Lecture 12: Dimensionality reduction

Introduction

Motivation

Methods for feature reduction

Lecture 12: Dimensionality reduction Introduction to Machine Learning

Sophie Robert

L3 MIASHS — Semestre 2

2022-2023

Introduction

Motivation

Methods for feature reduction 1 Introduction

2 Motivation

3 Methods for feature reduction

Definition

Lecture 12: Dimensionality reduction

sopnie Rober

Introduction

Motivatio

Methods to feature reduction

Dimensionality reduction

Dimensionality reduction is the transformation of the data from a **high**-dimensional space into a **lower**-dimension space, with as little information loss as possible.

Definition

Lecture 12: Dimensionality reduction

hie Robert

Introduction

Motivatio

Methods for feature reduction

Dimensionality reduction

Dimensionality reduction is the transformation of the data from a **high**-dimensional space into a **lower**-dimension space, with as little information loss as possible.

We want to:

- Reduce the number of features
- Retain as much information as possible

Lecture 12: Dimensionality reduction

ophie Robert

......

Motivation

Methods for feature reduction

Question

Lecture 12: Dimensionality reduction

ophie Robert

Motivation

Methods for feature reduction

Question

Why do you think we need to reduce dimensions?

Computation time

Lecture 12: Dimensionality reduction

phie Robert

IIILIOGUCLI

Motivation

Methods for feature reduction

Question

- Computation time
- Easier data visualization

Lecture 12: Dimensionality reduction

phie Robert

.....

Motivation

Methods for feature reduction

Question

- Computation time
- Easier data visualization
- Possible unrelated features acting as noise

Lecture 12: Dimensionality reduction

phie Robert

mtroducti

Motivation

Methods fo feature reduction

Question

- Computation time
- Easier data visualization
- Possible unrelated features acting as noise
- Possible correlated features that do not bring any new information to solve the task

Lecture 12: Dimensionality reduction

 ${\sf Motivation}$

Methods fo feature reduction

Question

- Computation time
- Easier data visualization
- Possible unrelated features acting as noise
- Possible correlated features that do not bring any new information to solve the task
- The curse of dimensionality

Curse of dimensionality

Lecture 12: Dimensionality reduction

Introduction

Motivation

Methods for feature reduction

Curse of dimensionality

The **curse of dimensionality*** refers to various phenomena that arise when analyzing data in high-dimensional space.

Curse of dimensionality

Lecture 12: Dimensionality reduction

Motivation

Methods for feature

Curse of dimensionality

The **curse of dimensionality*** refers to various phenomena that arise when analyzing data in high-dimensional space.

The main problem is that the **dataset becomes sparse**: we do not have enough combinations of values to properly learn from it!

Methods for feature reductions

Lecture 12: Dimensionality reduction

ohie Robe

Introduction

Motivatio

Methods for feature

Question

What is in your opinion possible approaches to reduce the number of features ?

Methods for feature reductions

Lecture 12: Dimensionality reduction

ophie Rober

Introduction

Motivatio

Methods for feature reduction

Question

What is in your opinion possible approaches to reduce the number of features ?

■ Removing some features

Methods for feature reductions

Lecture 12: Dimensionality reduction

Introduction

Motivation

Methods for feature reduction

Question

What is in your opinion possible approaches to reduce the number of features ?

- **Removing** some features
- **Projecting the features** into a lower dimensional space.

Feature selection

Lecture 12: Dimensionality reduction

Feature selection

Martari

Motivation

Methods for feature reduction

Feature selection consists in selecting the subset of features that bear the most information and removing the features that bear little information from the dataset.

Feature selection

Lecture 12: Dimensionality reduction

oophie Rober

. . . .

IVIOLIVALIOI

Methods for feature reduction

Feature selection

Feature selection consists in selecting the subset of features that bear the most information and removing the features that bear little information from the dataset.

Question

Do you remember what features we removed from the Titanic dataset ? Why and how ?

Feature selection

Lecture 12: Dimensionality reduction

oophie Rober

Motivation

Methods for feature reduction

Feature selection

Feature selection consists in selecting the subset of features that bear the most information and removing the features that bear little information from the dataset.

Question

Do you remember what features we removed from the Titanic dataset ? Why and how ?

We need some objective rules to define what subset of variables to keep.

Feature projection

Lecture 12: Dimensionality reduction

Feature projection

Mativatio

Motivation

Methods for feature reduction

Feature projection* (also called feature extraction) transforms the data from the high-dimensional space to a space of fewer dimensions.

Feature projection

Lecture 12: Dimensionality reduction

Johne Robe

Mativatio

MOLIVALIO

Methods for feature reduction

Feature projection

Feature projection* (also called feature extraction) transforms the data from the high-dimensional space to a space of fewer dimensions.

We need to project the data into another space which is a combination of the features with as little information loss as possible.

Feature projection

Lecture 12: Dimensionality reduction

Johne Robe

N 4 - + 1 - - + 1 -

MOTIVATIO

Methods for feature reduction

Feature projection

Feature projection* (also called feature extraction) transforms the data from the high-dimensional space to a space of fewer dimensions.

We need to project the data into another space which is a combination of the features with as little information loss as possible.

The transformation can be:

- Linear (PCA, NMF . . .)
- Non-linear (t-SNE, ...)

Questions

Lecture 12: Dimensionality reduction

hie Rober

Introducti

Motivation

Methods for feature reduction

Questions ?