Exercice 1: Isométries

E est un \mathbb{R} -ev muni d'une norme $\| \ \|$.

On se donne $f: E \to E$ bijective, conservant les distances (ie $\forall x, y \in E, ||f(x) - f(y)|| = ||x - y||$) et vérifiant f(0) = 0.

On se propose de montrer que f est linéaire.

Une partie P de E sera dite symétrique par rapport à $a \in E$ si et seulement si $\forall x \in P$, $2a - x \in P$. (vérifier que 2a - x est le symétrique de x par rapport à a)

On note $\delta(P)$ le diamètre d'une partie non vide et bornée P de E.

1. Soient $a, b \in E$. On définit par récurrence :

$$\begin{split} P_0 &= \{x \in E \mid \|x - a\| = \|x - b\| = \|a - b\| / 2\} \\ \forall n \in \mathbb{N} \ P_{n+1} &= \{x \in P_n \mid \forall y \in P_n, \ \|x - y\| \le \delta(P_n) / 2\}. \end{split}$$

- (a) Montrer que $\forall n \in \mathbb{N}, (a+b)/2 \in P_n$, et P_n est symétrique par rapport à (a+b)/2.
- (b) Montrer que $\bigcap_{n\in\mathbb{N}} P_n = \{(a+b)/2\}.$
- 2. $a, b \in E$. les P_n sont définis comme précédemment à partir de a et b, et les P'_n sont définis de la même façon avec f(a) et f(b) à la place de a et b.

Montrer que $\forall n \in \mathbb{N}, P'_n = f(P_n)$, et en déduire que f((a+b)/2) = (f(a)+f(b))/2.

- 3. Montrer que $\forall a, b \in E, f(a+b) = f(a) + f(b)$.
- 4. Montrer que $\forall r \in \mathbb{Q}, \forall x \in E, f(rx) = rf(x)$. (commencer par $r \in \mathbb{N}$, puis $r \in \mathbb{Z}$).
- 5. Montrer que f est linéaire.

Exercice 2: Rang

 $n, p \in \mathbb{N}^*$. On utilisera la caractérisation du rang avec les matrices extraites inversibles.

- 1. $0 \le r \le \min(n, p)$. Montrer que $\{M \in \mathcal{M}_{n,p}(\mathbb{R}) \mid rg(M) \ge r\}$ est un ouvert de $\mathcal{M}_{n,p}(\mathbb{R})$.
- 2. $0 \le r \le \min(n, p)$. Montrer que $\{M \in \mathcal{M}_{n,p}(\mathbb{R}) \mid rg(M) \le r\}$ est un fermé de $\mathcal{M}_{n,p}(\mathbb{R})$.

Exercice 3 : Nature topologique de parties de $\mathcal{M}_n(K)$

- 1. Donner la nature topologique (ouvert, fermé, compact, dense) dans $\mathcal{M}_n(\mathbb{R})$ de : $GL_n(\mathbb{R}), S_n(\mathbb{R}), AS_n(\mathbb{R}), S_n^+(\mathbb{R}), S_n^{++}(\mathbb{R}), O_n(\mathbb{R}), SO_n(\mathbb{R})$
- 2. Notons $R_n(K)$ l'ensemble des matrices de $\mathcal{M}_n(K)$ diagonalisables dans $\mathcal{M}_n(K)$.
 - (a) Montrer que $R_n(\mathbb{C})$ est dense dans $\mathcal{M}_n(\mathbb{C})$.
 - (b) Soit $A = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$. Montrer qu'il existe r > 0 tel que $\forall M \in \mathcal{M}_2(\mathbb{R}), \|M A\|_{\infty} \le r \Longrightarrow M \notin R_2(\mathbb{R}).$
 - (c) Si $n \geq 2$, montrer que $R_n(\mathbb{R})$ n'est pas dense dans $\mathcal{M}_n(\mathbb{R})$.
- 3. Montrer que l'ensemble des matrices nilpotentes de $\mathcal{M}_n(\mathbb{R})$ est un fermé de $\mathcal{M}_n(\mathbb{R})$.

Exercice 4 : Décompositions OT et polaire

- 1. Montrer que $O_n(\mathbb{R})$ est compact et $T_n^+(\mathbb{R})$ fermé.
- 2. On a vu que toute matrice de $GL_n(\mathbb{R})$ s'écrit OT avec $O \in O_n(\mathbb{R})$ et $T \in T_n^+(\mathbb{R})$. Soit $M \in \mathcal{M}_n(\mathbb{R})$. En utilisant une suite de matrices inversibles convergeant vers M et une extraction montrer que M s'écrit OT avec $O \in O_n(\mathbb{R})$ et $T \in T_n^+(\mathbb{R})$.
- 3. Montrer que $S_n(\mathbb{R})$ et $S_n^+(\mathbb{R})$ sont fermés.
- 4. On a vu que toute matrice de $GL_n(\mathbb{R})$ s'écrit US avec $U \in O_n(\mathbb{R})$ et $S \in S_n^+(\mathbb{R})$. Soit $M \in \mathcal{M}_n(\mathbb{R})$. En utilisant une suite de matrices inversibles convergeant vers M et une extraction montrer que M s'écrit US avec $U \in O_n(\mathbb{R})$ et $S \in S_n^+(\mathbb{R})$.

Exercice 5: Montrer que $f \begin{cases} O(n) \times S_n^{++}(\mathbb{R}) \to GL_n(\mathbb{R}) \\ (O,S) \mapsto OS \end{cases}$ est bijective, continue, et de réciproque continue.

Exercice 6: Connexité

- 1. Montrer que SO(n) est connexe par arcs.
- 2. O(n) est-il connexe par arcs?
- 3. *E* est euclidien, et $f \in S(E)$. Déterminer $\{ \langle f(x), x \rangle \mid ||x|| = 1 \}$ et $\{ ||f(x)|| \mid ||x|| = 1 \}$.
- 4. \mathbb{R}^n est canoniquement euclidien. $M \in \mathcal{M}_n(\mathbb{R})$. Déterminer $\{||M(x)|| \mid ||x|| = 1\}$ en utilisant tMM .

Exercice 7: Normes de suites

On note l^1 l'ensemble des suites complexes (u_n) telles que $\sum |u_n|$ converge, et l^2 l'ensemble des suites complexes (u_n) telles que $\sum |u_n|^2$ converge.

Si
$$u = (u_n) \in l^1$$
 (resp. l^2), on pose $||u||_1 = \sum_{n=0}^{+\infty} |u_n|$ (resp. $||u||_2 = \sqrt{\sum_{n=0}^{+\infty} |u_n|^2}$).

- 1. Montrer que l^1 et l^2 sont des \mathbb{C} -ev.
- 2. Montrer que $\|\ \|_1$ est une norme sur $l^1,$ et $\|\ \|_2$ une norme sur $l^2.$
- 3. Montrer que $l^1 \subsetneq l^2$, et déterminer C > 0 telle que $\forall u \in l^1$, $||u||_2 \leq C ||u||_1$.
- 4. $\| \|_2$ est aussi une norme sur l^1 par restriction. Montrer que $\| \|_1$ et $\| \|_2$ ne sont pas équivalentes sur l^1 .

Exercice 8:

- 1. $E = \mathcal{C}^1([0,1], \mathbb{R})$. Si $f \in E$ on pose $||f|| = |f(0)| + \int_0^1 |f'|$.
 - (a) Montrer que || || est une norme sur E.
 - (b) Est-elle équivalente à $|| ||_{\infty}$?
- 2. Mêmes questions avec $E = \{f \in \mathcal{C}^1([0,1],\mathbb{R}) \mid f(0) = 0\}$ (vérifier brièvement que c'est un \mathbb{R} -ev) et $||f|| = ||f' + f||_{\infty}$.

Exercice 9: E est un IR-evn, et $f: E \to E$ vérifie $\forall x, y \in E, f(x+y) = f(x) + f(y)$.

- 1. Montrer que f est continue si et seulement si f est continue en 0.
- 2. Montrer que $\forall r \in \mathbb{Q}, \ \forall x \in E, \ f(rx) = rf(x)$.
- 3. Si f est continue, montrer que f est linéaire
- 4. On suppose qu'il existe $C \in \mathbb{R}^+$ tel que $||x|| \le 1 \Longrightarrow ||f(x)|| \le C$. Soit $(x_n) \in E^{\mathbb{N}}$ telle que $x_n \to 0$. Justifier qu'il existe $(r_n) \in \mathbb{Q}^N$ telle que $\forall n, r_n \le ||x_n|| \le 2r_n$, puis montrer que $f(x_n) \underset{n \to +\infty}{\longrightarrow} 0$. Conclusion?

Exercice 10: E est un evn, et A, B des parties de E. On note $A + B = \{a + b | a \in A, b \in B\}$.

- 1. Montrer que A, B compacts $\Longrightarrow A + B$ compact.
- 2. Montrer que A compact et B fermé $\Longrightarrow A + B$ fermé.
- 3. Montrer que A ouvert $\implies A + B$ ouvert.
- 4. Trouver un exemple, avec $E = \mathbb{R}$, de parties A, B fermées telles que A + B ne soit pas fermée.

Exercice 11: Un polynôme à n variables, et à coefficients dans K est du type $P(X_1, ..., X_n) = \sum_{i_1, ..., i_n} a_{i_1, ..., i_n} X^{i_1} ... X^{i_n}$, les $(i_1, ..., i_n)$ ét ant dans \mathbb{N}^n et distincts deux à deux les $a_{i_1, ..., i_n}$ dans K et la somme étant finie

les $(i_1,...,i_n)$ étant dans \mathbb{N}^n et distincts deux à deux, les $a_{i_1,...,i_n}$ dans K, et la somme étant finie. On note $K[X_1,...,X_n]$ l'ensemble de ces polynômes.

On notera que, si
$$P \in K[X_1, ..., X_n]$$
, il peut s'écrire $P = \sum_{k=0}^d A_k(X_1, ..., X_{n-1})X_n^k$, avec $A_k \in K[X_1, ..., X_{n-1}]$.

 $K = \mathbb{R}$ ou \mathbb{C} . Soit $P \in K[X_1, ..., X_n]$.

On suppose qu'il existe un ouvert Ω de K^n tel que $\forall x \in \Omega, P(x) = 0$. Montrer que P = 0.

Exercice 12:

- 1. Montrer que l'on ne peut partitionner \mathbb{R}^2 en cercles de rayons strictement positifs.
- 2. Peut-on partitionner \mathbb{R}^2 en disques ouverts de rayons strictement positifs?

Exercice 13 : Un parfait de IR est une partie non vide, fermée, sans point isolé.

- 1. Construire un parfait de IR d'intérieur vide.
- 2. Construire un parfait de IR d'intérieur vide ne contenant pas de rationnel.

Exercice 14:

E est un espace euclidien et $f \in \mathcal{L}(E)$.

Si
$$x \in E$$
 et $r \ge 0$, $B(x, r) = \{y \in E \mid ||x - y|| \le r\}$.

Soit $x \in E \setminus \{0\}$ et $r \in]0, ||x||[$. On note K = B(x, r). On suppose que $f(K) \subset K$.

Soit $a \in K$.

Si
$$n \in N^*$$
, on pose $y_n = \frac{1}{n} \sum_{k=0}^{n-1} f^k(a)$.

- 1. Montrer que $\forall n \in \mathbb{N}^*, y_n \in K$, et que $f(y_n) y_n \xrightarrow[n \to +\infty]{} 0$.
- 2. Montrer qu'il existe $w \in K$ tel que f(w) = w.
- 3. Montrer que $1 \in Sp(f)$, et $Sp(f) \subset [-1,1]$.
- 4. Montrer avec un exemple en dimension 3 que f n'est pas nécessairement diagonalisable.

Exercice 15 : Soient C une partie convexe d'un espace normé réel E, D une partie de E telle que $C \subset D \subset \overline{C}$. Montrer que D est connexe par arcs.

Exercice 16: E est un \mathbb{R} -evn de dimension finie, et C une partie de E convexe dense. Montrer que E=C.

Exercice 17: Soient E un \mathbb{R} -espace vectoriel de dimension finie $n, v_1, ..., v_p$ des vecteurs de E et $C = \mathbb{R}^+ v_1 + ... + \mathbb{R}^+ v_p$. Montrer que C est fermé dans E. On pourra montrer que, si $x \in C$, il existe $i_1, ..., i_k$ tel que $(v_{i_1}, ..., v_{i_k})$ est libre, et $x \in \mathbb{R}^+ v_{i_1} + ... + \mathbb{R}^+ v_{i_k}$.

Exercice 18:

1. Soient $P, Q \in \mathbb{C}[X], d = deg(P) \in \mathbb{N}^*, q = deg(Q) \in \mathbb{N}^*.$ Soit $f: \begin{cases} \mathbb{C}_{d-1}[X] \times \mathbb{C}_{q-1}[X] \to \mathbb{C}_{q+d-1}[X] \\ (S,T) \mapsto QS + PT \end{cases}$

Montrer que f est linéaire, et est un isomorphisme si et seulement si $P \wedge Q = 1$.

2. Soient $q, d \in \mathbb{N}^*$.

Montrer l'existence d'une fonction $g: \begin{cases} \mathbb{C}_d[X] \times \mathbb{C}_q[X] \to \mathbb{C} \\ (P,Q) \mapsto g(P,Q) \end{cases}$ polynomiale en les coefficients de P et Q, telle que $g(P,Q) \neq 0 \iff P \land Q = 1$.

3. Montrer que l'ensemble des matrices A de $\mathcal{M}_n(\mathbb{C})$ telles que χ_A est SARS est ouvert.

Exercice 19:
$$E = l^1(\mathbb{C}) = \{(u_n) \in \mathbb{R}^{\mathbb{N}} \mid \sum_n |u_n| \text{ converge}\}.$$

On munit E de la norme $||u|| = \sum_{n=0}^{+\infty} |u_n|$.

Soit
$$P = \{ u \in E \mid \sum_{n=0}^{+\infty} u_n \le 1 \}.$$

- 1. Montrer que P est non bornée.
- 2. Montrer que P est fermée.

Exercice 20 : Continuité des formes linéaires

Soient E un K-evn, et f une forme linéaire sur E. Notons H = Ker(f).

- 1. On suppose $f \neq 0$. Soit $a \in E$ tel que $f(a) \neq 0$. Montrer que $\forall x \in E, \exists ! (\lambda, h) \in K \times H ; x = \lambda a + h.$
- 2. Si f est continue, montrer que H est fermé.
- 3. Montrer que f est continue si et seulement si f est continue en 0.
- 4. On suppose f non continue en 0.

Montrer qu'il existe $(x_n) \in E^{\mathbb{N}}$ telle que $\frac{|f(x_n)|}{||x_n||} \xrightarrow[n \to +\infty]{} +\infty$. On se fixe une telle suite, et $y \in E \backslash H$.

En considérant $y - \frac{f(y)}{f(x_n)}x_n$, montrer que H n'est pas fermé.

Exercice 21: Démonstration du théorème de d'Alembert-Gauss

Soit $P = a_n X^n + ... + a_1 X + a_0 \in \mathbb{C}[X]$ de degré $n \geq 1$.

La fonction associée, de $\mathbb C$ dans $\mathbb C$ est continue (même définition que dans le cas réel: $\forall a \in \mathbb C$, $\forall \varepsilon > 0, \exists \delta > 0$ 0; $\forall b \in \mathbb{C}$, $|b-a| \leq \delta \Longrightarrow |P(a)-P(b)| \leq \varepsilon$). Il en est de même par composition de $z \mapsto |P(z)|$.

Soit $m = \inf\{|P(z)| \mid z \in \mathbb{C}\}.$

- 1. Montrer qu'il existe r > 0 tel que $m = \inf\{|P(z)| \mid z \in \mathbb{C} \mid et|z| \le r\}$.
- 2. Montrer que m est un minimum ie $\exists a \in \mathbb{C}$ tel que |P(a)| = m. On se fixe un tel a. Le but est de voir que P(a) = 0.
- 3. Justifier l'existence d'un DL en a du type $P(a+h) = P(a) + bh^k + h^k \varepsilon(h)$, avec $\varepsilon(h) \xrightarrow[h \to 0]{} 0$, $b \in \mathbb{C}^*$, $k \in \mathbb{N}^*$.
- 4. Si $P(a) \neq 0$, montrer qu'il existe h tel que |P(a+h)| < |P(a)|. Ind: faire en sorte que bh^k ait un argument décalé de π par rapport à celui de P(a).

Conclusion?

Exercice 22: Etudes "pratiques" de limites

Etudier l'existence d'une limite en (0,0) de f où f(x,y) vaut (pour les (x,y) où l'expression est définie):

a)
$$\frac{x^3 + y^3}{x^2 + y^2}$$
 b) $\frac{\sin^2(x) + \sin^2(y)}{\sinh^2(x) + \sinh^2(y)}$ c) $\frac{(1 + x^2 + y^2)\sin(y)}{y}$ d) $\frac{xy}{x + y}$ e) $\frac{(x + y)^2}{x^2 + y^2}$ f) $\frac{1 - \cos(xy)}{y^2}$ g) $\frac{x^4y^4}{(x^2 + y^4)^3}$ h) $\frac{|x|^{\alpha}y}{x^2 + y^4}$ avec $\alpha > 0$

Il peut être utile de faire des changements de coordonnées (polaires, ou moins standard $((x, y^2) = (r\cos(t), r\sin(t))$ p. ex. pour h)

Exercice 23: Continuité des fonctions convexes

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ telle que $\forall a, b \in \mathbb{R}^2$, $\forall t \in [0,1]$, $f(ta+(1-t)b) \leq tf(a)+(1-t)f(b)$. (comme dans le cas d'une fonction d'une variable réelle, on dit que f est convexe).

IR² est muni de sa structure usuelle d'espace euclidien.

- 1. Si $a, b, c \in \mathbb{R}^2$, $\lambda, \mu, \nu \in \mathbb{R}^+$ avec $\lambda + \mu + \nu = 1$, montrer que $f(\lambda a + \mu b + \nu c) \le \lambda f(a) + \mu f(b) + \nu f(c)$.
- 2. Si $x \in \mathbb{R}^2$ et $r \geq 0$, Montrer que f est majorée sur le disque fermé de centre x et de rayon r.
- 3. Soit $x \in \mathbb{R}^2$, D le disque fermé de centre x et de rayon 1, C le cercle de centre x et de rayon 1. On se donne y différent de x dans l'intérieur de D. a est le point d'intersection de la demi-droite [x,y) avec C, et b est l'autre point d'intersection de (xy) avec C. (faire un dessin) Ecrire x comme barycentre de y et b, et y comme barycentre de x et a. (on exprimera les poids en fonction de x et y

4

- 4. Montrer que f est continue.
- 5. Pour quelles valeurs de $s \in \mathbb{R}$ la fonction $(x, y) \mapsto x^2 + sxy$ est-elle convexe? Idem avec $(x, y) \mapsto x^2 + y^2 + sxy$.

Exercice 24: Matrices stochastiques $n \in \mathbb{N}^*$.

Une matrice $A \in \mathcal{M}_n(\mathbb{R})$ est dite stochastique si et seulement si $\forall i, j, \, a_{i,j} \geq 0$ et $\forall i, \, \sum_{i=1}^n a_{i,j} = 1$.

- 1. Montrer que le produit de deux matrices stochastiques est stochastique.
- 2. Montrer que l'ensemble des matrices stochastiques est compact.

Soit A une matrice stochastique. On pose, si $k \in \mathbb{N}$, $B_k = \frac{1}{k+1} \sum_{i=0}^k A^i$.

- 3. Montrer que B_k est stochastique.
- 4. Soient Φ , Ψ deux extractions telles que $B_{\Phi}(k) \xrightarrow[k \to +\infty]{} C \in \mathcal{M}_n(\mathbb{R})$, et $B_{\Psi}(k) \xrightarrow[k \to +\infty]{} D \in \mathcal{M}_n(\mathbb{R})$. Montrer que AC = CA = C. Montrer que C = D
- 5. Montrer que (B_k) converge.

Exercice 25 : Recouvrement de la sphère unité de \mathbb{R}^n

 $\|\cdot\|$ désigne la norme euclidienne standard de \mathbb{R}^n .

 $n \in \mathbb{N}^*$ est fixé.

Si $a \in \mathbb{R}^n$, on note $B_{a,r} = \{x \in \mathbb{R}^n : ||x - a|| \le r\}$ la boule fermée de centre a et de rayon r. $S = \{a \in \mathbb{R}^n \mid ||a|| = 1\}$ est la sphère unité de \mathbb{R}^n .

Soit K une partie bornée non vide de \mathbb{R}^n , et soit $\varepsilon > 0$.

1. Montrer que l'on peut trouver un sous ensemble fini A de K tel que :

$$K \subset \bigcup_{a \in A} B_{a, \frac{\varepsilon}{2}}.$$

On pourra raisonner par l'absurde en construisant une suite de $K^{\mathbb{N}}$ niant le théorème de Bolzano-Weierstrass.

Soit Λ un sous ensemble de K tel que pour tous x, y distincts dans Λ, ||x - y|| > ε. Montrer que Λ est fini et que son cardinal est majoré par celui d'un ensemble A du type considéré à la question précèdente.
 Si de plus Λ est de cardinal maximal montrer que t K ∈ 1 1 P.

Si de plus Λ est de cardinal maximal, montrer que : $K \subset \bigcup_{a \in \Lambda} B_{a,\varepsilon}$

On admet l'existence d'une fonction μ , appelée volume, définie sur certaines parties bornées de \mathbb{R}^n (on fera ici comme si μ était définie sur toutes les parties bornées. En fait, μ n'est pas définie sur des parties assez pathologiques) et vérifiant les propriétés suivantes.

- (i) Pour tout vecteur a de \mathbb{R}^n et tout nombre réel r > 0, $\mu(B_{a,r}) = r^n$.
- (ii) Pour toute famille K_1, \ldots, K_m de parties bornées \mathbb{R}^n deux à deux disjointes on a :

$$\mu\left(\bigcup_{1\leq i\leq m} K_i\right) = \sum_{i=1}^m \mu(K_i).$$

(iii) Pour toutes K, K' parties bornées de $\mathbb{R}^n, K \subset K'$ implique $\mu(K) \leq \mu(K')$.

Soit Λ une partie finie de S telle que pour tous x, y distincts dans Λ , $||x - y|| > \varepsilon$.

3. Vérifier que les boules $B_{a,\frac{\varepsilon}{2}}$ pour $a \in \Lambda$ sont toutes contenues dans $B_{0,1+\frac{\varepsilon}{2}}$.

Montrer alors que le cardinal de Λ est majoré par $\left(\frac{2+\varepsilon}{\varepsilon}\right)^n$.

4. Justifier l'existence d'une partie finie Λ_n de S, de cardinal majoré par 5^n , et telle que :

$$S \subset \bigcup_{a \in \Lambda_n} B_{a, \frac{1}{2}}.$$

Exercice 26: Soient $x_0,...,x_n \in \mathbb{R}^n$ tels que $(x_1-x_0,x_2-x_0,...,x_n-x_0)$ soit libre.

Soit
$$S = conv(\{x_0, ..., x_n\}) = \left\{ \sum_i \lambda_i x_i \mid \forall i, \ \lambda_i \ge 0 \ et \ \sum_i \lambda_i = 1 \right\}.$$

Montrer que S est compact, et que $\mathring{S} = \left\{ \sum_{i=0}^{n} \lambda_i x_i \mid \forall i, \ \lambda_i > 0 \ et \ \sum_{i=0}^{n} \lambda_i = 1 \right\}.$

Exercice 27: Projection sur un convexe, théorème de Minkowski

E est un espace euclidien. (rq: si E est un IR-ev de dimension finie, on a vu que l'on peut toujours le munir d'un produit scalaire).

- 1. Soit C un convexe non vide fermé de E différent de E.
 - (a) les deux questions sont indépendantes.

Calculer $\frac{d}{dt} (||a - (b + t(c - b))||^2)_{t=0}$. Si ||a - b|| = ||a - c|| et $b \neq c$, montrer que ||a - (b + c)/2|| < ||a - b||.

(b) Si $x \in E \setminus C$, montrer qu'il existe un unique $y \in C$, que l'on notera $p_C(x)$, tel que ||x-y|| = d(x,C), et que $\forall z \in C, \langle z - p_C(x), x - p_C(x) \rangle \leq 0.$

Si $x \in C$, $p_C(x) = x$ et les résultats subsistent trivialement.

- (c) En développant $||(x p_C(x)) + (p_C(x) p_C(y)) + (p_C(y) y)||^2$, montrer que p_C est 1-lipschitzienne.
- (d) Soit $x \in \partial C$. On se donne $(x_n) \in (E \setminus C)^{\mathbb{N}}$ telle que $x_n \to x$.

 Justifier que l'on peut extraire de $\left(\frac{x_n p_C(x_n)}{||x_n p_C(x_n)||}\right)$ une sous-suite convergente vers e de norme 1, et montrer qu'alors $C \subset (x + vect(e)^{\perp}) \mathbb{R}^+ e$ (ie que C est d'un côté de l'hyperplan affine $(x + vect(e)^{\perp})$. un tel hyperplan affine est dit hyperplan d'appui de C en x).
- (e) Soit $x \in \partial C$ et H un hyperplan (affine) d'appui de C en x. Montrer que tout point extrémal du convexe $H \cap C$ est un point extrémal de C
- 2. Il s'agit de montrer que si C un convexe compact de E, alors C est l'enveloppe convexe de ses points extrémaux (un théorème de Minkowski).

Il va apparaître des sous-espaces affines, et nous allons faire une récurrence sur la dimension, donc nous allons

 H_n : "Si C est un convexe compact de E inclus dans un sous-espace affine de dimension n de E, alors C est l'enveloppe convexe de ses points extrémaux." Soit C un convexe compact.

- (a) Soit $x \in C$, et D une droite affine contenant x. Montrer que $D \cap C$ est du type [a,b] avec $a,b \in C$.
- (b) Montrer le théorème de Minkowski.

Problème : sous-groupes compacts du groupe linéaire

Posé aux Mines.

Soit E un espace vectoriel euclidien de dimension n>0 dont le produit scalaire est noté (...) et la norme euclidienne est notée $\|.\|$. On note L(E) l'espace vectoriel des endomorphismes de E et GL(E) le groupe des automorphismes de E. Pour tout endomorphisme u de E, on note u^i l'endomorphisme $u \circ u \circ \cdots \circ u$ (i fois) avec la convention $u^0 = \mathrm{Id}_E$ (identité). L'ensemble vide est noté \emptyset .

Si F est un sous-ensemble quelconque de E, on appelle enveloppe convexe de F, et on note Conv(F), le plus petit sous-ensemble convexe de E (au sens de l'inclusion) contenant F. On note \mathcal{H} l'ensemble des $(\lambda_1, \ldots, \lambda_{n+1}) \in$

$$(\mathbb{R}^+)^{n+1}$$
 tels que $\sum_{i=1}^{n+1} \lambda_i = 1$ et on admet que $\operatorname{Conv}(F)$ est l'ensemble des combinaisons linéaires de la forme $\sum_{i=1}^{n+1} \lambda_i x_i$ où $x_1, \ldots, x_{n+1} \in F$ et $(\lambda_1, \ldots, \lambda_{n+1}) \in \mathcal{H}$. [NDLR: cf. cours: théorème de Caratheodory]

L'espace vectoriel des matrices à coefficients réels ayant n lignes et m colonnes est noté $M_{n,m}(\mathbb{R})$. On notera en particulier $M_n(\mathbb{R}) = M_{n,n}(\mathbb{R})$. La matrice transposée d'une matrice A est notée tA . La trace de A est notée $\mathrm{Tr}(A)$.

On note $GL_n(\mathbb{R})$ le groupe linéaire des matrices de $M_n(\mathbb{R})$ inversibles et $O_n(\mathbb{R})$ le groupe orthogonal d'ordre n.

Les parties A, B et C sont indépendantes

A. Préliminaires sur les matrices symétriques

On note $S_n(\mathbb{R})$ le sous-espace vectoriel de $M_n(\mathbb{R})$ formé des matrices symétriques. Une matrice $S \in S_n(\mathbb{R})$ est dite définie positive si et seulement si pour tout $X \in M_{n,1}(\mathbb{R})$ non nul, on a ${}^tXSX > 0$. On note $S_n^{++}(\mathbb{R})$ l'ensemble des matrices symétriques définies positives.

- 1. Montrer qu'une matrice symétrique $S \in S_n(\mathbb{R})$ est définie positive si et seulement si son spectre est contenu dans \mathbb{R}^{+*} .
- 2. En déduire que pour tout $S \in S_n^{++}(\mathbb{R})$, il existe $R \in GL_n(\mathbb{R})$ tel que $S = {}^tRR$. Réciproquement montrer que pour tout $R \in GL_n(\mathbb{R})$, ${}^tRR \in S_n^{++}(\mathbb{R})$.
- 3. Montrer que l'ensemble $S_n^{++}(\mathbb{R})$ est convexe.

B. Autres préliminaires

Les trois questions de cette partie sont mutuellement indépendantes.

- 4. Soit K un sous-ensemble compact de E et $\operatorname{Conv}(K)$ son enveloppe convexe. On rappelle que \mathcal{H} est l'ensemble des $(\lambda_1,\ldots,\lambda_{n+1})\in(\mathbb{R}^+)^{n+1}$ tels que $\sum_{i=1}^n\lambda_i=1$. Définir une application Φ de $\mathbb{R}^{n+1}\times E^{n+1}$ dans E telle que $\operatorname{Conv}(K)=\Phi(\mathcal{H}\times K^{n+1})$. En déduire que $\operatorname{Conv}(K)$ est un sous-ensemble compact de E.
- 5. On désigne par g un endomorphisme de E tel que pour tous x, y dans E, (x|y) = 0 implique (g(x)|g(y)) = 0. Montrer qu'il existe un nombre réel positif k tel que pour tout $x \in E$, ||g(x)|| = k||x||. (On pourra utiliser une base orthonormée (e_1, \ldots, e_n) et considérer les vecteurs $e_1 + e_i$ et $e_1 e_i$ pour $i \in \{2, \ldots, n\}$.) En déduire que g est la composée d'une homothétie et d'un endomorphisme orthogonal.
- 6. On se place dans l'espace vectoriel euclidien $M_n(\mathbb{R})$ muni du produit scalaire canonique défini par (A|B) = $\operatorname{Tr}({}^tAB)$. Montrer que le groupe orthogonal $O_n(\mathbb{R})$ est un sous-groupe compact du groupe linéaire $GL_n(\mathbb{R})$.

C. Quelques propriétés liées à la compacité

Soit $(x_n)_{n\in\mathbb{N}}$ une suite d'éléments de E pour laquelle il existe un réel $\varepsilon>0$ tel que pour tous entiers naturels $n\neq p$, on ait $||x_n-x_p||\geq \varepsilon$.

7. Montrer que cette suite n'admet aucune suite extraite convergente.

Soit K un sous-ensemble compact de E. On note B(x,r) la boule ouverte de centre $x \in E$ et de rayon r.

8. Montrer que pour tout réel $\varepsilon > 0$, il existe un entier p > 0 et x_1, \ldots, x_p éléments de E tels que $K \subseteq \bigcup_{i=1}^p B(x_i, \varepsilon)$. (On pourra raisonner par l'absurde.)

On considère une famille $(\Omega_i)_{i\in I}$ de sous-ensembles ouverts de $E,\ I$ étant un ensemble quelconque, telle que $K\subseteq\bigcup_{i\in I}\Omega_i$.

9. Montrer qu'il existe un réel $\alpha > 0$ tel que pour tout $x \in K$, il existe $i \in I$ tel que $B(x, \alpha)$ soit contenue dans l'ouvert Ω_i . (On pourra raisonner par l'absurde pour construire une suite d'éléments de K n'ayant aucune suite extraite convergente.) En déduire qu'il existe une sous-famille finie $(\Omega_{i_1}, \ldots, \Omega_{i_p})$ de la famille $(\Omega_i)_{i \in I}$ telle que $K \subseteq \bigcup_{k=1}^p \Omega_{i_k}$.

Soit $(F_i)_{i\in I}$ une famille de fermés de E contenus dans K et d'intersection vide : $\bigcap_{i\in I}F_i=\emptyset$.

10. Montrer qu'il existe une sous famille finie $(F_{i_1}, \dots, F_{i_p})$ de la famille $(F_i)_{i \in I}$ telle que $\bigcap_{k=1}^p F_{i_k} = \emptyset$.

D. Théorème du point fixe de Markov-Kakutani

Soit G un sous-groupe compact de GL(E) et K un sous-ensemble non vide, compact et convexe de E. Pour tout $x \in E$, on note $N_G(x) = \sup_{x \in C} \|u(x)\|$.

- 11. Montrer que N_G est bien définie et que c'est une norme sur E.
- 12. Montrer en outre que N_G vérifie les deux propriétés suivantes :
 - pour tous $u \in G$ et $x \in E$, $N_G(u(x)) = N_G(x)$;
 - pour tous $x, y \in E$ avec x non nul, $N_G(x+y) = N_G(x) + N_G(y)$ si et seulement si $\lambda x = y$ où $\lambda \in \mathbb{R}^+$.

Pour la deuxième propriété, on pourra utiliser le fait que si $z \in E$, l'application qui à $u \in G$ associe ||u(z)|| est continue.

On considère un élément $u \in L(E)$, et on suppose que K est stable par u, c'est à dire que u(K) est inclus dans K. Pour tout $x \in K$ et $n \in \mathbb{N}^*$, on pose $x_n = \frac{1}{n} \sum_{i=0}^{n-1} u^i(x)$. Enfin, on appelle diamètre de K le réel $\delta(K) = \sup_{x,y \in K} \|x-y\|$ qui est bien défini car K est borné.

13. Montrer que la suite $(x_n)_{n\in\mathbb{N}^*}$ est à valeurs dans K et en déduire qu'il en existe une suite extraite convergente vers un élément a de K. Montrer par ailleurs que pour tout $n\in\mathbb{N}^*$, $||u(x_n)-x_n||\leq \frac{\delta(K)}{n}$. En déduire que l'élément a de K est un point fixe de u.

On suppose maintenant que le compact non vide convexe K est stable par tous les éléments de G. Soit $r \ge 1$ un entier, u_1, u_2, \ldots, u_r des éléments de G et $u = \frac{1}{r} \sum_{i=1}^{r} u_i$.

- 14. Montrer que K est stable par u et en déduire l'existence de $a \in K$ tel que u(a) = a.
- 15. Montrer que $N_G\left(\frac{1}{r}\sum_{i=1}^r u_i(a)\right) = \frac{1}{r}\sum_{i=1}^r N_G(u_i(a))$. En déduire que pour tout $j \in \{1, \dots, r\}$, on a

$$N_G\left(u_j(a) + \sum_{\substack{i=1\\i\neq j}}^r u_i(a)\right) = N_G(u_j(a)) + N_G\left(\sum_{\substack{i=1\\i\neq j}}^r u_i(a)\right)$$

- 16. En déduire, pour tout $j \in \{1, ..., r\}$, l'existence d'un nombre réel $\lambda_j \geq 0$ tel que $u(a) = \frac{\lambda_j + 1}{r} u_j(a)$.
- 17. Déduire de la question précédente que a est un point fixe de tous les endomorphismes u_i où $i \in \{1, ..., r\}$.
- 18. En utilisant le résultat de la question 10, montrer qu'il existe $a \in K$ tel que pour tout $u \in G$, u(a) = a.

E. Sous-groupes compacts de $GL_n(\mathbb{R})$

On se place à nouveau dans l'espace vectoriel euclidien $M_n(\mathbb{R})$ muni du produit scalaire défini par $(A|B) = \operatorname{Tr}({}^tAB)$. On rappelle que $GL_n(\mathbb{R})$ désigne le groupe linéaire et $O_n(\mathbb{R})$ le groupe orthogonal d'ordre n. Soit G un sous groupe compact de $GL_n(\mathbb{R})$. Si $A \in G$, on définit l'application ρ_A de $M_n(\mathbb{R})$ dans lui même par la formule $\rho_A(M) = {}^tAMA$. On vérifie facilement, et on l'admet, que pour tout $M \in M_n(\mathbb{R})$, l'application qui à $A \in G$ associe $\rho_A(M)$ est continue.

- On note $H = \{ \rho_A \mid A \in G \}, \Delta = \{ {}^tAA \mid A \in G \}$ et $K = \text{Conv}(\Delta)$.
 - 19. Montrer que $\rho_A \in GL(M_n(\mathbb{R}))$ et que H est un sous-groupe compact de $GL(M_n(\mathbb{R}))$.
 - 20. Montrer que Δ est un compact contenu dans $S_n^{++}(\mathbb{R})$ et que K est un sous-ensemble compact de $S_n^{++}(\mathbb{R})$ qui est stable par tous les éléments de H.
 - 21. Montrer qu'il existe $M \in K$ tel que pour tout $A \in G$, $\rho_A(M) = M$. En déduire l'existence de $N \in GL_n(\mathbb{R})$ tel que pour tout $A \in G$, $NAN^{-1} \in O_n(\mathbb{R})$. En déduire enfin qu'il existe un sous-groupe G_1 de $O_n(\mathbb{R})$ tel que $G = N^{-1}G_1N = \{N^{-1}BN/B \in G_1\}$.

Soit K un sous-groupe compact de $GL_n(\mathbb{R})$ qui contient $O_n(\mathbb{R})$, et $N \in GL_n(\mathbb{R})$ tel que $NKN^{-1} \subseteq O_n(\mathbb{R})$. On désigne par g l'automorphisme de \mathbb{R}^n de matrice N dans la base canonique de \mathbb{R}^n , par P un hyperplan de \mathbb{R}^n et par σ_P la symétrie orthogonale par rapport à P.

22. Montrer que $g \circ \sigma_P \circ g^{-1}$ est une symétrie, puis que c'est un endomorphisme orthogonal de \mathbb{R}^n . En déduire que $g \circ \sigma_P \circ g^{-1} = \sigma_{g(P)}$. Montrer que g conserve l'orthogonalité et en déduire K.