

Introducción a las Bases de Datos

Dr. Leon Felipe Palafox Novack Ipalafox@up.edu.mx

0

Anuncios parroquiales

Tarea 2

- Se debe de presentar el Lunes 24:
 - Presentación oral del problema
 - Reporte escrito
 - Si se puede en Latex, estaría genial

Examen

- Todos pasaron!
 - Calificación más baja fue ~8
 - Calificación más alta fue 11.5
 - Si hubo quien contesto las preguntas de bonus
- Por cuestiones administrativas no he podido subir las calificaciones.

1

Clase Pasada

Álgebra

- Sistema matemático que consiste de:
 - Operandos: Valores de los cuales se pueden construir nuevos valores
 - Operadores: Símbolos que denotan procedimientos para construir los nuevos valores.

- Cuando estamos importando nuevas tablas, o nuevos sistemas.
- Cuando queremos hacer contabilización
- El esquema debe de ser el mismo.
- https://www.w3schools.com/sql/trysql.asp?filename=trysql_select_union

Intersección:

- Deben tener el mismo esquema
- Que valores son comunes a las tablas
- Sirve para ver en que coinciden ambas
- SQL: INTERSECT

Diferencia

- Debe de tener el mismo esquema
- Te devuelve los valores que son diferentes entre ambas bases
- SQL: EXCEPT

Otros operadores:

- Selección: Selecciona uno o más renglones.
- Proyección: Selecciona una o más columnas.
- Products y Joins: Son composiciones de relaciones
- Renombrar

2

Algebra Relacional

Viene la parte de tirar números

- **R1** := $\sigma_{c}(R2)$
 - C es una condición que se refiere a atributos de R2
 - Como si fuese un "if"
 - R1 son todos los tuples que cumplen con la condición C

- **Ejemplo**:
- Tabla Ganancias

Nombre Película	Ciudad	Ganancia
Toy Story	Los Angeles	\$10 millones
Big Hero 6	CDMX	\$20 millones
The Incredibles	CDMX	\$17 millones
Ratatouille	Tokyo	\$15 millones

Nombre Película	Ciudad	Ganancia
Big Hero 6	CDMX	\$20 millones
The Incredibles	CDMX	\$17 millones

Seleccion

- En SQL se utiliza el "where"
- https://www.w3schools.com/sql/trysql.asp?f ilename=trysql_op_in

Nombre Película	Ciudad	Ganancia
Big Hero 6	CDMX	\$20 millones
The Incredibles	CDMX	\$17 millones

Vista

Visión de 3 niveles en una base de datos:

Lógico

T1	T2	Т3
•C11	•C12	•C13
•C21	•C22	•C23

Conceptual

Físico

Vista

- ¿Por qué usar vistas?
 - Escondemos datos de algunos usuarios.
 - Hacer los queries mas naturales y fáciles de usar
 - Modularidad de acceso a la base de datos

Vistas

- V = ViewQuery(R1, R2, ..., Rn)
 - El esquema de V es el que resulte del Query
 - SQL: Create View Vname As:

- **Ejemplo**:
- Tabla Ganancias

Nombre Película	Ciudad	Ganancia
Toy Story	Los Angeles	\$10 millones
Big Hero 6	CDMX	\$20 millones
The Incredibles	CDMX	\$17 millones
Ratatouille	Tokyo	\$15 millones

Operadores lógicos

Operadores lógicos

- ∧ := Intersección
- ∨ := Unión
- ¬ := Negación

■ GananciasMexico := $\sigma_{ciudad} = \neg_{CDMX}$ (Ganancias)

GananciasNotMexico := $\sigma_{ciudad} = \neg_{CDMX}$ (Ganancias)

Nombre Película	Ciudad	Ganancia
Toy Story	Los Angeles	\$10 millones
Ratatouille	Tokyo	\$15 millones

Ganancias 20 :=
$$\sigma_{ciudad = 'CDMX' \lor Ganancias = 10 millones}$$
 (Ganancias)

Ganancias 20 := $\sigma_{ciudad = 'CDMX' \lor Ganancias = 20 millones}$ (Ganancias)

Nombre Película	Ciudad	Ganancia
Toy Story	Los Angeles	\$10 millones
Big Hero 6	CDMX	\$20 millones
The Incredibles	CDMX	\$17 millones

Ganancias 20 := $\sigma_{ciudad = 'CDMX' \land Ganancias = 20 \text{ millones}}$ (Ganancias)

Ganancias 20 := $\sigma_{ciudad = 'CDMX' \land Ganancias = 20 \text{ millones}}$ (Ganancias)

Nombre Película	Ciudad	Ganancia
Big Hero 6	CDMX	\$20 millones

Proyección

- R1: = π_1 (R2)
 - L es una lista de atributos
 - R1 se construye:
 - Se analiza cada tuple de R2
 - Se extraen los atributos de la lista L
 - Se debe de seguir el orden en L
 - Se crea un nuevo tuple de R1
 - Se eliminan tuples duplicados, si existen

