Homework 2 – XYZ Basis States and Stern Gerlach (20pts)

Write out solutions by hand and submit them via Gradescope

1. Show that the two basis states $|+\rangle_x$ and $|-\rangle_x$ are orthogonal.

2. Calculate the state Ψ after each rotation within the MZI with a phase shift. $\Psi_0=|0\rangle$ $|\Psi_3\rangle=~X\left(\frac{-\pi}{2}\right)\cdot Z(\pi)\cdot~X\left(\frac{-\pi}{2}\right)\cdot |\Psi_0\rangle~$. Draw Ψ on the Bloch sphere after each rotation. i. $\Psi_1=$

ii. $\Psi_2 =$

iii. $\Psi_3 =$

ECE 550/650

3. Compare the probability of getting $|0\rangle_Z$ if you measure the $|+\rangle_X$ and $|-\rangle_X$ states in the Z basis. Are they different? Why/why not?

Bonus: How would you measure the difference between those states?

4. What state Ψ has 1/5 probability of measuring $|0\rangle$ and 4/5 measuring $|1\rangle$, with phase $\phi=\pi$? Verify it is normalized so $|\Psi|^2=\langle\Psi|\Psi\rangle=1$.

ECE 550/650

5.	Draw the diagram for the Stern Gerlach Experiment below starting from a thermal source
	(draw the state on the Bloch sphere at each step):

- I. Z quantization / polarization to $|0\rangle_Z$
- II. Y quantization / polarization to $|-i\rangle_Y$
- III. X quantization / polarization to $|-\rangle_X$

How many qubits make it through?

6. Calculate the wavefunction Ψ_i after each polarization. (wavefunction at each quantization not needed)