

Theory of Computation TY Btech (CET2008B)

Unit IV
Turing Machine

Course Objective & Course Outcomes

Course Objectives:

- 1. To Study computing machines by describing, classifying and comparing different types of computational models.
- 2. Encourage students to study Theory of Computability and Complexity.

Course Outcomes:

After successful completion of this course students will be able to:

- 1. Construct finite state machines to solve problems in computing
- 2. Write mathematical expressions for the formal languages
- 3. Apply well defined rules for syntax verification
- 4. Construct and analyze Push Down, Post and Turing Machine for formal languages
- 5. Express the understanding of the decidability and Undecidability problems
- 6. Express the understanding of computational complexity.

Text Books & Reference Books

Text Books

- 1. Michael Sipser "Introduction to the Theory of Computation" CENGAGE Learning, 3rd Edition ISBN-13:978-81-315-2529-6
- 2. Vivek Kulkarni, "Theory of Computation", Oxford University Press, ISBN-13: 978-0-19-808458-7

Reference Books

- 1. Hopcroft Ulman, "Introduction To Automata Theory, Languages And Computations", Pearson Education Asia, 2nd Edition
- 2. Daniel. A. Cohen, "Introduction to Computer Theory" Wiley-India, ISBN:978-81-265-1334-5
- 3. K.L.P Mishra ,N. Chandrasekaran ,"Theory Of Computer Science (Automata, Languages and Computation)", Prentice Hall India,2nd Edition
- 4. John C. Martin, "Introduction to Language and Theory of Computation", TMH, 3rd Edition ISBN: 978-0-07-066048-9
- 5. Kavi Mahesh, "Theory of Computation: A Problem Solving Approach", Wiley-India, ISBN: 978-81-265-3311-4

Unit 4

Unit IV: Turing Machine

Formal definition of a Turing machine, Church-Turing thesis and intuitive notion of Algorithm, Instantaneous Description, Recursive Language and Recursively Enumerable Languages, Design of Turing Machines, Robustness of Turing Machine Model and equivalence with various variants: Universal Turing Machine, Nondeterministic Turing machines, Multi-tape TM, Designing TM

Church-Turing's Thesis

Everything that is algorithmically computable is computable by a Turing machine

Turing Machine

- Invented by Alan Turing in 1936
- A simple mathematical model of a general purpose computer
- It is capable of performing any calculation which can be performed by any computing machine

The Language Hierarchy

Language Accepted by TM

Elements of a Turing Machine

- A TM consists of the following:
 - A tape head : read / write a symbol at a time, move to left/right
 - An infinite tape: contains square cells in which symbols can be written
 - A finite set of symbols
 - A finite set of states

Turing Machine

- A TM consists of a finite control (i.e. a finite state automaton) that is connected to an infinite tape.
- Initially the input consists of a finite-length string of symbols and is placed on the tape.
- To the left of the input and to the right of the input, extending to infinity, are placed blanks.
- The tape head is initially positioned at the leftmost cell holding the input.

Turing Machine

- In one move the TM will:
 - Change state, which may be the same as the current state
 - Write a tape symbol in the current cell, which may be the same as the current symbol
 - Move the tape head left or right one cell

Formal Definition of TM

Formally, the Turing Machine is denoted by the 7-tuple:

$$M = (Q, \sum, \Gamma, \delta, q_0, B, F)$$

Q = finite states of the control

 Σ = finite set of input symbols, which is a subset of Γ below

 Γ = finite set of tape symbols

 δ = transition function. δ : ($\mathbf{Q} \times \mathbf{\Gamma}$) -> ($\mathbf{Q} \times \mathbf{\Gamma} \times \mathbf{D}$)

e.g. $\delta(q, X) = (p, Y, \{L, R, N\})$ Where p = next state, Y = new symbol written on the tape, D = direction to move the tape head(left, right, No move)

 q_0 = start state for finite control

B = blank symbol. This symbol is in Γ but not in Σ .

F = set of final or accepting states of Q.

The Tape

No boundaries -- infinite length

Read-Write head

The head moves Left or Right

The Tape

Read-Write head

The head at each time step:

- 1. Reads a symbol
- 2. Writes a symbol
- 3. Moves Left or Right

Transition Function

Takes two arguments:

- 1. A state, in Q
- 2. A tape symbol in Γ

$\delta(q, Z)$ is either undefined or a triple of the form (p, Y, D) where

p is a state

Y is the new tape symbol

D is a direction, L or R

Example:

Time 0

- 1. Reads a
- 2. Writes k
- 3. Moves Left

- 1. Reads b
- 2. Writes f
- 3. Moves Right

The Input String

' \square ' are treated as left and right brackets for the input written on the tape.

States & Transitions

Example:

$$\begin{array}{ccc}
 & a \rightarrow b, R \\
 & q_2
\end{array}$$

$$\begin{array}{c|c}
\hline
q_1 & \Box \to g, L \\
\hline
\end{array}$$

Instantaneous Descriptions(ID) of a Turing Machine

- Sometimes it is useful to describe what a TM does in terms of its ID (instantaneous description), just as we did with the PDA
- The ID shows all non-blank cells in the tape, pointer to the cell the head is over with the name of the current state
 - use the turnstile symbol ├ to denote the move.
 - As before, to denote zero or many moves, we can use

Instantaneous Descriptions(ID) of a TM

 $ca q_1 ba$

- (1) For constructing the ID, we simply insert the current state in the input string to the left of the symbol under the R/W head.
- (2) We observe that the blank symbol may occur as part of the left or right substring.

$$q_2 xayb \succ x q_0 ayb$$

Instantaneous Descriptions(ID) of a TM

Moves in a TM

As in the case of pushdown automata, $\delta(q, x)$ induces a change in ID of the Turing machine. We call this change in ID a move.

Suppose $\delta(q, x_i) = (p, y, L)$. The input string to be processed is $x_1x_2 \dots x_n$, and the present symbol under the R/W head is x_i . So the ID before processing x_i is

$$x_1x_2 \dots x_{i-1}qx_i \dots x_n$$

After processing x_i , the resulting ID is

$$x_1 \ldots x_{i-2} p x_{i-1} y x_{i+1} \ldots x_n$$

This change of ID is represented by

$$x_1x_2 \ldots x_{i-1} q x_i \ldots x_n \vdash x_i \ldots x_{i-2} p x_{i-1} y x_{i+1} \ldots x_n$$

If i = 1, the resulting ID is $p y x_2 x_3 \dots x_n$.

If $\delta(q, x_i) = (p, y, R)$, then the change of ID is represented by

$$x_1x_2 \ldots x_{i-1}q x_i \ldots x_n \vdash x_1x_2 \ldots x_{i-1} y p x_{i+1} \ldots x_n$$

-

Example

Present state	Tape symbol				
	0	1	Х	у	b
$\rightarrow q_1$	xRq ₂				bRq ₅
q_2	$0Rq_2$	yLq_3		yRq_2	
q_3	$0Lq_4$		xR q 5	yLq_3	
q_4	$0Lq_4$		xRq_1		
q_5				yxRq ₅	bRq_6
(q_6)					

(a)
$$q_1011 \vdash xq_211 \vdash q_3xy1 \vdash xq_5y1 \vdash xyq_51$$

(b)
$$q_10011 \vdash xq_2011 \vdash x0q_211 \vdash xq_30y1 \vdash q_4x0y1 \vdash xq_10y1.$$

$$\vdash xxq_2y1 \vdash xxyq_21 \vdash xxq_3yy \vdash xq_3xyy \vdash xxq_5yy$$

$$\vdash xxyq_5y \vdash xxyyq_5b \vdash xxyybq_6$$

M halts. As q_6 is an accepting state, the input string 0011 is accepted by M.

(c)
$$q_1001 \vdash xq_201 \vdash x0q_21 \vdash xq_30y \vdash q_4x0y \vdash xq_10y \vdash xxq_2y \vdash xxyq_2$$

M halts. As q_2 is not an accepting state, 001 is not accepted by M.

Acceptance of Input

Accept Input

If machine halts in a final state

Reject Input

If machine halts in a non-final state or

If machine enters an infinite loop

Example 1 :aa*

Rejection Example

Time 0

Time 1

No possible Transition Halt & Reject

Infinite Loop Example

Because of the infinite loop:

• The final state cannot be reached

•The machine never halts

The input is not accepted

Design of TM steps

- 1. Definition of TM
- 2. Logic
- 3. Transition function
- 4. Instantaneous Description of a string

1. Design TM to recognize all strings of even number of 1's. Assume the string is made up of only 1's Solution

$$M = (\{q_0, q_1\}, \{1\}, \{1\}, \delta, q_0, B, \{q_0\})$$

	1	В
\longrightarrow q_0	q_1BR	Accept
q_1	q_0BR	Reject

Instantaneous Description: $\mathbf{w} = \mathbf{1111}$ $q_0 1111B \mid -B q_1 111B \mid -B q_0 11B \mid -B BB q_0 11B \mid -B q_$

2. Design a TM which can compute a concatenation function over $\Sigma = \{1\}$

If the pair of words $\{w1, w2\}$ is the input, output has to be w1w2.

Solution

$$M = (\{q_0, q_1\}, \{1\}, \{1\}, \delta, q_0, B, \{q_0\})$$

Logic: Replace separating symbol 'B' by '1'

Replace rightmost '1' by 'B'

δ:

	1	В
\longrightarrow q ₀	$q_0 1R$	q_1 1R
q_1	q ₁ 1R	q_2BL
q2	q_3 BR	
*q3		Accept

3. Design TM that will replace every occurrence of substring 11 by 10 keeping everything intact Solution

$$M = (\{q_0, q_1\}, \{0,1\}, \{0,1\}, \delta, q_0, B, \{q_0\})$$

	0	1	В
\longrightarrow q_0	$q_0 0R$	q ₁ 1R	Accept
q_1	$q_0 0R$	$q_0 0R$	Accept

Instantaneous Description: w= 01101110110

4. Design a TM for $L = \{0^n1^n | n > = 1\}$

	0	1	X	y	В	
q_0	q ₁ , x, R	-	-	q ₃ , y, R	q _{4,} B, N(accept)	
q_1	$q_1, 0, R$	q ₂ , y, L	-	q ₁ , y, R	-	
q_2	$q_2, 0, L$	-	q_0, x, R	q ₂ , y, L	-	
q_3	-	-	-	q ₃ , y, R	q ₄ , B, R(accept)	
q_4	-	-	-	-	-	

Instantaneous Description: w= 0011

Practice Problems

- 5. Design TM that recognizes strings containing equal number of 0's and 1's
- 6. Design TM that checking if a set of parentheses are well-formed

5. Design TM that recognizes strings containing equal number of 0's and 1's

Solution Instantaneous Description: w= 01101110110

 $M = (\{q_0, q_1, q_2, q_3, q_4\}, \{0,1\}, \{0,1, *\}, \delta, q_0, B, \{q_0\})$

	0	1	*	;	
\longrightarrow q_0	q ₁ *R	q ₃ *R	q ₀ *R	q ₄ N(Accept)	
q_1	q_10R	q_2*L	q ₁ *R	q ₄ N(Reject)	
q_2	q_20L	q ₂ 1L	q ₂ *L	q ₀ ; R	
q_3	q ₂ *L	q_31R	q ₃ *R	q ₄ N(Reject)	
q_4	-	-	-	-	

6. Design TM that checking if a set of parentheses are well-formed

$$M = (\{q_0, q_{1,}, q_2, q_{3,}\}, \{(,)\}, \{(,), *, ;, O, R_p, L_p\}, \delta, q_0, B, \{q_3\})$$
 Simplified Functional Matrix:

	(*)	;	Rp	Lp	0
$\rightarrow q_0$	R	R	q_1*L	q_2L	-	-	-
q_1	q_0*R	L	L	q_3R_pN	-	-	-
q_2	q_3L_pN	L	L	q_3ON	-	-	-
q_3	Final state						

Instantaneous Description: w= (())

 q_0

Complexity of Turing Machine

The complexity of a TM is directly proportional to the size of the functional matrix. In other words, we can say that the complexity of a TM depends on the number of symbols that are being used and the number of states of the TM. Hence:

Non Recursively Enumerable

A TM *recognizes* a language <u>iff</u> it accepts all and only those strings in the language.

A language L is called Turing-recognizable or recursively enumerable iff some TM recognizes L.

A TM *decides* a language L iff it accepts all strings in L and rejects all strings not in L.

A language L is called <u>decidable or recursive</u> iff some TM <u>decides</u> L.

Definition:

A language is **recursive** if some Turing machine accepts it and halts on any input string

In other words:

A language is recursive if there is a membership algorithm for it

Recursive and Recursively Enumerable Languages

To summarize we can say that,

™ Recursively Enumerable Set

```
\bowtie Accept TM = S
```

$$\bowtie$$
 Reject (TM) \cup loop (TM) = $\Sigma^* - S$

Recursive Set

 \subset A set *S* of words over Σ is said to be recursive, if there is a TM over Σ , which accepts every word in *S* and rejects every word in $\sim S$ ($\sim S$

= $\Sigma^* - S$). This can be represented as:

 \bowtie Accept (TM) = S

 \bowtie Reject (TM) = $\Sigma *-S$

 \approx Loop (TM) = ϕ

A language is called Turing-recognizable or recursively enumerable (r.e.) if some TM recognizes it

A language is called decidable or recursive if some TM decides it

Universal Turing Machine

™Universal Turing Machine (UTM)

- Turing machine that can simulate any other Turing Machine
- It accepts the *encoded* Functional Matrix of any other TM as input on
 - its tape (**Program area**)
- It also accepts the data on which the other TM needs to be simulated (**Data area** of the tape)
- UTM needs an **imitation algorithm** that can simulate the functional
 - matrix of any other TM (**System area**)
- Grunctional Matrix of such a UTM is analogous to an Operating System
- **UTM** is analogous to a modern Computer!

Universal Turing Machine

Multi Tape Turing Machine

- Multi-tape Turing machines have k number of independent tapes, having their own read/write heads. These machines have independent control over all the heads—any of these can move and read/write their own tapes. All these tapes are unbounded at both the ends just as in the singletape TM.
- Multi-tape TM and single-tape TM are equivalent in power (except for some difference in execution time

Non-Deterministic Turing Machine

A nondeterministic Turing Machine (NTM) differs from the deterministic variety by having a transition function δ such that for each state q and tape symbol X, $\delta(q, X)$ is a set of triples

$$\{(q_1,Y_1,D_1), (q_2,Y_2,D_2), \dots (q_k,Y_k,D_k)\}$$

Where k is any finite integer. The NTM can choose, at each step, any of the triples to be the next move. It cannot, however, pick a state from one, a tape symbol from another, a the direction from yet another.

NTM and DTM

Theorem: Every NTM has an equivalent (deterministic) TM

Proof: Simulate NTM with a deterministic TM

- computations of M are a tree
- nodes are configurations
- fanout is b = maximum number
 of choices in transition function
- leaves are accept/reject configurations.

Simulating NTM M with a deterministic TM:

Breadth-first search of tree

- if M accepts: we will encounter accepting leaf and accept
- if M rejects: we will encounter all rejecting leaves, finish traversal of tree, and reject
- if M does not halt on some branch: we will not halt as that branch is infinite...

Simulating NTM M with a deterministic TM:

- o use a 3 tape TM:
 - tape 1: input tape (read-only)
 - tape 2: simulation tape (copy of M's tape at point corresponding to some node in the tree)
 - tape 3: which node of the tree we are exploring (string in {1,2,...b}*)
- o Initially, tape 1 has input, others blank

NTM and DTM

Here is the transition function of a nondeterministic TM $M = (\{q_0, q_1, q_2\}, \{0, 1\}, \{0, 1, B\}, \delta, q_0, B, \{q_2\})$:

Show the ID's reachable from the initial ID if the input is:

- * a) 01.
 - b) 011.

END