m)\mathbf{u} = k\mathbf{u} + m\mathbf{u}$
- (g) $k(m\mathbf{u}) = (km)\mathbf{u}$
- (h) $1\mathbf{u} = \mathbf{u}$

Application of Vektor

$$\mathbf{r} = (1, 0, 0)$$
 (pure red),
 $\mathbf{g} = (0, 1, 0)$ (pure green),
 $\mathbf{b} = (0, 0, 1)$ (pure blue)

$$\mathbf{c} = k_1 \mathbf{r} + k_2 \mathbf{g} + k_3 \mathbf{b}$$

= $k_1 (1, 0, 0) + k_2 (0, 1, 0) + k_3 (0, 0, 1)$
= (k_1, k_2, k_3)

Latihan

1. Tentukan komponen vektor

- 2. Tentukan:
 - a. Titik ujung vektor yang ekuivalen dengan $\mathbf{u} = (1, 2)$ dan memiliki titik pangkal pada A(1,1)
 - **b. Titik pangkal** vektor yang ekuivalen dengan $\mathbf{u} = (1,1,3)$ dan memiliki titik ujung pada B(-1, -1, 2)

Latihan

3. Let $\mathbf{u} = (-3, 1, 2)$, $\mathbf{v} = (4, 0, -8)$, and $\mathbf{w} = (6, -1, -4)$. Find the components of

(a) $\mathbf{v} - \mathbf{w}$

(b) 6u + 2v

(c) -3(v - 8w)

(d) $(2\mathbf{u} - 7\mathbf{w}) - (8\mathbf{v} + \mathbf{u})$

Thanks! Any questions?

You can find me at sulfayanti@unsulbar.ac.id

More info on how to use this template at www.slidescarnival.com/help-use-presentation-template
This template is free to use under Creative Commons Attribution license. You can keep the Credits slide or mention SlidesCarnival and other resources used in a slide footer.