Osnovna reprodukcijska števila in podkritična endemična ravnovesna stanja v epidemioloških problemih

Katarina Černe

28. maj 2019

- pogosto je eno izmed ravnovesnih stanj ravnovesje brez okužbe (DFE)
- pri analizi si pomagamo z osnovnim reprodukcijskim številom \mathcal{R}_0
- če je $\mathcal{R}_0 < 1$, je DFE LAS
- če je $\mathcal{R}_0 > 1$, je DFE nestabilno
- pogoj $\mathcal{R}_0 < 1$ ne zagotavlja nujno, da lahko bolezen izkoreninimo

- populacija z n razredi $x = (x_1, x_2, \dots, x_n)^T$, $x_i \ge 0$
- prvih *m* razredov okuženih, preostali neokuženi
- $X_s = \{x > 0 | x_i = 0, i = 1, \dots, m\}$ množica vseh stanj, v katerih ni bolezni
- $\mathbf{F}_i(x)$ stopnja pojavitve novih okužb v razredu i
- $\mathbf{v}_{i}^{+}(x)$ stopnja prehoda v *i*-ti razred, ki se ne zgodijo zaradi novih okužb
- V_i^- stopnja prehoda iz *i*-tega razreda

$$\dot{x}_i = f_i(x) = \mathcal{F}_i - \mathcal{V}_i, \tag{1}$$

$$\mathcal{V}_i = \mathcal{V}_i^- - \mathcal{V}_i^+ \text{ in } i = 1, \dots, n$$

Linearizacija:

$$\dot{x} = Df(x_0)(x - x_0), \tag{2}$$

Za funkcije f_i morajo veljati še naslednje predpostavke:

- (A1) $x > 0 \Rightarrow \mathcal{F}_i, \mathcal{V}_i^+, \mathcal{V}_i^- > 0$
- (A2) $x_i = 0 \Rightarrow \mathcal{V}_i^- = 0$, kar pomeni, da prehodi iz praznega razreda niso možni.
- (A3) $\mathcal{F}_i = 0$ za i > m, kar pomeni, da nimamo okužb ve neokuženih razredih - ko se posameznik okuži, preide v okužen razred
- (A4) $x \in X_s \Rightarrow \mathcal{F}_i(x) = 0$ in $\mathcal{V}_i^+(x) = 0$ za $i = 1, \dots, m$ To pomeni, da okužba ne pride "od zunaj" temveč samo iz razredov znotraj populacije.
- (A5) $\mathcal{F}(x) = 0 \Rightarrow$ vse lastne vrednosti matrike $Df(x_0)$ imajo negativne realne dele, torej, omejimo se na sisteme, kjer je DFE stabilno, če nimamo novih okužb.

Lema

Naj bo x_0 DFE sistema 1 in naj funkcije f_i zadoščajo predpostavlkam (A1)-(A5). Potem sta Jacobijevi matriki za \mathcal{F} in \mathcal{V} oblike

$$D\mathcal{F}(x_0) = \begin{bmatrix} F & 0 \\ 0 & 0 \end{bmatrix}, \ D\mathcal{V}(x_0) = \begin{bmatrix} V & 0 \\ J_3 & J_4 \end{bmatrix},$$

kjer sta F in V m × m matriki, definirani kot

$$\left[\frac{\partial \mathcal{F}_i}{\partial x_j}(x_0)\right]_{i,j=1,\dots m}, \left[\frac{\partial \mathcal{V}_i}{\partial x_j}(x_0)\right]_{i,j=1,\dots m}.$$

Velja še, da je F nenegativna, V je nesingularna M-matrika in vse lastne vrednosti matrike J_4 imajo pozitivne realne dele.

Osnovno reprodukcijsko število \mathcal{R}_0 v epidemiološkem modelu = pričakovano število novih okužb, ki jih povzroči okuženi osebek v sicer popolnoma dovzetni populaciji

$$\dot{x}=-D\mathcal{V}(x_0)(x-x_0)$$
 $\Psi_i(0)=$ število okuženih, ki jih v začetku uvedemo v i -ti razred $\Psi(t)=(\Psi_1(t),\ldots,\Psi_m(t))^T$ število okuženih ob času t
 $\Psi(t)$ reši enačbo $\Psi'(t)=-V\Psi(t)$
 $\Psi(t)=e^{-Vt}\Psi(0)$
Pričakovano število okužb, ki jih ustvarijo okuženi posamezniki = $\int_0^\infty F\Psi(t)dt=\int_0^\infty Fe^{-Vt}\Psi(0)dt=FV^{-1}\Psi(0)$

- (i, j)-ti element F: stopnja, s katero okuženi osebki iz razreda *i* ustvarijo nove okužbe v razredu *i*
- (i, k)-ti element V^{-1} : pričakovani čas, ki ga okuženi posameznik, ki je začel v k-tem razredu, preživi v j-tem razredu v času svojega življenja
- (i, k)-ti element FV^{-1} : pričakovano število novih okužb, ki jih okuženi posameznik, ki smo ga na začetki uvedli v k-ti razred, povzroči v *i*-tem razredu

$$\mathcal{R}_0 = \rho(FV^{-1})$$

Izrek

Imeimo model prenosa bolezni kot v 1, kjer naj za funkcijo f veljajo predpostavke (A1)-(A5). Če je ravnovesno stanje x₁ DFE, potem je x_0 LAS, če velja $\mathcal{R}_0 < 1$, in nestabilno, če je $\mathcal{R}_0 > 1$, kjer ie $\mathcal{R}_0 = \rho(FV^{-1})$.

Težava v točki bifurkacije, torej če $\mathcal{R}_0 = 1$, oziroma v njeni okolici Opazujemo sistem

$$\dot{x} = f(x, \mu),\tag{3}$$

bifurkacijski parameter μ : $\mathcal{R}_0 < 1$ za $\mu < 0$ in $\mathcal{R}_0 > 1$ za $\mu > 0$ bifurkacija v točki $(x_0, 0)$

- v okolici točke bifurkacije se lahko pojavijo endemična ravnovesja: nadkritična ali podkritična
- nadkritična: netrivialna ravnovesja v okolici točke bifurkacije pri $\mathcal{R}_0 > 1$
- podkritična: netrivialna ravnovesja v okolici točke bifurkacije pri $\mathcal{R}_0 < 1$

0 enostavna lastna vrednost matrike $D_x f(x_0, 0)$ v in w levi in desni lastni vektor, vw = 1

$$a = \frac{v}{2} D_{xx} f(x_0, 0) w^2 = \frac{1}{2} \sum_{i,j,k=1}^{n} v_i w_j w_k \frac{\partial^2 f_i}{\partial x_j \partial x_k} (x_0, 0)$$

$$b = v D_{x\mu} f(x_0, 0) w = \sum_{i,j=1}^{n} v_i w_j \frac{\partial^2 f_i}{\partial x_j \partial \mu} (x_0, 0).$$
(4)

Lema

Naj bo $f(x, \mu)$ vsaj dvakrat zvezno odvedljiva v x in μ in naj zanjo veljajo predpostavke (A1)-(A5). Naj bo 0 enostavna lastna vrednost $D_x f(x_0, 0)$ in v in w vektorja, za katera $vD_x f(x_0, 0) = 0$ in $D_x f(x_0, 0) w = 0$. Potem $v_i \ge 0$ in $w_i \ge 0$ za $i = 1, \ldots, m$ in $v_i = 0$ za i = m + 1, ..., n ter

$$a = \sum_{i,j,k=1}^{m} v_i w_j w_k \left(\frac{1}{2} \frac{\partial^2 f_i}{\partial x_j \partial x_k} (x_0, 0) + \sum_{l=m+1}^{n} \alpha_{lk} \frac{\partial^2 f_i}{\partial x_j \partial x_l} (x_0, 0) \right),$$

kjer α_{Ik} $(I=m+1,\ldots,n,\ k=1,\ldots,m)$ označuje (I-m,k)-ti element matrike $-J_1^{-1}J_3$, kjer sta matriki J_3 in J_4 kot v lemi 1.

Izrek

Imejmo sistem 3, kjer za f velja (A1)-(A5). Naj bo 0 enostavna lastna vrednost $D_x f(x_0, 0)$. Naj bo a kot zgoraj in naj velja $b \neq 0$. Potem obstaja $\delta > 0$, da velja:

- če a < 0, potem obstajajo lokalno asimptotsko stabilna endemična ravnovesja v bližini x_0 za $0 < \mu < \delta$ (nadkritična ravnovesja)
- če a > 0, potem obstajajo nestabilna endemična ravnovesja v bližini x_0 za $-\delta < \mu < 0$ (podkritična ravnovesja).

Izrek

Imejmo nelinearni sistem $\dot{x} = f(x, \mu), x \in \mathbb{R}^n$, naj bo f gladka in $(x, \mu) = (0, 0)$ stacionarna točka. Naj ima Df (0, 0) lastne vrednosti s pozitivnimi, negativnimi in ničelnimi realnimi deli. Pripadajoči lastni vektorji razpenjajo prostore E^s, E^u in E^c. Potem obstajata stabilna mnogoterost W^s, enake dimenzije kot E^c in tangentna na E^c v $(x, \mu) = (0, 0)$ in nestabilna mnogoterost W^u , enake dimenzije kot E^u in tangentna nanj $v(x, \mu) = (0, 0)$, ter invariantna centralna mnogoterost W^c, tangentna na E^c v $(x, \mu) = (0, 0).$

$$\dot{x} = Ax + f_1(x, y, \mu)$$

$$\dot{y} = By + f_2(x, y, \mu)$$

$$\dot{\mu} = 0$$

, kjer
$$f_1(0,0,0) = f_2(0,0,0) = Df_1(0,0,0) = Df_2(0,0,0) = 0$$
, $(x,y) \in \mathbb{R}^c \times \mathbb{R}^s$

 $A c \times c$ matrika z ničelnimi realnimi deli, B z negativnimi realnimi deli

obstaja centralna mnogoterost oblike

$$W^{c} = \{(x, y, \mu)|y = h(x, \mu), |x| < \delta, |\mu| < \delta, h(0, 0) = 0, Dh(0, 0) = 0\},\$$

Dinamika sistema, omejenega na centralno mnogoterost je podana s sistemom $\dot{u} = Au + f_1(u, h(u, \mu), \mu)$ ◆□▶ ◆周▶ ◆団▶ ◆団▶ ■ めの◆

$$\dot{E} = \beta_1 \frac{SI}{N} + \beta_2 \frac{TI}{N} - (d + \nu + r_1)E + pr_2I,
\dot{I} = \nu E - (d + r_2)I,
\dot{S} = b(N) - dS - \beta_1 \frac{SI}{N},
\dot{T} = -dT + r_1 E + qr_2I - \beta_2 \frac{TI}{N}.$$

 $\mathcal{R}_0 = \rho(FV^{-1}) = \frac{\beta_1 \nu}{(d+\nu+r_1)(d+r_2)-\nu p r_2}$

$$\frac{1}{d+r_2}(h_1+h_1^2h_2+\cdots)=\frac{1}{d+r_2}\frac{h_1}{1-h_1h_2}=\frac{\nu}{(d+\nu+r_1)(d+r_2)-\nu pr_2}$$

Dogajanje okrog točke bifurkacije:

$$a = -\beta_1 v_1 w_2 (w_1 + w_2 + (1 - \frac{\beta_2}{\beta_1}) w_4)$$

$$\begin{split} \dot{I} &= \nu E - (d + r_2)I + \beta_3 \frac{EI}{N} \\ \dot{E} &= \beta_1 \frac{SI}{N} + \beta_2 \frac{TI}{N} - (d + \nu + r_1)E + pr_2I - \beta_3 \frac{EI}{N} \\ a &= -\beta_1 v_1 w_2 (w_1 + w_2 + (1 - \frac{\beta_2}{\beta_1})w_4) + \beta_3 w_1 w_2 (v_2 - v_1) \end{split}$$