Пример 2. Функция  $F(x)= \operatorname{arcctg} \frac{1}{x}$  является первообразной для функции  $f(x)=\frac{1}{1+x^2}$  как на промежутке всех положительных чисел, так и на полуоси отрицательных чисел, ибо при  $x\neq 0$ 

$$F'(x) = -\frac{1}{1 + \left(\frac{1}{x}\right)^2} \cdot \left(-\frac{1}{x^2}\right) = \frac{1}{1 + x^2} = f(x).$$

Как обстоит дело с существованием первообразной и каково множество первообразных данной функции?

В интегральном исчислении будет доказан фундаментальный факт о том, что любая непрерывная на промежутке функция имеет на этом промежутке первообразную.

Мы приводим этот факт для информации читателя, а в этом параграфе используется, по существу, лишь следующая, уже известная нам (см. гл. V, § 3, п. 1) характеристика множества первообразных данной функции на числовом промежутке, полученная из теоремы Лагранжа.

Утверждение 1. Если  $F_1(x)$  и  $F_2(x)$  — две первообразные функции f(x) на одном и том же промежутке, то их разность  $F_1(x)$  —  $F_2(x)$  постоянна на этом промежутке.

Условие, что сравнение  $F_1$  и  $F_2$  ведется на связном промежутке, как отмечалось при доказательстве этого утверждения, весьма существенно. Это можно заметить также из сопоставления примеров 1 и 2, в которых производные функций  $F_1(x) = \arctan x$  и  $F_2(x) = \arctan \frac{1}{x}$  совпадают в области  $\mathbb{R} \setminus 0$  их совместного определения. Однако

$$F_1(x) - F_2(x) = \operatorname{arctg} x - \operatorname{arcctg} \frac{1}{x} = \operatorname{arctg} x - \operatorname{arctg} x = 0,$$

если x>0, в то время как  $F_1(x)-F_2(x)\equiv -\pi$  при x<0, ибо при x<0 имеем  $\arctan\frac{1}{x}=\pi+\arctan x$ . Как и операция взятия дифференциала, имеющая свое название «диффе

Как и операция взятия дифференциала, имеющая свое название «дифференцирование» и свой математический символ dF(x) = F'(x) dx, операция перехода к первообразной имеет свое название «неопределенное интегрирование» и свой математический символ

$$\int f(x) \, dx,\tag{1}$$

называемый неопределенным интегралом от функции f(x) на заданном промежутке.

Таким образом, символ (1) мы будем понимать как обозначение любой из первообразных функции f на рассматриваемом промежутке.

В символе (1) знак  $\int$  называется знаком неопределенного интеграла, f — подынтегральная функция, а f(x) dx — подынтегральное выражение.

Из утверждения 1 следует, что если F(x) — какая-то конкретная первооб-

разная функции f(x) на промежутке, то на этом промежутке

$$\int f(x) dx = F(x) + C, \tag{2}$$

т. е. любая другая первообразная может быть получена из конкретной F(x) добавлением некоторой постоянной.

Если F'(x) = f(x), т.е. F — первообразная для f на некотором промежутке, то из (2) имеем

$$d \int f(x) dx = dF(x) = F'(x) dx = f(x) dx.$$
 (3)

Кроме того, в соответствии с понятием неопределенного интеграла как любой из первообразных, из (2) следует также, что

$$\int dF(x) = \int F'(x) dx = F(x) + C.$$
 (4)

Формулы (3) и (4) устанавливают взаимность операций дифференцирования и неопределенного интегрирования. Эти операции взаимно обратны с точностью до появляющейся в формуле (4) неопределенной постоянной *С*.

До сих пор мы обсуждали лишь математическую природу постоянной С в формуле (2). Укажем теперь ее физический смысл на простейшем примере. Пусть точка движется по прямой так, что ее скорость v(t) известна как функция времени (например,  $v(t) \equiv v$ ). Если x(t) – координата точки в момент t, то функция x(t) удовлетворяет уравнению  $\dot{x}(t) = v(t)$ , т. е. является первообразной для v(t). Можно ли по скорости v(t) в каком-то интервале времени восстановить положение точки на оси? Ясно, что нет. По скорости и промежутку времени можно определить величину пройденного за это время пути s, но не положение на оси. Однако это положение также будет полностью определено, если указать его хотя бы в какой-то момент, например при t = 0, т. е. задать начальное условие  $x(0) = x_0$ . До задания начального условия закон движения x(t) мог быть любым среди законов вида x(t) = $=\tilde{x}(t)+c$ , где  $\tilde{x}(t)-$ любая конкретная первообразная функции v(t), а cпроизвольная постоянная. Но после задания начального условия  $x(0) = x_0$ вся неопределенность исчезает, ибо мы должны иметь  $x(0) = \tilde{x}(0) + c = x_0$ , т. е.  $c = x_0 - \tilde{x}(0)$ , и  $x(t) = x_0 + [\tilde{x}(t) - \tilde{x}(0)]$ . Последняя формула вполне физична, поскольку произвольная первообразная  $\tilde{x}$  участвует в формуле только в виде разности, определяя пройденный путь или величину смещения от известной начальной метки  $x(0) = x_0$ .

**2.** Основные общие приемы отыскания первообразной. В соответствии с определением символа (1) неопределенного интеграла, он обозначает функцию, производная которой равна подынтегральной функции. Исходя из этого определения, с учетом соотношения (2) и законов дифференцирования можно утверждать, что справедливы следующие соотношения:

a. 
$$\int (\alpha u(x) + \beta v(x)) dx = \alpha \int u(x) dx + \beta \int v(x) dx + c.$$
 (5)

b. 
$$\int (uv)'(x) \, dx = \int u'(x)v(x) \, dx + \int u(x)v'(x) \, dx + c. \tag{6}$$

с. Если на некотором промежутке  $I_x$ 

$$\int f(x) \, dx = F(x) + c,$$

а  $\varphi:I_t\to I_x$  — гладкое (т. е. непрерывно дифференцируемое) отображение промежутка  $I_t$  в  $I_x$ , то

$$\int (f \circ \varphi)(t) \varphi'(t) dt = (F \circ \varphi)(t) + c.$$
 (7)

Равенства (5), (6), (7) проверяются прямым дифференцированием их левой и правой частей с использованием в (5) линейности дифференцирования, в (6) правила дифференцирования произведения и в (7) правила дифференцирования композиции функций.

Подобно правилам дифференцирования, позволяющим дифференцировать линейные комбинации, произведения и композиции уже известных функций, соотношения (5), (6), (7), как мы увидим, позволяют в ряде случаев сводить отыскание первообразной данной функции либо к построению первообразных более простых функций, либо вообще к уже известным первообразным. Набор таких известных первообразных может составить, например, следующая краткая таблица неопределенных интегралов, полученная переписыванием таблицы производных основных элементарных функций (см. § 2, п. 3):

$$\int x^{\alpha} dx = \frac{1}{\alpha+1} x^{\alpha+1} + c \quad (\alpha \neq -1),$$

$$\int \frac{1}{x} dx = \ln|x| + c,$$

$$\int a^{x} dx = \frac{1}{\ln a} a^{x} + c \quad (0 < a \neq 1),$$

$$\int e^{x} dx = e^{x} + c,$$

$$\int \sin x dx = -\cos x + c,$$

$$\int \cos x dx = \sin x + c,$$

$$\int \frac{1}{\cos^{2} x} dx = \operatorname{tg} x + c,$$

$$\int \frac{1}{\sin^{2} x} dx = -\operatorname{ctg} x + c,$$

$$\int \frac{1}{\sqrt{1-x^{2}}} dx = \begin{cases} \arcsin x + c, \\ -\operatorname{arccos} x + \tilde{c}, \end{cases}$$