ID	Natural-Language	FRETISH	Template Key	PCTL*
[P-001]	The sensor selection component shall always satisfy accurate under ideal conditions (e.g. perfect weather, perfect lighting, on the ground, perfectly marked airport, stationary, etc.)	Whenever idealConditions SensorSelection shall immediately satisfy q_hat = q	[null, holding, null, immediately]	P>=1[(G (idealConditions => (P>=1[(q_hat = q)])))]
[P-002]	Upon one or more LECs are in- accurate, sensor selection com- ponent output shall with prob- ability greater than 95% at the next time point satisfy accurate	Upon LECs_inaccurate SensorSelection shall with probability >0.95 at the next timepoint satisfy q_hat = q	[null, regular, bound, next]	<pre>P>=1[((G (((! LECs_inaccurate) & (X LECs_inaccurate)) => (X (P>0.95[(X (q_hat = q))])))) & (LECs_inaccurate => (P>0.95[(X (q_hat = q))])))]</pre>
[P-003]	In auto-taxi mode, sensor se- lection component output shall with probability greater than 95% always satisfy accurate	$\begin{tabular}{lll} \inf auto_taxi_mode \\ SensorSelection & shall & with \\ probability > & 0.95 & always \\ satisfy q_hat = q & & \\ \end{tabular}$	[in, null, bound, always]	P>=1[(G ((! (((! auto_taxi_mode) & (X auto_taxi_mode)))) (X (P>0.95[((auto_taxi_mode) & (X (! auto_taxi_mode))) R (q_hat = q))])))) & (auto_taxi_mode)) (P>0.95[((auto_taxi_mode)) (P>0.95[((auto_taxi_mode))) (P>0.95[((auto_taxi_mode))) (q_hat = q))]))))]
[P-004]	In auto-taxi mode, whenever the LECs disagree, the sensor selection output shall with probability > 0.99 within 5 ticks satisfy accurate	in auto_taxi_mode whenever LEC_disagreement SensorSelection shall with probability > 0.99 within 5 ticks satisfy q_hat = q	[in, holding, bound, within]	P>=1[((G ((! (((! auto_taxi_mode) & (X auto_taxi_mode)))) (X ((auto_taxi_mode & (X (! auto_taxi_mode)))) R (LEC_disagreement => (P>0.99[(F<=5 (q_hat = q))]))))) & (auto_taxi_mode => ((auto_taxi_mode & (X (! auto_taxi_mode))) R ((auto_taxi_mode & (X (! auto_taxi_mode))) R (LEC_disagreement => (P>0.99[(F[<=5] (q_hat = q))]))))))))
[P-006]	In auto-takeoff mode, whenever runway incursion occurs, the sensor selection output shall with probability > 0.99 at the next time point satisfy detection of runway incursion.	in auto_takeoff_mode whenever q_k SensorSelection shall with probability > 0.99 at the next timepoint satisfy incursionDetected	[in, holding, bound, next]	P>=1[([G ((! (((! auto_takeoff_mode) & (X auto_takeoff_mode))) (X ((auto_takeoff_mode) & (X (! auto_takeoff_mode))) (X ((auto_takeoff_mode) & (X (! auto_takeoff_mode))) ((X incursionDetected) & (! (auto_takeoff_mode)) ((X incursionDetected) & (! (auto_takeoff_mode)) ((X incursionDetected) & (! (auto_takeoff_mode) & (X (! auto_takeoff_mode)) ((auto_takeoff_mode) & (X (! auto_takeoff_mode))) ((auto_takeoff_mode) & (X (! auto_takeoff_mode))) ((X incursionDetected) & (! (auto_takeoff_mode)) ((X incursionDetected) & (! (auto_takeoff_mode))))))))))))))))))))
[P-007]	after auto-land mode, the sensor selection output shall with prob- ability > 0.99 eventually satisfy detection of correct runway exit	after auto_land_mode SensorSelection shall with probability > 0.99 eventually satisfy detect_correct_exit	[after, null, bound, eventually]	<pre>P>=1[(((! (auto_land_mode & (X (! auto_land_mode)))) U ((auto_land_mode & (X (! auto_land_mode))) & (X (P>0.99[(F detect_correct_exit)])))) (G (! (auto_land_mode & (X (! auto_land_mode))))))]</pre>
[P-008]	before auto-takeoff mode, the sensor selection output shall with probability > 0.99 eventu- ally satisfy detection of correct runway entry	before auto_takeoff_mode SensorSelection shall with probability > 0.99 eventually satisfy detect_correct_entry	[before, null, bound, eventually]	P>=1[(((! auto_takeoff_mode) & (X auto_takeoff_mode)) (P>0.99[(! ((! auto_takeoff_mode) & (X auto_takeoff_mode))) U detect_correct_entry)]))]
[P-009]	Upon out-of-distribution_event OODDetector shall with prob- ability ≥ 0.9 after 5 time units satisfy InputDataIsOOD	$\begin{array}{ll} \mbox{upon ood_event} \mbox{ ODDPetector shall} \\ \mbox{with probability} \geq 0.99 \mbox{ after} \\ \mbox{5 ticks satisfy } \mbox{f_k} \end{array}$	[null, regular, bound, after]	$P \ge 1[((G(((! ood_event) & (X ood_event)) \Rightarrow) (X (P \ge 0.9)[((G \le 5(! f_k)) & (F \le (5+1) f_k))]))) \\ & (ood_event \Rightarrow) (P \ge 0.99[((G[<=5] (! f_k)) & (F[<=5+1] f_k))]))]$
[P010]	In auto-land mode, Upon out- of-distribution_event OODDe- tector shall with probability ≥ 0.99 after 5 time units satisfy InputDataIsOOD	in auto_land_mode upon ood_event OODDetector shall with probability ≥ 0.99 after 5 ticks satisfy f_k	[in, regular, bound, after]	P>=1[((G ((! (((! auto_land_mode) & (X auto_land_mode)))) (X (((auto_land_mode & (X (! auto_land_mode)))) (X (((auto_land_mode & (X (! auto_land_mode)))) (((! ood_event) & ((X ood_event) & (! (auto_land_mode & (X (! auto_land_mode)))))) > ((X (P>=0.99[((G<=5 (! f_k))) & (! (auto_land_mode)))))) & (ood_event => (P>=0.99[((G(<=5) (! f_k))) & (F(<=5+1] f_k))]))))) & (auto_land_mode)) (((auto_land_mode))) (((auto_land_mode)))))) & (((! ood_event)) & ((! auto_land_mode)))) (((auto_land_mode))) & ((! ood_event)) & ((X ood_event)))) > ((X (P>=0.99[((G(<=5) (! f_k))))) & ((! auto_land_mode))))))) & (((auto_land_mode))))))) & (((auto_land_mode)))))))) & (((auto_land_mode))))))) & (((auto_land_mode)))))))) & (((auto_land_mode)))))))) & (((auto_land_mode)))))))) & (((auto_land_mode)))))))) & (((auto_land_mode)))))))) & (((auto_land_mode))))))))) & (((auto_land_mode)))))))) & (((auto_land_mode))))))))) & (((auto_land_mode)))))))))) & (((auto_land_mode))))))))))))))))))))))))))))))))))))
[P-011]	Upon inaccurate, the Runway Detector with probability greater than 90% remain inaccurate for 10 time units.	upon q_hat - q > epsilon & q - q_hat < epsilon RunwayDetector shall with probability ≥ 0.9 for 10 ticks satisfy q_hat - q > epsilon & q - q_hat < epsilon	[null, regular, bound, for]	P>=1[((G (((! (((q_hat - q) > epsilon) & ((q - q_hat) < epsilon))) & (X (((q_hat - q) > epsilon) & ((q - q_hat) < epsilon)))) => (X (P>0.9[(G<=10 (((q_hat - q) > epsilon)))))) & (((q_hat - q) > epsilon) & ((q - q_hat) < epsilon)))))) & ((((q_hat - q) > epsilon) & ((q - q_hat) < epsilon))))))) => (P>0.9[(G[<=10] (((q_hat - q) > epsilon))))))))
[P012]	Upon a runway incursion, the Runway Intrusion Detector, with probability greater than 99.99%, detects the incursion before an unsafe separation distance is reached.	upon q_k RunwayIntrusionDetector shall with probability > 0.9999 before unsafe_sep_distance satisfy incursionDetected	[null, regular, bound, before]	P>=1[((G (((! q_k) & (X q_k)) => (X (P>0.9999[(incursionDetected R (! unsafe_sep_distance))]))) & (q_k => (P>0.9999[(incursionDetected R (! unsafe_sep_distance))])))]

TABLE I: FRETISH and generated PCTL* formulas for RTX perception system case study.

ID	Natural-Language	FRETISH	Template Key	PCTL*
[R013]	Upon out-of-distribution_event OODDetector shall with prob- ability ≥ 0.9 after 5 time units satisfy InputDataIsOOD	upon ood_event OODDetector shall with probability ≥ 0.99 after 5 ticks satisfy f_k	[null, regular, bound, after]	P>=1[((G (((! ood_event) & (X ood_event)) => (X (P>=0.99[((G<=5 (! f_k)) & (F<=6 f_k))])))) & (ood_event => (P>=0.99[((G(<=5) (! f_k)) & (F[<=6] f k))])))
[R014]	In auto-land mode, Upon out- of-distribution_event OODDe- tector shall with probability \geq 0.99 after 5 time units satisfy InputDatalsOOD	in auto_land_mode upon ood_event OODDetector shall with probability ≥ 0.99 after 5 ticks satisfy f_k	[in, regular, bound, after]	<pre>P>=1[(G ((! (((! auto_land_mode) & (X auto_land_mode)) & (! false))) (X (((auto_land_mode & (X (! auto_land_mode))) R (((! ood_event)) & (! (X ood_event)) & (! (auto_land_mode)) (X (! auto_land_mode)))))) => ((X (P>=0.99[((G<=5 (! f_k))) & (F<=6 f_k))])) & (! (auto_land_mode) & (X (! auto_land_mode)))))) & (ood_event) => (P>=0.99[((G[<=5] (! f_k))) & (F[<=6] f_k))])))))) & (auto_land_mode)) (((auto_land_mode & (X (! auto_land_mode))) (((auto_land_mode & (X (! auto_land_mode)))) (((auto_land_mode & (X (X (! auto_land_mode)))))) => ((X (P>=0.99[((G[<=5] (! f_k))) & (F[<=6] f_k))])))) & (iod_event) => (P>=0.99[((G[<=5] (! f_k))))))))</pre>
[R015]	Upon inaccurate, the Runway Detector with probability greater than 90% remain inaccurate for 10 time units.	upon q_hat - q > epsilon & q - q_hat < epsilon RunwayDetector shall with probability > 0.9 for 10 ticks satisfy q_hat - q > epsilon & q - q_hat < epsilon	[null, regular, bound, for]	P>=1[((G (((! (((q_hat - q) > epsilon) & ((q - q_hat) < epsilon)) & (X (((q_hat - q) > epsilon) & ((q - q_hat) < epsilon))) => (X (P>0.9[(G<=10 (((q_hat - q) > epsilon) & ((q - q_hat) < epsilon))))))) & ((((q_hat - q) > epsilon) & ((q - q_hat) < epsilon))))))) & ((((q_hat - q) > epsilon) & ((q - q_hat) < epsilon)) => (P>0.9[(G[<=10] (((q_hat - q) > epsilon)))))))
[R016]	Upon a runway incursion, RunwayIntrusionDetector, with probability greater than 99.99%, detects the incursion before an unsafe separation distance is reached.	upon q_k RunwayIntrusionDetector shall with probability > 0.9999 before unsafe_sep_distance satisfy incursionDetected	[null, regular, bound, before]	$P>=1[((G (((! q_k) \& (X q_k)) \Rightarrow (X (P>0.9999[((incursionDetected false) R ((! unsafe_sep_distance))])))) \& (q_k \Rightarrow (P>0.9999[((incursionDetected false) R ((! unsafe_sep_distance))])))]$
[R017]	Whenever a runway incursion, RunwayIntrusionDetector, with probability greater than 99.99%, detects an incursion within 10 time units.	whenever g_k RunwayIntrusionDetector shall with probability > 0.9999 within 10 ticks satisfy incursionDetected	[null, holding, bound, within]	P>=1[(G (q_k => (P>0.9999[(F<=10 incursionDetected)])))]

TABLE II: FRETISH and generated PCTL* formulas for RTX perception system component.