

WELTORGANISATION FÜR GEISTIGES EIGENTUM Internationales Büro

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 6:

C07D 207/38, 491/10, 209/54, A01N 43/36, C07F 9/572, C07C 235/34, 235/36, 255/46, 255/29

(11) Internationale Veröffentlichungsnummer: WO 95/26954

A1 (43) Internationales

Veröffentlichungsdatum:

12. Oktober 1995 (12:10.95)

(21) Internationales Aktenzeichen:

· PCT/EP95/01100

(22) Internationales Anmeldedatum:

23. März 1995 (23.03.95)

(30) Prioritätsdaten:

P 44 11 669.1 P 44 40 594.4 5. April 1994 (05.04.94)

DE 14. November 1994 (14.11.94) DE

(71) Anmelder (für alle Bestimmungsstaaten ausser US): BAYER AKTIENGESELLSCHAFT [DE/DE]; D-51368 Leverkusen

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): FISCHER, Reiner [DE/DE]; Nelly-Sachs-Strasse 23, D-40789 Monheim (DE). BRETSCHNEIDER, Thomas [DE/DE]; Talstrasse 29B, D-53797 Lohmar (DE). KRÜGER, Bernd-Wieland [DE/DE]; Am Vorend 52, D-51467 Bergisch Gladbach (DE). RUTHER, Michael [DE/DE]; Grabenstrasse 23, D-40789 Monheim (DE). ERDELEN, Christoph [DE/DE]; Unterbüscherhof 15, D-42799 Leichlingen (DE). WACHENDORFF-NEUMANN, Ulrike [DE/DE]; Krischerstrasse 81, D-40789 Monheim (DE). SANTEL, Hans-Joachim [DE/DE]; Grünstrasse 9a, D-51371 Lev-

erkusen (DE). DOLLINGER, Markus [DE/DE]: Burscheider Strasse 154b, D-51381 Leverkusen (DE).

(74) Gemeinsamer Vertreter: BAYER AKTIENGE-SELLSCHAFT; D-51368 Leverkusen (DE).

(81) Bestimmungsstaaten: AU, BB, BG, BR, BY, CA, CN, CZ, FI, HU, JP, KR, KZ, LK, MX, NO, NZ, PL, RO, RU, SK, UA, US, europäisches Patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI Patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD,

Veröffentlicht

Mit internationalem Recherchenbericht.

- (54) Title: ALKOXY-ALKYL-SUBSTITUTED 1-H-3-ARYL-PYRROLIDINE-2,4-DIONES USED AS HERBICIDES AND PESTI-
- (54) Bezeichnung: ALKOXY-ALKYL-SUBSTITUIERTE 1-H-3-ARYL-PYRROLIDIN-2,4-DIONE ALS HERBIZIDE UND PESTIZIDE

(57) Abstract

The present invention concerns novel 1-H-3aryl-pyrrolidine-2,4-dione-derivatives of formula (I) in which A, B, G, X, Y and Z have the meanings given in the description. The invention further concerns a process for their preparation and intermediate products therefor. The compounds of formula (I) are used as pesticides and herbicides.

(57) Zusammenfassung

Die vorliegende Erfindung betrifft neue 1-H-3-Aryl-pyrrolidin-2,4-dion-Derivate Formel (I) in welcher A, B, G, X, Y und Z die in der Beschreibung angegebene Bedeutung haben, Verfahren zu ihrer Herstellung und Zwischenprodukte dafür. Die Verbindungen der Formel (I) dienen als Schädlingsbekämpfungsmittel und Herbizide.

BEST AVAILABLE COPY

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AT	Österreich	GA	Gabon	MR	Mauretanien
ΑÜ	Australien	GB	Vereinigtes Königreich	MW	Malawi
BB	Barbados	GE	Georgien	NE	Niger
BE	Belgien	GN	Guinea	NL	Niederlande
BF	Burkina Faso	GR	Griechenland	NO	Norwegen
BG	Bulgarien	HU	Ungarn	NZ	Neuseeland
BJ	Benin	Œ	Irland	PL	Polen
BR	Brasilien	IT	Italien	PT	Portugal
BY	Belarus	JP	Japan	RO	Rumānien
CA	Kanada	KE	Kenya	RU	Russische Föderation
CF	Zentrale Afrikanische Republik	KG	Kirgisistan	SD	Sudan
CG	Kongo	KP	Demokratische Volksrepublik Korea	SE	Schweden
CH	Schweiz	KR	Republik Korea	SI	Slowenien
CI	Côte d'Ivoire	KZ	Kasachstan	SK	Slowakei
CM	Kamerun	LI	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Tschad
CS	Tschechoslowakei	LU	Luxemburg	TG	Togo
CZ	Tschechische Republik	LV	Lettland	TJ	Tadschikistan
DE	Deutschland	MC	Monaco	TT	Trinidad und Tobago
DK	Dänemark	MD	Republik Moldau	UA	Ukraine
ES	Spanien	MG	Madagaskar	US	Vereinigte Staaten von Amerika
FI	Finnland	ML	Mali	UZ	Usbekistan
FR	Frankreich	MN	Mongolei	VN	Vietnam

10

15

ALKOXY-ALKYL-SUBSTITUIERTE 1-H-3-ARYL-PYRROLIDIN-2,4-DIONE ALS HERBIZIDE UND PESTIZIDE

Die Erfindung betrifft neue 1-H-3-Aryl-pyrrolidin-2,4-dion-Derivate, mehrere Verfahren zu ihrer Herstellung und ihre Verwendung als Schädlingsbekämpfungsmittel, insbesondere als Insektizide und Akarizide.

Von 3-Acyl-pyrrolidin-2,4-dionen sind pharmazeutische Eigenschaften vorbeschrieben (S. Suzuki et al. Chem. Pharm. Bull. 15 1120 (1967)). Weiterhin wurden N-Phenylpyrrolidin-2,4-dione von R. Schmierer und H. Mildenberger (Liebigs Ann. Chem. 1985 1095) synthetisiert. Eine biologische Wirksamkeit dieser Verbindungen wurde nicht beschrieben.

In EP-A 0 262 399 und GB-A 2 266 888 werden ähnlich strukturierte Verbindungen (3-Aryl-pyrrolidin-2,4-dione) offenbart, von denen jedoch keine herbizide, insektizide oder akarizide Wirkung bekannt geworden ist. Bekannt mit herbizider, insektizider oder akarizider Wirkung sind unsubstituierte, bicyclische 3-Aryl-pyrrolidin-2,4-dion-Derivate (EP-A 355 599 und EP 415 211) sowie substituierte monocyclische 3-Aryl-pyrrolidin-2,4-dion-Derivate (EP-A 377 893 und EP 442 077).

Weiterhin bekannt sind polycyclische 3-Arylpyrrolidin-2,4-dion-Derivate (EP 442 073) sowie 1-H-3-Arylpyrrolidin-dion-Derivate (EP 456 063 und EP 521 334).

Es wurden nun neue substituierte 1-H-3-Aryl-pyrrolidin-2,4-dion-Derivate der Formel (I)

gefunden,

in welcher

- A für Wasserstoff, jeweils gegebenenfalls durch Halogen substituiertes Alkyl,
 Alkenyl, Alkoxyalkyl, Polyalkoxyalkyl, Alkylthioalkyl, gegebenenfalls
 durch mindestens ein Heteratom unterbrochenes, gegebenenfalls
 substituiertes Cycloalkyl oder für jeweils gegebenenfalls durch Halogen,
 Alkyl, Halogenalkyl, Alkoxy, Nitro substituiertes Aryl, Arylalkyl oder
 Hetaryl steht,
- 10 B für Alkyl oder Alkoxyalkyl steht, oder
 - A und B gemeinsam mit dem Kohlenstoffatom an das sie gebunden sind für einen gesättigten oder ungesättigten und gegebenenfalls durch mindestens ein Heteroatom unterbrochenen unsubstituierten oder substituierten Cyclus stehen,
- 15 X für Alkyl oder Alkoxy steht,
 - Y für Wasserstoff, Alkyl oder Alkoxy steht,
 - Z für Wasserstoff, Alkyl oder Alkoxy steht,
 - G für Wasserstoff (a) oder für die Gruppen

steht,

10

20

- E für ein Metallionäquivalent oder ein Ammoniumion steht,
- L für Sauerstoff oder Schwefel steht
- 5 M für Sauerstoff oder Schwefel steht,
 - R¹ für jeweils gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkoxyalkyl, Alkylthioalkyl, Polyalkoxyalkyl oder gegebenenfalls durch Halogen oder Alkyl substituiertes Cycloalkyl, das durch mindestens ein Heteroatom unterbrochen sein kann, für jeweils gegebenenfalls substituiertes Phenyl, Phenylalkyl, Hetaryl, Phenoxyalkyl oder Hetaryloxyalkyl steht,
 - R² für jeweils gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkoxyalkyl, Polyalkoxyalkyl oder für jeweils gegebenenfalls substituiertes Cycloalkyl, Phenyl oder Benzyl steht,
- R³, R⁴ und R⁵ unabhängig voneinander für jeweils gegebenenfalls durch Halogen substituiertes Alkyl, Alkoxy, Alkylamino, Dialkylamino, Alkylthio, Alkenylthio, Cycloalkylthio oder für jeweils gegebenenfalls substituiertes Phenyl, Phenoxy oder Phenylthio stehen,
 - R⁶ und R⁷ unabhängig voneinander für Wasserstoff, für jeweils gegebenenfalls durch Halogen substituiertes Alkyl, Cycloalkyl, Alkenyl, Alkoxy, Alkoxyalkyl, für gegebenenfalls substituiertes Phenyl, für gegebenenfalls substituiertes Benzyl stehen, oder gemeinsam mit dem N-Atom, an das sie gebunden sind, für einen gegebenenfalls durch Sauerstoff oder Schwefel unterbrochenen Cyclus stehen.

mit der Maßgabe, daß mindestens einer der Substituenten Y und Z für Alkoxy steht, wenn X für Alkyl steht.

Unter Einbeziehung der verschiedenen Bedeutungen (a), (b), (c), (d), (e), (f) und (g) der Gruppe G ergeben sich folgende hauptsächlichen Strukturen (Ia) bis (Ig):

5

- 5 -

5 worin

10

15

20

A, B, E, L, M, X, Y, Z, R¹, R², R³, R⁴, R⁵, R⁶ und R⁷ die oben angegebenen Bedeutungen besitzen.

Aufgrund eines oder mehrerer Chiralitätszentren fallen die Verbindungen der Formel (Ia) - (Ig) im allgemeinen als Stereoisomerengemisch an, die gegebenenfalls in üblicher Art und Weise getrennt werden können. Sie können sowohl in Form ihrer Diastereomerengemische als auch als reine Diastereomere oder Enantiomere verwendet werden. Im folgenden wird der Einfachheit halber stets von Verbindungen der Formel (Ia) bis (Ig) gesprochen, obwohl sowohl die reinen Verbindungen, als auch die Gemische mit unterschiedlichen Anteilen an isomeren, enantiomeren und stereomeren Verbindungen gemeint sind.

Weiterhin wurde gefunden, daß man die neuen substituierten 1-H-3-Arylpyrrolidin-2,4-dion-Derivate der Formel (I) nach einem der im folgenden beschriebenen Verfahren erhält.

(A) Man erhält 1-H-3-Aryl-pyrrolidin-2,4-dione bzw. deren Enole der Formel (Ia)

in welcher

A, B, X, Y und Z die oben angegebene Bedeutung haben, wenn man

N-Acylaminosäureester der Formel (II)

- 7 -

$$\begin{array}{c|c}
CO_2R^8 \\
A \longrightarrow B & X \\
NH & Z
\end{array}$$
(II)

in welcher

A, B, X, Y und Z die oben angegebene Bedeutung haben,

und

5 R⁸ für Alkyl, insbesondere C₁-C₆-Alkyl steht,

in Gegenwart eines Verdünnungsmittels und in Gegenwart einer Base intramolekular kondensiert;

oder

(B) man erhält Verbindungen der Formel (Ib)

10

in welcher

A, B, X, Y, Z und R¹ die oben angegebene Bedeutung haben,

wenn man Verbindungen der Formel (Ia),

- 8 -

in welcher

A, B, X, Y und Z die oben angegebene Bedeutung haben,

α) mit Säurehalogeniden der Formel (III)

Hal R¹

(III)

in welcher

5

10

R¹ die oben angegebene Bedeutung hat und

Hal für Halogen, insbesondere Chlor oder Brom steht,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels umsetzt

oder

B) mit Carbonsäureanhydriden der Formel (IV)

$$R^1$$
-CO-O-CO- R^1 (IV)

in welcher

15 R¹ die oben angegebene Bedeutung hat,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels,

umsetzt;

oder

5 (C) man erhält Verbindungen der Formel (Ic-a)

in welcher

A, B, X, Y, Z und R² die oben angegebene Bedeutung haben,

und

10 M für Sauerstoff oder Schwefel steht,

wenn man Verbindungen der Formel (Ia)

in welcher

A, B, X, Yund Z die oben angegebene Bedeutung haben,

mit Chlorameisensäureester oder Chlorameisensäurethiolester der Formel (V)

 R^2 -M-CO-Cl (V)

5 in welcher

R² und M die oben angegebene Bedeutung haben,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels umsetzt;

oder

10 (D) man erhält Verbindungen der Formel (Ic-b)

in welcher

A, B, R², X, Y und Z die oben angegebene Bedeutung haben

und

15 M für Sauerstoff oder Schwefel steht,

wenn man Verbindungen der Formel (Ia)

in welcher

A, B, X, Y und Z die oben angegebene Bedeutung haben,

α) mit Chlormonothioameisensäureestern oder Chlordithioameisensäureestern
 5 der Formel (VI)

$$CI \longrightarrow M - R^2$$
 (VI)

in welcher

M und R² die oben angegebene Bedeutung haben,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels umsetzt,

oder

10

mit Schwefelkohlenstoff und anschließend mit Alkylhalogeniden der Formel
 (VII)

in welcher

- 12 .

R² die oben angegebene Bedeutung hat

und

Hal für Chlor, Brom oder Iod steht,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart einer Base umsetzt;

oder

5

(E) man erhält Verbindungen der Formel (Id)

in welcher

10 A, B, X, Y, Z und R³ die oben angegebene Bedeutung haben,

wenn man Verbindungen der Formel (Ia)

- 13 -

in welcher

A, B, X, Y und Z die oben angegebene Bedeutung haben,

mit Sulfonsäurechloriden der Formel (VIII)

$$R^3$$
-SO₂-Cl (VIII)

5 in welcher

R³ die oben angegebene Bedeutung hat,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels,

umsetzt;

10 oder

(F) man erhält 3-Aryl-pyrrolidin-2,4-dione der Formel (Ie)

in welcher

A, B, L, X, Y, Z, R⁴ und R⁵ d

die oben angegebene Bedeutung haben,

15 wenn man

1-H-3-Aryl-pyrrolidin-2,4-dione der Formel (Ia) bzw. deren Enole

in welcher

A, B, X, Y und Z die oben angegebene Bedeutung haben,

mit Phosphorverbindungen der Formel (IX)

 $Hal - P \stackrel{R^4}{\underset{L}{||}} R^5$ (IX)

in welcher

L, R⁴ und R⁵ die oben angegebene Bedeutung haben

und

5

Hal für Halogen, insbesondere Chlor oder Brom steht,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels umsetzt;

oder

(G) man erhält Verbindungen der Formel (If)

in welcher

A, B, X, Y und Z die oben angegebene Bedeutung haben,

und

5 E für ein Metallionäquivalent oder für ein Ammoniumion steht,

wenn man Verbindungen der Formel (Ia)

in welcher

A, B, X, Y und Z die oben angegebene Bedeutung haben,

mit Metallhydroxiden, Metallalkoxiden oder Aminen der Formeln (X) und (XI)

$$R^{9} R^{10}$$
Me(OR¹⁰)_t (XI)

in welchen

Me für ein- oder zweiwertige Metallionen, wie z.B. Lithium, Natrium, Kalium, Magnesium, Calcium,

t für die Zahl 1 oder 2 und

5 R⁹, R¹⁰ und R¹¹ unabhängig voneinander für Wasserstoff und/oder Alkyl, insbesondere C₁-C₆-Alkyl stehen,

gegebenenfalls in Gegenwart eines Verdünnungsmittels, umsetzt.

(H) Ferner wurde gefunden, daß man Verbindungen der Formel (Ig)

in welcher

10

A, B, L, X, Y, Z, R⁶ und R⁷ die oben angegebene Bedeutung haben, erhält, wenn man Verbindungen der Formel (Ia)

in welcher

A, B, X, Y und Z die oben angegebene Bedeutung haben,

α) mit Isocyanaten oder Isothiocyanaten der Formel (XII)

$$R^6$$
-N=C=L (XII)

5 in welcher

R⁶ die oben angegebene Bedeutung hat

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Katalysators

oder

10 β) mit Carbamidsäurechloriden oder Thiocarbamidsäurechloriden der Formel (XIII)

$$R^{6} \bigvee_{\substack{l \\ R^{7}}} Cl \qquad (XIII)$$

in welcher

L, R⁶ und R⁷ die oben angegebene Bedeutung haben

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels,

umsetzt.

Weiterhin wurde gefunden, daß sich die neuen 1-H-3-Arylpyrrolidin-2,4-dion-Derivate der Formel (I) durch hervorragende insektizide, akarizide und herbizide Wirkungen auszeichnen

Bevorzugte Substituenten bzw. Bereiche der in den oben und nachstehend erwähnten Formeln aufgeführten Reste werden im folgenden erläutert.

5

10

15

20

25

- A steht bevorzugt für Wasserstoff oder für jeweils gegebenenfalls einfach oder mehrfach durch Halogen substituiertes C₁-C₁₂-Alkyl, C₂-C₈-Alkenyl, C₁-C₁₀-Alkoxy-C₁-C₈-alkyl, C₁-C₈-Polyalkoxy-C₁-C₈-alkyl, C₁-C₁₀-Alkylthio-C₁-C₆-alkyl, gegebenenfalls durch Halogen, C₁-C₄-Alkyl oder C₁-C₄-Alkoxy substituiertes Cycloalkyl mit 3 bis 8 Ringatomen, das durch Sauerstoff und/oder Schwefel unterbrochen sein kann oder für jeweils gegebenenfalls einfach bis mehrfach durch Halogen, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C₁-C₆-Alkoxy und/oder Nitro substituiertes Phenyl, Naphthyl, Pyridyl, Imidazolyl, Indolyl, Thiazolyl, Furanyl, Thienyl, Phenyl-C₁-C₆-alkyl oder Naphthyl-C₁-C₆-alkyl.
 - B steht bevorzugt für C₁-C₁₂-Alkyl oder C₁-C₈-Alkoxy-C₁-C₆-alkyl oder
- A, B und das Kohlenstoffatom an das sie gebunden sind, stehen <u>bevorzugt</u> für einen gesättigten oder ungesättigten C₃-C₁₀-Spirocyclus, der gegebenenfalls einfach oder mehrfach durch C₁-C₆-Alkyl, C₃-C₈-Cycloalkyl, C₁-C₄-Halogenalkyl, C₁-C₆-Alkoxy, C₁-C₆-Alkylthio, Halogen oder Phenyl substituiert und gegebenenfalls durch Sauerstoff oder Schwefel unterbrochen ist oder
- A, B und das Kohlenstoffatom, an das sie gebunden sind, stehen <u>bevorzugt</u> für einen C₃-C₆-Spirocyclus, der durch eine gegebenenfalls durch ein oder zwei Sauerstoff- und/oder Schwefelatome unterbrochene Alkylendiyl-, oder durch eine Alkylendioxyl- oder durch eine Alkylendithioyl-gruppe substituiert ist, die mit dem Kohlenstoffatom, an das sie gebunden ist, einen weiteren fünfbis achtgliedrigen Spirocyclus bildet oder
- A, B und das Kohlenstoffatom, an das sie gebunden sind, stehen bevorzugt für einen C₃-C₈-Spirocyclus, bei dem zwei Substituenten gemeinsam für einen

25

30

gegebenenfalls durch C₁-C₄-Alkyl, C₁-C₄-Alkoxy oder Halogen substituierten gesättigten oder ungesättigten fünf- bis achtgliedrigen Cyclus stehen, der durch Sauerstoff oder Schwefel unterbrochen sein kann.

- steht besonders bevorzugt für Wasserstoff, für jeweils gegebenenfalls einfach bis sechsfach durch Fluor oder Chlor substituiertes C₁-C₁₀-Alkyl, C₂-C₆-Alkenyl, C₁-C₈-Alkoxy-C₁-C₆-alkyl, C₁-C₆-Polyalkoxy-C₁-C₆-alkyl, C₁-C₈-Alkylthio-C₁-C₆-alkyl gegebenenfalls durch Fluor, Chlor, C₁-C₃-Alkyl oder C₁-C₃-Alkoxy substituiertes Cycloalkyl mit 3 bis 7 Ringatomen, das durch 1 bis 2 Sauerstoff- und/oder Schwefelatome unterbrochen sein kann oder für jeweils gegebenenfalls einfach bis zweifach durch Fluor, Chlor, Brom, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy oder Nitro substituiertes Phenyl, Pyridyl, Thienyl, Furanyl, Imidazolyl, Indolyl oder Phenyl-C₁-C₄-alkyl.
- B steht besonders bevorzugt für C₁-C₁₀-Alkyl oder C₁-C₆-Alkoxy-C₁-C₄-alkyl oder
 - A, B und das Kohlenstoffatom an das sie gebunden sind, stehen besonders bevorzugt für einen gesättigten oder ungesättigten C₃-C₉-Spirocyclus, der gegebenenfalls einfach oder mehrfach durch C₁-C₆-Alkyl, C₃-C₈-Cycloalkyl, C₁-C₃-Halogenalkyl, C₁-C₆-Alkoxy, C₁-C₆-Alkylthio, Fluor, Chlor oder Phenyl substituiert und gegebenenfalls durch Sauerstoff oder Schwefel unterbrochen ist oder
 - A, B und das Kohlenstoffatom, an das sie gebunden sind, stehen <u>besonders</u> <u>bevorzugt</u> für einen C₃-C₆-Spirocyclus, der durch eine gegebenenfalls durch ein oder zwei Sauerstoff- oder Schwefelatome unterbrochenen Alkylendiyloder durch eine Alkylendioxyl- oder durch eine Alkylendithiol-Gruppe substituiert ist, die mit dem Kohlenstoffatom, an das sie gebunden ist, einen weiteren fünf- bis siebengliedrigen Spirocyclus bildet oder
 - A,B und das Kohlenstoffatom, an das sie gebunden sind, stehen <u>besonders bevorzugt</u> für einen C₃-C₆-Spirocyclus, bei dem zwei Substituenten gemeinsam für einen gegebenenfalls durch C₁-C₃-Alkyl, C₁-C₃-Alkoxy, Fluor, Chlor

oder Brom substituierten gesättigten oder ungesättigten, fünf- bis siebengliedrigen Cyclus stehen, der durch Sauerstoff oder Schwefel unterbrochen
sein kann.

- steht ganz besonders bevorzugt für Wasserstoff, für jeweils gegebenenfalls einfach bis dreifach durch Fluor und/oder Chlor substituiertes C₁-C₈-Alkyl, C₂-C₄-Alkenyl, C₁-C₆-Alkoxy-C₁-C₄-alkyl, C₁-C₄-Polyalkoxy-C₁-C₄-alkyl, C₁-C₆-Alkylthio-C₁-C₄-alkyl, gegebenenfalls durch Fluor, Chlor, Methyl, Ethyl, Methoxy oder Ethoxy substituiertes Cycloalkyl mit 3 bis 6 Ringatomen, das durch 1 bis 2 Sauerstoff- und/oder Schwefelatome unterbrochen sein kann oder für jeweils gegebenenfalls einfach oder zweifach durch Fluor, Chlor, Brom, Methyl, Ethyl, Propyl, iso-Propyl, Methoxy, Ethoxy, Trifluormethyl und/oder Nitro substituiertes Phenyl, Furanyl, Thienyl, Imidazolyl, Indolyl, Pyridyl oder Benzyl.
- B steht ganz besonders bevorzugt für C_1 - C_8 -Alkyl oder C_1 - C_4 -Alkoxy- C_1 - C_2 alkyl oder
 - A, B und das Kohlenstoffatom an das sie gebunden sind, stehen ganz besonders bevorzugt für einen gesättigten oder ungesättigten C₃-C₈-Spirocyclus, der gegebenenfalls einfach oder mehrfach durch Methyl, Ethyl, Propyl, Isopropyl, Butyl, iso-Butyl, sec.-Butyl, tert,-Butyl, Cyclohexyl, Trifluormethyl, Methoxy, Ethoxy, Propoxy, iso-Propoxy, Butoxy, iso-Butoxy, sek.-Butoxy, tert.-Butoxy, Methylthio, Ethylthio, Fluor, Chlor oder Phenyl substituiert und gegebenenfalls durch Sauerstoff oder Schwefel unterbrochen ist oder
- A, B und das Kohlenstoffatom, an das sie gebunden sind, stehen ganz besonders

 bevorzugt für einen C₅-C₆-Spirocyclus, der durch eine gegebenenfalls durch
 ein Sauerstoff- oder Schwefelatom unterbrochene Alkylendiyl- oder durch
 eine Alkylendioxyl-Gruppe substituiert ist, die mit dem Kohlenstoffatom, an
 das sie gebunden ist, einen weiteren fünf- bis siebengliedrigen Spirocyclus
 bildet oder

- A, B und das Kohlenstoffatom, an das sie gebunden sind, stehen ganz besonders bevorzugt für einen C₃-C₆-Spirocyclus, bei dem zwei Substituenten gemeinsam für einen gesättigten oder ungesättigten fünf- oder sechsgliedrigen Cyclus stehen, der durch Sauerstoff oder Schwefel unterbrochen sein kann.
- 5 X steht bevorzugt für C_1 - C_6 -Alkyl oder C_1 - C_6 -Alkoxy.
 - X steht besonders bevorzugt für C₁-C₅-Alkyl oder C₁-C₄-Alkoxy.
 - X <u>steht ganz besonders bevorzugt</u> für Methyl, Ethyl, Propyl, iso-Propyl, Methoxy, Ethoxy, Propoxy oder iso-Propoxy.
 - Y <u>steht bevorzugt</u> für Wasserstoff, C₁-C₆-Alkyl oder C₁-C₆-Alkoxy.
- 10 Y steht besonders bevorzugt für Wasserstoff, C₁-C₅-Alkyl oder C₁-C₄-Alkoxy.
 - Y <u>steht ganz besonders bevorzugt</u> für Wasserstoff, Methyl, Ethyl, Propyl, iso-Propyl, Butyl, iso-Butyl, sek.-Butyl, tert.-Butyl, Methoxy, Ethoxy, Propoxy oder iso-Propoxy.
 - Z steht bevorzugt für Wasserstoff, C_1 - C_6 -Alkyl oder C_1 - C_6 -Alkoxy.
- 15 Z steht besonders bevorzugt für Wasserstoff, C₁-C₄-Alkyl oder C₁-C₄-Alkoxy.
 - Z steht ganz besonders bevorzugt für Wasserstoff, Methyl, Ethyl, Propyl, iso-Propyl, Methoxy, Ethoxy, Propoxy oder iso-Propoxy.

Dabei gilt, daß mindestens einer der Substituenten Y und Z für Alkoxy steht, wenn X für Alkyl steht.

20 G steht bevorzugt für Wasserstoff (a) oder für die Gruppen

10

in welchen

E für ein Metallionäquivalent oder ein Ammoniumion steht,

L für Sauerstoff oder Schwefel steht und

M für Sauerstoff oder Schwefel steht.

R¹ steht bevorzugt für jeweils gegebenenfalls einfach oder mehrfach durch Halogen substituiertes C₁-C₂₀-Alkyl, C₂-C₂₀-Alkenyl, C₁-C₈-Alkoxy-C₁-C₈-alkyl, C₁-C₈-Alkylthio-C₁-C₈-alkyl, C₁-C₈-Polyalkoxy-C₂-C₈-alkyl oder gegebenenfalls durch Halogen oder C₁-C₆-Alkyl substituiertes Cycloalkyl mit 3 bis 8 Ringatomen, das durch mindestens ein Sauerstoff- und/oder Schwefelatom unterbrochen sein kann,

für gegebenenfalls einfach bis fünffach durch Halogen, Nitro, C_1 - C_6 -Alkyl, C_1 - C_6 -Alkoxy, C_1 - C_6 -Halogenalkyl, C_1 - C_6 -Halogenalkoxy, C_1 - C_6 -Alkylthio oder C_1 - C_6 -Alkylsulfonyl substituiertes Phenyl,

für gegebenenfalls einfach bis fünffach durch Halogen, C_1 - C_6 -Alkyl, C_1 - C_6 -Alkoxy, C_1 - C_6 -Halogenalkyl oder C_1 - C_6 -Halogenalkoxy substituiertes Phenyl- C_1 - C_6 -alkyl,

für gegebenenfalls einfach bis dreifach durch Halogen oder C₁-C₆-Alkyl substituiertes Pyridyl, Thienyl, Furanyl, Pyrazolyl, Pyrimidyl oder Thiazolyl,

für gegebenenfalls einfach bis dreifach durch Halogen oder C₁-C₆-Alkyl substituiertes Phenoxy-C₁-C₆-alkyl, oder

10

15

für gegebenenfalls einfach bis zweifach durch Halogen, Amino oder C_1 - C_6 -Alkyl substituiertes Pyridinyloxy- C_1 - C_6 -alkyl, Pyrimidinyloxy- C_1 - C_6 -alkyl oder Thiazolyloxy- C_1 - C_6 -alkyl

R² steht bevorzugt für jeweils gegebenenfalls einfach oder mehrfach durch Halogen substituiertes C₁-C₂₀-Alkyl, C₃-C₂₀-Alkenyl, C₁-C₈-Alkoxy-C₂-C₈-alkyl, C₁-C₈-Polyalkoxy-C₂-C₈-alkyl,

für gegebenenfalls einfach oder mehrfach durch Halogen, C_1 - C_4 -Alkyl und/oder C_1 - C_4 -Alkoxy substituiertes C_3 - C_8 -Cycloalkyl, oder

für gegebenenfalls einfach bis dreifach durch Halogen, Nitro, C_1 - C_6 -Alkyl, C_1 - C_6 -Alkoxy oder C_1 - C_6 -Halogenalkyl substituiertes Phenyl oder Benzyl,

- R³, R⁴ und R⁵ stehen unabhängig voneinander bevorzugt für jeweils gegebenenfalls einfach oder mehrfach durch Halogen substituiertes C₁-C₈-Alkyl, C₁-C₈-Alkoxy, C₁-C₈-Alkylamino, Di-(C₁-C₈)-alkylamino, C₁-C₈-Alkylthio, C₃-C₆-Alkenylthio, C₃-C₇-Cycloalkylthio, für jeweils gegebenenfalls einfach oder mehrfach durch Halogen, Nitro, Cyano, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkylthio, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl substituiertes Phenyl, Phenoxy oder Phenylthio.
- R⁶ und R⁷ stehen unabhängig voneinander bevorzugt für Wasserstoff, für jeweils gegebenenfalls einfach oder mehrfach durch Halogen substituiertes C₁-C₈-Alkyl, C₃-C₈-Cycloalkyl, C₁-C₈-Alkoxy, C₃-C₈-Alkenyl, C₁-C₈-Alkoxy-C₁-C₈-alkyl, für gegebenenfalls einfach bis dreifach durch Halogen, C₁-C₈-Halogenalkyl, C₁-C₈-Alkyl oder C₁-C₈-Alkoxy substituiertes Phenyl, gegebenenfalls einfach bis dreifach durch Halogen, C₁-C₈-Alkyl, C₁-C₈-Halogenalkyl oder C₁-C₈-Alkoxy substituiertes Benzyl oder gemeinsam für einen gegebenenfalls durch Sauerstoff oder Schwefel unterbrochenen C₃-C₆-Alkylenrest.
 - G steht besonders bevorzugt für Wasserstoff (a) oder für die Gruppen

20

in welchen

E für ein Metallionäquivalent oder ein Ammoniumion steht,

L für Sauerstoff oder Schwefel steht und

5 M für Sauerstoff oder Schwefel steht.

R¹ steht besonders bevorzugt für jeweils gegebenenfalls einfach bis sechsfach durch Fluor oder Chlor substituiertes C₁-C₁₆-Alkyl, C₂-C₁₆-Alkenyl, C₁-C₆-Alkoxy-C₁-C₆-alkyl, C₁-C₆-Alkylthio-C₁-C₆-alkyl, C₁-C₆-Polyalkoxy-C₂-C₆-alkyl oder gegebenenfalls durch Fluor, Chlor oder C₁-C₅-Alkyl substituiertes Cycloalkyl mit 3 bis 7 Ringatomen, das durch 1 oder 2 Sauerstoff- und/oder Schwefelatome unterbrochen sein kann,

für gegebenenfalls einfach bis dreifach durch Fluor, Chlor, Brom, Nitro, C_1 - C_4 -Alkyl, C_1 - C_4 -Alkoxy, C_1 - C_3 -Halogenalkyl, C_1 - C_3 -Halogenalkoxy, C_1 - C_4 -Alkylthio oder C_1 - C_4 -Alkylsulfonyl substituiertes Phenyl,

für gegebenenfalls einfach bis dreifach durch Fluor, Chlor, Brom, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₃-Halogenalkyl, C₁-C₃-Halogenalkoxy substituiertes Phenyl-C₁-C₄-alkyl,

für gegebenenfalls einfach bis zweifach durch Fluor, Chlor, Brom oder C₁-C₄-Alkyl substituiertes Pyridyl, Thienyl, Furanyl, Pyrazolyl, Pyrimidyl oder Thiazolyl,

für gegebenenfalls einfach bis zweifach durch Fluor, Chlor, Brom oder C_1 - C_4 -Alkyl substituiertes Phenoxy- C_1 - C_5 -alkyl oder

15

für gegebenenfalls einfach bis zweifach durch Fluor, Chlor, Brom, Amino oder C_1 - C_4 -Alkyl substituiertes Pyrimidinyloxy- C_1 - C_5 -alkyl, Pyridinyloxy- C_1 - C_5 -alkyl, Thiazolyloxy- C_1 - C_5 -alkyl.

R² steht besonders bevorzugt für jeweils gegebenenfalls einfach bis sechsfach durch Fluor oder Chlor substituiertes C₁-C₁₆-Alkyl, C₃-C₁₆-Alkenyl, C₁-C₆-Alkoxy-C₂-C₆-alkyl, C₁-C₆-Polyalkoxy-C₂-C₆-alkyl,

für gegebenenfalls einfach bis sechsfach durch Fluor, Chlor, C_1 - C_3 -Alkyl oder C_1 - C_3 -Alkoxy substituiertes C_3 - C_7 -Cycloalkyl,

für gegebenenfalls einfach bis zweifach durch Fluor, Chlor, Brom, Nitro, C₁
C₄-Alkyl, C₁-C₃-Alkoxy oder C₁-C₃-Halogenalkyl substituiertes Phenyl oder

Benzyl.

- R³, R⁴ und R⁵ stehen unabhängig voneinander besonders bevorzugt für jeweils gegebenenfalls einfach bis sechsfach durch Fluor oder Chlor substituiertes C₁-C₆-Alkyl, C₁-C₆-Alkoxy, C₁-C₆-Alkylamino, Di-(C₁-C₆)-alkylamino, C₁-C₆-Alkylthio, C₃-C₄-Alkenylthio, C₃-C₆-Cycloalkylthio, für jeweils gegebenenfalls einfach bis zweifach durch Fluor, Chlor, Brom, Nitro, Cyano, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, C₁-C₃-Alkylthio, C₁-C₃-Halogenalkylthio, C₁-C₃-Alkyl oder C₁-C₃-Halogenalkyl substituiertes Phenyl, Phenoxy oder Phenylthio.
- R⁶ und R⁷ stehen unabhängig voneinander besonders bevorzugt für Wasserstoff, für jeweils gegebenenfalls einfach bis sechsfach durch Fluor oder Chlor substituiertes C₁-C₆-Alkyl, C₃-C₆-Cycloalkyl, C₁-C₆-Alkoxy, C₃-C₆-Alkenyl, C₁-C₆-Alkoxy-C₂-C₆-alkyl, für gegebenenfalls einfach bis zweifach durch Fluor, Chlor, Brom, C₁-C₅-Halogenalkyl, C₁-C₅-Alkyl und/oder C₁-C₅-Alkoxy substituiertes Phenyl, für gegebenenfalls einfach bis zweifach durch Fluor, Chlor, Brom, C₁-C₅-Alkyl, C₁-C₅-Halogenalkyl oder C₁-C₅-Alkoxy substituiertes Benzyl, oder gemeinsam für einen gegebenenfalls durch Sauerstoff oder Schwefel unterbrochenen C₃-C₆-Alkylenrest.
 - G steht ganz besonders bevorzugt für Wasserstoff (a) oder für die Gruppen

10

15

$$R^1$$
 (b), M^2 (c), $SO_2 R^3$ R^4 (e), R^5 (e), R^6 (g),

in welchen

E für ein Metallionäquivalent oder ein Ammoniumion steht,

L für Sauerstoff oder Schwefel steht und

M für Sauerstoff oder Schwefel steht.

R¹ steht ganz besonders bevorzugt für jeweils gegebenenfalls einfach bis dreifach durch Fluor oder Chlor substituiertes C₁-C₁₄-Alkyl, C₂-C₁₄-Alkenyl, C₁-C₄-Alkoxy-C₁-C₆-alkyl, C₁-C₄-Alkylthio-C₁-C₆-alkyl, C₁-C₄-Polyalkoxy-C₂-C₄-alkyl oder gegebenenfalls durch Fluor, Chlor, Methyl, Ethyl, Propyl, 2-Propyl, Butyl, i-Butyl oder t-Butyl substituiertes Cycloalkyl mit 3 bis 6 Ringatomen, das durch 1 bis 2 Sauerstoff- und/oder Schwefelatome unterbrochen sein kann,

für gegebenenfalls einfach bis zweifach durch Fluor, Chlor, Brom, Methyl, Ethyl, Propyl, i-Propyl, Methoxy, Ethoxy, Trifluormethyl, Trifluormethoxy, Methylthio, Ethylthio, Methylsulfonyl, Ethylsulfonyl oder Nitro substituiertes Phenyl,

für gegebenenfalls einfach bis zweifach durch Fluor, Chlor, Brom, Methyl, Ethyl, Propyl, i-Propyl, Methoxy, Ethoxy, Trifluormethyl oder Trifluormethoxy substituiertes Phenyl-C₁-C₃-alkyl steht,

für gegebenenfalls einfach bis zweifach durch Fluor, Chlor, Brom, Methyl oder Ethyl substituiertes Thienyl, Furanyl oder Pyridyl,

10

25

für gegebenenfalls einfach bis zweifach durch Fluor, Chlor, Methyl oder Ethyl substituiertes Phenoxy- C_1 - C_4 -alkyl, oder

für jeweils gegebenenfalls einfach bis zweifach durch Fluor, Chlor, Amino, Methyl oder Ethyl substituiertes Pyridyloxy- C_1 - C_4 -alkyl, Pyrimidyloxy- C_1 - C_4 -alkyl oder Thiazolyloxy- C_1 - C_4 -alkyl.

R² steht ganz besonders bevorzugt für jeweils gegebenenfalls einfach bis dreifach durch Fluor oder Chlor substituiertes C₁-C₁₄-Alkyl, C₃-C₁₄-Alkenyl, C₁-C₄-Alkoxy-C₂-C₆-alkyl, C₁-C₄-Polyalkoxy-C₂-C₆-alkyl,

für gegebenenfalls einfach bis dreifach durch Fluor, Chlor, Methyl, Ethyl, Propyl, iso-Propyl oder Methoxy substituiertes C₃-C₆-Cycloalkyl,

oder für jeweils gegebenenfalls einfach bis zweifach durch Fluor, Chlor, Nitro, Methyl, Ethyl, Propyl, i-Propyl, Methoxy, Ethoxy oder Trifluormethyl substituiertes Phenyl oder Benzyl.

- R³, R⁴ und R⁵ stehen ganz besonders bevorzugt unabhängig voneinander für jeweils gegebenenfalls einfach bis dreifach durch Fluor oder Chlor substituiertes C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylamino, Di-(C₁-C₄)-alkylamino, C₁-C₄-Alkylthio, für jeweils gegebenenfalls durch einfach bis zweifach Fluor, Chlor, Brom, Nitro, Cyano, C₁-C₂-Alkoxy, C₁-C₂-Fluoralkoxy, C₁-C₂-Alkylthio, C₁-C₂-Fluoralkylthio, C₁-C₂-Alkyl oder C₁-C₂-Fluoralkyl substituiertes Phenyl, Phenoxy oder Phenylthio.
 - R⁶ und R⁷ stehen ganz besonders bevorzugt unabhängig voneinander für Wasserstoff, für jeweils gegebenenfalls einfach bis dreifach durch Fluor oder Chlor substituiertes C₁-C₄-Alkyl, C₃-C₆-Cycloalkyl, C₁-C₄-Alkoxy, C₃-C₄-Alkenyl, C₁-C₄-Alkoxy-C₂-C₄-alkyl, für gegebenenfalls einfach bis zweifach durch Fluor, Chlor, Brom, C₁-C₄-Halogenalkyl, C₁-C₄-Alkyl oder C₁-C₄-Alkoxy substituiertes Phenyl, für gegebenenfalls einfach bis zweifach durch Fluor, Chlor, Brom, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl oder C₁-C₄-Alkoxy substituiertes Benzyl, oder gemeinsam für einen gegebenenfalls durch Sauerstoff oder Schwefel unterbrochenen C₃-C₆-Alkylenrest.

15

In den angegebenen Definitionen können gesättigte oder ungesättigte Alkylreste auch in Verbindung mit Heteroatomen, wie z.B. Alkoxy oder Alkylthio soweit möglich geradkettig oder verzweigt sein.

Die gegebenenfalls mehrfach substituierten Reste können gleich oder verschieden mit den für diese Reste genannten Substituenten substituiert sein.

Die oben aufgeführten allgemeinen oder in Vorzugsbereichen aufgeführten Restedefinitionen bzw. Erläuterungen können untereinander, also auch zwischen den jeweiligen Bereichen und Vorzugsbereichen beliebig kombiniert werden. Sie gelten für die Endprodukte sowie für die Vor- und Zwischenprodukte entsprechend.

Erfindungsgemäß bevorzugt werden die Verbindungen der allgemeinen Formel (I), in welchen eine Kombination der vorstehend als bevorzugt (vorzugsweise) aufgeführten Bedeutungen vorliegt.

Erfindungsgemäß besonders bevorzugt werden die Verbindungen der allgemeinen Formel (I), in welchen eine Kombination der vorstehend als besonders bevorzugt aufgeführten Bedeutungen vorliegt.

Erfindungsgemäß ganz besonders bevorzugt werden die Verbindungen der allgemeinen Formel (I), in welchen eine Kombination dieser vorstehend als ganz besonders bevorzugt aufgeführten Bedeutungen vorliegt.

Eine weiterhin bevorzugte Gruppe von Verbindungen sind solche Verbindungen der Formel (Ih)

in welcher

X und Z für Alkyl stehen,

Y für Alkoxy steht und

A, B und G die obengenannte Bedeutung haben.

Bevorzugt sind auch Verbindungen der oben gezeigten Formel (Ih), in welcher

5 X und Y für Alkyl stehen,

Z für Alkoxy steht und

A, B und G die obengenannte Bedeutung haben.

Bevorzugt sind weiter Verbindungen der oben gezeigten Formel (Ih), in welcher

X für Alkyl steht,

10 Y für Wasserstoff steht,

Z für Alkoxy steht und

A, B und G die obengenannte Bedeutung haben.

Eine weitere Gruppe bevorzugter Verbindungen sind diejenigen der oben gezeigten Formel (Ih), in welcher

15 X für Alkyl steht,

Y für Alkoxy steht,

Z für Wasserstoff steht und

A, B und G die obengenannte Bedeutung haben.

Bevorzugt ist außerdem die Gruppe von Verbindungen der Formel (Ih), in welcher

- X für Alkoxy steht,
- Y für Alkyl steht,
- Z für Wasserstoff steht und
- 5 A, B und G die obengenannte Bedeutung haben.

Im einzelnen seien außer bei den bei Herstellungsbeispielen genannten Verbindungen die folgenden Verbindungen der Formel (Ia) genannt:

1	Λ
ī	v

15

X	Y	Z	A	В
CH ₃	OCH ₃	Н	CH ₃	Н
CH ₃	OCH ₃	Н	C ₂ H ₅	Н
CH ₃	OCH ₃	Н	C ₃ H ₇	Н
CH ₃	OCH ₃	Н	i-C ₃ H ₇	Н
CH ₃	OCH ₃	Н	C ₄ H ₉	Н
CH ₃	OCH ₃	Н	i-C ₄ H ₉	Н
CH ₃	OCH ₃	Н	s-C ₄ H ₉	Н
CH ₃	OCH ₃	Н	t-C ₄ H ₉	Н

Fortsetzung Tabelle 1:

X	Y	Z	A	В
CH ₃	OCH ₃	Н	CH ₃	CH ₃
CH ₃	OCH ₃	Н	C ₂ H ₅	CH ₃
CH ₃	OCH ₃	Н	C ₃ H ₇	CH ₃
CH ₃	OCH ₃	Н	i-C ₃ H ₇	CH ₃
CH ₃	OCH ₃	Н	C ₄ H ₉	CH ₃
CH ₃	OCH ₃	Н	i-C ₄ H ₉	CH ₃
CH ₃	OCH ₃	Н	s-C ₄ H ₉	CH ₃
CH ₃	OCH ₃	Н	t-C ₄ H ₉	CH ₃
CH ₃	OCH ₃	Н	C ₂ H ₅	C ₂ H ₅
CH ₃	OCH ₃	Н	C ₃ H ₇	C ₃ H ₇
CH ₃	OCH ₃	Н	Δ_	CH ₃
CH ₃	OCH ₃	н	Q	CH ₃
/CH ₃	OCH ₃	Н	\bigcirc	CH ₃
CH ₃	Н	6-OCH ₃	CH ₃	Н
CH ₃	Н	6-OCH ₃	C ₂ H ₅	Н
CH ₃	Н	6-OCH ₃	C ₃ H ₇	Н

Fortsetzung Tabelle 1:

				
X	Ÿ	Z	A	В
CH ₃	Н	6-OCH ₃	i-C ₃ H ₇	Н
CH ₃	Н	6-OCH ₃	C ₄ H ₉	Н
CH ₃	Н	6-OCH ₃	i-C ₄ H ₉	Н
CH ₃	Н	6-OCH ₃	s-C ₄ H ₉	Н
CH ₃	Н	6-OCH ₃	t-C ₄ H ₉	Н
CH ₃	Н	6-OCH ₃	CH ₃	CH ₃
CH ₃	Н	6-OCH ₃	C ₂ H ₅	CH ₃
CH ₃	Н	6-OCH ₃	C ₃ H ₇	CH ₃
CH ₃	Н	6-OCH ₃	i-C ₃ H ₇	CH ₃
CH ₃	Н	6-OCH ₃	C ₄ H ₉	CH ₃
CH ₃	Н	6-OCH ₃	i-C ₄ H ₉	CH ₃
CH ₃	Н	6-OCH ₃	s-C ₄ H ₉	CH ₃
CH ₃	Н	6-OCH ₃	t-C ₄ H ₉	CH ₃
CH ₃	Н	6-OCH ₃	C ₂ H ₅	C ₂ H ₅
CH ₃	H	6-OCH ₃	C ₃ H ₇	C ₃ H ₇
CH ₃	Н	6-OCH ₃	\triangle	CH ₃
CH ₃	Н	6-OCH ₃		CH ₃
CH ₃	Н	6-OCH ₃	\bigcirc	CH ₃
CH ₃	CH ₃	6-OCH ₃	CH ₃	Н
CH ₃	CH ₃	6-OCH ₃	C ₂ H ₅	Н
CH ₃	CH ₃	6-OCH ₃	C ₃ H ₇	Н

William to the first of

Fortsetzung Tabelle 1:

X	Y	Z		T _B
	*	2	A	В
CH ₃	CH ₃	6-OCH ₃	i-C ₃ H ₇	Н
CH ₃	CH ₃	6-OCH ₃	C ₄ H ₉	Н
CH ₃	CH ₃	6-OCH ₃	i-C₄H ₉	Н
CH ₃	CH ₃	6-OCH ₃	s-C ₄ H ₉	Н
CH ₃	CH ₃	6-OCH ₃	t-C ₄ H ₉	Н
CH ₃	CH ₃	6-OCH ₃	CH ₃	CH ₃
CH ₃	CH ₃	6-OCH ₃	C ₂ H ₅	CH ₃
CH ₃	CH ₃	6-OCH ₃	C ₃ H ₇	CH ₃
CH ₃	CH ₃	6-OCH ₃	i-C ₃ H ₇	CH ₃
CH ₃	CH ₃	6-OCH ₃	C ₄ H ₉	CH ₃
CH ₃	CH ₃	6-OCH ₃	i-C ₄ H ₉	CH ₃
CH ₃	CH ₃	6-OCH ₃	s-C ₄ H ₉	CH ₃
CH ₃	CH ₃	6-OCH ₃	t-C ₄ H ₉	CH ₃
CH ₃	CH ₃	6-OCH ₃	C ₂ H ₅	C ₂ H ₅
CH ₃	CH ₃	6-OCH ₃	C ₃ H ₇	C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	_	CH₃
CH ₃	CH ₃	6-OCH ₃		CH ₃
CH ₃	CH ₃	6-OCH ₃	\bigcirc	СН3

Fortsetzung Tabelle 1:

	•	·		
х	Y	Z	Α.	В
CH ₃	OCH ₃	6-CH ₃	CH ₃	Н .
CH ₃	OCH ₃	6-CH ₃	C ₂ H ₅	Н
CH ₃	OCH ₃	6-CH ₃	C ₃ H ₇	Н
CH ₃	OCH ₃	6-CH ₃	i-C ₃ H ₇	Н
CH ₃	OCH ₃	6-CH ₃	C ₄ H ₉	Н
CH ₃	OCH ₃	6-CH ₃	i-C₄H ₉	Н
CH ₃	OCH ₃	6-CH ₃	s-C ₄ H ₉	Н
CH ₃	OCH ₃	6-CH ₃	t-C ₄ H ₉	Н
CH ₃	OCH ₃	6-CH ₃	CH ₃	CH ₃
CH ₃	OCH ₃	6-CH ₃	C ₂ H ₅	CH ₃
CH ₃	OCH ₃	6-CH ₃	C ₃ H ₇	CH ₃
CH ₃	OCH ₃	6-CH ₃	i-C ₃ H ₇	CH ₃
CH ₃	OCH ₃	6-CH ₃	C ₄ H ₉	CH ₃
CH ₃	OCH ₃	6-CH ₃	i-C₄H ₉	CH ₃
CH ₃	OCH ₃	6-CH ₃	s-C ₄ H ₉	CH ₃
CH ₃	OCH ₃	6-CH ₃	t-C ₄ H ₉	CH ₃
CH ₃	OCH ₃	6-CH ₃	C ₂ H ₅	C ₂ H ₅
CH ₃	OCH ₃	6-CH ₃	C₃H ₇	C ₃ H ₇

				
X	Y	Z	Α .	В
CH ₃	OCH ₃	6-CH ₃	Δ	CH ₃
CH ₃	OCH₃	6-CH ₃	Q	CH ₃
CH ₃	OCH ₃	6-CH ₃	<u></u>	CH ₃
CH ₃	OCH ₃	Н	-(CH	I ₂) ₂ -
CH ₃	OCH ₃	Н	-(CH	(₂) ₄ -
CH ₃	OCH ₃	Н	-(CH	I ₂) ₅ -
CH ₃	OCH ₃	Н .	-(CH	2)6-
CH ₃	OCH ₃	Н	-(CH	2)7-
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -O	-(CH ₂) ₂ -
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -S-(CH ₂) ₂ -	
CH ₃	OCH ₃	Н	-CH ₂ -CHCH ₃ -(CH ₂) ₃ -	
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -CHCH ₃ -(CH ₂) ₂ -	
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -CHC ₂ H ₅ -(CH ₂) ₂ -	
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -CHC	₃ H ₇ -(CH ₂) ₂ -

Х	Y	Z	A	В	
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -CHi-C ₃ H ₇ -(CH ₂) ₂ -		
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -CHOC	H ₃ -(CH ₂) ₂ -	
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -CHOC	₂ H ₅ -(CH ₂) ₂ -	
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -CHOC	₃ H ₇ -(CH ₂) ₂ -	
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -CHi-O	C ₃ H ₇ -(CH ₂) ₂ -	
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -C(CH ₃) ₂ -(CH ₂) ₂ -	
CH ₃	OCH ₃	Н	-CH ₂ -(CHCH ₃) ₂ -(CH ₂) ₂ -		
CH ₃	OCH₃	Н	-CH ₂ CH	(CH ₂) ₂ —CH— -CH ₂	
CH₃	OCH ₃	Н	-сн ₂ сн		
CH₃	OCH ₃	Н	-сн ₂ сн	-	
CH ₃	Н	6-OCH ₃	-(CH	2)2-	
CH ₃	Н	6-OCH ₃	-(CH	2)4-	
CH ₃	Н	6-OCH ₃	-(CH	2)5-	
CH ₃	Н	6-OCH ₃	-(CH	2)6-	
CH ₃	Н	6-OCH ₃	-(CH	₂) ₇ -	

F				
X	Y	Z	A	В
CH ₃	Н	6-OCH ₃	-(CH ₂) ₂ -0)-(CH ₂) ₂ -
CH ₃	Н	6-OCH ₃	-(CH ₂) ₂ -S	S-(CH ₂) ₂ -
CH ₃	H	6-OCH ₃	-CH ₂ -CHC	H ₃ -(CH ₂) ₃ -
CH ₃	Н	6-OCH ₃	-(CH ₂) ₂ -CH(CH ₃ -(CH ₂) ₂ -
CH ₃	Н	6-OCH ₃	-(CH ₂) ₂ -CHC	C ₂ H ₅ -(CH ₂) ₂ -
CH ₃	Н	6-OCH ₃	-(CH ₂) ₂ -CHC	¹ ₃ H ₇ -(CH ₂) ₂ -
CH ₃	Н	6-OCH ₃	-(CH ₂) ₂ -CHi-C	H ₇ -(CH ₂) ₂ -
CH ₃	Н	6-OCH ₃	-(CH ₂) ₂ -CHOC	H ₃ -(CH ₂) ₂ -
CH ₃	Н	6-OCH ₃	-(CH ₂) ₂ -CHOC	2H ₅ -(CH ₂) ₂ -
CH ₃	Н	6-OCH ₃	-(CH ₂) ₂ -CHOC	H ₇ -(CH ₂) ₂ -
CH ₃	Н	6-OCH ₃	-(CH ₂) ₂ -CHi-O	C ₃ H ₇ -(CH ₂) ₂ -
CH ₃	Н	6-OCH ₃	-(CH ₂) ₂ -C(CH ₃)) ₂ -(CH ₂) ₂ -
CH ₃	Н	6-OCH ₃	-CH ₂ -(CHCH ₃) ₂	2-(CH ₂) ₂ -
CH ₃	Н	6-OCH ₃	−CH₂−CH−	(CH ₂) ₂ —CH
CH ₃	Н	6-OCH ₃	-СН ₂ СН (СН ₂	CHCH ₂
CH ₃	H	6-OCH ₃	-CH ₂ -CH(CH ₂) ₃	-CH(CH ₂) ₂
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -	
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₄ -	
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₅ -	
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₆ -	
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₇ -	

X	Y	Z	A	В
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -C)-(CH ₂) ₂ -
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -S	
CH ₃	CH ₃	6-OCH ₃	-CH ₂ -CHC	H ₃ -(CH ₂) ₃ -
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CH(
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHC	
CH ₃	CH ₃	6-OCH₃	-(CH ₂) ₂ -CHC	
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHi-C	
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHOC	
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHOC	
CH ₃	CH₃	6-OCH ₃	-(CH ₂) ₂ -CHOC	
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHi-O	C ₃ H ₇ -(CH ₂) ₂ -
CH ₃	CH₃	6-OCH ₃	-(CH ₂) ₂ -C(CH ₃)	
CH ₃	CH ₃	6-OCH ₃	-CH ₂ -(CHCH ₃)	
CH ₃	CH ₃	6-OCH ₃	−CH ₂ −CH−	(CH ₂) ₂ —CH—
CH ₃	CH ₃	6-OCH ₃	—СН <u>-</u> —СН- (СН ₂	-
CH ₃	CH ₃	6-OCH ₃	-сн ₂ -сн	

·				
X	Y	Z	A	В
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -	
CH ₃	OCH ₃	6-CH ₃	-(CI	I ₂) ₄ -
CH ₃	OCH ₃	6-CH ₃	-(CH	H ₂) ₅ -
CH ₃	OCH ₃	6-CH ₃	-(CH	I ₂) ₆ -
CH ₃	OCH ₃	6-CH ₃	-(CF	I ₂) ₇ -
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -0)-(CH ₂) ₂ -
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -S-(CH ₂) ₂ -	
CH ₃	OCH ₃	6-CH ₃	-CH ₂ -CHCH ₃ -(CH ₂) ₃ -	
CH ₃	OCH ₃	6-CH ₃ ·	-(CH ₂) ₂ -CH(CH ₃ -(CH ₂) ₂ -
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHC	² ₂ H ₅ -(CH ₂) ₂ -
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHC	₃ H ₇ -(CH ₂) ₂ -
CH₃	OCH₃	6-CH ₃	-(CH ₂) ₂ -CHi-C	₃ H ₇ -(CH ₂) ₂ -
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHOC	H ₃ -(CH ₂) ₂ -
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHOC ₂ H ₅ -(CH ₂) ₂ -	
CH ₃	OCH₃	6-CH ₃	-(CH ₂) ₂ -CHOC ₃ H ₇ -(CH ₂) ₂ -	
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHi-O	C ₃ H ₇ -(CH ₂) ₂ -

х	Y	Z	Α .	В
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -C(CH ₃) ₂ -(CH ₂) ₂ -
CH ₃	OCH ₃	6-CH ₃	-CH ₂ -(CHCH ₃)	₂ -(CH ₂) ₂ -
CH ₃	OCH₃	6-CH₃	−CH ₂ −CH−−	(CH ₂) ₂ —CH— -CH ₂ —
CH ₃	OCH₃	6-CH ₃	-CH ₂ -CH(CH]
CH₃	OCH ₃	6-CH ₃	-сн ₂ сн	

Im einzelnen seien außer den bei den Herstellungsbeispielen genannten Verbindungen die folgenden Verbindungen der Formel (Ib) genannt:

Tabelle 2:

Fortsetzung:				<u> </u>	
X	Y	Z	A	В	\mathbb{R}^{1}
CH ₃	OCH ₃	Н	CH ₃	Н	CH ₃
CH ₃	OCH ₃	Н	C ₂ H ₅	Н	CH ₃
CH ₃	OCH ₃	Н	C ₃ H ₇	Н	CH ₃
CH ₃	OCH ₃	Н	i-C ₃ H ₇	Н	CH ₃
CH ₃	OCH ₃	Н	C ₄ H ₉	Н	CH ₃
CH ₃	OCH ₃	Н	i-C ₄ H ₉	Н	CH ₃
CH ₃	OCH ₃	Н	s-C ₄ H ₉	Н	CH ₃
CH ₃	OCH ₃	Н	t-C ₄ H ₉	Н	CH ₃
CH ₃	OCH ₃	Н	CH ₃	CH ₃	CH ₃
CH ₃	OCH ₃	Н	C ₂ H ₅	CH ₃	CH ₃
CH ₃	OCH ₃	Н	C ₃ H ₇	CH ₃	CH ₃
CH ₃	OCH ₃	Н	i-C ₃ H ₇	CH ₃	CH ₃
CH ₃	OCH ₃	Н	C₄H ₉	CH ₃	CH ₃
CH ₃	OCH ₃	Н	i-C₄H ₉	CH ₃	CH ₃
CH ₃	OCH ₃	Н	s-C ₄ H ₉	CH ₃	CH ₃
CH ₃	OCH ₃	Н	t-C ₄ H ₉	CH ₃	CH ₃
CH ₃	OCH ₃	Н	C ₂ H ₅	C ₂ H ₅	CH ₃
CH ₃	OCH ₃	Н	C ₃ H ₇	C ₃ H ₇	CH ₃
CH ₃	OCH ₃	Н	\triangle	CH ₃	CH ₃
CH ₃	OCH ₃	Н		CH ₃	CH ₃
CH ₃	OCH ₃	н	\bigcirc	CH ₃	CH ₃

Fortsetzung: Tabelle 2

	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				· ·
Х	Y	Z	Α	В	R ¹
CH ₃	Н	6-OCH ₃	CH ₃	н .	CH ₃
CH ₃	Н	6-OCH ₃	C ₂ H ₅	H .	CH ₃
CH ₃	Н	6-OCH ₃	C ₃ H ₇	Н	CH ₃
CH ₃	Н	6-OCH ₃	i-C ₃ H ₇	Н	CH ₃
CH ₃	Н	6-OCH₃	C ₄ H ₉	Н	CH ₃
CH ₃	Н	6-OCH ₃	i-C ₄ H ₉	Н	CH ₃
CH ₃	Н	6-OCH ₃	s-C ₄ H ₉	Н	CH ₃
CH ₃	Н	6-OCH ₃	t-C ₄ H ₉	Н	CH ₃
CH ₃	Н	6-OCH ₃	CH ₃	CH ₃	CH ₃
CH ₃	Н	6-OCH ₃	C ₂ H ₅	CH ₃	CH ₃
CH ₃	Н	6-OCH ₃	C ₃ H ₇	CH ₃	CH ₃
CH ₃	Н	6-OCH ₃	i-C ₃ H ₇	CH₃	CH ₃
CH ₃	Н	6-OCH ₃	C ₄ H ₉	CH ₃	CH ₃
CH ₃	Н	6-OCH ₃	i-C₄H ₉	CH ₃	CH ₃
CH ₃	Н	6-OCH ₃	s-C ₄ H ₉	CH ₃	CH ₃
CH ₃	Н	6-OCH ₃	t-C ₄ H ₉	CH ₃	CH ₃
CH ₃	Н	6-OCH ₃	C ₂ H ₅	C ₂ H ₅	CH ₃
CH ₃	Н	6-OCH ₃	C ₃ H ₇	C ₃ H ₇	CH ₃
CH ₃	Н	6-OCH ₃	\triangle	CH ₃	CH ₃
CH ₃	Н	6-OCH ₃		CH ₃	CH ₃
CH ₃	Н	6-OCH ₃	\bigcirc	CH ₃	CH ₃

	Fortsetzung:	Tabelle 2				
Markey 1	X	Y	Z	Α.	В	\mathbb{R}^1
•	CH ₃	CH ₃	6-OCH ₃	CH ₃	Н	CH ₃
	CH ₃	CH ₃	6-OCH ₃	C ₂ H ₅	Н	CH ₃
	CH ₃	CH ₃	6-OCH ₃	C ₃ H ₇	Н	CH ₃
	CH ₃	CH ₃	6-OCH ₃	i-C ₃ H ₇	Н	CH ₃
	CH ₃	CH ₃	6-OCH ₃	C ₄ H ₉	Н	CH ₃
	CH ₃	CH ₃	6-OCH ₃	i-C ₄ H ₉	Н	CH ₃
	CH ₃	CH ₃	6-OCH ₃	s-C ₄ H ₉	Н	CH ₃
	CH ₃	CH ₃	6-OCH ₃	t-C ₄ H ₉	Н	CH ₃
	CH ₃	CH ₃	6-OCH ₃	CH ₃	CH ₃	CH ₃
	CH ₃	CH ₃	6-OCH ₃	C ₂ H ₅	CH ₃	CH ₃
	CH ₃	CH ₃	6-OCH ₃	C ₃ H ₇	CH ₃	CH ₃
	CH ₃	CH ₃	6-OCH ₃	i-C ₃ H ₇	CH ₃	CH ₃
	CH ₃	CH ₃	6-OCH ₃	C ₄ H ₉	CH ₃	CH ₃
	CH ₃	CH ₃	6-OCH ₃	i-C ₄ H ₉	CH ₃	CH ₃
	CH ₃	CH ₃	6-OCH ₃	s-C ₄ H ₉	CH ₃	CH ₃
	CH ₃	CH ₃	6-OCH ₃	t-C ₄ H ₉	CH ₃	CH ₃
	CH ₃	CH ₃	6-OCH ₃	C ₂ H ₅	C ₂ H ₅	CH ₃
	CH ₃	CH ₃	6-OCH ₃	C ₃ H ₇	C ₃ H ₇	CH ₃
	CH ₃	CH ₃	6-OCH ₃	\triangle	CH ₃	CH ₃
•	CH ₃	CH ₃	6-OCH ₃		CH ₃	CH ₃
	CH ₃	CH ₃	6-OCH ₃	\bigcirc	CH ₃	CH ₃

Fortsetzung:		T		T	
X	Y	Z ·	·A	В	R ¹
CH ₃	OCH ₃	6-CH ₃	CH ₃	Н	CH ₃
CH ₃	OCH ₃	6-CH ₃	C ₂ H ₅	Н	CH ₃
CH ₃	OCH ₃	6-CH ₃	C ₃ H ₇	Н	CH ₃
CH ₃	OCH ₃	6-CH ₃	i-C ₃ H ₇	Н	CH ₃
CH ₃	OCH ₃	6-CH ₃	C ₄ H ₉	Н	CH ₃
CH ₃	OCH ₃	6-CH ₃	i-C ₄ H ₉	Н	CH ₃
CH ₃	OCH ₃	6-CH ₃	s-C ₄ H ₉	Н .	CH ₃
CH ₃	OCH ₃	6-CH ₃	t-C ₄ H ₉	Н	CH ₃
CH ₃	OCH ₃	6-CH ₃	CH ₃	CH ₃	CH ₃
CH ₃	OCH ₃	6-CH ₃	C ₂ H ₅	CH ₃	CH ₃
CH ₃	OCH ₃	6-CH ₃	C ₃ H ₇	CH ₃	CH ₃
CH ₃	OCH ₃	6-CH ₃	i-C ₃ H ₇	CH ₃	CH ₃
CH ₃	OCH ₃	6-CH ₃	C₄H ₉	CH ₃	CH ₃
CH ₃	OCH ₃	6-CH ₃	i-C ₄ H ₉	CH ₃	CH ₃
CH ₃	OCH ₃	6-CH ₃	s-C ₄ H ₉	CH ₃	CH ₃
CH₃	OCH ₃	6-CH ₃	t-C ₄ H ₉	CH ₃	CH ₃
CH ₃	OCH ₃	6-CH ₃	C ₂ H ₅	C ₂ H ₅	CH ₃
CH ₃	OCH ₃	6-CH ₃	C ₃ H ₇	C₃H ₇	CH ₃
CH ₃	OCH ₃	6-CH ₃	Δ_	CH ₃	CH ₃
CH ₃	OCH ₃	6-CH ₃		CH ₃	CH ₃
CH ₃	OCH ₃	6-CH ₃	<u></u>	CH ₃	CH ₃

Fortsetzung: Tabelle 2

Х	Y	Z	A	В	\mathbb{R}^1
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -		CH ₃
CH ₃	OCH ₃	Н	-(CH ₂) ₄ -		CH ₃
CH ₃	OCH ₃	H	-(CH ₂) ₅ -		CH ₃
CH ₃	OCH ₃	H	-(CH ₂) ₆ -		CH ₃
CH ₃	OCH ₃	H	-(CH ₂) ₇ -		CH ₃
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -O-(C	H ₂) ₂ -	CH ₃
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -S-(Cl	H ₂) ₂ -	CH ₃
CH ₃	OCH ₃	H	-CH ₂ -CHCH ₃ -(CH ₂) ₃ -	CH ₃
CH ₃	OCH₃	H	-(CH ₂) ₂ -CHCH ₃ -		CH ₃
CH ₃	OCH₃	Н	-(CH ₂) ₂ -CHC ₂ H ₅		CH ₃
CH ₃	OCH ₃	H	-(CH ₂) ₂ -CHC ₃ H ₇		CH ₃
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -CHi-C ₃ H-	-(CH ₂) ₂ -	CH ₃
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -CHOCH ₃		CH ₃
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -CHOC ₂ H	-(CH ₂) ₂ -	CH ₃
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -CHOC ₃ H-	₂ -(CH ₂) ₂ -	CH ₃
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -CHi-OC ₃ H	7-(CH ₂) ₂ -	CH ₃
CH₃	OCH ₃	H	-(CH ₂) ₂ -C(CH ₃) ₂ -	(CH ₂) ₂ -	CH ₃
CH ₃	OCH ₃	Н	-CH ₂ -(CHCH ₃) ₂ -	(CH ₂) ₂ -	CH ₃
CH ₃	OCH ₃	Н	-CH ₂ CH(CH ₂) ₂ CH ₂	сн— _	CH ₃
СН3	OCH ₃	Н	-CH ₂ -CH-CH ₂ -CH-CH ₂ -		СН₃
CH ₃	OCH ₃	Н	-CH ₂ -CH	(CH ₂) ₂	CH ₃

Fortsetzung: Tabelle 2

Х	Y	Z	Α	В	R ¹
CH ₃	Н	6-OCH ₃	-(C)	H ₂) ₂ -	CH ₃
CH ₃	H .	6-OCH ₃		H ₂) ₄ -	CH ₃
CH ₃	Н	6-OCH ₃		H ₂) ₅ -	CH ₃
CH ₃	Н	6-OCH ₃	-(Cl	H ₂) ₆ -	CH ₃
CH ₃	H	6-OCH ₃	-(Cl	H ₂) ₇ -	CH ₃
CH ₃	H	6-OCH ₃	-(CH ₂) ₂ -(O-(CH ₂) ₂ -	CH ₃
CH ₃	Н	6-OCH ₃	-(CH ₂) ₂ -	S-(CH ₂) ₂ -	CH ₃
CH ₃	Н	6-OCH ₃		H ₃ -(CH ₂) ₃ -	CH ₃
CH ₃	Н	6-OCH ₃	-(CH ₂) ₂ -CH	CH ₃ -(CH ₂) ₂ -	CH ₃
CH ₃	H	6-OCH ₃		C ₂ H ₅ -(CH ₂) ₂ -	CH ₃
CH ₃	Н	6-OCH ₃	-(CH ₂) ₂ -CH(C ₃ H ₇ -(CH ₂) ₂ -	CH ₃
CH ₃	Н	6-OCH ₃	-(CH ₂) ₂ -CHi-	C ₃ H ₇ -(CH ₂) ₂ -	CH ₃
CH ₃	H	6-OCH ₃	-(CH ₂) ₂ -CHC	OCH ₃ -(CH ₂) ₂ -	CH ₃
CH₃	H	6-OCH ₃	-(CH ₂) ₂ -CHO	C ₂ H ₅ -(CH ₂) ₂ -	CH ₃
CH ₃	Н	6-OCH ₃		C ₃ H ₇ -(CH ₂) ₂ -	CH ₃
CH ₃	Н	6-OCH ₃		OC ₃ H ₇ -(CH ₂) ₂ -	CH ₃
CH ₃	H	6-OCH ₃	-(CH ₂) ₂ -C(C		CH ₃
CH ₃	Н	6-OCH ₃	-CH ₂ -(CHC	H ₃) ₂ -(CH ₂) ₂ -	CH ₃
CH ₃	H	6-OCH ₃	-CH ₂ -CH-(C	H ₂) ₂ —CH—	CH ₃
CH ₃	Н	6-OCH ₃	-CH ₂ -CH-	1	CH ₃
CH ₃	Н	6-OCH ₃	-СН ₂ -СН	-CH-(CH ₂) ₂ -	CH ₃

Fortsetzung: Tabelle 2

	1				
X	Y	Z	A	В	\mathbb{R}^1
CH ₃	CH ₃	6-OCH ₃	-(C	H ₂) ₂ -	CH ₃
CH ₃	CH ₃	6-OCH ₃	-(C)	H ₂) ₄ -	CH ₃
CH ₃	CH ₃	6-OCH ₃	-(C)	H ₂) ₅ -	CH ₃
CH ₃	CH ₃	6-OCH ₃	-(C)	H ₂) ₆ -	CH ₃
CH ₃	CH ₃	6-OCH ₃		H ₂) ₇ -	CH ₃
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -(O-(CH ₂) ₂ -	CH ₃
CH ₃	CH ₃	6-OCH ₃		S-(CH ₂) ₂ -	CH ₃
CH ₃	CH ₃	6-OCH ₃		H ₃ -(CH ₂) ₃ -	CH ₃
CH ₃	CH ₃	6-OCH ₃		CH ₃ -(CH ₂) ₂ -	CH ₃
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHC		CH ₃
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHC		CH ₃
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHi-		CH ₃
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHC		CH ₃
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHO		CH ₃
CH₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHO		CH ₃
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHi-C		CH ₃
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -C(Cl		CH ₃
CH ₃	CH ₃	6-OCH ₃	-CH ₂ -(CHCH		CH ₃
CH ₃	CH ₃	6-OCH ₃	-CH2-CH-(CI		CH ₃
CH ₃	CH ₃	6-OCH ₃	-CH ₂ -CH(CH ₂)	-CH-CH ₂	CH ₃
CH ₃	CH ₃	6-OCH ₃	-CH ₂ -CH- (CH ₂) ₃	-CH(CH ₂) ₂	CH ₃

Fortsetzung: Tabelle 2

Х	Y	Z	A B	\mathbb{R}^1
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -	CH ₃
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₄ -	CH ₃
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₅ -	CH ₃
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₆ -	CH ₃
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₇ -	CH ₃
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -O-(CH ₂) ₂ -	CH ₃
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -S-(CH ₂) ₂ -	CH ₃
CH ₃	OCH ₃	6-CH ₃	-CH ₂ -CHCH ₃ -(CH ₂) ₃ -	CH ₃
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHCH ₃ -(CH ₂) ₂ -	CH ₃
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHC ₂ H ₅ -(CH ₂) ₂ -	CH ₃
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHC ₃ H ₇ -(CH ₂) ₂ -	CH ₃
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHi-C ₃ H ₇ -(CH ₂) ₂ -	CH ₃
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHOCH ₃ -(CH ₂) ₂ -	CH ₃
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHOC ₂ H ₅ -(CH ₂) ₂ -	CH ₃
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHOC ₃ H ₇ -(CH ₂) ₂ -	CH ₃
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHi-OC ₃ H ₇ -(CH ₂) ₂ -	CH ₃
CH ₃	OCH ₃	6-CH₃	-(CH ₂) ₂ -C(CH ₃) ₂ -(CH ₂) ₂ -	CH ₃
CH ₃	OCH ₃	6-CH ₃	-CH ₂ -(CHCH ₃) ₂ -(CH ₂) ₂ -	CH ₃
CH ₃	OCH ₃	6-CH ₃	-CH ₂ -CH-(CH ₂) ₂ -CH-	CH ₃
CH ₃	OCH ₃	6-CH ₃	-CH ₂ -CH-CH-CH ₂ -	CH ₃
CH₃	OCH ₃	6-CH ₃	-CH ₂ -CH-CH-(CH ₂) ₂ -(CH ₂) ₃ -	CH₃

X	Y	Z	A	В	\mathbb{R}^1
CH ₃	OCH ₃	Н	CH ₃	Н	i-C ₃ H ₇
CH ₃	OCH ₃	H	C ₂ H ₅	Н	i-C ₃ H ₇
CH ₃	OCH ₃	Н	C ₃ H ₇	Н	i-C ₃ H ₇
CH ₃	OCH ₃	Н	i-C ₃ H ₇	Н	i-C ₃ H ₇
CH ₃	OCH ₃	Н	C₄H ₉	H .	i-C ₃ H ₇
CH ₃	OCH₃	Н	i-C ₄ H ₉	Н	i-C ₃ H ₇
CH ₃	OCH ₃	Н	s-C ₄ H ₉	Н	i-C ₃ H ₇
CH ₃	OCH₃	Н	t-C ₄ H ₉	Н	i-C ₃ H ₇
CH ₃	OCH ₃	Н	CH ₃	CH ₃	i-C ₃ H ₇
CH ₃	OCH ₃	Н	C ₂ H ₅	CH ₃	i-C ₃ H ₇
CH₃	OCH ₃	Н	C ₃ H ₇	CH ₃	i-C ₃ H ₇
CH ₃	OCH ₃	Н	i-C ₃ H ₇	CH₃	i-C ₃ H ₇
CH ₃	OCH ₃	Н	C ₄ H ₉	CH₃	i-C ₃ H ₇
CH ₃	OCH ₃	Н	i-C₄H ₉	CH ₃	i-C ₃ H ₇
CH ₃	OCH ₃	Н	s-C ₄ H ₉	CH ₃	i-C ₃ H ₇
CH ₃	OCH ₃	Н	t-C ₄ H ₉	CH ₃	i-C ₃ H ₇
CH ₃	OCH ₃	Н	C ₂ H ₅	C ₂ H ₅	i-C ₃ H ₇
CH ₃	OCH ₃	Н	C ₃ H ₇	C ₃ H ₇	i-C ₃ H ₇
CH ₃	OCH ₃	Н	\triangle	CH ₃	i-C ₃ H ₇
CH ₃	OCH ₃	Н		CH ₃	i-C ₃ H ₇
CH ₃	OCH ₃	Н	<u></u>	CH ₃	i-C ₃ H ₇

	Fortsetzung:	Tabelle 2				
And Company	Х :	Υ ·	Z · · · ·	Α	В	R^1
	CH ₃	Н	6-OCH₃	CH ₃	Н	i-C ₃ H ₇
•	CH₃	Н	6-OCH ₃	C ₂ H ₅	Н	i-C ₃ H ₇
	CH ₃	Н	6-OCH ₃	C ₃ H ₇	Н	i-C ₃ H ₇
	CH ₃	Н	6-OCH ₃	i-C ₃ H ₇	H	i-C ₃ H ₇
	CH ₃	Н	6-OCH ₃	C ₄ H ₉	Н	i-C ₃ H ₇
	CH ₃	Н	6-OCH ₃	i-C ₄ H ₉	Н	i-C ₃ H ₇
	CH ₃	H	6-OCH ₃	s-C ₄ H ₉	Н	i-C ₃ H ₇
	CH ₃	Н	6-OCH ₃	t-C ₄ H ₉	Н	i-C ₃ H ₇
	CH ₃	Н	6-OCH ₃	CH ₃	CH ₃	i-C ₃ H ₇
	CH ₃	H	6-OCH ₃	C ₂ H ₅	CH ₃	i-C ₃ H ₇
	CH ₃	Н	6-OCH ₃	C ₃ H ₇	CH ₃	i-C ₃ H ₇
	CH ₃	Н	6-OCH ₃	i-C ₃ H ₇	CH ₃	i-C ₃ H ₇
	CH ₃	H	6-OCH ₃	C ₄ H ₉	CH ₃	i-C ₃ H ₇
	CH ₃	Н	6-OCH ₃	i-C ₄ H ₉	CH ₃	i-C ₃ H ₇
	CH ₃	Н	6-OCH ₃	s-C ₄ H ₉	CH ₃	i-C ₃ H ₇
	CH ₃	Н	6-OCH ₃	t-C ₄ H ₉	CH ₃	i-C ₃ H ₇
	CH ₃	Н	6-OCH ₃	C ₂ H ₅	C ₂ H ₅	i-C ₃ H ₇
	CH ₃	Н	6-OCH ₃	C ₃ H ₇	C ₃ H ₇	i-C ₃ H ₇
	CH ₃	Н	6-OCH ₃	Δ_	CH ₃	i-C ₃ H ₇
	CH ₃	Н	6-OCH ₃		CH ₃	i-C ₃ H ₇
	CH ₃	Н	6-OCH ₃	\bigcirc	CH ₃	i-C ₃ H ₇

Fortsetzung:	Tabone 2			•	
X	Y	Z	A	В	R ¹
CH ₃	CH ₃	6-OCH ₃	CH ₃	Н	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	C ₂ H ₅	Н	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	C ₃ H ₇	Н	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	i-C ₃ H ₇	Н	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	C₄H ₉	Н	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	i-C ₄ H ₉	Н	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	s-C ₄ H ₉	Н	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	t-C ₄ H ₉	Н	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	CH ₃	CH ₃	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	C ₂ H ₅	CH ₃	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	C ₃ H ₇	CH ₃	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	i-C ₃ H ₇	CH ₃	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	C ₄ H ₉	CH ₃	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	i-C ₄ H ₉	CH ₃	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	s-C ₄ H ₉	CH ₃	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	t-C ₄ H ₉	CH ₃	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	C ₂ H ₅	C₂H₅	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	C ₃ H ₇	C ₃ H ₇	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	\triangle	CH ₃	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃		CH ₃	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	\bigcirc	CH ₃	i-C ₃ H ₇

Tortsetzung.	T	T		T	,
X	Y	Z	Α	В	\mathbf{R}^1
CH ₃	OCH ₃	6-CH ₃	CH ₃	Н	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	C ₂ H ₅	Н	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	C ₃ H ₇	Н	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	i-C ₃ H ₇	Н	i-C ₃ H ₇
CH ₃	OCH ₃	6-OCH ₃	C ₄ H ₉	Н	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	i-C ₄ H ₉	Н	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	s-C ₄ H ₉	Н	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	t-C ₄ H ₉	Н	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	CH ₃	CH ₃	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	C ₂ H ₅	CH ₃	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	C ₃ H ₇	CH ₃	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	i-C ₃ H ₇	CH ₃	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	C₄H ₉	CH ₃	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	i-C ₄ H ₉	CH ₃	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	s-C ₄ H ₉	CH ₃	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	t-C ₄ H ₉	CH ₃	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	C ₂ H ₅	C ₂ H ₅	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	C ₃ H ₇	C ₃ H ₇	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	\triangle	CH ₃	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃		CH ₃	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	\bigcirc	CH ₃	i-C ₃ H ₇

Fortsetzung: Tabelle 2

32	Y	T_		- ₁
X	Y	Z	A B	\mathbb{R}^1
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -	i-C ₃ H ₇
CH ₃	OCH ₃	H	-(CH ₂) ₄ -	i-C ₃ H ₇
CH ₃	OCH ₃	H	-(CH ₂) ₅ -	i-C ₃ H ₇
CH ₃	OCH ₃	H	-(CH ₂) ₆ -	i-C ₃ H ₇
CH ₃	OCH ₃	H	-(CH ₂) ₇ -	i-C ₃ H ₇
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -O-(CH ₂) ₂ -	i-C ₃ H ₇
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -S-(CH ₂) ₂ -	i-C ₃ H ₇
CH ₃	OCH ₃	H	-CH ₂ -CHCH ₃ -(CH ₂) ₃ -	i-C ₃ H ₇
CH ₃	OCH ₃	H	-(CH ₂) ₂ -CHCH ₃ -(CH ₂) ₂ -	i-C ₃ H ₇
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -CHC ₂ H ₅ -(CH ₂) ₂ -	i-C ₃ H ₇
CH₃	OCH ₃	H	-(CH ₂) ₂ -CHC ₃ H ₇ -(CH ₂) ₂ -	i-C ₃ H ₇
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -CHi-C ₃ H ₇ -(CH ₂) ₂ -	i-C ₃ H ₇
CH ₃	OCH ₃	H	-(CH ₂) ₂ -CHOCH ₃ -(CH ₂) ₂ -	i-C ₃ H ₇
CH₃	OCH ₃	Н	-(CH ₂) ₂ -CHOC ₂ H ₅ -(CH ₂) ₂ -	i-C ₃ H ₇
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -CHOC ₃ H ₇ -(CH ₂) ₂ -	i-C ₃ H ₇
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -CHi-OC ₃ H ₇ -(CH ₂) ₂ -	i-C ₃ H ₇
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -C(CH ₃) ₂ -(CH ₂) ₂ -	i-C ₃ H ₇
CH ₃	OCH ₃	Н	-CH ₂ -(CHCH ₃) ₂ -(CH ₂) ₂ -	i-C ₃ H ₇
CH ₃	OCH ₃	н	-CH ₂ CH(CH ₂) ₂ -CH-	i-C ₃ H ₇
			CH,	
CH ₃	OCH ₃	Н	-CH ₂ CHCHCH ₂	i-C ₃ H ₇
				,
CH ₃	OCH ₃	Н	-CH ₂ -CHCH-(CH ₂) ₂ -	i-C ₃ H ₇
		ŀ		3^17
			^L (CH ₂) ₃	

Fortsetzung: Tabelle 2

WO 95/26954

Х	Y	Z	A B	R ¹
CH ₃	Н	6-OCH ₃	-(CH ₂) ₂ -	i-C ₃ H ₇
CH ₃	Н	6-OCH ₃	-(CH ₂) ₄ -	+
CH ₃	Н	6-OCH ₃		i-C ₃ H ₇
-	 	 	-(CH ₂) ₅ -	i-C ₃ H ₇
CH ₃	H	6-OCH ₃	-(CH ₂) ₆ -	i-C ₃ H ₇
CH ₃	H	6-OCH ₃	-(CH ₂) ₇ -	i-C ₃ H ₇
CH ₃	Н	6-OCH ₃	-(CH ₂) ₂ -O-(CH ₂) ₂ -	i-C ₃ H ₇
CH ₃	Н	6-OCH₃	-(CH ₂) ₂ -S-(CH ₂) ₂ -	i-C ₃ H ₇
CH ₃	Н	6-OCH ₃	-CH ₂ -CHCH ₃ -(CH ₂) ₃ -	i-C ₃ H ₇
CH ₃	н	6-OCH ₃	-(CH ₂) ₂ -CHCH ₃ -(CH ₂) ₂ -	i-C ₃ H ₇
CH ₃	Н	6-OCH ₃	-(CH ₂) ₂ -CHC ₂ H ₅ -(CH ₂) ₂ -	i-C ₃ H ₇
CH ₃	Н	6-OCH ₃	-(CH ₂) ₂ -CHC ₃ H ₇ -(CH ₂) ₂ -	i-C ₃ H ₇
CH ₃	Н	6-OCH ₃	-(CH ₂) ₂ -CHi-C ₃ H ₇ -(CH ₂) ₂ -	i-C ₃ H ₇
CH ₃	Н	6-OCH ₃	-(CH ₂) ₂ -CHOCH ₃ -(CH ₂) ₂ -	i-C ₃ H ₇
CH ₃	Н	6-OCH ₃	-(CH ₂) ₂ -CHOC ₂ H ₅ -(CH ₂) ₂ -	i-C ₃ H ₇
CH ₃	Н	6-OCH ₃	-(CH ₂) ₂ -CHOC ₃ H ₇ -(CH ₂) ₂ -	i-C ₃ H ₇
CH ₃	Н	6-OCH ₃	-(CH ₂) ₂ -CHi-OC ₃ H ₇ -(CH ₂) ₂ -	i-C ₃ H ₇
CH ₃	Н	6-OCH ₃	-(CH ₂) ₂ -C(CH ₃) ₂ -(CH ₂) ₂ -	i-C ₃ H ₇
CH ₃	Н	6-OCH ₃	-CH ₂ -(CHCH ₃) ₂ -(CH ₂) ₂ -	i-C ₃ H ₇
CH ₃	Н	6-OCH ₃	-CH ₂ CH(CH ₂) ₂ CH	i-C ₃ H ₇
CH ₃	Н	6-OCH ₃	—сн <u>—</u> сн——сн——	i-C ₃ H ₇
CH ₃	Н	6-OCH ₃	-CH ₂	i-C ₃ H ₇

X	Y	Z	Α	В	R ¹
CH ₃	CH ₃	6-OCH ₃	-(C	H ₂) ₂ -	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	-(C)	H ₂) ₄ -	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	-(Cl	H ₂) ₅ -	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	-(CI	H ₂) ₆ -	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	-(CI	H ₂) ₇ -	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -(O-(CH ₂) ₂ -	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -8	S-(CH ₂) ₂ -	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	-CH ₂ -CHC	H ₃ -(CH ₂) ₃ -	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CH	CH ₃ -(CH ₂) ₂ -	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHC	-(CH ₂) ₂ -CHC ₂ H ₅ -(CH ₂) ₂ -	
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHC	C ₃ H ₇ -(CH ₂) ₂ -	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHi-	C ₃ H ₇ -(CH ₂) ₂ -	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHO	CH ₃ -(CH ₂) ₂ -	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHO	C ₂ H ₅ -(CH ₂) ₂ -	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHO	C ₃ H ₇ -(CH ₂) ₂ -	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHi-O	C ₃ H ₇ -(CH ₂) ₂ -	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -C(CI	H ₃) ₂ -(CH ₂) ₂ -	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	-CH ₂ -(CHCH	H ₃) ₂ -(CH ₂) ₂ -	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	-CH ₂ -CH-(C	CH ₂) ₂ —CH—	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	— сн ₂ — сн———————————————————————————————————		i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	—сн ₂ —сн— _ (сн ₂)	CH-(CH ₂) ₂ —	i-C ₃ H ₇

X	Y	Z	A B	R ¹
CH ₃	OCH ₃	6-CH ₃		
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₄ -	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₅ -	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₆ -	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₇ -	i-C ₃ H ₇
CH ₃	OCH ₃		-(CH ₂) ₂ -O-(CH ₂) ₂ -	i-C ₃ H ₇
		6-CH ₃	-(CH ₂) ₂ -S-(CH ₂) ₂ -	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	-CH ₂ -CHCH ₃ -(CH ₂) ₃ -	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHCH ₃ -(CH ₂) ₂ -	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHC ₂ H ₅ -(CH ₂) ₂ -	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHC ₃ H ₇ -(CH ₂) ₂ -	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHi-C ₃ H ₇ -(CH ₂) ₂ -	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHOCH ₃ -(CH ₂) ₂ -	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHOC ₂ H ₅ -(CH ₂) ₂ -	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHOC ₃ H ₇ -(CH ₂) ₂ -	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHi-OC ₃ H ₇ -(CH ₂) ₂ -	i-C ₃ H ₇
CH₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -C(CH ₃) ₂ -(CH ₂) ₂ -	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	-CH ₂ -(CHCH ₃) ₂ -(CH ₂) ₂ -	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃		i-C ₃ H ₇
			CH ₂	- ,
CH ₃	осн3	6-CH ₃	-CH2-CHCH-CH2	i-C ₃ H ₇
			(CH ₂)4	
CH ₃	OCH ₃	6-CH ₃	-CH ₂ -CHCH-(CH ₂) ₂ -	i-C ₃ H ₇
			(CH ₂)3	

ronsetzung:	Fortsetzung: Tabelle 2								
X	Y /	Z	Α	B	R^{1}				
CH ₃	OCH ₃	Н	CH ₃	Н	t-C ₄ H ₉				
CH ₃	OCH ₃	Н	C ₂ H ₅	H	t-C ₄ H ₉				
CH ₃	OCH ₃	Н	C ₃ H ₇	Н	t-C ₄ H ₉				
CH ₃	OCH ₃	Н	i-C ₃ H ₇	Н	t-C ₄ H ₉				
CH ₃	OCH ₃	Н	C ₄ H ₉	Н	t-C ₄ H ₉				
CH ₃	OCH ₃	Н	i-C ₄ H ₉	Н	t-C ₄ H ₉				
CH ₃	OCH ₃	Н	s-C ₄ H ₉	Н	t-C ₄ H ₉				
CH ₃	OCH ₃	Н	t-C ₄ H ₉	Н	t-C ₄ H ₉				
CH ₃	OCH ₃	Н	CH ₃	CH ₃	t-C ₄ H ₉				
CH ₃	OCH ₃	Н	C ₂ H ₅	CH₃	t-C ₄ H ₉				
CH ₃	OCH ₃	Н	C ₃ H ₇	CH ₃	t-C ₄ H ₉				
CH ₃	OCH ₃	Н	i-C ₃ H ₇	CH ₃	t-C ₄ H ₉				
CH ₃	OCH ₃	Н	C ₄ H ₉	CH ₃	t-C₄H ₉				
CH ₃	OCH ₃	Н	i-C ₄ H ₉	CH ₃	t-C₄H ₉				
CH ₃	OCH ₃	Н	s-C ₄ H ₉	CH ₃	t-C ₄ H ₉				
CH ₃	OCH ₃	Н	t-C ₄ H ₉	CH ₃	t-C ₄ H ₉				
CH ₃	OCH ₃	H	C ₂ H ₅	C ₂ H ₅	t-C ₄ H ₉				
CH ₃	OCH ₃	н	C ₃ H ₇	C ₃ H ₇	t-C ₄ H ₉				
CH ₃	OCH ₃	н	\triangle	CH ₃	t-C ₄ H ₉				
CH ₃	OCH ₃	Н		CH ₃	t-C ₄ H ₉				
CH ₃	OCH ₃	н .	<u></u>	CH ₃	t-C ₄ H ₉				

Tortbottening.	Fortsetzung: Tabelle 2								
Х	Y	Z	A	В	R ¹				
CH ₃	Н	6-OCH ₃	CH ₃	Н	t-C ₄ H ₉				
CH ₃	Н	6-OCH ₃	C ₂ H ₅	Н	t-C ₄ H ₉				
CH ₃	Н	6-OCH₃	C ₃ H ₇	Н	t-C ₄ H ₉				
CH ₃	Н	6-OCH₃	i-C ₃ H ₇	Н	t-C ₄ H ₉				
CH ₃	Н	6-OCH₃	C ₄ H ₉	Н	t-C ₄ H ₉				
CH ₃	Н	6-OCH ₃	i-C₄H ₉	Н	t-C ₄ H ₉				
CH ₃	Н	6-OCH ₃	s-C ₄ H ₉	Н	t-C ₄ H ₉				
CH ₃	Н	6-OCH ₃	t-C ₄ H ₉	Н	t-C ₄ H ₉				
CH ₃	Н	6-OCH ₃	CH ₃	CH ₃	t-C ₄ H ₉				
CH ₃	Н	6-OCH ₃	C ₂ H ₅	CH ₃	t-C ₄ H ₉				
CH ₃	Н	6-OCH ₃	C ₃ H ₇	CH ₃	t-C ₄ H ₉				
CH ₃	Н	6-OCH ₃	i-C ₃ H ₇	CH ₃	t-C ₄ H ₉				
CH ₃	Н	6-OCH ₃	C₄H ₉	CH ₃	t-C ₄ H ₉				
CH ₃	Н	6-OCH ₃	i-C ₄ H ₉	CH ₃	t-C ₄ H ₉				
CH ₃	Н	6-OCH ₃	s-C ₄ H ₉	CH ₃	t-C ₄ H ₉				
CH ₃	Н	6-OCH ₃	t-C ₄ H ₉	CH ₃	t-C ₄ H ₉				
CH ₃	Н	6-OCH ₃	C ₂ H ₅	C ₂ H ₅	t-C ₄ H ₉				
CH ₃	Н	6-OCH ₃	C ₃ H ₇	C ₃ H ₇	t-C₄H ₉				
CH ₃	Н	6-OCH ₃	Δ	CH ₃	t-C ₄ H ₉				
CH ₃	Н	6-OCH ₃		CH ₃	t-C ₄ H ₉				
CH ₃	Н	6-OCH ₃	\bigcirc	CH ₃	t-C ₄ H ₉				

Tortsetzung.	Tabolic 2	<u> </u>			
Х	Y	Z	A	В	R ¹
CH ₃	CH ₃	6-OCH ₃	CH ₃	Н	t-C ₄ H ₉
CH ₃	CH ₃	6-OCH ₃	C ₂ H ₅	Н	t-C ₄ H ₉
CH ₃	CH ₃	6-OCH ₃	C ₃ H ₇	Н	t-C ₄ H ₉
CH ₃	CH ₃	6-OCH ₃	i-C ₃ H ₇	Н	t-C ₄ H ₉
CH ₃	CH ₃	6-OCH ₃	C ₄ H ₉	Н	t-C ₄ H ₉
CH ₃	CH ₃	6-OCH ₃	i-C ₄ H ₉	Н	t-C ₄ H ₉
CH ₃	CH ₃	6-OCH ₃	s-C ₄ H ₉	Н	t-C ₄ H ₉
CH ₃	CH ₃	6-OCH ₃	t-C ₄ H ₉	Н	t-C ₄ H ₉
CH ₃	CH ₃	6-OCH ₃	CH ₃	CH ₃	t-C ₄ H ₉
CH₃	CH ₃	6-OCH ₃	C ₂ H ₅	CH ₃	t-C ₄ H ₉
CH ₃	CH ₃	6-OCH ₃	C ₃ H ₇	CH ₃	t-C ₄ H ₉
CH ₃	CH ₃	6-OCH ₃	i-C ₃ H ₇	CH ₃	t-C ₄ H ₉
CH ₃	CH ₃	6-OCH ₃	C ₄ H ₉	CH ₃	t-C ₄ H ₉
CH ₃	CH ₃	6-OCH ₃	i-C ₄ H ₉	CH ₃	t-C ₄ H ₉
CH ₃	CH ₃	6-OCH ₃	s-C ₄ H ₉	CH ₃	t-C ₄ H ₉
CH ₃	CH ₃	6-OCH ₃	t-C ₄ H ₉	CH ₃	t-C ₄ H ₉
CH ₃	CH ₃	6-OCH ₃	C ₂ H ₅	C ₂ H ₅	t-C ₄ H ₉
CH ₃	CH ₃	6-OCH ₃	C ₃ H ₇	C ₃ H ₇	t-C ₄ H ₉
CH ₃	CH ₃	6-OCH ₃	\triangle	CH ₃	t-C ₄ H ₉
CH ₃	CH ₃	6-OCH ₃		CH ₃	t-C ₄ H ₉
CH ₃	CH ₃	6-OCH ₃	\bigcirc	CH ₃	t-C ₄ H ₉

X	Y	Z · · .	A	В	R ¹
CH ₃	OCH ₃	6-CH ₃	CH ₃	Н	t-C ₄ H
CH ₃	OCH ₃	6-CH ₃	C ₂ H ₅	Н	t-C ₄ H
CH ₃	OCH ₃	6-CH ₃	C ₃ H ₇	Н	t-C ₄ H
CH ₃	OCH ₃	6-CH ₃	i-C ₃ H ₇	Н	t-C ₄ H ₄
CH ₃	OCH ₃	6-CH ₃	C ₄ H ₉	Н	t-C ₄ H ₄
CH ₃	OCH ₃	6-CH ₃	i-C ₄ H ₉	Н	t-C ₄ H ₅
CH ₃	OCH ₃	6-CH ₃	s-C ₄ H ₉	Н	t-C ₄ H ₅
CH ₃	OCH ₃	6-CH ₃	t-C ₄ H ₉	Н	t-C ₄ H ₉
CH ₃	OCH ₃	6-CH ₃	CH ₃	CH ₃	t-C ₄ H ₅
CH ₃	OCH ₃	6-CH ₃	C ₂ H ₅	CH ₃	t-C ₄ H ₉
CH ₃	OCH ₃	6-CH ₃	C ₃ H ₇	CH ₃	t-C ₄ H ₉
CH ₃	OCH ₃	6-CH ₃	i-C ₃ H ₇	CH ₃	t-C ₄ H ₉
CH ₃	OCH ₃	6-CH ₃	C ₄ H ₉	CH ₃	t-C ₄ H ₉
CH ₃	OCH ₃	6-CH ₃	i-C ₄ H ₉	CH ₃	t-C ₄ H ₉
CH ₃	OCH ₃	6-CH ₃	s-C ₄ H ₉	CH ₃	t-C ₄ H ₉
CH ₃	OCH ₃	6-CH ₃	t-C ₄ H ₉	CH ₃	t-C ₄ H ₉
CH ₃	OCH ₃	6-CH ₃	C ₂ H ₅	C ₂ H ₅	t-C ₄ H ₉
CH ₃	OCH ₃	6-CH ₃	C ₃ H ₇	C ₃ H ₇	t-C ₄ H ₉
CH ₃	OCH ₃	6-CH ₃		CH ₃	t-C ₄ H ₉
CH ₃	OCH ₃	6-CH ₃		CH ₃	t-C ₄ H ₉
CH ₃	OCH ₃	6-CH ₃		CH ₃	t-C ₄ H ₉

Fortsetzung: Tabelle 2

	zung. Tab			
X	Υ .	z	A B	\mathbb{R}^{1}
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -	t-C ₄ H ₉
CH ₃	OCH ₃	Н	-(CH ₂) ₄ -	t-C ₄ H ₉
CH ₃	OCH ₃	Н	-(CH ₂) ₅ -	t-C ₄ H ₉
CH ₃	OCH ₃	Н	-(CH ₂) ₆ -	t-C ₄ H ₉
CH₃	OCH ₃	Н	-(CH ₂) ₇ -	t-C ₄ H ₉
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -O-(CH ₂) ₂ -	t-C ₄ H ₉
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -S-(CH ₂) ₂ -	t-C ₄ H ₉
CH ₃	OCH ₃	Н	-CH ₂ -CHCH ₃ -(CH ₂) ₃ -	t-C ₄ H ₉
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -CHCH ₃ -(CH ₂) ₂ -	t-C ₄ H ₉
CH ₃	OCH ₃	H	-(CH ₂) ₂ -CHC ₂ H ₅ -(CH ₂) ₂ -	t-C ₄ H ₉
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -CHC ₃ H ₇ -(CH ₂) ₂ -	t-C ₄ H ₉
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -CHi-C ₃ H ₇ -(CH ₂) ₂ -	t-C ₄ H ₉
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -CHOCH ₃ -(CH ₂) ₂ -	t-C ₄ H ₉
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -CHOC ₂ H ₅ -(CH ₂) ₂ -	t-C ₄ H ₉
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -CHOC ₃ H ₇ -(CH ₂) ₂ -	t-C ₄ H ₉
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -CHi-OC ₃ H ₇ -(CH ₂) ₂ -	t-C ₄ H ₉
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -C(CH ₃) ₂ -(CH ₂) ₂ -	t-C ₄ H ₉
CH ₃	OCH ₃	Н	-CH ₂ -(CHCH ₃) ₂ -(CH ₂) ₂ -	t-C ₄ H ₉
CH ₃	OCH ₃	Н	-CH ₂ -CH-(CH ₂) ₂ -CH-	t-C ₄ H ₉
CH ₃	OCH ₃	Н	-сн ₂ -сн-сн ₂ -	t-C ₄ H ₉
CH ₃	OCH ₃	Н	-сн ₂ -сн-сн-(сн ₂) ₂ -	t-C ₄ H ₉

Fortsetzung: Tabelle 2

X	Y	Z	A	В	\mathbb{R}^1
CH ₃	Н	•			
		6-OCH ₃		H ₂) ₂ -	t-C ₄ H ₉
CH ₃	H	6-OCH ₃	-(C)	H ₂) ₄ -	t-C ₄ H ₉
CH ₃	H	6-OCH ₃	-(CI	H ₂) ₅ -	t-C ₄ H ₉
CH ₃	Н	6-OCH ₃	-(Cl	H ₂) ₆ -	t-C ₄ H ₉
CH ₃	Н	6-OCH ₃	-(CI	H ₂) ₇ -	t-C ₄ H ₉
CH ₃	Н	6-OCH ₃	-(CH ₂) ₂ -(O-(CH ₂) ₂ -	t-C ₄ H ₉
CH ₃	Н	6-OCH ₃	-(CH ₂) ₂ -	S-(CH ₂) ₂ -	t-C ₄ H ₉
CH ₃	Н	6-OCH₃	-CH ₂ -CHC	H ₃ -(CH ₂) ₃ -	t-C ₄ H ₉
CH ₃	Н	6-OCH₃	-(CH ₂) ₂ -CH	CH ₃ -(CH ₂) ₂ -	t-C ₄ H ₉
CH ₃	Н	6-OCH ₃	-(CH ₂) ₂ -CH(C ₂ H ₅ -(CH ₂) ₂ -	t-C ₄ H ₉
CH ₃	Н	6-OCH ₃	-(CH ₂) ₂ -CHC	C ₃ H ₇ -(CH ₂) ₂ -	t-C ₄ H ₉
CH ₃	H	6-OCH ₃	-(CH ₂) ₂ -CHi-	C ₃ H ₇ -(CH ₂) ₂ -	t-C ₄ H ₉
CH ₃	H	6-OCH ₃	-(CH ₂) ₂ -CHO	OCH ₃ -(CH ₂) ₂ -	t-C ₄ H ₉
CH ₃	H	6-OCH ₃	-(CH ₂) ₂ -CHO	C ₂ H ₅ -(CH ₂) ₂ -	t-C ₄ H ₉
CH ₃	Н	6-OCH ₃	-(CH ₂) ₂ -CHO	C ₃ H ₇ -(CH ₂) ₂ -	t-C ₄ H ₉
CH ₃	Н	6-OCH ₃ .	-(CH ₂) ₂ -CHi-C	C ₃ H ₇ -(CH ₂) ₂ -	t-C ₄ H ₉
CH ₃	Н	6-OCH ₃	-(CH ₂) ₂ -C(Cl	H ₃) ₂ -(CH ₂) ₂ -	t-C ₄ H ₉
CH ₃	Н	6-OCH ₃	-CH ₂ -(CHCH	H ₃) ₂ -(CH ₂) ₂ -	t-C ₄ H ₉
CH ₃	Н	6-OCH ₃	-CH₂-CH(Cl	H ₂) ₂ —CH— H ₂ —	t-C ₄ H ₉
CH ₃	Н	6-OCH ₃	-CH ₂ -CH	CH-CH2-	t-C ₄ H ₉
CH ₃	Н	6-OCH ₃	-сн _ _сн	CH(CH₂)₂-	t-C ₄ H ₉

wc	95/2695	4		1	PCT/EP95/01100
·				- 63 -	
•	Fortsetz	zung: Tabe	elle 2		
	x	Y	Z .	A B	\mathbb{R}^1
	CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -	t-C ₄ H ₉
	CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₄ -	t-C ₄ H ₉
	CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₅ -	t-C ₄ H ₉
	CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₆ -	t-C ₄ H ₉
	CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₇ -	t-C ₄ H ₉
	CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -O-(CH ₂) ₂ -	t-C ₄ H ₉
	CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -S-(CH ₂) ₂ -	t-C ₄ H ₉
	CH ₃	CH ₃	6-OCH ₃	-CH ₂ -CHCH ₃ -(CH ₂) ₃ -	t-C ₄ H ₉
	CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHCH ₃ -(CH ₂) ₂ -	t-C ₄ H ₉
	CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHC ₂ H ₅ -(CH ₂) ₂ -	t-C ₄ H ₉
:	CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHC ₃ H ₇ -(CH ₂) ₂ -	t-C ₄ H ₉
	CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHi-C ₃ H ₇ -(CH ₂) ₂ -	t-C ₄ H ₉
	CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHOCH ₃ -(CH ₂) ₂ -	t-C ₄ H ₉
	CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHOC ₂ H ₅ -(CH ₂) ₂ -	t-C ₄ H ₉
	CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHOC ₃ H ₇ -(CH ₂) ₂ -	t-C ₄ H ₉
	CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHi-OC ₃ H ₇ -(CH ₂) ₂ -	t-C ₄ H ₉
	CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -C(CH ₃) ₂ -(CH ₂) ₂ -	t-C ₄ H ₉
	CH ₃	CH ₃	6-OCH ₃	-CH ₂ -(CHCH ₃) ₂ -(CH ₂) ₂ -	t-C ₄ H ₉
	CH ₃	CH ₃	6-OCH ₃	-CH ₂ -CH-(CH ₂) ₂ -CH-	t-C ₄ H ₉
-				CH ₂	
	CH ₃	CH ₃	6-OCH ₃	-сн ₂ -сн-сн ₂ -	t-C₄H ₉
	CH ₃	CH ₃	6-OCH ₃	-CH ₂ -CH-(CH ₂) ₂ -	t-C ₄ H ₉

X	Y .	Z	A B	•	R ¹
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -		t-C ₄ H ₉
CH _{3.}	OCH ₃	6-CH ₃	-(CH ₂) ₄ -		t-C ₄ H ₉
CH₃	OCH ₃	6-CH ₃	-(CH ₂) ₅ -	•	t-C ₄ H ₉
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₆ -		t-C ₄ H ₉
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₇ -		t-C ₄ H ₉
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -O-(CH	2)2-	t-C ₄ H ₉
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -S-(CH		t-C ₄ H ₉
CH ₃	OCH ₃	6-CH ₃	-CH ₂ -CHCH ₃ -(C	H ₂) ₃ -	t-C ₄ H ₉
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHCH ₃ -(t-C ₄ H ₉
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHC ₂ H ₅ -(CH ₂) ₂ -	t-C ₄ H ₉
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHC ₃ H ₇ -(t-C ₄ H ₉
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHi-C ₃ H ₇ -	(CH ₂) ₂ -	t-C ₄ H ₉
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHOCH ₃ -(t-C ₄ H ₉
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHOC ₂ H ₅ -	(CH ₂) ₂ -	t-C ₄ H ₉
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHOC ₃ H ₇ -	(CH ₂) ₂ -	t-C₄H ₉
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHi-OC ₃ H ₇	-(CH ₂) ₂ -	t-C ₄ H ₉
CH ₃	OCH ₃	6-СН₃	-(CH ₂) ₂ -C(CH ₃) ₂ -(CH ₂) ₂ -	t-C ₄ H ₉
CH ₃	OCH ₃	6-CH ₃	-CH ₂ -(CHCH ₃) ₂ -((CH ₂) ₂ -	t-C₄H ₉
CH ₃	OCH ₃	6-CH ₃	-CH ₂ -CH-(CH ₂) ₂ -	ĊН—	t-C ₄ H ₉
			CH ₂	J	
CH ₃	OCH ₃	6-CH ₃		−CH ₂ —	t-C ₄ H ₉
			(CH ₂)4		
CH ₃	OCH ₃	6-CH ₃	-CH₂-CHCH-	-(CH ₂) ₂ -	t-C₄H ₉
			[(CH ₂)3]		

Im einzelnen seien außer den bei den Herstellungsbeispielen genannten Verbindungen die folgenden Verbindungen der Formel (Ic) genannt:

Tabelle 3:

Х	Y	Z	A	В	L	М	R ²
CH ₃	OCH ₃	Н	CH ₃	Н	0	0	C ₂ H ₅
CH ₃	OCH ₃	Н	C ₂ H ₅	H	0	0	C ₂ H ₅
CH ₃	OCH ₃	H	C ₃ H ₇	Н	0	0	C ₂ H ₅
CH ₃	OCH ₃	Н	i-C ₃ H ₇	Н	0	0	C ₂ H ₅
CH ₃	OCH ₃	Н	C ₄ H ₉	Н	0	0	C ₂ H ₅
CH ₃	OCH ₃	H	i-C₄H ₉	Н	0	0	C ₂ H ₅
CH ₃	OCH ₃	Н	s-C ₄ H ₉	H	0	0	C ₂ H ₅
CH ₃	OCH ₃	Н	t-C ₄ H ₉	H	0	0	C ₂ H ₅
CH ₃	OCH ₃	Н	CH ₃	CH ₃	0	0	C ₂ H ₅
CH ₃	OCH ₃	H	C ₂ H ₅	CH ₃	0	0	C ₂ H ₅
CH ₃	OCH ₃	н	C ₃ H ₇	CH ₃	0	0	C ₂ H ₅
CH ₃	OCH ₃	Н	i-C ₃ H ₇	CH ₃	0	0	C ₂ H ₅
CH ₃	OCH ₃	Н	C ₄ H ₉	CH ₃	0	0	C ₂ H ₅
CH ₃	OCH ₃	Н	i-C ₄ H ₉	CH ₃	0	0	C ₂ H ₅
CH ₃	OCH ₃	Н	s-C ₄ H ₉	CH ₃	0	0	C ₂ H ₅
CH ₃	OCH ₃	Н	t-C ₄ H ₉	CH ₃	0	0	C ₂ H ₅
CH ₃	OCH ₃	H	C ₂ H ₅	C ₂ H ₅	0	0	C ₂ H ₅
CH ₃	OCH ₃	Н	C ₃ H ₇	C ₃ H ₇	0	0	C ₂ H ₅
CH ₃	OCH ₃	Н	\triangle	CH ₃	0	0	C ₂ H ₅
CH ₃	OCH ₃	Н		CH ₃	0	0	C ₂ H ₅
CH ₃	OCH ₃	Н	<u></u>	CH ₃	0	0	C ₂ H ₅

Fortsetzung: Tabelle 3

X	Y	Z	A	В	L	М	R ²
CH ₃	Н	6-OCH ₃	CH ₃	Н	0	0	C ₂ H ₅
CH ₃	Н	6-OCH ₃	C ₂ H ₅	Н	0	0	C ₂ H ₅
CH ₃	Н	6-OCH ₃	C ₃ H ₇	Н	0	0	C ₂ H ₅
CH ₃	Н	6-OCH ₃	i-C ₃ H ₇	Н	0	0	C ₂ H ₅
CH ₃	H	6-OCH ₃	C ₄ H ₉	Н	0	0	C ₂ H ₅
CH ₃	Н	6-OCH ₃	i-C ₄ H ₉	Н	0	0	C ₂ H ₅
CH ₃	н	6-OCH ₃	s-C ₄ H ₉	Н	0	0	C ₂ H ₅
CH ₃	Н	6-OCH ₃	t-C ₄ H ₉	Н	0	0	C ₂ H ₅
CH ₃	н	6-OCH₃	CH ₃	CH ₃	0	0	C ₂ H ₅
CH ₃	Н	6-OCH ₃	C ₂ H ₅	CH ₃	0	0	C ₂ H ₅
CH ₃	H	6-OCH₃	C ₃ H ₇	CH ₃	0	0	C ₂ H ₅
CH ₃	Н	6-OCH ₃	i-C ₃ H ₇	CH ₃	0	0	C ₂ H ₅
CH ₃	Н	6-OCH ₃	C ₄ H ₉	CH ₃	0	0	C ₂ H ₅
CH ₃	H	6-OCH ₃	i-C ₄ H ₉	CH ₃	0	0	C ₂ H ₅
CH ₃	Н	6-OCH ₃	s-C ₄ H ₉	CH ₃	0	0	C ₂ H ₅
CH ₃	Н	6-OCH ₃	t-C ₄ H ₉	CH ₃	0	0	C ₂ H ₅
CH ₃	н	6-OCH ₃	C ₂ H ₅	C ₂ H ₅	0	0	C ₂ H ₅
CH ₃	Н	6-OCH ₃	C ₃ H ₇	C ₃ H ₇	0	0	C ₂ H ₅
CH ₃	Н	6-OCH ₃	_	CH ₃	0	0	C ₂ H ₅
CH ₃	Н	6-OCH ₃		CH ₃	0	0	C ₂ H ₅
CH ₃	Н	6-OCH ₃	\bigcirc	CH ₃	0	0	C ₂ H ₅

Fortsetzung: Tabelle 3										
X	Y	Z	Α	В	L	М	R ²			
CH ₃	CH ₃	6-OCH ₃	CH ₃	Н	0	0	C ₂ H ₅			
CH ₃	CH ₃	6-OCH ₃	.C ₂ H ₅	Н	Ö	Ó	C ₂ H ₅			
CH ₃	CH ₃	6-OCH ₃	C ₃ H ₇	Н	0	Ō	C ₂ H ₅			
CH ₃	CH ₃	6-OCH ₃	i-C ₃ H ₇	Н	0	0	C ₂ H ₅			
CH ₃	CH ₃	6-OCH ₃	C ₄ H ₉	Н	0	0	C ₂ H ₅			
CH ₃	CH ₃	6-OCH ₃	i-C ₄ H ₉	Н	0	0	C ₂ H ₅			
CH ₃	CH ₃	6-OCH ₃	s-C ₄ H ₉	Н	0	0	C ₂ H ₅			
CH₃	CH ₃	6-OCH ₃	t-C ₄ H ₉	Н	0	0	C ₂ H ₅			
CH ₃	CH ₃	6-OCH ₃	CH ₃	CH ₃	0	0	C ₂ H ₅			
CH ₃	CH ₃	6-OCH ₃	C ₂ H ₅	CH ₃	0	0	C ₂ H ₅			
CH ₃	CH ₃	6-OCH ₃	C ₃ H ₇	CH ₃	0	0	C ₂ H ₅			
CH ₃	CH ₃	6-OCH ₃	i-C ₃ H ₇	CH ₃	0	0	C ₂ H ₅			
CH ₃	CH ₃	6-OCH ₃	C ₄ H ₉	CH ₃	0	0	C ₂ H ₅			
CH ₃	CH ₃	6-OCH ₃	i-C ₄ H ₉	CH ₃	0	0	C ₂ H ₅			
CH ₃	CH ₃	6-OCH ₃	s-C ₄ H ₉	CH ₃	0	0	C ₂ H ₅			
CH ₃	CH ₃	6-OCH ₃	t-C₄H ₉	CH ₃	0	0	C ₂ H ₅			
CH ₃	CH ₃	6-OCH ₃	C ₂ H ₅	C ₂ H ₅	0	0	C ₂ H ₅			
CH ₃	CH ₃	6-OCH ₃	C ₃ H ₇	C ₃ H ₇	0	0	C ₂ H ₅			
CH ₃	CH ₃	6-OCH ₃	Δ_	CH ₃	0	0	C ₂ H ₅			
CH ₃	CH ₃	6-OCH ₃	Ų.	CH ₃	0	0	C ₂ H ₅			
CH ₃	CH ₃	6-OCH ₃	\bigcirc	CH ₃	0	0	C ₂ H ₅			

	Fortsetzung	g: Tabelle	3					
	X	Y	Z	A	В	L	M	R ²
	CH ₃	OCH ₃	6-CH ₃	CH ₃	Н	0	0	C ₂ H ₅
	CH ₃	OCH ₃	6-CH ₃	C ₂ H ₅	Н	Ó	0	C ₂ H ₅
	CH ₃	OCH ₃	6-CH ₃	C ₃ H ₇	Н	0	0	C ₂ H ₅
	CH ₃	OCH ₃	6-CH ₃	i-C ₃ H ₇	Н	0	0	C ₂ H ₅
	CH ₃	OCH₃	6-CH ₃	C ₄ H ₉	Н	0	0	C ₂ H ₅
	CH ₃	OCH₃	6-CH ₃	i-C ₄ H ₉	Н	0	0	C ₂ H ₅
	CH ₃	OCH ₃	6-CH ₃	s-C ₄ H ₉	H	0	0	C ₂ H ₅
;	CH ₃	OCH ₃	6-CH ₃	t-C ₄ H ₉	H	0	0	C ₂ H ₅
	CH ₃	OCH ₃	6-CH ₃	CH ₃	CH ₃	0	0	C ₂ H ₅
	CH ₃	OCH ₃	6-CH ₃	C ₂ H ₅	CH ₃	0	0	C ₂ H ₅
	CH ₃	OCH ₃	6-CH ₃	C ₃ H ₇	CH ₃	0	0	C ₂ H ₅
	CH ₃	OCH ₃	6-CH ₃	i-C ₃ H ₇	CH ₃	0	0	C ₂ H ₅
	CH ₃	OCH ₃	6-CH ₃	C ₄ H ₉	CH ₃	0	0	C ₂ H ₅
	CH ₃	OCH ₃	6-CH ₃	i-C ₄ H ₉	CH ₃	0	0	C ₂ H ₅
	CH₃	OCH ₃	6-CH ₃	s-C ₄ H ₉	CH ₃	0	0	C ₂ H ₅
	CH ₃	OCH ₃	6-CH ₃	t-C ₄ H ₉	CH ₃	0	О	C ₂ H ₅
	CH ₃	OCH ₃	6-CH ₃	C ₂ H ₅	C ₂ H ₅	0	0	C ₂ H ₅
	CH ₃	OCH ₃	6-CH ₃	C ₃ H ₇	C ₃ H ₇	0	0	C ₂ H ₅
	CH ₃	OCH ₃	6-CH ₃		CH ₃	0	0	C ₂ H ₅
	CH ₃	OCH ₃	6-CH ₃		CH ₃	0	0	C ₂ H ₅
	CH ₃	OCH ₃	6-CH ₃	○	CH ₃	0	0	C ₂ H ₅

Х	Y	Z	A B	L	M	R ²
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -	0	0	C ₂ H
CH ₃	OCH ₃	Н	-(CH ₂) ₄ -	0	0	C ₂ H
CH ₃	OCH ₃	Н	-(CH ₂) ₅ -	0	0	C ₂ H
CH ₃	OCH ₃	Н	-(CH ₂) ₆ -	0	0	C ₂ H
CH ₃	OCH ₃	Н	-(CH ₂) ₇ -	0	0	C ₂ H
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -O-(CH ₂) ₂ -	0	0	C ₂ H
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -S-(CH ₂) ₂ -	0	0	C ₂ H
CH ₃	OCH ₃	Н	-CH ₂ -CHCH ₃ -(CH ₂) ₃ -	0	0	C ₂ H ₄
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -CHCH ₃ -(CH ₂) ₂ -	0	0	C ₂ H
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -CHC ₂ H ₅ -(CH ₂) ₂ -	0	0	C ₂ H ₅
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -CHC ₃ H ₇ -(CH ₂) ₂ -	0	0	C ₂ H ₅
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -CHi-C ₃ H ₇ -(CH ₂) ₂ -	. 0	0	C ₂ H ₅
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -CHOCH ₃ -(CH ₂) ₂ -	0	0	C ₂ H ₅
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -CHOC ₂ H ₅ -(CH ₂) ₂ -	0	0	C ₂ H ₅
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -CHOC ₃ H ₇ -(CH ₂) ₂ -	0	0	C ₂ H ₅
CH ₃	OCH ₃	H	-(CH ₂) ₂ -CHi-OC ₃ H ₇ -(CH ₂) ₂ -	0	0	C ₂ H ₅
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -C(CH ₃) ₂ -(CH ₂) ₂ -	0	0	C ₂ H ₅
CH ₃	OCH ₃	H	-CH ₂ -(CHCH ₃) ₂ -(CH ₂) ₂ -	0	0	C ₂ H ₅
CH ₃	OCH ₃	Н	-CH ₂ -CH-(CH ₂) ₂ -CH-	0	0	C ₂ H ₅
CH ₃	OCH ₃	Н	_снсн—_сн-сн ₂ —	0	0	C ₂ H ₅
CH ₃	OCH ₃	Н	-CH2-CH-(CH2)2-	0	0	C ₂ H ₅

Fortsetzung: Tabelle 3

X	Y	Z	Α	В	L	М	R ²
CH ₃	Н	6-OCH ₃	-(CH	2)2-	0	0	C ₂ H ₅
CH ₃	Н	6-OCH ₃	-(CH	· 2) ₄ -	.0	0	C ₂ H ₅
CH ₃	Н	6-OCH ₃	-(CH	2)5-	0	0	C ₂ H ₅
CH ₃	Н	6-OCH ₃	-(CH	2)6-	0	0	C ₂ H ₅
CH ₃	H	6-OCH ₃	-(CH	2)7-	0	0	C ₂ H ₅
CH ₃	Н	6-OCH ₃	-(CH ₂) ₂ -O	-(CH ₂) ₂ -	0	0	C ₂ H ₅
CH ₃	Н	6-OCH ₃	-(CH ₂) ₂ -S	-(CH ₂) ₂ -	0	0	C ₂ H ₅
CH ₃	Н	6-OCH ₃	-CH ₂ -CHCH	I ₃ -(CH ₂) ₃ -	0	0	C ₂ H ₅
CH ₃	Н	6-OCH ₃	-(CH ₂) ₂ -CHC	H ₃ -(CH ₂) ₂ -	0	0	C ₂ H ₅
CH ₃	H	6-OCH ₃	-(CH ₂) ₂ -CHC ₂ H ₅ -(CH ₂) ₂ -		0	0	C ₂ H ₅
CH ₃	H	6-OCH ₃	-(CH ₂) ₂ -CHC	-(CH ₂) ₂ -CHC ₃ H ₇ -(CH ₂) ₂ -		0	C ₂ H ₅
CH ₃	H	6-OCH ₃	-(CH ₂) ₂ -CHi-C	² ₃ H ₇ -(CH ₂) ₂ -	0	0	C ₂ H ₅
CH ₃	H	6-OCH ₃	-(CH ₂) ₂ -CHO(CH ₃ -(CH ₂) ₂ -	0	0	C ₂ H ₅
CH ₃	H	6-OCH ₃	-(CH ₂) ₂ -CHOC	C ₂ H ₅ -(CH ₂) ₂ -	0	0	C ₂ H ₅
CH ₃	Н	6-OCH ₃	-(CH ₂) ₂ -CHOC	G ₃ H ₇ -(CH ₂) ₂ -	0	0	C ₂ H ₅
CH ₃	Н	6-OCH ₃	-(CH ₂) ₂ -CHi-O(C ₃ H ₇ -(CH ₂) ₂ -	0	0	C ₂ H ₅
CH ₃	Н	6-OCH ₃	-(CH ₂) ₂ -C(CH	(3) ₂ -(CH ₂) ₂ -	0	0	C ₂ H ₅
CH ₃	Н	6-OCH ₃	-CH ₂ -(CHCH	₃) ₂ -(CH ₂) ₂ -	0	0	C ₂ H ₅
CH ₃	Н	6-OCH ₃	-CH2-CH-(C	-CH ₂ -CH-(CH ₂) ₂ -CH-		0	C ₂ H ₅
CH ₃	Н	6-OCH ₃	-сн ₂ -снсн-сн ₂ -		0	0	C ₂ H ₅
CH ₃	Н	6-OCH ₃	-CH ₂ -CH-(CH ₂) ₃	CH-(CH ₂) ₂ -	0	0	C ₂ H ₅

	Fortset	zung: Tab	elle 3					
Springer Commence	Х	Y	·Z	A	В	L	М	R ²
	CH ₃	CH ₃	6-OCH ₃	-(CH	2)2-	0	0	C ₂ H ₅
	CH ₃	CH ₃	6-OCH ₃	-(CH	2)4-	0	0	C ₂ H ₅
	CH ₃	CH ₃	6-OCH ₃	-(CH	2)5-	0	0	C ₂ H ₅
	CH ₃	CH ₃	6-OCH ₃	-(CH	2)6-	0	0	C ₂ H ₅
	CH ₃	CH ₃	6-OCH ₃	-(CH	2)7-	0	0	C ₂ H ₅
	CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -O	-(CH ₂) ₂ -	0	0	C ₂ H ₅
	CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -S-	(CH ₂) ₂ -	0	0	C ₂ H ₅
	CH ₃	CH ₃	6-OCH ₃	-CH ₂ -CHCH	(3-(CH ₂) ₃ -	0	0	C ₂ H ₅
	CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHC	H ₃ -(CH ₂) ₂ -	0	0	C ₂ H ₅
	CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHC ₂	H ₅ -(CH ₂) ₂ -	0	0	C ₂ H ₅
	CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHC ₃	H ₇ -(CH ₂) ₂ -	0	0	C ₂ H ₅
	CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHi-C	₃ H ₇ -(CH ₂) ₂ -	0	0	C ₂ H ₅
	CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHOC	CH ₃ -(CH ₂) ₂ -	0	0	C ₂ H ₅
	CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHOC	₂ H ₅ -(CH ₂) ₂ -	0	0	C ₂ H ₅
	CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHOC	₃ H ₇ -(CH ₂) ₂ -	0	0	C ₂ H ₅
	CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHi-OC	C ₃ H ₇ -(CH ₂) ₂ -	0	0	C ₂ H ₅
1	CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -C(CH ₂	₃) ₂ -(CH ₂) ₂ -	0	0	C ₂ H ₅
	CH ₃	CH ₃	6-OCH ₃	-CH ₂ -(CHCH ₃) ₂ -(CH ₂) ₂ -	0	0	C ₂ H ₅
-	CH ₃	CH ₃	6-OCH ₃	-CH2-CH-(C		0	0	C ₂ H ₅
	CH ₃	CH ₃	6-OCH ₃	-сн ₂ -сн	•	0	0	C ₂ H ₅
	CH ₃	CH ₃	6-OCH ₃	-СН₂-СН - - (СН₂)₃-		0	0	C ₂ H ₅

	Tabel	T T				T. :	1 2
X .	Y	Z	A B		L.	М	·R ²
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -		0	0	C ₂ H ₅
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₄ -		0	0	C ₂ H ₅
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₅ -		0	0	C ₂ H ₅
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₆ -		0	0	C ₂ H ₅
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₇ -		0	0	C ₂ H ₅
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -O-(CH	2)2-	0	0	C ₂ H ₅
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -S-(CH	2)2-	0	0	C ₂ H ₅
CH ₃	OCH₃	6-CH ₃	-CH ₂ -CHCH ₃ -(C	H ₂) ₃ -	0	0	C ₂ H ₅
CH₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHCH ₃ -(0	CH ₂) ₂ -	0	0	C ₂ H ₅
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHC ₂ H ₅ -(0	0	C ₂ H ₅
CH₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHC ₃ H ₇ -(0	0	C ₂ H ₅
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHi-C ₃ H ₇ -		0	0	C ₂ H ₅
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHOCH ₃ -(0	0	C ₂ H ₅
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHOC ₂ H ₅ -	(CH ₂) ₂ -	0	0	C ₂ H ₅
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHOC ₃ H ₇ -	(CH ₂) ₂ -	0	0	C ₂ H ₅
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHi-OC ₃ H ₇		0	0	C ₂ H ₅
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -C(CH ₃) ₂ -(0	0	C ₂ H ₅
CH ₃	OCH ₃	6-CH ₃	-CH ₂ -(CHCH ₃) ₂ -(C		0	0	C ₂ H ₅
CH ₃	OCH ₃	6-CH ₃	-CH ₂ -CH-(CH ₂)		0	0	C ₂ H ₅
			L—CH ₂				
CH ₃	OCH ₃	6-CH ₃	-CH ₂ -CHCH	−CH ₂ −−	0	0	C ₂ H ₅
CH ₃	OCH ₃	6-CH ₃	-сн ₂ -снсн-	-(CH ₂) ₂	0	0	C ₂ H ₅

Fortsetzung:	Tabelle 3						
X	Y	Z	Α	В	L.	М	R ²
CH ₃	OCH ₃	Н	CH ₃	H ·	0	0	i-C ₃ H ₇
CH ₃	OCH ₃	Н	C ₂ H ₅	Н	0	0	i-C ₃ H ₇
CH ₃	OCH ₃	Н	C ₃ H ₇	н	0	0	i-C ₃ H ₇
CH ₃	OCH ₃	Н	i-C ₃ H ₇	Н	Ο.	0	i-C ₃ H ₇
CH ₃	OCH ₃	Н	C ₄ H ₉	Н	0	0	i-C ₃ H ₇
CH ₃	OCH₃	Н	i-C ₄ H ₉	Н	0	0	i-C ₃ H ₇
CH ₃	OCH ₃	Н	s-C ₄ H ₉	Н	0	0	i-C ₃ H ₇
CH ₃	OCH ₃	Н	t-C ₄ H ₉	Н	0	0	i-C ₃ H ₇
CH ₃	OCH ₃	н	CH ₃	CH ₃	0	0	i-C ₃ H ₇
CH ₃	OCH ₃	Н	C ₂ H ₅	CH ₃	0	0	i-C ₃ H ₇
CH ₃	OCH ₃	Н	C ₃ H ₇	CH ₃	0	0	i-C ₃ H ₇
CH ₃	OCH ₃	Н	i-C ₃ H ₇	CH ₃	0	0	i-C ₃ H ₇
CH ₃	OCH ₃	H-	C ₄ H ₉	CH ₃	0	0	i-C ₃ H ₇
CH ₃	OCH ₃	Н	i-C ₄ H ₉	CH ₃	0	0	i-C ₃ H ₇
CH ₃	OCH ₃	Н	s-C ₄ H ₉	CH ₃	0	0	i-C ₃ H ₇
CH ₃	OCH ₃	Н	t-C ₄ H ₉	CH ₃	0	0	i-C ₃ H ₇
CH ₃	OCH ₃	H	C ₂ H ₅	C ₂ H ₅	0	0	i-C ₃ H ₇
CH ₃	OCH ₃	Н	C ₃ H ₇	C ₃ H ₇	0	0	i-C ₃ H ₇
CH ₃	OCH ₃	Н	\triangle	CH ₃	0	0	i-C ₃ H ₇
CH ₃	OCH ₃	Н		CH ₃	0	0	i-C ₃ H ₇
CH ₃	OCH ₃	Н	\bigcirc	CH ₃	0	0	i-C ₃ H ₇

WO 95/26954

X	Y	Z	A	В	L	М	R ²
CH ₃	Н	6-OCH ₃	CH ₃	Н	0	0	
CH ₃	Н	6-OCH ₃	C ₂ H ₅	H	o	0	i-C ₃ H ₇
CH ₃	Н	6-OCH ₃	C ₃ H ₇	Н	-	ļ	i-C ₃ H ₇
CH ₃	Н	6-OCH ₃	 	 	0	0	i-C ₃ H ₇
CH ₃	Н	6-OCH ₃	i-C ₃ H ₇	H	0	0	i-C ₃ H ₇
	<u> </u>	 -	C ₄ H ₉	H	0	0	i-C ₃ H ₇
CH ₃	H	6-OCH ₃	i-C ₄ H ₉	H	0	0	i-C ₃ H ₇
CH ₃	H	6-OCH ₃	s-C ₄ H ₉	Н	0	0	i-C ₃ H ₇
CH ₃	H	6-OCH ₃	t-C ₄ H ₉	Н	0	0	i-C ₃ H ₇
CH ₃	Н	6-OCH ₃	CH ₃	CH ₃	0	0	i-C ₃ H ₇
CH ₃	Н	6-OCH ₃	C ₂ H ₅	CH ₃	0	0	i-C ₃ H ₇
CH ₃	н	6-OCH ₃	C ₃ H ₇	CH ₃	0	0	i-C ₃ H ₇
CH ₃	Н	6-OCH ₃	i-C ₃ H ₇	CH ₃	0	0	i-C ₃ H ₇
CH ₃	Н	6-OCH ₃	C ₄ H ₉	CH ₃	0	0	i-C ₃ H ₇
CH ₃	Н	6-OCH ₃	i-C ₄ H ₉	CH ₃	0	0	i-C ₃ H ₇
CH ₃	Н	6-OCH ₃	s-C ₄ H ₉	CH ₃	0	0	i-C ₃ H ₇
CH ₃	Н	6-OCH ₃	t-C ₄ H ₉	CH ₃	0	0	i-C ₃ H ₇
CH ₃	Н	6-OCH ₃	C ₂ H ₅	C ₂ H ₅	0	0	i-C ₃ H ₇
CH ₃	Н	6-OCH ₃	C ₃ H ₇	C ₃ H ₇	0	0	i-C ₃ H ₇
CH ₃	Н	6-OCH ₃	\triangle	CH ₃	0	0	i-C ₃ H ₇
CH ₃	Н	6-OCH ₃		CH ₃	0	0	i-C ₃ H ₇
CH ₃	Н	6-OCH ₃	<u></u>	CH ₃	0	0	i-C ₃ H ₇

X	Y	Z	Α	В	L	M	R ²
CH ₃	CH ₃	6-OCH ₃	CH ₃	Н	0	0	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	C ₂ H ₅	Н	0	0	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	C ₃ H ₇	Н	0	0	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	i-C ₃ H ₇	Н	0	0	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	C ₄ H ₉	Н	0	0	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	i-C₄H ₉	Н	0	0	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	s-C ₄ H ₉	Н	0	0	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	t-C ₄ H ₉	Н	0	0	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	CH ₃	CH ₃	0	0	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	C ₂ H ₅	CH ₃	0	0	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	C ₃ H ₇	CH ₃	0	0	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	i-C ₃ H ₇	CH ₃	0	0	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	C ₄ H ₉	CH ₃	0	0	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	i-C ₄ H ₉	CH ₃	0	0	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	s-C ₄ H ₉	CH ₃	0	0	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	t-C ₄ H ₉	CH ₃	0	0	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	C ₂ H ₅	C ₂ H ₅	0	0	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	C ₃ H ₇	C ₃ H ₇	0	0	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	Δ_	CH ₃	0	0	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃		CH ₃	0	0	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	\bigcirc	CH ₃	0	0	i-C ₃ H ₇

ronseizun	g: Tabelle :)		y	-		
X	Υ .	Z	A . •	В	.L	M	R ² ·····
CH ₃	OCH ₃	6-CH ₃	CH ₃	Н	0	0	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	C ₂ H ₅	Н	0	0	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	C ₃ H ₇	Н	0	0	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	i-C ₃ H ₇	Н	0	0	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	C ₄ H ₉	Н	0	0	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	i-C ₄ H ₉	Н	0	0	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	s-C ₄ H ₉	Н	0	0	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	t-C ₄ H ₉	Н	0	0	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	CH ₃	CH ₃	0	0	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	C ₂ H ₅	CH ₃	0	0	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	C ₃ H ₇	CH ₃	0	0	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	i-C ₃ H ₇	CH ₃	0	0	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	C ₄ H ₉	CH ₃	0	0	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	i-C ₄ H ₉	CH ₃	0	0	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	s-C ₄ H ₉	CH ₃	0	0	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	t-C ₄ H ₉	CH ₃	0	0	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	C ₂ H ₅	C ₂ H ₅	0	0	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	C ₃ H ₇	C ₃ H ₇	0	0	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	_	CH ₃	0	0	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃		CH ₃	0	0	i-C ₃ H ₇
СН3	OCH ₃	6-CH ₃	\bigcirc	CH ₃	0	0	i-C ₃ H ₇

Fortsetzung: Tabelle 3

X	Y	Z	A	В	L	M	R ²
CH ₃	OCH ₃	Н	-(0	CH ₂) ₂ -	0	0	i-C ₃ H ₇
CH ₃	OCH ₃	Н	-(0	CH ₂) ₄ -	0	0	i-C ₃ H ₇
CH ₃	OCH ₃	Н	-(0	CH ₂) ₅ -	0	0	i-C ₃ H ₇
CH ₃	OCH ₃	Н	-(0	CH ₂) ₆ -	0	0	i-C ₃ H ₇
CH ₃	OCH ₃	Н	-(0	CH ₂) ₇ -	0	0	i-C ₃ H ₇
CH ₃	OCH ₃	н	-(CH ₂) ₂	-O-(CH ₂) ₂ -	0	0	i-C ₃ H ₇
CH ₃	OCH ₃	Н	-(CH ₂) ₂	-S-(CH ₂) ₂ -	0	0	i-C ₃ H ₇
CH ₃	OCH ₃	Н	-CH ₂ -CH	CH ₃ -(CH ₂) ₃ -	0	0	i-C ₃ H ₇
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -CH	HCH ₃ -(CH ₂) ₂ -	0	0	i-C ₃ H ₇
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -CH	C ₂ H ₅ -(CH ₂) ₂ -	0	0	i-C ₃ H ₇
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -CH	C ₃ H ₇ -(CH ₂) ₂ -	0	0	i-C ₃ H ₇
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -CHi	-C ₃ H ₇ -(CH ₂) ₂ -	0	0	i-C ₃ H ₇
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -CH	OCH ₃ -(CH ₂) ₂ -	0	0	i-C ₃ H ₇
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -CH(OC ₂ H ₅ -(CH ₂) ₂ -	0	0	i-C ₃ H ₇
CH ₃	OCH ₃	н	-(CH ₂) ₂ -CHC	OC ₃ H ₇ -(CH ₂) ₂ -	0	0	i-C ₃ H ₇
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -CHi-	OC ₃ H ₇ -(CH ₂) ₂ -	0	0	i-C ₃ H ₇
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -C(C	CH ₃) ₂ -(CH ₂) ₂ -	0	0	i-C ₃ H ₇
CH ₃	OCH ₃	H	-CH ₂ -(CHC	H ₃) ₂ -(CH ₂) ₂ -	0	0	i-C ₃ H ₇
CH ₃	OCH ₃	Н	-CH ₂ -CH-(CH ₂) ₂ —CH—	0	0	i-C ₃ H ₇
CH ₃	OCH ₃	Н		—сн−сн <u>-</u>	0	0	i-C ₃ H ₇
CH ₃	OCH ₃	Н	-сн ₂ -сн- _ (сн ₂);	-CH-(CH ₂) ₂	0	0	i-C ₃ H ₇

Fortsetzung: Tabelle 3

	T.,			7	7	7
X	Y	Z	A B	L	M	R ²
CH ₃	H	6-OCH ₃	-(CH ₂) ₂ -	0	0	i-C ₃ H ₇
CH ₃	H	6-OCH ₃	-(CH ₂) ₄ -	0	0	i-C ₃ H ₇
CH ₃	Н	6-OCH ₃	-(CH ₂) ₅ -	0	0	i-C ₃ H ₇
CH ₃	H	6-OCH ₃	-(CH ₂) ₆ -	0	0	i-C ₃ H ₇
CH ₃	Н	6-OCH ₃	-(CH ₂) ₇ -	0	0	i-C ₃ H ₇
CH ₃	Н	6-OCH ₃	-(CH ₂) ₂ -O-(CH ₂) ₂ -	0	0	i-C ₃ H ₇
CH ₃	Н	6-OCH ₃	-(CH ₂) ₂ -S-(CH ₂) ₂ -	0	0	i-C ₃ H ₇
CH ₃	H	6-OCH ₃	-CH ₂ -CHCH ₃ -(CH ₂) ₃ -	0	0	i-C ₃ H ₇
CH ₃	H	6-OCH ₃	-(CH ₂) ₂ -CHCH ₃ -(CH ₂) ₂ -	0	0	i-C ₃ H ₇
CH ₃	Н	6-OCH ₃	-(CH ₂) ₂ -CHC ₂ H ₅ -(CH ₂) ₂ -	0	0	i-C ₃ H ₇
CH ₃	Н	6-OCH ₃	-(CH ₂) ₂ -CHC ₃ H ₇ -(CH ₂) ₂ -	0	0	i-C ₃ H ₇
CH ₃	Н	6-OCH ₃	-(CH ₂) ₂ -CHi-C ₃ H ₇ -(CH ₂) ₂ -	0	0	i-C ₃ H ₇
CH ₃	Н	6-OCH ₃	-(CH ₂) ₂ -CHOCH ₃ -(CH ₂) ₂ -	0	0	i-C ₃ H ₇
CH ₃	Н	6-OCH ₃	-(CH ₂) ₂ -CHOC ₂ H ₅ -(CH ₂) ₂ -	0	0	i-C ₃ H ₇
CH ₃	н	6-OCH ₃	-(CH ₂) ₂ -CHOC ₃ H ₇ -(CH ₂) ₂ -	0	0	i-C ₃ H ₇
CH ₃	Н	6-OCH ₃	-(CH ₂) ₂ -CHi-OC ₃ H ₇ -(CH ₂) ₂ -	0	0	i-C ₃ H ₇
CH ₃	Н	6-OCH ₃	-(CH ₂) ₂ -C(CH ₃) ₂ -(CH ₂) ₂ -	0	0	i-C ₃ H ₇
CH ₃	Н	6-OCH ₃	-CH ₂ -(CHCH ₃) ₂ -(CH ₂) ₂ -	0	0	i-C ₃ H ₇
CH ₃	Н	6-OCH ₃	-СH ₂ СH(СН ₂) ₂ -СН	0	0	i-C ₃ H ₇
CH ₃	Н	6-OCH ₃	-CH ₂ -CH-CH ₂ -CH-CH ₂ -	0	0	i-C ₃ H ₇
CH ₃	Н	6-OCH ₃	-CH ₂ -CHCH(CH ₂) ₂ -	0	0	i-C ₃ H ₇

			1	1 ~	~
ron	setzung	. I &	wei	ıψ	J

X	Y	z .	A		T .	T	Lia
-	1	-		В	L	М	R. ²
CH ₃	CH ₃	6-OCH ₃	-(CH	2)2-	0	0	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	-(CH	2)4-	0	0	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	-(CH	2)5-	0	0	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃ .	-(CH	2)6-	0	0	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	-(CH	2)7-	0	0	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -O	-(CH ₂) ₂ -	0	0	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -S-	-(CH ₂) ₂ -	0	0	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	-CH ₂ -CHCH	I ₃ -(CH ₂) ₃ -	0	0	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHC	H ₃ -(CH ₂) ₂ -	0	0	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHC ₂	H ₅ -(CH ₂) ₂ -	0	0	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHC ₃	H ₇ -(CH ₂) ₂ -	0	0	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHi-C	₃ H ₇ -(CH ₂) ₂ -	0	0	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHO(CH ₃ -(CH ₂) ₂ -	0	0	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHOC	₂ H ₅ -(CH ₂) ₂ -	0	0	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHOC	₃ H ₇ -(CH ₂) ₂ -	0	0	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHi-O(C ₃ H ₇ -(CH ₂) ₂ -	0	0	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -C(CH	₃) ₂ -(CH ₂) ₂ -	0	0	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	-CH ₂ -(CHCH	3) ₂ -(CH ₂) ₂ -	0	0	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	-CH ₂ -CH-(C	H ₂) ₂ —CH—	0	0	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	-СН ₂ СН	-CH-CH ₂	0	0	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	-CH ₂ -CH (CH ₂) ₃	CH-(CH ₂) ₂ -	0	0	i-C ₃ H ₇

X	Y Y	z	A B	·	I . s	M	R ²
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -	··· ·	0	0	
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₄ -		0	0	$i-C_3H_7$ $i-C_3H_7$
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₅ -		0.	0	
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₆ -		0	0	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₇ -		0	0	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -O-(CH ₂) ₂ -		0	0	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -S-(CH ₂) ₂ -		0	0	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	-CH ₂ -CHCH ₃ -(CH ₂)		0	0	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHCH ₃ -(CH		0	0	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHC ₂ H ₅ -(CH		0	0	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHC ₃ H ₇ -(CH		0	0	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHi-C ₃ H ₇ -(CH		0	0	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHOCH ₃ -(CH		0	0	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHOC ₂ H ₅ -(CH		0	0	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHOC ₃ H ₇ -(CH		0	0	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHi-OC ₃ H ₇ -(C		0	0	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -C(CH ₃) ₂ -(CH		0	0	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	-CH ₂ -(CHCH ₃) ₂ -(CH ₂	2)2-	0	0	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	-CH ₂ -CH-(CH ₂) ₂ -C	H—	0	0	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	-CH ₂ CHC -(CH ₂) ₄	H ₂	0	0	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	—СН ₂ —СН——СН—(СН (СН ₂) ₃	H ₂) ₂ —	0	0	i-C ₃ H ₇

٠.	Fortsetzung:	abelle 3						
	X	Y	Z .	Α	В	L : 4	M:	R ²
-	CH ₃	OCH ₃	H	CH ₃	Н	0	S	i-C ₃ H ₇
. •	CH ₃	OCH ₃	Н	C ₂ H ₅	Н	0	S	i-C ₃ H ₇
	CH ₃	OCH ₃	Н	C ₃ H ₇	Н	0	S	i-C ₃ H ₇
	CH ₃	OCH ₃	Н	i-C ₃ H ₇	Н	0	S	i-C ₃ H ₇
	CH ₃	OCH ₃	H	C₄H ₉	Н	0	S	i-C ₃ H ₇
	CH ₃	OCH ₃	Н	i-C ₄ H ₉	Н	0	S	i-C ₃ H ₇
	CH ₃	OCH ₃	Н	s-C ₄ H ₉	Н	0	S	i-C ₃ H ₇
	CH ₃	OCH ₃	H	t-C ₄ H ₉	H	0	s	i-C ₃ H ₇
	CH ₃	OCH ₃	Н	CH ₃	CH ₃	0	S	i-C ₃ H ₇
	CH ₃	OCH ₃	Н	C ₂ H ₅	CH ₃	0	S	i-C ₃ H ₇
	CH ₃	OCH ₃	Н	С ₃ Н _{7.}	CH ₃	0	S	i-C ₃ H ₇
	CH ₃	OCH ₃	Н	i-C ₃ H ₇	CH ₃	0	S	i-C ₃ H ₇
	CH ₃	OCH ₃	H	C ₄ H ₉	CH ₃	0	s	i-C ₃ H ₇
	CH ₃	OCH ₃	H	i-C ₄ H ₉	CH ₃	0	S	i-C ₃ H ₇
	CH ₃	OCH ₃	Н	s-C₄H ₉	CH ₃	0	S	i-C ₃ H ₇
	CH ₃	OCH ₃	Н	t-C ₄ H ₉	CH ₃	0	S	i-C ₃ H ₇
	CH ₃	OCH ₃	Н	C ₂ H ₅	C ₂ H ₅	0	S	i-C ₃ H ₇
	CH ₃	OCH ₃	Н	C ₃ H ₇	C ₃ H ₇	0	S	i-C ₃ H ₇
	CH ₃	OCH ₃	Н.	\triangle	CH ₃	0	S	i-C ₃ H ₇
	CH ₃	OCH ₃	Н		CH ₃	0	S	i-C ₃ H ₇
	CH ₃	OCH ₃	Н		CH ₃	0	S	i-C ₃ H ₇

Fortsetzun	g: Tabelle	<u>)</u>					
X	Y	Z	Α	В	L	M	R ²
CH ₃	Н	6-OCH ₃	CH ₃	Н	0	S	i-C ₃ H ₇
CH ₃	Н	6-OCH ₃	C ₂ H ₅	Н	0	S	i-C ₃ H ₇
CH ₃	Н	6-OCH ₃	C ₃ H ₇	Н	0	S	i-C ₃ H ₇
CH ₃	Н	6-OCH ₃	i-C ₃ H ₇	Н	0	S	i-C ₃ H ₇
CH ₃	Н	6-OCH ₃	C₄H ₉	Н	0	S	i-C ₃ H ₇
CH ₃	H	6-OCH ₃	i-C ₄ H ₉	Н	0	s	i-C ₃ H ₇
CH ₃	Н	6-OCH ₃	s-C ₄ H ₉	Н	0	S	i-C ₃ H ₇
CH ₃	Н	6-OCH ₃	t-C₄H ₉	Н	0	S	i-C ₃ H ₇
CH ₃	Н	6-OCH ₃	CH ₃	CH ₃	0	S	i-C ₃ H ₇
CH ₃	Н	6-OCH ₃	C ₂ H ₅	CH ₃	0	S	i-C ₃ H ₇
CH ₃	Н	6-OCH ₃	C ₃ H ₇	CH ₃	О	S	i-C ₃ H ₇
CH ₃	Н	6-OCH ₃	i-C ₃ H ₇	CH ₃	0	S	i-C ₃ H ₇
CH ₃	н	6-OCH ₃	C ₄ H ₉	CH ₃	0	S	i-C ₃ H ₇
CH ₃	Н	6-OCH ₃	i-C₄H ₉	CH ₃	0	S	i-C ₃ H ₇
CH ₃	Н	6-OCH ₃	s-C ₄ H ₉	CH ₃	0	S	i-C ₃ H ₇
CH ₃	н	6-OCH ₃	t-C ₄ H ₉	CH ₃	0	S	i-C ₃ H ₇
CH ₃	Н	6-OCH ₃	C ₂ H ₅	C ₂ H ₅	0	S	i-C ₃ H ₇
CH ₃	Н	6-OCH ₃	C ₃ H ₇	C ₃ H ₇	0	S	i-C ₃ H ₇
CH ₃	Н	6-OCH ₃	\triangle	CH ₃	0	S	i-C ₃ H ₇
CH ₃	Н	6-OCH ₃		CH ₃	0	S	i-C ₃ H ₇
CH ₃	Н	6-OCH ₃	<u></u>	CH ₃	0	S	i-C ₃ H ₇

Fortsetzung	g: Tabelle	3					
· X	Y	Z	Α	В	L	M	R ² ·······
CH ₃	CH ₃	6-OCH ₃	CH ₃	· H	0	S	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	C ₂ H ₅	Н	0	S.	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	C ₃ H ₇	Н	0	S	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	i-C ₃ H ₇	Н	0.	S	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	C ₄ H ₉	Н	0	S	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	i-C ₄ H ₉	Н	0	S	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	s-C ₄ H ₉	Н	0	S	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	t-C ₄ H ₉	Н	0	S	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	CH ₃	CH ₃	0	S	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	C ₂ H ₅	CH ₃	0	S	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	C ₃ H ₇	CH ₃	0	S	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	i-C ₃ H ₇	CH ₃	0	S	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	C₄H ₉	CH ₃	0	S	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	i-C ₄ H ₉	CH ₃	0	S	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	s-C ₄ H ₉	CH ₃	0	S	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	t-C ₄ H ₉	CH ₃	0	S	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	C ₂ H ₅	C ₂ H ₅	0	S	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	C ₃ H ₇	C ₃ H ₇	0	S	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	\triangle	CH ₃	0	S	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃		CH ₃	0	S	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	\bigcirc	CH ₃	0	S	i-C ₃ H ₇

Fortsetzun	g. Tavene	.) 					
х	Y	Z	Α	В	L.	М	R ²
CH ₃	OCH ₃	6-CH ₃	CH ₃	Н	0	s	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	C ₂ H ₅	Н	Ó	s	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	C ₃ H ₇	Н	0	S	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	i-C ₃ H ₇	Н	0	S	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	C ₄ H ₉	Н	0	s	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	i-C ₄ H ₉	Н	0	S	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	s-C ₄ H ₉	Н	0	S	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	t-C ₄ H ₉	Н	0	s	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	CH ₃	CH ₃	0	S	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	C ₂ H ₅	CH ₃	0	Ś	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	C ₃ H ₇	CH ₃	0	S	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	i-C ₃ H ₇	CH ₃	0	S	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	C ₄ H ₉	CH ₃	0	S	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	i-C ₄ H ₉	CH ₃	0	S	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	s-C ₄ H ₉	CH ₃	0	S	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	t-C ₄ H ₉	CH ₃	0	S	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	C ₂ H ₅	C ₂ H ₅	0	S	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	C ₃ H ₇	C ₃ H ₇	0	S	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	\triangle	CH ₃	0	S	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃		CH ₃	0	S	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	\bigcirc	CH ₃	0	S	i-C ₃ H ₇

Fortsetzung: Tabelle 3

X.	Y	Z	A	The state of the s			1 _ 2
 		-		В	L	М	R ²
CH ₃	OCH ₃	H	-((CH ₂) ₂ -	0	S	i-C ₃ H ₇
CH ₃	OCH ₃	Н	-(0	-(CH ₂) ₄ -		S	i-C ₃ H ₇
CH ₃	OCH ₃	Н	-(0	CH ₂) ₅ -	0	S	i-C ₃ H ₇
CH ₃	OCH ₃	Н	-(0	CH ₂) ₆ -	0	s	i-C ₃ H ₇
CH ₃	OCH ₃	Н	- (C	CH ₂) ₇ -	0	s	i-C ₃ H ₇
CH ₃	OCH ₃	Н	-(CH ₂) ₂ ·	-O-(CH ₂) ₂ -	0	S	i-C ₃ H ₇
CH ₃	OCH ₃	Н	-(CH ₂) ₂	-S-(CH ₂) ₂ -	0	S	i-C ₃ H ₇
CH ₃	OCH ₃	Н	-CH ₂ -CH	CH ₃ -(CH ₂) ₃ -	0	S	i-C ₃ H ₇
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -CH	ICH ₃ -(CH ₂) ₂ -	0	S	i-C ₃ H ₇
CH ₃	OCH ₃	н	-(CH ₂) ₂ -CH	(C ₂ H ₅ -(CH ₂) ₂ -	0	S	i-C ₃ H ₇
CH ₃	OCH ₃	н	-(CH ₂) ₂ -CH	C ₃ H ₇ -(CH ₂) ₂ -	0	S	i-C ₃ H ₇
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -CHi	-C ₃ H ₇ -(CH ₂) ₂ -	0	S	i-C ₃ H ₇
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -CH	OCH ₃ -(CH ₂) ₂ -	0	S	i-C ₃ H ₇
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -CH(OC ₂ H ₅ -(CH ₂) ₂ -	0	S	i-C ₃ H ₇
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -CHC	OC ₃ H ₇ -(CH ₂) ₂ -	0	S	i-C ₃ H ₇
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -CHi-	OC ₃ H ₇ -(CH ₂) ₂ -	0	S	i-C ₃ H ₇
CH ₃	OCH ₃	н	-(CH ₂) ₂ -C(C	CH ₃) ₂ -(CH ₂) ₂ -	0	S	i-C ₃ H ₇
CH ₃	OCH ₃	Н	-CH ₂ -(CHC	(H ₃) ₂ -(CH ₂) ₂ -	0	S	i-C ₃ H ₇
CH₃	OCH ₃	Н	-сн ₂ -сн(CH ₂) ₂ —CH—	0	S	i-C ₃ H ₇
CH ₃	OCH ₃	Н	-сн <u>-</u> -сн	CHCH	0	S	i-C ₃ H ₇
CH ₃	OCH ₃	Н	-сн ₂ -сн- (сн ₂) ₃ -	1 1	0	S	i-C ₃ H ₇

Fortsetzung: Tabelle 3

х	Y	Z	A	В	L	М	R ²
CH ₃	Н	6-OCH ₃	-(CH	2)2-	0	S	i-C ₃ H ₇
CH ₃	Н	6-OCH ₃	-(CH	2)4-	0	S	i-C ₃ H ₇
CH ₃	Н	6-OCH ₃	-(CH	2)5-	0	S	i-C ₃ H ₇
CH ₃	Н	6-OCH ₃	-(CH	2)6-	0	S	i-C ₃ H ₇
CH ₃	H	6-OCH ₃	-(CH	2)7-	0	s	i-C ₃ H ₇
CH ₃	Н	6-OCH ₃	-(CH ₂) ₂ -O	-(CH ₂) ₂ -	0	s	i-C ₃ H ₇
CH ₃	Н	6-OCH ₃	-(CH ₂) ₂ -S	-(CH ₂) ₂ -	0	s	i-C ₃ H ₇
CH ₃	Н	6-OCH ₃	-CH ₂ -CHCH	I ₃ -(CH ₂) ₃ -	0	S	i-C ₃ H ₇
CH ₃	H	6-OCH ₃	-(CH ₂) ₂ -CHC	H ₃ -(CH ₂) ₂ -	0	s	i-C ₃ H ₇
CH ₃	H	6-OCH ₃	-(CH ₂) ₂ -CHC	₂ H ₅ -(CH ₂) ₂ -	0	S	i-C ₃ H ₇
CH ₃	H	6-OCH ₃	-(CH ₂) ₂ -CHC	H ₇ -(CH ₂) ₂ -	0	S	i-C ₃ H ₇
CH ₃	Н	6-OCH ₃	-(CH ₂) ₂ -CHi-C	₃ H ₇ -(CH ₂) ₂ -	0	S	i-C ₃ H ₇
CH ₃	Н	6-OCH ₃	-(CH ₂) ₂ -CHO(CH ₃ -(CH ₂) ₂ -	0	S	i-C ₃ H ₇
CH ₃	Н	6-OCH ₃	-(CH ₂) ₂ -CHOC	¹ ₂ H ₅ -(CH ₂) ₂ -	0	S	i-C ₃ H ₇
CH ₃	Н	6-OCH ₃	-(CH ₂) ₂ -CHOC	² ₃ H ₇ -(CH ₂) ₂ -	0	S	i-C ₃ H ₇
CH ₃	Н	6-OCH ₃	-(CH ₂) ₂ -CHi-O	C ₃ H ₇ -(CH ₂) ₂ -	0	S	i-C ₃ H ₇
CH ₃	Н	6-OCH₃	-(CH ₂) ₂ -C(CH	(3) ₂ -(CH ₂) ₂ -	0	S	i-C ₃ H ₇
CH ₃	Н	6-OCH ₃	-CH ₂ -(CHCH	₃) ₂ -(CH ₂) ₂ -	0	S	i-C ₃ H ₇
CH ₃	Н	6-OCH ₃	-CH2-CH-(C	H ₂) ₂ —CH—	0	S	i-C ₃ H ₇
CH ₃	Н	6-OCH ₃	-сн ₂ -сн-	СН-СН ₂ -	0	S	i-C ₃ H ₇
CH ₃	Н	6-OCH ₃	-сн ₂ -снс - 	CH(CH ₂) ₂	0	S	i-C ₃ H ₇

X	ung: Tabe	Z	A·	В	L:	·M	R ² .
CH ₃	CH ₃	6-OCH ₃	-(CH	(₂) ₂ -	0	S	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	-(CH	2)4-	0	s	i-C ₃ H ₇
CH ₃	CH ₃ ·	6-OCH ₃	-(CH	2)5-	0	S	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	-(CH	2)6-	0 -	S	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	-(CH	2)7-	0	s	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -O	-(CH ₂) ₂ -	0	S	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -S	-(CH ₂) ₂ -	0	S	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	-CH ₂ -CHCF	H ₃ -(CH ₂) ₃ -	0	S	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHC	H ₃ -(CH ₂) ₂ -	0	S	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHC	₂ H ₅ -(CH ₂) ₂ -	0	S	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHC	₃ H ₇ -(CH ₂) ₂ -	0	S	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHi-C	C ₃ H ₇ -(CH ₂) ₂ -	0	S	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHO	CH ₃ -(CH ₂) ₂ -	0	s	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHOC	C ₂ H ₅ -(CH ₂) ₂ -	0	S	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHOC	C ₃ H ₇ -(CH ₂) ₂ -	0	S	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHi-O	C ₃ H ₇ -(CH ₂) ₂ -	0	S	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -C(CH	I ₃) ₂ -(CH ₂) ₂ -	0	S	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	-CH ₂ -(CHCH	₃) ₂ -(CH ₂) ₂ -	0	S	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	-CH2-CH-(C	CH ₂) ₂ —CH—	0	S	i-C₃H ₇
CH ₃	CH ₃	6-OCH ₃	-сн ₂ -сн	_	0	S	i-C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃	-сн ₂ -сн		0	S	i-C₃H ₇

X	Y	Z	A	В	L	M	R ²
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂) -	0	S	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₄ -		0	S	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	-(CH ₂),	-	0	s	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₆	-	0	S	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₇	<u>-</u>	0	S	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -O-(0	CH ₂) ₂ -	0	s	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -S-(C	CH ₂) ₂ -	0	S	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	-CH ₂ -CHCH ₃ -	(CH ₂) ₃ -	0	S	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHCH ₃		0	S	i-C ₃ H ₇
СН3	OCH ₃	6-CH₃	-(CH ₂) ₂ -CHC ₂ H		0	S	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHC ₃ H		0	S	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHi-C ₃ H		0	S	i-C ₃ H ₇
CH₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHOCH		0	S	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHOC ₂ H		0	S	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHOC ₃ H		0	S	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHi-OC ₃ 1		0	S	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -C(CH ₃) ₂		0	s	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	-CH ₂ -(CHCH ₃) ₂		0	S	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	-CH₂-CH-(CH	I ₂) ₂ —CH—	0	S	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	-CH₂-CHCH ₂	CH-CH ₂ -	0	S	i-C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	-СН ₂ СНСН	1-(CH ₂) ₂ -	0	S	i-C ₃ H ₇

Water State

	. •		- 89 -				
Fortsetzun	g: Tabelle 3						
X	Y	Z ·	A	В	L	M	R ²
CH ₃	OCH ₃	Н	CH ₃	Н	0	0	s-C ₄ I
CH ₃	OCH ₃	Н	C ₂ H ₅	Н	0	0	s-C ₄ I
CH ₃	OCH ₃	Н	C ₃ H ₇	Н	0	0	s-C ₄ l
CH ₃	OCH ₃	Н	i-C ₃ H ₇	Н	0	0	s-C ₄ I
CH ₃	OCH ₃	Н	C ₄ H ₉	Н	0	0	s-C ₄ I
CH ₃	OCH ₃	Н	i-C ₄ H ₉	Н	0	0	s-C ₄ I
CH ₃	OCH ₃	Н	s-C ₄ H ₉	Н	0	0	s-C ₄ I
CH ₃	OCH ₃	Н	t-C ₄ H ₉	Н	0	0	s-C₄I
CH ₃	OCH ₃	Н	CH ₃	CH ₃	0	0	s-C₄I
CH ₃	OCH ₃	Н	C ₂ H ₅	CH ₃	0	0	s-C ₄ F
CH ₃	OCH ₃	Н	C ₃ H ₇	CH ₃	0	0	s-C ₄ F
CH ₃	OCH ₃	Н	i-C ₃ H ₇	CH ₃	0	0	s-C ₄ F
CH ₃	OCH ₃	Н	C₄H ₉	CH ₃	0	0	s-C ₄ F
CH ₃	OCH ₃	Н	i-C ₄ H ₉	CH ₃	0	0	s-C ₄ H
CH ₃	OCH ₃	Н	s-C ₄ H ₉	CH ₃	0	0	s-C ₄ F
CH ₃	OCH ₃	Н	t-C ₄ H ₉	CH ₃	0	0	s-C ₄ H
CH ₃	OCH ₃	Н	C ₂ H ₅	C ₂ H ₅	0	0	s-C ₄ H
CH ₃	OCH ₃	Н	C ₃ H ₇	C ₃ H ₇	0	0	s-C ₄ H
CH ₃	OCH ₃	Н	\triangle	CH ₃	0	0	s-C ₄ H
CH ₃	OCH ₃	Н		CH ₃	0	0	s-C₄H
CH ₃	OCH ₃	Н	<u> </u>	CH ₃	0	0	s-C ₄ H

	. Tabelle .		T	T	-	7	
Х	Y	Z.	Α	В	.Ľ	М	R ²
CH ₃	Н	6-OCH ₃	CH ₃	Н	0	0	s-C ₄ H ₉
CH ₃	н	6-OCH ₃	C ₂ H ₅	Н	0	0	s-C ₄ H ₉
CH ₃	Н	6-OCH ₃	C₃H ₇	Н	0	0	s-C ₄ H ₉
CH ₃	Н	6-OCH ₃	i-C ₃ H ₇	Н	Ο.	0	s-C ₄ H ₉
CH ₃	Н	6-OCH ₃	C ₄ H ₉	Н	0	0	s-C ₄ H ₉
CH ₃	Н	6-OCH ₃	i-C ₄ H ₉	Н	0	0	s-C₄H ₉
CH ₃	Н	6-OCH ₃	s-C ₄ H ₉	Н	0	0	s-C ₄ H ₉
CH ₃	Н	6-OCH ₃	t-C ₄ H ₉	Н	0	0	s-C ₄ H ₉
CH ₃	H	6-OCH ₃	CH ₃	CH ₃	0	0	s-C ₄ H ₉
CH ₃	Н	6-OCH ₃	C ₂ H ₅	CH ₃	0	0	s-C ₄ H ₉
CH ₃	Н	6-OCH ₃	C ₃ H ₇	CH ₃	0	0	s-C ₄ H ₉
CH ₃	Н	6-OCH ₃	i-C ₃ H ₇	CH ₃	0	0	s-C ₄ H ₉
CH ₃	Н	6-OCH ₃	C ₄ H ₉	CH ₃	0	0	s-C ₄ H ₉
CH ₃	Н	6-OCH ₃	i-C ₄ H ₉	CH ₃	0	0	s-C ₄ H ₉
CH ₃	н	6-OCH ₃	s-C ₄ H ₉	CH ₃	0	0	s-C ₄ H ₉
CH ₃	H	6-OCH ₃	t-C ₄ H ₉	CH ₃	0	0	s-C ₄ H ₉
CH ₃	Н	6-OCH ₃	C ₂ H ₅	C ₂ H ₅	0	0	s-C ₄ H ₉
CH ₃	Н	6-OCH ₃	C ₃ H ₇	C ₃ H ₇	0	0	s-C ₄ H ₉
CH ₃	Н	6-OCH ₃	_	CH ₃	0	0	s-C ₄ H ₉
CH ₃	Н	6-OCH ₃	\bigcirc	CH ₃	0	0	s-C ₄ H ₉
СН₃	Н	6-OCH ₃	\bigcirc	CH ₃	0	0	s-C ₄ H ₉

X	Y	z	Α	В	L	M	R ²
CH ₃	CH ₃	6-OCH ₃	CH ₃	Н	0	0	s-C ₄ H ₉
CH ₃	CH ₃	6-OCH ₃	C ₂ H ₅	Н	0	0	s-C ₄ H ₉
CH ₃	CH ₃	6-OCH ₃	C ₃ H ₇	Н	0	0	s-C ₄ H ₉
CH ₃	CH ₃	6-OCH ₃	i-C ₃ H ₇	Н	0	0	s-C ₄ H ₉
CH ₃	CH ₃	6-OCH ₃	C ₄ H ₉	Н	О	0	s-C ₄ H ₉
CH ₃	CH ₃	6-OCH ₃	i-C ₄ H ₉	Н	0	0	s-C ₄ H ₉
CH ₃	CH ₃	6-OCH ₃	s-C ₄ H ₉	Н	0	0	s-C ₄ H ₉
CH ₃	CH ₃	6-OCH ₃	t-C ₄ H ₉	Н	0	0	s-C ₄ H ₉
CH ₃	CH ₃	6-OCH ₃	CH ₃	CH ₃	0	0	s-C ₄ H ₉
CH ₃	CH ₃	6-OCH ₃	C ₂ H ₅	CH ₃	0	0	s-C ₄ H ₉
CH ₃	CH ₃	6-OCH ₃	C ₃ H ₇	CH ₃	0	0	s-C ₄ H ₉
CH ₃	CH ₃	6-OCH ₃	i-C ₃ H ₇	CH ₃	0	0	s-C ₄ H ₉
CH ₃	CH ₃	6-OCH ₃	C ₄ H ₉	CH ₃	0	0	s-C ₄ H ₉
CH ₃	CH ₃	6-OCH ₃	i-C ₄ H ₉	CH ₃	0	0	s-C ₄ H ₉
CH ₃	CH ₃	6-OCH ₃	s-C ₄ H ₉	CH ₃	0	0	s-C ₄ H ₉
CH ₃	CH ₃	6-OCH ₃	t-C ₄ H ₉	CH ₃	0	0	s-C ₄ H ₉
CH ₃	CH ₃	6-OCH ₃	C ₂ H ₅	C ₂ H ₅	0	0	s-C ₄ H ₉
CH ₃	CH ₃	6-OCH ₃	C ₃ H ₇	C ₃ H ₇	0	0	s-C ₄ H ₉
CH ₃	CH ₃	6-OCH ₃	\triangle	CH ₃	0	0	s-C ₄ H ₉
CH ₃	CH ₃	6-OCH ₃		CH ₃	0	0	s-C ₄ H ₉
CH ₃	CH ₃	6-OCH ₃	\bigcirc	CH ₃	0	0	s-C ₄ H ₉

Fortsetzung: Tabelle 3										
X	Y.	Z .	A	В	L	M	R ²			
CH ₃	OCH ₃	6-CH ₃	CH ₃	Н	0	0	s-C ₄ H ₉			
CH ₃	OCH ₃	6-CH ₃	C ₂ H ₅	Н	0	0	s-C ₄ H ₉			
CH ₃	OCH ₃	6-CH ₃	C ₃ H ₇	Н	0	0	s-C ₄ H ₉			
CH ₃	OCH ₃	6-CH ₃	i-C ₃ H ₇	Н	0	0	s-C ₄ H ₉			
CH ₃	OCH ₃	6-CH ₃	C ₄ H ₉	Н	0	0	s-C ₄ H ₉			
CH ₃	OCH ₃	6-CH ₃	i-C ₄ H ₉	Н	0	0	s-C ₄ H ₉			
CH ₃	OCH ₃	6-CH ₃	s-C ₄ H ₉	Н	0	0	s-C ₄ H ₉			
CH ₃	OCH ₃	6-CH ₃	t-C ₄ H ₉	Н	0	0	s-C ₄ H ₉			
CH ₃	OCH ₃	6-CH ₃	CH ₃	CH ₃	0	0	s-C ₄ H ₉			
CH ₃	OCH ₃	6-CH ₃	C ₂ H ₅	CH ₃	0	0	s-C ₄ H ₉			
CH ₃	OCH ₃	6-CH ₃	C ₃ H ₇	CH ₃	0	0	s-C ₄ H ₉			
CH ₃	OCH ₃	6-CH ₃	i-C ₃ H ₇	CH ₃	0	0	s-C ₄ H ₉			
CH ₃	OCH ₃	6-CH ₃	C ₄ H ₉	CH ₃	0	0	s-C ₄ H ₉			
CH ₃	OCH ₃	6-CH ₃	i-C₄H ₉	CH ₃	0	0	s-C ₄ H ₉			
CH ₃	OCH ₃	6-CH ₃	s-C ₄ H ₉	CH ₃	0	0	s-C ₄ H ₉			
CH ₃	OCH ₃	6-CH ₃	t-C ₄ H ₉	CH ₃	0	0	s-C ₄ H ₉			
CH ₃	OCH ₃	6-CH ₃	C ₂ H ₅	C ₂ H ₅	0	0	s-C ₄ H ₉			
CH ₃	OCH ₃	6-CH ₃	C ₃ H ₇	C ₃ H ₇	0	0	s-C ₄ H ₉			
CH ₃	OCH ₃	6-CH ₃	\triangle	CH ₃	0	0	s-C ₄ H ₉			
CH ₃	OCH ₃	6-CH ₃		CH ₃	0	0	s-C ₄ H ₉			
CH ₃	OCH ₃	6-CH ₃	<u></u>	CH ₃	0	0	s-C ₄ H ₉			

Fortsetzung: Tabelle 3

X	Y	Z	A	В	L	М	R ²
CH ₃	OCH ₃	Н	-(0	CH ₂) ₂ -	0	0	s-C ₄ H ₉
CH ₃	OCH ₃	Н	-(0	CH ₂) ₄ -	0	. О	s-C ₄ H ₉
CH ₃	OCH ₃	Н	-(0	CH ₂) ₅ -	0	0	s-C ₄ H ₉
CH ₃	OCH ₃	H	-(0	CH ₂) ₆ -	0	0	s-C ₄ H ₉
CH ₃	OCH ₃	H	-(C	CH ₂) ₇ -	0	0	s-C ₄ H ₉
CH ₃	OCH ₃	Н	-(CH ₂) ₂	-O-(CH ₂) ₂ -	0	0	s-C ₄ H ₉
CH ₃	OCH ₃	H	-(CH ₂) ₂	-S-(CH ₂) ₂ -	0	0	s-C ₄ H ₉
CH ₃	OCH ₃	Н	-CH ₂ -CH	CH ₃ -(CH ₂) ₃ -	0	0	s-C ₄ H ₉
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -CH	HCH ₃ -(CH ₂) ₂ -	0	0	s-C ₄ H ₉
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -CH	IC ₂ H ₅ -(CH ₂) ₂ -	0	0	s-C ₄ H ₉
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -CH	IC ₃ H ₇ -(CH ₂) ₂ -	0	0	s-C ₄ H ₉
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -CHi	-C ₃ H ₇ -(CH ₂) ₂ -	0	0	s-C ₄ H ₉
CH ₃	OCH ₃	H	-(CH ₂) ₂ -CH	OCH ₃ -(CH ₂) ₂ -	0	0	s-C ₄ H ₉
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -CH(OC ₂ H ₅ -(CH ₂) ₂ -	0	0	s-C ₄ H ₉
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -CH(OC ₃ H ₇ -(CH ₂) ₂ -	0	0	s-C ₄ H ₉
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -CHi-	OC ₃ H ₇ -(CH ₂) ₂ -	0	0	s-C ₄ H ₉
CH ₃	OCH ₃	H	-(CH ₂) ₂ -C(0	CH ₃) ₂ -(CH ₂) ₂ -	0	0	s-C ₄ H ₉
CH ₃	OCH ₃	Н	-CH ₂ -(CHC	CH ₃) ₂ -(CH ₂) ₂ -	0	0	s-C ₄ H ₉
CH ₃	OCH ₃	Н	-сн <u>-</u> -сн-	(CH ₂) ₂ -CH-	0	0	s-C ₄ H ₉
CH ₃	OCH ₃	Н	-сн ₂ сн		0	0	s-C ₄ H ₉
CH ₃	OCH ₃	Н	-CH ₂ CH	-CH(CH ₂) ₂	0	0	s-C ₄ H ₉

Fortsetzung: Tabelle 3

X	Y	Z · · ·	A B	L	M	R ²
CH ₃	Н	6-OCH ₃	-(CH ₂) ₂ -	0	0	s-C ₄ H ₉
CH ₃	Н	6-OCH ₃	-(CH ₂) ₄ -	0	0	s-C ₄ H ₉
CH ₃	H	6-OCH ₃	-(CH ₂) ₅ -	0	0	s-C ₄ H ₉
CH ₃	Н	6-OCH ₃	-(CH ₂) ₆ -	Ó	0	s-C ₄ H ₉
CH ₃	Н	6-OCH ₃	-(CH ₂) ₇ -	0	0	s-C ₄ H ₉
CH ₃	Н	6-OCH ₃	-(CH ₂) ₂ -O-(CH ₂) ₂ -	0	0	s-C ₄ H ₉
CH ₃	Н	6-OCH ₃	-(CH ₂) ₂ -S-(CH ₂) ₂ -	0	0	s-C ₄ H ₉
CH ₃	Н	6-OCH ₃	-CH ₂ -CHCH ₃ -(CH ₂) ₃ -	0	0	s-C ₄ H ₉
CH ₃	Н	6-OCH ₃	-(CH ₂) ₂ -CHCH ₃ -(CH ₂) ₂ -	0	0	s-C ₄ H ₉
CH ₃	Н	6-OCH ₃	-(CH ₂) ₂ -CHC ₂ H ₅ -(CH ₂) ₂ -	0	0	s-C ₄ H ₉
CH ₃	Н	6-OCH ₃	-(CH ₂) ₂ -CHC ₃ H ₇ -(CH ₂) ₂ -	0	0	s-C ₄ H ₉
CH ₃	Н	6-OCH ₃	-(CH ₂) ₂ -CHi-C ₃ H ₇ -(CH ₂) ₂ -	0	0	s-C ₄ H ₉
CH ₃	Н	6-OCH ₃	-(CH ₂) ₂ -CHOCH ₃ -(CH ₂) ₂ -	. 0	0	s-C ₄ H ₉
CH ₃	н	6-OCH ₃	-(CH ₂) ₂ -CHOC ₂ H ₅ -(CH ₂) ₂ -	0	0	s-C ₄ H ₉
CH ₃	Н	6-OCH ₃	-(CH ₂) ₂ -CHOC ₃ H ₇ -(CH ₂) ₂ -	0	0	s-C ₄ H ₉
CH ₃	Н	6-OCH ₃	-(CH ₂) ₂ -CHi-OC ₃ H ₇ -(CH ₂) ₂	- 0	0	s-C ₄ H ₉
CH ₃	Н	6-OCH ₃	-(CH ₂) ₂ -C(CH ₃) ₂ -(CH ₂) ₂ -	0	0	s-C ₄ H ₉
CH ₃	Н	6-OCH ₃	-CH ₂ -(CHCH ₃) ₂ -(CH ₂) ₂ -	0	0	s-C ₄ H ₉
CH ₃	Н	6-OCH ₃	-CH ₂ -CH(CH ₂) ₂ -CH		0	s-C ₄ H ₉
CH ₃	Н	6-OCH ₃	-CH ₂ -CH-CH ₂ -		0	s-C ₄ H ₉
CH ₃	Н	6-OCH ₃	-CH ₂ -CH-(CH ₂) ₂ -	О	0	s-C ₄ H ₉

X	Y Y	Z	Α	В	L	M	R ²
CH ₃	CH ₃	6-OCH ₃	-(CH	2)2-	0	0	s-C ₄ H ₉
CH ₃	CH ₃	6-OCH ₃	-(CH	2)4-	0	0	s-C ₄ H ₉
CH ₃	CH ₃	6-OCH ₃	-(CH	2)5-	0	0	s-C ₄ H ₉
CH ₃	CH ₃	6-OCH ₃	-(CH	2)6-	0	0	s-C ₄ H ₉
CH ₃	CH ₃	6-OCH ₃	-(CH	2)7-	0	0	s-C ₄ H ₉
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -O	-(CH ₂) ₂ -	0	0	s-C ₄ H ₉
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -S	-(CH ₂) ₂ -	0	0	s-C ₄ H ₉
CH ₃	CH ₃	6-OCH ₃	-CH ₂ -CHCF	I ₃ -(CH ₂) ₃ -	0	0	s-C₄H ₉
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHC	H ₃ -(CH ₂) ₂ -	0	0	s-C ₄ H ₉
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHC	₂ H ₅ -(CH ₂) ₂ -	0	0	s-C ₄ H ₉
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHC	H ₇ -(CH ₂) ₂ -	0	0	s-C ₄ H ₉
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHi-C	H ₃ H ₇ -(CH ₂) ₂ -	0	0	s-C ₄ H ₉
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHO	CH ₃ -(CH ₂) ₂ -	0	0	s-C ₄ H ₉
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHOC	C ₂ H ₅ -(CH ₂) ₂ -	0	0	s-C ₄ H ₉
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHOC	₃ H ₇ -(CH ₂) ₂ -	0	0	s-C ₄ H ₉
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHi-O	C ₃ H ₇ -(CH ₂) ₂ -	0	0	s-C ₄ H ₉
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -C(CH	₃) ₂ -(CH ₂) ₂ -	0	0	s-C ₄ H ₉
CH ₃	CH ₃	6-OCH ₃	-CH ₂ -(CHCH	₃) ₂ -(CH ₂) ₂ -	0	0	s-C ₄ H ₉
CH ₃	CH ₃	6-OCH ₃	-CH ₂ -CH(CH ₂) ₂ -CH		0	0	s-C ₄ H ₉
CH ₃	CH ₃	6-OCH ₃	-CH ₂ -CH-CH ₂ -		0	0	s-C ₄ H ₉
CH ₃	CH ₃	6-OCH ₃	-CH ₂ -CH(CH ₂) ₃ -	CH—(CH ₂) ₂ —	0	0	s-C ₄ H ₉

Fortsetzung: T	abelle 3	3
----------------	----------	---

Х	Y	Z	A	В	L	M	R ²
CH ₃	OCH ₃	6-CH ₃	-(CH ₂)	₂ -	0	0	s-C ₄ H ₉
CH ₃	OCH ₃	6-CH ₃	-(CH ₂)	·	0	0	s-C ₄ H ₉
CH ₃	OCH ₃	6-CH ₃	-(CH ₂)	·	0	0	s-C ₄ H ₉
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₆		0	0	s-C ₄ H ₉
CH ₃	OCH ₃	6-CH ₃	-(CH ₂)-	,-	0	0	s-C ₄ H ₉
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -O-(CH ₂) ₂ -	0	0	s-C ₄ H ₉
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -S-(C	CH ₂) ₂ -	0	0	s-C ₄ H ₉
CH ₃	OCH ₃	6-CH₃	-CH ₂ -CHCH ₃ -	(CH ₂) ₃ -	0	0	s-C ₄ H ₉
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHCH	3-(CH ₂) ₂ -	0	0	s-C ₄ H ₉
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHC ₂ H		0	0	s-C ₄ H ₉
CH ₃	OCH ₃	6-CH₃	-(CH ₂) ₂ -CHC ₃ H	7-(CH ₂) ₂ -	0	0	s-C ₄ H ₉
CH₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHi-C ₃ F	H ₇ -(CH ₂) ₂ -	0	0	s-C ₄ H ₉
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHOCH		0	0	s-C ₄ H ₉
CH ₃	OCH₃	6-CH ₃	-(CH ₂) ₂ -CHOC ₂ H	H ₅ -(CH ₂) ₂ -	0	0	s-C ₄ H ₉
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHOC ₃ F	H ₇ -(CH ₂) ₂ -	0	0	s-C ₄ H ₉
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHi-OC ₃		0	0	s-C₄H ₉
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -C(CH ₃)	₂ -(CH ₂) ₂ -	0	0	s-C ₄ H ₉
CH ₃	OCH ₃	6-CH₃	-CH ₂ -(CHCH ₃) ₂	-(CH ₂) ₂ -	0	0	s-C ₄ H ₉
CH₃	OCH ₃	6-CH ₃	-CH ₂ -CH-(CH ₂) ₂ -CH-		0	0	s-C ₄ H ₉
CH ₃	OCH ₃	6-CH ₃	-CH ₂ -CH-CH ₂ -CH-CH ₂		0	0	s-C ₄ H ₉
CH ₃	OCH ₃	6-CH ₃	-сн ₂ -снсі _{(СН₂)3} -	(CH ₂) ₂	0	0	s-C ₄ H ₉

Im einzelnen seien außer den bei den Herstellungsbeispielen genannten Verbindungen die folgenden Verbindungen der Formel (Id) genannt:

Tabelle 4:

$$B \xrightarrow{A} H$$
 $B \xrightarrow{N} O$
 $R^3-SO_2 O \xrightarrow{Z} (Id)$

	Y	Z	A	В	R ³
CH ₃	OCH ₃	Н	CH ₃	Н	CH ₃
CH ₃	OCH ₃	Н	C ₂ H ₅	Н	CH ₃
CH ₃	OCH ₃	Н	C ₃ H ₇	Н	CH ₃
CH ₃	OCH ₃	Н	i-C ₃ H ₇	Н	CH ₃
CH ₃	OCH ₃	Н	C ₄ H ₉	H	CH ₃
CH ₃	OCH ₃	Н	i-C ₄ H ₉	Н	CH ₃
CH ₃	OCH ₃	Н	s-C ₄ H ₉	Н	CH ₃
CH ₃	OCH ₃	H	t-C ₄ H ₉	Н	CH ₃
CH ₃	OCH ₃	H	CH ₃	CH ₃	CH ₃
CH ₃	OCH ₃	Н	C ₂ H ₅	CH ₃	CH ₃
CH ₃	OCH ₃	Н	C ₃ H ₇	CH ₃	CH ₃
CH ₃	OCH ₃	Н	i-C ₃ H ₇	CH ₃	CH ₃
CH ₃	OCH ₃	н	C₄H ₉	CH ₃	CH ₃
CH ₃	OCH ₃	Н	i-C ₄ H ₉	CH ₃	CH ₃
CH ₃	OCH ₃	Н	s-C ₄ H ₉	CH ₃	CH ₃
CH ₃	OCH ₃	H	t-C₄H ₉	CH ₃	CH ₃
CH ₃	OCH ₃	Н	C ₂ H ₅	C ₂ H ₅	CH ₃
CH ₃	OCH ₃	Н	C ₃ H ₇	C_3H_7	CH ₃
CH ₃	OCH ₃	н		CH ₃	CH ₃
CH ₃	OCH ₃	Н		CH ₃	CH ₃
CH ₃	OCH ₃	Н	<u></u>	CH ₃	CH ₃

X	Υ	Z	Α	В	R ³ .
CH ₃	CH ₃	6-OCH ₃	CH ₃	Н	CH ₃
CH ₃	CH ₃	6-OCH ₃	C ₂ H ₅	H	CH ₃
CH ₃	CH ₃	6-OCH ₃	C ₃ H ₇	Н	CH ₃
CH ₃	CH ₃	6-OCH ₃	i-C ₃ H ₇	Н	CH ₃
CH ₃	CH ₃	6-OCH ₃	C ₄ H ₉	Н	CH ₃
CH ₃	CH ₃	6-OCH ₃	i-C ₄ H ₉	Н	CH ₃
СН3	CH ₃	6-OCH ₃	s-C ₄ H ₉	Н	CH ₃
CH ₃	CH ₃	6-OCH ₃	t-C ₄ H ₉	Н	CH ₃
CH ₃	CH ₃	6-OCH ₃	CH ₃	CH ₃	CH ₃
CH ₃	CH ₃	6-OCH₃	C ₂ H ₅	CH ₃	CH ₃
CH ₃	CH ₃	6-OCH ₃	C ₃ H ₇	CH ₃	CH ₃
CH ₃	CH ₃	6-OCH ₃	i-C ₃ H ₇	CH ₃	CH ₃
CH ₃	CH ₃	6-OCH ₃	C_4H_9	CH ₃	CH ₃
CH ₃	CH ₃	6-OCH ₃	i-C ₄ H ₉	CH ₃	CH ₃
CH ₃	CH ₃	6-OCH ₃	s-C ₄ H ₉	CH ₃	CH ₃
CH ₃	CH ₃	6-OCH ₃	t-C ₄ H ₉	CH ₃	CH ₃
CH ₃	CH ₃	6-OCH ₃	C ₂ H ₅	C ₂ H ₅	CH ₃
CH ₃	CH ₃	6-OCH ₃	C ₃ H ₇	C_3H_7	CH ₃
CH ₃	CH ₃	6-OCH ₃		CH ₃	CH ₃
CH ₃	CH ₃	6-OCH ₃		CH ₃	CH ₃
CH ₃	CH ₃	6-OCH ₃	<u></u>	CH ₃	CH ₃

X	Y ·	Z	A	В	R ³
CH ₃	OCH ₃	6-CH ₃			
			CH ₃	H	CH ₃
CH ₃	OCH ₃	6-CH ₃	C ₂ H ₅	H	CH ₃
CH ₃	OCH ₃	6-CH ₃	C ₃ H ₇	Н	CH ₃
CH ₃	OCH ₃	6-CH ₃	i-C ₃ H ₇	Н	CH ₃
CH ₃	OCH ₃	6-CH ₃	C₄H ₉	Н	CH ₃
CH ₃	OCH ₃	6-CH ₃	i-C ₄ H ₉	Н	CH ₃
CH ₃	OCH ₃	6-CH ₃	s-C ₄ H ₉	Н	CH ₃
CH ₃	OCH ₃	6-CH ₃	t-C ₄ H ₉	Н	CH ₃
CH ₃	OCH ₃	6-CH ₃	CH ₃	CH ₃	CH ₃
CH ₃	OCH ₃	6-CH ₃	C ₂ H ₅	CH ₃	CH ₃
CH ₃	OCH ₃	6-CH ₃	C ₃ H ₇	CH ₃	CH ₃
CH ₃	OCH ₃	6-CH ₃	i-C ₃ H ₇	CH ₃	CH ₃
CH ₃	OCH ₃	6-CH ₃	C ₄ H ₉	CH ₃	CH₃
CH ₃	OCH ₃	6-CH ₃	i-C ₄ H ₉	CH ₃	CH ₃
CH ₃	OCH ₃	6-CH ₃	s-C ₄ H ₉	CH ₃	CH ₃
CH ₃	OCH ₃	6-CH ₃	t-C₄H ₉	CH ₃	СН₃
CH ₃	OCH ₃	6-CH₃	C ₂ H ₅	C ₂ H ₅	CH ₃
CH ₃	OCH ₃	6-CH ₃	C ₃ H ₇	C_3H_7	CH ₃
CH ₃	OCH ₃	6-CH ₃		CH ₃	CH ₃
CH ₃	OCH ₃	6-CH ₃		CH ₃	CH ₃
CH ₃	OCH ₃	6-CH ₃	<u></u>	CH ₃	CH ₃

Fortsetzung: Tabelle 4

	· · · · ·				
Х	Y	Z	A	В	R ³
CH ₃	OCH ₃	Н	-(C)	H ₂) ₂ -	CH ₃
CH ₃	OCH ₃	H	-(Cl	H ₂) ₄ -	CH ₃
CH ₃	OCH ₃	Н	-(C)	H ₂) ₅ -	CH ₃
CH ₃	OCH ₃	Н	-(C)	H ₂) ₆ -	CH ₃
CH ₃	OCH ₃	Н	-(Cl	H ₂) ₇ -	CH ₃
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -(O-(CH ₂) ₂ -	CH ₃
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -	S-(CH ₂) ₂ -	CH ₃
CH ₃	OCH ₃	Н	-CH ₂ -CHC	CH ₃ -(CH ₂) ₃ -	CH ₃
CH ₃	OCH₃_	H	-(CH ₂) ₂ -CH	CH ₃ -(CH ₂) ₂ -	CH ₃
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -CH(C ₂ H ₅ -(CH ₂) ₂ -	CH ₃
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -CH(C ₃ H ₇ -(CH ₂) ₂ -	CH ₃
CH₃	OCH₃	H	-(CH ₂) ₂ -CHi-	C ₃ H ₇ -(CH ₂) ₂ -	CH ₃
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -CHC	OCH ₃ -(CH ₂) ₂ -	CH ₃
CH₃	OCH ₃	H	-(CH ₂) ₂ -CHC	C ₂ H ₅ -(CH ₂) ₂ -	CH ₃
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -CHO	C ₃ H ₇ -(CH ₂) ₂ -	CH ₃
CH ₃	OCH ₃	H	-(CH ₂) ₂ -CHi-(OC ₃ H ₇ -(CH ₂) ₂ -	CH ₃
CH ₃	OCH ₃	H	-(CH ₂) ₂ -C(C	H ₃) ₂ -(CH ₂) ₂ -	CH ₃
CH ₃	OCH ₃	Н	-CH ₂ -(CHC	H ₃) ₂ -(CH ₂) ₂ -	CH ₃
CH ₃	OCH ₃	н	-CH₂-CH-(CH	I ₂) ₂ —CH—	CH ₃
		. :	CH	₁₂	
СН₃	OCH ₃	Н	-CH ₂ -CH-CH ₂ -CH-CH-CH ₂ -CH-CH-CH ₂ -CH-CH-CH ₂ -CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-		CH ₃
CH ₃	OCH ₃	Н	-CH ₂ CH		CH ₃

Fortsetzung: Tabelle 4

	-			
Х	Y	Z	A B	R ³
CH₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -	CH ₃
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₄ -	CH ₃
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₅ -	CH ₃
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₆ -	CH ₃
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₇ -	CH ₃
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -O-(CH ₂) ₂ -	CH ₃
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -S-(CH ₂) ₂ -	CH ₃
CH ₃	CH ₃	6-OCH ₃	-CH ₂ -CHCH ₃ -(CH ₂) ₃ -	CH ₃
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHCH ₃ -(CH ₂) ₂ -	CH ₃
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHC ₂ H ₅ -(CH ₂) ₂ -	CH ₃
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHC ₃ H ₇ -(CH ₂) ₂ -	CH ₃
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHi-C ₃ H ₇ -(CH ₂) ₂ -	CH ₃
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHOCH ₃ -(CH ₂) ₂ -	CH ₃
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHOC ₂ H ₅ -(CH ₂) ₂ -	CH ₃
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHOC ₃ H ₇ -(CH ₂) ₂ -	CH ₃
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHi-OC ₃ H ₇ -(CH ₂) ₂ -	CH ₃
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -C(CH ₃) ₂ -(CH ₂) ₂ -	CH ₃
CH ₃	CH ₃	6-OCH ₃	-CH ₂ -(CHCH ₃) ₂ -(CH ₂) ₂ -	CH ₃
CH ₃	CH ₃	6-OCH ₃	-CH ₂ -CH-(CH ₂) ₂ -CH-	CH ₃
CH ₃	CH₃	6-OCH ₃	-CH ₂ -CH-CH-CH ₂ -(CH ₂) ₄	CH ₃
CH ₃	CH ₃	6-OCH ₃	-CH ₂ -CH-CH-(CH ₂) ₂ -	CH ₃

Fortsetzung: Tabelle 4

Х	Y	Z	A B	R ³
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -	CH ₃
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₄ -	CH ₃
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₅ -	CH ₃
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₆ -	CH ₃
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₇ -	CH ₃
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -O-(CH ₂) ₂ -	CH ₃
CH₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -S-(CH ₂) ₂ -	CH ₃
CH₃	OCH₃	6-CH ₃	-CH ₂ -CHCH ₃ -(CH ₂) ₃ -	CH ₃
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHCH ₃ -(CH ₂) ₂ -	CH ₃
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHC ₂ H ₅ -(CH ₂) ₂ -	CH ₃
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHC ₃ H ₇ -(CH ₂) ₂ -	CH ₃
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHi-C ₃ H ₇ -(CH ₂) ₂ -	CH ₃
CH ₃	OCH₃	6-CH ₃	-(CH ₂) ₂ -CHOCH ₃ -(CH ₂) ₂ -	CH ₃
CH ₃	OCH₃	6-CH ₃	-(CH ₂) ₂ -CHOC ₂ H ₅ -(CH ₂) ₂ -	CH ₃
CH₃	OCH₃	6-CH ₃	-(CH ₂) ₂ -CHOC ₃ H ₇ -(CH ₂) ₂ -	CH ₃
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHi-OC ₃ H ₇ -(CH ₂) ₂ -	CH ₃
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -C(CH ₃) ₂ -(CH ₂) ₂ -	CH ₃
CH ₃	OCH ₃	6-CH ₃	-CH ₂ -(CHCH ₃) ₂ -(CH ₂) ₂ -	CH ₃
CH ₃	OCH ₃	6-CH ₃	-CH ₂ -CH(CH ₂) ₂ -CH	CH ₃
CH ₃	OCH ₃	6-CH ₃	-CH ₂ -CH-CH ₂ -CH-CH ₂ -CH ₂	СН3
CH ₃	OCH ₃	6-CH ₃	$-CH_{2}$ $-CH$	CH ₃

Im einzelnen seien außer den bei den Herstellungsbeispielen genannten Verbindungen die folgenden Verbindungen der Formel (Ie) genannt:

Tabelle 5:

Х	Y	Z	A	В	L	R ⁴	R ⁵
CH ₃	OCH ₃	Н			_		
			CH ₃	H	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	H	C ₂ H ₅	H	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	H	C ₃ H ₇	H	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	H	i-C ₃ H ₇	H	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	Н	C₄H ₉	H	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	H	i-C ₄ H ₉	Н	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	Н	s-C ₄ H ₉	Н	s	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	Н	t-C ₄ H ₉	Н	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	Н	CH ₃	CH ₃	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	Н	C ₂ H ₅	CH ₃	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	Н	C ₃ H ₇	CH ₃	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	Н	i-C ₃ H ₇	CH ₃	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	н	C ₄ H ₉	CH ₃	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	Н	i-C₄H ₉	CH ₃	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	Н	s-C ₄ H ₉	CH ₃	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	Н	t-C ₄ H ₉	CH ₃	s	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	H	C ₂ H ₅	C ₂ H ₅	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	H	C ₃ H ₇	C ₃ H ₇	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	Н	\triangle	CH ₃	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	Н		CH ₃	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	Н	\bigcirc	CH ₃	S	CH ₃	i-C ₃ H ₇ -S-

X	Y	Z	A	В	L	R ⁴ :	R ⁵
CH ₃	CH ₃	6-OCH ₃	CH ₃	Н	s	CH ₃	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	C ₂ H ₅	Н	s	CH ₃	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	C ₃ H ₇	Н	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	i-C ₃ H ₇	Н	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	C ₄ H ₉	H	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	i-C ₄ H ₉	Н	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	s-C ₄ H ₉	Н	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	t-C ₄ H ₉	Н	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	CH ₃	CH ₃	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	C ₂ H ₅	CH ₃	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	C ₃ H ₇	CH ₃	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	i-C ₃ H ₇	CH ₃	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	C ₄ H ₉	CH ₃	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	i-C ₄ H ₉	CH ₃	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	s-C₄H ₉	CH ₃	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	t-C ₄ H ₉	CH ₃	s	CH ₃	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	C ₂ H ₅	C ₂ H ₅	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH₃	C ₃ H ₇	C_3H_7	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	Δ_	CH ₃	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	\Box	CH ₃	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	\bigcirc	CH ₃	S	CH ₃	i-C ₃ H ₇ -S-

Х	Y	Z	Α.	В	L	R ⁴ :	R ⁵
CH ₃	OCH ₃	6-CH ₃	CH ₃	Н	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	C ₂ H ₅	Н	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	C ₃ H ₇	Н	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	i-C ₃ H ₇	Н	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	C ₄ H ₉	Н	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	i-C ₄ H ₉	Н	s	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	s-C ₄ H ₉	Н	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	t-C ₄ H ₉	Н	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	CH ₃	CH ₃	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	C ₂ H ₅	CH ₃	S	CH ₃	i-C ₃ H ₇ -S-
CH₃	OCH ₃	6-CH ₃	C ₃ H ₇	CH ₃	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	i-C ₃ H ₇	CH ₃	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	C ₄ H ₉	CH ₃	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	i-C₄H ₉	CH ₃	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	s-C ₄ H ₉	CH ₃	s	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	t-C ₄ H ₉	CH ₃	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	C ₂ H ₅	C ₂ H ₅	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	C ₃ H ₇	C ₃ H ₇	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	_	CH ₃	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃		CH ₃	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	$\langle \rangle$	CH ₃	S	CH ₃	i-C ₃ H ₇ -S-

x	Y	Z	Α	В	L.	R ⁴	R ⁵
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -		S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	Н	-(CH ₂) ₄ -		s	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	Н	-(CH ₂) ₅ -		s	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	Н	-(CH ₂) ₆ -		s	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	Н	-(CH ₂) ₇ -		S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -(s	CH ₃	i-C ₃ H ₇ -S-	
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -	S	CH ₃	i-C ₃ H ₇ -S-	
CH ₃	OCH ₃	Н	-CH ₂ -CHC	S	CH ₃	i-C ₃ H ₇ -S-	
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -CH	S	CH ₃	i-C ₃ H ₇ -S-	
CH ₃	OCH₃	Н	-(CH ₂) ₂ -CH(S	CH ₃	i-C ₃ H ₇ -S-	
CH ₃	OCH₃	Н	-(CH ₂) ₂ -CHC ₃ H ₇ -(CH ₂) ₂ -		S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -CHi-C ₃ H ₇ -(CH ₂) ₂ -		S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -CHOCH ₃ -(CH ₂) ₂ -		S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -CHOC ₂ H ₅ -(CH ₂) ₂ -		S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	H	-(CH ₂) ₂ -CHOC ₃ H ₇ -(CH ₂) ₂ -		S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	H	-(CH ₂) ₂ -CHi-OC ₃ H ₇ -(CH ₂) ₂ -		S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -C(CH ₃) ₂ -(CH ₂) ₂ -		S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	H	-CH ₂ -(CHCH ₃) ₂ -(CH ₂) ₂ -		S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	Н	-CH ₂ -CH-(CH ₂) ₂ -CH-		S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	Н	-CH ₂ -CH-CH ₂ -CH-CH ₂ -		S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	Н		-CH-(CH ₂) ₂ -	S	CH ₃	i-C ₃ H ₇ -S-

Fortsetzung: Tabelle 5

X	Y	Z	A B	L	R ⁴	R ⁵
CH ₃	CH ₃	6-OCH ₃			 	
			-(CH ₂) ₂ -	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₄ -	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH₃	-(CH ₂) ₅ -	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₆ -	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₇ -	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -O-(CH ₂) ₂ -	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -S-(CH ₂) ₂ -	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	-CH ₂ -CHCH ₃ -(CH ₂) ₃ -	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHCH ₃ -(CH ₂) ₂ -	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH₃	-(CH ₂) ₂ -CHC ₂ H ₅ -(CH ₂) ₂ -	S	CH₃	i-C ₃ H ₇ -S-
CH₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHC ₃ H ₇ -(CH ₂) ₂ -	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHi-C ₃ H ₇ -(CH ₂) ₂ -	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHOCH ₃ -(CH ₂) ₂ -	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHOC ₂ H ₅ -(CH ₂) ₂ -	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHOC ₃ H ₇ -(CH ₂) ₂ -	s	CH ₃	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHi-OC ₃ H ₇ -(CH ₂) ₂	- S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -C(CH ₃) ₂ -(CH ₂) ₂ -	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	-CH ₂ -(CHCH ₃) ₂ -(CH ₂) ₂ -	s	CH ₃	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	-CH ₂ -CH-(CH ₂) ₂ -CH-	S	CH ₃	i-C ₃ H ₇ -S-
	_		CH,			
CH ₃	CH ₃	6-OCH ₃	-CH ₂ -CH-CH ₂	- S	CH ₃	i-C ₃ H ₇ -S-
			(CH ₂)4			<u> </u>
CH ₃	CH ₃	6-OCH ₃	-CH ₂ -CH-CH-(CH ₂) ₂ -	S	CH ₃	i-C ₃ H ₇ -S-

X	Υ	Z.	Α	В	L.	R ⁴	R ⁵
CH ₃	OCH ₃	6-CH ₃	-(CH ₂)	2"	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	ОСН₃	6-CH ₃	-(CH ₂)	4-	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	-(CH ₂)	5-	s	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	-(CH ₂)	5°	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	-(CH ₂).	7-	S	CH ₃	i-C ₃ H ₇ -S-
CH₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -O-(CH ₂) ₂ -	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -S-(0		·s	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	-CH ₂ -CHCH ₃ -		S	CH ₃	i-C ₃ H ₇ -S-
CH₃	OCH ₃	6-CH₃	-(CH ₂) ₂ -CHCH	₃ -(CH ₂) ₂ -	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHC ₂ H		S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHC ₃ H		s	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH₃	-(CH ₂) ₂ -CHi-C ₃ I	H ₇ -(CH ₂) ₂ -	s	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH₃	-(CH ₂) ₂ -CHOCH	I ₃ -(CH ₂) ₂ -	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHOC ₂ I	H ₅ -(CH ₂) ₂ -	s	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHOC ₃ I	H ₇ -(CH ₂) ₂ -	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHi-OC ₃		s	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -C(CH ₃)	₂ -(CH ₂) ₂ -	s	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	-CH ₂ -(CHCH ₃)	₂ -(CH ₂) ₂ -	s	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	-CH₂-CH-(CH	₁₂)₂—ÇH <i>—</i>	S	CH ₃	i-C ₃ H ₇ -S-
			cı	H_2			
CH ₃	OCH ₃	6-CH ₃	-CH ₂ CH(CH ₂) ₄ -	CH-CH ₂ -	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	-CH ₂ -CH	H-(CH ₂) ₂ -	S	CH ₃	i-C ₃ H ₇ -S-

				•					
•	Fortsetzu	ng: Tabelle 5						•	
	Х	Y	Z.	A	В	L	.R ⁴	R ⁵	r in eta.
	CH ₃	OCH ₃	H·	CH ₃	Н	S	C ₂ H ₅	i-C ₃ H ₇ -S-	
-	CH ₃	OCH ₃	Н	C ₂ H ₅	Н	S	C ₂ H ₅	i-C ₃ H ₇ -S-	
	CH ₃	OCH ₃	Η·	C ₃ H ₇	Н	S	C ₂ H ₅	i-C ₃ H ₇ -S-	
·	CH ₃	OCH ₃	Н	i-C ₃ H ₇	Н	S	C ₂ H ₅	i-C ₃ H ₇ -S-	
	CH ₃	OCH ₃	Н	C ₄ H ₉	H	S	C ₂ H ₅	i-C ₃ H ₇ -S-	
	CH ₃	OCH ₃	Н	i-C₄H ₉	Н	S	C ₂ H ₅	i-C ₃ H ₇ -S-	
	CH ₃	OCH ₃	Н	s-C ₄ H ₉	Н	s	C ₂ H ₅	i-C ₃ H ₇ -S-	,
:	CH ₃	OCH ₃	Н	t-C₄H ₉	H	S	C_2H_5	i-C ₃ H ₇ -S-	
	CH ₃	OCH ₃	H	CH ₃	CH ₃	S	C ₂ H ₅	i-C ₃ H ₇ -S-	
	CH ₃	OCH ₃	Н	C ₂ H ₅	CH ₃	S	C_2H_5	i-C ₃ H ₇ -S-	
	CH ₃	OCH ₃	Н	C ₃ H ₇	CH ₃	S	C ₂ H ₅	i-C ₃ H ₇ -S-	
	CH ₃	OCH ₃	н	i-C ₃ H ₇	CH ₃	s	C ₂ H ₅	i-C ₃ H ₇ -S-	
	CH ₃	OCH ₃	H	C₄H ₉	CH ₃	s	C ₂ H ₅	i-C ₃ H ₇ -S-	
	CH ₃	OCH ₃	H	i-C₄H ₉	CH ₃	S	C ₂ H ₅	i-C ₃ H ₇ -S-	
	CH ₃	OCH ₃	H	s-C ₄ H ₉	CH ₃	S	C ₂ H ₅	i-C ₃ H ₇ -S-	
	CH ₃	OCH ₃	Н	t-C ₄ H ₉	CH ₃	S	C ₂ H ₅	i-C ₃ H ₇ -S-	
·	CH ₃	OCH ₃	H	C ₂ H ₅	C ₂ H ₅	S	C ₂ H ₅	i-C ₃ H ₇ -S-	
	CH ₃	OCH ₃	Н	C₃H ₇	C ₃ H ₇	S	C ₂ H ₅	i-C ₃ H ₇ -S-	
	CH ₃	OCH ₃	Н		CH ₃	S	C ₂ H ₅	i-C ₃ H ₇ -S-	:
·	CH ₃	OCH ₃	Н		CH ₃	S	C ₂ H ₅	i-C ₃ H ₇ -S-	:
	CH ₃	OCH ₃	Н	<u></u>	CH₃	S	C ₂ H ₅	i-C ₃ H ₇ -S-	

X	Y	Z .	Α	В	L	R ⁴	R ⁵
CH ₃	CH ₃	6-OCH ₃	CH ₃	Н	S	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃ ·	CH ₃	6-OCH ₃	C ₂ H ₅	Н	S	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	C ₃ H ₇	Н	S	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH₃	i-C ₃ H ₇	Н	S	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	C₄H ₉	Н	S	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	i-C ₄ H ₉	Н	S	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	s-C ₄ H ₉	Н	S	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	t-C ₄ H ₉	Н	S	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH₃	CH ₃	CH ₃	S	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH₃	C ₂ H ₅	CH ₃	S	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH₃	C ₃ H ₇	CH ₃	S	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	i-C ₃ H ₇	CH ₃	S	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	C₄H ₉	CH ₃	S	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	i-C₄H ₉	CH ₃	S	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	s-C ₄ H ₉	CH ₃	S	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	t-C₄H ₉	CH ₃	S	C_2H_5	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	C ₂ H ₅	C ₂ H ₅	S	C_2H_5	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	C ₃ H ₇	C ₃ H ₇	S	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	\triangle	CH ₃	S	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃		CH ₃	S	C ₂ H ₅	i-C₃H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	<u></u>	CH ₃	S	C ₂ H ₅	i-C ₃ H ₇ -S-

X	Y	Z	Α	В	L	R ⁴	R ⁵
CH ₃	OCH ₃	6-CH ₃	CH ₃	Н	S	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	C ₂ H ₅	Н	s	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	C ₃ H ₇	Н	S	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	i-C ₃ H ₇	Н	S	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	C₄H ₉	Н	S	C ₂ H ₅ .	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	i-C₄H ₉	Н	s	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	s-C ₄ H ₉	Н	S	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	t-C ₄ H ₉	Н	S	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	CH ₃	CH ₃	s	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH₃	C ₂ H ₅	CH ₃	S	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	C ₃ H ₇	CH ₃	S	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH₃	i-C ₃ H ₇	CH ₃	S	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	C ₄ H ₉	CH ₃	S	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-CH ₃	i-C₄H ₉	CH ₃	S	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	s-C ₄ H ₉	CH ₃	S	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	t-C ₄ H ₉	CH ₃	S	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	C ₂ H ₅	C ₂ H ₅	S	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH₃	C ₃ H ₇	C ₃ H ₇	S	C_2H_5	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃		CH ₃	S	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃		CH ₃	S	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	\bigcirc	CH ₃	S	C ₂ H ₅	i-C ₃ H ₇ -S-

Fortsetzung: Tabelle 5

×.	·Y	Z	A	В	L	R ⁴	R ⁵
CH ₃	OCH ₃	Н	-(CI	-(CH ₂) ₂ -		C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	Н	-(CI	I ₂) ₄ -	·S	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	Н	-(CI	I ₂) ₅ -	S	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	Н	-(CI	H ₂) ₆ -	S	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	Н	-(CI	H ₂) ₇ -	S	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	H	-(CH ₂) ₂ -(O-(CH ₂) ₂ -	S	C_2H_5	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -5	S-(CH ₂) ₂ -	S	C_2H_5	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	Н	-CH ₂ -CHC	H ₃ -(CH ₂) ₃ -	S	C_2H_5	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -CH	CH ₃ -(CH ₂) ₂ -	S	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -CH(C ₂ H ₅ -(CH ₂) ₂ -	S	C_2H_5	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -CH(C ₃ H ₇ -(CH ₂) ₂ -	S	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -CHi-	C ₃ H ₇ -(CH ₂) ₂ -	S	C_2H_5	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	H	-(CH ₂) ₂ -CHC	CH ₃ -(CH ₂) ₂ -	S	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	H	-(CH ₂) ₂ -CHO	C ₂ H ₅ -(CH ₂) ₂ -	S	C ₂ H ₅	i-C ₃ H ₇ -S-
CH₃	OCH ₃	Н	-(CH ₂) ₂ -CHO	C ₃ H ₇ -(CH ₂) ₂ -	S	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -CHi-C	C ₃ H ₇ -(CH ₂) ₂ -	S	C_2H_5	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -C(C	H ₃) ₂ -(CH ₂) ₂ -	S	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	Н	-CH ₂ -(CHCI	H ₃) ₂ -(CH ₂) ₂ -	S	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	н	-CH₂-CH-(S	C ₂ H ₅	i-C ₃ H ₇ -S-
				·CH ₂			
CH₃	OCH ₃	Н	-CH₂-CH - (CH	_	S	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	Н	-сн ₂ сн (сн ₂)		S	C ₂ H ₅	i-C ₃ H ₇ -S-

Fortsetzung: Tabelle 5

Х	Y	Z	Α	В	L	R ⁴	R ⁵
CH ₃	CH ₃	6-OCH ₃	-(CH ₂)	2	S	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	-(CH ₂)	4	S	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	-(CH ₂)	5	S	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	-(CH ₂),	6	S	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	-(CH ₂)-	7	S	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -O-(CH ₂) ₂ -	S	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -S-(0	CH ₂) ₂ -	S	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	-CH ₂ -CHCH ₃ -	-(CH ₂) ₃ -	S	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHCH	3-(CH ₂) ₂ -	S	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHC ₂ H	I ₅ -(CH ₂) ₂ -	S	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHC ₃ H	I ₇ -(CH ₂) ₂ -	S	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHi-C ₃ I	H ₇ -(CH ₂) ₂ -	S	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHOCH	I ₃ -(CH ₂) ₂ -	S	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHOC ₂ I	H ₅ -(CH ₂) ₂ -	S	C_2H_5	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHOC ₃ I	H ₇ -(CH ₂) ₂ -	S	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHi-OC ₃	H ₇ -(CH ₂) ₂ -	S	C_2H_5	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -C(CH ₃)	₂ -(CH ₂) ₂ -	s	C_2H_5	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	-CH ₂ -(CHCH ₃)	₂ -(CH ₂) ₂ -	S	C_2H_5	i-C ₃ H ₇ -S-
СН₃	CH ₃	6-OCH ₃	-CH ₂ CH(CI	H ₂) ₂ —CH— H ₂ —	S	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	-CH ₂ CH(CH ₂) ₄ -	CH-CH ₂ -	S	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	-сн ₂ -снс (сн ₂) ₃ -	H(CH ₂) ₂	S	C ₂ H ₅	i-C ₃ H ₇ -S-

	T			r 	T		
X	Y	Z	Α	В	L	R ⁴	R ⁵
CH ₃	OCH ₃	6-CH ₃	-(C)	H ₂) ₂ -	S	C_2H_5	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	-(C)	H ₂) ₄ -	s	C_2H_5	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	-(Cl	H ₂) ₅ -	S	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	-(CI	H ₂) ₆ -	S	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	-(CI	H ₂) ₇ -	S	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -(O-(CH ₂) ₂ -	s	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -	S-(CH ₂) ₂ -	S	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH₃	6-CH ₃	-CH ₂ -CHC	H ₃ -(CH ₂) ₃ -	S	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃		CH ₃ -(CH ₂) ₂ -	s	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH₃		C ₂ H ₅ -(CH ₂) ₂ -	s	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃		C ₃ H ₇ -(CH ₂) ₂ -	S	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃		C ₃ H ₇ -(CH ₂) ₂ -	S	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃		OCH ₃ -(CH ₂) ₂ -	S	C ₂ H ₅	i-C ₃ H ₇ -S-
CH₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHO		s	C_2H_5	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃		C ₃ H ₇ -(CH ₂) ₂ -	S	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHi-C		S	C_2H_5	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -C(C		S	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	-CH ₂ -(CHCH		S	C_2H_5	i-C ₃ H ₇ -S-
CH ₃	ОСН₃	6-CH ₃	—сн ₂ —сн—		S	C ₂ H ₅	i-C ₃ H ₇ -S-
				-CH ₂			3 , -
CH ₃	OCH ₃	6-CH ₃	-CH ₂ -CH-	-CH-CH ₂	S	C ₂ H ₅	i-C ₃ H ₇ -S-
				2)4			
CH ₃	OCH ₃	6-CH ₃	−CH ₂ −CH−−−	-CH-(CH ₂) ₂ -	S	C ₂ H ₅	i-C ₃ H ₇ -S-
			(CH ₂)	3			

	X	Υ .	Z	A	В	L	R ⁴	R ^{.5}
	CH ₃	OCH ₃	Н	CH ₃	Н	0	CH ₃	i-C ₃ H ₇ -S-
	CH ₃	OCH ₃	Н	C ₂ H ₅	Н	0	CH ₃	i-C ₃ H ₇ -S-
	CH ₃	OCH ₃	Н	C ₃ H ₇	Н	0	CH ₃	i-C ₃ H ₇ -S-
	CH ₃	OCH ₃	Н	i-C ₃ H ₇	Н	0	CH ₃	i-C ₃ H ₇ -S-
	CH ₃	OCH ₃	Н	C ₄ H ₉	Н	0	CH ₃	i-C ₃ H ₇ -S-
:	CH ₃	OCH ₃	Н	i-C ₄ H ₉	Н	0	CH ₃	i-C ₃ H ₇ -S-
	CH ₃	OCH ₃	H	s-C ₄ H ₉	H .	0	CH ₃	i-C ₃ H ₇ -S-
	CH ₃	OCH ₃	H	t-C ₄ H ₉	Н	0	CH ₃	i-C ₃ H ₇ -S-
	CH ₃	OCH ₃	Н	CH ₃	CH ₃	0	CH ₃	i-C ₃ H ₇ -S-
	CH ₃	OCH ₃	Н	C ₂ H ₅	CH ₃	0	CH ₃	i-C ₃ H ₇ -S-
	CH ₃	OCH ₃	H	C ₃ H ₇	CH ₃	0	CH ₃	i-C ₃ H ₇ -S-
	CH ₃	OCH ₃	Н	i-C ₃ H ₇	CH ₃	0	CH ₃	i-C ₃ H ₇ -S-
	CH ₃	OCH ₃	H	C ₄ H ₉	CH ₃	0	CH ₃	i-C ₃ H ₇ -S-
	CH ₃	OCH ₃	H	i-C ₄ H ₉	CH ₃	0	CH ₃	i-C ₃ H ₇ -S-
	CH ₃	OCH ₃	H	s-C ₄ H ₉	CH ₃	0	CH ₃	i-C ₃ H ₇ -S-
	CH ₃	OCH ₃	Н	t-C ₄ H ₉	CH ₃	0	CH ₃	i-C ₃ H ₇ -S-
	CH ₃	OCH ₃	Н	C ₂ H ₅	C ₂ H ₅	0	CH ₃	i-C ₃ H ₇ -S-
	CH ₃	OCH ₃	Н	C ₃ H ₇	C ₃ H ₇	0	CH ₃	i-C ₃ H ₇ -S-
	CH ₃	OCH ₃	Н		CH ₃	0	CH ₃	i-C ₃ H ₇ -S-
	CH ₃	OCH ₃	Н		CH ₃	0	CH ₃	i-C ₃ H ₇ -S-
	CH ₃	OCH ₃	Н	\frown	CH ₃	0	CH ₃	i-C ₃ H ₇ -S-

Х	Y	Z	A	В	L	·R ⁴	R ⁵
CH ₃	CH ₃	6-OCH ₃	CH ₃	Н	0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	C ₂ H ₅	Н	0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	C ₃ H ₇	Н	0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	i-C ₃ H ₇	Н	0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	C₄H ₉	Н	0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	i-C ₄ H ₉	H	0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	s-C₄H ₉	H	0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	t-C ₄ H ₉	Н	0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	CH ₃	CH ₃	0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	C ₂ H ₅	CH ₃	0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	C ₃ H ₇	CH ₃	0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	i-C ₃ H ₇	CH ₃	0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	C₄H ₉	CH ₃	0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	i-C₄H ₉	CH ₃	0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	s-C ₄ H ₉	CH ₃	0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	t-C₄H ₉	CH ₃	0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	C ₂ H ₅	C ₂ H ₅	0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	C ₃ H ₇	C ₃ H ₇	0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	\triangle	CH ₃	0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃		CH ₃	0	СН3	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	<u></u>	CH ₃	0	CH ₃	i-C ₃ H ₇ -S-

7 0715011	ung. Tabe	1		4"			
х	Y	Z	A	В	Ŀ	R ⁴	R ⁵
CH ₃	OCH ₃	6-CH ₃	CH ₃	Н	0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	C ₂ H ₅	Н	0	CH ₃	i-C ₃ H ₇ -S-
CH₃	OCH ₃	6-CH ₃	C ₃ H ₇	Н	0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	i-C ₃ H ₇	Н	0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH₃	6-CH ₃	C ₄ H ₉	Н	0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	i-C ₄ H ₉	Н	0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH₃	6-CH ₃	s-C ₄ H ₉	Н	0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	t-C₄H ₉	Н	0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	CH ₃	CH ₃	0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	C ₂ H ₅	CH ₃	0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	C ₃ H ₇	CH ₃	0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	i-C ₃ H ₇	CH ₃	0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	C₄H ₉	CH ₃	0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	i-C₄H ₉	CH ₃	0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	s-C ₄ H ₉	CH ₃	0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	t-C₄H ₉	CH ₃	0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	C ₂ H ₅	C ₂ H ₅	0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	C ₃ H ₇	C ₃ H ₇	0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	\triangle	CH ₃	0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃		CH ₃	0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃		CH ₃	0	CH ₃	i-C ₃ H ₇ -S-

Fortsetzung: Tabelle 5

		T		<u> </u>	1 :		
X.	Y	Z	Α	В	L	R ⁴	R ⁵
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -		0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	Н	-(CI	H ₂) ₄ -	0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	Н	-(CI	· I ₂) ₅ -	0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	H	-(CI	I ₂) ₆ -	0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	H	-(CI	I ₂) ₇ -	0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH₃	H	-(CH ₂) ₂ -(O-(CH ₂) ₂ -	Ω	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH₃	H	-(CH ₂) ₂ -9	S-(CH ₂) ₂ -	0	CH ₃	i-C ₃ H ₇ -S-
CH₃	OCH ₃	H	-CH ₂ -CHC	H ₃ -(CH ₂) ₃ -	0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH₃	H	-(CH ₂) ₂ -CH(CH ₃ -(CH ₂) ₂ -	0 ·	CH ₃	i-C ₃ H ₇ -S-
CH₃	OCH ₃	Н	-(CH ₂) ₂ -CHC	C ₂ H ₅ -(CH ₂) ₂ -	0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -CHC	C ₃ H ₇ -(CH ₂) ₂ -	o	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -CHi-	C ₃ H ₇ -(CH ₂) ₂ -	0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -CHO	CH ₃ -(CH ₂) ₂ -	0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -CHO	C ₂ H ₅ -(CH ₂) ₂ -	0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	H	-(CH ₂) ₂ -CHO	C ₃ H ₇ -(CH ₂) ₂ -	0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	H	-(CH ₂) ₂ -CHi-C	C ₃ H ₇ -(CH ₂) ₂ -	0	CH ₃	i-C ₃ H ₇ -S-
CH₃	OCH ₃	Н	-(CH ₂) ₂ -C(Cl	H ₃) ₂ -(CH ₂) ₂ -	0	CH ₃	i-C ₃ H ₇ -S-
CH₃	OCH ₃	Н	-CH ₂ -(CHCF	H ₃) ₂ -(CH ₂) ₂ -	0	CH ₃	i-C ₃ H ₇ -S-
CH₃	OCH ₃	Н	-CH ₂ -CH-((CH ₂) ₂ —CH—	0	CH ₃	i-C ₃ H ₇ -S-
				-CH ₂			
CH ₃	OCH ₃	Н	-CH₂-CH-	CH-CH ₂	0	CH ₃	i-C ₃ H ₇ -S-
				2)4			
CH ₃	OCH ₃	н	-CH₂-CH-	-CH-(CH ₂) ₂ -	0	CH ₃	i-C ₃ H ₇ -S-
			(CH ₂)				

Fortsetzung: Tabelle 5

	T.2.	T_			.1		7
X	Y	Z ·	Α	В	L	R ⁴	R ⁵
CH ₃	CH ₃	6-OCH ₃	-(CH ₂)	-(CH ₂) ₂ -		CH ₃	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	-(CH ₂)	4	0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH₃	-(CH ₂)	5	0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	-(CH ₂)	6 <u>-</u>	0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	-(CH ₂)-	7	0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -O-(CH ₂) ₂ -	.0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -S-(0	CH ₂) ₂ -	0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-0CH ₃	-CH ₂ -CHCH ₃ -	-(CH ₂) ₃ -	0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	-(СН ₂) ₂ -СНСН		0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHC ₂ H		0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHC ₃ H		0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH₃	-(CH ₂) ₂ -CHi-C ₃ F	H ₇ -(CH ₂) ₂ -	0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHOCH		0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHOC ₂ I		0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHOC ₃ I		0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHi-OC ₃		0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -C(CH ₃)		0	CH ₃	i-C ₃ H ₇ -S-
CH₃	CH ₃	6-OCH ₃	-CH ₂ -(CHCH ₃)	₂ -(CH ₂) ₂ -	0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	-СН ₂ ÇН(СН		0	CH ₃	i-C ₃ H ₇ -S-
			CI	н,			J ,
CH ₃	CH ₃	6-OCH ₃	-СH₂ÇH(CH-CH ₂	0	CH ₃	i-C ₃ H ₇ -S-
			(CH ₂)4			3	3 /
CH ₃	CH ₃	6-OCH ₃	-CH₂-CHCI	H-(CH ₂) ₂ -	0	CH ₃	i-C ₃ H ₇ -S-
			(CH ₂) ₃			Ĭ	,

X	Y	Z	A	В	L	R ⁴	R ⁵
CH ₃	OCH ₃	6-CH ₃	-(CH ₂))2-	0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	-(CH ₂)		0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	-(CH ₂)		0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	-(CH ₂)	6-	0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	-(CH ₂)	7-	0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -O-((CH ₂) ₂ -	0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -S-(0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	-CH ₂ -CHCH ₃		0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHCH		0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHC ₂ F		0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHC ₃ F	H ₇ -(CH ₂) ₂ -	0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHi-C ₃	H ₇ -(CH ₂) ₂ -	0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHOCI	H ₃ -(CH ₂) ₂ -	0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHOC ₂	H ₅ -(CH ₂) ₂ -	0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH₃	-(CH ₂) ₂ -CHOC ₃	H ₇ -(CH ₂) ₂ -	0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHi-OC	H ₇ -(CH ₂) ₂ -	0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -C(CH ₃)) ₂ -(CH ₂) ₂ -	0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH₃	-CH ₂ -(CHCH ₃)	₂ -(CH ₂) ₂ -	0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	-CH ₂ -CH-(C	H ₂) ₂ —CH—	0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	-CH ₂ -CH	CH−CH ₂ −	0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	-CH ₂ -CH	H—(CH ₂) ₂ —	0	CH ₃	i-C ₃ H ₇ -S-

X	Y	Z.	A	В	L	. R ⁴	R ⁵
CH ₃	OCH ₃	·H	CH ₃	Н	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	Н	C ₂ H ₅	н	0	C_2H_5	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	Н	C ₃ H ₇	Н	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	Н	i-C ₃ H ₇	Н	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	Н	C ₄ H ₉	Н	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	Н	i-C₄H ₉	Н	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	Н	s-C ₄ H ₉	Н	Ò	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	H	t-C ₄ H ₉	Н	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	H	CH ₃	CH ₃	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	Н	C ₂ H ₅	CH ₃	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	Н	C ₃ H ₇	CH ₃	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	Н	i-C₃H ₇	CH ₃	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	Н	C₄H ₉	CH ₃	0	C_2H_5	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	Н	i-C ₄ H ₉	CH ₃	0	C_2H_5	i-C ₃ H ₇ -S-
CH₃	OCH ₃	Н	s-C ₄ H ₉	CH ₃	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	Н	t-C ₄ H ₉	CH ₃	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	H	C ₂ H ₅	C ₂ H ₅	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	Н	C ₃ H ₇	C ₃ H ₇	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	Н		CH ₃	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	Н	\Box	CH ₃	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	Н	\bigcirc	CH ₃	0	C ₂ H ₅	i-C ₃ H ₇ -S-

X	Y	Z	A	В	L	R ⁴	R ⁵
CH ₃	CH ₃	6-OCH ₃	CH ₃	Н	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	C ₂ H ₅	Н	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	C ₃ H ₇	Н	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH₃	i-C ₃ H ₇	Н	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH₃	C ₄ H ₉	Н	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	i-C₄H ₉	Н	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	s-C ₄ H ₉	Н	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	t-C ₄ H ₉	Н	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	CH ₃	CH ₃	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	C ₂ H ₅	CH ₃	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	C ₃ H ₇	CH ₃	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	СН₃	6-OCH ₃	i-C ₃ H ₇	CH ₃	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	C₄H ₉	CH ₃	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	i-C ₄ H ₉	CH ₃	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	s-C ₄ H ₉	CH ₃	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	t-C ₄ H ₉	CH ₃	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	C ₂ H ₅	C ₂ H ₅	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	C ₃ H ₇	C_3H_7	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃		CH ₃	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃		CH ₃	0	C₂H₅	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	<u> </u>	CH ₃	0	C ₂ H ₅	i-C ₃ H ₇ -S-

X	Y	Z	A	В	L	R ⁴	R ⁵
CH ₃	OCH ₃	6-CH ₃	CH ₃	<u> </u>	├		
CH ₃	OCH ₃	6-CH ₃		H	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	†		C ₂ H ₅	H	0	C ₂ H ₅	i-C ₃ H ₇ -S-
	OCH ₃	6-CH ₃	C ₃ H ₇	H	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	i-C ₃ H ₇	H	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	C₄H ₉	H	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	i-C₄H ₉	H	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	s-C ₄ H ₉	Н	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	t-C ₄ H ₉	Н	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	CH ₃	CH ₃	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	C ₂ H ₅	CH ₃	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	C ₃ H ₇	CH ₃	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	i-C ₃ H ₇	CH ₃	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	C ₄ H ₉	CH ₃	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	i-C ₄ H ₉	CH ₃	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	s-C ₄ H ₉	CH ₃	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	t-C ₄ H ₉	CH ₃	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	C ₂ H ₅	C ₂ H ₅	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	C ₃ H ₇	C_3H_7	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃		CH ₃	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃		CH ₃	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	<u></u>	CH ₃	0	C ₂ H ₅	i-C ₃ H ₇ -S-

WO 95/26954 PCT/EP95/01100

Fortsetzung: Tabelle 5

Х	Y	Z	A B	Ĺ	R ⁴	R ⁵
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -		C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH₃	Н	-(CH ₂) ₄ -	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH₃	H	-(CH ₂) ₅ -	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	Н	-(CH ₂) ₆ -	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	H	-(CH ₂) ₇ -	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -O-(CH ₂) ₂ -	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -S-(CH ₂) ₂ -	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	Н	-CH ₂ -CHCH ₃ -(CH ₂) ₃ -	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -CHCH ₃ -(CH ₂) ₂ -	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -CHC ₂ H ₅ -(CH ₂) ₂ -	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -CHC ₃ H ₇ -(CH ₂) ₂ -	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -CHi-C ₃ H ₇ -(CH ₂) ₂ -	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	H	-(CH ₂) ₂ -CHOCH ₃ -(CH ₂) ₂ -	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	H	-(CH ₂) ₂ -CHOC ₂ H ₅ -(CH ₂) ₂ -	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -CHOC ₃ H ₇ -(CH ₂) ₂ -	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -CHi-OC ₃ H ₇ -(CH ₂) ₂ -	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -C(CH ₃) ₂ -(CH ₂) ₂ -	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH₃	Н	-CH ₂ -(CHCH ₃) ₂ -(CH ₂) ₂ -	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	Н	-CH ₂ -CH-(CH ₂) ₂ -CH-	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	н		0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	Н	$-CH_{2}-CH$ $-CH_{2})_{2}$ $-CH_{2}$ $-CH_{2}$ $-CH_{2}$ $-CH_{2}$	0	C ₂ H ₅	i-C ₃ H ₇ -S-

Fortsetzung: Tabelle 5

Х	Y	Z	A	В	L	R ⁴	R ⁵
CH ₃	CH ₃	6-OCH ₃	-(CH ₂)2-	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	-(CH ₂		0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	-(CH ₂)5-	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₆ -	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₇ -	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH₃	-(CH ₂) ₂ -O-	(CH ₂) ₂ -	.0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH₃	-(CH ₂) ₂ -S-		0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	-CH ₂ -CHCH		0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHCH		0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHC ₂		0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHC ₃	H ₇ -(CH ₂) ₂ -	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHi-C ₂	H ₇ -(CH ₂) ₂ -	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHOC	H ₃ -(CH ₂) ₂ -	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHOC ₂	H ₅ -(CH ₂) ₂ -	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHOC	H ₇ -(CH ₂) ₂ -	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH₃	-(CH ₂) ₂ -CHi-OC	H ₂ -(CH ₂) ₂ -	0	C_2H_5	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -C(CH ₂	₃) ₂ -(CH ₂) ₂ -	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	-CH ₂ -(CHCH ₃) ₂ -(CH ₂) ₂ -	0	C_2H_5	i-C ₃ H ₇ -S-
CH ₃	СН₃	6-OCH ₃	-CH ₂ -CH-(C	CH ₂) ₂ -CH-	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	-CH ₂ -CH	_	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	CH ₃	6-OCH ₃	-СН ₂ СН(ССН ₂) ₃	CH—(CH ₂) ₂ —	0	C ₂ H ₅	i-C ₃ H ₇ -S-

X	Y	Z	АВ		Τ,	R ⁴	R ⁵
				<u>··</u>	L _.		-
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -	-(CH ₂) ₂ -		C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₄ -		0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₅ -	·	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₆ -		0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₇ -		0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -O-(CH ₂) ₂ -	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH₃	-(CH ₂) ₂ -S-(CH ₂) ₂ -	Ò	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	-CH ₂ -CHCH ₃ -(CH	I ₂) ₃ -	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH₃	-(CH ₂) ₂ -CHCH ₃ -(C	(H ₂) ₂ -	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHC ₂ H ₅ -(C	CH ₂) ₂ -	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHC ₃ H ₇ -(C	CH ₂) ₂ -	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHi-C ₃ H ₇ -(CH ₂) ₂ -	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHOCH ₃ -(0	CH ₂) ₂ -	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHOC ₂ H ₅ -(CH ₂) ₂ -	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHOC ₃ H ₇ -(CH ₂) ₂ -	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHi-OC ₃ H ₇ -((CH ₂) ₂ -	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -C(CH ₃) ₂ -(C	CH ₂) ₂ -	0	C_2H_5	i-C ₃ H ₇ -S-
CH ₃	OCH ₃	6-CH ₃	-CH ₂ -(CHCH ₃) ₂ -(C	H ₂) ₂ -	О	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	OCH₃	6-CH ₃	-CH ₂ -CH-(CH ₂) ₂ -	-ċн <i>-</i> -	0	C ₂ H ₅	i-C ₃ H ₇ -S-
			CH ₂				J ,
CH ₃	OCH ₃	6-CH ₃	CH₂CHCH-	-CH ₂	0	C ₂ H ₅	i-C ₃ H ₇ -S-
			(CH ₂)4				
CH ₃	OCH ₃	6-CH ₃	-CH ₂ -CH	(CH ₂)2—	0	C ₂ H ₅	i-C ₃ H ₇ -S-
			(CH ₂) ₃				

Im einzelnen seien außer den bei den Herstellungsbeispielen genannten Verbindungen die folgenden Verbindungen der Formel (If-a) genannt:

Tabelle 6a:

х	Y	Z	A	В
CH ₃	OCH ₃	Н	CH ₃	Н
CH ₃	OCH ₃	Н	C ₂ H ₅	Н
CH ₃	OCH ₃	Н	C ₃ H ₇	Н
CH ₃	OCH ₃	H	i-C ₃ H ₇	Н
CH ₃	OCH ₃	Н	C₄H ₉	Н
CH ₃	OCH ₃	H	i-C ₄ H ₉	Н
CH ₃	OCH ₃	Н	s-C ₄ H ₉	Н
CH ₃	OCH ₃	Н	t-C ₄ H ₉	Н
CH ₃	OCH ₃	Н	CH ₃	CH ₃
CH ₃	OCH ₃	Н	C ₂ H ₅	CH ₃
CH ₃	OCH ₃	Н	C ₃ H ₇	CH ₃
CH ₃	OCH ₃	Н	i-C ₃ H ₇	CH ₃
CH ₃	OCH ₃	H	C₄H ₉	CH ₃
CH ₃	OCH ₃	H	i-C₄H ₉	CH ₃
CH ₃	OCH ₃	H	s-C ₄ H ₉	CH ₃
CH ₃	OCH ₃	Н	t-C ₄ H ₉	CH ₃
CH ₃	OCH ₃	Н	C_2H_5	C ₂ H ₅
CH ₃	OCH ₃	Н	C ₃ H ₇	C ₃ H ₇
CH ₃	OCH ₃	Н		CH ₃
CH ₃	OCH ₃	Н		CH ₃
CH ₃	OCH ₃	H	<u> </u>	CH ₃

Fortsetzung: Tabelle 6a

1 01 130120	ing. Taboni			
. X	Y	Z .	A	В
CH ₃	CH ₃	6-OCH ₃	CH ₃	Н
CH ₃	CH ₃	6-OCH ₃	C ₂ H ₅	н
CH ₃	CH ₃	6-OCH ₃	C_3H_7	Н
CH ₃	CH ₃	6-OCH ₃	i-C ₃ H ₇	Н
CH ₃	CH ₃	6-OCH ₃	C_4H_9	Н
CH ₃	CH ₃	6-OCH ₃	i-C₄H ₉	н
CH ₃	CH ₃	6-OCH ₃	s-C ₄ H ₉	Н
CH ₃	CH ₃	6-OCH ₃	t-C ₄ H ₉	Н
CH ₃	CH ₃	6-OCH ₃	CH ₃	CH ₃
CH ₃	CH ₃	6-OCH ₃	C ₂ H ₅	CH ₃
CH ₃	CH ₃	6-OCH ₃	C ₃ H ₇	CH ₃
CH ₃	CH ₃	6-OCH ₃	i-C ₃ H ₇	CH ₃
CH ₃	CH ₃	6-OCH ₃	C ₄ H ₉	CH ₃
CH ₃	CH ₃	6-OCH ₃	i-C₄H ₉	CH ₃
CH ₃	CH ₃	6-OCH ₃	s-C ₄ H ₉	CH ₃
CH ₃	CH ₃	6-OCH ₃	t-C₄H ₉	CH ₃
CH ₃	CH ₃	6-OCH ₃	C ₂ H ₅	C ₂ H ₅
CH ₃	CH ₃	6-OCH ₃	C ₃ H ₇	C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃		CH ₃
CH ₃	CH ₃	6-OCH ₃		CH ₃
CH ₃	CH ₃	6-OCH ₃	\bigcirc	CH ₃

Fortsetzung: Tabelle 6a

	ing. Tubbii			
. <u>.</u> X	Y	Z .	A	В
CH ₃	OCH ₃	6-CH ₃	CH ₃	Н
CH ₃	OCH ₃	6-CH ₃	C ₂ H ₅	Н
CH ₃	OCH ₃	6-CH ₃	C ₃ H ₇	Н
CH ₃	OCH ₃	6-CH ₃	i-C ₃ H ₇	Н
CH ₃	OCH ₃	6-CH ₃	C ₄ H ₉	Н
CH ₃	OCH ₃	6-CH ₃	i-C ₄ H ₉	Н
CH ₃	OCH ₃	6-CH ₃	s-C ₄ H ₉	Н
CH ₃	OCH₃	6-CH ₃	t-C ₄ H ₉	Н
CH ₃	OCH ₃	6-CH ₃	CH ₃	CH ₃
CH ₃	OCH ₃	6-CH ₃	C ₂ H ₅	CH ₃
CH ₃	OCH ₃	6-CH ₃	C ₃ H ₇	CH ₃
CH ₃	OCH ₃	6-CH ₃	i-C ₃ H ₇	CH ₃
CH ₃	OCH ₃	6-CH ₃	C ₄ H ₉	CH ₃
CH ₃	OCH ₃	6-CH ₃	i-C ₄ H ₉	CH ₃
CH ₃	OCH ₃	6-CH ₃	s-C ₄ H ₉	CH ₃
CH ₃	OCH ₃	6-CH ₃	t-C ₄ H ₉	CH ₃
CH ₃	OCH ₃	6-CH ₃	C ₂ H ₅	C ₂ H ₅
CH ₃	OCH ₃	6-CH ₃	C ₃ H ₇	C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	_	CH ₃
CH ₃	OCH ₃	6-CH ₃		CH ₃
CH ₃	OCH ₃	6-CH ₃	\bigcirc	CH ₃

Fortsetzung: Tabelle 6a

х	Y	Z	A B	
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -	
CH ₃	OCH ₃	Н	-(CH ₂) ₄ -	
CH ₃	OCH ₃	Н	-(CH ₂) ₅ -	
CH ₃	OCH ₃	Н	-(CH ₂) ₆ -	
CH ₃	OCH ₃	Н	-(CH ₂) ₇ -	
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -O-(CH ₂) ₂ -	
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -S-(CH ₂) ₂ -	
CH ₃	OCH ₃	Н	-CH ₂ -CHCH ₃ -(CH ₂) ₃ -	
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -CHCH ₃ -(CH ₂) ₂ -	
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -CHC ₂ H ₅ -(CH ₂) ₂ -	
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -CHC ₃ H ₇ -(CH ₂) ₂ -	
CH ₃	OCH ₃	н	-(CH ₂) ₂ -CHi-C ₃ H ₇ -(CH ₂) ₂ -	
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -CHOCH ₃ -(CH ₂) ₂ -	
CH ₃	OCH ₃	н	-(CH ₂) ₂ -CHOC ₂ H ₅ -(CH ₂) ₂ -	
CH ₃	OCH₃	Н	-(CH ₂) ₂ -CHOC ₃ H ₇ -(CH ₂) ₂ -	
CH ₃	OCH ₃	H	-(CH ₂) ₂ -CHi-OC ₃ H ₇ -(CH ₂) ₂ -	
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -C(CH ₃) ₂ -(CH ₂) ₂ -	
CH ₃	OCH ₃	Н	-CH ₂ -(CHCH ₃) ₂ -(CH ₂) ₂ -	
CH ₃	OCH ₃	н	CH ₂ ÇH(CH ₂) ₂ ÇH	
			CH ₂	
CH ₃	OCH ₃	H	-CH ₂ CH	
			(CH ₂) ₄	
CH ₃	OCH ₃	Н	$-CH_{2}-CHCH-(CH_{2})_{2}-$ $-CH_{2}-CH-(CH_{2})_{3}-$	

Fortsetzung: Tabelle 6a

Χ .	Y	Z	A B	
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -	
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₄ -	
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₅ -	
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₆ -	
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₇ -	
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -O-(CH ₂) ₂ -	
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -S-(CH ₂) ₂ -	
CH ₃	CH ₃	6-OCH ₃	-CH ₂ -CHCH ₃ -(CH ₂) ₃ -	
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHCH ₃ -(CH ₂) ₂ -	
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHC ₂ H ₅ -(CH ₂) ₂ -	
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHC ₃ H ₇ -(CH ₂) ₂ -	
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHi-C ₃ H ₇ -(CH ₂) ₂ -	
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHOCH ₃ -(CH ₂) ₂ -	
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHOC ₂ H ₅ -(CH ₂) ₂ -	
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHOC ₃ H ₇ -(CH ₂) ₂ -	
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHi-OC ₃ H ₇ -(CH ₂) ₂ -	
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -C(CH ₃) ₂ -(CH ₂) ₂ -	
CH ₃	CH ₃	6-OCH ₃	-CH ₂ -(CHCH ₃) ₂ -(CH ₂) ₂ -	
CH ₃	CH ₃	6-OCH ₃	-CH ₂ -CH-(CH ₂) ₂ -CH-	
CH ₃	CH ₃	6-OCH ₃	-CH ₂ -CHCH ₂	
CH ₃	CH ₃	6-OCH ₃	$-CH_{2}-CHCH-(CH_{2})_{2} CH_{2}-CH_{3}$	

Fortsetzung: Tabelle 6a

X	Y	.Z	A B	
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -	
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₄ -	
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₅ -	
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₆ -	
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₇ -	
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -O-(CH ₂) ₂ -	
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -S-(CH ₂) ₂ -	
CH ₃	OCH ₃	6-CH ₃	-CH ₂ -CHCH ₃ -(CH ₂) ₃ -	
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHCH ₃ -(CH ₂) ₂ -	
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHC ₂ H ₅ -(CH ₂) ₂ -	
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHC ₃ H ₇ -(CH ₂) ₂ -	
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHi-C ₃ H ₇ -(CH ₂) ₂ -	
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHOCH ₃ -(CH ₂) ₂ -	
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHOC ₂ H ₅ -(CH ₂) ₂ -	
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHOC ₃ H ₇ -(CH ₂) ₂ -	
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHi-OC ₃ H ₇ -(CH ₂) ₂ -	
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -C(CH ₃) ₂ -(CH ₂) ₂ -	
CH ₃	OCH ₃	6-CH ₃	-CH ₂ -(CHCH ₃) ₂ -(CH ₂) ₂ -	
CH ₃	OCH ₃	6-CH ₃	-CH ₂ CH(CH ₂) ₂ CH	
			CH ₂	
CH ₃	OCH₃	6-CH ₃	$-CH_{2}$ $-CH$ $-CH$ $-CH_{2}$ $-CH_{2}$	
CH ₃	OCH ₃	6-CH ₃	-CH ₂ -CH-CH-(CH ₂) ₂ -	

Im einzelnen seien außer den bei den Herstellungsbeispielen genannten Verbindungen die folgenden Verbindungen der Formel (If-b) genannt:

Tabelle 6b:

Х	Y	Z	A	В
CH ₃	OCH ₃	Н	CH ₃	Н
CH ₃	OCH ₃	Н	C ₂ H ₅	Н
CH ₃	OCH ₃	Н	C ₃ H ₇	Н
CH ₃	OCH ₃	H	i-C ₃ H ₇	Н
CH ₃	OCH ₃	Н	C ₄ H ₉	Н
CH ₃	OCH ₃	Н	i-C₄H ₉	н
CH ₃	OCH ₃	н	s-C ₄ H ₉	Н
CH ₃	OCH ₃	Н	t-C₄H ₉	Н
CH ₃	OCH ₃	Н	CH ₃	CH ₃
CH ₃	OCH ₃	Н	C ₂ H ₅	CH ₃
CH ₃	OCH ₃	Н	C ₃ H ₇	CH ₃
CH ₃	OCH ₃	Н	i-C ₃ H ₇	CH ₃
CH ₃	OCH ₃	Н	C_4H_9	CH ₃
CH ₃	OCH ₃	Н	i-C₄H ₉	CH ₃
CH ₃	OCH ₃	Н	s-C ₄ H ₉	CH ₃
CH ₃	OCH ₃	Н	t-C₄H ₉	CH ₃
CH ₃	OCH ₃	Н	C ₂ H ₅	C ₂ H ₅
CH ₃	OCH ₃	Н	C ₃ H ₇	C ₃ H ₇
CH ₃	OCH ₃	Н	Δ_	CH ₃
CH ₃	OCH ₃	Н		CH ₃
CH ₃	OCH ₃	Н	\Diamond	CH ₃

表。大概是1941年1月1日 1847年

Fortsetzung: Tabelle 6b

X ·	Y	Z .	A	В
CH ₃	CH ₃	6-OCH ₃	CH ₃	Н
CH ₃	CH ₃	6-OCH ₃	C ₂ H ₅	Н
CH ₃	CH ₃	6-OCH ₃	C_3H_7	Н
CH ₃	CH ₃	6-OCH ₃	i-C ₃ H ₇	Н
CH ₃	CH ₃	6-OCH ₃	C_4H_9	Н
CH ₃	CH ₃	6-OCH ₃	i-C₄H ₉	Н
CH ₃	CH ₃	6-OCH ₃	s-C₄H ₉	Н
CH ₃	CH ₃	6-OCH ₃	t-C ₄ H ₉	Н
CH ₃	CH ₃	6-OCH ₃	CH ₃	CH ₃
CH ₃	CH ₃	6-OCH ₃	C ₂ H ₅	CH ₃
CH ₃	CH ₃	6-OCH ₃	C ₃ H ₇	CH ₃
CH ₃	CH ₃	6-OCH ₃	i-C ₃ H ₇	CH ₃
CH ₃	CH ₃	6-OCH ₃	C ₄ H ₉	CH ₃
CH₃	CH ₃	6-OCH ₃	i-C ₄ H ₉	CH ₃
CH ₃	CH ₃	6-OCH ₃	s-C ₄ H ₉	CH ₃
CH ₃	CH ₃	6-OCH ₃	t-C ₄ H ₉	CH ₃
CH ₃	CH ₃	6-OCH ₃	C ₂ H ₅	C ₂ H ₅
CH ₃	CH ₃	6-OCH ₃	C_3H_7	C_3H_7
CH ₃	CH ₃	6-OCH ₃		CH ₃
CH ₃	CH ₃	6-OCH ₃		CH ₃
CH ₃	CH ₃	6-OCH ₃	\bigcirc	CH ₃

X	Y	Z	A	В
CH ₃	OCH ₃	6-CH ₃	CH ₃	Н
CH ₃	OCH ₃	6-CH ₃	C ₂ H ₅	Н
CH ₃	OCH ₃	6-CH ₃	C ₃ H ₇	Н
CH ₃	OCH ₃	6-CH ₃	i-C ₃ H ₇	Н
CH ₃	OCH ₃	6-CH ₃	C ₄ H ₉	Н
CH ₃	OCH ₃	6-CH ₃	i-C ₄ H ₉	Н
CH ₃	OCH ₃	6-CH ₃	s-C ₄ H ₉	Н
CH ₃	OCH ₃	6-CH ₃	t-C ₄ H ₉	Н
CH ₃	OCH ₃	6-CH ₃	CH ₃	CH ₃
CH ₃	OCH ₃	6-CH ₃	C ₂ H ₅	CH ₃
CH ₃	OCH ₃	6-CH ₃	C ₃ H ₇	CH ₃
CH ₃	OCH ₃	6-CH ₃	i-C ₃ H ₇	CH ₃
CH ₃	OCH ₃	6-CH ₃	C₄H ₉	CH ₃
CH ₃	OCH ₃	6-CH ₃	i-C₄H ₉	CH ₃
CH ₃	OCH ₃	6-CH ₃	s-C₄H ₉	CH ₃
CH ₃	OCH ₃	6-CH ₃	t-C ₄ H ₉	CH ₃
CH ₃	OCH ₃	6-CH ₃	C ₂ H ₅	C ₂ H ₅
CH ₃	OCH ₃	6-CH ₃	C ₃ H ₇	C_3H_7
CH ₃	OCH ₃	6-CH ₃		CH ₃
CH ₃	OCH ₃	6-CH ₃		CH ₃
CH ₃	ОСН ₃	6-CH ₃	\bigcirc	CH ₃

Fortsetzung: Tabelle 6b

====
, -
,)3-
I ₂) ₂ -
$H_2)_2$ -
$(H_2)_2$ -
H ₂) ₂ -
H ₂) ₂ -
H ₂) ₂ -
H ₂) ₂ -
CH ₂) ₂ -
I ₂) ₂ -
(₂) ₂ -
1-
——— СН , —
•
(CH ₂) ₂ —

Fortsetzung: Tabelle 6b

х	Y	Z	A B	
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -	
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₄ -	
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₅ -	
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₆ -	
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₇ -	
CH₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -O-(CH ₂) ₂ -	
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -S-(CH ₂) ₂ -	
CH ₃	CH ₃	6-OCH ₃	-CH ₂ -CHCH ₃ -(CH ₂) ₃ -	
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHCH ₃ -(CH ₂) ₂ -	
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHC ₂ H ₅ -(CH ₂) ₂ -	
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHC ₃ H ₇ -(CH ₂) ₂ -	
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHi-C ₃ H ₇ -(CH ₂) ₂ -	
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHOCH ₃ -(CH ₂) ₂ -	
CH ₃	CH ₃	6-OCH₃	-(CH ₂) ₂ -CHOC ₂ H ₅ -(CH ₂) ₂ -	
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHOC ₃ H ₇ -(CH ₂) ₂ -	
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHi-OC ₃ H ₇ -(CH ₂) ₂ -	
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -C(CH ₃) ₂ -(CH ₂) ₂ -	
CH ₃	CH ₃	6-OCH ₃	-CH ₂ -(CHCH ₃) ₂ -(CH ₂) ₂ -	
CH ₃	CH ₃	6-OCH ₃	-СH ₂ ÇH(СН ₂) ₂ ÇH	
			CH;	
CH ₃	CH ₃	6-OCH ₃	-CH ₂ -CHCH ₂ -	
CH ₃	CH ₃	6-OCH ₃	-CH ₂ -CH-(CH ₂) ₂ -	

Fortsetzung: Tabelle 6b

X	Y	Z	А В	
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -	
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₄ -	
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₅ -	
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₆ -	
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₇ -	
CH ₃	OCH ₃	6-CH ₃	-(ĊH ₂) ₂ -O-(CH ₂) ₂ -	
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -S-(CH ₂) ₂ -	
CH ₃	OCH ₃	6-CH ₃	-CH ₂ -CHCH ₃ -(CH ₂) ₃ -	
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHCH ₃ -(CH ₂) ₂ -	
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHC ₂ H ₅ -(CH ₂) ₂ -	
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHC ₃ H ₇ -(CH ₂) ₂ -	
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHi-C ₃ H ₇ -(CH ₂) ₂ -	
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHOCH ₃ -(CH ₂) ₂ -	
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHOC ₂ H ₅ -(CH ₂) ₂ -	
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHOC ₃ H ₇ -(CH ₂) ₂ -	
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHi-OC ₃ H ₇ -(CH ₂) ₂ -	
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -C(CH ₃) ₂ -(CH ₂) ₂ -	
CH ₃	OCH ₃	6-CH ₃	-CH ₂ -(CHCH ₃) ₂ -(CH ₂) ₂ -	
CH₃	OCH ₃	6-CH ₃	-CH ₂ -CH-(CH ₂) ₂ -CH-	
CH ₃	OCH ₃	6-CH ₃	-CH ₂ -CHCH ₂	
CH ₃	OCH ₃	6-CH ₃	-CH ₂ -CH(CH ₂) ₂ -	

Im einzelnen seien außer den bei den Herstellungsbeispielen genannten Verbindungen die folgenden Verbindungen der Formel (Ig-a) genannt:

Tabelle 7a:

X	Y	Z	Α	В
CH ₃	OCH ₃	Н	CH ₃	Н
CH ₃	OCH ₃	Н	C ₂ H ₅	Н
CH ₃	OCH ₃	Н	C ₃ H ₇	Н
CH ₃	OCH ₃	Н	i-C ₃ H ₇	Н
CH ₃	OCH ₃	Н	C ₄ H ₉	Н
CH ₃	OCH ₃	Н	i-C ₄ H ₉	Н
CH ₃	OCH ₃	Н	s-C ₄ H ₉	Н
CH ₃	OCH ₃	Н	t-C₄H ₉	Н
CH ₃	OCH ₃	Н	CH ₃	CH ₃
CH ₃	OCH ₃	Н	C ₂ H ₅	CH ₃
CH ₃	OCH ₃	Н	C ₃ H ₇	CH ₃
CH ₃	OCH ₃	Н	i-C ₃ H ₇	CH ₃
CH ₃	OCH ₃	Н	C₄H ₉	CH ₃
CH ₃	OCH ₃	H	i-C₄H ₉	CH ₃
CH ₃	OCH ₃	Н	s-C₄H ₉	CH ₃
CH ₃	OCH ₃	H ·	t-C ₄ H ₉	CH ₃
CH ₃	OCH ₃	Н	C ₂ H ₅	C ₂ H ₅
CH ₃	OCH ₃	Н	C ₃ H ₇	C ₃ H ₇
CH ₃	OCH ₃	Н	\triangle	CH ₃
CH ₃	OCH ₃	Н		CH ₃
CH ₃	OCH ₃	Н	\bigcirc	CH ₃

Fortsetzung: Tabelle 7a

X	Y	Z	Α	В
CH ₃	CH ₃	6-OCH ₃	CH ₃	Н
CH ₃	CH ₃	6-OCH ₃	C ₂ H ₅	Н
CH ₃	CH ₃	6-OCH ₃	C ₃ H ₇	Н
CH ₃	CH ₃	6-OCH ₃	i-C ₃ H ₇	Н
CH ₃	CH ₃	6-OCH ₃	C ₄ H ₉	Н
CH ₃	CH ₃	6-OCH ₃	i-C₄H ₉	Н
CH ₃	CH ₃	6-OCH ₃	s-C ₄ H ₉	Н
CH ₃	CH ₃	6-OCH ₃	t-C ₄ H ₉	Н
CH ₃	CH ₃	6-OCH ₃	CH ₃	CH ₃
CH ₃	CH ₃	6-OCH ₃	C ₂ H ₅	CH ₃
CH ₃	CH ₃	6-OCH ₃	C_3H_7	CH ₃
CH ₃	CH ₃	6-OCH ₃	i-C ₃ H ₇	CH ₃
CH ₃	CH ₃	6-OCH ₃	C₄H ₉	CH ₃
CH ₃	CH ₃	6-OCH ₃	i-C ₄ H ₉ .	CH ₃
CH ₃	CH ₃	6-OCH ₃	s-C ₄ H ₉	CH ₃
CH ₃	CH ₃	6-OCH ₃	t-C ₄ H ₉	CH ₃
CH ₃	CH ₃	6-OCH ₃	C ₂ H ₅	C ₂ H ₅
CH ₃	CH ₃	6-OCH ₃	C_3H_7	C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃		CH ₃
CH ₃	CH ₃	6-OCH ₃		CH ₃
CH ₃	CH ₃	6-OCH ₃	\bigcirc	CH ₃

X	Y	Z	Α	R
CH ₃	OCH ₃	6-CH ₃	CH ₃	Н
CH ₃	OCH ₃	+	 	
		6-CH ₃	C ₂ H ₅	Н
CH ₃	OCH ₃	6-CH ₃	C ₃ H ₇	Н
CH ₃	OCH ₃	6-CH ₃	i-C ₃ H ₇	Н
CH ₃	OCH ₃	6-CH ₃	C₄H ₉	Н
CH ₃	OCH ₃	6-CH ₃	i-C ₄ H ₉	Н
CH ₃	OCH ₃	6-CH ₃	s-C ₄ H ₉	Н
CH ₃	OCH ₃	6-CH ₃	t-C ₄ H ₉	Н
CH ₃	OCH ₃	6-CH ₃	CH ₃	CH ₃
CH ₃	OCH ₃	6-CH ₃	C ₂ H ₅	CH ₃
CH ₃	OCH ₃	6-CH ₃	C ₃ H ₇	CH ₃
CH ₃	OCH ₃	6-CH ₃	i-C ₃ H ₇	CH ₃
CH ₃	OCH ₃	6-CH ₃	C₄H ₉	CH ₃
CH ₃	OCH ₃	6-CH ₃	i-C ₄ H ₉	CH ₃
CH ₃	OCH ₃	6-CH ₃	s-C₄H ₉	CH ₃
CH ₃	OCH ₃	6-CH ₃	t-C₄H ₉	CH ₃
CH ₃	OCH ₃	6-CH ₃	C ₂ H ₅	C ₂ H ₅
CH ₃	OCH ₃	6-CH ₃	C ₃ H ₇	C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	\triangle	CH ₃
CH ₃	OCH ₃	6-CH ₃	\Box	CH ₃
CH ₃	OCH ₃	6-CH ₃	\bigcirc	CH ₃

Fortsetzung: Tabelle 7a

X	Y .	.Z	A B.
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -
CH ₃	OCH ₃	Н	-(CH ₂) ₄ -
CH ₃	OCH ₃	Н	-(CH ₂) ₅ -
CH ₃	OCH ₃	Н	-(CH ₂) ₆ -
CH ₃	OCH ₃	Н	-(CH ₂) ₇ -
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -O-(CH ₂) ₂ -
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -S-(CH ₂) ₂ -
CH ₃	OCH ₃	Н	-CH ₂ -CHCH ₃ -(CH ₂) ₃ -
CH₃	OCH ₃	Н	-(CH ₂) ₂ -CHCH ₃ -(CH ₂) ₂ -
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -CHC ₂ H ₅ -(CH ₂) ₂ -
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -CHC ₃ H ₇ -(CH ₂) ₂ -
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -CHi-C ₃ H ₇ -(CH ₂) ₂ -
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -CHOCH ₃ -(CH ₂) ₂ -
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -CHOC ₂ H ₅ -(CH ₂) ₂ -
CH ₃	OCH ₃	H	-(CH ₂) ₂ -CHOC ₃ H ₇ -(CH ₂) ₂ -
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -CHi-OC ₃ H ₇ -(CH ₂) ₂ -
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -C(CH ₃) ₂ -(CH ₂) ₂ -
CH ₃	OCH ₃	Н	-CH ₂ -(CHCH ₃) ₂ -(CH ₂) ₂ -
CH ₃	OCH ₃	Н	-CH ₂ -CH-(CH ₂) ₂ -CH-
			CH ₂
CH ₃	OCH ₃	Н	-CH ₂ -CH-CH ₂ - (CH ₂) ₄
CH ₃	OCH ₃	Н	-CH ₂ -CH-(CH ₂) ₂ -

Fortsetzung: Tabelle 7a

X	Y	Z	A B
CH ₃	CH ₃	6-OCH ₂	
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₄ -
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₅ -
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₆ -
CH ₃	CH ₂		-(CH ₂) ₇ -
CH ₃	CH ₃	6-OCH	-(CH ₂) ₂ -O-(CH ₂) ₂ -
		6-OCH ₃	-(CH ₂) ₂ -S-(CH ₂) ₂ -
CH ₃	CH ₃	6-OCH ₃	-CH ₂ -CHCH ₃ -(CH ₂) ₃ -
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHCH ₃ -(CH ₂) ₂ -
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHC ₂ H ₅ -(CH ₂) ₂ -
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHC ₃ H ₇ -(CH ₂) ₂ -
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHi-C ₃ H ₇ -(CH ₂) ₂ -
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHOCH ₃ -(CH ₂) ₂ -
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHOC ₂ H ₅ -(CH ₂) ₂ -
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHOC ₃ H ₇ -(CH ₂) ₂ -
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHi-OC ₃ H ₇ - (CH ₂) ₂ -
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -C(CH ₃) ₂ -(CH ₂) ₂ -
CH ₃	CH ₃	6-OCH ₃	-CH ₂ -(CHCH ₃) ₂ -(CH ₂) ₂ -
CH ₃	CH ₃	6-OCH ₃	-CH ₂ -CH-(CH ₂) ₂ -CH-
			CH ₂
CH ₃	CH ₃	6-OCH ₃	-CH ₂ -CH-CH ₂ -CH-CH ₂ -CCH ₂)
CH ₃	CH ₃	6-OCH ₃	-CH ₂ -CH-(CH ₂) ₂ -

Fortsetzung: Tabelle 7a

X	Y	Z	A B	
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -	
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₄ -	
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₅ -	
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₆ -	
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₇ -	
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -O-(CH ₂) ₂ -	
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -S-(CH ₂) ₂ -	
CH ₃	OCH ₃	6-CH ₃	-CH ₂ -CHCH ₃ -(CH ₂) ₃ -	
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHCH ₃ -(CH ₂) ₂ -	
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHC ₂ H ₅ -(CH ₂) ₂ -	
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHC ₃ H ₇ -(CH ₂) ₂ -	
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHi-C ₃ H ₇ -(CH ₂) ₂ -	
CH ₃	OCH₃	6-CH ₃	-(CH ₂) ₂ -CHOCH ₃ -(CH ₂) ₂ -	
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHOC ₂ H ₅ -(CH ₂) ₂ -	
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHOC ₃ H ₇ -(CH ₂) ₂ -	
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHi-OC ₃ H ₇ -(CH ₂) ₂ -	
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -C(CH ₃) ₂ -(CH ₂) ₂ -	
CH ₃	OCH₃	6-CH ₃	-CH ₂ -(CHCH ₃) ₂ -(CH ₂) ₂ -	
CH ₃	OCH ₃	6-CH ₃	-CH ₂ -CH-(CH ₂) ₂ -CH-	
CH ₃	OCH ₃	6-CH ₃	-CH ₂ -CH-CH ₂ - (CH ₂) ₄	
CH ₃	OCH ₃	6-CH ₃	-CH ₂ -CHCH-(CH ₂) ₂ -	

Im einzelnen seien außer den bei den Herstellungsbeispielen genannten Verbindungen die folgenden Verbindungen der Formel (Ig-b) genannt:

Tabelle 7b:

$$0 \longrightarrow X \longrightarrow Z$$
 (Ig-b)

			Y	
X	Y	Z	A	В
CH ₃	OCH ₃	H	CH ₃	Н
CH ₃	OCH ₃	H	C ₂ H ₅	Н
CH ₃	OCH ₃	Н	C ₃ H ₇	Н
CH ₃	OCH ₃	Н	i-C ₃ H ₇	Н
CH ₃	OCH ₃	Н	C ₄ H ₉	Н
CH ₃	OCH ₃	Н	i-C ₄ H ₉	Н
CH ₃	OCH ₃	H	s-C ₄ H ₉	Н
CH₃	OCH ₃	Н	t-C ₄ H ₉	Н
CH ₃	OCH ₃	H	CH ₃	CH ₃
CH ₃	OCH ₃	H	C ₂ H ₅	CH ₃
CH ₃	OCH ₃	H	C ₃ H ₇	CH ₃
CH ₃	OCH ₃	H	i-C ₃ H ₇	CH ₃
CH ₃	OCH ₃	Н	C₄H ₉	CH ₃
CH ₃	OCH ₃	Н	i-C ₄ H ₉	CH ₃
CH ₃	OCH ₃	Н	s-C ₄ H ₉	CH ₃
CH ₃	OCH ₃	H	t-C₄H ₉	CH ₃
CH ₃	OCH ₃	H	C ₂ H ₅	C ₂ H ₅
CH ₃	OCH ₃	Н	C ₃ H ₇	C ₃ H ₇
CH ₃	OCH ₃	H	_	CH ₃
CH ₃	OCH ₃	Н		CH ₃
CH ₃	OCH ₃	Н		CH ₃

Fortsetzung: Tabelle 7b

Х	Y	Z	A.	В
CH ₃	CH ₃	6-OCH ₃	CH ₃	Ĥ
CH ₃	CH ₃	6-OCH ₃	C ₂ H ₅	Н
CH ₃	CH ₃	6-OCH₃	C ₃ H ₇	Н
CH ₃	CH ₃	6-OCH ₃	i-C ₃ H ₇	Н
CH ₃	CH ₃	6-OCH ₃	C₄H ₉	Н
CH₃	CH ₃	6-OCH ₃	i-C₄H ₉	Н
CH ₃	CH ₃	6-OCH ₃	s-C ₄ H ₉	Н
CH ₃	CH ₃	6-OCH ₃	t-C ₄ H ₉	Н
CH ₃	CH ₃	6-OCH ₃	CH ₃	CH ₃
CH ₃	CH ₃	6-OCH ₃	C ₂ H ₅	CH ₃
CH ₃	CH ₃	6-OCH₃	C ₃ H ₇	CH ₃
CH ₃	CH ₃	6-OCH ₃	i-C ₃ H ₇	CH ₃
CH ₃	CH ₃	6-OCH ₃	C₄H ₉	CH ₃
CH ₃	CH ₃	6-OCH ₃	i-C ₄ H ₉	CH ₃
CH ₃	CH ₃	6-OCH ₃	s-C₄H ₉	CH ₃
CH ₃	CH ₃	6-OCH ₃	t-C ₄ H ₉	CH ₃
CH ₃	CH ₃	6-OCH ₃	C ₂ H ₅	C ₂ H ₅
CH ₃	CH ₃	6-OCH ₃	C_3H_7	C ₃ H ₇
CH ₃	CH ₃	6-OCH ₃		CH ₃
CH ₃	CH ₃	6-OCH ₃		CH ₃
CH ₃	CH ₃	6-OCH ₃	\bigcirc	CH ₃

- 147 -

Fortsetzung: Tabelle 7b

X	Y	Z	A	В
CH ₃	OCH ₃	6-CH ₃	CH ₃	Н
CH ₃	OCH ₃	6-CH ₃	C ₂ H ₅	Н .
CH ₃	OCH ₃ .	6-CH ₃	C ₃ H ₇	Н
CH ₃	OCH ₃	6-CH ₃	i-C ₃ H ₇	Н
CH ₃	OCH ₃	6-CH ₃	C ₄ H ₉	Н
CH ₃	OCH ₃	6-CH ₃	i-C ₄ H ₉	Н
CH ₃	OCH ₃	6-CH ₃	s-C₄H ₉	Н
CH ₃	OCH ₃	6-CH ₃	t-C ₄ H ₉	Н
CH ₃	OCH ₃	6-CH ₃	CH ₃	CH ₃
CH ₃	OCH ₃	6-CH ₃	C ₂ H ₅	CH ₃
CH ₃	OCH ₃	6-CH ₃	C ₃ H ₇	CH ₃
CH ₃	OCH ₃	6-CH ₃	i-C ₃ H ₇	CH ₃
CH ₃	OCH ₃	6-CH ₃	C_4H_9	CH ₃
CH ₃	OCH ₃	6-CH ₃	i-C ₄ H ₉	CH ₃
CH ₃	OCH ₃	6-CH ₃	s-C ₄ H ₉	CH ₃
CH ₃	OCH ₃	6-CH ₃	t-C ₄ H ₉	CH ₃
CH ₃	OCH ₃	6-CH ₃	C ₂ H ₅	C ₂ H ₅
CH ₃	OCH ₃	6-CH ₃	C ₃ H ₇	C ₃ H ₇
CH ₃	OCH ₃	6-CH ₃	\triangle	CH ₃
CH ₃	OCH ₃	6-CH ₃		CH ₃
CH ₃	OCH ₃	6-CH ₃	<u></u>	CH ₃

Fortsetzung: Tabelle 7b

X	Y	z ·	A B
<u> </u>			
CH ₃	OCH₃	H	-(CH ₂) ₂ -
CH ₃	OCH ₃	H	-(CH ₂) ₄ -
CH ₃	OCH ₃	H	-(CH ₂) ₅ -
CH ₃	OCH ₃	Н	-(CH ₂) ₆ -
CH ₃	OCH ₃	Н	-(CH ₂) ₇ -
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -O-(CH ₂) ₂ -
CH₃	OCH ₃	Н	-(CH ₂) ₂ -S-(CH ₂) ₂ -
CH ₃	OCH ₃	H	-CH ₂ -CHCH ₃ -(CH ₂) ₃ -
CH ₃	OCH ₃	н	-(CH ₂) ₂ -CHCH ₃ -(CH ₂) ₂ -
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -CHC ₂ H ₅ -(CH ₂) ₂ -
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -CHC ₃ H ₇ -(CH ₂) ₂ -
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -CHi-C ₃ H ₇ -(CH ₂) ₂ -
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -CHOCH ₃ -(CH ₂) ₂ -
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -CHOC ₂ H ₅ -(CH ₂) ₂ -
CH ₃	OCH ₃	H	-(CH ₂) ₂ -CHOC ₃ H ₇ -(CH ₂) ₂ -
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -CHi-OC ₃ H ₇ -(CH ₂) ₂ -
CH ₃	OCH ₃	Н	-(CH ₂) ₂ -C(CH ₃) ₂ -(CH ₂) ₂ -
CH ₃	OCH₃	Н	-CH ₂ -(CHCH ₃) ₂ -(CH ₂) ₂ -
CH ₃	OCH ₃	Н	-CH ₂ -CH-(CH ₂) ₂ -CH-
			CH₂
CH ₃	OCH ₃	Н	-CH ₂ -CHCHCH ₂
			(CH ₂)4
CH ₃	OCH ₃	Н	-CH ₂ -CHCH(CH ₂) ₂ -
			(CH ₂) ₃

Fortsetzung: Tabelle 7b

	7		
X	Y	Z ·	A B
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₄ -
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₅ -
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₆ -
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₇ -
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -O-(CH ₂) ₂ -
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -S-(CH ₂) ₂ -
CH ₃	CH ₃	6-OCH ₃	-CH ₂ -CHCH ₃ -(CH ₂) ₃ -
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHCH ₃ -(CH ₂) ₂ -
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHC ₂ H ₅ -(CH ₂) ₂ -
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHC ₃ H ₇ -(CH ₂) ₂ -
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHi-C ₃ H ₇ -(CH ₂) ₂ -
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHOCH ₃ -(CH ₂) ₂ -
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHOC ₂ H ₅ -(CH ₂) ₂ -
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHOC ₃ H ₇ -(CH ₂) ₂ -
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -CHi-OC ₃ H ₇ -(CH ₂) ₂ -
CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ -C(CH ₃) ₂ -(CH ₂) ₂ -
CH ₃	CH ₃	6-OCH ₃	-CH ₂ -(CHCH ₃) ₂ -(CH ₂) ₂ -
CH ₃	CH ₃	6-OCH ₃	-CH ₂ -CH(CH ₂) ₂ -CH-
CH ₃	CH ₃	6-OCH ₃	-CH ₂ -CH-CH ₂ -CH-CH ₂ -
CH ₃	CH ₃	6-OCH ₃	-CH ₂ -CH-(CH ₂) ₂ -

Fortsetzung: Tabelle 7b

χ·	Y	Z	A B	
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -	
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₄ -	
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₅ -	
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₆ -	
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₇ -	
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -O-(CH ₂) ₂ -	
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -S-(CH ₂) ₂ -	
CH ₃	OCH ₃	6-CH ₃	-CH ₂ -CHCH ₃ -(CH ₂) ₃ -	
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHCH ₃ -(CH ₂) ₂ -	
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHC ₂ H ₅ -(CH ₂) ₂ -	
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHC ₃ H ₇ -(CH ₂) ₂ -	
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHi-C ₃ H ₇ -(CH ₂) ₂ -	
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHOCH ₃ -(CH ₂) ₂ -	
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHOC ₂ H ₅ -(CH ₂) ₂ -	
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHOC ₃ H ₇ -(CH ₂) ₂ -	
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CHi-OC ₃ H ₇ -(CH ₂) ₂ -	
CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -C(CH ₃) ₂ -(CH ₂) ₂ -	
CH ₃	OCH ₃	6-CH₃	-CH ₂ -(CHCH ₃) ₂ -(CH ₂) ₂ -	
CH ₃	OCH ₃	6-CH ₃	-СH ₂ СH(СН ₂) ₂ СH	
			CH,	
CH ₃	OCH ₃	6-CH ₃	-CH ₂ CHCHCH ₂	
			(CH ₂)4	
CH ₃	OCH ₃	6-CH ₃	-CH ₂ -CHCH-(CH ₂) ₂ -	
<u></u>			L(CH ₂) ₃	

10

15

Verwendet man gemäß Verfahren (A) N-(2-Methyl-4-methoxyphenylacetyl)-1-amino-4-ethyl-cyclohexan-carbonsäureethylester als Ausgangsstoff, so kann der. Verlauf des erfindungsgemäßen Verfahrens durch folgendes Reaktionsschema wiedergegeben werden:

$$C_2H_5$$
 OCH₃ 1. Base C_2H_5 OH OCH₃ OCH₃ OCH₃

Verwendet man gemäß Verfahren (B_{α}) 3-(2-Methyl-6-methoxyphenyl)-5,5-dimethyl-pyrrolidin-2,4-dion und Pivaloylchlorid als Ausgangsstoffe, so kann der Verlauf des erfindungsgemäßen Verfahrens durch folgendes Reaktionsschema wiedergegeben werden:

Verwendet man gemäß Verfahren (B_{β}) 3-(2,4-Dimethyl-6-methoxyphenyl)-5-isopropyl-5-methyl-pyrrolidin-2,4-dion und Acetanhydrid als Ausgangsverbindungen, so kann der Verlauf des erfindungsgemäßen Verfahrens durch folgendes Reaktionsschema wiedergegeben werden:

Verwendet man gemäß Verfahren (C) 3-(2-Methoxy-4-methyl-phenyl)-5,5-diethyl-pyrrolidin-2,4-dion und Chlorameisensäureethoxyethylester als Ausgangsverbindungen, so kann der Verlauf des erfindungsgemäßen Verfahrens durch folgendes Reaktionsschema wiedergegeben werden:

5

15

Verwendet man gemäß Verfahren (D_{α}) 3-(2,6-Dimethyl-4-methoxyphenyl)-5.5-pentamethylen-pyrrolidin-2,4-dion und Chlormonothioameisensäuremethylester als Ausgangsprodukte, so kann der Reaktionsverlauf wie folgt wiedergegeben werden:

Verwendet man gemäß Verfahren (D_B) 3-(2-Methyl-4-ethoxy-phenyl)-5,5-ethylmercaptoethyl-pyrrolidin-2,4-dion, Schwefelkohlenstoff und Methyliodid als Ausgangskomponenten, so kann der Reaktionsverlauf wie folgt wiedergegeben werden:

SOH
$$CH_3$$

$$OC_2H_5$$

$$Base$$

$$OC_2H_5$$

$$OC_2H_5$$

$$OC_2H_5$$

$$OC_2H_5$$

$$OC_2H_5$$

$$OC_2H_5$$

$$OC_2H_5$$

Verwendet man gemäß Verfahren (E) 3-(2-Methyl-4-isopropoxy-phenyl)-5.5-(2-methyl)-pentamethylen-pyrrolidin-2,4-dion und Methansulfonsäurechlorid als Aus-

Na(+)

gangsprodukt, so kann der Reaktionsverlauf durch folgendes Reaktionsschema wiedergegeben werden:

Verwendet man gemäß Verfahren (F) 3-(2-Methoxy-4-methylphenyl)-5-isobutyl-5-methyl-pyrrolidin-2,4-dion und Methanthio-phosphonsäurechlorid-(2,2,2-trifluor-ethylester) als Ausgangsprodukte, so kann der Reaktionsverlauf durch folgendes Reaktionsschema wiedergegeben werden:

$$S = P - CH_3$$
 $CI - P CH_3$
 $CH_3 CH_3$
 CH_3
 $CH_$

Verwendet man gemäß Verfahren (G) 3-(2-Methyl-4-methoxyphenyl)-5-cyclopropyl-5-methyl-pyrrolidin-2,4-dion und NaOH als Komponenten, so kann der Verlauf des erfindungsgemäßen Verfahrens durch folgendes Reaktionsschema wiedergegeben werden:

$$H_3C$$
 H_3C
 H_3C

Verwendet man gemäß Verfahren (H_{α}) 3-(2-Methyl-4-ethoxyphenyl)-5,5-hexamethylen-pyrrolidin-2,4-dion und Ethylisocyanat als Ausgangsprodukte, so kann der Reaktionsverlauf durch folgendes Schema wiedergegeben werden:

Verwendet man gemäß Verfahren (H_{β}) 3-(2-Methoxy-4-methylphenyl)-5-methylpyrrolidin-2,4-dion und Dimethylcarbamidsäurechlorid als Ausgangsprodukte, so kann der Reaktionsverlauf durch folgendes Schema wiedergegeben werden:

Die bei den erfindungsgemäßen Verfahren (A) als Ausgangsstoffe benötigten Verbindungen der Formel (II)

in welcher

10

A, B, X, Y, Z und R⁸ die oben angegebene Bedeutung haben,

sind neu.

Man erhält z.B. Acyl-aminosäureester der Formel (II), wenn man Aminosäurederivate der Formel (XIV),

$$\begin{array}{ccc} A & CO_2R^{12'} \\ B & NH_2 \end{array} \tag{XIV}$$

5 in welcher

R^{12'} für Wasserstoff (XIVa) oder Alkyl (XIVb) steht

und

A und B die oben angegebene Bedeutung haben,

mit Phenylessigsäurehalogeniden der Formel (XV)

Y—COHal (XV)

10

15

in welcher

X, Y und Z die oben angegebene Bedeutung haben und

Hal für Chlor oder Brom steht,

acyliert (Chem. Reviews <u>52</u>, 237-416 (1953); Bhattacharya, Indian J. Chem. <u>6</u>, 341-5, 1968)

oder wenn man Acylaminosäuren der Formel (IIa),

PCT/EP95/01100

- 156 -

$$\begin{array}{c}
A \\
B
\end{array}$$

$$\begin{array}{c}
CO_2R^{12} \\
X
\end{array}$$

$$\begin{array}{c}
CO_2R^{12} \\
X
\end{array}$$
(IIa)

in welcher

A, B, X, Y und Z die oben angegebene Bedeutung haben,

und

5 R¹²

10

15

für Wasserstoff steht,

verestert (Chem. Ind. (London) 1568 (1968)).

Wenn die Substituenten A und B einen Ring bilden, sind die resultierenden substituierten cyclischen Aminocarbonsäuren der Formel (XIVa) im allgemeinen nach der Bucherer-Bergs-Reaktion oder nach der Strecker-Synthese erhältlich und fallen dabei jeweils in unterschiedlichen Isomerenformen an. So erhält man nach den Bedingungen der Bucherer-Bergs-Reaktion vorwiegend die Isomeren (im folgenden der Einfachheit halber als β bezeichnet), in welchen die Reste R und die Carboxylgruppe äquatorial stehen, während nach den Bedingungen der Strecker-Synthese vorwiegend die Isomeren (im folgenden der Einfachheit halber als α bezeichnet) anfallen, bei denen die Aminogruppe und die Reste R äquatorial stehen.

Bucherer-Bergs-Synthese $(\beta$ -Isomeres)

Strecker-Synthese (α-Isomeres)

(L. Munday, J. Chem. Soc. 4372 (1961); J.T. Eward, C. Jitrangeri, Can. J. Chem. 53, 3339 (1975).

Weiterhin lassen sich die bei dem obigen Verfahren (A) verwendeten Ausgangsstoffe der Formel (II)

in welcher

5 A, B, X, Y, Z und R⁸ die oben angegebene Bedeutung haben,

herstellen, wenn man Aminonitrile der Formel (XVI)

$$A \nearrow B$$
 $C \equiv N$
(XVI)

in welcher

A und B die oben angegebene Bedeutung haben,

10 mit Phenylessigsäurehalogeniden der Formel (XV)

in welcher

X, Y und Z die oben angegebene Bedeutung haben und

Hal für Chlor oder Brom steht,

zu Verbindungen der Formel (XVII)

$$Y - \bigvee_{Z} X = NH C \equiv N$$

$$(XVII)$$

in welcher

A, B, X, Y und Z die oben angegebene Bedeutung haben,

5 umsetzt und diese anschließend einer schwefelsauren Alkoholyse unterwirft.

Die Verbindungen der Formel (XVII) sind ebenfalls neu.

Beispielhaft aber nicht begrenzend seien außer den bei den Herstellungsbeispielen genannten Zwischenprodukten die folgenden Verbindungen der Formel (II) genannt:

10 N-(2-Methyl-4-methoxyphenylacetyl)-alanin-methylester

N-(2-Methyl-4-methoxyphenylacetyl)-leucin-methylester

N-(2-Methyl-4-methoxyphenylacetyl)-isoleucin-methylester

N-(2-Methyl-4-methoxyphenylacetyl)-valin-methylester

N-(2-Methyl-4-methoxyphenylacetyl)-aminoisobuttersäure-methylester

- N-(2-Methyl-4-methoxyphenylacetyl)-2-ethyl-2-aminobuttersäure-methylester
 N-(2-Methyl-4-methoxyphenylacetyl)-2-methyl-2-aminovaleriansäure-methylester
 N-(2-Methyl-4-methoxyphenylacetyl)-2,3-dimethyl-2-aminovaleriansäure-
 - $\label{eq:normalized} N-(2-Methyl-4-methoxyphenylacetyl)-1-amino-cyclopentancarbons \"{a}ure-methylester$
- 20 N-(2-Methyl-4-methoxyphenylacetyl)-1-amino-cyclohexancarbonsäure-methylester
 - N-(2-Methyl-4-methoxyphenylacetyl)-1-amino-cycloheptancarbonsäure-methylester
 - N-(2-Methyl-4-methoxyphenylacetyl)-1-amino-cyclooktancarbonsäure-methylester
 - N-(2,6-Dimethyl-4-methoxyphenylacetyl)-alanin-methylester

- N-(2,6-Dimethyl-4-methoxyphenylacetyl)-leucin-methylester
- N-(2,6-Dimethyl-4-methoxyphenylacetyl)-isoleucin-methylester
- N-(2,6-Dimethyl-4-methoxyphenylacetyl)-valin-methylester
- N-(2,6-Dimethyl-4-methoxyphenylacetyl)-aminoisobuttersäure-methylester
- N-(2,6-Dimethyl-4-methoxyphenylacetyl)-2-ethyl-2-aminobuttersäure-methylester N-(2,6-Dimethyl-4-methoxyphenylacetyl)-2-methyl-2-aminovaleriansäure-methylester
 - N-(2,6-Dimethyl-4-methoxyphenylacetyl)-2,3-dimethyl-2-aminovaleriansäuremethylester
- N-(2,6-Dimethyl-4-methoxyphenylacetyl)-1-amino-cyclopentancarbonsäure-methylester
 - N-(2,6-Dimethyl-4-methoxyphenylacetyl)-1-amino-cyclohexancarbonsäure-methylester
 - N-(2,6-Dimethyl-4-methoxyphenylacetyl)-1-amino-cycloheptancarbonsäure-methyl-
- 15 ester
 - N-(2,6-Dimethyl-4-methoxyphenylacetyl)-1-amino-cyclooktancarbonsäure-methylester
 - N-(2,4-Dimethyl-6-methoxyphenylacetyl)-alanin-methylester
 - N-(2,4-Dimethyl-6-methoxyphenylacetyl)-leucin-methylester
- 20 N-(2,4-Dimethyl-6-methoxyphenylacetyl)-isoleucin-methylester
 - N-(2,4-Dimethyl-6-methoxyphenylacetyl)-valin-methylester
 - N-(2,4-Dimethyl-6-methoxyphenylacetyl)-aminoisobuttersäure-methylester
 - $N\hbox{-}(2,4\hbox{-}Dimethyl\hbox{-}6\hbox{-}methoxyphenylacetyl})\hbox{-}2\hbox{-}ethyl\hbox{-}2\hbox{-}aminobutters \"{a}ure\hbox{-}methylester$
 - N-(2,4-Dimethyl-6-methoxyphenylacetyl)-2-methyl-2-aminovaleriansäure-methyl-
- 25 ester
 - $N\hbox{-}(2,4\hbox{-}Dimethyl\hbox{-}6\hbox{-}methoxyphenylacetyl})\hbox{-}2,3\hbox{-}dimethyl\hbox{-}2\hbox{-}aminovalerians \"{a}ure-methylester}$
 - $N-(2,4-Dimethyl-6-methoxyphenylacetyl)-1-amino-cyclopentancarbons \"{a}ure-methylester$
- N-(2,4-Dimethyl-6-methoxyphenylacetyl)-1-amino-cyclohexancarbonsäure-methylester
 - N-(2,4-Dimethyl-6-methoxyphenylacetyl)-1-amino-cycloheptancarbonsäure-methylester
 - N-(2,4-Dimethyl-6-methoxyphenylacetyl)-1-amino-cyclooktancarbonsäure-methyl-
- 35 ester

- $N-(2-Methyl-4-methoxy-phenylacetyl)-1-amino-2-methyl-cyclohexancarbons \"{a}ure-methylester,\\$
- N-(2-Methyl-4-methoxy-phenylacetyl)-1-amino-3-methyl-cyclohexancarbonsäure-methylester,
- N-(2-Methyl-4-methoxy-phenylacetyl)-1-amino-4-methyl-cyclohexancarbonsäuremethylester,
 - N-(2-Methyl-4-methoxy-phenylacetyl)-1-amino-3,4-dimethyl-cyclohexancarbon-säure-methylester,
 - N-(2-Methyl-4-methoxy-phenylacetyl)-1-amino-4-ethyl-cyclohexancarbonsäuremethylester,
 - N-(2-Methyl-4-methoxy-phenylacetyl)-1-amino-4-isopropyl-cyclohexancarbonsäure-methylester,
 - $N-(2-Methyl-4-methoxy-phenylacetyl)-1-amino-4-tert.-butyl-cyclohexan carbon-s\"{a}ure-methylester,\\$
- N-(2-Methyl-4-methoxy-phenylacetyl)-1-amino-4-methoxy-cyclohexancarbonsäuremethylester,
 - $N-(2,4-Dimethyl-6-methoxy-phenylacetyl)-1-amino-2-methyl-cyclohexancarbon-s\"{a}ure-methylester,\\$
- N-(2,4-Dimethyl-6-methoxy-phenylacetyl)-1-amino-3-methyl-cyclohexancarbonsäure-methylester,
 - $N\hbox{-}(2,4\hbox{-}Dimethyl\hbox{-}6\hbox{-}methoxy\hbox{-}phenylacetyl)\hbox{-}1\hbox{-}amino\hbox{-}4\hbox{-}methyl\hbox{-}cyclohexan carbon-s\"{a}ure\hbox{-}methylester,}$
 - $N-(2,4-Dimethyl-6-methoxy-phenylacetyl)-1-amino-3,4-dimethyl-cyclohexancarbon-s\"{a}ure-methylester,\\$
- N-(2,4-Dimethyl-6-methoxy-phenylacetyl)-1-amino-4-ethyl-cyclohexancarbonsäure-methylester,
 - $N-(2,4-Dimethyl-6-methoxy-phenylacetyl)-1-amino-4-isopropyl-cyclohexancarbon-s\"{a}ure-methylester,\\$
- N-(2,4-Dimethyl-6-methoxy-phenylacetyl)-1-amino-4-tert.-butyl-cyclohexancarbon-30 säure-methylester,
 - N-(2,4-Dimethyl-6-methoxy-phenylacetyl)-1-amino-4-methoxy-cyclohexancarbon-säure-methylester,
 - $N-(2,6-Dimethyl-4-methoxy-phenylacetyl)-1-amino-2-methyl-cyclohexancarbon-s\"{a}ure-methylester,\\$

- N-(2,6-Dimethyl-4-methoxy-phenylacetyl)-1-amino-3-methyl-cyclohexan carbon-säure-methylester,
- N-(2,6-Dimethyl-4-methoxy-phenylacetyl)-1-amino-4-methyl-cyclohexancarbon-säure-methylester,
- N-(2,6-Dimethyl-4-methoxy-phenylacetyl)-1-amino-3,4-dimethyl-cyclohexancarbon-säure-methylester,
 - N-(2,6-Dimethyl-4-methoxy-phenylacetyl)-1-amino-4-ethyl-cyclohexancarbonsäure-methylester,
 - N-(2,6-Dimethyl-4-methoxy-phenylacetyl)-1-amino-4-isopropyl-cyclohexancarbon-säure-methylester,
 - N-(2,6-Dimethyl-4-methoxy-phenylacetyl)-1-amino-4-tert.-butyl-cyclohexancarbon-säure-methylester,
 - $N\hbox{-}(4\hbox{-}Chlor\hbox{-}2\hbox{-}methoxy\hbox{-}phenylacetyl)\hbox{-}1\hbox{-}amino\hbox{-}4\hbox{-}methoxy\hbox{-}cyclohexan carbons\"{a}ure-methylester,}$
- Beispielhaft, aber nicht begrenzend, seien außer den bei den Herstellungsbeispielen genannten Zwischenprodukten die folgenden Verbindungen der Formel (IIa) genannt:
 - N-(2-Methyl-4-methoxyphenylacetyl)-alanin
 - N-(2-Methyl-4-methoxyphenylacetyl)-leucin
- 20 N-(2-Methyl-4-methoxyphenylacetyl)-isoleucin
 - N-(2-Methyl-4-methoxyphenylacetyl)-valin
 - N-(2-Methyl-4-methoxyphenylacetyl)-aminoisobuttersäure
 - N-(2-Methyl-4-methoxyphenylacetyl)-2-ethyl-2-aminobuttersäure
 - N-(2-Methyl-4-methoxyphenylacetyl)-2-methyl-2-aminovaleriansäure
- N-(2-Methyl-4-methoxyphenylacetyl)-2,3-dimethyl-2-aminovaleriansäure
 - N-(2-Methyl-4-methoxyphenylacetyl)-1-amino-cyclopentancarbonsäure
 - N-(2-Methyl-4-methoxyphenylacetyl)-1-amino-cyclohexancarbonsäure
 - N-(2-Methyl-4-methoxyphenylacetyl)-1-amino-cycloheptancarbonsäure
 - N-(2-Methyl-4-methoxyphenylacetyl)-1-amino-cyclooktancarbonsäure
- 30 N-(Methyl-2-methoxyphenylacetyl)-alanin
 - N-(2,6-Dimethyl-4-methoxyphenylacetyl)-leucin
 - N-(2,6-Dimethyl-4-2-methoxyphenylacetyl)-isoleucin
 - N-(2,6-Dimethyl-4-methoxyphenylacetyl)-valin

säure

säure

35

•	N-(2,6-Dimethyl-4-methoxyphenylacetyl)-aminoisobuttersäure
	N-(2,6-Dimethyl-4-methoxyphenylacetyl)-2-ethyl-2-aminobuttersäure
	N-(2,6-Dimethyl-4-methoxyphenylacetyl)-2-methyl-2-aminovaleriansäure
	N-(2,6-Dimethyl-4-methoxyphenylacetyl)-2,3-dimethyl-2-aminovaleriansäure
5	N-(2,6-Dimethyl-4-methoxyphenylacetyl)-1-amino-cyclopentancarbonsäure
	N-(2,6-Dimethyl-4-methoxyphenylacetyl)-1-amino-cyclohexancarbonsäure
	N-(2,6-Dimethyl-4-methoxyphenylacetyl)-1-amino-cycloheptancarbonsäure
	N-(2,6-Dimethyl-4-methoxyphenylacetyl)-1-amino-cyclooktancarbonsäure
	N-(2,4-Dimethyl-6-methoxyphenylacetyl)-alanin
10	N-(2,4-Dimethyl-6-methoxyphenylacetyl)-leucin
	N-(2,4-Dimethyl-6-methoxyphenylacetyl)-isoleucin
	N-(2,4-Dimethyl-6-methoxyphenylacetyl)-valin
	N-(2,4-Dimethyl-6-methoxyphenylacetyl)-aminoisobuttersäure
	N-(2,4-Dimethyl-6-methoxyphenylacetyl)-2-ethyl-2-aminobuttersäure
15	N-(2,4-Dimethyl-6-methoxyphenylacetyl)-2-methyl-2-aminovaleriansäure
	N-(2,4-Dimethyl-6-methoxyphenylacetyl)-2,3-dimethyl-2-aminovaleriansäure
	N-(2,4-Dimethyl-6-methoxyphenylacetyl)-1-amino-cyclopentancarbonsäure
	N-(2,4-Dimethyl-6-methoxyphenylacetyl)-1-amino-cyclohexancarbonsäure
	N-(2,4-Dimethyl-6-methoxyphenylacetyl)-1-amino-cycloheptancarbonsäure
20	N-(2,4-Dimethyl-6-methoxyphenylacetyl)-1-amino-cyclooktancarbonsäure
	N-(2-Methyl-4-methoxy-phenylacetyl)-1-amino-2-methyl-cyclohexancarbonsäure
	N-(2-Methyl-4-methoxy-phenylacetyl)-1-amino-3-methyl-cyclohexancarbonsäure
	N-(2-Methyl-4-methoxy-phenylacetyl)-1-amino-4-methyl-cyclohexancarbonsäure
	N-(2-Methyl-4-methoxy-phenylacetyl)-1-amino-3,4-dimethyl-cyclohexancarbon
25	säure
	N-(2-Methyl-4-methoxy-phenylacetyl)-1-amino-4-ethyl-cyclohexancarbonsäure
	N-(2-Methyl-4-methoxy-phenylacetyl)-1-amino-4-isopropyl-cyclohexancarbonsäure
	N-(2-Methyl-4-methoxy-phenylacetyl)-1-amino-4-tertbutyl-cyclohexancarbonsäure
	N-(2-Methyl-4-methoxy-phenylacetyl)-1-amino-4-methoxy-cyclohexancarbonsäure
30	N-(2,6-Dimethyl-4-methoxy-phenylacetyl)-1-amino-2-methyl-cyclohexancarbon
	säure
	N-(2,6-Dimethyl-4-methoxy-phenylacetyl)-1-amino-3-methyl-cyclohexancarbon

N-(2,6-Dimethyl-4-methoxy-phenylacetyl)-1-amino-4-methyl-cyclohexancarbon-

- $N\hbox{-}(2,6\hbox{-}Dimethyl\hbox{-}4\hbox{-}methoxy\hbox{-}phenylacetyl)\hbox{-}1\hbox{-}amino\hbox{-}3,4\hbox{-}dimethyl\hbox{-}cyclohexancarbon-säure}$
- N-(2,6-Dimethyl-4-methoxy-phenylacetyl)-1-amino-4-ethyl-cyclohexancarbonsaure
- N-(2,6-Dimethyl-4-methoxy-phenylacetyl)-1-amino-4-isopropyl-cyclohexancarbon-
- 5 säure
 - N-(2,6-Dimethyl-4-methoxy-phenylacetyl)-1-amino-4-tert.-butyl-cyclohexancarbon-säure
 - $N\hbox{-}(2,6\hbox{-}Dimethyl\hbox{-}4\hbox{-}methoxy\hbox{-}phenylacetyl)\hbox{-}1\hbox{-}amino\hbox{-}4\hbox{-}methoxy\hbox{-}cyclohexan carbon-saure}$
- N-(2,4-Dimethyl-6-methoxy-phenylacetyl)-1-amino-2-methyl-cyclohexancarbon-säure
 - $N-(2,4-Dimethyl-6-methoxy-phenylacetyl)-1-amino-3-methyl-cyclohexan carbon-s\"{a}ure$
 - N-(2,4-Dimethyl-6-methoxy-phenylacetyl)-1-amino-4-methyl-cyclohexancarbon-säure
 - N-(2,4-Dimethyl-6-methoxy-phenylacetyl)-1-amino-3,4-dimethyl-cyclohexancarbon-säure
 - $N-(2,4-Dimethyl-6-methoxy-phenylacetyl)-1-amino-4-ethyl-cyclohexancarbons \"{a}ure N-(2,4-Dimethyl-6-methoxy-phenylacetyl)-1-amino-4-isopropyl-cyclohexancarbon-phenylacetyl)-1-amino-4-isopropyl-cyclohexancarbon-phenylacetyl)-1-amino-4-isopropyl-cyclohexancarbon-phenylacetyl)-1-amino-4-isopropyl-cyclohexancarbon-phenylacetyl)-1-amino-4-isopropyl-cyclohexancarbon-phenylacetyl)-1-amino-4-isopropyl-cyclohexancarbon-phenylacetyl)-1-amino-4-isopropyl-cyclohexancarbon-phenylacetyl)-1-amino-4-isopropyl-cyclohexancarbon-phenylacetyl)-1-amino-4-isopropyl-cyclohexancarbon-phenylacetyl)-1-amino-4-isopropyl-cyclohexancarbon-phenylacetyl-1-amino-4-iso$
- 20 säure

- $N\hbox{-}(2,4\hbox{-}Dimethyl\hbox{-}6\hbox{-}methoxy\hbox{-}phenylacetyl)\hbox{-}l\hbox{-}amino\hbox{-}4\hbox{-}tert.\hbox{-}butyl\hbox{-}cyclohexancarbon-säure}$
- N-(2,4-Dimethyl-6-methoxy-phenylacetyl)-1-amino-4-methoxy-cyclohexancarbon-säure
- Verbindungen der Formel (IIa) sind beispielsweise aus den Phenylessigsäurehalogeniden der Formel (XV) und Aminosäuren der Formel (XIVa) nach Schotten-Baumann (Organikum, 9. Auflage, 446 (1970) VEB Deutscher Verlag der Wissenschaften, Berlin) erhältlich.

Die Phenylessigsäurehalogenide der Formel (XV)

in welcher

10

15

X, Y und Z die oben angegebene Bedeutung haben und

Hal für Brom oder Chlor steht.

sind teilweise neu. Sie lassen sich nach bekannten Verfahren in einfacher Weise aus den entsprechenden bekannten Phenylessigsäuren darstellen.

Die zur Durchführung der erfindungsgemäßen Verfahren (B), (C), (D), (E), (F), (G) und (H) außerdem als Ausgangsstoffe benötigten Säurehalogenide der Formel (III), Carbonsäureanhydride der Formel (IV), Chlorameisensäureester oder Chlorameisensäurethioester der Formel (V), Chlorameisensäureester oder Chlordithioameisensäureester der Formel (VI), Alkylhalogenide der Formel (VII), Sulfonsäurechloride der Formel (VIII), Phosphorverbindungen der Formel (IX) und Metallverbindungen oder Amine der Formel (X) und (XI) und Isocyanate, Isothiocyanate oder Carbamidsäurechloride der Formel (XIII) sind allgemein bekannte Verbindungen der organischen bzw. anorganischen Chemie.

Das Verfahren (A) ist dadurch gekennzeichnet, daß man Verbindungen der Formel (II) in welcher A, B, X, Y, Z und R⁸ die oben angegebene Bedeutung haben, in Gegenwart von Basen einer intramolekularen Kondensation unterwirft.

Als Verdünnungsmittel können bei dem erfindungsgemäßen Verfahren (A) alle inerten organischen Solventien eingesetzt werden. Vorzugsweise verwendbar sind Kohlenwasserstoffe, wie Toluol und Xylol, ferner Ether, wie Dibutylether, Tetrahydrofuran, Dioxan, Glykoldimethylether und Diglykoldimethylether, außerdem polare Lösungsmittel, wie Dimethylsulfoxid, Sulfolan, Dimethylformamid und N-Methyl-pyrrolidon, sowie Alkohole wie Methanol, Ethanol, Propanol, Isopropanol, Butanol, iso-Butanol und tert.-Butanol.

10

20

30

Als Basen (Deprotonierungsmittel) können bei der Durchführung des erfindungsgemäßen Verfahrens (A) alle üblichen Protonenakzeptoren eingesetzt werden Vorzugsweise verwendbar sind Alkalimetall- und Erdalkalimetall-oxide, -hydroxide und -carbonate, wie Natriumhydroxid, Kaliumhydroxid, Magnesiumoxid, Calciumoxid, Natriumcarbonat, Kaliumcarbonat und Calciumcarbonat, Natriumcarbonat, Kaliumcarbonat und Calciumcarbonat, die auch in Gegenwart von Phasentransferkatalysatoren wie z.B. Triethylbenzylammoniumchlorid, Tetrabutylammoniumbromid, Adogen 464 (= Methyltrialkyl(C₈-C₁₀)ammoniumchlorid) oder TDA 1 (= Tris-(methoxyethoxyethyl)-amin) eingesetzt werden können. Weiterhin können Alkalimetalle wie Natrium oder Kalium verwendet werden. Ferner sind Alkalimetall- und Erdalkalimetallamide und -hydride, wie Natriumamid, Natriumhydrid und Calciumhydrid, und außerdem auch Alkalimetallalkoholate, wie Natrium-methylat, Natriumethylat und Kalium-tert.-butylat einsetzbar.

Die Reaktionstemperaturen können bei der Durchführung des erfindungsgemäßen Verfahrens (A) innerhalb eines größeren Bereiches variiert werden. Im allgemeinen arbeitet man bei Temperaturen zwischen 0°C und 250°C, vorzugsweise zwischen 50°C und 150°C.

Das erfindungsgemäße Verfahren (A) wird im allgemeinen unter Normaldruck durchgeführt.

Bei der Durchführung der erfindungsgemäßen Verfahren (A) setzt man pro Mol der Reaktionskomponente der Formel (II) etwa 2 Mol der deprotonierenden Base ein. Es ist jedoch auch möglich, die eine oder andere Komponente in einem größeren Überschuß (bis zu 3 Mol) zu verwenden.

Das Verfahren (Bα) ist dadurch gekennzeichnet, daß man Verbindungen der Formel (Ia) mit Carbonsäurehalogeniden der Formel (III) umsetzt.

Als Verdünnungsmittel können bei dem erfindungsgemäßen Verfahren (Bα) alle gegenüber den Säurehalogeniden inerten Solventien eingesetzt werden. Vorzugsweise verwendbar sind Kohlenwasserstoffe, wie Benzin, Benzol, Toluol, Xylol und Tetralin, ferner Halogenkohlenwasserstoffe, wie Methylenchlorid,

10

20

25

Chloroform, Tetrachlorkohlenstoff, Chlorbenzol und o-Dichlorbenzol, außerdem Ketone, wie Aceton und Methylisopropylketon, weiterhin Ether, wie Diethylether, Tetrahydrofuran und Dioxan, darüberhinaus Carbonsäureester, wie Ethylacetat, und auch stark polare Solventien, wie Dimethylsulfoxid und Sulfolan. Wenn die Hydrolysestabilität des Säurehalogenids es zuläßt, kann die Umsetzung auch in Gegenwart von Wasser durchgeführt werden.

Als Säurebindemittel kommen bei der Umsetzung nach dem erfindungsgemäßen Verfahren $(B\alpha)$ alle üblichen Säureakzeptoren in Betracht. Vorzugsweise verwendbar sind tertiäre Amine, wie Triethylamin, Pyridin, Diazabicyclooctan (DABCO), Diazabicycloundecen (DBU), Diazabicyclononen (DBN), Hünig-Base und N,N-Dimethyl-anilin, ferner Erdalkalimetalloxide, wie Magnesium- und Calciumoxid, außerdem Alkali- und Erdalkali-metall-carbonate, wie Natriumcarbonat, Kaliumcarbonat und Calciumcarbonat sowie Alkalihydroxide wie Natriumhydroxid und Kaliumhydroxid.

Die Reaktionstemperaturen können bei dem erfindungsgemäßen Verfahren (Bα) innerhalb eines größeren Bereiches variiert werden. Im allgemeinen arbeitet man bei Temperaturen zwischen -20°C und +150°C, vorzugsweise zwischen 0°C und 100°C.

Bei der Durchführung des erfindungsgemäßen Verfahrens (Bα) werden die Ausgangsstoffe der Formel (Ia) und das Carbonsäurehalogenid der Formel (III) im allgemeinen in angenähert äquivalenten Mengen verwendet. Es ist jedoch auch möglich, das Carbonsäurehalogenid in einem größeren Überschuß (bis zu 5 Mol) einzusetzen. Die Aufarbeitung erfolgt nach üblichen Methoden.

Das Verfahren (Bß) ist dadurch gekennzeichnet, daß man Verbindungen der Formel (Ia) mit Carbonsäureanhydriden der Formel (IV) umsetzt.

Verwendet man bei dem erfindungsgemäßen Verfahren (Bß) als Reaktionskomponente der Formel (IV) Carbonsäureanhydride, so können als Verdünnungsmittel vorzugsweise diejenigen Verdünnungsmittel verwendet werden, die auch bei der Verwendung von Säurehalogeniden vorzugsweise in Betracht

10

15

25

kommen. Im übrigen kann auch ein im Überschuß eingesetztes Carbonsäureanhydrid gleichzeitig als Verdünnungsmittel fungieren.

Die Reaktionstemperaturen können bei dem erfindungsgemäßen Verfahren (Bß) innerhalb eines größeren Bereiches variiert werden. Im allgemeinen arbeitet man bei Temperaturen zwischen -20°C und +150°C, vorzugsweise zwischen 0°C und 100°C.

Bei der Durchführung des erfindungsgemäßen Verfahrens werden die Ausgangsstoffe der Formel (Ia) und das Carbonsäureanhydrid der Formel (IV) im allgemeinen in angenähert äquivalenten Mengen verwendet. Es ist jedoch auch möglich, das Carbonsäureanhydrid in einem größeren Überschuß (bis zu 5 Mol) einzusetzen. Die Aufarbeitung erfolgt nach üblichen Methoden.

Im allgemeinen geht man so vor, daß man Verdünnungsmittel und im Überschuß vorhandenes Carbonsäureanhydrid sowie die entstehende Carbonsäure durch Destillation oder durch Waschen mit einem organischen Lösungsmittel oder mit Wasser entfernt.

Das Verfahren (C) ist dadurch gekennzeichnet, daß man Verbindungen der Formel (Ia) mit Chlorameisensäureestern oder Chlorameisensäurethiolestern der Formel (V) umsetzt.

Verwendet man die entsprechenden Chlorameisensäureester bzw. Chlorameisensäurethiolester so kommen als Säurebindemittel bei der Umsetzung nach dem 20 erfindungsgemäßen Verfahren (C) alle üblichen Säureakzeptoren in Betracht. Vorzugsweise verwendbar sind tertiäre Amine, wie Triethylamin, Pyridin, DABCO, DBU, DBA, Hünig-Base und N,N-Dimethyl-anilin, ferner Erdalkalimetalloxide, wie Magnesium- und Calciumoxid, außerdem Alkali- und Erdalkalimetallcarbonate, wie Natriumcarbonat, Kaliumcarbonat und Calciumcarbonat sowie Alkalihydroxide wie Natriumhydroxid und Kaliumhydroxid.

Als Verdünnungsmittel können bei dem erfindungsgemäßen Verfahren (C) bei Verwendung der Chlorameisensäureester bzw. Chlorameisensäurethiolester alle gegenüber diesen Verbindungen inerten Solventien eingesetzt werden. Vor-

10

25

zugsweise verwendbar sind Kohlenwasserstoffe, wie Benzin, Benzol, Toluol, Xylol und Tetralin, ferner Halogenkohlenwasserstoffe, wie Methylenchlorid, Chloroform, Tetrachlorkohlenwasserstoff, Chlorbenzol und o-Dichlorbenzol, außerdem Ketone, wie Aceton und Methylisopropylketon, weiterhin Ether, wie Diethylether, Tetrahydrofuran und Dioxan, darüberhinaus Carbonsäureester, wie Ethylacetat, und auch stark polare Solventien, wie Dimethylsulfoxid und Sulfolan.

Bei Verwendung der Chlorameisensäureester bzw. Chlorameisensäurethiolester als Carbonsäure-Derivate der Formel (V) können die Reaktionstemperaturen bei der Durchführung des erfindungsgemäßen Verfahrens (C) innerhalb eines größeren Bereiches variiert werden. Arbeitet man in Gegenwart eines Verdünnungsmittels und eines Säurebindemittels, so liegen die Reaktionstemperaturen im allgemeinen zwischen -20°C und +100°C, vorzugsweise zwischen 0°C und 50°C.

Das erfindungsgemäße Verfahren (C) wird im allgemeinen unter Normaldruck durchgeführt.

Bei der Durchführung des erfindungsgemäßen Verfahrens (C) werden die Ausgangsstoffe der Formel (Ia) und der entsprechende Chlorameisensäureester bzw. Chlorameisensäurethiolester der Formel (V) im allgemeinen in angenähert äquivalenten Mengen verwendet. Es ist jedoch auch möglich, die eine oder andere Komponente in einem größeren Überschuß (bis zu 2 Mol) einzusetzen. Die Aufarbeitung erfolgt dann nach üblichen Methoden. Im allgemeinen geht man so vor, daß man ausgefallene Salze entfernt und das verbleibende Reaktionsgemisch durch Abziehen des Verdünnungsmittels einengt.

Beim Herstellungsverfahren (D_{α}) setzt man pro Mol Ausgangsverbindung der Formel (Ia) ca. 1 Mol Chlormonothioameisensäureester bzw. Chlordithioameisensäureester der Formel (VI) bei 0 bis 120°C, vorzugsweise bei 20 bis 60°C um.

Als gegebenenfalls zugesetzte Verdünnungsmittel kommen alle inerten polaren organischen Lösungsmittel in Frage, wie Ether, Amide, Sulfone, Sulfoxide aber auch Halogenalkane.

20

Vorzugsweise werden Dimethylsulfoxid, Tetrahydrofuran, Dimethylformamid oder Methylenchlorid eingesetzt.

Stellt man in einer bevorzugten Ausführungsform durch Zusatz von starken Deprotonierungsmitteln wie z.B. Natriumhydrid oder Kaliumtertiärbutylat das Enolatsalz der Verbindung (Ia) dar, kann auf den weiteren Zusatz von Säurebindemitteln verzichtet werden.

Werden Säurebindemittel eingesetzt, so kommen übliche anorganische oder organische Basen in Frage, beispielhaft seien Natriumhydroxid, Natriumcarbonat, Kaliumcarbonat, Pyridin, Triethylamin aufgeführt.

Die Reaktion kann bei Normaldruck oder unter erhöhtem Druck durchgeführt werden, vorzugsweise wird bei Normaldruck gearbeitet. Die Aufarbeitung geschieht nach üblichen Methoden.

Beim Herstellungsverfahren (D_B) setzt man pro Mol Ausgangsverbindung der Formel (Ia) die äquimolare Menge bzw. einen Überschuß Schwefelkohlenstoff zu. Man arbeitet hierbei vorzugsweise bei Temperaturen von 0 bis 50°C und insbesondere bei 20 bis 30°C.

Als Basen können beim Verfahren (Dß) alle üblichen Protonenakzeptoren eingesetzt werden. Vorzugsweise verwendbar sind Alkalimetallhydride, Alkalimetallakoholate, Alkali- oder Erdalkalimetallcarbonate oder -hydrogencarbonate oder Stickstoffbasen. Genannt seien beispielsweise Natriumhydrid, Natriummethanolat, Natriumhydroxid, Calciumhydroxid, Kaliumcarbonat, Natriumhydrogencarbonat, Triethylamin, Dibenzylamin, Diisopropylamin, Pyridin, Chinolin, Diazabicyclooctan (DABCO), Diazabicyclononen (DBN) und Diazabicycloundecen (DBU).

Als Verdünnungsmittel können bei diesem Verfahren alle üblichen Lösungsmittel verwendet werden.

Vorzugsweise verwendbar sind aromatische Kohlenwasserstoffe wie Benzol oder Toluol, Alkohole wie Methanol, Ethanol, Isopropanol oder Ethylenglykol, Nitrile

20

25

wie Acetonitril, Ether wie Tetrahydrofuran oder Dioxan, Amide wie Dimethylformamid oder andere polare Lösungsmittel wie Dimethylsulfoxid oder Sulfolan.

Oft ist es zweckmäßig zunächst aus der Verbindung der Formel (Ia) durch Zusatz eines Deprotonierungsmittels (wie z.B. Kaliumtertiärbutylat oder Natriumhydrid) das entsprechende Salz herzustellen. Man setzt die Verbindung (Ia) solange mit Schwefelkohlenstoff um, bis die Bildung der Zwischenverbindung abgeschlossen ist, z.B. nach mehrstündigem Rühren bei Raumtemperatur.

Die weitere Umsetzung mit dem Alkylhalogenid der Formel (VII) erfolgt vorzugsweise bei 0 bis 70°C und insbesondere bei 20 bis 50°C. Hierbei wird mindestens die äquimolare Menge Alkylhalogenid eingesetzt.

Man arbeitet bei Normaldruck oder unter erhöhtem Druck, vorzugsweise bei Normaldruck.

Die Aufarbeitung erfolgt wiederum nach üblichen Methoden.

Beim Herstellungsverfahren (E) setzt man pro Mol Ausgangsverbindung der Formel (Ia) ca. 1 Mol Sulfonsäurechlorid (VIII) bei -20 bis 150°C, vorzugsweise bei 20 bis 70°C um.

Als gegebenenfalls zugesetzte Verdünnungsmittel kommen alle inerten polaren organischen Lösungsmittel in Frage wie Ether, Amide, Nitrile, Sulfone, Sulfoxide oder halogenierte Kohlenwasserstoffe wie Methylenchlorid.

Vorzugsweise werden Dimethylsulfoxid, Tetrahydrofuran, Dimethylformamid, Dimethylsulfid, Methylenchlorid eingesetzt.

Stellt man in einer bevorzugten Ausführungsform durch Zusatz von starken Deprotonierungsmitteln (wie z.B. Natriumhydrid oder Kaliumtertiärbutylat) das Enolatsalz der Verbindung (Ia) dar, kann auf den weiteren Zusatz von Säurebindemitteln verzichtet werden.

10

Werden Säurebindemittel eingesetzt, so kommen übliche anorganische oder organische Basen in Frage, beispielhaft seien Natriumhydroxid, Natriumcarbonat, Kaliumcarbonat, Pyridin, Triethylamin aufgeführt.

Die Reaktion kann bei Normaldruck oder unter erhöhtem Druck durchgeführt werden, vorzugsweise wird bei Normaldruck gearbeitet. Die Aufarbeitung geschieht nach üblichen Methoden.

Beim Herstellungsverfahren (F) setzt man zum Erhalt von Verbindungen der Struktur (Ie) auf 1 Mol der Verbindung (Ia), 1 bis 2, vorzugsweise 1 bis 1,3 Mol der Phosphorverbindung der Formel (IX) bei Temperaturen zwischen -40°C und 150°C, vorzugsweise zwischen -10 und 110°C um.

Als gegebenenfalls zugesetzte Verdünnungsmittel kommen aller inerten, polaren organischen Lösungsmittel in Frage wie Ether, Amide, Nitrile, Alkohole, Sulfide, Sulfone, Sulfoxide etc.

Vorzugsweise werden Acetonitril, Dimethylsulfoxid, Tetrahydrofuran, Dimethylformamid, Methylenchlorid eingesetzt.

Als gegebenenfalls zugesetzte Säurebindemittel kommen übliche anorganische oder organische Basen in Frage wie Hydroxide, Carbonate oder Amine. Beispielhaft seien Natriumhydroxid, Natriumcarbonat, Kaliumcarbonat, Pyridin, Triethylamin aufgeführt.

Die Umsetzung kann bei Normaldruck oder unter erhöhtem Druck durchgeführt werden, vorzugsweise wird bei Normaldruck gearbeitet. Die Aufarbeitung geschieht nach üblichen Methoden der organischen Chemie. Die Reinigung der anfallenden Endprodukte geschieht vorzugsweise durch Kristallisation, chromatographische Reinigung oder durch sogenanntes "Andestillieren", d.h. Entfernung der flüchtigen Bestandteile im Vakuum.

Das Verfahren (G) ist dadurch gekennzeichnet, daß man Verbindungen der Formel (Ia) mit Metallverbindungen (X) oder Aminen (XI) umsetzt.

WO 95/26954 PCT/EP95/01100

5

15

Als Verdünnungsmittel können bei dem erfindungsgemäßen Verfahren vorzugsweise Ether wie Tetrahydrofuran, Dioxan, Diethylether oder aber Alkohole wie
Methanol, Ethanol, Isopropanol, aber auch Wasser eingesetzt werden. Das erfindungsgemäße Verfahren (G) wird im allgemeinen unter Normaldruck durchgeführt.
Die Reaktionstemperaturen liegen im allgemeinen zwischen -20°C und 100°C,
vorzugsweise zwischen 0°C und 50°C.

Bei Herstellungsverfahren (H_{α}) setzt man pro Mol Ausgangsverbindung der Formel (Ia) ca. 1 Mol Isocyanat der Formel (XII) bei 0 bis 100°C, vorzugsweise bei 20 bis 50°C um.

Als gegebenenfalls zugesetzte Verdünnungsmittel kommen alle inerten organischen Lösungsmittel in Frage, wie Ether, Amide, Nitrile, Sulfone, Sulfoxide.

Gegebenenfalls können Katalysatoren zur Beschleunigung der Reaktion zugesetzt werden. Als Katalysatoren können sehr vorteilhaft zinnorganische Verbindungen, wie z.B. Dibutylzinndilaurat eingesetzt werden. Es wird vorzugsweise bei Normaldruck gearbeitet.

Beim Herstellungsverfahren (H_{β}) setzt man pro Mol Ausgangsverbindung der Formel (Ia) ca. 1 Mol Carbamidsäurechlorid der Formel (XIII) bei 0 bis 150°C, vorzugsweise bei 20 bis 70°C um.

Als gegebenenfalls zugesetzte Verdünnungsmittel kommen alle inerten polaren organischen Lösungsmittel in Frage wie Ether, Amide, Sulfone, Sulfoxide oder halogenierte Kohlenwasserstoffe.

Vorzusweise werden Dimethylsulfoxid, Tetrahydrofuran, Dimethylformamid oder Methylenchlorid eingesetzt.

Stellt man in einer bevorzugten Ausführungsform durch Zusatz von starken
Deprotonierungsmitteln (wie z.B. Natriumhydrid oder Kaliumtertiärbutylat) das
Enolatsalz der Verbindung (Ia) dar, kann auf den weiteren Zusatz von Säurebindemitteln verzichtet werden.

10

Werden Säurebindemittel eingesetzt, so kommen übliche anorganische oder organische Basen in Frage, beispielhaft seien Natriumhydroxid, Natriumcarbonat, Kaliumcarbonat, Triethylamin oder Pyridin genannt.

Die Reaktion kann bei Normaldruck oder unter erhöhtem Druck durchgeführt werdern, vorzugsweise wird bei Normaldruck gearbeitet. Die Aufarbeitung geschieht nach üblichen Methoden.

Die Wirkstoffe eignen sich zur Bekämpfung von tierischen Schädlingen, vorzugsweise Arthropoden und Nematoden, insbesondere Insekten und Spinnentieren, die in der Landwirtschaft, in Forsten, im Vorrats- und Materialschutz sowie auf dem Hygienesektor vorkommen. Sie sind gegen normal sensible und resistente Arten sowie gegen alle oder einzelne Entwicklungsstadien wirksam. Zu den oben erwähnten Schädlingen gehören:

Aus der Ordnung der Isopoda z.B. Oniscus asellus, Armadillidium vulgare, Porcellio scaber.

Aus der Ordnung der Diplopoda z.B. Blaniulus guttulatus
Aus der Ordnung der Chilopoda z.B. Geophilus carpophagus, Scutigera spec.
Aus der Ordnung der Symphyla z.B. Scutigerella immaculata.
Aus der Ordnung der Thysanura z.B. Lepisma saccharina.
Aus der Ordnung der Collembola z.B. Onychiurus armatus.

Aus der Ordnung der Orthoptera z.B. Blatta orientalis, Periplaneta americana, Leucophaea maderae, Blattella germanica, Acheta domesticus, Gryllotalpa spp., Locusta migratoria migratorioides, Melanoplus differentialis, Schistocerca gregaria.

Aus der Ordnung der Dermaptera z.B. Forficula auricularia. Aus der Ordnung der Isoptera z.B. Reticulitermes spp..

Aus der Ordnung der Anoplura z.B. Phylloxera vastatrix, Pemphigus spp., Pediculus humanus corporis, Haematopinus spp., Linognathus spp..

Aus der Ordnung der Mallophaga z.B. Trichodectes spp., Damalinea spp.

Aus der Ordnung der Thysanoptera z.B. Hercinothrips femoralis, Thrips tabaci.

Aus der Ordnung der Heteroptera z.B. Eurygaster spp., Dysdercus intermedius, Piesma quadrata, Cimex lectularius, Rhodnius prolixus, Triatoma spp.

Aus der Ordnung der Homoptera z.B. Aleurodes brassicae, Bemisia tabaci, Trialeurodes vaporariorum, Aphis gossypii, Brevicoryne brassicae, Cryptomyzus ribis, Aphis fabae, Doralis pomi, Eriosoma lanigerum, Hyalopterus arundinis, Macrosiphum avenae, Myzus spp., Phorodon humuli, Rhopalosiphum padi, Empoasca spp., Euscelis bilobatus, Nephotettix cincticeps, Lecanium corni, Saissetia oleae, Laodelphax striatellus, Nilaparvata lugens, Aonidiella aurantii, Aspidiotus hederae, Pseudococcus spp. Psylla spp.

- Aus der Ordnung der Lepidoptera z.B. Pectinophora gossypiella, Bupalus piniarius, Cheimatobia brumata, Lithocolletis blancardella, Hyponomeuta padella, Plutella maculipennis, Malacosoma neustria, Euproctis chrysorrhoea, Lymantria spp. Bucculatrix thurberiella, Phyllocnistis citrella, Agrotis spp., Euxoa spp., Feltia spp., Earias insulana, Heliothis spp., Spodoptera exigua, Mamestra brassicae, Panolis flammea, Prodenia litura, Spodoptera spp., Trichoplusia ni, Carpocapsa pomonella, Pieris spp., Chilo spp., Pyrausta nubilalis, Ephestia kuehniella, Galleria mellonella, Tineola bisselliella, Tinea pellionella, Hofmannophila pseudospretella, Cacoecia podana, Capua reticulana, Choristoneura fumiferana, Clysia ambiguella, Homona magnanima, Tortrix viridana.
- Aus der Ordnung der Coleoptera z.B. Anobium punctatum, Rhizopertha dominica, Acanthoscelides obtectus, Acanthoscelides obtectus, Hylotrupes bajulus, Agelastica alni, Leptinotarsa decemlineata, Phaedon cochleariae, Diabrotica spp., Psylliodes chrysocephala, Epilachna varive stis, Atomaria spp., Oryzaephilus surinamensis, Antho nomus spp., Sitophilus spp., Otiorrhynchus sulcatus, Cosmopolites sordidus, Ceuthorrhynchus assimilis, Hypera postica, Dermestes spp., Trogoderma spp., Anthrenus spp., Attagenus spp., Lyctus spp., Meligethes aeneus, Ptinus spp., Niptus hololeucus, Gibbium psylloides, Tribolium spp., Tenebrio molitor, Agriotes spp., Cono derus spp., Melolontha melolontha, Amphimallon solsti tialis, Costelytra zealandica
- Aus der Ordnung der Hymenoptera z.B. Diprion spp., Hoplocampa spp., Lasius spp., Monomorium pharaonis, Vespa spp.

15

20

25

Aus der Ordnung der Diptera z.B. Aedes spp., Anopheles spp., Culex spp., Drosophila melanogaster, Musca spp., Fannia spp., Calliphora erythrocephala, Lucilia spp., Chrysomyia spp., Cuterebra spp., Gastrophilus spp., Hyppobosca spp., Stomoxys spp., Oestrus spp., Hypoderma spp., Tabanus spp., Tannia spp., Bibio hortulanus, Oscinella frit, Phorbia spp., Pegomyia hyoscyami, Ceratitis capitata, Dacus oleae, Tipula paludosa.

Aus der Ordnung der Siphonaptera z.B. Xenopsylla cheopis, Ceratophyllus spp.. Aus der Ordnung der Arachnida z.B. Scorpio maurus, Latrodectus mactans.

Aus der Ordnung der Acarina z.B. Acarus siro, Argas spp., Ornithodoros spp.,

Dermanyssus gallinae, Eriophyes ribis, Phyllocoptruta oleivora, Boophilus spp.,
Rhipicephalus spp., Amblyomma spp., Hyalomma spp., Ixodes spp., Psoroptes spp., Chorioptes spp., Sarcoptes spp., Tarsonemus spp., Bryobia praetiosa, Panonychus spp., Tetranychus spp..

Die erfindungsgemäßen Wirkstoffe zeichnen sich durch eine hohe insektizide und akarizide Wirksamkeit aus.

Sie lassen sich mit besonders gutem Erfolg zur Bekämpfung von pflanzenschädigenden Insekten, wie beispielsweise gegen die Larven des Meerettichblattkäfers (Phaedon cochleariae), gegen die Larven der grünen Reiszikade (Nephotettix cincticeps) oder gegen die Raupen der Kohlschabe (Plutella maculipennis) einsetzen.

Die erfindungsgemäßen Verbindungen weisen auch eine fungizide Wirkung auf, beispielsweise gegen Venturia inaequalis.

Die erfindungsgemäßen Wirkstoffe können weiterhin als Defoliants, Desiccants, Krautabtötungsmittel und insbesondere als Unkrautvernichtungsmittel verwendet werden. Unter Unkraut im weitesten Sinne sind alle Pflanzen zu verstehen, die an Orten aufwachsen, wo sie unerwünscht sind. Ob die erfindungsgemäßen Stoffe als totale oder selektive Herbizide wirken, hängt im wesentlichen von der angewendeten Menge ab.

WO 95/26954 PCT/EP95/01100

Die erfindungsgemäßen Wirkstoffe können z.B. bei den folgenden Pflanzen verwendet werden:

<u>Dikotyle Unkräter der Gattungen:</u> Sinapis, Lepidium, Galium, Stellaria, Matricaria, Anthemis, Galinsoga, Chenopodium, Urtica, Senecio, Amaranthus, Portulaca, Xanthium, Convolvulus, Ipomoea, Polygonum, Sesbania, Ambrosia, Cirsium, Carduus, Sonchus, Solanum, Rorippa, Rotola, Lindernia, Lamium, Veronica, Abutilon, Emex, Datura, Viola, Galeopsis, Papaver, Centaurea, Trifolium, Ranunculus, Taraxacum.

5

15

25

Dikotyle Kulturen der Gattungen: Gossypium, Glycine, Beta, Daucus, Phaseolus, Pisum, Solanum, Linum, Ipomoea, Vicia, Nicotiana, Lycopersicon, Arachis, Brassica, Lactuca, Cucumis, Cucurbita.

Monokotyle Unkräuter der Gattungen: Echinochloa, Setaria, Panicum, Digitaria, Phleum, Poa, Festuca, Eleusine, Brachiaria, Lolium, Bromus, Avena, Cyperus, Sorghum, Agropyron, Cycnodon, Monochoria, Fimbristylis, Sagittaria, Eleocharis, Scirpus, Paspalum, Ischaemum, Sphenoclea, Dactyloctenium, Agrostis, Alopecurus, Apera.

Monokotyle Kulturen der Gattungen: Oryza, Zea, Triticum, Hordeum, Avena, Secale, Sorghum, Panicum, Sachharum, Ananas, Asparagus, Allium.

Die Verwendung der erfindungsgemäßen Wirkstoffe ist jedoch keineswegs auf diese Gattungen beschränkt, sondern erstreckt sich in gleicher Weise auch auf andere Pflanzen.

Die Verbindunngen eignen sich in Abhängigkeit von der Konzentration zur Totalunkrautbekämpfung z.B. auf Industrie- und Gleisanlagen und auf Wegen und Plätzen mit und ohne Baumbewuchs. Ebenso können die Verbindungen zur Unkrautbekämpfung in Dauerkulturen, z.B. Forst, Ziergehölz-, Obst, Wein-, Citrus-, Nuß-, Bananen-, Kaffee-, Tee-, Gummi-, Ölpalm-, Kakao-, Beerenfrucht- und Hopfenanlagen, auf Zier- und Sportrasen und Weideflächen und zur selektiven Unkrautbekämpfung in einjährigen Kulturen eingesetzt werden.

Die erfindungsgemäßen Wirkstoffe eignen sich sehr gut zur selektiven Bekämpfung monokotyler Unkräuter in dikotylen Kulturen im Vor- und Nachlaufverfahren. Sie können beispielsweise in Baumwolle oder Zuckerrüben mit sehr gutem Erfolg zur Bekämpfung von Schadgräser eingesetzt werden.

- Die Wirkstoffe können in die üblichen Formulierungen überführt werden, wie Lösungen, Emulsionen, Spritzpulver, Suspensionen, Pulver, Stäubemittel, Pasten, lösliche Pulver, Granulate, Suspensions-Emulsions-Konzentrate, Wirkstoffimprägnierte Natur- und synthetische Stoffe sowie Feinstverkapselungen in polymeren Stoffen.
- Diese Formulierungen werden in bekannter Weise hergestellt, z.B. durch Vermischen der Wirkstoffe mit Streckmitteln, also flüssigen Lösungsmitteln und/oder festen Trägerstoffen, gegebenenfalls unter Verwendung von oberflächenaktiven Mitteln, also Emulgiermitteln und/oder Dispergiermitteln und/oder schaumerzeugenden Mitteln.
- Im Falle der Benutzung von Wasser als Streckmittel können z.B. auch organische Lösungsmittel als Hilfslösungsmittel verwendet werden. Als flüssige Lösungsmittel kommen im wesentlichen in Frage: Aromaten, wie Xylol, Toluol, oder Alkylnaphthaline, chlorierte Aromaten und chlorierte aliphatische Kohlenwasserstoffe, wie Chlorbenzole, Chlorethylene oder Methylenchlorid, aliphatische Kohlenwasserstoffe, wie Cyclohexan oder Paraffine, z.B. Erdölfraktionen, mineralische und pflanzliche Öle, Alkohole, wie Butanol oder Glykol sowie deren Ether und Ester, Ketone wie Aceton, Methylethylketon, Methylisobutylketon oder Cyclohexanon, stark polare Lösungsmittel, wie Dimethylformamid und Dimethylsulfoxid, sowie Wasser.
- 25 Als feste Trägerstoffe kommen in Frage:
 z.B. Ammoniumsalze und natürliche Gesteinsmehle, wie Kaoline, Tonerden, Talkum, Kreide, Quarz, Attapulgit, Montmorillonit oder Diatomeenerde und synthetische Gesteinsmehle, wie hochdisperse Kieselsäure, Aluminiumoxid und Silikate, als feste Trägerstoffe für Granulate kommen in Frage: z.B. gebrochene und fraktionierte natürliche Gesteine wie Calcit, Marmor, Bims, Sepiolith, Dolomit sowie synthetische Granulate aus anorganischen und organischen Mehlen sowie

10

15

20

Granulate aus organischem Material wie Sägemehl, Kokosnußschalen, Maiskolben und Tabakstengeln; als Emulgier- und/oder schaumerzeugende Mittel kommen in Frage: z.B. nichtionogene und anionische Emulgatoren, wie Polyoxyethylen-Fettsäure-Ester, Polyoxyethylen-Fettalkohol-Ether, z.B. Alkylaryl-polyglykolether, Alkylsulfonate, Alkylsulfate, Arylsulfonate sowie Einweißhydrolysate; als Dispergiermittel kommen in Frage: z.B. Lignin-Sulfitablaugen und Methylcellulose.

Es können in den Formulierungen Haftmittel wie Carboxymethylcellulose, natürliche und synthetische pulvrige, körnige oder latexförmige Polymere verwendet werden, wie Gummiarabicum, Polyvinylalkohol, Polyvinylacetat, sowie natürliche Phospholipide, wie Kephaline und Lecithine und synthetische Phospholipide. Weitere Additive können mineralische und vegetabile Öle sein.

Es können Farbstoffe wie anorganische Pigmente, z.B. Eisenoxid, Titanoxid, Ferrocyanblau und organische Farbstoffe, wie Alizarin-, Azo- und Metall-phthalocyaninfarbstoffe und Spurennährstoffe wie Salze von Eisen, Mangan, Bor, Kupfer, Kobalt, Molybdän und Zink verwendet werden.

Die Formulierungen enthalten im allgemeinen zwischen 0,1 und 95 Gew.-% Wirkstoff, vorzugsweise zwischen 0,5 und 90 %.

Der erfindungsgemäße Wirkstoff kann in seinen handelsüblichen Formulierungen sowie in den aus diesen Formulierungen bereiteten Anwendungsformen in Mischung mit anderen Wirkstoffen, wie Insektiziden, Lockstoffen, Sterilantien, Akariziden, Nematiziden, Fungiziden, wachstumsregulierenden Stoffen oder Herbiziden vorliegen. Zu den Insektiziden zählen beispielsweise Phosphorsäureester, Carbamate, Carbonsäureester, chlorierte Kohlenwasserstoffe, Phenylharnstoffe, durch Mikroorganismen hergestellte Stoffe u.a.

ang ang kanalang at kanalang panggarang banggarang banggarang panggarang banggarang banggarang banggarang bang

Besonders günstige Mischpartner sind z.B. die folgenden:

Fungizide:

- 2-Aminobutan; 2-Anilino-4-methyl-6-cyclopropyl-pyrimidin; 2',6'-Dibromo-2-methyl-4'-trifluoro-methyl-1,3-thiazol-5-carboxanilid; 2,6-Di-
- chloro-N-(4-trifluoromethylbenzyl)-benzamid; (E)-2-Methoxyimino-N-methyl-2-(2-phenoxyphenyl)-acetamid; 8-Hydroxyquinolinsulfat; Methyl-(E)-2-{2-[6-(2-cyano-phenoxy)-pyrimidin-4-yloxy]-phenyl}-3-methoxyacrylat; Methyl-(E)-methoximino-[alpha-(o-tolyloxy)-o-tolyl]acetat; 2-Phenylphenol (OPP), Aldimorph, Ampropylfos, Anilazin, Azaconazol,
- Benalaxyl, Benodanil, Benomyl, Binapacryl, Biphenyl, Bitertanol, Blasticidin-S, Bromuconazole, Bupirimate, Buthiobate,
 Calciumpolysulfid, Captafol, Captan, Carbendazim, Carboxin, Chinomethionat (Quinomethionat), Chloroneb, Chloropicrin, Chlorothalonil, Chlozolinat, Cufraneb, Cymoxanil, Cyproconazole, Cyprofuram,
- Dichlorophen, Diclobutrazol, Diclofluanid, Diclomezin, Dicloran, Diethofencarb, Difenoconazol, Dimethirimol, Dimethomorph, Diniconazol, Dinocap, Diphenylamin, Dipyrithion, Ditalimfos, Dithianon, Dodine, Drazoxolon, Edifenphos, Epoxyconazole, Ethirimol, Etridiazol,
- Fenarimol, Fenbuconazole, Fenfuram, Fenitropan, Fenpiclonil, Fenpropidin,
 Fenpropimorph, Fentinacetat, Fentinhydroxyd, Ferbam, Ferimzone, Fluazinam,
 Fludioxonil, Fluoromide, Fluquinconazole, Flusilazole, Flusulfamide, Flutolanil,
 Flutriafol, Folpet, Fosetyl-Aluminium, Fthalide, Fuberidazol, Furalaxyl,
 Furmecyclox,
 Guazatine,
- Hexachlorobenzol, Hexaconazol, Hymexazol,
 Imazalil, Imibenconazol, Iminoctadin, Iprobenfos (IBP), Iprodion, Isoprothiolan,
 Kasugamycin, Kupfer-Zubereitungen, wie: Kupferhydroxid, Kupfernaphthenat,
 Kupferoxychlorid, Kupfersulfat, Kupferoxid, Oxin-Kupfer und BordeauxMischung,
- Mancopper, Mancozeb, Maneb, Mepanipyrim, Mepronil, Metalaxyl, Metconazol, Methasulfocarb, Methfuroxam, Metiram, Metsulfovax, Myclobutanil, Nickel-dimethyldithiocarbamat, Nitrothal-isopropyl, Nuarimol, Ofurace, Oxadixyl, Oxamocarb, Oxycarboxin,

WO 95/26954 PCT/EP95/01100

- 180 -

Pefurazoat, Penconazol, Pencycuron, Phosdiphen, Phthalid, Pimaricin, Piperalin, Polycarbamate, Polyoxin, Probenazol, Prochloraz, Procymidon, Propamocarb, Propiconazole, Propineb, Pyrazophos, Pyrifenox, Pyrimethanil, Pyroquilon, Quintozen (PCNB),

- 5 Schwefel und Schwefel-Zubereitungen, Tebuconazol, Tecloftalam, Tecnazen, Tetraconazol, Thiabendazol, Thicyofen, Thiophanat-methyl, Thiram, Tolclophos-methyl, Tolylfluanid, Triadimefon, Triadimenol, Triazoxid, Trichlamid, Tricyclazol, Tridemorph, Triflumizol, Triforin, Triticonazol,
- 10 Validamycin A, Vinclozolin, Zineb, Ziram

Bakterizide:

15

Bronopol, Dichlorophen, Nitrapyrin, Nickel-Dimethyldithiocarbamat, Kasugamycin, Octhilinon, Furancarbonsäure, Oxytetracyclin, Probenazol, Streptomycin, Tecloftalam, Kupfersulfat und andere Kupfer-Zubereitungen.

Insektizide / Akarizide / Nematizide:

Abamectin, Abamectin, AC 303 630, Acephat, Acrinathrin, Alanycarb, Aldicarb, Alphamethrin, Amitraz, Avermectin, AZ 60541, Azadirachtin, Azinphos A, Azinphos M, Azocyclotin.

- Bacillus thuringiensis, Bendiocarb, Benfuracarb, Bensultap, Betacyluthrin, Bifen-20 thrin, BPMC, Brofenprox, Bromophos A, Bufencarb, Buprofezin, Butocarboxin, Butylpyridaben,
 - Cadusafos, Carbaryl, Carbofuran, Carbophenothion, Carbosulfan, Cartap, CGA 157 419, CGA 184699, Chloethocarb, Chlorethoxyfos, Chlorfenvinphos, Chlor-
- fluazuron, Chlorpyrifos, Chlorpyrifos M, Cis-Resmethrin, Clocy-25 thrin, Clofentezin, Cyanophos, Cycloprothrin, Cyfluthrin, Cyhalothrin, Cypermethrin, Cyromazin,
 - Deltamethrin, Demeton M, Demeton S, Demeton-S-methyl, Diafenthiuron, Diazinon, Dichlofenthion, Dichlorvos, Dicliphos, Dicrotophos, Diethion,
- 30 Diflubenzuron, Dimethoat, Dimethylvinphos, Dioxathion, Disulfoton, Edifenphos, Emamectin, Esfenvalerat, Ethiofencarb, Ethion, Ethofenprox, Ethoprophos, Etrimphos,

Fenamiphos, Fenazaquin, Fenbutatinoxid, Fenitrothion, Fenobucarb, Fenothiocarb, Fenoxycarb, Fenpropathrin, Fenpyrad, Fenpyroximat, Fenthion, Fenvalerate, Fipronil, Fluazinam, Flucycloxuron, Flucythrinat, Flufenoxuron, Flufenprox, Fluvalinate, Fonophos, Formothion, Fosthiazat, Fubfenprox, Furathiocarb,

- HCH, Heptenophos, Hexaflumuron, Hexythiazox,
 Imidacloprid, Iprobenfos, Isazophos, Isofenphos, Isoprocarb, Isoxathion, Ivemectin,
 Lamda-cyhalothrin, Lufenuron,
 Malathion, Mecarbam, Mervinphos, Mesulfenphos, Metaldehyd, Methacrifos,
 Methamidophos, Methidathion, Methiocarb, Methomyl, Metolcarb, Milbemectin,
- Monocrotophos, Moxidectin,
 Naled, NC 184, NI 25, Nitenpyram
 Omethoat, Oxamyl, Oxydemethon M, Oxydeprofos,
 Parathion A, Parathion M, Permethrin, Phenthoat, Phorat, Phosalon, Phosmet,
 Phosphamdon, Phoxim, Pirimicarb, Pirimiphos M, Primiphos A, Profenofos,
 Promecarb Propaghos Pr
- Promecarb, Propaphos, Propoxur, Prothiofos, Prothoat, Pymetrozin, Pyrachlophos, Pyradaphenthion, Pyresmethrin, Pyrethrum, Pyridaben, Pyrimidifen, Pyriproxifen, Quinalphos, RH 5992,

Salithion, Sebufos, Silafluofen, Sulfotep, Sulprofos,

Tebufenozid, Tebufenpyrad, Tebupirimphos, Teflubenzuron, Tefluthrin, Temephos, Terbam, Terbufos, Tetrachlorvinphos, Thiafenox, Thiodicarb, Thiofanox, Thiomethon, Thionazin, Thuringiensin, Tralomethrin, Triarathen, Triazophos, Triazuron, Trichlorfon, Triflumuron, Trimethacarb, Vamidothion, XMC, Xylylcarb, YI 5301 / 5302, Zetamethrin.

25 Herbizide:

beispielsweise Anilide, wie z.B. Diflufenican und Propanil; Arylcarbonsäuren, wie z.B. Dichlorpicolinsäure, Dicamba und Picloram; Aryloxyalkansäuren, wie z.B. 2,4 D, 2,4 DB, 2,4 DP, Fluroxypyr, MCPA, MCPP und Triclopyr; Aryloxy-phenoxy-alkansäureester, wie z.B. Diclofop-methyl, Fenoxaprop-ethyl, Fluazifop-butyl, Haloxyfop-methyl, und Ovigelefor ethyl, A in the control of the con

Haloxyfop-methyl und Quizalofop-ethyl; Azinone, wie z.B. Chloridazon und Norflurazon; Carbamate, wie z.B. Chlorpropham, Desmedipham, Phenmedipham und Propham; Chloracetanilide, wie z.B. Alachlor, Acetochlor, Butachlor, Metazachlor, Metolachlor, Pretilachlor und Propachlor; Dinitroaniline, wie z.B. Oryzalin, Pendimethalin und Trifluralin; Diphenylether, wie z.B. Acifluorfen,

Bifenox, Fluoroglycofen, Fomesafen, Halosafen, Lactofen und Oxyfluorfen; Harnstoffe, wie z.B. Chlortoluron, Diuron, Fluometuron, Isoproturon, Linuron und Methabenzthiazuron; Hydroxylamine, wie z.B. Alloxydim, Clethodim, Cycloxydim, Sethoxydim und Tralkoxydim; Imidazolinone, wie z.B. Imazethapyr, Imazamethabenz, Imazapyr und Imazaquin; Nitrile, wie z.B. Bromoxynil, Dichlobenil und Ioxynil; Oxyacetamide, wie z.B. Mefenacet; Sulfonylharnstoffe, wie z.B. Amidosulfuron, Bensulfuron-methyl, Chlorimuron-ethyl, Chlorsulfuron, Cinosulfuron, Metsulfuron-methyl, Nicosulfuron, Primisulfuron, Pyrazosulfuronethyl, Thifensulfuron-methyl, Triasulfuron und Tribenuron-methyl; Thiolcarbamate, wie z.B. Butylate, Cycloate, Diallate, EPTC, Esprocarb, Molinate, Prosulfocarb, Thiobencarb und Triallate; Triazine, wie z.B. Atrazin, Cyanazin, Simazin, Simetryne, Terbutryne und Terbutylazin; Triazinone, wie z.B. Hexazinon, Metamitron und Metribuzin; Sonstige, wie z.B. Aminotriazol, Benfuresate, Bentazone, Cinmethylin, Clomazone, Clopyralid, Difenzoquat, Dithiopyr, Ethofumesate, Fluorochloridone, Glufosinate, Glyphosate, Isoxaben, Pyridate, Quinchlorac, Quinmerac, Sulphosate und Tridiphane.

5

10

15

20

25

30

Der erfindungsgemäße Wirkstoff kann ferner in seinen handelsüblichen Formulierungen sowie in den aus diesen Formulierungen bereiteten Anwendungsformen in Mischung mit Synergisten vorliegen. Synergisten sind Verbindungen, durch die die Wirkung der Wirkstoffe gesteigert wird, ohne daß der zugesetzte Synergist selbst aktiv wirksam sein muß.

Der Wirkstoffgehalt der aus den handelsüblichen Formulierungen bereiteten Anwendungsformen kann in weiten Bereichen variieren. Die Wirkstoffkonzentration der Anwendungsformen kann von 0,0000001 bis zu 95 Gew.-% Wirkstoff, vorzugsweise zwischen 0,0001 und 1 Gew.-% liegen.

Die Anwendung geschieht in einer den Anwendungsformen angepaßten üblichen Weise.

Bei der Anwendung gegen Hygiene- und Vorratsschädlinge zeichnet sich der Wirkstoff durch eine hervorragende Residualwirkung auf Holz und Ton sowie durch eine gute Alkalistabilität auf gekälkten Unterlagen aus.

10

15

20

25

Die erfindungsgemäßen Wirkstoffe wirken nicht nur gegen Pflanzen-, Hygieneund Vorratsschädlinge, sondern auch auf dem veterinärmedizinischen Sektor gegen tierische Ektoparasiten wie Schildzecken, Lederzecken, Räudemilben, Laufmilben, Fliegen (stechend und leckend), parasitierende Fliegenlarven, Läuse, Haarlinge, Federlinge und Flöhe. Beispielsweise zeigen sie eine hervorragende Wirksamkeit gegen Zecken, wie beispielsweise Boophilus microplus.

Die erfindungsgemäßen Wirkstoffe der Formel (I) eignen sich auch zur Bekämpfung von Arthropoden, die landwirtschaftliche Nutztiere, wie z.B. Rinder, Schafe, Ziegen, Pferde, Schweine, Esel, Kamele, Büffel, Kaninchen, Hühner, Puten, Enten, Gänse, Bienen, sonstige Haustiere wie z.B. Hunde, Katzen, Stubenvögel, Aquarienfische sowie sogenannte Versuchstiere, wie z.B. Hamster, Meerschweinchen, Ratten und Mäuse befallen. Durch die Bekämpfung dieser Arthropoden sollen Todesfälle und Leistungsminderungen (bei Fleisch, Milch, Wolle, Häuten, Eiern, Honig usw.) vermindert werden, so daß durch den Einsatz der erfindungsgemäßen Wirkstoffe eine wirtschaftlichere und einfachere Tierhaltung möglich ist.

Die Anwendung der erfindungsgemäßen Wirkstoffe geschieht im Veterinärsektor in bekannter Weise durch enterale Verabreichung in Form von beispielsweise Tabletten, Kapseln, Tränken, Drenchen, Granulaten, Pasten Boli, des feed-through-Verfahrens, von Zäpfchen, durch parenterale Verabreichung, wie z.B. durch Injektionen (intramuskulär, subcutan, intravenös, intraperitonal u.a.), Implantate, durch nasale Applikation, durch dermale Anwendung in Form beispielsweise des Tauchens oder Badens (Dippen), Sprühens (Spray), Aufgießens (Pour-on und Spoton), des Waschens, des Einpuderns sowie mit Hilfe von wirkstoffhaltigen Formkörpern, wie Halsbändern, Ohrmarken, Schwanzmarken, Gliedmaßenbändern, Halftern, Markierungsvorrichtungen usw.

Die Herstellung und die Verwendung der erfindungsgemäßen Stoffe wird durch die folgenden Beispiele veranschaulicht.

10

Beispiel (Ia-1):

13,96 g (0,124 Mol) Kalium-tert.-butylat werden in 45 ml absolutem THF vorgelegt und unter Rückflußtemperatur eine Lösung von 20,4 g (0,0564 Mol) N-(2,6-Dimethyl-4-methoxyphenyl)acetyl-4-methyl-1-amino-cyclohexancarbonsäure-methylester in 120 ml absolutem Toluol zugetropft. Man erhitzt weitere 1,5 h unter Rückfluß, kühlt ab, fügt 180 ml Wasser hinzu, trennt die wäßrige Phase ab, extrahiert erneut mit 70 ml Wasser, vereinigt die wäßrigen Phasen, säuert bei 10-20°C mit ca. 20 ml konzentrierter Salzsäure an, saugt den Niederschlag ab und trocknet. Nach Verrühren mit Methyl-tert.-Butyl (MTB)-Ether/n-Hexan erhält man 16,8 g (94 % d. Theorie) der oben gezeigten Verbindung vom Schmelzpunkt 169°C.

In Analogie zu Beispiel Ia-1 erhält man die in der folgenden Tabelle aufgeführten Verbindungen:

Tabelle 8

Bsp Nr.	Х	Y	Z	A	В	Fp.°C	Iso- mer
Ia-2	CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₃	CH-CH ₂ CH ₃	>220	В
Ia-3	CH ₃	OCH ₃	6-CH ₃	-(0	CH ₂) ₅ -	201	-
Ia-4	CH ₃	OCH ₃	6-CH ₃	i-C ₃ H ₇	CH ₃	131	-
Ia-5	CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -()-(CH ₂) ₂	186	-
Ia- 6	CH ₃	CH ₃	6-OCH ₃		CH — (CH ₂) ₂ — CH ₃	212	ß
Ia-7	CH ₃	OCH ₃	Н		CH — (CH ₂) ₂ — CH ₃	170	ß
Ia-8	CH ₃	OCH ₃	H	-(CH ₂) ₃	CH-CH ₂ - CH ₃	174	В
Ia- 9	OCH ₃	CH ₃	_. H	-(CH ₂) ₂ -CH	ICH ₃ -(CH ₂) ₂ -	198	ß
Ia-10	OCH ₃	CH ₃	Н	-(CH ₂) ₃ -CH	ICH ₃ -CH ₂ -	174	ß
Ia-11	CH ₃	H _.	6-OCH ₃	-(CH ₂) ₂ -CH	ICH ₃ -(CH ₂) ₂ -	211	ß
Ia-12	CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -CH	IOCH ₃ -(CH ₂) ₂ -	203	ß

Beispiel Ib-1

$$H_3C$$
 O
 CH_3
 O
 CH_3
 O
 CH_3
 O
 CH_3

4,73 g (15 mMol) 3-(2,6-Dimethyl-4-methoxyphenyl)-5,5-(3-methyl)-pentamethylen-pyrrolidin-2,4-dion werden in 70 ml absolutem Methylenchlorid suspendiert, mit 2,1 ml Triethylamin versetzt und bei 0-10°C 1,58 ml Isobuttersäurechlorid in 5 ml absolutem Methylenchlorid zugetropft. Man rührt unter dünnschichtchromatographischer Kontrolle bei Raumtemperatur weiter. Nach Beendigung der Reaktion wird die organische Phase 2 mal mit je 100 ml 0,5 N Natronlauge gewaschen, mit Magnesiumsulfat getrocknet und im Vakuum eingedampft. Nach dem Umkristallisieren aus MTB-Ether/n-Hexan erhält man 2,6 g (4 45 % der Theorie) der oben gezeigten Verbindung vom Schmelzpunkt 218°C.

In Analogie zum Beispiel Ib-1 erhält man die in der folgenden Tabelle 9 gezeigten Verbindungen:

Tabelle 9

$$A \xrightarrow{R^1} O \xrightarrow{X} Y \qquad (Ib)$$

7	T	T	T i -	7 				
Bsp Nr.	х	Y	Z	A	В	R ¹	Fp.°C	Iso- mer
Ib-2	CH ₃	OCH ₃	6-CH ₃		-(CH ₂) ₃ CHCH ₂ - CH ₃			ь
Ib-3	CH ₃	OCH ₃	6-CH ₃	-(C	H ₂) ₅ -	CH ₃	198	-
Ib-4	CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -O-(CH ₂) ₂ -	CH ₃	>220	-
Ib-5	CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -O-(CH ₂) ₂ -		i-C ₃ H ₇	>220	-
Ib-6	CH ₃	OCH ₃	6-CH ₃	i-C ₃ H ₇	CH ₃	CH ₃	179	-
Ib-7	CH ₃	OCH ₃	6-CH ₃	i-C ₃ H ₇	CH ₃	i-C ₃ H ₇	181	-
Ib-8	CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ CH(CH ₂) ₂ CH ₃		CH ₃	164	В
Ib-9	OCH ₃	CH ₃	Н	-(CH ₂) ₂ -CHCH ₃ -(CH ₂) ₂ -		CH ₃	188	ß
Ib-10	осн ₃	CH ₃	Н	-(CH ₂) ₃ -CHCH ₃ -CH ₂ -		CH ₃	208	ß
Ib-11	OCH ₃	CH ₃	Н	-(CH ₂) ₃ -CHCH ₃ -CH ₂ -		i-C ₃ H ₇	196	В
Ib-12	CH ₃	.H	6-OCH ₃	-(CH ₂) ₂ -CHCH ₃ -(CH ₂) ₂ -		CH ₃	215	ß
Ib-13	CH ₃	Н	6-OCH ₃	-(CH ₂) ₂ -CHCH ₃ -(CH ₂) ₂ -		i-C ₃ H ₇	>220	ß
Ib-14	OCH ₃	CH ₃	Н	-(CH ₂) ₂ -CH(CH ₃ -(CH ₂) ₂ -	i-C ₃ H ₇	193	ß

10

Beispiel Ic-1

4,73 g (15 mMol) 3-(2,6-Dimethyl-4-methoxyphenyl)-5,5-(3-methyl)-pentamethylen-pyrrolidin-2,4-dion werden in 70 ml absolutem Methylenchlorid suspendiert, mit 2,1 ml Triethylamin versetzt und bei 0-10°C 1,5 ml Chlorameisensäureethylester in 5 ml absolutem Methylenchlorid zugetropft. Man rührt unter dünnschicht-chromatographischer Kontrolle bei Raumtemperatur weiter. Nach Beendigung der Reaktion wird die organische Phase 2 mal mit je 100 ml 0,5 N Natronlauge gewaschen, mit Magnesiumsulfat getrocknet und im Vakuum eingedampft. Nach dem Umkristallisieren aus MTB-Ether/n-Hexan erhält man 3,9 g (4 67 % der Theorie) der oben gezeigten Verbindung vom Schmelzpunkt 202°C.

In Analogie zum Beispiel Ic-1 erhält man die in der folgenden Tabelle 10 gezeigten Verbindungen:

Tabelle 10

Bsp Nr.	х	Y	Z	А	В	L	М	R ²	Fp.	Iso- mer
Ic-2	CH₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ CH-(CH ₂) ₂ - CH ₃		0	0	s-C ₄ H ₉	172	β
Ic-3	CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₃ CHCH ₂		0	0	C ₂ H ₅	181	β
Ic-4	CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₅ -		0	0	C ₂ H ₅	219	-
Ic-5	CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₅ -		0	0	s-C ₄ H ₉	217	-
Ic-6	CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -O-(CH ₂) ₂ -		0	0	C ₂ H ₅	>220	-
Ic-7	CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ -O-(CH ₂) ₂ -		0	0	s-C ₄ H ₉	>220	-
Ic-8	CH ₃	OCH ₃	6-CH ₃	i-C ₃ H ₇	CH ₃	0	0	s-C ₄ H ₉	181	-
Ic-9	CH ₃	СН₃	6-OCH ₃	-(CH ₂) ₂ CH(CH ₂) ₂ CH ₃		0	0	C ₂ H ₅	183	ß
Ic-10	OCH ₃	CH₃	Н	-(CH ₂) ₂ -CHCH ₃ -(CH ₂) ₂ -		0	0	C ₂ H ₅	>220	ß
Ic-11	CH ₃	Н	6-OCH ₃	-(CH ₂) ₂ -CHCH ₃ -(CH ₂) ₂ -		0	0	C ₂ H ₅	197	ß
Ic-12	OCH ₃	CH ₃	Н	-(CH ₂) ₃ -CHCH ₃ -CH ₂ -		0	0	C ₂ H ₅	158	ß

10

Beispiel II-1

15 g (0,0773 Mol) 2,6-Dimethyl-4-methoxy-phenylessigsäure wurden mit 11,3 ml Thionylchlorid auf 80°C erwärmt bis die Gasentwicklung beendet ist. Überschüssiges Thionylchlorid wird bei 50°C im Vakuum entfernt und der Rückstand in 100 ml absolutem Tetrahydrofuran aufgenommen. Diese Lösung wird bei 0-10°C zu einer Suspension von 16,1 g cis-1-Amino-4-methyl-cyclohexancarbonsäuremethylester und 27,1 ml Triethylamin in 200 ml absulutem Tetrahydrofuran getropft. Man rührt 1 h bei Raumtemperatur nach saugt den Niederschlag ab, wäscht mit Tetrahydrofuran nach und engt im Vakuum ein. Der Rückstand wird in Methylenchlorid aufgenommen, mit 0,5 N HCl gewaschen, mit Magnesiumsulfat getrocknet und eingedampft. Nach dem Umkristallisieren aus MTB-Ether/n-Hexan erhält man 20,4 g (4 73 % der Theorie) der oben gezeigten Verbindung vom Schmelzpunkt 108°C.

10

Beispiel II-2

Zu 77,4 g (0,79 Mol) konzentrierter Schwefelsäure tropft man 47,7 g (0,158 Mol) N-(2,6-Dimethyl-4-methoxy-phenylacetyl)-4-amino-pyran-4-carbonsäurenitril suspendiert in 320 ml wasserfreiem Methylenchlorid bei 30 bis 40°C. Man rührt bei 40°C 2 h nach, tropft 109 ml wasserfreies Methanol zu und erwärmt 6 h bei einer Badtemperatur von 40 bis 70°C. Das Reaktionsgemisch wird auf 0,8 kg Eis gegossen, mit Methylenchlorid extrahiert, die organischen Phasen vereint und mit Natriumhydrogencarbonatlösung gewaschen, über Magnesiumsulfat getrocknet und das Lösungsmittel im Vakuum abgedampft. Nach Umkristallisieren aus MTB-Ether/n-Hexan erhält man 37,7 g (4 71 % d.Th.) der oben gezeigten Verbindung vom Schmelzpunkt 168°C.

Analog erhält man die in der nachfolgenden Tabelle 11 aufgeführten Substanzen der Formel II:

Tabelle 11

Bsp. -Nr.	х	Y	Z	A	В	R ⁸	Iso- mer	Fp.
II-3	CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₃ -	CH-CH ₂ CH ₃	CH ₃	а	Oel
II-4	CH ₃	OCH ₃	6-CH ₃	-(C		CH ₃	-	174
II-5	CH ₃	OCH ₃	6-CH ₃	i-C ₃ H ₇	CH ₃	CH ₃	α	112
П-6	CH ₃	OCH ₃	Н		CH — (CH ₂) ₂ — CH ₃	CH ₃	В	108
II-7	CH ₃	OCH ₃	6-CH ₃	-(CH ₂) ₂ C(CH ₂) ₂		CH ₃	-	134
II-8	CH ₃	OCH ₃	Н	-(CH ₂) ₃ CHCH ₂ - CH ₃		CH ₃	В	122
II-9	CH ₃	CH ₃	6-OCH ₃	-(CH ₂) ₂ CH(CH ₂) ₂ CH ₃		CH ₃	В	163
II-10	OCH ₃	CH ₃	H	-(CH ₂) ₂ -CHCH ₃ -(CH ₂) ₂ -		CH ₃	ß	136
II-11	OCH ₃	CH ₃	Н	-(CH ₂) ₃ -CHCH ₃ -CH ₂ -		CH ₃	ß	121
II-12	CH ₃	Н	6-OCH ₃	-(CH ₂) ₂ -CH	CH ₃ -(CH ₂) ₂ -	CH ₃	ß	138

10

20

Beispiel XVII-1

38,6 g (0,2 Mol) 2,6-Dimethyl-4-methoxy-phenylessigsäure werden mit 29,3 ml (0,4 Mol) Thienylchlorid auf 50 bis 60°C erwärmt bis die Gasentwicklung beendet ist. Das überschüssige Thionylchlorid wird im Vakuum abdestilliert, der Rückstand in 100 ml wasserfreiem Tetrahydrofuran aufgenommen und bei 0 bis 10°C zu einer Lösung von 25,2 g (0,2 Mol) 4-Amino-pyran-4-carbonsäurenitril und 28 ml (0,2 Mol) Triethylamin in 400 ml wasserfreiem Tetrahydrofuran getropft und 1 h bei Raumtemperatur nachgerührt. Das Reaktionsgemisch wird auf ein Gemisch von 900 ml Wasser und 100 ml 2N Salzsäure gegossen, der Niederschlag abgesaugt, getrocknet und aus MTB-Ether/n-Hexan umkristallisiert. Es wurden 47 g (Δ 79 % d.Th.) der oben gezeigten Verbindung vom Schmelzpunkt 156°C erhalten.

Analog zum Beispiel XVII-1 wurden die in der Tabelle 12 aufgeführten Verbindungen der Formel (XVII) erhalten.

Tabelle 12

Bsp. Nr.	X	Y	Z	A	В	Fp.°C
XVII-2	CH ₃	OCH ₃	6-CH ₃	i-C ₃ H ₇	CH ₂	186
XVII-3	CH ₃	OCH ₃	Н	-(CH ₂) ₂ -O-(CH ₂) ₂ -		116

WO 95/26954 PCT/EP95/01100

- 194 -

Anwendungsbeispiele

Beispiel A

Myzus-Test

Lösungsmittel:

7 Gewichtsteile

Dimethylformamid

5 Emulgator:

15

1 Gewichtsteil

Alkylarylpolyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit der angegebenen Menge Lösungsmittel und der angegebenen Menge Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

10 Kohlblätter (Brassica oleracea), die stark von der Pfirsichblattlaus (Myzus persicae) befallen sind, werden durch Tauchen in die Wirkstoffzubereitung der gewünschten Konzentration behandelt.

Nach der gewünschten Zeit wird die Abtötung in % bestimmt. Dabei bedeutet 100 %, daß alle Blattläuse abgetötet wurden; 0 % bedeutet, daß keine Blattläuse abgetötet wurden.

In diesem Test bewirkten z.B. die Verbindungen gemäß den Herstellungsbeispielen Ia-1, Ia-2, Ia-6 und Ic-1 bei einer beispielhaften Wirkstoffkonzentration von 0,1 % eine Abtötung von m indestens 80 % nach 6 Tagen.

- 195 -

Beispiel B

Pre-emergence-Test

Lösungsmittel:

3 Gewichtsteile

Aceton

Emulgator:

1 Gewichtsteil

Alkylarylpolyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit der angegebenen Menge Lösungsmittel, gibt die angegebene Menge Emulgator zu und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

Samen der Testpflanzen werden in normalen Boden ausgesät und nach 24 Stunden mit der Wirkstoffzubereitung begossen. Dabei hält man die Wassermenge pro Flächeneinheit zweckmäßigerweise konstant. Die Wirkstoffkonzentration in der Zubereitung spielt keine Rolle, entscheidend ist nur die Aufwandmenge des Wirkstoffs pro Flächeneinheit. Nach drei Wochen wird der Schädigungsgrad der Pflanzen bonitiert in % Schädigung im Vergleich zur Entwicklung der unbehandelten Kontrolle. Es bedeuten:

O % = keine Wirkung (wie unbehandelte Kontrolle)

100 % = totale Vernichtung

<u>Tabelle</u>

Pre-emergence-Test

Wirk-	g/ha _.	Beta	Alopecurus	Avena	Cynodon
stoff		vulgaris	myosuroides	fatua	dactylon
(Ic-1) H, C CH, O CH, O CH, O CH, O CH,	250	0	100	70	100

Beispiel C

Tetranychus-Test (OP-resistent/Spritzbehandlung)

Lösungsmittel:

3 Gewichtsteile Dimethylformamid

Emulgator:

1 Gewichtsteil Alkylarylpolyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit der angegebenen Menge Lösungsmittel und der angegebenen Menge Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschten Konzentrationen.

Bohnenpflanzen (Phaseolus vulgaris), die stark von allen Stadien der gemeinen Spinnmilbe (Tetranychus urticae) befallen sind, werden mit einer Wirkstoffzubereitung der gewünschten Konzentration gespritzt.

Nach der gewünschten Zeit wird die Wirkung in % bestimmt. Dabei bedeutet 100 %, daß alle Spinnmilben abgetötet wurden; 0 % bedeutet, daß keine Spinnmilben abgetötet wurden.

In diesem Test bewirkte z.B. die Verbindung gemäß Herstellungsbeispiel Ia-6 bei einer beispielhaften Wirkstoffkonzentration von 0,01 % eine Abtötung von 98 % nach 7 Tagen.

Patentansprüche

1. 1-H-3-Aryl-pyrrolidin-2,4-dion-Derivate der Formel (I)

in welcher

5

A für Wasserstoff, jeweils gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkoxyalkyl, Polyalkoxyalkyl, Alkylthioalkyl, gegebenenfalls durch mindestens ein Heteratom unterbrochenes, gegebenenfalls substituiertes Cycloalkyl oder für jeweils gegebenenfalls durch Halogen, Alkyl, Halogenalkyl, Alkoxy, Nitro substituiertes Aryl, Arylalkyl oder Hetaryl steht,

10

B für Alkyl oder Alkoxyalkyl steht, oder

15

A und B gemeinsam mit dem Kohlenstoffatom an das sie gebunden sind für einen gesättigten oder ungesättigten und gegebenenfalls durch mindestens ein Heteroatom unterbrochenen unsubstituierten oder substituierten Cyclus stehen,

X für Alkyl oder Alkoxy steht,

Y für Wasserstoff, Alkyl oder Alkoxy steht,

Z für Wasserstoff, Alkyl oder Alkoxy steht,

15

G für Wasserstoff (a) oder für die Gruppen

$$P$$
 (b), P (c), P R^6 (e), R^6 (g), R^7 (g),

steht,

- E für ein Metallionäquivalent oder ein Ammoniumion steht,
- 5 L für Sauerstoff oder Schwefel steht,
 - M für Sauerstoff oder Schwefel steht,
 - R¹ für jeweils gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkoxyalkyl, Alkylthioalkyl, Polyalkoxyalkyl oder gegebenenfalls durch Halogen oder Alkyl substituiertes Cycloalkyl, das durch mindestens ein Heteroatom unterbrochen sein kann, für jeweils gegebenenfalls substituiertes Phenyl, Phenylalkyl, Hetaryl, Phenoxyalkyl oder Hetaryloxyalkyl steht,
 - R² für jeweils gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkoxyalkyl, Polyalkoxyalkyl oder für jeweils gegebenenfalls substituiertes Cycloalkyl, Phenyl oder Benzyl steht,
 - R³, R⁴ und R⁵ unabhängig voneinander für jeweils gegebenenfalls durch Halogen substituiertes Alkyl, Alkoxy, Alkylamino, Dialkylamino, Alkylthio, Alkenylthio, Cycloalkylthio oder für jeweils gegebenenfalls substituiertes Phenyl, Phenoxy oder Phenylthio stehen,
- 20 R⁶ und R⁷ unabhängig voneinander für Wasserstoff, für jeweils gegebenenfalls durch Halogen substituiertes Alkyl, Cycloalkyl, Alkenyl, Alkoxy, Alkoxyalkyl, für gegebenenfalls substituiertes

Phenyl, für gegebenenfalls substituiertes Benzyl stehen, oder gemeinsam mit dem N-Atom, an das sie gebunden sind, für einen gegebenenfalls durch Sauerstoff oder Schwefel unterbrochenen Cyclus stehen,

- mit der Maßgabe, daß mindestens einer der Substituenten Y und Z für Alkoxy steht, wenn X für Alkyl steht.
 - 2. 1-H-3-Aryl-pyrrolidin-2,4-dion-Derivate der Formel (I) gemäß Anspruch 1, welche unter Einbeziehung der verschiedenen Bedeutungen (a), (b), (c), (d), (e), (f) und (g) der Gruppe G folgende Strukturen (Ia) bis (Ig) besitzen:

10

- 201 -

5 worin

WO 95/26954 PCT/EP95/01100

- 202 -

A, B, E, L, M, X, Y, Z, R¹, R², R³, R⁴, R⁵, R⁶ und R⁷ die in Anspruch 1 angegebenen Bedeutungen besitzen.

- Verfahren zur Herstellung der 1-H-3-Aryl-pyrrolidin-2,4-dion-Derivate der Formel (I) gemäß Anspruch 1, dadurch gekennzeichnet, daß man
- (A) zum Erhalt von 1-H-3-Aryl-pyrrolidin-2,4-dionen bzw. deren Enolen der Formel (Ia)

in welcher

10

15

A, B, X, Y und Z die in Anspruch 1 angegebene Bedeutung haben, N-Acylaminosäureester der Formel (II)

$$\begin{array}{c|c}
CO_2R^8 \\
A \longrightarrow B \\
NH \longrightarrow Z \\
O \longrightarrow Y
\end{array}$$
(II)

in welcher

A, B, X, Y und Z die in Anspruch 1 angegebene Bedeutung haben,

und

R⁸ für Alkyl steht,

10

in Gegenwart eines Verdünnungsmittels und in Gegenwart einer Base intramolekular kondensiert;

oder

(B) zum Erhalt von Verbindungen der Formel (Ib)

in welcher

A, B, X, Y, Z und R^1 die in Anspruch 1 angegebene Bedeutung haben,

Verbindungen der Formel (Ia),

in welcher

A, B, X, Y und Z die in Anspruch 1 angegebene Bedeutung haben,

α) mit Säurehalogeniden der Formel (III)

204 -

Hal R¹ (III)

in welcher

R¹ die oben angegebene Bedeutung hat und

Hal für Halogen steht,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels umsetzt

oder

B) mit Carbonsäureanhydriden der Formel (IV)

$$R^1$$
-CO-O-CO- R^1 (IV)

in welcher

R¹ die oben angegebene Bedeutung hat,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels,

umsetzt;

15 oder

(C) zum Erhalt von Verbindungen der Formel (Ic-a)

in welcher

A, B, X, Y, Z und R² die oben angegebene Bedeutung haben,

und

5

M für Sauerstoff oder Schwefel steht,

Verbindungen der Formel (Ia)

in welcher

A, B, X, Yund Z die oben angegebene Bedeutung haben,

10

mit Chlorameisensäureester oder Chlorameisensäurethiolester der Formel (V)

$$R^2$$
-M-CO-Cl (V)

in welcher

R² und M die oben angegebene Bedeutung haben,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels umsetzt;

5 oder

(D) zum Erhalt von Verbindungen der Formel (Ic-b)

$$B \xrightarrow{A} H$$
 R^2M
 O
 Z
(Ic-b)

in welcher

A, B, R², X, Y und Z die oben angegebene Bedeutung haben

10 und

M für Sauerstoff oder Schwefel steht,

Verbindungen der Formel (Ia)

15

in welcher

A, B, X, Y und Z die oben angegebene Bedeutung haben,

α) mit Chlormonothioameisensäureestern oder Chlordithioameisensäureestern der Formel (VI)

 $CI \underset{e}{\bigvee} M - R^2$ (VI)

in welcher

M und R² die oben angegebene Bedeutung haben,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels umsetzt,

10 oder

 mit Schwefelkohlenstoff und anschließend mit Alkylhalogeniden der Formel (VII)

R²-Hal (VII)

in welcher

R² die oben angegebene Bedeutung hat

und

Hal für Chlor, Brom oder Iod steht,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart einer Base umsetzt;

oder

(E) zum Erhalt von Verbindungen der Formel (Id)

in welcher

5

A, B, X, Y, Z und R³ die in Anspruch 1 angegebene Bedeutung haben,

Verbindungen der Formel (Ia)

in welcher

A, B, X, Y und Z die oben angegebene Bedeutung haben,

mit Sulfonsäurechloriden der Formel (VIII)

$$R^3$$
-SO₂-Cl (VIII)

in welcher

R³ die oben angegebene Bedeutung hat,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels,

umsetzt,

oder

(F) zum Erhalt von 3-Aryl-pyrrolidin-2,4-dionen der Formel (Ie)

in welcher

A, B, L, X, Y, Z, R⁴ und R⁵ die in Anspruch 1 angegebene Bedeutung haben,

1-H-3-Aryl-pyrrolidin-2,4-dione der Formel (Ia) bzw. deren Enole

in welcher

A, B, X, Y und Z die oben angegebene Bedeutung haben,

mit Phosphorverbindungen der Formel (IX)

$$Hal - P = \begin{pmatrix} R^4 \\ R^5 \end{pmatrix} \qquad (IX)$$

5

10

in welcher

L, R⁴ und R⁵ die oben angegebene Bedeutung haben

und

Hal für Halogen, insbesondere Chlor oder Brom steht,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels umsetzt;

oder

(G) zum Erhalt von Verbindungen der Formel (If)

in welcher

10

A, B, X, Y und Z die oben angegebene Bedeutung haben,

und

E für ein Metallionäquivalent oder für ein Ammoniumion steht,

Verbindungen der Formel (Ia)

in welcher

A, B, X, Y und Z die oben angegebene Bedeutung haben,

mit Metallhydroxiden, Metallalkoxiden oder Aminen der Formeln (X) und (XI)

 R^{9} R^{10} (XI)

in welchen

Me für ein- oder zweiwertige Metallionen,

t für die Zahl 1 oder 2 und

WO 95/26954 PCT/EP95/01100

- 212 -

 R^9 , R^{10} und R^{11} unabhängig voneinander für Wasserstoff und/oder Alkyl

stehen,

gegebenenfalls in Gegenwart eines Verdünnungsmittels, umsetzt,

5 oder

10

(H) zum Erhalt von Verbindungen der Formel (Ig)

$$\begin{array}{c|c} & & & \\ & & &$$

in welcher

A, B, L, X, Y, Z, R⁶ und R⁷ die in Anspruch 1 angegebene Bedeutung haben,

Verbindungen der Formel (Ia)

in welcher

A, B, X, Y und Z die oben angegebene Bedeutung haben,

α) mit Isocyanaten oder Isothiocyanaten der Formel (XII)

$$R^6$$
-N=C=L (XII)

in welcher

5 R⁶ die oben angegebene Bedeutung hat

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Katalysators

oder

10

15

 β) mit Carbamidsäurechloriden oder Thiocarbamidsäurechloriden der Formel (XIII)

$$R^{6} \bigvee_{\substack{N \\ R^{7}}} CI \qquad (XIII)$$

in welcher

L, R⁶ und R⁷ die oben angegebene Bedeutung haben

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels,

umsetzt.

4. 1-H-3-Aryl-pyrrolidin-2,4-dione der Formel (I) gemäß Anspruch 1, in welcher

10

15

20

25

30

- für Wasserstoff oder für jeweils gegebenenfalls einfach oder mehrfach durch Halogen substituiertes C_1 - C_{12} -Alkyl, C_2 - C_8 -Alkenyl, C_1 - C_{10} -Alkoxy- C_1 - C_8 -alkyl, C_1 - C_8 -Polyalkoxy- C_1 - C_8 -alkyl, C_1 - C_{10} -Alkylthio- C_1 - C_6 -alkyl, gegebenenfalls durch Halogen, C_1 - C_4 -Alkyl oder C_1 - C_4 -Alkoxy substituiertes Cycloalkyl mit 3 bis 8 Ringatomen, das durch Sauerstoff und/oder Schwefel unterbrochen sein kann oder für jeweils gegebenenfalls einfach bis mehrfach durch Halogen, C_1 - C_6 -Alkyl, C_1 - C_6 -Halogenalkyl, C_1 - C_6 -Alkoxy und/oder Nitro substituiertes Phenyl, Naphthyl, Pyridyl, Imidazolyl, Indolyl, Thiazolyl, Furanyl, Thienyl, Phenyl- C_1 - C_6 -alkyl oder Naphthyl- C_1 - C_6 -alkyl steht,
 - B für C₁-C₁₂-Alkyl oder C₁-C₈-Alkoxy-C₁-C₆-alkyl steht oder
- A, B und das Kohlenstoffatom an das sie gebunden sind, für einen gesättigten oder ungesättigten C₃-C₁₀-Spirocyclus stehen, der gegebenenfalls einfach oder mehrfach durch C₁-C₆-Alkyl, C₃-C₈-Cycloalkyl, C₁-C₄-Halogenalkyl, C₁-C₆-Alkoxy, C₁-C₆-Alkylthio, Halogen oder Phenyl substituiert und gegebenenfalls durch Sauerstoff oder Schwefel unterbrochen ist oder
- A, B und das Kohlenstoffatom, an das sie gebunden sind, für einen C₃C₆-Spirocyclus stehen, der durch eine gegebenenfalls durch ein oder
 zwei Sauerstoff- und/oder Schwefelatome unterbrochene Alkylendiyl-, oder durch eine Alkylendioxyl- oder durch eine Alkylendithioyl-gruppe substituiert ist, die mit dem Kohlenstoffatom, an das
 sie gebunden ist, einen weiteren fünf- bis achtgliedrigen Spirocyclus
 bildet oder
 - A, B und das Kohlenstoffatom, an das sie gebunden sind, für einen C₃-C₈-Spirocyclus stehen, bei dem zwei Substituenten gemeinsam für einen gegebenenfalls durch C₁-C₄-Alkyl, C₁-C₄-Alkoxy oder Halogen substituierten gesättigten oder ungesättigten füngbis achtgliedrigen Cyclus stehen, der durch Sauerstoff oder Schwefel unterbrochen sein kann,

10

15

20

- X für C_1 - C_6 -Alkyl oder C_1 - C_6 -Alkoxy steht,
- Y für Wasserstoff, C₁-C₆-Alkyl oder C₁-C₆-Alkoxy steht,
- Z für Wasserstoff, C₁-C₆-Alkyl oder C₁-C₆-Alkoxy steht,
- G für Wasserstoff (a) oder für die Gruppen

in welchen

- E für ein Metallionäquivalent oder ein Ammoniumion steht und
- L für Sauerstoff oder Schwefel steht,
 - M für Sauerstoff oder Schwefel steht,
 - für jeweils gegebenenfalls einfach oder mehrfach durch Halogen substituiertes C₁-C₂₀-Alkyl, C₂-C₂₀-Alkenyl, C₁-C₈-Alkoxy-C₁-C₈-alkyl, C₁-C₈-Alkylthio-C₁-C₈-alkyl, C₁-C₈-Polyalkoxy-C₂-C₈-alkyl oder gegebenenfalls durch Halogen oder C₁-C₆-Alkyl substituiertes Cycloalkyl mit 3 bis 8 Ringatomen, das durch mindestens ein Sauerstoff- und/oder Schwefelatom unterbrochen sein kann,

für gegebenenfalls einfach bis fünffach durch Halogen, Nitro, C_1 - C_6 -Alkyl, C_1 - C_6 -Alkoxy, C_1 - C_6 -Halogenalkyl, C_1 - C_6 -Halogenalkoxy, C_1 - C_6 -Alkylthio oder C_1 - C_6 -Alkylsulfonyl substituiertes Phenyl,

für gegebenenfalls einfach bis fünffach durch Halogen, C_1 - C_6 -Alkyl, C_1 - C_6 -Alkoxy, C_1 - C_6 -Halogenalkyl oder C_1 - C_6 -Halogenalkoxy substituiertes Phenyl- C_1 - C_6 -alkyl,

5

für gegebenenfalls einfach bis dreifach durch Halogen oder C_1 - C_6 -Alkyl substituiertes Pyridyl, Thienyl, Furanyl, Pyrazolyl, Pyrimidyl oder Thiazolyl,

für gegebenenfalls einfach bis dreifach durch Halogen oder C_1 - C_6 -Alkyl substituiertes Phenoxy- C_1 - C_6 -alkyl oder

10

für gegebenenfalls einfach bis zweifach durch Halogen, Amino oder C_1 - C_6 -Alkyl substituiertes Pyridinyloxy- C_1 - C_6 -alkyl oder Thiazolyloxy- C_1 - C_6 -alkyl steht,

R²

für jeweils gegebenenfalls einfach oder mehrfach durch Halogen substituiertes C₁-C₂₀-Alkyl, C₃-C₂₀-Alkenyl, C₁-C₈-Alkoxy-C₂-C₈-alkyl, C₁-C₈-Polyalkoxy-C₂-C₈-alkyl,

15

für gegebenenfalls einfach oder mehrfach durch Halogen, C_1 - C_4 -Alkyl oder C_1 - C_4 -Alkoxy substituiertes C_3 - C_8 -Cycloalkyl, oder

für gegebenenfalls einfach bis dreifach durch Halogen, Nitro, C_1 - C_6 -Alkyl, C_1 - C_6 -Alkoxy oder C_1 - C_6 -Halogenalkyl substituiertes Phenyl oder Benzyl steht,

20

R³, R⁴ und R⁵ unabhängig voneinander für jeweils gegebenenfalls einfach oder mehrfach durch Halogen substituiertes C₁-C₈-Alkyl, C₁-C₈-Alkoxy, C₁-C₈-Alkylamino, Di-(C₁-C₈)-alkylamino, C₁-C₈-Alkylthio, C₃-C₆-Alkenylthio, C₃-C₇-Cycloalkylthio, für jeweils gegebenenfalls einfach oder mehrfach durch Halogen, Nitro, Cyano, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkylthio, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl substituiertes Phenyl, Phenoxy oder Phenylthio stehen und

10

30

R⁶ und R⁷ unabhängig voneinander für Wasserstoff, für jeweils gegebenenfalls einfach oder mehrfach durch Halogen substituiertes C₁-C₈-Alkyl, C₃-C₈-Cycloalkyl, C₁-C₈-Alkoxy, C₃-C₈-Alkenyl, C₁-C₈-Alkoxy-C₂-C₈-alkyl, für gegebenenfalls einfach bis dreifach durch Halogen, C₁-C₈-Halogenalkyl, C₁-C₈-Alkyl oder C₁-C₈-Alkoxy substituiertes Phenyl, gegebenenfalls einfach bis dreifach durch Halogen, C₁-C₈-Alkyl, C₁-C₈-Halogenalkyl und/oder C₁-C₈-Alkoxy substituiertes Benzyl oder gemeinsam mit dem N-Atom, an das sie gebunden sind, für einen gegebenenfalls durch Sauerstoff oder Schwefel unterbrochenen C₃-C₆-Alkylenring stehen,

mit der Maßgabe, daß mindestens eienr der Substituenten Y und Z für Alkoxy steht, wenn X für Alkyl steht.

- 5. 1-H-3-Aryl-pyrrolidin-2,4-dione der Formel (I) gemäß Anspruch 1, in welcher
- für Wasserstoff, für jeweils gegebenenfalls einfach bis sechsfach durch Fluor oder Chlor substituiertes C₁-C₁₀-Alkyl, C₂-C₆-Alkenyl, C₁-C₈-Alkoxy-C₁-C₆-alkyl, C₁-C₆-Polyalkoxy-C₁-C₆-alkyl, C₁-C₈-Alkylthio-C₁-C₆-alkyl, gegebenenfalls durch Fluor, Chlor, C₁-C₃-Alkyl oder C₁-C₃-Alkoxy substituiertes Cycloalkyl mit 3 bis 7 Ringatomen, das durch 1 bis 2 Sauerstoff- und/oder Schwefelatome unterbrochen sein kann oder für jeweils gegebenenfalls einfach bis zweifach durch Fluor, Chlor, Brom, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy oder Nitro substituiertes Phenyl, Pyridyl, Furanyl, Thienyl, Imidazolyl, Indolyl oder Phenyl-C₁-C₄-alkyl steht,
 - B für C₁-C₁₀-Alkyl oder C₁-C₆-Alkoxy-C₁-C₄-alkyl steht oder
 - A, B und das Kohlenstoffatom an das sie gebunden sind, für einen gesättigten oder ungesättigten C₃-C₉-Spirocyclus stehen, der gegebenenfalls einfach oder mehrfach durch C₁-C₆-Alkyl, C₃-C₈-Cycloalkyl, C₁-C₃-Halogenalkyl, C₁-C₆-Alkoxy, C₁-C₆-Alkylthio, Fluor,

Chlor oder Phenyl substituiert und gegebenenfalls durch Sauerstoff oder Schwefel unterbrochen ist oder

- A, B und das Kohlenstoffatom, an das sie gebunden sind, für einen C₃-C₆-Spirocyclus stehen, der durch eine gegebenenfalls durch ein oder zwei Sauerstoff- oder Schwefelatome unterbrochenen Alkylendiyloder durch eine Alkylendioxyl- oder durch eine Alkylendithiol-Gruppe substituiert ist, die mit dem Kohlenstoffatom, an das sie gebunden ist, einen weiteren fünf- bis siebengliedrigen Spirocyclus bildet oder
- 10 A,B und das Kohlenstoffatom, an das sie gebunden sind, für einen C₃-C₆-Spirocyclus stehen, bei dem zwei Substituenten gemeinsam für einen gegebenenfalls durch C₁-C₃-Alkyl, C₁-C₃-Alkoxy, Fluor, Chlor oder Brom substituierten gesättigten oder ungesättigten, fünfbis siebengliedrigen Cyclus stehen, der durch Sauerstoff oder Schwefel unterbrochen sein kann,
 - X für C₁-C₅-Alkyl oder C₁-C₄-Alkoxy steht,
 - Y für Wasserstoff, C₁-C₅-Alkyl oder C₁-C₄-Alkoxy steht,
 - Z für Wasserstoff, C₁-C₄-Alkyl oder C₁-C₄-Alkoxy steht,

in welchen

20 G für Wasserstoff (a) oder für die Gruppen

steht,

in welchen

- für ein Metallionäquivalent oder ein Ammoniumion steht,
- L für Sauerstoff oder Schwefel steht,
- für Sauerstoff oder Schwefel steht,
- 5 \mathbb{R}^1 für jeweils gegebenenfalls einfach bis sechsfach durch Fluor oder Chlor substituiertes C_1 - C_{16} -Alkyl, C_2 - C_{16} -Alkenyl, C_1 - C_6 -Alkoxy- $C_1-C_6-alkyl,\ C_1-C_6-Alkylthio-C_1-C_6-alkyl,\ C_1-C_6-Polyalkoxy-C_2-C_6-Alkylthio-C_1-C_6-alkyl,\ C_1-C_6-Polyalkoxy-C_2-C_6-Alkylthio-C_1-C_6-alkyl,\ C_1-C_6-Alkylthio-C_1-C_6-alkyl,\ C_1-C_6-Alkylthio-C_1-C_6-alkyl,\ C_1-C_6-Alkylthio-C_1-C_6-alkyl,\ C_1-C_6-Polyalkoxy-C_2-C_6-Alkylthio-C_1-C_6-alkyl,\ C_1-C_6-Alkylthio-C_1-C_6-alkyl,\ C_1-C_6-Alkylthio-C_1-C_6-alkyl,\ C_1-C_6-Alkylthio-C_1-C_6-alkyl,\ C_1-C_6-Alkylthio-C_1-C_6-alkyl,\ C_1-C_6-Alkylthio-C_1-C_6-alkyl,\ C_1-C_6-Alkylthio-C_1-C_6-Alkylthio-C_1-C_6-alkyl,\ C_1-C_6-Alkylthio-C_1-C_6-Alkylthio$ alkyl oder gegebenenfalls durch Fluor, Chlor oder C1-C5-Alkyl substituiertes Cycloalkyl mit 3 bis 7 Ringatomen, das durch 1 oder 2 Sauerstoff- und/oder Schwefelatome unterbrochen sein kann, 10

für gegebenenfalls einfach bis dreifach durch Fluor, Chlor, Brom Nitro, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₃-Halogenalkyl, C₁-C₃-Halogenalkoxy, C_1 - C_4 -Alkylthio und/oder C_1 - C_4 -Alkylsulfonyl substituiertes Phenyl,

für gegebenenfalls einfach bis dreifach durch Fluor, Chlor, Brom, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₃-Halogenalkyl, C₁-C₃-Halogenalkoxy substituiertes Phenyl-C₁-C₄-alkyl,

für gegebenenfalls einfach bis zweifach durch Fluor, Chlor, Brom oder C1-C4-Alkyl substituiertes Pyridyl, Thienyl, Furanyl, Pyrazolyl, Pyrimidyl oder Thiazolyl,

für gegebenenfalls einfach bis zweifach durch Fluor, Chlor, Brom oder C₁-C₄-Alkyl substituiertes Phenoxy-C₁-C₅-alkyl oder

für gegebenenfalls einfach bis zweifach durch Fluor, Chlor, Brom, Amino oder C₁-C₄-Alkyl substituiertes Pyrimidinyloxy-C₁-C₅-alkyl, Pyridinyloxy-C₁-C₅-alkyl, Thiazolyloxy-C₁-C₅-alkyl steht,

15

20

für jeweils gegebenenfalls einfach bis sechsfach durch Fluor und/oder Chlor substituiertes C₁-C₁₆-Alkyl, C₃-C₁₆-Alkenyl, C₁-C₆-Alkoxy-C₁-C₆-alkyl, C₁-C₆-Polyalkoxy-C₂-C₆-alkyl,

für gegebenenfalls einfach bis sechsfach durch Fluor, Chlor, C_1 - C_3 -Alkyl oder C_1 - C_3 -Alkoxy-substituiertes C_3 - C_7 -Cycloalkyl,

für gegebenenfalls einfach bis zweifach durch Fluor, Chlor, Brom, Nitro, C_1 - C_4 -Alkyl, C_1 - C_3 -Alkoxy oder C_1 - C_3 -Halogenalkyl substituiertes Phenyl oder Benzyl steht,

R³, R⁴ und R⁵ unabhängig voneinander für jeweils gegebenenfalls einfach bis sechsfach durch Fluor oder Chlor substituiertes C₁-C₆-Alkyl, C₁-C₆-Alkoxy, C₁-C₆-Alkylamino, Di-(C₁-C₆)-alkylamino, C₁-C₆-Alkylthio, C₃-C₄-Alkenylthio, C₃-C₆-Cycloalkylthio, für jeweils gegebenenfalls einfach bis zweifach durch Fluor, Chlor, Brom, Nitro, Cyano, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, C₁-C₃-Alkylthio, C₁-C₃-Halogenalkylthio, C₁-C₃-Alkyl oder C₁-C₃-Halogenalkyl substituiertes Phenyl, Phenoxy oder Phenylthio stehen und

R⁶ und R⁷ unabhängig voneinander für Wasserstoff, für jeweils gegebenenfalls einfach bis sechsfach durch Fluor oder Chlor substituiertes C₁-C₆-Alkyl, C₃-C₆-Cycloalkyl, C₁-C₆-Alkoxy, C₃-C₆-Alkenyl, C₁-C₆-Alkoxy-C₂-C₆-alkyl, für gegebenenfalls einfach bis zweifach durch Fluor, Chlor, Brom, C₁-C₅-Halogenalkyl, C₁-C₅-Alkyl oder C₁-C₅-Alkoxy substituiertes Phenyl, für gegebenenfalls einfach bis zweifach durch Fluor, Chlor, Brom, C₁-C₅-Alkyl, C₁-C₅-Halogenalkyl oder C₁-C₅-Alkoxy substituiertes Benzyl steht, oder gemeinsam mit dem N-Atom, an das sie gebunden sind, für einen gegebenenfalls durch Sauerstoff oder Schwefel unterbrochenen C₃-C₆-Alkylenring stehen,

mit der Maßgabe, daß mindestens einer der Substituenten Y und Z für Alkoxy steht, wenn X für Alkyl steht.

10

5

15

20

10

- 6. 1-H-3-Aryl-pyrrolidin-2,4-dione der Formel (I) gemäß Anspruch 1, in welcher
 - A für Wasserstoff, für jeweils gegebenenfalls einfach bis dreifach durch Fluor oder Chlor substituiertes C₁-C₈-Alkyl, C₂-C₄-Alkenyl, C₁-C₆-Alkoxy-C₁-C₄-alkyl, C₁-C₆-Polyalkoxy-C₁-C₄-alkyl, C₁-C₆-Alkylthio-C₁-C₄-alkyl, gegebenenfalls durch Fluor, Chlor, Methyl, Ethyl, Methoxy oder Ethoxy substituiertes Cycloalkyl mit 3 bis 6 Ringatomen, das durch 1 bis 2 Sauerstoff- und/oder Schwefelatome unterbrochen sein kann oder für jeweils gegebenenfalls einfach bis zweifach durch Fluor, Chlor, Brom, Methyl, Ethyl, Propyl, iso-Propyl, Methoxy, Ethoxy, Trifluormethyl und/oder Nitro substituiertes Phenyl, Furanyl, Thienyl, Imidazolyl, Indolyl, Pyridyl oder Benzyl steht,
 - B für C₁-C₈-Alkyl oder C₁-C₄-Alkoxy-C₁-C₂-alkyl steht oder
- A, B und das Kohlenstoffatom an das sie gebunden sind, für einen gesättigten oder ungesättigten C₃-C₈-Spirocyclus stehen, der gegebenenfalls einfach oder mehrfach durch Methyl, Ethyl, Propyl, Isopropyl, Butyl, iso-Butyl, sec.-Butyl, tert,-Butyl, Cyclohexyl, Trifluormethyl, Methoxy, Ethoxy, Propoxy, iso-Propoxy, Butoxy, iso-Butoxy, sek.-Butoxy, tert.-Butoxy, Methylthio, Ethylthio, Fluor, Chlor oder Phenyl substituiert und gegebenenfalls durch Sauerstoff oder Schwefel unterbrochen ist oder
 - A, B und das Kohlenstoffatom, an das sie gebunden sind, für einen C₅C₆-Spirocyclus stehen, der durch eine gegebenenfalls durch ein
 Sauerstoff- oder Schwefelatom unterbrochene Alkylendiyl- oder
 durch eine Alkylendioxyl-Gruppe substituiert ist, die mit dem
 Kohlenstoffatom, an das sie gebunden ist, einen weiteren fünf- bis
 siebengliedrigen Spirocyclus bildet oder
- A,B und das Kohlenstoffatom, an das sie gebunden sind, für einen C₃
 C₆-Spirocyclus stehen, bei dem zwei Substituenten gemeinsam für

10

einen gesättigten oder ungesättigten fünf- oder sechsgliedrigen Cyclus stehen, der durch Sauerstoff oder Schwefel unterbrochen sein kann,

- X für Methyl, Ethyl, Propyl, iso-Propyl, Methoxy, Ethoxy, Propoxy oder iso-Propoxy steht,
- Y für Wasserstoff, Methyl, Ethyl, Propyl, iso-Propyl, Butyl, iso-Butyl, sek.-Butyl, tert.-Butyl; Methoxy, Ethoxy, Propoxy oder iso-Propoxy steht,
- Z für Wasserstoff, Methyl, Ethyl, Propyl, iso-Propyl, Methoxy, Ethoxy, Propoxy oder iso-Propoxy steht,
 - G für Wasserstoff (a) oder für die Gruppen

steht,

in welchen

- 15 E für ein Metallionäquivalent oder ein Ammoniumion steht und
 - L für Sauerstoff oder Schwefel steht.
 - M für Sauerstoff oder Schwefel steht,
- für jeweils gegebenenfalls einfach bis dreifach durch Fluor oder

 Chlor substituiertes C₁-C₁₄-Alkyl, C₂-C₁₄-Alkenyl, C₁-C₄-Alkoxy-C₁-C₆-alkyl, C₁-C₄-Alkylthio-C₁-C₆-alkyl, C₁-C₄-Polyalkoxy-C₂-C₄-

alkyl oder gegebenenfalls durch Fluor, Chlor, Methyl, Ethyl, Propyl, i-Propyl, Butyl, i-Butyl oder tert.-Butyl substituiertes Cycloalkyl mit 3 bis 6 Ringatomen, das durch 1 bis 2 Sauerstoff- und/oder Schwefelatome unterbrochen sein kann,

5

für gegebenenfalls einfach bis zweifach durch Fluor, Chlor, Brom, Methyl, Ethyl, Propyl, i-Propyl, Methoxy, Ethoxy, Trifluormethyl, Trifluormethoxy, Methylthio, Ethylthio, Methylsulfonyl, Ethylsulfonyl oder Nitro substituiertes Phenyl,

10

für gegebenenfalls einfach bis zweifach durch Fluor, Chlor, Brom, Methyl, Ethyl, Propyl, i-Propyl, Methoxy, Ethoxy, Trifluormethyl oder Trifluormethoxy substituiertes Phenyl- C_1 - C_3 -alkyl steht,

für gegebenenfalls einfach bis zweifach durch Fluor, Chlor, Brom, Methyl oder Ethyl substituiertes Thienyl, Furanyl oder Pyridyl,

15

für gegebenenfalls einfach bis zweifach durch Fluor, Chlor, Methyl oder Ethyl substituiertes Phenoxy- C_1 - C_4 -alkyl, oder

für jeweils gegebenenfalls einfach bis zweifach durch Fluor, Chlor, Amino, Methyl oder Ethyl substituiertes Pyridyloxy- C_1 - C_4 -alkyl, Pyrimidyloxy- C_1 - C_4 -alkyl und Thiazolyloxy- C_1 - C_4 -alkyl steht,

20

R² für jeweils gegebenenfalls einfach bis dreifach durch Fluor oder Chlor substituiertes C₁-C₁₄-Alkyl, C₃-C₁₄-Alkenyl, C₁-C₄-Alkoxy-C₁-C₆-alkyl, C₁-C₄-Polyalkoxy-C₂-C₆-alkyl,

für gegebenenfalls einfach bis dreifach durch Fluor, Chlor, Methyl, Ethyl, Propyl, iso-Propyl oder Methoxy substituiertes C_3 - C_6 -Cycloalkyl,

25

oder für jeweils gegebenenfalls einfach bis zweifach durch Fluor, Chlor, Nitro, Methyl, Ethyl, Propyl, i-Propyl, Methoxy, Ethoxy oder Trifluormethyl substituiertes Phenyl oder Benzyl steht,

10

15

20

25

R³, R⁴ und R⁵ unabhängig voneinander für jeweils gegebenenfalls einfach bis dreifach durch Fluor oder Chlor substituiertes C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylamino, Di-(C₁-C₄)-alkylamino, C₁-C₄-Alkylthio, für jeweils gegebenenfalls einfach bis zweifach durch Fluor, Chlor, Brom, Nitro, Cyano, C₁-C₂-Alkoxy, C₁-C₂-Fluoralkoxy, C₁-C₂-Alkylthio, C₁-C₂-Fluoralkylthio, C₁-C₂-Alkyl oder C₁-C₂-Fluoralkyl substituiertes Phenyl, Phenoxy oder Phenylthio stehen und

R⁶ und R⁷ unabhängig voneinander für Wasserstoff, für jeweils gegebenenfalls einfach bis dreifach durch Fluor oder Chlor substituiertes C₁-C₄-Alkyl, C₃-C₆-Cycloalkyl, C₁-C₄-Alkoxy, C₃-C₄-Alkenyl, C₁-C₄-Alkoxy-C₂-C₄-alkyl, für gegebenenfalls einfach bis zweifach durch Fluor, Chlor, Brom, C₁-C₄-Halogenalkyl, C₁-C₄-Alkyl und/oder C₁-C₄-Alkoxy substituiertes Phenyl, für gegebenenfalls einfach bis zweifach durch Fluor, Chlor, Brom, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl und/oder C₁-C₄-Alkoxy substituiertes Benzyl, oder gemeinsam mit dem N-Atom, an das sie gebunden sind, für einen gegebenenfalls durch Sauerstoff oder Schwefel unterbrochenen C₃-C₆-Alkylenring stehen,

mit der Maßgabe, daß mindestens einer der Substituenten Y und Z für Alkoxy steht, wenn X für Alkyl steht.

7. Verbindungen der Formel (II)

$$\begin{array}{c|c}
A & CO_2R^8 \\
H & N & Z
\end{array}$$
(II)

in welcher

A, B, X, Y und Z die in Anspruch 1 angegebene Bedeutung haben und

R⁸ für Alkyl steht.

Verfahren zur Herstellung der Acyl-aminosäureester der Formel (II) gemäß
 Anspruch 7, dadurch gekennzeichnet, daß man Aminosäurederivate der
 Formel (XIV),

$$\begin{array}{c|c}
A & CO_2R^{12} \\
B & NH_2
\end{array} (XIV)$$

in welcher

R^{12'} für Wasserstoff (XIVa) oder Alkyl (XIVb) steht

und

A und B die oben angegebene Bedeutung haben,

10 mit Phenylessigsäurehalogeniden der Formel (XV)

in welcher

X, Y und Z die oben angegebene Bedeutung haben und

Hal für Chlor oder Brom steht,

15 acyliert,

oder daß man Acylaminosäuren der Formel (IIa),

WO 95/26954 PCT/EP95/01100

- 226 .

$$\begin{array}{c|c} A & CO_2R^{12} & X \\ H & N & Z \end{array}$$
 (IIa)

in welcher

A, B, X, Y und Z die oben angegebene Bedeutung haben,

und

5 R¹² für Wasserstoff steht,

verestert oder

daß man Aminonitrile der Formel (XVI)

$$\begin{array}{c}
A \\
H_2N
\end{array}$$

$$C \equiv N$$
(XVI)

in welcher

10 A und B die oben angegebene Bedeutung haben,

mit Phenylessigsäurehalogeniden der Formel (XV)

in welcher

X, Y und Z die oben angegebene Bedeutung haben und

Hal für Chlor oder Brom steht,

zu Verbindungen der Formel (XVII)

$$Y - \bigvee_{Z}^{X} O - \bigvee_{A = B}^{NH} C \equiv N$$
(XVII)

5 in welcher

A, B, X, Y und Z die oben angegebene Bedeutung haben,

umsetzt, und diese anschließend einer schwefelsauren Alkoholyse unterwirft.

9. Verbindungen der Formel (XVII)

$$\begin{array}{c} X \\ Y \longrightarrow \begin{array}{c} X \\ O \longrightarrow \begin{array}{c} NH \\ B \end{array} \end{array} C \equiv N \end{array}$$
 (XVII)

10

15

in welcher

A, B, X, Y und Z die in Anspruch 1 angegebene Bedeutung haben.

10. Verfahren zur Herstellung von Verbindungen der Formel (XVII) gemäß Anspruch 9, dadurch gekennzeichnet, daß man Aminonitrile der Formel (XVI)

†

- 228 -

$$\begin{array}{ccc}
A & B \\
H_2N & C \equiv N
\end{array} (XVI)$$

in welcher

A und B die in Anspruch 1 angegebene Bedeutung haben,

mit Phenylessigsäurehalogeniden der Formel (XV)

in welcher

X, Y und Z die in Anspruch 1 angegebene Bedeutung haben und

Hal für Chlor oder Brom steht,

umsetzt.

- 11. Schädlingsbekämpfungsmittel und Unkrautbekämpfungsmittel, gekennzeichnet durch einen Gehalt an mindestens einem 1-H-3-Aryl-pyrrolidin-2,4-dion-derivat der Formel (I) gemäß Anspruch 1.
 - 12. Verwendung von 1-H-3-Aryl-pyrrolidin-2,4-dion-derivat der Formel (I) gemäß Anspruch 1 zur Bekämpfung von Schädlingen und Unkräutern.
- 15 13. Verfahren zur Bekämpfung von Schädlingen und Unkräutern, dadurch gekennzeichnet, daß man 1-H-3-Aryl-pyrrolidin-2,4-dion-derivate der Formel (I) gemäß Anspruch 1 auf Schädlinge und/oder ihren Lebensraum

WO 95/26954 PCT/EP95/01100

- 229 -

einwirken läßt oder auf Unkräuter und/oder ihren Lebensraum einwirken läßt.

14. Verfahren zur Herstellung von Schädlingsbekämpfungsmitteln und Unkrautbekämpfungsmitteln, dadurch gekennzeichnet, daß man 1-H-3-Arylpyrrolidin-2,4-dion-derivate der Formel (I) gemäß Anspruch 1 mit Streckmitteln und/oder oberflächenaktiven Mitteln vermischt.

INTERNATIONAL SEARCH REPORT

Int onal Application No PCT/EP 95/01100

A. CLASSIFICATION OF SUBJECT MATTER IPC 6 C07D207/38 C07D49 C07D491/10 C07D209/54 A01N43/36 C07F9/572 C07C255/29 C07C235/34 C07C235/36 C07C255/46 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) C07D C07C IPC 6 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Category * Citation of document, with indication, where appropriate, of the relevant passages X EP, A, 0 521 334 (BAYER) 7 January 1993 1-6, cited in the application 11-14 see claims 1-10 X EP, A, O 456 063 (BAYER) 13 November 1991 1-14 cited in the application see page 4, line 2 - page 6, line 27 see claims 1-9 see page 10, line 1 - page 12, line 12 Further documents are listed in the continuation of box C. Patent family members are listed in annex. Special categories of cited documents: 'T' later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance invention earlier document but published on or after the international "X" document of particular relevance; the claimed invention filing date cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docudocument referring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person skilled in the art. other means document published prior to the international filing date but later than the priority date claimed '&' document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 18, 07, 95 11 July 1995 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 NI. - 2280 HV Ripwijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Kissler, B Fax: (+31-70) 340-3016

INTERNATIONAL SEARCH REPORT

Information on patent family members

Int onal Application No
PCT/EP 95/01100

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
EP-A-0521334	07-01-93	DE-A- CA-A- JP-A-	4121365 2072280 5221971	14-01-93 29-12-92 31-08-93
EP-A-0456063	13-11-91	DE-A- AU-B- AU-A- JP-A- US-A-	4107394 635421 7649191 4226957 5258527	14-11-91 18-03-93 05-12-91 17-08-92 02-11-93

INTERNATIONALER RECHERCHENBERICHT

Int onales Aktenzeichen
PCT/EP 95/01100

A VIAC				
IPK 6	SIFIZIERUNG DES ANMELDUNGSGEGENSTANDES CO7D207/38 CO7D491/10 CO7D209	/54 A01N43/36 CO	7F9/572	
	C07C235/34 C07C235/36 C07C255		/	
[
	nternationalen Patentklassifikation (IPK) oder nach der nationalen	Klassifikation und der IPK		
	ERCHIERTI: GEBIETI: rter Mindestprüfstoff (Klassifikationssystem und Klassifikationssym	C.1.X		
IPK 6	CO7D CO7C	bole)		
! .	·		•	
Decherchie	de abor mobil som Mandagasifetett - hännde Veräffentlichunger			
Redictions	rte aher nicht zum Mindestprüfstoff gehörende Veröffentlichungen,	soweil diese unter die recherenierten Get	nete fallen	
Während de	er internationalen Recherche konsultuerte elektronische Datenhank (Name day Datashark and and annual	· · · · · · · · · · · · · · · · · · ·	
	el limitibacidadii recircicio reiphibatic cierconiscie decimina (Name der Datenbank und evel verweite	ete Suchbegniie)	
CAISW	ESENTLICH ANGESEHENE UNTERLAGEN			
Kategorie*		A - to in Decode to to a part of Taile	S A	
Raugone	Bezeichnung der Veröffentlichung, soweit erforderlich unter Ange	the der in Betracht kommenden i eile	Betr. Anspruch Nr.	
V	50 1 0 501 004 (DIVED) 7 1			
X	EP,A,O 521 334 (BAYER) 7. Januar in der Anmeldung erwähnt	1993	1-6,	
	siehe Ansprüche 1-10		11-14	
	2 tene viiahi delle 1 10			
X	EP,A,O 456 063 (BAYER) 13. Novem	ber 1991	1-14	
	in der Anmeldung erwähnt			
	siehe Seite 4, Žeile 2 - Seite 6	, Zeile 27		
	siehe Ansprüche 1-9 siehe Seite 10, Zeile 1 - Seite	10 70110		
	12	12, 20110		
		·		
entre	ere Veröffentlichungen sind der Fortsetzung von Feld C zu ehmen	X Siehe Anhang Patentfamilie		
	Kategorien von angegebenen Veröffentlichungen :	"T" Spätere Veröffentlichung, die nach d oder dem Prioritätsdatum veröffentl	em internationalen Anmeldedatum	
A Veronic	entlichung, die den allgemeinen Stand der Technik definiert, icht als besonders bedeutsam anzusehen ist	Anmeldung nicht kollidiert, sondern	nur zumVerständnis des der	
'E' älteres Anmel	Dokument, das jedoch erst am oder nach dem internationalen dedatum veröffentlicht worden ist	Erfindung zugrundeltegenden Prinzi Theorie angegeben ist		
"L" Veröffe	mülichung, die geeignet ist, einen Prioritätsanspruch zweiselhaft er-	"X" Veröffentlichung von besonderer Be kann allem aufgrund dieser Veröffen	ntlichung nicht als neu oder auf	
andere	en zu lassen, oder durch die das Veröffentlichungsdatum einer n im Recherchenbenicht genannten Veröffentlichung belegt werden	erfinderischer Tätigkeit beruhend be "Y" Veröffentlichung von besonderer Be	trachtet werden deutung; die beanspruchte Erfindung	
ausgefi	er die aus einem anderen besonderen Grund angegeben ist (wie ührt)	kann nicht als auf erfinderischer Tä- werden, wenn die Veröffentlichung	tigkeit beruhend betrachtet	
ane B	veröffentlichungen dieser Kategorie in Verbindung gebracht wird und Benutzung, eine Ausstellung oder andere Maßnahmen bezieht diese Verbindung für einen Eechwann nabeligend ist			
"P" Veröffe dem b	ntlichung, die vor dem internationalen Anmeldedatum, aber nach eanspruchten Prioritätsdatum veröffentlicht worden ist	'&' Veröffentlichung, die Mitglied derse		
	Abschlusses der internationalen Recherche	Absendedatum des internationalen I	Recherchenberichts	
1	1. Juli 1995	18. 07. 95		
Name und I	Postanschrist der Internationale Recherchenbehörde	Hevollmächtigter Bediensteter		
	Europäisches Patentamt, P.B. 5818 Patentlaan 2 NI 2280 HV Rijswijk		•	
	Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Kissler, B		

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichenigen, die zur selben Patentfarmlie gehören

int sonales Aktenzeichen
PCT/EP 95/01100

Im Recherchenbericht angeführtes Patentdokument				Datum der Veröffentlichung
EP-A-0521334	07-01-93	DE-A- CA-A- JP-A-	4121365 2072280 5221971	14-01-93 29-12-92 31-08-93
EP-A-0456063	13-11-91	DE-A- AU-B- AU-A- JP-A- US-A-	4107394 635421 7649191 4226957 5258527	14-11-91 18-03-93 05-12-91 17-08-92 02-11-93

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
Потнер.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.