ARITHMETIC

Chapter 20 Sesión 1

RADICACIÓN

MOTIVATING STRATEGY

La radicación se expresa con el símbolo √ , que es una variante de la letra latina "r"; siendo esta la primera letra de la palabra latina "radix" que significa raíz. En el siglo XVI el símbolo de la raíz no era "r", sino la letra mayúscula "R" y junto a ella se escribía la primera letra de las palabras latinas quadrus (q) o la de cubus (c) señalando con ellos que la raíz a extraer es cuadrada o cúbica respectivamente. Por ejemplo, Rq 5329 significaba $\sqrt{5329}$ significaba $\sqrt[3]{1278}$.

HELICO THEORY

RADICACIÓN

La radicación es una de las operaciones inversas de la potenciación que consiste en que teniendo dos números llamados índice y radicando, se calcula un tercer número llamado raíz, donde este último elevado al índice reproduzca el radicando.

Es decir:

$$\sqrt[n]{N} = k \leftrightarrow k^n = N$$

 $\forall N, n \in \mathbb{Z}^+$

Donde:

n: indice.

N: radicando

k: raiz

HELICO THEORY

RAÍZ CUADRADA

1. Descomponemos

Solo funciona para números cuadrados perfectos.

2. Simplificamos los exponentes

$$\sqrt{2^4 \times 5^2} = 2^2 \times 5^1 = 20$$

HELICO THEORY

Método general

Este método es para números que sean o no cuadrados perfectos.

```
Calcul √51982
51982 227
          42 \times 2 = 84
447 \times 7 = 3129
    3582
```

Radicando = 51982

Raiz = 227

Residuo = 453

তিয়

HELICO THEORY RAÍZ CÚBICA

Por descomposición

 $1728 = 2^6 \times 3^3$

Ecanónicale³√1728

1. Descomponemos

2. Simplificamos los exponentes

$$\sqrt[3]{2^6 \times 3^3} = 2^2 \times 3^1 = 12$$

$$\sqrt[3]{1728} = 12$$

Calcule A + B usando la descomposición canónica $A = \sqrt{324} \quad B = \sqrt[3]{9261}$

Resolución:

324 | 2
162 | 2
81 | 3
27 | 3
9 | 3
3 |
$$A = \sqrt{2^2 \times 3^4}$$

9 | 3
A = $\sqrt{2^2 \times 3^4}$
1 | $A = 18$

9261	3	
3087	3	
1029	3	$9261 = 3^{3} \times 7^{3}$ $B = \sqrt[3]{3^{3} \times 7^{3}}$
343	7	
49	7	
7	7	$B = 3^1 \times 7^1$
T		B = 21

$$A + B = 18 + 21 =$$

2.

Al calcular √5184 por el método de descomposición canónica se obtuvo 2^a×3^b. Calcule a+b.

Resolución:

Raíz cuadrada

$$\sqrt{5184} = \sqrt{2^6 \times 3^4}$$

$$\sqrt{5184} = 2^3 \times 3^2 = 2^a \times 3^b$$

2	
2	
2	
2	
2	- 5184 = 2 ⁶ × 3 ⁴
2	
3	
3	
3	
3	
	2 2 2 2 3 3

a + b = 3 + 2 =

RPTA:

5

La raíz cuadrada de 2025 es $3^a \times 5^b$. Calcule (a+b)a.

Resolución:

Raíz cuadrada

$$\sqrt{2025} = \sqrt{3^4 \times 5^2}$$

$$\sqrt{2025} = 3^2 \times 5^1$$
 = $3^a \times 5^b$

$$(a+b)a = (2+1)\times 2 =$$

4.

Calcule la raíz de 51 873 por el método general e indique la suma de cifras del residuo.

Resolución:

$$N = k^2 + r$$

$$51873 = 227^2 + 344$$

$$r = 344$$

RPTA:

11

Al extraer, calcule k – r.

Resolución:

$$N = k^2 + r$$

$$150 = k^2 + r$$

$$k = 12$$

$$r = 6$$

Reemplazando

$$150 = 12^2 + 6$$

$$150 = 144 + 6$$

RPTA:

k-r=6

6.

Jugando a las adivinanzas matemáticas, Adrián le pregunta a su primo, cual es la raíz cuadrada de 103 si su residuo es menor que 4, a lo que su primo le dice: que fácil, te diré cual es esa raíz y la suma con su residuo. Ayuda al primo de Adrián a dar esa respuesta.

Resolución:

$$N = k^2 + r$$

$$103 = k^2 + r$$

$$k = 10$$

$$r = 3$$

Reemplazando

$$103 = 10^2 + 3$$

$$103 = 100 + 3$$

RPTA:

k + r = 13

En una reunión de exlicenciados del ejercito han asistido N personas; en un momento determinado todos los asistentes se ordenan formando un batallón de forma cuadrada con 17 personas por lado y sobrando 8 personas. Halle el valor de N e indique la suma de sus cifras.

Resolución:

$$N = k^2 + r$$

$$k = 17$$

Reemplazando

$$r = 8$$

$$N = 17^2 + 8$$

$$N = 289 + 8$$

$$N = 297$$

$$...$$
 2 + 9 + 7 =

297 y 18