Calculating the change in entropy: thermodynamic considerations

Definitions of Thermodynamic Potentials

Function of state		Differential	Natural variables	First derivatives	
Intornal anarcz	T T	dU = TdS - pdV	II II(C I/)	$T = (\partial U)$	$_{m}$ — (∂U)
Internal energy	U	av = ras - pav	U = U(S, V)	$I = (\overline{\partial S})_V,$	$p = -\left(\frac{\partial U}{\partial V}\right)_S$
Enthalpy	H = U + pV	dH = TdS + Vdp	H = H(S, p)	$T = \left(\frac{\partial H}{\partial S}\right)_p,$	$V = \left(\frac{\partial H}{\partial p}\right)_{S}$
Helmholtz function	F = U - TS	$\mathrm{d}F = -S\mathrm{d}T - p\mathrm{d}V$	F = F(T, V)	$S = -\left(\frac{\partial F}{\partial T}\right)_{V},$	$p = -\left(\frac{\partial F}{\partial V}\right)_T$
Gibbs function	G = H - TS	dG = -SdT + Vdp	G = G(T, p)	$S = -\left(\frac{\partial G}{\partial T}\right)_p,$	$V = \left(\frac{\partial G}{\partial p}\right)_T$