

Physics

Conical Pendulum 18.2

Conical Pendulum 18.2

A small sphere of mass $2.0\,\mathrm{kg}$, attached to the end of a light string of length $90\,\mathrm{cm}$ at 24° to the vertical, moves in a horizontal circle.

Part A	Tension
Ca	alculate the tension T in the string.
Part B	Height above position at rest
Ca	alculate the height h by which the mass is raised above its position at rest.

Physics

Conical Pendulum 18.3

Conical Pendulum 18.3

A lead ball of mass $45\,\mathrm{g}$ is attached to the end of an $80\,\mathrm{cm}$ long light string and swung around in a horizontal circle at high speed.

If the string snaps at a tension of $195 \, \mathrm{N}$, what is the maximum frequency of rotation f possible?

Physics

Conical Pendulum 18.7

Conical Pendulum 18.7

An aircraft travelling at $160\,\mathrm{knots}$ maintains its altitude during a circular banked "rate one turn", which is a $3.0^\circ\,\mathrm{s}^{-1}$ turning rate. ($1\,\mathrm{knot}=0.514\,\mathrm{m\,s}^{-1}$)

At what angle to the horizontal are the wings of the plane?

Physics

Vertical Circles 19.1

Vertical Circles 19.1

An object travels in a vertical circle. Using the equations in the <u>notes page</u>, and writing upwards normal reactions as positive, write an equation for

The following symbols may be useful: N, W, a, m

Part B N (bottom) using m, r, g, u

N for the mass at the bottom using m, r, g and u.

The following symbols may be useful: N, g, m, r, u

Part	С	N (top) using W , m , a
	N f	for the mass at the top using W, m and $a.$
	The f	following symbols may be useful: N, W, a, m
Part	D	N (top) using m,r,g,v
	N f	for the mass at the top using m,r,g and $v.$

The following symbols may be useful: N, g, m, r, v

Part E N (top) using m, r, g, u

N for the mass at the top using $m,\,r,\,g$ and u.

The following symbols may be useful: N, g, m, r, u

Part F v if N=0

the speed v needed at the top if N=0.

The following symbols may be useful: N, g, m, r, v

Physics

Vertical Circles 19.2

Vertical Circles 19.2

Calculate the normal reaction for the car in the Example in the $\underline{\text{notes page}}$ at a speed of $8.0\,\mathrm{m\,s^{-1}}$.

Physics

Vertical Circles 19.3

Vertical Circles 19.3

For the car in the Example in the <u>notes page</u>, calculate the speed at which the wheels would just leave the ground at the top of the bridge.

Physics

Vertical Circles 19.6

Vertical Circles 19.6

A person feels weightless when N=0.

Calculate the speed a roller-coaster car would have to be travelling at the top of an $r=4.5\,\mathrm{m}$ loop in order for the riders to experience weightlessness at the top.

Physics

Vertical Circles 19.7

Vertical Circles 19.7

An $850\,\mathrm{g}$ radio-controlled car is driven in circles around the inside of a large (empty) pipe with a radius of $90\,\mathrm{cm}$. It travels at a steady $4.0\,\mathrm{m\,s^{-1}}$.

Part A	Fast enough not to fall off?
ls t	he car going quickly enough not to fall off the pipe's surface?
	Yes, more than quickly enough
	○ No
	Yes, but only just
Part B	Normal reaction at top
Ca	Iculate the normal reaction as the car passes the top.
Part C	Normal reaction at bottom
Ca	lculate the normal reaction as the car passes the bottom.

<u>Home</u> Physics

Vertical Circles 19.8

Vertical Circles 19.8

When roller-coaster riders describe their rides, they call the ratio N/mg the *g-force* (this is not a scientific term). In this formula, N is taken as positive if it is directed upwards through the rider's body towards their head. A roller-coaster is designed to give N/ma-2.5 at both the top and the bottom of the ride. The loop is not circular. The rider sits in a train

which runs around the inside of the loop. The top of the loop is curved with a $7.6\mathrm{m}$ radius.			
Part A Rider at rest			
State the value of N/mg for a rider sitting at rest in the train.			
Part B Speed at top Calculate the speed of the train at the top of the loop.			
Part C Speed at bottom $ \label{eq:speed} $			
Part D Radius at bottom Calculate the radius of the loop at the bottom of the track.			