Machine Learning Methods for Neural Data Analysis

Lecture 4: Spike Sorting

Announcements

- Course Website: https://slinderman.github.io/stats320
- Ed: I'll add auditors to Canvas and resync. If you're not on Ed yet, please let me know.
- Lab 0 will not graded, but it should be a good warm-up.
- Lab 1 is this Friday! We will implement the model in the Spike Sorting by Deconvolution notes.
 - Default plan is to come to this room, but stay tuned for announcements on Canvas/Ed!

Simple Spike Sorting

- Start with a zoomed-out view of average voltage in relatively large time bins (e.g. 2ms).
- Let N be the number of channels.
- Let T be the number of 2ms time bins.
- Let $x_{n,t}$ be the average voltage on channel n in time bin t.
- At this resolution, spikes can be contained to a single bin.

A simple probabilistic model Assumptions

- There are K neurons. When neuron k spikes it produces a **waveform** $\mathbf{w}_k = (w_{k,1}, ..., w_{k,N}) \in \mathbb{R}^N$
- Let $\mathbf{a}_k = (a_{k,1}, ..., a_{k,T}) \in \mathbb{R}_+^T$ denote the time series of spike **amplitudes** for neuron k.
 - Since neurons spike only a few times a second, amplitudes are mostly zero.
 - Amplitudes are non-negative.
- If two neurons spike at the same, waveforms add.
- Voltage recordings have additive noise.

Matrix factorization perspective

Accounting for scale invariance

- Notice that the model is invariant to rescaling.
 - Multiple \mathbf{a}_k by constant c > 0 and scale \mathbf{w}_k by c^{-1} .
- We can remove this degree of freedom by forcing $\|\mathbf{w}_k\|_2 = 1$; e.g., with a **uniform prior** on the unit hypersphere,

$$\mathbf{w}_k \sim \text{Unif}(\mathbb{S}_{N-1})$$

• where $\mathbb{S}_{N-1} = \{\mathbf{u}: \mathbf{u} \in \mathbb{R}^N \text{ and } \|\mathbf{u}\|_2 = 1\}$

Prior on amplitudes

• To complete the model, we place an **exponential** prior on amplitudes,

$$a_{k,t} \sim \operatorname{Exp}(\lambda)$$

where λ is the inverse-scale (aka rate) parameter.

- It's pdf is $\operatorname{Exp}(x;\lambda) = \lambda e^{-\lambda x}$.
- As we will see, this prior will lead to **sparse** estimates.

https://en.wikipedia.org/wiki/Exponential_distribution

Noise model

- So far, $\mathbf{X} = \mathbf{W}\mathbf{A}^{\mathsf{T}} + \mathbf{E}$ where $\mathbf{E} = [[\epsilon_{n,t}]]$ is a matrix of "noise." How to model the noise?
- Simple assumption: $\epsilon_{n,t} \sim \mathcal{N}(0,\sigma^2)$ where

$$\mathcal{N}(x;\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{1}{2\sigma^2}(x-\mu)^2\right\}$$

is the Gaussian or normal distribution.

• Linear transformations of Gaussians are still Gaussian!

$$x \sim \mathcal{N}(\mu, \sigma^2) \Rightarrow ax + b \sim \mathcal{N}(a\mu + b, a^2\sigma^2)$$
.

https://en.wikipedia.org/wiki/Normal_distribution

The joint distribution

$$p(\mathbf{X}, \mathbf{W}, \mathbf{A}) = p(\mathbf{X} \mid \mathbf{W}, \mathbf{A}) p(\mathbf{W}) p(\mathbf{A})$$

$$= \left[\prod_{n=1}^{N} \prod_{t=1}^{T} \mathcal{N} \left(x_{n,t} \mid \sum_{k=1}^{K} w_{k,n} a_{k,t}, \sigma^{2} \right) \right]$$

$$\times \left[\prod_{k=1}^{K} \operatorname{Unif}(\mathbf{w}_{k}; \mathbb{S}_{N-1}) \right] \times \left[\prod_{k=1}^{K} \prod_{t=1}^{T} \operatorname{Exp}(a_{k,t}; \lambda) \right].$$

This is called semi-nonnegative matrix factorization (semi-NMF).

MAP estimation by coordinate ascent

- repeat until convergence:
 - for k = 1, ..., K:
 - Set $\mathbf{w}_k = \arg\max p(\mathbf{X}, \mathbf{W}, \mathbf{A})$ holding all else fixed
 - Set $\mathbf{a}_k = \arg\max p(\mathbf{X}, \mathbf{W}, \mathbf{A})$ holding all else fixed

Optimizing the waveforms

Maximizing the joint probability wrt \mathbf{w}_k is equivalent to maximizing the log joint probability,

$$\log p(\mathbf{X}, \mathbf{W}, \mathbf{A}) = \sum_{n=1}^{N} \sum_{t=1}^{T} \log \mathcal{N} \left(x_{n,t} \middle| \sum_{j=1}^{K} w_{j,n} a_{j,t}, \sigma^{2} \right)$$

$$= -\frac{1}{2\sigma^{2}} \sum_{n=1}^{N} \sum_{t=1}^{T} \left(x_{n,t} - \sum_{j=1}^{K} w_{j,n} a_{j,t} \right)^{2} + c'$$

$$= -\frac{1}{2\sigma^{2}} \sum_{n=1}^{N} \sum_{t=1}^{T} \left(r_{n,t} - w_{k,n} a_{k,t} \right)^{2} + c'$$

where $r_{n,t} = x_{n,t} - \sum_{j \neq k} w_{j,n} a_{j,t}$ is the **residual**.

Optimizing the waveforms

It's easier to solve in vector form. Let $\mathbf{r}_t = (r_{1,t}, \dots, r_{N,t})$. Then,

$$\log p(\mathbf{X}, \mathbf{W}, \mathbf{A}) = -\frac{1}{2\sigma^2} \sum_{t=1}^{T} (\mathbf{r}_t - \mathbf{w}_k a_{k,t})^{\mathsf{T}} (\mathbf{r}_t - \mathbf{w}_k a_{k,t}) + c'$$
$$= \sum_{t=1}^{T} \mathcal{N}(\mathbf{r}_t; \mathbf{w}_k a_{k,t}, \sigma^2 \mathbf{I}) + c'$$

where $\mathcal{N}(\mathbf{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma})$ is the multivariate normal distribution.

The multivariate normal distribution

The multivariate normal density for $\mathbf{x} \in \mathbb{R}^D$ is,

$$\mathcal{N}(\mathbf{x};\boldsymbol{\mu},\boldsymbol{\Sigma}) = (2\pi)^{-\frac{D}{2}} |\boldsymbol{\Sigma}|^{-\frac{1}{2}} \exp\left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathsf{T}}\boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right\}$$

where $\mu \in \mathbb{R}^D$ is the **mean** and $\Sigma \in \mathbb{R}^{D \times D}$ is the (positive definite) covariance matrix.

When $\Sigma = \sigma^2 \mathbf{I}$, we call it a spherical Gaussian distribution.

Optimizing the waveforms

Returning to the optimization

$$\log p(\mathbf{X}, \mathbf{W}, \mathbf{A}) = \sum_{t=1}^{T} \mathcal{N}(\mathbf{r}_{t}; \mathbf{w}_{k} a_{k,t}, \sigma^{2} \mathbf{I}) + c'$$

$$= -\frac{1}{2\sigma^{2}} \sum_{t=1}^{T} (\mathbf{r}_{t} - \mathbf{w}_{k} a_{k,t})^{\mathsf{T}} (\mathbf{r}_{t} - \mathbf{w}_{k} a_{k,t}) + c'$$

$$= \frac{1}{\sigma^{2}} \sum_{t=1}^{T} \left(\mathbf{r}_{t}^{\mathsf{T}} \mathbf{w}_{k} a_{k,t} - \frac{a_{k,t}^{2}}{2} \mathbf{w}_{k}^{\mathsf{T}} \mathbf{w}_{k} \right) + c''$$

Note: $\mathbf{w}_k^{\mathsf{T}} \mathbf{w}_k = 1$ by the constraint $\mathbf{w}_k \in \mathbb{S}_{N-1}$.

Optimizing the waveforms

$$\mathbf{w}_{k}^{\star} = \arg \max_{\mathbf{w}_{k} \in \mathbb{S}_{N-1}} \left(\sum_{t=1}^{T} a_{k,t} \mathbf{r}_{t} \right)^{\mathsf{T}} \mathbf{w}_{k}$$

$$= \arg \max_{\mathbf{w}_{k} \in \mathbb{S}_{N-1}} \left\langle \sum_{t=1}^{T} a_{k,t} \mathbf{r}_{t}, \mathbf{w}_{k} \right\rangle$$

$$= \arg \max_{\mathbf{w}_{k} \in \mathbb{S}_{N-1}} \left\langle \mathbf{R} \mathbf{a}_{k}, \mathbf{w}_{k} \right\rangle$$

$$\propto \mathbf{R} \mathbf{a}_{k}.$$

where $\mathbf{R} \in \mathbb{R}^{N \times T}$ is the matrix of residuals with columns $[\mathbf{r}_1, ..., \mathbf{r}_T]$.

Optimizing the amplitudes

As a function of $a_{k,t}$, the log joint probability is,

$$\log p(\mathbf{X}, \mathbf{W}, \mathbf{A}) = \frac{\mathbf{r}_t^\mathsf{T} \mathbf{w}_k a_{k,t}}{\sigma^2} - \frac{a_{k,t}^2}{2\sigma^2} - \lambda a_{k,t} + c'$$

This is a quadratic optimization subject to a non-negativity constraint.

Generic solution

Assume $\alpha > 0$. Solve

$$\underset{x \ge 0}{\text{arg max}} \quad f(x) = -\frac{\alpha}{2}x^2 + \beta x + \gamma,$$

Optimizing the amplitudes

By pattern matching to our problem, we have

$$a_{k,t}^{\star} = \max \left\{ 0, \sigma^2 \left(\frac{\mathbf{r}_t^{\mathsf{T}} \mathbf{w}_k}{\sigma^2} - \lambda \right) \right\} = \max \left\{ 0, \mathbf{r}_t^{\mathsf{T}} \mathbf{w}_k - \lambda \sigma^2 \right\}$$

 $\mathbf{r}_t^{\mathsf{T}}\mathbf{w}_k$, is the **projection** of the residual onto the waveform for neuron k.

 $\lambda\sigma^2$ the **threshold** that projection must exceed to designate a spike in amplitude.

The final algorithm

MAP estimation by coordinate ascent

- repeat until convergence:
 - for k = 1, ..., K:
 - Compute the residual $\mathbf{R} = \mathbf{X} \sum_{j \neq k} \mathbf{w}_j \mathbf{a}_j^{ op}$
 - Set $\mathbf{w}_k \propto \mathbf{R} \mathbf{a}_k$
 - Set $\mathbf{a}_k = \max\{0, \mathbf{R}^\mathsf{T} \mathbf{w}_k \lambda \sigma^2\}$

Note: You don't have to recompute the residual from scratch each iteration.

Spike Sorting by Deconvolution

Improving upon the simple model

- Our simple model was a good warmup, but downsampling to 2ms bins isn't very practical.
- In reality, the average voltage over a spike can be ≈ 0 , so you might miss spikes altogether!
- Next, we'll extend the simple model with a more realistic one using convolutions.
- The resulting model will be very similar to Kilosort [Pachitariu et al., 2023]

10,000ft view

- Idea: each time a neuron spikes, it adds a scaled copy of its template to the measured voltage.
- Formally, we model the data as a sum of convolutions of templates and amplitudes for each neuron, plus noise.

Convolution

In one dimension

• Convolution is an operation that takes in a signal a(t) and a filter w(t) and outputs

$$y(t) = [a \circledast w](t) = \int a(t - \tau)w(\tau) d\tau.$$

• In discrete time this becomes,

$$y_t = [a \circledast w]_t = \sum_{d=-\infty}^{\infty} a_{t-d} w_d$$

- Causal filters are constrained so that $w_d = 0$ for d < 0. Then y_t is only influenced by $a_{1:t}$.
- Our filters will also have **bounded support** so that $w_d = 0$ for $d \ge D$. Then y_t is only influenced by $a_{t-D+1:t}$.
- In our case, the signal is the time series of spike amplitudes, and the filter is the waveform template.
 Every time there's a spike, we plop down a scaled template.

Convolution

With multiple output channels

 We need to convolve the amplitude signal with multiple filters in parallel, one for each channel of the voltage recording.

$$\mathbf{y}_{t} = \begin{pmatrix} [a \circledast w_{1}]_{t} \\ \vdots \\ [a \circledast w_{N}]_{t} \end{pmatrix} = \begin{pmatrix} \sum_{d=1}^{D} a_{t-d}w_{1,d} \\ \vdots \\ \sum_{d=1}^{D} a_{t-d}w_{N,d} \end{pmatrix}$$

• (I'm going to index d from $1, \ldots, D$ because the notation is a bit simpler.)

Convolution

With multiple input & output channels

• Finally, we need to sum convolutions of multiple input signals, one for each neuron in the model.

$$X = A \circledast W$$

by which we mean

$$x_{n,t} = \sum_{k=1}^{K} \sum_{d=1}^{D} a_{k,t-d} w_{k,n,d}.$$

Cross-Correlation

In one dimension

- Cross-correlation essentially goes in reverse.
- In signal processing, the cross-correlation is a sliding dot product of data y(t) and template w(t), which produces a new function $[y \star w](t)$.
- For discrete time, real-valued inputs,

$$[y \star w]_t = \sum_{d=-\infty}^{\infty} y_{t+d} w_d.$$

• With a change of variables, we see that cross-correlation is equivalent to convolution with a time-reversed filter \widehat{w} :

$$[y \star w]_t = \sum_{d=\infty}^{-\infty} y_{t-d} w_{-d} = [y \circledast \widetilde{w}]_t.$$

(Note: the definition of cross-correlation is not unique.
 This definition is consistent with np.correlate but opposite of Wikipedia.)

Cross-Correlation

With multiple channels

 As before, we can extend this definition to handle multiple channels

$$[\mathbf{Y} \star \mathbf{W}]_t = \sum_{n=1}^{N} \sum_{d=-\infty}^{\infty} y_{n,t+d} w_{n,d}.$$

- The cross-correlation measures the similarity of the data and the template at each point in time.
- The auto-correlation is the crosscorrelation of a signal with itself.

amplitude a

Cross-Correlation

With multiple input & output channels

As before, we can extend this definition to handle multiple channels

$$[Y \star W]_t = \begin{pmatrix} [Y \star W_1]_t \\ \vdots \\ [Y \star W_K]_t \end{pmatrix}$$

$$= \begin{pmatrix} \sum_{n=1}^N \sum_{d=-\infty}^\infty y_{n,t+d} w_{1,n,d} \\ \vdots \\ \sum_{n=1}^N \sum_{d=-\infty}^\infty y_{n,t+d} w_{K,n,d} \end{pmatrix}$$

amplitude a

Convolution and Cross-Correlation in Pytorch

- PyTorch (and other deep learning libraries)
 have fast, GPU-backed implementations of
 convolutions.
- What they call convolution is actually cross-correlation!
- But remember, we can always get convolution by cross-correlating with the flipped filter.
- For discrete time signals, you have to play with **padding** to handle **edge effects**.
- By default, these functions operate on **mini-batches** of inputs, so you need to add an extra leading dimension to your signal.
- There are lots of other options to read about (strides, dilations, groups), but we won't use them this week.

torch.nn.functional.conv1d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1) \rightarrow Tensor

Applies a 1D convolution over an input signal composed of several input planes.

This operator supports TensorFloat32.

See Conv1d for details and output shape.

NOTE

In some circumstances when using the CUDA backend with CuDNN, this operator may select a nondeterministic algorithm to increase performance. If this is undesirable, you can try to make the operation deterministic (potentially at a performance cost) by setting

torch.backends.cudnn.deterministic = True . Please see the notes on Reproducibility for background.

Parameters

- **input** input tensor of shape (minibatch, in_channels, iW)
- weight filters of shape (out_channels, $\frac{\text{in_channels}}{\text{groups}}, kW$)
- bias optional bias of shape (out_channels). Default: None
- stride the stride of the convolving kernel. Can be a single number or a one-element tuple (sW₂). Default: 1
- padding implicit paddings on both sides of the input. Can be a single number or a
 one-element tuple (padW₂). Default: 0
- dilation the spacing between kernel elements. Can be a single number or a oneelement tuple (dW_i). Default: 1
- groups split input into groups, in_channels should be divisible by the number of groups. Default: 1

Spike sorting by deconvolution

Likelihood

 Assume each spike is a noisy, scaled version of the template of the neuron that generated it.

$$p(\mathbf{X} \mid \mathbf{A}, \mathbf{W}) = \prod_{t=1}^{T} \mathcal{N} \left(\mathbf{x}_{t} \mid \sum_{k=1}^{K} \left[\mathbf{a}_{k} \circledast \mathbf{W}_{k} \right]_{t}, \sigma^{2} \mathbf{I} \right)$$

100

delay d

100

delay d

600

time t

200

100 0

delay d

800

1000

Prior on spike amplitudes

Assume the spike amplitudes are drawn from an exponential distribution.

$$a_{k,t} \sim \operatorname{Exp}(\lambda)$$

- This simple prior will lead to sparse amplitudes, but it does not encode any dependencies between time steps.
- Ideally, we would also like to prohibit two spikes within ${\cal D}$ samples of each other.
- We'll use a heuristic solution in this week's lab.

Scale invariance via Frobenius norm constraint

- What is the generalization of the unit-norm constraint $\mathbf{w}_k \in \mathbb{S}_{N-1}$ to matrices?
- Assume the matrix $\mathbf{W}_k \in \mathbb{R}^{N \times D}$ has unit Frobenius norm $\|\mathbf{W}_k\|_{\mathrm{F}} = 1$.

Aside: The Frobenius norm and the SVD

• The Frobenius norm is the ℓ_2 norm of the flattened matrix,

$$\|\mathbf{W}\|_F^2 = \sum_{n=1}^N \sum_{d=1}^D w_{n,d}^2 = \text{vec}(\mathbf{W})^{\mathsf{T}} \text{vec}(\mathbf{W}) = \|\text{vec}(\mathbf{W})\|_2^2$$

• We can also write it as a trace,

$$\|\mathbf{W}\|_F = \sqrt{\mathrm{Tr}(\mathbf{W}^\mathsf{T}\mathbf{W})}$$

• Or in terms of the singular values, $\|\mathbf{W}\|_{\mathrm{F}} = \|\mathbf{s}\|_{2}$

Scale invariance via Frobenius norm constraint

- What is the generalization of the unit-norm constraint $\mathbf{w}_k \in \mathbb{S}_{N-1}$ to matrices?
- Assume the matrix $\mathbf{W}_k \in \mathbb{R}^{N \times D}$ has unit Frobenius norm $\|\mathbf{W}_k\|_{\mathrm{F}} = 1$.
- This is equivalent to constraining the **singular** values to be normalized $\|\mathbf{s}_k\|_2 = 1$.

Probabilistic Model

Low-rank constraint

- This view suggests a further assumption: constraint the **rank** of the templates as well.
- If we constrain it to be rank 1 (i.e., only one nonzero singular value), then

$$\mathbf{W}_k = \mathbf{u}_k \mathbf{v}_k^{\mathsf{T}}$$

where $\mathbf{u}_k \in \mathbb{S}_{N-1}$ is the spatial footprint and $\mathbf{v}_k \in \mathbb{S}_{D-1}$ is the temporal profile.

MAP estimation

Coordinate ascent

- Initialize templates W and set A = 0.
- Iterate until convergence:
 - For neuron k = 1, ..., K:
 - a. Optimize **amplitudes** a_k for neuron k.
 - b. Optimize **templates** \mathbf{W}_k for neuron k.

[In each case, maximize log joint probability wrt one variable, holding others fixed.]

Optimizing the amplitudes

As a function of \mathbf{a}_k ,

$$\log p(\mathbf{X}, \mathbf{W}, \mathbf{A}) =$$

$$= \log p(\mathbf{X} \mid \mathbf{A}, \mathbf{W}) + \log p(\mathbf{a}_k; \lambda)$$

$$= -\frac{1}{2\sigma^2} ||\mathbf{R} - \mathbf{a}_k \circledast \mathbf{W}_k||_F^2 + \log p(\mathbf{a}_k) + c$$

where $\mathbf{R} \in \mathbb{R}^{N \times T}$ is the residual for neuron n, defined as

$$\mathbf{R} = \mathbf{X} - \sum_{j \neq k} \left[\mathbf{a}_j \otimes \mathbf{W}_j \right]$$

Optimizing the amplitudes

Expanding the square

$$\log p(\mathbf{X}, \mathbf{W}, \mathbf{A}) = -\frac{1}{2\sigma^2} ||\mathbf{R} - \mathbf{a}_k \circledast \mathbf{W}_k||_F^2 + \log p(\mathbf{a}_k) + c$$

$$= -\frac{1}{2\sigma^2} ||\mathbf{a}_k \circledast \mathbf{W}_k||_F^2 + \frac{1}{\sigma^2} \langle \mathbf{R}, \mathbf{a}_K \circledast \mathbf{W}_k \rangle_F + \log p(\mathbf{a}_k) + c.$$

$$\mathcal{L}_2(\mathbf{a}_k)$$

$$\mathcal{L}_2(\mathbf{a}_k)$$

where $\mathbf{r}_t \in \mathbb{R}^N$ is the *t*-th column of the residual \mathbf{R} .

Optimizing the amplitudes

Further expanding the quadratic term,

$$\begin{split} \mathcal{L}_{2}(\mathbf{a}_{k}) &= -\frac{1}{2\sigma^{2}} \|\mathbf{a}_{k} \circledast \mathbf{W}_{k}\|_{F}^{2} \\ &= -\frac{1}{2\sigma^{2}} \sum_{t=1}^{T} \sum_{n=1}^{N} \left(\sum_{d=1}^{D} a_{k,t-d}^{2} w_{k,n,d}^{2} + 2 \sum_{d=1}^{D} \sum_{d'=1}^{d-1} a_{k,t-d} a_{k,t-d'} w_{k,n,d} w_{k,n,d'} \right) \\ &\approx -\frac{1}{2\sigma^{2}} \sum_{t=1}^{T} a_{k,t}^{2} \|\mathbf{W}_{k}\|_{F}^{2} \\ &= -\frac{1}{2\sigma^{2}} \sum_{t=1}^{T} a_{k,t}^{2} \end{split}$$

with equality when nonzero entries (i.e. "spikes") of \mathbf{a}_k are separated by at least D samples.

Optimizing the amplitudes

Now take the linear term...

$$\mathcal{L}_{1}(\mathbf{a}_{k}) = \frac{1}{\sigma^{2}} \langle \mathbf{R}, \mathbf{a}_{k} \circledast \mathbf{W}_{k} \rangle$$

$$= \frac{1}{\sigma^{2}} \sum_{t=1}^{T} \sum_{n=1}^{N} r_{n,t} [\mathbf{a}_{k} \circledast \mathbf{w}_{k,n}]_{t}$$

$$= \frac{1}{\sigma^{2}} \sum_{t=1}^{T} \sum_{n=1}^{N} \sum_{d=1}^{D} a_{k,t-d} r_{n,t} w_{k,n,d}$$

$$= \frac{1}{\sigma^{2}} \sum_{t=1}^{T} a_{k,t} \sum_{n=1}^{N} \sum_{d=1}^{D} r_{n,t+d} w_{k,n,d}$$

$$= \frac{1}{\sigma^{2}} \sum_{t=1}^{T} a_{k,t} [\mathbf{R} \star \mathbf{W}_{k}]_{t}$$

where $[\mathbf{R} \star \mathbf{W}_k]_t$ is the cross-correlation of the residual and the template for neuron k.

Optimizing the amplitudes

Putting it all together

$$\mathscr{L}(\mathbf{a}_{k}) = \sum_{t=1}^{T} \left[-\frac{1}{2\sigma^{2}} a_{k,t}^{2} + \frac{1}{\sigma^{2}} \mu_{k,t} a_{k,t} - \lambda a_{k,t} \right] + c,$$

which separates into a sum of quadratic objective functions for each time t.

Completing the square and solving for the optimal amplitudes

• Like before, the maximum, subject to nonnegativity constraints, is obtained at

$$a_{k,t} = \max\left\{0, \mu_{k,t} - \sigma^2 \lambda\right\}$$

- However, we also want spikes to be well-separated; i.e. $a_{k,t} > 0 \implies a_{k,t+d} = 0$ for d = 1,...,D.
- We'll enforce this with a **simple heuristic**: use find_peaks to select local maxima of this "score" signal.

Optimizing the templates

As a function of \mathbf{W}_k

$$\log p(\mathbf{X}, \mathbf{A}, \mathbf{W}) = \frac{1}{2\sigma^2} \sum_{t=1}^{T} \langle a_{k,t} \mathbf{R}_t, \mathbf{W}_k \rangle + c'$$
$$= \frac{1}{2\sigma^2} \left\langle \sum_{t=1}^{T} a_{k,t} \mathbf{R}_t, \mathbf{W}_k \right\rangle + c'$$

where

$$\mathbf{R}_t = \begin{bmatrix} r_{1,t} & \dots & r_{1,t+D} \\ \vdots & & \vdots \\ r_{n,t} & \dots & r_{n,t+D} \end{bmatrix}$$

is a slice of the residual matrix (R[:,t:t+D] in code).

Optimizing the templates

We want to maximize this log joint probability over the space of low-rank, unit-norm matrices,

$$\mathbf{W}_{k}^{\star} = \arg \max_{\mathbf{W}_{k} \in \mathbb{S}_{R}^{N,D}} \left\langle \sum_{t=1}^{T} a_{k,t} \mathbf{R}_{t}, \mathbf{W}_{k} \right\rangle$$

The solution is to set the waveform matrix "proportional to" the weighted sum of residual matrices by taking its SVD and renormaling the singular values.

$$\mathbf{W}_k^{\star} = \sum_{r=1}^{R} \bar{s}_r \mathbf{u}_r \mathbf{v}_r^{\mathsf{T}} \quad \text{where} \quad \bar{s}_r = \frac{s_r}{\sqrt{\sum_{r'=1}^{R} s_{r'}^2}}$$

More efficient computation

Leveraging the low-rank templates

We can compute the "scores" for amplitude updates more efficiently by leveraging the low-rank templates,

$$[\mathbf{R} \star \mathbf{W}_{k}]_{t} = \sum_{n=1}^{N} \sum_{d=1}^{D} r_{n,t+d} w_{k,n,d}$$

$$= \sum_{d=1}^{D} \mathbf{r}_{t+d}^{\top} \mathbf{w}_{k,:,d}$$

$$= \sum_{d=1}^{D} \mathbf{r}_{t+d}^{\top} \mathbf{U}_{k} \mathbf{S}_{k} \mathbf{v}_{k,:,d}$$

$$= \sum_{d=1}^{D} (\mathbf{U}_{k}^{\top} \mathbf{r}_{t+d})^{\top} [\mathbf{S}_{k} \mathbf{V}_{k}^{\top}]_{:,d}$$

$$= [(\mathbf{U}_{k}^{\top} \mathbf{R}) \star (\mathbf{S}_{k} \mathbf{V}_{k}^{\top})]_{t}$$

In other words, we cross-correlate the projected residual.

Conclusion

- We developed a basic spike sorting model that was good for building intuition, but not very practical.
- We developed a new model for the voltage in terms of a superposition of templates convolved with spike amplitudes for each neuron.
 - Along the way, we learned about convolution and cross-correlation.
- We derived a **coordinate ascent algorithm** for *maximum a posteriori* (MAP) inference.
- Next time: you'll implement the algorithm in lab! You'll learn a bit of PyTorch for implementing the convolutions and cross-correlations, then test it out on the GPU.

Further reading

- Simple Spike Sorting and Spike Sorting by Deconvolution course notes.
- Convolution and cross-correlation:
 - Chapter 9 of *The Deep Learning Book* (deeplearningbook.org/contents/convnets.html)
 - Start reading up on PyTorch convolutions! https://pytorch.org/docs/stable/generated/torch.nn.functional.conv1d.html
- Spike sorting:
 - Pachitariu, Marius, Shashwat Sridhar, and Carsen Stringer. "Solving the spike sorting problem with Kilosort." bioRxiv (2023).
 - The model we presented is a slightly modified version of Kilosort