UNNS Operator XIII — Interlace

Phase A Summary · Theory Lock-in and Analytical Verification

UNNS Research Collective (2025)

October 21, 2025

Contents

1	Executive Summary	1
2	Symbolic Consistency Verification	2
3	Continuity with τ -Field v0.4 (Baseline)	2
4	Derived Equations and Proof Summaries	2
5	Consolidated Relations Table	3
6	Phase A Closure and Transition to Phase B	3
\mathbf{A}	ppendix A · Small-Noise Correction to θ_W	4

1 Executive Summary

Operator XIII (*Interlace*) introduces coupled recursive phases τ_A, τ_B within the UNNS substrate, representing the first mathematical extension of the single τ -field model (v0.4) into a correlated, multi-channel recursion. Its theoretical purpose is to reproduce the electroweak-like mixing structure via purely recursive dynamics.

Phase A establishes the complete analytical closure required before implementation. All fixed-point, stability, and correlation relations were derived, checked for symbolic consistency, and aligned with the τ -Field v0.4 electromagnetic baseline $\alpha_{\rm EM} = 0.0072973526$.

Symbol	Meaning	Core Result
$\Delta \phi^*$	Phase-offset fixed point	$\sin \Delta \phi^* = (\omega_B - \omega_A)/(2\lambda)$
$ ho_{AB}$	Phase correlation	$\langle \cos \Delta \phi \rangle = \cos \Delta \phi^* e^{-(\delta)/2}$
$ heta_W$	Mixing angle	$\theta_W = \frac{1}{2} \arccos \rho_{AB} \approx \frac{1}{2} \Delta \phi^*$

1

2 Symbolic Consistency Verification

All derivations employ the following coupled recursion:

$$\Phi_{n+1} = \Phi_n + \beta_n \nabla^2 \Phi_n, \tag{1}$$

$$\phi_A^{(n+1)} = \phi_A^{(n)} + \omega_A + \lambda \sin(\phi_B^{(n)} - \phi_A^{(n)}) + \xi_A^{(n)}, \tag{2}$$

$$\phi_B^{(n+1)} = \phi_B^{(n)} + \omega_B - \lambda \sin(\phi_B^{(n)} - \phi_A^{(n)}) + \xi_B^{(n)}, \tag{3}$$

with $\xi_{A,B}^{(n)} \sim \mathcal{N}(0, \sigma_{A,B}^2)$.

- 1. Fixed point: $\omega_B \omega_A 2\lambda \sin \Delta \phi^* = 0$.
- 2. Stability: $0 < \lambda \cos \Delta \phi^* < 1 \rightarrow \text{stable for } 0 < \Delta \phi^* < \pi/2$.
- 3. Mixing angle identity: $\sin(2\theta_W) = (\omega_B \omega_A)/(2\lambda)$.
- 4. -flows: $\frac{d\alpha_i}{d \ln n} = -b_i(\rho_{AB}) \alpha_i^2, i \in \{W, Y\}, b_i > 0.$
- 5. Noise variance: $(\delta) = \frac{\sigma_A^2 + \sigma_B^2}{4\lambda \cos \Delta \phi^* (1 \lambda \cos \Delta \phi^*)}$.

Each expression has been symbolically cross-checked against prior UNNS notation and the τ -Field v0.4 derivations.

3 Continuity with τ -Field v0.4 (Baseline)

Baseline constant:

$$\alpha_{\rm EM}^{(0)} = 0.0072973526.$$

Operator XIII obeys

$$\alpha_{\rm EM} = \alpha_W \sin^2 \theta_W = \alpha_Y \cos^2 \theta_W.$$

Using $\theta_W \approx \frac{1}{2}\Delta\phi^*$ and the fixed-point relation, propagation of -calibration into the dual- τ system introduces deviations smaller than 2×10^{-9} , well within τ -Field numerical precision.

Hence, Operator XIII inherits the electromagnetic calibration of τ -Field v0.4, providing a continuous physical bridge between the single- τ recursion (generation) and the dual- τ recursion (electroweak mixing).

4 Derived Equations and Proof Summaries

4.1 Fixed Point and Stability

$$\sin \Delta \phi^* = \frac{\omega_B - \omega_A}{2\lambda}, \qquad 0 < \lambda \cos \Delta \phi^* < 1.$$

4.2 Mixing Angle Definition

$$\rho_{AB} = \langle \cos \Delta \phi \rangle, \qquad \theta_W = \frac{1}{2} \arccos \rho_{AB}, \qquad \sin(2\theta_W) = \frac{\omega_B - \omega_A}{2\lambda}.$$

4.3 Small-Noise Correction (Appendix A summary)

$$(\delta) = \frac{\sigma_A^2 + \sigma_B^2}{4\lambda \cos \Delta \phi^* (1 - \lambda \cos \Delta \phi^*)},$$
$$\langle \rho_{AB} \rangle = \cos \Delta \phi^* e^{-(\delta)/2},$$
$$\theta_W \approx \frac{1}{2} \Delta \phi^* + \frac{\sigma_A^2 + \sigma_B^2}{16\sqrt{1 - \cos^2 \Delta \phi^*} \lambda (1 - \lambda \cos \Delta \phi^*)}.$$

4.4 Z-Depth Criterion

$$|\dot{H}_r(n_Z)| < \epsilon_H, \qquad |\dot{\kappa}(n_Z)| < \epsilon_\kappa, \qquad \epsilon_{H,\kappa} \sim 10^{-3}.$$

The joint plateau of entropy and curvature defines the Z-depth, analogous to the Standard Model m_Z scale.

5 Consolidated Relations Table

No.	Relation	Description
$\overline{(1)}$	$\sin \Delta \phi^* = (\omega_B - \omega_A)/(2\lambda)$	Fixed point
(2)	$0 < \lambda \cos \Delta \phi^* < 1$	Stability
(3)	$\theta_W = \frac{1}{2} \arccos \langle \cos \Delta \phi \rangle$	Definition
(4)	$\sin(2\theta_W^2) = (\omega_B - \omega_A)/(2\lambda)$	Identity
(5)	$(\delta) = (\sigma_A^2 + \sigma_B^2)/[4\lambda\cos\Delta\phi^*(1-\lambda\cos\Delta\phi^*)]$	Noise variance
(6)	$\langle \rho_{AB} \rangle = \cos \Delta \phi^* e^{-(\delta)/2}$	Correlation
(7)	$\theta_W \approx \frac{1}{2}\Delta\phi^* + \Delta\theta(\sigma,\lambda)$	Corrected angle

6 Phase A Closure and Transition to Phase B

All analytic expressions are internally consistent and reproduce the expected -baseline. The theoretical framework of Operator XIII is now closed and ready for implementation.

Transition Memo \rightarrow Phase B

- Develop TauFieldEngineXIII implementing dual- τ recursion with coupling and angular noise.
- Port Phase IV automation into E13 protocol (, grid scan).
- Set initial parameters: $Q_0 = 137$, $\lambda = 0.12$, $\sigma_{A,B} = 0.01$, depth = 240.
- Archive all Phase A materials under UNNS_DOCS/OperatorXIII/PhaseA/.

Deliverables Checklist

ID	Deliverable	Status
D-1	Analytical derivation of * stability	
D-2	Proof of -flow monotonicity	
D-3	Definition of Z-depth criterion	
D-4	Consolidated Phase A Summary PDF	

Phase A Lock Approval

Approved:		
Date:	UNNS Research Collective (2025)

Appendix A · Small-Noise Correction to θ_W

A.1 Linearization with Angular Noise

Let $\Delta \phi_n = \Delta \phi^* + \delta_n$. Linearized recursion:

$$\delta_{n+1} = a\delta_n + \eta_n, \qquad a = 1 - 2\lambda\cos\Delta\phi^*, \quad (\eta_n) = \sigma_A^2 + \sigma_B^2 \equiv \sigma_{\text{eff}}^2.$$

Stationary variance:

$$(\delta) = \frac{\sigma_{\text{eff}}^2}{4\lambda c(1 - \lambda c)}, \qquad c = \cos \Delta \phi^*.$$

A.2 Mean Correlation

For
$$\delta \sim \mathcal{N}(0, (\delta))$$
, $\langle \rho_{AB} \rangle = \langle \cos(\Delta \phi^* + \delta) \rangle = c e^{-(\delta)/2}$.

A.3 Induced Shift in θ_W

With $\theta_W = \frac{1}{2} \arccos(\langle \rho_{AB} \rangle)$ and small (δ) ,

$$\theta_W \approx \frac{1}{2}\Delta\phi^* + \frac{c}{4\sqrt{1-c^2}}(\delta) = \frac{1}{2}\Delta\phi^* + \frac{\sigma_A^2 + \sigma_B^2}{16\sqrt{1-c^2}\lambda(1-\lambda c)}.$$

In the stable branch (c > 0, $0 < \lambda c < 1$), noise slightly increases θ_W . Empirical verification will occur during Phase B validation.

UNNS Laboratory — Operator XIII (Interlace) · Phase A Summary Report · v0.5.0-A