

Gowin Primitives

User Guide

SUG283-3.3E, 10/25/2024

Copyright © 2024 Guangdong Gowin Semiconductor Corporation. All Rights Reserved.

GOWIN and LittleBee are trademarks of Guangdong Gowin Semiconductor Corporation and are registered in China, the U.S. Patent and Trademark Office, and other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders. No part of this document may be reproduced or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written consent of GOWINSEMI.

Disclaimer

GOWINSEMI assumes no liability and provides no warranty (either expressed or implied) and is not responsible for any damage incurred to your hardware, software, data, or property resulting from usage of the materials or intellectual property except as outlined in the GOWINSEMI Terms and Conditions of Sale. GOWINSEMI may make changes to this document at any time without prior notice. Anyone relying on this documentation should contact GOWINSEMI for the current documentation and errata.

Revision History

Date	Version	Description		
04/20/2017	1.0E	Initial version published.		
09/19/2017	1.1E	 GW1NR-4, GW1N-6, GW1N-9, GW1NR-9 devices added. ELVDS_IOBUF, TLVDS_IOBUF, BUFG, BUFS, OSC, IEM added. DSP primitive updated. Some ports of ODDR/ODDRC, IDDR_MEM, IDES4_MEM, IDES8_MEM, RAM16S1, RAM16S2、RAM16S4, RAM16SDP1, RAM16SDP2, RAM16SDP4, ROM16 updated. Some Attribute of OSC, PLL and DLLDLY updated; Some primitive instantiation updated. MIPI_IBUF_HS, MIPI_IBUF_LP, MIPI_OBUF, IDES16 and OSER16 updated. Some Attribute of CLKDIV updated. 		
04/12/2018	1.2E	Vhdl primitives instantiation added.		
08/08/2018	1.3E	 GW1N-2B, GW1N-4B, GW1NR-4B, GW1N-6ES, GW1N-9ES, GW1NR-9ES, GW1NS-2,GW1NS-2C devices added. I3C_IOBUF, DHCEN added. User Flash added. EMPU added. Primitive name updated. 		
10/26/2018	1.4E	GW1NZ-1, GW1NSR-2C devices added.OSCZ, FLASH96KZ added.		
11/15/2018	1.5E	 GW1NSR-2 device added. GW1N-6ES, GW1N-9ES, GW1NR-9ES devices removed. 		
01/26/2019	1.6E	 GW1NS-2 supported by 8 frequency division of CLKDIV added. Removed GW1N-1 from the devices supported by TLVDS_TBUF/OBUF. 		
02/25/2019	1.7E	Removed GW1N-1 from the devices supported by TLVDS_IOBUF.		
05/20/2019	1.8E	 GW1N-1S device added. MIPI_IBUF added. OSCH added. SPMI added. I3C added. Devices supported by OSC updated. 		
10/20/2019	1.9E	IOB, BSRAM, CLOCK modules updated.		
11/28/2019	2.0E	 GSR and INV modules added in Miscellaneous. Devices supported updated. FLASH64KZ added and FLASH96KZ removed. 		
01/16/2020	2.1E	 IODELAYA, rPLL, PLLVR, CLKDIV2 added. DPB/DPX9B, SDPB/SDPX9B, rSDP/rSDPX9, rROM/rROMX9, pROM/pROMX9 added. EMCU, BANDGAP, FLASH64K added. IODELAY, PLL, CLKDIV, OSC, DQCE updated. Placement rule of FF、LATCH added. GW2A-55C added. GW1N-6/GW1N-9/GW1NR-9 disabled DP/DPX9, DPB/DPX9B. 		

Date	Version	Description	
		 Notes of register added in IOLOGIC. GW1NZ-1 disabled 1, 2, 4, 8 bit width of DP/DPB and 9 bit width of DPX9/DPX9. 	
03/09/2020	2.2E	 GW1NS-2, GW1NS-2C, GW1NSR-2, GW1NSR-2C, GW1NSE-2C disable DP/DPX9 and DPB/DPX9B. OSCEN port description added in OSCF. PLL/rPLL/PLLVR parameter description updated. 	
06/08/2020	2.3E	 GW1N-2, GW1N-2B and GW1N-6 removed. GW1N-9C and GW1NR-9C added. IODELAYC, DHCENC and DCC added. Functional description of MIPI_IBUF added. MIPI_IBUF_HS, MIPI_IBUF_LP and DLL removed. Port diagram of LUT5 and MUX8 added. VCC and GND added. PLLVR, FLASH64K, BUFS, EMPU and CLKDIV2 updated. DP/DPX9, ROM/ROMX9, SDP/SDPX9, rSDP/rSDPX9, rROM/rROMX9 and PLL removed. 	
09/11/2020	2.4E	The description of IP invoking of ADC, BANDGAP, SPMI and I3C modules added.	
12/30/2020	2.5E	The description of Chapter 2 CFU updated.	
07/22/2021	2.6E	 activeFlash added. Help information on IP GUI removed and figures updated. GW1NZ-1C, GW1N-2, GW1N-2B, GW1N-1P5, GW1N-1P5B, GW1NR-2, GW1NR-2B added. 	
10/28/2021	2.7E	The description of activeFlash updated.	
07/22/2022	2.8E	OTP module added.SAMB module added.	
10/28/2022	2.9E	MCU, USB20_PHY, and ADC removed.	
04/20/2023	3.0E	Arora V devices and related descriptions added.	
07/14/2023	3.1E	Shutdown by VCCEN option removed from SPMI configuration.	
12/29/2023	3.2E	Introduction to Arora V OTP function added.	
10/25/2024	3.3E	Descriptions of 8.9 OTP updated.	

Contents

C	Contents	i
Li	ist of Figures	ii
Li	ist of Tables	iii
1	IOB	1
2	CFU	2
3	Memory	3
4	DSP	4
	Clock	
	User Flash	
	EMPU	
•	7.1 EMCU	
8	Miscellaneous	
	8.1 GSR	20
	0.0 INV	24
	8.2 INV	∠ ۱
	8.2 INV	
		22
	8.3 VCC	22 23
	8.3 VCC	22 23 24
	8.3 VCC 8.4 GND 8.5 BANDGAP 8.6 SPMI 8.7 I3C	22 23 24 26
	8.3 VCC 8.4 GND 8.5 BANDGAP 8.6 SPMI 8.7 I3C 8.8 activeFlash	22 23 24 26 31
	8.3 VCC 8.4 GND 8.5 BANDGAP 8.6 SPMI 8.7 I3C 8.8 activeFlash 8.9 OTP	22 23 24 26 31 39
	8.3 VCC 8.4 GND 8.5 BANDGAP 8.6 SPMI 8.7 I3C 8.8 activeFlash 8.9 OTP 8.10 SAMB	22 23 24 31 39 40
	8.3 VCC 8.4 GND 8.5 BANDGAP 8.6 SPMI 8.7 I3C 8.8 activeFlash 8.9 OTP	22 24 31 39 40 45

List of Figures

Figure 7-1 Port Diagram of EMCU	8
Figure 8-1 GSR Port Diagram	20
Figure 8-2 INV Port Diagram	21
Figure 8-3 VCC Port Diagram	22
Figure 8-4 GND Port Diagram	23
Figure 8-5 BANDGAP Port Diagram	24
Figure 8-6 IP Customization of BandGap	25
Figure 8-7 SPMI Port Diagram	26
Figure 8-8 IP Customization of SPMI	29
Figure 8-9 I3C Port Diagram	31
Figure 8-10 IP Customization of I3C	38
Figure 8-11 activeFlash Port Diagram	39
Figure 8-12 GW2AN OTP Port Diagram	40
Figure 8-13 Arora V OTP Port Diagram	41
Figure 8-14 Arora V OTP Interface Timing Diagram	43
Figure 8-15 GW2AN SAMB Port Diagram	45
Figure 8-16 Arora V SAMB Port Diagram	45
Figure 8-17 CMSER Port Diagram	48
Figure 8-18 CMSERA Port Diagram	51

SUG283-3.3E ii

iii

List of Tables

Table 7-1 EMCU Devices Supported	7
Table 7-2 Port Description	9
Table 8-1 Port Description	20
Table 8-2 Port Description	21
Table 8-3 Port Description	22
Table 8-4 Port Description	23
Table 8-5 BANDGAP Devices Supported	24
Table 8-6 Port Description	24
Table 8-7 SPMI Devices Supported	26
Table 8-8 Port Description	27
Table 8-9 I3C Devices Supported	31
Table 8-10 Port Description	31
Table 8-11 activeFlash Devices Supported	39
Table 8-12 Port Description	39
Table 8-13 OTP Devices Supported	40
Table 8-14 GW2AN OTP Port Description	41
Table 8-15 Arora V OTP Port Description	41
Table 8-16 Arora V OTP Parameter Description	41
Table 8-17 Descriptions of Arora V OTP User Efuse Region	41
Table 8-18 SAMB Devices Supported	45
Table 8-19 GW2AN SAMB Port Description	45
Table 8-20 Arora V SAMB Port Description	45
Table 8-21 Arora V SAMB Parameter Description	46
Table 8-22 CMSER Devices Supported	47
Table 8-23 CMSER Port Description	48
Table 8-24 CMSERA Devices Supported	51
Table 8-25 CMSERA Port Description	51

SUG283-3.3E

$1_{\scriptscriptstyle \rm IOB}$

IOB includes input/output buffer (IO Buffer) and input/output logic (IO Logic). For the IO Buffer and IO Logic primitives of Arora V decives, see <u>UG304</u>, <u>Arora V Programmable IO (GPIO) User Guide</u>; for those of the other devices, see <u>UG289</u>, <u>Gowin Programmable IO(GPIO) User Guide</u>.

SUG283-3.3E 1(54)

2_{CFU}

The Configurable Function Unit (CFU) and the Configurable Logic Unit (CLU) are two basic units for FPGA core of GOWINSEMI. Each unit consists of four configurable logic sections (CLS) and its configurable routing unit (CRU). Configurable logical sections in CLU cannot be configured as SRAM, but as basic logic, ALU, and ROM. The configurable logic sections in the CFU can be configured as basic logic, ALU, SRAM, and ROM depending on the applications. For CFU primitives of Arora V decives, see UG303, UG288; for those of the other devices, see Gowin Configurable Function Unit (CFU) User Guide.

SUG283-3.3E 2(54)

3_{Memory}

Gowin FPGA products provide abundant memory resources, including Block Static Random Access Memory (BSRAM) and Shadow Static Random Access Memory (SSRAM). For BSRAM and SSRAM primitives of Arora V decives, see <u>UG300, Arora V BSRAM & SSRAM User Guide</u>; for those of the other devices,see <u>UG285, Gowin BSRAM & SSRAM User Guide</u>.

SUG283-3.3E 3(54)

 $oldsymbol{4}_{ ext{DSP}}$

Gowin FPGA products provide abundant DSP resources, which can meet the demand of high-performance digital signal processing. For DSP primitives of Arora V devices, see <u>UG305, Arora V Digital Signal Processing (DSP) User Guide</u>; for those of the other devices, see <u>UG287, Gowin Digital Signal Processing (DSP) User Guide</u>.

SUG283-3.3E 4(54)

5 Clock

Gowin FPGA products provide dedicated global clock (GCLK, including PCLK and SCLK) directly connected to all resources of the devices. In addition to GCLK, PLL, HCLK and bidirectional data strobe circuit (DQS) for DDR Memory are also available. For clock primitives of Arora V devices, see <u>UG306, Arora V Clock User Guide</u>; for those of the other devices, see <u>UG286, Gowin Clock User Guide</u>.

SUG283-3.3E 5(54)

6 User Flash

Gowin LittleBee Family FPGA products provide User Flash. Different series of devices support different sizes of Flash. For the Flash primitives, see <u>UG295</u>, <u>Gowin Flash User Guide</u>.

SUG283-3.3E 6(54)

 7_{EMPU}

7.1 EMCU

Primitive

ARM Cortex-M3 Microcontroller Unit (EMCU) is a micro-processor based on the ARM Cortex-m3. The 32-bit AHB/APB bus is used. It supports the functions of two UARTs, two Timers and Watchdog. It also provides 16-bit GPIO, two UARTs and JTAGs, six User Interrupt interfaces, AHB Flash read interface, AHB Sram read/write interface, two AHB bus extension interfaces, and one APB bus extension interface.

Devices Supported

Table 7-1 EMCU Devices Supported

Family	Series	Device
	GW1NS	GW1NS-4C
LittleBee	GW1NSR	GW1NSR-4C
	GW1NSER	GW1NSER-4C

SUG283-3.3E 7(54)

Port Diagram

Figure 7-1 Port Diagram of EMCU

SUG283-3.3E 8(54)

Port Description

Table 7-2 Port Description

Port	I/O	Description
FCLK	input	Free running clock
PORESETN	input	Power on reset
SYSRESETN	input	System reset
RTCSRCCLK	input	Used to generate RTC clock
IOEXPINPUTI[15:0]	input	IOEXPINPUTI
UART0RXDI	input	UART0RXDI
UART1RXDI	input	UART1RXDI
SRAM0RDATA[31:0]	input	SRAM Read data bus
TARGFLASH0HRDATA[31:0]	input	TARGFLASH0, HRDATA
TARGFLASH0HRUSER[2:0]	input	TARGFLASH0, HRUSER
TARGFLASH0HRESP	input	TARGFLASH0, HRESP
TARGFLASH0EXRESP	input	TARGFLASH0, EXRESP
TARGFLASH0HREADYOUT	input	TARGFLASH0, EXRESP
TARGEXP0HRDATA[31:0]	input	TARGEXP0, HRDATA
TARGEXP0HREADYOUT	input	TARGEXP0, HREADY
TARGEXP0HRESP	input	TARGEXP0, HRESP
TARGEXP0EXRESP	input	TARGEXP0, EXRESP
TARGEXP0HRUSER[2:0]	input	TARGEXP0, HRUSER
INITEXP0HSEL	input	INITEXP0, HSELx
INITEXP0HADDR[31:0]	input	INITEXP0, HADDR
INITEXP0HTRANS[1:0]	input	INITEXP0, HTRANS
INITEXP0HWRITE	input	INITEXP0, HWRITE
INITEXP0HSIZE[2:0]	input	INITEXP0, HSIZE
INITEXP0HBURST[2:0]	input	INITEXP0, HBURST
INITEXP0HPROT[3:0]	input	INITEXP0, HPROT
INITEXP0MEMATTR[1:0]	input	INITEXP0, MEMATTR
INITEXP0EXREQ	input	INITEXP0, EXREQ
INITEXP0HMASTER[3:0]	input	INITEXP0, HMASTER
INITEXP0HWDATA[31:0]	input	INITEXP0, HWDATA
INITEXP0HMASTLOCK	input	INITEXP0, HMASTLOCK
INITEXP0HAUSER	input	INITEXP0, HAUSER
INITEXP0HWUSER[3:0]	input	INITEXP0, HWUSER
APBTARGEXP2PRDATA[31:0]	input	APBTARGEXP2, PRDATA
APBTARGEXP2PREADY	input	APBTARGEXP2, PREADY
APBTARGEXP2PSLVERR	input	APBTARGEXP2, PSLVERR
MTXREMAP[3:0]	input	The MTXREMAP signals control the remapping of the boot memory range.
DAPSWDITMS	input	Debug TMS
SIIC383-3 3E		0(54)

SUG283-3.3E 9(54)

Port	I/O	Description	
DAPTDI	input	Debug TDI	
DAPNTRST	input	Test reset	
DAPSWCLKTCK	input	Test clock / SWCLK	
FLASHERR	input	Output clock, used by the TPA to sample the other pins	
FLASHINT	input	Output clock, used by the TPA to sample the other pins	
GPINT	input	GPINT	
IOEXPOUTPUTO[15:0]	output	IOEXPOUTPUTO	
IOEXPOUTPUTENO[15:0]	output	IOEXPOUTPUTENO	
UART0TXDO	output	UART0TXDO	
UART1TXDO	output	UART1TXDO	
UART0BAUDTICK	output	UART0BAUDTICK	
UART1BAUDTICK	output	UART1BAUDTICK	
INTMONITOR	output	INTMONITOR	
MTXHRESETN	output	SRAM/Flash Chip reset	
SRAM0ADDR[12:0]	output	SRAM address	
SRAM0WREN[3:0]	output	SRAM Byte write enable	
SRAM0WDATA[31:0]	output	SRAM Write data	
SRAM0CS	output	SRAM Chip select	
TARGFLASH0HSEL	output	TARGFLASH0, HSELx	
TARGFLASH0HADDR[28:0]	output	TARGFLASHO, HADDR	
TARGFLASH0HTRANS[1:0]	output	TARGFLASHO, HTRANS	
TARGFLASH0HSIZE[2:0]	output	TARGFLASH0, HSIZE	
TARGFLASH0HBURST[2:0]	output		
TARGFLASH0HREADYMUX	output		
TARGEXP0HSEL	output	TARGEXP0, HSELx	
TARGEXP0HADDR[31:0]	output	TARGEXP0, HADDR	
TARGEXP0HTRANS[1:0]	output	TARGEXP0, HTRANS	
TARGEXP0HWRITE	output	TARGEXP0, HWRITE	
TARGEXP0HSIZE[2:0]	output	TARGEXP0, HSIZE	
TARGEXP0HBURST[2:0]	output	TARGEXP0, HBURST	
TARGEXP0HPROT[3:0]	output	TARGEXP0, HPROT	
TARGEXP0MEMATTR[1:0]	output	TARGEXP0, MEMATTR	
TARGEXP0EXREQ	output	TARGEXP0, EXREQ	
TARGEXP0HMASTER[3:0]	output	TARGEXP0, HMASTER	
TARGEXP0HWDATA[31:0]	output		
TARGEXP0HMASTLOCK	output		
TARGEXP0HREADYMUX	output	TARGEXP0, HREADYOUT	
TARGEXP0HAUSER	output		
TARGEXP0HWUSER[3:0]	output		
INITEXP0HRDATA[31:0] output		INITEXP0, HRDATA	
SUG283-3.3F	'	10(54)	

SUG283-3.3E 10(54)

Port	I/O	Description
INITEXP0HREADY	output	INITEXP0, HREADY
INITEXP0HRESP	output	INITEXP0, HRESP
INITEXP0EXRESP	output	INITEXP0,EXRESP
INITEXP0HRUSER[2:0]	output	INITEXP0, HRUSER
APBTARGEXP2PSTRB[3:0]	output	APBTARGEXP2, PSTRB
APBTARGEXP2PPROT[2:0]	output	APBTARGEXP2, PPROT
APBTARGEXP2PSEL	output	APBTARGEXP2, PSELx
APBTARGEXP2PENABLE	output	APBTARGEXP2, PENABLE
APBTARGEXP2PADDR[11:0]	output	APBTARGEXP2, PADDR
APBTARGEXP2PWRITE	output	APBTARGEXP2, PWRITE
APBTARGEXP2PWDATA[31:0]	output	APBTARGEXP2, PWDATA
DAPTDO	output	Debug TDO
DAPJTAGNSW	output	JTAG or Serial-Wire selection JTAG mode(1) or SW mode(0)
DAPNTDOEN	output	TDO output pad control signal
TPIUTRACEDATA[3:0]	output	Output data
TPIUTRACECLK	output	Output clock, used by the TPA to sample the other pins

Primitive Instantiaton

Verilog Instantiation:

EMCU u_sse050_top_syn (

.FCLK(fclk),

.PORESETN(poresetn),

.SYSRESETN(sysresetn),

.RTCSRCCLK(rtcsrcclk),

.IOEXPINPUTI(ioexpinputi[15:0]),

.IOEXPOUTPUTO(ioexpoutputo[15:0]),

.IOEXPOUTPUTENO(ioexpoutputeno[15:0]),

.UART0RXDI(uart0rxdi),

.UART0TXDO(uart0txdo),

.UART1RXDI(uart1rxdi),

.UART1TXDO(uart1txdo),

.SRAM0RDATA(sram0rdata[31:0]),

.SRAM0ADDR(sram0addr[12:0]),

.SRAM0WREN(sram0wren[3:0]),

.SRAM0WDATA(sram0wdata[31:0]),

.SRAM0CS(sram0cs),

.MTXHRESETN(mtxhreset),

SUG283-3.3E 11(54)

```
.TARGFLASH0HSEL(targflash0hsel),
```

- .TARGFLASH0HADDR(targflash0haddr[28:0]),
- .TARGFLASH0HTRANS(targflash0htrans[1:0]),
- .TARGFLASH0HSIZE(targflash0hsize[2:0]),
- .TARGFLASH0HBURST(targflash0hburst[2:0]),
- .TARGFLASH0HREADYMUX(targflash0hreadymux),
- .TARGFLASH0HRDATA(targflash0hrdata[31:0]),
- .TARGFLASH0HRUSER(targflash0hruser[2:0]),
- .TARGFLASH0HRESP(targflash0hresp),
- .TARGFLASH0EXRESP(targflash0exresp),
- .TARGFLASH0HREADYOUT(targflash0hreadyout),
- .TARGEXP0HSEL(targexp0hsel),
- .TARGEXP0HADDR(targexp0haddr[31:0]),
- .TARGEXP0HTRANS(targexp0htrans[1:0]),
- .TARGEXP0HWRITE(targexp0hwrite),
- .TARGEXP0HSIZE(targexp0hsize[2:0]),
- .TARGEXP0HBURST(targexp0hburst[2:0]),
- .TARGEXP0HPROT(targexp0hprot[3:0]),
- .TARGEXP0MEMATTR(targexp0memattr[1:0]),
- .TARGEXP0EXREQ(targexp0exreq),
- .TARGEXP0HMASTER(targexp0hmaster[3:0]),
- .TARGEXP0HWDATA(targexp0hwdata[31:0]),
- .TARGEXP0HMASTLOCK(targexp0hmastlock),
- .TARGEXP0HREADYMUX(targexp0hreadymux),
- .TARGEXP0HAUSER(targexp0hauser),
- .TARGEXP0HWUSER(targexp0hwuser[3:0]),
- .TARGEXP0HRDATA(targexp0hrdata[31:0]),
- .TARGEXP0HREADYOUT(targexp0hreadyout),
- .TARGEXP0HRESP(targexp0hresp),
- .TARGEXP0EXRESP(targexp0exresp),
- .TARGEXP0HRUSER(targexp0hruser[2:0]),
- .INITEXP0HSEL(initexp0hsel),
- .INITEXP0HADDR(initexp0haddr[31:0]),
- .INITEXP0HTRANS(initexp0htrans[1:0]),
- .INITEXP0HWRITE(initexp0hwrite),
- .INITEXP0HSIZE(initexp0hsize[2:0]),
- .INITEXP0HBURST(initexp0hburst[2:0]),
- .INITEXP0HPROT(initexp0hprot[3:0]),

SUG283-3.3E 12(54)

```
.INITEXP0MEMATTR(initexp0memattr[1:0]),
 .INITEXP0EXREQ(initexp0exreq),
 .INITEXP0HMASTER(initexp0hmaster[3:0]),
 .INITEXP0HWDATA(initexp0hwdata[31:0]),
 .INITEXP0HMASTLOCK(initexp0hmastlock),
 .INITEXP0HAUSER(initexp0hauser),
 .INITEXP0HWUSER(initexp0hwuser[3:0]),
 .INITEXP0HRDATA(initexp0hrdata[31:0]),
 .INITEXP0HREADY(initexp0hready),
 .INITEXP0HRESP(initexp0hresp),
 .INITEXP0EXRESP(initexp0exresp),
 .INITEXP0HRUSER(initexp0hruser[2:0]),
 .APBTARGEXP2PSEL(apbtargexp2psel),
 .APBTARGEXP2PENABLE(apbtargexp2penable),
 .APBTARGEXP2PADDR(apbtargexp2paddr[11:0]),
 .APBTARGEXP2PWRITE(apbtargexp2pwrite),
 .APBTARGEXP2PWDATA(apbtargexp2pwdata[31:0]),
 .APBTARGEXP2PRDATA(apbtargexp2prdata[31:0]),
 .APBTARGEXP2PREADY(apbtargexp2pready),
 .APBTARGEXP2PSLVERR(apbtargexp2pslverr),
 .APBTARGEXP2PSTRB(apbtargexp2pstrb[3:0]),
 .APBTARGEXP2PPROT(apbtargexp2pprot[2:0]),
 .MTXREMAP(mtxremap[3:0]),
 .DAPSWDITMS(dapswditms),
 .DAPTDI(daptdi),
 .DAPTDO(daptdo),
 .DAPNTRST(dapntrst),
 .DAPSWCLKTCK(dapswclk_tck),
 .DAPNTDOEN(dapntdoen),
 .DAPJTAGNSW(dapitagnsw),
 .TPIUTRACEDATA(tpiutracedata[3:0]),
 .TPIUTRACECLK(tpiutraceclk),
 .FLASHERR(flasherr),
 .GPINT(gpint),
 .FLASHINT(flashint)
);
Vhdl Instantiation:
COMPONENT EMCU
```

SUG283-3.3E 13(54)

```
PORT(
FCLK: IN std logic;
PORESETN: IN std logic;
SYSRESETN: IN std logic;
RTCSRCCLK: IN std logic;
UARTORXDI: IN std logic;
UART1RXDI:IN std_logic;
CLK:IN std logic;
RESET: IN std logic;
IOEXPINPUTI:IN std_logic_vector(15 downto 0);
SRAM0RDATA: IN std logic vector (31 downto 0);
TARGFLASH0HRDATA: IN std logic vector(31 downto 0);
TARGFLASH0HRUSER: IN std logic vector(2 downto 0);
TARGFLASH0HRESP: IN std logic;
TARGFLASH0EXRESP:IN std_logic;
TARGFLASH0HREADYOUT: IN std logic;
TARGEXP0HRDATA: IN std logic vector(31 downto 0);
TARGEXP0HREADYOUT:IN std_logic;
TARGEXP0HRESP: IN std logic;
TARGEXP0EXRESP: IN std logic;
TARGEXP0HRUSER: IN std logic vector(2 downto 0);
INITEXP0HSEL:IN std_logic;
INITEXP0HADDR: IN std_logic_vector(31 downto 0);
INITEXP0HTRANS: IN std logic vector(1 downto 0);
INITEXP0HWRITE: IN std logic;
INITEXP0HSIZE: IN std_logic_vector(2 downto 0);
INITEXP0HBURST: IN std_logic_vector(2 downto 0);
INITEXP0HPROT: IN std logic vector(3 downto 0);
INITEXP0MEMATTR: IN std_logic_vector(1 downto 0);
INITEXP0EXREQ: IN std_logic;
INITEXP0HMASTER: IN std logic vector(3 downto 0);
INITEXP0HWDATA: IN std logic vector(31 downto 0);
INITEXP0HMASTLOCK: IN std_logic;
INITEXP0HAUSER: IN std_logic;
INITEXP0HWUSER: IN std logic vector(3 downto 0);
APBTARGEXP2PRDATA: IN std logic vector(3 downto 0);
APBTARGEXP2PREADY: IN std_logic;
APBTARGEXP2PSLVERR: IN std logic;
```

SUG283-3.3E 14(54)

```
MTXREMAP: IN std logic vector(3 downto 0);
DAPSWDITMS: IN std logic;
DAPTDI: IN std logic;
DAPNTRST: IN std logic;
DAPSWCLKTCK: IN std logic;
FLASHERR: IN std logic;
FLASHINT: IN std_logic;
GPINT: IN std logic;
IOEXPOUTPUTO:OUT std logic vector(15 downto 0);
IOEXPOUTPUTENO:OUT std_logic_vector(15 downto 0);
IOEXPINPUTI:OUT std logic vector(15 downto 0);
UART0TXDO: OUT std logic;
UART1TXDO: OUT std logic;
UARTOBAUDTICK: OUT std logic;
UART1BAUDTICK: OUT std_logic;
INTMONITOR: OUT std logic;
MTXHRESETN: OUT std logic;
SRAM0ADDR:OUT std_logic_vector(12 downto 0);
SRAM0WREN:OUT std logic vector(3 downto 0);
SRAM0WDATA:OUT std logic vector(31 downto 0);
SRAM0CS: OUT std logic;
TARGFLASH0HSEL: OUT std logic;
TARGFLASH0HREADYMUX: OUT std logic;
SRAM0RDATA:OUT std logic vector(31 downto 0);
TARGFLASH0HADDR:OUT std logic vector(28 downto 0);
TARGFLASH0HTRANS:OUT std_logic_vector(1 downto 0);
TARGFLASH0HSIZE:OUT std logic vector(2 downto 0);
TARGFLASH0HBURST:OUT std logic vector(2 downto 0);
TARGFLASH0HRDATA:OUT std_logic_vector(31 downto 0);
TARGEXP0HADDR:OUT std logic vector(31 downto 0);
TARGEXP0HSEL: OUT std logic;
TARGEXP0HWRITE: OUT std logic;
TARGEXP0EXREQ: OUT std logic;
TARGEXP0HMASTLOCK: OUT std_logic;
TARGEXP0HREADYMUX: OUT std logic;
TARGEXPOHAUSER: OUT std logic;
INITEXP0HREADY: OUT std_logic;
INITEXP0HRESP: OUT std logic;
```

SUG283-3.3E 15(54)

```
INITEXP0EXRESP: OUT std logic;
     TARGEXP0HTRANS:OUT std logic vector(1 downto 0);
     TARGEXP0HSIZE:OUT std logic vector(2 downto 0);
     TARGEXP0HBURST:OUT std logic vector(2 downto 0);
     TARGEXP0HPROT:OUT std logic vector(3 downto 0);
     TARGEXP0MEMATTR:OUT std_logic vector(1 downto 0);
     TARGEXP0HMASTER:OUT std_logic_vector(3 downto 0);
     TARGEXP0HWDATA:OUT std logic vector(31 downto 0);
     TARGEXP0HWUSER:OUT std logic vector(3 downto 0);
     INITEXP0HRDATA:OUT std_logic_vector(31 downto 0);
      INITEXP0HRUSER:OUT std logic vector(2 downto 0);
     APBTARGEXP2PSTRB:OUT std logic vector(3 downto 0);
     APBTARGEXP2PPROT:OUT std logic vector(2 downto 0);
     APBTARGEXP2PADDR:OUT std logic vector(11 downto 0);
     APBTARGEXP2PWDATA:OUT std_logic_vector(31 downto 0);
     TPIUTRACEDATA:OUT std logic vector(3 downto 0);
     APBTARGEXP2PSEL: OUT std logic;
     APBTARGEXP2PENABLE: OUT std_logic;
     APBTARGEXP2PWRITE: OUT std logic;
     DAPTDO: OUT std logic;
     DAPJTAGNSW: OUT std logic;
     DAPNTDOEN: OUT std logic;
     TPIUTRACECLK: OUT std logic;
);
     END COMPONENT;
     uut: EMCU
       PORT MAP (
      FCLK=> fclk;
     PORESETN=> poresetn;
     SYSRESETN=> sysresetn;
     RTCSRCCLK=> rtcsrcclk;
     UART0RXDI=> uart0rxdi:
     UART1RXDI=> uart1rxdi;
     CLK=>clk.
     RESET=>reset.
     IOEXPINPUTI=>ioexpinputi,
     SRAM0RDATA=>sram0rdata,
```

SUG283-3.3E 16(54)

TARGFLASH0HRDATA=>targflash0hrdata,

TARGFLASH0HRUSER=>targflash0hruser,

TARGFLASH0HRESP=>targflash0hresp,

TARGFLASH0EXRESP=>targflash0exresp,

TARGFLASH0HREADYOUT=>targflash0hreadyout,

TARGEXP0HRDATA=>targexp0hrdata,

TARGEXP0HREADYOUT=>targexp0hreadyout,

TARGEXP0HRESP=>targexp0hresp,

TARGEXP0EXRESP=>targexp0exresp,

TARGEXP0HRUSER=>targexp0hruser,

INITEXP0HSEL=>initexp0hsel,

INITEXP0HADDR=>initexp0haddr,

INITEXP0HTRANS=>initexp0htrans,

INITEXP0HWRITE=>initexp0hwrite,

INITEXP0HSIZE=>initexp0hsize,

INITEXP0HBURST=>initexp0hburst,

INITEXP0HPROT=>initexp0hprot,

INITEXP0MEMATTR=>initexp0memattr,

INITEXP0EXREQ=>initexp0exreq,

INITEXP0HMASTER=>initexp0hmaster,

INITEXP0HWDATA=>initexp0hwdata,

INITEXP0HMASTLOCK=>initexp0hmastlock,

INITEXP0HAUSER=>initexp0hauser,

INITEXP0HWUSER=>initexp0hwuser,

APBTARGEXP2PRDATA=>apbtargexp2prdata,

APBTARGEXP2PREADY=>apbtargexp2pready,

APBTARGEXP2PSLVERR=>apbtargexp2pslverr,

MTXREMAP=>mtxremap,

DAPSWDITMS=>dapswditms,

DAPTDI=>daptdi,

DAPNTRST=>dapntrst,

DAPSWCLKTCK=>dapswclktck,

FLASHERR=>flasherr,

FLASHINT=>flashint,

GPINT=>gpint,

IOEXPOUTPUTO=>ioexpoutputo,

IOEXPOUTPUTENO=>ioexpoutputeno,

IOEXPINPUTI=>ioexpinputi,

SUG283-3.3E 17(54)

UART0TXDO=>uart0txdo,

UART1TXDO=>uart1txdo,

UART0BAUDTICK=>uart0baudtick,

UART1BAUDTICK=>uart1baudtick,

INTMONITOR=>intmonitor,

MTXHRESETN=>mtxhresetn,

SRAM0ADDR=>sram0addr,

SRAM0WREN=>sram0wren,

SRAM0WDATA=>sram0wdata,

SRAM0CS=>sram0cs,

TARGFLASH0HSEL=>targflash0hsel,

TARGFLASH0HREADYMUX=>targflash0hreadymux,

SRAM0RDATA=>sram0rdata,

TARGFLASH0HADDR=>targflash0haddr,

TARGFLASH0HTRANS=>targflash0htrans,

TARGFLASH0HSIZE=>targflash0hsize,

TARGFLASH0HBURST=>targflash0hburst,

TARGFLASH0HRDATA=>targflash0hrdata,

TARGEXP0HADDR=>targexp0haddr,

TARGEXP0HSEL=>targexp0hsel,

TARGEXP0HWRITE=>targexp0hwrite,

TARGEXP0EXREQ=>targexp0exreq,

TARGEXP0HMASTLOCK=>targexp0hmastlock,

TARGEXP0HREADYMUX=>targexp0hreadymux,

TARGEXP0HAUSER=>targexp0hauser,

INITEXP0HREADY=>initexp0hready,

INITEXP0HRESP=>initexp0hresp,

INITEXP0EXRESP=>initexp0exresp,

TARGEXP0HTRANS=>targexp0htrans,

TARGEXP0HSIZE=>targexp0hsize,

TARGEXP0HBURST=>targexp0hburst,

TARGEXP0HPROT=>targexp0hprot,

TARGEXP0MEMATTR=>targexp0memattr,

TARGEXP0HMASTER=>targexp0hmaster,

TARGEXP0HWDATA=>targexp0hwdata,

TARGEXP0HWUSER=>targexp0hwuser,

INITEXP0HRDATA=>initexp0hrdata,

INITEXP0HRUSER=>initexp0hruser,

SUG283-3.3E 18(54)

APBTARGEXP2PSTRB=>apbtargexp2pstrb,
APBTARGEXP2PPROT=>apbtargexp2pprot,
APBTARGEXP2PADDR=>apbtargexp2paddr,
APBTARGEXP2PWDATA=>apbtargexp2pwdata,
TPIUTRACEDATA=>tpiutracedata,
APBTARGEXP2PSEL=>apbtargexp2psel,
APBTARGEXP2PENABLE=>apbtargexp2penable,
APBTARGEXP2PWRITE=>apbtargexp2pwrite,
DAPTDO=>daptdo,
DAPJTAGNSW=>dapjtagnsw,
DAPNTDOEN=>dapntdoen,
TPIUTRACECLK=>tpiutraceclk);

SUG283-3.3E 19(54)

8 Miscellaneous 8.1 GSR

8 Miscellaneous

8.1 GSR

Primitive

Global Reset/Set (GSR) is the global set/reset module, which can realize the global set/reset function, active-low. The default is connected to high level, if you want to control dynamically, you can connect an external signal to pull down to achieve set/reset of registers and other modules.

Port Diagram

Figure 8-1 GSR Port Diagram

Port Description

Table 8-1 Port Description

Name	I/O	Description
GSRI	Input	GSR input, active-low

Primitive Instantiation

```
Verilog instantiation:

GSR gsr_inst(
.GSRI(GSRI)
);

VhdI instantiation:

COMPONENT GSR

PORT (
GSRI:IN std_logic
);
```

SUG283-3.3E 20(54)

8 Miscellaneous 8.2 INV

```
END COMPONENT;
gsr_inst:GSR
     PORT MAP(
      GSRI => GSRI
    );
```

8.2 INV

Primitive

Inverter (INV)

Port Diagram

Figure 8-2 INV Port Diagram

Port Description

Table 8-2 Port Description

Name	I/O	Description
I	Input	INV data input
0	Output	INV data output

Primitive Instantiation

```
Verilog instantiation:
```

```
INV uut (
     .O(O),
     .l(l)
);
```

VhdI instantiation:

```
COMPONENT INV
   PORT (
        O:OUTPUT std_logic;
        I:IN std_logic
   );
END COMPONENT;
uut:INV
     PORT MAP(
```

SUG283-3.3E 21(54)

8.3 VCC 8 Miscellaneous

```
O \Rightarrow O,
| => |
);
```

8.3 VCC

Primitive

VCC is the logic high level generator.

Port Diagram

Figure 8-3 VCC Port Diagram

Port Description

Table 8-3 Port Description

Name	I/O	Description
V	Output	VCC output

Primitive Instantiation

```
Verilog instantiation:
  VCC uut (
       .V(V)
```

);

```
VhdI instantiation:
  COMPONENT VCC
      PORT (
          V:OUT std_logic
      );
  END COMPONENT;
  uut:VCC
        PORT MAP(
        V => V
       );
```

SUG283-3.3E 22(54) 8 Miscellaneous 8.4 GND

8.4 GND

);

Primitive

GND is the logic low level generator.

Port Diagram

Figure 8-4 GND Port Diagram

Port Description

Table 8-4 Port Description

Name	I/O	Description
G	Output	GND output

Primitive Instantiation

```
Verilog instantiation:

GND uut (
.G(G)
);

VhdI instantiation:

COMPONENT GND
PORT (
G:OUT std_logic
);

END COMPONENT;

uut:GND
PORT MAP(
G => G
```

SUG283-3.3E 23(54)

8 Miscellaneous 8.5 BANDGAP

8.5 BANDGAP

Primitive

BANDGAP is used to provide constant voltage and current for certain modules in the chip. If BANDGAP is turned off, the OSC, PLL, FLASH and other modules will no longer work, which can reduce the power consumption.

Supported Devices

Table 8-5 BANDGAP Devices Supported

Family	Series	Device
LittleBee	GW1NZ	GW1NZ-1, GW1NZ-1C
	GW1N	GW1N-2,GW1N-2B,GW1N-1P5,GW1N-1P5B
	GW1NR	GW1NR-2,GW1NR-2B

Port Diagram

Figure 8-5 BANDGAP Port Diagram

Port Description

Table 8-6 Port Description

Name	I/O	Description
BGEN	Input	BANDGAP enable signal, active-high.

Primitive Instantiation

Verilog Instantiation:

```
BANDGAP uut (
.BGEN(bgen)
);

VhdI Instantiation:

COMPONENT BANDGAP
PORT (
BGEN:IN std_logic
);

END COMPONENT;
uut:BANDGAP
PORT MAP(
```

BGEN=> I

SUG283-3.3E 24(54)

8 Miscellaneous 8.5 BANDGAP

);

Invoke IP

Click "BandGap" on the IP Core Generator, and a brief introduction to the BandGap will be displayed.

IP Configuration

Double-click the "BandGap" to open the "IP Customization" window. This displays the "File", "Options", and ports diagram, as shown in Figure 8-6.

Figure 8-6 IP Customization of BandGap

1. File

The File displays the basic information related to BandGap.

- Device: Selected device
- Part Number: Selected Part Number
- Create In: The target path; you can reedit in the textbox or select a path by clicking the button.
- File Name: The file name; you can reedit in the textbox.
- Module Name: The module name; you can reedit in the textbox.
 The module name can not be the same as the primitive name. If it is the same, an error prompt will pop up.

SUG283-3.3E 25(54)

Language: Verilog and VHDL

Ports Diagram

The ports diagram is based on the current IP Core configuration, as shown in Figure 8-6.

Generated Files

After configuration, it will generate three files that are named after the "File Name".

- "gowin_bandgap.v" file is a complete Verilog module to generate instance BandGap, and it is generated according to the IP configuration;
- "gowin_bandgap_tmp.v" is the instance template file;
- "gowin_bandgap.ipc" file is IP configuration file. The user can load the file to configure the IP.

Note!

If VHDL is selected as the hardware description language, the first two files will be named with .vhd suffix.

8.6 SPMI

Primitive

System Power Management Interface (SPMI) is a two-wire serial interface, which can be used to dynamically control the internal power supply of the on-chip system.

Devices Supported

Table 8-7 SPMI Devices Supported

Family	Series	Device
LittleBee	GW1NZ	GW1NZ-1, GW1NZ-1C

Port Diagram

Figure 8-7 SPMI Port Diagram

SUG283-3.3E 26(54)

Port Description

Table 8-8 Port Description

Port	I/O	Description
CLK	input	Clock input
CLKEXT	input	External clock input
CE	input	Clock Enable
RESETN	input	Reset input
ENEXT	input	Enext input
LOCRESET	input	Local reset input
PA	input	Priority arbitration input
SA	input	Secondary arbitration input
CA	input	Connection arbitration input
ADDRI	input	Addr input
DATAI	input	Data input
ADDRO	output	Addr output
DATAO	output	data output
STATE	output	state output
CMD	output	command output
SDATA	inout	SPMI Serial data
SCLK	inout	SPMI Serial Clock

Primitive Instantiation

Verilog Instantiation:

```
SPMI uut (
    .ADDRO(addro),
    .DATAO(datao),
    .STATE(state),
    .CMD(cmd),
    .SDATA(sdata),
    .SCLK(sclk),
    .CLK(clk),
    .CE(ce),
    .RESETN(resetn),
    .LOCRESET(locreset),
    .PA(pa),
    .SA(sa),
    .CA(ca),
    .ADDRI(addri),
    .DATAI(datai),
```

SUG283-3.3E 27(54)

```
.CLKEXT(clkext),
      .ENEXT(enext)
  );
VhdI Instantiation:
  COMPONENT SPMI
     PORT(
     CLK:IN std_logic;
            CLKEXT:IN std_logic;
            CE:IN std logic;
            RESETN:IN std_logic;
            ENEXT:IN std_logic;
            LOCRESET: IN std logic;
            PA:IN std_logic;
            SA:IN std logic;
            CA:IN std_logic;
            ADDRI:IN std_logic_vector(3 downto 0);
            DATAI:IN std logic vector(7 downto 0);
            ADDRO:OUT std_logic_vector(3 downto 0);
            DATAO:OUT std_logic_vector(7 downto 0);
            STATE:OUT std logic vector(15 downto 0);
            CMD:OUT std logic vector(3 downto 0);
            SDATA:INOUT std_logic;
            SCLK:INOUT std logic
      );
  END COMPONENT;
  uut: SPMI
    PORT MAP (
     CLK=>clk.
            CLKEXT=>clkext,
            CE=>ce.
            RESETN=>resetn,
            ENEXT=>enext,
            LOCRESET=>locreset,
            PA=>pa,
            SA=>sa,
            CA=>ca.
            ADDRI=>addri,
            DATAI=>datai,
```

SUG283-3.3E 28(54)

```
ADDRO=>addro,
DATAO=>datao,
STATE=>state,
CMD=>cmd,
SDATA=>sdata,
SCLK=>sclk
);
```

Invoke IP

Click "SPMI" on the IP Core Generator, and a brief introduction to the SPMI will be displayed.

IP Configuration

Double-click the "SPMI" to open the "IP Customization" window. This displays the "File", "Options", and ports diagram, as shown in Figure 8-8.

Figure 8-8 IP Customization of SPMI

1. File

The File displays the basic information related to SPMI. The SPMI file configuration box is similar to that of BANDGAP. For the details, please see <u>8.5 BANDGAP</u>.

SUG283-3.3E 29(54)

8 Miscellaneous 8.6 SPMI

2. Options

- The Options is used to configure SPMI by users, as shown in Figure 8-8.
- Functional Configuration:
 - Master/Slave: Set SPMI as Master or Slave.
- Master Configuration:
 - MID: Master ID. The range is 0-3, and default value is 0.
 - Respond Delay: Set the response delay.
 - SCLK Normal Period: Set SCLK period in normal mode.
- SCLK Normal Period: Set SCLK period in low mode.
- Slave Configuration: SID: Slave ID.
- General configuration:
 - Enable State Code Register: Enable or disable the state code register. If "Enable State Code Register" is checked, the output state code will pass a register.
 - Request Pipeline Steps: Set the sampling delay step of the request signal.
 - Enable Decode Command: Enable or disable decode. If "Enable Decode Command" is checked, SPMI will decode the reset, sleep, shutdown, and wakeup.
 - Enable Decode Command: Enable or disable reset.
 - Clock From External: Enable or disable the external clock.
 - Clock Frequency: System clock frequency.

3. Ports Diagram

The ports diagram is based on the current IP Core configuration, as shown in Figure 8-8.

Generated Files

After configuration, it will generate three files that are named after the "File Name".

- "gowin_spmi.v" file is a complete Verilog module to generate instance SPMI, and it is generated according to the IP configuration;
- "gowin_spmi_tmp.v" is the instance template file;
- "gowin_spmi.ipc" file is IP configuration file. The user can load the file to configure the IP.

Note!

If VHDL is selected as the hardware description language, the first two files will be named with .vhd suffix.

SUG283-3.3E 30(54)

8.7 I3C

Primitive

Improved Inter Integrated Circuit (I3C) is a two-wire bus with the key features of I²C and SPI, which can effectively reduce the physical ports of integrated circuit, support the advantages of low power, high data rate and other existing port protocols.

Devices Supported

Table 8-9 I3C Devices Supported

Family	Series	Device
LittleBee	GW1NZ	GW1NZ-1, GW1NZ-1C

Port Diagram

Figure 8-9 I3C Port Diagram

Port Description

Table 8-10 Port Description

Port	I/O	Description	
CE	input	Clock Enable	
RESET	input	Reset input	
CLK	input	Clock input	

SUG283-3.3E 31(54)

Port	I/O	Description	
LGYS	input	The current communication object is the I2C setting signal	
CMS	input	The device enters the Master's set signal	
ACS	input	Select the setting signal when determining whether to continue.	
AAS	input	Reply the ACK setting signal when a reply is required from the ACK/NACK	
STOPS	input	Input the STOP command	
STRTS	input	Input the START command.	
LGYC	input	The current communication object is the I2C	
CMC	input	The reset signal that the device is in master.	
ACC	input	The reset signal that selects continue when selecting whether to continue	
AAC	input	Reply the ACK reset signal when a reply is required from the ACK/NACK	
SIC	input	Interrupt to identify the reset signal	
STOPC	input	The reset signal is in STOP state	
STRTC	input	The reset signal is in START state	
STRTHDS	input	Adjust the setting signal when generating START	
SENDAHS	input	Adjust the setting signal of SCL at a high level when the address is sent.	
SENDALS	input	Adjust the setting signal of SCL at a low level when the address is sent	
ACKHS	input	Adjust the setting signal of SCL at a high level ACK.	
SENDDLS	input	Adjust the setting signal of SCL at a low level in ACK.	
RECVDHS	input	Adjust the setting signal of SCL at a high level when the data are received	
RECVDLS	input	Adjust the setting signal of SCL at a low level when the data are received	
ADDRS	input	The slave address setting interface	
DI	input	Data Input.	
SDAI	input	I3C serial data input	
SCLI	input	I3C serial clock input	
LGYO	output	Output the current communication object as the I2C command.	
СМО	output	Output the command of the device is in the Master mode.	
ACO	output	Continue to output when selecting whether to continue	
AAO	output	Reply ACK when you need to reply ACK/NACK	
SIO	output	Interrupt to output the identity bit	

SUG283-3.3E 32(54)

Port	I/O	Description
STOPO	output	Output the STOP command
STRTO	output	Output the START command
PARITYERROR	output	Output check when receiving data
DOBUF	output	Data output after caching
DO	output	Data output directly
STATE	output	Output the internal state
SDAO	output	I3C serial data output
SCLO	output	I3C serial clock output
SDAOEN	output	I3C serial data oen output
SCLOEN	output	I3C serial clock oen output
SDAPULLO	output	Controllable pull-up of the I3C serial data
SCLPULLO	output	Controllable pull-up of the I3C serial clock
SDAPULLOEN	output	Controllable pull-up of the I3C serial data oen
SCLPULLOEN	output	Controllable pull-up of the I3C serial clock oen

Primitive Instantiation

Verilog Instantiation:

```
I3C i3c_inst (
    .LGYO(lgyo),
    .CMO(cmo),
    .ACO(aco),
    .AAO(aao),
    .SIO(sio),
    .STOPO(stopo),
    .STRTO(strto),
    .PARITYERROR(parityerror),
    .DOBUF(dobuf),
    .DO(dout),
    .STATE(state),
    .SDAO(sdao),
    .SCLO(sclo),
    .SDAOEN(sdaoen),
    .SCLOEN(scloen),
    .SDAPULLO(sdapullo),
    .SCLPULLO(sclpullo),
    .SDAPULLOEN(sdapulloen),
    .SCLPULLOEN(sclpulloen),
```

.LGYS(lgys),

SUG283-3.3E 33(54)

```
.CMS(cms),
      .ACS(acs),
      .AAS(aas),
      .STOPS(stops),
      .STRTS(strts),
      .LGYC(lgyc),
      .CMC(cmc),
      .ACC(acc),
      .AAC(aac),
      .SIC(sic),
      .STOPC(stopc),
      .STRTC(strtc),
      .STRTHDS(strthds),
      .SENDAHS(sendahs),
      .SENDALS(sendals),
      .ACKHS(ackhs),
      .ACKLS(ackls),
      .STOPSUS(stopsus),
      .STOPHDS(stophds),
      .SENDDHS(senddhs),
      .SENDDLS(senddls),
      .RECVDHS(recvdhs),
      .RECVDLS(recvdls),
      .ADDRS(addrs),
      .DI(di),
      .SDAI(sdai),
      .SCLI(scli),
      .CE(ce),
      .RESET(reset),
      .CLK(clk)
  );
VhdI Instantiation:
  COMPONENT I3C
      PORT (
          LGYO: OUT STD_LOGIC;
          CMO: OUT STD LOGIC;
          ACO: OUT STD_LOGIC;
          AAO: OUT STD_LOGIC;
```

SUG283-3.3E 34(54)

```
SIO: OUT STD LOGIC;
STOPO: OUT STD LOGIC;
STRTO: OUT STD LOGIC;
PARITYERROR: OUT STD LOGIC;
DOBUF: OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
DOUT: OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
STATE: OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
SDAO: OUT STD LOGIC;
SCLO: OUT STD LOGIC;
SDAOEN: OUT STD_LOGIC;
SCLOEN: OUT STD LOGIC;
SDAPULLO: OUT STD LOGIC;
SCLPULLO: OUT STD LOGIC;
SDAPULLOEN: OUT STD LOGIC;
SCLPULLOEN: OUT STD_LOGIC;
LGYS: IN STD_LOGIC;
CMS: IN STD LOGIC;
ACS: IN STD_LOGIC;
AAS: IN STD_LOGIC;
STOPS: IN STD LOGIC;
STRTS: IN STD LOGIC;
LGYC: IN STD_LOGIC;
CMC: IN STD LOGIC;
ACC: IN STD LOGIC;
AAC: IN STD LOGIC;
SIC: IN STD_LOGIC;
STOPC: IN STD_LOGIC;
STRTC: IN STD LOGIC;
STRTHDS: IN STD_LOGIC;
SENDAHS: IN STD_LOGIC;
SENDALS: IN STD LOGIC;
ACKHS: IN STD LOGIC;
ACKLS: IN STD LOGIC;
STOPSUS: IN STD_LOGIC;
STOPHDS: IN STD LOGIC;
SENDDHS: IN STD LOGIC;
SENDDLS: IN STD_LOGIC;
RECVDHS: IN STD LOGIC;
```

SUG283-3.3E 35(54)

```
RECVDLS: IN STD LOGIC;
       ADDRS: IN STD LOGIC;
       DI: IN STD_LOGIC_VECTOR(7 DOWNTO 0);
       SDAI: IN STD LOGIC;
       SCLI: IN STD_LOGIC;
       CE: IN STD LOGIC;
       RESET: IN STD_LOGIC;
       CLK: IN STD_LOGIC
   );
END COMPONENT;
uut: I3C
   PORT MAP (
       LGYO => Igyo,
       CMO => cmo,
       ACO => aco,
       AAO => aao,
       SIO => sio,
       STOPO => stopo,
       STRTO => strto,
       PARITYERROR => parityerror,
       DOBUF => dobuf,
       DOUT => dout,
       STATE => state,
       SDAO => sdao,
       SCLO => sclo,
       SDAOEN => sdaoen,
       SCLOEN => scloen,
       SDAPULLO => sdapullo,
       SCLPULLO => sclpullo,
       SDAPULLOEN => sdapulloen,
       SCLPULLOEN => sclpulloen,
       LGYS => lgys,
       CMS => cms,
       ACS => acs,
       AAS => aas,
       STOPS => stops,
       STRTS => strts,
```

SUG283-3.3E 36(54)

```
LGYC => lgyc,
CMC => cmc,
ACC => acc,
AAC => aac,
SIC => sic,
STOPC => stopc,
STRTC => strtc,
STRTHDS => strthds,
SENDAHS => sendahs,
SENDALS => sendals,
ACKHS => ackhs.
ACKLS => ackls,
STOPSUS => stopsus,
STOPHDS => stophds,
SENDDHS => senddhs,
SENDDLS => senddls,
RECVDHS => recvdhs,
RECVDLS => recvdls,
ADDRS => addrs,
DI => di.
SDAI => sdai,
SCLI => scli,
CE => ce,
RESET => reset,
CLK => clk
```

Invoke IP

);

Click "I3C > I3C SDR" on the "IP Core Generator" page. A brief introduction to the I3C SDR will be displayed.

Configure IP

Double-click "I3C SDR", and the "IP Customization" window pops up. This displays the "File", "Options", and port diagram, as shown in Figure 8-10.

SUG283-3.3E 37(54)

Figure 8-10 IP Customization of I3C

1. File

The File displays the basic information related to the I3C.The I3C file configuration is similar to BANDGAP. For the details, please see <u>8.5</u> BANDGAP.

2. Options

- The Options is used to configure I3C by users, as shown in Figure 8-10.
- SLAVE STATIC ADDRESS: Specify the static address of the Slave.

Ports Diagram

The ports diagram is based on the IP Core configuration, as shown in Figure 8-10.

Generated Files

After configuration, it will generate three files that are named after the "File Name".

- "gowin_i3c.v" file is a complete Verilog module to generate instance I3C, and it is generated according to the IP configuration;
- "gowin_i3c_tmp.v" is the instance template file;
- "gowin_i3c.ipc" file is IP configuration file. You can load the file to configure the IP.

SUG283-3.3E 38(54)

8 Miscellaneous 8.8 activeFlash

Note!

If VHDL is selected as the hardware description language, the first two files will be named with .vhd suffix.

8.8 activeFlash

Primitive

Activate embedded SPI Nor Flash module. When activeFlash instantiated, I_active_flash_sclk must be a clock signal and I active flash holdn needs to be pulled up.

Note:

When activeFlash instantiated, the user design will add 14 LUTs and 10 REGs.

Devices Supported

Table 8-11 activeFlash Devices Supported

Family	Series	Device	
Arora	GW2AN	GW2AN-18X,GW2AN-9X	

Port Diagram

Figure 8-11 activeFlash Port Diagram

Port Description

Table 8-12 Port Description

Port	I/O	Description	
I_active_flash_holdn	input	Clock hold signal; high input activates Flash.	
I_active_flash_sclk	input	Clock input clock	
O_active_flash_read y	outpu t	Ready signal; high indicates Flash has been activated.	

Primitive Intantiation

Verilog Instantiation:

VhdI Instantiation:

COMPONENT activeFlash

SUG283-3.3E 39(54)

Conditions

When one of the following conditions is met, the activeFlash module needs to be instantiated in the user design.

- 1. When Configuration Bitstream background programming in Gowin Software is set to I2C/JTAG/SSPI/QSSPI, activeFlash needs to be instantiated.
- 2. When Configuration Bitstream background programming is set to OFF and the SPI Nor Flash Interface IP is used, activeFlash needs to be instantiated.

8.9 OTP

Primitive

One Time Programming (OTP). Chip product information is stored in the factory area, and you can read the chip product information using OTP.

Devices Supported

Table 8-13 OTP Devices Supported

Family	Series	Device	
Arora	GW2AN	GW2AN-18X, GW2AN-9X	
	GW5AT	GW5AT-138	
	GW5A	GW5A-25, GW5A-138 Version B	
	GW5AST	GW5AST-138 Version B	

Port Diagram

Figure 8-12 GW2AN OTP Port Diagram

SUG283-3.3E 40(54)

Figure 8-13 Arora V OTP Port Diagram

Port Description

Table 8-14 GW2AN OTP Port Description

Port	I/O	Description	
SCLK	input	Serial input clock; move data out to DOUT at falling edge; 2.5MHz clock recommended for reading data.	
CSB	input	Chip selected signal, active-low.	
DOUT	output	Serial data output	

Table 8-15 Arora V OTP Port Description

Port	I/O	Description	
CLK	input	Clock signal	
READ	input	pulse signal; load the corresponding 128-bit efuse register data into the shift register, active-high.	
SHIFT	input	Level signal; shift the shift register data to the output interface, active-high.	
DOUT	output	Data output for reading chip DNA information/user information	

Parameter Description

Table 8-16 Arora V OTP Parameter Description

Parameter	Value Range	Default	Description
MODE	2'b00, 2'b01, 2'b10	2'b01	 OTP mode selection 2'b01: Read chip DNA information 2'b00: Read user information 2'b10: Read user control information

Arora V OTP Function Introduction

Arora V OTP can read chip DNA information, user information, and user control information from the User efuse region. The descriptions of the 128-bit User efuse region are shown in Table 8-17.

Table 8-17 Descriptions of Arora V OTP User Efuse Region

Region Position	Region Category	Description
127~112bit (16bits)	user_misc	reserved

SUG283-3.3E 41(54)

Region Position	Region Category	Description		
		reserved	-	
		107bit prgm_user_contr ol_lock	1: can't use jtag program user control region	
		106bit rd_user_misc_lo ck	1: can't read user_misc domain	
		105bit prgm_user_misc _lock	1: lock user_misc domain	
		104bit lock_sel_key_r	0: decryption module select key; 1: decryption module select key2	
111~96bit	User Control Information	103bit prgm_rd_dna_lo ck	1: can't use jtag program and readback 64bits DNA region	
(16bits)		102bit rd_fuse_user_loc k	1: can't use jtag readback 32bits fuse user region	
		101bit prgm_fuse_user _lock	1: can't use jtag program 32bits fuse user region	
		100bit rd_key2_lock	1: can't use jtag readback key2	
		99bit prgm_key2_lock	1: can't use jtag program key2 again	
		98bit rd_key_lock	1: can't use jtag readback key	
		97bit prgm_key_lock	1: can't use jtag program key again	
		96bit cfg_aes_only	1: only can use encryption bitstream	
95~32bit (64bits)	DNA Information	64 bits DNA Info	store DNA Info	
31~0bit (32bits)	User Information	32 bits User defined	_	

SUG283-3.3E 42(54)

Interface Timing

Figure 8-14 Arora V OTP Interface Timing Diagram

As shown in Figure 8-14, data is loaded using READ (greater than or equal to one clock cycle); then READ needs to be pulled down, SHIFT pulled up, and data is shifted out from DOUT one by one in the form of 128 bits (with the lowest bit of the 128 bits first); one bit of data is output in one clock.

The output valid data bits in different MODEs are as follows:

- 00: Output 128 bits, with the lower 32 bits being valid data.
- 01: Output 128 bits, with bits 95 to 32 (64 bits in total) being valid data.
- 10: Output 128 bits, with bits 111 to 96 (16 bits in total) being valid data.

Primitive Instantiation

GW2AN OTP Instantiation

Verilog Instantiation:

SUG283-3.3E 43(54)

```
SCLK => SCLK,
           CSB => CSB,
           DOUT => DOUT
      );
Arora V OTP Instantiation
Verilog Instantiation:
  OTP uut (
      . READ(READ),
      .SHIFT(SHIFT),
      .CLK(CLK),
      . DOUT (DOUT)
  );
 defparam uut.MODE=2'b01;
VhdI Instantiation:
  COMPONENT OTP
    GENERIC (
      MODE: bit vector:="01"
      );
      PORT(
      READ:IN std_logic;
           SHIFT:IN std_logic;
           CLK: IN std_logic;
           DOUT:OUT std_logic
     );
  END COMPONENT;
  uut: OTP
    GENERIC MAP (
           MODE =>"01"
      )
      PORT MAP (
      READ => READ,
           CLK => CLK,
           SHIFT => SHIFT,
           DOUT => DOUT
      );
```

SUG283-3.3E 44(54)

8 Miscellaneous 8.10 SAMB

8.10 **SAMB**

Primitive

SPI Address for Multi Boot (SAMB) is for address selection in Multi Boot mode, and you can select static and dynamic addresses.

Devices Supported

Table 8-18 SAMB Devices Supported

Family	Series	Device
Arora	GW2AN	GW2AN-18X, GW2AN-9X
	GW5AT	GW5AT-138
	GW5A	GW5A-25, GW5A-138 Version B
	GW5AST	GW5AST-138 Version B

Port Diagram

Figure 8-15 GW2AN SAMB Port Diagram

Figure 8-16 Arora V SAMB Port Diagram

Port Description

Table 8-19 GW2AN SAMB Port Description

Port	I/O	Description	
LOADN_SPIAD	input	Used to select the static SPI address or the location specified by the dynamic SPI address signal. The static SPI address is selected when it is high, and the dynamic SPI address signal SPIAD is selected when it is low.	
SPIAD[23:0]	input	SPI address signal	

Table 8-20 Arora V SAMB Port Description

Port	I/O	Description
LOAD	input	Used to select the static SPI address or the location specified by the dynamic SPI address signal. The static SPI address is selected when it is low, and the dynamic SPI address signal SPIAD is selected when it is high.
SPIAD[23:0]	input	SPI address signal
		45/54)

SUG283-3.3E 45(54)

8 Miscellaneous 8.10 SAMB

Port	I/O	Description
		Address width selection
ADWSEL	Input	0: 24-bit address
		1: 32-bit address (the lower 8 bits are zeroed)

Parameter Description

Table 8-21 Arora V SAMB Parameter Description

Parameter	Value Range	Default	Description
MODE	2'b00, 2'b01, 2'b10, 2'b11	2'b00	SAMB mode selection 2'b00:Normal mode 2'b01:Fast mode 2'b10: Dual mode 2'b11: Quad mode

Primitive Intantiation

```
GW2AN SAMB Instantiation
Verilog Instantiation:
  SAMB uut (
      . LOADN_SPIAD (LOADN_SPIAD),
      . SPIAD (SPIAD)
  );
VhdI Instantiation:
  COMPONENT SAMB
     PORT(
      LOADN_SPIAD:IN std_logic;
           SPIAD:IN std_logic_vector (23 downto 0)
     );
  END COMPONENT;
  uut: SAMB
    PORT MAP (
      LOADN SPIAD => LOADN SPIAD,
           SPIAD => SPIAD
      );
Arora V SAMB Instantiation
Verilog Instantiation:
  SAMB uut (
      . LOAD (LOAD),
```

SUG283-3.3E 46(54)

```
. SPIAD (SPIAD),
    .ADWSEL(ADWSEL)
  );
 defparam uut.MODE=2'b00;
VhdI Instantiation:
  COMPONENT SAMB
    GENERIC (
      MODE: bit vector:="00"
       );
       PORT(
      LOAD: IN std logic;
      ADWSEL: IN std logic;
           SPIAD:IN std_logic_vector (23 downto 0)
     );
  END COMPONENT;
  uut: SAMB
    GENERIC (
      MODE => "00"
       );
    PORT MAP (
      LOAD => LOAD,
      ADWSEL => ADWSEL,
           SPIAD => SPIAD
      );
```

8.11 CMSER

Primitive

Configuration Memory Soft Error Recovery (CMSER) can continuously monitors configuration memory to detect any soft error and then attempts to correct them within its capabilities. This is accomplished by reading the configuration memory frame by frame in the user design backend and performing ECC decoding and CRC. A limited number of error bits are corrected by programming the corrected frame data back into SRAM.

Devices Supported

Table 8-22 CMSER Devices Supported

Family	Series	Device
Arora	GW5AT	GW5AT-138
Aluia	GW5A	GW5A-138 Version B

SUG283-3.3E 47(54)

Family	Series	Device
	GW5AST	GW5AST-138 Version B

Port Diagram

Figure 8-17 CMSER Port Diagram

Port Description

Table 8-23 CMSER Port Description

Port	I/O	Description
CLK	input	Clock input
SEREN	input	(the critical signal using TMR scheme for error reduction) rising edge (at least two of three bits are detected to transit from "0" to "1") to start CMSER; falling edge (at least two bites are detected to transit from "1" to "0") to stop CMSER
ERRINJECT	input	one cycle high pulse to indicate that an error is required to be injected into a ECC block; the pulse must arise at the same clock cycle as the target ECC block is under decoding
ERRINJLOC	input	the location of error within a 72-bit ECC block 0_nnnnnn: the location of 64-bit data, for example: 0_000000: the ECC data bit[0] 0_111111: the ECC data bit[63] 1_xxxnnn: the location of 8-bit parity (x means "don't care), for example: 1_xxx000: the ECC parity bit[0] 1_xxx111: the ECC parity bit[7]
RUNNING	output	The high level of this signal indicates CMSER is running
CRCERR	output	one cycle high pulse to indicate the CRC error event
CRCDONE	output	one cycle high pulse to indicate the completion of CRC calculation and comparison
ECCCORR	output	one cycle high pulse to indicate the correctable ECC error

SUG283-3.3E 48(54)

Port	I/O	Description
		event
ECCUNCORR	output	one cycle high pulse to indicate the uncorrectable ECC error event
ERRLOC	output	the location of ECC error
ECCDEC	output	The indication of ECC block decoding is running. 1: one ECC block is decoding at that clock cycle; 0: no ECC decoding at that clock cycle
DSRRD	output	one cycle high pulse to indicate the reading operation of DSR
DSRWR	output	one cycle high pulse to indicate the writing operation of DSR
ASRRESET	output	one cycle high pulse to indicate the reset of ASR
ASRINC	output	one cycle high pulse to indicate the increase of ASR address
REFCLK	output	the output reference clock for the generation of user CMSER interface design

Primitive Intantiation

Verilog Intantiation:

```
CMSER uut (
```

- . RUNNING (RUNNING),
- . CRCERR (CRCERR),
- . CRCDONE (CRCDONE),
- . ECCCORR (ECCCORR),
- . ECCUNCORR (ECCUNCORR),
- . ERRLOC (ERRLOC),
- . ECCDEC (ECCDEC),
- . DSRRD (DSRRD),
- . DSRWR (DSRWR),
- . ASRRESET (ASRRESET),
- . ASRINC (ASRINC),
- . REFCLK (REFCLK),
- . CLK (CLK),
- . SEREN (SEREN),
- . ERRINJECT (ERRINJECT),
- . ERRINJLOC (ERRINJLOC)

);

VhdI Instantiation:

COMPONENT CMSER

SUG283-3.3E 49(54)

```
PORT (
       RUNNING, CRCERR, CRCDONE: OUT std_logic;
       ECCCORR, ECCUNCORR: OUT std logic;
       ERRLOC: OUT std logic vector(27 downto 0);
       ECCDEC, DSRRD, DSRWR: OUT std logic;
       ASRRESET, ASRINC, REFCLK: OUT std logic;
       CLK, ERRINJECT: IN std_logic;
       SEREN: IN std_logic_vector(2 downto 0);
       ERRINJLOC: IN std logic vector(6 downto 0)
    );
END COMPONENT;
uut: CMSER
   PORT MAP (
       RUNNING => RUNNING,
       CRCERR => CRCERR,
       CRCDONE => CRCDONE,
       ECCCORR => ECCCORR,
       ECCUNCORR => ECCUNCORR,
       ERRLOC => ERRLOC,
       ECCDEC => ECCDEC,
       DSRRD => DSRRD,
       DSRWR => DSRWR,
       ASRRESET => ASRRESET,
       ASRINC => ASRINC,
       REFCLK => REFCLK,
       CLK => CLK,
       ERRINJECT => ERRINJECT,
       SEREN => SEREN,
       ERRINJLOC => ERRINJLOC
   );
```

SUG283-3.3E 50(54)

8.12 CMSERA

Primitive

Configuration Memory Soft Error Recovery A (CMSERA) can continuously monitors configuration memory to detect any soft error and then attempts to correct them within its capabilities. This is accomplished by reading the configuration memory frame by frame in the user design backend and performing ECC decoding and CRC. A limited number of error bits are corrected by programming the corrected frame data back into SRAM.

Devices Supported

Table 8-24 CMSERA Devices Supported

Family	Series	Device
Arora	GW5A	GW5A-25

Port Diagram

Figure 8-18 CMSERA Port Diagram

Port Description

Table 8-25 CMSERA Port Description

Port	I/O	Description
CLK	input	Clock input
SEREN	input	(the critical signal using TMR scheme for error reduction) rising edge (at least two of three bits are detected to transit from "0" to "1") to start CMSER; falling edge (at least two bites are detected to transit from "1" to "0") to stop CMSER
ERR0INJECT	input	one cycle high pulse to indicate that an error is required to be injected into a ECC block; the pulse must arise at the same clock cycle as the target ECC block is under

SUG283-3.3E 51(54)

Port	I/O	Description
		decoding
ERRINJ0LOC	input	the location of error 0 within a 72-bit ECC block 0_nnnnn: the location of 64-bit data, for example: 0_000000: the ECC data bit[0] 0_111111: the ECC data bit[63] 1_xxxnnn: the location of 8-bit parity (x means "don't care), for example: 1_xxx000: the ECC parity bit[0] 1_xxx111: the ECC parity bit[7]
ERR1INJECT	input	one cycle high pulse to indicate that an error is required to be injected into a ECC block; the pulse must arise at the same clock cycle as the target ECC block is under decoding
ERRINJ1LOC	input	the location of error 1 within a 72-bit ECC block 0_nnnnnn: the location of 64-bit data, for example: 0_000000: the ECC data bit[0] 0_111111: the ECC data bit[63] 1_xxxnnn: the location of 8-bit parity (x means "don't care), for example: 1_xxx000: the ECC parity bit[0] 1_xxx111: the ECC parity bit[7]
RUNNING	output	The high level of this signal indicates CMSER is running
CRCERR	output	one cycle high pulse to indicate the CRC error event
CRCDONE	output	one cycle high pulse to indicate the completion of CRC calculation and comparison
ECCCORR	output	one cycle high pulse to indicate the correctable ECC error event
ECCUNCORR	output	one cycle high pulse to indicate the uncorrectable ECC error event
ERR0LOC	output	the location of ECC error 0
ERR1LOC	output	the location of ECC error 1
ECCDEC	output	The indication of ECC block decoding is running. 1: one ECC block is decoding at that clock cycle; 0: no ECC decoding at that clock cycle
DSRRD	output	one cycle high pulse to indicate the reading operation of DSR
DSRWR	output	one cycle high pulse to indicate the writing operation of DSR
ASRRESET	output	one cycle high pulse to indicate the reset of ASR
ASRINC	output	one cycle high pulse to indicate the increase of ASR address
REFCLK	output	the output reference clock for the generation of user CMSER interface design

SUG283-3.3E 52(54)

Primitive Intantiation

```
Verilog Intantiation:
   CMSERA uut (
       . RUNNING (RUNNING),
       . CRCERR (CRCERR),
       . CRCDONE (CRCDONE),
       . ECCCORR (ECCCORR),
       . ECCUNCORR (ECCUNCORR),
       . ERR0LOC (ERR0LOC),
       . ERR1LOC (ERR1LOC),
       . ECCDEC (ECCDEC),
       . DSRRD (DSRRD),
       . DSRWR (DSRWR),
       . ASRRESET (ASRRESET),
       . ASRINC (ASRINC),
       . REFCLK (REFCLK),
       . CLK (CLK),
       . SEREN (SEREN),
       . ERROINJECT (ERROINJECT),
     . ERR1INJECT (ERR1INJECT),
       . ERRINJOLOC (ERRINJOLOC),
       . ERRINJ1LOC (ERRINJ1LOC)
   );
 VhdI Instantiation:
   COMPONENT CMSERA
        PORT (
           RUNNING, CRCERR, CRCDONE: OUT std logic;
           ECCCORR, ECCUNCORR: OUT std_logic;
           ERR0LOC, ERR1LOC: OUT std logic vector(26 downto 0);
           ECCDEC, DSRRD, DSRWR: OUT std_logic;
           ASRRESET, ASRINC, REFCLK: OUT std_logic;
           CLK, ERROINJECT, ERR1INJECT: IN std logic;
           SEREN: IN std_logic_vector(2 downto 0);
           ERRINJ0LOC, ERRINJ1LOC: IN std_logic_vector(6 downto
0)
        );
   END COMPONENT;
```

SUG283-3.3E 53(54)

```
uut: CMSERA
   PORT MAP (
      RUNNING => RUNNING,
      CRCERR => CRCERR,
      CRCDONE => CRCDONE,
      ECCCORR => ECCCORR,
      ECCUNCORR => ECCUNCORR,
      ERR0LOC => ERR0LOC,
      ERR1LOC => ERR1LOC,
      ECCDEC => ECCDEC,
      DSRRD => DSRRD,
      DSRWR => DSRWR,
      ASRRESET => ASRRESET,
      ASRINC => ASRINC,
      REFCLK => REFCLK,
      CLK => CLK,
      ERROINJECT => ERROINJECT,
       ERR1INJECT => ERR1INJECT,
      SEREN => SEREN,
      ERRINJOLOC => ERRINJOLOC,
      ERRINJ1LOC => ERRINJ1LOC
   );
```

SUG283-3.3E 54(54)

