Topic: Human-Robot Interaction with Gesture Recognition

Venkata Gopi Krishna Miriyala, Sameer Tuteja, Florisa Zanier

Agenda

- Introduction
- Motivation & Challenges
- Project Objectives
- Technology and Methodology
- Implementation
- Use-Cases and Applications
- References

Introduction

 The field of human-robot interaction focuses on developing systems that enable robots to interact with humans in a more natural and intuitive way.

Human-Robot Interaction

Human-robot interaction refers to the study of how humans and robots communicate and interact with each other.

Importance of Interaction

Understanding human behavior and enabling robots to respond to human gestures is crucial for creating seamless and effective human-robot interaction.

Motivation

Gesture Recognition

Gesture recognition is a technology that enables robots to understand and interpret human gestures.

Enhancing Communication

By recognizing and reacting to gestures, robots can communicate with humans in a more natural and intuitive way.

Challenges

Complexity of Gestures

Gestures can vary greatly, making it challenging to develop systems that can accurately recognize and interpret them.

Real-Time Processing

Real-time processing of gestures requires fast and efficient algorithms to ensure seamless interaction between humans and robots.

Project Objectives

- Developing systems enabling robots to interact in a human-like manner.
- Enhancing gesture recognition to allow more natural and intuitive interactions.

Technology and Methodology

Developing Gesture Recognition Systems

Machine Learning

Machine learning techniques, such as deep learning, are used to train robots to recognize and interpret gestures.

Data Collection and Labeling

Large datasets of labeled gestures are crucial for training machine learning models to recognize a wide range of gestures.

Sensor Technology

Advanced sensor technologies, such as depth cameras and inertial sensors, are utilized to capture and analyze human gestures.

Implementation

Training Robots to Recognize Gestures

Supervised Learning

Supervised learning algorithms are commonly used to train robots to recognize gestures by providing labeled training examples.

Developing a Cross-Platform GUI

- 1. Tkinter provides a fast and easy way to create GUI applications
- **2. QT** (Optional)

Transfer Learning

Transfer learning techniques allow robots to leverage knowledge from pre-trained models to recognize new gestures more efficiently.

Use-Cases and Applications

Real-World Applications of Gesture Recognition

Healthcare

Gesture recognition can be used in healthcare settings to enable touchless control of medical devices and improve patient monitoring.

Improved User Experience

By recognizing gestures, robots can anticipate user intentions and provide more personalized and tailored experiences.

Gaming and Entertainment

Gesture recognition technology is employed in gaming and entertainment to create immersive and interactive experiences.

References

- https://wiki.python.org/moin/TkInter
- DALL-E MS Designer
- Villani, V., Capelli, B., Secchi, C. et al. Humans interacting with multi-robot systems: a natural affect-based approach. Auton Robot 44, 601–616 (2020). https://doi.org/10.1007/s10514-019-09889-6
- Ceng Zhang, Junxin Chen, Jiatong Li, Yanhong Peng, Zebing Mao, Large language models for human-robot interaction: A review, Biomimetic Intelligence and Robotics, Volume 3, Issue 4, 2023, https://doi.org/10.1016/j.birob.2023.100131

Thank you for your attention!