Vecteurs de l'espace

1/ Rappels

a) Généralités

Axiomes d'incidence

Les axiomes d'incidence de la géométrie dans l'espace sont des axiomes qui fournissent des relations entre les points, les droites et les plans de cette géométrie.

axiomes -

- Par deux points distincts A et B de l'espace il passe une et une seule droite. Cette droite peut être notée (AB).
- Étant donnés deux points A et B, il existe C tel que A, B et C ne soient pas alignés. Par ces tois points, il passe un et un seul plan. Ce plan peut être noté (ABC).
- Si A et B sont deux points d'un plan P, tous les points de la droite (AB) appartiennent au plan P.

Conséquence

Un plan peut être déterminé par l'une des conditions suivantes :

Propriété

On peut donc utiliser dans chaque plan le théorème de Pythagore, les caractérisations des triangles semblables et isométriques, la trigonométrie, etc.

b) Positions relatives de droites et plans

Deux droites

On considère deux droites de l'espace.

Définition

- s'il existe un plan contenant ces deux droites on dit qu'elles sont coplanaires. Elles sont alors sécantes ou parallèles.
- s'il n'existe pas de plan contenant ces deux droites on dit qu'elles sont non coplanaires.

Une droite et un plan

On considère une droite et un plan de l'espace.

Propriété 🗕

- s'ils n'ont aucun point commun, la droite est strictement parallèle au plan.
- s'ils ont un unique point commun, la droite et le plan sont sécants.
- s'ils ont plus d'un point commun, la droite est incluse dans le plan.

Deux plans

On considère deux plans de l'espace.

- Propriété 🗕

- s'ils n'ont aucun point commun, les plans sont parallèles.
- s'ils ont au moins un point commun mais sont distincts, les plans sont sécants et leur intersection est une droite.
- s'ils ont trois points commun non alignés, les plans sont confondus.

c) Parallélisme

Une droite et un plan

_ Propriété __

Si une droite d est parallèle à une droite d' alors la droite d est parallèle à tout plan contenant d'.

Deux plans

_ Propriété _____

Si deux droites sécantes d'un plan P sont respectivement parallèles à deux droites sécantes d'un plan Q, alors les plans P et Q sont parallèles.

2/ Vecteurs de l'espace

a) Généralités

La notion de vecteur vue en géométrie plane se généralise à l'espace. Les propriétés suivantes, en particulier, restent vraie :

Propriété _

- Pour tout point O de l'espace et tout vecteur \overrightarrow{u} , il existe un unique point A tel que $\overrightarrow{OA} = \overrightarrow{u}$.
- Pour tous points A, B, C et D de l'espace, $\overrightarrow{AB} = \overrightarrow{CD} \iff ABCD$ est un parallèlogramme.
- Pour tous points A, B et C de l'espace, $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$ (relation de Chasles)
- La définition du produit d'un vecteur par un réel ainsi que les règles de calcul sont les mêmes que celles du plan.
- Deux vecteurs \overrightarrow{u} et \overrightarrow{v} sont colinéaires s'il existe deux réels a et b non nuls simultanément tels que $a\overrightarrow{u}+b\overrightarrow{v}=\overrightarrow{0}$.

b) Caractérisation vectorielle d'une droite

- Propriété -

- Soit A un point de l'espace et \overrightarrow{u} un vecteur.

L'ensemble des points M de l'espace tels que \overrightarrow{AM} et \overrightarrow{u} sont colinéaires (c'est-à-dire $\overrightarrow{AM} = k \overrightarrow{u}$ où k est un réel) est la droite passant par A et de vecteur directeur \overrightarrow{u} .

- Soient A et B deux points de l'espace.

La droite (AB) est l'ensemble des points M tels que \overrightarrow{AM} et \overrightarrow{AB} sont colinéaires.

c) Caractérisation vectorielle d'un plan

Propriété -

- Soient A, B et C trois points non alignés de l'espace.

Le plan (ABC) est l'ensemble des points M du plan tels que $\overrightarrow{AM} = x\overrightarrow{AB} + y\overrightarrow{AC}$.

- Soit A un point de l'espace et \overrightarrow{u} et \overrightarrow{v} deux vecteurs non colinéaires.

L'ensemble des points M de l'espace tels que $\overline{AM} = x\overline{u} + y\overline{v}$ où x et y sont des réels est un plan que l'on note $(A; \overline{u}, \overline{v})$.

 $D\'{e}monstration$

-A, B, C étant non alignés, les vecteurs \overrightarrow{AB} et \overrightarrow{AC} ne sont pas colinéaires, donc $(A; \overrightarrow{AB}, \overrightarrow{AC})$ est un repère du plan (ABC). Donc si M appartient à ce plan il existe un couple de réels (x; y) tels que $\overrightarrow{AM} = x\overrightarrow{AB} + y\overrightarrow{AC}$.

Réciproquement, considérons M un point de l'espace défini par $AM = xAB + y\overrightarrow{AC}$ avec x et y réels. Puisque $(A; \overrightarrow{AB}, \overrightarrow{AC})$ est un repère du plan (ABC), il

existe dans ce plan un point N de coordonnées (x; y) tel que $\overrightarrow{AN} = x\overrightarrow{AB} + y\overrightarrow{AC}$ alors $\overrightarrow{AM} = \overrightarrow{AN}$ et M = N donc $M \in (ABC)$.

– Soit B le point tel que $\overrightarrow{AB} = \overrightarrow{u}$ et C le point tel que $\overrightarrow{AC} = \overrightarrow{v}$. L'ensemble des points M de l'espace tels que $\overrightarrow{AM} = x\overrightarrow{u} + y\overrightarrow{v}$ est alors le plan (ABC).

d) Vecteurs coplanaires

_ Définition _

On dit que des points sont coplanaires s'ils sont situés dans un même plan. On dit que trois vecteurs \overrightarrow{u} , \overrightarrow{v} , \overrightarrow{w} sont coplanaires lorsque, ayant choisi un point O quelconque, ce point O et les points A, B, C définis par $\overrightarrow{OA} = \overrightarrow{u}$, $\overrightarrow{OB} = \overrightarrow{v}$, $\overrightarrow{OC} = \overrightarrow{w}$ sont coplanaires.

- Propriété

Soient \overrightarrow{u} , \overrightarrow{v} et \overrightarrow{w} trois vecteurs de l'espace.

 \overrightarrow{u} , \overrightarrow{v} et \overrightarrow{w} sont coplanaires si et seulement si il existe trois réels a, b et c non nuls simultanément tels que $a\overrightarrow{u} + b\overrightarrow{v} + c\overrightarrow{w} = \overrightarrow{0}$.

Remarque : On peut aussi démontrer la caractérisation suivante.

$$\overrightarrow{u}$$
, \overrightarrow{v} et \overrightarrow{w} sont coplanaires \iff $\begin{vmatrix} \overrightarrow{v} \text{ et } \overrightarrow{w} \text{ sont colinéaires} \\ \text{ou } \overrightarrow{u} = \alpha \overrightarrow{v} + \beta \overrightarrow{w} \end{vmatrix}$

$D\'{e}monstration$

- Supposons \overrightarrow{u} , \overrightarrow{v} et \overrightarrow{w} coplanaires. Soit O un point de l'espace et A, B, C définis par $\overrightarrow{OA} = \overrightarrow{u}$, $\overrightarrow{OB} = \overrightarrow{v}$, $\overrightarrow{OC} = \overrightarrow{w}$.

Les points O, A, B et C sont donc coplanaires.

Si O, A et B sont alignés alors \overrightarrow{OA} et \overrightarrow{OB} sont colinéaires donc il existe des réels x et y non nuls simultanément tels que $x\overrightarrow{OA} + y\overrightarrow{OB} = \overrightarrow{0}$. On a alors $x\overrightarrow{u} + y\overrightarrow{v} + 0\overrightarrow{w} = \overrightarrow{0}$.

Si O, A et B ne sont pas alignés alors $(O; \overrightarrow{OA}, \overrightarrow{OB})$ est un repère de (OAB) et comme $C \in (OAB)$, il existe des réels x et y tels que $\overrightarrow{OC} = x\overrightarrow{OA} + y\overrightarrow{OB}$ soit $x\overrightarrow{u} + y\overrightarrow{v} - \overrightarrow{w} = \overrightarrow{0}$.

- Supposons $a\overrightarrow{u} + b\overrightarrow{v} + c\overrightarrow{w} = \overrightarrow{0}$.

Si $c \neq 0$ alors $\overrightarrow{OC} = -\frac{a}{c}\overrightarrow{OA} - \frac{b}{c}\overrightarrow{OB}$ donc les points O, A, B et C sont coplanaires donc \overrightarrow{u} , \overrightarrow{v} et \overrightarrow{w} sont coplanaires.

3/ Caractérisation vectorielle du parallélisme

a) Parallélisme d'une droite et d'un plan

Propriété

Soit d une droite dirigée par un vecteur \overrightarrow{u} et P un plan dirigé par des vecteurs \overrightarrow{v} et \overrightarrow{w} .

- -d est parallèle à P si et seulement si P contient deux points A et B tels que \overrightarrow{u} et \overrightarrow{AB} sont colinéaires.
- -d est parallèle à P si et seulement si \overrightarrow{u} , \overrightarrow{v} et \overrightarrow{w} sont coplanaires.

$D\'{e}monstration$

Deuxième propriété:

Soit $A \in d$, $B \in P$ et d' la droite parallèle à d passant par B. Soient E, F, G, H tels que $\overrightarrow{AH} = \overrightarrow{u}$, $\overrightarrow{BE} = \overrightarrow{v}$, $\overrightarrow{BF} = \overrightarrow{w}$ et $\overrightarrow{BG} = \overrightarrow{u}$.

- Si d est parallèle à P alors comme d' est parallèle à d elle parallèle à P. Comme B est commun à d' et P alors d' est incluse dans P donc G est dans P. Ainsi B, E, F, G sont dans P donc coplanaires. Il en résulte que les vecteurs \overrightarrow{u} , \overrightarrow{v} , \overrightarrow{w} sont coplanaires.
- Réciproquement, si ces vecteurs sont coplanaires alors les points B, E, F, G sont coplanaires dans P. Comme d' = (BG) alors d' est incluse dans P donc parallèle à P. Comme d' est parallèle à d alors d est parallèle à P.

b) Parallélisme de deux plans

₋ Propriété _

Soit P un plan dirigé par \overrightarrow{u} et \overrightarrow{v} et Q un plan dirigé par \overrightarrow{u}' et \overrightarrow{v}' . P est parallèle à Q si et seulement si \overrightarrow{u} , \overrightarrow{v} , \overrightarrow{u}' d'une part, et \overrightarrow{u} , \overrightarrow{v} , \overrightarrow{v}' d'autre part, sont coplanaires.

Vecteurs de l'espace

Démonstration

Soit $A \in P$ et $B \in Q$.

- Si Q est parallèle à P alors $D(B, \overrightarrow{v}')$ est parallèle à P car elle est incluse dans Q. Alors d'après le théorème précédent \overrightarrow{u} , \overrightarrow{v} , \overrightarrow{v}' sont coplanaires. De la même façon on démontre que \overrightarrow{u} , \overrightarrow{v} , \overrightarrow{u}' sont coplanaires.
- Réciproquement, si \overrightarrow{u} , \overrightarrow{v} , \overrightarrow{v}' sont coplanaires alors $D(B, \overrightarrow{v}')$ est parallèle à P et il en est de même pour $D(B, \overrightarrow{u}')$. Ainsi Q contient deux droites sécantes parallèles à P il est donc parallèle à P.

4/ Repérage dans l'espace

a) Repère de l'espace

Définition

Choisir un repère cartésien de l'espace, c'est se donner un point O appelé origine du repère, et un triplet $(\overrightarrow{\imath}, \overrightarrow{\jmath}, \overrightarrow{k})$ de vecteurs non coplanaires (ce qui signifie, si on note $\overrightarrow{\imath} = \overrightarrow{OI}, \overrightarrow{\jmath} = \overrightarrow{OJ}, \overrightarrow{k} = \overrightarrow{OK}$, que les points O, I, J, K ne sont pas coplanaires). On note $(O; \overrightarrow{\imath}, \overrightarrow{\jmath}, \overrightarrow{k})$ ce repère. Le triplet de vecteurs $(\overrightarrow{\imath}, \overrightarrow{\jmath}, \overrightarrow{k})$ est appelé base des vecteurs de l'espace.

b) Coordonnées

Coordonnées d'un point

Propriété et définition -

 $(O;\overrightarrow{\imath},\overrightarrow{\jmath},\overrightarrow{k})$ est un repère de l'espace.

Pour tout point M de l'espace, il existe un unique triplet (x;y;z) de nombres réels tels que $\overrightarrow{OM} = x\overrightarrow{\imath} + y\overrightarrow{\jmath} + z\overrightarrow{k}$.

(x;y;z) sont les coordonnées du point M dans le repère $(O;\overrightarrow{\imath},\overrightarrow{\jmath},\overrightarrow{k})$. x est l'abscisse, y l'ordonnée, z la cote du point M dans ce repère.

- Démonstration

Existence:

 $\overrightarrow{\imath}, \overrightarrow{\jmath}, \overrightarrow{k}$ ne sont pas coplanaires donc le plan $(O; \overrightarrow{\imath}, \overrightarrow{\jmath})$ et la droite $(M; \overrightarrow{k})$ ne sont pas parallèles. Notons M' leur point d'intersection, M' est dans le plan $(O; \overrightarrow{\imath}, \overrightarrow{\jmath})$ donc il existe deux réels x et y tels que $\overrightarrow{OM} = x\overrightarrow{\imath} + y\overrightarrow{\jmath}$.

Les vecteurs $\overrightarrow{M'M}$ et \overrightarrow{k} sont colinéaires, donc il existe un réel z tel que $\overrightarrow{M'M} = z\overrightarrow{k}$.

Alors, d'après la relation de Chasles, $\overrightarrow{OM} = \overrightarrow{OM'} + \overrightarrow{M'M} = x\overrightarrow{\imath} + y\overrightarrow{\jmath} + z\overrightarrow{k}$.

Unicité:

Supposons $\overrightarrow{OM} = x\overrightarrow{\imath} + y\overrightarrow{\jmath} + z\overrightarrow{k} = x'\overrightarrow{\imath} + y'\overrightarrow{\jmath} + z'\overrightarrow{k}$. On a alors $(x - x')\overrightarrow{\imath} + (y - y')\overrightarrow{\jmath} + (z - z')\overrightarrow{k} = \overrightarrow{0}$. Comme $\overrightarrow{\imath}$, $\overrightarrow{\jmath}$ et \overrightarrow{k} ne sont pas coplanaires, on a nécessairement x = x', y = y' et z = z'.

Coordonnées d'un vecteur

- Définition

Soit $(O; \overrightarrow{\imath}, \overrightarrow{\jmath}, \overrightarrow{k})$ un repère de l'espace, \overrightarrow{u} un vecteur et M le point tel que $\overrightarrow{OM} = \overrightarrow{u}$. Par définition, les coordonnées (x; y; z) de M dans le repère $(O; \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$ sont les coordonnées de \overrightarrow{u} dans la base $(\overrightarrow{\imath}, \overrightarrow{\jmath}, \overrightarrow{k})$.

_ Propriété _

Soit $(O; \overrightarrow{\imath}, \overrightarrow{\jmath}, \overrightarrow{k})$ un repère de l'espace, $A(x_A, y_A, z_A)$ et $B(x_B, y_B, z_B)$. Les coordonnées du vecteur \overrightarrow{AB} sont $(x_B - x_A, y_B - y_A, z_B - z_A)$.

- Démonstration

$$\overrightarrow{AB} = \overrightarrow{AO} + \overrightarrow{OB} = \overrightarrow{OB} - \overrightarrow{OA} = x_B \overrightarrow{\imath} + y_B \overrightarrow{\jmath} + z_B \overrightarrow{k} - x_A \overrightarrow{\imath} - y_A \overrightarrow{\jmath} - z_A \overrightarrow{k}$$
$$= (x_B - x_A) \overrightarrow{\imath} + (y_B - y_A) \overrightarrow{\jmath} + (z_B - z_A) \overrightarrow{k}$$

c) Calculs sur les coordonnées

_ Propriété _

Soit $(O; \overrightarrow{\imath}, \overrightarrow{\jmath}, \overrightarrow{k})$ un repère de l'espace, $\overrightarrow{u}(x,y,z), \overrightarrow{v}(x',y',z')$ deux vecteurs et λ un $\overrightarrow{u} + \overrightarrow{v}(x + x', y + y', z + z')$ et $\lambda \overrightarrow{u}(\lambda x, \lambda y, \lambda z)$.

Démonstration

$$\overrightarrow{u} + \overrightarrow{v} = x\overrightarrow{i} + y\overrightarrow{j} + z\overrightarrow{k} + x'\overrightarrow{i} + y'\overrightarrow{j} + z'\overrightarrow{k} = (x + x')\overrightarrow{i} + (y + y')\overrightarrow{j} + (z + z')\overrightarrow{k}$$

$$k\overrightarrow{u} = k(x\overrightarrow{i} + y\overrightarrow{j} + z\overrightarrow{k}) = kx\overrightarrow{i} + ky\overrightarrow{j} + kz\overrightarrow{k}$$

_ Propriété _

Soit $(O; \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$ un repère de l'espace, $A(x_A, y_A, z_A)$ et $B(x_B, y_B, z_B)$. Le milieu I de [AB] a pour coordonnées $\left(\frac{x_A + x_B}{2}, \frac{y_A + y_B}{2}, \frac{z_A + z_B}{2}\right)$

Démonstration

$$\overrightarrow{OI} = \frac{1}{2} (\overrightarrow{OA} + \overrightarrow{OB}) = \frac{1}{2} (x_A \overrightarrow{i} + y_A \overrightarrow{j} + z_A \overrightarrow{k} + x_B \overrightarrow{i} + y_B \overrightarrow{j} + z_B \overrightarrow{k})$$

$$= \frac{x_A + x_B}{2} \overrightarrow{i} + \frac{y_A + y_B}{2} \overrightarrow{j} + \frac{z_A + z_B}{2} \overrightarrow{k}$$

5/ Repère orthonormal, distance dans l'espace

Définition

Deux vecteurs non nuls \overrightarrow{u} et \overrightarrow{v} sont dits orthogonaux si leurs directions sont orthogonales.

Par convention, le vecteur nul est orthogonal à tout autre vecteur.

Définition

Un repère $(O; \overrightarrow{\imath}, \overrightarrow{\jmath}, \overrightarrow{k})$ est un repère orthonormal si $\overrightarrow{\imath}, \overrightarrow{\jmath}, \overrightarrow{k}$ sont deux à deux orthogonaux et de norme 1.

Propriété -

Dans un repère orthonormal

- 1/ Si \overrightarrow{u} a pour coordonnées (a;b;c) alors $\|\overrightarrow{u}\|^2=a^2+b^2+c^2$
- 2/ Si M et P ont pour coordonnées (x;y;z) et (x';y';z') alors $MP^2=(x'-x)^2+(y'-y)^2+(z'-z)^2.$

- Démonstration

1/ Soit M(a;b;c) et m(a,b,0). On a alors $\overrightarrow{u} = \overrightarrow{OM}$ donc $\|\overrightarrow{u}\|^2 = OM^2$.

Comme le repère est orthonormal OMm est rectangle en m.

Donc $OM^2 = Om^2 + mM^2$

– Dans le plan (xOy) muni du repère orthonormal $(O; \overrightarrow{\imath}, \overrightarrow{\jmath})$ les coordonnées de m sont (a;b) ainsi $Om^2 = a^2 + b^2$ – $\overrightarrow{mM} = c \overrightarrow{k}$ donc $||\overrightarrow{mM}|| = |c|||\overrightarrow{k}||$ ainsi $||\overrightarrow{mM}||^2 = c^2$ On a alors $OM^2 = a^2 + b^2 + c^2$

2/ On applique ce qui précéde au vecteur \overrightarrow{MP} .