Predictive Modelling

Classification - Classifier Evaluation

Jonathan Mwaura

Khoury College of Computer Sciences

July 23, 2024

Introduction

Textbook

Reading: Chapter 4 of: Gareth James et al (2021). An Introduction to Statistical Learning (2nd Edition).

https://www.statlearning.com/

Acknowledgements

These slides have been adapted from the following Professors:

- 1) Andrew Ng Stanford
- 2) Eric Eaton UPenn
- 3) David Sontag MIT
- 4) Alina Oprea Northeastern

Classifier Evaluation

- Classification is a supervised learning problem
 - Prediction is binary or multi-class
- Classification techniques
 - Linear classifiers
 - Perceptron (online or batch mode)
 - Logistic regression (probabilistic interpretation)
 - Instance learners
 - kNN: need to store entire training data
- Cross-validation should be used for parameter selection and estimation of model error

Evaluation of classifiers

Given: labeled training data $X, Y = \{\langle x_i, y_i \rangle\}_{i=1}^n$

• Assumes each $oldsymbol{x}_i \sim \mathcal{D}(\mathcal{X})$

Train the model:

 $model \leftarrow classifier.train(X, Y)$

Apply the model to new data:

• Given: new unlabeled instance $x \sim \mathcal{D}(\mathcal{X})$ $y_{\mathsf{prediction}} \leftarrow \mathit{model}.\mathsf{predict}(\mathbf{x})$

Classification Metrics

$$accuracy = \frac{\# correct predictions}{\# test instances}$$

$$error = 1 - accuracy = \frac{\# incorrect predictions}{\# test instances}$$

- Training set accuracy and error
- Testing set accuracy and error

Confusion Matrix

Given a dataset of ${\cal P}$ positive instances and ${\cal N}$ negative instances:

		Predicted Yes	Class No
Class	Yes	TP	FN
Actual	No	FP	TN

Accuracy and Error

Given a dataset of P positive instances and N negative instances:

$$accuracy = \frac{TP + TN}{P + N}$$

$$error = 1 - \frac{TP + TN}{P + N}$$
$$= \frac{FP + FN}{P + N}$$

Confusion Matrix

• Given a dataset of \boldsymbol{P} positive instances and \boldsymbol{N} negative instances:

$$accuracy = \frac{TP + TN}{P + N}$$

 Imagine using classifier to identify positive cases (i.e., for information retrieval)

$$precision = \frac{TP}{TP + FP}$$

Probability that classifier predicts positive correctly

$$recall = \frac{TP}{TP + FN}$$

Probability that actual class is predicted correctly

Why One Metric is Not Enough

Assume that in your training data, Spam email is 1% of data, and Ham email is 99% of data

- Scenario 1
 - Have classifier always output HAM!
 - What is the accuracy?
- Scenario 2
 - Predict one SPAM email as SPAM, all other emails as legitimate
 - What is the precision? 100%
- Scenario 3
 - Output always SPAM!
 - What is the recall? 100%

Precision & Recall

Precision

- the fraction of positive predictions that are correct
- P(is pos | predicted pos)

$$precision = \frac{TP}{TP + FP}$$

Recall

- fraction of positive instances that are identified
- P(predicted pos | is pos)

$$recall = \frac{TP}{TP + FN}$$

- You can get high recall (but low precision) by only predicting positive
- Recall is a non-decreasing function of the # positive predictions
- Typically, precision decreases as either the number of positive predictions or recall increases
- Precision & recall are widely used in information retrieval

F-Score

Combined measure of precision/recall tradeoff

$$F_1 = 2 \times \frac{\text{precision} \times \text{recall}}{\text{precision} + \text{recall}}$$

- This is the harmonic mean of precision and recall
- In the F₁ measure, precision and recall are weighted evenly
- Can also have biased weightings that emphasize either precision or recall more (F_2 = 2 × recall; $F_{0.5}$ = 2 × precision)
- Limitations:
 - F-measure can exaggerate performance if balance between precision and recall is incorrect for application
 - Don't typically know balance ahead of time

A Word of Caution

Consider binary classifiers A, B, C:

		A		$\mid B \mid$		C	
		1	0	1	0	1	0
Predictions	1	0.9	0.1			0.78	0
redictions	0	0	0	0.1	0.1	0.12	0.1

- Clearly A is useless, since it always predicts 1
- B is slightly better than C
 - less probability mass wasted on the off-diagonals
- · But, here are the performance metrics:

Metric	A	В	C
Accuracy	0.9	0.9	0.88
Precision	0.9	1.0	1.0
Recall	1.0	0.888	0.8667
F-score	0.947	0.941	0.9286

Classifiers can be tuned

- Logistic regression sets by default the threshold at 0.5 for classifying positive and negative instances
- Some applications have strict constraints on false positives (or other metrics)
 - Example: very low false positives in security (spam)
- Solution: choose different threshold

Probabilistic model
$$h_{\theta(x)} = P[y = 1|x; \theta]$$

$$-$$
 Predict y = 1 if $h_{oldsymbol{ heta}}(x) \geq ext{ T}$

– Predict y = 0 if
$$h_{oldsymbol{ heta}}(oldsymbol{x}) < ext{ T}$$

Higher T, lower FP Lower T, lower FN

ROC Curves

Receiver Operating Characteristic (ROC)

• Determine operating point (e.g., by fixing false positive rate)

Performance Depends on Threshold

Predict positive if $P(y=1\mid \mathbf{x})>\theta$, otherwise negative

- Number of TPs and FPs depend on threshold heta
- As we vary θ , we get different (TPR, FPR) points

ROC Curve

ROC Curve

ROC Curve

ROC Curves

• Another useful metric: Area Under the Curve (AUC)

at Northeastern University

Area Under the ROC Curve

- Can take area under the ROC curve to summarize performance as a single number
 - Be cautious when you see only AUC reported without a ROC curve; AUC can hide performance issues

Same AUC, very different performance

ROC Example

				•	
i	y_i	$p(y_i = 1 \mid \mathbf{x}_i)$	$h(\mathbf{x_i} \mid \theta = 0)$	$h(\mathbf{x_i} \mid \theta = 0.5)$	$h(\mathbf{x_i} \mid \theta = 1)$
1	1	0.9	1	1	0
2	1	0.8	1	1	0
3	1	0.7	1	1	0
4	1	0.6	1	1	0
5	1	0.5	1	1	0
6	0	0.4	1	0	0
7	0	0.3	1	0	0
8	0	0.2	1	0	0
9	0	0.1	1	0	0
			TDD 7/5 1	TDD F/F 1	TIDD OF O

ROC Example

i	y_i	$p(y_i = 1 \mid \mathbf{x}_i)$	$h(\mathbf{x_i} \mid \theta = 0)$	$h(\mathbf{x_i} \mid \theta = 0.5)$	$h(\mathbf{x_i} \mid \theta = 1)$
1	1	0.9	1	1	0
2	1	0.8	1	1	0
3	1	0.7	1	1	0
4	1	0.6	1	1	0
5	1	0.2	1	0	0
6	0	0.6	1	1	0
7	0	0.3	1	0	0
8	0	0.2	1	0	0
9	0	0.1	1	0	0

TPR = 5/5 = 1 TPR = 4/5 = 0.8 TPR = 0/5 = 0FPR = 4/4 = 1 FPR = 1/4 = 0.25 FPR = 0/4 = 0

Linear models

Perceptron

$$h(\boldsymbol{x}) = \operatorname{sign}(\boldsymbol{\theta}^{\intercal} \boldsymbol{x})$$

· Logistic regression

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = \frac{1}{1 + e^{-\boldsymbol{\theta}^{\mathsf{T}} \boldsymbol{x}}}$$

• LDA

$$Max_k \ \delta_k(x) = x \cdot \frac{\mu_k}{\sigma^2} - \frac{\mu_k^2}{2\sigma^2} + \log(\pi_k)$$

LDA vs Logistic Regression

- Logistic regression computes directly Pr[Y = 1 | X = x] by assuming sigmoid function
 - Uses Maximum Likelihood Estimation
 - Discriminative Model
- LDA uses Bayes Theorem to estimate it
 - Estimates mean, co-variance, and prior from training data
 - Generative model
 - Assumes Gaussian distribution for $f_k(x) = \Pr[X = x | Y = k]$
- Which one is better?
 - LDA can be sensitive to outliers
 - LDA works well for Gaussian distribution
 - Logistic regression is more complex to solve, but more

