```
Sample directory:
/disk/bulk_atp/gator/Sample_Sim_and_Analysis_Results/Rerun_KarlPMT_R12699
 ====== Simulation input ======
 (See geometry below)
gatordir="/disk/bulk_atp/gator"
binary="/disk/bulk_atp/gator/simulations/gator_v2.0/bin/Linux-g++/gator_1.2"
datadir="/disk/bulk_atp/gator/Sample_Sim_and_Analysis_Results"
sample="Rerun_KarlPMT_R12699"
queue="5:00:00"
maxnodes=100
totevents= 10000000
n_beamOn= 100000
isotope_list=[ "238U", "232Th", "40K", "60Co", "137Cs", "226Ra", "235U", "228Th"]
 ====== Line efficiency =======
See values in Table 1.
 ====== Livetime and inputs for the analysis =======
Measure life time: 1.5984e+06 s = 18.5 d
Background life time: 3.58559e+06 s = 41.4999 d
Background folder: /disk/bulk_atp/gator/background/BACKGROUND_2019_clean
Calibration folder: /disk/bulk_atp/gator/Calibrations/2015.08.07
Amount of material (kg or pieces): 2
 === List of SPE files used for the analysis ===
KarlPMT_R12699_2018_001.SPE
KarlPMT_R12699_2018_003.SPE
KarlPMT_R12699_2018_004.SPE
KarlPMT_R12699_2018_005.SPE
KarlPMT_R12699_2018_006.SPE
KarlPMT_R12699_2018_008.SPE
KarlPMT_R12699_2018_009.SPE
KarlPMT_R12699_2018_010.SPE
KarlPMT_R12699_2018_011.SPE
KarlPMT_R12699_2018_012.SPE
KarlPMT_R12699_2018_013.SPE
KarlPMT_R12699_2018_014.SPE
KarlPMT_R12699_2018_015.SPE
KarlPMT_R12699_2018_016.SPE
KarlPMT_R12699_2018_018.SPE
KarlPMT_R12699_2018_019.SPE
KarlPMT_R12699_2018_020.SPE
KarlPMT_R12699_2018_021.SPE
KarlPMT_R12699_2018_023.SPE
KarlPMT_R12699_2018_024.SPE
KarlPMT_R12699_2018_025.SPE
KarlPMT_R12699_2018_026.SPE
KarlPMT_R12699_2018_027.SPE
KarlPMT_R12699_2018_028.SPE
KarlPMT_R12699_2018_029.SPE
KarlPMT_R12699_2018_031.SPE
KarlPMT_R12699_2018_032.SPE
KarlPMT_R12699_2018_033.SPE
KarlPMT_R12699_2018_034.SPE
KarlPMT_R12699_2018_035.SPE
KarlPMT_R12699_2018_037.SPE
KarlPMT_R12699_2018_038.SPE
KarlPMT_R12699_2018_039.SPE
KarlPMT_R12699_2018_040.SPE
KarlPMT_R12699_2018_041.SPE
```

```
KarlPMT_R12699_2018_042.SPE
KarlPMT_R12699_2018_043.SPE
 === List of SPE files excluded from the analysis ===
KarlPMT_R12699_2018_000.SPE
KarlPMT_R12699_2018_002.SPE
KarlPMT_R12699_2018_007.SPE
KarlPMT_R12699_2018_017.SPE
KarlPMT_R12699_2018_022.SPE
KarlPMT_R12699_2018_030.SPE
KarlPMT_R12699_2018_036.SPE
 ====== Geometry of the sample ======
See figure of the geometry below.
 The .wrl file is also saved in the sample directory. And the
dimensions/material and position are specified in the code below.
----- icc file code ------
#include "globals.hh"
#include "GeConstruction.hh"
#include "GeScintSD.hh"
#include "G4Material.hh"
#include "G4NistManager.hh"
#include "G4Box.hh"
#include "G4Tubs.hh"
#include "G4Torus.hh"
#include "G4Sphere.hh"
#include "G4EllipticalTube.hh"
#include "G4Polycone.hh"
#include "G4LogicalVolume.hh"
#include "G4ThreeVector.hh"
#include "G4PVPlacement.hh"
#include "G4VisAttributes.hh"
#include "G4Colour.hh"
#include "G4Cons.hh"
#include "G4UnionSolid.hh"
#include "G4SubtractionSolid.hh"
#include "G4RotationMatrix.hh"
#include "G40pBoundaryProcess.hh"
#include "G4SDManager.hh"
#include "G4Transform3D.hh"
#include <math.h>
#include <string.h>
#include <stdio.h>
#include <TMath.h>
//Colors for visualization properties
//G4Colour red (1.0, 0.0, 0.0);
//G4Colour blue (0.0, 0.0, 1.0);
//G4Colour yellow (1.0, 1.0, 0.0);
//G4Colour orange (0.75, 0.55, 0.0);
//G4Colour lblue (0.0, 0.0, 0.55);
//Elements and materials usefull
```

```
//G4Element* 0 = G4Element::GetElement("Oxvgen");
//G4Element* Si = G4Element::GetElement("Silicon");
//G4Element* Al = G4Element::GetElement("Aluminum");
//G4Element* Ni = G4Element::GetElement("Nickel");
//G4Material* Steel_304 = G4Material::GetMaterial("Steel_304");
G4Material *kovar = G4Material::GetMaterial("PMTkovar_mat");
//Define the pmt envelope as a box
const G4double PMT_length = 52 * mm;
const G4double PMT_width = 52 * mm;
const G4double PMT_depth = 16.4 * mm;
G4Box* PMT\_envel = new
G4Box("PMT_envel", 0.5*PMT_length, 0.5*PMT_width, 0.5*PMT_depth);
//Envelope material definition (SS)
G4Material* PMT_steel = new G4Material("PMT_steel", 8.03*g/cm3,1);
PMT_steel -> AddMaterial(Steel_304,1.0); //Just a trick to change the name of
the steel ==> I can use the routine to generate the random points in the proper
material
//Envelope Logical volume
G4LogicalVolume* PMT_envel_log = new G4LogicalVolume(PMT_envel, kovar,
"PMT_envel_log", 0, 0, 0);
G4LogicalVolume* PMT_envel_log_2 = new G4LogicalVolume(PMT_envel, kovar,
"PMT_envel_log", 0, 0, 0);
G4VisAttributes* PMT_envel_vis = new G4VisAttributes(red);
PMT_envel_vis -> SetVisibility(true);
PMT_envel_vis -> SetForceSolid(false);
PMT_envel_log -> SetVisAttributes(PMT_envel_vis);
G4ThreeVector KarlPMT_pos(0.,0.,endcapPos_z+0.5*(endcapHeight1+PMT_depth)
+0.01*mm);
G4VPhysicalVolume* PMT_envel_phys = new
G4PVPlacement(0, KarlPMT_pos, PMT_envel_log, "PMT_envel_phys", cavity1_log, false,
G4ThreeVector KarlPMT_pos_2(0.,0.,endcapPos_z+0.5*(endcapHeight1+PMT_depth)
+PMT_depth+0.01*mm);
G4VPhysicalVolume* PMT_envel_phys_2 = new
G4PVPlacement(0, KarlPMT_pos_2, PMT_envel_log_2, "PMT_envel_phys_2", cavity1_log,
false, 0, true);
/****** base inside the PMTs
************
const G4double PMT_thickness = 0.5*(52.0-48.5) * mm; //Outer PMT dimensions
minus the effective PC dimension
//Material definition for plastic base
G4Material* Polypropylene = new G4Material(name="Polypropylene", density =
0.87*g/cm3, ncomponents = 2);
Polypropylene->AddElement(C,3);
Polypropylene->AddElement(H, 6);
G4double PMTbase_length = 52. * mm - PMT_thickness;
G4double PMTbase_width = 52. * mm - PMT_thickness;
G4double PMTbase_depth = 0 * mm;
//Definition of the geometry
G4Box* PMT_base = new
G4Box("PMT_base",0.5*PMTbase_length,0.5*PMTbase_width,0.5*PMTbase_depth);
```

```
//Construction of logical volume
G4LogicalVolume* PMT_base_log = new
G4LogicalVolume(PMT_base, Polypropylene, "PMT_base_log");
G4VisAttributes* PMT_base_vis = new G4VisAttributes(red);
PMT_base_vis -> SetVisibility(true);
PMT_base_vis -> SetForceSolid(false);
PMT_base_log -> SetVisAttributes(PMT_base_vis);
//Placement of the base logical volume inside the PMT envelope volume
G4ThreeVector PMT_base_pos(0.,0.,0.5*(PMT_depth - PMTbase_depth));
G4VPhysicalVolume* PMT_base_phys = new
G4PVPlacement(0,PMT_base_pos,PMT_base_log,"PMT_base_phys", PMT_envel_log, false,
0, true);
/****** window as a flat box
******************
//Material definition for the ceramic inside the pmt
G4Material* PMT_quartz_mat = new G4Material("PMT_quartz_mat",2.648*g/cm3,2);
PMT_quartz_mat -> AddElement(Si,1);
PMT_quartz_mat -> AddElement(0,2);
//Dimensions
G4double PMTwindow_length = 52. * mm;
G4double PMTwindow_width = 52. * mm;
G4double PMTwindow_depth = 1.5 * mm;
//Definition of the geometry
G4Box* PMT_window = new
G4Box("PMT_window", 0.5*PMTwindow_length, 0.5*PMTwindow_width, 0.5*PMTwindow_depth)
//Construction of logical volume
G4LogicalVolume* PMT_window_log = new
G4LogicalVolume(PMT_window,PMT_quartz_mat,"PMT_window_log");
//Set visibility properties
G4VisAttributes* PMT_window_vis = new G4VisAttributes(red);
PMT_window_vis -> SetVisibility(true);
PMT_window_vis -> SetForceSolid(false);
PMT_window_log -> SetVisAttributes(PMT_window_vis);
//Put the window in the PMT_envelop logical volume
G4ThreeVector PMT_window_pos(0.,0.,0.5*(-PMT_depth + PMTwindow_depth));
G4VPhysicalVolume* PMT_window_phys = new
G4PVPlacement(0, PMT_window_pos, PMT_window_log, "PMT_window_phys", PMT_envel_log, fa
lse, 0, true);
G4VPhysicalVolume* PMT_window_phys_2 = new
G4PVPlacement(0, PMT_window_pos, PMT_window_log, "PMT_window_phys_2", PMT_envel_log_
2, false, 0, true);
************
const G4double PMT_vac_length = PMT_length - 2*PMT_thickness;
const G4double PMT_vac_width = PMT_width - 2*PMT_thickness;
const G4double PMT_vac_depth = PMT_depth - PMTwindow_depth - PMT_thickness;
```

```
G4Box* PMT vacuum = new
G4Box("PMT_vacuum",0.5*PMT_vac_length,0.5*PMT_vac_width,0.5*PMT_vac_depth);
//Material definition for the vacuum inside the PMT
G4Material* PMT_vacuum_mat = new G4Material("vacuum_PMT_mat",1.,1.*g/mole,1.e-
20*g/cm3, kStateGas, 0.1*kelvin, 1.e-20*bar);
//Vacuum Logical volume
G4LogicalVolume* PMT_vacuum_log = new G4LogicalVolume(PMT_vacuum,
PMT_vacuum_mat, "vacuum_PMT_log", 0, 0, 0);
G4VisAttributes* PMT_vacuum_vis = new G4VisAttributes(red);
PMT_vacuum_vis -> SetVisibility(true);
PMT_vacuum_vis -> SetForceSolid(false);
PMT_vacuum_log -> SetVisAttributes(G4VisAttributes::Invisible);
//Placement of the vacuum logical volume inside the PMT envelope volume
//G4ThreeVector PMT_vacuum_pos(0.,0.,0.5*(PMTwindow_depth-PMTbase_depth));
G4ThreeVector PMT_vacuum_pos(0.,0.,0.5*(PMTwindow_depth-PMT_thickness));
G4VPhysicalVolume* PMT_vacuum_phys = new
G4PVPlacement(0, PMT_vacuum_pos, PMT_vacuum_log, "PMT_vacuum_phys", PMT_envel_log,
false, 0, true);
G4VPhysicalVolume* PMT_vacuum_phys_2 = new
G4PVPlacement(0, PMT_vacuum_pos, PMT_vacuum_log, "PMT_vacuum_phys_2",
PMT_envel_log_2, false, 0, true);
```


	Energy (keV)	Line BR	Effic	BRxEffic
²³⁴ Th	92.6	0.0433	0.0265	0.00115
^{235}U	185.72	0.572	0.00250	0.00143
$^{212}\mathrm{Pb}$	238.632	0.436	0.0469	0.0204
²¹⁴ Pb	295.224	0.184	0.0508	0.00934
228 Ac	338.32	0.114	0.0473	0.00540
²¹⁴ Pb	351.932	0.356	0.0472	0.0168
208 Tl	583.187	0.3054	0.0263	0.00803
²¹⁴ Bi	609.312	0.4549	0.0312	0.0142
137Cs	661.657	0.8499	0.0424	0.0360
228 Ac	911.196	0.262	0.0252	0.00661
228 Ac	968.96	0.159	0.0247	0.00393
214 Bi	1120.29	0.1491	0.0225	0.00335
60 Co	1173.23	0.9985	0.0264	0.0264
60 Co	1332.49	0.9998	0.0245	0.0245
$^{40}\mathrm{K}$	1460.88	0.1055	0.0277	0.00292
²¹⁴ Bi	1764.49	0.1531	0.0208	0.00319
²⁰⁸ Tl	2614.51	0.3584	0.0106	0.00379

Table 1: Efficiency Table, as calculated by the simulation.

	E(keV)	PeakCnts	CompCnts	BkCnts	isBkdet	LineCnts	LdCnts	LdActiv	Activity (mBq/u.)
²³⁴ Th	92.6	27.9 + 5.4	28.7 + 5.4	-2.0 + -5.3	${ m T}$	-0.8 + -9.3	34.9	10.6	< 10.6
$^{235}{ m U}$			54.7 + -7.5		${ m T}$	3 + - 13	48.1	11.7	< 12.3
			42.9 + - 6.6		${ m T}$	32 + - 12	41.3	0.703	< 1.20
214 Pb	295.224	46.2 + - 6.9	36.0 + - 6.1	11.7 + -5.3	T	-1 + -11	39.6	1.47	< 1.47
^{228}Ac	338.32	25.2 + -5.1	19.7 + 4.6	9.4 + - 4.4	${ m T}$	-4.0 + -8.1	31.8	2.05	< 2.05
²¹⁴ Pb	351.932	59.0 + -7.7	$20.8 \; + \; 4.7$	11.7 + -5.0	${ m T}$	27 + 10	33.8	0.699	< 1.19
²⁰⁸ Tl	583.187	10.0 + - 3.3	11.0 + -3.5	7.5 + -2.9	${ m T}$	-8.5 + -5.6	24.8	1.07	< 1.07
214 Bi	609.312	39.6 + - 6.4	10.4 + - 3.4	19.4 + - 3.7	T	9.8 + - 8.1	28.7	0.704	< 0.920
$^{137}\mathrm{Cs}$	661.657	24.7 + -5.1	7.3 + 2.9	0.7 + -2.9	${ m T}$	16.8 + -6.5	20.5	0.198	< 0.344
228 Ac	911.196	16.0 + - 4.1	10.0 + -3.3	12.1 + -2.6	T	-6.1 + -5.9	25.1	1.32	< 1.32
228 Ac	968.96	18.3 + - 4.4	11.5 + -3.5	6.2 + - 2.3	${ m T}$	0.5 + - 6.1	23.9	2.11	< 2.15
214 Bi	1120.29	20.5 + -4.6	8.5 + 3.1	8.0 + -2.5	${ m T}$	3.9 + - 6.1	23.0	2.38	< 2.75
⁶⁰ Co	1173.23	201 + - 14	10.7 + -3.4	1.3 + - 1.9	${ m T}$	189 + -15	21.5	0.283	2.25 + -0.28
⁶⁰ Co	1332.49	159 + - 13	$15.0 \; + \; 4.0$	2.2 + -1.6	${ m T}$	142 + - 13	24.0	0.340	1.81 + 0.25
^{40}K	1460.88	283 + -17	17.0 + 4.2	18.9 + -3.3	T	247 + 18	31.0	3.68	26.5 + 3.3
H			2.0 + 1.7		${ m T}$	-1.7 + -3.8	16.9	1.84	< 1.84
208Tl	2614.51	9.0 + 3.2	0.0 + -1.0	9.4 + 2.3	Т	-0.4 + -4.0	17.2	1.58	< 1.58

Table 2: Activity Table, as calculated by the analysis code and given per unit, as indicated in the analysis input. Limits are given at 95CL, activities at one sigma.

