Отчет о выполнении лабораторной работы 1.1.4

Измерение интенсивности радиационного фона

Выполнил студент группы Б03-302: Танов Константин

1 Цель работы:

Применение методов обработки эксперементальных данных для изучения статистических закономерностей при измерении интенсивности радиационного фона.

2 Оборудование:

Счётчик Гейгера-Мюллера (СТС-6), блок питания, компютер с интерфейсом связи со счетчиком.

3 Теоретические сведения:

Регистрация частиц является случайным событием, поэтому оно однородно во времени, и каждое последующее событие не зависит от того, когда и как случилось предыдущее событие. Результаты — количество отсчётов в одном опыте —, полученные в таком процесс подчиняются распределению Пуассона.

Среднеквадратичная ошибка числа отсчётов за некоторый интервал времени в таком процессе равна:

$$\sigma = \sqrt{n} \tag{1}$$

где n – измеренное число частиц.

С вероятностью 68%, измеренное число частиц отличается от искомого не более, чем на \sqrt{n} . Знаит:

$$n_0 = n \pm \sqrt{n} \tag{2}$$

При N измерениях среднее значение числа сосчитанных за одно измерение частиц равно:

$$\overline{n} = \frac{1}{N} \sum_{i=1}^{N} n_i \tag{3}$$

Стандартную ошибку отдельного измерения можно оценить по формуле:

$$\sigma_{\text{отд}} = \sqrt{\frac{1}{N} \sum_{i=1}^{n} (n_i - \overline{n})^2}$$
(4)

Ближе всего к значению $\sigma_{\text{отд}}$ лежит величина $\sqrt{\overline{n}}$:

$$\sigma_{\text{отд}} \approx \sqrt{\overline{n}}$$
 (5)

Теория вероятностей показывает, что стандартная ошибка отклонения \overline{n} от n_0 определяется по формуле:

$$\sigma_{\overline{n}} = \frac{1}{N} \sqrt{\sum_{i=1}^{n} (n_i - \overline{n})^2}$$
 (6)

Относительная ошибка отдельного измерения (ожидаемое отличие любого из n_i от n_0):

$$\varepsilon_{\text{отд}} = \frac{\sigma_{\text{отд}}}{n_i} \approx \frac{1}{\sqrt{n_i}}$$
(7)

Аналогичным образом определяется отностительная ошибка в определении среднего по всем измерениям значения \overline{n}

$$\varepsilon_{\overline{n}} = \frac{\sigma_{\text{отд}}}{\overline{n}\sqrt{N}} \approx \frac{1}{\sqrt{\overline{n}N}}$$
(8)

Доля случаев ω_n , характеризующая вероятность получить n отсчётов, определяется по формуле:

$$\omega_n = \frac{\text{число случаев с отсчётом n}}{\text{полное число измерений }(N)}$$
(9)

4 Результаты измерений и обработка данных

- 1. Включаем компьютер. Начинается измерение для основного эксперемента.
- 2. В результате демонстрационного эксперимента убеждаемся, что при увеличении числа измерений:
 - измеряемая величина флуктуирует;
 - флуктуации среднего значения измеряемой ведечины уменьшаются, и среднее значение выходит на постоянную величину;
 - флуктуации величины погрешности отдельного измерения уменьшаются, и погрешность отдельного измерения (погрешность метода) выходит на постоянную величину;
 - флуктуации величины погрешности среднего значения уменьшаются, а сама величина убывает.
- 3. Переходим к основному эксперементу: измерения плотности потока космического излучения за 10 секунд (результаты набирались с момента включения компьютера). На компьютере проведём обработку, аналогичную сделанной в демонстрационном эксперементе. Результаты приведены в таблицах 1 и 2.

№ опыта	1	2	3	4	5	6	7	8	9	10
0	24	20	20	32	25	28	15	36	24	16
10	16	23	27	27	27	25	23	20	23	28
20	23	19	32	28	24	20	13	24	23	25
30	35	24	21	20	23	31	26	26	30	17
40	28	25	25	22	21	28	20	14	23	19
50	30	22	12	33	21	27	26	30	31	14
60	24	26	21	35	25	14	25	29	17	27
70	24	21	25	23	30	27	22	23	22	35
80	32	23	26	21	24	17	24	20	25	31
90	18	33	23	15	23	30	29	20	20	35
100	18	31	31	23	20	20	28	19	16	28
110	19	23	33	29	33	25	23	26	18	16
120	30	28	25	18	15	20	30	25	29	26
130	35	24	22	24	29	20	30	21	25	32
140	25	20	32	31	27	23	22	21	25	25
150	25	25	23	30	21	23	19	20	25	36
160	30	23	30	21	30	26	28	30	25	19
170	26	22	29	26	14	36	26	20	28	23
180	24	34	27	21	15	26	19	27	25	16
190	20	35	22	29	32	24	24	24	23	19

Таблица 1: Число срабатываний счётчика за 20 секунд 1

Число импульсов n_i	3	5	6	7	8
Число случаев	1	5	13	20	18
Доля случаев	0,0025	0,0125	0,0325	0,05	0,045
Число импульсов n_i	9	10	11	12	13
Число случаев	29	45	42	47	42
Доля случаев	0,0725	0,1125	0,105	0,1175	0,105
Число импульсов n_i	14	15	16	17	18
Число случаев	35	25	23	29	10
Доля случаев	0,0875	0,0625	0,0575	0,0725	0,025
Число импульсов n_i	19	20	21	22	25
Число случаев	8	4	1	2	1
Доля случаев	0,02	0,01	0,0025	0,005	0,0025

Таблица 2: Данные для построения гистограммы распределения числа срабатываний счётчика за 10 секунд.

 $[\]overline{\ }^{1}$ Таблица составлена так, что, например, результат 176-го опыта лежит на пересечении строки, обозначенной 170, и столбца 6.

- 4. Разбиваем результаты измерений из таблицы 1 в порядке их получения на группы по 2, что соответствует проведению $N_2 = 100$ измерений числа частиц за интервал времени, равный 40с. Результаты сведём в табл. 3.
- 5. Представим результаты последнего распределения в виде, удобном для построения гистограммы (табл.4). Гистограммы распределений среднего числа отсчётов за 10 и 40 секунд строим на одном графике (рис. 2).При этом для второго распределения цену деления по оси абцисс увеличиваем в 4 раза, чтобы положения максимумов распределения совпадали.
- 6. Используя формулу (3), определим среднее число срабатываний счётчика за 10 секунд(результат получен с компьютерных вычислений):

$$\overline{n_1} = \frac{1}{N_1} \sum_{i=1}^{N_1} n_i = \frac{4901}{400} = 12,25$$

7. Найдём среднеквадратичную ошибку отдельного измерения по формуле (4)(результат получен с компьютерных вычислений):

$$\sigma_1 = \sqrt{\frac{1}{N_1} \sum_{i=1}^{N_1} (n_i - \overline{n_1})^2} \approx 3.54$$

8. Убедимся в справедливости формулы (5):

$$\sigma_1 \approx \overline{n_1}, \qquad 3,54 \approx \sqrt{12,25} = 3,5$$

9. Найдем среднеквадратичное отклонение среднего значения по формуле (6):

$$\sigma_{\overline{n}_1} = \frac{\sigma_1}{\sqrt{N_1}} = \frac{3,54}{400} \approx 0,18$$

№ опыта	1	2	3	4	5	6	7	8	9	10
0	44	52	53	51	40	39	54	52	43	51
10	42	60	44	37	48	59	41	54	52	47
20	53	47	49	34	42	52	45	48	56	45
30	50	56	39	54	44	45	48	57	45	57
40	55	47	41	44	56	51	38	53	49	55
50	49	54	40	47	44	42	62	58	49	34
60	58	43	35	55	55	59	46	49	51	57
70	45	63	50	43	50	50	53	44	39	61
80	53	51	56	58	44	48	55	50	46	51
90	58	48	41	46	41	55	51	56	48	42

Таблица 3: Число срабатываний счётчика за 40 секунд

Число импульсов n_i	34	35	36	37	38	39	40	41	42	43
Число случаев	2	1	0	1	1	3	2	4	4	3
Доля случаев	0,02	0,01	0	0,01	0,01	0,03	0,02	0,04	0,04	0,03
Число импульсов n_i	44	45	46	47	48	49	50	51	52	53
Число случаев	7	5	3	4	6	5	5	7	4	5
Доля случаев	0,07	0,05	0,03	0,04	0,06	0,05	0,05	0,07	0,04	0,05
Число импульсов n_i	54	55	56	57	58	59	60	61	62	63
Число случаев	4	6	5	3	4	2	1	1	1	1
Доля случаев	0,04	0,06	0,05	0,03	0,04	0,02	0,01	0,01	0,01	0,01

Таблица 4: Данные для построения гистограммы распределения числа срабатываний счётчика за 40 секунд.

10. Используя формулу (3), определим среднее число импульсов счётчика за 40 секунд:

$$\overline{n_2} = \frac{1}{N_2} \sum_{i=1}^{N_2} n_i = \frac{4901}{100} \approx 49$$

11. Найдём среднеквадратичную ошибку отдельного измерения по формуле (4):

$$\sigma_2 = \sqrt{\frac{1}{N_2} \sum_{i=1}^{N_2} (n_i - \overline{n_2})^2} = \frac{4293}{100} \approx 6, 6$$

12. Убедимся в справедливости формулы (5):

$$\sigma_2 \approx \overline{n_2}, \qquad 6, 6 \approx \sqrt{49} = 7$$

13. Найдем среднеквадратичное отклонение среднего значения по формуле (6):

$$\sigma_{\overline{n}_2} = \frac{\sigma_2}{\sqrt{N_2}} = \frac{6,6}{100} \approx 0,66$$

14. Определим долю случаев, когда отклонение от среднего значения не превышают σ , 2σ , и сравним с теоретичесикми оценками (табл. 5).

Ошибка	Число случаев	Доля случаев, %	Теоритическая ошибка, %		
$\pm \sigma_1 = \pm 3,54$	265	66,25	68		
$\pm 2\sigma_1 = \pm 3,54$	391	97,75	95		
$\pm \sigma_2 = \pm 6, 6$	64	64	68		
$\pm 2\sigma_2 = \pm 6, 6$	96	96	95		

Таблица 5:

15. Сравним среднеквадратичные отклонения отдельных измерений для двух распределений: $\overline{n_1}=12,25; \sigma_1=3,54$ и $\overline{n_2}=49; \sigma_1=6,6$. Легко увидеть, что хотя абсолютное значение σ во втором распределении больше, чем в первом (6,6>3,54), относительная полуширина второго распределения меньше:

$$\frac{\sigma_1}{\overline{n}_1} \cdot 100\% = \frac{3,54}{12,25} \cdot 100\% \approx 28,9\%, \qquad \frac{\sigma_2}{\overline{n}_2} \cdot 100\% = \frac{6,6}{49} \cdot 100\% \approx 13,47\%$$

Это следует также из рис. 1.

Рис. 1: Гистограммы для t = 10c и t = 40c

16. По формуле (8) найдём отностительную ошибку в определении среднего по всем измерениям значения \overline{n} :

$$\varepsilon_{\overline{n}_1} = \frac{100\%}{\sqrt{\overline{n}_1 N_1}} = \frac{100\%}{\sqrt{12, 25 \cdot 400}} \approx 1,43\%$$

$$\varepsilon_{\overline{n}_2} = \frac{100\%}{\sqrt{\overline{n}_2 N_2}} = \frac{100\%}{\sqrt{49 \cdot 100}} \approx 1,43\% \approx \varepsilon_{\overline{n}_1}$$

17. Окончательный результат:

$$n_{t=10c} = \overline{n}_1 \pm \sigma_{\overline{n}_1} = 12,25 \pm 0,18$$

 $n_{t=40c} = \overline{n}_2 \pm \sigma_{\overline{n}_2} = 49 \pm 0,66$

5 Выводы по работе

В ходе работы была произведена обработка данных в двух сериях экспериметов: с временем эксперимета 10 с и с временем эксперимета 40 с. Получены результаты соответственно $\overline{n}_1 = 12, 25 \pm 0, 18$ и $\overline{n}_2 = 49 \pm 0, 66$. Относительные погрешности определения n_1 и n_2 совпадают и весьма невелики (1, 43%). Проверено, что результаты измерений соответствуют характерному для распределения Пуассона равенству: $\sigma = \sqrt{n_0}$.