Modul 114

Thema 3/11

Die Logik und den Prozessor verstehen

Agenda

Thema	Inhalte
1	Zahlensysteme BIN - DEZ - HEX
2	Arithmetische und logische Grundoperationen im Binärsystem
3	Die Logik und den Prozessor verstehen
4	Grosse Zahlen in kleinen Variablen ablegen
5	Fehler in der Datenübertragung finden und korrigieren
6	Speicherplatz als rares Gut - Dateien und ihr Platzbedarf
7	Speicherplatz als rares Gut - Kompression
8	Speicherplatz als rares Gut - Reduktion
9	Vektorgrafiken - Eine Alternative zu den Pixeln
10	Verschlüsselung - Geschichte und Grundsätzliches
11	Verschlüsselung – Moderne Verfahren

Tagesziele

Ich kann...

- Wahrheitstabellen zu Aussageverknüpfungen erstellen.
- einfache Schaltungen aus Wahrheitstabellen generieren (und umgekehrt).
- erklären, welche Aufgaben die ALU im Prozessor übernimmt.
- Erklären, wie ein Prozessor addiert und subtrahiert.

+

Wie funktioniert ein Prozessor?

Abläufe in modernen Prozessoren

Das folgende YouTube-Video erklärt die Funktionsweise eines Prozessors im Überblick.

Achten Sie sich beim Betrachten auf die Aussagen zur ALU (Arithmetical Logical Unit).

YouTube-Video "Prozessor"

Der Halbaddierer

> Als erstes wird ein Addierer für einstellige Binärzahlen benötigt:

Diese Schaltung wird zusammengefasst als **Halbaddierer** bezeichnet.

Der Volladdierer

Um mehrstellige Binärzahlen addieren zu können, benötigt man eine Schaltung, welche (analog zu der schriftlichen Binär-Addition) die Überträge der letzten Stelle mit einbezieht:

Diese Schaltung wird zusammengefasst als **Volladdierer** bezeichnet.

Kaskade von Volladdierern

Durch kaskadierende Kombination mehrerer Volladdierer können nun mehrstellige Binärzahlen addiert werden.

Der letzte Übertrag stellt das Status-Flag des Prozessors dar.

Aufgabe

- > Bauen Sie diese Additions-Maschine (schon fast ein Prozessor) mit dem Simulationsprogramm LogikSim nach.
- > Testen Sie danach, ob die Addition korrekt funktioniert

Ziel: Sie verstehen, wie ein Prozessor addiert

SF: Einzelarbeit/Partnerarbeit

Zeit: 15 Minuten

Subtraktion mit der Additions-Maschine

Das Zweierkomplement

Problem: Wie lässt sich mit der Additionsmaschine subtrahieren?

Ansatz: Zweierkomplement

Werte von 0 bis 127 werden

normal interpretiert.

Die Gegenzahl erreicht man durch invertieren aller Bits

und anschliessender Addition

von 1.

Binärzahl	Wert normal	Wert im Zweier- komplement
0000 0000	0	0
0000 0001	1	1
0000 0010	2	2
0111 1111	127	127
1000 0000	128	-128
1111 1110	254	-2
1111 1111	255	-1

Subtraktion durch Addition

Problem: Unser Prozessor kann nur addieren. Wie können wir

ihn trotzdem eine Subtraktion durchführen lassen?

Lösung: Indem wir ihn einen negativen Wert addieren lassen.

Das funktioniert mit dem Zweierkomplement.

Beispiel: Rechnen Sie binär 124 - 24, indem Sie das

Zweierkomplement von 24 zu 124 addieren!

Subtraktion durch Addition

0001 1000 invertieren Zweierkomplement von 24 bilden:

1110 0111 plus 1 1110 1000

Addition: Wert 124 binär:

2er-Kompl. Von 24 +

0111 1100 1110 1000

Carry-Flag (Übertrag) 1 0110 0100

(1 Bit im Statusregister)

Aufgabe

- > Überprüfen Sie, ob Ihre Additionsmaschine korrekt subtrahiert.
- > Testen Sie dasselbe auch mit verschiedenen Kombinationen von negativen Werten.

Ziel: Sie verstehen, wie ein Prozessor subtrahieren kann

SF: Einzelarbeit/Partnerarbeit

Zeit: 15 Minuten

Multiplikation / Division

Multiplikation: Mehrfache Addition

Division: Mehrfache Subtraktion mit

abzählen und Abbruchbedingung

Fazit:

Mit geeigneter SOFTWARE kann unsere Additionsmaschine alle Grundoperationen ausführen.

Zusatz für Interessierte:

Die Regeln der Booleschen Algebra

Beispiel

Beispiel

Eine logische Schaltung ergibt folgende Wahrheitstabelle:

Α	В	Ausdruck C
1	1	1
1	0	1
0	1	0
0	0	0

Daraus kann der (unbekannte) Ausdruck C wie folgt hergeleitet werden:

Schritt 1: Gewinnung des Grundausdruckes

- Alle Zeilen mit wahrem C rot markieren.
- Ausdrücke (für A und B) in den Zeilen mit AND verknüpfen (dabei für A ein A einsetzen, falls A=1 oder ein !A falls A=0; dasselbe für B).
- Die Ausdrücke der einzelnen Zeilen mit OR verknüpfen.

Boolesche Algebra

Gesetze zur Vereinfachung komplexerer Verknüpfungen

gesetz		
Kommutativ-	A&B = B&A	A B = B A
Assoziativ-	(A&B)&C = A&(B&C)	(A B) C = A (B C)
Idempotenz-	A&A = A	A A = A
Distributiv-	A&(B C) = (A&B) (A&C)	A (B&C) = (A B)&(A C)
Neutralitäts-	A&1 = A	A 0 = A
Extremal-	A&0 = 0	A 1 = 1
Doppelnegation-	!(!A) = A	
De Morgan	!(A&B) = !A !B	!(A B) = !A&!B
Dualitäts-	!0 = 1	!1 = 0
Absorptions-	A (A&B) = A	A&(A B) = A

Logische Operatoren

Resultat 1: C = (A&B) || (A&!B)

Schritt 2: Vereinfachung mittels Boolescher Algebra

 $C = (A\&B) \parallel (A\&!B)$ | Distributivgesetz

C = A & (B||!B) | (B||!B) ist gleich 1

C = A & 1 | Neutralitätsgesetz

C = A

Übungsaufgaben

> Das Gelernte können Sie mit Hilfe von AB 114-03 üben

Ziel: Repetition und Vertiefung des Stoffes

SF: Einzelarbeit/Partnerarbeit

Zeit: 45 Minuten

Abschluss

- > Offene Punkte / Fragen
- > Feedback
- > Hausaufgaben
 - Arbeitsblatt AB114-03 fertig lösen

