# GUSTAVO DA SILVA MAFRA

# **RELATÓRIO**

Relatório para a obtenção das notas da M3 da disciplina de Processamento Digital de Sinais, curso de Engenharia de Computação da Universidade do Vale do Itajaí – Escola do Mar, Ciência e Tecnologia.

Professor: Walter Antônio Gontijo

Itajaí,

# **Equalizador (Float e Short)**

Comparativo de execução do código Equalizador, em Float e Short no ambiente visual DSP.

É possível analisar que os tempo reduzem drasticamente quando as transformações de Short são feitas antes da execução. O código utilizado para transformar os coeficientes de Float para short, é apresentado no quadro abaixo.

| Passa Faixa em Float: AVG : 234675 MIN : 133813 MAX : 238585 CALLS : 80000                | Passa faixa em Short:  AVG : 25293  MIN : 25293  MAX : 25293  CALLS : 40000          |
|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| Passa Alta em Float:     AVG : 234674     MIN : 133811     MAX : 238583     CALLS : 80000 | Passa Alta em Short: AVG : 25293 MIN : 25293 MAX : 25293 CALLS : 40000               |
| Passa Baixa em Float:  AVG : 234674  MIN : 133811  MAX : 238583  CALLS : 80000            | Passa Baixa em Short:  AVG : 25293  MIN : 25293  MAX : 25293  CALLS : 40000          |
| Todos os componentes em Float:  AVG : 234678  MIN : 133735  MAX : 238597  CALLS : 80000   | Todos os componentes em Short:  AVG : 25293  MIN : 25293  MAX : 25293  CALLS : 40000 |

```
import numpy as np

with open('Coef_BP.dat', 'r') as f:
    coefs = [line.strip().replace(',', ") for line in f]

coef_int = np.zeros(len(coefs))
for i in range(len(coefs)):
    coef_int[i] = int(float(coefs[i]) * 32768)

with open("Coef_BP_short.dat", "w") as f:
    for s in coef_int:
        f.write(str(s) +",\n")
```

Em seguida são apresentados os sinais de saída obtidos na execução Short, demonstrando seu funcionamento em relação ao mesmo código em Float.

## Passa alta 1kHz



#### Passa baixa 500 Hz



## Passa Faixa 500 - 1k Hz



## Todas as faixas



# Identificação de sistemas LMS

Primeiramente um código em Python foi gerado para o demonstrativo da evolução do erro com o passar das interações do programa. Os gráficos gerados são apresentados logo abaixo:

Sinal desejado em comparação com o sinal obtido a partir das interações dos coeficientes:



Evolução do erro com o passar das interações, nesse caso com o passa era pequeno ocorre uma demora para que o zero chegue a zero.



Saída do LMS em Python para um ruído branco, tendo como sinal desconhecido um MM de 8 coeficientes.



Em seguida o mesmo projeto foi descrito em C, no ambiente VisualDSP onde o erro foi salvo em arquivo .dat, para que seja possível analisar o mesmo. Dessa forma, ose seguintes coeficientes foram calculados pelo programa, utilizando das mesmas entradas descritas anteriormente:

| 0.125000  |
|-----------|
| 0.125000  |
| 0.125000  |
| 0.125000  |
| 0.125000  |
| 0.125000  |
| 0.125000  |
| 0.125000  |
| 0.000000  |
| -0.000000 |
| -0.000000 |
| 0.000000  |
| 0.000000  |
| 0.000000  |
| 0.000000  |
| 0.000000  |
| 0.000000  |
| 0.000000  |
| -0.000000 |
| -0.000000 |

E o erro gerado tendeu a zero por volta da 500 interação, onde o valor continuo oscilando em valores muito pequenos. A seguir temos a saída do LMS em C para um ruído branco, tendo como sinal desconhecido um MM de 8 coeficientes.

