Nume și prenume	Nr. matricol	Data completării formularului		
Billich Steven	LM61240 06.10.2021			

TEMĂ DE CASĂ NR. 1

(Tema de casă se depune pe CV în săptămâna consecutivă celei în care s-a efectuat lucrarea de laborator. Formularul completat se depune în format pdf.)

1.1. Imaginați câte un exemplu de semnal în timp continuu pentru cele 4 domenii precizate în tabel. Răspunsurile se vor formula potrivit relațiilor (1), (2) și exemplelor de la pag. 1 și 2 din Lucrarea de laborator nr. 1.

Corpul omenesc	Activitatea electric	аа	fibrelor	musculare	ale	inimii,	semnal
	monodimensional (observabil pe ECG), activitatea nervilor						
Domeniul automotive	Presiunea intr-o roat	a un	ui autoveh	icul, semnal	mono	dimensio	nal
Mediul înconjurător	Presiunea atmosferica, temperatura aerului, semnal monodimensional,						
Domeniul audio-video	Semnalul radio, semi	al mo	nodimens	ional, tunetu	l		

1.2. Determinați transformatele Laplace ale următoarelor semnale (nu se cer demonstrații ci doar rezultatele):

$u(t) = 230 \cdot \sin(100 \cdot \pi \cdot t), t \in \mathbf{R}_{+}$	(230*100π)/(s²+(100π)²)
$i(t) = 1.3 \sin (2 \cdot \pi \cdot 50 \cdot t - 0.1), t \in \mathbf{R}_{+}$	$1.3*\frac{100\pi*\cos(0,1)+\sin(0,1)*s}{s^2+(100\pi)^2}$
$x(t) = 10 \cdot [\sigma(t-t_1) - [\sigma(t-t_2)], t_1 < t_2, t \in \mathbf{R}_+$	$10 * \frac{e^{-t_1 * s} - e^{-t_2 * s}}{s}$
$v(t) = (2 \cdot t + 30) \sigma(t-4), t \in \mathbf{R}_{+}$	$e^{-4s} * \left(\frac{2}{s^2} + \frac{38}{s}\right)$

1.3. Pentru semnalul x(t), $t \in \mathbf{R}_+$ se obține, în urma unor calcule în domeniul operațional, expresia $x(s) = \frac{2s-1}{s^2(0.01s+1)}$. Să se arate că semnalul original este x(t) = $2.01 \cdot (1-e^{-100 \cdot t}) - t$, $t \in \mathbf{R}_+$. Indicație: Se va descompune expresia lui x(s) în termeni de forma celor din tabelele de transformare, apoi se vor aduce termenii la forma din tabel, iar în final se folosește teorema de liniaritate a transformatei Laplace.

1.4. Generați, semnalele din tabel adaptând și modificând modelul simulink/xcos din lucrarea de laborator, (pentru inserarea figurilor puteți folosi Snipping Tool, Print Screen etc..

