

1.基础知识 【1】平面直角坐标系 【2】点与直线 【3】圆

- 2.秒杀词汇【对称】
- 3.直线与圆
- 4.直线与抛物线
- 5.直线与圆的不等式

9.1.1 平面直角坐标系

第二象限
 (-,+)
 (+,+)
 の
 第三象限
 (-,-)
 第一象限
 (+,+)
 オ
 第四象限
 (+,-)

- 1.坐标平面内的点与有序实数对——对应
- 2.坐标轴上的点不属于任何象限
- 3.y轴上的点,横坐标都为0
- 4.x轴上的点,纵坐标都为0
- X 5.一点上下平移,横坐标不变,即平行于y轴的直线上的点横坐标相同
 - 6.一点左右平移,纵坐标不变,即平行于x轴的直线上的点纵坐标相同
 - 7.一个关于x轴对称的点横坐标不变, 纵坐标变为原坐标的相反数
 - 8.一个关于y轴对称的点纵坐标不变,横坐标变为原坐标的相反数

9.1.2 点与直线

ン・・・・ ・・・・

【两点间距离公式】设 $P_1(x_1,\ y_1),\ P_2(x_2,\ y_2)$,点 P_1 和 P_2 之间的距离记为 P_1P_2 ,则:

$$P_1 P_2 = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

9.1.2 点与直线

1. 一般式: $Ax + By + C = 0(A^2 + B^2 \neq 0)$ $k = \frac{y_2 - y_1}{x_2 - x_1}$

2.点斜式: 已知直线上的点 $P(x_0, y_0)$ 和斜率k, 方程为 $y - y_0 = k(x - x_0)$

3.斜截式: 已知斜率k和直线在y轴上的截距b, 方程为y = kx + b

4.两点式: 已知直线上两点 $P_1(x_1, y_1)$, $P_2(x_2, y_2)$, 方程为 $\frac{y-y_1}{y_2-y_1} = \frac{x-x_1}{x_2-x_1}$

5.截距式:已知直线在x轴上的截距为a, y轴上的截距b, 方程为 $\frac{x}{a} + \frac{y}{b} = 1$

9.1.2 点与直线

1. 一般式: $Ax + By + C = 0(A^2 + B^2 \neq 0)$

2.点斜式: $y - y_0 = k(x - x_0)$

3.斜截式: y = kx + b

4.两点式: $\frac{y-y_1}{y_2-y_1} = \frac{x-x_1}{x_2-x_1}$

5.截距式: $\frac{x}{a} + \frac{y}{b} = 1$

确定一条直线: 两点坐标

已知两点,画出直线 $P_1(1,2), P_2(-2,-3)$

斜率+一点坐标

已知斜率+一点,画出直线 P(1,2), k=1

9.1.2 点与直线

1. 一般式: $Ax + By + C = 0(A^2 + B^2 \neq 0)$

2.点斜式: $y - y_0 = k(x - x_0)$

3.斜截式: y = kx + b

4.两点式: $\frac{y-y_1}{y_2-y_1} = \frac{x-x_1}{x_2-x_1}$

5.截距式: $\frac{x}{a} + \frac{y}{b} = 1$

【必备重要知识点1】寻找直线在x轴和y轴的截距

代入x = 0, 得y轴截距

代入y = 0, 得x轴截距

如果C=0,那么直线过原点(0,0)

9.1.2 点与直线

【两直线位置关系】设两条直线方程为: l_1 : $A_1x + B_1y + C_1 = 0$, l_2 : $A_2x + B_2y + C_2 = 0$.

	相交	平行	重合
交点个数	- ↑	无	两个以上
方程组解 $ \begin{cases} A_1x + B_1y + C_1 = 0 \\ A_2x + B_2y + C_2 = 0 \end{cases} $	有唯一解 (x_0, y_0) 它就是 l_1 和 l_2 的交点	无解	
斜率	$k_1 \neq k_2$ 垂直: $A_1A_2 + B_1B_2 = 0$ $k_1 \times k_2 = -1$	$\frac{A_1}{A_2} = \frac{B_1}{B_2} \neq \frac{C_1}{C_2}$ $k_1 = k_2$	$\frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2}$ $k_1 = k_2$

【两条直线垂直】两条直线的斜率 $k_1 \times k_2 = -1$

【两条直线平行】两条直线的斜率 $k_1 = k_2$

9.1.2 点与直线

.

【点到直线距离公式】点 $P(x_0, y_0)$ 到直线Ax + By + C = 0的距离为:

$$d = \frac{|Ax_0 + By_0 + C|}{\sqrt{A^2 + B^2}}$$

必备重要知识点2

9.1.3 圆

....

1.标准方程: $(x-x_0)^2+(y-y_0)^2=r^2$, 其中, (x_0, y_0) 为圆心, r为半径.

2.一般方程: $x^2 + y^2 + Dx + Ey + F = 0$, 其中, 系数满足 $D^2 + E^2 - 4F > 0$.

一般方程用配方法可化为标准方程: $(x + \frac{D}{2})^2 + (y + \frac{E}{2})^2 = \frac{D^2 + E^2 - 4F}{4}$

即圆心为
$$\left(-\frac{D}{2}, -\frac{E}{2}\right)$$
,半径 $r = \frac{\sqrt{D^2 + E^2 - 4F}}{2}$

考点1:配方找圆心和半径

考点2: 找圆与x轴和y轴的交点: 代入y = 0或者x = 0, 解方程

9.1.3 圆

.

圆与圆的位置关系

圆 C_1 : $(x-x_1)^2+(y-y_1)^2=r^2$, 圆 C_2 : $(x-x_2)^2+(y-y_2)^2=r_2^2$

两圆的圆心距 $d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$

则有1. C_1 与 C_2 外离 $\Leftrightarrow d > r_1 + r_2$

 $2.C_1$ 与 C_2 外切 $\Leftrightarrow d = r_1 + r_2$

 $3.C_1$ 与 C_2 内切⇔ $d = |r_1 - r_2|$

 $4.C_1$ 与 C_2 相交于两点⇔ $|r_1 - r_2| < d < r_1 + r_2$

 $5.C_1$ 与 C_2 为包含关系 $\Leftrightarrow 0 \leq d < |r_1 - r_2|$

考点3:点、直线、圆与圆的位置关系

9.1.3 圆

【2014.10.9】 圆 $x^2 + y^2 + 2x - 3 = 0$ 与圆 $x^2 + y^2 - 6y + 6 = 0$ (C).

(A) 外离

(B) 外切

(C) 相交

(D) 内切

(E) 内含

 $x^2 + y^2 + 2x - 3 = 0$ 配方得: $(x+1)^2 + y^2 = 4$

圆心为: (-1,0), 半径为2

 $x^2 + y^2 - 6y + 6 = 0$ 配方得: $x^2 + (y - 3)^2 = 3$

圆心为: (0,3), 半径为√3

两圆的圆心距 $d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} = \sqrt{(-1 - 0)^2 + (0 - 3)^2} = \sqrt{10}$

 $2 - \sqrt{3} < \sqrt{10} < 2 + \sqrt{3}$

9.1.3 圆

【2008.1.28】圆 C_1 : $\left(x-\frac{3}{2}\right)^2+(y-2)^2=r^2$ 与圆 C_2 : $x^2-6x+y^2-8y=0$ 有交点(E)

(1)
$$0 < r < \frac{5}{2}$$
. (2) $r > \frac{15}{2}$.

(2)
$$r > \frac{15}{2}$$

圆
$$C_1$$
: $\left(x-\frac{3}{2}\right)^2+(y-2)^2=r^2$, 圆心为 $\left(\frac{3}{2},2\right)$, 半径为 r

圆
$$C_2$$
: $x^2-6x+y^2-8y=0$,配方得: $(x-3)^2+(y-4)^2=5^2$ 圆心为(3,4),半径为5

两圆的圆心距
$$d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} = \sqrt{(\frac{3}{2})^2 + 2^2} = \frac{5}{2}$$

$$C_1$$
与 C_2 有交点 $\Leftrightarrow |r_1 - r_2| \le d \le r_1 + r_2$

$$5 - \frac{5}{2} \le r \le 5 + \frac{5}{2}$$

【技巧】极端情况分析法

9 解析几何套路分类

【1】平面直角坐标系

1.基础知识 【2】点与直线

【3】圆

【1】关于y = x对称

2.秒杀词汇【对称】-

【2】求关于y轴对称

【3】求关于x轴对称

【4】求某点关于某直线的对称点

4.直线与抛物线

3.直线与圆

5.直线与圆的不等式

9.2 秒杀词汇【对称】

- 1) 求关于y轴对称的新函数 (横坐标对称) , 将原函数中的x用-x替换
- 2) 求关于x轴对称的新函数(纵坐标对称),将原函数中的y用-y替换
- 3) 求关于y = x对称的新函数,把原函数方程中的x和y互换
- 4) 求关于y = -x对称的新函数,把原函数方程中的x变-y,y变-x
- 5) 求关于原点(0,0)对称的新函数,把原函数方程中的x变-x,y变-y
- 6) 求关于某直线的对称点

9.2 秒杀词汇【对称】「直线关于直线对称】

ax + by = 1关于x轴对称的直线为

ax + by = 1关于y轴对称的直线为 -ax + by = 1

ax + by = 1关于y = x对称的直线为

ax + by = 1关于y = -x对称的直线为

bx + ay = 1

9.2 秒杀词汇【对称】

【圆关于直线对称】

求圆:
$$x^2 + y^2 + 2x - 6y - 14 = 0$$

关于直线 y = x的对称圆:

原函数中x和y互换: $x^2 + y^2 + 2y - 6x - 14 = 0$

关于ν轴的对称圆:

原函数中x变-x: $x^2 + y^2 - 2x - 6y - 14 = 0$

关于x轴的对称圆:

原函数中y变-y: $x^2 + y^2 + 2x + 6y - 14 = 0$

9.2 秒杀词汇【对称】

【2008.1.12】以直线y + x = 0为对称轴且与直线y - 3x = 2对称的直线方程为(A)

- (A) $y = \frac{x}{3} + \frac{2}{3}$ (B) $y = \frac{x}{-3} + \frac{2}{3}$
- (C) y = -3x 2
- (D) y = -3x + 2 (E) 以上都不是

原函数中x变-y, y变-x

得到: -x + 3y = 2

整理得: $y = \frac{x}{3} + \frac{2}{3}$

9.2 秒杀词汇【对称】

【2010.10.22】圆 C_1 是圆 C_2 : $x^2 + y^2 + 2x - 6y - 14 = 0关于直线y = x的对称圆. (B)$

圆 C_2 函数中x和y互换: $x^2 + y^2 + 2y - 6x - 14 = 0$

9.2 秒杀词汇【对称】

【2012.10.19】直线L与直线2x + 3y = 1关于x轴对称. (A)

- (1) L: 2x 3y = 1.
- (2) L: 3x + 2y = 1.

求关于x轴对称的函数(纵坐标对称),将原函数中的y用-y替换 求关于y = x对称的函数,把原函数方程中的x和y互换

与2x + 3y = 1关于x轴对称的直线为: 2x - 3y = 1

条件 (1) 充分

条件 (2) : 与2x + 3y = 1关于y = x轴对称的直线为: 2y + 3x = 1

9 解析几何套路分类

┌【1】平面直角坐标系

1.基础知识 【2】点与直线

[3] 圆

 $\lceil [1]$ 关于y = x对称

2.秒杀词汇【对称】 【2】求关于y轴对称

【3】求关于x轴对称

点到直线

3.直线与圆√判断直线与圆位置关系→找圆心,直线与圆心(点)的距离

4.直线与抛物线

5.直线与圆的不等式

9.3 直线与圆

【1997.10.10】若圆的方程是 $y^2 + 4y + x^2 - 2x + 1 = 0$,直线方程是3y + 2x = 1,则过已知圆 的圆心并与已知直线平行的直线方程是(c)

- (A) 2y + 3x + 1 = 0
- (B) 2y + 3x 7 = 0
- (C) 3y + 2x + 4 = 0
- (D) 3y + 2x 8 = 0
- (E) 2y + 3x 6 = 0

圆方程 $y^2 + 4y + x^2 - 2x + 1 = 0$ 配方得: $(x-1)^2 + (y+2)^2 = 4$

圆心为: (1,-2), 半径为2

所求直线与3y + 2x = 1斜率相等且过点(1, -2)

设为3y + 2x = C, 代入x = 1, y = -2得: C = -4

故所求直线方程为: 3y + 2x + 4 = 0

9.3 直线与圆

【2018.24】设a, b为实数,则圆 $x^2 + y^2 = 2y$ 与直线x + ay = b不相交. (A)

(1) $|a-b| > \sqrt{1+a^2}$

(2) $|a+b| > \sqrt{1+a^2}$

判断直线与圆位置关系→找圆心,直线与圆心(点)的距离

圆心为: (0,1), 半径为1

点到直线距离公式 $d = \frac{|Ax_0 + By_0 + C|}{|Ax_0 + By_0 + C|}$

不相交即相切或相离

圆心(0,1)到直线x + ay - b = 0的距离 $d \ge r$

$$d = \frac{|a-b|}{\sqrt{1+a^2}} \ge 1, \ |a-b| \ge \sqrt{1+a^2}$$

9.3 直线与圆

【2011.1.11 】设P是圆 $x^2 + y^2 = 2$ 上的一点,该圆在点P的切线平行于直线x + y + 2 = 0,则点P的坐标为 (E)

- (A) (-1,1) (B) (1,-1) (C) $(0,\sqrt{2})$ (D) $(\sqrt{2},0)$ (E) (1,1)

给定一个圆 确定切线

给出切线斜率⇒2条平行切线 给出过圆外一点⇒2条相交切线

x + y + 2 = 0斜率为-1

切点与圆心连线垂直于切线 $k_1 \times k_2 = -1$ 设切点坐标为 $P(x_0, x_0)$

代入圆方程得: $x_0 = \pm 1$, 切点为: (1,1)或(-1, -1)

9.3 直线与圆

【2010.10.23】直线y = k(x + 2)是圆 $x^2 + y^2 = 1$ 的一条切线(D)

(1)
$$k = -\frac{\sqrt{3}}{3}$$
. (2) $k = \frac{\sqrt{3}}{3}$.

(2)
$$k = \frac{\sqrt{3}}{3}$$
.

点斜式直线方程: 已知直线上的点 $P(x_0, y_0)$ 和斜率k, 方程为 $y - y_0 = k(x - x_0)$

直线y = k(x+2) 为过定点(-2,0), 斜率为k的直线

$$d = \frac{|0 - 2k|}{\sqrt{1 + k^2}} = r = 1, \ k = \pm \frac{\sqrt{3}}{3}$$

给出过圆外一点⇒2条相交切线

且这两条切线关于圆外一点与圆心连线对称

9.3 直线与圆

【2014.10.17】直线y = k(x+2)圆 $x^2 + y^2 = 1$ 相切 (B)

(1)
$$k = \frac{1}{2}$$

(1)
$$k = \frac{1}{2}$$
. (2) $k = \frac{\sqrt{3}}{3}$.

判断直线与圆位置关系→找圆心,直线与圆心(点)的距离

圆 $x^2 + v^2 = 1$ 为圆心在原点,半径为1的圆

直线y = k(x + 2)写为一般式为: kx - y + 2k = 0

直线到圆心 (原点) 的距离为

$$d = \frac{|0 - 2k|}{\sqrt{1 + k^2}} = r = 1, \ k = \pm \frac{\sqrt{3}}{3}$$

9 解析几何套路分类

【1】平面直角坐标系 1.基础知识 【2】点与直线

└【3】圆

 $\lceil \lceil 1 \rceil$ 关于y = x对称

2.秒杀词汇【对称】 【2】求关于y轴对称

【3】求关于x轴对称

判断直线与圆位置关系→找圆心,直线与圆心(点)的距离

找过圆上一点的切线→找圆心,找斜率→垂直

4.直线与抛物线 方程联立看Δ ← 有一个交点: 相切⇔ Δ= 0

「有两个交点: 相交⇔ $\Delta > 0$

5.直线与圆的不等式

(与x轴相交/相切,联立y = 0)

前提: 直线不与v轴平行

9.4 直线与抛物线

【2017.19】直线y = ax + b与抛物线 $y = x^2$ 有两个交点.(B)

(1)
$$a^2 > 4b$$
.

(2)
$$b > 0$$
.

「直线与圆: 通过直线与圆心距离判断d > r, d = r, d < r

直线与抛物线: 联立方程, 化为一元二次方程→根的判别式

联立直线与抛物线方程, 得: $x^2 = ax + b$, $px^2 - ax - b = 0$

题干要求Δ= $a^2 + 4b > 0$,即 $a^2 > -4b$

条件 (1) 当b < 0时, $a^2 > 4b$ 不能充分推出 $a^2 > -4b$

条件 (2) b > 0, -4b < 0, $\overline{n}a^2 \ge 0$, 故 $a^2 > -4b$

9.4 直线与抛物线

【2012.1.25】直线y = x + b是抛物线 $y = x^2 + a$ 的切线.(A)

- (1) y = x + b与 $y = x^2 + a$ 有且仅有一个交点.
- (2) $x^2 x \ge b a(x \in R)$.

条件 (1) 充分

条件 (2) $x^2 - x \ge b - a$, $px^2 + a \ge x + b$

抛物线在直线上方

条件(2)不充分

9.4 直线与抛物线

【2011.10.17】抛物线 $y = x^2 + (a+2)x + 2a$ 与x轴相切.(C)

- (1) a > 0.
- (2) $a^2 + a 6 = 0$.

与x轴相切,即顶点在x轴上, $\Delta = 0$

9.5 直线与圆的不等式

 $(a+2)^2 - 4 \times 2a = 0, \ a = 2$

条件(1)和条件(2)单独均不充分,联合充分

9 解析几何套路分类

【1】平面直角坐标系

1.基础知识 【2】点与直线

[3] 圆

 Γ 【1】关于y = x对称

2.秒杀词汇【对称】 【2】求关于y轴对称

【3】求关于x轴对称

判断直线与圆位置关系→找圆心,直线与圆心(点)的距离 3.直线与圆

找过圆上一点的切线→找圆心, 找斜率→垂直

「有两个交点: 相交⇔ Δ> 0

4.直线与抛物线 方程联立看Δ 有一个交点: 相切⇔ Δ= 0

5.直线与圆的不等式

ax + by = c

圆内的区域

ax + by > c

9.5 直线与圆的不等式

.

【2015.16】圆盘 $x^2 + y^2 \le 2(x + y)$ 被直线L分成面积相等的两部分(D)

(1) L: x + y = 2

(2)
$$L: 2x - y = 1$$

圆方程为 $(x-1)^2 + (y-1)^2 = 2$, 圆心为: (1,1)

【词汇】直线过圆心⇔直线平分圆/直线将圆分成面积(周长)相等的两部分

条件 (1) L: x + y = 2, 过圆心(1,1), 条件 (1) 充分

条件 (2) L: 2x - y = 1, 过圆心(1,1), 条件 (2) 充分

9.5 直线与圆的不等式

. . . .

【2013.1.16】已知平面区域 $D_1=\{(x,y)|x^2+y^2\leq 9\}$ 和 $D_2=\{(x,y)|(x-x_0)^2+(y-y_0)^2\leq 9\}$,则 D_1,D_2 覆盖区域的边界长度为8 π . (A)

$$(1) x_0^2 + y_0^2 = 9$$

$$(2) x_0 + y_0 = 3$$

条件 (1) : $\frac{360^{0}-120^{0}}{360^{0}} \cdot 2\pi \cdot 3 = 4\pi$

覆盖区域的边界长度为8π

条件(2): 无法确定圆心距, 不成立

9.5 直线与圆的不等式

. . . .

【2016.11】如图4,点A、B、O的坐标分别为(4,0),(0,3),(0,0),若(x,y)是 ΔAOB 中的点,则2x+3y的最大值为 (D)

(A) 6

(B) 7

(C) 8

(D) 9

(E) 12

 \Rightarrow : 2x + 3y = b, $y = -\frac{2}{3}x + \frac{b}{3}$

斜率为 $-\frac{2}{3}$, 在y轴截距为 $\frac{b}{3}$ 的直线

求b的最大值即求直线在y轴截距的最大值

直线 $y = -\frac{2}{3}x + \frac{b}{3}$ 过B(0,3)时截距最大

代入x = 0, y = 3可得: 2x + 3y = 9

2x + 3y的最值一定在(4,0), (0,3), (0,0)三点中取到

分别代入取最大可得: $2 \times 0 + 3 \times 3 = 9$ 最大

THANK YOU FOR WATCHING

.