Domain and Range

If x and y are related by the equation y = f(x), then the set of all allowable inputs (x-values) is called the **domain** of f, and the set of outputs (y-values) that result when x varies over the domain is called the **range** of f.

Function	Domain
$y = x^2$	All real values of x or $-\infty < x < \infty$ or $(-\infty, \infty)$
$y = \frac{1}{x}$	All real values of x except $x = 0$ or $\{x : x = 0\}$ or $(-\infty, 0) \cup (0, \infty)$
$y = \sqrt{x}$	All non-negative real values of x or $x \ge 0$ or $[0, \infty)$

Natural Domain of A Function

If a real-valued function of a real variable is defined by a formula, DEFINITION and if no domain is stated explicitly, then it is to be understood that the domain consists of all real numbers for which the formula yields a real value. This is called the *natural domain* of the function.

Example Find the natural domain of

(a)
$$f(x) = x^3$$

(a)
$$f(x) = x^3$$
 (b) $f(x) = 1/[(x-1)(x-3)]$

(c)
$$f(x) = \tan x$$

(c)
$$f(x) = \tan x$$
 (d) $f(x) = \sqrt{x^2 - 5x + 6}$

Example Find the natural domain of

(a)
$$f(x) = x^3$$

(a)
$$f(x) = x^3$$
 (b) $f(x) = 1/[(x-1)(x-3)]$

(c)
$$f(x) = \tan x$$

(c)
$$f(x) = \tan x$$
 (d) $f(x) = \sqrt{x^2 - 5x + 6}$

Solution (a). The function f has real values for all real x, so its natural domain is the interval $(-\infty, +\infty)$.

Solution (b). The function f has real values for all real x, except x = 1 and x = 3, where divisions by zero occur. Thus, the natural domain is

$$\{x: x \neq 1 \text{ and } x \neq 3\} = (-\infty, 1) \cup (1, 3) \cup (3, +\infty)$$
Kazi Nusrat Islam, Lecturer, East west University

Natural Domain of A Function

 $y = \cos x$

Example

Find the natural domain of

(a)
$$f(x) = x^3$$

(a)
$$f(x) = x^3$$
 (b) $f(x) = 1/[(x-1)(x-3)]$

(c)
$$f(x) = \tan x$$

(c)
$$f(x) = \tan x$$
 (d) $f(x) = \sqrt{x^2 - 5x + 6}$

Solution (c). Since $f(x) = \tan x = \sin x / \cos x$, the function f has real values except where $\cos x = 0$, and this occurs when x is an odd integer multiple of $\pi/2$.

Thus, the natural domain consists of all real numbers except
$$x = \pm \frac{\pi}{2}, \pm \frac{3\pi}{2}, \pm \frac{5\pi}{2}, \dots$$

$$= x^2 - 5x + 6$$

$$= x^2 - 3x - 2x + 6$$

$$= x(x - 3) - 2(x - 3)$$

= x(x-3) - 2(x-3)=(x-3)(x-2)

Solution (d). The function f has real values, except when the expression inside the

radical is negative.

Thus the natural domain consists of all real numbers x such that

$$x^2 - 5x + 6 = (x - 3)(x - 2) \ge 0$$

R or I x-3x-2product -8 56 R 0 R -0.5-0.253 R 6

This inequality is satisfied if $x \le 2$ or $x \ge 3$ (verify), so the natural domain of f is

$$(-\infty,2]\cup[3,+\infty)$$

Effect of Algebraic Operations on the Domain

Example

The natural domain of the function $f(x) = \frac{x^2 - 4}{x - 2}$ consists of all real x except x = 2.

$$f(x) = \frac{(x-2)(x+2)}{x-2} = x+2$$

The function f has real values for all real x, so its natural domain is the interval $(-\infty, +\infty)$.

Domain and Range

Example

Find the domain and range of

(a)
$$f(x) = 2 + \sqrt{x-1}$$
 (b) $f(x) = (x+1)/(x-1)$

Solution (a). Since no domain is stated explicitly, the domain of f is its natural domain, $[1, +\infty)$. As x varies over the interval $[1, +\infty)$, the value of $\sqrt{x-1}$ varies over the interval $[0, +\infty)$, so the value of $f(x) = 2 + \sqrt{x-1}$ varies over the interval $[2, +\infty)$, which is the range of f.

x	1	2	5	10
$y = 2 + \sqrt{x - 1}$	2	3	4	5

Domain and Range

Example

Find the domain and range of

(a)
$$f(x) = 2 + \sqrt{x-1}$$
 (b) $f(x) = (x+1)/(x-1)$

Solution (b). The given function f is defined for all real x, except x = 1, so the natural domain of f is

$${x : x \neq 1} = (-\infty, 1) \cup (1, +\infty)$$

It is now evident from the right side of this equation that y = 1 is not in the range; otherwise we would have a division by zero. No other values of y are excluded by this equation, so the range of the function f is $\{y : y \neq 1\} = (-\infty, 1) \cup (1, +\infty)$, which agrees with the result obtained graphically.

$$y = \frac{x+1}{x-1}$$
$$(x-1)y = x+1$$
$$xy - y = x+1$$
$$xy - x = y+1$$
$$x(y-1) = y+1$$
$$x = \frac{y+1}{y-1}$$

	-1	U	1.5	2	5
$v = \frac{x+1}{2} 0.5$	0	-1	5	3	1.5

Practice Problem

2. Find the domain of the following functions.

a)
$$f(x) = x^4 - 2x + 4$$

b)
$$f(x) = \frac{3x+2}{x}$$

c)
$$f(x) = \sqrt{x^2 - 6x + 8}$$

d)
$$f(x) = \sqrt{2x^3 + 5x^2 - 3x}$$

e)
$$f(x) = \sqrt{-(x+2)(x+5)(x-1)}$$

Ans:
$$(-\infty, \infty)$$

Ans:
$$(-\infty, 0) \cup (0, \infty)$$

Ans:
$$(-\infty, 2] \cup [4, \infty)$$

Ans:
$$(-\infty,3] \cup [3,0] \cup \left[\frac{1}{2},\infty\right)$$

Ans:
$$(-\infty, -5] \cup [-2,1]$$

Practice Problem

3. Find the domain and range of the following function

a)
$$f(x) = 3$$

b)
$$f(x) = \sqrt{x^2 - 4x}$$

c)
$$f(x) = \sqrt{2-x} + 1$$

d)
$$f(x) = \frac{5x-6}{x+3}$$

Ans: D=
$$(-\infty, \infty)$$
 or $\{x | x \in R\}, R = \{y | y = 7\}$

Ans: D=
$$(-\infty, 0] \cup [4, \infty), R = [0, \infty)$$

Ans:
$$D=(-\infty, 2]$$
, $R=[1, \infty)$

Ans: D=
$$(-\infty, -3) \cup (-3, \infty)$$
,
 $R = (-\infty, 5) \cup (5, \infty)$

Composition of Functions

Given functions f and g, the *composition* of f with g, denoted by $f \circ g$, is the function defined by

$$(f \circ g)(x) = f(g(x))$$

The domain of $f \circ g$ is defined to consist of all x in the domain of g for which g(x) is in the domain of f.

Example Let
$$f(x) = x^2 + 3$$
 and $g(x) = \sqrt{x}$. Find (a) $(f \circ g)(x)$ (b) $(g \circ f)(x)$

Solution (a).
$$f(g(x)) = [g(x)]^2 + 3 = (\sqrt{x})^2 + 3 = x + 3$$

Solution (b).
$$g(f(x)) = \sqrt{f(x)} = \sqrt{x^2 + 3}$$

Even and Odd Functions

A function f is said to be an even function if

$$f(-x) = f(x)$$

and is said to be an *odd function* if

$$f(-x) = -f(x)$$

EVEN FUNCTION

 x^2 , x^4 , x^6 , and $\cos x$

ODD FUNCTION

 x^3 , x^5 , x^7 , and $\sin x$.

This is the graph of an even function since f(-x) = f(x).

This is the graph of an odd function since f(-x) = -f(x).

Graph of Common Functions

Graphs of straight line parallel to an axis.

x = a (a is a constant) is a straight line parallel to y - axis.

Graphs of straight line parallel to an axis.

y = b (b is a constant) is a straight line parallel to x — axis.

ax + by = c (a, b, c are constants) represents a straight line.

$$x + 2y = 4$$

x	0	4
у	2	0

 $y^2 = 4ax$ and $x^2 = 4ay$ (a is a constant) represent parabolla.

$$y^2 = x - 1$$

$$\Rightarrow y = \pm \sqrt{x-1}$$

x	1	2	2	5	5
у	0	1	-1	2	-2

Try to draw $x^2 + y - 2 = 0$.

$$x = -\sqrt{2 + y}$$

x	0	-1	-2	-3
у	-2	-1	2	7

 $x^2 + y^2 = Constant$ represents either a circle or an ellipse.

$$x^2 + \frac{y^2}{4} = 1$$

$$\implies y = \pm 2\sqrt{1 - x^2}$$
 or $x = \pm \sqrt{1 - \frac{y^2}{4}}$

x	0	0	1	-1
у	2	-2	0	0

$$y = 1 + \cos x$$

х	-6	-3	0	3	6
у	2.0	0.0	2.0	0.0	2.0

$$y = \ln x$$

х	0.01	1	5	10	20
У	-4.6	0.0	1.6	2.3	3.0

$$y = e^x$$

х	-10	-5	0	1	3
У	0.00005	0.007	1.000	2.718	20.086

